

Réseaux de Petri Le formalisme mathématique

CHIRAZ TRABELSI

trabelsi@esiea.fr

Et

ALEXANDRE BRIERE

briere@esiea.fr

SYS2044 Systèmes – 2A-S2 (2018-2019)

Utilisations des RdPs

- 1) Modéliser le fonctionnement d'un système
 - Industriel (usine, tapis roulant, moteur, stocks, etc.)
 - Informatique (application logicielle, réseau, système d'exploitation, etc.)
 - D'autres domaines (organisation d'une entreprise, chimie, etc.)
 - → une meilleure compréhension (vue graphique) et structuration du comportement
- 2) Modéliser des systèmes complexes contenant plusieurs modules fonctionnant en parallèle et les interactions entre ces modules
 - Parallélisme
 - Synchronisation
 - Partage de ressources (mémoire, imprimante, etc.)
 - Capacité limitée (mémoire, stock, etc.)

esiea ECOLE D'INGENIEURS PULMONDE NUMERIQUE

Utilisations des RdPs

- 3) Vérification mathématique/formelle
 - Vérification du bon fonctionnement d'un système tôt dans la phase de conception
 - Avant d'aller à l'implémentation, on peut **vérifier** la sûreté du système pour **toutes les évolutions possibles**
 - Avoir un fonctionnement sûr du système, ce qui n'est pas garanti par des jeux de tests après implémentation (les jeux de tests ne peuvent pas couvrir tous les cas)

esiea ecole d'ingenieurs

Utilisations des RdPs

- 3) Vérification mathématique/formelle
 - Exemples de propriétés à vérifier selon le système à modéliser
 - Est-ce que le réseau est sans blocage?
 - Est-ce qu'il y a une place susceptible de contenir un nombre infini de jetons (débordement)?
 - Est-ce que le système vérifie que deux places P1 et P2, par exemple ne sont jamais actives en même temps?

esiea ECOLE D'INGENIEURS DU MONDE NIIMERIQUE

Utilisations des RdPs

- 3) Vérification mathématique/formelle
 - Une fois on est sûr que le système vérifie toutes les propriétés demandées pour toutes les évolutions possibles, on peut traduire le réseau en code / équations de bascules
 - → garantir la sûreté du système et détecter rapidement les erreurs avant d'aller à l'implémentation
 - Possibilité de traduire le réseau en code automatiquement → accélérer encore plus le développement de systèmes sûrs

• La vérification mathématique est nécessaire pour les systèmes critiques (transport ferroviaire, avionique, etc.)

Représentation algébrique

- Un RdP ordinaire est un quadruplet
 - R=< P, T, Pré, Post > tel que :
 - P= {P1, P2,...,Pn} est un ensemble fini et non vide de places
 - T= {T1,T2, ..., Tn} est un ensemble fini et non vide de transitions
 - Pré: $P \times T \longrightarrow \{0,1\}$ est l'application d'incidence avant.
 - Post: $P \times T \longrightarrow \{0,1\}$ est 1 'application d'incidence arrière.

Représentation algébrique

• Un RdP généralisé est défini comme un RdP ordinaire sauf que :

• Pré: $P \times T \rightarrow N$

• Post: $P \times T \rightarrow N$

- On définit la matrice d'incidence avant :
 - $W=[W_{ij}]$ où $W_{ij}] = Pre(P_i, T_j)$

- De même, la matrice d'incidence arrière:
 - $W^{+}=[W^{+}_{ij}]$ où $W^{+}_{ij}] = Post(P_{i}, T_{j})$

$$W^{-} = \begin{vmatrix} 1 & 1 & 73 & 74 \\ 1 & 1 & 0 & 0 & P1 \\ 0 & 0 & 1 & 0 & P2 \\ 0 & 0 & 0 & 1 & P3 \\ 0 & 0 & 0 & 0 & P4 \end{vmatrix}$$

$$W^{+} = \begin{vmatrix} 0 & 0 & 0 & 0 & P1 \\ 1 & 0 & 0 & 0 & P2 \\ 0 & 1 & 0 & 0 & P3 \\ 0 & 0 & 1 & 1 & P4 \end{vmatrix}$$

