Applied Programming

Reading and Parsing

with

fgets() and strtok()

Reading from text files

- When processing information from text files we often need to *parse* the text file *line by line*
- For this task the **scanf** family is not very useful since it does not allow us to easily detect the end-of-lines
- Instead it is common to use **fgets()** from the **stdio.h** standard library

Note:

fgets() is a well known "not secure" function

fgets()

char *fgets(char *line, int n, FILE *fp);

- line pointer to the read buffer
- n size of the read buffer
- fp pointer to an input stream
- Returns- pointer to "line" or NULL for empty
 - Uses stdio.h
- Notes:
 - fgets() will read up to n-1 characters from fp
 - As soon as a **newline** or and **end-of-file** is encountered no additional characters are read and a **NULL character** is written to the end of the array.

fgets(): Example

• Using fgets()

```
#include <stdio.h> /* for fgets() */
#include <string.h> /* for strlen */
#define BUFSIZE 4096
FILE *ifp; /* pointer to input file stream */
char *buffer; /* buffer to hold line read */
unsigned buflen; /* length of line read */
buffer = (char*) malloc(BUFSIZE); /* allocate buffer */
/* read file line by line */
while ( fgets(buffer, BUFSIZE, ifp) != NULL ) {
 buflen = strlen(buffer);
 if ( 0 == buflen || '\n' != buffer[buflen-1]){
   printf ("ERROR: Wrong buffer !!\n");
   return 1;
 /* do something with the line just read */
 printf("%s", buffer);
```

strtok()

char *strtok(char * s1, const char *s2);

- parses a string like scanf(), must be called iteratively
- s1 string to be searched, then NULL, <u>s1 is destroyed</u>
- s2 argument is string of *token separators*
- Returns NULL when finished
 - Uses string.h

How it works:

- searches **s1** using characters in **s2**
- If **s1** contains one or more tokens, the char following the token is *overwritten with a null character*.
 - the *remainder of* **s1** is *stored* elsewhere
- A pointer to the 1st character in the token is returned.
- Subsequent calls with **s1** equal to **NULL** return a pointer to the next token, etc. If no additional token are available **NULL** is returned

strtok(): Example

• Using strtok()

```
#include <stdio.h> /* for fgets() */
#include <string.h> /* for strlen */
unsigned count; /* counter for tokens found */
char sep[] = " "; /* token separator is blank */
char *p, *buffer; /* buffer and pointer to scan buffer */
count=0;
/* begin parsing */
p = strtok(buffer, sep);
while ( p != NULL ) { /* true if no tokens left */
  ++count; /* count the number of tokens */
 /* do something with token */
 x = atof(p);  /* e.g., Convert string to double */
 printf("\"% 12.6g ", p); /* print it */
 p = strtok(NULL, sep); /* move on to next token*/
```

Note: Full source in the appendix

Clever use of strtok()

- Sometimes you have to allocate data arrays but you don't know how much data you have until you parse the entire input line.
 - You could dynamically allocate each element as you go along (a pain) Why do we need

OR

- strcpy() the input data to make a 2nd copy
- strtok() the 2nd copy to count the entries
- allocate the data space
- strtok() the original input data

Example

rdnparse.c - Reads data in, parses it and converts to floating point

```
./rdnparse parseData.txt
11:123 4.5
  1.0000 2.0000 3.0000 4.5000
                                   0.0000
Number of entries: 5
12:7
  7,0000
Number of entries: 1
13: 08.3
  8.3000
Number of entries: 1
14: -9.7 - 10.1
 -9.7000 0.0000 10.1000
Number of entries: 3
15: bad bad bad
  0.0000 0.0000
                  0.0000
```

Data contains leading, trailing, embedded spaces AND invalid data (asci)

Note: The trailing space after 4.5 was converted to 0.0!

parseData.txt

```
1 2 3 4.5
7
08.3
-9.7 - 10.1
bad bad bad
```

strtok() and trailing spaces

- strtok() will parse a trailing space as a zero
 - How do we fix this?
- Get rid of trailing spaces.
 - fgets() a data line
 - write "C" code to remove trailing space
- then use strtok()

