

Mass-transfer-enhanced hydrophobic Bi microsheets for highly efficient electroreduction of CO₂ to pure formate in a wide potential window

Yong Zhang^a, Rui Zhang^a, FeiFei Chen^a, FeiFei Zhang^a, Yingda Liu^a, Xiaoya Hao^a, Haokun Jin^a, Xinghua Zhang^b, Zunming Lu^b, Hong Dong^a, Feng Lu^a, Weihua Wang^a, Hui Liu^{c,*}, Hui Liu^{a,*}, Yahui Cheng^{a,*}

^a Department of Electronic Science and Engineering and Tianjin Key Laboratory of Process Control and Green Technology for Pharmaceutical Industry, Nankai University, Tianjin 300350, China

^b School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China

^c Research Group of Quantum-Dot Materials & Devices, Institute of New-Energy Materials, Tianjin University, Tianjin 300350, China

ARTICLE INFO

Keywords:
Bi microsheets
CO₂ reduction
CO₂ mass transfer
Hydrophobic electrodes
Solid-state electrolyte

ABSTRACT

The industrial application of electrochemical CO₂ reduction reaction is challenged by the limited mass transfer and the mixing of products with traditional electrolytes. Here, we propose an in-situ electroreduction strategy to construct hydrophobic Bi microsheets with (012) plane orientation and abundant grain boundaries to solve these problems and maintain high intrinsic activity. The large distance between microsheets and the stable micro-sized hydrophobic structure can trap more air and form smaller solid-liquid interface to stably improve CO₂ mass transfer. The obtained Bi microsheets exhibit high activity and selectivity in a wide potential window. In an H-type cell, the selectivity of formate exceeds 90% over a potential range of -0.8 V to -1.3 V vs. RHE. The pure formate solution is produced using a CO₂ reduction cell with solid-state electrolyte to simplify product separation, and 0.13 M pure formate solution is continuously and stably produced for 110 h at 160 mA cm⁻².

1. Introduction

Electroreduction of carbon dioxide (CO₂) into fuels and chemical feedstocks is not only one of the ways to address excess CO₂ emissions, but also a potential strategy to achieve carbon-neutral energy cycle [1–4]. As a value-added product of electrochemical CO₂ reduction reaction (ECO₂RR) [5–7], formate is an important raw material in the chemical industry, a chemical fuel for fuel cells and hydrogen storage [8, 9], and the most economically feasible product in ECO₂RR [10].

Main group metal elements, including In, Sn, Pb, Bi, etc., show the greatest potential for ECO₂RR to formate in aqueous electrolytes [11–13]. Among them, Bi has attracted extensive attention because of its unique advantages of rich reserves, non-toxicity, clear active centers and high formate selectivity [8]. Many strategies have been developed to improve the intrinsic activity of Bi-based catalysts and promote CO₂ activation, such as manipulating nanostructures [14,15], doping [16], introducing vacancies [17], exposing specific crystal planes [18,19], building heterojunctions [20,21], and grain boundary engineering [22, 23]. Based on these strategies, the overpotential of ECO₂RR has been

significantly reduced, and the formate selectivity has reached a high level. However, the high selectivity of formate on most Bi-based electrocatalysts can only be realized at a specific low potential or within a relatively narrow potential range, which is not conducive to the high energy efficiency demand of ECO₂RR in industrial applications [13]. It is known that the energy-efficient ECO₂RR in industry requires low overpotential and high selectivity simultaneously, and this high selectivity should be maintained under the commercially favorable high potential/current density (i.e., the partial current density higher than 100 mA cm⁻²) to ensure the high product yields [13]. Unfortunately, limited by the low solubility of CO₂ and the slow mass transfer of CO₂ [24], as the potential (or current density) increases, the localized CO₂ and H₂O supply on the catalysts surface is unbalanced and favors the hydrogen evolution reaction (HER), which inhibits the formate production.

It is generally believed that hydrophobicity can form a rich solid/liquid/gas three-phase interface, thus enhancing the CO₂ mass transfer and improving the selectivity of ECO₂RR products at high potentials [24–29]. Polymer coating and constructing rough surface are the most commonly used methods of hydrophobicization [26,28]. The former

* Corresponding authors.

E-mail addresses: hui_liu@tju.edu.cn (H. Liu), liuhui@nankai.edu.cn (H. Liu), chengyahui@nankai.edu.cn (Y. Cheng).

forms a coating layer on the catalysts surface, which blocks the active sites and weakens the inherent activity of the catalysts [24,26]; the latter often uses small-sized and ultrathin nanosheets to increase roughness and provide sufficient ECO₂RR active sites [28], but these nanosheets are easily broken into nanoparticles after prolonged ECO₂RR [30], and the hydrophobic surface cannot be maintained [28], thus resulting in the poor long-term stability. In order to solve these problems, that is, to build a stable hydrophobic surface without blocking the active center and maintaining high intrinsic activity, it is urgent to develop new hydrophobic strategies and hydrophobic catalyst materials.

Compared with nanosheets, microsheets with larger size are stable in structure and not easily broken. Meanwhile, the distance between microsheets is larger than that between nanosheets, which can trap more air and form a smaller solid-liquid contact surface to improve CO₂ mass transfer [31–33]. These characteristics of microsheets provide inspiration for us to construct a novel hydrophobic catalyst. In this work, we propose a Bi-based microsheets ECO₂RR catalyst with high active plane preferred orientation and a large number of grain boundaries to achieve high formate selectivity in a wide potential window. On the basis of maintaining high hydrophobicity, the preferential orientation of highly active (012) plane of Bi and grain boundaries stabilize the formate intermediate, enhancing the local proton activity on the electrode surface, and thus reducing the free energy barrier for OCHO⁻ formation. To realize this special Bi microsheets (Bi MSs) structure, we have developed a simple electroreduction method, which uses (210) plane oriented Bi₄O₇ microsheets as precursors. As a result, in an H-type electrolytic cell, the Faradaic efficiency of formate (FE_{formate}) of Bi MSs is as high as 96.20%, and the potential window is up to wide from –0.8 V to –1.3 V vs. RHE (FE_{formate} > 90%). Furthermore, the pure formate solution is produced in a CO₂ reduction cell with solid-state electrolyte (MEA-SSE solid-state electrolytic cell) to reduce the separation cost of downstream products. The Faradaic efficiency of formate exceeds 80% over almost the entire cell pressure range, and 0.13 M pure formate solution is continuously produced with deionized water flow rate of 20 mL h⁻¹ for 110 h at 160 mA cm⁻². This work provides a valuable insight for the commercial production of formate by electrochemical reduction of CO₂.

2. Experimental

2.1. Synthesis of Bi₄O₇

In a typical synthesis, 2.8 g NaBiO₃·2H₂O (99%, Macklin) and 2.4 g NaOH (99%, Aladdin) were added to 60 mL deionized water and stirred for 30 min, then the suspension was placed in 100 mL Teflon liner hydrothermal reactor and heated at 180 °C for 18 h. After the reaction, the products were washed with deionized water, ethanol, and dried at 60 °C overnight.

