

# DESIGN PRACTICUM IC 201P

Feb-June, 2019

# **FMEA**(Failure Mode and Effect Analysis)

# **FMEA**





## Introduction



### What is FMEA?

□ Failure Mode and Effect Analysis (FMEA) is a systematic method of identifying and preventing product and process problems before they occur.

□ It is a powerful method for designing products with high reliability and safety

# Introduction (contd...)



- ☐ Since prevention is always better than cure, a particular industry can use the FMEA to evaluate risk areas and take action to prevent future problems
- ☐ Ideally, FMEA's are conducted in the product design or process development stages, although conducting an FMEA on existing products or processes may also benefits

IC201P: Design Practicum

# Introduction (contd...)



# **FMEA History**

□ It is developed by the aerospace industry to identify and mitigate structural weaknesses in mid1950s. Since then, the tool has come to be widely used in a majority of industries to identify and manage risks in product and process design.

# LOGIC OF FMEA



- ◆ The FMEA process is a way to identify the failures, effects, and risks within a process or product, and then, eliminate or reduce them
- ♦ Each failure mode has a potential effect, and some effects are more likely to occur than others
- ♦ In addition, each potential effect has a relative risk associated with it

## **Procedure of FMEA**





### 10 STEPS FOR AN FMEA



- 1. Review the product/process to know function
- 2. Brainstorm potential failure modes
- 3. List potential effects of each failure mode
- 4. Assign a severity rating for each effect
- 5. Assign an occurrence rating for each FM
- 6. Assign detection rating for each FM and/or effects
- 7. Calculate the risk priority #(RPN) for each effect
- 8. Prioritize the FMs for action
- 9. Take action to eliminate or reduce the high-risk FMs
- 10. Calculate the Resulting RPN as the FMs are reduced or eliminated

## Failure Modes (What could go wrong?)



A failure mode describes how (not why) a component or process may fail to satisfy its functions. When the functions have been clearly defined, describing possible failure modes becomes relatively simple, for example:-

#### Function/Requirement /Expectation Po

Potential failure mode

Radiator contains water at 5 bar, 120 degrees C

Radiator does not contain water, when hot (water leaks from top tank)

Motor rotates

Motor does not rotate

A.C cools the room

A.C partially cools the room



# **Failure Modes**

| Switch Failure Modes                                                                      | <b>Motor Failure Modes</b>                                                                                                                                                       | <b>Human Failure Modes</b>                                                                                                                                   |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Open</li> <li>Partially open</li> <li>Close</li> <li>Partially closed</li> </ul> | <ul> <li>Fails to start</li> <li>Fails off while running</li> <li>Starts prematurely</li> <li>Operates too long</li> <li>Operates at degraded torque/rotational speed</li> </ul> | <ul> <li>Fails to perform task</li> <li>Perform tasks in the wrong sequence</li> <li>Performs an additional task</li> <li>Performs the wrong task</li> </ul> |

# **Effects of Failure Modes**



What would be the consequences of each failure mode?

- ❖ A description of the consequence of a component failure.
- A typical failure mode may have several "effects" depending on which user/customer you consider

# **Effects of Failure Modes**



#### **Examples**

- □*Injury to the user*
- □ *Inoperability of the product/process*
- □ Improper appearance of the product/process
- □ Degraded performance
- □*Noise*
- ☐Human death

# Severity Rating/Rank



# It is Seriousness of the Effect. Severity is the numerical rating of the impact on customers.

✓When multiple effects exist for a given failure mode, enter the worst case severity on the worksheet to calculate risk.

