Programming Assignment #3

Due: 12월 12일 23:59

목표: 문자열 인코딩/디코딩 하기

(1) 개요

1바이트짜리 문자는 총 256가지의 경우가 있으며, 이들 중 플랫폼에 상관 없이 언제 어디서나 눈으로 볼 수 있는 문자는 일부에 불과하다. 예를 들어, 아스키코드 값이 65 이상 90 이하이면 A부터 Z 중 하나이므로 어느 기기를 쓰든지, 어느 언어권에서 어떤 운영체제를 쓰든지 항상 보일 것이지만, 아스키코드 값이 128 이상 255 이하이면 눈에 보이지 않을 것이다. 또한, 2바이트짜리 문자 (예: 한글, 히라가나, 가타가나, 한자 등)는 그 언어권이 아닌 운영체제에서 보면 깨져서 보일 것이다. 하지만, 그런 문자들을 문자 자체로는 읽을 수 없어도, 어느 플랫폼에서나 눈으로 확인할 수 있어야 하는 경우가 존재한다. 이를 위하여 다양한 인코딩/디코딩 방법이 개발되었는데, 본 프로젝트에서는 그 중 한 방법을 C로 구현해보고자 한다.

참고로, 원본 정보를 다른 것으로 변환하는 것을 인코딩이라 하고, 변환된 것을 원본으로 되돌리는 것을 디코딩이라 한다.

(2) 인코딩 하기

인코딩은 다음과 같은 과정을 거친다.

- A) 원본 문자열을 맨 앞에서부터 문자 세 개씩 나눈다.
- B) 각 세 개짜리 문자는 총 24 $(=8 \times 3)$ 비트로 구성되어 있다. 이를 앞에서부터 차례로 6 비트씩 네 개로 나눈다.
- C) 각 6비트짜리들은 다음과 같은 규칙에 의하여 문자로 바뀐다.

6비트값	문자	6비트값	문자	6비트값	문자	6비트값	문자
000000	А	010000	Q	100000	g	110000	W
000001	В	010001	R	100001	h	110001	Х
000010	С	010010	S	100010	i	110010	У
000011	D	010011	Т	100011	j	110011	Z
000100	Е	010100	U	100100	k	110100	0
000101	F	010101	V	100101	1	110101	1
000110	G	010110	W	100110	m	110110	2
000111	Н	010111	X	100111	n	110111	3
001000	I	011000	Y	101000	0	111000	4
001001	J	011001	Z	101001	р	111001	5
001010	K	011010	а	101010	q	111010	6
001011	L	011011	b	101011	r	111011	7
001100	M	011100	С	101100	S	111100	8
001101	N	011101	d	101101	t	111101	9
001110	О	011110	е	101110	u	111110	+
001111	Р	011111	f	101111	V	111111	/

예를 들어, 세 개짜리 문자가 Sm5이면, 다음과 같이 변환된다.

원본		S										n	n							Į	5									
ASCII Code	0	1	0	1	0	0	1	1	0	1	1	0	1	1	0	1	0	0	1	1	0	1	0	1						
6비트	0	1	0	1	0	0	1	1	0	1	1	0	1	1	0	1	0	0	1	1	0	1	0	1						
인코딩결과	U								2	2					()			1											

따라서 인코딩 결과는 U201이 된다.

D) 만일 원본 문자열의 길이가 3의 배수가 아니면 마지막에는 문자가 1개 또는 2개가 남는데, 그런 경우는 인코딩 결과의 빈 곳에 =을 채워준다.

예를 들어, 마지막에 남은 문자가 S이면, 다음과 같이 변환된다.

원본		S																					
ASCII Code	0	1	0	1	0	0	1	1															
6비트	0	1	0	1	0	0	1	1	0	0	0	0											
인코딩결과		U							V	V			=					=					

따라서 인코딩 결과는 Uw==이 된다.

다른 예로, 마지막에 남은 문자가 Sm이면, 다음과 같이 변환된다.

원본	S											n	n									
ASCII Code	0	1	0	1	0	0	1	1	0	1	1	0	1	1	0	1						
6비트	0	1	0	1	0	0	1	1	0	1	1	0	1	1	0	1	0	0				
인코딩결과	U								2	2					()				-	=	

따라서 인코딩 결과는 U20= 이 된다.

참고로, 인코딩 결과의 길이는 무조건 4의 배수이다.

(3) 디코딩 하기

위 (2)의 역순으로 하면 된다. 이 때, 입력되는 문자열의 길이는 무조건 4의 배수가 되어야 한다.

(4) 프로그램 실행 방법

프로그램을 실행하면 인코딩, 디코딩 여부를 결정하게 한다. 즉, 다음과 같은 화면이 뜬다.

만일 1, 2 이외의 다른 수를 입력하면 다시 입력하라는 메시지가 뜬다.

1을 입력하면 1024바이트 이하의 문자열을 입력하라는 메시지가 뜬다.

```
Enter a number (1: Encoding / 2: Decoding): 1
Enter a sentence (Less than 1024 bytes): _
```

이 때. 입력하면 다음과 같은 결과가 나온다.

영어 뿐 아니라 한글이나 한자도 될 것이다.

마찬가지로, 2번을 선택하면 다음과 같이 1365 미만의 바이트만큼 입력하라는 메시지가 뜨고, 인코딩된 문자열을 넣으면 디코딩이 될 것이다.

하지만, 디코딩의 경우, 입력한 메시지의 길이가 4의 배수가 아니면 다음과 같은 오류메시 지가 뜬다.

(5) 주의 사항

- 컴파일이 안 되면 0점임. 제출 직전에 컴파일 되는지 반드시 확인할 것!
- FTP에 PA3 폴더를 만들고 그 안에 c 파일만(헤더파일도 있으면 h파일도) 제출할 것
- 하루씩 Delay 될 때마다 20%씩 감점
- 이 Programming Assignment는 본인의 정치 성향과는 무관합니다.