2D-510.

HEWLETT-PACKARD COMPANY / OPERATING AND SERVICE MANUAL

208A 208A-DB TEST OSCILLATOR

MODEL 208A/208A-DB

TEST OSCILLATOR

Manual Serial Prefixed: 318-® Part No. 03208-90000

To adapt this manual to instruments with other serial prefixes check for errata below, and make changes shown in tables.

Instrument Serial Prefix	Make Manual Changes	Instrument Serial Prefix	Make Manual Changes
ALL	ERRATA		
318-	1		

CHANGE #1

Table 6-2, Replaceable Parts:

R80 Was 0687-3331

Now 0687-3921 R: fxd, comp, 3.9 K ohms ±10%, 1/2 w

R105 Was 0687-3921

Now 0687-2721 R: fxd, comp, 2.7 K ohms ±10%, 1/2 w

R106 Was 0698-0001

Now 0687-3331 R: fxd, comp, 33 K ohms ±5%, 1/2 w

R48 Was 0687-3951

Now 0687-1051 R: fxd, comp, 1.0 M ohms ±10%, 1/2 w

C17 Was 0140-0100

Now 0140-0004 C: fxd, 15 pf, 500 v

208A-DB is Now option 01.

ERRATA

Add to Table 6-1, Reference Designation Index, Miscellaneous section:

Circuit Reference: BT101 through BT104, \$\overline{\phi}\$ Part No. 0420-0015. Description: Battery, Nickel Cadmium, 6 v nom, 225 mah.

Add to Table 6-2, Replaceable Parts:

@ Part No. 1420-0015.

Description: Battery, Nickel Cadmium, 88220 Mfr., Mfr. Part No. 6.0 v/255B, TQ 4, RS 4.

Figure 5-14, Model 208A and 208A-DB Schematic Diagrams:

Change A4C37 to 50 μ fd.

Change value of R14 to 18 ohms. (on A2)

Change R18 and R34 to R18* and R34*, value selected at the factory, average value shown. (on A2)

OPERATING AND SERVICE MANUAL

MODEL 208A/208A-DB

SERIALS PREFIXED: 318-

TEST OSCILLATOR

Copyright HEWLETT-PACKARD COMPANY 1963

TABLE OF CONTENTS

Sec	tion GENERAL INFORMATION	Page	Sect	ion (Cont'o	a\	Page
1	1-1. Description	. 1-1	1 V		Power Supply	. 4-4
	1-6. Model 208A-DB	1_1	v	MATNIT	TENANCE	. 5-1
	1-8. Uses · · · · · · · · ·		v	5-1.	Introduction	
	1-10. Differences Between Instruments.			5-3.	Test Instruments Required	
	1-12. Accessories Available			5-5.	Mechanical Zero Adjustment	
	1-12. Accessories Available	. 1-1		5-7.	Troubleshooting	
II	INSTALLATION	9_1		5-9.	Instrument Cover Removal	
11	2-1. Inspection			5-11.	Repair	
	2-4. Power Requirements	2-1		5-12.	Servicing Etched Circuit Boards.	
	2-6. Installation			5-14.	Transistor Replacement	
	2-9. Rack Mounting	2-1		5-16.	Range Switch Repair	
	2-12. Repacking for Shipment	2-1		5-18.	Frequency Potentiometer	. 5-1
	2-12. Repacking for Simplificate	. 2-1		0-10.	Replacement	54
III	OPERATING INSTRUCTIONS	3_1		5-20.	Cam Cable Replacement	5-4
111	3-1. Introduction	3-1		5-22.	Attenuator Maintenance	
	3-3. Operation			5-24.	Removal of Output Attenuator .	
	3-4. Range Switch			5-25.	Replacement of Resistors	
	3-6. Freq. Dial			5-27.	Adjustments	
	3-8. Set Level Control	3_1		5-29.	Performance Tests	
	3-10. Output Monitor (Model 208A)			5-33.	Dial Accuracy Check	
	3-12. Output Monitor (Model 208A-DB)			5-34.	Frequency Response and Output	
	3-14. Batt. Charge			0-01.	Voltage Check	
	3-16. Meter Scale Value/Multiplier (20			5-35.	Distortion Check	
	3-18. Matched Impedance (208A)			5-36.	Attenuation Check (Model 208A).	
	3-20. Attenuator (Model 208A-DB)			5-37.	Attenuation Check	. 0-0
	3-22. Matched Impedance (Model 208A-D			0 01.	(Model 208A-DB)	5-9
	3-25. Need for Output Match			5-38.	Output Monitor Check	. 0 - 0
	3-26. Mis-Matched Impedance			0 00.	(Model 208A)	5-9
	3-28. Balanced Output			5-39.	Output Monitor Check	
	b 26. Balancea Output	. 0 2		0 00.	(Model 208A-DB)	. 5-9
IV	PRINCIPLES OF OPERATION	4-1		5-40.	Calibration Procedure	
1 4	4-1. Introduction			5-43.	Power Supply	
	4-10. Oscillator Circuit			5-44.	Meter Calibration (Model 208A).	
	4-15. Output Circuit			5-45.	Meter Calibration (Model	0 11
	4-17. Peak Detector			0 10,	208A-DB)	5-11
	4-19. Intermediate Attenuator			5-46.	Distortion Adjustment	
	4-21. Voltmeter Circuit			5-49.	Frequency Calibration	0 10
	4-24. Meter Rectifier Circuit			0 10,	Adjustments	5-13
	4-30. Output Attenuator				Injustinonis	0 10
	4-32. Attenuator Expressed in		VT	REPL	ACEABLE PARTS	. 6-1
	Decibels	4-3		6-1.	Introduction	
	4-37. Reference for DB			6-4.	Ordering Information	

01350-1

LIST OF ILLUSTRATIONS

Numb	er	Page	Numb	per	Page
1-1.	Model 208A Test Oscillator	v	4-6.	Simplified Attenuator Schematic	4-4
1-2.	Model 208A-DB Test Oscillator	vi	5-1.	Cover Removal	5-0
1-3.	Accessories	. 1-2	5-2.	Range Switch Details	5-3
2-1.	The Combining Case	. 2-0		Cams and Cable Relationship	
	Steps to Place Instrument into		5-4.	Model 208A Meter Scale Value/Multiplier	5-5
	Combining Case	. 2-0	5-5.	Model 208A-DB Attenuator	5-5
2-3.	Adapter Frame Instrument Combinations			Test Setup for Dial Accuracy or	
3-1.	Controls, Connectors on the Model			Distortion Check	5-6
	208A and 208A-DB	. 3-0	5-7.	Test Setup for Frequency Response	
3-2.	Network Data	. 3-2		and Output Voltage Check	5-8
3-3.	600 ohm Balanced Line Configurations .	. 3-3	5-8.	Attenuation Check	
3-4.	135 ohm or 600 ohm Balanced Line		5-9.	Rear View (Illustrating Charging Board) .	5-11
	Configurations	. 3-3	5-10.	Top View	5-12
4-1.	Block Diagram			Bottom View	
	Simplified Oscillator Circuit			Model 208A-DB Output Attenuator	
4-3.	RC Network Characteristics	. 4-2		Schematic	5-14
4-4.	Simplified Meter Rectifier Circuit	. 4-3	5-13.	Model 208A/208A-DB Power Supply	
4-5.	Actual Meter Rectifier Circuit	. 4-3	5-14.	Model 208A/208A-DB Schematic 5-17	/5-18

LIST OF TABLES

Number	Page	Number	Page
1-1. Specifications (Model 208A)	vi 1-2 3-2 3-3	 5-2. Troubleshooting Summary. 5-3. Dial Accuracy. 5-4. Battery Test Values (Model 208A). 5-5. Battery Test Values (Model 208A-DB) 6-1. Index By Reference Designator. 6-2. Replaceable Parts. 	5-10 5-10 6-2

iv . 01350-1

Figure 1-1. Model 208A Test Oscillator

Table 1-1. Specifications

FREQUENCY RANGE:

5 cps to 560 Kc in 5 ranges. 5% overlap between ranges, vernier control.

DIAL ACCURACY: ±3%

FREQUENCY RESPONSE: ±3% into rated load

OUTPUT:

10 milliwatts, nominal 2.5 v rms (+10 dbm) into 600 ohms.

OUTPUT IMPEDANCE: 600 ohms

OUTPUT ATTENUATOR:

Meter Scale Value: 0.01 My to 1 volt full scale in 6 steps.

Multiplier: 2.5 multiplier, concentric with Meter Scale Value switch, to obtain 0.025 Mv to 2.5 volts.

OUTPUT ATTENUATOR ACCURACY:

5 cps to 100 Kc, error is less than $\pm 3\%$ at any step. From 100 Kc to 560 Kc, error is less than 5% at any step. Specifications include multiplier accuracy.

OUTPUT MONITOR:

Transistor voltmeter monitors level at input to attenuator and after set level. Accuracy, $\pm 2\%$ of full scale into 600 ohms.

OPERATING TEMPERATURE RANGE: 0°C to +50°C

SET LEVEL:

Continuously variable bridged "T" Attenuator with 10:1 voltage range.

DISTORTION: Less than 1%

HUM AND NOISE:

Less than .05% at maximum output

POWER SOURCE:

4 rechargeable batteries (furnished). Thirty hour operation per recharge. Oscillator may be operated during recharge from AC line. (115v or 230v $\pm 10\%$, 50 to 1000 cps, approx. 3 watts).

DIMENSIONS (with feet):

Module 6-1/2" high (16.5 cm) x 7-25/32" wide (19.8 cm) x 8" deep (20.3 cm)

WEIGHT:

8-1/4 pounds (3.5 kg), shipping approximately 10 pounds (4.5 kg).

Figure 1-2. Model 208A-DB Test Oscillator

Table 1-2. Specifications

FREQUENCY RANGE:

5 cps to 560 Kc in 5 ranges. 5% overlap between ranges, vernier control.

DIAL ACCURACY: ±3%

FREQUENCY RESPONSE: $\pm 3\%$ into rated load

OUTPUT:

10 milliwatts, nominal (+10 dbm) into 600 ohms

OUTPUT IMPEDANCE: 600 ohms

OUTPUT ATTENUATOR: 0 to 110 db in 1 db steps

ACCURACY, 10 DB SECTION:

From 5 cps to 100 Kc, error is less than ± 0.125 db at any step. From 100 Kc to 560 Kc, error is less than ± 0.25 db at any step.

ACCURACY, 100 DB SECTION:

From 5 cps to 100 Kc, error is less than ± 0.25 db at any step. From 100 Kc to 560 Kc, error is less than ± 0.5 db at any step.

OPERATING TEMPERATURE RANGE:

0°C to +50°C

OUTPUT MONITOR:

Transistor voltmeter monitors level at input to attenuator, and after set level. Scale calibrated from -10 dbm to +11 dbm. Accuracy, ± 0.25 db at +10 DBM into 600 ohms.

SET LEVEL:

Continuously variable bridged "T" Attenuator with 20 db minimum range.

DISTORTION: Less than 1%

HUM AND NOISE:

Less than .05% at maximum output

POWER SOURCE:

4 rechargeable batteries (furnished). Thirty hour operation per recharge. Oscillator may be operated during recharge from AC line (115 v or 230 v $\pm 10\%$, 50 to 1000 cps, approx., 3 watts).

DIMENSIONS (with feet):

Module 6-1/2" (16.5 cm) high x 7-25/32" (19.8 cm) wide x 8" (20.3 cm) deep.

WEIGHT:

8-1/4 pounds (3.5 kg), shipping approximately 10 pounds (4.5 kg).

SECTION I GENERAL INFORMATION

1-1. DESCRIPTION.

- 1-2. The Hewlett-Packard Model 208A or Model 208A-DB Test Oscillator is a precision resistance tuned oscillator, covering a frequency range from 5 cps to 560 Kc. It has a stable output signal that is adjustable from 5 microvolts to 2.5 volts. Frequency response is essentially flat (±3%) into a rated load of 600 ohms throughout the complete frequency range. There is excellent frequency stability even in rapidly changing loads; frequency stability is typically better than 5 parts 10⁴. Short term stability over a few minutes at constant temperature is typically better than 0.001% at 400 cycles per second.
- 1-3. This solid state Model 208A/208A-DB Test Oscillator is a versatile general purpose audio oscillator for use in laboratories and production and is ideal for field work since it is transistorized and battery operated. It is versatile because of its wide frequency range, exceptional stability and portability. Measurements may be made nearly anywhere since the Model 208A/208A-DB is completely self-contained and operated either from its internal batteries or from the AC line. Battery charge, which is automatically restored during AC operation may be easily checked with a front panel switch to assure you of reliable measurements. Normally about 60 hours of AC operation recharges the batteries but an internal adjustment is provided which nearly doubles the charging rate. The Model 208A/208A-DB may be used while its batteries are charging.

Note

The Model 208A/208A-DB will not function with the batteries removed from the instrument.

1-4. MODEL 208A.

1-5. Stable accurate signals are instantly available from 5 cycles per second to 560 Kc. Output voltages are adjustable between 5 microvolts and 2-1/2 volts. The output voltage is monitored by a transistorized voltmeter circuit which measures the rms voltage at the input to the attenuator system. The output voltage is the meter scale value multiplied by the indication on the output monitor and multiplied by the attenuator (multiplier). The output attenuator is adjustable in 20 db steps and maximum attenuation is 100 db. The voltage applied to the output attenuator is set with a set level control which provides continuous control between the 20 db steps of attenuation. The attenuator output voltage is correct when the output terminals are terminated into 600 ohms.

1-6. MODEL 208A-DB.

1-7. Stable accurate signals are instantly available over a frequency range from 5 cycles per second to 560 Kc. Output levels are adjustable between +10 dbm and -118 dbm. The output level is monitored by a transistorized voltmeter circuit which measures the rms voltage at the input to the attenuator system. This output monitor is calibrated in dbm. The output level is the indication on the output monitor in dbm multiplied by the setting of the attenuator. The output attenuator is adjustable in one db steps, and maximum attenuation is 110 db. The level applied to the output attenuator is set with a set level control which provides continuous control between the 1 db or 10 db steps on the 110 db attenuator. The attenuator output level is correct when the output terminals are terminated into 600 ohms.

1-8. USES.

1-9. The \$\overline{\psi}\$ Model 208A/208A-DB has a multitude of uses. This Test Oscillator was designed for such applications as fast and accurate testing of filter transmission characteristics, receiver alignment, telephone carrier measurements, testing television amplifiers, wide band systems and network measurements. It is an excellent audio oscillator for laboratory or field measurements, and provides known attenuation for voltmeters. The Model 208A/208A-DB used in conjunction with \$\overline{\phi}\$ accessories 11004A and 11005A Line Transformers will provide a balanced output, and can be used for transmission line, attenuation, frequency response and gain measurements. It is also useful for the maintenance of multi-channel communication systems.

1-10. DIFFERENCES BETWEEN INSTRUMENTS.

1-11. The Model 208A/208A-DB carries a five-digit serial number with a three-digit prefix (000-00000). The prefix is an identifier, and it appears on the title page of this manual to indicate to which instrument this manual directly applies. A supplement sheet may be included with this manual indicating the necessary changes to make it apply directly to Models 208A/208A-DB which carry a different serial number prefix.

1-12. ACCESSORIES AVAILABLE.

1-13. Table 1-3 and Figure 1-3 illustrate accessories which are made by Hewlett-Packard to increase the usefulness of your Test Oscillator.

