Advanced Econometrics

Lecture 2: An Introduction to Large Sample Asymptotics (Hansen Chapter 6)

Instructor: Ma, Jun

Renmin University of China

November 7, 2018

Convergence in Probability

②期望收敛 Xn T-th mean X ← EIXn-XIT→。 期望収敛一足是依礪部収物 · 五五成五

Definition

A random variable $Z_n \in \mathbb{R}$ converges in probability to Z as $n \stackrel{p}{\to} \infty$, denoted $Z_n \stackrel{p}{\to} Z$, or alternatively $\operatorname{plim}_{n \to \infty} Z_n = Z$, if for all $\delta > 0$,

 $\lim_{n\to\infty} \Pr\left(|Z_n - Z| \le \delta\right) = 1.$

We call Z the **probability limit** (or **plim**) of Z_n .

一下版列
$$\{an\}$$
 $an \rightarrow a \iff \forall \varepsilon > 0$, $\exists N \varepsilon$. $\forall n > N \varepsilon$, $|an - a| < \varepsilon$

$$- 列随和設置 $\{xn\}_{n}^{\infty}, \times GR$

$$\chi_{n \rightarrow X} \iff \forall \varepsilon > 0$$
. $\lim_{n \to \infty} \Pr(|x_{n} - x| > \varepsilon) = 0$$$

Xn->C => YE>O, lun Pr((Xn-cl>2)=0

大数定律

Weak Law of Large Numbers

「ディック」
$$f(x \in \mathbb{R}^n)$$
 の $f(x \in \mathbb{R}^n)$ が $f(x \in \mathbb{R}^n)$ が

Theorem / 切找雪天不等式》

Chebyshev's Inequality. For any random variable Z_n and constant $\delta > 0$

$$\Pr\left(|Z_n - \mathbb{E}Z_n| \ge \delta\right) \le \frac{\operatorname{var}\left(Z_n\right)}{\delta^2}$$

Weak Law of Large Numbers _/ (放本概率) 写实的设于

Theorem

If
$$Y_i$$
 are independent and identically distributed and $\mathbb{E}\left|Y\right|<\infty$, then as $n\to\infty$,

$$|Y| < \infty$$
,

4/12

(有限样本)性质银矿物)

 $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \xrightarrow{p} \mathbb{E}(Y)$

then as
$$n o \infty$$
,

then as
$$n \to \infty$$
,

Definition

Theorem

(1) cXn-s ca

a) xn+Yn-s a+b

(3) Xn/n - B a.b

- $\in \text{Pr}(|X_n-d| \geqslant \frac{\zeta}{2}) + \text{Pr}(|X_n-d| \geqslant$

Theorem If
$$Y_i$$
 are independent and identically distributed and $\mathbb{E}\left|Y\right|<\infty$,

一致的公

An Estimator
$$\hat{\theta}$$
 of a parameter θ is consistent if $\hat{\theta} \stackrel{p}{\to} \theta$ as $n \to \infty$.

Weak Law of Large Numbers

 $E||Y|| = \left(\frac{h}{2}, Y_i^2\right)^{\frac{1}{2}}$

 $X_{1} \rightarrow X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow X_{3$

 $\frac{1}{n}\sum_{i=1}^{n}X_{i}X_{i}'\longrightarrow p E(X_{i}X_{i}')$ | \(\frac{1}{2} \) \(\text{\chi} \) \(\text{

WLLN for random vectors

WLLN for random vectors
If
$$Y_i$$
 are independent and idea
then as $n \to \infty$,

then as
$$n \to \infty$$
,

If
$$m{Y}_i$$
 are independent and identically distributed and $\mathbb{E} \, \| m{Y} \| < \infty$,

 $ar{m{Y}} = rac{1}{n} \sum_{i=1}^{n} m{Y}_i \stackrel{p}{
ightarrow} \mathbb{E}\left(m{Y}\right)$

Theorem (continuous mapping theorem)

