210

Compléments d'algèbre linéaire

Je me	owiens	2
Cours		3
1	Produit et somme d'espaces vectoriels	 3
	1.1 Produit d'espaces vectoriels	
	1.2 Somme de sous-espaces vectoriels	
	1.3 Sous-espaces vectoriels en somme directe	
	1.4 Projecteurs associés à une décomposition de E en somme directe	
	1.5 Sommes directes et bases	
	1.6 Cas de deux sous-espaces vectoriels, espaces supplémentaires	
2	Applications linéaires, endomorphismes	
	2.1 Structure sur des ensembles d'applications linéaires	
	2.2 Définition par l'image des vecteurs d'une base	
	2.3 Définition par les restrictions à des sous-espaces en somme directe	
	2.4 Rang	
3	Annexes	
	3.1 Un mot sur les équations linéaires	
Exerci	s	8
Exe	ices et résultats classiques à connaître	 8
	Endomorphisme nilpotent et base	 8
	Noyaux itérés	 8
	Une astuce à avoir vue	 8
Exe	ices du CCINP	9
	ices	10
	problèmes d'entrainement	11

Je me souviens

- 1. Qu'est-ce qu'un espace vectoriel? Comment on montre qu'un ensemble est un espace vectoriel?
- 2. Citer des exemples d'espaces vectoriels.
- 3. Y a-t-il une bonne réprésentation géométrique des espaces vectoriels?
- 4. Comment montrer que deux sous-espaces vectoriels sont égaux?
- 5. Union, intersection de sous-espaces vectoriels?
- 6. Somme de deux sous-espaces vectoriels?
- 7. Qu'est-ce qu'une combinaison linéaire?
- 8. Qu'est-ce qu'une famille libre? Y a-t-il des familles automatiquement libres?
- 9. Qu'est-ce qu'une famille liée? Y a-t-il des familles automatiquement liées?
- 10. Que désigne la notation Vect(A)?
- 11. Qu'est-ce qu'une famille génératrice?
- 12. Qu'est-ce qu'une base? Pourquoi est-ce intéressant?
- 13. Quand la base est canonique, ça veut dire quoi?
- 14. Citer le théorème de la base incomplète.
- 15. Citer le théorème de la base extraite.
- 16. Énoncer la formule de Grassmann.
- 17. Qu'est-ce qu'une **application linéaire**, un **endomorphisme**? D'autres termes dans le même contexte?
- 18. Qu'est-ce que le **noyau** de u, à quoi sert-il?
- 19. Qu'est-ce que l'**image** de u, comment s'appelle sa dimension, à quoi sert-elle?
- 20. Y a-t-il un lien entre noyau et image de u?
- 21. Que signifie $u \circ v = 0$?
- 22. Qu'est-ce qu'une homothétie?
- 23. Que dire à propos des **projecteurs**? des **symétries**?

1 Produit et somme d'espaces vectoriels

1.1 Produit d'espaces vectoriels

Définition. Soit E_1, \ldots, E_p des espaces vectoriels sur \mathbb{K} . On appelle **produit (cartésien)** des e.v. l'ensemble :

$$E_1 \times \dots \times E_p = \prod_{i=1}^p E_i = \{(x_1, \dots, x_p) \text{ où } \forall i \in \{1, \dots, p\}, \ x_i \in E_i\}$$

On munit cet ensemble des deux lois + et \cdot définies par :

$$\lambda \cdot (x_1, \dots, x_p) = (\lambda x_1, \dots, \lambda x_p)$$
$$(x_1, \dots, x_p) + (y_1, \dots, y_p) = (x_1 + y_1, \dots, x_p + y_p)$$

où
$$\lambda \in \mathbb{K}$$
 et $(x_1, \dots, x_p), (y_1, \dots, y_p) \in \prod_{i=1}^p E_i$.

Proposition. Muni de ces deux opérations, $\prod_{i=1}^{p} E_i$ est un K-espace vectoriel.

Proposition. Lorsque E_1, \ldots, E_p sont de dimensions finies, notées respectivement n_1, \ldots, n_p , alors $\prod_{i=1}^p E_i$ est de dimension finie, et sa dimension est $\sum_{i=1}^p n_i$.

Exemple. \mathbb{K} est un espace vectoriel de dimension 1 sur \mathbb{K} . \mathbb{K}^p est un espace vectoriel produit sur \mathbb{K} , de dimension p.

1.2 Somme de sous-espaces vectoriels

Définition. Soit F_1, \ldots, F_p des sous-espaces vectoriels de E. On appelle **somme** des sous-e.v. l'ensemble :

$$F_1 + \dots + F_p = \sum_{i=1}^p F_i = \left\{ x \in E \text{ t.q. } \exists (x_1, \dots, x_p) \in F_1 \times \dots \times F_p, \ x = \sum_{i=1}^p x_i \right\}$$

Lemme. La somme de sous-espaces vectoriels de E est un sous-espace vectoriel de E.