2.2. Synthesis of Bi nanoparticles (Bi NPs)

In a typical synthesis, 3.88 g Bi(NO₃)₃·5H₂O (99%, Aladdin) was dissolved in 30 mL ethylene glycol (99%, Aladdin), then the solution was placed in 100 mL Teflon liner hydrothermal reactor and heated at 180 °C for 24 h. After the reaction, the products were washed with deionized water, ethanol, and dried at 60 °C overnight.

2.3. Electrochemical test in an H-type electrolytic cell

The electrochemical measurements were performed with an electrochemical workstation (CHI 760E) without iR compensation. The catalysts were made into electrode ink for reducing Bi₄O₇ to Bi MSs and for CO₂ reduction test. 2 mg Bi₄O₇ or Bi NPs were ultrasonically dispersed into a solution containing 500 μL isopropanol and 20 μL Nafion to form electrode ink. For CO₂ reduction test, 20 μL electrode ink was dropped onto the L-shaped glassy carbon electrode with a diameter of 5 mm and electroreduced at –1.2 V vs. RHE for 5 min (See Fig. S1 for

a detailed discussion of electroreduction time and potential) to obtain Bi MSs (0.4 mg cm⁻²). For X-ray diffraction (XRD) test, 200 μL electrode ink was dropped onto FTO with an area of 1 cm⁻² and electroreduced at –1.2 V vs. RHE for 10 min to obtain Bi MSs. Bi₄O₇ reduction and CO₂ reduction tests were performed in a gas-tight three-electrode H-type electrolytic cell using Ag/AgCl (3.0 M KCl) as the reference electrode and Pt mesh as the counter electrode. 20 mL CO₂-saturated KHCO₃ solution (0.1 M) was used as electrolyte (pH = 6.8), which was stirred at a rate of 500 rpm during ECO₂RR, and the CO₂ flow rate during ECO₂RR was maintained at 20 sccm. Convert all potentials measured in the H-cell to the reversible hydrogen electrode (RHE) scale using the following equation:

$$E \text{ (vs. RHE)} = E \text{ (vs. Ag/AgCl)} + 0.197 + 0.0591 \times \text{pH}. \quad (1)$$

The linear sweep voltammetry (LSV) polarization curves were conducted at potentials from 0 V to –1.5 V vs. RHE with a scan rate of 50 mV s⁻¹. The double layer capacitance (Cd_d) of working electrodes were measured by a cyclic voltammetry (CV) test at potentials from 0 V to 0.23 V vs. RHE at various scan rates (20, 40, 60, 80, and 100 mV s⁻¹) in 0.1 M Ar-saturated KHCO₃ to compare the electrochemically active surface area (ECSA) of the working electrodes.

The gaseous products of carbon dioxide reduction were analyzed using a gas chromatograph (FULI GC9790 Plus) equipped with thermal conductivity detector (TCD) and flame ionization detector (FID) detectors. Gas chromatography used nitrogen as the carrier gas, and the reduction products were first analyzed for H₂ concentration by TCD and then CO by FID with methanator. Taking CO as an example, the Faradaic efficiency (FE) of gaseous products is calculated as follows [14]:

$$\text{FE}_{\text{CO}} (\%) = \frac{Q_{\text{CO}}}{Q_{\text{tot}}} \times 100\% = \frac{\left(\frac{v}{60 \text{ s/min}} \right) \times \left(\frac{n}{2400 \text{ cm}^3/\text{mol}} \right) \times N \times F \times 100\%}{j}, \quad (2)$$

where v = 20 sccm is the flow rate of CO₂, n is the CO product concentration detected by chromatography and calibrated with standard gas, N = 2 is the number of electrons required to form a CO molecule, F is the Faraday constant (96485 C mol⁻¹), and j is the recorded current.

The liquid product was detected by liquid NMR (AVANCE IIITM HD 400 MHz NanoBAY), and 500 μL electrolyzed electrolyte, 100 μL D₂O, and 10 μL DMSO (0.04 μL mL⁻¹) were mixed uniformly in the NMR tube. The formula for calculating the Faradaic efficiency of formate at a given potential is as follows:

$$\text{FE}_{\text{formate}} (\%) = \frac{C_{\text{HCOOH}} \times V \times N \times F \times 100\%}{Q}, \quad (3)$$

where C is the concentration of formate in the electrolyte, V is the volume of electrolyte in the cathode cell, N = 2 is the number of electrons transferred to form formate, F is the Faraday constant (96485 C mol⁻¹), and Q is the current time integral the amount of charge obtained.

The energy conversion efficiency of CO₂ to formate at a given potential is calculated by the following formula [7]:

$$\Phi_{\text{formate}} = \frac{FE \times \Delta E_{\text{formate}}^0}{\Delta E_{\text{formate}}} \quad (4)$$

In the formula, Φ_{formate} is the energy conversion efficiency, FE is the Faradaic efficiency of formate, $\Delta E_{\text{formate}}^0$ is the difference between the standard electrode potential for oxygen production (1.23 V vs. RHE) and the standard electrode potential for CO₂ reduction to formate (–0.2 V vs. RHE), $\Delta E_{\text{formate}}$ is the difference between the standard electrode potential for oxygen production and the electrode potential on the actual working electrode.

2.4. Electrochemical test in a solid-state electrolytic cell

The use of a solid-state electrolyte (SSE) device can avoid the use of

high-concentration electrolyte solutions, thereby simplifying the subsequent separation of liquid products. The composition of the solid-state electrolytic cell from cathode to anode is: cathode metal titanium plate current collector, gas diffusion layer (YLS-30 T, Fuel Cell Store) loaded with Bi MSs catalyst (0.4 mg cm^{-2}), anion membrane AEM (Sustainion X37–50 Grade 60, SCI Materials Hub), Dowex 50WX8 used as solid H⁺ conductor (Sigma), cation membrane CEM (Nafion 115, SCI Materials Hub), Ti mesh loaded with IrO₂, and anode metal titanium plate current collector. Before the official start of the test, the solid-state electrolytic cell was stabilized for 2 h at a cell voltage of 4.5 V to remove impurities in the SSE and stabilize the current. During the test, a two-electrode body full electrolysis system was used and all voltages reported were full cell voltages without iR compensation. The LSV curves were conducted at potentials from 0 V to – 5 V with scan rate of 50 mV s⁻¹. The cathode side was supplied with 20 sccm humidified CO₂ gas, and the anode side was supplied with deionized water for oxygen evolution reaction (OER) to generate H⁺. Deionized water was used to release the produced formate in the solid-state electrolyte at a flow rate of 20 mL h⁻¹. The collected pure formate solution was diluted to 40 mL with deionized water for liquid product test.

