Quantum Machine Learning

Fabio A. González Universidad Nacional de Colombia

Quantum machine learning

Number of papers per year

Quantum machine learning Approaches

Quantum "accelerated" ML Algorithms

- Variational classifiers
- Quantum kernels
- Quantum SVMs
- Quantum neural networks
- Quanvolutional neural networks
- Quantum GANs
- Etc.

Variational Classifier

Sen, P., & Bhatia, A. S. (2021). Variational Quantum Classifiers Through the Lens of the Hessian. arXiv preprint arXiv:2105.10162.

Quantum feature map

- Basis encoding
- Amplitude encoding
- Angle encoding
- Hamiltonian encoding

Quantum "accelerated" ML Basis embedding

Input dataset:

$$\mathcal{D} = \{x^{(1)}, \dots, x^{(m)}, \dots, x^{(M)}\}, x^{(i)} \in X^N$$

Dataset is represented as superpositions of computational basis states:

$$|\mathcal{D}\rangle = \frac{1}{\sqrt{M}} \sum_{m=1}^{M} |x^{(m)}\rangle$$

For binary variables requires N qubits

Quantum "accelerated" ML Amplitude embedding

• A normalized classical N-dimensional datapoint is represented by the amplitudes of an n-qubit quantum state with $N=2^n$

$$|\psi_x\rangle = \sum_{i=1}^N x_i |i\rangle,$$

The input examples are concatenated together

$$\alpha = C_{norm}\{x_1^{(1)}, \dots, x_N^{(1)}, x_1^{(2)}, \dots, x_N^{(2)}, \dots, x_1^{(M)}, \dots, x_N^{(M)}\},\$$

The dataset is represented as:

$$|\mathcal{D}\rangle = \sum_{i=1}^{2^n} \alpha_i |i\rangle,$$

Quantum circuit

Parameter shift to calculate gradients

Quantum "accelerated" ML Parameter shift

Objective function:

$$f(\theta) = \langle \psi | \ U_G^{\dagger}(\theta) \ A \ U_G(\theta) \ | \psi \rangle$$

• Parameterized gate with generator G (Hermitian):

$$U_G(\theta) = e^{-i\theta G} = I\cos(\theta) - iG\sin(\theta)$$

• If G has only two eigenvalues e_0 and e_1 , we have:

$$\frac{d}{d\theta}f(\theta) = r\left[f(\theta + \frac{\pi}{4r}) - f(\theta - \frac{\pi}{4r})\right] \qquad r = \frac{a}{2}(e_1 - e_0)$$

Parameter shift for Pauli gates

$$R_X(\theta) = e^{-i\frac{1}{2}\theta X}$$
 $r = \frac{1}{2}$ $R_Y(\theta) = e^{-i\frac{1}{2}\theta Y}$ $r = \frac{1}{2}$ $R_Z(\theta) = e^{-i\frac{1}{2}\theta Z}$ $r = \frac{1}{2}$

$$\frac{d}{d\theta}f(\theta) = \frac{1}{2}\left[f(\theta + \frac{\pi}{2}) - f(\theta - \frac{\pi}{2})\right]$$

Crooks, G. E. (2019). *Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition.* arXiv preprint arXiv:1905.13311

