Machine Learning Techniques HW8

• b03902089 林良翰

Random Forest

1.

- Every example has $\left(1-\frac{1}{N}\right)^{N'}=\left(1-\frac{1}{N}\right)^{Np}$ probability not to be sampled at all.
- $\lim_{N \to \infty} \left(1 \frac{1}{N} \right)^{Np} = e^{-p}$
- Thus, there are approximately $e^{-p}N$ examples will not be sampled at all.

2.

- If all the examples predicted wrongly by at most one classification tree (one of g_1 , g_2 , g_3), $E_{out}(G)$ has its minimum 0.
- The maximum ratio of examples which is predicted wrongly by at least two classification tree (two of g_1 , g_2 , g_3 , or all of them) is 0.375 (e.g. g_1 and g_2 have 0.35 same error with g_3 , g_1 and g_2 have more 0.025 same error but different with g_3).
- The range of $E_{out}(G)$ is [0, 0.375]

3. ?

- Assume that there are K (K is odd) binary classification trees g_1, \ldots, g_k with E_{out} e_1, \ldots, e_k , if there is an error on an example, it's necessary that there are at least $\frac{K+1}{2}$ (more than half) trees make the mistake.
- To obtain the maximum $E_{out}(G)$, we can consider that we divide all classification trees into $\frac{K+1}{2} = M$ groups G_1, \ldots, G_M , while each group contains at least one tree, and errors of every tree in the same group are mutual exclusive (maximize the error).
- With the assumption above, we can know

$$E_{out}(G) = \min_{i} E_{out}(G_i)$$

where *i* is integer and $1 \le i \le M$.

• "Minimum is always smaller than mean", by this simple theory, we could derive

$$\min_{i} E_{out} (G_i) \le \frac{1}{M} \sum_{i=1}^{M} E_{out} (G_i)$$

• The error of each group $G_1 \dots G_M$ is not necessary mutual exclusive, thus if all trees $g_1 \dots g_k$ have mutual exclusive errors, then

$$\frac{1}{M} \sum_{i=1}^{M} E_{out}(G_i) \le \frac{1}{M} \sum_{k=1}^{K} E_{out}(g_k)$$

$$\frac{1}{M} \sum_{i=1}^{N} E_{out}(g_j) = \frac{2}{K+1} \sum_{k=1}^{K} e_k$$

•
$$\frac{2}{K+1} \sum_{k=1}^{K} e_k$$
 upper bounds $E_{out}(G)$

Gradient Boosting

- · The algroithm of gradient boosting
 - Initialize $s_1 = s_2 = \cdots = s_N = 0$.
 - \circ For t = [1, 2, ..., N]:
 - Obtain g_t by $\mathcal{A}\{(x_n,y_n-s_n)\}$, where \mathcal{A} is a squared-error regression algorithm.
 - Compute $\alpha_t = \text{OneVariableLinearRegression}\{(g_t(x_n), y_n s_n)\}$
 - Update $s_n \leftarrow s_n + \alpha_t g_t(x_n)$

$$\circ \text{ Return } G\left(x\right) = \sum_{t=1}^{T} \alpha_{t} g_{t}\left(x\right)$$

4.

• By computing the gradient of squared-error of $\{(g_t(x_n),y_n-s_n)\}$ over α_t

$$\frac{\partial \sum\limits_{n=1}^{N} \left(\left(y_n - s_n \right) - \alpha_1 g_1(x_n) \right)^2}{\partial \alpha_1} = 0$$

$$\Rightarrow 2 \sum\limits_{n=1}^{N} \left(\left(y_n - s_n \right) - \alpha_1 g_1(x_n) \right) \left(-g_1(x_n) \right) = 0$$

$$\Rightarrow 2 \sum\limits_{n=1}^{N} \left(y_n - 0 - 2\alpha_1 \right) (-2) = 0$$

 $\Lambda _{1}= \Gamma \{1\} \$

· By the update function

$$s_n \leftarrow s_n + \alpha_1 g_1(x_n) = 0 + \frac{1}{2N} \sum_{n=1}^{N} (y_n) \cdot 2 = \frac{1}{N} \sum_{n=1}^{N} (y_n)$$

5.

