Manifolds

David Wiedemann

Table des matières

1	Rec	ар	2
2	Manifolds		3
	2.1	Smooth maps	4
	2.2	Partitions of Unity	4
\mathbf{L}^{\dagger}	1	of Theorems Definition (Basis)	3
	2	Definition (Chart)	3
	3	Definition (Manifold)	3
	3	Theorem (Paracompactness)	4
	4	Theorem (Partition of unity)	5

Lecture 1: Introduction

Wed 12 Oct

1 Recap

Recall theorems about differentiable maps

— Implicit function theorem

For $U \subset \mathbb{R}^p$, $V \subset \mathbb{R}^q$, $f \in C^k(U \times V, \mathbb{R}^q)$, $1 \le k \le \infty$ and $(a, b) \in U \times V$ st.

$$D_2 f(a,b) = D(f(a,-))(b)$$

is invertible. Then there exists $a\in U_1\subset U, b\in V_1\subset V$ and $\phi\in C^k(U_1,V_1)$ such that

$$f(x, x') = y_0$$

iff $x' = \phi(x)$

— Inverse function theorem

If $U \subset \mathbb{R}^p$ is open and $f \in C^k(U, \mathbb{R}^q), 1 \leq k \leq \infty, a \in U$ such that

is invertible, then there are $a \in U_1 \subset U$ and $f(a) \in V_1 \subset \mathbb{R}^q$ open such that

$$f|_{U_1}:U_1\to V_1$$

is a diffeomorphism and

$$Df^{-1}|_{U}(x) = (Df(f^{-1}|_{U}(x)))^{-1}$$

for all $x \in U$ in particular f^{-1} is C^k

— Rank theorem

 $U\subset\mathbb{R}^p$ open and $f\in C^k(U,\mathbb{R}^q), 1\leq k\leq\infty,\ a\in U, b\coloneqq f(a), r=rank(Df(a))$ then there are diffeomorphisms

$$\psi: U_{\psi} \to V_{\psi}$$
 and $\phi: U_{\phi} \to V_{\psi}$

with $U_{\psi}, V_{\psi} \subset \mathbb{R}^p$ and $U_{\phi}, V_{\phi} \subset \mathbb{R}^q$ such that

$$\phi \circ f \circ \psi(x_1, \dots, x_p) = (x_1, \dots, x_r, \tilde{f}(x_1, \dots, x_p))$$

If rk(D(f)) is contant around r, then we can obtain $\tilde{f} = 0$

2 Manifolds

Definition 1 (Basis)

A basis for a topology on X is a collection B of open sets such that every open set in X is the union of sets in B.

X is called second countable if it has a countable topological basis.

Definition 2 (Chart)

Let X be a topological space

- 1. A chart on X is a pair (U, ϕ) where $U \subset X$ open and $\phi : U \to \mathbb{R}^n$ for some n which is a homeomorphism onto an open subset.
- 2. An atlas is a collection of charts $A = \{(U_i, \phi_i) | i \in I\}$ such that $X = \bigcup_{i \in I} U_i$
- 3. A is called smooth (C^k , continuous, holomorphic, algebraic,...) if and only if for any

$$(U_i, \phi_i)_{i \in \{1,2\}} \in A$$

we have $\phi_1 \circ \phi_2^{-1}$ is smooth (C^k ,...) wherever it is defined.

4. A chart (U, ϕ) is compatible with an atlas A if and only if

$$A \cup \{(u,\phi)\}$$

 $is\ smooth$

5. An atlas A is maximal if it contains all charts compatible with A. For any atlas A (not necessarily maximal), denote A_{max} the maximal atlas containing it.

 $This\ maximal\ atlas\ is\ necessarily\ unique$

Definition 3 (Manifold)

A smooth manifold of dimension n is a second countable Hausdorrf space with a maximal smooth atlas of dimension n.

Why Hausdorff?

Consider \mathbb{R}/\sim , $x\sim y\iff |x|=|y|>1$, this space is locally homeomorphic to \mathbb{R} but the points x and y cannot be separated.

Why second countable?

Take a disjoint union of infinitely many manifolds.

For a connected example, take $\aleph_1 \times [0,1)$ with the order topology.

