N - Gramm

Sprachmodelle

Felix Pötzsch, 580106

Timofei Borisov, 580092

Simon Furitsch, 578153

- Was ist ein Sprachmodell:
 - Sprachmodelle sind der Versuch z.B. natürliche Sprache als mathematisches Modell repräsentieren zu können.
 - Ihnen liegt meist ein stochastischer Prozess zugrunde
 - Kenntnisse stehen im Voraus zur Verfügung
 - Wissen über Sprache im Allgemeinen
 - Wissen über die Kommunikationssituation
 - Bestehen meist aus mehreren Teilmodellen
 - Vokabular
 - Häufigkeit der Wörter
 - Satzgrammatik

- Typisch gebräuchliche Sprachmodelle:
 - RNN (Rekurrente Neuronale Netze)
 - LSTM (Long Short-Term Memory Netze)
 - GRU (Gated Recurrent Units)
 - Transformer Modelle:
 - GPT (Generative Pre-Trained Transformer)
 - GPT-3 ((Generative Pre-Trained Transformer 3)

Regelbasierte Systeme Vorlagenbasierte Systeme Statistische Sprachmodelle Neuronale Sprachmodelle

N-Gramm

- N-Gramm ist:
 - In Linguistik eine Sequenz von <mark>N aufeinanderfolgenden Teilen (Fragmente)</mark> eines Textes.
- Es gibt:
 - Unigramme, Bigramme, Trigramme, ..., Multigramme
- Können sein:
 - Buchstaben, Silben, Laute, Wörter

- Typische Anwendungsgebiete sind:
 - Rechtschreibkorrektur
 - Textvervollständigung (Wörter Vorhersage)
 - Textanalyse (Beurteilung)
 - Spracherkennung
 - Handschrifterkennung

```
N = 1 : This is a sentence unigrams: this, is, a, sentence

N = 2 : This is a sentence bigrams: this is, is a, is a, a sentence

N = 3 : This is a sentence trigrams: this is a, is a sentence
```

$p(house \mid this is the) = ?$

Write a story, line by line, with Jane Austen

Jane Austen Hi and thanks for writing with me. I'll let you get the first line.

Me I am going to write

Jane Austen it down as certain but with a promise had been so worked on by all means

Enter the next line of the story

Submit

- Was wird benötigt:
 - Daten (Text)
 - Wahrscheinlichkeiten für Wörter
 - Markov Annahme
 - Konstante Beobachtungen
 - Wechsel zwischen endlich vielen Zustäden
 - Kümmere dich nicht um alle Wörter, sondern nur um z.B die letzten Paar

W₁= Beethoven

W₂= Paganini

L O Italien
L Deutschlar
L O Violinist
L Pianist

- Ein paar Eigenheiten:
 - Zu großes N
 - Kann zu Totalversagen führen
 - Größerer Korpus besser
 - Aber auch da nicht alles finden
 - Prefixproblem

$$P(t) = P(w_1 w_2 \dots w_n) = P(w_1) P(w_2 | w_1) \dots P(w_n | w_1, \dots w_{n-1})$$

$$= \prod_{i=1}^n P(w_i | w_1 \dots w_{i-1})$$

$$P(w_i | w_1 \dots w_{i-1}) = \frac{P(w_1 \dots w_i)}{P(w_1 \dots w_{i-1})}$$

Rang	Wortpaar	Häufigkeit in %
1	in der	0.2849
2	bei der	0.2398
3	für die	0.1945
4	$in \ den$	0.1419
5	und der	0.1377
6	und die	0.1282
7	das ist	0.1233
8	auf die	0.1022
9	von der	0.1015
10	mit dem	0.0970
11	mit der	0.0867
12	in die	0.0818
13	dass die	0.0746
14	ist die	0.0725
15	es ist	0.0721