- The steepest η has the smallest gradient 0.

$$\frac{\partial \sum_{n=1}^{N} ((y_n - s_n) - \eta g_t(x_n))^2}{\partial \eta} = 0$$

$$\Rightarrow 2 \sum_{n=1}^{N} ((y_n - s_n) - \eta g_t(x_n)) (-g_t(x_n)) = 0$$

$$\Rightarrow \sum_{n=1}^{N} (-y_n g_t(x_n) + s_n g_t(x_n) + \eta (g_t(x_n))^2) = 0$$

$$\Rightarrow \sum_{n=1}^{N} s_n g_t(x_n) = \sum_{n=1}^{N} (y_n g_t(x_n) - \eta (g_t(x_n))^2) = \sum_{n=1}^{N} g_t(x_n) (y_n - \eta g_t(x_n))$$

• \mathcal{A} is an algorithm of linear regression, and we found the result $g_1(x) = w_1x + b_1$ w_1 , b_1 are the optimal solution from linear regression, and must conform to the following equations

$$\begin{cases} \frac{\partial \sum\limits_{n=1}^{N} \left(g_{1}(x_{n}) - \left(y_{n} - s_{n} \right) \right)^{2}}{\partial w_{1}} = \frac{\partial \sum\limits_{n=1}^{N} \left(w_{1}x_{n} + b_{1} - \left(y_{n} - s_{n} \right) \right)^{2}}{\partial w_{1}} = 0\\ \frac{\partial \sum\limits_{n=1}^{N} \left(g_{1}(x_{n}) - \left(y_{n} - s_{n} \right) \right)^{2}}{\partial b_{1}} = \frac{\partial \sum\limits_{n=1}^{N} \left(w_{1}x_{n} + b_{1} - \left(y_{n} - s_{n} \right) \right)^{2}}{\partial b_{1}} = 0 \end{cases}$$

And obtain the following result

$$\begin{cases} w_1 = \frac{\sum\limits_{n=1}^{N} x_n (y_n - s_n) - b_1 \sum\limits_{n=1}^{N} x_n}{\sum\limits_{n=1}^{N} (x_n)^2} \\ b_1 = \sum\limits_{n=1}^{N} x_n (y_n - s_n) - w_1 \sum\limits_{n=1}^{N} (x_n)^2 \end{cases}$$

• Suppose $\alpha_1 \neq 1$, then we can derive

$$\begin{cases} \frac{\partial \sum\limits_{n=1}^{N} (\alpha_{1}g_{1}(x_{n}) - (y_{n} - s_{n}))^{2}}{\partial w_{1}} = \frac{\partial \sum\limits_{n=1}^{N} (\alpha_{1}w_{1}x_{n} + \alpha_{1}b_{1} - (y_{n} - s_{n}))^{2}}{\partial w_{1}} = 0\\ \frac{\partial \sum\limits_{n=1}^{N} (\alpha_{1}g_{1}(x_{n}) - (y_{n} - s_{n}))^{2}}{\partial b_{1}} = \frac{\partial \sum\limits_{n=1}^{N} (\alpha_{1}w_{1}x_{n} + \alpha_{1}b_{1} - (y_{n} - s_{n}))^{2}}{\partial b_{1}} = 0 \end{cases}$$

And obtain

$$\begin{cases} w_1 = \frac{\sum\limits_{n=1}^{N} x_n (y_n - s_n) - \alpha_1 b_1 \sum\limits_{n=1}^{N} x_n}{\alpha_1 \sum\limits_{n=1}^{N} (x_n)^2} \neq \frac{\sum\limits_{n=1}^{N} x_n (y_n - s_n) - b_1 \sum\limits_{n=1}^{N} x_n}{\sum\limits_{n=1}^{N} (x_n)^2} \\ b_1 = \frac{1}{\alpha_1} \sum\limits_{n=1}^{N} x_n (y_n - s_n) - w_1 \sum\limits_{n=1}^{N} (x_n)^2 \neq \sum\limits_{n=1}^{N} x_n (y_n - s_n) - w_1 \sum\limits_{n=1}^{N} (x_n)^2 \end{cases}$$

We found a more optimal w_1 and b_1

- \Rightarrow Linear Regression \mathcal{A} doesn't obtain the optimal solution.
- ⇒ Contradiction.
- α₁ must be 1.

7.