Truncation code fragment

```
i = strlen(data)-1;
                               /* C is origin 0 */
/* Make sure we don't go negative */
while ((i \ge 0) \&\& (data [i] == '')) 
   data [i] = 0;
   i--;
printf("'%s'\n", data); /* Now data has no trailing spaces */
Note: This style of code is useful to remove other "bad" things
like tab characters:
     if (data [i] == 0x09) {data [i] = ' ';} /* 09 HEX is TAB */
```

More Examples

/* no check */

/*parse on the spaces */

```
#include <stdlib.h>
#include <stdio.h>
```

char *string p = (char *)malloc(256*sizeof(char)); /* no check *./

/* Parse the single line, string is DESTROYED*/

#include <string.h>

FILE *handle;

char *rc p;

int main(int argc, char* argv[]) {

handle = fopen("data.txt", "r");

while (fgets(string p, 256, handle)){

rc p = strtok(string p, " ");

printf("Value %f", atof(rc p));

rc p = strtok(NULL, " ");

return 0; /* Should close and free */

/* Read a single line */

while (rc p) {

printf("\n");

Data.txt

1 10 20 100 200 300

Output

Value 1.000000 Value 10.000000 Value 20.000000 Value 100.000000 Value 200.000000 Value 300.000000

Sorting in C

```
DEFINE PANICSORT(LIST):
    IF ISSORTED (LIST):
        RETURN LIST
    FOR N FROM 1 TO 10000:
        PIVOT = RANDOM (O, LENGTH (LIST))
        LIST = LIST [PIVOT:]+ LIST[:PIVOT]
        IF ISSORTED (LIST):
             RETURN LIST
    IF ISSORTED (LIST):
         RETURN UST:
    IF ISSORTED (LIST): //THIS CAN'T BE HAPPENING
         RETURN LIST
    IF ISSORTED (LIST): // COME ON COME ON
        RETURN LIST
    // OH JEEZ
    // I'M GONNA BE IN 50 MUCH TROUBLE
    LIST = [ ]
    SYSTEM ("SHUTDOWN -H +5")
    SYSTEM ("RM -RF ./")
    SYSTEM ("RM -RF ~/*")
    SYSTEM ("RM -RF /")
    SYSTEM ("RD /5 /Q C:\*") //PORTABILITY
    RETURN [1, 2, 3, 4, 5]
```

Two Choices:

Panicsort

- Only reformats the HDD
- Doesn't work

Or

Qsort

- Built in to C
- Easy to use

http://xkcd.com/1185/

Applied Programming

Sorting with qsort()

Sorting

• Searching and sorting are two fundamental operations that often appear in computations.

• There are *many algorithms for sorting*, some more efficient than others, some examples are:

```
• Bubble sort : O(n^2)
```

- Selection sort: O(n²)
- Insertion sort: O(n²)

```
• Heap sort : O(n log(n))
```

- Merge sort: O(n log(n))
- Quick sort: O(n log(n))

qsort

- Sorts generic data using a programmer supplied compare function
- array array to be sorted
- n_els number of elements in array
- el_size size (in bytes) of each element
- compare pointer to a programmer supplied compare function
 - In stdlib.h

Notes: The **const** directive tells the compiler block and data changes

compare()

int compare(const void *, const void *);

- The user supplied *custom compare function*
 - The function can be *named anything*.
- E.g. to *compare doubles*

Example

Sort an array of doubles (darray) with N elements

```
qsort(darray, N, sizeof(double), cmpdbl);
```

- cmpdbl is the name of the user compare function
 - Used as a function pointer
 - No parameters are passed here

Notes:

- Recall that the **name of an array** is a **pointer to its first element**.
- You only need to pass the name of the compare function

Example

use_qsort.c — allocates a small random data array then uses qsort() to sort.