Model 11004A Line Matching Transformer

Model 11005A Bridging Transformer

Figure 1-3. Accessories

	cessories Available	
Model No.	Use	Features
11004A	Line Matching Transformer Provides balanced 135 or 600 ohm input to 600 ohm unbal- anced output for measure- ments on balanced lines	Terminating Resistance: 600 or 10K ohms Frequency Range: 5 to 600 Kc Power Handling Capacity: ±22 DBM (10 v into 600 ohms) Balance: Better than 40 db entire frequency range
11005A	Line Bridging Transformer Provides balanced 600 ohm input to unbalanced 600 ohm output for measurements on balanced lines	Terminating Resistance: 600 or 10K ohms Frequency Range: 20 cps to 45 Kc Power Handling Capability: +15 DBM (4.5 v into 600 ohms)
353A (not shown)	Patch Panel Provides balanced 135, 600 or 900 ohm input to unbalanced 600 ohm output for measure- ments on balanced lines.	Input: (Receiver) Frequency Range: 50 cps to 560 Kc Balance: Better than 70 db at 60 cps for 600 and 900 Ω Better than 60 db at 1 Kc for 600 and 900 Ω Better than 40 db over entire frequency range for 135, 600 and 900 ohms Frequency Response:±1/2 db, 50 cps to 560 Kc Impedance: 135, 600, 900 ohms and Bridging (10K) center tapped Insertion Loss: Less than 3/4 db at 1 Kc Maximum Level: +20 DBM (10 v RMS at 600 ohms)
		Output: (Source) Frequency Range: 50 cps to 560 Kc Balance: Better than 70 db at 60 cps for 600 and 900 Ω Better than 60 db at 1 Kc for 600 and 900 Ω Better than 40 db over entire frequency range for 135, 600 and 900 ohms Frequency Response: ±1/2 db, 50 cps to 560 Kc Impedance: 135, 600, and 900 ohms center tapped Insertion Loss: Less than 3/4 db at 1 Kc Distortion: Less than 1%, 50 cps to 560 Kc Maximum Level: +29 DBM (10 v RMS at 600 ohms)
11000A 11001A	Test Leads	Dual Banana Plug Banana Plug to BNC Male Connector

Figure 2-1. The Combining Case

Figure 2-2. Steps to Place Instrument into Combining Case

SECTION II

2-1. INSPECTION.

- 2-2. Unpack the instrument upon receipt and inspect it for signs of physical damage such as scratched panel knobs, etc. If there is any apparent damage, file a claim with the carrier and refer to the warranty page on the back of this manual.
- 2-3. An electrical inspection should be performed as soon as possible after receipt. To aid in electrical inspection, performance checks are included in section V, Paragraph 5-29.

2-4. POWER REQUIREMENTS.

2-5. The Model 208A / 208A - DB operates on nickel cadmium batteries. This instrument uses four 6.5 volt cells and, under continuous operation over 30 hours of service is obtained from the batteries before recharging. The Model 208A/208A-DB can be operated on 115 or 230 volts AC. This instrument is continually charging the batteries whenever the line cord is connected to a 115 or 230 volt source.

CAUTION

A switch located on the rear of the instrument enables the user to select the 115 or 230 volt position when applying AC power to this instrument.

2-6. INSTALLATION.

2-7. The $\prescript{\textcircled{$\phi$}}$ Model 208A/208A-DB is fully transistorized; therefore no special cooling is required. However, the AC power should not be used where the ambient temperature exceeds $40^{\rm O}$ C ($104^{\rm O}$ F). See Paragraph 4-42.

2-9. RACK MOUNTING.

- 2-9. The Model 208A/208A-DB is a submodular unit that when used alone can be bench mounted only. However, when used in combination with other submodular units it can be bench and/or rack mounted. The $\ensuremath{\langle p \rangle}$ combining case and adapter frame are designed specifically for this purpose.
- 2-10. COMBINING CASE. The combining case is a full-module unit which accepts varying combinations of submodular units. Being a full-module unit, it can be bench or rack mounted analogous to any full-module instrument. An illustration of the combining case is shown in Figure 2-1. Instructions for installing the Model 208A/208A-DB in a combining case is given graphically in Figure 2-2.
- 2-11. ADAPTER FRAME. The adapter frame is a rack frame that accepts any combination of submodular units. It can be rack mounted only. An illustration of the adapter frame is given in Figure 2-3.

2-12. REPACKING FOR SHIPMENT.

- 2-13. When returning an instrument to the Hewlett-Packard Company, use the original packing material (only if foamtype) if available or contact your Hewlett-Packard field office for assistance. If this is not possible, first protect the instrument surfaces with sheets of cardboard flat against the instrument. Then protect the instrument on all sides (use approximately 4 inches of packing material designed specifically for package cushioning), pack in a durable carton, mark carton clearly for proper handling, and insure adequately before shipping. Original packing material which is a cardboard "accordion-like" filler is not recommended for reshipment since the cushioning ability is usually destroyed with one use.
- 2-14. When returning an instrument to the Hewlett-Packard Company for service or repair, attach a tag to the instrument specifying the owner and desired action. All correspondence should identify the instrument by model number and full serial number.

Figure 2-3. Adapter Frame Instrument Combinations

Z (ohms)	Z (ohms)	U (ohms)	V (ohms)	W (ohms)	Insertion Loss
600	50	574.5	2. 111	49. 92	17 db
600	200	489.9	. 9824	243. 4	10 db
600	500	245. 2	13. 22	1148. 0	4 db
600	2000	33. 06	1674. 0	670.8	11 db
600	5000	2 929	4600 0	636 3	15 db

Table 3-1. Model 208A/208A-DB Matching Network Values

3-20. ATTENUATOR (208A-DB).

3-21. This rotary switch is the output attenuator which provides attenuation of the signal level in 1 db or 10 db steps to a maximum attenuation of 110 db. This attenuator has two sections, (1) 100 db, adjustable in 1 db steps, and (2) 10 db, adjustable in 1 db steps. The two sections combine to allow setting of 1 db increments over the full 110 db range. The output of this attenuator is connected directly to the OUTPUT terminals of this Test Oscillator

3-22. MATCHED IMPEDANCE (208A-DB).

- 3-23. When the Model 208A-DB OUTPUT terminals are terminated by 600 ohms, attenuation is the sum of 10 db and 100 db control settings. The voltage at the output may be determined by the front panel meter reading and the amount of attenuation inserted by the 110 db attenuator. A typical example in finding voltage at the OUTPUT terminals is illustrated in steps a through c.
- a. Adjust the SET LEVEL control for a $+10~\mbox{dbm}$ indication on the panel meter, and determine the amount of attenuation set on the Model 208A-DB.

Note

+10 dbm = 2.45 volts

- b. Locate the amount of attenuation in the db column of Table 3-2 and read the corresponding attenuation factor.
- c. To calculate the output voltage, multiply the meter reading (converted to voltage) by the attenuation factor. See Paragraph 3-24 for an example.
- 3-24. When the Model 208A-DB is connected to a matching load, and is set to attenuate the signal by 24 db, the attenuation factor for 24 db from Table 3-2 is 0.0631 and the output voltage, for the conditions shown is then:

$$V_{out}$$
 = 2.45 (0.0631) = .154 volts

3-25. NEED FOR OUTPUT MATCH. To maintain the rated attenuation accuracy of the Model 208A/208A-DB the impedance of the load must match the output impedance of the Model 208A/208A-DB. When the load across the Test Oscillator must be terminated in its matching impedance, a resistive matching network can be used. When mismatch does not affect the load, under some conditions the required impedance match for the Model 208A-DB can be obtained by use of a single resistor. Conditions under which a resistor can be used in matching networks are discussed below:

3-26. MIS-MATCHED IMPEDANCE.

- a. When the impedance of the load is less than 600 ohms and the load is not affected by a mismatch, impedance match for the Model 208A/208A-DB output can be obtained by inserting a series resistor between the Model 208A/208A-DB output and load. The resistive value should be the difference between 600 ohms and the load impedance.
- b. When the impedance of the load is much higher than 600 ohms on the order of 50,000 ohms or more, impedance match for the Model 208A/208A-DB can be obtained by using a 600 ohm shunting resistor across the output.
- c. Networks may be used which provide the Model 208A/208A-DB and its load with an impedance match. Network data and connections are given in Figure 3-2 and Table 3-1.

Figure 3-2. Network Data

3-27. The 600 ohm output terminals are universal binding posts on 3/4 inch centers with one terminal marked with a ground symbol which designates this terminal is grounded to instrument chassis.

3-28. BALANCED OUTPUT.

3-29. The Hewlett-Packardaccessories Model 11004A and Model 11005A Line Matching Transformer and Bridging Transformer (optional equipment) are specially designed to connect a balanced system to @ Model 200 series Audio Oscillators. The 11004A transformer has a frequency response between 5 Kc and 600 Kc providing fully balanced output for a 135 or 600 ohm balanced line. The 11005A Transformer has a frequency response between 20 cps to 45 Kc providing fully balanced output for a 600 ohm balanced line.

BALANCED

LOAD

BALANCED LINE

3-30. The Model 208A/208A-DB will provide fully balanced output when used in conjunction with the Model 11004A or 11005A Transformers. Figure 3-3 illustrates the Balanced Line Configuration between the frequency range 20 cps to 15 Kc, and Figure 3-4 illustrates Balanced Line Configurations between the frequency range 5 Kc to 600 Kc.

(hp) 208A/

208A-DB

Figure 3-3. 600 Ohm Balanced Line Configurations

Figure 3-4. 135 Ohm or 600 Ohm Balanced Line Configurations

MODEL

11004A

UNBALANCED LINE

Table 3-2. Attenuation Factors

ďb	Attenuation Factor, Af	db	Attenuation Factor, Af	db	Attenuation Factor,
0	1.0000	37	.01413	74	.0001995
1	.8913	38	.012590	75	.0001778
2	.7943	39	.011220	76	.00015850
3	.7079	40	.010000	77	.00014130
4	.6310	41	.008913	78	.00012590
5	.5623	42	.007943	79	.00011220
6	.5012	43	.007079	80	.00010000
7	.4467	44	.006310	81	.00008913
8	.3981	45	.005623	82	.00007943
9	.3548	46	.005012	83	.00007079
10	.3162	47	.004467	84	.00006310
11	.2818	48	.003981	85	.00005623
12	.2512	49	.003548	86	.00005012
13	.2239	50	.003162	87	.00004467
14	.1995	51	.002818	88	.00003981
15	.1778	52	.002512	89	.00003548
16	.1585	53	.002239	90	.00003162
17	.1413	54	.001995	91	.00002818
18	.1259	55	.001778	92	.00002512
19	.1122	56	.001585	93	.00002239
20	.1000	57	.001413	94	.00001995
21	.08913	58	.001259	95	.00001778
22	.07943	59	.001122	96	.00001585
23	.07079	60	.001000	97	.00001413
24	.06310	61	.0008913	98	.00001259
25	.05623	62	.0007943	99	.00001122
26 27 28 29 30	.05012 .04467 .03981 .03548	63 64 65 66 67	.0007079 .0006310 .0005623 .0005012 .0004467	100 101 102 103 104	.00001000 .00008913 .000007943 .000007079 .000006310
31 32 33 34 35 36	.02818 .02512 .02239 .01995 .01778 .01585	68 69 70 71 72 73	.0003981 .0003548 .003162 .0002818 .0002512 .0002239	105 106 107 108 109 110	.000005623 .000005012 .000004467 .000003981 .000003548

SECTION IV PRINCIPLES OF OPERATION

4-1. INTRODUCTION.

- 4-2. The Model 208A/208A-DB consists of an RC bridge oscillator circuit, a 110 db attenuator adjustable in 1 db steps (Model 208A-DB) and a metering circuit. These circuits and the front panel controls associated with them are shown in the block diagram, Figure 4-1.
- 4-3. Referring to Figure 4-1, the RC bridge oscillator consists of an RC bridge, a two-stage amplifier, and two emitter followers. This RC bridge consists of an RC frequency selective network and a resistive voltage divider network. The RC frequency selective network supplies positive feedback to the amplifier and determines the frequency of oscillation. The resistive voltage divider network supplies negative feedback to the amplifier. The output of the amplifier is proportional to the difference between the feedback signals.
- 4-4. The peak detector detects changes in the RC bridge oscillator output voltage, and changes the division ratio of the resistive voltage divider network which changes the amount of negative feedback to the oscillator. The peak detector in conjunction with the divider network maintains the amplitude of the RC oscillator within $\pm 3\%$ of a constant level.
- 4-5. The variable attenuator (SET LEVEL CONTROL) is a bridged-T attenuator which provides at least 20 db control of the oscillator output voltage while maintaining constant output voltage (600 ohms).

- 4-6. The Model 208A 100 db attenuator is a 600 ohm bridged-Tattenuator which provides attenuation up to 100 db in 20 db steps, with a concentric 2.5 multiplier used to obtain maximum output from the oscillator.
- 4-7. The Model 208A-DB, 110 db attenuator is a 600 ohm bridged-Tattenuator which provides attenuation in 1 db or 10 db steps to a maximum attenuation of 110 db.
- 4-8. The Model 208A metering circuit is a transistorized voltmeter which indicates the rms voltage at the input of the output attenuator.
- 4-9. The Model 208A-DB output level monitored by a transistorized voltmeter circuit which measures the rms voltage at the input of the output attenuator. This output meter is calibrated in dbm.

4-10. OSCILLATOR CIRCUIT.

4-11. The RCbridge in the oscillator circuit consists of an RC frequency selective network and a resistive voltage divider network. Referring to Figure 4-2 (Simplified Schematic Diagram) you will notice the frequency selective network together with the resistive divider leg comprise a Wein bridge configuration.

Figure 4-2. Simplified Oscillator Circuit

Figure 4-3. RC Network Characteristics

4-12. Oscillations are maintained by applying a positive feedback signal from the oscillator output circuit back to the Wein bridge network. The proper phase relationship at the desired frequency is maintained by the RC components in the bridge. The main frequency-tuning elements are variable resistances R10A and R10B while capacitors C1 and C2 are changed to establish various ranges. The tuning resistances are driven through a drive system which give a logarithmic frequency dial. The vernier control R8 provides for fine tuning and insures infinite frequency resolution without altering the output signal voltage level. The vernier control has a minimum range of .15%.

4-13. The frequency selective network is in the positive feedback arms of this bridge which is formed by C1 and R10A in series and C2 and R10B in parallel with each other. When X_c = Rinthe series and parallel branches, the positive feedback voltage to the amplifier is maximum and in phase with the oscillator circuit output voltage (refer to Figure 4-3). Only at the frequency where X_c = R, will the signal be amplified; at frequencies where X_c does not equal Rthe positive feedback voltage is not of the right phase and is insufficient in amplitude to sustain oscillation. Figure 4-3 shows the positive feedback curve and phase relationship for frequencies above and below the frequency where X_c = R.

4-14. Referring to Figure 4-2 the negative feedback arms are formed by R4, 23, 24 and network Z1. This resistive voltage divider network provides negative feedback voltage to maintain the oscillator output at a constant level. This negative feedback is developed by the voltage drop across the dynamic resistance of CR4 and CR5. This diode resistance is controlled by the Q5 and CR6 forward bias applied to CR4 and CR5 supplied by the peak detector circuit. Diode CR6 establishes a reference voltage which is compared to the amplitude of oscillation at the output stage Q3 and Q4. An error voltage is developed which is fed back to control the resistance of the forward biased diodes CR4 and CR5. These in turn affect the total impedance of Z1 in such a way to maintain the proper am-

plitude of oscillations. For example, if the oscillator circuit output voltage were to increase, the peak detector circuit would decrease the forwardbias on CR4 and CR5, increasing the diodes dynamic resistance. Increased impedance of Z1 of the divider increases the amount of negative feedback to the emitter of the amplifier Q1. Increasing the negative feedback to Q1 results in a reduced output from Q1, which will compensate for the original increase in oscillator output voltage.

4-15. OUTPUT CIRCUIT.

4-16. The oscillator output circuit is maintained at a constant amplitude of 14 volts peak to peak. Two amplifiers, Q1 and Q2 (refer to Schematic Diagram, Figure 5-14) amplify the signal and apply it to emitter followers Q3 and Q4. The emitter followers are forward biased by diodes CR2 and CR3 and under a no-signal condition are conducting slightly to minimize crossover distortion. The oscillator output is sampled by the peak detector, and also coupled to the intermediate attenuator.

4-17. PEAK DETECTOR.

