Zusammenfassung für Analysis I

(Prof. Dr. Schnürer)

Wintersemester 2014/2015

von Dagmar Sorg

Grundlagen: Logik, Mengenlehre

UND REELLE ZAHLEN

KAP. 1

LOGISCHE GRUNDLAGEN

Part 1.1

Definition (Aussage)

D. 1.1

- (i) Eine Aussage ist etwas, dem der Wahrheitsgehalt "wahr" oder "falsch" zugeordnet ist.
- (ii) Eine ${\it Aussage form}$ ist eine Aussage, die eine noch unbestimmte oder freie Variable enthält.

Definition (Negation, Verneinung)

D. 1.3

Ist p eine Aussage, so bezeichnet $\neg p$ die Negation dieser Aussage.

D 1 5

Definition (Konjunktion)

D. 1.5

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \wedge q$ ("p und q") mittels der folgenden Wahrheitstabelle:

$$\begin{array}{c|ccc} p & q & p \wedge q \\ \hline w & w & w \\ w & f & f \\ f & w & f \\ f & f & f \end{array}$$

Definition (Disjunktion)

D. 1.6

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \vee q$ ("p oder q") mittels der folgenden Wahrheitstabelle:

p	q	$p \lor q$
w	w	w
w	f	w
f	w	w
f	f	f

Definition (Kontravalenz)

D. 1.7

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \lor q$ ("entweder p oder q") mittels der folgenden Wahrheitstabelle:

$$\begin{array}{c|ccc} p & q & p \lor q \\ \hline w & w & f \\ w & f & w \\ f & w & w \\ f & f & f \end{array}$$

Definition (Implikation)

D. 1.8

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \Rightarrow q$ ("p impliziert q") mittels der folgenden Wahrheitstabelle:

$$\begin{array}{c|cccc} p & q & p \Rightarrow q \\ \hline w & w & w \\ w & f & f \\ f & w & w \\ f & f & w \end{array}$$

- (i) p heißt Voraussetzung, Prämisse oder hinreichende Bedingung für q
- (ii) q heißt Behauptung, Konklusion oder notwendige Bedingung

Definition

D. 1.10

(i) Seien p,q Aussagen. Definiere $p\Leftrightarrow q$ ("p und q sind äquivalent", "genau dann, wenn p gilt, gilt auch q") durch

p	q	$p \Leftrightarrow q$
w	w	w
w	f	f
f	w	f
f	f	w

(ii) p_1, p_2, \ldots heißen äquivalent, falls für je zwei dieser Aussagen, p und $q, p \Leftrightarrow q$ gilt.

Proposition

P. 1.11

(Symmetrie)

(Symmetrie)

(Symmetrie)

(Idempotenz)

(Idempotenz)

Seien p, q, r Aussagen. Dann gelten

- (i) $\neg \neg p \Leftrightarrow p$
- (ii) $p \lor \neq p$
- (iii) $(p \land q) \Leftrightarrow (q \land p)$

(iv) $(p \lor q) \Leftrightarrow (q \lor p)$

 $\begin{array}{c} (1V) & (p \lor q) \Leftrightarrow (q \lor p) \\ (V) & (p \Leftrightarrow q) \Leftrightarrow (q \Leftrightarrow p) \end{array}$

(vi) $(p \land p) \Leftrightarrow p$

(vii) $(p \lor p) \Leftrightarrow p$

- (viii) $(p \land q) \Rightarrow p$
- (ix) $p \Rightarrow (p \lor q)$
- (x) $(p \Leftrightarrow q) \Rightarrow ((p \lor r) \Leftrightarrow (q \lor r))$
- (xi) $(p \Leftrightarrow q) \Rightarrow ((p \land r) \Leftrightarrow (q \land r))$
- (xii) $(p \Leftrightarrow q) \Rightarrow ((p \Leftrightarrow r) \Leftrightarrow (q \Leftrightarrow r))$

(xiii) $((p \land q) \land r) \Leftrightarrow (p \land (q \land r))$ (Assoziativität)

 $(xiv) ((p \lor q) \lor r) \Leftrightarrow (p \lor (q \lor r))$ (Assoziativität)

 $(\text{xv}) \ (p \lor (q \land r)) \Leftrightarrow ((p \lor q) \land (p \lor r)) \tag{Distributivit"}$

 $(xvi) (p \land (q \lor r)) \Leftrightarrow ((p \land q) \lor (p \land r))$ (Distributivität)

 $(xvii) \neg (p \land q) \Leftrightarrow (\neg p) \lor (\neg q)$ (De Morgan) $(xviii) \neg (p \lor q) \Leftrightarrow (\neg p) \land (\neg q)$ (De Morgan)

(xix) $(p \Leftrightarrow q) \Leftrightarrow ((p \Rightarrow q) \land (q \Rightarrow p))$

 $(xx) ((p \Leftrightarrow q) \land (q \Leftrightarrow r)) \Rightarrow (p \Leftrightarrow r)$

(xxi) $((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$

(xxii) $(p \Rightarrow q) \Leftrightarrow ((\neg p) \lor q)$

(xxiii) $(p \Rightarrow q) \Leftrightarrow ((\neg q) \Rightarrow (\neg p))$

(xxiv) $p \Leftrightarrow ((p \land r) \lor (p \land \neg r))$ (Fallunterscheidung)

Erste Mengenlehre

Part 1.2

Definition (naive Definition einer Menge)

D. 1.12

Eine Menge ist eine Zusammenfassung von Objekten, Elemente genannt. Ist A eine Menge, x ein Objekt, so schreiben wir $x \in A$, falls x ein Element von A ist. $x \notin A : \Leftrightarrow \neg(x \in A)$ Für eine Menge A, die genau die Elemente a,b und c enthält, schreiben wir $A = \{a,b,c\}$. Es ist irrelevant, ob a mehrfach auftaucht oder wie die Elemente angeordnet werden.

Definition

D. 1.13

Seien A, B Mengen.

- (i) Dann ist A eine Teilmenge von B ($A \subset B$ oder $A \subseteq B$), falls aus $x \in A$ auch $x \in B$ folgt.
- (ii) A und B heißen gleich (A=B), falls $A\subset B$ und $B\subset A$ gelten. $A\neq B:\Leftrightarrow \neg(A=B)$ (Extensionalitätsaxiom)
- (iii) Schreibe $A \subseteq B$ für $A \subset B$ und $A \neq B$.

L. 1.14 Lemma Seien A, B, C Mengen. Dann gelten: (i) $A \subset A$ (Reflexivität) (ii) $x \in A$ und $A \subset B$ implizieren $x \in B$ (iii) $A \subset B \subset C \Rightarrow A \subset C$ (Transitivität) Axiom (Aussonderungsaxiom) A. 1.15 Sei A eine Menge und a(x) eine Aussageform. Dann gibt es eine Menge B, deren Elemente genau die $x \in A$ sind, die a(x) erfüllen. Schreibe $B = \{x \in A : a(x)\}.$ Bem. 1.17 Bemerkung Zu jeder Menge A gibt es eine Menge B und eine Aussageform $a(x): A = \{x \in B : a(x)\}.$ Nehme $B = A, a(x) = (x \in A)$. Bemerkung (Russelsche Antinomie) Bem. 1.18 Nimmt man im Aussonderungsaxiom statt A die "Allmenge" (Menge aller Elemente), dann bekommt man Probleme: Sei $A = Allmenge, B = \{X \in A : X \notin X\}$. Es gilt $y \in B \Leftrightarrow (y \in A \land y \notin y) \Leftrightarrow y \notin y$. Gilt $B \in B$? \rightarrow Widerspruch. L. 1.19 Lemma (Existenz der leeren Menge) Es gibt eine Menge \emptyset , die leere Menge, die kein Element enthält. Sie erfüllt: (i) $\emptyset \subset A$ für alle Mengen A(ii) ∅ ist eindeutig bestimmt. Part 1.3 QUANTOREN **Definition** D. 1.20 Sei A eine Menge, a(x) eine Aussageform. (i) **Existenzquantor:** Wir schreiben $\exists x \in A : a(x) \text{ oder } \underset{x \in A}{\exists} a(x) \text{ für "Es gibt ein } x \text{ in }$ der Menge A, sodass dieses x a(x) erfüllt." Schreibe $\exists ! x \in A : a(x)$ für es gibt genau ein $x \in A$ mit a(x). Dies zeigt man, indem man $\exists x \in A : a(x)$ und für alle $x, y \in A$ mit a(x), a(y) : x = y zeigt. (ii) **Allquantor:** Schreibe $\forall x \in A : a(x)$ oder $\underset{x \in A}{\forall} a(x)$ manchmal auch $a(x) \forall x \in A$ für "Für alle $x \in A$ gilt a(x)." L. 1.22 Lemma Seien A, B Mengen. p(x), p(x, y) Aussageformen. Dann gelten $(1.1) \bigvee_{x \in A} \bigvee_{y \in B} p(x, y) \iff \bigvee_{y \in B} \bigvee_{x \in A} p(x, y)$ $(1.2) \exists \exists z \in A} p(x, y) \iff \exists z \in A} p(x, y)$ $(1.3) \exists \forall z \in A} p(x, y) \iff \forall z \in A} p(x, y)$ $(1.4) \exists z \in A} p(x, y) \iff \forall z \in A} p(x, y)$ $(1.4) \neg \left(\bigvee_{x \in A} p(x) \right) \Longleftrightarrow \underset{x \in A}{\exists} \neg p(x)$ $(1.5) \neg \left(\underset{x \in A}{\exists} p(x) \right) \Longleftrightarrow \bigvee_{x \in A} \neg p(x)$

