Power Allocation and Relay Selection in Amplify-and-Forward Relaying

Prudhvi Porandla (110070039)

Guide: Prof. Prasanna Chaporkar

May 1, 2016

Overview

- ► Introduction
- Relaying Schemes
- Power Allocation
- Relay Selection
- ▶ Interdependence of above
- Future Work

Introduction

- D2D and Relaying cooperative communications will play important roles in future generation wireless networks.
- Current standard allows deployment of fixed relays to help cell-edge users.
- Advanced cellular relaying modes like mobile relaying, multi-hop relaying, and user-assisted relaying are expected in 5G systems.
- We will discuss the signalling mechanisms in PDF and AF relaying schemes
- We will discuss power allocation and relay selection in AF scheme

Two Phases

Total transmission period is divided into phases: 1. Broadcast phase and 2. Multicast phase as shown in the figure below.

Figure: Two phases in PDF relaying.

Transmit Signals

Source uses superposition coding and splits its information into a common part(U_s^b) and a private part(V_s^m)

The signals transmitted by source and relay are as follows:

Phase 1:
$$x_s^b = U_s^b$$
,
Phase 2: $x_r^m = U_s^m$,
 $x_s^m = U_s^m + V_s^m$

Received Signals

Signals received at relay, BS during broadcast(b) and multicast(m) phases:

$$Y_r^b = h_{sr}x_s^b + Z_r^b, \quad Y_d^b = h_{sd}x_s^b + Z_d^b$$

 Z_r^b and Z_d^b are i.i.d $\mathcal{CN}(0, \sigma^2)$ that represent noises at \mathcal{R} and \mathcal{D} .

Received Signals

Signals received at relay, BS during broadcast(b) and multicast(m) phases:

$$Y_r^b = h_{sr}x_s^b + Z_r^b, \quad Y_d^b = h_{sd}x_s^b + Z_d^b$$

 Z_r^b and Z_d^b are i.i.d $\mathcal{CN}(0, \sigma^2)$ that represent noises at \mathcal{R} and \mathcal{D} .

$$Y_d^m = h_{sd}x_s^m + h_{rd}x_r^m + Z_d^m$$

The above expression is true only if $\mathcal D$ has knowledge about the phase offset between $\mathcal S$ and $\mathcal R.$

Amplify-and-Forward

Two Slots

Figure: Two phases in AF relaying.

Amplify-and-Forward

Received Signals

Signals received at relay, BS during the two slots: *First Slot:*

$$Y_{sd} = \sqrt{P_s G_{sd}} X_s + n_{sd}$$

 $Y_{sr} = \sqrt{P_s G_{sr}} X_s + n_{sr}$

Second Slot:

$$Y_{rd} = \sqrt{P_r G_{rd}} X_{rd} + n_{rd}$$

Where
$$X_{rd} = rac{Y_{sr}}{|Y_{sr}|}$$

Amplify-and-Forward

Capacity

The rate/capacity of AF relaying scheme is given by

$$R = \frac{1}{2}w \log_2(1 + \Gamma_{sd} + \Gamma_{rd})$$
 where Γ represents SNR

Substituting Γ_{sd} and Γ_{rd} , we get

$$R = \frac{1}{2}w\log_2\left(1 + \frac{P_sG_{sd}}{\sigma^2} + \frac{P_sG_{sr}P_rG_{rd}}{\sigma^2(\sigma^2 + P_sG_{sr} + P_rG_{rd})}\right)$$

Single relay case

► Find the source power that maximises rate under given power constraints

Single relay case

► Find the source power that maximises rate under given power constraints

▶ Prove that rate is concave function of source power

Single relay case

► Find the source power that maximises rate under given power constraints

▶ Prove that rate is concave function of source power

Use Lagrange multiplier method to find optimal power

Multiple relays

Depends on the relay

Relay Selection

Many relay selection schemes. One of them:

Select relay k where

$$k = \arg\max_{i} \min_{i} \{G_{sr_i}, G_{r_id}\}$$

Relay Selection

Many relay selection schemes. One of them:

Select relay k where

$$k = \arg\max_{i} \min_{i} \{G_{sr_i}, G_{r_id}\}$$

A smoother version of the above would be

$$k = \arg\max_{i} \frac{G_{sr_i} G_{r_i d}}{G_{sr_i} + G_{r_i d}}$$

Relay Selection

Optimal Scheme

An optimal scheme should use SNR as the deciding parameter In our case Select relay k where

$$k = \arg \max_{i} \Gamma_{r_i d}$$

where
$$\Gamma_{rd}=rac{P_s\,G_{sr}\,P_r\,G_{rd}}{\sigma^2(\sigma^2+P_s\,G_{sr}+P_r\,G_{rd})}$$

Interdependence

Power allocation and relay selection mutually dependent Can

different relays be optimal at different source powers?

consider two relays R_1 and R_2 and assume both use same constant relay power P_r . Γ_{rd} can be rewritten as

$$\Gamma(P_s) = \frac{P_s ab}{1 + P_s a + b}$$

where $a = \frac{G_{sr}}{\sigma^2}$ and $b = \frac{P_r G_{rd}}{\sigma^2}$

We want to know if at some power P_1 , R_1 is a better relay than R_2 i.e.,

$$\Gamma_1(P_1) > \Gamma_2(P_1)$$

then can R_2 be a better relay than R_1 for some other power P_2 ?

$$\Gamma_1(P_2) < \Gamma_2(P_2)$$

let us find the power at which both relays are equally good.

$$\Gamma_1(P_0) = \Gamma_2(P_0)$$

Solving the above equation, we get

$$P_0 = (1+b_1)(1+b_2)\frac{\frac{a_1b_1}{1+b_1} - \frac{a_2b_2}{1+b_2}}{a_1a_2(b_2-b_1)}$$

For P_0 to be positive, both numerator and denominator should have same sign i.e., if $\frac{a_1b_1}{1+b_1}>\frac{a_2b_2}{1+b_2}$ then $b_2>b_1$. To explain this intuitively, let us assume b_1,b_2 to be much larger than 1 which reduces the first inequality to $a_1>a_2$. What this means is, source to relay channel is better for R_1 but relay to destination channel is stronger for R_2 . Hence at low source powers R_1 gives better SNR but for source power greater than P_0 , R_2 is a better relay than R_1 . Same argument can be made for the case where inequalities are in the opposite direction.

For $P_0 < 0$, one of the relays is the desired one irrespective of source power.

To summarise, here are the conditions under which one relay is better than the other:

- $\frac{a_1b_1}{1+b_1}>\frac{a_2b_2}{1+b_2}$ and $b_2>b_1$ R_1 at source power less than P_0 and R_2 at power greater than P_0
- lacksquare $rac{a_1b_1}{1+b_1}<rac{a_2b_2}{1+b_2}$ and $b_2< b_1$ R_2 at source power $< P_0$ and R_1 at power $> P_0$
- lacksquare $rac{a_1b_1}{1+b_1}<rac{a_2b_2}{1+b_2}$ and $b_2>b_1$ R_2 is a better relay for all source powers
- $\frac{a_1b_1}{1+b_1} > \frac{a_2b_2}{1+b_2}$ and $b_2 < b_1$ R_1 is a better relay for all source powers

Assume an initial source power

- Select the best relay at this power
- Solve the optimisation problem
- ► Check if the current relay is still the best
- ▶ If not use the other relay

Future Work

▶ Will the above method work?

Future Work

▶ Will the above method work?

▶ Extend it to the case where there are more than two relays

Future Work

▶ Will the above method work?

- ▶ Extend it to the case where there are more than two relays
- Power allocation at relay

Thank You