M-BCER hu 具体表面

=> hixi) = hici

$$\infty$$
,

@ Xn & 0 @ | Xn | - 30

O OEXNEYN, Yn -> > Xn-Bo

Weak Law of Large Numbers

Theorem
$$X_1, ..., X_N$$
. fid. $Vor(X_1) < \infty$ $M = X_1$ ($\Rightarrow E(X_1) < \infty$)

then $X_n = \frac{1}{h} \sum_{i=1}^{n} X_i - \frac{1}{h} M$

And $Pr([X_n - \mu(x_i)] = Pr([X_n - \mu)] > n_i)$

$$\leq \frac{1}{n^2 \epsilon^2} E[\frac{1}{2} (X_i - \mu)]^2$$

$$= \frac{1}{n^2 \epsilon^2} Vor(\frac{1}{2} EX_i)$$

$$= \frac{1}{n^2 \epsilon^2} Vor(X_i) + 1 cov(X_i, X_i)$$

$$= \frac{1}{n^2 \epsilon^2} = \frac{1}{n^2 \epsilon^2} = \frac{1}{n^2 \epsilon^2} = 0$$

$$F_n(\pi) = P_n(X \le \pi) \cdot \forall \pi, F_n(\pi) \rightarrow F(\pi),$$

 $F_n(\pi) = P_n(X \le \pi).$

Definition

Let \boldsymbol{Z}_n be a random vector with distribution $F_n\left(\boldsymbol{u}\right)=\Pr\left(\boldsymbol{Z}_n\leq\boldsymbol{u}\right)$. We say that \boldsymbol{Z}_n converges in distribution to \boldsymbol{Z} as $n\to\infty$, denoted $\boldsymbol{Z}_n\stackrel{d}{\to}\boldsymbol{Z}$, if for all \boldsymbol{u} at which $F\left(\boldsymbol{u}\right)=\Pr\left(\boldsymbol{Z}\leq\boldsymbol{u}\right)$ is continuous, $F_n\left(\boldsymbol{u}\right)\stackrel{d}{\to}F\left(\boldsymbol{u}\right)$ as $n\to\infty$.

Theorem

Lévy's Continuity Theorem. $Z_n \stackrel{d}{ o} Z$ if and only if $\mathbb{E}\left(\exp\left(t'Z_n\right)\right) \to \mathbb{E}\left(\exp\left(t'Z\right)\right)$ for every $t \in \mathbb{R}^k$.

Theorem

Cramér-Wold Device. $Z_n \stackrel{d}{\to} Z$ if and only if $\lambda' Z_n \stackrel{d}{\to} \lambda' Z$ for every $\lambda \in \mathbb{R}^k$ with $\lambda' \lambda = 1$.

为3%单

中心极限定理

Central Limit Theorem 一 依分布收敛的一个特例。

Theorem

Y是随城量

Lindeberg—**Lévy Central Limit Theorem.** If Y_i are independent and identically distributed and $\mathbb{E}\left|Y_i^2\right|<\infty$, then as $n\to\infty$

$$\sqrt{n}\left(\bar{Y}-\mu\right) \stackrel{d}{\to} N\left(0,\sigma^2\right)$$

where $\mu = \mathbb{E}(Y)$ and $\sigma^2 = \mathbb{E}(Y_i - \mu)^2$.

$$X_{n}-\mu \rightarrow 0$$
 $f_{n}(X_{n}-\mu) \rightarrow N(0,0^{2})$
 $f_{n}(X_{n}-\mu) \stackrel{2}{\sim} N(0,0^{2})$
 $f_{n}(X_{n}-\mu) \stackrel{2}{\sim} N(\mu \stackrel{2}{\sim} 0)$
 $f_{n}(X_{n}-\mu) \stackrel{2}{\sim} N(\mu \stackrel{2}{\sim} 0)$

Multivariate Central Limit Theorem

另元中心极限定理

Theorem

Y起随机间置

Multivariate Lindeberg—Lévy Central Limit Theorem. If

 $oldsymbol{Y}_i \in \mathbb{R}^k$ are independent and identically distributed and $\mathbb{E} \left\| oldsymbol{Y}_i
ight\|^2 < \infty$ then as $n \to \infty$

$$\sqrt{n}\left(\bar{\boldsymbol{Y}}-\boldsymbol{\mu}\right)\overset{d}{\to}\mathrm{N}\left(\boldsymbol{0},\boldsymbol{V}\right)$$

where
$$oldsymbol{\mu} = \mathbb{E}\left(oldsymbol{Y}
ight)$$
 and $oldsymbol{V} = \mathbb{E}\left(\left(oldsymbol{Y} - oldsymbol{\mu}
ight)\left(oldsymbol{Y} - oldsymbol{\mu}
ight)'
ight)$.

极限是一个多位正态.

Function of Moments

Theorem

Continuous Mapping Theorem (CMT). If $Z_n \stackrel{p}{\to} c$ as $n \to \infty$ and $q(\cdot)$ is continuous at c, then $q(\mathbf{Z}_n) \stackrel{p}{\to} q(c)$ as $n \to \infty$.

