

Art of Problem Solving

2017 Romanian Masters In Mathematics

9th RMM 2017	
_	Day 1 (February 24, 2017)
1	(a) Prove that every positive integer n can be written uniquely in the form
	$n = \sum_{j=1}^{2k+1} (-1)^{j-1} 2^{m_j},$
	where $k \geq 0$ and $0 \leq m_1 < m_2 \cdots < m_{2k+1}$ are integers. This number k is called <i>weight</i> of n .
	(b) Find (in closed form) the difference between the number of positive integers at most 2^{2017} with even weight and the number of positive integers at most 2^{2017} with odd weight.
2	Determine all positive integers n satisfying the following condition: for every monic polynomial P of degree at most n with integer coefficients, there exists a positive integer $k \leq n$ and $k+1$ distinct integers x_1, x_2, \dots, x_{k+1} such that
	$P(x_1) + P(x_2) + \dots + P(x_k) = P(x_{k+1})$
	. $\label{eq:Note.} \textit{Note.} \ \ \text{A polynomial is} \ \textit{monic} \ \ \text{if the coefficient of the highest power is one.}$
3	Let n be an integer greater than 1 and let X be an n-element set. A non-empty collection of subsets $A_1,, A_k$ of X is tight if the union $A_1 \cup \cdots \cup A_k$ is a proper subset of X and no element of X lies in exactly one of the A_i s. Find the largest cardinality of a collection of proper non-empty subsets of X , no non-empty subcollection of which is tight.
	<i>Note.</i> A subset A of X is proper if $A \neq X$. The sets in a collection are assumed to be distinct. The whole collection is assumed to be a subcollection.
_	Day 2 (February 25, 2017)
4	In the Cartesian plane, let G_1 and G_2 be the graphs of the quadratic functions $f_1(x) = p_1x^2 + q_1x + r_1$ and $f_2(x) = p_2x^2 + q_2x + r_2$, where $p_1 > 0 > p_2$. The graphs G_1 and G_2 cross at distinct points A and B . The four tangents to G_1

and G_2 at A and B form a convex quadrilateral which has an inscribed circle.

Prove that the graphs G_1 and G_2 have the same axis of symmetry.

www.artofproblemsolving.com/community/c416676 Contributors: randomusername, lstekOlympiadTeam

Art of Problem Solving 2017 Romanian Masters In Mathematics

5	Fix an integer $n \geq 2$. An $n \times n$ sieve is an $n \times n$ array with n cells removed so that exactly one cell is removed from every row and every column. A stick is a $1 \times k$ or $k \times 1$ array for any positive integer k . For any sieve A , let $m(A)$ be the minimal number of sticks required to partition A . Find all possible values of $m(A)$, as A varies over all possible $n \times n$ sieves.
6	Let $ABCD$ be any convex quadrilateral and let P,Q,R,S be points on the segments AB,BC,CD , and DA , respectively. It is given that the segments PR and QS dissect $ABCD$ into four quadrilaterals, each of which has perpendicular diagonals. Show that the points P,Q,R,S are concyclic.