EE595: Machine Intelligence and Smart Systems FERNANDO P.D.R. E/16/103

Classification of class 3 of Iris_dataset

Classification with Univariate density

Mat-lab Code for generating histogram of the classification

```
| Reacon | VEW | VEW | Reacon | VEW | Reacon | VEW | Reacon | VEW | Reacon | VEW | V
```

Mat-lab Code for generating Posterior probability

```
| Global | Note | Note
```

Posterior probability of feature 1

Histogram of the classification

Posterior probability of feature 2

Histogram of the classification considering feature 2

Posterior probability of feature 3

Histogram of the classification considering feature 3

Posterior probability of feature 4

Histogram of the classification considering feature 4

Classification with Multivariate density

Code for multivariate density classification

```
| Comparison | Co
```

Histogram of the classification using multivariate density

From the above result it is obvious that multivariate density is a fair job in classifying the class 3 of iris dataset even though it consist of few false negatives and few false positives. In the univariate density feature 3 & 4 performed well comparatively to feature 1 & 2.Infact feature 3 seems to outperform multivariate classifier. At the end of the day multivariate classifier is better than univariate density because it takes account for all 4 features. In the univariate classifier looking at the 4 features t is hard to take a decision.