Weitere Mengenlehre	Part 1.4
Axiom (Existenz einer Obermenge)	A. 1.24
Sei \mathcal{M} eine Menge von Mengen. Dann gibt es eine Menge M (=Obermenge) mit $A \in \mathcal{M} \Rightarrow A \subset M$.	
Bemerkung: M ist eindeutig bestimmt.	
Definition (Vereinigung und Durchschnitt)	D. 1.25
Seien A, B Mengen mit Obermenge X .	
(i) Dann ist die Vereinigung von A und B $(A \cup B)$ definiert durch $A \cup B := \{x \in X : x \in A \lor x \in B\}$	
(ii) der <i>(Durch-) Schnitt</i> von A und B $(A \cap B)$ ist definiert durch	
$A \cap B := \{ x \in X : x \in A \land x \in B \}$	
Sei \mathcal{M} eine Menge von Mengen mit Obermenge X .	
(i) Vereinigung: $\bigcup_{A \in \mathcal{M}} A := \{x \in X : (\exists A \in \mathcal{M} : x \in A)\}$	
(ii) Schnitt: $\bigcap_{A \in \mathcal{M}} A := \{ x \in X : (\forall A \in \mathcal{M} : x \in A) \}$	
Bemerkung	Bem. 1.26
Enthält \mathcal{M} keine Menge, so gelten $\bigcup_{A \in \mathcal{M}} A = \emptyset$ sowie $\bigcap_{A \in \mathcal{M}} A = X$	
Definition (Disjunkte Mengen)	D. 1.27
Seien A, B Mengen.	D. 1.21
(i) A und B heißen disjunkt, falls $A \cap B = \emptyset$. Schreibe in diesem Fall $A \cup B$ statt $A \cup B$	
(ii) Sei ${\mathcal M}$ eine Menge von Mengen. Dann heißen die Mengen in ${\mathcal M}$ disjunkt, falls für	
$A, B \in \mathcal{M}, A \neq \emptyset$ stets $A \cap B = \emptyset$ gilt. Schreibe $\bigcup_{A \in \mathcal{M}} A$ statt $\bigcup_{A \in \mathcal{M}} A$.	
Definition (Komplement)	D. 1.28
Seien A, B Mengen mit fester Obermenge X .	
(i) Definiere das Komplement von A in B durch $B \setminus A := \{x \in B : x \notin A\}$	
(ii) Definiere das Komplement von A durch $\mathcal{C}A \equiv A^{\mathcal{C}} := \{x \in X : x \notin A\}$ Proposition	P. 1.29
Seien A, B, C Mengen mit Obermenge X . Dann gelten:	Γ. 1.23
(i) $A \cup B = B \cup A$ (Kommutativität)	
(ii) $A \cap B = b \cap A$ (Kommutativität)	
(iii) $(A \cup B) \cup C = A \cup (B \cup C)$ (Assoziativität)	
(iv) $(A \cap B) \cap C = A \cap (B \cap C)$ (Assoziativität)	
(v) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ (Distributivität)	
(vi) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ (Distributivität)	
(vii) $C(A \cup B) = CA \cap CB$ (De Morgansche Regel) (viii) $C(A \cap B) = CA \cup CB$ (De Morgansche Regel)	
(viii) $C(A \cap B) = CA \cup CB$ (De Morgansche Regel) (ix) $CCA = A$	
$\begin{array}{l} (\mathbf{X}) \ 00A = A \\ (\mathbf{X}) \ A \cup \mathbf{C}A = X \end{array}$	
$(x) \ A \cup B = A \cap CB$	
Axiom (Potenzmenge)	A. 1.30
Sei A eine beliebige Menge. Dann gibt es die Menge $\mathcal{P}(A)$ (oder 2^A), die Potenzmenge	
von A. Die Elemente von $\mathcal{P}(A)$ sind genau die Teilmengen von A.	
Axiom (Kartesisches Produkt)	A. 1.32
Seien A, B Mengen. Dann gibt es eine Menge, das Kartesische Produkt von A und B	
$(A \times B)$, die aus allen geordneten Paaren (a,b) mit $a \in A, b \in B$ besteht. a heißt erste, b heißt zweite Komponente des Paares (a,b) .	
$A \times B := \{(a,b) : a \in A \land b \in B\}$	

Bemerkung	Bem. 1.33
$(a,b) \equiv \{a,\{a,b\}\} \in \mathcal{P}(A \cup \mathcal{P}(A \cup B))$ Definition (Funktion, Abbleitung)	D. 1.34
Seien A, B Mengen.	D. 1.5-
(i) Eine Funktion (oder Abbildung) f von A nach B , $f:A\to B$, ist eine Teilmenge von $A\times B$, sodass es zu jedem $a\in A$ genau ein $b\in B$ mit $(a,b)\in f$ gibt: $\forall a\in A\exists b\in B:(a,b)\in f$. Schreibe $b=f(a),a\mapsto b$. Definiere den Graphen von f :	
$graph \ f := \{(x, f(x)) \in A \times B : x \in A\} = f \subset A \times B$	
(ii) A heißt Definitionsbereich von f , $D(f)$. $f(A) := \{f(x) : x \in A\} \equiv \{y \in B : (\exists x \in A : \underbrace{f(x) = y})\} = im \ f = R(f)$	
heißt \boldsymbol{Bild} oder $\boldsymbol{Wertebereich}$ von f .	
(iii) Sei $M \subset A$ beliebig.	
$f(M) := \{y \in B : (\exists x \in M : f(x) = y)\} \equiv \{f(x) : x \in M\}$ Somit induziert $f : A \to B$ eine Funktion $\mathcal{P}(A) \to \mathcal{P}(B)$, die wir wieder mit f bezeichnen.	
(iv) Zu einer beliebigen Funktion $f:A\to B$ definieren wir die $Urbildabbildung$ $f^{-1}:\mathcal{P}(B)\to\mathcal{P}(A)$ mit $F^{-1}(M):=\{x\in A:f(x)\in M\},M\subset B$ beliebig. $f^{-1}(M)$ heißt $Urbild$ von M unter f .	
Bemerkung	Bem. 1.35
$f:A\to B$ und $g:C\to D$ sind gleich, falls sie als Teilmengen von $A\times B$ bzw. $C\times D$ gleich sind, insbesondere $B=D$.	Deim 2100
Definition	D. 1.36
Sei $f: A \to B$.	
 (i) f heißt injektiv, falls für alle x, y ∈ A aus f(x) = f(y) auch x = y folgt. (ii) f heißt surjektiv, falls f(A) = B. Wir sagen, dass f die Menge A auf B abbildet. Bei nicht-surjektiven Abbildungen sagt man A wird nach oder in B abgebildet. (iii) f heißt bijektiv, falls f injektiv und surjektiv ist. f ist eine Bijektion. (iv) ist f injektiv, so definieren wir die Inverse von f durch f⁻¹: R(f) → A mit f(x) ↦ x. Es gilt f⁻¹(f(x)) = x 	
	Bem. 1.37
Semerkung (i) $\mathcal{I}(f(x))$ bezeichnet die <i>Inverse</i> von $f(x)$. (ii) $U(\{f(x)\})$ bezeichnet die Umkehrabbildung der Menge $\{f(x)\}$, sie ist definiert durch $U: \mathcal{P}(B) \to \mathcal{P}(A)$ mit $M \subset B \mapsto \{x \in A: f(x) \in M\}$ (iii) $f: A \to B$ induziert $g: \mathcal{P}(A) \to \mathcal{P}(B)$ $\Rightarrow \{f(x)\} = g(\{x\})$	Dem. 1.3
	D 1 20
Definition (Komposition von Abbildungen) Seien $f: A \rightarrow B, g: B \rightarrow C$ Abbildungen. Dann heißt	D. 1.38
$g \circ f: A \to C \text{ mit } x \mapsto g(f(x)) \text{ Komposition von } f \text{ und } g.$	
Bemerkung	Bem. 1.40
Seien $f: A \to B, g: B \to C, h: C \to D$ Abbildungen. Dann gilt $h \circ (g \circ f) = (h \circ g) \circ f$ Sowie für Inverse und Umkehrabbildungen: $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$	23 1110

