Black-Box Features for Quality Estimation

Christian Buck (christian.buck@ed.ac.uk)

Task

Task:

- predict quality [1=unusable, .., 5=perfect]
- given:
- MT system + its training data
- human judgment on 1832 translations
- baseline feature set

Indicators & Named Entities

- binary features that indicate:
 - numbers
 - uppercase words
 - punctuation, e.g. apostrophe
- Named Entities using Stanford NER Tagger
- best feature:
- indicator of genitive case:

Neural Networks

- predict target words using vector space model
- to reduce dimensionality either:
 - filter to words in QE corpus
 - hash words, resembling bloom filter

- trained on 17M sentences
- features:
 - distance to expected vector (plot below)
 - geometric mean of expected word probabilities

Edit Distance

- edit distance to closest entry in corpus
- normalized by sentence length
- on source and target side
- on character and word level

Results (5-fold CV)

- ensemble of 500 neural networks
- improvements over baseline (72.7 / 57.7)

	RMSE	MAE
Indicators	+0.7	+0.5
Named Entities	+0.4	+0.5
Edit Distance	+0.0	+0.0
Neural Networks	+0.0	-0.1

Results (Shared Task)

indistinguishable from baseline :-(