IESTI01 - TinyML

Embedded Machine Learning

15. ML Applications Overview Al Lifecycle and ML Workflow

Prof. Marcelo Rovai
UNIFEI

TinyML Applications

Examples

Sound

Vibration

Vision

Sound

Vibration

Vision

Personal Assistant

"Cascade" Detection: multi-stage model

KeyWord Spotting (KWS)

Sound Image

KeyWord Spotting (KWS) - Model

KeyWord Spotting (KWS) - Create Model (Training)

KeyWord Spotting (KWS) - Create Model (Training)

KeyWord Spotting (KWS) - Create Model (Training)

KeyWord Spotting (KWS) – Create Model (Training)

Sound

Vibration

Vision

Mechanical Stresses in Transport

Anomaly Detection

Ball Bearings

Accelerometer

Sound

Vibration

Vision

Person Detection

TinyML Projects – UNIFEI / IESTI01 2021.1

Vision

Mask Detection

[Docs] [Video]

Forest Fire Detection

[Docs] [Video]

Sound

Covid Detection (cough)

[Docs] [Video]

Seismic Detection

[Docs] [Video]

Vibration

Personal Trainer

[Docs] [Video]

ML Lifecycle

Training Input Output **Data** Inference

ML Code

Al Infrastructure

Data Engineering

Model Engineering

Model Deployment

Product Analytics

Data Engineering

- Defining data requirements
- Collecting data
- Labelling the data
- Inspect and clean the data
- Prepare data for training
- Augment the data
- Add more data

Data Engineering

Data Engineering

- Defining data requirements
- Collecting data
- Labelling the data
- Inspect and clean the data
- Prepare data for training
- Augment the data
- Add more data

Data Engineering

Model Engineering

- Training ML models
- Improving training speed
- Setting target metrics
- Evaluating against metrics
- Optimizing model training
- Keeping up with SOTA*

* "State of the Art"

Data Engineering

Model Engineering

Model Deployment

- Model conversion
- Performance optimization
- Energy-aware optimizations
- Security and privacy
- Inference serving APIs
- On-device fine-tuning

Data Engineering

Model Engineering

Model Deployment

Product Analysis

- Dashboards
- Field data evaluation
- Value-added for business
- Opportunities for advancement and improvements

Data Engineering Al Infrastructure **Model Engineering Model Deployment Product Analytics**

Focus in TinyML

ML Workflow

Al Infrastructure

Data Engineering

Model Engineering

Model Deployment

Product Analytics

Acoustic Sensors
Ultrasonic, <u>Microphones</u>,
Geophones, Vibrometers

Image Sensors Thermal, Image

Al Infrastructure

Motion Sensors
Gyroscope, Radar,
Accelerometer

Data Engineering

Model Engineering

Model Deployment

Product Analytics

Acoustic Sensors
Ultrasonic, <u>Microphones</u>,
Geophones, Vibrometers

Image Sensors Thermal, **Image**

Motion Sensors
Gyroscope, Radar,
Accelerometer

TinyML Applications

Infrastructure

₹

Data Engineering

Model Engineering

Model Deployment

Product Analytics

Collect Data Preprocess Data

Design a Model Train a Model Evaluate Optimize Convert Model Deploy Model

nferences

Collect Preprocess Design a Model Train a Model Convert Deploy Make Inferences

Collect Data reprocess Data Design a Model Train a Model **Evaluate** Optimize

Convert Model Deploy Model

nferences

Collect Data

reprocess Data Design a Model Train a Model Evaluate Optimize

Convert Model

Model Model

Make Inferences

Reading Material

Main references

- Harvard School of Engineering and Applied Sciences CS249r: Tiny Machine Learning
- Professional Certificate in Tiny Machine Learning (TinyML) edX/Harvard
- Introduction to Embedded Machine Learning (Coursera)
- <u>Text Book: "TinyML" by Pete Warden, Daniel Situnayake</u>

I want to thank <u>Shawn Hymel</u> and Edge Impulse, <u>Pete Warden</u> and <u>Laurence</u> <u>Moroney</u> from Google, and especially Harvard professor <u>Vijay Janapa Reddi</u>, Ph.D. student <u>Brian Plancher</u> and their staff for preparing the excellent material on TinyML that is the basis of this course at UNIFEI.

The IESTI01 course is part of the <u>TinyML4D</u>, an initiative to make TinyML education available to everyone globally.

Thanks And stay safe!

