Synthetic Data Generation

Review and Solutions

Agis Kounelis

kounelisagis@gmail.com

May 2021

Synthetic Data

• Why?

Access to large enough datasets with real data (such as Citizen ID, Birth Certificate, Passport, Health Insurance, Address, Medical History, etc.) is not nearly as common as access to toy datasets on Kaggle, specifically designed for machine learning tasks. Thus, we need a few lines of code to generate large datasets with random meaningful entries.

Synthetic Data

• What?

- It can be numerical, binary, or categorical
- The number of features and length of the dataset should be arbitrary
- It should preferably be random and the user should be able to choose a wide variety of statistical distributions to base this data upon
- Random noise can be interjected in a controllable manner

Solutions

Online:

• Mockaroo (Paid): mockaroo.com

Nodejs:

- 1. Randomuser.me: github.com/RandomAPI/Randomuser.me-Node
- 2. json-schema-faker: github.com/json-schema-faker/json-schema-faker

Python:

- 1. Faker: github.com/joke2k/faker
- 2. Mimesis: github.com/lk-geimfari/mimesis

Faker Example (1)

	job	company	ssn	residence	current_location	blood_group	website	username	nane	sex	address	mail	birthdate
0	Best boy	Green, Cervantes and Campbell	889- 12- 6424	427 Meghan Meadow/nWest Aaronton, PA 98674	(-60.023650, 2.635365)	B+	[http://www.wiggins.info/, http://rubio.com/,	tiffany17	Emily Small	F	009 Jonathon Estates Apt. 469\nLisaberg, DC 69305	tatemichelle@yahoo.com	1976-10- 09
1	Chiropractor	Alvarez-Manning	513- 16- 4666	0894 Gentry Highway\nTanyaland, NJ 66671	(+60.310968, 108.922735)	AB+	[http://www.doyle.com/, http://blake.com/, htt	leonbrenda	Billy Campbell	М	26082 David Ports\nLake Christianmouth, NC 18477	vwebb@yahoo.com	1951-04- 27
2	Accountant, chartered	Baker LLC	686- 18- 1850	169 Michael Burg Apt. 847'nLake Christinashire	(-77.384789, 128.840116)	Α-	[http://www.thomas.net/]	phyllis14	Mark Bell	М	5546 Wright Burg Suite 429\nWest Brad, PA 71002	edwardbeck@yahoo.com	1979-08- 06
3	Broadcast presenter	Johnston Ltd	713- 23- 5220	11872 Baldwin View/nWashingtonview, NV 61766	(-58.3895035, 159.312427)	AB+	[https://www.rhodes- cochran.com/, http://www.d	alan47	Candace Johnston	F	4243 Campbell Prairie Apt. 898\nAlexisview, ID	wfranklin@gmail.com	1953-09- 13
4	Purchasing manager	Jones-Nelson	705- 90- 4188	2634 Myers Canyon\nLake Lisatown, VA 25012	(44.0051355, 157.673656)	A-	[http://www.hernandez.com/, http://garcia.com/	deborah85	Danielle Davis	F	73086 Murphy Heights Suite 040'nWalkertown, AZ	maustin@hotmail.com	1976-05- 22
95	Administrator, charities/voluntary organisations	Wolfe-Faulkner	004- 53- 3031	61399 Dennis Track\nWest Paulastad, UT 55071	(88.287097, 87.336323)	AB+	[http://www.english- watson.com/, https://www.d	michael50	Maria Johnson	F	18573 Thompson Gardens\nNew Matthew, SD 55311	tracy01@yahoo.com	1927-05- 10

Figure: Profiles using the built-in profile(.) function

Faker Example (2)

Figure: Profiles using the Standard Providers of the library and numpy functions

Why choosing a more complicated solution?

More control over the distribution of some fields. For example a numeric field (Balance) can follow a Poisson distribution.

Faker

There are options for Localized Providers

```
address()
                                                           administrative unit()
>>> Faker.seed(0)
                                                             >>> Faker.seed(0)
>>> for in range(5):
                                                             >>> for _ in range(5):
    fake.address()
                                                                  fake.administrative unit()
'Λεωφ. Τρικώμου 647-593,\nTK 24219 Ιωάννινα'
                                                              'Κεφαλληνία'
'Λεωφόρος Αυγώνυμων 7,\nTK 15659 Ρέθυμνο'
                                                              'Xioc'
'Φαρών 0,\nΤΚ 01609 Λιβαδιά'
                                                              'Κοζάνη'
'Αρτάκης 93,\η28711 Καρδίτσα'
                                                              'Αρκαδία'
'Λιβαδερού 85.\nTK 39894 Λάρισα'
                                                              'Ηράκλειο'
```

Figure: Profiles using the Locale el_GR option

Next Steps

- Specification of data fields
- Creation of datasets specifically for countries of interest