

AR-ISS: sorveglianza nazionale dell'Antibiotico-Resistenza

Dati 2022

AR-ISS: sorveglianza nazionale dell'Antibiotico-Resistenza. Dati 2022

Simone Iacchini*, Stefano Boros*, Patrizio Pezzotti*, Alessandra Caramia*, Giulia Errico*, Maria Del Grosso*, Romina Camilli*, Maria Giufrè*, Annalisa Pantosti§, Francesco Maraglino^, Anna Teresa Palamara*, Fortunato "Paolo" D'Ancona*, Monica Monaco* e il gruppo di lavoro AR-ISS

*Dipartimento Malattie Infettive, Istituto Superiore di Sanità §già Dipartimento Malattie Infettive, Istituto Superiore di Sanità ^Direzione Generale della Prevenzione Sanitaria, Ministero della Salute

Istituto Superiore di Sanità

AR-ISS: sorveglianza nazionale dell'Antibiotico-Resistenza. Dati 2022.

Simone Iacchini, Stefano Boros, Patrizio Pezzotti, Alessandra Caramia, Giulia Errico, Maria Del Grosso, Romina Camilli, Maria Giufrè, Annalisa Pantosti, Francesco Maraglino, Anna Teresa Palamara, Fortunato "Paolo" D'Ancona, Monica Monaco e il gruppo di lavoro AR-ISS

2023, iii, 33 p. Rapporti ISS Sorveglianza RIS-4/2023

La sorveglianza dell'Antibiotico-Resistenza, coordinata dall'Istituto Superiore di Sanità (AR-ISS), rappresenta uno strumento essenziale per studiare e descrivere l'emergenza, la diffusione e la tendenza del fenomeno in Italia. La sorveglianza è basata su una rete di laboratori ospedalieri presenti su tutto il territorio nazionale, che inviano i dati di sensibilità agli antibiotici ottenuti nella normale routine di laboratorio per patogeni isolati da infezioni invasive (sangue o liquor). I patogeni sotto sorveglianza sono 8: Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis e Enterococcus faecium tra i batteri Gram-positivi, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa e Acinetobacter species tra i batteri Gram-negativi. Il monitoraggio della situazione epidemiologica in Italia è fondamentale per valutare la resistenza alle diverse classi di antibiotici particolarmente importanti in terapia per uno specifico patogeno, per studiare la diffusione dell'antibiotico-resistenza sul territorio nazionale e per seguirne l'andamento nel tempo. In questo rapporto vengono presentati i risultati relativi al 2022, anno in cui la problematica dell'antibiotico-resistenza si intreccia ancora con la pandemia da SARS-CoV-2, ed una valutazione dell'andamento relativo al periodo 2015-2022.

Istituto Superiore di Sanità

AR-ISS: National Antibiotic-Resistance Surveillance. Data 2022.

Simone Iacchini, Stefano Boros, Patrizio Pezzotti, Alessandra Caramia, Giulia Errico, Maria Del Grosso, Romina Camilli, Maria Giufrè, Annalisa Pantosti, Francesco Maraglino, Anna Teresa Palamara, Fortunato "Paolo" D'Ancona, Monica Monaco e il gruppo di lavoro AR-ISS

2023, iii, 33 p. Rapporti ISS Sorveglianza RIS-4/2023 (in Italian)

The antibiotic-resistance surveillance system, coordinated by the Istituto Superiore di Sanità (the National Institute of Health in Italy) is an essential tool for studying and describing the emergence, the spread and the trend of antibiotic resistance in Italy. The surveillance system is based on a network of hospital laboratories present throughout the country, which send routine antibiotic susceptibility data for selected pathogens from invasive infections (blood or cerebrospinal fluid). The bacterial species under surveillance are 8: the Gram-positive species *Staphylococcus aureus*, *Streptococcus pneumoniae*, *Enterococcus faecalis* and *Enterococcus faecium* and the Gram-negative species *Escherichia coli*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa* and *Acinetobacter* species. The surveillance in Italy is essential to evaluate the resistance of specific pathogens to different classes of therapeutically relevant antibiotics, to study the spread of antibiotic-resistance in the country and to follow its trend over time. This report presents the results for the year 2022, at a time when the issue of antibiotic-resistance is still intermingled with the SARS-CoV-2 pandemic, and the trend evaluation for 2015-2022.

Si ringraziano i referenti regionali per l'antibiotico-resistenza, i referenti della sorveglianza AR-ISS presso le Regioni e i referenti dei laboratori ospedalieri di microbiologia partecipanti alla rete AR-ISS.

Attività realizzata con il supporto tecnico e finanziario del Ministero della Salute - CCM

Per informazioni su questo documento scrivere a: simone.iacchini@iss.it

Il rapporto è accessibile online dal sito di questo Istituto: www.iss.it

Citare questo documento come segue:

lacchini S, Boros S, Pezzotti P, Caramia A, Errico G, Del Grosso M, Camilli R, Giufrè M, Pantosti A, Maraglino F, Palamara A.T., D'Ancona F, Monaco M, e il gruppo di lavoro AR-ISS. *AR-ISS*: *sorveglianza nazionale dell'Antibiotico-Resistenza*. *Dati 2022*. Roma: Istituto Superiore di Sanità; 2023. (Rapporti ISS Sorveglianza RIS-4/2023).

La responsabilità dei dati scientifici e tecnici è dei singoli autori, che dichiarano di non avere conflitti di interesse.

A cura del Servizio Comunicazione Scientifica-COS (Direttore *Paola De Castro*) Redazione: *Sandra Salinetti* (COS) e *Stefania Giannitelli* (Dipartimento Malattie Infettive). Progetto grafico: *Sandra Salinetti* (COS)

Commissario Straordinario dell'Istituto Superiore di Sanità: Rocco Bellantone

Indice

In sintesi	iii
Antibiotico-resistenza: un problema di sanità pubblica	1
Il sistema di sorveglianza AR-ISS	1
Dati 2022	3
Andamento 2015-2022	10
Staphylococcus aureus	12
Streptococcus pneumoniae	12
Enterococchi	13
Enterococcus faecalis	14
Enterococcus faecium	14
Escherichia coli	15
Klebsiella pneumoniae	16
Pseudomonas aeruginosa	17
Acinetobacter species	18
Riferimenti utili	20
Composizione del Gruppo di lavoro AR-ISS	22
APPENDICE A	
Tabelle per Regione/PA delle percentuali di resistenza alle principali combinazioni patogeno/antibiotico sotto sorveglianza, anni 2015-2022	25

In sintesi

- In Italia, nel 2022 le percentuali di resistenza alle principali classi di antibiotici per gli otto
 patogeni sotto sorveglianza si mantengono elevate; per alcune combinazioni
 patogeno/antibiotico, tra cui Klebsiella pneumoniae resistente ai carbapenemi, si
 continua ad osservare un trend in diminuzione rispetto agli anni precedenti mentre per
 altre, in particolare per Enterococcus faecium, si osserva un continuo trend in aumento.
- Tra le specie batteriche Gram-positive, per *Staphylococcus aureus* la percentuale di isolati resistenti alla meticillina (MRSA), dopo una flessione registrata nel 2021 (30,5% vs 33,5% del 2020), rimane sostanzialmente stabile nel 2022 con un valore pari a 29,9%.
- Per Enterococcus faecium continua ad osservarsi un preoccupante trend in aumento nella percentuale di isolati di resistenti alla vancomicina, che è passata dall'11,1% del 2015 al 30,7% nel 2022.
- Per *Streptococcus pneumoniae* dopo una diminuzione registrata nel 2021 (9,8%), nel 2022 si osserva un aumento della percentuale di isolati resistenti alla penicillina (12,8%).
- Tra le specie batteriche Gram-negative, la percentuale di resistenza alle cefalosporine di terza generazione in *Escherichia coli* è sostanzialmente stabile nel 2022 (24,2%) rispetto al 2021 (24,4%), mentre continua ad osservarsi un andamento in calo negli anni 2015-2022 per gli aminoglicosidi (da 18,4% nel 2015 a 13,2% nel 2022) e i fluorochinoloni (da 44,4% nel 2015 a 31,6% nel 2022).
- Nel 2022 si conferma una diminuzione della percentuale di isolati di *Klebsiella* pneumoniae resistenti ai carbapenemi che è passata dal 33,2% nel 2015 al 24,9% nel 2022.
- La resistenza ai carbapenemi si mantiene molto bassa in *E. coli* (0,4%) ed in lieve diminuzione nella specie *Pseudomonas aeruginosa* (da 17,2% nel 2021 a 16,4% nel 2022), stabile in *Acinetobacter* spp. (88,5%).
- Il 29,3% degli isolati di *K. pneumoniae* e l'8,2% degli isolati di *E. coli* sono risultati multiresistenti (resistenti a cefalosporine di III generazione, aminoglicosidi e fluorochinoloni);
 entrambi questi valori sono in lieve diminuzione rispetto agli anni precedenti. Per *P. aeruginosa* la percentuale di resistenza a tre o più antibiotici tra cui piperacillinatazobactam, ceftazidime, carbapenemi, aminoglicosidi e fluorochinoloni è risultata pari
 a 11,4%, anche questa in lieve diminuzione rispetto agli anni precedenti, mentre si
 osserva ancora una percentuale di multi-resistenza (fluorochinoloni, aminoglicosidi e
 carbapenemi), particolarmente elevata, per *Acinetobacter* spp. (85,2%), anche se in lieve
 diminuzione rispetto al 2021.
- Nelle Terapie Intensive, rispetto agli altri reparti, dal 2015 al 2022 sono state osservate percentuali di resistenza più elevate per K. pneumoniae resistente ai carbapenemi (34,3% nel 2022).

Antibiotico-resistenza: un problema di sanità pubblica

L'antibiotico-resistenza è uno dei principali problemi di sanità pubblica con un forte impatto sia clinico che economico. Negli ultimi decenni ha assunto una rilevanza mondiale tale da indurre l'Organizzazione Mondiale della Sanità (OMS) e l'Unione Europea (UE) ad adottare strategie e azioni coordinate atte a contenere il fenomeno. L'Italia da anni è tra i Paesi in Europa con le più alte percentuali di resistenza alle principali classi di antibiotici utilizzate in ambito ospedaliero. Per combattere questo fenomeno, il 30 novembre 2022, con un'intesa in Conferenza Stato-Regioni, è stato approvato il PNCAR (Piano Nazionale di Contrasto dell'Antimicrobico-Resistenza) 2022-2025 che aggiorna il precedente PNCAR 2017-2020 e ribadisce il percorso che le istituzioni nazionali, regionali e locali devono seguire per un miglior controllo dell'antibiotico-resistenza nei prossimi anni, individuando strategie coerenti con gli obiettivi dei Piani di azione dell'OMS e dell'UE. L'attività di sorveglianza dell'antibiotico-resistenza in ambito umano è uno dei pilastri del PNCAR ed è un punto chiave per verificare l'impatto delle strategie adottate e il raggiungimento di alcuni degli indicatori del Piano stesso.

Il sistema di sorveglianza AR-ISS

In Italia, dal 2001 l'Istituto Superiore di Sanità (ISS) coordina in ambito umano il sistema di sorveglianza dell'Antibiotico-Resistenza AR-ISS che si basa su una rete di laboratori ospedalieri di microbiologia clinica che inviano annualmente i dati di sensibilità agli antibiotici (ottenuti nella routine di laboratorio) per alcuni patogeni rilevanti dal punto di vista clinico ed epidemiologico. La partecipazione alla sorveglianza è su base volontaria, ma alle regioni è demandato il reclutamento dei laboratori con l'obiettivo di aumentarne la rappresentatività regionale, come previsto dal PNCAR. La sorveglianza AR-ISS è stata inclusa nel DPCM del 3 marzo 2017 "Identificazione dei sistemi di sorveglianza e dei registri di mortalità, di tumori e di altre patologie" come sistema di sorveglianza di rilevanza nazionale istituita a livello centrale presso l'ISS. A gennaio 2019 il Ministero della Salute (Circolare del 18/1/2019) ha aggiornato il protocollo della sorveglianza AR-ISS con l'obiettivo di migliorarne la performance mediante il coinvolgimento attivo delle Regioni anche attraverso le reti di sorveglianza regionali, quando possibile. Tutto ciò ha permesso di aumentare considerevolmente la rappresentatività regionale e nazionale. Inoltre, nel 2023, è stato pubblicato il protocollo AR-ISS 2023 (versione 13/02/2023) che ha aggiornato il precedente protocollo con lo scopo di implementare e migliorare la sorveglianza nazionale.

Attraverso AR-ISS, l'Italia partecipa alla sorveglianza europea EARS-Net (*European Antimicrobial Resistance Surveillance Network*) coordinata dall'ECDC (*European Centre for Disease Prevention and Control*) che raccoglie dati di antibiotico-resistenza di 29 Paesi europei attraverso la piattaforma informatica TESSy (*The European Surveillance System*). I dati italiani sono quindi elaborati, analizzati e confrontati con quelli degli altri Paesi europei e pubblicati ogni anno in occasione della Giornata europea sull'uso consapevole degli Antibiotici (18 novembre) e della settimana mondiale (18-24 novembre) sulla consapevolezza dell'antimicrobico-resistenza. I dati raccolti dall'ECDC sono disponibili online sul sito dell'ECDC nelle pagine dedicate al "Surveillance Atlas of Infectious Diseases". Dal 2020 i

dati della rete AR-ISS confluiscono, attraverso l'ECDC, anche nella rete globale di sorveglianza dell'antibiotico resistenza GLASS (*GLobal Antimicrobial-resistance Surveillance System*) coordinata dall'OMS.

La sorveglianza AR-ISS ha come obiettivo la descrizione dell'antibiotico-resistenza in un selezionato gruppo di patogeni isolati da infezioni invasive (batteriemie e meningiti) che rappresentano sia infezioni acquisite in ambito comunitario che associate all'assistenza sanitaria. Pertanto, sono rilevate le sensibilità agli antibiotici, eseguite di routine dai laboratori ospedalieri di microbiologia clinica, dei ceppi appartenenti a otto specie: *Staphylococcus aureus*, *Streptococcus pneumoniae*, *Enterococcus faecium*, *Escherichia coli*, *Klebsiella pneumoniae**, *Pseudomonas aeruginosa* e *Acinetobacter* species[§], isolati da sangue o *liquor*.

