LinAlgDM I. 11. gyakorlat: Mátrixműveletek

2023. november 9.

1. Legyen
$$A = \begin{bmatrix} 1 & -2 & 0 & 1 \\ 3 & 2 & -1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 4 & -5 \\ 1 & 2 & 3 \\ 1 & -1 & 0 \\ 6 & 4 & 1 \end{bmatrix}$ Adjuk meg az $A \cdot B$ és $B \cdot A$ mátrixokat, ha lézetnek!

 ${\bf Megold\'as.}\ A\cdot B\ l\'etezik,\ mert\ "k\"oz\'eps\'o"\ dimenzi\'oik\ megegyeznek:$

$$AB = \begin{bmatrix} 7 & 4 & -10 \\ 16 & 21 & -8 \end{bmatrix}$$

 $AB = \begin{bmatrix} 7 & 4 & -10 \\ 16 & 21 & -8 \end{bmatrix}$ $B\cdot A$ nem létezik ("középső" dimenzióik nem egyeznek meg).

2. Legyen $A=\begin{bmatrix}1&7&4\\2&9&8\end{bmatrix}$ Adja meg az alábbi szorzatokat! Mit állítanak elő ezek?

(a)

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \cdot A$$
, $\begin{bmatrix} 0 & 1 \end{bmatrix} \cdot A$,

(b)

$$A \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad A \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \qquad A \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

(c)

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \cdot A$$
, $\begin{bmatrix} 1 & -1 \end{bmatrix} \cdot A$, $A \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

(d)

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \cdot A \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

- Megoldás. (a) Az A első és második sorát, (b) az A első, második és harmadik oszlopát, (c) az A első és második sorának összegét, az A első és második sorának különbségét, az A oszlopainak összegét,
- 3. Adott egy diagonláis mátrix: $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ Adjuk meg az alábbi szorzatokat: $D^2 = D \cdot D, \ D^3 = D^2 \cdot D.$ Mivel lesz egyenlő D^n ?

Megoldás.

$$D^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix} , \quad D^{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 27 \end{bmatrix} , \quad D^{n} = \begin{bmatrix} 1^{n} & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 3^{n} \end{bmatrix}$$

4. Legyen $A = \begin{bmatrix} -5 & 15 \\ -5 & 15 \end{bmatrix}, B = \begin{bmatrix} 3 & 3 \\ 1 & 1 \end{bmatrix}$. Adjuk meg $A \cdot B$ -t! Mit veszünk észre?

Megoldás. $A \cdot B = 0_{2 \times 2}$, holott sem A, sem B nem nullmátrix.

5. Legyen $A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$ $B = \begin{bmatrix} 2 & 4 \\ 2 & 3 \end{bmatrix}$ $C = \begin{bmatrix} 1 & -2 \\ -1 & 2 \end{bmatrix}$ Számoljuk ki az $A \cdot C$ és $B \cdot C$ szorzatokat! Mit veszünk észre?

Megoldás. $A \cdot C = \begin{bmatrix} -2 & 4 \\ -1 & 2 \end{bmatrix} = B \cdot C$. Azt láthatjuk, hogy AC = BC, holott $A \neq B$.

6. A hallgatók a sikeres LA-DM I. ZH végeztével házibulit tartanak. Az italt Anna, Barnabás, Csenge és Domonkos hozzák a sarki boltból. Az alábbi táblázat mutatja, ki miből hány üveggel hoz:

	sör	kóla	bor
Anna	2	1	0
Barnabás	1	3	1
Csenge	1	1	1
Domonkos	0	2	2

A sör ára 300 Ft, a kóla 400 Ft-ba kerül, míg egy üveg bor 1000 Ft-ba.

Legyen M a táblázat adataiból képzett mátrix,

$$M = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & 1 \\ 1 & 1 & 1 \\ 0 & 2 & 2 \end{bmatrix},$$

a P mátrix pedig tartalmazza az italok árát,

$$P = \begin{bmatrix} 300 \\ 400 \\ 1000 \end{bmatrix}.$$

2

Mit adnak meg az alábbi kifejezések? Számoljuk is ki!

(a) $[1 \ 0 \ 0 \ 0] \cdot M$,

Megoldás. = $\begin{bmatrix} 2 & 1 & 0 \end{bmatrix}$, Anna melyik italból hányat vett.

(b) $\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \cdot M \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,

Megoldás. = 1, Anna hány kólát vett.

 $(\mathbf{c}) \ \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \cdot M \cdot P,$

Megoldás. = 2800, Domonkos mennyit költött italra.

(d) $\begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix} \cdot M \cdot \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot P,$

Adjunk kifejezést az alábbiakra:

(f) Barnabás hány üveg bort vett?

Megoldás.
$$\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \cdot M \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
.

(g) Csenge mennyit költött sörre és borra együtt?

Megoldás.
$$\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \cdot M \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot P.$$

(h) A hallgatók külön-külön hány kólát vettek?

$$\mathbf{Megold\acute{as.}}\ \ M \cdot egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix}.$$

(i) Mennyit költöttek összesen italra?

Megoldás.
$$\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \cdot M \cdot P$$
.