PARABOLA

MAX.MARKS: 100

Section-I (Single Correct Answer Type)

This section contains 20 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** option can be correct.

The point on the parabola $y^2 = 8x$ at which the normal is inclined at 60^0 to the x- axis has the

2) $(6, 4\sqrt{3})$ 3) $(-6, -4\sqrt{3})$ 4) $(-6, 4\sqrt{3})$

Marking Scheme: +4 for correct answer, 0 if not attempted and -1 if not correct.

1

co-ordinates

1)

 $(6,-4\sqrt{3})$

2. The point on the parabola $y^2 = 8x$ at which the normal is								is parallel to the line $x-2y+5=0$ is				
	1)	$\left(-\frac{1}{2},\ 2\right)$	2)	$\left(\frac{1}{2}, -2\right)$		3)	$\left(2,-\frac{1}{2}\right)$		4)	$\left(-2, \frac{1}{2}\right)$	$\left(\frac{1}{2}\right)$	
3.	The po	int on the Paral	bola y^2	=36x who	ose oi	rdinate	is three	times	the abso	cissa is		
	1) (0	, 0), (4, 12)	2) (1	1, 3), (4, 1	2)	3)	(4, 12)	2)	4)	none	of these	
4.	The co	-ordinates of th	ie extrei	mities of th	ie latu	ısrectur	n of the	e parabo	ola $5y^2$	=4x a	re	
	1)	$(1\sqrt{5}, 2\sqrt{5}), ($	$(-1\sqrt{5}, 2)$	$2\sqrt{5}$)			2)	$(1\sqrt{5},$	$2\sqrt{5}$),	$(1\sqrt{5}, -$	$(2\sqrt{5})$	
	3)	$(1\sqrt{5}, 4\sqrt{5}), ($	$(1\sqrt{5}, -1)$	$4\sqrt{5}$)			4)	$(1\sqrt{5}, -$	$4\sqrt{5}$),	$(-1\sqrt{5},$	$2\sqrt{5}$)	
5.	If the tangent to the Parabola makes an angle of 45° with x - $axis$ then the point of conta											
	1)	$(a\sqrt{2}, a\sqrt{2})$	2)	$(a\sqrt{4}, a\sqrt{4})$	$\sqrt{4}$)	3)	$(a\sqrt{2},$	$a\sqrt{4}$)	4)	$(a\sqrt{4},$	$(a\sqrt{2})$	
6.	If (2,0) is the vertex a	-				-					
	1)	(2, 0)	2)	(-2, 0)		3)	(4, 0)		4)	(-4, 0))	
7.	The en	ds of Latus rec	tum of I		-							
	1)	(-4, -2) and $(4, -2)$					nd(-4,					
	3)	(-4, -2) and $(4, -2)$	-2)	4))	(4, 2)a	and (-4,	2)				
8.	The tangent drawn at any point P to the Parabola $y^2 = 4ax$ meet the directrix at the point K, then the											
	_	which KP subte										
	1)	30^{0}	2)	45^{0}		3)	60^{0}		4)	90^{0}		
9.	The equation of the Parabola with its vertex at the origin, $axis$ on the y - $axis$ and passing through the											
	points	(6, -3) is										
	1)	$y^2 = 12x + 6$	2)	$x^2 = 12y$			3)	$x^2 =$	-12 <i>y</i>	4)	$y^2 = -12x +$	6
10.		uation of the Ta	angent t	to the Paral	bola j	$y^2 = 9.$	x which	goes t	hrough	the poin	nts (4, 10) is	
	1)	x + 4y + 1	= 0				9x +	-				
	3)	x - 4y + 36	= 0			4)	9x - 4	4y + 4	= 0			
11.	The po	int on the Paral	bola y^2	= 18x for	whicl	h the or	dinate	is three	times t	he abso	issa is	
	1)	(6, 2)	2)	(-2, -6)			3)	(3, 18))	4)	(2, 6)	
12.	If $lx +$	If $lx + my + n = 0$ is a Tangent to the Parabola $x^2 = y$, then condition of Tangent is										
	1)	$1^2 - 2m$		2) 1	_ 1 ,,,,	2,,2	2)	₂₀₂ 2 _	11n	4)	$1^2 - 4m$	