2.5. Characterizations

X-ray diffraction (XRD) patterns were obtained on a powder diffractometer (Rigaku Smart Lab 3 kW) using Cu K α radiation. Scanning electron microscopy (SEM) images of the samples were obtained using a JSM-7800 F scanning electron microscope. Transmission electron microscopy (TEM) and high resolution TEM (HRTEM) images were obtained with a Tecnai G2 F20 TEM operating at 200 kV. X-ray photoelectron spectroscopy (XPS) was performed on a Thermo Scientific ESCALAB 250Xi instrument using a Mg K α X-ray source. The binding energy of the collected spectra was calibrated by the C 1 s binding energy of 284.8 eV. In-situ Raman spectroscopy was recorded on a micro-confocal Raman spectrometer (TEO SR-500I-A) with 532 nm laser. The

ECO₂RR on Bi MSs electrode was performed in a home-made in-situ Raman cell with a quartz optical window, a Ag/AgCl (3.0 M KCl) reference electrode and a Pt counter electrode. The Raman cell was filled with 0.1 M CO₂-saturated KHCO₃ electrolyte, and the CO₂ flow rate was maintained at 5 sccm. During the measurement, each potential lasted for 3 min and then each Raman spectroscopy was recorded with twenty accumulations over an acquisition time of 20 s. Atomic force microscope (AFM) images were taken using a Bruker (Dimension Icon) AFM with tapping mode, and the roughness values R_q are calculated as:

$$R_q = \sqrt{\frac{\sum(Z_i)^2}{N}}, \quad (5)$$

where Z_i is the current Z value, and N is the number of points within the box cursor. The contact angle was measured by the sessile drop method using JC2000C1 contact angle system at room temperature.

3. Results and discussion

3.1. Synthesis and Structural Characterizations of Bi₄O₇, Bi MSs and Bi NPs

Bi₄O₇ microsheets were prepared by a facile hydrothermal method. The morphology and structure of the samples are firstly analyzed by SEM. It can be seen that the samples are in the form of microsheets (Fig. S2), which is consistent with TEM image (the inset of Fig. 1b). The XRD pattern (Fig. 1a) matches well with the standard peaks of Bi₄O₇ (JCPDS No. 04–010–4531) [34]. The main diffraction peaks located at 27.5° and 28.3° can be attributed to the (210) and (102) planes of Bi₄O₇, respectively, and the sample has strong (210) plane orientation. In the HRTEM image (Fig. 1b), the (210) plane of Bi₄O₇ with the lattice fringe spacing of 0.324 nm and the (133) plane of Bi₄O₇ with the lattice fringe spacing of 0.196 nm can be observed clearly, which further confirms the Bi₄O₇ phase of the microsheets. The selected area electron diffraction

Fig. 1. (a) XRD pattern and (b) HRTEM image of Bi₄O₇. The inset of (b) shows the TEM image and SAED pattern of Bi₄O₇. (c) SEM image of Bi MSs loaded on the electrode. (d) Normalized XRD patterns of Bi MSs and Bi NPs. (e) HRTEM image of Bi MSs. The inset of (e) shows the TEM image and SAED pattern of Bi. (f) In-situ Raman images of Bi₄O₇ before and after the electroreduction at – 1.2 V vs. RHE.

(SAED) pattern (the inset of Fig. 1b) can also verify the polycrystalline structure of Bi_4O_7 . XPS confirms that the surface chemical state of the sample belongs to Bi_4O_7 (Fig. S3).

As shown in Fig. S4, Bi MSs were obtained by simple in-situ electroreduction of Bi_4O_7 microsheets. Meanwhile, conventional Bi NPs were prepared as controls. Fig. S5 shows a typical CV curve of Bi_4O_7 during the electroreduction. A pair of distinct redox peaks can be observed, and there is a large reduction current between -0.5 V and 0 V vs. RHE, which corresponds to the reduction of Bi^{3+} and Bi^{5+} to Bi^0 in Bi_4O_7 . The morphologies of Bi MSs and Bi NPs loaded on the electrode are observed by SEM (Fig. 1c, S6). Bi MSs inherit the microstructure of Bi_4O_7 and Bi NPs are nanoparticles, being consistent with the TEM images (the inset of Fig. 1e; Fig. S7). Moreover, the electrode surface of Bi MSs is rougher than that of Bi NPs and the energy dispersive X-ray spectroscopy (EDS) elemental mapping images (Figs. S8, S9) indicate that Bi elements are uniformly distributed on the electrode surface. Fig. 1d shows the normalized XRD patterns of Bi MSs and Bi NPs, respectively. It is observed that the peaks are well indexed to the metal Bi with rhombohedral structure (JCPDS No. 05–0519). It is worth noting that the relative intensity of the (012) peak of the Bi MSs is significantly higher than that of the XRD standard spectrum and the Bi NPs, indicating the oriented growth of the (012) plane of the Bi MSs. It is known that the Bi atomic arrangement on the Bi_4O_7 (210) crystal plane has a parallelogram structure unit similar to that on the metal Bi (012) crystal plane. Therefore, the rearrangement of Bi atoms from the (210) plane of Bi_4O_7 to the (012) plane of Bi is the most popular and reasonable in thermodynamics. Moreover, the preferential orientation of highly active (012) plane of Bi may promote the formation and stabilization of key intermediates during the ECO₂RR process [18,19]. SAED pattern of the Bi MSs (the inset of Fig. 1e) confirms the phase of Bi. It is observed that multiple diffraction spots appear on some planes, such as (012), (104), (110), (214) and (217) planes, proving the polycrystalline structure of the sample. HRTEM images of Bi MSs (Fig. 1e, S10a) exhibit grains with different lattice orientations, and the grain boundaries (GBs) can be observed and indicated by red arrows. In contrast, no GBs are observed

in Bi NPs (Fig. S10b). The construction of GBs is a powerful strategy to enhance the catalytic performance, i. e., intrinsic activity and selectivity in ECO₂RR [22,23,35,36].

The evolution of structure and chemical state of Bi_4O_7 in the process of electroreduction to Bi is further observed by in-situ Raman spectroscopy (Fig. 1f). Bi_4O_7 peak is observed at 630 cm^{-1} , being consistent with the previously reports [37]. After in-situ reduction, the Raman peaks of Bi MSs at 72 cm^{-1} and 97 cm^{-1} are observed, corresponding to the E_g and A_{1g} vibrational modes of the Bi-Bi bond in metal Bi respectively [38], and no oxidation peaks are observed. Moreover, XPS spectra of Bi MSs and Bi NPs (Fig. S11) also exhibit metallic Bi peaks.

3.2. ECO₂RR performance in an H-type electrolytic cell

The LSV curves of Bi MSs and Bi NPs in 0.1 M CO_2 -saturated KHCO_3 solution are shown in Fig. 2a. LSV curves exhibit a cathodic current onset at approximately -0.7 V vs. RHE due to ECO₂RR, and beyond that, the current density of Bi MSs increases faster and reaches $-15.31 \text{ mA cm}^{-2}$ at -1.5 V vs. RHE, indicating that Bi MSs have higher activity in the ECO₂RR process. The Nyquist plot (Fig. S12) shows that the electron transport rate on Bi MSs is much faster than that on Bi NPs, which is consistent with the results of LSV.

