数值代数习题解答

原生生物

作者 QQ: 3257527639

对应教材:数值线性代数(第二版)

使用资料: 个人解题为主, 答案来源包括助教的习题课讲义、同学解出的难题或网络上的论文与解答等。

*解答中的伪代码采用严格缩进判断嵌套关系,总体类似 Python

目录

第一章	线性方程组的直接解法	2
第二章	线性方程组的敏度分析与消去法的舍入误差分析	5
第三章	最小二乘问题的解法	7
第四章	线性方程组的古典迭代解法	8
第五章	共轭梯度法	11
第六章	非对称特征值问题的计算方法	12
第七章	对称特征值问题的计算方法	16

第一章 线性方程组的直接解法

1. 假设输入方阵下标 1 到 n, A[i] 表示 A 的第 i 个行向量,O 代表 n 维零方阵 (采用增广矩阵求逆的 思路):

```
def inverse(A, In):
  In = 0;
  for j = 1 to n
      A[j] /= A[j][j]
      In[j][j] = 1/A[j][j]
  for j = 1 to n
      for i = j+1 to n
      In[i] -= A[i][j]In[j];
```

2. 构造辅助 n 维向量 y, 初始为零向量, 设方阵下标为 1 到 n: 令 k 从 n 到 1 循环, 每次计算

$$x_k = \frac{b_k - \sum_{i=k}^n s_{ki} y_i}{s_{kk} t_{kk} - \lambda}, y_j = y_j + x_k t_{jk} (j \ge n + 1 - k)$$

由定义可发现,每次循环的计算量都是 O(n),因此总计算量为 $O(n^2)$ 。

证明思路:将矩阵分块为已算过的部分和将算的部分,已算过的部分通过 y_i 进行"消除偏差" (y_i 在每步后为假设 x 除了已算过的分量外均为 0 后被 T 左乘的结果) 后,即可通过直接的减法、除法得到将算的值。

- 3. 直接计算可验证其为逆。由定义 l_k 只需满足前 k 个分量为 0,而 $-l_k$ 亦满足此要求,因此成立。
- 4. 由于 $7 = 3 + 2 \times 2$, $8 = 4 + 2 \times 2$, 可直接构造 $L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$ 。
- 5. 若有 $L_1U_1 = L_2U_2 = A$,由 A 非奇异可知 L_1, L_2, U_1, U_2 非奇异,而 $L_2^{-1}L_1 = U_2U_1^{-1}$,左侧为单位下三角阵,右侧为上三角阵,因此均只能是 I,从而得证。
- 6. 令 $L_k = I + t_k e_k^T$,其中 t_k 的前 k 个分量为 0,其余为 1,考虑 $L_n \dots L_1 A = U$ 的结果。由于这相当于分别将 A 的每一行加到其下的所有行上,U 的左上角 $n-1 \times n-1$ 子矩阵为单位阵,最后一列为 $1,2,\dots,2^{n-1}$,其余为 0,即为所求。而所求的 L 为 $L_1^{-1} \dots L_n^{-1}$,除了主对角线外下三角部分的元素为 -1,满足要求。
- 7. 由对称阵定义,设变换后矩阵为 B,只需说明 $b_{ij} = b_{ji}$ $(i, j \ge 2)$,由高斯消去进行的行变换操作可知范围内 $b_{ij} = a_{ij} a_{1j} \frac{a_{i1}}{a_{11}}$,而 $a_{ij} a_{1j} \frac{a_{i1}}{a_{11}} = a_{ji} a_{j1} \frac{a_{1i}}{a_{11}} = b_{ji}$,从而得证。
- 8. 利用习题 7 结论,同乘 a_{11} 后即需证明 $|a_{11}b_{kk}|=|a_{11}a_{kk}-a_{1k}a_{k1}|>\sum_{j=2,j\neq k}^n|a_{11}a_{kj}-a_{1j}a_{k1}|$ 。而

$$\sum_{j=2, j \neq k}^{n} |a_{11}a_{kj} - a_{1j}a_{k1}| \le \sum_{j=2, j \neq k}^{n} |a_{11}a_{kj}| + \sum_{j=2, j \neq k}^{n} |a_{1j}a_{k1}| = \sum_{j=2, j \neq k}^{n} |a_{11}a_{kj}| + \sum_{j=2}^{n} |a_{1j}a_{k1}| - |a_{1k}a_{k1}|$$

$$\leq \sum_{j=2, j\neq k}^{n} |a_{11}a_{kj}| + |a_{11}a_{k1}| - |a_{1k}a_{k1}| < |a_{11}a_{kk}| - |a_{1k}a_{k1}| \leq |a_{11}a_{kk} - a_{1k}a_{k1}|$$

从而得证。又由习题 7 可知对称性保持,从而现在的主对角线对应元素是行列中的最大值,不需要再进行交换,由此即知列主元与直接消去结果相同。

9. 不必储存 L: 将 A 与 b 同时左乘高斯变换阵,这样当 A 化为上三角阵时 b 也成为了合适的形式。此时再使用回代法即可。

运算次数: 高斯变换时,第 k 次需要对右下角 $n-k\times n+1-k$ 子方阵的每一个进行操作,每次操作需要减法、乘法、除法各一次,因此总数量为 $\sum_{k=1}^n (n-k)(n+1-k) = \frac{1}{3}n^3 - \frac{1}{3}n$ 。回代法需要的乘法运算数量为 $\frac{(n-1)n}{2}$,因此总数量为 $\frac{1}{3}n^3 + \frac{1}{2}n^2 - \frac{5}{6}n$ 。

10. 由习题 7 可知其对称,下面进一步说明正定。

设变换后的 B = LA,考虑 $C = LAL^T$,由于右乘 L^T 对应的操作为左下角右侧的列减去第一列,而此时第一列只有 b_{11} 不为 0,C 的右下角仍然为 A_2 ,更进一步,由正定阵性质,相合变换后仍正定,因此 C 为正定阵,由对称性可知 C 必然为 $\mathrm{diag}(a_{11},A_2)$ 。考虑特征值可知 A_2 必然也为正定阵,由此得证。

- 11. 设 k 次后对应左乘的 L 为 $\begin{pmatrix} L_k & O \\ M & I_{n-k} \end{pmatrix}$,则由算法有 $\begin{pmatrix} L_k & O \\ M & I_{n-k} \end{pmatrix}$ $\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} U_k & N \\ O & S \end{pmatrix}$ 。考虑下方一列可知 $MA_{11} + A_{21} = O$, $MA_{12} + A_{22} = S$,左式可解出 $M = -A_{21}A_{11}^{-1}$,代入右式即得结论。
- 12. 由于全主元第 i 次消去时将 u_{ii} 调整为右下角矩阵中最大元,此时其必然大于等于右侧的任何元素,而此后的操作并不会影响第 i 行及其上方的部分, u_{ii} 大于等于本行右边的性质得以保存,从而得证。
- 13. 通过列主元高斯消去,可得到 PA = LU,利用习题 1 实现的求逆算法 (对上三角阵类似) 可得到 L^{-1} 与 U^{-1} ,再计算 $U^{-1}L^{-1}P$ 即为 A 的逆。
- 14. 记 a_j 为 A^{-1} 的第 j 列,考虑方程 $LUa_j = e_j$ 即可解出 a_j ,而其第 i 个分量即为所求 (由于只需要知道一个分量,最后一步解 $Ua_j = L^{-1}e_j$ 的过程进行部分即可)。
- 15. 由于 A^T 是严格对角占优阵,A 的主对角线元素模长大于本列其他所有元素模长之和。类似习题 8 估算可证明每次高斯消去后的 A_2 仍满足 A_2^T 严格对角占优,从而选出的列主元即为主对角线上元素,因此直接高斯消元与列主元效果相同。由于每次保证了对角元模长是本列最大,当 $i \neq j$ 时有 $|l_{ij}| < 1$ 。
- 16. (1) 由于 $(I ye_k^T)(I + ye_k^T) = I y_k ye_k^T$,有 $(I ye_k^T)(I + ye_k^T y_k I) = (1 y_k)I$,由此即得非奇异时逆为 $I + \frac{ye_k^T}{1 y_k}$,而直接计算行列式可验证 $1 y_k = 0$ 时奇异。
 - (2) $(I ye_k^T)x = e_k$, 即 $x_k y = I e_k$, 存在解要求 x_k 不能为 0。
 - (3) 算法类似高斯消去,每次操作后成为 $\begin{pmatrix} I_k & M \\ O & A_{n-k} \end{pmatrix}$,需要 A_{n-k} 左上角的元素非零才能继续取解。 利用分块考虑每次操作使用的方阵的 k 阶顺序主子式部分,其为单位下三角阵,与定理 1.1.1 完全相同可知每次得到的 A_{n-k} 左上角的元素非零等价于 A 的各阶顺序主子式非奇异。
- 17. 若有 $A = L_1L_1^T = L_2L_2^T$,则有 $L_2^{-1}L_1 = L_2^TL_1^{-T}$,由于左侧为下三角,右侧为上三角,最终乘积一定为对角阵。但由于 $L_2^TL_1^{-T} = (L_1^{-1}L_2)^T = (L_2^{-1}L_1)^{-T}$,此对角阵与自己逆转置相同,每个元素只能为正负 1。由于 L_1 与 L_2 对角元为正,计算可知每个元素只能为此对角阵元素必须为正,因此即为单位阵,从而得证。

- 18. 带宽 2n+1,也即 |i-j| > n 的部分均为 0,由平方根法的计算过程对 k 归纳可得 l_{ik} 亦会满足 |i-k| > n 的部分为 0(对 k+1 时的情况,在 |i-k-1| > n 时, $a_{i,k+1} = 0$,且 $\sum_{p=1}^{k} l_{ip} l_{kp}$ 的每一个 l_{ip} 均为 0,因此 $l_{i,k+1} = 0$,又因其为三角阵,可知带宽为 n+1。
- 19. 设 $L = \begin{pmatrix} L_k & O \\ M & N_{n-k} \end{pmatrix}$,直接计算可知 $A = \begin{pmatrix} L_k L_k^T & L_k M^T \\ M L_k^T & M M^T + N_{n-k} N_{n-k}^T \end{pmatrix}$,从而有结论(由 L_k 为对角均正的下三角阵,也可推出 A_k 正定对称)。
- 20. 类似习题 10 的过程,在每次高斯变换左乘 L_k 时,同时右乘 L_k^T 。每次右乘不改变右下角的子矩阵,因此仍可通过定理 1.1.1 推知操作可进行至结束。由于每步保持对称性,在进行 n-1 次消去后即得对角阵,此时 $A=L_1^{-1}\dots L_{n-1}^{-1}DL_{n-1}^{-T}\dots L_1^{-T}$,即可合并为 LDL^T 。
- 21. 利用平方根法计算可知 $L = \begin{pmatrix} 4 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 2 & 2 & 2 & 0 \\ 1 & 1 & 3 & 1 \end{pmatrix}$,进一步计算得原方程组解为 $x = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ 。
- 22. 假设输入方阵下标 1 到 n, O 代表 n 维零方阵 (实际计算过程与平方根法完全相同,只是改变计算顺序。实际操作时可直接用 A 的对应部分保存 l, 此处为清晰将两矩阵分开):

```
def Cholesky(A, 1):
  1 = 0
  for i = 1 to n
  for j = 1 to i-1
      l[i][j] = a[i][j]
      for p = 1 to j-1
      l[i][j] -= l[i][p]*l[j][p]
      l[i][j] /= l[j][j];
  l[i][i] = a[i][i]
  for p = 1 to i-1
      l[i][i] -= l[i][p]*l[i][p]
  l[i][i] = sqrt(l[i][i])
```