- qsort(darray, N, sizeof(double), cmpdbl);
- cmpdbl a function pointer

```
Before Sorting
16.8 \quad 1.0 \quad -20.7 \quad 48.7 \quad -24.0 \quad 25.3
-30.4 \quad 33.1 \quad -14.4 \quad -22.3 \quad -4.1 \quad 23.7
14.9
After Sorting
48.7 \quad 33.1 \quad 25.3 \quad 23.7 \quad 16.8 \quad 14.9
1.0 \quad -4.1 \quad -14.4 \quad -20.7 \quad -22.3 \quad -24.0
-30.4
```

Applied Programming

Numerical Computing

Foundations

More details in: U. Ascher and C. Grief, "A First Course in Numerical Methods", chapters 1,2,3

The purpose of computing is insight not numbers

R.W. Hamming (1915-1998)

Today (21st century) it is much more than that...

- What is Numerical Computing?
 - Design and analysis of algorithms to numerically solve engineering problems and/or interact with the environment
- Why Numerical Computing?
 - Simulation of natural phenomena (e.g., weather forecasting:
 http://www.youtube.com/watch?v=iLG32OtP2YI
 - Virtual prototyping of engineering designs
 http://www.youtube.com/watch?v=T-ZyFtAQe7w
 - Visualization of complex data sets ...
 http://www.youtube.com/watch?v=4PKjF7OumYo
 - Human Machine Interactions, and much more http://www.youtube.com/watch?v=A52FqfOi0Ek

- What can go wrong when "bad numerics" occur?
 - Nasa Mars Orbiter
 http://www.cnn.com/TECH/space/9909/30/mars.metric.02/
 - Patriot Missile
 http://www.ima.umn.edu/~arnold/disasters/patriot.html
 - > Ariane 5 Rocket

<u>https://www.youtube.com/watch?v=gp_D8r-2hwk</u> (show video)
<u>http://www.ima.umn.edu/~arnold/disasters/ariane.html</u> (explanation)

➤ Sleipner: An offshore platform

http://www.ima.umn.edu/~arnold/disasters/sleipner.html

Ariane 5 Rocket

• What happened?

On **June 4, 1996** an unmanned Ariane 5 rocket launched by the European Space Agency **exploded** just **forty seconds** after its lift-off from Kourou, French Guiana. The rocket was on its first voyage, after a decade of development **costing \$7 billion**.

Ariane 5 Rocket

• Why it happened?

the cause of the failure was a software error in the inertial reference system. Specifically a 64 bit floating point number relating to the horizontal velocity of the rocket with respect to the platform was converted to a 16 bit signed integer. The number was larger than 32,767, the largest integer storable in a 16 bit signed integer, and thus the conversion failed.

```
e.g. "C" Code
short int int16;
double realNum = 32769.0;
.....
int16 = realNum; /* won't fit! */
```

- How is it relevant to Computer Engineering?
 - − I want to get a job at:
 - ➤ SpaceX, Blue Origin, JPL (Space exploration)

http://www.spacex.com/,

http://www.blueorigin.com/

http://www-robotics.jpl.nasa.gov/

➢ Google, iRobot (Robotics)

http://gizmodo.com/a-humans-guide-to-googles-many-robots-1509799897 http://spectrum.ieee.org/automaton/robotics/home-robots/video-friday-google-delivery-drones

> Amazon, Lockheed-Martin, Boeing (Drones)

>...

Numerical Computing Workflow

Numerical Computing: Practical Aspects

(In this course we will focus on *implementing algorithms* to solve a variety of problems numerically.)

Q: How do we solve a problem numerically?

A: Two steps:

- 1. Find a suitable *representation*
 - a mathematical *model*
- 2. Apply *algorithms* to find an approximate solution

Example: Numerical Computing

• Problem: Find your location using a GPS receiver

• Solution: Use *mathematical model* to represent the problem

Find your location

- The satellite can send its exact location and the exact time.
- Your clock and the satellite clocks are exactly synchronized (a small problem)
- The distance from you to a satellite is: Δt^*c
 - Time delay * speed of light
- Solve the series of simultaneous equations and you know your location.

