# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

#### ОТЧЕТ

### по лабораторной работе №6

# по дисциплине «Статистические методы обработки экспериментальных данных»

Тема: Кластерный анализ. Метод к-средних.

| Студентка гр. 7381 | Алясова А.Н. |
|--------------------|--------------|
| Студент гр. 7381   | Кортев Ю.В.  |
| Преподаватель      | Середа АВ.И  |

Санкт-Петербург 2021

#### Цель работы.

Освоение основных понятий и некоторых методов кластерного анализа, в частности, метода k-средних.

#### Основные теоретические положения.

Кластерный анализ — многомерная статистическая процедура, выполняющая сбор данных, содержащих информацию о выборке объектов, и затем упорядочивающая объекты в сравнительно однородные группы.

К характеристикам кластера относятся в частности: центр, радиус; средне-квадратическое отклонение; размер кластера.

Центр кластера – это среднее геометрическое место точек, принадлежащих кластеру, в пространстве данных.

Радиус кластера — максимальное расстояние точек, принадлежащих кластеру, от центра кластера.

Кластеры могут быть перекрывающимися. В этом случае невозможно при помощи используемых процедур однозначно отнести объект к одному из двух или более кластеров. Такие объекты называют спорными.

Спорный объект - это объект, который по мере сходства может быть отнесен к более, чем одному кластеру.

Размер кластера может быть определен либо по радиусу кластера, либо по среднеквадратичному отклонению объектов для этого кластера. Объект относится к кластеру, если расстояние от объекта до центра кластера меньше радиуса кластера. Если это условие выполняется для двух и более кластеров, объект является спорным.

Большое значение в кластерном анализе имеет выбор масштаба. Пусть, например, значения переменной x превышают 100, а переменной y - в интервале от 0 до 1.

Тогда, при расчете расстояния между точками переменная x, будет практически полностью доминировать над переменной y. В результате практически невозможно корректно рассчитать расстояния между точками.

Расстоянием (метрикой) между объектами a и b пространстве параметров называется такая величина  $d_{ab}$ , которая удовлетворяет аксиомам:

1. 
$$d_{ab} > 0$$
, если  $a \neq b$ , 2.  $d_{ab} = 0$ , если  $a = b$ ;

3. 
$$d_{ab} = d_{ba}$$
; 4.  $d_{ab} + d_{bc} \ge d_{ac}$ .

Мерой близости (сходства) называется величина  $\mu_{ab}$ , имеющая предел и возрастающая с возрастанием близости объектов и удовлетворяющая условиям:

$$\mu_{ab}$$
 непрерывна;  $\mu_{ab} = \mu_{ba}$ ;  $0 \le \mu_{ab} \le 1$ .

Существует возможность простого перехода от расстояния к мерам близости:

$$\mu = \frac{1}{1+d}.$$

Алгоритм k-means — это наиболее популярный метод кластеризации, который разделяет определенный набор данных на заданное пользователем число кластеров k. Алгоритм прост для реализации и запуска, относительно быстрый, легко адаптируется и распространен на практике. Это исторически один из самых важных алгоритмов интеллектуального анализа данных.

Суть алгоритма заключается в том, что он стремится минимизировать суммарное квадратичное отклонение точек кластеров от центров этих кластеров:

$$V = \sum_{i=1}^{k} \sum_{x_{i} \in S_{i}} (x_{j} - \mu_{i})^{2},$$

где k – это число кластеров,  $S_i$  – полученные кластеры, i=1,2,..., k и  $\mu_i$  – центры масс.

Центроиды выбираются в тех местах, где визуально скопление точек выше. Алгоритм разбивает множество элементов векторного пространства на заранее известное число кластеров k. Основная идея заключается в том, что на каждой итерации перевычисляется центр масс для каждого кластера, полученного на предыдущем шаге, затем векторы разбиваются на кластеры вновь в соответствии с тем, какой из новых центров оказался ближе по выбранной метрике.

Алгоритм завершается, когда на какой-то итерации не происходит изменения центра масс кластеров. Это происходит за конечное число итераций, так как количество возможных разбиений конечного множества конечно, а на каждом шаге суммарное квадратичное отклонение V не увеличивается, поэтому зацикливание невозможно.

Возможны две разновидности метода k -средних.

Первая предполагает пересчет центра кластера после каждого изменения его состава, как рассмотрено выше, а вторая —лишь после завершения цикла.

