

ilu lika kata di mulio era

NITED STATES PATENT AND TRADEMARK OFFICE

In re application of

Confirmation No. 6799

Seishi KATO et al.

Docket No. 2002-0400A

Serial No. 10/088,859

Group Art Unit Not Yet Assigned

Filed May 29, 2002

Examiner Not Yet Assigned

A METHOD FOR PRODUCING AN ANTIBODY BY GENE IMMUNIZATION THE COMMISSIONER IS AUTHORIZED TO CHARGE ANY DEFICIENCY IN THE FEES FOR THIS PAPER TO DEPOSIT ACCOUNT NO. 23-0975

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents, Washington, D.C. 20231

Sir:

Responsive to the Notice dated May 30, 2002, please amend the above-identified application as follows:

In the Specification:

Page 1, line 1, delete the entire heading.

between lines 3 and 6, insert the following heading:

BACKGROUND OF THE INVENTION

line 6, replace the heading with the following new heading:

1. Field of the Invention

line 15, replace the heading with the following new heading:

2. Description of the Related Art

Page 2, replace the paragraph beginning at line 22 with the following paragraph:

The purpose of the invention of the present application is to provide a method for producing antibodies to proteins, which were difficult to produce using presently known gene immunization methods.

line 31, replace the heading with the following new heading:

Summary of the Invention

Page 4, between lines 4 and 7, insert the paragraph in Appendix A attached herewith.

line 7, replace the heading with the following new heading:

Description of the Preferred Embodiments

Page 6, replace the paragraph beginning at line 12 with the following paragraph:

The following examples serve to illustrate the invention in more detail but are not intended as a limitation thereof. In these examples, basic procedures for recombination of DNA and enzyme reactions are carried out according to the articles, "Molecular Cloning; A laboratory manual", Cold Spring Harbor Laboratory, 1989. Restriction enzymes and a variety of modified enzymes were obtained from Takara Shuzo Co., Ltd., unless otherwise stated. The compositions of buffer solutions in respective enzyme reactions and the reaction conditions were set according to the specification attached.

Page 10, delete line 1 in its entirety.

replace the paragraph beginning at line 3 with the following paragraph:

According to the present invention, an antibody against an antigenic protein, which was difficult to produce using presently known gene immunization, can be produced. The result is an antibody useful as drugs, diagnostic agents, and reagents for research.

In the Abstract:

Page 12, line 1, replace the heading with the following new heading:

ABSTRACT OF THE DISCLOSURE

replace the paragraph beginning at line 3 with the following paragraph:

The present invention of the application provides a method for producing an antibody which comprises inoculating an expression vector expressing a fusion protein to an animal, and isolating and purifying an antibody against an antigenic protein from the animal, wherein the fusion protein is an antigenic protein fused to the C-terminal side of a transmembrane domain in which the N-terminal side is located in the cell and the C-terminal is out of the cell. According to the present invention, an antibody against an antigenic protein, which was difficult to produce using presently known gene immunization, can be produced. The result is an antibody useful as drugs, diagnostic agents, and reagents for research.

In the Sequence Listing:

Please replace the Sequence Listing of record with the attached substitute Sequence Listing.

In the Claims:

Above claim 1, insert the following:

What is claimed is:

REMARKS

The foregoing amendments are presented to place the application in compliance with the sequence rules under 37 CFR 1.821-1.825.

Applicants have submitted a Sequence Listing in both paper and computer readable form as required by 37 C.F.R. 1.821(c) and (e). Amendments directing its entry into the specification have also been incorporated herein. The content of the paper and computer readable copies are the same and no new matter has been added.

The specification has also been carefully reviewed and editorial changes have been effected. All of the changes are minor in nature and therefore do not require extensive discussion. Specifically, the specification headings have been amended in conformance with U.S. practice.

Also, the amino acid sequences disclosed in Figure 4 which represent portions of SEQ ID Nos: 9-13 have been identified and labeled in the Brief Description of the Drawings (See Appendix A) in accordance with U. S. practice.

With regard to the Notice also requesting that an executed Oath and Declaration be submitted, Applicants wish to note that an executed Oath and Declaration was submitted on May 29, 2002. A copy of the submitted executed Declaration is enclosed herewith along with the cover letter (indicating the filing of the executed Declaration). Applicants respectfully request that the

indeass osesoe

Patent Office review the application papers to ensure that the executed Declaration is present in the file.

Attached hereto is a marked-up version of the changes made to the specification by the current amendment. The attached page is captioned "Version with markings to show changes made."

In view of the foregoing, it is believed that each requirement set forth in the Notice has been satisfied, and that the application is now in compliance with the sequence rules under 37 CFR 1.821-1.825. Accordingly, favorable examination on the merits is respectfully requested.

Respectfully submitted,

Seishi KATO et al.

Log Chance

Registration No. 40,949 Attorney for Applicants

LC/gtg Washington, D.C. 20006-1021 Telephone (202) 721-8200 Facsimile (202) 721-8250 June 28, 2002

APPENDIX A

The amino acid sequence of HP01347 shown in Figure 4 corresponds to amino acid residues 1-72 of SEQ ID No: 9. The amino acid sequence of HP10328 shown in Figure 4 corresponds to amino acid residues 1-128 of SEQ ID No: 10. The amino acid sequence of HP10390 shown in Figure 4 corresponds to amino acid residues 1-50 of SEQ ID No:11. The amino acid sequence of HP10433 shown in Figure 4 corresponds to amino acid residues 1-135 of SEQ ID No: 12. The amino acid sequence of HP10481 shown in Figure 4 corresponds to amino acid residues 1-148 of SEQ ID No: 13.