La sorveglianza AR-ISS si avvale del seguente supporto:

- referenti regionali che hanno individuato i laboratori partecipanti o, nel caso di sistemi di sorveglianza con una copertura regionale, hanno messo a disposizione i dati relativi all'intera rete di sorveglianza regionale;
- laboratori di microbiologia che hanno estratto e inviato i dati di antibiotico-resistenza della routine diagnostica;
- coordinamento centrale epidemiologico e microbiologico da parte del Dipartimento Malattie Infettive dell'ISS, responsabile della raccolta delle informazioni, del controllo di qualità dei dati inviati dai laboratori, della raccolta e dello studio dei ceppi batterici con particolari fenotipi di resistenza inviati dai laboratori (nell'ambito di studi ad hoc per approfondimenti su tematiche specifiche rilevanti per la sanità pubblica), delle analisi e della divulgazione dei dati.

In Appendice A vengono riportate le tabelle per Regione/Provincia Autonoma (PA) delle percentuali di resistenza alle principali combinazioni patogeno/antibiotico sotto sorveglianza negli anni 2015-2022.

^{*} Per Klebsiella pneumoniae si intende Klebsiella pneumoniae species complex, tenendo conto delle recenti evoluzioni tassonomiche (vedi paragrafo Klebsiella pneumoniae pag 16).

[§] Per Acinetobacter species si intende Acinetobacter baumannii complex

Dati 2022

Nel 2022, alla sorveglianza nazionale AR-ISS, hanno partecipato 173 laboratori distribuiti in tutte le 21 Regioni/PA. La copertura nazionale è aumentata al 61,7% (55,3% nel 2021) ed è espressa come proporzione dei giorni di ospedalizzazione in un anno ottenuti dalle SDO (Schede di Dimissione Ospedaliera) per gli ospedali partecipanti alla sorveglianza rispetto al totale delle strutture in Italia.

La Tabella 1 riporta i dati di copertura per Regione. Undici Regioni (Valle d'Aosta, Liguria, Lombardia, Veneto, Friuli Venezia Giulia, Emilia-Romagna, Toscana, Umbria, Campania, Puglia, Sicilia) e due Province Autonome (PA Trento e PA Bolzano) hanno partecipato alla sorveglianza con le proprie reti regionali.

Si fa presente che i dati dei valori di antibiotico-resistenza nazionali del 2021 riportati in questo report sono stati aggiornati con i dati forniti dalla Campania.

Tabella 1. Copertura nazionale e per Regione, Italia 2022 (dati SDO*)

Regioni	Copertura (%)
Piemonte	37,9
Valle d'Aosta	88,1
Lombardia	56,1
PA Bolzano	100,0
PA Trento	65,4
Veneto	76,9
Friuli Venezia Giulia	100,0
Liguria	93,2
Emilia-Romagna	97,7
Toscana	94,9
Umbria	91,2
Marche	34,7
Lazio	45,3
Abruzzo	38,0
Molise	41,6
Campania	52,0
Puglia	40,9
Basilicata	84,0
Calabria	27,5
Sicilia	59,6
Sardegna	34,3
ITALIA	61,7

^{*} Le SDO fanno riferimento ai dimessi nel 2022 da ospedali pubblici e privati (https://www.salute.gov.it/portale/temi/p2_6.jsp?id=1232&area=ricoveriOspedalieri&menu=vuot).

Le giornate di degenza si riferiscono esclusivamente ai ricoveri ordinari per acuti. La copertura calcolata non tiene conto della gravità dei pazienti. Nei casi in cui la Regione non abbia inviato l'elenco completo degli ospedali serviti dai laboratori partecipanti ad AR-ISS (paragrafo 5.4 C del protocollo AR-ISS) sono esclusi dal calcolo gli ospedali che non hanno avuto batteriemie positive.

La Figura 1 riporta la distribuzione del numero di isolati per patogeno (in totale 77.121). Più del 99% è stato ottenuto da sangue e meno dell'1% da liquor. Nella maggiore parte dei casi è stato isolato

E. coli (n=25.879, 33,6%), seguito da S. aureus (n=14.909, 19,3%), K. pneumoniae (n=11.790, 15,3%), E. faecalis (n=8.284, 10,7%), E. faecium (n=6.084, 7,9%), P. aeruginosa (n=6.042, 7,8%), Acinetobacter spp. (n=2.898, 3,8%) e S. pneumoniae (n=1.235, 1,6%).

Figura 1. Percentuale di isolati per patogeno, Italia 2022

La maggior parte dei pazienti con infezione invasiva da patogeni sotto sorveglianza è risultata di sesso maschile (57,8%) e con più di 65 anni di età (70,6%) (Tabella 2). Dal punto di vista dell'area di ricovero, il maggior numero di isolati è pervenuto dall'area Specialità medicina (44,5%), seguita da Emergenza (23,7%) e dalla Terapia intensiva (14,9%).

Tabella 2. Caratteristiche dei pazienti (totale 77.121), Italia 2022

Caratteristica	n.	%
Sesso	76.671	
Femmina	32.350	42,2
Maschio	44.321	57,8
Classe di età (anni)	76.994	
0-17	1.858	2,4
18-64	20.750	27,0
≥65	54.386	70,6
Area di ricovero ospedaliero	70.778	
Specialità medicina	31.508	44,5
Specialità chirurgica	5.989	8,5
Terapia intensiva	10.566	14,9
Emergenza	16.765	23,7
Pediatria/neonatologia	390	0,6
Ginecologia/ostetricia	418	0,6
Altro	5.142	7,3

Le percentuali sono state calcolate escludendo la categoria "non riportato"

Le Tabelle 3 e 4 mostrano le caratteristiche dei pazienti con infezione invasiva distinti per patogeno appartenente alla classe dei batteri Gram-positivi e Gram-negativi. Non si sono evidenziate differenze rilevanti fra i diversi patogeni nella distribuzione per sesso ed età. La maggior parte dei pazienti è risultata di sesso maschile e con più di 65 anni di età. Per quanto riguarda l'area di ricovero, il maggior numero di isolati è pervenuto dall'area Specialità medicina, dalla Terapia intensiva e da Emergenza. In questo caso si osservano differenze rilevanti nella distribuzione dei patogeni. In particolare, la Specialità medicina è l'area con il maggior numero di isolati fra i patogeni sotto sorveglianza ad eccezione di *S. pneumoniae*, più frequentemente isolato nell'area di Emergenza.

Tabella 3. Caratteristiche dei pazienti con infezione invasiva da batteri Gram-positivi, Italia 2022

Caratteristica	S. aureus	S. pneumoniae	E. faecalis	E. faecium
Sesso (n)	14.837	1.233	8.245	6.046
Femmina (%)	39,1	41,4	35,9	41,9
Maschio (%)	60,9	58,6	64,1	58,1
Classe di età (anni) (n)	14.886	1.233	8.266	6.072
0-17 (%)	3,5	6,2	2,5	1,3
18-64 (%)	29,3	34,2	24,0	26,5
≥65 (%)	67,2	59,6	73,5	72,2
Area di ricovero ospedaliero (n)	13.643	1.105	7.619	5.720
Specialità medicina (%)	49,6	28,5	45,6	51,8
Specialità chirurgica (%)	7,8	2,2	9,2	11,9
Terapia intensiva (%)	12,3	11,3	20,0	20,1
Emergenza (%)	21,2	51,6	15,9	8,5
Pediatria/neonatologia (%)	1,1	3,2	0,4	0,1
Ginecologia/ostetricia (%)	0,3	0,2	0,4	0,1
Altro (%)	7,6	3,1	8,4	7,6

Tabella 4. Caratteristiche dei pazienti con infezione invasiva da batteri Gram-negativi, Italia 2022

Caratteristica	E. coli	K. pneumoniae	P. aeruginosa	Acinetobacter spp.
Sesso (n)	25.775	11.715	6.004	2.816
Femmina (%)	49,9	37,5	36,8	38,7
Maschio (%)	50,1	62,5	63,2	61,3
Classe di età (anni) (n)	25.854	11.765	6.031	2.887
0-17 (%)	1,7	2,8	2,5	2,0
18-64 (%)	23,1	29,8	31,6	33,9
≥65 (%)	75,2	67,4	65,9	64,1
Area di ricovero ospedaliero (n)	23.707	10.785	5.533	2.666
Specialità medicina (%)	41,8	43,1	42,5	40,8
Specialità chirurgica (%)	7,1	9,9	10,2	7,5
Terapia intensiva (%)	7,1	19,2	23,3	39,3
Emergenza (%)	36,1	19,0	15,8	5,0
Pediatria/neonatologia (%)	0,5	0,3	0,3	0,4
Ginecologia/ostetricia (%)	1,2	0,4	0,1	0,0
Altro (%)	6,3	8,1	7,8	7,0

Le Tabelle 5 e 6 mostrano il profilo di antibiotico-resistenza relativo agli 8 patogeni sotto sorveglianza.

Relativamente ai batteri Gram-positivi (Tabella 5), le percentuali di resistenza più alte si osservano per *S. aureus* a eritromicina (36,1%), clindamicina (32,4%), oxacillina/cefoxitina (29,9%) e levofloxacina (27,1%); per *S. pneumoniae* a eritromicina (24,9%), clindamicina (22,1%), tetraciclina (21,8%) e penicillina (12,8%). Per gli enterococchi le percentuali di resistenza più alte si riscontrano in *E. faecium* all'ampicillina (89,3%), agli aminoglicosidi ad alto dosaggio (streptomicina 62,7% e gentamicina 58,0%) e ai glicopeptidi (vancomicina 30,7% e teicoplanina 30,5%); in *E. faecalis* le percentuali di resistenza più alte si osservano per gli aminoglicosidi ad alto dosaggio (gentamicina 34,0% e streptomicina 32,0%).

Tabella 5. Batteri Gram-positivi: profilo di antibiotico-resistenza per patogeno, Italia 2022

Patogeno /	Antibiotico	Isolati	R	IC 95%
Classe di antibiotici	711111111111111111111111111111111111111	(n)	(%)	R (%)
Staphylococcus aureus				
Penicilline antistafilococciche	Oxacillina/Cefoxitina	14.083	29,9	29,1-30,6
Macrolidi	Eritromicina	14.164	36,1	35,3-36,9
Lincosamidi	Clindamicina	13.826	32,4	31,6-33,2
Aminoglicosidi	Gentamicina	14.141	11,3	10,8-11,9
Fluorochinoloni	Levofloxacina	13.047	27,1	26,4-27,9
	Vancomicina	13.936	0,4	0,3-0,6
Glicopeptidi	Teicoplanina	13.539	2,3	2,1-2,6
Ossazolidinoni	Linezolid	13.141	0,4	0,3-0,5
Lipopeptidi	Daptomicina	13.350	1,0	0,9-1,2
Glicilcicline	Tigeciclina	10.870	0,5	0,4-0,6
Rifamicine	Rifampicina	11.344	4,5	4,1-4,8
Tetracicline	Tetraciclina	11.792	6,3	5,9-6,8
Sulfamidici	Cotrimossazolo	10.834	2,6	2,3-2,9
Streptococcus pneumoniae				
Penicilline	Penicillina	821	12,8*	10,6-15,3
Cafalananina III nananaiana	Ceftriaxone	963	0,8	0,4-1,6
Cefalosporine III generazione	Cefotaxime	1.023	0,8	0,3-1,5
Macrolidi	Eritromicina	1.175	24,9	22,5-27,5
Lincosamidi	Clindamicina	989	22,1	19,6-24,9
Fluorochinoloni	Levofloxacina	1.187	1,4	0,8-2,3
Tetracicline	Tetraciclina	996	21,8	19,3-24,5
Enterococcus faecalis				
Penicilline	Ampicillina	8.040	1,0	0,8-1,3
Aminoplicacidi (alta danassia)	Gentamicina	3.549	34,0	32,5-35,6
Aminoglicosidi (alto dosaggio)	Streptomicina	4.436	32,0	30,6-33,4
Clina a partial:	Vancomicina	7.962	2,0	1,7-2,3
Glicopeptidi	Teicoplanina	7.876	2,1	1,8-2,5
Ossazolidinoni	Linezolid	7.690	0,6	0,4-0,8
Enterococcus faecium				
Penicilline	Ampicillina	5.891	89,3	88,5-90,1
Aminoglicacidi (alta docazzia)	Gentamicina	2.597	58,0	56,1-59,9
Aminoglicosidi (alto dosaggio)	Streptomicina	3.401	62,7	61,1-64,4
Clicopontidi	Vancomicina	5.910	30,7	29,5-31,9
Glicopeptidi	Teicoplanina	5.846	30,5	29,4-31,7
Ossazolidinoni	Linezolid	5.769	1,6	1,3-1,9

R Resistenza; IC Intervallo di Confidenza.

^{*} il dato include gli isolati sensibili con aumentata esposizione (I) e resistenti (R).

