

節末問題 2.3 の解答

問題 2.3.1

この問題は、f(x) といった関数の表記(\rightarrow **2.3.1項**)、多項式関数(\rightarrow **2.3.7項**)の理解を問う問題です。答えは以下の通りです。

- $f(1) = 1^3 = 1 \times 1 \times 1 = 1$
- $f(5) = 5^3 = 5 \times 5 \times 5 = 125$
- $f(10) = 10^3 = 10 \times 10 \times 10 = 1000$

なお、 $f(x) = ax^3 + bx^2 + cx + d$ の形で表される関数を **三次関数** といいます。この問題の $f(x) = x^3$ も三次関数の一種です。

問題 2.3.2 (1)

この問題は、対数関数 (→2.3.10項) の理解を問う問題です。

 $2^3 = 8$ であるため、答えは $\log_2 8 = 3$ です。 (36 ページの例を参照)

問題 2.3.2 (2)

この問題は、べき乗の拡張(→2.3.8項)の理解を問う問題です。

一般に、 $a^{rac{n}{m}}=\sqrt[m]{a^n}$ が成り立つため、a=100, n=3, m=2 を代入することで、

答えが $100^{1.5} = \sqrt{100^3} = \sqrt{1000000} = 1000$ だと分かります。

問題 2.3.2 (3)

この問題は、床関数・天井関数 (→2.3.11項)の理解を問う問題です。

|20.21| は 20.21 以下の最大の整数 20 です。

[20.21] は 20.21 以上の最小の整数 21 です。

問題 2.3.3

この問題は、関数のグラフ (→**2.3.4項**) の理解を問う問題です。答えは下図のようになります。以下の点に注意するとグラフが描きやすいです。

- 一次関数のグラフは直線である
- 指数関数は単調増加であり、増加ペースも急増する
- 対数関数は単調増加であるが、増加ペースは遅くなる

なお、3 つ目のグラフと 4 つ目のグラフはまったく同一であることに注意してください。底の変換公式より、 $\log_4 x = \log_2 x \div \log_2 4 = (\log_2 x)/2$ が成り立ちます。

問題 2.3.4

この問題は、指数法則 (→2.3.9項) の理解を問う問題です。答えは以下の通りです。

- 1. $f(x) = 2^x \text{ or } \xi f(20) = 2^{20} = 1048576$
- 2. 指数法則より $2^{20} = 2^{10} \times 2^{10}$ である。 2^{10} がおよそ 1000 ということは、 2^{20} はおよそ $1000 \times 1000 = 1000000$ (= 10^6) である。

問題 2.3.5 (1)

この問題は、対数関数 (→2.3.10項) の理解を問う問題です。

 $10^6 = 1000000 \ \text{LU} \ g(1000000) = \log_{10} 1000000 = 6 \ \text{Lag}$

問題 2.3.5 (2)

この問題は、対数関数の公式(→2.3.10項)の理解を問う問題です。

$$\log_2 16N - \log_2 N$$

$$=\log_2\left(\frac{16N}{N}\right)$$

$$= \log_2 16 = 4$$

より、答えは 4 となります。なお、対数関数 $\log_a b$ には「真数 b が定数倍(2 倍など)されると値が一定だけ増える| という性質があります。

問題 2.3.6

この問題は、指数が小数の場合のべき乗の公式 (→2.3.8項)、指数法則 (→2.3.9 項)を使いこなせるかどうかを問う問題です。それぞれの問題の答えは以下のようになります。

番号	マグニチュード	差が何倍か?	答え
1.	6.0 vs 5.0	$32^{6.0-5.0} = 32^{1.0}$	= 32 倍
2.	7.3 vs 5.3	$32^{7.3-5.3} = 32^{2.0}$	= 1024 倍
3.	9.0 vs 7.2	$32^{9.0-7.2} = 32^{1.8}$	= 512 倍

なお、 $32^{1.8}$ の値は、 $32^{1.0} \times 32^{0.8} = 32 \times 16 = 512$ と計算することができます。また、 $32^{0.8}$ などは 2.3.8 項の図を見れば分かります。

問題 2.3.7

この問題の答えは $y = \lfloor \log_2 x \rfloor + 1$ です。これは以下のようにして導出できます。

ステップ 1

ある整数 x が 2 進法で n 桁となるための条件は、 $2^{n-1} \le x < 2^n$ を満たすことである。 具体例は以下の通りである。

- 3 桁となる条件は、 $2^2 = 4$ 以上 $2^3 = 8$ 未満であること
- 4 桁となる条件は、 $2^3 = 8$ 以上 $2^4 = 16$ 未満であること
- 5 桁となる条件は、 $2^4 = 16$ 以上 $2^5 = 32$ 未満であること

ステップ 2

ステップ 1 を言い換えると、 $n-1 \le \log_2 x < n$ のとき、2 進法で n 桁となります。 すなわち $\lfloor \log_2 x \rfloor = n-1$ であるため、2 進法での桁数 n は $\lfloor \log_2 x \rfloor + 1$ 桁です。

問題 2.3.8

答えの例として、たとえば $f(x) = 1/(1 + 2^{-x})$ などが考えられます。なお、似たような関数として、機械学習などでよく使われる**シグモイド関数**があるので、興味のある人はぜひ調べてみましょう。

