Calculus II

Comparison and limit-comparison tests, part 1

Todor Miley

Determine if $\sum_{n=1}^{\infty} \frac{5}{2n^2+7n+3}$ converges or diverges.

Determine if $\sum_{n=1}^{\infty} \frac{5}{2n^2+7n+3}$ converges or diverges.

• As $n \to \infty$, the dominant term in the denominator is $2n^2$, so compare with $\frac{5}{2n^2}$.

$$\frac{5}{2n^2+7n+3} \quad \frac{5}{2n^2}$$

Determine if $\sum_{n=1}^{\infty} \frac{5}{2n^2+7n+3}$ converges or diverges.

$$\frac{5}{2n^2+7n+3}<\frac{5}{2n^2}$$

Determine if $\sum_{n=1}^{\infty} \frac{5}{2n^2+7n+3}$ converges or diverges.

• As $n \to \infty$, the dominant term in the denominator is $2n^2$, so compare with $\frac{5}{2n^2}$.

$$\frac{5}{2n^2+7n+3}<\frac{5}{2n^2}$$

$$\sum_{n=1}^{\infty} \frac{5}{2n^2} = \frac{5}{2} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

Determine if $\sum_{n=1}^{\infty} \frac{5}{2n^2+7n+3}$ converges or diverges.

• As $n \to \infty$, the dominant term in the denominator is $2n^2$, so compare with $\frac{5}{2n^2}$.

$$\frac{5}{2n^2+7n+3}<\frac{5}{2n^2}$$

$$\sum_{n=1}^{\infty} \frac{5}{2n^2} = \frac{5}{2} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

Comparison and limit-comparison tests....

• This is a constant times a p-series with p =

Determine if $\sum_{n=1}^{\infty} \frac{5}{2n^2+7n+3}$ converges or diverges.

• As $n \to \infty$, the dominant term in the denominator is $2n^2$, so compare with $\frac{5}{2n^2}$.

$$\frac{5}{2n^2+7n+3}<\frac{5}{2n^2}$$

$$\sum_{n=1}^{\infty} \frac{5}{2n^2} = \frac{5}{2} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

• This is a constant times a p-series with p = 2 > 1.

Determine if $\sum_{n=1}^{\infty} \frac{5}{2n^2+7n+3}$ converges or diverges.

$$\frac{5}{2n^2+7n+3}<\frac{5}{2n^2}$$

$$\sum_{n=1}^{\infty} \frac{5}{2n^2} = \frac{5}{2} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

- This is a constant times a *p*-series with p = 2 > 1.
- Therefore $\sum_{n=1}^{\infty} \frac{5}{2n^2}$ is

Determine if $\sum_{n=1}^{\infty} \frac{5}{2n^2+7n+3}$ converges or diverges.

$$\frac{5}{2n^2+7n+3}<\frac{5}{2n^2}$$

$$\sum_{n=1}^{\infty} \frac{5}{2n^2} = \frac{5}{2} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

- This is a constant times a p-series with p = 2 > 1.
- Therefore $\sum_{n=1}^{\infty} \frac{5}{2n^2}$ is convergent.

Determine if $\sum_{n=1}^{\infty} \frac{5}{2n^2+7n+3}$ converges or diverges.

• As $n \to \infty$, the dominant term in the denominator is $2n^2$, so compare with $\frac{5}{2n^2}$.

$$\frac{5}{2n^2+7n+3}<\frac{5}{2n^2}$$

$$\sum_{n=1}^{\infty} \frac{5}{2n^2} = \frac{5}{2} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

- This is a constant times a *p*-series with p = 2 > 1.
- Therefore $\sum_{n=1}^{\infty} \frac{5}{2n^2}$ is convergent.
- Therefore $\sum_{n=1}^{\infty} \frac{5}{2n^2+7n+3}$ is

by the Comparison Test.

Determine if $\sum_{n=1}^{\infty} \frac{5}{2n^2+7n+3}$ converges or diverges.

$$\frac{5}{2n^2+7n+3}<\frac{5}{2n^2}$$

$$\sum_{n=1}^{\infty} \frac{5}{2n^2} = \frac{5}{2} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

- This is a constant times a *p*-series with p = 2 > 1.
- Therefore $\sum_{n=1}^{\infty} \frac{5}{2n^2}$ is convergent.
- Therefore $\sum_{n=1}^{\infty} \frac{5}{2n^2+7n+3}$ is convergent by the Comparison Test.