

Can't Steal? Cont-Steal! Contrastive Stealing Attacks Against Image Encoders

Zeyang Sha[†] Xinlei He[†] Ning Yu[‡] Michael Backes[†] Yang Zhang[†]

[†]CISPA Helmholtz Center for Information Security [‡]Salesforce Research

{zeyang.sha, xinlei.he, director, zhang}@cispa.de, ning.yu@salesforce.com

Poster: WED-PM-383

Threat Model

Adversary's Goal:

- **Theft:** The theft adversary aims to build a surrogate encoder that has similar performance on the downstream tasks as the target encode.
- **Utility:** The utility adversary is to construct a surrogate encoder that behaves normally on different downstream tasks.

Adversary's Background Knowledge:

- Knowledge About Target Model: Only black-box access.
- **Knowledge About Train Data Distribution:** Two cases: (1) we assume the adversary has the same training dataset as the target encoder. (2) we assume that the adversary has totally no information about the target encoder's training dataset.

Conventional Stealing Attacks

Cont-Steal Attacks

Performance of Conventional Attacks

Image encoders are more vulnerable to model stealing attacks then traditional classifier

Performance of Cont-Steal Attacks

Cont-Steal can achieve much better performance then conventional steal attacks

Cost Analysis

	Monetary Cost		Time Cost	
Model	Normal (\$)	Cont-Steal (\$)	Normal (h)	Cont-Steal (h)
SimCLR	58.68	11.83 (1.83 + 10)	20.01	0.62
MoCo	54.83	12.13 (2.13 + 10)	18.69	0.73
BYOL	61.46	12.08 (2.08 + 10)	20.96	0.71
SimSiam	57.14	12.00 (2.00 + 10)	19.46	0.68

Relationship between Accuracy and Agreement

Defense

Perturbation-based Defense

Watermark-based Defense

Defense

Perturbation-based Defense

Watermark-based Defense

Dataset	Target model (acc/wr)	Cont-Steal (acc/wr)	Baseline (acc/wr)
CIFAR10	0.864 / 0.998	0.769 / 0.130	0.871 / 0.095
STL10	0.721 / 0.999	0.702 / 0.034	0.733 / 0.111
SVHN	0.501 / 0.999	0.535 / 0.303	0.492 / 0.103
F-MNIST	0.857 / 0.999	0.813 / 0.061	0.850 / 0.099

Conclusion

In summary, we make the following contributions:

- (1) We pioneer the investigation of the vulnerability of unsupervised image encoders against model stealing attacks. We discover that encoders are more vulnerable than classifiers;
- (2) We propose Cont-Steal, the first contrastive learning-based stealing attack against encoders that outperforms the conventional attacks to a large extent;
- (3) Extensive evaluation shows that the advantageous performance of Cont-Steal is consistently amplified in various settings, especially when the adversary suffers from zero information of the target dataset, limited amount of data, or restricted query budgets.