

1. Nuclear Models Solutions

Practice Set-1

1. The root-mean-square (r.m.s) energy of a nucleon in a nucleus of atomic number A in its ground state varies as:

a. $A^{4/3}$

- **b.** $A^{1/3}$
- **c.** $A^{-1/3}$
- **d.** $A^{-2/3}$

Solution: So the correct answer is **Option(c)**

2. Let E_S denotes the contribution of the surface energy per nucleon in the liquid drop model. The ratio $E_S(^{27}_{13}\text{Al}): E_S(^{64}_{30}\text{Zn})$ is

[NET/JRF (JUNE-2016)]

- **a.** 2:3
- **b.** 4:3
- **c.** 5:3
- **d.** 3:2

Solution:

$$E_S = \frac{B}{A} = \frac{A^{\frac{2}{3}}}{A} \propto A^{-\frac{1}{3}} \Rightarrow \frac{E_S(Al)}{E_S(Z_n)} = \frac{(27)^{-\frac{1}{3}}}{(64)^{-\frac{1}{3}}} = \frac{(64)^{\frac{1}{3}}}{(27)^{\frac{1}{3}}} = \frac{4}{3}$$

So the correct answer is **Option(b)**

3. The binding energy of a light nucleus (Z,A) in MeV is given by the approximate formula

$$B(A,Z) \approx 16A - 20A^{2/3} - \frac{3}{4}Z^2A^{-1/3} + 30\frac{(N-Z)^2}{A}$$

where N = A - Z is the neutron number. The value of Z of the most stable isobar for a given A is

[NET/JRF (JUNE-2013)]

a.
$$\frac{A}{2} \left(1 - \frac{A^{2/3}}{160} \right)^{-1}$$

b.
$$\frac{A}{2}$$

c.
$$\frac{A}{2} \left(1 - \frac{A^{2/3}}{120} \right)^{-1}$$

d.
$$\frac{A}{2} \left(1 + \frac{A^{4/3}}{64} \right)^{-1}$$

$$\left. \frac{\partial B}{\partial Z} \right|_{Z=Z'} = 0 \Rightarrow Z' = \frac{A}{2} \left(1 - \frac{A^{2/3}}{160} \right)^{-1}$$

So the correct answer is **Option(a)**

4. If the binding energy B of a nucleus (mass number A and charge Z) is given by

$$B = a_V A - a_S A^{2/3} - a_{sym} \frac{(2Z - A)^2}{A} + \frac{a_c Z^2}{A^{1/3}}$$

where $a_V = 16 \text{MeV}$, $a_S = 16 \text{MeV}$, $a_{Sym} = 24 \text{MeV}$ and $a_C = 0.75 \text{MeV}$, then for the most stable isobar for a nucleus with A = 216 is

[NET/JRF (DEC-2014)]

a. 68

b. 72

c. 84

d. 92

Solution:

For the most stable isobar for a nucleus
$$\frac{dB}{dZ} = 0 \Rightarrow -a_{sym} \frac{2(2Z - A) \times 2}{A} + \frac{2a_CZ}{A^{1/3}} = 0$$

$$\Rightarrow 24 \frac{2(2Z - 216) \times 2}{216} + 0.75 \frac{2Z}{(216)^{1/3}} = 0 \Rightarrow \frac{4(2Z - 216)}{9} + \frac{3}{4} \frac{2Z}{6} = 0$$

$$\Rightarrow \frac{4(2Z - 216)}{9} + \frac{Z}{4} = 0 \Rightarrow 16(2Z - 216) + 9Z = 0 \Rightarrow 41Z = 216 \times 16 \Rightarrow Z = 82.3$$

So the correct answer is **Option(c)**

5. Of the nuclei of mass number A = 125, the binding energy calculated from the liquid drop model (given that the coefficients for the Coulomb and the asymmetry energy are $a_c = 0.7 \text{MeV}$ and $a_{sym} = 22.5 \text{MeV}$ respectively) is a maximum for

[NET/JRF (DEC-2015)]

a. $_{54}^{125}$ Xe **faltily.** $_{53}^{124}$ **J OUT c.** $_{52}^{125}$ Te **UFE d.** $_{51}^{125}$ Sb

Solution:

$$Z_{0} = \frac{4a_{a} + a_{c}A^{-1/3}}{2a_{c}A^{-1/3} + 8a_{a}A^{-1}} = \frac{4a_{a}A + a_{c}A^{2/3}}{8a_{a} + 2a_{c}A^{2/3}} \Rightarrow Z_{0} = \frac{4 \times 22.5 \times 125 + 0.7 \left(5^{3}\right)^{2/3}}{8 \times 22.5 + 2 \times 0.7 \left(5^{3}\right)^{2/3}}$$
$$\Rightarrow Z_{0} = \frac{11250 + 17.5}{180 + 35} = \frac{11267.5}{215} = 52.4 \Rightarrow Z_{0} \approx 52$$

