## Probing Strangeness Canonical Ensemble with $K^-, \phi(1020)$ and $\Xi^-$ Production in Au+Au Collisions at $\sqrt{s_{\rm NN}}=3\,{\rm GeV}$

I. Aggarwal, <sup>41</sup> M. M. Aggarwal, <sup>41</sup> Z. Ahammed, <sup>60</sup> I. Alekseev, <sup>3, 35</sup> D. M. Anderson, <sup>55</sup> A. Aparin, <sup>28</sup> J. G. Ball Cap, <sup>20</sup> K. Barish, <sup>10</sup> A. Behera, <sup>52</sup> R. Bellwied, <sup>20</sup> P. Bhagat, <sup>27</sup> A. Bhasin, <sup>27</sup> J. Bielcik, <sup>14</sup> J. Bielcikova, <sup>38</sup> I. G. Bordyuzhin, J. D. Brandenburg, A. V. Brandin, I. Bunzarov, B. J. Butterworth, X. Z. Cai, H. Caines, 3 M. Calderón de la Barca Sánchez, <sup>8</sup> D. Cebra, <sup>8</sup> I. Chakaberia, <sup>31,6</sup> P. Chaloupka, <sup>14</sup> B. K. Chan, <sup>9</sup> F-H. Chang, <sup>37</sup> Z. Chang,<sup>6</sup> N. Chankova-Bunzarova,<sup>28</sup> A. Chatterjee,<sup>11</sup> S. Chattopadhyay,<sup>60</sup> D. Chen,<sup>10</sup> J. Chen,<sup>49</sup> J. H. Chen,<sup>18</sup> X. Chen, <sup>48</sup> Z. Chen, <sup>49</sup> J. Cheng, <sup>57</sup> M. Chevalier, <sup>10</sup> S. Choudhury, <sup>18</sup> W. Christie, <sup>6</sup> X. Chu, <sup>6</sup> H. J. Crawford, <sup>7</sup> M. Csanád, <sup>16</sup> M. Daugherity, <sup>1</sup> T. G. Dedovich, <sup>28</sup> I. M. Deppner, <sup>19</sup> A. A. Derevschikov, <sup>43</sup> A. Dhamija, <sup>41</sup> L. Di Carlo, <sup>62</sup> L. Didenko, <sup>6</sup> P. Dixit, <sup>22</sup> X. Dong, <sup>31</sup> J. L. Drachenberg, <sup>1</sup> E. Duckworth, <sup>29</sup> J. C. Dunlop, <sup>6</sup> N. Elsev, <sup>62</sup> 12 J. Engelage, G. Eppley, S. Esumi, A. Ewigleben, A. Ewigleben, C. Eyser, R. Fatemi, F. M. Fawzi, Engelage, G. Eyser, Externity, Esternity, Ester 13 S. Fazio, P. Federic, S. J. Fedorisin, S. L. Feng, Y. Feng, 44 P. Filip, 28 E. Finch, 51 Y. Fisyak, A. Francisco, 63 14 C. Fu, <sup>11</sup> L. Fulek, <sup>2</sup> C. A. Gagliardi, <sup>55</sup> T. Galatyuk, <sup>15</sup> F. Geurts, <sup>45</sup> N. Ghimire, <sup>54</sup> A. Gibson, <sup>59</sup> K. Gopal, <sup>23</sup> 15 X. Gou,<sup>49</sup> D. Grosnick,<sup>59</sup> A. Gupta,<sup>27</sup> W. Guryn,<sup>6</sup> A. I. Hamad,<sup>29</sup> A. Hamed,<sup>5</sup> Y. Han,<sup>45</sup> S. Harabasz,<sup>15</sup> 16 M. D. Harasty, <sup>8</sup> J. W. Harris, <sup>63</sup> H. Harrison, <sup>30</sup> S. He, <sup>11</sup> W. He, <sup>18</sup> X. H. He, <sup>26</sup> Y. He, <sup>49</sup> S. Heppelmann, <sup>8</sup> 17 S. Heppelmann, <sup>42</sup> N. Herrmann, <sup>19</sup> E. Hoffman, <sup>20</sup> L. Holub, <sup>14</sup> Y. Hu, <sup>18</sup> H. Huang, <sup>37</sup> H. Z. Huang, <sup>9</sup> S. L. Huang, <sup>52</sup> 18 T. Huang,<sup>37</sup> X. Huang,<sup>57</sup> Y. Huang,<sup>57</sup> T. J. Humanic,<sup>39</sup> G. Igo,<sup>9</sup>,\* D. Isenhower,<sup>1</sup> W. W. Jacobs,<sup>25</sup> C. Jena,<sup>23</sup> A. Jentsch,<sup>6</sup> Y. Ji,<sup>31</sup> J. Jia,<sup>6,52</sup> K. Jiang,<sup>48</sup> X. Ju,<sup>48</sup> E. G. Judd,<sup>7</sup> S. Kabana,<sup>53</sup> M. L. Kabir,<sup>10</sup> S. Kagamaster,<sup>32</sup> 19 20 D. Kalinkin, <sup>25,6</sup> K. Kang, <sup>57</sup> D. Kapukchyan, <sup>10</sup> K. Kauder, <sup>6</sup> H. W. Ke, <sup>6</sup> D. Keane, <sup>29</sup> A. Kechechyan, <sup>28</sup> M. Kelsey, <sup>62</sup> 21 Y. V. Khyzhniak, <sup>35</sup> D. P. Kikoła, <sup>61</sup> C. Kim, <sup>10</sup> B. Kimelman, <sup>8</sup> D. Kincses, <sup>16</sup> I. Kisel, <sup>17</sup> A. Kiselev, <sup>6</sup> A. G. Knospe, <sup>32</sup> 22 H. S. Ko,<sup>31</sup> L. Kochenda,<sup>35</sup> L. K. Kosarzewski,<sup>14</sup> L. Kramarik,<sup>14</sup> P. Kravtsov,<sup>35</sup> L. Kumar,<sup>41</sup> S. Kumar,<sup>26</sup> 23 R. Kunnawalkam Elayavalli,  $^{63}$  J. H. Kwasizur,  $^{25}$  R. Lacey,  $^{52}$  S. Lan,  $^{11}$  J. M. Landgraf,  $^{6}$  J. Lauret,  $^{6}$  A. Lebedev,  $^{6}$  R. Lednicky,  $^{28,38}$  J. H. Lee,  $^{6}$  Y. H. Leung,  $^{31}$  C. Li,  $^{49}$  C. Li,  $^{48}$  W. Li,  $^{45}$  X. Li,  $^{48}$  Y. Li,  $^{57}$  X. Liang,  $^{10}$  Y. Liang,  $^{29}$ 24 R. Licenik, <sup>38</sup> T. Lin, <sup>49</sup> Y. Lin, <sup>11</sup> M. A. Lisa, <sup>39</sup> F. Liu, <sup>11</sup> H. Liu, <sup>25</sup> H. Liu, <sup>11</sup> P. Liu, <sup>52</sup> T. Liu, <sup>63</sup> X. Liu, <sup>39</sup> Y. Liu, <sup>55</sup> 26 Z. Liu,<sup>48</sup> T. Ljubicic,<sup>6</sup> W. J. Llope,<sup>62</sup> R. S. Longacre,<sup>6</sup> E. Loyd,<sup>10</sup> N. S. Lukow,<sup>54</sup> X. F. Luo,<sup>11</sup> L. Ma,<sup>18</sup> R. Ma,<sup>6</sup> Y. G. Ma,<sup>18</sup> N. Magdy,<sup>12</sup> D. Mallick,<sup>36</sup> S. Margetis,<sup>29</sup> C. Markert,<sup>56</sup> H. S. Matis,<sup>31</sup> J. A. Mazer,<sup>46</sup> N. G. Minaev,<sup>43</sup> 