Definition (Deletionen)		D. 1.41
Definition (Relationen) Seien A, B Mengen.		D. 1.41
(i) $R \subset A \times B$ heißt Relation . Statt $(x, y) \in R$ sagen wir $R(x, y)$ g	ilt.	
(ii) $R \subset A \times A$ heißt		
 (a) reflexiv, falls R(x,x) für alle x ∈ A gilt (b) symmetrisch, falls R(x,y) ⇒ R(y,x) für alle x, y ∈ A (c) antisymmetrisch, falls R(x,y) ∧ R(y,x) ⇒ x = y für alle (d) transitiv, falls R(x,y) ∧ R(y,z) ⇒ R(x,z) für alle x, y, z ∈ (iii) R ⊂ A × A heißt Äquivalenzrelation, falls R reflexiv, symmet ist. Schreibweise bei Äquivalenzrelationen: x ~ y statt R(x,y) 	A	
Definition		D. 1.42
Sei $R \subset A \times A$ eine Äquivalenzrelation. Sei $x \in A$. dann heißt $[x] := \ddot{A}quivalenzklasse von x$. Schreibe $y \equiv x \pmod{R}$ für $y \in [x]$. $A/R := \{[x] : x \in A\}$ ist die Menge aller Äquivalenzklassen von R .	$= \{ y \in A : R(x,y) \}$	
Die reellen Zahlen		Part 1.5
Definition		D. 1.44
Die reellen Zahlen, \mathbb{R} , sind eine Menge mit den folgenden Eigenschafte (A) \mathbb{R} ist ein Körper, d.h. es gibt die Abbildung	en:	
 (i) +: R×R, die Addition, schreibe x + y für x(x, y) (ii) ·: R×R, die Multiplikation, mit (x, y) → x · y ≡ xy be ausgezeichneten Elementen: 0,1 mit 0 ≠ 1 	zeichnet und zwei	
Es gilt, soweit nicht anders angegeben, für alle $x,y,z\in\mathbb{R}$:		
(K1) $x + (y + z) = (x + y) + z$ (K2) $x + y = y + x$		
(K3) $0 + x = x$ (K4) $\forall x \in \mathbb{R} \exists y \in \mathbb{R} : x + y = 0$, Schreibe $-x$ für $y : x + (-x) = 0$)	
(K5) (xy)z = x(yz)		
(K6) xy = yx		
(K7) $1x = x$ (K8) $\forall x \in \mathbb{R} \setminus \{0\} \exists y \in \mathbb{R} : xy = 1$, Schreibe x^{-1} für $y : xx^{-1} = 1$	1	
(K9) x(y+z) = xy + xz		
(B) \mathbb{R} ist ein angeordneter Körper, d.h. es gibt eine Relation $R \subset \mathbb{R} > $ für $R(x,y)$, die für alle $x,y,z \in \mathbb{R}$ folgendes erfüllt:	\mathbb{R} (schreibe $x \leq y$	
(O1) $x \le y \land y \le z \Rightarrow x \le z$ (O2) $x \le y \land y \le x \Rightarrow x = y$	(Transitivität) (Antisymmetrie)	

D. 1.45

besitzt ein Supremum in \mathbb{R} . **Definition (Ordnung)**

(O3) es gilt $x \leq y$ oder $y \leq x$ (O4) aus $x \le y$ folgt $x + z \le y + z$ (O5) aus $0 \le x$ und $0 \le y$ folgt $0 \le xy$.

Eine transitive, antisymmetrische Relation \leq , für die stets $x \leq y$ oder $y \leq x$ gilt, heißt (totale) Ordnung.

(C) $\mathbb R$ ist vollständig, d.h. jede nicht-leere nach oben beschränkte Teilmenge von $\mathbb R$

Schreibe $y \geq x$ statt $x \leq y$ und x < ybzw. y > x für $x \leq y$ und $x \neq y$

Definition (Supremum, Infin	•		D. 1.46
(i) $A \subset \mathbb{R}$ heißt $nach \ oben \ beschröden$			
(ii) $x_0 \in \mathbb{R}$ ist eine <i>obere Schranke</i>			
(iii) $x_0 \in \mathbb{R}$ ist das $Supremum$ von A A stets $x \geq x_0$ gilt. x_0 heißt $klei$			
(iv) Ist $\sup A \in A$, so heißt $\sup A$ Ma		none.	
(v) Ist $A \subset \mathbb{R}$ nicht nach oben beschrä		$=+\infty$. Für alle $x\in\mathbb{R}$ vereinbaren	
	, 0 1		
(vi) Entsprechend: nach unten bes untere Schranke), Minimum.	·		
	so gilt inf $A = -$	∞ . Alternativ: $-A = \{-a : a \in$	
A }, $A \subset \mathbb{R}$. A heißt nach unten beschränkt $-x = \sup -A$.	, falls $-A$ nach ob	en beschränkt ist. $x = \inf A$, falls	
(vii) Ist $A \subset \mathbb{R}$ nach oben und unten b	eschränkt, so heiß	st A $beschränkt$.	
Bemerkung	.,,		Bem. 1.47
$\sup \emptyset = -\infty \text{ und inf } \emptyset = +\infty$			20 1111
Definition			D. 1.49
Seien $a, b \in \mathbb{R}, a < b$.			2.1.13
(i) $(a, b) := \{x \in \mathbb{R} : a < x < b\}$		(offenes Intervall)	
(ii) $(a, b] := \{x \in \mathbb{R} : a < x \le b\}$		(halboffenes Intervall)	
(iii) $[a, b) := \{x \in \mathbb{R} : a \le x < b\}$		(halboffenes Intervall)	
(iv) $[a, b] := \{x \in \mathbb{R} : a \le x \le b\}$		(abgeschlossenes Intervall)	
a,b heißen ${\it Endpunkte}$ der Intervalle	. .		
Lemma			L. 1.50
Sei $x \in \mathbb{R}$. Dann gilt $x0 = 0x = 0$.			
Lemma			L. 1.51
Sei $x \in \mathbb{R}$. Dann gelten			
(i) $(-1)x = -x$			
(ii) -(-x) = x			
(iii) $(-1)(-1) = 1$			
Lemma			L. 1.52
Sei $x \in \mathbb{R}$. Dann ist die additive Inve	erser $-x$ eindeutig	bestimmt.	
Lemma			L. 1.53
Es gelten $0 < 1$ und $-1 < 0$.			
Lemma			L. 1.54
Seien $x, y \in \mathbb{R}$. Dann gilt genau ein d	ler drei folgenden	Aussagen:	
x < y,	x = y,	x > y	
Lemma			L. 1.55
Gelte $0 < x < y$. Dann gelten:			
(i) $0 < x^{-1}$			
(ii) $0 < y^{-1} < x^{-1}$			1 1 50
Lemma			L. 1.56
$x, y \in \mathbb{R}$. Gilt $xy = 0 \Rightarrow x = 0$ oder y	y=0.		1 1 57
Lemma			L. 1.57
Seien $a, b \in \mathbb{R}$.			
 (i) Aus 0 ≤ a ≤ b folgt a² ≤ b² (ii) Aus a² ≤ b² und b ≥ 0 folgt a ≤ 	- h		
(ii) Aus $a \leq b^2$ und $b \geq 0$ folgt $a \leq b^2$	≥ 0 .		
9			