- 23. 假设正定对称矩阵 A 可以分解为 LDL^T ,则 $A^{-1} = (L^{-1})^T D^{-1} L^{-1}$,利用习题 1 的算法可算出 L^{-1} ,再计算转置, D^{-1} 即为每个对角元取倒数,最后计算乘法即可。
- 24. (1) 由 Hermite 性计算知 A 对称、B 反对称,从而 C 对称。由正定 $(x+y\mathrm{i})^H(A+B\mathrm{i})(x+y\mathrm{i})>0$,从而 $x^TAx+y^TAy+y^TBx-x^TBy>0$,此即为 $\begin{pmatrix} x \\ y \end{pmatrix}\begin{pmatrix} A & -B \\ B & A \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}>0$,由于 x,y 可 任取,知 C 正定。
 - (2) 此方程即 $\begin{pmatrix} A & -B \\ B & A \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} b \\ c \end{pmatrix}$,利用上题结论可知 $\begin{pmatrix} A & -B \\ B & A \end{pmatrix}$ 为对称正定阵,从而由改进 平方根法作出分解 LDL^T 后即可通过 $LDL^T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} b \\ c \end{pmatrix}$ 解出所求的 x,y。

第二章 线性方程组的敏度分析与消去法的舍入误差分析

1. 正定性:由于 $\alpha_i > 0$ 可知其良定,进一步由定义可知。

齐次性:直接代入计算可知。

- 三角不等式: 记 $x' = (\alpha_1 x_1, \dots, \alpha_n x_n), y' = (\alpha_1 y_1, \dots, \alpha_n y_n)$,由于 $\|x'\|_2 + \|y'\|_2 \ge \|x' + y'\|_2$,代入可知此范数具有三角不等式。
- 2. 利用 $\|x+y\|_2 \le \|x\|_2 + \|y\|_2$ 的证明过程可知取等当且仅当 $x^Ty = \|x\|\|y\|$,同平方得 $(x_1y_1 + \cdots + x_ny_n)^2 = (x_1^2 + \cdots + x_n^2)(y_1^2 + \cdots + y_n^2)$,作差配方有 $\sum_{i < j} (x_iy_j x_jy_i)^2 = 0$,即可知 x, y 各分量成比例。
- 3. 直接计算 $||A||_F^2 = \sum_{i,j} |a_{ij}|^2 = \sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2 = \sum_{j=1}^n ||a_{jj}||_2^2$
- 4. 左:由二范数定义有 $\|A\|_2 \geq \frac{\|Ab_i\|_2}{\|b_i\|_2}$,其中 $B = \begin{pmatrix} b_1 & \dots & b_n \end{pmatrix}$,平方得 $\|A\|_2^2 \geq \frac{\|Ab_i\|_2^2}{\|b_i\|_2^2}$,利用习题 3,将右侧进行加权平均有 $\|A\|_2^2 \geq \sum_{i=1}^n \frac{\|b_i\|_2^2}{\|B\|_F^2} \frac{\|Ab_i\|_2^2}{\|b_i\|_2^2}$,即 $\|A\|_2^2 \|B\|_F^2 \geq \sum_{i=1}^n \|Ab_i\|_2^2 = \|AB\|_F^2$,最后一步再次运用了习题 3。

右:利用左可知 $\|B^TA^T\|_F \leq \|B^T\|_2 \|A^T\|_F$,而二范数与 Frobenius 范数均在转置下不变,因此同作转置即可。

- 5. 正定、齐次:由定义直接得。
 - 三角不等式: $\max_{i,j} |a_{ij} + b_{ij}| \le \max_{i,j} (|a_{ij}| + |b_{ij}|) \le \max_{i,j} |a_{ij}| + \max_{i,j} |b_{ij}|$,两边同乘 n 即可。相容性: $\max_{i,j} \left| \sum_{k} a_{ik} b_{kj} \right| \le \max_{i,j} \sum_{k} |a_{ik}| |b_{kj}| \le n \max_{i,j} |a_{ij}| \max_{i,j} |b_{ij}|$,两边同乘 n 即可。 ν 不满足相容: n 维时两个全 1 矩阵的乘积为全 n 矩阵,当 n > 1 时即可知 ν 不满足相容性。
- 6. 当:由 A 正定,其可作 Cholesky 分解 LL^T ,由定义可发现 $f(x) = \|L^Tx\|_2$,由 L^T 可逆可知其正定,直接计算可知齐次,又由 $L^T(x+y) = L^Tx + L^Ty$ 可知满足三角不等式,故为范数。 仅当:若 A 不正定,由定义存在非零的 x 使得 $x^TAx \leq 0$,此时不满足正定性或根号内为负数,不为范数。
- 7. 正定性:由 rank A = n 可知方程组 Ax = 0 中可以选出 n 个独立方程,从而由 $x \in \mathbb{R}^n$ 可知解只能为 $x = \mathbf{0}$,由此利用 $||Ax|| = 0 \Leftrightarrow Ax = 0$ 可知正定。

齐次性:由原范数齐次性,直接计算 $\|\lambda x\|_A = \|A\lambda x\| = \lambda \|Ax\|$,由此得证。

- 三角不等式: 由 $||Ax|| + ||Ay|| \ge ||Ax + Ay|| = ||A(x + y)||$ 可知成立。
- 8. 先说明 I-A 可逆。由 $\|A\|<1$ 与 $\|A^n\|\le \|A\|^n$ 可知 $\lim_{n\to\infty}A^n=O$,从而 $\rho(A)<1$ 。考虑 A 的 Jordan 标准型 J 可发现对角元素模长小于 1,而其右侧的副对角线上元素模长不超过 1,从而估算可知 J^k 中任何元素不超过 $Ck^n\rho(A)^k$,此级数求和收敛,因此 $\sum_{k=0}^{\infty}A^k$ 收敛。由于 $(I-A)\sum_{k=0}^{n-1}A^k=I-A^n$,取极限可知收敛极限即为 $(I-A)^{-1}$ 。

 $1 + \|(I-A)^{-1}\|\|A\| \ge 1 + \|(I-A)^{-1}A\| \ge \|(I-A)^{-1}(I-A) + (I-A)^{-1}A\| = \|(I-A)^{-1}\|$,同除以 $1 - \|A\|$ 后移项即得证。

- 9. 由于 A 可逆, $\{Ax|x \in \mathbb{R}^n\} = \mathbb{R}^n$,从而 $\|A^{-1}\| = \max_{\|x\|=1} \|A^{-1}x\| = \max_{\|Ax\|=1} \|A^{-1}Ax\| = \max_{\|Ax\|=1} \|x\| = \max_{x} \frac{\|x\|}{\|Ax\|} = \left(\min_{x} \frac{\|Ax\|}{\|x\|}\right)^{-1} = \left(\min_{\|x\|=1} \|Ax\|\right)^{-1}$,因此得证。
- 10. 由 L 下三角,U 上三角可知 $a_{ij} = \sum_{k=1}^{n} l_{ik} u_{kj}$,但只有当 $k \leq \min i, j$ 时才可能 l_{ik}, u_{kj} 均非 0,从而之后的项可忽略,对第 i 行可写成 $a_{ij} = \sum_{k=1}^{i} l_{ik} u_{kj}$,又由 LU 分解性质可知 $l_{ii} = 1$,从而 $a_{ij} u_{ij} = \sum_{k=1}^{i-1} l_{ik} u_{kj}$,由于所有下标 j 对应,写为行向量后即为题中形式。

将此式两边取一范数后,利用三角不等式与 $|l_{ij}| \le 1$ 可知 $||a_i^T||_1 + \sum_{j=1}^{i-1} ||u_j^T||_1 \ge ||u_i^T||_1$,由此归纳可得 $||u_i^T||_1 \le \sum_{j=1}^{i-1} 2^{i-1-j} ||a_j^T||_1 + ||a_i^T||_1 \le 2^{i-1} ||A||_{\infty}$,右边的不等号是由于 $||A||_{\infty}$ 为所有 $||a_i^T||$ 中最大的一个。由此, $\forall i, ||u_i^T||_1 \le 2^{n-1} ||A||_{\infty}$,从而 $||U||_{\infty} \le 2^{n-1} ||A||_{\infty}$ 。

- 11. (1) $A^{-1} = \begin{pmatrix} 375 & -187 \\ -376 & 375/2 \end{pmatrix}, \kappa_{\infty}(A) = (752 + 750)(376 + \frac{375}{2}) = 846377$
 - (2) $b = (1,1)^T$ 时 $x = (188, -188.5)^T$, 而 $b = (1,1.1)^T$ 时 $x = (169.3, -169.75)^T$.
 - (3) $x = (1, -1)^T$ 时 $b = (1, 2)^T$, 而 $x = (1.1, -1)^T$ 时 $b = (38.5, 77.2)^T$ 。
- 12. 由于 $||I|||I|| \ge ||I||$ 且 ||I|| > 0,可知 $||I|| \ge 1$,从而 $\kappa(A) = ||A||||A^{-1}|| \ge ||AA^{-1}|| \ge 1$ 。
- 13. 右侧即为 $\|A^{-1}\|\|(A+E)-A\|\|(A+E)^{-1}\| \ge \|A^{-1}-(A+E)^{-1}\| = \|(A+E)^{-1}-A^{-1}\|$,从而得证。
- 14. 由于 $\mathrm{fl}(\prod_{i=1}^n x_i) = \prod_{i=1}^n x_i (1+\delta_{i-1})$, δ_i 代表每次乘法运算的舍入产生的误差, $\delta_0 = 0$ 。从而可知 ε 的上界为 $(1+\mathbf{u})^{n-1} 1$,由定理 2.3.3,当 $(n-1)\mathbf{u} \leq 0.01$ 时即不超过 $1.01(n-1)\mathbf{u}$ 。
- 15. 由定义可知 $\mathrm{fl}(\sum_{i=1}^{n} x_i) = \sum_{i=1}^{n} x_i \prod_{j=i}^{n} (1+\delta_j)$,其中 δ_i 表示每次加法运算产生的误差, $\delta_1 = 0$ 。由 $n\mathbf{u} \leq 0.01$ 可知 $k\mathbf{u} \leq 0.01$ 当 $k \leq n$ 时成立,从而由定理 2.3.3 考虑每个 x_i 右边的 $(1+\delta_j)$ 个数可知结论。
- 16. 设 a_i^T 为 A 的第 i 个行向量,则 $\mathrm{fl}(Ax_i) = \mathrm{fl}(a_i^Tx) = \sum_{j=1}^n a_{ij}x_j(1+\lambda_{ij})\prod_{k=j}^n (1+\delta_{ik})$,其中 λ_{ij} 表示乘法运算产生的误差, δ_{ik} 代表加法运算产生的误差, $\delta_{1k} = 0$,由于 a_{ij} 的右侧乘上了 $\begin{cases} n & j=1 \\ n-j+2 & j\neq 1 \end{cases}$ 个误差项,由定理 2.3.3 可知结论成立。
- 17. $\mathrm{fl}(x^Tx) = \sum_{i=1}^n x_i^2 (1+\lambda_i) \prod_{j=i}^n (1+\delta_i)$, 其中 δ_i 表示每次加法运算产生的误差, $\delta_1 = 0$ 。由于每个 x_i^2 右侧最多有 n 个误差项,每个 x_i 的误差必在 $(1-\mathbf{u})^n$ 与 $(1+\mathbf{u})^n$ 之间。由于 x_i^2 均为正,最大 误差在同取 + 或 时,因此即有 $\frac{\mathrm{fl}(x^Tx)}{x^Tx} \in [(1-\mathbf{u})^n, (1+\mathbf{u})^n]$,于是 $\alpha \leq n\mathbf{u} + O(\mathbf{u}^2)$ 。
- 18. 类似第一章习题 18 可说明 L 与 U 均为带宽为 2 的带状矩阵,利用习题 10 等式,当 A 为三对角阵时,由于其他项都为 0,有 $u_i^T=a_i^T-l_{i,i-1}u_{i-1}^T, i\geq 2$,从而由 $|l_{ij}|\leq 1$ 可知 $|a_{1j}|\geq |u_{1j}|, |a_{ij}|+|u_{i-1,j}|\geq |u_{ij}|, i\geq 2$ 。