- On définit la matrice d'incidence du réseau:
 - $W = W^+ W^-$

$$W^{-} = \begin{vmatrix} 1 & 1 & 0 & 0 & P2 \\ 0 & 0 & 1 & 0 & P2 \\ 0 & 0 & 0 & 1 & P3 \\ 0 & 0 & 0 & 0 & P4 \end{vmatrix}$$

$$W^{+} = \begin{vmatrix} 0 & 0 & 0 & 0 & P1 \\ 1 & 0 & 0 & 0 & P2 \\ 0 & 1 & 0 & 0 & P3 \\ 0 & 0 & 1 & 1 & P4 \end{vmatrix}$$

Remarque: Une colonne de la matrice W correspond à une modification de marquage apportée par le franchissement de la transition correspondante.

$$W^{-} = \begin{vmatrix} 1 & 1 & 0 & 0 & | & P1 \\ 1 & 1 & 0 & 0 & | & P2 \\ 0 & 0 & 1 & 0 & | & P3 \\ 0 & 0 & 0 & 0 & | & P4 \end{vmatrix}$$

$$W^{+} = \begin{vmatrix} 0 & 0 & 0 & 0 & | & P1 \\ 1 & 0 & 0 & 0 & | & P2 \\ 0 & 1 & 0 & 0 & | & P3 \\ 0 & 0 & 1 & 1 & | & P4 \end{vmatrix}$$

Après franchissement de T1, on enlève 1 marque à P1 et on ajoute 1 marque à P2.

• Si on connait la matrice d'incidence, on peut reproduire le RdP (sans le marquage)

esiea ECOLE D'INGENIEURS DI MONDE NIIMERIQUE

Matrice d'incidence

• Si on connait la matrice d'incidence, on peut reproduire le RdP sauf les boucles élémentaires

Les boucles élémentaires ne sont pas détectables dans la matrice d'incidence → La seule manière de les détecter est de travailler avec les matrice W- et W+

• Donner la matrice d'incidence de ces RdP

• Donner la matrice d'incidence de ces RdP

$$W = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} P1$$

Ensemble de marquages accessibles

• On note *M0 l'ensemble des marquages accessibles à partir du marquage M0.

Graphe de marquages accessibles

M0= M2= M1= **T2** M3=

Graphe de marquages accessibles

Graphe de marquages accessibles

• Cas de marquages accessibles infinis

→ On utilise une autre méthode appelée graphe de couverture

Graphe de couverture

• Cas de marquages accessibles infinis

 Les places qui peuvent contenir un nombre infini de jetons sont représentés par le marquage symbolique « ω »

$$\rightarrow$$
 \forall $n \in \mathbb{N}$, ω -n= ω +n= ω

- Fonction Successeur (M)
 - Boucle: pour toute transition T franchissable à partir de M
 - M'=résultat de la transition T à partir de M
 - Si M'>M0 (toutes les composantes sont supérieures ou égales), on écrit ω dans les places supérieures
 - S'il n'y a pas sur le chemin entre M0 et M, un autre marquage M"=M' alors
 - Ajouter M' le successeur de M au graphe
 - Successeur (M')
 - Fin si
 - Fin pour

Successeurs de M0

M0=[1,0,1]
$$\xrightarrow{T1}$$
 M1=[1,1,1] =[1, ω ,1]

Car toutes les composantes de M1 sont supérieures ou égales à celles de M0

Successeurs de M1

Successeurs de M2

M2=[1,
$$\omega$$
, 0] $\xrightarrow{T1}$ M3=[1, ω +1,0] = M2

• Donner le graphe de couverture de ce RdP

Solution

• Donner le graphe de couverture de ce RdP

Successeurs de M0

Par T1: M1=[0,1,1]

• Successeurs de M1

Par T2: M2=[0,0,0]

Par T3: M3=[1,0,1]>M0 \rightarrow M3=[1,0,w]

Successeurs de M2

Pas de transitions franchissables

Successeurs de M3

Par T1: M4=[0,1,w]

Successeurs de M4

Par T3: M4'=[1,0,w-1]=[1,0,w]=M3

Par T2: M5=[0,0,w-1]=[0,0,w]

Successeurs de M5
 Pas de transitions franchissables

Séquence de franchissement

- Une séquence de franchissement est un **chemin** dans le graphe de marquages accessibles
 - On note : Mi[S>Mj
 - Ce qui signifie qu'à partir du marquage Mi, le franchissement de la séquence S aboutit au marquage Mj.

