Power Amplifiers

Class A Amplifier

A class-A emitter follower biased with a constant-current source is shown in the following Figure. Study the Figure carefully. Transistor parameters are: $\beta = 180$, $V_{BE} = 0.7$ V, and $V_{CE}(\text{sat}) = 0.2$ V. Neglecting base currents, find:

- (i) The value of I_Q .
- (ii) The maximum and minimum values of i_{EI} and i_{L} .
- (iii) The value of *R* that will produce the maximum possible output signal swing.
- (iv) The conversion efficiency.

Fig: Output Stage of Class A Amplifier.

(i)
$$v_O(\text{max}) = V^+ - V_{CE}(\text{sat}) = 10 - 0.2 = 9.8 \text{ V}$$

 $I_Q = i_L(\text{max}) = v_O(\text{max}) / R_L = 9.8 / 1 \text{k} = 9.8 \text{ mA}$

(ii)
$$i_{EI}(max) = 2 I_Q = 19.6 \text{ mA}$$

 $i_{EI}(min) = 0$

$$i_L(\text{max}) = I_Q = 9.8 \text{ mA}$$

 $i_L(\text{min}) = -I_Q = -9.8 \text{ mA}$

(iii)
$$R = (0 - V_{BE} - (-10)) / I_0 = 9.3 / 9.8 \text{m} = 949 \Omega$$

(iv)
$$\overline{P}_L = \frac{1}{2} (i_L (\text{max}))^2 R_L = \frac{1}{2} (9.8 \text{m})^2 (1 \text{k})$$

 $\Rightarrow \overline{P}_L = 48.02 \text{mW}$
 $\overline{P}_S = I_Q (V^+ - V^-) + I_Q (0 - V^-)$
 $\Rightarrow \overline{P}_S = 9.8 \text{m} (20) + 9.8 \text{m} (10) = 294 \text{mW}$
 $\eta = \frac{\overline{P}_L}{\overline{P}_S} = \frac{48.02 \text{m}}{294 \text{m}} = 16.3\%$

Class B Amplifier

An idealized class B output stage is to deliver 35 W of average power to a 25Ω load for a symmetrical input sine wave. The maximum output voltage is required to be 80% of the power supply voltage.

- Find the power supply voltage.
- With that power supply voltage, calculate the value of the power conversion efficiency η .

$$P_L^* = 35 \text{ W}, R_L = 25\Omega$$

 $P_L^* = (1/2)(V_P^2/R_L) \rightarrow 35 = (1/2)(V_P^2/25)$
 $V_P = 41.83 \text{ V} = 0.8 V_{CC}$
 $V_{CC} = V_P / 0.8 = 52.3 \text{ V}$
 $P_S^* = (2 V_{CC})(V_P/\pi R_L) = (2x52.3)(41.83/\pi(25))$
 $P_S^* = 55.7 \text{ W}$
 $\eta = P_L^*/P_S^* = 35/55.7 = 0.628 \text{ or } 62.8\%$

Class AB Amplifier

Voltage Transfer Characteristics for The Class-AB Output Stage:

Fig: Class AB Bipolar Output Stage.

- (a) Voltage transfer curve
- (b) Sinusoidal input signal
- (c) Collector currents
- (d) Output current