Proposition. Avec les mêmes notations, on a :

$$\sum_{i=1}^{p} F_i = \text{Vect}\left(\bigcup_{i=1}^{p} F_i\right)$$

1.3 Sous-espaces vectoriels en somme directe

<u>Définition</u>. Dans le contexte du paragraphe précédent, on dit que les F_i sont en somme directe si et seulement si :

$$\forall (x_1,\ldots,x_p) \in F_1 \times \cdots \times F_p, \ x_1+\cdots+x_p=0 \implies x_1=\cdots=x_p=0$$

Dans ce cas, pour indiquer que les F_i sont en somme directe, on modifie la notation, et on note $\bigoplus_{i=1}^p F_i$ pour désigner $\sum_{i=1}^p F_i$.

Remarque. Ça signifie que la seule façon de construire 0_E comme somme de vecteurs des F_i est de l'écrire comme somme de 0_{F_i} .

Remarque. Dans le cas de deux sous-espaces vectoriels, on peut vérifier que cette proposition est équivalente à $F_1 \cap F_2 = \{0_E\}$. Mais ça ne se généralise pas au cas de plus de deux sous-e.v.

Théorème.

En conservant les notations précédentes, les F_i sont en somme directe si et seulement si tout vecteur x de $\sum_{i=1}^{p} F_i$ se décompose **de façon unique** selon les F_i , c'est-à-dire :

$$\forall x \in \sum_{i=1}^{p} F_i, \exists ! (x_1, \dots, x_p) \in F_1 \times \dots \times F_p \text{ t.q. } x = \sum_{i=1}^{p} x_i$$

Remarque. Lorsque $x \in \sum_{i=1}^{p} F_i$, il peut s'écrire $x = x_1 + \dots + x_p$. On dit que l'on a écrit une décomposition de x selon $\sum_{i=1}^{p} F_i$. Si les F_i sont en somme directe, cette décomposition est unique. On parle alors de la décomposition de x selon $\bigoplus_{i=1}^{p} F_i$.

Remarque. On trouve parfois la définition – équivalente, mais peu utile en pratique – de sous-espaces en somme directe :

$$\forall i \in \{1, \dots, p\}, \ F_i \cap \left(\sum_{\substack{j=1\\ j \neq i}}^p F_j\right) = \{0_E\}$$

Bon, ça vaut le coup d'y réfléchir un peu quand même, par exemple en petite dimension.

1.4 Projecteurs associés à une décomposition de E en somme directe

Proposition. Si $E = \bigoplus_{i=1}^{p} F_i$, on peut définir, pour tout i, le projecteur p_i sur F_i de direction $\bigoplus_{\substack{k=1\\k\neq i}}^{p} F_k$. Alors :

$$\mathrm{Id}_E = \sum_{i=1}^p p_i \quad \text{ et, pour } i \neq j, \quad p_i \circ p_j = 0$$

1.5 Sommes directes et bases

On conserve les notations précédentes, et on se place dans un espace de dimension finie.

<u>Proposition.</u> Soit $\mathcal{B}_1, \dots, \mathcal{B}_p$ des bases respectives de F_1, \dots, F_p . On note $\mathcal{B} = (\mathcal{B}_1, \dots, \mathcal{B}_p)$ la concaténation de ces p bases.

Si les F_i sont en somme directe, alors \mathcal{B} est une base de $\bigoplus_{i=1}^p F_i$, dite adaptée à cette somme directe.

On peut proposer une « réciproque » à la proposition précédente, que l'on appelle **décomposition en somme** directe obtenue par fractionnement d'une base :

Proposition. Soit \mathcal{B} une base de E. Si on organise et regroupe les vecteurs de \mathcal{B} de façon à écrire $\mathcal{B} = (\mathcal{B}_1, \dots, \mathcal{B}_p)$, alors :

$$E = \bigoplus_{i=1}^{p} \operatorname{Vect}(\mathcal{B}_i)$$

Théorème.

Soit F_1, \ldots, F_p des sous-espaces vectoriels de dimension finies de E. Alors on a :

$$\dim\left(\sum_{i=1}^{p} F_i\right) \leqslant \sum_{i=1}^{p} \dim F_i$$

avec égalité si et seulement si les F_i sont en somme directe.

1.6 Cas de deux sous-espaces vectoriels, espaces supplémentaires

<u>Définition</u>. Deux sous-espaces vectoriels F et G de E sont dits **supplémentaires** dans E si et seulement si $E = F \oplus G$, c'est-à-dire :

$$\begin{cases} E = F + G \\ F \text{ et } G \text{ sont en somme directe} \end{cases}$$

Exemple. Montrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont supplémentaires dans $\mathcal{M}_n(\mathbb{R})$.

