Clustering

Importation des Bibliothèques :

- numpy pour les calculs numériques.
- pandas pour la manipulation des données.
- matplotlib.pyplot pour la visualisation des données.
- warnings pour gérer les avertissements.

```
In [22]: %matplotlib inline
    from copy import deepcopy
    import numpy as np
    import pandas as pd
    from matplotlib import pyplot as plt
    plt.rcParams['figure.figsize'] = (16, 9)
    plt.style.use('ggplot')
    import warnings
    warnings.filterwarnings("ignore")
```

Chargement du Dataset :

- Le fichier mallCustomerData.txt est chargé dans un DataFrame data.
- Affichage de la forme du DataFrame et des premières lignes pour vérification.

Out[23]:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

In [24]: df = pd.DataFrame(data, columns= ['CustomerID','Gender', 'Age','Annual Incom
df

Out[24]:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

200 rows × 5 columns

In [25]: print(data['Gender'].value_counts())

Gender

Female 112 Male 88

Name: count, dtype: int64

Création d'un DataFrame df avec des colonnes spécifiques.

• Comptage des occurrences de chaque genre dans la colonne Gender.

```
In [26]: data = pd.get_dummies(data,columns=['Gender'])
print(data)
```

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)	'
0	1	19	15	39	
1	2	21	15	81	
2	3	20	16	6	
3	4	23	16	77	
4	5	31	17	40	
• •			• • •	•••	
195	196	35	120	79	
196	197	45	126	28	
197	198	32	126	74	
198	199	32	137	18	
199	200	30	137	83	

	<pre>Gender_Female</pre>	Gender_Male
0	False	True
1	False	True
2	True	False
3	True	False
4	True	False
	• • •	
195	True	False
196	True	False
197	False	True
198	False	True
199	False	True

[200 rows x 6 columns]

Encodage des Variables Catégorielles :

• Transformation de la colonne Gender en variables binaires (one-hot encoding).

```
In [27]: f1 = data['Annual Income (k$)'].values
    f2 = data['Spending Score (1-100)'].values

for key in data.keys():
        print(key)

X = np.array(list(zip(f1, f2)))
#X=[[1, 1], [1, 2], [3, 3], [4, 4]]
plt.scatter(f1, f2, c='black', s=20)
```

CustomerID
Age
Annual Income (k\$)
Spending Score (1-100)
Gender_Female
Gender_Male

Out[27]: <matplotlib.collections.PathCollection at 0x148b33d0e50>

Extraction des Caractéristiques et Visualisation :

- Extraction des valeurs de Annual Income (k\$) et Spending Score (1-100) pour les utiliser comme caractéristiques.
- Création d'un tableau X contenant ces caractéristiques et affichage d'un nuage de points.

```
In [28]: f3 = data['Age'].values
f4 = data['Gender_Female'].values

for key in data.keys():
    print(key)
X = np.array(list(zip(f3, f4)))
#X=[[1, 1], [1, 2], [3, 3],[4,4]]
plt.scatter(f3, f4, c='black', s=50)
```

CustomerID
Age
Annual Income (k\$)
Spending Score (1-100)
Gender_Female
Gender_Male

Out[28]: <matplotlib.collections.PathCollection at 0x148b3432c80>


```
In [29]: f3 = data['Age'].values
f5 = data['Gender_Male'].values

for key in data.keys():
    print(key)
X = np.array(list(zip(f3, f4)))
#X=[[1, 1], [1, 2], [3, 3], [4, 4]]
plt.scatter(f3, f4, c='black', s=50)
```

CustomerID
Age
Annual Income (k\$)
Spending Score (1-100)
Gender_Female
Gender_Male

Out[29]: <matplotlib.collections.PathCollection at 0x148b34162f0>

Création et Visualisation des Données avec Différentes Caractéristiques :

- Extraction des valeurs d'Age et des variables binaires de genre pour la visualisation.
- Création de plusieurs tableaux X et affichage de nuages de points pour ces caractéristiques.

```
In [30]: # Nombre de clusters
k = 1
# Coordonnées X des centroides aléatoires
C_x = np.random.randint(0, np.max(X)-2, size=k)
# Coordonnées Y des centroides aléatoires
C_y = np.random.randint(0, np.max(X)-2, size=k)
C = np.array(list(zip(C_x, C_y)), dtype=np.float32)
print(C)
```

```
In [31]: # Visualisation avec les Centroides
plt.scatter(f1, f2, c='#050505', s=7)
plt.scatter(C_x, C_y, marker='*', s=200, c='g')
```

