Gas distribution plate assembly for large area plasma enhanced chemical vapor deposition

Also published as: Publication number: TW276701B Publication date: 2007-03-21 WO2004094693 (A3) CHOI SOO YOUNG (US); SHANG QUANYUAN (US); WO2004094693 (A2) Inventor: US6942753 (B2) GREENE ROBERT I (US); HOU LI (US) US2004206305 (A1) Apolicant: APPLIED MATERIALS INC (US) KR20050096111 (A) Classifications - international: C23C16/455; C23C16/509; C23C16/44; C23C16/455; more >> C23C16/50; C23C16/44 - European: C23C16/455K2; C23C16/509D

Application number: TW20040110755 20040416
Priority number(s): US20030417592 20030416

Report a data error here

Abstract of TW276701B

Embodiments of a gas distribution plate for distributing sain a processing chamber are provided. In one embodiment, a gas distribution gas in a processing chamber are provided. In one embodiment, a gas distribution plate includes a diffuser plate having a purality of gas passages passing between an upstream and a downstream aide of the distance plate. At least one of the gas passages includes a first least one of the gas passages includes a first hole. The first best exhaust for the centred from the upstream aide of the diffuser plate while the second hole exhects from the downstream side. The office hole has a diameter less than the respective diameters of the first and second holes.

Data supplied from the esp@cenet database - Worldwide

図 箱・(T 又/ 尖又)
4. 美國/USA
2.美國/USA
3.美國/USA
4. 美國/USA
四、聲明事項:
□ 主張專利法第二十二條第二項□第一款或□第二款規定之事實,其
事實發生日期為: 年 月 日。
▼ 申請前已向下列國家(地區)申請專利:
【格式請依:受理國家(地區)、申請日、申請案號 順序註記】
▼ 有主張專利法第二十七條第一項國際優先權:
美國;2003年4月16日;10/417,592
無主張專利法第二十七條第一項國際優先權:
主張專利法第二十九條第一項國內優先權:
【格式請依:申請日、申請案號 顺序註記】
主張專利法第三十條生物材料:
□ 須寄存生物材料者:
國內生物材料 【格式請依:寄存機構、日期、號碼 順序註記】
國外生物材料 【格式請依:寄存國家、機構、日期、號碼 顺序註記】
□ 不須寄存生物材料者:
所屬技術領域中具有通常知識者易於獲得時,不須寄存。

國 籍:(中文/英文)
4. 美國/USA
2.美國/USA
3.美國/USA
4. 美國/USA
四、聲明事項:
□ 主張專利法第二十二條第二項□第一款或□第二款規定之事實,其
事實發生日期為: 年 月 日。
V 申請前已向下列國家(地區)申請專利:
【格式請依:受理國家 (地區)、申請日、申請案號 順序註記】
▼ 有主張專利法第二十七條第一項國際優先權:
美國;2003年4月16日;10/417,592
□ 無主張專利法第二十七條第一項國際優先權:
□ 主張專利法第二十九條第一項國內優先權:
【格式請依:申請日、申請案號 順序註記】
□ 主張專利法第三十條生物材料:
□ 須寄存生物材料者:
國內生物材料 【格式請依:寄存機構、日期、號碼 顺序註記】
國外生物材料 【格式請依:寄存國家、機構、日期、號碼 顺序註記】
所屬技術領域中具有通常知識者易於獲得時,不須寄存。

九、發明說明:

【發明所屬之技術領域】

本發明之具體實施例廣義上有關一種在處理室中用於 分散氣體之氣體分散板組件及方法。

【先前技術】

液晶顯示器或平面面板係通常用於主動矩陣顯示器 (諸如電腦與電視監視器)。大體上,平面面板至少包含夾置一層液晶材料於其間的二層玻璃板。至少一玻璃板包括將至少一耦合至電源供應器之等電膜置於其上。從電源供應器供應至該等電膜之電源改變該液晶材料之方位,產生在顯示器上可見之圖樣,諸如文字或圖形。一種經常用以產生平面面板之製程係電漿增強化學氣相沉積(PECVD)。

電漿增強化學氣相沉積大體上係用以沉積薄膜於一错如平面面板或半等體晶圖之基材上。電漿增強化學氣相沉積大體上係藉由導入前驅氣體進入一含有平面面板之真空室所形之分散板。在該室內之前驅氣體係藉由從一或更致稱合至該室之射頻(RF)來源施加射頻電源獲得能量(如數務分成為一電漿。被激發氣體反應後,在位於一溫度控制基材支撑件上之平面面板表面上形成一層材料。在平面面板容置一層低溫多晶砂之應用中,該基材支撑件可被加熱至超過攝氏 400 度。在反應中產生之秤發性副產品會從該室經由一排氣系統抽吸出。

