(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 7 October 2004 (07.10,2004)

PCT

(10) International Publication Number WO 2004/085408 A1

- (51) International Patent Classification⁷: C07D 239/47, 401/14, 405/14, 409/14, 413/14, 417/14, 403/14, A61K 31/513, 31/5377, A61P 25/28
- (21) International Application Number:

PCT/JP2004/004320

- (22) International Filing Date: 26 March 2004 (26.03.2004)
- (25) Filing Language:

Inolis

(26) Publication Language:

English

(30) Priority Data:

2003-126021

26 March 2003 (26.03.2003) JP

- 2003-126022 26 March 2003 (26.03.2003)
- (71) Applicants (for all designated States except US): MIT-SUBISHI PHARMA CORPORATION [JP/JP]; 6-9, Hiranomachi 2-chome, Chuo-ku, Osaka-shi, Osaka, 5410046 (JP). SANOFI-SYNTHELABO [FR/FR]; 174 AVENUE DE FRANCE PARIS, F-75013 (FR).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): WATANABE, Kazutoshi [JP/JP]; c/o MITSUBISHI PHARMA COR-PORATION, TOKYO OFFICE, 2-6, Nihonbashi-honcho 2-chome, Chuo-ku, Tokyo, 1038405 (JP). UEHARA, Fumiaki [JP/JP]; c/o MITSUBISHI PHARMA COR-PORATION, TOKYO OFFICE, 2-6, Nihonbashi-honcho 2-chome, Chuo-ku, Tokyo, 1038405 (JP). HIKI, Shinsuke [JP/JP]; c/o MITSUBISHI PHARMA CORPORATION,

TOKYO OFFICE, 2-6, Nihonbashi-honcho 2-chome, Chuo-ku, Tokyo, 1038405 (JP). YOKOSHIMA, Satoshi [JP/JP]; c/o MITSUBISHI PHARMA CORPORATION, TOKYO OFFICE, 2-6, Nihonbashi-honcho 2-chome, Chuo-ku, Tokyo, 1038405 (JP). USUI, Yoshihiro [JP/JP]; c/o MITSUBISHI PHARMA CORPORATION, TOKYO OFFICE, 2-6, Nihonbashi-honcho 2-chome, Chuo-ku, Tokyo, 1038405 (JP). OKUYAMA, Masahiro [JP/JP]; c/o MITSUBISHI PHARMA CORPORATION, TOKYO OF-FICE, 2-6, Nihonbashi-honcho 2-chome, Chuo-ku, Tokyo, 1038405 (JP). SHODA, Aya [JP/JP]; c/o MITSUBISHI PHARMA CORPORATION, TOKYO OFFICE, 2-6, Nihonbashi-honcho 2-chome, Chuo-ku, Tokyo, 1038405 (JP). ARITOMO, Keiichi [JP/JP]; c/o MITSUBISHI PHARMA CORPORATION, TOKYO OFFICE, 2-6, Nihonbashi-honcho 2-chome, Chuo-ku, Tokyo, 1038405 (JP). KOHARA, Toshiyuki [JP/JP]; c/o MITSUBISHI PHARMA CORPORATION, TOKYO OFFICE, 2-6, Nihonbashi-honcho 2-chome, Chuo-ku, Tokyo, 1038405 (JP). FUKUNAGA, Kenji [JP/JP]; c/o MITSUBISHI PHARMA CORPORATION, TOKYO OFFICE, 2-6, Nihonbashi-honcho 2-chome, Chuo-ku, Tokyo, 1038405 (JP).

- (74) Agent: SIKS & CO., 8th Floor, Kyobashi-Nisshoku Bldg., 8-7, Kyobashi 1-chome, Chuo-ku, Tokyo, 1040031 (JP).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,

[Continued on next page]

(54) Title: 2, 3, 6-TRISUBSTITUTED-4-PYRIMIDONE DERIVATIVES

(57) Abstract: A pyrimidone derivative having tau protein kinase 1 inhibitory activity which is represented by formula (I) or a salt thereof, or a solvate thereof or a hydrate thereof; useful for prventive and/or therapeutic treatment of diseases such as neurodegenerative diseases (e.g. Alzheimer disease); wherein Q represents CH or nitrogen atom; R represents a C₁-C₁₂ alkyl group; the ring of Formula (I): represents piperazine ring or piperidine ring; each X independently represents a C₁-C₈ alkyl group, an optionally partially hydrogenated C₆-C₁₀ aryl ring, an indan ring or the like; m represents an integer of 1 to 3; each Y independently represents a halogen atom, a hydroxy group, a cyano group, a C₁-C₆ alkyl group or the like; n represents an integer of 0 to 8; when X and Y or two Y groups are attached on the same carbon atom, they may combine to each other to form a C₂-C₆ alkylene group.

BEST AVAILABLE COPY

WO 2004/085408 A1

KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

DESCRIPTION

2,3,6-TRISUBSTITUTED -4-PYRIMIDONE DERIVATIVES

Technical Field

The present invention relates to compounds that are useful as an active ingredient of a medicament for preventive and/or therapeutic treatment of diseases mainly caused by abnormal activity of tau protein kinase 1, such as neurodegenerative diseases (e.g. Alzheimer disease).

Background Art

Alzheimer disease is progressive senile dementia, in which marked cerebral cortical atrophy is observed due to degeneration of nerve cells and decrease of nerve cell number. Pathologically, numerous senile plaques and neurofibrillary tangles are observed in brain. The number of patients has been increased with the increment of aged population, and the disease arises a serious social problem. Although various theories have been proposed, a cause of the disease has not yet been elucidated. Early resolution of the cause has been desired.

It has been known that the degree of appearance of two characteristic pathological changes of Alzheimer disease well correlates to the degree of intellectual dysfunction. Therefore, researches have been conducted from early 1980's to reveal the cause of the disease through molecular level investigations of components of the two pathological changes. Senile plaques accumulate extracellularly, and β amyloid protein has been elucidated as their main component (abbreviated as "A β " hereinafter in the specification: Biochem. Biophys. Res. Commun., 120, 855 (1984); EMBO J., 4, 2757 (1985); Proc. Natl. Acad. Sci. USA, 82, 4245 (1985)). In the other pathological change, i.e., the neurofibrillary tangles, a double-helical filamentous substance called paired helical filament (abbreviated

as "PHF" hereinafter in the specification) accumulate intracellularly, and tau protein, which is a kind of microtubule-associated protein specific for brain, has been revealed as its main component (Proc. Natl. Acad. Sci. USA, 85, 4506 (1988); Neuron, 1, 827 (1988)).

Furthermore, on the basis of genetic investigations, presentlins 1 and 2 were found as causative genes of familial Alzheimer disease (Nature, 375, 754 (1995); Science, 269, 973 (1995); Nature. 376, 775 (1995)), and it has been revealed that presence of mutants of presentlins 1 and 2 promotes the secretion of A β (Neuron, 17, 1005 (1996); Proc. Natl. Acad. Sci. USA, 94, 2025 (1997)). From these results, it is considered that, in Alzheimer disease, A β abnormally accumulates and agglomerates due to a certain reason, which engages with the formation of PHF to cause death of nerve cells. It is also expected that extracellular outflow of glutamic acid and activation of glutamate receptor responding to the outflow may possibly be important factors in an early process of the nerve cell death caused by ischemic cerebrovascular accidents (Sai-shin Igaku [Latest Medicine], 49, 1506 (1994)).

It has been reported that kainic acid treatment that stimulates the AMPA receptor, one of glutamate receptor, increases mRNA of the amyloid precursor protein (abbreviated as "APP" hereinafter in the specification) as a precursor of A β (Society for Neuroscience Abstracts, 17, 1445 (1991)), and also promotes metabolism of APP (The Journal of Neuroscience, 10, 2400 (1990)). Therefore, it has been strongly suggested that the accumulation of A β is involved in cellular death due to ischemic cerebrovascular disorders. Other diseases in which abnormal accumulation and agglomeration of A β are observed include, for example, Down syndrome, cerebral bleeding due to solitary cerebral amyloid angiopathy, Lewy body disease (Shin-kei Shinpo [Nerve Advance], 34, 343 (1990); Tanpaku-shitu Kaku-san Koso [Protein, Nucleic Acid, Enzyme], 41, 1476 (1996)) and the like. Furthermore, as diseases showing neurofibrillary tangles due to the PHF accumulation, examples

include progressive supranuclear palsy, subacute sclerosing panencephalitic parkinsonism, postencephalitic parkinsonism, pugilistic encephalitis, Guam parkinsonism-dementia complex, Lewy body disease and the like (Tanpakushitu Kakusan Koso [Protein, Nucleic Acid, Enzyme], 36, 2 (1991); Igaku no Ayumi [Progress of Medicine], 158, 511 (1991); Tanpakushitu Kakusan Koso [Protein, Nucleic Acid, Enzyme], 41, 1476 (1996)).

The tau protein is generally composed of a group of related proteins that forms several bands at molecular weights of 48-65 kDa in SDS-polyacrylamide gel electrophoresis, and it promotes the formation of microtubules. It has been verified that tau protein incorporated in the PHF in the brain suffering from Alzheimer disease is abnormally phosphorylated compared with usual tau protein (J. Biochem., 99, 1807 (1986); Proc. Natl. Acad. Sci. USA, 83, 4913 (1986)). An enzyme catalyzing the abnormal phosphorylation has been isolated. The protein was named as tau protein kinase 1 (abbreviated as "TPK1" hereinafter in the specification), and its physicochemical properties have been elucidated (Seikagaku [Biochemistry], 64, 308 (1992); J. Biol. Chem., 267, 10897 (1992)). Moreover, cDNA of rat TPK1 was cloned from a rat cerebral cortex cDNA library based on a partial amino acid sequence of TPK1, and its nucleotide sequence was determined and an amino acid sequence was deduced (Japanese Patent Un-examined Publication [Kokai] No. 6-239893/1994). As a result, it has been revealed that the primary structure of the rat TPK1 corresponds to that of the enzyme known as rat GSK-3 β (glycogen synthase kinase 3β , FEBS Lett., 325, 167 (1993)).

It has been reported that A β , the main component of senile plaques, is neurotoxic (Science, 250, 279 (1990)). However, various theories have been proposed as for the reason why A β causes the cell death, and any authentic theory has not yet been established. Takashima et al. observed that the cell death was caused by A β treatment of fetal rat hippocampus primary culture system, and then found that the TPK1 activity was increased by A β treatment and the cell death by

A β was inhibited by antisense of TPK1 (Proc. Natl. Acad. Sci. USA, 90, 7789 (1993); Japanese Patent Un-examined Publication [Kokai] No. 6-329551/1994).

In view of the foregoing, compounds which inhibit the TPK1 activity may possibly suppress the neurotoxicity of A β and the formation of PHF and inhibit the nerve cell death in the Alzheimer disease, thereby cease or defer the progress of the disease. The compounds may also be possibly used as a medicament for therapeutic treatment of ischemic cerebrovascular disorder, Down syndrome, cerebral amyloid angiopathy, cerebral bleeding due to Lewy body disease and the like by suppressing the cytotoxicity of A β . Furthermore, the compounds may possibly be used as a medicament for therapeutic treatment of neurodegenerative diseases such as progressive supranuclear palsy, subacute sclerosing panencephalitic parkinsonism, postencephalitic parkinsonism, pugilistic encephalitis, Guam parkinsonism-dementia complex, Lewy body disease, Pick's disease, corticobasal degeneration, frontotemporal dementia, vascular dementia, acute stroke and traumatic injuries, brain and spinal cord trauma, peripheral neuropathies, retinopathies and glaucoma; non-insulin dependent diabetes (such as diabetes type II), and obesity, manic depressive illness, schizophrenia, alopecia, cancers such as breast cancer, non-small cell lung carcinoma, thyroid cancer, T or B-cell leukemia and several virus-induced tumors.

As structurally similar compounds to the compounds of the present invention represented by formula (I) described later, compounds represented by the following formula (A) are known:

wherein R represents 2,6-dichlorobenzyl group, 2-(2-chlorophenyl)ethylamino group, 3-phenylpropylamino group, or 1-methyl-3-phenylpropylamino group (WO98/24782). The compounds represented by formula (A) are characterized to have 4-fluorophenyl group at the 5-position of the pyrimidine ring and a hydroxy group at the 4-position, and not falling within the scope of the present invention. Moreover, main pharmacological activity of the compounds represented by formula (A) is anti-inflammatory effect, whereas the compounds of the present invention represented by formula (I) are useful as a TPK1 inhibitor or a medicament for therapeutic treatment of neurodegenerative diseases, and therefore, their pharmacological activities are totally different to each other.

Patent Document 1: WO 00/18758

· Patent Document 2: WO 01/70728

Patent Document 3: WO 01/70729

Disclosure of the Invention

An object of the present invention is to provide compounds useful as an active ingredient of a medicament for preventive and/or therapeutic treatment of diseases such as Alzheimer disease. More specifically, the object is to provide novel compounds useful as an active ingredient of a medicament that enables radical prevention and/or treatment of the neurodegenerative diseases such as Alzheimer disease by inhibiting the TPK1 activity to suppress the neurotoxicity of A β and the formation of the PHF and by inhibiting the death of nerve cells.

In order to achieve the foregoing object, the inventors of the present invention conducted screenings of various compounds having inhibitory activity against the phosphorylation of TPK1. As a result, they found that compounds represented by the following formula (I) had the desired activity and were useful as an active ingredient of a medicament for preventive and/or therapeutic treatment of

PCT/JP2004/004320

the aforementioned diseases. The present invention was achieved on the basis of these findings.

The present invention thus provides 3-substituted-4-pyrimidone derivatives represented by formula (I) or salts thereof, or solvates thereof or hydrates thereof:

$$(X)_{m}$$

$$(X)_{m}$$

$$(Y)_{n}$$

$$(Y)_$$

wherein Q represents CH or nitrogen atom;

R represents a C₁-C₁₂ alkyl group which may be substituted; the ring of:

represents piperazine ring or piperidine ring; each X independently represents

X1 - X2 -

WO 2004/085408

wherein X¹ represents an oxo group; a C¹-C² alkyl group which may be substituted; a C³-C² cycloalkyl group which may be substituted; an optionally partially hydrogenated C²-C¹0 aryl ring which may be substituted; an indan ring which may be substituted; an optionally substituted heterocyclic ring having 1 to 4 hetero atoms selected from the group consisting of oxygen atom, sulfur atom, and nitrogen atom, and having 5 to 10 ring-constituting atoms in total; an aralkyloxy group; a group represented by -N(R²)(Rb) wherein R² and Rb are the same or different and each is hydrogen, a C¹-C² alkyl group which may be substituted, an aralkyl group which may be substituted, an aryl group which may be substituted, C¹-C² alkyl group which may be

substituted,

C3-C8 cycloalkylcarbonyl group which may be substituted, aralkycarbonyl group which may be substituted, C6-C10 arylcarbonyl group which may be substituted, C1-C8 alkysulfonyl group which may be substituted, C3-C8 cycloalkylsulfonyl group which may be substituted, aralkysulfonyl group which may be substituted, C6-C10 arylsulfonyl group which may be substituted, C1-C8 alkyloxycarbonyl group which may be substituted, C3-C8 cycloalkyloxycarbonyl group which may be substituted, aralkyoxycarbonyl group which may be substituted, C6-C10 aryloxycarbonyl group which may be substituted, aralkyoxycarbonyl group which may be substituted, aminocarbonyl,

N-C1-C8 alkylaminocarbonyl group which may be substituted,

N, N'-C1-C8 dialkylaminocarbonyl group which may be substituted,

N-C1-C8 alkyl-N'-C3-C8 cycloalkylaminocarbonyl group which may be substituted,

N-C1-C8 alkyl-N'-aralkylaminocarbonyl group which may be substituted,

N-C1-C8 alkyl-N'-C6-C10 arylaminocarbonyl group which may be substituted,

C3-C8 cycloalkylaminocarbonyl group which may be substituted,

N,N'-C2-C8 dicycloalkylaminoycarbonyl group which may be substituted,

N-C₈-C₈ cycloalkyl-N'-aralkylaminocarbonyl group which may be substituted,

N-C₃-C₈ cycloalkyl-N'-C₆-C₁₀ arylaminocarbonyl group which may be substituted, aralkylaminocarbonyl group which may be substituted,

N,N'-diaralkylaminocarbonyl group which may be substituted,

N-aralkyl- N'-C6-C10 arylaminocarbonyl group which may be substituted,

C6-C10 arylaminocarbonyl group which may be substituted,

N,N'-C6-C10 diarylaminocarbonyl group which may be substituted,

or an optionally substituted heterocyclic ring having 1 to 4 hetero atoms selected

from the group consisting of oxygen atom, sulfur atom, and nitrogen atom, and having 5 to 10 ring-constituting atoms in total; or Ra and Rb together with the adjacent nitrogen atom form a 4 to 7 membered heterocyclic ring which may further contain 1 to 4 groups selected from an oxygen atom, a sulfur atom, N-Rc (wherein Rc represents a hydrogen atom, a C1-C4 alkyl group which may be substituted, an aralkyl group which may be substituted, C3-C5 cycloalkyl group which may be substituted or an aryl group which may be substituted, C1-C8 alkylcarbonyl group which may be substituted, C3-C8 cycloalkylcarbonyl group which may be substituted, aralkycarbonyl group which may be substituted, C6-C10 arylcarbonyl group which may be substituted, C1-C8 alkysulfonyl group which may be substituted, C3-C8 cycloalkylsulfonyl group which may be substituted, aralkysulfonyl group which may be substituted, C₆-C₁₀ arylsulfonyl group which may be substituted, C1-C8 alkyloxycarbonyl group which may be substituted, C3-C8 cycloalkyloxycarbonyl group which may be substituted, aralkyoxycarbonyl group which may be substituted, C6-C10 aryloxycarbonyl group which may be substituted, aminocarbonyl,

N-C₁-C₈ alkylaminocarbonyl group which may be substituted,

N, N'-C₁-C₆ dialkylaminocarbonyl group which may be substituted,

N-C₁-C₈ alkyl-N'-C₃-C₈ cycloalkylaminocarbonyl group which may be substituted,

N-C₁-C₈ alkyl-N'-aralkylaminocarbonyl group which may be substituted,

N-C₁-C₈ alkyl-N'-C₆-C₁₀ arylaminocarbonyl group which may be substituted,

C₃-C₈ cycloalkylaminocarbonyl group which may be substituted,

N,N'-C₃-C₈ dicycloalkylaminoycarbonyl group which may be substituted,

N-C₃-C₆ cycloalkyl-N'-aralkylaminocarbonyl group which may be substituted,

N-C₃-C₈ cycloalkyl-N'-C₆-C₁₀ arylaminocarbonyl group which may be substituted, aralkylaminocarbonyl group which may be substituted,

N,N'-diaralkylaminocarbonyl group which may be substituted,

N-aralkyl- N'-C6-C10 arylaminocarbonyl group which may be substituted,

C6-C10 arylaminocarbonyl group which may be substituted,

N,N'-C6-C10 diarylaminocarbonyl group which may be substituted,

or an optionally substituted heterocyclic ring having 1 to 4 hetero atoms selected from the group consisting of oxygen atom, sulfur atom, and nitrogen atom, and having 5 to 10 ring-constituting atoms in total),

a carbonyl group, a sulfinyl group or a sulfonyl group in the ring, and said 4 to 7 membered heterocyclic ring may optionally be fused with an aryl group which may be substituted;

X² represents a bond, a carbonyl group, a sulfinyl group, a sulfonyl group, an oxygen atom, a sulfur atom, a C₁-C₄ alkylene group which may be substituted or N-Rd (Rd represents a hydrogen atom, a C₁-C₄ alkyl group which may be substituted, an aralkyl group which may be substituted, C₃-C₃ cycloalkyl group which may be substituted or an aryl group which may be substituted,
C₁-C₃ alkylcarbonyl group which may be substituted,
C₃-C₃ cycloalkylcarbonyl group which may be substituted,
aralkycarbonyl group which may be substituted,
C₃-C₁₀ arylcarbonyl group which may be substituted,
C₁-C₃ alkysulfonyl group which may be substituted,
C₃-C₃ cycloalkylsulfonyl group which may be substituted,
aralkysulfonyl group which may be substituted,
C₃-C₁₀ arylsulfonyl group which may be substituted,

C1-C8 alkyloxycarbonyl group which may be substituted,

aralkyoxycarbonyl group which may be substituted,

C₈-C₈ cycloalkyloxycarbonyl group which may be substituted,

C₆-C₁₀ aryloxycarbonyl group which may be substituted, aminocarbonyl,

N-C1-C8 alkylaminocarbonyl group which may be substituted,

N, N'-C1-C8 dialkylaminocarbonyl group which may be substituted,

N-C1-C8 alkyl-N'-C8-C8 cycloalkylaminocarbonyl group which may be substituted,

N-C1-C8 alkyl-N'-aralkylaminocarbonyl group which may be substituted,

N-C1-C8 alkyl-N'-C6-C10 arylaminocarbonyl group which may be substituted,

C3-C8 cycloalkylaminocarbonyl group which may be substituted,

N,N'-C3-C8 dicycloalkylaminoycarbonyl group which may be substituted,

N-C3-C6 cycloalkyl-N'-aralkylaminocarbonyl group which may be substituted,

N-C₃-C₈ cycloalkyl-N'-C₆-C₁₀ arylaminocarbonyl group which may be substituted,

aralkylaminocarbonyl group which may be substituted,

N,N'-diaralkylaminocarbonyl group which may be substituted,

N-aralkyl- N'-C6-C10 arylaminocarbonyl group which may be substituted,

C6-C10 arylaminocarbonyl group which may be substituted,

N,N'-C6-C10 diarylaminocarbonyl group which may be substituted,

or an optionally substituted heterocyclic ring having 1 to 4 hetero atoms selected from the group consisting of oxygen atom, sulfur atom, and nitrogen atom, and

having 5 to 10 ring-constituting atoms in total);

m represents an integer of 1 to 3;

each Y independently represents a halogen atom, a hydroxy group, a cyano group, Y¹-Y³- wherein Y¹ represents a C¹-C³ alkyl group which may be substituted; a C³-C³ cycloalkyl group which may be substituted or a C⁵-C¹o aryl ring which may be substituted; Y³ represents a carbonyl group, a sulfinyl group, a sulfonyl group, an oxygen atom, a sulfur atom, a C¹-C⁴ alkylene group which may be substituted or N-Re (Re represents a hydrogen atom, a C¹-C⁴ alkyl group which may be substituted, an aralkyl group which may be substituted, C³-C³ cycloalkyl group which may be substituted or an aryl group which may be substituted.

C₁-C₈ alkylcarbonyl group which may be substituted,
C₃-C₈ cycloalkylcarbonyl group which may be substituted,
aralkycarbonyl group which may be substituted,
C₆-C₁₀ arylcarbonyl group which may be substituted,
C₁-C₈ alkysulfonyl group which may be substituted,
C₃-C₈ cycloalkylsulfonyl group which may be substituted,
aralkysulfonyl group which may be substituted,
C₆-C₁₀ arylsulfonyl group which may be substituted,
C₁-C₈ alkyloxycarbonyl group which may be substituted,
C₃-C₈ cycloalkyloxycarbonyl group which may be substituted,
aralkyoxycarbonyl group which may be substituted,
aminocarbonyl,

N-C1-C8 alkylaminocarbonyl group which may be substituted,

N, N'-C1-C8 dialkylaminocarbonyl group which may be substituted,

N-C1-C8 alkyl-N'-C3-C8 cycloalkylaminocarbonyl group which may be substituted,

N-C1-C8 alkyl-N'-aralkylaminocarbonyl group which may be substituted,

N-C1-C8 alkyl-N'-C6-C10 arylaminocarbonyl group which may be substituted,

C3-C6 cycloalkylaminocarbonyl group which may be substituted,

N,N'-C3-C8 dicycloalkylaminoycarbonyl group which may be substituted,

N-C3-C8 cycloalkyl-N'-aralkylaminocarbonyl group which may be substituted,

N-C₃-C₈ cycloalkyl-N'-C₆-C₁₀ arylaminocarbonyl group which may be substituted, aralkylaminocarbonyl group which may be substituted,

N,N'-diaralkylaminocarbonyl group which may be substituted,

N-aralkyl- N'-C6-C10 arylaminocarbonyl group which may be substituted,

C6-C10 arylaminocarbonyl group which may be substituted,

N,N'-C6-C10 diarylaminocarbonyl group which may be substituted,

or an optionally substituted heterocyclic ring having 1 to 4 hetero atoms selected

from the group consisting of oxygen atom, sulfur atom, and nitrogen atom, and having 5 to 10 ring-constituting atoms in total),

n represents an integer of 0 to 8;

when X and Y or two Y groups are attached on the same carbon atom, they may combine to each other to form a C_2 - C_6 alkylene group; and when m is 1, n is 0, and X is X^1 -CO-,

- (1) X does not bind to 3-position of unsubstituted 1-piperazinyl group or does not bind to 3-position of a 4-alkyl-1-piperazinyl group; or
- (2) X does not bind to 3-position or 4-position of non-substituted 1-piperidinyl group.

According to another aspect of the present invention, there is provided a medicament comprising as an active ingredient a substance selected from the group consisting of the 3-substituted-4-pyrimidone derivatives represented by formula (I) and the physiologically acceptable salts thereof, and the solvates thereof and the hydrates thereof. As preferred embodiments of the medicament, there are provided the aforementioned medicament which is used for preventive and/or therapeutic treatment of diseases caused by tau protein kinase 1 hyperactivity, and the aforementioned medicament which is used for preventive and/or therapeutic treatment of neurodegenerative diseases.

As further preferred embodiments of the present invention, there are provided the aforementioned medicament wherein the diseases are selected from the group consisting of Alzheimer disease, ischemic cerebrovascular accidents, Down syndrome, cerebral bleeding due to cerebral amyloid angiopathy, progressive supranuclear palsy, subacute sclerosing panencephalitic parkinsonism, postencephalitic parkinsonism, pugilistic encephalitis, Guam parkinsonism-dementia complex, Lewy body disease, Pick's disease, corticobasal degeneration and frontotemporal dementia, vascular dementia, acute stroke and

traumatic injuries, brain and spinal cord trauma, peripheral neuropathies, retinopathies and glaucoma, non-insulin dependent diabetes (such as diabetes type II), and obesity, manic depressive illness, schizophrenia, alopecia, cancers such as breast cancer, non-small cell lung carcinoma, thyroid cancer, T or B-cell leukemia and several virus-induced tumors; and the aforementioned medicament in the form of pharmaceutical composition containing the above substance as an active ingredient together with one or more pharmaceutical additives.

The present invention further provides an inhibitor of tau protein kinase 1 comprising as an active ingredient a substance selected from the group consisting of the 3-substituted-4-pyrimidone derivatives of formula (I) and the salts thereof, and the solvates thereof and the hydrates thereof.

According to further aspects of the present invention, there are provided a method for preventive and/or therapeutic treatment of diseases caused by tau protein kinase 1 hyperactivity, which comprises the step of administering to a patient a preventively and/or therapeutically effective amount of a substance selected from the group consisting of the 3-substituted-4-pyrimidone derivatives of formula (I) and the physiologically acceptable salts thereof, and the solvates thereof and the hydrates thereof; and a use of a substance selected from the group consisting of the 3-substituted-4-pyrimidone derivatives of formula (I) and the physiologically acceptable salts thereof, and the solvates thereof and the hydrates thereof for the manufacture of the aforementioned medicament.

Best Mode for Carrying Out the Invention

In the present specification, each group has the following meanings.

The alkyl group used herein may be either linear or branched.

The C₁-C₁₂ alkyl group represented by R may be, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group,

1,1-dimethylpropyl group, n-hexyl group, isohexyl group, or a linear or branched heptyl group, octyl group, nonyl group, decyl group, undecyl group or dodecyl group. Particularly preferred R is methyl group.

In the specification, when a functional group is defined as "which may be substituted" or "optionally substituted", the number of substituents as well as their types and substituting positions are not particularly limited, and when two or more substituents are present, they may be the same or different.

When the C₁-C₁₂ alkyl group represented by R has one or more substituents, the alkyl group may have one or more substituents selected from, for example, the groups consisting of a C₃-C₈ cycloalkyl group such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group; a C₁-C₅ alkoxy group such as methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, tert-butoxy group; C₁-C₃ alkylamino group or C₂-C₆ dialkylamino group; a C₆-C₁₀ aryl group such as phenyl group, 1-naphthyl group, and 2-naphthyl group.

The C₁-C₈ alkyl group may be, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, 1,1-dimethylpropyl group, n-hexyl group, isohexyl group, or a linear or branched heptyl group or octyl group.

The C1-C4 alkyl group may be, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group or tert-butyl group.

The C_8 - C_8 cycloalkyl group may be, for example, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclohexyl group or cycloctyl group.

The optionally partially hydrogenated C₆-C₁₀ aryl ring may be, for example a benzene ring, a naphthalene ring, an indan ring or a

PCT/JP2004/004320

1,2,3,4-tetrahydronaphthalene ring.

The heterocyclic ring having 1 to 4 hetero atoms selected from the group consisting of oxygen atom, sulfur atom, and nitrogen atom, and having 5 to 10 ring-constituting atoms in total may be, for example, furan ring, dihydrofuran ring, tetrahydrofuran ring, pyran ring, dihydropyran ring, tetrahydropyran ring, benzofuran ring, dihydrobenzofuran, isobenzofuran ring, benzodioxol ring, chromene ring, chroman ring, isochroman ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrrolidine ring, 2-oxopyrrolidine ring, imidazole ring, imidazoline ring, imidazolidine ring, pyrazole ring, pyrazoline ring, pyrazolidine ring, triazole ring, tetrazole ring, pyridine ring, pyridine oxide ring, piperidine ring, 4-oxopiperidine ring, pyrazine ring, piperazine ring, homopiperazine ring, pyrimidine ring, pyridazine ring, indole ring, indoline ring, isoindole ring, isoindoline ring, indazole ring, benzimidazole ring, benzotriazole ring, tetrahydroisoquinoline ring, benzothiazolinone ring, benzoxazolinone ring, purine ring, quinolizine ring, quinoline ring, phthalazine ring, naphthyridine ring, quinoxaline ring, quinazoline ring, cinnoline ring, pteridine ring, oxazole ring, oxazolidine ring, isoxazole ring, isoxazolidine ring, oxadiazole ring, thiazole ring, benzothiazole ring, thiazylidine ring, isothiazole ring, isothiazolidine ring, benzodioxole ring, dioxane ring, benzodioxane ring, dithian ring, morpholine ring, thiomorpholine ring, or phthalimide ring.

The aralkyl group may be, for example, benzyl group, 2-phenylethyl group, 3-phenylpropyl group or 4-phenylbutyl group.

The C₁-C₄ alkylene group may be, for example, methylene, ethylene, trimethylene or tetramethylene.

The 4 to 7 membered heterocyclic ring which may further contain 1 to 4 groups may be, for example, pyrrolidine, piperidine, morpholine, thiomorpholine, piperazine, homopiperazine, 2-oxopyrrolidine, pyrrole, imidazoline, imidazole, pyrazole, pyrroline, pyrrolidine, imidazolidine, imidazolone, succinimide or

glutarimide.

The C_6 - C_{10} aryl ring may be, for example, a benzene ring or a naphthalene ring, and the aryl group or the C_6 - C_{10} aryl group may be, for example, a phenyl group or naphthyl group.

When the ring represented by X or X1 has one or more substituents, the ring may have one or more substituents selected from the group consisting of a C1-C5 alkyl group such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, 1,1-dimethylpropyl group; C3-C6 cycloalkyl group such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group; a C3-C6 cycloalkyl-C1-C4 alkyl group such as cyclopropylmethyl, cyclopentylmethyl, cyclohexylmethyl; a C_1 - C_4 hydroxyalkyl group such as hydroxymethyl, hydroxyethyl, hydroxypropyl; a halogen atom such as fluorine atom, chlorine atom, bromine atom, and iodine atom; a C1-C5 halogenated alkyl group such as trifluoromethyl group; hydroxyl group; cyano group; nitro group; formyl group; a benzene ring which may be substituted; a naphthalene ring which may be substituted; an optionally substituted heterocyclic ring having 1 to 4 hetero atoms selected from the group consisting of oxygen atom, sulfur atom and nitrogen atom, and having 5 to 10 ring-constituting atoms in total (same as the above); an amino group; an N- C3-C6 cycloalkyl-N-C1-C4 alkylaminoalkyl group wherein said C1-C4 alkyl may be substituted by hydroxy group or C1-C4 alkoxy group such as N-cyclopropyl-N-methylaminomethyl group, N-cyclohexyl-N-methylaminomethyl group; a C1-C5 monoalkylaminomethyl group such as methylaminomethyl group, ethylaminomethyl group, propylaminomethyl group, isoproylaminomethyl group, butylaminomethyl group, isobutylaminomethyl group, tert-butylaminomethyl group, pentylaminomethyl group, isopentylaminomethyl group; a C2-C10 dialkylaminomethyl group such as dimethylaminomethyl group, diethylaminomethyl group, ethylmethylaminomethyl group,

methylpropylaminomethyl group; pyrrolidinylmethyl group; piperidinylmethyl group; morpholinomethyl group; piperazinylmethyl group; pyrrolylmethyl group; imidazolylmethyl group; pyrazolylmethyl group; triazolylmethyl group; and a group of the formula -E-Rf wherein E represents O, S, SO, SO2, CO or N(R4) and Rf represents a C_1 - C_5 alkyl group (same as the above), a C_4 - C_7 cycloalkyl group (same as the above), a C4-C7 cycloalkylalkl group (same as the above), a C1-C5 hydroxyalkyl group (same as the above), a benzene ring which may be substituted, a naphthalene ring which may be substituted, an optionally substituted heterocyclic ring having 1 to 4 hetero atoms selected from the group consisting of oxygen atom, sulfur atom and nitrogen atom, and having 5 to 10 ring-constituting atoms in total (same as the above), an N-C₃-C₆ cycloalkyl-N-C₁-C₄ alkylaminoalkyl group (same as the above), a C₁-C₅ monoalkylaminoalkyl group (same as the above), C2-C10 dialkylaminoalkyl group (same as the above), pyrrolidinylmethyl group, piperidinylmethyl group, morpholinomethyl group, piperazinylmethyl group, pyrrolylmethyl group, imidazolylmethyl group, pyrazolylmethyl group or triazolylmethyl group,

C1-C8 alkylcarbonyl group which may be substituted,
C3-C8 cycloalkylcarbonyl group which may be substituted,
aralkycarbonyl group which may be substituted,
C6-C10 arylcarbonyl group which may be substituted,
C1-C8 alkysulfonyl group which may be substituted,
C3-C8 cycloalkylsulfonyl group which may be substituted,
aralkysulfonyl group which may be substituted,
C6-C10 arylsulfonyl group which may be substituted,
C1-C8 alkyloxycarbonyl group which may be substituted,
C1-C8 cycloalkyloxycarbonyl group which may be substituted,
C3-C8 cycloalkyloxycarbonyl group which may be substituted,
aralkyoxycarbonyl group which may be substituted,

aminocarbonyl,

N-C1-C8 alkylaminocarbonyl group which may be substituted,

N, N'-C1-C8 dialkylaminocarbonyl group which may be substituted,

N-C1-C8 alkyl-N'-C3-C8 cycloalkylaminocarbonyl group which may be substituted,

N-C1-C8 alkyl-N'-aralkylaminocarbonyl group which may be substituted,

N-C1-C8 alkyl-N'-C6-C10 arylaminocarbonyl group which may be substituted,

C₃-C₆ cycloalkylaminocarbonyl group which may be substituted,

N,N'-C3-C8 dicycloalkylaminoycarbonyl group which may be substituted,

N-C3-C8 cycloalkyl-N'-aralkylaminocarbonyl group which may be substituted,

N-C₃-C₈ cycloalkyl-N'-C₆-C₁₀ arylaminocarbonyl group which may be substituted,

aralkylaminocarbonyl group which may be substituted,

N,N'-diaralkylaminocarbonyl group which may be substituted,

N-aralkyl- N'-C6-C10 arylaminocarbonyl group which may be substituted,

C6-C10 arylaminocarbonyl group which may be substituted,

N,N'-C6-C10 diarylaminocarbonyl group which may be substituted,

and R4 represents a hydrogen atom, a C1-C4 alkyl group which may be substituted,

an aralkyl group which may be substituted, C3-C8 cycloalkyl group which may be

substituted or an aryl group which may be substituted,

C1-C8 alkylcarbonyl group which may be substituted, .

C3-C8 cycloalkylcarbonyl group which may be substituted,

aralkycarbonyl group which may be substituted,

C6-C10 arylcarbonyl group which may be substituted,

C1-C8 alkysulfonyl group which may be substituted,

C₈-C₈ cycloalkylsulfonyl group which may be substituted,

aralkysulfonyl group which may be substituted,

C6-C10 arylsulfonyl group which may be substituted,

C1-C8 alkyloxycarbonyl group which may be substituted,

C3-C8 cycloalkyloxycarbonyl group which may be substituted,

aralkyoxycarbonyl group which may be substituted, C6-C10 aryloxycarbonyl group which may be substituted, aminocarbonyl,

having 5 to 10 ring-constituting atoms in total.

aminocarbonyl, N-C1-C8 alkylaminocarbonyl group which may be substituted, N, N'-C1-C8 dialkylaminocarbonyl group which may be substituted, N-C1-Cs alkyl-N'-C3-C6 cycloalkylaminocarbonyl group which may be substituted, N-C1-C8 alkyl-N'-aralkylaminocarbonyl group which may be substituted, N-C1-C8 alkyl-N'-C6-C10 arylaminocarbonyl group which may be substituted, C3-C8 cycloalkylaminocarbonyl group which may be substituted, N,N'-C3-C8 dicycloalkylaminoycarbonyl group which may be substituted, N-C3-C8 cycloalkyl-N'-aralkylaminocarbonyl group which may be substituted, N-C3-C8 cycloalkyl-N'-C6-C10 arylaminocarbonyl group which may be substituted, aralkylaminocarbonyl group which may be substituted, N,N'-diaralkylaminocarbonyl group which may be substituted, N-aralkyl- N'-C6-C10 arylaminocarbonyl group which may be substituted, C6-C10 arylaminocarbonyl group which may be substituted, N,N'-C6-C10 diarylaminocarbonyl group which may be substituted, or an optionally substituted heterocyclic ring having 1 to 4 hetero atoms selected from the group consisting of oxygen atom, sulfur atom, and nitrogen atom, and

When the C₆-C₁₀ aryl ring represented by Y¹ has one or more substituents, the ring may be substituted by one or more substituents selected from the groups consisting of halogen atoms, a C₁-C₅ alkyl group, a C₃-C₆ cycloalkyl group, a C₃-C₆ cycloalkyloxy group, a C₁-C₅ alkoxy group, a C₄-C₇ cycloalkylalkoxy, a C₁-C₅ alkylthio group, a C₁-C₅ alkylsulfonyl group, a C₁-C₅ halogenated alkyl, and a benzene ring.

When the ring represented by X, X¹ or Y¹ has one or more substituents, the substituent may further have one or more substituents selected from the group

consisting of a C1-C5 alkyl group such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, 1,1-dimethylpropyl group; C3-C6 cycloalkyl group such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group; a C3-C6 cycloalkyloxy group such as cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group; C1-C4 hydroxyalkyl group such as hydroxymethyl group, hydroxyethyl group, hydroxypropyl group, hydroxybutyl group; a C1-C5 alkoxy group such as methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, and isopentyloxy group; a C4-C7 cycloalkylalkoxy group such as cyclopropylmethoxy group, cyclopentylmethoxy group; a C1-C5 alkylthio group such as methylthio group, ethylthio group, propylthio group, butylthio group, and pentylthio group; a C1-C5 alkylsulfonyl group such as methanesulfonyl group, ethanesulfonyl group, propanesulfonyl group, butanesulfonyl group, and pentanesulfonyl group; a halogen atom such as fluorine atom, chlorine atom, bromine atom, and iodine atom; a C1-C5 halogenated alkyl group such as trifluoromethyl group; a C1-C5 halogenated alkoxy group such as trifluoromethoxy group, 2,2,2-trifluoroethoxy group; hydroxyl group; cyano group; nitro group; formyl group; a C2-C6 alkylcarbonyl group such as acetyl group, propionyl group, butyryl group, and valeryl group; amino group; a C1-C5 monoalkylamino group such as methylamino group, ethylamino group, propylamino group, isopropylamino group, butylamino group, isobutylamino group, tert-butylamino group, pentylamino group, and isopentylamino group; a C2-C10 dialkylamino group such as dimethylamino group, ethylmethylamino group, diethylamino group, methylpropylamino group, and diisopropylamino group; a cyclic amino group such as pyrrolidinyl group, piperidino group, morpholino group; a C2-C10 monoalkylaminomethyl group such as methylaminomethyl group, ethylaminomethyl group, propylaminomethyl group, isoproylaminomethyl group, butylaminomethyl group, isobutylaminomethyl group,

tert-butylaminomethyl group, pentylaminomethyl group, isopentylaminomethyl; a C₃-C₁₁ dialkylaminomethyl group such as dimethylaminomethyl group, diethylaminomethyl group, ethylmethylaminomethyl group, methylpropylaminomethyl group; a phenyl group; an aralkyloxy group such as benzyloxy, 2-phenylethyloxy, 3-phenylpropyloxy; an aralkyloxycarbonyl group such as benzyloxycarbonyl, 2-phenylehoxycarbonyl; an C2-C4 alkanoyloxy-C1-C4 alkyl group such as acetyloxymethyl, 2-acetyloxyethyl, 2-propionyloxyethyl; an alkanoylamino group such as acetylamino, propionylamino, butyrylamino; N-C1-C4 alkyl-N-alkanoylamino group such as N-methyl-N-acetylamino, N-ethyl-N-acetylamino, N-methyl-N-propionylamino, N-methyl-N-butyrylamino; a heterocyclic ring amino group such as pyridylamino, pyrimidinylamino, thienylamino, furylamino; N-C1-C4 alkyl-N-heterocyclic ring amino group such as N-methyl-N-pyridylamino, N-methyl-N-pyrimidinylamino, N-methyl-N-thienylamino, N-methyl-N-furylamino; a diheterocyclic ring amino group such as dipyridylamino, dipyrimidinylamino, dithienylamino, difurylamino, and the like.

R may preferably be a C_1 - C_3 alkyl group, more preferably a methyl group or an ethyl group. The substituent of the alkyl group may preferably be a C_3 - C_8 alkyl group.

X may preferably be a benzene ring which may be substituted, a benzyl group which may be substituted, a naphthyl group which may be substituted, a benzofuran ring which may be substituted, a dihydrobenzofuran ring which may be substituted, a benzisoxazole ring which may be substituted, a benzisoxazole ring which may be substituted, a benzisothiazole ring which may be substituted, a benzisothiazole ring which may be substituted, a benzisothiazole ring which may be substituted, and a benzopyrazole ring which may be substituted; more preferably a benzene ring which may be substituted, a benzyl group which may be substituted. Substituent of X may preferably be selected from the group consisting of a halogen

atom, a C1-C4 alkyl group, a C1-C4 alkoxy group, a hydroxy group, a nitro group, a cyano group, a perhalogenated C1-C4 alkyl group, a carboxyl group, a C1-C4 alkoxycarbonyl group, a C1-C4 alkylthio group, a C1-C4 alkoxysulfonyl group, amino group which may be substituted by a C1-C4 alkyl group, a benzene ring which may be substituted, and a cyclic amino group which may be substituted.

The compounds represented by the aforementioned formula (I) may form a salt. Examples of the salt include, when an acidic group exists, salts of alkali metals and alkaline earth metals such as lithium, sodium, potassium, magnesium, and calcium; salts of ammonia and amines such as methylamine, dimethylamine, trimethylamine, dicyclohexylamine, tris(hydroxymethyl)aminomethane,

N,N-bis(hydroxyethyl)piperazine, 2-amino-2-methyl-1-propanol, ethanolamine,

N-methylglucamine, and L-glucamine; or salts with basic amino acids such as lysine, δ-hydroxylysine, and arginine. When a basic group exists, examples include salts with mineral acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid; salts with organic acids such as methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, acetic acid, propionic acid, tartaric acid, fumaric acid, maleic acid, malic acid, oxalic acid, succinic acid, citric acid, benzoic acid, mandelic acid, cinnamic acid, lactic acid, glycolic acid, glucuronic acid, ascorbic acid, nicotinic acid, and salicylic acid; or salts with acidic amino acids such as aspartic acid, and glutamic acid.

In addition to the 3-substituted-4-pyrimidone derivatives represented by the aforementioned formula (I) and salts thereof, their solvates and hydrates also fall within the scope of the present invention. The 3-substituted-4-pyrimidone derivatives represented by the aforementioned formula (I) may have one or more asymmetric carbon atoms. As for the stereochemistry of such asymmetric carbon atoms, they may independently be in either (R) and (S) configuration, and the pyrimidone derivative may exist as stereoisomers such as optical isomers, or diastereoisomers. Any stereoisomers in a pure form, any mixtures of stereoisomers,

racemates and the like fall within the scope of the present invention.

Preferred compounds of the present invention are represented by formula (II):

$$(X)_{p} \qquad (II)$$

$$(X)_{q} \qquad (Y)_{r}$$

wherein Q, R, X, Y are the same as those defined above; p is 0 or 1; q is 0 or 1; r is an integer of 0 to 6; p+q is 1 or 2;

and Z represents N or CZ1 wherein Z1 represents hydrogen atom or Y.

Examples of more preferred classes of compounds represented by formula (II) include:

- (1) those wherein R represents a C₁-C₃ alkyl group which may be substituted by a C₃-C₈ cycloalkyl group;
- (2) the compounds of the above (1) wherein R is methyl group or ethyl group; Y is in 3-, 4- or 5-position of the piperazine ring or the piperidine ring; p+q is 1; and r is an integer of 0 to 3;
- (3) the compounds of the above (2) wherein X is a C₁-C₈ alkyl group which may be substituted or a C₆-C₁₀ aryl ring which may be substituted; Y is a C₁-C₆ alkyl group which may be substituted; p is 1; q is 0; r is an integer of 0 to 3; and Z is N or CH; (4) the compounds of the above (3) wherein X is a benzene ring which may be substituted, a benzyl group which may be substituted; Y is a methyl group which may be substituted; Z is N and r is 0 or 1;
- (5) the compounds of the above (2) wherein X is a benzene ring which may be substituted, a benzyl group which may be substituted, a benzoyl group which may be substituted, or a benzisothiazol ring which may be substituted; Y is a methyl

group which may be substituted; Z is N and p is 0;

(6) the compounds of the above (2) wherein X is a C_1 - C_8 alkyl group substituted by a benzene ring which may be substituted or a benzene ring which may be substituted; Y is a hydroxy group, a cyano group, or Y^1 -CO- wherein Y^1 is a C_1 - C_8 alkyl group; Z is CH or C-Y and r is 0 or 1; and

(7) the compounds of the above (6) wherein X is a benzyl group which may be substituted or a benzene ring which may be substituted; Y is a hydroxy group, a cyano group, or an acetyl group; Z is CH or C-Y and r is 0 or 1.

Examples of particularly preferred classes of compounds represented by formula (II) include:

- (1) those wherein R is methyl group, Y is CH₃O-CO- group or CH₃CH₂O-CO- group, Z is N, p is 0, q is 1, r is 0 or 1 and Y is in 3-position of the piperazine ring;
- (2) those wherein R is methyl group, Y is methyl group, benzyl group or acetyl group, Z is N, p is 1, q is 0, r is 0 or 1 and Y is in 4-position of the piperazine ring;
- (3) those wherein R is methyl group, Y is methyl group, Z is N, p is 1, q is 0, r is 1 to 3 and Y is in 3-, 4-, or 5-position of the piperazine ring;
- (4) those wherein R is methyl group, Y is hydroxyl group or cyano group, Z is CH, p is 1, q is 0, r is $\dot{0}$ or 1 and X and Y are attached on the same carbon atom;
- (5) those wherein R is methyl group, Y is hydroxyl group, cyano group or acetyl group, Z is C-Y, p is 0, q is 1 and r is 1.

Examples of preferred compounds of the present invention are shown in the tables below. However, the scope of the present invention is not limited to the following compounds.

Table-1		·				
No.	R1	R2	R3	R4	R5	R6
XA1	CH3-	H	H	CH3-	Η	Н
XA2	CH3-	Н	H			H
XA3	CH3-	Н	Н	<u> </u>	H	H
XA4	CH3-	H 	Н	Y'	н	Н
XA5	СН3-	Н	н	~	H	H
XA6	снз-	н	н	人、	н .	н
XA7	СН3-	н	н	$\uparrow \uparrow$	Н	н
XA8	снз-	Н	н	*	Н	н
XA9	снз-	н	Н	~~`	н	Н.
XA10	CH3-	н	н	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	н
XA11	CH3-	н	н	人 人	Н	н
XA12	снз-	н	н	7	н .	H .
XA13	снз-	Н	н	\\\\	Н	Н
XA14	снз-	н	н	L~~_	Н	н
XA15	снз-	Н	н	~~~``	н	н
XA16	снз-	н	н	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	н
XA17	снз-	Н	н	n-C8H17-	н	н
XA18	снз-	н	н	L~~~	H .	н
XA19	снз-	н	н	Qu	н	н
XA20	снз-	н	н		н	н
XA21	снз-	н	н	Q	н .	н
XA22	снз-	н	н	D-1	н	н
XA23	СН3-	н	н	\Diamond -1	н	н
XA24	снз-	н	н	○ +	н	н
XA25	снз-	н	н	\bigcirc -1	н	н

PCT/JP2004/004320

No.	R1	R2	R3	R4	R5	R6
XA26	снз-	н	н	\bigcirc	н	н
XA27	СН3-	н	н		н	н
XA23	снз-	н	н	F	н	н
XA29	CH3-	Н	н		Н	н
XA30	снз-	н	н	F-()-1	н	H
XA31	снз-	н	н	CI C)-1	н	н
XA32	снз-	н	н	CI.	н	н
хазз	снз-	н	н	CI—⟨	н	н
. XA34	CH3	н	Н	Br C>⊸{	н	н
XA35	снз-	н	н	Br.	н	н
XA36	CH3-	н	н	Br-C>-{	н .	н
XA37	СН3-	н	н		н	н
XA38	снз-	Н	н	<u> </u>	н	н
XA39	CH3-	Н	н		н	н
XA40	CH3-	н	н	CH₃	н	н
XA41	СН3-	Н	н	H ₃ C	н	н
XA42	снз-	H	н	H3C-{}-{	н	н
XA43 .	CH3-	н	н	C ₂ H ₅ —{	н	н
XA44	СН3-	н	Н	n-C ₃ H ₇ -	н	н
XA45	снз-	н	н	n-C ₄ H ₉ —	Н	н
XA46	СН3	н	н	OH ○	н	н
XA47	СН3-	н	н	HO HO	н	н

No.	RI	R2	R3	R4	R5	R6
140.	 '''	12	INS.		KJ	100
XA48	CH3-	н	н	HO-{ }-{	н	н
XA49	CH3-	н	н		н	н
XA50	снз-	н	H	H₃CO	н	н
XA51	снз-	Н	н	H³CO-{}-{	н	н
XA52	снз-	н	Н	C ₂ H ₅ O-{}	Н	н
XA53	CH3-	н	Н	n-C₃H ₇ O-{_}{	Н	Н
XA54	снз-	н	н	n-C ₄ H ₉ O-	н	н
XA55	СН3-	н	н	NO ₂	Н	Н
XA56	снз-	н	н ,	O₂N △ →	Н	Н
XA57	снз-	н	н	O ₂ N-{	н	Н
XA58	снз-	н	н	CN C	н	н
XA59	снз-	H	н	NC	Н	н
XA60	СН3-	н	н	NC-{}	Н	н
XA61	снз-	н .	н	CF₃	н	н
XA62	снз-	н	н	F ₃ C	н	н
X V 63	снз-	H	н	F ₃ C-{	н	н
XA64	снз-	Н	н	COOH	н	н
XA65	снз-	Н	н	HOOC \\\\\\\\\	Н	Н
XA66	снз-	Н	Н	HOOC-{}	Н	н
XA67	снз-	н	Н	CO ₂ Me	Н	Н
XA68	снз-	н .	н	MeO ₂ C △	Н	н
XA69	снз-	Н	н	MeO ₂ C-{}	н	н

PCT/JP2004/004320

No.	R1 .	R2	R3	R4	R5	R6
XA70	снз-	н	н	CO ₂ Et	н	н
XA71	сна-	н	н	EtO ₂ C	н	н
XA72	снз-	н	н	EtO ₂ C-	н	н
XA73	снз-	н	н	SMe	н	Н
XA74	СН3-	н	н	MeS	н	н.
XA75	СН3-	н	н	MeS-()-(Н	Н
XA76	снз-	Н	н	SO₂Me	Н	н
XA77	снз-	н	н	MeO₂S	н	н
XA78	СН3-	н	н	MeO ₂ S-{}-{	н	н
XA79	снз-	н	н	NH ₂	н	н
XA80	снз-	н .	н	H ₂ N	н	. н
XA81	снз-	н .	Н	H ₂ N-{}-{	н	н
XA82	снз-	н	н	NMe ₂	Н	н
XA83	СН3-	н	н	Me ₂ N	н	н
XA84	снз-	н .	н	Me ₂ N-{	н	н
XA85	снз-	н	н		н	н
XA86	снз-	н	н	CC,	н	Н
XA87	СН3-	н	н	N -	н	Н
XA88	снз-	н	н.	HN	н	Н
XA89	снэ-	н	н	(D)	н	н
XA90	снз-	н	н	02	н	н
XA91	снз-	н	н	S. I	н	н

PCT/JP2004/004320

No.	R1	R2	R3	R4	R5	R6
XA92	CH3-	н	Н	\$\$\frac{1}{2}	н	Н
			<u> </u>	ļ		"
XA93	СН3-	н	н	HN	 H	н
XA94	СН3-	н	Н	HN	н	н
XA95	СН3-	н	н	HN	н	н
XA96	CH3-	H	н	\$\frac{1}{2}	Н	н
XA97	СН3-	н	н	and y	н	н
XA98	СН3-	н	н	1	н	н
XA99	снз-	н	н	NO S	н .	н
XA100	снз-	Н	н	S _N	н	н.
XA101	CH3-	Н	Н	\$5,	н	н
XA102	снз-	н .	н	N-S	н	H
XA103	снз-	н	н	6. N	Н	н
XA104	снз-	Н	н .		Н	н
XA105	снз-	н	Н	N.S.,	Н	н
XA106	СН3-	н	н	S,	Н	н
XA107	СН3	H	н	SY.	н	н
XA108	снз-	н	н	rs,	Н	Н
XA109	снз-	н	Н	CN-1	нү	н
XA110	СН3-	н	н	₩ 	Н	н.
XA111	снз-	Н	н	N)-I	н	н
XA112	снз-	н	н	€N-4	н	н
XA113	CH3-	н	н	N. H	Н	н

No. R1 R2 R3 R4 R5 R6 XA114 CH3- H	
XA115 CH3- H<	
XA116 CH3- H<	
XA117 CH3- H<	
XA117 CH3- H<	
XA119 CH3- H	
XA120 CH3- H<	- -
XA121 CH3- H H H H H H H H H H H H H H H H H H	
XA122 CH3- H H H H H H H H H H H H H H H H H H	
XA123 CH3- H H H TO H H XA124 CH3- H H TO H H XA125 CH3- H H TO H H XA126 CH3- H H H	
XA124 CH3- H H TO H H XA125 CH3- H H H TO H H	
XA125 CH3- H H 1 H 1 H H H	
XA125 CH3- H H 1/2 H H XA126 CH3- H H H	
	_
XA127 CH3- H H H	
XA128 CH3- H H H	
XA129 CH3- H H	
XA130 CH3- H H TT3 H H	
XA131 CH3- H H 1/CTS H H	
XA132 CH3- H H TS H	
XA133 CH3- H H (I)N H	
XA134 CH3- H H H H	
XA135 CH3- H H T H	

No.	R1	R2	R3	R4	R5	R6
XA136	CH3-	н	н		H 	Н
XA137	СН3-	н	н	Ţ,	н	H .
XA138	снз-	н	н		н	н
XA139	CH3-	Н	н	Č,	н .	н
XA140	СН3-	н	н	T N	Н	Н
XA141	СН3	н	н		н	н
XA142	СН3-	н	н	Š,	Н	н
XA143	снз-	н .	н	'CI'	Н	н
XA144	снз-	н .	н	, CC	н	н
XA145	СН3-	Н	н	T 3	Н	H
XA146	снз-	н	Н	O'S'	Н	н
XA147	СН3-	н	н	J.	Н	н
XA148	снз–	Н	Н	TO!	н	Н
XA149 -	снз–	н	Н	, CF	н	н
XA150	СН3	н	н	Ž.	н	н
XA151	снз-	H 	Н		н	н
XA152	снз-	н	н		Н	н
XA153	снз-	н	н	, COG	н	н
XA154	CH3-	Н	н	,CC)	Н	н
XA155	СН3	н	н	Ğ.	Н	н
XA156	снз-	н	Н	Q.	н	н
XA157	CH3-	н	Н	Ğ.	н	н

No.	R1	R2	R3	R4	R5	IR6
XA158	снз-	н	н	(Ciù	н	Н
XA159	снз-	н	н	, CI'N	н	Н -
XA160	снз-	н	н	ÇŢŷ ^N	н	н
XA161	снз-	н	н	O'S	н	н
XA162	СН3-	н .	Н	Fil	Н	Н
XA163	СН3-	Н	н	F	н	н
XA164	снз-	Н	н	Di,	н	н
XA165	снз–	н	н	G G	н	Н
XA166	снз-	Н	н .	مرائب م	н	н
XA167	снз-	Н	н	Ji,	н	н
XA168	снз-	Н	н	Br Ö	н	н
XA169	CH3-	н	н	Br	н	н
XA170	CH3-	Н	Н	, Oi,	н	н
XA171	снз-	н	н	CHÝ.	н	н
XA172	снз-	Н	н	H3C/3/3	н	н
XA173	снз-	н	н	, Oly	н	н
XA174	СН3-	н ,	н	CHIO	н	н
XA175	снз-	н	н	H ₃ CO ()	н	н
XA176	CH3-	н	н		н	н
XA177	СН3-	н	н	The state of the s	н	н
XA178	СН3-	Н	н .	02N	н	н
XA179	снз-	н	н		н	н

No.	R1	R2	R3	IR4	R5	R6
	OLD.			R4 GRO		1
XA180	CH3-	н	H		Н	н
XA181	снз-	н	н	HO,	н	н
XA182	снз-	Н	н		Н	н
XA183	снз-	н	н	NHO	н	Н
XA184	снз-	н	н	Hangi	н	Н
XA185	СН3-	н	н		н	н
XA186	снз-	н	Н	ON O	н	н
XA187	снз-	н	Н	NC C	н	н
XA188	снз-	н	н	NC DI	H	н
XA189	CH3-	Н	н	Qi,	н	н
XA190	снз-	н	н	O L	н	н
XA191	снз-	H	н	<u>}</u> ,	Н	н
XA192	снз-	н	н	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	н
XA193 .	снз-	н	н	~\h^	н	н
XA194	снз-	н	н	\f	H	н
_ XA195	СН3-	Н	H:	A.P.	н	н
XA196	снз-	н	н	1	Н	H
XA197	снз-	Н	н	₹	Н	н
XA198	снз–	н	н	~~~~	н	H
XA199	снз-	н	н	~~°,	Н	н
XA200	снз-	Н	н	l	н	н
XA201	снз-	н	Н	√ ² ,	н	н

No.	R1	R2	R3	R4	R5	R6
XA202	CH3	н	н	[7 ² / ₂ ,	н	н
XA203	CH3-	H-	н	~ in	н	н
XA204	CH3-	н	н	~ i,	н	н
XA205	CH3-	H³CO_≻	н	Н	Н	н
XA206	СН3-	O H₃CO ≻	н	снз-	н .	н
XA207	снз-	O H₃CO ≻	н	снзсн2-	H.	н
XA208	CH3-	O H₃CO >	н	^ <u>`</u> `	н	н
XA209	СН3-	H₃CO yr	н	Y	н	H
XA210	СН3-	H³CO_^≻ Ö	Н	\\\	н	Н
XA211	СН3-	H ₃ CO 'y	н	人、	Н	н
XA212	снз-	H³CO_≻ Ö	Н	~~`	Н	н
XA213	снз-	H³CO_>	н	丫	н	Н
XA214	СН3-	O H₃CO >⁄	н	^^\\	н.	Н
XA215	снз-	H³CO_≻ O	н	Y~~`	н	Н
XA216	СН3-	H³CO, ≻ Ö	Н	人人	Н	н
XA217	СН3	- H³CO_≻	Н	7	н	Н
XA218	СН3-	H³CO_^\> O	н	~~~	н	Н
XA219	снэ-	H³CO_≻ Ö	Н	人小	Н	н
XA220	снз-	H³CO_>	н	~~~``\	н	Н
XA221	снз–	O H³CO, ≻	н	Y~~~	н	Н
XA222	снз-	Q H₃CO ≻	н	n-C8H17-	н	Н
XA223	снз-	H³CQ_\ O	Н	L~~~	н	Н

No.	RI	R2	R3	R4	R5	R6
XA224	снз-	H³CO, ⁵	н	Q	н	Н
XA225	снз-	H³CO, ≻	н		н	н
XA226	CH3-	H³CO, λ	н	Q	н	н
XA227	снз-	H ₃ CO 'y	н	⊳ ⊣	н	Н
XA228	снз	O H₃CO ≻	н	\Diamond -1	н	н
XA229	CH3-	P³CO, ≻	н		н	н
XA230	снз-	O H₃CO ≻	н	\bigcirc	н	н
XA231	снз-	H³CO_≻	н	OH	н	Н
XA232	снз-	H ₃ CO 'y	н		н	н
XA233	снз-	H₃CO →	н		н .	Н
XA234	СН3	H³CO, ³ .	н	<u></u>	Н	н
XA235	снз-	O H₃CO →	н	F-()-i	н	н
XA236	снз-	H3CO, A	н	CI	Н	Н
XA237	снз-	H³CO_≻ Ö	н	CI.	н .	н
XA238	снз-	H₃CO ≻	Н	c 	н	н
XA239	С Н3-	H³CO, λ Ö	н	Br —{	н.	н
XA240	снз-	H³CQ_≻	н	Br.	н .	н
XA241	снз-	H³CO_≻ O	Н	Br-⟨{-{\bar{\chi}}}	Н	н
XA242	СН3-	H³CO, λ.	н	СН₃	н	н
XA243	СН3-	H³CO, ≻	н	H₃C →	н	Н
XA244	СН3-	H ₃ CO >	Н	H ₃ C-{}-{	Н	н
XA245	CH3-	O H₃CO ≻	н	C ₂ H ₅ -{}-{	н	н

\bigcirc	
· f	

No.	R1	R2	R3	R4	R5	R6
XA246	CH3-	H³CO, ≻	н	n-C ₃ H ₇ -	н	н
XA247	снз-	H³CO_}>	н	n-C ₄ H ₉ -	н	н
XA248	снз-	H³CO,≻	н	OCH₃	н	н
XA249	снз-	H³CO_≻	н	H ₃ CO	Н	н
XA250	снз-	H₃CO >	Н	H ₃ CO-{}-{	н	н
XA251	CH3-	H³CO,≻	н		н	н
XA252	снз-	H ₃ CO [*] >	н	n-C₃H ₇ O-⟨}	ł H	Н
XA253	СН3-	H₃CO →	Н	n-C ₄ H ₉ O-	ł H	н
XA254	снз-	H³CO, ≻	Н	NO ₂	н	н
XA255	СН3	O H₃CO >⁄	Н	O ₂ N	н	н
XA256	CH3-	P³CO, ≻	Н	02N-	н	н
XA257	СН3-	H³CO,≻	Н	CN	н	н
XA258	CH3-	O H₃CO >	н	NC	н	н
XA259	CH3-	O H₃CO →	н	NC-{}-{	н	Н
XA260	снз–	O H₃CO →	н	NMe ₂	н	н
XA261	снз-	H₃CO →	н	Me ₂ N	н	н
XA262	снз-	O H₃CO ≻	н	Me ₂ N-	н	Н
XA263	снз-	H₃CO >	н	00	н	н
XA264	снз-	H³CO,≻	н	CC,	Н	н
XA265	снз-	H³CO,≻	н	O'S.	н	н
XA266	снз-	O H₃CO >	н	Qi,	н	Н
XA267	СН3-	O H₃CO >	н	Mi,	н	н

PCT/JP2004/004320

No.	R1	R2	R3	R4	R5	R6
XA268	снз-	H³CO_≻	Н	R4 O ———————————————————————————————————	н	н
XA269	снз-	O H₃CO ≻	Н	Ŷ,	н	н
XA270	CH3-	O C₂H₅O →	н	н	н	н
XA271	CH3	C₂H₅O y	Н	снз-	н	н
XA272	снз–	C₂H₅O →	Н	снзсн2-	Н	н
XA273	снз-	C₂H₅O ≻	н	^\`\	Н	н
XA274	снз-	C⁵H²O, ≻	Н	<u> </u>	н	н
XA275	снз-	O C₂H₅O ≻	Н	~ ~	н	н
XA276	снз–	C₂H₅O >≻	н	<u> </u>	н	н
XA277	снз–	C⁵H²O, O	Н	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	н
XA278	СН3-	C₂H₅O →	н	<u> </u>	н	н
XA279	снз–	C ² H ² O, 3,	н	~~``	н	н
XA280	снз–	C ² H²O√≻	H	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	н
XA281	снз–	C2H5O 7	Н	人 、	н	н
XA282	снз-	O C₂H₅O →	Н	7	н	н
XA283	снэ-	· C ² H ² O ₄ > .	н	~~~``	н	н
XA284	снз-	C₂H₅O [™] >	н	<u></u>	н	н
XA285	СН3	O C₂H₅O >≻	Н		н	Н
XA286	снз-	C⁵H²O, ≻ Ö	н	Y~~~	н	н
XA287	снз-	C ₂ H ₅ O [™] >	Н	n-C8H17	н	н
XA288	СН3	C2H2O_>	н	L	н	H
XA289	снз-	C2H2O, >	Н	Qu	н	Н

No.	R1	R2	R3	R4	R5	R6
140.	<u> ``</u>	^	Irw	一	 	INU .
XA290	СН3-	C ² H²O, ³ .	н	O',	н	н
XA291	снз-	C ² H ² O ₄ >,	н	0	н	н
XA292	снз-	C2H5OT	н	D	н	н
XA293	снз-	C ² H²O, λ.	н	\Diamond	н	н
XA294	снз-	O C₂H₅O →	Н	\bigcirc	н	н
XA295	CH3-	C ₂ H ₅ O >	н	$\bigcirc \dashv$	н	н
XA296	СН3	O C₂H₅O^≻ O	н	\bigcirc	н	н
XA297	снз-	C ₂ H ₅ O >	Н		н	н
XA298	снз-	C ₂ H ₅ O >	н		н	н
XA299	СН3-	O C₂H₅O →	Н		н	н .
XA300	снз-	C ₂ H ₅ O >	н	F-()-1	н	н
XA301	снз	C ₂ H ₅ O √	н	CI	н	н
XA302	СН3-	O C₂H₅O ≻	н		н	н
XA303	CH3-	C ₂ H ₅ O y	н	c 	н	н
XA304	CH3-	C ₂ H ₅ O ¹	н	Br	Н	н
XA305	снз-	C ₂ H ₅ O y	н	Br.	н	н
XA306	СН3-	C2H2O	Н	Br—	Н	н
XA307	CH3-	C₂H₅O >	н	CH₃	Н	н
XA308	снз-	C ² H²O, ≻, Ö	н .	H³C	Н	н
XA309	снз-	C ₂ H ₅ O >	Н	H ₃ C-{_}-{	н	н
XA310	СН3-	C ₂ H ₅ O y	н		н	н
XA311	CH3-	O C₂H₅O У	Н	n-C ₃ H ₇ -	н	н

No.	R1	R2	R3	R4	R5	R6
XA312	снз-	C ₂ H ₅ O >	Н	n-C ₄ H ₉ -	Н	н
XA313	снз-	C ₂ H ₅ O 7	Н	OCH₃	н	н
XA314	снз-	C ₂ H ₅ O /	Н	H ₃ CO	н	Н
XA315	снз-	C ₂ H ₅ O ¹ /r	н	H³CO-{_}-{	н	н
XA316	снз-	C ₂ H ₅ O ² /r	Н		н	Н
XA317	СН3	C ₂ H ₅ O 7	н	n-C₃H ₇ O- ⟨ }-{	н	Н
XA318	снз–	C ₂ H ₅ O ² /	н	n-C ₄ H ₉ O-⟨}	н	н
XA319	СН3-	O C ₂ H ₅ O >	н	NO ₂	Н	Н
XA320	снз-	C ₂ H ₅ O	н	O ₂ N	н	н
XA321	снз-	C ₂ H ₅ O [™] >r	н	02N-{}-	н	н
XA322	снз–	O C₂H₅O →	н	CN	н	н
XA323	снз-	C ₂ H ₅ O y	н	NC	н	н
XA324	снз-	C ₂ H ₅ O y	н	NC-()-1	н -	н
XA325	снз-	C₂H₅O y	н	NMe ₂	Ĥ	Н
XA326	снз-	C⁵H²O, λ	н	Me ₂ N	н	H
XA327	снз	C₂H₅O >	н	Me ₂ N-{}	н.	н
XA328	CH3-	C₂H₅O ^Ŭ ⁄r	н		н	н
XA329	CH3-	C ₂ H ₅ O >	н	CCT'	н	н
XA330	СН3-	C2H2O_>	н	ر ا	н	н
XA331	снз-	C>H ₂ O >	н	Qi,	н	н
XA332	снз-	C ₂ H ₅ O ¹	Н	OO',	н	н
XA333	СН3	C ₂ H ₅ O [^] >	н	Q,	н	н

No.	R1	R2	R3	R4	R5	R6
1		0		, l		1
XA334	CH3-	C₂H₅O [™] ≻	н	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	H
XA335	снз–	СН3-	н	н	н	н
XA336	CH3-	снзсн2-	H	H	н	Н
XA337	СН3-	◇	Н	н	н	н
XA338	СН3-	\rightarrow	н	н	н	н Н
XA339	снз	\ \\	Н	Н	н	н
XA340	снз-	人人	Н	н	Н	н
XA341	снз–		Н	н .	н	Н
XA342	снз–	丫	Н	н	н	н
XA343	СН3	^^\	Н	н	Н	H
XA344	СН3-	Y	н	H	н	н
XA345	СН3	X	Н	н	Н	н
XA346	снз-	γ	Н	н	н .	н
XA347	СН3-	~~^\	н	н	н .	н
XA348	снз-	L~~	н	H	Н	н
XA349	снз-	^^^\	H	н	н	н
XA350	CH3-	Y~~~	 Н	н	н .	Н
XA351	СН3-	n-C8H17-	н	н .	н	Н
XA352	снз-	L	н	Н	н	н
XA353	СН3-	Qr.	Н	н .	н	н
XA354	снз-	0~~	н	н	н	н
XA355	снз-	Q	Н	н	Н	Н

No.	R1	R2	R3	R4	R5	R6
XA356	CH3-	\triangleright	Н	Н		
24330	Unis-	V 3	n 	п	Н	H
XA357	снз-	\Diamond -I	Н	н	н	н
XA358	снз-	$\bigcirc \dashv$	Н	н	н	н
XA359	снз–	\bigcirc \dashv	Н	н	н	н
XA360	снз-	\bigcirc H	Н	н	н	H
XA361	снз–		н	н	н	н
XA362	СН3-	\bigcirc	H	н .	н	н
XA363	снз-	<u></u>	H	н	н	н
XA364	СН3		Н	н	н	н
XA365	СН3-		Н	н	н	Н
XA366	снз-	F-C>-i	Н	Н	н	н
XA367	снз–		Н	н .	н	н
XA368	снз-	F{_}!!!{	н	н	Н	н
XA369	снз-	CI C	н	н	н	н
XA370	CH3-	CI	н	н	н	н
XA371	CH3-	CH	н	н	н	н
XA372	CH3-	c (>- 1	н	н	Н	н
XA373	снз–	CI()m-{	Н	Н	н	н
XA374	СН3-	Br	Н	н	Н	н
XA375	СН3-	Br.	н	Н	Н	н
XA376	CH3	Br-{}-{	н	н	Н	н
XA377	СН3	Br—{}	н	н	н	н

		,				
No.	R1	R2	R3	R4	R5	R6
XA378	CH3-	Br-{>n-{	н	н	н	н .
XA379	CH3-		н	н	н	H
XA380	CH3-		н	н	н	н
XA381	снз-		н	Н	Н	н
XA382	снз-	CH₃	Н	Н	н	H
XA383	снз-	H₃C ————————————————————————————————————	н	н	Н	H,
XA384	снз-	H³C-{_}-{	н	н	н	Н
XA385	снз-	C ₂ H ₅ -{_}-{	н	н	н	Н
XA386	снз-	n-C ₃ H ₇ -	н	н	н	н
XA387	снз-	n-C ₄ H ₉ -	н	Н	Н	Н
XA388	снз-	OH OH	н	Н	н	н
XA389	CH3-	HO HO	Н	Н	Н	н ,
XA390	CH3-	но-{∑-} .	Н	H	н	Н
XA391	CH3-	OCH ₃	н	Н	н	н
XA392	CH3	H₃CO →	Н	Н	Н	н
XA393	снз–	H³CO- ⟨ }—{	н	н	н	н
XA394	снз-	H ₃ CO-()-1	н	Н	Н	н
XA395	снз-	H3CO-{\bigs\minus	н	Н	Н	н
XA396	снз-	OC ₂ H ₅	Н	Н	Н	н
XA397	снз–	C₂H₅O ☐	н	Н	Н	н
XA398	СН3-	C ₂ H ₅ O-{}	н	н	н	н
XA399	CH3	n-C ₃ H ₇ O-	н	н	н	н

No.	RI	R2	R3	R4	R5	R6
	T	n-C ₄ H ₉ O-{_}-{				
XA400	CH3-		н	Н	H	Н
XA401	снз-	NO ₂	н	н	н	н
XA402	снз-	O₂N ————————————————————————————————————	н	н	н	н
XA403	снз-	O ₂ N-⟨}-	н	Н	н	н
XA404	CH3-	CN	н	н	н	н
XA405	CH3-	NC \	Н	н	Н	Н
XA406	СН3	NC-	н	н	Н	Н
XA407	СН3-	CF₃	Н	н	н	н
XA408	снз-	F ₃ C	Н	н	н	н
XA409	СН3-	F ₃ C-{}-{	н	н	н	н
XA410	снз-	_соон {}	Н	н	н	н
XA411	снз-	HOOC.	H	н	н	н
XA412	снз-	H00C-{\right\}-{	н	н	н	н
XA413	снз-	CO ₂ Me	н	н .	н	Н
XA414	CH3-	MeO ₂ C △	н	н	н	н
XA415	снз-	MeO ₂ C-{	н	н	н	н
XA416	снз-	CO ₂ Et	н	Н	н	н
XA417	снз-	EtO ₂ C	н	н	н	н
XA418	снз-	EtO ₂ C-{}	н	н	н	н
XA419	снз–	SMe	н	н	н	н
XA420	снз-	MeS	н	Н	н	н
XA421	снз-	MeS-{_}	н	Н	н	н .