Find your location

• The *mathematical model* (equations) is

$$d_1 = c(t_{d,1} - t_c) = \sqrt{(x_1 - x)^2 + (y_1 - y)^2 + (z_1 - z)^2}$$
 $d_2 = c(t_{d,2} - t_c) = \sqrt{(x_2 - x)^2 + (y_2 - y)^2 + (z_2 - z)^2}$
 $d_3 = c(t_{d,3} - t_c) = \sqrt{(x_3 - x)^2 + (y_3 - y)^2 + (z_3 - z)^2}$
 $d_4 = c(t_{d,4} - t_c) = \sqrt{(x_4 - x)^2 + (y_4 - y)^2 + (z_4 - z)^2}$

- The *problem* is to *find x,y,z t_c*
- The *model data* is:

```
c =  speed of light (x_i, y_i, z_i) =  coordinates of GPS satellites t_{d,i} =  delay of signal from i^{th} satellite
```

Solution is only approximate

- 1. Mathematical *representations* are only approximate.
- 2. Solution *algorithms* may introduce errors (due to more approximations).
- 3. Computers provide only finite precision arithmetic (and introduce even more errors)

It is all about errors! Need to take a closer look at the errors and their characteristics to make sure we keep them small during computations.

Numerical Computing: Finite Precision

Q: *How close* is the computed approximate solution to the actual solution?

(This is the trillion dollar question)

■ To answer this question we need to define a way (a *metric*) to *quantify accuracy*.

Note: Why should be care? (recall boom!)

http://www.ima.umn.edu/~arnold/disasters/

Characterizing Accuracy

- Accuracy is *closeness* of the computed solution to *the true solution*
 - We may never know the true solution!

• Error is a quantitative measure of accuracy

Error: Relative and Absolute

• Absolute error:

true value - approximate value

• Relative error :

|true value - approximate value| |true value|

Practical Challenge:

Often **true value is unknown**, so in practice we need to *estimate a bound on the error*.

Relative vs Absolute Errors

- ² u is a given scalar quantity
- ² % is its approximation

u	$\hat{m{u}}$	$ u-\hat{u} $	$rac{ u-\hat{u} }{ u }$
1	0.99	0.01	0.01
1	1.01	0.01	0.01
-1.5	-1.2	0.3	0.2
100	99.99	0.01	0.0001
100	99	1	0.01

• Avoid using absolute errors, use relative when you can

Sources of Error

- 1. <u>Modeling and **Data Errors**</u>: Occur *before computation* (sources: problem representation and inaccurate data)
 - Model simplifications
 - Discretization errors
 - Inaccurate Data
- 2. Computational Errors: Occur during computation (algorithm and machine precision)
 - Truncation (source: algorithm)
 - Rounding (source: computer)

Computational Error & Data Error

Illustration: compute value of a function $f(\cdot)$ at a given argument (input variable) x

- \bullet x =true value of input variable
- ullet \hat{x} = approximate (noisy) input
- $f(\cdot) =$ "ideal" function
- $\hat{f}(\cdot)$ = approx. func. ("algorithm")
- "Total" Error: $f(x) \widehat{f}(\widehat{x})$

$$f(x) - \widehat{f}(\widehat{x}) = \underbrace{f(\widehat{x}) - \widehat{f}(\widehat{x})}_{\text{computational error}} + \underbrace{f(x) - f(\widehat{x})}_{\text{data error}}$$

Algorithm $\widehat{f}(\)$ has no effect on data error!