- If the line lx + my + n = 0 is a tangent to the parabola $y^2 = 4ax$ then locus of its point of contact is 13.
 - 1) A Straight line
- 2) A circle
- 3) A parabola
- 4) two straight lines
- The equation of common tangent to the circle $x^2 + y^2 = 2$ and parabola $y^2 = 8x$ is 14.
 - 1) v = x+1
- 2) y = x + 2
- 3) y = x-2
- 4) v = -x + 2
- The equation of the tangent to the parabola $y^2 = 16x$ which is perpendicular to the line y = 3x + 7 is 15.
 - 1) y 3x + 4 = 0

- 2) 3y-x+36=0 3) 3y+x-36=0 4) 3y+x+36=0
- The equation of the parabola whose vertex is (-1,-2), axis is vertical and which passes through the 16. point (3,6) is

- 1) $x^2 + 2x 2y 3 = 0$ 2) $2x^2 = 3y$ 3) $x^2 2x y + 3 = 0$ 4) none of these If the parabola $y^2 = 4x$ and passes through the point (1, -2) then the tangent at this point is 17.
 - 1) x + y 1 = 0 2) x y 1 = 0 3) x + y + 1 = 0 4) x y + 1 = 0
- The two parabola $y^2 = 4x$ and $x^2 = 4y$ intersect at a point p, whose abscissa is not zero, such that 18.
 - 1) They both touch each other at p
 - 2) They cut at right angles at p
 - 3) They tangents to each curve at p make complementary angles with the x-axis
 - 4) None of these
- 19. If the axis of a parabola is horizontal and it passes through the points (0, 0), (0, -1) and (6, 1) then its equation is
- 1) $y^2 + 3y x 4 = 0$ 2) $y^2 3y + x 4 = 0$ 3) $y^2 3y x 4 = 0$ 4) None of these
- The equation of the parabola whose vertex and focus are (0, 4) and (0, 2) respectively is 20.

- 1) $y^2 8x = 32$ 2) $y^2 + 8x = 32$ 3) $x^2 + 8y = 32$ 4) $x^2 8y = 32$

(Numerical Value Answer Type)

This section contains 10 questions. The answer to each question is a Numerical value. If the Answer in the decimals, Mark nearest Integer only. Have to answer any 5 only out of 10 questions and question will be evaluated according to the following marking scheme:

Marking scheme: +4 for correct answer, -1 in all other cases.

- 21. If the vertex of a parabola is at origin and directrix is x+5=0 then the latus rectum is
- 22. The Latusrectum of a Parabola whose directrix is x + y - 2 = 0 and focus is (3, -4)
- The angle between the Tangents drawn from the points (1, 4) to the Parabola $v^2 = 4x$ is 23.
- If the Parabola $y^2 = 4ax$ passes through (-3, 2) then length of its Latusrectum is 24.
- The focal distance of a point on the Parabola $y^2 = 16x$ whose ordinate is twice the abscissa is 25.
- A Parabola passing through the point (-4,-2) has its vertex at the origin and y-axis as its axis. The 26. Latusrectum of the Parabola is
- The angle of intersection between the curves $x^2 = 4(y+1)$ and $x^2 = -4(y+1)$ is 27.
- The equation of Latusrectum of a Parabola is x + y = 8 and the equation of a Tangent at the vertex is 28. x + y = 12 then length of the Latusrectum
- If the line 2x + y + k = 0 is normal to the parabola $y^2 = -8x$ the value of k will be 29.
- Angle between the curves $y^2 = 4(x+1)$ and $x^2 = 4(y+1)$ is 30.