No.	R1	R2	R3	R4	R5	R6
XA422	снз-	SO₂Me	н	н	н .	н
XA423	снз-	MeO ₂ S	н	н	н	н
XA424	снз-	MeO₂S-{_}	н	Н	н	н
XA425	снз-	NH ₂	н	н	Н	н
XA426	снз-	H ₂ N	н	Н	н	н .
XA427	снз-	H ₂ N-()-(н	Н	н	н
XA428	снз–	NMe₂	н	Н	н	н
XA429	снз-	Me ₂ N	н	Н	н	н
XA430	снз-	Me ₂ N-	Н	н	Н	н
XA431	снз-		н,	Н	Н	н
XA432	снз-	CHQ.	н	н	н	н
XA433	снз-	CH-(2)-1	н	н	н	н _
XA434	СН3- ·		н	н .	Н	н
XA435	СН3-		н	н	Н	н
XA436	СН3-		н	Н	н	н
XA437	снэ-		н	н	Н	Н
XA438	CH3-		н	н	н .	н
XA439	снз-		н	H	н	Н
XA440	СН3-	H³CN N-	н	Н	н	Н
XA441	снз–	H3CN_N-{\}	н	н	н	н
XA442	снз-	H3CN_N-{}-	н	н	н	н
XA443	снз-	H₃C CH₃	н	Н	н	н

No.	R1	R2	R3	R4	R5	R6
XA444	CH3-	сн ₃ н₃с-{_}/-;	Н	н	<i>-</i> Н	Н
XA445	снз–	CH₃ ⟨∑→₁ H₃C	н	н	н.	н
XA446	СН3-	CH ₃ CH ₃	Н	н	н	н
XA447	СН3-	H ₃ C-(){	н	Н	н	Н
XA448	снз-	H ₃ C	Н	Н	н	н
XA449	снз-	F_F	н	Н .	Н	Н
XA450	СН3-	F-()-;	H	н	Н	н
XA451	CH3-	Ç ∫	Н	Н	н	н
XA452	CH3-	€ F	Н	н .	н	Н
XA453	CH3-	F	Н	Н	н	Н
XA454	сӊз-	F F	Н	Н	Н	H
XA455	СН3-	a_a \	Н	н	н	H
XA456	CH3-	α-{¯};	н	Н	Н	Н
XA457	СН3-	a a	Н	Н	н	Н
XA458	CH3-	a G a	Н	н	н	Н
XA459	CH3-	a, a-⟨¯}-;	н	н	Н	н

No.	RI	R2	R3	R4	R5	R6
XA460	снз	- a →	Н	н	Н	H
XA461	снз-	H₃CQ_OCH₃	Н	н	н	н
XA462	снз-	OCH ₃ H₃CO-⟨¯}→	Н	Н	Н	Н
XA463	снз-	OCH ₃	Н	Н	H [.]	Н
XA464	CH3-	OCH ₃ OCH ₃	н	Н	Н	Н
XA465	снз-	H₃CO-{}-;	Н	Н	Н	н

No.	R1	R2	R3	R4	R5	R6
XA466	СН3-	H ₃ CO	н	Н	Н	Н
XA467	СН3-	F_OCH ₃	н	н	Н	Н
XA468	СН3-	OCH ₃	н	Н	Н	Н
XA469	снз-	OCH ₃	н	Н	Н	н .
XA470	СН3-	OCH ₃	Н	Н	н	н
XA471	снз-	OCH ₃ F	Н	Н	Н	н
XA472	CH3-	OCH ₃ F	Н	Н	Н	н
XA473	CH3-	H₃CQ F-{\backsquare}	н	Н	н	н
XA474	снз-	H₃CQ F	Н	н	н	H
XA475	СН3-	H₃CO_F	Н	н	н	Н
XA476	СН3	H₃CO-{\$\frac{F}{2}}}	н	Н	Н	н
XA477	СН3-	H ₂ CO F	Н	н	Н	н
XA478	СН3-	H ₃ CO-{}-}-{	н	Н	Н	Н
XA479	снз-	a oaн₃	Н	Н	н	н
XA480	СН3-		н	Н	Н	н
XA481	СН3-	CI COCH ³	н	н	Н	н

Na.	R1	R2	R3	R4	R5	R6
XA482	снз-	a ⊕∺ ocн²	Н	н	Н	н
XA483	снз-	H³CO →	н	н	н	н
XA484	СН3-	H ₂ CO	н	н	Н	н
XA485	снз-	H3CO_CI	н	н	н	н
XA486	СН3-	H₃CO-{\bigci}	н	н	н	Н
XA487	снз-	H ₃ CO	н	Н	н	Н

No.	RI	R2	lp2	In.	IR5 ·	Inc
110.	17.1	CI,	R3	R4	R5 ·	R6
XA488	снз-	H³CO-{}}	Н	н	н	н
XA489	снз-	F_CH ₃	Н	Н	н	Н
XA490	СН3-	CH ₃	Н	н	Н	Н
XA491	СН3-	CH₃	Н	Н	н	н
XA492	снз-	CH₃ F	н	н	н	Н
XA493	СН3-	H ₃ C F—_}_{	Н	Н	Н	н
XA494	СН3-	H ₃ C F	н	н	н	н
XA495	снз-	H₃C F	Н	н	н	Н
XA496	снз-	H₃C-{∑}-}	Н	н	Н	Н
XA497	снз-	H₃c F	Н	н	н	н
XA498	снз-	H³C-⟨¯}→	Н	Н	н	н
XA499	СН3-	L / '	н	н	н	H
XA500	СН3-	OCH₃ Br—⟨□}→	H	н	Н	Н
XA501	снз-	OCH ₃ Br	Н	н	Н	Н
XA502	снз-	OCH ₃ Br	Н	н	Н	н
XA503	CH3	H₃CQ Br—⟨□}—;	н	н	н	н

	ln4		100	R4	R5	R6
No.	R1	R2 H₃CQ	R3	K4	160	NO
XA504	снз-	Br Br	н	Н	н .	н
XA505	CH3-	H₃CO_Br	н	Н	н	н
XA506	СН3-	Br H₃CO-⟨\bigci}	Н	н	Н	Н
XA507	СН3	н₃со	Н	н	н	H
XA508	CH3-	Br H₃CO-⟨¯)¦	H	н	Н	Н
XA509	снз-	(//(_) H*co	Н	н ,	н	н

No.	RI	R2	R3	R4	R5	R6
XA510	CH3-	OCH ₃	Н	Н	Н	н
XA511	CH3-	Cn-⟨_}och₃	н	H	Н	н
XA512	CH3-	H ₃ CO \rightarrow N	Н	н	н	н
XA513	CH3-	H₃CO ○N-(□);	Н	н	Н	Н
XA514	снз-	Ch OcH³	Н	н	н	Н
XA515	СН3-	F—(S) F	н	н	н	Н
XA516	СН3-	F—CH ₃	Н	Н.	Н	Н
XA517	СН3	H₃CO-{\}_{F}	Н	н	н	н
XA518	СН3-	OCH ₃ F-C->	Н	н	н	Н
XA519	снз–	H ₃ CO-{\sum_\coth_3} OCH ₃	н	н	н	Н
XA520	снз–	c⊢<; a	Н	н	н	Н
XA521	снз-	0CH ₃ CI-{	Н	н	Н	Н
XA522	снз–	H₃∞-<__\; a	н	Н	н	н
XA523	СНЗ-		Н	н	н	Н

No.	RI	R2	R3	R4	los	T==
XA524	CH3~	H³CO-{\bigs_H} OCH3	Н	Н	R5 H	R6 H
XA525	снз-	OCH ₃	Н	н	н	н
XA526	снз-	H ₃ CO	н	н	Н	н
XA527	СН3-	н₃∞-⟨∑-⟨∑-;	Н	н _	н	Н
XA528	снз-	OCH ₃ \t	н	н	н	н
XA529	снз-	H-00 ,	Н	н	н	Н
XA530	СН3-	H₃∞-	Н	Н	н	н
XA531	СН3-	OCH ₃	Н	н	Н	н

No.	R1	R2	R3	R4	R5	R6
XA532	СН3-	H ₂ CQ	н	н	H	Н
XA533	снз-	H ₃ CO-{	н	Н	н	н
XA534	снз-		Н	Н	Н	н
XA535	снз-		Н	н	н	Н
XA536	снз-	F-()-()-;	Н	н	н	н
XA537	снз-		н	н	н	н
XA538	СН3-		Н	Н	н	н
XA539	снз-	F-()-()	Н	Н	н	Н
XA540	снз–	Ø-0	н	н	н	н
XA541	снз-	\$ -\$	Н	н	Н	н
XA542	CH3-		н	н .	Н	н
XA543	снз-	CP	н	н -	Н	H.
XA544	снз–	~~	Н	Н	Н	н
XA545	СН3	1 H 1	н	н	Н	н
XA546	СН3-	1 ' 1	Н	Н	н	н
XA547	С Н3-		Н	н	Н	Н

No.	RI	R2	R3	R4	R5	R6
XA548	СН3-	67,	н	Н	н	н
XA549	СН3-	(S)	Н	Н	H	н
XA550	снз-	\$7,	Н	н	н	н
XA551	Снз–	HNN	Н	н	н	н
XA552	СН3-	HN	Н	н	н	н
XA553	СН3	HN.	Н	н	н	н

No.	R1	R2	R3	R4	R5	R6
XA554	снз-	02 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	н	Н	н	Н
XA555	снз–	.	Н	н	н	н
XA556	снз–	i '	Н	Н	Н	н
XA557	снз-		н	н	н	н
XA558	снз-	"	н	н	Н	Н
XA559	снз-	1 '	Н	н	Н	Н
XA560	снз–		Н	н	н	н
XA561	снз-		н	н	H	Н
XA562	снз–	0 ,	н	H .	н	Н
XA563	СН3-	1 '	н	н	н	Н
XA564	снз-	,	н	н	H	Н
XA565	снз-	J ,	н	н	н	н
XA566	снз-	2	Н	н	н	н
XA567	снз-	CN-1	Н.	н	н	H
XA568	сн3-		Н	н	н	н
XA569	СН3-		Н	н .	н	Н
XA570	снз-		н	н	н	н
XA571	СН3-	N_N	H	н	н	н
XA572	СН3-	N-N-1	Н	н	н	н
XA573	СН3-		н	н	н	н
XA574	СН3-	CI)	Н	н	н	н
XA575	снз-		н	н	н	н

No.	R1	R2 ·	R3	R4	R5	R6
XA576	CH3-	(C)	н	н	Н	н
XA577	снз-	,OG	н	н	н	н
XA578	снз-	Ţ,	н	н	н	Н
XA579	CH3-		н	н	н	н
XA580	снз-		н	н	н	H.
XA581	снз-	Č;	Н	н	H	н
XA582	снз-	TO?	н	н	н	н
XA583	снз-	(CC),	н	н	н	н
XA584	снз-	Ĉ.	н	н	Н	н
XA585	снз-	CT}+	н	н	Н	н
XA586	снз-	O.	н	н	н	н
XA587	СН3-	Ţ.	н	н	н	н
XA588	снз-	T)	н	н	н	н
XA589	снз-	,C\\\	н	н	н	н
XA590	снз-	Ţ3	н	н	н	н
XA591	CH3-		н	Н	н	н
XA592	снз-	, T	н	н	н .	н
XA593	снз-		н	н	н	н
XA594	CH3-	,CT	н	н	н	Н
XA595	снз-	ÇÜ	н	Н	Н	Н
XA596	CH3-	CIN-1	н	н	н	н
XA597	снз-	ŢŅ,	н	н	н	н

	lot -	ID2	100	In a	los .	R6
No.	R1	R2	R3	R4	R5	KØ
XA598	CH3-		н	Н	н	Н
XA599	снз-		Н	Н	Н	H
XA600	снз–	J.	н	н	н	H
XA601	снз-	'CT'	Н	Н	н	н
XA602	СН3	, (I)	н	Н	н	H
XA603	СН3-		н	н	н	Н
XA604	снз-	(I)	н	Н	н	н
XA605	снз–	J.S	н	Н	н	н
XA606 .	СН3	'CI'	н	Н	н	н
XA607	СН3-	\Os	Н	Н	Н	н
XA608	снз-	Ţ ^N	н	Н	н	н
XA609	CH3-	©;	н	н	н	н
XA610	снз–		н	Н	Н	н
XA611	СН3-	103	н	н	Н	н
XA612	снз-	,CC	н	н	Н	н
XA613	снз-	Ţ,	н	н	Н	н
XA614	снз-	(T)	н	н	Н	н
XA615	снз-	Ţ,	н	H	Н	н
XA616	СН3	TOP	н	н	н	- H
XA617	снз-	,CT3 ^N	н	Н	Н	н
XA618	снз-	Ţ,	н	н	Н	Н
XA619	снз-	Ţ,	н	н	н ,	Н

				E	loc .	
No.	R1	R2	R3	R4	R5	R6
XA620	снз-	,CC	н	н	ห	н
XA621	СН3	TOP:	Н	Н	н	н
XA622	СН3-	ش	Н	н	н	н
XA623	снз-	СН3-	Н	снз	Н	н
XA624	снз-	снзсн2-	н	СНЗ	н	H
XA625	CH3-	∼ ^\	н	снз	Н	Н
XA626	СН3-	$ \uparrow $	Н	снз	н	Н
XA627	снз-	✓ ✓ .	Н	снз	Н	н
XA628	СН3-	人人.	н	снз	Н	Н
XA629	снз-	$\uparrow \uparrow$	н	снз	Н	H
XA630	CH3-	丫	н	снз	н	Н
XA631	снз-	~~``	н	снз	Н	н
XA632	снз-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	снз	Н	н
XA633	снз–	Xx	н	снз	н	н
XA634	снз-	7	н	снз	Н	н
XA635	снз-	~~~``	н.	снз	н	н
XA636	снз-		н	СНЗ	н	н
XA637	СН3-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	СНЗ	н	H
· XA638	снз-	Y~~~	Н	CH3	н -	Н
XA639	снз-	n-C8H17-	Н	СНЗ	н	н
XA640	СН3-	L	н	СНЗ	н	н
XA641	CH3-		н	СНЗ	н	н

No.	R1	R2	R3	R4	R5	R6
XA642	снз-	$\sim \sim$	Н	СНЗ		Н
XA643	снз-		H	СНЗ	Н	Н
XA644	снз-	$\triangleright \vdash$	Н	СНЗ	Н	н
XA645	снз–	\Diamond	н	СНЗ	Н	н
XA646	снз-	\bigcirc	H	CH3	н	н ————
XA647	снз-		Н	СНЗ	н	н
XA648	снз-	\bigcirc	н	CH3	н	Н
XA649	снз–		Н	СНЗ	н	н
XA650	СН3-	\bigcirc	н	СНЗ	н	н
XA651	СН3-		н	СН3	н .	н
XA652	СН3-	F .	Н	снз	н	Н
XA653	СН3		H	сн3	н	Н
XA654	снз-	F-()-1	н	снз	н	н
XA655	снз–	F-(>-1	н	снз	Н	н
XA656	снз-	F	н	снз	Н	н
XA657	снз-	CI	н	снз	Н	н
XA658	СН3-	CI	н	СНЗ	н	н
XA659	СН3-	cr-(н	снз	н	н
XA660	СН3	c⊢ (_ }–i	н	снз	н	Н
XA661	снз-	CI—(н	снз	н	Н
XA662	СН3-	Br ◯→	н	СНЗ	н	Н
XA663	CH3	Br.	н	снз	н	н

No.	RI	R2	R3	R4	R5	R6
			100	174	-	NO
XA664 .	снз-	Br-<	Н	снз	н	н
XA665	снз-	Br- ()-{	H	снз	н	Н
XA666	снз-	Br—C)···{	н	снз	н	н
XA667	снз-		н.	снз	н	н
XA668	снз-	<u></u>	н	СНЗ	н	н
XA669	СН3-		н	снз	н	н
XA670	снз-	CH₃	H	снз	Н	н
XA671	снз-	H₃C	Н	снз	н	н
XA672	снз-	H₃C-⟨}~	Н	снз	н	Н
XA673	снз-	C ₂ H ₅ -{}-{	H	снз	Н	н
XA674	СН3-	n-C₃H ₇ {_}}{	н	снз	н	н
XA675	СН3-	n-C ₄ H ₉ {}-{	н	снз	н .	Н
XA676	CH3-	он —	Н	снз	н	н
XA677 ·	СН3-	HO ————————————————————————————————————	н	снз	н	н .
XA678	СН3-	ļ	н	снз	Н	н
XA879	СН3-	OCH₃	н	СНЗ	н	Н
XA680	снз-	(_)-; H₃co (_)-; H₃co-(_)-;	н	CH3	н	н .
XA681	снз-	н₃со-{∑⊸і	н .	СНЗ	н	н
XA682	снз-	H³CO- ⟨ }~{ .	н	снз	н	Н
XA683	СН3-	H³CO- ⟨ }⊪{	Н	снз	н	H .
XA684	снз-	OC₂H₅	н	снз	Н	н
XA685	СН3-	C₂H₅O Ĉ_}⊣	н	снз	н	Н

No.	R1	R2	R3	R4	R5	R6
XA686	снз-	C ₂ H ₅ O-{	н	СНЗ	Н	н
XA687	снз-	n-C ₃ H ₇ O-{}-{	н	снз	н	н
XA688	СН3	n-C ₄ H ₉ O-	н	СНЗ	н	н
XA689	снз-	NO ₂	н	снз	н	н
XA690	снз-	O ₂ N	н	снз	Н	Н
XA691	снз-	O ₂ N-{}	н	СНЗ	н	н
XA692	снз–	CN	н	снз	н	н
XA693	снз-	NC	Н	СНЗ	н	н
XA694	CH3-	NC-{}	Н	снз	н	н
XA695	снз-	CF ₃	Н	СНЗ	н	н
XA696	СН3-	F ₃ C	Н	СНЗ	н	н
XA697	СН3	F ₃ C-_\	н	СНЗ	н	н
XA698	CH3-	COOH	н	СНЗ	н	н
XA699	СН3-	HOOC	н	снз	H ·	н
XA700	CH3-	H00C-{}{	н	снз	н	н
XA701	снз-	CO₂Me	н	снз	н	н
XA702	снз	MeO ₂ C △	н	СНЗ	н	н
XA703	снз-	MeO ₂ C-	н	снз	н.	н
XA704	снз-	CO₂Et	н	снз	Н	н
XA705	снз-	EtO ₂ C	н	СНЗ	Н	н
XA706	СН3-	EtO ₂ C-⟨_}-{	н	СНЗ	н	н
XA707	снз-	SMe	н	снз	н	Н

No.	R1	R2	R3	R4	R5	R6
XA708	СН3-	MeS	н	снз	н	н
XA709	СН3-	MeS-{}-{	н	снз	н	н
XA710	снз-	SO₂Me	н	снз	Н	н
XA711	СН3-	MeO ₂ S	н	снз	н	н
XA712	СН3	MeO ₂ S-{_}	н	снз	Н	Н
XA713	СН3~	NH ₂	н	снз	н	н
XA714	СН3-	H ₂ N	н	СНЗ	н	н
XA715	снз-	H ₂ N-{	н	снз	н	н
XA716	CH3-	NMe ₂	н	снз	н	н
XA717	СН3-	Me ₂ N ☐ →	н	снз	н	н
XA718	снз-	Me ₂ N-{}-{	н	снз	Н	н
XA719	CH3-		н	СНЗ	н	H
XA720	CH3-		н	СНЗ	Н	н
XA721	снз-	CH-(C)-1	н	СНЗ	н	н
XA722	СН3-		н	снз	Н	н
XA723	снз-		н	снз	н	н
XA724	СН3	\bigcirc + \bigcirc -i	н	снз	н	н
XA725	снз-		н	СНЗ	н	Н
XA726	СН3-		н	СНЗ	н	н
XA727	снз-		н	снз	н	н
XA728	СН3-	H3CN_N-<	н	снз	н	Н
XA729	снз-	H3CN N-	н	СНЗ	н	Н

N-	Ri	R2	R3	R4	R5	R6
No.	K)	NZ	160			
XA730	снз-	H³CN_N-{}-{}	н	снз	н	Н
XA731	СН3-	H ₃ C_CH ₃	н	СНЗ	н	н
XA732	СН3	H³C-⟨	н	СНЗ	н	н
XA733	CH3-	CH ₃ H ₃ C	H	снз	н	н
XA734	CH3-	CH ₃ CH ₃	Н	СНЗ	н	н
XA735	CH3-	H ₃ C	н	СНЗ	н	н
XA736	СН3-	H ₃ C	н	снз	н	н
XA737	снз-	F_F	н	СНЗ	Н	н
XA738	СН3-	F F	н	СНЗ	н	н
XA739	СН3-	F F	н	снз	н	н
XA740	СН3-	F	Н	снз	н	н
XA741	СН3-	F	н	снз	н	Н
XA742	СН3-	F	н	СНЗ	н .	н
XA743	снз-	CI_CI	н	снз	н	Н
XA744	CH3-	a—{∑→	Н	снз	Н	Н

PCT/JP2004/004320

No.	R1	R2	R3	R4	R5	R6
XA745	СН3-	a a	н	СНЗ	н	Н
XA746	CH3-	a	Н	СНЗ	Н	Н
XA747	СН3-	a, c⊢€}	н	снз	Н	Н
XA748	СН3	a G	н	СНЗ	Н	Н
XA749	CH3-	H ₃ CO_OCH ₃	Н	снз	Н	H
XA750	СН3-		н	снз	Н	Н
XA751	СН3-	H²co	Н	снз	н	Н

XA766 CH3-

R1	R2	R3	R4	R5	R6
снз-	OCH ₃	н	снз	Н	Н
СН3-	H ₃ CO-	н	СНЗ	н	H
CH3-	H ₃ CO	н	снз	н	Н
СН3-	F_OCH ₃	н	СНЗ	н	H
снз-	OCH ₃	н	снз	н	н
СН3	OCH₃ F-{\rightarrow}-{\righta	н	снз	н	н
снз–	OCH ₃	н	снз	н	н
СН3-	OCH₃ F	н	снз	н	Н
снз-	OCH₃ F	Н	снз	н	Н
снз-	H ₃ CO F—	н	снз	н	н
СН3-	H ₃ CQ F	н	снз	н	н
СН3-	H ₃ CO_F	н	снз	н	н
CH3-	H₃CO-{	н	снз	н	н
СН3-	H₃CO F	Н	снз	н	н
	CH3- CH3- CH3- CH3- CH3- CH3- CH3- CH3-	CH3- CH3- CH3- H ₃ CO CH3- H ₃ CO CH3- H ₃ CO CH3- CH3-	CH3- CH3- CH3- H ₃ CO CH3- H ₃ CO CH3- H ₄ CO CH3- H CH3- H CH3- H CH3- H CH3- CH3- H CH3- CH3- H CH3- CH3- H CH3- H CH3- H CH3- H CH3- CH3- H CH3- CH3- H CH3- H	CH3- CH3- CH3- CH3- H ₃ CO H ₃ CO H CH3 CH3- H ₃ CO H CH3 CH3- C	CH3- CH3- CH3- H ₃ CO CH3- H ₃ CO H CH3- H ₃ CO H CH3- H CH3-

No.	R1	R2	R3	R4 .	R5	R6
XA767	СН3-	CI_OCH ₃	н	снз	Н	н
XA768	СН3-	CI—{ CI— CI—{ CI— CI— CI— CI— CI— CI— CI— CI—	Н	снз	Н	Н
XA769	CH3-	α σαн₃	н	снз	Н	Н
XA770	СН3-	CI CCH³	H .	снз	н	Н
XA771	CH3-	H³CO CI—⟨}	Н	снз	Н	Н
XA772	CH3-	H₃CO CI	Н	снз	Н	Н
XA773	снз-	H₃CO_CI	н	СНЗ	н .	н

No.	R1	R2	R3	R4	R5	R6
	 	G	-	114		
XA774	снз-	H₃CO-{	н	снз	н	н
XA775	СН3~	- C 	Н	СНЗ	Н	н
XA776	СН3	H ₃ CO-	н	снз	н	н
XA777	СН3-	F_CH ₃	Н	снз	H	н
XA778	СН3-	CH ₃ F-{\bigcirc}-	Н	снз	Н	Н
XA779	CH3-	CH₃ F	Н	снз	Н	H .
XA780	СН3-	CH₃	н	снз	н	Н
XA781	СН3-	H ₃ C F—{}-{	Н	снз	н	н
XA782	СН3	H₃¢ ↓ F	н	снз	н	н
XA783	СН3	H₃C_F →	Н	снз	Н	н
XA784	CH3-	H₃C-⟨¯¯⟩ <mark></mark> }	н	СНЗ	Н	Н
XA785	снз-	F H₃c	Н	снз	Н	н
XA786	СН3-		Н	СНЗ	Н	Н
XA787	СН3-	Br_OCH ₃	н	СН3	Н	н
XA788	СН3-	OCH₃ Br—{}	Н	снз	Н	Н

PCT/JP2004/004320

No.	R1	R2	R3	R4	R5	R6
XA789	снз-	OCH ₃ ⇒ Br	н	СНЗ	н	н
XA790	снз-	OCH ₃ Br	н	CH3	н	Н
XA791	СН3-	H₃CO Br—⟨	Н	СНЗ	Н	н
XA792	CH3-	H ₃ CO	н	СНЗ	н	н
XA793	СН3-	H ₃ CO_Br	н	СНЗ	н	н
XA794	СН3-	H₃CO-{\bigs\}	Н	СНЗ	н	н
XA795	СН3	Br ↓ H₃CO	н .	СНЗ	н	н

No.	R1	R2	R3	R4	R5	R6
.40.		Br	140	114	110	
XA796	снз-		н	СНЗ	н	н
XA797	CH3-	(`\r\{_`} \\H3CO_`}	н	снз	Н	н
XA798	CH3-	CN-€_}	н	СНЗ	Н	н
XA799	CH3-	_N-{_}CH3	Н	СНЗ	н	н
XA800	CH3-	H³CO }	Н	снз	Н	Н
XA801	снз-	H ₃ CO	н	СНЗ	н	Н
XA802	CH3-	Ch OcH³	Н	снз	н	Н
XA803	СН3-	F-(\$\frac{F}{F}\)	н	СНЗ	н	н
XA804	снз	OCH ₃ F-C	н	СНЗ	н	Н
XA805	CH3-	H₃CO-{∑_}{ F	H .	снз	Н	н
XA806	СН3	OCH ₃ F-{_}-} OCH ₃	Н	снз	н	Н
XA807	СН3-	OCH3 OCH3	Н	СНЗ	Н	н
XA808	СН3-	a- <a>a a a a a a a a	н	СНЗ	Н	Н
XA809	снз-	осн ₃ а-⟨_}-¦ а	н	СНЗ	Н	н
XA810	СН3-	α H₃∞-⟨∑→; α	Н	снз	Н	н

No.	R1	R2	R3	R4	R5	R6
XA811	CH3-	OCH3 CH-{_}}-1 OCH3	н		Н	Н
XA812	СН3-	0CH ₃ 0CH ₃	Н	снз	Н	н
XA813	CH3-	OCH ₃	Н	снз	н	Н
XA814	снз-	H ₃ CO	н	СНЗ	н	н
XA815	CH3-	H ₃ CO-{\rightarrow}-{\rightar	Н	снз	Н	н
XA816	снз-	OCH ₃ }	Н	снз	Н	н
XA817	снз-	H ₃ CQ ,	Н	снз	н	н

No.	R1	R2	R3_	R4	R5	R6
XA818		H ₂ 00-{\(\sigma\)}	Н	СНЗ		н
XA819	CH3-	CCH ₃	н	снз	н	н
XA820	СН3-	H-400	н	СНЗ	н	н
XA821	снз-	H₃CO-{_}	Н	снз	н	Н
XA822	снз-	₫-	Н	СНЗ	Н	Н
XA823	снз-	F	н	снз	н	н
XA824	СН3-	F-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-	Н	снз	н	Н
XA825	снз-		Н	СНЗ	н	H .
XA826	СН3-	5 -0	н	снз	н	н
XA827	СН3-		H	СНЗ	Н	н
XA828	СН3	Q-\(\do \)	н	СНЗ	Н	н
XA829	СН3-	\$\\ \O	н	снз	н	н
XA830	СН3-		Н	снз	Н	н
XA831	CH3-		н	СНЗ	н	Н
XA832	СН3~		Н	СНЗ	н	Н

No.	R1	R2	R3	R4	R5	R6
XA833	СН3-		Н	снз	Н	Н
XA834	снз-	oj Oj	Н	СНЗ	Н	н
XA835	снз-		н	СНЗ	Н	Н
XA836	CH3-		н	снз	н	Н
XA837	СН3-		н	снз	н	Н
XA838	СН3-	Ç;	н	СНЗ	Н	Н
XA839	СН3-		н	СНЗ	н	Н

No.	R1	R2	R3	R4	R5	R6
XA840	снз	CI)	н	СНЗ	Н	н
XA841	снз–	Ţ,	н	СНЗ	н	н
XA842	снз-	TOP3	н	снз	Н	н
XA843	снз-	,CO	н	снз	н	н
XA844	CH3	Ţ?	н	снз	н	н
XA845	снз-	CIŞI	н	снз	н	н
XA846	снз-	CI)	н	снз	н	H-
XA847	снз-	Ī;	н	снз	Н	н
XA848	снз–	(C)	н	СНЗ	Н	н
XA849	снз-	,CC;	н	СНЗ	н .	н
XA850	снз–	Ţs Ţŝ	Н	СНЗ	н	н
XA851	снз–		Н	СНЗ	Н	н
XA852	снз-	Ç ⁱ l	н	снз	н .	н
XA853	снз-	, Cir	н	СНЗ	Н	Н
XA854	снз	,Cir	н	СНЗ	н	н
XA855	снз-	ŢŢ,	н	снз	Н	н
XA856	снз-		н	снз	н	н .
XA857	снз-	Č,	н	снз	н	н
XA858	снз-	TON,	н	снз	н	н
XA859	снз-	(I)	Н	снз	н	н
XA860	снз–	\(\bar{\alpha}\)	Н	снз	н	н

No.	R1	R2	R3	R4	R5	R6
XA861	снз-	TO!	н	снз	н	н
XA862	снз-	, CP	н	снз	н	н
XA863	снз-		н	снз	н	н
XA864	снз-	(Ist	н	снз	Н	н
XA865	снз-	Ī,	н	снз	Н	н
XA866	снз-	TOS N	н	СНЗ	н	Н
XA867	снз-	, Is	Н	СНЗ	н	Н
XA868	СН3-	ÇT'S	н	СНЗ	Н	Н
XA869	снз-	C;	н	снз	Н	H
XA870	снз-	Č;	н	СНЗ	н	н
XA871	снз–	, CC3,	н	СНЗ	н	н
XA872	снз–	,CT	Н	СНЗ	н	н
XA873	снз-	Ĉ.	Н	СНЗ	н	н
XA874	снз-		Н	СНЗ	н	н
XA875	снз–		н	СНЗ	н	н
XA876	снз–	. Og	Н	СНЗ	н .	н
XA877	снз-	, Ogn	н	СНЗ	н	н
XA878	снз-	Ĩ,	н	СН3	н	н
XA879	снз–	Č.	н	СНЗ	н	н
XA880	снз-	,CCC	Н	СНЗ	н	н
XA881	снз-	TOR	н	снз	н	н
XA882	СН3-	Č;	н	снз	н	н

No.	RI	R2	R3	R4	R5	R6
XA883	снз-	СН3-	н	Qi	н	н
XA884	снз-	снзсн2-	Н	Q	Н	н
XA885	CH3-	∼ ∖	н		Н	Н
XA886	снз-	$\uparrow \uparrow$	Н	Q	н	н
XA887	снз-	√	н	Q	н	Н
XA888	снз-	人、	н		н	н
XA889	снз-	$\uparrow \uparrow$	н		Н	Н
XA890	снз-	丫	н		н	н
XA891	CH3-	~~ ``\	н	Qu	н	Н
XA892	снз-	\	н	Q	Н	Н
XA893	снз	X.	н	Qu	Н	Н
XA894	снз-	~	Н	Qu	Н	Н
XA895	снз-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н		Н	н
XA896	СН3-	L~~	Н		н	н
XA897	снз-	~~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н		н	н
XA898	снз-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н		н	Н
XA899	снз-	n-C8H17-	н .		н	н
XA900	СН3-	L~~~	н	Qu	н	н
XA901	снз-	Qu	Н		н	н
XA902	снз-		н	Qu	н	н
XA903	СН3-	0~~	Н		н	Н
XA904	СН3-	D-1	н		н	Н

No.	R1	IR2	Inc	To:		T
NO.	171	IKZ	R3	R4	R5	R6
XA905	СН3-	$\bigcirc \dashv$	н		н	н
XA906	снз-	\bigcirc	н		н	н
XA907	снз-	\bigcirc	Н	Qu	н	Н
XA908	СН3-	\bigcirc \dashv	н	Qi	н	Н
XA909	СН3-		н	Qu	н	Н
XA910	снз-		н	Q	н	н
XA911	СН3-		н	Q	н	н
XA912	снэ-		н		Н	н
XA913	снз-		Н	Q	н	н
XA914	снз-	F-(н	Q	н	н
XA915	CH3-	F-()(н	Qu	Н	н
XA916	снз–	F	н	Qu	Н	н
XA917	СН3-	CI C>-1	н	Qu	н	н
XA918	снз-	CI	н	Qu	н	н
XA919	снз-	CI-{_}-{	Ĥ	Q	н	н
XA920	снз-	c-(_>-1	н	Qu	н	н
XA921	CH3-	C⊢∕_∑⊪(н	Qu	н	н
XA922	снз-	Br	н	Qu	Н	н
XA923	снз-	Br.	н	Qu	н	н
XA924	СН3-	Br-{	Н	Qu	Н	н
XA925	снз-	Br- ()	н	Qu	н	н
XA926	снэ-	Br—(н	Q	Н	н
			•		<u> </u>	L

No.	RI	R2	R3	R4	R5	R6
XA927	снз-		н	Q	н	н
XA928	CH3-		н	Q	н	н
XA929	снз-	H	н	Qu	н	н
XA930	снз-	CH₃	н	Q	н	Н
XA931	снз-	H₃C <u></u>	Н		н	Н
XA932	снз-	H ₃ C-{}{	н	Qu	Н	н
XA933	снз-		н	Q	Н	н
XA934	СН3-	n-C ₃ H ₇ -{_}	н	Q	Н	Н
XA935	снз-	n-C ₄ H ₉ -	Н	Q	н	Н
XA936	СН3	OH OH	Н	Q	Н	н
XA937	СН3-	HO	Н		Н	н
XA938	снз-	HO-{\right\}-{	н	Qu	Н	Н
XA939	снз-	OCH₃	н		н	н
XA940	снз-	H₃CO ————————————————————————————————————	н		н	н
XA941	снз-	H3CO-{_}-{	н	Qu	н	н
XA942	снз-	H3CO-{}-{	н		н	н
XA943	СН3-	H ₃ CO-{>m{	н		н	н
XA944	снз-	OC ₂ H ₅	Н	Q	н	н
XA945	снз-	C ₂ H ₅ O	н	Qu	н	н .
XA946	снз-	C ₂ H ₅ O-{}{	Н		н	Н
XA947	снз-	n-C₃H ₇ O-{}	н		н	н
XA948	СН3-	n-C ₄ H ₉ O-	н	Qu	н	н
		··			_ 	

No.	R1	R2	R3	R4	R5	R6
XA949	снз-	NO ₂	н	Qu	Н	н
XA950	снэ–	O ₂ N	н	Qu	н	н
XA951	снз-	024	н	Qu	Н	н
XA952	снз-	CN C	н	Qu	н	н
XA953	снз-	NC	н	Qu	н	H
XA954	снз-	NC-()-1	н	Qu	н	н
XA955	снз-	CF ₃	Н	Qu	н	Н
XA956	снз	F ₃ C	н .	Qu	н	Н
XA957	СН3	F3C-{\right\}-4	н	Qu	H ·	н
XA958	снз-	COOH	н	Qu	н	н
XA959	снз-	HOOC	н	Qu	Н	н
XA960	снз-	H00C-{\rightarrow}-4	н	Qu	н	Н
XA961	СН3-	CO ₂ Me	н	Qu	Н	н
XA962	снз-	MeO _z C	н	Qu	Н	Н
XA963	снз-	MeO ₂ C-{}-{	н	Q.	Н	Н
XA964	снз-	CO ₂ Et	н .		Н	H
XA965	снз-	EtO₂C △_)—{	н	Qu	H	Н
XA966	снз-	1	н	Q.	н	н
XA967	снз-	SMe	н	Qu	Н	Н
XA968	снз-	MeS	H	Q	н	н
XA969	снз-		Н	Qu	н	н
XA970	снэ-	SO ₂ Me	н	Qu	н	н

No.	R1	R2	R3	R4	IR5	R6
1,10,	<u> </u>	MeO ₂ S	1			
XA971	снз-		Н		н	Н
XA972	снз-	MeO₂S-{_}	н	Qu	н	н
XA973	снз-	NH ₂	н	Qu	н	н
XA974	снз-	H ₂ N	н	Qu_	н	Н
XA975	снз-	H ₂ N-()(Н		н	Н
XA976	снз-	NMe ₂	н		н	н
XA977	снз-	Me ₂ N	Н		н	н
XA978	снз-	Me ₂ N-	н		н	н
XA979	снз-		Н		н	н
XA980	снз-		н	Q.	н	н
XA981	СН3-		н	Qu	н	н
XA982	снз-		н	Qu	н	н
XA983	CH3-		н	Qu	н	н
XA984	СН3-		Н		н	Н
XA985	снз-		н		н	н
XA986	СН3-	\bigcirc	Н		н	н
XA987	снз		н		н.	н
XA988	снз-	H3CN N-	н		н	н
XA989	снз-	H_CN_N-{_}	н		Н	н
XA990	снз-	H3CN_N-{}	н	Qu	н	н
XA991	снз-	H₃C CH₃	Н		н	н
XA992	снз-	CH3 H3C-{}_{}	н	Qu	н	н

			 -	12:	los	lee l
No.	R1	R2	R3	R4	R5	R6
XA993	СН3-	CH₃ → H₃C	н	Q	н	Н
XA994	снз-	CH ₃ CH ₃	н	Q	Н	Н
XA995	снз-	H ₃ C-{}-{	Н		н	Н
XA998	снз-	H ₃ C H ₃ C	Н		н	н
XA997	СН3-	F_F	Н		н	н
866VX	СН3-	F— F→ F→ F→ F→ F→ F→ F→ F→ F→	H		Н	н
XA999	CH3-	Ş →	н	Q	н	н
XA1000	снз-	F F	н		Н	н
XA1001	CH3-	F—————————————————————————————————————	н		Н	н
XA1002	CH3-	F F	Н	Q.	н	н
XA1003	снз-	CI_CI	н		н	н
XA1004	CH3-	CI—CI	н		н	н

No.	RI	R2	Ipa	ln4	R5	R6
XA1005	CH3-	a a	R3 H	R4	H	Н
XA1006	снэ-	Ci Ci	н	Q	н	н
XA1007	СН3-	CI CI	н	Q	Н	н
XA1008	CH3-	G CI	н	Q	Н	Н
XA1009	CH3-	H₃CO_OCH₃	н		н	Н
XA1010	CH3-	H₃CO-⟨□}-⊰	н		н	Н
XA1011	CH3-	OCH₃ → H₃CO	н		н	Н
XA1012	CH3-	OCH ₃	н	Q	Н	Н
XA1013	CH3-	H ₃ CO	н		Н	Н
XA1014	СН3-	H ₃ CO	Н		н	Н

XA1025 CH3-

XA1026 CH3-

No.	R1	R2	R3	R4	R5	R6
KA1015	снз-	F_OCH ₃	н		н	н
KA1016	СН3-	OCH ₃	н	Q	н	н
(A1017	снз-	OCH ₃	Н	Q	н	Н
(A1018	СН3-	OCH ₃	н	Q	н	н
(A1019	СН3-	OCH ₃	н		н	н
(A1020	снз-	OCH ₃ F	н	Q	н	н
A1021	CH3-	H₃CO F—	Н	Q	н	, н
A1022	СН3	H₃CO F	н		Н	Н
A1023	СН3	H ₃ CO_F	н	Q	Н	н
A1024	СН3-	H₃CO-⟨¯}	н	Q	н	н

No.	R1	Ipa	R3	R4	Inc	-
XA1027	СН3-	CI_OCH ₃	Н		R5	R6 H
XA1028	CH3-	OCH ₃	н	Q	Н	н
XA1029	СН3-	OCH ₃ CI	н	Q	н	н
XA1030	снз-	OCH ₃	н	Q	н	н
XA1031	снз-	H ₃ CO CI—	н	Q	н	н
XA1032	снз-	H₃CO CI	н	Q	н	Н
XA1033	СН3	H₃CO_CI	Н	Q	н	н
XA1034	СН3-	H₃CO-{\}_{	н	Q	H	Н
XA1035	СН3-	CI → H₃co	Н	Q	Н	Н
XA1036	снз-	CI H₃CO-⟨¯¯)—{	Н	Q	н	Н

No.	R1	R2	R3	R4	R5	R6
XA1037	СН3-	F_CH ₃	Н	Q.	Н	Н
XA1038	СН3-	CH ₃ F—{}	н	Q	н	н
XA1039	снз-	CH₃ CH₃ F	н	Q	Н	н
XA1040	СН3-	CH₃ C→ F	н	Q	Н	н
XA1041	снз-	H ₃ C F-\	н	Q	Н	Н
XA1042	СН3-	H₃C F	н	Q	н	H
XA1043	СН3	H ₃ CF	H	Q	н	н
XA1044	СН3-	H₃C-⟨∑→	н	Q	Н	H
XA1045	CH3-	F H₃C	н	Q	Н	Н
XA1046	CH3-	F_ H₃C-	н		Н	н
XA1047	СН3-	\	н		H	н
XA1048	снз-	OCH₃ Br—⟨S)—;	н		н	H

No.	R1	R2	R3	R4	R5	R6
XA1049	снэ-	OCH ₃ Br	н		н	Н
XA1050	снз-	OCH ₃ Br	Н		н	Н
XA1051	сн3-	H₃CQ Br—∰-	н	Q	H	Н
XA1052	снз-	H₃CO Br	Н		н	Н
XA1053	снз	H ₃ CO_Br	Н		н	н
XA1054	снэ-		Н	Q	Н	н
XA1055	CH3-	Br √-} H₃co	н	Q	Н	н
XA1056	снз-	H ₃ CO	н	Q	Н	Н
XA1057	снз-	H ₃ CO	н		Н	н
XA1058	СН3	OCH ₃	н .	Q	Н	н

	104					
No.	R1	R2	R3	R4	R5	R6
XA1059	СН3-	CN-C-OCH	Н	Q	н	н
XA1060	СН3-	H ₃ CO >	н	Qu	Н	н
XA1061	СН3-	H ₃ CO	н		н	н
XA1062	СН3-	OCH3	н	Q	н	н
XA1063	СН3-	F-(-)-1 F	H	Q	н	н
XA1064	СН3	F—C>+ F	н	Q	Н	н
XA1065	снз-	H₃CO-{∑F F	H	Q	Н	н
XA1066	СН3-	OCH3	н	Q	н	н
XA1067	СН3-	OCH3	H		н	н
XA1068	СН3-	CI	H	Q	Н	Н
XA1069	СН3-	OCH ₃ CI	н	Q	H	н
XA1070	CH3-	a H₃co-	Н	Q	н	н

No.	R1	R2	R3	R4	R5	R6
	СН3-	OCH ₃ CH	н	Q	Н	н
XA1072	снз-	H ₃ CO-CDH ₃ OCH ₃	Н	Q	Н	н
XA1073	снз–	OCH ₃	Н	Q	н	Н
XA1074	снз-	H3CO	н	Q	н	Н
XA1075	СН3~.	н₃со-⟨>-⟨>-∤	н	Q	н	Н
XA1076	снз-	OCH ₃ }	н	Q	н	н
XA1077	CH3-	H ₃ CO >	н	Qr	Н	н
XA1078	снз-	н₃∞-()-()	Н	Q	н	Н
XA1079	снз-	OCH ₃	н	Qu	Н	н
XA1080	снз-	H ₃ CO	н	Q	Н	H.

No.	R1	R2	R3	R4	R5	R6
XA1081	снз-	H3CO-{\}	н	Q	н	н
XA1082	снз-	₫	Н	Q	Н	н
XA1083	СН3-		н	Qi	н	н
XA1084	снз-	F-()-()-1	Н	Qi	н	н
XA1085	СН3-	₫-ð`	Н	Q	Н	Н
XA1086	СН3-	b -d`	н	Q	н	н
XA1087	СН3-	F-O-O'	н	Qu	н	н
XA1088	снз-	Q.O	н	Q	н	н
XA1089	снз	ρΏ	н	Q	Н	н
XA1090	CH3-		Н	Q	н	н
XA1091	снз-		н	Qu	Н	н
XA1092	СН3-	CCC,	Н	Q	н	н
XA1093	снз-		Н	Qu	н	н
XA1094	СН3-		н	Qu	Н	н
XA1095	СН3-	J.	н	Q	н	н
XA1096	снз-	'Ch	н	Q	Н	н.
XA1097	СН3-	,Où	н	Qu	Н	н
XA1098	снз-	<u> </u>	Н	Qi	н	Н
XA1099	снз–		н		Н	Н
XA1100	снз–	CT)	н	Qu	н	н
XA1101	снз-	Ċ;	н	Q	н .	н
XA1102	снз-	TO	н	Q	н	н

No.	R1	R2	R3	R4	R5	R6
	 					
XA1103	CH3-	1,4,4,8	Н		Н	Н
XA1104	CH3-	Ğ.	н	Q.	н	н
XA1105	снз-		н	Qu	н	Н
XA1106	снз-		н	Q.,	н	н
XA1107	СН3	Č.	н	Q.	н .	н
XA1108	снз-	TI	Н	Q.	н	н
XA1109	СН3-	,CIŞ	н	Q.,	н	н
XA1110	СН3	Ť.	н	Q.,	н	н
XA1111	СН3-	O'r	н		н	н
XA1112	СН3-	T	н	Q.,_	н	н
XA1113	СН3-	TO?	н	Qu	н	н
XA1114	снз-		н	Qi	н	н .
XA1115	СН3-	Ţ,	н	Q	н	н
XA1116	CH3-		н		н	н
XA1117	CH3-		н		н	н
XA1118	CH3		н		н	н
XA1119	снз-	4	н	Q	н	н
XA1120	CH3	J.	н	Qu	н	н
XA1121	снз-	T	н	Qu	н	н
XA1122	снз-	, CP	н	Qu	н	н
XA1123	снз-		Н	Q	н	н
XA1124	CH3-	OT3+	н	Q.	н	н

Na.	R1	R2	R3	R4	R5	R6
XA1125	СН3	Ţ,	н	Q	н	н
XA1126	CH3	'CI'S	н	Q	н	н
XA1127	CH3-	, CI's	н	Q	н	н
XA1128	СН3-	T'S	н	Q	н	Н
XA1129	CH3-	C;	н	Qr	н	H
XA1130	снз-	Č.	н	Q	н	н
XA1131	снз-	TO.	н	Q	н	н
XA1132	снз-	,CC)	н.	Q	н	н
XA1133	снз-	Ĉ.	н		н	н
XA1134	СН3-	CI,	н	Q	н	н
XA1135	CH3-	Ĩ.	н		Н	н
XA1136	снз-	(CZ)	н		н	н
XA1137	CH3-	, CC;	н		н	н
XA1138	CH3-	Ž.Š.	н		н	н
XA1139	CH3-	Ğ.	Н		н	н
XA1140	СН3-	,CQ	Н	Q	н	н
XA1141	снз-	TOO .	н	Qu	Н	н
XA1142	CH3-	Ğ;	Н	Q	н	н
XA1143	снз-	снз-	н	Ŷ,	н	н
XA1144	снз-	снзсн2-	н .	Ŷ,	н	н
XA1145	снз	~\`\	н	Ŷ,	н	н
XA1146	снз-	Y	н	Î,	н	н

No.	R1	R2	R3	R4	R5	R6
XA1147	снз-	√	н	Î,	н	н
XA1148	СН3-	人人	н	i,	н	н
XA1149	снз-		Н	2,	н	н
XA1150	СН3	丫	Н	Ŷ,	н	н
XA1151	снз–	~~``	н	Ŷ,	н '	н
XA1152	СН3-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	Ŷ,	н	н
XA1153	снз-	人人	Н	Ŷ,	н	н
XA1154	снэ–	7	н	Î,	н	н
XA1155	СН3-	~~~	н	Ŷ,	Н	н
XA1156	снз-	人、、	н	Ŷ,	н .	н
XA1157	СН3-	~~~\	Н	Ŷ,	н	н
XA1158	снз-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	Î,	H ·	н
XA1159	СН3-	n-C8H17-	Н	Ŷ,	н	н
XA1160	СН3-	L~~~	Н	₹, ₹,	н	н
XA1161	СН3-		н	Ŷ,	н	н
XA1162	СН3-		н	Ŷ,	н	н
XA1163	снз-		н	گي	н	н
XA1164	снз–	\triangleright	н	Å,	н	н
XA1165	снз-	\Diamond .	Н	· Å,	Н	н
XA1166	снз–	\bigcirc	н		Н	н
XA1167	снз-	\bigcirc \dashv	Н	Ŷ,	н	н
XA1168	CH3-	\bigcirc \vdash	Н	Ŷ,	н	н

No.	R1	R2	R3	R4	R5	R6
XA1169	снз-		Н	گ,	Н	Н
XA1170	CH3-		Н	گہ	н	н
XA1171	снз-		н	١	н	н
XA1172	снз-	<u></u>	н	Î,	н	н
XA1173	снз-	F	н	Ĵ,	н	н
XA1174	CH3-	F()-I	н	Ŝ,	н	н
XA1175	снз-	F-()-1	н	Ĵ,	. н	н
XA1176	CH3		н	Î,	н	н
XA1177	СН3-	CI C)	н	گي	н	н
XA1178	снз-	CI	н	l,	н	н .
XA1179	СН3-	CH	н	l,	н	н
XA1180	CH3-	c⊢ ()⊸(н	2,	н	н
XA1181	CH3~	CI—(н	Î,	н	н
XA1182	СН3-	Br	н	Ŷ,	н	. н
XA1183	СН3-	Br. ├──┤	н	2,	н	н
XA1184	CH3-	Br-{}-{	н	Ŝ,	н	н
XA1185	снз-	Br-{}-{	н	2,	Н	н
XA1186	снз-	Br—(н	2,	н	н
XA1187	снз-		н	Ĵ,	н	н
XA1188	снз-		н	Î,	Н	н
XA1189	снз-		н	l,	н	н
XA1190	снз-	СН₃	н	گې.	н	н

				··		·
No.	R1	R2	R3	R4	R5	R6
XA1191	снз-	H₃C (_)~	н	<u> </u>	н	н
XA1192	снз–	H ₃ C-{}-{	н	<u> </u>	н	н
XA1193	снз-	C ₂ H ₅ -{}-{	н	2,	н	н
XA1194	снз-	n-C ₃ H ₇ -{_}-{	н	² y	н	Н
XA1195	СН3-	n-C ₄ H ₉ -{_}-{	н	ڳ _ي	н	н
XA1196	СН3-	OH	н	<u></u>	н	н
XA1197	СН3-	HO	н	,	н .	Н
XA1198	снз-	HO-{\bar{\bar{\bar{\bar{\bar{\bar{\bar	Н	Ŷ,	н	Н
XA1199	СН3	OCH₃	н	Ŷ,	н	н
XA1200	снз-	H₃CO ————————————————————————————————————	н	1 '	н	н
XA1201	СН3	H ₃ CO-{}-{	н	Ŷ,	н	н
XA1202	снз-	H ₃ CO-{}-	н	Å,	н	н
XA1203	снз-	H ₃ CO-{\bigs\}\{	Н	Ŝ,	н	н
XA1204	снз-	OC ₂ H ₅	н	Ŷ,	н	н
XA1205	СН3	C₂H₅O	н	Î,	н	н
XA1206	CH3-	C ₂ H ₅ O-{	н	3,	Н	н
XA1207	снз-	n-C ₃ H ₇ O-	н	3,	н	н
XA1208	СН3-	n-C ₄ H ₉ O-	н	گہ	н	н
XA1209	снз-	NO ₂	н	Ŝ,	н	н
XA1210	снз-	O ₂ N	н .	Ŷ,	н	н
XA1211	снз-	02N-()-1	Н	ŝ,	н	н
XA1212	CH3-	CN	н	گ _ا	н	н

No.	R1	R2	R3	R4	R5	R6
XA1235	снз–	H ₂ N-	H [*]	Ŷ,	н	н
XA1236	СН3-	NMe ₂	Н	Î,	н	н
XA1237	снз-	Me ₂ N	Н	Î,	н	н
XA1238	снз-	Me ₂ N-{	н	l,	н	н
XA1239	СН3-		н	l,	н	н
XA1240	снз-		н	گہ	н	Н
XA1241	СН3-	(N-()-1	н	l,	Н	Н
XA1242	снз-		н	l,	Н	н
XA1243	снз-		Н	l,	Н	н
XA1244	СН3-		Н	٤	н	н
XA1245	снз-		н	٤	н	н
XA1246	снз-		н	l,	н	н
XA1247	снз-	Q_N-{_}}-1	н	l,	Н	н
XA1248	СН3	H3CN N-	н	l,	н	н
XA1249	CH3-	H3CN_N-{_}}	, H	٤	н	н

No.	RI	R2	R3	R4	R5	R6
XA1250	снз–	H3CN_N-{}	Н	L,	Н	н
XA1251	СН3-	H ₃ C_CH ₃	Н	l,	н	Н
XA1252	СН3-	H ₃ C-⟨∑);	Н	l,	Н	Н
XA1253	снз-	CH ₃ H ₃ C	H	Î,	н	Н
XA1254	снз-	CH ₃ CH ₃	Н	l,	Н	н
XA1255	снз-	H ₃ C-{}-{	Н	Î,	Н	Н
XA1256	CH3-	H ₃ C H ₃ C	н	گي	н	Н

No.	R1	R2	R3	R4	R5	R6
XA1257	СН3-	F_F	Н	Ŷ,	Н	Н
XA1258	снз-	F—	Н	Ŷ,	Н	н
XA1259	снз-	F.	н	l,	Н	Н
XA1260	СН3-	F F	Н	L,	Н	Н
XA1261	CH3-	F.	н	گي	н	н
XA1262	CH3-	F F	Н	l,	н	Н
XA1263	СН3-	ci_ci	Н	L,	Н	Н
XA1264	снз-	a-{∑}-;	Н	l,	н	Н
XA1265	CH3-	a .	Н	L,	Н	Н
XA1266	СН3	a ⊖ a	Н	١,	н	н
XA1267	СН3	a a—{_}→	H	l,	н	н
XA1268	снз-		н	Å,	н	Н
XA1269	СН3-	H₃CO_OCH₃	Н	Ž,	н	Н
XA1270	снз-	H ₃ CO-⟨□⟩}	н	l,	н	н
XA1271	снз-	H³co	н	Ŷ,	Н	н

No.	R1	R2	R3	R4	R5	R6
XA1272	снз~	OCH ₃	H	l,	н	Н
XA1273	СН3	H₃CO H₃CO-⟨¯);	н	l,	н	Н
XA1274	снз	H₃CO H₃CO	н	l,	н	н
XA1275	снз-	F_OCH ₃	Н	Ŷ,	н	н
XA1276	снз-	OCH ₃	Н	Ŷ,	н	н
XA1277	снз-	OCH ₃	Н	Ŷ,	н	Н
XA1278	СН3-	OCH ₃	Н	L,	н	н

_	
$(\ \)$	

No.	RI	R2	R3	R4	R5	Ine
XA1294	СН3	H₃CO-{∑}-{	Н	گہ	н	R6 H
XA1295	CH3	H ₃ CO	н	2,	Н	Н
XA1296	СН3-	H3CO-{	Н	Ŷ,	н	н
XA1297	СН3-	F_CH ₃	н	Ŷ,	Н	н
XA1298	СН3-	CH ₃	Н	L,	н	Н
XA1299	СН3—	CH₃ F	н	l,	н	Н
XA1300	СН3-	CH₃ ← F	н	Ŷ,	н	Н

No.	RI	R2	Ina	lp.	R5	Too.
110.	IV.		R3	R4	Ко	R6
XA1301	СН3-	H ₃ C F-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	Î,	н	н
XA1302	CH3-	H₃C F	н	2,	н	н
XA1303	снз-	H₃C_F ————————————————————————————————————	н	l,	н	Н
XA1304	CH3-	H ₃ C-⟨	Н	l,	Н	н
XA1305	снз-	H ₃ C	Н	l,	Н	н
XA1306	CH3-	H ₃ C	н	l,	Н	н
XA1307	снз-	Br_OCH ₃	н	Ŷ,	Н	н
XA1308	снз-	OCH ₃	н	l,	Н	н
XA1309	снз-	OCH ₃	н	l,	Н	Н
XA1310	СН3-	OCH ₃ Br	н	l,	Н	Н
XA1311	СН3-	H₃CO Br—⟨¯_)—}	н	l,	Н	н
XA1312	CH3-	H ₃ CO Br	Н	l,	Н	
XA1313	снз-	H₃CO_Br	н	l,	н	Н
XA1314	СН3	H₃CO-⟨□⟩{	Н	١,	Н	Н
XA1315	CH3-	Br H₃CO	н	l,	н	н

No.	R1	R2	R3	R4	R5	R6
XA1316	снз-	H ₃ CO-	н	<u></u> ,	н	H
XA1317	снз-	H ₃ CQ_}	Н	l,	н	н
XA1318	снз-	OCH ₃	н	l,	н	Н
XA1319	снз-	CN-C-OCH3	H	Î,	Н	Н
XA1320	СНЗ-	H ₃ CO >	н	Ŷ,	Н	Н
XA1321	снз-	H₃CO N-{ }	н	<u></u>	Н	Н
XA1322	снз-	OCH3	Н	<u></u>	н	Н

,						
No.	Rt	R2	R3	R4	R5	R6
XA1323	снз-	F-()	н	<u></u>	Н	н
XA1324	СН3-	F—C—I	н	Å,	Н	Н
XA1325	снз-	H₃CO-{_}_}I	н	Î,	Н	Н
XA1326	СН3-	OCH ₃	Н	Î,	н	н
XA1327	CH3-	H ₃ CO-C_>-{ OCH ₃	Н	Ŷ,	Н	Н
XA1328	СН3-		Н	Î,	Н	Н
XA1329	СН3-	OCH ₃ ci—{_}} ci	Н	Ŷ,	Н	Н
XA1330	снз-	H₃CO-{_}; CI	Н	Î,	Н	Н
XA1331	СН3-	OCH ₃	н	l,	н	н
XA1332	СН3-	H ₃ CO-{_}-} OCH ₃	Н	Ŷ,	Н	Н
XA1333	СН3-	OCH ₃	н	l,	Н	Н
XA1334	CH3-	H³CO	н	Ŷ,	Н	Н
XA1335	СН3-	H³CO-{_}-{_}-1	Н	Ŷ,	Н	н
XA1336	СН3-	OCH ₃ }t	Н	Î,	Н	н
XA1337	СН3-	H₃CO ,	н	l,	Н	Н

No.	R1	R2	R3	R4	R5	R6
XA1338	снз-	н₃со-{∑-{	Н	Ŷ,	н .	Н
XA1339	СН3-	OCH3	Н	Î,	н	н
XA1340	СН3-	H ₃ CO	Н	l,	н	н
XA1341	CH3-	н₃со-⟨_}_{	Н	l,	н	Н
XA1342	СН3-	∅ -	Н	l,	н	Н
XA1343	СН3-	F	н	Ŷ,	н	Н
XA1344	CH3-	F-()-()-;	н	L,	н	н

No.	R1	R2	R3	R4	R5	R6
XA1345	снз-	₫ <u></u> ₫	н	Ŷ,	н	н -
XA1346	снз-	\(\bar{C}\)	н	Ŷ,	н	н
XA1347	СН3-	F-()-()'	н	L,	н	н
XA1348	снз–	Q.Ó	н		н	н
XA1349	СН3-	p-ò	н	Ŷ,	н	н
XA1350	снз-		н	Ŷ,	н	н
XA1351	снз-		н	Ŷ,	н	н
XA1352	снз		н	Ŷ,	н	н
XA1353	снз-		н	Å,	н .	Н
XA1354	СН3-		Н	Ŷ,	н	Н
XA1355	снз-	ČQ:	н	گي	н	н
XA1356	снз-	TON .	Н	بُ	Н	н
XA1357	снз-	,CD	Н	Ů,	Н	н
XA1358	снз–	Ţ	н.	بُ	н	н
XA1359	СН3		Н	<u></u>	Н	н
XA1360	снз–		н	<u>گ</u> ر	Н	н
XA1361	снз–	ا	н	٩	н	н
XA1362	снз-	TO .	н	<u> </u>	н	н
XA1363	снз–	,CC)	н	Ŷ,	н	н
XA1364	CH3-	Ţ,	н	بُ	н	н
XA1365	СН3-	CI\$+	н	بُ	н	н
XA1366	СН3-	O.	н	ئى ر	н	Н

			,			
No.	RI	R2	R3	R4 -	R5	R6
XA1367	СН3-	Ţ,	н	2,	н	Н
XA1368	снз-	(C)	Н	Ŷ,	Н	н
XA1369	снз-	,CQ	н	<u>گ</u>	Н	н
XA1370	снз-	<u>Č</u> iš	Н	Ŷ,	Н	н
XA1371	CH3-		н	ئے	Н	Н
XA1372	CH3-	<u>Ē</u>	н	<u>گ</u> ہ	Н	н
XA1373	снз–	T	н	Ŷ,	Н	Н
XA1374	снз-	,Cir	н	Ŷ,	Н	н
XA1375	снз-	Ţŗ	н	Ŷ,	н	н
XA1376	СН3-		н	Ŷ,	н	н
XA1377	СН3-	Ž,	н	گ _ر	Н	Н
XA1378	снз-	TON .	н	Ŷ,	н	Н.
XA1379	СН3-	(I)	н	Ů,	н	н
XA1380	СН3-	Č\}	н	Ŷ,	н	н
XA1381	СН3-	TOO .	Н	Î,	н	н
XA1382	СН3	, CG	н	l _y ,	н	н
XA1383	снз-		н	l L,	н	н
XA1384	СН3-	(I)	н	,	н	н
XA1385	снз-	Į, N	н	بُ	н	н
XA1386	снз-	'O'	н	Î,	Н	Н
XA1387	снз-	, CIS	н	<u></u>	н	Н
XA1388	снз-	Ţs s	Н	بُ	н	Н

No.	Ri _	R2	R3	R4	R5	Inc
XA1389	снз-	Ci,	н	1,	Н	R6
XA1390	снз-	Č.	Н	Î,	Н	н
XA1391	снз-	TT?	н	2,	H	Н
XA1392	СН3-	(C),	н	2,	н	н
XA1393	СН3-	Q'a	н	2,	н	н
XA1394	CH3-	Cièn Cièn	н	2,	н	н
XA1395	СН3-	Č;	н	الم الم	н	н
XA1396	CH3-	"CTZ"	н	2,	н	н
XA1397	снз-	,CT3N	н	3	н	н
XA1398	снз-	Ĉ.	н	Î,	н	н
XA1399	СН3-	Ğ.	н	2,	Н	н
XA1400	снз-	,CC;	н	Î,	н	Н
XA1401	СН3-	(CD)	н	Ĵ,	н	н
XA1402	СН3-	Ğ;	н	Î,	Н	н
XA1403	снз-	СН3-	снз-	Н	Н	н
XA1404	снз-	СНЗСН2-	. CH3-	н	н	Н
XA1405	снз-	^ \	снз-	н	н	н
XA1406	СН3-	7	снз-	н	н	н .
XA1407	СН3-	\\\\\	снз-	н	Н	Н
XA1408	CH3-	L,	СН3-	н	н	н
XA1409	СН3-	~~`	СН3-	Н	н	H
XA1410	СН3-	丫	СН3-	н	H	н

No.	IR1	R2	Ina	lo.	12.2	_
		1000	R3	R4	R5	R6
XA1411	СН3-		снз-	н	н	н
XA1412	снз-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	СН3-	н	н	н
XA1413	снз-	×-	СН3-	н	н	Н
XA1414	снз-	7	снз-	н	н	н
XA1415	снз-	~~~``	CH3-	н ,	н	н
XA1416	снз-	L~~	снз-	н	н	н
XA1417	снз-	~~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	снз-	н	н	н
XA1418	снз–	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	снз-	н	н	н
XA1419	СН3-	n-C8H17-	снз-	Н	н	н
XA1420	снз-	L~~~	CH3-	н	Н	Н
XA1421	СН3-	Q	снз-	Н	н	н
XA1422	СН3-		снэ-	Н	н	H .
XA1423	снз-		CH3-	н	н	Н
XA1424	снз-	\triangleright	СН3-	н	н _	н
XA1425	снз-	\Diamond -I	СН3-	H .	н	Н
XA1426	СН3-		СН3-	Н	н	н
XA1427	СН3-	\bigcirc	СН3-	Н	н .	н
XA1428	снз-	$\bigcirc \vdash$	CH3-	н	н	н
XA1429	СН3-		СН3-	н	н	н
XA1430	СН3-		CH3-	н	н	Н
XA1431	СН3-	⊘ 11-4	СН3	н	н	Н
XA1432	снз-	F	CH3-	Н	Н	Н

