# On the distribution of the largest connected component size in random graphs with fixed edges set size

## Robin Petit

# March-April 2017

## **Contents**

| 1 | Introduction                                                    | 1  |
|---|-----------------------------------------------------------------|----|
|   | 1.1 Definitions                                                 | 1  |
|   | 1.2 (Largest) Connected Components                              | 2  |
|   | 1.3 Objectives                                                  | 3  |
| 2 | Preliminary Results                                             | 3  |
|   | 2.1 $ \Lambda_{k=1}(V,\cdot) $                                  | 3  |
|   | 2.2 Upper Boundary of m for $ \Lambda_k^m(V,\cdot) $            | 4  |
|   | $ \begin{array}{llllllllllllllllllllllllllllllllllll$           | 5  |
| 3 | Processing on Examples — Cardinality of $\Lambda_k^m(V, \cdot)$ | 5  |
|   | 3.1 Decomposing set $\Lambda_k(V)$                              | 6  |
|   | 3.2 The Set $\mathfrak{Q}^{\mathfrak{m}}_{k,\alpha}(V)$         | 7  |
|   | 3.2.1 Special case of $\alpha = 1$                              | 7  |
|   | 3.2.2 General Case                                              |    |
| 4 | Counting connected graphs                                       | 9  |
|   | 4.1 Connected graphs of  V  vertices                            | 9  |
|   | 4.2 Connected graphs of $ V $ vertices <b>and</b> m edges       | 10 |
| 5 | Conclusion                                                      | 10 |

#### 1 Introduction

#### 1.1 Definitions

Let's consider  $V = \{v_1, \dots, v_{|V|}\}$  a set of vertices. We denote by |V| the cardinality of the set V. Let's define the function:

$$X: \mathbb{N} \to \mathbb{N}: n \mapsto \frac{n(n-1)}{2}.$$

**Definition 1.1.** For  $(\alpha, \beta) \in \mathbb{N}^2$ , if  $\beta \geqslant \alpha$ , we define:

$$[\![\alpha,\,\beta]\!]\coloneqq \{n\in\mathbb{N} \text{ s.t. } \alpha\leqslant n\leqslant\beta\}.$$

**Definition 1.2.** An undirected graph  $\Gamma$  is denoted  $\Gamma(V,E)$  for V its vertices set, and E its edges set, with  $E = \{e_1, \ldots, e_{|E|}\}$  and  $\forall i \in [\![1,|E|]\!] : e_i = \{v_{i1},v_{i2}\}$  for  $1 \leqslant i_1,i_2 \leqslant |V|$  with  $i_1 \neq i_2$  (i.e. loops are not tolerated). *Remark.* |E| is usually denoted as m, and |V| is sometimes denoted as n. Both these numbers are (non-strictly) positive integers.

**Definition 1.3.** The set of all the existing graphs having given vertices set V is denoted by  $\Gamma(V, \cdot)$ . We denote  $\Gamma_{\mathfrak{m}}(V, \cdot)$  the subset of  $\Gamma(V, \cdot)$  such that  $|E| = \mathfrak{m}$ .

Remark. We observe that:

$$\Gamma(V,\cdot) = \bigsqcup_{m \in \mathbb{N}} \Gamma_m(V,\cdot).$$

**Definition 1.4.** For every  $n \in \mathbb{N}$ , we define  $\mathcal{K}_n$  as the *complete graph* of size n.

**Lemma 1.5.** For a graph  $\Gamma(V, E)$ , we have  $|E| \leq X(V)$ .

*Proof.* We know that  $\Gamma(V, E) \leqslant \mathcal{K}_{|V|}$ , and  $\mathcal{K}_{|V|}$  has exactly X(V) edges (vertex  $v_i$  is connected to vertices  $v_{i+1}$  to  $v_{|V|}$ , so the number of edges is equal to  $\sum_{i=1}^{|V|} (V_i - i) = \sum_{i=0}^{|V|-1} i = X(V_i)$ ).

**Lemma 1.6.** For given vertices set V and fixed number of edges  $m \in \mathbb{N}$ , we have:

$$\left|\Gamma_{\mathfrak{m}}(V,\cdot)\right| = \begin{cases} \binom{X(|V|)}{\mathfrak{m}} & \text{ if } \mathfrak{m} \leqslant X(\!|V|) \\ 0 & \text{ else} \end{cases}.$$

*Proof.* There are X(V) edges  $e = \{v_i, v_j\}$  which exist in  $\mathcal{K}_{|V|}$ . A graph  $\Gamma(V, E)$  in  $\Gamma_{\mathfrak{m}}(V, \cdot)$  has  $\mathfrak{m}$  of these X(V) edges. The amount of such graphs is then X(V).

**Corollary 1.7.** For given vertices set V, we have  $\left|\Gamma(V,\cdot)\right|=2^{X(|V|)}$ .

*Proof.* Since  $\Gamma(V, \cdot)$  is given by a disjoint union over m, its cardinality is equal to the sum of the individual cardinalities:

$$\left|\Gamma(V,\cdot)\right| = \sum_{m\in\mathbb{N}} \left|\Gamma_m(V,\cdot)\right| = \sum_{k=0}^{X(|V|)} \left|\Gamma_m(V,\cdot)\right| = \sum_{k=0}^{X(|V|)} \binom{X(|V|)}{m} = 2^{X(|V|)}.$$

**Definition 1.8.** A graph  $\Gamma(V, E)$  is said to be connected if for each  $v, w \in V$ , there exists a path between v and w. We denote by  $\chi(V, \cdot)$  the set of all connected graphs having vertices set V. Again, for  $\mathfrak{m} \in \mathbb{N}$ , we denote by  $\chi_{\mathfrak{m}}(V, \cdot) \subset \chi(V, \cdot)$  the set of connected graphs having  $\mathfrak{m}$  edges.

