Bellringer

Think about substances that you encounter in a typical day and make two lists:

 One list should contain substances that might be acids.

•The other should contain substances that might be bases.

Did you Know?

The *hydrangea macrophylla* blossoms in pink or blue, depending on soil pH. In acid soils the flowers will be blue, in alkaline soils the flowers will be pink.

What Are Acids and Bases?

Objectives:

- list the properties of acids and bases.
- define and give examples of Arrhenius acids and bases.
- Compare the Brønsted-Lowry definition of acids and bases with the Arrhenius definitions of acids and bases.

Acids

Tart, sour, or sharp taste.

Think of citrus fruits.

Think of sour candy—look at ingredient list for an acid.

Acids

Tart, sour, or sharp taste.

Think of citrus fruits.

Think of sour candy—look at ingredient list for an acid.

Are electrolytes.

<u>Acids</u>

Tart, sour, or sharp taste.

Think of citrus fruits.

Think of sour candy—look at ingredient list for an acid.

- Are electrolytes.
- They react with many metals.

If the metal is above hydrogen in the activity series, H₂ gas will be generated.

Acids

Tart, sour, or sharp taste.

Think of citrus fruits.

Think of sour candy—look at

- ingredient list for an acid.
- Are electrolytes.
- They react with many metals.

If the metal is above hydrogen in the activity series, H₂ gas will be generated.

pH below 7 → 0

Acids

Tart, sour, or sharp taste.

Think of citrus fruits.

Think of sour candy—look at ingredient list for an acid.

- Are electrolytes.
- They react with many metals.

If the metal is above hydrogen in the activity series, H₂ gas will be generated.

- pH below $7 \rightarrow 0$
- Litmus paper is red
 Phenolphthalein is clear.

Some acids you may recognize:

Strong acids -> dissociate Completely	Weak acids - dissociate partially
hydrochloric acid, HCl	acetic acid, CH ₃ COOH
hydrobromic acid, HBr	hydrocyanic acid, HCN
hydriodic acid, HI	hydrofluoric acid, HF
nitric acid, HNO ₃	nitrous acid, HNO ₂
sulfuric acid, H ₂ SO ₄	sulfurous acid, H ₂ SO ₃
perchloric acid, HClO ₄	hypochlorous acid, HOCl
periodic acid, HIO ₄	phosphoric acid, H ₃ PO ₄

Examples of Acids

Toilet bowl cleaner

Vinegar

Lactic acid build up in muscles

Coffee / tea

Soda Lemon juice

Acids

- Tart, sour, or sharp taste.
 - Think of citrus fruits.

 Think of sour candy—look at
 - ingredient list for an acid.
- Are electrolytes.
- They react with many metals.
 - If the metal is above hydrogen in the activity series, H₂ gas will be generated.
- pH below 7 → 0
- Litmus paper is red Phenolphthalein is clear.

Bases

Slippery to the touch.

Slippery because bases react with the oils in your skin, converting them into soaps.

Acids

- Tart, sour, or sharp taste.
 - Think of citrus fruits.

 Think of sour candy—look at ingredient list for an acid.
- Are electrolytes.
- They react with many metals.
 If the metal is above hydrogen in the activity series, H₂ gas will be generated.
- pH below 7 → 0
- Litmus paper is red Phenolphthalein is clear.

Bases

- Slippery to the touch.
 - Slippery because bases react with the oils in your skin, converting them into soaps.
- Are electrolytes.

Acids

- Tart, sour, or sharp taste.
 - Think of citrus fruits.

 Think of sour candy—look at ingredient list for an acid.
- Are electrolytes.
- They react with many metals.
 If the metal is above hydrogen in the activity series, H₂ gas will be generated.
- pH below 7 → 0
- Litmus paper is red Phenolphthalein is clear.

Bases

- Slippery to the touch.
 - Slippery because bases react with the oils in your skin, converting them into soaps.
- Are electrolytes.
- Taste bitter.