KEY MATHEMATICS

1)	1	2)	2	3)	1	4)	2	5)	4
6)	3	7)	3	8)	4	9)	3	10)	3
11)	4	12)	4	13)	3	14)	2	15)	4
16)	1	17)	3	18)	3	19)	4	20)	3
21)	20	22)	4.24	23)	1	24)	1	25)	8
26)	8	27)	0	28)	11	29)	24	30	2

SOLUTIONS

1. Normal at
$$(h,k)$$
 to the parabola $y^2 = 8x$ is

y-k =
$$-\frac{k}{4}(x-h)$$
 Gradient = $\tan 60^0 = \sqrt{3} = \frac{-k}{4}$

$$k=-4\sqrt{3}$$
 and $h=6$

Hence required point is $h=(6,-4\sqrt{3})6$

Normal y-k=-
$$\frac{k}{4}(x-h)$$

$$kx - 4y + kh + 4k = 0$$
 Gradient $= \frac{-k}{4} = \frac{1}{2}, k = 2$

Substituting (h,k) and k=-2

We get
$$h = \frac{1}{2}$$
 Hence point is $\left(\frac{1}{2}, -2\right)$

Satisfies the parabola $y^2 = 8x$

$$3. y_1 = 3x,$$

According to given condition $9x_1^2 = 36x_1$

$$x_1 = 4,0; y_1 = 12,0$$

Hence the points are (0,0) and (4,12)

4.
$$y^2 = 4\left(\frac{1}{5}\right)x; a = \frac{1}{5}$$

focus is $\left(\frac{1}{5},0\right)$ and co-ordinates of latus rectum are

$$y^2 = \frac{4}{25}$$

 $y = \pm \frac{2}{5}$ or end points of latus rectum are

$$\left(\frac{1}{5},\pm\frac{2}{5}\right)$$

5. Parabola
$$y^2 = ax$$
 i.e, $y^2 = 4\left(\frac{a}{4}\right)x \longrightarrow (i)$

 \therefore Let point of contact is (x_1, y_1)

$$y - y_1 = \frac{2\left(\frac{a}{4}\right)}{y_1}$$

$$y = \frac{a}{2y}(x) - \frac{ax_1}{2y_1} + y_1$$

Here,
$$m = \frac{a}{2y_1} = \tan 45^\circ$$

$$\frac{a}{2y_1} = 1$$

$$x_1 = \frac{a}{2}$$
 from(i), $x_1 = \frac{a}{4}$

Point is
$$\left(\frac{a}{4}, \frac{a}{2}\right)$$

6.
$$vertex = (2,0)$$

Focus is
$$(2+2,0) = (4,0)$$

7.
$$x^2 = -8y, a = -2$$

So, focus =
$$(0, -2)$$

End of latus rectum =
$$(4,-2)$$
, $(-4,-2)$

Trick: Since the ends of rectus rectum lie on parabola,

So only points (-4,-2) and (4,-2) satisfy the parabola.

8. Since the axis of parabola is
$$y$$
-axis

Equation of parabola $x^2 = 4ay$, equation of parabola is $x^2 = -12y$

Science it passes through (6,-3)

$$36 = -12a \Rightarrow a = -3$$

9. Given that
$$y^2 = 9x$$

Here,
$$a = \frac{9}{4}$$

Now, equation of tangent the parabola $y^2 = 9x$ is

$$y = mx + \frac{\frac{9}{4}}{m}$$

If this tangent goes through the point (4,10),

Then
$$10 = 4m + \frac{9}{4m}$$

$$\Rightarrow (4m-9)(4m-1) = 0$$

$$\Rightarrow m = \frac{9}{4}, \frac{1}{4}$$

Equation of tangents are, 4y = x + 36 and y = -2x - k or

$$x-4y+36=0$$
 and $9x-4y+4=0$

10. Let
$$y = 3x$$

then
$$(3x)^2 = 18x$$

$$9x^2 = 18x$$

$$x = 2$$
 and $y = 6$

11. Given that
$$lx + my + n + o \rightarrow 1$$
 $x^2 = y \rightarrow 2$

The point of intersection of the line and parabola are obtained by solving 1&2 simultaneously Substituting the values of x