Tabella 6. Batteri Gram-negativi: profilo di antibiotico-resistenza per patogeno, Italia 2022

Patogeno/Classe di antibiotici	Antibiotico	Isolati (n.)	R (%)	IC 95%-R (%)
Escherichia coli				
	Ampicillina	7.592	61,6	60,5-62,7
Penicilline	Amoxicillina-Acido Clavulanico	23.719	38,0	37,4-38,6
	Piperacillina-Tazobactam	25.085	8,5	8,2-8,9
	Cefotaxime	21.067	23,7	23,2-24,3
	Ceftazidime	25.066	19,6	19,1-20,1
Cefalosporine	Ceftriaxone	3.526	26,4	25,0-27,9
III/IV generazione	Ceftazidime-Avibactam	11.150	0,7	0,5-0,9
	Cefepime	24.390	18,2	17,7-18,7
		16.342		
Carla an an anai	Imipenem		0,3	0,2-0,4
Carbapenemi	Meropenem	23.663	0,2	0,2-0,3
	Ertapenem	15.668	0,9	0,7-1,0
Aminoglicosidi	Amikacina	24.944	1,5	1,3-1,6
	Gentamicina	25.351	12,6	12,2-13,0
- - - - - - - - - - - - - - - - - - -	Ciprofloxacina	25.286	31,5	30,9-32,0
	Levofloxacina	6.772	30,8	29,7-31,9
Glicilcicline	Tigeciclina	8.762	14,7	14,0-15,5
Altro	Fosfomicina i.v.	11.601	2,2°	2,0-2,5
Klebsiella pneumonia				
Penicilline	Amoxicillina-Acido Clavulanico	10.497	54,4	53,4-55,3
Penicilline	Piperacillina-Tazobactam	11.342	46,3	45,3-47,2
	Cefotaxime	8.947	49,8	48,8-50,9
	Ceftazidime	11.458	51,3	50,4-52,2
Cefalosporine	Ceftriaxone	2.094	61,4	59,3-63,5
II/IV generazione	Ceftazidime-Avibactam	7.088	6,9	6,3-7,5
	Cefepime	11.229	47,8	46,8-48,7
	Imipenem	8.227	27,6	26,6-28,5
Carbapenemi	Meropenem	10.915	23,5	22,7-24,3
Carbapenemi	Ertapenem	6.682	27,9	26,8-29,0
	Amikacina		12,8	
Aminoglicosidi		10.820		12,1-13,4
	Gentamicina	11.498	28,4	27,6-29,2
Fluorochinoloni	Ciprofloxacina	11.484	48,4	47,5-49,4
	Levofloxacina	3.281	51,4	49,7-53,1
Altro	Fosfomicina i.v.	4.035	30,8°	29,4-32,3
Pseudomonas aerugin				
Penicilline	Piperacillina-Tazobactam	5.893	24,1	23,0-25,2
	Ceftazidime	5.903	19,0	18,0-20,0
Cefalosporine	Cefepime	5.775	17,5	16,5-18,5
II/IV generazione	Ceftazidime/Avibactam	3.726	6,0	5,2-6,8
	Ceftolozano/Tazobactam	3.322	5,5	4,7-6,3
· ·	Imipenem	5.019	17,7	16,6-18,8
Carbapenemi	Meropenem	5.816	9,5	8,7-10,3
	Amikacina	5.855	2,7	2,3-3,1
Aminoglicosidi	Gentamicina	818	12,6	10,4-15,1
5000.0.	Tobramicina	3248	6,9	6,0 – 7,8
	Ciprofloxacina	5.943	16,2	15,3-17,2
Fluorochinoloni	Levofloxacina	1.874	21,1	19,3-23,1
Acinetobacter spp.	Levellowaelila	1.077	£ 1, 1	15,5 25,1
	Imipenem	2.040	89,3	87,8-90,6
Carbapenemi		2.668		
•	Meropenem		88,0	86,8-89,3
Aminoglicosidi	Amikacina	2.730	82,9	81,4-84,3
	Gentamicina	2.821	84,7	83,3-86,0
Fluorochinoloni	Ciprofloxacina	2.767	89,0	87,8-90,2
14010011111010111	Levofloxacina	785	87,6	85,1-89,9

R, Resistenza; **IC**, Intervallo di Confidenza; °Non è stato possibile verificare se il dato è stato ottenuto con le metodiche raccomandate da EUCAST (https://www.eucast.org/clinical_breakpoints) e riportate nel protocollo AR-ISS.

Relativamente ai batteri Gram-negativi (Tabella 6), percentuali di resistenza particolarmente critiche si osservano:

- per E. coli all'ampicillina (61,6%) e amoxicillina-acido clavulanico (38,0%), alle cefalosporine di terza generazione (>19%) e quarta generazione (cefepime, 18,2%) e ai fluorochinoloni (>30%);
- per *K. pneumoniae* ad amoxicillina-acido clavulanico (54,4%) e piperacillina-tazobactam (46,3%), alle cefalosporine di terza generazione (>49%) e quarta generazione (cefepime, 47,8%), ai carbapenemi (23,5% per meropenem), ai fluorochinoloni (>48%);
- per *P. aeruginosa* a piperacillina-tazobactam (24,1%), alle cefalosporine di terza e quarta generazione (rispettivamente 19,0% e 17,5%), ai carbapenemi (9,5% per meropenem, 17,7% per imipenem), alla levofloxacina (21,1%) e alla ciprofloxacina (16,2%);
- per *Acinetobacter* spp. si sono confermati valori molto alti di resistenza (>80%) verso le principali classi di antibiotici.

Levofloxacina e ceftriaxone sono stati gli antibiotici meno testati.

La Figura 2 mostra la percentuale di resistenza delle quattro principali combinazioni patogeno/antibiotico particolarmente rilevanti per la sorveglianza AR-ISS e sotto osservazione a livello europeo da parte dell'ECDC nelle regioni Italiane per il 2022:

- S. aureus resistente alla meticillina (MRSA);
- E. faecium resistente alla vancomicina (VRE-faecium);
- E. coli resistente alle cefalosporine di terza generazione (CREC);
- K. pneumoniae resistente ai carbapenemi (CRKP).

La percentuale di resistenza di *S. aureus* alla meticillina si riferisce alla resistenza ad almeno un antibiotico tra oxacillina e cefoxitina; la percentuale di resistenza di *K. pneumoniae* ai carbapenemi si riferisce alla resistenza ad almeno un antibiotico tra imipenem e meropenem.

La percentuale di resistenza alle cefalosporine di terza generazione di *E. coli* si riferisce alla resistenza ad almeno un antibiotico tra cefotaxime, ceftazidime e ceftriaxone.

Tendenzialmente si rileva una certa variabilità territoriale per i valori di resistenza relativi alle quattro principali combinazioni patogeno/antibiotico.

Le classi di intensità di resistenza sono identificate in base ai quartili della distribuzione nazionale

Figura 2. Percentuali di resistenza delle principali combinazioni patogeno/antibiotico sotto sorveglianza per Regione, anno 2022

Andamento 2015-2022

La Figura 3 mostra l'andamento temporale negli ultimi 8 anni (2015-2022) delle quattro combinazioni patogeno/antibiotico prese in esame e sotto osservazione a livello europeo. La percentuale di MRSA, sostanzialmente stabile fino al 2020 con valori intorno al 34%, ha mostrato nel 2021 una diminuzione di circa il 4% rimasta stabile nel 2022. Andamento analogo si osserva per la percentuale di isolati di *E. coli* resistenti alle cefalosporine di terza generazione mentre per la percentuale di isolati di *K. pneumoniae* resistenti ai carbapenemi si osserva una ulteriore evidente diminuzione nel 2022. Un chiaro andamento in aumento invece si continua ad osservare per la percentuale dei ceppi di *E. faecium* resistenti alla vancomicina (da 11,1% nel 2015 a 30,7% nel 2022). Applicando modelli di analisi multivariata, in cui si è tenuto conto delle caratteristiche demografiche dei pazienti, del reparto ospedaliero di ricovero, dell'area geografica e della variabilità tra i laboratori partecipanti, si confermano sostanzialmente gli andamenti riportati in Figura 3.

MRSA S. aureus resistente alla meticillina

VRE-faecium E. faecium resistente alla vancomicina

CREC E. coli resistente alle cefalosporine di terza generazione

CRKP K. pneumoniae resistente ai carbapenemi

Figura 3. Percentuale di resistenza delle principali combinazioni patogeno/antibiotico. Italia 2015-2022

Le Figure 4 e 5 mostrano l'andamento temporale delle quattro combinazioni patogeno/antibiotico separatamente per i reparti di Terapia Intensiva ed altri reparti. Dal confronto, nei reparti di Terapia Intensiva, si evidenziano valori più elevati nella percentuale di isolati di *K. pneumoniae* resistenti ai carbapenemi, anche se con un andamento in evidente diminuzione già dagli anni precedenti. Sia in Terapia Intensiva che negli altri reparti, si osservano andamenti simili per la percentuale degli isolati di *S. aureus* resistenti alla meticillina, *E. faecium* resistenti alla vancomicina e *E. coli* resistenti alle cefalosporine di terza generazione.

MRSA S. aureus resistente alla meticillina;

VRE-faecium E. faecium resistente alla vancomicina

CREC E. coli resistente alle cefalosporine di terza generazione

CRKP K. pneumoniae resistente ai carbapenemi

Figura 4. Percentuale di resistenza delle principali combinazioni patogeno/antibiotico nei reparti di Terapia Intensiva. Italia 2015-2022

MRSA S. aureus resistente alla meticillina

VRE-faecium E. faecium resistente alla vancomicina

CREC E. coli resistente alle cefalosporine di terza generazione

CRKP K. pneumoniae resistente ai carbapenemi

Figura 5. Percentuale di resistenza delle principali combinazioni patogeno/antibiotico in altri reparti.

Italia 2015-2022

Nelle prossime figure si rappresenta l'andamento temporale delle percentuali di resistenza a diverse classi di antibiotici o a singoli antibiotici per ognuno degli 8 patogeni sotto sorveglianza. La resistenza a una classe è stata definita come resistenza ad almeno un antibiotico di quella classe.

Staphylococcus aureus

S. aureus è un importante patogeno dell'uomo e può causare sia infezioni lievi della cute che infezioni gravi quali polmoniti, meningiti, endocarditi e osteomieliti. S. aureus è diffuso sia a livello comunitario che ospedaliero dove rappresenta una delle principali cause di batteriemia. La diffusione di S. aureus resistente alla meticillina e ad altri agenti beta-lattamici rappresenta un importante problema di sanità pubblica. Per molti anni il trattamento di elezione per combattere gli MRSA è stato basato sull'uso dei glicopeptidi, in particolare vancomicina; tuttavia, l'uso eccessivo e non prudente di questo antibiotico ha portato all'emergere di ceppi con diminuita sensibilità alla vancomicina. Da qualche anno sono stati introdotti nella pratica clinica nuovi antibiotici, quali linezolid, daptomicina, e più recentemente ceftarolina, anche in combinazione con vancomicina e daptomicina, per il trattamento delle infezioni gravi da MRSA. Anche per questi ultimi antibiotici, in particolare linezolid e daptomicina, si è osservata l'emergenza di ceppi resistenti.

In Italia, dopo una evidente diminuzione del valore percentuale di MRSA nel 2021 (30,5% rispetto ad una media di circa il 34% nel periodo 2015-2020) nel 2022 la percentuale di MRSA pari al 29,9% si è mantenuta stabile rispetto al 2021 (Figura 6).

Figura 6. S. aureus: resistenza alla meticillina. Italia 2015-2022

Streptococcus pneumoniae

S. pneumoniae (o pneumococco) è il più frequente agente eziologico delle infezioni respiratorie batteriche a livello comunitario, soprattutto in bambini, anziani e pazienti immunocompromessi. Si trasmette attraverso le secrezioni respiratorie e può causare gravi patologie, come la polmonite, la meningite e la sepsi, ma anche epiglottite, osteomielite, endocardite, artrite settica. La diffusione della

resistenza alla penicillina (e ai beta-lattamici in generale) nei ceppi di pneumococco rappresenta un aspetto particolarmente temibile, con ripercussioni sulle terapie (soprattutto della meningite). Inoltre, anche la resistenza ad altre classi di antibiotici è un fenomeno da controllare, soprattutto ai macrolidi molto utilizzati anche in maniera inappropriata nella terapia delle infezioni del tratto respiratorio.

L'Italia, come la maggior parte dei Paesi europei, ha implementato un programma di vaccinazione con vaccini glicoconiugati polivalenti sia per i bambini, che per gli adulti ad alto rischio (come anziani e immunocompromessi). L'utilizzo dei vaccini glicoconiugati, determinando la diminuzione di sierotipi vaccinali antibiotico-resistenti, ha avuto un impatto sui tassi di resistenza in S. *pneumoniae*. In Italia, dal 2015 al 2022 si è osservato un andamento sostanzialmente stabile della percentuale di isolati di S. *pneumoniae* resistenti alla penicillina (che include anche gli isolati sensibili con aumentata esposizione, I) e all'eritromicina, con valori nel 2022 di 12,8% per la penicillina e 24,9% per l'eritromicina (Figura 7). Sebbene nel biennio 2020-2021, a seguito delle misure di contrasto adottate per rallentare la diffusione di SARS-CoV-2, sia stata riscontrata una riduzione di circa il 50% del numero di isolati di pneumococco segnalati rispetto al 2019, nel 2022 il numero di isolati è tornato in linea con i valori prepandemia.

La resistenza alla penicillina include anche gli isolati sensibili con aumentata esposizione (I)

Figura 7. S. pneumoniae: resistenza a penicillina ed eritromicina. Italia 2015-2022

Enterococchi

Gli enterococchi appartengono al normale microbiota batterico del tratto gastrointestinale umano. Sono considerati commensali innocui in soggetti sani ma in particolari condizioni possono causare vari quadri clinici come endocarditi, sepsi, infezioni del tratto urinario o essere associati a peritoniti e ascessi intra-addominali.

Al genere *Enterococcus* appartengono più di 50 specie, prevalentemente rappresentate da *E. faecalis* ed *E. faecium*, ritenuti tra i più importanti patogeni ospedalieri. Gli enterococchi sono intrinsecamente resistenti a diversi antibiotici, tra cui cefalosporine, sulfonamidi e aminoglicosidi a basse concentrazioni.

Gli aminoglicosidi, come gentamicina o streptomicina, hanno un effetto sinergico in combinazione con penicilline o glicopeptidi per la terapia delle infezioni da enterococchi. Questo effetto sinergico si perde se i ceppi presentano un alto livello di resistenza agli aminoglicosidi.

Enterococcus faecalis

In Italia, dopo due anni di aumento nel 2020 e 2021, si osserva nel 2022 una diminuzione della percentuale di resistenza agli aminoglicosidi ad alto dosaggio (gentamicina, streptomicina) in *E. faecalis* (38,1%); inoltre, dai dati emerge che la resistenza alla vancomicina si è mantenuta bassa, non oltre il 2% (Figura 8).

Figura 8. *E. faecalis*: resistenza ad ampicillina, aminoglicosidi e vancomicina. Italia 2015-2022

Enterococcus faecium

Per *E. faecium* la percentuale di resistenza agli aminoglicosidi ad alto dosaggio (gentamicina, streptomicina) è diminuita negli ultimi anni (da 79,7% nel 2015 a 67,9% nel 2022) e si mantiene stabile negli ultimi tre anni ad un valore medio di circa 68%, mentre la resistenza all'ampicillina nel 2022 si mantiene alta, pari all'89,3% (Figura 9).

Si continua ad osservare un progressivo e preoccupante incremento nella percentuale di resistenza alla vancomicina, che è passata dall'11,1% del 2015 al 30,7% nel 2022. È evidente la necessità di ulteriori approfondimenti per comprendere meglio l'epidemiologia, la diversità dei ceppi e i fattori di rischio associati all'infezione.

