DATE	DATE TOPICS			
	Module 1: SQL (3 Weeks)			
	• Introduction to Data Science • Life cycle of data science • Skills required for data science • Applications of data science in different industries • CRISP-DM: Business Understanding Data Understanding, Data Preparation, Modeling, Evaluation and Deployment			
Week 1	• Introduction to SQL • Why Data Scientist should know MySQL • Understanding Databases: • What is a Database • Why uses Database • Types of Databases: Relational and Non-Relational Databases			
	• Understanding Database Management System (DBMS) • What is DBMS? • Types of DBMS • Understanding SQL • What is SQL? • Why Use SQL? • Common Practice in Writing SQL Queries • Types of SQL Commands			
Week 2	• SQL Commands: • SELECT, WHERE, AS, ORDER BY, GROUP BY etc. • Joining Tables: • Inner Join • Left Join • Right Join • Full Outer Join • Cross Join • Conditional Statement • Sub Queries • Creating Database • Creating Tables • SQL Constraints			
	• SQL Datatypes • SQL Keys • Inserting Data into Database Tables • Importing and Exporting Data in SQL • Data Cleaning with SQL • Data Analysis with SQL			
Week 3	• SQL Sub Queries • SQL CTEs • SQL Views • SQL Window Functions			
	SQL MINI PROJECT			
	Module 2: Python, Libraries and Databases (4 Weeks)			
	• Basics Python for data science • Why Python for Data Science • Installation (VSCode, Anaconda, Python) • Operators • Variables • Variables and data types • Indexing and Slicing • data types operation			
	• Conditional Statements (If, Elif and Else Statements), Logical Operators, • While Loops • For Loops • Nested Condition and Loops •			

	• Functions • Function definition and invoking • return keyword • Variable Scope • Arguments: Positional and Keyword • Lambda Functions • Map, • Filter • Reduce
Week 5	• File Handlings Create, Read, Write files and Oper tions in File • Handling Errors and Exception Handling • Connecting to Database • SQLITE • MYSQL
	• Working with Python Libraries • Introduction • Datetime • json •csv • faker , requests, beautifulSoup etc
Week 6	 WebScraping using requests, beautifulSoup etc.
	• Class and Objects • Creat a class Create a object • Theinit() method • Modifying Objects • Self • Modify the Object Properties • Delete Object • Pass Statements • Inheritance • Overridding • Encapsulation

Week 7 PYTHON CAPTONE PROJECT

Week 8

Week 9

Module 3: Exploratory Data Analysis and GIT (4 Weeks)

- Numerical Python with Numpy Library Introduction Creating Numpy Array Array Datatypes Array Manipulation Data
 Manipulation with Pandas Library Pandas DataFrame and Series Reindexing Iteration Sorting Aggregation Missing Data GroupBY
 Merging/Joining Concatenation Filtering Descriptive Statistics Removing Duplicates String Manipulation Missing Data Handling
- Data Visualization Introduction to Matplotlib Basic Plotting Properties of plotting About Subplots Line plots pie chart and Bar Graph Histograms Box and Violin Plots Scatterplot Seaborn Library
- What is Exploratory Data Analysis (EDA)? Uni Variate Analysis Bi Variate Analysis Multi-Variate Analysis More on Seaborn Based Plotting Including Pair Plots, Catplot, Heat Maps, Count plot along with matplotlib plots.
- What is Exploratory Data Analysis (EDA)? Uni Variate Analysis Bi Variate Analysis Multi-Variate Analysis More on Seaborn Based Plotting Including Pair Plots, Catplot, Heat Maps, Count plot along with matplotlib plots.

