5

5

CLAIMS:

What is claimed is:

- 1. An interconnect apparatus, comprising:
- a plurality of nodes; and
- a plurality of interconnect lines selectively coupling the nodes in a multiple level structure, the multiple level structure being arranged to include:
 - a plurality of J+1 levels in a hierarchy of levels T arranged from a level T equal to 0 to a level T equal to J;
 - a plurality of 2^{J-T} rings in each level T; and
 - a plurality of 2TK nodes in a ring.
- 2. An apparatus according to Claim 1 wherein a node A on a level T greater than 0 and less than J has a plurality of interconnections including:
 - an input interconnection from a node B on the level T;
 - an input interconnection from a node C on a level T+1;
 - an output interconnection to a node D on the level T; and
 - an output interconnection to a node E on a level T-1.
- 3. An apparatus according to Claim 2 wherein a node A on a level T greater than 0 and less than J has a plurality of interconnections including:
 - a control input interconnection from the node F on the level T-1; and
 - a control output interconnection to the node G on the level T.+1.
- 4. An apparatus according to Claim 2 wherein a node A on a level T greater than zero and less than J has a plurality of interconnections further including:
- an input interconnection from a node H on a level T-2; and an output interconnection to a node I on a level T+2.

- 5. An apparatus according to Claim 4 wherein a node A on a level T greater than zero and less than J has a plurality of interconnections further including:
 - a control input interconnection from a node J on a level T+2; and
 - a control output interconnection to a node K on a level T-2.
- An apparatus according to Claim 2 wherein at most one input interconnection of input connections B and C is active at one time.
- 7. An apparatus according to Claim 2 wherein at most one output interconnection of output connections D and E is active at one time.
- 8. An apparatus according to Claim 2 wherein messages communicated on the input interconnection from the node B on the level T have a higher priority than messages communicated on the input interconnection from the node C on the level T+1.
 - 9. An apparatus according to Claim 2 wherein:
 - a series of 2^TK sequential node A to node D interconnections on the level T traverses each of 2^TK nodes on one ring once.
- 10. An apparatus according to Claim 1 wherein the multiple level structure has a three-dimensional cylindrical topology in which each node has a location designated in three-dimensional cylindrical coordinates (r, θ, z) where radius r is an integer which specifies the cylinder number from 0 to J, θ is an integer which specifies the $2\pi\theta/K$ spacing of nodes around the circular cross-section of a cylinder from 0 to K-1, and height z is a binary integer which specifies distance along the z-axis from 0 to 2^{1} -1.
 - 11. An apparatus according to Claim 10 wherein:

10

5

10

a node $A(r,\theta,z)$ is interconnected with an immediate predecessor node $B(r,(\theta-1) \mod K, H_r(z))$ on level r for receiving message data;

node $A(r,\theta,z)$ is interconnected with a predecessor node $C(r+1,(\theta-1)\text{mod})$ K,z) on level r+1 for receiving message data;

node $A(r,\theta,z)$ is interconnected with an immediate successor node $D(r,(\theta+1) \mod K,h_r(z))$ on level r for sending message data;

node $A(r,\theta,z)$ is interconnected with a successor node $E(r-1,(\theta+1)\text{mod})$ K.z) on level r-1 for sending message data;

node $A(r,\theta,z)$ is interconnected with a node $F(r-1,\theta,H_r(z))$ on level r-1 for receiving a control input signal; and

node $A(r,\theta,z)$ is interconnected with a node $G(r+1,\theta,h_{r+1}(z))$ on level r+1for sending a control output signal.

12. An apparatus according to Claim 11 wherein:

height $z = [z_{J-1}, z_{J-2}, \ldots, z_r, z_{r-1}, \ldots, z_2, z_1, z_0]$ is converted to $h_r(z)$ on the level r by

reversing the order of low-order z bits from z_{r-1} to z_0] into the form

$$z = [z_{J-1}, z_{J-2}, ..., z_r, z_0, z_1, z_2, ..., z_{r-1}];$$

adding 1 (modulus 2r); and

reversing back the low-order z bits; and

height z is converted to H_r(z) on the level r by

reversing the order of low-order z bits from z_{r-1} to z₀] into the form

$$z \, = \, [z_{J-1}, \, z_{J-2}, \, \ldots \, , \, z_r, \, z_0, \, z_1, \, z_2, \, \ldots, \, z_{r-1}];$$

subtracting 1 (modulus 2r); and

reversing back the low-order z bits.