Figura 9. *E. faecium*: resistenza ad ampicillina, aminoglicosidi e vancomicina. Italia 2015-2022

Escherichia coli

E. coli fa parte del normale microbiota intestinale dell'uomo, ma è anche la causa più frequente di sepsi e infezioni del tratto urinario, sia di origine comunitaria che ospedaliera; inoltre, è associato a infezioni intra-addominali e meningiti neonatali ed è uno dei principali agenti causali delle infezioni di origine alimentare nel mondo. La resistenza in *E. coli* si sviluppa rapidamente attraverso mutazioni o mediante acquisizione di elementi genetici mobili che codificano meccanismi di resistenza, come la produzione di beta-lattamasi a spettro esteso (ESBL) e carbapenemasi. Le ESBL sono enzimi che conferiscono resistenza alla maggior parte degli antibiotici beta-lattamici, comprese le cefalosporine di terza generazione, e sono spesso riscontrati in combinazione con altri meccanismi di resistenza, con conseguente resistenza a più farmaci. I carbapenemi di solito resistono agli effetti delle ESBL e potrebbero rimanere una delle poche opzioni di trattamento per le infezioni gravi. Tuttavia, una potenziale minaccia è la resistenza ai carbapenemi mediata da carbapenemasi, che potrebbe conferire resistenza a tutti gli antibiotici beta-lattamici disponibili.

In Italia, dal 2017 si osserva un andamento in calo nella percentuale di *E. coli* resistenti agli aminoglicosidi (amikacina, gentamicina), 13,2% nel 2022, e ai fluorochinoloni (ciprofloxacina, levofloxacina), 31,6% nel 2022, mentre la resistenza alle cefalosporine di terza generazione (cefotaxime, ceftazidime, ceftriaxone) è diminuita dal 30,9% nel 2019 al 24,2% nel 2022 ma è rimasta sostanzialmente stabile rispetto al 2021; inoltre, valori molto bassi di resistenza (<1%) e stabili sono stati osservati per i carbapenemi (imipenem, meropenem) (Figura 10). La percentuale di resistenza combinata, misurata come resistenza a cefalosporine di terza generazione, aminoglicosidi e fluorochinoloni, è stata dell'8,2% nel 2022, in diminuzione rispetto agli anni precedenti. Poiché l'uso di antibiotici ad ampio spettro, quali cefalosporine e fluorochinoloni, è un noto fattore di rischio per la colonizzazione e la diffusione di Enterobacterales resistenti, incluso *E. coli*, è necessaria una maggiore attenzione alla gestione del trattamento e a una riduzione d'uso di questi antibiotici.

Figura 10. E. coli: resistenza ad ampicillina, cefalosporine di terza generazione, carbapenemi, aminoglicosidi e fluorochinoloni. Italia 2015-2022

Klebsiella pneumoniae

K. pneumoniae è un patogeno opportunista che normalmente colonizza l'apparato gastrointestinale umano, la cute e il tratto respiratorio superiore. La maggior parte delle infezioni causate da *K. pneumoniae* sono ospedaliere e includono principalmente infezioni dell'apparato respiratorio e batteriemie associate a un'alta mortalità.

La definizione di specie Klebsiella pneumoniae è stata recentemente sostituita dalla definizione Klebsiella pneumoniae species complex, tenendo conto delle ultime evoluzioni tassonomiche. La caratterizzazione genomica di isolati clinici, identificati come K. pneumoniae attraverso metodiche convenzionali, ha rivelato l'esistenza di molteplici specie e sottospecie affini (K. pneumoniae, Klebsiella quasipneumoniae subsp. quasipneumoniae, Klebsiella quasipneumoniae subsp. similipneumoniae, Klebsiella variicola subsp. variicola, and Klebsiella variicola subsp. tropica, K. quasivariicola and K. africana), che insieme formano il K. pneumoniae species complex (KpSC). Per Klebsiella pneumoniae quindi si intende K. pneumoniae specie complex.

Nel tempo, *K. pneumoniae* ha sviluppato resistenza a diverse classi di antibiotici, limitando così le opzioni terapeutiche disponibili. La produzione di beta-lattamasi di classe A rende il batterio intrinsecamente resistente alle penicilline e alle cefalosporine a spettro ristretto. Negli ultimi anni la produzione di ESBL capaci di rendere inefficaci i beta-lattamici ad ampio spettro, incluse le cefalosporine di terza generazione, ha aumentato il ricorso ai carbapenemi e quindi favorito la rapida diffusione delle resistenze a quest'ultima classe di antibiotici. La resistenza ai carbapenemi rappresenta oggi un rilevante problema di sanità pubblica e spesso insorge in ceppi già resistenti ad altre classi di antibiotici. Negli ultimi anni, per il trattamento delle infezioni sostenute da *K. pneumoniae* resistente ai carbapenemi, sono stati introdotti nella pratica clinica nuovi antibiotici ad ampio spettro di attività

quali il cefiderocol e le combinazioni β-lattamico/inibitore delle β-lattamasi quali il ceftazidime/avibactam, imipenem/relebactam e meropenem/vaborbactam, sebbene per queste nuove molecole siano stati già isolati ceppi resistenti e descritti diversi tipi di meccanismi di resistenza.

Dopo un leggero aumento nel 2019 e 2020, nel biennio 2021-2022 si è osservata una nuova diminuzione della percentuale di isolati di *K. pneumoniae* resistenti ai carbapenemi (imipenem, meropenem); complessivamente il valore è passato da 33,2% nel 2015 a 24,9% nel 2022, mentre per le cefalosporine di terza generazione (cefotaxime, ceftazidime, ceftriaxone) dopo un lieve calo osservato nel biennio precedente, nel 2022 il valore di percentuale (53,3%) è rimasto sostanzialmente stabile rispetto al 2021. Per gli aminoglicosidi (gentamicina, amikacina) il dato di resistenza per il 2022 mostra un sostanziale decremento rispetto all'anno precedente e si osserva complessivamente un andamento in diminuzione (dal 42,4% nel 2015 al 31,6% nel 2022). In linea con quanto osservato l'anno precedente si riscontra una diminuzione della resistenza ai fluorochinoloni (ciprofloxacina, levofloxacina) che nel 2022 si è attestata al 48,7% (Figura 11).

Figura 11. K. pneumoniae: resistenza a cefalosporine di terza generazione, carbapenemi, aminoglicosidi e fluorochinoloni. Italia 2015-2022

Pseudomonas aeruginosa

P. aeruginosa è un batterio presente nell'ambiente e nelle acque. È un patogeno opportunista e una delle principali cause di infezione nei pazienti ospedalizzati immunocompromessi. Provoca comunemente polmonite associata all'assistenza sanitaria (inclusa quella associata alla ventilazione meccanica), infezioni del sangue e del tratto urinario. P. aeruginosa è intrinsecamente resistente alla maggior parte degli agenti antimicrobici a causa della sua capacità selettiva di impedire a varie molecole antibiotiche di penetrare nella sua membrana esterna. Antibiotici potenzialmente efficaci sono i beta-lattamici (come le cefalosporine ceftazidime e cefepime), i carbapenemi e i beta-lattamici associati a inibitori delle beta-lattamasi come piperacillina-tazobactam, e ceftolozane/tazobactam. Altre classi di antibiotici potenzialmente attivi sono gli aminoglicosidi e alcuni fluorochinoloni.

Dal 2015 al 2022 sono stati osservati andamenti in diminuzione nella percentuale di isolati di *P. aeruginosa* resistenti alle principali classi di antibiotici utilizzati per il trattamento di queste infezioni invasive (Figura 12). In particolare, a partire dal 2017 per gli aminoglicosidi e i fluorochinoloni si evidenza un andamento in costante diminuzione; per il ceftazidime e la piperacillina-tazobactam un andamento stabile mentre per i carbapenemi, dopo un aumento registrato nel biennio precedente, nel 2022 si osserva una lieve diminuzione nella percentuale di resistenza. Nel 2022, la percentuale di resistenza più alta è stata osservata per piperacillina-tazobactam (24,1%), seguita da ceftazidime (19,0%), fluorochinoloni (ciprofloxacina, levofloxacina, 18,5%), carbapenemi (imipenem, meropenem, 16,4%) e aminoglicosidi (gentamicina, amikacina, 4,0%).

Figura 12. *P. aeruginosa*: resistenza a piperacillina-tazobactam, ceftazidime, carbapenemi, aminoglicosidi e fluorochinoloni. Italia 2015-2022

Acinetobacter species

Il genere *Acinetobacter* è costituito da un gran numero di specie. Il gruppo dell'*Acinetobacter baumannii complex* (*A. baumannii, A. nosocomialis, A. pittii, A. seifertii,* and *A. lacticae,* anche chiamata *A. dijkshoorniae*) comprende le principali specie patogene per l'uomo, associate soprattutto alle infezioni correlate all'assistenza sanitaria, tra cui polmonite, sepsi e infezioni del tratto urinario. I fattori di rischio per l'infezione comprendono l'età avanzata, la presenza di gravi patologie concomitanti, lo stato di immunosoppressione, gravi traumi o lesioni da ustioni, procedure invasive, ventilazione meccanica e degenza ospedaliera prolungata. Le specie di *Acinetobacter* sono intrinsecamente resistenti alla maggior parte degli agenti antimicrobici grazie alla loro capacità selettiva di impedire a varie molecole di penetrare nella loro membrana esterna. I gruppi antimicrobici che rimangono attivi includono alcuni fluorochinoloni, aminoglicosidi, carbapenemi e polimixine. I ceppi multi-resistenti rappresentano un grande problema di sanità pubblica, poiché le opzioni terapeutiche per il trattamento delle infezioni causate da questi microrganismi sono molto limitate e l'implementazione delle misure di controllo pone alcune difficoltà. Tra le misure da adottare per contrastare la diffusione delle infezioni da *Acinetobacter* multi-resistente ci sono la rapida diagnosi di laboratorio, lo screening

e l'isolamento dei pazienti ad alto rischio, le procedure di controllo delle infezioni e la stewardship antibiotica.

Per *Acinetobacter* spp. si sono riscontrati valori di resistenza e di multi-resistenza particolarmente elevati e sostanzialmente stabili rispetto all'ultimo anno (Figura 13).

Figura 13. *Acinetobacter* spp.: resistenza a carbapenemi, aminoglicosidi e fluorochinoloni. Italia 2015-2022

Nel 2022 la percentuale più alta di resistenza si è osservata per i fluorochinoloni (ciprofloxacina, levofloxacina, 89,1%), seguita dai carbapenemi (imipenem, meropenem, 88,5%) e dagli aminoglicosidi (gentamicina, amikacina, 86,5%).

Riferimenti utili

- Bellino S, D'Ancona F, Iacchini S, Monaco M, Pantosti A, Pezzotti P. *AR-ISS: sorveglianza nazionale dell'Antibiotico-Resistenza. Rapporto N. 1 I dati 2018.* Roma: Istituto Superiore di Sanità; 2019.
- Bellino S, Iacchini S, Monaco M, Del Grosso M, Camilli R, Errico G, Giufrè M, Sisi S, D'Ancona F, Pantosti A, Pezzotti P, Parodi P. *AR-ISS: sorveglianza nazionale dell'Antibiotico-Resistenza. Dati 2020.* Roma: Istituto Superiore di Sanità; 2021. (Rapporti ISS Sorveglianza RIS-1/2021).
- Bellino S, Iacchini S, Monaco M, Prestinaci F, Lucarelli C, Del Grosso M, Camilli R, Errico G, D'Ancona F, Pezzotti P, Pantosti A e il Gruppo AR-ISS. *AR-ISS: sorveglianza dell'antibiotico-resistenza in Italia. Rapporto del quinquennio 2012-2016.* Roma: Istituto Superiore di Sanità; 2018. (Rapporti ISTISAN 18/22).
- Dipartimento Malattie Infettive. Sorveglianza delle Malattie Batteriche Invasive in Italia. Rapporto 2020. Roma: Istituto Superiore di Sanità; 2021. https://www.iss.it/documents/20126/0/Rapporto+MaBI+2020.pdf/a2d63000-2b68-56d9-bdf2-b471bd77417d?t=1644488786938
- Dong N, Yang X, Chan EW, Zhang R, Chen S. *Klebsiella* species: Taxonomy, hypervirulence and multidrug resistance. EBioMedicine. 2022; 79:103998. doi: 10.1016/j.ebiom.2022.103998.
- European Centre for Disease Prevention and Control. *Antimicrobial resistance in the EU/EEA (EARS-Net) Annual Epidemiological Report for 2020.* Stockholm: ECDC; 2022. https://www.ecdc.europa.eu/sites/default/files/documents/AER-EARS-Net-2020.pdf
- lacchini S, Bellino S, D'Ancona F, Del Grosso M, Camilli R, Errico G, Pezzotti P, Pantosti A, Monaco M e i Referenti Regionali della rete AR-ISS. Sorveglianza nazionale dell'antibiotico-resistenza AR-ISS, dati primo semestre 2020. *Boll Epidemiol Naz* 2020; 1(1):46-50. DOI: https://doi.org/10.53225/BEN_007
- Iacchini S, Pezzotti P, Caramia A, Del Grosso M, Camilli R, Errico G, Giufrè M, Pantosti A, Maraglino F, Palamara AT, D'Ancona F, Monaco M e il gruppo di lavoro AR-ISS. *AR-ISS: sorveglianza nazionale dell'Antibiotico-Resistenza. Dati 2021.* Roma: Istituto Superiore di Sanità; 2022. (Rapporti ISS Sorveglianza RIS-1/2022).
- Istituto Superiore di Sanità. Sistema nazionale di sorveglianza dell'antibiotico-resistenza (AR-ISS) Protocollo 2022. Roma: Istituto Superiore di Sanità; 2022. https://www.trovanorme.salute.gov.it/norme/renderNormsanPdf?anno=2022&codLeg=8651 5&parte=1%20&serie=null
- Istituto Superiore di Sanità. Sistema nazionale di sorveglianza sentinella dell'antibiotico-resistenza (AR-ISS) Protocollo 2019. Roma: Istituto Superiore di Sanità; 2019. https://www.trovanorme.salute.gov.it/norme/renderNormsanPdf?anno=2019&codLeg=6771 5&parte=1%20&serie=null
- Ministero della Salute. *Piano Nazionale di Contrasto all'Antibiotico-Resistenza (PNCAR)* 2022-2025. Roma: Ministero della Salute; 2023. https://www.salute.gov.it/imgs/C_17_pubblicazioni_3294_allegato.pdf

Ministero della Salute. *Piano Nazionale di Contrasto dell'Antimicrobico-Resistenza (PNCAR)* 2017-2020. Roma: Ministero della Salute; 2017. http://www.salute.gov.it/imgs/C_17_pubblicazioni_2660_allegato.pdf

Surveillance Atlas of Infectious Diseases: https://atlas.ecdc.europa.eu/public/index.aspx

World Health Organization. *Global Antimicrobial Resistance and Use Surveillance System (GLASS)* https://www.who.int/initiatives/glass