4-18. The Peak Detector mentioned in the Oscillator Circuit and Output Circuit consists of Q5 and CR6. This circuit samples the oscillator circuit output, and supplies bias proportional to the output signal to control the dynamic resistance of the diodes in the resistive voltage divider network. Transistor Q5 conducts only when the negative peak of the output signal exceeds (-7) volts. When this occurs the breakdown diode CR6 conducts and the voltage at the junction of CR6 and C25 through C29 decreases. This changes the bias to CR4 and CR5, which affects the resistance of these diodes. Capacitors C25 through C29 act to average the bias voltage applied to the diodes over the period of one cycle.

4-19. INTERMEDIATE ATTENUATOR.

4-20. The output of the oscillator is fed to the intermediate attenuator. This attenuator is a bridged-T type attenuator that is variable over a 20 db range by the SET LEVEL front panel control. The signal at this point travels to the voltmeter circuit and to the output attenuator.

4-21. VOLTMETER CIRCUIT.

4-22. Referring to Figure 5-14, the output signal is applied to a 10 to 1 voltage divider R43, R44 and R45. Variable resistor R45 (400 cycle CAL) adjustment control is used to adjust the amplitude of the oscillator's signal, applied to the base of Amplifier Q7. Variable capacitor C34 (560 Kc CAL) trimmer compensates for small variations in circuit capacity so the voltmeter will have a flat frequency response.

4-23. Transistors Q6 and Q7 make up a fixed gain amplifier which is used to develop the current for full scale meter deflection and to provide the meter circuit with a high impedance source for linear operation at all current levels. The signal is applied to the base of Amplifier Q6 where it is compared with an AC nega-

Figure 4-4. Simplified Meter Rectifier Circuit

tive feedback signal on its emitter from the meter circuit. The amplified resultant difference signal is fed to Q7. Resistor R48 provides a DC feedback path which improves the bias stability on the base of Q6 and also tends to minimize any tendency for DC drift due to ambient temperature change.

4-24. METER RECTIFIER CIRCUIT.

- 4-25. The meter rectifier circuit is fed by Amplifier Q7. Resistor R51 impresses a fixed bias across diodes CR1 and CR2, biasing them close to their contact potential, minimizing changes of diode resistance to keep the load resistance of the meter circuit constant. This action enhances voltmeter operation by insuring the change in meter current is proportional to a change in amplifier input voltage.
- 4-26. The meter rectifier circuit is arranged in a bridge type configuration with a crystal diode in each upper branch and a DC microammeter connected across its midpoints. The current throughout the meter is proportional to the average value of the input voltage.
- 4-27. The Model 208A/208A-DB meter rectifier circuit operation can best be explained by examining the circuit in a simplified form. Figure 4-4 shows a voltage source generating a voltage E across a circuit made up of CR1, CR2, M, R_f and C₁C₂. Note that the current flowing for each half cycle (as indicated by the arrows) always passes through the meter in the same direction.
- **4-28.** In this circuit, disregarding contact potential and assuming zero meter resistance, the circuit could be considered as a small resistance made up of CR1 and CR2 in series with one capacitor $(C_1 + C_2)$ in series with R_f . Therefore, there will be a voltage across R_f proportional to the input signal.

Figure 4-5. Actual Meter Rectifier Circuit

4-29. In the actual Model 208A/208A-DB meter rectifier circuit, Capacitors C38 and C39 provide a path for the AC feedback loop. The generator (Q6 - Q7) with its large internal impedance (R) develops a voltage across $R_{\rm f}$. The meter is deflected according to the average value of the input voltage and is calibrated to indicate the rms value of a sine wave. The signal across R50 as shown in Figure 4-5 provides negative feedback, resulting in extremely linear meter operation.

4-30. OUTPUT ATTENUATOR.

4-31. The Model 208A/208A-DB attenuator is shown in simplified schematic form in Figure 4-6. In the Model 208A-DB attenuator schematic (Figure 5-12), please note that each attenuator section, 10 db and 100 db, is composed of four segments, each basically the same configuration as shown in Figure 4-6. In the Model 208A attenuator schematic (Figure 5-14), please note that the 100 db section is composed of five segments, all basically the same configuration as shown in Figure 4-6.

4-32. ATTENUATOR EXPRESSED IN DECIBLES.

4-33. POWER AND VOLTAGE RATIOS.

4-34. 0 dbm by definition is 1 milliwatt into 600 ohms.

$$Since \frac{E^2}{R} = Power (Watts)$$

 $E = \sqrt{1 \text{ Mw x } 600} = .775 \text{ volts}, \quad 0 \text{ dbm} = 0.775 \text{ volts}$

4-35. The basic equation for computing attenuation in decibels is based on a power ratio where P = power, V = voltage, and R = resistance:

No. of decibels =
$$10 \log_{10} \frac{P_1}{P_2}$$
 (1

(Subscripts (1) and (2) denote attenuator input and output terminals, respectively.)

Figure 4-6. Simplified Attenuator Schematic

Since power is expressed as: $P = \frac{V^2}{R}$ (2)

Equation (1) may be rewritten as:

no. of db = 10
$$\log_{10}$$
 $\left(\frac{\frac{V_1^2}{R_1}}{\frac{V_2^2}{R_2}}\right)$ (3)

and if
$$R_1 = R_2$$
 then,
no. of db = 10 \log_{10} $\left(\frac{V_1^2}{V_2^2}\right)$ (4)

The basic rules for exponents of logarithms-then allow equation (4) to be written as:

no. of db = 20
$$\log_{10}$$
 $\left(\frac{V_1}{V_2}\right)$ (5)

4-36. The values of attenuation factor given in Table 3-2 are based on a voltage ratio assuming the resistance at the input and output is the same. Values for \mathbf{A}_{f} are computed using equation (5) where \mathbf{V}_{1} = \mathbf{V}_{in} and \mathbf{V}_{2} = $\mathbf{V}_{\mathrm{out}}$.

$$V_{\text{out}} = V_{\text{in}} A_{\text{f}} \quad \text{or} \quad \frac{V_{\text{in}}}{V_{\text{out}}} = \frac{1}{A_{\text{f}}}$$
 (6)

Then substituting equation (6) in equation (5) gives

no. of db =
$$20 \log_{10} \left(\frac{1}{A_f} \right)$$
 (7)

Solving for A_f gives

$$A_{f} = \frac{1}{\text{antilog} \quad 10 \frac{\text{no. of db}}{20}}$$
 (8)

An example will check the value for \boldsymbol{A}_f given in Table 3-2 illustrating 24 db

$$A_{f} = \frac{1}{\operatorname{antilog}_{10}\left(\frac{24}{20}\right)} = \frac{1}{\operatorname{antilog}_{10}(1,2)}$$
(9)

From a log table, the $\mathsf{antilog}_{10}$ of 1.2 is 15.85 and

$$A_{f} = \frac{1}{15.85} = 0.0631$$
 (10)

4-37. REFERENCE FOR DB.

4-38. The db levels given in Figure 3-2 are referenced to a milliwatt of power, hence the term dbm. This indicates that the logarithm is taken of a power ratio where 1 milliwatt is the reference. For 37 dbm equations (1) and (2) show that:

dbm = 10
$$\log_{10}$$
 $\frac{\left(\frac{50^2}{500}\right)}{1 \text{ milliwate}}$

$$dbm = 10 \log_{10}(5000) = 10 (0.37) = 3.7$$

4-39. POWER SUPPLY.

4-40. The Model 208A/208A-DB operates on batteries only. When the Model 208A/208A-DB is connected to an AC source the batteries are charging. These instruments use four 6.5 volt nickel-cadmium batteries and are designed to have a battery life of 30 hours before recharging.

4-41. Resistor R102 has been adjusted at the factory for a charging rate of 5.5 Ma to prolong battery life. If the instrument is used frequently in the field, R102 can be adjusted for a charging rate of 11 Ma.

CAUTION

If R102 is adjusted to the 11 Ma rate, this instrument should be used on BATTERIES ONLY except when recharging batteries. Recharging of batteries is accomplished whenever the Model 208A/208A-DB is connected to an AC source. The battery life of the instrument can be prolonged at the 11 Ma charging rate if the instrument is not continuously overcharged.

4-42. When the RANGE switch is in the BATT. TEST position and the instrument indicates below the lower BATT. TEST mark on the OUTPUT MONITOR--recharge the batteries 30 hours at the 11 Ma rate to completely recharge the batteries in the instrument. To conserve battery life do not charge batteries over 30 hours; when R102 is adjusted to the 11 Ma rate.

CAUTION

The four nickel-cadmium batteries in the ® Model 208A/208A-DB are in hermetically sealed containers. The user must be aware of temperature extremes while charging the batteries. Under high temperatures (above 50°C) hydrogen in the hermatically sealed

battery container can build up large pressure causing damage to the batteries and/or instrument. DONOT CHARGE BATTERIES ABOVE 40° CENTIGRADE or 104° FAHRENHEIT, if R39 is set above 11 Ma charging rate. DONOT DISCARD BATTERIES IN A FIRE.

- 4-43. When the RANGE switch is in the BATT. TEST position and the Test Oscillator indicates below the lower BATT. TEST mark on the OUTPUT MONITOR, recharge the batteries 60 hours at 5.5 Ma rate to completely recharge the batteries in the instrument.
- 4-44. Figure 5-13 illustrates the power supply used in the Model 208A/208A-DB. For 115 volt operation the power transformer primaries are connected in parallel; for 230 volt operation they are connected in series. The rectifier circuit is a conventional full wave bridge using C101 for a filter capacitor. Diode CR105 (7 volt breakdown diode) and Q101 make up a Constant Current Generator. The collector current of Q101 is equal to the voltage across CR105 divided by R102 and R103.
- 4-45. CR106 prevents the batteries from discharging through to the charging circuit when the instrument is not connected to an AC source. R102 is used to control the amount of current to charge the batteries.

SECTION V MAINTENANCE

5-1. INTRODUCTION.

5-2. This section contains maintenance and service information on the Model 208A/208A-DB Test Oscillator. A performance check is included in this section which may be used to verify instrument operation. This check can be made with the covers attached to the instrument and is a good test as part of preventative maintenance and incoming quality control inspection.

5-3. TEST INSTRUMENTS REQUIRED.

5-4. Table 5-1 lists the necessary test equipment required to test the Model 208A/208A-DB. The necessary specifications required to test this instrument are listed so other equipment with the equivalent specification may be used.

5-5. MECHANICAL ZERO ADJUSTMENT.

- 5-6. When the meter is properly zero-set the pointer rests over the zero calibration mark on the meter scale (on the Model 208A-DB the pointer rests over the (dot) calibration mark on the meter scale) when the instrument is 1) at normal operating temperature 2) in its normal operating position, and 3) turned off. Zero-set as follows to obtain best accuracy and mechanical stability.
- a. Turn the instrument off and allow $20\ \text{seconds}$ for all capacitors to discharge.
- b. Rotate mechanical zero-adjustment screw clockwise until the meter pointer is to the left of zero and moving to the right toward zero.

Table 5-1. Required Test Equipment

Instrument Type	Required Characteristics	Use	Recommended Model
Oscilloscope	Passband: DC to 600 Kc Sensitivity: 0.1 volts/cm Input Impedance: 1 megohm	Waveform Measurement	Model 175A with plug-in Model 1753A
Distortion Analyzer	Measure distortion to -40 db at 1 Kc	Distortion Measurement	₩ Model 330B/C/D
AC Voltmeter	Frequency Range: 5 cps to 600 Kc Voltage Range: 1 Mv to 3 v Accuracy: ±2% DB Scale	AC Voltage DB Measure- ments	₩ Model 403B-DB
DC Voltmeter	Voltage Range: Positive and negative voltages from 100 Mv to 15 volts. Input Impedance: at least 10 megohms	DC Voltage Check	₩ Model 412A
Frequency Counter	Counting Range: 5 cps to 600 Kc Accuracy: .03%	Frequency Measurements	₩ Model 5232A
Standing Wave Indicator (1000 cps tuned AC Voltmeter)	Band width: 60 cps Frequency: 1 Kc Range: 60 db	Attenuation Check	₩ Model 415D
Clip on DC Milliammeter	Current Range: 3 Ma to Accuracy: ±3% ±0.1 Ma	Power Supply Adjustment	₩ Model 428A or B
Attenuator	Attenuation: 110 db in 1 db steps Accuracy: 110 db range less than ±0.25 db from DC to 560 Kc Impedance: 600 ohms	Attenuation Check	^{kp} Model 350D
Resistor	600 ohms 5 watts ±1%	Maintenance Tests	
Variable Auto Transformer	Voltage Range: 102 - 128 vac Meter Accuracy: ±2% Power Capability: 5 watts	Power Supply Test	

01350-1 5-1

Table 5-2. Troubleshooting Summary

Indication	Action	Indication	Action
No output signal	Check power supply voltages (+13 and -13 volts) Check Q3, Q4, CR2 and CR3 for correct DC voltages (refer to Figure 5-14) Check peak detector cir-		Check peak detector circuit (Q5, CR4, CR5 and CR6) for proper operation. Refer to waveforms and voltages in Figure 5-14. Be sure CR6 breaks down at 7 volts' peak
No output on one or	cuit (Q5, CR4, CR5 and CR6) Check RANGE switch	If all ranges are affected	Check for incorrect voltages at Q3, Q4, Q2 and Q1, respectively.
No output on one or more ranges	contacts Check components connected to Wien bridge position when RANGE	If all ranges are NOT affected	Check components con- nected to peak detector circuit in affected ranges.
	switch is inoperative position. For example, if inoperative position is	Low reading on BATT. test.	Recharge Batteries
	X1, check C2A and C7A. Check components con- nected to peak detector	Battery will not hold charge	CR106 shorted or shorted cell in battery.
Output amplitude not	circuit when RANGE switch is in inoperative position. Check power supply volt-	Battery charge inoperative	Q101, CR101 thru CR104, CR105, C101 shorted Switch may be in 230 v position when using
correct and/or dis- torted	ages (+13 and -13 volts). Check components in upper and lower legs of	R45 will not adjust for full scale indication	115 v AC power CR7, 8 bad; Q6, Q7 bad
	Wien bridge for proper value ± percent of toler- ance (refer to Table 6-1 for tolerances). For example, when RANGE switch is in X1 position,	Meter does not track properly Meter reads consistent- ly above or below all meter divisions	Check CR7, 8 or Meter M1; R51 changed value
	check R24, R4, C2A, R10A, R10B, R11 and C7A.	Excessive charging rate R102 no effect	Check CR105, Q101

- c. Continue to rotate adjustment screw clockwise; stop when pointer is on the zero line. If the pointer overshoots zero, repeat steps b and c.
- d. When the pointer is exactly on zero, rotate the adjustment screw approximately 15 degrees counter-clockwise. This is enough to free the adjustment screw from the meter suspension. If pointer moves during this step, repeat steps b through d.

5-7. TROUBLE SHOOTING.

5-8. To assist in troubleshooting, Table 5-2 is included in this section of the manual. Information contained in this table can be used for evaluating problems that may be encountered and easily recognized by the technician to localize areas of trouble encountered while testing the Model 208A/208A-DB.

5-9. INSTRUMENT COVER REMOVAL.

5-10. Figure 5-1 illustrates the removal of all covers. This should be necessary only when maintenance is required.

5-11. REPAIR.

5-12. SERVICING ETCHED CIRCUIT BOARDS.

- 5-13. The Model 208A/208A-DB uses single sided eyeletted etched circuit boards. When servicing this type of board, it recommended that the soldering iron tip be applied to the conductor side of the board at the component lead. For large components, such as potentiometers, rotate the soldering iron tip from lead to lead while applying pressure to the part to lift it from the board or use a soldering tip such as Ungar #855 3/4 in. Cup Tip. In addition to the above information, the following should be observed.
- a. Before attempting a repair, determine the nature and location of the malfunction -- unnecessary replacements may complicate the repair procedure. Do not repair or replace any component unless it is proved necessary. (Be sure the trouble cannot be cleared by an adjustment.)

