Source:

1 | Broader vector spaces

- · Doesn't have to be physics vectors
- · maybe it's like matrices
- · or linear maps themselves

2 | Axler 3.A ex7

If
$$v = 0$$
 then

$$Tv = 0$$

By Axler 3.11 (Maps take 0 to 0). Thus, λ can be anything in \mathbb{F} . Otherwise,

$$Tv = w = \left(w\frac{1}{v}\right)v = \lambda v$$
$$w\frac{1}{v} = \lambda \in \mathbb{F}$$

which is in $\mathbb F$ because $w,\frac{1}{v}\in\mathbb F$ and fields are closed under multiplication.

Exr0n · **2020-2021**