Problem 1

1. Mean: 1.0489703904839585 Variance: 5.427220681881726 Skewness: 0.8806086425277363 Kurtosis: 23.12220078998973

2. Mean: 1.0489703904839585 Variance: 5.427220681881727 Skewness: 0.8806086425277364 Kurtosis: 23.122200789989723

3. I use the hypothesis testing with the null hypothesis that the statistical package functions are not biased. Since the p-values of 4 moments are not all greater than alpha (0.05), we need to reject the hypothesis that the statistical package functions are not biased.

Problem 2

1.

OLS Regression Results

Dep. Variable:	у	R-squared:	0.346
Model:	0LS	Adj. R-squared:	0.342
Method:	Least Squares	F-statistic:	104.6
Date:	Sat, 14 Sep 2024	<pre>Prob (F-statistic):</pre>	5.59e-20
Time:	01:26:30	Log-Likelihood:	-284.54
No. Observations:	200	AIC:	573.1
Df Residuals:	198	BIC:	579 . 7
Df Model:	1		

Covariance Type: nonrobust

	0.0874					
	0.7753	0.071 0.076	-1.222 10.226	0.223 0.000	-0.228 0.626	0.054 0.925
Omnibus: Prob(Omnibus): Skew: Kurtosis:		11.9 0.0 0.3 4.1	003 Jarque 887 Prob(S	•		2.023 16.685 0.000238 1.09

MLE Results

MLE Beta: [-0.08738446 0.7752741]

MLE Standard Deviation (Sigma): 1.008813058320225

Comparison of Results:

OLS Beta: [-0.08738446 0.7752741]

OLS Standard Deviation of Errors: 1.008813058320225

Difference in Beta: [0. 0.]

Difference in Standard Deviation (Sigma): 0.0

In a linear regression context, with the assumption of normally distributed errors, **the OLS estimators are also the MLE estimators**. This is why there is no difference between the coefficients (Beta) and the estimated standard deviation of errors (Sigma) when comparing results from the OLS and MLE methods.

2.

Comparison of Results

Adjusted R-squared MLE (Normal): 0.3389632986263845 Adjusted R-squared MLE (T-distribution): 0.3379809763066779

I use goodness of fit statistics to decide which model is the best fit. Although the adjusted R-squared for both models is almost the same, MLE (Normal) would be the best fit in this case since it is slightly greater than MLE (T-distribution).

3.

Problem 3

Before comparing the models, we expect that the model with the lowest AIC value is considered the best fit because a lower AIC indicates a model that better balances goodness-of-fit with model complexity.

AR(1) AIC: 1644.6555047688475

AR(2) AIC: 1581.0792659049775

AR(3) AIC: 1436.6598066945892

MA(1) AIC: 1567.4036263707874

MA(2) AIC: 1537.941206380739

MA(3) AIC: 1536.8677087350304

The best model is: AR(3) with AIC: 1436.6598066945892

Also, by observing the graph, we can find that the autocorrelation value gradually decreases to 0 for the ACF graph. For the PACF graph, the partial autocorrelation value suddenly drops to 0. Therefore, we can infer that the AR(3) model might be the best fit.