В обоих случаях итеративный алгоритм этого метода минимизирует дисперсию внутри каждого кластера, хотя в явном виде такой критерий оптимизации не используется. Перед началом работы метода целесообразно нормировать

характеристики объектов: 
$$\hat{X} = \frac{x - \overline{x_e}}{S_x}$$
;  $\hat{Y} = \frac{y - \overline{u_e}}{S_y}$ .

Задание количества кластеров является сложным вопросом. Если нет разумных соображений на этот счет, рекомендуется первоначально создать 2 кластера, затем 3, 4, 5 и тд., сравнивая полученные результаты.

После завершения многомерной классификации необходимо оценить полученные результаты. Для этой цели используются специальные характеристики — функционалы качества. Наилучшим разбиением считается такое, при котором достигается экстремальное (минимальное или максимальное) значение выбранного функционала качества.

В качестве таких функционалов могут быть использованы:

1. Сумма квадратов расстояний до центров кластеров

$$F_1 = \sum_{k=1}^{K} \sum_{i=1}^{N_k} d^2(X_i^{(k)}, X^{(k)}) \Rightarrow \min$$

2. Сумма внутрикластерных расстояний между объектами

$$F_2 = \sum_{k=1}^K \sum_{X_i, X_j \in S_k} d^2(X_i, X_j) \Longrightarrow \min$$

3. Сумма внутрикластерных дисперсий

$$F_3 = \sum_{k=1}^K \sum_{i=1}^{N_k} \sigma_{ij}^2 \Longrightarrow \min$$

Здесь  $\sigma$  - дисперсия *j*-й переменной в k-м кластере.

Оптимальным следует считать разбиение, при котором сумма внутрикластерных (внутригрупповых) дисперсий будет минимальной.

Судить о качестве разбиения позволяют и некоторые простейшие приемы. Например, можно сравнивать средние значения признаков в отдельных кластерах (группах) со средними значениями в целом по всей совокупности объектов. Если групповые средние существенно отличаются от общего среднего значения, то это может являться признаком хорошего разбиения.

#### Постановка задачи.

Дано конечное множество из объектов, представленных двумя признаками (в качестве этого множества принимаем исходную двумерную выборку, сформированную ранее в лабораторной работе №4). Выполнить разбиение исходного множества объектов на конечное число подмножеств (кластеров) с использованием метода k-средних. Полученные результаты содержательно проинтерпретировать.

#### Порядок выполнения работы.

- 1. Нормализовать множество точек, отобразить полученное множество.
- 2. Определить верхнюю оценку количества кластеров по формуле:  $\bar{k} = |\sqrt{N/2}|$ , где N число точек.
- 3. Реализовать алгоритм k-means, отобразить полученные кластеры, выделить каждый кластер разным цветом, отметить центроиды.
- 4. Провести оценку качества разбиения для различных разбиений.
- 5. Содержательно проинтерпретировать полученные результаты.

### Выполнение работы.

# 1) Нормализовать множество точек, отобразить полученное множество.

Исследуемая выборка представлена в таблице 1.

