Internal Regret and Calibration

Yoav Freund

January 23, 2011

Outline

External and Internal Regret

Outline

External and Internal Regret

Calibration

Outline

External and Internal Regret

Calibration

Using an external regret algorithm to minimize internal regret

L_i - The cumulative loss of action i

- L_i The cumulative loss of action i
- ► L_A The cumulative loss of the algorithm.

- L_i The cumulative loss of action i
- L_A The cumulative loss of the algorithm.
- ► External Regret $R_i = L_A L_i$

- L_i The cumulative loss of action i
- L_A The cumulative loss of the algorithm.
- ▶ External Regret $R_i = L_A L_i$
- ▶ We seek a uniform bound on the regret: hold simultanously for all R_i , i = 1...N

- L_i The cumulative loss of action i
- L_A The cumulative loss of the algorithm.
- ▶ External Regret $R_i = L_A L_i$
- ▶ We seek a uniform bound on the regret: hold simultanously for all R_i , i = 1...N
- For the bounded loss $\ell_i^y \in [0, 1]$ we have $\max_i R_i^n = O(\sqrt{n \ln N})$

- L_i The cumulative loss of action i
- L_A The cumulative loss of the algorithm.
- ▶ External Regret $R_i = L_A L_i$
- ▶ We seek a uniform bound on the regret: hold simultanously for all R_i , i = 1...N
- For the bounded loss $\ell_i^y \in [0, 1]$ we have $\max_i R_i^n = O(\sqrt{n \ln N})$
- ► For log loss we have $\max_i R_i^n = O(\ln N)$

Internal regret

R_{(i,j),n} regret for not taking action j instead of each action i during iterations 1 . . . n

Internal regret

- R_{(i,j),n} regret for not taking action j instead of each action i during iterations 1...n
- ▶ We want an algorithm such that $\max_{(i,j)} R_{(i,j),n} = o(n)$

▶ Observe a binary sequence $y_1, ..., y_{t-1}$ and make prediction q_t for the probability that $y_t = 1$

- ▶ Observe a binary sequence $y_1, ..., y_{t-1}$ and make prediction q_t for the probability that $y_t = 1$
- Average outcomes:

$$\rho_n^{\epsilon}(x) = \frac{\sum_{t=1}^n y_t \mathbf{1}[q_t \in (x - \epsilon, x + \epsilon)]}{\sum_{t=1}^n \mathbf{1}[q_t \in (x - \epsilon, x + \epsilon)]}$$

- ▶ Observe a binary sequence $y_1, ..., y_{t-1}$ and make prediction q_t for the probability that $y_t = 1$
- Average outcomes:

$$\rho_n^{\epsilon}(x) = \frac{\sum_{t=1}^n y_t \mathbf{1}[q_t \in (x - \epsilon, x + \epsilon)]}{\sum_{t=1}^n \mathbf{1}[q_t \in (x - \epsilon, x + \epsilon)]}$$

ightharpoonup ϵ -calibrated predictions:

$$\forall x \in [0,1]; \quad \limsup_{n \to \infty} |\rho_n^{\epsilon}(x) - x| \le \epsilon$$

- ▶ Observe a binary sequence $y_1, ..., y_{t-1}$ and make prediction q_t for the probability that $y_t = 1$
- Average outcomes:

$$\rho_n^{\epsilon}(x) = \frac{\sum_{t=1}^n y_t \mathbf{1}[q_t \in (x - \epsilon, x + \epsilon)]}{\sum_{t=1}^n \mathbf{1}[q_t \in (x - \epsilon, x + \epsilon)]}$$

ightharpoonup ϵ -calibrated predictions:

$$\forall x \in [0, 1]; \quad \limsup_{n \to \infty} |\rho_n^{\epsilon}(x) - x| \le \epsilon$$

No deterministic algorithm can be calibrated for all sequences.

► Consider only the predictions $0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N}{N}$ for N > 1

- ► Consider only the predictions $0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N}{N}$ for N > 1
- ▶ Use the square loss (Brier Loss) $\sum_{t} (q_t y_t)^2$

- ► Consider only the predictions $0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N}{N}$ for N > 1
- ▶ Use the square loss (Brier Loss) $\sum_{t} (q_t y_t)^2$
- Use a prediction algorithm that minimizes internal regret.

- ► Consider only the predictions $0, \frac{1}{N}, \frac{2}{N}, \dots, \frac{N}{N}$ for N > 1
- ▶ Use the square loss (Brier Loss) $\sum_{t} (q_t y_t)^2$
- Use a prediction algorithm that minimizes internal regret.
- ▶ If the prediction is not ϵ calibrated, then the internal regret has to be large.

► At time t we need to produce a distribution p_t over N actions, so that the internal regret is small.

- At time t we need to produce a distribution pt over N actions, so that the internal regret is small.
- ▶ For each action pair $i \neq j$ we define a modified strategy $\mathbf{p}_t^{i \to j}$ by setting the *i*th coordinate in \mathbf{p}_t to 0 and adding that mass to the *j*th coordinate.

- At time t we need to produce a distribution pt over N actions, so that the internal regret is small.
- ▶ For each action pair $i \neq j$ we define a modified strategy $\mathbf{p}_t^{i \to j}$ by setting the *i*th coordinate in \mathbf{p}_t to 0 and adding that mass to the *j*th coordinate.
- ▶ We use $\mathbf{Hedge}(\eta)$ to combine the N(N-1) modified strategies. $\sum_{i\neq j} \Delta_{(i,j),t} \mathbf{p}_t^{i\rightarrow j}$

- At time t we need to produce a distribution p_t over N actions, so that the internal regret is small.
- ▶ For each action pair $i \neq j$ we define a modified strategy $\mathbf{p}_t^{i \to j}$ by setting the *i*th coordinate in \mathbf{p}_t to 0 and adding that mass to the *j*th coordinate.
- ▶ We use $\mathbf{Hedge}(\eta)$ to combine the N(N-1) modified strategies. $\sum_{i\neq j} \Delta_{(i,j),t} \mathbf{p}_t^{i\rightarrow j}$
- ▶ But we need a distribution over N actions not N(N 1) modified strategies.

- At time t we need to produce a distribution p_t over N actions, so that the internal regret is small.
- ▶ For each action pair $i \neq j$ we define a modified strategy $\mathbf{p}_t^{i \to j}$ by setting the *i*th coordinate in \mathbf{p}_t to 0 and adding that mass to the *j*th coordinate.
- ▶ We use $\mathbf{Hedge}(\eta)$ to combine the N(N-1) modified strategies. $\sum_{i\neq j} \Delta_{(i,j),t} \mathbf{p}_t^{i\rightarrow j}$
- ▶ But we need a distribution over N actions not N(N 1) modified strategies.
- We solve the fixed point equation

$$\mathbf{p}_t = \sum_{i \neq j} \Delta_{(i,j),t} \mathbf{p}_t^{i \to j}$$