Az informatika logikai alapjai 8. feladatsor

Interpretáció és változó értékelés

<U,ρ> interpretáció:

- 1. U a város lakóinak halmaza: {lakó1, lakó2, lakó3, lakó4, lakó5, ...}
- 2. ρ a következő függvény:
 - a) ρ(Péter)=lakó1, ρ(én)=lakó2, ρ(Juli néni)=lakó3, ρ(Mari néni)=lakó4
 - b) ρ(édesanyja(_)) olyan függvény, ahol lakó2→lakó4, lakó1→lakó3
 - c) ρ(tanul(_)) = { lakό1, lakό2 }
 ρ(dolgozik(_)) = { lakό4 }
 ρ(munkatársak(_,_)) =
 = { (lakό2,lakό5), (lakό5,lakó2), (lakó3,lakó4), (lakó4,lakó3) }

```
F(0) = \{ pelar, en ( fuli-ue'ui ) Heniul'ui \}
F(1) = \{ i des augia(-) \}
P(1) = \{ taul(-), dolgosi'(-) \}
P(2) = \{ uure + ursch (-1-) \}
```

Var={x,y,z,...}

- 3. v: értékelés
 - egy értékelés: v(x)=lakó1 (ekkor munkatársak(én,x) hamis)
 - egy másik értékelés: v(x)=lakó5 (ekkor munkatársak(én,x) igaz

Interpretáció és változó értékelés

<U,ρ> interpretáció:

- 1. U a város lakóinak halmaza: {lakó1, lakó2, lakó3, lakó4, lakó5, ...}
- 2. ρ a következő függvény:
 - a) ρ(Péter)=lakó1, ρ(én)=lakó2, ρ(Juli néni)=lakó3, ρ(Mari néni)=lakó4
 - b) ρ(édesanyja(_)) olyan függvény, ahol lakó2→lakó4, lakó1→lakó3
 - c) ρ(tanul(_)) = { lakó1, lakó2 }
 ρ(dolgozik(_)) = { lakó4 }
 ρ(munkatársak(_,_)) =
 = { (lakó2, lakó5), (lakó5, lakó2), (lakó3, lakó4), (lakó4, lakó3) }

```
F(0) = \{ peler, ein ( prei-ue in ), Henrich in \}
F(1) = \{ i des aug ja (-) \}
P(1) = \{ taul (-), dolgosi (-) \}
P(2) = \{ nume + arsch (-1-) \}
```

Var={x,y,z,...}

3. v: értékelés

ha
$$v(x) = ladid$$
, when | munkatavsalz(\dot{e}_{1}, x)| $v = 0$
la $v(x) = ladid$, when | munkatavsalz(\dot{e}_{1}, x)| $v = 1$

L'= <L(, Var, Con, Term, Form) Példa $\begin{cases}
\frac{1}{2} & \text{for} = \{524m\} \\
\frac{1}{2} & \text{for} = \{5(-)\} \\
\frac{1}{2} & \text{for} = \{5(-)\}$ J(2) = {u'szow (-1-) } $Con = \{ nam, S(-), un'v1(-,-), un'v2(-,-) \}$ hisme yet (userpreta u o · visney (ulir 2 (s(s(nam)), s(s(nam))), s(s(s(nam))) (4,3) 3y n'sroy (x, m'v2(1,y)) - U: N $-\varsigma: \varsigma(nam) = 0$ S(S(-))=-+1 3 (m" of (-1-)) = -+-3 (m's2(-,-)) = - * -)(vicrey(-1-)) = -=-

5.P.1 Tekintsük az <LC, {x,y,z,...}, {c, f(-), P(-,-), Q(-,-)}, Term, Form> elsőrendű nyelvet. Mit jelent természetes nyelven a

$$\forall x (P(x,c) \supset \exists y Q(f(y),x))$$

formula a következő interpretációkban?

- (a) Az objektumtartomány legyen ℝ.
 - c jelölje a 0-t.
 - f jelölje a négyzetre emelést.
 - P jelölje a nagyobb, Q pedig az egyenlőség relációt.

5.P.1 Tekintsük az <LC, {x,y,z,...}, {c, f(-), P(-,-), Q(-,-)}, Term, Form> elsőrendű nyelvet. Mit jelent természetes nyelven a

$$\forall x (P(x,c) \supset \exists y Q(f(y),x))$$

formula a következő interpretációkban?

- Az objektumtartomány legyen egy rendezvényen részvevő emberek halmaza.
 - c jelölje Cilikét.
 - f(x) jelölje azt a részvevőt, aki x-et meghívta a rendezvényre.
 - P(x,y) jelölje, hogy x és y barátok, Q(x,y) pedig, hogy x és y ugyanaz a személy.

5.P.5 Tekintsük az <LC, $\{x,y,z,...\}$, $R(-,-)\}$, Term, Form> elsőrendű nyelvet. Legyen (U,ρ) az az interpretáció, ahol $U=\{1,2,3,4\}$ és $\rho(R(-,-))=\{(u,v)\mid u \text{ osztja } v-t\}$.

Határozzuk meg a következő formulák igazságértékeit

- (a) $\neg \exists x \neg R(x,x)$
- (b) $\forall y \exists x R(x,y)$
- (c) $\exists x \forall y R(x,y)$
- (d) $\exists x \exists y (R(x,y) \land \neg R(y,x))$
- (e) $\forall x \forall y (R(x,y) \vee \neg R(y,x))$

7.P.1. Bizonyítsuk be, hogy az alábbi formula elsőrendű logikai törvény!

$$\exists x \forall y P(x,y) \supset \exists y P(y,y)$$

7.P.17. Ellenőrizzük, hogy helyesek-e az alábbi következtetések!

(a) Premisszák:

Lacinak nincs autója. Éva csak azokat a fiúkat szereti, akiknek van autójuk.

Konklúzió:

Tehát Éva nem szereti Lacit.

7.P.17. Ellenőrizzük, hogy helyesek-e az alábbi következtetések!

(b) Premisszák:

Minden csillagnak saját fénye van, de egyetlen bolygónak sincs saját fénye.

Konklúzió:

Egyetlen bolygó sem csillag.

7.P.17. Ellenőrizzük, hogy helyesek-e az alábbi következtetések!

(c) Premisszák:

Valaki betörte a lakás ajtaját. Valaki elvitte a lakásból a dossziét. Konklúzió:

Valaki betörte a lakás ajtaját és elvitte a lakásból a dossziét.