CSE 3100 Digital Logic Joseph Hyatt

Lab 7: Design a Binary Counter using T Flip-Flops that counts 0, 1, 2, 3, 4, 5, 0,

State Table:

Present State				Next State		FF Inputs		
Q_2	Q_1	Q_0	Q ₂ *	<i>Q</i> ₁ *	<i>Q</i> ₀ *	T_2	T_1	T_0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	0	0	1	0	1

K-map for $T_2 = minterms (3, 5)$

K-map	for	T_1	=	minterms	(1,	(3)
-------	-----	-------	---	----------	-----	-----

0	0	1	0
0	1	0	0

0	1	1	0
0	0	0	0

K-map for $T_0 = minterms (0, 1, 2, 3, 4, 5)$

T	1	1	1
1	1	0	0

Combinational circuits for $\,T_{\,2}\,$, $\,T_{\,1}$, $\,T_{\,0}$

Here is the total circuit diagram of the sequence. I removed the input switches and NOT gates and I connected the circuit.

The sequence it is generating is 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, \dots