Random Walk Inference and Learning in A Large Scale Knowledge Base

Ni Lao, Tom Mitchell, William W. Cohen Carnegie Mellon University 2011.7.28

Outline

- Motivation
 - Inference in Knowledge-Bases
 - The NELL project
 - Random Walk Inference
- Approach
 - Path Ranking Algorithm (Recap)
 - Data-Driven Path Finding
 - Efficient Random Walk (Recap)
 - Low-Variance Sampling
- Results
 - Cross Validation
 - Mechanical Turk Evaluation

Large Scale Knowledge-Bases

- Human knowledge is being transformed into structured data at a fast speed, e.g.
 - KnowItAll (Univ. Washington)
 - 0.5B facts extracted from 0.1B web pages
 - DBpedia (Univ. Leipzig)
 - 3.5M entities 0.7B facts extracted from wikipedia
 - YAGO (Max-Planck Institute)
 - 2M entities 20M facts extracted from Wikipedia and wordNet
 - FreeBase
 - 20M entities 0.3B links, integrated from different data sources and human judgments
 - NELL (Carnegie Mellon Univ.)
 - 0.85M facts extracted from 0.5B webpages

The Need for Robust and Efficient Inference

- Knowledge is potentially useful in many tasks
 - Support information retrieval/recommendation
 - Bootstrap information extraction/integration
- Challenges
 - Robustness: extracted knowledge is incomplete and noisy
 - Scalability: the size of knowledge base can be very large

The NELL Case Study

- Never-Ending Language Learning:
 - "a never-ending learning system that operates 24 hours per day, for years, to continuously improve its ability to read (extract structured facts from) the web" (Carlson et al., 2010)
 - Closed domain, semi-supervised extraction
 - Combines multiple strategies: morphological patterns, textual context, html patterns, logical inference

 Example beliefs

Predicate	Instance
cityInState	(troy, Michigan)
musicArtistGenre	(Nirvana, Grunge)
tvStationInCity	(WLS-TV, Chicago)
sportUsesEquip	(soccer, balls)
athleteInLeague	(Dan Fouts, NFL)
starredIn	(Will Smith, Seven Pounds)
productType	(Acrobat Reader, FILE)
athletePlaysSport	(scott shields, baseball)
cityInCountry	(Dublin Airport, Ireland)

A Link Prediction Task

- We consider 48 relations for which NELL database has more than 100 instances
- We create two link prediction tasks for each relation
 - AthletePlaysInLeague(HinesWard,?)
 - AthletePlaysInLeague(?, NFL)
- The actual nodes y known to satisfy R(x; ?) are treated as labeled positive examples, and all other nodes are treated as negative examples

First Order Inductive Learner

- FOIL (Quinlan and Cameron-Jones, 1993) is a learning algorithm similar to decision trees, but in relational domains
- NELL implements two assumptions for efficient learning (N-FOIL)
 - The predicates are functional --e.g. an athlete plays in at most one league
 - Only find clauses that correspond to bounded-length paths of binary relations -- relational pathfinding (Richards & Mooney, 1992)

First Order Inductive Learner

- Efficiency
 - Horn clauses can be very costly to evaluate
 - E.g. it take days to train N-FOIL on the NELL data
- Robustness
 - FOIL can only combine rules with disjunctions, therefore cannot leverage low accuracy rules
 - E.g. rules for teamPlaysSports

```
c \xrightarrow{teamAlsoKnownAs} c \xrightarrow{teamPlaysSport} c
c \xrightarrow{teamHomeStadium} c \xrightarrow{stadium} c
c \xrightarrow{teamHomeStadium} c
 c \xrightarrow{teamMember} c \xrightarrow{athletePlaysSport} c
 c \xrightarrow{teamPlaysAgainstTeam} c \xrightarrow{teamPlaysSport} c
```

Random Walk Inference

- Consider a low precision/high recall Horn clause
 - isa(x, c) ^ isa(x',c)^ AthletePlaysInLeague(x', y)
 AthletePlaysInLeague(x; y)
- A Path Constrained Random Walk following the above edge type sequence generates a distribution over all leagues

Prob(HinesWard

y) can be treated as a relational feature for predicting AthletePlaysInLeague(HinesWard; y)

Comparison

- Inductive logic programming (e.g. FOIL)
 - Brittle facing uncertainty
- Statistical relational learning (e.g. Markov logic networks, Relational Bayesian Networks)
 - Inference is costly when the domain contains many nodes
 - Inference is needed at each iteration of optimization
- Random walk inference
 - Decouples feature generation and learning (propositionalization)
 - No inference needed during optimization
 - Sampling schemes for efficient random walks
 - Trains in minutes as opposed to days for N-FOIL
 - Low precision/high recall rules as features with fractional values
 - Doubles precision at rank 100 compared with N-FOIL

Outline

- Motivation
 - Inference in Knowledge-Bases
 - The NELL project
 - Random Walk Inference

- Approach
 - Path Ranking Algorithm (Recap)
 - Data-Driven Path Finding
 - Efficient Random Walk (Recap)
 - Low-Variance Sampling
- Results
 - Cross Validation
 - Mechanical Turk Evaluation

Path Ranking Algorithm (PRA)

(Lao & Cohen, ECML 2010)

