Bipolar junction transistor (BJT)

* Two pn-junctions, e.g. pnp, with
the middle n-type layer being very thin

* Base thickness & Diffusin length of cerries

* Three electrodes: Emitter (E), Base (B)

and Collector (G)

Emitter -> Emits charge carriers

Base -> Middle electrode; Control electrode

Collector -> Collects charge carriers

* BE diode ⇒ Forward bias ⇒ $V_{BE} \approx 0.7V$ ⇒ I_E is controlled by V_{BE} ⇒ Base(B)

is very thin ⇒ Most carriers injected

from Emitter (E) into Base (B) reach

the Collector (C).

Flow of charge carriers

- → Most holes () injected from E into B reach the G.
- A class megatively biased with respect to B, thereby attracting holes and make them go from Eto C.

BJT circuit symbols

pnp transistor

Both Current
$$B \Rightarrow p-type$$

flow $B \Rightarrow p-type$

E direction $E \Rightarrow p-type$

VBE < 0 (negative) in active regime

npn transistor

Both
$$G \Rightarrow n-type$$

Flow

E direction

 $E \Rightarrow n-type$

VBE > 0 (positive) in active regime

Current amplification

Common - base (B) circuit

Recall:
$$I_C = \alpha I_E \approx 1.0 \text{ e.g. 0.99}$$

KCL: $I_B = I_E - I_G$

Current amplification =
$$\frac{I_{\text{out}}}{I_{\text{In}}} = \frac{I_{\text{d}}}{I_{\text{E}}} = \infty$$

$$\Rightarrow \qquad \boxed{I_c = \alpha I_E}$$

Gommon - emitter (E) circuit

$$T_c = \alpha T_E$$

Current amplification =
$$\frac{I_{\text{out}}}{I_{\text{In}}} = \frac{I_{\text{cl}}}{I_{\text{B}}} = \frac{I_{\text{cl}}}{I_{\text{E}}-I_{\text{cl}}} = \frac{I_{\text{cl}}}{I_{\text{E}}-I_{\text{cl}}} = \frac{I_{\text{cl}}}{I_{\text{E}}-I_{\text{cl}}} = \frac{I_{\text{cl}}}{I_{\text{E}}-I_{\text{cl}}} = \frac{I_{\text{cl}}}{I_{\text{E}}-I_{\text{cl}}} = \frac{I_{\text{cl}}}{I_{\text{cl}}-I_{\text{cl}}} = \frac{I_{\text{cl}}}{I_{\text{cl}}-I_{\text{c$$

$$=\frac{\alpha}{1-\alpha}=\beta \quad \text{with } \beta \gg 1 \quad \text{e.g. } \beta=100$$

$$I_c = \beta I_B$$
 $\beta = \frac{\alpha}{1-\alpha}$

Common - collector (C) circuit

Recall:

KCL:

Current amplification =
$$\frac{I_{\text{cut}}}{I_{\text{En}}} = \frac{I_{\text{E}}}{I_{\text{B}}} = \frac{I_{\text{E}}}{I_{\text{E}}-I_{\text{C}}} = \frac{I_{\text{E}}}{I_{\text{E}}-I_{\text{C}}} = \frac{I_{\text{E}}}{I_{\text{E}}} = \frac{I_{\text{E}}}{I_{\text{E}}-I_{\text{C}}} = \frac{I_{\text{E}}}{I_{\text{E}}} = \frac{I_{\text{E}}}{I_{\text{E}}} = \frac{I_{\text{E}}}{I_{\text{E}}-I_{\text{C}}} = \frac{I_{\text{E}}}{I_{\text{E}}} = \frac{I_{\text{E}}}{I_{\text{E}}-I_{\text{C}}} = \frac{I_{\text{E}}}{I_{\text{E}}} = \frac{I_{\text{E}}}{I_{\text{E}}-I_{\text{C}}} = \frac{I_{\text{E}}}{I_{\text{E}}-I_{\text{E}}} = \frac{I_{\text{E}}}{I_{\text{E}}-I_{\text{E}}} = \frac{I_{\text{E}}}{I_{\text{E}}-I_{\text{E}}} = \frac$$

Note:
$$\frac{\alpha}{1-\alpha} = \beta$$

 $\frac{\alpha}{1-\alpha} + 1 = \beta + 1$
 $\frac{\alpha+1-\alpha}{1-\alpha} = \beta+1$
 $\frac{1}{1-\alpha} = \beta+1$... what was to be shown