教材5.15

找出下列表达式的最一般的合一代换:

```
(a) (pointer (\alpha)) × (\beta \rightarrow \gamma)
```

(b) β ×(γ → δ) 如果(b)的 δ 是 α 呢?

```
s(\beta) = pointer(\alpha) s(\gamma) = pointer(\alpha) s(\delta) = pointer(\alpha)
```

如果(b)的δ是 α ,

(pointer (α)) × $(\beta \rightarrow \gamma)$

 $\beta \times (\gamma \rightarrow \alpha)$ 没有合一代换

若s(β) = pointer (α),则s(γ) = pointer (α),进而s(α) = pointer (α) \Rightarrow 矛盾

教材 5.17

效仿例5.5, 推导下面map的多态类型:

map : $\forall \alpha. \forall \beta. ((\alpha \rightarrow \beta) \times \text{list } (\alpha)) \rightarrow \text{list } (\beta)$

map的ML定义是

```
fun map (f, 1 ) =
if null (1 ) then nil
else cons (f (hd (l)), map (f, tl (l ) ) );
```

在这个函数体中, 内部定义的标识符的类型是:

null: $\forall \alpha$.list (α) \rightarrow boolean;

nil : $\forall \alpha$.list (α);

cons : $\forall \alpha.(\alpha \times list(\alpha)) \rightarrow list(\alpha)$;

hd : $\forall \alpha$. list $(\alpha) \rightarrow \alpha$;

tl: $\forall \alpha$. list $(\alpha) \rightarrow$ list (α) ;

行	定型断言	代换	规则
(1)	f:α		(Exp Id)
(2)	Ι:β		(Exp Id)
(3)	map : γ		(Exp Id)
(4)	map(f,l):δ	$\gamma = \alpha \times \beta \rightarrow \delta$	(Exp FunCall)
(5)	Ι:β		从(2)可得
(6)	null : list(α _{nu}) -> boolean		(Exp ld Fresh)
(7)	null(l) : boolean	$\beta = list(\alpha_{nu})$	(Exp FunCall)
(8)	nil : list(α _{ni})		(Exp Id)
(9)	I: list(α _{nu})		从(2)可得
(10)	hd : list (α_h) -> α_h		(Exp ld Fresh)
(11)	hd(Ι):α _{nu}	$\alpha_{nu} = \alpha_h$	(Exp FunCall)
(12)	f:α		从(1)可得
(13)	f(hd(l)) : α _f	$\alpha = \alpha_h \rightarrow \alpha_f$	(Exp FunCall)
(14)	I: list(α _{nu})		从(2)可得
(15)	tl : list(α_t) -> list(α_t)		(Exp ld Fresh)
(16)	tl(Ι): list(α _{nu})	$\alpha_{nu} = \alpha_t$	(Exp FunCall)
(17)	$f: \alpha_h \rightarrow \alpha_f$		从(1)可得
(18)	map : ((α_m -> β_m) × list (α_m)) -> δ		(Exp ld Fresh)
(19)	map(f , tl(l)) : δ	$\alpha_h = \alpha_m$; $\beta_m = \alpha_f$; $\alpha_{nu} = \alpha_m$	(Exp FunCall)
(20)	cons: ($\alpha_C \times \text{list}(\alpha_C)$) -> list(α_C)		(Exp ld Fresh)
(21)	cons (f (hd (l)) , map (f , tl (l))) : list (α _f)	$\alpha_{c} = \alpha_{f}; \delta = list(\alpha_{f})$	(Exp FunCall)
(22)	if : boolean $\times \alpha_i \times \alpha_i \rightarrow \alpha_i$		(Exp ld Fresh)

行	定型断言	代换	规则
(23)	if() : list(α _{ni})	$\alpha_i = list(\alpha_{ni}); \alpha_{ni} = \alpha_f$	(Exp FunCall)
(24)	match : $\alpha_{mat} \times \alpha_{mat} \rightarrow \alpha_{mat}$		(Exp ld Fresh)
(25)	match () : list(α _{ni})	α_{mat} = list(α_{ni})	(Exp FunCall)

习题 5.21

使用例5.9的规则,确定下列哪些表达式有唯一类型(假定z是复数):

- (a) 1 * 2 * 3
- (b) 1 * (z * 2)
- (c) (1 * z) * z
- (a) 没有唯一类型,1*2为整数时,(1*2)*3也为整数;1*2为复数时,由于复数乘以整数仍为复数,故(1*2)*3为复数类型
- (b) 有唯一类型,由于复数乘以整数仍为复数,z*2为复数类型,1*(z*2)仍为复数类型
- (c)有唯一类型,由于复数乘以整数仍为复数,故1*z为复数类型,(1*z)*z仍为复数类型