Protocolo IP

Álvaro González Sotillo

11 de diciembre de 2017

Índice

1.	Introducción	1
2.	Protocolo IP	2
3.	Direcciones IP	5
4.	Clases IP	5
5 .	CIDR	8
6.	Ejercicios	10
7.	Redes reservadas	11
8.	Referencias	12

1. Introducción

- \blacksquare En Internet, el protocolo IP corresponde con el nivel de red de ISO/OSI
- No tiene todas sus características:
 - IP no tiene control de la congestión
 - No es orientado a conexión ni confiable
- Existen dos versiones
 - $\bullet\,$ IPv6: Reemplazará a IPv4 a medio plazo
 - IPv4: La más usada actualmente, es la estudiada aquí

2. Protocolo IP

2.1. Protocolo IP

- Internet Protocol (RFC 791)
- Es un protocolo de la capa 3 (red) del modelo OSI
- Entre sus funciones se encuentran:
 - Dividir paquetes grandes en paquetes más pequeños
 - Encontrar la ruta necesaria para enviar un paquete individual
 - Determinar si un paquete recibido es correcto

2.2. Estructura paquete IP

Estructura en la wikipedia

2.3. Longitud de la cabecera

- IP no tiene un tamaño de cabecera fijo
- Algunas opciones del protocolo añaden palabras de 32 bits
- Por eso se necesita saber dónde empiezan los datos en cada paquete

2.4. Código de redundancia

- El checksum se calcula como la suma (sin acarreo) de todas las palabras de 32 bits de la cabecera
 - Excepto el propio checksum
- Sirve para detectar errores de transmisión
- Es adicional al que pueda tener la capa de transporte

2.5. Identificación del paquete y fragment offset

- Todos los paquetes IP tienen un identificador único: identification y fragment offset
- Originalmente, un paquete se manda en un solo fragmento
 - Con fragment offset a 0
- Si se necesita dividir (MTU del nivel de enlace insuficiente)
 - Se parte en varios fragmentos
 - Cada uno de ellos indica el lugar de su primer byte de datos
- Cada fragmento puede volverse a dividir
- En el destino, se espera a que lleguen todos los fragmentos antes de enviarlo al protocolo de nivel superior

2.6. Flags

- El primero es para usos futuros.
- El segundo indica si este datagrama se puede fragmentar.
- El tercero dice si hay más fragmentos o es el último.

2.7. TTL (tiempo de vida)

- El enrutamiento IP puede tener problemas
 - Es posible que haya bucles en las rutas que hagan que un paquete de vueltas por siempre
- Para evitarlo, el paquete se descarta pasado un tiempo en segundos (originalmente)
 - Actualmente, el tiempo de vida se mide en saltos
- Generalmente, los paquetes se envían con TTL suficiente para atravesar Internet (64 o 255)
- Intenta hacer ping a Google con un TTL de 10. ¿es suficiente? ¿y con 20?

2.8. Protocolo de nivel superior

- Indica qué protocolo está encapsulado en los datos
 - Lista de protocolos en la wikipedia

Identificador	Protocolo	
0x01	ICMP	Internet Control Message Protocol
0x02	IGMP	Internet Group Management Protocol
0x06	TCP	Transmission Control Protocol
0x11	UDP	User Datagram Protocol
0x29	IPv6	IPv6 Encapsulation
0x59	OSPF	Open Shortest Path First
0x73	L2TP	Layer Two Tunneling Protocol Version 3
0x85	FC	Fibre Channel
0x8F-0xFC	UNASSIGNED	
0xFD-0xFE	Use for experimentation and testing	RFC 3692
0xFF	Reserved for extra.	

2.9. Dirección de origen y destino

- Son números de 32 bits
- Indican la dirección de origen y destino de IP
- Pueden no coincidir con la dirección de origen real
 - Por ejemplo, en los saltos intermedios
 - En esos casos, el origen y destino en ese momento no son los indicados en la cabecera

3. Directiones IP

- Una dirección IP consta de 32 bits
- Por convenio, se representa como 4 números decimales, uno por cada byte

192.168.1.1 1100000010101000000000100000001

3.1. Direcciones IP ¿qué identifican?

- Las direcciones no se asignan por host.
- Se asignan a interfaces del host
 - Un equipo con dos enlaces a la red tendrá dos direcciones IP
 - Los enlaces a la red pueden ser a la misma red o a redes distintas
- También un mismo interfaz puede tener más de una IP

3.2. Red y Host

- Las direcciones IP se asignan al montar la red, nocomo las MAC
 - Las direcciones MAC se asignan por el fabricante de la tarjeta, quedando distribuidas casi aleatoriamente
 - Las direcciones IP se estructuran de una forma jerárquica
- La dirección IP contiene dos partes
 - Una parte identifica a la red
 - Otra parte identifica al host/enlace dentro de la red

192.168.1.1 Parte de red Host 192.168.1 1 192.168 1.1

4. Clases IP

• En las primeras versiones de IP había unas normas fijas para definir qué parte de la dirección era host y qué parte red