So the correct answer is **Option(c)**

6. The Bethe-Weizsacker formula for the binding energy (in MeV) of a nucleus of atomic number Z and mass number A is

$$15.8A - 18.3A^{2/3} - 0.714 \frac{Z(Z-1)}{A^{1/3}} - 23.2 \frac{(A-2Z)^2}{A}$$

The ratio Z/A for the most stable isobar of a A = 64 nucleus, is nearest to

a. 0.30

b. 0.35

c. 0.45

d. 0.50

$$Z_0 = \frac{A}{2 + \frac{a_c}{2a_a} A^{2/3}} \Rightarrow \frac{Z_0}{A} = \frac{1}{2 + \frac{a_c}{2a_a} A^{2/3}}$$
given $a_c = 0.714$ and $a_a = 23.2$

$$\therefore \frac{Z_0}{A} = \frac{1}{2 + \frac{0.714}{2 \times 23.2} A^{2/3}} = \frac{1}{2 + 0.015 A^{2/3}} = \frac{1}{2 + 0.015 (64)^{2/3}} = 0.45$$

So the correct answer is **Option** (c)

7. Let us approximate the nuclear potential in the shell model by a three dimensional isotropic harmonic oscillator. Since the lowest two energy levels have angular momenta l=0 and l=1 respectively, which of the following two nuclei have magic numbers of protons and neutrons?

[NET/JRF (JUNE-2015)]

a.
$${}_{2}^{4}$$
He and ${}_{8}^{16}$ O

b.
$${}_{1}^{2}D$$
 and ${}_{4}^{8}Be$

c.
$${}_{2}^{4}$$
He and ${}_{4}^{8}$ Be

d.
$${}_{2}^{4}$$
He and ${}_{6}^{12}$ C

Solution:

$$_2He^4$$
 has $Z = 2, N = 2$
and $_8O^{16}$ has $Z = 8, N = 8$ magic numbers $(2, 8, 20, 28, 50, 82, 126)$

So the correct answer is **Option** (a)

8. According to the shell model the spin and parity of the two nuclei $^{125}_{51}$ Sb and $^{89}_{38}$ Sr are, respectively,

a.
$$\left(\frac{5}{2}\right)^+$$
 and $\left(\frac{5}{2}\right)^+$

b.
$$(\frac{5}{2})^+$$
 and $(\frac{7}{2})^+$

c.
$$(\frac{7}{2})^{+}$$
 and $(\frac{5}{2})^{+}$

d.
$$(\frac{7}{2})^{+}$$
 and $(\frac{7}{2})^{+}$

Solution:

Solution:
$$^{125}_{51}$$
Sb; $Z = 51$ and $N = 74$

$$Z = 51$$

$$\left(s_{1/2}\right)^2 \left(p_{3/2}\right)^4 \left(p_{1/2}\right)^2 \left(d_{5/2}\right)^6 \left(s_{1/2}\right)^2 \left(d_{3/2}\right)^4 \left(f_{7/2}\right)^8 \left(p_{3/2}\right)^4 \left(f_{5/2}\right)^6 \left(p_{1/2}\right)^2 \left(g_{9/2}\right)^{10} \left(g_{7/2}\right)^1$$
 $\Rightarrow j = \frac{7}{2}$ and $l = 4$. Thus spin and parity $= \left(\frac{7}{2}\right)^+$

$$^{89}_{38}Sr; Z = 38 \text{ and } N = 51$$

$$N = 51$$

$$\left(s_{1/2}\right)^2 \left(p_{3/2}\right)^4 \left(p_{1/2}\right)^2 \left(d_{5/2}\right)^6 \left(s_{1/2}\right)^2 \left(d_{3/2}\right)^4 \left(f_{7/2}\right)^8 \left(p_{3/2}\right)^4 \left(f_{5/2}\right)^6 \left(p_{1/2}\right)^2 \left(g_{9/2}\right)^{10} \left(g_{7/2}\right)^1 \\ \Rightarrow j = \frac{7}{2} \text{ and } l = 4. \text{ Thus spin and parity } = \left(\frac{7}{2}\right)^+$$

So the correct answer is **Option** (d)

9. According to the shell model, the total angular momentum (in units of \hbar) and the parity of the ground state of the ${}_{3}^{7}Li$ nucleus is

[NET/JRF (DEC-2013)]

a.
$$\frac{3}{2}$$
 with negative parity

b.
$$\frac{3}{2}$$
 with positive parity

c.
$$\frac{1}{2}$$
 with positive parity

d.
$$\frac{7}{2}$$
 with negative parity

$$Z=3, N=4$$
 For odd $Z=3$; $\left(s_{1/2}^2\right)\left(p_{3/2}^1\right)\Rightarrow j=3/2, l=1$ and parity $=(-1)^1=-1$.

