MATH 381 Section 2.3

Olivia Dumitrescu

14 February 2024

Functions

Example Prove that there are ∞ many pairs of integer solutions on the cone

$$x^2 + y^2 - z^2 = 0$$

Definition Let A, B be non-empty sets.

A function $f:A\to B$ to be an assignment of exactly one element of B to each element of A.

$$f(a) = b$$

A =domain, B =codomain, b =image of a, a =preimage of b

 $Im f \subseteq B$ is called the range of f.

$$Im f = \{b \in B \mid \exists a \in A \text{ s.t. } f(a) = b\}$$

Example The circle $x^2+y^2=1$ is not a function but the union of 2 functions.

$$y = \begin{cases} \sqrt{1 - x^2} \\ -\sqrt{1 - x^2} \end{cases}$$

Example Now take

$$f_1: A \to B$$

 $f_2: A \to B \quad B \subseteq \mathbb{R}$

$$(f_1 + f_2)(x) = f_1(x) + f_2(x) \quad \forall x \in A$$

 $(f_1 \cdot f_2)(x) = f_1(x) \cdot f_2(x)$

Definition A function $f: A \to B$ is **injective** if and only if $f(a) = f(b) \implies a = b$.

This means that distinct points in the domain have different heights i.e. if $a \neq b$, then $f(a) \neq f(b)$.

Remark To disprove that a function is injunctive, it is enough to find two points of the domain $a \neq b$ so that f(a) = f(b).

If you know its graph, how can you test if a function is injective?

- 1. A, B are finite sets
- 2. Continuous functions

Horizontal Line Test: A function is injective if any horizontal line intersects the graph at at most 1 point.

Example $y = \sqrt{1 - x^2}$ is not injective because f(x) = f(-x).

Definition We say a function $f: A \to B$ is **surjective** if the range of f is the codomain B.

$$Im f = \{b \in B \mid \exists a \in A, \ f(a) = b\} = B$$

To prove a function is surjective:

$$\forall b \in B \ \exists a \in A \text{ so that } f(a) = b$$

Remark We can always make a function surjective by reducing the codomain.

$$f: A \to B$$
 $f: A \to Im f \subseteq B$

Example To make $f: x \mapsto x^2$ surjective,

$$f: \mathbb{R} \to \mathbb{R}_+$$

To make f injective,

$$f: \mathbb{R}_+ \to \mathbb{R}$$

Definition The function $f: A \to B$ is **bijective** if f is both injective and surjective.

Remark Any continuous function can be transformed into a bijective function, but not in a unique way necessarily.

Remark Let f be a bijection

$$A \xrightarrow{f} B$$

between finite sets.

$$\implies |A| = |B|$$

Example Bijection between open and bounded interval and \mathbb{R} .

$$\tan(x): \mathbb{R} - \left\{ \frac{2k+1}{2}\pi \mid k \in \mathbb{Z} \right\} \to \mathbb{R}$$

So, tan is sujective but not injective.

$$\arctan(x): \mathbb{R} \to (\frac{-\pi}{2}, \frac{\pi}{2})$$

arctan is injective but not surjective.

Definition If f is bijective between A and B, then there exists an inverse function f^{-1}

$$f: A \to B$$

 $f: A \to \operatorname{Range} f = \operatorname{Im} f$

$$\exists f^{-1}: \operatorname{Im} f \to A = A \xleftarrow{f^{-1}} \operatorname{Im} f$$
 if $f(a) = b \implies f^{-1}(b) = a \qquad a \in A \land b \in B$

$$f: A \to \operatorname{Im} f = C$$

$$\forall b \in \operatorname{Im} f \ \exists ! a \in A \ (b = f(a))$$

Proposition 0.1

$$\begin{cases} f: A \to B \\ k: Imf \Rightarrow C \end{cases} \implies k \circ f: A \to C$$

Definition We say that $f:A\to B$ is invertible if $\exists g=f^{-1}:B\to A$ so that

1.
$$f \circ g = Id_B(\forall x \in B \implies f(g(x)) = x)$$

2.
$$g \circ f = Id_A(\forall x \in A \implies g(f(x)) = x)$$

$$A \xrightarrow{f} B \xrightarrow{g} A \implies g \circ f : A \to A$$

Remark Start from a bijective function $f: A \to B$ then $g: B \to A$. Can we find g?

- 1. f(x) = y
- 2. Solve it for x x = g(y)
- 3. Interchange x and y $y = g(x) = f^{-1}$

Proposition 0.2 $f: A \to B$ is bijective and continuous \implies the inverse $g: B \to A$ exists.

The graph of g is obtained from the graph of f by reflecting along y = x.