Zadanie 1 Proszę wyliczyć całkowitą pojemnośc zastępczą C_{ab} pomiędzy punktami a i b:

- Zadanie 2 Elektryczna energia potencjalna $E_{\rm p}$ kondensatora jest opisana równaniem $E_{\rm p}=Q^2/2C$ (1), które mówi, że większa pojemność oznacza mniej zmagazynowanej energii. Wiadomo też, iż ładunek Q opisywany jest równaniem Q=CV (2), gdzie C to pojemność, a V to napięcie. Podstawiając (2) do (1) otrzymujemy $E_{\rm p}=CV^2/2$ (3) z którego wynika, że większa pojemność oznacza większą energię zmagazynowaną w kondensatorze. Rozstrzygnij, odpowiednio uzasadniając, czy (1) i (3) wzajemnie się wykluczają, czy nie.
- **Zadanie 3** Proszę rozważyć sferyczny kondensator, który składa się z dwóch koncentryczncyh powłok o promieniach a i b, tak jak pokazano na rysunku. Wewnętrzna powłoka ma ładunek +Q jednorodnie rozmieszczony na jej powierzchnii, a z kolei zewnętrzna powłoka ten sam ładunek co do wartości ale o przeciwnym znaku, tj. -Q. Jaka jest pojemność takiego układu?

Zadanie 4 Cylindryczny kondensator o długości L składa się z wewnętrznej okładki, która jest długim, jednorodnym cylindrem o promieniu $r_{\rm in}$ i zewnętrznej okładki, która jest długim, pustym cylindrem o wewnętrznym promieniu $r_{\rm out}$ tak jak przedstawiono na rysunku. Wewnętrzna okładka ma ładunek dodatni +Q, a zewnętrzna ładunek ujemny -Q. Proszę pokazać, że pojemność takiego układu jest opisana wzorem:

- $C = \frac{2\pi\varepsilon_0 L}{\ln(r_{\rm out}/r_{\rm in})}.$
- **Zadanie 5** Na rysunku przedstawiono kondensator płaski o polu powierzchni okładki A i odległości między okładkami d. Do okładek przyłożono róznicę potencjałów V_0 . Następnie odłączono zródło i między okładki wsunięto sztabkę dielektryka o grubości b i względnej przenikalności dielektrycznej κ , jak pokazano na rysunku.

Proszę założyć: $A=100~\mathrm{cm^2},~d=1~\mathrm{cm},~b=0.5~\mathrm{cm},~\kappa=0.5~\mathrm{i}~V_0=50~\mathrm{V}.$

- a) Ile wynosi pojemność C_0 kondensatora przed włożeniem sztabki dielektryka?
- b) Jaki ładunek swobodny q znajduje sie na okładkach?

- c) Ile wynosi natężenie pola elektrycznego E_0 w szczelinach między okładkami kondensatora i sztabka dielektryka?
- d) Ile wynosi natężenie pola elektrycznego E_1 w sztabce dielektryka?
- e) Ile wynosi róznica potencjałów ${\cal V}$ między okładkami kondensatora po wsunięciu sztabki?
- f) Ile wynosi pojemność kondensatora C_1 ze sztabką dielektryka między okładkami? Jesli sztabka dielektryka wypełni cała przestrzeń pomiędzy okładkami, jaka będzie wtedy pojemność układu?

