(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平8-174242

(43)公開日 平成8年(1996)7月9日

(51) Int.CL. ⁶	識別記号 广内整理番号	FΙ	技術表示簡別
B23K 26/00	В		
26/06	Z		
B41J 2/44			
		B41J	3/ 00 Q
			3/ 21 P
	審査請求	未請求 請求項	質の数6 FD (全6頁) 最終頁に続く
(21) 出願番号	特顧平6-336236	(71)出顧人	000001889
			三洋電機株式会社
(22) 出顧日	平成6年(1994)12月22日		大阪府守口市京阪本通2丁目5番5号
		(72)発明者	篠原 亘
			大阪府守口市京阪本通2丁目5番5号 三
			洋電機株式会社内
		(72)発明者	木山 精一
			大阪府守口市京阪本通2丁目5番5号 三
			洋軍機株式会社内
		(74)代理人	弁理士 西岡 伸奏

(54) 【発明の名称】 レーザ加工方法及び装置

(57)【要約】

【目的】 加工速度が高く、然も高い生産能率を実現出 来るレーザ加工装置を提供する。

【構成】 レーザ加工装置は、レーザ発振器1と、被加工物7が載置されるべき加工テーブル3と、レーザ発振器1からのレーザ光を被加工物7に向けて反射すべき微小ミラーアレイ2とを具えている。微小ミラーアレイ2は、駆動電圧の供給によって反射面の向きが変化する多数の微小ミラー片をマトリクス状に配列して構成されている。微小ミラーアレイ2には制御装置4が接続されて、各ミラー片は、夫々の反射方向を被加工物7へ至る第1の方向と被加工物から外れる第2の方向の間で切り換えられ、第1の反射方向を向いた複数のミラー片によって、1つの転写ドットパターンが構成される。

1

【特許請求の範囲】

【請求項1】 被加工物にレーザ光を照射して加工を施 すレーザ加工方法において、被加工物に対向させて微小 ミラーアレイ(2)を設置し、該微小ミラーアレイ(2) は、駆動電圧の供給によって反射面の向きが変化する多 数の微小ミラー片(25)をマトリクス状に配列して構成さ れ、レーザ源からのレーザ光を微小ミラーアレイ(2)に て被加工物(7)へ向けて反射させる際、各ミラー片(25) は、夫々の反射方向を被加工物へ至る第1の方向と被加 工物から外れる第2の方向の間で切り換え、第1の反射 方向を向いた複数のミラー片(25)によって、各ミラー片 (25)を1ドットに対応させた1つの転写ドットパターン を構成するレーザ加工方法。

【請求項2】 被加工物は、1平面内で2軸方向に往復 駆動される加工テーブル(3)上に設置し、微小ミラーア レイ(2)によって構成される転写ドットパターンを更新 しつつ、1つの転写ドットパターンによる加工領域を隣 接する加工領域へ移動させて、被加工面の全領域に対す る加工を施す請求項1に記載のレーザ加工方法。

【請求項3】 被加工物にレーザ光を照射して加工を施 20 すレーザ加工装置において、レーザ源と、被加工物が載 置されるべき加工テーブル(3)と、レーザ源からのレー ザ光を加工テーブル(3)上の被加工物に向けて反射すべ き微小ミラーアレイ(2)とを具え、微小ミラーアレイ (2)は、駆動電圧の供給によって反射面の向きが変化す る多数の微小ミラー片(25)をマトリクス状に配列して構 成され、微小ミラーアレイ(2)には駆動電圧供給手段が 接続されて、各ミラー片(25)は、夫々の反射方向を被加 工物へ至る第1の方向と被加工物から外れる第2の方向 の間で切り換えられ、第1の反射方向を向いた複数のミ 30 することである。 ラー片(25)によって、各ミラー片(25)を1ドットに対応 させた1つの転写ドットパターンが構成されるレーザ加 工装置。