 $Mit \ a^2 = a \cdot a.$

Definition (Natürliche Zahlen)		D. 1.58
Die natürlichen Zahlen $\mathbb N$ sind die kleinste Teilmer	age $A \subset \mathbb{R}$ mit	
$\begin{array}{ll} (\mathrm{N1}) & = \in A \\ (\mathrm{N2}) & a+1 \in A, \forall a \in A \end{array}$		
	:	
\mathbb{N} ist die kleinste Menge mit (N1), (N2) in dem S (N1) und (N2) auch $\mathbb{N} \subset \mathcal{N}$ gilt.	mn , dass für ane $\mathcal{N} \subset \mathbb{R}$ $\operatorname{mit} \mathcal{N}$ erfüllt	
Lemma		L. 1.59
Es gibt die natürlichen Zahlen. Sie sind eindeutig	bestimmt.	
Lemma (Peanoaxiome) Es gelten:		L. 1.60
(i) $0 \in \mathbb{N}$		
(ii) jedes $a \in \mathbb{N}$ besitzt genau einen Nachfolger a	$\iota^+ \in \mathbb{N}$	
(iii) 0 ist kein Nachfolger einer natürlichen Zahl (iv) $\forall n, m \in \mathbb{N} : m^+ = n^+ \Rightarrow n = m$		
(v) Sei $X \subset \mathbb{R}$ beliebig mit $0 \in X$ und $n^+ \in X$,	$\forall n \in X$. Es folgt $\mathbb{N} \subset X$	
Der Nachfolger von $a \in \mathbb{N}$ ist die Zahl $a^+ := a + 1$	$n \in \mathbb{N}$.	
Theorem		T. 1.61
\mathbb{R} ist archimedisch , d.h. zu jedem $x \in \mathbb{R}$ gibt es $x \in \mathbb{R}$	$i_0 \in \mathbb{N}$, sodass für alle $\mathbb{N} \ni n \ge n_0$ auch	
$n \ge x$ gilt. Korollar		K. 1.62
Sei $x \in \mathbb{R}$ beliebig und sei $a > 0$.		
(i) Dann gibt es $n \in \mathbb{N}$ mit $an \ge x$		
(ii) Dann gibt es $m \in \mathbb{N}$ mit $0 < \frac{1}{n} \le a$		
(iii) Ist $a \leq \frac{1}{n}$ für alle $n \in \mathbb{N}$ (oder alle $n \in \mathbb{N}$ mix	t $n \ge n_0$), so ist $a \le 0$.	
Theorem (Vollständige Induktion)		T. 1.63
Erfüllt $M \subset \mathbb{N}$ die Bedingungen	(T. 1.14;	
(i) $0 \in M$ (ii) $n \in M \Rightarrow n+1 \in M$	$(Induktions an fang) \ (Induktions schritt)$	
so gilt $M = \mathbb{N}$.	(1114411010111100)	
Theorem		T. 1.64
Sei p eine Aussageform auf \mathbb{N} . Gelten		
(i) $p(0)$ und (ii) $p(n) \Rightarrow p(n+1)$ für alle $n \in \mathbb{N}$,		
so gilt $p(n)$ für alle $n \in \mathbb{N}$.		D 167
Definition (Familie, Folge)		D. 1.67
(i) Seien \mathcal{I}, X Mengen, $f: \mathcal{I} \to X$ eine Abbildung mit $x_i = f(i), \forall i \in \mathcal{I}$ (\mathcal{I} bezeichnet die Indexm		
(ii) Ist $\mathcal{I} = \mathbb{N}$, so heißt $(x_i)_{i \in \mathcal{I}}$ Folge: $(x_i)_{i \in \mathbb{N}} \subset X$	ī. ·	
(iii) Ist $J \subset \mathcal{I}$, so heißt $(x_j)_{j \in J}$ Teilfamilie von $(x \text{ men.})$	$i_i)_{i\in\mathcal{I}}$, falls die Werte auf J übereinstim-	
(iv) Ist $\mathcal{I} = \mathbb{N}, J \subset \mathbb{N}$ unendlich, so heißt $(x_j)_{j \in J}$ eine Folge mit $j_{k+1} > j_k, \forall k$ und $J = \bigcup_{i \in J} \{j_k\},$		
(v) Sei $(x_i)_{i\in\mathcal{I}}$ eine Familie. Ist $\mathcal{I} = \{1, 2, \dots, n\}$ (
(a) $n=2$: Die Familie heißt $\boldsymbol{Paar}\ (x_1,x_2)$		
(b) $n = 3$: Die Familie heißt Triple (x_1, x_2, x_3)	(2)	

(c) n beliebig: Die Familie heißt n-Tupel (x_1, x_2, \ldots, x_n)

Definition	D. 1.68
Sei $(A_i)_{i\in\mathcal{I}}$ eine Familie von Mengen mit Obermenge X . (i) $\bigcup A_i := \{x \in X : (\exists i \in \mathcal{I} : x \in A_i)\}$	
(ii) $\bigcap_{i \in \mathcal{I}} A_i := \{ x \in X : (\forall i \in \mathcal{I} : x \in A_i) \}$	
(iii) $\mathcal{I} = \{1, 2, \dots, n\} : \bigcup_{i=1}^{n} A_i = \bigcup_{i \in \mathcal{I}} A_i$, sowie $\bigcap_{i=1}^{n} A_i = \bigcap_{i \in \mathcal{I}} A_i$	
Definition	D. 1.69
Ist $(x_i)_{i\in\mathcal{I}}$ eine Familie reeller Zahlen, so gilt $\sup_{i\in\mathcal{I}} x_i : i\in\mathcal{I}$, sowie	
$\inf_{i \in \mathcal{I}} x_i := \inf\{x_i : i \in \mathcal{I}\}.$	
Proposition	P. 1.70
 (i) Seien A, B ⊂ R, A ⊂ B. ⇒ sup A ≤ sup B, inf A ≥ inf B. (ii) Sei (A_i)_{i∈I} eine Familie von Mengen A_i ⊂ R, ∀i ∈ I. Dann definiere A := ∪ A_i 	
$\Rightarrow \sup_{i \in \mathcal{I}} A = \sup_{i \in \mathcal{I}} \sup_{i \in \mathcal{I}} A_i \text{ und inf } A = \inf_{i \in \mathcal{I}} \inf_{i \in \mathcal{I}} A_i.$	
	D. 1.71
(i) Sei A eine Menge, $f: A \to \mathbb{R}$ eine Funktion. f heißt $nach \ oben \ (unten) \ beschränkt$, falls für $f(A)$ gilt:	
(a) $\sup f(A) = \sup_{x \in A} f(x)$	
(b) $\inf f(A) = \inf_{x \in A} f(x)$	
(ii) Sei A eine Menge und $f_i: A \to \mathbb{R}$ eine Familie von Funktionen. Gilt für alle $x \in A$, dass $\sup_{i \in \mathcal{I}} f_i(x) < \infty$, so definieren wir die Funktion	
$\sup_{i\in\mathcal{I}}f_i:A\to\mathbb{R}$	
$(\sup_{i \in \mathcal{I}} f_i)(x) := \sup_{i \in \mathcal{I}} f_i(x)$	
$i\in\mathcal{I}$ (iii) Ohne $\sup f_i(x) < \infty$ erhalten wir mit derselben Definition $\sup f_i: A \to \mathbb{R} \cup \{+\infty\}$	
$i\in\mathcal{I}$ (iv) Analog für $\inf_{i\in\mathcal{I}}f_i$.	
(v) Ist $\mathcal{I} = \{1, \dots, n\}$ gilt $\sup_{i \in \mathcal{I}} f_i = \sup_{i \in \mathcal{I}} (f_1, \dots, f_n) = \max_{i \in \mathcal{I}} (f_1, \dots, f_n).$	
$i \in \mathcal{I}$ Entsprechend für Infimum/Minimum.	
Definition (Kartesisches Produkt)	D. 1.72
(i) Sei $\mathcal{I} \neq \emptyset$ und $(A_i)_{i \in \mathcal{I}}$ eine Familie von Mengen. Definiere das <i>kartesische Produkt</i> wie folgt:	
$\prod_{i \in \mathcal{I}} A_i := \{ (x_i)_{i \in \mathcal{I}} : (\forall i \in \mathcal{I} : x_i \in A_i) \}$	
(ii) Zu $j \in \mathcal{I}$ definieren wir die j -te Projektionsabbildung $\pi_j : \prod_{i \in \mathcal{I}} A_i \to A_j \text{ mit } \pi_j((x_i)_{i \in \mathcal{I}}) := x_j$	
Axiom	A. 1.74
Sei $(A_i)_{i\in\mathcal{I}}$ eine Familie von Mengen $A_i\neq\emptyset, \forall i\in\mathcal{I}$. Dann gilt $\prod_{i\in\mathcal{I}}A_i\neq\emptyset$, d.h. es gibt	
eine Familie $(x_i)_{i\in\mathcal{I}}$ mit $x_i\in A_i, \forall i\in\mathcal{I}.$	