Figure 5-2. Range Switch Details

Figure 5-3. Cams and Cable Relationship

- b. Turn off power to the instrument before performing any soldering.
- c. Avoid using a high wattage soldering iron on the etched circuit boards. Excessive heat and pressure may lift a copper strip or warp the board, increasing susceptibility to mechanical damage. A lifted strip may be re-cemented with a quick drying acetate cement having good electrical insulation characteristics. A broken conductor strip may be joined by a strip of tinned copper wire.
- d. To remove a damaged component, clip leads near component; then apply heat and remove component lead with a straight upward motion.
- e. Use a toothpick or wooden splinter to clear holes before inserting new components.
- f. To insure good connection between the eyelet and conductor of the printed board, always solder from the conductor side.

5-14. TRANSISTOR REPLACEMENT.

5-15. Transistors can be damaged by excessive heat. When replacing transistors on the Model 208A/208A-DB printed circuit boards, follow the instructions given in Paragraph 5-13.

5-16. RANGE SWITCH REPAIR.

5-17. Figure 5-2 gives parts location and cabling detail on Model 208A/208A-DB RANGE switch.

5-18. FREQUENCY POTENTIOMETER REPLACEMENT.

- 5-19. To replace the frequency potentiometer, R10A and R10B:
- a. Free front panel from side casting, and remove top, bottom, and left side covers.
 - b. Remove RANGE switch knob and retaining nut.
- c. Orient cams as shown in Figure 5-3A. Remove VERNIER knob and FREQUENCY dial.
- d. Using a 3/8" open end wrench, turn cable terminal bolt on pot cam counterclockwise until cable slips off cam.
- e. Loosen pot shaft locknut and panel bushing nut. Counterweight will come off at this time.
- f. Unsolder the 4 wires from pot. Note wire color vs. pot terminal.
- g. Slide pot camalong pot arm to allow access to pot mounting screws. Using an offset screwdriver, remove the three pot mounting screws.
- h. Slide front panel out of right side casting. Gently move front panel away from the instrument far enough to allow removal of the pot. The pot cam will slide off as the pot is removed.
- i. Install the new pot. Orient cams as shown in Figure 5-3. Reverse steps a through g. (The shorter cable length should pass over points A and B; the longer length should pass over points D, B and C.

- j. Turn cable terminal clockwise approximately 1/2 turn to remove some slack in the cable.
- k. Install counterweight and tighten panel bushing nut. Counterweight is keyed and should be positioned as shown in Figure 5-3AB.
 - m. Align pot cam to the same plane as dial cam.
- n. Remove all slack in cable by turning cable terminal bolt clockwise. Do not overtighten cable.
 - p. With cams aligned, tighten pot shaft locknut.
- q. Reassemble front panel and side casting. Be sure that the connecting link on VERNIER shaft becomes engaged in potentiometer R8.
- r. Perform Frequency Calibration Adjustments. (See Paragraph 5-47.)
 - s. Replace top and bottom covers.

5-20. CAM CABLE REPLACEMENT.

- 5-21. If it is necessary to replace the cam cable. order it by \$\overline{\phi}\$ Stock No. 8160-0003 and description. Use Figure 5-3A as a guide, and proceed as follows:
 - a. Orient cams as shown in Figure 5-3A.
- b. Using a 3/8-inch wrench, remove both cable terminal poits.
 - c. Remove terminal bolts from cable.
- d. On replacement cable, place a mark 6-7/8 inches from the end.
- e. Slide replacement cable through one terminal bolt so that the cable is oriented to terminal bolt as shown in Figure 5-3A, lower left detail.
- f. With mark on the cable in center of terminal bolt as shown, install terminal bolt on dial cam.
- g. Slide cable ends approximately 1/4 inch through second terminal bolt so that cable is oriented to terminal bolt as shown in Figure 5-3A, upper left detail.
- h. Orient the cams as shown in Figure 5-3B and use the figure as a guide. Slide the cable onto the cams, and install the second terminal bolt on the pot cam. (The shorter cable length should pass over points A and B; the longer length should pass over points D, B, and C.)
- i. Tighten both terminal bolts to remove all slack in cable and allow the dial to cover its full range. Do not overtighten cable.
- j. Perform Frequency Calibration Adjustments, Paragraph 5-49.

5-22. ATTENUATOR MAINTENANCE.

5-23. Maintenance of the output attenuator in the Model 208A/208A-DB should be minimal unless an overload voltage or physical damage requires replacement of a part. To prevent signal leakage across terminals at high frequencies, keep the instrument free of dust. The attenuator shaft bushings under the front panel DB knobs should be lubricated annually with one drop of light machine oil. Figure 5-12 is a schematic diagram for the Model 208A-DB. The schematic diagram for the Model 208A is shown on the overall schematic diagram, Figure 5-14.

Figure 5-4. Model 208A Meter Scale Value/Multiplier

Figure 5-5. Model 208A-DB Attenuator

5-24. REMOVAL OF OUTPUT ATTENUATOR.

- a. Remove all instrument covers (see Figure 5-1).
- b. Loosen screws in both attenuator knobs and remove knobs.
- c. Remove shield from output connector, disconnect coaxial output cable from connector, and disconnect wire from SET LEVEL control. Mark cables for proper reinstallation.
- d. Remove flathead screws which fasten rear chassis to instrument side castings. Remove attenuator switch shaft nut holding attenuator assembly to the front panel.
- e. Remove attenuator chassis from instrument frame.
- f. Remove the slotted metal sleeve which clamps the shield around the attenuator assembly. With the shield removed, all the resistors in the OUTPUT attenuator are easily accessible for maintenance and repair. Refer to Figures 5-12 or 5-14 for the attenuator schematic.
- g. Reassembly is essentially the reverse of the above procedure.

5-25. REPLACEMENT OF RESISTORS.

5-26. Figure 5-4 identifies the resistors on the Model 208A attenuator (Assembly A5) and Figure 5-5 on the Model 208A-DB attenuator (Assembly A6). Replacement resistors may be ordered from the parts information in Section VI. When a resistor is replaced, a padding resistor may be necessary to restore calibration accuracy.

5-27. ADJUSTMENTS.

5-28. The following is a complete test and adjustment procedure and should be performed only if it has definitely been determined that the Model 208A/Model 208A-DB is not functioning properly. If the instrument fails to make any one of the limits given in the following steps, carefully recheck your connections and procedure.

5-29. PERFORMANCE TESTS.

5-30. Before attempting to repair this instrument determine the nature and location of the malfunction; the fault may not be in the instrument under test but the associated circuit under test.

Note

Perform this test before disturbing any of the INTERNAL adjustments of the instrument.

5-31. This test may be used as an incoming inspection test to insure the instrument has not been damaged in shipment, for periodic maintenance or to check the operation of the instrument after repairs.

5-32. The following tests are performed with the AC power cord connected to 60 cycle line voltage.

Figure 5-6. Test Setup for Dial Accuracy or Distortion Check

5-33. DIAL ACCURACY CHECK.

- a. Connect frequency counter and 600 ohm load to oscillator output as shown in Figure 5-6.

 SET LEVEL
 MAXIMUM CLOCKWISE

 VERNIER
 centered

 METER SCALE VALUE (208A)
 1.0v

 MULTIPLIER (208A)
 2.5

 110 db Attenuator (208A-DB)
 0

 10 db Attenuator (208A-DB)
 0

c. Set frequency counter controls as follows:

d. Counter should read 200 ±6 ms.

e. Set FREQ. dialto 20, counter should read 50.0 $\pm 1.5.$

f. Set FREQ. dial to 50, counter should read 20.0 $\pm 0.6.$

g. Set RANGE to X10 and FREQ. dial to 5, counter should read the same as step f.

h. Repeat steps e and f with RANGE at X10. Counter should read 5. 00 ± 0 . 15 and 2. 00 ± 0 . 06 respectively.

i. Set frequency counter function switch to FREQ. (1 sec. gate).

j. Complete check by setting RANGE switch and FREQ. dial as shown in Table 5-3, columns one and two. The counter reading should be as shown in column three.

Table 5-3. Dial Accuracy

Range Switch	Freq. Dial	Counter-Reading
X100	5	500 cps ±15 cps
X100	20	2000 cps ±60 cps
X100	50	5000 cps ±150 cps
X1K	5	5 Kc ±150 cps
X1K	20	20 Kc ±600 cps
X1K	50	50 Kc ±1.5 Kc
X10K	5	50 Kc ±1.5Kc
X10K	20	200 Kc ± 6 Kc
X10K	50	500 Kc ±15 Kc

Figure 5-7. Test Setup for Frequency Response and Output Voltage Check

5-34. FREQUENCY RESPONSE AND OUTPUT VOLTAGE CHECK

- a. Connect AC voltmeter and 600 ohm load to oscillator output as shown in Figure 5-7.
- b. Set Model 208A/208A-DB RANGE to X1 and FREQ, dial to 25.
- d. Adjust SET LEVEL control for 2.5 volt reading on voltmeter.
- e. Sweep FREQ. dial by hand to read 50. As dial is swept, voltmeter reading should not vary more than ± 0.075 volts.
 - f. Set Model 208A/208A-DB RANGE to X10.
 - g. Set FREQ. dial to 5 and repeat step e.
- h. Repeat steps d and e with RANGE switch set to X100, X1K and X10K.

5-35. DISTORTION CHECK

- a. Connect distortion analyzer and 600 ohm load to oscillator output as shown in Figure 5-6.

 - c. Set distortion analyzer controls as follows:

FREQUENCY RANGE			۰			X100
INPUT	٠	٠	٠			AF
FUNCTION			٠	٠		.SET LEVEL
METER RANGE		٠	٠		٠	100%

- d. On distortion analyzer;
 - Adjust INPUT SENSITIVITY for full scale reading (1.0).
 - (2) Set FUNCTION to DISTORTION.
 - (3) Adjust FINE and COARSE frequency controls and BALANCE control for dip or null (on distortion analyzer meter) at fundamental frequency (1 Kc); switch METER RANGE as necessary to obtain upscale meter reading.
 - (4) Readjust controls until maximum meter dip or null is obtained.

e. Meter reading should be less than 1.0 on the 1% range.

Figure 5-8. Attenuation Check

5-36. ATTENUATION CHECK (Model 208A).

- a. Connect equipment as shown in Figure 5-8.
- b. Set Model 208A controls as follows:

RAN	GE.						•						٠		٠		2	(100
FRE	Q			٠	٠			۰					٠					10
SET	LEV	ÆΙ	_						ΜA	X	M	U	M	C	ĹO	C]	ΚV	ЛSE
MET	ER	SC	AL	E	V.	AL	U.	E								1.	0	volt
MUL	TIP	LIE	ER															2.5

- c. Position the Model 350D Attenuator to 100 db.
- d. Set @ Model 415D Standing Wave Indicator (1000 cycle tuned Voltmeter) as follows:

RANGE		٠		50DB
INPUT SELECTOR				
POWER				AC

- e. Adjust the FREQ. control on the Model 208A for peak indication on the Model 415D.
- f. Adjust the SET LEVEL control on the Model 208A for a 0.8 reference indication on the Model 208A.
- g. Adjust GAIN control on the Model 415D for a -1 db indication on the Model 415D meter scale.
- h. Position the METER SCALE VALUE switch on the Model 208A to the 0.1, .01, 1 Mv, 0.1 Mv, and .01 Mv positions and simultaneously position the 350D attenuator to the 80, 60, 40, 20 and 0 db positions.
- i. The Model 415D should indicate 0 db $\pm .15 \ db$ on all steps.

Note

The Model 415D is calibrated for square law detectors. The specification called out is exactly half of the specifications called out in Tables 1-1 and 1-2.

j. Disconnect the Model 208A from test setup shown in Figure 5-8. Connect a 600 ohm resistor and an AC Voltmeter to the OUTPUT terminals of the Model 208A.

- k. Position the METER SCALE VALUE switch to the .10 volt position and the MULTIPLIER switch to the 2.5 position.
- m. Position the RANGE switch on the AC voltmeter to the 3 volt range and adjust the SET LEVEL control on the Model 208A to read exactly 2.50 volts, read on the AC Voltmeter. Observe the indication on the Model 208A monitor meter.
- n. Positionthe MULTIPLIER switch on the Model 208A to the 1.0 position. Reset the SET LEVEL control to indicate reading observed in step m. The AC Voltmeter should indicate 1 volt \pm .02 volts.

5-37. ATTENUATION CHECK (Model 208A-DB).

- a. Connect equipment as shown in Figure 5-8.
- b. Set Model 208A-DB front panel controls as follows:

RANGE													X100
FREQ.													10
SET LE	VEL					M	4:	XIMIX	UM	C	LO	CK	WISE
ATTEN	UATO	OR	10	db	sec	ction	١.						0 db
ATTEN	UAT	OR	10	0 d	b se	ectio	n						0 db

c. Set the model 415D Standing Wave Indicator (1000 cycle tuned voltmeter) as follows:

RANGE											0	db
INPUT	SE:	LE	СТ	OR				X	TA	L-	20	0K
POWER	₹.										1	AC.

- d. Position the $10\ db$ and $100\ db$ switches on the Model $350D\ to\ 0\ db$.
- e. Adjust the FREQ. control on the Model 208A-DB for peak indication on the $\ensuremath{\text{\foathflow}}$ Model 415D.
- f. Adjust the SET LEVEL control on the Model 208A-DB for a ± 10 db reference indication on the Model 208A-DB.
- g. Set the GAIN control on the Model 415D for a 0 db indication on the Model 415D meter scale.
- h. Position the ATTENUATOR (10 db section) on the Model 208A-DB in 1 db steps, noticing tracking error on p Model 415D, and maintaining a+10 db reference on the Model 208A-DB.

Note

The Model 415D is calibrated for square law detectors. The specifications called out are exactly half of the specifications called out in Table 1-1 and Table 1-2.

- i. The error as indicated on the p Model 415D should not exceed .0625 db at any step.
- k. Position the RANGE switch on the Model 415D to 50 db.
- m. Adjust the SET LEVEL control on the Model 208A-DB for a +10 db indication on the Model 208A-DB.
- n. Set the GAIN control on the Model 415D for a-1 db indication on the 415D meter scale.

- p. Position the ATTENUATOR (100 db section) on the Model 208A-DB on 10 db steps while simultaneously positioning the 100 db attenuator on the Model 350D in 10 db steps, maintaining a +10 dbm level on the Model 208A-DB monitor meter.
- q. The Model 415D should indicate –1 db $\pm .125$ db at all ranges.

5-38. OUTPUT MONITOR CHECK. (Model 208A)

To check the OUTPUT MONITOR proceed as follows:

a. Set the Model 208A as follows:

RANGE.							X100
FREQ							10
METER S							
MULTIP	LIER						1.0

- b. Connect a 600 ohm resistor and an AC voltmeter (Model 403B-DB) across the OUTPUT terminals of the Model 208A.
- c. Set the AC voltmeter (p Model 403B-DB) as follows:

FUNCTION						.ON
RANGE						. 1

- d. Adjust the SET LEVEL control to indicate 1.0 on the monitor meter on the Model 208A.
- e. The AC Voltmeter should indicate .98 to 1.02 volts.
- f. Adjust the SET LEVEL control on the Model 208A for a 0.8, 0.6, 0.4 and 0.2 indication consecutively on the AC Voltmeter while noting indication on the monitor meter on the Model 208A. The monitor meter should read 0.8, 0.6, 0.4 and 0.2 ± 1 division.
- 5-39. OUTPUT MONITOR CHECK (Model 208A-DB).

To check the OUTPUT MONITOR proceed as follows:

a. Set the Model 208A as follows:

RANGE.									X100
FREQ							٠		10
ATTENU	AT	ΟR	10	db		٠	٠		0 db
ATTENU	ATO	OR	100) db					0 db

- b. Connect a 600 ohm resistor and an AC volt meter (Model 403B-DB) across the OUTPUT terminals of the Model 208A-DB.
 - c. Set the AC voltmeter as follows:

FUNCTION						. ON
RANGE						+10 db

- d. Adjust the SET LEVEL control to indicate +10 dbm on the Model 208A-DB monitor meter.
- e. The AC voltmeter should indicate 0 dbm $\pm .\,2$ dbm.
- f. Adjust the SET LEVEL control on the Model 208A-DB for a +8, +6, +4, +2, 0 and -5 dbm indication consecutively on the Model 208A monitor meter, while noting indication on the AC voltmeter. The AC voltmeter should read -2 dbm \pm .25 dbm, -4 dbm \pm .3 dbm, -6 dbm \pm .4 dbm, -8 dbm \pm .5 dbm, -10 dbm \pm .6 dbm.
- g. Position the RANGE switch on the AC voltmeter to 0 db position. The AC voltmeter should read -5 dbm ± 1.1 dbm.