13. An apparatus according to Claim 11 wherein:

height z = [z_{J-1} , z_{J-2} , . . , z_r , z_{r-1} , . . , z_2 , z_1 , z_0] is converted to $h_r(z)$ on the level r by

reversing the order of low-order z bits from z_{r-1} to z₀] into the form $z = [z_{1-1}, z_{1-2}, ..., z_r, z_0, z_1, z_2, ..., z_{r-1}];$

5

5

adding J (modulus 2^r) in which J is an odd integer; and reversing back the low-order z bits; and

height z is converted to $H_r(z)$ on the level r by

reversing the order of low-order z bits from z_{r-1} to z_0] into the form

$$z = [z_{J-1}, z_{J-2}, ..., z_r, z_0, z_1, z_2, ..., z_{r-1}];$$

subtracting J (modulus 2r); and

reversing back the low-order z bits.

- 14. An apparatus according to Claim 10 wherein a node $A(J,\theta,z)$ on an outermost level J includes:
 - a first interconnection with a device outside of the multiple level structure for receiving message data; and
 - a second interconnection with a device outside of the multiple level structure for sending a control output signal.
- 15. An apparatus according to Claim 10 wherein a node $A(0,\theta,z)$ on an innermost level 0 includes:
 - a first interconnection with a device outside of the multiple level structure for sending message data; and
 - a second interconnection with a device outside of the multiple level structure for receiving a control output signal.
 - 16. An apparatus according to Claim 10 wherein:
 - on a level T, one ring is spanned in 2^T passes through the angles θ from 0 to K-1 so that 2^T heights z designate one ring.
 - 17. An apparatus according to Claim 1, further comprising: a plurality of devices coupled to the nodes of a level.
 - 18. An apparatus according to Claim 1, further comprising: a plurality of devices coupled to the nodes of level 0; and

10

5

- a plurality of interconnect lines coupling the plurality of devices to respective nodes in the level J.
- An apparatus according to Claim 18, wherein a device is coupled to a plurality of nodes in the level J.
 - 20. An apparatus according to Claim 1, wherein:

W_T rings are inteconnected on a level T;

W_{T-1} rings are interconnected on a level T-1; and

- the W_{T-1} rings on level T-1 are divided into W_T mutually exclusive collections $(C_1,\ C_2,\ \dots,\ C_{WT})$ such that each of the rings in collection C_n of level T-1 receive messages from ring R_M of level T.
- 21. A method of transmitting a message from a node N to a target destination in a first, a second and a third dimension of three dimensions in an interconnect structure arranged as a plurality of nodes in a topology of the three dimensions, the method comprising the steps of:
 - determining whether a node en route to the target destination in the first
 and second dimensions and advancing one level toward the
 destination level of the third dimension is blocked by another
 message;
 - advancing the message one level toward the destination level of the third dimension when the en route node is not blocked; and
 - moving the message in the first and second dimensions along a constant level in the third dimension otherwise.
 - 22. A method according to Claim 21, further comprising the steps of: specifying the first dimension to describe a plurality of levels, the second dimension to describe a plurality of nodes spanning a cross-section

10

15

5

- of a level, and the third dimension to describe a plurality of nodes in the cross-section of a level;
- sending a control signal from the node en route to the node N on a level q in the first dimension, the control signal specifying whether the node en route is blocked;
- timing transmission of a message using a global clock specifying timing intervals to keep integral time modulus the number of nodes in a cross-section of a level, the global clock time interval being equal to the second time interval and the first time interval being smaller than the global time interval;
- setting a first time interval α for moving the message in the second and third dimensions:
- setting a second time interval α β for advancing the message one level toward the destination level; and
- setting a third time interval for sending the control signal from the node en route to the node N, the third time interval being equal to β .
- 23. A method according to Claim 22, further comprising the steps of: timing the message moving and advancing steps so that the messages enter node N on level q at times having the form nα + qβ; and
- timing the control signal sending step so that the control signals enter node N on level q at times having the form $n\alpha + q\beta$ so long as the node en route is not blocked.
- 24. A method according to Claim 21, further comprising the steps of: timing transmission of a message using a global clock;
- setting a first time interval for moving the message in the second and third dimensions; and
- setting a second time interval for advancing the message one level toward the destination level.

5

10

5

25. A method according to Claim 24, further comprising the steps of:

specifying the first dimension to describe a plurality of levels, the second dimension to describe a plurality of nodes spanning a cross-section of a level, and the third dimension to describe a plurality of nodes in the cross-section of a level;

specifying timing interval of the global clock to keep integral time modulus
the number of nodes in a cross-section of a level, the global clock
time interval being equal to the second time interval and the first
time interval being smaller than the global time interval.

