Announcements

Prof. Reisman Office Hours This Week:

Tuesday from 3-5 pm

If you have questions about the material we're covering, this is your opportunity to ask me directly

Some useful websites:

http://www.organicdivision.org/?nd=p_organic_web_links

http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm#contnt

Specific to today's lecture:

http://research.cm.utexas.edu/nbauld/teach/acidsbases.html#blacids

Useful reading from BPOC: Chapter 8, section 1 (pages 208-211)

The pK_a System

- pK_a values tell us how acidic a given hydrogen atom is
- pK_a values are useful for estimating reactivity in organic chemistry
- most pK_a values are determined in H₂O or DMSO (dimethylsulfoxide)

AH
$$(aq)$$
 + H₂O (I) $\xrightarrow{K_{eq}}$ $\xrightarrow{\Theta}$ A (aq) + H₃O (aq)
$$K_{eq} = \frac{[H_3O^+][A^-]}{[AH][H_2O]}$$
 $K_a = \frac{[H_3O^+][A^-]}{[AH]}$ $pK_a = -logK_a$

The pK_a System

- pK_a values tell us how acidic a given hydrogen atom is
- pK_a values are useful for estimating reactivity in organic chemistry
- most pK_a values are determined in H₂O or DMSO (dimethylsulfoxide)

AH
$$(aq)$$
 + H₂O (I) K_{eq} Θ_{A} (aq) + H₃O (aq)

$$K_{eq} = \frac{[H_3O^+][A^-]}{[AH][H_2O]} \qquad K_a = \frac{[H_3O^+][A^-]}{[AH]} \qquad pK_a = -logK_a$$

$$pK_a \qquad pK_a \qquad pK_a$$

$$H^-CI \qquad PK_a \qquad PK_a$$

Periodic Trends and Acidity

the stability of the conjugate base is correlated to the pK_a of the acid

• stable conjugate bases lead to low pK_a values

pK _a		pK_{a}
<mark>H</mark> −NH ₂	<u>Н</u> -ОН	
<mark>Н</mark> -ОН	<u>H</u> −SH	
<u>H</u> F	<u>H</u> −SeH	
•		

Electronegative Atoms Stabilize Anions Inductively

the stability of the conjugate base is correlated to the pK_a of the acid

• stable conjugate bases lead to low pK_a values

Hybridization Influences Acidity

The stability of the conjugate base is correlated to the pK_a of the acid

• stable conjugate bases lead to low pK_a values

Delocalization Stabilizes Anions

The stability of the conjugate base is correlated to the pK_a of the acid

• stable conjugate bases lead to low pK_a values

Take Home Messages:

When intuiting the relative pK_a of a proton, consider the stability of the conjugate base

- the more stable the conjugate base, the lower the pK_a of the acid, the stronger the acid
- electronegative atoms can stabilize the conjugate base inductively
- delocalization of negative charge can stabilize the conjugate base
- \bullet hybridization affects pK $_{\rm a}$: orbitals with more s-character better stabilize negative charge

- the equilibrium will favor the more stable conjugate base
- if the difference between pK_{aHA} and pK_{aHB} is >3, typically the acid-base reaction is considered irreversible

The Same Rationale Applies to Basicity

Weaker acids have stronger conjugate bases.

• high pK_a values indicate strong conjugate bases

The higher the HOMO, the more accessible the unpaired electrons, the stronger the base

• negatively charged species are more basic relative to neutral species

• lone pair basicity increases from sp to sp² to sp³

Amides are Weak Bases that Protonate on Oxygen

remember

- amide nitrogens are sp² hybridized to allow delocalization
- delocalization lowers the energy of the HOMO, makes lone pair less available

• positive charge from protonation on oxygen is stabilized by resonance