Relação de Equivalência - Classes de Equivalência nos Inteiros - Continuação

José Antônio O. Freitas

MAT-UnB

29 de agosto de 2020

$$\overline{n} =$$

$$\overline{n} = C(n) =$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n)

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} ,

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) =$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{ x \in \mathbb{Z} \mid x \equiv 0 \pmod{m} \}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x \in \mathbb{$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\}\$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) =$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{ x \in \mathbb{Z} \mid x \equiv 1 \pmod{m} \}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x \in \mathbb{$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z}\}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão. Assim fixando m>1 vamos escrever

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{ x \in \mathbb{Z} \mid x \equiv 1 \pmod{m} \} = \{ x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z} \}$$

$$R_m(n) =$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão. Assim fixando m > 1 vamos escrever

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z}\}$$

$$R_m(n) = \{x \in \mathbb{Z} \mid$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão. Assim fixando m>1 vamos escrever

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z}\}$$

$$R_m(n) = \{x \in \mathbb{Z} \mid x = n + km, k \in \mathbb{Z}\}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão. Assim fixando m>1 vamos escrever

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z}\}$$

$$R_m(n) = \{x \in \mathbb{Z} \mid x = n + km, k \in \mathbb{Z}\}$$

As classes de equivalência definidas pela congruência módulo m

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m.

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros cujo resto na divisão inteira por m é n.

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros cujo resto na divisão inteira por m é n.

Corolário

$$R_m(k) = R_m(l)$$

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros cujo resto na divisão inteira por m é n.

Corolário

 $R_m(k) = R_m(l)$ se, e somente se, $k \equiv l \pmod{m}$.

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros cujo resto na divisão inteira por m é n.

Corolário

 $R_m(k) = R_m(l)$ se, e somente se, $k \equiv l \pmod{m}$.

Exemplos

1) Se m = 2,

Exemplos

1) Se m = 2, então os possíveis restos na divisão inteira por 2 são 0 e 1.

$$R_2(0) =$$

$$R_2(0) = \{x \in \mathbb{Z} \mid$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} =$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x \in \mathbb{$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) =$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} =$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

2) Se m = 3,

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

2) Se m=3, então os possíveis restos da divisão inteira são 0, 1 e 2.

1) Se m = 2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

2) Se m = 3, então os possíveis restos da divisão inteira são 0, 1 e 2. Daí

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

2) Se m = 3, então os possíveis restos da divisão inteira são 0, 1 e 2. Daí $R_3(0)=$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

2) Se m=3, então os possíveis restos da divisão inteira são 0, 1 e 2. Daí $R_3(0)=\{x\in\mathbb{Z}\mid$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

2) Se m=3, então os possíveis restos da divisão inteira são 0, 1 e 2. Daí $R_3(0)=\{x\in\mathbb{Z}\mid x\equiv 0\pmod 3\}=$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

1) Se m = 2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) =$$

1) Se m = 2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid$$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} =$$

1) Se m = 2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x \in \mathbb{$$

1) Se m = 2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}\$$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}\$$

$$R_3(2) =$$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}\$$

$$R_3(2) = \{x \in \mathbb{Z} \mid$$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}\$$

$$R_3(2) = \{x \in \mathbb{Z} \mid x \equiv 2 \pmod{3}\} =$$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}\$$

$$R_3(2) = \{x \in \mathbb{Z} \mid x \equiv 2 \pmod{3}\} = \{x \in \mathbb{Z} \mid$$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}\$$

$$R_3(2) = \{x \in \mathbb{Z} \mid x \equiv 2 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 2, k \in \mathbb{Z}\}\$$

1) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1. Logo, existem duas classes de equivalência, a saber

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}\$$

$$R_3(2) = \{x \in \mathbb{Z} \mid x \equiv 2 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 2, k \in \mathbb{Z}\}\$$

Na relação de equivalência módulo m existem m classes de equivalência.

Na relação de equivalência módulo m existem m classes de equivalência.

Prova: Os possíveis restos na divisão inteira por m

Na relação de equivalência módulo m existem m classes de equivalência.

Prova: Os possíveis restos na divisão inteira por m são 0, 1, ..., (m-1).

Na relação de equivalência módulo m existem m classes de equivalência.

Prova: Os possíveis restos na divisão inteira por m são 0, 1, ..., (m-1). Como cada possível resto define uma classe de equivalência diferente,

Na relação de equivalência módulo m existem m classes de equivalência.

Prova: Os possíveis restos na divisão inteira por m são 0, 1, ..., (m-1). Como cada possível resto define uma classe de equivalência diferente, existem exatamente m classes de equivalência.

Na relação de equivalência módulo m existem m classes de equivalência.

Prova: Os possíveis restos na divisão inteira por m são 0, 1, ..., (m-1). Como cada possível resto define uma classe de equivalência diferente, existem exatamente m classes de equivalência.

Fixado m inteiro positivo,

Fixado m inteiro positivo, denotaremos

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

O conjunto quociente

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

O conjunto quociente desta relação será denotado por $\frac{\mathbb{Z}}{m\mathbb{Z}}$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

$$\mathbb{Z}_m =$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

$$\mathbb{Z}_m = \frac{\mathbb{Z}}{m\mathbb{Z}} =$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

$$\mathbb{Z}_m = \frac{\mathbb{Z}}{m\mathbb{Z}} = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}.$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

$$\mathbb{Z}_m = \frac{\mathbb{Z}}{m\mathbb{Z}} = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}.$$

Vamos definir um meio de somar

Vamos definir um meio de somar e multiplicar os elementos de \mathbb{Z}_m .