*Remark.*  $\chi(V, \cdot) \subset \Gamma(V, \cdot)$ , and:

$$\chi(V,\cdot) = \bigsqcup_{m \in \mathbb{N}} \chi_m(V,\cdot).$$

**Lemma 1.9.** For m < |V| - 1 or m > X(|V|), we have  $\chi_m(V, \cdot) = \emptyset$ .

*Proof.* For m > X(V), we know that  $\Gamma_m(V, \cdot) = \emptyset$ . As  $\chi_m(V, \cdot) \subset \Gamma_m(V, \cdot)$ , we know that  $\chi_m(V, \cdot) = \emptyset$ .

For  $\mathfrak{m} < |V| - 1$ , let's notice firstly that a cyclic graph needs at least |V| edges: for a cyclic graph, each vertex's degree must be at least 2. We can deduce:

$$2|E| = \sum_{\nu \in V} deg(\nu) \geqslant 2|V|.$$

Thus  $|V| \ge |E|$  for a cyclic graph. Let's assume (ad absurdum) that there exists  $\Gamma(V, E) \in \chi_{\mathfrak{m}}(V, \cdot)$ . Therefore  $\Gamma(V, E)$  is acyclic. By definition of  $\chi_{\mathfrak{m}}(V, \cdot)$ , we know that  $\Gamma(V, E)$  is connected. But an acyclic and connected graph is a tree, and a tree has exactly  $|V|-1 \ge \mathfrak{m}$  edges, which is a contradiction. Therefore,  $\chi_{\mathfrak{m}}(V, \cdot) = \emptyset$ .  $\square$ 

**Definition 1.10.** Let's define the function:

$$\mu: \mathcal{P}(V) \to \llbracket 1, |V| \rrbracket : W \mapsto \mu(W) \coloneqq \inf \{i \in \llbracket 1, |V| \rrbracket \text{ s.t. } v_i \in W \}$$

representing the lowest index of a vertex present in a given subset of  $W \subset V$ .

**Definition 1.11.** For every  $W \in \mathcal{P}(V)$ , we define  $\Delta_W : \Gamma(V, \cdot) \to \Gamma(W, \cdot) : \Gamma(V, E) \mapsto \Gamma'(W, E')$  such that:

$$\mathsf{E}^{\,\prime} = \big\{ \{\nu_{\mathfrak{i}}, \nu_{\mathfrak{j}}\} \in \mathsf{E} \text{ s.t. } \nu_{\mathfrak{i}}, \nu_{\mathfrak{j}} \in W \big\} \,.$$

Let's call  $\Delta_W$  the *restriction to subset* W operator.

#### 1.2 (Largest) Connected Components

**Definition 1.12.** We define the *connected component of vertex*  $v_i \in V$  *in graph*  $\Gamma(V, E)$  by the biggest subset (in the sense of inclusion) W of V such that  $v_i \in W$  and  $\Delta_W(\Gamma(V, E)) \in \chi(W, \cdot)$ .

For graph  $\Gamma(V, E) \in \Gamma(V, \cdot)$ , we define  $|LCC(\Gamma(V, E))|$  by:

$$\left|LCC(\Gamma(V,E)\right| \coloneqq \max_{W \in \mathcal{P}(V)} |W| \, \mathbb{I}_{\left[\Delta_W(\Gamma(V,E) \in \chi(V,\cdot)\right]}.$$

We then define the *largest connected component of the graph*  $\Gamma(V, E)$  as:

$$LCC(\Gamma(V, E)) := \underset{|W| = |LCC(\Gamma(V, E))|}{\arg \min} \mu(W).$$

The set  $\Lambda_k^m(V,\cdot)$  is then the set of all graphs  $\Gamma(V,E) \in \Gamma(V,\cdot)$ , such that |E| = m and  $|LCC(\Gamma(V,E))| = k$ . *Remark.* The notations here are consistent since  $|LCC(\Gamma(V,E))|$  corresponds indeed to the cardinality of  $LCC(\Gamma(V,E))$ .

Furthermore, this definition of largest connected component allows to define uniquely the LCC, even though a graph  $\Gamma(V, E)$  has several connected component of same size. For example, following graph has two connected component of size 2, i.e.  $\{1,2\}$  (in red) and  $\{3,4\}$  (in blue).





Figure 1: Graph  $\Gamma([1, 4], \{\{1, 2\}, \{3, 4\}\})$ 

Nevertheless, the LCC operator yields {1,2} since it minimizes the lowest id of element in connected component (1 for this graph).

*Remark.* Since  $\Lambda_k(V,\cdot) = \bigsqcup_{m=0}^{X(|V|)} \Lambda_k^m(V,\cdot)$  and:

$$\Gamma(V,\cdot) = \bigsqcup_{k=1}^{|V|} \bigsqcup_{m=0}^{X(|V|)} \Lambda_k^m(V,\cdot),$$

we want to know what is  $|\Lambda_k^m(V, \cdot)|$  equal to.