- Probleme:
 - Analysiert und generiert Text auf Basis von statistischen Mustern
 - Mangelt also häufig an semantischem Verständnis
 - Einschränkungen insbesondere auch wenn es um langfristige Abhängigkeiten (Kohärenz) und Kontexte geht.
 - UNK (Unknown Words/Unseen N-Gramm)
 - Underflow
 - Nullwahrscheinlichkeiten
- Was ist trotzdem gut:
 - Effizienz
 - Für beliebige Sprachen einsetzbar (kein linguistisches Wissen nötig)
 - Günstig zu trainieren

- Wie also besser werden:
 - Information
 - Anpassen
 - Auswahl
 - Smoothing Reevaluation von Nullwahrscheinlichkeit und niedrigen Wahrschinlichkeiten
 - Höhere Werte zuweisen damit sie auch vorkommen können
 - Perplexität
 - Evaluation

Was sind un-seen N-Gramme?

"Data Sparsity"

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Smoothing oder Discounting Techniken:

- 1. Laplace Smoothing.
- 2. Good-Turing Smoothing.
- 3. Katz Backoff Smoothing.

Laplace Smoothing:

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Laplace Smoothing:

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Unterschiedliche Wörter. V = 1446

$$P(w_i) = \frac{c_i}{N}$$

$$P_{\text{Laplace}}(w_i) = \frac{c_i + 1}{N + V}$$

$$P(to \mid want) = \frac{608}{927} = 0.66$$

$$P_L(to \mid want) = rac{608 + 1}{927 + 1446} = 0.26$$

Laplace Smoothing:

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Good-Turing-Smoothing:

- 10 red balls,
- 3 green balls,
- 2 blue balls
- 1 black ball
- 1 brown ball
- 1 grey ball

Wie groß ist die Wahrscheinlichkeit, dass die nächste Kugel schwarz ist?

$$P(black) = \frac{1}{18}.$$

Wie groß ist die Wahrscheinlichkeit, dass die nächste Kugel eine bisher ungesehene Farbe hat?

$$P_{GT}(unseen) = rac{N_1}{Z}$$

N - gibt die Anzahl der Arten an, die bisher gesehen gesehen wurden.

(N1 - Ein mal gesehen)

 $P_{GT}(unseen) = \frac{3}{18}$

Z - die Anzahl der bisherigen Beobachtungen insgesamt.

Good-Turing-Smoothing:

- 10 red balls,
- 3 green balls,
- 2 blue balls
- 1 black ball
- 1 brown ball
- 1 grey ball

$$\sum_{x\in D}P(x)=1,$$

wobei D der Bereich der möglichen Werte für x ist.

Good-Turing-Smoothing löst dieses Dilemma, indem es die Häufigkeitswerte anpasst. Es wird so getan, als ob Arten, die eigentlich r-mal vorkommen, r*-mal vorkommen, mit

$$r*=rac{(r+1)N_{r+1}}{N_r}.$$

$$r* = rac{(r+1)N_{r+1}}{N_r}. \qquad \qquad r* = rac{(r+1)N_{r+1}}{N_r} = rac{2\cdot 1}{3}.$$

$$P_{GT}(x) = rac{r*}{Z}$$

$$P_{GT}(black) = rac{2 \cdot rac{1}{3}}{18} = rac{2}{3 \cdot 18},$$

$$P_{GT}(unseen)=rac{N(1)}{N}=rac{3}{18}=rac{1}{6}$$

Katz Backoff Smoothing.

Ähnlich an Good Turing Berechnung.

Wie evaluiert man ein N-Gramm Modell?:

Wir prüfen mit einem Testsatz ob unser Modell diesen gut vorhersagen kann

Wichtigstes Maß: Perplexität

$$Perplexity(W) = (\prod_{i=1}^{N} P(w_i|w_1, w_2, ..., w_{i-1}))^{-\frac{1}{N}}$$

Diese Form bringt aber einige Probleme mit sich!

