

Deep Learning

Self-supervised Learning

Technische Hochschule Rosenheim Sommer 2023 Prof. Dr. Jochen Schmidt

Acknowledgements

Many of the slides presented here are based on the Deep Learning Slides Summer Semester 2020, courtesy of **A. Maier, V. Christlein, K. Breininger, F. Denzinger, F. Thamm**, Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nürnberg. https://lme.tf.fau.de/

Supervised Learning

- We have seen impressive results achieved with...
 - large amounts of training data and
 - consistent, high-quality annotations.

Mask R-CNN image source [MAT19]

The Cost of Annotation

Image-level class labels: ~27 sec

Instance spotting: +14 sec

Instance Segmentation: +80 sec

Source: [Lin14]

Dense pixel-level annotations: 1.5h

Source: [Cor16]

Strongly vs Weakly Supervised Learning

Reproduced from CVPR18 Tutorial: Weakly Supervised Learning for Computer Vision

Self-supervised Learning – Motivation

- Jitendra Malik: "Supervision is the opium of the AI researcher"
- Alyosha Efros: "The AI revolution will not be supervised"
- Yann LeCun:

Source: https://www.facebook.com/722677142/posts/10156036317282143/

Self-supervised Learning – Idea

- Predict any part of the input from any other part.
- Predict the future from the past.
- Predict the future from the recent past.
- Predict the past from the present.
- Predict the top from the bottom.
- Predict the occluded from the visible
- Pretend there is a part of the input you don't know and predict that.

Source: https://www.youtube.com/watch?v=710Qt7GALVk

Self-supervised Learning – Definition

I now call it "self-supervised learning", because "unsupervised" is both a loaded and confusing term.

- Subcategory of unsupervised learning
 - Use pretext/surrogate/pseudo tasks in a supervised fashion,
 i.e., we have
 - automatically generated labels
 - that can be used as a measure of correctness (for the loss function)
- Downstream task: retrieval, supervised or semisupervised classification, etc.
- Note: Generative models (e.g., GANs) are also SSL methods

Fakultät für Informatik J. Schmidt DL – Self-supervised 8

Advantages of Self-supervised Learning

Advantages of Self-supervised Learning

Pretext Tasks Overview

Source: [Jin19]

Image Colorization

Pretext task: l₂ loss between gray and color version

Image Inpainting

Data generation

Source: [Pat16]

Pretext task

Solve Jigsaw Puzzle

Predict spatial configuration of a patch to selected reference patch (blue)

$$X = () ; Y = 3$$

Attention: Avoid trivial shortcuts that the network might learn to use

- boundary patterns, continuing textures → use large enough gaps
- prevent network from only learning about color information: introduce chromatic aberration
 - pre-process images by shifting green and magenta toward gray or
 - randomly drop 2 color channels

Source: [Doe15]

Solve Jigsaw Puzzle++

Predict position of each of the tiles

9 tiles \rightarrow 9! = 362 880 possible permutations

After training of Jigsaw problem: Transfer Learning

- Transfer weights of conv layers to AlexNet
- init fully connected AlexNet layers randomly
- use Fast R-CNN architecture for detection

Source: [Nor16]

Solve Jigsaw Puzzle++

Number of permutations	Average hamming distance	Minimum hamming distance	Jigsaw task accuracy	Detection performance
1000	8.00	2	71	53.2
1000	6.35	2	62	51.3
1000	3.99	2	54	50.2
100	8.08	2	88	52.6
95	8.08	3	90	52.4
85	8.07	4	91	52.7
71	8.07	5	92	52.8
35	8.13	6	94	52.6
10	8.57	7	97	49.2
7	8.95	8	98	49.6
6	9	9	99	49.7

Detection performance: Evaluated after transfer learning on Pascal VOC dataset

Source: [Nor16]

BYOL – Bootstrap Your Own Latent

- New approach to self-supervised learning [Gri20]
- Uses two neural networks that learn from each other
- Transfer weights of one network to downstream tasks
 - 74.3% top-1 classification accuracy on ImageNet (ResNet-50), 91.6% top-5
 - 79.6% top-1 classification accuracy on ImageNet (ResNet-200), 94.8% top-5

BYOL – Architecture

Thus, a loss can be defined.

Target network

SSL – Classification Performance on ImageNet

Source: https://paperswithcode.com/sota/self-supervised-image-classification-on

References

[Cor16] Marius Cordts, Mohamed Omran, Sebastian Ramos, et al. "The Cityscapes Dataset for Semantic Urban Scene Understanding". In: CoRR abs/1604.01685 (2016). arXiv: 1604.01685.

[Doe15] C. Doersch, A. Gupta, and A. A. Efros. "Unsupervised Visual Representation Learning by Context Prediction". In: 2015 IEEE International Conference on Computer Vision (ICCV). Dec. 2015, pp. 1422–1430.

[Gri20] Jean-Bastien Grill, Florian Strub, Florent Altché, et al. "Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning". In: arXiv e-prints, arXiv:2006.07733 (June 2020)

[Jin19] Longlong Jing and Yingli Tian. "Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey". In: arXiv e-prints, arXiv:1902.06162

[Lin14] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, et al. "Microsoft COCO: Common Objects in Context". In: CoRR abs/1405.0312 (2014). arXiv: 1405.0312.

[Mat19] Matterport, Inc. Mask R-CNN for Object Detection and Segmentation. https://github.com/matterport/Mask_RCNN

[Nor16] Mehdi Noroozi and Paolo Favaro. "Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles". In: Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016, pp. 69–84.

[Pat16] D. Pathak, P. Krähenbühl, J. Donahue, et al. "Context Encoders: Feature Learning by Inpainting". In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 2536–2544.