Supporting Information

ADMET Evaluation in Drug Discovery. 19. Reliable

Prediction of Human Cytochrome P450 Inhibition Using

Artificial Intelligence Approaches

Zhenxing Wu^a, Tailong Lei^a, Chao Shen^a, Zhe Wang^a, Dongsheng Cao^c, Tingjun

Houa,b,*

^aHangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences,

Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China; bState Key Lab of

CAD&CG, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China; ^cXiangya

School of Pharmaceutical Sciences, Central South University, Changsha 410004, Hunan,

P. R. China

Corresponding author:

Tingjun Hou

*E-mail: tingjunhou@zju.edu.cn

1

Table S1. The main hyperparameters for the RF models

hyperparameter	CYP1A2	CYP2C9	CYP2C19	CYP2D6	CYP3A4
n_estimators	1900	1700	1800	900	1900
min_samples_split	2	2	2	2	2
min_samples_leaf	2	8	8	10	10
max_depth	40	20	20	10	10
max_features	auto	auto	auto	auto	auto

Table S2. The main hyperparameters for the GBDT models

hyperparameter	CYP1A2	CYP2C9	CYP2C19	CYP2D6	CYP3A4
learning_rate	0.005	0.02	0.005	0.005	0.005
n_estimators	4800	350	1800	3200	4800
max_depth	11	13	7	15	5
min_samples_split	100	300	500	500	1100
min_samples_leaf	20	20	80	20	40
max_features	46	44	44	44	34
subsample	0.85	0.65	0.9	0.8	0.9

Table S3. Performances of different models on the training and test sets

RF		Ti	raining s	set					Test set		
KF	ACC	SE	SP	MCC	AUC	,	ACC	SE	SP	MCC	AUC
1A2	0.877	0.802	0.923	0.736	0.945		0.967	0.879	0.987	0.889	0.991
2C9	0.846	0.610	0.934	0.591	0.904		0.899	0.275	0.971	0.333	0.801
2C19	0.824	0.811	0.833	0.643	0.895		0.814	0.556	0.879	0.428	0.815
2D6	0.896	0.271	0.993	0.445	0.861		0.918	0.286	0.991	0.443	0.834
3A4	0.828	0.688	0.899	0.607	0.901		0.859	0.477	0.970	0.553	0.907
CDDT		Ti	raining s	set					Test set		
GBDT	ACC	SE	SP	MCC	AUC		ACC	SE	SP	MCC	AUC
1A2	0.900	0.849	0.930	0.785	0.960		0.974	0.907	0.990	0.913	0.991
2C9	0.860	0.683	0.927	0.635	0.919		0.899	0.391	0.958	0.397	0.821
2C19	0.837	0.829	0.844	0.671	0.906		0.813	0.634	0.858	0.460	0.825
2D6	0.913	0.457	0.983	0.568	0.892		0.918	0.442	0.973	0.496	0.863
3A4	0.851	0.739	0.908	0.661	0.923		0.879	0.538	0.978	0.626	0.927
WCD		Ti	raining s	set		Test set					
XGBoost	ACC	SE	SP	MCC	AUC		ACC	SE	SP	MCC	AUC
1A2	0.905	0.862	0.930	0.796	0.962		0.974	0.916	0.987	0.913	0.991
2C9	0.876	0.733	0.930	0.680	0.931		0.902	0.290	0.973	0.354	0.814
2C19	0.843	0.829	0.854	0.683	0.910		0.816	0.613	0.866	0.456	0.836
2D6	0.909	0.434	0.982	0.542	0.877		0.928	0.416	0.987	0.537	0.863
3A4	0.860	0.757	0.913	0.683	0.931		0.894	0.618	0.975	0.677	0.935
		Ti	raining s	set					Test set		
DNN	ACC	SE	SP	MCC	AUC		ACC	SE	SP	MCC	AUC
1A2	0.866	0.907	0.842	0.731	0.942		0.908	0.836	0.924	0.715	0.949
2C9	0.890	0.735	0.948	0.714	0.953		0.849	0.367	0.904	0.251	0.750
2C19	0.840	0.840	0.840	0.678	0.900		0.785	0.488	0.859	0.340	0.784
2D6	0.930	0.717	0.963	0.694	0.931		0.904	0.392	0.962	0.411	0.831
3A4	0.839	0.811	0.853	0.650	0.913		0.861	0.627	0.929	0.584	0.891

