TP18 - Filtrage linéaire (1)

Objectifs

- → Mesurer une tension : mesure directe au voltmètre numérique ou à l'oscilloscope numérique.
- \rightarrow Gérer, dans un circuit électronique, les contraintes liées à la liaison entre les masses.
- \rightarrow Mettre en œuvre un dispositif expérimental exploitant les propriétés des fonctions de transfert d'un système linéaire.

Filtre passe-bas

On considère au filtre RC représenté cicontre, alimenté par un signal sinusoïdal de fréquence f variable $e(t) = E_0 \cos(2\pi f t)$. On souhaite étudier la fonction de transfert \underline{H}_1 , définie comme le rapport $\underline{s}/\underline{e}$. Pour ce circuit :

$$\underline{H_1}(j\omega) = \frac{\underline{s}}{\underline{e}} = \frac{H_0}{1 + j\frac{\omega}{\omega_0}} \text{ où } \omega = 2\pi f.$$

- REA
- 1. Retrouver l'expression de la fonction de transfert $\underline{H_1}$ associée à ce filtre. Donner l'expression de H_0 et de la fréquence caractéristique f_0 du filtre en fonction des valeurs des composants. Faire l'application numérique pour $R=10\,\mathrm{k}\Omega$ et $C=60\,\mathrm{nF}$.
- APP REA
- 2. Réaliser le circuit et mesurer les valeurs du module et de l'argument de $\underline{H_1}(j\omega)$ en BF et en HF. Commenter le nom « passe-bas » donné à ce filtre. Retrouver ce comportement à l'aide de circuits équivalents.
- REA VAL
- 3. Mesurer la fréquence de coupure f_c pour laquelle le module de $\underline{H_1}$ vaut $H_0/\sqrt{2}$. Estimer l'incertitude-type associée et comparer quantitativement à la valeur attendue.
- ANA COM
- 4. En HF, ce filtre peut-être utilisé comme intégrateur : la sortie s est alors une primitive de l'entrée e (à un facteur d'échelle près). Justifier cette affirmation à partir de l'étude asymptotique de la fonction de transfert. Expérimentalement, mettre en évidence cette propriété avec un signal autre que sinusoïdal et représenter graphiquement e et s.

APPEL PROF 1

REA COM

5. Avec Python ou sur papier semilog, tracer le diagramme de Bode (Doc 2) le plus précisément possible. On fera apparaitre H_0 , f_c , la bande-passante et la gamme de fréquence sur laquelle le filtre se comporte comme un intégrateur.

Filtre RL

- 6. Remplacer le condensateur par une bobine. Quel type de filtre est ainsi obtenu?
- 7. Proposer et mettre en œuvre un protocole expérimental pour déterminer les caractéristiques du filtre obtenu. On comparera les valeurs mesurées aux valeurs attendues après étude de la fonction de transfert $\underline{H_2}$ du filtre réalisé.

Documents

Document 1 - Matériel

- GBF;
- oscilloscope;
- bobine $L \approx 45 \,\mathrm{mH}$ ou $11 \,\mathrm{mH}$;
- boite à décade de résistance;

- boite à décade de capacité;
- câbles;
- papier semilog.

Document 2 - Diagramme de Bode

Pour un signal e(t) de la forme $e(t) = E_0 \cos(\omega t + \varphi_e)$, un filtre linéaire renvoie un signal s(t) de même pulsation, de la forme $s(t) = S_0 \cos(\omega t + \varphi_s)$. La réponse s(t) de ce filtre à une entrée e(t) est caractérisée par sa fonction de transfert $\underline{H}(j\omega) = \underline{s}/\underline{e}$.

Pour représenter la fonction de transfert complexe, on utilise le **diagramme de Bode** où sont tracés :

- le gain du filtre, en décibel : $G_{\text{dB}}(\omega) = 20 \log(|\underline{H}(j\omega)|) = 20 \log\left(\frac{S_0}{E_0}\right)$;
- le déphasage $\varphi(\omega) = \arg(\underline{H}(j\omega)) = \varphi_s(\omega) \varphi_e$ introduit par le filtre, en degré,

tous deux en fonction de la pulsation ω (rad · s⁻¹), représentée en échelle logarithmique. Pour plus de lisibilité, on indique souvent la fréquence en abscisse, plutôt que la pulsation.