【請求項4】 被加工物を載置すべき加工テーブル(3) と、被加工物を含む平面内で加工テーブル(3)を往復駆 動するX-Y駆動機構(31)と、微小ミラーアレイ(2)へ の駆動電圧の供給と同期させてX-Y駆動機構(31)を動 作させるための制御手段とを具えている請求項3に記載 のレーザ加工装置。

【請求項5】 微小ミラーアレイ(2)のミラー片(25) は、その反射面が凸面に形成されている請求項3又は請 求項4に記載のレーザ加工装置。

【請求項6】 微小ミラーアレイ(2)と被加工物(7)の 間には、各ミラー片(25)からの反射レーザビームを被加 工物(7)へ向けて拡大する光学手段が介在している請求 項3又は請求項4に記載のレーザ加工装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電子部品等の製造工程

は組織改質等の各種加工を施すレーザ加工方法及びレー ザ加工装置に関するものである。

[0002]

【従来の技術】従来、レーザマーキングシステムとし て、細く絞ったレーザビームによって被加工面を走査 し、所定の加工パターンを描画するビーム描画方式が実 施されている。又、レーザ源と被加工物の間にマスクを 設置し、マスクを透過したレーザ光によってマスクパタ ーンを被加工面に転写するマスク転写方式が提案されて いる(特開平1-176563号、特開平2-1872 88号)。この様なレーザ加工によれば、高精細な加工 が実現出来る。

[0003]

【発明が解決しようとする課題】しかしながら、ビーム 描画方式によるレーザ加工においては、レーザビームの 走査速度に限界があるため、被加工面の全領域を加工す るのに長い時間がかかる問題がある。一方、マスク転写 方式によるレーザ加工によれば、比較的広い領域にレー ザ光を照射するので、加工時間の短縮が可能であるが、 1つの加工パターンに応じて1枚のマスクが必要とな り、加工パターンを変更する場合には、マスクを新たに 作製せねばならない。然も、複雑な構造の加工を施す場 合には複数枚のマスクが必要となり、これらのマスクを 交換しながら、加工を進めねばならない。従って、マス クの作製費用が嵩むばかりでなく、マスクの交換作業に よって生産能率が低下する問題があった。

【0004】本発明の目的は、ビーム描画方式よりも加 工速度が高く、然もマスク転写方式よりも高い生産能率 を実現出来るレーザ加工方法及びレーザ加工装置を提供

[0005]

【課題を解決する為の手段】上記目的を達成するべく、 本発明においては微小ミラーアレイを採用する。微小ミ ラーアレイは、駆動電圧の供給によって反射面の向きが 変化する多数の微小ミラー片をマトリクス状に配列した ものである (NIKKEI ELECTRONICS 1993.6.21 (no.584) 第6 5,66頁参照)。

【0006】本発明に係るレーザ加工方法においては、 レーザ源からのレーザ光を微小ミラーアレイ(2)にて被 40 加工物(7)へ向けて反射させる際、各ミラー片(25)は、 夫々の反射方向を被加工物へ至る第1の方向と被加工物 から外れる第2の方向の間で切り換え、第1の反射方向 を向いた複数のミラー片(25)によって、各ミラー片(25) を1ドットに対応させた1つの転写ドットパターンを構 成する。

【0007】具体的には、被加工物は、1平面内で2軸 方向に往復駆動される加工テーブル(3)上に設置し、微 小ミラーアレイ(2)によって構成される転写ドットパタ ーンを更新しつつ、1つの転写ドットパターンによる加 において、薄膜のパターン加工、ICのマーキング或い 50 工領域を隣接する加工領域へ移動させて、被加工面の全 領域に対する加工を施す。

【0008】本発明に係るレーザ加工装置は、レーザ源 と、被加工物が載置されるべき加工テーブル(3)と、レ ーザ源からのレーザ光を加工テーブル(3)上の被加工物 に向けて反射すべき微小ミラーアレイ(2)とを具えてい る。微小ミラーアレイ(2)には駆動電圧供給手段が接続 されて、各ミラー片(25)は、夫々の反射方向を被加工物 へ至る第1の方向と被加工物から外れる第2の方向の間 で切り換えられ、第1の反射方向を向いた複数のミラー 片(25)によって、各ミラー片(25)を1ドットに対応させ 10 た1つの転写ドットパターンが構成される。

【0009】具体的には、更に、被加工物を載置すべき 加工テーブル(3)と、被加工物を含む平面内で加工テー ブル(3)を往復駆動するX-Y駆動機構(31)と、微小ミ ラーアレイ(2)への駆動電圧の供給と同期させてX-Y 駆動機構(31)を動作させるための制御手段とを具えてい る.