No.	R1	R2	R3	R4	R5	R6
XA1455	СН3-	n-C ₄ H ₉ -{_}-{	СН3-	н	Н	н
XA1456	снз-	OH	СН3-	Н	н	Н
XA1457	СН3-	HO	СН3-	н	Н	н
XA1458	снз-	но-{}-	CH3-	н .	н	Н
XA1459	снз-	OCH₃	снз-	н	н	Н
XA1460	снз-	H₃CO ⟨_)	СН3-	н	Н	н
XA1461	CH3-	H ₃ CO-{}-{	СН3-	н	Н	Н
XA1462	снз-	H3CO-{}-{	CH3-	н	н	н
XA1463	снз-	H³CO-{\bigs_\m.{	снз-	н	Н	Н
XA1464	CH3-	OC ₂ H ₅	СН3-	н	Н	н
XA1465	снз-	C ₂ H ₅ O	снз-	н	н	Н
XA1466	снз-		снз–	н	н	н
XA1467	снз-	n-C ₃ H ₇ O-	снз-	Н	н	н
XA1468	снз-	n-C ₄ H ₉ O-	СН3-	н	н	н
XA1469	СН3-	NO ₂	СН3	н	н	н
XA1470	снз-	O ₂ N	сн3-	Н	н	н
XA1471	СН3-	02N-{}	снз-	н	H	н
XA1472	снз-	CN	снз-	н .	н	Н
XA1473	снз-	NC NC	снз-	Н	н	Н
XA1474	СН3-	NC-{}-{	снз-	н	н	н
XA1475	СН3-	NH ₂	СН3-	н	н	н
XA1476	снз–	H₂Ñ ⟨¯}⊣	СН3-	н	н	н

No.	R1	R2.	R3	R4	R5	R6
XA1477	снз-	H₂N-{\backsquare}			Н	Н
XA1478	снз–		СН3-	н .	н	н
XA1479	снз-	Me ₂ N	снз-	Н	н	н
XA1480	CH3-	Me ₂ N-{}-{	СН3-	Н	н	н
XA1481	снз-		снз	н	Н	н
XA1482	снз-		СН3-	н	Н	н
XA1483	снз-	()+(<u>)</u> -1	СН3-	Н	н	н
XA1484	снз–		СН3-	н	Н	н
XA1485	снз-		снз-	н	Н	н
XA1486	снз-	O+	СН3-	н	Н .	н
XA1487	СН3-		СН3-	н	н	н
XA1488	снз-		СН3-	н	н	н
XA1489	CH3-	€_1	СН3-	н	н	н
XA1490	CH3-	H3CN N-	снз-	н	Н.	н
XA1491	снз-	H3CN N-{}	снз-	н	н	н
XA1492	снз-	H3CN_N-{}-1	СН3-	н	н	н
XA1493	СН3-	OCH₃ F-{\rightarrow}-4	СН3-	Н	н	н
XA1494	снз-	OCH ₃	CH3-	н	н	н
XA1495	снз-	OCH ₃	СН3-	н	н	н
XA1496	СН3-		снз-	н	н	Н
XA1497	снз-	OD,	снз-	Н	н	н
XA1498	снз–	СН3-	н	н	снз-	н

No.	R1	R2	R3	R4	R5	R6
XA1499	снз-	СН3СН2-	Н	Н	СН3-	н
XA1500	снз-	\sim	н	н	СН3-	н
XA1501	снз-	$ \uparrow $	Н	н	снз-	н
XA1502	снз-	√ ~\`	Н	н	CH3-	н
XA1503	CH3-	人、	н	Н	СН3-	H
XA1504	снз–	~ ~	Н	н	снз-	Н
XA1505	CH3-	丫	Н	н	снз-	Н
XA1506	снз-	^^\	Н	н	снз-	Н
XA1507	СН3-	\ _	н	н	снз-	Н
XA1508	снз-	\r	н	н	снз-	н
XA1509	снз-	7	н	н	снз-	H
XA1510	снз–	\\\\	н	н	снз-	н
XA1511	снз–	人、、	н	н	СН3-	Н
XA1512	СН3-	~~~ ∖	н	н	снз-	н
XA1513	снз–	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	н	снз-	н
XA1514	СН3-	_П -С8Н17	н	н	С Н3 —	н
XA1515	снз-	L~~~	н	н	снз-	H
XA1516	CH3	Qr	н	н _	снз-	н
XA1517	снз-		н	Н	СН3-	Н
XA1518	CH3-		Н	Н	снз-	н
XA1519	СН3-	⊳ ⊣	н	н .	снз-	н
XA1520	снз-	· 🔷	н	н	снз-	н

No.	R1	R2	R3	R4	R5	R6
XA1521	снз-	\bigcirc	Н	н	СН3-	н
XA1522	снз–	\bigcirc \dashv	Н	Н	снз-	н
XA1523	снз-	$\bigcirc \vdash$	Н	н	CH3-	н
XA1524	снз-		Н	H	снз-	н
XA1525	снз-		Н	н	снз-	н
XA1526	снз–	_ m4	Н	Н	снз-	н
XA1527	снз-	-	н	н	СН3-	н
XA1528	снз–	<u></u>	Н	н	снз-	н
XA1529	снз-	F-{}-{	Н	н	снз-	н
XA1530	снз-	F-(>-1	н	н	снз-	н
XA1531	снз-	F	н .	Н	снз-	н
XA1532	снз–	CI C)	н	Н	снз-	н
XA1533	СН3-	CI ————————————————————————————————————	н	Н	снз	н
XA1534	СН3-	c 	Н	Н	снз-	н
XA1535	снз	CI{_}}-	Н	Н	снз-	н
XA1536	снз-	CI	н	Н	СН3-	н
XA1537	снз-	Br ⊘–∤	н	н	СН3-	Н
XA1538	СН3-	Br.	н	н .	СН3-	н
XA1539	снэ–	Br-{_}_{{}}	н	Н	снз	н
XA1540	снз-	Br- ()-1	н	н	снз-	Н
XA1541	снз-	Br{\mathbb{\mod}\max\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	н .	снз-	н
XA1542	снз-		н	н	снз-	Н

No.	R1	R2	R3	R4	R5	R6
XA1543	снз-		H	н	снз-	н
XA1544	снз–		н	н	снз-	Н
XA1545	снз-	СН₃	н	н	СН3-	н
XA1546	снз-	H₃C △	н	н	СН3-	н
XA1547	снз	H3C-{}-{	н	H.	СН3-	Н
XA1548	СН3-		н	н	снз-	Н
XA1549	снз-	n-C ₃ H ₇ -	н	н	снз	н
XA1550	СН3-	n-C ₄ H ₉ -	н	н	снз-	н
XA1551	снз–	OH OH	н	н	снз-	н
XA1552	СН3-	HO —	Н	н .	снз-	Н
XA1553	СН3-	HO-{}-{	н	н	СН3-	н
XA1554	снз–	OCH₃	Н	н	CH3-	н
XA1555	снз-	H ₃ CO	H ·	н	СН3-	н
XA1556	снз–	H³CO- ⟨ }-4	Н	н	CH3-	н
XA1557	снз-	H₃CO- ()—(н	н	сна-	н
XA1558	снз–	H ₃ CO-\bigs\mid	Н	н	CH3-	н
XA1559	снз-	OC ₂ H ₅	н	н	СН3-	н
XA1560	снз–	C ₂ H ₅ O	н	Н	СН3-	н
XA1561	СН3-		Н	н	снз-	н
XA1562	снз-	n-C₃H ₇ O-{}-{	н	н	CH3-	н
XA1563	снз-	n-C₄H ₉ O- ⟨ _}-{	н	н	снз-	н
XA1564	снз-	NO ₂	н	н	снз-	н

No.	R1	R2	R3	R4	R5	R6
XA1565	1	O ₂ N				
AA1303	СН3-		H	Н	снз-	Н
XA1566	CH3-	0 ₂ N-{}-{	н	Н	снэ-	н
XA1567	СН3-	CN	н	н	снз	Н
XA1568	СН3-	NC	н	Н	снз-	н
XA1569	снз-	NC-	н	Н	снз-	H
XA1570	снз-	NH ₂	н	Н	СН3-	н
XA1571	СН3-	H ₂ N	н	H	снз-	H
XA1572	СН3-	H ₂ N-(¯)-	н	Н	снз-	Н
XA1573	снз-	NMe ₂	н	Н	снз-	н
XA1574	снз-	Me ₂ N	Н	н	снз-	н
XA1575	CH3-	Me ₂ N-⟨¯⟩∤	н	н	снз-	н
XA1576	СН3-		н	н	снз-	н
XA1577	CH3-		Н	н	снз-	Н
XA1578	СН3		н	Н	снз-	Н
XA1579	СН3-		н	H	снз-	н
XA1580	СН3-		н	Н	снз-	н
XA1581	СН3-		Н	н	снз-	н
XA1582	CH3-		Н	н	снз	н
XA1583	CH3-		н .	н	снз-	н
XA1584	CH3-		Н	н	снз-	н
XA1585	снз-	H³CN_N-∕	н	H	снз-	н
XA1586	СН3-	H³CN_N-{}	Н	н	снз-	н

XA1608

СН3-

No. R4. R5 R6 H3CN_N-{} XA1587 СН3н СН3н OCH₃ XA1588 CH3н СН3н XA1589 СН3н Н СН3н XA1590 Снз-Н СН3-Н Н XA1591 СН3н CH3-Н XA1592 СН3-Н СН3н XA1593 СН3-CH3-СН3снз-XA1594 снз-СНЗСН2-Н СН3~ снз-XA1595 CH3н Н СН3-СН3-XA1596 CH3-Н. Н СН3снз-XA1597 СН3-СН3снз-XA1598 снз-СН3-Н CH3-XA1599 снз-Н CH3--СНЗ-XA1600 Снз-СН3-Н CH3-XA1601 СН3-СН3~ снз-XA1602 СН3-СН3-СН3-XA1603 СН3-Н CH3снз-XA1604 снз-СН3-СН3-XA1605 снз-СН3снз-XA1606 СН3--СН3снз-XA1607 CH3-СН3-СН3-

Н

CH3-

СН3-

No.	R1	R2	R3	R4	R5	R6
XA1609	снз-	n-C8H17-	н	н	снз-	снз-
XA1610	снз–	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	н	СН3-	CH3-
XA1611	снз-	Qu	н	н	снз-	CH3-
XA1612	CH3-		н	Н	снз-	снз-
XA1613	снз-		н	Н	снз-	СН3
XA1614	СН3-	D-4	н.	Н	СН3-	снз-
XA1615	снз-	\Diamond -I	н	Н	СН3-	СН3-
XA1616	снз-	$\bigcirc \dashv$	н	н	снз-	снз-
XA1617	СН3-	\bigcirc \dashv	н	н	СН3-	СН3-
XA1618	CH3-	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	н	н	снз-	СН3-
XA1619	СН3-		н .	Н	СН3-	снз–
XA1620	CH3-		Н	Н	СН3-	СН3-
XA1621	СН3-	<u></u>	н	н	СН3-	снз-
XA1622	СН3-		Н	H	СН3-	СН3-
XA1623	СН3-	~ .	Н	Н	СН3-	СН3
XA1624	СН3-	F-()-1	Н	н	СН3-	СН3-
XA1625	СН3-	F-(н	Н	СН3-	снз–
XA1626	СН3-		Н	Н .	СН3-	СН3
XA1627	снз–	(_/_;	н	Н	СН3-	снз-
XA1628	снз-	CI	Н	Н	СН3-	снз-
XA1629	СН3-	c ()-1	Н	н	снз-	снз–
XA1630	СН3-	C {-}- {	H	Н	СН3-	СН3

No.	R1	R2	R3	R4	R5	R6
XA1631	снз-	CI-{	н	н	снз-	снз-
XA1632	снз-	Br	н	н	снз-	СН3-
XA1633	СН3-	Br.	н	н	снз-	снз-
XA1634	СН3-	Br-{}-{	н	н	снз-	снз-
XA1635	снз-	Br—()	н	н	снз-	СН3-
XA1636	снз-	Br————————————————————————————————————	н	Н	снз-	снз-
XA1637	снз-		н	н	снз-	снз-
XA1638	снэ-		Н	н	снз-	снз-
XA1639	снэ-	⊢ ⊘⊣ .	н	н	снз-	снз-
XA1640	снз-	CH₃	н	н	снз-	снэ-
XA1641	снз-	H ₃ C	н	н .	снз-	снз-
XA1642	СН3-	H³C-{}-{	н	н	снз-	снз–
XA1643	снз–		н	н	снз-	снз-
XA1644	снз-	n-C ₃ H ₇ -	Н	н	СН3-	снз-
XA1645	снз-	n-C ₄ H ₉ -	Н	Н	СН3-	CH3-
XA1646	снз-	OH OH	н	н	СН3-	CH3-
XA1647	снз-	HO HO	н	н	СН3-	снз-
XA1648	снз-	HO-{_}-	H _.	н	СН3-	снз-
XA1649	снз-	OCH₃	н	н	снз-	CH3-
XA1650	снз-	H₃CO ————————————————————————————————————	н	н	снз-	снз-
XA1651	CH3-	H₃CO-{{}{	Н	н	снз-	снз-
XA1652	снз-	H₃CO- ()~	н	н	снз-	снз-

XA1653 CH3- H3CO ← H4 H H H CH3-	No.	R1	R2	R3	R4	IR5	R6
XA1654 CH3- OC2H5 H H CH3- CH3- XA1655 CH3- C2H5O H H H CH3- CH3- XA1656 CH3- C2H5O H H H CH3- CH3- XA1657 CH3- NC3H7O H H H CH3- CH3- XA1658 CH3- NC4H3O H H H CH3- CH3- XA1659 CH3- NO2 H H H CH3- CH3- XA1660 CH3- O2N H H H CH3- CH3- XA1661 CH3- O2N H H H CH3- CH3- XA1662 CH3- CN H H CH3- CH3- XA1665 CH3- NO2 H H H CH3- CH3- XA1665 CH3- NO3- H H H CH3- CH3- XA1665 CH3- NO- H H H CH3- CH3- XA1666 CH3- NO- H H H CH3- CH3- XA1667 CH3- NO- H H H CH3- CH3- XA1668 CH3- NO- H H H CH3- CH3- XA1669 CH3- NO- H H H CH3- CH3- XA1669 CH3- NO- H H H CH3- CH3- XA16670 CH3- MO2N H H H CH3- CH3- XA1671 CH3- NO- H H H CH3- CH3- XA1673 CH3- NO- H H H CH3- CH3- XA1674 CH3- NO- H H H CH3- CH3- XA1675 CH3- NO- H H H H CH3- CH3- XA1674 CH3- NO- H H H H CH3- CH3- XA1675 CH3- NO- H H H H CH3- CH3- XA1674 CH3- NO- H H H H CH3- CH3- XA1675 CH3- NO- H H H H CH3- CH3- XA1676 CH3- NO- H H H H CH3- CH3- XA1677 CH3- NO- H H H H CH3- CH3- XA1678 CH3- NO- H H H H CH3- CH3- XA1678 CH3- NO- H H H H CH3- CH3- XA1678 CH3- NO- H H H H CH3- CH3- XA1678 CH3- NO- H H H H CH3- CH3- XA1678 CH3- H H H H CH3- CH3- XA1678 CH3- H H H H CH3- CH3- XA1678 CH3- H H H H CH3- XA1678 CH3- H H H H CH3- CH3- XA1678 CH3- H H H H CH3- XA1678 CH3- H H H			W CO / \			110	IND
XA1654 CH3- CH3- H H H CH3- C	XA1653	CH3-		н	Н	CH3-	снз-
XA1655 CH3- C₂H5O H H H CH3-	XA1654	СН3-	⟨ ⟩ .	н	н	снз-	снз-
XA1657 CH3-	XA1655	CH3-		н	н	СН3-	снз-
XA1657 CH3- PC3H70- H H CH3-	XA1656	CH3	C ₂ H ₅ O-{}-{	Н	н	СНЗ-	снз-
XA1659 CH3- CH3- H H H CH3- CH3- XA1660 CH3- CH3- H H CH3- CH3- CH3- XA1661 CH3- CH3- H H H CH3- CH3- XA1662 CH3- CH3- H H H CH3- CH3- XA1663 CH3- CH3- H H H CH3- CH3- XA1664 CH3- NC- H H H CH3- CH3- XA1665 CH3- CH3- H H H CH3- CH3- XA1666 CH3- H2N- H H H CH3- CH3- XA1667 CH3- H2N- H H CH3- CH3- CH3- XA1668 CH3- Me2N- H H CH3- CH3- XA1670 CH3- Me2N- H H CH3- CH3- XA1671 CH3- CH3- H H H H CH3- <td< td=""><td>XA1657</td><td>. Снз-</td><td>n-C₃H₇O-{_}_}</td><td>Н</td><td>н</td><td>снз-</td><td>1</td></td<>	XA1657	. Снз-	n-C ₃ H ₇ O-{_}_}	Н	н	снз-	1
XA1659 CH3-	XA1658	снз-		Н	н	СН3-	снз-
XA1660 CH3-	XA1659	снэ-		Н	н	CH3-	снз-
XA1662 CH3-	XA1660	снз-	O ₂ N	н	н	снз-	снз-
XA1662 CH3- CH3- H H H H CH3-	XA1661	снз-		н	н	снз-	снз-
XA1663 CH3-	XA1662	снз-		н	н	снз-	снз-
XA1665 CH3-	XA1663	снз-	NC .	н	н	снз-	снз-
XA1665 CH3- H H H CH3- CH3- XA1666 CH3- H2N- H H H CH3- CH3- XA1667 CH3- H H H CH3- CH3- XA1668 CH3- Me ₂ N- H H CH3- CH3- XA1669 CH3- Me ₂ N- H H H CH3- CH3- XA1670 CH3- Me ₂ N- H H H CH3- CH3- XA1671 CH3- CH3- H H H CH3- CH3- XA1673 CH3- CH3- H H H CH3- CH3- XA1674 CH3- CH3- H H H CH3- CH3-	XA1664	снз-		н	н	снз-	СН3-
XA1666 CH3- CH3- CH3- CH3- CH3- XA1667 CH3- H H H CH3- CH3- XA1668 CH3- Me2N H H CH3- CH3- CH3- XA1669 CH3- Me2N H H CH3- CH3- CH3- XA1670 CH3- Me2N H H CH3- CH3- CH3- XA1671 CH3- CH3- H H H CH3- CH3- XA1673 CH3- CH3- H H H CH3- CH3- XA1674 CH3- CH3- CH3- CH3- CH3- CH3-	XA1665	снз-		н	Н	снз-	снз-
XA1668 CH3- NMe2 H H H CH3- CH3- XA1669 CH3- Me2N H H H CH3- CH3- XA1670 CH3- Me2N H H H CH3- CH3- XA1671 CH3- N- H H H CH3- CH3- XA1672 CH3- N- H H H CH3- CH3- XA1673 CH3- N- H H H CH3- CH3-	XA1666	Снз-	H ₂ N	Н	н	снз-	снз-
XA1668 CH3- H H H H CH3- CH3-<	XA1667	Снз-		н	Н	снз-	снз-
XA1669 CH3-	XA1668	снз-		Н	н	снз-	снз-
XA1671 CH3- CH3- CH3- CH3- CH3- CH3- XA1672 CH3- N-C H H H CH3- CH3- CH3- XA1673 CH3- N-C H H H CH3- CH3- CH3- CH3- CH3- CH3- C	XA1669	СН3-	¯ <i>)</i> =\ ,	н	н	снз-	снз-
XA1672 CH3- CH3- CH3- CH3- CH3- CH3- CH3- CH3-	XA1670	снз-	Me ₂ N-{}	Н	Н	снз-	снз-
XA1673 CH3- N-(-) H H CH3- CH3-	XA1671	снз-		н	Н	СН3-	снз-
YA1674 CH2 N-(1)	XA1672	снз-		н	Н	СН3-	СН3-
XA1674 CH3- CH3- CH3-	XA1673	снз	() -(_)-1	Н	Н	CH3-	снз-
	XA1674	снэ–		н	Н	CH3-	СН3-

No.	R1	R2	loa	lo 4	1	1=-
140.	- 		R3	R4	R5	R6
XA1675	CH3-		н	н	снз-	снз-
XA1676	снз-		H	н	снз-	СН3-
XA1677	СН3-		Н	Н	СН3-	СН3-
XA1678	СН3-		н	н	снз-	СН3-
XA1679	снз-	©N-€}-1	н	н	снз-	снз-
XA1680	СН3	H3CN N-	н	н	снз-	СН3-
XA1681	снз-	H³CN_N-{}	н	н	СН3-	СН3-
XA1682	снз-	H3CN N-{}-	н	н	снз-	СН3-
XA1683	СН3-	OCH ₃	н	н	снз-	СН3-
XA1684	снз–	OCH ₃	Н	Н	снз-	СН3-
XA1685	снз-	OCH ₃	Н	Н	снз-	снз–
XA1686	снз-		н	Н	СН3-	СН3-
XA1687	снз-		Н	Н	СН3-	СН3
XA1688	снз-	СН3-	Н	снз-	снз-	СН3
XA1689	снз-	СНЗСН2-	н	снз-	снз-	снз-
XA1690	СН3-	∼ `\	Н	СН3-	снз-	снз-
XA1691	СН3-		Н	снз-	снз-	CH3-
XA1692	снз-	~ ~	Н	СН3-	снз-	СН3-
XA1693	СН3-	人人	Н	снз-	снэ-	СН3-
XA1694	СН3-	γ	н	CH3-	снз-	снз-
XA1695	СН3-		Н	СН3-	СН3-	CH3-
XA1696	СН3-	^~\\	Н	СН3-	СН3-	СН3-

No.	R1	R2	R3	R4	R5	R6
XA1697	снз-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	снз–	СН3	снз-
XA1698	снз-	\\\\\	н	снз–	СН3-	СН3-
XA1699	СН3-	γ	Н	снз-	снз–	СН3-
XA1700	CH3-	~~~	Н	снз–	CH3-	СН3-
XA1701	снз-	 	н	СН3-	снз-	СН3-
XA1702	СН3-	~~~\	н	СН3-	снз-	снз-
XA1703	снз-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	СН3-	СН3-	снз-
XA1704	снз–	n-C8H17-	Н	СН3-	снз–	снз-
XA1705	снз-	人~~~	н	СН3	СН3-	СН3-
XA1706	СН3-		Н	СН3-	СН3-	СН3
XA1707	снз-		Н	СН3	снз-	снз-
XA1708	СН3-		н	СН3	снз-	CH3-
XA1709	снз-	\triangleright	Н	CH3-	снз-	снз-
XA1710	СН3-	\Diamond	Н	CH3	снз-	СН3-
XA1711	СН3-	\bigcirc	Н	CH3-	снз–	СН3-
XA1712	снз-	. 🖂	Н	CH3-	снз-	CH3-
XA1713	снз-	\bigcirc	н	CH3	снз-	СН3-
XA1714	СН3-		н	СН3-	СН3-	СН3
XA1715	снз-		Н	CH3-	снз-	снз-
XA1716	снз-		Н	СН3-	снз-	СН3
XA1717	снз-		H	СН3-	снз-	снз-
XA1718	снз-		н	СН3-	СН3-	снз-

No.	RI					
140	IKI	R2	R3	R4	R5	R6
XA1719	снз-		н	снз-	снз-	СН3-
XA1720	снз-	F-()-{	н	снз-	снз-	СН3-
XA1721	снз-	F—Qn.{	н	CH3	CH3-	СН3
XA1722	снз-	CI CH	н	снз	CH3-	снз-
XA1723	снз-	CI	н	CH3-	снз-	CH3-
XA1724	снз–	c 	н	снз-	снз-	CH3~
XA1725	снз-	C -	н	снз	СН3-	снз-
XA1726	снз-	CI—(н	снз-	СН3-	снз-
XA1727	снз–	Br —}	Н	снз-	снз-	снз-
XA1728	снз–	Br.	н	СН3-	СН3-	CH3-
XA1729	снз–	Br—()—{	н	СН3-	снз-	CH3-
XA1730	снз-	Br—{}	н	снз-	CH3-	CH3-
XA1731	СН3	Br—{}m{	н	снз-	CH3-	снз-
XA1732	снз–		н	снз-	CH3-	снз-
XA1733	снз–		Н	снз-	CH3-	снз-
XA1734	СНЗ—		н	снз-	CH3-	снз-
XA1735	СН3-	CH₃	н	снз-	CH3-	снз-
XA1736	СН3	H₃C	Н	СН3-	CH3-	СН3-
XA1737	СН3-	H³C-{_}-{	н	снз-	снз-	CH3-
XA1738	СН3-	C ₂ H ₅ -{_}	н	СН3-	СН3-	СН3-
XA1739	СН3-	ҧС ₃ Н ₇ -⟨⟩{	н	снз-	снз–	CH3-
XA1740	снз-	ņ-С ₄ Н ₉ -∕}-	н	снз-	снз-	СН3-

No.	RI	R2	R3	R4	R5	R6
XA1741	СН3-	OH OH	н	CH3-	снз-	СН3-
XA1742	СН3-	HO	H	CH3-	снз-	снз-
XA1743	снз-	HO-{\right\}-{	н	CH3-	снз-	CH3-
XA1744	снз-	OCH₃	н	СН3-	снз-	снз
XA1745	СН3-	H ₃ CO	н	CH3-	снз~	СН3-
XA1746	снз-	H ₃ CO-{}-{	н	СН3	снз	СН3-
XA1747	снз-	H3CO-{}-{	н	снз-	СН3-	снз–
XA1748	СН3-	H₃CO-⟨∑ıı-{	н	снз-	снз–	снз-
XA1749	СН3-	OC ₂ H ₅	н	снз–	снз-	CH3-
XA1750	СН3-	C ₂ H ₅ O	н	CH3-	- СН3-	снз-
XA1751	снз-	C ₂ H ₅ O-{_}	н	СН3-	СН3-	СН3-
XA1752	СН3-	n-C ₃ H ₇ O-{}	н	СН3-	СН3-	CH3-
XA1753	СН3-	n-C ₄ H ₉ O-	н	СН3	снз-	СН3
XA1754	СН3-	NO ₂	н	СН3-	снз-	CH3-
XA1755	снз-	O ₂ N	н	СН3-	снз-	СН3
XA1756	снз-	O ₂ N-()-(н	СН3-	снз-	СН3-
XA1757	снз-	CN CN	н	СН3-	снэ-	снз-
XA1758	снз-	NC	н	СН3-	CH3-	СН3-
XA1759	снз-	NC-{}	н	снз-	СН3-	СН3-
XA1760	снз-	NH ₂	н	CH3-	СН3-	СН3-
XA1761	СН3-	H ₂ N	н	СН3-	СН3-	CH3-
XA1762	снз-	H ₂ N-⟨¯⟩-(Н	СН3-	CH3-	снз-

|--|--|--|

No.	RI	R2	ĪR3	R4	R5	R6
XA1763	CH3-	NMe ₂	T			
- A1703	CH3-		Н	CH3-	СН3-	снз–
XA1764	снз-	Me ₂ N	Н	СН3-	СН3-	снз-
XA1765	снз-	Me ₂ N-{}	н	снз-	СН3-	СН3-
XA1766	снз-		н	снз-	СН3	снз-
XA1767	СН3-		н	снз-	снз-	снз-
XA1768	СН3-		Н	снз-	СН3-	снз-
XA1769	СН3-		н .	снз-	снз–	снз-
XA1770	СН3-		н	снэ-	СН3-	СН3-
XA1771	снз-	O+< <u></u>	н	СН3-	снз-	снз-
XA1772	СН3-		н	снз–	снз-	СН3-
XA1773	СН3-		н	снз-	снз-	СН3
XA1774	СН3-	○ \+<>\	н	снз-	снз	снз-
XA1775	снз-	H³CN N-⟨S	н	снз-	СН3-	снз-
XA1776	снз-	H³CN_N-⟨_}	н	снз–	снз-	снз-
XA1777	снз–	H³CN N-{}	н	снз-	снз-	снз-
XA1778	снэ-	OCH₃ F-{_}}-{	н	СН3-	снз-	снз-
XA1779	снз-	OCH ₃	н	СН3	СН3-	снз-
XA1780	снз-	CCH ₃	н	СН3-	СН3-	СН3-
XA1781	CH3-	9	н	СН3-	снз-	снз-
XA1782	снз-	CC,	Н	снз-	снз	снз-
XA1783	СНЗСН2-	CH3-	Н	н	н	н
XA1784	СНЗСН2-	CH3CH2-	Н	н	Н	н

No.	R1	R2	R3	R4	R5	R6
XA1785	снзсн2-	~ ``	н	н	н	н
XA1786	снзсн2-	Y	н	н	н	н
XA1787	Снзсн2-	~ ~Х	Н	Н	Н	н
XA1788	Снзсн2-	人人	Н	н	Н	Н
XA1789	снзсн2-	~~`	н	Н	Н	Н
XA1790	СНЗСН2-	丫	Н	н	Н	н
XA1791	СН3СН2-	~~\	Н	н	н	н
XA1792	Снзсн2-	\	Н	Н	н	н
XA1793	Снзсн2-	Xv	н	н	н	н.
XA1794	СНЗСН2-	7	Н	н	н	Н
XA1795	СНЗСН2-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	Н	н	н
XA1796	СНЗСН2-	人へ、	Н	н	н	н -
XA1797	снзсн2-	~~~ シ	Н	н	н	н
XA1798	СНЗСН2-	\	Н	н	н	Н
XA1799	СНЗСН2-	n=C8H17=	H	H	н	н
XA1800	снзсн2-	<u> </u>	H	н	Н	Н
XA1801	СНЗСН2-		н	н	Н	Н
XA1802	СН3СН2-		Н	н	н	н
XA1803	снзсн2-		Н	н	Н	н
XA1804	СНЗСН2-	D	н	Н	н	Н
XA1805	СНЗСН2-	\Diamond	Н	н	н	н
XA1806	СНЗСН2-	\bigcirc	Н	н	н	Н

	152	755	-	 	· ·	De
No.	R1	R2	R3	R4	R5	R6
XA1807	снзсн2-	$\bigcirc \dashv$	н	H	н	н
XA1808	снзсн2-	\bigcirc -1	н	Н	Н	н
XA1809	снзсн2-		н	н	Н	н
XA1810	снзсн2-		н	н	н	н
XA1811	снзсн2-		н	н	Н	Н
XA1812	СНЗСН2-		н	н	Н	н
XA1813	СНЗСН2-	<u></u>	Н	н	Н	н
XA1814	СНЗСН2-	F-()-1	н	н	н	н
XA1815	СНЗСН2-	F-()(н	н	н	н
XA1816	СНЗСН2-	F—()III-{	н	н	Н	Н
XA1817	снзсн2-	CI	н	н ·	н	н
XA1818	СНЗСН2-	ci \	н	Ĥ	н	Н
XA1819	СНЗСН2-	c⊢ { }-∤	н	Н	Н	н .
XA1820	СНЗСН2-	c⊢ ⟨ }~∤	н	Н	Н	Н
XA1821	СНЗСН2-	CI()···-{	н	н	н	Н.
XA1822	СНЗСН2-	Br —{	н	н	н	н
XA1823	СНЗСН2-	Br.	Н	н	н	н
XA1824	СНЗСН2-	Br−€ <mark>}</mark> −∤	н	н	н	н
XA1825	СНЗСН2-	Br— ()—(н	н	н	н
XA1826	СНЗСН2-	Br-{_}\\	н	н	н	н
XA1827	СНЗСН2		н	н	н	н
XA1828	снзсн2-		н	н	Н	н

No.	R1	R2	R3	R4	R5	R6
XA1829	снзсн2-		Н	н	н	н
XA1830	снзсн2-	CH₃ С →	Н	н	Н	Н
XA1831	СНЗСН2-	H ₃ C	Н	н	н	н
XA1832	снзсн2-	H ₃ C-{_}-{	Н	н	н	н
XA1833	снзсн2-	C ₂ H ₅ -{}-	Н	н .	н	Н
XA1834	снзсн2-	n-C₃H ₇ -{_}{	Н	н .	н	Н
XA1835	снзсн2-		Н	н	н	н
XA1836	СНЗСН2-	OH OH	Н	н	н	н
XA1837	снзсн2-	HO ———	Н	Н	Н	н
XA1838	СНЗСН2-	HO-{_}-{	Н	Н	H	н
XA1839	снзсн2-		Н	Н	Н	н
XA1840	СНЗСН2-	H₃CO ————————————————————————————————————	н	Н	Н	н
XA1841	СН3СН2-	H³CO- { } - {	Н	н	Н	Н
XA1842	СНЗСН2-	н₃со-{_}-(н	н	Н	н
XA1843	снзсн2-	H³CO-{}	Н	Н	н	н
XA1844	снзсн2-	OC ₂ H ₅	Н	Н	Н	н
XA1845	снзсн2-	C₂H₅O △	н	Н	Н	н
XA1846	снзсн2-	C ₂ H ₅ O-{_}-	н	н	н	н
XA1847	снзсн2-	љС₃ЊО- ⟨ ҈}~{	н	Н	н	н
XA1848	СН3СН2-	n-C₄H ₉ O- ⟨ }{	н	н	н	Н
XA1849	СНЗСН2-	NO ₂	н	н	н	н
XA1850	СНЗСН2-	N ₂ O	н	н	Н	Н

$\overline{}$	
<i>.</i>	

No.	Ri	Im		le d	los .	
NO.	KI	R2	R3	R4	R5	R6
XA1851	снзсн2-	O ₂ N-{_}}-	н	н	н	н
XA1852	СН3СН2-	CN C	Н	Н	Н	н
XA1853	СНЗСН2-	NC	н	н	н	н
XA1854	СНЗСН2-	NC-()-1	н	н	н	н
XA1855	СНЗСН2-	NH ₂	н	н	н	н
XA1856	снзсн2-	H ₂ N	н	н	н	н
XA1857	СН3СН2-	H ₂ N-{_}}-{	н	Н	н	н
XA1858	СНЗСН2-	NMe ₂	н	н	н	Н
XA1859	СН3СН2-	Me ₂ N	н	Н	н	н
XA1860	СНЗСН2-	Me ₂ N-√→	Н	н	Н	н
XA1861	СНЗСН2-		Н	Н	н	Н
XA1862	СНЗСН2-		Н	Н	H	н
XA1863	СНЗСН2-	(n-()-1	H ·	Н	н	н
XA1864	СНЗСН2-		Н	н	н	н
XA1865	СНЗСН2-		н	Н	Н	н
XA1866	СНЗСН2-	O⊘-₁	Н	н	н	н
XA1867	СНЗСН2-		Н	Н	н	н
XA1868	СНЗСН2-		Н	н	н	н
XA1869	снзсн2-	<u>~~</u>	Н	н	н	н
XA1870	снзсн2-	H³CH_N-√_>	н	н .	н	н
XA1871	СНЗСН2-	H₃CN_N-	н	Н	Н	Н
XA1872	СНЗСН2-	H3CN_N-{}-	Н	н	н	н

No.	R1	R2	R3	R4	R5	R6
		OCH ₃				
XA1873	СНЗСН2-	F-⟨□}{ OCH₃	Н	Н	Н	н .
XA1874	СНЗСН2-		н	н	н	н
XA1875	снзсн2-	OCH ₃	н	Н	н	н
XA1876	снзсн2-		Н	н	Н	н
XA1877	СНЗСН2-		Н	н	Н	н
XA1878	СНЗСН2-	CH3-	Н	CH3-	н	н
XA1879	снзсн2-	СНЗСН2-	н	снз-	H	Н
XA1880	СНЗСН2-	<u> </u>	н	СН3-	Н	Н
XA1881	СНЗСН2-	Y	н	СН3-	Н	н
XA1882	СНЗСН2-	~~ `	н	снз-	н	н
XA1883	снзсн2-	人、	Н	снз-	н	н
XA1884	СНЗСН2-	γ	н	сн3-	н	Н
XA1885	СНЗСН2-	丫	н	снз-	н	H ·
XA1886	СНЗСН2-	~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	сн3-	н	н
XA1887	СНЗСН2-	\ ;	н	снз-	Н	н .
XA1888	СНЗСН2-	X.	н	снз-	н	Н
XA1889	СНЗСН2-	7	н	снз-	Н	н
XA1890	снзсн2-	~~~ <u>`</u>	н	снз-	н	н
XA1891	СНЗСН2-	L~~	н	снз-	н	Н
XA1892	СНЗСН2-	~~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	снз-	н	Н
XA1893	СНЗСН2-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	снз-	н	Н
XA1894	снзсн2-	п-С8Н17-	н	снз-	н	Н

No.	R1	R2	R3	R4	R5	R6
.,,,,,		1	1.0			1.0
XA1895	СНЗСН2-	/ /^/	Н	СН3-	Н	H
XA1896	СНЗСН2-		н	снз-	н	н
XA1897	снзсн2-		Н	СН3-	Н	Н
XA1898	снзсн2-		н	снз-	н	н
XA1899	снзсн2-	▷ →	н	сн3-	н	н
XA1900	СНЗСН2-	\Diamond -I	H ·	снз-	Н	н
XA1901	СНЗСН2-	\bigcirc	н	снз~	н	н
XA1902	СНЗСН2-	\bigcirc -i	H	снз-	н	н
XA1903	СНЗСН2-	\bigcirc \vdash	н	СН3	н	н
XA1904	СНЗСН2-		Н	снз-	н	H
XA1905	снзсн2-		н	снз-	н	н
XA1906	снзсн2-		н	СН3-	Н	н
XA1907	СНЗСН2-	F	н	СН3	Н	н
XA1908	СНЗСН2-	F	н	снз	Н	н
XA1909	снзсн2-	F-()-1	н	снз-	Н	н
XA1910	СНЗСН2-	F-()	н	СН3-	н	н
XA1911	СНЗСН2-	F-()11-4	н	снз-	н	Н
XA1912	СНЗСН2-	CI C)	н	снз-	Н	н
XA1913	СН3СН2-	CI CI	Н	СН3-	н	Н
XA1914	снзсн2-	c⊢ ()~{	н	СН3-	н	н
XA1915	снзсн2-	CI{}-{	н	снз-	Н	Н
XA1916	СНЗСН2-	CH	н	снз–	н	н

No.	R1	R2	R3	R4	R5	R6
XA1917	снзсн2-	Br ∰-∤	Н	СН3-	н	н
XA1918	снзсн2-	Br.	Н	СН3-	н	Н
XA1919	снзсн2-	Br—(Н	СН3-	н	н
XA1920	снзсн2-	Br-{}	H	CH3-	н	н
XA1921	снзсн2-	Br—{	н	CH3-	н	н
XA1922	снзсн2-	_	H 	СН3-	н	н
XA1923	снзсн2-		Н	CH3-	н	н
XA1924	снзсн2-	H	н	СН3-	н	Н
XA1925	снзсн2-	CH ₃	н .	снз-	н	н
XA1926	СНЗСН2-	H ₃ C	Н	снз-	н	н
XA1927	СНЗСН2-	H₃C- ⟨_){	н	снз-	н	н
XA1928	снзсн2-	C ₂ H ₅ -{}-{	Н	снз-	н	н
XA1929	снзсн2-	n-C ₃ H ₇ {}{	н	СН3-	Н	н
XA1930	снзсн2-	1	н	снз	н	н
XA1931	СНЗСН2-	(T.)→1	н	снз–	н	н
XA1932	снзсн2-	HO HO	Н	снз-	н	н
XA1933	снзсн2-	но-{}-	н	снз–	н	н
XA1934	снзсн2-	OCH ₃	н	снз-	н	н
~XA1935	СНЗСН2-	H₃CO	н	снз-	н	н
XA1936	снзсн2-	H³CO-{_}-{	н	сн3-	н	н
XA1937	снзсн2-	H₃CO- (}-{	н	СН3-	н	н
XA1938	снзсн2-	H₃CO-∕∑l⊪{	н	СН3-	н	н

|--|--|

No.	R1	R2	R3	ĪR4	R5	R6
XA1939	снзсн2-	OC ₂ H ₅	Н	снз-	н	н
XA1940	снзсн2-	C₂H₅Q ⟨_}_{	н	снз-	н	Н
XA1941	СНЗСН2-	C_2H_5O-	Н	снз-	Н	Н
XA1942	снзсн2-	n-C ₃ H ₇ O-	н	сн3-	н	н
XA1943	СНЗСН2-	n-C ₄ H ₉ O-	н	снз-	н	Н
XA1944	СН3СН2-	NO ₂	н	снз-	н	н
XA1945	снзсн2-	O ₂ N ⟨}-	н	снз-	н	н
XA1946	СН3СН2-	O ₂ N-{}-{	н	снз-	н	н
XA1947	снзсн2-	CN CN	н .	снз-	Н	н .
XA1948	СНЗСН2-	NC \	н	снз	Н	н
XA1949	СН3СН2-	NC-{}	н	снз-	H	н
XA1950	снзсн2-	NH ₂	н	СН3-	н	н
XA1951	СНЗСН2-	H ₂ N	Н	снз-	Н	н
XA1952	СНЗСН2-	H ₂ N-{}	н	СН3-	н	н
XA1953	снзсн2-	NMe₂	н	СН3-	н	н
XA1954	снзсн2-	Me ₂ N · ⟨¯}—{	н	СН3-	н	н
XA1955	СН3СН2-	Me₂N-{	н	снз-	н	н
XA1956	снзсн2-		н	СН3-	Н	н
XA1957	снзсн2-	CHQ.	н	снз-	Н	н
XA1958	снзсн2-		н	СН3-	н	н
XA1959	снзсн2-		н	СН3-	н	н
XA1960	снзсн2-		н	СН3-	н	н

No.	R1	R2	R3	R4	R5	R6
XA1961	снзсн2-		Н	СН3-	н	н
XA1962	снзсн2-		Н	СН3-	н	н
XA1963	снзсн2-		н	СН3-	н	Н
XA1964	снзсн2-		Н	снэ-	Н	Н
. XA1965	снзсн2-	H³CN N-	Н	снз-	н	Н
XA1966	снзсн2-	H3CN N-C	Н	снз-	н	н
XA1967	СНЗСН2-	H3CN N-(_)-{	н	снз-	Н	н
XA1968	снзсн2-	OCH₃ F-{\rightarrow}-{\righta	н	снз-	Н	н
XA1969	СНЗСН2-	OCH ₃	н	снз-	Н	н
XA1970	снзсн2-	OCH ₃	н	снз-	н	н
XA1971	снзсн2-		н	снэ-	н	н
XA1972	СНЗСН2-	CC,	Н	СН3	н	н

XA1977	CIH CIH N
XA1978	a CH ₃
XA1979	
XA1980	HCI HCI HCI CH ₃

54.400	T
XA1981	HCI HCI HCI CH ₃
XA1982	
	HCI HCI HCI HCI CH ₃ C OCH ₃
XA1983	свн "М
	СІН
	CH, CH,
XA1984	сін 🕠
·	CI N N O CH ₃

XA1985	<u> </u>
	CIH CH CH, CH, CH,
XA1986	CIH CH CH, CH, CH, CH, CH, CH, CH, CH, CH,
XA1987	CIH CIH CH ₃
XA1988	HCI HCI N CH ₃ C

XA1989	HCI HCI HCI CH ₃
XA1990	Ha H
XA1991	CH ₃ Ha Ha CH ₃ O
XA1992	CIH CIH CH ₃ CH ₃

XA1993	CIH CH ₃ CH ₃ CH ₃
XA1994	CIH CIH CH ₃ CH ₃
XA1995	CIH CH CH3
XA1996	CH ₃ CiH CiH N N CH ₃ CCH ₃

NA 4007	
XA1997	CH ₃ CIH CIH N
XA1998	CIH CIH N N N CH ₃
XA1999	HCI CIH CIH N CH CH CH CH CH CH CH CH CH
XA2000	CIH CH, CH, CH,

XA2001	
XXZUUT	CIH CH, CH, CH,
XA2002	CIH CH CH, CH, CH, CH, CH, CH, CH, CH, CH,
XA2003	
XA2004	HCI HCI N N N CH ₃

W4000	
XA2005	HCI HCI CH ₃
XA2006	HCI HCI HCI N CH ₃
XA2007	HCI HCI HCI HCI HCI CH ₃

XA2008	H ₃ C S CH ₃
XA2009	HCI HCH ₃
XA2010	HCI HCI CH ₃
XA2011	N N N CH ₃

XA2012	H ₃ C-SOOH NOCH ₃
XA2013	HCI HCI N HCI N CH ₃
XA2014	Ha H
XA2015	HO HCI NO CH ₃

XA2016	HCI N HCI N HCI N HCI N N N N CH ₃
XA2017	Ha Ha Ha Ha Ha CH ₃
XA2018	
XA2019	H ₃ C N N N O CH ₃

VA2020	
XA2020	HO N N N N N N N N N N N N N N N N N N N
XA2021	H ₃ C O O O O O O O O O O O O O O O O O O O
XA2022	2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-
XA2023	ah ch
XA2024	HO—\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

XA2025	H ₃ C ^{H₃} N N N N CH ₃ N CH ₃ CH ₃
XA2026	H ₃ C N N N O CH ₃
XA2027	H ₃ C ₃ C ₀ C ₁
XA2028	Z CH ₃

VA2020	
XA2029	E CH
XA2030	Z-5°
XA2031	H ₃ C
XA2032	Z-E-E-E-E-E-E-E-E-E-E-E-E-E-E-E-E-E-E-E

XA2033	H ₃ C
XA2034	
	CH3 CH3 O CH3
XA2035	CH ₃ OCH ₃

W4555	
XA2036	C C C C C C C C C C C C C C C C C C C
XA2037	a a h
XA2038	CI CH,
XA2039	N CH,

E	
XA2040	
XA2041	
XA2042	H ₃ C + CH ₃
XA2043	H ₂ C

XA2044	
	CH ₃ S CH ₃ CH ₃ CH ₃ CH ₃
XA2045	H ₃ C N N N O CH ₃
XA2046	H ₃ C CH ₃ H ₃ C CH ₃ O CH ₃
XA2047	H ₃ C N N N O CH ₃

XA2048	H ₂ N O OH ₃
XA2049	H ₃ C N N N O CH ₃
XA2050	
XA2051	Br P-H ₃

14.000	
XA2052	Br CH ₃
XA2053	D. N.
	H ₃ C OH ₃ OCH ₃
XA2054	
·	H ₃ C
XA2055	
	H ₃ C

Table-2	·				
		R ₂ N N N R ₁			
		R _S			
No	R1	R2	R3	R4	R5
XB1	снз-	CH3~	н	н	н .
XB2	снз-	снзсн2-	Н	н	н
XB3	СН3-	△ ✓\	н	н	н
XB4	СН3-	Y	Н	н	н
XB5	снз-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	н	н
XB6	снз-	人、	Н	н	н
XB7	снз-	7,	н	н	н
XB8	СН3-	^ ^\	Н.	н	н
XB9	снз-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	н	н
XB10	снз	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	н	н
XB11	снз-	~~~\\	н	Н	н
XB12	снз-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	н	н
XB13	СН3-	Qu	н	н	н
XB14	снз-		н	н	н
XB15	СН3-		н	н	н
XB16	СН3-		Н	н	Н
XB17	CH3~	C.	Н	н.	Н

No	R1	R2	R3	R4	R5
XB18	снз-	₹	н	н	н
XB19	снз-		н	Н	H
XB20	снз-	CI C)	н	Н	н
XB21	снз-	CĪ	н	Н	Н .
XB22	СН3-	C⊢{_}~{	н	Н	н
XB23	СН3	Br	н	н	н
XB24	снз-	Br. →	н	Н	H
XB25	снз-	Br—⟨	н	Н	н
XB26	СН3-	CH₃	н	н	Н
XB27	снз-	H₃C	н	н	Н
XB28	СН3-	H³C-⟨_}~┤	н	н	н
XB29	СН3-	C ₂ H ₅ -{}-{	Н	н	н
· XB30	снз-	OH →	Н	Н	н
XB31	снз-	HO T	Н	Н .	Н
XB32	снз-	HO-{_}-{	н	Н	Н
XB33	СН3	OCH ₃	н	н	н
XB34	снз-	H³CO	н	. Н	н
XB35	снз-	H₃CO- ⟨ }{	н	н	н
XB36	СН3-		Н	н	н
XB37	снз-	NO ₂	н	н	н
XB38	снз-	O ₂ N	н	н	Н

No	Ri	R2	R3	R4	R5
	- '''		<u> </u>	174	ro
XB39	CH3-	O ₂ N-(){	н	н	н
XB40	снз-	CN	Н	н	Н
XB41	СН3-	NC	н	н	Н
XB42	снз-	NC-{}-	н	Н	н .
XB43	снз-	and,	н	Н	н
XB44	снз-		н	н	Н
XB45	снз-	CC,	н	н	н
XB46	снз-		Н	н	Н
XB47	СН3-	FOX	н	н	н
XB48	снз-	Q,	Н	Н	н
XB49	снз-	Q,	Н	н	н
XB50	СН3-		он	Н	н
XB51	СН3-		он	Н	н
XB52	снз-		он	Н	н
XB53	снз-		он	н	н
XB54	снз-	CI C)	он	Н	н
XB55	снз-	CI	OH	н	н
XB56	снз-	c⊢∕_}-₁	он	н	н
XB57	снз-	Br	он	н	н
XB58	CH3-	Br.	он	н	. н
XB59	снз-	Br—()—{	он	н	н

No	R1	R2	Ina	lD4	Inc
NO	- KI	CH ₃	R3	R4	R5
XB60	снз–		он	Н	н
XB61	снз-	H₃C △	он	Н	Н
XB62	снз-	H₃C- { _}-{	он	н	н
XB63	снз-		он	Н	Н
XB64	снз-	OH OH	он	н	н
XB65	СН3-	HO	он	Н	н
XB66	снз-	но-{}}-;	он	н	н
XB67	снз-	осн _з	он	Н	н
XB68	снз-	H ₃ CO	он	н	Н
XB69	снз-	H³CO-⟨_}~!	он	н	H'
XB70	снз-	C ₂ H ₅ O-{	он	н	Н
XB71	снз-	NO ₂	он	н	н
- XB72	снз	O ₂ N	он	Н	н
XB73	снз-	O ₂ N-{_}	он .	Н	н
XB74	снз-	CN ◯→	он	н	н
XB75	снз-	NC	он	Н	Н
XB76	снз-	NC-{\rightarrow}-i	он .	н	н
XB77	снз-	CO,	он	н	н
XB78	снз-		ОН	н	н .
XB79	снз-	CCC,	ОН	н	н
XB80	снз-	⊘ -1	CN	н	Н

No	- R1	R2	IDS	154	
XB81	СН3-	F	R3 CN	R4 H	R5 H
XB82	снз-		CN	н	н
XB83	СН3-	F-()-1	CN	н	н
XB84	снз-	CI C>→i	CN	н	Н
XB85	снз-	CI	CN	н	Н
XB86	снз-	CI—(CN	н	н
XB87	снз-	Br	CN	н	н
XB88	снз-	Br. →	CN	н	н
XB89	снз-	Br-∕	CN	н	н
XB90	CH3-	CH₃	CN	н	н
XB91	СН3-		CN	н	н
XB92	снз-	H₃C-⟨{	CN	Н	н
XB93	СН3-	C_2H_5	CN	Н	н
XB94	СН3-	OH OH	CN	Н	н
XB95	СН3~	HO HO	CN	H .	н
XB96	CH3-	HO-{\bar{\bar{\bar{\bar{\bar{\bar{\bar	GN	н	н
XB97	СН3-	OCH₃	CN.	н	н
XB98	снз-	H ₃ CO	CN	н	Н
XB99	снз-	H³CO-{_}-{	CN	Н	н
XB100	снз-	C ₂ H ₅ O-{}-{	CN	Н	Н
XB101	снз-	NO ₂	CN	Н	н

No	RI	R2	R3	R4	R5
XB102	СН3-	R2 O ₂ N	CN	н	н
XB103	СН3-	O ₂ N-{\rightarrow}-{\rightarrow}-{\rightarrow}	СИ	н	н
XB104	снз-	CN C	CN	н	н
XB105	снз-	NC	CN	н	н .
XB106	снз–	NC-	CN	н	Н
XB107	снз-	ara,	CN	н	н
XB108	снз-		CN	н .	н
XB109	СН3-	CC,	CN	Н .	н
XB110	снз-	н	н	СН3-	н
XB111	снз-	н	н	СНЗСН2-	н
XB112	СН3-	н	Н	∼ ``	н
XB113	снз-	Н	Н	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н
XB114	снз-	н	н	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н
XB115	снз-	Н	Н	人人	н
XB116	снз-	н .	н	7	н
XB117	снз-	н	н	~~ \	Н
XB118	снз-	Н	н	/ ~	н
XB119	СН3	н	н	~~	н
XB120	снз-	н	н	~~~``\	н
XB121	снз–	н	н	~~~~	Ĥ
XB122	CH3-	н	Н	Qu	н

No	R1	R2	R3	154	loc .
XB123	снз-	Н	н	R4	R5H
XB124	снз-	н	Н	· FO	н
XB125	CH3-	н	Н		н
XB126	CH3-	н	н	Q	н .
XB127	CH3-	н	Н		н
XB128	CH3-	н	н	F	н
XB129	СН3-	н	. н		н
XB130	СН3-	н	н	F-()-1	н
XB131	СН3-	н	н	CI	н
XB132	снз-	н	н	CI	н
XB133	снз-	н	н	CH	Н
XB134	СН3-	н .	н	CI CI	н
XB135	снз-	н	н	Br	Н
XB136	снз-	н	н	Br.	Н
XB137	СН3-	н	н	Br-{_}-{	Н
XB138	снз-	н	н	CH ₃	Н
XB139	снз-	н	. Н	H₃C	н
XB140	снз-	Н	н	H ₃ C-{\rightarrow}-{\rightarrow}-{\rightarrow}-{\rightarrow}	H _.
XB141	снз-	н	н		Н
XB142	снз-	Н	н	OH ○	н
XB143	СН3-	н	н	HO ————————————————————————————————————	н

No	R1	R2	R3	R4	R5
XB144	снз-	н	Н	HO-	н
XB145	СН3-	н	н	OCH ₃	н
XB146	снз-	н	н	H ₃ CO	н
XB147	СН3-	н	н	H ₃ CO-{}-{	Н .
XB148	СН3-	н	Н	C ₂ H ₅ O-{	н
XB149	СН3-	Н	н	NO ₂	Н
XB150	СН3-	н	Н	O ₂ N	н
XB151	СН3-	н	н	O ₂ N-{	н
XB152	СН3-	н	н	CN	н
XB153	снз-	Н	н	NC	н
XB154	снз-	н	н	NC-	н
XB155	СН3-	Н	н		н
. XB156	СН3-	н	н		н
XB157	СН3-	н	н	F	н
XB158	СН3-	н	н	FON	н
XB159	СН3-	н	Н	FOR	н
XB160	CH3-	н	н .		н
XB161	СН3-	Н	Н	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	н
XB162	снз-	Н	н	₩	Н
XB163	снз-	Н	н	O ^{ti,}	Н
XB164	CH3-	н	н	Oh	Н

No	R1	R2	R3	R4	R5
XB165	СН3-	Н	н	CH ₃	Н
XB166	СН3-	Н	Н	F N CH ₃	н
XB167	снз	н	н	H ₃ C O	н
XB168	СН3-	н	Н	F H₃c o	H

No	R1	R2	R3	R4	Inc
		 		T.4	R5
XB169	СН3-	Н	н		он
XB170	CH3-	н	Н	Ğ-	он
XB171	снз-	н	Н	F	он
XB172	CH3-	н .	Н	F-()-1	он
XB173	СН3-	н	. Н	CI	он
XB174	СН3-	н	н	CI 	он
XB175	снз-	Н	н	C ├ ──}-{	он
XB176	снз-	н	н	Br	он
XB177	снз-	н	Н	Br.	он
XB178	снз-	н	н	Br—{}	он
XB179	снз-	н	н	CH₃	он
XB180	CH3-	н	Н	H₃C ————————————————————————————————————	он
XB181	СН3-	н	н	H₃C- ⟨ _}-{	он
XB182	снз-	н	Н	C ₂ H ₅ -{_}-{	он
XB183	снз-	н	Н	OH ○	он
XB184	СН3-	н	Н	HO	он
XB185	снз–	н	Н	HO-{}-{	он

No	R1	R2	R3	R4	R5
XB186	снз-	н	Н	OCH₃	он
XB187	СН3-	Н	н	H ₃ CO	он
XB188	снз-	Н	н	H3CO-{	он
XB189	снз-	н	н	C ₂ H ₅ O-{	он
XB190	снз-	н	н	NO ₂	он
XB191	снз-	Н	Н		он
XB192	снз-	н	н	O ₂ N-{}	он
XB193	СН3-	Н	н	CN	он
XB194	снз-	н	н	NC \	он
XB195	снз-	н	н	NC-{}	он
XB196	снз-	н	н	OP -	он
XB197	снз-	н	Н	CCT,	он
XB198	снз-	Н	Н		CN
XB199	СН3-	н	н	F ·	CN
XB200	CH3-	н	н		CN
XB201	CH3-	н	н	F-(){	CN
XB202	CH3-	н	н	CI	CN
XB203	снз-	н	н	CI	CN
XB204	снз-	н	н	c⊢∕_}-(CN
XB205	снз-	Н	Н	Br	CN
XB206	СН3-	н	н	Br.	CN

No	Ri	R2	R3	R4	R5
XB207	CH3	н	н	Br—{_}_{_}	CN
XB208	снз-	н .	Н	CH ₃	CN
XB209	снз-	н	н	H,C	CN
XB210	СН3-	н	Н	H ₃ C-{}-{	CN
XB211	СН3-	н	н	C ₂ H ₅ -{	CN
XB212	СН3-	н	н	OH ○→	CN
XB213	снз–	н	н	HO —	CN
XB214	снз-	Н	Н	HO-{	CN
XB215	СН3-	Н	н	OCH ₃	CN
XB216	СН3-	н	н	H ₃ CO	CN
XB217	снз-	Н	н	H₃CO-{_}-{	CN
XB218	СН3-	н	н		CN
. XB219	снз-	Н	н	NO ₂	CN
XB220	СН3-	Н	- н	O₂N	CN
. XB221	CH3-	н	Н	O₂N-⟨S	CN
XB222	снз-	н	Н	CN CN	CN
XB223	СН3-	н	н .	NC	CN
XB224	снз-	н	Н	NC-{}-{	CN
XB225	снз-	н	Н		CN
XB226	снз-	н	Н	CCT,	CN
XB227	снз-	н	Н		<u></u>

No	R1	R2	R3	R4	R5
XB228	СН3-	Н	н	<u></u>	\\\
XB229	СН3	н	н	₹	<u>}</u>
XB230	снз-	Н	Н	F-()-1	<u></u>
XB231	снз-	н	н	CI	· ·
XB232	CH3-	н	Н	CI	<u></u>
XB233	снз-	н	н	C⊢ ()→	<u></u>
XB234	снз-	н	н	Br	<u></u>
XB235	снз-	н	, н	Br.	<u></u>
XB236	снз–	Н	н	Br- √ }{	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
XB237	снз-	н	н	CH₃	0
XB238	снз-	н	н	H ₃ C	0
XB239	снз-	Н	н	H³C-{_}	0
XB240	снз-	Н	н	C ₂ H ₅ -{_}-{	0
XB241	СН3-	Н	н	OH OH	0
XB242	снз-	Н	н	HO	2
XB243	снз-	Н	Н	HO-{}-{	<u>}</u>
XB244	СН3-	н	H	OCH₃	3
XB245	снз-	н	н	H ₃ CO	بُ
XB246	снз-	Н	Н	H₃CO- ⟨ }{	2
XB247	снз-	н	н	C ₂ H ₅ O-{	2
XB248	СН3-	н	н	NO ₂	3

No	R1	R2	R3	R4	R5
XB249	снз-	Н	Н	O ₂ N	<u></u>
XB250	снз-	Н	н	O ₂ N-{}	<u>\</u> ,
XB251	снз-	н	Н	CN CH	○
XB252	снз-	Н	Н	NC	· .
XB253	СН3-	н	H	NC-{}	, O
XB254	снз-	Н	Н	OP	__\\\
XB255	снз-	Н	н.	CCT'	°

No.	STRUCTURE
XB256	
	N N N O CH ₃
XB257	
Ł.	CH ₃
XB258	СІН
	ON OH ₃
XB259	
	CH ₃

XB260	
·	CIH N O CH3
XB261	ON CH ₃
XB262	H ₃ C N O CH ₃
XB263	CIH CIH CIH N N N N O CH ₃ CH ₃

XB264	·
	H ₃ C N N N O CH ₃
XB265	H ₃ C N N N O CH ₃
XB266	CIH CIH CIH N CH3
XB267	N N N O CH ₃
XB268	Br Cri,

VDOCO	
XB269	
XB270	ON OH,
XB271	F OH ₃
XB272	F F N N O CH ₃

N-2	
XB273	H ₃ C N N N O CH ₃
XB274	O CH ₃ O CH ₃
XB275	CH ₃ O CH ₃
XB276	CH ₃ N O CH ₃

XB277	
XB278	CH ₃ CH ₃ CH ₄ CH ₃ CH ₄ CH ₅
XB279	CH ₃ CH ₃
XB280	H ₃ C N CH ₃ OCH ₃ OC
XB281	Br N N O CH ₃

XB282	O CH ₃
XB283	HO N N N O CH ₃
XB284	H ₃ C N O CH ₃
XB285	2 - Z - Z - Z - Z - Z - Z - Z - Z - Z -
XB286	N CH ₃

XB287	H ₃ C N N N N N N N N N N N N N N N N N N N
XB288	H ₃ C N N N N O CH ₃
XB289	\$\frac{2}{2} \\ \frac{2}{2} \\ \frac
XB290	H _C C N

XB291	
	HO CH ₃
XB292	
-	N N N O CH ₃
XB293	
VPCO 4	CH,
XB294	H ₂ C ₀ CH ₃
XB295	COCH, NO CH,

XB296	·
	CH3 CH3
XB297	H ₃ C ₂ H ₃
XB298	H ₃ C
XB299	N N N CH3

VDago	
XB300	CH ₃
XB301	CH ₃
XB302	CH ₃ CH ₃ CH ₃

Table-3				
		[N]		
		R ² R ²		
1		ס אָל אַ זָ		
		R ^{4-N} R		
No. YA0001	R1	R2	R3	R4
YA0002	CH3-	H	H	CH3-
		. н	H	СНЗСН2-
YA0003	CH3-	Н	Н	
YA0004	СН3-	Н	Н	Y
YA0005	СН3-	Н	н	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
YA0006	CH3-	Н	н	人心
YA0007	СН3-	Н	Н	
YA0008	СН3-	Н	н	Y
YA0009	СН3-	н	н	Q
YA0010	· CH3-	н	н	
YA0011	СН3-	Н	н	Ž.
YA0012	СН3-	. Н	н	D-1
YA0013	СН3-	н	н	\Diamond -1
YA0014	CH3-	н	н	\bigcirc
YA0015	снз-	н	н	\bigcirc -1
YA0016	СН3-	н	н	\bigcirc
YA0017	СН3-	Н	Н	
YA0018	СН3-	Н	Н	<u></u>
YA0019	СН3-	Н	н	F
YA0020	СН3-	Н	н	F-(-)(-)(-)(-)(-)(-)(-)(-
YA0021	СН3-	н	Н	CI

No.	R1	R2	R3	T - D4
	 	1/2	 ~	R4
YA0022	CH3-	Н	н	
YA0023	СН3-	н	н	C⊢ { }-{
YA0024	CH3-	н	н	Br ←
YA0025	СН3-	н	н	Br
YA0026	: СН3-	н	н	Br
YA0027	СН3-	н	H	
YA0028	СН3-	н	н	
YA0029	СН3-	н	Н	
YA0030	СН3-	Н	н	CH₃ C>–{
YA0031	СН3-	Н	Н	H₃C <_>⊣
YA0032	СН3-	Н	н	H₃C- (_)—{
YA0033	снз-	Н	Н	C ₂ H ₅ -{_}
YA0034	СН3-	Н	Н	n-C₃H₁−⟨_⟩ <mark>─</mark> ┤
YA0035	СН3-	Н	н	n-C ₄ H ₉ {}{
YA0036	СН3-	Н	н.	· OH
YA0037	СН3-	Н	Н	HO
YA0038	CH3-	Н	. н	но-{-}
YA0039	СН3-	Н	Н	OCH₃
YA0040	снз-	н	н	H₃CO <}⊣
YA0041	СН3-	н	н	H₃CO- (_) {
YA0042	СН3-	н	н	C ₂ H ₅ O-{}-{

No.	R1	R2	R3	R4
YA0043	снз-	Н	н	n-C₃H ₇ O-⟨;
YA0044	CH3	н	Н	n-C ₄ H ₉ O-
YA0045	снз-	Н	Н	NO ₂
YA0046	снз-	н	Н	O ₂ N
YA0047	СН3-	Н	Н	O ₂ N-{_}
YA0048	снз–	Н	н	CN ☐
YA0049	CH3	Н	н	NC
YA0050	CH3-	н	н	NC-{\rightarrow}
YA0051	СН3-	Н	н	CF₃
YA0052	СН3-	н	н	F ₃ C
YA0053	CH3-	Н	·Н	F ₃ C-{
YA0054	СН3-	Н	н	COOH
YA0055	СН3-	н	н	HOOC
YA0056	СН3	н	н	HOOC-{\(\){
YA0057	СН3-	н.	н	CO₂Me
YA0058	CH3-	н	Н	MeO ₂ C
YA0059	CH3-	н	. Н	MeO ₂ C-⟨}
YA0060	CH3-	Н	Н	CO ₂ Et
YA0061	CH3-	н	н	EtO ₂ C
YA0062	CH3-	н	н	EtO ₂ C-{}
YA0063	CH3-	н	Н	SMe

			- DO	R4
No.	R1	R2	R3	
YA0064	СН3-	н	н	MeS
YA0065	СН3-	н	н	MeS-{_}-{
YA0066	СН3-	н	н	SO₂Me
YA0067	СН3-	Н	Н	MeO ₂ S
YA0068	CH3-	н	Н	MeO ₂ S-{
YA0069	снз-	Н	н	NH ₂
YA0070	снз-	Н	н	H₂N ☐
YA0071	CH3-	н	н	H₂N-{\}_
YA0072	CH3-	н	Н	NMe₂
YA0073	СН3	Н	н	Me ₂ N
YA0074	CH3-	н	н	Me₂N-⟨∑){
YA0075	снз-	н	н	
YA0076	СН3-	н	н	OU'
YA0077	СН3-	н	н	C)
YA0078	снз-	н	н	C N
YA0079	снз-	н	н	
YA0080	СН3-	Н	н	J.

No.	R1	R2	R3	R4
YA0081	CH3-	н	н	FOR
YA0082	CH3-	н	Н	F. C. J.
YA0083	снз-	Н	н	9
YA0084	снз-	Н	н	a Div

No.	R1	R2	R3	R4
YA0085	СН3-	н	Н	a Cir
YA0086	снз-	Н	Н	Br Q
YA0087	снз-	Н	Н	Br
YA0088	снз-	Н	н	Br
YA0089	CH3-	Н	н	CHO
YA0090	СН3-	н	Н	H₃C C
YA0091	снз-	Н	н	H ₃ C
YA0092	CH3-	н	н	CH3O O
YA0093	CH3-	Н	н	H ₃ CO
YA0094	СН3-	Н	н	H ₃ CO
YA0095	CH3-	Н	н	100
YA0096	CH3-	Н	н	O ₂ N
YA0097	снз-	Н	Н	02N
YA0098	CH3-	Н	Н	OH O
YA0099	СН3-	Н	Н	но
YA0100	СН3-	н	Н	но
YA0101	снз-	н	н	NH O

No.	R1	R2	R3	R4
YA0102	CH3~	н	н	H ₂ N P
YA0103	CH3-	Н	н	H ₂ N D _p
YA0104	СН3-	Н	н	CNO
YA0105	снз-	Н	н	NC OF

No.	R1	R2	R3	T 54
	 '''	I IVZ	HO.	R4
YA0106	снз-	Н	н	NC ()
YA0107	CH3-	н	н	Çi,
YA0108	СН3-	Н	н	OO',
YA0109	CH3~	н	Н	<u>ک</u> ہ
YA0110	CH3-	Н	н	<u></u>
YA0111	CH3-	Н	н	~\$,
YA0112	CH3-	н	Н	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
YA0113	CH3-	Н	н	
YA0114	снз-	н	н	~~\ ² ,
YA0115	снз-	н	Н	} }
YA0116	CH3-	н	Н	~~ ^l ,
YA0117	СН3-	Н	H.	~~~ ¹ ;
YA0118	СН3-	н	н	~~~\ ⁰ ,
YA0119	СН3-	н .	н	√ ,
YA0120	CH3-	н	н	D,
YA0121	СН3-	н	н	O'S,
YA0122	СН3-	н	н	رائر

No.	R1	R2	R3	R4
YA0123	СН3-	H³CO_≻	Н	H
YA0124	CH3-	H³CO_≻	Н	снз-
YA0125	CH3-	H³CO_}	Н	СНЗСН2-
YA0126	СН3	H³CO_}\ O	Н	^ \

No.	R1	R2	R3	R4
YA0127	СН3-	H ₃ CO >	н	7
YA0128	СН3-	O H₃CO >	н	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
YA0129	СН3-	O H³CO,≻	Н	人人
YA0130	CH3-	H ₃ CO >	Н	γ
YA0131	CH3-	O H ₃ CO /	н	个
YA0132	снз-	O H³CO,≻	н	
YA0133	СН3-	H³CO_≻ O	Н	
YA0134	снз-	H³CO, ≻	н	
YA0135	CH3~	H³CO,≻	н	\triangleright
YA0136	CH3-	H³CO, >	Н	\Diamond -1
YA0137	CH3-	н³сод≻	н	\bigcirc +
YA0138	снз-	H³CO,≻	н	\bigcirc \dashv
YA0139	СН3-	H³CO,≻	н	
YA0140	CH3-	H³CO,≻	н	
YA0141	снз-	H³CO_≻ O	н	
YA0142	, снз-	H³CO ≻	н	
YA0143	снз-	H³CO,≻	Н -	F-()-1
YA0144	снз-	H³CO, >	н	CI CI
YA0145	снз-	H³CO,≻	Н	
YA0146	снз-	D H³CO√≻	Н	c⊢ ()—{
YA0147	CH3-	о н _з со ^х у	Н	Br

Na	1 52			
No.	R1	R2	R3	R4
YA014	В СН3-	H3CO,	н	Br.
YA0149	9 СН3-	O H₃CO [™] >r	н	Br-{}-{
YA0150	СН3-	H³CO,≻	н	CH ₃
YA0151	снз-	H³CO_>	н	H ₃ C
YA0152	СН3-	H³CO, ≻	н	H ₃ C-{}-{
YA0153	СН3-	H ₃ CO >	Н	C ₂ H ₅ —{
YA0154	снз–	H ₃ CO y	н	n-C ₃ H ₇ -{}-{
YA0155	снз-	H ₃ CO y	н	n-C ₄ H ₉ -
YA0156	CH3-	H³CO_}	н	OCH ₃
YA0157	СН3-	O H₃CO ≻	Н	H₃CO ⟨_)→
YA0158	СН3-	H³CO, x	Н	H ₃ CO-{}-{
YA0159	СН3-	H ₃ CO >	н	C ₂ H ₅ O-{
YA0160	снз-	H³CO,>	Н	n-C ₃ H ₇ O-
YA0161	СН3-	H³CO _T >	Н	n-C ₄ H ₉ O-{}{
YA0162	снз-	O H₃CO ≻	H.	NO ₂
YA0163	CH3-	O H₃CO ≻	н	O ₂ N
YA0164	CH3-	о н _з со ^х у	н	O ₂ N-{}
YA0165	СН3-	H³CO,≻	Н	CN C
YA0166	CH3-	H³CO, →	Ĥ	NC
YA0167	CH3-		н	NC-{}-{
YA0168	СН3-	H³CO_}\ H³CO_\\	Н	NMe ₂

No.	R1	R2	R3	R4
YA0169	снз-	O H³CO ,	Н	Me ₂ N
YA0170	CH3-	H³CO, ≻	н	Me ₂ N-{}-{
YA0171	СН3	O H₃CO ≻	Н	<u>Q</u>
YA0172	снз-	O H₃CO ≻	н	CO'r
YA0173	СН3-	O H³CO,≻	н	O ^l ,
YA0174	СН3-	H³CO_≻ Ö	н	Qi,
YA0175	CH3-	O H₃CO →	н	OD!,
YA0176	СН3-	H³CO, ≻	н	2,
YA0177	СН3-	H³CQ_≻ Ö	н	%
YA0178	СН3	O C₂H₅O →	Н	Н
YA0179	СН3-	C₂H₅O ≻	н	CH3-
YA0180	СН3-	C₂H₅O ≻	Н	СНЗСН2-
YA0181	СН3-	O C₂H₅O ≻	н	^ ∖
YA0182	СН3-	C₂H₅O ≻	н	Y
YA0183	СН3-	O C ₂ H ₅ O / y O C ₂ H ₅ O / y	Н	\\\\
YA0184	СН3-	О С ₂ Н ₅ О ¹ 7	н	

No.	R1	R2 ·	R3	R4
YA0185	СН3-	O C₂H₅O →	н	7
YA0186	снз-	O C₂H₅O '>	Н	丫
YA0187	CH3-	O C₂H₅O У	Н	Qu
YA0188	CH3-	O C₂H₅O →	Н	
YA0189	СН3-	C ² H²O , λ.	н	

.