**Definition 1.13.** Let's declare a new random variable  $\mathscr{G}(V, \mathfrak{m})$ , a graph uniformly distributed in  $\Gamma_{\mathfrak{m}}(V, \cdot)$ , thus such that:

$$\forall \Gamma(V, \mathsf{E}) \in \Gamma_{\mathsf{m}}(V, \cdot) : \mathbb{P}[\mathscr{G}(V, \mathsf{m}) = \Gamma(V, \mathsf{E})] = \frac{1}{\left|\Gamma_{\mathsf{m}}(V, \cdot)\right|} = \frac{1}{\binom{X(|V|)}{\mathsf{m}}}.$$

## 1.3 Objectives

The objective now is to find an expression for  $|\Lambda_k(V,\cdot)|$  since we are looking for:

$$\mathbb{P}\left[\left|LCC(\mathscr{G}(V,m))\right| = k\right] = \frac{\left|\Lambda_k(V,\cdot)\right|}{\left|\Gamma(V,\cdot)\right|} = \frac{1}{\left|\Gamma(V,E)\right|} \sum_{m=0}^{X(|V|)} \left|\Lambda_k^m(V,\cdot)\right|.$$

Let's denote this value  $p_k \coloneqq \mathbb{P}\left[\left|LCC(\mathscr{G}(V,m))\right| = k\right]$  .

# 2 Preliminary Results

The general idea in order to determine  $|\Lambda_k^m(V,\cdot)|$  is to insert a connected component of size k on vertices set V, and then to tally the configurations placing m-k vertices without making a bigger connected component than the first one.

# **2.1** $|\Lambda_{k=1}(V,\cdot)|$

It is trivial to tell  $|\Lambda_1^m(V,\cdot)| = \delta_0^{m1}$ , i.e. equals one if m=0 and equals zero if m>0: a graph having at least one edge, cannot have a largest connected component of size 1 because if  $e=\{\nu_i,\nu_j\}$  is an edge in E, then  $\{\nu_i,\nu_j\}\subset V$  is a connected component of size 2.

 $<sup>{}^{1}\</sup>delta_{i}^{j}$  is the Kronecker delta operator.

# **2.2** Upper Boundary of m for $|\Lambda_k^m(V, \cdot)|$

**Lemma 2.1** (Upper boundary of edges amount for k = 2). For  $m > \frac{|V|}{2}$ , we have  $\Lambda_2^m(V, \cdot) = \emptyset$ .

*Proof.* To have a largest connected component of size 2, each vertex must have degree 0 or 1. Take  $m \in \mathbb{N}$  such that  $m > \frac{V}{2}$ . Take  $\Gamma(V, E)$  such that |E| = m, and take  $V_1 := \{v \in V \text{ s.t. } deg(v) \leq 1\} \subset V$ . Take the restriction  $\Gamma'(V_1, E') = \Delta_{V_1}(\Gamma(V, E))$ .

Since in a graph, the sum of the degree of each vertex is equal to twice the amount of edges, when applied on  $\Gamma'$ , it follows that:

$$2\big|E'\big| = \sum_{\nu \in \mathcal{V}_1} deg(\nu) \leqslant \sum_{\nu \in \mathcal{V}_1} 1 = |\mathcal{V}_1|.$$

We then deduce that  $|E'| \le \frac{|V_1|}{2} \le \frac{|V|}{2}$ . Thus  $V_1$  must be *strictly* included in V, and then there must exist  $v \in V$  such that  $deg(v) \ge 2$ . Thus:

$$\forall m > \frac{|V|}{2} : \forall \Gamma(V, E) \in \Gamma_m(V, \cdot) : \Gamma(V, E) \not \in \Lambda_2^m(V, \cdot).$$

**Lemma 2.2.** For  $\Gamma(V,E) \in \Gamma(V,\cdot)$  a graph and  $k \in [\![1,|V|]\!]$ , if there exists a vertex  $v \in V$  such that deg(v) = k, then  $\big|LCC(\Gamma(V,E))\big| \geqslant k+1$ .

*Proof.* Take  $v \in V$  such that deg(v) = k. There exist  $\{v_{i_1}, \dots, v_{i_k}\} \subset V$  such that:

$$\forall j \in [1, k] : \{v, v_{i_i}\} \in E.$$

Thus  $\{v, v_{i_1}, \dots, v_{i_k}\}$  is a connected component of size k+1. Thus the largest connected component must have size at least that big.

**Proposition 2.3** (Upper boundary of edges amount generalized). For  $k \in [1, |V|]$ , and  $m > \frac{|V|(k-1)}{2}$ , we have  $\Lambda_k^m(V, \cdot) = \emptyset$ .

*Proof.* Take  $m > \frac{(k-1)|V|}{2}$ , and  $\Gamma(V,E) \in \Gamma_m(V,\cdot)$ . Take  $\mathcal{V}_k := \{ \nu \in V \text{ s.t. } deg(\nu) \leqslant k-1 \}$ . Let  $\Gamma'(\mathcal{V}_k,E')$  be defined by  $\Delta_{\mathcal{V}_k}(\Gamma(V,E))$ . We know that:

$$2\big|\mathsf{E}'\big| = \sum_{\nu \in \mathcal{V}_k} deg(\nu) \leqslant (k-1)|\mathcal{V}_k| \leqslant (k-1)|V|\,.$$

We deduce that  $|E'| \leqslant \frac{(k-1)|V|}{2} < m = |E|$ . Thus  $|E| \ngeq |E'|$ , and this implies that there exists  $v \in V$  such that  $deg(v) \geqslant k$ . By previous lemma, largest connected component size must be at least k+1.