27 28 S. Mioduszewski, <sup>55</sup> B. Mohanty, <sup>36</sup> M. M. Mondal, <sup>52</sup> I. Mooney, <sup>62</sup> D. A. Morozov, <sup>43</sup> A. Mukherjee, <sup>16</sup> M. Nagy, <sup>16</sup> J. D. Nam,<sup>54</sup> Md. Nasim,<sup>22</sup> K. Nayak,<sup>11</sup> D. Neff,<sup>9</sup> J. M. Nelson,<sup>7</sup> D. B. Nemes,<sup>63</sup> M. Nie,<sup>49</sup> G. Nigmatkulov,<sup>35</sup> T. Niida,<sup>58</sup> R. Nishitani,<sup>58</sup> L. V. Nogach,<sup>43</sup> T. Nonaka,<sup>58</sup> A. S. Nunes,<sup>6</sup> G. Odyniec,<sup>31</sup> A. Ogawa,<sup>6</sup> S. Oh,<sup>31</sup> 31 V. A. Okorokov, <sup>35</sup> B. S. Page, <sup>6</sup> R. Pak, <sup>6</sup> J. Pan, <sup>55</sup> A. Pandav, <sup>36</sup> A. K. Pandey, <sup>58</sup> Y. Panebratsev, <sup>28</sup> P. Parfenov, <sup>35</sup> 32 B. Pawlik, <sup>40</sup> D. Pawlowska, <sup>61</sup> H. Pei, <sup>11</sup> C. Perkins, <sup>7</sup> L. Pinsky, <sup>20</sup> R. L. Pintér, <sup>16</sup> J. Pluta, <sup>61</sup> B. R. Pokhrel, <sup>54</sup> 33 G. Ponimatkin, <sup>38</sup> J. Porter, <sup>31</sup> M. Posik, <sup>54</sup> V. Prozorova, <sup>14</sup> N. K. Pruthi, <sup>41</sup> M. Przybycien, <sup>2</sup> J. Putschke, <sup>62</sup> 34 H. Qiu,<sup>26</sup> A. Quintero,<sup>54</sup> C. Racz,<sup>10</sup> S. K. Radhakrishnan,<sup>29</sup> N. Raha,<sup>62</sup> R. L. Ray,<sup>56</sup> R. Reed,<sup>32</sup> H. G. Ritter,<sup>31</sup> 35 M. Robotkova, <sup>38</sup> O. V. Rogachevskiy, <sup>28</sup> J. L. Romero, <sup>8</sup> D. Roy, <sup>46</sup> L. Ruan, <sup>6</sup> J. Rusnak, <sup>38</sup> N. R. Sahoo, <sup>49</sup> H. Sako, <sup>58</sup> S. Salur, <sup>46</sup> J. Sandweiss, <sup>63,\*</sup> S. Sato, <sup>58</sup> W. B. Schmidke, <sup>6</sup> N. Schmitz, <sup>33</sup> B. R. Schweid, <sup>52</sup> F. Seck, <sup>15</sup> J. Seger, <sup>13</sup> 37 M. Sergeeva, R. Seto, P. Seyboth, N. Shah, L. Shahaliev, P. V. Shanmuganathan, M. Shao, R. Sh 38 J. Singh, <sup>41</sup> S. Singha, <sup>26</sup> M. J. Skoby, <sup>44</sup> N. Smirnov, <sup>63</sup> Y. Söhngen, <sup>19</sup> W. Solyst, <sup>25</sup> P. Sorensen, <sup>6</sup> H. M. Spinka, <sup>4</sup>, \* B. Srivastava,<sup>44</sup> T. D. S. Stanislaus,<sup>59</sup> M. Stefaniak,<sup>61</sup> D. J. Stewart,<sup>63</sup> M. Strikhanov,<sup>35</sup> B. Stringfellow,<sup>44</sup> 41 A. A. P. Suaide, 47 M. Sumbera, 38 B. Summa, 42 X. M. Sun, 11 X. Sun, 12 Y. Sun, 48 Y. Sun, 21 B. Surrow, 54 42 D. N. Svirida, Z. W. Sweger, P. Szymanski, A. H. Tang, Z. Tang, A. Taranenko, T. Tarnowsky, A. Taranenko, T. Tarnowsky, J. H. Thomas, <sup>31</sup> A. R. Timmins, <sup>20</sup> D. Tlusty, <sup>13</sup> T. Todoroki, <sup>58</sup> M. Tokarev, <sup>28</sup> C. A. Tomkiel, <sup>32</sup> S. Trentalange, <sup>9</sup> 44 R. E. Tribble, <sup>55</sup> P. Tribedy, <sup>6</sup> S. K. Tripathy, <sup>16</sup> T. Truhlar, <sup>14</sup> B. A. Trzeciak, <sup>14</sup> O. D. Tsai, <sup>9</sup> Z. Tu, <sup>6</sup> T. Ullrich, <sup>6</sup> 45 D. G. Underwood, <sup>4,59</sup> I. Upsal, <sup>45</sup> G. Van Buren, J. Vanek, <sup>38</sup> A. N. Vasiliev, <sup>43</sup> I. Vassiliev, <sup>17</sup> V. Verkest, <sup>62</sup> F. Videbæk, S. Vokal, S. A. Voloshin, E. Wang, G. Wang, J. S. Wang, P. Wang, P. Wang, Y. Wang, Y. Wang, T. Wang, T. Wang, S. Wang, T. Wang, T. Wang, S. Wang, S. Wang, P. Wang, S. Wang 47 Z. Wang,<sup>49</sup> J. C. Webb,<sup>6</sup> P. C. Weidenkaff,<sup>19</sup> L. Wen,<sup>9</sup> G. D. Westfall,<sup>34</sup> H. Wieman,<sup>31</sup> S. W. Wissink,<sup>25</sup> J. Wu,<sup>26</sup> 48 Y. Wu,  $^{10}$  B. Xi,  $^{50}$  Z. G. Xiao,  $^{57}$  G. Xie,  $^{31}$  W. Xie,  $^{44}$  H. Xu,  $^{21}$  N. Xu,  $^{31}$  Q. H. Xu,  $^{49}$  Y. Xu,  $^{49}$  Z. Xu,  $^{6}$  Z. Xu,  $^{9}$ C. Yang, <sup>49</sup> Q. Yang, <sup>49</sup> S. Yang, <sup>45</sup> Y. Yang, <sup>37</sup> Z. Ye, <sup>45</sup> Z. Ye, <sup>12</sup> L. Yi, <sup>49</sup> K. Yip, <sup>6</sup> Y. Yu, <sup>49</sup> H. Zbroszczyk, <sup>61</sup> W. Zha, <sup>48</sup> C. Zhang, <sup>52</sup> D. Zhang, <sup>11</sup> J. Zhang, <sup>49</sup> S. Zhang, <sup>12</sup> S. Zhang, <sup>18</sup> X. P. Zhang, <sup>57</sup> Y. Zhang, <sup>26</sup> Y. Zhang, <sup>48</sup> Y. Zhang, <sup>11</sup> 51 Z. J. Zhang, <sup>37</sup> Z. Zhang, <sup>6</sup> Z. Zhang, <sup>12</sup> J. Zhao, <sup>44</sup> C. Zhou, <sup>18</sup> Y. Zhou, <sup>11</sup> X. Zhu, <sup>57</sup> M. Zurek, <sup>4</sup> and M. Zyzak<sup>17</sup>