- 26. A method according to Claim 21 further comprising the steps of:
- defining a header and a payload in the message;
- encoding the destination in the second dimension in the header;
- determining whether a potentially en route node is en route to the target destination including the steps of:
 - comparing the encoded destination in the second dimension to an encoded position of the potentially en route node;
 - resolving that the potentially en route node is en route when the encoded destination is the same as the encoded position of the potentially en route node.
- 27. A method according to Claim 26 wherein:
 - the destination in the third dimension in the header is encoded in a plurality of single-bit codes, each single-bit code relating to a level of the third dimension;
 - the position of the potentially en route node is encoded in a single-bit code;
 and
 - the comparing step is a single-bit comparison of the level-specific, singlebit destination code and the single-bit position code.
 - 28. A method according to Claim 27 further comprising the step of:

- discarding the level-specific, single-bit destination code in the as the message advances one level.
- 29. A method according to Claim 21 further comprising the step of:
- on a level T, one ring is spanned in 2^T passes through the nodes in the second dimension so that 2^T nodes in the third dimension designate one ring.
- interconnecting the three dimensional interconnect structure so that
 advancing of levels from a start level to the destination level
 furnishes access to all nodes in a ring.
- 30. A method according to Claim 21 wherein a message injected into the interconnect structure at a node N(J, θ_1 , z_1) and targeted to exit the interconnect structure at a node N(0, θ_2 , z_2) and injected at a time ($\theta_2 \theta_1$)modK * $\alpha + J\beta$ causes the message to arrive at node N(0, θ_2 , z_2) at time 0.
- 31. A communication interconnect structure for transmitting messages, comprising:
 - a plurality of nodes arranged in a structure including:
 - a hierarchy of levels from a source level to a destination level;
 - a plurality of nodes spanning a cross-section of a level; and
 - a plurality of nodes in a cross-section span;
 - a plurality of interconnect lines coupling the nodes in the structure including for a node N on a level L:
 - a message input interconnect line coupled to a node on a previous level L+1;
 - a message input interconnect line coupled to a node on the level L;
 - a message output interconnect line coupled to a node on a subsequent level L-1; and
 - a message output interconnect line coupled to a node on a subsequent level L-1.

10

32. An interconnect structure according to Claim 31, further comprising: a control input interconnect line coupled to the node on the subsequent level L-1 which is coupled to the message output interconnect line;

and

means for receiving a message on the control input interconnect line and, in accordance with the message, selectively transmitting a message on the message output interconnect line coupled to the subsequent level L-1 node or on the message output interconnect line coupled to the level L.

33. An interconnect structure according to Claim 32, further comprising: a control output interconnect line coupled to the node on the previous level L+1 which is coupled to the message input interconnect line; means for determining that a message is blocking the node N; and means for communicating via the control input interconnect line informing

whether the node N is blocked.

whether the node N is blocked.

34. An interconnect structure according to Claim 33, further comprising: means for timing a message transmission time of a message transmitted from a level to a subsequent level and for timing a control signal transmission time of a control signal from a subsequent level to a level so that the control signal arrives first at a node.

5

5

35. An interconnect structure according to Claim 34, further comprising: a control output interconnect line coupled to the node on the previous level L+1 which is coupled to the message input interconnect line; means for determining that a message is blocking the node N; and means for communicating via the control input interconnect line informing

10

15

20

5

36. A method of communicating messages in an interconnect structure comprising the steps of:

arranging a plurality of nodes in a structure including a plurality of hierarchical levels from a source level to a destination level, a plurality of nodes spanning a cross-section of a level and a plurality of nodes in a cross-section span, the nodes having an input connection on the same level, an input connection on a previous level, an output connection on the same level and an output connection on a subsequent level;

specifying a destination node in the destination level for receiving a message;

originating the message at a node in the source level;

communicating a message from node to node including the steps of:

determining at a node whether a node on a subsequent level is directed toward the destination node;

determining at a node whether the node on the subsequent level is blocked by another message;

advancing the message to the node on the subsequent level when the node is directed toward the destination node and a node is unblocked; and

otherwise traversing the message to a node on the same level.

37. A method according to Claim 36 wherein the step of determining whether a node on a subsequent level is directed toward the destination node further comprises the steps of:

encoding the destination node in a message in the header field;

encoding a designation of node position for the nodes at each level; and determining that the node on the subsequent level is directed toward the destination node when the destination node encoding and the node position designation encoding correspond.

- 38. A communication interconnect structure comprising:
- a plurality of nodes; and
- a plurality of interconnect lines coupling the nodes, a node X of the plurality of nodes having:
 - a message input interconnect line coupled to a node A; and
 - a message input interconnect line coupled to a node B, the node X accepting a message input from the node A and a message input from the node B with a control interconnect line being coupled between the node A and the node B for communicating a control signal determining a priority between conflicting messages.