So the correct answer is **Option (a)**

10. According to the shell model, the nuclear magnetic moment of the $^{27}_{13}$ Al nucleus is (Given that for a proton $g_l = 1, g_s = 5.586$, and for a neutron $g_l = 0, g_s = -3.826$)

[NET/JRF (JUNE-2016)]

a.
$$-1.913\mu_N$$

b.
$$14.414\mu_N$$

c.
$$4.793\mu_N$$

Solution:

$$_{13}Al^{27}: Z=13, N=14 \text{ for } Z=13, S_{1/2}^2, P_{3/2}^4, P_{1/2}^2, d_{5/2}^5 \Rightarrow j=\frac{5}{2}, l=2$$
Magnetic moment, $\mu=\frac{1}{2}\left[2j-1+g_S\right]\mu_N=\frac{1}{2}\left[2\times\frac{5}{2}-1+5.586\right]\mu_N \Rightarrow \mu=4.793\mu_N$

So the correct answer is **Option** (c)

11. The spin-parity assignments for the ground and first excited states of the isotope ⁵⁷₂₈Ni, in the single particle shell model, are

[NET/JRF (DEC-2017)]

a.
$$\left(\frac{1}{2}\right)^{-}$$
 and $\left(\frac{3}{2}\right)^{-}$

b.
$$(\frac{5}{2})^+$$
 and $(\frac{7}{2})^+$

c.
$$(\frac{3}{2})^+$$
 and $(\frac{5}{2})^+$

d.
$$(\frac{3}{2})^{-}$$
 and $(\frac{5}{2})^{-}$

Solution:

Spin parity for $_{28}\text{Ni}^{57}$ for ground state and first excited state For $_{28}\text{Ni}^{57}$: $P=28, N=29 \rightarrow \text{will}$ decide the j^P

So, for N = 29, ground state configuration,

$$1s_{1/2}^2 1p_{3/2}^4 1p_{1/2}^2 1d_{5/2}^6 2s_{1/2}^2 1d_{3/2}^4 1f_{7/2}^8 2p_{3/2}^1$$
 So, $j = \frac{3}{2}, l = 1$

Spin parity for ground state of
$${}_{28}\text{Ni}^{57} \rightarrow \left(\frac{3}{2}\right)^{-}$$

For first excited state,

$$1s_{1/2}^21p_{3/2}^41p_{1/2}^21d_{5/2}^62s_{1/2}^21d_{3/2}^41f_{7/2}^82p_{3/2}^1\to 1f_{5/2}$$

$$P = \frac{5}{2}, l = 3 \Rightarrow \text{spin parity} \rightarrow \left(\frac{5}{2}\right)^{-1}$$

So the correct answer is **Option** (d)

12. The first excited state of the rotational spectrum of the nucleus ${}^{238}_{92}U$ has an energy 45keV above the ground state. The energy of the second excited state (in keV) is

[NET/JRF (DEC-2017)]

- **a.** 150
- **b.** 120
- **c.** 90

d. 60

As per the shell model (Collective Model)

Rotational Energies,

$$E_r = \frac{\hbar^2}{2I}J(J+1), I \rightarrow$$
 is moment of inertia where only even value of J are allowed

i.e.,
$$J = 0^+, 2^+, 4^+, 6^+, \dots$$

Now, for ground state $J = 0^+, E = 0 \text{keV}$

For first excited state, $J = 2^+, E = 45 \text{keV}$ (given)

So,
$$45 \text{keV} = \frac{\hbar^2}{2I} \cdot 2 \cdot 3 \text{ or}, \frac{\hbar^2}{2I} = \frac{45}{6} \text{keV}..(i)$$

Now, for second excited state, $J = 4^+$

$$E_2 = \frac{\hbar^2}{2I} \cdot 4 \cdot 5 \text{ (put value of } \frac{\hbar^2}{2I} \text{ from (i))}$$
45 900

or,
$$E_2 = \frac{45}{6} \times 20 = \frac{900}{6} = 150 \text{keV}.$$

So the correct answer is 150

13. The low lying energy levels due to the vibrational excitations of an even-even nucleus are shown in the figure below,