Exemple. On note $\mathcal{T}_n^+(\mathbb{R})$ l'ensemble des matrices triangulaires supérieures à coefficients diagonaux nuls. Montrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{T}_n^+(\mathbb{R})$ sont supplémentaires dans $\mathcal{M}_n(\mathbb{R})$.

Rappel. Caractérisation par décomposition unique.

En dimension finie, caractérisation utilisant un argument de dimension.

En dimension finie, caractérisation utilisant des bases.

<u>Définition</u>. Soit E un espace vectoriel de dimension finie n et F un sous-espace vectoriel de E de dimension p.

On appelle **base de** E **adaptée à** F toute base de E obtenue en complétant une base de E en une base de E

Remarque. Une telle base existe toujours par le théorème de la base incomplète.

Rappel. Projecteurs et symétries ont été étudiés en première année.

2 Applications linéaires, endomorphismes

2.1 Structure sur des ensembles d'applications linéaires

<u>Proposition.</u> Soit E, F, G des espaces vectoriels sur \mathbb{K} . Alors $\mathcal{L}(F, G) \times \mathcal{L}(E, F) \to \mathcal{L}(E, G)$ est bilinéaire.

En passant.

$$u \circ v = 0 \iff \operatorname{Im} v \subset \operatorname{Ker} u$$

Proposition. Soit E, F deux espaces vectoriels sur \mathbb{K} . Alors $(\mathcal{L}(E, F), +, \cdot)$ est un espace vectoriel.

Lorsque E et F sont deux espaces de dimensions finies respectives n et p, alors $\mathcal{L}(E,F)$ est de dimension finie $n \times p$.

Remarque. En particulier, l'espace $\mathcal{L}(E, \mathbb{K})$ des formes linéaires sur E est un espace vectoriel. On le note parfois E^* et il s'appelle l'espace dual de E. Son étude est hors programme.

Lorsque E est de dimension finie, $\mathcal{L}(E,\mathbb{K})$ est de même dimension finie.

Proposition. Soit E un espace vectoriel sur \mathbb{K} . Alors $(\mathcal{L}(E), +, \circ, \cdot)$ est une algèbre, non commutative et non intègre.

Proposition. Soit E un espace vectoriel sur K. Alors $(GL(E), \circ)$ est un groupe, non commutatif.

2.2 Définition par l'image des vecteurs d'une base

Théorème.

Si $(e_i)_{i\in I}$ est une base d'un espace vectoriel E, $(f_i)_{i\in I}$ une famille de vecteurs d'un espace vectoriel F, indexée par le même ensemble I, alors il existe une unique application linéaire $u \in \mathcal{L}(E,F)$ telle que, pour tout $i \in I$, $u(e_i) = f_i$.

Remarque. Ce théorème est à la base de la notion de matrice représentant une application linéaire.

Corollaire. Avec les notations précédentes :

- u est surjective si et seulement si $(f_i)_{i\in I}$ engendre F.
- u est injective si et seulement si $(f_i)_{i\in I}$ est libre.

<u>Proposition.</u> Une application linéaire $E \to F$ est un isomorphisme si et seulement si elle transorme une (resp. toute) base de E en une base de F.

Corollaire. Deux espaces de dimensions finies sont isomorphes si et seulement si ils ont la même dimension.

2.3 Définition par les restrictions à des sous-espaces en somme directe

Théorème.

Soit E_1, \ldots, E_p des sous-espaces vectoriels de E tels que $E = \bigoplus_{i=1}^p E_i$. Pour tout i, on considère $u_i \in \mathcal{L}(E_i, F)$. Alors il existe une unique application linéaire $u \in \mathcal{L}(E, F)$ telle que $u_{|E_i} = u_i$ pour tout i.

Corollaire. Deux applications linéaires qui coïncident sur tous les F_i sont égales. On peut définir une application linéaire en se contentant de la définir sur chaque F_i .

Remarque. La donnée, pour tout $i \in \{1, ..., p\}$, de $u_i \in \mathcal{L}(E_i, F)$ permet donc de définir sans ambiguité une application linéaire $u \in \mathcal{L}(E, F)$ définie sur E tout entier.

2.4 Rang

Définition. Soit f une application linéaire. Lorsque son image est dimension finie, on dit que f est de rang fini, et on définit le **rang de** f par :

$$rg(f) = dim(Im f)$$

Proposition. Le rang est inchangé lorsque l'on compose à gauche ou à droite par un isomorphisme.

Théorème du rang, forme géométrique.

Soit $u \in \mathcal{L}(E, F)$ une application linéaire, et S un supplémentaire de Keru dans E. Alors u induit un isomorphisme de S sur Imu, i.e. :

$$\widetilde{u}: S \to \operatorname{Im}(u)$$

 $x \mapsto u(x)$

est un isomorphisme.

Théorème du rang.