Séquence de franchissement

• Une séquence de franchissement est un chemin dans le graphe de marquages accessibles

• On note : Mi[S>Mj

A partir du marquage Mi, le franchissement de la séquence S aboutit au marquage Mj.

- Exemple: On a 4 séquences de franchissement possibles
- S1 = <T1>
 - M0[S1>M1
 - M2[S1>M3
- S2 =<T2>
 - M0[S2>M2
 - M1[S2>M3
- S3 = <T1,T2>
 - M0[S3>M3
- S4 = <T2,T1>

22

Vecteur de comptage

• Soit S une séquence de franchissement. On appelle **vecteur de comptage** de cette séquence, noté V_S, le vecteur formé, pour chaque transition T, du nombre de fois où la transition T apparaît dans la séquence.

ATTENTION! Ce vecteur ne fait que **compter** le nombre d'apparition des transitions. Il ne donne pas, comme la séquence, l'**ordre** dans lequel celles-ci ont lieu.

Exemple: S3 et S4 ont le même vecteur de comptage mais un ordre différent de transitions

• L'équation fondamentale du franchissement permet de calculer l'évolution du RdP. Elle est définie comme suit:

$$M=M0+W.V_S^t$$

- M est le marquage atteint après le franchissement de la séquence S
- M0 est le marquage initial
- W est la matrice d'incidence
- V_S^t est la transposée du vecteur de comptage V_S^t

• $M=M0+W.V_S^t$

Exemple

$$M0 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} \longrightarrow M1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$

• Démontrer que $M1 = M0 + W \cdot V_{S1}^t$

•
$$S1 = \langle T1 \rangle$$
, $V_{S1} = [1,0]$

•
$$W = \begin{pmatrix} 0 & -1 \\ -1 & 0 \\ 1 & -1 \\ 0 & -1 \\ 0 & 1 \end{pmatrix}$$

•
$$M=M0+W.V_S^t$$

• Démontrer que $M1 = M0 + W \cdot V_{S1}^{t}$

$$M0 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} \longrightarrow M1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$

$$M0 + W \cdot V_{S1}^{t} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ -1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0x1 & + & (-1)x0 \\ (-1)x1 + & 0x0 \\ 1x1 & + & (-1)x0 \\ 0x1 & + & (-1)x0 \\ 0x1 & + & 1x0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \\ 0 \end{bmatrix} = M1$$

- Cas général
 - Pour tout marquage Mi atteignable et une séquence S franchissable à partir de Mi
 - $M=Mi + W. V_S^t$, tel que Mi[S>M]

$$M1 = M0 + W . V_{T1}^{t}$$

$$M2 = M0 + W \cdot V_{T2}^{t}$$

$$M3 = M0 + W \cdot V_{T2T1}^{t}$$

= $M1 + W \cdot V_{T2}^{t}$
= $M2 + W \cdot V_{T1}^{t}$

- Vérifier mathématiquement si une transition T est franchissable à partir d'un marquage Mi
 - Appliquer l'équation d'état
 - $Mj = Mi + W \cdot V_{T1}^t$
 - Si on trouve un marquage qui contient un nombre négatif
 - → la transition n'est pas franchissable,
 - Sinon la transition est franchissable

- Vérifier si une séquence est franchissable à partir d'un marquage Mi
 - On applique l'équation d'état $Mj = Mi + W \cdot V_T^t$ transition par transition
 - Si on trouve au cours des calculs un marquage qui contient un nombre négatif
 - → la séquence n'est pas franchissable à partir de Mi
 - Si tous les marquages sont positifs \rightarrow séquence franchissable à partir de Mi
- Attention: si on applique l'équation d'état directement sur toute la séquence, on n'est pas sûr qu'elle soit franchissable
 - Exemple:
 - L'application de l'équation d'état aux 4 séquences <T1, T2, T3>, <T2, T1, T3>, <T3, T1> et <T2, T3, T1> donne le même marquage (car même vecteur de comptage), mais seule la séquence <T1, T2, T3> est franchissable à partir de M0.