World Health Organization. Regional Office for Europe/European Centre for Disease Prevention and Control. *Antimicrobial resistance surveillance in Europe 2022-2020 data*. Copenhagen: WHO Regional Office for Europe; 2022. https://www.ecdc.europa.eu/sites/default/files/documents/Joint-WHO-ECDC-AMR-report-2022.pdf

Composizione del Gruppo di lavoro AR-ISS

Istituto Superiore di Sanità

Coordinamento epidemiologico

Fortunato "Paolo" D'Ancona, Patrizio Pezzotti, Simone Iacchini, Stefano Boros, Alessandra Caramia, Giulia Fadda, Stefania Giannitelli

Coordinamento microbiologico

Monica Monaco, Giulia Errico, Maria Del Grosso, Romina Camilli, Maria Giufrè, Fabio D'Ambrosio, Sara Giancristofaro, Michela Pagnotta, Annalisa Pantosti

Referenti dei laboratori ospedalieri di microbiologia partecipanti alla rete AR-ISS nel 2023 per la raccolta dati 2022

Abruzzo: R. S. Chiatamone, P. O. G. Mazzini, Teramo; C. Di Iorio/ V. Savini, P. O. S. Spirito, Pescara; Basilicata: T. Lo Pizzo, Osp. San Carlo, Potenza; A. Traficante/ B. Campisi, IRCCS Crob, Potenza; E. Vitullo/ N. Nuzzolese, Osp. Madonna delle Grazie, Matera; Calabria: F. Greco, P. O. Annunziata, Cosenza; G. Matera, A. O. U. Mater Domini, Catanzaro; P. Minchella, A. O. Pugliese Ciaccio, Catanzaro; Campania: M. Bernardo, Osp. Cotugno, Napoli; E. Gallo, A. O. Santobono-Pausillipon-Presidio Santobono, Napoli; M. R. Catania, A.O.U. Federico II, Napoli; E. Cavalcanti, IRCCS "Fondazione Pascale" (Istituto Nazionale Tumori), Napoli; L. Degl'Innocenti, A.O. A. Cardarelli, Napoli; P. De Rosa/A. Filosa, P. O. Castellammare di Stabia, Castellammare di Stabia (NA); e P. O. Nola, Nola (NA); M. Galdiero/ G. Donnarumma/ F. Montella, A.O. U. Università Degli Studi della Campania "Luigi Vanvitelli", Napoli; R. Greco A. O. S. Anna e S. Sebastiano Caserta; S. Maddaluno, P. O. Pozzuoli, Pozzuoli (NA); S. Maddaluno/ I. Piccirillo, P. O. Giugliano, Giugliano (NA); S. Maddaluno/ L. Reccia, P. O. Frattamaggiore, Frattamaggiore (NA); S. Maddaluno/ M. C. Stanziola, P. O. Ischia, Napoli; R. Molinaro, A. O. G. Rummo, Benevento; M. Rega/S. Noviello, A. O. S. Giovanni di Dio e Ruggi d'Aragona, Salerno; I. Ricciardi, A. O. Santobono-Pausillipon-Presidio Pausillipon, Napoli; M. Taddeo/A. D'Argenio, A. O. S. G. Moscati, Avellino; P. Sabatini, P. O. Nocera Inferiore, Nocera Inferiore (SA); B. Sarnelli/ R. Irace, P. O. S. Giovanni Bosco, Napoli; B. Sarnelli/ V. D. Iula, P. O. Osp. Del Mare, Napoli; B. Sarnelli/ G. Caldarone, P. O. dei Pellegrini, Napoli; B. Sarnelli/ A. Chiefalo, P. O. San Paolo, Napoli; Emilia-Romagna: P. Aloisi/ M. Manelli, Osp. Privato Hesperia Hospital, Modena; S. Ambretti, A. O. U. S. Orsola-Malpiqhi, Bologna; E. Carretto, Osp. S. Maria Nuova, Reggio-Emilia; G. Lo Cascio, Osp. Piacenza, Piacenza; M. Fabbri, Osp. Privato Villa Maria Cecilia, Ravenna; C. Ferrari, A. O. U. Ospedali Riuniti, Parma; M. Malpeli, Osp. Fidenza, Fidenza (PR); R. Pora/ G. Chiaretto, A. O. U. S. Anna di Ferrara, Ferrara; V. Sambri/ M. Cricca, Lab. Unico Centro Servizi AUSL della Romagna, Cesena (FC); M. Sarti, Nuovo Osp. Civile S. Agostino-Estense, Modena; M. Sarti/ C. Venturelli, A. O. U. Policlinico, Modena; Friuli Venezia Giulia: G. Basaglia, Azienda Sanitaria Friuli Occidentale (ASFO) Osp. di Pordenone, Pordenone; M. Busetti, Azienda Sanitaria Universitaria Integrata Giuliano Isontina (ASUGI), Trieste; A. Sartor, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC) di Udine, Udine, Lazio: G. Antonelli, Policlinico Umberto I, Roma; P. Bernaschi, Osp. Pediatrico Bambino Gesù, Roma; M. C. Cava, Osp. Sandro Pertini, Roma; G. C. Cocciolillo, P. O. S. Eugenio/ CTO, Roma; C. Colonna, Osp. S. G. Battista - ACISMOM, Roma; C. D' Agostini, Policlinico Tor Vergata, Roma; C. Fontana, Ospedale Lazzaro Spallanzani, Roma; M. Meledandri, Presidio S. Filippo Neri, Roma; G. Parisi, Osp. S. Camillo - Padiglione Malpighi, Roma; T. Spanu/B. Fiori, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma; Liquria: S. Bacilieri, ICLAS srl Rapallo, Rapallo (GE); R. Bandettini, Istituto G. Gaslini, Genova; C. Burgarello, Osp. S. Paolo, Savona; P. Correrini/ C. Medici, P. O. del Levante Ligure, La Spezia; P. A. Dusi, Osp. di Sanremo, Sanremo; A. Marchese, Policlinico S. Martino, Genova; P. Morelli Osp. S. Corona, Pietra Liqure (SV); S. Oddera, Lab. Analisi ASL 3 Genovese, Genova; S. Reali, Osp. Di Lavagna, Lavagna (GE); P. Sansone, E. O. Ospedali Galliera, Genova; Lombardia: C. Farina, P. O. di Bergamo, Bergamo; F. Baldanti, Policlinico S. Matteo, Pavia; M. T. Bertoli, P. O. di Chiari, Brescia; M. T. Bertoli, P. O. di Iseo, Brescia; A. Callegaro, P. O. di Seriate, Bergamo; A. Caruso, P. O. Spedali Civili Di Brescia, Brescia; A. Cavallero, P. O. di Monza, Monza; F. Ceriotti, Osp. Maggiore Policlinico, Milano; L. Cerutti, P. O. di Lodi, Lodi; P. Clerici, P. O. di Legnano, Milano; P. Congedo/ D. Oggioni/ M. Oggioni, P. O. di Vimercate, Milano; F. Gioia, P. O. di

Busto Arsizio, Varese; M. R. Gismondo, P. O. Luigi Sacco, Milano; G. Giuliani, Presisdi Osp. Di Garbagnate Milanese, Passirana, Rho e Bollate, Milano; A. Grassini, P. O. di Crema, Cremona; P. Lanzini, P. O. di Sondrio, Sondrio; L. Magnani, Osp. Civile di Vigevano, Pavia; N. Mancini, P. O. di Varese, Varese; M. G. Marin, P. O. Desenzano del Garda, Brescia; D. Morelli, Istituto Nazionale Tumori, Milano; M. Partenope, P. O. di Como, Como; S. Pastori, P. O. di Sesto San Giovanni, Milano; E. Piva, P. O. di Mantova, Mantova; A. Presenti, P. O. di Treviglio, Bergamo; M. Ronchetti, Osp. Civile Di Voghera, Pavia; M. Straface, P. O. San Carlo, Milano; S. Testa, P. O. Istituti Ospedalieri di Cremona, Cremona; S. Tonolo, P. O. A. Manzoni, Lecco; C. Vismara, Osp. Niguarda Cà Granda, Milano; Marche: L. Gironacci, Osp. Civile di Civitanova Marche, Civitanova Marche (MC); F. Orecchioni, Ospedale Torrette Umberto I, Ancona; Molise: R. Russo, Osp. S. Timoteo, Termoli (CB); M. Scutellà, P. O. A. Cardarelli, Campobasso; PA Bolzano: R. Aschbacher, Azienda Sanitaria dell'Alto Adige Comprensorio Sanitario di Bolzano, Bolzano; PA Trento: C. Scarparo, Osp. S. Chiara, Trento; C. Scarparo, Osp. S. Maria del Carmine, Rovereto (TN); Piemonte: C. Canale/ B. Verti, Osp. Castelli, Verbania Pallanza (VB); E. Concialdi, Osp. Cardinal Massaia, Asti; A. Cutroni, A. O. U. Città della Salute e della Scienza - Presidio OIRM-S. Anna, Torino; A. Curtoni, A. O. U. Città della Salute e della Scienza - Presidio Molinette, Torino; M. De Filippi, A. O. U. San Luigi Gonzaga, Torino; A. Di Vincenzo/ V. Ghisetti, Osp. Amedeo di Savoia, Torino; C. Leli, A. O. S. Antonio e Biagio e Cesare Arrigo, Alessandria; M. Pelagi/ C. Tavano/ G. Caffiero, Osp. S. Andrea, Vercelli; F. Piana, A. O. S. Croce e Carle, Cuneo; Puglia: R. De Nittis/ F. Arena, A. O. U. Policlinico di Foggia, Foggia; E. De Nitto/ A. Santoro, Presidio di Summa-Perrino, Brindisi; M. A. Distasi, Osp. "Bonomo" di Andria, Andria; L. Lupo/ C. Palumbo, Osp. V. Fazzi, Lecce; E. Morelli, Osp. SS. Annunziata, Taranto; A. Mosca/ L. Ronga, A. O. U. Policlinico di Bari, Bari; L. Pace, Osp. "Delli Ponti" di Scorrano, Lecce; D. Tatò, Osp. Mons. Dimiccoli, Barletta; Sardegna: C. Crociani, Osp. G. Brotzu, Cagliari; S. Rubino, A. O. U. di Sassari - Presidio Ospedaliero, Sassari; Sicilia: M. T. Allù, ASP Ragusa, Ragusa; G. Aurnia/ P. Dell'Utri, ASP Catania, Catania; T. Barone, ASP Palermo, Palermo; L. Bozzanca, ASP Siracusa, Siracusa; V. Carelli, P. O. S. Elia, Caltanissetta; F. Di Bernardo, ARNAS Osp. Civico, Palermo; C. Di Naso, ARNAS Garibaldi, Catania; G. Friscia, ASP Agrigento, Agrigento; R. Genco, Osp. Buccheri La Ferla, Palermo; A. Giammanco, A. O. U. P. Giaccone, Palermo; A. M. Longhitano, Osp. Cannizzaro, Catania; M. Lucchese, ASP Trapani, Erice (TP); G. Mancuso, A. O. U. Policlinico G. Martino, Messina; T. Mannone/ O. Diquattro, Osp. Riuniti Villa Sofia-Cervello, Palermo; F. Monaco, ISMETT, Palermo; A. Restivo, ASP Enna, Enna; M. Rizzo/ G. Biondo, ASP Messina, Messina; G. Scalia/ S. Stefani, A. O. U. Policlinico Vittorio Emanuele e S. Marco, Catania; M. Tinaglia/ M. Grasso, Fondazione Ist. G. Giglio, Cefalù (PA); Toscana: S. Barnini/ C. Giordano, A. O. U. Pisana-Osp. Cisanello, Pisa; T. Batignani, Osp. riuniti Val di Chiana Senese-Nottola, Montepulciano (SI); L. Bianchi, Osp. S. Jacopo, Pistoia; T. Brunelli, Nuovo Osp. S. Stefano Prato, Prato; M. G. Cusi/S.Cresti, Policlinico S. Maria Alle Scotte, Siena; C. Dodi, Osp. Generale Provinciale S. Giuseppe, Empoli (FI); T. Giani, A. O. U. Careggi, Firenze; P. Isola, Osp. Di Livorno, Livorno; M. Nardone, Osp. di Lucca, Lucca; E. Parisio, Osp. S. Donato, Arezzo; A. Rebuffat, Osp. di Campostaggia, Poggibonsi; D. Salamone, Osp. Di Pontedera, Pontedera; S. Valentini, Osp. di Grosseto, Grosseto; Umbria: L. Baldoni, Osp. S. Giovanni Battista, Foligno; M. Bellagamba, Osp. S. Maria della Stella, Orvieto; V. Malagigi/ P. Menichetti, Osp. Gubbio-Gualdo Tadino, Gubbio (PG); V. Malagigi/ B. Nardi, Osp. Assisi, Assisi, V. Malagigi/S. Rossi, Osp. Castiglione del Lago, Perugia; V. Malagigi/ P. Tacconi, Osp. Città di Castello, Perugia; V. Malagigi/ G. Venditti, Osp. Pantalla, Todi; A. Mariottini/ P. Andreani, Osp. S. Maria, Terni; A. Mencacci, Osp. S. Maria della Misericordia, Perugia; Valle d'Aosta: C. Giacomazzi, Osp. Regionale U. Parini, Aosta; Veneto: D. Gibellini, A. O. U. Integrata di Verona, Verona; C. Guerriero, Osp. Alto Vicentino, Santorso (VI); G. Mezzapelle, Ospedali Riuniti Madre Teresa di Calcutta di Monselice, Monselice (PD); E. Modolo, Osp. di Belluno-Presidio Ospedaliero S. Martino, Belluno; C. Motta, Osp. Mater Salutis di Legnago; Legnago (VR); M. Rassu, Osp. S. Bortolo di Vicenza, Vicenza; M.Solinas/ L. Bettini, P. O. di Mestre-Osp Dell'Angelo, Mestre (VE); P. Stano/ E. De Canale, A. O. di Padova, Padova; A Tessari, Osp. S. Maria della Misericordia di Rovigo, Rovigo; E. Vian, Osp. Cà Foncello di Treviso, Treviso; M. Zoppelletto, Osp S. Bassiano di Bassano del Grappa, Bassano del Grappa (VI).