## (STAR Collaboration)

53

54

55

57

72

101

102

103

104

105

106

107

110

111

112

113

114

115

```
<sup>1</sup> Abilene Christian University, Abilene, Texas 79699
                    <sup>2</sup>AGH University of Science and Technology, FPACS, Cracow 30-059, Poland
<sup>3</sup> Alikhanov Institute for Theoretical and Experimental Physics NRC "Kurchatov Institute", Moscow 117218, Russia
                                 <sup>4</sup>Argonne National Laboratory, Argonne, Illinois 60439
                         <sup>5</sup>American University of Cairo, New Cairo 11835, New Cairo, Egypt
                               <sup>6</sup>Brookhaven National Laboratory, Upton, New York 11973
                                  <sup>7</sup> University of California, Berkeley, California 94720
                                   <sup>8</sup> University of California, Davis, California 95616
                                <sup>9</sup> University of California, Los Angeles, California 90095
                                 <sup>10</sup>University of California, Riverside, California 92521
                              <sup>11</sup>Central China Normal University, Wuhan, Hubei 430079
                              <sup>12</sup> University of Illinois at Chicago, Chicago, Illinois 60607
                                     <sup>13</sup>Creighton University, Omaha, Nebraska 68178
                  <sup>14</sup>Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic
                           <sup>15</sup> Technische Universität Darmstadt, Darmstadt 64289, Germany
                            <sup>16</sup>ELTE Eötvös Loránd University, Budapest, Hungary H-1117
                     <sup>17</sup>Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany
                                          <sup>18</sup>Fudan University, Shanghai, 200433
                                 <sup>19</sup> University of Heidelberg, Heidelberg 69120, Germany
                                     <sup>20</sup> University of Houston, Houston, Texas 77204
                                     <sup>21</sup> Huzhou University, Huzhou, Zhejiang 313000
             <sup>22</sup>Indian Institute of Science Education and Research (IISER), Berhampur 760010, India
          <sup>23</sup>Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
                               <sup>24</sup>Indian Institute Technology, Patna, Bihar 801106, India
                                   <sup>25</sup>Indiana University, Bloomington, Indiana 47408
               <sup>26</sup>Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000
                                     <sup>27</sup> University of Jammu, Jammu 180001, India
                            <sup>28</sup> Joint Institute for Nuclear Research, Dubna 141 980, Russia
                                       <sup>29</sup>Kent State University, Kent, Ohio 44242
                              <sup>30</sup> University of Kentucky, Lexington, Kentucky 40506-0055
                         <sup>31</sup>Lawrence Berkeley National Laboratory, Berkeley, California 94720
                                  <sup>32</sup>Lehigh University, Bethlehem, Pennsylvania 18015
                              <sup>33</sup> Max-Planck-Institut für Physik, Munich 80805, Germany
                              <sup>34</sup> Michigan State University, East Lansing, Michigan 48824
                       <sup>35</sup>National Research Nuclear University MEPhI, Moscow 115409, Russia
                <sup>36</sup>National Institute of Science Education and Research, HBNI, Jatni 752050, India
                                   <sup>37</sup>National Cheng Kung University, Tainan 70101
                         <sup>38</sup>Nuclear Physics Institute of the CAS, Rez 250 68, Czech Republic
                                     <sup>39</sup>Ohio State University, Columbus, Ohio 43210
                              <sup>40</sup>Institute of Nuclear Physics PAN, Cracow 31-342, Poland
                                     <sup>41</sup> Panjab University, Chandigarh 160014, India
                        <sup>42</sup>Pennsylvania State University, University Park, Pennsylvania 16802
              <sup>43</sup>NRC "Kurchatov Institute", Institute of High Energy Physics, Protvino 142281, Russia
                                  <sup>44</sup>Purdue University, West Lafayette, Indiana 47907
                                         <sup>45</sup>Rice University, Houston, Texas 77251
                                  <sup>46</sup>Rutgers University, Piscataway, New Jersey 08854
                              <sup>47</sup> Universidade de São Paulo, São Paulo, Brazil 05314-970
                        <sup>48</sup> University of Science and Technology of China, Hefei, Anhui 230026
                                   <sup>49</sup>Shandong University, Qingdao, Shandong 266237
              <sup>50</sup>Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
                       <sup>51</sup>Southern Connecticut State University, New Haven, Connecticut 06515
                            <sup>52</sup>State University of New York, Stony Brook, New York 11794
                  <sup>53</sup>Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
                                 <sup>54</sup> Temple University, Philadelphia, Pennsylvania 19122
                                <sup>55</sup> Texas A&M University, College Station, Texas 77843
                                       <sup>56</sup> University of Texas, Austin, Texas 78712
                                          <sup>57</sup> Tsinghua University, Beijing 100084
                              <sup>58</sup> University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
                                   <sup>59</sup> Valparaiso University, Valparaiso, Indiana 46383
                              <sup>60</sup> Variable Energy Cyclotron Centre, Kolkata 700064, India
                             <sup>61</sup> Warsaw University of Technology, Warsaw 00-661, Poland
                                  <sup>62</sup> Wayne State University, Detroit, Michigan 48201
```

