Ecuación Diferencial Parcial Hiperbólica

Hernadez, R. J. Muñoz, F.

Universidad de Antioquia

October 10, 2022

Contenido

- Definición
- 2 Condiciones de Frontera
- Oiferencias Finitas
- Solución Numérica
- Iniciando Valores
- 6 Resultados
 - Ejemplo

Ecuación Diferencial Parcial Hiperbólica

Una **Ecuación Diferencial Parcial Hiperbólica (EDPH)** es una ecuación de la forma:

$$\frac{\partial^2 u}{\partial t^2}(x,t) - c^2 \frac{\partial^2 u}{\partial x^2}(x,t) = 0, \quad 0 < x < a, \quad 0 < t < b$$
 (1)

Un ejemplo de ecuación diferencial parcial hiperbólica es la **ecuación de onda**, para la cual se considerara la solución numérica.

Condiciones de Frontera

La solución de la ecuación (1) requiere estar sujeta a unas condiciones de frontera bien definidas, como se sigue:

$$u(0,t) = u(a,t) = 0$$
, para $0 \le t \le b$ (2) $u(x,0) = f(x)$, para $0 \le x \le a$ $\frac{\partial u}{\partial t}(x,0) = g(x)$, para $0 < x < a$

Donde ${\bf u}$ es el vector de desplazamiento de una cuerda con los extremos fijos en x=0 y x=a. y la solución analítica puede ser obtenida con series de Fourier.

Diferencias Finitas

En general, la diferencia finita aproxima a el valor de alguna función derivable u(x) en el punto x_0 en su dominio. Supongamos una función $u(x) \in C^3$. Haciendo la expansión en serie de Taylor alrededor de $\pm h$

$$u(x+h) = u(x) + u'(x)h + u''(x)\frac{h^2}{2} + u'''(x)\frac{h^3}{6} + \mathbf{O}(h^4),$$

$$u(x-h) = u(x) - u'(x)h + u''(x)\frac{h^2}{2} - u'''(x)\frac{h^3}{6} + \mathbf{O}(h^4),$$

Donde el error es proporcional a h^4 . Sumando las dos ecuaciones anteriores, se tiene:

$$u(x + h) + u(x - h) = 2u(x) + u''(x)h^{2} + \mathbf{O}(h^{4})$$

dividiendo por h^2 , y reagrupando los términos

$$u''(x) = \frac{u(x+h) - 2u(x) + u(x-h)}{h^2} + \mathbf{O}(h^2)$$
 (3)

El error es proporcional a h^2 , esta es una forma de aproximación a segundo orden.

Derivación de la solución numérica a la ecuación

De la partición del rectángulo $R=(x,t): 0 \le x \le a, 0 \le t \le b$ se obtiene la malla de n-1 por m-1 rectángulos con lados $\Delta x=h$ y $\Delta t=k$, como se muestra en la figura. Empezando en la fila inferior, en $t=t_1=0$ donde la solución es conocida y es dada por las condiciones de frontera (i.e. $u(x_i,t_1)=f(x_i)$).

Se usará el método diferencias finitas para computar las aproximaciones

$$u_{i,j} : i = 1, 2, ..., n$$
 en filas sucesivas para $j = 2, 3, ...m$.

Figure: Malla.

Derivación de la solución numérica a la ecuación

La solución punto a punto de la malla está dado por $u(x_i, t_j)$.

Usando el método de diferencias fintas (i.e. el resultado obtenido en (3)) para la aproximación de $u_{tt}(x,t)$ y $u_{xx}(x,t)$ son:

$$u_{tt} = \frac{u(x, t+k) - 2u(x, t) + u(x, t-k)}{k^2} + \mathbf{O}(k^2)$$
 (4)

$$u_{xx} = \frac{u(x+h,t) - 2u(x,t) + u(x-h,t)}{h^2} + \mathbf{O}(h^2)$$
 (5)

El esparcimiento de la malla es constante en cada fila: $x_{i+1} = x_i + h$ y $x_{i-1} = x_i - h$, y también constante en cada columna: $t_{j+1} = t_j + k$ y $t_{j-1} = t_j - k$.

