Clase 9 Regresión logística

Curso Introducción al análisis de datos con R para la Acuicultura

Dra. María Angélica Rueda Calderón

Pontificia Universidad Católica de Valparaíso

30 July 2022

PLAN DE LA CLASE

1.- Introducción

- Regresión logística ¿Qué es y para que sirve?
- Ejemplo de modelo de regresión logística.
- ▶ Interpretación de regresión logística con R.

2.- Práctica con R y Rstudio cloud

- Ajustar modelos de regresión logística.
- Realizar gráficas avanzadas con ggplot2.

REGRESIÓN LOGÍSTICA

La regresión logística es una técnica de modelamiento predictivo en la cual la probabilidad de un resultado o variable dicotómica se relaciona con una o más variables predictoras.

- Predecir la ocurrencia de una enfermedad en camarón. Leung and Tran, 2000
- Percepción del beneficio o impacto de la acuicultura. Alexander et al., 2016
- ▶ Riesgo de Co-infection ISA Caligus en salmon. Valdes-Donoso et al., 2013
- ▶ Predicción de canibalismo en bacalao de estuario. Hseu and Huang, 2012

ECUACIÓN DE LA REGRESIÓN LOGÍSTICA

Modelo de regresión logística en formato lineal:

$$log(\frac{p}{1-p}) = \beta_0 + \beta_1 X_1$$

Forma de calcular la probabilidad de que el evento éxito ocurra dada la variable predictora considerada:

$$p(Y = 1|X_1) = \frac{e^{\beta_0 + \beta_1 X_1}}{1 + e^{\beta_0 + \beta_1 X_1}}$$

Modelo de regresión logística múltiple en formato lineal:

$$log(\frac{p}{1-p}) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

SUPUESTOS REGRESIÓN LOGÍSTICA

Las principales condiciones que este modelo requiere son:

- Respuesta binaria: La variable respuesta debe ser binaria.
- Independencia: las observaciones deben ser independientes.
- Multicolinealidad: se requiere de muy poca a ninguna multicolinealidad entre los predictores (para regresión logística múltiple).
- Linealidad: entre la variable independiente y el logaritmo natural de odds (Cociente de chances).

COCIENTE DE CHANCES

- ► COCIENTE DE CHANCES = ODDS RATIO
- Supongamos que tenemos 10 salmones machos (7 maduros y 3 inmaduros) y 10 salmones hembras (3 maduras y 7 inmaduras).
- ¿Qué sexo tiene mayor chance de madurar?
- ¿Cuál es la chance de madurar de los machos respecto de las hembras?

		Madurez	
		1	0
Sexo	Macho	7	3
	Hembra	3	7

CALCULO DE CHANCES

		Madurez	
		1	0
Sexo	Macho	7	3
	Hembra	3	7

- Primero calculamos la chanche en los machos.
- a) $P_M(Maduro) = 7/10 = 0.7$
- b) $P_M(Inmaduro) = 1 P_M(Maduro) = 1 0.7 = 0.3$
- c) $odds_M = P_M(Maduro)/P_M(Inmaduro) = 0.7/0.3 = 2.333$
- ► Calcule usted la chanche en las hembras.

CALCULO DE CHANCES

- Calculamos la chance en las hembras.
- a) $P_H(Maduro) = 3/10 = 0.3$
- b) $P_H(Inmaduro) = 1 P_H(Maduro) = 1 0.3 = 0.7$
- c) $odds_H = P_H(Maduro)/P_H(Inmaduro) = 0.3/0.7 = 0.429$

Calcular el cociente de chances (Odds Ratio)

¿Cuál es la chance de madurar de los machos respecto de las hembras?

$$OR = odds_M/odds_H = 2.333/0.429 = 5.44$$

REGRESIÓN LOGÍSTICA CON R

- glm: Ajusta modelos lineales generalizados.
- ► family= gaussian, binomial, otras.

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.847	0.690	-1.228	0.220
SexoMacho	1.695	0.976	1.736	0.082

COCIENTE DE CHANCES (ODDS RATIO) CON R

Se calcula con el exponencial de los coeficientes del modelo de regresión logística.

	OR	2.5 %	97.5 %
(Intercept)	0.429	0.092	1.542
SexoMacho	5.444	0.876	43.418

ESTUDIO DE CASO: MADURACIÓN EN SALMÓN DEL ATLÁNTICO

► En este estudio de caso trabajaremos con un subconjunto de la base de datos relacionada a la maduración en salmones machos (n=90).

Variable	Descripción
Genotype	Genotipo VgII3: EE-EL-LL
Gonad	Peso de gónada
Maturation	Estado de maduración (1: maduro) o (0: inmaduro)

- Determinaremos si la probabilidad de maduración está relacionada con el peso de la gónada.
- Como tarea usted evaluará probabilidad de maduración en función del genotipo del pez (gen Vgll3 de maduración).

RELACIÓN MADURACIÓN VS PESO DE GÓNADA

REGRESIÓN LOGÍSTICA SIMPLE

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-8.089844	2.6425566	-3.06137	0.0022033
Gonad	1.381678	0.4255612	3.24672	0.0011674

PREDICCIÓN REGRESION LOGÍSTICA

PREDICCIÓN MADURACIÓN

Usando la ecuación podemos predecir probabilidad de madurar a un peso de gónada determinado 4g. v/s 8g.

Table 2: Predicciones de maduración según el peso de la gónada.

Peso de Gónada	Predicción	
4	0.0715492	
8	0.9509014	

COCIENTE DE CHANCES (ODDS RATIO) CON R

► El cociente de chances (OR)

	OR	2.5 %	97.5 %
(Intercept)	0.000	0.000	0.014
Gonad	3.982	2.198	13.282

RESUMEN DE LA CLASE

- 1). Revisión de conceptos: regresión logística.
- 2). Cociente de chances Odd Ratio.
- 3). Construir y ajustar modelos de regresión logística con R.
- **4).** Gráficas avanzadas con ggplot2.