*Remark.* We can understand this upper boundary as  $m > \frac{|V|(k-1)}{2} = \frac{|V|}{k} \frac{k(k-1)}{2} = \frac{|V|}{k} \cdot X(k)$ . So in order to have a LCC of size k, edges can be distributed to make  $\left\lfloor \frac{|V|}{k} \right\rfloor$  complete graphs having each X(k) edges. The maximum amount of edges is then given by  $\frac{|V|(k-1)}{2}$ .

2.3 
$$\left| \Lambda_{k=2}(V, \cdot) \right|$$

Example of size 2 is a bit more complicated:

$$\forall m \in \left[\!\left[1, \left\lfloor \frac{|V|}{2} \right\rfloor \right]\!\right] : \left|\Lambda_2^m(V, \cdot)\right| = \begin{cases} \frac{1}{m!} \prod_{k=0}^{m-1} \binom{|V|-2k}{2} & \text{if } m \leqslant \frac{|V|}{2} \\ 0 & \text{else} \end{cases}.$$

*Proof.* For  $m > \frac{|V|}{2}$ , result is shown in Lemma 2.1. The part  $\prod_{k=0}^{m-1} \binom{|V|-2k}{2}$  corresponds to the choice of m edges without making a connected component of size  $\geqslant 3$ .

 $\binom{|V|-2\cdot0}{2}$  is the choice of the first edge (two vertices) among |V| vertices,  $\binom{|V|-2}{2}$  is the choice of the second edge (two vertices) among the |V|-2 vertices left, etc. At step  $\ell$ , only  $|V|-2(\ell-1)$  vertices are available because two are selected per step, and a selected vertex cannot be used again, otherwise its degree would be  $\geq 2$ , and then the largest component size would be  $\geq 3$ .

The  $\frac{1}{m!}$  comes from the fact that the order the edges are selected doesn't matter (so for each choice of m edges, there are m! permutations of these).

Remark. This can also be expressed as:

$$\left|\Lambda_2^{\mathfrak{m}}(V,\cdot)\right| = \frac{1}{\mathfrak{m}!} \frac{|V|!}{2^{\mathfrak{m}} \left( V|-2\mathfrak{m} \right)!},$$

by simplification of the product.

# 3 Processing on Examples — Cardinality of $\Lambda_k^m(V, \cdot)$

$$\begin{split} \left| \Lambda_3^0(V, \cdot) \right| &= \left| \Lambda_3^1(V, \cdot) \right| = 0 \\ \left| \Lambda_3^2(V, \cdot) \right| &= \binom{|V|}{3} \binom{3}{2} \\ \left| \Lambda_3^3(V, \cdot) \right| &= \binom{|V|}{3} \binom{3}{3} + \binom{|V|}{3} \binom{3}{2} \binom{|V| - 3}{2} \\ \left| \Lambda_3^4(V, \cdot) \right| &= \binom{|V|}{3} \binom{3}{3} \binom{|V| - 3}{2} + \binom{|V|}{3} \binom{3}{2} \binom{|V| - 3}{3} \binom{3}{2} + \binom{|V|}{3} \binom{3}{2} \binom{|V| - 3}{2} \binom{|V| - 5}{2}. \end{split}$$

**Definition 3.1.** Let's denote equally  $|\Lambda_k^m(n)| = \Lambda_k^m(n) \equiv |\Lambda_k^m(V, \cdot)|$  for V such that |V| = n.

This notation allows to lighten the expressions.

Remark. Current explorations tend to a formula looking something like:

$$\left|\Lambda_k^m(|V|)\right| = \binom{|V|}{k} \sum_{\ell=k-1}^{\min\left(m,X(k)\right)} \left|\Lambda_k^\ell(k)\right| \sum_{p=1}^k \left|\Lambda_p^{m-\ell}(|V|-k)\right| \beta_{p\,\ell}(m,k,|V|),$$

with  $\beta_{\mathfrak{p}\ell}(\mathfrak{m}, k, |V|)$ , a coefficient.

The idea behind this formula is explained in introduction of Section 2: to find the amount of graphs having n vertices, m edges and a largest connected component of size k, let's place a connected component of size k somewhere in the graph (so choose k in |V| vertices), and then multiply this by the amount of possible graphs of largest connected component of size  $p \in \{1, ..., k\}$  (so lower or equal to k).

*Idea of proof to be extended later on.* In order to prove the equality of the cardinalities, let's find a bijective function  $\Omega$  between  $\Lambda_k^m(V, \cdot)$  and a set like:

$$\mathfrak{Q}_k^{\mathfrak{m}}(V) \coloneqq \bigsqcup_{\substack{W \in \mathfrak{P}(V) \\ |W| = k}} \bigsqcup_{\ell = k-1}^{\min\left(\mathfrak{m}, X(k)\right)} \Lambda_k^{\ell}(W, \cdot) \times \left(\bigsqcup_{\mathfrak{p} = 1}^k \Lambda_{\mathfrak{p}}^{\mathfrak{m} - \ell}(V \setminus W, \cdot)\right).$$

**Lemma 3.2.** The sets  $\chi_{\ell}(V, \cdot)$  and  $\Lambda_{|V|}^{\ell}(V, \cdot)$  are equal.

*Proof.* A graph  $\Gamma(V, E)$  is connected if and only if its largest connected component contains all its vertices, i.e.  $LCC(\Gamma(V, E)) = V$ .