Many medicines, such as cough syrup, have a flavor added to overcome bitter taste from base.

Acids

- Tart, sour, or sharp taste.
 - Think of citrus fruits.

 Think of sour candy—look at ingredient list for an acid.
- Are electrolytes.
- They react with many metals.
 If the metal is above hydrogen in the activity series, H₂ gas will be generated.
- pH below $7 \rightarrow 0$
- Litmus paper is red Phenolphthalein is clear.

Bases

- Slippery to the touch.
 - Slippery because bases react with the oils in your skin, converting them into soaps.
- Are electrolytes.
- Taste bitter.

 Many medicines, such as cough syrup, have a flavor added to overcome bitter taste from base.
- pH above 7 → 14
- Litmus paper is blue;
 Phenolphthalein is pink.

Some bases you may recognize:

Strong bases	Weak bases
sodium hydroxide, NaOH	ammonia, NH ₃
potassium hydroxide, KOH	sodium carbonate, Na ₂ CO ₃
calcium hydroxide, Ca(OH) ₂	potassium carbonate, K ₂ CO ₃
barium hydroxide, Ba(OH) ₂	aniline, C ₆ H ₅ NH ₂
sodium phosphate, Na ₃ PO ₄	trimethylamine, (CH ₃) ₃ N

Examples of Bases

astringent (causes contraction of pores)

ammonia

Window cleaner

Hand soap

blood

Baking soda

bleach

Baking Soda

Milk of magnesia (antacid)

Arrhenius

- Acid: any substance that, when added to water, increases the hydronium ion concentration [H₃O+] or [H+]
 -Donate H+
- Base: any substance that, when added to water, increases the hydroxide ion concentration [OH⁻]
 - Donate OH-

Identify Arrhenius acid and base

HCI	
H ₂ SO ₄	
NaOH	
H_3PO_4	
Ba(OH) ₂	
HNO ₃	

Identify Arrhenius acid and base

Limitations of Arrhenius's acid and base model

Brønsted-Lowry

Acid: any substance that can donate a proton (H+)

Base: any substance that accepts a proton(H+)

Stop & Write & Discuss

- How are the Arrhenius and Brønsted-Lowry definitions for acids and bases different?
- How are they the similar?
- What are the limitations of each?
- Which do you find easier to use?

*Brønsted-Lowry Acids Acid - proton donor (H+)

All Arrhenius acids are Bronsted-Lowry acids
All Bronsted-Lowry acids are not Arrhenius acids

I. Acid = proton donor

HCI +
$$H_2O ==> H_3O^+ + CI^-$$

acid base conjugate and base

*Brønsted-Lowry Bases Base - proton acceptor

All Arrhenius bases are Brønsted-Lowry bases.

Not all Brønsted-Lowry bases are Arrhenius bases:

Ex:
$$NH_3$$
 (aq) Na_2CO_3 (aq)

$$NH_3$$
 + H_2O ==> NH_4 + + OH^-
base acid

*Conjugate Acids & Conjugate Başes $NH_3 + H_2O \iff NH_4^+ + OH_5$ base acid conj. base

A <u>conjugate acid</u> is the particle formed when a base has accepted a hydrogen ion.

A <u>conjugate base</u> is the particle formed when an acid has donated a hydrogen ion.

$$HCl + H_2O <==> H_3O^+ + Cl$$
acid base conj. acid conj. base

*Conjugate Acid-Base Pairs

Conjugate acid-base pairs differ only by one hydrogen ion. Ex: H₂O, OH⁻ or H₃O⁺, H₂O

$$H_2O$$
 + H_2O <==> H_3O^+ OH^- acid base

Amphoteric - acting both as an acid and as a base Example: water

 Why? Because water can act as a proton donor and it can act as a proton acceptor.

*Lewis Theory

Acid - electron pair acceptor Base - electron pair donor

OPPOSITE OF PROTONS!