	Python practise project Air Quality Descriptive Analysis import pandas as pd import numpy as np import matplotlib.pyplot as plt
In [30]:	<pre>//matplotlib inline data = pd.read_csv("/tableau dataset/airquality.csv", index_col= 0) ##To load the csv file. data.head()</pre>
Out[30]:	Ozone Solar.R Wind Temp Month Day 1 41.0 190.0 7.4 67 5 1 2 36.0 118.0 8.0 72 5 2 3 12.0 149.0 12.6 74 5 3 4 18.0 313.0 11.5 62 5 4 5 NaN NaN 14.3 56 5 5
In [31]: Out[31]:	data.isnull().sum() ##Identifying the total null values Ozone 37 Solar.R 7 Wind 0 Temp 0 Month 0
In [33]: Out[33]:	Day 0 dtype: int64 data.interpolate(inplace= True) ##Removing the null values data.head() Ozone Solar.R Wind Temp Month Day
	1 41.0 190.000000 7.4 67 5 1 2 36.0 118.000000 8.0 72 5 2 3 12.0 149.000000 12.6 74 5 3 4 18.0 313.000000 11.5 62 5 4 5 23.0 308.333333 14.3 56 5 5
<pre>In [34]: Out[34]:</pre>	<pre>data.isnull().sum() ##Reconfirming the null values Ozone 0 Solar.R 0 Wind 0 Temp 0</pre>
In [35]:	Month 0 Day 0 dtype: int64 data.rename(columns={"Solar.R":"Solar"},inplace=True) ##Renaming few column data.head()
Out[35]:	Ozone Solar Wind Temp Month Day 1 41.0 190.00000 7.4 67 5 1 2 36.0 118.000000 8.0 72 5 2 3 12.0 149.000000 12.6 74 5 3 4 18.0 313.00000 11.5 62 5 4 5 23.0 308.333333 14.3 56 5 5
<pre>In [36]: Out[36]:</pre>	<pre>data.Solar= data.astype(int).Solar ##Cleaning the data to understand better data.Ozone= data.astype(int).Ozone data.head()</pre>
	1 41 190 7.4 67 5 1 2 36 118 8.0 72 5 2 3 12 149 12.6 74 5 3 4 18 313 11.5 62 5 4 5 23 308 14.3 56 5 5
In [39]: Out[39]:	7 31 8 31 6 30
In [8]:	9 30 Name: Month, dtype: int64 Now let's plot the data into histogram plt.hist(data.0zone, rwidth= 0.9) plt.xlabel("Ozone")
	plt.ylabel("Freq") plt.title("Ozone~Hist"); Ozone~Hist 40
	30 - 20 - 10 - 10 - 10 - 125 150 175 Czone
In [9]: Out[9]:	Here we can observe that, Ozone Histogram is right skewed. Thus, here mean will be higher than median. This is shown below. data.Ozone.describe() count 153.000000 mean 43.196078 std 31.845651
In [10]:	min 1.000000 25% 20.000000 50% 33.000000 75% 63.000000 max 168.000000 Name: Ozone, dtype: float64 plt.hist(data.Solar, rwidth=0.9) plt.xlabel("Solar")
	plt.xlabel("Solar") plt.ylabel("Freq") plt.title("Solar~Hist"); Solar~Hist 30 25
	20 -
In [11]: Out[11]:	Here we can observe that Solar histogram is slight left skewed. As a result of which mean will be lower than median. As shown below. data.Solar.describe() count 153.000000 mean 187.045752 std 89.345673
In [12]:	min 7.000000 25% 120.000000 50% 207.000000 75% 259.000000 max 334.000000 Name: Solar, dtype: float64 plt.hist(data.wind, rwidth=0.9) plt.xlabel("Wind")
	plt.ylabel("Freq") plt.title("Wind~Hist"); Wind~Hist 35 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -
	25 - 15 - 10 - 10 - 10 - 10 - 10 - 10 - 1
In [13]: Out[13]:	The Wind histogram is nearly normaly distributed but very slightly skewed towards right. Thus difference between mean and median is low but mean will be slightly higher than median. This is shown below. data.Wind.describe() count 153.000000 mean 9.957516 std 3.523001 min 1.700000
In [14]:	25% 7.400000 50% 9.700000 75% 11.500000 max 20.700000 Name: Wind, dtype: float64 plt.hist(data.Temp, rwidth= 0.9) plt.xlabel("Temp")
	plt.ylabel("Freq") plt.title("Temp~Hist"); Temp~Hist 25- 20- 20- 20- 20- 20- 20- 20- 20- 20- 20
	Again Temperature histogram is left skewed. which shows that mean is lower than median. as shown below.
In [15]: Out[15]:	data.Temp.describe() count 153.000000 mean 77.882353 std 9.465270 min 56.000000 25% 72.000000 50% 79.000000 75% 85.000000
In [16]:	max 97.000000 Name: Temp, dtype: float64 Now Let's understand the correlation between the parameters from numpy import corrcoef import scipy.stats
In [18]:	<pre>plt.scatter(data.Temp, data.Ozone); plt.xlabel("Temp") plt.ylabel("Ozone") plt.title("Temp~Ozone");</pre> Temp~Ozone
	175 150 - 125 - 100 - 8 75 -
	50- 25- 60 70 80 90 Temp
	From the above diagram, we can observe that, after a certain point of increase in the value of Temperature (i.e.75), the value of Ozone will be linearly increasing with it. And thus there will be a positive correlation between Ozone and Temperature values. The value of correlation coefficient(r) is shown below which is positive. Also note there are few outliers which we can determine through the box plot. cor= scipy.stats.pearsonr(data.Temp, data.Ozone) r= cor[0] p=cor[1] print("r=",r) print("p=",p)
In [20]:	r= 0.6025170778312053 p= 1.7300640439249783e-16 plt.scatter(data.Temp, data.Solar) plt.xlabel("Temp") plt.ylabel("Solar")
	plt.title("Temp~Solar"); Temp~Solar 350 300 250 300
	200 -
In [21]:	By observing the above graph we can conclude that, temperature and solar is into positive correlation but correlation value between the 2 variables will be very weak as the points are highly scattered. cor= scipy.stats.pearsonr(data.Temp, data.Solar) r= cor[0] p=cor[1]
In [22]:	<pre>print("r=",r) print("p=",p) r= 0.22984300702676247 p= 0.004262505924867688 plt.scatter(data.Temp,data.Wind); plt.xlabel("Temp")</pre>
	plt.ylabel("Wind") plt.title("Temp~Wind"); Temp~Wind 20.0 - 17.5 -
	15.0 12.5 7.5 5.0 2.5 60 70 80 90
In [23]:	As observed from the above graph, both the variables are into negation correlation with each other. thus as the temperature increases the wind level decreases. Thus, the value of r between them will be negative as below. cor= scipy.stats.pearsonr(data.Temp, data.Wind) r= cor[0] p=cor[1] print("r=",r) print("p=",p)
In [51]:	<pre>r= -0.45798787910483296 p= 2.6415972043405178e-09 new_data = data[data.Month == 5] ##Filtered by month to analyse monthly effect plt.scatter(new_data.Temp,new_data.Wind); plt.xlabel("Temp") plt.ylabel("Wind")</pre>
	plt.title("Single Month Correlation graph"); Single Month Correlation graph 20 18 16 10 11 12 13 14 15 16 16 17 18 18 18 18 18 18 18 18 18
	14 -
	55 60 65 70 75 80 Temp