Таблица 1

|    |     | 1     | 1  | 1   | I     | 1  | П   | T     |    | 1   |       | 1   | T   |       |
|----|-----|-------|----|-----|-------|----|-----|-------|----|-----|-------|-----|-----|-------|
| Nº | nu  | E     | Nº  | nu  | E     |
| 1  | 480 | 153.3 | 25 | 408 | 110.0 | 49 | 405 | 103.6 | 73 | 465 | 127.7 | 97  | 487 | 146.0 |
| 2  | 510 | 129.4 | 26 | 331 | 74.1  | 50 | 434 | 140.4 | 74 | 390 | 108.1 | 98  | 532 | 158.7 |
| 3  | 426 | 119.0 | 27 | 467 | 113.0 | 51 | 344 | 86.8  | 75 | 463 | 129.2 | 99  | 330 | 71.1  |
| 4  | 482 | 139.9 | 28 | 545 | 145.3 | 52 | 415 | 119.7 | 76 | 468 | 128.9 | 100 | 438 | 134.1 |
| 5  | 393 | 103.2 | 29 | 396 | 83.8  | 53 | 463 | 136.7 | 77 | 488 | 134.1 | 101 | 593 | 187.4 |
| 6  | 510 | 162.3 | 30 | 351 | 102.9 | 54 | 475 | 143.6 | 78 | 443 | 137.4 | 102 | 445 | 124.7 |
| 7  | 403 | 123.9 | 31 | 503 | 148.5 | 55 | 463 | 144.9 | 79 | 505 | 155.8 | 103 | 518 | 154.0 |
| 8  | 506 | 158.4 | 32 | 402 | 120.8 | 56 | 392 | 82.7  | 80 | 395 | 109.1 | 104 | 496 | 141.7 |
| 9  | 393 | 122.8 | 33 | 542 | 146.1 | 57 | 452 | 140.5 | 81 | 474 | 132.5 | 105 | 473 | 136.4 |
| 10 | 442 | 115.4 | 34 | 437 | 124.3 | 58 | 504 | 143.8 | 82 | 490 | 139.9 | 106 | 522 | 154.5 |
| 11 | 411 | 112.9 | 35 | 453 | 119.5 | 59 | 443 | 122.9 | 83 | 396 | 90.1  | 107 | 547 | 154.7 |
| 12 | 514 | 153.6 | 36 | 386 | 105.8 | 60 | 461 | 138.6 | 84 | 362 | 97.9  | 108 | 560 | 169.8 |
| 13 | 525 | 156.5 | 37 | 434 | 122.3 | 61 | 340 | 85.1  | 85 | 566 | 175.7 | 109 | 412 | 127.8 |
| 14 | 543 | 155.4 | 38 | 418 | 118.4 | 62 | 438 | 134.9 | 86 | 418 | 109.3 | 110 | 444 | 130.0 |
| 15 | 412 | 116.3 | 39 | 391 | 107.5 | 63 | 523 | 148.7 | 87 | 502 | 132.5 | 111 | 437 | 121.8 |
| 16 | 449 | 124.5 | 40 | 399 | 100.0 | 64 | 416 | 120.5 | 88 | 500 | 155.5 | 112 | 462 | 138.8 |
| 17 | 482 | 136.4 | 41 | 486 | 139.4 | 65 | 483 | 143.4 | 89 | 359 | 71.9  | 113 | 438 | 122.2 |
| 18 | 569 | 157.4 | 42 | 421 | 124.2 | 66 | 440 | 128.5 | 90 | 443 | 135.7 | 114 | 406 | 110.1 |
| 19 | 484 | 147.5 | 43 | 496 | 143.1 | 67 | 423 | 131.1 | 91 | 421 | 118.0 | 115 | 413 | 106.7 |
| 20 | 472 | 134.2 | 44 | 463 | 121.2 | 68 | 386 | 95.5  | 92 | 433 | 128.2 | 116 | 458 | 121.7 |
| 21 | 453 | 124.2 | 45 | 508 | 159.0 | 69 | 321 | 86.1  | 93 | 514 | 174.6 | 117 | 408 | 117.0 |
| 22 | 422 | 117.9 | 46 | 419 | 105.3 | 70 | 433 | 131.5 | 94 | 320 | 72.6  |     |     |       |
| 23 | 320 | 64.5  | 47 | 434 | 108.7 | 71 | 351 | 89.0  | 95 | 406 | 113.8 |     |     |       |
| 24 | 547 | 164.4 | 48 | 440 | 126.7 | 72 | 481 | 148.3 | 96 | 465 | 140.9 |     |     |       |

Отображение исходной выборки представлено на рис. 1.



Рисунок 1 – Исходная выборка

Нормализация координат точек определяется по формулам:

$$x_i = \frac{x_i - x_{min}}{x_{max} - x_{min}}.$$

Отображение нормализованной выборки представлено на рис. 2.



Рисунок 2 – Нормализованная выборка

2) Определим верхнюю оценку количества кластеров по формуле:  $\overline{k} = \lfloor \sqrt{N/2} \rfloor$ , где N — число точек.

Верхняя оценка количества кластеров:

$$\bar{k} = \lfloor \sqrt{N/2} \rfloor = \lfloor \sqrt{117/2} \rfloor = 7.$$

## 3) Реализовать алгоритм k-means, отобразить полученные кластеры, выделить каждый кластер разным цветом, отметить центроиды.

Реализуем алгоритм k-means. Отобразим полученные кластеры, выделим каждый кластер разным цветом, отметим центроиды.