由于 U 为带宽 2 的上三角阵,当且仅当 i=j-1 或 j 时 $u_{ij}\neq 0$,从而 $|u_{j-1,j}|\leq |a_{j-1,j}|+|u_{j-2,j}|=|a_{j-1,j}|,|u_{ii}|\leq |a_{ii}|+|u_{i-1,i}|\leq |a_{i-1,i}|+|a_{ii}|$,因此 U 中任何元素不超过 $2\max_{i,j}|a_{ij}|$,从而得证。

19. 利用习题 10 等式可知 $a_{ij}-u_{ij}=\sum_{k=1}^{i-1}l_{ik}u_{kj}$,第一章习题 15 已说明每一步分解中 A 的右下角子 矩阵为列对角占优,因此 $\sum_{k=1}^{i-1}|l_{ik}|<1$,于是 $|u_{ij}|\leq |a_{ij}|+\max_{k< i}|u_{kj}|$ 。

对上式归纳, $|u_{1j}| \leq |a_{1j}|$,此后每次最大值最多增加 $|a_{ij}|$,因此 $i \leq j$ 时 $|u_{ij}| \leq \sum_{k=1}^{i} |a_{kj}| \leq \sum_{k=1}^{j} |a_{kj}| \leq 2|a_{jj}|$,而由于其为上三角阵,i < j 时恒为 0,从而 $\rho \leq 2$ 。

- 20. 由算法过程可以发现,由于每个元素所在的行列最多还有 m 个其他元素,计算 L,U 的过程中每个元素至多产生 m 次减法、m 次乘法与 1 次除法的误差,由定理 2.3.3 可知每个元素的误差至多为 $(2m+1)\mathbf{u}+O(\mathbf{u}^2)$,而计算回 A 的部分需要 m 次乘法与 m-1 次加法,类似得最终误差为 $(2m-1)(2m+1)\mathbf{u}+O(\mathbf{u}^2)$,当 \mathbf{u} 较小时以 $4m^2\mathbf{u}$ 为上界,m=3 时即为 $36\mathbf{u}$ 。
- 21. 由算法过程可以发现,计算 L 的过程中每个元素至多产生 n 次减法、n 次乘法与 1 次除法或开方的误差,而计算回 A 得过程中最多需要 n 次乘法与 n-1 次加法,类似习题 20 知最终误差为 $\prod_{i=1}^{4n^2-1}(1+\delta_i)$,类似引理 2.4.1 计算方法可知条件下误差可以用 $4.09n^2\mathbf{u}$ 控制。

第三章 最小二乘问题的解法

1.
$$C = \begin{pmatrix} 35 & 44 \\ 44 & 56 \end{pmatrix}$$
, $d = \begin{pmatrix} 9 \\ 12 \end{pmatrix}$, 解为 $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ 。

2.
$$C = \begin{pmatrix} 6 & 3 & 1 & 1 \\ 3 & 9 & 3 & 3 \\ 1 & 3 & 1 & 1 \\ 1 & 3 & 1 & 1 \end{pmatrix}, d = \begin{pmatrix} 4 \\ 3 \\ 1 \\ 1 \end{pmatrix}$$
,可发现 C 的零化子空间一组基为 $u = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 3 \end{pmatrix}, v = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}$,而一个

特解为
$$x_0 = \begin{pmatrix} 3/5 \\ 2/15 \\ 0 \\ 0 \end{pmatrix}$$
,由此通解为 $x_0 + au + bv, a, b \in \mathbb{R}$ 。

- 3. 由乘正交阵不改变二范数可知变换前后二范数必然相同,从而 $\alpha = 5$ 。由定义设 $H = I 2ww^T$,可知 $2ww^T(1,0,4,6,3,4)^T = (0,-5,0,0,3,4)$,也即 $2w^T(1,0,4,6,3,4)^T w = (0,-5,0,0,3,4)$,可得 $w = \frac{\sqrt{2}}{10}(0,-5,0,0,3,4)$ 。
- 4. 即 5c + 12s = -5s + 12c,有 17s = 7c,解得 $s = \frac{7\sqrt{2}}{26}$, $c = \frac{17\sqrt{2}}{26}$,此时 $\alpha = \frac{13\sqrt{2}}{2}$ 。
- 5. 即 $-sx_1 + cx_2 = 0$,设 s = a + bi, $x_i = a_i + b_i$ i 可知 $\begin{cases} -a_1a + b_1b + b_2c = 0 \\ -b_1a a_1b + a_2c = 0 \end{cases}$ 。 若 $|x_1| = 0$,取 s = 1, c = 0 即可,否则方程组中 a, b 线性无关,可令 c = 1 得到此方程的特解,再对模长进行归一化(三个分量同时除以模长)即可。
- 6. 当 $a_j \neq 0$ 时,类似习题 5 解方程可构造二阶 Givens 方阵 Q 使得 $Q\begin{pmatrix} a_i \\ a_j \end{pmatrix}$ 的第二个分量为 0,记其角度为 θ ,则 a_i, a_j 在向量 α 的第 i, j 行时,计算知 $Q(i, j, \theta)\alpha$ 可使 $a_j = 0$,且不影响 i, j 外的其他行。

于是得到算法: 对 x 除第一行外的每一行,若为 0 则跳过,否则找到对应将其置为 0 的 $Q(1,j,\theta_j)$ 。同理,对 y 除第一行外的每一行找到 $P(1,k,\theta_k)$,则 $\prod_{k=n}^1 P(1,k,-\theta_k) \prod_{j=1}^n Q(1,j,\theta_j)$ 即为所求。证明:记 $Q = \prod_{j=1}^n Q(1,j,\theta_j)$, $P = \prod_{k=1}^n P(1,k,\theta_k)$,则根据构造过程可知 $Qx = Py = e_1$,而每个Givens 方阵的逆为其转置,也即将 θ 变为 $-\theta$,于是 P 的逆为 $\prod_{k=n}^1 P(1,k,-\theta_k)$,即有 $P^{-1}Qx = y$ 。

- 7. 类似习题 3,先计算 $\alpha = \frac{\|x\|_2}{\|y\|_2}$,设 H 为 $I-2ww^T$,可发现 $2(w^Tx)w = x-\alpha y$,从而先令 $w_0 = \alpha y x$,再计算 $w = \frac{w_0}{\|w_0\|_2}$ 即可得到 H。
- 8. 思路事实上与定理 3.3.1 完全一致,只是改变操作顺序与边的序号。归纳构造:

 H_k 操作前,后 k-1 列已符合要求,而 H_k 将倒数第 k 列 $(0, \ldots, 0, a_{n-k+1}, \ldots, a_n, a_{n+1}, \ldots, a_m)^T$ 变为 $(0, \ldots, 0, \alpha, a_{n-k+2}, \ldots, a_n, 0, \ldots, 0)^T$ 。这样得到的 w_k 只有第 n-k+1 与后 m-n 个分量非零,而后 k-1 列这些分量都是 0,因此利用 x, w 非零分量不重合时 $(I-2ww^T)x = x-2(w^Tx)w = x$ 可知不会破坏已符合要求的部分,从而成立。

9. 由定理 3.1.4 知只需求解 $L^TLz = L^TPb$,由于 L 为单位下三角,其列满秩,于是 $L^TLz = L^TPb$ 有唯一解。将其分解为 $H\begin{pmatrix} L_1 \\ O \end{pmatrix}$ 后,计算发现即为求解 $L_1^TL_1z = L^TPb$,而这可以直接通过求解 $L_1^Tz_0 = L^TPb$ 与 $L_1z = z_0$ 两个方程得到解。

当 Ux=z 时,由于 z 满足 $L^TLz=L^TPb$,代入知 $L^TLUx=L^TPb$,于是 $U^TL^TLUx=U^TL^TPb$,即 $A^TAx=A^TPb$,由定理 3.1.4 可知结论。

10. 由定理 3.1.4 可知 $A^TAXb = A^Tb$ 对任何 b 成立, 取 b 为 e_i 并拼接可知 $A^TAXI = A^TI$, 从而 $A^TAX = A^T$,同取转置有 $X^TA^TA = A$ 。

在 $A^TAX = A^T$ 两边同时左乘 X^T 可知 $AX = X^TA^TAX = X^TA^T = (AX)^T$,从而得证第二个式 子, 而 $A = X^T A^T A = (AX)^T A = AXA$,从而得证第一个式子。

11. 定义 Givens 函数 $g(a,b)=\arccos\frac{a}{\sqrt{a^2+b^2}}$,用于生成左乘 $(a,b)^T$ 使 b 成为 0 的 θ ,下文 I 为单位 阵, $G(i, j, \theta)$ 与书上定义相同, 乘法为矩阵乘法:

```
def QR(A, Q):
Q = I
for i = n downto 3
  if (A[i][1] != 0)
    Q = Q * G(i-1,i,-g(A[i-1][1],A[i][1]))
    A = G(i-1,i,g(A[i-1][1],A[i][1])) * A
for i = 2 to n
  if (A[i][i-1] != 0)
    Q = Q * G(i-1,i,-g(A[i-1][i-1],A[i][i-1]))
    A = G(i-1,i,g(A[i-1][i-1],A[i][i-1])) * A
```

