Continuum => L-band => Total Power

(v1:22/06/2017)

\$: commands to insert in a shell

>: commands to insert in the operatorInput panel

Before observing

- 1) On nuraghe-mng:
 - Check that all of the 32 containers are active on ACS,
 - the active surface is green on AS,
 - the jlog is opened in order to track possible error messages,
 - the interface of the Meteo client is opened to check the wind velocity in real time (< 60 km/h).
- 2) On nuraghe-obs1:
 - Check the presence of the 8 panels:
 - operatorInput
 - AntennaBoss
 - GenericBackend
 - Mount
 - Observatory
 - Receivers
 - Scheduler
 - MinorServo
 - Upload your shedule and check it:

\$ cd /archive/schedules/[projectID]

\$ scheduleChecker schedulename.scd

Start the observations

In the operatorInput panel:

- 1) Insert your project number
 - > project=[projectID]
- 2) Initial setup
 - > antennaReset
 - > setupLLP
- 3) Select the receiver Mode:

> receiversMode=[mode]

- > receiversMode=XXC1
- ➤ receiversMode=XXC2
- receiversMode=XXC3
- > receiversMode=XXC4
- receiversMode=XXC5
- receiversMode=XXL1
- > receiversMode=XXL2
- receiversMode=XXL3
- receiversMode=XXL4
- receiversMode=XXL5

C is for Circular, L for Linear polarization

- 1: all band, 1300-1800 MHz (no filter)
- 2:1320-1780 MHz
- 3:1350-1450 MHz
- 4: 1300-1800 MHz (band-pass)
- 5:1625-1715 MHz
- 4) Select the active surface shape (Parabolic for L-band observations)
 - > asSetup=P
- 5) Insert the Local Oscillator value (in MHz)
 - > setLO=[freq]
- 6) Select the Total Power Backend
 - > chooseBackend=BACKENDS/TotalPower
- 7) Insert the bandwidth for the focus selector (always 2000 MHz in L-band) and choose the sample rate (in MHz):
 - > setSection=0,*,2000.000000,*,*,[sampleRate],*
 - > setSection=1,*,2000.000000,*,*,[sampleRate],*
- 8) Put the antenna at 45° of elevation and attenuate the signal in order to obtain values between 750 and 1100 counts (linear range of the backend):
 - > goTo=*,45d
 - > getTpi
 - > setAttenuation=0,[att] with [att] between 0 and 15 dB
 - > setAttenuation=1,[att]
 - > getTpi
- 9) Check the tsys (typical values)

- 10) Begin the schedule by indicating the start scan [N] or subscan [N n] in the SCD file:
 - > startSchedule=[projectID]/[schedulename].scd,[N]

During the observations

- 1) On nuraghe-obs2, check that the data are written in your project section :
 - \$ cd /archive/data/[projectID]/
- 2) Quick-look of the data:

```
$ idl IDL> .r fitslook
```

IDL> fitslook

At the end of the observations

- 1) Stop the schedule
 - > stopSchedule or > haltSchedule
- 2) Park the minor servo, active surface and antenna

```
> goTo=180d,89d
```

- > servoPark
- > asPark
- > antennaPark

Download the data

\$ scp -r [projectID]@nuraghe-obs2:/archive/data/[projectID]/*.