from 1& 2, we get
$$\left(\frac{my+n}{l}\right)^2 = y$$

$$\Rightarrow m^2 y^2 + n^2 + 2mny = yl^2$$

$$m^2y^2 + (2mn - l^2)y + n^2 = 0 \rightarrow 3$$

if line 3 touches the parabola(ii), then discriminant=o

$$\left(2mn-l^2\right)=4m^2n^2$$

$$\Rightarrow 4m^2n^2 + l^4 - 4mnl^2 = 4m^2n^2$$

$$l = 24mn$$

12. Equation of tangent to parabola
$$ty = x + at^2 \rightarrow (1)$$

Clearly, lx + my + n = 0 represents the same line

Hence,
$$\frac{1}{l} = -\frac{t}{m} = \frac{at^2}{n}$$

$$t = \frac{-m}{l}, t^2 = \frac{n}{la}$$

Eliminating
$$t$$
, we get, $m^2 = \frac{nl}{a}$

i.e,,an equation of parabola

13.
$$y^2 = 8x$$
, $\therefore 4a = 8$, $a = 2$

Any tangent of parabola , is
$$y = mx + \frac{a}{m}$$
 (or)

$$mx - y + \frac{2}{m} = 0$$

If it is a tangent to the circle $x^2 + y^2 = 2$,

Then perpendicular from center (0,0) is equal to radius $\sqrt{2}$

$$\frac{2/m}{\sqrt{m^2}+1}$$

(or)

$$\frac{4}{m^2} = 2\left(m^2 + 1\right)$$

$$m^4 + m^2 - 2 = 0$$

$$(m^2+2)(m^2-1)=0$$

 $m = \pm 1$ Hence the common tangent are

$$y = \pm (x+2)$$
: $y = x+2$

14. Line perpendicular to give line, $3y + x = \lambda$

$$y = \frac{-1}{3}x + \frac{\lambda}{3}$$

Here,
$$m = \frac{-1}{3}$$
, $c = \frac{\lambda}{3}$

If we compare $y^2 = 16x$ with $y^2 = 4ax$

Then
$$a = 4$$

Condition for tangency is

$$c = \frac{a}{m} \Rightarrow \frac{\lambda}{3} = \frac{4}{(-1/3)} \Rightarrow \lambda = 36$$

Required equation is; x+3y+36=0

15. $(x+1)^2 = 4a(y+2)$

Passes through (3,6)

$$16 = 4a.8$$

$$a = \frac{1}{2}$$

$$\left(x+1\right)^2 = 2\left(y+2\right)$$

16. Solving $x^2 = 4y$ and $y^2 = 4x$

We get
$$x = 0, y = 0$$
 and $x = 4, y = 4$

Therefore the co-ordinates of p are (4,4).

The equations of the tangents to the two parabolas at (4,4) are

$$2x - y - 4 = 0 \rightarrow (1)$$

$$x - 2y + 4 = 0 \rightarrow (2)$$

Now, $m_1 = \text{Slope of}(1) = 2$

$$m_2 = \text{Slope of}(2) = \frac{1}{2}$$

$$m_1 m_2 = 1$$
 i.e; $\tan \theta_1 \tan \theta_2 = 1$

17. There will be no constant term in a curve

Which passes through (0,0). So none is correct.

18. vertex (0,4); focus (0,2)

$$\therefore a = 2$$

Hence parabola is
$$(x-0)^2 = -4.2(y-4)$$

i.e.
$$x^2 + 8y = 32$$

19. principal axis, of parabolas are x - axis,

Therefore angle between them is 90° .

