Логика и алгоритмы Лекция 3

Натуральные числа по фон Нейману

 N дея: $n = \{$ натуральные числа, котрые меньше $n\}$

$$0=\varnothing,\quad 1=\{0\}=\{\varnothing\},\quad 2=\{0,1\}=\{\varnothing,\{\varnothing\}\},\quad \dots$$

Обозначение: $0 := \emptyset$, $x + 1 = S(x) := x \cup \{x\}$.

Определение. Множество Y называется *индуктивным*, если $0 \in Y$ и $\forall x \ (x \in Y \to x + 1 \in Y)$.

Аксиома бесконечности. Существует индуктивное множество.

Натуральные числа по фон Нейману

Определение. Наименьшее по включению (\subset -наименьшее) индуктивное множество называется *множеством* натуральных чисел и обозначается $\mathbb N$ или ω .

Утверждение. Множество натуральных чисел существует.

Теорема (принцип математической индукции). Дано некоторое множество A. Если $0 \in A$ и $\forall n \in \mathbb{N} \ (n \in A \to n+1 \in A)$, то $\mathbb{N} \subset A$.

Утверждение. Всякий элемент натурального числа является натуральным числом, т.е. $\forall n \in \mathbb{N} \ \forall x \ (x \in n \to x \in \mathbb{N}).$

Натуральные числа по фон Нейману

Обозначение: $x < y :\Leftrightarrow x \in y$.

Теорема (принцип порядковой индукции). Дано некоторое множество A. Если $\forall n \in \mathbb{N} \ (\forall m < n \ m \in A \to n \in A)$, то $\mathbb{N} \subset A$.

Теорема (принцип минимального элемента). Пусть A — некоторое непустое подмножество \mathbb{N} . Тогда A содержит <-минимальный элемент, т.е. такой элемент $n \in A$, что $\forall m < n \ m \notin A$.

Порядок на натуральных числах

Определение. Линейно упорядоченное множество называется вполне упорядоченным, а соответствующее отношение порядка — полным, если любое его непустое подмножество Y имеет наименьший элемент, обозначаемый min Y.

Теорема. Отношение < на $\mathbb N$ линейно упорядочивает $\mathbb N$. Более того, этот порядок является полным.

Определения по рекурсии

Теорема (о рекурсии). Пусть Y — некоторое множество, $y_0 \in Y$ и $h: Y \to Y$ — любая функция. Тогда существует единственная функция $f: \mathbb{N} \to Y$, удовлетворяющая для всех $n \in \mathbb{N}$ условию

$$\begin{cases} f(0) = y_0 \\ f(n+1) = h(f(n)). \end{cases}$$
 (1)

Лемма. $\forall n \in \mathbb{N} \ (n = 0 \lor \exists m \in \mathbb{N} \ n = m + 1).$

Доказательство теоремы о рекурсии:

Даны множество Y, элемент $y_0 \in Y$ и функция $h: Y \to Y$. Пусть F — множество всех функций $g: m \to Y$, $m \in \mathbb{N}$, удовлетворяющих условиям (1) на $\mathrm{dom}\ g$.

Любые две функции $g_0,g_1\in F$ совпадают на пересечении своих областей определения. В противном случае рассмотрим минимальный $k\in \mathbb{N}$ такой, что $g_0(k)\neq g_1(k)$. Поскольку $g_0(0)=y_0=g_1(0)$, имеем $k\neq 0$. Следовательно k=s+1, причем $g_0(s)=g_1(s)$, поскольку k — минимальный. Отсюда $g_0(k)=g_0(s+1)=h(g_0(s))=h(g_1(s))=g_1(s+1)=g_1(k)$, противоречие.

Каждая $g: m \to Y$ есть подмножество $m \times Y \subset \mathbb{N} \times Y$. Рассмотрим множество $f:=\bigcup F \subset \mathbb{N} \times Y$ и докажем, что f является искомой функцией из \mathbb{N} в Y.

Отношение $f = \bigcup F$ функционально, поскольку любые два элемента F совпадают на общей области определения. Свойства (1) очевидно выполняются для f.

Докажем тотальность, рассуждая от противного. Рассмотрим минимальное k такое, что $k \notin \mathrm{dom}\ f$. Имеем $f\colon k \to Y$. Можно продолжить f до функции $f_0\colon k+1 \to Y$, определив $f_0(k)\coloneqq y_0$, если k=0, и $f_0(k)\coloneqq h(f(s))$, если k=s+1. Очевидно, $f_0\in F$, поэтому $k\in \mathrm{dom}\ f$, противоречие. Тем самым существование f доказано.

Единственность f, как в рассуждении выше, легко следует по принципу наименьшего числа.

Теорема доказана.

Определение сложения и умножение

Определение. Пусть $s: \mathbb{N} \to \mathbb{N}$, где s(n) = n+1. Сложение + определяется как (единственная) функция из $\mathbb{N} \times \mathbb{N}$ в \mathbb{N} , удовлетворяющая рекурсивным условиям для всех $m, n \in \mathbb{N}$:

$$\begin{cases} m+0=m\\ m+s(n)=s(m+n). \end{cases}$$

Определение. Умножение \cdot определяется как (единственная) функция из $\mathbb{N} \times \mathbb{N}$ в \mathbb{N} , удовлетворяющая рекурсивным условиям для всех $m,n \in \mathbb{N}$:

$$\begin{cases} m \cdot 0 = 0 \\ m \cdot s(n) = m \cdot n + m. \end{cases}$$

Доказательство существования функции сложения:

Рассмотрим функцию $H: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ такую, что $H(G) = s \circ G$. По теореме о рекурсии существует функция $F: \mathbb{N} \to \mathbb{N}^{\mathbb{N}}$, удовлетворяющая условиям

$$\begin{cases} F(0) = \mathrm{id}_{\mathbb{N}} \\ F(n+1) = H(F(n)). \end{cases}$$

Положим m + n = F(n)(m). Имеем

$$m + 0 = F(0)(m) = id_{\mathbb{N}}(m) = m$$

$$m + s(n) = F(s(n))(m)$$

$$= F(n+1)(m)$$

$$= H(F(n))(m)$$

$$= (s \circ F(n))(m)$$

$$= s(F(n)(m)) = s(m+n).$$

Целые числа, рациональные числа и др.

 N дея: Целое число можно представить разностью двух натуральных чисел m-n. При этом некоторые пары задают одно и то же число.

