Теория вероятностей

Случайные величины Черновик

Кафедра СМиМ

2019

План

Законы распределения

Равномерное распределение Нормальное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Распределение максимальных и минимальных значений

Последовательность независимых случайных величин

Распределения

Распределение Гумбеля

Распределение Вейбулла

Определение параметров распределений

Линеаризация функции случайного аргумента

Outline

Законы распределения

Равномерное распределение

Нормальное распределение Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Распределение максимальных и минимальных значений

Последовательность независимых случайных величин

Распределения

Распределение Гумбеля

Распределение Вейбулла

Определение параметров распределений

Линеаризация функции случайного аргумента

Outline

Законы распределения

Равномерное распределение

Нормальное распределение Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Распределение максимальных и минимальных значений

Последовательность независимых случайных величин

Распределения

Распределение Гумбеля

Распределение Вейбулла

Определение параметров распределений

Линеаризация функции случайного аргумента

Равномерное распределение

Все возможные значения случайной величины равновероятны.

Равномерное распределение может иметь как дискретная случайная величина, так и непрерывная scipy.stats.uniform.rvs (loc = a, scale = b)

Равномерное распределение. Примеры

- ▶ Количество очков, выпавших на игральной кости
- Число выпавшее на рулетке
- Номер автобусного билета (в единичном испытании)
- Время ожидания события, происходящего со строгой периодичностью. например время ожидания поезда, который отправляется со станции раз в 30 минут

Значения случайной величины с равномерным распределением используются для осуществления случайных выборок.

Outline

Законы распределения

Равномерное распределение

Нормальное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Распределение максимальных и минимальных значений

Последовательность независимых случайных величин

Распределения

Распределение Гумбеля

Распределение Вейбулла

Определение параметров распределений

Линеаризация функции случайного аргумента

Нормальное распределение

 μ - математическое ожидание, σ - среднеквадратичное отклонение.

Возможные значения СВ близкие к мат. ожидания наиболее вероятны.

Если CB является суммой большого числа других независимых величин, то она подчинятся нормальному закону распределения. 1

¹см. центральная предельная теорема

Нормальное распределение. Примеры

- Рост человека
- Ошибка измерения
- Прочность бетона
- Масса новорождённых детей
- ▶ Объём молока производимый коровой каждый день

Нормальное распределение

Функция распределения

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

- Параметры
 - ightharpoonup математическое ожидание
 - $ightharpoonup \sigma$ стандартное отклонение

Стандартное нормальное распределение

- ▶ При $\mu=0$ и $\sigma=1$ распределение называется стандартным нормальным распределением
- Нормирование случайной величины:

$$z = \frac{x - \mu}{\sigma}$$

где x - исходное значение случайной величины; z - нормированное значение.

Тогда функция распределения

$$F(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{t^2}{2}} dt$$

Нормальное распределение и функция Лапласа

▶ В таблицах может приводится значение функции, где нижний предел 0 вместо $-\infty$

$$F_0(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt$$

▶ Чтобы перейти от $F_0(x)$ к F(X):

$$F(X) = 0.5 + F_0(X)$$

▶ 0.5 соответствует площади под кривой слева от нуля

Правило трёх сигм

Вероятность того, что случайная величина отклонится от своего математического ожидания на большую величину, чем утроенное среднее квадратичное отклонение, практически равна нулю.

$$P(\mu - 1\sigma \le X \le \mu + 1\sigma) \approx 0.6827$$

 $Pr(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 0.9545$
 $Pr(\mu - 3\sigma \le X \le \mu + 3\sigma) \approx 0.9973$

Outline

Законы распределения

Равномерное распределение Нормальное распределение Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение Распределение максимальных и минимальных значений

Последовательность независимых случайных величин

Распределения

Распределение Гумбеля Распределение Вейбулла

Определение параметров распределений

Линеаризация функции случайного аргумента

CB - количество событий на меру пространства или времени, при средней частоте λ

ДТП в определённом районе города случается в среднем дважды в неделю.

Какова вероятность того, что на этой неделе не будет ДТП?

Используем закон Пуассона²:

$$P(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

где $\lambda=2$, k=0 - число событий.

тогда
$$P(0) = \frac{2^0 e^{-2}}{0!} = 0.14$$

²в пакете scipy: scipy.stats.distributions.poisson.pmf(x, lambda) одс

ДТП в определённом районе города случается в среднем дважды в неделю.

Какова вероятность того, что на этой неделе не будет ДТП?

