CS 348 - Homework 3

Relational Algebra

Spring 2024

Write your answers for questions 1 to 9 in this latex file. Use a latex editor, such as overleaf to edit and compile your latex to a PDF file. Submit your latex file to Brightspace. Submit your PDF file to Gradescope. Question 1 includes all relational algebra operators and symbols that you can use in your answers.

1	A	_
	Answer	•

 $\sigma_{trip.id < =7450}(trip)$

2. Answer:

 $\sigma_{trip.id < =7450}(trip)$

3. Answer:

 $\pi_{origin_station,start_d,duration,destination_station}(trips \bowtie (\rho_{name \rightarrow origin_station}(\rho_{id \rightarrow start_station_id}(station))) \bowtie (\rho_{name \rightarrow origin_station}(\rho_{id \rightarrow start_station_id}(station)))$

7	٨	nswer

 $\pi_{s1.name,s1.id,s2.name,s2.id}(\rho_{s1}(station) \times \rho_{s2}(station)) - \pi_{s1.name,s1.id,s2.name,s2.id}((\rho_{s1}(station) \times \rho_{s2}(station)))) - \pi_{s1.name,s1.id,s2.name,s2.id}((\rho_{s1}(station) \times \rho_{s2}(station))))) - \pi_{s1.name,s2.id}((\rho_{s1}(station) \times \rho_{s2}(station)))) - \pi_{s1.name,s2.id}((\rho_{s1}(station) \times \rho_{s2}(station))))) - \pi_{s2.name,s2.id}((\rho_{s1}(station) \times \rho_{s2}(station)))) - \pi_{s2.name,s2.id}((\rho_{s1}(station) \times \rho_{s2}(station))) - \pi_{s2.name,s2.id}((\rho_{s1}(station) \times \rho_{s2}(station)))) - \pi_{s2.name,s2.id}((\rho_{s1}(station) \times \rho_{s2}(station)))) - \pi_{s2.name,s2.id}((\rho_{s1}(station) \times \rho_{s2}(station)))) - \pi_{s2.name,s2.i$

8. Answer:

 $\pi_{station_status.station_id,station_name,station_status.time}(\sigma_{station_status.docks_available=station.dock_count}(station_status \bowtie station))$

9. Answer:

 $trips - \pi_{t1}(\rho_{t1}(trips) \bowtie_{t2.duration > t1.duration} \rho_{t2}(trips)))$

10. Answer:

b. The resulting number of tuples will always be n. Since the union operator does not

include duplicates, and $\pi_A S$ is a subset of $\pi_A R$, there will always be exactly n tuples.

c. Minimum: 0. The minimum case occurs when n = m and B = C. Set differences cannot be calculated on sets that have different attributes, so B must be the same attributes as C and must be associated with the same keys.

Maximum: n. If there exists no element in S where the attribute associated with the key in S is the same as the attribute associated with the key in R, then nothing will be removed from R.

d. Minimum: 0. The minimum case occurs when there is one element in S and one element in R, both with the same key. Since there is no S.A strictly greater than any given R.A, nothing will be joined.

Maximum: $n * \sum_{i=0}^{m-1} i$. The maximum case occurs when every key in R appears in S. As such, for each key in A, we will join every key in S greater than the key in A, resulting in the given sum.

e. Minimum: 1. The minimum case occurs when R and S have one element, and so only one combination of keys exists.

Maximum: m^2 . The maximum case occurs when n = m.