藉由 PECVD 技藝處理之平面面板通常較大,經常超過 360 毫米 x460 毫米且 1 平方米尺寸之範圍。達到且超過 4 平方米之大面積在未來將可預見。特別是與用於 200 毫米與 300 毫米半導體晶圖 製程之氣體分配板相比,用以提供均勻製程氣體流過平面面板之氣體分散板將依尺寸成比例加大。

用於平面面板處理之大型氣體分散板具有一些等致氣體分散板高製造費用的製造問題。例如,通過氣體分散板 形成之氣流孔的直徑,相較於該氣體分散板之厚度係較小 (例如一通過 1.2 英叶厚板之 0.062 英叶直径孔),等致在孔形成時鑽頭斷製情況高頻率地發生。移走斷製鑽頭既耗時且可能造成整個氣體分散板損傷。此外,當通過氣體分散板而形成之氣流孔数目條正比於平面面板之尺寸時,形成於各板內之大量孔會不利地造成在製造該板時故障的高可能性。再者,高數量孔與鑽頭斷製最少的組合,會等致較長之製造時間,因而提高製造費用。

由於材料與製造氣體分散板之費用很高,以一可有效 率與費用經濟方法製造之配置,來研發氣體分散板將會具 有優勢。再者,為配合製程超過 1.2 平方米之平面面板, 下一代氣體分散板之尺寸會增加,上遽問題之解決日漸重要。

雖然滿足設計大型氣體分散板之成本考慮很重要,效 能特性必定不能忽略。例如,氣流孔之配置、位置與密封 直接地衝擊到沉積效能,諸如沉積一致性與清洗特性。例 因此,需求一经改進的氣體分散板。

【發明內容】

本發明提供一種在一處理室中用以分配氣體之氣體分散板組件的具體實施例。在一具體實施例中,一氣體分散板組件包括一擴散板,其具有複數個在該擴散板的一上游侧與一下游側間流通之氣體通道。該氣體通道中至少一者包括由一孔洞耦合的一第一孔與一第二孔。該第一孔從擴散板之上游側延伸,而該第二孔從下游側延伸。該孔洞具有之直徑小於第一或第二孔個別的直徑。

【實施方式】

本發明廣義上提供一種在一處理室中用於提供氣體傳送之氣體分散板組件。本發明以下之示範性說明係參考一經配置以處理大面積基材之電漿增強化學氣相沉積系統, 諸如來自 AKT(美國加州聖塔克拉市應用材料公司之分部) 的電漿增強化學氣相沉積(PECVD)系統。然而,應瞭解本 發明可應用在其他系統配置中,諸如做刻系統、其他化學 魚相沉積系統及任何在一處理室中需求分配氣體之其他条 統,包括經配置以處理圓形基材之該等系統。

第 1 圖係一電獎增強化學氣相沉積系統 100 之具體實施例的 到面圖。系統 100 大體上包括一耦合至一氣源 104 之處理室 102。處理室 102 具有部份地界定一製程容積 112 运营係經由在壁 106 上的一連接口(未顯示)接取,其有助於一基材 140 移入與移出處理室 102。壁 106 與底部 108 通常係從一整塊鉛或其他與製程能相容的材料製成。壁 106 支撑一蓋組件 110,該蓋組件 110 含有一將製程容積 112 耦合至一排氣連接口(包括各種未顯示之抽吸元件)之抽吸加壓通氣室 114。

一温度控制基材支撑组件 138 係中置於處理室 102 內。支撑組件 138 在處理時會支撑基材 104。在一具體實施例中,基材支撑組件 138 至少包含一銘本體 124,其密封至少一內嵌式加熱器 132。

设置於支撑组件 138 內之加熱器 132(諸如一電阻元件) 係納合至一電源 130 且可控制地加熱支撑组件 138 與位於 其上之玻璃基材 140 至一預定温度。通常在一 CVD 製程 中,根據符沉積材料的沉積處理參數而定,加熱器 132 會 維持玻璃基材 140 在介於約攝氏 150 到至少约 460 度間的 均匀温度。

大體上,支撑組件 138 具有一底侧 126 與一上側 134。 上側 134 支撑玻璃基材 140。上側 134 支撑玻璃基材 140。 底側 126 具有一與其耦合之主軸 142。主軸 142 耦合該支撑組件 138 至一提升系統(未顯示),該提升系統在一升高 之處理位置(如閩示),與一有助於將基材傳送至/自處理室 102 之較低位置問移動支撑組件 138·主軸 142 额外地提供 一導管,供在支撐組件 138 與系統 100 其他元件問之電線 與熱電偶線使用。

一伸縮套筒 146 係耦合在支撑组件 138(或主軸 142) 與處理室 102 之底部 108 間。伸縮套筒 146 提供在室客積 112 與處理室 102 外部大氣間之真空密封,而有助於支撑 組件 138 之垂直運動。