## <sup>63</sup> Yale University, New Haven, Connecticut 06520 (Dated: September 12, 2021)

We report the first multi-differential measurements of strange hadrons of  $K^-$ ,  $\phi$  and  $\Xi^-$  yields as well as the ratios of  $\phi/K^-$  and  $\phi/\Xi^-$  in Au+Au collisions at  $\sqrt{s_{\rm NN}}=3\,{\rm GeV}$  with the STAR experiment fixed target configuration at RHIC. The  $\phi$  mesons and  $\Xi^-$  hyperons are measured through hadronic decay channels,  $\phi \to K^+K^-$  and  $\Xi^- \to \Lambda\pi^-$ . Collision centrality and rapidity dependence of the transverse spectra for these strange hadrons are presented. The  $4\pi$  yields and ratios are compared to thermal model and hadronic transport model predictions. At the collision energy, thermal model with grand canonical ensemble (GCE) under-predicts the  $\phi/K^-$  ratio while the result of canonical ensemble (CE) calculations reproduce well the ratios of  $\phi/K^-$ , with the correlation length  $r_c \sim 2.7\,{\rm fm}$ , and  $\phi/\Xi^-$ ,  $r_c \sim 4.2\,{\rm fm}$ , for the 0-10% central collisions. Hadronic transport models including high mass resonance decays could also describe the ratios. While thermal calculations with GCE work well for strangeness production in high energy collisions, the change to CE at 3 GeV implies a rather different medium property at high baryon density.

Relativistic heavy ion physics is aiming at the detailed <sup>170</sup> investigation of phase structures of strongly interacting <sup>171</sup> matter, governed by quantum chromodynamics (QCD), <sup>172</sup> under extreme conditions of high temperature and den- <sup>173</sup> sity [1–3]. Particle production has been studied to inves- <sup>174</sup> tigate properties of the produced QCD matter in heavy- <sup>175</sup> ion collisions. The strange quark mass is comparable to <sup>176</sup> the QCD renormalization scale ( $\Lambda_{\rm QCD} \sim 200$  MeV) [4, 5], <sup>177</sup> therefore strange quark dynamics plays an important role <sup>178</sup> in understanding the Equation-of-State (EoS) of QCD <sup>179</sup> matter particularly in the high density region [6–11].

Statistical thermal models have often been used to 181 characterize thermal properties of the produced me-182 dia [12–18]. In these models, grand canonical ensem-183 ble (GCE) and canonical ensemble (CE) statistical de-184 scriptions can be applied to conserve electric charge, 185 baryon number, and strangeness number in order to 186 compute the final state particle yields. Both GCE and 187 CE models are able to describe various particle yields 188 including strange particles produced in heavy-ion collisions at RHIC and the LHC at center-of-mass energy  $(\sqrt{s_{\rm NN}})$  greater than 7.7 GeV. It has been argued that at lower energies, strangeness number needs to be conserved locally on an event-by-event basis described by the  $_{_{193}}$ CE, which leads to a reduction in the yields of hadrons  $_{_{194}}$ with non-zero strangeness number ("Canonical Suppres-  $_{\scriptscriptstyle{195}}$ sion") [13, 19, 20], but not for the  $\phi(1020)$  meson with zero net strangeness number (S=0). The  $\phi/K^-$  ratio is expected to increase with decreasing collision energy in  $_{\tiny 198}$ models using the CE treatment for strangeness, opposite 199 to the trend in the GCE treatment. The canonical sup-  $_{\scriptscriptstyle{200}}$ pression power for  $\Xi^-$  (S=2) is even larger than for  $K^-$ (S=1). The  $\phi/K^-$  and  $\phi/\Xi^-$  ratios offer a unique test to  $_{_{202}}$ scrutinize thermodynamic properties of strange quarks in the hot and dense QCD environment.

In heavy-ion collisions, the near/sub-threshold production of multi-strange hadrons can be achieved from the multiple collisions of nucleons, produced particles, and short-lived resonances [21]. The particle production in heavy-ion collisions below its free nucleon-nucleon (NN)

\* Deceased

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

155

158

159

161

162

164

165

167

168

threshold ( $\sqrt{s_{\rm NN}} \sim 2.89 \, {\rm GeV}$  for  $\phi$  and  $\sim 3.25 \, {\rm GeV}$  for  $\Xi^-$ ) is expected to be sensitive to the stiffness of the nuclear EoS at high density [22], as it is for single-strange hadrons [9, 23]. The near/sub-threshold production further provides the possibility to observe exotic states of QCD matter [24] and signatures of "soft deconfinement" [25].

Previous measurements show that the  $\phi/K^-$  ratio in heavy-ion collisions stays remarkably flat ( $\sim$ 0.15) at collision energies  $\sqrt{s_{\rm NN}} > 5$  GeV [26–28]. Recent measurements of the  $\phi/K^-$  ratio in heavy-ion collisions at collision energies below the  $\phi$  free NN-threshold show a hint of relative enhancement compared to those from high energies [29–32], indicative of the applicability of the CE description for strangeness production at these energies. In this Letter, we report high precision measurement of  $\phi/K^-$  and  $\phi/\Xi^-$  ratios in Au+Au collisions at  $\sqrt{s_{\rm NN}} = 3$  GeV from the STAR experiment.

The dataset used in this analysis was collected under the fixed target (FXT) setup [33] in the 2018 RHIC run. A single beam was provided by RHIC with total energy equal to 3.85 GeV/nucleon and incident on a gold target of thickness 0.25 mm, corresponding to a 1% interaction probability. The target is installed inside the vacuum pipe, 2 cm below the center of the beam axis, and located 200 cm to the west of the center of the STAR detector. The main detectors used are the Time Projection Chamber (TPC) [34], the Time of Flight (TOF) detector [35], and the Beam-Beam Counter (BBC) [36]. The trigger is provided by the signal in the east BBC detector and at least five hits in the TOF detector. Tracking and particle identification (PID) are done using the TPC and TOF. Both the TPC and TOF detectors have full azimuthal coverage within a pseudorapidity range of  $0 < \eta < 1.88$  for the TPC and  $0 < \eta < 1.5$  for the TOF in FXT mode [34, 35]. Events are selected with the offline reconstructed collision vertex within 1.5 cm of the target center along the beam direction. Approximately  $2.6 \times 10^8$ minimum bias (MB) triggered events passed the selection criteria and are used in this analysis.

The centrality class is selected using measured charged particle multiplicity within the TPC acceptance. A Monte Carlo Glauber model, used in conjunction with a negative binomial distribution to model particle production in hadronic collisions, is optimized in order to best match the data and determine the centrality class. Due to the trigger inefficiency in the low multiplicity region (corresponding to the most peripheral collisions), we only report the results from the 0--60% centrality class in this paper.