算法分为两步,第一步自下而上第一列的每个元素与上面的元素合并(只要为0则跳过),这样合并 后,每次合并过程可能让下三角部分的 $a_{i,i-1}$ 变为非 0,但其他元素不会受影响。于是,完全合并后, 矩阵除了上三角部分,至多还有 $a_{i,i-1}$ 一条对角线非零。第二步针对这条对角线再用 Givens 方阵操 作,可发现此时不会再影响下三角部分,因此最多通过 (n-1)+(n-2)=2n-3 个 Givens 方阵即 可实现上三角化,再对应计算 Q 即可。

12. 等式的证明: 直接利用 $||x||_2^2 = x^T x$ 展开计算可发现成立。

当 $||Ax-b||_2$ 为最小时,任意 $||A(x+\alpha w)-b||_2 \ge ||Ax-b||_2$,于是 $2\alpha w^T A^T (Ax-b) + \alpha^2 ||Aw||^2 \ge 0$ 对 任何 α, w 成立。由于 α 与 w 同时取相反数不影响结果,可不妨设 $\alpha > 0$,此时即需要 $2w^T A^T (Ax - x)$ $b) + \alpha ||Aw||^2 \ge 0$ 恒成立。

若 $A^T(Ax-b) \neq \mathbf{0}$,假设其第 i 个分量不为 0,可取合适的 $w \in \{\pm e_i\}$,使 $2w^TA^T(Ax-b) < 0$,再

第四章 线性方程组的古典迭代解法

1. A_1 在 Jacobi 迭代法迭代矩阵是 $\begin{pmatrix} 0 & 1/2 & -1/2 \\ -1 & 0 & -1 \\ 1/2 & 1/2 & 0 \end{pmatrix}$, 谱半径为 $\frac{\sqrt{5}}{2}$, 不收敛; 而 G-S 迭代法迭代矩阵是 $\begin{pmatrix} 0 & 1/2 & -1/2 \\ 0 & -1/2 & -1/2 \\ 0 & 0 & -1/2 \end{pmatrix}$, 谱半径为 $\frac{1}{2}$, 收敛。

阵是
$$\begin{pmatrix} 0 & 1/2 & -1/2 \\ 0 & -1/2 & -1/2 \\ 0 & 0 & -1/2 \end{pmatrix}$$
, 谱半径为 $\frac{1}{2}$, 收敛。

 A_2 在 Jacobi 迭代法迭代矩阵是 $\begin{pmatrix} 0 & -2 & 2 \\ -1 & 0 & -1 \\ -2 & -2 & 0 \end{pmatrix}$,谱半径为 0,收敛;而 G-S 迭代法迭代矩阵是

$$\begin{pmatrix} 0 & -2 & 2 \\ 0 & 2 & -3 \\ 0 & 0 & 2 \end{pmatrix}$$
, 谱半径为 2, 不收敛。

- 2. 由谱半径可知 B 特征值全为 0,考虑 Jordan 标准型可发现必有 $B^n = O$,而 $x_n = B^n x_0 + B^{n-1} g +$ $\cdots + Bg + g$, 由 $B^n = O$ 知 $x_n = (B^{n-1} + \cdots + I)g$, 进一步计算可发现 $Bx_n + g$ 仍为 x_n , 也就是 此即为精确解且此后不再变化。
- 3. (1) 也即 $x_1^2 + x_2^2 + x_3^2 + 2ax_1x_3 > 0$ 对非零向量恒成立成立, $a \in (-1,1)$ 时配方知满足要求,否则 令 $x_1 = x_3 = 1, x_2 = 0$ 得矛盾。于是结论为 $a \in (-1, 1)$ 。

 - (2) Jacobi 迭代法迭代矩阵是 $\begin{pmatrix} 0 & 0 & -a \\ 0 & 0 & 0 \\ -a & 0 & 0 \end{pmatrix}$,特征值为 0, -a, a,收敛需谱半径小于 1,即 $a \in (-1, 1)$ 。 (3) G-S 迭代法迭代矩阵是 $\begin{pmatrix} 0 & 0 & -a \\ 0 & 0 & 0 \\ 0 & 0 & a^2 \end{pmatrix}$,特征值为 $0, 0, a^2$,收敛需谱半径小于 1,即 $a \in (-1, 1)$ 。
- 4. 先证明:可以找到排列方阵 P 使得 PA 左上角元素非零,右下角 n-1 阶子矩阵非奇异。

考虑 Laplace 展开 $\det(A) = \sum_{i} a_{i1}(-1)^{i+1} \det(A_{i1})$,其中 A_{ij} 为去掉 a_{ij} 所在行列的子矩阵。由于 行列式非零,右边至少有一项非零,不妨设为 t,则 a_{t1} 与 $det(A_{t1})$ 均非零,取 P 为交换 1 与 t 的 置换阵即可验证成立。

于是,通过归纳,一阶时成立,假设 n-1 阶时成立,n 阶时先取出如上的 P_0 ,再对右下角取出符 合要求的 Q, 令 $P = \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & O \end{pmatrix} P_0$ 即可。

- 5. 利用定理 4.2.4,只需说明 $\|B\|_{\infty} < 1$,而 $\sum_{j=1}^{n} |b_{ij}| = \sum_{j \neq i} \left| \frac{a_{ij}}{a_{ii}} \right| = \frac{\sum_{j \neq i} |a_{ij}|}{|a_{ii}|} < 1$,于是其对 i 取最大估地小工 1,只要想要 大值也小于 1, 从而得证。
- 6. 归纳,一阶时可直接说明成立,若 n-1 阶时成立,下证 n 阶成立。记 $m_i = |a_{ii}| \sum_{i \neq i} a_{ij}$ 利用第一章习题 8 的证明过程中的小于号步骤,经过一步高斯消去,剩下的 A_2 乘 a_{11} 后的对角元 $|a_{11}a_{kk}-a_{1k}a_{k1}|$ 減去 $\sum_{j=2,j\neq k}^{n}|a_{11}a_{kj}-a_{1j}a_{k1}|$ 至少为 $|a_{11}a_{kk}|-\sum_{j=1,j\neq k}^{n}|a_{11}a_{kj}|=m_k|a_{11}|$,于 是除以 $|a_{11}|$ 后得其至少为 m_k 。

于是, $|\det(A)| = |a_{11}| |\det(A_2)| \ge |a_{11}| \prod_{k=2}^n m_k \ge \prod_{k=1}^n m_k$ 。

- * 归纳可发现这题的界可以作较大改进
- 7. 由于 b 不影响收敛性,不妨设其为 0,则有 $x_{n+1} = (D-L)^{-1}L^Tx_n$,于是 $(D-L)x_{n+1} = L^Tx_n$ 。两 边同左乘 x_n^T 与 x_{n+1}^T ,利用 $x^TAx = x^TA^Tx$ 分解为 L,D 计算可发现

$$x_{n+1}^T A x_{n+1} - x_n^T A x_n = -(x_n - x_{n+1})^T D(x_n - x_{n+1}) \le 0$$

于是若 A 不正定,存在非零 x 使 $x^TAx \leq 0$ 。若某次迭代中 x_n 与 x_{n+1} 不同,则由 D 正定知 $x_{n+1}^T A x_{n+1} - x_n^T A x_n < 0$, 于是 $x_{n+1}^T A x_{n+1} < 0$, 此后不增, 不可能收敛到解。否则, x 一直不变, 由非零亦不是解,从而矛盾。

- 8. 若不收敛,则 $\rho(H) \ge 1$,即有 λ 使得 $\lambda H = \alpha \lambda, |\alpha| \ge 1$,则计算知 $\lambda^H B \lambda = (1 |\alpha|^2) \lambda^H P \lambda$ 。记 $\lambda = a + b$ i 可发现正定阵对任何复向量 λ 仍有 $\lambda^H P \lambda > 0$, $\lambda^H B \lambda > 0$,于是矛盾。
- 9. $\omega=1$ 时,计算发现即为 Jacobi 迭代矩阵,也即要证,当 $\rho(I-C)<1$ 时, $\rho(I-\omega C)<1$ 、 $\omega\in(0,1)$ 。若否,有 $(I-\omega C)\lambda=\alpha\lambda, |\alpha|\geq 1$,于是 $(I-C)\lambda=\left(\frac{\alpha-1}{\omega}+1\right)\lambda$ 。记 $c=\frac{1}{\omega}$,乘共轭计算此特征值的模长平方为

 $c^2|\alpha|^2+(c-1)^2-2(c-1)c\operatorname{Re}(\alpha)\geq c^2|\alpha|^2+(c-1)^2-2(c-1)c|\alpha|=(c(|\alpha|-1)+1)^2\geq |\alpha|^2\geq 1$ 从而矛盾。

10. 与定理 4.2.6 类似,由于

$$I - B = D^{-1/2} (\omega^{-1} D)^{-1/2} A (\omega^{-1} D)^{-1/2} D^{1/2}$$

$$I + B = D^{-1/2} (2I - (\omega^{-1}D)^{-1/2} A(\omega^{-1}D)^{-1/2}) D^{1/2}$$

特征值均为正实数,因此 $(\omega^{-1}D)^{-1/2}A(\omega^{-1}D)^{-1/2}, 2I - (\omega^{-1}D)^{-1/2}A(\omega^{-1}D)^{-1/2}$ 正定对称,从而相合得结论。

11. 直接计算可得

$$\lambda I - L_{\omega} = (D - \omega L)^{-1} ((\lambda + \omega - 1)D - \lambda \omega L - \omega U)$$

类似定理 4.2.9,只需说明 $|\lambda| \ge 1$ 时 $(\lambda + \omega - 1)D - \lambda \omega L - \omega U$ 严格对角占优或不可约对角占优。同除以 ω 得 $(\frac{\lambda-1}{\omega}+1)D - \lambda L - U$,由习题 9 证明过程知 $\frac{\lambda-1}{\omega}+1$ 模长大于等于 λ ,从而严格对角占优或不可约对角占优性仍保持,即得证。

- 12. 非对角线非零元素为 12,13,21,24,31,34,42,43,分为 $\mathcal{S}_1=\{1\},\mathcal{S}_2=\{2,3\},\mathcal{S}_3=\{4\}$ 即可。
- 13. (a) 直接计算 $a_{11}=\sqrt{2}$,而考虑到 -1 可知 $a_{i+1,i}=-\frac{1}{a_{ii}}$,利用第一章习题 18 可知除了 a_{ii} 与 $a_{i+1,i}$ 外的元素均为 0,因此只需要考虑 a_{ii} 的递推。由 T_n 的对角线为 2,有 $a_{i+1,i+1}^2+a_{i+1,i}^2=2$,因此 $a_{i+1,i+1}^2=2-\frac{1}{a_{ii}^2}$,解得 $a_{ii}=\sqrt{\frac{i+1}{i}}$,于是 $a_{i+1,i}=-\sqrt{\frac{i}{i+1}}$ 。
 - (b) 与上方类似,递推可得 L 为 $L_{ii} = 1, L_{i+1,i} = -\frac{i}{i+1}, U$ 为 $U_{ii} = \frac{i+1}{i}, U_{i,i+1} = -1$ 。
 - (c) 由于 T 的特征值互不相同,其特征向量能张成全空间,即特征向量作为列构成的矩阵 P 可逆。而 TP = PD,其中 D 为特征值排列为的对角阵,于是 $T = PDP^{-1}$,由条件,D,P 均已知。原方程化为 $PDP^{-1}U + UPDP^{-1} = h^2F$,记 $U_0 = P^{-1}UP$,则 $DU_0 + U_0D = h^2P^{-1}FP$ 。按如下步骤求解:先计算 P^{-1} ,复杂度 n^3 ,然后计算 $P^{-1}FP$,矩阵乘法复杂度可不超过 n^3 。而注意到 D 为对角阵, $DU_0 + U_0D$ 可直接逐元素求解,于是解 $DU_0 + U_0D = h^2P^{-1}FP$ 的复杂度为 n^2 ,最后计算 $U = PU_0P^{-1}$,复杂度 n^3 ,最终复杂度 $O(n^3)$ 。
- 14. 先说明 s=2 时的情况,由于

$$\begin{pmatrix} D_1 & C_2 \\ B_2 & D_2 \end{pmatrix} = \begin{pmatrix} I & O \\ B_2 D_1^{-1} & I \end{pmatrix} \begin{pmatrix} D_1 & O \\ O & D_2 - B_2 D_1^{-1} C_2 \end{pmatrix} \begin{pmatrix} I & D_1^{-1} C_2 \\ O & I \end{pmatrix}$$