ECO₂RR tests were performed within the potential range of -0.7 V to -1.5 V vs. RHE using the potentiostatic method (Fig. S13). The ^1H NMR spectrum (Fig. S14) confirms that formate is the only liquid product. Fig. 2b shows the $\text{FE}_{\text{formate}}$ of Bi MSs and Bi NPs, respectively. The $\text{FE}_{\text{formate}}$ of Bi MSs is higher than that of Bi NPs at all applied potentials. Specifically, Bi MSs exhibit the $\text{FE}_{\text{formate}}$ of more than 90% under a wide potential window (from -0.8 V to -1.3 V vs. RHE) and exhibit the highest $\text{FE}_{\text{formate}}$ of 96.2% at -1.0 V vs. RHE. As shown in Fig. 2c, compared with the previously reported Bi-based electrocatalysts [7,9,17–20,23,28,39,40], Bi MSs show the advantage in potential window range (500 mV) with high Faradaic efficiencies (Table S1). For Bi MSs and Bi NPs, H_2 and CO are the main gas products and the main competitors of formate (Fig. S15). Compared with Bi NPs, the H_2

Fig. 2. (a) LSV curves of Bi NPs and Bi MSs in 0.1 M CO_2 -saturated KHCO_3 solution (50 mV s^{-1}). (b) $\text{FE}_{\text{formate}}$ of Bi NPs and Bi MSs at different applied potentials, respectively. (c) Comparison of the potential range corresponding to the $\text{FE}_{\text{formate}} > 90\%$ of the Bi MSs in this work with other advanced Bi-based catalysts. (d) j_{formate} and (e) Φ_{formate} of Bi NPs and Bi MSs. (f) Long-term stability test of Bi MSs at -1.0 V vs. RHE.

produced by using Bi MSs is greatly suppressed to less than 10% under a wide potential window (from -0.8 to -1.3 V vs. RHE). The activity of the catalysts to produce formate were further evaluated by the partial current density of formate (j_{formate}). Bi MSs have higher j_{formate} than Bi NPs at all applied potentials (Fig. 2d). At -1.0 V and -1.3 V vs. RHE, the j_{formate} of Bi MSs is -5.08 mA cm^{-2} and $-11.10 \text{ mA cm}^{-2}$, which is 4.62 and 2.30 times that of Bi NPs, respectively. The energy conversion efficiency (Formula 4) of Bi MSs for formate (Φ_{formate}) exceeds 50% in a wide potential window of -0.8 V to -1.3 V vs. RHE (Fig. 2e). Compared with other reported Bi-based catalysts [7], the Bi MSs exhibit higher CO_2 to formate conversion efficiency (64.23%).

The durability of a catalyst is crucial for practical applications. During a long-term ECO_2RR , the durability of Bi MSs was evaluated by testing the current density and Faradaic efficiency at -1.0 V vs. RHE (Fig. 2f). Apparently, the Bi MSs demonstrate an outstanding stability over 52 h. Although the current density increases slightly due to the accumulation of HCOO^- in the electrolyte, it can be quickly recovered when the electrolyte is refreshed, and the $\text{FE}_{\text{formate}}$ (with a minimum of 90.8%) is always higher than 90%. SEM was used to study the morphological evolution of Bi MSs before and after electrolysis (Fig. S16). The morphology of Bi MSs remains unchanged, maintaining

their robust microsheets structure. All these results verify the good stability of Bi MSs for ECO_2RR and outperform other Bi-based catalysts that have been reported (Table S2). In summary, Bi MSs show significant suppression for H_2 formation relative to Bi NPs, with $\text{FE}_{\text{formate}}$ of more than 90% under a wide potential window and maintain long-term stability during ECO_2RR .

3.3. Mechanism analysis

To better understand the enhanced electrocatalytic performance of Bi MSs, the ECO_2RR mechanism of the as-prepared Bi MSs electrocatalyst were systematically investigated. Firstly, the Cdl was measured to rule out the ECSA effect (Figs. S17, S18). The Cdl values of Bi MSs and Bi NPs are 0.62 mF cm^{-2} and 0.30 mF cm^{-2} , respectively. These Cdl values were used to normalize the j_{formate} of Bi MSs and Bi NPs (Fig. S19) and the normalized j_{formate} of Bi MSs is still higher than that of Bi NPs at various test potentials, which indicates that the intrinsic activity of Bi MSs is higher than that of Bi NPs.

To further investigate the reasons for the superior performance of Bi MSs, in-situ Raman spectroscopy was used to monitor the evolution of reaction intermediates on the catalyst surface to reveal the ECO_2RR

Fig. 3. (a) In-situ Raman spectra of Bi MSs ECO_2RR at open circuit potential (OCP) and from -0.6 V to -1.1 V vs. RHE. (b) Tafel slopes of Bi MSs and Bi NPs. (c) Contact angles of Bi MSs and Bi NPs before and after ECO_2RR reaction. (d) Changes in morphology and corresponding contact angles of Bi MSs, Bi MSs-G1, Bi MSs-G2 and Bi MSs-G3. (e-h) AFM images of (e) Bi MSs, (f) Bi MSs-G1, (g) Bi MSs-G2 and (h) Bi MSs-G3. (i) Changes in FEs of Bi MSs, Bi MSs-G1, Bi MSs-G2 and Bi MSs-G3 at -1.3 V vs. RHE.

process (Fig. 3a). The Raman signal at 1007 cm^{-1} and 1028 cm^{-1} is the vibration of O-C-O, and the Raman signal at 1425 cm^{-1} is the vibration of O-(CH)-O. Both O-C-O and O-(CH)-O are key intermediates in formate production [41–43]. Moreover, according to the density functional theory (DFT) calculation [18], the adsorption of CO_2 with Bi-O coordination to form *OCHO intermediate is the most favorable in terms of reaction free energy, and the (012) plane can effectively stabilize *OCHO intermediate to enhance ECO_2RR activity. Reaction intermediates and thermodynamically optimal reaction path indicate that ECO_2RR on metallic Bi may follow a reaction pathway of $\text{CO}_2^- \rightarrow \text{OCHO}^- \rightarrow \text{HCOO}^-$, as shown in Eqs. 6–9 [40], and compete with the HER (Eq. 10):

During ECO_2RR , CO_2 molecule is firstly adsorbed on the surface of metallic Bi (Eq. 6) which is mainly controlled by the mass transfer of CO_2 on the electrode surface; subsequently, CO_2 is activated by capturing one electron to form CO_2^- species (Eq. 7) and the reduction of CO_2^- species is achieved by capturing proton from HCO_3^- to generate OCHO^- (Eq. 8), which is mainly controlled by the intrinsic activity of the catalyst; finally, OCHO^- desorbs to form HCOO^- (Eq. 9). Based on this, it has been reported that the ECO_2RR activity of the catalyst is mainly controlled by the intrinsic activity of the catalyst at low potentials, and the mass transfer of CO_2 at high potentials [35]. Therefore, the intrinsic activity and CO_2 mass transfer capacity of the catalysts are investigated separately.