WO 2004/085408

			T	
No.	R1	R2	R3	R4
YA0211	СН3-	O C₂H₅O →	Н	OCH₃
YA0212	СН3-	O C₂H₅O ≻	Н	H₃CQ
YA0213	СН3-	O C₂H₅O →	н	н₃со-{_}-{
YA0214	СН3-	O C₂H₅O →	н	C ₂ H ₅ O-{_}-{
YA0215	CH3-	O C ₂ H ₅ O ∕r	н	n-C ₃ H ₇ O-{_}-{
YA0216	СН3-	O C₂H₅O →	Н	n-C ₄ H ₉ O-{}-{
YA0217	СН3-	O C₂H₅O r	н	NO ₂
YA0218	СН3-	O C₂H₅O ≻	Н	O₂N ——
YA0219	СН3-	O C₂H₅O ≻	н	O ₂ N-⟨\$
YA0220	СН3-	O C₂H₅O ≻	Н	CN CN
YA0221	СН3-	O C₂H₅O [™] ≻	н	NC.
YA0222	СН3-	O C₂H₅O [™] ≻	н	NC-{}
YA0223	СН3-	O C₂H₅O [™] ≻	н	NMe₂
YA0224	СН3-	O C₂H₅O [™] ≻	Н	Me ₂ N
YA0225	CH3-	C₂H₅O ×	н	Me₂N-⟨¯⟩{
YA0226	снэ-	C ₂ H ₅ O /	н	

No.	R1	R2	R3	R4
· YA0227	CH3-	O C₂H₅O ≻	н	OD'
YA0228	СН3-	O C₂H₅O ∵≻	Н	
YA0229	снз-	O C₂H₅O →	н	
YA0230	СН3	O C ₂ H ₅ O >/	н	OD ⁱ
YA0231	СН3-	O C₂H₅O ∕≻	н	<u>ک</u> ہ

No.	R1	R2	R3	R4
YA0232	CH3	O C₂H₅O →	Н	,
YA0233	снз-	СН3-	н	н
YA0234	CH3-	СНЗСН2-	н	н
YA0235	снз	^ ∖	н	н
YA0236	CH3-	Y	н	н
YA0237	снз-	\\\\\\\\\\	Н	н
YA0238	CH3	L	н	Н
YA0239	СН3-	~	н	н
YA0240	снз–	丫	Н	Н
YA0241	СН3	~~\`\`\`\`\	н	Н
YA0242	CH3-	Y~~	н	н
YA0243	CH3-	X.	н	Н
YA0244	CH3-	7	. н	Н
YA0245	CH3-	~~~`	Н	н
YA0246	СН3		н	н
YA0247	СН3-	^^^\	н	Н
YA0248	СН3-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	. н	н
YA0249	СН3-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	н
YA0250	СН3-		н	Н
YA0251	СН3-	Qu	Н	н
YA0252	снз-		н	Н

No.	R1	R2	R3	·
YA0253	1		Н	R4
	+		"	Н
YA0254	снз-		н	н
YA0255	СН3-	\Diamond -1	н	н
YA0256	СН3-	$\bigcirc \dashv$	Н	н
YA0257	CH3-		н	н
YA0258	СН3-	\bigcirc \dashv	Н	н
YA0259	CH3-		Н	н
YA0260	CH3		Н	н
YA0261	СН3-	⊘ m{	Н	н
YA0262	СН3-		Н	Н
YA0263	СН3-		н	н
YA0264	СН3-	F-()()	Н	Н
YA0265	СН3-	F-{_}-{	Н	Н
YA0266	снз-	F-_\n\	Н	н
YA0267	снз-	CI	н	н
YA0268	СН3-		н	н
YA0269	CH3-	CH	. н	н
YA0270	снз-	> -	н	н
YA0271	снз-)-{_\n-{	н	Н
YA0272	СН3-	Br	н	Н
YA0273	CH3-	3£ ;	н	Н

No.	R1		1 72	
140.	"I	R2	R3	R4
YA0274	CH3-	Br-{_}-{	н	н
YA0275	СН3-	Br—(н	Н
YA0276	СН3-	Br—Qhui	н	н
YA0277	снз-		Н	н
YA0278	CH3~		н	Н
YA0279	CH3-		н	н
YA0280	снз-	CH₃	н	н
YA0281	CH3-	H₃C <u></u>	н	Н
YA0282	СН3-	H ₃ C-{_}-{	н	Н
YA0283	СН3-		н	н
YA0284	CH3-	n-C ₃ H ₇ -{_}-{	н	н
YA0285	CH3-	n-C ₄ H ₉ {_}	н	Н
YA0286	CH3-	OH OH	Н	н
YA0287	CH3-	HO ————————————————————————————————————	н	Н
YA0288	СН3-	HO-{\right}	н	Н
YA0289	СН3	OCH₃	н	Н
YA0290	СН3-	H ₃ CO	H	н
YA0291	CH3-	H₃CO - {_}_}	н	Н
YA0292	CH3-	H₃CO- ()~{	н	н
YA0293	CH3-	H₃CO-⟨⟩⊪{	н	н
YA0294	CH3-	OC ₂ H ₅	н	н

No.	T		,	
NO.	R1	C ₂ H ₅ Q	R3	R4
YA0295	CH3-	21 150	н	Н
YA0296	снз-	C ₂ H ₅ O-{}_{	Н	. н
YA0297	снз-	n-C₃H ₇ O-{_}-{	н	н
YA0298	СН3-	n-C₄H₀O-⟨}-{	н	н
YA0299	СН3-	NO ₂	н	н
YA0300	снз-		н	н
YA0301	CH3-	O ₂ N-{_}_	н	н
YA0302	снз-	CN ◯>⊣	н	н
YA0303	снз-	NC	н	Н
YA0304	СН3-	NC-{\rightarrow}	н	н
YA0305	СН3-	CF ₃	Н	Н
YA0306	CH3-	F ₃ C →	Н	H
YA0307	CH3-	F ₃ C-{_}	H .	Н
YA0308	снз-	COOH	Н	н
YA0309	сн3-	HOOC	н	Н
YA0310	CH3-	H00C-{_}_	н	Н
YA0311	СН3	CO ₂ Me	. н	н
YA0312	СН3-	MeO₂C 	н	н
YA0313	CH3-	MeO₂C-⟨}-{	н	Н
YA0314	СН3-	CO₂Et	н	н
YA0315	CH3-	EtO ₂ C	Н	н

No.	R1		1 80 1	
140.	KI	R2	R3	R4
YA0316	снз-	EtO ₂ C-⟨⟩{	-н	н
YA0317	CH3-	SMe _}⊣	н	н
YA0318	CH3-	MeS	н	н
YA0319	СН3~	MeS-{_}-{	н	Н
YA0320	СН3-	SO ₂ Me	н	Н
YA0321	снз-	MeO ₂ S	н	Н
YA0322	снз-	MeO ₂ S-{}	н	Н
YA0323	СН3-	NH₂	н	Н
YA0324	СН3-	H ₂ N	н	Н
YA0325	CH3-	H ₂ N-(T)	н	Н
YA0326	CH3-	NMe ₂	н	Н
YA0327	СН3-	Me ₂ N	н	Н
YA0328	CH3-	Me₂N-{\bar{\bar{\bar{\bar{\bar{\bar{\bar	н	Н
YA0329	CH3~		н	Н
YA0330	СН3-	CH-C)	н	Н
YA0331	CH3-	CH-(_)-1	н	н
YA0332	. CH3-		н	н
YA0333	СН3-		н	Н
YA0334	СН3-		Н	н
YA0335	СН3-		н	н
YA0336	СН3-	~~~ <u>}</u>	H	н

No.	R1	R2	R3	R4
YA0337	снз-	0 N -⟨)-;	н	н
YA0338	снз-	H3CN_N-_	н	Н
YA0339	CH3-	H3CN N-C	Н	Н
YA0340	снз-	H³CN_N-{}-}	Н	н
YA0341	снз-	H₃C_CH₃	Н	н
YA0342	CH3-	H³C-{}-{	н	н
YA0343	СН3-	CH₃ CH₃C	н	н
YA0344	CH3-	CH ₃	Н	Н
YA0345	снз-	H ₃ C H ₃ C-{}	Н	н
YA0346	CH3-	H₃C H₃C	н	н
YA0347	снз-	F_F	н	н
YA0348	СН3-	F——F	н	н
YA0349	СН3	\$\frac{F}{F}\$	н	н
YA0350	снз-		н	н
YA0351	снз-	F——	н	н
YA0352	СН3-	F	н	н

No.	R1	R2	R3	R4
YA0353	СН3-	a_a	н	Н
YA0354	снз-	a-{()→;	Н	Н
YA0355	СН3-	a a	н	н
YA0356	СН3-	a∭a	н	н
YA0357	СН3-	a a————	н	н

No.	R1	R2		
- '\ <u>\\</u>	 	a RZ	R3	R4
YA0358	СН3-		н	н
YA0359	CH3-	H³CO OCH3	н	н
YA0360	СН3-	OCH₃ H₃CO-{\}_}}	н	, н
YA0361	СН3-	OCH ₃	н	н
YA0362	CH3-	OCH ₃ OCH ₃	н	н
YA0363	СН3-	H³CO-{_}}-}	н	н
YA0364	СН3-	H ₃ CQ	н	н
YA0365	СН3-	F_OCH ₃	Н	Н
YA0366	СН3-	OCH ₃	Н	Н
YA0367	СН3-	OCH ₃ F—✓	н	Н
YA0368	СН3-	OCH ₃	н	н
YA0369	СН3-	OCH ₃ F	н	н.
YA0370	СН3-	OCH₃ F	н	н
YA0371	СН3-	H₃CQ F—	н	н
YA0372	СН3-	H ₃ CQ F	н :	н
YA0373	СН3-	H₃CO_F	н	н

No.	R1	R2	R3	
YA0374	СН3-	H₃CO-{=}	Н	R4 H
YA0375	СН3-	H₃CO F	Н	н
YA0376	СН3-	H₃CO-{}}	Н	н
YA0377	СН3-	CI_OCH ₃	Н	н
YA0378	СН3-	CH-€	н	н

YA0390

YA0391

YA0392

YA0393

YA0394

СН3-

CH3-

СН3-

СН3-

CH3- ·

0 85408				PCT/J
No.	R1	R2	R3	R4
YA0379	СН3-		н	Н
YA0380	СН3-	OCH₃	н	Н
YA0381	снз-	H³CO H³CO	н	Н
YA0382	СН3	H ₃ CQ	н	н
YA0383	снз-	H ₃ CO_CI	н.	Н
YA0384	снз-	H³CO-{_}{CI}	н	Н
YA0385	CH3-	H ₃ CO	н	н .
YA0386	CH3-	H₃∞—{}	н	Н
YA0387	снз-	F_CH₃	н	н
YA0388	СН3-	CH ₃ F—⟨∑}	Н	н.
YA0389	снз-	CH ₃	н	н
		CU		· · · · · · · · · · · · · · · · · · ·

Н

Н

Н

H

Н

н

Н

Н

Н

Н

No.	R1	R2	R3	R4
YA0395	СН3-	H₃C F	Н	н
YA0396	СН3-	H₃C-{}}-{	н	н
YA0397	СН3-	Br_OCH ₃	Н	H
YA0398	СН3-	OCH₃ Br—{}	н	н
YA0399	СН3-	OCH₃ SH Br	н	н

) No	L D1	T		
No.	R1	R2	R3	R4
YA0400	сн3-	OCH ₃	н	н
YA0401	CH3-	H₃CO Br—	н	н
YA0402	CH3-	H ₃ CO	Н	н
YA0403	СН3-	H ₃ CO_Br	н	н
YA0404	СН3-	H ₃ CO-{ Sr	Н	н
YA0405	снз-	Br H₃co	н	н
YA0406	СН3-	H ₃ CO-	Н	н
YA0407	снз-	H³CO }	Н	Н
YA0408	снз-	CN-CDH3	н	н
YA0409	снз-	Cu-C}-ocH³	н	н
YA0410	СН3-	H ₃ CO_}-N()	н	Н
YA0411	СН3-	H₃CO	н	н
YA0412	СН3-	OCH³	Н	Н
YA0413	СН3-	F F	н	н
YA0414	СН3-	OCH₃ F————————————————————————————————————	н	Н

No.	R1	R2	R3	R4
YA0415	СН3-	H₃CO-{_}; F	н	н
YA0416	СН3-	OCH ₃ P-()	н	н
YA0417	СН3-	OCH ₃ H ₃ CO-⟨_}_} OCH ₃	Н	н
YA0418	СН3-	a a-{∑}, a	н	н
YA0419	СН3-	осн₃ cı—(; cı	Н	н
YA0420	СН3-	а н₃∞-{∑-; а	н	Н

N ₂	D4	T		
No.	R1	R2	R3	R4
YA0421	снз-	OCH ₃ CH ₃ CH ₃	н	н
YA0422	снз-	OCH³ CCH³	Н	Н
YA0423	снз-	OCH ₃	н	н
YA0424	снз-	H ₃ CO	Н	н
YA0425	снз-	H₃CO- ()-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-	Н	н
YA0426	снз-	OCH ₃ }	Н	Н
YA0427	снз-	H ₃ CQ	Н	Н
YA0428	снз-	н₃∞-⟨∑-⟨_∑'`	Н	н
YA0429	снз-	OCH ₃	н	Н
YA0430	CH3-	H ₃ CO	н	н
YA0431	СН3-	н₃со-⟨∑-(н	Н
YA0432	СН3-	₫	н	Н
YA0433	снз-	F	н	Н
YA0434	CH3	F-{\rightarrow}-{\rightarrow}-{\rightarrow}-{\rightarrow}-{\rightarrow}	Н	н
YA0435	СН3-	<u>d</u> -d`	Н	Н
YA0436	снз-	\(\)	н	н

No.	R1	R2	R3	R4
YA0437	СН3-	F-()-()	н	н
YA0438	СН3-	4	Н	· H
YA0439	CH3-		н	Н
YA0440	СН3-		н	н
YA0441	CH3		H	н

No. R1 R2 R3 R4 YA0463 СН3-Н Н YA0464 СН3н Н YA0465 СН3-Н Н YA0466 CH3-Н Н YA0467 СН3-Н н YA0468 СН3-Н Н YA0469 СН3-Н Н YA0470 CH3н Н YA0471 CH3-Н Н YA0472 CH3-Н Н YA0473 CH3-Н H YA0474 СН3-Н н YA0475 СН3-Н Н YA0476 СН3н ' н YA0477 СН3н Н YA0478 СН3-Н Н YA0479 СН3-Н Н YA0480 СН3-Н Н YA0481 СН3-Н Н YA0482 СН3-Н Н YA0483 СН3н Н

No.	R1	R2	R3	R4
YA0484		Qj.	н	H
YA0485	CH3-		н	Н
YA0486	СН3-	(CI)	н	н.
YA0487	СН3-	,CG	н	Н
YA0488	снз-	Ţŝ	н	н
YA0489	снз-	CI'M	н	Н
YA0490	СН3-		н	Н
YA0491	снз-	TON THE	Н	н
YA0492	CH3-	,CTP	н	Н
YA0493	снз-	Ţì	н	н
YA0494	СН3	(Tr) +	н	н
YA0495	СН3-	Č _N	н	н
YA0496	CH3-	TON THE	н	Н
YA0497	CH3-		Н	Н
YA0498	СН3-	Č.	н	н
YA0499	СН3-	'CI'	н	Н
YA0500	снз-	√CI ^N	. н	Н
YA0501	CH3-		н	Н
YA0502	CH3-	Ort St	н	Н
YA0503	снз-	J,	н	н .
YA0504	снэ-		н	н

No.	RI	R2		
		N	R3	R4
YA0505	CH3-	1/2/13°	Н	Н
YA0506	СН3-	ÇÎ,	Н	н
YA0507	СН3-	Cà.	н	н
YA0508	СН3-	Č.	н	н
YA0509	СН3-	"CT"	н	Н
YA0510	снз-	'CO'	н	Н
YA0511	CH3-	Ţ'n	Н	Н
YA0512	CH3-	(T _s n	Н	. Н
YA0513	снз-	ČŢ,	Н	н
YA0514	CH3-	"CT's"	н	н
YA0515	снз-	,CT;V	н	· н
YA0516	СН3-	Ť.	Н	н
YA0517	CH3-	Ţ?	Н	н
YA0518	CH3-	,CC)	Н	Н
YA0519	CH3-	(CC)	н	Н
YA0520	СН3	Ţ.	н	н
YA0521	CH3-	СН3-	. н	CH3
YA0522	СН3-	СНЗСН2-	Н	СНЗ
YA0523	CH3-	∼ ∖	н	СНЗ
YA0524	СН3-	Y	н	СНЗ
YA0525	СН3-	√	Н	СНЗ

No.	R1	R2	1 00	
	1	1	R3	R4
YA0526	CH3-		Н	СНЗ
YA0527	CH3-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	СНЗ
YA0528	CH3-	丫	Н	СНЗ
YA0529	CH3-	~~\r\	Н	СНЗ
YA0530	СН3-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	снз
YA0531	СН3-	X.	н	снз
YA0532	снз-	7	Н	СНЗ
YA0533	снз-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	. Н	СНЗ
YA0534	снз-		н	СНЗ
YA0535	снз-	~~~``\``\`\`\`\`\`\`\`\`\`\`\`\`\`\`\`\	Н	СНЗ
YA0536	снз-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	СНЗ
YA0537	снз-	~~~	Н	СНЗ
YA0538	СН3-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	СНЗ
YA0539	CH3	Q	н	СНЗ
YA0540	СН3-		Н	СНЗ
YA0541	СН3-		н	СНЗ
YA0542	СН3-	$\triangleright \dashv$. н	СНЗ
YA0543	CH3-	\Diamond	н	СНЗ
YA0544	снз-		н	снз
YA0545	CH3-	\bigcirc	н	СНЗ
YA0546	CH3-	\bigcirc \dashv	Н	СНЗ

No.	R1	R2	R3	R4
YA0547	CH3-		н	CH3
YA0548	CH3-		н	СНЗ
YA0549	СН3-	_ m4	н	СНЗ
YA0550	СН3-	F	н	СНЗ
YA0551	CH3-		н	СНЗ
YA0552	снз-	F-()-1	Н	снз
YA0553	снз-	F-(>-1	H	снз
YA0554	СН3-	F-()n-(н	снз
YA0555	снз-	CI CI	н	снз
YA0556	СН3-	CI	ιН	СНЗ
YA0557	СН3-	CI-{_}	н	СНЗ
YA0558	CH3-	C⊢ ()~{	н	снз
YA0559	CH3-	CH-(_)m-(н	CH3 .
YA0560	CH3-	Br	H	СНЗ
YA0561	СН3-	Br.	н	CH3
YA0562	СН3-	Br-{_}	н	СНЗ
YA0563	CH3-	Br-{}-{	. Н	СНЗ
YA0564	СН3-	Br—Qin4	Н	СНЗ
YA0565	снз-		Н	СНЗ
YA0566	CH3-		Н	CH3
YA0567	снз-	H	н	СНЗ

Н

СНЗ

YA0588

CH3-

No.	R1	R2	R3	R4
YA0589	снз-	O ₂ N-{}	н	СНЗ
YA0590	снз-	CN	н	СНЗ
YA0591	снз-	NC	н	СНЗ
YA0592	снз-	MC-{}-	Н	СНЗ
YA0593	СН3-	CF ₃	Н	СНЗ
YA0594	снз-	F₃C	н	СНЗ
YA0595	снз-	F ₃ C-{_}	н	СНЗ
YA0596	CH3	COOH	н	СНЗ
YA0597	CH3-	HOOC.	н	СНЗ
YA0598	СН3	H00C-{_}-{	н	СНЗ
YA0599	CH3-	CO₂Me	н	СНЗ
YA0600	СН3-	MeO ₂ C ⟨	н	снз
YA0601	CH3~	MeO ₂ C-{}	н	СНЗ
YA0602	CH3-	CO₂Et	н	СНЗ
YA0603	СН3-	EtO ₂ C	н	снз
YA0604	CH3-	EtO ₂ C-⟨}	н	СНЗ
YA0605	снз-	SMe	. Н	снз
YA0606	СН3-	MeS	н	снз
YA0607	снз-	MeS-{_}	н	снз
YA0608	СН3-	SO ₂ Me	Н	СНЗ
YA0609	СН3-	MeO₂S △_>-	н	СНЗ

	54		·	
No.	R1	R2	R3	R4
YA0610	сн3-	MeO ₂ S-{}	Н	СНЗ
YA0611	СН3-	NH₂	н	СНЗ
YA0612	CH3-	H ₂ N	н	снз
YA0613	снз-	H ₂ N-{}	н	СНЗ
YA0614	CH3-	NMe ₂	н	СНЗ
YA0615	CH3-	Me ₂ N	Н	СНЗ
YA0616	СН3-	Me ₂ N-{}	н	СНЗ
YA0617	СН3~		н	СН3
YA0618	СН3-		H	СНЗ
YA0619	снз-		н	СНЗ
YA0620	снз-		н	СНЗ
YA0621	снз-		н	СНЗ
YA0622	CH3-		н	СНЗ
YA0623	CH3-		H	СНЗ
YA0624	СН3-	○ + ○	н	. СНЗ
YA0625	СН3-		н	СНЗ
YA0626	снз-	H³CN_N-{}	Н	СНЗ
YA0627	СН3-	H³CN N-C	н	СНЗ
YA0628	СН3-	H3CN N-{}-{	н	СНЗ
YA0629	СН3-	H ₃ C_CH ₃	н	снз
YA0630	СН3-	CH3 H3C-{\}_\	н	СНЗ

No.	RI	R2		T
YA0631		CH ₃	R3	CH3
YA0632	: СН3-	CH₃ CH₃	н	СНЗ
YA0633	CH3	H ₃ C-{}-{	н	СНЗ
YA0634	СН3-	H₃C H₃C	Н	СНЗ
YA0635	CH3-	F F	н	СНЗ
YA0636	СН3-	F-(5)-;	Н	СНЗ
YA0637	СН3-	Ş F	н	СНЗ
YA0638	СН3-	€ ;	Н	СНЗ
YA0639	СН3-	F————	Н	СНЗ
YA0640	СН3-	F F	н	СНЗ
YA0641	CH3-	a_a ⇒	Н	СНЗ
YA0642	СН3-	CI—(□)	Н	СНЗ
YA0643	снз-	a G	, н	СНЗ
YA0644	CH3-	a	н	СНЗ

No.	R1	R2	R3	R4
YA0645	СН3-	a a-⟨¯}-;	н	СНЗ
YA0646	СН3-	a \	Н	СНЗ
YA0647	СН3-	H₃CO_OCH₃	н	сн3
YA0648	СН3-	OCH ₃ H₃CO-{\rightarrow}-;	н	СНЗ
YA0649	СН3-	OCH3 H³CO	Н	снз
YA0650	СН3-	OCH ₃ OCH ₃	Н	СНЗ
YA0651	СН3-	H₃CO H₃CO-⟨□}}	Н	СНЗ

No.	R1			
No.	- KI	R2	R3	R4
YA0652	СН3-	H³co H³co	Н	снз
YA0653	СН3-	F_OCH ₃	н	CH3
YA0654	СН3-	OCH ₃	н	СНЗ
YA0655	СН3-	OCH ₃	Н	СНЗ
YA0656	СН3-	OCH ₃	Н	СНЗ
YA0657	СН3-	OCH ₃	Н	СНЗ
YA0658	СН3-	OCH₃ F	н	СНЗ
YA0659	СН3-	H ₃ CQ F-\	Н	СНЗ
YA0660	СН3-	H₃CO ↓ → F	Н	СН3
YA0661	СН3-	H₃CO_F	Н	СНЗ
YA0662	СН3-	H₃CO-⟨¯¯⟩→	н	СНЗ
YA0663	CH3-	H₃co	Н	СНЗ
YA0664	СН3-	F_ H₃CO-⟨¯}→∤	н	СНЗ
YA0665	СН3-	CI_OCH₃	Н	СНЗ

No.	R1	R2	R3	R4
YA0666	СН3-	OCH₃ · CI—{()}—{	н	СНЗ
YA0667	СН3-	OCH₃ CI	н	снз
YA0668	СН3-	осн ₃ ⊖ сі	H-	СНЗ
YA0669	СН3~	H₃CQ CI-{	Н	СНЗ
YA0670	снз-	¥3€ Ca	н	СНЗ
YA0671	СН3-	H₃CQ_CI →	Н	СНЗ
YA0672	СН3-	_ci H³co-{_}}	н	СНЗ

No.	R1	R2	D2	T 54
YA0673		H ₃ CO	R3	R4 CH3
YA0674	СН3-	H ₃ CO-	Н	СНЗ
YA0675	СН3-	F_CH ₃	н	СНЗ
YA0676	СН3-	CH ₃	н	СНЗ
YA0677	СН3-	CH ₃ F	Н	снз
YA0678	СН3-	CH ₃	Н	СНЗ
YA0679	СН3-	H₃C F—⟨}_}	Н	СНЗ
YA0680	СН3-	H₃C F	н	СНЗ
YA0681	СН3-	H₃C_F	н	СНЗ
YA0682	СН3-	H₃C-{\sqrt{F}}	Н	СНЗ
YA0683	СН3-	H ₃ C	Н	СНЗ
YA0684	СН3-	F	н	СНЗ
YA0685	CH3-	Br_OCH ₃	Н	СНЗ
YA0686	CH3-	OCH ₃	н	снз

No.	Ri	R2	R3	R4
YA0687	CH3-	OCH ₃ Br	Н	снз
YA0688	сн3-	OCH₃ ⇒ Br	н	снз
YA0689	СН3-	H₃CQ Br-⟨	Н.	снз
YA0690	CH3-	H₃CO Br	H	снз
YA0691	СН3-	H ₃ CO_Br	Н	снз
YA0692	снз-	Br H₃CO-{\bigs\}	Н	СНЗ
YA0693	CH3-	Br H₃CO	Н	. СН3

	<u> </u>			
No.	R1	R2	R3	R4
YA0694	СН3-	H³CO-⟨	н	СНЗ
YA0695	СН3-	H ₃ CO	н	СНЗ
YA0696	СН3-	OCH ₃	н	СНЗ
YA0697	CH3-	CN-C}-OCH3	Н	СНЗ
YA0698	СН3-	H ₃ CO >	Н	СНЗ
YA0699	СН3-	H ₃ CO	Н	СНЗ
YA0700	СН3-	CN CH³	Н	СНЗ
YA0701	СН3-	F-(-)	н	СНЗ
YA0702	CH3-	OCH₃ F-{_}} F	Н	СНЗ
YA0703	СН3-	H₃co-{{}}+ F	Н	СНЗ
YA0704	CH3-	OCH₃ F-⟨_} OCH₃	н	СНЗ
YA0705	СН3-	OCH³ OCH³	Н	СНЗ
YA0706	СН3-	a a—Ça	Н	СНЗ
YA0707	снз-	OCH₃ CI-{_}}; CI	Н	СНЗ

PCT/JP2004/004320

No.	R1	R2	R3	R4
YA0708	СН3-	H₃co-{_}; a	н	СНЗ
YA0709	СН3-	ocH³	н	СНЗ
YA0710	СН3-	H₃CO-⟨∑→¦ OCH₃	Н	СНЗ
YA0711	СН3-	OCH ₃	н	СНЗ
YA0712	СН3-	H₃CO	Н	СНЗ
YA0713	СН3-	H₃CO-{\}_{\}{\}{\}	н	СНЗ
YA0714	снз-	OCH ₃ \t	н	СНЗ

	,			
No.	R1	R2	R3	R4
YA0715	СН3-	H ₃ CO	н	СНЗ
YA0716	СН3-	н₃со-⟨∑-⟨∑\	н	СНЗ
YA0717	снз-	OCH ₃	Н	СНЗ
YA0718	CH3-	H,CO	н	СНЗ
YA0719	СН3-	H₃CO-<\	Н	СНЗ
YA0720	СН3-	₫ -	Н	СНЗ
YA0721	СН3	F	н	снз
YA0722	СН3-	F-(-)-1	н	снз
YA0723	СН3-	<u>\$</u>	н	снз
YA0724	CH3-		н	СНЗ
YA0725	СН3	F()-()	н	СН3
YA0726	СН3-	\$	Н	СНЗ
YA0727	снз-	F	н	СНЗ
YA0728	CH3-	F-()-()	н	СНЗ

No.	R1	R2	R3	.R4
YA0729	СН3-		Н	снз
YA0730	СН3-	CCC,	н	снз
YA0731	СН3-	CH3-	н	Q
YA0732	CH3-	CH3CH2-	н	Qi
YA0733	СН3-	^	Н	Q
YA0734	СН3-	Y	н	
YA0735	СН3-	\\\\	н	Qu

No.	R1	R2	R3	R4
1.10.	 	1	1 10	N4
YA0736	СН3-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	
YA0737	снз-	~~	Н	Qu
YA0738	снз-	丫	н	Qu
YA0739	CH3-	~~``	Н	Qu
YA0740	СН3-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	Qu
YA0741	СН3-	Xv	н	Qu
YA0742	СН3-	7	Н	Qu
YA0743	снз-	~~~	н	Q
YA0744	снз-		н	Qu
YA0745	CH3-	~~~\\	Н	Qu
YA0746	CH3-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	Qu
YA0747	СН3-	\\\\	н	
YA0748	CH3-		Н	
YA0749	СН3-		Н	
YA0750	СН3-		н	Qu
YA0751	СН3-		Н	
YA0752	снз-	$\triangleright \dashv$	Н	Qu
YA0753	СН3-	\Diamond	Н	Qu
YA0754	СН3-	\bigcirc	Н	Qu
YA0755	СН3-	\bigcirc \dashv	Н	Qu
YA0756	снз-	\bigcirc -	н	

No.	R1	R2	R3	1 54
YA0757	CH3-		Н	R4
YA0758	СН3-		Н	
YA0759	CH3-		н	Q
YA0760	снз-	F —	н	Q
YA0761	CH3-		н	Q
YA0762	снз-	F-()-1	Н	Q
YA0763	снз-	F-()-1	Н	Q
YA0764	снз-	F-(){	н	
YA0765	CH3-	CI ————————————————————————————————————	н	
· YA0766	СН3-	CI ————————————————————————————————————	н	
YA0767	CH3-	ci-()(н	
YA0768	CH3-	c⊢ _ }-	Н	
YA0769	СН3-	CI-(Н	Q
YA0770	СН3-	Br	Н	
YA0771	CH3-		Н	
YA0772	CH3-	Br-{_}	H	
YA0773	СН3-	Br—()—(. н	Q
YA0774	СН3-	Br(_)ın{	Н	Q
YA0775	СН3-		н	Qu
YA0776	снз–		н	Qu
YA0777	снз-	H	н	

No.	R1			· · · · · · · · · · · · · · · · · · ·
YA077		CH ₃	R3	R4
17077	В СН3-	()—;	Н	
YA0779	9 снз-	H ₃ C	н	Q
YA0780	снз-	H ₃ C-{}	н	Q
YA0781	снз-	C ₂ H ₅ -{}-{	Н	Q
YA0782	СН3-	n-C ₃ H ₇ -{}{	Н	Q
YA0783	СН3-	л-C ₄ H ₉ -{}-{	н	Q
YA0784	СН3-		н	Q
YA0785	снз-	HO	н	Q
YA0786	СН3-	HO-{_}-{	Н	Qu
YA0787	СН3-	OCH₃	н	Qu
YA0788	CH3-	H ₃ CO	Н	Qu
YA0789	СН3-	H ₃ CO-{_}-{	н	Q
YA0790	СН3-	H ₃ CO-{}	Н	Qu
YA0791	CH3-	H ₃ CO-{\bigs\n.\{	н	Qu
YA0792	CH3-	OC ₂ H ₅	Н	Qu
YA0793	CH3-	C ₂ H ₅ O	н	2
YA0794	CH3-	C ₂ H ₅ O-{}-{	. н	Qu
YA0795	СН3-	n-C ₃ H ₇ O-	н	Q
YA0796	СН3-	n-C₄H ₉ O- ⟨ }-{	н	
YA0797	СН3	NO ₂	н	
YA0798 ·	СН3-	O ₂ N	н	

No.	R1	R2		
YA0799		0.11	R3 H	R4
YA0800	снз-	CN	н	Q
YA0801	CH3-	NC	Н	Q
YA0802	снз-	NC-	н	Q
YA0803	снз-	CF ₃	н	Q
YA0804	CH3-	F ₃ C	н	Q
YA0805	СН3-	F ₃ C-{_}-{	Н	Q
YA0806	CH3-	COOH	Н	Q
YA0807	СН3-	HOOC	н	Q
YA0808	CH3-	HOOC-	н	Q
YA0809	СН3-	CO ₂ Me	н	Q
YA0810	СН3-	MeO ₂ C	Н	
YA0811	снз-	MeO ₂ C-	н	
YA0812	СН3-	CO₂Et	н	Q
YA0813	СН3-	EtO ₂ C	н	Q
YA0814	снз–	EtO ₂ C-{}_{}	н	Q
YA0815	СН3-	SMe	Н -	
YA0816	CH3-	Me\$	н	
YA0817	CH3-	MeS-{	н	2,
YA0818	CH3-	SO ₂ Me	н	Q.
YA0819	СН3-	MeO ₂ S	н (

No. No. R2 R3 R4 YA0820 CH3- MeO ₂ S- H H YA0821 CH3- NH ₂ H H YA0822 CH3- H ₂ N H H YA0823 CH3- NMe ₂ N H H YA0824 CH3- Me ₂ N H H YA0825 CH3- Me ₂ N H H YA0826 CH3- N H H YA0827 CH3- N H H YA0828 CH3- N H H YA0830 CH3- N H H YA0831 CH3- N H H YA0833 CH3- N H H YA0834 CH3- N H H YA0835 CH3- H ₃ CN H H YA0836 CH3- H ₃ CN H H YA0839 CH3- </th <th>No.</th> <th>Ri</th> <th>7</th> <th></th> <th></th>	No.	Ri	7		
YA0821 CH3- → H2N- → H				R3	. R4
YA0822 CH3- H2N H YA0823 CH3- H2N H YA0824 CH3- HMe2N H YA0825 CH3- Me2N H YA0826 CH3- Me2N H YA0827 CH3- N- H YA0828 CH3- N- H YA0829 CH3- N- H YA0830 CH3- N- H YA0831 CH3- N- H YA0832 CH3- N- H YA0833 CH3- N- H YA0834 CH3- N- H YA0835 CH3- N- H YA0836 CH3- H3-CN H YA0838 CH3- H3-CN H YA0838 CH3- H3-CN H YA0838 CH3- H3-CN H	TAU820	CH3-		н	
YA0822 CH3- H2N- H YA0823 CH3- H2N- H YA0824 CH3- Me2N- H YA0825 CH3- Me2N- H YA0826 CH3- Me2N- H YA0827 CH3- N- H YA0828 CH3- N- H YA0829 CH3- N- H YA0830 CH3- N- H YA0831 CH3- N- H YA0832 CH3- N- H YA0833 CH3- N- H YA0834 CH3- N- H YA0835 CH3- N- H YA0836 CH3- H3- N- YA0837 CH3- H3- N- YA0838 CH3- H3- N- YA0838 CH3- H3- N- YA0839 CH3- H3- N- YA0839 CH3- H3- N- YA0839 CH3- H3- N-	YA0821	СН3-		н	Q
YA0824 CH3- NIMe₂ H YA0825 CH3- Me₂N H YA0826 CH3- Me₂N H YA0827 CH3- N- H YA0828 CH3- N- H YA0829 CH3- N- H YA0830 CH3- N- H YA0831 CH3- N- H YA0832 CH3- N- H YA0833 CH3- ON- H YA0834 CH3- ON- H YA0835 CH3- ON- H YA0836 CH3- H3CN N- H YA0837 CH3- H3CN N- H YA0838 CH3- H3CN N- H	YA0822	СН3-	H ₂ N	н	Qu
YA0825 CH3- Me2N H YA0826 CH3- Me2N H YA0827 CH3- Me2N H YA0828 CH3- N- H YA0829 CH3- N- H YA0830 CH3- N- H YA0831 CH3- N- H YA0832 CH3- N- H YA0833 CH3- N- H YA0834 CH3- N- H YA0835 CH3- N- H YA0836 CH3- H ₃ CN N- YA0837 CH3- H ₃ CN N- YA0838 CH3- H ₃ CN N- YA0838 CH3- H ₃ CN N-	YA0823	снз-		н	Q
YA0825 CH3- Me ₂ N- H YA0826 CH3- Me ₂ N- H YA0827 CH3- H H YA0828 CH3- N- H H YA0829 CH3- N- H H YA0830 CH3- N- H H YA0831 CH3- N- H H YA0832 CH3- N- H H YA0833 CH3- N- H H YA0834 CH3- N- H H YA0835 CH3- H H H YA0837 CH3- H ₃ CN N- H H YA0838 CH3- H ₃ CN N- H H	YA0824	снз-		Н	
YA0827 CH3-	YA0825	СН3-	Me ₂ N	н	Q
YA0828 CH3- N- H 1 YA0829 CH3- N- H 1 YA0830 CH3- N- H 1 YA0831 CH3- N- H 1 YA0832 CH3- N- H 1 YA0833 CH3- N- H 1 YA0834 CH3- N- H 1 YA0835 CH3- N- H 1 YA0836 CH3- H3CN N- H 1 YA0838 CH3- H3CN N- H 1 YA0838 CH3- H3CN N- H 1	YA0826	СН3-	Me ₂ N-	н	Q
YA0829 CH3- N- H YA0830 CH3- N- H YA0831 CH3- N- H YA0832 CH3- N- H YA0833 CH3- N- H YA0834 CH3- N- H YA0835 CH3- N- H YA0836 CH3- H3CN N- YA0837 CH3- H3CN N- YA0838 CH3- H3CN N- YA0838 CH3- H3CN N-	YA0827	снз-		Н	Qu
YA0830 CH3- N- H YA0831 CH3- N- H YA0832 CH3- N- H YA0833 CH3- N- H YA0834 CH3- N- H YA0835 CH3- N- H YA0836 CH3- H3CN N- YA0837 CH3- H3CN N- YA0838 CH3- H3CN N- H3C CH3- H3CN H	YA0828	CH3-	(n-C)	н	Q
YA0831 CH3- CH3- H <t< td=""><td>YA0829</td><td>CH3-</td><td>Cn-⟨□}-1</td><td>н</td><td>Q</td></t<>	YA0829	CH3-	Cn-⟨□}-1	н	Q
YA0832 CH3- N- H YA0833 CH3- ON- H YA0834 CH3- ON- H YA0835 CH3- ON- H YA0836 CH3- H3CNON- H YA0837 CH3- H3CNON- H YA0838 CH3- H3CNON- H	YA0830	СН3-		Н	Qu
YA0833 CH3- ON- H YA0834 CH3- ON- H YA0835 CH3- ON- H YA0836 CH3- H3CNON- H YA0837 CH3- H3CNON- H YA0838 CH3- H3CNON- H	YA0831	снз-		н	Qi
YA0834 CH3-	YA0832	CH3-	(h-()-1	Н	
YA0835 CH3- CH3- H3CN N- H H YA0838 CH3- H3CN N- H H H H H H H H H H H H H H H H H H	YA0833	СН3-	o_n - ⟨_>	н	Q
YA0836 CH3- H ₃ CN N- H YA0837 CH3- H ₃ CN N- H YA0838 CH3- H ₃ CN N- H H YA0838 CH3- H ₃ CN N- H YA0838 CH3- H	YA0834	CH3-		н	Qu
YA0837 CH3- H ₃ CN N- H YA0838 CH3- H ₃ CN N- H H YA0838 CH3- H ₃ C CH ₃	YA0835	СН3-	○ N- ()-\$	н	
YA0838 CH3- H ₃ CN N- H	YA0836	снз-	H³CN N-⟨	. Н	Qu
Manage H ₃ C_CH ₃	YA0837	снз-	H3CN N-	н	
	YA0838	СН3-		н	2
	YA0839	СН3-		н	
YA0840 CH3- H ₃ C- CH ₃ H	YA0840	CH3-		н [

. '			

		·		
No.	R1	R2	R3	R4
YA0841	СН3-	CH₃ H₃C	н	Q
YA0842	СН3-	CH³	Н	Q
YA0843	снз-	H ₃ C-√∑-{	н	Q
YA0844	СН3-	H₃C H₃C H₃C	Н	Qu
YA0845	СН3-	F F	н	Q
YA0846	СН3	F-⟨S}-;	н	Qu
YA0847	СН3-	ŞĞ-; F	н	Q
YA0848	СН3-	F F	н	
YA0849	СН3-	F F	н	Q
YA0850	снз-	F. →	Н	
YA0851	СН3-	CI_CI	Н	Q
YA0852	СН3-	a—(□)—;	Н	
YA0853	СН3	a a	Н	Q
YA0854	СН3-	a Ga a	н	Q
YA0855	CH3-	CI. CI-√}-;	н	Q

No.	R1			
140.	 ~'-	R2	R3	R4
YA0856	CH3-	a G	Н	Q
YA0857	снз-	H₃CO_OCH₃	н	Qu
YA0858	СН3-	OCH ₃ H₃CO-⟨S)⊰	н	Qu
YA0859	CH3-	OCH ₃ H ₃ CO	н	Q
YA0860	СН3-	OCH ₃ . OCH ₃	Н	
YA0861	СН3-	H₃CO-⟨¯_}-}	н	Q

No.	R1	R2	R3	T - D4
	 ::-	H ₃ CQ	I Ru	R4
YA0862	CH3-	H ₃ CO	н	
YA0863	CH3-	F_OCH ₃	Н	Q
YA0864	СН3-	OCH ₃ F-√∑-}	Н	Q
YA0865	СН3-	OCH ₃	Н	Q
YA0866	СН3-	OCH ₃	Н	Q
YA0867	снз-	OCH ₃	Н	Q
YA0868	СН3-	OCH₃ F	н	Q
YA0869	СН3-	H ₃ CO F-⟨}-}	Н	Q
YA0870	СН3-	H₃CO ↓ F	н	Q
YA0871	CH3-	H₃CO_F	Н	Q
YA0872	снз-	H₃CO-{\}}	Н	
YA0873	СН3-	H³CO ⊢	н	Q,
YA0874	СН3-	F. H₃CO-⟨¯¯}∤	Н	Q
YA0875	СН3	CI_OCH₃	Н	Qu
YA0876	СН3-	CI—{	Н	Qu

PCT/JP2004/004320

	•
wo	2004/085408

No.	R1	R2	R3	R4
YA0877	CH3-	OCH₃ CI	Н	Q
YA0878	снз-	ocH₃ ⇔ a	Н	Q
YA0879	СН3-	H₃CO CI—(;	Н	Q
YA0880	СН3-	H₃cq → → a	н	
YA0881	СН3-	H₃CO_CI	н	
YA0882	снз-	CI H₃CO-{}}	н	

No.	Rt	D0	 _	
7.00	- NI	R2	R3	R4
YA0883	СН3-	H ₃ CO	Н	
YA0884	снз-	H³co-{_}	н	Q
YA0885	СН3-	F_CH ₃	н	Qu
YA0886	СН3-	CH₃ F—{}}	Н	Q
YA0887	СН3-	CH₃ F	н.	Q
YA0888	СН3-	CH₃ F	н	Q
YA0889	СН3	H₃C F—⟨	Н	
YA0890	СН3-	H₃C F	Н	Qu
YA0891	СН3-	H ₃ C F	н	Qu
YA0892	СН3-	H₃C-⟨\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	
YA0893	снз-	H₃C F	Н	Q
YA0894	снз	F H₃C →	н	Qu
YA0895	СН3-	Br_OCH ₃	н	Qu
YA0896	CH3-	OCH ₃	Н	Qu
YA0897	СН3-	OCH ₃	н	

No.	R1	R2	T 02	T D4
YA0898	CH3-	OCH ₃ Ser	R3 H	R4
YA0899	СН3	H₃CQ Br—()—;	н	Q
YA0900	СН3-	H ₃ CQ Br	Н	Q
YA0901	СН3-	H₃CQ_Br	Н	Q
YA0902	СН3	Br H₃CO-⟨¯¯}→	н	Qu
YA0903	СН3-	Br H₃CO	Н	Q

No.	Ri	R2		
YA0904		Br. H ₃ CO-	R3 H	R4
YA0905	CH3-	H3CO >	Н	Q
YA0906	снз-	OCH ₃	н	Q
YA0907	СН3-	CN-C-OCH3	н	Q
YA0908	СН3-	H₃CO → N	н	
YA0909	CH3-	H³CO H³CO	Н	Q.
YA0910	СН3-	CN OCH3	Н	Q
YA0911	CH3-	F-()-;	Н	Q
YA0912	СН3-	OCH ₃ F—{_}} F	Н	
YA0913	СН3-	H₃CO-{-\$-{ F	H	
YA0914	CH3-	OCH ₃	Н	Q
YA0915	CH3-	OCH ₃ H₃CO-⟨ <mark>></mark> -} OCH ₃	н	Q
YA0916	снз-	a—{a a	н	Q ₁
YA0917	СН3-	OCH₃ CI—{_}_} CI	н	Q
YA0918	СН3-	H³co-{∑ Ci	н	Q

188

CLIDIADAMENT VALLERANDO CARA AND

PCT/JP2004/004320

No.	RI	R2	R3	R4
YA0919	СН3-	OCH ³	Н	
YA0920	СН3-	OCH3 OCH3	Н	Q
YA0921	CH3-	OCH ₃	н	Q
YA0922	СН3-	H ₃ CO	н	Q
YA0923	СН3	H3CO-{\rightarrow}-{\rightarro	Н	Q
YA0924	СН3-	OCH ₃ \t	Н	

No.	R1	T	T =	·
140.	 	R2	R3	R4
YA0925	СН3-	H ₃ CO ,	н	
YA0926	СН3-	н₃со-{∑-{	Н	Qu
YA0927	СН3-	OCH ₃	Н	Q
YA0928	СН3-	H₃CO	Н	
YA0929	СН3-	н₃со-⟨	н	Qu
YA0930	СН3-	₫- 0-1	Н	Q
YA0931	снз-	F	н	
YA0932	СН3-	F-{\}-{\}-{\}-{\}-{\}-{\}-{\}-{\}-{\}-{\}	н	
YA0933	СН3-	ďď	н	Q
YA0934	CH3-		Н	Q
YA0935	СН3-	F-(Н	Q
YA0936	СН3-	OF CO	Н	Q
YA0937	СН3-	\(\bar{\bar{\bar{\bar{\bar{\bar{\bar{	н	Qu
YA0938	СН3-	F-()-()	Н	Qu
YA0939	СН3-		н	Q

No.	T - D1	γ	·	
140.	R1	R2	R3	R4
YA0940	СН3-	CC,	Н	Qu
YA0941	CH3-	CH3	н	L,
YA0942	СН3-	СНЗСН2-	Н	L,
YA0943	СН3-	^ ∖\	н	<u>گ</u>
YA0944	СН3	Y	Н.	Ŷ,
YA0945	СН3	√ \	н	l,

No.	R1	R2	T 700	
YA0946			R3 H	R4
YA0947	снз-	7	н	Î,
YA0948	снз-	丫	Н	l,
YA0949	СН3-	~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	ئے
YA0950	снз-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	l,
YA0951	снз-	X	н	Å,
YA0952	CH3-	7	Н	Å,
YA0953	СН3-	~~~``	н	Ů,
YA0954	CH3-		Н	گہ
YA0955	CH3-	~~~``	н	گہ
YA0956	CH3-	~~~	н	ئے
YA0957	CH3-	~~~``	н	Ŷ,
YA0958	СН3-	L.v.	н	Å,
YA0959	CH3-	Q	н	Ŷ,
YA0960	CH3-		Н	, , , , , , , , , , , , , , , , , , ,
YA0961	СН3		Н	2
YA0962	CH3-	\triangleright	н	l,
YA0963	СН3-	\Diamond -I	н	گي
YA0964	СН3-	$\bigcirc \vdash$	н	گہ
YA0965	СН3-	\bigcirc \vdash	н	بُ
YA0966	CH3	\bigcirc \dashv	н	2,

No.	R1	R2	R3	R4
YA0967	СН3-		н	Ŷ,
YA0968	CH3-	\bigcirc	н	<u>}</u> ,
YA0969	СН3-		Н	Ļ,
YA0970	СН3-	F —	н	<u></u>
YA0971	СН3-		н	Ŷ,
YA0972	СН3-		н	
YA0973	СНЗ-		н	<u></u>
YA0974	СН3-	F-()11-4	н	<u></u>
YA0975	СН3-	CI C)	н	<u></u>
YA0976	СН3-	CI ————————————————————————————————————	н	<u></u>
YA0977	CH3-	c⊢ (н	<u></u>
YA0978	СН3-	c⊢ (}–∤	н	
YA0979	СН3	CH	н	<u></u>
YA0980	СН3-	Br	н	<u>}</u> ,
YA0981	CH3-	Br.	н	\ <u>\</u>
YA0982	CH3-	Br-{}-{	н	<u>\</u>
YA0983	CH3-	Br -{} -{	н	\
YA0984	СН3-	Br—€∑in-{	н	
YA0985	снз-		н	\$
YA0986	СН3-		н	<u> </u>
YA0987	СН3-		Н	<u></u>

No.	R1	R2	R3	R4
NO.	- '''	CH₃	- 100	0
YA0988	CH3-		н	٧,
YA0989	СН3-	H₃C ———	н	Ļ,
YA0990	СН3-	H ₃ C- (){	Н	Ļ,
YA0991	CH3-	C ₂ H ₅ -{}-{	н	Ļ,
YA0992	снз-	n-C ₃ H ₇ -{\rightarrow}-{\rightarrow}-{\rightarrow}	Н	Å,
YA0993	CH3	n-C ₄ H ₉ {}{	Н	Ŷ
YA0994	CH3-	OH OH	н	٨
YA0995	CH3-	HO	н	, , , , , , , , , , , , , , , , , , ,
YA0996	CH3-	HO-{}-}	н	Ŷ,
YA0997	снз-	OCH ₃	н	Ŷ,
YA0998	CH3-	H ₃ CO	н	<u>, </u>
YA0999	CH3-	H ₃ CO-{_}-{	н	Å,
YA1000	CH3-	H ₃ CO-{_}-{	н	Å,
YA1001	СН3-	H ₃ CO-{\bigs\nu}!!!\	н	<u></u>
YA1002	СН3-	OC ₂ H ₅	н	<u></u>
YA1003	снз-	C ₂ H ₅ O	н	l,
YA1004	СН3-	C ₂ H ₅ O-{}	н	ئى
YA1005	СН3-	n-C ₃ H ₇ O-	н	ڳ _ي
YA1006	СН3-	n-C ₄ H ₉ O-{}-{	н	l,
YA1007	СН3-	NO ₂	н	Ŷ,
YA1008	снз-	O ₂ N	н	<u>}</u> ,

Н

YA1029

СН3-

No.	. R1	R2	R3	T
YA1030	CH3-	MeO ₂ S-{}-{	Н	R4
YA1031	СН3-	NH ₂	н	گہ
YA1032	СН3-	H ₂ N	н	i,
YA1033	СН3-	H ₂ N-{}-{	н	l,
YA1034	СН3-	NMe ₂	Н	گہ
YA1035	СН3-	Me ₂ N	н	ا ا
YA1036	CH3-	Me ₂ N-	н	ئې
YA1037	CH3-		н	<u></u>
YA1038	СН3-		н	Ŷ,
YA1039	СН3-		н	Å,
YA1040	CH3-		н	بُ
YA1041	снз-		н	_\
YA1042	снз-		Н	گہ
YA1043	CH3-		Н	٨
YA1044	снз-		Н	, Ly
YA1045	CH3-	€ \+(_)\-{	. н	Ŷ,
YA1046	CH3-	H3CN_N-	. н	بُ
YA1047	CH3-	H3CN_N-{}	н	گہ
YA1048	CH3-	H3CN_N-{}-{	н	بر
YA1049	CH3-	H₃C_CH₃ ⟨□}—;	н	l,
YA1050	CH3-	H³C-{_}}-\ H³C-{_}}-\	Н	<u>گ</u>

	I ni			
No.	R1	R2	R3	R4
YA1051	СН3-	CH₃ CH₃ H₃C	Н	l,
YA1052	СН3-	CH₃ CH₃	н	2,
YA1053	СН3-	H ₃ C H ₃ C-{}-{	н	Ŷ,
YA1054	СН3-	H ₃ C	Н	Ŷ,
YA1055	СН3-	F_F	Н	l,
YA1056	СН3-	F——F	н	Ŷ,
YA1057	СН3-	Ş F F	Н	l,
YA1058	CH3~	F F	н	Ŷ,
YA1059	СН3-	F.	Н	l,
YA1060	СН3-	F.	Н	Ŷ,
YA1061	СН3-	a_a	н.	L,
YA1062	снз-	a a - {}}	Н	Ŷ,
YA1063	. СН3-	a a	Н	Ŷ,
YA1064	снз-	a √a	н	l,

No.	R1	R2	R3	R4
YA1065	CH3	a, a,	н	l,
YA1066	снз-	a a	н	Å,
YA1087	СН3-	H₃CO_OCH₃	Н	l,
YA1068	СН3-	OCH ₃ H ₃ CO-⟨□}	н	Ŷ,
YA1069	CH3-	H³CCO CCH² OCCH²	н	Ŷ,
YA1070	СН3-	OCH3 OCH3	Н	٨,
YA1071	СН3-	H₃CO-{};	н	Ŷ,

	T D1	T 50		T
No.	R1	R2	R3	R4
YA1072	СН3-	H₃CO H₃CO	н	A _r
YA1073	СН3-	F_OCH ₃	н	Ŷ,
YA1074	снз-	OCH ₃	н	l,
YA1075	СН3-	OCH ₃	Н	l,
YA1076	CH3-	OCH₃ F-{\rightarrow\!	н	l,
YA1077	СН3	OCH₃ F	н	Ŷ,
YA1078	снз-	OCH₃ F	н	Ŷ,
YA1079	снз-	H ₃ CO F-\	н	L,
YA1080	СН3-	H₃∞ F	Н	Ŷ,
YA1081	СН3-	H₃CO_F	н	Ŷ,
YA1082	СН3-	F H₃CO-⟨¯¯́}→}	Н	Ŷ,
YA1083	снз-	F H₃∞	Н	l,
YA1084	CH3-	H₃CO-⟨¯}~	Н	l,
YA1085	CH3-	CI_OCH₃ →	H -	Ļ

No.	R1	R2	R3	R4
YA1086	СН3-	C⊢€_}→	н	Î,
YA1087	СН3-	OCH ₃	Н	Å,
YA1088	СН3-	OCH3 CI	н	Ŷ,
YA1089	СН3-	H₃CQ CI—⟨∑}—;	Н	l,
YA1090	СН3	H ₃ CQ	Н	l,
YA1091	CH3-	H ₃ CO_CI	н	l,
YA1092	СН3	cı H₃co-{{}} -	Н	Å,

PCT/JP2004/004320

No.	RI	Do	- M	D/
YA1093	CH3-	R2 CI CI H₃CO	R3 H	R4
YA1094	CH3-	CI, H₃CO-{}-{	н	Î,
YA1095	снз-	F_CH ₃	Н	l,
YA1096	снз-	CH ₃ F—⟨	Н	l,
YA1097	снз-	CH₃ F	Н	Ŷ,
YA1098	CH3-	CH₃ F	н	Å,
YA1099	CH3-	H ₃ C F-\	Н	Ŷ,
YA1100	CH3-	H₃C → F	Н	Ŷ,
YA1101	CH3-	H₃C_F	н	Ŷ,
YA1102	CH3-	F H₃C-⟨∑→⊰	н	Ŷ,
YA1103	CH3-	H₃C	Н	l,
YA1104	снз-	F H₃C-{\}{	н	Ŷ,
YA1105	CH3-	Br_OCH ₃	н	l,
YA1106	СН3-	OCH₃ Br—{}	н	l,

			,	
No.	R1	R2	R3	R4
YA1107	снз-	OCH₃ Br	н	2,
YA1108	СН3	OCH ₃ Br	Н	l,
YA1109	СН3-	H ₃ CO Br	н	Ŷ,
YA1110	СН3-	H₃CO Br	Н	Ŷ,
YA1111	CH3	H ₃ CO_Br	н	Å,
YA1112	СН3-	Br H₃CO-{\(\)}}	Н.	Å,
YA1113	СН3-	Br H₃CO	Н	4

Na	1 Dr			<u> </u>
No.	R1	R2	R3	R4
YA1114	СН3-	H₃CO-⟨¯}—;	н	l,
YA1115	СН3-	(N-(7)	Н	l,
YA1116	СН3-	OCH ₃	н	. L,
YA1117	СН3-	CN-C_}OCH₃	н	l,
YA1118	CH3-	H ₃ CO_}-N_)	н	Ŷ,
YA1119	СН3-	H₃CO (N-{});	Н	Ŷ,
YA1120	CH3-	CN → OCH3	н	Å,
YA1121	СН3-	F-{-} F	Н	Ÿ,
YA1122	СН3-	OCH₃ F—{_}} F	H	l,
YA1123	СН3	H₃CO-{\} F	н	Ŷ,
YA1124	CH3-	OCH₃ F-	н	l,
YA1125	СН3-	OCH3 OCH3	н	Ļ,
YA1126	СН3-	a-{_}; a a	н	L,
YA1127	снз-	ocH₃ ci—()_{{ ci	Н	l,

PCT/JP2004/004320

No.	R1	R2	R3	R4
YA1128	СН3-	a H₃∞-{_}}; a	Н	Ŷ,
YA1129	СН3-	0CH ³ CH-{_}} OCH ³	Н	l,
YA1130	СН3-	OCH ₃ OCH ₃	Н	Î,
YA1131	СН3~	OCH₃	Н	l,
YA1132	СН3-	H ₃ CO	н	Å,
YA1133	СН3-	H₃CO-{_}-{_}-{_}-{_}-{_}-{_}-{_}-{_}-{_}-{_}	Н	l,
YA1134	СН3-	OCH ₃ \t	н	L,

No.	R1	T	1	
140.	 "" -	R2	R3	R4
YA1135	CH3	H ₃ CQ ,	н	L,
YA1136	СН3	H₃CO- ⟨ _} ⟨ _	н	l,
YA1137	СН3-	OCH ₃	н	١
YA1138	CH3-	H ₃ CO	н	l,
YA1139	CH3-	H₃CO-	н	<u>گ</u>
YA1140	СН3~	F	Н	Ŷ,
YA1141	СН3	F	. Н	l,
YA1142	СН3-	F-()-()-{	н	Ŷ,
YA1143	СН3-		Н	l,
YA1144	СН3-		Н	.L,
YA1145	СН3-	F-()-()	н	l,
YA1146	СН3	\$\langle \tag{\tag{\tag{\tag{\tag{\tag{\tag{	Н	l,
YA1147	снз–		Н	Ŷ,
YA1148	СН3	F-()-()	Н	Š,

No.	R1	R2	R3	R4
YA1149	СН3-	Q	Н	l,
YA1150	снз-	M,	н	Å,
YA1151	СН3-	Ci)	н	Å,
YA1152	СН3	O's	н	Ŷ,
YA1153	СН3-	Č.	н	l,
YA1154	СН3-	СН3-	CH3-	Н
YA1155	СН3-	СНЗСН2-	СН3-	н

No. R1 R2 R3 YA1156 CH3- CH3- YA1157 CH3- CH3-	R4 H
VA1157 CUD	н
YA1157 CH3- CH3-	
<u> </u>	н
YA1158 CH3- CH3-	Н
YA1159 CH3- CH3-	Н
YA1160 CH3- CH3-	н
YA1161 CH3- CH3-	Н
YA1162 CH3- CH3-	Н
YA1163 CH3- CH3-	Н
YA1164 CH3- CH3-	Н
YA1165 CH3- CH3-	Н
YA1166 CH3- CH3-	н
YA1167 CH3- CH3-	Н
YA1168 CH3- CH3-	н
YA1169 CH3- CH3-	Н
YA1170 CH3- CH3-	Н
YA1171 CH3- CH3-	н
YA1172 CH3- CH3-	н
YA1173 CH3- CH3-	н
YA1174 CH3- CH3-	Н
YA1175 CH3- CH3-	Н
YA1176 CH3- CH3-	н

PCT/JP2004/004320

No.	R1	R2	R3	R4
YA1177	СН3-	\bigcirc -1	CH3-	н
YA1178	снз-	\bigcirc \dashv	CH3-	н
YA1179	CH3-	\bigcirc -1	СН3-	н
YA1180	СН3-		CH3-	н
YA1181	CH3-		снз-	Н
YA1182	CH3-		СН3-	Н
YA1183	СН3-		СН3-	н
YA1184	CH3	F	СН3-	н
YA1185	СН3-	F-()-1	СН3-	Н
YA1186	СН3-		CH3-	н
YA1187	СН3	F	снз-	Н
YA1188	CH3	CI	CH3-	. н
YA1189	CH3-	CI	CH3-	н
YA1190	СН3-	C⊢ ()→{	CH3-	н
YA1191	CH3-	CI—⟨_ > -{	CH3-	Н
YA1192	СН3-	CH	снз-	Н
YA1193	СН3-	Br	CH3-	Н
YA1194	СН3-	Br.	снз-	Н
YA1195	снз–	Br-{_}_	СН3-	Н
YA1196	снз-	Br—{_}_{}	снз-	Н
YA1197	СН3-	Br—(СН3	Н

CH3-

Н

ո-C₃H₇Օ-

CH3-

YA1218

No.	R1	R2	R3	
YA1240		©N-{∑}-1		R4
77,1240	V13		CH3-	Н
YA1241	CH3-	H ₃ CN N-	СН3-	Н
YA1242	снз-	H3CN N-C	СН3-	н
YA1243	СН3-	H3CN N-{}-{	СН3-	Н
YA1244	СН3-	OCH ₃	СН3-	н
YA1245	СН3-	OCH ₃	СН3-	н
YA1246	СН3-	OCH ₃	СН3-	н
YA1247	снз-		снз-	н
YA1248	CH3-		СН3-	н
YA1249	СН3-	СН3-	Н	CH3-
YA1250	снз-	СНЗСН2-	н	CH3-
YA1251	СН3-	^ \	н	СН3-
YA1252	снз–	Y	Н	СН3-
YA1253	CH3-	\\\\	н	СН3-
YA1254	CH3-	人	н	СН3-
YA1255	CH3-	γ	Н	СН3-
YA1256	CH3-	丫	Н	снз-
YA1257	CH3-	^	Н	СН3-
YA1258	CH3-	/	н	СН3-
YA1259	СН3	r.k	н	СН3-
YA1260	CH3-	个	н	СН3-

No.	RI	D2		1 54
	 	R2	R3_	R4
YA1261	CH3-		Н	снз-
YA1262	снз-	L~~	н	снз-
YA1263	CH3-	~~~``\``\``\`\`\`\`\`\`\`\`\`\`\`\`\`\`	Н	СН3-
YA1264	CH3-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	СН3-
YA1265	CH3-	~~~```	н	CH3-
YA1268	СН3-	L~~~	н	CH3-
YA1267	СН3-		н	СН3-
YA1268	CH3-		н	СН3-
YA1269	СН3-		Н	CH3-
YA1270	СН3-	\triangleright	Н	СН3-
YA1271	снз-	\Diamond -I	н	CH3-
YA1272	CH3-	$\bigcirc \dashv$	Н	CH3-
YA1273	CH3-		н	СН3-
YA1274	CH3	$\bigcirc \dashv$	н	СН3-
YA1275	CH3-		. н	CH3-
YA1276	СН3-		н	СН3
YA1277	СН3-	⊘ n-{	. н	СН3-
YA1278	СН3-	F	Н	СН3-
YA1279	СН3-		н	СН3-
YA1280	СН3-	F-(){	Н	СН3-
YA1281	СН3-	F-()-1	н	СН3-

No.	R1	R2	1 00	
	' 		R3	R4
YA1282	CH3-	F	н	CH3-
YA1283	CH3-	CI CI	н	снз-
YA1284	СН3-		Н	снз-
YA1285	СН3-	CH	Н	СН3-
YA1286	СН3-	CH_>{	Н	CH3
YA1287	. СН3-	CH	н	СН3-
YA1288	СН3-	Br	н	снз-
YA1289	CH3-	Br.	н	СН3-
YA1290	CH3-	Br-{_}	н	СН3-
YA1291	CH3-	Br-{	Н	СН3-
YA1292	СН3-	Br-{	н	CH3-
YA1293	СН3-		н	СН3-
YA1294	снз-		н	CH3~
YA1295	CH3~		н	CH3-
YA1296	CH3-	CH ₃	н	СН3-
YA1297	СН3	H ₃ C	н	снз-
YA1298	СН3-	H₃C- {_ }~{	. н	СН3-
YA1299	СН3-	C₂H₅-{_}-{ 	Н	CH3-
YA1300	СН3-	n-C ₃ H ₇ {_}{	н	снз-
YA1301	CH3~	n-C₄H ₉ -∕{}	Н	СН3
YA1302	CH3-	OH	н	CH3-

_No.	Ri	1 1	T 60	
		HQ R2	R3	R4
YA1303	CH3-		Н	, снз-
YA1304	CH3-	HO-{	н	снз-
YA1305	CH3-	OCH₃	н	СН3-
YA1306	снз-	H ₃ CO	н	CH3-
YA1307	CH3-	H₃CO-{_}_{}	Н	CH3-
YA1308	снз-	H₃CO-{}-{	н	CH3-
YA1309	снз-	H ₃ CO-{\int	Н	СН3-
YA1310	снз-	OC ₂ H ₅	н	CH3-
YA1311	CH3-	C ₂ H ₅ O	н	СН3-
YA1312	CH3-	C ₂ H ₅ O-{}-{	н	СН3-
YA1313	СН3-	n-C ₃ H ₇ O-	н	CH3-
YA1314	CH3-	n-C ₄ H ₉ O-	н	СН3-
YA1315	CH3-	NO ₂	н	снз-
YA1316	CH3-	O ₂ N	н	снз-
YA1317	CH3-	O ₂ N-{_}-{	Н	СН3
YA1318	СН3-	CN CN	Н	СН3-
YA1319	снз-	NC	н	снз-
YA1320	СН3-	NC-{\rightarrow}-i	н	СН3-
YA1321	СН3-	NH ₂	н	. СН3
YA1322	CH3-	H ₂ N	н	СН3-
YA1323	CH3-	H ₂ N-⟨¯¯}{	н	СН3

No.	. R1	500		
140.		NMe ₂	R3	R4
YA1324	CH3-		Н	СН3-
YA1325	снз-	Me ₂ N	н	CH3-
YA1326	СН3-	Me ₂ N-(Н	CH3-
YA1327	CH3-	CH-S	Н	CH3-
YA1328	снз-	CHC	н	снз-
YA1329	снз-	CH-C)-1	н	СН3-
YA1330	снз-		Н	СН3-
YA1331	снз-		н	СН3-
YA1332	снз-		н	СН3~
YA1333	СН3-		Н	CH3-
YA1334	СН3-		Н	СН3-
YA1335	CH3-		Н	снз-
YA1336	снз-	H3CN N-()	н	CH3-
YA1337	CH3-	H³CN N-⟨}	н	СН3
YA1338	СН3-	H³CN_N-{}	н	. СН3-
YA1339	СН3-	CH3 F-€DH3	Н	снз-
YA1340	CH3-	OCH₃ F—{}	н	СН3-
YA1341	CH3-	OCH ₃ F—{	н	CH3-
YA1342	СН3-	CO	н	CH3-
YA1343	СН3-		н	СН3-
YA1344	СНЗСН2-	снз-	н	н

