Mutli Object Tracking principles

Simon Lebeaud

GreenAI U.P.P.A

17-10-2022

(ロ) (部) (注) (注) 注 の(0)

Glossary

- **SOT** Single Object Tracking
- MOT Multiple Object Tracking
 - IoU Intersection over Union

- Motivations
- 2 Litterature
- 3 Conclusion

- Motivations
 Goal
 Challenges
- 2 Litterature
- 3 Conclusion

- MotivationsGoalChallenges
- 2 Litterature
- 3 Conclusion

Mutli Object Tracking principles

Goa

Automatic fish count system

- Detection and classification
- Tracking for counting individuals

200

What is Tracking?

Tracking is the task of estimating or predicting the position of a **moving object** or image at any given time. Steps of tracking are usually like so:

1 Know where the objects are

What is Tracking?

Tracking is the task of estimating or predicting the position of a **moving object** or image at any given time. Steps of tracking are usually like so:

- Know where the objects are
- 2 Assign unique id to each object

What is Tracking?

Tracking is the task of estimating or predicting the position of a **moving object** or image at any given time. Steps of tracking are usually like so:

- Mow where the objects are
- Assign unique id to each object
- **3** Estimate where the object is in the next frame

Tracking types

Two types of tracking :

Tracking types

Two types of tracking :

Image Tracking

Tracking of a **moving image** in a video in order to superimpose content onto it (Augmented reality)

Tracking types

Two types of tracking:

Image Tracking

Tracking of a **moving image** in a video in order to superimpose content onto it (Augmented reality)

Vidéo Tracking

Tracking of a moving object in a video:

Establish a relationship between current detected objects and previous ones.

Two types of object tracking:

Object Tracking types

Two types of object tracking:

SOT

Have only one object of interest, always in the images.

Mostly based on sophisticated models to deal with scale, rotation and illumination variation.

Two types of object tracking :

SOT

Have only **one object of interest**, always in the images.

Mostly based on sophisticated models to deal with scale, rotation and illumination variation.

MOT

Multiple object with similar appearances and geometries.

Detection \rightarrow Identification paradigm.

Mutli Object Tracking principles

- 2 Litterature
- 3 Conclusion

• Frequent occlusions,

- Frequent occlusions,
- Initialization and termination of tracks,

- Frequent occlusions,
- Initialization and termination of tracks,
- Appearance similarity,

- Frequent occlusions,
- Initialization and termination of tracks,
- Appearance similarity,
- interactions between objects

- 1 Motivations
- 2 Litterature
 - Euclidean distance Intersection over Union
 - SORT
 - DeepSORT
 - FairMOT
 - ByteTrack
- 3 Conclusion

- Litterature

Euclidean distance

ByteTrack

Euclidean distance tracking

Utilize the distance between the centroids of the objects detected between two consecutive frames in a video.

- Step 1 Objects are detected, get bounding boxs and calculate their centroid for **t-1** and assign IDs
- Step 2 Detect object and their centroid for t
- Step 3 Calculate euclidean distance between all objects of t-1 and t
- Step 4 Distance smaller than a treshold then two objects are the same and we attribute ID
- Step 5 Distance greater than a treshold, add a **new ID**
- Step 6 If no object attributed to ID, remove the ID

Euclidean distance tracking

Pros

Low computation cost.

Cons

- Works better at high FPS,
- ID switch for close objects,
- Not resilient to occlusion.

- 1 Motivations
- 2 Litterature

Euclidean distance

Intersection over Union

SORT

DeepSORT

FairMOT

ByteTrack

Conclusion

IoU Tracker

- 4 ロ ト 4 御 ト 4 蓮 ト 4 蓮 ト 9 年 9 9 9 9

- 1 Motivations
- 2 Litterature

Euclidean distance Intersection over Union

SORT

DeepSORT FairMOT ByteTrack

3 Conclusion

SORT: Three Stage Tracking

Detection How to identify individuals objects/tracks? Kalman Filter How to predict where track will move? Hungarian Method What track do the detected objects belong to

Estimation Model - Kalman Filter [Kalman, 1960

4 0 5 4 0 5 4 5 5 5 9 9 9

imon Lebeaud GreenAl O.F.F.