Out[31]: <matplotlib.collections.PathCollection at 0x148b4285e40>

Approche avec Scikit-Learn

Initialisation des Centroides et Visualisation :

- Initialisation des centroides de manière aléatoire pour k=1 cluster.
- Affichage des points de données avec les centroides sur le graphique.

```
In [32]: from sklearn.cluster import KMeans
    #Nombre de clusters
kmeans = KMeans(n_clusters=3)
# FEntraînement sur les données
kmeans = kmeans.fit(X)
# Obtention des étiquettes de clusters
labels = kmeans.predict(X)
# Valeurs des centroides
centroids = kmeans.cluster_centers_
```

```
In [33]: # Comparaison avec les centroides obtenus manuellement
print(C) #De manière manuelle
print(centroids) # Avec scikit-learn
```

Vous pouvez voir que les valeurs des centroides sont égales, mais dans un ordre différent.

Nous allons générer un nouveau dataset en utilisant la fonction make_blobs.

Approche avec Scikit-Learn:

- Utilisation de l'algorithme KMeans de scikit-learn pour le clustering avec k=3 clusters.
- Entraînement du modèle sur les données et prédiction des étiquettes de cluster.
- Affichage des centroides obtenus avec scikit-learn et comparaison avec les centroides initiaux.

```
In [34]:
         import numpy as np
         import matplotlib.pyplot as plt
         from mpl toolkits.mplot3d import Axes3D
         from sklearn.cluster import KMeans
         from sklearn.datasets import make_blobs
         plt.rcParams['figure.figsize'] = (16, 9)
         # Création d'un dataset d'exemple avec 4 clusters
         X, y = make_blobs(n_samples=800, n_features=3, centers=4)
In [35]: fig = plt.figure()
         ax = Axes3D(fig)
         ax.scatter(X[:, 0], X[:, 1], X[:, 2])
Out[35]: <mpl toolkits.mplot3d.art3d.Path3DCollection at 0x148b431d420>
         <Figure size 1600x900 with 0 Axes>
In [36]: # Initialisation de KMeans
         kmeans = KMeans(n_clusters=4)
         # Entraînement avec les données
         kmeans = kmeans.fit(X)
         # Prédiction des clusters
         labels = kmeans.predict(X)
         # Obtention des centres des clusters
         C = kmeans.cluster_centers_
In [37]: fig = plt.figure()
         ax = Axes3D(fig)
         ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y)
         ax.scatter(C[:, 0], C[:, 1], C[:, 2], marker='*', c='#050505', s=1000)
Out[37]: <mpl_toolkits.mplot3d.art3d.Path3DCollection at 0x148b4b82770>
         <Figure size 1600x900 with 0 Axes>
```

Création et Visualisation d'un Nouveau Dataset :

- Génération d'un nouveau dataset avec make_blobs pour 4 clusters en 3 dimensions.
- Visualisation des clusters et des centroides avec un graphique 3D.

```
In [20]: # Trouver le nombre optimal de clusters en utilisant la méthode du coude
from sklearn.cluster import KMeans
from sklearn.cluster import KMeans
wcss_list =[] # Initialisation de la liste pour les valeurs de WCSS

# 10 itérations
for i in range(1,11):
    kmeans=KMeans(n_clusters=i, init='k-means++',random_state =42)
    kmeans.fit(X)
    wcss_list.append(kmeans.inertia_)

plt.plot(range(1,11),wcss_list)
plt.title("the elbow method")
plt.xlabel("numbr of cluster")
plt.ylabel("wcss_list")
plt.show()
```


Méthode du Coude pour Trouver le Nombre Optimal de Clusters :

Utilisation de la méthode du coude pour déterminer le nombre optimal de clusters. Calcul du WCSS (Within-Cluster Sum of Squares) pour différents nombres de clusters et tracé de la courbe pour visualiser le point d'inflexion.