Множество целых чисел $\mathbb Z$ можно ввести, как фактормножество $\mathbb Z\coloneqq (\mathbb N\times \mathbb N)/=_{\mathbb Z}$, где отношение эквивалентности $=_{\mathbb Z}$ задаётся следующим образом:

$$(m_1, n_1) =_{\mathbb{Z}} (m_2, n_2) \iff m_1 + n_2 = n_1 + m_2.$$

Целые числа, рациональные числа и др.

Идея: Рациональное число $q=\frac{m}{n}$ можно рассматривать как пару (m,n), где $m\in\mathbb{Z}$ и $n\in\mathbb{N}\setminus\{0\}$. Однако, некоторые пары задают одно и то же рациональное число q.

Множество рациональных чисел $\mathbb Q$ можно ввести, как фактормножество $\mathbb Q\coloneqq (\mathbb Z\times (\mathbb N\smallsetminus\{0\}))/=_{\mathbb Q}$, где отношение эквивалентности $=_{\mathbb Q}$ задаётся следующим образом:

$$(m_1,n_1)=_{\mathbb{Z}}(m_2,n_2)\Longleftrightarrow m_1n_2=n_1m_2.$$

Простые свойства вполне упорядоченных множеств:

- всякое непустое вполне упорядоченное множество имеет наименьший элемент;
- всякий отличный от наибольшего элемент $x \in X$ имеет непосредственного последователя, то есть $\exists y \in X \ \forall z \in X (x < z \to y \le z);$
- всякое ограниченное сверху подмножество имеет точную верхнюю грань.

Лемма. Даны вполне упорядоченное множество (X,<) и функция $f:X\to X$, сохраняющая порядок. Тогда $x\leqslant f(x)$ для любого $x\in X$.

Доказательство.

Предположим, что $Y = \{x \in X \mid f(x) < x\}$ не является пустым, и рассмотрим $a = \min Y$.

Имеем f(a) < a, поскольку $a \in Y$.

Следовательно, f(f(a)) < f(a) по монотонности f.

Тогда $f(a) \in Y$ и f(a) < a, что противоречит минимальности a.

Заключаем, что Y пусто.

Определение. Начальным отрезком множества (X,<) называется такое подмножество $Y\subset X$, для которого

$$\forall x,y \in X \ \big(y < x \land x \in Y \Rightarrow y \in Y \big).$$

Обозначение. Для $a \in X$ обозначим $[0, a) = \{x \in X \mid x < a\}$.

Наблюдение. Любой собственный начальный отрезок (X,<) имеет вид [0,a) для некоторого $a\in X$.

Утверждение. Вполне упорядоченное множество не изоморфно никакому своему собственному начальному отрезку.

Доказательство.

Допустим, что существуют собственный начальный отрезок $Y \subset X$ и изоморфизм $f: X \to Y$. Рассмотрим $a \in X \setminus Y$.

Имеем f(a) < a, поскольку $a \notin Y$, $f(a) \in Y$ и Y является начальным отрезком X.

Противоречие с утверждением предыдущей леммы.

Теорема (Кантор). Для любых двух вполне упорядоченных множеств одно изоморфно начальному отрезку другого.

Доказательство будет дано на следующей лекции.

Конец лекции!

Логика и алгоритмы Лекция 4

Теорема (Кантор). Для любых двух вполне упорядоченных множеств верно, что одно из них изоморфно начальному отрезку другого.

Доказательство:

Возьмем два вполне упорядоченных множества A и B. Рассмотрим $R = \{(x,y) \in A \times B \mid [0,x)_A \cong [0,y)_B\}.$

Проверим инъективность соответствия R. Если $(x_1,y) \in R$ и $(x_2,y) \in R$, то $[0,x_1)_A \cong [0,y)_B \cong [0,x_2)_A$. Поскольку ни одно из множеств $[0,x_1)_A$ и $[0,x_2)_A$ не может являться собственным начальным отрезком другого, $x_1 \not <_A x_2$ и $x_2 \not <_A x_1$. Следовательно, $x_1 = x_2$.

Аналогично проверятся функциональность соответствия R.

Получаем, что соответствие R функционально и инъективно, т.е. является биекцией из $\mathrm{dom}\ R$ в $\mathrm{ran}\ R$.

Множество $\mathrm{dom}\,R = \{x \in A \mid \exists y \in B \ (x,y) \in R\}$ является начальным отрезком A. Действительно, если $x <_A x'$ и $x' \in \mathrm{dom}\,R$, то $[0,x)_A \subset [0,x')_A$ и существует изоморфизма $g:[0,x')_A \to [0,y')_B$. Ограничение изоморфизма g на множество $[0,x)_A$ будет изоморфизмом $[0,x)_A \cong [0,g(x))_B$. Получаем, что $(x,g(x)) \in R$ и $x \in \mathrm{dom}\,R$.

Соответствие R сохраняет порядок. Действительно, если $x <_A x'$, $(x,y) \in R$ и $(x',y') \in R$, то $y <_B y'$. В противном случае $[0,x')_A$ изоморфно начальному отрезку $[0,x)_A$, т.е. своему собственному начальному отрезку.

Аналогично, $\operatorname{ran} R = \{ y \in B \mid \exists x \in A \ (x,y) \in R \}$ является начальным отрезком в B, и отношение R^{-1} сохраняет порядок.

Получаем, что R — изоморфизм из $\operatorname{dom} R$ в $\operatorname{ran} R$. Проверим, что $\operatorname{dom} R = A$ или $\operatorname{ran} R = B$.

Если это не так, то возьмем $x_0 = \min(A \setminus \text{dom } R)$ и $y_0 = \min(B \setminus \text{ran } R)$. Имеем $\text{dom } R = [0, x_0)_A$, $\text{ran } R = [0, y_0)_B$ и $(x_0, y_0) \in R$.

Противоречие. Следовательно, dom R = A или ran R = B.

Ординалы

Идея: трансфинитно продолжим ряд натуральных чисел так, чтобы всякий член ряда был равен множеству предшествующих членов ряда.

$$0, \quad 1, \quad 2, \quad \dots, \quad \mathbb{N}, \quad \mathbb{N}+1, \quad \mathbb{N}+2, \quad \dots, \quad \mathbb{N}+\mathbb{N}, \quad \dots$$

Обозначение: $x + 1 := x \cup \{x\}$.

Определение. Множество T называется T пранзитивным, если $\bigcup T \subset T$, или эквивалентно $\forall x, y \ (x \in y \in T \to x \in T)$. Ординал — это транзитивное множество, все элементы которого также транзитивны.

