

Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, either directly or indirectly

Implication: Executing the body of a recursive function may require applying that function

Drawing Hands, by M. C. Escher (lithograph, 1948)

Digit Sums

$$2+0+1+5 = 8$$

- •If a number a is divisible by 9, then sum_digits(a) is also divisible by 9
- •Useful for typo detection!

Credit cards actually use the Luhn algorithm, which we'll implement after digit_sum

5

Sum Digits Without a While Statement

```
def split(n):
    """Split positive n into all but its last digit and its last digit."""
    return n // 10, n % 10

def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last</pre>
```

The Anatomy of a Recursive Function

```
• The def statement header is similar to other functions

    Conditional statements check for base cases

    Base cases are evaluated without recursive calls

    Recursive cases are evaluated with recursive calls

 def sum_digits(n):
     """Return the sum of the digits of positive integer n."""
     if n < 10:
         return n
     else:
         all_but_last, last = split(n)
         return sum_digits(all_but_last) + last
```

(Demo)

Recursion in Environment Diagrams

Recursion in Environment Diagrams

- The same function fact is called multiple times
- Different frames keep track of the different arguments in each call
- What n evaluates to depends upon the current environment
- Each call to fact solves a simpler problem than the last: smaller n

```
(Demo)
Global frame
                                 >> func fact(n) [parent=Global]
                  fact
f1: fact [parent=Global]
f2: fact [parent=Global]
f3: fact [parent=Global]
f4: fact [parent=Global]
```

Iteration vs Recursion

Iteration is a special case of recursion

$$4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$$

Using while:

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total</pre>

Math:

$$n! = \prod_{k=1}^{n} k$$

Names:

n, total, k, fact_iter

Using recursion:

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot (n-1)! & \text{otherwise} \end{cases}$$

n, fact

Verifying Recursive Functions

The Recursive Leap of Faith

```
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)

Is fact implemented correctly?

1. Verify the base case

2. Treat fact as a functional abstraction!

3. Assume that fact(n-1) is correct

4. Verify that fact(n) is correct
```


Verifying Digit Sum

```
The sum_digits function computes the sum of positive n correctly because:
The sum of the digits of
                                                                          (base case)
Assuming
                                                                          (assume correct)
for all
                                                                          (simpler case)
sum_digits(n) will
                                                                          (conclusion)
 def sum_digits(n):
     """Return the sum of the digits of positive integer n."""
     if n < 10:
         return n
     else:
         all_but_last, last = split(n)
         return sum_digits(all_but_last) + last
```


The Luhn Algorithm

Used to verify credit card numbers

From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

- First: From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * 2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5)
- Second: Take the sum of all the digits

1	3	8	7	4	3	
2	3	1+6=7	7	8	3	= 30

The Luhn sum of a valid credit card number is a multiple of 10

(Demo)

Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

```
Idea: Figure out what state must be maintained by the iterative function.
  def sum_digits(n):
      """Return the sum of the digits of positive integer n."""
      if n < 10:
          return n
      else:
          all_but_last, last = split(n)
          return sum_digits(all_but_last) + last
                                                   A partial sum
                       What's left to sum
                                                                                     (Demo)
```

Converting Iteration to Recursion

```
More formulaic: Iteration is a special case of recursion.
Idea: The state of an iteration can be passed as arguments.
  def sum digits iter(n):
      digit sum = 0
      while n > 0:
          n, last = split(n)
          digit_sum = digit_sum + last
                                          Updates via assignment become...
      return digit sum
  def sum_digits_rec(n, digit_sum):
      if n == 0:
                                     ...arguments to a recursive call
          return digit sum
      else:
          n, last = split(n)
          return sum_digits_rec(n, digit_sum + last)
```