支撑组件 138 大體上係接地,使得由一電源 122 供應 予位於蓋組件 110 與基材支撑組件 138(或位於/接近該室 之蓋組件的其他電極)間之氣體分散板組件 118 的射頻電 源,可激發出現在支撑組件 138 與分散板組件 118 間之製 程容積 112 內的氣體。來自電源 122 之射頻電源大體上係 經選擇與該基材之尺寸相稱,以驅動該化學氣相沉積製程。

支撑組件 138 额外地支撑一限制周界之遮蔽框架 148。大體上,遮蔽框架 148 防止在基材 140 與支撑組件 138 之邊緣沉積,使得基材不會黏在支撑組件 138。

支撑組件 138 具有複數個通過其設置之孔 128,以容納複數個提升銷(lift pin)150。提升銷 150 通常係由陶瓷或經隔極電鏡(anodized)之銘構成。大體上,當提升銷係在一正常位置(即相對支撑組件 138 抽回)時,提升銷 150 具有實質上與支撑組件 138 的一上侧 134 齊平或稍為凹下的第一端。該第一端通常會呈喇叭狀以防止提升銷 150 掉下通過孔 128。此外,提升銷 150 具有一延伸至支撑組件 138

底侧 126 之上的第二端。提升銷 150 可由一提升板 154 相對支撑組件 138 加以致動,以從支撑面 134 突出,因而將基材置放在一與支撑組件 138 分開之位置。

提升板 154 係置於基材支撑組件 138 之底侧 126, 與 處理室 102 之底部 108 間。提升板 154 係藉由一環燒部份 主軸 142 之軸環 156 选接至一致動器(未顯示)。伸縮套筒 146 色括一上部 168 與一下部 170, 允許主軸 142 與軸環 156 獨立移動, 同時維持製稅容積 112 與處理室 102 外部 之環境隔離。大體上,當支撑組件 138 與提升板 154 彼此 相對移近時,提升板 154 會被致動以造成提升銷 150 從上 側 134 伸出。

蓋組件 110 提供一上部邊界予製程容積 112。蓋組件 110 通常可移除或開啟,以維修處理室 102。在一具體實施 個中,該蓋組件 110 係由銀製造。

蓋組件 110 包括一耦合至外部泵系統(未顯示)之抽吸通氣室 114 形成於其內。抽吸通氣室 114 係用以均匀地從製程容積 112 通氣,且使處理之副產品離開處理室 102。

蓋組件 110 通常包括一進入口 180,由氣源 104 提供之製程氣體係經由該進入口 180 等入處理室 102。進入口 180 也耦合至一清洗源 182。清洗源 182 通常提供一清潔劑(諸如游離氣)等入處理室 102,以從處理室硬體(包括氣體分散板組件 118)移除沉積副產品及薄膜。

氣體分散板組件 118 條耦合至蓋組件 110 之內側 120·氣體分散板組件 118 通常係經配置以實質上跟隨玻璃

基材 140 之輪廓,例如用於大面積基材之多邊形與晶圓之圓形。氣體分散板組件 118 包括一穿孔區域 116,經由該區域由氣源 104 供應之製程與其他氣體會被傳送至製程容積 112。氣體分散板組件 118 之穿孔區域 116 經配置以提供均勻分散之氣體,通過氣體分散板組件 118 進入處理室102。可適於受益自本發明的一氣體分散板組件,係揭示於2001 年 8 月 8 日由 Keller 等申請之美國專利申請案09/922,219 號;由 Blonigan 等於 2002 年 5 月 6 日申請之10/140,324 號;2003 年 1 月 7 日申請之第 10/337,483 號;及 2002 年 11 月 12 日頒予 White 等之美國專利 6,477,980 號中,其等均以別用方式全數併入本文。

氣體分散板組件 118 通常包括由一懸掛板 160 懸掛之 擴散板 158。擴散板 158 與懸掛板 160 可選擇性地至少包含一單一構件(如第 3 圖中所示之氣體分散板組件 300)。 複數個氣體通道 162 係通過擴散板 158 而形成,以允許一預定分散之氣體通過氣體分散板組件 118 且進入製程容積 112。懸掛板 160 維持擴散板 158 與蓋組件 110 之內表面 120 為隔隔之關係,因而界定一加壓通氣室 164 於其間。 加壓通氣室 164 允許氣體流經蓋組件 110 以均匀地分佈在 擴散板 158 整個寬度,使得氣體係均匀地供應至中央穿孔 區域 116 之上,且以一均匀分散方式流過氣體通道 162。

懸掛板 160 通常係由不鏽鋼、貂或線或其他可傳等射頻之材料製造。懸掛板 160 包括一中央洞 166,其有助於使氣體無障礙地從形成於蓋組件 110 中之氣體進入口