| Effect             | Rank | Criteria                                                                                     |
|--------------------|------|----------------------------------------------------------------------------------------------|
| None               | 1    | No effect                                                                                    |
| Very Slight        | 2    | Negligible effect on Performance. Some users may notice.                                     |
| Slight             | 3    | Slight effect on performance. Non vital faults will be noticed by many users.                |
| Minor              | 4    | Minor effect on performance. User is slightly dissatisfied.                                  |
| Moderate           | 5    | Reduced performance with gradual performance degradation. User dissatisfied.                 |
| Severe             | 6    | Degraded performance, but safe and usable. User dissatisfied.                                |
| High Severity      | 7    | Very poor performance. Very dissatisfied user.                                               |
| Very High Severity | 8    | Inoperable but safe.                                                                         |
| Extreme Severity   | 9    | Probable failure with hazardous effects. Compliance with regulation is unlikely.             |
| Maximum Severity   | 10   | Unpredictable failure with hazardous effects almost certain. Non-compliant with regulations. |

# **Effects of Failure Modes**



| System     | Component         | Failure Mode       | Failure Effect               |
|------------|-------------------|--------------------|------------------------------|
| Electrical | Battery           | Discharged         | Not turn engine —not start   |
| Electrical | Battery connector | Corroded           | Not turn engine —not start   |
| Fuel       | Fuel tank         | Empty              | No fuel to engine —not start |
| Fuel       | Fuel pump         | Mechanical failure | No fuel to engine —not start |
| Etc.       |                   |                    |                              |

### **Causes of Failure Mode**



#### Why would the failure happen?

- ❖ The 'causes of failure' describe the specific errors and omissions in the design or production process that could generate or allow the failure mode being considered. If all the causes of failure can be identified and eliminated, then the failure mode will also be eliminated
- Although every failure mode will have at least one possible 'cause of failure', many will have several 'potential causes' that must be recognized and controlled if failure is to be avoided.
- ✓ You must look at the causes not the symptoms of the failure. Most failure Modes have more than one <u>Cause</u>.

### **Causes of Failure Mode**



#### **Examples**

- □ INADEQUATE LUBRICATION
- □ CONTAMINATION
- □ ERRONEOUS ALGORITHMS
- □ IMPROPER ALIGNMENT
- □ EXCESSIVE LOADING
- □ EXCESSIVE VOLTAGE
- □ IMPROPER INSTRUCTIONs

## **Occurrence Rating/Rank**

It is numerical rating of probability or frequency of the failure occurring (based on experience) for a given cause over the intended "life of the component".

| Occurrence                 | Rank | Criteria                             |
|----------------------------|------|--------------------------------------|
| Extremely Unlikely         | 1    | Less than 0.01 per thousand          |
| Remote Likelihood          | 2    | ≈0.1 per thousand rate of occurrence |
| Very Low Likelihood        | 3    | ≈0.5 per thousand rate of occurrence |
| Low Likelihood             | 4    | ≈1 per thousand rate of occurrence   |
| Moderately Low Likelihood  | 5    | ≈2 per thousand rate of occurrence   |
| Medium Likelihood          | 6    | ≈5 per thousand rate of occurrence   |
| Moderately High Likelihood | 7    | ≈10 per thousand rate of occurrence  |
| Very High Severity         | 8    | ≈20 per thousand rate of occurrence  |
| Extreme Severity           | 9    | ≈50 per thousand rate of occurrence  |
| Maximum Severity           | 10   | ≈100 per thousand rate of occurrence |

March 25, 2019

IC201P: Design Practicum



### Failure Mode "Controls"

They are mechanisms, methods, tests, procedures, or controls that we have in place to *PREVENT* the Cause of the Failure Mode or *DETECT* the Failure Mode

✓ Design Controls prevent or detect the Failure Mode prior to engineering release

# **Detection Rating/Rank**

It is a numerical rating of the probability of the failure being detected by controls before the impact of the effect is realized

✓ Assuming that the cause of the failure did occur, assess the capabilities of the controls to find the design flaw.