The spin-parity j^p of the level E_1 is

[NET/JRF (DEC-2018)]

a. 1⁺

b. 1

c. 2⁻

d. 2^+

Solution: Quadrupole oscillations are the lowest order nuclear vibrational mode. The quanta of vibrational energy are called phonons. A quadrupole phonon carries 2 units of angular momentum. Therefore, the parity is $P = (-1)^2 = +ve$

Also, the even-even ground state is O^+ . The 1 phonon excited state is 2^+ . The 2 phonons excited states are $0^+, 2^+, 4^+$. Thus correct option is (a)

$$1.35 - - - 0^{+}$$
 $1.25 - - - 2^{+}$
 $1.17 - - - 4^{+}$
 2 -phonons

 $0.56 - 2^+ : 1$ -phonon

0 —— 0^+ :Ground state

meV

So the correct answer is **Option** (d)

- 14. An excited state of a 8_4Be nucleus decays into two α -particles which are in a spinparity 0^+ state. If the mean life-time of this decay is 10^{-22} s, the spin-parity of the excited state of the nucleus is
 - **a.** 2^+

- **b.** 3^+
- $c. 0^{-}$

d. 4⁻

Solution: The parity angular momentum selection rule in α -decay says that, if the initial and final particles are same, the I_{α} must be even; if the parties are different, then I_{α} must be odd.

The ground state is 0^+ thus spin-parity of excited state must be 2^+ . Thus correct option is (a)

So the correct answer is **Option** (a)

Answer key				
Q.No.	Answer	Q.No.	Answer	
1	С	2	b	
3	a	4	С	
5	С	6	С	
7	a	8	d	
9	a	10	С	
11	d	12		
13	d	14	a	
15				

Practice Set-2

1. The semi-empirical mass formula for the binding energy of nucleus contains a surface correction term. This term depends on the mass number A of the nucleus as

[GATE-2011]

a.
$$A^{-1/3}$$

b.
$$A^{1/3}$$

c.
$$A^{2/3}$$

Solution: So the correct answer is **Option** (c)

2. The nuclear spin and parity of $^{40}_{20}$ Ca in its ground state is

[GATE-2019]

a.
$$0^+$$

Solution:

 $^{40}_{20}$ Ca is an even-even nuclei, therefore I = 0, P = +ve

$$\therefore$$
 Spin-parity = 0^+

So the correct answer is **Option** (a)

3. In the nuclear shell model, the spin parity of ${}_{7}^{15}N$ is given by

[GATE-2010]

a.
$$\frac{1^{-}}{2}$$

b.
$$\frac{1^{+}}{2}$$

c.
$$\frac{3^{-}}{2}$$

d.
$$\frac{3^+}{2}$$

Solution:

$$Z = 7; (s_{1/2})^2 (p_{3/2})^4 (p_{1/2})^1 \text{ and } N = 8$$

$$l = 1, J = \frac{1}{2} \Rightarrow \text{ parity } = (-1)^1 = -1, \quad \text{spin - parity } = \left(\frac{1}{2}\right)^{-1}$$

So the correct answer is **Option** (a)

4. According to the nuclear shell model, the respective ground state spin-parity values of $^{15}_{8}$ O and $^{17}_{8}$ O nuclei are

[GATE-2016]

a.
$$\frac{1^+}{2}, \frac{1^-}{2}$$

b.
$$\frac{1}{2}^-, \frac{5^+}{2}$$
 c. $\frac{3^-}{2}, \frac{5^+}{2}$

$$\mathbf{c}. \ \frac{3^-}{2}, \frac{5^+}{2}$$

d.
$$\frac{3^{-}}{2}, \frac{1^{-}}{2}$$

Solution:

$${}_{8}^{15}O; Z = 8 \text{ and } N = 7; \quad N = 7: \left(s_{1/2}\right)^{2} \left(p_{3/2}\right)^{4} \left(p_{1/2}\right)^{1}$$

$$\Rightarrow j = \frac{1}{2} \text{ and } l = 1. \text{ Thus spin and parity} = \left(\frac{1}{2}\right)^{-}$$

$${}_{8}^{17}O; Z = 8 \text{ and } N = 9; \quad N = 9: \left(s_{1/2}\right)^{2} \left(p_{3/2}\right)^{4} \left(p_{1/2}\right)^{2} \left(d_{5/2}\right)^{1}$$

$$\Rightarrow j = \frac{5}{2} \text{ and } l = 2. \text{ Thus spin and parity} = \left(\frac{5}{2}\right)^{+}$$