Proposition Sei $\mathcal{I} \neq \emptyset$ und $(A_i)_{i \in \mathcal{I}}$ eine Familie von Mengen. Dann gilt $\prod A_i = \emptyset \iff \exists i \in \mathcal{I} : A_i \neq \emptyset$.	P. 1.75
Lemma (Zornsches Lemma) Sei $M \neq \emptyset$ mit einer Teilordnung (= partielle Ordnung) \leq . Nehme an, jede total geordnete Teilmenge $\Lambda \subset M$ (= Kette) besitzt eine obere Schranke $b \in M$, d.h. $x \leq b, \forall x \in \Lambda$. Dann	L. 1.76
enthält M ein maximales Element x_0 , d.h. $\exists x_0 \in M : x \geq x_0 \Rightarrow x = x_0$. Definition (Ausschöpfung, Partition, Überdeckung) Sei A eine Menge. (i) Eine $\ddot{U}berdeckung$ von A ist eine Familie $(A_i)_{i \in \mathcal{I}}$ mit $\bigcup_{i \in \mathcal{I}} \supset A$.	D. 1.77
 (ii) Eine <i>Partition</i> von A ist eine Überdeckung (A_i)_{i∈I} mit A_i ⊂ A und A_i ∩ A_j = ∅, ∀i ≠ j ∈ I, A = ⋃ _{i∈I} A_i. (iii) Eine <i>Ausschöpfung</i> von A ist eine aufsteigende Folge (A_n)_{n∈N} von Teilmengen von A, die A_m ⊂ A_n, ∀m ≤ n und ⋃ A_n = A erfüllt. 	
Proposition $^{n\in\mathbb{N}}$	P. 1.78
 (i) Sei ~ eine Äquivalenzrelation auf A. Dann bilden die Restklassen von ~ eine Partition von A. (ii) Sei (A_i)_{i∈I} eine Partition von A. Dann ist ~ mit x ~ y :⇔ ∃i ∈ I : x, y ∈ A_i eine Äquivalenzrelation auf A. 	
Lemma Seien A, B Mengen. Sei $(A_n)_{n \in \mathbb{N}}$ eine Ausschöpfung von A . Sei $(f_n)_{n \in \mathbb{N}}$ eine Familie von Abbildungen $f_n : A_n \to B$ mit $f_n _{A_m} = f_m$ für alle $m \le n$. Dann gibt es genau eine Funktion $f : A \to B$ mit $f(x) = f_n(x), \forall x \in A_n$ oder $f _{A_n} = f_n, \forall n \in \mathbb{N}$.	L. 1.79
Proposition (Rekursive Definition) Sei $B \neq \emptyset$ eine Menge, $x_0 \in B$ und $F : \mathbb{N} \times B \to B$ eine Funktion. Dann gibt es genau eine Funktion $f : \mathbb{N} \to B$ mit den Ergebnissen: (i) $f(0) = x_0$ und (ii) $f(n+1) = F(n, f(n))$ für alle $n \in \mathbb{N}$.	P. 1.80
f ist eine rekursiv definierte Funktion.	
Kardinalität	Part 1.6
Definition (Mächtigkeit) Seien A, B Mengen. (i) A, B heißen $gleich$ $mächtig$ $(A \sim B)$, falls es eine Bijektion $f: A \to B$ gibt. (ii) B heißt $mächtiger$ als A $(B \succ A)$ oder A $weniger$ $mächtig$ als B $(A \prec B)$, falls es eine injektive Abbildung $f: A \to B$ gibt. (iii) A heißt $abz\ddot{a}hlbar$, falls $A \sim \mathbb{N}$. (iv) A heißt $h\ddot{o}chstens$ $abz\ddot{a}hlbar$, falls A $\prec \mathbb{N}$. (v) A heißt $\ddot{u}berabz\ddot{a}hlbar$, falls A nicht höchstens $abz\ddot{a}hlbar$ ist.	D. 1.84
(vi) Sei A abzählbar, so heißt die Folge $(x_i)_{i\in\mathbb{N}}$ eine \mathbf{Abz} ählung von A , falls $x_i\neq x_j$ für $i\neq j$ und $\bigcup_{i\in\mathbb{N}}\{x_i\}=A$.	

Bemerkung	Bem. 1.85
(i) \sim ist Äquivalenzrelation	
(ii) $A \prec B \prec C \Rightarrow A \prec C$	
(iii) $A \prec A$ (iv) $C \leftarrow \{2n + n \in \mathbb{N}\} C \subset \{2n + n \in \mathbb{N}\} C \subset \{2n + n \in \mathbb{N}\} C \subset \{$	
(iv) $G := \{2n : n \in \mathbb{N}\}, G \prec \mathbb{N} : 2n \mapsto 2n \text{ und } \mathbb{N} \prec G : n \mapsto 2n.$ Bijektiv: $\mathbb{N} \sim G$ Theorem (Schröder-Bernstein)	T. 1.86
Aus $A \prec B$ und $B \prec A$ folgt $A \sim B$.	1.1.00
Proposition 2.	P. 1.87
A,B,C sind Mengen. Seien $\varphi:A\to B,\psi:B\to C$ Abbildungen. Sei $f:A\to B$ Abbildung. Dann gelten: (i) Ist $\psi\circ\varphi$ injektiv, so ist φ injektiv (ii) Ist $\psi\circ\varphi$ surjektiv, so ist ψ surjektiv	
(iii) f surjektiv $\Leftrightarrow \exists g: B \to A, f \circ g = id_B$	
(iv) f injektiv $\Leftrightarrow \exists g: B \to A, g \circ f = id_A$	
Korollar	K. 1.88
$A \prec B \Leftrightarrow \exists f: B \to A, f \text{ ist surjektiv.}$	
Definition	D. 1.89
Sei A eine Menge. (i) A heißt endlich , falls es eine injektive Abbildung $f:A\to\mathbb{N}$ und $m\in\mathbb{N}$ mit $f(a)ym, \forall a\in A$ gibt.	
 (ii) A heißt unendlich, falls A nicht endlich ist. (iii) Gibt es eine bijektive Abbildung f: A → {0,1,,m-1} ⊂ N, so hat A die Kardinalität m(A = m). Gibt es keine solche Abbildung, so gilt A = ∞. (iv) Sei P eine Aussageform auf A. Dann gilt P für fast alle i ∈ A, falls {i ∈ A : ¬P(i)} endlich ist. 	
Lemma	L. 1.91
(i) Für jede endliche Menge A gilt $ A < \infty$, d.h. es gibt ein $m \in \mathbb{N}$ und eine Bijektion $f: A \to \{0, \dots, m-1\}$.	
(ii) Seien $m, n \in \mathbb{N}$ und $f : \{0, \dots, m\} \to \{0, \dots, n\}$ eine Bijektion. Dann gilt $n = m$. (\Rightarrow Kardinalität ist wohldefiniert).	
Lemma	L. 1.92
Sei $m \in \mathbb{N} \setminus \{0\}$ und $(a_i)_{1 \leq i \leq m}$ eine endliche Familie natürlicher Zahlen (oder reeller). Dann gibt es ein $i \in \{a, \dots, m\} : a_i \leq a_j, \forall 1 \leq j \leq m$. Schreibe $a_i = \min\{a_1, \dots, a_m\} \equiv \min(a_1, \dots, a_n)$. Entsprechend $\max\{a_1, \dots, a_m\} \equiv \max(a_1, \dots, a_n)$.	
Lemma	L. 1.93
Die natürlichen Zahlen sind wohlgeordnet, d.h. jede Menge $M \subset \mathbb{N}, M \neq \emptyset$, besitzt ein kleinstes Element, d.h. $\exists a \in M : a \leq b, \forall b \in M$.	
Lemma	L. 1.94
Sei A eine unendliche Menge. Dann besitzt A eine abzählbare Teilmenge.	
Lemma	L. 1.95
Sei A eine Menge. Dann ist A genau dann höchstes abzählbar, wenn A endlich ist oder $A \sim \mathbb{N}$.	1 100
Lemma	L. 1.96
Sei A eine Menge. Dann ist A genau dann höchstens abzählbar, wenn es eine surjektive Abbildung $f: \mathbb{N} \to A$ gibt.	D 1 0
Proposition $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$.	P. 1.97