The ECO_2RR kinetics and rate-determining step (RDS) of the catalysts were examined by the Tafel slope (Fig. 3b). The Tafel slope of Bi MSs is $104.16\text{ mV dec}^{-1}$, which is lower than that of Bi NPs ($126.13\text{ mV dec}^{-1}$), indicating that the ECO_2RR kinetics of Bi MSs is faster. The Tafel slopes of both Bi MSs and Bi NPs are close to 118 mV dec^{-1} , indicating that CO_2 activation (Eq. 6) is the RDS [20]. The CO_2 activation process can be further understood by studying the adsorption strength of CO_2^- intermediates on the catalysts. In $0.1\text{ M N}_2\text{-saturated NaOH solution}$, OH^- was used instead of CO_2^- for oxidative LSV scans (Fig. S20). The adsorption potential of Bi MSs to surface OH^- is lower than that of Bi NPs, indicating that Bi MSs possessed stronger adsorption affinity of OH^- , and hence Bi MSs could efficiently stabilize the CO_2 intermediate [5]. The isotope labeling method (Fig. S21a) shows that the protons in formate are mainly derived from HCO_3^- , and hence the performance of ECO_2RR was tested in different concentrations of KHCO_3 solution to explore the local proton activity of the catalysts [28]. Bi MSs exhibited higher $\text{FE}_{\text{formate}}$ than Bi NPs over the entire HCO_3^- concentration range (Fig. S21b), $\text{FE}_{\text{formate}}$ of Bi MSs did not increase with increasing HCO_3^- concentration, whereas that of Bi NPs increased with increasing HCO_3^- concentration (from 48.85% in 0.1 M HCO_3^- to 71.86% in 1.0 M HCO_3^-). This indicates that the local proton activity of Bi MSs has reached the optimum at low concentration of HCO_3^- . The above results indicate that Bi MSs can efficiently stabilize the formate intermediate and form OCHO^- , that is, Bi MSs have higher intrinsic activity, which improves the selectivity of formate at low potentials.

As the main factor affecting the activity of ECO_2RR at high potential, CO_2 mass transfer was further investigated. Recent studies have claimed that the hydrophobic catalyst surface is conducive to the formation of abundant gas-liquid-solid three-phase interfaces, which can effectively enhance the CO_2 mass transfer on the catalyst surface [26–28]. In order to verify the wettability of the electrode, the catalysts were loaded on a glassy carbon electrode and the contact angle was measured (Fig. 3c,

S22). The contact angle of Bi MSs is 128.73° , showing hydrophobicity. In contrast, the contact angle of Bi NPs is 88.55° , showing hydrophilicity. Interestingly, the contact angle of Bi NPs decreases to 62.22° after one hour of ECO_2RR test. This indicates that Bi NPs are easily submerged during the ECO_2RR process. However, after ECO_2RR , the contact angle of Bi MSs remains almost unchanged with a value of 127.45° , indicating that Bi MSs maintain the electrode hydrophobicity during the reaction.

To explain why the microsheets structure has good hydrophobicity and the mechanism that microsheets structure can promote ECO_2RR , Bi MSs were ground and broken to reduce the size of the sheets, and the grinding time was controlled to 1 min, 2 min and 3 min as three sets of comparative samples, named as Bi MSs-G1, Bi MSs-G2 and Bi MSs-G3, respectively. Fig. 3d shows the changes in morphology and contact angle of Bi MSs with increasing grinding time. SEM images indicate that with the increase of grinding time, the size of the microsheets gradually decreases and finally turn into nanosheets. The average sheets lengths (Fig. S23) of Bi MSs, Bi MSs-G1, Bi MSs-G2 and Bi MSs-G3 are $4.6 \pm 0.1\text{ }\mu\text{m}$, $1.9 \pm 0.1\text{ }\mu\text{m}$, $1.09 \pm 0.02\text{ }\mu\text{m}$ and $0.73 \pm 0.01\text{ }\mu\text{m}$, respectively. Four sets of catalysts were uniformly loaded on FTO (0.4 mg cm^{-2}) for contact angle and AFM tests. The contact angle of the samples gradually decreases with the increase of grinding time and finally the contact angle of Bi MSs-G3 was reduced to 118.46° , indicating that the reduction of the sheets size reduces the hydrophobicity of the catalysts. Based on the AFM images (Fig. 3e-h), the roughness R_q of the Bi MSs, Bi MSs-G1, Bi MSs-G2 and Bi MSs-G3 surface are calculated to be 1229 nm , 1197 nm , 1230 nm and 1269 nm , respectively, which indicates that the roughness of the catalysts on the electrode surface hardly changes with the decrease of the sheets size. According to the Wenzel model, the roughness enhances the hydrophobicity when the electrode surface is in full contact with water. However, in this work, without changing the electrode surface roughness, the contact angle of the electrode surface decreases with decreasing size. Hence, it must be considered that the catalyst is not in complete contact with water, that is, the sheets structure can trap air and form a three-phase interface. Here the relationship between sheets size and contact angle θ is explored using the Cassie-Baxter model [33]:

$$\cos\theta = f(\cos\theta_Y + 1) - 1, \quad (11)$$

where f is the liquid-solid contact fraction and θ_Y is the Young's contact angle (θ_Y is related to the chemical state of the material surface). Considering that the catalysts surfaces are all wrapped by Nafion, it can be approximated that the chemical state (θ_Y) of the electrode surface is the same, and the contact angle is only related to f value. The reported results [31–33] show that increasing the micro-nanostructure spacing can reduce the f value, which in turn increases the contact angle. Compared with nanosheets, the microsheets have a larger spacing and a smaller solid-liquid contact area, so the microsheets exhibit better hydrophobicity than nanosheets. Moreover, the decrease in the contact angle of Bi MSs-G3 before and after the long-term reaction further reflects the stability advantage of microsheets compared with nanosheets (Fig. S24). The LSV curves of post-grinding Bi MSs in $0.1\text{ M CO}_2\text{-saturated KHCO}_3$ solution (Fig. S25) show that their current densities are the same as that of Bi MSs at low potentials. This indicates that the intrinsic activity of the catalysts is not changed by grinding, and thus the activity of the catalysts for ECO_2RR at low potentials is not changed. However, at high potentials, such as -1.3 V vs. RHE , Bi MSs-G1, Bi MSs-G2 and Bi MSs-G3 have relatively low current densities of -11.64 , -10.17 and -9.21 mA cm^{-2} compared with that of Bi MSs (-12.22 mA cm^{-2}). Moreover, due to the decrease of hydrophobicity, the electrode surface is in contact with more electrolyte, resulting in an increase in the FE of H_2 (Fig. 3i) and a decrease in $\text{FE}_{\text{formate}}$. For example, the $\text{FE}_{\text{formate}}$ of Bi MSs-G3 is reduced to 79.84%, much lower than that of Bi MSs (90.73%). These are because that due to the decrease in hydrophobicity, the three-phase interface is reduced and less CO_2 is captured on the

electrode surface, which reduces the activity of the catalyst at high potentials for ECO₂RR. The above results suggest that due to the appropriate spacing between the microsheets, a stable hydrophobic surface can be constructed, forming abundant three-phase interface. It facilitates the CO₂ mass transfer on the electrode surface, and hence enhances the activity of Bi MSs at high potentials.

