PRISM: Practical Design and Orchestration of Frequency-Shifting RIS for NLoS mmWave Sensing

Aadesh Madnaik, Karthikeyan Sundaresan MARGA, Georgia Institute of Technology

NLoS mmWave Sensing

mmWave sensing deployments suffer due to lack of LoS in most environments

Indoor: Walls and furniture obstruct LoS for commodity radars

Outdoor: Buildings cause largescale shadowing for dual-function radar-communication systems

NLoS mmWave Sensing

• mmWave sensing deployments suffer due to lack of LoS in most environments

Indoor: Walls and furniture obstruct LoS for commodity radars

Outdoor: Buildings cause largescale shadowing for dual-function radar-communication systems

- Rely on effective **geometric modeling** of the environment

Ray tracing-based approaches

- Rely on effective **geometric modeling** of the environment

 Deployment of ML models on commodity devices requires high compute; ML models need to be finetuned to specific environments

Machine learning-based approaches

- Rely on effective **geometric modeling** of the environment
- Deployment of ML models on commodity devices requires high compute; ML models need to be finetuned to specific environments
- **Poor** (or no) **angular resolution** with passive reflector in NLoS regions with large multipath effects

RIS-based approaches

- Rely on effective **geometric modeling** of the environment
- Deployment of ML models on commodity devices requires high compute; ML models need to be finetuned to specific environments
- **Poor** (or no) **angular resolution** with passive reflector in NLoS regions with large multipath effects
- Active RIS require MIMO and/or fine-time coordination with radar

RIS-based approaches

- Rely on effective **geometric modeling** of the environment
- Deployment of ML models on commodity devices requires high compute; ML models need to be fine-tuned to specific environments
- **Poor** (or no) **angular resolution** with passive RIS in NLoS regions with large multipath effects
- Active RIS require MIMO and/or fine-time coordination with radar

Key Requirements

- 1. Resolve angles of incidence signals simultaneously
- Enable beamforming for multipath suppression
- 3. No active components / time synchronization with the radar
- **4. Seamlessly integrate** into the radar's signal processing

Basics of FMCW/Chirp Radars

Frequency Modulated Continuous Wave (FMCW)

Basics of FMCW/Chirp Radars

Static RIS only redirects the energy towards the target (beamforming)

Periodically alternating the RIS configuration creates a predictable frequency-

shift

Varying the RIS configuration at finer time-scales can create a second harmonic

Typical Received

frequency in a new direction

 Precisely controlling the RIS configuration has the potential to create beams in several directions, each with a different frequency-shift

Simultaneous frequency-shifting and beamforming with RIS satisfies all the key requirements!

- Resolve angles of incidence signals simultaneously
- Enable **beamforming** for multipath suppression
- No active components / time synchronization with the radar
- Seamlessly integrate into the radar's signal processing

Challenge of Joint Frequency-Shifting and Beamforming

Problem: How to obtain reliable frequency shifting in multiple directions simultaneously?

"Space-Time" Modulation

Space-Time Modulation Framework

- Analytical model for joint frequency-shifting and beamforming in wideband operation
 - **RIS Model**: S₁₁ parameters
 - Channel Model: Wideband delay-line model
 - Space-Time Code: Possible reflection coefficients (RIS configurations)

Space-Time Code (phase)

Space-Time Modulation Framework

- What time-varying RIS configuration produces frequency-shifts in the desired directions?
- Using a global optimization framework, we solve for the optimal space-time code

Space-Time Coding Framework

- Problem: Computing the wideband integral is the bottleneck
- Solution: Approximate the wideband integral with a <u>narrowband matrix approximation</u>
 - Modified low-rank approximation methodology (Theorem 1)

$$\widehat{\mathbf{G}}(\mathbf{\Phi}) = |\mathbf{W}\mathbf{\Phi}\widehat{\mathbf{H}}|^2 \approx \int |\mathbf{W}\mathbf{\Phi}\mathbf{H}(f)|^2 df$$

Narrowband
Approximation

Nideband
Integral

Solve using a global optimizer (like genetic algorithm)

$$\begin{split} \boldsymbol{\Phi}^* &= \operatorname{argmin}_{\boldsymbol{\Phi} \in \{\pm 1, \pm j\}^{L \times N}} \ | \boldsymbol{G}^* - \boldsymbol{G}(\boldsymbol{\Phi}) |_F \\ &\qquad \qquad \operatorname{difficult to compute} \end{split}$$

$$\approx \operatorname{argmin}_{\boldsymbol{\Phi} \in \{\pm 1, \pm j\}^{L \times N}} \ | \boldsymbol{G}^* - \widehat{\boldsymbol{G}}(\boldsymbol{\Phi}) |_F \\ &\qquad \qquad \operatorname{easy to compute} \end{split}$$

Evaluations

- Channel traces collected in indoor setup (real-world environment)
 - TYMTEK devices at 39 GHz (up-, down-converters, phased array)
 - 5G-compliant waveform generated using Open Air Interface
- Evaluations supplemented with additional test environments in Wireless InSite

Mobile Rx Setup

RIS Model

Evaluations

Non-line-of-sight evaluation study

- PRISM (our work): 5 beams from 0° to 45° ; harmonic frequency $f_0 = 2$ MHz
- Metasight: Multi-reflector setup with gray-coding for angular resolution
- Static RIS: Single-reflector setup without angular resolution

Median localization error is 31 cm

Two-target resolution F_1 score > 0.9 for separation > 1.5 m

Conclusions and Future Directions

Summary

- In mmWave sensing, angular resolution in NLoS regions is a problem
- PRISM proposes to encode the angles of the targets in NLoS regions using pseudo-ranges
- PRISM uses "space-time codes" to jointly beamform and create frequency shifts which translates
 to the desired pseudo-ranges
- PRISM seamlessly works with a radar, does not depend on any active components, and resolves all angles simultaneously

Future Directions

 Encoding angles in frequency-shifts is useful from the perspective of tracking NLoS users in a mmWave communication setup

Thank You!

