





# Introduction

Traffic volume forecasts are used by many transportation analysis and management systems to better characterize and react to fluctuating traffic patterns. <sup>1</sup>

The purpose of this term project is to find the best model to forecast the hourly traffic volume by developing, analyzing and comparing couples of model.



- Data Preprocessing
- Dependent Variable v.s. Time
- ☐ ACF / PACF of Dependent Variable
- ☐ Correlation Matrix





# About the Dataset



*Metro Interstate Traffic Volume Dataset* is about hourly Minneapolis-St Paul, MN traffic volume for westbound 1-94. It includes weather and holiday features from 2012-2018.<sup>2</sup> Link [Here].

- ☐ Missing data -- Replace with the mean hourly traffic volume
- □ 40,575 instances, 9 attributes
- □ DateTime range from 2012-10-02 09:00:00 to 2018-09-30 23:00:00

#### **Attribute Information:**

| [holiday]  | (Categorical) US National ho    | olidays plus regional holiday     |
|------------|---------------------------------|-----------------------------------|
| [11011447] | (20008011001) 22 1 (00101101111 | oriday's press regressed from any |

[temp] (Numeric) Average temperature in Kelvin

[rain 1h] (Numeric) Amount in mm of rain that occurred in the hour

[snow 1h] (Numeric) Amount in mm of snow that occurred in the hour

[clouds all] (Numeric) Percentage of cloud cover

[weather\_main] (Categorical) Short textual description of the current weather

[weather description] (Categorical) Longer textual description of the current weather

[date\_time] (DateTime) Hour of the data collected in local CST time

[traffic\_volume] (Numeric) Hourly I-94 ATR 301 reported westbound traffic volume



# Traffic Volume over Time





# ACF / PACF of Traffic Volume





#### Correlation Matrix of Traffic Volume Dataset







- 1.00

- 0.75

- 0.50

- 0.25

- 0.00

-0.25

- -0.50

-0.75



- ADF Test
- ☐ Plot of Rolling Mean and Variance
- ☐ Seasonal / Non-Seasonal Differencing





The ADF test of Traffic Volume:

ADF Statistic: -33.506261

p-value: 0.000000

Critical Values:

1%: -3.430

5%: -2.862

10%: -2.567





# Apply Seasonal & Non-Seasonal Differencing



#### Before









# Time Series Decomposition

- ☐ STL Decomposition Method
- Strength of the Trend and Seasonality
- → Plot of Raw Dataset v.s De-trended and Seasonally Adjusted Dataset

# STL Decomposition Method

The strength of trend for the dataset is: 0.9999999022936712

The strength of seasonality for the dataset is: 0.9999995640033321



# Plot of Raw Dataset v.s. the De-trended and Seasonally Adjusted Dataset





# **Holt-Winter Method**

- Forecast v.s. Test set
- ☐ Forecast Analysis









- Collinearity Detection
- ☐ Feature Reduction
- Hypothesis Tests Analysis
- ☐ AIC,BIC,R-squared and Adjusted R-squared
- One-step ahead Forecast
- Residual Analysis







# Singular Values Analysis & Condition Number

```
The Singular Values of the raw dataset is
[3.29877152e+09 9.66769254e+07 6.00854893e+07 9.89448666e+03
4.43254690e+03 3.63818579e+03 2.24000481e+03 9.58183058e+02
5.96537323e+02 4.76176197e+02 2.20376316e+02 9.08586789e+01
5.29185584e+01 1.64223293e+01 1.29977258e+00 1.08999732e+00
2.26365803e-10]
The condition number of the raw dataset is 4.050636093231158e+17
```

# **Feature Reduction**

Using a backward stepwise regression reduce the feature space dimension. First, generate the multiple linear regression model containing all potential predictors by using OLS function. Then, remove one predictor at a time.