【0010】又、微小ミラーアレイ(2)のミラー片(25) は、その反射面を凸面に形成し、或いは、微小ミラーア レイ(2)と被加工物(7)の間には、各ミラー片(25)から 20 の反射レーザビームを被加工物(7)へ向けて拡大する光 学手段を介在させる。

[0011]

【作用】微小ミラーアレイ(2)の各ミラー片(25)は、駆 動電圧のOFF状態では、第2の反射方向を向いてお り、レーザ源からのレーザビームは、OFF状態のミラ 一片(25)により、被加工物(7)から外れた方向へ反射さ れ、被加工物(7)には到達しない。複数のミラー片(25) に対する駆動電圧がONとなると、ONとなったミラー が変化し、レーザ源からのレーザビームは、ON状態の ミラー片(25)により、被加工物(7)に向けて反射され る。この際、被加工物(7)に対する所定の加工パターン に応じて、ONとすべき複数のミラー片(25)が選択さ れ、これらのミラー片(25)によって1つの転写ドットパ ターンが構成される。この結果、被加工物(7)には、微 小ミラーアレイ(2)の転写ドットパターンが転写される ことになる。

【0012】ここで、1つの転写ドットパターンによっ て加工し得る面領域の広さは、レーザ源のパワーと加工 40 に必要なエネルギーを考慮して、十分なエネルギーを与 えることの出来る広さが設定される。この広さが、被加 工物(7)の被加工面(71)の全領域よりも狭い場合には、 被加工物(7)は、1平面内で2軸方向に往復駆動される 加工テーブル(3)上に設置し、被加工物(7)を移動させ ることによって、被加工面(71)の全領域に加工を施す。 即ち、微小ミラーアレイ(2)の1つの転写ドットパター ンによって1つの加工領域に対する加工が終了した後、 微小ミラーアレイ(2)の転写ドットパターンを隣接する 加工領域についてのパターンに更新すると共に、被加工 50 属膜(24)を介して、アルミニウム或いはガラスの表面に

物(7)を移動させて、反射光の照射される領域を隣接の 加工領域に移し、該加工領域に反射光を照射する。そし て、この動作を繰り返すことによって、被加工面の全領 域に対する加工を進めるのである。

4

【0013】微小ミラーアレイ(2)を構成する複数のミ ラー片(25)は、互いに僅かな間隔をあけて配置されてい るので、転写ドットパターンのドット間に隙間が生じ る。該転写ドットパターンをそのまま被加工面(71)に転 写する場合、反射光は、被加工面(71)上で格子状の明暗 を生じて、加工深さが不均一となる。そこで、各ミラー 片(25)の反射面を凸面に形成して、各ミラー片(25)から の反射ビームを被加工物(7)へ向けて拡大する。或い は、微小ミラーアレイ(2)と被加工物(7)の間に、微小 ミラーアレイ(2)からの反射レーザビームを被加工物 (7)へ向けて拡大する光学手段を介在させる。これによ って被加工面(71)上の明暗が解消され、均一な強度分布 のレーザ光によって、精度の高い加工が行なわれる。

[0014]

【発明の効果】本発明に係るレーザ加工方法及び装置に よれば、微小ミラーアレイ(2)からの反射光が照射され る面領域に対して同時に加工が施されるから、ビーム描 画方式よりも加工速度が高い。又、加工パターンを変更 する場合には、微小ミラーアレイ(2)に対する駆動電圧 の供給を制御して、転写ドットパターンを変更するだけ でよいので、マスク転写方式よりも高い生産能率を実現 することが可能である。

