An electron neutrino ν_e created in subatomic interactions can later be observed as a muon neutrino ν_{μ} , and vice versa, in a process known as neutrino oscillation. Such oscillations occur **not** as decays, but as a result of a mismatch between the neutrino flavor eigenstates (ν_e and ν_{μ} , with definite lepton numbers) and the mass eigenstates ν_1 and ν_2 (with definite masses m_1 and m_2 , respectively). We ignore here the tau neutrino ν_{τ} and any possible sterile neutrinos. The eigenstates in the two-state representation are coupled via an arbitrary real unitary matrix:

$$U = \begin{pmatrix} \langle \nu_e | \nu_1 \rangle & \langle \nu_e | \nu_2 \rangle \\ \langle \nu_\mu | \nu_1 \rangle & \langle \nu_\mu | \nu_2 \rangle \end{pmatrix} \equiv \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

where the unknown mixing angle θ is real.

- (a) Briefly discuss any physical constraints that require U to be unitary.
- (b) Calculate the probability as a function of time t that a ν_e at time t=0 with momentum p will transform into a ν_{μ} , expressing your answer in terms of θ and the energies $E_i = \sqrt{p^2c^2 + m_i^2c^4}$ of the two mass eigenstates.
- (c) Consider now the ultrarelativistic limit, i.e., $pc \gg m_i c^2$ for both mass eigenstates. Re-express your answer from part (a) in terms of p, θ , $\Delta m^2 \equiv m_2^2 m_1^2$, and distance traveled $L \simeq ct$.
- (d) Make an accurate plot of probability as a function of p for a given value of L, and describe an experiment or set of experiments that could be used to determine both θ and Δm^2 .