| Dep. Variable: t                                         | raffic_volume  | ====================================== |             |             | 0.040         |              |  |  |
|----------------------------------------------------------|----------------|----------------------------------------|-------------|-------------|---------------|--------------|--|--|
| Model:                                                   | OLS            | Adj. R-squared:                        |             | 0.040       |               |              |  |  |
| Method:                                                  | Least Squares  | F-statistic:                           |             | 90.64       |               |              |  |  |
| Date: Wed                                                | , 05 May 2021  | Prob (F-s                              | statistic): |             |               |              |  |  |
| Time:                                                    | 19:00:28       | Log-Like                               | Lihood:     | -2.9193e+05 |               |              |  |  |
| No. Observations:                                        | 32460          |                                        |             | 5           |               |              |  |  |
| Df Residuals:                                            | 32444          | BIC:                                   |             | 5           |               |              |  |  |
| Df Model:                                                | 15             |                                        |             |             |               |              |  |  |
| Covariance Type:<br>==================================== | nonrobust      |                                        |             |             |               |              |  |  |
|                                                          |                |                                        |             |             |               |              |  |  |
| <br>const                                                | <br>-3274.6339 | 277.321                                | -11.808     | 0.000       | <br>-3818.194 | <br>-2731.07 |  |  |
| noliday                                                  | -2398.9414     | 297.356                                | -8.068      | 0.000       | -2981.770     | -1816.11     |  |  |
| temp                                                     | 22.0121        | 0.829                                  | 26.561      | 0.000       | 20.388        | 23.63        |  |  |
| rain_1h                                                  | 0.1759         | 0.198                                  | 0.888       | 0.375       | -0.213        | 0.56         |  |  |
| snow_1h                                                  | -17.1519       | 1711.426                               | -0.010      | 0.992       | -3371.610     |              |  |  |
| clouds_all                                               | 2.7994         | 0.463                                  | 6.042       | 0.000       | 1.891         | 3.70         |  |  |
| weather_main_Clear                                       | 145.1102       | 172.954                                | 0.839       | 0.401       | -193.887      | 484.10       |  |  |
| weather_main_Clouds                                      | 469.9697       | 171.551                                | 2.740       | 0.006       | 133.724       | 806.21       |  |  |
| veather_main_Drizzle                                     | -69.9105       | 193.583                                | -0.361      | 0.718       | -449.341      | 309.520      |  |  |
| veather_main_Fog                                         | -336.9471      | 218.491                                | -1.542      | 0.123       | -765.198      | 91.30        |  |  |
| weather_main_Haze                                        | 665.3154       | 185.097                                | 3.594       | 0.000       | 302.518       | 1028.11      |  |  |
| weather_main_Mist                                        | -171.3682      | 174.357                                | -0.983      | 0.326       | -513.114      | 170.378      |  |  |
| veather_main_Rain                                        | 102.6721       | 173.958                                | 0.590       | 0.555       | -238.293      | 443.63       |  |  |
| weather_main_Smoke                                       | -956.3906      | 522.266                                | -1.831      | 0.067       | -1980.052     | 67.27        |  |  |
| weather_main_Snow                                        | 158.6635       | 176.159                                | 0.901       | 0.368       | -186.615      | 503.94       |  |  |
| weather_main_Squall                                      | -2772.9132     | 1786.933                               | -1.552      | 0.121       | -6275.368     | 729.54       |  |  |
| weather_main_Thunderstorm                                |                | 199.626                                | -2.549      | 0.011       | -900.109      | -117.562     |  |  |
| ======================================                   |                | :============<br>Durbin-Watson:        |             | 0.242       |               |              |  |  |
| Prob(Omnibus):                                           | 0.000          | Jarque-Bera (JB):                      |             | 1897.051    |               |              |  |  |
| Skew:                                                    | -0.060         | Prob(JB):                              |             | 0.00        |               |              |  |  |
| Kurtosis:                                                | 1.822          | Cond. No.                              |             | 4.56e+17    |               |              |  |  |

OLS Regression Results

#### Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.27e-26. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.