Omitiendo los términos de orden superior, y remplazando (4) y (5) en la ecuación (1), se obtiene

$$\frac{u(x,t+k)-2u(x,t)+u(x,t-k)}{k^2}=c^2\frac{u(x+h,t)-2u(x,t)+u(x-h,t)}{h^2}$$

la cual aproxima la solución de (1). Por conveniencia se hace la sustitución r=ck/h. con lo cual la expresión anterior toma la forma

$$u_{i,j+1} - 2u_{i,j} + u_{i,j-1} = r^2(u_{i+1,j} - 2u_{i,j} + u_{i-1,j})$$

Esta ecuación es empleada para hallar la fila j+1 de la malla, suponiendo que los términos j y j-1 son conocidos:

$$u_{i,j+1} = (2 - 2r^2)u_{i,j} + r^2(u_{i+1,j} + u_{i-1,j}) - u_{i,j-1}$$
 (6)

para i = 2, 3, ..., n - 1

Donde es necesario que $r \le 1$ para garantizar la estabilidad de (6).

- 4 ロ ト 4 御 ト 4 き ト 4 き ト り 9 0 0

Iniciando Valores

Las dos filas iniciales, correspondientes a j=1 y j=2 deben ser suministradas para usar la relación en (6). Para obtener la segunda fila se hace uso de las condiciones de frontera. Fijando $x=x_i$ en la frontera, y haciendo expansión Taylor de u(x,t) al rededor de $(x_i,0)$. El valor de $u(x_i,k)$ satisface

$$u(x_i, k) = u(x_i, 0) + u_t(x_i, 0)k + \mathbf{O}(k^2)$$

$$u_{i,2} = f_i + kg_i$$
 para $i = 2, 3, ...n - 1$

Sin embargo, usualmente esta relación conduce a un error que se propaga a través de la malla. A menudo, la función de frontera f(x) tiene segunda derivada f''(x) en el intervalo de interés, por lo tanto resulta conveniente usar en su lugar:

$$u_{tt}(x_i,0) = c^2 u_{xx}(x_i,0) = c^2 f''(x_i) = c^2 \frac{f_{i+1} - 2f_i + f_{i-1}}{h^2} + \mathbf{O}(h^2)$$

la expansión Taylor de segundo orden deja el siguiente resultado:

$$u(x,k) = u(x,0) + u_t(x,0)k + \frac{u_{tt}(x,0)k^2}{2} + \mathbf{O}(k^3)$$

aplicando la formula anterior con $x = x_i$ se obtiene

$$u(x_i, k) = f_i + kg_i + \frac{c^2 k^2}{2h^2} (f_{i+1} - 2f_i + f_{i-1}) + \mathbf{O}(h^2) \mathbf{O}(k^2) + \mathbf{O}(k^3)$$

$$u(x_i, k) = (1 - r^2)f_i + kg_i + \frac{r^2}{2}(f_{i+1} - 2f_i + f_{i-1})$$
 para $i = 2, 3, ..., n - 1$.

con esta ultima relación se obtienen los valores de la segunda fila.

Resultados Ejemplo 1

Use el método de diferencia finita para resolver la ecuación de onda de una cuerda que vibra con extremos fijos, dada por:

$$u_{tt}(x, t) = 4u_{xx}(x, t)$$
 para $0 < x < 1$ $0 < t < 0.5$

con condiciones de frontera

$$u(0,t)=0=u(1,t)$$
 para $0\leq t\leq 0.5$ $u(x,0)=f(x)=sen(\pi x)+sen(2\pi x)$ para $0\leq x\leq 1$ $u_t(x,0)=g(x)=0$ para $0\leq x\leq 1$

Se elige h = 0.1 y k = 0.05, y dado que c = 2, entonces r = 1 por lo tanto

$$u_{i,2} = \frac{f_{i-1} + f_{i+1}}{2}$$
 para $i = 2, 3, ..., 9$ (7)

sustituyendo r = 1 en (6), esta toma la forma

$$u_{i,j+1} = u_{i+1,j} + u_{i-1,j} - u_{i,j-1}$$
(8)

