CS 240 - Data Structures and Data Management

Spring 2017

Lecture 2: May 4th, 2017

Lecturer: Taylor Smith Notes By: Harsh Mistry

2.1 Algorithms and Programs

2.1.1 Terminology

Definition 2.1 Problem: Given a problem instance, carry out a particular computational task

Definition 2.2 Problem Instance: Input for the specified problem

Definition 2.3 Problem Solution: Output for the specified problem

Definition 2.4 Size of a problem instance: Size(I) is a positive integer which is measure of the size of the instance I

Definition 2.5 Algorithm: An algorithm is a step-by step process for carrying out a series of computations, given an arbitrary problem instance I.

Definition 2.6 Algorithm solving a problem: An algorithm A solves a problem (x) is for every instance I of x, A finds a valid solution for the instance I in finite time

Definition 2.7 Program: A program is an implementation of an algorithm using a specified computer language

2.1.2 Order Notation

- 1. O-notation (\leq) : $f(n) \in O(g(n))$ if there exists constants c > 0 and $n_0 > 0$ such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0$
- 2. Ω -notation $(\geq): f(n)\Omega(g(n))$ if there exists constants c>0 and $n_0>0$ such that $0\leq cg(n)\leq f(n)$ for all $n\geq n_0$
- 3. θ -notation (=): $f(n) \in \theta(g(n))$ if there exists constants $c_1, c_2 > 0$ and $n_0 > 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$
- 4. o-notation (<): $f(n) \in o(g(n))$ if for all constants c > 0 and $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$
- 5. ω -notation (>) : $f(n) \in \omega(g(n))$ if for all constants c > 0 and $n_0 > 0$ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$

2.1.3 Complexity of algorithms

1. Average-case complexity of an algorithm:

$$T_A^{avg}(n) = \frac{1}{|\{I: Size(I) = n\}|} \sum_{\{I: Size(I) = n\}} T_A(I)$$

2. Worst-case complexity of an algorithm :

$$T_A(n) = max\{T_A(I) : Size(I) = n\}$$

2.1.4 Growth Rates

- If $f(n) \in \theta(g(n))$, then growth rates are the same
- If $f(n) \in o(g(n))$, then growth rate of f(n) is less than g(n)
- If $f(n) \in \omega(g(n))$, then the growth rate for f(n) is greater than the growth rate of g(n).
- Typically f(n) may be "complicated" and g(n) is chosen to be a very simple function.

2.1.5 Common Growth Rates

- $\theta(1)$ (Constant Complexity)
- $\theta(logn)$ (Logarithmic Complexity)
- $\theta(n)$ (Linear Complexity)
- $\theta(nlogn)$ (linearithmic)
- $\theta(nlog^k n)$, for some constant k (quasi-linear)
- $\theta(n^2)$ (Quadratic Complexity)
- $\theta(n^3)$ (Cubic Complexity)
- $\theta(2^n)$ (Exponential Complexity)