Version with Markings to Show Changes Made

DESCRIPTION_

A Method for producing an Antibody by Gene Immunization

5

10

15

20

25

30

BACKGROUND OF THE INVENTION 1. Tochnical Field of the Invention

The invention of the present application relates to a method for producing an antibody by gene immunization. More specifically, the invention relates to a method of enabling easy production of an antibody useful as drugs, diagnostic agents, reagents for the research, and etc., and to an expression vector used in this method.

2. Description of the Related

An antibody has widely been utilized as reagents for the research for the purpose of detection, purification, elimination, inhibition of a protein or the like, because it has property of recognizing specific protein and binding thereto. Recently, it has widely been used not only as reagents for the research but also as drugs or diagnostic agents.

In producing antibodies, it has so far been general to use a method that a large amount of protein as an antigen is purified and injected to an animal or animals such as rabbits or mice to collect antibodies generated in sera. It required, however, much time and a great deal of labor to obtain a large amount of a purified antigenic protein. It is desired to provide a more convenient method for producing antibodies, accordingly.

Recently, it was reported that when a gene coding for an influenza virus nucleoprotein is integrated into an expression vector

and intramuscularly injected directly as DNA to mice, then virus proteins are produced in the murine bodies and additionally the antibody against these proteins are generated in the sera. (Ulmer et al., Science 259: 1745-1749, 1993; Ginsbert et al., "Vaccines 93"). As a result, this expression vector received much attention as a new type of vaccine, that is, DNA vaccine, since mice have acquired immunity to virus. Thus, it has been designated as gene immunization that an expression vector for an antigenic protein is inoculated directly to an animal to generate immunity. In using gene immunization, however, in some cases, the titer of the generated antibody is very low or no antibody is generated depending on the kind of the antigen used.

It was reported as an example of gene immunization that ovalbumin was fused in the downstream of transmembrane domain of transferrin receptor to form a membrane type and it was injected intramuscularly or subcutaneously to mice in order to investigate an effect of the expression site of antigenic protein on the efficacy of gene immunization. The titer of the antibodies generated, however, rather decreased since the protein was converted into a membrane type. (Boyle et al., Int. Immunol. 9: 1897-1906, 1997).

The purpose of the invention of present application is to provide a method for producing antibodies to proteins, which it was difficult to produce in so far known gene immunization methods.

25

20

10

15

Additionally, the purpose of the invention is to provide an expression vector used in the above-mentioned method for producing an antibody.

30

Disclosure of the Invention

The present application, as the invention for solving the

4

Fig. 4 shows the respective N-terminal amino acid sequences of fusion proteins comprising urokinase and transmembrane domains in a variety of membrane proteins.

5

10

15

20

25

30

Description of the Preferred Embodiments
Best Mode for Carrying Out the Invention

In a method for producing antibodies according to the invention, the expression vector to be inoculated to animals may be constructed as an expression vector having a fusion polynucleotide that consists of a polynucleotide encoding an antigenic protein and a polynucleotide encoding a transmembrane domain.

As for an antigenic protein, any one that can generate an antigen-antibody reaction in vivo may be used. The polynucleotide encoding an antigenic protein may be any one of genomic DNA, cDNA, synthetic DNA, etc., as far as it has an open reading frame (ORF). When the antigenic protein is an inherent secretory protein, it is used after removal of the signal sequence peptide originally possessed by the protein.

As for the transmembrane domain, any domain may be used as far as its N-terminal side is in the cell and the C-terminal side is out of the cell. For example, transmembrane domains of type II-membrane proteins or those of multispan-type membrane proteins may be used. The proteins that an antigenic protein is fused to the C-terminal side of these transmembrane domains take forms that the antigenic protein portion exists on the surface of the cell membrane. As for the transmembrane domain, for example, that of human type-II membrane protein HP10085 (SEQ ID NO: 2) may be used. In this case, the transmembrane domain to be fused with an antigenic protein is a polypeptide containing at least 1st methionine (Met) to 26th lysine (Lys)

immunoassay (ELISA), Western blotting, immuno-precipitation, antibody staining, and the like may be used. After confirmation of the presence of the antibody in the serum by these methods, the serum may be used as a polyclonal antibody specimen as it is or may be purified by affinity column chromatography to yield IgG. Alternatively, the spleen may be taken out from the animal acquiring immunity and the monoclonal antibody can be produced in a conventional manner.

10

15

20

Examples

The following examples serve to illustrate the invention in more detail and specifically but are not intended as a limitation thereof. In these examples, basic procedures for recombination of DNA and enzyme reactions are carried out according to the articles, "Molecular Cloning; A laboratory manual", Cold Spring Harbor Laboratory, 1989. Restriction enzymes and a variety of modified enzymes were obtained from Takara Shuzo Co., Ltd., unless otherwise stated. The compositions of buffer solutions in respective enzyme reactions and the reaction conditions were set according to the specification attached.