No.	Ri	R2	R3	T 54
YA1366		\Diamond -I	Н	R4 H
YA1367	СНЗСН2-	\bigcirc	Н	н
YA1368	СНЗСН2-	\bigcirc \dashv	н	н
YA1369	CH3CH2-		н	н
YA1370	СНЗСН2-	△ -1	н	н
YA1371	СНЗСН2-		Н	н
YA1372	СНЗСН2-		Н	н
YA1373	СНЗСН2-	◯ -i	. Н	н
YA1374	снзсн2-		Н	н
YA1375	снзсн2-	-	H	Н
YA1376	снзсн2-		н	н
YA1377	снзсн2-		н	Н
YA1378	СНЗСН2-	CI 	Н	н
YA1379	СНЗСН2-		н	Н
YA1380	снзсн2-	; -	н	н
YA1381	снзсн2-		н	н
YA1382	CH3CH2-		н	Н
YA1383	СНЗСН2-		н	н
YA1384	СНЗСН2-		н	Н
YA1385	снзсн2- В		н	Н
YA1386	снзсн2- В		н	Н

No.	R1	R2	R3	R4
YA1387	снзсн2-	Br—(н	н
YA1388	СНЗСН2-		н	н
YA1389	СНЗСН2-		н	н
YA1390	СНЗСН2-		н	Н
YA1391	СНЗСН2-	[<u>_</u>	н	н
YA1392	СНЗСН2-	H₃C	н	н
YA1393	снзсн2-	H₃C- ⟨ }-{	н	н
YA1394	i	C₂H₅- ⟨ }-{	н	н
YA1395		n-C₃H ₇ -∕{_}	н	H
YA1396	СНЗСН2-	n-C ₄ H ₉ -	н	н
YA1397	СНЗСН2-	.OH ∰	н	H .
YA1398	снзсн2-	HO	н	н
YA1399	снзсн2-		н	Н
YA1400	снзсн2-	OCH₃ ⟨_}_{	н	н
YA1401	СНЗСН2-	H₃CO △	н	Н
YA1402			н	Н
YA1403	СНЗСН2-	H₃CO-{\rightarrow}{	. н	н
YA1404	СНЗСН2-		н	Н
YA1405	СНЗСН2-	OC ₂ H ₅	н	н
YA1406	СНЗСН2-	C₂H₅O 	н	Н
YA1407	снзсн2-	C ₂ H₅O-{_}	н	н

		4		
No.	R1	R2	R3	R4
YA1408	CH3CH2-	л-С ₃ Н ₇ О-{}	Н	Н
YA1409	снзсн2-	л-С ₄ Н ₉ О-⟨}{	Н	Н
YA1410	СНЗСН2-	NO ₂	н	Н
YA1411	снзсн2-	O ₂ N	н	н
YA1412	СНЗСН2-		н	Н.
YA1413	СНЗСН2-	CN	н	Н
YA1414	СНЗСН2-	NC	н	Н
YA1415	СНЗСН2-		н	Н
YA1416	СНЗСН2-	NH ₂	н	Н
YA1417	СНЗСН2-	H ₂ N	н	н
YA1418	СНЗСН2-		Н	Н
YA1419	снзсн2-	NMe ₂	н	н `
YA1420	снзсн2-	Me ₂ N	н	н
YA1421	СНЗСН2-	Me ₂ N-()	н	Н
YA1422	СНЗСН2-		н .	н
YA1423	СНЗСН2-	(N-()	н	н
YA1424	СНЗСН2-	_n-(_)-1	н	н
YA1425	СНЗСН2-		н	н
YA1426	СНЗСН2-		н	н
YA1427	СНЗСН2-		н	Н
YA1428	СНЗСН2-		н	н

No.	R1	R2	R3	R4
YA1429	СНЗСН2-		н	н
YA1430	СНЗСН2-	€_vi-{_}	н	Н
YA1431	снзсн2-	H3CN_N-	н	Н
YA1432	снзсн2-	H3CN_N-{}	н	Н
YA1433	СНЗСН2-	H3CN_N-{}-{	н	Н
YA1434	СНЗСН2-	_осн₃ F-{_}}-	н	н .
YA1435	СНЗСН2-	[,	н	Н
YA1436	СНЗСН2-	OCH3 F—Om-(н	Н
YA1437	СНЗСН2-		н	Н
YA1438	СНЗСН2-	OCT'	Н	Н
YA1439	СНЗСН2-	CH3-	н	СН3-
YA1440	СНЗСН2-	СН3СН2-	н	снз-
YA1441	СНЗСН2-	~\`\	н	СН3-
YA1442	СНЗСН2-	Y	н	СН3-
YA1443	СНЗСН2-	\\\	н	СН3
YA1444	СНЗСН2-	人、	н	снз-
YA1445	снзсн2-	γ	н	СН3-
YA1446	СН3СН2-	丫	н	СН3-
YA1447	снзсн2-	~~``\	н	CH3-
YA1448	СНЗСН2-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	CH3-
YA1449	СНЗСН2-	×1	Н	CH3-

No.	. R1	R2	R3	
		へ入		R4
YA1450	СНЗСН2-		Н	снз-
YA1451	снзсн2-	~~```\	Н	СН3-
YA1452	снзсн2-		Н	СН3-
YA1453	снзсн2-	~~~	н	снз-
YA1454	СНЗСН2-	/ ~~	Н	СН3-
YA1455	СНЗСН2-	√	Н	СН3-
YA1456	СНЗСН2-	L	н	СН3-
YA1457	СН3СН2-	Q	Н	СН3-
YA1458	СНЗСН2-		н	СН3-
YA1459	СНЗСН2-		Н	CH3-
YA1460	СНЗСН2-	→ .	Н	CH3-
YA1461	СНЗСН2-	\Diamond -I	Н	CH3-
YA1462	СНЗСН2-	$\bigcirc \dashv$	н	CH3-
YA1463	СНЗСН2-	\bigcirc \dashv	н	CH3
YA1464	СН3СН2-	\bigcirc -1	Н	СН3-
YA1465	СНЗСН2-	<u></u>	Н	СН3
YA1466	снзсн2-		. н	СН3
YA1467	снзсн2-		н	СН3-
YA1468	СНЗСН2-		н	СН3-
YA1469	СНЗСН2-		н	СН3-
YA1470	СНЗСН2-		н	снз-

<u>,</u> *		
ì		
`		

No.	Rt			
1,40.	1 1	R2	R3	R4
YA1471	СНЗСН2-	F-(_)-{	н	СН3-
YA1472	СНЗСН2-	F-On-	н	CH3-
YA1473	СНЗСН2-	CI	н	CH3-
YA1474	СН3СН2-	ci	Н	СН3-
YA1475	СНЗСН2-	c⊢(_}-{	н	CH3-
YA1476	СНЗСН2-	CI-()-1	н	снз-
YA1477	СНЗСН2-		Н	снз-
YA1478	СНЗСН2-	Br 	н	снз-
YA1479	СНЗСН2-	Br.	Н	СН3-
YA1480	СНЗСН2-	Br -{_}	н	СН3-
YA1481	СНЗСН2-	Br- (_) -{	н	CH3-
YA1482	СНЗСН2-	3r— () •••{	н	·СН3-
YA1483	СНЗСН2-		н	CH3-
YA1484	СНЗСН2-		н	CH3-
YA1485	СНЗСН2-	-	н	CH3-
YA1486	СНЗСН2-		н	CH3-
YA1487	СНЗСН2-	1 ₃ C	. Н	CH3
YA1488	CH3CH2-	l₃C- ⟨}-	н	CH3-
YA1489	снзсн2-	Ç ₂ H ₅ -{_}	Н .	СН3-
YA1490	снзсн2-		н	CH3-
YA1491	СНЗСН2-	+C₄H ₉ -{_}-	н	СН3-

No.	l R1	R2	R3	T
YA1492		OH	Н	R4 CH3-
YA1493	СНЗСН2-	HO	Н	CH3-
YA1494	СНЗСН2-	HO-{}-	н	СН3
YA1495	СНЗСН2-	OCH₃	н	СН3-
YA1496	СН3СН2-	H₃CO ⟨_)→	н	CH3-
YA1497	СН3СН2-	H₃CO- ⟨ }-{	н	СН3-
YA1498	СНЗСН2-	H₃CO-⟨ > -{	Н	СН3-
YA1499	СН3СН2-		н	снз
YA1500	СН3СН2-	(<u>_</u>)-{	Н	СН3-
YA1501	СНЗСН2-	C₂H₅O	Н	CH3-
YA1502	СН3СН2-	C₂H₅O-{_}-{	н	СН3-
YA1503	СНЗСН2-	n-C₃H ₇ O-⟨}{	Н	СН3-
YA1504	СНЗСН2-	_	н	снз-
YA1505	снзсн2-	<u> </u>	н	СН3-
YA1506	СНЗСН2-	O₂N △	н	CH3-
YA1507	снзсн2-	02N-{}-{	н	снз-
YA1508	CH3CH2-	CN 	Н	снз-
YA1509	СНЗСН2-	VC	н	CH3-
YA1510	снзсн2-	1C-{}-{	н	СН3-
YA1511	СНЗСН2-	NH ₂	н	CH3-
YA1512	СНЗСН2-	1 ₂ N	н	CH3-

No.	Ri	R2	R3	R4
YA1513	СНЗСН2-		Н	СН3-
YA1514	СНЗСН2-	NMe ₂	н	CH3-
YA1515	СНЗСН2-	Me ₂ N ⟨□}—∤	Н	CH3-
YA1516	СНЗСН2-	Me ₂ N-{}{	н	CH3-
YA1517	СН3СН2-		н	СН3
YA1518	СНЗСН2-		н	СН3-
YA1519	СНЗСН2-		н	CH3-
YA1520	СНЗСН2-		н	снз-
YA1521	СНЗСН2-		н	СН3-
YA1522	СНЗСН2-		н	снз-
YA1523	СНЗСН2-		н	СН3-
YA1524	СНЗСН2-	○~	н	снз-
YA1525	СНЗСН2-		Н	СН3-
YA1526	СНЗСН2-	H³CH_N-\\	н	снз-
YA1527	СНЗСН2-		Н	СН3
YA1528	СНЗСН2-		н	СН3-
YA1529	СНЗСН2-	₽	Н	СН3-
YA1530	СНЗСН2-	₩,	н	снз-
YA1531	СНЗСН2-	OCH3	н	снз-
YA1532	снзсн2-		н	CH3-
YA1533	СНЗСН2-	OJ'	н	CH3-

No.	STRUCTURE	
YA1534		
	H ₃ C O N O CH ₃	
YA1535		
	CIH CIH	
YA1536	N CH ₃	
	CIH CIH	
	CI N N O CH ₃	
/A1537		
	H ₃ C CH ₃	

YA1538	·
	OH N CH ₃
YA1539	H ₃ C N CH ₃
YA1540	H ₃ C N CH ₃
YA1541	CI N N CH ₃

	· ·
YA1545	Ha Ha Ha N N N N N N N N N N N N N N N N
YA1546	HCI HCI HCI HCI N N CH ₃
YA1547	H ₃ C

Dia deso	
YA1558	H ₃ C O N N N O CH ₃
YA1559	Ha Ha Ha Ha N N N N N N CH ₃
YA1560	H ₃ C HCI HCI HCI N HCI

YA1573	2 - H
YA1574	_
	F F F O CH3
YA1575	F F O
	N N O CH ₃
·	

224/1

2/4/500	
YA1583	O N CH ₃
YA1584	H ₃ C O N N O CH ₃
YA1585	H ₃ C O O O O O O O O O O O O O O O O O O O
YA1586	CH ₃ S N N N N N N N N N N N N N N N N N N

VA4507	
YA1587	H ₃ C N N N N O CH ₃
YA1588	H ₃ C N N N N O CH ₃
YA1589	H ₂ N N N CH ₃
YA1590	Br N O CH ₃

225/1

Table-4		·			
·		R ₂ N N N R ₁			
No.	R1	R2	R3	R4	R5
YB1	СН3-	СН3-	н	н	н
YB2	СН3-	СН3СН2-	н	н	н
YB3	СН3-	^ \	н	н	н .
YB4	СН3-	Y	н	н	Н
YB5	СН3-	\\\\	н	н	н
YB6	СН3-	L.	Н	н	н
YB7	СН3-	丫	Н	Н	Н
YB8	СН3-	~~``	Н	Н	Н
YB9	СН3-	1	Н	н	н
YB10	СН3-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	н .	Н
YB11	СН3-	~~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	Н	Н
YB12	СН3-		Н	н	н
YB13	снз-	Oor	Н	н	Н
YB14	СН3-	Qai	Н	Н	Н
YB15	СН3-	Q	Н	Н	Н

No.	R1	R2	R3	IR4	R5
YB16	СН3-		Н	Н	н
YB17	СН3		н	н	н
YB18	СН3-		Н	Н	н
YB19	снз-	F -	н	Н	Н
YB20	СН3-	F	Н	Н	н
YB21	СН3-	F-{_}-{	Н	Н	Н
YB22	СН3-	CI	Н	н	Н
YB23	СН3-	CI	Н	н	н
YB24	СН3-	c (}-	Н	Н	Н
YB25	СН3-	Br ✓	Н	Н	Н
YB26	СН3-	Br.	Н	Н	н
YB27	СН3-	Br- ⟨ }-{	Н	Н	н
YB28	СН3-	CH₃	н	н .	Н
YB29	СН3-	H₃C ——	Н	н	н
YB30	СН3-	H₃C-{_}	Н.	Н	Н
YB31	СН3-	C ₂ H ₅ -{	Н	H	Н
YB32	СН3-	OH ○	Н	н	н
YB33	СН3	HO HO	Н	Н	н

No.	R1	R2	R3	R4	R5
YB34	СН3-	HO-{}-{	Н	Н	Н
YB35	СН3-	OCH₃	н	Н	Н
YB36	снз-	H ₃ CO	н	н	н
YB37	снз-	H₃CO-{{}	н	Н	н
YB38	СН3-	C ₂ H ₅ O-{}	н	Н	н
YB39	снз–	NO ₂	Н	Н	н
YB40	СН3-	O ₂ N	н	Н	н
YB41	СН3-	O ₂ N-{	Н	Н	н
YB42	СН3-	CN CN	н	н	н
YB43	снз-	NC ———	н	Н	н
YB44	СН3-	NC-{\rightarrow}	н	Н	н
YB45	СН3-	and,	н	Н	Н
YB46	СН3-		н	н	Н
YB47	снз-	CCT	н	н	н
YB48	СН3-	Con'	н .	Н	н
YB49	СН3-	FOR	Н	н	. н
YB50	СН3-	Q	Н	Н	н
YB51	снз-	Q'i	н	н	Н

No.	R1	R2	R3	R4	R5
YB52	СН3-	⟨ }-₁	ОН	Н	н
YB53	снз-	F	он	Н	н
YB54	CH3-	F	он	Н	Н
YB55	СН3-	F-()-1	он	Н	н
YB56	СН3-	CI	ОН	н	н
YB57	снз-	CI ——	он	н	Н
YB58	снз-	c⊢{_}-{	он	Н	Н
YB59	СН3-	Br	он	Н	Н
YB60	снз-	Br.	он	Н	Н
YB61	снз-	Br—{}	он	Н	. Н
YB62	СН3-	CH₃	ОН	Н	Н
YB63	снз-	H₃C ———	он	Н	Н
YB64	СН3-	H ₃ C-{}	ОН	Н	Н
YB65	СН3-	C ₂ H ₅ —{	ОН	Н	н
YB66	снз-	OH	ОН	н	Н
YB67	снз-	HO —	ОН	н	. Н
YB68	СН3-	HO-{\bar{\bar{\bar{\bar{\bar{\bar{\bar	он	Н	н
YB69	СН3-	OCH ₃	он	Н	н

No.	R1	R2	R3	R4	R5
YB70	снз-	H₃CO	он	Н	н
YB71	СН3-	H₃CO-⟨}-{	он	Н	Н
YB72	СН3-	C ₂ H ₅ O-{}-{	он	Н	Н
YB73	СН3-	NO ₂	он	Н	Н
YB74	СН3-	O ₂ N{	ОН	Н	н
YB75	СН3-	O ₂ N-{}	он	н	Н
YB76	снз-	CN	он	Н	н
YB77	снз-	NC ———	ОН	Н	H
YB78	снз-	NC-{	ОН	Н	Н
YB79	СН3-	and,	ОН	Н	н
YB80	снз-		ОН	Н	Н
YB81	снз-	CC,	он	Н	Н
YB82	СН3-		CN	н	Н
YB83	снз-	F	CN	Н	Н
YB84	СН3-		CN	Н	н
YB85	СН3-	F-()	CN	Н	Н
YB86	снз-	CI C⊢	CN	н	Н
YB87	СН3-	CI 	CN	н	Н

No.	R1	R2	R3	R4	R5
YB88	CH3-	CH	CN	Н	Н
YB89	CH3-	Br →	CN	н	Н
YB90	СН3-	Br.	CN	н	н
YB91	СН3-	Br-{	CN	Н	н
YB92	СН3-	CH₃	CN	н	H
YB93	СН3-	H ₃ C	CN	Н	н
YB94	СН3-	H ₃ C-{{{ }}	CN	Н	н
YB95	снз-	C ₂ H ₅ —{	CN	н	н
YB96	СН3-	OH OH	CN	н	Н
YB97 .	СН3-	HO HO	CN ·	н	Н
YB98	СН3-	HO-{\bar{\bar{\bar{\bar{\bar{\bar{\bar	CN	Н	н
YB99	СН3-	OCH ₃	CN	н	н
YB100	СН3-	H ₃ CO	CN	Н	н
YB101	СН3-	H₃CO-⟨}-{	CN	н	н
YB102	СН3-	C ₂ H ₅ O-{	CN	Н	н
YB103	СН3-	NO ₂	CN	Н	н
YB104	СН3-	O ₂ N	CN	Н	н
YB105	СН3-	O ₂ N-{	CN	н	Н

No.	R1	R2	R3	R4	R5
YB106	СН3-	CN	CN	Н	Н
YB107	СН3-	NC _\-{	CN	Н	Н
YB108	СН3	NC-{}-{	СИ	н	н
YB109	СН3-	and,	CN	н	Н
YB110	СН3-		СИ	н	Н
YB111	СН3-		CN	н	н
YB112	снз–	н	Н	CH3-	Н
YB113	СН3-	Н	н	CH3CH2-	Н
YB114	СН3-	Н	Н	^ \	н
YB115	СН3-	Н	Н	Y	н
YB116	СН3-	Н	Н	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н
YB117	СН3-	Н	н	人、	Н
YB118	СН3-	Н	н	7,	н
YB119	СН3-	Н	Н	^	н
YB120	СН3-	Н	н .	Y~~	Н
YB121	СН3	Н	Н	\\\\	Н
YB122	СН3-	Н	Н	^ √^\	Н
YB123	СН3-	н	Н	\\\\	н

Н

Н

н

Н

YB140

YB141

СН3-

CH3-

Н

Н

No.	R1	R2	R3	R4	R5
YB178		Н	Н	OH OH	ОН
YB179	СН3-	Н	н	HO -	ОН
YB180	СН3-	н	Н	HO-{}-{	он
YB181	СН3-	Н	Н	OCH₃	ОН
YB182	СН3-	Н	н	H ₃ CO	ОН
YB183	СН3-	н	н	H ₃ CO-{{	ОН
YB184	СН3-	Н	Н	C ₂ H ₅ O-{	он
YB185	СН3-	н	Н	NO ₂	он
YB186	СН3-	н	н	O ₂ N	ОН
YB187	СН3-	н	Н	O ₂ N-{_}{	ОН
YB188	СН3-	Н	Н	CN	ОН
YB189	СН3-	Н	Н	NC 	ОН
YB190	СН3-	н	Н	NC-{}-{	он
YB191	CH3-	Н	Н		он
YB192	CH3-	Н	н	CCC'r	ОН
YB193	СН3-	Н	н		CN
YB194	CH3-	н	н	F	CN
YB195	СН3-	н	Н	F	CN

No.	R1	R2	R3	R4	R5
YB196	СН3-	Н	н	F-{_}-{	CN
YB197	СН3-	Н	Н	CI	CN
YB198	СН3-	Н	Н	CI	CN
YB199	СН3-	Н	Н	CH	CN
YB200	СН3-	Н	Н	Br	CN
YB201	СН3-	H	Н	Br.	CN
YB202	CH3-	Н	Н	Br-{}-{	CN
YB203	СН3-	Н	Н	CH ₃	CN
YB204	СН3-	Н	Н	H₃C —>→	CN
YB205	СН3-	н	Н	H₃C-⟨	CN
YB206	СН3-	Н	Н	C ₂ H ₅ -{	GN
YB207	СН3-	Н	Н	OH ⟨□⟩→	CN
YB208	СН3-	н	Н	HO.	CN
YB209	СН3-	н	Н	HO-{\bigcirc}	CN
YB210	CH3-	Н	н .	OCH ₃	CN
YB211	СН3-	н	н	H₃CO —}	CN
YB212	CH3-	н	н	H₃CO-⟨{	CN
YB213	СН3-	Н	н	C ₂ H ₅ O-{{{1}}	CN

No.	R1	R2	R3	R4	R5
YB214	СН3-	Н	Н	NO ₂	GN
YB215	СН3-	Н	Н	O ₂ N	CN
YB216	СН3-	Н	н	02N-()-1	СИ
YB217	СH3 .	н	·	CN	CN
YB218	СН3-	н	н	NC -	CN
YB219	СН3-	Н	н	NC-{}-{	CN
YB220	СН3-	Н	н		СИ
YB221	СН3-	Н	Ĥ	CCC'	CN
YB222	СН3-	н	Н		0
YB223	СН3-	н	Н	F	Ŷ,
YB224	СН3-	н	н	F	0
YB225	СН3-	Н	н	F-()-1	0
YB226	СН3-	Н	н	CI	<u></u>
YB227	СН3-	Н	Н	CI	Î,
YB228	СН3-	Н	н	CH	0
YB229	СН3-	Н	Н	Br	0
YB230	СН3-	н	н	Br.	0
YB231	СН3-	н	н	Br-{}-{	0

No.	R1	R2			
YB232			R3	R4 CH ₃	R5 O
10232	- Cna-	Н	Н		
YB233	СН3-	Н	н	H₃C ————————————————————————————————————	0
YB234	СН3-	Н	н	H ₃ C-{}-{	0
YB235	СН3-	н	Н	C ₂ H ₅ —{	<u></u>
YB236	СН3-	н	н	OH OH	0
YB237	СН3-	н	Н	HO HO	0
YB238	СН3-	Н	н	HO-{-}-	0
YB239	СН3-	Н	Н	OCH ₃	<u></u>
YB240	СН3-	Н	Н	H ₃ CO	<u></u>
YB241	СН3-	н	н	H ₃ CO-{}-{	0
YB242	СН3-	н	н	C ₂ H ₅ O-{}-{	<u></u>
YB243	СН3-	Н	н	NO ₂	0
YB244	СН3-	Н	Н	O ₂ N	0
YB245	СН3-	Н	н	02N-{}-{	9
YB246	СН3-	н	н	CN ←	<u></u>
YB247	СН3-	н	Н	NC	المرابع المراب
YB248	СН3-	н	Н	NC-{}-{	0
YB249	CH3-	н	Н		0

No.	R1	R2	R3	R4	R5
YB250	СН3-	Н	н		<u></u>

Fa	
No.	STRUCTURE
YB251	
YB252	CH ₃
YB253	S CH ₃
YB254	ON CH ₃

242/1

wo	2004/085408

L-0-0	
YB272	
YB273	H ₃ C N CH ₃
YB274	HO CH ₃
YB275	N CH ₃

V 0000	
YB267	H ₃ C N N CH ₃
YB268	O CH ₃
YB269	N CH ₃
YB270	H ₃ C N CH ₃
YB271	H ₃ C N N N N N O CH ₃

YB276	N.
	CH ₃
YB277	N CH ₃
YB278	CH3 N N N N N N N N N N N N N N N N N N N

Particularly preferred compounds of the present invention represented by formula (I) include:

2-(3-Phenylpiperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
2-(3-(4-Fluorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
2-(3-(3-Fluorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
2-(3-(2-Fluorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
2-(3-(4-Chlorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
(S)-2-(3-(4-Chlorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;

(R)-2-(3-(4-Chlorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;

2-(3-(3-Chlorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(2-Chlorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(4-Bromophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(3-Bromophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(2-Bromophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(4-Methylphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(3-Methylphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(2-Methylphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(4-Cyanophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(3-Cyanophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(2-Cyanophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(4-Methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(3-Methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(2-Methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(2-Ethoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; $\hbox{2-(3-(5-Fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3} H-10-(4-pyridyl)-3-(4-p$ pyrimidin-4-one;

- $\hbox{2-(3-(4-Fluoro-3-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3} H-10-(4-pyridyl)-3-(4-p$ pyrimidin-4-one;
- 2-(3-(4-Fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3Hpyrimidin-4-one;
- (S)-2-(3-(4-Fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3Hpyrimidin-4-one;
- (R)-2-(3-(4-Fluoro-2-methoxyphenyl) piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-1-yl-3-(4-pyridyl)-3H-1-yl-3-(pyrimidin-4-one;
- $\hbox{2-(3-(4-Chloro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3} H$ pyrimidin-4-one;
- pyrimidin-4-one;
- 2-(3-(2-Fluoro-6-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3Hpyrimidin-4-one;
- $\hbox{2-(3-(5-Bromo-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3} H-pyrimid$ in-4-one;
- 2-(3-(2-Bromo-4-fluorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3Hpyrimidin-4-one;
- 2-(3-(2-Chloro-6-fluorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3Hpyrimidin-4-one;
- 2-(3-(2,4-Difluorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4one;
- 2-(3-(2,6-Difluorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4one;
- 2-(3-(2,6-Dichlorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4one;
- 2-(3-(2,4-Dimethoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;

- 2-(3-(3,4-Dimethoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2,5-Dimethoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2,6-Dimethoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2,4-Difluoro-6-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(5-Cyano-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Cyano-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(1-Naphthyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2-Naphthyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2,3-Dihydrobenzofuran-7-yl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(Benzofuran-2-yl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- (S)-2-(3-(Benzofuran-2-yl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(Pyrrolidin-1-yl-methyl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(Pyrrolidin-1-yl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2-methoxy-4-(pyrrolidin-1-yl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2-methoxy-5-(pyrrolidin-1-yl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- $2-(3-(4-(Phenyl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; \\ .$

- 2-(3-(4-(4-Methoxyphenyl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(2-Methoxyphenyl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(Morpholin-4-yl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(4-Methylpiperazin-1-yl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(4-Phenylpiperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(4-Benzylpiperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(4-Benzoylpiperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(4-(1,2-Benzisothiazol-3-yl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(4-Methyl-3-phenylpiperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Fluoro-2-methoxyphenyl)-4-methylpiperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- (S)-2-(3-(4-Fluoro-2-methoxyphenyl)-4-methylpiperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- (R)-2-(3-(4-Fluoro-2-methoxyphenyl)-4-methylpiperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(4-Acetyl-3-(4-fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(4-Benzyl-3-(4-fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(4-Benzyl-3-(ethoxycarbonyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;

one;

 $2\hbox{-}(4\hbox{-methyl-}3\hbox{-}(1\hbox{-naphthyl}) piperazin-1-yl)-3\hbox{-methyl-}6\hbox{-}(4\hbox{-pyridyl})-3$$H$-pyrimidin-4-one; \\$

- $2\hbox{-}(5,5\hbox{-}Dimethyl\hbox{-}3\hbox{-}(2\hbox{-}methoxyphenyl)piperazin-1-yl)\hbox{-}3\hbox{-}methyl\hbox{-}6\hbox{-}(4\hbox{-}pyridyl)\hbox{-}3H-pyrimidin-4\hbox{-}one;}$
- 2-(3-Phenylpiperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Fluorophenyl)piperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(3-Fluorophenyl)piperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- $2\hbox{-}(3\hbox{-}(2\hbox{-}Fluorophenyl) piperidin-1-yl)-3-methyl-6\hbox{-}(4\hbox{-}pyridyl)-3$H-pyrimidin-4-one;$
- $2\hbox{-}(3\hbox{-}(4\hbox{-}Chlorophenyl) piperidin-1-yl)-3\hbox{-}methyl-6\hbox{-}(4\hbox{-}pyridyl)-3$$H$-pyrimidin-4-one;$
- 2-(3-(4-Bromophenyl)piperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Methoxyphenyl)piperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(3-Methoxyphenyl)piperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- $2\hbox{-}(3\hbox{-}(2\hbox{-}Methoxyphenyl) piperid in \hbox{-}1\hbox{-}yl)\hbox{-}3\hbox{-}methyl\hbox{-}6\hbox{-}(4\hbox{-}pyrid yl)\hbox{-}3$$H-pyrimid in \hbox{-}4\hbox{-}one;$
- 2-(3-(4-((Pyrrolidin-1-yl)methyl)phenyl)piperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- (S)-2-(3-(4-(Pyrrolidin-1-yl-methyl)phenyl)piperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one:
- (R)-2-(3-(4-(Pyrrolidin-1-yl-methyl)phenyl)piperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- $2\hbox{-}(3\hbox{-Hydroxy-3-phenylpiperidin-1-yl)-3-methyl-6-(4-pyridyl)-3} \textit{H-pyrimidin-4-one};$
- $\hbox{2-(3-Phenylpiperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3$$H$-pyrimidin-4-one;}$
- 2-(3-(4-Fluorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- $2\hbox{-}(3\hbox{-}(3\hbox{-}Fluorophenyl) piperazin-1-yl)-3-methyl-6\hbox{-}(4\hbox{-}pyrimidyl)-3$H-pyrimidin-4-one;$
- 2-(3-(2-Fluorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- $2\hbox{-}(3\hbox{-}(4\hbox{-}Chlorophenyl) piperazin-1-yl)-3-methyl-6\hbox{-}(4\hbox{-}pyrimidyl)-3$$H-pyrimidin-4-methyl-6.$
- 2-(3-(3-Chlorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;

- 2-(3-(2-Chlorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Bromophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(3-Bromophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(2-Bromophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Cyanophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(3-Cyanophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(2-Cyanophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3*H*-pyrimidin-4-one;
- 2-(3-(3-Methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one:
- 2-(3-(2-Methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(2-Ethoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(6-Fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(5-Fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;

- (S)-2-(3-(4-Fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- (R)-2-(3-(4-Fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Chloro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(5-Bromo-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(2,6-Dichlorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3*H*-pyrimidin-4-one;
- 2-(3-(2,4-Dimethoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(3,4-Dimethoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3*H*-pyrimidin-4-one;
- 2-(3-(2,5-Dimethoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(2,6-Dimethoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(2,4-Difluoro-6-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(1-Naphthyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(2-Naphthyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(2,3-Dihydrobenzofuran-7-yl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(Benzofuran-2-yl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(Pyrrolidin-1-yl-methyl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;

- 2-(3-(4-(Pyrrolidin-1-yl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(2-methoxy-4-(pyrrolidin-1-yl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3*H*-pyrimidin-4-one;
- 2-(3-(2-methoxy-5-(pyrrolidin-1-yl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(Phenyl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(4-Fluorophenyl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(4-Methoxyphenyl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(2-Methoxyphenyl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(Morpholin-4-yl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(4-Methylpiperazin-1-yl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Fluoro-2-methoxyphenyl)-4-methylpiperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- (S)-2-(3-(4-Fluoro-2-methoxyphenyl)-4-methylpiperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- (R)-2-(3-(4-Fluoro-2-methoxyphenyl)-4-methylpiperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(4-Acetyl-3-(4-fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(4-Benzyl-3-(4-fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;

2-(4-(4-Fluorophenyl)piperidin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one; 2-(4-Cyano-4-phenylpiperidin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one; 2-(4-(6-Fluorobenofuran-3-yl)piperidin-1-yl)-3-methyl-6-(4-pyrimidyl)-3Hpyrimidin-4-one;

- 2-(3-(Benzoisoxazol-3-yl)piperidin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4one;
- (S)-2-(3-(Benzoisoxazol-3-yl)piperidin-1-yl)-3-methyl-6-(4-pyrimidyl)-3Hpyrimidin-4-one;
- (R)-2-(3-(Benzoisoxazol-3-yl)piperidin-1-yl)-3-methyl-6-(4-pyrimidyl)-3Hpyrimidin-4-one;
- 2-(3-(6-Fluorobenzoisoxazol-3-yl)piperidin-1-yl)-3-methyl-6-(4-pyrimidyl)-3Hpyrimidin-4-one;
- 2-(4-(6-Fluorobenzoisoxazol-3-yl)piperidin-1-yl)-3-methyl-6-(4-pyrimidyl)-3Hpyrimidin-4-one;
- 2-(4-(5-Methylbenzofuran-3-yl)piperidin-1-yl)-3-methyl-6-(4-pyrimidyl)-3Hpyrimidin-4-one; and
- 2-(4-(6-Fluorobenzothiophene-3-yl)piperidin-1-yl)-3-methyl-6-(4-pyrimidyl)-3Hpyrimidin-4-one.

Salts of the aforementioned preferred compound, and solvates or hydrates of the aforementioned compounds and salts thereof are also preferred.

The 3-substituted-4-pyrimidone compounds represented by the aforementioned formula (I) can be prepared, for example, according to the method explained below.

(In the above scheme, definitions of Q, R, X and Y are the same as those already described.)

The 2-thiopyrimidone represented by the above formula (III) is prepared easily by a modification of the method described in EP 354,179. The reaction may be carried out in the presence of a base such as sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide, potassium tert-butoxide, sodium carbonate, sodium hydrogencarbonate, potassium carbonate, triethylamine, diisopropylethylamine, and 1,8-diazabicyclo[5,4,0]undec-7-en for 1 to 100 hours at a suitable temperature ranging from 0 $^{\circ}$ to 200 $^{\circ}$ under nitrogen or argon atmosphere or under ordinary air to afford the desired compound (III). Examples of a solvent for the reactions include, for example, alcoholic solvent such as methanol, ethanol, 1-propanol, isopropanol, tert-butanol, ethylene glycol, propylene glycol; etheric solvents such as diethyl ether, tert-butyl methyl ether, tetrahydrofuran, isopropyl ether; hydrocarbonic solvents such as benzene, toluene, xylene; halogenated hydrocarbonic solvents such as dichloromethane, chloroform, dichloroethane; aprotic polar solvents such as formamide, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide, sulfolane, hexamethylphosphoric triamide, water and the like. Generally, a single solvent or a mixture of two or more solvents may be used so as to be suitable to a base used.

Then the 2-thiopyrimidone derivative (III) is transformed into the 2-chloropyrimidone (IV) by a chlorinating agent. The reaction time and temperature depend on the chlorinating agent used. Examples of a chlorinating agent for the reactions include, for example, thionyl chloride, thionyl chloride and

dimethylformamide, phosphorus oxychloride, phosphorus oxychloride and dimethylformamide, oxalyl chloride, phosphorous oxychloride and dimethylformamide, and phosphorus pentachloride.

The amine represented by the above formula (V) may be prepared by a modification of the method described in Japanese Patent Unexamined Publication [Kokai] No. 52-139085/1977 or according to well-known methods of one skilled in the art.

Then the chloride derivative (IV) is allowed to react with the amine (V) or salts thereof in the presence of a base such as sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide, sodium carbonate, sodium hydrogencarbonate, potassium carbonate, triethylamine, diisopropylethylamine, and 1,8-diazabicyclo[5,4,0]undec-7-en for 0.1 to 100 hours at a suitable temperature ranging from 0 °C to 200 °C under nitrogen or argon atmosphere or under ordinary air to afford the desired compound (II).

Examples of a solvent for the reactions include, for example, alcoholic solvent such as methanol, ethanol, 1-propanol, isopropanol, tert-butanol, ethylene glycol, propylene glycol; etheric solvents such as diethyl ether, tert-butyl methyl ether, tetrahydrofuran, isopropyl ether; hydrocarbonic solvents such as benzene, toluene, xylene; halogenated hydrocarbonic solvents such as dichloromethane, chloroform, dichloroethane; aprotic polar solvents such as formamide, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide, sulfolane, hexamethylphosphoric triamide, water and the like. Generally, a single solvent or a mixture of two or more solvents may be used so as to be suitable to a base used.

The compounds of the present invention have inhibitory activity against TPK1, and they inhibit TPK1 activity in neurodegenerative diseases like Alzheimer disease, thereby suppress the neurotoxicity of A β and the formation of PHF and inhibit the nerve cell death. Accordingly, the compounds of the present invention

As the active ingredient of the medicament of the present invention, a substance may be used which is selected from the group consisting of the compound represented by the aforementioned formula (I) and pharmacologically acceptable salts thereof, and solvates thereof and hydrates thereof. The substance, per se, may be administered as the medicament of the present invention, however, it is desirable to administer the medicament in a form of a pharmaceutical composition which comprises the aforementioned substance as an active ingredient and one or more of pharmaceutical additives. As the active ingredient of the medicament of the present invention, two or more of the aforementioned substance may be used in combination. The above pharmaceutical composition may be supplemented with an active ingredient of other medicament for the treatment of, for example, Alzheimer disease, vascular dementia, acute stroke and traumatic injuries, brain and spinal cord trauma, peripheral neuropathies, retinopathies and glaucoma, non-insulin dependent diabetes (such as diabetes type II), and obesity, manic depressive illness,

schizophrenia, alopecia, cancers such as breast cancer, non-small cell lung carcinoma, thyroid cancer, T or B-cell leukemia and several virus-induced tumors.

A type of the pharmaceutical composition is not particularly limited, and the composition may be provided as any formulation for oral or parenteral administration. For example, the pharmaceutical composition may be formulated, for example, in the form of pharmaceutical compositions for oral administration such as granules, fine granules, powders, hard capsules, soft capsules, syrups, emulsions, suspensions, solutions and the like, or in the form of pharmaceutical compositions for parenteral administrations such as injections for intravenous, intramuscular, or subcutaneous administration, drip infusions, transdermal preparations, transmucosal preparations, nasal drops, inhalants, suppositories and the like. Injections or drip infusions may be prepared as powdery preparations such as in the form of lyophilized preparations, and may be used by dissolving just before use in an appropriate aqueous medium such as physiological saline.

Sustained-release preparations such as those coated with a polymer may be directly administered intracerebrally.

Types of pharmaceutical additives used for the manufacture of the pharmaceutical composition, content rations of the pharmaceutical additives relative to the active ingredient, and methods for preparing the pharmaceutical composition may be appropriately chosen by those skilled in the art. Inorganic or organic substances, or solid or liquid substances may be used as pharmaceutical additives. Generally, the pharmaceutical additives may be incorporated in a ratio ranging from 1% by weight to 90% by weight based on the weight of an active ingredient.

Examples of excipients used for the preparation of solid pharmaceutical compositions include, for example, lactose, sucrose, starch, talc, cellulose, dextrin, kaolin, calcium carbonate and the like. For the preparation of liquid compositions for oral administration, a conventional inert diluent such as water or a vegetable oil

may be used. The liquid composition may contain, in addition to the inert diluent, auxiliaries such as moistening agents, suspension aids, sweeteners, aromatics, colorants, and preservatives. The liquid composition may be filled in capsules made of an absorbable material such as gelatin. Examples of solvents or suspension mediums used for the preparation of compositions for parenteral administration, e.g. injections, suppositories, include water, propylene glycol, polyethylene glycol, benzyl alcohol, ethyl oleate, lecithin and the like. Examples of base materials used for suppositories include, for example, cacao butter, emulsified cacao butter, lauric lipid, witepsol.

Dose and frequency of administration of the medicament of the present invention are not particularly limited, and they may be appropriately chosen depending on conditions such as a purpose of preventive and/or therapeutic treatment, a type of a disease, the body weight or age of a patient, severity of a disease and the like. Generally, a daily dose for oral administration to an adult may be 0.01 to 1,000 mg (the weight of an active ingredient), and the dose may be administered once a day or several times a day as divided portions, or once in several days. When the medicament is used as an injection, administrations may preferably be performed continuously or intermittently in a daily dose of 0.001 to 100 mg (the weight of an active ingredient) to an adult.

Examples

The present invention will be explained more specifically with reference to examples. However, the scope of the present invention is not limited to the following examples. The compound numbers in the examples correspond to those in the table above.

Reference Example 1: Synthesis of 2-mercapto-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one

A solution of ethyl 3-oxo-3-(4-pyridyl)propionate (29.0 g, 150 mmol), N-methyl thiourea (40.6 g, 450 mmol) and 1,8-diazabicyclo[5,4,0]-7-undecene (22.4 ml, 150 mmol) was refluxed for 4 hours and the solution of methanesulfonic acid (14.4 g, 150 mmol) in water (50 ml) was added after cooling by ice-water. The precipitate was washed with water, filtered and dried to give the title compound (23.7 g, 72%).

¹H-NMR (DMSO-d₆) δ : 3.58(s, 3H), 6.40(s, 1H), 7.72(dd, J=1.8, 4.5Hz, 2H), 8.73(dd, J=1.5, 4.8Hz, 2H), 12.92(brd, 1H).

Reference Example 2: Synthesis of 2-chloro-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one

Phosphorous oxychloride (26.11g, 170 mmol) was added to dimethylformamide(180 ml) and stirred 20 min. 2-Mercapto-3-methyl-6-(4-pyridyl)-pyrimidine-4-one (24.15 g, 110 mmol) was added to the solution and stirred 5 min and then stirred at 70°C for 2 hours. Ethyl acetate (630 ml) was added to the ice-cooled solution and precipitate was collected by filtration after stirring for 20 minutes. After drying, the precipitate was dissolved in water (400 ml) and pH was adjusted to 10 by using aqueous sodium hydroxide. The precipitate was washed with water, filtered and dried to give the title compound (18.82 g, 77%).

1H-NMR (CDCl₈) δ: 3.72(s, 3H), 6.90(s, 1H), 7.78(dd, J=1.7, 4.5Hz, 2H), 8.75(dd, J=1.6, 4.5Hz, 2H).

Reference Example 3: Synthesis of 2-mercapto-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one

A solution of ethyl 3-oxo-3-(4-pyrimidyl)propionate (34.1 g, 176 mmol), N-methyl thiourea (47.5 g, 527 mmol) and 1,8-diazabicyclo[5,4,0]-7-undecene (26.3 ml, 176 mmol) in ethanol (340 ml) was refluxed for 2 hours and the solution of methanesulfonic acid (16.9 g, 176 mmol) in water (70 ml) was added after cooling by

ice-water. The precipitate was washed with water, filtered and dried to give the title compound (30.2 g, 78%).

¹H-NMR (DMSO-d₆) δ : 3.56(s, 3H), 6.88(s, 1H), 8.24(dd, J=1.2, 5.4 Hz, 2H), 9.05 (dd, J=5.4 Hz, 1H), 11.94(s, 1H).

Reference Example 4: Synthesis of 2-chloro-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one

Phosphorous oxychloride (4.60 g, 30 mmol) was added to dimethylformamide(32 ml) and stirred for 20 min at 0°C. 2-Mercapto-3-methyl-6-(4-pyrimidyl)-3H-pyrimidine-4-one(4.40 g, 20 mmol) was added to the solution and stirred 5 min and then stirred at 70°C for 2 hours. The reaction mixture was poured into ice water, neutralized by solid potassium carbonate, and extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, and evaporated under reduced pressure. Purification of the residue by silica gel chromatography (ethyl acetate) gave the title compound (1.20 g, 27%).

1H-NMR (CDCls) δ : 3.74(s, 3H), 7.56(s, 1H), 8.18(d, J=5.1 Hz, 1H), 8.92(d, J=5.1 Hz, 1H), 9.30(s, 1H).

MS[M+H]+: 223.

Example 1: Synthesis of 2-(2-(4-fluoro-2-methoxyphenyl)piperazin-4-yl)-3-methyl-6-(4-pyridyl)-3*H*-pyrimidin-4-one dihydrochloride (No. XA468)

A solution of 2-bromo-5-fluoroanisole (11.8 g, 57.6 mmol) in tetrahydrofuran (60 ml) was dropped into the magnesium (1.40 g, 57.6 mmol) in refluxed tetrahydrofuran (32 ml) containing small amount of 1,2-dibromoethane and refluxed for 15 min. After addition of tetrehydrofuran (50 ml), the solution was cooled to -78 °C and diethyl oxalate (7.41 g, 50.7 mmol) in diethyl ether (50 ml) was dropped into the solution. After stirring at same temperature for 30 min, the solution was warmed to -10°C and 1N aqueous hydrogen chloride (50 ml) and water

were added. Organic layer was extracted with diethyl ether, washed with brine and dried over magnesium sulfate. After removal of the solvent under reduced pressure, purification of the residue by silica gel column chromatography (eluent: hexane/ethyl acetate = 5/2) gave ethyl 2-(4-fluoro-2-methoxyphenyl)-2-oxoacetate (6.80g, 59%)

¹H-NMR (CDCl₃) δ : 1.40(3H, t, J=7.1 Hz),3.87(3H, s), 4.89(2H, q, J=7.1Hz), 6.68(1H, d, J=10.5 Hz), 6.77-6.81(1H, m), 7.91-7.95(1H, m).

Ethylenediamine (0.60 g, 10.0 mmol) was added to a solution of ethyl 2-(4-fluoro-2-methoxyphenyl)-2-oxoacetate (2.26 g, 10.0 mmol) in ethanol(30 ml) and refluxed 4 hr. After removal of the solvent under reduced pressure, residue was washed with ethanol-diethyl ether to give 5,6-dihydro-3-(4-fluoro-2methoxyphenyl)pyrazinone (1.76 g, 79%).

 $^{1}\text{H-NMR}$ (CDCl₃) δ : 3.50-3.56 (2H, m), 3.81 (3H, s), 3.88-3.92 (2H, m), 6.65(1H, d, J=11.0 Hz), 6.70-6.76 (1H, m), 6.89(1H, bs), 7.36-7.40(1H, m).

5,6-Dihydro-3-(4-fluoro-2-methoxyphenyl)pyrazinone was added to the solution of lithium aluminium hydride (0.46 g, 12 mmol) in diethyl ether (25 ml) and refluxed for 6 hr. Water (0.48 ml), 15% sodium hydroxide solution (0.48 ml) and again water (1.21 ml) were added to the ice-cooled solution and the precipitate was filtered and washed with dichloromethane. Combined organic layer was evaporated to give 2-(4-fluoro-2-methoxyphenyl)piperazine (0.83 g, 99%).

¹H-NMR (CDCl₃) δ: 2.02(2H, s), 2.57-2.63 (1H, m), 2.80-2.89 (1H, m), 2.92-2.99 (2H, m), 3.06-3.12 (2H, m), 3.80(3H, s), 4.06 (1H, d, J=10.0 Hz), 6.56-6.65 (2H, m), 7.40 (1H, t, J=7.8 Hz).

2-Chloro-3-methyl-6-(4-pyridyl)-pyrimidin-4-one (222 mg, 1.0 mmol) was added to an ice-cooled solution of 2-(4-fluoro-2-methoxyphenyl)piperazine (210 mg, 1.0 mmol), triethylamine (0.15 ml, 1.1 mmol) in N,N-dimethylformamide (10 ml) and stirred at that temperature for 1 hr and then at room temperature for 2 hr. Next day, reaction was quenched by ice-water and the filtrate was washed with

water and dried to give 2-(2-(4-fluoro-2-methoxyphenyl)piperazin-4-yl)-3-methyl-6-(4-pyridyl)-pyrimidin-4-one (246 mg, 62%).

¹H-NMR (CDCl₃) δ : 2.89-2.96 (1H, m), 3.19-3.31 (3H, m), 3.59 (3H, s), 3.62-3.74 (2H, m), 3.85 (3H, s), 4.39-4.44 (1H, m), 6.63-6.71 (2H, m), 6.67 (1H, s), 7.51-7.55 (1H, m), 7.81 (2H, dd, J=1.7, 4.6 Hz), 8.71 (2H, dd, J=1.7, 4.6 Hz).

4N Hydrogen chloride in 1,4-dioxane (0.4 ml) was added to the solution of 2-(2-(4-fluoro-2-methoxyphenyl)piperazin-4-yl)-3-methyl-6-(4-pyridyl)-pyrimidin-4-one (217 mg, 0.6 mmol) in dichloromethane (5 ml) and stirred for 15 min. After addition of diethyl ether, filtration and wash with diethyl ether and dryness gave the title compound (260 mg, quant.).

Example 2: Synthesis of 2-(2-(4-methoxyphenyl)-piperazine-4-yl)-3-methyl-6-(4-pyridyl)pyrimidin-4-one dihydrochloride (No. XA393)

Dimethylslufoxide (50 ml) solution of 4-methyoxyphenacylbromide (9.94 g, 43.4 mmol) and water (1.6 ml, 88.8 mmol) were stirred at 50°C for 2.5 hr. Water was added and the solution was extracted with ethyl acetate 3 times and washed with brine and then dried over sodium sulfate. Removal of the solvent gave 4-methoxyphenylglyoxal (8.30 g, quant.).

¹H-NMR (DMSO) δ : 3.84 (3H, s), 6.60-6.69 (1H, m), 7.04 (2H, d, J=8.8 Hz), 8.05 (2H, d, J=9.1 Hz).

Methanol (5 ml) solution of ethylenediamine (3.74 g, 62.29 mmol) was added to the ice-cooled solution of 4-methoxyphenylglyoxal (8.30 g, 45.5 mmol) in methanol (100 ml) and tetrahydrofuran (50 ml) and stirred for 10 min. After cooling to 0°C, sodium tetrahydroborate (6.14 g, 162.2 mmol) and additional methanol (50 ml) was added and stirred overnight. After removal of the solvent, aqueous sodium hydroxide was added and was extracted with dichloromethane three times and washed with brine and dried over sodium sulfate. After removal of the solvent, purification of the residue by silica gel column chromatography (eluent;

dichloromethane/ethanol/diethylamine = 20/2/1) gave 2-(4-methoxypheny)-piperazine (3.96 g, 45%).

¹H-NMR (CDCl_s) δ: 2.69(1H, dd, J=10.3, 11.9 Hz), 2.80-3.01(4H, m), 3.07-3.11 (1H, m), 3.68-3.73(1H, m), 3.79(3H, s), 6.84-6.88 (2H, m), 7.27-7.32 (2H, m).

A solution of triethylamine (697 mg, 6.9 mmol), 2-(4-methoxyphenyl)piperazine (430 mg, tetrahydrofuran (10 ml) was stirred at room temperature for 30
min and at 50°C for 3 hr. Solvent was removed under reduced pressure, and 1N
aqueous sodium hydroxide solution was added to the residue and extracted by
dichloromethane three times and washed with brine and dried over sodium sulfate.
After removal of the solvent under reduced pressure, the residue was purified by
silica gel column chromatography (eluent; dichloromethane/ethanol = 10/1) to give
2-(2-(4-methoxyphenyl)-piperazine-4-yl)-3-methyl-6-(4-pyridyl)pyrimidin-4-one
(594 mg, 76%)

¹H-NMR (CDCl₃) δ: 3.02 (1H, dd, J=10.8, 12.7 Hz), 3.18-3.25 (3H, m), 3.55 (3H, s), 3.57-3.67 (2H, m), 3..82 (3H, s), 3.98(1H, dd, J=2.7, 10.8 Hz), 6.67 (1H, s), 6.92 (2H, d, J=8.7 Hz), 7.37 (2H, d, J=8.7 Hz), 7.80 (2H, d, J=6.0 Hz), 8.71 (2H, d, J=6.0 Hz).

4N Hydrogen chloride in ethyl acetate (5 ml) was added to the solution of 2-(2-(4-methoxyphenyl)-piperazine-4-yl)-3-methyl-6-(4-pyridyl)pyrimidin-4-one (594 mg, 1.6 mmol) in dichloromethane (5 ml) and stirred for 1 hr. Wash with ethyl acetate after removal of the solvent and dryness gave the title compound (683 mg, 96%).

Example 3: Synthesis of 2-(2-(4-chlorophenyl)-piperazine-4-yl)-3-methyl-6-(4-pyridyl)pyrimidin-4-one hydrochloride (No. XA371)

Mixture of methyl (4-chlorophenyl)acetate (5.10 g, 27.6 mmol) and N-bromosuccinimide (5.16 g, 29 mmol) in carbon tetrachloride was treated by Hg lamp. After filtration, solvent was removed under reduced pressure and the residue was dissolved in methanol. Ethylenediamine (2.03 ml, 30.4 mmol) and

triethylamine (2.06 ml, 14.8 mmol) and di-tert-butyldicarbonate (3.10 ml, 13.5 mmol) were added to the solution of 3-(4-chlorophenyl)piperazin-2-one (2.60 g, 12.3 mmol) in dichloromethane (100 ml) and stirred. The reaction mixture was washed with 1N aqueous hydrogen chloride, water, brine and then dried. After removal of the solvent under reduced pressure, residue was purified by silica gel column chromatography to give 4-(tert-butoxycarbonyl)-3-(4-chlorophenyl)-piperazin-2-one.

¹H-NMR (CDCl₃) δ: 1.44 (9H, s), 3.21-3.32 (2H, m), 3.48 (1H, m), 4.04 (1H, brs), 5.66 (1H, brs), 7.10 (1H, brs), 7.30-7.38 (4H, m).

Solution of 4-(tert-butoxycarbonyl)-3-(4-chlorophenyl)-piperazin-2-one (500 mg, 1.6 mmol) and acetic acid (929 μ l, 16 mmol) were added to a refluxed solution of sodium borohydride (608 mg, 16 mmol) in 1,4-dioxane (5 ml) and reflux was continued. The reaction was quenched by water and extracted with dichloromethane and washed with brine and dried. After removal of the solvent, residue was purified by silica gel column chromatography to give 4-(tert-butoxycarbonyl)-3-(4-chlorophenyl)piperazine (330 mg, 69%). ¹H-NMR (CDCl₀) δ : 1.46(9H, s), 2.76-2.99(3H, m), 3.13(1H, dd, J=13.0 Hz, 4.3 Hz), 3.45-3.49(2H, m), 3.92(1H, m), 5.15(1H, s), 7.27-7.33(4H, m).

A solution of 4-(tert-butoxycarbonyl)-3-(4-chlorophenyl)piperazine (330 mg, 1.1 mmol), 2-chloro-3-methyl-6-(4-pyridyl)pyrimidin-4-one (246 mg, 1.1 mmol) and triethylamine (170 μ l, 1.22 mmol) in tetrahydrofuran were refluxed. Usual workup and purification by silica gel column chromatography gave 2-(1-(tert-butoxy-carbonyl)-2-(4-chlorophenyl)-piperazine-4-yl)-3-methyl-6-(4-pyridyl)pyrimidin-4-one (500 mg, 93%).

¹H-NMR (CDCl₃) δ : 1.45(9H, s), 3.09(1H, m), 3,35(3H, s), 3.40-3.63(4H, m), 3.96-4.19(2H, m), 5.43(1H, s), 6.68(1H, s), 7.23(2H, d, J=8.3 Hz), 7.32(2H, d, J=8.3 Hz), 7.78(2H, d, J=5.9 Hz), 8.72(2H, d, J=5.9 Hz).

4N Hydrogen chloride in ethyl acetate was added to the solution of

2-(1-(tert-butoxycarbonyl)-2-(4-chlorophenyl)-piperazine-4-yl)-3-methyl-6-(4-pyridyl)pyrimidin-4-one (500 mg, 1.0 mmol) in ethyl acetate and stirred. Filtration and successive dryness gave the title compound (373mg, 79%).

Example 4: Synthesis of 3-methyl-2-(3-(4-((1-pyrrolidinyl)methyl)phenyl)piperidine
-1-yl)-6-(4-pyridyl)pyrimidin-4-one fumarate (No. XB43)

Tetrakis(triphenylphosphine)palladium (0.65 g, 0.56 mmol),
4-formylphenylboric acid (2.81 g, 18.7 mmol), 2M aqueous sodium carbonate (18.7 ml, 37.4 mmol) and ethanol were added to the nitrogen-saturated solution of
3-bromopyridine (2.66 g, 16.8 mmol) in toluene and refluxed under nitrogen for 8 hrs. Water was added to the solution and extracted with ethyl acetate, washed with water and brine and dried. Solvents were removed under reduced pressure and the residue was purified by silica gel column chromatography (eluent; hexane/ethyl acetate = 1/1.5) to give 4-(3-pyridyl)benzaldehyde (0.78 g, 25%).

Methyl iodide (0.8 ml, 12.9 mmol) was added to a solution of 4-(3-pyridyl)benzaldehyde (0.78 g, 4.3 mmol) in dichloromethane and stirred 2 days. Additional methyl iodide (0.8 ml, 12.9 mmol) was added and stirred for 3 hr. After removal of the solvent, methanol was added to the residue and ice-cooled. Sodium tetrahydroborate (6.4 g, 17.0 mmol) was added to the solution and stirred for 1.5 hr with warming to room temperature. Organic solvents were removed under reduced pressure after addition of water and extracted with ethyl acetate, washed with water and brine and dried over sodium sulfate. After removal of the solvent under reduced pressure, residue was purified by silica gel chromatography (eluent ethyl acetate to methanol) to give 3-(4-hydroxymethylphenyl)-1-methyl-1,2,5,6-tetrahydropyridine (0.63 g, 72%).

Triethylamine (1.29 ml, 9.2 mmol), acetic anhydride (0.35 ml, 3.7 mmol) were added to a solution of 4-(hydroxymethyl)phenyl-1-methyl-1,2,5,6-tetrahydropyridine (0.63 g, 3.1 mmol) in dichloromethane and stirred overnight.

A solution of 3-(4-acetoxymethylphenyl)-1-methyl-1,2,5,6-tetrahydropyridine (0.67 g, 2.7 mmol) and 1-chloroethyl chloroformate (0.36 ml, 3.3 mmol) in dichloroethane was refluxed for 2 hr. Organic solvents were removed under reduced pressure after addition of water and extracted with ethyl acetate, washed with water and brine and dried over sodium sulfate. After removal of the solvent, methanol was added and refluxed for 1.5 hr. Tetrahydrofuran and water were added to the residue after removal of the solvent under reduced pressure and triethylamine (1.9 ml, 13.6 mmol) and di-tert-butyl dicarbonate (0.66 g, 3.0 mmol) were added and stirred. Organic solvents were removed under reduced pressure after addition of water and extracted with ethyl acetate, washed with water and brine and dried over sodium sulfate. Removal of the solvent under reduced pressure and the residue was purified by silica gel chromatography to give 3-(4-acetoxymethylphenyl)-1-(tert-butoxycarbonyl)-1,2,5,6-tetrahydropyridine (0.71 g, 78%).

Palladium on charcoal was added to the solution of 3-(4-acetoxymethylphenyl)-1-(tert-butoxycarbonyl)-1,2,5,6-tetrahydropyridine (0.71 g, 2.1 mmol) in ethyl acetate and stirred under hydrogen atmosphere. After filtration with celite and removal of the solvent under reduced pressure, methanol and 1N aqueous sodium hydroxide were added and stirred. Organic solvents were removed under reduced pressure after addition of water and extracted with ethyl acetate, washed with water and brine and dried over sodium sulfate. Removal of the solvent under reduced pressure and the residue was purified by silica gel chromatography (eluent; hexane/ethyl acetate = 3/1) to give 3-(4-hydroxymethylphenyl)-1-(tert-butoxycarbonyl)piperidine (0.39 g, 62%).

Triethylamine (0.47 g, 3.4 mmol) and methanesulfonyl chloride (0.12 ml, 1.6 mmol) were added to an ice-cooled solution of 3-(4-hydroxymethylphenyl)-1-(tert-butoxycarbonyl)piperidine (0.39 g, 1.34 mmol) in dichloromethane and stirred for 7.5 hr. Pyrrolidine (1.0 ml, 12 mmol) was added to the solution and stirred overnight. Organic solvents were removed under reduced pressure after addition of water and extracted with ethyl acetate, washed with water and brine and dried over sodium sulfate. Removal of the solvent under reduced pressure and the residue was purified by silica gel chromatography (eluent; ethyl acetate to ethyl acetate/methanol = 1/1, then methanol only) to give 3-(4-(1-pyrrolidinyl)methyl-phenyl)-1-(tert-butoxycarbonyl)piperidine (0.26 g, 56%).

4N Hydrogen chloride in ethyl acetate was added to 3-(4-(1-pyrrolidinyl)-methylphenyl)-1-(tert-butoxycarbonyl)piperidine (0.26 g, 0.75 mmol) and stirred overnight. After filtration and dryness, triethylamine (0.5 ml, 3.6 mmol), 2-chloro-3-methyl-6-(4-pyridyl)-pyrimidin-4-one (0.14 g, 0.63 mmol) and tetrahydrofuran were added and stirred at 70°C. Organic solvents were removed under reduced pressure after addition of water and extracted with ethyl acetate, washed with water and brine and dried over sodium sulfate. Removal of the solvent under reduced pressure and the residue was dissolved into ethyl acetate. A solution of fumaric acid (0.095 g, 0.82 mmol) in acetone was added and the resulting precipitate was filtered and dried to give the title compound (0.29 g, 76%).

Example 5: Synthesis of (R)-2-(2-(4-chlorophenyl)piperazin-4-yl)-3-methyl-6-(4-pyridyl)-pyrimidin-4- one (No. XA372)

To a solution of (S)-2-methyl-CBS-oxazaborolidine (27.6 mL, 1.0 M solution in toluene, 27.6 mmol) was added borane-tetrahydrofuran complex (166 ml, 1.0 M solution in tetrahydrofuran, 166 mmol) at -40 °C. To the resulting solution was added a solution of 4'-chlorophenacyl bromide (32.25 g, 138.1 mmol) in tetrahydrofuran (200 ml) through dropping funnel over 1 h at -40 °C. After stirring

m).

for 3 hours below 0 °C, methanol (ca. 50 ml) was added dropwise. After stirring the resulting solution for additional 30 min at room temperature, solvent was removed under reduced pressure. The residue, dissolved in ethyl acetate, was treated with 1 N hydrochloric acid to form white precipitate, which was filtered off. The layers of the filtrate was separated, and the organic layer was washed with hydrochloric acid and brine successively, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was used for the next reaction without further purification.

The residue was dissolved in ether (250 ml), and stirred with potassium hydroxide (15.5 g, 276 mmol) in water (250 ml) vigorously. After consumption of the starting material, the layers were separated. The organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was used for the next reaction without further purification.

The residue was heated with benzylamine (37.7 ml, 345 mmol) at 80 °C for 4.5 h. After cooling at room temperature, the resulting white crystals was washed with ether/hexane and collected to afford (S)-2-benzylamino-1-(4-chlorophenyl)ethanol (23.8 g, 65.8%). The excess benzylamine in the filtrate was distilled off at 120 °C under reduced pressure. From the residue, another (S)-2-benzylamino-1-(4-chlorophenyl)ethanol (2.41 g, 6.7%) was obtained. ¹H NMR (CDCl₃) ™: 2.68(1H, dd, J=12.3, 8.9Hz), 2.92(1H, dd, J=12.3, 3.7Hz), 3.80(1H, d, J=11.9Hz), 3.86(1H, d, J=11.9Hz), 4.68(1H, dd, J=8.9, 3.7Hz), 7.30(9H,

To a suspension of (S)-2-benzylamino-1-(4-chlorophenyl)ethanol (15.76 g, 60.21 mmol) and triethylamine (33.6 ml, 241 mmol) in dichloromethane (300 ml) was added a solution of thionyl chloride (4.83 ml, 66.2 mmol) in dichloromethane (20 ml) at -78 °C over 20 min. The resulting suspension was stirred at -78 °C for 20 min and at 0 °C for additional 20 min. The reaction mixture was partitioned

between ether and water, and the organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent: 10-20% ethyl acetate-hexane) to afford (2RS,5S)-3-benzyl-5-(4-chlorophenyl)-1,2,3-oxathiazolidine 2-oxide (16.2 g 87.4%) as a pale yellow solid.

The resulting product was obtained as a mixture of two diastereomers due to the S-oxide.

major isomer: ¹H NMR (CDCl₃) δ : 3.31(1H, dd, J=10.5, 9.9Hz), 3.55(1H, dd, J=9.0, 6.3Hz), 3.88(1H, d, J=13.2Hz), 4.37(1H, d, J=13.2Hz), 5.49(1H, dd, J=10.5, 6.3Hz), 7.22-7.43(9H, m).

minor isomer: ¹H NMR (CDCl₃) δ : 3.21(1H, dd, J=13.5, 4.5Hz), 3.77(1H, dd, J=13.5, 11.4Hz), 4.05(1H, d, J=13.5Hz), 4.38(1H, d, J=13.5Hz), 5.99(1H, dd, J=11.4, 4.5Hz), 7.22-7.43(9H, m).

A solution of (2RS,5S)-3-benzyl-5-(4-chlorophenyl)-1,2,3-oxathiazolidine 2-oxide (16.2 g, 52.6 mmol) and sodium azide (17.11 g, 263.2 mmol) in N,N-dimethylformamide (100 ml) was heated at 70 °C for 24 hours. The reaction mixture was partitioned between ether and water, and the organic layer was washed with water and brine successively, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent: 10-20% ethyl acetate-hexane) to afford (R)-N-benzyl-2-azido-2-(4-chlorophenyl)ethylamine (12.7 g, 83.8%) as a yellow oil. 1H NMR (CDCl₃) δ: 2.81(1H, dd, J=12.5, 5.1Hz), 2.89(1H, dd, J=12.5, 8.5Hz), 3.82(2H, s),4.64(1H, dd, J=8.5, 5.1Hz),7.23-7.36(9H, m).

A solution of (R)-N-benzyl-2-azido-2-(4-chlorophenyl)ethylamine (12.7 g, 44.1 mmol) in tetrahydrofuran (176 mL) was treated with triphenylphosphine (13.9 g, 52.9 mmol) at room temperature. After addition of water (20 ml), the reaction mixture was heated at 60 °C for 1 h. The reaction mixture was condensed, and partitioned between ether and 1 N hydrochloric acid. The aqueous layer was

treated with 1 N aqueous sodium hydroxide solution until the solution became basic. The resulting solution was extracted with dichlromethane thoroughly. The combined organic layer was washed with water, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was used for the next reaction without further purification.

The residue was heated with diethyl oxalate (18 ml, 132 mmol) at 120 °C for 1.5 h. The resulting white precipitate was washed with ether and collected to afford (R)-1-benzyl-5-(4-chlorophenyl)-2,3-dioxopiperazine (11.4 g, 82.2%).

¹H NMR (CDCl₃) δ : 3.46(1H, dd, J=12.9, 8.1Hz), 3.60(1H, dd, J=12.9, 3.8Hz), 4.48(1H, d, J=14.7Hz), 4.79(1H, d, J=14.7Hz), 4.80(1H, dd, J=8.9, 3.8Hz), 6.83(1H, s), 7.13(4H, m), 7.27(5H, m).

To a suspension of (R)-1-benzyl-5-(4-chlorophenyl)-2,3-dioxopiperazine (11.4 g, 36.3 mmol) in tetrahydrofuran (300 ml) was added borane-tetrahydrofuran complex (181 mL, 1.0 M solution in tetrahydrofuran, 181 mmol) at room temperature. After stirring for 24 hours, the reaction mixture was quenched with methanol (50 ml) at 0 °C, and concentrated under reduced pressure. The residue was treated with 10% aqueous sodium hydroxide solution (300 ml) and heated at 100 °C for 2 hours. After cooling at room temperature, the mixture was extracted with dichloromethane thoroughly. The combined organic layer was dried over anhydrous sodium sulfated, filtered, and concentrated under reduced pressure. The residue was used for the next reaction without further purification.

To a solution of the residue and triethylamine (7.58 ml, 54.4 mmol) in dichloromethane (150 ml) was added di-tert-butyl dicarbonate (9.49 g, 43.5 mmol) at room temperature. After stirring for 45 min, the resulting mixture was partitioned between dichloromethane and water, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent: 10-20% ethyl acetate-hexane) to afford (R)-1-benzyl-4-(tert-butoxycarbonyl)-3-(4-chlorophenyl)piperazine (11.6 g,

82.8%) as an oil.

WO 2004/085408

¹H NMR (CDCl₃) δ : 1.43(9H, s), 2.16(1H, dt, J=4.4, 11.7Hz), 2.40(1H, dd, J=4.4, 11.7Hz), 2.78(1H, dd, J=4.4, 11.7Hz), 2.98(1H, dt, J=4.4, 11.7Hz), 3.20(1H, d, J=12.8Hz), 3.42(1H, d, J=12.9Hz), 3.57(1H, d, J=12.9Hz), 3.89(1H, d, J=12.8Hz), 5.17(1H, s), 7.24-7.36(9H, m).

To a solution of (R)-1-benzyl-4-(tert-butoxycarbonyl)-3-(4chlorophenyl)piperazine (11.6 g, 30.1 mmol) in 1,2-dichloroethane (80 ml) was added 1-chloroethyl chloroformate (4.91 ml, 45.1 mmol) at room temperature. Upon disappearance of the starting material, the reaction mixture was concentrated under reduced pressure. The residue was then dissolved in methanol (100 ml) and refluxed for 30 min. The resulting white precipitate was filtered and washed with methanol to afford (R)-2-(4-chlorophenyl)piperazine dihydrochloride, which was liberated with aqueous sodium hydroxide solution, and extracted with dichloromethane to afford (R)-2-(4-chlorophenyl)piperazine (3.04 g, 51.4%) as white solid.

¹H NMR (CDCl₃) δ :2.65(1H, dd, J=12.0, 10.5Hz), 2.82-3.04(4H, m), 3.09(1H, d, J=12.6Hz), 3.73(1H, dd, J=10.1, 2.7Hz), 7.29(4H, m)

The filtrate was concentrated under reduced pressure and partitioned between ether and 1 N hydrochloric acid. The aqueous layer was neutralized with 1 N aqueous sodium hydroxide solution, and extracted with dichloromethane thoroughly. The combined organic extracts were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified after Boc-protection (Boc2O, Et3N, CH2Cl2) to furnish (R)-1,4-di(tert-butoxycarbonyl)-2-(4-chlorophenyl)piperazine (2.70 g, 22.6%) as pale yellow solid.