This is equivalent to say that  $|LCC(\Gamma(V, E))| = |V|$  since  $\forall W \in \mathcal{P}(V) : |W| = |V| \Rightarrow V = W$ :

$$\forall W \in \mathcal{P}(V) : \left| \left\{ \widetilde{W} \in \mathcal{P}(V) \text{ s.t. } |W| = \left| \widetilde{W} \right| \right\} \right| = {|V| \choose |W|},$$

and  $\binom{|V|}{|V|} = 1$ , thus  $\{W \in \mathcal{P}(V) \text{ s.t. } |W| = |V|\} = \{V\}$ .

## **3.1** Decomposing set $\Lambda_k(V)$

**Definition 3.3.** For  $k \in \mathbb{N}$ , and  $\alpha \in \mathbb{N}$ , we define:

$$\Lambda_{k,\alpha}(V,\cdot) \coloneqq \left\{ \Gamma(V,\mathsf{E}) \in \Lambda_k(V,\cdot) \text{ s.t. } \left| \left\{ W \in \mathcal{P}(V) \text{ s.t. } \Delta_W(\Gamma(V,\mathsf{E})) \in \chi(W) \text{ and } |W| = \left| LCC(\Gamma(V,\mathsf{E})) \right| \right\} \right| = \alpha \right\},$$

the class of all graphs in  $\Lambda_k(V,\cdot)$  having exactly  $\alpha$  connected components of maximum size.

Again, for  $\mathfrak{m} \in \llbracket 1, X \llbracket V \rvert) 
rbracket$ , we define  $\Lambda^{\mathfrak{m}}_{k,\alpha}(V,\cdot)$  by  $\Lambda^{\mathfrak{m}}_{k}(V,\cdot) \cap \Lambda_{k,\alpha}(V,\cdot)$ .

*Remark.* Even though several connected components of maximum size do exist in a graph, the one LCC is still defined unambiguously!

#### Lemma 3.4.

- 1. For k > |V| or k = 0, we have:  $\forall \alpha \in \mathbb{N} : \Lambda_{k,\alpha}(V, \cdot) = \emptyset$ .
- 2. For  $k \in [1, |V|]$  and  $\alpha > \left| \frac{|V|}{k} \right|$ , we have  $\Lambda_{k,\alpha}(V, \cdot) = \emptyset$ .

Proof.

- 1. For k > |V| or k = 0, it is obvious that:  $\Lambda_k(V, \cdot) = \emptyset$  (and then  $\Lambda_{k,\alpha}(V, \cdot)$ ).
- 2. Take such k and  $\alpha$ . Assume (ad absurdum) that there exists  $\Gamma(V,E) \in \Lambda_{k,\alpha}(V,\cdot)$ . We have then  $L_1,\ldots,L_\alpha \in \mathcal{P}(V)$  such that  $\forall i \in [\![1,\alpha]\!]: |L_i| = k$ . Also, since the  $L_i$ 's are connected component, they are disjoint, i.e.  $\forall (i,j) \in [\![1,\alpha]\!]^2: i \neq j \Rightarrow L_i \cap L_j = \emptyset$ .

Thus  $\bigcup_{i=1}^{\alpha}L_{i}\subset V$  , and  $\sum_{i=1}^{\alpha}\lvert L_{i}\rvert\leqslant\lvert V\rvert.$  But:

$$\sum_{i=1}^{\alpha} |L_i| = \alpha k > \left\lfloor \frac{|V|}{k} \right\rfloor k \geqslant \frac{|V|}{k} k = |V|,$$

which leads a contradiction: |V| > |V|. We deduce that  $\Lambda_{k,\alpha}(V,\cdot) = \emptyset$ .

$$\forall k < \! |V| : \Lambda_k(V, \cdot) = \bigsqcup_{m=k-1}^{X(|V|)} \bigsqcup_{\alpha=1}^{\left \lfloor \frac{|V|}{k} \right \rfloor} \Lambda_{k,\alpha}^m(V, \cdot).$$

*Proof.* Unions are trivially disjointed.

Now show the equality. The right-hand side is trivially included in  $\Lambda_k(V,\cdot)$  (by definition of  $\Lambda_{k,\alpha}^m(V,\cdot)$ ).

Now take  $\Gamma(V,E) \in \Lambda_k(V,\cdot)$ . We know that  $\Lambda_k^{|E|}(V,\cdot)$  with  $|E| \leqslant X(|V|)$ . As well, we know that the amount of connected components of size  $\left|LCC(\Gamma(V,E))\right| = k$  is at least 1 (because  $\Gamma(V,E) \in \Lambda_k(V,\cdot)$ ), and lower or equal to  $\left|\frac{|V|}{k}\right|$  by previous Lemma.

# 3.2 The Set $\mathfrak{Q}_{k,\alpha}^{\mathfrak{m}}(V)$

#### **3.2.1** Special case of $\alpha = 1$

From now on, let's write:

$$\mathfrak{Q}^{\mathfrak{m}}_{k,1}(V) \coloneqq \bigsqcup_{\substack{W \in \mathfrak{P}(V) \\ |W| = k}}^{\min\left(\mathfrak{m},X(k)\right)} \chi_{\ell}(W,\cdot) \times \left(\bigsqcup_{p=1}^{k-1} \Lambda_{p}^{\mathfrak{m}-\ell}(V,\cdot)\right).$$

**Proposition 3.6.** For  $k \in [1, |V|]$  and  $m \in [1, X(V)]$ , we have:

$$\Lambda_{k,1}^{\mathfrak{m}}(V,\cdot) \cong \mathfrak{Q}_{k,1}^{\mathfrak{m}}(V),$$

i.e. there exists a bijection between these two sets.

