Review

• Energy associated with building up net charges

Three charges

$$U_{ij} = k \frac{q_i q_j}{r_{ij}}$$

Capacitors

Any charge separation stores energy

- Parallel Plates
 - Most typical capacitor
 - Uniform E field
- Common component in electrical circuits

-o Equal and opposite

Battery

Q = CV

amounts of charge

$$C \equiv \frac{Q}{V}$$

Capacitance governs ...

how much charge is required to produce 1 volt on the capacitor (Q=CV),

what the potential difference will be if +-Q of charge is on the plates. (V=Q/C)

Units: 1 Farad = Coulomb/Volt

Notation: $\Delta V = V$ the potential difference between the plates

Capacitors

Compute Capacitance of P.Plate Capacitor

- Physical Dimensions determine the capacitance
- Independent of charge and voltage!

$$E \equiv \frac{4\pi \, kQ}{A}$$

$$(-)V = Ed \equiv \frac{4\pi kQd}{A}$$

(a) Parallel-plate capacitor

$$C = \frac{Q}{V} = \frac{QA}{4\pi \, kQd} = \left(\frac{1}{4\pi k}\right) \frac{A}{d} = \varepsilon_o \frac{A}{d}$$

$$C = \varepsilon_o \frac{A}{d}$$
 For Parallel Plates only

$$\varepsilon_o = 8.85 \times 10^{-12} \frac{C^2}{N \cdot m^2}$$

Charging a Capacitor

- As charge is added, the potential difference between the plates increases $C \equiv \frac{Q}{V} \Rightarrow V = Q/C$ C is constant
- Stored energy also increases (fixed value)
 - think of point charges $W = U_{\rho} = q \Delta V$
 - more difficult to move each additional charge

$$W = U_c = q \, \overline{V} = \frac{1}{2} QV$$

$$C \equiv \frac{Q}{V} \Rightarrow Q = CV$$

$$U_c = \frac{1}{2}QV = \frac{Q^2}{2C} = \frac{1}{2}CV^2$$

Energy of a charged capacitor

- Capacitor charged and <u>battery disconnected</u>
 - Q is constant nowhere to go!
 - Work done to align dipoles
 - Field of dipoles partially cancels field from plates
 - E field and Voltage both decrease (V = E/d)

Battery disconnected

$$C = \frac{Q}{V}$$

Charge Q₀ is constant

 $C = \frac{Q}{V}$ What happens to each quantity?

Voltage drops from V_o to V

$$V = \frac{Q_o}{C} = \frac{Q_o}{KC_o} = \frac{1}{K}V_o$$
 Voltage decrease K Dielectric Constant ≥ 1

(change in the physical configuration)

VOLTMETER: Measures voltage only – does not hold or supply charge or change the voltage

Battery disconnected

Charge Q₀ is constant

$$U_o = \frac{1}{2} Q_o V_o = \frac{Q_{o^2}}{2C_o} = \frac{1}{2} C_o V_{o^2}$$

Voltage drops from V_o to V

$$V = \frac{1}{K} V_o$$

$$C = K C_o$$

Energy decreases (work done to align dipoles)

$$U_{o} = \frac{1}{2} Q_{o} V_{o} = \frac{Q_{o}^{2}}{2C_{o}} = \frac{1}{2} C_{o} V_{o^{2}}$$

$$U = \frac{1}{2} Q_{o} V = \frac{Q_{o}^{2}}{2C} = \frac{1}{2} CV^{2}$$

$$U = \frac{1}{2} Q_{o} V = \frac{Q_{o}^{2}}{2C} = \frac{1}{2} CV^{2}$$

$$U = \frac{1}{2} Q_{o} \frac{V_{o}}{K} = \frac{Q_{o}^{2}}{2KC_{o}} = \frac{1}{2} KC_{o} \left(\frac{V_{o}}{K}\right)^{2} = \frac{1}{K} U_{o}$$

Battery connected

$$C = K C_o$$

- More charge flow out of the battery to maintain V₀
 - voltage is fixed by the battery!

$$Q = K Q_o$$

- More energy is stored by the capacitor_
 - energy stored in the aligned dipoles

$$U_o = \frac{1}{2} Q_o V_o = \frac{Q_{o^2}}{2C_o} = \frac{1}{2} C_o V_{o^2}$$

$$U_{o} = \frac{1}{2} Q_{o} V_{o} = \frac{Q_{o^{2}}}{2C_{o}} = \frac{1}{2} C_{o} V_{o^{2}} \qquad U = \frac{1}{2} Q V_{o} = \frac{Q^{2}}{2C} = \frac{1}{2} C V_{o^{2}} = K U_{o}$$

Parallel Plates

$$C_o = \varepsilon_o \frac{A}{d}$$

$$C = \varepsilon \frac{A}{d} = K\varepsilon_o \frac{A}{d}$$

Dielectric **permittivity**

$$\varepsilon = K\varepsilon_o$$

Energy of a Charged Capacitor

- Three main quantities: Q, C, V

- Along with
$$C = \varepsilon \frac{A}{d}$$

- Identify what is fixed and what changes
 - Note we can write the energy with any two of the three quantities.

$$U_c = \frac{1}{2}QV = \frac{Q^2}{2C} = \frac{1}{2}CV^2$$

Combining Capacitors

- Two fundamental arrangements
- Goal to combine them into one equivalent capacitance

Capacitors in Series

Equivalent capacitor

Charge in each plate is the same

(a) Capacitors in series

$$C_{1} = \frac{Q}{V_{1}} \quad C_{2} = \frac{Q}{V_{2}} \quad C_{3} = \frac{Q}{V_{3}}$$

$$V_{1} = \frac{Q}{C_{1}} \quad V_{2} = \frac{Q}{C_{2}} \quad V_{3} = \frac{Q}{C_{3}}$$

$$V = V_{1} + V_{2} + V_{3} \quad V = \frac{Q}{C_{3}}$$

Capacitors in Series

• Usually get C_s to get Q, then then figure out the V's

Now expand the circuit back out

$$V_1 = \frac{Q}{C_1}$$
 $V_2 = \frac{Q}{C_2}$ $V_3 = \frac{Q}{C_3}$

Capacitors in Parallel

Voltage on each plate is the same $V = V_1 = V_2 = V_3$

$$V = V_1 = V_2 = V_3$$

Equivalent capacitor

(b) Capacitors in parallel

$$Q = Q_1 + Q_2 + Q_3$$

$$Q_1 = C_1 V \quad Q_2 = C_2 V \quad Q_3 = C_3 V$$

Combinations of Series and Parallel

• Get to one equivalent capacitor

First combine C_1 and C_2 that are in parallel Second combine C_{12} (C_p in diagram) and C_3 in series

CANNOT DO THE FOLLOWING:

 C_3 and C_1 in series, then C_2

 C_3 and C_2 in series, then C_1

If you did, where would the point marked "X"