- A relation path $P=(R_1, ..., R_n)$ is a sequence of relations
- A PRA model scores a source-target node pair by a linear function of their path features

$$score(s,t) = \sum_{P \in \mathbf{P}} f_P(s,t)\theta_P$$

- **P** is the set of all relation paths with length $\leq L$
- $-f_P(s,t) = \text{Prob}(s \to t; P)$

Training

- For a relation R and a set of node pairs $\{(s_i, t_i)\}$,
- we construct a training dataset D = $\{(x_i, y_i)\}$, where
- x_i is a vector of all the path features for (s_i, t_i) , and
- y_i indicates whether $R(s_i, t_i)$ is true or not
- $-\theta$ is estimated using L1,L2-regularized logistic regression

Data-Driven Path Finding

- ullet Impractical to enumerate all possible paths even for small length l
 - Require any path to instantiat e in at least α portion of the training queries, i.e. $f_P(s,t) \neq 0$ for any t
 - Require any path to reach at least one target node in the training set
- Discover paths by a depth first search
 - Starts from a set of training queries, expand a node if the instantiation constraint is satisfied

Data-Driven Path Finding

Dramatically reduce the number of paths

Table 1: Number of paths in PRA models of maximum path length 3 and 4. Averaged over 96 tasks.

	<i>ℓ</i> =3	<i>ℓ</i> =4
all paths up to length ℓ	15,376	1,906,624
+query support $\geq \alpha = 0.01$	522	5016
+ever reach a target entity	136	792
$+L_1$ regularization	63	271

Efficient Inference

(Lao & Cohen, KDD 2010)

- Exact calculation of random walk distributions results in non-zero probabilities for many internal nodes in the graph
- but computation should be focused on the few target nodes which we care about

Efficient Inference

(Lao & Cohen, KDD 2010)

- Sampling approach
 - A few random walkers (or particles) are enough to distinguish good target nodes from bad ones

Low-Variance Sampling

- Sampling walkers/particles independently introduces variances to the result distributions
- Low-Variance Sampling (LVS)(Thrun et al., 2005) generates M correlated samples, by drawing a single number r from (0,M⁻¹)

Low Variance Sampling

- In our evaluation
 - LVS can slightly improve prediction for both finger printing and particle filtering

Outline

- Motivation
 - Inference in Knowledge-Bases
 - The NELL project
 - Random Walk Inference
- Approach
 - Path Ranking Algorithm (Recap)
 - Data-Driven Path Finding
 - Efficient Random Walk (Recap)
 - Low-Variance Sampling

- Results
 - Cross Validation
 - Mechanical Turk Evaluation

Parameter Tuning

- Cross Validation on Training Queries
 - Supervised training can improve retrieval quality (RWR)
 - Path structure can produce further improvement (PRA)

Table 3: Compare PRA with RWR models. MRRs and training times are averaged over 96 tasks.

		l=2	l=3		
	MRR	Training	MRR	Training	
RWR(no train)	0.271		0.456		
RWR	0.280	3.7s	0.471	9.2s	
PRA	0.307	5.7s	0.516	15.4s	

RWR: Random Walk with Restart (personalized page rank)

[†]Paired t-test give p-values 7x10⁻³, 9x10⁻⁴, 9x10⁻⁸, 4x10⁻⁴

Example Paths

athletePlaysSport

$$\begin{array}{c} c \xrightarrow{\mathrm{isa}} c \xrightarrow{\mathrm{isa}^{-1}} c \xrightarrow{\mathrm{athletePlaysSport}} c \\ c \xrightarrow{\mathrm{athletePlaysInLeague}} c \xrightarrow{\mathrm{superpartOfOrganization}} c \xrightarrow{\mathrm{teamPlaysSport}} c \end{array}$$

teamHomeStadium

Evaluation by Mechanical Turk

- There are many test queries per predicate
 - All entities of a predicate's domain/range, e.g.
 - WorksFor(person, organization)
 - On average 7,000 test queries for each functional predicate, and 13,000 for each non-functional predicate
- Sampled evaluation
 - We only evaluate the top ranked result for each query
 - We sort the queries for each predicate according to the scores of their top ranked results, and then evaluate precisions at top 10, 100 and 1000 queries
- Each belief is voted by 5 workers
 - Workers are given assertions like "Hines Ward plays for the team Steelers", as well as Google search links for each entity

Evaluation by Mechanical Turk

- On 8 functional predicates where N-FOIL can successfully learn
 - PRA is comparable to N-FOIL for p@10, but has significantly better p@100
- On randomly sampled 8 non-functional (one to many mapping) predicates
 - Slightly lower accuracy than functional predicates

Task	#Rules	N-FOIL p@10	p@100	#Paths	PRA p@10	p@100
Functional Predicates	2.1(+37)	0.76	0.380	43	0.79	0.668
Non-functional Predicates				92	0.65	0.620

PRA: Path Ranking Algorithm

Conclusion

- Random walk inference
 - Generate path features for link prediction tasks
 - Use sampling schemes for efficient inference
 - User low precision rules as fractional valued features
- Future work (in model expressiveness)
 - Efficiently discover long paths
 - Discover lexicalized paths (contains constant nodes)
 - Generalize relation paths to trees/networks
 - Thank you! Questions?