In the Claims:

- 1. (currently amended): A composition comprising from 92 to 97 % by weight pigment and from 3 to 8 % by weight binder, in each case based on the composition, wherein the binder is a mixture comprising
 - from 5 to 60 % by weight, based on the binder, of modified cellulose wherein, on average, per glucose unit, from 0.5 to 1.4 hydroxyl hydrogen atoms are replaced by R₁, or from 0.25 to 0.6 hydroxyl hydrogen atoms are replaced by R₂, or from 0.5 to 1.4 hydroxyl hydrogen atoms are replaced by R₂; and
 - R_3 from 40 to 95 % by weight, based on the binder, of a compound of formula Q = N ,

$$Q \stackrel{O}{\underset{R_3}{\checkmark}} O \text{ or } Q \stackrel{O}{\underset{O-R_3}{\checkmark}} ;$$

wherein Q is a hydrocarbon radical containing from 8 to 24 carbon atoms, unsubstituted or mono- to tri-substituted by hydroxy or OR₁,

each R₁, independently of any other R₁, is C₁-C₄alkyl or C₁-C₄alkylcarbonyl,

each R_2 , independently of any other R_2 , is an organic group different from R_1 and containing from 2 to 10 carbon, from 0 to 4 oxygen and from 0 to 2 nitrogen atoms,

and R_3 and R_4 are each independently of the other hydrogen, R_1 , R_2 , C_5 - C_8 alkyl, C_5 - C_8 alkylcarbonyl, C_5 - C_8 alkenyl, C_5 - C_8 alkenylcarbonyl, C_5 - C_8 cycloalkyl, C_5 - C_8 cycloalkylcarbonyl, C_5 - C_8 cycloalkenylcarbonyl, phenyl, benzoyl, tolyl, methylbenzoyl, benzyl, phenylacetyl, phenethyl or styryl.

- **2.** (original): A composition according to claim 1, wherein R_1 is methyl or ethyl, R_2 is benzyl, C_1 - C_4 alkylene- $COOR_3$, C_2 - C_3 alkylene- NR_3R_4 or $[C_2$ - C_3 alkylene- $O]_{1-4}$ - R_3 , R_3 and/or R_4 are hydrogen or R_2 , and Q has at least 12 carbon atoms.
- **3.** (currently amended): A composition according to either claim 1, or claim 2, wherein the binder comprises from 0 to 20 % by weight of an organic or inorganic acid or a non-ionic compound.

- **4. (original):** A composition according to claim 3, wherein the organic acid has from 1 to 8 carbon atoms and is unsubstituted or substituted by hydroxy.
- **5.** (currently amended): A composition according to claim 1, 2, 3 or 4, wherein the pigment is selected from the 1-aminoanthraquinone, anthanthrone, anthrapyrimidine, azo, azomethine, quinacridone, quinacridonequinone, quinophthalone, dioxazine, diketopyrrolopyrrole, flavanthrone, indanthrone, isoindoline, isoindolinone, isoviolanthrone, perinone, perylene, phthalocyanine, pyranthrone and or thioindigo series., preferably a quinacridone, dioxazine, perylene, diketopyrrolopyrrole or disazo condensation pigment.
- **6. (currently amended):** A method of pigmenting a polyolefin (including polystyrenes and vinyl-polymers) or a polyolefin copolymer, wherein from 0.01 to 230 % by weight, preferably from 0.05 to 5 % by weight, based on the polyolefin or polyolefin copolymer, of a composition according to claim 1, 2, 3, 4 or 5 is incorporated in a polyolefin or polyolefin copolymer.
- 7. (currently amended): A method of preparing a composition according to claim 1, 2, 3, 4 or 5, wherein an aqueous medium, a pigment, and a binder comprising
 - from 5 to 60 % by weight, based on the binder, of modified cellulose wherein, on average, per glucose unit, from 0.5 to 1.4 hydroxyl hydrogen atoms are replaced by R₁, or from 0.25 to 0.6 hydroxyl hydrogen atoms are replaced by R₂, or from 0.5 to 1.4 hydroxyl hydrogen atoms are replaced by R₁ and from 0 to 0.6 hydroxyl hydrogen atoms are replaced by R₂; and
 - ho_3 from 40 to 95 % by weight, based on the binder, of a compound of formula Q=N , ho_3 ,

$$Q \stackrel{O}{\longleftarrow} N - R_4$$
 or $Q \stackrel{O}{\longleftarrow} O - R_3$,

and, optionally, from 0 to 20 % by weight of further substances;
wherein Q is a hydrocarbon radical containing from 8 to 24 carbon atoms, unsubstituted or mono- to tri-substituted by hydroxy or OR₁,

each R₁, independently of any other R₁, is C₁-C₄alkyl or C₁-C₄alkylcarbonyl,

each R_2 , independently of any other R_2 , is an organic group different from R_1 and containing from 2 to 10 carbon, from 0 to 4 oxygen and from 0 to 2 nitrogen atoms,

and R_3 and R_4 are each independently of the other hydrogen, R_1 , R_2 , C_5 - C_8 alkyl, C_5 - C_8 alkylcarbonyl, C_5 - C_8 alkenyl, C_5 - C_8 cycloalkyl, C_5 - C_8 cycloalkylcarbonyl, C_5 - C_8 cycloalkenyl, C_5 - C_8 cycloalkenyl, benzoyl, tolyl, methylbenzoyl, benzyl, phenylacetyl, phenethyl or styryl,

and wherein the weight ratio of pigment to binder is from 92 : 8 to 97 : 3 and the weight ratio of pigment to aqueous medium is from 1 : 1.5 to 1 : 100, preferably from 1 : 2.5 to 1 : 10, are successively or simultaneously added to an apparatus which is so operated that there results an aqueous dispersion having a pH value of from 4 to 7, preferably from 4.5 to 6.5, especially from 5 to 6, and the aqueous medium is subsequently removed.

- **8.** (original): A method according to claim 7, wherein the pigment is added to the apparatus in the form of a moist pigment cake.
- **9.** (currently amended): A method according to either claim 7, or claim 8, wherein the aqueous medium is removed by spray-drying.

10. (cancelled)

- 11 (new): A method of pigmenting organic material, wherein a composition according to claim 1 is incorporated in an organic material of natural or synthetic origin having a molecular weight in the range from 10³ to 10⁸ g/mol.
- **12. (new):** A composition according to claim 1, wherein the pigment is selected from the quinacridone, dioxazine, perylene, diketopyrrolopyrrole and disazo condensation pigment series.
- **13.** (new): A composition according to claim 3, wherein the pigment is from the 1-aminoanthraquinone, anthanthrone, anthrapyrimidine, azo, azomethine, quinacridone, quinacridonequinone, quinophthalone, dioxazine, diketopyrrolopyrrole, flavanthrone, indanthrone, isoindoline, isoindolinone, isoviolanthrone, perinone, perylene, phthalocyanine, pyranthrone or thioindigo series.

- **14. (new):** A method of pigmenting a polyolefin or a polyolefin copolymer, wherein from 0.01 to 230 % by weight, based on the polyolefin or polyolefin copolymer, of a composition according to claim 3 is incorporated in a polyolefin or polyolefin copolymer.
- **15.** (new): A method of pigmenting a polyolefin or a polyolefin copolymer, wherein from 0.01 to 230 % by weight, based on the polyolefin or polyolefin copolymer, of a composition according to claim 5 is incorporated in a polyolefin or polyolefin copolymer.
- **16.** (new): A method of pigmenting a polyolefin or a polyolefin copolymer, wherein from 0.05 to 5 % by weight, based on the polyolefin or polyolefin copolymer, of a composition according to claim 1 is incorporated in a polyolefin or polyolefin copolymer.
- **17.** (new): A method of pigmenting a polyolefin or a polyolefin copolymer, wherein from 0.05 to 5 % by weight, based on the polyolefin or polyolefin copolymer, of a composition according to claim 3 is incorporated in a polyolefin or polyolefin copolymer.
- **18.** (new): A method of pigmenting a polyolefin or a polyolefin copolymer, wherein from 0.05 to 5 % by weight, based on the polyolefin or polyolefin copolymer, of a composition according to claim 5 is incorporated in a polyolefin or polyolefin copolymer.
- **19. (new):** A method according to claim 7, wherein the pigment is selected from the 1-aminoanthraquinone, anthanthrone, anthrapyrimidine, azo, azomethine, quinacridone, quinacridonequinone, quinophthalone, dioxazine, diketopyrrolopyrrole, flavanthrone, indanthrone, isoindoline, isoindolinone, isoviolanthrone, perinone, perylene, phthalocyanine, pyranthrone and thioindigo series.
- **20.** (new): A method according to claim 7, wherein the weight ratio of pigment to aqueous medium is from 1 : 2.5 to 1 : 10.
- **21.** (new): A method according to claim 7, wherein there results an aqueous dispersion having a pH value of from 4.5 to 6.5.