P. 1.97

Proposition P. 1.98 Sei $k \in \mathbb{N}_{\geq 0}$. Dann ist $\prod_{i=1}^{\kappa} \mathbb{N} = \mathbb{N}^k$ abzählbar. Dies gilt auch, wenn wir \mathbb{N} überall durch $A \sim \mathbb{N}$ ersetzen. L. 1.99 Lemma Sei $(A_i)_{i\in\mathbb{N}}$ eine Folge abzählbarer Mengen. Dann ist $A:=\bigcup_{i\in\mathbb{N}}A_i$ abzählbar. Bem. 1.100 Bemerkung P. 1.98 und L. 1.99 gelten auch mit "höchstens abzählbar" statt abzählbar. T. 1.101 Theorem (Cantor) Sei A eine Menge $\Rightarrow \mathcal{P}(A) \succ A$ und $\mathcal{P}(A) \not\sim A$. Betrag und Wurzel PART 1.7 **Definition** D. 1.102 (i) Sei $x \in \mathbb{R}$. Definiere den $\textbf{\textit{Betrag}}$ von x wie folgt: $|x| := \left\{ \begin{array}{ll} x, & x \geq 0 \\ -x, & x \leq 0 \end{array} \right.$ (ii) Ist $I \subset \mathbb{R}$ ein Intervall mit Endpunkten a und b, so heißt |a-b| Länge von I. **Proposition** P. 1.104 Seien $x, a \in \mathbb{R}$. Dann gelten (i) $x \leq |x|$ (ii) $|x| \le a \Leftrightarrow -a \le x \le a$ (iii) $|x| < a \Leftrightarrow -a < x < a$ Korollar K. 1.105 Sei $A \subset \mathbb{R}$. Dann ist A genau dann beschränkt, wenn es ein $a \in \mathbb{R}$ mit $|x| \leq a, \forall x \in A$ T. 1.106 Theorem (Dreiecksungleichung) Seien $a, b \in \mathbb{R}$. Dann gilt (i) $|a+b| \le |a| + |b|$ (ii) $|a - b| \ge |a| - |b|$ (iii) $|a-b| \ge ||a|-|b||$ **Proposition (Existenz der** *m***-ten Wurzel)** P. 1.107 Seien $m \in \mathbb{N} \setminus \{0\}, a \in \mathbb{R}_{geq0}$. Dann gibt es genau ein $x \in \mathbb{R}_{\geq 0} : x^m = a$. Definition D. 1.108

(ii)
$$\sqrt[m]{a}$$
 oder $a^{\frac{1}{m}}$ ist die Zahl in \mathbb{R}_+ mit $(\sqrt[m]{a})^m = a$

(iii)
$$a^0 := 1, a^{\frac{n}{m}} := \left(a^{\frac{1}{m}}\right)^n$$

Weitere Zahlen und Mächtigkeit

Part 1.8

Definition

D. 1.109

- (i) Die Menge der $x \in \mathbb{R}$, sodass es $n, m \in \mathbb{N}$ mit m n = x gibt, heißt die Menge der ganzen Zahlen: $\mathbb{Z} := \{m - n : m, n \in \mathbb{N}\}\$
- (ii) Die *rationalen Zahlen* sind die Menge aller $x \in \mathbb{R}$, sodass es $m, n \in \mathbb{Z}$ mit $n \neq 0$ und $x = \frac{m}{n}$ gibt: $\mathbb{Q} := \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\}$
- (iii) $\mathbb{I} := \mathbb{R} \setminus \mathbb{Q}$ heißt die Menge der *irrationalen Zahlen*.
- (iv) Die **komplexen Zahlen** sind Paare reeller Zahlen : $\mathbb{C} := \{(a, b) : a, b \in \mathbb{R}\}.$

Addition: (a, b) + (c, d) := (a + c, b + d)

Multiplikation: $(a,b) \cdot (c,d) := (ac - bd, bc + ad)$

Schreibe $(a, b) \equiv a + ib$. Es gilt $i^2 = -1$.

Sei z = a + ib. Dann heißt $a = Re \ z \ \textit{Realteil von } z \ \text{und } b = Im \ z \ \textit{Imaginärteil}$

 $\overline{a+ib} := a-ib$ heißt **konjugiert komplexe Zahl zu** a+ib.

 $|a+ib| := \sqrt{a^2 + b^2}$ heißt **Betrag von** a+ib.

Für $a, b \in \mathbb{R}, z, w \in \mathbb{C}$ gilt:

- $|a+ib|^2 = (a+ib)\overline{(a+ib)}$
- $\overline{z+w} = \overline{z} + \overline{w}$
- $\overline{zw} = \overline{z} \cdot \overline{w}$
- $|z|^2 = |Re\ z|^2 + |Im\ z|^2$
- $|z|^2 = |\overline{z}|$

Betrachte \mathbb{R} mithilfe von $\mathbb{R} \ni x \mapsto (x,0) \in \mathbb{C}$ als Teilmenge von \mathbb{C} . $x \in \mathbb{R} \Rightarrow \overline{x} = x$.

Bemerkung

Bem. 1.110

T. 1.111

P. 1.112

P. 1.113

- (i) Summen, Differenzen und Produkte ganzer Zahlen sind ganze Zahlen.
- (ii) $\mathbb Q$ bildet einen angeordneten Körper, $\mathbb Q$ ist nicht vollständig.
- (iii) $\mathbb C$ ist ein Körper, $\mathbb C$ ist nicht angeordnet, $\mathbb C$ ist als metrischer Raum vollständig.

$$(a+ib)(a-ib) = a^2 + b^2$$
. Für $(a,b) \neq 0$ ist daher $\frac{a}{a^2 + b^2} + i\frac{-b}{a^2 + b^2} = (a+ib)^{-1}$

- (iv) Seien $z, w \in \mathbb{C} \Rightarrow |z + w| \le |z| + |w|$
- $(\mathbf{v}) |zw| = |z| \cdot |w|$

Theorem (Dichtheit von \mathbb{Q} in \mathbb{R})

Sei $I \subset (a,b) \subset \mathbb{R}$ ein Intervall mit $I \neq \emptyset$. Dann ist $I \cap \mathbb{Q}$ unendlich.

Proposition

 $\mathbb{Q} \sim \mathbb{N}$

Proposition

 $\mathbb{R} \sim \mathcal{P}(\mathbb{N})$

Bemerkung (Cantorsches Diagonalverfahren ($\mathbb{R} \succ \mathbb{N}, \mathbb{R} \nsim \mathbb{N}$))

Alle reellen Zahlen werden untereinander aufgelistet. Man nimmt die Diagonale und schreibt eine neue Zahl unter die Liste, die zur Diagonale verschieden ist \rightarrow nicht in der Liste!

Bemerkung

 $\mathbb{R} \sim (\mathbb{R} \setminus \mathbb{Q})$

Bem. 1.114

Bem. 1.115

Konvergenz KAP. 2 METRISCHE RÄUME PART 2.1 **Definition (Metrische Räume)** D. 2.1 Sei E eine Menge. (a) Eine Funktion $d: E \times E \to \mathbb{R}_+$ heißt **Metrik**, falls (i) d(x, y) = d(y, x)(Symmetrie) (ii) $d(x,y) = 0 \iff x = y$ ((positive) Definitheit) (iii) $d(x, z) \le d(x, y) + d(y, z)$ (Dreiecksungleichung) (b) Das Paar (E, d) heißt **metrischer Raum**. L. 2.2 Lemma Sei E ein metrischer Raum. Dann gilt die umgekehrte Dreiecksungleichung: $d(x,z) > |d(x,y) - d(y,z)|, \ \forall x,y,z \in E$ Bem. 2.3 Bemerkung \mathbb{K} sein \mathbb{R} oder \mathbb{C} . D. 2.4 **Definition (normierter Raum)** Sei E ein \mathbb{K} -Vektorraum. (a) Dann heißt $\|\cdot\|: E \to \mathbb{R}_+$ Norm, falls für alle $x, y, z \in E$ und $\lambda \in \mathbb{K}$ folgendes gilt: (i) $||x|| = 0 \Longrightarrow x = 0$ ((positive) Definitheit) (ii) $\|\lambda x\| = |\lambda| \cdot \|x\|$ (Homogenität) (iii) $||x + y|| \le ||x|| + ||y||$ (Dreiecksungleichung) (b) Das Paar $(E, \|\cdot\|)$ heißt normierter Raum. L. 2.5 Lemma Sei E ein normierter Raum. Dann gilt die umgekehrte Dreiecksungleichung: $||x - y|| \ge ||x|| - ||y|||, \ \forall x, y \in E$ **Definition** (Skalarproduktraum) D. 2.6 Sei E ein \mathbb{K} -Vektorraum. (a) Dann heißt $\langle \cdot, \cdot \rangle : E \times E \to \mathbb{K}$ **Skalarprodukt**, falls (i) $\langle \lambda x + y, z \rangle = \lambda \langle x, z \rangle + \langle y, z \rangle$ (Linearität im ersten Argument) (ii) $\langle x, y \rangle = \langle y, x \rangle$ (K: Symmetrie, C: Hermizität) (iii) $\langle x, x \rangle \ge 0$ und $(\langle x, x \rangle = 0 \leftrightarrow x = 0)$ (positive Definitheit) (b) $(E, \langle \cdot, \cdot \rangle)$ heißt Skalarproduktraum. T. 2.8 Theorem (Cauchy-Schwarzsche Ungleichung) Sei E ein Skalarproduktraum. Dann gilt $|\langle x,y\rangle|^2 \leq \langle x,x\rangle \cdot \langle y,y\rangle$, $\forall x,y\in E$ (bei Gleichheit gilt lineare Abhängigkeit von x und y). T. 2.9 Theorem Sei E ein Skalarproduktraum. Dann definiert $||x|| := \sqrt{\langle x, x \rangle}$ für $x \in E$ eine Norm auf E. T. 2.10 Theorem Sei E normierter Raum. Dann definiert d(x,y) := ||x|| - ||y|| für $x,y \in E$ eine Metrik auf **Beispiel** Bsp. 2.11

Seien $x, y \in \mathbb{R}^n, x = (x^1, \dots, x^n), y = (y^1, \dots, y^n)$. Dann definiert $\langle x, y \rangle := \sum_{i=1}^n x^i y^i$ ein

Skalarprodukt auf \mathbb{R}^n , das *euklidische Skalarprodukt*.