¹H NMR (CDCl₃) δ : 1.43(9H, s), 1.46(9H, s), 2.96(2H, m), 3.32(1H, dd, J=13.8, 4.2Hz), 3.74(1H, m), 3.94(1H, d, J=11.4Hz), 4.40(1H, d, J=13.2Hz), 5.23(1H, s),7.25(2H, m)

To a suspension of (R)-2-(4-chlorophenyl) piperazine dihydrochloride (1.09 g, 4.05 mmol) in tetrahydrofuran (24 ml) was added triethylamine (2.82 ml, 20.3 mmol). After stirring for 15 min at room temperature, 2-chloro-3-methyl-6-(4pyridyl)-3H-pyrimidin-4-one (748 mg, 3.38 mmol) was added portionwise. Upon disappearance of the chloropyrimidone, the reaction mixture was condensed under reduced pressure. The residue was partitioned between saturated aqueous sodium bicarbonate solution and dichloromethane. The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to give pale yellow solid, which was recrystallized from ethanol to afford (R)-2-(2-(4-chlorophenyl)piperazin-4-yl)-3-methyl-6-(4-pyridyl)-pyrimidin-4-one (998 mg, 77.4%) as white crystals. The enantiomer excess was determined by HPLC (>99% ee). The crystals were converted into its dihydrochloride salt. ¹H NMR (DMSO-d₆) δ : 3.40(3H, m), 3.46(3H, s), 3.62(1H, dd, J=12.0, 13.2Hz), 3.72(1H, m), 3.92(1H, t, J=15.5Hz), 4.68(1H, t, J=10.1Hz), 7.18(1H, s), 7.58(2H, d, J=8.6Hz), 7.83(2H, d, J=8.6Hz), 8.57(2H, d, J=6.6Hz), 9.01(2H, d, J=6.6Hz), 10.20(1H, d, J=7.8Hz), 10.76(1H, br s) MS: 382(M+H) $[\alpha]_{D^{24}} = +62.2 \circ (c \ 1.00, \ H_2O)$

Example 6: Synthesis of (S)-2-(2-(4-chlorophenyl)piperazin-4-yl)-3-methyl-6-(4-pyridyl)-pyrimidin-4-one (No. XA373)

(S)-isomer was prepared same as above by using (R)-2-methyl-CBS-oxazaborolidine instead of (S)-2-methyl-CBS-oxazaborolidine.

¹H NMR (DMSO-d₆) δ : 3.40 (3H, m), 3.45 (3H, s), 3.53-3.96 (3H, m), 4.68 (1H, t, J = 13.5Hz), 7.10 (1H, s), 7.60 (2H, d, J=8.3Hz), 7.76 (2H, d, J=8.3Hz), 8.38 (1H, br s), 8.91 (1H, d, J=4.8Hz), 9.88 (1H, br s), 10.31 (1H, br s)

MS: 382(M+H)

[α] α ²⁴ = α -63.3 ° (c 1.00, H₂O)

Example 7: Synthesis of 2-(2-(4-fluoro-2-methoxyphenyl)piperazin-4-yl)-3-methyl-6-(4-pyrimidyl)-pyrimidin-4-one (No. YA0366)

A solution of 2-bromo-5-fluoroanisole (11.8 g, 57.6 mmol) in tetrahydrofuran (60 ml) was dropped into the magnesium (1.40 g, 57.6 mmol) in refluxed tetrahydrofuran (32 ml) containing small amount of 1,2-dibromoethane and refluxed for 15 min. After addition of tetrahydrofuran (50 ml), the solution was cooled to -78 °C and diethyl oxalate (7.41 g, 50.7 mmol) in diethyl ether (50 ml) was dropped into the solution. After stirring at the same temperature for 30 min, the solution was warmed to -10°C and 1N aqueous hydrogen chloride (50 ml) and water were added. Organic layer was extracted with diethyl ether, washed with brine and dried over magnesium sulfate. After removal of the solvent under reduced pressure, purification of the residue by silica gel column chromatography (eluent: hexane/ethyl acetate = 5/2) gave ethyl 2-(4-fluoro-2-methoxyphenyl)-2-oxoacetate (6.80g, 59%)

¹H-NMR (CDCl₃) δ : 1.40(3H, t, J=7.1 Hz),3.87(3H, s), 4.89(2H, q, J=7.1Hz), 6.68(1H, d, J=10.5 Hz), 6.77-6.81(1H, m), 7.91-7.95(1H, m).

Ethylenediamine (0.60 g, 10.0 mmol) was added to a solution of ethyl 2-(4-fluoro-2-methoxyphenyl)-2-oxoacetate (2.26 g, 10.0 mmol) in ethanol(30 ml) and refluxed 4 hr. After removal of the solvent under reduced pressure, residue was washed with ethanol-diethyl ether to give 5,6-dihydro-3-(4-fluoro-2-methoxyphenyl)pyrazinone (1.76 g, 79%).

¹H-NMR (CDCl₃) δ : 3.50-3.56 (2H, m), 3.81 (3H, s), 3.88-3.92 (2H, m), 6.65(1H, d, J=11.0 Hz), 6.70-6.76 (1H, m), 6.89(1H, bs), 7.36-7.40(1H, m).

5,6-Dihydro-3-(4-fluoro-2-methoxyphenyl)pyrazinone was added to the solution of lithium aluminium hydride (0.46 g, 12 mmol) in diethyl ether (25 ml) and refluxed for 6 hr. Water (0.48 ml), 15% sodium hydroxide solution (0.48 ml) and again water (1.21 ml) were added to the ice-cooled solution and the precipitate was

filtered and washed with dichloromethane. Combined organic layer was evaporated to give 2-(4-fluoro-2-methoxyphenyl)piperazine (0.83 g, 99%).

¹H-NMR (CDCl₃) δ : 2.02(2H, s), 2.57-2.63 (1H, m), 2.80-2.89 (1H, m), 2.92-2.99 (2H, m), 3.06-3.12 (2H, m), 3.80(3H, s), 4.06 (1H, d, J=10.0 Hz), 6.56-6.65 (2H, m), 7.40 (1H, t, J=7.8 Hz).

2-Chloro-3-methyl-6-(4-pyrimidyl)-pyrimidin-4-one (223 mg, 1:0 mmol) was added to an ice-cooled solution of 2-(4-fluoro-2-methoxyphenyl)piperazine (210 mg, 1.0 mmol), triethylamine (0.15 ml, 1.1 mmol) in N,N-dimethylformamide (10 ml) and stirred at that temperature for 0.5 hr and then at room temperature for 3 hours. Reaction was quenched by ice-water and the filtrate was washed with water and dried to give 2-(2-(4-fluoro-2-methoxyphenyl)piperazin-4-yl)-3-methyl-6-(4-pyrimidyl)-pyrimidin-4-one (262 mg, 66%).

¹H-NMR (CDCl₃) δ : 2.89-2.98 (1H, m), 3.22-3.31 (3H, m), 3.60 (3H, s), 3.62-3.71 (2H, m), 3.86 (3H, s), 4.39-4.44 (1H, m), 6.43-6.73 (2H, m), 7.33 (1H, s), 7.52-7.56 (1H, m), 8.19 (1H, d, J=5.1 Hz), 8.87 (1H, d, J=5.2 Hz), 9.28 (1H, d, J=1.2 Hz).

4N Hydrogen chloride in 1,4-dioxane (0.2 ml) was added to the solution of 2-(2-(4-fluoro-2-methoxyphenyl)piperazin-4-yl)-3-methyl-6-(4-pyrimidyl)-pyrimidi n-4-one (238 mg, 0.6 mmol) in dichloromethane (5 ml) and stirred for 15 min. Wash with methanol and ethyl acetate after removal of the solvent and dryness gave the title compound (223 mg, 86%).

Example 8: Synthesis of 2-(2-(4-chlorophenyl)-piperazine-4-yl)-3-methyl-6-(4-pyrimidyl)pyrimidin-4-one (No. YA0269)

Dimethyl sulfoxide (60 ml) solution of 4-chlorophenacylbromide (11.11 g, 65.9 mmol) and water (1.7 ml) were stirred. The solution was extracted with ethyl acetate 3 times and washed with water twice and brine and then dried over sodium sulfate. After removal of the solvent, the residue was washed with hexane-ethyl acetate and dried to give 4-chlorophenylglyoxal (4.43 g, 50%).

¹H-NMR (CDCl₃) δ : 4.02-4.16(2H, m), 5.90-5.95(1H, m), 7.45-7.53(2H, m), 8.05-8.11(2H, m).

A methanol (10 ml) solution of ethylenediamine (1.90 g, 31.6 mmol) was added to the ice-cooled solution of 4-chlorophenylglyoxal (4.43 g, 26.3 mmol) in methanol (100 ml) and tetrahydrofuran (30 ml) and stirred for 10 min. After addition of sodium tetrahydroborate (3.26 g, 86.3 mmol), additional methanol (50 ml) was added and stirred overnight. After removal of the solvent, diluted hydrochloric acid was added and extracted with ether twice. After addition of sodium hydroxide, basic aqueous layer was extracted with dichloromethane three times and washed with brine and dried over sodium sulfate. After removal of the solvent by filtration, purification of the residue by silica gel column chromatography (eluent; dichloromethane/ethanol = 10/1 to dichloromethane/ethanol/diethylamine = 20/2/1) to give 2-(4-chlorophenyl)-piperazine (0.43 g, 9%)

1H-NMR (CDCl₃) δ : 2.67(1H, dd, J=10.5, 12.0 Hz), 2.87-3.03(4H, m), 3.07-3.13(1H, m), 3.77(1H, dd, J=2.7, 10.2 Hz), 7.27-7.36(4H, m).

Triethylamine (528 mg, 5.2 mmol) was added to a solution of 4-(chlorophenyl)piperazine (216 mg, 1.1 mmol) and 2-chloro-3-methyl-6-(4-pyrimidyl)pyrimidin-4-one and stirred at 50°C for 2 hr. Solvent was removed under reduced pressure, and 1N aqueous sodium hydroxide solution was added to the residue and extracted by dichloromethane. After washing with brine and dryness by sodium sulfate, solvent was removed under reduced pressure, and the residue was purified using ISOLUTE(registered trade mark) SI (International Sorvent Technology, UK)(eluent; dichloromethane/ethanol = 10/1) to give the title compound (396 mg, 95 %).

Example 9: Synthesis of 2-(2-(4-chlorophenyl)-6,6-dimethyl-piperazin-4-yl)-3-methyl-6-pyridin-4-yl-3*H*-pyrimidin-4-one dihydrochloride (No. XA1986)

A solution of 4'-chloro-2-bromoacetophenone (25.0 g, 107 mmol), water (1.92 mL, 107 mmol) and 47% hydrobromic acid (0.20 mL) in dimethylsulfoxide (160 mL) was stirred at 80°C for 5 h. After the reaction mixture was poured into water, the precipitate was filtered, washed with diethylether and dried, affording 4'-chloro-2,2-dihydroxyacetophenone (14.0 g, 70%). ¹H NMR (300MHz, CDCl₃), δ 5.92(1H, s), 7.45-7.52(2H, m), 8.05 –8.20(2H, m).

2,2-dimethly-ethylenediamine (2.10 mL, 20.0 mmol) was added to a solution of 4'-chloro-2,2-dihydroxyacetophenone (3.70 g, 20.0 mmol) in methanol (120 mL) and tetrahydrofuran (30 mL) at room temperature. After 2 h, sodium borohydride (1.50 g, 40.0 mmol) was added to the reaction mixture at 0 $^{\circ}$ C. The reaction mixture was stirred overnight, then quenched with 1N hydrochloric acid and evaporated in vacuo. The acidic solution was extracted with ethyl acetate, then basified to pH 11 using 15% aqueous sodium hydroxide, and extracted with dichloromethane. The extract was dried over sodium sulfate and concentrated in vacuo. Di-t-butyldicarbonate (6.40 mL, 27.9 mmol) was added to the solution of the residue in 1N aqueous sodium hydroxide (40 mL) and tetrahydrofuran (60 mL). The resulting suspension was heated at 40 $^{\circ}$ C for 8 h, then diluted with ethyl acetate and water. The organic layer was extracted with additional ethyl acetate, dried and concentrated in vacuo. The crude product was purified by flash column chromatography, affording 2-(4-chlorophenyl)-4-t-butoxycarbonyl-6,6-dimethylpiperazine (1.69 g, 28%, 2 steps). 1 H NMR (300MHz, CDCl₃), δ 1.15(3H, s), 1.21(3H, s), 2.47-2.70(2H, m), 3.72-4.16(3H, m), 7.26-7.37(4H, m).

4 M Hydrogen chloride in ethyl acetate (5.0 mL, 20.0 mmol) was added to a solution of 2-(4-chlorophenyl)-4-t-butoxycarbonyl-6,6-dimethyl-piperazine (1.69 g, 5.2 mmol). After 12 h, removing the solvent, filtrating and washing the precipitate with ethyl acetate gave 2-(4-chlorophenyl)-6,6-dimethyl-piperazine dihydrochloride

(1.43 g, 95%). ¹H·NMR (300MHz, DMSO-d₆), δ 1.40 (3H, s), 1.58(3H, s), 3.24-3.99(4H, m), 4.73(1H, m), 7.69(2H, d, J = 8.4 Hz), 7.79(2H, m), 9.99-10.12(2H, m).

A solution of 2-(4-chlorophenyl)-6,6-dimethyl-piperazine hydrochloride (155 mg, 0.52 mmol), 2-chloro-3-methyl-6-(4-pyridyl)-pyrimidine-4-one (111 mg, 0.50 mmol) and triethylamine (0.42 mL, 2.50 mmol) in tetrahydrofuran (5 mL) was stirred at room temperature for 6 h. The whole was evaporated in vacuo and the residue was extracted with dichloromethane. The organic layer was washed with water, dried and concentrated in vacuo. The residue was dissolved in methanol (5mL) and treated with 4M hydrogen chloride in ethyl acetate (0.50 mL, 2.0 mmol) for 20 min. After removing the solvent, filtrating and washing the precipitate with ethanol gave 2-(2-(4-chlorophenyl)-6,6-dimethyl-piperazin-4-yl)-3-methyl-6-pyridin-4-yl-3H-pyrimidin-4-one dihydrochloride (235 mg, 97%).

Example 10: Synthesis of 2-(2S-(4-bromophenyl)-piperazin-1-yl)-3-methyl-6-pyridin-4-yl-3H-pyrimidin-4-one (No. XA2051)

Benzyl chloroformate (2.40 mL, 15.0 mmol) was added to a solution of 2S-(4-bromophenyl)-piperazine dihydrochloride in 1N aqueous sodium hydroxide (30 mL) and dichloromethane (60 mL). The resulting suspension was stirred at room temperature for 1.5 h. After partitioned between ethyl-acetate, the organic layer was extracted with additional ethyl acetate, dried and concentrated in vacuo. The precipitate was washed with ether, affording 2S-(4-bromophenyl)-4-benzyloxycarbonyl-piperazine (2.92 g, 57%). ¹H NMR (300MHz, CDCl₃), δ 2.87-3.01(2H, m), 3.47(2H, m), 3.93-3.97(1H, m), 4.20(2H, m), 5.16(2H, s), 7.36(5H, m), 7.42-7.61(4H, m).

A solution of 2S-(4-bromophenyl)-4-benzyloxycarbonyl-piperazine (788 mg, 2.10 mmol), 2-chloro-3-methyl-6-(4-pyridyl)-pyrimidine-4-one (444 mg, 2.00 mmol) and diisopropylethylamine (0.70 mL, 4.00 mmol) in dimethylformamide (20 mL) was stirred at 80°C for 3 h. The reaction mixture was poured into water and the

whole was extracted with ethyl acetate. The organic layer was washed with brine, dried and concentrated in vacuo. Chromatographic purification of the residue provided 2-(2S-(4-bromophenyl)-4-benzyloxycarbonyl-piperazin-1-yl)}-3-methyl-6-pyridin-4-yl-3H-pyrimidin-4-one (601 mg, 54%). ¹H NMR (300MHz, CDCl₃), δ 3.05(1H, m), 3.30-3.48(3H, m), 3.64(3H, s), 4.08-4.22(2H, m), 4.68(1H, m), 5.15(1H, d, J= 12.3 Hz), 5.21(1H, d, J= 12.6 Hz), 6.63(1H, s), 7.21(2H, d, J= 8.4 Hz), 7.28-7.39(7H, m), 7.59(2H, d, J=6.3 Hz), 8.68(2H, d, J=6.3 Hz).

Potassium hydroxide (168 mg, 3.0 mmol) was added to a solution of 2-{2S-(4-bromophenyl)-4-benzyloxycarbonyl-piperazin-1-yl}-3-methyl-6-pyridin-4-y l-3H-pyrimidin-4-one in ethanol (2.0 mL). After stirring for 8 h at room temperature, purifying by preparative HPLC gave 2-(2S-(4-bromophenyl)-piperazin-1-yl)-3-methyl-6-pyridin-4-yl-3H-pyrimidin-4-one (40 mg, 26%).

Example 11: Synthesis of (S)-3-methyl-6-(4-pyridyl)-2-(3-(4-(3-(pyrrolidin-1-yl) pyrrolidin-1-yl)phenyl)piperazin-1-yl)pyrimidin-4-one (No. XA2032)

A suspension of (S)-2-(4-bromophenyl)-1,4-di(t-butoxycarbonyl) piperazine (1.33 g, 3.00 mmol), (R)-3-pyrrolidinol (520 mg, 4.20 mmol), palladium acetate (27 mg, 0.12 mmol), 2-(di-t-butylphosphino)biphenyl (72 mg, 0.24 mmol), and sodium t-butoxide (808 mg, 8.41 mmol) in tert-butanol (20 mL) was heated at 90 °C for 3.5 h. After dilution with ethyl acetate, the resulting mixture was passed through a Celite column. The filtrate was concentrated in vacuo, and the residue was purified by silica gel column chromatography eluting 10-50% ethyl acetate - hexane to afford (S)-1,4-di-(t-butoxycarbonyl)-2-(4-((R)-3-hydroxypyrrolidino) phenyl)piperazine (733 mg, 54.5%) as a yellow foam.

To a solution of (S)-1,4-di(t-butoxycarbonyl)-2-(4-((R)-3-hydroxy pyrrolidino) phenyl)piperazine (733 mg, 1.64 mmol) and triethylamine (0.34 mL, 2.46 mmol) in dichloromethane (20 mL) was added methanesulfonyl chloride (0.152 mL, 1.97 mmol) at 0 °C. After stirring for 20 min, the reaction mixture was

phenyl)piperazine (877 mg, quant.) as a brown solid.

To a solution of (S)-1,4-di(t-butoxycarbonyl)-2-(4-((R)-3-methansulfonyloxy-pyrrolidino)phenyl)piperazine (877 mg, 1.64 mmol) in toluene (10 mL) was added pyrrolidine (0.64 mL, 8.19 mmol), and the resulting solution was heated at 90 °C for 8 h. After checking consumption of the starting material with TLC, the reaction mixture was partitioned between ethyl acetate and saturated sodium bicarbonate aqueous solution. The organic layer was washed with brine, dried over anhydrous sodium sulfate, and concentrated in vacuo. The residue was purified by silica gel column chromatography eluting 30-100% ethyl acetate-hexane and then 3-10% methanol-ethyl acetate to afford (S)-1,4-di(t-butoxycarbonyl)-2-(4-((S)-3-(pyrrolidin-1-yl)pyrrolidin-1-yl) phenyl)piperazine (479 mg, 58%) as a pale yellow powder.

To a solution of (S)-1,4-di(t-butoxycarbonyl)-2-(4-((S)-3-(pyrrolidin-1-yl) pyrrolidin-1-yl)phenyl)piperazine (479 mg, 0.957 mmol) in dichloromethane (4 mL) was added 4 N hydrogen chloride in ethyl acetate (4 mL) at room temperature. After stirring for 3 h, the resulting precipitate was collected and dried in vacuo to afford (S)-2-(4-((S)-3-(pyrrolidin-1-yl)pyrrolidin-1-yl)phenyl)piperazine tetrahydrochloride (370 mg, 87%) as a white solid.

To a suspension of (S)-2-(4-((S)-3-(pyrrolidin-1-yl)pyrrolidin-1-yl)phenyl) piperazine tetrahydrochloride (98 mg, 0.22 mmol) in tetrahydrofuran (5 mL) was added triethylamine (0.20 mL, 1.40 mmol) and 2-chloro-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one (44 mg, 0.20 mmol) at room temperature. After stirring for 24 h, the reaction mixture was concentrated in vacuo. The residue was dissolved in dichloromethane and sodium bicarbonate aqueous solution, and the solution was passed through CHEM ELUT CE1010 (manufactured by VARIAN). The filtrate was

Example 12: Synthesis of (S)-3-methyl-6-(4-pyrimidinyl)-2-(3-(4-(3-(pyrrolidin-1-yl) pyrrolidin-1-yl)phenyl)piperazin-1-yl)pyrimidin-4-one (No. YA1577)

To a suspension of (S)-2-(4-((S)-3-(pyrrolidin-1-yl)pyrrolidin-1-yl)phenyl) piperazine tetrahydrochloride (99 mg, 0.22 mmol) in tetrahydrofuran (5 mL) was added triethylamine (0.20 mL, 1.40 mmol) and 2-chloro-3-methyl-6-(4-pyrimidinyl)-3H-pyrimidin-4-one (45 mg, 0.20 mmol) at room temperature. After stirring for 24 h, the reaction mixture was concentrated in vacuo. The residue was dissolved in dichloromethane and sodium bicarbonate aqueous solution, and the solution was passed through CHEM ELUT CE1010 (manufactured by VARIAN). The filtrate was concentrated, and the resulting crystals were washed in a mixture of diisopropyl ether and ethanol to afford (S)-3-methyl-6-(4-pyrimidinyl)-2-(3-(4-(3-(pyrrolidin-1-yl)pyrrolidin-1-yl)phenyl)piperazin-1-yl)-pyrimidin-4-one (65 mg, 66%) as a pale yellow solid.

Example 13: Synthesis of (S)-2-(3-(4-(N-cyclohexyl-N-methylamino)phenyl) piperazin- 1-yl)-3-methyl-6-(4-pyridyl)pyrimidin-4-one (No. XA1999)

A suspension of (S)-2-(4-bromophenyl)-1,4-di(t-butoxycarbonyl) piperazine (1.21 g, 2.75 mmol), N-methylcyclohexylamine (0.43 mL, 3.30 mmol), palladium acetate(25 mg, 0.11 mmol), 2-(di-t-butylphosphino)biphenyl (66 mg, 0.22 mmol), and sodium t-butoxide (370 mg, 3.85 mmol) in t-butanol (15 mL) was heated at 80 °C for 8 h. The resulting solution was partitioned between ethyl acetate and water. The organic layer was washed with brine, dried over anhydrous sodium sulfate, and concentrated in vacuo. The residue was purified by silica gel column

chromatography eluting 10-15% ethyl acetate-hexane to afford (S)-1,4-di(t-butoxycarbonyl)-2-(4-(N-cyclohexyl-N-methylamino)phenyl)piperazine (917 mg) as white crystals.

To a solution of (S)-1,4-di(t-butoxycarbonyl)-2-(4-(N-cyclohexyl-N-methylamino)phenyl)piperazine in dichloromethane (4 mL) was added 4 N hydrogen chloride in ethyl acetate(4 mL). After stirring for 40 min, the white precipitate was collected, which included impurities. The mixture was purified by a reverse phase chromatography eluting 0.05% TFA in water-acetonitrile to afford (S)-2-(4-(N-cyclohexyl-N-methylamino)phenyl)piperazine (59 mg 8% in 2 steps) as a clear oil.

To a solution of (S)-2-(4-(N-cyclohexyl-N-methylamino)phenyl) piperazine(50 mg, 0.183 mmol) and triethylamine (0.077 mL, 0.55 mmol) was added 2-chloro-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one (37 mg, 0.17 mmol) at room temperature. After stirring for 4.5 h, the reaction mixture was concentrated in vacuo. The residue was partitioned between dichloromethane and saturated sodium bicarbonate aqueous solution. The organic layer was dried over anhydrous sodium sulfate and concentrated. The residue was purified by a reverse phase chromatography eluting 0.05% TFA in water-acetonitrile to afford (S)-2-(3-(4-(N-cyclohexyl-N-methylamino)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyr idyl)pyrimidin-4-one (67 mg, 88%) as a oil, which was dissolved in ethyl acetate and treated with 4 N hydrogen chloride in ethyl acetate to yield its trihydrochloride.

Example 14: Synthesis of (S)-2-(3-(4-(N,N-dimethylamino)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)pyrimidin-4-one trihydrochloride (No. XA2017)

A suspension of (S)-2-(4-bromophenyl)-1,4-di(t-butoxycarbonyl) piperazine (1.14 g, 2.59 mmol), N,N-dimethylamine hydrochloride (422 mg, 5.17 mmol), palladium acetate (23 mg, 0.10 mmol), 2-(di-t-butylphosphino)biphenyl(62 mg, 0.21 mmol), and sodium t-butoxide (845 mg, 8.80 mmol) in t-butanol (15 mL)

was heated at 90 °C for 3 h. After dilution with ethyl acetate, the resulting solution was passed through a Celite column. The filtrate was concentrated, and the residue was purified by silica gel column chromatography eluting 10-20% ethyl acetate-hexane to afford (S)-1,4-di(t-butoxycarbonyl)-2-(4-(N,N-dimethylamino) phenyl)piperazine (556 mg, 53%) as white crystals.

To a solution of (S)-1,4-di(t-butoxycarbonyl)-2-(4-(N,N-dimethylamino) phenyl)piperazine (556 mg, 1.37 mmol) in dichloromethane (4 mL) was added 4 N hydrogen chloride in ethyl acetate (4 mL). After stirring for 8.5 h, the white precipitate was collected and dried in vacuo to afford (S)-2-(4-(N,N-dimethylamino) phenyl)piperazine trihydrochloride (413 mg, 96%) as white crystals.

To a suspension of (S)-2-(4-(N,N-dimethylamino)phenyl)piperazine trihydrochloride(115 mg, 0.365 mmol) in tetrahydrofuran (5 mL) was added triethylamine (0.28 mL, 2.0 mmol) and then 2-chloro-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one (74 mg, 0.33 mmol) at room temperature. After stirring for 10 h, the resulting mixture was concentrated in vacuo. The residue was dissolved in dichloromethane and saturated sodium bicarbonate aqueous solution, and the solution was passed through CHEM ELUT CE1010 (manufactured by VARIAN). The filtrate was concentrated in vacuo to yield crystals, which were washed with diisopropyl ether. After the crystals were dissolved in ethyl acetate, the solution was treated with 4 N hydrogen chloride in ethyl acetate. White precipitate was collected and dried in vacuo to afford (S)-2-(3-(4-(N,N-dimethylamino)phenyl) piperazin-1-yl)-3-methyl-6-(4-pyridyl)pyrimidin-4-one trihydrochloride (135 mg, 81%).

Example 15: Synthesis of (S)-2-(3-(4-methoxybiphen-4-yl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)pyrimidin-4-one (No. XA1991)

A mixture of (S)-2-(4-bromophenyl)-1,4-di(t-butoxycarbonyl)piperazine (1.82 g, 4.11 mmol), 4-methoxyphenylboronic acid (937 mg, 6.17 mmol), sodium

carbonate (2.18 g, 20.6 mmol), and tetrakis(triphenylphosphine)palladium(0) (238 mg, 0.206 mmol) was dissolved in dimethoxyethane (20 mL) and water (20 mL), and the resulting solution was refluxed for 3 h. After cooling to room temperature, the mixture was partitioned between ethyl acetate and water. The organic layer was washed with brine, dried over anhydrous sodium sulfate, and concentrated in vacuo. The resulting solid was washed with ethyl acetate to afford (S)-1,4-di(t-butoxycarbonyl)-2-(4'-methoxybiphen-4-yl) piperazine (1.46 g, 75.9%) as a white solid.

To a solution of (S)-1,4-di(t-butoxycarbonyl)-2-(4'-methoxybiphen-4-yl)-piperazine (1.46 g, 3.12 mmol) in dichloromethane (8 mL) was added 4 N hydrogen chloride in ethyl acetate (8 mL) at room temperature. After stirring for 1 h, the precipitate was collected and dried in vacuo to afford (S)-2-(4'-methoxybiphen-4-yl) piperazine dihydrochloride (1.00 g, 94%) as white solid.

To a suspension of (S)-2-(4'-methoxybiphen-4-yl)-piperazine dihydrochloride (237 mg, 0.694 mmol) in tetrahydrofuran (5 mL) was added triethylamine (0.40 mL, 2.9 mmol) and then 2-chloro-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one (128 mg, 0.579 mmol) at room temperature. After stirring for 28 h, the resulting mixture was concentrated in vacuo. The residue was partitioned between dichloromethane and saturated sodium bicarbonate aqueous solution, and the organic layer was dried over anhydrous sodium sulfate and then concentrated in vacuo. The resulting solid was washed with hot ethanol to afford (S)-2-(3-(4-methoxybiphen-4-yl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)pyrimidin-4-one (252 mg, 96%), which was treated with 4 N hydrogen chloride in ethyl acetate to yield its dihydrochloride salt (252 mg) as pale yellow crystals.

Example 16: Synthesis of (S)-2-(3-benzylpiperazin-1-yl)-3-methyl-6-(4-pyridyl) pyrimidin-4-one (No. XA2004)

To a solution of L-phenylalanine ethyl ester hydrochloride (3.875 g, 16.87

mmol), Boc-glycine (2.815 g, 16.07 mmol) in dichloromethane (100 mL) was added triethylamine (2.35 mL, 16.87 mmol) and then 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (3.23 g, 16.87 mmol) at room temperature. After the resulting mixture was stirred for 2.5 h, it was partitioned between ethyl acetate and water. The organic layer was washed with 1 N hydrochloric acid, brine, and then saturated sodium bicarbonate aqueous solution, dried over anhydrous sodium sulfate, and concentrated in vacuo to afford Boc-glyclylphenylalanine ethyl ester (5.96 g).

To a solution of Boc-glycylphenylalanine ethyl ester (5.96 g) in dichloromethane (20 ml) was added trifluoroacetic acid (20 mL) at room temperature. After stirring 1.5 h, the resulting solution was concentrated in vacuo. The residue was dissolved in water, into which sodium bicarbonate was added until the pH was 9. After the solution was stirred for several hours, the resulting white crystals were collected and dried in vacuo to afford (S)-3-benzyl-2,5-dioxopiperazine (2.29 g, 70% in 2 steps) as a white powder.

To a suspension of (S)-3-benzyl-2,5-dioxopiperazine (2.284 g, 11.18 mmol) in tetrahydrofuran (20 mL) was added borane-tetrahydrofuran complex (49 mL, 1.0 M solution in THF, 49 mmol) at room temperature. The resulting mixture was refluxed for several hours before it was quenched with methanol at 0 °C. After concentration in vacuo, the residue was treated with 10% sodium hydroxide aqueous solution, which was extracted with dichloromethane thoroughly. The organic layer was washed with water, dried over anhydrous sodium sulfate, and concentrated in vacuo to afford white crystals, which were washed with ether to yield (S)-2-benzylpiperazine (795 mg, 40.3%).

To a solution of (S)-2-benzylpiperazine (48 mg, 0.27 mmol) in tetrahydrofuran (5 mL) was added triethylamine (0.10 mL, 0.74 mmol) and then 2-chloro-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one (55 mg, 0.248 mmol) at room temperature. After refluxing for 24 h, the resulting mixture was concentrated in

vacuo. The residue was partitioned between dichloromethane and saturated sodium bicarbonate aqueous solution, and the organic layer was dried over anhydrous sodium sulfate and then concentrated in vacuo. The residue was purified by a reverse phase chromatography eluting 0.05% TFA in water-acetonitrile to afford (S)-2-(3-benzylpiperazin-1-yl)-3-methyl-6-(4-pyridyl) pyrimidin-4-one (73 mg 81%), which was treated with 4 N hydrogen chloride in

Example 17: Synthesis of (S)-3-methyl-2-(3-(4-(1,2,4-oxadiazol-3-yl)phenyl) piperazin-1-yl)-6-(4-pyridyl)pyrimidin-4-one (No. XA2039)

ethyl acetate to yield its dihydrochloride salt as a yellow powder.

To a solution of 4-cyanoacetophenone (11.32 g, 77.98 mmol) in dichloromethane (200 mL) was added bromine (4.00 mL, 78.0 mmol) dropwise at room temperature. After stirring several minutes, the reaction mixture was washed with water, dried over anhydrous sodium sulfate, and concentrated in vacuo to afford 4-cyanophenacyl bromide (17.73 g) as a white solid.

A solution of 4-cyanophenacyl bromide (11.20 g, 49.99 mmol) in dimethylsulfoxide (83 mL) was treated with water (0.90 mL, 49.99 mmol). After stirring for 24 h at room temperature, it was poured into ice-water, and extracted with ether. The organic layer was washed with water and then brine, dried over anhydrous sodium sulfate, and concentrated in vacuo. The residue was purified by a silica gel column chromatography eluting 20-50% ethyl acetate in hexane to afford 4-cyanophenylglyoxal (5.10 g, 64.1%) as a yellow solid.

To a solution of 4-cyanophenylglyoxal (2.21 g, 12.5 mmol) in methanol (30 mL) and tetrahydrofuran (10 mL) was added ethylenediamine (1.00 mL, 14.96 mmol) at room temperature. After the mixture was stirred at room temperature for 1 h, sodium borohydride (943 mg, 24.92 mmol) was added at 0 °C. The solution was warmed up to room temperature and stirred for another 2 h before it was quenched with 1 N hydrochloric acid. After concentration in vacuo, the mixture was

PCT/JP2004/004320

partitioned between ether and water. The aqueous layer was alkalized with sodium hydroxide, and extracted with dichloromethane. The extract was dried over anhydrous sodium sulfate, and then concentrated in vacuo to afford reddish oil (1.69 g). The oil was dissolved in dichloromethane (30 mL), into which triethylamine (3.82 mL, 27.41 mmol) and di-tert-butyl dicarbonate (5.98 g, 27.41 mmol) at room temperature. The reaction mixture was stirred for several hours before it was partitioned between ethyl acetate and water. The organic layer was dried over anhydrous sodium sulfate, and then concentrated in vacuo. The residue was purified by a silica gel column chromatography eluting 5-20% ethyl acetate in hexane to afford 1,4-di(t-butoxycarbonyl)-2-(4-cyanophenyl)piperazine (2.46 g, 50.9%) as white crystals.

A solution of 1,4-di(t-butoxycarbonyl)-2-(4-cyanophenyl)piperazine (558 mg, 1.44 mmol), hydroxylamine hydrochloride (300 mg, 4.23 mmol), and sodium carbonate (763 mg, 7.20 mmol) in ethanol (3 mL) and water (3 mL) was heated at 80 °C for 2.5 h before it was partitioned between dichloromethane and water. The aqueous layer was extracted with dichloromethane. The combined organic layer was dried over sodium sulfate, and concentrated in vacuo to afford white foam (680 mg), which was dissolved in toluene (5 mL) and treated with triethyl orthoformate (2.4 mL, 14.4 mmol) and p-toluenesulfonic acid (27 mg, 0.14 mmol). The solution was heated at 90 °C for 1 h before it was partitioned between dichloromethane and saturated sodium bicarbonate aqueous solution. The organic layer was dried over anhydrous sodium sulfate, and concentrated in vacuo. The resulting white crystals were washed with ethyl acetate, and dried in vacuo to afford 1,4-di(t-butoxycarbonyl)-2-(4-(1,2,4-oxadiazol-3-yl)phenyl)piperazine (464 mg, 75% in 2 steps).

To a solution of 1,4-di(t-butoxycarbonyl)-2-(4-(1,2,4-oxadiazol-3-yl) phenyl)piperazine (464 mg, 1.08 mmol) in dichloromethane (2 mL) was added 4 N hydrogen chloride in ethyl acetate (3 mL) at room temperature. After stirring for

1.5 h, the precipitate was collected and dried in vacuo to afford 2-(4-(1,2,4-oxadiazol-3-yl)phenyl)piperazine dihydrochloride (321 mg, 98%) as a white powder.

To a suspension of 2-(4-(1,2,4-oxadiazol-3-yl)phenyl)piperazine dihydrochloride (102 mg, 0.34 mmol) in tetrahydrofuran (6 mL) was added triethylamine (0.23 mL, 1.65 mmol) and then 2-chloro-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one (73 mg, 0.33 mmol) at room temperature. After stirring for 24 h, the resulting mixture was concentrated in vacuo. The residue was dissolved in dichloromethane and saturated sodium bicarbonate aqueous solution, and the solution was passed through CHEM ELUT CE1010 (manufactured by VARIAN). The filtrate was concentrated in vacuo to yield crystals, which were washed with diisopropyl ether and ethanol to afford (S)-2-(3-(4-(1,2,4-oxadiazol-3-yl)phenyl) piperazin-1-yl)-3-methyl-6-(4-pyridyl)pyrimidin-4-one (102 mg 74%) as a white powder.

Example 18: Synthesis of 2-[4-(2-Methoxyphenylamino)-piperidin-1-yl]-3-methyl-6-(pyridin-4-yl)-3H-pyrimidin-4-one (No. XB276)

To a solution of anisidine (3.1g, 25.2 mmol) and
4-oxo-piperidine-1-carboxylic acid tert-butyl ester (5.0 g, 25.1 mmol) in methanol
(100 mL) was added sodium triacetoxyborohydride (13.4 g, 63.2 mmol) at room
temperature. After stirring for 6 h, the resulting suspension was partitioned
between ethyl acetate and 1N sodium hydroxide. The aqueous layer was extracted
with ethyl acetate. The combined organic layer was washed with brine, dried over
magnesium sulfate, and concentrated in vacuo. The residue was purified by silica
gel chromatography eluting 10-20 % ethyl acetate in hexane to furnish
4-(2-methoxyphenylamino)-piperidine-1-carboxylic acid tert-butyl ester (2.7g,
8.8mmol, 35%) as a pale yellow oil.

To a solution of 4-(2-methoxyphenylamino)-piperidine-1-carboxylic acid tert-butyl ester (2.7g, 8.8mmol) in methanol (30 mL) was added 4N hydrochloric

acid in ethyl acetate (20 mL) at room temperature. After stirring for 1h, the resulting suspension was concentrated in vacuo. The residue was partitioned between chloroform and 1N sodium hydroxide. The aqueous layer was extracted with chloroform. The combined organic layer was washed with brine, dried over magnesium sulfate, and concentrated in vacuo. The residue was purified by silica gel chromatography eluting 10-20% methanol in chloroform to furnish 4-(2-methozyphenylamino)-piperidine (1.8 g, 8.7 mmol, 99%) as white crystals.

To a solution of 4-(2-methoxyphenylamino)-piperidine (0.8 g, 3.87 mmol) and triethylamine (1.3 g, 12.8 mmol) in tetrahydrofuran (20 mL) was added 2-chloro-3-methyl-6-(pyridin-4-yl)-3H-pyrimidin-4-one (0.8 g, 3.61 mmol) portionwise. After stirring for 12 h, the resulting suspension was partitioned between chloroform and 1N sodium hydroxide. The aqueous layer was extracted with chloroform. The combined organic layer was washed with brine, dried over magnesium sulfate, and concentrated in vacuo. The residue was purified by silica gel chromatography eluting 5-10% methanol in chloroform to furnish 2-(4-(2-methoxyphenylamino)-piperidin-1-yl)-3-methyl-6-(pyridin-4-yl)-3H-pyrimidin-4-one (1.2 g, 3.07 mmol, 85%) as white crystals.

Example 19: Synthesis of 3-Methyl-2-(3-(4-(4-methylpiperazin-1-yl)-phenyl)-piperidin-1-yl)-6-(pyridin-4-yl)-3H-pyrimidin-4-one (No. XB278)

A solution of (4-bromo-phenyl)-acetic acid ethyl ester (2.31 g, 9.50 mmol) in dimethylsulfoxide (6 mL) was added to the suspension of sodium hydride (407 mg, 60% in oil, 10.17 mmol) and stirred 3 min. A solution of (3-bromo-propyl)-carbamic acid tert-butyl ester (2.03 g, 8.52 mmol) in dimethylsulfoxide (6 mL) was added to the solution and stirred at 50 °C for 30 min. The resulting solution was partitioned between ethyl acetate and saturated aqueous ammonium chloride. The aqueous layer was extracted with ethyl acetate. The combined organic layer was washed with water and brine, dried by passing through Celite column, and concentrated in

vacuo. The residue was purified by silica gel chromatography eluting ethyl acetate / hexane (4/1 to 3/1, v/v) to afford 3-(4-Bromo-phenyl)-6-tert-butoxycarbonylamino-hexanoic acid ethyl ester (2.43 g, 74%).

To a solution of 3-(4-Bromo-phenyl)-6-tert-butozycarbonylamino-hexanoic acid ethyl ester (2.43 g, 6.32 mmol) in ethyl acetate (3 mL) was added 4 N hydrogen chloride in ethyl acetate (6 mL) at room temperature. Removal of the solvent in vacuo after stirring for 30 min afforded 6-Amino-3-(4-bromo-phenyl)-hexanoic acid ethyl ester hydrochloride that was used in the next step without further purification.

A solution of 6-amino-3-(4-bromo-phenyl)-hexanoic acid ethyl ester hydrochloride, potassium carbonate (1039 mg, 7.52 mmol) in ethanol (50 ml) was refluxed for 20 hr. Solvent was removed in vacuo after addition of dilute hydrochloric acid and water was added to the residue. Filtration, wash with water and dryness afforded 3-(4-Bromo-phenyl)-piperidin-2-one (1387 mg, 86%, 2 steps).

To an ice-cooled solution of 3-(4-bromo-phenyl)-piperidin-2-one (37.97 g, 149 mmol) in tetrahydrofuran (250 ml) was added borane-tetrahydrofuran complex (335 ml, 1.0 M solution in THF, 335 mmol). The solution was stirred overnight at room temperature, and then refluxed 1.5 hr after addition of 10% aqueous hydrochloric acid. Solvents was removed in vacuo, and the residue was partitioned between dichloromethane and 1N sodium hydroxide. The aqueous layer was extracted with dichlorometane. The combined organic layer was washed with water and brine, dried over sodium sulfate, and concentrated in vacuo. The residue was dissolved in water (100 mL) and concentrated hydrochloric acid (100 mL) and refluxed for 3 hr. Sodium hydroxide was added to the solution and the resulting solution was extracted with dichlorometane. The organic layer was washed with water and brine, dried over sodium sulfate Concentration in vacuo afforded 3-(4-bromo-phenyl)-piperidine (32 18 g, 90%).

To a suspension of 3-(4-bromophenyl)-piperidine (25.2 g, 105 mmol), and

triethylamine (13 g, 128 mmol) in tetrahydrofuran (250 mL) was added di-tert-butyl-dicarbonate (25.2 g, 105 mmol) at room temperature. After stirring for 1 h, the resulting suspension was partitioned between ethyl acetate and 1N sodium hydroxide. The aqueous layer was extracted with ethyl acetate. The combined organic layer was washed with brine, dried over magnesium sulfate, and concentrated in vacuo. The residue was washed by hexane to furnish 3-(4-bromophenyl)- piperidine-1-carboxylic acid tert-butyl ester (35.7 g, 105 mmol, 100%) as white crystals.

To a suspension of 3-(4-bromophenyl)-piperidine-1-carboxylic acid tert-butyl ester (3.0 g, 8.8 mmol), palladium acetate (80 mg, 0.36 mmol), 2-(di-t-butyl phosphino)biphenyl (210 mg, 0.70 mmol), and sodium t-butoxide (1.2 g, 125 mmol) in toluene (30 mL) was added N-methylpiperazine (1.3 g, 13.0 mmol) at room temperature. After heating at 90 °C for 5 h, the resulting suspension was passed through a Celite column. The filtrate was concentrated under reduced pressure, and the residue was purified by silica gel chromatography eluting 5-25% of ethyl acetate in hexane to afford 3-(4-(4-methylpiperazin-1-yl)-phenyl)-piperidine-1-carboxylic acid tert-butyl ester (2.0 g, 5.56 mmol, 63%) as white crystals.

To a solution of 3-(4-(4-methylpiperazin-1-yl)-phenyl)-piperidine1-carboxylic acid tert-butyl ester (2.0 g, 5.56 mmol) in methanol (20 mL) was added
4N hydrochloric acid in ethyl acetate (20 mL) at room temperature. After stirring
for 1h, the resulting suspension was concentrated in vacuo. The residue was washed
with ethyl acetate to furnish 3-(4-(4-methylpiperazin-1-yl)-phenyl)-piperidine
trihydrochloride (1.84 g, 4.99 mmol, 90%) as white crystals.

To a solution of 3-(4-(4-methylpiperazin-1-yl)-phenyl)-piperidine trihydrochloride salt (0.4 g, 1.08 mmol) and triethylamine (0.6 g, 5.93 mmol) in tetrahydrofuran (10 mL) was added 2-chloro-3-methyl-6-(pyridin-4-yl)-3H-pyrimidin-4-one (0.22 g, 0.99 mmol) portionwise. After stirring for 12 h, the

resulting suspension was partitioned between chloroform and 1N sodium hydroxide. The aqueous layer was extracted with chloroform. The combined organic layer was washed with brine, dried over magnesium sulfate, and concentrated in vacuo. The residue was purified by silica gel chromatography eluting 5-10% methanol in chloroform to furnish 3-methyl-2-(3-(4-(4-methylpiperazin-1-yl)-phenyl)-piperidin-1-yl)-6-(piridin-4-yl)-3H-pyrimidin-4-one (0.31 g, 0.70 mmol, 71%) as white crystals.

Example 20: Synthesis of 2-(3-(4-cyclohexylaminophenyl)-piperidin-1-yl)-3-methyl-6-(pyridin-4-yl)-3H-pyrimidin-4-one (No. XB301)

To a suspension of 3-(4-bromophenyl)-piperidine-1-carboxylic acid tert-butyl ester (8.0 g, 23.5 mmol), palladium acetate (210 mg, 0.94 mmol), 2-(di-t-butyl phosphino)biphenyl (560 mg, 1.88 mmol), and sodium t-butoxide (3.2 g, 33.3 mmol) in toluene (80 mL) was added cyclohexylamine (2.8 g, 28.2 mmol) at room temperature. After heating at 90 °C for 5 h, the resulting suspension was passed through a Celite column. The filtrate was concentrated under reduced pressure, and the residue was purified by silica gel chromatography eluting 5-25% of ethyl acetate in hexane to afford 3-(4-cyclohexylaminophenyl)-piperidine-1-carboxylic acid tert-butyl ester (6.74 g, 18.8 mmol, 80%) as white crystals.

To a solution of 3-(4-cyclohexylaminophenyl)-piperidine-1-carboxylic acid tert-butyl ester (6.74 g, 18.8 mmol) in methanol (50 mL) was added 4N hydrochloric acid in ethyl acetate (40 mL) at room temperature. After stirring for 1 h, the resulting suspension was concentrated *in vacuo*. The residue was washed with ethyl acetate to furnish 3-(4-cyclohexylaminophenyl)-piperidine dihydrochloride (5.84 g, 17.6 mmol, 94%) as white crystals.

To a solution of 3-(4-cyclohexylaminophenyl)-piperidine dihydrochloride salt (1.0 g, 3.02 mmol) and triethylamine (1.5 g, 14.8 mmol) in tetrahydrofuran (20

mL) was added 2-chloro-3-methyl-6-(pyridin-4-yl)-3H-pyrimidin-4-one (0.64 g, 2.89 mmol) portionwise. After stirring for 12 h, the resulting suspension was partitioned between chloroform and 1N sodium hydroxide. The aqueous layer was extracted with chloroform. The combined organic layer was washed with brine, dried over magnesium sulfate, and concentrated in vacuo. The residue was purified by silica gel chromatography eluting 5-10% methanol in chloroform to furnish 2-(3-(4-cyclohexylaminophenyl)-piperidin-1-yl)-3-methyl-6-(pyridin-4-yl)-3H-pyrimidin-4-one (1.23 g, 2.77 mmol, 96%) as white crystals.

Example 21: Synthesis of 2-(4-(4-Bromo-phenyl)-piperidin-1-yl)-3-methyl-6-pyridin-4-yl-3H-pyrimidin-4-one (No. XB267)

Mixture of 4-bromobenzaldehyde (22.40 g, 121.1 mmol), dimethyl malonate(19.37 g, 146.6 mmol), cat. acetic acid and cat. piperidine in toluene (100 ml) were refluxed for 6 h with azeotropically removal of water. Resulting solution was partitioned between ethyl acetate and water. The aqueous layer was extracted with ethyl acetate. The combined organic layer was washed with water, saturated aqueous sodium bicarbonate and brine, dried over sodium sulfate. Concentration of the organic solvent in vacuo afforded 2-(4-bromo-benzylidene)-malonic acid diethyl ester as an oil that was used in the next step without further purification.

To an ice-cooled solution of dimethyl malonate (19.35 g, 146.5 mmol) and sodium methoxide (30. 12g in 28% methanol solution, 156.1 mmol) in methanol (300 ml) was added 2-(4-bromo-benzylidene)-malonic acid diethyl ester in methanol (50 ml). After stirring for 3 h, the solvent was removed in vacuo and the residue was partitioned between ethyl acetate and dilute hydrochloric acid. The aqueous layer was extracted with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate. Concentration of the organic solvent in vacuo afforded 3-(4-bromo-phenyl)-2,4-bis-ethoxycarbonyl-pentanedioic acid diethyl ester as an oil that was used in the next step without further purification.

A solution of 3-(4-bromo-phenyl)-2,4-bis-ethoxycarbonyl-pentanedioic acid diethyl ester in concentrated hydrochloric acid (100 ml) and acetic acid (100 ml) was refluxed for 8 h. Removal of the solvent in vacuo and recrystallization of the residue from acetonitrile yielded 3-(4-bromo-phenyl)-pentanedioic acid (22.84 g in 1st crop, 65%, 3.84 g in 2nd crop, 11.05% from 4-bromobenzaldehyde).

A solution 3-(4-bromo-phenyl)-pentanedioic acid (26.68 g, 92.9 mmol) in acetic anhydride (100 ml) was refluxed for 1.5 hr. Removal of the solvent in vacuo, and remaining solvent were azeotropically removed using toluene.

Teterahydrofuran (200 ml) and aqueous ammonia (28%, 50 ml) was added to the residue and stirred overnight. After removal of the solvent in vacuo, acetic anhydride (100 ml) was added and refluxed for 4 hr. After removal of the solvent in vacuo and succeeding azeotropic distillation with toluene, residue was partitioned between ethyl ether and water. Filtration of the suspension and dryness afforded the 4-(4-bromo-phenyl)-piperidine-2,6-dione (12.53 g, 50%) as a solid.

To an ice-cooled solution of lithium tetrahydroborate (4.13 g, 189.6 mmol) in tetrahydrofuran (200 ml) was added chlorotrimethylsilane (41.52 g, 382.2 mmol). After stirring 5 min, a solution of 4-(4-bromo-phenyl)-piperidine-2,6-dione (12.53 g, 46.7 mmol) was added and stirred overnight. The resulting solution was concentrated in vacuo after addition of 10% aqueous hydrochloric acid. The residue was dissolved in aqueous sodium hydroxide solution and methanol, and a solution of di-tert-butyl dicarbonate (11.45 g, 52.5 mmol) in methanol (10 ml) was added and stirred for 6 h. After removal of the solvent in vacuo, concentrated hydrochloric acid wad added and stirred overnight. After extraction of the solution by diethyl ether, sodium hydroxide was added to the aqueous layer to turn basic, and extracted with dichloromethane. The organic layer was washed with brine, dried over sodium sulfate. The residue of the diethyl ether and dichloromethane after removal of the solvents under reduced pressure was mixed and dissolved in tetrahydrofuran (200 ml). A solution of di-tert-butyl dicarbonate (7.45 g, 34.1 mmol) in tetrahydrofuran

PCT/JP2004/004320

(10 ml) and triethylamine were added and stirred overnight. The resulting solution was concentrated in vacuo. Purification of the residue by silica gel chromatography eluting hexane / ethyl acetate (5/1, v/v) furnished

4-(4-bromo-phenyl)-piperidine-1-carboxylic acid tert-butyl ester (14.4g, 91%) as a solid.

To a solution of furnished 4-(4-bromophenyl)-piperidine-1-carboxylic acid tert-butyl ester (1114 mg, 3.27 mmol) in ethyl acetate (1 mL) was added 4 N hydrogen chloride in ethyl acetate (2 mL) at room temperature. After stirring for 5 h, solvent was removed in vacuo, and the resulting solid was washed with ethyl acetate and dried in vacuo to afford (4-(4-bromophenyl)-piperidine hydrochloride (884 mg, 98%) as a white solid.

A solution of (4-(4-bromophenyl)-piperidine hydrochloride (279 mg, 1.01 mmol) and triethylamine (554 mg, 5.47 mmol), 2-chloro-3-methyl-6- (pyridin-4-yl)-3H-pyrimidin-4-one (206 mg, 0.929 mmol) in tetrahydrofuran (20 mL) was stirred for 3 hr. The resulting solution was diluted with tetrahydrofuran and filtrated. After removal of the solvents under reduced pressure and the purification of the resulting residue by CHEM ELUT CE1010 (manufactured by VARIAN) eluting dichloromethane / ethanol (15/1, v/v) and wash with ethyl acetate afforded 2-(4-(4-Bromophenyl)-piperidin-1-yl)-3-methyl-6-pyridin-4-yl-3H-pyrimidin-4-one (368 mg, 93%) as a solid.

Example 22: Synthesis of 3-Methyl-6-pyridin-4-yl-2-[4-(4-pyrrolidin-1-yl-phenyl)-piperidin-1-yl]-3H-pyrimidin-4-one (No. XB269)

A suspension of 4-(4-Bromophenyl)-piperidine-1-carboxylic acid tert-butyl ester (1.97 g, 5.79 mmol), palladium acetate (54 mg, 0.24 mmol), 2-(di-t-butylphosphino)biphenyl (154 mg, 0.52 mmol), and sodium t-butoxide (846 mg, 8.80 mmol), pyrrolidine (587 mg, 8.25 mmol) in toluene (80 mL) was heated at 90 °C for 3 h under nitrogen atmosphere. The resulting suspension was passed through a

Celite column and partitioned between ethyl acetate and water. The aqueous layer was extracted with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, and concentrated in vacuo. Purification of the residue by HPLC afforded 4-(4-pyrrolidin-1-yl-phenyl)-piperidine-1-carboxylic acid tert-butyl ester as a solid that was used in the next step without further purification.

To a solution of furnished 4-(4-Pyrrolidin-1-yl-phenyl)-piperidine-1-carboxylic acid tert-butyl ester in ethyl acetate (5 mL) was added 4 N hydrogen chloride in ethyl acetate (10 mL) at room temperature. After stirring for 3 h, solvent was removed in vacuo, and the resulting solid was purified by HPLC. Sodium hydroxide was added to the resulting fractions and the aqueous layer was extracted by dichloromethane. Organic layer was washed with brine, and passed through Cerite. Removal of the solvent under reduced pressure afforded 4-(4-pyrrolidin-1-yl-phenyl)-piperidine (1.01 g, 76%).

A solution of 4-(4-pyrrolidin-1-yl-phenyl)-piperidine (215 mg, 0.933 mmol) and triethylamine (391 mg, 3.86 mmol), 2-chloro-3-methyl-6-(pyridin-4-yl)-3H-pyrimidin-4-one (187 mg, 0.844 mmol) in tetrahydrofuran (10 mL) was refluxed for 5 hr. The resulting solution was diluted with tetrahydrofuran and filtrated. After removal of the solvents under reduced pressure and the purification of the resulting residue by CHEM ELUT CE1010 (manufactured by VARIAN) eluting dichloromethane / ethanol (15/1, v/v) and wash with ethyl acetate afforded 3-methyl-6-pyridin-4-yl-2-(4-(4-pyrrolidin-1-yl-phenyl)-piperidin-1-yl)-3H-pyrimidin-4-one (284 mg, 81%) as a solid.

Example 23: Synthesis of 2-(4-(6-Fluorobenzo[b]thiophen-3-yl)piperidin-1-yl)-1-methyl-1H-[4,4']bipyrimidinyl-6-one (No. YB253)

The key intermediate 4-(6-fluorobenzo[b]thiophen-3-yl)piperidine hydrochloride of 2-[4-(6-fluorobenzo[b]thiophen-3-yl)piperidin-1-yl]-1-methyl- 1H-

[4,4]bipyrimidinyl-6-one was synthesized from 1-acetylpipridine-4-carboxylic acid which was prepared according to the method reported by Watanabe (J. Heterocyclic Chem., 30, 445 (1993)).

To a solution of 1-benzoylpiperidine-4-carbozylic acid (66 g, 285 mmol) in dichloromethane (160 mL) was added thionyl chloride (26 mL, 388 mmol). After stirring at 60°C for 1 h, the mixture was added portionwise to a stirred suspension of 2,4-difluorobenzene (45 g, 397 mmol) and anhydrous aluminum chloride (88 g, 666 mmol) in dichloromethane (245 mL), and the reaction mixture was refluxed for 5 h. The reaction mixture was poured into a mixture of ice and concentrated hydrochloric acid and extracted with chloroform. The organic layer was dried over sodium sulfate and the solvent was evaporated under reduced pressure.

Recrystallization from hexane gave 1-benzoyl-4-(2,4 -difluorobenzoyl)piperidine (46 g, 50%) as colorless crystals.

A solution of 1-benzoyl-4-(2,4-difluorobenzoyl)piperidine (40 g, 120 mmol), methyl thioglycolate (12 mL, 130 mmol) in dimethylformamide (500 mL) was stirred at room temperatute for 12h. The solvent was evaporated off in vacuo and the residue treated with water and ethyl acetate. The organic layer was dried over sodium sulfate and the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography eluting hexane/ethyl acetate to give 3-(1-benzoylpiperidin-4-yl)-6-fluorobenzo[b]thiophene-2 -carboxylic acid (11.8 g, 26%) as an oil.

3-(1-Benzoylpiperidin-4-yl)-6-fluorobenzo[b]thiophene-2-carboxylic acid (10 g, 26 mmol) was suspended in quinoline (100 mL) and cupper powder (0.5g) was added. After stirring at 200°C for 1 h, the mixture was cooled to room temperature and partitioned between ethyl acetate and water. The organic layer was dried over magnesium sulfate and evaporated. The obtained residue was purified by silica gel column chromatography eluting hexane/ ethyl acetate to give (4-(6-fluorobenzo[b]thiophen-3-yl)piperidin-1-yl)phenylmethanone (5.0 g, 48%) as yellow

A solution of (4-(6-fluorobenzo[b]thiophen-3-yl)piperidin-1-yl) phenylmethanone (6.5 g, 19 mmol) in acetic acid (100 mL) and concentrated hydrochloric acid (100 mL) was stirred at 90°C for 10 h. To a solution of reaction mixture was added ethyl acetate. The precipitated crystals were collected by filtration and washed with ethyl acetate to give 4-(6-fluorobenzo[b]thiophen-3-yl)piperidine hydrochloride (4.8 g, 89%) as yellow crystals.

To a solution of 4-(6-fluorobenzo[b]thiophen-3-yl)piperidine hydrochloride (200 mg, 0.74 mmol) and 2-chloro-1-methyl-1H[4,4']bipyrimidinyl-6-one (160 mg, 0.70 mmol) in tetrahydrofuran (10 mL) was added triethylamine (212 mg, 2.1 mmol). The mixture was stirred at 90°C for 6 h. The solvent was evaporated off in vacuo and the residue was treated with water and chloroform. The organic layer was dried over sodium sulfate and the solvent was evaporated under reduced pressure. Recrystallization from ethyl acetate gave 2-[4-(6-fluorobenzo[b]thiophen-3-yl)piperidin-1-yl]-1-methyl-1H[4,4']bipyrimidinyl-6-one (220 mg, 96%) as colorless crystals.

Example 24: Synthesis of 2-(4-(Biphenyl-2-yl)piperazin-1-yl)-1-methyl-1*H*-[4,4']bipyrimidinyl-6-one (No. YA1552)

To a solution of 1-biphenyl-2-yl-piperazine dihydrochloride (311 mg, 1.0 mmol) and 2-chloro-1-methyl-1H-[4,4']bipyrimidinyl-6-one (202 mg, 0.91 mmol) in tetrahydrofuran (20 mL) was added triethylamine (404 mg, 4.0 mmol). The mixture was stirred at 90°C for 4 h. The solvent was evaporated off in vacuo and the residue treated with water and chloroform. The organic layer was dried over sodium sulfate and the solvent was evaporated under reduced pressure. Recrystallization from ethyl acetate gave 2-[4-(biphenyl-2-yl)piperazin-1-yl]-

1-methyl-1H-[4,4']bipyrimidinyl-6-one (250 mg, 65%) as colorless crystals.

The compounds in the following table were prepared in the same manner as the methods described above. The compound numbers in the following table correspond to those shown in the above-described table of preferred compounds.