2.1 Smooth maps

A function $f: M \to N$ between smooth manifolds is called smooth if for each $p \in M$, there are charts $(U, \phi), (V, \psi)$ $p \in U \subset M, f(p) \in V \subset N$ such that

$$\psi \circ f \circ \phi^{-1}$$

is smooth.

f smooth implies $\tilde{\psi} \circ f \circ \tilde{\phi}^{-1}$ is smooth for any charts $(\tilde{U}, \tilde{\phi}), (\tilde{V}, \tilde{\psi})$ where this is defined.

Lecture 2: Smooth maps

Mon 17 Oct

Example (Projective Spaces)

Let $K = \mathbb{R}$ or \mathbb{C} , take $K\mathbb{P}^n = \{ \text{ all lines in } K^{n+1} \} = K^{n+1} \setminus 0 / \sim.$

Then $x \sim y \iff \exists \lambda x = \lambda y l$

We have $\mathbb{RP}^n = S^n/x \sim -x = S^n/\mathbb{Z}/2\mathbb{Z}$ Similarly, $\mathbb{CP}^n = S^{2n+1}/S^1$.

To give projective space a smooth structure, we introduce homogeneous coordinates.

We write $[x] = [x_0 : \ldots : x_n]$ for the equivalence class of x.

For $0 \le j \le n$ put

$$U_i = \{ [x] \in \mathbb{KP}^n / x_i \neq 0 \}$$

and $\phi_j: U_j \to K^n$ is a chart sending $[x] \to (\frac{x_0}{x_j}, \dots, \frac{x_n}{x_j})$

Remark

- 1. Composition of smooth maps are smooth.
- 2. If $M \xrightarrow{f} N$ is a diffeomorphism if it is a smooth map whose inverse is smooth.

Partitions of Unity 2.2

Theorem 3 (Paracompactness)

Let M be a smooth manifold.

Let (U_{α}) be an open covering of M.

Then there exists a locally finite refinement $(V_{\beta})_{\beta \in B}$ that is

- 1. locally finite, ie. each point has an open neighbourhood which meets finitely many V_{β} .
- 2. $\forall \beta \exists \alpha V_{\beta} \subset U_{\alpha}$

More precisely, we can choose V_{β} such that there exist charts $\psi_{\beta}: V_{\beta} \to \{x \in \mathbb{R}^n | |x| < 3\}$ and such that M is covered by

$$M = \bigcup_{\beta \in B} \psi_{\beta}^{-1}(\{x \in \mathbb{R}^n | |x| < 1\})$$

Proof

From the definition, it is clear that any manifold is locally compact. Hence there exist compact sets

$$K_1 \subset K_2^o \subset K_2 \subset K_3^o \dots$$

sich that $M = \bigcup K_j$.

 $K_{j+1} \setminus K_j^o$ is compact, hence for $p \in K_{j+1} \setminus K_j^o$, there exists (V_p, ϕ_p) with $\phi_p(V_p) = B(0,3), V_p \subset K_{j+2}^o \setminus K_{j-1}$ and $V_p \subset U_\alpha$. By compactness $\exists p_{j_1}, \ldots, p_{jr_j}$ such that

$$K_{j+1} \setminus K_j^o = \bigcup \phi_{jl}^{-1}(B(0,1))$$

The union of all these charts is a locally finite refinement with the desired properties. \Box

We can now define a map $f_1: \mathbb{R} \to \mathbb{R}$, $f_1(t) = e^{-\frac{1}{t}}$ if t > 0 and 0 if not. f_1 is $C^{\infty}(\mathbb{R})$.

Now, define $f_2(t) = \frac{f_1(t)}{f_1(t) + f_1(1-t)}$ and then $f_3(t) = f_2(2+t)f_2(2-t)$. We can now define $f_4 : \mathbb{R}^n \to \mathbb{R}$ as $f_4(x) = f_3(|x|)$

Theorem 4 (Partition of unity)

Let M be a C^{∞} manifold and (U_{α}) an open covering. There exist $\phi_U \in C^{\infty}(M)$ such that

- 1. $0 \le \phi_n \le 1$
- 2. Supp ϕ_n is locally finite
- 3. $\forall n \exists \alpha \in A, \text{Supp } \phi_n \subset U_\alpha$
- 4. $\forall p \in M, \sum_{n=1}^{\infty} \phi_n(p) = 1$