Principles of Conservation Planning

Professor Kerrie Wilson Professor Mike Bode Wen Wen

What is systematic conservation planning?

 Conservation planning: guides decisions about the location, configuration and management of conservation areas

 Conservation areas: areas managed for the persistence of biodiversity and other natural values

 Repeatable, transparent and equitable process for supporting conservation decisions

Systematic conservation planning

- Informed policy and legislation in terrestrial and marine environments (e.g. South Africa, Australia)
- Foundation of planning approaches of international non-government organisations (e.g. Conservation International, TNC)
- 1,000s of peer reviewed papers, cited many thousands of times

Why bother with all these complicated methods?

Map 14.1: NSW national parks and forest reserves, marine parks and aquatic reserves

The NSW reserve system seemed to be going from strength to strength

Why bother with all these complicated methods?

Map 14.1: NSW national parks and forest reserves, marine parks and aquatic reserves

On systematic inspection, the protection was revealed to be highly biased.

Does conservation planning still matter?

We're still making many of the same mistakes.

Systematic Conservation Planning: The CARE principles

Comprehensive: Every biodiversity feature is protected

Adequate: Conserves the represented features indefinitely

Representative: Protects the full range of variation within each species or ecosystem

Efficient: Has minimal cost

Comprehensive

- Principle: A sample of every kind of biodiversity should be protected
- Practice: capture as many as possible of:
 - Species
 - Ecosystems
 - Ecological processes

Adequacy

 Principle: Protect enough of each kind of biodiversity so that it persists forever

• Practice: this is tough!

Adequacy

- Practice: Make protected areas large, and cover lots of the distribution of each species or ecosystem
- How much is 'lots'?
 We don't know, but more is generally better

Adequacy

- Determine required connectivity and spatial configuration (minumum patch size)
- Population viability analysis = probabilities of persistence (risk) and minimum viable population
- Metapopulation models (local extinction and colonisation of habitat patches): links landscape pattern and species viability
- Trade-offs between species

Representative

- Principle: Protect the full range of variation within each species or ecosystem
- For example, protect a particular vegetation type at a range of altitudes, represent genetic variation across a species

Efficiency

- Principle: do all of the above for the least cost
- Practice, minimise
 - Acquisition cost
 - Management cost
 - Social cost

How to get an efficient, comprehensive system of conservation areas

- The minimum set problem: Minimise the cost of the system of conservation areas, subject to the constraints that all targets are met
- The maximum coverage problem: Protect as much biodiversity as possible given a fixed budget
- The key is good problem formulation

Integer linear programming (ILP) formulation – minimum set problem

Subject to
$$\sum_{j=1}^{n} a_{ij} x_{j} \ge 1$$

if the site is conserved

 $a_{ij} = 1$ if species *i* occurs in site *j*

 C_j = the cost of planning unit I

Spatial problems

- There is more to the cost of a protected area system than its area
- Boundary length and shape can be important
- We can introduce rules about minimising boundary length (edge effects), ensuring there is a minimal size (adequacy), in addition to minimising the cost of land, forgone development opportunities etc

Flexibility

- Conservation plans need to be socially and politically feasible
- Irreplaceability:

High: a particular site is essential to meet conservation objectives

Low: a particular site can be substituted with another

Decision Support Tools

How do we better inform decisions by accounting for al uncertainties, values and perspectives of diverse decision-makers, titleholders and stakeholders?

Key messages

- Systematic conservation planning aims to provide a repeatable, transparent and equitable process for supporting conservation decisions.
- Core principles of systematic conservation planning are: comprehensive, adequate, representative and efficient (CARE).
- Decision support tools can don't make decisions or come with perfect data

References

- Ferrier, S., and B. A. Wintle. 2009. Chapter 1 Quantitative approaches to spatial conservation prioritisation: matching the solution to the need. Pages 1-15 in A. Moilanen, K. A. Wilson, and H. P. Possingham, editors. Spatial conservation prioritisation: quantitative methods and computational tools. Oxford University Press, Oxford.
- Margules, C. R. and R. L. Pressey (2000). "Systematic conservation planning." Nature 405(6783): 243-253.
- Moilanen, A., H. P. Possingham, and S. Polasky. 2009. Chapter 3 A mathematical classification of conservation prioritisation problems. Pages 28-41 in A. Moilanen, K. A. Wilson, and H. P. Possingham, editors. Spatial conservation prioritisation: quantitative methods and computational tools. Oxford University Press, Oxford.
- Nicholson, E., and O. Ovaskainen. 2009. Chapter 8 Conservation prioritisation using metapopulation models. Pages 110-121 in A. Moilanen, K. A. Wilson, and H. P. Possingham, editors. Spatial conservation prioritisation: quantitative methods and computational tools. Oxford University Press, Oxford.
- Pressey, R. L., C. J. Humphries, et al. (1993). "Beyond Opportunism Key Principles for Systematic Reserve Selection." <u>Trends in Ecology & Evolution</u> **8**(4): 124-128.
- Pressey, R. L., G. L. Whish, et al. (2002). "Effectiveness of protected areas in north-eastern New South Wales: recent trends in six measures." <u>Biological Conservation</u> **106**(1): 57-69.
- Wilson, K. A., M. Cabeza, and C. J. Klein. 2009. Chapter 2 Fundamental concepts of spatial conservation prioritisation. Pages 16-27 in A. Moilanen, K. A. Wilson, and H. P. Possingham, editors. <u>Spatial conservation prioritisation: quantitative methods and computational tools</u>. Oxford University Press, Oxford.
- Wilson, K. A., J. Carwardine, and H. P. Possingham. 2009. Setting Conservation Priorities. <u>Annals of the New York Academy of Sciences</u> The Year in Ecology and Conservation Biology: 1162:237–264.

Worldwide reach

Antarctica's protected areas

Planning for expansion

IP 165

Presented by

ASOC English

Systematic expansion of the Antarctic protected areas network

Recommendation 4:

That the CEP initiates a program of work involving close engagement with SCAR and other stakeholders (e.g. COMNAP, IAATO, ASOC), to develop a framework for systematically developing the protected area system (e.g. to identify goals/objectives, related science requirements, priorities for actions to be taken by the CEP and Parties, timeframe for action, measures to evaluate progress).

Boot up the laptop!

C-Plan: The Conservation Planning System

But wait ...

But wait ...