对两边取行列式可知 $\det \begin{pmatrix} D_1 & C_2 \\ B_2 & D_2 \end{pmatrix} = \det \begin{pmatrix} D_1 & O \\ O & D_2 - B_2 D_1^{-1} C_2 \end{pmatrix}$,当 B_2 和 C_2 同乘的系数为 1时不影响。

若
$$s=k$$
 时成立,考虑 $s=k+1$ 时,左乘 $\begin{pmatrix} I & O & O \\ O & I & O \\ O & -\mu B_s D_{s-1}^{-1} & I \end{pmatrix}$,右乘 $\begin{pmatrix} I & O & O \\ O & I & -\frac{1}{\mu} D_{s-1}^{-1} C_s \\ O & O & I \end{pmatrix}$

可以使右下角元素变为 $D_s - B_s D_{s-1}^{-1} C_s$, C_s , D_s 部分变为 O,而左上部分不变,于是 $\det(A) = \det(A_{s-1}) \det(D_s - B_s D_{s-1}^{-1} C_s)$,利用归纳假设知与 μ 无关。

第五章 共轭梯度法 11

15. $\det(\lambda I - L_{\omega}) = 0$

$$\Leftrightarrow \det(D - \omega C_L)^{-1} \det((\lambda + \omega - 1)D - \lambda \omega C_L - \omega C_U) = 0$$

$$\Leftrightarrow \det((\lambda + \omega - 1)D - \lambda \omega C_L - \omega C_U) = 0$$

$$\Leftrightarrow \det(\frac{\lambda+\omega-1}{\lambda^{1/2}\omega}D-C_L-C_U)=0$$

$$\Leftrightarrow \det(D^{-1}(\frac{\lambda+\omega-1}{\lambda^{1/2}\omega}D - C_L - C_U)) = 0$$

$$\Leftrightarrow \det(\frac{\lambda+\omega-1}{\lambda^{1/2}\omega}I-B)=0$$

于是 $\mu = \frac{\lambda + \omega - 1}{\lambda 1/2\omega}$, 同平方后求解二次方程即得题中式 (注意到复数中 $a^{1/2}$ 存在两值)。

16. (暂缺)

第五章 共轭梯度法

- 1. $(x x_*)^T A(x x_*) x_*^T A x_* = x^T A x (A x_*)^T x x^T A x_* = x^T A x b^T x x^T b = \varphi(x)$
- 2. 记 $x = x_{k-1}$,由算法 $\varphi(x) \varphi(x_k) = \frac{(r^T r)^2}{r^T A r}$,其中 r = b Ax,题目即化为 $\frac{x^T A x 2b^T x}{\kappa_2(A)} \leq \frac{(r^T r)^2}{r^T A r}$ 。 分析特征值与正交相似对角化可知正定对称阵的逆也正定对称,于是由 $x = A^{-1}(b-r)$ 可进一步化为 $\frac{r^T A^{-1} r b^T A^{-1} b}{\kappa_2(A)} \leq \frac{(r^T r)^2}{r^T A r}$,即 $\frac{r^T A r}{r^T r} \frac{r^T A^{-1} r b^T A^{-1} b}{r^T r} \leq \|A\|_2 \|A^{-1}\|_2$ 。 由正定对称 $b^T A^{-1} b \geq 0$,只需说明对正定对称阵 B 与任何非零向量 x,有 $\frac{x^T B x}{x^T x} \leq \|B\|_2$ 。而正定对称阵的奇异值即为特征值,作奇异值分解可知左侧不超过最大特征值,右侧即为最大特征值,从而得证。
- 3. 由最后一次迭代可知迭代结果 x_{k+1} 满足 $\phi(x_{k+1}) = -b^T A^{-1}b$,假设前一次为 x,则下降方向 r = b Ax,类似习题 2 代入得 $x^T Ax 2b^T x + b^T A^{-1}b = \frac{(r^T r)^2}{r^T Ar}$,由 $x = A^{-1}(b-r)$ 化为 $r^T A^{-1} r r^T A r = (r^T r)^2$ 。 考虑 A 的正交相似对角化 $P^T DP$,记 s = Pr,可发现 $s^T D^{-1} s s^T D s = (s^T s)^2$,利用柯西不等式可知左侧大于等于右侧,等号成立当且仅当 $s^T D^{-1}s$ 的每个分量与 $s^T D s$ 的每个分量对应成比例 (或同为 0),于是 s 只能在 D 有相同对角元的某些分量非零,从而 s 是 D 的特征向量,即 $DPr = \lambda Pr$,有 $P^T DPr = \lambda r$,得证。
- 4. 只需说明系数矩阵可逆,即行列式非零。直接计算行列式 $r_k^T A r_k p_{k-1}^T A p_{k-1} (r_k^T A p_{k-1})^2$ 。记 $A = LL^T, a = L^T r_k, b = L^T p_{k-1}$,则左式化为 $||a||^2 ||b||^2 (a \cdot b)^2$,由于 r_k, p_{k-1} 线性无关,L 可逆,a, b 线性无关, $||a||^2 ||b||^2 (a \cdot b)^2$ 必然大于 0,从而得证。
- 5. * 条件应增添每个 p_i 非零

若否,不妨设 $p_1 = \sum_{i=2}^k \lambda_i p_i$, λ_i 不全为 0,则 $p_1^T A p_1 = \sum_{i=2}^k \lambda_i p_i^T A p_1 = 0$,与 p_1 非零矛盾。

6. 直接求导 $\varphi'(y_{i-1}+te_i)=2ta_{ii}+2y_{i-1}^TAe_i-2b_i$,于是 $t=\frac{y_{i-1}^TAe_i-2b_i}{a_{ii}}$ 。接下来只需要归纳验证,若 y_{i-1} 是由 $(D-L)^{-1}Uy_0$ 的前 i-1 行与 y_0 的后 n-i+1 行组成, y_i 是由 $L_1y_0+(D-L)^{-1}b$ 的前 i 行与 y_0 的后 n-i 行组成,其中 L_1 为 G-S 的迭代矩阵。

注意到, y_i 可以写为 $\begin{pmatrix} I_i & O \\ O & O \end{pmatrix}$ $(D-L)^{-1}(Uy_0+b)+\begin{pmatrix} O & O \\ O & I_{n-i} \end{pmatrix}$ y_0 ,将 y_{i-1} 代入 $y_i=y_{i-1}+te_i$,分别考虑 y_0 部分和 b 部分的变化。将 $(y_{i-1}^TAe_i)e_i$ 写为 E_iAy_{i-1} ,其中 E_i 为第 i 列为 1 的方阵,则有 $y_i=(I+\frac{E_iA}{a_{ii}})y_{i-1}-2\frac{E_i}{a_{ij}}b$,代入计算第 i 个分量可得成立。

- 7. 利用相似对角化可知,若 A 的不同特征值为 $\lambda_1, \ldots, \lambda_k$,则多项式 $f(x) = \prod_{i=1}^k (x \lambda_i)$ 满足 f(A) = O。由于子空间中的任何向量都可以写为 g(A)r, g(A) 为某个多项式,而 g(A)r = q(A)r,其中 q(x) 为 g(x) 商去 f(x) 的余式,因此任何元素可以通过一个次数不超过 k-1 次的多项式乘 r 表示,即可以被 $r, Ar, \ldots, A^{k-1}r$ 线性表出,从而得证。
- 8. 由习题 7,这时 Krylov 子空间维数最高为 k,于是利用定理 5.2.2,经过 k 步已经找到了使 $\varphi(x)$ 全局最小的 x,即为方程的解。
- 9. 利用定理 5.3.2,记 $x = x_k x_*, y = x_0 x_*$ 变形后只需说明 $\frac{x^T x}{x^T A x} \frac{y^T A y}{y^T y} \le \kappa_2(A)$ 。 习题 2 已证明 $\frac{y^T A y}{y^T y} \le \|A\|_2$,下面说明 $\frac{x^T x}{x^T A x} \le \|A^{-1}\|_2$ 。 仍利用正定对称性,对 A 作相似对角化 $P^T D P$ 后,记 z = P x,则 $\frac{x^T x}{x^T A x} = \frac{z^T z}{z^T D z} \le \frac{1}{\min_i D_{ii}} = \rho(D^{-1}) = \|D^{-1}\|_2 = \|A^{-1}\|_2$,从而得证。
- 10. (暂缺)
- 11. 直接计算可知,若 $x^T A y = 0$,有 $\|x\|_A^2 + \|y\|_A^2 = \|x + y\|_A^2$,于是 $r_k^T \mathcal{X} = 0 \Leftrightarrow (x_k A^{-1}b)^T A \mathcal{X} = 0 \Leftrightarrow \forall x \in \mathcal{X}, \|x A^{-1}b\|_A^2 = \|x_k A^{-1}b\|_A^2 + \|x_k x\|_A^2 \ge \|x_k A^{-1}b\|_A^2$,即得证。
- 12. 记 L2s 为二范数平方 (自己与自己点乘),T 为转置,mul 为矩阵与向量乘法 [此处为理想情况,迭代可以自动终止,初值设定为 0。由于只涉及到 A^TA 与向量乘法,可以不用计算矩阵乘法]:

第六章 非对称特征值问题的计算方法

- 1. $\det(\lambda I BA) = \det\begin{pmatrix} \lambda I BA & O \\ B & I \end{pmatrix} = \det\begin{pmatrix} I & -B \\ O & I \end{pmatrix}\begin{pmatrix} I & O \\ \lambda^{-1}A & I \end{pmatrix}\begin{pmatrix} \lambda I & B \\ O & I \lambda^{-1}AB \end{pmatrix}$ $= \lambda^m \det(I \lambda^{-1}AB) = \lambda^{m-n} \det(\lambda I AB), \text{ 从而得证}.$
- 2. 由于 Q_k 每位模不超过 1,根据有界收敛定理可知存在收敛子列。 由于矩阵运算只涉及光滑函数, $Q^*AQ = \lim_{i \to \infty} Q_{k_i}^* A_{k_i} Q_{k_i}$,由右侧每个为上三角阵知结果为上三角阵。