| Detection                  | Rank | Criteria                                                                    |
|----------------------------|------|-----------------------------------------------------------------------------|
| Extremely Likely           | 1    | Can be corrected prior to prototype/ Controls will almost certainly detect  |
| Very High Likelihood       | 2    | Can be corrected prior to design release/Very High probability of detection |
| High Likelihood            | 3    | Likely to be corrected/High probability of detection                        |
| Moderately High Likelihood | 4    | Design controls are moderately effective                                    |
| Medium Likelihood          | 5    | Design controls have an even chance of working                              |
| Moderately Low Likelihood  | 6    | Design controls may miss the problem                                        |
| Low Likelihood             | 7    | Design controls are likely to miss the problem                              |
| Very Low Likelihood        | 8    | Design controls have a poor chance of detection                             |
| Very Low Likelihood        | 9    | Unproven, unreliable design/poor chance for detection                       |
| Extremely Unlikely         | 10   | No design technique available/Controls will not detect                      |

# FMEA Terminology(contd...)

Risk Priority Number (RPN): It is the product of Manual Severity, Occurrence, & Detection.

#### $RPN = S \times O \times D$

- ☐ The failure modes with the highest RPNs should be attended first, although special attention should be given when the severity rating is high regardless of the RPN. General guideline is: If RPN > 100 then recommended action
- Once corrective action has been taken, a new RPN is determined by re-evaluating the severity, occurrence, and detection ratings
- ✓ Based on the FMEA analysis, strategies to reduce risk are focused on:
  - ➤ Reducing the *Severity Rating*.
  - Reducing the Occurrence Rating.
  - Reducing the detection Rating.

# **FMEA Sheet**



#### Product:

Process/ Component/ Function Potentia I failure mode(s) Potential effect(s) of failure

S E V

Potential Cause(s)/ Mechanisms of Failure PROB

Current design controls P RPN

Recommended Action



#### **Function**

| Item /<br>Function | Potential<br>Fallure<br>Mode | Potential<br>Fallure<br>Effects | S<br>E<br>V | Potential<br>Causes<br>Mechanism(s)<br>of Fallure | 000 | Current<br>Controls | D<br>E<br>T | R<br>P<br>N | Recommended<br>Actions | Target<br>Complete<br>Date | Actions<br>Taken | S<br>E<br>V | 000 | D<br>E<br>T | R<br>P<br>N |  |
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------------|-------------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------------|-------------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|

- Functions should be written in verb-noun context if practical.
- An associated measurable metric is desirable.

#### As an example:

The problem is to design an automotive HVAC system which must <u>defog windows</u> and <u>heat or cool cabin</u> to 70 degrees in all operating conditions (-40 degrees to 100 degrees) within 3 to 5 minutes.



#### **Functions**

| Item /<br>Function | Potential<br>Fallure<br>Mode | Potential<br>Fallure<br>Effects | S<br>E<br>V | Potential<br>Causes<br>Mechanism(s)<br>of Fallure | 000 | Current<br>Controls | D<br>E<br>T | R<br>P<br>N | Recommended<br>Actions | Target<br>Complete<br>Date | Actions<br>Taken | S<br>E<br>V | 000 | D<br>E<br>T | R<br>P<br>N |  |
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------------|-------------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------------|-------------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|

- Therefore in this example, the functions are...
  - Defog windows
  - Heat cabin
  - Cool cabin



#### Failure Modes

| Item /<br>Function | Potential<br>Fallure<br>Mode | Potential<br>Fallure<br>Effects | S<br>E<br>V | Potential<br>Causes<br>Mechanism(s)<br>of Fallure | 000 | Current<br>Controls | D<br>E<br>T | R<br>P<br>N | Recommended<br>Actions | Target<br>Complete<br>Date | Actions<br>Taken | S<br>E<br>V | 000 | D<br>E<br>T | R<br>P<br>N |  |
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------------|-------------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------------|-------------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|

- Identify Failure Modes. A failure mode is defined as the manner in which a component, subsystem, system, process, etc. could potentially fail to meet the design intent.
  - How can the part/system fail to meet specifications?
  - What would a customer consider objectionable?
- There are 5 classes of failure modes:
  - complete failure,
  - partial failure,
  - intermittent failure,
  - over-function, and
  - unintended function