214

215

217

218

220

221

222

223

224

225

226

227

228

229

231

232

233

234

235

237

238

239

240

241

242

243

245

246

247

248

249

251

252

254

255

257

258

260

262

263

264

266

269

 $\phi$  mesons are reconstructed via the decay channel  $\phi \to K^+K^-$  with a branching ratio (BR) of 49.2%, while the  $\Xi^-$  hyperons decay via  $\Xi^- \to \Lambda \pi^- \to p \pi^- \pi^-$  with a BR of 63.8% [37].  $\Xi^-$  reconstruction is performed using the KFParticle package based on the Kalman Filter method [38, 39]. The charged tracks are reconstructed with the TPC in a 0.5 T uniform magnetic field, and are required to consist of at least 20 TPC hits (out of a maximum of 45) and have a ratio between the number of hit points and the maximum possible number of hit points larger than 0.52 to ensure good tracking and avoid track splitting. The charged tracks are identified via a combination of the ionization energy loss measurement with the TPC and the time-of-flight measurement with the TOF. A minimum  $p_T$  cut of 0.2 GeV/c is required in the analysis. Since the  $K^-/\pi^-$  ratio is much smaller than the  $K^+/\pi^+$  ratio at low energies, to reduce the contamination from  $\pi^-$  tracks, a strict PID criterion for  $K^$ requiring both TPC and TOF is implemented [40, 41].

Figure 1 (a) shows the invariant mass distribution of  $K^+K^-$  pairs in the transverse momentum  $(p_T)$  region of 0.4-1.6 GeV/c for 0-60% central collisions. The combinatorial background is estimated with the mixed-event (ME) technique in which  $K^+$  and  $K^-$  from different events of similar characteristics (centrality, event plane angle) are paired. The mixed-event spectra are normalized to the same-event (SE) distributions in the mass range of 1.04–1.08 GeV/ $c^2$ . After the subtraction of the combinatorial background, the remainder distribution, shown as red solid circles, is fitted with a Breit-Wigner function for the signal plus a linear function which represents the remaining correlated background (< 1%) from  $^{271}$ a partial reconstruction of strange hadrons. The  $\phi$  me-  $^{^{272}}$ son raw yields are extracted from the Breit-Wigner func-  $^{\scriptscriptstyle 273}$ tion fit within the corresponding  $3\sigma$  mass window. The  $^{^{274}}$ extracted  $\phi$  signal shape is consistent with its intrinsic properties convoluted with the detector smearing ef-  $^{\scriptscriptstyle 276}$ fect due to finite momentum resolution (< 3% for single  $^{^{277}}$ track). Figure 1 (b) shows the invariant mass distribu-278 tion of  $\Lambda(p\pi^-)\pi^-$  in the  $p_T$  region of 0.5–2.0 GeV/c for<sup>279</sup> 0-40% central collisions. The combinatorial background 280 is estimated with the rotating daughter (Rot) method, 281 in which a daughter track of  $\Xi^-$  is rotated by a ran-282 dom angle between 150 to 210 degrees in the transverse 283 plane. The rotated spectra are normalized to the same-284 event distributions in the mass ranges of 1.30-1.31 and 285  $1.34-1.35\,\mathrm{GeV}/c^2$ . After the combinatorial background is <sup>286</sup> subtracted, the  $\Lambda\pi^-$  invariant mass distribution is fitted <sup>287</sup> with a Gaussian for the signal plus a linear function for 288 the remaining correlated background. The  $\Xi^-$  raw yields <sup>289</sup> are obtained via histogram bin counting from the invari-290



FIG. 1. Invariant mass distributions of  $K^+K^-$  (a) and  $\Lambda\pi^-$  (b) in Au+Au collisions at  $\sqrt{s_{\rm NN}}=3\,{\rm GeV}$ . Black open circles represent the same-event unlike-sign distribution. The grey shaded histogram represents the normalized mixed-event (rotating daughters for  $\Xi^-$ ) unlike-sign distribution that is used to estimate the combinatorial background. The red solid circles depict the  $\phi$  meson (a) and  $\Xi^-$  (b) signals obtained by subtracting the combinatorial background from the same-event distribution. Reconstructed  $\phi$  (c) and  $\Xi^-$  (d) acceptance,  $p_T$  vs. rapidity in the center-of-mass frame  $(y_{\rm cm})$  in the same collisions. The dotted line indicates the target rapidity location. The red curve represents the TPC and TOF acceptance edge.

ant mass distributions with all background subtracted within mass windows of  $3\sigma$ . The reconstructed  $\phi$  and  $\Xi^-$  acceptances  $(p_T \text{ vs. } y_{cm})$  in the collision center-of-mass frame are shown in Fig. 1 (c) and (d), respectively. The target is located at  $y_{cm}=-1.05$ , using the convention where the beam travels in the positive direction. The red curve represents the TPC and TOF acceptance edge.

Particle raw yields are calculated in each centrality and  $p_T$  bin within each rapidity slice. The raw yields are corrected for the TPC acceptance and tracking efficiency, the particle identification efficiency, and the TOF matching and PID efficiency. The final average reconstruction (including acceptance etc.) efficiency is  $\sim 0.30, 0.04$ , and 0.02 for  $K^-$ ,  $\phi$  and  $\Xi^-$ , respectively. As a cross-check, we conducted the measurement of  $\Xi^-$  lifetime from the same data and the result is  $164.2\pm6.6$  ps, consistent with the PDG value,  $163.9\pm1.5$  ps. The corrected  $p_T$  spectra in symmetric rapidity bins (-0.2,0) vs. (0,0.2) are also consistent.

The systematic uncertainty of the raw yield extraction



FIG. 2.  $K^-$  (a),  $\phi$  meson (b) and  $\Xi^-$  (c) invariant yields as a function of  $m_T-m_0$  for various rapidity regions in 0–10% central Au+Au collisions at  $\sqrt{s_{\rm NN}}=3$  GeV. Statistical and systematic uncertainties are added quadratically here for plotting. Solid and dashed black lines depict  $m_T$  exponential struction fits to the measured data points with scaling factors to each rapidity windows.