- 3. 记 $C = Q^*BQ$,由条件直接计算可知 CT = TC,而 T 为对角元互不相同的上三角阵。直接计算可知 $\sum_{k \leq j} c_{ik} t_{kj} = \sum_{k \geq i} t_{ik} c_{kj}$,考虑所有 i > j 的部分,按照 i j 可反向归纳得出必然 c_{ij} 全为 0,从而得证。
- 4. $\|Ax \mu x\|_2^2 = (Ax \mu x)^* (Ax \mu x) = x^* A^* Ax x^* (\mu^* A + \mu A^*) x + \mu^* \mu x^* x = x^* A^* Ax + (-\mu^* R(x) \mu R(x)^* + \mu^* \mu) x^* x = x^* A^* Ax R(x)^* R(x) x^* x + \|\mu R(x)\|_2^2 x^* x$,从而得证。
- 5. 对 α ,单位特征向量 $(1,0)^T$,左特征向量 $(1,\frac{\gamma}{\alpha-\beta})^T$,条件数 $\sqrt{1+\frac{\gamma^2}{(\alpha-\beta)^2}}$ 。 对 β ,单位特征向量 $(1+\frac{\gamma^2}{(\alpha-\beta)^2})^{-1/2}(\frac{\gamma}{\beta-\alpha},1)^T$,左特征向量 $(0,\sqrt{1+\frac{\gamma^2}{(\alpha-\beta)^2}})^T$,条件数 $\sqrt{1+\frac{\gamma^2}{(\alpha-\beta)^2}}$ 。
- 6. 设 $B=QAQ^*$,若 x 为对特征值 λ 的单位特征向量,则由于 $QAQ^*Qx=\lambda Qx$, Qx 为 b 模为 1 的特征向量,类似知 $\overline{Q}y$ 为对应的左特征向量,而 $\|\overline{Q}y\|_2=\|y^TQ\|_2=\|y^T\|_2$ 。另一方面,由酉相似知 U_2 与 A_2 不变,于是 Σ^\perp 不变,对应的特征向量条件数不变。
- 7. 计算可知 $A^n = \begin{pmatrix} \lambda^n & n\lambda^{n-1} \\ 0 & \lambda^n \end{pmatrix}$ 。由归一化过程, A^n 等同于 $\begin{pmatrix} \lambda & n \\ 0 & \lambda \end{pmatrix}$,分第二个分量是否为 0 讨论知一定收敛到 $(1,0)^T$ 。

计算可知 $B^{2k} = \lambda^{2k} I$,于是 B 的偶数次方与 I 等同,奇数次方与 B 等同,只要一开始不为特征向量,不能收敛。

- 8. 计算知 $A^n u_0 = \begin{pmatrix} C_n^2 \\ n \\ 1 \end{pmatrix}$,于是归一化后为 $\begin{pmatrix} 1 \\ 2(n-1)^{-1} \\ 2(n^2-n)^{-1} \end{pmatrix}$,精确到 5 位需要 $2(n-1)^{-1} < 10^{-5}$,即 n > 200001。
- 9. 由条件可知模第二大的特征值必然在 λ_2, λ_n 中,由 6.3 节开头知需要 $\frac{|\lambda_1 \mu|}{\max(|\lambda_2 \mu|, |\lambda_n \mu|)}$ 尽量大。由于当 $\lambda_1 \mu > \lambda_2 \mu > 0$ 时有 $\frac{\lambda_1 \mu}{\lambda_2 \mu} > \frac{\lambda_1}{\lambda_2}$ 。进一步讨论正负可发现最优时必须 $\lambda_1 \mu > \lambda_2 \mu \geq 0 \geq \lambda_n \mu$,且后两者模长相等,从而得证。
- 10. 构造其友方阵 $\begin{pmatrix} & -\alpha_n \\ 1 & -\alpha_{n-1} \\ & \ddots & \vdots \\ & 1 & -\alpha_1 \end{pmatrix}$,其特征多项式即为 $p(\lambda)$,因此模最大的特征值即为 $p(\lambda)$ 的模最大根,在其唯一时用幂法计算即可。
- 11. Mathematica 计算可得约为 $(1, -0.7321, 0.2679)^T$ 。
- 12. 只要取 E 使得 Ev = u,即有 $(A + E)v = \lambda Iv = \lambda v$,而从 Ev = u 可以得到 $\sum_{i=1}^{n} e_{ij}v_{j} = u_{j}$ 。利用 柯西不等式, $\sum_{i=1}^{n} v_{j}^{2} \sum_{i=1}^{n} e_{ij}^{2} \geq u_{j}^{2}$,且等号可以取到,于是存在 $\sum_{i=1}^{n} e_{ij}^{2} = \frac{u_{j}}{\sum_{i=1}^{n} v_{j}^{2}}$ 的解,此时对 j 求和即有 $\|E\|_{F}^{2} = \frac{\|u\|_{2}^{2}}{\|v\|_{2}^{2}}$,从而得证。
- 13. 取 v 为 A+E 对应 λ 的特征向量,类似习题 12 计算可知 Ev=u,从而 $\frac{\|u\|_2}{\|v\|_2} = \frac{\|Ev\|_2}{\|v\|_2} \leq \|E\|_2$,即得证。
- 14. $\begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$ 与 $\frac{1}{2}\begin{pmatrix} 1 & 3 \\ 1 & -1 \end{pmatrix}$ 交替出现,不收敛。
- 15. 若原本 a_{21} 到 a_{n1} 全为 0,则已经结束,否则可左乘 P 将其中非零元素置换到 α_{21} ,再左乘 M 进行 行变换将整列剩下元素减去 α_{21} 的倍数以消去 (这里 P,M 都是针对后 n-1 行进行了行变换)。这时,右乘 P^{-1} 与 M^{-1} 都是对后 n-1 列进行操作的列变换,不会影响第一列的结果,从而得证。

- 16. 使用归纳法。n=1,2 时成立,否则可利用 M_1,P_1 将其相似为习题 15 的对应形式,记作 $\begin{pmatrix} \alpha_{11} & u_1 \\ u_2 & A_2 \end{pmatrix}$,其中 u_2 只有第一个分量可能非零。再构造 M_2,P_2 使得 $M_2P_2A_2(M_2P_2)^{-1}$ 将 A_2 化为了对应形式。注意到,习题 15 的过程中没有改变第一行第一列,因此 M_2P_2 的第一行第一列只有对角元的 1,从 而 $\begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & M_2P_2 \end{pmatrix} \begin{pmatrix} \alpha_{11} & u_1 \\ u_2 & A_2 \end{pmatrix} \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & P_2^{-1} M_2^{-1} \end{pmatrix}$ 不会改变 u_2 除第一个分量均为 0 的性质,重复此操作即得证。
- 17. 注意到 $X^{-1}A^{t-1}x = e_t$,而 AX 的第 i 列为 A^ix ,于是 $X^{-1}AX$ 的前 n-1 列为 e_2 到 e_n ,从而为上 Hessenberg。
- 18. * 非亏损即可对角化

由条件可知对任何 λ , $\lambda I - H$ 的左下角 n-1 阶子矩阵可逆,从而其特征值几何重数必然为 1,由可对角化知代数重数亦为 1,从而没有重特征值。

- 19. 直接取 $d_{11}=1, d_{i+1,i+1}=\frac{d_{ii}}{h_{i+1,i}}$,计算可知成立。由于 $d_{ii}d_{n-i,n-i}=\prod_{i=1}^{n-1}h_{i+1,i}$,而 $\|D\|_2, \|D^{-1}\|_2$ 分别为特征值与特征值倒数中模最大者,即 $\prod_{i=1}^k |h_{k,k+1}|$ 中最大的除以最小的。
- 20. 由于存在 Householder 变换 H_0 使得 $H_0\alpha = \|\alpha\|e_1$,而又由于 H_0 满足 H_0^2 的第一列是 e_1 , H_0 的第一列即为 $\frac{\alpha}{\|\alpha\|}$ 。这时计算可发现 $H_0^TAH_0$ 的第一列为 λe_1 ,从而再将右下角的部分类似算法 6.4.1 处理得到 H_2 ,取 $Q = H_0H_2$ 即可。
- 21. 由于上 Hessenberg 矩阵不可约,可从上往下通过 n-1 个 Givens 方阵实现 QR 分解。而考虑每一次 Givens 变换,当

$$\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & b' \\ 0 & d' \end{pmatrix}$$

时,计算可知

$$\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} 0 & b'' \\ 0 & d'' \end{pmatrix}$$

也即 $Q^{-1}HQ$ 在乘左侧的 Q^{-1} 形成有零对角元的上三角矩阵后,乘右侧的 Q 后此对角元仍然为 0,从而得证。

- 22. 归纳, $U_0R_0 = H_0 \mu_0I$ 成立,当小于等于 j-1 均成立时,考虑 j。 左侧 = $U_0 \dots U_{j-1}(H_j - \mu_j I)R_{j-1} \dots R_0 = U_0 \dots U_{j-1}H_jR_{j-1} \dots R_0 - \prod_{i=0}^{j-1}(H - \mu_i I)\mu_j I$,于是由 归纳假设只需要证明 $U_0 \dots U_{j-1}H_jR_{j-1} \dots R_0 = U_0 \dots U_{j-1}R_{j-1} \dots R_0 H$ 。直接计算发现 $H_tR_{t-1} = R_{t-1}H_{t-1}$,反复利用可知结论成立。
- 23. 设第 i 个对角元为 λ_i ,考虑 $(A \lambda_i I)x = 0$,假设 $x_i = 0$,利用剩下 i 1 个方程独立性可以推出必须全为 0,矛盾,于是可设 $x_i = 1$ 求解。下面假设 B, b 分别为 n 1 阶的方阵、向量,UpperSolve 为求解上三角线性方程组,下标从 1 开始:

def find_eigen_system(A, result):

for i = 1 to n:
for j = 1 to n-1:
 for k = j to n-1:
 B[j][k] = A[j<i?j:j+1][k<i?k:k+1]</pre>

24. 将 Householder 定义中的 ww^T 推广为 ww^H , 即为酉方阵,于是对复向量仍有定理 3.2.2 结论。将定 理 3.3.1 从第一列开始上三角化变为从最后一列开始下三角化,即得到矩阵的 QL 分解。

此外,将 LU 分解的过程变为对列进行 Gauss 变换可以得到 UL 分解的过程。

考虑 $A_{n-1} = Q_n L_n$, $A_n = L_n Q_n$ 的迭代,将定理 6.4.1 的过程中的 LU 分解替换为 UL 分解,QR 分 解替换为 QL 分解,即证明了若 Y 有 UL 分解,则对角线以上趋于 0,对角线上趋于特征值。