En particulier, si E est de dimension finie, alors u est de rang fini et :

$$\dim E_{\text{source}} = \dim(\text{Ker } u) + \dim(\text{Im } u)$$
 soit encore $\operatorname{rg}(u) = \dim E_{\text{source}} - \dim(\text{Ker } u)$

<u>Corollaire.</u> Soit $u \in \mathcal{L}(E, F)$ une application linéaire, avec E et F de même dimension finie. Alors u est bijective si et seulement si u est injective, si et seulement si u est surjective.

Le résultat s'applique en particulier pour les endomorphismes en dimension finie.

3 Annexes

3.1 Un mot sur les équations linéaires

On s'intéresse aux **équations linéaires**, de la forme :

$$u(x) = b$$

où $u \in \mathcal{L}(E, F)$, $b \in F$ et d'inconnue $x \in E$. **Proposition.** L'ensemble des solutions est :

- soit vide;
- soit de la forme x_0 +Ker u, où x_0 est une solution particulière de l'équation.

 $Preuve. \;\;$ On suppose qu'il existe x_0 solution particulière. On a alors :

$$\begin{array}{ll} x \text{ solution} & \Longleftrightarrow u(x) = b \\ & \Longleftrightarrow u(x) = u(x_0) \text{ car } u(x_0) = b \\ & \Longleftrightarrow u(x-x_0) = 0 \text{ par linéarité de } u \\ & \Longleftrightarrow x-x_0 \in \operatorname{Ker} u \end{array}$$

L'ensemble des solutions est donc :

$$S = \{x_0 + t, t \in \operatorname{Ker} u\}$$

que l'on note $x_0 + \operatorname{Ker} u$.

Remarque. L'ensemble $x_0 + \text{Ker } u$ n'est pas un espace vectoriel, mais le translaté d'un espace vectoriel, que l'on appelle espace affine.

Exemple. Déterminer toutes les suites réelles $(u_n)_n$ telles que :

$$\forall n \in \mathbb{N}, \ u_{n+1} = 4u_n - 3$$

Exemple. Déterminer toutes les couples $(x, y, z) \in \mathbb{R}^3$ tels que :

$$\begin{cases} x+y+z=1\\ 2x+3y-z=1\\ 3x+4y=2 \end{cases}$$

Exemple. Déterminer toutes les fonctions C^1 $\overline{\sup}]0, +\infty[$ telles que :

$$2ty' + y = \frac{1}{t}$$

Exemple. Déterminer toutes les fonctions C^2 sur \mathbb{R} telles que :

$$y'' - 2y' + y = e^t$$

Exercices et résultats classiques à connaître

Endomorphisme nilpotent et base

210.1

Soit E un \mathbb{K} -espace vectoriel de dimension n, et f un endomorphisme nilpotent d'indice n, i.e. $f^n=0$ et $f^{n-1}\neq 0$. Montrer qu'il existe $x\in E$ tel que :

$$(f^{n-1}(x), f^{n-2}(x), \dots, f(x), x)$$
 base de E

Quelle est la matrice de f dans cette base?

Noyaux itérés

210.2

Soit E un espace vectoriel et $f \in \mathcal{L}(E)$. Pour $p \in \mathbb{N}$, on définit :

$$I_p = \operatorname{Im}(f^p)$$
 et $K_p = \operatorname{Ker}(f^p)$

où
$$f^p = \underbrace{f \circ \cdots \circ f}_{p \text{ fois}}.$$

(a) Montrer que la suite $(I_p)_{p\in\mathbb{N}}$ (resp. $(K_p)_{p\in\mathbb{N}}$) est décroissante (resp. croissante) pour l'inclusion.

On suppose maintenant que E est de dimension finie.

- (b) Justifier l'existence de $r \in \mathbb{N}$ tel que $I_{r+1} = I_r$.
- (c) Montrer que les deux suites $(I_p)_{p\in\mathbb{N}}$ et $(K_p)_{p\in\mathbb{N}}$ sont constantes à partir du rang r.
- (d) Justifier que:

$$I_r \oplus K_r = E$$

Une astuce à avoir vue

210.3

Soit f un endomophisme de E. On suppose que, pour tout $x \in E$, (x, f(x)) est liée. Montrer que f est un homothétie.

GNP 62.123

210.4

GNP 55.1

Soit a un nombre complexe.

On note E l'ensemble des suites à valeurs complexes telles que :

 $\forall n \in \mathbb{N}, u_{n+2} = 2au_{n+1} + 4(ia - 1)u_n \text{ avec } (u_0, u_1) \in \mathbb{C}^2.$

- 1. (a) Prouver que E est un sous-espace vectoriel de l'ensemble des suites à valeurs complexes.
 - (b) Déterminer, en le justifiant, la dimension de E.

210.5

GNP 59.12

Soit n un entier naturel tel que $n \ge 2$.

