Ευστάθεια ηλεκτρικού δικτύου με Έξυπνα Δίκτυα

ΜΕΤΑΠΤΥΧΙΑΚΌ PROJECT ΣΤΑΤΙΣΤΙΚΗΣ ΜΟΝΤΕΛΟΠΟΙΗΣΗΣ

Ιάσονας Καλαϊτζάκης

Ανάλυση Προβλήματος

Ανάγκη εκτίμησης ευστάθειας Ηλεκτρικού δικτύου

Σύστημα αστέρα με τέσσερις κόμβους -Παραγωγός ενέργειας βρίσκεται στο κέντρο

Classification µE Support Vector Machine kal Gradient Boosting

Dataset:

https://www.kaggle
m/pcbreviglieri/sma

and
https://archive.ics.uci.ed
u/ml/datasets/Electrical
+Grid+Stability+Simulate
d+Data
d+Data

(Simulation data)

Related Publication:

https://ieeexplore.ieee.o
rg/document/8587498/
V. Arzamasov, K. Böhm
and P. Jochem,
"Towards Concise

Models of Grid Stability"

Σύστημα αστέρα με τέσσερις κόμβους

Smart grid "Prosumers"

• Καταναλωτές που καταναλώνουν <u>και</u> παράγουν ενέργεια (αμφίδρομη ροή ενέργειας)

Παραγωγός ενέργειας

•Πάροχος ενέργειας του δικτύου (εργοστάσιο ενέργειας, ΑΠΕ κλπ)

Ευστάθεια ηλεκτρικού δικτύου

•Το ηλεκτρικό δίκτυο θεωρείται ασταθές αν η συχνότητα του δικτύου έχει απόκλιση πάνω από 0.5Hz από την ονομαστική

Δημιουργία του dataset

Χαρακτηριστική διαφορική εξίσωση:

$$\frac{d^2\theta_j}{dt^2} = P_j - a_j \frac{d\theta_j}{dt} + \sum_{k=1}^N K_{jk} \sin(\theta_k - \theta_j) - \frac{\gamma_j}{T_j} (\theta_j (t - \tau_j) - \theta_j (t - \tau_j - T_j))$$

όπου:

- θ_{i} \to γωνία του δρομέα της γεννήτριας (άμεση σχέση με συχνότητα)
- $P_i \rightarrow \mu$ ηχανική ενέργεια που παράγεται/καταναλώνεται
- $au_j o χρόνος απόκρισης στην προσαρμογή του συστήματος σε μία αλλαγή τιμής$
- ho ελαστικότητα της τιμής

Περιεχόμενα του dataset

Predictive Features:

- τ[1-4]: Χρόνος απόκρισης του παραγωγού και των καταναλωτών
- p[1-4]: Παραγωγή/κατανάλωση ισχύος από τον παραγωγό και τους καταναλωτές
- γ[1-4]: Ελαστικότητα της τιμής Αν αλλάξει η τιμή, πόσο θα αλλάξει η ενέργεια που προσφέρεται/ζητείται από παραγωγό/καταναλωτές;

Dependent Variables:

- ► stabf: Το μέγιστο πραγματικό μέρος ρίζας της διαφορικής εξίσωσης (θετικό πραγματικό μέρος σημαίνει γραμμικά ασταθές σύστημα)
- ► stab: Binary μεταβλητή (0, 1) ανάλογα με το πρόσημο της stabf

Παράδειγμα του dataset

	Predictive Features										Dependent Variables			
	τ1 (s)	τ2 (s)	τ3 (s)	τ4 (s)	p1 (kW)	p2 (kW)	p3 (kW)	p4 (kW)	γ1	γ2	γ3	γ4	stabf	stab
	2.95906	3.079885	8.381025	9.780754	3.763085	-0.7826	-1.25739	-1.72309	0.650456	0.859578	0.887445	0.958034	0.055347	0 (unstable)
Samples	9.304097	4.902524	3.047541	1.369357	5.067812	-1.94006	-1.87274	-1.25501	0.413441	0.862414	0.562139	0.78176	-0.00596	1 (stable)
Sam	8.971707	8.848428	3.046479	1.214518	3.405158	-1.20746	-1.27721	-0.92049	0.163041	0.766689	0.839444	0.109853	0.003471	0 (unstable)
	6.999209	9.109247	3.784066	4.267788	4.429669	-1.85714	-0.6704	-1.90213	0.261793	0.07793	0.542884	0.469931	-0.01738	1 (stable)

Recursive Feature Elimination

- τ1, Επιλέγεται, Rank: 1
- τ2, Επιλέγεται, Rank: 2
- τ3, Επιλέγεται, Rank: 3
- τ4, Επιλέγεται, Rank: 4
- p1, Apaipsitai, Rank: 8
- p2, Aqaipeitai, Rank: 10
- p3, Apaipeitai, Rank: 9
- p4, Αφαιρείται, Rank: 11
- γ1, Επιλέγεται, Rank: 1
- γ2, Επιλέγεται, Rank: 6
- γ3, Επιλέγεται, Rank: 5
- γ4, Επιλέγεται, Rank: 7

SVM Classification – Επιλογή Kernel

Linear Kernel: $K(x, x_i) = sum(x * x_i)$

Accuracy: 81%

Polynomial Kernel: $K(x, x_i) = 1 + sum(x * x_i)^d, d = 3$

Accuracy: 96%

Radial Basis Function Kernel: $K(x, x_i) = e^{-gamma * sum(x - x_i)^2}$

Accuracy: 94%

Αποτελέσματα και Confusion Matrix - SVM

Accuracy: 96%

Precision: 92%

Recall: 93%

Sensitivity: 93%

Specificity: 95%

	Predicted Negative (unstable)	Predicted Positive (stable)
Actual Negative (unstable)	10938	519
Actual Positive (stable)	456	6087

Receiver Operating Characteristic (ROC) καμπύλη – SVM classifier

Area under Curve of ROC: 98%

Extreme Gradient Boosting (XGB) classification

- ► Ensemble algorithm
- Ξεχωριστοί ταξινομητές: Decision trees
- Boosting: Οι αδύναμοι ταξινομητές μαθαίνουν από τα λάθη των προηγούμενων

Αποτελέσματα και Confusion Matrix - XGB

Accuracy: 98%

Precision: 97%

Recall: 96%

Sensitivity: 96%

Specificity: 99%

	Predicted Negative (unstable)	Predicted Positive (stable)
Actual Negative (unstable)	11317	168
Actual Positive (stable)	255	6260

Receiver
Operating
Characteristic
(ROC) καμπύλη
– XGB classifier

Area under Curve of ROC: 99.8%

Ευχαριστώ για την προσοχή σας