$\mathbb{R}^{3} = \frac{7}{2} (\mathfrak{L}, \mathfrak{q}, \mathfrak{Z}) | \mathfrak{L}, \mathfrak{q}, \mathfrak{Z} \in \mathbb{R}^{3}$ $(\mathfrak{L}, \mathfrak{q}, \mathfrak{Z}) | \mathfrak{L}, \mathfrak{q}, \mathfrak{Z} \in \mathbb{R}^{3}$ $(\mathfrak{L}, \mathfrak{Q}, \mathfrak{Q}) \in \mathbb{R}^{3}$ Spatic rectoriale refinitie: a multime nevida V, se numerte K = Roout, a spatin nectoral perte corpul k dock: a) (u,v) -> u+v EV -> numa el. b) (u,d) -> due V, YueV, V de K -> imm. cu scalori c) (V,+) grup abeliam (1) u+v=v+u, \u03belun, \u03belun, \u03belun (comutativ)

comutativ

\u03belun (v+v)+w= u+ (v+w), \u03belun, \u03belun, \u03belun (comutativitate) (ق بر عام ۱ عام ۱ عام E (3 بر عام E (3 بر (, 4) tuev, I VEV a.i u+v=0 (el simutaic) e) $(d+\beta)$ $u = du+\beta u$, $\forall d, \beta \in \mathbb{R}$, $\forall u \in \mathbb{V}$ $\begin{bmatrix} 5 \\ 9 \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \end{bmatrix} + \begin{bmatrix} 6 \\ 2 \end{bmatrix}$ d(βu) =(dβ) e y d,βek, y ue V 9) 1·u = u, 4 ueV Când K=12 spurum Veste spatiu vectorial real K=C→ DV complex Exemple: Fie ne 14 Consideron multimea $\mathbb{R}^{n} = \frac{2}{2} \left(\frac{\mathfrak{E}_{1}}{\mathfrak{E}_{2}} \right) | \mathfrak{L} \in \mathbb{R}, \forall i = 1, n, 3 \Rightarrow \text{mult. wect.}$ Definim operation (monad natural) $\mathscr{E} \to -X = \begin{pmatrix} - & & \\ & \ddots & \\ & & & \end{pmatrix}$

Multimea 12 mp cu ap definite are structura de av real (K=12) b) Consideron multimea $U = \begin{cases} \begin{pmatrix} \mathfrak{L}_1 \\ \mathfrak{R}_2 \\ \mathfrak{L}_3 \end{cases} \in \mathbb{R}^3 \quad \mathfrak{L}_1 + \lambda \mathfrak{L}_2 - 3 \mathfrak{L}_3 = 0 \end{cases}$ Ar. cà U imp. cu ap. definite la a) ore structur de s. V real Tie se = (21) pu y = (31) si delle corecore trate up o pide eU $\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = u = x + y = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{pmatrix}$ $u_1 + 2u_2 - 3u_3 = (x_1 + y_1) + 2(x_2 + y_2) - 3(x_3 + y_3) = (x_1 + 2x_2 - 3x_3) + (y_1 + 2y_2 - 3y_3) = 0$ => u= x+yel $dx_1 + 2dx_2 - 3dx_3 = d(x_1 + 2x_2 - 3x_3) = 0 = 2dx \in U$ $O = \begin{pmatrix} O \\ O \end{pmatrix}$ => U g. V real Fie I CIR, un interval deschis si a, b: I -> IR, doud functii continue Consideron multimea V = 2 feco(I) | f(t) + a(t) f(t) + b(t) f(t) = 0, V te I3 CII) -> mult fct definite pet, de doud on derivabile, cu derivata continuà Fie figeV, de IR concore $f'(t) + a(t) \cdot f(t) + b(t) \cdot f(t) = g'(t) + a(t) \cdot g(t) + b(t) \cdot g(t) = 0$ Suma function f si g e function the ftg (ftg)" = f" + g" $h''(t) + a(t) \cdot h'(t) + b(t) \cdot h(t) = f''(t) + g''(t) + a(t) (f(t) + g(t) + b(t) (f(t) + g(t))$ $= [f''(t) + a(t) \cdot f(t)] + [g'(t)] + [g'(t)] + a(t) \cdot g(t)] = 0$ => h= f + g € V