Используем закон Пуассона²:

$$P(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

где $\lambda = 2$, k = 0 - число событий.

тогда
$$P(0) = \frac{2^0 e^{-2}}{0!} = 0.14$$

Какова вероятность того, что на этой неделе будет 1 и 2 ДТП? $P(1)=\frac{2^1e^{-2}}{1!}=0.27$, $P(2)=\frac{2^2e^{-2}}{2!}=0.27$

Какова вероятность того, что на этой неделе будет больше 2-х ДТП?

$$P(X > 2) = 1 - P(0) - P(1) - P(2)$$

 $^{^2}$ в пакете scipy: scipy.stats.distributions.poisson.pmf(x, lambda) _ \sim q \sim

Для при определении вероятности для заданного числа событий произошедших за t единиц времени параметр λ определяют так:

$$\lambda = tn$$

где п число событий за единицу времени

Сравним вероятности следующих событий:

- 3 ДТП за неделю
- 15 ДТП за 5 недель

Для при определении вероятности для заданного числа событий произошедших за t единиц времени параметр λ определяют так:

$$\lambda = tn$$

где п число событий за единицу времени

Сравним вероятности следующих событий:

- 3 ДТП за неделю
- 15 ДТП за 5 недель

$$n = 2$$
, $t_1 = 1$, $\lambda_1 = 2$, $t_2 = 5$, $\lambda_2 = 2 \cdot 5 = 10$

$$P(3, \lambda_1 = 2) = 0.18$$

$$P(15, \lambda_2 = 10) = 0.035$$

Величины подчиняющиеся распределению Пуассона

- ▶ Число изюминок в булочке
- Число мутация в ДНК
- Число звонков в службу технической поддержки
- Число смертей в год для заданной возрастной категории
- Число альфа-частиц излучённых за определённый промежуток времени

kvant.mccme.ru/1988/08/raspredelenie_puassona.htm

Outline

Законы распределения

Равномерное распределение

Нормальное распределение

Распределение Пуассона

Экспоненциальное (показательное) распределение

Распределение максимальных и минимальных значений

Последовательность независимых случайных величин

Распределения

Распределение Гумбеля

Распределение Вейбулла

Определение параметров распределений

Линеаризация функции случайного аргумента

Экспоненциальное (показательное) распределение

- Распределение непрерывной случайной величины
- Обозначение

$$X \sim Exp(\lambda)$$

- Моделирует время между двумя последовательными свершениями одного и того же события
- λ интенсивность события ($1/\lambda$ среднее время между появлениями события)
- Функция распределения

$$F(x) = 1 - e^{-\lambda x}$$

▶ Математическое ожидание: $M(X) = \frac{1}{\lambda}$

Экспоненциальное (показательное) распределение

моделирует время между двумя последовательными свершениями одного и того же события.

Экспоненциальное (показательное) распределение. Пример

Среднее время ожидания покупателя - 15 минут. Какова вероятность, что во время перерыва длительностью 5, 10 и 15 минут придёт покупатель?

Тогда
$$rac{1}{\lambda}=15
ightarrow\lambda=0.067.$$

$$P(X < 5) = F(5) = 1 - e^{-0.067 \cdot 5} = 0.28$$

 $P(X < 10) = F(10) = 1 - e^{-0.067 \cdot 10} = 0.49$
 $P(X < 15) = F(15) = 1 - e^{-0.067 \cdot 15} = 0.63$

scipy.stats.expon.cdf (
$$x = 5$$
, scale = 15) # 0.28

Экспоненциальное распределение vs распределение Пуассона

В чём разница и что общее у экспоненциального распределения и распределения Пуассона?

Экспоненциальное (показательное) распределение

Величины подчиняющиеся экспоненциальному распределению

- Расстояние между участками ДНК с мутациями
- Время ожидания звонка службу технической поддержки
- Время между излучением частиц
- ▶ Расстояние между местами ДТП на дороге³

 $^{^{3}}$ в предположении, что вероятность ДТП на каждом участке дороги одинакова 4 2 2 3 3 3 2 3 3 3 4 5 4 5 5 5 5 5

Outline

Законы распределения

Равномерное распределение

Нормальное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Распределение максимальных и минимальных значений