*Proof.* Consider the function defined by:

$$\Omega: \Lambda^{\mathfrak{m}}_{k,1}(V, \cdot) \rightarrow \mathfrak{Q}^{\mathfrak{m}}_{k,1}(V): \Gamma(V, E) \mapsto \left(\Delta_{LCC(\Gamma(V, E))}(\Gamma(V, E)), \Delta_{V \setminus LCC(\Gamma(V, E))}(\Gamma(V, E))\right).$$

We know that  $\Omega(\Gamma(V, E))$  gives a partition of  $\Gamma(V, E)$  because there doesn't exist  $e = \{v_{i_1}, v_{i_2}\} \in E$  such that  $v_{i_1} \in LCC(\Gamma(V, E))$  and  $v_{i_2} \in V \setminus LCC(\Gamma(V, E))$  by definition of connected component. Thus if:

$$\Big(\Gamma_1(LCC(\Gamma(V,E)),E_{LCC}),\Gamma_2(V\setminus LCC(\Gamma(V,E)),E_{V\setminus LCC})\Big)=\Omega(\Gamma(V,E)),$$

we have  $E_{I,CC} \sqcup E_{V \setminus I,CC} = E$ .

Let's prove that  $\Omega$  is injective. Take  $\Gamma_1(V,E_1)$  and  $\Gamma_2(V,E_2)$  in  $\Lambda_k^m(V,\cdot)$ . Assume that  $\Omega(\Gamma_1(V,E_1)) = \Omega(\Gamma_2(V,E_2))$ . This implies that  $LCC(\Gamma_1(V,E_1)) = LCC(\Gamma_2(V,E_2))$  (and thus that their complementary in V are equal as well) and that the restriction of  $\Gamma_1(V,E_1)$  and  $\Gamma_2(V,E_2)$  to their common LCC are equal. Their restriction to the complementary of the common LCC in V are equal as well.

Thus  $\Gamma_1(V, E_1)$  and  $\Gamma_2(V, E_2)$  have the same partition and are then equal (i.e.  $E_1 = E_2$ ).

Now, let's prove that  $\Omega$  is surjective. For  $W \in \mathcal{P}(V)$ , take:

$$(\Gamma_1(W, \mathsf{E}_1), \Gamma_2(V \setminus W, \mathsf{E}_2)) \in \mathfrak{Q}_{k,1}^{\mathfrak{m}}(V).$$

We deduce that if  $\ell := |E_1|$ , we have  $|E_2| = \mathfrak{m} - \ell$ . Also,  $\left| LCC(\Gamma_2(V \setminus W, E_2)) \right| \nleq k$  and  $\Gamma_1(W, E_1) \in \chi_\ell(W)$ . For  $\Gamma(V, E) := \Gamma(V \setminus W \sqcup W, E_1 \sqcup E_2)$ , we have indeed that  $\Gamma(V, E) \in \Lambda_k^{\mathfrak{m}}(V, \cdot)$  and  $\Omega(\Gamma(V, E)) = (\Gamma_1, \Gamma_2)$  because  $\left| LCC(\Gamma(V, E)) \right| = |W| = k$  since W is the only connected component of size k.

#### 3.2.2 General Case

**Definition 3.7.** For  $k, \alpha \in \mathbb{N}^*$ , let's define:

$$\mathcal{P}_{k,\alpha}(V) := \left\{ \{W_1, \dots, W_{\alpha}\} \in \mathcal{P}\left(\mathcal{P}(V)\right) \text{ s.t. } \left\{ \begin{array}{c} \forall i \in \llbracket 1, \alpha \rrbracket : |W_i| = k \\ \forall (i,j) \in \llbracket 1, \alpha \rrbracket^2 : i \neq j \Leftrightarrow W_i \cap W_j = \emptyset \end{array} \right\},$$

thus  $\mathcal{P}_{k,\alpha}(V)$  is the set of all sets containing  $\alpha$  subsets of V which are disjointed and of size k. *Remark.* We can tell:

$$\left| \mathcal{P}_{k,\alpha}(V) \right| = \frac{1}{\alpha!} \prod_{\beta=0}^{\alpha-1} \binom{|V|-k\beta}{k} = \frac{1}{\alpha!} \frac{|V|!}{(k!)^{\alpha} (|V|-k\alpha)!}.$$

