Guojing Wu 4/15/2019

Problem

1) Exploratory analysis

The boxplot shows that there are differencies of pitch between male and female and between formal and informal

2) Fixed effect model with random intercept

The covariance matrix for a subject Y_i is

$$cov(Y_i) = \begin{pmatrix} \sigma_b^2 + \sigma^2 & \sigma_b^2 & \dots & \sigma_b^2 \\ \sigma_b^2 & \sigma_b^2 + \sigma^2 & \dots & \sigma_b^2 \\ \dots & & & & \\ \sigma_b^2 & \sigma_b^2 & \dots & \sigma_b^2 + \sigma^2 \end{pmatrix}$$

with $\sigma_b^2 = 598.1953$, $\sigma^2 = 847.7049$.

And the covariance matrix for REML is:

	(Intercept)	$\operatorname{genderM}$	attitudepol
(Intercept)	229.67362	-219.5819	-20.18345
genderM	-219.58189	439.1638	0.00000
attitudepol	-20.18345	0.0000	40.36690

The BLUPs for subject-specific intercept $\,$

	(Intercept)
F1	-13.575831
F2	10.170522
F3	3.405309
M3	27.960288
M4	4.739325
M7	-32.699613

The residuals are:

F1	F2	F3	M3	M4	M7
-10.108693	-10.689833	-22.226230	-9.387292	-14.4550462	-2.347193
-38.911074	-23.092214	-29.328611	-16.389672	-35.8574271	12.650426
61.691307	-3.589833	96.073770	-13.287292	-0.8550462	-13.747193
16.288926	-9.392214	-38.028611	-11.189673	-7.4574271	23.550426
-19.508693	26.610167	-20.726230	-9.587292	42.2449538	4.052807
43.488926	5.607786	60.671389	-5.289672	34.6425729	9.950426
27.391307	35.010167	60.473770	1.612708	-3.9550462	51.352807
33.388926	46.407786	9.971389	4.510327	29.0425729	14.750426
8.491307	-7.789833	-31.126230	-1.787292	30.5449538	4.552807
8.988926	-7.892214	-26.028611	-12.589673	27.0425729	-19.649574
-42.208693	-13.889833	-22.926230	13.312708	-39.1550462	-9.447193
-12.711073	18.407786	-16.728611	-7.289672	-41.2574271	-18.149574
-26.911074	4.007786	-6.928611	8.910327	13.8425729	-15.049574
-68.608693	-54.889833	-6.426230	12.112708	-19.9550462	-2.847193

residual distribution

3) Fixed effects model with intercepts for different subjects.

For likelihood ratio test, we use ML instead of REML, and then doing ANOVA. The pvalue = 0.2392, so in this case, we fail to reject the null hypothesis and state that the interaction term is not significantly associated with pitch.

4) Fixed effect model with random intercept and random slope

Consider the model form is

$$Y_{i,j} = \beta_1 + \beta_2 \cdot gender_{i,j} + \beta_3 \cdot attitude_{i,j} + b_{1,i} + b_{2,i}attitude_{i,j} + \epsilon_{i,j}$$
$$= (\beta_1 + b_{1,i}) + \beta_2 \cdot gender_{i,j} + (\beta_3 + b_{2,i}) \cdot attitude_{i,j} + \epsilon_{i,j}$$

where $b_{1,i} \sim N(0,g_{11}), \ b_{2,i} \sim N(0,g_{22}), \ cov(b_{1,i},b_{2,i}) = g_{12}, \ \epsilon_{i,j} \sim N(0,\sigma^2), \ \text{and} \ (b_{1,i},b_{2,i})^T$ and ϵ are assumed to be independent.

To compute the covariance structure, the $g_{11}, g_{12}, g_{22}, \sigma$ can be obtained from below:

Var	iance	StdDev	Corr
attitudepol 1.07	81953e+02 79496e-05 77049e+02	24.458032213 0.003285569 29.115372269	(Intr)

The fixed effect is:

	X
(Intercept)	256.98691

	X
genderM	-108.79762
attitudepol	-20.00238

The random effect is:

	(Intercept)	attitudepol
F1	-13.575831	-8e-07
F2	10.170522	1e-07
F3	3.405308	-3e-07
M3	27.960288	1e-06
M4	4.739325	8e-07
M7	-32.699612	-8e-07

The BLUP for the first female subject in scenario 1 with polite attitude is 223.4086921.

Code

```
knitr::opts chunk$set(echo = FALSE, message = FALSE, warning = FALSE, comment = "")
library(tidyverse)
library(grid)
library(gridExtra)
library(nlme)
data.poli <- read.csv("HW7-politeness_data.csv", sep = ",")</pre>
plot.gender <- data.poli %>%
  ggplot(aes(x = gender, y = frequency)) +
  geom_boxplot()
plot.atti <- data.poli %>%
  ggplot(aes(x = attitude, y = frequency)) +
  geom boxplot()
grid.arrange(plot.gender, plot.atti, ncol = 2)
LMM1 <- lme(frequency ~ gender + attitude, data = data.poli, random = ~1 | subject, method = 'REML')
vcov(LMM1) %>% knitr::kable()
random.effects(LMM1) %>% knitr::kable()
# residual
resid.mat <- matrix(as.numeric(data.poli$frequency - fitted(LMM1)), nrow = 14, ncol = 6)
colnames(resid.mat) = rownames(random.effects(LMM1))
resid.mat %>% knitr::kable()
plot(density(as.numeric(resid.mat)), xlab = "residual", main = "residual distribution")
# interaction term
LMM.1 <- lme(frequency ~ gender + attitude, data = data.poli, random = ~1 | subject, method = 'ML')
LMM.2 <- lme(frequency ~ gender * attitude, data = data.poli, random = ~1 | subject, method = 'ML')
res.inter <- anova(LMM.1, LMM.2)
LMM2 <- lme(frequency ~ gender + attitude, random = ~ 1 + attitude | subject, data = data.poli)
VarCorr(LMM2) %>% knitr::kable()
fixed.effects(LMM2) %>% knitr::kable()
random.effects(LMM2) %>% knitr::kable()
```