1 Set Theory

1.1 Set Axioms

1.1.1 Undefined notions

Set: A, B, C, \ldots

1.1.2 Axioms

- 1. Extension: $\forall A \forall B [\forall C (C \in A \Leftrightarrow C \in B) \Rightarrow A = B]$
- 2. Regularity: $\forall A[\exists C(C \in A) \Rightarrow \exists B(B \in A \land \neg \exists D(D \in B \land D \in A))]$ (Every nonempty set contains a set that is disjoint from it. Also know as "Axiom of Foundation.")
- 3. Schema of Specification: $\forall B \forall X_1 \forall X_2 \dots \forall X_n \exists A \forall C [C \in A \Leftrightarrow (C \in B \land \phi)]$
- 4. Pairing: $\forall X_1 \forall X_2 \exists A(X_1 \in A \land X_2 \in A)$
- 5. Union: $\forall \mathcal{F}_A \exists U \forall A \forall X [(X \in A \land A \in \mathcal{F}_A) \Rightarrow X \in U]$
- 6. Schema of Replacement: $\forall A \forall X_1 \forall X_2 \dots \forall X_n [\forall B (B \in A \Rightarrow \exists ! D\phi) \Rightarrow \exists B \forall C (C \in A \Rightarrow \exists D (D \in B \land \phi))]$
- 7. Infinity: $\exists \omega_0 [\emptyset \in \omega_0 \land \forall X (X \in \omega_0 \Rightarrow X \cup X) \in \omega_0)]$
- 8. Power Set: $\forall X \exists \mathcal{P}(X) \forall S[S \subseteq X \Rightarrow S \in \mathcal{P}(X)]$
- 9. Empty Set: $\exists A \forall X (X \notin A)$
- 10. Choice: $\forall X [\emptyset \notin X \Rightarrow \exists (f : X \to \bigcup X) \forall A \in X (f(A) \in A)]$

Proposition 1.1. The empty set axiom is implied by the other nine axioms.

Proof. Just choose any formula that is always false such as $\phi(X) = X \in B \land X \notin B$ and apply the axiom schema of specification. This will give the empty set. The axiom of extension proves uniqueness vacuously.

1.1.3 Universe

A set U is defined with the following properties...

- 1. $x \in u \in U \Rightarrow x \in U$
- 2. $u \in U \land v \in U \Rightarrow \{u, v\}, \langle u, v \rangle, u \times v \in U$
- 3. $X \in U \Rightarrow \mathcal{P}(X) \in U \land \bigcup X \in U$
- 4. $\omega_0 \in U$ is the set of finite ordinals
- 5. if $f: A \to B$ is a surjective function with $A \in U \land B \subset U$, then $B \in U$ (See: Set Constructions.)

In category theory, $small\ sets$ are members of U.

1.2 Set Constructions

1.2.1 Union

- $\bullet \ A \cup B := \{x | x \in A \lor x \in B\}$
- $\bigcup \mathcal{F} := \{x | x \in X \text{ for some } X \in \mathcal{F}\}$

Proposition 1.2. For sets A, B, C...

- Property Name?: $A \cup \emptyset = A$
- Idempotence: $A \cup A = A$
- Property Name?: $A \subseteq B \Leftrightarrow A \cup B = B$
- Commutative: $A \cup B = B \cup A$
- Associative: $A \cup (B \cup C) = (A \cup B) \cup C$

1.2.2 Intersection

- $A \cap B := \{x \in A | x \in B\} = \{x \in B | x \in A\}$
- $\bigcap \mathcal{F} := \{x | x \in X \text{ for all } X \in \mathcal{F}\}$

1.2.3 Complement

- Relative Complement: $A \setminus B := \{x \in A | x \notin B\}$
- Absolute Complement: For some universe U and $A \subseteq U$, $A^c := U \setminus A$

1.2.4 Symmetric Difference

$$A \triangle B := (A \setminus B) \cup (B \setminus A)$$

1.2.5 Power Set

$$\mathcal{P}(X) := \{ S | S \subseteq X \}$$

1.2.6 *n***-Tuple**

- Ordered pair: $\langle a, b \rangle := \{\{a\}, \{a, b\}\}$
- $\langle a_1, a_2, a_3, \dots a_n \rangle := \langle \langle \langle \langle a_1, a_2 \rangle, a_3 \rangle \dots \rangle, a_n \rangle$