Table 5

NO	NMR	Exact-MS
XA19	2.51-2.89(4H, m), 3.31-3.34(4H, m), 3.39(3H,s), 3.56(2H, s), 6.80(1H, s), 7.25-7.31(1H, m), 7.31-7.36(4H, m), 7.98(2H, dd, J=1.5, 4.8 Hz), 8.68(2H, dd, J=1.5, 4.5 Hz)(DMSO-d6)	362
XA25	3.32-3.34(4H, m), 3.46(3H, s), 3.48-3.51(4H, m), 6.80-6.85(1H, m), 6.84(1H, s), 7.01(2H, d, J=8.0 Hz), 7.23-7.28(2H, m), 8.00(2H, dd, J=1.3, 4.6 Hz), 8.70(2H, dd, J=1.5, 4.5 Hz)(DMSO-d6)	348
XA156	3.47(3H,s), 3.51-3.60(4H, m), 3.62-3.71(4H, m), 6.85(1H, s), 7.41-7.49(1H, m), 7.56-7.61(1H, m), 8.02(2H, dd, J=1.5, 4.5 Hz), 8.09(1H, d, J=8.1 Hz), 8.16(1H, d, J=8.1 Hz), 8.70(2H, dd, J=1.5, 4.8 Hz)(DMSO-d6)	405
XA289	1.11-1.28(3H, m), 2.98-3.16(1H, m), 3.28-3.41(1H, m), 3.39(3H, s), 3.54-3.80(3H, m), 3.88-3.99(1H, m), 4.08-4.26(4H, m), 4.32-4.45(1H, m), 7.13(1H, s), 7.37-7.53(5H, m), 8.45(2H, d, J=5.8 Hz), 8.96(2H, d, J=6.0 Hz) (DMSO-d6)	434
XA361	3.44(3H,s), 3.54-3.95(6H,m), 4.64(1H,brs), 7.11(1H,s), 7.42-7.51(3H,m), 7.74(2H,d,J=6.6Hz), 8.46(2H,d,J=5.7Hz), 8.94(2H,d,J=5.7Hz), 9.98(1H,brs), 10.46(1H, brs) (DMSO-d6).	348
XA364	(DMSO-d6): 3.41-3.76(4H, m), 3.48(3H, s), 3.89-4.01(2H, m), 4.96(1H, m), 7.16(1H, s), 7.33-7.58(3H, m), 8.11(1H, dd, J=7.2, 7.2Hz), 8.52(2H, d, J=6.6Hz), 8.97(2H, d, J=6.6Hz), 10.04(1H, m), 10.66(1H, m).	366
XA365	3.43(s, 3H), 3.51-3.96(m, 6H), 4.70(m, 1H), 7.00(s, 1H), 7.25(m, 1H), 7.54(m, 2H), 7.60(m, 1H), 8.20(d, J=5.7Hz, 2H), 8.80 (d, J=5.7Hz, 2H)(CDCl3)	366
XA366	2.27-2.85(1H, m), 2.94-3.08(3H, m), 3.43(3H,s), 3.59-3.67(2H, m), 3.94-3.97(1H, m), 6.81(1H, s), 7.19(2H, t, J=8.9 Hz), 7.50-7.55(2H, m), 7.96(2H, dd, J=1.6, 4.5 Hz), 8.68(2H, dd, J=1.5, 4.6 Hz)(DMSO-d6)	366

	To 05 0 50/014	
1	3.35-3.50(2H, m), 3.46(3H, s), 3.58-3.75(2H,	
	m), 3.86-3.97(2H, m), 4.68(1H, t, J=9.3 Hz),]
XA366	7.15(1H, s), 7.35(2H, t, J=9.0 Hz),	366
(HCI)	7.82-7.87(2H, m), 8.48(2H, d, J=6.6 Hz),	300
}	8.96(2H, d, J=6.3 Hz), 9.55-10.08(1H, m),	1
	10.54-10.70(1H, m)(DMSO-d6)	
	(CDCl3):2.81(1H,dd,J=10.4,12.5Hz),	
1	3.18-3.40(3H,m), 3.50-3.80(5H,m),	
XA369	4.50(1H,dd,J=2.5,10.1Hz), 6.67(1H,s),	000
701303	7.20-7.45(3H,m), 7.74(1H,dd,J=1.9,7.6Hz),	382
I	7.81(2H,dd,J=1.4,4.6Hz),	
L	8.70(2H,dd,J=1.4,4.6Hz).	1
	(CDCl3):3.01(1H,dd,J=10.4,12.5Hz),	
i	3.10-3.30(3H,m), 3.50-3.80(5H,m),	
XA370	4.04(1H,dd,J=2.7,10.8Hz), 6.67(1H,s),	
A370	7.20-7.45(4H,m), 7.50(1H,s),	382
1 .	7.80(2H,dd,J=1.5,4.8Hz),	
1	8.71(2H,dd,J=1.5,5.1Hz).	
	3.44(3H,s), 3.44-3.71(7H,m), 3.90(2H,m),	
l	4.66(1H,brs), 7.11(1H,s),	
XA371	7.55(2H,d,J=8.4Hz), 7.78(2H,d,J=8.4Hz),	202
	8.50(2H,d,J=5.7Hz), 8.95(2H,d,J=5.7Hz),	382
İ	10.13(1H,brs), 10.60(1H,brs)(DMSO-d6)	
	10175(111,510), 10:00(111,513)(BMGG-GG)	
1	(5,400, 40, 5, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40	
XA376	(DMSO-d6):3.45(3H,s), 3.50-4.20(6H,m),	
AA3/6	4.66(1H,br s), 7.12(1H,s), 7.72(4H,s),	426
	8.44(2H,d,J=6.6Hz), 8.94(2H,d,J=6.6Hz),	
 	10.00(1H,br s), 10.05(1H,br s).	
ł	3.37-3.93(6H, m), 3.48(3H, s), 3.87(3H, s),	
	4.89-4.95(1H, m), 7.04-7.12(2H, m),	
XA391	7.17(1H, d, J=8.5 Hz), 7.45-7.51(1H, m),	378
	7.75-7.81(1H, m), 8.29-8.38(2H, m),	376
İ	8.83-8.91(2H, m), 9.66-9.77(1H, m),	
ļ <u>.</u>	9.91-10.10(1H, m)(DMSO)	
	(DMSO-d6) :3.30-3.58(5H,m),	
	3.58-3.80(2H,m), 3.81(3H,s),	
V45	3.85-4.00(2H,m), 4.58-4.75(1H,m),	•
XA392	7.03(1H,dd,J=1.8,8.1Hz), 7.11(1H, s),	378
	7.26(1H,d,J=7.8Hz), 7.35-7.50(2H,m),	
	8.41(2H,d,J=5.7Hz), 8.92(2H,d,J=6.0Hz),	
	9.80-10.00(1H,brd), 10.30-10.60(1H,brd).	
	3.40-3.43(5H,m), 3.51-3.63(2H,m),	
	3.78(3H,s), 3.93(2H,m),4.58(1H,br),	
XA393	7.02-7.06(3H,m), 7.64(2H,d,J=8.7Hz),	378
	8.34(2H,d,J=6.3Hz), 8.88(2H,d,J=8.7Hz),	
	9.76(1H,br), 10.16(1H,br)(DMSO-d6)	i
	1.30(3H, t, J=6.9 Hz), 3.38-3.54(1H, m),	
	3.49(3H, s), 3.65-3.79(1H, m), 3.84-3.98(2H,	ļ
	m), 4.02-4.18(2H, m), 4.84(1H, t, J=10.5 Hz),	
XA396	7.04-7.16(2H, m), 7.15(1H, s), 7.39-7.45(1H,	392
	m), 7.89(1H, d, J=6.6 Hz), 8.49(2H, d, J=6.3	J32
	Hz), 8.95(2H, d, J=6.6 Hz), 9.92(1H, d, J=9.3	.
	Hz), 10.51-10.64(1H, m)(DMSO-d6)	į
	,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

	(DMCO 40)-0 04(0)	
XA40	(DMSO-d6):3.64(2H,m),	
	3.94(2H,t,J=11.4Hz), 4.02-4.40(5H,m), 4.78(1H,t,J=10.4Hz), 7.06(1H,s),	
	6 7.98(2H,d,J=8.3Hz), 8.01(2H,d,J=8.3Hz),	270
	1 0.23(11,dd,J-1,2,5,1H ₂)	373
-	19.02(1H.d.J=5.1Hz) 9.31/1H 4 1-4 011.	
	(10.03(10,4,3=8.7HZ), 10.57(1H e)	
	(CDCI3).2.00(4H M)	
	3.03(1H,dd,J=10.8,12.0Hz), 3.21(3H,m),	
XA43:	1 4.23(411,111), 3.37(3H.S), 3 62(2H m)	
AA43.	J 3.80(1H,QQ,J=2.7,10.8Hz)	417
	6.57(2H,d,J=8.7Hz), 6.66(1H,s),	1
	7.29(2H,d,J=8.7Hz), 7.80(2H,d,J=4.8Hz), 8.70(2H,d,J=4.8Hz).	1
· ·	(CDCI3):3.02(1H,dd,J=10.7,12.4Hz),	
1	3.18(7H,m), 3.55(3H,s), 3.62(2H,m),	
XA439	3.87(4H,m), 3.96(1H,dd,J=2.5,11.1Hz),	
77438	6.66(1H,S), 6.93(2H,d,J=8.7Hz),	434
1	7.36(2H,d,J=8.7Hz), 7.79(2H,d,J=4.5Hz),	
	10.70(20,0,J=4.5HZ).	
ł	(CDCl3):2.36(3H,s), 2.59(4H,m),	
-	3.02(1H,t,J=11.6Hz), 3.22(7H,m),	
XA442	1 3.33(3H,s), 3.63(2H,m)	1
	3.94(1H,d,J=10.5Hz), 6.66(1H,s),	446
	6.93(2H,d,J=8.7Hz), 7.34(2H,d,J=8.7Hz),	I
 	7.80(2H,d,J=4.5Hz), 8.70(2H,d,J=4.5Hz), 3.41-3.54(3H,m), 3.40(2H,d,J=4.5Hz).	·
1	3.41-3.54(3H, m), 3.48(3H, s), 3.69-3.73(1H, m), 3.78(3H, s), 3.86-3.93(2H, m), 4.89(4H, t, t-4.25)	
1	m), 4.89(1H, t, J=10.5 Hz), 6.97-7.01(1H, m),	
XA463	7.08(1H, d, J=9.0 Hz), 7.15(1H, s), 7.66(1H, d, J=3.0 Hz), 8.54(2H, d, J=3.0 Hz), 8.54(2H, s), 7.66(1H, s), 7	Ī
	1 4, 6 6,6 1,5 1, 6,5 1,2 M, 0, J=6 3 H21 8 08/5H	408
1	1 4, 0 0.0 112), 9.93(1H, d1=9 N H2)	
1	10.60-10.73(1H, m)(DMSO-d6)	
	(DMSO-d6): 3.45(3H, s), 3.38-3.81(6H, m),	
	1 0.00(011, 5), 5,00(1H, m), 6 82/2H, A	
XA464	3-0./ 1.04(1H, s), 7.44(1H + 1=8 AU-1	400
	1 0.20(17, m), 8.30(2H, d, J=6.3Hz) 8.87/2H	408
	u, u=0.3mz), 10.0/(1H, m),	
	3.40-3.50(4H, m), 3.47(3H, s), 3.83-3.94(2H, m), 3.88(3H, s), 4.84 (4H, s), 4.84 (4H, s), 3.83-3.94(2H, <u> </u>	
	1 "'', 0.00(JII, S), 4.01-4.91(1H m)	
XA468	10.92-6.99(1H, m), 7.07-7.10/1H m)	
	7.12(1H, s), 7.79-7.91(1H, m), 8.30-8.40(2H,	396
	1 117, 0.05-8.92(2H, m), 9.70-9.79/4H m)	.
	10.02-10.23(1H, m)(DMSO) (DMSO-d6) :3.38-3.60(6H,m),	
	3.60-3.80(1H,m) 3.80-4.00(5H,m),	
XA469/	4.80-4.97(1H,m), 6.85-7.00(1H,m),	
XA409/ XA470	7.09(1H,dd,J=2.4,11.4Hz), 7.13(1H,s),	200
	/ · • • • (I I , Q Q , J ≈ 6.9, 8.7 Hz)	396
	8.46(2H,d,J=6.6Hz), 8.94(2H d l=6.3U-)	
	3.00-10.00(1H,Drd), 10.35-10 60(1H hrd)	Ī
	3.30-4.00(6H, m), 3.46(3H e) 3.04(3H e)	
	4.34"3.UZ(1H m) 6 Q6.7 n4/4Ll\	1
XA472	7.05(17, 0, J=8.6 Hz), 7.14/1H e)	200
	7.45"7.50(1H, M), 8.44-8.50/2H m)	396
1	8.52-8.64(1H, m), 8.96(2H, d, J=6.6 Hz), 10.49-10.60(1H, m)(DMSO)	1
	(USMCU)	

XA480	2.78(1H, dd, J=10.0, 12.1 Hz), 3.18-3.27(3H, m), 3.59(3H, s), 3.64-3.74(2H, m), 3.86(3H, s), 4.37(1H, dd, J=2.4, 10.1 Hz), 6.67(1H, s), 6.89(1H, d, J=2.1 Hz), 6.99(1H, dd, J=1.7, 8.0 Hz), 7.50(1H, d, J=8.2 Hz), 7.82(2H, dd, J=1.5, 4.8 Hz), 8.71(2H, dd, J=1.8, 4.5 Hz)(CDCI3)	412
XA490 (2HCI)	3.35-3.94(6H, m), 3.49(3H, s), 4.71-4.80(1H, m), 7.02-7.11(1H, m), 7.18-7.28(2H, m), 7.98-8.10(1H, m), 8.31-8.48(2H, m), 8.87-8.97(2H, m), 9.79-9.92(1H, m), 10.18-10.39(1H, m) (DMSO)	380
XA501	(CDCl3):2.77(1H,dd,J=10.2,12.0Hz), 3.15-3.35(3H,m), 3.50-3.80(5H,m), 3.84(3H,s), 4.39(1H,d,J=7.8Hz), 6.67(1H,s), 6.78(1H,d,J=8.8Hz), 7.39(1H,dd,J=2.4,8.7Hz), 7.71(1H,d,J=2.3Hz), 7.82(2H,d,J=6.0Hz), 8.71(2H,d,J=6.0Hz).	456
XA510	(CDCl3): 1.98-2.05(4H, m), 2.85(1H, dd, J=12, 10.5Hz), 3.17-3.24(7H, m), 3.58(3H, s), 3.65-3.72(2H, m), 3.85(3H, s), 4.28(1H, dd, 10.5, 2.7Hz), 6.10(1H, d, J=2.1Hz), 6.18(1H, dd, J=8.7, 2.1Hz), 6.65(1H, s), 7.33(1H, d, J=8.4Hz), 7.83(2H, dd, J=4.5, 1.8Hz), 8.70(2H, dd, J=4.5, 1.5Hz).	447
XA511	(CDCl3):1.90-2.05(4H,m), 2.93(1H,t,J=12.0Hz), 3.15-3.40(7H,m), 3.59(3H,s), 3.65-3.85(5H,m), 4.11(1H,dd,J=2.1,10.2Hz), 6.49(1H,dd,J=3.0,9.0Hz), 6.66(1H,s), 7.83(2H,dd,J=1.8,4.5Hz), 8.70(2H,dd,J=1.5,4.5Hz).	447
XA516	(DMSO-d6):3.20-3.70(4H,m), 3.70(1H,m), 3.98(3H,s), 3.99(3H,s), 4.00(1H,m), 4.96(1H,d,J=10.2Hz), 7.01(1H,s), 7.03(2H,m), 8.26(2H,d,J=6.1Hz), 8.53(1H,s), 8.84(2H,d,J=6.1Hz), 10.25(1H,d,J=10.7Hz)	414
XA525	(DMSO-d6):3.30-3.50(2H,m), 3.48(3H,s), 3.55-3.78(2H,m), 3.78(3H,s), 3.96(2H,d,J=13.5Hz), 4.69(1H,t,J=10.4Hz), 7.06(1H,t,J=7.4Hz), 7.12(1H,s), 7.14(1H,d,J=7.4Hz), 7.31(1H,d,J=7.4Hz), 7.39(1H,t,J=7.4Hz), 7.59(2H,d,J=8.3Hz), 7.77(2H,d,J=8.3Hz), 8.43(2H,d,J=6.5Hz), 8.93(2H,d,J=6.5Hz), 9.89(1H,d,J=8.7Hz), 10.34(1H,s).	454
XA527	(DMSO-d6):3.40-4.10(9H,m), 3.81(3H,s), 4.69(1H,m), 7.05(1H,s), 7.05(2H,d,J=9.0Hz), 7.67(2H,d,J=9.0Hz), 7.75(4H,s), 8.27(2H,d,J=5.7Hz), 8.85(2H,d,J=5.7Hz), 9.75(1H,s), 10.04(1H,s).	454

	T/01/02 10 0 10 0 00000	
XA536	(DMSO-d6):3.40-3.60(2H,m), 3.47(3H,s), 3.68(2H,m), 3.95(2H,m), 4.71(1H,t,J=9.9Hz), 7.16(1H,s), 7.33(2H,t,J=8.85Hz), 7.78(6H,m), 8.50(2H,d,J=6.3Hz), 8.97(2H,d,J=6.3Hz), 10.02(1H,s), 10.50(1H,s).	443
XA543	3.52(s, 3H), 3.57-4.10(m, 6H), 5.57(m, 1H), 7.02(s, 1H), 7.53-7.70(m, 2H), 8.06(d, J=7.2Hz, 2H), 8.21-8.34(m, 3H), 8.82(d, J=6.3Hz, 2H), 9.88-9.92(m, 1H), 10.58-10.61(m, 1H)(DMSO d6)	398
XA544	3.41-3.59(2H, m), 3.49(3H, s), 3.68-3.76(2H, m), 3.97-4.02(2H, m), 4.78-4.89(1H, m), 7.15(1H, s), 7.58-7.63(2H, m), 7.89-8.07(4H, m), 8.30(1H, s), 8.49(2H, d, J=6.3 Hz), 8.95(2H, d, J=6.3 Hz), 10.17(1H, d, J=8.4 Hz), 10.57-10.70(1H, m)(DMSO-d6)	398
XA619	(CDCl3): 2.98(1H, dd, J=12.6, 10.8Hz), 3.17-3.28(5H, m), 3.58(3H, s), 3.62(1H, m), 3.79(1H, m), 4.26(1H, dd, 10.5, 2.7Hz), 4.62(2H, m), 6.66(1H, s), 6.88(1H, t, J=7.5Hz), 7.16(1H, d, J=7.2Hz), 7.27(1H, m), 7.84(2H, d, J=6.0), 8.70(2H, dd, J=4.8, 1.2Hz).	390
XA626	3.33-3.41(4H, m), 3.42(3H, s), 3.47-3.87(4H, m), 6.84(1H, s), 7.44-7.49(5H, m), 7.99(2H, dd, J=1.5, 4.5 Hz), 8.69(2H, dd, J=1.4, 4.8 Hz)(DMSO-d6)	376
XA649	3.44(3H, s),3.37-4.04(9H, m),4.67(1H, d,J=9.6Hz),7.10(1H, s),7.45-7.55(3H, m),7.83(2H, d,J=6.0Hz),8.47(2H, d,J=6.6Hz),8.95(2H, d,J=6.6Hz),12.15(1H, brs)(DMSO-d6)	362
XA756	(CDCl3):2.50-2.61(1H,m), 2.80-2.95(1H,m), 3.05-3.20(1H,m), 3.25-3.40(1H,m), 3.50-3.60(1H,m), 3.57(3H,s), 3.65-3.75(1H,m), 3.75-3.80(1H,m), 3.85(3H,s), 6.60-6.80(3H,m), 7.47(1H,dd,J=7.2,8.4Hz), 7.82(2H,dd,J=1.5,4.5Hz), 8.71(2H,dd,J=1.5,4.5Hz).	410
XA757/ XA758	(DMSO-d6):2.54(3H,s), 3.40-3.79(3H,m), 3.46(3H,s), 3.80-4.10(6H,m), 4.83-5.10(1H,m), 6.90-7.05(1H,m), 7.08(1H,s), 7.13(1H,dd,J=2.7,11.4Hz), 8.00-8.25(1H,brd), 8.37(2H,d,J=6.3Hz), 8.91(2H,d,J=6.6Hz), 11.80-12.20(1H,brd).	410
XA831	2.55(s, 3H), 3.51(s, 3H), 3.67-3.82(m, 4H), 4.04-4.08(m, 2H), 5.64(m, 1H), 7.05(s, 1H), 7.59-7.72(m, 3H), 8.06-8.11(m, 2H), 8.35(d, J=6.6Hz, 2H), 8.41(d, J=7.8Hz, 1H), 8.49 (d, J=6.9Hz, 1H), 8.84(d, J=6.6Hz, 2H)(DMSO d6)	412

	(DMSO-d6):3.15-3.35(1H,m),	
XA	3.38-3.60(4H,m), 3.75-4.15(8H,m),	}
1016	4.18-4.25(1H,m), 4.90-5.20(1H,m),	486
	7.00-7.20(3H,m), 7.30-7.55(6H,m),	1
	8.50-8.70(3H,m), 9.00(2H,d,J=6.3Hz).	
	(CDCl3):1.80-2.42(3H, m), 3.08-3.39(4H,	
V A	m), 3.40-3.62(1H, m), 3.65-4.23(6.8H,m),	
XA	4.63-4.90(0.6H, m), 5.40-5.62(0.7H, m),	120
1276	5.80-6.00(0.1H, m), 6.52-6.78(3H, m),	438
	6.90-7.2(1H, m), 7.68-7.90(2H,m),	
	8.64-8.80(2H,m)	Į.
	1.48(3H, s), 1.57(3H, s), 3.50(3H, s),	
	3.51-3.66(2H, m), 3.72-3.76(1H, m),	1
V 4	3.90(3H, s), 3.99(1H, d, J=13.4 Hz),	1
XA	5.15-5.23(1H, m), 7.08-7.12(2H, m),	400
1649	7.18(1H, d, J=8.6 Hz), 7.46-7.49(1H, m),	406
	8.04-8.11(1H, m), 8.37-8.45(2H m)	l
•	8.89-8.97(2H, m), 9.49-9.60(1H, m),	1
	<u> 9.95-10.11(1H, m)(DMSO)</u>	İ
	3.01 (1H, dd, J = 10.8, 12.9 Hz), 3.10-3.30	
XA	(3H, m), 3.50-3.75 (5H, m), 4.04 (1H, dd, $l =$	
1973	2.7, 10.8 Hz), 6.67 (1H, s), 7.20-7.40 (4H)	382
1373	(m), 7.50 (1H, s), 7.80 (2H, dd, $J = 1.5, 4.8$	302
	Hz), 8.71 (2H, dd, J = 1.5, 5.1 Hz) (CDCI3)	ĺ
	2.80 (1H, dd, J = 10.3, 12.2 Hz), 3.15-3.30	ļ
	(3H, m), 3.50-3.80 (5H, m), 4.44 (1H, dd, J =	•
XA	2.6, 10.3 Hz), 6.67 (1H, s), 7.10-7.20 (1H,	1
•	m), 7.25-7.40 (1H, m), 7.58 (1H, dd, J = 1.0,	420
1974	8.1 Hz), 7.73 (1H, dd, J = 1.6, 7.8 Hz), 7.81	426
	(2H, dd, J = 1.6, 4.5 Hz), 8.70 (2H, dd, J =	
	1.6, 4.5 Hz) (CDCl3)	•
	2.95-3.10 (1H, m), 3.10-3.35 (3H, m), 3.56	
XA	(3H, s), 3.60-3.70 (2H, m), 3.80-4.05 (7H, m),	
•	6.67 (1H, s), 6,87 (1H, d, J = 8.1 Hz),	407
1975	6.90-7.10 (2H, m), 7.80 (2H, dd, J = 1.8, 6.3	407
	Hz), 8.71 (2H, dd, J = 1.5, 4.8 Hz) (CDCl3)	
	3.40 (3H, m), 3.45 (3H, s), 3.53-3.96 (3H, m),	
	4.68 (1H, t, J = 13.5Hz), 7.10 (1H, s), 7.60	
XA	(2H, d, J=8.3Hz), 7.76 (2H, d, J=8.3Hz), 8.38	
1976	(1H, brs), 8.91 (1H, d, J=4.8Hz), 9.88 (1H, br	382
	s), 10.31 (1H, br s) (DMSO-d6)	
1	3.40(3H, m), 3.46(3H, s), 3.62(1H, dd,	
- 1	J=12.0, 13.2Hz), 3.72(1H, m), 3.92(1H, t,	
XA	J=10.5HZ), $4.68(1H, t, J=10.1Hz), 7.18/1H 1$	
1977	s), 7.58(2H, d, J=8.6Hz), 7.83(2H, d	382
1977	J=8.6Hz), 8.57(2H, d, J=6.6Hz), 9.01(2H, d,	_
1977		1
1977	J=6.6Hz), 10.20(1H, d, J=7.8Hz), 10.76(1H	
1977	J=6.6Hz), 10.20(1H, d, J=7.8Hz), 10.76(1H, br s) (DMSO-d6)	
1977	J=6.6Hz), 10.20(1H, d, J=7.8Hz), 10.76(1H, br s) (DMSO-d6) 2.98 (1H, t, J = 10.9 Hz), 3.22 (m, 3H), 3.56	
	J=6.6Hz), 10.20(1H, d, J=7.8Hz), 10.76(1H, br s) (DMSO-d6) 2.98 (1H, t, J = 10.9 Hz), 3.22 (m, 3H), 3.56 (3H, s), 3.60 (2H, m), 4.03 (1H d, J=8.7 Hz)	
XA	J=6.6Hz), 10.20(1H, d, J=7.8Hz), 10.76(1H, br s) (DMSO-d6) 2.98 (1H, t, J = 10.9 Hz), 3.22 (m, 3H), 3.56 (3H, s), 3.60 (2H, m), 4.03 (1H, d, J = 8.7 Hz), 6.68 (1H, s), 7.28 (1H, d, J = 8.2 Hz), 7.46	
	J=6.6Hz), 10.20(1H, d, J=7.8Hz), 10.76(1H, br s) (DMSO-d6) 2.98 (1H, t, J = 10.9 Hz), 3.22 (m, 3H), 3.56	

XA 1979	3.31 (1H, dd, J = 13.8, 8.9 Hz), 3.46 (3H, s), 3.85 (1H, dd, J = 13.8, 3.6 Hz), 4.10 (1H, d, J = 17.7 Hz), 4.19 (1H, d, J = 17.7 Hz), 4.91 (1H, dd, J = 8.9, 3.6 Hz), 6.11 (1H, s), 6.74 (1H, s), 7.32 (2H, d, J = 8.4 Hz), 7.42 (2H, d, J = 8.4 Hz), 7.79 (2H, dd, J = 4.8, 1.5 Hz), 8.74 (2H, dd, J = 4.8, 1.5 Hz) (CDCI3)	396
XA 1980	1.97 (4H, m), 3.26 (4H, m), 3.38 (2H, m), 3.45 (3H, s), 3.60 (2H, m), 3.80 (1H, d, J = 13.8 Hz), 3.92 (1H, d, J = 14.1 Hz), 4.48 (1H, t, J = 10.4 Hz), 6.65 (2H, d, J = 8.7 Hz), 7.16 (1H, s), 7.54 (2H, d, J = 8.7 Hz), 8.57 (2H, d, J = 6.6 Hz), 9.00 (2H, d, J = 6.6 Hz), 9.83 (1H, d, J = 9.3 Hz), 10.32 (1H, br s) (DMSO-d6)	417
XA 1981	3.21 (4H, m), 3.40 (2H, m), 3.46 (3H, s), 3.65 (2H, m), 3.78 (4H, m), 3.91 (2H, t, J = 13.7 Hz), 4.55 (1H, t, J = 10.1 Hz), 7.14 (2H, d, J = 8.7 Hz), 7.20 (1H, s), 7.64 (2H, d, J = 8.7 Hz), 8.60 (2H, d, J = 6.6 Hz), 9.02 (2H, d, J = 6.6 Hz), 9.93 (1H, d, J = 9.0 Hz), 10.47 (1H, br s) (DMSO-d6)	433
XA 1982	2.80 (3H, d, J = 4.5 Hz), 3.15 (4H, m), 3.44 (4H, m), 3.45 (3H, s), 3.60 (2H, m), 3.82 (1H, d, J = 13.5 Hz), 3.90 (3H, m), 4.54 (1H, t, J = 10.5), 7.10 (2H, d, J = 8.7 Hz), 7.17 (1H, s), 7.64 (2H, d, J = 8.7 Hz), 8.54 (2H, d, J = 6.3 Hz), 8.99 (2H, d, J = 6.3 Hz), 9.94 (1H, d, J = 8.7 Hz), 10.47 (1H, br s), 11.26 (1H, br s) (DMSO-d6)	446
XA 1983	1.27(3H, t, J=6.6 Hz), 3.46-4.14(8H, m), 4.70(1H, m), 7.11(1H, s), 7.60(2H, d, J=8.4 Hz), 7.76(2H, d, J=8.4 Hz), 8.32(2H, d, J=6 Hz), 8.89(2H, d, J=6.0 Hz), 9.87(1H, m), 10.23(1H, m), (DMSO-d6)	396
XA 1984	1.27(6H, dd, J=6.9, 6.9 Hz), 3.37-4.36(6H, m), 4.66-4.79(2H, m), 7.03(1H, s), 7.62(2H, d, J=8.7 Hz), 7.78(2H, d, J=8.7 Hz), 8.33(2H, d, J=6 Hz), 8.90(2H, d, J=6.0 Hz), 9.93(1H, m), 10.25(1H, m), (DMSO-d6)	410
XA 1985	1.40(3H, d, J=6.3 Hz), 3.44-4.04(5H, m), 3.48(3H, s), 4.69(1H, m), 7.08(1H, s), 7.60(2H, d, J=8.4 Hz), 7.79(2H, d, J=8.4 Hz), 8.33(2H, d, J=6.3 Hz), 8.90(2H, d, J=6.3 Hz), 9.83(1H, m), 10.00(1H, m), (DMSO-d6)	396

XA 1986	1.57(6H, s), 3.50(3H, s), 3.51-3.93(4H, m), 4.98(1H, m), 7.11(1H, s), 7.60(2H, d, J=7.4 Hz), 7.94(2H, d, J=7.4 Hz), 8.41(2H, d, J=6.0 Hz), 8.93(2H, d, J=6.0 Hz), 9.88(1H, m), 10.05(1H, m), (DMSO-d6)	410
XA 1987	1.43(3H, d, J=6.6 Hz), 3.38-3.93(5H, m), 3.48(3H, s), 4.72(1H, m), 7.12(1H, s), 7.59(2H, d, J=8.4 Hz), 7.84(2H, d, J=8.4 Hz), 8.43(2H, d, J=6.6 Hz), 8.95(2H, d, J=6.6 Hz), 9.65(1H, m), 10.23(1H, m), (DMSO-d6)	396
XA 1988	2.34 (1H, m), 2.42 (1H, m), 2.80 (3H, d, J = 5.6 Hz), 2.81 (3H, d, J = 5.6 Hz), 3.28 (1H, q, J = 8.8 Hz), 3.43 (2H, m), 3.45 (3H, s), 3.57 (5H, m), 3.80 (1H, d, J = 11.4 Hz), 3.96 (2H, m), 4.50 (1H, t, J = 10.4 Hz), 6.69 (2H, d, J = 8.4 Hz), 7.14 (1H, s), 7.55 (2H, d, J = 8.4 Hz), 8.47 (2H, d, J = 5.6 Hz), 8.96 (2H, d, J = 5.6 Hz), 9.75 (1H, d, J = 8.0 Hz), 10.16 (1H, br s), 11.40 (1H, br s) (DMSO-d6)	460
XA 1989	1.65 (2H, br s), 1.91 (4H, br s), 3.46 (9H, s), 3.70 (2H, m), 3.92 (2H, t, J = 16.6 Hz), 4.66 (1H, br s), 7.16 (1H, s), 7.85 (4H, br s), 8.50 (2H, d, J = 6.4 Hz), 8.97 (2H, d, J = 6.4 Hz), 10.01 (1H, br s), 10.59 (1H, br s) (DMSO-d6)	431
XA 1990	2.32 (1H, m), 2.42 (1H, m), 2.79 (3H, d, J = 5.2 Hz), 2.81 (3H, d, J = 5.2 Hz), 3.27 (1H, m), 3.39 (2H, m), 3.45 (3H, s), 3.59 (5H, m), 3.79 (1H, d, J = 13.3 Hz), 3.95 (2H, m), 4.50 (1H, t, J = 11.6 Hz), 6.69 (2H, d, J = 8.4 Hz), 7.16 (1H, s), 7.56 (2H, d, J = 8.4 Hz), 8.50 (2H, s), 8.98 (2H, d, J = 5.6 Hz), 9.78 (1H, br s), 10.19 (1H, br s), 11.44 (1H, br s) (DMSO-d6)	460
XA 1991	3.47 (3H, s), 3.61 (3H, m), 3.81 (3H, s), 4.02 (3H, m), 4.69 (1H, t, J = 10.6 Hz), 7.05 (2H, d, J = 8.8 Hz), 7.10 (1H, s), 7.67 (2H, d, J = 8.8 Hz), 7.77 (4H, s), 8.38 (2H, br s), 8.91 (2H, d, J = 5.2 Hz), 9.90 (1H, br s), 10.28 (1H, br s) (DMSO-d6)	454
XA 1992	1.26(3H, t, J=6.9 Hz), 1.41(3H, d, J=6.3 Hz), 3.43-4.06(7H, m), 4.74(1H, m), 7.09(1H, s), 7.58(2H, d, J=8.4 Hz), 7.84(2H, d, J=8.4 Hz), 8.32(2H, d, J=6.6 Hz), 8.90(2H, d, J=6.6 Hz), 9.90(1H, m), 10.03(1H, m), (DMSO-d6)	410
XA 1993	1.41(3H, t, J=6.3 Hz), 1.55(6H, dd, J=6.6, 6.6 Hz), 3.49-3.73(5H, m), 4.64(1H, m), 4.78(1H, m), 6.99(1H, s), 7.58(2H, d, J=8.7 Hz), 7.81(2H, d, J=8.7 Hz), 8.28(2H, d, J=6.3 Hz), 8.87(2H, d, J=6.3 Hz), 9.91(2H, m)(DMSO-d6)	· 424

	14.07/01LA	
XA 1994	1.27(3H, t, J=6.9 Hz), 1.55(3H, s), 1.60(3H, s), 3.42-4.14(6H, m), 5.04(1H, m), 7.13(1H, s), 7.60(2H, d, J=8.4 Hz), 7.91(2H, d, J=8.4 Hz), 8.32(2H, d, J=6.3 Hz), 8.89(2H, d, J=6.3 Hz), 9.80-9.84(2H, m)(DMSO-d6)	424
XA 1995	1.52(3H, d, J=6.6 Hz), 1.58(6H, s), 1.59(3H, d, J=6.6 Hz), 3.40-3.68(4H, m), 4.75(1H, m), 5.09(1H, m), 7.03(1H, s), 7.60(2H, d, J=8.4 Hz), 7.93(2H, d, J=8.4 Hz), 8.33(2H, d, J=6.0 Hz), 8.89(2H, d, J=6.0 Hz), 9.89(2H, m)(DMSO-d6)	438
XA 1996	1.29 (3H, t, J = 6.8 Hz), 3.47 (2H, br s), 3.66 (3H, m), 3.81 (3H, s), 3.83 (1H, m), 4.04 (2H, m), 4.71 (1H, d, J = 10.6 Hz), 7.05 (2H, d, J = 8.8 Hz), 7.12 (1H, s), 7.67 (2H, d, J = 8.8 Hz), 7.75 (2H, d, J = 8.4 Hz), 7.79 (2H, d, J = 8.4 Hz), 8.36 (2H, d, J = 6.4 Hz), 8.91 (2H, d, J = 6.4 Hz), 9.92 (1H, d, J = 8.8 Hz), 10.29 (1H, br s) (DMSO-d6)	468
XA 1997	1.56 (3H, d, J = 6.4 Hz), 1.58 (3H, d, J = 6.4 Hz), 3.47 (2H, br s), 3.60 (1H, m), 3.77 (2H, m), 3.81 (3H, s), 4.72 (3H, m), 7.05 (2H, d, J = 8.8 Hz), 7.06 (1H, s), 7.68 (2H, d, J = 8.8 Hz), 7.76 (2H, d, J = 8.4 Hz), 7.80 (2H, d, J = 8.4 Hz), 8.42 (2H, d, J = 6.4 Hz), 8.94 (2H, d, J = 6.4 Hz), 10.02 (1H, d, J = 9.6 Hz), 10.39 (1H, br s) (DMSO-d6)	482
XA 1998	1.24 (1H, m), 1.39 (4H, m), 1.72 (1H, m), 1.79 (4H, m), 2.55 (1H, m), 3.45 (3H, s), 4.00-3.45 (6H, m), 4.61 (1H, t, J = 11.2 Hz), 7.09 (1H, s), 7.35 (2H, d, J = 8.4 Hz), 7.62 (2H, d, J = 8.4 Hz), 8.37 (2H, d, J = 4.0 Hz), 8.90 (2H, d, J = 4.0 Hz), 9.75 (1H, d, J = 9.6 Hz), 10.17 (1H, br s), (DMSO-d6)	430
XA 1999	1.04 (1H, m), 1.17 (2H, m), 1.43 (2H, m), 1.60 (1H, m), 1.79 (4H, m), 2.96 (3H, br s), 3.45 (3H, s), 4.18-3.44 (6H, m), 4.62 (1H, br s), 7.13 (1H, s), 7.75 (4H, br s), 8.46 (1H, br s), 8.95 (1H, br s), 9.87 (1H, br s), 10.40 (1H, br s) (DMSO-d6)	459
XA 2000	1.40(3H, d, J=6.6 Hz), 3.44-4.04(5H, m), 3.48(3H, s), 4.72(1H, m), 7.05(1H, s), 7.61(2H, d, J=8.4 Hz), 7.78(2H, d, J=8.4 Hz), 8.29(2H, d, J=6.0 Hz), 8.90(2H, d, J=6.0 Hz), 9.78-10.00(2H, m), (DMSO-d6)	396

1.91-2.03(2H, m), 3.09(1H, m), 3.28-3.57(7H, m), 3.40(3H, s), 4.41(2H, m), 6.58(2H, d, J= 8.7 Hz), 7.13(1H, s), 7.46(2H, XA d, J= 8.7 Hz), 8.44(2H, d, J=6.3 Hz), 8.94(2H, 2016 433 d, J=6.3 Hz), 9.61(1H, m), 9.89(1H, m) (DMSO-d6) 2.97 (6H, s), 3.45 (3H, s), 4.20-3.30 (6H, m), 4.53 (1H, t, J = 9.8 Hz), 6.69 (2H, br s), 7.14 (1H, s), 7.57 (2H, br s), 8.48 (2H, br s), 8.96 XA (2H, br s), 9.72 (1H, br s), 10.09 (1H, br s) 2017 391 (DMSO-d6) 3.18-3.22(1H, m), 3.44-3.80(15H, 4.51-4.55(1H, m), 5.11(2H, s), 7.04-7.07(3H, m), 7.32-7.39(5H, m), 7.52-7.55(2H, m), XA 8.33-8.35(2H, m), 2018 8.82-8.87(2H, 566 9.65-9.75(2H, br)(DMSO-d6) 1.32(6H, d, J=6.8Hz), 3.04-3.88(18H, m), 4.52-4.55(1H, m), 7.09-7.12(3H, 7.62(2H, d, J=7.2Hz), 8.45(2H, d, J=4.2Hz), XA 8.94(2H, d, J=4.2Hz), 9.83-10.34(3H, br), 2019 474 11.00-11.04(1H, br)(DMSO-d6) 1.32(6H, d, J=6.8Hz), 3.04-3.88(18H, m), 4.52-4.55(1H, m), 7.09-7.12(3H, m), 7.62(2H, d, J=7.2Hz), 8.45(2H, d, J=4.2Hz), XA 8.94(2H, d, J=4.2Hz), 9.83-10.34(3H, br), 2020 476 11.00-11.04(1H, br)(DMSO-d6) 2.09(3H. s), 3.19-4.00(20H. m), 4.43-4.54(3H, m), 7.06-7.19(3H, m), 7.62(2H, d, J=7.2Hz), 8.44(2H, d, J=4.2Hz), XA 8.94(2H, d, J=4.2Hz), 9.82-9.85(1H, br), 2021 518 10.26-10.30(1H, br), 11.30-11.40(1H. br)(DMSO-d6) 3.17-3.21(4H, m), 3.38-4.16(14H, 4.51-4.54(1H, m). 7.08-7.18(3H, m), 7.60(2H, d, J=7.2Hz), 8.43(2H, d, J=4.2Hz), XA 8.93(2H, d, J=4.2Hz), 9.26-9.34(2H, br), 2022 432 9.81-84(1H, br), 10.25-10.30(1H, br)(DMSO-d6) 1.82(3H, m), 3.29(3H, m), 3.40-3.96(9H, m), 3.48(3H, s), 4.55(1H, m), 7.10(1H, s), 7.13(2H, d, J=8.4 Hz), 7.56(2H, d, J=8.4 Hz), XA 8.39(2H, d, J=6.0 Hz), 8.91(2H, d, J=6.0 Hz), 2023 445 9.67(1H, m), 9.97(1H, m) (DMSO-d6)

XA 2032	1.94 (4H, m), 2.02 (1H, m), 2.21 (1H, m), 2.62 (4H, m), 2.91 (1H, m), 3.03 (1H, dd, J = 12.4, 10.4 Hz), 3.20 (4H, m), 3.33 (1H, m), 3.48 (2H, m), 3.54 (3H, s), 3.62 (2H, m), 3.91 (1H, dd, J = 10.4, 2.4 Hz), 6.55 (2H, d, J = 8.4 Hz), 6.66 (1H, s), 7.29 (2H, d, J = 8.4 Hz), 7.81 (2H, dd, J = 4.4, 0.8 Hz), 8.70 (2H, dd, J = 4.4, 0.8 Hz) (CDCI3)	468
XA 2033	2.29(3H, s), 3.06(4H, t, J=4.8Hz), 3.38(4H, t, J=4.8Hz), 3.51(3H, s), 5.70(1H, s), 6.67(1H, s), 7.24-7.29(5H, m), 7.83(2H, dd, J=1.6, 4.3Hz), 8.72(2H, dd, J=1.3, 4.5Hz)(CDCI3)	427
XA 2034	3.09 (1H, dd, J = 12.0, 10.8 Hz), 3.23 (3H, m), 3.57 (3H, s), 3.66 (2H, m), 3.82 (3H, s), 3.86 (3H, s), 4.06 (1H, dd, J = 10.8, 2.4 Hz), 6.58 (2H, m), 6.67 (1H, s), 7.24 (2H, m), 7.47 (2H, d, J = 8.0 Hz), 7.53 (2H, d, J = 8.0 Hz), 7.82 (2H, dd, J = 4.8, 1.2 Hz), 8.71 (2H, dd, J = 4.8, 1.2 Hz) (CDCl3)	484
XA 2035	3.08 (3H, dd, J = 12.4, 10.8 Hz), 3.25 (3H, m), 3.57 (3H, s), 3.67 (2H, m), 3.93 (3H, s), 3.96 (3H, s), 4.08 (1H, dd, J = 10.0, 2.0 Hz), 6.68 (1H, s), 6.95 (1H, d, J = 8.4 Hz), 7.11 (1H, d, J = 2.4 Hz), 7.16 (1H, dd, J = 8.4, 2.4 Hz), 7.51 (2H, d, J = 8.0 Hz), 7.58 (2H, d, J = 8.0 Hz), 7.81 (2H, dd, J = 4.8, 1.2 Hz) (CDCI3)	484
XA 2036	3.08 (1H, dd, J = 12.4, 10.8 Hz), 3.26 (3H, m), 3.57 (3H, s), 3.67 (2H, m), 4.09 (1H, dd, J = 10.0, 2.0 Hz), 6.68 (1H, s), 7.42 (2H, d, J = 8.4 Hz), 7.53 (4H, d, J = 8.4 Hz), 7.58 (2H, d, J = 8.4 Hz), 7.80 (2H, dd, J = 4.8, 1.6 Hz), 8.71 (2H, dd, J = 4.8, 1.6 Hz) (CDCI3)	458
XA 2037	3.09 (1H, dd, J = 12.4, 10.8 Hz), 3.25 (3H, m), 3.58 (3H, s), 3.69 (2H, m), 4.11 (1H, dd, J = 10.4, 2.4 Hz), 6.68 (1H, s), 7.28 (2H, m), 7.44 (2H, d, J = 8.0 Hz), 7.51 (3H, m), 8.81 (2H, dd, J = 4.0, 1.2 Hz), 8.72 (2H, dd, J = 4.0, 1.2 Hz) (CDCI3)	492
XA 2038	3.07 (1H, dd, J = 12.3, 11.0 Hz), 3.26 (3H, m), 3.57 (3H, s), 3.67 (2H, m), 4.10 (1H, dd, J = 10.2, 2.1 Hz), 6.68 (1H, s), 7.42 (1H, dd, J = 8.1, 2.2 Hz), 7.55 (5H, m), 7.68 (1H, d, J = 2.2 Hz), 7.80 (2H, dd, J = 4.8, 1.3 Hz), 8.71 (2H, dd, J = 4.8, 1.3 Hz) (CDCl3)	492

XA 2039	3.06 (1H, dd, J = 12.0, 10.8 Hz), 3.24 (3H, m), 3.58 (3H, s), 3.67 (2H, m), 4.13 (1H, dd, J = 10.4, 2.4 Hz), 6.68 (1H, s), 7.61 (2H, d, J = 8.4 Hz), 7.80 (2H, d, J = 4.4 Hz), 8.15 (2H, d, J = 8.4 Hz), 8.71 (2H, d, J = 4.4 Hz), 8.77 (1H, s) (CDCl3)	416
XA 2040	3.04-3.26(4H, m), 3.57(3H, s), 3.66-3.71(2H, m), 4.07(1H, m), 5.12(2H, s), 6.68(1H, s), 7.06(2H, d, J= 8.7 Hz), 7.40-7.59(11H, m), 7.81(2H, d, J=6.0 Hz), 8.71(2H, d, J=6.0 Hz) (CDCI3)	530
XA 2041	0.38(2H, m), 0.67(2H, m), 1.32(1H, m), 3.09(1H, dd, J=12.6, 11.1 Hz), 3.22-3.28(3H, m), 3.58(3H, s), 3.67-3.71(2H, m), 3.86(2H, d, J= 6.9 Hz), 4.08(1H, m), 6.68(1H, s), 7.06(2H, d, J= 9.0 Hz), 7.49-7.60(6H, m), 7.82(2H, d, J=6.0 Hz), 8.72(2H, d, J=6.0 Hz) (CDCl3)	494
XA 2042	1.37(6H, d, J= 6.0 Hz), 3.08(1H, dd, J=12.3, 11.1 Hz), 3.20-3.28(3H, m), 3.57(3H, s), 3.65-3.70(2H, m), 4.06(1H, m), 4.59(1H, m), 6.67(1H, s), 7.06(2H, d, J= 9.0 Hz), 7.48-7.59(6H, m), 7.81(2H, d, J=6.0 Hz), 8.71(2H, d, J=6.0 Hz) (CDCI3)	482
XA 2043	0.99(3H, t, J= 7.5 Hz), 1.40-1.85(4H, m), 3.05-3.30(4H, m), 3.57(3H, s), 3.65-3.70(2H, m), 4.00-4.10(3H, m), 6.67(1H, s), 6.97(2H, d, J= 8.7 Hz), 7.50-7.56(6H, m), 7.81(2H, d, J=6.0 Hz), 8.71(2H, d, J=6.0 Hz) (CDCl3)	496
XA 2044	1.66(1H, br.s), 2.52(3H, s), 3.05(1H, dd, J=10.5, 12.6Hz), 3.20-3.26(3H, m), 3.57(3H, s), 3.62-3.72(2H, m), 4.07(1H, dd, J=2.1, 10.5Hz), 6.67(1H, s), 7.33(2H, d, J=8.4Hz), 7.50-7.61(6H, m), 7.81(2H, dd, J=1.6, 4.3Hz), 8.70(2H, dd, J=1.3, 4.5Hz)(CDCl3)	469
XA 2045	1.72(1H, br.s), 2.40(3H, s), 2.98-3.26(5H, m), 3.57(3H, s), 3.57-3.67(1H, m), 4.07(1H, dd, J=2.1, 10.5Hz), 6.67(1H, s), 7.24(2H, d, J=8.1Hz), 7.49-7.52(4H, m), 7.60(2H, d, J=8.1Hz), 7.81(2H, dd, J=1.6, 4.3Hz), 8.70(2H, dd, J=1.3, 4.5Hz)(CDCI3)	437
XA 2046	1.36(9H, s), 1.72(1H, br.s), 3.06(1H, dd, J=10.5, 12.4Hz), 3.20-3.28(3H, m), 3.57(3H, s), 3.57-3.67(2H, m), 4.07(1H, dd, J=2.1, 10.5Hz), 6.67(1H, s), 7.24(2H, d, J=8.1Hz), 7.43-7.56(6H, m), 7.81(2H, dd, J=1.6, 4.3Hz), 8.71(2H, dd, J=1.3, 4.5Hz)(CDCl3)	479

Γ	14 20(CH d 1=C 011=) 4 70(4)	· · · · · · · · · · · · · · · · · · ·
XA 2047	1.29(6H, d, J=6.9Hz), 1.73(1H, br.s), 2.96(1H, m), 3.06(1H, dd, J=10.5, 12.4Hz), 3.21-3.29(3H, m), 3.57(3H, s), 3.62-3.71(2H, m), 4.07(1H, dd, J=2.1, 10.5Hz), 6.67(1H, s), 7.31(2H, d, J=8.1Hz), 7.45-7.54(4H, m), 7.63(2H, d, J=8.1Hz), 7.81(2H, dd, J=1.6, 4.3Hz), 8.71(2H, dd, J=1.3, 4.5Hz), (CDCI3)	465
XA 2048	1.68(2H, br.s), 2.98(1H, dd, J=10.5, 12.6Hz), 3.20-3.27(2H, m), 3.56(3H, s), 3.64-3.74(1H, m), 4.04(1H, dd, J=3.3, 11.1Hz), 4.80(3H, s), 6.66(1H, s), 6.72(2H, d, J=8.5Hz), 7.49-7.52(4H, m), 7.63(2H, d, J=8.1Hz), 7.81(2H, dd, J=1.6, 4.3Hz), 8.70(2H, dd, J=1.3, 4.5Hz)(DMSO-d6)	438
XA 2049	2.67 (3H, s), 3.06 (1H, dd, J = 12.4, 10.8 Hz), 3.25 (3H, m), 3.57 (3H, s), 3.62 (2H, m), 4.12 (1H, dd, J = 10.0, 2.0 Hz), 6.68 (1H, s), 7.59 (2H, d, J = 8.0 Hz), 7.80 (1H, dd, J = 4.8, 1.2 Hz), 8.09 (1H, d, J = 8.0 Hz), 8.71 (1H, dd, J = 4.8, 1.2 Hz) (CDCI3)	430
XA 2050	3.05(1H, m), 3.30-3.48(3H, m), 3.64(3H, s), 4.08-4.22(2H, m), 4.68(1H, m), 5.15(1H, d, J= 12.3 Hz), 5.21(1H, d, J= 12.6 Hz), 6.63(1H, s), 7.21(2H, d, J= 8.4 Hz), 7.28-7.39(7H, m), 7.59(2H, d, J=6.3 Hz), 8.68(2H, d, J=6.3 Hz) (CDCI3)	560
XA 2051	2.88-3.34(6H, m), 3.67(3H, s), 4.56(1H, dd, J= 9.9, 3.3 Hz), 6.62(1H, s), 7.19(2H, d, J= 10.8 Hz), 7.36(2H, d, J= 10.8 Hz), 7.58(2H, dd, J=4.5, 1.5 Hz), 8.67(2H, dd, J=4.5, 1.5 Hz) (CDCI3)	426
XA 2052	3.04(1H, m), 3.29-3.48(3H, m), 3.64(3H, s), 4.10-4.15(2H, m), 4.68(1H, m), 5.15(1H, d, J= 12.3 Hz), 5.21(1H, d, J= 12.6 Hz), 6.63(1H, s), 7.21(2H, d, J= 8.1 Hz), 7.32-7.39(7H, m), 7.59(2H, d, J=6.0 Hz), 8.68(2H, d, J=6.0 Hz) (CDCI3)	560
XA 2053	3.01(1H, m), 3.29-3.41(3H, m), 3.66(3H, s), 4.05-4.13(2H, m), 4.67(1H, m), 6.64(1H, s), 7.23(2H, d, J= 8.4 Hz), 7.41(2H, d, J= 8.4 Hz), 7.60(2H, dd, J=4.5, 1.5 Hz), 8.69(2H, dd, J=4.5, 1.5 Hz) (CDCl3)	527
XA 2054	2.28(3H, s), 3.07(4H, m), 3.59(4H, m), 3.73(3H, s), 5.78(1H, s), 6.70(1H, s), 6.98(1H, m), 7.40(1H, m), 7.60-7.66(2H, m), 7.81(2H, dd, J=1.6, 4.3Hz), 8.72(2H, dd, J=1.3, 4.5Hz)(CDCI3)	445

	1	1 90-2 10/3H m) 2 22 2 44/41	
		1.90-2.10(3H, m), 2.32-2.44(1H, m), 3.11-3.20(1H, m), 3.45(1H, dd, J=10.5, 12.6	-
	XB48		?
		d, J=11.1 Hz), 6.67(1H, s), 7.30-7.35(1H, m)	300
		7.56-7.62(2H, m), 7.74(1H, d, J=13.8 Hz),	388
		7.80(2H, dd, J=1.8, 4.5 Hz), 8.70(2H, dd,	1
		J=1.8, 4.8 Hz)(CDCl3)	ı
1		1.91-2.09(3H, m), 2.37-2.42(1H, m)	
		3.12-3.19(1H, m), 3.45(1H, dd .l=1n g .to o	
	XB49	1147, 3.37(30, 8), 3.60-3.72(2H m) A 08/14	1
		d, J=11.1 Hz), 6.67(1H, s), 7.30-7.35(1H, m)	388
- [17.54-7.62(2H, m), 7.75(1H, d, J=8 1 Hz)	, 300
- 1		17.00(2H, dd, J=1.5, 4.5 Hz), 8.70/2H, dd	
I		_ J=1.8, 4.5 Hz)(CDC 3)	1
-		1.59-1.67(1H, m), 1.72-1.81(1H, m)	
-		2.08(1H, dt, J=3.4, 12.7 Hz) 2.23-2 40/41	
1		1117, 3.00-3.14(1H, m), 3.41-3.54(2H, m)	
1	XB50	3.42(3M, S), 3.93(1H, d, J=14.0 Hz) 7 02(1H	363
1		1°1, 1.24-1.29(1H, m), 7.34-7.39(2H m)	303
-		1/.56-/.59(2H, m), $8.55(2H, d) = 6.6 Hz$	1
L			1
1		2.21-2.36(4H, m), 3.19-3.31(2H, m)	
1	VD 0.0	3.46(3H, s), 3.88(2H, d, J=13.2 Hz) 6.86(4H	
XE	XB80) S), 1.38-1.42(1H, m), 7.46-7.51(2H, m)	372
1		1/.58-/.54(2H, m), 8.01(2H, d. J=5 1 Hz)	0,2
-		10.70(2H, d, J=5.1 Hz)(DMSO-d6)	1
1		1.44(2H, m), 1.75-1.83(3H, m), 2.63(2H, d, L	<u> </u>
1	VD 400	1 0.9 nz), 2.90(2H, m), 3.51/3H s) 3.64/2H	
1	XB122	III), 0.00(1H, S), 7.17-7.34(5H, m) 7 80/2H	361
1		$ u_1 = 0.3 \text{ Hz}$, 8.70(2H, d, J = 6.3 Hz)	
\vdash		(CDCl3)	·
1	•	1.44-2.16(5H, m), 2.86-2.97(2H, m),	
ı	VD400	3.49(3H, s), 3.62(1H, m), 3.72(1H m)	·
1	XB123	4.48(1H, d, J = 7.2 Hz), 6.64(1H, s) 7.07(2H)	395
	•	1 '''),	
H		10.09(2H, 0.0) = 6.3 Hz) (CDC(3)	
		1.38-1.60(3H, m), 1.78(1H, m), 2.16(1H, m)	1
		[2.79-2.94(2H, m), 3.20(3H, s) 3 49/3H s)	1 1
1	XB124	13.59(1H, m), 3.69(1H, m), 3.88(1H d 1=75	1
ŀ		112, 17), 0.04(1H, S), 7.08(2H, m), 7.25(2H	409
		'''), /./9(2H, d, J = 6.0 Hz) 8 70/2H a i =	
-		0.U HZ) (CDC[3)	
		1.87-2.06(4H, m), 2.79(1H, m), 3.10(2H, m),	
)	KB127	[0.07 (311, 5), 3.70(2H, m), 6.68(1H, s)	0.47
		7.23-7.29(3H, m), 7.34(2H, m), 7.84(2H, d, J	347
_		= 6.0 Hz), 8.72(2H, d, J = 6.0 Hz) (CDCl3)	
		1.01-2.03(4H, m), 2.78(1H, m), 3.09(2H, m)	
`	(B130	3.37 (3H, 8), 3.79(2H, m), 6.69(1H, s)	1
	(D130	7.03(2H, m), 7.23(2H, m), 7.84(2H, d, J = 5.4	365
	- 1	Hz), 8.72(2H, br s) (CDCl3)	
		4 70 4 05/11	1
	j	1.78-1.95(4H, m), 2.80-2.91(1H, m),	
	- 1	2.96-3.09(2H, m), 3.45(3H, s) 3.81/2H, d	- 1
X	B134	J-13.1 HZ), 6.80(1H, s), 7.33(1H, dd, 1=2.0, 1	44-
101		0.5 F2), 7.56~7.60(2H, m), 7.99(2H, da	415
		J^{-1} , 0, 4.5 HZ), 8.69(2H, dd, $J=1.5$ A.5	
		Hz)(DMSO-d6)	1

XB145	1.82-2.02(4H, m), 3.09-3.27(3H, m), 3.57(3H, s), 3.79(2H, m), 3.86(3H, s), 6.67(1H, s), 6.89-6.99(2H, m), 7.21-7.26(2H, m), 7.84(2H, d, J = 6.0 Hz), 8.72(2H, d, J = 6.0 Hz) (CDCI3)	377
XB157	1.85-2.07(2H,m), 2.17-2.30(2H,m), 2.91-3.10(1H,m), 3.10-3.24(2H,m), 3.57(3H,s), 3.71-3.88(2H,m), 6.69(1H,s), 6.99-7.06(1H,m), 7.21(1H,dd,J=2.1,8.7Hz), 7.45(1H,s), 7.49-7.65(1H,m), 7.83(2H,dd,J=1.8,4.5Hz), 8.72(2H,dd,J=1.2,4.8Hz)(CDCI3)	405
XB158	2.22-2.32(4H, m), 3.22(2H, m), 3.37(1H, m), 3.58(3H, s), 3.82(2H, m, 6.71(1H, s), 7.10(1H, m), 7.29(1H, m), 7.67(1H, m), 7.83(2H, d, J = 6.3 Hz), 8.72(2H, d, J = 6.3 Hz) (CDCI3)	406
XB159	2.19-2.26(4H, m), 3.21(2H, m), 3.35(1H, m), 3.59(3H, s), 3.82(2H, m), 6.70(1H, s), 6.95(1H, dt, J = 9.0, 2.1 Hz), 7.13(1H, dd, J = 9.0, 2.1 Hz), 7.71(1H, m), 7.85(2H, d, J = 6.3 Hz), 8.72(2H, d, J = 6.3 Hz) (CDCI3)	405
XB160	2.13-2.34(2H,m), 2.34-2.43(2H,m), 3.10-3.38(3H,m), 3.57(3H,s), 3.68-3.83(2H,m), 6.69(1H,s), 7.29-7.40(2H,m), 7.46-7.59(1H,m), 7.64-7.78(1H,m), 7.80-7.78(2H,m), 8.72(2H,d,J=6.0Hz)(CDCI3)	388
XB161 _.	2.19(2H, m), 2.38(2H, m), 3.18(2H, m), 3.39(1H, m), 3.58(3H, s), 3.80(2H, m), 6.70(1H, s), 7.39(1H, m), 7.50(1H, m), 7.83(2H, d, J = 6.0 Hz), 7.89(1H, d, J = 7.2 Hz), 8.01(1H, d, J = 7.8 Hz), 8.73(2H, d, J = 6.0 Hz) (CDCI3)	404
XB162	1.96(2H, m), 2.88(2H, m), 3.15(2H, m), 3.60(3H, s), 3.85(2H, m), 4.63(1H, m), 6.73(1H, s), 7.13-7.23(3H, m), 7.46(1H, d, J = 7.5 Hz), 7.84(2H, d, J = 6.3 Hz), 8.73(2H, d, J = 6.3 Hz)(CDCl3)	420
XB164	1.64(2H, m), 2.23(2H, m), 3.13(2H, m), 3.50(1H, m), 3.53(3H, s), 3.68(2H, m), 6.58(2H, m), 6.68(1H, s), 6.91(2H, m), 7.81(2H, d, J = 6.0 Hz), 8.72(2H, d, J = 6.0 Hz) (CDCl3)	380
XB165	1.91-1.99(4H, m), 2.84(3H, s), 3.07(2H, m), 3.55(3H, s), 3.77(2H, m), 3.84(1H, m), 6.69(1H, s), 6.75-6.87(3H, m), 7.27(2H, m), 7.82(2H, d, J = 6.3 Hz), 8.72(2H, d, J = 6.3 Hz) (CDCI3)	376
XB168	1.52(2H, m), 1.79(3H, s), 1.96(2H, m), 3.09(2H, m), 3.42(3H, s), 3.64(2H, m), 4.86(1H, m), 6.63(1H, s), 7.09-7.19(4H, m), 7.74(2H, d, J = 6.0 Hz), 8.70(2H, d, J = 6.0 Hz) (CDCl3)	422

	144040404	
XB262	J=8.4 Hz), 7.33(2H, d, J=8.4 Hz), 7.81(2H, d, J=6.0 Hz), 8.71(2H, d, J=6.0 Hz)(CDCI3)	472
XB263	1.77-1.86(4H, m), 2.44(1H, m), 2.80(6H, s), 2.98-3.16(4H, m), 3.42(3H, s), 3.62-3.79(6H, m), 4.42(3H, m), 6.93(1H, s), 7.45(2H, d, J=8.4 Hz), 7.58(2H, d, J=8.4 Hz), 8.21(2H, d, J=6.0 Hz), 8.82(2H, d, J=6.0 Hz)(DMSO-d6)	i
XB264	0.99(3H, t, J=7.2Hz), 1.20-1.24(6H, m), 1.80-1.93(7H, m), 2.10(1H, m), 2.50-2.55(2H, m), 2.97-3.00(3H, m), 3.55(3H, s), 3.60(2H, s), 3.69-3.74(2H, m), 6.65(1H, s), 7.18(2H, d, J=8.4 Hz), 7.34(2H, d, J=8.4 Hz), 7.80(2H, d, J=6.0 Hz), 8.70(2H, d, J=6.0 Hz)(CDCl3)	486
XB265	1.02(6H, d, J=6.6Hz), 1.23-1.28(5H, m), 1.72-2.15(9H, m), 2.51(1H, m), 2.97-3.08(4H, m), 3.55(3H, s), 3.70(2H, s), 3.74-3.78(2H, m), 6.65(1H, s), 7.18(2H, d, J=7.8 Hz), 7.34(2H, d, J=7.8 Hz), 7.81(2H, d, J=6.0 Hz), 8.70(2H, d, J=6.0 Hz)(CDCI3)	500
XB266	1.77-1.87(4H, m), 2.44(1H, m), 2.80(6H, s), 2.99-3.09(4H, m), 3.42(3H, s), 3.62-3.79(6H, m), 4.42(3H, m), 6.95(1H, s), 7.45(2H, d, J=8.1 Hz), 7.58(2H, d, J=8.1 Hz), 8.29(2H, d, J=6.0 Hz), 8.86(2H, d, J=6.0 Hz)(DMSO-d6)	473
XB267	1.85-1.88(4H, m), 2.81(1H, m), 2.99-3.07(2H, m), 3.44(3H, s), 3.79-3.84(2H, m), 6.82(1H, s), 7.29(2H, d, J=8.4 Hz), 7.51(2H, d, J=8.4 Hz), 8.01(2H, d, J=6.0 Hz), 8.70(2H, d, J=6.0 Hz)(DMSO-d6)	425
XB268	1.83-1.99(4H, m), 2.83(1H, m), 2.98-3.06(2H, m), 3.45(3H, s), 3.79-3.84(2H, m), 6.82(1H, s), 7.29-7.43(3H, m), 7.53(1H, s), 8.01(2H, d, J=6.0 Hz), 8.70(2H, d, J=6.0 Hz)(DMSO-d6)	425
XB269	1.74-1.96(8H, m), 2.51(1H, m), 2.65-3.01(2H, m), 3.04-3.18(4H, m), 3.44(3H, s), 3.77-3.81(2H, m), 6.49(2H, d, J=8.4 Hz), 6.80(1H, s), 7.09(2H, d, J=8.4 Hz), 8.00(2H, dd, J=4.5, 1.8 Hz), 8.69(2H, dd, J=4.5, 1.8 Hz)(DMSO-d6)	416
XB270	1.83-1.99(8H, m), 2.72(1H, m), 2.97-3.07(2H, m), 3.19-3.23(4H, m), 3.45(3H, s), 3.78-3.83(2H, m), 6.38(1H, d, J=7.8 Hz) 6.44(1H, s), 6.53(1H, d, J=7.5 Hz), 6.81(1H, s), 7.09(1H, dd, J=7.8, 7.8 Hz), 8.00(2H, d, J=5.4 Hz), 8.70(2H, d, J=5.7 Hz)(DMSO-d6)	416

	14.04.4.02/01/	
XB271	7.58-7.63(1H, m), 8.00(2H, d, J=4.2Hz) 8.69(2H, d, J=4.2Hz), 10.90(1H brs)(DMSO-d6)	404
XB272	1.53-1.63(2H, m), 2.02-2.07(2H, m) 3.11-3.19(2H, m), 3.41(3H, s), 3.60-3.72(3H m), 6.12(1H, d, J=8.2Hz), 6.79-6.80(2H, m) 6.88-6.91(2H, m), 7.25-7.31(1H, m) 8.00(2H, d, J=4.2Hz), 8.70(2H, d, J=4.2Hz)(DMSO-d6)	430
XB273	6.56-6.65(4H, m), 6.79(1H, s), 7.99(2H, d, J=4.2Hz), 8.69(2H, d, J=4.2Hz)(DMSO-d6)	
XB274	1.51-1.61(2H, m), 2.01-2.07(2H, m), 3.08-3.16(2H, m), 3.43(3H, s), 3.50-3.53(1H, m), 3.67(3H, s), 3.70-3.73(2H, m), 5.56(1H, d, J=8.2Hz), 6.09-6.24(3H, m), 6.78(1H, s), 6.96(1H, dd, J=7.2Hz, 7.3Hz), 7.99(2H, d, J=4.2Hz), 8.69(2H, d, J=4.2Hz)(DMSO-d6)	1 1
XB275	1.48-1.59(2H, m), 2.00-2.07(2H, m), 3.06-3.13(2H, m), 3.40(3H, s), 3.44-3.46(1H, m), 3.64(3H, s), 3.66-3.71(2H, m), 5.07(1H, d, J=8.2Hz), 6.59(2H, d, J=7.2Hz), 6.70(2H, d, J=7.2Hz), 6.79(1H, s), 7.98(2H, d, J=4.2Hz), 8.68(2H, d, J=4.2Hz)(DMSO-d6)	392
XB276	1.57-1.68(2H, m), 2.03-2.07(2H, m), 3.05-3.09(2H, m), 3.41(3H, s), 3.51-3.77(6H, m), 4.57(1H, d, J=8.2Hz), 6.53-6.58(1H, m), 6.66-6.69(1H, m), 6.74-6.82(3H, m), 7.99(2H, d, J=4.2Hz), 8.68(2H, d, J=4.2Hz)(DMSO-d6)	392
XB277	1.78-1.92(4H, m), 2.94-3.07(5H, m), 3.41-3.86(10H, m), 6.88-6.92(1H, m), 7.04(1H, s), 7.21-7.24(2H, m), 7.39-7.44(1H, m), 8.48(2H, d, J=4.2Hz), 8.95(2H, d, J=4.2Hz)(DMSO-d6)	406
	1.68-2.08(4H, m), 2.90-2.96(2H, m), 3.15(3H, s), 3.38(3H, s), 3.81-4.04(7H, m), 7.03(1H, s), 7.13(2H, d, J=7.2Hz), 7.81(2H, d, J=7.2Hz), 8.94(2H, d, J=4.2Hz)(DMSO-d6)	406
XB279	1.76-1.85(4H, m), 2.65(3H, s), 2.85-2.94(2H, m), 3.41-3.42(1H, m), 3.44(3H, s), 3.74-3.79(2H, m), 4.02(3H, s), 6.78(1H, s), 6.83-6.99(4H, m), 7.97(2H, d, J=4.2Hz), 8.68(2H, d, J=4.2Hz)(DMSO-d6)	406

XB289	1.72-1.94(4H, m), 2.92-2.99(3H, m), 3.08-3.11(4H, m), 3.41(3H, s), 3.52-3.56(4H, m), 3.66-3.75(2H, m), 5.11(2H, s), 6.78(1H, s), 6.93(2H, d, J=7.2Hz), 7.20(2H, d, J=7.2Hz), 7.28-7.39(5H, m), 7.95(2H, d, J=4.2Hz), 8.69(2H, d, J=4.2Hz)(DMSO-d6)	565
XB290	1.53-1.63(2H, m), 1.85-1.89(2H, m), 2.14(3H, s), 2.31-2.46(8H, m), 2.86-2.94(2H, m), 3.34-3.35(1H, m), 3.39(3H, s), 3.70-3.74(2H, m), 6.79(1H, s), 7.98(2H, d, J=4.2Hz), 8.69(2H, d, J=4.2Hz)(DMSO-d6)	369
XB291	1.52-1.63(2H, m), 1.85-1.90(2H, m), 2.34-2.42(11H, m), 2.86-2.94(2H, m), 3.39(3H, s), 3.45-3.50(2H, m), 3.70-3.74(2H, m), 4.38-4.40(1H, m), 6.80(1H, s), 7.98(2H, d, J=4.2Hz), 8.69(2H, d, J=4.2Hz)(DMSO-d6)	399
XB292	1.71-1.83(4H, m), 2.81-3.00(11H, m), 3.28-3.30(1H, m), 3.41(3H, s), 3.66-3.75(2H, m), 6.78(1H, s), 6.89(2H, d, J=7.2Hz), 7.17(2H, d, J=7.2Hz), 7.96(2H, d, J=4.2Hz), 8.68(2H, d, J=4.2Hz)(DMSO-d6)	431
XB293	1.43-1.53(2H, m), 1.93-1.98(3H, m), 2.63-2.66(1H, m), 2.92-3.00(2H, m), 3.39(3H, s), 3.62-3.79(7H, m), 6.78(1H, s), 6.88-6.97(2H, m), 7.18-7.22(1H, m), 7.35(1H, d, J=7.3Hz), 7.98(2H, d, J=4.2Hz), 8.68(2H, d, J=4.2Hz)(DMSO-d6)	406
XB294	1.42-1.53(2H, m), 1.96-2.08(3H, m), 2.61-2.67(1H, m), 2.91-2.99(2H, m), 3.39(3H, s), 3.62-3.80(7H, m), 6.77(1H, s), 6.86(2H, d, J=7.2Hz), 7.25(2H, d, J=7.2Hz), 7.97(2H, d, J=4.2Hz), 8.68(2H, d, J=4.2Hz)(DMSO-d6)	406
XB295	1.81-1.91(2H, m), 2.61-2.20(2H, m), 2.96-3.17(6H, m), 3.41-3.47(5H, m), 3.74-3.86(4H, m), 6.90-7.03(3H, m), 7.21-7.29(2H, m), 8.44(2H, d, J=4.2Hz), 8.93(2H, d, J=4.2Hz), 9.30-9.38(2H, br)(DMSO-d6)	420
XB296	1.80-1.91(2H, m), 2.07-2.21(2H, m), 2.96-3.11(6H, m), 3.34-3.41(5H, m), 3.69-3.86(4H, m), 6.91(2H, d, J=7.2Hz), 7.05(1H, s), 7.20(2H, d, J=7.2Hz), 8.49(2H, d, J=4.2Hz), 8.96(2H, d, J=4.2Hz), 9.44-9.50(2H, br)(DMSO-d6)	420

XB297	1.41-1.51(2H, m), 1.91-1.96(3H, m), 2.61-2.65(1H, m), 2.86(6H, s), 2.91-2.98(2H, m), 3.38(3H, s), 3.61-3.67(4H, m), 6.70(2H, d, J=7.2Hz), 6.77(1H, s), 7.20(2H, d, J=7.2Hz), 7.97(2H, d, J=4.2Hz), 8.68(2H, d, J=4.2Hz)(DMSO-d6)	419
XB298	2.04(2H, d, J=13.1Hz), 2.34(3H, s), 2.53(2H, m), 2.91(2H, m), 3.55(3H, s), 3.70(2H, d, J=13.1Hz), 4.27(1H, m), 6.08(1H, s), 6.86(1H, s), 7.36-7.48(5H, m), 7.80(2H, dd, J=1.6, 4.3Hz), 8.69(2H, dd, J=1.3, 4.5Hz)(CDCI3)	426
XB299	2.06(2H, d, J=13.1Hz), 2.22(2H, m), 2.99(2H, m), 3.13(1H, m), 3.54(3H, s), 3.70(2H, d, J=13.1Hz), 6.68(1H, s), 7.25(1H, s), 7.44-7.48(2H, m), 7.64-7.67(3H, m), 7.78(2H, dd, J=1.6, 4.3Hz), 8.69(2H, dd, J=1.3, 4.5Hz)(CDCI3)	413
XB300	1.75-1.85(4H, m), 2.97-3.10(5H, m), 3.43(3H, s), 3.71-3.76(2H, m), 3.88-3.93(2H, m), 6.70(1H, dd, J=7.2, 7.3Hz), 6.79(1H, s), 7.02-7.06(2H, m), 7.15-7.23(3H, m), 7.31-7.35(2H, m), 7.97(2H, d, J=4.2Hz), 8.69(2H, d, J=4.2Hz)(DMSO-d6)	464
XB301	1.09-1.34(5H, m), 1.57-1.88(9H, m), 2.78-2.93(3H, m), 3.08-3.18(1H, m), 3.41(3H, s), 3.62-3.74(2H, m), 5.27(1H, d, J=8.2Hz), 6.52(2H, d, J=7.2Hz), 6.79(1H, s), 7.01(2H, d, J=7.2Hz), 7.96(2H, d, J=4.2Hz), 8.68(2H, d, J=4.2Hz)(DMSO-d6)	444
XB302	1.10-1.16(1H, m), 1.32-1.46(4H, m), 1.64-1.82(9H, m), 2.68(3H, s), 2.82-2.93(3H, m), 3.41(3H, s), 3.54-3.74(3H, m), 6.72(2H, d, J=7.2Hz), 6.78(1H, s), 7.12(2H, d, J=7.2Hz), 7.95(2H, d, J=4.2Hz), 8.68(2H, d, J=4.2Hz)(DMSO-d6)	458

No.	NMR .	MS[M+1]
YA0262	(DMSO-d6): 3.47(3H, s), 3.48-3.66(4H, m), 3.89-4.02(2H, m), 4.98(1H, m), 7.06(1H, s), 7.35-7.59(3H, m), 7.99(1H, dd, J=7.2, 6.9Hz), 8.25(1H, dd, J=5.4, 1.2Hz), 9.01(1H, d, J=5.1Hz), 9.31(1H, s), 9.84(1H, m), 10.19(1H, m).	367
YA0263	(CDCl3):3.01(1H,dd,J=10.5,12.4Hz), 3.10-3.35(3H,m), 3.57(3H,s), 3.55-3.65(2H,m), 4.05(1H,dd,J=2.4,10.4Hz), 7.00-7.10(1H,m), 7.30(1H,s), 7.22(2H,m), 7.30-7.42(2H,m), 8.15(1H,dd,J=1.3,5.2Hz), 8.86(1H,d,J=5.2Hz), 9.27(1H,d,J=1.0Hz).	367

_	2.83(1H, dd, J=11.0, 11.9 Hz), 2.93(1H, s),	
	2.99-3.10(3H, m), 3.45(3H, s), 3.61-3.69(2H, m),	
	3.95(1H, dd, J=2.1, 10.3 Hz), 6.97(1H, s),	
YA0264	7.19(2H, t, J=8.8 Hz), 7.48-7.56(2H, m), 8.17(1H,	367
	dd, J=1.0, 5.0 Hz), 8.99(1H, d, J=5.1 Hz),	
	9.29(1H, d, J=1.0 Hz)(DMSO-d6)	
	3.39-3.47(2H, m), 3.45(3H, s), 3.55-3.66(2H, m),	
	3.86-3.96(2H, m), 4.64-4.71(1H, m), 7.05(1H, s),	
YA0264	7.36(2H, t, J=8.7 Hz), 7.77-7.81(2H, m), 8.23(1H,	
(HCI)	dd, J=1.2, 5.1 Hz), 9.02(1H, d, J=5.1 Hz),	367
(,	9.32(1H, d, J=1.2 Hz), 9.79(1H, d, J=10.2 Hz),	•
	10.13-10.28(1H, m)(DMSO-d6)	
	(CDCl3) :2.81(1H,dd,J=10.5,12.6Hz),	
	3.15-3.40(3H,m),	
	3.50-3.65(4H,m),3.65-3.80(1H,m),	
YA0267	4.51(1H,dd,J=2.7,10.5Hz), 7.20-7.45(4H,m),	383
	7.74(1H,dd,J=1.5,7.5Hz), 8.15-8.20(1H,m),	
	8.85(1H,d,J=5.1Hz), 9.27(1H,s).	
·	(CDCl3):3.00(1H,dd,J=10.5,12.6Hz),	
YA0268	3.10-3.35(3H,m), 3.50-3.70(5H,m),	202
1 AU200	4.03(1H,dd,J=2.4,10.5Hz), 7.32(4H,m),	383
	7.50(1H,s), 8.15(1H,dd,J=1.2,5.1Hz),	
	8.87(1H,d,J=5.1Hz), 9.27(1H,d,J=1.5Hz).	
	3.40-3.50(2H, m), 3.45(3H, s), 3.53-3.65(2H, m),	
	3.87-3.97(2H, m), 4.68(1H, t, J=10.2 Hz),	•
YA0269	7.05(1H, s), 7.59(2H, d, J=11.1 Hz), 7.75(2H, d,	383
	J=11.1 Hz), 8.22(1H, dd, J=1.5, 5.4 Hz), 9.02(1H,	
	d, J=5.1 Hz), 9.31(1H, s), 9.83(1H, d, J=9.6 Hz),	
	10.11-10.25(1H, m)(DMSO-d6)	
	(DMSO-d6):3.45(3H,s), 3.40-3.70(4H,m),	
	3.92(2H,t,J=14.1Hz), 4.67(1H,br s), 7.06(1H,s),	
YA0274	7.68(2H,d,J=10.0Hz), 7.72(2H,d,J=10.0Hz),	427
	8.22(1H,d,J=4.8Hz), 9.03(1H,d,J=4.8Hz),	
	9.31(1H,s), 9.88(1H,br s), 10.22(1H,br s).	
	3.38-3.57(4H, m), 3.35(3H,s), 3.89(3H,s),	
	3.91-3.97(2H, m), 4.84-4.94(1H, m), 7.06(1H, s),	
YA0289	7.08-7.15(1H, m), 7.18(1H, d, J=8.4 Hz),	379
	7.41-7.49(1H, m), 7.68(1H, d, J=7.6 Hz),	0.0
	8.25(1H, d, J=4.9 Hz), 9.04(1H, d, J=5.1 Hz),	
	9.32(1H, s)(DMSO)	
	(DMSO-d6) :3.40-3.75(7H,m),	
	3.92(2H,t,J=13.2Hz), 4.64(1H,t,J=9.1Hz),	
	7.00-7.10(2H,m), 7.23(1H,d,J=7.6Hz),	
YA0290	7.35(1H,s), 7.42(1H,t, J=7.8Hz),	379
	8.23(1H,d,J=5.6Hz), 9.02(1H,d,J=5.2Hz),	
	9.32(1H,s), 9.65-9.80(1H,brd),	
	9.90-10.15(1H,brd).	
	(DMSO-d6): 3.42(3H, s), 3.36-3.58(4H, m),	
	3.79(3H, s), 3.83-3.95(2H, m), 4.61(1H, m),	
YA0291	7.05(1H, s), 7.07(2H, d, J=8.1Hz), 7.60(2H, d,	379
	J=8.7Hz), 8.22(1H, dd, J=5.1, 1.2Hz), 9.02(1H,	
	d, J=5.4Hz), 9.31(1H, s), 9.58-9.74(2H, m).	
	1 =1 = 21	

YA0294	1.31(3H, t, J=6.8 Hz), 3.44-3.59(2H, m), 3.48(3H, s), 3.87-3.97(2H, m), 4.09-4.20(2H, m), 4.80-4.91(1H, m), 7.06(1H, s), 7.09-7.17(2H, m), 7.44(1H, t, J=7.4 Hz), 7.64(1H, d, J=7.5 Hz), 8.23(1H, d, J=5.3 Hz), 9.03(1H, d, J=5.2 Hz), 9.32(1H, s), 9.49-9.60(2H, m)(DMSO-d6)	393
YA0304	(DMSO-d6):3.45(3H,s), 3.64(3H,m), 3.93(3H,m), 4.78(1H,t,J=9.6Hz), 7.13(1H,s), 7.97(2H,d,J=8.7Hz), 8.01(2H,d,J=8.7Hz), 8.43(2H,d,J=6.2Hz), 8.93(2H,d,J=6.2Hz), 10.12(1H,s), 10.70(1H,s).	374
YA0331	(CDCl3):2.00(4H,m), 3.05(1H,t,J=11.7Hz), 3.18-3.30(3H,m), 3.29(4H,m), 3.56(3H,s), 3.62(2H,m), 3.91(1H,d,J=8.4Hz), 6.57(2H,d,J=8.7Hz), 7.31(3H,m), 8.17(1H,dd,J=1.2,5.1Hz), 8.85(1H,d,J=5.1Hz), 9.27(1H,d,J=1.2Hz).	418
YA0337	(CDCl3):3.02(1H,dd,J=10.8,12.6Hz), 3.18(8H,m), 3.56(3H,s), 3.61(1H,t,J=9.0Hz), 3.87(4H,m), 3.95(1H,dd,J=2.7,10.8Hz), 6.93(2H,d,J=8.9Hz), 7.31(1H,s), 7.36(2H,d,J=8.9Hz), 8.16(1H,dd,J=1.5,5.4Hz), 8.85(1H,d,J=5.4Hz), 9.27(1H,d,J=1.5Hz).	434
YA0340	(CDCl3):2.36(3H,s), 2.59(4H,m), 3.02(1H,t,J=11.4Hz), 3.16-3.29(7H,m), 3.26(3H,s), 3.61(2H,m), 3.94(1H,d,J=8.0Hz), 6.94(2H,d,J=8.7Hz), 7.31(1H,s), 7.34(2H,d,J=8.7Hz), 8.16(1H,d,J=5.1Hz), 8.85(1H,d,J=5.1Hz), 9.27(1H,s).	447
YA0361	3.39-3.50(2H, m), 3.47(3H, s), 3.61-3.73(1H, m), 3.78(3H, s), 3.83(3H, s), 3.87-3.92(3H, m), 4.92(1H, t, J=10.5 Hz), 6.99-7.11(3H, m), 7.57(1H, d, J=2.7 Hz), 8.25(1H, dd, J=1.2, 5.1 Hz), 9.03(1H, d, J=4.8 Hz), 9.31(1H, d, J=0.9 Hz), 9.78(1H, d, J=9.0 Hz), 10.21-10.38(1H, m)(DMSO-d6)	409
YA0362	(DMSO-d6): 3.47(3H, s), 3.37-4.04(6H, m), 3.94(6H, s), 5.09(1H, m), 6.82(2H, d, J=8.4Hz), 7.05(1H, s), 7.45(1H, t, J=8.4Hz), 8.22(1H, m), 8.24(1H, dd, J=5.4, 1.5Hz), 9.05(1H, d, J=5.1Hz), 9.32(1H, s), 10.06(1H, m).	409
YA0366	3.38-3.60(4H, m), 3.47(3H, s), 3.88-3.95(2H, m), 3.90(3H, s), 4.86-4.92(1H, m), 6.96-7.01(1H, m), 7.06(1H, s), 7.12(1H, d, J=8.8 Hz), 7.71-7.79(1H, m), 8.23-8.24(1H, m), 9.03(1H, d, J=5.1 Hz), 9.32(1H, d, J=1.2 Hz), 9.55-9.72(2H, m)(DMSO)	397
YA0367/ YA0368	(DMSO-d6):3.30-3.75(7H,m), 3.80-4.00(5H,m), 4.80-5.00(1H,m), 6.93-7.00(1H,m), 7.05(1H,s), 7.11(1H,dd,J=2.4,11.4Hz), 7.84(1H,m), 8.23(1H,d,J=5.1Hz), 9.03(1H,d,J=5.1Hz), 9.31(1H,s), 9.60-9.80(1H,brd), 9.90-10.15(1H,brd).	397

	3.31-3.56(3H, m), 3.45(3H, s), 3.69-3.78(1H, m),	
	3.90-3.99(2H, m), 3.94(3H, s), 4.95-5.03(1H, m),	İ
YA0370	6.96-7.02(1H, m), 7.03-7.09(2H, m).	207
	/.49-7.56(1H, m), 8.24(1H, d, J=4.4 Hz),	397
	8.51-8.69(1H, m), 9.03(1H, d, J=5.1 Hz),	
	9.32(1H, s), 10.55-10.67(1H, m) (DMSO)	
	2.77(1H, dd, J=10.5, 12.0 Hz), 3.18-3.30(3H, m),	
1	3.61(3H, s), 3.64-3.71(2H, m), 3.86(3H, s),	
VA0270	4.37(1H, dd, J=2.1, 10.1 Hz), 6.89(1H, d, J=1.7	ł
YA0378	Hz), 6.99(1H, dd, J=1.6, 8.2 Hz), 7.32(1H, s),	413
	7.50(1H, d, J=8.2 Hz), 8.19(1H, d, J=5.2 Hz),	
	8.86(1H, d, J=5.2 Hz), 9.27(1H, s)(CDCl3)	l
	(CDCl3):2.76(1H,dd,J=10.2,12.3Hz),	
1	3.10-3.40(3H,m), 3.55-3.80(5H,m), 3.85(3H,s),	
	4.39(1H,dd,J=2.4,10.2Hz), 6.78(1H,d,J=8.7Hz),	
YA0399	7.32(1H,s), 7.39(1H,dd,J=2.7,8.7Hz),	457
1	7.72(1H,d,J=2.4Hz), 8.20(1H,dd,J=1.2,5.1Hz),	
	8 87/1H d J=5 1U=) 0.27/4H d J=4 0U=)	
	8.87(1H,d,J=5.1Hz), 9.27(1H,d,J=1.2Hz).	
	(CDCl3): 1.98-2.03(4H, m), 2.84(1H, m),	
1	3.17-3.32(7H, m), 3.60(3H, s), 3.59-3.71(2H, m),	
YA0408	3.85(3H, s), 4.28(1H, d, 8.4Hz), 6.10(1H, d,	448
	J=1.8Hz), 6.18(1H, d, J=8.3Hz), 7.29(1H, s),	
	7.33(1H, d, J=8.4Hz), 8.21(1H, d, J=5.2Hz),	
	8.85(1H, d, J=5.2Hz), 9.27(1H, s).	
	(CDCl3):1.95-2.10(4H,m), 2.95-3.10(1H,m),	
	3.19-3.45(7H,m), 3.59(3H,s), 3.50-3.80(2H,m),	
YA0409	3.80(3H,s), 4.48(1H,dd,J=2.2,10.2Hz),	448
	6.49(1H,dd,J=3.0,8.9Hz), 6.63-6.87(2H,m),	440
	7.32(1H,s), 8.20(1H,dd,J=1.4,5.2Hz),	
	8.86(2H,d,J=5.2Hz), 9.27(1H,d,J=1.1Hz).	
	(CDCl3):3.14(2H,m), 3.22(1H,t,J=11.6Hz),	
	3.41(1H,t,J=11.6Hz), 3.82(2H,m), 3.83(3H,s),	
YA0414	3.88(3H,s), 4.58(1H,dd,J=3.1,11.0Hz),	415
	6.51(2H,m), 7.32(1H,s),	415
	8.19(1H,dd,J=1.5,5.3Hz), 8.86(1H,d,J=5.3Hz),	
	9.27(1H,d,J=1.5Hz).	
	(DMSO-d6):3.35-3.70(4H,m), 3.48(3H,s),	
	3.78(3H,s), 3.97(2H,m), 4.70(1H,m),	
	7.06(1H,t,J=7.7Hz), 7.07(1H,s),	
YA0423	7.15(1H,d,J=7.7Hz), 7.31(1H,d,J=7.7Hz),	455
-	7.39(1H,t,J=7.7Hz), 7.61(2H,d,J=8.1Hz),	
	7.70(2H,d,J=8.1Hz), 8.25(1H,d,J=4.5Hz).	
	9.07(1H,d,J=4.5Hz), 9.33(1H,s), 9.66(1H,br s).	
	(DMSO-d6):3.61(3H,m), 3.76(3H,s), 3.81(3H,s),	
	4.01(3H,m), 4.69(1H,t,J=9.9Hz),	
•	7.05(2H,d,J=9.0Hz), 7.07(1H,s),	
YA0425	7.67(2H,d,J=9.0Hz), 7.76(4H,s),	455
	8.24(1H,dd,J=1.2,5.1Hz), 9.03(1H,d,J=5.1Hz),	700
	9.32(1H,d,J=1.2Hz), 9.79(1H,d,J=10.2Hz),	ŀ
	10.07(1H,s).	
	(DMSO-d6):3.30-3.70(4H,m), 3.42(3H,s),	
	3.96(2H,d,J=13.8Hz), 4.71(1H,t,J=11.3Hz),	
YA0434	7.06(1H,s), 7.33(2H,t,J=8.0Hz), 7.77(6H,m),	440
	8.24(1H,d,J=5.4Hz), 9.03(1H,d,J=5.4Hz),	443
	9 22/14 a) 0 20/14 d 1-0 71-1 40 00/41	
	9.32(1H,s), 9.80(1H,d,J=8.7Hz), 10.03(1H,s).	

