

Lecture 3

Image Primitives and Correspondence

Image Primitives and Correspondence

Given an image point in left image, what is the (corresponding) point in the right image, which is the projection of the same 3-D point

Matching - Correspondence

Lambertian assumption

$$I_1(\mathbf{x}_1) = \mathcal{R}(p) = I_2(\mathbf{x}_2)$$

Rigid body motion

$$\mathbf{x}_2 = h(\mathbf{x}_1) = \frac{1}{\lambda_2(\mathbf{X})} (R\lambda_1(\mathbf{X})\mathbf{x}_1 + T)$$

Correspondence

$$I_1(\mathbf{x}_1) = I_2(h(\mathbf{x}_1))$$

Local Deformation Models

Translational model

$$h(\mathbf{x}) = \mathbf{x} + d$$

$$I_1(\mathbf{x}_1) = I_2(h(\mathbf{x}_1))$$

Affine model

$$h(\mathbf{x}) = A\mathbf{x} + d$$

$$I_1(\mathbf{x}_1) = I_2(h(\mathbf{x}_1))$$

Transformation of the intensity values and occlusions

$$I_1(\mathbf{x}_1) = f_0(\mathbf{X}, g)I_2(h(\mathbf{x}_1) + n(h(\mathbf{x}_1)))$$

Feature Tracking and Optical Flow

Translational model

$$I_1(\mathbf{x}_1) = I_2(\mathbf{x}_1 + \Delta \mathbf{x})$$

Small baseline

$$I(\mathbf{x}(t),t) = I(\mathbf{x}(t) + \mathbf{u}dt, t + dt)$$

RHS approx. by first two terms of Taylor series

$$\nabla I(\mathbf{x}(t),t)^T\mathbf{u} + I_t(\mathbf{x}(t),t) = 0$$

Brightness constancy constraint

Aperture Problem

Normal flow

$$\mathbf{u}_n \doteq \frac{\nabla I^T \mathbf{u}}{\|\nabla I\|} \cdot \frac{\nabla I}{\|\nabla I\|} = -\frac{I_t}{\|\nabla I\|} \cdot \frac{\nabla I}{\|\nabla I\|}$$

Optical Flow

Integrate around over image patch

$$E_b(\mathbf{u}) = \sum_{W(x,y)} [\nabla I^T(x,y,t)\mathbf{u}(x,y) + I_t(x,y,t)]^2$$

Solve

$$\nabla E_{b}(\mathbf{u}) = 2 \sum_{W(x,y)} \nabla I(\nabla I^{T} \mathbf{u} + I_{t})$$

$$= 2 \sum_{W(x,y)} \left(\begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix} \mathbf{u} + \begin{bmatrix} I_{x}I_{t} \\ I_{y}I_{t} \end{bmatrix} \right)$$

$$\left[\sum_{X} I_{x}^{2} & \sum_{X} I_{x}I_{y} \\ \sum_{X} I_{x}I_{y} & \sum_{X} I_{y}^{2} \end{bmatrix} \mathbf{u} + \begin{bmatrix} \sum_{X} I_{x}I_{t} \\ \sum_{X} I_{y}I_{t} \end{bmatrix} \right] = 0$$

Optical Flow, Feature Tracking

$$\mathbf{u} = -G^{-1}\mathbf{b}$$

$$G = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix}$$

Conceptually:

rank(G) = 0 blank wall problem

rank(G) = 1 aperture problem

rank(G) = 2 enough texture – good feature candidates

In reality: choice of threshold is involved

Optical Flow

Previous method - assumption locally constant flow

- Alternative regularization techniques (locally smooth flow fields, integration along contours)
- Qualitative properties of the motion fields

Feature Tracking

3D Reconstruction - Preview

Point Feature Extraction

$$G = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix}$$

- Compute eigenvalues of G
- If smalest eigenvalue σ of G is bigger than τ mark pixel as candidate feature point

Alternatively feature quality function (Harris Corner Detector)

$$C(G) = \det(G) + k \cdot \operatorname{trace}^2(G)$$

Harris Corner Detector - Example

Wide Baseline Matching

Region based Similarity Metric

Sum of squared differences

$$SSD(h) = \sum_{\tilde{\mathbf{x}} \in W(\mathbf{x})} ||I_1(\tilde{\mathbf{x}}) - I_2(h(\tilde{\mathbf{x}}))||^2$$

Normalize cross-correlation

$$NCC(h) = \frac{\sum_{W(\mathbf{x})} \left(I_1(\tilde{\mathbf{x}}) - \overline{I}_1\right) \left(I_2(h(\tilde{\mathbf{x}})) - \overline{I}_2\right)\right)}{\sqrt{\sum_{W(\mathbf{x})} \left(I_1(\tilde{\mathbf{x}}) - \overline{I}_1\right)^2 \sum_{W(\mathbf{x})} \left(I_2(h(\tilde{\mathbf{x}})) - \overline{I}_2\right)^2\right)}}$$

Sum of absolute differences

$$SAD(h) = \sum_{\tilde{\mathbf{x}} \in W(\mathbf{x})} |I_1(\tilde{\mathbf{x}}) - I_2(h(\tilde{\mathbf{x}}))|$$

Edge Detection

original image

gradient magnitude

Canny edge detector

- Compute image derivatives
- if gradient magnitude > ⊤ and the value is a local maximum along gradient direction pixel is an edge candidate

Line fitting

Non-max suppressed gradient magnitude

- Edge detection, non-maximum suppression
 (traditionally Hough Transform issues of resolution, threshold selection and search for peaks in Hough space)
- Connected components on edge pixels with similar orientation
 group pixels with common orientation

Line Fitting

$$A = \begin{bmatrix} \sum x_i^2 & \sum x_i y_i \\ \sum x_i y_i & \sum y_i^2 \end{bmatrix}$$

second moment matrix associated with each connected component

- Line fitting Lines determined from eigenvalues and eigenvectors of A
- Candidate line segments associated line quality