Vamos definir um meio de somar e multiplicar os elementos de \mathbb{Z}_m . Por exemplo, em \mathbb{Z}_2 =

Vamos definir um meio de somar e multiplicar os elementos de \mathbb{Z}_m . Por exemplo, em $\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$

Vamos definir um meio de somar e multiplicar os elementos de \mathbb{Z}_m . Por exemplo, em $\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$ temos que a soma de pares é par,

Vamos definir um meio de somar e multiplicar os elementos de \mathbb{Z}_m . Por exemplo, em $\mathbb{Z}_2=\{\overline{0},\overline{1}\}$ temos que a soma de pares é par, soma de par com ímpar

Vamos definir um meio de somar e multiplicar os elementos de \mathbb{Z}_m . Por exemplo, em $\mathbb{Z}_2=\{\overline{0},\overline{1}\}$ temos que a soma de pares é par, soma de par com ímpar é ímpar

Vamos definir um meio de somar e multiplicar os elementos de \mathbb{Z}_m . Por exemplo, em $\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$ temos que a soma de pares é par, soma de par com ímpar é ímpar e a soma de ímpares é par.

Vamos definir um meio de somar e multiplicar os elementos de \mathbb{Z}_m . Por exemplo, em $\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$ temos que a soma de pares é par, soma de par com ímpar é ímpar e a soma de ímpares é par. Assim podemos escrever

Vamos definir um meio de somar e multiplicar os elementos de \mathbb{Z}_m . Por exemplo, em $\mathbb{Z}_2=\{\overline{0},\overline{1}\}$ temos que a soma de pares é par, soma de par com ímpar é ímpar e a soma de ímpares é par. Assim podemos escrever

\oplus	Ō	$\overline{1}$
0		
1		

Para multiplicação, temos

Vamos definir um meio de somar e multiplicar os elementos de \mathbb{Z}_m . Por exemplo, em $\mathbb{Z}_2=\{\overline{0},\overline{1}\}$ temos que a soma de pares é par, soma de par com ímpar é ímpar e a soma de ímpares é par. Assim podemos escrever

\oplus	Ō	$\overline{1}$
$\overline{0}$		
1		

Para multiplicação, temos

\otimes	ō	$\overline{1}$
0		
$\overline{1}$		

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} =$$

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=$$

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e produto

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e produto definidas acima são independentes dos representantes das classes.

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e produto definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes,

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e produto definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$ e

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a} \otimes \overline{b} = \overline{ab}$$
.

Proposição

As operações de soma e produto definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1=\overline{a}_2$ e $\overline{b}_1=\overline{b}_2$,

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a} \otimes \overline{b} = \overline{ab}$$
.

Proposição

As operações de soma e produto definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1=\overline{a}_2$ e $\overline{b}_1=\overline{b}_2$, com $a_1\neq a_2$

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e produto definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$ e $\overline{b}_1 = \overline{b}_2$, com $a_1 \neq a_2$ e $b_1 \neq b_2$,

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e produto definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$ e $\overline{b}_1 = \overline{b}_2$, com $a_1 \neq a_2$ e $b_1 \neq b_2$, temos:

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e produto definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$ e $\overline{b}_1 = \overline{b}_2$, com $a_1 \neq a_2$ e $b_1 \neq b_2$, temos:

$$a_1 \equiv a_2 \pmod{m}$$

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a} \otimes \overline{b} = \overline{ab}$$
.

Proposição

As operações de soma e produto definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$ e $\overline{b}_1 = \overline{b}_2$, com $a_1 \neq a_2$ e $b_1 \neq b_2$, temos:

$$a_1 \equiv a_2 \pmod{m}$$

$$b_1 \equiv b_2 \pmod{m}$$
.

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e produto definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$ e $\overline{b}_1 = \overline{b}_2$, com $a_1 \neq a_2$ e $b_1 \neq b_2$, temos:

$$a_1 \equiv a_2 \pmod{m}$$

$$b_1 \equiv b_2 \pmod{m}$$
.

Daí,

$$a_1+b_1\equiv a_2+b_2 \pmod{m}$$

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a} \otimes \overline{b} = \overline{ab}.$$

Proposição

As operações de soma e produto definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$ e $\overline{b}_1 = \overline{b}_2$, com $a_1 \neq a_2$ e $b_1 \neq b_2$, temos:

$$a_1 \equiv a_2 \pmod{m}$$

$$b_1 \equiv b_2 \pmod{m}$$
.

Relação de Equivalência - Classes de Equivalê

Daí,

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1b_1 \equiv a_2b_2 \pmod{m}$

Dados \bar{a} , $\bar{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a} \otimes \overline{b} = \overline{ab}.$$

Proposição

As operações de soma e produto definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$ e $\overline{b}_1 = \overline{b}_2$, com $a_1 \neq a_2$ e $b_1 \neq b_2$, temos:

$$a_1 \equiv a_2 \pmod{m}$$

$$b_1 \equiv b_2 \pmod{m}$$
.

Relação de Equivalência - Classes de Equivalê

Daí,

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1b_1 \equiv a_2b_2 \pmod{m}$

 $\mathsf{Mas}\;\mathsf{de}\; a_1+b_1\equiv a_2+b_2\;(\mathsf{mod}\; m)$

Mas de
$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$
 segue que $\overline{a_1 + b_1} =$

Mas de
$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$
 segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$

Mas de
$$a_1+b_1\equiv a_2+b_2\pmod m$$
 segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=$

Mas de
$$a_1+b_1\equiv a_2+b_2\pmod m$$
 segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=$

Mas de
$$a_1+b_1\equiv a_2+b_2\pmod m$$
 segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=\overline{a_2+b_2}=$

Mas de
$$a_1+b_1\equiv a_2+b_2\pmod m$$
 segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=\overline{a_2+b_2}=\overline{a}_2\oplus \overline{b}_2$.