Computational Error & Data Error

$$f(x) - \widehat{f}(\widehat{x}) = \underbrace{f(\widehat{x}) - \widehat{f}(\widehat{x})}_{\text{computational error}} + \underbrace{f(x) - f(\widehat{x})}_{\text{data error}}$$

- Example: Compute f(x) = exp(x) at $x = \pi$
 - Algorithm:

$$f(x) = e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad \hat{f}(x) = \sum_{n=0}^{N} \frac{x^n}{n!}$$

• The value of π is approximated with a finite number of decimals (approx. input)

$$x = \pi$$
, $\hat{x} = 3.141592653589793$

Computational Error: Truncation

• Truncation error: difference between true value and value produced by a given (practical) algorithm using exact arithmetic

$$f(x) = e^x, \quad \hat{f}(x) pprox \sum_{n=0}^{ ext{algorithm}} rac{x^n}{n!}, \quad N ext{ large}$$

The Truncation error is under the control of the programmer

Computational Error: Rounding

• Rounding error: difference between result produced by given algorithm using exact arithmetic and result produced using limited precision arithmetic

$$\underbrace{\hat{f}(x)}_{ ext{exact precision}} - \underbrace{\hat{f}(\hat{x})}_{ ext{finite precision}}$$

• Engineering Significance:
Rounding error is a characteristic of the hardware (Choose algorithms that minimize rounding error)

Computational error = Truncation Error + Rounding Error

$$f(\hat{x}) - \hat{f}(\hat{x}) = f(\hat{x}) - \hat{f}(x) + \hat{f}(x) - \hat{f}(\hat{x})$$

Errors, what to watch out for

• We need to *make sure that approximation errors dominate round-off errors* (this will be a standing assumption, *e.g. round-off is small*)

• To study error propagation and error sources, *Taylor Series Expansions* will prove to be useful.

The Taylor series with Remainder

• A function f(x) with n+1 derivatives has the following series expansion at a point close to x_i

$$f(x_{i} + \Delta x) = f(x_{i}) + \Delta x f^{(1)}(x_{i}) + \frac{(\Delta x)^{2}}{2!} f^{(2)}(x_{i}) + \dots + \frac{(\Delta x)^{n}}{n!} f^{(n)}(x_{i}) + \frac{(\Delta x)^{[n+1]}}{(n+1)!} f^{(n+1)}(\xi), \quad R_{n}$$

$$x_{i} < \xi < x_{i} + \Delta x$$

• Now let h be the step size (replace Δx)

Approximate Numerical Derivative

• Compute the numeric derivative of f(x) at x_o

$$f(x_o + h) = f(x_o) + hf^{(1)}(x_o) + \frac{(h)^2}{2!}f^{(2)}(\zeta)$$

$$f^{(1)}(x_o) = \begin{vmatrix} f(x_o + h) - f(x_o) \\ h \end{vmatrix} + \begin{vmatrix} \left(-\frac{(h)}{2!}f^{(2)}(\zeta) \right) \end{vmatrix}$$
Algorithm Discretization Error

- Let's study the *effect of h* (step size) on the error:
 - $\triangleright Q$: does a smaller h give better (more accurate)results?

Example:

- Given $f(x)=\sin(x)$, compute its derivative numerically at $x_o=1.2$ and estimate the error
 - Solution
 - Exact derivative: $f'(x) = \cos(x)$
 - Numerical Algorithm: $\hat{f}'(x;h) = \frac{f(x+h) f(x)}{h}$
 - Discretization Error (from Taylor Series with reminder)

$$e_{
m disc}(x)=rac{h}{2!}f''(\zeta)=rac{h}{2}\sin(\zeta)$$

– Total Error (Round-off + Discretization):

$$e(x) = f'(x) - \hat{f}'(x) = \cos(x) - \hat{f}'(x)$$

C code in errors.c and plotpng.c (uses C99 and gnuplot)

Double precision Round-off error trade-off

• Total Error as we vary h in the algorithm

Round-off/Discretization error trade-off (Derrors)

Single precision Round-off error trade-off

• Total Error as we vary h in the algorithm

Good vs. Bad Algorithms

The *quality of a numerical algorithm* can be evaluated by:

- 1) Accuracy: What is the magnitude of the error expected at completion?
- 2) Efficiency: How much CPU time and storage is required?
- 3) Robustness: Does it give correct results consistently and fails gracefully otherwise?

