Jonas Kunze

University of Mainz

11/1/2012 IEEE NSS Anaheim, California

- The physics
- 2 The experiment
 - Subdetectors
- Trigger topology
 - Three level online trigger
 - New proposal
- Software framework
 - Implemented framework
 - Socket programming
- Conclusion

- Motivation
 - The physics
- 2 The experiment
 - Subdetectors
- 3 Trigger topology
 - Three level online trigger
 - New proposal
- Software framework
 - Implemented framework
 - Socket programming
- 5 Conclusion

$K^+ \to \pi^+ \nu \bar{\nu} \iff V_{td}$ of CKM matrix

SM branching ratio: $(8.5 \pm 0.7) \cdot 10^{-11}$ Strong impact by new physcis

Measurement from BNL (Brookhaven)

The only experimental data so far (7 candidates) E787 and E949:

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (17.3^{+11.5}_{-10.5}) \cdot 10^{-11}$$

NA62 aims $\sigma < 10\%$ with 100 events

 $\approx 10^{13}~K^+$ decays in 2014-15

Inspired by Mr. Heuer: Finding the needle in the needlestack

- Motivation
 - The physics
- 2 The experiment
 - Subdetectors
- 3 Trigger topology
 - Three level online trigger
 - New proposal
- Software framework
 - Implemented framework
 - Socket programming
- Conclusion

Experiment overview

K^+ production

Motivation

400 GeV protons from SPS colliding with a beryllium target

Measurement

- 0.8 GHz particles crossing (6% kaons)
- 11 detectors triggered at 10 MHz

Conclusion

Data rates

Motivation

10 MHz unsteady K^+ decay rate

Detector	Event size [B]	Data rate [GBps]
CEDAR	216	2.16
GTK	2250	22.50
CHANTI	192	1.92
LAV	160	1.60
STRAW	768	7.68
RICH	160	1.60
CHOD	≪ 1000	≪ 10
MUV	768	7.68
IRC & SAC	576	5.76
LKR	222 k	2220
Sum	≈227 kB	≈2.3 TBps

The physics

Subdetectors

- 2 The experiment
- Trigger topologyThree level online trigger
 - New proposal
- Software framework
 - Implemented framework
 - Socket programming
- Conclusion

Three levels to filter data

Motivation

FPGA based L0 and software based L1 and L2 triggers:

First topology proposal

Original concept:

Burst time

Burst time

Combine L1 and L2 to one farm

Data transmission via ordinary 10 gigabit ethernet and **UDP/IP**:

We save about 30% hardware (≥100 k€)

- No L1 PCs anymore
- Less switches, less network cards

New proposal Event building @ L1

Every subdetector sends data of one event to the same PC

- + More physics at earlier state
- + No broadcast of a L1 decision needed anymore
- + Easier to implement load balancing (self-sustaining PCs)

Motivation

- The physics
- 2 The experiment
 - Subdetectors
- 3 Irigger topology
 - Three level online trigger
 - New proposal
- Software framework
 - Implemented framework
 - Socket programming
- Conclusion

Conclusion

A software framework has been implemented (5k lines C++):

- Receive UDP packets from electronics
- Consistency checks
- Event building(s)
- Execution of trigger algorithms (L1 and L2)
- Sending data to storage

pf_ring - new type of network socket

Bad performance with standard Kernel sockets

Interrupt based transmission causes packet loss ($\approx 10^{-5}$)

Special socket: pf_ring DNA by ntop

- Direct access to the NIC memory (avoids system calls)
- **→** Only \approx 40% CPU @ full speed 10G receiving 1kB packets
- ♣ No packet loss at all
- Need to implement Ethernet, IP, UDP, ARP...

Motivation

270kHz Eventbuilding rate with only about 3 cores

 \Rightarrow much processing power left for L1 and L2 trigger

- The physics
- 2 The experiment
 - Subdetectors
- Trigger topology
 - Three level online trigger
 - New proposal
- Software framework
 - Implemented framework
 - Socket programming
- Conclusion

Conclusion

- **Y** NA62@CERN: search for new physics in $K^+ \to \pi^+ \nu \bar{\nu}$
- **Y** High precision (BR $< 10^{-10}$) \Rightarrow high data rate
- **Y** A homogeneous PC farm saves money and work
- Using ordinary 10G ethernet saves money but lossless communication only feasible with special software like pf_ring DNA

