HackerRank

Quicksort 1 - Partition

The previous challenges covered Insertion Sort, which is a simple and intuitive sorting algorithm with a running time of $O(n^2)$. In these next few challenges, we're covering a *divide-and-conquer* algorithm called Quicksort (also known as *Partition Sort*). This challenge is a modified version of the algorithm that only addresses partitioning. It is implemented as follows:

Step 1: Divide

Choose some pivot element, p, and partition your unsorted array, arr, into three smaller arrays: left, right, and equal, where each element in left < p, each element in right > p, and each element in equal = p.

Example

$$arr = [5, 7, 4, 3, 8]$$

In this challenge, the pivot will always be at arr[0], so the pivot is 5.

arr is divided into $left=\{4,3\}$, $equal=\{5\}$, and $right=\{7,8\}$.

Putting them all together, you get $\{4,3,5,7,8\}$. There is a flexible checker that allows the elements of left and right to be in any order. For example, $\{3,4,5,8,7\}$ is valid as well.

Given arr and p = arr[0], partition arr into left, right, and equal using the Divide instructions above. Return a 1-dimensional array containing each element in left first, followed by each element in equal, followed by each element in right.

Function Description

Complete the *quickSort* function in the editor below.

quickSort has the following parameter(s):

• $int \ arr[n]: \ arr[0]$ is the pivot element

Returns

• int[n]: an array of integers as described above

Input Format

The first line contains n, the size of arr.

The second line contains n space-separated integers arr[i] (the unsorted array). The first integer, arr[0], is the pivot element, p.

Constraints

- $1 \le n \le 1000$
- $-1000 \leq arr[i] \leq 1000$ where $0 \leq i < n$

All elements are distinct.

Sample Input

```
STDIN Function
----- -----
5 arr[] size n =5
4 5 3 7 2 arr =[4, 5, 3, 7, 2]
```

Sample Output

```
3 2 4 5 7
```

Explanation

$$arr = [4,5,3,7,2]$$
 Pivot: $p = arr[0] = 4$. $left = \{\}$; $equal = \{4\}$; $right = \{\}$ $arr[1] = 5 > p$, so it is added to $right$. $left = \{\}$; $equal = \{4\}$; $right = \{5\}$ $arr[2] = 3 < p$, so it is added to $left$. $left = \{3\}$; $equal = \{4\}$; $right = \{5\}$ $arr[3] = 7 > p$, so it is added to $right$. $left = \{3\}$; $equal = \{4\}$; $right = \{5,7\}$ $arr[4] = 2 < p$, so it is added to $left$. $left = \{3,2\}$; $equal = \{4\}$; $right = \{5,7\}$ Return the array $\{32457\}$.

The order of the elements to the left and right of $\bf 4$ does not need to match this answer. It is only required that $\bf 3$ and $\bf 2$ are to the left of $\bf 4$, and $\bf 5$ and $\bf 7$ are to the right.