Mas de
$$a_1+b_1\equiv a_2+b_2\pmod m$$
 segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim
$$\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=\overline{a_2+b_2}=\overline{a}_2\oplus \overline{b}_2.$$

Agora de $a_1b_1 \equiv a_2b_2 \pmod{m}$

Mas de
$$a_1+b_1\equiv a_2+b_2\pmod m$$
 segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=\overline{a_2+b_2}=\overline{a}_2\oplus \overline{b}_2$.

Agora de $a_1b_1 \equiv a_2b_2 \pmod{m}$ segue que $\overline{a_1b_2} =$

Mas de
$$a_1+b_1\equiv a_2+b_2\pmod m$$
 segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=\overline{a_2+b_2}=\overline{a}_2\oplus \overline{b}_2.$

Agora de $a_1b_1 \equiv a_2b_2 \pmod{m}$ segue que $\overline{a_1b_2} = \overline{a_2b_2}$

Mas de
$$a_1+b_1\equiv a_2+b_2\pmod m$$
 segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=\overline{a_2+b_2}=\overline{a}_2\oplus \overline{b}_2$.

Agora de $a_1b_1\equiv a_2b_2\pmod m$ segue que $\overline{a_1b_2}=\overline{a_2b_2}$. Assim $\overline{a}_1\otimes \overline{b}_1=$

Mas de
$$a_1+b_1\equiv a_2+b_2\pmod m$$
 segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=\overline{a_2+b_2}=\overline{a}_2\oplus \overline{b}_2$.

Agora de
$$a_1b_1 \equiv a_2b_2 \pmod{m}$$
 segue que $\overline{a_1b_2} = \overline{a_2b_2}$. Assim

$$\overline{a}_1 \otimes \overline{b}_1 = \overline{a_1b_1} =$$

Mas de
$$a_1+b_1\equiv a_2+b_2\pmod m$$
 segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=\overline{a_2+b_2}=\overline{a}_2\oplus \overline{b}_2$.

Agora de $a_1b_1\equiv a_2b_2\pmod{m}$ segue que $\overline{a_1b_2}=\overline{a_2b_2}$. Assim

$$\overline{a}_1 \otimes \overline{b}_1 = \overline{a_1b_1} = \overline{a_2b_2} =$$

Mas de
$$a_1+b_1\equiv a_2+b_2\pmod m$$
 segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=\overline{a_2+b_2}=\overline{a}_2\oplus \overline{b}_2$.

Agora de $a_1b_1 \equiv a_2b_2 \pmod{m}$ segue que $\overline{a_1b_2} = \overline{a_2b_2}$. Assim $\overline{a_1} \otimes \overline{b_1} = \overline{a_1b_1} = \overline{a_2b_2} = \overline{a_2} \otimes \overline{b_2}.$

Mas de
$$a_1+b_1\equiv a_2+b_2\pmod m$$
 segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim
$$\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=\overline{a_2+b_2}=\overline{a}_2\oplus \overline{b}_2.$$

Agora de $a_1b_1 \equiv a_2b_2 \pmod{m}$ segue que $\overline{a_1b_2} = \overline{a_2b_2}$. Assim

$$\overline{a}_1 \otimes \overline{b}_1 = \overline{a_1b_1} = \overline{a_2b_2} = \overline{a}_2 \otimes \overline{b}_2.$$

Portanto a soma e a multiplicação

Mas de
$$a_1+b_1\equiv a_2+b_2\pmod m$$
 segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim
$$\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=\overline{a_2+b_2}=\overline{a}_2\oplus \overline{b}_2.$$

Agora de $a_1b_1 \equiv a_2b_2 \pmod{m}$ segue que $\overline{a_1b_2} = \overline{a_2b_2}$. Assim

$$\overline{a}_1 \otimes \overline{b}_1 = \overline{a_1b_1} = \overline{a_2b_2} = \overline{a}_2 \otimes \overline{b}_2.$$

Portanto a soma e a multiplicação não dependem dos representantes que escolhemos para as classes de equivalência,

Mas de
$$a_1+b_1\equiv a_2+b_2\pmod m$$
 segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=\overline{a_2+b_2}=\overline{a}_2\oplus \overline{b}_2$.

Agora de $a_1b_1 \equiv a_2b_2 \pmod{m}$ segue que $\overline{a_1b_2} = \overline{a_2b_2}$. Assim

$$\overline{a}_1 \otimes \overline{b}_1 = \overline{a_1b_1} = \overline{a_2b_2} = \overline{a}_2 \otimes \overline{b}_2.$$

Portanto a soma e a multiplicação não dependem dos representantes que escolhemos para as classes de equivalência, como queríamos.

A soma e a multiplicação em $\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$

A soma e a multiplicação em $\mathbb{Z}_4=\{\overline{0},\overline{1},\overline{2},\overline{3}\}$ são dadas nas tabelas abaixo:

A soma e a multiplicação em $\mathbb{Z}_4=\{\overline{0},\overline{1},\overline{2},\overline{3}\}$ são dadas nas tabelas abaixo:

Tabela: Soma em \mathbb{Z}_4

\oplus	ō	$\overline{1}$	$\overline{2}$	3
0				
1				
2				
3				

Tabela: Multiplicação em \mathbb{Z}_4

\otimes	ō	$\overline{1}$	2	3
0				
$\overline{1}$				
2				
3				

As operações de soma \oplus

As operações de soma \oplus e multiplicação \otimes

As operações de soma \oplus e multiplicação \otimes em \mathbb{Z}_m satisfazem as seguintes propriedades:

i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.

