COMPUTER SCIENCE 349A

Handout Number 11

ORDER OF CONVERGENCE OF THE SECANT METHOD AND BISECTION METHOD

The Secant method iterative formula is

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}.$$

Therefore, if x_t denotes an exact zero of f(x),

$$x_{i+1} - x_t = (x_i - x_t) - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$= (x_i - x_t)(x_{i-1} - x_t) \left[\frac{1}{\left[\frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} \right]} \right] \left[\frac{\frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} - \frac{f(x_i) - f(x_t)}{x_i - x_t} \right]$$

By the Mean Value Theorem, the first large square bracket term above is equal to $\frac{1}{f'(\xi_i)}$, for some value ξ_i between x_i and x_{i-1} .

The term in the second large square bracket above is equal to $\frac{f''(\eta_i)}{2}$, for some value η_i in an interval spanned by x_i , x_{i-1} and x_i as this is a "second divided difference" -- see page 97 of the 7th ed. (page 94 of the 6th ed.).

Thus, with the usual notation that $E_k = x_k - x_t$ denotes the error of the *k*-th approximation x_k , the above can be written as

$$E_{i+1} = E_i E_{i-1} \left[\frac{1}{f'(\xi_i)} \right] \left[\frac{f''(\eta_i)}{2} \right]$$

or

$$\frac{E_{i+1}}{E_i E_{i-1}} = \frac{f''(\eta_i)}{2f'(\xi_i)}.$$

Thus

(1)
$$\lim_{i \to \infty} \left| \frac{E_{i+1}}{E_i E_{i-1}} \right| = \lim_{i \to \infty} \left| \frac{f''(\eta_i)}{2f'(\xi_i)} \right| = \left| \frac{f''(x_t)}{2f'(x_t)} \right|.$$

This gives a relationship **between 3 successive errors** of the computed approximations using the Secant method. However, this does not indicate the **order** α of the Secant method, which requires that the errors of 2 successive approximations be related by

(2)
$$\lim_{i \to \infty} \frac{|E_{i+1}|}{|E_i|^{\alpha}} = \lambda, \text{ for some constant } \lambda.$$

The following analysis shows how to rewrite (1) in a form (2). From (1), it follows that for sufficiently large values of i,

(3)
$$|E_{i+1}| \approx C|E_i||E_{i-1}|$$
, for some constant C .

From (2), it follows that for sufficiently large values of i,

(4)
$$|E_{i+1}| \approx \lambda |E_i|^{\alpha} \text{ and } |E_i| \approx \lambda |E_{i-1}|^{\alpha}$$
.

Substituting (4) into (3) gives

$$\lambda |E_i|^{\alpha} \approx C|E_i| \left\lceil \frac{|E_i|}{\lambda} \right\rceil^{\frac{1}{\alpha}},$$

which implies that

$$\lambda^{1+\frac{1}{\alpha}} |E_i|^{\alpha} \approx C |E_i|^{1+\frac{1}{\alpha}}$$
.

From this it follows that

$$\alpha = 1 + \frac{1}{\alpha} \implies \alpha^2 - \alpha - 1 = 0 \implies \alpha = \frac{1 + \sqrt{5}}{2} \approx 1.618$$

which is the order of the Secant method.

Note: this value α is known as the "golden ratio", and occurs in many diverse applications.

ORDER OF CONVERGENCE OF THE BISECTION METHOD

An alternate definition of **linear convergence** (similar to the definition given in class except that it does not involve a limit) is

$$|E_i| \le c |E_{i-1}|$$
 or $|x_t - x_i| \le c |x_t - x_{i-1}|$

for some constant c such that 0 < c < 1.

Applying this inequality recursively gives

$$\left| x_t - x_i \right| \le c^i \left| x_t - x_0 \right|.$$

From Page 2 of Handout Number 8, for the Bisection Method we had

$$\left|x_{t}-x_{i}\right| \leq \left(\frac{1}{2}\right)^{i} \Delta x^{0}$$
, where $\Delta x^{0}=x_{u}-x_{\ell}$

and $[x_\ell, x_u]$ is the initial interval. This implies linear convergence with the above definition, and $c=\frac{1}{2}$.