Рисунок 3 — Кластеризация алгоритмом k-means (2 кластера)

Таблица 2

| Номер    | Панта иноставо                             | Количество эле-   |
|----------|--------------------------------------------|-------------------|
| кластера | Центр кластера                             | ментов в кластере |
| 1        | (0.28075845722904547; 0.34033727404712905) | 51                |
| 2        | (0.6171606171606171; 0.6384717804571344)   | 66                |



Рисунок 4 – Кластеризация алгоритмом k-means (3 кластера)

Таблица 3

| Номер    | Центр кластера                           | Количество эле-   |
|----------|------------------------------------------|-------------------|
| кластера | центр кластера                           | ментов в кластере |
| 1        | (0.7045177045177047; 0.7068494293880787) | 39                |
| 2        | (0.16448630734345018; 0.204502305397342) | 21                |
| 3        | (0.42317331791016; 0.48481863731745967)  | 57                |



Рисунок 5 – Кластеризация алгоритмом k-means (4 кластера)

Таблица 4

| Номер    | Центр кластера                             | Количество эле-   |
|----------|--------------------------------------------|-------------------|
| кластера | центр кластера                             | ментов в кластере |
| 1        | (0.7701863354037267; 0.7629391162840059)   | 23                |
| 2        | (0.12185592185592185; 0.15546514781665308) | 15                |
| 3        | (0.5307285307285308; 0.5685561884097278)   | 45                |
| 4        | (0.34195216548157736; 0.41269803283396345) | 34                |



Рисунок 6 – Кластеризация алгоритмом k-means (5 кластеров)

Таблица 5

| Номер    | Панта иносторо                             | Количество эле-   |
|----------|--------------------------------------------|-------------------|
| кластера | Центр кластера                             | ментов в кластере |
| 1        | (0.779522065236351; 0.7723274826610872)    | 21                |
| 2        | (0.5848174813692055; 0.6087371285878621)   | 29                |
| 3        | (0.05535205535205535; 0.10912214085525718) | 9                 |
| 4        | (0.4117023327549644; 0.48396214294891016)  | 38                |
| 5        | (0.2789377289377289; 0.31257119609438566)  | 20                |



Рисунок 7 — Кластеризация алгоритмом k-means (6 кластеров)

Таблица 6

| Номер    | Центр кластера                             | Количество эле-   |
|----------|--------------------------------------------|-------------------|
| кластера | центр кластера                             | ментов в кластере |
| 1        | (0.7642357642357642; 0.7114431540794436)   | 11                |
| 2        | (0.12185592185592185; 0.15546514781665308) | 15                |
| 3        | (0.5480900052328623; 0.5850517261420435)   | 35                |
| 4        | (0.9047619047619048; 0.8660699755899104)   | 5                 |
| 5        | (0.6712454212454213; 0.7642392188771359)   | 8                 |
| 6        | (0.36604480790527305; 0.42831191931424684) | 43                |



Рисунок 8 – Кластеризация алгоритмом k-means (7 кластеров)

Таблица 7

| Номер    | Центр кластера                             | Количество эле-   |
|----------|--------------------------------------------|-------------------|
| кластера | центр кластера                             | ментов в кластере |
| 1        | (0.9047619047619048; 0.8660699755899104)   | 5                 |
| 2        | (0.6910866910866911; 0.7605098996474099)   | 9                 |
| 3        | (0.4518125552608312; 0.5060183496534889)   | 29                |
| 4        | (0.3226260918568611; 0.3916254616010514)   | 26                |
| 5        | (0.5876923076923076; 0.6162082994304312)   | 25                |
| 6        | (0.7870879120879122; 0.7159275834011392)   | 8                 |
| 7        | (0.12185592185592185; 0.15546514781665308) | 15                |

### 4) Провести оценку качества разбиения для различных разбиений.

Для проведения оценки качества разбиения для различных разбиений используются функционалы качества:

1. Сумма квадратов расстояний до центров кластеров

$$F_1 = \sum_{k=1}^{K} \sum_{i=1}^{N_k} d^2(X_i^{(k)}, X^{(k)}) \Longrightarrow \min$$

2. Сумма внутрикластерных расстояний между объектами

$$F_2 = \sum_{k=1}^K \sum_{X_i, X_j \in S_k} d^2(X_i, X_j) \Longrightarrow \min$$

3. Сумма внутрикластерных дисперсий

$$F_3 = \sum_{k=1}^K \sum_{i=1}^{N_k} \sigma_{ij}^2 \Longrightarrow \min$$

Здесь  $\sigma$  - дисперсия j-й переменной в k-м кластере.