(1) Construction of an Expression Vector for the Urokinase-Fusion
Protein

25

30

When urokinase is used as an antigenic protein, 3 kinds of expression vectors were used, that is, for secretion expression, for membrane form expression, and for intracellular expression. That is, the following vectors were respectively used: for secretion expression, pSSD1-UPA22 which expresses the signal sequence and protease domain of urokinase (Yokoyama-Kobayashi et al., Gene 163: 193-196, 1995); for membrane form expression, pSSD3-10085H which expresses a protein prepared by fusing a sequence from the N-terminal side to the

Industrial=Applicability

According to the present invention, an antibody against an antigenic protein, which it was difficult to produce in the so far known gene immunization, can be produced. The resulting an antibody is useful as drugs, diagnostic agents, and reagents for the research.

CLAIMS

What is claimed is;

1. A method for producing an antibody which comprises inoculating an expression vector expressing a fusion protein to an animal, isolating an antibody against an antigenic protein from the animal and purifying the antibody, wherein the fusion protein is an antigenic protein fused with the C-terminal of a transmembrane domain of which the N-terminal side is located in the cell and the C-terminal side is out of the cell.

10

5

- 2. The method for producing an antibody of claim 1, wherein the transmembrane domain is a polypeptide having at least the amino acid sequence from 1st to 26th of SEQ ID NO. 2.
- 3. An expression vector expressing a fusion protein in which an antigenic protein is fused with the C-terminal of transmembrane domain of which the N-terminal side is located in the cell and the C-terminal side is out of the cell.
- 4. The expression vector of claim 3, wherein the transmembrane domain is a polypeptide having at least the amino acid sequence from 1st to 26th of SEQ ID NO. 2.

ABSTRACT OF THE DISCLOSURE

The present invention of the application provides a method for producing an antibody which comprises inoculating an expression vector expressing a fusion protein to an animal, and isolating and purifying an antibody against an antigenic protein from the animal, wherein the fusion protein is an antigenic protein fused to the C-terminal side of a transmembrane domain in which the N-terminal side is located in the cell and the C-terminal is out of the cell. According to the present invention, an antibody against an antigenic protein, which it was difficult to produce in the so far known gene immunization, can be produced. The resulting an antibody is useful as drugs, diagnostic agents, and reagents for the research.

5

10

Rec'd PCT/PTO 28 JUN 2002

SEQUENCE LISTING

<110> KATO, Seishi NAGATA, Naoki FUJIMURA, Naoko KOBAYASHI, Midori ITO, Koichi ISHIZUKA, Yoshiko
<120> A Method for Producing an Antibody by Gene Immunization
<130> 2002-0400A/LC/00653
<140> 10/088,859 <141> 2002-05-29
<150> PCT/JP01/06371 <151> 2001-07-24
<150> JP2000-222743 <151> 2000-07-24
<150> JP2000-254407 <151> 2000-08-24
<160> 13
<170> PatentIn Ver. 2.1
<210> 1 <211> 697 <212> DNA <213> Homo sapiens
<220> <221> CDS <222> (151)(600)
<400> 1 tatacctcta gtttggagct gtgctgtaaa aacaagagta acatttttat attaaagtta 60
aataaagtta caactttgaa gagagtttct gcaagacatg acacaaagct gctagcagaa 120
aatcaaaacg ctgattaaaa gaagcacggt atg atg acc aaa cat aaa aag tgt 174 Met Met Thr Lys His Lys Lys Cys 1 5
ttt ata att gtt ggt gtt tta ata aca act aat att att act ctg ata Phe Ile Ile Val Gly Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile 10 15 20
gtt aaa cta act cga gat tct cag agt tta tgc ccc tat gat tgg att Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 30 35 40
ggt ttc caa aac aaa tgc tat tat ttc tct aaa gaa gaa gga gat tgg Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp

50 55 45 366 aat tea agt aaa tae aac tgt tee act eaa cat gee gae eta act ata Asn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 att gac aac ata gaa gaa atg aat ttt ctt agg cgg tat aaa tgc agt 414 Ile Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser tot gat cac tgg att gga ctg aag atg gca aaa aat cga aca gga caa 462 Ser Asp His Trp Ile Gly Leu Lys Met Ala Lys Asn Arg Thr Gly Gln 95 tgg gta gat gga gct aca ttt acc aaa tcg ttt ggc atg aga ggg agt 510 Trp Val Asp Gly Ala Thr Phe Thr Lys Ser Phe Gly Met Arg Gly Ser 110 558 gaa gga tgt gcc tac ctc agc gat gat ggt gca gca aca gct aga tgt Glu Gly Cys Ala Tyr Leu Ser Asp Asp Gly Ala Ala Thr Ala Arg Cys 130 125 tac acc gaa aga aaa tgg att tgc agg aaa aga ata cac taa 600 Tyr Thr Glu Arg Lys Trp Ile Cys Arg Lys Arg Ile His 140 gttaatgtct aagataatgg ggaaaataga aaataacatt attaagtgta aaaccagcaa 660 697 agtacttttt taattaaaca aagttcgagt tttgtac <210> 2 <211> 149 <212> PRT <213> Homo sapiens <400> 2 Met Met Thr Lys His Lys Lys Cys Phe Ile Ile Val Gly Val Leu Ile 1 10 Thr Thr Asn Ile Ile Thr Leu Ile Val Lys Leu Thr Arg Asp Ser Gln 20 25 Ser Leu Cys Pro Tyr Asp Trp Ile Gly Phe Gln Asn Lys Cys Tyr Tyr 40 45 Phe Ser Lys Glu Glu Gly Asp Trp Asn Ser Ser Lys Tyr Asn Cys Ser 50 55 60 Thr Gln His Ala Asp Leu Thr Ile Ile Asp Asn Ile Glu Glu Met Asn 70 Phe Leu Arg Arg Tyr Lys Cys Ser Ser Asp His Trp Ile Gly Leu Lys 8.5 90 Met Ala Lys Asn Arg Thr Gly Gln Trp Val Asp Gly Ala Thr Phe Thr 100 105 110 Lys Ser Phe Gly Met Arg Gly Ser Glu Gly Cys Ala Tyr Leu Ser Asp 115 120 125 Asp Gly Ala Ala Thr Ala Arg Cys Tyr Thr Glu Arg Lys Trp Ile Cys 130 135

