

MATLAB for Brain and Cognitive Psychology (Data Analysis)

Presented by:

Ehsan Rezayat, Ph.D.

Faculty of Psychology and Education, University of Tehran.

Institute for Research in Fundamental Sciences (IPM), School of Cognitive Sciences,

emails: rezayat@ut.ac.ir, rezayat@ipm.ir, erezayat.er@gmail.com

RDM task

Dataset Structure

Performance and Reaction time

Delay match to sample task (DMS)

Dataset config

DMS task

Emotion task

Emotion task

Behavioral data

One way Anova

F = Variability between groups

Variability within groups

Table one way Anova

- F = Anova Coefficient
- MSB = Mean sum of squares between the groups
- MSW = Mean sum of squares within the groups
- MSE = Mean sum of squares due to error
- SST = total Sum of squares
- p = Total number of populations
- n = The total number of samples in a population
- SSW = Sum of squares within the groups
- SSB = Sum of squares between the groups
- SSE = Sum of squares due to error
- s = Standard deviation of the samples
- N = Total number of observations

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares (MS)	F
Within	$SSW = \sum_{j=1}^{k} \sum_{j=1}^{l} (X - \overline{X}_j)^2$	$df_w = k-1$	$MSW = \frac{SSW}{df_w}$	$F = \frac{MSB}{MSW}$
Between	$SSB = \sum_{j=1}^{k} (\overline{X}_j - \overline{X})^2$	$df_b = \mathbf{n} - \mathbf{k}$	$MSB = \frac{SSB}{df_b}$	
Total	$SST = \sum_{j=1}^{n} (\overline{X}_{j} - \overline{X})^{2}$	$df_t = n - 1$		

Example

Anova on performance

ANOVA Table					
Source	SS	df	MS	F	Prob>F
Columns	5600	6	933.333	1.68	0.1988
Error	7785.2	14	556.085		
Total	13385.2	20			

Eye data

- Gaze point
- Gaze trace
- Pupil size

Data analysis

- Gaze direction
- Gaze point
- Gaze time
- Microsaccade rate
- Saccade rate
- Pupil size

Preprocessing Data

Pupil size

Anova on Emotion and Pupil size

Assignment#13

On Emotion task

Plot Compare both left and right eye pupil for each emotion

Calculate the time the pupil size is significantly different from

baseline