March 25, 2019

IC201P: Design Practicum



#### Failure Modes, examples

- Examples:
  - Complete failure
    - HVAC system does not heat vehicle or defog windows
  - Partial failure
    - HVAC system takes more than 5 minutes to heat vehicle
  - Intermittent failure
    - HVAC system does heat cabin to 70 degrees in below zero temperatures
  - Over-function
    - HVAC system cools cabin to 50 degrees
  - Unintended functions
    - HVAC system activates rear window defogger



#### Effect(s) of Failure

| Item /<br>Function | Potential<br>Failure<br>Mode | Potential<br>Failure<br>Effects | S<br>E<br>V | Potential<br>Causes<br>Mechanism(s)<br>of Failure | 0<br>C<br>C | Current<br>Controls | D<br>E<br>T | R<br>P<br>N | Recommended<br>Actions | Target<br>Comple<br>te Date | Actions<br>Taken | S<br>E<br>V | 0<br>C<br>C | D<br>E<br>T | R<br>P<br>N |  |
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-------------|---------------------|-------------|-------------|------------------------|-----------------------------|------------------|-------------|-------------|-------------|-------------|--|
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-------------|---------------------|-------------|-------------|------------------------|-----------------------------|------------------|-------------|-------------|-------------|-------------|--|

- Effects should be listed as customer would describe them (consider...)
  - Reduced performance
  - Customer dissatisfaction
  - Potential risk of injury
  - Product liability
- Effects should include (as appropriate) safety / regulatory body, end user, internal customers (manufacturing, assembly, service)
- For example:
  - Cannot see out of front window
  - Air conditioner makes cabin too cold
  - Does not get warm enough
  - Takes too long to heat up



#### Severity

| Item /<br>Function | Potential<br>Fallure<br>Mode | Potential<br>Fallure<br>Effects | S E V | Potential<br>Causes<br>Mechanism(s)<br>of Fallure | 000 | Current<br>Controls | D<br>E<br>T | R<br>P<br>N | Recommended<br>Actions | Target<br>Complete<br>Date | Actions<br>Taken | S<br>E<br>V | 000 | D<br>E<br>T | R<br>P<br>N |  |
|--------------------|------------------------------|---------------------------------|-------|---------------------------------------------------|-----|---------------------|-------------|-------------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|
|--------------------|------------------------------|---------------------------------|-------|---------------------------------------------------|-----|---------------------|-------------|-------------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|

Determine the *severity* of the failure effects (as a rating value)

Severity values may be available from governing bodies. In this example AIAG and SAE.

If severity is based upon internally defined criteria or is based upon standard with specification modifications, rating tables should be included with the analysis.

#### Examples:

Cannot see out of front window: severity 9
Air conditioner makes cab too cold: severity 5
Does not get warm enough: severity 5

Takes too long to heat up: severity 4



#### Example of a Severity Table

#### **Rating**

#### **Severity Description**

| 1  | The effect is not noticed by customer                                                      |
|----|--------------------------------------------------------------------------------------------|
| 2  | Very slight effect noticed by customer, does not annoy<br>or inconvenience customer        |
| 3  | Slight effect that causes customer annoyance, but they do not seek service                 |
| 4  | Slight effect, customer may return product for service                                     |
| 5  | Moderate effect, customer requires immediate service                                       |
| 6  | Significant effect, causes customer dissatisfaction; may violate regulation or design code |
| 7  | Major effect, system may not be operable; elicits<br>customer complaint; may cause injury  |
| 8  | Extreme effect, system is inoperable and a safety problem. May cause severe injury.        |
| 9  | Critical effect, complete system shutdown; safety risk                                     |
| 10 | Hazardous; failure occurs without warning; life threatening                                |
|    |                                                                                            |