Arg Lys Arg Ile His

145

<210> 3 <211> 548 <212> DNA <213> Homo sapiens																
<220> <221> CDS <222> (30)(503)																
<400> 3 cttattgctg gcggcctgag gagcccatc								_	gcg Ala	-			_			53
				acg Thr												101
				cag Gln												149
-	_			cag Gln 45	_	-					_	-		-		197
	_		_	gaa Glu	_	_		_				_	_		_	245
_		_		ttc Phe		-	_			-		-			-	293
				ctg Leu												341
				ttc Phe												389
_		_		acc Thr 125	_	-						_				437
				GJ A aaa												485
	aag Lys			cat His	tga	ctto	cttc	ccc (ccato	cctca	ag ad	catta	aaaga	à		533

548 gcctgaatgc ctttg <210> 4 <211> 157 <212> PRT <213> Homo sapiens <400> 4 Met Ala Thr Pro Pro Lys Arg Ala Val Glu Ala Thr Gly Glu Lys 1 5 Val Leu Arg Tyr Glu Thr Phe Ile Ser Asp Val Leu Gln Arg Asp Leu 25 Arg Lys Val Leu Asp His Arg Asp Lys Val Tyr Glu Gln Leu Ala Lys 40 4.5 Tyr Leu Gln Leu Arg Asn Val Ile Glu Arg Leu Gln Glu Ala Lys His 55 60 Ser Glu Leu Tyr Met Gln Val Asp Leu Gly Cys Asn Phe Phe Val Asp 70 75 Thr Val Val Pro Asp Thr Ser Arg Ile Tyr Val Ala Leu Gly Tyr Gly 85 90 Phe Phe Leu Glu Leu Thr Leu Ala Glu Ala Leu Lys Phe Ile Asp Arg 100 105 110 Lys Ser Ser Leu Leu Thr Glu Leu Ser Asn Ser Leu Thr Lys Asp Ser 115 120 125 Met Asn Ile Lys Ala His Ile His Met Leu Leu Glu Gly Leu Arg Glu 135 Leu Gln Gly Leu Gln Asn Phe Pro Glu Lys Pro His His <210> 5 <211> 30 <212> DNA <213> Artificial Sequence <223> Artificial Sequence: Synthesized oligonucleotide <400> 5 30 cccgatatct catggcgacg ccccctaagc <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence: Synthesized oligonucleotide 30 cccgatatct caatggtgag gcttctctgg <210> 7 <211> 28