Table 5-4. 208A Battery Test Values

Indication on DC Voltmeter (Battery Voltage)	Indication on Output Monitor (Adjust R78)
24. 0	0. 800
24. 5	0. 817
25. 0	0. 833
25. 5	0.850
26. 0	0. 867
26. 5	0. 883
27. 0	0. 900
27. 5	0. 917
28. 0	0. 933
28. 5	0. 950
29. 0	0. 967
29. 5	0. 983
30, 0	1. 000
30. 5	1.017
31. 0	1. 033

5-40. CALIBRATION PROCEDURE.

5-41. The following is a complete test and adjustment procedure and should be made only if it has been definitely determined that the \oplus Model 208A/208A-DB is out of adjustment as determined by Paragraph 5-29, Performance Test. If your instrument fails to make any one of the limits given in the following steps, carefully recheck your connections and procedure. If the Test Oscillator still fails the step refer to Table 5-2, Troubleshooting, for possible cause and corrective action.

5-42. Perform tests associated with the particular sections of the instrument shown to be faulty by the performance test. Indiscriminate adjustment of the internal controls to "refine" the settings may actually cause difficulty.

5-43. POWER SUPPLY.

a. Remove top cover from Model 208A/208A-DB cabinet. Refer to Figure 5-1.

b. Measure battery voltage, using an p Model 412A DC Voltmeter; connect the common lead to the violet wire and the volts lead to the red wire on the batteries. Refer to Figure 5-9 and 5-10.

c. Hold FUNCTION switch on Model 208A/208A-DB to BATT, TEST position.

d. Note indication on @ Model 412A DC Voltmeter. Refer to Table 5-4 (Model 208A) or 5-5 (208A-DB)and adjust R78 until OUTPUT monitor on instrument under test reads the value called out in the table adjacent to the DC voltage noted on the @ 412A. Interpolate for values of DC voltage falling between those on the table.

Table 5-5. 208A-DB Battery Test Values

Indication on DC Voltmeter (Battery Voltage)	Indication on Output Monitor (Adjust R78)
24. 0	+9. 00 dbm - Start of Batt.
24. 5	+9. 20
25. 0	+9. 50
25. 5	+9. 60
26. 0	+9. 75
26. 5	+9. 90
27. 0	+10. 10
27. 5	+10. 20
28. 0	+10. 40
28. 5	+10.60
29. 0	+10. 70
29. 5	+10. 80
30. 0	+11. 00
30. 5	+11. 10
31. 0	+11. 30

CAUTION

DC Voltmeter must be isolated from Model 208A/208A-DB chassis ground.

Note

If voltage reading on m 412A does not indicate 24 volts or above, recharge batteries in the Model 208A/208A-DB.

e. Insert power cord on the \$\ointilde{\phi}\$ Model 208A/208A-DB into a variable autotransformer and adjust the autotransformer to 115 volts. Turn the RANGE switch on the Model 208A/208A-DB to OFF.

f. Connect the Model 428A or B Clip-on DC Ammeter Probe around the black wire on the batteries. Refer to Figures 5-9 and 5-13.

g. Adjust R102 for 5.5 Ma indication on Model $428 \mathrm{A/B}$.

Note

If Model 208A/208A-DB Test Oscillator is scheduled for field usage, adjust R102 to 11.0 Ma. Refer to Paragraph 4-41.

h. Vary input line voltage with a variable autotransformer from 102 to 128 volts and verify indication on Model 428A or B indicates 5.5 Ma \pm .5 Ma.

i. Connect an p Model 403B/403B-DB AC Voltmeter across the red and violet wires on the batteries. The ripple shall not exceed 1 millivolt.

Figure 5-9. Rear View (Illustrating Charging Board)

5-44. METER CALIBRATION (Model 208A).

- a. Connect a 600 ohm resistor and an AC voltmeter (@ Model 403B-DB) across the OUTPUT terminals of the Model 208A.
 - b. Set the Model 208A as follows:

RANGE .								X10
FREQ								40
METER								
MULTIP	LIE	₹.						2.5

c. Set the AC voltmeter (@ Model 403B-DB) as follows:

3110 11 51						
FUNCTION						.ON
RANGE						. 3

d. Adjust the SET LEVEL control on the Model 208A until the AC voltmeter reads exactly 2.5 volts ${\tt rms}.$

Note

If AC Voltmeter does not indicate 2.50 volts adjust R15 (rear panel).

- e. Adjust R45 (400 cps CAL) until the monitor meter on the Model 208A reads exactly full scale (1.0). Refer to Figure 5-10.
 - f. Set the Model 208A as follows:

RANGE								X10K
FREQ.					٠		٠	. 56

- g. Adjust the SET LEVEL control on the Model 208A until the AC voltmeter indicates exactly 2. 5 volts.
- h. Adjust C34 (560 Kc CAL) control until the monitor meter on the Model 208A reads exactly full scale (1.0). Refer to Figure 5-10.

5-45. METER CALIBRATION (Model 208A-DB).

- a. Connect a 600 ohm resistor and an AC voltmeter (Model 403B-DB) across the OUTPUT terminals of the Model 208A.
 - b. Set the Model 208A-DB as follows:

RANGE.											X10
FREQ											40
ATTENU.	ATO	DR	(10	db	se	ctio	on)				0 db
ATTENII	ΔΤΟ	λR	(10	0 d	h s	ect	ion)			0 db

FUNCTION	J							. ON
RANGE.						+	10	DBM

d. Adjust the SET LEVEL control on the Model 208A until the AC voltmeter reads exactly +10 dbm.

Note

If AC voltmeter does not indicate +10 dbm adjust R15 (rear panel).

e. Adjust R45 (400 cps CAL) until the monitor meter on the Model 208A-DB reads exactly +10 dbm. Refer to Figure 5-10.

Figure 5-10. Top View

Figure 5-11. Bottom View

f. Set the Model 208A-DB as follows:

RANGE							X	l0K
FREQ.				٠.				56

- g. Adjust the SET LEVEL control on the Model 208A-DB until the AC voltmeter indicates exactly 0 dbm.
- h. Adjust C34 (560 Kc CAL) control until the monitor meter on the Model 208A-DB indicates +10 db. Refer to Figure 5-10.

5-46. DISTORTION ADJUSTMENT.

- a. Connect a 600 ohm load across the oscillator output terminals.
- b. Using an AC voltmeter, measure voltage between circuit ground and arm of potentiometer R36. Voltage should be between 90 and 140 Mv rms at 1 Kc. If voltage is high, increase resistance of R34; if low, decrease resistance.
 - c. Set Model 208A/208A-DB controls as follows:

											X100
									10	(l Kc)
									C	ent	ered
								٠		ľ	MAX.
ALE	VA I	LU1	E (2 08	A)		٠				1V
ER (2	08A).									2.5
ENÚA	TO	R	(20	8A-	DE	3).					0 db
CENU	AT	OR	(2)	08A	-D	B)					0 db
	ALE CER (2)	ALE VAI ER (208A ENUATO	ALE VALUER (208A).	ALE VALUE (ER (208A) ENUATOR (20		ALE VALUE (208A) ER (208A)	ALE VALUE (208A) . ER (208A)	ALE VALUE (208A)	ALE VALUE (208A)		

- d. Connect distortion analyzer to 600 ohm load on oscillator output terminals.
- e. Measure distortion, and adjust R36 (refer to Figure 5-11) for minimum reading. Reading should be less than 1%.

5-49. FREQUENCY CALIBRATION ADJUSTMENTS.

5-50. Frequency calibration adjustment should be performed, only if necessary, after repairs are made to frequency sensitive components.

- a. Connect frequency counter and 600 ohm load to oscillator output as shown in Figure 5-6.
- b. Set Model 208A/208A DB RANGE to X100, VERNIER to center of its range, and SET LEVEL to maximum clockwise position.
 - c. Set FREQ. to 50 (5 Kc).
- d. Lock FREQ. dial shaft with a number 8-32 socket setscrew (dial shaft locking screw) which inserts into threaded hole on top of dial shaft housing.

CAUTION

Do not overtighten

- e. Loosen potentiometer (pot) shaft locknut, Figure 5-3A, and adjust pot by turning pot arm to obtain a 5 Kc output.
- f. Tighten pot shaft locknut, and loosen dial shaft locking screw.
- g. Set FREQ. to 5 (500 cps) and tighten dial shaft locking screw.
- h. Loosen dial shaft locknut, Figure 5-3A, and adjust dial cam by turning cam to obtain a 500 cps output.
- i. Tighten dial shaft locknut and loosen dial shaft locking screw.
- j. Repeat steps c through i until frequencies are within approximately $\pm 1\%.$
- k. Set RANGE to X10K, FREQ. to 5 (50 Kc), and adjust C8 (Figure 5-2) to obtain a 50 Kc output.
- m. Set FREQ. to 50 (500 Kc) and adjust C15 (Figure 5-11) to obtain a 500 Kc output.
- n. All frequencies across the band should be within $\pm 3\%$.

Figure 5-14. @Model 208A/208A-DB Schematic Diagram

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION.

- 6-2. This section contains information for ordering replacement parts. Table 6-1 lists parts in alphanumerical order of their reference designators and indicates the description and \$\overline{\phi}\$ stock number of each part, together with any applicable notes. Table 6-2 lists parts in alphanumerical order of their \$\overline{\phi}\$ stock numbers and provides the following information on each part:
- a. Description of the part (see list of abbreviations below).
- b. Typical manufacturer of the part in a five-digit code; see list of manufacturers in appendix.
 - c. Manufacturer's stock number.
 - d. Total quantity used in the instrument (TQ column).
- e. Recommended spare part quantity for complete maintenance during one year of isolated service (RS column).
- 6-3. Miscellaneous parts not indexed in Table 6-1 are listed at the end of Table 6-2.

6—4. ORDERING INFORMATION.

6-5. To order a replacement part, address order or inquiry either to your Hewlett-Packard field office or to:

CUSTOMER SERVICE Hewlett-Packard Company 395 Page Mill Road Palo Alto, California

or, in Western Europe, to

Hewlett-Packard S. A. 54-54bis Route Des Acacias Geneva, Switzerland

- 6-6. Specify the following information for each part:
 - a. Model and complete serial number of instrument.
 - b. Hewlett-Packard stock number.
 - c. Circuit reference designator
 - d. Description
- 6-7. To order a part not listed in Table 6-1 and 6-2, give a complete description of the part and include its function and location.

REFERENCE DESIGNATORS

A	= assembly	F	= fuse	P	= plug	V	<pre>= vacuum tube, neon bulb, photocell, etc. = cable = socket</pre>
B	= motor	FL	= filter	Q	= transistor	W	
C	= capacitor	J	= jack	R	= resistor	X	
CR DL DS E	= diode = delay line = device signaling (lamp) = misc electronic part	K L M MP	= relay = inductor = meter = mechanical p	RT S art T	= thermistor = switch = transformer	XF XDS Z	= fuseholder = lampholder = network

ABBREVIATIONS

		ABBI	REVIATIO	DNS		
a ,	= amperes	elect = electrolytic encap = encapsulated	mtg my	= mounting = mylar	rot	= rotary = root-mean-square = rack mount only
bp bwo	= bandpass = backward wave oscillator	f = farads fxd = fixed	NC Ne	= normally closed = neon	rmo s-b Se	= rack mount only = slow-blow = selenium
c cer cmo	= carbon = ceramic = cabinet mount only = coefficient	Ge = germanium grd = ground (ed)	NO NPO	= normally open = negative positive zero (zero temp- ature coefficient)	sect Si sil sl	= section(s) = silicon = silver = slide
comp conn	= common = composition = connection	h = henries Hg = mercury	nsr	= not separately replaceable	td TiO ₂	= time delay = titanium dioxide
crt dep	= cathode-ray tube = deposited	<pre>impg = impregnated incd = incandescent ins = insulation (ed)</pre>	obd	= order by de- scription = peak	tog tol trim	= toggle = tolerance = trimmer
EIA	= Tubes or transistors meeting Electronic	K = kilo = 1000	p pc	= printed circuit	twt	= traveling wave tube
	Industries' Associa- tion standards will	lin = linear taper log = logarithmic taper	pf	= picofarads = 10^{-12} farads	var w/ W	= variable = with = watts
	normally result in instrument operating within specifications;	m = milli = 10 ⁻³ M = megohms	pp piv	= peak to peak = peak inverse voltage	ww w/o	= wirewound = without
	tubes and transistors selected for best performance will be supplied if ordered by & stock numbers.	$\begin{array}{lll} \text{ma} &= \text{milliamperes} \\ \mu &= \text{micro} = 10^{-6} \\ \text{minat} = \text{miniature} \\ \text{mfgl} &= \text{metal film on glass} \\ \text{mfr} &= \text{manufacturer} \end{array}$	pos poly pot rect	= position (s) = polystyrene = potentiometer = rectifier	*	= optimum value selected at factory, average value shown (part may be omitted)

Table 6-1. Reference Designation Index

Circuit Reference	\$\overline{\psi}\$ Stock No.	Description	Note
A1	00208-66502	Ass'y power supply circuit board includes:	
A2	00208-66503	CR1 thru CR6 R18 thru R21 L1 R22 Q1 thru Q5 R23 thru R26 R8, 9 R29, 30 R13, 14 R32 R16 thru R21 R34 thru R36	
A3	00208-61901	C1, 3, 4, 5, 6, 8 R1 R2, 3 R5, 6	
A4	00208-66501	C34 thru C40	
A5	00208-63401	Ass'y output attenuator (208A) includes: R55 thru R57 R60 thru R62 R65 thru R67 R70 thru R72 R74 thru R76 S2	
A6	00208-63402	Ass'y output attenuator includes: R110 thru R149 S3, 4	
C1 C2A, B, C	0150-0084 0170-0076	C: fxd, $.1\mu f + 80\% - 20\%$, 50 vdcw C: fxd, 3 sections, $3.05\mu f$, $0.305\mu f$, $0.0305\mu f$ $\pm 1\%$ each	
C3 C4 C5	0140-0174 0140-0173 0140-0108	±1% each C: fxd, 3050 pf ±1%, 100 vdcw C: fxd, 305pf ±1%, 100 vdcw C: fxd, 253pf ±2%	
C6 C7A, B, C C8 C9 C10 thru C13	0140-0172 0130-0017 0150-0096	C: fxd, 3000pf $\pm 1\%$, 100 vdcw Same as C2A, B, C C: fxd, var, 8-50pf, 500 vdcw C: fxd, .05 μ f, 100 vdcw Not assigned	
C14 C15 C16 C17	0140-0021 0130-0016 0180-0045 0140-0100	C: fxd, 39pf $\pm 10\%$, 500 vdcw C: var, cer, 5-25 μ f, 500 vdcw C: fxd, -20μ f, 25 vdcw C: fxd, 33pf $\pm 5\%$	