CNN		Training set						Test set				
	ACC	SE	SP	MCC	AUC	ACC	SE	SP	MCC	AUC		
1A2	0.888	0.844	0.914	0.760	0.950	0.959	0.885	0.976	0.844	0.976		
2C9	0.844	0.762	0.875	0.619	0.900	0.866	0.223	0.940	0.187	0.681		
2C19	0.828	0.836	0.822	0.654	0.900	0.765	0.567	0.815	0.348	0.781		
2D6	0.904	0.372	0.987	0.509	0.867	0.919	0.401	0.978	0.482	0.844		
3A4	0.833	0.819	0.843	0.640	0.911	0.887	0.674	0.949	0.661	0.914		

Table S4. Performances of the XGBoost models based on different sets of descriptors

DI-FD		T	raining s	set					Test set		
PubFP	ACC	SE	SP	MCC	AUC		ACC	SE	SP	MCC	AUC
1A2	0.888	0.833	0.921	0.759	0.952		0.962	0.925	0.971	0.877	0.982
2C9	0.847	0.661	0.917	0.602	0.903		0.857	0.333	0.918	0.246	0.760
2C19	0.818	0.807	0.827	0.633	0.890		0.805	0.542	0.870	0.403	0.794
2D6	0.907	0.451	0.977	0.537	0.875		0.926	0.377	0.990	0.520	0.861
3A4	0.842	0.726	0.902	0.642	0.914		0.870	0.486	0.982	0.595	0.922
M ED		T	raining s	set					Test set		
MorFP	ACC	SE	SP	MCC	AUC		ACC	SE	SP	MCC	AUC
1A2	0.881	0.823	0.916	0.745	0.948		0.969	0.897	0.985	0.896	0.989
2C9	0.846	0.652	0.918	0.597	0.902		0.887	0.275	0.958	0.286	0.785
2C19	0.816	0.803	0.826	0.628	0.895		0.762	0.451	0.840	0.282	0.778
2D6	0.906	0.423	0.981	0.527	0.879		0.929	0.403	0.990	0.543	0.780
3A4	0.854	0.731	0.918	0.669	0.918		0.856	0.410	0.986	0.543	0.905
W1°ED		T	raining s	set		Test set					
KleFP	ACC	SE	SP	MCC	AUC		ACC	SE	SP	MCC	AUC
1A2	0.882	0.825	0.917	0.748	0.948		0.961	0.888	0.977	0.868	0.984
2C9	0.850	0.659	0.921	0.607	0.908		0.856	0.261	0.924	0.193	0.778
2C19	0.834	0.824	0.843	0.665	0.906		0.810	0.472	0.895	0.382	0.828
2D6	0.909	0.475	0.976	0.551	0.880		0.932	0.377	0.996	0.559	0.827
3A4	0.850	0.722	0.915	0.657	0.917		0.867	0.508	0.972	0.585	0.885
CED		T	raining s	set					Test set		
GraFP	ACC	SE	SP	MCC	AUC		ACC	SE	SP	MCC	AUC
1A2	0.851	0.774	0.898	0.680	0.923		0.928	0.776	0.962	0.755	0.970
2C9	0.834	0.613	0.916	0.562	0.885		0.872	0.261	0.943	0.232	0.764
	0.793	0.771	0.811	0.582	0.872		0.769	0.444	0.851	0.290	0.759
2C19	0.193										
2C19 2D6	0.793	0.384	0.979	0.484	0.852		0.909	0.312	0.978	0.396	0.858

