Insper

Robótica Computacional

Rotina semanal

No geral:

- SEG 15:45
- TER/QUI 15:45
 - metade da turma, preferência por usar os robôs reais
- TER/QUI 18:00 atendimento

Repositório da disciplina:

- https://github.com/Insper/robotica-computacional
- https://insper.github.io/robotica-computacional

Escolha de turma:

https://forms.office.com/r/kTZh8Cikjj

Equipe

Diego Pavan Soler

Arnaldo Alves Viana Junior

Licia Lima

Rogério Cuenca

Ninjas

Ana Laiz Farias

O que eu preciso para montar um carro autônomo?

Facetas da robótica

- Design do mecanismo
- Controle
- Eletrônica embarcada
- Redes, processadores, sensores
- Planejamento / seleção de ações
- Visão

Exemplo de robótica industrial no Brasil

Facetas da robótica

- Design do mecanismo
- Controle
- Eletrônica embarcada
- Redes, processadores, sensores
- Planejamento / seleção de ações
- Visão

Oportunidades

Robôs desinfectionam hospitais

DARPA Subterrean Challenge

https://youtu.be/R4IDa3EXvMc

Atividade: Comportamento autônomo

Visão geral do semestre

Visão geral do semestre

(mostrar na página)

Papel de Robótica no curso

- Resolver um problema
 - 1. Não trivial
 - 2. Combinando recursos (tutoriais, códigos de exemplo, etc) simples em uma solução complexa
 - 3. Utilizando bibliotecas escritas por terceiros e que temos um domínio superficial do funcionamento
- Primeiro contato com computação envolvendo hardware e todos os desafios que isso traz

Atividades

- Atividades de sala (desafios após alguma expositiva, completar um roteiro guiado, não obrigatórias mas úteis para aprender)
- APS (atividade focada em praticar algum conceito já visto em sala)
- Projeto

Avaliações

- Avaliação Intermediária OpenCV (AI) (20%)
 - Maximo entre:
 - 02/10 ou
 - Substitutiva (SI)
 - Semana de prova
- Prova Final ROS (PF) (25%)
 - Semana de prova
- Projeto (40%)
 - Em grupos, usará obrigatoriamente robô real
- APS (15%)
 - Em duplas
- Bônus (até 1,0)
 - Individual
 - Só aplica se média final for maior que 5

Critérios completos na página da disciplina

APS

- Precisa ter 100% das APS. Se n\u00e3o entregar todas as APS reprova
- Cada entrega atrasada diminui 0,1 da nota de APS
- 4 APS, cada uma exigindo ~4 horas de trabalho

- 1. Linux ROS (Robot Operating System)
 - Ubuntu 20.04
 - ROS versão 1
 - Python

- 2. Turtlebot
- 3. Simulador Gazebo

- 1. Linux ROS (Robot Operating System)
 - SSD com Linux
 - Tudo já instalado
 - Ambiente padrão

- 2. Turtlebot
- 3. Simulador Gazebo

- 1. Linux ROS (Robot Operating System)
- 2. Turtlebot
 - Robô de ensino
 - Customizações do Insper
 - Sensores:
 câmera, radar, bumper
 odometria
- 3. Simulador Gazebo

- 1. Linux ROS (Robot Operating System)
- 2. Turtlebot
- 3. Simulador Gazebo
 - Turtlebot virtual
 - Sala de aula virtual
 - Permite testar seus programas antes de rodar no robô real

Atividade: início da Infra do curso

- 1. Ler https://insper.github.io/robotica-computacional/guias-infra/
- 2. Pegue um SSD
- 3. Inicie o guia de Linux

Atenção para as datas e condições colocadas no guia acima!

Referências - Bibliografia básica

1350 >. Acesso em 11 Ago 2018.

NORVIG, P.; RUSSELL, S. Inteligência Artificial. 3. ed. Campus Elsevier, 2013. SIEGWART, R.; NOURBAKHSH, I. R.; SCARAMUZZA, D. Introduction to Autonomous Mobile Robots. 2. ed. MIT Press, 2011 SZELISKI, R. Computer Vision: Algorithms and **Applications**. Springer, 2011. INGRAND, F.; GHALLAB, M. Deliberation for autonomous robots: a survey. Artificial Intelligence, v. 247, p. 10 – 44, 2017. Disponível em < https://www.sciencedirect.com/science/article/pii/S000437021400

Referências – bibliografia complementar

KAEHLER, A.; BRADSKI, G. Learning OpenCV: Computer Vision in C++ with the OpenCV Library. 2. ed. O'Reilly Media, 2015 O'KANE, J. A Gentle Introduction to ROS. CreateSpace Publishing, 2013

SCHERZ, P.; MONK, S. Practical Electronics for Inventors. 3. ed. McGraw-Hill, 2013

ASTRÖM, K.; MURRAY, R. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2008 THRUN, S.; BURGARD, W; FOX, D. Probabilistic Robotics. MIT Press, 2006.

TENORTH, M.; BEETZ, M. Representations for robot knowledge in the KnowRob framework. Artificial Intelligence, v. 247, p 151-169, 2017. Disponível em <

http://www.sciencedirect.com/science/article/pii/S0004370215000 843 >, Acesso em 11 Ago 2018.