 \blacksquare Los primeros bits de la dirección definen la clase a la que pertenece

4.1. Ejercicio de clases IP

- Ejemplo:
 - 192.168.1.1

 - Clase C
- ¿De qué clases son las siguientes direcciones IP?
 - 192.168.20.1
 - 127.0.0.1
 - 169.254.12.9
 - 241.82.9.9
 - 216.239.59.147
 - 85.112.7.243
 - 199.16.156.198

4.2. Parte de red y host

- La clase define qué bits de la dirección son parte de la red y qué parte es del host
- Ejemplo: La clase C tiene 24 bits para la red y 8 para el host

4.3. Ejercicio de parte de red y host

- ¿Cuáles son las direcciones de red y de host de las siguientes direcciones IP?
 - 192.168.20.1

- 127.0.0.1
- 169.254.12.9
- 241.82.9.9
- 216.239.59.147
- 85.112.7.243
- 199.16.156.198

4.4. Dirección de red

- La red IP tiene una dirección propia
 - No puede ser utilizada por un host dentro de la red
 - La dirección de la red tiene la parte del host a ceros.

4.5. Dirección de host

- El host tiene una dirección propia dentro de la red
 - Con ceros en la parte de la red
 - No puede haber una red con todos sus bits a cero

192.168.1.1	Parte de red	Dirección de red	Host	Dirección de Host
	192.168.1	192.168.1.0	1	0.0.0.1

4.6. Resumen de direcciones de red y host

Bits de red	Bits de host	Significado
0	0	El propio host *
0	host	Host indicado dentro de mi red~*~
red	0	Dirección de la red
1	1	Difusión a mi red $*$
red	1	Difusión a la red indicada (broadcast)

 \star En desuso

4.7. Ejercicio de clases IP

Clase de red	Número de redes	Número de hosts por red
A		
	Cont	inúa en la siguiente página

Continúa de la página anterior			
Clase de red	Número de redes	Número de hosts por red	
В			
\mathbf{C}			

4.8. ¿Para qué sirve la red y el host?

- Cuando un host va a enviar un paquete
 - Decide si el destino está en su misma red
 - Si está en su misma red, se encarga la capa de enlace (posiblemente con ARP)
 - Si no está en su red, envía el paquete al router
 - Y el router está en su misma red

4.9. Problemas de las clases IP

- En un principio, IP tenía suficientes direcciones y redes para todo el mundo
- La creciente demanda de direcciones IP supuso problemas
 - Ejemplo: Una empresa con 3000 hosts debe reservar una red de clase B, con más de 65000 direcciones (muchas direcciones desperdiciadas)
 - Si reserva más de una red de clase B (unas 12), hay que configurar muchas redes en los routers intermedios.
- Últimamente (desde 1985) las direcciones IP ya no se dividen en clases, utilizándose CIDR (Classless Internet Domain Routing)

5. CIDR

- Classles Internet Domain Routing
- La dirección IP ya no da información acerca de los bits reservados para red y para host
- Las redes se identifican por la dirección de la red y el número de bits destinado a la misma
 - 172.16.0.0/12
 - 198.18.0.0/15

5.1. Máscara de red

- Con CIDR las parte de la dirección red y host se calcula mediante las máscaras de red
- La máscara de red es un número binario:
 - Tantos 1's como el tamaño de la red CIDR
 - Los 0's necesarios para completar hasta los 32 bits
- Las máscaras de red también se expresan como 4 números decimales separados por puntos.

5.2. Ejercicio

- ¿Qué máscaras de red tienen las siguientes redes?
 - 172.16.0.0/12
 - 198.18.0.0/15
 - 198.18.0.0/30
 - 192.168.255.0/24
 - 172.31.0.0/16

5.3. Dirección de red

- Con CIDR, la dirección de red sigue siendo la que tiene todos los bits del host a 0, y la de broadcast a 1.
- Sin embargo, ya no es tan fácil como con clases
 - Los bits de la red no son múltiplos de 8
- Se utiliza una máscara de red, realizando la operación AND con la dirección IP para encontrar la dirección de red
- Ejemplo
 - La dirección IP es 192.168.20.100/26
 - \bullet La máscara de red son 26 1's \rightarrow 255.255.255.192
 - La dirección pertenece a la red

• La red a la que pertenece es 192.168.20.64/26

5.4. Subnetting y supernetting

- Utilizando máscaras de red pueden saltarse los límites de las clases IP
 - Una red grande puede dividirse en varias redes pequeñas (subnetting)
 - Varias redes pequeñas pueden reunirse en una red más grande (supernetting)

5.5. Subnetting

- Consiste en crear subredes pequeñas dentro de una red de clase A, B o C
- Ejemplo
 - Conseguir 4 redes a partir de una red clase C
 - Hay que aumentar la máscara de red 2 bits (4 posibilidades)