Ординалы

Утверждение. Всякий элемент ординала сам является ординалом.

Доказательство.

Пусть α — ординал, т.е. транзитивное множество, каждый элемент которого транзитивен. Кроме того, пусть $\beta \in \alpha$.

Тогда $\beta \subset \alpha$ в силу транзитивности α . Получаем, что каждый элемент β транзитивен. Более того, само β является транзитивным и, следовательно, ординалом.

Утверждение. Для всякого ординла α множество $\alpha+1=\alpha\cup\{\alpha\}$ является ординалом.

Порядок на ординалах

Аксиома регулярности: $\forall x (x \neq \emptyset \rightarrow \exists y \in x \ \forall z \in x \ z \notin y)$.

Лемма (иррефлексивность и транзитинвость)

Для любых ординалов lpha, eta и γ имеем

- α ∉ α,
- lacktriangle $\alpha \in \gamma$, если $\alpha \in \beta$ и $\beta \in \gamma$.

Доказательство.

Предположим, что $\alpha \in \alpha$, и рассмотрим множество $\{\alpha\}$. В нём по аксиоме регулярности должен найтись элемент, не содержащий α . Но такого элемента нет. Следовательно, $\alpha \notin \alpha$.

Рассмотрим ординалы α , β и γ такие, что $\alpha \in \beta \in \gamma$. В силу транзитивности γ , получаем, что $\alpha \in \gamma$.

Порядок на ординалах

Аксиома регулярности: $\forall x (x \neq \emptyset \rightarrow \exists y \in x \ \forall z \in x \ z \notin y).$

Лемма. Всякое непустое множество ординалов X содержит \in -минимальный элемент.

Лемма (линейность)

Для любых ординалов α и β верно, что $\alpha \in \beta$, или $\alpha = \beta$, или $\beta \in \alpha$.

Доказательство:

Допустим, что это не так, т.е. существует ординал α , который несравним с некоторым ординалом.

Рассмотрим ординал $\alpha+1=\alpha\cup\{\alpha\}$ и его подмножество X, состоящее из тех элементов, которые несравнимы с некоторым ординалом. По предыдущей лемме множество X содержит ϵ -минимальный элемент α_0 .

Пусть β — некоторый ординал, с которым несравним α_0 . Рассмотрим ординал $\beta+1=\beta\cup\{\beta\}$ и его подмножество Y, состоящее из тех элементов, которые несравнимы с ординалом α_0 . По предыдущей лемме множество Y содержит ϵ -минимальный элемент β_0 . Придем к противоречию, проверив, что $\alpha_0=\beta_0$.

Установим включение α_0 в β_0 . Если $\gamma \in \alpha_0$, то $\gamma \in \alpha+1$ и $\gamma \notin X$, поскольку α_0 — ϵ -минимальный элемент X. Получаем, что γ сравним со всеми ординалами и, в частности, он сравним с β_0 . Тогда $\gamma \in \beta_0$, поскольку в противном случае $\beta_0 \in \alpha_0$, что противоречит несравнимости α_0 и β_0 .

Установим включение β_0 в α_0 . Если $\delta \in \beta_0$, то $\delta \in \beta+1$ и $\delta \notin Y$, поскольку β_0 — ϵ -минимальный элемент Y. Получаем, что δ сравним с ординалом α_0 . Тогда $\delta \in \alpha_0$, поскольку в противном случае $\alpha_0 \in \beta_0$, что противоречит несравнимости α_0 и β_0 .

Тем самым, доказано, что α_0 и β_0 содержат одни и те же элементы. Следовательно, $\alpha_0 = \beta_0$, что противоречит несравнимости α_0 и β_0 . Заключаем, что не существует несравнимых ординалов.

Порядок на ординалах

Обозначение: $x < y :\Leftrightarrow x \in y$.

Теорема. Класс всех ординалов линейно упорядочен с помощью <. Более того, всякое непустое множество ординалов содержит <-наименьший элемент.

Следствие. Любой ординал α сам как множество вполне упорядочен с помощью < и является начальным отрезком в классе всех ординалов.

Трансфинитная индукция

Теорема (трансфинитная индукция). Пусть φ — некоторое свойство множеств. Допустим, что для всякого ординала α имеет место

$$\forall \beta < \alpha \ \varphi(\beta) \to \varphi(\alpha).$$

Тогда для всех ординалов γ верно $\varphi(\gamma)$.

Доказательство.

Допустим, что $\varphi(\gamma)$ не выполнено для некоторого ординала γ .

Рассмотрим подмножество X множества $\gamma+1=\gamma\cup\{\gamma\}$, состоящее из ординалов, которые не удовлетворяют свойству φ .

Поскольку множество X непусто, оно содержит <-минимальный элемент α . Получаем, что $\varphi(\alpha)$ верно, поскольку $\varphi(\beta)$ верно для любого $\beta < \alpha$. Противоречие.

Следовательно, для всех ординалов γ верно $\varphi(\gamma)$.

Парадокс Бурали-Форти

Утверждение (парадокс Бурали-Форти 1897). Класс всех ординалов не является множеством.

Доказательство.

Допустим, что существует множество O, которое в точности содержит все ординалы.

Тогда O является транзитивным множеством транзитивных множеств, т.е. ординалом.

Следовательно, множество $O \in O$, что противоречит иррефлексивности \in .

Парадокс Бурали-Форти

Утверждение (парадокс Бурали-Форти 1897). Класс всех ординалов не является множеством.

Доказательство.

Допустим, что существует множество O, которое в точности содержит все ординалы.

Тогда O является транзитивным множеством транзитивных множеств, т.е. ординалом.

Следовательно, множество $O \in O$, что противоречит иррефлексивности \in .

Упражнение. Каждое натуральное число и всё множество \mathbb{N} — ординалы.

Порядковые типы

Схема аксиом подстановки. Пусть свойство $\varphi(x,y)$ — такое, что для любого множества x найдется не более одного множества y, для которого $\varphi(x,y)$. Тогда для любого X найдется множество $Y = \{y \mid \exists x \in X \ \varphi(x,y)\}$.

Теорема (Кантор). Пусть (X,<) — вполне упорядоченное множество. Тогда существует единственный ординал α изоморфный множеству (X,<).

Доказательство теоремы:

Рассмотрим свойство $\varphi(x,y)$: $x \in X$, y — ординал, и $[0,x)_X \cong y$.

