## **Transformations of Trigonometric Functions**

1. Sketch at least 1 cycle of the graph of the function  $f(x) = -2\sec\left[2\left(x - \frac{\pi}{3}\right)\right] - 1$  and state all the features of the graph.

First sketch 
$$g(x) = -2\cos\left[2(x-\overline{3})\right] - 1$$

Equation of Axis: y = -1

Maximum Value: \_\_\_\_\_\_

Minimum Value: y=3Period: z=7

Start of Cycle:  $(\frac{\pi}{3}, -3)$ 

End of Cycle: (4)

end = 3+T 



State the transformations of the following sinusoidal function and determine an equation to represent the graph.



\* choose sine \*

Start of Cycle: ( = 3)

End of Cycle:  $(\frac{\pi}{2}, 3)$ 

Max: y= 5.5

Min: y = 0.5

Amplitude: 2.5 or \frac{5}{5}

Equation of Axis: y = 3



\* choose cosine.

Start of Cycle: (-TT, -1) mn.

End of Cycle:  $(51 \\ 4, -1)$ 

Period: 
$$3\pi$$
  $K = \frac{2\pi}{3\pi} = \frac{2}{3}$ 

Max: y = 5

Min: y = -1

Amplitude:

Equation of Axis:  $\sqrt{-2}$ 



\* choose cosine => secont

Start of Cycle: (0,0)

End of Cycle: (2TT, 0)

Period:  $\Rightarrow \pi$   $k = \frac{2\pi}{2\pi} = 1$ 

Max:

Min: -2

Amplitude:

Equation of Axis: y = -1

Equation:

+(x)= 5 sin (2(x+3)+3)

Equation:

$$f(x) = -3\cos\left[\frac{3}{3}(x+\frac{77}{4})\right]+2$$

Equation:

$$f(x) = secx - 1$$