NOF		T	raining s	set				Test set		
MOE	ACC	SE	SP	MCC	AUC	ACC	SE	SP	MCC	AUC
1A2	0.898	0.850	0.926	0.781	0.958	0.967	0.907	0.981	0.891	0.986
2C9	0.872	0.727	0.926	0.670	0.927	0.871	0.377	0.928	0.305	0.792
2C19	0.840	0.841	0.839	0.671	0.910	0.790	0.577	0.843	0.394	0.807
2D6	0.913	0.443	0.986	0.567	0.897	0.922	0.429	0.979	0.511	0.849
3A4	0.856	0.771	0.890	0.677	0.925	0.877	0.585	0.963	0.623	0.929
D-D-1		T	raining s	set				Test set		
PaDel	ACC	SE	SP	MCC	AUC	ACC	SE	SP	MCC	AUC
1A2	0.904	0.858	0.931	0.793	0.961	0.973	0.907	0.987	0.907	0.992
2C9	0.866	0.716	0.922	0.654	0.921	0.904	0.188	0.987	0.305	0.837
2C19	0.849	0.844	0.853	0.695	0.918	0.810	0.662	0.847	0.467	0.843
2D6	0.912	0.445	0.984	0.561	0.885	0.912	0.403	0.970	0.449	0.822
3A4	0.858	0.752	0.913	0.679	0.930	0.893	0.611	0.975	0.673	0.934
Pub+MOE		T	raining s	set				Test set		
	ACC	SE	SP	MCC	AUC	ACC	SE	SP	MCC	AUC
1A2	0.901	0.853	0.929	0.787	0.961	0.969	0.907	0.983	0.896	0.987
2C9	0.847	0.661	0.917	0.602	0.903	0.857	0.333	0.921	0.278	0.786
2C19	0.853	0.852	0.853	0.703	0.922	0.789	0.634	0.828	0.418	0.829
2D6	0.914	0.466	0.984	0.576	0.893	0.932	0.494	0.982	0.579	0.864
3A4	0.861	0.769	0.909	0.687	0.931	0.877	0.562	0.969	0.619	0.935
Pub+PaDel		T	raining s	set				Test set		
Puo+PaDei	ACC	SE	SP	MCC	AUC	ACC	SE	SP	MCC	AUC
1A2	0.905	0.862	0.930	0.796	0.962	0.974	0.916	0.987	0.913	0.991
2C9	0.876	0.733	0.930	0.680	0.931	0.902	0.290	0.973	0.354	0.814
2C19	0.850	0.843	0.856	0.697	0.917	0.823	0.669	0.861	0.493	0.842
2D6	0.909	0.434	0.982	0.542	0.877	0.928	0.416	0.987	0.537	0.863
3A4	0.860	0.757	0.913	0.683	0.931	0.894	0.618	0.975	0.677	0.935

 Table S5. The descriptions of the representative molecular descriptors

Descriptor	Description						
nAcid	Number of acidic groups						
ALogP	Ghose-Crippen LogKow						
ATS8m	Broto-Moreau autocorrelation - lag 8 / weighted by mass						
ATS4e	Broto-Moreau autocorrelation - lag 4 / weighted by Sanderson						
	electronegativities						
ATS5i	Broto-Moreau autocorrelation - lag 5 / weighted by first ionization potential						
AATS4m	Average Broto-Moreau autocorrelation - lag 4 / weighted by mass						
AATS8v	Average Broto-Moreau autocorrelation - lag 8 / weighted by van der Waals						
AATSOV	volumes						
AATS0p	Average Broto-Moreau autocorrelation - lag 0 / weighted by polarizabilities						
AATS5p	Average Broto-Moreau autocorrelation - lag 5 / weighted by polarizabilities						
AATS6p	Average Broto-Moreau autocorrelation - lag 6 / weighted by polarizabilities						
A A TEG 4:	Average Broto-Moreau autocorrelation - lag 4 / weighted by first ionization						
AATS4i	potential						
AATS0s	Average Broto-Moreau autocorrelation - lag 0 / weighted by I-state						
ATSC5s	Centered Broto-Moreau autocorrelation - lag 5 / weighted by I-state						
GATS1m	Geary autocorrelation - lag 1 / weighted by mass						
GATS5m	Geary autocorrelation - lag 5 / weighted by mass						
GATS1e	Geary autocorrelation - lag 1 / weighted by Sanderson electronegativities						
GATS1i	Geary autocorrelation - lag 1 / weighted by first ionization potential						
GATS2i	Geary autocorrelation - lag 2 / weighted by first ionization potential						
GATS5i	Geary autocorrelation - lag 5 / weighted by first ionization potential						
nBase	Number of basic groups.						
BCUTp-1h	nlow highest polarizability weighted BCUTS						
SpMax3_Bhm	Largest absolute eigenvalue of Burden modified matrix - n 3 / weighted by relative mass						

