Devoir surveillé n° 10 – Version 1 –

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit E un espace vectoriel de dimension finie, notée n.

- 1) Soit φ un projecteur de E, peut-on trouver une base dans laquelle la matrice de φ est particulièrement simple?
- 2) Même question pour une symétrie.

II. Réduction d'un endomorphisme.

Soit f l'application de \mathbb{R}^3 dans \mathbb{R}^3 défini par

$$f: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} 5x & + & y & - & z \\ & & 6y & & \\ -x & - & y & + & 5z \end{pmatrix}.$$

On note $\mathscr{C} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 , et Id l'application identité de \mathbb{R}^3 .

- 1) Montrer que f est un endomorphisme de \mathbb{R}^3
- 2) Préciser M, la matrice représentant f dans la base \mathscr{C} .
- 3) Montrer que M est inversible et calculer, en indiquant et détaillant la méthode utilisée, l'inverse de M.
- 4) En déduire que f est un automorphisme de \mathbb{R}^3 et préciser f^{-1} .

On pose, pour tout $\lambda \in \mathbb{R}$, $P(\lambda) = \det(M - \lambda I)$

On appelle aussi *spectre* de f l'ensemble $\operatorname{Sp}(f)$ des réels λ pour lesquels le noyau $\operatorname{Ker}(f - \lambda \operatorname{Id})$ n'est pas réduit au vecteur nul de \mathbb{R}^3 .

5) Vérifier que P est un polynôme de degré trois et factoriser P.

On vérifiera que P n'admet que deux racines réelles : $\lambda_1 = 4$ et $\lambda_2 = 6$.

6) Soit $\lambda \in \mathbb{R}$. Justifier soigneusement l'équivalence suivante :

$$(\lambda \in \operatorname{Sp}(f)) \Leftrightarrow (P(\lambda) = 0).$$

- 7) Ainsi, $Sp(f) = \{\lambda_1, \lambda_2\}$ avec $\lambda_1 < \lambda_2$.
 - a) Soit $M_1 = M \lambda_1 I$: calculer le rang de M_1 . En déduire la dimension et une base de $E_1 = \text{Ker}(f \lambda_1 \text{Id})$.
 - b) Soit $M_2 = M \lambda_2 I$: calculer le rang de M_2 . En déduire la dimension et une base de $E_2 = \text{Ker}(f \lambda_2 \text{Id})$.
 - c) Vérifier, sans trop de calculs, que E_1 et E_2 sont en somme directe, mais pas supplémentaires dans \mathbb{R}^3 .
- 8) Justifier qu'il n'est pas possible de trouver une base de \mathbb{R}^3 dans laquelle la matrice de f est diagonale.
- 9) Montrer qu'il existe une base $\mathscr{B} = (a, b, c)$ de \mathbb{R}^3 , de la forme $a = (1, \star, \star)$, $b = (1, \star, \star)$, $c = (1, \star, \star)$ dans laquelle la matrice de f est de la forme

$$T = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 6 & 1 \\ 0 & 0 & 6 \end{pmatrix}.$$

- 10) Écrire une formule reliant M et T, en détaillant complètement toutes les matrices y intervenant.
- **11)** On pose T = D + N, où $N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.
 - a) Vérifier que N est nilpotente (on rappelle que cela signifie qu'il existe $k \in \mathbb{N}$ tel que $N^k = 0$).
 - b) Montrer qu'il est alors possible d'obtenir très facilement une expression de T^n pour tout entier $n \ge 0$.
 - c) Cette formule est-elle encore valable pour n = -1?
 - d) Cette formule est-elle encore valable pour $n \leq -1$?
- 12) Déduire de ce qui précède une expression détaillée de M^n pour $n \in \mathbb{Z}$. Évaluer cette formule pour n = -1 et comparer au résultat obtenu à la question 3).
- **13)** Donner une expression en fonction de n des suites $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ définies par $u_0=w_0=1$ et pour tout $n\geqslant 0$:

$$\begin{cases} u_{n+1} = 5u_n - w_n + 6^n \\ w_{n+1} = -u_n + 5w_n - 6^n \end{cases}$$
-- FIN ---