Последовательность независимых случайных величин

Распределения

Распределение Гумбеля

Распределение Вейбулла

Определение параметров распределений

Линеаризация функции случайного аргумента

- Рассмотрим с.в. X с известной функцией распределения $F_X(x)$
- ▶ Произведём первую выборку, получим значения $x_{11}, x_{12}, ..., x_{1n}$
- Найдём максимальное и минимальное значения из первой выборки:

$$u_1 = max(x_{11}, x_{12}, ..., x_{1n})$$

 $v_1 = min(x_{11}, x_{12}, ..., x_{1n})$

 Произведём вторую выборку, найдём максимальное и минимальное значения из первой выборки

$$u_1 = max(x_{21}, x_{22}, ..., x_{2n})$$

 $v_1 = min(x_{21}, x_{22}, ..., x_{2n})$

- Повторим для k выборок
- ▶ Получим максимальные значения $u_1, u_2, ..., u_k$ и $v_1, v_2, ..., v_k$

- ▶ Полученные значения $u_1, u_2, ..., u_k$ и $v_1, v_2, ..., v_k$ можно считать реализацией случайных величин
- $V = \{u_1, u_2, ..., u_k\}$
- $V = \{v_1, v_2, ..., v_k\}$
- Определим функцию распределения $F_U(x)$ максимальных значения с.в. X

$$F_U(x) = P(U \le x) = P(u_1 \le x \text{ M } u_2 \le x \text{ M } ... \text{ M } u_k \le x)$$

- ▶ Полученные значения $u_1, u_2, ..., u_k$ и $v_1, v_2, ..., v_k$ можно считать реализацией случайных величин
- $V = \{u_1, u_2, ..., u_k\}$
- $V = \{v_1, v_2, ..., v_k\}$
- ightharpoonup Определим функцию распределения $F_U(x)$ максимальных значения с.в. Х
- $F_{U}(x) = P(U \le x) = P(u_1 \le x \ V \ u_2 \le x \ V \ ... \ V \ u_k \le x)$ ightharpoonup Где вероятность $P(u_i < x) = P(x < u) = F_X(x)$
- ightharpoonup Тогда функцию распределения $F_U(x)$ можно записать как

$$F_U(x) = [F_X(x)]^k$$

ightharpoonup Тогда функцию распределения максимальных значений $F_U(x)$ случайной величины X можно записать как

$$F_U(x) = [F_X(x)]^k$$

 Похожие рассуждения для функции распределения минимальной величины:

$$F_V(x) = P(V \le x) = 1 - P(V > x) = 1 - [1 - F_X(x)]^k$$

ightharpoonup В итоге функцию распределения $F_V(x)$ минимальных значений случайной величины X можно записать так

$$F_V(x) = 1 - [1 - F_X(x)]^k$$

Распределение максимальных и минимальных значений Где используется

- ▶ Применяется везде, где важны максимальные или минимальные значения величин
- ► Например максимальных нагрузок и минимальных характеристик прочности

Outline

Законы распределения

Равномерное распределение

Нормальное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Распределение максимальных и минимальных значений

Последовательность независимых случайных величин

Распределения

Распределение Гумбеля

Распределение Вейбулла

Определение параметров распределений

Линеаризация функции случайного аргумента

Последовательность независимых случайных величин

- Рассмотрим случайную величину R
- Предположим что независимые значения этой случайной величины реализуются через одинаковые промежутки времени d
- ▶ Примером такой случайной величины может быть количество выпавшего снега каждый год

Последовательность независимых случайных величин

Изображение из учебного пособия Вероятностные методы строительной механики и теория надежности строительных конструкций, Пшеничкина В. А.

Последовательность независимых случайных величин

- ▶ Будем называть время между двумя последовательными превышениями r₀ периодом повторяемости Т
- Через какой интервал времени значение случайной величины превысит заданное значение r_0 ?
- Считаем время в единицах интервала d

Последовательность независимых случайных величин

- ▶ Будем называть время между двумя последовательными превышениями r₀ периодом повторяемости Т
- Через какой интервал времени значение случайной величины превысит заданное значение r_0 ?
- Считаем время в единицах интервала d
- Рассмотрим событие: с.в. R превысила заданное значение r_0 через время і
- ▶ Оно будет складывается из i-1 последовательных не превышений и одного превышения заданного значения r_0

$$P = [F_R(r_0)]^{i-1}(1 - F_R(r_0))$$

Последовательность независимых случайных величин

- ▶ Определим математическое ожидание периода повторяемости m_T
- **.**..