Видим, что для любого множества x найдется не более одного множества y, для которого имеет место $\varphi(x,y)$.

По аксиоме подстановки найдется множество $Y = \{y \mid \exists x \in X \ \varphi(x,y)\}$, содержащее те и только те ординалы, которые изоморфны собственным начальным отрезкам (X,<).

Поскольку не существует множества всех ординалов, то найдется ординал α , не лежащий в Y.

По теореме Кантра о сравении вполне упорядоченных множеств множество (X,<) изоморфно некоторому начальному отрезку α . Поскольку α и все его собственные начальные отрезки являются ординалами, получаем, что (X,<) изоморфно ординалу.

Единственность следует из того, что, для двух различные ординалов, один из них является собственным начальным отрезком другого. Следовательно, разные ординалы неизоморфны как вполне упорядоченные множества.

Порядковые типы

Определение. Ординал α называется порядковым типом вполне упорядоченного множества (X,<), если он изоморфен (X,<).

Конец лекции!

Логика и алгоритмы Лекция 5

Ординалы

Определение. *Ординал* — это транзитивное множество, все элементы которого также транзитивны.

Обозначение: $x < y :\Leftrightarrow x \in y$.

Теорема. Класс всех ординалов линейно упорядочен с помощью <. Более того, всякое непустое множество ординалов содержит <-наименьший элемент.

Утверждение (парадокс Бурали-Форти 1897)

Не существует множества, состоящего в точности из всех ординалов.

Определение. Ординалы вида $\beta+1$ называются ординалами-*последователями*; все остальные ординалы, кроме 0, называются *предельными*.

Трансфинитная рекурсия

Определение.

Пусть ξ — некоторый ординал. Множество g называется ξ -последовательностью, если $g:\xi \to X$ для некоторого X.

Такие последовательности также обозначают $(x_\eta)_{\eta<\xi}$. Тогда образ ординала $\eta<\xi$ при данном отображении обозначают x_η .

Множество называется τ рансфинитной последовательностью, если оно является ξ -последовательностью для некоторого ординала ξ .

Определение.

Пусть $\varphi(x,y)$ — некоторое свойство множеств, причем для любой трансфинитной последовательности x существует не более одного множество y, удовлетворяющего $\varphi(x,y)$.

Будем говорить, что трансфинитная последовательность g (длины ξ) удовлетворяет рекурсивному условию, заданному φ , если для всякого ординала $\eta < \xi$ имеет место $\varphi(g \upharpoonright_{\eta}, g(\eta))$.

Теорема (о трансфинитной рекурсии)

Пусть $\varphi(x,y)$ — некоторое свойство множеств, причем для любой трансфинитной последовательности x существует не более одного множество y, удовлетворяющего $\varphi(x,y)$.

Тогда выполнено следующее:

- любо для любого ординала α существует единственная α -последовательность, удовлетворяющая рекурсивному условию, заданному φ ,
- либо существует единственная трансфинитная последовательность g, удовлетворяющая рекурсивному условию, заданному φ , для которой не существует такого y, что $\varphi(g,y)$.

Доказательство теоремы:

Будем говорить, что трансфинитная последовательность g (длины ξ) удовлетворяет рекурсивному условию, если для всякого ординала $\eta < \xi$ имеет место $\varphi(g \upharpoonright_{\eta}, g(\eta))$.

Любые две трансфинитные последовательности g_1 и g_2 , удовлетворяющие рекурсивному условию, совпадают на пересечении своих областей определения. В противном случае рассмотрим ϵ -минимальный ординал λ такой, что $g_1(\lambda) \neq g_2(\lambda)$. В силу минимальности λ получаем, что $g_1 \! \upharpoonright_{\lambda} = g_2 \! \upharpoonright_{\lambda}$. Кроме того, имеют место условия $\varphi(g_1 \! \upharpoonright_{\lambda}, g_1(\lambda))$ и $\varphi(g_2 \! \upharpoonright_{\lambda}, g_2(\lambda))$. Следовательно, $g_1(\lambda) = g_2(\lambda)$, противоречие.

Таким образом, любые две α -последовательности, удовлетворяющие рекурсивному условию, совпадают.

Предположим, что не для всякого ординала α существует α -последовательность, удовлетворяющая рекурсивному условию. Рассмотрим минимальное ординал λ , для которого не существует соответствующей λ -последовательности.

Видим, что $\lambda \neq 0$. Проверим, что λ не является предельным ординалом. Рассмотрим условие $\psi(u,v)$: u — ординал, v — u-последовательность, удовлетворяющая рекурсивному условию.

Для всякого u существует не более одного v такого, что верно $\psi(u,v)$. По аксиоме подстановки существует множество $V=\{v\mid \exists u\in \lambda\; \psi(u,v)\}.$ Тогда $\bigcup V-\lambda$ -последовательность, удовлетворяющая рекурсивному условию. Противоречие.

Следовательно, $\lambda=\lambda_0+1$ для некоторого ординала λ_0 . По минимальности λ , найдется λ_0 -последовательность g, удовлетворяющая рекурсивному условию. Видим, что не существует y такого, что $\varphi(g,y)$. В противном случае мы могли бы продолжить g до функции на λ_0+1 , что противоречит выбору λ . Нашли последовательность, которую нельзя продолжить.

Теорема доказана.

Теорема Цермело. Для всякого множества X существует бинарное отношение < на X такое, что (X,<) — вполне упорядоченное множество.

Доказательство:

Пусть f — функция выбора на семействе всех непустых подмножеств X (т.е. функция, отображающая всякое непустое подмножество X в элемент данного подмножества). Такая функция существует по аксиоме выбора.

Назовем трансфинитную последовательность g хорошей, если $\operatorname{ran} g \in X$ и $g(\zeta) \neq g(\eta)$ для любых $\zeta \neq \eta$ из $\operatorname{dom} g$. Другими словами, хорошая последовательность — это трансфинитная последовательность, состоящая из различных элементов X.

Рассмотрим условие $\varphi(x,y)$: x — хорошая трансфинитная последовательность, для которой $X \cdot \operatorname{ran} x \neq \emptyset$, и $y = f(X \cdot \operatorname{ran} x)$.

Видим, что для любой трансфинитной последовательности x существует не более одного множество y, удовлетворяющего $\varphi(x,y)$.

Мы находимся в условиях теоремы о трансфинитной рекурсии. Заметим, что любая трансфинитная последовательность, удовлетворяющая рекурсивному условию, заданному φ , является хорошей.

