Tasa máxima

Adaptación

¿Dónde estamos en el modelo?

APLICACIÓN
TRANSPORTE
RED
ENLACE
FÍSICA

- Comenzamos de abajo hacia arriba.
- Iniciando en la capa física

Tasa máxima de un canal

- Señal: variación en el tiempo de un fenómeno físico (voltaje, corriente, luz) con un propósito específico.
- Señales digitales
 - Toma valores discretos
- Señales análogas
 - Toma valores en un rango continuo
- Nos interesa saber qué tanta información por unidad de tiempo podemos enviar información sobre un canal físico

Tasa máxima de un canal

- ¿Qué tanta información podemos enviar sobre un canal por unidad de tiempo?
 - Teorema de Nyquist (1924)
 - Teorema de Shannon (1948)
- Los sistemas se diseñan teniendo en cuenta los límites que indican los teoremas anteriores.
- El objetivo es tener enlaces de comunicaciones de alto rendimiento para poder enviar la mayor cantidad de información lo suficientemente rápido.
- ¿Qué tanta información se puede enviar por unidad de tiempo?

Propiedades de un canal

- El ancho de banda (B)
 - Limita la tasa de transiciones: cuántas transiciones (p. ej.: +V V) por unidad de tiempo (frecuencia)
 - Ancho de banda medido en Hz (rango de frecuencias que soporta el medio)
 - Ponemos señales sobre el medio
- La potencia de la señal (S) y la potencia del ruido (N) que la corrompe
 - Limitan el número de niveles de señal (símbolos) que podemos reconocer
 - El receptor es quién detecta qué tan fuerte o débil recibió la señal
 - Entre más símbolos, más posibilidad de enviar información
 - Ruido externo
 - Ruido generado por los equipos de comunicaciones

Límite de Nyquist

• Si la señal consiste en V niveles discretos

$$R = 2B \times \log_2(V) bits/s$$

- No considera ruido en el canal.
- *V* está limitado por el medio.
 - P. Ej.: Resistencia, atenuación
- Un canal **sin ruido** de 3kHZ no puede transmitir dos símbolos (dos niveles de señal) a una velocidad mayor a 6000 bps (6 Kbps).

$$R = 2(3000) \times \log_2(2) = 6000 \text{ bps} = 6 \text{ kbps}$$

- Padre de la teoría de la información
 - "A Mathematical Theory of Communication" (1948)

- Indica la capacidad máxima de un canal
- Considera el ruido térmico (N)
 - Movimiento aleatorio de los átomos en el sistema (p. ej.: conductor eléctrico)
- La cantidad de ruido (N) térmico se mide con base en la relación entre la potencia de la señal (S) y la potencia del ruido.
- Relación señal (S) ruido (N)

$$\frac{S}{N}$$

- Se expresa en dB (decibeles)
- Se mide en escala logarítmica

•
$$SNR_{dB} = 10 \log_{10} \left(\frac{S}{N}\right)$$

- SNR de 10 = 10 dB
- SNR de 100 = 20 dB
- SNR de 1000 = 30 dB
- Entre más dB mejor calidad de canal
- Tasa de datos máxima de un canal con ruido

$$R = B \times \log_2\left(1 + \frac{S}{N}\right)$$
 bits/s

- $SNR_{dB} = 10 \log_{10} \left(\frac{S}{N}\right)$
 - SNR de 10 = 10 dB
 - SNR de 100 = 20 dB
 - SNR de 1000 = 30 dB
- En el sistema telefónico convencional se maneja una SNR de 30 dB y un ancho de banda de 3.3 kHz

$$R = 3300 \times \log_2(1 + 1000) = 32901 \ bps = 33 \ Kbps$$

- Los módems telefónicos ya estaban en el límite.
 - No había más de donde mejorar
- La capacidad del canal se mejora con aumento de (S) o diminución de (N)
- Para casos de SNR muy altas (buena calidad de canal) sumar 1 en la expresión no incide mucho.
 - No sucede lo mismo para SNR baja

- Usado para conexiones banda ancha: 10 Mbps 24 Mbps (ADSL2+)
- Hace uso del par trenzado de cable telefónico que llega al suscriptor.
- El cable soporta frecuencias mayores a 4kHz (~1 MHz @~5Km)
 - En la práctica solo se usan 4 kHz para el teléfono: transmisión analógica de la voz
 - El proveedor filtra las frecuencias por encima de los 4 kHz
- El rango de frecuencias por encima de los 4 kHz los aprovecha DSL
 - Las limitantes las impone el medio físico desde el DSLAM hasta el suscriptor. Aprox. 1 MHz.
 - La capacidad disminuye con la distancia
 - Grosor
 - Calidad del cable

- Variación del ancho de banda con la distancia
 - Cable UTP Cat 3 para DSL

Distancia deseable no mayor a 2km

Separa señales 0 – 4 kHz para voz 26 kHz – 1.1 MHz datos

- DSL usa modulación pasa-banda (OFDM)
 - Separa bandas para flujos ascendentes y descendentes
 - La modulación varía a la vez la amplitud y la fase (esquema QAM) de la señal portadora
 - Con una alta relación SNR se pueden enviar hasta 15 bits/símbolo
 - Con una baja relación SNR se puede enviar un 1 bit por símbolo

Referencias

- Wetherall, David J. *Computer Networks 2-5 Limits*. https://www.youtube.com/watch?v=PKDVX7Rf2tg
- Tanenbaum A., and Wetherall D. *Redes De Computadoras* 5th ed., Pearson Educación, México, 2012.