# Mini Project 2:

## **Automation for Consolidating Bug Report Explanations**

Smilla Fox, Elena Gensch, Conrad Halle

# Train Model - Preprocessing

- Answer.explanation:
  - TTR to cover Lexical richness
  - Flesch Kincaid to cover Lexical readability
  - No Halstead volume since it works best for code
- Feature selection (remove label cols and text)
- One-Hot Encoding of List data (e.g. where participants learned to code) with MultiLabelBinarizer
  - additional LLM generated mapping to combine entries like "Other Books" and "there was no \"internet\". I had a TRS-80 for gosh sake. We learned from books! Made of paper. Odd concept"
- Label Encoding for Categorical Columns



Flesh Kincaid: 
$$206.835 - 1.015 \left( \frac{\text{total words}}{\text{total sentences}} \right) - 84.6 \left( \frac{\text{total syllables}}{\text{total words}} \right)$$

TTR:

$$\frac{number of unique words}{number of words}$$

## Train Model - Split

- Holdout Set:
  - HIT02\_24
  - HIT06\_51
- Train Set
  - HIT01\_8
  - HIT03\_6
  - HIT04 7
  - HIT05\_35
  - HIT07\_33
  - HIT08\_54



### Train Model

- Chosen Methods for categorizing answers
  - Random Forest Classifier
  - Boosted Random Forest Classifier (XGBoost)
- Gridsearch using 5 fold CV on the training data for hyperparameter tuning

```
param_grid = {
'n_estimators': [150, 200, 500, 1000],
'max_depth': [2,3,4,5],
'subsample': [0.7],
'colsample_bytree': [0.5, 0.7, 0.9],
'gamma': [0,0.4,0.9],}
```

Best Parameters:

colsample\_bytree: 0.7

- gamma: 0

- max\_depth: 3,

- n\_estimators: 500,

- subsample: 0.9

| Bug Report | Samples | Train Precision | Train Recall | Train Accuracy |
|------------|---------|-----------------|--------------|----------------|
| 2          | 340     | 0.9524          | 1.0          | 0.9882         |
| 3          | 740     | 0.8850          | 1.0          | 0.9824         |
| 4          | 180     | 0.8000          | 1.0          | 0.9167         |
| 5          | 360     | 0.8696          | 1.0          | 0.9750         |
| 6          | 160     | 0.9524          | 1.0          | 0.9813         |
| 7          | 480     | 0.8333          | 1.0          | 0.9750         |

## Model evaluation



| Metric          | Bug Report 1 | Bug Report 2 |
|-----------------|--------------|--------------|
| Test Precision  | 0.2400       | 0.8571       |
| Test Recall     | 0.1500       | 0.3000       |
| Test Accuracy   | 0.7350       | 0.7500       |
| True Positives  | 6            | 12           |
| False Positives | 19           | 2            |
| False Negatives | 34           | 28           |
| True Negatives  | 141          | 78           |

# **Analyze Prediction Results**



# Consolidated explanations





# Compare Explanations - Understanding the Metrics

Bleu, Rouge: N-Gram overlap

The check should be updated to allow values between 59 and -59

The minute value should be between -59 and +59

SPICe: Identify relations between objects and their attributes (tuple overlap)











# Compare Explanations - Findings

reference captions are the joined positive predicted explanations for each bug rep.

- ChatGPT generates normally shorter and but more complex answers than LLAMA
- explanation size of CoT with Dspy smaller than with the generated CoT and less complex
- no huge difference for gpt-4o between generated prompt and generated CoT prompt
- BLEU penalizes the low precision (main aspects are repeated (higher recall), but maybe also other/new aspect)
- best values with the CoT prompt of the dspy module
- handles better the HIT06\_51 report (more tp reports in the explanation)
  - HIT02 24 has low recall and

#### Reflection

What are the concerns about:

- 1. guaranteeing the quality of the data:
  - Bias and Representativeness (e.g. gender, origin)
  - Relevance of specific features (poor text-based features instead of standardized categories)
- 2. keeping the classifier up-to-date in the case of changes in the demographic of programmers or types of bugs
  - if there are large changes it would be necessary to train a new classifier on an updated dataset
  - especially when the changes relate to features that are important in the classification
- 3. testing the output of the classifier and the LLM
  - output of the classifier can be tested more easily due to ground truth labels
  - test dataset should be large enough

### Reflection

- 4. estimating the quality of the consolidated explanations
  - no summarization ground truth to compare output to
  - metrics do not capture nuanced aspects of text quality(e.g. removing irrelavant parts is always penalized)
- 5. debugging the integration between the classifier and the LLM
  - automated with Llama
  - Errors in the classifier's predictions cascade into the LLM