

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, EAST DELHI CAMPUS. **SURAJMAL VIHAR-110092**

Paper code : ARM 208	T	T/P	C
Subject : Analysis and Design of Algorithms	4	0	4

Marking Scheme

1. Teachers Continuous Evaluation: 25 Marks

2. End Term Theory Examination: 75 Marks

INSTRUCTIONS TO PAPER SETTERS:

Maximum Marks: 75

1. There should be 9 questions in the end term examination question paper

2. Question No. 1 should be compulsory and cover the entire syllabus. This question should have objective or short answer type questions. It should be of 15 marks.

3. Apart from Question No. 1, rest of the paper shall consist of four units as per the syllabus. Every unit should have two questions. However, student may be asked to attempt only 1 question from each unit. Each question should be 15 marks.

4. The questions are to be framed keeping in view the learning outcomes of course/paper. The

Sta	maara/ r	evel of the	ne questi	ions to b	e asked	should l	be at the	level of	the pres	cribed te	xtbooks	
5. Th	The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required											
Course	Outcon	ies:					oor citette	tables III	dy oc sp	centeu i.	require	u
CO1:	Ability of students to understand the concepts complexity of algorithm and types of sorting algorithm											
CO2:	Ability of students to understand the concept of Dynamic Programming											
CO3:	Ability of students to understand the Greedy Algorithms											
CO4:	Ability of students to understand the concept of NP-Complete Problem											
Course Outcomes (CO) to Programme Outcomes (PO) Mapping (Scale 1: Low, 2: Medium, 3: High												
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	
CO1	3	3	3	3	2		1007	1000	1009	1 010	TOII	PO12
CO2	3	3	3	3	2	25.0	7.1	174		1	1	2
CO3	3	3	3	3	2					1	1	2
CO4	3	3	3	3	2	-			- Committee	1	1	3

Unit I [8]

Asymptotic notations for time and space complexity, Big-Oh notation, Θ notation, Ω notation, the little-oh notation, the little-omega notation, Recurrence relations: iteration method, recursion tree method, substitution method, master method (with proof), subtract and conquer master method(with proof), Data Structures for Disjoint Sets, Medians and Order statistics. Complexity analysis, Insertion sort, Merge Sort, Quick sort. Strassen's algorithm for Matrix Multiplications.

Unit II

[12]

Ingredients of Dynamic Programming, emphasis on optimal substructure, overlapping substructures, memorization. Matrix Chain Multiplication, Longest common subsequence and optimal binary search trees problems, 0-1 knapsack problem, Binomial coefficient computation through dynamic programming. Floyd Warshall algorithm.

Unit III

[10] Greedy Algorithms: Elements of Greedy strategy, overview of local and global

Approved by A Prof. Ajay S. Sing Approved by BoS of USAR: 1/08/22, Applicable from Batch Admitted in Academic Session 2021-22 Onward Guru Gobind Singh Indraprasage inversity 24 (East Dethi Campus) Suraimal Vihar, Delhi-110092

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, EAST DELHI CAMPUS, SURAJMAL VIHAR-110092

Activity selection problem, Fractional Knapsack problem, Huffman Codes, A task scheduling problem. Minimum Spanning Trees: Kruskal's and Prim's Algorithm, Single source shortest path: Dijkstra and Bellman Ford Algorithm(with proof of correctness of algorithms). The naïve String Matching algorithm, The Rabin-Karp Algorithm, String Matching with finite automata, The Knuth-Morris Pratt algorithm.

Unit IV

[10]

Tractable and Intractable Problems: NP-Complete Problem: Polynomial-time verification, NP-Completeness and Reducibility, NP-Completeness Proof, NP –hard ,Case study of NP-Complete problems (vertex cover problem, clique problem).

Text Books:

- 1. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algorithms. MIT press.
- 2. Kleinberg, J., & Tardos, E. (2006). Algorithm design. Pearson Education India.

Reference Books

1. Baase, S. (2009). Computer algorithms: introduction to design and analysis. Pearson Education India.

CH

Prof. Ajay S. Singrioli Professor In-charge, USAR Guru Gobind Singh Indraprastha University (East Delhi Campus) Suraimal Vihar, Delhi-110092