	• GIT/GITHUB • Installation • Introduction to Git & Github • Getting started on GitHub • Local Repository Workflow • Creating a Git repository • Creating and editing files • Adding files to your Git repository
Week 10	 Create a GitHub repo • Git Push • Git Pull Understanding Branches • Working with Branches • Pull Requests • Merging and Pull Requests • The General Workflow
	• Statistics for Data Science Part 1: • Statistics and its types • Data Types and Measurement levels • Random Variable Data types • Data Collection Techniques • Sampling Techniques • Descriptive Statistics • Measure of Central Tendency • Measure of Dispersion • Frequency Distribution • Propability distribution
Week 11	• Statistics for Data Science Part 2 • Skewness • Kuetosis • Graphical Representation • Histogram Plot • Box Plot • Bar Chart • 5 Number Summary • Detecting Outliers • Removing Outliers • Hypothesis Testing
	Module 4: Machine Learning: Supervised (4 Weeks)
	• Introduction to Machine Learning • Types of Machine Learning: Supervised Versus Unsupervised Learning • Simple Linear Regression • Estimating the Coefficients • Assessing the Intercept and Coefficient Estimates • R Squared and Adjusted R Squared • MSE and RMSE
Week 12	• Multiple Linear Regression • Estimating the Regression Coefficients • OLS Assumptions • Multicollinearity • Feature Selection • Gradient Discent • Polynomial Regression • Creating polynomial linear regression • e valuating the metrics • Regularization Techniques • Lasso Regularization • Ridge Regularization
	• Decision Trees • Decision Trees (Rule Based Learning): • Basic Terminology in Decision Tree • Root Node and Terminal Node • Regression Trees and Classification Trees • Trees Versus Linear Models • Advantages and Disadvantages of Trees • Gini Index • Overfitting and Pruning • Stopping Criteria • Accuracy Estimation using Decision Trees
Week 13	• Ensemble Methods in Tree Based Models • What is Ensemble Learning? • What is Bootstrap Aggregation Classifiers and how does it
	• Classification Techniques • An Overview of Classification • Difference Between Regression and classification Models. • Why Not Linear
Week 14	• Naïve Bayes • Principle of Naive Bayes Classifier • Bayes Theorem • Terminology in Naive Bayes • Posterior probability • Prior probability
	• DISTANCE BASED MODULES • K Nearest Neighbors • K-Nearest Neighbor Algorithm • E ger Vs Lazy learners • How does the KNN algorithm work? • How do you
	Support Vector Machines • The Maximal Margin Classifier • HyperPlane • Support Vector Classifiers and Support Vector Machines • Hard and Soft Margin
Week 15	Classification • Classification with Non-linear Decision Boundaries • Kernel Trick • Polynomial and Radial • Tuning Hyper parameters for SVM • Gamma, Cost and Epsilon • SVMs with More than Two Classes
WCCK 13	Module 5: Deep Learning

	 Introduction to Neural Networks Activation functions a)Sigmoid b) Relu c)Softmax d)Leaky Relu e)Tanh Gradient Descent Learning Rate and tuning Optimization functions Introduction to Tensorflow Introduction to keras Back propagation and chain rule Fully connected layer Cross entropy Weight Initialization Regularization
Week 16	 Pytorch • Pytorch • basic syntax • Pytorch Graphs • Tensorboard • Artificial Neural Network with Pytorch • Neural Network for Introduction to Statistical NLP Techniques • Introduction to NLP • Preprocessing, NLP Tokenization, stop words, normalization,
Week 17	• Word embedding • Word2vec • Golve • POS Tagger • Named Entity Recognition(NER) • POS with NLTK • TF-IDF with NLTK • Sequential Models Introduction to sequential models • Introduction to RNN • Intro to LSTM • LSTM forward pass • LSTM backprop
Week 18	• Applications Sentiment Analysis • Sentence generation • Machine translation • Advanced LSTM structures • Keras- machine translation
	Module 6: Power BI (3 Weeks)
Week 19	Power BI Course Outline: • Getting Started • An Introduction to Power BI • What is Power BI? • The Building Blocks of Power BI • The Power • Creating a Report with Visualizations • Using the Visualizations Pane • Using the Fields Pane • Creating a Visualization • Interacting with Visualizations • Changing the Visualization Type • Moving and Resizing Visualizations • Doing More with Visualizations • Formatting Visualizations • Viewing Visualization Data • Using Focus Mode and Spotlight • Removing a Visualization • Data Modeling • What is DAX? • Creating a New Table • Creating a New Calculated Column • Creating a New Measure • Managing
Week 20	 Continuation on DAX (Part 2) A Closer Look at Visualizations • Matrixes, Tables, and Charts • Creating a Table • Creating a Matrix • Report Building in PowerBI •

Week 21	POWERBI CAPTONE PROJECT	
	Capstone Project and Examination	
	Capstone Project and Examination	
Week 22	Capstone Project and Examination	
	Capstone Project and Examination	
Week 23	Capstone Project and Examination	
	Capstone Project and Examination	
Week 24	Capstone Project and Examination	