• From 6., we have the result of first iteration

$$\begin{cases} w_1 = \frac{\sum\limits_{n=1}^{N} x_n (y_n - s_n) - b_1 \sum\limits_{n=1}^{N} x_n}{\sum\limits_{n=1}^{N} (x_n)^2} = \frac{\sum\limits_{n=1}^{N} x_n y_n - b_1 \sum\limits_{n=1}^{N} x_n}{\sum\limits_{n=1}^{N} (x_n)^2} \\ b_1 = \sum\limits_{n=1}^{N} x_n (y_n - s_n) - w_1 \sum\limits_{n=1}^{N} (x_n)^2 = \sum\limits_{n=1}^{N} x_n y_n - w_1 \sum\limits_{n=1}^{N} (x_n)^2 \end{cases}$$

where $s_n = s_n^1 = 0$, and w_1 , b_1 are the optimal solution from \mathcal{A} .

And we get the new $s_n^2 = s_n + \alpha_1 g_1(x_n) = w_1 x_n + b_1$ at second iteration.

• Suppose we find $g_2(x_n) = w_2x_n + b_2 \neq 0$. By the linear regression algorithm \mathcal{A} , we want the gradient of the error function to be 0.

$$\frac{\partial \sum_{n=1}^{N} (g_2(x_n) - (y_n - s_n^1))^2}{\partial w_2} = \frac{\partial \sum_{n=1}^{N} (g_2(x_n) - (y_n - g_1(x_n)))^2}{\partial w_2} = 0$$

$$\Rightarrow w_1 + w_2 = \frac{\sum_{n=1}^{N} y_n x_n - (b_1 + b_2) \sum_{n=1}^{N} x_n}{\sum_{n=1}^{N} (x_n)^2}$$

• Let $w' = w_1 + w_2$ and $b' = b_1 + b_2$.

$$w_2 x_n + b_2 \neq 0 \Rightarrow \begin{cases} w_2 = 0, b_2 \neq 0 \\ w_2 \neq 0, b_2 = 0 \Rightarrow w' \neq w_1 \lor b' \neq b_1 \\ w_2 \neq 0, b_2 \neq 0 \end{cases}$$

We found a more optimal solution w', b' from \mathcal{A} , which is different from w_1 , $b_1 \Rightarrow$ Contradiction.

• $g_2(x_n)$ must be 0.

Neural Network

8.

• To implement $OR(x_1, x_2, \dots, x_d)$, we need to make $w_0 = d - 1$, and $w_1 = w_2 = \dots = w_d = +1$, meaning that the output of $\operatorname{sign}\left(\sum_{i=0}^d w_i x_i\right)$ will be positive if there is at least one x_i which is positive.

•
$$(w_0, w_1, \dots, w_d) = \left(d - 1, \underbrace{+1, \dots, +1}_{d}\right)$$

9.

- The meaning of *XOR* is testing if there is odd number of positive examples.
- Thus we can use the formula of combinations

$$\binom{5}{5} + \binom{5}{3} + \binom{5}{1} = 1 + 10 + 5 = 16$$

• *D* ≥ 16

10. ?

• The Error function

$$e_n = (y_n - x_1^{(L)})^2 = (y_n - \tanh(s_1^{(L)}))^2$$

 $s_1^{(L)}$ is the linear combination from (L-1) layer

$$s_1^{(L)} = \sum_{i=0}^{d^{(L-1)}} w_{i1}^{(L)} x_i^{(L-1)}$$

 $x_1^{(L)}$ is the final output

$$x_1^{(L)} = \tanh\left(s_1^{(L)}\right) = \tanh\left(\sum_{i=0}^{d^{(L-1)}} w_{i1}^{(L)} x_i^{(L-1)}\right)$$