Referenti regionali per la raccolta dati 2022

Regione	Referente regionale AMR	Referente regionale sorveglianza	Microbiologo
Abruzzo	M. Di Giacomo; D. Palmieri; G. Parruti	P. Fazii; D. Palmieri; V. Savini	
Basilicata	M. R. Puzo	M. R. Puzo	A. Curci; T. Lo Pizzo; N. Nuzzolese; E. Vitullo
Calabria		A. Bisbano	P. Minchella
Campania	A. Perrella	V. Giordano	M. Bernardo
Emilia-Romagna	M. L. Moro	E. Ricchizzi	S. Ambretti
Friuli Venezia Giulia	R. Cocconi	G. Basaglia	G. Basaglia
Lazio	A. Barca	V. Puro	C. Fontana
Liguria	C. Sticchi	C. Sticchi	P. A. Dusi; A. Marchese
Lombardia	O. Leoni	D. Cereda; L. Crottogini	G. Brigante; L. Campana; G. Manarolla; C. Mauri
Marche	B. F. Rugger	M. M. D'Errico	B. Pieretti
Molise	G. Ripabelli	G. Ripabelli	
Piemonte	L. Ferrara	L. Ferrara	A. Rocchetti
Puglia	R. Prato	M. Chironna; D. Martinelli	M. T. Montagna
PA Bolzano	V. Moser	E. M. Erne	R. Aschbacher; E. Pagani
PA Trento	L. Fabbri	L. Fabbri	L. Collini; P. Gualdi
Sardegna	P. Castiglia	P. Castiglia	
Sicilia	G. Guarneri; M. Palermo	S. Stefani	A. Giammanco; S. Stefani
Toscana	F. Pieralli	S. Forni; F. Pieralli	G. M. Rossolini
Umbria	G. Bucaneve	M. Palumbo	A. Mencacci
Valle d'Aosta	E. Perri	G. Giardini	C. Giacomazzi
Veneto	M. Saia		

APPENDICE A Tabelle per Regione/PA delle percentuali di resistenza alle principali combinazioni patogeno/antibiotico sotto sorveglianza, anni 2015-2022

Regione Abruzzo

	Stap	hylo	coccu	is aureus	Ente	roco	ccus	faecium		Escher	ichia	coli	Kleb	sielle	a pne	umoniae
		I	MRSA	\		VRE	-faec	ium		(CREC				CRKP	
	Isolati		Resi	istenti	Isolati		Res	istenti	Isolati		Resi	stenti	Isolati		Resi	istenti
Anno	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)
2015	0	0			0	0			0	0			0	0		
2016	0	0			0	0			0	0			0	0		
2017	0	0			0	0			0	0			0	0		
2018	132	50	37,9	(29,6 - 46,7)	48	19	39,6	(25,8 - 54,7)	206	63	30,6	(24,4 - 37,4)	75	12	16,0	(8,6 - 26,3)
2019	156	39	25,0	(18,4 - 32,6)	59	26	44,1	(31,2 - 57,6)	209	55	26,3	(20,5 - 32,8)	0	0		
2020	139	59	42,4	(34,1 - 51,1)	75	15	20,0	(11,7 - 30,8)	159	52	32,7	(25,5 - 40,6)	83	17	20,5	(12,4 - 30,8)
2021	10	8	80,0	(44,4 - 97,5)	22	5	22,7	(7,8 - 45,4)	282	57	20,2	(15,7 - 25,4)	18	5	27,8	(9,7 - 53,5)
2022	138	49	35,5	(27,6 - 44,1)	130	34	26,2	(18,8 - 34,6)	354	104	29,4	(24,7 - 34,4)	63	23	36,5	(24,7 - 49,6)

Regione Basilicata

	Stap	hylo	coccı	ıs aureus	Ente	roco	ccus	faecium		Escher	ichia	coli	Kleb	sielle	a pne	umoniae
			MRS#	١		VRE	-faec	ium		(CREC				CRKP	
	Isolati		Res	istenti	Isolati		Res	istenti	Isolati		Resis	stenti	Isolati		Resi	istenti
Anno	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)
2015	0	0			0	0			0	0			0	0		
2016	0	0			0	0			0	0			0	0		
2017	45	15	33,3	(20,0 - 49,0)	5	0		(0,0 - 52,2)	67	24	35,8	(24,5 - 48,5)	18	4	22,2	(6,4 - 47,6)
2018	42	13	31,0	(17,6 - 47,1)	8	2	25,0	(3,2 - 65,1)	71	21	29,6	(19,3 - 41,6)	24	12	50,0	(29,1 - 70,9)
2019	108	37	34,3	(25,4 - 44,0)	26	6	23,1	(9,0 - 43,7)	122	46	37,7	(29,1 - 46,9)	49	21	42,9	(28,8 - 57,8)
2020	90	34	37,8	(27,8 - 48,6)	31	11	35,5	(19,2 - 54,6)	107	40	37,4	(28,2 - 47,3)	60	24	40,0	(27,6 - 53,5)
2021	99	40	40,4	(30,7 - 50,7)	38	11	28,9	(15,4 - 45,9)	111	32	28,8	(20,6 - 38,2)	56	37	66,1	(52,2 - 78,2)
2022	115	41	35,7	(26,9 - 45,1)	45	10	22,2	(11,2 - 37,1)	122	43	35,2	(26,8 - 44,4)	72	31	43,1	(31,4 - 55,3)

Regione Calabria

	Stap	hylo	cocci	is aureus	Ente	roco	ccus	faecium		Escher	ichia	coli	Kleb	siell	a pne	umoniae
		1	/IRSA	\		VRE	-faec	ium		(REC				CRKP	,
	Isolati		Res	istenti	Isolati		Res	istenti	Isolati		Resis	stenti	Isolati		Res	istenti
Anno	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)
2015	0	0			0	0			0	0			0	0		
2016	0	0			0	0			0	0			0	0		
2017	89	33	37,1	(27,1 - 48,0)	13	3	23,1	(5,0 - 53,8)	89	33	37,1	(27,1 - 48,0)	50	33	66,0	(51,2 - 78,8)
2018	198	66	33,3	(26,8 - 40,4)	35	3	8,6	(1,8 - 23,1)	142	61	43,0	(34,7 - 51,5)	127	74	58,3	(49,2 - 67,0)
2019	57	16	28,1	(17,0 - 41,5)	6	2	33,3	(4,3 - 77,7)	40	16	40,0	(24,9 - 56,7)	26	5	19,2	(6,6 - 39,4)
2020	28	10	35,7	(18,6 - 55,9)	11	6	54,5	(23,4 - 83,3)	38	20	52,6	(35,8 - 69,0)	27	17	63,0	(42,4 - 80,6)
2021	82	20	24,4	(15,6 - 35,1)	42	13	31,0	(17,6 - 47,1)	99	31	31,3	(22,4 - 41,4)	58	17	29,3	(18,1 - 42,7)
2022	153	48	31,4	(24,1 - 39,4)	76	22	28,9	(19,1 - 40,5)	138	55	39,9	(31,6 - 48,5)	103	61	59,2	(49,1 - 68,8)

Regione Campania

	Stap	hylo	coccı	ıs aure	eus	Ente	roco	ccus	faecium		Escher	richia	coli	Kleb	siell	a pne	umoniae
			MRS#	١			VRE	-faec	ium		(CREC				CRKP	•
	Isolati		Res	istenti		Isolati		Res	istenti	Isolati		Resi	stenti	Isolati		Res	istenti
Anno	(n)	(n)	(%)	(95%	6 CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)
2015	528	187	35,4	(31,3 -	39,7)	143	2	1,4	(0,2 - 5,0)	566	252	44,5	(40,4 - 48,7)	360	196	54,4	(49,1 - 59,7)
2016	484	187	38,6	(34,3 -	43,1)	142	3	2,1	(0,4 - 6,1)	521	222	42,6	(38,3 - 47,0)	367	200	54,5	(49,3 - 59,7)
2017	539	211	39,1	(35,0 -	43,4)	175	12	6,9	(3,6 - 11,7)	614	273	44,5	(40,5 - 48,5)	311	143	46,0	(40,3 - 51,7)
2018	714	328	45,9	(42,2 -	49,7)	207	20	9,7	(6,0 - 14,5)	727	343	47,2	(43,5 - 50,9)	476	214	45,0	(40,4 - 49,6)
2019	723	284	39,3	(35,7 -	43,0)	273	31	11,4	(7,9 - 15,7)	886	393	44,4	(41,1 - 47,7)	486	171	35,2	(30,9 - 39,6)
2020	815	318	39,0	(35,7 -	42,5)	305	29	9,5	(6,5 - 13,4)	765	302	39,5	(36,0 - 43,0)	552	162	29,3	(25,6 - 33,3)
2021	771	304	39,4	(36,0 -	43,0)	452	59	13,1	(10,1 - 16,5)	745	309	41,5	(37,9 - 45,1)	522	182	34,9	(30,8 - 39,1)
2022	859	290	33,8	(30,6 -	37,0)	464	125	26,9	(23,0 - 31,2)	914	349	38,2	(35,0 - 41,4)	646	224	34,7	(31,0 - 38,5)

Regione Emilia-Romagna

	Stap	hylo	coccı	ıs aur	eus	Ente	roco	ccus	faeciu	m		Escher	ichia	coli		Kleb	siella	n pne	umonio	ае
			MRS#	١			VRE	-faec	ium			(CREC					CRKP	•	
	Isolati		Res	istent	i	Isolati		Res	istenti		Isolati		Resi	stenti		Isolati		Res	istenti	
Anno	(n)	(n)	(%)	(959	% CI)	(n)	(n)	(%)	(95%	6 CI)	(n)	(n)	(%)	(95%	% CI)	(n)	(n)	(%)	(95%	CI)
2015	519	155	29,9	(26,0	- 34,0)	106	3	2,8	(0,6 -	8,1)	1.430	464	32,4	(30,0 -	- 34,9)	378	51	13,5	(10,2 -	17,4)
2016	554	149	26,9	(23,2	- 30,8)	143	9	6,3	(2,9 -	11,6)	1.457	454	31,2	(28,8 -	- 33,6)	442	77	17,4	(14,0 -	21,3)
2017	584	165	28,3	(24,6	- 32,1)	113	14	12,4	(6,9 -	19,9)	1.520	455	29,9	(27,6 -	- 32,3)	484	69	14,3	(11,3 -	17,7)
2018	1.708	518	30,3	(28,2	- 32,6)	490	99	20,2	(16,7 -	24,0)	4.334	1.172	27,0	(25,7 -	- 28,4)	1.091	156	14,3	(12,3 -	16,5)
2019	1.693	488	28,8	(26,7	- 31,1)	457	102	22,3	(18,6 -	26,4)	4.472	1.262	28,2	(26,9 -	- 29,6)	1.256	128	10,2	(8,6 -	12,0)
2020	1.713	434	25,3	(23,3	- 27,5)	518	135	26,1	(22,3 -	30,1)	3.784	931	24,6	(23,2 -	- 26,0)	1.120	112	10,0	(8,3 -	11,9)
2021	1.787	412	23,1	(21,1	- 25,1)	597	160	26,8	(23,3 -	30,6)	4.083	923	22,6	(21,3 -	23,9)	1.271	106	8,3	(6,9 -	10,0)
2022	2.000	478	23,9	(22,1	- 25,8)	671	167	24,9	(21,7 -	28,3)	4.638	999	21,5	(20,4 -	- 22,8)	1.525	109	7,1	(5,9 -	8,6)

Regione Friuli Venezia Giulia

	Stap	hylo	coccı	ıs aureus	Ente	roco	ccus	faecium		Escher	ichia	coli	Kleb	siell	a pne	umoniae
			MRS#	\		VRE	-faec	ium		C	REC				CRKF)
	Isolati		Res	istenti	Isolati		Res	istenti	Isolati		Resis	stenti	Isolati		Res	istenti
Anno	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)
2015	0	0			0	0			0	0			0	0		
2016	0	0			0	0			0	0			0	0		
2017	48	11	22,9	(12,0 - 37,3)	25	3	12,0	(2,6 - 31,2)	92	16	17,4	(10,3 - 26,7)	24	3	12,5	(2,7 - 32,4)
2018	501	126	25,1	(21,4 - 29,2)	95	31	32,6	(23,4 - 43,0)	1.189	184	15,5	(13,5 - 17,7)	280	25	8,9	(5,9 - 12,9)
2019	486	143	29,4	(25,4 - 33,7)	84	19	22,6	(14,2 - 33,1)	1.270	219	17,2	(15,2 - 19,4)	205	21	10,2	(6,5 - 15,2)
2020	441	102	23,1	(19,3 - 27,4)	115	25	21,7	(14,6 - 30,4)	1.126	161	14,3	(12,3 - 16,5)	213	15	7,0	(4,0 - 11,4)
2021	485	120	24,7	(21,0 - 28,8)	122	34	27,9	(20,1 - 36,7)	1.051	140	13,3	(11,3 - 15,5)	218	28	12,8	(8,7 - 18,0)
2022	475	99	20,8	(17,3 - 24,8)	115	24	20,9	(13,9 - 29,4)	1.120	133	11,9	(10,0 - 13,9)	240	15	6,3	(3,5 - 10,1)

Regione Lazio

	Stap	hylo	coccı	ıs aureus	En	teroc	occus	faeciu	ım		Escher	ichia	coli	Kleb	sielle	n pne	umoniae
			MRS#	4		VR	E-fae	cium			(CREC				CRKP	
	Isolati		Res	istenti	Isolat	i	Res	istenti		Isolati		Resi	stenti	Isolati		Res	istenti
Anno	(n)	(n)	(%)	(95% C) (n)	(n)	(%)	(95%	6 CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)
2015	292	123	42,1	(36,4 - 48	0) 5	4 11	20,4	(10,6 -	33,5)	266	86	32,3	(26,8 - 38,3)	202	96	47,5	(40,5 - 54,7)
2016	345	156	45,2	(39,9 - 50	6) 6	0 18	30,0	(18,9 -	43,2)	334	128	38,3	(33,1 - 43,8)	272	94	34,6	(28,9 - 40,5)
2017	192	92	47,9	(40,7 - 55	2) 7	2 17	23,6	(14,4 -	35,1)	319	99	31,0	(26,0 - 36,4)	244	80	32,8	(26,9 - 39,1)
2018	451	230	51,0	(46,3 - 55	7) 10	2 30	29,4	(20,8 -	39,3)	457	155	33,9	(29,6 - 38,5)	332	121	36,4	(31,3 - 41,9)
2019	771	393	51,0	(47,4 - 54	6) 16	5 59	35,8	(28,5 -	43,6)	757	338	44,6	(41,1 - 48,3)	678	270	39,8	(36,1 - 43,6)
2020	974	461	47,3	(44,2 - 50	5) 40	6 173	42,6	(37,8 -	47,6)	1.078	331	30,7	(28,0 - 33,6)	771	300	38,9	(35,5 - 42,5)
2021	938	378	40,3	(37,1 - 43	5) 40	5 178	44,0	(39,1 -	48,9)	1.127	354	31,4	(28,7 - 34,2)	778	238	30,6	(27,4 - 34,0)
2022	1.132	517	45,7	(42,7 - 48	6) 52	0 294	56,5	(52,2 -	60,9)	1.383	440	31,8	(29,4 - 34,3)	1.104	462	41,8	(38,9 - 44,8)