292

293

294

295

296

297

298

301

302

304

307

310

311

312

313

315

316

318

is estimated by changing the histogram fitting method to 330 bin counting method or by changing the fitting ranges. 331 The maximum difference between these scenarios and the 332 default one is considered as one standard deviation. The 333 contribution varies by  $p_T$ , rapidity, and centrality and 334 the overall contribution is less than 5% for the invari-335 ant yield. The systematic uncertainty in the TPC ac-336 ceptance and efficiency correction  $\varepsilon_{\rm TPC}$  is estimated by 337 varying the cuts on track selection criteria and topologi-338 cal variables (for  $\Xi^-$  only). The contribution to the total 339 yield is 4-5% for  $K^-$ , 13-16% for  $\phi$  and 6-10% for  $\Xi^-$ . 340 This leads to a 10-13% (12-18%) uncertainty in the mea- <sup>341</sup> sured  $\phi/K^-$  ( $\phi/\Xi^-$ ) ratio. The uncertainty of the PID 342 efficiency correction is estimated by varying the PID se-343 lection cuts and the contribution is less than 3% to the 344 total yield. For the  $p_T$  integrated yield, the uncertainty 345 due to the extrapolation to the full  $p_T$  range is estimated 346 by choosing several fitting functions [42], and the maxi-347 mum difference between these scenarios and the default 348 one ( $m_T$ -exponential) is quoted as one standard devia-349 tion. This contribution is 5-7% for  $K^-$ , 14-17% for  $\phi_{350}$ and 13-15% for  $\Xi^-$ , respectively.

Figure 2 shows the acceptance  $\times$  efficiency corrected  $_{552}$   $K^-$ ,  $\phi$  and  $\Xi^-$  invariant yields as a function of  $m_T - m_0$   $_{554}$   $(m_T = \sqrt{m_0^2 + p_T^2})$  for various rapidity ranges in  $0_{-354}$  10% central Au+Au collisions at  $\sqrt{s_{\rm NN}} = 3$  GeV. Dashed  $_{355}$  and solid lines depict fits to the spectra with the  $m_{T^{-356}}$  exponential function in order to extrapolate to the un- $_{357}$  measured  $p_T$  ranges. Please see the Supplement Material  $_{358}$ 



FIG. 3. Rapidity density distributions of  $K^-$  (squares),  $\phi$  meson (circles) and  $\Xi^-$  (diamonds)  $p_T$ -integrated yields dN/dy in 0–10% (a), 10–40% (b) and 40–60% central (c) Au+Au collisions at  $\sqrt{s_{\mathrm{NN}}}=3$  GeV. Solid lines depict Gaussian function fits to the data points.

for the  $p_T$  spectra in other rapidity and centrality bins. The  $p_T$  integrated rapidity distributions dN/dy are displayed in Fig. 3 for Au+Au collisions at  $\sqrt{s_{\rm NN}}=3\,{\rm GeV}$  for three different centralities. Solid curves depict Gaussian function fits to the data points with the centroid parameter fixed to zero. They are used to extrapolate to the unmeasured rapidity region for calculating total multiplicities.

The  $\phi/K^-$  and  $\phi/\Xi^-$  ratios are presented in Fig. 4 as a function of collision energy  $\sqrt{s_{\mathrm{NN}}}$ , including the midrapidity data in central Au+Au or Pb+Pb data from the AGS, SPS and RHIC BES at higher energies and  $4\pi$  acceptance data from SIS at lower energies. The black solid circles show our measurements in the 0-10% centrality bin in Au+Au collisions at  $\sqrt{s_{\mathrm{NN}}}=3\,\mathrm{GeV}$ . The measured  $\phi$ ,  $K^-$  and  $\Xi^-$  yields in  $4\pi$  and the  $\phi/K^-$ ,  $\phi/\Xi^-$  ratios in different centrality bins are listed in Tab. I. The  $\phi/K^-$  and  $\phi/\Xi^-$  ratios measured at  $3\,\mathrm{GeV}$  are slightly higher than, or comparable to, the values at high energies for  $\sqrt{s_{\mathrm{NN}}}\geqslant 5\,\mathrm{GeV}$  [26–28, 43, 49–53] despite the collision energy being very close to the  $\phi$  threshold and below the  $\Xi^-$  threshold in NN collisions.

Various curves in Fig. 4 represent the predictions of  $\phi/K^-$  and  $\phi/\Xi^-$  ratios from several model calculations in central A+A collisions. Statistical model calculations, based on the Grand Canonical Ensemble and Canonical Ensemble for strangeness with several different choices of strangeness correlation length  $(r_c)$ , were calculated using the THERMUS package [44] with energy dependent freeze-out parameters  $(T_{\rm ch}, \mu_B)$  taken from [12]. We noted that the  $\phi/K^-$  and  $\phi/\Xi^-$  ratios from GCE depend on  $\mu_S$ . The same relation,  $\mu_S = \mu_B/4$  from the STAR BES-I data [28], was used in this GCE calculation. With unprecedented precision, our data exclude the GCE calculation, which indicates the event-by-event strangeness conservation is crucial [54] in such collisions. In the canonical approach, the correlation length,  $r_c$ , defines a region of the particle production phase space inside which the production of the strangeness is canonically

TABLE I.  $\phi$ ,  $K^-$ ,  $\Xi^-$  integrated yields and  $\phi/K^-$  and  $\phi/\Xi^-$  ratios for given centrality classes in Au+Au collisions at  $\sqrt{s_{\rm NN}} = 3 \, {\rm GeV}$ . The first error given corresponds to the statistical one, the second to the systematic error.

| Centrality | $\phi (10^{-3})$       | $K^{-} (10^{-2})$        | $\phi/K^-$                  | $\Xi^{-} (10^{-3})$      | $\phi/\Xi^-$             |
|------------|------------------------|--------------------------|-----------------------------|--------------------------|--------------------------|
| 0-10%      | $20.1 \pm 1.4 \pm 3.8$ | $8.70 \pm 0.02 \pm 0.53$ | $0.231 \pm 0.016 \pm 0.042$ | $13.9 \pm 0.8 \pm 2.4$   | $1.45 \pm 0.13 \pm 0.34$ |
| 10 – 40%   | $8.5 \pm 0.4 \pm 1.7$  | $3.39 \pm 0.01 \pm 0.20$ | $0.249 \pm 0.011 \pm 0.046$ | $3.61 \pm 0.32 \pm 0.59$ | $2.34 \pm 0.23 \pm 0.65$ |
| 40 – 60%   | $2.6 \pm 0.2 \pm 0.5$  | $0.79 \pm 0.01 \pm 0.06$ | $0.327 \pm 0.029 \pm 0.069$ | _                        | <u> </u>                 |

370

372

373

374

375

376

377

378

379

381

382

384

385

387

388

390

391



FIG. 4.  $\phi/K^-$  (a) and  $\phi/\Xi^-$  (b) ratio as a function of collision energy,  $\sqrt{s_{\rm NN}}$ . The solid black circles show the measurements presented here in 0-10% centrality bin, while empty markers in black are used for data from various other energies and/or collision systems [26–32, 43]. The vertical grey bands on the data points represent the systematic uncertainities. The grey solid line represents a THERMUS calculation based on the Grand Canonical Ensemble (GCE) while the dotument dius depict calculations based on the Canonical Ensemble (CE) with different values of the strangeness correlation radius  $(r_c)$  [12, 44]. The green dashed line, green shaded band and the solid red line show transport model calculations from the public versions UrQMD<sup>1</sup> [45, 46], modified UrQMD<sup>2</sup> [47] and SMASH [48], respectively.

conserved. Both the  $\phi/K^-$  and  $\phi/\Xi^-$  data from our mea-408 surement favor the CE thermodynamics for strangeness 409 with a small strangeness correlation length  $(r_c \sim 2.7 \, {\rm fm}^{410} \, {\rm for} \, \phi/K^-$  and  $r_c \sim 4.2 \, {\rm fm} \, {\rm for} \, \phi/\Xi^-)$ . It is worthwhile 411 to point out that the CE calculations with the same  $r_c$  412 parameter cannot describe our  $\phi/K^-$  and  $\phi/\Xi^-$  data si-413 multaneously (as also observed in lighter systems and at 414 lower collision energy [31]). A global thermal model fit 415 with all the particle yields at 3 GeV will help to precisely 416 determine these thermal parameters in the future.