Theorem

If
$$m{Y}_i$$
 are independent and identically distributed, $m{\beta} = m{g}\left(\mathbb{E}\left(m{h}\left(m{Y}\right)\right)\right)$, $\mathbb{E}\left\|m{h}\left(m{Y}\right)\right\| < \infty$, and $m{g}\left(m{u}\right)$ is continuous at $m{u} = m{\mu}$, then for $\hat{m{\beta}} = m{g}\left(\frac{1}{n}\sum_{i=1}^n m{h}\left(m{Y}_i\right)\right)$, as $n \to \infty$, $\hat{m{\beta}} \stackrel{p}{\to} m{\beta}$.

Delta Method

Theorem

Theorem

Continuous Mapping Theorem

If $Z_n \stackrel{d}{\to} Z$ as $n \to \infty$ and $q: \mathbb{R}^m \to \mathbb{R}^k$ has the set of discontinuity points D_a such that $\Pr(\mathbf{Z} \in D_a) = 0$, then $\mathbf{q}(\mathbf{Z}_n) \stackrel{d}{\to} \mathbf{q}(\mathbf{Z})$ as $n \to \infty$.

397年

Slutsky's Theorem

If $Z_n \stackrel{d}{\to} Z$ and $C_n \stackrel{p}{\to} c$ as $n \to \infty$, then

- 1. $Z_n + C_n \stackrel{d}{\rightarrow} Z + c$
- 2. $Z_nC_n \stackrel{d}{\to} Z_C$
- 3. $\frac{Z_n}{C} \stackrel{d}{\to} \frac{Z}{c}$ if $c \neq 0$

Xn= 7n+ En 7n= N(0,02) => Xn = Nlo, 02) 1) Xn-3dx then Xn2-3dx2 4 X~N(0,1) X2, y3 @if (Xn, Yn) d(X,Y) then $xn^2 + yn^2 \rightarrow xn + yn$ f(Y)~ N(O,I) TRE正統的位 then X2+Y2~ X2 hw: xndx, xndr + xn+x dx+x (Xn, Yn) & (X,Y) => Xn+Yn & X+Y

Delta Method

 $\sqrt{n}\left(\boldsymbol{g}\left(\hat{\boldsymbol{\mu}}\right)-\boldsymbol{g}\left(\boldsymbol{\mu}\right)\right)\overset{d}{\to}\mathrm{N}\left(\boldsymbol{0},\boldsymbol{G}'\boldsymbol{V}\boldsymbol{G}\right)$

$$\begin{array}{c} \text{then } \sqrt{n} \left(h \left(\widehat{\theta}_{\text{h}} \right) - h(\theta) \right) \overset{\text{d}}{\to} \frac{\partial h(\textbf{X})}{\partial \textbf{X}} \\ \text{where } G\left(\boldsymbol{u} \right) = \frac{\partial}{\partial \boldsymbol{u}} g\left(\boldsymbol{u} \right)' \text{ and } G = G\left(\boldsymbol{\mu} \right). \text{ In particular, if } \\ \boldsymbol{\xi} \sim \mathrm{N}\left(\boldsymbol{0}, \boldsymbol{V} \right) \text{ then as } n \to \infty \\ \end{array}$$

$$(\overline{X}-\mu) \xrightarrow{A} N(0,\sigma^2)$$

$$(h_1, \overline{0}) \xrightarrow{A} N(\mu, \overline{A})$$

$$h_1 (\overline{X}h-\mu) \xrightarrow{A} h_1 (N(0,\sigma^2))$$
in a $(h_1, \overline{X}h)$

prof: O m(ô-0) dy => ê ->po

$$\Rightarrow \hat{\theta} - \theta \rightarrow p \theta \Rightarrow \hat{\theta} \rightarrow p \theta$$

3 (n(hiê)-hie)= h'io*) (nið-0)

> m (hib)-hib) -> h'(0) Y

$$\Theta h(\hat{\theta}) - h(\theta) = h'(\theta^*) (\hat{\theta} - \theta)$$

-2 h'(b) -2/

$$\frac{\theta}{\theta} \xrightarrow{\theta} \frac{\theta}{\theta}$$
 $\frac{\theta}{\theta} \xrightarrow{\phi} \frac{\theta}{\theta}$
 $\frac{\theta}{\theta} \xrightarrow{\phi} \frac{\theta}{\theta}$
 $\frac{\theta}{\theta} \xrightarrow{\phi} \frac{\theta}{\theta}$