Soit E l'espace vectoriel des polynômes à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$) de degré inférieur ou égal à n.

On pose : $\forall P \in E$, f(P) = P - P'.

- 1. Démontrer que f est bijectif de deux manières :
 - (a) sans utiliser de matrice de f,
- 2. Soit $Q \in E$. Trouver P tel que f(P) = Q.

Indication: si $P \in E$, quel est le polynôme $P^{(n+1)}$?

210.6

GNP 60

Soit la matrice $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ et f l'endomorphisme de $\mathcal{M}_2(\mathbb{R})$ défini par : f(M) = AM.

- 1. Déterminer une base de Ker f.
- 2. f est-il surjectif?
- 3. Déterminer une base de $\operatorname{Im} f$.
- 4. A-t-on $\mathcal{M}_2(\mathbb{R}) = \operatorname{Ker} f \oplus \operatorname{Im} f$?

Soit E un espace vectoriel sur \mathbb{R} ou \mathbb{C} .

Soit $f \in \mathcal{L}(E)$ tel que $f^2 - f - 2\mathrm{Id} = 0$.

- 1. Prouver que f est bijectif et exprimer f^{-1} en fonction de f.
- 2. Prouver que $E = \text{Ker}(f + \text{Id}) \oplus \text{Ker}(f 2\text{Id})$:
- 3. Dans cette question, on suppose que E est de dimension finie. Prouver que $\operatorname{Im}(f + \operatorname{Id}) = \operatorname{Ker}(f - 2\operatorname{Id})$.

210.8

GNP 64

Soit f un endomorphisme d'un espace vectoriel E de dimension finie n.

- 1. Démontrer que : $E = \operatorname{Im} f \oplus \operatorname{Ker} f \Longrightarrow \operatorname{Im} f = \operatorname{Im} f^2$.
- 2. (a) Démontrer que : $\operatorname{Im} f = \operatorname{Im} f^2 \iff \operatorname{Ker} f = \operatorname{Ker} f^2$.
 - (b) Démontrer que : $\operatorname{Im} f = \operatorname{Im} f^2 \Longrightarrow E = \operatorname{Im} f \oplus \operatorname{Ker} f$.

210.9

GNP 71

Soit P le plan d'équation x + y + z = 0 et D la droite d'équation $x = \frac{y}{2} = \frac{z}{3}$.

- 1. Vérifier que $\mathbb{R}^3 = P \oplus D$.
- 2. Soit p la projection vectorielle de \mathbb{R}^3 sur P parallèlement à D. Soit $u = (x, y, z) \in \mathbb{R}^3$.

Déterminer p(u) et donner la matrice de p dans la base canonique de \mathbb{R}^3 .

3. Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de p est diagonale.

210.10

GNP 93.1

210. Compléments d'algèbre linéaire

Soit E un espace vectoriel réel de dimension finie n>0 et $u\in\mathcal{L}(E)$ tel que $u^3 + u^2 + u = 0.$

On notera Id l'application identité sur E.

1. Montrer que $\text{Im} u \oplus \text{Ker} u = E$.

$$F = \{(x, y, z) \in \mathbb{R}^3, \ x - y - z = 0\} \text{ et } G = \{(a + b, a, a + 3b), \ a, b \in \mathbb{R}\}$$

- (a) Montrer que F et G sont des sous-espaces vectoriels de \mathbb{R}^3 .
- (b) Déterminer $F \cap G$.

On note F l'ensemble des fonctions $f:\mathbb{R}\to\mathbb{R}$ telles qu'il existe $a,b,c,d\in\mathbb{R}$ pour lesquels :

$$\forall x \in \mathbb{R}, \ f(x) = (ax+b)\cos x + (cx+d)\sin x$$

Montrer que F est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R},\mathbb{R}) = \mathbb{R}^{\mathbb{R}}$, et déterminer sa dimension.

210.13

Une fonction $f: \mathbb{R} \to \mathbb{R}$ est dite à support compact s'il existe $A \ge 0$ tel que f soit nulle en dehors de [-A, A].

Montrer que l'ensemble des fonctions \mathcal{C}^{∞} à support compact est un espace vectoriel pour les lois usuelles.

210.14

$$\operatorname{Vect}\left(\left(x\mapsto \cos(nx)\right)_{n\in\mathbb{N}}\right) = \operatorname{Vect}\left(\left(x\mapsto \cos^n(x)\right)_{n\in\mathbb{N}}\right)$$

210.15

Soit E un espace vectoriel de dimension finie n, H_1, \ldots, H_k des hyperplans de E. Montrer que :

$$\dim\Big(\bigcap_{i=1}^k H_i\Big) \geqslant n-k$$

Soit H l'hyperplan de \mathbb{R}^4 défini par l'équation :

$$x + 2y - z + 3t = 0$$

- (a) Déterminer une base de H.
- (b) Exhiber un supplémentaire de H.

