Оглавление

1			2
	1.1	Ещё одну теорему забыл	2
	1.2	Линейная связность	2
	1.3	Компактность	3
		1.3.1 Понятие компактности	3
		132 Компактность и уауслорфовость	9

Глава 1

1.1 Ещё одну теорему забыл

Теорема 1 (Вейерштрасса о прямом умножении). X — связное топологическое пространство $f: X \to \mathbb{R}$ — непрерывная функция

$$f(x_0) = a,$$
 $f(x_1) = b,$ $a \le c \le b$
 $\implies \exists x_2 \in X : f(x_2) = c$

Доказательство. X – связное $\implies f(X)$ – связное Какие связные подмножества есть в \mathbb{R} ?

Теорема 2. (X,Ω) – топологическое пространство Равносильны следующие утверждения:

- 1. Компоненты связности X открыты
- 2. $X = \bigcup_{i \in I} X_i \ (X_i \kappa o m n o h e h m b,$ топология X топология объединения, контрпример \mathbb{Q})
- 3. У любой точки существует связная окрестность

Доказательство. Упражнение

1.2 Линейная связность

Определение 1. Пусть в X – непрерывная $f:[0,1] \to X$

- $f(0) = x_0$ начало пути
- $f(1) = x_1$ конец пути

Определение 2. X называется линейно свяным, если $\forall x_0, x_1 \in X \quad \exists \,$ путь, соединяющий x_0 и x_1

Определение 3. $A\subset X$ линейно связно, если $\forall x_0,x_1$ \exists путь в A между ними (не выходящий за пределы A)

Теорема 3. Линейно связное пространство связно

Доказательство. Допустим, не связно

$$X = U_1 \cup U_2, \qquad U_1 \cap U_2 \neq \emptyset, \qquad x_1 \in U_1, \quad x_2 \in U_2$$

Соединим их путём:

$$\exists f: [0,1] \to X: \begin{cases} f(0) = x_1 \\ f(1) = x_2 \end{cases}$$

 $f^{-1}(U_1), f^{-1}(U_2)$ разбивают $[0,1] \implies [0,1]$ не связен – $\mbox{$\frac{1}{2}$}$ (доказано, что [0,1] связен)

Верна ли обратная стрелка?. Нет

Пример. $y = \sin \frac{1}{x}$ – непрерывна на $(0, +\infty)$

Рис. 1.1: Связная, но не линейно связная функция

1.3 Компактность

1.3.1 Понятие компактности

Определение 4. X — топологическое пространство $\{U_i\}_{i\in I}$ — (открытое) покрытие X, если $\bigcup_{i\in I}U_i=X$ и $\forall i\quad U_i\in\Omega$ В этом курсе, покрытие \equiv открытое покрытие

Если $\{\,U_i\,\}_{i\in I}$ – покрытие X и $\{\,U_{ij}\,\}_{ij\in J\subset I}$ – покрытие X, то это – подпокрытие $\{\,U_i\,\}_{i\in I}$

Определение 5. X называют компактным, если для любого покрытия можно выбрать конечное подпокрытие

Определение 6. $A \subset X$ компактно, если A компактно в индуцированной топологии, то есть

$$\forall \left\{ \left. U_{i} \right. \right\}_{i \in I} : \bigcup_{i \in I} U_{i} \supset A \quad \exists \left. U_{i1}, U_{i2}, ..., U_{in} : \bigcup_{k=1}^{n} U_{ik} \supset A \right.$$
 (U_i открыто в X)

Теорема 4. X компактно, A замкнуто в $X \implies A$ компактно

Доказательство. Рассмотрим любое $\{U_i\}_{i\in I}$ – покрытие A

Рассмотрим $V \coloneqq X \setminus A$ – открытое

 $\{U_i, V\}_{i \in I}$ – покрытие X

⇒ ∃ конечное подпокрытие. Выпишем его:

$$V, U_{i1}, U_{i2}, ..., U_{in}$$

Теорема 5. $f: X \to Y$ непрерывна, $A \subset X$ компактно $\Longrightarrow f(A)$ компактно

Доказательство. Возьмём $\{V_i\}_{i\in I}$ – покрытие f(A)

$$V_i \subset Y \implies f^{-1}(V_i)$$
 – открытое в X

$$\{\,f^{-1}(V_i)\,\}_{i\in I}$$
 – покрытие A $\implies f^{-1}(V_{i1}),...,f^{-1}(V_{in})$ – конечное подпокрытие A

Следствие. Компактность – топологическое свойство (т. е. она сохраняется при гомеоморфизме)

1.3.2 Компактность и хаусдорфовость

Определение 7. X называется хаусдорфовым, если $\forall x,y \in X \quad \exists U_x,U_y:U_x \cap U_y = \emptyset$

Пример. X – метрическое $\implies X$ – хаусдорфово

$$U_x := B\left(x, \frac{\rho(x, y)}{3}\right), \qquad U_y := B\left(y, \frac{\rho(x, y)}{3}\right)$$

Теорема 6. X – хаусдорфово, A компактно \implies A замкнуто

Доказательство. Нужно доказать, что $X \setminus A$ открыто Зафиксируем $x_0 \in X \setminus A$

$$\forall a \in A \quad \exists \left\{ \begin{matrix} U_{ax_0} - \text{окрестность } a \\ V_{ax_0} - \text{окрестность } x_0 \end{matrix} \right\} : U_{ax_0} \cap V_{ax_0} = \emptyset$$

 $\{U_{ax_0}\}_{a\in A}$ — покрытие A $\Longrightarrow \exists U_{ax_01},...,U_{ax_0n}$ — подпокрытие Возьмём $V\coloneqq \bigcap_{k=1}^n V_{ax_0k}$ V открыто, $V\cap A=\emptyset$, $x_0\in V$ $\Longrightarrow X\setminus A$ открыто

Следствие. X — компактно и хаусдорфово, $A \subset X$ A компактно $\iff A$ замкнуто