Допустим, что для любого ординала α существует единственная α -последовательность, удовлетворяющая рекурсивному условию, заданному φ .

Придем к противоречию, рассмотрев условие $\psi(c,d)$: $c \in X$, d — ординал, и для некоторой трансфинитной последовательности g, удовлетворяющей рекурсивному условию, g(d) = c.

Видим, что для любого множества c существует не более одного множество d, удовлетворяющего условию $\psi(c,d)$. По аксиоме подстановки существует множество $D = \{d \mid \exists c \in P \; \psi(c,d)\}$. В нашем предположении D является множеством всех ординалов. Противоречие.

Следовательно, существует трансфинитная последовательность g, удовлетворяющая рекурсивному условию, заданному φ , которую нельзя продолжить, т.е. не существует такого y, что $\varphi(g,y)$.

Поскольку g является хорошей и g нельзя продолжить, получаем, что $X \setminus \operatorname{ran} g = \varnothing$. Другими словами, g является биекцией из некоторого ординала α в X. Тогда полный порядок на X определяется, как $\{(a,b) \in X \times X \mid g^{-1}(a) \in g^{-1}(b)\}$.

Напоминание: множества A и B равномощны, $A \sim B$, если существует биекция из A в B.

Определение. *Кардинал* — это такой ординал, который неравномощен никакому меньшему ординалу.

Утверждение. Для любого множества A существует единственный кардинал, который равномощен A.

Определение. Кардинал κ называется мощностью множества A, если он равномощен A.

Напоминание: множество A не превосходит по мощности $B, A \lesssim B$, если существует инъекция из A в B.

Утверждение. Любые два множества A и B сравнимы по мощности, т.е. $A \lesssim B$ или $B \lesssim A$.

Конец лекции!

Логика и алгоритмы Лекция 6

Трансфинитная рекурсия

Определение.

Определение.

Пусть $\varphi(x,y)$ — некоторое свойство множеств, причем для любой трансфинитной последовательности x существует не более одного множество y, удовлетворяющего $\varphi(x,y)$.

Будем говорить, что трансфинитная последовательность g (длины ξ) удовлетворяет рекурсивному условию, заданному φ , если для всякого ординала $\eta < \xi$ имеет место $\varphi(g \upharpoonright_{\eta}, g(\eta))$.

Теорема (о трансфинитной рекурсии)

Пусть $\varphi(x,y)$ — некоторое свойство множеств, причем для любой трансфинитной последовательности x существует не более одного множество y, удовлетворяющего $\varphi(x,y)$.

Тогда выполнено следующее:

- любо для любого ординала α существует единственная α -последовательность, удовлетворяющая рекурсивному условию, заданному φ ,
- либо существует единственная трансфинитная последовательность g, удовлетворяющая рекурсивному условию, заданному φ , для которой не существует такого y, что $\varphi(g,y)$.

Теорема (лемма Цорна). Пусть (P,<) — частично упорядоченное множество, в котором всякая цепь имеет верхнюю грань. Тогда (P,<) содержит максимальный элемент.

Доказательство:

Пусть f — функция выбора на семействе всех непустых подмножеств P (т.е. функция, отображающая всякое непустое подмножество P в элемент данного подмножества). Такая функция существует по аксиоме выбора.

Назовем трансфинитную последовательность g хорошей, если $\operatorname{ran} g \subset P$ и $g(\zeta) < g(\eta)$ для любых $\zeta < \eta \in \operatorname{dom} g$. Другими словами, хорошая последовательность — это строго возрастающая трансфинитная последовательность элементов P.

Назовем строгой верхней гранью множества $A \subset P$ такой элемент $z \in P$, что a < z для любого $a \in A$. Через b(A) обозначим множество всех строгих верхних граней A.

Рассмотрим условие $\varphi(x,y)$: x — хорошая трансфинитная последовательность, для которой $b(\operatorname{ran} x) \neq \emptyset$, и $y = f(b(\operatorname{ran} x))$.

Видим, что для любой трансфинитной последовательности x существует не более одного множество y, удовлетворяющего $\varphi(x,y)$.

Мы находимся в условиях теоремы о трансфинитной рекурсии. Заметим, что любая трансфинитная последовательность, удовлетворяющая рекурсивному условию, заданному φ , является хорошей.

Допустим, что для любого ординала α существует единственная α -последовательность, удовлетворяющая рекурсивному условию, заданному φ .

Придем к противоречию, рассмотрев условие $\psi(c,d)$: $c \in P$, d — ординал, и для некоторой трансфинитной последовательности g, удовлетворяющей рекурсивному условию, g(d) = c.

Видим, что для любого множества c существует не более одного множество d, удовлетворяющего условию $\psi(c,d)$. По аксиоме подстановки существует множество $D = \{d \mid \exists c \in P \; \psi(c,d)\}$. В нашем предположении D является множеством всех ординалов. Противоречие.

Следовательно, существует трансфинитная последовательность g, удовлетворяющая рекурсивному условию, заданному φ , которую нельзя продолжить, т.е. не существует такого y, что $\varphi(g,y)$.

Поскольку g является хорошей и g нельзя продолжить, получаем, что $b(\operatorname{ran} g) = \varnothing$. Кроме того, $\operatorname{ran} g$ является цепью в P. По условию P содержит верхнюю грань a для $\operatorname{ran} g$. Замечаем, что a — искомый максимальный элемент P, поскольку в противном случае $b(\operatorname{ran} g) \neq \varnothing$, и последовательность g можно было бы продолжить.

Доказательство леммы Цорна закончено.

Замечание. В теории множеств Цермело-Френкеля (без аксиомы выбора) аксиома выбора, теорема Цермело и лемма Цорна эквивалентны.

Теорема Кантора-Бернштейна Если $A \lesssim B$ и $B \lesssim A$, то $A \sim B$.

Упражнения:

- (а) Всякое бесконечное множество содержит счетное подмножество.
- (б) Мощность бесконечного множества не меняется при объединении с конечным.
- (B) $\mathbb{N} \sim \mathbb{N} \times \{0,1\} \sim \mathbb{N} \times \mathbb{N}$.

Теорема Кантора-Бернштейна Если $A \lesssim B$ и $B \lesssim A$, то $A \sim B$.

Упражнения:

- (a) Всякое бесконечное множество содержит счетное подмножество.
- (б) Мощность бесконечного множества не меняется при объединении с конечным.
- (B) $\mathbb{N} \sim \mathbb{N} \times \{0,1\} \sim \mathbb{N} \times \mathbb{N}$.