1.2.7 Cartesian Product

- $A \times B := \{ \langle a, b \rangle | \text{ for some } a \in A \text{ and for some } b \in B \}$
- $\times \mathcal{F} := \{ \langle a_1, a_2, \dots a_n \rangle | \text{ for } a_1 \in A_1, a_2 \in A_2, \dots a_n \in A_n \text{ where } A_1, A_2, \dots, A_n \in \mathcal{F} \}$

1.2.8 Quotient by Equivalence Relation

 $X/\sim:=\{[a]_{\sim}|a\in X\}$ (See: equivalence relations)

1.2.9 Family

Given a set X and an index set I, a family is a function $\mathcal{F}: I \to X$. A cleaner way of denoting the concept is...

$$\mathcal{F}(i) := S_i, \ \{S_i\}_{i \in I}$$

1.3 Relations

 $\mathcal{R} :\subseteq A \times B$ for some $A \times B$

1.3.1 Equivalence Relations

Relations $\sim \subseteq A \times A$ such that $\forall a, b, c \in A$...

- a ~ a
- $a \sim b \Rightarrow b \sim a$
- $a \sim b \wedge b \sim c \Rightarrow a \sim c$

Equivalence Class: $[a]_{\sim} := \{b \in S | b \sim a\}$

Set Partition: A set $P :\subseteq \mathcal{P}(X)$ such that...

- $\bullet \mid \exists P = X$
- $\forall S_1, S_2 \in P(S_1 \cap S_2 \neq \emptyset \Rightarrow S_1 = S_2)$

1.3.2 Functions

A relation $f: A \to B$ satisfying $\forall a \in A \exists ! b \in B$ such that afb, denoted f(a) = b.

Injection: A function $f: A \hookrightarrow B$ such that $\forall x, y \in A$ if $x \neq y$, then $f(x) \neq f(y)$. (See: monomorphism. Injections have right inverses.)

Surjection: A function f:A woheadrightarrow B such that $\forall b \in B \ \exists \ a \in A \ \text{such that} \ f(a) = b$. (See: epimorphism. Surjections have left inverses, called sections.)

Bijection: A function $f: A \xrightarrow{\sim} B$ which is an injection and a surjection. (See: isomorphism)

Restriction: For $C \subseteq A$ and $f: A \to B$, $f \upharpoonright_C : C \to B$ where $\forall c \in C \ f \upharpoonright_C (c) := f(c)$

Image: $f(A) := \{f(a) | a \in A\}$

 $Preimage: \ f^{-1}(A):=\{a\in A|f(a)\in B\}$

Inclusion Map: For $A \subseteq X$, $\iota : A \hookrightarrow X$ where $\forall a \in A \ \iota(a) := a \in X$

Function Composition: $f: X \to Y$ and $g: Y \to Z \Rightarrow g \circ f: X \to Z$ where ... $\forall x \in X, g \circ f(x) := g(f(x))$

Characteristic Function of a subset: For $A \subseteq X$, $\chi_A : X \to 2$ where...

$$\chi_A(x) := \begin{cases} 0 & x \in X \setminus A \\ 1 & x \in A \end{cases}$$

2 Category Theory

2.1 Metacategories

2.1.1 Undefined notions

• Objects: $a, b, c \dots$

• Arrows: $f, g, h \dots$

2.1.2 Operations

Given $f: a \to b \dots$

• Domain: dom: arrows \rightarrow objects, $f \mapsto a$

• Codomain: cod: arrows \rightarrow objects, $f \mapsto b$

• *Identity:* **id**: objects \rightarrow arrows, $a \mapsto id_a = 1_a$

• Composition: comp: arrows \times : arrows \rightarrow arrows, $\langle g, f \rangle \mapsto g \circ f$, $g \circ f$: dom $f \rightarrow \operatorname{cod} g$

