Stewart House 32 Russell Square London WC1B 5DN

Jan 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

	Question number	Scheme	
	1. (a)	Collection / group / set of individuals or items	B1
	(b)	A r.v. that is a function of known observations from a population	B1B1 (
	(c)	College students. Mean approval rating of 75%	B1.B1 (
	(d)	(Probability) distribution of all possible mean approval ratings of sample size 50 Dependent	B1 B1
			7
	2.	$H_0: \lambda = 2.5; H_1: \lambda > 2.5 \text{ (Accept } H_0: \lambda = 10; H_1: \lambda > 10)$	B1,B1
ļ		1 week $X \sim Po(2.5)$, 4 weeks $X \sim Po(10)$ $Po(10)$	B1
		$P(X \ge 14) = 1 - 0.8645 = 0.1355$ Insufficient evidence to reject H ₀ Sales have not increased after	M1A1 M1
		appointment of new salesman. Context [Note; $P(X \le 14) = 0.9165$, $P(X \le 15) = 0.9153$ for M1A1]	Alft
)			(7)
	3, (a)	X is no of passengers who do not turn up for this flight.	M1
	in the control of the	$X \sim Bin(200, 0.03)$ both	A1
	(b)	$X \sim Po(6)$	B1
		P(X < 4) = 0.1512 Strict inequality, 0.1512	M1A1
	(c)	P(X > 4) = 1 - 0.2851 = 0.7149 [Notes: (b)Use of N(6,5.82) B1 P(X<3.5)M1A0 (c) P(X>4.5)M1A0 (b) Use of N(6,6) B0 (b) Exact Bin no credit.]	MIAI 7

Stewart House 32 Russell Square London WC1B 5DN

Jan 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme				4007200	
					1/ 2 3	
		•				
					5	
4.	Continuous Uniform (Recta	noular) V 77[0 14]			į	
(a)	Continuous Onnorm (Recta	ingular), N ~ 0 [0,14]		B1,B1		
(b)	$E(X) = \frac{(14+0)}{2} = 7$		Form & sub, 7	•	(2	
	2 Mean arrival time is 8.02am		8.02am	M1A1	4	
				A1	d d	
(3)	$P(X \le x) = \int_0^x \frac{1}{14} dt = \frac{x}{14}$		Tuta and X		(3	
(c)	$P(X \le X) = \int_0^1 \frac{1}{14} dt = \frac{1}{14}$		Integral, $\frac{x}{14}$	M1,A1	t)	
	. 0	<i>x</i> <0				
	•					
	$F(x) = \frac{x}{14}$	$0 \le x \le 14$	Centre	B1ft		
	1 .	<i>x</i> >14	Ends	2216	. :	
				B 1		
(d)	P(X > 10) = 1 - F(10)	Require '1 minu	ns'or valid integral	M1	(4	
	$=1-\frac{10}{14}=\frac{2}{7}$		$\frac{2}{7}$	M1 A1		
					Q2	
					· ·	

Stewart House 32 Russell Square London WC1B 5DN

Jen 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

	Question number	Scheme		Marks
	5.(a)	Failed connections occur singly, independe constant rate of 3 per hour, randomly	ntly and at a Any two	B1,B1
	(b) (i)	X is no of failed connections every hour. P	(X=0)=0.0498	(2 M1A1
	(ħ)	P(X > 4) = 1 - 0.8153 = 0.1847	Require '1 minus', 0.1847	M1A1
	(c)	$X \sim Po(24)$		B1 (1
	(d)	Y is no of users that fail to connect at their $Y \sim N(24,24)$	first attempt Normal, both	B1,B1
		$P(Y \ge 12) = 1 - P(Z < \frac{11.5 - 24}{\sqrt{24}})$	From above, all correct	M1,A1
٠		= P(Z < -2.55) $= 0.9946$	-2.55	A1 A1 13 (6
	6. (a)	$X \sim Bin(20, 0.4)$	Bin, 20 & 0.4	B1,B1
	(b)	$P(5 < X < 15) = 0.9984 - 0.1256 $ ≤ 146 $= 0.8728$	&≤5, Subtract, both correct	(2 M1,M1(dep) A1A1
$\langle \dot{\gamma} \rangle$	(c)	$E(X) = 20 \times 0.4 = 8$	8	B1
		$sd = \sqrt{20 \times 0.4 \times 0.6} = 2.19$	Sub in \sqrt{npq} , 2.19	M1,A1 (3
	(d)	$H_0: p = 0.4$ $H_1: p > 0.4$ $P(X \ge 8 n = 10, p = 0.4) = 1 - 0.9877$ = 0.0123	Both Require '1 minus'	B1 M1 A1
		Reject H ₀ Proportion of diners who prefer to eat orgatishigher than trade magazine's claim [Note; $P(X \le 6) = 0.9452$, $P(X \le 7) = 0.9877$ M	Context	M1 A1ft

Stewart House 32 Russell Square London WC1B 5DN

Jen 2002

Advanced Subsidiary /Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number		Scheme			Marks	
7. (a)	$8k = 1, k = \frac{1}{8}$			CSO	B1	
(b)	F(m) = 0.5				M1	(1
	$x^2 + 2x - 4$ $x = \sqrt{5}$	4 = 0 -1 = 1.236		awrt 1.24	A1 A1	(
	. 1, 1	0.4	Differentiation	on all correct		•
(c)	$f(x) = \frac{1}{4}(x+1),$			on, all correct	M1A1	
		=0,	otherwise 0	and ranges	A1	(
(d)		•				
	f(x) 3 4 1		Paratrich Liver		B1 vals& labels B1 slope B1 f(x)=0	
	4		lanare established			1
	0		2	K		
(e)	mode= 2			2	B1	
(f)	$E(X) = \int_0^2 x(\frac{1}{4}(x))^2 dx$	(+1))dx	Atte	$\operatorname{mpt} \int_0^2 x f(x) dx$	M1	
	$= \left[\left(\frac{1}{12} x^2 \right) \right]$	$\left[+\frac{1}{8}x^2 \right]_0^2$	Express	ion all correct	A1	
(g)	$=\frac{7}{6}$	$mode \Rightarrow negative$	skew C	comparison, both	A1 M1A1	
					(1