(bf(t))" + a(t)(bf(t)) + b(t) bf(t) + b(t) f(t) + b(t) f(t)) = 0 =, Tte/ El mentru: e: I -> IR, e(t) =0 El. nim. a lui fit)e fct. vit) = -f(t) Voucep defen. V real Distem de generatori Tef: Fie V, un spațiu rectorial peste coopul K, VI, V2, ..., Vm, metari din V 50 de salor i dink Expresia de 14+ de 12 + de 12 m representa a combinatio limina a rectarila V1, V2, ... , Vm Si este un wector dim V Exemple: Consideron 13. V rual 123. Si orition la rectarel calcona V= (-4) e a combinate limina a vectorila $V_1 = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$ si $V_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$] dy de 618 a.i v = dy v1 + de v2 $\begin{pmatrix} 2d1 + d2 \\ d_1 - 2d2 \end{pmatrix} = \begin{pmatrix} 17 \\ -4 \\ 2 \end{pmatrix} = \begin{pmatrix} 3d_1 + 4d_2 \end{pmatrix} = 17$ $\begin{pmatrix} -3d_1 + 4d_2 \end{pmatrix} = 3$ $3d_{2} = 15 = 3d_{2} = 5$ $50 d_{1} = -4 + 2d_{2} = -4 + 10 = 6$ => V = 6V1 + 5 V2 -> comb liniod mult palinamela a coef real de gad cel mult 2 Considerom spatial $\mathbb{R}_{\nu}[X]$. Så orstörn cå palinamul $P = -1 + 3x - 3\epsilon^2$ este a combination limitata a polino amelo $p_1 = 1-3\epsilon$, $p_2 = 1+3\epsilon$ si $p_3 = 1+3\epsilon +3\epsilon^2$ 7 d1, d2, d3 c. 1 P = d1P1 + d2P2+ d3P3 $-1 + 3 \times -3 = d_1 - d_1 = + d_2 + d_2 = + d_3 + d_3 = + d_3 = d_1 + d_2 + d_3 + (d_2 - d_1 + d_3) = + d_3 = d_1 + d_2 = d_1 + d_2 + d_3 = d_1 + d_3$ $ax^{2} + bx + c = Ax^{2} + bx + C \quad (=) \begin{cases} a = A \\ b = 6 \end{cases}$

```
= \gamma p = -2p_1 + 2p_2 - p_3
| |R2[x] ~ |R3
    V = \begin{pmatrix} -1 \\ 3 \end{pmatrix}, V_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, V_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, V_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}
 Def: Fie V um spatiu vectorial peste corpul K 5: V1, V2, ..., Vn vectori dinv.
  5 punem ca multimea 2 V1, V2, ... , Vn3 este sistem de generator pentru postiul V
doca pentru ouce veV, existà des de la TV=deVe+.+deVe
      1) onice rector VEV oste a comb lin a rect 7 01, , v n 2
            V1 = 1· V1 + 0· V2 + . + 0 · V2
            V2 = 0. V1 + 1. V2 + . . . + 0. Vm
    Exemple:
    a) 5_1 = \frac{7}{3}e_1 = \begin{pmatrix} \frac{1}{9} \\ \frac{1}{9} \end{pmatrix}, e_2 = \begin{pmatrix} \frac{1}{9} \\ \frac{1}{9} \end{pmatrix}, e_3 = \begin{pmatrix} \frac{9}{9} \\ \frac{1}{9} \end{pmatrix} \frac{1}{3} enter \frac{1}{9}. \frac{1}{9} in \frac{1}{9} real \mathbb{R}^3
    Fie V = ( b), un vector ovecore din R3
  Arcd ] d, de, .., d3 a.i V=d1e1+d2e2+d3e3
              \begin{pmatrix} C \\ C \\ C \end{pmatrix} = d_1\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + d_2 \begin{pmatrix} G \\ 1 \\ 0 \end{pmatrix} + d_3 \begin{pmatrix} G \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix} \quad (=) \quad \begin{cases} 7 & d_1 = 0 \\ d_2 = b \\ d_3 = C \end{cases}
        \begin{pmatrix} 7 \\ 5 \end{pmatrix} = \begin{pmatrix} 7 \\ 6 \\ 7 \end{pmatrix} + \begin{pmatrix} 6 \\ 5 \\ 9 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} = 7e_1 + 5e_2 + 2e_3
  b) 54 = 3, p_4 = 1, p_2 = \infty, p_3 = 2^2 3 & 5 \cdot G pt 1Pa[X]
   p = ax^2 + bx + c
   3 d, d2, d3 e 1P a î P = 1, p1 + d2 p2 + d3 p3
                      a x^2 + bx + C = d_1 + d_2 x + d_3 x^2 = 
d_2 = b
d_1 = C
```