Указание к пункту (в):

Чтобы доказать, что $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$, можно рассмотреть на $\mathbb{N} \times \mathbb{N}$ порядок

$$(m_1, m_2) < (n_1, n_2) \Leftrightarrow \left[\begin{array}{l} \max(m_1, m_2) < \max\{n_1, n_2\}; \\ \max\{m_1, m_2\} = \max\{n_1, n_2\} \text{ if } m_1 < n_1; \\ \max\{m_1, m_2\} = \max\{n_1, n_2\}, m_1 = n_1, n_2 < m_2. \end{array} \right.$$

Утверждение

Если множество A бесконечно, то $A \sim A \times \{0,1\}$.

Доказательство:

Рассмотрим множество P, состоящее из пар вида (B,f), где B — бесконечное подмножество A, $f: B \to B \times 2$ — биекция.

Зададим на P частичный порядок:

$$(B_1,f_1)\leqslant (B_2,f_2)\Longleftrightarrow B_1\subset B_2 \text{ in } f_1=f_2\!\upharpoonright_{B_1}.$$

Пусть C — произвольная цепь в P. Убедимся, что C имеет верхнюю грань (D,g).

Если $C=\varnothing$, то любой элемент P является верхней гранью C. Проверим, что P непусто. Бесконечное множество A содержит счетное подмножество D. Поскольку D счетно, существует биекция $g:D\to D\times 2$. Получаем, что пара $(D,g)\in P$ и является верхней гранью C.

Теперь предположим, что $C \neq \emptyset$.

Рассмотрим $D = \bigcup \{B \mid \exists f \ (B,f) \in C\}$, т.е. объединение всех первых компонент элементов C, и $g = \bigcup \{f \mid \exists B \ (B,f) \in C\}$, т.е. объединение всех вторых компонент.

Соответствие $g \subset D \times (D \times 2)$ функционально в силу того, что все вторые компоненты элементов C попарно совпадают на общих областях определения. Очевидно, что g тотально. Следовательно, g — функция.

Функция g инъективна: для различных $d_1,d_2\in D$ возьмём большее из множеств, которым принадлежат d_1 и d_2 ; на нём g является инъекцией по предположению.

Кроме того, g является сюръекцией: для любой пары $(d,i)\in D\times 2$ возьмём множество B, из которого произошло d и вспомним, что мы имели взаимно однозначное соответствие между ним и $B\times 2$.

Мы находимся в условиях леммы Цорна и знаем, что P содержит максимальный элемент (E,h).

Рассмотрим дополнение E до A. Если множество $A \setminus E$ конечно, то $A = (A \setminus E) \cup E \sim E$. Получаем, что $A \sim E \sim E \times 2 \sim A \times 2$ и всё доказано.

Если множество $A \setminus E$ бесконечно, то оно содержит счетное подмножество E'. Кроме того, существует биекция h': $E' \to E' \times 2$.

Тогда $h \cup h'$ — биекция из $E \cup E'$ в $(E \cup E') \times 2 = E \times 2 \cup E' \times 2$. Получаем пару $(E \cup E', h \cup h')$ из P, которая больше пары (E,h), что противоречит максимальности (E,h). Таким образом, этот случай невозможен.

Теорема

Объединение двух бесконечных множеств A и B равномощно большему из них.

Доказательство:

Поскольку любые два множества сравнимы по мощности, можно считать без ограничения общности, что $A \lesssim B$. Тогда

$$B \lesssim A \cup B \lesssim B \times \{0,1\} \sim B.$$

По теореме Кантора-Бернштейна получаем, что $B \sim A \cup B$.

Утверждение

Если множество A бесконечно, то $A \sim A \times A$.

Доказательство:

Рассмотрим множество P, состоящее из пар вида (B,f), где B — бесконечное подмножество A, $f: B \to B \times B$ — биекция.

Зададим на P частичный порядок:

$$(B_1,f_1)\leqslant (B_2,f_2)\Longleftrightarrow B_1\subset B_2 \text{ in } f_1=f_2\!\upharpoonright_{B_1}.$$

Пусть C — произвольная цепь в P. Убедимся, что C имеет верхнюю грань (D,g).

Если $C=\varnothing$, то любой элемент P является верхней гранью C. Проверим, что P непусто. Бесконечное множество A содержит счетное подмножество D. Поскольку D счетно, существует биекция $g:D\to D\times D$. Получаем, что пара $(D,g)\in P$ и является верхней гранью C.

Теперь предположим, что $C \neq \emptyset$.

Рассмотрим $D = \bigcup \{B \mid \exists f \ (B,f) \in C\}$, т.е. объединение всех первых компонент элементов C, и $g = \bigcup \{f \mid \exists B \ (B,f) \in C\}$, т.е. объединение всех вторых компонент.

Как и в предыдущем доказательстве, замечаем, что соответствие $g \subset D \times (D \times D)$ является функцией.

Функция g инъективна: для различных $d_1, d_2 \in D$ возьмём большее из множеств, которым принадлежат d_1 и d_2 ; на нём g является инъекцией по предположению.

Кроме того, g является сюръекцией: для любой пары $(d_1,d_2)\in D\times D$ возьмём множества B_1 и B_2 , из которых произошли d_1 , d_2 , выберем из этих множеств большее и вспомним, что мы имели взаимно однозначное соответствие между ним и его квадратом.

Мы находимся в условиях леммы Цорна и знаем, что P содержит максимальный элемент (E,h).

Рассмотрим дополнение E до A. Если $A \setminus E \lesssim E$, то $A = (A \setminus E) \cup E \sim E$. Получаем, что $A \sim E \sim E \times E \sim A \times A$ и всё доказано.

Если $E \lesssim A \setminus E$, то $A \setminus E$ содержит подмножество E', которое равномощно E.

Биекцию h из E в $E \times E$ можно продолжить до биекции из $E \cup E'$ в $S = (E \cup E') \times (E \cup E')$, поскольку $E' \sim S \setminus (E \times E)$. Действительно,

$$S \setminus (E \times E) = (E \times E') \cup (E' \times E') \cup (E' \times E) \sim E \times E \sim E \sim E'.$$

Получаем пару из P, которая больше пары (E,h), что противоречит максимальности (E,h). Таким образом, этот случай невозможен.

Теорема

Произведение двух бесконечных множеств A и B равномощно большему из них.