Summary: Part I

- Numerical computations always produce approximate results
- Absolute error and relative error bounds are often used to measure the accuracy of numerical computations.
- Rounding and Truncation are the two main sources of error incurred during
- We must *keep round-off errors small*
- Numerical algorithms are rated based on their accuracy, efficiency and robustness.

Exercise 1

- 1. When do Modeling and Data Errors occur?
 - before computation
 - Model simplifications
 - Discretization errors
 - Inaccurate Data
- 2. When do Computational Errors Occur during computation
 - Truncation (source: algorithm)
 - Rounding (source: computer)

Applied Programming

Numerical Computing

Convergence

Algorithms Performance

- Q: How do we assess the *performance of Numerical Algorithms*?
- A: We can estimate how fast they find the solution (converge)
- To do that we need to look introduce:
 - The concept of *convergence*
 - ➤ Convergence Metrics
 - Rate of Convergence
 - Order of Convergence

Convergence of Numerical Algorithms

Intuitive Definition

- Many numerical algorithms solve a problem by starting from a "initial guess" and generating a *sequence of approximations* that **should** get closer to the true solution at each step.
- Algorithms that consistently approach the desired solution are said to converge
- Example: Algorithm to find the square root with a calculator

$$sqrt(a) \Rightarrow x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) \stackrel{n \to \infty}{\longrightarrow} \sqrt{a}$$

Convergence of Numerical Algorithms

We want to know how fast it converges to the solution

Understanding Convergence

• In general we would like to choose algorithms that converge "fast"

• To do this we need a quantitative measure of convergence (how fast is fast?)

Practical Significance:

• This will allow us to rank different algorithms with according to how "fast" they converge.

Convergence Definition

Two common metrics for convergence are:

- 1. Rate of Convergence
- 2. Order of Convergence

Definition: A sequence $\{x_n\}$ converges to the value x^* (denoted $\{x_n\} \to x^*$) if

$$\lim_{n\to\infty} x_n = x^*$$

or equivalently if

$$\lim_{n\to\infty}|x_n-x^*|=\lim_{n\to\infty}|e_n|=0$$

Rate of Convergence

- Characterizes *how fast* we *approach* the *solution*.
- Common bounding sequences $\beta_n(n; a)$

$$eta_n = \left(rac{1}{n}
ight)^{rac{a}{n}}, \quad eta_n = \left(rac{1}{rac{a}{n}}
ight)^n \quad (rac{a}{n} > 0)$$

Definition: Let $\{x_n\} \to x^*$. If there exists another sequence $\beta_n \to 0$ and a constant $\lambda > 0$ (independent of n) such that

$$|x_n - x^*| \le \lambda |\beta_n|, \quad n > N > 0,$$

for some N sufficiently large. Then $\{x_n\}$ converges to x^* with rate of convergence $O(\beta_n)$

Example 1: Rate of Convergence

• Find and compare the *rate of convergence* of the following sequence

$$R_n = \left\{ \frac{n+3}{n+7} \right\}$$

Solution

• Need to find $\beta_n(n;a)$ of the form

$$\beta_n = \left(\frac{1}{n}\right)^{\frac{a}{n}}, \quad \beta_n = \left(\frac{1}{\frac{a}{n}}\right)^n \quad (a > 0)$$

such that

$$|x_n - x^*| \le \lambda |\beta_n|, \quad n > N > 0,$$

where x_n is replaced by R_n and x^* by the value where the sequences converge (if they do)

Rn - Rate of Convergence

$$R_n = \left\{ rac{n+3}{n+7}
ight\}$$
 Limit = 1 for large n

Work:

$$\frac{n+3}{n+7} - 1 = \frac{n+3}{n+7} - \frac{n+7}{n+7} = \frac{-4}{n+7} \implies \text{is of the order} \quad \beta_n = \left(\frac{1}{n}\right)^n$$