#### Cause(s) of Failure

| Item /<br>Function | Potential<br>Fallure<br>Mode | Potential<br>Fallure<br>Effects | S<br>E<br>V | Potential<br>Causes<br>Mechanism(s)<br>of Fallure | 000 | Current<br>Controls | D<br>E<br>T | R<br>P<br>N | Recommended<br>Actions | Target<br>Complete<br>Date | Actions<br>Taken | S<br>E<br>V | 000 | D<br>E<br>T | R<br>P<br>N |  |
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------------|-------------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------------|-------------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|

- Causes must be identified for a failure mode
- Brainstorm causes (man, machine, material, method, environment...)
- Causes should be limited to design issues (what you can control)
- There is usually more than one cause of failure for each failure mode

#### For our example:

- Poor vent location
- Routing of vent hoses (too close to heat source)
- Inadequate coolant capacity for application



#### Occurrence (or Probability)

| Item /<br>Function | Potential<br>Fallure<br>Mode | Potential<br>Fallure<br>Effects | S<br>E<br>V | Potential<br>Causes<br>Mechanism(s)<br>of Fallure | 000 | Current<br>Controls | D<br>E<br>T | R<br>P<br>N | Recommended<br>Actions | Target<br>Complete<br>Date | Actions<br>Taken | S<br>E<br>V | 000 | D<br>E<br>T | R<br>P<br>N |  |
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------------|-------------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------------|-------------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|

- Occurrence ratings for design FMEA are based upon the likelihood that a cause may occur, based upon past failures, and/or performance of similar systems in similar applications
- Occurrence rating values may be standardized (AIAG, SAE in this example)
- If occurrence values are based upon internally defined criteria, a rating table should be included in FMEA (with explanation for use)
- Occurrence values of 1 should have objective data to provide justification for inclusion (since failure level so low...)

#### **Examples**

Poor vent location: occurrence 3

- Routing of vent hoses (too close to heat source): occurrence 6

Inadequate coolant capacity for application : occurrence 2



#### Sample of an Occurrence Table

| <u>Rating</u> | <b>Approx. Probability of Failure</b> | <b>Description of Occurrence</b> |
|---------------|---------------------------------------|----------------------------------|
| 1             | $\leq 1 \times 10^{-5}$               | Extremely remote                 |
| 2             | 1 x 10 <sup>-5</sup>                  | Remote, very unlikely            |
| 3             | 1 x 10 <sup>-5</sup>                  | Very slight chance of occurrence |
| 4             | 4 x 10 <sup>-4</sup>                  | Slight chance of occurrence      |
| 5             | 2 x 10 <sup>-3</sup>                  | Occasional occurrence            |
| 6             | 1 x 10 <sup>-2</sup>                  | Moderate occurrence              |
| 7             | 4 x 10 <sup>-2</sup>                  | Frequent occurrence              |
| 8             | 0.20                                  | High occurrence                  |
| 9             | 0.33                                  | Very high occurrence             |
| 10            | ≥ 0.50                                | Extremely high occurrence        |



#### **Current Design Controls**

| Item /<br>Function | Potential<br>Fallure<br>Mode | Potential<br>Fallure<br>Effects | S<br>E<br>V | Potential<br>Causes<br>Mechanism(s)<br>of Fallure | 000 | Current<br>Controls | D<br>E<br>T | R<br>P<br>N | Recommended<br>Actions | Target<br>Complete<br>Date | Actions<br>Taken | S<br>E<br>V | 000 | D<br>E<br>T | R<br>P<br>N |  |
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------------|-------------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------------|-------------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|

- Identify the existing controls that identify and reduce failures
- Controls may be Preventive (designed in) or Detective (found by functional testing, etc.)
  - Preventive controls are those that help reduce the likelihood that a failure mode or cause will occur (affect occurrence value)
  - Detective controls are those that find problems that have been designed into the product (assigned detection value)
  - If detective and preventive controls are not listed in separate columns, they must include an indication of the type of control