2.1.3 Axioms

- $\bullet \ \textit{Associativity:} \ a \xrightarrow{f} b \xrightarrow{g} c \xrightarrow{k} d, \ k \circ (g \circ f) = (k \circ g) \circ f$
- Unit Law: $1_a \circ f = f$ and $g \circ 1_b = g$

2.2 Categories

2.2.1 Directed Graph

- \bullet A a set of arrows
- \bullet O a set of objects
- $\bullet \ \mathbf{dom}: A \to O, \ \mathbf{cod}: A \to O$

Set of composable pairs of arrows:

$$A \times_O A = \{\langle g, f \rangle | g, f \in A \text{ and } \mathbf{dom}(g) = \mathbf{cod}(f)\}$$

2.2.2 Categories

Add the following structure to a directed graph...

- $O \xrightarrow{id} A, c \mapsto id_C$
- $A \times_O A \xrightarrow{\circ} A$, $\langle g, f \rangle \mapsto g \circ f$

which satisfy $\forall a \in O$ and $\forall \langle g,f \rangle \in A \times_O A.$. .

- $\operatorname{dom}(\operatorname{id}(a)) = a = \operatorname{cod}(\operatorname{id}(a))$
- $\bullet \ \mathbf{dom}(g \circ f) = \mathbf{dom}(f)$
- $\mathbf{cod}(g \circ f) = \mathbf{cod}(g)$
- metacategorical axioms

Small categories use small sets for their objects.

2.2.3 Hom Sets

$$hom(b,c) = \{f|f \in C, \mathbf{dom}(f) = b, \mathbf{cod}(f) = c\}$$

2.2.4 Groupoids

A category in which every arrow is an isomorphism.

2.3 Morphisms

Arrows in categories.

2.3.1 Isomorphisms

A morphism $f \in hom(b,c)$ that has a two-sided inverse $g \in hom(c,b)$ under composition such that

$$gf = 1_b, fg = 1_c.$$

Proposition 2.1. The inverse of an isomorphism is unique.

Proof. For inverses g_1, g_2 of f observe...

$$g_1 = g_1 1_c = g_1(fg_2) = (g_1 f)g_2 = 1_b g_2 = g_2$$

Proposition 2.2. Supposing f^{-1} is the inverse of f...

- \bullet Each identity 1_c is an isomorphism and is its own inverse.
- If f is an isomorphism, then f^{-1} is an isomorphism and further $(f^{-1})^{-1} = f$.
- If $f \in hom(a,b)$, $g \in hom(b,c)$ are isomorphisms, then the composition gf is an isomorphism and $(gf)^{-1} = f^{-1}g^{-1}$.

2.3.2 Automorphisms

An isomorphism of an object to itself. Denoted:

$$hom(c, c) = aut(c)$$

Observe aut(c) is a group.

2.3.3 Monomorphisms

A morphism $f \in hom(b,c)$ such that $\forall z \in C$ and $\forall \alpha', \alpha'' \in hom(z,b)$:

$$f \circ \alpha' = f \circ \alpha'' \Rightarrow \alpha' = \alpha''$$

2.3.4 Epimorphisms

A morphism $f \in hom(b, c)$ such that $\forall z \in C$ and $\forall \beta', \beta'' \in hom(b, z)$:

$$\beta' \circ f = \beta'' \circ f \Rightarrow \beta' = \beta''$$

2.4 Functors

Morphisms $T:C\to B$ with domain and codomain both categories. It consists of two suitably related functions

- object function $T, c \mapsto Tc$
- arrow function $T,\,f:c\to c'\mapsto Tf:Tc\to Tc'$

which satisfy...

- $T(1_c) = 1_c$
- $T(g \circ f) = T_g \circ T_f$

2.4.1 Full

$$\forall c, c' \in C \text{ and } g: Tc \to Tc' \in B, \exists f: c \to c' \in C \text{ s.t. } g \in Tf$$

2.4.2 Faithful

$$\forall c, c' \in C \text{ and } f_1, f_2 : c \to c', Tf_1 = Tf_2 \Rightarrow f_1 = f_2$$

3 Group Theory