

y=2

(b) $\vec{r}'(t) = \langle e^t(\cos t - \sin t), 0, e^t(\sin t + \cos t) \rangle.$ $|\vec{r}'(t)| = e^t \sqrt{(\cos t - \sin t)^2 + (\sin t + \cos t)^2} = \sqrt{2} e^t.$ $s(t) = \int_0^t |\vec{r}'(u)| du = \sqrt{2} \int_0^t e^u du = \sqrt{2} (e^t - 1).$

$$s(t) = \int_0^t |\vec{r}'(u)| \, du = \sqrt{2} \int_0^t e^u \, du = \sqrt{2} \, (e^t - 1).$$

(c)
$$\sqrt{2}(e^t - 1) = s \iff e^t = 1 + \frac{s}{\sqrt{2}} \iff t = t(s) = \ln\left(1 + \frac{s}{\sqrt{2}}\right).$$

(d) + (e) We must have $s = \int_0^s |\vec{f}'(u)| du$ for every s. Differentiating with respect to s and applying FTC we find $1 = |\vec{f}'(s)|$. A choice for h(s) that works is $h(s) = t(s) = \ln\left(1 + \frac{s}{\sqrt{2}}\right)$.

2) (a) The circle $x^2 + y^2 = 1$ can be parameterized as $x = \sin t$, $y = \cos t$, which is inserted into $z = x^2$ to yield

 $\vec{r}(t) = \langle \sin t, \cos t, \sin^2 t \rangle.$

(b)

 $1^2+1^2+(\sqrt{3})^2=0$ } \Rightarrow Plies on the half-sphere

(b) $z = \sqrt{5 - x^2 - y^2}$ with $(x, y) \in D = \{(x, y) : x^2 + y^2 \le 5\}$.

(c) + (d) If the ant is going down in the vertical direction PQ (thus leaving the sphere): $\vec{r_0} = \langle 1, 1, \sqrt{3} \rangle$. Direction vector: $\vec{v} = \langle 0, 0, -1 \rangle$. Parametrization of ant's path:

$$\vec{r}(t) = \vec{r}_0 + t\vec{v} = \langle 1, 1, \sqrt{3} - t \rangle.$$

The ant is at t when t = 0 and it hits the xy-plane at $t = \sqrt{3}$.

If the ant is moving downward on the sphere on a trajectory that is parallel to the yz-plane (the circular segment PR), then x must stay constant and we can take x=1, y=t, thus $z=\sqrt{5-1^2-t^2}=\sqrt{4-t^2}$ and $\vec{r}(t)=\langle 1,t,\sqrt{4-t^2}\rangle$. In this case $t\geq 1$ and the inequality $4-t^2$ gives $t\in [1,2]$. The initial time here is t=1 and the final time t=2.

4) The Chain Rule gives $\vec{f}'(s) = h'(s)\vec{r}'(h(s))$ hence $|\vec{f}'(s)| = |h'(s)| |\vec{r}'(h(s))|$.