- i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \oplus \overline{y} = \overline{y} \oplus \overline{x}$.
- $\textit{ii)} \ \textit{Para todos} \ \overline{x}, \ \overline{y} \ e \ \overline{z} \in \mathbb{Z}_m \colon \big(\overline{x} \oplus \overline{y} \big) \oplus \overline{z} = \overline{x} \oplus \big(\overline{y} \oplus \overline{z} \big).$
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.

- i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \oplus \overline{y} = \overline{y} \oplus \overline{x}$.
- $\textit{ii)} \ \ \textit{Para todos} \ \bar{\textbf{x}}, \ \bar{\textbf{y}} \ e \ \bar{\textbf{z}} \in \mathbb{Z}_{\textit{m}} \text{:} \ (\bar{\textbf{x}} \oplus \bar{\textbf{y}}) \oplus \bar{\textbf{z}} = \bar{\textbf{x}} \oplus (\bar{\textbf{y}} \oplus \bar{\textbf{z}}).$
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\overline{x}\in\mathbb{Z}_m$, existe $\overline{y}\in\mathbb{Z}_m$ tal que $\overline{x}\oplus\overline{y}=\overline{0}$.
- v) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \otimes \overline{y} = \overline{y} \otimes \overline{x}$.

Proposição

As operações de soma \oplus e multiplicação \otimes em \mathbb{Z}_m satisfazem as seguintes propriedades:

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.
- v) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{y} = \bar{y} \otimes \bar{x}$.
- vi) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \otimes \bar{y}) \otimes \bar{z} = \bar{x} \otimes (\bar{y} \otimes \bar{z})$.

Proposição

As operações de soma \oplus e multiplicação \otimes em \mathbb{Z}_m satisfazem as seguintes propriedades:

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.
- v) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{y} = \bar{y} \otimes \bar{x}$.
- vi) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \otimes \bar{y}) \otimes \bar{z} = \bar{x} \otimes (\bar{y} \otimes \bar{z})$.
- vii) Para todo $\bar{x} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{1} = \bar{x}$.

Proposição

As operações de soma \oplus e multiplicação \otimes em \mathbb{Z}_m satisfazem as seguintes propriedades:

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.
- v) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{y} = \bar{y} \otimes \bar{x}$.
- vi) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \otimes \bar{y}) \otimes \bar{z} = \bar{x} \otimes (\bar{y} \otimes \bar{z})$.
- vii) Para todo $\bar{x} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{1} = \bar{x}$.

i)
$$\bar{x} \oplus \bar{y} =$$

i)
$$\bar{x} \oplus \bar{y} = \overline{x+y} =$$

i)
$$\overline{x} \oplus \overline{y} = \overline{x+y} = \overline{y+x} =$$

i)
$$\overline{x} \oplus \overline{y} = \overline{x+y} = \overline{y+x} = \overline{y} \oplus \overline{x}$$
.

i)
$$\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$$
.

ii)
$$(\bar{x} \oplus \bar{y}) \oplus \bar{z} =$$

i)
$$\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$$
.

ii)
$$(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \overline{x+y}$$

i)
$$\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$$
.

ii)
$$(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \overline{x+y} \oplus \bar{z} =$$

i)
$$\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$$
.

ii)
$$(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \overline{x+y} \oplus \bar{z} = \overline{(x+y)+z} =$$

i)
$$\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$$
.

ii)
$$(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \overline{x+y} \oplus \bar{z} = \overline{(x+y)+z} = \overline{x+(y+z)}$$

i)
$$\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$$
.

ii)
$$(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \overline{x+y} \oplus \bar{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \bar{x} \oplus \bar{z}$$

i)
$$\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$$
.

ii)
$$(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \overline{x+y} \oplus \bar{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \bar{x} \oplus \overline{y+z}$$

i)
$$\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$$
.

ii)
$$(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \overline{x+y} \oplus \bar{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \bar{x} \oplus \overline{y+z} = \overline{x} \oplus \overline{y+z}$$

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$

i)
$$\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$$
.

ii)
$$(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$$

iii)
$$\bar{x} \oplus \bar{0} =$$

i)
$$\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$$
.

ii)
$$(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$$

iii)
$$\bar{x} \oplus \bar{0} = \overline{x+0} =$$

i)
$$\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$$
.

ii)
$$(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$$

iii)
$$\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$$
.

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$.
- iv) Dado $\bar{x} \in \mathbb{Z}_m$

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$.
- iv) Dado $\bar{x} \in \mathbb{Z}_m$ escolha $\bar{y} =$

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$.
- iv) Dado $\bar{x} \in \mathbb{Z}_m$ escolha $\bar{y} = \overline{m-x} \in \mathbb{Z}_m$.

