Back-Propagation Neural Networks

Overview

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

- Outline to the left
- Current topic in red
 - Introduction
 - History and Origins
 - Biologically Inspired
 - Applications
 - Perceptron
 - Activation Functions
 - Hidden Layer Networks
 - Training with BP
 - Examples
 Neural Networks

Introduction

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

- Artificial Neural Networks (ANN)
 - Connectionist computation
 - Parallel distributed processing
 - Computational models
- Biologically Inspired computational models
- Machine Learning
- Artificial intelligence

History

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

- McCulloch and Pitts introduced the Perceptron in 1943.
 - Simplified model of a biological neuron
- Fell out of favor in the late 1960's
 - (Minsky and Papert)
 - Perceptron limitations
- Resurgence in the mid 1980's
 - Nonlinear Neuron Functions
 - Back-propagation training

Summary of Applications

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

- Function approximation
- Pattern recognition
- Signal processing
- Modeling
- Control
- Machine learning

Biologically Inspired

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

- Electro-chemical signals
- Threshold output firing

The Perceptron

- Binary classifier functions
- Threshold activation function

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

The Perceptron

- Binary classifier functions
- Threshold activation function

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

The Perceptron: Threshold Activation Function

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

- Binary classifier functions
- Threshold activation function

Linear Activation functions

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

Output is scaled sum of inputs

Nonlinear Activation Functions

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

Sigmoid Neuron unit function

Layered Networks

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer Networks
- Training with BP
- Examples

SISO Single Hidden Layer Network

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- <u>Hidden Layer</u> Networks
- Training with BP
- Examples

• Can represent and single input single output functions: y = f(x)

Training Data Set

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- <u>Hidden Layer</u> Networks
- Training with BP
- Examples

Adjust weights (w) to learn a given target function: y = f(x)

Given a set of training data $X \rightarrow Y$

Training Weights: Error Back-Propagation (BP)

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

Weight update formula:

$$w(k+1) = w(k) + \Delta w$$

$$\Delta w(i) = \eta * \frac{\partial e(i)}{\partial w}$$

Error Back-Propagation (BP)

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

Training error term: e

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

$$e(y_{out}, y_{train}) = e(y_{out}(u_{out,1}), y_{train})$$

$$= e(y_{out}(w_{out,1}y_{hid,1}), y_{train})$$

$$= e(y_{out}(w_{out,1}y_{hid}(u_{hid,1})), y_{train})$$

$$= e(y_{out}(w_{out,1}y_{hid}(w_{hid,1})), y_{train})$$

$$= e(y_{out}(w_{out,1}y_{hid}(w_{hid,1}x)), y_{train})$$

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

$$\frac{\partial e}{\partial w_{hid}} = \frac{\partial e}{\partial y_{out}} \frac{\partial y_{out}}{\partial u_{out,1}} \frac{\partial u_{out,1}}{\partial y_{hid}} \frac{\partial y_{hid}}{\partial u_{hid,1}} \frac{\partial u_{hid,1}}{\partial w_{hid,1}}$$

Hidden Neurons

$$\frac{\partial e}{\partial w_{hid}} = \frac{\partial u_{hid,1}}{\partial w_{hid,1}} \frac{\partial y_{hid}}{\partial u_{hid,1}} \frac{\partial u_{out,1}}{\partial y_{hid}} \frac{\partial y_{out}}{\partial y_{hid}} \frac{\partial e}{\partial u_{out,1}} \frac{\partial e}{\partial y_{out}}$$

Hidden Neurons y_{hid}(U_{hid, 1)} $U_{hid,1}$ **Y**hid Ň1 W_{hid,} Wout, 1 y_{hid}(U_{hid,2,} $U_{out,1}$ W_{hid,2} W_{out,2} y_{out} e(y_{out}, y_{train}, Output Neuron $W_{hid,n}$ W_{out,r} $y_{hid}(u_{hid,i})$

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

$$\frac{\partial u_{hid,1}}{\partial w_{hid,1}} = \frac{\partial}{\partial w_{hid,1}} w_{hid,1} x$$

$$= x$$

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

Hidden Neurons

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

$$\frac{\partial u_{out,1}}{\partial y_{hid}} = \frac{\partial}{\partial y_{hid}} w_{out,1} y_{hid,1}$$
$$= w_{out,1}$$

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

$$\frac{\partial e}{\partial w_{hid}} = \frac{\partial u_{hid,1}}{\partial w_{hid,1}} \frac{\partial y_{hid}}{\partial u_{hid,1}} \frac{\partial u_{out,1}}{\partial y_{hid}} \frac{\partial y_{out}}{\partial u_{out,1}} \frac{\partial e}{\partial y_{out}}$$

$$= (x) (y_{hid} (u_{hid,1}) [1 - y_{hid} (u_{hid,1})] (w_{out,1}) (1) (y_{out} - y_{train})$$

Hidden Neurons

y_{hid}(U_{hid,1)} $U_{hid.1}$ ****hid W_{hid.} Wout, 1 ∖U_{out,1} Y_{hid}(U_{hid,2,} W_{hid.2} Wout, 2 **Y**out e(yout, ytrain, Output Neuron $W_{hid,n}$ W_{out,i} $y_{hid}(u_{hid,i})$

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples

$$\frac{\partial e}{\partial w_{out}} = \frac{\partial u_{out,1}}{\partial w_{out}} \frac{\partial y_{out}}{\partial u_{out,1}} \frac{\partial e}{\partial y_{out}}$$

$$= \left(\frac{\partial}{\partial w_{out}} w_{out,1} y_{hid,1}\right) \left(\frac{\partial}{\partial u_{out,1}} \left[u_{out,1} + u_{out,2} + \dots + u_{out,N}\right]\right) \left(\frac{\partial}{\partial y_{out}} \frac{1}{2} (y_{out} - y_{train})^{2}\right)$$

$$= (y_{hid})(1)(y_{out} - y_{train})$$

Hidden Neurons

Example: Step by step

- Introduction
- History
- Biologically Inspired
- Applications
- The Perceptron
- Activation Functions
- Hidden Layer
 Networks
- Training with BP
- Examples