$$m_T = \frac{1}{1 - F_R(r_0)}$$

 Зная (или задавая) период повторяемости, можно и вычислить предельное r₀ значение, которое будет превышено

$$F_R(r_0) = 1 - \frac{1}{m\tau}$$

Outline

Законы распределения

Равномерное распределение

Нормальное распределение

Распределение Пуассона

Экспоненциальное (показательное) распределение

Распределение максимальных и минимальных значений

Последовательность независимых случайных величин

Распределения

Распределение Гумбеля

Распределение Вейбулла

Определение параметров распределений

Линеаризация функции случайного аргумента

Ссылки

Outline

Законы распределения

Равномерное распределение

Нормальное распределение

Распределение Пуассона

Экспоненциальное (показательное) распределение

Распределение максимальных и минимальных значений

Последовательность независимых случайных величин

Распределения

Распределение Гумбеля

Распределение Вейбулла

Определение параметров распределений

Линеаризация функции случайного аргумента

Ссылки

Распределение Гумбеля

- распределение непрерывной случайной величины
- Распределение максимальных или минимальных значений
- Функция распределения (наибольших значений)

$$F(x) = \exp(-\exp[\frac{\alpha - x}{\beta}])$$

Функция распределения (наименьших значений)

$$F(x) = 1 - exp(-exp[\frac{\alpha - x}{\beta}])$$

- ▶ Два параметра: α , β
- Математическое ожидание

$$M(X) = \alpha + \beta \gamma$$

4

Дисперсия

$$D(X) = \frac{\pi^2}{6}\beta^2$$

 $^{^4\}gamma pprox 0,5772$ - постоянная Эйлера — Маскерони

Распределение Гумбеля _{Пример}

См. пример в Вероятностные методы строительной механики и теория надежности строительных конструкций: учебное пособие: в 2-х частях. Ч. І / В. А. Пшеничкина, Г. В. Воронкова, С. С. Рекунов, А. А. Чураков; vgasu.ru/publishing/on-line

Outline

Законы распределения

Равномерное распределение

Нормальное распределение

правило трех сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Распределение максимальных и минимальных значений

Последовательность независимых случайных величин

Распределения

Распределение Гумбеля

Распределение Вейбулла

Определение параметров распределений

Линеаризация функции случайного аргумента

Ссылки

Распределение Вейбулла

- Распределение непрерывной случайной величины
- обозначение $XW(k,\lambda)$
- k параметр формы интенсивность отказов (модуль Вейбулла)
 - ▶ k < 0. интенсивность отказов уменьшается со временем</p>
 - ▶ k = 0. интенсивность отказов постоянна
 - ▶ k > 0. интенсивность отказов увеличивается
- $ightharpoonup \lambda$ параметр масштаба
- Функция распределения

$$F(x) = 1 - e^{-(\lambda x)^k}$$

Распределение Вейбулла

▶ Математическое ожидание

$$M(X) = \frac{1}{\lambda}\Gamma(1+\frac{1}{k})$$

- ► Г гамма-функция. легко вычисляется в математических программах. в Python y.special.gamma (z)
- Медиана

$$\mathit{Me} = rac{1}{\lambda}(\mathit{In}2)^{1/k}$$

Распределение Гумбеля

Что описывает

- Максимальные (или минимальные) значения величины разной природы
- Максимальный уровень реки
- ▶ Максимальное количество выпавших осадков
- Максимальная сила землетрясения

Outline

Законы распределения

Равномерное распределение

Нормальное распределение

правило трех сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Распределение максимальных и минимальных значений

Последовательность независимых случайных величин

Распределения

Распределение Гумбеля

Распределение Вейбулла

Определение параметров распределений

Линеаризация функции случайного аргумента

Ссылки

Определение параметров распределений

- Для того чтобы определять вероятности связанные со случайной величиной требуется знать функцию распределения этой случайной величины Например чтобы определить вероятность наступления события за время x используется функция распределения задаваемая формулой $F(x) = 1 exp(-\lambda x)$
- ▶ Но помимо знания функции распределения часто требуется знать параметры распределения величины входящие в функцию распределения В примере выше это λ

Определение параметров распределений

- Параметры распределения связаны с числовыми характеристиками случайной величины (с математическим ожиданием, дисперсией, ...)
- Числовые характеристики случайной величины могут быть получены из эксперимента (когда имеется набор значений случайной величины - выборка)
- Таким образом можно использовать формулы связывающую числовые характеристики и параметры распределения.

Например, для экспоненциального распределения математическое ожидание: $M(X)=1\lambda$. Вычислив M(X) легко определить и λ .