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$.
- iv) Dado $\bar{x} \in \mathbb{Z}_m$ escolha $\bar{y} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\bar{x} \oplus \bar{y} =$

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$.
- iv) Dado $\bar{x} \in \mathbb{Z}_m$ escolha $\bar{y} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\bar{x} \oplus \bar{y} = \bar{x} \oplus$

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\bar{x} \oplus \bar{0} = \overline{x+0} = \bar{x}$.
- iv) Dado $\bar{x} \in \mathbb{Z}_m$ escolha $\bar{y} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\bar{x} \oplus \bar{y} = \bar{x} \oplus \overline{m-x} =$

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\bar{x} \oplus \bar{0} = \overline{x+0} = \bar{x}$.
- iv) Dado $\bar{x} \in \mathbb{Z}_m$ escolha $\underline{\bar{y}} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\bar{x} \oplus \bar{y} = \bar{x} \oplus \overline{m-x} = x + (m-x) =$

i)
$$\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$$
.

ii)
$$(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$$

iii)
$$\bar{x} \oplus \bar{0} = \overline{x+0} = \bar{x}$$
.

iv) Dado
$$\bar{x} \in \mathbb{Z}_m$$
 escolha $\underline{\bar{y}} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\bar{x} \oplus \bar{y} = \bar{x} \oplus \overline{m-x} = \overline{x+(m-x)} = \overline{m} = \overline{0}$.

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$.
- iv) Dado $\bar{x} \in \mathbb{Z}_m$ escolha $\underline{\bar{y}} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\bar{x} \oplus \bar{y} = \bar{x} \oplus \overline{m-x} = x + (m-x) = \overline{m} = \overline{0}$.
- v) $\bar{x} \otimes \bar{y} =$

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$.
- iv) Dado $\bar{x} \in \mathbb{Z}_m$ escolha $\underline{\bar{y}} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\bar{x} \oplus \bar{y} = \bar{x} \oplus \overline{m-x} = x + (m-x) = \overline{m} = \overline{0}$.
- $v) \ \overline{x} \otimes \overline{y} = \overline{x \cdot y} =$

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$.
- iv) Dado $\bar{x} \in \mathbb{Z}_m$ escolha $\underline{\bar{y}} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\bar{x} \oplus \bar{y} = \bar{x} \oplus \overline{m-x} = x + (m-x) = \overline{m} = \overline{0}$.
- $\mathsf{v)}\ \ \overline{\mathsf{x}} \otimes \overline{\mathsf{y}} = \overline{\mathsf{x} \cdot \mathsf{y}} = \overline{\mathsf{y} \cdot \mathsf{x}} =$

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$.
- iv) Dado $\overline{x} \in \mathbb{Z}_m$ escolha $\overline{y} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\overline{x} \oplus \overline{y} = \overline{x} \oplus \overline{m-x} = \overline{x+(m-x)} = \overline{m} = \overline{0}$.
- $\mathsf{v)}\ \ \overline{\mathsf{x}} \otimes \overline{\mathsf{y}} = \overline{\mathsf{x} \cdot \mathsf{y}} = \overline{\mathsf{y} \cdot \mathsf{x}} = \overline{\mathsf{y}} \otimes \overline{\mathsf{x}}.$

i)
$$\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$$
.

ii)
$$(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$$

iii)
$$\bar{x} \oplus \bar{0} = \overline{x+0} = \bar{x}$$
.

iv) Dado
$$\bar{x} \in \mathbb{Z}_m$$
 escolha $\underline{\bar{y}} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\bar{x} \oplus \bar{y} = \bar{x} \oplus \overline{m-x} = x + (m-x) = \overline{m} = \overline{0}$.

$$\mathsf{v}) \ \overline{\mathsf{x}} \otimes \overline{\mathsf{y}} = \overline{\mathsf{x} \cdot \mathsf{y}} = \overline{\mathsf{y} \cdot \mathsf{x}} = \overline{\mathsf{y}} \otimes \overline{\mathsf{x}}.$$

$$vi) (\overline{x} \otimes \overline{y}) \otimes \overline{z} =$$

i)
$$\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$$
.

ii)
$$(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$$

iii)
$$\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$$
.

iv) Dado
$$\bar{x} \in \mathbb{Z}_m$$
 escolha $\underline{\bar{y}} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\bar{x} \oplus \bar{y} = \bar{x} \oplus \overline{m-x} = x + (m-x) = \overline{m} = \overline{0}$.

$$\mathsf{v)}\ \ \overline{\mathsf{x}} \otimes \overline{\mathsf{y}} = \overline{\mathsf{x} \cdot \mathsf{y}} = \overline{\mathsf{y} \cdot \mathsf{x}} = \overline{\mathsf{y}} \otimes \overline{\mathsf{x}}.$$

$$vi) \ (\overline{x} \otimes \overline{y}) \otimes \overline{z} = \overline{x \cdot y} \otimes \overline{y} \otimes \overline{z} = \overline{x \cdot y} \otimes \overline{y} \otimes \overline{z} = \overline{x \cdot y} \otimes \overline{z} \otimes \overline$$

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$.
- iv) Dado $\bar{x} \in \mathbb{Z}_m$ escolha $\underline{\bar{y}} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\bar{x} \oplus \bar{y} = \bar{x} \oplus \overline{m-x} = x + (m-x) = \overline{m} = \overline{0}$.
- $\mathsf{v)}\ \ \overline{\mathsf{x}} \otimes \overline{\mathsf{y}} = \overline{\mathsf{x} \cdot \mathsf{y}} = \overline{\mathsf{y} \cdot \mathsf{x}} = \overline{\mathsf{y}} \otimes \overline{\mathsf{x}}.$
- vi) $(\bar{x} \otimes \bar{y}) \otimes \bar{z} = \bar{x} \cdot \bar{y} \otimes \bar{z} =$