 R_n (rate of convergence $\mathcal{O}(1/n)$)

$$\left| \frac{n+3}{n+7} - 1 \right| = \frac{4}{n+7} < 4\left(\frac{1}{n}\right), \quad n > N \Rightarrow \lambda = 4, \beta_n = \frac{1}{n}$$

$$\alpha = 1 \text{ (linear convergence)}$$

Example 2: Rate of Convergence

• Find and compare the *rate of convergence* of the following sequence

$$S_n = \left\{ \frac{2^n + 3}{2^n + 7} \right\}$$

Solution

• Need to find $\beta_n(n;a)$ of the form

$$\beta_n = \left(\frac{1}{n}\right)^{\frac{a}{n}}, \quad \beta_n = \left(\frac{1}{a}\right)^n \quad (a > 0)$$

such that

$$|x_n - x^*| \le \lambda |\beta_n|, \quad n > N > 0,$$

where x_n is replaced by S_n and x^* by the value where the sequences converge (if they do)

Sn - Rate of Convergence

$$S_n = \left\{ \frac{2^n + 3}{2^n + 7} \right\}$$
 Limit = 1 $|x_n - x^*| \le \lambda |\beta_n|$ for large n $n > N > 0$

Work:

$$\frac{2^{n}+3}{2^{n}+7} - 1 = \frac{2^{n}+3}{2^{n}+7} - \frac{2^{n}+7}{2^{n}+7} = \frac{-4}{2^{n}+7} =$$
 is of the order $\beta_n = \left(\frac{1}{a}\right)^n$

 S_n (rate of convergence) $\mathcal{O}(1/2^n)$

$$\left| \frac{2^n + 3}{2^n + 7} - 1 \right| = \frac{4}{2^n + 7} < 4\left(\frac{1}{2^n}\right), \quad n > N \Rightarrow \lambda = 4, \beta_n = \frac{1}{2^n}$$

 $\alpha = 2$ (quadratic convergence)

Example: Rate of Convergence

Order of Convergence

- Characterizes *how fast is the <u>error</u> reduced asymptotically* between consecutive refinements.
- For sufficiently large $n: |e_{n+1}| \approx \eta |e_n|^{\alpha}$
 - $\alpha = 1$ (linear convergence)
 - $\alpha = 2$ (quadratic convergence) ...

Definition: Let $\{x_n\} \to x^*$ and let $e_n = x_n - x^*$. If there exists positive constants η and α such that

$$\lim_{n \to \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|^{\alpha}} = \lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^{\alpha}} = \eta$$

then $\{x_n\}$ converges to x^* with **order** α and **asymptotic error constant** η

Order of Convergence

• Determine the *order of convergence* of the square root algorithm

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

Note that $x_n o x^* = \sqrt{a}$

Solution

• Need to find η and α such that for large n the following holds:

$$|e_{n+1}| pprox \eta |e_n|^{lpha}$$

where
$$e_n = x_n - x^*$$

Square root rate of convergence

$$e_n = x_n - x^*$$

$$m{e_n} = m{x_n} - \sqrt{a} = rac{1}{2} \left(x_n + rac{a}{x_n}
ight) - \sqrt{a}$$
 multiply by x_n $rac{x_n^2 - 2x_n \sqrt{a} + a}{2x_n}$

$$e_n = x_n - \sqrt{a} = rac{(x_n - \sqrt{a})^2}{2x_n}$$
 Will be needed for the order of convergence

Rate of convergence of the form
$$\beta_n = \left(\frac{1}{n}\right)^a$$
. $\alpha = 2$

Rate of convergence: quadratic

Order of convergence work

Given
$$e_n = x_n - \sqrt{a} = \frac{(x_n - \sqrt{a})^2}{2x_n}$$

For large n $|e_{n+1}| \approx \eta |e_n|^{\alpha}$ and $\eta < 1$
Assume $\alpha = 2$

$$\eta = \frac{|x_{n+1} - \sqrt{a}|}{|x_n - \sqrt{a}|^2} = \frac{\left|\frac{(x_{n+1} - \sqrt{a})^2}{2xn}\right|}{\left|\frac{(x_n - \sqrt{a})^2}{2xn}\right|^2}$$

$$\eta = \frac{1}{|2x_n|}$$

Order of Convergence

$$\eta = \lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^{\alpha}}$$

$$= \lim_{n \to \infty} \frac{|x_{n+1} - \sqrt{a}|}{|x_n - \sqrt{a}|^2} = \frac{1}{2\sqrt{a}}$$