Outline

Законы распределения

Равномерное распределение

Нормальное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Распределение максимальных и минимальных значений

Последовательность независимых случайных величин

Распределения

Распределение Гумбеля

Распределение Вейбулла

Определение параметров распределений

Линеаризация функции случайного аргумента

Ссылки

Нелинейность - это сложно

- ightharpoonup Система из независимых случайных величин $X_1, X_2, ..., X_n$
- ▶ Для каждой из величин известны математическое ожидание m_{x1} и стандартное отклонение σ_{x1}
- Рассмотрим новую случайную величину Y, которая зависит от $X_1, X_2, ..., X_n$

$$Y = f(X_1, X_2, ..., X_n)$$

▶ Требуется определить математическое ожидание и стандартное отклонение с.в. Ү

Функция случайного аргумента

- Определение математического ожидания с.в. требует знания функции плотности, а так же интегрирования этой функции.
- Эта процедура может быть сложной, кроме того некоторые интегралы невозможно вычислить аналитически
- ightharpoonup Однако если функция f линейна то математическое ожидание и дисперсия вычисляются просто
- ▶ Даже если f нелинейна её можно рассматривать как линейную на небольшой области определения
- ightharpoonup Далее для простоты рассмотрим функцию для f одного аргумента

$$Y = f(X)$$

Линейная аппроксимация

- Нелинейную функцию можно аппроксимировать линейной в окрестности некоторой точки
- Аппроксимирующую прямую можно выбрать совпадающую с касательной к функции в этой точке
- Если предполагается, что рассматриваемая окрестность точки, через которую проведена касательная небольшая, то и ошибка аппроксимации может быть невелика

Ряд Тейлора

 Для аппроксимации используем разложении функции в ряд Тейлора в окрестности точки а

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(i)}(a)}{n!} (x - a)^n$$

 $f^{(n)}(a)$ - значение n-й производной функции f в точке а

Запишем только первые два слагаемых ряда

$$f(x) = \frac{f(a)}{0!}(x-a)^0 + \frac{f'(a)}{1!}(x-a)^1$$

Ряд Тейлора

 Для аппроксимации используем разложении функции в ряд Тейлора в окрестности точки а

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(i)}(a)}{n!} (x - a)^n$$

 $f^{(n)}(a)$ - значение n-й производной функции f в точке а

Запишем только первые два слагаемых ряда

$$f(x) = \frac{f(a)}{0!}(x-a)^0 + \frac{f'(a)}{1!}(x-a)^1$$

$$f(x) \approx f(a) + f'(a) \cdot (x - a)$$

ightharpoonup Это уравнение касательной к функции f в точке a

Ряд Тейлора _{Пример}

Разложим функцию sin(x) в окрестности 0

Ряд Тейлора

Пример

Разложим функцию sin(x) в окрестности 0

$$sin(x) \approx 0 + 1 \cdot (x - 0) = x$$

X	sin x	tailor	delta
0,000	0,000	0,000	0,000
0,001	0,001	0,001	0,000
0,010	0,010	0,010	0,000
0,100	0,100	0,100	0,000
0,200	0,199	0,200	0,001
0,300	0,296	0,300	0,004
0,400	0,389	0,400	0,011

Линеаризация функции случайного аргумента Математическое ожидание и дисперсия

Разложим функцию y = f(x) в окрестности математического ожидания m_x :

$$y = f(m_x) + f'(m_x) \cdot (x - m_x)$$

Найдём найдём математическое ожидание у:

$$m_y = M[f(m_x) + f'(m_x) \cdot (x - m_x)] = M[f(m_x)] = f(m_x)$$

Найдём найдём дисперсию у используя формулу со слайда ??:

$$D_{y} = M[[f(m_{x}) + f'(m_{x}) \cdot (x - m_{x}) - (f(m_{x}) + f'(m_{x}) \cdot (x - m_{x})]^{2}] = M[[f'(m_{x})]^{2} \cdot (x - m_{x})^{2}] = [f'(m_{x})]^{2} \sigma_{x}^{2}$$

Линеаризация функции случайного аргумента Математическое ожидание и дисперсия

Таким образом, чтобы определить математическое ожидание и дисперсию линеаризованной функции случайного аргумента достаточно знать:

- ▶ Математическое ожидание аргумента
- Дисперсию аргумента

$$m_y = f(m_x)$$

 $D_y = [f'(m_x)]^2 \sigma_x^2$

Математическое ожидание и дисперсия функции нескольких переменных

Если функция зависит от нескольких переменных $x_1, x_2, ..., x_n$

$$m_y = f(m_{x1}, m_{x2}, ..., m_{xn})$$

$$D_{y} = \sum \left(\frac{\partial f(m_{x1}, m_{x2}, ..., m_{xn})}{\partial x_{i}}\right)^{2} \sigma_{xi}^{2} \tag{1}$$

Относ бомбы выражается приближенной аналитической формулой:

$$X = v_0 \sqrt{\frac{2H}{g}} (1 - 1.8 \cdot 10^{-5}) cH$$

где v_0 - скорость самолета (м/с), H - высота сбрасывания (м), с - баллистический коэффициент.

