

Synthesis of Digital Systems Lab Lecture -3

Video Processing on ZedBoard Software Implementation

Munish Jassi

Recap from Lab-B

Learnings from Lab-A

- Understanding of High Level Synthesis (HLS).
- Xilinx Tool chain for HLS (Vivado HLS).
- Design constraints and optimization directives.
- Various HLS optimization schemes.
- IP packaging to use it in the IP-library.

Content of the Lab Course

- System prototyping on FPGA and associated software tool chain.
- Industry standard High Level Synthesis (HLS) tool chain.
- Implementation of video processing hardware System and software interface.
- Hardware Accelerator (HA) for performance improvement.

Video Processing SoC: Video Frame Format

Video Processing SoC: Timing for Video Frame

Video Processing SoC: PMOD to OV7670 connections

Name	Type	Description	Pmod con-	Zynq Pin
			nection	connection
SDIOC	Input	SCCB clock	JB10	V8
SDIOD	In/Out	SCCB data	JB4	W8
VSYNC	Output	Vertical synchronization	JB9	V9
HREF	Output	Horizontal synchronization	JB3	V10
PCLK	Output	Pixel clock	JB8	W10
XCLK	Input	System clock	JB2	W11
D_0	Output	Video data	JA2	AA11
D_1	Output	Video data	JA8	AB10
D_2	Output	Video data	JA3	Y10
D_3	Output	Video data	JA9	AB9
D_4	Output	Video data	JA4	AA9
D_5	Output	Video data	JA10	AA8
D_6	Output	Video data	JB1	W12
D_7	Output	Video data	JB7	V12
RESET	Input	Reset (Active low)	JA7	AB11
PWDN	Input	Power down (Active high)	JA1	Y11
GND	Ground	Camera ground port	GND (JA/JB)	
3V3	Power	Camera power port	VCC (JA/JB)	

Video Processing SoC: Camera Interface

Video Processing SoC: Display Interface

Video Processing SoC: Gray Scale Conversion

- Gray Scale Conversion is a single pixel operation.
- Luminosity method, calculates the weighted average for human perception.

$$Y = (R + G + B)/3$$

 $Y = 0.114R + 0.587G + 0.299B$

Video Processing SoC: Software Application

```
File: main.c
Data: Camera video stream
Result: Output stream on display, after processing
main() {
< HW Platform initialization >
<ADI peripherals initialization (from Analog devices) >
<HDMI configuration >
< CPU Interrupt controller initilization >
while true do
   if <Keyboard input to change resolution > then
      <Change HDMI configuration to new resolution >
   end
end
return;
File: axi_interrupt.c
AXI_INTERRUPT_VsyncIntr_Handler() {
      <DDRVideoWr: Read form Camera</p>
                       Write to DDR memory>
```


Lab C: Steps to follow

- 1. XPS Project creation and set up of the HDMI display.
- 2. Adding Camera peripheral core.
- 3. Software application project in SDK.
- 4. Hardware set up for Monitor and Camera.
- 5. FPGA programming and software application execution on ZedBoard.
- 6. Software application for Gray scale conversion.

Thank You for your participation