	2> D 3> A		icia	ıl S∈	quer	ıce										
<22 <22		rtif	icia	ıl Se	quen	ice:	Synt	hesi	zed	olig	jonuc	cleot	ide			
	0> 7 gaat		tggc	gacg	cc c	:ccta	agc							28		
	0> 8						_									
	1> 3															
	2> D 3> A		icia	l Se	auan											
		LULL	ICIA	T De	quen	ce										
<22		rtif	idia	1 00	~		C	1		. 1 .						
\ 22	3/ A	LULL	тста	l Se	quen	.ce:	sync	nesı	zea	orig	onuc	teot	ide			
	0> 8		~ · + · ·											_	_	
CCC	guag	acg	catg	gtga	gg c	ttct	ctgg	g aa						3	2	
-23	0. 0															
	0> 9 1> 1	643														
	2> D															
<21	3> H	omo	sapi	ens												
<22	O>						•									
	1> C		. (91	E \												
~~~		23).	. (91	<i>5)</i>												
	)> 9															
aac	atct(	ggg	gaca	gegg	ga a	aac	atg Met 1	agt Ser .	gac Asp	tcc Ser	aag Lys 5	gaa Glu	cca Pro	agg Arg	gtg Val	51
cag	caq	ctq	aac	ctc	cta	aaa	tat	ctt	aac	cat	aac	acc	cta	ata	cta	99
Gln 10	Gln	Leu	ĞÎy	Leu	Leu 15	Gly	Cys	Leu	Gly	His 20	Gly	Ala	Leu	Val	Leu 25	33
caa	ctc	ctc	tcc	ttc	atg	ctc	ttg	qct	aaa	qtc	cta	ata	acc	atc	ctt	147
Gln	Leu	Leu	Ser	Phe	Met	Leu	Leu	Ála	Gly	Йаl	Leu	Val	Åla	Ile	Leu	
				30					35					40		
gtc	caa	gtg	tcc	aag	gtc	CCC	agc	tcc	cta	agt	cag	gaa	caa	tcc	gag	195
Val	Gln	Val	Ser 45	Lys	Val	Pro	Ser	Ser	Leu	Ser	Gln	Glu		Ser	Glu	
													55			
caa	gac	gca	atc	tac	cag	aac	ctg	acc	cag	ctt	aaa	gct	gca	gtg	ggt	243
3111	Asp	60	тте	Tyr	GIN	Asn	Leu 65	Thr	GIn	Leu	Lys	Ala 70	Ala	Val	Gly	
gag Glu	Ctc Leu	tca Ser	gag Glu	aaa Lys	tcc	aag Lvs	ctg	Cag	gag	atc	tac	cag	gag	ctg	acc	291
	75	<u>-</u>		-10		80	Lu	0111	o _± u	*16	85	GIII	GIU	ъси	TIIT	
nar	cta	aan	act	gca	ata	aat	~~~	++~	965	~~~		<b>.</b>				222
Gln	Leu	Lys	Ala	Ala	Val	Gly	Glu	Leu	Pro	Glu	Lys	Ser	Lys	Leu	Gln	339

90.		•			95					100					105	
					ctg Leu											387
					ctg Leu											435
					gag Glu											483
tac Tyr	cag Gln 155	gag Glu	ctg Leu	acc Thr	egg Arg	ctg Leu 160	aag Lys	gct Ala	gca Ala	gtg Val	ggt Gly 165	gag Glu	ttg Leu	cca Pro	gag Glu	531
					gag Glu 175											579
					cca Pro											627
					aag Lys											675
					tat Tyr											723
					cac His											771
aac Asn 250	tgt Cys	tac Tyr	ttc Phe	atg Met	tct Ser 255	aac Asn	tcc Ser	cag Gln	cgg Arg	aac Asn 260	tgg Trp	cac His	gac Asp	tcc Ser	gtc Val 265	819
					gtg Val											867
					gcg Ala										tag	915
cggc	gaato	gaa q	gacto	gtgcg	gg aa	ttta	gtgç	g cac	gtggd	:tgg	aacq	jacaa	itc g	gatgt	gacgt	975
tgad	aatt	ac t	ggat	ctg	ca aa	aago	ccgc	ago	ctgo	cttc	agag	jacga	at a	gttg	jtttcc	1035
ctgo	tago	ct o	agco	ctcca	at to	ıtggt	atag	j cag	gaact	tca	ccca	cttç	sta a	agcca	igcgct	1095
tctt	ctct	cc a	tcct	tgga	ac ct	tcac	aaat	gco	ctga	igac	ggtt	ctct	gt t	cgat	ttttc	1155

atcocctatg aacctgggtc ttattctgtc cttctgatgc ctccaagttt ccctggtgta 1215 gagettgtgt tettggeeca teettggage tttataagtg acctgagtgg gatgeattta 1275 gggggcgggc ttggtatgtt gtatgaatcc actetetgtt cettttggag attagactat 1335 ttggattcat gtgtagctgc cctgtcccct ggggctttat ctcatccatg caaactacca 1395 tetgeteaac ttecagetac acceegtgea ecettttgae tggggaettg etggttgaag 1455 gageteatet tgeaggetgg aageaceagg gaattaatte eeceagteaa eeaatggeat 1515 ccagagaggg catggagget ccatacaacc tettecaece ccacatettt etttgteeta 1575 tacatgtctt ccatttggct gtttctgagt tgtagccttt ataataaagt ggtaaatgtt 1635 1643 gtaactgc <210> 10 <211> 2186 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (118)..