Доказательство:

Поскольку любые два множества сравнимы по мощности, можно считать без ограничения общности, что $A\lesssim B$. Тогда

$$B \lesssim A \times B \lesssim B \times B \sim B$$
.

По теореме Кантора-Бернштейна получаем, что $B \sim A \times B$.

Следствие

Если множество A бесконечно, то множество всех последовательностей длины n>0, составленных из элементов A, равномощно A, т.е. $A^n \sim A$.

Следствие

Если множество A бесконечно, то множество всех конечных последовательностей, составленных из элементов A, равномощно A, т.е. $A^* \sim A$.

Доказательство:

Имеем

$$A^* = \bigcup \big\{ A^n \mid n \in \mathbb{N} \big\} \sim A \times \mathbb{N} \sim A.$$

Конец лекции!

Логика и алгоритмы Лекция 7

Транзитивное замыкание

Напоминание: множество T называется T называется T называется T если $\bigcup T \subset T$.

Определение. Транзитивное замыкание множества X — это наименьшее по включению (\subset -наименьшее) множество Y, для которого $X \subset Y$.

Утверждение. У всякого множества X существует транзитивное замыкание, обозначаемое $\mathrm{TC}(X)$.

Доказательство:

Определим по трансфинитной рекурсии последовательность множеств g такую, что

- g(0) = X,
- ▶ $g(n+1) = \bigcup g(n)$ для любого $n \in \mathbb{N}$.

Действительно, рассмотрим условие $\varphi(x,y)$: x — конечная последовательность, и

$$y = \begin{cases} X, \text{ если } \operatorname{dom} x = 0; \\ \bigcup x(n), \text{ если } \operatorname{dom} x = n + 1. \end{cases}$$

Последовательность g получается, как единственная непродолжаемая трансфинитная последовательность, удовлетворяющая рекурсивному условию, заданному φ .

Положим $T=\bigcup_{n\in\mathbb{N}}g(n)=\bigcup\operatorname{ran}g.$ Очевидно, что T — транзитивное множество, и $X\subset T.$

Проверим, что Т является ⊂-наименьшим из таких множеств.

Предположим, что $X \subset S$ для некоторого транзитивного множества S.

Имеем $g(0)=X\subset S$. Кроме того, если $g(m)\subset S$, то $g(m+1)=\bigcup g(m)\subset \bigcup S\subset S$.

По принципу математической индукции получаем, что $g(m) \subset S$ для любого $m \in \mathbb{N}$.

Следовательно, $T=\bigcup_{n\in\mathbb{N}}g(n)\subset S$. Доказали, что T является \subset -наименьшим из транзитивных множеств, содержащих X в качестве подмножества.

Лемма

Объединение любого семейства транзитивных множеств является транзитивным множеством.

Лемма

Пусть X — транзитивное множество. Тогда $X \in \mathcal{P}(X)$, и множество $\mathcal{P}(X)$ является транзитивным.

Доказательство:

Проверим, что $X \subset \mathcal{P}(X)$. Если $x \in X$, то $x \subset X$ по транзитивности X. Следовательно, $x \in \mathcal{P}(X)$.

Проверим транзитивность $\mathcal{P}(X)$. Если $y \in \mathcal{P}(X)$, то $y \in X \subset \mathcal{P}(X)$. Следовательно, $\mathcal{P}(X)$ является транзитивным множеством.

По трансфинитной рекурсии для каждого ординала ξ определим множество \mathbb{V}_{ξ} так, чтобы

- $V_0 = \emptyset$,
- $\mathbb{V}_{\eta+1}$ = $\mathcal{P}(\mathbb{V}_{\eta})$ для любого ординала η ,
- $\mathbb{V}_{\lambda} = \bigcup_{\eta < \lambda} \mathbb{V}_{\eta}$ для любого предельного ординала $\lambda.$

Действительно, рассмотрим условие $\varphi(x,y)$: x — трансфинитная последовательность, и

$$y = \left\{ egin{aligned} arnothing, & \mathsf{если} \ \mathrm{dom} \, x = 0; \\ \mathcal{P}(x(\eta)), & \mathsf{если} \ \mathrm{dom} \, x = \eta + 1 \ \mathsf{для} \ \mathsf{некоторого} \ \eta; \\ igcup_{\mathrm{ran} \, x}, & \mathsf{в} \ \mathsf{противном} \ \mathsf{случаe}. \end{aligned}
ight.$$

Видим, что для любой трансфинитной последовательности x существует ровно одно множество y, удовлетворяющего $\varphi(x,y)$. Мы находимся в условиях теоремы о трансфинитной рекурсии.

Получаем, что для любого ординала α существует единственная трансфинитная последовательность длины α , удовлетворяющая рекурсивному условию, заданному φ .

В силу единственности получающиеся трансфинитные последовательности продолжают одна другую.

Множество \mathbb{V}_{ξ} определяется, как член с номером ξ для некоторой (или любой достаточно длинной) трансфинитной последовательности, удовлетворяющая рекурсивному условию.

Так определенный бесконечный ряд множеств \mathbb{V}_{ξ} называется *иерархией фон Неймана*.

Для каждого ординала ξ определили множество \mathbb{V}_{ξ} таким образом, что

- $\mathbb{V}_0 = \emptyset$,
- ▶ $\mathbb{V}_{\eta+1}$ = $\mathcal{P}(\mathbb{V}_{\eta})$ для любого ординала η ,
- $\mathbb{V}_{\lambda} = \bigcup_{\eta < \lambda} \mathbb{V}_{\eta}$ для любого предельного ординала $\lambda.$

Примеры:
$$\mathbb{V}_0 = \varnothing$$
, $\mathbb{V}_1 = \{\varnothing\}$, $\mathbb{V}_2 = \{\varnothing, \{\varnothing\}\}$, $\mathbb{V}_3 = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}\} \{\varnothing, \{\varnothing\}\}\}, \dots, \mathbb{V}_{\omega}, \dots$

Утверждение

Для любых ординалов α и β имеет место следующее:

- ▶ V_{α} транзитивно;
- ▶ $\mathbb{V}_{\beta} \subset \mathbb{V}_{\alpha}$, если $\beta < \alpha$.

Доказательство:

Оба пункта получаются трансфинитной индукцией по ординалу lpha. Разберем первый пункт.

Рассмотрим ординал α такой, что для всех $\gamma < \alpha$ множество \mathbb{V}_{γ} транзитивно. Если α = 0, то \mathbb{V}_0 = \varnothing является транзитивным.