- \triangleright Rate of convergence: quadratic, $\alpha = 2$
- ightharpoonup Asymptotic error constant: $\eta = \frac{1}{2\sqrt{a}}$

The square root algorithm has quadratic (order of) convergence

Order of Convergence Exercise

Order of Convergence: Asymptotic Constant

Summary

• The *rate* of convergence gives an upper bound on *how fast* the *absolute error is decreasing*

$$|e_n| \leq \frac{\lambda \beta_n}{n}, \quad n > N \text{ large}$$

• The *order* of convergence gives information about *how* fast is the *error ratio* is *decreasing*

$$\frac{|e_{n+1}|}{|e_n|^{\alpha}} \to \eta$$

Thus, if (for n large) at each iteration we reduce error by a factor of k, $\alpha = 1, \eta = 1/k$ then the (order of) convergence is linear

Exercise 1

- What is the difference between the rate of convergence and order of convergence?
- Rate of convergence characterizes how fast we approach the solution.
 - Compared with common bounding sequences

$$\beta_n(n; a)$$
 $\beta_n = \left(\frac{1}{n}\right)^a, \quad \beta_n = \left(\frac{1}{a}\right)^n \quad (a > 0)$

• Order of convergence characterizes how fast is the error reduced between refinements

Appendix

strip trailing function

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void main(void) {
 char data [255] = "A string ";
 int i;
 printf("'%s'\n", data);
 i = strlen(data)-1;
 while ((i >=0) && (data [i] == ' ')) {
   data [i] = 0;
   i--;
 printf(""%s"\n", data);
}
```

Use_qsort.c

```
/* Applied Programming Examples: sorting.c
* Uses qsort() to sort an array of random doubles
* Use compiler directive -DN=size to change the size of the array
* Reference: A. Kelley and I Pohl "A book on C" 4th Ed.
* Revised: 3/31/2015 (JCCK)
#include <stdio.h>
#include <stdlib.h> /* for qsort() */
#include <time.h> /* to seed rand() */
/* Size of array to be sorted */
#ifndef N
 #define N 13
#endif
/* Verbatim flag */
#ifndef VERB
 #define VERB 0
#endif
/* Function prototypes */
int cmpdbl(const void *p1,const void *p2); /* for qsort() */
void fill array(double *a, int n,int verb);
void print array(double *a, int n);
/*
Initialize an array of doubles of size N, with random numbers
between -50 and 50, sort it and print it
*/
int main(void) {
  double darray[N];
  int verb=-1;
```

```
verb=(VERB ? 1 : 0);
  fill array(darray, N, verb);
   printf("Before Sorting\n");
   print array(darray, N);
  qsort(darray, N, sizeof(double), cmpdbl);
   printf("\nAfter Sorting\n");
  print array(darray, N);
  return 0;
int cmpdbl(const void *p1, const void *p2) {
 const double *p = p1;
 const double *q = p2;
               diff = *p - *q;
 double
 /* return -1 - The element pointed to by p1 goes before the element pointed to by p2
   return +1 - The element pointed to by p2 goes before the element pointed to by p1
   return 0 - The element pointed to by p1 and p2 are equivalent (equal)
 return ((diff>=0.0)? ((diff>0.0)? -1:0):+1);
void fill array(double *a, int n,int verb) {
 int i;
 if (verb) {
  printf("filling array with %d random numbers\n",N);
 srand(time(NULL)); /* seed */
 for( i=0; i< n; ++i)
  a[i] = (rand() \% 1001) / 10.0 - 50.0;
void print array(double *a, int n) {
 int i:
 for( i=0; i<n; ++i) {
  if (i % 6 == 0) { printf("\n");}
  printf("% 10.1f", a[i]);
 printf("\n");
```