180,經過擴散板 158之氣體通道 162 流過懸掛板 160。懸掛板 160 大體上提供一安裝面,用於耦合擴散板 158 至蓋組件 110 或室壁 106。

擴散板 158 通常係由不鏽鋼、銘或鎮或其他射頻傳等材料製造。擴散板 158 被配置成一厚度, 可維持洞 166 二倒之足夠平坦度而不會不利地影響基材處理。在一具體實 旅例中,擔數板 158 具有约 1.2 英叶之厚度。

第 2 圖係擴散板 158 之部份剖面圖。擴散板 158 包括
一面對蓋組件 110 之第一或上游側 202,及一面對支撑組件 138 之相對第二或下游側 204。在一具體實施例中,擴散板 158 係由鋁製造且在至少該下游側 204 上經陽極電鏡。已發現下游側 204 之陽極電鏡可增強電裝一致性。上游側 202 可視需要不陽極電鏡以限制在清洗時氣之吸收,氣隨後在處理中會被釋出且成為一污染源。

在一具體實施例中,各氣體通道 162 係藉著一由一孔 214 耦合至一第二內孔 212 之第一內孔 210 界定,孔洞 214、第二內孔 212 與第一內孔 210 經組合以形成一通過擴散板 158 之流體路徑。第一內孔 210 上從擴散板 158 之下游倒 202 延伸一第一深度 230 至一底部 218·第一內孔 210 之底部 218 可為漸縮、成斜面、切角或成圆角,以使氣體從第一內孔流進孔洞 210 時之流動限制最小。第一內孔 210 大體上具有一约 0.093 英叶至约 0.218 英叶之直徑,且在一具體實施例中係约 0.156 英叶。

第二內孔 212係形成於擴散板 158中,且從上游側 204

延伸一约 0.250 英叶至约 0.375 英叶之深度 232·第二內孔 212 之直徑大體上條約 0.187 英叶至 0.375 英叶,且可呈约 22 到至少 35 度之角度 216·在一具體實施例中,第二內孔 212 具有 0.320 英叶之直径,且該喇叭股角度 216 條約 35 度。在另一具體實施例中,相鄰第二內孔 212 之孔邊緣 282 間的距離 280 條約 85 毫叶。第二內孔 212 之直徑通常(但不限於)至少等於或小於第二內孔之直徑。第二內孔 212 之底部 220 可為漸縮、成斜面、切角或成圆角,以使氣體從孔洞 214 流出,且進入第二內孔 212 時之氣體壓力損失最小。再者,當孔洞 214 接近使用時之下游側 204,以使第二內孔 212 之暴露表面積及面對基材之下游侧最小時,擴散板 158 暴露於該室清潔時提供之氣中之下游面積會減少,因而減少沉積膜之氣污染。

孔洞 214 大體上耦合第一內孔 210 之底部 218 及第二內孔 212 之底部 220。該孔洞大體上具有約 0.25 毫米至約 0.76 毫米之直徑 (約 0.02 至 0.3 英叶),且通常具有约 0.040 至约 0.085 英叶之長度 234* 孔洞 214 之長度 234 與直徑 (成其他幾何形狀特性)係加壓通風室 164 之背壓的主要來源,其促成擴散板 158 之上游侧上之氣體的均匀分散。孔洞 214 在複數個通道 162 中通常是一致地配置,然而,通過孔洞 214 之限制在氣體通道 162 中可被不同地配置,以促成擴散板 158 之一地區相較於另一地區更多之氣體流動。例如,在靠近擴散板 158 之周邊 206 的該等氣體通道 262 中,孔洞 214 可具有一較大之直径及/或一颗短之長度

234,使得較多氣體流過穿孔區 116之邊緣,以增加玻璃基 材關邊的沉積率。

當孔洞 214 之長度 234 相當短,且但於二較大直徑內孔 210、212 之間時,孔洞 214 可效率地以鑽頭斷製最小可能性製造於本發明之擴散板 158 內。因此,相較於在習知有成千氣體通道形成於穿孔區域之氣體分散板經常發生鑽頭斷製且須將其抽出之花費,本發明之擴散板 158 直接暴露於經出蓋組件 110 進入之清潔劑的上游側 202 之表面積,係比習知具有直接形成於該板上游側 202 之表面積,係比習知具有直接形成於該板上游側之氣流孔洞之氣體分散板明顯較少,經陽極電錠之擴散板 158 在經過清潔循環之過程時具有減少氣停留之傾向,因而減少在處理時可能釋放之氣量。

孔洞 214 提供之整體限制直接影響擴散板 158 之上游背壓,且因此應加以配置以防止所使用之氣在清潔時再結合或游離。就這點而言,孔洞直徑應與孔之數量平衡,同時可增加孔洞直徑以允許使用較少之孔而減低製造費用,相鄰第二內孔 212 之邊緣 282 間之間隔可在 25 至 50 毫对之較低範圍中選擇,以達到比習知具有較大氣流孔密度之擴散板更一致的沉積效能。