Table 6-1. Reference Designation Index (Cont'd

	Table 6-1	Reference Designation Index (Cont'd)	
Circuit Reference	⊕ Stock No.	Description	Note
C18 C19 C20 C21 thru C24 C25	0150-0042 0150-0055 0180-0063 0180-0112	C: fxd, 4.7pf $\pm 5\%$, 500 vdcw C: fxd, 10pf $\pm 5\%$, 500 vdcw C: fxd, elect, 500 μ f -10% $+100\%$, 3 vdcw Not assigned C: fxd, 2000 μ f, 1 vdcw	
C26 C27 C28 C29 C30	0180-0104 0180-0155 0170-0038 0150-0096	C: fxd, alum elect, $200\mu f$, 15 vdcw Same as C16 C: fxd, $2\mu f \pm 20\%$, 25 vdcw C: fxd, $.22\mu f \pm 10\%$, 200 vdcw C: fxd, $.05\mu f$, 100 vdcw	
C31 C32 C33 C34 C35	0180-0140 0130-0011 0180-0059	Same as C30 Same as C26 C: fxd, alum elect, $300\mu f$, $10 v$ C: var, cer, 1.5 -7pf C: fxd, elect, $10\mu f$ - 10% + 100% , $25 v$ dcw	
C36 C37 C38 C39 C40	0140-0145 0180-0033 0180-0064 0180-0039	C: var, 22pf $\pm 5\%$, 500 vdcw C: fxd, elect, 50 μ f, 6 vdcw C: fxd, elect, 35 μ f -10% +100%, 6 vdcw Same as C38 C: fxd, elect, 100 μ f, 12 vdcw	
C41 C101	0180-0149	Same as C38 C: fxd, alum elect, $65\mu\mathrm{f}$, -10% +100%, $60~\mathrm{v}$	
CR1 CR2 CR3 CR4 CR5	1902-0054 1910-0016 1901-0025	Diode, Si: Diode, Ge: Diode, Si: Same as CR2 Same as CR2	
CR6 CR7 CR8 CR101 CR102	1902-0072 1901-0027 1901-0025	Diode, Si: breakdown, 7.75 v ±.25 v, 400 MW Diode, Si: Same as CR7 Diode, Si: Same as CR101	
CR103 CR104 CR105 CR106	G-29A-74	Same as CR101 Same as CR101 Diode, Si: breakdown Same as CR101	
L1	9140-0107	Indicator, coil fixed, $27 \mu f \pm 10\%$	
Q1 Q2 Q3 Q4 Q5	1850-0071 1850-0096 1850-0003 1854-0003 1850-0062	Transistor 2N1516 (Selected) Transistor: Ge, 2N2189 Transistor: 2N1516/OC170 Transistor: Si Transistor	
Q6 Q7 Q101	1850-0064	Same as Q4 Same as Q2 Transistor: 2N1183	
R1 R2 R3	0683-1845 0687-2751 0687-5651	R: fxd, comp, 180K ohms $\pm 5\%$, 1/4W R: fxd, comp, 2.7M ohms $\pm 10\%$, 1/2W R: fxd, comp, 5.6M ohms $\pm 10\%$, 1/2W	

Table 6-1. Reference Designation Index (Cont'd)

Circuit Reference	₩ Stock No.	Description	Note
R4 R5 R6 R7	0727-0095	R: fxd, dep carbon, 900 ohms ±1%, 1/2W Same as R3 Same as R2	
R8	2100-0277	Not assigned R: var, comp, 100 ohms $\pm 20\%$, 0.3W	
R9 R10A, B R11 R12 R13	0687-2701 2100-0276 0687-1801	R: fxd, comp, 27 ohms $\pm 10\%$, $1/2W$ R: var, lin, ww $\pm 1\%$, 10K ohms, 1W Same as R4 Not assigned R: fxd, comp, 18 ohms $\pm 10\%$, $1/2W$	
R14 R15 R16 R17 R18	2100-0299 0687-1031 0727-0112 0686-2035	Same as R13 R: var, comp, lin, single 3000 ohms ±20%, .3W R: fxd, comp, 10K ohms ±10%, 1/2W R: fxd, dep, carbon, 1800 ohms ±1%, 1/2W R: fxd, comp, 20K ohms ±5%, 1/2W	
R19 R20 R21 R22 R23	0686-3325 0687-3311 0686-6225 0687-4701 0727-0134	R: fxd, comp, 330 ohms ±5%, 1/2W R: fxd, comp, 330 ohms ±10%, 1/2W R: fxd, comp, 6200 ohms, ±5%, 1/2W R: fxd, comp, 47 ohms ±10%, 1/2W R: fxd, dep carbon, 4.4K ohms ±1%, 1/2W	
R24 R25 R26 R27 R28	0687-1201 0687-5601	R: fxd, comp, 12 ohms $\pm 10\%$, 1/2W R: fxd, comp, 56 ohms $\pm 10\%$, 1/2W Same as R25 Not assigned Not assigned	
R29 R30 R31 R32 R33	0686-6215 0686-3605 0689-0001	Same as R22 R: fxd, comp, 620 ohms $\pm 5\%$, $1/2W$ R: fxd, comp, 35 ohms $\pm 5\%$, $1/2W$ R: fxd, comp, 4.7 ohms $\pm 5\%$, $1/2W$ Not assigned	
R34 R35 R36 R37 R38	0686-2015 0687-1011 2100-0108 0687-1831	R: fxd, comp, 200 ohms $\pm 5\%$, $1/2W$ R: fxd, comp, 100 ohms $\pm 10\%$, $1/2W$ R: var, comp, lin, 100 ohms $\pm 30\%$, $1/3W$ R: fxd, comp, 18K ohms $\pm 10\%$, $1/2W$ Same as R32	
R39 R40A, B R41 R42 R43	2100-0447 0686-6215 0758-0053	Same as R16 R: var, bridged, 600 ohms $\pm 20\%$, 2W R: fxd, comp, 620 ohms $\pm 5\%$, $1/2$ W Same as R41 R: fxd, metallic oxide, 100 K $\pm 5\%$, $1/2$ W	
R44 R45 R46 R47 R48	0758-0006 2100-0182 0687-1041 0687-4731 0687-3951	R: fxd, metallic oxide, 10K ohms ±5%, 1/2W R: var, comp, lin, 3.3K ±10%, 0.3W R: fxd, comp,100K ohms ±10%, 1/2W R: fxd, comp, 47 ohms ±10%, 1/2W R: fxd, comp, 3.9M ohms ±10%, 1/2W	
R49 R50 (208A) R50 (208A-DB) R51 R52 R53	0687-1031 0758-0069 0758-0070 0684-3311 0687-1531	R: fxd, comp, 10K ohms $\pm 10\%$, 1/2W R: fxd, metallic oxide, 1.1K $\pm 5\%$, 1/2W R: fxd, comp, 1.2K ohms $\pm 10\%$, 1/2W R: fxd, comp, 330 ohms $\pm 10\%$, 1/4W R: fxd, comp, 15K ohms $\pm 10\%$, 1/2W Not assigned	

[#] See introduction to this section

Table 6-1. Reference Designation Index (Cont'd)

Circuit Reference	® Stock No.	Description	Note
Reference			
R54		Not assigned	
R55	0766-0013	R: fxd, metallic oxide, 563 ohms ±2%, 3W	
R56		Same as R55	
R57	0766-0012	R: fxd, metallic oxide, 38 ohms $\pm 2\%$, 3W	
R58*			
R59*			
R60	0766-0011	R: fxd, mfgl, 491 ohms $\pm 2\%$, 3W	
R61	0766 0010	Same as R60	
R62 R63*	0766-0010	R: fxd, metallic oxide, 120 ohms $\pm 2\%$, 3W	
R64*	0766-0015	R: fxd, metallic oxide, 588 ohms $\pm 2\%$, 3W	
R66	0100-0013	Same as R65	
R67	0766-0014	R: fxd, metallic oxide, 12 ohms ±2%, 3W	
R68*			
R69*			
R70	0766-0009	R: fxd, metallic oxide, 312 ohms ±2%, 3W	
R71		Same as R70	
R72	0766-0034	R: fxd, metallic oxide, 422 ohms ±2%, 3W	
R73*			
R74	0766-0039	R: fxd, metallic oxide, 255.5 ohms ±2%, 3W	
R75		Same as R74	
R76	0766-0040	R: fxd, metallic oxide, 573 ohms ±2%, 3W	
R77	0687-2741 2100-0095	R: fxd, comp, 270K ohms ±10%, 1/2W R: var, comp, lin, 100K ohms ±30%, 1/5W	
R78	2100-0093	it. var, comp, im, rook omno 100%, 170%	
R79	0687-1021	R: fxd, comp, 1000 ohms $\pm 10\%$, 1/2W	
R80	0687-3331	R: fxd, comp, 33K ohms $\pm 10\%$, $1/2$ W	
R81*			
R82*		Not assigned	
R83 thru R100		Not assigned	
R101	0758-0007	R: fxd, metallic oxide, 150 ohms $\pm 5\%$, $1/2W$	
R102	2100-0391	R: var, lin, 1K, ww $\pm 20\%$, $1-1/4$ W	
R103	0686-4315	R: fxd, comp, 430 ohms $\pm 5\%$, $1/2$ W	
R104	0697_3021	Same as R80 R: fxd, comp, 3.9K ±10%, 1/2W	
R105	0687-3921		
R106	0698-0001	R: fxd, comp, 4.7 ohms $\pm 5\%$, $1/2$ W	
R107 thru R109	0766 0005	Not assigned R: fxd, metallic oxide, 103 ohms ±2%, 3W	
R110 R111	0766-0005	Same as R110	
R111	0766-0001	R: fxd, metallic oxide, 34.5 ohms ±2%, 3W	
D119		Same as R112	
R113 R114	0766-0003	R: fxd, metallic oxide, 68.8 ohms ±2%, 3W	
R115	0100-0000	Same as R114	
R116	0766-0007	R: fxd, metallic oxide, 136 ohms ±2%, 3W	
R117		Same as R116	
R118	0766-0002	R: fxd, metallic oxide, 5.2K ohms ±2%, 3W	
R119	0766-0006	R: fxd, metallic oxide, 1.7K ohms ±2%, 3W	
R120	0766-0004	R: fxd, metallic oxide, 2.58K ohms ±2%, 3W	

Table 6-1. Reference Designation Index (Cont'd)

Circuit Reference	® Stock No.	Description	Note
R121 R122 R123 R124 R125	0766-0008	R: fxd, metallic oxide, 1.26K ohms ±2%, 3W Same as R70 Same as R70 Same as R65 Same as R65	
R126 R127 R128 R129 R130		Same as R60 Same as R60 Same as R55 Same as R72 Same as R67	
R131 R132 R133 thru R148 R149		Same as R62 Same as R57 Not assigned Same as R55	
S101	3101-0033	Switch-Slide: DPDT 115-230 v	
T101	9100-0172	Transformer-power	
		MISCELLANEOUS	
	G-74DA 353A-74A	Knob, red (208A) Knob (208A-DB)	
	0370-0062 0370-0084 0370-0099 0370-0104 0370-0130	Knob, red, 3/4" (208A/208A-DB) Knob, black (208A/208A-DB) Knob, black (208A) Knob (208A/208A-DB) Knob (208A-DB)	
M1 M1	1120-0151 1120-0153	Meter (208A) Meter (208A-DB)	
DS-1	1450-0048	Light indicator	
	8120-0078	Power cord	
208A/208A-DB	00208-90000	Manual, Operating and Service	

Table 6-2. Replaceable Parts

Stock No.	Description	Mfr.	Mfr. Part No.	TQ	RS	
G-74DA G-29A-74	Knob, red (208A) Diode, Si: breakdown	28480 28480	G-74DA G-29A-74	1 1	1 1	
353A-74	Knob (208A-DB)	28480	353A-74	1	1	
00208- 61901	Range switch, Ae, includes: C1, 3, 4, 5, 6, 8 R1 R2, 3 R5, 6 S1	28480	00208-61901	1	1	
00208- 63401	Ass'y, output attenuator (208A), A5, includes: R55 thru R57 R60 thru R62 R65 thru R67 R70 thru R72 R74 thru R76 S2	28480	00208-63401	1	1	
00208- 66501	Ass'y, meter circuit board, A4, includes: C34 thru C40 CR7, 8 R43 thru R52 R77 thru R79 Q6, 7	28480	00208-66501	1	1	
00208- 66502	Ass'y, power supply circuit board, A1, includes: C101 CR101 thru CR106 R101 thru R106 Q101 T101	28480	00208-66502	1	1	
00208- 66503	Ass'y, circuit board, A2, includes:	28480	00208-66503	1	1	
353A-34	Ass'y, output attenuator, A6, includes: R110, R149 S3, 4	28480	353A-34	1	1	
0130-0011	C: var, cer, 1.5-7pf	72982	557-023-COPO- 102	1	1	
0130-0016 0130-0017	C: var, cer, 5-25pf, 500 vdcw C: var, 8-50pf, 500 vdcw	72982 72982	557-019-COP-39R 557-019-U2P0-34R	1 1	1 1	

Table 6-2. Replaceable Parts (Cont'd)

Stock No.	Description	Mfr.	Mfr. Part No.	TQ	RS
0140-0021	C: fxd, 39pf ±10%, 500 vdcw	00853	RCM15E390K	1	1
0140-0021	C: fxd, 33pf ±10%, 500 vdcw	04062	RCM15E330J	1	1
0140-0108	C: fxd, 253pf ±2%	14655	RCM15E(253)G	1	1
0140-0108		04062	DM15C220J	1	1
	C: var, 22pf ±5%, 500 vdcw	obd#		1	1
0140-0172	C: fxd, 3000pf ±1%, 100 vdcw	1	DM19F302F	1	1
0140-0173	C: fxd, 305pf ±1%, 100 vdcw	obd#	DM19F3050F	1	1
0150-0042	C: fxd, titanium dioxide dielec, 4.7pf ±5%, 500 vdcw	28480	0150-0042	1	1
0150-0055	C: fxd, titanium dioxide dielec, 10pf ±5%, 500 vdcw	78488	Type GA	1	1
0150-0084	C: fxd, cer, dielec, $.1\mu f + 80\% - 20\%$	56289	33C41	1	1
0150-0096	C: fxd, $.05\mu f + 80\% - 20\%$, 100 vdcw	94144	Type TA	3	2
0170 0020	C. fred 22f. 100/ 200 redown	56900	1407099409	1	1
0170-0038	C: fxd, $.22\mu f \pm 10\%$, 200 vdcw	56289	148P22492	1	1
0170-0076	C: fxd, poly dielec, 3 sections, $3.05\mu f$ $.305\mu f$, $.0305\mu f$ $\pm 1\%$ each	56289	111P	2	1
0180-0033	C: fxd, elect, $50\mu f$, 6 vdcw	56289	Type 30D133A1	1	1
0180-0039	C: fxd, elect, $100\mu f$, 12 vdcw	56289	30D154A1	1	1
0180-0045	C: fxd, 20µf, 25 vdcw	56289	Type 30D	2	1
0180-0059	C: fxd, elect, $10\mu f - 10\% + 100\%$, 23 vdcw	56289	Type 30D182A1	1	1
0180-0063	C: fxd, elect, $50\mu f - 10\% + 100\%$, 3 vdcw	56289	30D120A1	1	1
0180-0064	C: fxd, elect, $35\mu f - 10\% + 100\%$, 6 vdcw	56289	30D132A1	2	1
0180-0104	C: fxd, alum elect, $20\mu f$, 15 vdcw	56289	30D174A1	2	1
0180-0112	C: fxd, alum elect, $2000\mu f$, 1 vdcw	56289	41D Type 497217	1	1
0180-0140	C: fxd, alum elect, $300\mu f$, $10 v$	56289	4S608	1	1
0180-0149	C: fxd, alum elect, $65\mu f - 10\% + 100\%$, 60 v	56289	Type 30D	1	1
0180-0155	C: fxd, $2\mu f \pm 20\%$, 25 vdcw	56289	D33258	1	1
0370-0062	Knob, red, 3/4" (208A/208A-DB)	28480	0370-0062	1	1
0370-0084	Knob, black (208A/208A-DB)	28480	0370-0084	1	1
0370-0099	Knob, black (208A)	28480	0370-0099	1	1
0370-0104	Knob (208A/208A-DB)	28480	0370-0104	1	1
0683-1845	R: fxd, comp, 180K ohms $\pm 5\%$, 1/4W	01121	CB1845	1	1
0684-3311	R: fxd, comp, 330 ohms $\pm 10\%$, $1/4$ W	01121	CB3311	1	1
0686-2015	R: fxd, comp, 200 ohms $\pm 5\%$, $1/2W$	01121	EB2015	1	1
0686-2035	R: fxd, comp, 20K ohms $\pm 5\%$, $1/2W$	01121	EB2035	1	1
0686-3325	R: fxd, comp, 330 ohms $\pm 5\%$, $1/2$ W	01121	EB3325	1	1
0686-3605	R: fxd, comp, 35 ohms ±5%, 1/2W	01121	EB3605	1	1
0686-6215	R: fxd, comp, 620 ohms $\pm 5\%$, $1/2W$	01121	EB6215	3	2
0686-6225	R: fxd, comp, 6200 ohms $\pm 5\%$, $1/2W$	01121	EB6225	1	1
0687-1011	R: fxd, comp, 100 ohms $\pm 10\%$, $1/2W$	01121	EB1011	1	1
0687-1021	R: fxd, comp, 1000 ohms ±10%, 1/2W	01121	EB1021	1	1
0687-1041	R: fxd, comp, 100K ohms $\pm 10\%$, $1/2W$	01121	EB1041	1	1
0687-1031	R: fxd, comp, 10K ohms $\pm 10\%$, $1/2W$	01121	EB1031	2	1
0687-1201	R: fxd, comp, 12 ohms $\pm 10\%$, $1/2W$	01121	EB1201	1	1
0687-1531	R: fxd, comp, 15K ohms $\pm 10\%$, 1/2W	01121	EB1531	1	1
0687-1801	R: fxd, comp, 18 ohms $\pm 10\%$, $1/2W$	01121	EB1801	2	1
0687-1831	R: fxd, comp, 18K ohms $\pm 10\%$, $1/2$ W	01121	EB1831	1	1
0687-2701	R: fxd, comp, 27 ohms ±10%, 1/2W	01121	EB2701	1	1
0687-2741	R: fxd, comp, 270 ohms $\pm 10\%$, $1/2W$	01121	EB2741	1	1
0687-2751	R: fxd, comp, 2.7M ohms $\pm 10\%$, $1/2$ W	01121	EB2751	2	1
	R: fxd, comp, 330 ohms $\pm 10\%$, 1/2W	01121	EB3311	1	1

