Problem 3.1. Determine all infinite sequences (a_1, a_2, \dots) of positive integers satisfying

$$a_{n+1}^2 = 1 + (n+2022)a_n$$

for all $n \geq 1$.

Problem 3.2. Point M on side AB of quadrilateral ABCD is such that quadrilaterals AMCD and BMDC are circumscribed around circles centered at O_1 and O_2 respectively. Line O_1O_2 cuts an isosceles triangle with vertex M from angle CMD. Prove that ABCD is a cyclic quadrilateral.

Problem 3.3. Let p be a prime number and let m, n be integers greater than 1 such that $n \mid m^{p(n-1)} - 1$. Prove that $\gcd(m^{n-1} - 1, n) > 1$.

Problem 3.4. The *sword* is a figure consisting of 6 unit squares presented in the picture below (and any other figure obtained from it by rotation).

السؤال الأول

 $n \geq 1$ ان يخقق لكل المتتابعات الغير منتهية (a_1,a_2,\ldots) للأعداد الصحيحة الموجبة التي تحقق لكل

$$a_{n+1}^2 = 1 + (n + 2022)a_n$$

السؤال الثاني

النقطة M على الضلع AB في الشكل الرباعي ABCD بحيث الرباعيان AMCD, BMDC مماسيين لدائرتين مراكزهما O_1,O_2 تواليًا (كل من الدائرتين تمسان أضلاع رباعي من الداخل). المستقيم O_1O_2 يقطع ضلعي الزاوية O_1 في نقطتين تشكلان مع النقطة O_1 مثلتًا متطابق الضلعين رأسه O_2 . أثبت أن الشكل O_1 رباعي دائري.

السؤال الثالث

 $n \mid m^{p(n-1)} - 1$ عددًا أوليًا، وليكن m,n عددين صحيحين أكبر من $n \mid m^{p(n-1)} - 1$

 $\cdot \gcd(m^{n-1}-1,n) > 1$ أثبت أن

السؤال الرابع

ليكن "السيف" شكلًا مكونًا من 6 مربعات وحدة كما في الصورة أدناه (وأي شكّل آخر يمكن الحصول عليه منه من خلال الدوران).

عين أكبر عدد من السيوف التي يمكن قطعها من رقعة ورقية 11×6 مقسمة لمربعات وحدة (كل سيف سيتكون من 6 مربعات منها).

الزمن 4 ساعات ونصف كل سؤال 7 نقاط مع أطيب التمنيات بالتوفيق