Versión: 3- Capitulo 3 - Lógica digital. Representación numérica.

## PRÁCTICA 1 - Operaciones y Circuitos Lógicos

1) Realizar las siguientes operaciones lógicas:

Nota: Se opera lógicamente con los bits ubicados en la misma posición del o de los operandos

| 00010001 AND 01011100 = 00010000 |
|----------------------------------|
| 01010101 <b>AND</b> 01010101 =   |
| 01010101 <b>AND</b> 10101010 =   |
| 11110000 <b>AND</b> 11111111=    |
| 01010101 <b>OR</b> 01010101 =    |
| 01010101 <b>OR</b> 10101010 =    |
| 11110001 <b>OR</b> 11110010 =    |
| 01010101 <b>XOR</b> 01010101 =   |
| 01010101 <b>XOR</b> 10101010 =   |
| 00001111 <b>XOR</b> 00000000 =   |
| NOT 11111111 =                   |
| <b>NOT</b> 01000000 =            |
| <b>NOT</b> 00001110 =            |

2) Si DATO "operación\_lógica" MASK = RESULTADO, determine la operación lógica y el valor de MASK tal que RESULTADO sea el indicado:

| DATO                                                                                                                    | Op. lógica | MASK     | = | RESULTADO                                                                                                                     |  |
|-------------------------------------------------------------------------------------------------------------------------|------------|----------|---|-------------------------------------------------------------------------------------------------------------------------------|--|
| $D_7D_6D_5D_4D_3D_2D_1D_0$                                                                                              | OR         | 11100111 | = | 1 1 1 D <sub>4</sub> D <sub>3</sub> 1 1 1                                                                                     |  |
| D <sub>7</sub> D <sub>6</sub> D <sub>5</sub> D <sub>4</sub> D <sub>3</sub> D <sub>2</sub> D <sub>1</sub> D <sub>0</sub> |            |          | = | $D_7D_6D_5D_4$ <b>1</b> $D_2D_1D_0$                                                                                           |  |
| D <sub>7</sub> D <sub>6</sub> D <sub>5</sub> D <sub>4</sub> D <sub>3</sub> D <sub>2</sub> D <sub>1</sub> D <sub>0</sub> |            |          | = | <b>0</b> D <sub>6</sub> D <sub>5</sub> D <sub>4</sub> D <sub>3</sub> D <sub>2</sub> D <sub>1</sub> D <sub>0</sub>             |  |
| $D_7D_6D_5D_4D_3D_2D_1D_0$                                                                                              |            |          | = | D <sub>7</sub> (D <sub>6</sub> ) D <sub>5</sub> (D <sub>4</sub> ) D <sub>3</sub> D <sub>2</sub> D <sub>1</sub> D <sub>0</sub> |  |

3) Analice los siguientes esquemas y determine los valores de las salidas C y D.para todas las combinaciones de entrada (A y B o A, B y IN). ¿Puede asociar los resultados obtenidos con una operación aritmética?





- 4) Si sólo se poseen puertas lógicas NAND:
  - a) ¿Cree ud. que será posible obtener las funciones AND, OR y NOT?
  - b) ¿Cómo se implementarían?

Versión: 3- Capitulo 3 - Lógica digital. Representación numérica.

## PRÁCTICA 2 - Números y operaciones aritméticas en binario

1) Convertir los siguientes valores decimales a binario y a hexadecimal:

| Decimal | Binario | Hexadecimal |
|---------|---------|-------------|
| 27      | 11011   | 1B          |
| 54      |         |             |
| 108     |         |             |
| 542     |         |             |
| 1084    |         |             |
| 2013    |         |             |
| 2168    |         |             |

- 2) Convertir los siguientes valores a decimal:
  - a) 1000111101010 <sub>(2</sub>
  - b) 10100111001111000 <sub>(2</sub>
  - a) FECB (16
  - d) 1B2C (16
- 3) Completar la siguiente tabla:

| Decimal | Binario       | Hexadecimal |
|---------|---------------|-------------|
|         | 1011000111001 |             |
| 896     |               |             |
|         |               | 2C9         |

4) Interpretar las siguientes cadenas de dígitos binarios como números codificados en Binario Sin Signo (BSS) o Binario Con Signo (BCS).

| Resultado | BSS | BCS |
|-----------|-----|-----|
| 10000010  | 130 | -2  |
| 10110011  |     |     |
| 00000010  |     |     |
| 00110011  |     |     |
| 10101110  |     |     |

Versión: 3- Capitulo 3 – Lógica digital. Representación numérica.