· Gradient of weights before output layer

 $\circ\;$ Because all the weights are 0

$$\Rightarrow x_i^{(L-1)} = \tanh\left(\sum_{j=0}^{d^{(L-2)}} w_{ji}^{(L-1)} x_j^{(L-2)}\right) = \tanh(0) = 0$$

$$\Rightarrow \frac{\partial e_n}{\partial w_{i1}^{(L)}} = 0$$

· Gradient of other layers

Gradient of other layers

$$\Rightarrow \frac{\partial e_n}{\partial w_{ij}^{(\ell)}} = \frac{\partial e_n}{\partial s_j^{(\ell)}} \frac{\partial s_j^{(\ell)}}{\partial w_{ij}^{(\ell)}}$$

$$= \left(\sum_{k=1}^{d^{(\ell+1)}} \frac{\partial e_n}{\partial s_k^{(\ell+1)}} \cdot \frac{\partial s_k^{(\ell+1)}}{\partial x_j^{(\ell)}} \cdot \frac{\partial x_j^{(\ell)}}{\partial s_j^{(\ell)}}\right) \cdot x_i^{(\ell-1)}$$

$$= \left(\sum_{k=1}^{d^{(\ell+1)}} \frac{\partial e_n}{\partial s_k^{(\ell+1)}} \cdot \frac{\partial \left(\sum_{j=0}^{d^{(\ell)}} w_{jk}^{(\ell+1)} x_j^{(\ell)}\right)}{\partial x_j^{(\ell)}} \cdot \frac{\partial \tanh\left(s_j^{(\ell)}\right)}{\partial s_j^{(\ell)}}\right) \cdot x_i^{(\ell-1)}$$

$$= \left(\sum_{k=1}^{d^{(\ell+1)}} \frac{\partial e_n}{\partial s_k^{(\ell+1)}} \cdot w_{jk}^{(\ell+1)} \cdot \left(1 - \tanh^2\left(s_j^{(\ell)}\right)\right)\right) \cdot x_i^{(\ell-1)}$$

$$= \left(\sum_{k=1}^{d^{(\ell+1)}} \delta_k^{(\ell+1)} \cdot w_{jk}^{(\ell+1)} \cdot \left(1 - \tanh^2\left(s_j^{(\ell)}\right)\right)\right) \cdot x_i^{(\ell-1)}$$

• Because all the weights are 0.

$$\Rightarrow \frac{\partial e_n}{\partial w_{ij}^{(\ell)}} = 0$$

• All the gradient components are 0.

11.

• From 10.

$$\frac{\partial e_n}{\partial w_{ii}^{(\ell)}} = \left(\sum_{k=1}^{d^{(\ell+1)}} \delta_k^{(\ell+1)} \cdot w_{jk}^{(\ell+1)} \cdot \left(1 - \tanh^2\left(s_j^{(\ell)}\right)\right)\right) \cdot x_i^{(\ell-1)}$$

• While $\ell = 1$

$$\frac{\partial e_n}{\partial w_{ij}^{(1)}} = \left(\sum_{k=1}^{d^{(2)}} \delta_k^{(2)} \cdot w_{jk}^{(2)} \cdot \left(1 - \tanh^2\left(s_j^{(1)}\right)\right)\right) \cdot x_i^{(0)}$$

$$\Rightarrow w_{jk}^{(2)} = w_{(j+1)k}^{(2)} = 1$$

• Thus we have to determine whether $s_j^{(1)}$ and $s_{j+1}^{(1)}$ are the same.

After one iteration from initial weights with all ones

$$s_{j}^{(1)} = \sum_{i=0}^{d^{(0)}} w_{ij}^{(1)} x_{i}^{(0)}$$

$$s_{j+1}^{(1)} = \sum_{i=0}^{d^{(0)}} w_{i(j+1)}^{(1)} x_{i}^{(0)}$$

$$w_{ij}^{(1)} = w_{i(j+1)}^{(1)} = 1$$

- $\Rightarrow s_j^{(1)}$ and $s_{j+1}^{(1)}$ are the same because the previous $w_{ij}^{(1)}$ and $w_{i(j+1)}^{(1)}$ are the same.
- \Rightarrow The gradient of $w_{ij}^{(1)}$ and $w_{i(j+1)}^{(1)}$ are the same.
- After one iteration, $w_{ij}^{(1)}$ and $w_{i(j+1)}^{(1)}$ were updated to the same value.
 - \Rightarrow Throughout the training preocess, the weights of $w_{ij}^{(1)}$ and $w_{i(j+1)}^{(1)}$ are always the same.

Experiments with Random Forest

12.

13.

• The $E_{\it in}$ goes down to 0 immediately, but $E_{\it out}$ converges to a value instead.

15.

• The $E_{out}(G_t)$ is higher than $E_{in}(G_t)$, and both converge to some values.