Based on all the analysis above, Fig. 4 presents an explanation of the excellent activity of Bi MSs. It shows that Bi NPs are hydrophilic (Fig. 4a), while Bi MSs are hydrophobic (Fig. 4b). At low potential, benefiting from the preferential orientation of the highly active (012) plane and a large number of grain boundaries, Bi MSs have excellent intrinsic activity, the formate intermediates are stabilized and the free energy barrier in the formation of OCHO⁻ is reduced, thereby improving the selectivity of formate. At high potentials, the kinetics of CO₂RR and competitive HER increase rapidly. Therefore, the mass transfer of CO₂ becomes the key to control the selectivity of formate. As shown in Fig. 4c, the hydrophilic Bi NPs electrode have abundant liquid-solid interfaces, so H⁺ in solution has more opportunities to interact with electrons to generate H₂. In contrast, the hydrophobic Bi microsheets electrode surface has rich three-phase interfaces (Fig. 4d) with more CO₂ molecules in the gas phase, so the local concentration of CO₂ increases. The diffusion of these concentrated CO₂ into the electrolyte enhances the mass transfer of CO₂ from the electrolyte to the catalyst surface, thus improving the selectivity of Bi MSs for formate production and inhibiting HER.

3.4. ECO₂RR performance in a solid-state electrolytic cell

In addition to the issues of selectivity and activity, the production of formate by ECO₂RR also encounters the problem of mixing products with electrolytes (such as KHCO₃, KOH, etc.), requiring energy-intensive downstream separation and increasing the cost of formate [22]. Using a solid-state electrolytic cell to produce pure formate solution can effectively solve the above problems [5,6,22,30]. The schematic diagrams and physical photos of the solid-state electrolytic cell are shown in Fig. 5a and S26, respectively. On the anode side, IrO₂/Ti mesh was selected as the catalyst for oxygen evolution reaction, and H⁺ was

released in water to combine with HCOO⁻ in solid-state electrolyte (SSE) (Fig. 5b). The SEE adopted Dowex 50WX8H⁺ type with particle size of 50 μm (Fig. S27). The cathode catalyst was YLS-30 T gas diffusion layer (GDL) supported with Bi MSs (with electrode geometric area of 1 cm²). SEM shows that the catalyst is uniformly distributed on the GDL (Fig. S28). The LSV curves of Bi MSs and Bi NPs in a solid-state electrolytic cell at a flow rate of 20 mL h⁻¹ of deionized water are shown in Fig. 5c. LSV curves exhibit a cathodic current onset at approximately 2.0 V due to ECO₂RR, and beyond that, the current density of Bi MSs increases faster and reaches 100 mA cm⁻² at 4.5 V, which is the commercially favorable current density. The FE_{formate} of Bi MSs remains higher than 80% in almost the entire cell voltage range (Fig. 5d), and the FE_{formate} reaches the maximum value of 85.8% at 4.5 V with the partial current density of 137.3 mA cm⁻² (Fig. S29). By slowing down the deionized water flow to 10 mL h⁻¹, a higher formate concentration of 0.2 M is achieved with an FE of 64.0% (Fig. S30). Obviously, although reducing the flow rate achieves higher formate concentration, the accumulation of product reduces the energy utilization efficiency, so 20 mL h⁻¹ is a suitable flow rate of deionized water. As a result, 0.13 M pure formate solution is continuously produced with the flow rate of 20 mL h⁻¹ by the solid-state electrolytic cell. The pH of the resulting formate solution is about 2.33 (Fig. S31), which is in good agreement with the theoretical pH of 2.32 of 0.13 M formate solution. ¹H NMR (Fig. 5e) and ¹³C NMR (Fig. S32) verify the high purity of the formate solution. Finally, the formate solution is continuously produced for 110 h at a constant current density of 160 mA cm⁻² (Fig. 5f). More excitingly, during the long-term ECO₂RR test, the cell voltage shows negligible change. The FE_{formate} is maintained above 80%, and a total of 2.1 L of pure formate solution with a concentration of 0.13 M is produced (Fig. S33). The SEM image and contact angle of Bi MSs loaded on GDL after stability test further confirm the good stability of Bi MSs for ECO₂RR (Fig. S34). Moreover, hydrophobicity of the electrode surface can still improve the ECO₂RR performance of the catalyst in the solid-state electrolysis cell. The FE_{formate} of Bi MSs is higher than that of Bi NPs (Fig. S35) in the entire cell voltage range, especially at high cell voltage. For example, at the cell voltage of 5.0 V, the FE_{formate} of Bi MSs is 84.5%, which is much higher than that of Bi NPs (53.1%). Bi MSs

Fig. 4. (a) CO₂ and H⁺ mass transport at the liquid-solid interface of Bi NPs, (b) gas-solid-liquid interface of Bi MSs. Schematic diagram of the generation of formate and hydrogen on the surface of (c) Bi NPs, (d) Bi MSs.

Fig. 5. (a) Structure sketch and (b) schematic diagram of the solid-state electrolytic cell. (c) LSV curves of Bi MSs and Bi NPs in the solid-state electrolytic cell. (d) FEs of Bi MSs in the solid-state electrolytic cell at different cell voltages. (e) ¹H NMR spectrum of pure formate solution produced at 4.5 V (diluted to 40 mL with deionized water). (f) Stability test of solid-state electrolytic cell for continuous production of pure formate solution at 160 mA cm^{-2} for 110 h.

produce higher formate solution concentrations at higher current density and exhibit excellent long-term stability in the solid-state electrolytic cell compared to what has been reported [5,22,30]. In conclusion, the high activity and selectivity of Bi MSs and the application of solid-state electrolytic cell provide prospects for electrocatalytic commercial production of formate.

4. Conclusion

In conclusion, Bi MSs catalyst for the stable and efficient production of formate by ECO₂RR were in-situ prepared by electroreduction of Bi₄O₇. In the H-type electrolytic cell, Bi MSs affords an excellent selectivity (96.20%) for formate generation within a wide potential window, and the stability is maintained for at least 52 h. The enhanced ECO₂RR performance can be attributed to the excellent intrinsic activity and the formation of abundant three-phase interfaces on the hydrophobic surface of Bi microsheets, which enhances CO₂ mass transfer and suppresses HER. On this basis, Bi MSs enable long-term and direct production of pure formate solutions in a solid-state electrolytic cell. This work provides a convenient and efficient route for the development of high-efficiency electrocatalysts and the production of pure formate solution.