Regione Liguria

	Stap	hylo	coccı	ıs aureus	Ente	roco	ccus	faecium		Escher	ichia	coli	Kleb	siell	a pne	umoniae
			MRS#	١		VRE	-faec	ium		(CREC				CRKF	•
	Isolati		Res	istenti	Isolati		Res	istenti	Isolati		Resi	stenti	Isolati		Res	istenti
Anno	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)
2015	76	42	55,3	(43,4 - 66,7)	14	2	14,3	(1,8 - 42,8)	108	46	42,6	(33,1 - 52,5)	36	18	50,0	(32,9 - 67,1)
2016	78	27	34,6	(24,2 - 46,2)	21	4	19,0	(5,5 - 41,9)	142	46	32,4	(24,8 - 40,8)	43	20	46,5	(31,2 - 62,4)
2017	98	43	43,9	(33,9 - 54,3)	18	1	5,6	(0,1 - 27,3)	162	60	37,0	(29,6 - 45,0)	61	27	44,3	(31,6 - 57,6)
2018	91	46	50,5	(39,9 - 61,2)	11	4	36,4	(10,9 - 69,2)	167	58	34,7	(27,5 - 42,5)	55	17	30,9	(19,1 - 44,8)
2019	506	213	42,1	(37,8 - 46,5)	184	88	47,8	(40,4 - 55,3)	600	201	33,5	(29,7 - 37,4)	214	56	26,2	(20,4 - 32,6)
2020	748	295	39,4	(35,9 - 43,0)	302	93	30,8	(25,6 - 36,3)	913	268	29,4	(26,4 - 32,4)	325	62	19,1	(15,0 - 23,8)
2021	768	264	34,4	(31,0 - 37,9)	299	130	43,5	(37,8 - 49,3)	974	244	25,1	(22,4 - 27,9)	357	70	19,6	(15,6 - 24,1)
2022	887	280	31,6	(28,5 - 34,7)	308	99	32,1	(27,0 - 37,7)	1.157	292	25,2	(22,8 - 27,8)	403	60	14,9	(11,6 - 18,7)

Regione Lombardia

	Stap	hylo	cocci	ıs aur	eus	Ente	roco	ccus	faeciu	m		Escher	ichia	coli		Kleb	siella	n pne	umon	iae
		- 1	MRS#	١			VRE	-faec	ium				CREC					CRKP		
	Isolati		Res	istent	i	Isolati		Res	istenti		Isolati		Resi	stenti		Isolati		Res	istent	i
Anno	(n)	(n)	(%)	(959	% CI)	(n)	(n)	(%)	(95%	6 CI)	(n)	(n)	(%)	(95%	CI)	(n)	(n)	(%)	(95	% CI)
2015	414	135	32,6	(28,1	- 37,4)	116	18	15,5	(9,5 -	23,4)	726	178	24,5	(21,4 - 2	27,8)	212	50	23,6	(18,0	- 29,9)
2016	384	119	31,0	(26,4	- 35,9)	133	16	12,0	(7,0 -	18,8)	787	185	23,5	(20,6 - 2	26,6)	236	40	16,9	(12,4	- 22,4)
2017	500	163	32,6	(28,5	- 36,9)	214	25	11,7	(7,7 -	16,8)	1.282	305	23,8	(21,5 - 2	26,2)	371	68	18,3	(14,5	- 22,7)
2018	643	190	29,5	(26,1	- 33,2)	241	40	16,6	(12,1 -	21,9)	1.485	370	24,9	(22,7 - 2	27,2)	380	62	16,3	(12,7	- 20,4)
2019	141	49	34,8	(26,9	- 43,2)	129	28	21,7	(14,9 -	29,8)	625	163	26,1	(22,7 - 2	29,7)	145	23	15,9	(10,3	- 22,8)
2020	821	230	28,0	(25,0	- 31,2)	460	120	26,1	(22,1 -	30,4)	2.104	435	20,7	(19,0 - 2	22,5)	607	90	14,8	(12,1	- 17,9)
2021	1.347	380	28,2	(25,8	- 30,7)	652	177	27,1	(23,8 -	30,7)	3.550	758	21,4	(20,0 - 2	22,7)	968	127	13,1	(11,1	- 15,4)
2022	2.305	624	27,1	(25,3	- 28,9)	935	251	26,8	(24,0 -	29,8)	5.551	1.207	21,7	(20,7 - 2	22,9)	1.625	226	13,9	(12,3	- 15,7)

Regione Marche

	Stap	hylococci	us aureus	Ente	roco	ccus	faecium		Escher	ichia	coli	Kleb	siella pr	eumoniae
		MRSA	4		VRE	-faec	ium		(CREC			CRK	P
	Isolati	Res	istenti	Isolati		Res	istenti	Isolati		Resis	stenti	Isolati	Re	sistenti
Anno	(n)	(n) (%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n) (%) (95% CI)
2015	107	27 25,2	(17,3 - 34,6)	21	0		(0,0 - 16,1)	129	38	29,5	(21,8 - 38,1)	52	18 34,6	5 (22,0 - 49,1)
2016	72	20 27,8	(17,9 - 39,6)	27	5	18,5	(6,3 - 38,1)	149	50	33,6	(26,0 - 41,7)	50	10 20,0	(10,0 - 33,7)
2017	111	20 18,0	(11,4 - 26,5)	31	7	22,6	(9,6 - 41,1)	162	60	37,0	(29,6 - 45,0)	96	30 31,3	3 (22,2 - 41,5)
2018	106	24 22,6	(15,1 - 31,8)	29	4	13,8	(3,9 - 31,7)	168	53	31,5	(24,6 - 39,2)	75	16 21,3	3 (12,7 - 32,3)
2019	208	47 22,6	(17,1 - 28,9)	73	15	20,5	(12,0 - 31,6)	358	109	30,4	(25,7 - 35,5)	91	26 28,6	5 (19,6 - 39,0)
2020	236	70 29,7	(23,9 - 35,9)	94	39	41,5	(31,4 - 52,1)	328	100	30,5	(25,6 - 35,8)	187	70 37,4	1 (30,5 - 44,8)
2021	219	64 29,2	(23,3 - 35,7)	99	38	38,4	(28,8 - 48,7)	351	106	30,2	(25,4 - 35,3)	214	73 34,	1 (27,8 - 40,9)
2022	182	47 25,8	(19,6 - 32,8)	94	32	34,0	(24,6 - 44,5)	254	56	22,0	(17,1 - 27,7)	176	75 42,6	5 (35,2 - 50,3)

Regione Molise

	Stap	hylo	cocci	ıs aureus	Ente	roco	ccus	faecium		Escher	ichia	coli	Kleb	sielle	a pne	umoniae
		I	MRS#	١		VRE	-faec	ium		(CREC				CRKP	•
	Isolati		Res	istenti	Isolati		Res	istenti	Isolati		Resis	tenti	Isolati		Res	istenti
Anno	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)
2015	0	0			0	0			0	0			0	0		
2016	0	0			0	0			0	0			0	0		
2017	51	15	29,4	(17,5 - 43,8)	8	0		(0,0 - 36,9)	47	17	36,2	(22,7 - 51,5)	13	2	15,4	(1,9 - 45,5)
2018	58	18	31,0	(19,5 - 44,5)	4	2	50,0	(6,8 - 93,2)	84	27	32,1	(22,4 - 43,2)	12	3	25,0	(5,5 - 57,2)
2019	28	13	46,4	(27,5 - 66,1)	7	1	14,3	(0,4 - 57,9)	39	21	53,8	(37,2 - 69,9)	18	7	38,9	(17,3 - 64,3)
2020	68	24	35,3	(24,1 - 47,8)	8	5	62,5	(24,5 - 91,5)	52	16	30,8	(18,7 - 45,1)	7	2	28,6	(3,7 - 71,0)
2021	50	16	32,0	(19,5 - 46,7)	9	2	22,2	(2,8 - 60,0)	64	22	34,4	(23,0 - 47,3)	12	3	25,0	(5,5 - 57,2)
2022	61	17	27,9	(17,2 - 40,8)	16	5	31,3	(11,0 - 58,7)	68	29	42,6	(30,7 - 55,2)	15	2	13,3	(1,7 - 40,5)

PA Bolzano

	Stap	hylo	coccu	ıs aure	eus	Ente	roco	ccus	faecium		Escher	ichia	coli	Kleb	siella	pne	umoniae
		ľ	MRS#	١			VRE	-faec	ium		(CREC			(CRKP	
	Isolati		Resi	istenti		Isolati		Res	istenti	Isolati		Resis	tenti	Isolati		Res	istenti
Anno	(n)	(n)	(%)	(95%	% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)
2015	129	19	14,7	(9,1 -	22,0)	23	1	4,3	(0,1 - 22,0)	300	46	15,3	(11,5 - 19,9)	51	0		(0,0 - 7,0)
2016	140	20	14,3	(9,0 -	21,2)	26	2	7,7	(1,0 - 25,1)	314	56	17,8	(13,8 - 22,5)	64	4	6,3	(1,7 - 15,2)
2017	155	15	9,7	(5,5 -	15,5)	28	2	7,1	(0,9 - 23,5)	339	67	19,8	(15,7 - 24,4)	75	4	5,3	(1,5 - 13,1)
2018	137	10	7,3	(3,6 -	13,0)	30	2	6,7	(0,8 - 22,1)	390	56	14,4	(11,0 - 18,2)	68	2	2,9	(0,4 - 10,2)
2019	142	23	16,2	(10,6 -	- 23,3)	28	1	3,6	(0,1 - 18,4)	397	66	16,6	(13,1 - 20,7)	79	3	3,8	(0,8 - 10,7)
2020	121	8	6,6	(2,9 -	12,6)	28	2	7,1	(0,9 - 23,5)	350	49	14,0	(10,5 - 18,1)	90	3	3,3	(0,7 - 9,4)
2021	149	11	7,4	(3,7 -	12,8)	49	6	12,2	(4,6 - 24,8)	378	45	11,9	(8,8 - 15,6)	99	5	5,1	(1,7 - 11,4)
2022	165	9	5,5	(2,5 -	10,1)	41	10	24,4	(12,4 - 40,3)	376	41	10,9	(7,9 - 14,5)	75	1	1,3	(0,0 - 7,2)

PA Trento

	Stap	hylo	сосси	s aureus	Ente	roco	ccus	faecium		Escher	ichia	coli	Kleb	siella	pne	umoniae
		1	MRSA	\		VRE	-faec	ium		(CREC			(CRKP	
	Isolati		Resi	stenti	Isolati		Res	istenti	Isolati		Resi	stenti	Isolati		Resi	stenti
Anno	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)
2015	128	40	31,3	(23,4 - 40,0)	56	8	14,3	(6,4 - 26,2)	357	81	22,7	(18,5 - 27,4)	79	1	1,3	(0,0 - 6,9)
2016	0	0			35	10	28,6	(14,6 - 46,3)	382	74	19,4	(15,5 - 23,7)	68	2	2,9	(0,4 - 10,2)
2017	112	22	19,6	(12,7 - 28,2)	28	3	10,7	(2,3 - 28,2)	300	66	22,0	(17,4 - 27,1)	51	1	2,0	(0,1 - 10,5)
2018	134	33	24,6	(17,6 - 32,8)	38	2	5,3	(0,6 - 17,8)	377	64	17,0	(13,3 - 21,2)	81	2	2,5	(0,3 - 8,6)
2019	144	34	23,6	(16,9 - 31,4)	41	11	26,8	(14,2 - 42,9)	373	70	18,8	(14,9 - 23,1)	59	3	5,1	(1,1 - 14,2)
2020	138	19	13,8	(8,5 - 20,7)	39	8	20,5	(9,3 - 36,5)	302	59	19,5	(15,2 - 24,5)	65	2	3,1	(0,4 - 10,7)
2021	134	23	17,2	(11,2 - 24,6)	43	16	37,2	(23,0 - 53,3)	342	50	14,6	(11,1 - 18,8)	85	7	8,2	(3,4 - 16,2)
2022	138	20	14,5	(9,1 - 21,5)	36	8	22,2	(10,1 - 39,2)	399	86	21,6	(17,6 - 25,9)	77	2	2,6	(0,3 - 9,1)

Regione Piemonte

	Stap	hylo	coccı	ıs aureus	Ente	roco	ccus	faecium		Escher	ichia	coli	Kleb	siella pn	eumoniae
			MRS#	١		VRE	-faec	ium		(CREC			CRK	Р
	Isolati		Res	istenti	Isolati		Res	istenti	Isolati		Resi	stenti	Isolati	Re	sistenti
Anno	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n) (%)	(95% CI)
2015	382	170	44,5	(39,5 - 49,6)	84	21	25,0	(16,2 - 35,6)	758	195	25,7	(22,7 - 29,0)	278	126 45,3	(39,4 - 51,4)
2016	337	145	43,0	(37,7 - 48,5)	96	29	30,2	(21,3 - 40,4)	735	198	26,9	(23,8 - 30,3)	273	143 52,4	(46,3 - 58,4)
2017	426	178	41,8	(37,1 - 46,6)	88	32	36,4	(26,4 - 47,3)	918	263	28,6	(25,7 - 31,7)	301	123 40,9	(35,3 - 46,7)
2018	455	161	35,4	(31,0 - 40,0)	78	18	23,1	(14,3 - 34,0)	935	260	27,8	(25,0 - 30,8)	336	116 34,5	(29,5 - 39,9)
2019	358	118	33,0	(28,1 - 38,1)	58	17	29,3	(18,1 - 42,7)	574	165	28,7	(25,1 - 32,6)	251	70 27,9	(22,4 - 33,9)
2020	586	206	35,2	(31,3 - 39,2)	144	43	29,9	(22,5 - 38,0)	991	216	21,8	(19,3 - 24,5)	405	134 33,1	(28,5 - 37,9)
2021	684	225	32,9	(29,4 - 36,6)	196	80	40,8	(33,9 - 48,1)	1.216	235	19,3	(17,1 - 21,7)	435	138 31,7	(27,4 - 36,3)
2022	765	307	40,1	(36,6 - 43,7)	242	102	42,1	(35,9 - 48,6)	1.461	353	24,2	(22,0 - 26,4)	552	130 23,6	(20,1 - 27,3)