Vectori linio independenți Def Fie V, un spatiu vectorial peste corpul k Si V1, V2, ..., Vne V. Spunem ca rectorii VI,..., vn sunt limin independenti doca singura alegere a scalarion disdo,..., dre te a T divit de ve +...+ drivin=0 one d | = d2 = - = dn = 0 Exemple: a) Consideron patial vectorial \mathbb{R}^3 . An ex vectorial $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ sunt linion indep. $\begin{pmatrix}
d_1 \\
d_2
\end{pmatrix} = \begin{pmatrix}
0 \\
0
\end{pmatrix} = d_1 = d_2 = d_3 = 0$ $\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \neq 0 = 0$ $\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \neq 0 = 0$ $\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} \neq 0 = 0$ $\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} \neq 0 = 0$ Fied, d2, d3 = IR a. T d1 e1 + dvez + d3 e3 = 0, = (0) b) Considerom spatial real IR2[X]. So orotom ca polinoomele $P_1 = 1 - x$, $P_2 = 1 + x + x^2$, $P_3 = 1 - x - x^2$ sunt. Linear independente. $\mathbb{R}_2[x] \rightarrow \mathbb{R}^3$ $p_1 \rightarrow \vee_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $P_{2} \Rightarrow \vee_{2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $= 0 + 0 + (-1)^{2} \cdot (-1) = -1 \neq 0 =)$ Li $P3 \rightarrow V3 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ Def: Fie V un spatiu vectorial pete capul K ni VI, Vs, . , Vn E V. Spurem ca vectorii V1, V2, , , vm sunt limin de pendenti docă I d1, d2, , dne K, nu tati nuli a i di M+ . + dn vn =0 Obs: HUTOTi HULI => cel putin unul a nemul Ford a restrônge generalitate per d170 $= 3 \quad \forall 1 = -\frac{dz}{d!} \frac{1}{2} \frac{1}{2} \frac{1}{3} \quad \forall 3 - \dots - \frac{dm}{dm} \quad \forall m \rightarrow \forall 1 \text{ comb limitors}$ $= 2 \quad \forall 1 = -\frac{dz}{d!} \frac{1}{2} \frac{1}{2} \quad \forall 3 - \dots - \frac{dm}{dm} \quad \forall m \rightarrow \forall 1 \text{ comb limitors}$

Exemplu				
a) Cons. pp.reo	LIR3. Ar cò	vectorii V1 = ($\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $\vee_{23} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$) v3 = (} punt. 8 limin
				de p.
Fied, dz, dz a.	.i 11 VI+ 12V2	+ 2 2 2 = 0		
	$d \left(\begin{pmatrix} \frac{2}{3} \\ \frac{1}{4} \end{pmatrix} + d \right)$	$-2\left(-\frac{1}{2} \right) + \lambda_{3} \left(-\frac{1}{2} \right)$	1) =0	
)	
	5 = 2 (-2	عل, - 3 مل مل) ا ما و	IR3	
Praparitia 1: Fie	.V un spat	in rectorial f	init generat pe	ste conquelle
5; 2, V1, V2,, Vm				
vectoral Vx este				
aturai multimea				
Derm:				<u>'</u>
Fie VEV ore	core			
2 .		(=>3J ₁)		
7, VI, V2,, Vm2	5 este 5.G	pt V J V=	d1 v1 + d2 v2 + d1k1	
Vk C.L a reed o	⁹ 1,,∨ _K _I,∨	'K+1 ,, Vm	10	VIU.
			JH = B1 V1 + R	3μ-1 Vh-1+βμ+1Vh+1. βm Vn
) Joint		
=> V = (d1+d	κβ1) V1 + .+	+ (dk-1 + dk Bk-1) V _{K-1} + (L _{K+1} +L _F	e β _{k+1}) Vk+1++(Jm+ Jkβm)V
2 1/			0 +1/	
=> 2 1/1, 1/2,	2 M-1, VM F1	,, Vm) e 5	IG PIV	

Baza : Definiție: Fie V, un spație vectorial finit generat peste corpul k si Basubmultime merida, a vectorila din V. Spunom ck Beste bora docă este în ocalosi timp S.Gpt V si multime linio independentă. Exemplu: Considerom D. V real 12 $B = \begin{cases} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{cases} \in b\alpha \ddot{a} \quad \alpha \cdot \nu R^3$ Jeanna: Fie V um p.v finit generat perte corpul k , B=2 V1, ..., Vn3 a boza a lui V si ve V. Atunci]! un n-uplu ordonat de scalor $(d_1, d_2, ..., d_n)$ $a. T V = d_1 V_1 + ... + d_n V_n$ V = 2 d1 + 3 d3 +5 d2 = d1 + 7 d3 + 2 d2 $V = d_1 V_1 + \dots + d_n V_n$ P. p. als ca] By, .., Bm V= ByV1+..+ BnVn $(d_1 - \beta_1) \vee_1 + \cdots + (d_n - \beta_n) \vee_n = 0 \qquad 2 = 2 \qquad d_1 = \beta_1$ $d_n = \beta_n$ V1, ..., Vn C B => limior indep. Dimensiume: Def: Fie V un spatiu vectorial finut general post corpul k, differit de potiul mul. Humarul relementela dintra baza a lui V represento dimonsiunes lui V Exemple: a) S.p. Veal R3 $\mathcal{B} = \left\{ \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \right\}$ $=) \dim(\mathbb{R}^3) = 3$