	3.43-3.59(2H, m), 3.48(3H, s), 3.63-3.75(2H, m),	
	3.97-4.01(2H, m), 4.80-4.86(1H, m), 7.06(1H, s),	•
	7.60-7.64(2H, m), 7.86-7.88(1H, m),	
YA0442	7.95-8.00(2H, m), 8.05-8.07(1H, m),	399
	8.24-8.27(2H, m), 9.02(1H, d, J=5.4 Hz),	
	9.32(1H, s), 10.01(1H, d, J=10.2 Hz),	
	10.30-10.41(1H, m)(DMSO-d6)	
	(CDCl3): 2.97(1H, dd, J=12.3, 10.5Hz),	
	3.18-3.28(5H, m), 3.58(3H, s), 3.59(1H, m),	
	3.77(1H, m), 4.27(1H, dd, 10.2, 2.7Hz),	004
YA0517	4.62(2H, m), 6.89(1H, t, J=7.5Hz), 7.16(1H, m),	391
	7.27(1H, m), 7.28(1H, s), 8.26(1H, dd, J=5.4,	
	1.5Hz), 8.86(1H, d, J=5.4Hz), 9.26(1H, s).	
	(DMSO-d6) :3.15-3.35(1H,m), 3.38-3.50(4H,m),	
	3.70-4.30(9H,m), 5.00-5.20(1H,m),	
	7.00-7.10(2H,m), 7.10-7.20(1H,m),	
YA0864	7.30-7.50(6H,m), 8.15-8.20(1H,m),	487
	8.30-8.40(1H,brd), 9.05(1H,d,J=5.1Hz),	
•		
	9.31(1H,d,J=0.9Hz).	
	(CDCl3):1.80-2.40(3H, m), 3.12-3.34(4H, m),	
	3.39-4.20(7.6H, m), 4.50-5.07(0.6H, m),	
YA1074	5.30-5.60(0.7H, m), 5.72-6.05(0.1H, m),	439
	6.52-6.80(2H, m), 6.82-7.22(1H, m), 7.28(1H, s),	
	8.18(1H, d,J=4.8Hz), 8.89(1H, d,J=5.1Hz),	
	9.28(1H, d,J=1.2Hz)	
	(CDCl3) :2.50-2.62(1H,m), 2.80-2.95(1H,m),	
	3.02-3.20(1H,m), 3.25-3.40(1H,m),	
YA1339	3.50-3.74(5H,m), 3.75-3.80(1H,m), 3.85(3H,s),	411
171,000	6.60-6.80(2H,m), 7.30(1H,s),	
•	7.48(1H,t,J=8.4Hz), 8.19(1H,dd,J=1.2,5.1Hz),	
	8.86(1H,d,J=5.1Hz), 9.27(1H,d,J=1.5Hz).	·
	(DMSO-d6) :2.55(3H,d,J=3.9Hz),	
	3.40-3.80(3H,m), 3.45(3H,s), 3.80-4.15(6H,m),	
YA1340/	4.85-5.15(1H,m), 6.90-7.05(1H,m), 7.05(1H,s),	411
YA1341	7.13(1H,dd,J=2.4,11.4Hz),	-7 ()
	8.21(1H,dd,J=1.2,5.1Hz), 9.04(1H,d,J=5.1Hz),	
	9.31(1H,d,J=1.2Hz), 11.50-12.20(1H,brd).	
•	2.90-3.10 (1H, m), 3.15-3.35 (3H, m), 3.50-3.70	•
•	2.90-3.10 (1H, m), 3.15-3.35 (3H, m), 3.50-3.70 (5H, m), 3.80-4.05 (7H, m), 6.87 (1H, d, J = 8.1	·
VA153/	(5H, m), 3.80-4.05 (7H, m), 6.87 (1H, d, J = 8.1	408
YA1534	(5H, m), 3.80-4.05 (7H, m), 6.87 (1H, d, J = 8.1 Hz), 6.90-7.10 (2H, m), 7.31 (1H, s), 8.16 (1H, d,	408
YA1534	(5H, m), 3.80-4.05 (7H, m), 6.87 (1H, d, J = 8.1 Hz), 6.90-7.10 (2H, m), 7.31 (1H, s), 8.16 (1H, d, J = 4.6 Hz), 8.85 (1H, d, J = 5.0 Hz), 9.27 (1H, s)	408
YA1534	(5H, m), 3.80-4.05 (7H, m), 6.87 (1H, d, J = 8.1 Hz), 6.90-7.10 (2H, m), 7.31 (1H, s), 8.16 (1H, d, J = 4.6 Hz), 8.85 (1H, d, J = 5.0 Hz), 9.27 (1H, s) (CDCl3)	408
YA1534	(5H, m), 3.80-4.05 (7H, m), 6.87 (1H, d, J = 8.1 Hz), 6.90-7.10 (2H, m), 7.31 (1H, s), 8.16 (1H, d, J = 4.6 Hz), 8.85 (1H, d, J = 5.0 Hz), 9.27 (1H, s) (CDCl3) 3.45 (3H, s), 3.46 (2H, m), 3.64 (m, 2H), 3.91 (2H,	408
YA1534	(5H, m), 3.80-4.05 (7H, m), 6.87 (1H, d, J = 8.1 Hz), 6.90-7.10 (2H, m), 7.31 (1H, s), 8.16 (1H, d, J = 4.6 Hz), 8.85 (1H, d, J = 5.0 Hz), 9.27 (1H, s) (CDCl3) 3.45 (3H, s), 3.46 (2H, m), 3.64 (m, 2H), 3.91 (2H, t, J = 16.1 Hz), 4.68 (1H, t, J = 10.5 Hz), 7.05 (1H,	408
	(5H, m), 3.80-4.05 (7H, m), 6.87 (1H, d, J = 8.1 Hz), 6.90-7.10 (2H, m), 7.31 (1H, s), 8.16 (1H, d, J = 4.6 Hz), 8.85 (1H, d, J = 5.0 Hz), 9.27 (1H, s) (CDCl3) 3.45 (3H, s), 3.46 (2H, m), 3.64 (m, 2H), 3.91 (2H, t, J = 16.1 Hz), 4.68 (1H, t, J = 10.5 Hz), 7.05 (1H, s), 7.59 (2H, d, J = 8.4 Hz), 7.79 (2H, d, J = 8.4	
YA1534 YA1535	(5H, m), 3.80-4.05 (7H, m), 6.87 (1H, d, J = 8.1 Hz), 6.90-7.10 (2H, m), 7.31 (1H, s), 8.16 (1H, d, J = 4.6 Hz), 8.85 (1H, d, J = 5.0 Hz), 9.27 (1H, s) (CDCl3) 3.45 (3H, s), 3.46 (2H, m), 3.64 (m, 2H), 3.91 (2H, t, J = 16.1 Hz), 4.68 (1H, t, J = 10.5 Hz), 7.05 (1H, s), 7.59 (2H, d, J = 8.4 Hz), 7.79 (2H, d, J = 8.4 Hz), 8.23 (1H, dd, J = 5.1, 1.2 Hz), 9.02 (1H, d, J	408
	(5H, m), 3.80-4.05 (7H, m), 6.87 (1H, d, J = 8.1 Hz), 6.90-7.10 (2H, m), 7.31 (1H, s), 8.16 (1H, d, J = 4.6 Hz), 8.85 (1H, d, J = 5.0 Hz), 9.27 (1H, s) (CDCl3) 3.45 (3H, s), 3.46 (2H, m), 3.64 (m, 2H), 3.91 (2H, t, J = 16.1 Hz), 4.68 (1H, t, J = 10.5 Hz), 7.05 (1H, s), 7.59 (2H, d, J = 8.4 Hz), 7.79 (2H, d, J = 8.4 Hz), 8.23 (1H, dd, J = 5.1, 1.2 Hz), 9.02 (1H, d, J = 5.1 Hz), 9.31 (1H, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, d, d, d, d, d, d, d, d, d, d, d,	
	(5H, m), 3.80-4.05 (7H, m), 6.87 (1H, d, J = 8.1 Hz), 6.90-7.10 (2H, m), 7.31 (1H, s), 8.16 (1H, d, J = 4.6 Hz), 8.85 (1H, d, J = 5.0 Hz), 9.27 (1H, s) (CDCI3) 3.45 (3H, s), 3.46 (2H, m), 3.64 (m, 2H), 3.91 (2H, t, J = 16.1 Hz), 4.68 (1H, t, J = 10.5 Hz), 7.05 (1H, s), 7.59 (2H, d, J = 8.4 Hz), 7.79 (2H, d, J = 8.4 Hz), 8.23 (1H, dd, J = 5.1, 1.2 Hz), 9.02 (1H, d, J = 5.1 Hz), 9.31 (1H, d, J = 1.2 Hz), 10.00 (1H, d, J = 8.7 Hz), 10.49 (1H, br s) (DMSO-6)	
	(5H, m), 3.80-4.05 (7H, m), 6.87 (1H, d, J = 8.1 Hz), 6.90-7.10 (2H, m), 7.31 (1H, s), 8.16 (1H, d, J = 4.6 Hz), 8.85 (1H, d, J = 5.0 Hz), 9.27 (1H, s) (CDCl3) 3.45 (3H, s), 3.46 (2H, m), 3.64 (m, 2H), 3.91 (2H, t, J = 16.1 Hz), 4.68 (1H, t, J = 10.5 Hz), 7.05 (1H, s), 7.59 (2H, d, J = 8.4 Hz), 7.79 (2H, d, J = 8.4 Hz), 8.23 (1H, dd, J = 5.1, 1.2 Hz), 9.02 (1H, d, J = 5.1 Hz), 9.31 (1H, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, J = 1.2 Hz), 10.00 (1H, d, d, d, d, d, d, d, d, d, d, d, d, d,	
	(5H, m), 3.80-4.05 (7H, m), 6.87 (1H, d, J = 8.1 Hz), 6.90-7.10 (2H, m), 7.31 (1H, s), 8.16 (1H, d, J = 4.6 Hz), 8.85 (1H, d, J = 5.0 Hz), 9.27 (1H, s) (CDCI3) 3.45 (3H, s), 3.46 (2H, m), 3.64 (m, 2H), 3.91 (2H, t, J = 16.1 Hz), 4.68 (1H, t, J = 10.5 Hz), 7.05 (1H, s), 7.59 (2H, d, J = 8.4 Hz), 7.79 (2H, d, J = 8.4 Hz), 8.23 (1H, dd, J = 5.1, 1.2 Hz), 9.02 (1H, d, J = 5.1 Hz), 9.31 (1H, d, J = 1.2 Hz), 10.00 (1H, d, J = 8.7 Hz), 10.49 (1H, br s) (DMSO-6)	
YA1535	(5H, m), 3.80-4.05 (7H, m), 6.87 (1H, d, J = 8.1 Hz), 6.90-7.10 (2H, m), 7.31 (1H, s), 8.16 (1H, d, J = 4.6 Hz), 8.85 (1H, d, J = 5.0 Hz), 9.27 (1H, s) (CDCI3) 3.45 (3H, s), 3.46 (2H, m), 3.64 (m, 2H), 3.91 (2H, t, J = 16.1 Hz), 4.68 (1H, t, J = 10.5 Hz), 7.05 (1H, s), 7.59 (2H, d, J = 8.4 Hz), 7.79 (2H, d, J = 8.4 Hz), 8.23 (1H, dd, J = 5.1, 1.2 Hz), 9.02 (1H, d, J = 5.1 Hz), 9.31 (1H, d, J = 1.2 Hz), 10.00 (1H, d, J = 8.7 Hz), 10.49 (1H, br s) (DMSO-6) 3.45 (3H, s), 3.46 (2H, m), 3.64 (m, 2H), 3.91 (2H,	383
	(5H, m), 3.80-4.05 (7H, m), 6.87 (1H, d, J = 8.1 Hz), 6.90-7.10 (2H, m), 7.31 (1H, s), 8.16 (1H, d, J = 4.6 Hz), 8.85 (1H, d, J = 5.0 Hz), 9.27 (1H, s) (CDCI3) 3.45 (3H, s), 3.46 (2H, m), 3.64 (m, 2H), 3.91 (2H, t, J = 16.1 Hz), 4.68 (1H, t, J = 10.5 Hz), 7.05 (1H, s), 7.59 (2H, d, J = 8.4 Hz), 7.79 (2H, d, J = 8.4 Hz), 8.23 (1H, dd, J = 5.1, 1.2 Hz), 9.02 (1H, d, J = 5.1 Hz), 9.31 (1H, d, J = 1.2 Hz), 10.00 (1H, d, J = 8.7 Hz), 10.49 (1H, br s) (DMSO-6) 3.45 (3H, s), 3.46 (2H, m), 3.64 (m, 2H), 3.91 (2H, t, J = 16.1 Hz), 4.68 (1H, t, J = 10.5 Hz), 7.05 (1H, s), 7.59 (2H, d, J = 8.4 Hz), 7.79 (2H, d, J = 8.4	
YA1535	(5H, m), 3.80-4.05 (7H, m), 6.87 (1H, d, J = 8.1 Hz), 6.90-7.10 (2H, m), 7.31 (1H, s), 8.16 (1H, d, J = 4.6 Hz), 8.85 (1H, d, J = 5.0 Hz), 9.27 (1H, s) (CDCI3) 3.45 (3H, s), 3.46 (2H, m), 3.64 (m, 2H), 3.91 (2H, t, J = 16.1 Hz), 4.68 (1H, t, J = 10.5 Hz), 7.05 (1H, s), 7.59 (2H, d, J = 8.4 Hz), 7.79 (2H, d, J = 8.4 Hz), 8.23 (1H, dd, J = 5.1, 1.2 Hz), 9.02 (1H, d, J = 5.1 Hz), 9.31 (1H, d, J = 1.2 Hz), 10.00 (1H, d, J = 8.7 Hz), 10.49 (1H, br s) (DMSO-6) 3.45 (3H, s), 3.46 (2H, m), 3.64 (m, 2H), 3.91 (2H, t, J = 16.1 Hz), 4.68 (1H, t, J = 10.5 Hz), 7.05 (1H,	383

9.80 (1H, d, J = 9.3 Hz), 10.23 (1H, br s)

(DMSO-d6)

	T = 00 (01)	
YA1546	2.80 (3H, d, J = 4.5 Hz), 3.26 (4H, m), 3.44 (3H, s), 3.45 (4H, m), 3.60 (2H, m), 3.80 (1H, d, J = 3.5 Hz), 3.90 (3H, m), 4.54 (1H, t, J = 10.5 Hz), 7.04 (1H, s), 7.10 (2H, d, J = 8.7 Hz), 7.62 (2H, d, J = 8.7 Hz), 8.20 (1H, dd, J = 5.1, 1.2 Hz), 9.02 (1H, d, J = 5.1 Hz), 9.32 (1H, d, J = 1.2 Hz), 9.86 (1H, d, J = 10.2 Hz), 10.33 (1H, br s), 11.15 (1H, br s) (DMSO-d6)	447
YA1547	2.28(3H, s), 3.07(4H, t, J=4.7Hz), 3.37(4H, t, J=4.8Hz), 3.75(3H, s), 5.76(1H, s), 7.26-7.33(2H, m), 7.45(2H, dd, J=7.8, 7.8Hz), 7.79(2H, d, J=7.8Hz), 8.14(1H, d, J=5.4Hz), 8.87(1H, dd, J=7.8, 7.8Hz), 9.28(1H, d, J=1.2Hz)(CDCI3)	428
YA1548	2.37 (1H, m), 2.43 (1H, m), 2.80 (3H, d, J = 5.2 Hz), 2.81 (3H, d, J = 5.2 Hz), 3.28 (1H, q, J = 8.8 Hz), 3.40 (2H, m), 3.44 (3H, s), 3.57 (5H, m), 3.79 (1H, d, J = 11.4 Hz), 3.97 (2H, m), 4.50 (1H, t, J = 10.0 Hz), 6.69 (2H, d, J = 8.4 Hz), 7.05 (1H, s), 7.54 (2H, d, J = 8.4 Hz), 8.20 (1H, dd, J = 4.8, 1.2 Hz), 9.03 (1H, d, J = 4.8 Hz), 9.32 (1H, d, J = 1.2 Hz), 9.71 (1H, br s), 10.06 (1H, br s), 11.35 (1H, br s) (DMSO-d6)	461
YA1549	2.33 (1H, m), 2.41 (1H, m), 2.79 (3H, d, J = 4.8 Hz), 2.81 (3H, d, J = 4.8 Hz), 3.28 (1H, d, J = 8.4 Hz), 3.39 (2H, m), 3.44 (3H, s), 3.57 (5H, m), 3.79 (1H, d, J = 13.3 Hz), 3.97 (2H, m), 4.50 (1H, t, J = 11.6 Hz), 6.69 (2H, d, J = 8.4 Hz), 7.04 (1H, s), 7.55 (2H, d, J = 8.4 Hz), 8.21 (2H, d, J = 5.2 Hz), 9.02 (2H, d, J = 5.2 Hz), 9.32 (1H, s), 9.75 (1H, br s), 10.14 (1H, br s), 11.45 (1H, br s) (DMSO-d6)	461
YA1550	3.47 (3H, s), 3.60 (2H, m), 3.76 (2H, m), 3.81 (3H, s), 3.94 (2H, m), 4.68 (1H, m), 7.05 (2H, d, J = 8.6 Hz), 7.06 (1H, s), 7.67 (2H, d, J = 8.6 Hz), 7.76 (4H, s), 8.25 (1H, d, J = 5.0 Hz), 9.03 (1H, d, J = 5.0 Hz), 9.32 (1H, s) (DMSO-d6)	455
YA1551	1.18 (1H, m), 1.40 (4H, m), 1.70 (1H, m), 1.80 (4H, m), 2.55 (1H, m), 3.43 (2H, m), 3.45 (3H, s), 3.60 (2H, m), 3.91 (2H, m), 4.60 (1H, t, J = 10.8 Hz), 7.05 (1H, s), 7.35 (2H, d, J = 8.0 Hz), 7.64 (2H, d, J = 8.0 Hz), 9.03 (1H, d, J = 4.8 Hz), 9.31 (1H, s), 9.80 (1H, d, J = 8.8 Hz), 10.24 (1H, m) (DMSO-d6)	431
YA1552	3.02(4H, m), 3.23(4H, m), 3.49(3H, s), 7.08-7.67(10H, m), 8.15(1H, d, J=5.1Hz), 8.87(1H, d, J=5.1Hz), 9.27(1H, s)(CDCl3)	424
YA1553	2.90 (1H, dd, J = 13.2, 9.6 Hz), 3.16 (2H, m), 3.24 (1H, d, 14.4 Hz), 3.31 (3H, s), 3.34 (1H, d, J = 13.6 Hz), 3.47 (1H, t, J = 13.2 Hz), 3.80 (3H, m), 6.97 (1H, s), 7.38 (2H, m), 7.45 (3H, m), 7.64 (1H, dd, J = 5.2, 1.2 Hz), 8.94 (1H, d, J = 5.2 Hz), 9.28 (1H, d, J = 1.2 Hz), 9.54 (1H, br s), 9.78 (1H, br s) (DMSO-d6)	363

_		
YA1571	1.27(6H, d, J= 6.0 Hz), 2.43(2H, dd, J= 11.1, 11.1 Hz), 3.02(1H, dd, J=12.0, 10.5 Hz), 3.17-3.23(3H, m), 3.45-3.61(4H, m), 3.56(3H, s), 3.81(1H, m), 3.95(1H, m), 6.92(2H, d, J= 8.7 Hz), 7.32(1H, s), 7.35(2H, d, J= 8.7 Hz), 8.17(1H, m), 8.86(1H, d, J=5.1 Hz), 9.26(1H, d, J=1.2 Hz) (CDCI3)	462
YA1572	3.27-3.32(8H, m), 3.47(3H, s), 3.82-3.86(2H, m), 4.36-4.39(1H, m), 7.02(1H, s), 7.72(2H, d, J=7.2Hz), 7.84(2H, d, J=7.2Hz), 7.96-8.04(4H, m), 8.22(1H, d, J=4.2Hz), 9.01(1H, d, J=4.2Hz), 9.30(1H, s)(DMSO-d6)	503
YA1573	2.93-3.10(5H, m), 3.46(3H, s), 3.69-3.71(1H, m), 4.01-4.04(1H, m), 6.99(1H, s), 7.63(2H, d, J=7.2Hz), 7.77(2H, d, J=7.2Hz), 7.88-7.95(4H, m), 8.18(1H, d, J=4.2Hz), 8.99(1H, d, J=4.2Hz), 9.29(1H, s)(DMSO-d6)	450
YA1574	3.08 (1H, dd, J = 12.5, 10.4 Hz), 3.24 (3H, m), 3.59 (3H, s), 3.66 (2H, m), 4.09 (1H, dd, J = 10.4, 2.4 Hz), 7.29 (2H, d, J = 8.3 Hz), 7.33 (1H, s), 7.54 (2H, d, J = 8.3 Hz), 7.56 (2H, d, J = 8.3 Hz), 7.59 (2H, d, J = 8.3 Hz), 8.17 (1H, d, J = 4.9 Hz), 8.86 (1H, d, J = 4.9 Hz), 9.27 (1H, s) (CDCI3)	509
YA1575	3.08 (1H, dd, J = 12.4, 10.0 Hz), 3.25 (3H, m), 3.59 (3H, s), 3.67 (2H, m), 4.11 (1H, dd, J = 10.0, 2.0 Hz), 7.33 (1H, s), 7.57 (2H, d, J = 8.0 Hz), 7.63 (2H, d, J = 8.0 Hz), 7.71 (4H, s), 8.16 (1H, dd, J = 5.2, 1.2 Hz), 8.16 (1H, dd, J = 5.2, 1.2 Hz), 8.86 (1H, d, J = 5.2 Hz), 9.27 (1H, d, J = 1.2 Hz) (CDCI3)	493
YA1576	1.45 (3H, t, J = 7.0 Hz), 3.08 (1H, dd, J = 12.5, 10.6 Hz), 3.22 (3H, m), 3.58 (3H, s), 3.62 (2H, m), 4.05 (1H, m), 4.08 (2H,q, J = 7.0 Hz), 6.98 (2H, d, J = 8.0 Hz), 7.32 (1H, s), 7.49 (2H, d, J = 8.0 Hz), 7.52 (2H, d, J = 8.0 Hz), 7.58 (2H, d, J = 8.0 Hz), 8.17 (1H, d, J = 5.3 Hz), 8.86 (1H, d, J = 5.3 Hz), 9.27 (1H, s), (CDCI3)	469
YA1577	1.83 (4H, m), 1.99 (1H, m), 2.21 (1H, m), 2.61 (4H, m), 2.87 (1H, m), 3.03 (1H, dd, J = 12.0, 10.0 Hz), 3.20 (4H, m), 3.33 (1H, m), 3.42 (1H, m), 3.49 (1H, m), 3.56 (3H, s), 3.61 (2H, m), 3.90 (1H, dd, J = 10.0, 2.0 Hz), 6.55 (2H, d, J = 8.8 Hz), 7.29 (2H, d, J = 8.8 Hz), 7.30 (1H, s), 8.16 (1H, d, J = 5.2 Hz), 8.85 (1H, d, J = 5.2 Hz), 9.26 (1H, s) (CDCI3)	487
YA1578	3.09 (1H, dd, J = 12.4, 10.8 Hz), 3.20 (3H, m), 3.58 (3H, s), 3.64 (2H, m), 3.82 (3H, s), 3.86 (3H, s), 4.05 (1H, dd, J = 10.4, 2.8 Hz), 6.58 (2H, m), 7.24 (2H, m), 7.32 (1H, s), 7.47 (2H, d, J = 8.4 Hz), 7.53 (2H, d, J = 8.4 Hz), 8.17 (1H, dd, J = 5.2, 1.2 Hz), 8.86 (1H, d, J = 5.2 Hz), 9.27 (1H, d, J = 1.2 Hz) (CDCI3)	485

YA1579	3.08 (1H, dd, J = 12.5, 10.6 Hz), 3.23 (3H, m), 3.59 (3H, s), 3.66 (2H, m), 3.93 (3H, s), 3.96 (3H, s), 4.07 (1H, dd, J = 10.3, 2.2 Hz), 6.95 (1H, d, J = 8.3 Hz), 7.11 (1H, d, J = 2.0 Hz), 7.16 (1H, dd, J = 8.3, 2.0 Hz), 7.33 (1H, s), 7.52 (1H, d, J = 8.1 Hz), 7.59 (1H, d, J = 8.1 Hz), 8.17 (1H, dd, J = 5.3, 1.2 Hz), 8.85 (1H, d, J = 5.3 Hz), 9.27 (1H, d, J = 1.2 Hz) (CDCI3)	485
YA1580	3.07 (1H, dd, J = 12.4, 10.4 Hz), 3.23 (3H, m), 3.59 (3H, s), 3.65 (2H, m), 4.08 (1H, dd, J = 10.4, 2.0 Hz), 7.32 (1H, s), 7.41 (2H, d, J = 8.4 Hz), 7.52 (2H, d, J = 8.4 Hz), 7.53 (2H, d, J = 8.4 Hz), 7.58 (2H, d, J = 8.4 Hz), 8.16 (1H, d, J = 4.8 Hz), 8.86 (1H, d, J = 4.8 Hz), 9.27 (1H, s) (CDCI3)	459
YA1581	3.09 (1H, dd, J = 12.2, 11.0 Hz), 3.24 (3H, m), 3.59 (3H, s), 3.66 (2H, m), 4.10 (1H, dd, J = 10.4, 2.4 Hz), 7.29 (2H, m), 7.33 (1H, s), 7.44 (2H, d, J = 8.0 Hz), 7.52 (3H, m), 8.18 (1H, dd, J = 5.3, 1.0 Hz), 8.87 (1H, d, J = 5.3 Hz), 9.27 (1H, d, J = 1.0 Hz) (CDCI3)	493
YA1582	3.06 (1H, dd, J = 12.4, 10.4 Hz), 3.25 (3H, m), 3.58 (3H, s), 3.65 (2H, m), 4.09 (1H, dd, J = 10.0, 2.0 Hz), 7.33 (1H, s), 7.42 (1H, dd, J = 8.0, 2.0 Hz), 7.56 (5H, m), 7.68 (1H, d, J = 2.0 Hz), 8.16 (1H, dd, J = 5.2, 1.2 Hz), 8.85 (1H, d, J = 5.2 Hz), 9.27 (1H, d, J = 1.2 Hz) (CDCl3)	493
YA1583	3.06 (1H, dd, J = 12.3, 10.8 Hz), 3.23 (3H, m), 3.59 (3H, s), 3.65 (2H, m), 4.13 (1H, dd, J = 10.2, 2.2 Hz), 7.33 (1H, s), 8.14 (1H, d, J = 5.3 Hz), 8.15 (2H, d, J = 8.4 Hz), 8.78 (1H, s), 8.86 (1H, d, J = 5.3 Hz), 9.27 (1H, s) (CDCI3)	417
YA1584	1.37(6H, d, J= 6.0 Hz), 3.07(1H, dd, J=12.6, 10.8 Hz), 3.20-3.26(3H, m), 3.58(3H, s), 3.65-3.68(2H, m), 4.07(1H, m), 4.59(1H, m), 6.98(2H, d, J= 8.7 Hz), 7.48(1H, s), 7.50-7.61(6H, m), 8.17(1H, d, J=4.8 Hz), 8.86(1H, d, J=5.1 Hz), 9.26(1H, d, J=1.2 Hz) (CDCI3)	483
YA1585	0.99(3H, t, J= 7.5 Hz), 1.47-1.82(4H, m), 3.07(1H, dd, J=12.3, 10.5 Hz), 3.22-3.27(3H, m), 3.58(3H, s), 3.62-3.65(2H, m), 4.03(2H, t, J= 6.3 Hz), 4.04(1H, m), 6.98(2H, d, J= 8.7 Hz), 7.48(1H, s), 7.50-7.59(6H, m), 8.17(1H, dd, J=5.1, 1.2 Hz), 8.86(1H, d, J=5.1 Hz), 9.26(1H, d, J=1.2 Hz) (CDCI3)	497
YA1586	1.28(1H, br.s), 2.51(3H, s), 3.07(1H, dd, J=10.8, 12.6Hz), 3.21-3.28(3H, m), 3.58(3H, s), 3.64(2H, m), 4.08(1H, dd, J=2.5, 19.5Hz), 7.34(2H, d, J=7.8Hz), 7.45-7.67(7H, m), 8.17(1H, d, J=5.4Hz), 8.86(1H, d, J=5.1Hz), 9.27(1H, d, J=1.2Hz)(CDCl3)	470

WO 2004/085408

406

1.48-1.58(2H, m), 2.00-2.07(2H, m), 2.71(6H, s), 3.07-3.14(2H, m), 3.34-3.36(1H, m), 3.48(3H, s),

3.69-3.73(2H, m), 4.87(1H, d, J=8.2Hz),

6.56-6.66(4H, m), 6.96(1H, s), 8.24(1H, d,

J=4.2Hz), 9.00(1H, d, J=4.2Hz), 9.30(1H,

s)(DMSO-d6)

YB261

YB262	1.51-1.62(2H, m), 2.02-2.08(2H, m), 3.10-3.18(2H, m), 3.42(3H, s), 3.46-3.50(1H, m), 3.67(3H, s), 3.69-3.73(2H, m), 5.56(1H, d, J=8.2Hz), 6.10-6.24(3H, m), 6.94-6.99(2H, m), 8.24(1H, d, J=4.2Hz), 9.00(1H, d, J=4.2Hz), 9.29(1H, s)(DMSO-d6)	393
YB263	1.48-1.58(2H, m), 2.01-2.08(2H, m), 3.08-3.17(2H, m), 3.40(3H, s), 3.41-3.43(1H, m), 3.63(3H, s), 3.69-3.73(2H, m), 5.09(1H, d, J=8.2Hz), 6.59(2H, d, J=7.2Hz), 6.72(2H, d, J=7.2Hz), 6.96(1H, s), 8.24(1H, d, J=4.2Hz), 9.01(1H, d, J=4.2Hz), 9.29(1H, s)(DMSO-d6)	393
YB264	1.58-1.69(2H, m), 2.04-2.08(2H, m), 3.08-3.15(2H, m), 3.42(3H, s), 3.55-3.83(6H, m), 4.57(1H, d, J=8.2Hz), 6.53-6.90(4H, m), 7.03(1H, s), 8.25(1H, d, J=4.2Hz), 9.00(1H, d, J=4.2Hz), 9.30(1H, s)(DMSO-d6)	393
YB265	1.66-1.87(3H, m), 1.91-1.99(1H, m), 2.93-3.08(3H, m), 3.43(3H, s), 3.72-3.78(2H, m), 6.97(1H, s), 7.34(2H, d, J=5.7 Hz), 7.54(2H, d, J=5.4 Hz), 8.18(1H, dd, J=5.4, 1.2 Hz), 8.99(1H, d, J=5.1 Hz), 9.29(1H, d, J=0.9 Hz)(DMSO)	426
YB266	1.71-1.91(4H, m), 2.41-2.45(2H, m), 2.53-2.56(4H, m), 2.93-3.00(3H, m), 3.08-3.10(4H, m), 3.43(3H, s), 3.50-3.54(2H, m), 3.67-3.71(2H, m), 4.42-4.46(1H, m), 6.90(2H, d, J=7.2Hz), 6.96(1H, s), 7.19(2H, d, J=7.2Hz), 8.17(1H, dd, J=1.2, 4.2Hz), 8.99(1H, d, J=4.2Hz), 9.29(1H, d, J=1.2Hz)(DMSO-d6)	476
YB267	1.70-1.94(4H, m), 2.86(6H, s), 2.89-2.90(3H, m), 3.43(3H, s), 3.66-3.77(2H, m), 6.71(2H, d, J=7.2Hz), 6.96(1H, s), 7.15(2H, d, J=7.2Hz), 8.17(1H, d, J=4.2Hz), 8.99(1H, d, J=4.2Hz), 9.28(1H, s)(DMSO-d6)	391
YB268	1.72-1.84(4H, m), 2.89-3.08(7H, m), 3.43(3H, s), 3.67-3.77(6H, m), 6.90-6.96(3H, m), 7.21(2H, d, J=7.2Hz), 8.17(1H, d, J=4.2Hz), 8.99(1H, d, J=4.2Hz), 9.29(1H, s)(DMSO-d6)	433
YB269	1.51-1.83(10H, m), 2.87-3.00(3H, m), 3.07-3.10(4H, m), 3.43(3H, s), 3/68-3.77(2H, m), 6.89(2H, d, J=7.2Hz), 6.96(1H, s), 7.17(2H, d, J=7.2Hz), 8.18(1H, d, J=4.2Hz), 8.99(1H, d, J=4.2Hz), 9.29(1H, s)(DMSO-d6)	431
YB270	1.72-1.90(4H, m), 2.21(3H, s), 2.42-2.45(4H, m), 2.87-2.97(3H, m), 3.08-3.10(4H, m), 3.43(3H, s), 3.67-3.77(2H, m), 6.90(2H, d, J=7.2Hz), 6.96(1H, s), 7.19(2H, d, J=7.2Hz), 8.17(1H, d, J=4.2Hz), 8.98(1H, d, J=4.2Hz), 9.29(1H, s)(DMSO-d6)	446
YB271	1.63-1.95(6H, m), 2.04-2.08(2H, m), 2.61-2.65(2H, m), 2.69(6H, s), 2.86-3.00(3H, m), 3.13-3.16(1H, m), 3.43(3H, s), 3.67-3.81(4H, m), 6.92-6.96(3H, m), 7.20(2H, d, J=7.2Hz), 8.17(1H, d, J=4.2Hz), 9.00(1H, d, J=4.2Hz), 9.29(1H, s)(DMSO-d6)	474

Test Example: Inhibitory activity of the medicament of the present invention against P-GS1 phosphorylation by bovine cerebral TPK1

A mixture containing 100 mM MES-sodium hydroxide (pH 6.5), 1 mM magnesium acetate, 0.5 mM EGTA, 5 mM β -mercaptoethanol, 0.02% Tween 20, 10% glycerol, 12 μ g/ml P-GS1, 41.7 μ M [γ -32P] ATP (68 kBq/ml), bovine cerebral TPK1 and a compound shown in Table (a final mixture contained 1.7% DMSO deriving from a solution of a test compound prepared in the presence of 10% DMSO) was used as a reaction system. The phosphorylation was started by adding ATP, and the

WO 2004/085408

Table 6

Compound No.	IC50
XA361	0.018 μ M
XB80	0.23 μ Μ
YA0864	0.216 μ M
YB257	0.014 μ M

Formulation Example

(1) Tablets

The ingredients below were mixed by an ordinary method and compressed by using a conventional apparatus.

Compound of Example 1	30 mg
Crystalline cellulose	60 mg
Corn starch	100 mg
Lactose	200 mg
Magnesium stearate	4 mg

(2) Soft capsules

The ingredients below were mixed by an ordinary method and filled in soft capsules.

Compound of Example 1	30 mg
Olive oil	300 mg
Lecithin	20 mg

Industrial Applicability

The compounds of the present invention have TPK1 inhibitory activity and are useful as an active ingredient of a medicament for preventive and/or therapeutic treatment of diseases caused by abnormal advance of TPK1 such as neurodegenerative diseases (e.g. Alzheimer disease) and the above-mentioned diseases.

CLAIMS

 A pyrimidone derivative represented by formula (I) or a salt thereof, or a solvate thereof or a hydrate thereof:

$$(X)_{m}$$

$$(X)_{m}$$

$$(X)_{n}$$

$$(X)_$$

wherein Q represents CH or nitrogen atom;

R represents a C₁-C₁₂ alkyl group which may be substituted; the ring of:

represents piperazine ring or piperidine ring;

each X independently represents

$$X^1 - X^2 -$$

wherein X¹ represents an oxo group; a C₁-C₂ alkyl group which may be substituted; a C₃-C₂ cycloalkyl group which may be substituted; an optionally partially hydrogenated C₆-C₁₀ aryl ring which may be substituted; an indan ring which may be substituted; an optionally substituted heterocyclic ring having 1 to 4 hetero atoms selected from the group consisting of oxygen atom, sulfur atom, and nitrogen atom, and having 5 to 10 ring-constituting atoms in total; an aralkyloxy group; a group represented by ¬N(R₂)(R₂b) wherein R₂ and R₂b are the same or different and each is hydrogen, a C₁-C₄ alkyl group which may be substituted, an aralkyl group which may be substituted, an

aryl group which may be substituted, C_1 - C_8 alkylcarbonyl group which may be substituted,

C3-C8 cycloalkylcarbonyl group which may be substituted, aralkycarbonyl group which may be substituted, C6-C10 arylcarbonyl group which may be substituted, C1-C8 alkysulfonyl group which may be substituted, C3-C8 cycloalkylsulfonyl group which may be substituted, aralkysulfonyl group which may be substituted, C6-C10 arylsulfonyl group which may be substituted, C1-C8 alkyloxycarbonyl group which may be substituted, C3-C8 cycloalkyloxycarbonyl group which may be substituted, aralkyoxycarbonyl group which may be substituted, C6-C10 aryloxycarbonyl group which may be substituted, aralkyoxycarbonyl group which may be substituted, aminocarbonyl,

N-C1-C8 alkylaminocarbonyl group which may be substituted,

N, N'-C1-C8 dialkylaminocarbonyl group which may be substituted,

N-C1-C8 alkyl-N'-C3-C8 cycloalkylaminocarbonyl group which may be substituted,

N-C1-C8 alkyl-N'-aralkylaminocarbonyl group which may be substituted,

N-C1-C8 alkyl-N'-C6-C10 arylaminocarbonyl group which may be substituted,

C8-C8 cycloalkylaminocarbonyl group which may be substituted,

N,N'-C3-C8 dicycloalkylaminoycarbonyl group which may be substituted,

N-C3-C8 cycloalkyl-N'-aralkylaminocarbonyl group which may be substituted,

N-C3-C8 cycloalkyl-N'-C6-C10 arylaminocarbonyl group which may be substituted,

aralkylaminocarbonyl group which may be substituted,

N,N'-diaralkylaminocarbonyl group which may be substituted,

N-aralkyl- N'-C6-C10 arylaminocarbonyl group which may be substituted, C6-C10 arylaminocarbonyl group which may be substituted, N,N'-C6-C10 diarylaminocarbonyl group which may be substituted,

or an optionally substituted heterocyclic ring having 1 to 4 hetero atoms selected from the group consisting of oxygen atom, sulfur atom, and nitrogen atom, and having 5 to 10 ring-constituting atoms in total; or Ra and Rb together with the adjacent nitrogen atom form a 4 to 7 membered heterocyclic ring which may further contain 1 to 4 groups selected from an oxygen atom, a sulfur atom, N-Rc (wherein Rc represents a hydrogen atom, a C1-C4 alkyl group which may be substituted, an aralkyl group which may be substituted, C_3 - C_8 cycloalkyl group which may be substituted or an aryl group which may be substituted, C₁-C₈ alkylcarbonyl group which may be substituted, C3-C8 cycloalkylcarbonyl group which may be substituted, aralkycarbonyl group which may be substituted, C6-C10 arylcarbonyl group which may be substituted, C1-C8 alkysulfonyl group which may be substituted, C3-C8 cycloalkylsulfonyl group which may be substituted, aralkysulfonyl group which may be substituted, C₆-C₁₀ arylsulfonyl group which may be substituted, C₁-C₈ alkyloxycarbonyl group which may be substituted, C₈-C₈ cycloalkyloxycarbonyl group which may be substituted, aralkyoxycarbonyl group which may be substituted, C6-C10 aryloxycarbonyl group which may be substituted, aminocarbonyl. N-C1-C8 alkylaminocarbonyl group which may be substituted,

N, N'-C1-C8 dialkylaminocarbonyl group which may be substituted,

N-C1-C8 alkyl-N'-C8-C8 cycloalkylaminocarbonyl group which may be substituted,

N-C₁-C₈ alkyl-N'-aralkylaminocarbonyl group which may be substituted,

N-C1-C8 alkyl-N'-C6-C10 arylaminocarbonyl group which may be substituted,

C3-C8 cycloalkylaminocarbonyl group which may be substituted,

N,N'-C3-C8 dicycloalkylaminoycarbonyl group which may be substituted,

a carbonyl group, a sulfinyl group or a sulfonyl group in the ring, and said 4 to 7 membered heterocyclic ring may optionally be fused with an aryl group which may be substituted;

X² represents a bond, a carbonyl group, a sulfinyl group, a sulfonyl group, an oxygen atom, a sulfur atom, a C1-C4 alkylene group which may be substituted or N-Rd (Rd represents a hydrogen atom, a C1-C4 alkyl group which may be substituted, an aralkyl group which may be substituted, C3-C3 cycloalkyl group which may be substituted or an aryl group which may be substituted,
C1-C3 alkylcarbonyl group which may be substituted,
C3-C4 cycloalkylcarbonyl group which may be substituted,
C3-C5 cycloalkylcarbonyl group which may be substituted,
C1-C5 alkysulfonyl group which may be substituted,
C1-C5 alkysulfonyl group which may be substituted,
C3-C6 cycloalkylsulfonyl group which may be substituted,
C3-C6 cycloalkylsulfonyl group which may be substituted,
C3-C6 cycloalkylsulfonyl group which may be substituted,

WO 2004/085408 PCT/JP2004/004320

 C_1 - C_8 alkyloxycarbonyl group which may be substituted, C_3 - C_8 cycloalkyloxycarbonyl group which may be substituted, aralkyoxycarbonyl group which may be substituted, C_6 - C_{10} aryloxycarbonyl group which may be substituted, aminocarbonyl,

N-C₁-C₈ alkylaminocarbonyl group which may be substituted,

N, N'-C₁-C₈ dialkylaminocarbonyl group which may be substituted,

N-C₁-C₈ alkyl-N'-C₃-C₈ cycloalkylaminocarbonyl group which may be substituted,

N-C₁-C₈ alkyl-N'-aralkylaminocarbonyl group which may be substituted,

N-C₁-C₈ alkyl-N'-C₆-C₁₀ arylaminocarbonyl group which may be substituted,

C₃-C₈ cycloalkylaminocarbonyl group which may be substituted,

N,N'-C₃-C₈ dicycloalkylaminoycarbonyl group which may be substituted,

N-C₃-C₈ cycloalkyl-N'-aralkylaminocarbonyl group which may be substituted,

N-C₃-C₈ cycloalkyl-N'-C₆-C₁₀ arylaminocarbonyl group which may be substituted,

N-N'-diaralkylaminocarbonyl group which may be substituted,

N,N'-diaralkylaminocarbonyl group which may be substituted,

C₆-C₁₀ arylaminocarbonyl group which may be substituted,

N,N'-C₆-C₁₀ diarylaminocarbonyl group which may be substituted,

or an optionally substituted heterocyclic ring having 1 to 4 hetero atoms selected

m represents an integer of 1 to 3;

having 5 to 10 ring-constituting atoms in total);

each Y independently represents a halogen atom, a hydroxy group, a cyano group, Y1-Y3- wherein Y1 represents a C1-C8 alkyl group which may be substituted; a C3-C8 cycloalkyl group which may be substituted or a C6-C10 aryl ring which may be substituted; Y3 represents a carbonyl group, a sulfinyl group, a sulfonyl group, an oxygen atom, a sulfur atom, a C1-C4 alkylene group which may be substituted or

from the group consisting of oxygen atom, sulfur atom, and nitrogen atom, and

WO 2004/085408

N-Re (Re represents a hydrogen atom, a C1-C4 alkyl group which may be substituted, an aralkyl group which may be substituted, C3-C8 cycloalkyl group which may be substituted or an aryl group which may be substituted, C1-C8 alkylcarbonyl group which may be substituted, Cs-Cs cycloalkylcarbonyl group which may be substituted, aralkycarbonyl group which may be substituted, C6-C10 arylcarbonyl group which may be substituted, C1-C8 alkysulfonyl group which may be substituted, C3-C8 cycloalkylsulfonyl group which may be substituted, aralkysulfonyl group which may be substituted, C6-C10 arylsulfonyl group which may be substituted, C1-C8 alkyloxycarbonyl group which may be substituted, C3-C8 cycloalkyloxycarbonyl group which may be substituted, aralkyoxycarbonyl group which may be substituted, C6-C10 aryloxycarbonyl group which may be substituted, aminocarbonyl, N-C1-C8 alkylaminocarbonyl group which may be substituted, N, N'-C1-C8 dialkylaminocarbonyl group which may be substituted.

N-C1-C8 alkyl-N'-C3-C8 cycloalkylaminocarbonyl group which may be substituted,

N-C1-C8 alkyl-N'-aralkylaminocarbonyl group which may be substituted,

N-C1-C8 alkyl-N'-C6-C10 arylaminocarbonyl group which may be substituted,

Cs-Cs cycloalkylaminocarbonyl group which may be substituted,

N,N'-C3-C8 dicycloalkylaminoycarbonyl group which may be substituted,

N-C3-C8 cycloalkyl-N'-aralkylaminocarbonyl group which may be substituted,

N-C₃-C₈ cycloalkyl-N'-C₆-C₁₀ arylaminocarbonyl group which may be substituted, aralkylaminocarbonyl group which may be substituted,

N,N'-diaralkylaminocarbonyl group which may be substituted,

N-aralkyl- N'-C6-C10 arylaminocarbonyl group which may be substituted,

WO 2004/085408 PCT/JP2004/004320

C6-C10 arylaminocarbonyl group which may be substituted,

N,N'-C6-C10 diarylaminocarbonyl group which may be substituted,

or an optionally substituted heterocyclic ring having 1 to 4 hetero atoms selected
from the group consisting of oxygen atom, sulfur atom, and nitrogen atom, and
having 5 to 10 ring-constituting atoms in total),

n represents an integer of 0 to 8;

when X and Y or two Y groups are attached on the same carbon atom, they may
combine to each other to form a C2-C6 alkylene group;
and when m is 1, n is 0, and X is X1-CO-,

- (1) X does not bind to 3-position of unsubstituted 1-piperazinyl group or does not bind to 3-position of a 4-alkyl-1-piperazinyl group; or
- (2) X does not bind to 3-position or 4-position of non-substituted 1-piperidinyl group.
- 2. The pyrimidone derivative or the salt thereof, or the solvate thereof or the hydrate thereof according to claim 1 having the following formula(II)

$$(X)_{p}$$

$$(X)_{q}$$

$$(Y)_{r}$$

$$(X)_{q}$$

$$(Y)_{r}$$

$$(X)_{q}$$

$$(Y)_{r}$$

wherein Q, R, X and Y are the same as those defined in claim 1; p is 0 or 1; q is 0 or 1; r is an integer of 0 to 6; p+q is 1 or 2; and Z represents N or CZ¹ wherein Z¹ represents hydrogen atom or Y.

3. The pyrimidone derivative or the salt thereof, or the solvate thereof or the hydrate thereof according to claim 2, wherein R is a C₁-C₃ alkyl group which

may be substituted by a C3-C8 cycloalkyl group.

- 4. The pyrimidone derivative or the salt thereof, or the solvate thereof or the hydrate thereof according to claim 3, wherein R is methyl group or ethyl group; Y is in 3-, 4- or 5-position of the piperazine ring or the piperidine ring; p+q is 1; and r is an integer of 0 to 3.
- 5. The pyrimidone derivative or the salt thereof, or the solvate thereof or the hydrate thereof according to claim 4, wherein X is a C₁-C₈ alkyl group which may be substituted or a C₈-C₁₀ aryl ring which may be substituted; Y is a C₁-C₆ alkyl group which may be substituted; p is 1; q is 0; r is an integer of 0 to 3; and Z is N or CH.
- 6. The pyrimidone derivative or the salt thereof, or the solvate thereof or the hydrate thereof according to claim 5, wherein X is a benzene ring which may be substituted, a benzyl group which may be substituted; Y is a methyl group which may be substituted; Z is N and r is 0 or 1.
- 7. The pyrimidone derivative or the salt thereof, or the solvate thereof or the hydrate thereof according to claim 4, wherein X is a benzene ring which may be substituted, a benzyl group which may be substituted, a benzyl group which may be substituted; Y is a methyl group which may be substituted; Z is N and p is 0.
- 8. The pyrimidone derivative or the salt thereof, or the solvate thereof or the hydrate thereof according to claim 4, wherein X is a C₁-C₈ alkyl group substituted by a benzene ring which may be substituted or a benzene ring which may be substituted; Y is a hydroxy group, a cyano group, or Y¹-CO- wherein Y¹ is a C₁-C₈ alkyl group; Z is CH or C-Y and r is 0 or 1.
- 9. The pyrimidone derivative or the salt thereof, or the solvate thereof or the hydrate thereof according to claim 8, wherein X is a benzyl group which may be substituted or a benzene ring which may be substituted; Y is a hydroxy group, a cyano group, or an acetyl group; Z is CH or C-Y and r is 0 or 1.

2-(3-(3-Chlorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(2-Chlorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(4-Bromophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(3-Bromophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(2-Bromophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(4-Methylphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(3-Methylphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(2-Methylphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(4-Cyanophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(3-Cyanophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(2-Cyanophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(4-Methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(3-Methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(2-Methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(2-Ethoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(5-Fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3Hpyrimidin-4-one;

2-(3-(4-Fluoro-3-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-

- 2-(3-(4-Fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- (S)-2-(3-(4-Fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- (R)-2-(3-(4-Fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Chloro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Fluoro-2-methylphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2-Fluoro-6-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(5-Bromo-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2-Bromo-4-fluorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2-Chloro-6-fluorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2,4-Difluorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2,6-Difluorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2,6-Dichlorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2,4-Dimethoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(3,4-Dimethoxyphenyl) piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-

4-one;

- 2-(3-(2,5-Dimethoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2,6-Dimethoxyphenyl)piperasin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2,4-Difluoro-6-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;(1034)
- 2-(3-(5-Cyano-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Cyano-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(1-Naphthyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2-Naphthyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2,3-Dihydrobenzofuran-7-yl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- $\hbox{2-(3-(Benzo furan-2-yl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3} \\ H-pyrimidin-4-one;$
- (S)-2-(3-(Benzofuran-2-yl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(Pyrrolidin-1-yl-methyl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(Pyrrolidin-1-yl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2-methoxy-4-(pyrrolidin-1-yl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2-methoxy-5-(pyrrolidin-1-yl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(Phenyl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one; 2-(3-(4-(4-Fluorophenyl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-

pyrimidin-4-one;

WO 2004/085408

- 2-(3-(4-(4-Methoxyphenyl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(2-Methoxyphenyl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(Morpholin-4-yl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(4-Methylpiperazin-1-yl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(4-Phenylpiperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(4-Benzylpiperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(4-Benzoylpiperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(4-(1,2-Benzisothiazol-3-yl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(4-Methyl-3-phenylpiperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Fluoro-2-methoxyphenyl)-4-methylpiperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- (S)-2-(3-(4-Fluoro-2-methoxyphenyl)-4-methylpiperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- (R)-2-(3-(4-Fluoro-2-methoxyphenyl)-4-methylpiperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(4-Acetyl-3-(4-fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(4-Benzyl-3-(4-fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(4-Benzyl-3-(ethoxycarbonyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;

one;

- 2-(5,5-Dimethyl-3-(2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-Phenylpiperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Fluorophenyl)piperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(3-Fluorophenyl)piperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2-Fluorophenyl)piperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Chlorophenyl)piperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Bromophenyl)piperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Methoxyphenyl)piperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(3-Methoxyphenyl)piperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2-Methoxyphenyl)piperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(4-((Pyrrolidin-1-yl)methyl)phenyl)piperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-
- pyrimidin-4-one;
- (S)-2-(3-(4-(Pyrrolidin-1-yl-methyl)phenyl)piperidin-1-yl)-3-methyl-6-(4-pyridyl)-
- 3H-pyrimidin-4-one;
- (R)-2-(3-(4-(Pyrrolidin-1-yl-methyl)phenyl)piperidin-1-yl)-3-methyl-6-(4-pyridyl)-
- 3H-pyrimidin-4-one;
- 2-(3-Hydroxy-3-phenylpiperidin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-Phenylpiperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Fluorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(3-Fluorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(2-Fluorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Chlorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-
- one;
- 2-(3-(3-Chlorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-
- one;
- $\hbox{2-(3-(2-Chlorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3$$H$-pyrimidin-4-pyrimidyl-3$$H$-pyrimidyl-3$$H$-pyrimidyl-3$$H$-pyrimidyl-4$$H$-pyrimidyl-3$$H$-pyrimidyl-4$$H$-pyrimidyl-3$$H$-pyrimidyl-4$$H$-pyrimidyl-$

PCT/JP2004/004320

one;

- 2-(3-(4-Bromophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one; 2-(3-(3-Bromophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one; 2-(3-(2-Bromophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one; 2-(3-(4-Cyanophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one; 2-(3-(3-Cyanophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one; 2-(3-(2-Cyanophenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one; 2-(3-(4-Methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(3-Methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one:
- 2-(3-(2-Methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(2-Ethoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(6-Fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(5-Fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- (S)-2-(3-(4-Fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- (R)-2-(3-(4-Fluoro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(4-Chloro-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(5-Bromo-2-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-

pyrimidin-4-one;

- 2-(3-(2,6-Dichlorophenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(2,4-Dimethoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyridyl)-3H-pyrimidin-4-one;
- 2-(3-(3,4-Dimethoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(2,5-Dimethoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(2,6-Dimethoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(2,4-Difluoro-6-methoxyphenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- $2\hbox{-}(3\hbox{-}(1\hbox{-Naphthyl}) piperazin-1\hbox{-}yl)\hbox{-}3\hbox{-methyl-}6\hbox{-}(4\hbox{-pyrimidyl})\hbox{-}3H\hbox{-pyrimidin-}4\hbox{-}one;$
- 2-(3-(2-Naphthyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(2,3-Dihydrobenzofuran-7-yl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3*H*-pyrimidin-4-one;
- 2-(3-(Benzofuran-2-yl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(Pyrrolidin-1-yl-methyl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(4-(Pyrrolidin-1-yl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(2-methoxy-4-(pyrrolidin-1-yl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- 2-(3-(2-methoxy-5-(pyrrolidin-1-yl)phenyl)piperazin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;
- $2\hbox{-}(3\hbox{-}(4\hbox{-}(Phenyl)phenyl)piperazin-1-yl)-3-methyl-6\hbox{-}(4\hbox{-}pyrimidyl)-3$H-pyrimidin-4-pyrimidyl)-3$H-pyrimidyl-4-py$

pyrimidin-4-one;

(R)-2-(3-(Benzoisoxazol-3-yl)piperidin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;

2-(3-(6-Fluorobenzoisoxazol-3-yl)piperidin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;

2-(4-(6-Fluorobenzoisoxazol-3-yl)piperidin-1-yl)-3-methyl-6-(4-pyrimidyl)-3H-pyrimidin-4-one;

2-(4-(5-Methylbenzofuran-3-yl)piperidin-1-yl)-3-methyl-6-(4-pyrimidyl)-3*H*-pyrimidin-4-one; and

2-(4-(6-Fluorobenzothiophene-3-yl)piperidin-1-yl)-3-methyl-6-(4-pyrimidyl)-3*H*-pyrimidin-4-one

or a salt thereof, or a solvate thereof or a hydrate thereof.

- 11. A medicament comprising as an active ingredient a substance selected from the group consisting of the pyrimidone derivative represented by formula (I) and a salt thereof, and a solvate thereof and a hydrate thereof according to claim 1.
- 12. A tau protein kinase 1 inhibitor selected from the group consisting of the pyrimidone derivative represented by formula (I) and a salt thereof, and a solvate thereof and a hydrate thereof according to claim 1.
- 13. The medicament according to claim 11 which is used for preventive and/or therapeutic treatment of a disease caused by tau protein kinase 1 hyperactivity.
- 14. The medicament according to claim 11 which is used for preventive and/or therapeutic treatment of a neurodegenerative disease.
- 15. The medicament according to claim 14, wherein the neurodegenerative disease is selected from the group consisting of Alzheimer disease, ischemic cerebrovascular accidents, Down syndrome, cerebral bleeding due to cerebral amyloid angiopathy, progressive supranuclear palsy, subacute sclerosing panencephalitic parkinsonism, postencephalitic parkinsonism, pugilistic

encephalitis, Guam parkinsonism-dementia complex, Lewy body disease, Pick's disease, corticobasal degeneration, frontotemporal dementia, vascular dementia, traumatic injuries, brain and spinal cord trauma, peripheral neuropathies, retinopathies, and glaucoma.

16. The medicament according to claim 11, wherein the disease is selected from the group consisting of non-insulin dependent diabetes, obesity, manic depressive illness, schizophrenia, alopecia, breast cancer, non-small cell lung carcinoma, thyroid cancer, T or B-cell leukemia, and a virus-induced tumor.

INTERNATIONAL SEARCH REPORT

mational Application No PCT/JP2004/004320

A CLASSIFICATION OF SUBJECT MATTER

IPC 7 C07D239/47 C07D401/14 C07D405/14 C07D409/14 C07D413/14

C07D417/14 C07D403/14 A61K31/513 A61K31/5377 A61P25/28

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BEILSTEIN Data, WPI Data, PAJ, CHEM ABS Data

Category •	Citation of document, with indication, where appropriate, of	the relevant passages	Relevant to claim No.
(EP 1 136 482 A (SANOFI SYNTHELABO; MITSUBISHI TOKYO PHARMACEUTICA (JP)) 26 September 2001 (2001-09-26) cited in the application paragraphs '0002!, '0006!; example 38; tables 1,2,4,8-12		1-16
P,A	WO 03/027080 A (SANOFI SYNTHELABO; HIKI SHINSUKE (JP); SHODA AYA (JP); ARITOMO KEIICH) 3 April 2003 (2003-04-03) page 104, line 9 - line 25; claims 1,2,10-25; examples C401-C499,C601-C651,C751-C768,D026-D050		1–16
		-/	
X Furt	her documents are listed in the continuation of box C.	Y Patent family member	ers are listed in annex.
"A" docum consider "E" earlier filing of "C" docum which citatio "O" docum other	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international tate end which may throw doubts on priority claim(s) or is cited to establish the publication date of another in or other special reason (as specified) ent reterring to an oral disclosure, use, exhibition or means ent published prior to the International filing date but han the priority date claimed	or priority date and not to cited to understand the p invention "X" document of particular rel cannot be considered no involve an inventive step "Y" document of particular rel cannot be considered to document is combined w	ovel or cannol be considered to o when the document is taken alone levance; the claimed invention involve an inventive step when the with one or more other such docu- n being obvious to a person skilled
Date of the	actual completion of the international search	Date of mailing of the inte	emational search report
1	July 2004	12/07/2004	
lame and i	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Risswijk	Authorized officer	

INTERNATIONAL SEARCH REPORT

prational Application No PCT/JP2004/004320 .

	fion) DOCUMENTS CONSIDERED TO BE RELEVANT	
A	WO 03/037888 A (SANOFI SYNTHELABO; HIKI SHINSUKE (JP); SHODA AYA (JP); ARITOMO KEIICH) 8 May 2003 (2003-05-08) page 9, line 21 - page 10, line 10; claims 1,2,11-13,15-25; examples C001-C099,C201-C251,C351-C368,C388,D001-D0 25	1-16
- 1		
	·	
,		
_L	continuation of second sheet) (January 2004)	

INTERNATIONAL SEARCH REPORT

information on patent family members

ational Application No

		members			national Application No	
Patent document cited in search report		Publication		PCT/JP2004/004320		
EP 135482		date		Patent family member(s)	Publication date	
).]	A	26-09-2001	EP AU CA CN WO EP JP US	1136482 A1 8148701 A 2401241 A1 1419552 T 0170729 A1 1276738 A1 2003528095 T 2003187004 A1	26-09-2001 03-10-2001 27-09-2001 21-05-2003 27-09-2001 22-01-2003 24-09-2003	
WO 03027080	A	03-04-2003	CA CA EP EP WO	2460121 A1 2460177 A1 1427709 A1 1427720 A1 03027080 A1 03037888 A1	02-10-2003 08-05-2003 03-04-2003 16-06-2004 16-06-2004 03-04-2003 08-05-2003	
WO 03037888	A .	08-05-2003	CA CA EP EP WO WO	2460121 A1 2460177 A1 1427709 A1 1427720 A1 03027080 A1 03037888 A1	08-05-2003 03-04-2003 16-06-2004 16-06-2004 03-04-2003 08-05-2003	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
П отнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.