5) Realizar las siguientes operaciones de suma y resta indicando el estado de las banderas de Z(cero) y C(carry). Interpretar el resultado obtenido considerando que la operación trabaja con valores binarios que representaban números enteros sin signo. Determinar cuáles resultados son correctos y cuáles no. El resultado de la operación es del mismo tamaño de los operandos, es decir 8 bits.

|                          | Resultado   | ZC | interpretados<br>como sin signo | ¿Correcto? |
|--------------------------|-------------|----|---------------------------------|------------|
| 00000001<br>+ 10000000 = | 10000001(2  | 00 | 1 + 128 = 129 <sub>(10</sub>    | Si         |
| 10000001<br>+ 10000000 = | 0000001(2   | 01 | 129 + 128 = 1 <sub>(10</sub>    | No         |
| 01110000<br>+ 00101111 = |             |    |                                 |            |
| 01000000<br>+ 01000000 = |             |    |                                 |            |
| 11111111<br>+ 00000001 = |             |    |                                 |            |
| 01111111<br>+ 00000001 = |             |    |                                 |            |
| 11111111<br>+ 11111110 = |             |    |                                 |            |
| 10011111<br>+ 11110000 = |             |    |                                 |            |
| 00100000<br>- 01100000 = | 11000000 (2 | 01 | 32 - 96 = 192 <sub>(10</sub>    | No         |
| 01110000<br>- 01111000 = | 11111000    |    |                                 |            |
| 10110111<br>- 00011110 = |             |    |                                 |            |
| 01111111<br>- 11110000 = |             |    |                                 |            |

Versión: 3- Capitulo 4 - Periféricos.

## PRÁCTICA 3 - Dispositivos Periféricos

- 1) ¿Cuánta memoria requieren las siguientes terminales? Responder en Bytes.
  - a. Alfanumérica ASCII extendida (8bits) de 24 filas x 80 columnas: monocromo.
  - b. Alfanumérica ASCII extendida (8bits) de 24 filas x 80 columnas con 16 colores y con 4 atributos: titilante, subrayado y resaltado.
  - c. Gráfica de 640 x 480 pixels monocromo.
  - d. Gráfica de 640 x 480 pixels True Color.
  - e. Gráfica de 1024 x 768 pixels con 8 colores.
- 2) Considere una imagen en blanco y negro de 8,5" x 11" con una resolución de 2400 dpi (ppp puntos por pulgada).
  - a) ¿Cuántos bytes de memoria hacen falta para almacenarla?
  - b) ¿Cuánto ocuparía si tuviese 256 tonos de gris?
  - c) ¿Y si fuese "True Color? (True Color utiliza 24 bits por pixel).
- 3) Calcule la velocidad mínima que debe tener la comunicación entre una computadora y un scanner si éste puede digitalizar una página de 8,5" x 11" con una resolución de 600 dpi en 30 segundos.
- 4) Un disco rígido tiene 512 bytes/sector, 1000 sectores/pista, 5000 pistas/cara y 8 platos (16 caras). Calcular la capacidad total del disco.
- 5) Un disco rígido tiene dos caras (1 plato). El radio de la pista más interna es 1 cm y el radio de la pista más externa es 5 cm. Cada pista mantiene el mismo número de bits. La máxima densidad de almacenamiento es 10.000 bits/cm, el espaciamiento entre pistas es 0,1mm. Asuma que la separación entre sectores es despreciable y en el borde exterior hay una pista.
  - a) ¿Cuál es el máximo número de bits que puede almacenarse en el disco?
  - b) ¿Cuál es la velocidad de transferencia en bits/seg si la velocidad de rotación es de 3600 rpm? ¿y si es 7200 rpm?