Algorithmen und Wahrscheinlichkeit

Woche 3

Bemerkungen

- Wenn man Latex ausprobieren möchte:
 - overleaf.com
 - Texifier
 - es gibt ein Template und eine Beispiel Datei auf meiner Webseite

Pigeonhole principle + bipartiter Graph

Announcements

• nächste ÜS online -> Link auf meiner Webseite

CPC Meetups Kickoff

19:00 11.03.2024 CAB H56

Open to all skill levels!

Matchings - Definitionen

Matching: Eine Kantenmenge $M \subseteq E$ in einem Graphen G = (V, E), wobei kein Knote in V inzident zu mehr als einer Kante in M ist (inzident zu 0 oder 1 Kante)

Überdeckt: Ein Knote v ist bedeckt von Matching M, falls v inzident zu einer Kante in M ist.

Perfektes Matching: Ein Matching M, sodass alle v überdeckt sind.

Inklusionsmaximales Matching(maximal): Ein Matching M, sodass $\neg \exists M' \subseteq E : M \subseteq M' \land |M'| > |M|$

Kardinalitätsmaximales Matching(maximum): Ein Matching M, sodass $\neg \exists M' \subseteq E : |M'| > |M|$

⇒ Ein KM ist ein IM

Matchings - Sätze

Satz: Für ein IM M_{ink} und ein KM M_{kar} gilt: $|M_{ink}| \geq \frac{|M_{kar}|}{2}$

Beweis: Für jede Kante e in M_{kar} muss M_{ink} mindestens ein Endpunkt von e bedecken, sonst $M_{ink} \cup e$ ist ein Matching!! (Widerspruch) $\implies |M_{kar}| \le \#$ Endpunkte in $M_{ink} = 2 |M_{ink}|$

Satz von Hall (Heiratssatz)

Ein bipartiter Graph $G = (A \uplus B, E)$ hat ein Matching M der Kardinalität |M| = |A| gdw $\forall X \subseteq A : |X| \le |\mathcal{N}(X)|$

Korollar (Frobenius)

 $\forall k$: jeder k-reguläre bipartite Graph hat ein perfektes Matching

Beweis: $\forall X \subseteq A : k |X| = \# \text{Kanten von } X \text{ nach } \mathcal{N}(X) \leq k |\mathcal{N}(X)| \Longrightarrow : \forall X \subseteq A : |X| \leq |\mathcal{N}(X)|$

Matchings - Matching Algorithmen

Greedy

Wähle zufällig eine Kante und lösche sie und die inzidenten Kanten bis $|E| = \emptyset$ \Longrightarrow Findet **ein inklusionsmaximales Matching** in O(|E|)

Gabows Algorithmus

In 2^k -regulären bipartiten Graphen kann man in Zeit O(|E|) ein perfektes Matching bestimmen

 \rightarrow 1. Finde eine Eulertour 2. Entferne jede zweite Kante $\rightarrow 2^{k-1}$ -regulärer bipartiter Graph 3. Iteriere

Cole, Ost, Schirras Algorithmus

In k-regulären bipartiten Graphen kann man in Zeit O(|E|) ein perfektes Matching bestimmen

Hopcroft-Karp

In bipartiten Graphen kann man in Zeit $O(\sqrt{|V|} \cdot |E|)$ ein maximales Matching bestimmen

M-augmentierender Pfad:

- 1) abwechselnd Kanten aus nicht M und M
- 2) beginnt und endet in einem von M unüberdeckten Knoten

Das Vergrößern von M mit einem M-augmentierenden Pfad $P: M' = M \oplus P$

M-augmentierender Pfad:

- 1) abwechselnd Kanten aus nicht M und M
- 2) beginnt und endet in einem von M unüberdeckten Knoten

Das Vergrößern von M mit einem M-augmentierenden Pfad P: $M' = M \oplus P$

Satz von Berge:

Jedes Matching, das <u>nicht kardinalitätsmaximal</u> ist, besitzt einen <u>augmentierenden Pfad</u>

Für zwei beliebige Matchings M und M' wobei |M| < |M'|:

 $M \oplus M'$ hat mindestens |M'| - |M| knoten-disjunkt M-augmentierende Pfade

Algorithmus fürs Finden eines augmentierenden Pfades (bipartit)

