Calcul Littéral

1 Introduction: Lire un cours de maths

Définition 1. Une définition permet l'introduction d'un concept nouveau en mathématiques. Il utilise des définitions déjà connues pour construire quelque chose de nouveau.

Les définitions décrivent ce que sont les objets.

Proposition 1. *Une proposition est un résultat à propos des objets introduits par le cours. La proposition est vraie parce qu'elle a été démontrée.*

Les propositions décrivent ce que font les objets.

Exemple. Le nombre π est défini comme la rapport entre le périmètre et le diamètre de n'importe quel cercle. C'est une définition.

L'aire d'un disque de rayon r est donné par πr^2 . C'est une **proposition** : c'est un résultat que l'on démontre grâce à la définition de π .

Remarque. Pour bien apprendre un cours de maths, il faut identifier les différentes parties du cours :

- Les définitions sont à connaître par cœur.
- Les propositions sont à comprendre. Pour cela, il faut savoir refaire les exemples données par le cours.
- Les **théorèmes** sont des proposition importantes, elle nécessitent d'être connues.
- Les **remarques** permettent de mieux comprendre les concepts du cours, il ne faut pas les négliger lors de la lecture du cours.
- Les Exemples illustrent directement les notions introduites. Il faut savoir les refaire.

2 Développement et factorisation

Définition 2.• Une expression littérale est sous forme développée si elle correspond à une somme de termes.

• Une expression littérale est sous forme factorisée si elle correspond à un produit de facteurs.

Exemple. L'aire du rectangle suivant

peut être calculée de deux façons.

• En multipliant sa largeur (a) et sa longueur (b+c):

$$a(b+c)$$

• En ajoutant les aires des deux rectangles :

$$ab + bc$$

2.1 Développement

Pour développer un produit, on utilise la distributivité de la multiplication sur l'addition.

$$\widehat{a(b+c)} = ab + ac$$

$$(a+b)(c+d) = ac + ad + bc + bd$$

Pour développer un produit de sommes, on « distribue » chaque terme de la somme de gauche vers chaque terme de la somme de droite.

Exemple. Développer chacune des expressions suivantes. On fera apparaître les traits de construction de la distributivité.

a)
$$4x(2y+5z) = \dots$$

b)
$$3x(-10x+2) = \dots$$

c)
$$-(-4a+2b) = \dots$$

d)
$$(17x-5)(12x+7) = \dots$$

e)
$$(l+L)(l-L) = ...$$

2.2 Factorisation

Pour factoriser une somme, on peut chercher dans chaque terme de la somme un facteur commun.

$$\underline{a}b + \underline{a}c = \underline{a}(b+c)$$

Exemple. Factoriser les expressions suivantes :

- a) $5a + 10b = \dots$
- b) $-8y^2 + y = \dots$
- c) $21x 28x^2 = \dots$
- d) $35p 42q = \dots$
- e) x(3x-2)+10(3x-2)=

3 Identités remarquables

Proposition 2. *Soient a et b deux nombre réels quelconques. Alors,*

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)(a-b) = a^2 - b^2$$

Exemple. Développer les expression suivantes :

- a) $(c-1)(c+1) = \dots$
- b) $(x+4)^2 =$
- c) $(x-4)^2 = \dots$

Exemple. Factoriser l'expression suivante.

$$y^2 - 64 = \dots$$