在第2圖之具體實施例中,懸掛板 160 與擴散板 158 係以一有助於擴散板 158之熱膨脹與收缩之方式耦合,而不會以影響氣流通過氣體分散板組件 118 一致性的方式使 擴散板 158 翹曲、變形或不當地受力。在一具體實施例中, 懸掛板 160 係一多邊形框架,其包括一從主體 262 向外延伸之第一凸線 264,與一在第一凸線 260 相反之方向往內延伸之第二凸線 260。另一選擇是,懸掛板 160 可為一有凸線之圓柱。第一凸線 264 包括複數個安裝孔 266,各對準一形成於蓋組件 110 內之螺孔 278。孔固定件 268 係分別地通過安裝孔 266,且螺入螺孔 278 以固設懸掛板 160至蓋組件 110。

第二凸線 260 包括複數個分別維持置一定位銷(dowel pin)244 之孔 270 於其內。定位銷 244(其中之一顯示於第 2圖中)從第二凸線 260 朝第一凸線 262 與蓋組件 110 之內表面 120 向上延伸。通過擴散板 158 形成之孔或槽 246 係適於分別容置一銷 244。

此外請參考第 4 國中所示之懸掛板 160 的部份上規制面圖,在擴散板 158 中之槽 246 相對於定位銷 244 像足夠大,以允許擴散板 158 和對於定位銷 244 移動,以有助於補價在擴散板 158、懸掛板 160 與蓋組件 110 問之熱膨脹差異。如第 4 圖所示,槽 244 通常在正交方向沿擴散板 158之各侧定位,以配合板組件 118 沿二軸向之膨脹。或者是,槽 246 可徑向地配置用於關形氣體分散板。因此,當氣體分散板組件 118 物曲、配置用於關稅, 158 係自由地相對蓋組件 110 移動,且因而維持不致有造成氣體分散板組件 118 學曲或改變通過氣體分散板組件 118 之氣流模式的翹曲或其他受力情形。另一選擇是,槽可形成在懸掛板 160中,以容置從擴散板 158 延伸之銷。

第 5 圖係氣體分散板組件 500 包括裝設於類似上逃之蓋組件 110 的一懸掛板 160 與一擴散板組件 502。擴散板組件 502。擴散板組件 502。擴散板組件 502。擴散板組件 502。擴散板組件 502 包括一耦合至擴散板 506 之調整板 504。複數個氣體通道 508 係形成通過調整板 504 與擴散板 506,以從一界定於氣體分散板組件 500 與蓋組件 110 問之加壓通氣室 510、分散氣體至一處理室之處理區域 512。

氣體通道 508 係經配置成類似上述之氣體通道 162,除了各氣體通道 508 之上游部份係形成通過調整板 504,而下游部份係形成於擴散板 506 中。例如,至少一部份第一內孔 520 係形成於調整板 504 內,而至少一部份第二內孔係形成於擴散板 506 中。一流動地耦合第一與第二內孔520、522 之孔洞 524,可至少部份地形成於調整板 504 或擴散板 506 中至少一者。

在第 5 圖所示具體實施例中,第一內孔 520 係形成通過調整板 504 且部份在擴散板 506 中。第二內孔 522 與孔洞 524 係形成於擴散板 506 內。在各板 504、506 中分別製造內孔與孔洞 520、522、524 允許較有效率之製造,因為孔洞 524 之鎖孔長度與深度(即,在一板內之位置)係最小,造一步減少鎖頭段斷裂之發生,因而更減少製造費用。

複數個定位特徵 546 被設置於調整板 504 與擴散板 506 間,以確保形成於調整板 504 之氣體通道 508 的部份, 與擴散板 506 間之配合與對準。在一具體實施例中,定位 特徵 546 係複數個定位銷 544(已顯示其中之一),係置於 調整板 504 與擴散板 506 間。在第 5 國所示之具體實施例中,定位銷 544 從擴散板 506 延伸且嚙合一經歷配通過調整板 504 之配合概套 542。銷 544 可加以定位,使得氣體通道 508 的對準,及在調整板 504 與擴散板 506 租對於蓋組件 110 之預定方位得以確保。調整板 504 與擴散板 506 可以任何種方式固設在一起,包括固定件、鉚釘、螺絲、數焊、焊接、黏著、夾具與其類似者。

第 6 國係包括複數個氣體通道 660 之氣體分散板組件 650 之另一具體實施例的部份剖面圖,該等複數個氣體通道 650 係形成通過一調整板 652 與一擴散板 654,其中調整板 652 係可調整地固定於擴散板 654。在第 6 圖之具體實施例中,調整板 652 與擴散板 654 係藉由一分離式固定系統 600(第 6 圖中顯示其一)以正常問際耦合。氣體通道 660 係以頻似上遊氣體通道 508 之方式配置。

