24.09.2021

Klausur Operations Research – B-Termin

	<u> </u>			
Sie können maximal 42 Punkte erreichen, ab 19 Punkten haben Sie bestanden				

1) Gegeben ist das folgende lineare Optimierungsproblem (LOP): (8 P)

$$z = -x_1 + x_2 \rightarrow min$$

(I) $-x_1 + 2x_2 \le 6$
(II) $5x_1 + 7x_2 \le 35$
(III) $x_2 \ge 1$ $x_1, x_2 \ge 0$

- a) Lösen Sie das LOP graphisch
 - (Skizze mit zulässigem Bereich, optimaler zul. Basislösung). Geben Sie die optimale zulässige Basislösung (ZBL) sowie den opt. Zielfunktionswert an.
- b) Geben Sie die Standard-Gleichungsform des LOP an.
- c) Bestimmen Sie außer der Optimallösung zwei weitere zulässige Basislösungen (bezogen auf die Standard-Gleichungsform des LOP).
- d) Bis zu welchem Wert kann die rechte Seite der zweiten Restriktion b₂ = 35 verringert werden, ohne die Stabilität der optimale ZBL zu verletzen? (Sensitivitätsanalyse; graphische oder rechnerische Lösung)
- 2) a) Stellen Sie zum gegebenen LOP das erste primale Simplextableau auf und führen einen Simplexschritt aus. Hinweis: Es reicht aus, die Zf-Zeile und RS-Spalte zu berechnen.
 - b) Ist die erreichte ZBL optimal (Begründung)?
 - c) Geben Sie das Dualproblem zum gegebenen LOP an.

$$z = 3x_{1} + 2x_{2} + 2x_{3} \rightarrow max$$

$$x_{1} + x_{3} \leq 8 = b_{1}$$

$$x_{1} + x_{2} \leq 7 = b_{2}$$

$$x_{1} + 2x_{2} \leq 12 = b_{3} \qquad x_{1}, x_{2}, x_{3} \geq 0$$

$$(7 P)$$

3) Zum LOP der Aufgabe 2) gehört das (primale) optimale Simplextableau: (7 P)

	X 1	X 2	X 3	X 4	X 5	X 6	RS
X 3	0	0	1	1	0	1	6
X 1	1	0	0	0	2	-1	2
X 2	0	1	0	0	-1	1	5
Zf	0	0	0	2	0	1	28

- a) Geben Sie sowohl die primale als auch die duale Optimallösung an.
- b) Welchen Schattenpreis hat die Ressource b1?
- c) Führen Sie eine Sensitivitätsananlyse bzgl. b₃ aus. In welchem Intervall darf b₃ varrieren, ohne die Stabilität der optimalen Basislösung zu verletzen?
- d) Welche Variable kommt in die Basis und welche verläßt sie, wenn die untere Grenze für b₃ aus Aufgabe 3) c) erreicht sowie weiter unterschritten wird?

4) Gegeben ist das folgende lineare Optimierungsproblem:

$$z = 2x_1 + 2x_2 \rightarrow max$$

 $4x_1 + 2x_2 \le 8$
 $2x_1 + 4x_2 \le 6$

 $x_1, x_2 \ge 0$ und ganzzahlig

- a) Bestimmen Sie die optimale Lösung der Relaxation (des Problems ohne Ganzzahligkeitsforderung, grafische Lösung).
- b) Lösen Sie das LOP mit Ganzzahligkeitsforderung mittels Branch_and_Bound-Algorithmus.
 Hinweis: Sie können alle Probleme grafisch lösen.
- 5) Vier Verbraucher B_j werden aus drei Lagern A_i mit einem Rohmaterial versorgt. Das folgende Datenschema des Transportproblems (TP) ist gegeben. (7 P)

Entfernung (km)	B ₁	B ₂	B ₃	B ₄	Lagermenge a _i (t)
A ₁	22	21	35	33	1000
A ₂	7	5	25	16	1600
A ₃	25	15	7	6	500
Bedarf b _j (t)	700	500	1100	800	

Die Belieferung soll so erfolgen, daß der Gesamtwert "Tonnenkilometer" (t*km) minimal wird.

- a) Bestimmen Sie eine erste zulässige Basislösung mittels der Methode der Vogelschen Approximation.
- b) Geben Sie die Basisvariablen x_{ij} und den zugehörigen opt. Zielfunktionswert an.
- Zum angegebenen Datenschema eines TP wurde die aufgeführte zulässige Basislösung ermittelt (7 P)

	B ₁	B ₂	B ₃	B ₄	Aufkommen a _i
A ₁	5	6	4	8	26
A ₂	8	3	6	4	20
A ₃	9	10	9	11	14
Bedarf b _j	16	12	18	14	

Zulässige Basislösung:

16		10	
	6		14
	6	8	

- a) Führen Sie einen Schritt mit der MODI-Methode zu einem Tableau mit einer verbesserten zulässigen Basislösung (ZBL) aus.
- b) Geben Sie diese verbesserte ZBL einschließlich des Zielfunktionswertes an. Ist diese ZBL optimal?