Estimation Model - Kalman Filter

 $Y_k = CX_{kM} + z_k$

Measurement Input

990

Y = Measurement of the state

z = Measuerement Noise

on Lebeaud GreenAl U

Data Association - Hungarian [Kuhn, 1955]

Also called the Kuhn-Munkres algorithm, this method is used to solve the **association problem**. Given a adjacency matrix (of IoU

in this case) we can find the optimal assignment such that we minimise the total cost, i.e find the correct associations with only $O(n^3)$ complexity.

4 D > 4 A > 4 B > 4 B > B 9 9 9

Data Association - Hungarian

40 1 40 1 4 2 1 4 2 1 9 9 9

Track2

(Pred)

0

SORT

Pros

Low computation cost.

Cons

- Very dependant on detection
- Lots of ID switch for similar objects,
- Not resilient to occlusion.
- No Re-id

- Motivations
- 2 Litterature

Euclidean distance Intersection over Union

DeepSORT

FairMOT

ByteTrack

Conclusion

DeepSort[Wojke et al., 2017]

Same base as SORT:

Estimation with Kalman filter

But add **two** different metrics:

- Mahalanobis distance
- ② Deep appearance cosine distance

Squared Mahalanobis distance

Compute the **distance between** predicted Kalman states (**distribution**) and newly arrived measurements (**points**)

$$d^{(1)}(i,j) = (d_j - y_i)^T S_i^{-1}(d_j - y_i)$$

Distribution denoted by (y_i, S_i) and bounding box denoted by d_i

- 4 ロ ト 4 御 ト 4 蓮 ト 4 蓮 ト 9 年 9 9 9 9

Assignment Problem

Mahalanobis Distance:

$$d^{(1)}(i,j) = (d_j - y_i)^T S_i^{-1}(d_j - y_i)$$
(1)

Smallest **cosine distance** between the i-th track and j-th detection in **appearance space** :

$$d^{(2)}(i,j) = \min\{1(r_j)^{\top} r_k^{(i)} | r_k^{(i)} R_i\}$$
 (2)

Combination of the two with weighted sum

$$c_{i,j} = \lambda d^{(1)}(i,j) + (1\lambda)d^{(2)}(i,j)$$
 (3)

4 D F 4 D F 4 D F 4 D F 4 D F 4 D F

Matching Cascade

Motivations

When objects are occluded for a long period of time, the **location uncertainty increases**.

When two track compete, Mahalanobis distance only chooses the closer target.

Therefore we need to **give priority** to more frequently seen objects.

Listing 1 Matching Cascade

Input: Track indices $\mathcal{T} = \{1, \dots, N\}$, Detection indices $\mathcal{D} = \{1, \dots, N\}$

- {1,..., M}, Maximum age A_{max}
 1: Compute cost matrix C = [c_{i,j}] using Eq. 5
- 2: Compute gate matrix $\mathbf{B} = [b_{i,j}]$ using Eq. 5
- Initialize set of matches M ← ∅
- 4: Initialize set of unmatched detections $\mathcal{U} \leftarrow \mathcal{D}$
- 5: for $n \in \{1, \dots, A_{\max}\}$ do
- Select tracks by age T_n ← {i ∈ T | a_i = n}
- 7: $[x_{i,j}] \leftarrow \min_{\mathbf{Cost_matching}}(\mathbf{C}, \mathcal{T}_n, \mathcal{U})$
- 8: $\mathcal{M} \leftarrow \mathcal{M} \cup \{(i,j) \mid b_{i,j} \cdot x_{i,j} > 0\}$
- 9: $\mathcal{U} \leftarrow \mathcal{U} \setminus \{j \mid \sum_{i} b_{i,j} \cdot x_{i,j} > 0\}$ 10: end for
- 11: return M, U

mon Lebeaud GreenAl U.P.I

Deep Appearance Descriptor

Name	Patch Size/Stride	Output Size
Conv 1	$3 \times 3/1$	$32 \times 128 \times 64$
Conv 2	$3 \times 3/1$	$32 \times 128 \times 64$
Max Pool 3	$3 \times 3/2$	$32 \times 64 \times 32$
Residual 4	$3 \times 3/1$	$32 \times 64 \times 32$
Residual 5	$3 \times 3/1$	$32 \times 64 \times 32$
Residual 6	$3 \times 3/2$	$64 \times 32 \times 16$
Residual 7	$3 \times 3/1$	$64 \times 32 \times 16$
Residual 8	$3 \times 3/2$	$128 \times 16 \times 8$
Residual 9	$3 \times 3/1$	$128 \times 16 \times 8$
Dense 10		128
Batch and ℓ_2 normalization		128

御 ト 4 重 ト 4 重 ト の Q ()

mon Lebeaud GreenAI U.P.F

- Motivations
- 2 Litterature

Euclidean distance Intersection over Union

SORT

DeepSORT

FairMOT

ByteTrack

Conclusion

Problem with current One Shot Trackers

CenterTrack [Zhou et al., 2020]

Problem : There is no re-id so if the object disappear, the tracking also.