各分離式固定件系統 600 包括一固定件 602 與一配合螺帽 604,二者通常均由绍或其他適合材料製造。在有利地使用鋁固定件,以使處理時固定件材料效應最低之應用中,分離式固定件系統 600 允許調整板 652 與擴散板 654分開,而習知紹固定件將會卡住而需要移除且再螺入元件。此允許更換調整板 652 以改變氣體通道 660 之流動特徵,因而允許氣體分散板組件 650 為一特定製程修改而無須更換整個組件。此特點係詳述於先前併入由 Blonigan 等於 2003年 1月7日申請之美國專利申請案序號 10/337,483號(事務所檔號 7651 號)中。

在一具體實施例中,固定件 602 具有一頭部 606、一柄部 608 及一螺紋部份 610。頭部 606 通常係置於一形成在調整板 652 上表面 614 內之平底擴孔 612。一孔 616 係通過調整板 652 形成,與平底擴孔 612 同心,以容置固定件 602 之柄部 608。柄部 608 通過一經由擴散板 654 形成而與孔 616 同心地對準之孔 618。柄部 608 通常包括一當固定件 602 承受一超過一預定量之扭矩時可適於切變之頭部 620。

螺帽 604 通常係置於一形成在與調整板 652 相對之擴散板 654 下游側 624 的槽 622。槽 622 係與一通過擴散板 654 形成之孔 618 進通。柄部 608 通過孔 616、618,以露出螺紋部份 610 於槽 622 中。置於槽 622 中之螺帽 604 係與固定件 602 之螺紋部份 610 配合。槽 622 經配置以當固定件 602 被螺緊而迫使板 652、654 故此靠緊時,防止螺帽 604 旋轉。此外,擴散板組件 650 之雙板配置進一步有利於經濟地製造氣體通道 660,係藉由實質上降低在製造時形成孔洞 694 所需之距離,因而進一步減少製造時鑽頭斷

因此,本發明已提供一製造費用經濟之氣體分散板組件。再者,該氣體分散板組件藉由改變橫跨該板寬度的孔洞配置及/成藉由更換該組件之一板,而有利地允許調整氣體油動絲徵。

雖然已詳加顯示與說明納入本發明之指示的數個較佳 具體實施例,熟習此項技術之人士可易於瞭解許多仍納入 此等教示之各種具體實施例。

【圖式簡單說明】

本發明之指示可藉由參考以上結合附屬之詳細說明而 易於明瞭,其中:

第 1 圖係依具有本發明之氣體分散板組件的一具體實施例的處理室之概要剖面圖;

第2圖係第1圖中所示氣體分散板組件的部份剖面圖; 第3圖係一氣體分散板組件之另一具體實施例的部份 剖面圖;

第 4 圖條第 2 圖中所示之氣體分散板組件的部份上視圖;

第 5 圖係包括一擴散板組件之氣體分散板組件的另一 具體實施例之部份剖面圖;及

第 6 圖 係第 5 圖 中之 氣 體 分散 板 纽 件 的 一 具 體 實 施 例 之另一部份爆炸圖。

為有助於瞭解,已使用相同之參考號碼將儘可能地用以表示圖式中共用之相同元件。

【元件代表符號簡單說明】

100 系統 102 處理室

104 氣源 106 壁

108 底部 110 蓋組件

112 製程容積 114 抽吸加壓通氣室

I276701

116	穿孔區	118 氣體分散板組件
120	內側	122 電源
124	绍本體	126 底侧
128	孔	130 電源
132	加熱器	134 上側
138	基材支撑組件	140 玻璃基材
142	主軸	146 伸缩套管
148	遮蔽框架	150 提升銷
154	提升板	156 軸環
158	擴散板	160 懸掛板
162	魚 體 通 道	164 加壓通風室
166	洞	168 上部
170	下部	180 連接口
182	清 洗 源	202 上游側
204	下游側	206 邊界
210	第一內孔	212 第二內孔
214	孔洞	216 喇叭狀角
218	底 部	220 底部
230	第一深度	232 深度
234	長度	244 定位銷
246	槽	260 第二凸缘
262	主 體	264 第一凸緣
266	安裝孔	268 孔固定件
270	孔	280 距離

I276701

282	孔邊緣	300	氣體分散組
500	分散板組件	502	擴散板組件
504	調整板	506	擴散板
508	氣 體 通 道	510	加壓通氣室
512	處理區	520	第一內孔
522	第二內孔	524	孔洞
542	视套	544	銷
546.	定位特徵	600	固定系統
602	固定件	604	螺 帽
606	頭 部	608	柄 部
610	螺纹部份	612	平底擴孔
614	上表面	616	孔
618	孔	620	頸部
622	槽	624	孔
624	下 游 側	650	擴散板組件
652	調整板	654	擴散板
660	氣 體 通 道		