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$.
- iv) Dado $\bar{x} \in \mathbb{Z}_m$ escolha $\underline{\bar{y}} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\bar{x} \oplus \bar{y} = \bar{x} \oplus \overline{m-x} = x + (m-x) = \overline{m} = \overline{0}$.
- $\mathsf{v)}\ \ \overline{\mathsf{x}} \otimes \overline{\mathsf{y}} = \overline{\mathsf{x} \cdot \mathsf{y}} = \overline{\mathsf{y} \cdot \mathsf{x}} = \overline{\mathsf{y}} \otimes \overline{\mathsf{x}}.$
- $\mathsf{vi}) \ (\bar{x} \otimes \bar{y}) \otimes \bar{z} = \overline{x \cdot y} \otimes \bar{z} = \overline{(x \cdot y) \cdot z}$

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$.
- iv) Dado $\overline{x} \in \mathbb{Z}_m$ escolha $\overline{y} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\overline{x} \oplus \overline{y} = \overline{x} \oplus \overline{m-x} = \overline{x} + (m-x) = \overline{m} = \overline{0}$.
- $\mathsf{v)}\ \ \overline{\mathsf{x}} \otimes \overline{\mathsf{y}} = \overline{\mathsf{x} \cdot \mathsf{y}} = \overline{\mathsf{y} \cdot \mathsf{x}} = \overline{\mathsf{y}} \otimes \overline{\mathsf{x}}.$
- $\text{vi) } (\overline{x} \otimes \overline{y}) \otimes \overline{z} = \overline{x \cdot y} \otimes \overline{z} = \overline{(x \cdot y) \cdot z} = \overline{x \cdot (y \cdot z)} = \overline{x \cdot$

i)
$$\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$$
.

ii)
$$(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$$

iii)
$$\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$$
.

- iv) Dado $\bar{x} \in \mathbb{Z}_m$ escolha $\underline{\bar{y}} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\bar{x} \oplus \bar{y} = \bar{x} \oplus \overline{m-x} = \overline{x+(m-x)} = \overline{m} = \overline{0}$.
- $\mathsf{v)}\ \ \overline{\mathsf{x}} \otimes \overline{\mathsf{y}} = \overline{\mathsf{x} \cdot \mathsf{y}} = \overline{\mathsf{y} \cdot \mathsf{x}} = \overline{\mathsf{y}} \otimes \overline{\mathsf{x}}.$

$$\text{vi) } (\overline{x} \otimes \overline{y}) \otimes \overline{z} = \overline{x \cdot y} \otimes \overline{z} = \overline{(x \cdot y) \cdot z} = \overline{x \cdot (y \cdot z)} = \overline{x} \otimes \overline{z} = \overline$$

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$.
- iv) Dado $\bar{x} \in \mathbb{Z}_m$ escolha $\underline{\bar{y}} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\bar{x} \oplus \bar{y} = \bar{x} \oplus \overline{m-x} = \overline{x+(m-x)} = \overline{m} = \overline{0}$.
- $\mathsf{v)}\ \ \overline{\mathsf{x}} \otimes \overline{\mathsf{y}} = \overline{\mathsf{x} \cdot \mathsf{y}} = \overline{\mathsf{y} \cdot \mathsf{x}} = \overline{\mathsf{y}} \otimes \overline{\mathsf{x}}.$
- $\text{vi) } (\overline{x} \otimes \overline{y}) \otimes \overline{z} = \overline{x \cdot y} \otimes \overline{z} = \overline{(x \cdot y) \cdot z} = \overline{x \cdot (y \cdot z)} = \overline{x} \otimes \overline{y \cdot z} = \overline{x} \otimes \overline{y} \otimes \overline{y} \otimes \overline{z} = \overline{x} \otimes \overline{y} \otimes \overline{y} \otimes \overline{z} = \overline{x} \otimes \overline{y} \otimes \overline{y} \otimes \overline{z} = \overline{y} \otimes \overline{z} \otimes \overline{z} \otimes \overline{z} \otimes \overline{z} = \overline{z} \otimes \overline{z}$

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$.
- iv) Dado $\bar{x} \in \mathbb{Z}_m$ escolha $\underline{\bar{y}} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\bar{x} \oplus \bar{y} = \bar{x} \oplus \overline{m-x} = \overline{x+(m-x)} = \overline{m} = \overline{0}$.
- $\mathsf{v)}\ \ \overline{\mathsf{x}} \otimes \overline{\mathsf{y}} = \overline{\mathsf{x} \cdot \mathsf{y}} = \overline{\mathsf{y} \cdot \mathsf{x}} = \overline{\mathsf{y}} \otimes \overline{\mathsf{x}}.$
- $\text{vi) } (\overline{x} \otimes \overline{y}) \otimes \overline{z} = \overline{x \cdot y} \otimes \overline{z} = \overline{(x \cdot y) \cdot z} = \overline{x \cdot (y \cdot z)} = \overline{x} \otimes \overline{y \cdot z} = \overline{x} \otimes \overline{y} \otimes \overline{z} = \overline{x} \otimes \overline{z} \otimes \overline{z} \otimes \overline{z} \otimes \overline{z} \otimes \overline{z} = \overline{x} \otimes \overline{z} \otimes \overline{z}$