25. 考虑 P25 底部和 P26 顶部的形式可知 $P^TL = (L_{n-1}P_{n-1} \dots L_1P_1)^{-1}$ 。由于上 Hessenberg 阵的形式, 每一步的 L_i 除对角线上的 1 外至多有一个元素 $l_{i+1,i}$ 非 0,而 P_i 则或为单位阵或为交换 i, i+1 两 行的矩阵 (右乘时变为列变换)。利用 P_i, L_i 逆的形式知其逆依然有此性质,因此按照 1 到 n-1 的 顺序右乘上三角阵 U 后, L_t 作用完后下三角部分至多 $u_{21}, u_{32}, \ldots, u_{t+1,t}$ 非零,于是全部作用完后 仍为上 Hessenberg 阵。

由 $\tilde{H} = (P^T L)^{-1} H P^T L$ 可知相似。

26. 设x 是A 对 α_{11} 的单位左特征向量, $Q=\begin{pmatrix}U&x\end{pmatrix}$ 是正交方阵,计算可发现此即满足要求 (由于 α_{11} 为实特征值,可使 α_{12} 是实力量) 为实特征值,可使x是实向量)。

寻找 x: 直接由条件列方程求解,可不妨设 $x_1 = 1$ 解,因为下方构造正交矩阵的过程包含了单位化。 构造正交矩阵: 类似习题 20 用 Householder 变换构造即可。

27. 对于实特征值可直接利用反幂法,接下来对复特征值推导过程:

设 2 阶方阵对角块对应的一对复特征值是 $a \pm bi$,取其中一个,反幂法的迭代步骤是 (A - aI -

版 2 所方阵对用块对应的一对复特征但是
$$a \pm bi$$
,取具中一个,反幕法的迭代步骤是 $(A - aI - biI)v_k = z_{k-1}$,拆分为实向量 $vr_k + ivi_k, zr_k + izi_k$ 可知
$$\begin{cases} (A - aI)vr_k + bvi_k = zr_{k-1} \\ (A - aI)vi_k - bvr_k = zi_{k-1} \end{cases}$$
,于是
$$\begin{cases} ((A - aI)^2 + b^2)vr_k = (A - aI)zr_{k-1} - bzi_{k-1} \\ ((A - aI)^2 + b^2)vi_k = bzr_{k-1} + (A - aI)zi_{k-1} \end{cases}$$
,另一个递推可写为
$$\begin{cases} l_k = \sqrt{\|vr_k\|^2 + \|vi_k\|^2} \\ zr_k = \frac{vr_k}{l_k} \\ zi_k = \frac{vi_k}{l_k} \end{cases}$$
。

计算可发现,将b改为-b后,递推事实上只是vi.zi变为相反数,因此递推结束后只需要取 $zr\pm izi$ 即得到特征值。

于是, 取 a 与 b 的近似值进行如上的迭代即可得到复特征值的特征向量, 结合实特征值的特征向量 计算可得到结论。

- 28. 幂法中每步 $y_k = A^T A u_{k-1}$ 即可,这样无需显式计算矩阵乘积。最后得到的特征值需要开根号得到 最大奇异值。
- 29. 左奇异向量即为 AA^T 的特征向量,而右奇异向量为 A^TA 的特征向量,从而可得到奇异值后利用反 幂法计算。
- 30. $A^n u = X\Lambda^n X^{-1} u_0$,归一化的结果与 $X \operatorname{diag}(e^{in\theta},1,\frac{\lambda_3}{\lambda_2},\ldots,\frac{\lambda_n}{\lambda_2})X^{-1} u_0$ 相同,于是可类似定理 6.2.1 计算得充分大时 $u_n \to e^{in\theta}(y_1^*u_0)x_1 + (y_2^*u_0)x_2$, 而代入 θ 得表达式即可知有 t 个对应的收敛子序列。

31. 由于 A 乘倍数不影响结果,不妨设 $\lambda_1 = 1$ 。

由条件设
$$A = PJP^{-1}$$
, J 对角,计算知 $q_k = \frac{PJ^kP^{-1}u}{\|PJ^kP^{-1}u\|}$,从而 $q_k^*Aq_k = \frac{u^*P^{*-1}J^{*k}P^*PJ^{k+1}P^{-1}u}{u^*P^{*-1}J^{*k}P^*PJ^k(J-I)P^{-1}u}$,于是有 $|q_k^*Aq_k - 1| = \left|\frac{u^*P^{*-1}J^{*k}P^*PJ^k(J-I)P^{-1}u}{u^*P^{*-1}J^{*k}P^*PJ^kP^{-1}u}\right|$ 。

注意到 $J^k(J-I)$ 中模最大的分量不超过 $2|\lambda_2|^k$,而 J^{*k} 模最大分量不超过 1,假设 $u^*P^{*-1}J^{*k}P^*P$ 与 $P^{-1}u$ 的模最大分量的界为 a,b,分母不超过 $2n^2ab|\lambda_2|^k$ 。另一方面,趋于极限时分子的 J 只有第一个分量为 1,由于分子为 $\|PJ^kP^{-1}u\|^2$,由条件极限时结果 c 非零,从而存在某个 k 之后大于等于 $\frac{c}{2}$,综上可知原式不超过 $\frac{4n^2ab}{c}|\lambda_2|^k$,即得证 $O(|\lambda_2|^k)$ 。

当 A 为 Hermite 阵时,可设 P 为正交阵,上式变为 $|q_k^*Aq_k-1|=\left|\frac{u^*P^{*-1}|J|^{2k}(J-I)P^{-1}u}{u^*P^{*-1}|J|^{2k}P^{-1}u}\right|$,其中 |J| 为 J^*J 每个元素开平方根,即 J 每个元素取模。与上方类似过程可知此时为 $O(|\lambda_2|^{2k})$ 。

- 32. (1) 由于对应分块大小对应,可以直接相乘,从而通过分块矩阵计算知结果。
 - (2) 计算得 $U_k U_k^* = I q_k q_k^*$,于是有 $\rho_k^2 \|g_k\|^2 = q_k^* A^* A q_k \mu_k q_k^* A^* q_k \mu_k^* q_k^* A q_k + \mu_k^* \mu_k q_k^* A^* A q_k + q_k^* A^* q_k q_k^* A q_k = -\mu_k \mu_k^* \mu_k^* \mu_k + \mu_k^* \mu_k + \mu_k^* \mu_k = 0$,其中利用了 $q_k^* q_k = 1$ 。
 - (3) 展开知右 = $\frac{1}{\delta_k}(q_{k-1} + U_{k-1}(\mu_{k-1}I C_{k-1})^{-1}g_{k-1})$,由于 q_k 与目标式的计算过程都进行了归一化 (乘酉阵不影响模),需说明 $q_{k-1} \parallel (A \mu_{k-1}I)q_{k-1} + (A \mu_{k-1}I)U_{k-1}(\mu_{k-1}I C_{k-1})^{-1}g_{k-1}$,而右式 $= Q_{k-1}\begin{pmatrix} 0 \\ g_{k-1} \end{pmatrix} + Q_{k-1}\begin{pmatrix} h_{k-1}^* \\ C_{k-1} \mu_{k-1}I \end{pmatrix} y_k = Q_{k-1}\begin{pmatrix} 0 \\ g_{k-1} \end{pmatrix} + Q_{k-1}\begin{pmatrix} h_{k-1}^*y_k \\ -g_{k-1} \end{pmatrix} = (h_{k-1}^*y_k)q_{k-1}$,从而得证。
 - (4) 类似幂法收敛性条件可知其收敛到的 μ 必然为单特征值,否则将无法收敛。于是,利用 (2) 可知极限中 C 的特征值是 A 除去 μ 后得到, $(\mu_k I C_k)^{-1}$ 的极限存在。由此可知 $(\mu_k I C_k)^{-1}$ 有界,估算知 $y_k = O(\|g_{k-1}\|)$ 。

由于 $I + y_k y_k^*$ 是 Hermite 阵,可进行正交相似对角化 $I + y_k y_k^* = R^* J R$,由于 J 为 $I + y_k y_k^*$ 的特征值,且 $\det(xI - y_k y_k^*) = x^{n-1}(x - y_k^* y_k)$,可知对应特征值与 1 的差是 $O(\|y_k^* y_k\|)$ 量级,而根据相合对角化的过程可知 R - I 亦为 $O(\|y_k^* y_k\|)$ 量级,从而取 $D = (\sqrt{J}R)^{-1}$ 放缩知 $\|I - D\| = O(\|y_k y_k^*\|)$,从而得结论。

- (5) 利用 (3) 计算可知右侧的第一列是 q_k ,从而只需说明 $P_k = \begin{pmatrix} 1 & -y_k^* \\ y_k & I \end{pmatrix} \begin{pmatrix} \delta_k^{-1} & 0 \\ 0 & D \end{pmatrix}$ 是酉方阵,而直接计算 $P_k^* P_k = I$,因此得证。
- (6) 利用 (5) 计算, g_k 为 $P_k^*Q_{k-1}^*AQ_{k-1}P_k$ 的对应部分,于是计算知 $g_k = \frac{1}{\delta_k}(-\mu_{k-1}D^*y_k + D^*g_{k-1} (h_{k-1}^*y_k)D^*y_k + D^*C_{k-1}y_k)$ 。
 - (4) 已经说明 y_k 是 $O(\|g_{k-1}\|)$,而 C_{k-1}, δ_k, μ_k 是 O(1),再利用 (4) 对 D 的估算可得 $g_k = \frac{1}{\delta_k}(-\mu_{k-1}y_k + g_{k-1} (h_{k-1}^*y_k)y_k + C_{k-1}y_k) + O(\|g_{k-1}\|^3)$ 。注意到 $-\mu_{k-1}y_k + g_{k-1} + C_{k-1}y_k = 0$ 即得结论。
- (7) 由于 $y_k = O(||g_{k-1}||)$,代入 (6),再利用 (2) 可直接得结论。当 A 为 Hermite 阵时,由于 $h_{k-1} = g_{k-1}$,代入 (6) 后左右均为 $O(||g_{k-1}||^3)$,从而有结论。

第七章 对称特征值问题的计算方法

- 1. 设其对应的单位特征向量为 α ,有 $A\alpha = \lambda\alpha$,由对称可知 $\alpha^T A = \lambda\alpha^T$,从而其亦为左特征向量,且 $\alpha^T \alpha = 1$,由条件数定义知为 1。
- 2. 利用定理 7.1.3,计算知将 A 的第 i 行、列除对角元外变为 0 的对称矩阵 B 有特征值 a_{ii} ,而 A-B 只有第 i 行/列非零,记其第 i 列为 α ,可知 $A-B=e_i\alpha^T+\alpha e_i^T$ (由于 $\alpha_i=0$),从而 $\|(A-B)x\|=\sqrt{(\alpha^Tx)^2+(\|\alpha\|x_i)^2}$ 。

利用柯西不等式,当 $x^Tx=1$ 时,利用 $\alpha_i=0$ 有 $(\alpha^Tx)^2+(\|\alpha\|x_i)^2\leq \alpha^T\alpha(1-x_i^2)+\alpha^T\alpha x_i^2=\alpha^T\alpha$,从而 $\|(A-B)x\|$ 最大为 $\sqrt{\alpha^T\alpha}$,而此即为二范数,因此 A 必然有一特征值在 B 的特征值 a_{ii} 的周围 $\sqrt{\alpha^T\alpha}$ 范围内,从而得证。