On se place maintenant dans le cas plus général où H est un hyperplan de \mathbb{R}^n , défini par l'équation :

$$a_1x_1 + \dots + a_nx_n = 0$$

(c) Montrer que Vect $((a_1, \ldots, a_n))$ est un supplémentaire de H.

210.17

Soit $a \in \mathbb{C} \setminus \{0\}$ et $n \in \mathbb{N}^*$. Montrer que la famille $(X^k(a-X)^{n-k})_{0 \leqslant k \leqslant n}$ est libre dans $\mathbb{C}[X]$.

210.18

Soit $\alpha_0, \ldots, \alpha_n \in \mathbb{K}$ des scalaires distincts. Pour $i \in \{0, \ldots, n\}$, on définit :

$$L_i = \prod_{\substack{k=0\\k\neq i}}^n \frac{X - \alpha_k}{\alpha_i - \alpha_k}$$

Montrer que la famille (L_0, \ldots, L_n) est libre dans $\mathbb{K}[X]$.

210.19

Dans l'espace $\mathcal{C}(\mathbb{R}, \mathbb{R})$, on définit pour tout réel λ :

$$e_{\lambda}: x \mapsto e^{\lambda x}$$

Montrer que $(e_{\lambda})_{{\lambda}\in\mathbb{R}}$ est libre.

210.20

Soit $u_1, \ldots, u_n, u_{n+1} \in E$ espace vectoriel sur \mathbb{K} .

(a) Montrer que, si (u_1, \ldots, u_n) est libre et $u_{n+1} \notin \text{Vect}(u_1, \ldots, u_n)$ alors $(u_1, \ldots, u_n, u_{n+1})$ est libre.

210. Compléments d'algèbre linéaire

(b) Montrer que, si $(u_1, \ldots, u_n, u_{n+1})$ est génératrice et $u_{n+1} \in \text{Vect}(u_1, \ldots, u_n)$ alors (u_1, \ldots, u_n) est génératrice.

Dans l'espace \mathbb{R}^3 , on considère le plan P d'équation x-y+z=0 et la droite $D=\mathrm{Vect}(u)$ où u=(1,3,1).

- (a) On note p la projections sur P parallèlement à D. Exprimer p(x, y, z).
- (b) On note s la symétrie par rapport à P parallèlement à D. Exprimer s(x,y,z).

210.22

Soit p et q deux projecteurs d'un espace vectoriel E.

- (a) Montrer que Ker p = Ker q si et seulement si $p \circ q = p$ et $q \circ p = q$.
- (b) Énoncer une condition semblable pour traduire $\operatorname{Im} p = \operatorname{Im} q$.

210.23

Soit p et q deux projecteurs d'un espace vectoriel E.

- (a) Montrer que p + q est un projecteur si et seulement si $p \circ q = q \circ p = 0$.
- (b) Préciser, dans ce cas, Im(p+q) et Ker(p+q).

210.24

Dans l'espace vectoriel $\mathcal{C}^{\mathcal{C}}$, on définit pour k=0,1,2:

$$F_k = \{ f : \mathcal{C} \to \mathcal{C}, \ \forall z \in C, \ f(jz) = j^k f(z) \}$$

Montrer que la somme $F_0 + F_1 + F_2$ est directe.

210.25

Soit $E = \mathcal{C}([-1,1],\mathbb{R})$ et les sous-espaces vectoriels :

$$F_1 = \{ f \in E, f \text{ constante} \}$$

$$F_2 = \{ f \in E, \forall t \in [-1, 0], f(t) = 0 \}$$

$$F_3 = \{ f \in E, \forall t \in [0, 1], f(t) = 0 \}$$

Montrer que :

$$E = F_1 \oplus F_2 \oplus F_3$$

210.26

Dans l'espace $E = \mathcal{C}([0,1], \mathbb{R})$, on considère les sous-espaces :

$$F = \{ f \in E, \int_0^1 f(t) dt = 0 \} \text{ et } G = \{ g \in E, g \text{ constante} \}$$

Montrer que $F \oplus G = E$.

210.27

Dans l'espace $E = \mathcal{C}([0,1],\mathbb{R})$, on considère :

$$F = \{ f \in E, \ f(0) = f(1) = 0 \} \text{ et } G = \{ g \in E, \ g \text{ affine} \}$$

Montrer que $F \oplus G = E$.

210.28

Soit $E = \mathfrak{F}(\mathbb{R}, \mathbb{R}) = \mathbb{R}^{\mathbb{R}}$, et P (resp. I) l'ensemble des fonctions paires (resp. impaires). Montrer que $P \oplus I = E$.

