Davide Gabrielli

Un Approccio alla Voice Conversion a Spettro Ridotto attraverso la Sine-Wave Speech

Relatore Prof. Danilo Avola Correlatore
Prof. Luigi Cinque
Dr. Daniele Pannone

Scopo del lavoro

Realizzare un sistema di voice conversion che sfrutti rappresentazioni a spettro ridotto.

Figura 1. Esempio di una conversione di un audio da una voce maschile di uno speaker A ad una voce femminile di uno speaker B.

Voice Conversion

Il processo di voice conversion si può suddividere in tre fasi principali:

Figura 2. Pipeline tipica della voice conversion.

Il suono

Il suono è un segnale acustico prodotto dalle vibrazioni di un corpo e dalla trasmissione di queste attraverso un mezzo.

Direction of Sound Waves

Rarefaction

Compression

Wavelength

Trough

Figura 3. Il suono emesso da un oggetto.

Figura 4. Onda sinusoidale.

Rappresentazioni dell'audio (1)

Il suono, essendo un segnale continuo, per poter essere rappresentato digitalmente deve essere discretizzato:

Campionamento

Figura 5. Esempio di un segnale campionato.

Figura 6. Un segnale complesso campionato.

Rappresentazioni dell'audio (2)

Tuttavia è possibile ottenere delle rappresentazioni sul dominio della frequenza:

Spettro di potenza

Figura 7. Trasformata di Fourier.

Figura 8. Spettro di potenza.

Rappresentazioni dell'audio (3)

Possiamo calcolare la trasformata di Fourier su piccole finestre di audio temporalmente consecutive:

Short-time Fourier transform

Rappresentazioni dell'audio (4)

Tuttavia l'essere umano non ha una percezione lineare dell'altezza del suono (pitch) ma bensì logaritmica:

- Scala mel
- Spettrogrammi mel

Figura 11. Spettrogramma.

Figura 10. Scala mel.

Figura 12. Spettrogramma mel.

Voice Conversion: Mapping

Ora che abbiamo visto come rappresentare il suono, possiamo concentrarci sulla fase di mapping.

Figura 13. Pipeline tipica della voice conversion.

Voice Conversion: Dati non paralleli

Addestrare un modello di conversioni tra due voci senza corrispondenza di audio tra essi.

Pro: facilità nel collezionare dati

Contro: risultati più difficili da ottenere.

Figura 14. Esempio di dataset formato da dati non paralleli.

MaskCycleGAN-VC

La MaskCycleGAN-VC è lo stato dell'arte per quanto riguarda la voice conversion di una coppia di speaker su dati non paralleli.

Voce: contenuto o identità?

L'idea per cui sia possibile disaccoppiare il contenuto linguistico dall'identità vocale è ricorrente all'interno di varie aree dello speech processing.

Figura 16. Da una voce possiamo ottenere due componenti: una linguistica e una di identità vocale.

Rappresentazione a spettro ridotto

In questo lavoro vengono impiegate tre forme di audio a spettro ridotto:

- Sine-Wave Speech
- Noise Vocoded Speech
- Buzz Vocoded Speech

Figura 17. Spettrogramma mel delle tre forme a spettro ridotto impiegate in questo lavoro.

Sine-Wave Speech

La sine-wave speech è una forma di audio del parlato umano a spettro ridotto, in cui vi sono presenti in genere tre o quattro componenti sinusoidali mobili.

Vocoded Speech

Il vocoder è una tecnica di elaborazione dell'audio che richiede due sorgenti: un carrier, che accoglierà il suono, e un modulatore, che darà forma al suono del carrier.

Figura 20. Spettrogramma mel di noise vocoded speech.

Figura 21. Spettrogramma mel di buzz vocoded speech.

Architettura proposta

L'architettura proposta si ispira alla MaskCycleGAN-VC, utilizzando però audio a spettro ridotto come input.

Figura 22. Ciclo forward dell'architettura proposta impiegando il modulo di riduzione a SWS.

Dataset

Il dataset impiegato è della Voice Conversion Challenge 2018, strutturato come segue:

- 4 source speaker (Task "Hub")
- 4 source speaker (Task "Spoke")
- 4 target speaker
- 81 audio (≈ 5 min) per speaker

- 4 source speaker (Task "Hub")
- 4 source speaker (Task "Spoke")
- 4 target speaker
- 35 audio (≈ 2 min) per speaker

Metriche utilizzate

Le metriche impiegate per la valutazione di audio sono le seguenti:

- Mel-cepstral Distortion
- Kernel DeepSpeech Distance
- MOSNet

Figura 23. Esempio di una conversione di voce che viene passata ad un sistema per la valutazione .

Risultati

Riduzione spettro ^a	Valutazione	$\mathbf{F}{ ightarrow}\mathbf{F}$	$\mathbf{F}{ ightarrow}\mathbf{M}$	$\mathbf{M}{ ightarrow}\mathbf{F}$	$\mathbf{M}{ ightarrow}\mathbf{M}$
	MCD [dB]	6.61	6.57	6.98	6.89
Nessuna riduzione ^b	$KDSD [\times 10^5]$	2074	1755	2770	1583
	MOSNet	3.84	4.46	3.92	4.58
Noise vocoded ^c	MCD [dB]	6.53	6.47	6.75	6.73
	$\mathrm{KDSD}\ [\times 10^5]$	3269	2247	3446	2032
	MOSNet	3.90	4.46	3.89	4.49
Buzz vocoded ^c	MCD [dB]	6.49	6.49	6.70	6.71
	$KDSD [\times 10^5]$	3063	2155	3169	1823
	MOSNet	3.80	4.47	3.94	4.53
Sine-wave speech ^c	MCD [dB]	6.55	6.55	6.98	6.78
	$KDSD [\times 10^5]$	3513	2621	4802	2492
	MOSNet	3.91	4.48	3.86	4.61

^a Modulo di riduzione dello spettro applicato sui dati di input.

 $^{^{\}rm b}$ Nessuna riduzione spettrale applicata, modello trainato come proposta da Kaneko et al. in [14].

^c Metodi di riduzione spettrale proposti, come descritti nella sezione 4.2.

Risultati

Alcuni dei risultati delle conversioni con il metodo proposto:

	Source	Target	Converted	Paper
F→F				
F→M				
M→F				
M→M				

Conclusioni e sviluppi futuri

I risultati ottenuti mostrano come sia possibile sfruttare rappresentazioni con riduzione di spettro nella voice conversion.

Per sviluppi futuri si ritiene interessante approfondire:

- Impiego per data augmentation
- Applicazione in altri campi (e.g. speech recognition)

Grazie per l'attenzione