(1236) <400> 10 actetttett eggetegega getgagagga geaggtagag gggcagagge gggaetgteg 60 tetgggggag cegeceagga ggeteeteag geegaeeeea gaeeetgget ggeeagg 117 atg aag tat etc egg cac egg egg eec aat gee ace etc att etg gee Met Lys Tyr Leu Arg His Arg Arg Pro Asn Ala Thr Leu Ile Leu Ala atc ggc gct ttc acc ctc ctc ctc ttc agt ctg cta gtg tca cca ccc 213 Ile Gly Ala Phe Thr Leu Leu Phe Ser Leu Leu Val Ser Pro Pro acc tgc aag gtc cag gag cag cca ccg gcg atc ccc gag gcc ctg gcc 261 Thr Cys Lys Val Gln Glu Gln Pro Pro Ala Ile Pro Glu Ala Leu Ala tgg ccc act cca ccc acc cgc cca gcc ccg gcc ccg tgc cat gcc aac 309 Trp Pro Thr Pro Pro Thr Arg Pro Ala Pro Ala Pro Cys His Ala Asn 55 acc tot atg gto acc cac cog gao tto goo acg cag cag cac gtt 357 Thr Ser Met Val Thr His Pro Asp Phe Ala Thr Gln Pro Gln His Val 70 cag aac ttc ctc ctg tac aga cac tgc cgc cac ttt ccc ctg ctg cag 405 Gln Asn Phe Leu Leu Tyr Arg His Cys Arg His Phe Pro Leu Leu Gln

	•															
gad Asp	gto Val	g cco L Pro	Pro 100	Se ₁	aag Lys	g tgd Cys	geç Ala	g cag Gln 105	Pro	g gto Val	tto Phe	c cto e Lei	g cto Let 110	ı Lei	g gtg ı Val	453
ato Ile	aag Lys	tco Sei 115	Ser	c cct Pro	ago Ser	aac Asn	tat Tyr 120	: Val	cgo Arg	c cgc g Arg	gaç Glu	g cto Lev 125	ı Let	g egg ı Arg	g ege g Arg	501
acg Thr	tgg Trp 130	GT?	c cgc / Arg	gag Glu	cgc Arg	aag Lys 135	Val	cgg Arg	ggt Gly	ttg Leu	cag Gln 140	Leu	g ego L Aro	cto J Leu	ctc Leu	549
tto Phe 145	Leu	gtg Val	. Gly	aca Thr	gcc Ala 150	Ser	aac Asn	ccg Pro	cac His	gag Glu 155	Ala	e cgc Arg	aag Lys	g gtc Val	aac Asn 160	597
cgg Arg	ctg Leu	ctg Leu	gag Glu	ctg Leu 165	Glu	gca Ala	cag Gln	act Thr	cac His 170	Gly	gac Asp	atc	ctg Leu	cag Gln 175	Trp	645
gac Asp	ttc Phe	cac His	gac Asp 180	tcc Ser	ttc Phe	ttc Phe	aac Asn	ctc Leu 185	acg Thr	ctc Leu	aag Lys	cag Gln	gto Val 190	ctg Leu	ttc Phe	693
tta Leu	cag Gln	tgg Trp 195	cag Gln	gag Glu	aca Thr	agg Arg	tgc Cys 200	gcc Ala	aac Asn	gcc Ala	agc Ser	ttc Phe 205	gtg Val	ctc Leu	aac Asn	741
ej A aaa	gat Asp 210	gat Asp	gac Asp	gtc Val	ttt Phe	gca Ala 215	cac His	aca Thr	gac Asp	aac Asn	atg Met 220	gtc Val	ttc Phe	tac Tyr	ctg Leu	789
cag Gln 225	gac Asp	cat His	gac Asp	cct Pro	ggc Gly 230	cgc Arg	cac His	ctc Leu	ttc Phe	gtg Val 235	el A aaa	caa Gln	ctg Leu	atc Ile	caa Gln 240	837
aac Asn	gtg Val	ggc Gly	ccc Pro	atc Ile 245	cgg Arg	gct Ala	ttt Phe	tgg Trp	agc Ser 250	aag Lys	tac Tyr	tat Tyr	gtg Val	cca Pro 255	gag Glu	885
gtg Val	gtg Val	act Thr	cag Gln 260	aat Asn	gag Glu	cgg Arg	tac Tyr	cca Pro 265	ccc Pro	tat Tyr	tgt Cys	gly ggg	ggt Gly 270	ggt Gly	ggc Gly	933
ttc Phe	ttg Leu	ctg Leu 275	tcc Ser	cgc Arg	ttc Phe	acg Thr	gcc Ala 280	gct Ala	gcc Ala	ctg Leu	cgc Arg	cgt Arg 285	gct Ala	gcc Ala	cat His	981
gtc Val	ttg Leu 290	gac Asp	atc Ile	ttc Phe	ccc Pro	att Ile 295	gat Asp	gat Asp	gtc Val	ttc Phe	ctg Leu 300	ggt Gly	atg Met	tgt Cys	ctg Leu	1029
gag Glu 305	ctt Leu	gag Glu	gga Gly	ctg Leu	aag Lys 310	cct Pro	gcc Ala	tcc Ser	cac His	agc Ser 315	ggc Gly	atc Ile	cgc Arg	acg Thr	tct Ser 320	1077

ggc.gtg cg Gly Val Ar	g gct cca t g Ala Pro S 325	ecg caa ca Ser Gln Hi	s Leu	tcc tcc Ser Ser 330	ttt gac Phe Asp	ccc tgc Pro Cys 335	ttc 112 Phe	25
tac cga ga Tyr Arg As	c ctg ctg o p Leu Leu I 340	etg gtg ca Leu Val His	c cgc s Arg 345	ttc cta Phe Leu	Pro Tyr	gag atg Glu Met 350	ctg 117 Leu	13
ctc atg tg Leu Met Tr 35	g gat gcg o p Asp Ala I 5	tg aac caq eu Asn Gli 360	n Pro .	aac ctc Asn Leu	acc tgc Thr Cys 365	ggc aat Gly Asn	cag 122 Gln	1:1
aca cag at Thr Gln Il 370	c tac tga ç e Tyr	tcagcatca	gggtc	cccag co	ctctgggct	cctgttt	cca 127	6
taggaagggg	cgacaccttc	ctcccagga	a gct	gagacct	ttgtggtc	tg agcat	aaggg 133	6
agtgccaggg	aaggtttgag	gtttgatga	g tga	atattct	ggctggcga	aa ctcct	acaca 139	6
tccttcaaaa	cccacctggt	actgttcca	g cat	cttccct	ggatggct	gg aggaa	ctcca 145	6
gaaaatatcc	atcttcttt	tgtggctgd	t aat	ggcagaa	gtgcctgtg	gc tagag	ttcca 151	6
