

CS 4391 Introduction Computer Vision
Professor Yu Xiang
The University of Texas at Dallas

Recall: Image Gradient

• Gradient = Vector of partial derivatives of image

Gradient direction is the steepest direction to increase the function

value

Numerical Derivatives

Finite forward difference

$$\frac{f(x+h) - f(x)}{h} = f'(x) + O(h)$$

Finite backward difference

$$\frac{f(x) - f(x - h)}{h} = f'(x) + O(h)$$

Finite central difference

$$\frac{f(x+h) - f(x-h)}{2h} = f'(x) + O(h^2)$$
 More accurate

Image Filtering

 Modifying the pixels in an image based on some of function of a local neighborhood of pixels

Linear Filtering

• Using linear combination of the neighborhood of a pixels (weighted sum)

10	5	3
4	5	1
1	1	7

Local image data

0	0	0
0	0.5	0
0	1	0.5

kernel

Modified image data

$$10*0+5*0+3*0+4*0+5*.5+1*0+1*0+1*1+7*.5 = 7$$

Linear Filtering

45	60	98	127	132	133	137	133
46	65	98	123	126	128	131	133
47	65	96	115	119	123	135	137
47	63	91	107	113	122	138	134
50	59	80	97	110	123	133	134
49	53	68	83	97	113	128	133
50	50	58	70	84	102	116	126
50	50	52	58	69	86	101	120

69	95	116	125	129	132
68	92	110	120	126	132
66	86	104	114	124	132
62	78	94	108	120	129
57	69	83	98	112	124
53	60	71	85	100	114

Kernel

g(x,y)

Correlation
$$g(i,j) = \sum_{k,l} f(i+k,j+l)h(k,l)$$
 $g = f \otimes h$

Correlation vs. Convolution

• Correlation
$$g(i,j) = \sum_{l=1}^{n} f(i+k,j+l)h(k,l)$$

$$g = f \otimes h$$

What is the difference?

• Convolution
$$g(i,j) = \sum_{k,l} f(i-k,j-l)h(k,l)$$

Filter flipped vertically and horizontally

$$g = f * h$$

$$h(x,y)$$
 $\begin{pmatrix} 0.1 & 0.1 & 0.1 \\ 0.1 & 0.2 & 0.1 \\ 0.1 & 0.1 & 0.1 \end{pmatrix}$

Properties of Convolution

Commutative

Associative

$$a \star b = b \star a$$

$$(((a \star b_1) \star b_2) \star b_3) = a \star (b_1 \star b_2 \star b_3)$$

Distributes over addition

Scalars factor out

$$a \star (b+c) = (a \star b) + (a \star c)$$

$$\lambda a \star b = a \star \lambda b = \lambda (a \star b)$$

Derivative Theorem of Convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

Convolution Example

h * f						
?	?	?	?			
?	?	?	?			
?	?	?	?			
?	?	?	?			

adapted from C. Rasmussen, U. of Delaware

5	?	?	?
?	?	?	?
?	?	?	?
?	?	?	?

$$2*2+1*2+(-1)*2+1*1=5$$

1	1	1	
-1 2	2 2	1 2	3
-1 2	-1 1	1 3	3
2	2	1	2
1	3	2	2

5	4	?	?
?	?	?	?
?	?	?	?
?	?	?	?

$$2*2+1*2+(-1)*2+1*1=5$$

-1*2+2*2+1*2-1*2-1*1+1*3=4

and horizontally

5	4	4	-2
9	?	?	?
?	?	?	?
?	?	?	?

$$2*2+1*2+(-1)*2+1*1=5$$
 $-1*2+2*2+1*2-1*2-1*1+1*3=4$
 $-1*2+2*2+1*3-1*1-1*3+1*3=4$
 $-1*2+2*3-1*3-1*3=-2$
 $1*2+1*2+2*2+1*1-1*2+1*2=9$

for interior pixels where there is full overlap, we know what to do.

but what values do we use for pixels that are "off the image"?

Zero padding

Replication

Reflection

Back to Image Gradient

What filter is this?

Back to Image Gradient

Further Reading

• Chapter 3.2, Richard Szeliski

 Carlo Tomasi, Image Correlation, Convolution and Filtering, https://courses.cs.duke.edu/fall15/cps274/notes/convolution-filtering.pdf