#### **Current Design Controls**

#### Examples:

Engineering specifications provide preventive control (P)

Historical data provide preventive control (P)

Functional testing provides detective control (D)



#### Detection

| Item /<br>Function | Potential<br>Fallure<br>Mode | Potential<br>Fallure<br>Effects | S<br>E<br>V | Potential<br>Causes<br>Mechanism(s)<br>of Fallure | 000 | Current<br>Controls | D E T | R<br>P<br>N | Recommended<br>Actions | Target<br>Complete<br>Date | Actions<br>Taken | S<br>E<br>V | 000 | D<br>E<br>T | R<br>P<br>N |  |
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------|-------------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------|-------------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|

- Detection values should correspond any existing standards (AIAG, SAE)
- If detection values are based upon internally defined criteria, a rating table should be included in FMEA (with explanation for use)
- Detection is the value assigned to each of the detective controls.
- Detection values of 1 mean the potential for failure is eliminated due to design solutions.

#### Examples:

Engineering specifications: no detection value Historical data: no detection value

Functional testing: detection 3
General vehicle durability: detection 5



#### RPN (Risk Priority Number)

| ltem /<br>Function | Potential<br>Fallure<br>Mode | Potential<br>Fallure<br>Effects | S<br>E<br>V | Potential<br>Causes<br>Mechanism(s)<br>of Fallure | 000 | Current<br>Controls | D<br>E<br>T | R P N | Recommended<br>Actions | Target<br>Complete<br>Date | Actions<br>Taken | S<br>E<br>V | 000 | D<br>E<br>T | R<br>P<br>N |  |
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------------|-------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------------|-------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|

- Risk Priority Number is the product of the severity, occurrence and detection ratings. (RPN = S\*O\*D)
   Note: Lowest detection rating is used to determine RPN
- RPN threshold should not be used as the primary trigger for definition of recommended actions

#### From previous examples:

Cannot see out of front window (S = 9)Incorrect vent location (O = 2)Detection by functional testing (D = 3)

RPN = 54



#### Recommended Actions

| Item /<br>Function | Potential<br>Fallure<br>Mode | Potential<br>Fallure<br>Effects | S<br>E<br>V | Potential<br>Causes<br>Mechanism(s)<br>of Fallure | 000 | Current<br>Controls | D<br>E<br>T | R<br>P<br>N | Recommended<br>Actions | Target<br>Complete<br>Date | Actions<br>Taken | S<br>E<br>V | 000 | D<br>E<br>T | R<br>P<br>N |  |
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------------|-------------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------------|-------------|------------------------|----------------------------|------------------|-------------|-----|-------------|-------------|--|

- The RPN is used to identify items which require attention and assign a priority to them.
- All critical or significant failures should have recommended actions associated with them.
- Recommended actions should be focused on design, and directed toward mitigating the cause of failure, or eliminating the failure mode.



#### Recommended Actions

| Item /<br>Function | Potential<br>Fallure<br>Mode | Potential<br>Fallure<br>Effects | S<br>E<br>V | Potential<br>Causes<br>Mechanism(s)<br>of Fallure | 000 | Current<br>Controls | D<br>E<br>T | R<br>P<br>N | Recommended<br>Actions | Target<br>Complete<br>Date | Actions<br>Taken | S E > | 000 | D<br>E<br>T | R<br>P<br>N |  |
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------------|-------------|------------------------|----------------------------|------------------|-------|-----|-------------|-------------|--|
|--------------------|------------------------------|---------------------------------|-------------|---------------------------------------------------|-----|---------------------|-------------|-------------|------------------------|----------------------------|------------------|-------|-----|-------------|-------------|--|

- Recommended Actions (examples)
  - Try to eliminate the failure mode (some failures are more preventable than others)
  - Minimize the severity of the failure
  - Reduce the occurrence of the failure mode
  - Improve the detection