五、中文發明摘要:

本發明提供一種氣體分散板組件的具體實施例,係用 以在處理室中分散氣體。在一具體實施例中,一氣體分散 板組件包括一擴散板,該擴散板具有複數個在該擴散板一 上游側與一下游側問通過的氣體通道。該等氣體通道中至 少一者包括藉由一孔洞耦合的一第一孔及一第二孔。該第 一孔係從該擴散板之上游側延伸,而該第二孔係從下游側 延伸。該孔測具有之直徑小於該第一與第二孔個別的直徑。

六、英文發明摘要:

Embodiments of a gas distribution plate for distributing gas in a processing chamber are provided. In one embodiment, a gas distribution plate includes a diffuser plate having a plurality of gas passages passing between an upstream side and a downstream side of the diffuser plate. At least one of the gas passages includes a first hole and a second hole coupled by an orifice hole. The first hole extends from the upstream side of the diffuser plate while the second hole extends from the downstream side. The orifice hole has a diameter less than the respective diameters of the first and second holes.

十、申請專利範圍:

- 1. 一種用於一處理室之氣體分散板組件,至少包含:
 - 一攜 散 板 , 係 具 有 一 上 游 侧 奥 一 下 游 侧 ; 及

複數 個在該 擴散 板之 該上游與下游側 問通過之氣 體通道,其中該等氣體通道中至少一者具有:

- 一喇叭狀孔,係與該圓筒狀孔同心地從該下 游側延伸,且具有一第二直徑;及
- 一孔洞,倭耦合該圖筒狀孔與該喇叭狀孔問 流體,且具有比該圖筒狀孔與該喇叭狀孔小的直 得。
- 2. 如申請專利範圍第1項所述之氣體分散板組件,其中該喇叭狀孔係星約22到至少約35度之喇叭狀。
- 如申請專利範圍第1項所述之氣體分散板組件,其中該上游側係未陽極電鏡紹且該下游側係經陽極電鏡。
- 如申請專利範圍第1項所述之氣體分散板組件,其中該 擴散板更包含:
 - 一第一板,像具有該氣體通道之該團筒狀孔的至少 一部份形成於其內;及
 - 一第二板,係耦合至該第一板,且具有該氣體通道

之該喇叭狀孔的至少一部份形成於其內。

如申請專利範圍第 1 項所遞之氣體分散板組件,更包含:

一懸掛板,係具有一實質多邊形洞,且適於支撐該 擴散板於一處理室中。

6. 如申請專利範圍第 5 項所述之氣體分散板組件,更包含:

複數個在該懸掛板與擴散板問延伸之定位銷 (dowel pin),該等定位銷中至少一者與一形成在該懸掛板或擴散板之一中的槽之配合,係可容約熱膨脹之差。

- 如申請專利範圍第1項所述之氣體分散板組件,其中該 擔散板係多邊形。
- 8. 如申請專利範圍第 1 項所遊之氣體分散板組件,其中通過該擴散板形成之該等孔洞之至少一者具有一與其他孔洞中至少一者不同之流動限制特性。
- 9. 一種用於一處理室之氣體分散板組件,至少包含: 一擴散板組件,係具有在一上游側與一下游側,該 上游側與該下游側之每一者具有一表面;

複數個在該擴散板組件之該上游與該下游側間通

過之氣體通道,其中該等氣體通道中至少一者至少包括:

- 一從該上游側延伸之圓筒狀孔;
- 一孔洞,傣耦合與該關简散孔之一底部問流 發;及
- 一喇叭散孔,傣從該孔洞延伸至該下游側, 其中該孔洞的一直徑係小於該圖筒狀孔與該喇叭 狀孔;以及
- 一懸掛板,係具有界定一洞之向內延伸凸線,其中 該懸掛板之該凸線係適於支撑該擴散板組件。
- 10.如申請專利範圍第9項所述之氣體分散板組件,其中該團簡狀孔之該應部係漸縮、斜面、圖角或切角中至少一者。
- 11.如申請專利範圍第9項所述之氣體分散板組件,其中該喇叭狀孔係呈約22到至少約35度之喇叭狀。
- 12.如申請專利範圍第9項所述之氣體分散板組件,其中該下游面具有一陽極電鏡塗層且該上游面係未陽極電鏡。
- 13.如申請專利範圍第9項所述之氣體分散板組件,其中該下游與上游而具有一陽極電鍍塗層。

14.如申請專利範圍第9項所述之氣體分散板組件,其中該 播散板組件更向会:

一第一板,條具有該氣體通道之該第一孔的至少一部份形成於其內;及

一第二板,係耦合至該第一板,且具有該氣體通道 之該第二孔的至少一部份形成於其內。

15. 如申請專利範圍第 9 項所述之氣體分散板組件,其中該該擴散板組件條銘製。

16.如申請專利範圍第 15 項所返之氣體分散板組件,更包含:

