Devoir facultatif n° 1

Le but de ce problème est de présenter la méthode de Cardan pour la résolution des équations de degré 3.

Pour tout réel y, on notera $\sqrt[3]{y}$ l'unique réel x tel que $x^3 = y$.

A). Rappels sur les équations du second degré

Soit a et b deux complexes. On considère l'équation

$$z^2 + az + b = 0 \tag{1}$$

- 1) Démontrer que l'équation (1) admet exactement une ou deux solutions. On notera z_1 et z_2 les deux solutions (avec $z_1 = z_2$ s'il n'y a qu'une solution).
- 2) Montrer $z_1 + z_2 = -a$ et $z_1 z_2 = b$.
- 3) Montrer que pour tout couple de complexes (u, v), on a

$$\{u, v\} = \{z_1, z_2\} \iff \begin{cases} uv = b \\ \text{et } u + v = -a \end{cases}$$

B). Réduction à une équation sans terme de degré 2

Soit $z \in \mathbb{C}$. On considère l'équation suivante d'inconnue z:

$$z^3 + az^2 + bz + c = 0 {,} {(2)}$$

où a, b et c sont des complexes.

4) Montrer qu'en posant $z'=z+\alpha$, où α est une valeur bien choisie, l'équation (2) est équivalente à l'équation de Cardan, d'inconnue z':

$$z'^3 + pz' + q = 0 , (3)$$

où p et q sont des complexes dépendants de α , a, b et c.

5) Résoudre l'équation (3) dans le cas p=0.

C). Étude de l'équation de Cardan

Soit z_0 un complexe.

6) Montrer qu'il existe u et v vérifiant

$$\begin{cases} u+v = z_0 \\ uv = -\frac{p}{3} \end{cases}$$

On ne cherchera pas à calculer explicitement u et v.

7) Montrer alors que z_0 est solution de (3) si et seulement si u^3 et v^3 sont les deux solutions de

$$Z^2 + qZ - \frac{p^3}{27} = 0. (4)$$

D). Cas réel

Dans cette partie, on considère l'équation (3) dans le cas où p et q sont réels et on cherche ses solutions réelles. Pour cela, on note Δ le discriminant de (4) et on considère l'application

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^3 + px + q.$$

Les solutions réelles de (3) sont les valeurs pour lesquelles f s'annule.

- 8) Étudier les variations de f dans le cas où p < 0. Remarquer en particulier que f admet un minimum local en un point α et un maximum local en un point β . On pose $m = f(\alpha)$ et $M = f(\beta)$.
- 9) Montrer que $mM = \Delta$.
- 10) Étudier les variations de f dans le cas où $p \ge 0$.
- 11) Déduire des trois questions précédentes que, quelle que soit la valeur de p, (3) admet une unique racine réelle si et seulement si $\Delta > 0$ ou p = q = 0.
- 12) Dans le cas où $\Delta > 0$, résoudre l'équation (3).
- 13) Application: déterminer les solutions sur \mathbb{R} de l'équation

$$x^3 - 2x - 5 = 0$$
.

On ne prendra pas peur : l'expression des solutions est assez compliquée.

14) Combien l'équation (3) a t-elle de solutions dans le cas $\Delta \leq 0$?

Le cas $\Delta < 0$ a historiquement motivé l'introduction des complexes par Bombelli au XVIème siècle, alors que les nombres négatifs ont prêté à controverse jusqu'au début du XIXème siècle...

E). Résolution dans le cas complexe

On reprend donc l'équation (3) dans le cas où les coefficients sont complexes et l'on cherche ses solutions dans \mathbb{C} . On a résolu le cas p=0 plus haut, on supposer donc $p\neq 0$. On considère donc l'équation (4). On notera U et V ses racines complexes.

- **15)** Calculer UV. Montrer que $U \neq 0$ et $V \neq 0$.
- 16) Montrer que l'équation $u^3 = U$ admet trois solutions distinctes u_1, u_2, u_3 et exprimer par exemple u_2, u_3 en fonction de u_1 et de $j = \exp\left(\frac{2i\pi}{3}\right)$.
- 17) Soit v_1 le complexe vérifiant $u_1v_1 = -\frac{p}{3}$. Justifier son existence et montrer que $v_1^3 = V$. Donner toutes les autres solutions de l'équation $v^3 = V$ en fonction de v_1 .
- **18)** On pose $\begin{cases} z_1 = u_1 + v_1 \\ z_2 = u_1 j^2 + v_1 j \\ z_3 = u_1 j + v_1 j^2 \end{cases}$ Montrer que z_1, z_2, z_3 sont solutions de l'équation (3).

19) Montrer que réciproquement si z_0 est une racine de (3) alors z_0 est l'une des trois valeurs $z_1, z_2 \text{ ou } z_3.$

F). Équation de Bombelli

En 1572, Bombelli s'intéresse à la résolution de l'équation

$$x^3 = 15x + 4 (5)$$

Autrement dit, il s'agit de l'équation (3) dans le cas particulier p = -15 et q = -4.

Il n'y a en fait pas besoin d'utiliser la méthode de Cardan pour la résoudre. Néanmoins, c'est un bon exemple pour comprendre pourquoi et comment le passage par les complexes peut-être utile pour résoudre sur $\mathbb R$ certaines équations de degré 3.

- **20)** Comment peut-on résoudre directement (5) sur \mathbb{R} ?
- **21)** On applique maintenant la méthode de Cardan : on note U et V les racines de (4), en prenant U la racine de partie imaginaire positive. Calculer U et V.
- 22) On cherche maintenant à exprimer une racine cubique de U sous forme algébrique. Pour cela, on va chercher x et y entiers vérifiant

$$(x+iy)^3 = U (6)$$

Soit donc x et y deux entiers relatifs vérifiant cette équation. Montrer qu'alors x vérifie une équation de degré 3 à coefficients entiers qu'on précisera. En déduire que x est pair. On posera alors k = x/2.

- **23)** Donner une équation de degré 3 vérifiée par k. Remarquer que cette équation a une solution évidente, solution de l'équation de degré 3 sur x trouvée précédemment.
- **24)** Montrer qu'on peut en tirer une solution de (6) et exprimer sous forme algébrique une racine cubique u de U.
- **25)** Montrer qu'on retrouve ainsi les solutions de (5).

G). Un exemple

On s'intéresse à l'équation $x^3 - 7x + 6 = 0$.

- **26)** Montrer comment la résoudre directement.
- 27) Appliquer la méthode de Cardan et vérifier qu'on retrouve les mêmes racines.