CRediT authorship contribution statement

Yong Zhang: Investigation, Methodology, Validation, Formal analysis, Data curation, Visualization, Writing – original draft. **Rui Zhang:** Investigation, Formal analysis. **FeiFei Chen:** Investigation, Formal analysis. **FeiFei Zhang:** Formal analysis, Investigation, Resources. **Yingda Liu:** Investigation, Formal analysis. **Xiaoya Hao:** Investigation, Formal analysis. **Haokun Jin:** Investigation, Formal analysis. **Xinghua Zhang:** Formal analysis, Resources. **Zunming Lu:** Formal analysis, Resources. **Hong Dong:** Formal analysis, Investigation. **Feng Lu:** Formal analysis, Investigation. **Weihua Wang:** Formal analysis, Investigation. **Hui Liu:** Formal analysis, Supervision. **Hui Liu:** Formal analysis, Writing – review & editing, Funding acquisition. **Yahui Cheng:** Formal analysis, Project administration, Writing – review & editing, Conceptualization, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgements

This work was supported by the following grants: National Natural Science Foundation of China (No. 52071183, 51871122).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at [doi:10.1016/j.apcatb.2022.122127](https://doi.org/10.1016/j.apcatb.2022.122127).

References

- [1] J. Wang, H.Y. Tan, Y. Zhu, H. Chu, H.M. Chen, Linking the dynamic chemical state of catalysts with the product profile of electrocatalytic CO₂ reduction, *Angew. Chem. Int. Ed.* 60 (2021) 17254–17267.
- [2] S.C. Lin, C.C. Chang, S.Y. Chiu, H.T. Pai, T.Y. Liao, C.S. Hsu, W.H. Chiang, M. K. Tsai, H.M. Chen, Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO₂ reduction, *Nat. Commun.* 11 (2020) 3525.
- [3] N. Li, P. Yan, Y. Tang, J. Wang, X.-Y. Yu, H.B. Wu, In-situ formation of ligand-stabilized bismuth nanosheets for efficient CO₂ conversion, *Appl. Catal. B* 297 (2021), 120481.
- [4] K. Lei, B. Yu Xia, Electrocatalytic CO₂ reduction: from discrete molecular catalysts to their integrated catalytic materials, *Chem. Eur. J.* 28 (2022), e202200141.
- [5] Z. Wang, Y. Zhou, D. Liu, R. Qi, C. Xia, M. Li, B. You, B.Y. Xia, Carbon-confined indium oxides for efficient carbon dioxide reduction in a solid-State electrolyte flow cell, *Angew. Chem. Int. Ed.* (2022), e202200552.
- [6] T. Zheng, C. Liu, C. Guo, M. Zhang, X. Li, Q. Jiang, W. Xue, H. Li, A. Li, C.W. Pao, J. Xiao, C. Xia, J. Zeng, Copper-catalysed exclusive CO₂ to pure formic acid conversion via single-atom alloying, *Nat. Nanotechnol.* 16 (2021) 1386–1393.
- [7] Y. Xing, X. Kong, X. Guo, Y. Liu, Q. Li, Y. Zhang, Y. Sheng, X. Yang, Z. Geng, J. Zeng, Bi@Sr core-shell structure with compressive strain boosts the electroreduction of CO₂ into formic acid, *Adv. Sci.* 7 (2020), 1902989.
- [8] X. An, S. Li, X. Hao, Z. Xie, X. Du, Z. Wang, X. Hao, A. Abudula, G. Guan, Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO₂ to formic acid/bismate, *Sust. Energ. Rev.* 143 (2021), 110952.
- [9] X. Zhang, X. Sun, S.-X. Guo, A.M. Bond, J. Zhang, Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO₂ reduction at low overpotential, *Energy Environ. Sci.* 12 (2019) 1334–1340.
- [10] O.S. Bushuyev, P. De Luna, C.T. Dinh, L. Tao, G. Saur, J. van de Lagemaat, S. O. Kelley, E.H. Sargent, What should we make with CO₂ and how can we make it? *Joule* 2 (2018) 825–832.
- [11] L. Peng, Y. Wang, Y. Wang, N. Xu, W. Lou, P. Liu, D. Cai, H. Huang, J. Qiao, Separated growth of Bi-Cu bimetallic electrocatalysts on defective copper foam for highly converting CO₂ to formate with alkaline anion-exchange membrane beyond KHCO₃ electrolyte, *Appl. Catal. B* 288 (2021), 120003.
- [12] J. Li, J. Li, X. Liu, J. Chen, P. Tian, S. Dai, M. Zhu, Y.-F. Han, Probing the role of surface hydroxyls for Bi, Sn and In catalysts during CO₂ reduction, *Appl. Catal. B* 298 (2021), 120581.
- [13] H. Xie, T. Zhang, R. Xie, Z. Hou, X. Ji, Y. Pang, S. Chen, M.M. Titirici, H. Weng, G. Chai, Facet engineering to regulate surface states of topological crystalline insulator bismuth rhombic dodecahedrons for highly energy efficient electrochemical CO₂ reduction, *Adv. Mater.* 33 (2021), 2008373.
- [14] N. Han, Y. Wang, H. Yang, J. Deng, J. Wu, Y. Li, Y. Li, Ultrathin bismuth nanosheets from in situ topochemical transformation for selective electrocatalytic CO₂ reduction to formate, *Nat. Commun.* 9 (2018) 1320.
- [15] D. Yao, C. Tang, A. Vasileff, X. Zhi, Y. Jiao, S.Z. Qiao, The controllable reconstruction of Bi-MOFs for electrochemical CO₂ reduction through electrolyte and potential mediation, *Angew. Chem. Int. Ed.* 60 (2021) 18178–18184.
- [16] Y. Zhao, X. Liu, Z. Liu, X. Lin, J. Lan, Y. Zhang, Y.R. Lu, M. Peng, T.S. Chan, Y. Tan, Spontaneously Sn-doped Bi/BiO_x core-shell nanowires toward high-performance CO₂ electroreduction to liquid fuel, *Nano Lett.* 21 (2021) 6907–6913.
- [17] D. Wu, G. Huo, W. Chen, X.-Z. Fu, J.-L. Luo, Boosting formate production at high current density from CO₂ electroreduction on defect-rich hierarchical mesoporous Bi/Bi₂O₃ junction nanosheets, *Appl. Catal. B* 271 (2020), 118957.
- [18] J.H. Koh, D.H. Won, T. Eom, N.-K. Kim, K.D. Jung, H. Kim, Y.J. Hwang, B.K. Min, Facile CO₂ electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of Bi dendrite catalyst, *ACS Catal.* 7 (2017) 5071–5077.