Dies induziert $||x|| = |x| = \left(\sum_{i=1}^n (x^i)^2\right)^{\frac{1}{2}}$ und $d(x,y) = |x-y| = \sqrt{\sum_{i=1}^n (x^i-y^i)^2}$

Proposition (Polarisationsformeln) P. 2.12 (i) Sei E ein Skalarproduktraum über \mathbb{K} . Dann gilt $||x+y||^2 = ||x||^2 + ||y||^2 + 2Re \langle x,y \rangle$ (ii) ist E ein \mathbb{R} -Vektorraum mit Skalarprodukt $\Rightarrow \langle x, y \rangle = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2)$ $= \frac{1}{2} \left(\|x\|^2 + \|y\|^2 - \|x - y\|^2 \right)$ $= \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right)$ (iii) Ist E ein Skalarproduktraum über \mathbb{C} , so gilt $4\left\langle x,y\right\rangle =\left\Vert x+y\right\Vert ^{2}-\left\Vert x-y\right\Vert ^{2}+i\left\Vert x+iy\right\Vert ^{2}-i\left\Vert x-iy\right\Vert ^{2}$ **Proposition** P. 2.13 Sei E ein normierter Raum über \mathbb{R} . Dann ist die Norm genau dann von einem Skalarprodukt induziert, falls die folgende Parallelogrammgleichung gilt: $2(||x||^2 + ||y||^2) = ||x + y||^2 + ||x - y||^2$ T. 2.14 Theorem Seien $1 \le p, q \le \infty$ konjungierte Exponenten. D.h. es gelte $\frac{1}{p} + \frac{1}{q} = 1$. Sei $x, y \in \mathbb{R}^n$. Dann gelten $\sum_{i=1}^{n} x^{i} y^{i} \leq \left\|x\right\|_{p} \cdot \left\|y\right\|_{q}$ (Höldersche Ungleichung) und $||x+y||_p \le ||x||_p + ||y||_p$ (Minkowskische Ungleichung) FOLGEN PART 2.2 **Definition** D. 2.16 Sei E ein metrischer Raum. Sei $x \in E, \varepsilon > 0$. Definiere $B_{\varepsilon}(x) := \{ y \in E : d(y, x) < \varepsilon \}$ die ε -Kugel. $B_{\varepsilon}(x)$ heißt auch ε -Umgebung von x (In $\mathbb{R}: B_{\varepsilon}(0) = (-\varepsilon, \varepsilon)$). D. 2.17 **Definition (Konvergenz)** Sei $(x_n)_{n\in\mathbb{N}}\subset E$ eine Folge in einem metrischen Raum E. (i) Dann konvergiert $(x_n)_{n\in\mathbb{N}}$ gegen $a\in E$, falls für beliebige $\varepsilon>0$ fast alle (nur endlich viele liegen außerhalb) Folgeglieder in $B_{\varepsilon}(a)$ liegen (ii) Konvergiert $(x_n)_{n\in\mathbb{N}}$ gegen $a\in E$, so heißt a **Limes** oder **Grenzwert** der Folge $a = \lim_{n \to \infty} x_n$ oder $x_n \to a$ für $n \to \infty$ oder $x_n \xrightarrow[n \to \infty]{} a$. Bem. 2.18 Bemerkung Die Definition von Konvergenz ist äquivalent zu

- (i) Für alle $\varepsilon > 0$ gibt es ein $n_0 \in \mathbb{N}$, sodass für $n \in \mathbb{N}$ mit $n \ge n_0$ auch $x_n \in B_{\varepsilon}(a)$ gilt.
- (ii) Für alle $\varepsilon > 0$ gibt es ein $n_0 \in \mathbb{N}$, sodass für $n \in \mathbb{N}$ mit $n \ge n_0$ auch $d(x_n, a) < \varepsilon$ gilt.

Definition

D. 2.19

- (i) Eine Teilmenge A eines metrischen Raumes E heißt **beschränkt**, falls es ein $x \in E$ und r > 0 mit $A \subset B_r(x)$ gibt.
- (ii) Eine Teilfolge A eines normierten Raumes E heißt **beschränkt**, falls es ein r > 0 mit $||x|| \le r$ für alle $x \in A$ gibt.

Proposition

P. 2.21

- Sei E ein metrischer Raum.
- (i) Der Grenzwert einer in E konvergenten Folge ist eindeutig bestimmt.
- (ii) Jede konvergente Folge in E ist beschränkt.

Proposition	P. 2.22
Seien $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}$ konvergente Folgen in E .	
(i) Ist E ein normierter Raum, so konvergiert auch $(x_n + y_n)_{n \in \mathbb{N}}$:	
$\lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n$	
(ii) Ist $E = \mathbb{R}$, so konvergiert $(x_n \cdot y_n)_{n \in \mathbb{N}}$:	
$\lim_{n \to \infty} (x_n \cdot y_n) = \left(\lim_{n \to \infty} x_n\right) \cdot \left(\lim_{n \to \infty} y_n\right)$	
Bemerkung	Bem. 2.23
Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge, $a\in E, c>0$. Dann sind äquivalent:	
(i) $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : d(x_n, a) < \varepsilon$	
(ii) $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : d(x_n, a) < c \cdot \varepsilon$	5.00
Proposition	P. 2.24
Sei $x_n \to a$ in E .	
(i) Ist E ein normierter Raum $\Rightarrow x_n \to a $.	
(ii) Ist $E = \mathbb{R}$ oder $E = \mathbb{C}$, $x_n \neq 0 \forall n, a \neq 0 \Rightarrow x_n^{-1} \to a^{-1}$.	D 2.25
Definition	D. 2.25
Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge reeller Zahlen. Dann heißt $(x_n)_{n\in\mathbb{N}}$ (i) monoton wachsend $(x_n\nearrow)$, falls $x_{n+1}\ge x_n, \forall n\in\mathbb{N}$ gilt.	
(ii) streng monoton wachsend, falls $x_{n+1} > x_n, \forall n \in \mathbb{N}$ gilt.	
(iii) monoton fallend $(x_n \searrow)$, falls $x_{n+1} \le x_n, \forall n \in \mathbb{N}$ gilt.	
(iv) streng monoton fallend, falls $x_{n+1} < x_n, \forall n \in \mathbb{N}$ gilt.	
(v) $x_n \nearrow a \Leftrightarrow x_n \to a \text{ und } x_n \nearrow$.	
(vi) $x_n \searrow a \Leftrightarrow x_n \to a \text{ und } x_n \searrow$.	
Proposition	P. 2.26
Sei $(x_n)_{n\in\mathbb{N}}$ eine monoton beschränkte Folge in \mathbb{R} . Dann konvergiert $(x_n)_{n\in\mathbb{N}}$.	
Beispiel	Bsp. 2.27
(1, 1, 0)	
(i) $\frac{1}{n} \searrow 0$	
(ii) $0 < a < 1 \Rightarrow a^n \searrow 0$	D 0 00
Definition	D. 2.28
Sei E ein metrischer Raum, $(x_n)_{n\in\mathbb{N}}\subset E$. Dann heißt $a\in E$ Häufungspunkt (HP) von $(x_n)_{n\in\mathbb{N}}$, falls in jeder ε -Umgebung von A unendlich viele Folgeglieder liegen.	
Proposition	P. 2.30
Sei $(x_n)_{n\in\mathbb{N}}\subset E$ eine Folge in einem metrischen Raum. Dann ist a genau dann HP von $(x_n)_{n\in\mathbb{N}}$, falls $(x_n)_{n\in\mathbb{N}}$ eine gegen a konvergente Teilfolge (TF) besitzt.	
Theorem (Bolzano-Weierstraß)	T. 2.31
Sei $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine beschränkte Folge. Dann besitzt $(x_n)_{n\in\mathbb{N}}$ einen Häufungspunkt.	
Definition	D. 2.32
Sei E ein metrischer Raum, $A, B \subset E$ nicht leer.	
(i) $diam(A) := \sup_{A} d(x,y)$ heißt Durchmesser von A	
(ii) Definiere die Distanz zwischen A und B , $dist(A, B)$, durch	
$dist(A,B) := \inf\{d(x,y) : x \in A \land y \in B\}$	
$dist(x, B) := dist(\{x\}, B), x \in E$ (ACHTUNG: keine Metrik!)	
Korollar (Bolzano-Weierstraß)	K. 2.33
Sei $(x_k)_{k\in\mathbb{N}}\subset\mathbb{R}^n$ eine beschränkte Folge, d.h. $\exists r>0:x_k\in B_r(0), \forall k\in\mathbb{N}.$ Dann besitzt	
$(x_k)_{k\in\mathbb{N}}$ eine konvergente Teilfolge mit Grenzwert a und $ a \leq r$.	
Bemerkung	Bem. 2.34
In \mathbb{R}^n gilt: $(x_k)_{k\in\mathbb{N}}$ konvergiert $\Leftrightarrow (x_k^i)_{k\in\mathbb{N}}$ konvergiert für alle i .	