# **FMEA Sheet: Example**



Product: Computer Station

| Component                | Mode of<br>Failure                    | Cause of<br>Failure                         | Effect of<br>Failure               | Frequency<br>of<br>Occurrence<br>(1-10) | Degree of<br>Severity<br>(1-10) | Chance of<br>Detection<br>(1-10) | Risk Priority<br>(1-1000) | Design Action                                          |
|--------------------------|---------------------------------------|---------------------------------------------|------------------------------------|-----------------------------------------|---------------------------------|----------------------------------|---------------------------|--------------------------------------------------------|
| Hardware<br>Installation | Hardware<br>not installed<br>on time  | Shipping<br>delay from<br>manufacturer      | Customer loses time/\$             | 2                                       | 6                               | 8                                | 96                        | Agent reviews timeline with supplier                   |
|                          |                                       | Inaccurate estimate of time required        | Customer loses time/\$             | 3                                       | 4                               | 1                                | 12                        |                                                        |
|                          |                                       | Unavailable/<br>overscheduled<br>installers | Customer loses time/\$             | 6                                       | 4                               | 3                                | 72                        |                                                        |
|                          |                                       | Missing components                          | Customer loses time/\$             | 5                                       | 7                               | 5                                | 175                       | Installers verify components needed for job            |
|                          | Hardware<br>not installed<br>properly | Inexperienced installers                    | Hardware<br>must be<br>reinstalled | 1                                       | 8                               | 10                               | 80                        |                                                        |
|                          |                                       | Customer requirements not clear             | Hardware<br>must be<br>reinstalled | 7                                       | 8                               | 7                                | 392                       | Installer meets/<br>calls customer<br>to verify design |

#### Product DC motor

|     |                        |                               |                                                   |                                       |                                                           |         |   |     |   |    |                                    | Indian                 |
|-----|------------------------|-------------------------------|---------------------------------------------------|---------------------------------------|-----------------------------------------------------------|---------|---|-----|---|----|------------------------------------|------------------------|
| No. | Part                   | Function                      | Failure                                           | Mechanis                              | Effect(s)                                                 | Current |   | P.R |   |    | Recommended                        | stitute of<br>chnology |
|     | Name<br>Part No.       |                               | Mode                                              | m(s) &<br>Causes(s)<br>of Failure     | Of Failure                                                | Control | P | S   | D | R  | Corrective<br>Action(s)            | Mandi                  |
| 1   | Position<br>Controller | Receive a demand position     | connection<br>Incorrect                           |                                       | Motor<br>fails to<br>move                                 |         | 2 | 4   | 1 | 8  | Replace faulty wire.  Q.C checked. |                        |
|     |                        |                               | demand<br>signal                                  | Operator<br>error                     | Position<br>controller<br>breakdown<br>in a long-<br>run  |         | 4 | 4   | 3 | 48 | Intensive training for operators.  |                        |
| 2   | Drive                  | Receive<br>speed<br>demand    | Incorrect<br>speed<br>demand<br>being<br>received | Fault in position controller's output | Extensive<br>damage to<br>the<br>machine                  |         | 2 | 4   | 4 | 32 | Indicator and<br>Audile<br>warning |                        |
|     |                        | Measures<br>actual<br>speed   | Incorrect<br>speed<br>reading                     | Wear and tear                         | Extensive damage                                          |         | 4 | 4   | 5 | 80 | Voltmeter Improve check            |                        |
| 3   | Motor                  | Provides<br>voltage<br>signal | Signal loss                                       | Faulty leads                          | Unstable control loop  Endanger operators  Serious damage |         | 3 | 5   | 4 | 60 | Durability test<br>on leads        |                        |
|     |                        |                               |                                                   |                                       |                                                           |         |   |     |   |    |                                    |                        |

March 25, 2019

IC201P : Design Practicum

# Home Assignment#6



carryout FMEA analysis and suggestive corrective actions to improve the reliability and safety of your product