EE210: Microelectronics-I

Lecture-10: Bipolar Junction Transistor-3

Instructor: Y. S. Chauhan

Slides from:

B. Mazhari

Dept. of EE, IIT Kanpur

Ebers Moll Model

Forward Active Mode: Early Voltage

$$I_{C} = I_{S} \left(e \times p \left(\frac{V_{BE}}{V_{T}} \right) - 1 \right)$$

$$I_{B} = \frac{I_{C}}{\beta_{F}}$$

Early Voltage

Base Width Modulation

Decrease in effective base width causes an increase in collector current!

$$I_{C} = I_{S} \left(\exp(\frac{V_{BE}}{V_{T}}) - 1 \right) \left(1 + \frac{V_{CE}}{V_{A}} \right)$$

$$I_{B} = \frac{I_{S} \left(\exp(\frac{V_{BE}}{V_{T}}) - 1 \right)}{\beta_{F}}$$

$$I_{C} = \beta_{F} I_{B} \left(1 + \frac{V_{CE}}{V_{A}} \right)$$

Variation of current gain with Current

Collector-Base junction Breakdown

BV_{CBO}: Breakdown voltage with emitter open

BV_{CEO}: Breakdown voltage with base Open.

Example: P2N2222: $BV_{CBO} \sim 75V$ while $BV_{CEO} \sim 40V$

Emitter-Base junction Breakdown

BV_{EBO}: Breakdown voltage with collector open

Example: P2N2222: BV_{EBO} ~6V (much smaller due to heavy doping)

BJT: Small Signal Model

Complete small signal model (dc) for a 3-terminal unilateral device.

Complete small signal model (dc) for a 3-terminal unilateral device.

$$r_{i} = \left(\frac{\partial I_{i}}{\partial V_{i}}\right)^{-1} \qquad g_{m} = \left(\frac{\partial I_{o}}{\partial V_{i}}\right)$$

$$r_{o} = \left(\frac{\partial I_{o}}{\partial V_{O}}\right)^{-1}$$

$$I_b = \frac{I_S}{\beta_F} \left(\exp(\frac{V_{be}}{V_T}) - 1 \right)$$

$$r_{\pi}^{-1} = \frac{\partial I_b}{\partial V_{be}}\Big|_{I_B} \cong \frac{I_B}{V_T}$$

$$r_{\pi} = \frac{V_T}{I_R} = \frac{V_T}{I_C} \cdot \beta$$
; $r_{\pi} = r_E \cdot \beta$

G-Number

$$I_{c} = I_{S} \left(\exp(\frac{V_{be}}{V_{T}}) - 1 \right) \left(1 + \frac{V_{ce}}{V_{A}} \right)$$

$$g_{m} = \frac{\partial I_{c}}{\partial V_{be}} \bigg|_{V_{CE}} \cong \frac{I_{C}}{V_{T}}$$

$$r_{0}^{-1} = \frac{\partial I_{c}}{\partial V_{ce}} \bigg|_{V_{RE}} = \frac{I_{C}}{V_{CE} + V_{A}} \approx \frac{I_{C}}{V_{A}}$$

Hybrid-pi Small Signal Model: low frequency

$$r_{\pi} = \frac{V_T}{I_B} = \frac{V_T}{I_C} \cdot \beta$$

$$g_m = \frac{I_C}{V_T} ; r_0 = \frac{V_A}{I_C}$$

$$I_{b} = \frac{I_{S}}{\beta_{F}} \left(\exp(\frac{V_{be}}{V_{T}}) - 1 \right) \qquad I_{c} = I_{S} \left(\exp(\frac{V_{be}}{V_{T}}) - 1 \right) \left(1 + \frac{V_{ce}}{V_{A}} \right)$$

Validity: $v_{be} \ll V_T$