Lemma Sei $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine Folge mit $x_n\underset{n\to\infty}{\longrightarrow} a$. Gilt $x_n\leq c,\ \forall n\in\mathbb{N}$, so folgt $a\leq c$.	L. 2.35
Proposition $\sum_{n\to\infty} 1$	P. 2.36
Sei $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine nach oben beschränkte Folge. Sei M die Menge aller ihrer HP. Sei	
$M \neq \emptyset$. Dann ist sup M ein HP. Definition	D. 2.37
Sei $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine Folge. Sei M die Menge der HP von $(x_n)_{n\in\mathbb{N}}$.	D. 2.51
$ \limsup_{n \to \infty} x_n = \overline{\lim}_{n \to \infty} x_n := \sup M $	
heißt $\pmb{Limes\ superior}.$ $\liminf_{n\to\infty} x_n = \varliminf_{n\to\infty} x_n := \inf M$	
heißt $oldsymbol{Limes}$ $oldsymbol{inferior}$.	
Ist $(x_n)_{n\in\mathbb{N}}$ nach oben beschränkt, so gilt $\overline{\lim}_{n\to\infty} x_n \in \mathbb{R} \cup \{-\infty\}$.	
Ist $(x_n)_{n\in\mathbb{N}}$ nach unten beschränkt, so gilt $\lim_{n\to\infty} x_n \in \mathbb{R} \cup \{+\infty\}.$	
Bemerkung	Bem. 2.38
Nach Proposition 2.36, $\{HP\} \neq \emptyset, x_n \leq c : \overline{\lim}_{n \to \infty} x_n$ ist größter Limes einer konvergenten	
Teilfolge. $^{n\to\infty}$	
Proposition	P. 2.39
Sei $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine beschränkte Folge. Dann gilt $(x_n)_{n\in\mathbb{N}}$ konvergiert $\iff \overline{\lim}_{n\to\infty}x_n=$	
$\lim_{n\to\infty} x_n$.	
Theorem	T. 2.40
Sei E ein metrischer Raum, $(x_n)_{n\in\mathbb{N}}\subset E$. Angenommen, jede Teilfolge von $(x_n)_{n\in\mathbb{N}}$ besitzt eine konvergente Teilfolge und die Grenzwerte aller konvergenten Teilfolgen sind gleich. Dann konvergiert $(x_n)_{n\in\mathbb{N}}$.	
Definition (Cauchyfolge, Vollständigkeit)	D. 2.41
(i) Eine Folge $(x_n)_{n\in\mathbb{N}}$ in einem metrischen Raum E heißt $Cauchyfolge\ (CF)$, falls es	
zu jedem $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ mit $d(x_k, x_l) < \varepsilon, \forall k, l \geq n_0$ gibt.	
(ii) Ein metrischer Raum, in dem jede CF konvergiert, heißt vollständiger metrischer Raum.	
 (iii) Ein normierter Raum, in dem jede CF konvergiert, heißt vollständiger normierter Raum oder Banachraum (BR). 	
(iv) Ein vollständiger Skalarproduktraum heißt <i>Hilbertraum (HR)</i> .	
Bemerkung	Bem. 2.42
Cauchyfolgen: $\forall \varepsilon \ \exists n_0 : d(x_k, x_{k+\ell}) < \varepsilon, \forall k \ge n_0, \forall \ell \in \mathbb{N}.$	
Lemma	L. 2.43
Sei E ein metrischer Raum. Sei $(x_n)_{n\in\mathbb{N}}\subset E$ konvergent. Dann ist $(x_n)_{n\in\mathbb{N}}$ eine Cauchyfolge.	
Korollar	K. 2.44
In einem vollständigen metrischen Raum konvergiert eine Folge genau dann, wenn sie eine	
CF ist. Proposition	P. 2.45
In einem metrischen Raum E gilt	
(i) Jede CF ist beschränkt.	
(ii) Jede CF bsitzt höchstens einen HP.	14 0 44
Korollar	K. 2.46

 \mathbb{R}^n mit der euklidischen Metrik ist ein vollständiger metrischer Raum (also auch Hilber-

traum). Insbesondere: Folge konvergier
t \Longleftrightarrow Folge ist CF.

Definition D. 2.47

Sei E ein Vektorraum. Dann heißen zwei Normen $\|\cdot\|_1$ und $\|\cdot\|_2$ auf E äquivalent, falls es

 $\frac{1}{c} \|x\|_1 \le \|x\|_2 \le c \cdot \|x\|_1 \,, \quad \forall x \in E$

P. 2.48 **Proposition**

Sei E ein Vektorraum mit äquivalenten Normen $\|\cdot\|_1$ und $\|\cdot\|_2$. Dann ist $(E,\|\cdot\|_1)$ genau dann vollständig, wenn $(E, \|\cdot\|_2)$ vollständig ist.

P. 2.49 **Proposition**

Seien $1 \leq p, q \leq \infty$. Dann sind $\|\cdot\|_{\ell^p}$ und $\|\cdot\|_{\ell^q}$ auf \mathbb{R}^n äquivalent.

K. 2.50 Korollar

Für $1 \le p \le \infty$ ist $\ell^p(\mathbb{R}^n)$ ein Banachraum.

Part 2.3 REIHEN

Definition D. 2.52

Sei E ein normierter Raum, sei $(a_n)_{n\in\mathbb{N}}\subset E$ eine Folge. Definiere $(s_n)_{n\in\mathbb{N}}\subset E$ wie folgt:

$$s_n := \sum_{i=0}^n a_i$$

Beide Folgen zusammen heißen Reihen, wobei a_n die Glieder der Reihe und s_n die **Partialsummen der Reihe** sind. Schreibe $((a_n))_{n\in\mathbb{N}}$.

 $((a_n))_{n\geq n_0}$ heißt **Reihe** oder **Endstück der Reihe** $((a_n))_{n\in\mathbb{N}}$.

Existiert $\lim_{n\to\infty} s_n$ in E, so heißt dies **Wert** oder **Summe der Reihe**.

$$\lim_{n \to \infty} s_n = \sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} a_n.$$

 $\lim_{n\to\infty} s_n = \sum a_n = \sum_{n=0}^{\infty} a_n.$ Existiert $\sum a_n$ so heißt $((a_n))_{n\in\mathbb{N}}$ konvergent, sonst divergent.

Proposition (Cauchykriterium)

Eine Reihe in einem Banachrauch $(((a_n))_{n\in\mathbb{N}})$ konvergiert genau dann, wenn es für jedes $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt, sodass

$$||s_{n+m} - s_{n-1}|| = \left|\left|\sum_{k=n}^{n+m} a_k\right|\right| \le \varepsilon$$

für alle $n \geq n_0$ und für alle $m \in \mathbb{N}$ gilt.

K. 2.54 Korollar

P. 2.53

Eine notwendige Bedingung für die Konvergenz der Reihe $((a_n))_{n\in\mathbb{N}}$ ist $a_n \xrightarrow[n\to\infty]{} 0$.

Gleichmässige Konvergenz Part 2.4