SaMin 2 Dha	Smallest absolute eigenvalue of Burden modified matrix - n 2 / weighted by						
SpMin2_Bhs	relative I-state						
C2SP2	Doubly bound carbon bound to two other carbons						
ASP-7	Average simple path, order 7						
Мр	Mean atomic polarizabilities (scaled on carbon atom)						
CrippenLogP	Crippen's logP						
nwHBa	Count of E-States for weak Hydrogen Bond acceptors						
SwHBa	Sum of E-States for weak hydrogen bond acceptors						
GIID' (A	Sum of E-State descriptors of strength for potential hydrogen bonds of path						
SHBint2	length 2						
GIID' 4	Sum of E-State descriptors of strength for potential hydrogen bonds of path						
SHBint7	length 7						
SHsOH	Sum of atom-type H E-State: -OH						
SaaCH	Sum of atom-type E-State: :CH:						
SsssCH	Sum of atom-type E-State: >CH-						
SdssC	Sum of atom-type E-State: =C<						
SaasC	Sum of atom-type E-State: :C:-						
SaaN	Sum of atom-type E-State: :N:						
SddsN	Sum of atom-type E-State: -N<<						
minHBa	Minimum E-States for (strong) Hydrogen Bond acceptors						
. 11D. 10	Minimum E-State descriptors of strength for potential Hydrogen Bonds of						
minHBint2	path length 2						
:	Minimum E-State descriptors of strength for potential Hydrogen Bonds of						
minHBint10	path length 10						
minHsOH	Minimum atom-type H E-State: -OH						
mindssC	Minimum atom-type E-State: =C<						
minaaN	Minimum atom-type E-State: :N:						
minsssN	Minimum atom-type E-State: >N-						

1							
mindO Mi	inimum atom-type E-State: =O						
maxwHBa Ma	aximum E-States for weak Hydrogen Bond acceptors						
	Maximum E-State descriptors of strength for potential Hydrogen Bonds of						
maxHBint2 pat	th length 2						
maxHaaCH Ma	aximum atom-type H E-State: :CH:						
maxaaCH Ma	aximum atom-type E-State: :CH:						
maxaasC Ma	aximum atom-type E-State: :C:-						
maxssNH Ma	aximum atom-type E-State: -NH-						
LipoaffinityIndex Lip	poaffinity index						
ETA_Beta A 1	measure of electronic features of the molecule						
ETA_Beta_ns A 1	measure of electron-richness of the molecule						
ETA_BetaP_ns A 1	measure of electron-richness of the molecule relative to molecular size						
	measure of lone electrons entering into resonance relative to molecular						
ETA_BetaP_ns_d siz	ze						
IC3 Inf	formation content index (neighborhood symmetry of 3-order)						
IC4 Inf	formation content index (neighborhood symmetry of 4-order)						
IC5 Inf	formation content index (neighborhood symmetry of 5-order)						
nAtomP Nu	umber of atoms in the largest pi system						
nAtomLAC Nu	umber of atoms in the longest aliphatic chain						
MDEO-11 Mo	olecular distance edge between all primary oxygens						
MLFER_BH Ov	verall or summation solute hydrogen bond basicity						
MLFER_S Co	ombined dipolarity/polarizability						
	atio of total conventional bond order (up to order 10) with total path count						
R_TpiPCTPC (up	p to order 10)						
topoRadius To	opological radius (minimum atom eccentricity)						
JGI10 Me	ean topological charge index of order 10						
TopoPSA To	pological polar surface area						

WTPT-5	Sum of path lengths starting from nitrogens
XLogP	XLogP
PubchemFP367	C(~H)(~O)(~O)
PubchemFP372	C(~H)(:C)(:N)
PubchemFP594	C-O-C-C=C

Figure S1. The multidimensional scaling (MDS) plots for the (A) CYP1A2, (B) CYP2C9, (C) CYP2C19, (D) CYP2D6, and (E) CYP3A4 datasets.

Figure S2. The ROC curves of different XGBoost models for (A) the training sets and (B) the test sets.