**Definition 3.8.** For  $k \in [1, |V|]$ ,  $m \in [0, X(V)]$ , and  $\alpha \in [2, \left\lfloor \frac{|V|}{k} \right\rfloor]$ , let's define:

$$\begin{split} \mathfrak{Q}^{\mathfrak{m}}_{k,\alpha}(V) &\coloneqq \bigsqcup_{\stackrel{\{W_{1},\ldots,W_{\alpha}\}\in\mathcal{P}_{k,\alpha}(V)}{\mu(W_{1})<\ldots<\mu(W_{\alpha})}} \bigsqcup_{\substack{(\mathfrak{i}_{1},\ldots,\mathfrak{i}_{\alpha})\in\llbracket k-1,X(k)\rrbracket^{\alpha}\\ j=1}} \left[ \left(\prod_{j=1}^{\alpha}\chi_{\mathfrak{i}_{j}}(W_{j},\cdot)\right) \times \left(\prod_{p=1}^{k-1}\Lambda_{p}^{\mathfrak{m}-\sum_{j=1}^{\alpha}\mathfrak{i}_{j}}\left(V\setminus \prod_{j=1}^{\alpha}W_{j},\cdot\right)\right) \right] \\ &= \bigsqcup_{\stackrel{\{W_{1},\ldots,W_{\alpha}\}\in\mathcal{P}_{k,\alpha}(V)}{\mu(W_{1})<\ldots<\mu(W_{\alpha})}} \bigsqcup_{\substack{\Sigma=\alpha(k-1)\\ (\mathfrak{i}_{1},\ldots,\mathfrak{i}_{\alpha})\in\llbracket k-1,X(k)\rrbracket^{\alpha}\\ \text{s.t. }\sum_{j=1}^{\alpha}\mathfrak{i}_{j}=\Sigma}} \left[ \left(\prod_{j=1}^{\alpha}\chi_{\mathfrak{i}_{j}}(W_{j},\cdot)\right) \times \left(\prod_{p=1}^{k-1}\Lambda_{p}^{\mathfrak{m}-\Sigma}\left(V\setminus \prod_{j=1}^{\alpha}W_{j},\cdot\right)\right) \right] \end{split}$$

**Theorem 3.9.** For 
$$(k, m) \in [1, |V|] \times [0, X(V)]$$
 and  $\alpha \in [1, \lfloor \frac{|V|}{k} \rfloor]$ , we have: 
$$\Lambda^m_{k,\alpha}(V, \cdot) \cong \mathfrak{Q}^m_{k,\alpha}(V).$$

*Proof.* For  $\alpha = 1$ , the theorem is proven by Proposition 3.6.<sup>2</sup>

Now, for  $\alpha \ge 2$ , we have the function:

$$\begin{split} \Omega_{\alpha}: & \Lambda^{\mathfrak{m}}_{k,\alpha}(V,\cdot) \rightarrow \mathfrak{Q}^{\mathfrak{m}}_{k,\alpha}(V): \\ & \Gamma(V,\mathsf{E}) \mapsto \left( \Delta_{W_{1}}(\Gamma(V,\mathsf{E})), \ldots, \Delta_{W_{\alpha}}(\Gamma(V,\mathsf{E})), \Delta_{V \setminus \bigsqcup_{i=1}^{\alpha} W_{i}}(\Gamma(V,\mathsf{E})) \right), \end{split}$$

for  $W_1, \ldots, W_{\alpha}$  the subsets of V two by two disjoints, such that  $\forall i \in [1, \alpha] : |W_i| = k$ , and that:

$$\forall i \in [2, \alpha] : \mu(W_{i-1}) \leq \mu(W_i).$$

<sup>&</sup>lt;sup>2</sup>This Proposition is not exactly expressed the same way because  $\mathfrak{Q}_{k,1}^{\mathfrak{m}}(V)$  does not consider a set  $\{W_1\} \in \mathfrak{P}(V)$  but only a subset  $W \in \mathfrak{P}(V)$ . Yet, the proof is equivalent.

We know that  $W_1, ..., W_{\alpha}$  are the only connected components of size k because  $\Gamma(V, E) \in \Lambda_{k,\alpha}^m(V, \cdot)$ . And also, values of  $\mu(W_j)$  can't be equal for different indices by definition of connected components. This implies that function  $\Omega_{\alpha}$  is properly defined.

Now, prove that  $\Omega_{\alpha}$  is bijective.

**Injective** Take  $\Gamma_1(V, E_1), \Gamma_2(V, E_2) \in \Lambda_{k,\alpha}^{\mathfrak{m}}(V, \cdot)$ . Let's assume that:

$$\Omega_{\alpha}(\Gamma_1(V, E)) = \Omega_{\alpha}(\Gamma_2(V, E_2)).$$

We can deduce that  $\Gamma_1$  and  $\Gamma_2$  have the same connected components, and that their restrictions to these connected components are equal as well. By similar argument than in proof of Proposition 3.6, we find that  $\Gamma_1$  and  $\Gamma_2$  must be equal.

Surjective Take:

$$(\Gamma_1(W_1, \mathsf{E}_1), \dots, \Gamma_{\alpha}(W_{\alpha}, \mathsf{E}_{\alpha}), \Gamma(W, \mathsf{E})) \in \mathfrak{Q}^{\mathfrak{m}}_{k,\alpha}(V),$$

and proof that there exists a graph  $\hat{\Gamma}(V,\hat{E}) \in \Lambda^{\mathfrak{m}}_{k,\alpha}(V,\cdot)$  such that:

$$\Omega_{\alpha}(\hat{\Gamma}(V,\hat{E})) = (\Gamma_1(W_1,E_1),\ldots,\Gamma_{\alpha}(W_{\alpha},E_{\alpha}),\Gamma(V,E)).$$

We know that  $\{W_1, \dots, W_\alpha\} \in \mathcal{P}_{k,\alpha}(V)$  by definition of  $\mathfrak{Q}^{\mathfrak{m}}_{k,\alpha}(V)$ , and that:

$$V = W \sqcup \bigsqcup_{j=1}^{\alpha} W_j.$$

As well, by definition of  $\mathfrak{Q}^m_{k,\alpha}(V)$ , we know that if  $\hat{E} := E \sqcup \bigsqcup_{j=1}^{\alpha} E_j$ , then  $\left| \hat{E} \right| = \mathfrak{m}$ . So  $\hat{\Gamma}(V,\hat{E})$ , the graph created by *assembling* the different components  $\Gamma_1$  to  $\Gamma_\alpha$  and  $\Gamma$ , is indeed in  $\Lambda^m_{k,\alpha}$  because:

$$\forall j \in [1, \alpha] : |LCC(\Gamma_j(W_j, E_j)| = k$$
 and  $|LCC(\Gamma(V, E))| \leq k$ 

by definition of  $\mathfrak{Q}_{k,\alpha}^{\mathfrak{m}}(V)$ .