359

360

361

362

363

365

366

368

Previous measurements from smaller collision systems 418

(Ar+KCl and Al+Al collisions) show comparable or higher  $\phi/K^-$  and/or  $\phi/\Xi^-$  ratios at energies below 3 GeV [29–31, 43]. The measurement in p+p collisions at 2.7 GeV shows a much larger  $\phi/K^-$  ratio (1.04  $\pm$ 0.23) [55], while the measured ratio at 17.3 GeV (0.11  $\pm$ 0.01) is comparable to that in central Au+Au/Pb+Pb collisions at similar energies. The  $\phi/\Xi^-$  ratio in p+p collisions at  $17.3 \,\mathrm{GeV}$ ,  $5.09 \pm 0.36$ , is also significantly larger than that in central Au+Au/Pb+Pb collisions [56–58]. In our measurement at 3 GeV, there is no obvious difference in the  $\phi/K^-$  ratio between the 0–10% and 10–40% central bins, while the result in the most peripheral 40-60% central bin shows a hint of a larger value, as shown in Tab. I. Similarly, the  $\phi/\Xi^-$  ratio in mid-central collisions seems to be larger than that in central collisions. Overall, these observations are qualitatively consistent with the expectation that a smaller canonical volume in the smaller system leads to a higher observed  $\phi/K^-$  and/or  $\phi/\Xi^-$  ratio.

Hadronic transport models are widely used in the high baryon density region to study the properties of the produced dense matter [45–48, 59, 60]. In the modified version of the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model [47], new decay channels from high mass baryon resonances to  $\phi$  and  $\Xi^-$  are deployed. The relevant decay branching fraction was determined by fitting the experimental data from p+p collisions [55]. From the comparison shown in Fig. 4, the modified  $UrQMD^2$  calculation for central (b < 5 fm) Au+Au collisions agrees with the data points at low  $\sqrt{s_{\rm NN}}$ , including our new measurement for  $\phi/K^-$ . However calculations from the public UrQMD<sup>1</sup> model underestimate our measurements for both  $\phi/K^-$  and  $\phi/\Xi^-$ . The SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) model attempts to incorporate the newest available experimental data from both elementary hadronic cross sections and dilepton invariant mass spectra to constrain the resonance branching ratios [48]. The  $\phi/K^-$  ratio is reasonably reproduced using SMASH in the smaller system and  $\sqrt{s_{\rm NN}}$  below 3 GeV, despite the overestimation of each individual  $(\phi, K^{-})$  transverse mass spectrum measured, e.g. in Au+Au 0-40% system by HADES [32, 48]. The predicted  $\phi/K^-$  ratio from the same model is about is  $2.5\sigma$  higher than central Au+Au 0–10% collisions at 3 GeV. This indicates that some important in-medium mechanism for strangeness production and propagation may be missing for the large system in SMASH.

In summary, we report the systematic measurements of  $K^-$ ,  $\phi(1020)$  and  $\Xi^-$  production yields and the  $\phi/K^-$ ,

 $\phi/\Xi^-$  ratios in Au+Au collisions at  $\sqrt{s_{\rm NN}}=3\,{\rm GeV}$  with 441 the STAR experiment at RHIC. The measured  $\phi/K^{-}$  442 ratio is significantly larger than the statistical model 443 prediction based on Grand Canonical Ensemble in the 444 0–10% central collisions. Both the results of  $\phi/K^{-}$  445  $(r_c \sim 2.7\,\mathrm{fm})$  and  $\phi/\Xi^ (r_c \sim 4.2\,\mathrm{fm})$  ratios favor the 446 Canonical Ensemble model for strangeness production in 447 such collisions. Transport models, including the reso-448 nance decays, could reasonably describe our measured 449  $\phi/K^-$  ratio at 3 GeV and the increasing trend of  $\phi/\Xi^-$  450 at lower energies. Note that the measurement of collec-451 tive flow from the 3 GeV Au+Au collisions demonstrated 452 a new EoS dominated by baryonic interactions [61]. The 453 new results from this paper suggest a significant change in 454 the strangeness production at  $\sqrt{s_{\mathrm{NN}}} = 3\,\mathrm{GeV}$  compared 455 to higher collision energies, providing new insights to-456 wards the understanding of the QCD medium properties 457 at high baryon density [6].

420

421

422

423

424

426

427

429

430

432

433

435

436

437

438

440

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

483

485

488

489

490

491

492

493

494

495

496

We would like to thank K. Redlich and J. Steinheimer 460 for fruitful discussions. We thank the RHIC Operations 461 Group and RCF at BNL, the NERSC Center at LBNL, 462 and the Open Science Grid consortium for providing re-463

sources and support. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science, the U.S. National Science Foundation, the Ministry of Education and Science of the Russian Federation, National Natural Science Foundation of China, Chinese Academy of Science, the Ministry of Science and Technology of China and the Chinese Ministry of Education, the Higher Education Sprout Project by Ministry of Education at NCKU, the National Research Foundation of Korea, Czech Science Foundation and Ministry of Education, Youth and Sports of the Czech Republic, Hungarian National Research, Development and Innovation Office, New National Excellency Programme of the Hungarian Ministry of Human Capacities, Department of Atomic Energy and Department of Science and Technology of the Government of India, the National Science Centre of Poland, the Ministry of Science, Education and Sports of the Republic of Croatia, Ros Atom of Russia and German Bundesministerium für Bildung, Wissenschaft, Forschung and Technologie (BMBF), Helmholtz Association, Ministry of Education, Culture, Sports, Science, and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS).

- [1] Y. Akiba et al., (2015), arXiv:1502.02730 [nucl-ex].
- [2] W. Busza, K. Rajagopal, and W. van der Schee, Ann. 499 Rev. Nucl. Part. Sci. 68, 339 (2018).
- [3] J. Adams et al. (STAR), Nucl. Phys. A757, 102 (2005). 501
- [4] J. Rafelski and B. Muller, Phys. Rev. Lett. 48, 1066 502
   (1982), [Erratum: Phys.Rev.Lett. 56, 2334 (1986)].
- [5] P. Koch, B. Muller, and J. Rafelski, Phys. Rept. 142, 504167 (1986).