• Vérifier si une séquence est franchissable

Exemple: Vérifier si la séquence <T1,T1> est franchissable

Equation d'état appliquée à T1 à partir de M0

$$M0 + W \cdot V_{T1}^{t} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ -1 & 0 \\ 1 & -1 \\ 0 & -1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \\ 0 \end{bmatrix} = M1 \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \\ 0 \end{bmatrix}$$
 Tous les éléments sont positifs donc T1 est franchissable à partir de M0

Equation d'état appliquée à T1 à partir de M1

$$M1 + W \cdot V_{T1}^{t} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ -1 & 0 \\ 1 & -1 \\ 0 & -1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 3 \\ 1 \\ 0 \end{bmatrix}$$
 Il y a des éléments négatifs donc T1 n'est pas franchissable à partir de M1

de M0

• Marquage initial nécessaire pour franchir une séquence donnée

L'équation d'état permet de calculer le marquage initial nécessaire pour franchir une séquence donnée.

• Exemple: Déterminer le marquage initial qui permet de franchir la séquence <T1,T2> et obtenir le marquage final [0,0,1]

- On applique l'équation d'état transition par transition dans le sens inverse,
- Au départ, on calcule M_{f-1} tel que $M_{f-1} = M_f$ W. $V_{Tf}^{\ t}$, avec M_f le marquage final et Tf la transition finale
- On calcule par la suite, M_{f-2} jusqu'à arriver à M0
- Si on trouve au cours des calculs un marquage qui contient un nombre négatif → la séquence ne permet jamais d'obtenir le marquage final donné pour n'importe quel marquage initial
- Si tous les marquages sont positifs \rightarrow on trouve M0

- Marquage initial nécessaire pour franchir une séquence donnée
 - Déterminer le marquage initial qui permet de franchir la séquence $\langle T1,T2\rangle$ et obtenir le marquage final M2=

$$\mathbf{M} = \mathbf{M0} + \mathbf{W} \cdot \mathbf{V_S}^t$$

•
$$W = \begin{bmatrix} 0 & -1 \\ -1 & 0 \\ 1 & -1 \\ 0 & -1 \\ 0 & 1 \end{bmatrix}$$
 • $S = \langle T1, T2 \rangle$
• $S1 = \langle T2 \rangle, V_{S1} = [0,1]$
• $S2 = \langle T1 \rangle, V_{S2} = [1,0]$

•
$$S = \langle T1, T2 \rangle$$

•
$$S1 = <12>, V_{S1} = [0,1]$$

•
$$S2 = , V_{S2} = [1,0]$$

$$M1 = M2 - W \cdot V_{S1}^{t} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 & -1 \\ -1 & 0 \\ 1 & -1 \\ 0 & -1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ -1 \\ -1 \\ 1 \end{bmatrix} \quad \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

- Marquage initial nécessaire pour franchir une séquence donnée
 - Déterminer le marquage initial qui permet de franchir la séquence <T1,T2> et obtenir le marquage final M2 =

$$\mathbf{M} = \mathbf{M0} + \mathbf{W} \cdot \mathbf{V_S}^t$$

•
$$W = \begin{pmatrix} 0 & -1 \\ -1 & 0 \\ 1 & -1 \\ 0 & -1 \\ 0 & 1 \end{pmatrix}$$
• $S = \langle T1, T2 \rangle$
• $S1 = \langle T2 \rangle$, $V_{S1} = [0,1]$
• $S2 = \langle T1 \rangle$, $V_{S2} = [1,0]$

•
$$S = \langle T1, T2 \rangle$$

• $S1 = \langle T2 \rangle$, V_{G}

• S2=
$$<$$
T1>, V_{S2} =[1,0]

$$M0 = M1 - W \cdot V_{S2}^{t} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 & -1 \\ -1 & 0 \\ 1 & -1 \\ 0 & -1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

• Marquage initial nécessaire pour franchir une séquence donnée

Vérification du marquage

- Marquage initial nécessaire pour franchir une séquence donnée
 - Attention: si à un moment dans la marche arrière, on trouve un marquage qui contient des éléments négatifs
 - → on peut interrompre et conclure que la séquence ne donne jamais le marquage final donné pour n'importe quel marquage initial

- $S = \langle T1, T1 \rangle$
 - $S1 = <T1>, V_{S1} = [1,0]$
 - $S2 = <T1>, V_{S2} = [1,0]$

→ la séquence <T1,T1> ne donne jamais le marquage M2 pour n'importe quel marquage initial

$$M1 = M2 - W \cdot V_{S}^{t} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ -1 \\ 0 \\ 0 \end{bmatrix}$$