Lecture 38

Statistical Classification

STAT 8020 Statistical Methods II December 2, 2019

> Whitney Huang Clemson University

Notes

of spirate spi

Agenda

- An Overview of Multivariate Analysis
- **2** Classification Problems
- 3 Linear Discriminant Analysis & Logistic Regression

Notes			

An Overview of Multivariate Analysis

- In many studies, observations are collected on several variables on each experimental/observational unit
- Multivariate analysis is a collection of statistical methods for analyzing these multivariate data sets
- Common Objectives
 - Dimensionality reduction
 - Classification
 - Grouping (Clustering)

atistical sification	Notes		
riate is			

38.3

Multivariate Data

We display a multivariate data that contains n units on p variables using a matrix

$$\boldsymbol{X} = \begin{pmatrix} X_{1,1} & X_{2,1} & \cdots & X_{p,1} \\ X_{1,2} & X_{2,2} & \cdots & X_{p,2} \\ \vdots & \cdots & \ddots & \vdots \\ X_{1,n} & X_{2,n} & \cdots & X_{p,n} \end{pmatrix}$$

Summary Statistics

- Mean Vector: $\bar{\boldsymbol{X}} = (\bar{X}_1, \bar{X}_2, \cdots, \bar{X}_p)^T$
- Variance-Covariance Matrix: $\Sigma = \{\sigma_{ij}\}_{i,j=1}^p$, where $\sigma_{ii} = \operatorname{Var}(X_i), \quad i = 1, \cdots, p \text{ and } \sigma_{ij} = \operatorname{Cov}(X_i, X_j), i \neq j$

notes			

Classification and Discriminant Analysis

Data:

$$\{\boldsymbol{X}_i, Y_i\}_{i=1}^n$$

where Y_i is the class information for the i_{th} observation $\Rightarrow Y$ is a qualitative variable

 Classification aims to classify a new observation (or several new observations) into one of those classes

Quantity of interest: $P(Y = k_{th} \text{ category} | \boldsymbol{X} = \boldsymbol{x})$

In this lecture we will focus on binary linear classification

Notes			

Illustrating Example

Wish to classify a new observation z(*) into one of the two groups (class 1 or class 2)

Statistical Classification
Classification Problems

Notes				

Illustrating Example Cont'd

We could compute the distances from this new observation $z=(z_1,z_2)$ to the groups, for example, $d_1=\sqrt{(z_1-\mu_{11})^2+(z_2-\mu_{12})^2},$ $d_2=\sqrt{(z_1-\mu_{21})^2+(z_2-\mu_{22})^2}.$ We could assign z to the group with the smallest distance

Notes			

Variance Corrected Distance

In this one-dimensional example, $d_1 = |z - \mu_1| > |z - \mu_2|$. Does that mean z is "closer" to group 2 (red) than group 1 (blue)?

We should take the "spread" of each group into account. $\tilde{d}_1=|z-\mu_1|/\sigma_1<\tilde{d}_2=|z-\mu_2|/\sigma_2$

Notes

General Covariance Adjusted Distance: Mahalanobis Distance

The Mahalanobis distance is a measure of the distance between a point z and a distribution F:

$$D_M(z) = \sqrt{(z-\mu)^T \Sigma(z-\mu)},$$

where μ is the mean vector and Σ is the variance-covariance matrix of F

1	Notes			
-				
-				
_				
_				

Binary Classification

Assume $\pmb{X}_1 \sim \text{MVN}(\pmb{\mu}_1, \Sigma)$, $\pmb{X}_2 \sim \text{MVN}(\pmb{\mu}_2, \Sigma)$, that is, $\Sigma_1 = \Sigma_2 = \Sigma$

• Maximum Likelihood of group membership:

Group 1 if
$$\ell(\boldsymbol{z}, \boldsymbol{\mu}_1, \Sigma) > \ell(\boldsymbol{z}, \boldsymbol{\mu}_2, \Sigma)$$

Linear Discriminant Function:

Group 1 if
$$(\mu_1 - \mu_2)^T \Sigma^{-1} z - \frac{1}{2} (\mu_1 - \mu_2)^T \Sigma^{-1} (\mu_1 + \mu_2) > 0$$

Minimize Mahalanobis distance:

Group 1 if
$$(z-\mu_1)^T \Sigma^{-1} (z-\mu_1) < (z-\mu_2)^T \Sigma^{-1} (z-\mu_2)$$

All the classification methods above are equivalent

Example: Fisher's Iris Data

4 variables (sepal length and width and petal length and width), 3 species (setosa, versicolor, and virginica)

Notes

Notes

Fisher's Iris Data Cont'd

Let's focus on the latter two classes (versicolor, and virginica)

Classification
<u>CLEMS#N</u>
Linear
Discriminant Analysis & Logistic
Regression

Notes			

Fisher's iris Data Cont'd

To further simplify the matter, let's focus on the first two PCs of \boldsymbol{X}

Statistical Classification CLEMS UNIVERSITY
Linear Discriminant Analysis & Logistic Regression
38.13

Notes			

Screen Plot

Notes			

Linear Discriminant Analysis

 $\begin{array}{l} \textbf{Main idea: Use Bayes rule to compute} \\ P(Y=k|\boldsymbol{X}=\boldsymbol{x}) = \frac{P(Y=k)P(\boldsymbol{X}=\boldsymbol{x}|Y=k)}{P(\boldsymbol{X}=\boldsymbol{x})} = \frac{\pi_k f_k(\boldsymbol{x})}{\sum_{k=1}^K \pi_k f_k(\boldsymbol{x})}. \\ \textbf{Assuming } f_k(\boldsymbol{x}) \sim \text{MVN}(\mu_k, \Sigma), \quad k=1,\cdots,K. \text{ Use} \\ \hat{\pi}_k = \frac{n_k}{n} \Rightarrow \text{ it turns out the resulting classifier is linear in } \boldsymbol{X} \end{array}$

Statistical Classification
CLEMS N
Linear Discriminant Analysis & Logistic Regression

Notes			

Classification Performance Evaluation

fit.LDA
versicolor virginica
versicolor 47 3
virginica 1 49

Statistical Classification
CLEMS N
Linear Discriminant Analysis & Logistic Regression
20.16

Notes ______

Logistic Regression Classifier

Main idea: Model the logit $\log\left(\frac{\mathrm{P}(Y=1)}{1-\mathrm{P}(Y=1)}\right)$ as a linear function in \boldsymbol{X}

Notes

Logistic Regression Classifier Cont'd

logisticPred
versicolor virginica
versicolor 48 2
virginica 1 49

Notes			

Quadratic Discriminant Analysis

In Linear Discriminant Analysis, we **assume** $\{f_k(\mathbf{x})\}_{k=1}^K$ are normal densities and $\Sigma_1 = \Sigma_2$, therefore we obtain a linear classifier. What if $\Sigma_1 \neq \Sigma_2 \Rightarrow$ we get quadratic discriminant analysis

Figure: Figure courtesy of An Introduction of Statistical Learning by G. James et al. pp. 150

Notes

Linear Discriminant Analysis Versus Logistic Regression

For a binary classification problem, one can show that both Linear Discriminant Analysis (LDA) and Logistic Regression are linear classifiers. The difference is in how the parameters are estimated:

- \bullet Logistic regression uses the conditional likelihood based on $\mathrm{P}(Y|\pmb{X}=\pmb{x})$
- \bullet LDA uses the full likelihood based on multivariate normal assumption on X
- Despite these differences, in practice the results are often very similar

	_
Notes	
Notes	