506

- [6] C. M. Ko, EPJ Web Conf. 171, 03002 (2018).
- [7] P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298, 507 1592 (2002).
- [8] T. Galatyuk, JPS Conf. Proc. 32, 010079 (2020).
- [9] J. Aichelin and C. M. Ko, Phys. Rev. Lett. 55, 2661510 (1985).
- [10] J. Adamczewski-Musch et al., Phys. Lett. B 793, 457<sub>512</sub> (2019).
- [11] W. Cassing, E. Bratkovskaya, and A. Sibirtsev, Nucl. 514 Phys. A 691, 753 (2001).
- [12] A. Andronic, P. Braun-Munzinger, K. Redlich, and 516 J. Stachel, Nature 561, 321 (2018).
- [13] J. Rafelski and M. Danos, Physics Letters B 97, 279<sub>518</sub> (1980).
- [14] J. Cleymans and H. Satz, Z. Phys. C 57, 135 (1993).
- [15] F. Becattini, M. Gazdzicki, and J. Sollfrank, Eur. Phys. 522 J. C 5, 143 (1998).
- [16] W. Florkowski, W. Broniowski, and M. Michalec, Acta 523 Phys. Polon. B 33, 761 (2002).
- [17] J. Cleymans, A. Frster, H. Oeschler, K. Redlich, and 525
   F. Uhlig, Phys. Lett. B 603, 146 (2004).
- [18] M. Petráň and J. Rafelski, Phys. Rev. C 82, 011901 527
   (2010).
- [19] J. Rafelski and J. Letessier, Journal of Physics G: Nuclear 529 and Particle Physics 28, 1819 (2002).
- [20] K. Redlich and A. Tounsi, Eur. Phys. J. C 24, 589 (2002). 531

- [21] G. Zeeb, M. Reiter, and M. Bleicher, Phys. Lett. B 586, 297 (2004).
- [22] G.-C. Yong, Z.-G. Xiao, Y. Gao, and Z.-W. Lin, (2021), arXiv:2105.10284 [nucl-th].
- [23] C. Fuchs, Prog. Part. Nucl. Phys. 56, 1 (2006).
- [24] L. McLerran and R. D. Pisarski, Nucl. Phys. A 796, 83 (2007).
- [25] K. Fukushima, T. Kojo, and W. Weise, Phys. Rev. D 102, 096017 (2020).
- [26] B. B. Back et al. (E917 Collaboration), Phys. Rev. C 69, 054901 (2004).
- [27] C. Alt et al. (NA49 Collaboration), Phys. Rev. C 78, 044907 (2008).
- [28] J. Adam *et al.* (STAR Collaboration), Phys. Rev. C **102**, 034909 (2020).
- [29] P. Gasik et al., Eur. Phys. J. A 52, 177 (2016).
- [30] K. Piasecki *et al.* (FOPI Collaboration), Phys. Rev. C 91, 054904 (2015).
- [31] G. Agakishiev *et al.* (HADES Collaboration), Phys. Rev. C **80**, 025209 (2009).
- [32] J. Adamczewski-Musch et al. (HADES Collaboration), Phys. Lett. B 778, 403 (2018).
- [33] K. C. Meehan, J. Phys. Conf. Ser. **742**, 012022 (2016).
- [34] M. Anderson et al., Nucl. Instrum. Meth. A499, 659 (2003).
- [35] W. J. Llope (for STAR), Nucl. Instrum. Meth. A661, S110 (2012).
- [36] C. A. Whitten (STAR), AIP Conf. Proc. 980, 390 (2008).
- [37] M. Tanabashi *et al.* (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
- [38] I. Kisel (CBM), J. Phys. Conf. Ser. 1070, 012015 (2018).
- [39] J. Adam *et al.* (STAR Collaboration), Phys. Rev. Lett. **126**, 162301 (2021).
- [40] Y. Xu et al., Nucl. Instrum. Meth. A614, 28 (2010).

- [41] M. Shao et al., Nucl. Instrum. Meth. A558, 419 (2006). 551
- [42] B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C<sub>552</sub> 79, 034909 (2009).
- [43] G. Agakishiev et al. (HADES Collaboration), Phys. Rev. 554 Lett. 103, 132301 (2009).
- [44] S. Wheaton, J. Cleymans, and M. Hauer, Comput. Phys. 556 Commun. 180, 84 (2009).

558

559

- [45] M. Bleicher et al., J. Phys. G 25, 1859 (1999).
- [46] S. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998).
- [47] J. Steinheimer and M. Bleicher, J. Phys. G: Nucl. Part. 560 Phys. 43, 015104 (2015).
- [48] V. Steinberg *et al.*, Phys. Rev. C **99**, 064908 (2019).
- [49] C. Alt *et al.* (NA49 Collaboration), Phys. Rev. C **77**, 563
   024903 (2008).
  - [50] S. V. Afanasiev et al. (NA49 Collaboration), Phys. Rev. 565 C 66, 054902 (2002).
  - [51] Phys. Rev. C 78, 034918 (2008).

532

533

534

535

536

537

538

539

540

541

542

543

546

547

548

549

550

[52] B. Abelev et al. (ALICE Collaboration), Phys. Rev. C 91, 024609 (2015).

- [53] B. I. Abelev *et al.* (STAR Collaboration), Phys. Rev. C 79, 064903 (2009).
- [54] P. Braun-Munzinger, K. Redlich, and J. Stachel, QuarkGluon Plasma 3, 491599 (2004).
- [55] Y. Maeda et al., Phys. Rev. C 77, 015204 (2008).
- [56] A. Aduszkiewicz et al. (NA61/SHINE), Eur. Phys. J. C 77, 671 (2017), arXiv:1705.02467 [nucl-ex].
- [57] A. Aduszkiewicz et al. (NA61/SHINE), Eur. Phys. J. C 80, 199 (2020), arXiv:1908.04601 [nucl-ex].
- [58] A. Aduszkiewicz et al. (NA61/SHINE), Eur. Phys. J. C 80, 833 (2020), arXiv:2006.02062 [nucl-ex].
- [59] C. Hartnack, H. Oeschler, Y. Leifels, E. L. Bratkovskaya, and J. Aichelin, Phys. Rept. 510, 119 (2012).
- [60] T. Song, L. Tolos, J. Wirth, J. Aichelin, and E. Bratkovskaya, Phys. Rev. C 103, 044901 (2021).
- [61] M. Abdallah et al. (STAR Collaboration), (2021), arXiv:2108.00908 [nucl-ex].