Table 6-2. Replaceable Parts (Cont'd)

Stock No.	Description	Mfr.	Mfr. Part No.	TQ	RS
0687-3331	R: fxd, comp, 33K ohms ±10%, 1/2W	01121	EB3331	1	1
0687-3921	R: fxd, comp, 3.9K ±10%, 1/2W	01121		1	
0687-3951			EB3921		1
	R: fxd, comp, 3.9M ohms ±10%, 1/2W	01121	EB3951	2	1
0687-4701	R: fxd, comp, 47 ohms ±10%, 1/2W	01121	EB4701	2	1
0687-4731	R: fxd, comp, 47K ohms ±10%, 1/2W	01121	EB4731	1	1
0687-5601	R: fxd, comp, 56 ohms ±10%, 1/2W	01121	EB5601	2	1
0687-5651	R: fxd, comp, 56K ohms ±10%, 1/2W	01121	EB5651	1	1
0689-0001	R: fxd, comp, 4.7 ohms ±5%, 1/2W	01121	EB47G5	3	2
0727-0095	R: fxd, dep carbon, 900 ohms ±1%, 1/2W	19701	DC1/2C	2	1
0727-0112	R: fxd, dep carbon, 1800 ohms $\pm 1\%$, $1/2$ W	2 8480	0727-0112	1	1
0727-0134	R: fxd, dep carbon, 4.44K ohms $\pm 1\%$, $1/2W$	2 8480	0727-0134	1	1
0758-0006	R: fxd, metallic oxide, 10K ohms ±5%, 1/2W	07115	0758-0006	1	1
0758-0007	R: fxd, metallic oxide, 150 ohms ±5%, 1/2W	28480	0758-0007	1	1
0758-0053	R: fxd, metallic oxide, 100K ±5%, 1/2W	07115	C-20	1	1
0758-0069	R: fxd, metallic oxide, 1.1K ±5%, 1/2W	07115	C-20	1	1
0758-0070	R: fxd, comp, 1.2K ohms ±10%, 1/2W	07115	C-20	1	1
0766-0001	R: fxd, metallic oxide, 34.5 ohms $\pm 2\%$, 3W	07115	LPI-3	2	2
0766-0002	R: fxd, metallic oxide, 5.2K ohms ±2%, 3W	07115	LPI-3	1	1
0766-0003		07115	LPI-3	2	2
	R: fxd, metallic oxide, 68.8 ohms ±2%, 3W		1	1	
0766-0004 0766-0005	R: fxd, metallic oxide, 2.58K ohms ±2%, 3W R: fxd, metallic oxide, 103 ohms ±2%, 3W	07115 07115	LPI-3 LPI-3	2	1 2
0766-0006	R: fxd, metallic oxide, 1.7K ohms ±2%, 3W	07115	LPI-3	1	1
0766-0007	R: fxd, metallic oxide, 136 ohms ±2%, 3W	07115	LPI-3	2	2
		07115	LPI-3	1	1
0766-0008	R: fxd, metallic oxide, 1.26K ohms			2	1
0766-0009 0766-0010	R: fxd, metallic oxide, 312 ohms ±2%, 3W R: fxd, metallic oxide, 120 ohms ±2%, 3W	07115 07115	LPI-3 LPI-3	1	1
0766-0011	R: fxd, mfgl, 491 ohms $\pm 2\%$, 3W	07115	LPI-3	3	1
0766-0012	R: fxd, metallic oxide, 38 ohms $\pm 2\%$, 3W	07115	LPI-3	1	1
0766-0013	R: fxd, metallic oxide, 563 ohms ±2%, 3W	07115	LPI-3	2	1
0766-0014	R: fxd, metallic oxide, 12 ohms ±2%, 3W	07115	LPI-3	1	1
0766-0015	R: fxd, metallic oxide, 588 ohms ±2%, 3W	07115	LPI-3	2	1
0766-0034	R: fxd, metallic oxide, 422 ohms ±2%, 3W	07115	LPI-3	1	1
0766-0039	R: fxd, metallic oxide, 255.5 ohms $\pm 2\%$, 3W	07115	LPI-3	2	1
0766-0040	R: fxd, metallic oxide, 573 ohms $\pm 2\%$, 3W	07115	LPI-3	1	1
1120-0151	Meter (208A)	28480	1120-0151	1	1
1120-0153	Meter (208A-DB)	28480	1120-0153	1	1
1450-0048	Light indicator	08717	858R	1	1
1850-0003	Transistor: Ge, 2N1516/OC170	73445	2N1516/OC170	2	1
1850-0062	Transistor: Ge	01295	GA287	1	1
1850-0064	Transistor: Ge, 2N1183	86684	RCA 2N-1183	1	1
1850-0071	Transistor: 2N1516 (Selected)	28480	1850-0071	1	1
1850-0096	Transistor: Ge, 2N2189	01295	2N2189	2	1
1854-0003	Transistor: Si	49956	RT5299	1	1
1901-0025	Diode, Si:	03877	SG-817	6	5
		73293	HD5004	2	1
1901-0027	Diode, Si:	28480	1902-0054	1	1
1902-0054	Diode, Si:				1
1902-0072	Diode, Si: breakdown, 7.75 v ±.25 v, 400 MW	07910	CD34116	1	
1910-0016	Diode, Ge:	93332	D2361	3	2

Table 6-2. Replaceable Parts (Cont'd)

Stock No.	Description	Mfr.	Mfr. Part No.	TQ	RS
100-0095 100-0108 100-0182 100-0276 100-0277	R: var, comp, lin, 100K ohms ±30%, 1/5W R: var, comp, lin, 100 ohms ±30%, 1/3W R: var, comp, lin, 3.3K±10%, 0.3W R: var, lin, ww, 10K ohms ±1%, 1W R: var, comp, 100 ohms ±20%, 0.3W	28480 71450 71450 16688 11326	2100-0095 UPE-70 UPE-70 10-42-1561 Type UPE65 CV	1 1 1 1	1 1 1 1 1 1 1
100-0299	R: var, comp, lin, single 3000 ohms ±20%	71450	UPE-70	1	1
100-0391 100-0447	.3W R: var, lin, ww, 1K ±20%, 1.25W R: var, bridged, 600 ohms ±20%, 2W	11236 73506	Series 110 JJ89269	1	.1
3120-0078	Power cord	28480	8120-0078	1	1
0100-0172 0140-0107	Transformer, power Indicator, coil fixed, $27\mu h \pm 10\%$	06513 28480	6-2249 9140-0107	1 1	1 1
00208-	Manual, Operating and Service	28480	00208-90000	2	2

APPENDIX CODE LIST OF MANUFACTURERS (Sheet 1 of 2)

The following code numbers are from the Federal Supply Code for Manufacturers Cataloging Handbooks H4-1 (Name to Code) and H4-2 (Code to Name) and their latest supplements. The date of revision and the date of the supplements used appear at the bottom of each page. Alphabetical codes have been arbitrarily assigned to suppliers not appearing in the H4 handbooks.

ACTURER ADDRES	MANUFACT	CODE NO.	ADDRESS	MANUFACTURER	CODE NO.	URER ADDRESS	DE D. MANUFAC
Precision Bearings, Inc.	Miniature Preci	40920		Corning Glass Works	07115	Colton, Calif.	34 Humidial Co.
Keene, N.			ents Dept. Bradford, Pa.	Electronic Componer		New York, N.Y.	35 Westrex Corp
	Muter Co.		Pasadena, Calif.	Digitran Co.		g Co.,	73 Garlock Pack
	C. A. Norgren Ohmite Mfg.		Corp.	Transistor Electronics C	07137	oducts Div. Camden, N.J. New Bedford, Mass.	Electronic I
	Polaroid Corp.		Minneapolis, Minn.	Westinghouse Electric	07138	Harrisburg, Pa.	79 Amp, Inc.
Thermometer and	Precision Therr	48620	v. Elmira, N.Y.	Electronic Tube Div			81 Aircraft Radio
	Inst. Co.	4005/	Los Angeles, Calif.	Avnet Corp.		eering Laboratories, Inc.	15 Northern Eng
	Shallcross Mfg.	49956	Mountain View, Calif.	Fairchild Semiconducto	0 / 2 6 3	Burlington, Wis.	53 Sangamo Elec
	Simpson Electri		orp. Hawthorne, Calif.	Continental Device Co		on (Capacitors) Marion, III.	Ordill Divi
Corp. Elmsford, N.	Sonotone Corp		Corp.	Rheem Semiconductor	07933		66 Goe Engineer
	Sorenson & Co		Mountain View, Calif.	Shockley Semi-Conduct	07966		91 Carl E. Holm
Fibre Co., Inc. Tonawanda, N. lectric Co. North Adams, Ma	Spaulding Fibr Sprague Electr	56137	Palo Alto, Calif.	Laboratories			21 Allen Bradley 55 Litton Industri
	Telex, Inc.				07980	ductors. Inc.	81 Pacific Semice
tch and Signal, Div. of	Union Switch a		Los Angeles, Calif.	U.S. Engineering Co. Burgess Battery Co.		Culver City, Calif.	
house Air Brake Co. Swissvale, F	Westinghous		Falls, Ontario, Canada	Niagara		nts, Inc. oducts Div. Dallas, Texas	9.5 Texas Instrum Transistor P
Electric Co. Owosso, Mic lectric Co., Inc. New York, N.	Universal Elect		Burbank, Calif.	Sloan Company			49 The Alliance
st. Div. of Daystrom, Inc.			Phoenix, Ariz.	Cannon Electric Co. Phoenix Div.	08718		61 Chassi-Trak C
Newark, N.			onductor	CBS Electronics Semico	08792		89 Pacific Relays
	Wollensak Opt Allen Mfg. Co		C.B.S. Inc. Lowell, Mass.	Operations, Div. of (30 Amerock Cor
			Indianapolis, Ind.	Mel-Rain	08934		61 Pulse Engineer 14 Ferroxcube Co
ntrol Co., Inc. New York, N. dia Rubber Works, Inc. Chicago, I	Atlantic India	70485	Costa Mesa, Calif.	Babcock Relays, Inc.	09026	Saugerties, N.Y.	14 Perioxcube Co
Chicago, I Co., Inc. New York, N.	Amperite Co.,	70563	Houston, Texas	Texas Capacitor Co.			8 6 Cole Mfg. Co
	Belden Mfg. C	70903	nc. Chicago, III.	Electro Assemblies, In Mallory Battery Co. of	09250	Electronics Corp. Chicago, III.	60 Amphenol-Bor
	Bird Electronic		ronto, Ontario, Canada	Canada, Ltd. Tor	0 7 5 6 7	America	35 Radio Corp. c
Radio Co. New York, N.	Birnbach Radio	71002	stern Corp. Los Angeles, Calif.	General Transistor Wes	10214	America or and Materials Div.	Semiconduc
ar Works Div. of Co. of Texas Quincy, Mas		71041	Berkeley, Calif.	Ti-Tal, Inc.	10411	Somerville, N.J.	7.1 Vocatine Co.
	Bud Radio Inc.	71218	Niagara Falls, N.Y.	Carborundum Co.		America, Inc. Old Saybrook, Conn.	71 Youanne Co. (
astener Corp. Paramus, N.	Camloc Faster	71286	Berne, Ind.	CTS of Berne, Inc.	11236	ering Co. San Fernando, Calif.	77 Hopkins Engin
Cardwell Electronic orp. Plainville, Cor	Allen D. Cardy Prod. Corp.	71313	California, Inc. So. Pasadena, Calif.	Chicago Telephone of	11237	ictor Products Dept.	08 G.E. Semicon
Fuse Div. of McGraw-	Bussmann Fuse	71400	Corp.	Microwave Electronics	11312	Syracuse, N.Y.	
Co. St. Louis, M	Edison Co.		Palo Alto, Calif.				05 Apex Machine
	CTS Corp. Cannon Electric			Duncan Electronics, In General Instrument Co	11534	El Monte, Calif. ronic Corp. Wakefield, Mass.	97 Eldema Corp. 77 Transitron Elec
gineering Co. Burbank, Cal	Cinema Engine	71471	sion Newark, N.J.	Semiconductor Divis	11711		8 8 Pyrofilm Resis
	C. P. Clare & C		nc. Buena Park, Calif.	Imperial Electronics, Ir		tors, Inc. Los Angeles, Calif.	54 Air Marine M
homson Corp.,	Standard-Thom	71528	Palo Alto, Calif.	Melabs, Inc.		d Hegeman Elect. Co.	09 Arrow, Hart a
Mfg. Co. Div. Waltham, Mar Div. of Globe Union Inc.		71590	Dover, N.H.	Clarostat Mfg. Co. Cornell Dubilier Elec. (Hartford, Conn. ets Co. New York, N.Y.	62 Elmenco Prod
Milwaukee, W			So. Plainfield, N.J.			of Aerovox Myrtle Beach, S.C.	
	The Cornish Wil		Livingston, N.J.	The Daven Co.		Watch Co.,	98 Elgin National
finiature Lamp Works Chicago, I	Chicago Minia	/1/44		De Jur-Amsco Corpora			Electronics
th Corp., Crowley Div.	A. O. Smith C	71753	G. M. Corp.	Delco Radio Div. of G	16758	or ard Co. Palo Alto, Calif.	0.4 Dymec Divisio Hewlett-Pac
West Orange, N. Corp. Chicago, I	Cinch Mfg. Cor	71785	Inc. Wilmington Del	E. I. DuPont and Co.,	15873	c Prods., Inc. be Div. Mountain View, Calif.	51 Sylvania Elect
ng Corp. Midland, Mic	Dow Corning C	71984	f	Eclipse Pioneer, Div. of		Semicondustos	1.3 Motorola Inc
otive Mfg. Co., Inc.			p. Teterboro, N.J.	Bendix Aviation Corp			13 Motorola, Inc. Prod. Div.
Willimantic, Con	John E. Fast & C		stries,	Thomas A. Edison Indu- Div. of McGraw-Edis	19500		3 2 Filtron Co., In Western Di
	Dialight Corp.		West Orange, N.J.				73 Automatic Ele
	General Ceram	72656		Electra Manufacturing Electronic Tube Corp.		& Cable	96 Sequoia Wire
pkins Oakland, Cal	Girard-Hopkins	72758	Corp.	Fansteel Metallurgical		Redwood City, Calif.	Company
	Drake Mfg. Co.	72765	No. Chicago, III.				70 P. M. Motor (
	Hugh H. Eby In Gudeman Co.			The Fafnir Bearing Co. Fed. Telephone and Ra		Los Angeles, Calif.	0 6 Twentieth Cen
	Erie Resistor Co		Clitton, N.J.			lectric Corp.,	77 Westinghouse
	Hansen Mfg. Co		Schenectady, N.Y.	General Electric Co.		tor Dept. Youngwood, Pa. San Mateo, Calif.	Semi-Condu 47 Ultronix, Inc.
v. of Beckman	Helipot Div. of	7 3 1 3 8	Park, Cleveland, Ohio	G.E., Lamp Division Nela	2 4 4 5 5		93 Illumitronic Er
nts, Inc. Fullerton, Cal oducts Division of	Instruments, I	73292	West Concord, Mass.	General Radio Co.		Sunnyvale, Calif.	
Aircraft Co. Newport Beach, Cal	Hughes Aircr	, 32/3	nerica, Inc. Carlstadt, N.J.	Grobet File Co. of Am	26462		2.4 Barber Colman
electronic Co., Div. of	Amperex Electr	73445	Lancaster, Pa.	Hamilton Watch Co.	26992	lecommunications Corp., Div. Brooklyn, N.Y.	29 Metropolitan 1 Metro Cap.
merican Phillips Co., Inc. Hicksville, N.	North Americ		Palo Alto, Calif.	Hewlett-Packard Co.	28480	ering Co. Santa Cruz, Calif.	83 Stewart Engin
miconductor Corp. Hamden, Con				G.E. Receiving Tube De		Bridgeport, Conn.	04 The Bassick Co
	Carling Electric	73559	Chicago, III.	Lectrohm Inc.		I Instrument Co., Inc.	5 5 Beede Electric
ectric, Inc. Hartford, Con	Canana V Can		las Indianamalis Ind	D D Mallow 9 C- 1			
Garrett Co., Inc. Philadelphia, P	George K. Gar			P. R. Mallory & Co., I Mechanical Industries		Penacook, N.H.	1.2 Torrington Mfe