По приборам определены: H = 4000, σ_H = 40 м; v_0 = 150 м/с, σ_{v_0} = 1 м/с; c = 1, σ = 0.05. Ошибки приборов независимы друг от друга.

- Найти относ и среднее квадратическое отклонение точки падения бомбы вследствие неточности в определении параметров v_0 , H и c.
- Определить, какой из этих факторов оказывает наибольшее влияние на разброс точки падения бомбы.

Можно убедится, что при небольших изменениях параметров v_0 , H и c функция определяющая относ бомбы остаётся практически линейной

Поэтому замена формул для математического ожидания и стандартного отклонения на аналогичные для линейной аппроксимации оправдана

 Заданные значения величин v₀, H и с являются средними значениями, так как их отклонения в обе стороны равновероятны

Определим среднее значения относа X:

$$X = 150 \cdot \sqrt{rac{8000}{9.81} \cdot (1 - 1.8^{-5}) \cdot 1 \cdot 4000} = 3975.12$$
м

- Определим величину, ошибка определения которой вносит наибольший вклад в величину относа бомбы X
- ▶ Для этого вычислим все слагаемые, из которых образуется дисперсия искомой величины (формула 1)
- Сначала определим производные

$$\frac{\partial X}{\partial H} = \frac{v_0}{\sqrt{2Hg}} (1 - 1.8 \cdot 10^{-5}) cH - v_0 \sqrt{\frac{2H}{g}} (-1.8 \cdot 10^{-5}) c$$

- Определим величину, ошибка определения которой вносит наибольший вклад в величину относа бомбы X
- ▶ Для этого вычислим все слагаемые, из которых образуется дисперсия искомой величины (формула 1)
- Сначала определим производные

$$\frac{\partial X}{\partial H} = \frac{v_0}{\sqrt{2Hg}} (1 - 1.8 \cdot 10^{-5}) cH - v_0 \sqrt{\frac{2H}{g}} (-1.8 \cdot 10^{-5}) c$$

$$\frac{\partial X}{\partial v_0} \cdot = \sqrt{\frac{2H}{g}} (1 - 1.8 \cdot 10^{-5}) cH$$

$$\frac{\partial X}{\partial c} \cdot = v_0 \sqrt{\frac{2H}{g}} (1 - 1.8 \cdot 10^{-5}) H$$

$$\left(\frac{\partial X}{\partial H} \cdot \sigma_h\right)^2 = 0.429^2 \cdot 40^2$$
$$\left(\frac{\partial X}{\partial \nu_0} \cdot \sigma_{\nu_0}\right)^2 = 26.4^2 \cdot 1^2$$
$$\left(\frac{\partial X}{\partial c} \cdot \sigma_c\right)^2 = (-307)^2 \cdot 0.05^2$$

Если предположить, что X имеет нормальное распределение, то с какой вероятностью бомба упадёт на далее чем в $_X$ м от расчетного места падения?

Outline

Законы распределения

Равномерное распределение

Нормальное распределение

Правило трёх сигм

Распределение Пуассона

Экспоненциальное (показательное) распределение

Распределение максимальных и минимальных значений

Последовательность независимых случайных величин

Распределения

Распределение Гумбеля

Распределение Вейбулла

Определение параметров распределений

Линеаризация функции случайного аргумента

Ссылки

Источники

- ▶ Теория вероятностей и математическая статистика. Гмурман В.Е. biblio-online.ru/book/teoriya-veroyatnostey-imatematicheskaya-statistika-431095
- ▶ Руководство к решению задач по теории вероятностей и математической статистике. В. Е. Гмурман. 11-е изд., Издательство Юрайт, 2019. 406 с www.biblioonline.ru/book/02E0C1D3-4EEA-43AA-AA6B-5E25C4991D0

Ссылки

Материалы курса

github.com/VetrovSV/ST