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$.
- iv) Dado $\overline{x} \in \mathbb{Z}_m$ escolha $\overline{y} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\overline{x} \oplus \overline{y} = \overline{x} \oplus \overline{m-x} = \overline{x} + (m-x) = \overline{m} = \overline{0}$.
- $\mathsf{v)}\ \ \overline{\mathsf{x}} \otimes \overline{\mathsf{y}} = \overline{\mathsf{x} \cdot \mathsf{y}} = \overline{\mathsf{y} \cdot \mathsf{x}} = \overline{\mathsf{y}} \otimes \overline{\mathsf{x}}.$
- $\text{vi) } (\overline{x} \otimes \overline{y}) \otimes \overline{z} = \overline{x \cdot y} \otimes \overline{z} = \overline{(x \cdot y) \cdot z} = \overline{x \cdot (y \cdot z)} = \overline{x} \otimes \overline{y \cdot z} = \overline{x} \otimes (\overline{y} \otimes \overline{z}).$

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$.
- iv) Dado $\overline{x} \in \mathbb{Z}_m$ escolha $\overline{y} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\overline{x} \oplus \overline{y} = \overline{x} \oplus \overline{m-x} = \overline{x+(m-x)} = \overline{m} = \overline{0}$.
- $\mathsf{v})\ \ \overline{\mathsf{x}}\otimes \overline{\mathsf{y}}=\overline{\mathsf{x}\cdot \mathsf{y}}=\overline{\mathsf{y}\cdot \mathsf{x}}=\overline{\mathsf{y}}\otimes \overline{\mathsf{x}}.$

$$\text{vi) } (\overline{x} \otimes \overline{y}) \otimes \overline{z} = \overline{x \cdot y} \otimes \overline{z} = \overline{(x \cdot y) \cdot z} = \overline{x \cdot (y \cdot z)} = \overline{x} \otimes \overline{y \cdot z} = \overline{x} \otimes (\overline{y} \otimes \overline{z}).$$

vii)
$$\bar{x} \otimes \bar{1} =$$

- i) $\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$.
- ii) $(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$
- iii) $\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$.
- iv) Dado $\overline{x} \in \mathbb{Z}_m$ escolha $\overline{y} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\overline{x} \oplus \overline{y} = \overline{x} \oplus \overline{m-x} = \overline{x} + (m-x) = \overline{m} = \overline{0}$.
- $\mathsf{v)}\ \ \overline{\mathsf{x}} \otimes \overline{\mathsf{y}} = \overline{\mathsf{x} \cdot \mathsf{y}} = \overline{\mathsf{y} \cdot \mathsf{x}} = \overline{\mathsf{y}} \otimes \overline{\mathsf{x}}.$
- $\text{vi) } (\overline{x} \otimes \overline{y}) \otimes \overline{z} = \overline{x \cdot y} \otimes \overline{z} = \overline{(x \cdot y) \cdot z} = \overline{x \cdot (y \cdot z)} = \overline{x} \otimes \overline{y \cdot z} = \overline{x} \otimes (\overline{y} \otimes \overline{z}).$
- vii) $\bar{x} \otimes \bar{1} = \overline{x \cdot 1} =$

i)
$$\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$$
.

ii)
$$(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$$

iii)
$$\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$$
.

iv) Dado
$$\overline{x} \in \mathbb{Z}_m$$
 escolha $\overline{y} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\overline{x} \oplus \overline{y} = \overline{x} \oplus \overline{m-x} = \overline{x+(m-x)} = \overline{m} = \overline{0}$.

$$\mathsf{v})\ \overline{\mathsf{x}}\otimes\overline{\mathsf{y}}=\overline{\mathsf{x}\cdot\mathsf{y}}=\overline{\mathsf{y}\cdot\mathsf{x}}=\overline{\mathsf{y}}\otimes\overline{\mathsf{x}}.$$

$$\text{vi) } (\overline{x} \otimes \overline{y}) \otimes \overline{z} = \overline{x \cdot y} \otimes \overline{z} = \overline{(x \cdot y) \cdot z} = \overline{x \cdot (y \cdot z)} = \overline{x} \otimes \overline{y \cdot z} = \overline{x} \otimes (\overline{y} \otimes \overline{z}).$$

vii)
$$\bar{x} \otimes \bar{1} = \overline{x \cdot 1} = \bar{x}$$
.

i)
$$\bar{x} \oplus \bar{y} = \overline{x+y} = \overline{y+x} = \bar{y} \oplus \bar{x}$$
.

ii)
$$(\overline{x} \oplus \overline{y}) \oplus \overline{z} = \overline{x+y} \oplus \overline{z} = \overline{(x+y)+z} = \overline{x+(y+z)} = \overline{x} \oplus \overline{y+z} = \overline{x} \oplus (\overline{y} \oplus \overline{z}).$$

iii)
$$\overline{x} \oplus \overline{0} = \overline{x+0} = \overline{x}$$
.

iv) Dado
$$\overline{x} \in \mathbb{Z}_m$$
 escolha $\overline{y} = \overline{m-x} \in \mathbb{Z}_m$. Assim $\overline{x} \oplus \overline{y} = \overline{x} \oplus \overline{m-x} = \overline{x+(m-x)} = \overline{m} = \overline{0}$.

$$\mathsf{v})\ \overline{\mathsf{x}}\otimes\overline{\mathsf{y}}=\overline{\mathsf{x}\cdot\mathsf{y}}=\overline{\mathsf{y}\cdot\mathsf{x}}=\overline{\mathsf{y}}\otimes\overline{\mathsf{x}}.$$

$$\text{vi) } (\overline{x} \otimes \overline{y}) \otimes \overline{z} = \overline{x \cdot y} \otimes \overline{z} = \overline{(x \cdot y) \cdot z} = \overline{x \cdot (y \cdot z)} = \overline{x} \otimes \overline{y \cdot z} = \overline{x} \otimes (\overline{y} \otimes \overline{z}).$$

$$\mathsf{vii}) \ \overline{x} \otimes \overline{1} = \overline{x \cdot 1} = \overline{x}.$$

Um elemento $\overline{a} \in \mathbb{Z}_m$ é inversível

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} =$

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$.