# Final Multiple Linear Regression Model

| # ===== Final Model after Feature Selection =====  OLS Regression Results ==================================== |            |        |                         |                              |                      |         |             |  |
|----------------------------------------------------------------------------------------------------------------|------------|--------|-------------------------|------------------------------|----------------------|---------|-------------|--|
| Dep. Variable:                                                                                                 | traffic_   | volume | R-squared (uncentered): |                              |                      |         | 0.740       |  |
| Model:                                                                                                         |            |        | Adj.                    | Adj. R-squared (uncentered): |                      |         |             |  |
| Method:                                                                                                        | Least S    | quares | F-sta                   | F-statistic:                 |                      |         | 3.076e+04   |  |
| Date:                                                                                                          | Wed, 05 Ma | y 2021 | Prob                    | Prob (F-statistic):          |                      |         | 0.00        |  |
|                                                                                                                | 19:16:51   |        |                         |                              |                      |         | -2.9211e+05 |  |
| No. Observations:                                                                                              | 32460      |        | AIC:                    | AIC:                         |                      |         | 5.842e+05   |  |
| Df Residuals:                                                                                                  | 32457      |        | BIC:                    |                              |                      |         | 5.843e+05   |  |
| Df Model:                                                                                                      |            | 3      |                         |                              |                      |         |             |  |
| Covariance Type:                                                                                               | non        | robust |                         |                              |                      |         |             |  |
|                                                                                                                | coef       | std    | err                     | t                            | =======<br>P> t <br> | [0.025  | 0.975]      |  |
| temp                                                                                                           | 10.9367    | 0.     | . 055                   | 198.485                      | 0.000                | 10.829  | 11.045      |  |
| weather_main_Clouds                                                                                            | 486.3230   | 23.    | . 353                   | 20.825                       | 0.000                | 440.551 | 532.095     |  |
| weather_main_Rain                                                                                              |            |        |                         |                              |                      |         |             |  |
| Omnibus:                                                                                                       | 457        | 93.638 | Durb:                   | in-Watson:                   |                      | 0.2     | 31          |  |
| Prob(Omnibus):                                                                                                 |            | 0.000  | Jarqı                   | ue-Bera (JB                  | ):                   | 2128.9  | 15          |  |
| Skew:                                                                                                          |            | -0.082 | Prob                    | (JB):                        |                      | 0.0     | 90          |  |
| Kurtosis:                                                                                                      |            | 1.756  | Cond                    | . No.                        |                      | 941     | 9.          |  |
|                                                                                                                | ========   | =====  |                         | =======                      | =======              | ======= | ==          |  |
| Notes:                                                                                                         |            |        |                         |                              |                      |         |             |  |
| [1] R <sup>2</sup> is computed without centering (uncentered) since the model does not contain a constant.     |            |        |                         |                              |                      |         |             |  |
| [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.                    |            |        |                         |                              |                      |         |             |  |



# 1-step ahead Forecast of MLR Model

The mean of the forecast error of MLR model is 72.238

The variance of the forecast error of MLR model is 3767272.396

The Q value of the forecast error of MLR model is 162366.193





## **ACF of Residuals**



The mean of the residuals of MLR model is -6.133

The variance of the residuals of MLR model is 3875784.079

The Q-value of the residuals of MLR model is 363383.16





# **Order Determination**



ARIMA(0,1,3) x ARIMA(0,1,1)<sub>168</sub> ARMA(0,171)





### EStimated Parameters of ARMA Model

```
ARMA Model Results
Dep. Variable:
                                      No. Observations:
                                                                      41905
Model:
                          ARMA(2, 2)
                                      Log Likelihood
                                                                -318255.367
                                                                    488.934
Method:
                             css-mle
                                      S.D. of innovations
Date:
                    Wed, 85 May 2821
                                                                 636520.734
Time:
                            09:31:33
                                                                 636563.950
Sample:
                                                                 636534.384
                                      HOIC
                                               P>|z|
                                                                     0.975]
                coef
                        std err
ar.L1.y
              0.1934
                          0.020
                                  9.768
                                               0.000
                                                          0.154
                                                                      0.232
ar.L2.y
            0.3454
                                  34.947
                                             0.000
                                                        0.326
                                                                    0.365
                       0.010
ma.L1.v
                                  -35.982
                                                                     -0.710
           -0.7514
                        0.021
                                             0.000
                                                         -0.792
ma.L2.y
                                  -10.936
            -0.2159
                          0.020
                                               0.000
                                                         -0.255
                                                                     -0.177
                                   Roots
                 Real
                               Imaginary
                                                  Modulus
                                                                  Frequency
AR.1
               1.4445
                               +0.0000i
                                                   1.4445
                                                                    0.0000
AR.2
              -2.0045
                               +8.0000j
                                                 2.0045
                                                                    0.5000
MA.1
              1.8276
                               +8.0000j
                                                  1.0276
                                                                    0.0000
MA.2
              -4.5985
                               +8.00001
                                                   4.5085
                                                                    0.5000
```