Если $\alpha=\alpha_0+1$ для некоторого α_0 , то $\mathbb{V}_{\alpha}=\mathcal{P}(\mathbb{V}_{\alpha_0})$. Поскольку \mathbb{V}_{α_0} транзитивно по предположению, множество \mathbb{V}_{α} транзитивно.

Если α — предельный ординал, то \mathbb{V}_{α} является объединением транзитивных множеств и, следовательно, транзитивно.

По индукции заключаем, что \mathbb{V}_{α} транзитивно для любого α .

Чтобы получить утверждение второго пункта, надо индукцией по α доказать, что для всех α верно $\forall \beta < \alpha \ \mathbb{V}_{\beta} \subset \mathbb{V}_{\alpha}.$

Принцип ∈-индукции

Аксиома регулярности: $\forall y \ (y \neq \emptyset \rightarrow \exists z \in y \ (z \cap y = \emptyset)).$

Теорема (ϵ -индукция). Пусть φ — некоторое свойство множеств. Тогда

$$\forall x (\forall y \in x \varphi(y) \rightarrow \varphi(x)) \rightarrow \forall x \varphi(x).$$

Доказательство:

Допустим, что $\varphi(x)$ не выполнено для некоторого множества x и $\forall a\ (\forall\,b\in a\ \varphi(b)\to \varphi(a)).$

Рассмотрим подмножество Z множества $T=\mathrm{TC}(\{x\})$, состоящее из множеств, которые не удовлетворяют свойству φ .

Видим, что множество Z непусто. Тогда по аксиоме регулярности оно содержит элемент z такой, что $z \cap Z = \emptyset$.

В силу транзитивности множества T, все элементы множества z лежат T (и не лежат Z). Получаем, что $\varphi(z)$ верно, поскольку $\varphi(y)$ верно для любого $y \in z$. Противоречие.

Следовательно, для всякого множества x (в предположении $\forall a \ (\forall b \in a \ \varphi(b) \to \varphi(a)))$ имеет место $\varphi(x)$.

Теорема. Для всякого множества x существует ординал α такой, что $x \in \mathbb{V}_{\alpha}.$

Доказательство:

Рассмотрим свойство φ : существует ординал α такой, что $x \in \mathbb{V}_{\alpha}$.

Предположим, что нам дано множество y, все элементы которого обладают свойством φ , т.е. $\forall z \in y \ \varphi(z)$.

Теперь рассмотрим условие $\psi(c,d)$: d — наименьший ординал, для которого $c \in \mathbb{V}_d$. Заметим, что для любого элемента z множества y существует такой ординал β , что выполнено $\psi(z,\beta)$.

Кроме того, для любого множества c существует не более одного множество d, удовлетворяющего условию $\psi(c,d)$. По аксиоме подстановки существует множество $D = \{d \mid \exists c \in y \ \psi(c,d)\}.$

Видим, что D — это множество ординалов. Возьмем точную верхнюю грань $\sup D$ всех элементов множества D. Получаем, что $y \in \mathbb{V}_{\sup D}$, а потому $y \in \mathbb{V}_{\sup D+1}$. Следовательно, имеет место $\varphi(y)$.

Согласно принципу \in -индукции $\varphi(x)$ верно для любого множества x.

Ранг множества по фон Нейману

Определение. Рангом множества x по фон Нейману называется наименьший ординал α , для которого $x \in \mathbb{V}_{\alpha+1}$ или, что эквивалентно, $x \subset \mathbb{V}_{\alpha}$.

Данный ординал обозначается $\operatorname{rnk} x$.

Hапоминание:
$$\mathbb{V}_0 = \emptyset$$
, $\mathbb{V}_1 = \{\emptyset\}$, $\mathbb{V}_2 = \{\emptyset, \{\emptyset\}\}$.

Пример: rnk 0 = 0, rnk 1 = 1.

Ранг множества по фон Нейману

Лемма. $\forall x \ x \notin \mathbb{V}_{\text{rnk} x}$.

Доказательство:

Предположим, что $x \in \mathbb{V}_{\mathrm{rnk}\,x}$ для некоторого множества x и придем к противоречию.

Очевидно, что $\operatorname{rnk} x \neq 0$. Если $\operatorname{rnk} x = \beta + 1$ для некоторого ординала β , то по определению ранга $\operatorname{rnk} x \leqslant \beta$. Противоречие.

Осталось рассмотреть случай, когда $\operatorname{rnk} x$ — предельный ординал. В этом случае

$$\mathbb{V}_{\operatorname{rnk} x} = \bigcup_{\gamma < \operatorname{rnk} x} \mathbb{V}_{\gamma}.$$

Видим, что $x \in \mathbb{V}_{\gamma}$ для некоторого $\gamma < \operatorname{rnk} x$, $x \in \mathbb{V}_{\gamma} \subset \mathbb{V}_{\gamma+1}$ и $\operatorname{rnk} x \leqslant \gamma$. Противоречие.

Ранг множества по фон Нейману

Утверждение. Для любого множества x ранг $\operatorname{rnk} x = \sup \{\operatorname{rnk} y + 1 \mid y \in x\}.$

Доказательство:

Во-первых,

$$\forall y \in x \ y \in \mathbb{V}_{\operatorname{rnk} y + 1}.$$

Тогда

$$x \subset \bigcup_{y \in x} \mathbb{V}_{\operatorname{rnk} y + 1} \subset \mathbb{V}_{\sup \left\{ \operatorname{rnk} y + 1 \middle| y \in x \right\}}.$$

Получаем, что $\operatorname{rnk} x \leq \sup \{\operatorname{rnk} y + 1 \mid y \in x\}$.

Теперь проверим, что $\operatorname{rnk} y + 1 \leqslant \operatorname{rnk} x$ для любого $y \in x$. Если $\operatorname{rnk} x < \operatorname{rnk} y + 1$, то $\operatorname{rnk} x \leqslant \operatorname{rnk} y$ и

$$y \in x \subset \mathbb{V}_{\operatorname{rnk} x} \subset \mathbb{V}_{\operatorname{rnk} y},$$

что противоречит предыдущей лемме.

Следовательно, $\operatorname{rnk} y + 1 \leqslant \operatorname{rnk} x$ для любого $y \in x$, и

$$\sup \left\{ \operatorname{rnk} y + 1 \mid y \in x \right\} \leqslant \operatorname{rnk} x.$$

Доказательство закончено.

Упражнение. Проверьте, что $\operatorname{rnk} \alpha$ = α для любого ординала α .

Конец лекции!