FairMOT [Zhang et al., 2021b]

Re-ID

Extract low level feature to be compared with new box features.

Keep feature maps in memory to counter occlusion.

40 1 40 1 40 1 40 1 40 1

imon Lebeaud GreenAl U

FairMOT

Why we don't want fairMOT

Only good for autonomus vehicules where objects are easy to discriminated

- 1 Motivations
- 2 Litterature

Euclidean distance
Intersection over Union
SORT
DeepSORT

FairMOT

ByteTrack

3 Conclusion

ByteTrack[Zhang et al., 2021a

Algorithm 1: Pseudo-code of BYTE.

```
Input: A video sequence V; object detector Det; detection score
            threshold \tau
   Output: Tracks T of the video

    Initialization: T ← ∅

2 for frame fi. in V do
        /* Figure 2(a) */
        /* predict detection boxes & scores */
        \mathcal{D}_k \leftarrow \text{Det}(f_k)
        \mathcal{D}_{high} \leftarrow \emptyset
        \mathcal{D}_{low} \leftarrow \emptyset
        for d in D_k do
             if d.score > \tau then
                   D_{high} \leftarrow D_{high} \cup \{d\}
 8
              end
              else
10
                  D_{low} \leftarrow D_{low} \cup \{d\}
11
             end
12
13
        end
        /* predict new locations of tracks */
        for t in T do
14
             t \leftarrow KalmanFilter(t)
        end
16
        /* Figure 2(b) */
        /* first association */
        Associate T and D_{high} using Similarity#1
17
        D_{remain} \leftarrow remaining object boxes from <math>D_{high}
18
```

```
/* Figure 2(c) */
        /* second association */
        Associate T_{remain} and D_{low} using similarity#2
20
21
        \mathcal{T}_{re-remain} \leftarrow \text{remaining tracks from } \mathcal{T}_{remain}
        /* delete unmatched tracks */
        T \leftarrow T \setminus T_{re-remain}
22
        /* initialize new tracks */
        for d in D_{remain} do
23
24
             \mathcal{T} \leftarrow \mathcal{T} \cup \{d\}
        end
26 end
27 Return: T
```

40 1 40 1 4 2 1 4 2 1 9 9 9

 $T_{remain} \leftarrow remaining tracks from T$

- Motivations
- 2 Litterature
- 3 Conclusion

Benchmark [Du et al., 2022]

non Lebeaud GreenAl U.

What's next

- Keep update the fish database
- Continue improve the detection model,
- Test tracking techniques on fish database,

Thanks!

- イロナ (間) (重) (重) (目) (1)

References I

[Bewley et al., 2016] Bewley, A., Ge, Z., Ott, L., Ramos, F., and Upcroft, B. (2016).

Simple online and realtime tracking.

[Du et al., 2022] Du, Y., Song, Y., Yang, B., and Zhao, Y. (2022).

Strongsort: Make deepsort great again.

[Kalman, 1960] Kalman, R. E. (1960).

A new approach to linear filtering and prediction problems.

[Kuhn, 1955] Kuhn, H. W. (1955).

The Hungarian Method for the Assignment Problem.

References II

[Wojke et al., 2017] Wojke, N., Bewley, A., and Paulus, D. (2017).

Simple online and realtime tracking with a deep association metric.

[Zhang et al., 2021a] Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P., Liu, W., and Wang, X. (2021a).

Bytetrack: Multi-object tracking by associating every detection box.

[Zhang et al., 2021b] Zhang, Y., Wang, C., Wang, X., Zeng, W., and Liu, W. (2021b).

FairMOT: On the fairness of detection and re-identification in multiple object tracking.

- 4 ロ ト 4 御 ト 4 注 ト 4 注 ・ りなぐ

References III

[Zhou et al., 2020] Zhou, X., Koltun, V., and Krähenbühl, P. (2020).

Tracking objects as points.