[0015]

【実施例】以下、本発明の一実施例につき、図面に沿っ て詳述する。図1に示す如く、レーザ加工装置は、エキ 片(25)は第2の反射方向から第1の反射方向に傾斜角度 30 シマレーザ等のレーザ発振器(1)を具えている。被加工 物(7)を設置すべき加工テーブル(3)は、X-Y駆動機 構(31)に連繋して2軸(X軸及びY軸)方向に駆動され る。

> 【0016】被加工物(7)は、例えば卓上計算機用の太 陽電池の基板であって、該基板上には、電極となる金属 薄膜が全面に形成されており、該金属薄膜にレーザ光を 照射して、所定パターンの電極に加工する。 図5は、被 加工物(7)となる基板上に、透光性導電酸化膜からなる 電極パターン(72)を多数形成した例を示している。1つ の電極パターン(72)は図6に示す形状を有し、B=28 mm、C=18mmの大きさを有している。尚、図5に ハッチングを施した領域は、後述の如く1回当りの加工 領域の広さを表わしている。

【0017】図1の如く加工テーブル(3)の上方には、 レーザ発振器(1)からのレーザビームを被加工物(7)へ 向けて反射すべき微小ミラーアレイ(2)が設置される。 微小ミラーアレイ(2)は、図2及び図3に示す様に、シ リコン、ガリウムヒ素、或いはガラス等からなる基板(2 1)上に、アルミニウム、クロム、或いは銅等からなる金 20

A1、SiO2、MgF2或いはCaF2等の金属若しく は誘電体をコーティングしてなる多数のミラー片(25)と 支柱片(26)を集積して構成されている(NIKKEI ELECTRON ICS 1993.6.21(no.584)第65,66頁参照)。各ミラー片(2 5)は、例えば17μπ角の大きさを有し、両側に形成さ れた一対の支柱片(26)(26)によって支持されて、図3の 断面では基板(21)から浮上したかたちとなっている。基 板(21)の表層部には、ミラー片(25)及び支柱片(26)に対 応させて、駆動電圧(例えば5V)を印加するための一対 の電極(22)(23)が形成されている。例えば1つのミラー 片(25)に対して駆動電圧が印加されると、図2に示す如 く該ミラー片(25)の両側の支柱片(26)(26)を結ぶ軸を中 心として、該ミラー片(25)は一定角度(例えば20度)だ け回転する。

【0018】従って、微小ミラーアレイ(2)の各ミラー 片(25)に対する駆動電圧の供給をON/OFF制御する ことによって、図1に示す如くレーザ発振器(1)からの レーザビーム(8)を被加工物(7)へ向けて反射させる第 1の反射方向と、被加工物(7)から外れる方向へ反射さ せる第2の反射方向の切換えが可能である。

【0019】レーザ発振器(1)、微小ミラーアレイ(2) 及びX-Y駆動機構(31)は、制御用コンピュータ等から 構成される制御装置(4)によって夫々の動作が制御され ており、この中で、微小ミラーアレイ(2)には、制御装 置(4)から、各ミラー片(25)に対する駆動電圧が供給さ れる。又、制御装置(4)にはモニター(6)が接続され、 加工状況がモニタリングされる。

【0020】図1の如く、レーザ発振器(1)から出射さ れるレーザビーム(8)は、先ずスリット(5)にて所定の 光学系(51)を通過して、断面上の強度分布が均一化され る。ビーム均質光学系(51)を通過したレーザビーム(8) は、微小ミラーアレイ(2)の各ミラー片(25)にて2つの 反射方向の何れかへ反射される。第1の反射方向に反射 されて、被加工物(7)へ向かう使用光(81)は、集光レン ズ(52)にて集光された後、被加工物(7)の被加工面(71) 上に照射される。一方、第2の反射方向に反射された非 使用光(9)は、被加工物(7)には到達しない。