3. 由于同时正交相似对角化不改变结果,可不妨设 A 为对角阵。此时记 $t^{-1} = \|A^{-1}\|_2$ 为最小对角元的倒数,t 即代表 A 的最小对角元。

而对非零的 x,由二范数定义 $x^TAx + x^TEx \ge tx^Tx - ||x|| ||Ex|| > tx^Tx - ||x|| (t||x||) = 0$,从而得证。

- 4. 由奇异值分解 $A=P\Sigma Q$ 可知 $A^TA=Q^T\Sigma^T\Sigma Q$,由相似不影响特征值与 Q 正交可知 A^TA 的特征值即为 $\Sigma^T\Sigma$ 对角元,而由于 Σ 对角元非负, $\Sigma^T\Sigma$ 对角位置恰好为 Σ 对应对角元的平方,从而得证。 AA^T 同理。
- 5. 由习题 4,利用对称阵条件有 $A^TA = A^2$,正交相似对角化可知 A^2 特征值为 A 对应特征值的平方,从而奇异值平方与对应特征值平方相同,又由奇异值非负可知结论。
- 6. 设奇异值分解 $A = P\Sigma Q$,则由 P,Q 正交 $\|A\|_2 = \max_x \frac{\|Ax\|}{\|x\|} = \max_{y=Qx} \frac{\|P\Sigma y\|}{\|Q^Ty\|} = \max_y \frac{\|\Sigma y\|}{\|y\|}$ 。利用 Σ 为对角阵可直接算出 $\|A\|_2 = \sigma_1$,同理可算出 $\|A^{-1}\|_2 = \frac{1}{\sigma_n}$,因此得证。
- 7. 引理: 对于任何 n 的 k-1 元子集 I,任何 $U \in \mathcal{G}_k^n$ 中存在向量 $x \neq 0$ 使得 $x_i = 0, i \in I$ 。

证明:不妨设 I 为前 k-1 个分量,其余同理。考虑 U 的一组基 $\{x_i\}$ 排成 $n \times k$ 矩阵,对其上面的 $k-1 \times k$ 矩阵可右乘列变换阵 P 成为上三角阵 (多出的一列全为 0),而由基线性无关,P 可逆,右乘 P 后仍然满秩,因此前 k-1 个分量全为 0 的列其余分量不全为 0,从而得证。

类似习题 6 可知不妨设 A 已经是 Σ 形式,非负对角元从大到小排列的对角阵。由引理可知 \mathcal{G}_i^n 中一定存在非零向量使得前 i-1 个分量全为 0,此时 $\frac{\|\Sigma u\|}{\|u\|} \leq \sigma_i$,因此对所有子空间取最大值不超过 σ_i ,而取前 i 个单位向量生成的子空间可以取到 σ_i ,从而第一个等号得证。

对右侧,由于 \mathcal{G}_{n-i+1}^n 中一定存在非零向量使得后 n-i 个分量为 0,此时 $\frac{\|\Sigma u\|}{\|u\|} \ge \sigma_i$,因此对所有子空间取最小值不低于 σ_i ,而取后 n-i+1 个单位向量生成的子空间可以取到 σ_i ,从而第二个等号得证。

- 8. $O\left(\frac{(x+t)^TA(x+t)}{(x+t)^T(x+t)} \lambda\right) = O((x+t)^TA(x+t)x^Tx x^TAx(x+t)^T(x+t)) = O(t^TAtx^Tx) = O(t^TAt)$,第二步利用了 $(x^TA)^T = Ax = \lambda x$,而一三两步利用同乘非小量的量不会改变量级。由于 $t = O(\varepsilon)$,计算分量可得 $O(t^TAt) = O(\varepsilon^2)$,从而得证。
- 9. 设 T 的对角元 α_1 到 α_n ,次对角元 β_1 到 β_n ,可知 $Aq_i = \beta_{i-1}q_{i-1} + \alpha_iq_i + \beta_iq_{i+1}$,范围外的下标对应数均为 0。

先任取单位向量 q_1 ,由于 $Aq_1 - \alpha_1 q_1 = \beta_1 q_2$, $q_2^T q_1 = 0$, α_1 必然为 Aq_1 在 q_1 上的投影长度,即 $\alpha_1 = \frac{q_1^T Aq_1}{q_1^T q_1}$,类似地,每一步都可以变为确定新的 q_m 与 s,t 使得 $x - sq_{m-1} = tq_m$,且 x 已没有在 q_1 到 q_{m-2} 的分量,因此取 s 为投影长度 $\frac{x^T q_{m-1}}{q_{m-1}^T q_{m-1}}$ 即可得到 t 与 q_m 。重复此操作得到结果。

- 10. 在算法 7.6.1 的过程中,将每次循环中第一个 v 与 beta 累计左乘到左侧的 U 上,第二个累计右乘到右侧的 V 上,即得到 UAV = B 的形式,再分别取转置即可。
- 11. 直接计算可知 α_2 为位移时结果为 $-\frac{\varepsilon^3}{(\alpha_1-\alpha_2)^2+\varepsilon^2}=O(\varepsilon^3)$ 。 由 Wilkson 位移性质可知 $T-\mu I$ 不可逆,因此分解出的 QR 中 R 第二行为 0,从而 RQ 第二行为 0,可得 $\tilde{T}(2,1)$ 一定为 0。
- 12. 由 7.3.4 相加可知 $\beta_{pp} + \beta_{qq} = (c^2 + s^2)(\alpha_{pp} + \alpha_{qq}) = \alpha_{pp} + \alpha_{qq}$,再由 7.3.15 即得证。

- 13. 即 $c\alpha_{12}+s\alpha_{22}=-s\alpha_{11}+c\alpha_{21}$,于是记 $m=\sqrt{(\alpha_{11}+\alpha_{22})^2+(\alpha_{12}-\alpha_{21})^2}$,有 $c=\frac{\alpha_{11}+\alpha_{22}}{m}$, $s=\frac{\alpha_{21}-\alpha_{12}}{m}$ 。 利用此算法,对此阵先化为对称,再用 Jacobi 方法对角化,对角元取模即为奇异值(可由对角元为 1 与 -1 的对角阵调整符号)。
- 14. 先由习题 13 得到 θ_0 ,再根据书上对称阵算法得到 θ_2 使得 $J(p,q,-\theta_2)AJ(p,q,\theta_2)$ 为对角阵,取 $\theta_1 = \theta_0 \theta_2$ 即可。

由正交阵性质 $\sum_{i} \beta_{ii}^{2} = \sum_{i} \alpha_{ii}^{2}$, 于是直接计算 E(B), E(A) 得证。

- 15. 先用 Householder 变换使其只剩下 $\min(m,n) \times \min(m,n)$ 的方阵,再利用习题 14 的操作不断进行 两边旋转,极限为对角阵,再由对角元为 1 1 的对角阵调整符号得结果。
- 16. 计算知即 $cs(x^Tx y^Ty) + (c^2 s^2)x^Ty = 0$,此即 $(x^Tx y^Ty)\sin 2\theta + 2x^Ty\cos 2\theta = 0$,可得到 $\varphi = 2\theta$ 后 $c = \cos\frac{\varphi}{2}, s = \sin\frac{\varphi}{2}$ (或用二次方程规避三角函数运算)。
- 17. * 此题题干应为 ℝ^{m×n}

考虑 $\sum_{i < j} (a_i^T a_j)^2$,其中 a_i 代表 A 的第 i 列。直接计算可发现如习题 16 操作 p,q 对其他列的影响在平方和中抵消,因此每次操作 p,q 使此和减小了 $(a_p^T a_q)^2$,而极限必然为 0,因此不断选取两列如此操作可最终收敛至相互正交。

- 18. 由条件可知需要 d_i 满足 $\frac{\gamma_i d_i}{d_{i+1}} = \frac{\beta_i d_{i+1}}{d_i}$,由于 $\gamma_i \beta_i > 0$,可取 $d_{i+1} = \sqrt{\frac{\gamma_i d_i^2}{\beta_i}}$,不妨设 $d_1 = 1$,即可归 纳构造出 d_i 。
- 19. (1) 若 $\xi_1 = 0$,利用 $\alpha_1 \xi_1 + \beta_2 \xi_2 = \lambda \xi_1$,由不可约知 $\beta_2 \neq 0$,从而 $\xi_2 = 0$,重复此过程可推出 $\xi = 0$,矛盾。若 $\xi_n = 0$ 同理得矛盾,从而得证。
 - (2) 设左侧为 t_i ,在 i = 1 时记为 1,i = 2 时计算可知为 $\lambda \alpha_1$,此时只需要满足相同的递推。在已知 ξ_{i-1} 与 ξ_i 时,有 $\beta_i \xi_{i-1} + \alpha_i \xi_i + \beta_{i+1} \xi_{i+1} = \lambda \xi_i$,于是 $\beta_i^2 \beta_{i+1} t_{i-1} + \alpha_i \beta_{i+1} t_i + \beta_{i+1} t_{i+1} = \lambda \beta_{i+1} t_i$,由不可约消去 β_{i+1} 即可发现递推与 $(-1)^{i-1} p_{i-1}(\lambda)$ 相同,得证。
- 20. 利用定理 7.4.1,不可约对称三对角阵只有单特征值,因此产生 k 重特征值至少需要分为 k 块,即 k-1 个为零的次对角元。
- 21. (a) 由推论 7.4.1 知负定即首个顺序主子式为负且每次顺序主子式都变号,计算验证知负定成立。
 - (b) 由负定,考虑 $s_n(-2)$ 可知有两个落在指定范围内。
- 22. 每次计算 $(T \tilde{\lambda}I)y_k = z_{k-1}$, 并令 z_k 为 y_k 模最大分量的归一化。

由于 T 为对称三对角阵, $T-\tilde{\lambda}I$ 利用高斯消元可做到 O(n) 复杂度的 LU 分解,进一步可得到计算 y_k 的复杂度为 O(n),每次迭代只需要 O(n) 复杂度。

- 23. 即用二分法求 B^TB 的特征值,这个矩阵乘法的计算复杂度 O(n),可直接显示计算。
- 24. (暂缺)
- 25. (暂缺)
- 26. (暂缺)
- 27. $C^* = C \Leftrightarrow A^T iB^T = A + iB \Leftrightarrow M^T = M$,于是充要条件得证。

而
$$M \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \lambda \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \Leftrightarrow \begin{cases} A\alpha - B\beta = \lambda \alpha \\ B\alpha + A\beta = \lambda \beta \end{cases} \Leftrightarrow C(\alpha + \beta \mathbf{i}) = \lambda(\alpha + \beta \mathbf{i}),$$
 计算发现 $\begin{pmatrix} \beta \\ -\alpha \end{pmatrix}$ 亦为 λ 对

应的特征向量。于是 M 对应特征值重数是 C 的两倍,特征向量关系为 $\alpha+\beta$ i 对应 $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ 与 $\begin{pmatrix} \beta \\ -\alpha \end{pmatrix}$ 。