Wie evaluiert man ein N-Gramm Modell?:

Deshalb nutzen wir:

$$Perplexity(W) = e^{-\frac{1}{N}\sum_{i=1}^{N}lnP(w_i|w_1,w_2,...,w_{i-1})}$$

Weil:

$$ln(a * b) = ln(a) + ln(b)$$

$$e^{ln(x)} = x$$

$$(e^{a})^{b} = e^{a*b}$$

^[2] https://latex.codecogs.com/eqneditor/editor.php (Only graphics)

Programmvorstellung

Wie funktioniert das Modell:

	Das	ist	ein	Beispieltext
Das	0	1	0	0
ist	0	0	1	0
ein	0	0	0	1
Beispieltext	0	0	0	0
(Das ist)	0	0	1	0
(ist ein)	0	0	0	1
(Das ist ein)	0	0	0	1

Model[Zeile][Spalte] Model[Prefix][Sufix]

Zukunft von N-Gramm Modellen:

Werden vor allem durch Transformermodelle ersetzt.

Transformermodelle

Vorteil	Nachteil
Versteht Kontext von (langen) Texten	Hoher Rechenaufwand/Speicherbedarf
Sehr hohe Genauigkeit	Schwierige Implementierung
Flexibel (Kann mit Rechtschreibfehlern umgehen)	Hohe Kosten für Entwicklung
Zugänglichkeit durch API's	Hoher Aufwand für das Training

N-Gramm Modelle

Vorteil	Nachteil
Einfache Implementierung	Kein bis "wenig" Kontext
Geringe Kosten	Schlecht bei unseen ngrams/Rechtschreibfehlern
Ressourcenschonend	Große Datenmenge, um brauchbar zu werden

Literatur:

- Daniel Jurafsky and James H. Martin, Speech and Language Processing, 3rd Edi-tion, Pearson, 2023.
- Dremio, "Data Sparsity," https://www.dremio.com/wiki/data-sparsity/, Ac-cessed: June 1, 2024.
- David Foster, Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play, O'Reilly Media, 2020.
- Prof. Dr. Johannes Maucher https://griesshaber.pages.mi.hdmstuttgart.de/nlp/04ngram/01ngram.html, Accessed: June 1, 2024.
- William A. Gale, "Good–Turing smoothing without tears," Journal of Quantita-tive Linguistics, 1995.
- Roshmita Dey, Accessed: June 1, Understanding Language Modeling: From N-grams to Transformer-based Neural Models 2024.
- Alexander Clark, Gianluca Giorgolo, and Shalom Lappin, Statistical Representa-tion of Grammaticality Judgements: the Limits of N-Gram Models, Department of Philosophy, King's College London
- A. Suresh Babu, Kumar P.N.V.S.Pavan Comparing Neural Network Approach with N-Gram Approach for Text Categorization, January 2010 International Journal on Computer Science and Engineering

Links:

- Wie funktioniert Sprache:
 - sketchengine.eu
- Literatur erfoschen:
 - fortext.net
 - books.google.com/ngrams/
- Sprachmodelle mit Python:
 - Statistische Sprachmodelle: nltk.org
 - Transformer Modelle/ Neuronale Netzwerke: huggingface.co
- Computerlinguistik:
 - cl.uni-heidelberg.de/
- Videoreihe zum Thema auf YT:
 - Kanal: From Language to Information

Fragen:

- Fall: niedrige Wahrscheinlichkeit (richtige) gegen hohe Wahrscheinlichkeit
 - Wie gehen wir mit dem Fall um, wenn es eine sehr niedrige Wahrscheinlichkeit die richtige Wortwahl ist, diese aber gegen eine hohe Wahrscheinlichkeit abzuwiegen ist?
- Fall: Altdeutsch vs. Neudeutsch
 - Kann ich in alltäglicher Sprache mit einem Modell sprechen, dass nur auf Goethe und Schiller texten basiert?