【0021】被加工物(7)にレーザ加工を施す際は、微 小ミラーアレイ(2)の各ミラー片(25)に対する駆動電圧 40 の供給をON/OFF制御し、第1の反射方向を向いた 複数のミラー片(25)によって、被加工物(7)に転写すべ き1つの転写ドットパターンを構成する。ここで、微小 ミラーアレイ(2)の1つの転写ドットパターンによって 加工し得る加工領域の広さは、該加工領域に対して十分 なエネルギー密度(例えば0.1~1.0J/cm²)のレーザ 光を照射することの出来る、適度な大きさに設定され る。

【0022】図5の例では、ハッチングで示す1回当り の加工領域Tの広さが1つの電極パターン(72)の大きさ 50 (1) レーザ発振器

よりも狭くなっている。そこで、被加工物(7)の被加工 面(71)の全領域に加工を施すべく、図1に示すX-Y駆 動機構(31)を制御して、被加工物(7)をX軸方向及びY 軸方向へ移動させて、1回の転写による加工を順次、隣 接する加工領域へ移して、被加工面の全領域に対して加 工を進めるのである。この場合、レーザ発振器(1)、微 小ミラーアレイ(2)及びX-Y駆動機構(31)は制御装置 (4)により制御されて、互いに同期した動作を行なう。 【0023】ところで、微小ミラーアレイ(2)において は、各ミラー片(25)が互いに離間して配列されているた め、反射光は被加工面(71)上で格子状の明暗を生じるこ ととなり、これによって加工深さが不均一となる。そこ で、図4に示す如くミラー片(25)の反射面を凸面に形成 して、被加工面(71)へ向かう使用光(81)のビーム径を被 加工面(71)へ向けて拡大する。これによって、被加工面 (71)上の格子状の明暗は解消され、精度の高い加工が可 能となる。或いは、微小ミラーアレイ(2)と被加工物 (7)の間に、マイクロレンズアレイ等からなる光学系を

6

【0024】上記レーザ加工装置によれば、従来のマス ク等を用いることなく、微小ミラーアレイに対する駆動 電圧のON/OFF制御によって、任意の転写ドットパ ターンを瞬時にして構成することが出来る。従って、製 造コストの低減、生産能率の改善が可能である。又、レ ーザビームを微小ミラーアレイにて反射させて被加工物 に照射するので、例えば液晶マスクを用いた転写方式よ りも大きなパワーのレーザ源を用いることが出来、これ・ によって、レーザマーカシステムよりも更に高いエネル 断面形状に絞られた後、ホモジナイザー等のビーム均質 30 ギーが必要なレーザ加工装置にも応用分野が広がること になる。

介在させて、微小ミラーアレイ(2)からの反射レーザビ

ームを拡大することも可能である。

【0025】上記実施例の説明は、本発明を説明するた めのものであって、特許請求の範囲に記載の発明を限定 し、或は範囲を減縮する様に解すべきではない。又、本 発明の各部構成は上記実施例に限らず、特許請求の範囲 に記載の技術的範囲内で種々の変形が可能であることは 勿論である。

【図面の簡単な説明】

【図1】本発明に係るレーザ加工装置の構成を示す図で ある。

【図2】 微小ミラーアレイの概略構成を示す平面図であ

【図3】図2のA-A、線に沿う拡大断面図である。

【図4】反射面を凸面に形成した微小ミラーアレイの要 部を示す図である。

【図5】被加工物上の加工パターンと1回当りの加工領 域を示す平面図である。

【図6】1つの電極パターンの拡大平面図である。

【符号の説明】

7

- (2) 微小ミラーアレイ
- (25) ミラー片
- (26) 支柱片
- (3) 加工テーブル

(31) X-Y駆動機構

- (4) 制御装置
- (7) 被加工物
- (71) 被加工面

【図1】

【図2】

8

【図3】

(図4)

フロントページの続き

(51) Int. Cl . ⁶

識別記号 庁内整理番号 FI

技術表示箇所

B41J 2/465 H01S 3/101