Sean Lossef Homework 2

$$G(i,n,b,l,p,t,f)$$

$$nbp \to tf, \qquad bl \to n, \qquad pt \to f, \qquad t \to b, \qquad ib \to l$$

Problem 1a

Set of all minimal keys: {*ibp*, *ipt*}

Problem 1b

$$\{pt\}+=ptfb$$

This violates BCNF because the left side of all FD's must be a superkey of G.

Problem 1c

$$G = inblptf$$
 $T = \{nbp \rightarrow tf, bl \rightarrow n, pt \rightarrow f, t \rightarrow b, ib \rightarrow l\}$
 $\{pt\} += ptfb * violation$
 $G1 = ptfb$
 $T1 = \{pt \rightarrow f, t \rightarrow b\}$
 $\{t\} += tb * violation$
 $G11 = tb$
 $T11 = \{t \rightarrow b\}$

$$G12 = tpf$$
 $T12 = \{pt \rightarrow f\}$
 $G2 = ptiln$
 $T = \emptyset$

BCNF Sub-relations:

$$G1(t,b)$$
: $t \to b$
 $G2(t,p,f)$: $pt \to f$
 $G3(p,t,i,l,n)$

Sean Lossef Homework 2

Problem 1d

The following FDs are not preserved be decomposition:

$$nbp \rightarrow tf$$
, $bl \rightarrow n$, $ib \rightarrow l$

You can tell because no part of them is carried through to the sub-relations.

Problem 1e

$$R = inblptf$$

$$G = \{nbp \to t, bl \to n, pt \to f, t \to b, ib \to l\}$$

$$R1(n,b,p,t): nbp \to t$$

$$R2(b,l,n): bl \to n$$

$$R3(p,t,f): pt \to f$$

$$R4(t,b): t \to b$$

$$R5(i,b,l): ib \to l$$

Since none of the above relations are superkeys of R, must add relation that is key: