VERMES MIKLÓS Fizikaverseny

2024. március 12. *Megyei szakasz*

XI. osztály

JAVÍTÓKULCS

1. feladat megoldása – Szövegösszerakós. (FIRKA, 2023-2024.3. – megjelenés alatt. Kovács Zoltán) (**9 pont**) **A pontozás:** Minden egymást helyesen követő két mondatrészért 1–1 pont jár, de más megoldás is elfogadható, ha a leírás értelmes marad. A helyes megoldásért összesen 9 pont kapható, **A helyes összeállítás:** 7, 10, 2, 9, 3, 6, 1, 4, 8, 5.

7) Amikor rugalmas testek 10) – amelyekben a fellépő (F_r) rugalmas erő arányos az y **kitéréssel** ($F_r = -k \cdot y$) – 2) az egyensúlyi helyzetük mindkét oldalán ismétlődő (periodikus) mozgást végeznek, 9) **harmonikus rezgőmozgásnak** nevezzük. 3) Az így mozgó testeket meg **oszcillátoroknak** nevezzük. 6) Az oszcillátorok maximális kitérését **amplitúdónak** (A) nevezzük. 1) Ilyen lengő/rezgő mozgást végez a hinta, illetve függőleges mentén a rugós szék a játszótéren. 4) A hinta mozgását modellezi a felfüggesztett fonálon lengő pici, de súlyos test, 8) az ún. **matematikai síkinga** mozgása. 5) A rugós székét pedig a felfüggesztett, acélrugón lengő súly, a **rugalmas inga**.

A 2. feladat megoldása és javítókulcsa (Lázár Zsolt)

11 2.	A 2. leiadat megoidasa es javitokuicsa (Lazar Zsoit)				
		Pont			
1)	A gyorsulás $a_{(t)} = -\omega^2 y = -\omega^2 A \cdot \cos \left[\omega t + \varphi\right]$. $-\omega^2 A = 20$, de $\omega = 10$ rad/s, és $A = -0.2$ m. A periódus $\omega = 2\pi/T$, ahonnan $T = 10/2\pi \approx 3.18$ s. A kezdőfázis $\varphi = 10 \cdot 0.1 = 1$ rad (57°17' 44,8")	4			
2)	$v_{(t)} = \omega A \cos [\omega t + \varphi]$. így $v_{(t)} = -2 \cos [10 \cdot t + 1]$ (m/s).	1			
3)	$y_{(t)} = A \cdot \sin [\omega \cdot t + \varphi]$ (m), $y_{(t)} = -0.2 \sin [10 \cdot t + 1]$ (m).	1			
4)	$k = m \cdot \omega^2 = 0.1 \cdot 100 = 10 \text{ N/m}.$ $F_r = -k \cdot y \text{ és } F_r = 2 \text{ sin } [10(t + 0.1)] \text{ (N)}.$	1			
5)	A függvények grafikus képe:	2			

Összesen: 9 pont

A 3. feladat megoldása és javítókulcsa (Lázár Zsolt)

		Pont
a)	A rajz	1
	Az l hosszúságú folyadékoszlopra, amikor y értékkel kimozdítjuk az egyensúlyi helyzetéből, a $2y$ vastagságú folyadékoszlop súlya, az F erő hat rá.	1
	$F = -2 \cdot \rho \cdot S \cdot y \cdot g = -(2 \cdot \rho \cdot S \cdot g) \cdot y = -k \cdot y$, tehát $k = 2 \cdot \rho \cdot S \cdot g = m \cdot \omega^2$	1
	Az F erő rugalmas erő jellegű, mert arányos a kitéréssel, a mozgás harmonikus rezgőmozgás.	1
	A mintegy $2l$ hosszúságú folyadékoszlop tömege $m = 2 \cdot \rho \cdot S \cdot l$.	1
	A harmonikus oszcillátor periódusa pedig: $T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{2 \cdot \rho \cdot S \cdot l}{2 \cdot \rho \cdot S \cdot g}} = 2\pi \sqrt{\frac{l}{g}} \approx 2 \text{ s.}$	1

b)	A rezgésegyenlet $y_{(t)} = A \cdot \sin \left[\omega \cdot t + \varphi \right]$ (m), $y_{(t)} = 0.02 \cdot \sin \pi \cdot t$ (m), ahol	1
	$\omega = 2\pi/T = \pi \text{ rad/s}.$	
c)	A dinamika II. alaptörvénye szerint az F erő az l hosszúságú folyadékoszlopnak a_y	
	gyorsulást kölcsönöz. $F = -k \cdot y = -2 \cdot \rho \cdot S \cdot g \cdot y = m \cdot a_y = 2 \cdot \rho \cdot S \cdot l \cdot a_y$.	1
	A gyorsulás $a_y = -(g/l)y = -\omega^2 y \approx -10 \cdot y \text{ (m/s}^2)$, mivel $\omega = 2\pi/T \approx \pi \text{ s. } (\pi^2 \approx 10)$	
d)	A rezgések amplitúdója az $A = A_0 e^{-\beta t}$ alakú függvény szerint csillapodik, ahol A_0 a	
	kezdeti amplitúdó, A az amplitúdó a t időpillanatban, β a csillapítási tényező. Amikor	1
	$t = 20$ s, az $A = A_0/4 = A_0 e^{-\beta t}$. Kissé átalakítva $4 = e^{2\theta \cdot \beta}$. Logaritmálva: $\ln 2^2 = 20 \cdot \beta$,	1
	majd $2 \cdot \ln 2 = 20\beta$. $\beta = 2 \cdot 0.7/20 = 0.07 1/s$.	

Összesen: 9 pont

Hivatalból: 3 pont

Munkaidő: 2 óra