$$|\theta^* - 0| \le |\theta - \theta|$$

$$-\beta \circ \Leftarrow \rightarrow 0$$

$$\Rightarrow h'(\theta^*) \rightarrow h'(0)$$

Delta Method

$$h(x) = \frac{1}{x} \quad h'(x) = -\frac{1}{x^2}$$

$$h'(-\mu) = -\frac{1}{x^2}$$

$$\int \int \left(\frac{1}{x_0} - \frac{1}{x_0}\right) dh'(\mu) \cdot \frac{1}{x_0} \sim N(0), \frac{1}{x_0}$$

$$\sqrt{n} (\overline{X}_{n}^{3} - \mu^{3}) \xrightarrow{d} [3\mu^{2}) \cdot 2 \sim N(0.9\mu^{4}o^{2})$$

$$h(x) = x^{3} \quad h'(\pi) = 3\pi^{2} \quad where$$

$$h'(\mu) = 3\mu^{2}$$

Theorem

 $\hat{\boldsymbol{\beta}} = \boldsymbol{g}\left(\frac{1}{n}\sum_{i=1}^{n}\boldsymbol{h}\left(\boldsymbol{Y}_{i}\right)\right)$, as $n \to \infty$

$$\sqrt{n}\left(\hat{oldsymbol{eta}}-oldsymbol{eta}
ight)\overset{d}{
ightarrow}\mathrm{N}\left(oldsymbol{0},oldsymbol{G}'oldsymbol{V}oldsymbol{G}
ight)$$

where
$$oldsymbol{V}=\mathbb{E}\left(\left(oldsymbol{h}\left(oldsymbol{Y}
ight)-oldsymbol{\mu}
ight)\left(oldsymbol{h}\left(oldsymbol{Y}
ight)-oldsymbol{\mu}
ight)'
ight)$$
 and $oldsymbol{G}=oldsymbol{G}\left(oldsymbol{\mu}
ight).$

MGF of M(Xn-M) -> MGF of Z

$$X_1, \dots, X_n$$
 isid mean μ . Variance σ^2

CLT: $\sqrt{n}(\overline{X}_n - \mu) \longrightarrow_{\mathcal{A}} \overline{Z} \sim N(0, \sigma^2)$
 $E e^{t\overline{Z}} = e^{\frac{\sigma^2 t^2}{2}}$

E exp(t. (h(xn-u))

= \frac{1}{2}(X:-\mu)

 $\approx \left| E \left(1 + \frac{t}{\sqrt{n}} \left(\chi_1 - \mu_1 \right) + \frac{t^2}{2n} \left(\chi_1 - \mu_1 \right)^2 \right) \right|^n$

 $= \left((+0 + \frac{1}{n} + \frac{1}{2} + \frac{1}{2})^{n} \right) = \left(1 + \frac{1}{n} + \frac{1}{2} + \frac{1}{2} \right)^{n} \rightarrow e^{\frac{1}{2} + \frac{1}{2}}$

(1+a) -> ea

$$= \left(\mathbb{E} \exp \left(\frac{1}{\sqrt{n}} (X_1 - \mu_1) \right)^n \right) \left(\frac{X \perp Y}{X} \Rightarrow \mathbb{E}(XY) = \mathbb{E}(X) \mathbb{E}(Y) \right)$$

$$= \left(\mathbb{E} \left(1 + \frac{1}{\sqrt{n}} (X_1 - \mu_1) + \frac{1}{2} + \frac{1}{2} (X_1 - \mu_1)^2 + O(-1) \right) \right)^n$$

弘充 (不考) b.13节 Xn->, D: Xn=Op(1) Xn つpo: Xn= Op(Yn) Xniの内がなけずい時間数 antR butR () Lim an = 0: an = o(1) Theorem: Xn->d Z => Xn有界: Xn=Op(1) [代表an仅叙到o的一个叙述]) >収敛 $x_n = O_{\beta}(a_n) \Leftrightarrow \frac{x_n}{a_n} = O_{\beta}(1)$ Um an = 0 : an = 0 (bn) $\sqrt{n}(\overline{X}_n - \mu) = Op(1)$ $\overline{\chi}_n - \mu = O_p(\overline{\chi_n})$ Xn= 从+ Optin) 附級是前 an=0(1) => an=0(1) 一个収敛物列一块有界 Op(1). Op(1) = Op(1) o(1) O(1) = o(1) $O_{\mathbf{p}}(1) + O_{\mathbf{p}}(1) = O_{\mathbf{p}}(1)$ D(1) + D(1) = D(1) $Op(1) \cdot Op(1) = Op(1)$ o(t) + O(t) = O(t)