Análise dos Perfis Epiteliais e Agrupamentos (K-Means)

Base: Medidas de espessura do epitélio corneano em 9 regiões (C, S, ST, T, IT, I, IN, N, SN) Objetivo: Identificar padrões ou perfis de espessura que possam representar diferentes tipos morfológicos de córneas.

Métrica de qualidade: Silhouette Score (quanto maior, melhor separação entre grupos).

🗱 Visão Geral dos Resultados

K	Silhouette Média	Interpretação de Qualidade	Observações
2	0.323	Boa separação inicial	Dois grandes perfis bem distintos
3	0.240	Separação razoável	Início de detalhamento dos perfis
5	0.204	Menor separação, mas mais nuances	Surgem padrões atípicos
6	0.164	Fraca, mas grupos interessantes	Perfis intermediários surgem
7	0.158	Similar a K=6	Estabilização dos tipos
8	0.161	Ligeira melhora, mais refinado	Divisão de perfis complexos
1 0	0.137	Muito granular	Possível sobreajuste (overfitting)

Análise por Número de Clusters

K = 2 - Dois grandes perfis globais

Silhouette = 0.323 (melhor separação)

Cluster Espessura Média (µm)		Padrão	Contage m
0	~49 µm	Perfil fino/uniforme	3256

Interpretação:

- Aqui, o modelo separou nitidamente os olhos entre córneas mais finas e mais espessas, sem grandes variações regionais.
- É uma divisão **global**, muito estável e clinicamente compreensível ideal como **visão macro da população**.

K = 3 - Três perfis morfológicos principais

Silhouette = 0.239

Cluster	Espessura Média (µm)	Característica
0	~48 µm	Córneas finas e homogêneas
1	~59 µm	Córneas espessas e regulares
2	~53 µm	Intermediárias, suavemente espessas no inferior

Interpretação:

- Surge um **perfil intermediário**, indicando que a população pode ter **três níveis de espessura** (fino, médio, espesso).
- O grupo 2 pode representar uma espessura fisiológica média.

K = 5 - Perfis heterogêneos

Silhouette = 0.204

Cluste r	Padrão Principal	Observação
0	Regular (~51 μm)	Levemente mais espesso inferiormente
1	Regular (~55 µm)	Córnea espessa e uniforme

2	Espessura irregular (S alto, C baixo)	Padrão assimétrico — possível variação topográfica
3	Muito fino (~45 μm)	Perfil de córnea fina e homogênea
4	Muito espesso (~60 μm)	Córneas de alta espessura geral

Interpretação:

- Agora começam a aparecer **variações regionais**: alguns perfis mais finos centrais, outros com espessamento superior.
- Este K é rico em diversidade anatômica, mas já mostra sobreposição.

K = 6 - Diversificação com subgrupos

Silhouette = 0.164

Cluster	Destaque	Padrão
0	Muito fino (~44 μm)	Uniforme, possivelmente córnea delgada
1	Muito espesso (~61 μm)	Uniforme e regular
2	Intermediário (~49 µm)	Leve afinamento central
3	Assimétrico (S alto, C baixo)	Padrão topográfico irregular
4	Regular (~56 μm)	Espesso normal
5	Médio (~53 μm)	Regular leve espessamento inferior

Interpretação:

- Aqui aparecem dois grupos assimétricos (3 e 2), o que sugere variações anatômicas reais, não ruído.
- K=6 é um bom compromisso entre **complexidade** e **interpretabilidade**.

K = 7 e K = 8 - Refinamento dos subperfis

Silhouette ≈ 0.16

- Em ambos os casos, os grupos se mantêm semelhantes, apenas dividindo os perfis intermediários e assimétricos em subtipos.
- Observam-se padrões:
 - Córneas muito espessas (~62 μm).
 - Córneas finas (~44 μm).
 - Perfis assimétricos (espessamento superior e adelgaçamento inferior).
 - Pequenos grupos atípicos, como o cluster 7 de K=8, com espessura central normal mas bordas muito finas — um padrão periférico raro.

Interpretação:

 K=8 já descreve perfis morfológicos detalhados, úteis para classificações clínicas mais avançadas (por exemplo, em estudos de variações regionais da córnea).

K = 10 - Granularidade excessiva

Silhouette = 0.137

- Muitos perfis semelhantes entre si, apenas levemente deslocados.
- Exemplo: clusters 1, 2 e 7 diferem apenas em 2–3 μm.
- Padrões atípicos como o cluster 9 (C=53, S=41) indicam casos isolados ou ruído.

Interpretação:

- O modelo passa a **fragmentar padrões reais**, perdendo representatividade global.
- Útil apenas se o objetivo for detecção de casos extremos ou raros.

■ Síntese Final

K Silhouette

Melhor uso

2	• 0.323	Boa separação global — visão macro da população
3	• 0.240	Introduz perfil intermediário — 3 classes claras
5 – 6	• 0.20–0.16	Mostram variações regionais reais — ideal para diagnóstico topográfico
7 – 8	• 0.16	Refina detalhes — útil em análises mais clínicas
10	<u>1</u> 0.14	Granular demais — perde generalização

🧠 Conclusão e Recomendação

- O conjunto de dados apresenta **dois grandes grupos principais** (finos e espessos), com subdivisões intermediárias.
- A partir de K=5 ou K=6, o modelo começa a revelar padrões topográficos regionais (diferenças entre regiões superior/inferior).
- O valor de **K=6** parece ser o **melhor equilíbrio** entre:
 - Clareza dos perfis clínicos,
 - o Interpretação prática,
 - Evitar fragmentação excessiva.

Precomendação para apresentação ao cliente:

Mostrar a progressão visual ($K=2 \rightarrow K=6$), destacando como o modelo passa de uma separação global para revelar perfis morfológicos detalhados, culminando em 6 tipos bem distintos de córneas.

Posso montar para você agora **os gráficos de perfis médios (linhas por cluster)** para os Ks principais (por exemplo, K=2, 3 e 6), simulando uma **entrega visual para o cliente**. Quer que eu gere esses gráficos?