Petits problèmes d'entrainement

210.29

On note $E = \mathbb{K}[X]$. Pour $P \in E$, on note :

$$\varphi(P) = P\left(\frac{X}{2}\right) + P\left(1 - \frac{X}{2}\right) - 2P(X)$$

- (a) Montrer que φ est un endomorphisme de E.
- (b) Déterminer le degré de $\varphi(P)$ en fonction de celui de P.
- (c) Déterminer $\operatorname{Ker} \varphi$.
- (d) On pose $\begin{cases} Q_0 = 1 \\ \forall n \in \mathbb{N}^*, \ Q_n = \varphi(X^n) \end{cases}$.

Montrer que pour tout p, la famille (Q_0, \ldots, Q_p) est une base de $\mathbb{K}_p[X]$.

$$\theta(P) = \int_0^1 P(t) \, \mathrm{d}t$$

Soit E un K-espace vectoriel, et $f \in \mathcal{L}(E)$. Pour tout $k \in \mathbb{N}$, on pose :

$$N_k = \operatorname{Ker}(f^k)$$
 et $I_k = \operatorname{Im}(f^k)$

- (a) Montrer que $(N_k)_{k\in\mathbb{N}}$ est une suite croissante pour l'inclusion, et que $(I_k)_{k\in\mathbb{N}}$ est décroissante.
- (b) Justifier que $\mathcal{N} = \bigcup_{k \in \mathbb{N}} N_k$ et $\mathcal{C} = \bigcap_{k \in \mathbb{N}} I_k$ sont des sous-espaces vectoriels de E stables par f.
- (c) On suppose dans cette question que $f \in GL(E)$. Déterminer \mathcal{N} et \mathcal{C} .

On suppose dorénavant que E est de dimension finie.

- (d) Expliquer pourquoi les suites $(N_k)_{k\in\mathbb{N}}$ et $(I_k)_{k\in\mathbb{N}}$ sont stationnaires. On note r et s respectivement les plus petits entiers à partir desquels $(N_k)_{k\in\mathbb{N}}$ et $(I_k)_{k\in\mathbb{N}}$ sont constantes.
- (e) Montrer que r = s.
- (f) Montrer que $\mathcal{N} \oplus \mathcal{C} = E$.
- (g) Démontrer que les endomorphismes induits $f_{\mathcal{N}}$ et $f_{\mathcal{C}}$ sont respectivement nilpotent et bijectif.

210.31

Soit u un endomorphisme de E espace vectoriel. On suppose u nilpotent d'indice p. On définit :

$$e^u = \sum_{k=0}^{p-1} \frac{1}{k!} u^k$$

(a) Montrer que, pour tout x tel que $u^k(x) \neq 0$, $(x, u(x), \dots, u^k(x))$ est une famille libre.

(b) Déterminer $Ker(e^u - Id_E)$.

210.32

On souhaite démontrer que, pour $P \in \mathbb{C}[X]$:

$$\int_0^{\pi} P(e^{it})ie^{it} dt = -\int_{-1}^1 P(u) du$$

- (a) Quelle idée faut-il se retenir d'avoir, et pourquoi?
- (b) Que dire des applications $\varphi: P \mapsto \int_0^{\pi} P(e^{it})ie^{it} dt$ et $\psi: P \mapsto \int_{-1}^1 P(u) du$?
- (c) Démontrer l'égalité demandée, par un calcul simple.

210.33

On considère α_0,\ldots,α_n des réels distincts. Montrer qu'il existe $\lambda_0,\ldots,\lambda_n$ tels que :

$$\forall P \in \mathbb{R}_n[X], \ \int_0^1 P(t) \, \mathrm{d}t = \sum_{i=0}^n \lambda_i P(\alpha_i)$$

210.34

Soit E un espace vectoriel sur \mathbb{K} , et H un sous-espace vectoriel de E. Montrer que les assertions suivantes sont équivalentes :

- (i) Il existe une droite vectorielle D telle que $H \oplus D = E$.
- (ii) Il existe une forme linéaire non nulle φ telle que $H=\mathrm{Ker}(\varphi)$.

On dit alors que H est un hyperplan de E.

On peut remarquer que, lorsque E est de dimension finie n, c'est encore équvalent à $\dim(E) = n - 1$.

210.35

Soit E un espace vectoriel de dimension n, F, G deux sous-espaces vectoriels de E. Énoncer une condition nécessaire et suffisante pour qu'il existe $u \in \mathcal{L}(E)$ satisfaisant :

$$\operatorname{Ker} u = F \text{ et } \operatorname{Im} u = G$$

Soit E un espace vectoriel de dimension finie $n, f, g \in \mathcal{L}(E)$. Montrer que :

- (a) $|\operatorname{rg}(f) \operatorname{rg}(g)| \le \operatorname{rg}(f+g) \le \operatorname{rg}(f) + \operatorname{rg}(g)$
- (b) $\operatorname{rg}(f) + \operatorname{rg}(g) n \leqslant \operatorname{rg}(f \circ g) \leqslant \operatorname{Min}(\operatorname{rg}(f), \operatorname{rg}(g))$

210.37

Soit E un \mathbb{K} -espace vectoriel de dimension finie, $e=\mathrm{Id}_E$ et G un sous-groupe fini de $\mathrm{GL}(E)$ et $n=\mathrm{Card}(G)$. On note : $p=\frac{1}{n}\sum_{g\in G}g$.

