Machine Learning: Programming HW 2

Challa Priyankar Raghav Nanjappan Punith Pechetti
USN: ENG20AM0017 USN: ENG20AM0044 USN: ENG21AM3028

Sai Nishwanth Raj Reddy USN: ENG21AM3031

Due Date: November 7^{th} , 2022

1 Introduction

1.1 Problem Statement

Write a program to train a support vector machine on UCI Adult Dataset. using stochastic gradient descent without using a library package to train the classifier. Do this exercise for two case:

- 1. Without scaling the variables
- 2. Scaling the variables so that each has unit variance

Try at least the regularization parameters values $\lambda \in \{10^{-3}, 10^{-2}, 10^{-1}, 1\}$ for at least 50 epochs with a minimum step size of 300. Plot the accuracy graph for every 30 steps.

1.2 Values Used

- 1. Learning Rate: 0.1
- 2. Epochs: 100
- 3. Regularization Parameter: $\lambda \in \{10^{-3}, 10^{-2}, 10^{-1}, 1\}$
- 4. Step Length: $\eta = 300$

1.3 .ipynb Files

Please click on the following text(s) to get to the .ipynb files for the SVM classifier with unscaled and scaled data.

- 1. Without scaling the variables
- 2. Scaling the variables so that each has unit variance

The dataset has been taken from the UCI Adult Dataset.

2 Plots

2.1 Without Scaling

Figure 2.1.1: Regularization Parameter $\lambda = 10^{-3}$

Figure 2.1.2: Regularization Parameter $\lambda = 10^{-2}$

Figure 2.1.3: Regularization Parameter $\lambda = 10^{-1}$

Figure 2.1.4: Regularization Parameter $\lambda=1$

2.2 With Scaling

Figure 2.2.1: Regularization Parameter $\lambda=10^{-3}$

Figure 2.2.2: Regularization Parameter $\lambda=10^{-2}$

Figure 2.2.3: Regularization Parameter $\lambda = 10^{-1}$

Figure 2.2.4: Regularization Parameter $\lambda = 1$

3 Estimation of Best Regularization Parameter λ

Our best value of the regularization parameter λ is 10^{-3} (for the scaled data) with respect to cost, as for every incremental change in the value of n in 10^n , the cost increases by 10 fold. So, our estimate for the best value of λ is the one where $10^n \approx 0$ with respect to cost.

4 Expression for Modifying the Step Length η per Epoch

From our understanding, the step length η can be modified per epoch in the following way:

$$\eta = \frac{Total\ Number\ of\ Training\ Examples}{Epoch\ Number} \tag{1}$$

5 Estimation of Best Accuracy

The best value for accuracy we had achieved is 67% (for scaled data) where $\lambda = 10^{-3}$. We have observed for every incremental change in the value of n in 10^n , the accuracy increases by a significant amount. So, our estimate for the best value of accuracy is $\approx 90\%$.

6 Conclusion

From the graphs in section 2, we can infer that scaling the data with 0 mean and unit variance produces far more accurate results and an overall lower cost function compared to unscaled data. We can also further conclude that from the reguralization constant λ values that we had selected, $\lambda = 1(10^0)$ produces the best accuracy for the given data set.