Feuille de TD n.4 de IPD 2022-2023, Ensimag 2A IF

H. Guiol

On se place dans les conditions habituelles.

Exercice 1. Soient $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ un espace de probabilités filtré et τ un $(\mathcal{F}_t)_{t\geq 0}$ -temps d'arrêt et $t\in \mathbb{R}^+$ fixé.

- 1. Soit a un réel positif. La v.a. $a\tau$ est-elle un $(\mathcal{F}_s)_{s>0}$ -temps d'arrêt?
- 2. Montrer que l'événement $\{\tau = t\}$ appartient à \mathcal{F}_t et à \mathcal{F}_{τ} .
- 3. Montrer que la variable aléatoire $\tau \wedge t$ est $\mathcal{F}_{\tau \wedge t}$ -mesurable et en déduire qu'elle est également \mathcal{F}_{τ} et \mathcal{F}_{t} mesurable.

Exemple Important de T.A.: Les temps d'atteinte d'un fermé ou d'un ouvert par un processus à trajectoires continues sont des temps d'arrêt.

Soit X un processus à trajectoires continues, $(\mathcal{F}_t)_{t\geq 0}$ -adapté, à valeurs réelles défini sur un espace de probabilité filtré $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$.

1. Soit F un fermé de \mathbb{R} , on définit la variable aléatoire

$$\tau_F := \inf\{t \ge 0 : X_t \in F\}.$$

Montrer que τ_F est un $(\mathcal{F}_t)_{t>0}$ -temps d'arrêt.

2. Soit à présent O un ouvert de \mathbb{R} . Montrer que $\tau_O := \inf\{t \geq 0 : X_t \in O\}$ est un $(\mathcal{F}_t)_{t \geq 0}$ -temps d'arrêt.

Exercice 2. Soit W un $(\mathcal{F}_t)_{t\geq 0}$ -M.B.S. Montrer que les v.a. suivantes sont des $(\mathcal{F}_t)_{t\geq 0}$ -temps d'arrêt

$$\tau_a = \inf\{t \ge 0 : W_t = a\}, \text{ pour } a \in \mathbb{R}^*
\tau_{a,b} = \inf\{t \ge 0 : W_t < a \text{ ou } W_t > b\}, \text{ pour } a < 0 < b$$

Exercice 3. Orthogonalité des martingales.

Soit X une martingale de carré intégrable, i.e. $\mathbb{E}[X_t^2] < +\infty$ pour tout $t \ge 0$.

1. Montrer que pour tout $s \leq t$,

$$\mathbb{E}\left[(X_t - X_s)^2 | \mathcal{F}_s\right] = \mathbb{E}\left[X_t^2 - X_s^2 | \mathcal{F}_s\right] = \mathbb{E}\left[X_t^2 | \mathcal{F}_s\right] - X_s^2.$$

2. En déduire que pour tout $s \leq t$

$$\mathbb{E}\left[X_t^2|\mathcal{F}_s\right] \ge X_s^2$$

retrouvant ainsi que X^2 est une sous-martingale.

3. Montrer que si $t \geq s \geq v \geq u \geq 0$ on a

$$\mathbb{E}\left[(X_t - X_s)(X_v - X_u)|\mathcal{F}_s\right] = 0$$

ce qui justifie l'appellation d'orthogonalité (des accroissements) des martingales (de carré intégrable).

Exercice 4. Martingales du mouvement brownien.

Soit $B = (B_t)_{t\geq 0}$ un $(\mathcal{F}_t)_{t\geq 0}$ -mouvement brownien standard. Montrer que

- 1. le processus B est une $(\mathcal{F}_t)_{t\geq 0}$ -martingale.
- 2. le processus $(B_t^2 t)_{t \ge 0}$ est une $(\mathcal{F}_t)_{t \ge 0}$ -martingale.
- 3. le processus $\left(\exp\left(\sigma B_t \frac{\sigma^2 t}{2}\right)\right)_{t\geq 0}$ est une $(\mathcal{F}_t)_{t\geq 0}$ -martingale pour tout $\sigma \in \mathbb{R}$.