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b}

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a}

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe,

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

Prova: De fato,

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

Prova: De fato, dado $\overline{a} \in \mathbb{Z}_m$,

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

Prova: De fato, dado $\overline{a} \in \mathbb{Z}_m$, suponha que existem \overline{b} ,

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

Prova: De fato, dado $\bar{a} \in \mathbb{Z}_m$, suponha que existem \bar{b} , $\bar{d} \in \mathbb{Z}_m$

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

Prova: De fato, dado $\overline{a}\in\mathbb{Z}_m$, suponha que existem \overline{b} , $\overline{d}\in\mathbb{Z}_m$ tais que $\overline{a}\otimes\overline{b}=\overline{1}$

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

$$\overline{b} =$$

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

$$\overline{b} = \overline{b} \otimes \overline{1} =$$

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

$$\overline{b} = \overline{b} \otimes \overline{1} = \overline{b} \otimes$$

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

$$\overline{b} = \overline{b} \otimes \overline{1} = \overline{b} \otimes (\overline{a} \otimes \overline{d}) =$$

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

$$\overline{b} = \overline{b} \otimes \overline{1} = \overline{b} \otimes (\overline{a} \otimes \overline{d}) = (\overline{b} \otimes \overline{a})$$

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

$$\overline{b} = \overline{b} \otimes \overline{1} = \overline{b} \otimes (\overline{a} \otimes \overline{d}) = (\overline{b} \otimes \overline{a}) \otimes \overline{d} =$$

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

$$\overline{b} = \overline{b} \otimes \overline{1} = \overline{b} \otimes (\overline{a} \otimes \overline{d}) = (\overline{b} \otimes \overline{a}) \otimes \overline{d} = \overline{1} \otimes \overline{d} = \overline{d}$$

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

$$\overline{b} = \overline{b} \otimes \overline{1} = \overline{b} \otimes (\overline{a} \otimes \overline{d}) = (\overline{b} \otimes \overline{a}) \otimes \overline{d} = \overline{1} \otimes \overline{d} = \overline{d}$$

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

Prova: De fato, dado $\overline{a} \in \mathbb{Z}_m$, suponha que existem \overline{b} , $\overline{d} \in \mathbb{Z}_m$ tais que $\overline{a} \otimes \overline{b} = \overline{1} = \overline{a} \otimes \overline{d}$, então

$$\overline{b} = \overline{b} \otimes \overline{1} = \overline{b} \otimes (\overline{a} \otimes \overline{d}) = (\overline{b} \otimes \overline{a}) \otimes \overline{d} = \overline{1} \otimes \overline{d} = \overline{d}$$

Portanto o inverso de \overline{a} é único, como queríamos.

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

Prova: De fato, dado $\overline{a} \in \mathbb{Z}_m$, suponha que existem \overline{b} , $\overline{d} \in \mathbb{Z}_m$ tais que $\overline{a} \otimes \overline{b} = \overline{1} = \overline{a} \otimes \overline{d}$, então

$$\overline{b} = \overline{b} \otimes \overline{1} = \overline{b} \otimes (\overline{a} \otimes \overline{d}) = (\overline{b} \otimes \overline{a}) \otimes \overline{d} = \overline{1} \otimes \overline{d} = \overline{d}$$

Portanto o inverso de \overline{a} é único, como queríamos.

Proposição

Um elemento $\overline{a} \in \mathbb{Z}_m$ é

Proposição

Um elemento $\overline{a} \in \mathbb{Z}_m$ é inversível

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo,

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$,

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$,

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\overline{x} \in \mathbb{Z}_m$, $\overline{x} \neq \overline{0}$, existe inverso.

Exemplos

1) Em Z₄ existem dois elementos inversíveis

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

1) Em \mathbb{Z}_4 existem dois elementos inversíveis que são $\overline{1}$,

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

1) Em \mathbb{Z}_4 existem dois elementos inversíveis que são $\overline{1},$ cujo inverso é $\overline{1},$

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

1) Em \mathbb{Z}_4 existem dois elementos inversíveis que são $\overline{1}$, cujo inverso é $\overline{1}$, e o $\overline{3}$,

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

1) Em \mathbb{Z}_4 existem dois elementos inversíveis que são $\overline{1}$, cujo inverso é $\overline{1}$, e o $\overline{3}$, cujo inverso é $\overline{3}$.

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

- 1) Em \mathbb{Z}_4 existem dois elementos inversíveis que são $\overline{1}$, cujo inverso é $\overline{1}$, e o $\overline{3}$, cujo inverso é $\overline{3}$.
- 2) Em \mathbb{Z}_{11} ,

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

- 1) Em \mathbb{Z}_4 existem dois elementos inversíveis que são $\overline{1}$, cujo inverso é $\overline{1}$, e o $\overline{3}$, cujo inverso é $\overline{3}$.
- 2) Em \mathbb{Z}_{11} , todos elementos, exceto $\overline{0}$,

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

- 1) Em \mathbb{Z}_4 existem dois elementos inversíveis que são $\overline{1}$, cujo inverso é $\overline{1}$, e o $\overline{3}$, cujo inverso é $\overline{3}$.
- 2) Em \mathbb{Z}_{11} , todos elementos, exceto $\overline{0}$, possuem inverso:

Tabela: Inversos em \mathbb{Z}_{11}

Elemento	1	2	3	4	5	6	7	8	9	10
Inverso										