Для различных значений k рассчитаем функционалы качества и результаты занесём в табл. 8.

Таблица 8

| Количество<br>кластеров <i>k</i> | F <sub>1</sub> | F <sub>2</sub> | <b>F</b> <sub>3</sub> |
|----------------------------------|----------------|----------------|-----------------------|
| 2                                | 3.9357         | 232.9588       | 0.03440               |
| 3                                | 2.011          | 82.2782        | 0.0293                |
| 4                                | 1.3016         | 40.6151        | 0.0259                |
| 5                                | 0.9685         | 25.2083        | 0.0226                |
| 6                                | 0.8843         | 18.7264        | 0.0291                |
| 7                                | 0,7506         | 15,0071        | 0.0266                |

По полученным данным можно сделать вывод о том, что с увеличением числа кластеров, минимизируются значения перечисленных функционалов качества.

#### Выводы.

Таким образом, были освоены основные понятия кластерного анализа, в частности, метода k-средних. Верхняя оценка количества кластеров была посчитана по формуле:  $\bar{k} = \left\lfloor \sqrt{\frac{N}{2}} \right\rfloor$  и равна 7. С помощью алгоритма k-means исходная выборка была разбита на различное количество кластеров: 2, 3, 4, 5, 6, 7. С увеличением числа кластеров, уменьшаются значения функционалов качества, используемых в работе. Было также замечено, что чем больше кластеров, тем больше шагов необходимо проделать алгоритму, чтобы на последнем шаге  $F_1, F_2$  и  $F_3$  имели минимальное значение. Из этого можно сделать выводы, что разбиение каждый раз улучшалось и в итоге получилось оптимальным.

### **ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД**

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import random
from itertools import combinations
np.random.seed(10)
random.seed(11)
df = pd.read_csv('sample.csv', header=None)
df.columns = ['x', 'y']
ax = df.plot.scatter(x=0, y=1)
ax.set title('Выборка')
plt.show()
df = (df - df.min(axis=0)) / (df.max(axis=0) - df.min(axis=0))
# df = (df - df.mean(axis=0)) / df.std(axis=0)
ax = df.plot.scatter(x=0, y=1)
ax.set_title('Нормализованная выборка')
plt.show()
up_limit = np.sqrt(len(df) / 2).astype(np.int64)
print('Верхняя граница: {}'.format(up limit))
def f1():
    distances = df.apply(lambda x: np.min(dists to centroids(x,
centroids)) ** 2, axis=1)
    return distances.sum()
def get_metrics():
    f2 = []
    f3 = []
    for i, centroid in enumerate(centroids.to_numpy()):
        cluster dists = []
        f3.append(df[cl centroids == i].var().mean())
        for comb in combinations(df[cl centroids == i].to numpy(), 2):
            cluster dists.append(np.linalg.norm(comb[0] - comb[1]) ** 2)
```

```
f2.append(sum(cluster dists))
    f2 = sum(f2)
    f3 = sum(f3)
    print('--- \nF1 = {}\nF2 = {}\nF3 = {}\n---'.format(f1(), f2, f3))
def dists_to_centroids(point, cur_centroids):
    return cur centroids.apply(lambda x: np.linalg.norm(x - point),
axis=1)
def get closest centroids(points, cur centroids):
    return points.apply(lambda x: np.argmin(dists_to_centroids(x,
cur centroids)), axis=1)
def move centroids(points, closest centroids, num of centroids):
    return np.array([points[closest_centroids == c].mean(axis=0) for c in
range(num of centroids)])
for N in range(2, up_limit+1):
    print(N)
    dict_colors = {i: name for i, (name, col) in
enumerate(random.choices(list(colors.CSS4 COLORS.items()), k=N))}
    list_colors = [name for name, col in
random.choices(list(colors.CSS4 COLORS.items()), k=N)]
    centroids = df.sample(N)
    i = 1
    while True:
        prev centroids = centroids.copy()
        cl centroids = get closest centroids(df, centroids)
        centroids[:] = move centroids(df, cl centroids, N)
        ax = df.plot.scatter(x=0, y=1, c=cl_centroids.apply(lambda x:
dict colors[x]))
        ax.scatter(centroids.x, centroids.y, c='red')
        ax.set title('K means {}, war - {}'.format(N, i))
        plt.show()
        # print('step {}'.format(i))
        i += 1
```