So the correct answer is **Option (b)**

5. J^P for the ground state of the ${}^{13}C_6$ nucleus is

[GATE-2017]

a. 1^+

b. $\frac{3^{-}}{2}$

c. $\frac{3^{+}}{2}$

d. $\frac{1^{-}}{2}$

Solution:

$$^{13}C_6: Z = 6, N = 7, N = 7: (s_{1/2})^2 (p_{3/2})^4 (p_{1/2})^1$$

 $\Rightarrow j = \frac{1}{2} \text{ and } l = 1.$

Thus, spin and parity $= \left(\frac{1}{2}\right)^{-}$

So the correct answer is **Option** (d)

- 6. According to the single particles nuclear shell model, the spin-parity of the ground state of ${}_{8}^{17}$ O is [GATE-2011]
 - **a.** $\frac{1}{2}$

b. $\frac{3}{2}$

c. $\frac{3}{2}$

d. $\frac{5^{+}}{2}$

Solution:

$$Z = 8 \text{ and } N = 9; (s_{1/2})^2 (p_{3/2})^4 (p_{1/2})^2 (d_{5/2})^1$$

$$l = 2, J = \frac{5}{2} \Rightarrow \text{ parity } = (-1)^2 = +1, \text{ spin } -\text{ parity } = \left(\frac{5}{2}\right)^+$$

So the correct answer is **Option** (d)

7. The first three energy levels of $^{228}Th_{90}$ are shown below

The expected spin-parity and energy of the next level are given by

[GATE-2010]

a. $(6^+;400\text{keV})$

b. $(6^+;300 \text{keV})$

 $c. (2^+;400 \text{keV})$

d. $(4^+;300\text{keV})$

Solution:

$$\frac{E_2}{E_1} = \frac{J_2(J_2+1)}{J_1(J_1+1)} \Rightarrow \frac{E_6}{E_4} = \frac{6(6+1)}{4(4+1)} \Rightarrow E_6 = 393 \text{keV}$$

So the correct answer is **Option** (a)

8. In the nuclear shell model, the potential is modeled as $V(r) = \frac{1}{2}m\omega^2r^2 - \lambda\vec{L}\cdot\vec{S}, \lambda > 0$. The correct spin-parity and isospin assignments for the ground state of $^{13}_6{\rm C}$ is

[GATE-2015]

a.
$$\frac{1^{-}}{2}$$
; $\frac{-1}{2}$ **c.** $\frac{3^{+}}{2}$; $\frac{1}{2}$

c.
$$\frac{3^+}{2}$$
; $\frac{1}{2}$

b.
$$\frac{1^+}{2}$$
; $\frac{-1}{2}$

d.
$$\frac{3^{-}}{2}$$
; $\frac{-1}{2}$

$$^{13}C_6$$
, $N = 7, Z = 6$, for $N = 7$; $\left(1S_{\frac{1}{2}}\right)^2 \left(1P_{\frac{3}{2}}\right)^4 \left(P_{\frac{1}{2}}\right)^1 \Rightarrow j = \frac{1}{2}$ and $l = 1$. Thus spin- parity is $\left(\frac{1}{2}\right)^-$.

So the correct answer is **Option** (a)

9. The total angular momentum j of the ground state of the ${}_{8}^{17}O$ nucleus is

[GATE- 2020]

a.
$$\frac{1}{2}$$

c.
$$\frac{3}{2}$$

d.
$$\frac{5}{2}$$

Solution:

For
$$_{8}^{17}O: z = 8$$
 and $N = 9$

For
$$N = 9 : (1s_{1/2})^2 (1p_{3/2})^4 (1p_{1/2})^2 (1d_{5/2})^1$$

The angular momentum is $I = \frac{5}{2}$

So the correct answer is **Option** (d)

10. For nucleus 164 Er, a $J^{\pi}=2^+$ state is at 90keV. Assuming 164 Er to be a rigid rotor, the energy of its 4^+ state is ——keV (up to one decimal place)

[GATE-2018]

Solution:

$$E_J = hcBJ(J+1)$$

 $E_{2^+} = hcB2(2+1)$ and $E_{4^+} = hcB4(4+1)$
Then, $\frac{E_{4^+}}{E_{2^+}} = \frac{20}{6} \Rightarrow E_{4^+} = \frac{20}{6} \times 90 \text{keV} = 300 \text{keV}$

Answer key				
Q.No.	Answer	Q.No.	Answer	
1	С	2	a	
3	a	4	b	
5	d	6	d	
7	a	8	a	
9	d	10	300	
11		12		
13		14		
15				