- (a) Montrer que : $\forall h \in G, \ p \circ h = p$.
- (b) En déduire que p est un projecteur de E.
- (c) Établir : $\bigcap_{g \in G} \operatorname{Ker}(g e) = \operatorname{Im}(p).$
- (d) En déduire que :

$$\dim \left(\bigcap_{g \in G} \operatorname{Ker}(g - e) \right) = \frac{1}{n} \sum_{g \in G} \operatorname{tr}(g)$$

210.38

Soit E, F, G trois espaces vectoriels, $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. On note $h = g \circ f$. À quelles conditions h est-elle un isomorphisme?

210.39

Soit u un endomorphisme non bijectif d'un espace E de dimension finie. Montrer qu'il existe $\varphi \in \mathrm{GL}(E)$ tel que $v = \varphi \circ u$ soit nilpotent.

210.40

Soit $p \in \mathbb{N}^*$ et E_p l'ensemble des suites $(u_n)_n$ complexes et p-périodiques, i.e. :

$$\forall n \in \mathbb{N}, \ u_{n+p} = u_n$$

- (a) Montrer que E_p est un \mathbb{C} -espace vectoriel de dimension finie, et calculer sa dimension.
- (b) Déterminer une base de E_p formée uniquement de suites géométriques.

210.41

Soit E un espace vectoriel de dimension finie n, F un sous-espace vectoriel strict de E.

- (a) Montrer que F peut s'écrire comme intersection d'un nombre fini d'hyperplans.
- (b) Quel est le nombre minimal d'hyperplans nécessaire?

210.42

Pour $k \in \mathbb{N}$, on pose :

$$P_k = \frac{X(X-1)\dots(X-k+1)}{k!}$$

- (a) Montrer que la famille $(P_n)_{n\in\mathbb{N}}$ est une base de $\mathbb{R}[X]$.
- (b) Vérifier que, $\forall k \in \mathbb{N}, \forall m \in \mathbb{Z}, P_k(m)$ est entier.
- (c) Déterminer tous les polynômes P prenant des valeurs entières sur chaque entier.

210.43

Soit E un espace vectoriel de dimension finie $n, u \in \mathcal{L}(E)$. Montrer qu'il existe $v \in \mathcal{L}(E)$ tel que :

$$uv = 0$$
 et $u + v \in GL(E)$

si et seulement si $\operatorname{Im} u$ et $\operatorname{Ker} u$ sont supplémentaires.

210.44

Soit f_1, \ldots, f_n des endomorphismes d'un espace vectoriel E. On suppose :

$$f_1 + \cdots + f_n = \operatorname{Id}_E \text{ et } \forall i \neq j, \ f_i \circ f_j = 0$$

- (a) Montrer que chaque f_i est un projecteur.
- (b) Montrer que:

$$E = \bigoplus_{i=1}^{n} \operatorname{Im}(f_i) = E$$

Soit E un K-espace vectoriel de dimension finie, F_1, \ldots, F_n des sous-espaces vectoriels tels que :

$$F_1 + \cdots + F_n = E$$

Montrer qu'il existe G_1, \ldots, G_n sous-espaces vectoriels de E tels que :

$$G_1 \oplus \cdots \oplus G_n = E \text{ et } \forall i, \ G_i \subset F_i$$

210.46

Soit E un \mathbb{K} -espace vectoriel de dimension $n \ge 2$. On note $\mathcal{B} = (e_i)_{1 \le i \le n}$ une base de E et on pose, pour $i \in \{1, \ldots, n\}$:

$$G_i = \operatorname{Vect}(e_1, \dots, e_{i-1}, e_{i+1}, \dots, e_n)$$

et $H_i = \{ f \in \mathcal{L}(E), \ G_i \subset \operatorname{Ker}(f) \}$

- (a) Montrer que les H_i sont des sous-espaces vectoriels de $\mathcal{L}(E)$.
- (b) Montrer que : $\bigoplus_{i=1}^{n} H_i = \mathcal{L}(E)$.

210.47

Soit E un espace vectoriel de dimension finie, F un sous-espace vectoriel de E et G un supplémentaire de G. On considère $\mathcal{B} = (e_1, \ldots, e_p)$ une base de G et, pour tout $a = (a_1, \ldots, a_p) \in F^p$, on note :

$$G_a = \operatorname{Vect} (e_i + a_i)_{1 \leqslant i \leqslant p}$$

Montrer que les espaces G_a déterminent tous les espaces supplémentaires de F.