Aplicando (7) y (8), se obtienen los resaltados que se muestran en la tabla.

t	x_0	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_10
0.00	0.00	0.897	1.539	1.760	1.539	1.000	0.363	-0.142	-0.363	-0.279	0.000
0.050	0.000	0.769	1.328	1.539	1.380	0.951	0.429	-0.000	-0.210	-0.182	0.000
0.100	0.000	0.432	0.769	0.948	0.951	0.809	0.588	0.361	0.182	0.068	0.000
0.150	0.000	0.000	0.052	0.182	0.377	0.588	0.741	0.769	0.639	0.363	0.000
0.200	0.000	-0.380	-0.588	-0.519	-0.182	0.309	0.769	1.019	0.951	0.571	0.000
0.250	0.000	-0.588	-0.951	-0.951	-0.588	-0.000	0.588	0.951	0.951	0.588	0.000
0.300	0.000	-0.571	-0.951	-1.019	-0.769	-0.309	0.182	0.519	0.588	0.380	0.000
0.350	0.000	-0.363	-0.639	-0.769	-0.741	-0.588	-0.377	-0.182	-0.052	-0.000	0.000
0.400	0.000	-0.068	-0.182	-0.361	-0.588	-0.809	-0.951	-0.948	-0.769	-0.432	0.000
0.450	0.000	0.182	0.210	0.000	-0.429	-0.951	-1.380	-1.539	-1.328	-0.769	0.000
0.500	0.000	0.279	0.363	0.142	-0.363	-1.000	-1.539	-1.760	-1.539	-0.897	0.000

Figure: Valores Obtenidos.

Figure: Gráfica.

Los resultados mostrados en la tabla, obtenidos numéricamente corresponden a la solución analítica dada por

$$u(x,t) = sen(\pi x)\cos(2\pi t) + sen(2\pi x)\cos(4\pi t)$$

Resultados Ejemplo 2

Aproxime la solución de la ecuación de onda

$$u_{tt}(x,t) - u_{xx}(x,t) = 0$$
 $0 < x < 1$, $0 < t$; $u(x,0) = f(x) = \sin 2\pi x$ $0 \le x \le 1$ $u_t(x,0) = g(x) = 2\pi \sin 2\pi x$ $0 \le x \le 1$

	x_0	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_10
0.00	0.00	0.588	0.951	0.951	0.588	0.000	-0.588	-0.951	-0.951	-0.588	0.00
0.050	0.000	0.637	1.031	1.031	0.637	0.000	-0.637	-1.031	-1.031	-0.637	0.00
0.100	0.000	0.626	1.013	1.013	0.626	0.000	-0.626	-1.013	-1.013	-0.626	0.00
0.150	0.000	0.555	0.898	0.898	0.555	-0.000	-0.555	-0.898	-0.898	-0.555	0.00
0.200	0.000	0.431	0.697	0.697	0.431	-0.000	-0.431	-0.697	-0.697	-0.431	0.00
0.250	0.000	0.266	0.430	0.430	0.266	-0.000	-0.266	-0.430	-0.430	-0.266	0.00
0.300	0.000	0.075	0.122	0.122	0.075	-0.000	-0.075	-0.122	-0.122	-0.075	0.00
0.350	0.000	-0.123	-0.198	-0.198	-0.123	-0.000	0.123	0.198	0.198	0.123	0.00
0.400	0.000	-0.309	-0.499	-0.499	-0.309	-0.000	0.309	0.499	0.499	0.309	0.00
0.450	0.000	-0.465	-0.753	-0.753	-0.465	-0.000	0.465	0.753	0.753	0.465	0.00
0.500	0.000	-0.577	-0.934	-0.934	-0.577	-0.000	0.577	0.934	0.934	0.577	0.00

Figure: Valores Obtenidos Eje 2.

Solución Ecuanción de Onda

Figure: Gráfica 2.

Bibliografía

Richard L. Burden (2011)

Numerical Analysis