

TI2316 Lab Course Solutions 5

deadline: June 6, 2017, 13:45

EXTRA, DRAFT

1. Suppose we have the following language over the alphabet $\Sigma = \{a, b, \#\}$:

$$\begin{split} L = \{v \# w \mid v, w \in \{a, b\}^* \ \land \ |v| = |w| \ \land \\ \forall 1 \leq i \leq |v| : \text{if the i'th letter in v is a, the i'th letter in w is b}. \end{split}$$

Examples of words in L are:

ab#bb ab#ba babb#abba

We have an incomplete transition diagram for a Turing machine deciding L. Assume that missing transitions lead to the reject state, with the head moving one place to the right. Question marks indicate missing transitions.

TODO: lijkt op vorige

- (a) Given the above Turing machine, determine for each of the following words whether they are accepted by the machine. Consider the transitions with a question mark to be missing.
 - i. a#a

Solution:

 $q_0 a \# a$

 $\dot{a}q_1\#a$

 $\dot{a}\#q_2a$

 $\dot{a}\#aq_{\mathsf{rej}}$

This word shows the machine correctly rejects the word.

ii. b#b

Solution:

 $q_0b\#b$

 $\dot{b}q_3\#b$

 $\dot{b}\#q_4b$

 $\dot{b}q_5\#\dot{b}$

 $\dot{b} \# q_{rej} \dot{b}$

This word shows the machine incorrectly rejects the word.

iii.#

Solution:

 $q_0 \#$

 $\#q_{\mathsf{rej}}$

This word shows the machine incorrectly rejects the word.

(b) Which **four** transitions need to be added such that that the Turing machine decides L? Three transitions are already marked with a question mark, the last one you have to fill in yourself.

Solution:

From q_0 to q_7 , we need $\# \to \#, R$.

From q_2 to q_5 , we need $b \to \dot{b}, L$.

From q_5 to q_6 , we need $\# \to \#, L$.

From q_4 to q_5 , we need $a \rightarrow \dot{a}, L$.

2. Suppose we have the following language over the alphabet $\Sigma = \{a, b, c, \#\}$:

$$L = \{ v \# w \mid n_a(v) + n_b(v) = n_c(w) \},$$

where $n_x(y)$ denotes the number of occurrences of symbol x in word y. Give a high-level description of a deterministic Turing machine that decides L.

Solution: A high-level description for a machine M deciding L is given by:

M = "On input $w \in \Sigma^*$:

- 1. Check if there is exactly one # symbol in w. If not, reject.
- 2. Go to the first character on the tape.
- 3. Check the current character on the tape.
 - a. If it is #, go right until the first unmarked c (if any). If there is such a c, reject. Else, accept.
 - b. Else if it is a, mark it and go to step 4.
 - c. Else if it is b, mark it and go to step 4.
 - d. Else, mark it, go right and go to step 3.
- 4. Go right until the first character after the # symbol.
- 5. Check the current character on the tape.
 - a. If it is marked, go right and go to step 5.
 - b. Else if it is c, mark it and go to step 6.
 - c. Else if it is the blank symbol, reject.
 - d. Else, mark it, go right and go to step 5.
- 6. Go left to the first unmarked character on the tape and go to step 3.
- 3. Consider the type of Turing machines with the following property. An R transition moves the head three positions to the right, and an L transition moves the head two positions to the left. What class of languages do these TMs recognize? Explain.

Solution: Such Turing machines recognize the same class of languages as usual TMs. An R transition (in the usual sense) can be implemented by executing R followed by L (in the above sense). Similarly, an L transition (in the usual sense) can be implemented by executing R followed by two times L (in the above sense).

Conversely, an R transition (in the above sense) can be implemented by three times R (in the usual sense), and an L transition (in the above sense) can be implemented by two times L (in the usual sense).