00015-25 Revised: 25 May 1962 From: F.S.C. Handbook Supplements H4-1 Dated: April 1962 H4-2 Dated: March 1962

APPENDIX CODE LIST OF MANUFACTURERS (Sheet 2 of 2)

CODE NO.	MANUFACTURER ADDR	CODE NO.	MANUFACTURER ADDRESS	CODE NO. MANUFACTURER ADDRESS
73793	Fischer Special Mfg. Co. The General Industries Co. Jennings Radio Mfg. Co. Cincinnati, C Elyria, C San Jose, C	Ohio 82647	Switchcraft, Inc. Chicago, III. Metals and Controls, Inc., Div. of Texas Instruments, Inc.,	95263 Leecraft Mfg. Co., Inc. 95264 Lerco Electronics, Inc. 95265 National Coil Co. New York, N.Y. Burbank, Calif. Sheridan, Wyo.
	J. H. Winns, and Sons Winchester, N	lace.	Spencer Prods. Affleboro, Mass.	95275 Vitramon, Inc. Bridgeport, Conn.
74861	Industrial Condenser Corp. Chicago	82866 82877	Research Products Corp. Madison, Wis.	95354 Methode Mfg. Co. Chicago, III.
74868	R.F. Products Division of Amphenol- Borg Electronics Corp. Danbury, C		Woodstock, N.Y.	95987 Weckesser Co. Chicago, III.
74970	E. F. Johnson Co. Waseca, N		Vector Electronic Co. Glendale, Calif.	9 6 0 6 7 Huggins Laboratories Sunnyvale, Calif. 9 6 0 9 5 Hi-Q Division of Aerovox Olean, N.Y.
75042	International Resistance Co. Philadelphia		Western Washer Mfr. Co. Los Angeles, Calif. Carr Fastener Co. Cambridge, Mass.	96095 Hi-Q Division of Aerovox Olean, N.Y. 96256 Thordarson-Meissner Div. of
75173	Jones, Howard B., Division of Cinch Mfg. Corp. Chicago	83086	New Hampshire Ball Bearing, Inc.	Maguire Industries, Inc. Mt. Carmel, III.
75378	James Knights Co. Sandwich		Peterborough, N.H. Pyramid Electric Co. Darlington, S.C.	9 6 2 9 6 Solar Manufacturing Co. Los Angeles, Calif. 9 6 3 3 0 Carlton Screw Co. Chicago, III.
75382	Kulka Electric Corporation Mt. Vernon,	N.Y. 83148		96341 Microwave Associates, Inc. Burlington, Mass.
75818	Lenz Electric Mfg. Co. Chicago			96501 Excel Transformer Co. Oakland, Calif.
	Littelfuse Inc. Des Plaines Lord Mfg. Co. Erie		Bendix Corp., Red Bank Div. Red Bank, N.J. Smith, Herman H., Inc. Brooklyn, N.Y.	97464 Industrial Retaining Ring Co. Irvington, N.J.
76210		117		97539 Automatic and Precision Mfg. Co. Yonkers, N.Y.
76433	Micamold Electronic Mfg. Corp. Brooklyn,	N.Y. 83594	Div. of Amerace Corp. Brookfield, Mass.	97966 CBS Electronics,
76487	James Millen Mfg. Co., Inc. Malden, N	lass.	Burroughs Corp., Electronic Tube Div. Plainfield, N.J.	Div. of C.B.S., Inc. Danvers, Mass. 98141 Axel Brothers Inc. Jamaica, N.Y.
76493	J. W. Miller Co. Los Angeles, C	alif. 83777	Model Eng. and Mfg., Inc. Huntington, Ind.	98220 Francis L. Mosley Pasadena, Calif.
	Monadnock Mills San Leandro, C	alif. 83821	Loyd Scruggs Co. Festus, Mo.	98278 Microdot, Inc. So. Pasadena, Calif.
	Mueller Electric Co. Cleveland, (Oak Manufacturing Co. Crystal Lake	111	Arco Electronics, Inc. New York, N.Y.	98291 Sealectro Corp. Mamaroneck, N.Y. 98405 Carad Corp. Redwood City, Calif.
77068	Bendix Pacific Division of	0,3,0	A. J. Glesener Co., Inc. San Francisco, Calif.	98734 Palo Alto Engineering
77221	Bendix Corp. No. Hollywood, C Phaostron Instrument and		Good All Electric Mrg. Co. Ogaliala, Neb.	Co., Inc. Palo Alto, Calif.
	Electronic Co. South Pasadena, C	alif. 84970 85454	Sarkes Tarzian, Inc. Bloomington, Ind. Boonton Molding Company Boonton, N.J.	98925 Clevite Transistor Prod.
	Philadelphia Steel and Wire Corp. Philadelphia	n. 85474	R. M. Bracamonte & Co.	Div. of Clevite Corp. Waltham, Mass.
77342	Potter and Brumfield, Div. of American Machine and Foundry Princeton,	85660	San Francisco, Calif. Koiled Kords, Inc. New Haven, Conn.	98978 International Electronic Research Corp. Burbank, Calif.
77/20	Machine and Foundry Princeton,	Ind. 85911	Constant Bulban Co	9 9 1 0 9 Columbia Technical Corp. New York, N.Y.
77630	Radio Condenser Co. Camden, Radio Receptor Co., Inc. Brooklyn,	N.J. 86197	Clifton Precision Products Clifton Heights, Pa.	99313 Varian Associates Palo Alto, Calif. 99515 Marshall Industries, Electron
77764	Resistance Products Co. Harrisburg	Pa. 86684	Radio Corp. of America, RCA	Products Division Pasadena, Calif.
78189	Shakeproof Division of Illinois Tool Works Elgin	111 87214	Electron Tube Div. Harrison, N.J. Philco Corp. (Lansdale Division)	9 9 7 0 7 Control Switch Division, Controls Co. of America El Segundo, Calif.
78283	Signal Indicator Corp. New York,	NY	Lansdale, Pa.	9 9 8 0 0 Delevan Electronics Corp. East Aurora, N.Y. 9 9 8 4 8 Wilco Corporation Indianapolis, Ind.
	Tilley Mfg. Co. San Francisco, C	attr.	Western Fibrous Glass Products Co. San Francisco, Calif.	99934 Renbrandt, Inc. Boston, Mass.
78488	Stackpole Carbon Co. St. Marys Tinnerman Products, Inc. Cleveland, 6		Cutler-Hammer, Inc. Lincoln, III.	9 9 9 4 2 Hoffman Semiconductor Div. of Hoffman Electronics Corp. Evanston, III.
78790	Transformer Engineers Pasadena, C		Gould-National Batteries, Inc. St. Paul, Minn. General Electric Distributing Corp.	99957 Technology Instrument Corp.
78947	Ucinite Co. Newtonville, M	lass.	General Electric Distributing Corp. Schenectady, N.Y.	of Calif. Newbury Park, Calif.
79142	Veeder Root, Inc. Hartford, C Wenco Mfg. Co. Chicago	111	Carter Parts Div. of Economy Baler Co. Chicago, III.	THE FOLLOWING H-P VENDORS HAVE NO NUMBER ASSIGNED IN THE LATEST SUPPLEMENT TO THE FEDERAL SUPPLY CODE FOR MANUFACTURERS
79727	Continental-Wirt Electronics Corp.	87665	United Transformer Co. Chicago, III.	THE FEDERAL SUPPLY CODE FOR MANUFACTURERS HANDBOOK.
700/3	Philadelphia	ra.	U.S. Rubber Co., Mechanical Goods Div. Passaic, N.J.	0000 F Malco Tool and Die Los Angeles, Calif.
80031	Zierick Mfg. Corp. New Rochelle, Mepco Division of	, , , , ,		0 0 0 0 1 Telefunken (c/o American
	Sessions Clock Co. Morristown,	01345	Connor Spring Mfg. Co. San Francisco, Calif. Miller Dial & Nameplate Co.	Elite) New York, N.Y. 0 0 0 0 M Western Coil Div. of Automatic
	Schnitzer Alloy Products Elizabeth, Times Facsimile Corp. New York,	14.5.	El Monte, Calif.	Ind., Inc. Redwood City, Calif.
				0000N Nahm-Bros. Spring Co. San Leandro, Calif. 0000P Ty-Car Mfg. Co., Inc. Holliston, Mass.
	Electronic Industries Association Any brand tube meeting EIA standards Washington,	D.C. 91637	Dale Electronics, Inc. Columbus, Nebr.	0.0.0.0.T Texas Instruments Inc.
80207	Unimax Switch, Div. of	71002		Metals and Controls Div. Versailles, Ky.
80248	W. L. Maxson Corp. Wallingford, C Oxford Electric Corp. Chicago,		Gremar Mfg. Co., Inc. Wakefield, Mass. K F Development Co. Redwood City, Calif.	0 0 0 0 U Tower Mfg. Corp. Providence, R.I. 0 0 0 0 W Webster Electronics Co. Inc.
80294	Bourns Laboratories, Inc. Riverside, C		Minneapolis-Honeywell Regulator Co.,	New York, N.Y. 0 0 0 0 X Spruce Pine Mica Co. Spruce Pine, N.C.
80411	Acro Div. of Robertshaw Fulton Controls Co. Columbus 16, (Ohio 92196	Micro-Switch Division Freeport, III. Universal Metal Products, Inc.	0000 X Spruce Fine Mica Co. Spruce Fine, N.C. 0000 Y Midland Mfg. Co. Inc. Kansas City, Kans.
	All Star Products Inc. Defiance, 6	Ohio 02222	Bassett Puente, Calif.	0000Z Willow Leather Products Corp. Newark, N.J.
	Hammerlund Co., Inc. New York,	N.T.	Semiconductor Div. Woburn, Mass.	000 A A British Radio Electronics Ltd. Washington, D.C.
	Stevens, Arnold, Co., Inc. Boston, No. International Instruments, Inc.	lass. 93369 93410	Robbins and Myers, Inc. New York, N.Y.	AAAB B Bassisias Instrument Components Co
	New Haven, C	onn. 93983	Insuline-Van Norman Ind., Inc.	Van Nuys, Calif. 0 0 0 C C Computer Diode Corp. Lodi, N.J.
	Winchester Electronics Co., Inc. Norwalk, C	onn. 94144	Electronic Division Manchester, N.H.	000 C C Computer Diode Corp. Lodi, N.J. 000 E E A. Williams Manufacturing Co. San Jose, Calif.
	Wilkor Products, Inc. Cleveland,	Ohio 74144	Div. Receiving Tube Operation	000 FF Carmichael Corrugated Specialties
81453	Raytheon Mfg. Co., Industrial Components Div., Industr.	94145	Quincy, Mass. Raytheon Mfg. Co., Semiconductor Div., California Street Plant Newton, Mass.	Richmond, Calif. 000 G G Goshen Die Cutting Service Goshen, Ind.
81483	Tube Operations Newton, N International Rectifier Corp.	1ass.	California Street Plant Newton, Mass. Scientific Radio Products, Inc.	0 0 0 H H Rubbercraft Corp. Torrance, Calif.
010/0	El Segundo, C	alif.	Loveland, Colo.	00011 Birtcher Corporation, Industrial Division Monterey Park, Calif.
	Barry Controls, Inc. Watertown, N Carter Parts Co. Skokie		Tung-Sol Electric, Inc. Newark, N.J. Curtiss-Wright Corp.,	0 0 0 K K Amatom New Rochelle, N.Y.
	Jeffers Electronics Division of		Electronics Div. East Paterson, N.J.	000 LL Avery Label Monrovia, Calif.
82170	Speer Carbon Co. Du Bois Allen B. DuMont Labs., Inc. Clifton,	, Pa. 94310 N.J.	Tru Ohm Prod. Div. of Model Engineering and Mfg. Co. Chicago, III.	0 0 0 M M Rubber Eng. & Development Hayward, Calif.
82209	Maguire Industries, Inc. Greenwich, C	onn. 94682	Worcester Pressed Aluminum Corp. Worcester, Mass.	000 N N A "N" D Manufacturing Co. San Jose 27, Calif.
82219	Sylvania Electric Prod. Inc., Electronic Tube Div. Emporium		Allies Products Corp. Miami, Fla.	000 PP Atohm Electronics, Sun Valley, Calif.
82376	Astron Co. East Newark,		Continental Connector Corp. Woodside, N.Y.	000 Q Q Cooltron Oakland, Calif.

00015-25 Revised: 25 May 1962 From: F.S.C. Handbook Supplements H4-1 Dated: April 1962 H4-2 Dated: March 1962

All our products are warranted against defects in material and workmanship for one year from the date of shipment. Our obligation is limited to repairing or replacing products (except tubes) which prove to be defective during the warranty period. We are not liable for consequential damages.

For assistance of any kind, including help with instruments under warranty, contact your field office for instructions. Give full details of the difficulty and include the instrument model and serial numbers. Service data or shipping instructions will be promptly sent to you. There will be no charge for repair of instruments under warranty, except transportation charges. Estimates of charges for non-warranty or other service work will always be supplied, if requested, before work begins.

CLAIM FOR DAMAGE IN SHIPMENT

Your instrument should be inspected and tested as soon as it is received. The instrument is insured for safe delivery. If the instrument is damaged in any way or fails to operate properly, file a claim with the carrier or, if insured separately, with the insurance company.

SHIPPING

On receipt of shipping instructions, forward the instrument prepaid to the destination indicated. You may use the original shipping carton or any strong container. Wrap the instrument in heavy paper or a plastic bag and surround it with three or four inches of shock-absorbing material to cushion it firmly and prevent movement inside the container.

GENERAL

Your @ field office is ready to assist you in any situation, and you are always welcome to get directly in touch with Hewlett-Packard service departments:

CUSTOMER SERVICE

Hewlett-Packard Company 395 Page Mill Road Palo Alto, California, U.S.A. Telephone: (415) 326-3950 TWX No. PAL AL 117-U Cable: "HEWPACK"

OR (In Western Europe)

Hewlett-Packard S.A. 54-54bis Route Des Acacias Geneva, Switzerland Telephone: (022) 42.81.50 Cable: "HEWPACKSA"