複數個在該懸掛板與擴散板問延伸之定位銷,該等 定位銷中至少一者位於一形成在該懸掛板或擴散板之 一中的槽內。

17.如申請專利範圍第9項所述之氣體分散板組件,其申該 擴散板係多邊形。

18.如申請專利範圍第 17 項所述之氣體分散板組件,其中 通過該擴散板形成之該等孔洞之至少一者,係具有一與 該等其他孔洞中至少一者不同之流動限制特性。

- 19.一種用於一處理室之氣體分散板組件,至少包含:
 - 一多邊形擴散板,具有一上游側和一下游側;及複數個在該擴散板的一中央區域之該上游與下游側問通過之氣體通道,其中該等氣體通道中至少一者至少包括:
 - 一圆筒狀第一孔,係從該上游側延伸;
 - 一喇叭状第二孔·傣典該圆筒故第一孔同心地 從該下游側延伸,且具有的直徑至少約等於或大於 該第一孔之直徑;
 - 一孔洞,係耦合該第一與第二孔間的流體,且 具有小於該第一孔的直徑;及
 - 一射頻電源,係連接至該擴散板,以激發一電漿。
- 20. 如申請專利範圍第 19 項所逃之氣體分散板組件,其中 一介於相鄰第二孔之喇叭狀邊緣的關隔約 25 麥吋。
- 21.如申請專利範圍第 19 項所返之氣體分數板組件,其中 該擴散板組件之該上游側與該下游側界定一至少約 1.2 吋之厚度。
- 22.如申請專利範圍第19項所述之氣體分散板組件,其中從該擴散板組件之該上游側延伸的該第一孔具有約0.093至約0.218吋之一直徑。

- 23. 一種用於一處理室之氣體分散板組件,至少包含:
 - 一擴散板,係具有一上游側和一下游側,及具有複數穿過該擴散板而形成的氣體通道,每一氣體通道具有:
 - 一第一孔,傣從該下游側延伸,該第一孔形如一編斗;
 - 一第二孔,傣與該第一孔同心,該第二孔形 如一關柱;及
 - 一阻流孔,係與該第一與第二孔同心。
- 24.如申請專利範圍第23項所述之氣體分散板組件,其中 該第二孔具有一直徑大於該阻流孔的一直徑。
- 25. 如申請專利範圍第 23 項所遞之氣體分散板組件,其中該擴散板組件更包含:
 - 一第一板,係具有該氣體通道之該第一孔或該阻流 孔之一者的至少一部份形成於其內;及
 - 一第二板,係耦合至該第一板,且具有該氣體通道 之該第二孔的至少一部份形成於其內。
- 26.如申請專利範圍第 23 項所述之氣體分散板組件,更包含:
 - 一懸掛板,係具有界定一實質多邊形洞之向內延伸 凸緣,其中該懸掛板之該凸錄係適於支撑該擴散板組件。

第 4 圖

七、指定代表圖:

(一)、本案指定代表圖為:第2圖。

(二)、本代表圖之元件代表符號簡單說明:

116 穿孔區 110 蓋組件 158 擴散板 118 氣體分散板組件 162 氣體通道 160 懸掛板 166 洞 164 加壓通風室 204 下游侧 202 上游侧 244 定位銷 206 周邊 260 第二凸缘 246 槽 264 第一凸線 262 主體 268 孔固定件 266 安裝孔 278 螺孔 270 孔 282 孔邊緣 280 距離

八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:

無

發明專利說明書

(太證明書格式、順序及租體字,請勿任意更動、※記號部分請勿填寫)

※ 申請案號: 93110755

※申請日期:93年4月16日 ※IPC 分類:023016/455

一、發明名稱:(中文/英文)

用於大面積電漿增強化學氣相沉積之氣體分散板組件 GAS DISTRIBUTION PLATE ASSEMBLY FOR LARGE AREA PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION

二、申 請 人:(共1人)

姓名或名稱:(中文/英文)

美商·應用材料股份有限公司 APPLIED MATERIALS, INC.

代表人:(中文/英文)

史維尼瓊西J

SWEENEY, JOSEPH J.

住居所或營業所地址:(中文/英文)

美國加州聖大克勞拉市波爾斯大道 3050 號 3050 Bowers Avenue, Santa Clara, CA 95054, U.S.A.

國 籍:(中文/英文)

美國/USA

三、發明人:(共4人)

姓 名:(中文/英文)

- 1. 裘容菘/CHOI, SOO YOUNG
- 2.上泉元/SHANG, QUANYUAN
- 3.葛瑞尼羅伯特 I/GREENE, ROBERT I.
- 4.侯禮/HOU, LI