- [19] X. Wei, W. Zhang, D. Liu, D. Liu, Y. Yan, J. Zhang, Y. Yang, S. Yan, Z. Zou, Bi particles with exposed (012) facet on 3D substrate as highly active and durable electrode for CO₂ reduction to formate, *J. CO₂ Util.* 55 (2022), 101797.
- [20] P.F. Sui, C. Xu, M.N. Zhu, S. Liu, Q. Liu, J.L. Luo, Interface-induced electrocatalytic enhancement of CO₂-to-formate conversion on heterostructured bismuth-based catalysts, *Small* 18 (2022), 2105682.
- [21] X. Feng, H. Zou, R. Zheng, W. Wei, R. Wang, W. Zou, G. Lim, J. Hong, L. Duan, H. Chen, Bi₂O₃/BiO₂ nanoheterojunction for highly efficient electrocatalytic CO₂ reduction to formate, *Nano Lett.* 22 (2022) 1656–1664.
- [22] L. Fan, C. Xia, P. Zhu, Y. Lu, H. Wang, Electrochemical CO₂ reduction to high-concentration pure formic acid solutions in an all-solid-state reactor, *Nat. Commun.* 11 (2020) 3633.
- [23] X. Fu, J. Wang, X. Hu, K. He, Q. Tu, Q. Yue, Y. Kang, Scalable chemical interface confinement reduction BiOBr to bismuth porous nanosheets for electroreduction of carbon dioxide to liquid fuel, *Adv. Funct. Mater.* 32 (2021), 2107182.
- [24] T.H.M. Pham, J. Zhang, M. Li, T.H. Shen, Y. Ko, V. Tileli, W. Luo, A. Züttel, Enhanced electrocatalytic CO₂ reduction to C₂₊ products by adjusting the local reaction environment with polymer binders, *Adv. Energy Mater.* 12 (2022), 2103663.
- [25] Y. Zhong, Y. Xu, J. Ma, C. Wang, S. Sheng, C. Cheng, M. Li, L. Han, L. Zhou, Z. Cai, Y. Kuang, Z. Liang, X. Sun, An artificial electrode/electrolyte interface for CO₂ electroreduction by cation surfactant self-assembly, *Angew. Chem. Int. Ed.* 59 (2020) 19095–19101.
- [26] P. Yue, Q. Fu, J. Li, L. Zhang, L. Xing, Z. Kang, Q. Liao, X. Zhu, Triple-phase electrocatalysis for the enhanced CO₂ reduction to HCOOH on a hydrophobic surface, *Chem. Eng. J.* 405 (2021), 126975.
- [27] D. Wakerley, S. Lamaison, F. Ozanam, N. Menguy, D. Mercier, P. Marcus, M. Fontecave, V. Mougel, Bio-inspired hydrophobicity promotes CO₂ reduction on a Cu surface, *Nat. Mater.* 18 (2019) 1222–1227.
- [28] S. Chang, Y. Xuan, J. Duan, K. Zhang, High-performance electroreduction CO₂ to formate at Bi/Nafion interface, *Appl. Catal. B* 306 (2022), 121135.
- [29] C.J. Bondu, M. Graf, A. Goyal, M.T.M. Koper, Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO₂ reduction, *J. Am. Chem. Soc.* 143 (2021) 279–285.
- [30] C. Xia, P. Zhu, Q. Jiang, Y. Pan, W. Liang, E. Stavitski, H.N. Alshareef, H. Wang, Continuous production of pure liquid fuel solutions via electrocatalytic CO₂ reduction using solid-electrolyte devices, *Nat. Energy* 4 (2019) 776–785.
- [31] T. Lv, Z. Cheng, D. Zhang, E. Zhang, Q. Zhao, Y. Liu, L. Jiang, Superhydrophobic surface with shape memory micro/nanostructure and its application in rewritable chip for droplet storage, *ACS Nano* 10 (2016) 9379–9386.
- [32] D. Oner, T.J. McCarthy, Ultrahydrophobic surfaces. Effects of topography length scales on wettability, *Langmuir* 16 (2000) 7777–7782.
- [33] D. Wang, Q. Sun, M.J. Hokkanen, C. Zhang, F.Y. Lin, Q. Liu, S.P. Zhu, T. Zhou, Q. Chang, B. He, Q. Zhou, L. Chen, Z. Wang, R.H.A. Ras, X. Deng, Design of robust superhydrophobic surfaces, *Nature* 582 (2020) 55–59.
- [34] Z. Pan, L. Qian, J. Shen, J. Huang, Y. Guo, Z. Zhang, Construction and application of Z-scheme heterojunction In₂O₃/Bi₂O₇ with effective removal of antibiotic under visible light, *Chem. Eng. J.* 426 (2021), 130385.
- [35] X. Feng, K. Jiang, S. Fan, M.W. Kanan, Grain-boundary-dependent CO₂ electroreduction activity, *J. Am. Chem. Soc.* 137 (2015) 4606–4609.
- [36] R.G. Mariano, K. McKelvey, H.S. White, M.W. Kanan, Selective increase in CO₂ electroreduction activity at grain-boundary surface terminations, *Science* 358 (2017) 1187–1191.
- [37] O. Depablos-Rivera, A. Martínez, S.E. Rodil, Interpretation of the Raman spectra of bismuth oxide thin films presenting different crystallographic phases, *J. Alloy. Compd.* 853 (2021), 157245.
- [38] S. Kim, W.J. Dong, S. Gim, W. Sohn, J.Y. Park, C.J. Yoo, H.W. Jang, J.-L. Lee, Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate, *Nano Energy* 39 (2017) 44–52.
- [39] H. Yang, N. Han, J. Deng, J. Wu, Y. Wang, Y. Hu, P. Ding, Y. Li, Y. Li, J. Lu, Selective CO₂ reduction on 2D mesoporous Bi nanosheets, *Adv. Energy Mater.* 8 (2018), 1801536.
- [40] M. Zhao, Y. Gu, W. Gao, P. Cui, H. Tang, X. Wei, H. Zhu, G. Li, S. Yan, X. Zhang, Z. Zou, Atom vacancies induced electron-rich surface of ultrathin Bi nanosheet for efficient electrochemical CO₂ reduction, *Appl. Catal. B* 266 (2020), 118625.
- [41] R. Kortlever, J. Shen, K.J. Schouten, F. Calle-Vallejo, M.T. Koper, Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide, *J. Phys. Chem. Lett.* 6 (2015) 4073–4082.
- [42] W. Shan, R. Liu, H. Zhao, Z. He, Y. Lai, S. Li, G. He, J. Liu, In situ surface-enhanced Raman spectroscopic evidence on the origin of selectivity in CO₂ electrocatalytic reduction, *ACS Nano* 14 (2020) 11363–11372.
- [43] J.E. Pander, III, M.F. Baruch, A.B. Bocarsly, Probing the mechanism of aqueous CO₂ reduction on post-transition-metal electrodes using ATR-IR spectroelectrochemistry, *ACS Catal.* 6 (2016) 7824–7833.