The roots of numerator is [ 0.97323702 -0.22183702] The roots of denominator is [-0.0967+0.57969743j -0.0967-0.57969743j]

The residual is NOT white The Q value is [1258.32575539] The chi critical is 131.141216667052 The p-value of chi square test is [1.40757232e-199]



The estimated variance of error is 457221.63893733063

The estimated covariance of the al is 0.00052802731634219
The estimated covariance of the a2 is 4.3615721515049795e-05
The estimated covariance of the a3 is 0.00039149247495931077
The estimated covariance of the b1 is 0.0003750385575653475

The mean of the residual of ARMA(2,2) is -0.039

The variance of residual errors versus the variance of forecast errors is 0.935863574033126



# ARMA(2,2) Forecast

ARMA(2,2) model could only forecast the differenced dataset (stationary). Convert the ARMA(2,2) process to SARIMA model, which could use for forecast the traffic volume of the raw dataset (non-stationary).

The forecast function convert from ARMA(2,2) is ARIMA(2,1,2) $\times$ ARIMA(0,1,0)<sub>168</sub>



# **Based Models**

- Average Method
- Naive Method
- Seasonal Naive Method
- ☐ Drift Method
- ☐ Simple Exponential Smoothing
- ☐ Holt's Linear Trend Method



# Average Method



# Naive Method



## Seasonal Naive Method



# **Drift Method**



# Simple Exponential Smoothing



## Holt's Linear trend Method





# **Final Model Selection**

Forecast Function and h-step Prediction





# The Comparison of 9 Forecast Method

|   | Method                         | Q value      | MSE            | Mean of Prediction Error | Variance of Prediction Error |
|---|--------------------------------|--------------|----------------|--------------------------|------------------------------|
| 0 | Average Method                 | 230379.23200 | 3945014.62100  | 53.75800                 | 3942124.72200                |
| 1 | Naive Method                   | 230379.23200 | 10256388.58700 | 2512.82000               | 3942124.72200                |
| 2 | Seasonal Naive Method          | 25900.39300  | 298706.55500   | -96.25400                | 289441.66400                 |
| 3 | Drift Method                   | 220901.75300 | 13665170.83300 | 3102.07100               | 4042326.17700                |
| 4 | Simple Exponential Method      | 230379.23200 | 10246340.68900 | 2510.82000               | 3942124.72200                |
| 5 | Holt's Linear Trend Method     | 230383.63000 | 10378338.04700 | 2536.97600               | 3942090.63500                |
| 6 | Holt_Winter Method             | 42912.67400  | 323093.56600   | -173.64200               | 292941.91600                 |
| 7 | Multiple Linear Regression     | 162366.19300 | 3772490.66300  | 72.23800                 | 3767272.39600                |
| 8 | ARIMA(2,1,2)xARIMA(0,1,0)_s168 | 200516.51300 | 11923926.65300 | 2756.97900               | 4322991.88800                |



# Forecast Function and h-step ahead Prediction

In this case, I used the h-step ahead prediction function as the forecast function. For the Seasonal Naïve Method, the forecast for time T + h is written as

$$\hat{y}_{T+h|T} = y_{T+h-m(k+1)}$$

where m = seasonal period, and k is the integer part of  $\frac{h-1}{m}$ 



=168). Still, if the 24 is used as the seasonal period for prediction, the effect is not as good as if the seasonal period is 168. Another limitation is that this method cannot account for week-to-week changes in level.

# References

1. A Functional Data Analysis Approach to Traffic Volume Forecasting <a href="https://ieeexplore.ieee.org/document/7947181">https://ieeexplore.ieee.org/document/7947181</a>

2. Metro Interstate Traffic Volume Dataset
<a href="https://archive.ics.uci.edu/ml/datasets/Metro+Interstate+Traffic+Volume#">https://archive.ics.uci.edu/ml/datasets/Metro+Interstate+Traffic+Volume#</a>

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik** 

Please keep this slide for attribution

