

CLAIMS

In The Claims

1. (currently amended) An ultra wide band network, comprising:
 - a master device and a plurality of slave devices in network communication with said master device, the communication using a Time Division Multiple Access frame comprising a multiplicity of ultra wide band signals;
 - a Medium Access Control layer protocol for transmission and reception of network packets, comprising:
 - a Time Division Multiple Access frame definition having,
 - a start-of-frame section,
 - a command section,
 - a data slot section containing a plurality of variable length slots,
 - a synchronization slot, and
 - a timestamp slot.
2. (previously presented) The ultra wide band network of claim 1, wherein the Medium Access Control layer protocol is configured to implement dynamic requisition of variable length data slots within said frame.
3. (previously presented) The ultra wide band network of claim 1, wherein the Medium Access Control layer protocol is configured to implement dynamic allocation of said variable-length data slots.

4. (previously presented) The ultra wide band network of claim 1, wherein the Medium Access Control layer protocol is configured to implement dynamic reallocation of said variable-length data slots.

5. (previously presented) The ultra wide band network of claim 1, wherein said master device and slave device are further configured to coordinate a scheduled switch from a first set of data slot parameters to second set of data slot parameters.

6. (previously presented) The ultra wide band network of claim 5, wherein said timestamp slot further comprises a bit-field which is incremented by a master timestamp counter.

7. (previously presented) The ultra wide band network of claim 6, wherein each of said slave devices is configured to maintain a local copy of said master timestamp counter.

8. (previously presented) The ultra wide band network of claim 1, wherein said variable-length data slots of said frame have a granularity of one bit.

9. (currently amended) A networking system, comprising:

a master device;

a plurality of slave devices in network communication with said master device, the network communication using a Time Division Multiple Access frame comprising a multiplicity of ultra wide band signals;

a Medium Access Control layer protocol capable of transmission and reception of a plurality of network packets communicated between said master device and said slave devices; and

a Time Division Multiple Access frame definition having,
a data slot section containing a plurality of variable-length data slots,
a synchronization slot, and
a timestamp slot.

10. (original) The networking system as recited in claim 9 further comprising a bit-field which is configured to be incremented by said master device in a modulo-N manner by a timestamp counter within said timestamp slot.

11. (original) The networking system as recited in claim 10, wherein each of said slave devices is configured to provide a local copy of said master timestamp counter which allows slave devices to identify a scheduled frame time.

12. (original) The network system as recited in claim 11, wherein each slave device is structured to coordinate a schedule switch from a first set of data slot parameters to a second set of data slot parameters.

13. (original) A networking system as recited in claim 11, wherein said protocol further is structured to implement dynamic reallocation of said variable-length data slots.

14. (currently amended) A [[method]] computer program for scheduling the assignment of variable length data slots in a network system having a master device and a plurality of slave devices in network communication with said master device the network communication using a Time Division Multiple Access frame comprising a multiplicity of ultra wide band signals, comprising;

providing a Time Division Multiple Access frame definition comprising a synchronization slot and a timestamp slot, and a data slot section having a plurality of variable-length data slots; and

determining a schedule time to communicate the assignment and reallocation of said variable-length data slots to each of said slave devices.

15. (original) The method of claim 14, further comprising scheduling the assigning and reallocation from a first set of data slot parameters to a second set of data slot parameters with a scheduling frame transmitted at said scheduled time.

16. (original) The method of claim 15, further comprising switching the data slot parameters for each participating slave device at said scheduled time.

17. (previously presented) The ultra wide band network of claim 1, wherein the network is selected from a group consisting of: a wire media network, a wireless media network, and a network comprising wire and wireless media.

18. (previously presented) The networking system as recited claim 9, wherein the network is selected from a group consisting of: a wire media network, a wireless media network, and a network comprising wire and wireless media.

19. (previously presented) The method of claim 14, wherein the network is selected from a group consisting of: a wire media network, a wireless media network, and a network comprising wire and wireless media.

Please add the following new claim:

20. (new) An ultra wide band network, comprising:
a master device and a plurality of slave devices, the slave devices in communication with the master device, the communication using a Time Division Multiple Access frame comprising a multiplicity of ultra wide band signals.