	Redes	Primer host	Último host	Broadcast
Red original	192.168.20.0/24	192.168.20.1	192.168.20.254	192.168.20.255
Primera subred	192.168.20.0/26	192.168.20.1	192.168.20.62	192.168.20.63
Segunda subred	192.168.20.64/26	192.168.20.65	192.168.20.126	192.168.20.127
Tercera subred	192.168.20.128/26	192.168.20.129	192.168.20.190	192.168.20.191
Cuarta subred	192.168.20.192/26	192.168.20.193	192.168.20.254	192.168.20.255

http://www.aprendaredes.com/cgi-bin/ipcalc/ipcalc_cgi

5.6. Supernetting

- A partir de varias redes pequeñas (generalmente clase C), conseguir una más grande
- Ejemplo
 - Conseguir una red con más de 1000 hosts a partir de redes clase C
- \blacksquare Tenemos las 32 redes 192.168.0.0 a la 192.168.31.0
- \blacksquare Reducimos la máscara en 5 bits \to 192.168.0.0/19

Red	Primer host	Último host	Broadcast	Máscara
192.168.0.0/19	192.168.0.1	192.168.31.254	192.168.31.255	255.255.255.224

6. Ejercicios

6.1. Tabla de redes IP

IP del host	Máscara	Bits máscara	subred	broadcast	$N^{\underline{o}}$ hosts
192.168.1.130			192.168.1.128	192.168.1.255	
200.1.17.15			200.1.17.0	200.1.17.255	
133.32.4.161					30
200.9.41.23	255.255.255.192				
132.4.60.99	255.255.0.0				
222.43.15.41			222.43.15.0	222.43.15.255	

6.2. Tabla de redes IP

Subred	Máscara	Primer host	Último host	broadcast	$N^{\underline{o}}$ hosts
192.168.1.0/24					_
	255.255.192.0	1.2.128.1			
		172.182.4.1			510
				98 34 7 255	1022

6.3. Subnetting

Una organización tiene 5 departamentos independientes. En cada uno de ellos se van a instalar 3000 hosts. Si todas las máquinas disponen de una dirección IP única en internet:

- ¿Qué clase deberá solicitar el administrador de la empresa?.
- Establece la máscara necesaria para que la organización subdivida la red en redes a razón de una subred por cada departamento.
- Indica las direcciones de subred, broadcast y rangos de direcciones IP de los host para cada departamento.

6.4. Subnetting

Una organización tiene asignada la red 192.168.2.0/24 y desea agrupar a su personal en grupos de trabajo de 140 empleados. En conjunto de trabajadores de cada grupo, comparte una subred diferente a la de los otros grupos. -; Cuántos grupos de trabajo se pueden hacer?.

- Establece la máscara necesaria para que la organización subdivida la red en redes a razón de una subred por cada grupo.
- Indica las direcciones de subred, broadcast y rangos de direcciones IP de los host para cada departamento.

El ejercicio se puede repetir con grupos de 60 empleados y 22 empleados

6.5. Subnetting

Una empresa recibe la dirección 132.33.0.0 para su red. Asigna a cada uno de los siete departamentos una subred, teniendo en cuenta el número de ordenadores de cada uno:

- A: 8000 ordenadores
- B: 2047 ordenadores
- C,D: 1020 ordenadores
- E,F: 4000 ordenadores
- G: 500 ordenadores

7. Redes reservadas

■ IANA, por medio de RFC's, ha reservado varias redes para usos concretos. Algunos ejemplos son:

Red	Uso
127.0.0.0/8	"loopback", utilizado para enviar paquetes IP al propio host
10.0.0.0/8	Red privada (RFC 1918)
172.16.0.0/12	Red privada (RFC 1918)
192.168.0.0/16	Red privada (RFC 1918)
169.254.0.0/16	Link Local o APIPA. Direcciones automáticas en redes pequeñas sin servidor DHCP

7.1. ¿Qué es una red privada?

- Una red privada (RFC 1918) son direciones inválidas en Internet
 - Un router de Internet descarta todos los paquetes con origen o destino en redes privadas
- Sirven para crear redes con IP que no forman parte de Internet
 - Internas a organizaciones: Empresas, universidades, institutos...
- Objetivos:
 - No es posible ocultar direcciones de Internet: Ningún ordenador interno tendrá la dirección 8.8.8.8
 - Ahorro de direcciones IP
 - Siguen teniendo acceso limitado a Internet: NAT (se verá en otro tema)

7.2. CIDR: Redes reservadas

- En el estándar CIDR se reserva la primera y última red de cada partición
 - \bullet Por ejemplo, al dividir la red de clase C 192.168.20.0/24 en 4 redes (pasando a máscara /26), las redes 192.168.20.0/26 y 192.168.20.192/26 quedan reservadas
 - La mayoría de routers e implementaciones de IP pueden trabajar con ellas, pero es mejor no utilizarlas para no tener problemas con equipos antiguos.

8. Referencias

- Formatos:
 - Transparencias
 - PDF
- Creado con:
 - Emacs
 - org-reveal
 - Latex