Regione Puglia

	Stap	hylo	coccı	ıs aur	eus	Ente	roco	ccus	faecium	,		Escher	ichia	coli		Kleb	sielle	a pne	umon	iae
			MRS#	١			VRE	-faec	ium			(CREC					CRKP		
	Isolati		Res	istent	i	Isolati		Res	istenti		Isolati		Resis	tenti		Isolati		Resi	istenti	
Anno	(n)	(n)	(%)	(95	% CI)	(n)	(n)	(%)	(95% C	CI)	(n)	(n)	(%)	(95%	6 CI)	(n)	(n)	(%)	(95%	% CI)
2015	34	5	14,7	(5,0 -	- 31,1)	2	0		(0,0 - 84	4,2)	57	22	38,6	(26,0 -	52,4)	27	16	59,3	(38,8 -	- 77,6)
2016	96	30	31,3	(22,2	- 41,5)	54	0		(0,0 - 6	5,6)	56	21	37,5	(24,9 -	51,5)	106	73	68,9	(59,1 -	77,5)
2017	90	31	34,4	(24,7	- 45,2)	48	2	4,2	(0,5 - 14	4,3)	52	23	44,2	(30,5 -	58,7)	139	79	56,8	(48,2 -	65,2)
2018	184	58	31,5	(24,9	- 38,8)	61	7	11,5	(4,7 - 22	2,2)	320	150	46,9	(41,3 -	52,5)	174	92	52,9	(45,2 -	60,5)
2019	183	59	32,2	(25,5	- 39,5)	58	7	12,1	(5,0 - 23	3,3)	318	142	44,7	(39,1 -	50,3)	227	111	48,9	(42,2 -	55,6)
2020	362	129	35,6	(30,7	- 40,8)	154	17	11,0	(6,6 - 17	7,1)	582	193	33,2	(29,3 -	37,2)	417	237	56,8	(51,9 -	61,7)
2021	405	136	33,6	(29,0	- 38,4)	221	29	13,1	(9,0 - 18	8,3)	513	196	38,2	(34,0 -	42,6)	504	289	57,3	(52,9 -	61,7)
2022	409	110	26,9	(22,7	- 31,5)	237	62	26,2	(20,7 - 32	2,2)	661	231	34,9	(31,3 -	38,7)	507	254	50,1	(45,7 -	54,5)

Regione Sardegna

	Stap	hylo	cocci	ıs aureus	Ente	roco	ccus	faecium		Escher	ichia	coli	Kleb	siella	n pne	umoniae
			MRS#	١		VRE	-faec	ium		(CREC			-	CRKF	•
	Isolati		Res	istenti	Isolati		Resi	istenti	Isolati		Resi	stenti	Isolati		Res	istenti
Anno	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)
2015	97	20	20,6	(13,1 - 30,0)	17	1	5,9	(0,2 - 28,7)	176	33	18,8	(13,3 - 25,3)	47	9	19,1	(9,2 - 33,3)
2016	98	24	24,5	(16,4 - 34,2)	30	0		(0,0 - 11,6)	186	42	22,6	(16,8 - 29,3)	67	23	34,3	(23,2 - 46,9)
2017	142	45	31,7	(24,1 - 40,0)	28	0		(0,0 - 12,3)	176	34	19,3	(13,8 - 25,9)	66	19	28,8	(18,3 - 41,3)
2018	99	32	32,3	(23,3 - 42,5)	31	1	3,2	(0,1 - 16,7)	169	28	16,6	(11,3 - 23,1)	62	16	25,8	(15,5 - 38,5)
2019	70	16	22,9	(13,7 - 34,5)	31	0		(0,0 - 11,2)	171	38	22,2	(16,2 - 29,2)	85	16	18,8	(11,2 - 28,8)
2020	0	0			0	0			0	0			0	0		
2021	101	18	17,8	(10,9 - 26,7)	30	1	3,3	(0,1 - 17,2)	145	32	22,1	(15,6 - 29,7)	5	2	40,0	(5,3 - 85,3)
2022	76	19	25,0	(15,8 - 36,3)	66	2	3,0	(0,4 - 10,5)	250	39	15,6	(11,3 - 20,7)	137	34	24,8	(17,8 - 32,9)

Regione Sicilia

	Stap	hylo	coccı	ıs aureus	Ente	roco	ccus	faecium		Escher	ichia	coli	Kleb	sielle	a pne	umoniae
			MRS#	١		VRE	-faec	ium		(CREC				CRKP	•
	Isolati		Res	istenti	Isolati		Res	istenti	Isolati		Resi	stenti	Isolati		Res	istenti
Anno	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)
2015	23	5	21,7	(7,5 - 43,7)	7	0		(0,0 - 41,0)	41	17	41,5	(26,3 - 57,9)	26	3	11,5	(2,5 - 30,2)
2016	19	10	52,6	(28,9 - 75,6)	6	1	16,7	(0,4 - 64,1)	31	8	25,8	(11,9 - 44,6)	17	1	5,9	(0,2 - 28,7)
2017	0	0			13	1	7,7	(0,2 - 36,0)	31	11	35,5	(19,2 - 54,6)	29	7	24,1	(10,3 - 43,5)
2018	112	43	38,4	(29,4 - 48,1)	27	0		(0,0 - 12,8)	102	36	35,3	(26,1 - 45,4)	132	57	43,2	(34,6 - 52,1)
2019	624	290	46,5	(42,5 - 50,5)	156	11	7,1	(3,6 - 12,3)	922	418	45,3	(42,1 - 48,6)	1.065	563	52,9	(49,8 - 55,9)
2020	524	242	46,2	(41,9 - 50,6)	248	43	17,3	(12,8 - 22,6)	646	289	44,7	(40,9 - 48,7)	988	594	60,1	(57,0 - 63,2)
2021	528	242	45,8	(41,5 - 50,2)	389	81	20,8	(16,9 - 25,2)	668	252	37,7	(34,0 - 41,5)	971	582	59,9	(56,8 - 63,0)
2022	673	242	36,0	(32,3 - 39,7)	444	127	28,6	(24,4 - 33,1)	809	284	35,1	(31,8 - 38,5)	1.047	508	48,5	(45,5 - 51,6)

Regione Toscana

	Stap	hylo	coccı	ıs aure	eus	Ente	roco	ccus	faeciu	m		Escher	ichia	coli		Kleb	sielle	a pne	umoniae
			MRS#	١			VRE	-faec	ium			(CREC					CRKP	
	Isolati		Res	istenti		Isolati		Res	istenti		Isolati		Resi	stenti		Isolati		Resi	istenti
Anno	(n)	(n)	(%)	(95%	6 CI)	(n)	(n)	(%)	(95%	6 CI)	(n)	(n)	(%)	(959	% CI)	(n)	(n)	(%)	(95% CI)
2015	98	20	20,4	(12,9 -	- 29,7)	82	16	19,5	(11,6 -	29,7)	352	130	36,9	(31,9	- 42,2)	159	57	35,8	(28,4 - 43,8)
2016	212	57	26,9	(21,0 -	- 33,4)	93	21	22,6	(14,6 -	32,4)	412	158	38,3	(33,6	- 43,2)	175	63	36,0	(28,9 - 43,6)
2017	224	70	31,3	(25,2 -	- 37,8)	76	21	27,6	(18,0 -	39,1)	379	126	33,2	(28,5	- 38,2)	162	64	39,5	(31,9 - 47,5)
2018	837	240	28,7	(25,6 -	- 31,9)	251	71	28,3	(22,8 -	34,3)	1.750	624	35,7	(33,4	- 38,0)	714	220	30,8	(27,4 - 34,3)
2019	1.313	372	28,3	(25,9 -	- 30,9)	390	62	15,9	(12,4 -	19,9)	2.492	815	32,7	(30,9	- 34,6)	1.178	333	28,3	(25,7 - 30,9)
2020	1.145	333	29,1	(26,5 -	- 31,8)	390	37	9,5	(6,8 -	12,8)	2.001	560	28,0	(26,0	- 30,0)	1.076	276	25,7	(23,1 - 28,4)
2021	1.413	328	23,2	(21,0 -	- 25,5)	566	97	17,1	(14,1 -	20,5)	2.374	618	26,0	(24,3	- 27,9)	1.271	226	17,8	(15,7 - 20,0)
2022	1.458	356	24,4	(22,2 -	- 26,7)	564	161	28,5	(24,9 -	32,5)	2.402	604	25,1	(23,4	- 26,9)	1.451	244	16,8	(14,9 - 18,8)

Regione Umbria

	Stap	hylo	coccı	ıs aure	eus	Ente	roco	ccus	faecium	,		Escher	ichia	coli	Kleb	sielle	a pne	umoniae
			MRS#	4			VRE	-faec	ium			(CREC				CRKP	•
	Isolati		Res	istenti		Isolati		Res	istenti		Isolati		Resi	stenti	Isolati		Res	istenti
Anno	(n)	(n)	(%)	(95%	6 CI)	(n)	(n)	(%)	(95% (CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)
2015	0	0				0	0				0	0			0	0		
2016	99	25	25,3	(17,1 -	35,0)	31	7	22,6	(9,6 - 4	1,1)	144	37	25,7	(18,8 - 33,6)	56	20	35,7	(23,4 - 49,6)
2017	95	23	24,2	(16,0 -	- 34,1)	42	10	23,8	(12,1 - 3	9,5)	193	49	25,4	(19,4 - 32,1)	46	8	17,4	(7,8 - 31,4)
2018	200	65	32,5	(26,1 -	- 39,5)	65	31	47,7	(35,2 - 6	0,5)	302	100	33,1	(27,8 - 38,7)	133	56	42,1	(33,6 - 51,0)
2019	396	143	36,1	(31,4 -	41,1)	102	38	37,3	(27,9 - 4	7,4)	586	178	30,4	(26,7 - 34,3)	198	72	36,4	(29,7 - 43,5)
2020	447	181	40,5	(35,9 -	45,2)	162	80	49,4	(41,5 - 5	7,3)	601	177	29,5	(25,8 - 33,3)	220	87	39,5	(33,0 - 46,3)
2021	478	203	42,5	(38,0 -	47,0)	190	103	54,2	(46,9 - 6	1,4)	593	179	30,2	(26,5 - 34,1)	238	109	45,8	(39,4 - 52,4)
2022	555	258	46,5	(42,3 -	- 50,7)	207	145	70,0	(63,3 - 7	6,2)	657	182	27,7	(24,3 - 31,3)	308	130	42,2	(36,6 - 47,9)

Regione Valle d'Aosta

	Stap	hylo	cocci	ıs aureus	Ente	roco	ccus	faecium		Escher	ichia	coli	Kleb	sielle	a pne	umoniae
		ľ	MRS#	١		VRE	-faec	ium		(CREC				CRKF	•
	Isolati		Res	istenti	Isolati		Res	istenti	Isolati		Resi	stenti	Isolati		Res	istenti
Anno	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)
2015	0	0			0	0			0	0			0	0		
2016	0	0			0	0			0	0			0	0		
2017	0	0			0	0			0	0			0	0		
2018	56	23	41,1	(28,1 - 55,0)	9	1	11,1	(0,3 - 48,3)	139	61	43,9	(35,5 - 52,6)	35	9	25,7	(12,5 - 43,3)
2019	21	7	33,3	(14,6 - 57,0)	6	0		(0,0 - 45,9)	60	31	51,7	(38,4 - 64,8)	18	6	33,3	(13,3 - 59,0)
2020	54	17	31,5	(19,5 - 45,6)	12	1	8,3	(0,2 - 38,5)	110	39	35,5	(26,6 - 45,2)	32	9	28,1	(13,8 - 46,8)
2021	59	16	27,1	(16,4 - 40,3)	13	2	15,4	(1,9 - 45,5)	112	35	31,3	(22,8 - 40,7)	24	13	54,2	(32,8 - 74,5)
2022	62	17	27,4	(16,9 - 40,2)	23	4	17,4	(5,0 - 38,8)	125	32	25,6	(18,2 - 34,2)	19	1	5,3	(0,1 - 26,0)

Regione Veneto

	Stap	hylo	cocci	ıs aur	eus	Ente	roco	ccus	faecium		Escher	richia	coli	Kleb	siell	a pne	umonio	ae
		1	MRS#	١			VRE	-faec	ium		(CREC				CRKF	,	
	Isolati		Res	istent	i	Isolati		Res	istenti	Isolati		Resi	stenti	Isolati		Res	istenti	
Anno	(n)	(n)	(%)	(959	% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95% CI)	(n)	(n)	(%)	(95%	CI)
2015	210	79	37,6	(31,1	- 44,6)	42	2	4,8	(0,6 - 16,2)	327	94	28,7	(23,9 - 34,0)	92	23	25,0	(16,6 -	35,1)
2016	100	45	45,0	(35,0	- 55,3)	47	1	2,1	(0,1 - 11,3)	291	91	31,3	(26,0 - 36,9)	68	9	13,2	(6,2 - 2	23,6)
2017	133	67	50,4	(41,6	- 59,2)	38	1	2,6	(0,1 - 13,8)	337	108	32,0	(27,1 - 37,3)	92	14	15,2	(8,6 - 2	24,2)
2018	1.465	549	37,5	(35,0	- 40,0)	431	47	10,9	(8,1 - 14,2)	2.739	778	28,4	(26,7 - 30,1)	999	234	23,4	(20,8 -	26,2)
2019	1.554	538	34,6	(32,3	- 37,1)	506	81	16,0	(12,9 - 19,5)	3.139	936	29,8	(28,2 - 31,5)	997	181	18,2	(15,8 -	20,7)
2020	1.526	501	32,8	(30,5	- 35,3)	675	102	15,1	(12,5 - 18,0)	2.723	717	26,3	(24,7 - 28,0)	1.037	234	22,6	(20,1 -	25,2)
2021	1.684	508	30,2	(28,0	- 32,4)	768	177	23,0	(20,1 - 26,2)	3.142	723	23,0	(21,6 - 24,5)	1.193	267	22,4	(20,0 -	24,9)
2022	1.475	378	25,6	(23,4	- 27,9)	676	131	19,4	(16,5 - 22,6)	2.844	664	23,3	(21,8 - 25,0)	1.103	209	18,9	(16,7 -	21,4)

Istituto Superiore di Sanità Roma, novembre 2023