actgtggatg	catccgtccc	gtttgagtd	a aagt	tcttact	tccctgct	ct cacct	actca 157	6
cagacgggat	gctaagcagt	gcacctgca	g tggt	tttaatg	gcagataaq	gc tccgt	ctgca 163	6
gttccaggcc	agccagaaac	tcctgtgtc	c acat	tagagct	gacgtgaga	a atatc	tttca 169	6
gcccaggaga	gaggggtcct	gatcttaac	c ctt	tcctggg	tctcagaca	a ctcag	aaggt 175	6
tggggggata	ccagagaggt	ggtggaata	g gac	cgcccc	tccttactt	g tggga	tcaaa 181	6
tgctgtaatg	gtggaggtgt	gggcagagg	a ggga	aggcaag	tgtcctttg	ga aagtt	gtgag 187	6
agctcagagt	ttctggggtc	ctcattagg	a gccc	ccatcc	ctgtgttcc	c caaga	attca 1930	6
gagaacagca	ctggggctgg	aatgatctt	t aato	gggccca	aggccaaca	ıg gcata	tgcct 1990	6
cactactgcc	tggagaaggg	agagattca	g gtcc	ctccagc	agcctccct	c accca	gtatg 2050	6
ttttacagat	tacgggggga	ccgggtgag	c cagt	gacccc	ctgcagccc	c caget	tcagg 2110	6
cctcagtgtc	tgccagtcaa	gcttcacag	g catt	gtgatg	gggcagcct	t gggga	atata 2176	6
aaattttgtg							2186	6

<210> 11 <211> 814 <212> DNA

<213> Homo sapiens

<220>

<221> CDS <222> (145)..(693)

<400> 11 agaatcccgg acagccctgc tccctgcagc caggtgtagt ttcgggagcc actggggcca 60 aagtgagagt ccagcggtet tecagegett gggecaegge ggeggeeetg ggageagagg 120 tggagcgacc ccattacgct aaag atg aaa ggc tgg ggt tgg ctg gcc ctg Met Lys Gly Trp Gly Trp Leu Ala Leu ctt ctg ggg gcc ctg ctg gga acc gcc tgg gct cgg agg agc cag gat 219 Leu Leu Gly Ala Leu Leu Gly Thr Ala Trp Ala Arg Arg Ser Gln Asp 10 ctc cac tgt gga gca tgc agg gct ctg gtg gat gaa cta gaa tgg gaa 267 Leu His Cys Gly Ala Cys Arg Ala Leu Val Asp Glu Leu Glu Trp Glu att ged dag gtg gad ded aag aag add att dag atg gga tet tte egg 315 Ile Ala Gln Val Asp Pro Lys Lys Thr Ile Gln Met Gly Ser Phe Arg atc aat cca gat ggc agc cag tca gtg gtg gag gtg cct tat gcc cgc 363 Ile Asn Pro Asp Gly Ser Gln Ser Val Val Glu Val Pro Tyr Ala Arg 65 tca gag gcc cac ctc aca gag ctg ctg gag gag ata tgt gac egg atg 411 Ser Glu Ala His Leu Thr Glu Leu Leu Glu Glu Ile Cys Asp Arg Met 80 aag gag tat ggg gaa cag att gat oot too acc cat ogc aag aac tac 459 Lys Glu Tyr Gly Glu Gln Ile Asp Pro Ser Thr His Arg Lys Asn Tyr 90 95 100 gta cgt gta gtg ggc cgg aat gga gaa tcc agt gaa ctg gac cta caa 507 Val Arg Val Val Gly Arg Asn Gly Glu Ser Ser Glu Leu Asp Leu Gln 110 120 ggc atc cga atc gac tca gat att agc ggc acc ctc aag ttt gcg tgt 555 Gly Ile Arg Ile Asp Ser Asp Ile Ser Gly Thr Leu Lys Phe Ala Cys 125 gag age att gtg gag gaa tae gag gat gaa ete att gaa tte ttt tee 603 Glu Ser Ile Val Glu Glu Tyr Glu Asp Glu Leu Ile Glu Phe Phe Ser 140 145 cga gag get gac aat gtt aaa gac aaa ett tge agt aag ega aca gat 651 Arg Glu Ala Asp Asn Val Lys Asp Lys Leu Cys Ser Lys Arg Thr Asp 160 693 ctt tgt gac cat gcc ctg cac ata tcg cat gat gag cta tga Leu Cys Asp His Ala Leu His Ile Ser His Asp Glu Leu 175 accactggag cagcccacac tggcttgatg gatcaccccc aggaggggaa aatggtggca 753 atgcctttta tatattatgt ttttactgaa attaactgaa aaaatatgaa accaaaagta 813

С							814
<210> 12 <211> 695 <212> DNA <213> Homo	sapiens						
<220> <221> CDS <222> (73)	(564)						
<400> 12 aagatttcag	ctgcggga	cg gtcag	gggag ac	ctccaggc	gcagggaag	gg acggccaggg	60
tgacacggaa						g tgg ctg ggc u Trp Leu Gly )	111
						ege egg gge Arg Arg Gly	159
				-		gtg cag tgg /al Gln Trp 45	207
		Ser Val				ecc ttc cca Pro Phe Pro 60	255
						aca agc tgc Thr Ser Cys 75	303
	g Asp Trp					ecc aat ggg Pro Asn Gly	351
						gag gac aaa Glu Asp Lys	399
						gtt ctg cgg /al Leu Arg 125	447
		Gln Glu				cag cgg gct Sln Arg Ala 140	495
					Gln Phe A	gcc ttc tcc Ma Phe Ser .55	543
aag gcc ct	a ccc cac	age taa	accaaca	cto agoto	acataa tac	ctccagg	594

