DANMARKS TEKNISKE UNIVERSITET

Skriftlig prøve, 12 December 2019

Kursusnavn: Diskret Mat	ematik
Kursusnummer: 01017	
Hjælpemidler: Skriftlige h	ıjælpemidler er tilladt.
Varighed: 2 timer.	
Vægtning:	
Opgave 1: 40% Opgave 2: 10% Opgave 3: 10% Opgave 4: 15% Opgave 5: 13% Opgave 6: 12%	
Bedømmelserne af eks nøje overholder følgen	amen er delvist automatiseret. Det er derfor afgørende at du de retningslinjer:
opgavebesvarelse afleveres tomme bokse vil ikke bliv	at udfylde de tomme bokse på de følgende sider. Som blot hele opgavesættet i udfyldt stand. Tekst og figurer udenfor de e taget i betragtning. Hvis man undtagelsesvis har brug for mere gaveløsninger på ekstra ark, som tilføjes til slutningen af afleveringen.
	ål skal du sætte et kryds i de rigtige firkanter: ⊠. Hvis du fortryder et et, så overtegn i stedet hele den forkerte box: ■.
$Studienummer\\ Study\ number$	
Fødselsdato Date of birth	
Navn Name	
$ \begin{array}{c} \textbf{Bordnummer} \\ \textbf{\textit{Table number}} \end{array} $	

Side 1 af 10

Opgave 1 (40%)

Afgør om følgende udsagn er sande eller falske. Forkert svar tæller negativt.

	Udsagn	Sand	Falsk
1.	Udtrykket $\forall x(P(L(x),Y(x)))$ er en formel i prædikatlogik når L og Y er unære prædikatsymboler og P er et binært prædikatsymbol.		
2.	Udtrykket $\forall x(P(x,y,f(x,y)))$ er en formel i prædikatlogik når P er et ternært (3-ært) prædikatsymbol og f er et binært funktionssymbol.		
4.	Lad A, B, C og D være vilkårlige mængder. Da gælder: $(A - B) \cap (C - D) \cap (D - A) = \emptyset.$		
5.	Lad A, B, C og D være vilkårlige mængder. Da gælder: $(A-B) \cup (B-C) \cup (C-D) = A-D.$		
6.	Formlen $((p \lor r) \land (r \to q) \land \neg p) \to q$ er gyldig.		
7.	$\forall x P(x,y)$ er en lukket formel.		
8.	$\forall x P(x,y)$ er en åben formel.		
9.	x er erstattelig med y i følgende formel: $\forall y(Q(y) \to \forall x P(x,y)) \to R(f(x),g(y)).$		
10.	Lad A være formlen $P(x, y)$. Da gælder $A[y/x] = A[x/y]$.		

	Udsagn	Sand	Falsk
11.	Lad A og B være formler i udsagnslogik. Antag vi laver et tableau med $A \to B$: T i roden. Da gælder at B ikke er en logisk konsekvens af A , hvis og kun hvis vi kan få tableauet til at lukke.		
12.	På en ø er der to typer af mennesker: sandsigere, som altid taler sandt, og løgnere, som altid lyver. En fremmed møder på øen Paul og Susan. Paul siger: "Enten er vi begge sandsigere eller også er vi begge løgnere." Det følger heraf at Susan er sandsiger.		
13.	Betragt en fortolkning hvori $E(x,y)$ betegner egenskaben at x elsker y . Vi kan i denne fortolkning formalisere udsagnet "alle, som elsker nogen, elsker sig selv" som formlen $\forall x \exists y (E(x,y) \to E(x,x))$.		

Opgave 2 (10%)

Brug tableau-metoden til at afgøre om følgende påstand er korrekt. Hvis den **ikke** er korrekt, skal du angive en konkret sandhedstildeling som gør præmisserne sande og konklusionen falsk.

Opgave 3 (10%)

Vi betragter et sædvanligt kortspil med 52 kort fordelt ligeligt på de 4 kulører spar, hjerter, ruder og klør.			
1. Hvor mange forskellige hænder med 3 kort er der, hvor der er 2 hjerter og 1 klør. Der skelnes ikke mellem rækkefølge af de tre kort på hånden. Angiv løsningen med en formel, og husk at argumentere kort for dit svar.			
2. Lad $M = \{1, 2,, 180\}$ angive de positive heltal mellem 1 og 180. Beregn hvor mange af elementerne der er delelige med 6 eller 9 (eller begge dele). Retfærdiggør dit svar.			

Opgave 4 (15%)

En funktion f(n) er for n = 1, 2, 3, ... defineret ved

$$f(n) = \sum_{k=1}^{n} \frac{1}{k(k+1)}$$

1. Udregn værdierne af f(1), f(2) og f(3).

2. Vis at for $n = 1, 2, 3, \dots$ gælder

$$f(n+1) = \frac{1}{(n+1)(n+2)} + f(n)$$

Opgaven fortsætter på næste side

$f(n) = \frac{n}{n+1}$, for $n = 1, 2, 3,$

3. Før et induktionsbevis for at

Opgave 5 (13%)

1. Forbind med en streg hvert tal i venstre kolonne med sin multiplikative invers $\pmod{5}$ i højre kolonne. Tegn ikke andre linjer.

\overline{a}	b
1	1
2	2
3	3
4	4

$34x \equiv 4$	$\pmod{44}.$

2. Angiv løsningsmængden til

Opgave 6 (12%)

Vi er givet følgende to polynomier

$$N(x) = x^3 - 2x^2 - 4x + 8$$
$$M(x) = 3x^2 - 4x - 4$$

En kørsel af Euklids algoritme giver følgende

\overline{k}	R_k
0	$x^3 - 2x^2 - 4x + 8$
1	$3x^2 - 4x - 4$
2	$-\frac{32}{9}x + \frac{64}{9}$
3	0

 ${\bf Afg} {\it \& g}$ om følgende udsagn er sande eller falske. Forkert svar tæller negativt.

Udsagn	Sand	Falsk
N(x) og $M(x)$ har ingen fælles rødder		
M(x) går op i $N(x)$		
$R_2(x)$ går op i $R_1(x)$		
$R_2(x)$ er en største fælles divisor for $N(x), M(x)$		
D(x) = x - 2 er en største fælles divisor for $N(x), M(x)$		
N(x) har en dobbeltrod		