Finally,  $\Omega_{\alpha}(\hat{\Gamma}(V, \hat{E}))$  yields indeed  $(\Gamma_1, \dots, \Gamma_{\alpha}, \Gamma)$  since connected components are ordered according to the  $\mu$  function defined in Definition 1.10

*Remark.* The problem of the largest connected component size has been reduced to a problem of connected graphs and recursive combinatorics.

Recursive values like these ones can be computed pretty efficiently thanks to dynamic programming.

# 4 Counting connected graphs

#### 4.1 Connected graphs of |V| vertices

Harary and Palmer proposed a solution in [1] in 1973 to the number of connected graphs of n vertices, no matter the number of edges.

**Definition 4.1.** For notations to be consistent with [1], let's define:

$$\forall p \in \mathbb{N} : C_p := |\chi(p)|$$
,

the number of connected graphs having p vertices.

Let's state the following theorem from [1], pages 7-8.

**Theorem 4.2** (Harary and Palmer). For all  $p \in \mathbb{N}^*$ , the number of connected graphs of p vertices is given by:

$$C_{p} = \sum_{k=1}^{p-1} {p-2 \choose k-1} (2^{k}-1) C_{k} C_{p-k}.$$

The second equality stands as well:

$$C_p = 2^{X(p)} - \frac{1}{p} \sum_{k=1}^{p-1} k \binom{p}{k} 2^{X(p-k)} C_k.$$

## 4.2 Connected graphs of |V| vertices and m edges

Yet, in definition of set  $\mathfrak{Q}_{k,\alpha}^{\mathfrak{m}}(V)$ , it is the cardinality of  $\chi_{\ell}(\mathfrak{n})$  that is needed, i.e.  $C_{\mathfrak{p}}$  is not sufficient. **Definition 4.3.** Again, in order to stay consistent with cited references, let's denote:

$$\forall n \in \mathbb{N}^* : \forall k \in \llbracket 0, X(n) \rrbracket : q_{n,k} \coloneqq \left| \chi_k(n) \right|.$$

Starting from generating function equality given by Bona and Noy in [2], namely:

$$\sum_{n\geqslant 0}\sum_{k\geqslant 0}q_{n,k}u^k\frac{z^n}{n!}=log\left(\sum_{n\geqslant 0}(1+u)^{X(n)}\frac{z^n}{n!}\right),$$

one can find the recursion relation given by Marko Riedel [ADD SOURCE!]:

$$q_{n,k} = {\binom{X(n)}{k}} - \sum_{m=0}^{n-2} {\binom{n-1}{m}} \sum_{p=0}^{k} {\binom{X(n-m-1)}{p}} q_{m+1,k-p}.$$

## 5 Conclusion

We have then proved that the cardinality of set  $\Lambda_k^{\mathfrak{m}}(V,\cdot)$  is equal to:

$$\begin{split} \left| \Lambda_k^m(V,\cdot) \right| &= \left| \bigsqcup_{\alpha=1}^{\left \lfloor \frac{|V|}{k} \right \rfloor} \Lambda_{k,\alpha}^m(V,\cdot) \right| = \sum_{\alpha=1}^{\left \lfloor \frac{|V|}{k} \right \rfloor} \left| \Lambda_{k,\alpha}^m(V,\cdot) \right| = \sum_{\alpha=1}^{\left \lfloor \frac{|V|}{k} \right \rfloor} \left| \mathfrak{Q}_{k,\alpha}^m(V) \right| \\ &= \sum_{\alpha=1}^{\left \lfloor \frac{|V|}{k} \right \rfloor} \left| \mathcal{P}_{k,\alpha}(V) \right| \sum_{\Sigma=\alpha(k-1)}^{\min(m,\alpha X(k))} \sum_{\stackrel{(i_1,...,i_{\alpha}) \in \left \lfloor k-1,X(k) \right \rfloor}{\sum_{i=1}^{\alpha} i_j = \Sigma}} \left( \prod_{j=1}^{\alpha} q_{i_j,k} \times \sum_{p=1}^{k-1} \left| \Lambda_p^{m-\Sigma}(V) - k\alpha) \right| \right), \end{split}$$

from which we eventually deduce:

$$\forall k \in \llbracket 1, |V| \rrbracket : \mathbb{P} \left[ \left| LCC(\mathscr{G}(V, m)) \right| = k \right] = \frac{\left| \Lambda_k^m(V, \cdot) \right|}{\left| \Gamma_m(V, \cdot) \right|}.$$

# References

- [1] H. F. and P. E., Graphical Enumeration. New York and London: Academic Press, 1973.
- [2] B. M. and N. M., Handbook of Enumerative Combinatorics. CRC Press, 2015.