20. Here, $p(at^2, 2at)$ and s(a, 0)

If the tangent at
$$p, ty = x + at^2$$

Meets the directrix

$$x = -a$$
 at k,

Then
$$k = \left(-a, \frac{at^2 - a}{t}\right)$$

$$m_1 = \text{Slope of } sp = \frac{2at}{a(t^2 - 1)}$$

$$m^2$$
 = Slope of Sk = $\frac{a(t^2 - 1)}{-2at}$

Clearly

$$m_1 m_2 = -1$$

$$\therefore \angle psk = 90^{\circ}$$

21. S = (5,0)

Therefore, latus rectum = 4a = 20

22. Distance between focus and direct is $= \left| \frac{3 - 4 - 2}{\sqrt{3}} \right| = \frac{\pm 3}{\sqrt{3}}$

Hence latus rectum = $3\sqrt{2}$

(Science latus rectum is two times the distance between focus and direction)

23. Let point be (h,k)

then
$$k^2 = 16h$$

$$4h^2 = 16h$$

$$h = 0, h = 4$$

$$k = 0, k = 8$$

(0,0),(4,8). Hence focal distances are respectively 0+a=4

$$4+4=8(::a=4)$$

24. Let the equation of parabola is $x^2 = 4ay$

but
$$a = \frac{4}{-2} = -2$$

The equations $x^2 = -8y$ and

Latus rectum = 4a = 8

25. The point (-3,2) will satisfy the equation $y^2 = 4ax$

$$4 = -12a$$

$$4a = \frac{-4}{3} = \frac{4}{3}$$
 (taking positive sign)

26. Clearly,
$$a = \left| \frac{-8}{\sqrt{1+1}} \right| - \left| \frac{-12}{\sqrt{1+1}} \right| = \frac{4}{\sqrt{2}}$$

Length of latus rectum =
$$4a = 4 \times \frac{4}{\sqrt{2}} = 8\sqrt{2}$$

27. \therefore parabola passes through the point (1,-2)

Then
$$4 = 4a \Rightarrow a = 1$$

Formula for tangent

$$yy_1 = 2a(x+x_1)$$

$$-2y = 2(x+1)$$

Required tangent is x + y + 1 = 0

28. There will be constant term in a curve which passes through (0,0). So none is correct.

29. Any tangent
$$y^2 = 4x$$
 is $y = mx + \frac{1}{m}$

Since it passes through (1,4),

We have
$$4 = m + \frac{1}{m}$$

$$\Rightarrow m^2 - 4m + 1 = 0$$

$$\Rightarrow m_1 + m_2 = 4, m_1 m_2 = 1$$

$$\Rightarrow m_1 - m_2 = 2\sqrt{3}$$

If θ is the required angle, then

$$\tan \theta = \frac{2\sqrt{3}}{1+1} = \sqrt{3} \Rightarrow \theta = \frac{\pi}{3}$$

30. Point of intersection (0,1)

$$\frac{dy}{dx} = \frac{2x}{4}$$
 and $\frac{-2x}{4}$

$$m_1=0,m_2=0$$

$$\theta = 0^0$$

29. Any tangent $y^2 = 4x$ is $y = mx + \frac{1}{m}$

Since it passes through (1,4),

We have
$$4 = m + \frac{1}{m}$$

$$\Rightarrow m^2 - 4m + 1 = 0$$

$$\Rightarrow m_1 + m_2 = 4, m_1 m_2 = 1$$

$$\Rightarrow m_1 - m_2 = 2\sqrt{3}$$

If θ is the required angle, then

$$\tan \theta = \frac{2\sqrt{3}}{1+1} = \sqrt{3} \implies \theta = \frac{\pi}{3}$$

30. Point of intersection
$$(0,1)$$

$$\frac{dy}{dx} = \frac{2x}{4}$$
 and $\frac{-2x}{4}$

$$m_1 = 0, m_2 = 0$$