Eingabe: ein bipartiter Graph $G = (A \uplus B, E)$, ein Matching M Ausgabe: kürzester augmentierender Pfad, falls existiert

```
\begin{split} &L_0 = \{ \text{un\"uberdeckte Knoten aus } A \} \\ &\textbf{Markiere} \text{ die Knoten in } L_0 \text{ als } \textit{besucht} \\ &\textbf{for i} = 1 \dots n \\ &\textbf{if } i \text{ ungerade then} \\ &L_i = \{ \text{unbesuchte Nachbarn von } L_{i-1} \text{ via Kanten in } E \backslash M \} \\ &\textbf{else} \\ &L_i = \{ \text{unbesuchte Nachbarn von } L_{i-1} \text{ via Kanten in } M \} \\ &\textbf{Markiere} \text{ die Knoten in } L_i \text{ als } \textit{besucht} \\ &\textbf{if ein Knote } v \text{ in } L_i \text{ ist nicht \"uberdeckt} \Longrightarrow \textbf{return Pfad zu } v \end{split}
```

Laufzeit

O(|E|) (BFS)

Algorithmus fürs maximale Matching

Eingabe: G = (V, E)

Ausgabe: KM Matching M

Starte mit
$$M = \emptyset$$
 repeat

Suche augmentierenden Pfad P if kein solcher Pfad existiert then return M else $M=M\oplus P$

Laufzeit
$$O(|V| \cdot |E|)$$

Hopcroft-Karp
$$O(\sqrt{|V|} \cdot |E|)$$

Matchings - Christofides Algorithmus

2-Approximation

Eingabe: K_n , metrische Längenfunktion l

Output: Ein Hamiltonkreis, C, sodass $l(C) \leq 2 \cdot \text{opt}(K_n, l)$

- 1. Finde den **MST** T von G.
- 2. Verdopple alle Kanten in $T \rightarrow$ Denn alle Knoten müssen einen geraden Grad haben für eine Eulertour
- 3. Bestimmt **Eulertour** W
- 4. Kürze W ab, sodass jeder Knoten nur einmal besucht wird \Longrightarrow Hamiltonkreis C

Matchings - Christofides Algorithmus

1.5-Approximation (Christofides)

Eingabe: K_n , metrische Längenfunktion l

Output: Ein Hamiltonkreis, C, sodass $l(C) \leq 1.5 \cdot \text{opt}(K_n, l)$

- 1. Finde den **MST** T von G.
- 2. Finde minimales perfektes Matching M von G[U] wobei $U := \{v \in T | \deg(v) \text{ ungerade} \}$
- 3. Füge M zu T hinzu (Nun haben alle Knoten einen geraden Grad)
- 4. Bestimmt **Eulertour** W
- 5. **Kürze** W **ab**, sodass jeder Knoten nur einmal besucht wird \Longrightarrow Hamiltonkreis C

Analysis

- 1. Für eine Kante e im Hamiltonkreis H, H-e ist ein Spannbaum. Von daher: $l(T) \leq \operatorname{opt}(K_n, l)$
- 2. Da H ein Kreis ist, $l(M) \le \frac{1}{2} \operatorname{opt}(K_n, l)$
- 3. Eulertour $l(W) = l(T) + l(M) \le 1.5 \text{opt}(K_n, l)$
- 4. Abkürzen: $l(C) \le l(W) \le 1.5 \text{opt}(K_n, l)$

Färbungen

Färbung eines Graphen (V, E) mit k Farben: eine Abbildung $c: V \to [k]$ s.d. $c(u) \neq c(v)$ für alle Kanten $\{u, v\} \in E$ bzw. $V = V_1 \ \dot{\cup} \ \dots \ \dot{\cup} \ V_k$, wobei V_i keine Kanten enthält, V_i := Farbklasse

Chromatische Zahl $\chi(G)$: minimale Anzahl Farben, die für eine Färbung von G benötigt wird.

$$\chi(G) \le k \iff G \text{ ist } k\text{-partit}$$

Gegeben ein Graph G = (V, E), gilt $\chi(G) \le k$?

 $\underline{k}=\underline{2}$: In O(|V|+|E|) Zeit mit BFS (keine ungeraden Kreise)

k > 2: NP-vollständig

Farbklassen tauschen:

Falls wir **jeden Block** mit k Farben färben können, können wir **den ganzen Graphen** mit k Farben färben

Kahoot!

Aufgaben