Lys. Ala Leu Pro Arg Ser 160 accgctgccg gtggtaacca gtggaagacc ccagccccca gggagaggac cccgttctat 654 ccccagccat gataataaag ctgctctccc agctgcctct c <210> 13 <211> 1451 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (105)..(1436) <400> 13 actgcctgga aacgggctgg gcctgcctcg gacgccgccg gtgtcgcgga ttctctttcc 60 gcccgctcca tggcggtgga tgcctgactg gaagcccgag tggg atg cgg ctg acg Met Arg Leu Thr cgg aag cgg ctc tgc tcg ttt ctt atc gcc ctg tac tgc cta ttc tcc 164 Arg Lys Arg Leu Cys Ser Phe Leu Ile Ala Leu Tyr Cys Leu Phe Ser 10 15 ctc tac gct gcc tac cac gtc ttc ttc ggg cgc cgc cgc cag gcg ccg 212 Leu Tyr Ala Ala Tyr His Val Phe Phe Gly Arg Arg Gln Ala Pro 2.5 gee ggg tee eeg egg gge ete agg aag ggg geg gee eee geg egg gag 260 Ala Gly Ser Pro Arg Gly Leu Arg Lys Gly Ala Ala Pro Ala Arg Glu 50 aga cgc ggc cga gaa cag tcc act ttg gaa agt gaa gaa tgg aat cct 308 Arg Arg Gly Arg Glu Gln Ser Thr Leu Glu Ser Glu Glu Trp Asn Pro tgg gaa gga gat gaa aaa aat gag caa caa cac aga ttt aaa act agc 356 Trp Glu Gly Asp Glu Lys Asn Glu Gln Gln His Arg Phe Lys Thr Ser ctt caa ata tta gat aaa tcc acg aaa gga aaa aca gat ctc agt gta 404 Leu Gln Ile Leu Asp Lys Ser Thr Lys Gly Lys Thr Asp Leu Ser Val caa atc tgg ggc aaa gct gcc att ggc ttg tat ctc tgg gag cat att 452 Gln Ile Trp Gly Lys Ala Ala Ile Gly Leu Tyr Leu Trp Glu His Ile ttt gaa ggc tta ctt gat ccc agc gat gtg act gct caa tgg aga gaa 500 Phe Glu Gly Leu Leu Asp Pro Ser Asp Val Thr Ala Gln Trp Arg Glu 125 gga aag tca atc gta gga aga aca cag tac agc ttc atc act ggt cca 548

•		
Gly Lys Ser Ile Val Gly Arg Thr Gln Tyr Ser Phe Ile 135 140 145		
gct gta ata cca ggg tac ttc tcc gtt gat gtg aat aat g Ala Val Ile Pro Gly Tyr Phe Ser Val Asp Val Asn Asn V 150 160	Val Val Lei	1
att tta aat gga aga gaa aaa gca aag atc ttt tat gcc a Ile Leu Asn Gly Arg Glu Lys Ala Lys Ile Phe Tyr Ala T 165 170	hr Gln Trp! 180	•
tta ctt tat gca caa aat tta gtg caa att caa aaa ctc c Leu Leu Tyr Ala Gln Asn Leu Val Gln Ile Gln Lys Leu G 185 190	In His Leu 195	692
	rp Ile Asn 10	740
cca ttc ctc aaa aga aat gga ggc ttc gtg gag ctg ctt te Pro Phe Leu Lys Arg Asn Gly Gly Phe Val Glu Leu Leu Ph 215 220 225	he Ile Ile	788
tat gac agc ccc tgg att aat gac gtg gat gtt ttt cag tg Tyr Asp Ser Pro Trp Ile Asn Asp Val Asp Val Phe Gln Tr 230 235 240	gg cct tta p Pro Leu	836
gga gta gca aca tac agg aat ttt cct gtg gtg gag gca ag Gly Val Ala Thr Tyr Arg Asn Phe Pro Val Val Glu Ala Se 255	r Trp Ser 260	884
atg ctg cat gat gag agg cca tat tta tgt aat ttc tta gg. Met Leu His Asp Glu Arg Pro Tyr Leu Cys Asn Phe Leu Gl 265 270	y Thr Ile 275	932
tat gaa aat tca tcc aga cag gca cta atg aac att ttg aaa Tyr Glu Asn Ser Ser Arg Gln Ala Leu Met Asn Ile Leu Lys 280 285 290	s Lys Asp O	980
ggg aac gat aag ctt tgt tgg gtt tca gca aga gaa cac tgg Gly Asn Asp Lys Leu Cys Trp Val Ser Ala Arg Glu His Trp 295 300 . 305	g cag cct O Gln Pro	1028
cag gaa aca aat gaa agt ctt aag aat tac caa gat gcc ttg Gln Glu Thr Asn Glu Ser Leu Lys Asn Tyr Gln Asp Ala Leu 310 315 320	ctt cag Leu Gln	1076
agt gat ctc aca ttg tgc ccg gtc gga gta aac aca gaa tgc Ser Asp Leu Thr Leu Cys Pro Val Gly Val Asn Thr Glu Cys 325 330 335	tat cga Tyr Arg 340	1124
atc tat gag gct tgc tcc tat ggc tcc att cct gtg gtg gaa Ile Tyr Glu Ala Cys Ser Tyr Gly Ser Ile Pro Val Val Glu 345		1172
atg aca gct ggc aac tgt ggg aat aca tct gtg cac cac ggt Met Thr Ala Gly Asn Cys Gly Asn Thr Ser Val His His Gly		1220

•	360	365	370
, ,	2 22	gt gct ccc ttt atc t ly Ala Pro Phe Ile P 30 3	_
		ta gaa aaa gag aaa a eu Glu Lys Glu Lys T 400	
-		aa atg tta ctt cag t ys Met Leu Leu Gln T 415	2 2
-		aa ttt act aat att t ys Phe Thr Asn Ile L 430	
-	aat aat aaa agt ta Asn Asn Lys Ser 440	aa ttatcttttt gagct	1451