Exercises in PDE and Functional Analysis

Exercise Sheet 11

Jendrik Stelzner

Exercise 3

Suppose first that $T \in \mathcal{K}(X,Y)$, and let $(x_n)_n$ be a sequence in X with $x_n \to x$ for some $x \in X$. We start by showing that the sequence $(x_n)_n$ has a subsequence $(x_{n_k})_k$ with $Tx_{n_k} \to Tx$.

The sequence $(x_n)_n$ is bounded because it is weakly convergent, whence contained in a ball $B_r(0)$ for some r>0. It follows from the compactness of T that $\overline{T(B_r(0))}$ is compact. There hence exists a subsequence $(x_{n_k})_k$ such that $(Tx_{n_k})_k \to y$ for some $y \in Y$. It follows from $x_n \to x$ that also $x_{n_k} \to x$, and hence that $Tx_{n_k} \to Tx$ because

$$y'Tx_{n_k} = (T'y')x_{n_k} \to (T'y')x = y'Tx$$

for every $y' \in Y'$. We find that the sequence $(Tx_{n_k})_k$ converges strongly to y and weakly to Tx. It follows that Tx = y because strong convergence implies weak convergence, and weak limits are unique. This shows altogether that $Tx_{n_k} \to Tx$.

Every subsequence of $(x_n)_n$ is again weakly convergent to x. The above argument hence shows that every subsequence of $(Tx_n)_n$ has a subsequence that converges strongly to Tx. This then means that the sequence $(Tx_n)_n$ already converges strongly to Tx.

Suppose now that $Tx_n \to Tx$ for every sequence $(x_n)_n \subseteq X$ and every $x \in X$ with $x_n \rightharpoonup x$. We need to show that T is continuous and that $\overline{T(B_1(0))}$ is compact. We have for every sequence $(x_n)_n \subseteq X$ and every $x \in X$ that

$$x_n \to x \implies x_n \rightharpoonup x \implies Tx_n \to Tx$$
,

which shows that T is continuous. To show that T is compact we need to show that every sequence $(y_n)_n$ in $T(B_1(0))$ has a subsequence that converges in Y (see equivalence (9.8) in the lecture notes, at the beginning of page 87). There exists a sequence $(x_n)_n$ in X with $(x_n)_n \subseteq B_1(0)$ such that $y_n = Tx_n$ for every n. The closed unit ball $B_1(0)$ is

weakly compact because X is reflexive, hence there exists a subsequence $(x_{n_k})_k$ and some $x \in X$ with $x_{n_k} \rightharpoonup x$. It follows by assumption that

$$y_{n_k} = Tx_{n_k} \to Tx \,,$$

which shows that the subsequence $(y_{n_k})_k$ converges in Y.

Exercise 4

(i)

We fix $\varepsilon > 0$. Suppose that no such constant $C_{\varepsilon} > 0$ exists. Then there exists for every natural n some $x_n \in X$ with

$$||Kx_n|| > \varepsilon ||x_n|| + n||TKx_n||.$$

We see that $x_n \neq 0$ and can therefore assume that $||x_n|| = 1$. Hence

$$||Kx_n|| > \varepsilon + n||TKx_n||. \tag{1}$$

for every n. It follows from $(x_n)_n \subseteq \overline{B_1(0)}$ that

$$(Kx_n)_n \subseteq K(\overline{B_1(0)}) \subseteq \overline{K(B_1(0))}$$
.

The set $\overline{K(B_1(0))}$ is compact because K is compact. Hence there exist a subsequence $(x_{n_k})_k$ with $x_{n_k} \to y$ for some $y \in Y$. We may replace the sequence $(x_n)_n$ by this subsequence to assume that $x_n \to y$; the condition (1) remains true because

$$||Kx_{n_k}|| > \varepsilon ||x_{n_k}|| + n_k ||TKx_{n_k}|| \ge \varepsilon ||x_{n_k}|| + k ||TKx_{n_k}||$$

for every k. We now find that $||Kx_n|| \to ||y||$ and $||TKx_n|| \to ||Ty||$. We find from (1) that this is possible only if ||Ty|| = 0, which tells us that Ty = 0 and hence y = 0 because T is injective. But we also find from (1) that

$$||Kx_n|| > \varepsilon + n||TKx_n|| \ge \varepsilon$$

for every n, and hence for $n \to \infty$ that $||y|| \ge \varepsilon > 0$. A contradiction!

(ii)

The inclusion $W_0^{2,p}(U) \to W_0^{1,p}(U)$ is continuous and linear, and it is compact by the compact Sobolev embedding theorem (Theorem 9.6 in the lecture) because 1 < 2. The inclusion $W_0^{1,p}(U) \to L^p(U)$ is again continuous and linear, and it is injective. The given statement therefore follows from part (i) of this exercise.

(iii)

We have on the one hand that

$$\|\cdot\| = \|\cdot\|_{\mathrm{L}^p(U)} + \|D^2(\,\cdot\,)\|_{\mathrm{L}^p(U)} \le 2\|\cdot\|_{\mathrm{W}_0^{2,p}(U)}.$$

We have on the other hand that

$$\|\cdot\|_{\mathcal{W}^{1,p}_0(U)} \leq \frac{1}{4} \|\cdot\|_{\mathcal{W}^{2,p}_0(U)} + C \|\cdot\|_{\mathcal{L}^p(U)}$$

for some $C < \infty$ by part (ii) of this exercise. We may assume that $C \ge 1/2$. Then

$$\begin{split} \|\cdot\|_{\mathbf{W}_{0}^{2,p}(U)} &= \left(\|\cdot\|_{\mathbf{L}^{p}(U)}^{p} + \|D(\,\cdot\,)\|_{\mathbf{L}^{p}(U)}^{p} + \|D^{2}(\,\cdot\,)\|_{\mathbf{L}^{p}(U)}^{p}\right)^{1/p} \\ &\leq \|\cdot\|_{\mathbf{L}^{p}(U)} + \|D(\,\cdot\,)\|_{\mathbf{L}^{p}(U)} + \|D^{2}(\,\cdot\,)\|_{\mathbf{L}^{p}(U)} \\ &\leq 2\|\cdot\|_{\mathbf{W}_{0}^{1,p}(U)} + \|D^{2}(\,\cdot\,)\|_{\mathbf{L}^{p}(U)} \\ &\leq \frac{1}{2}\|\cdot\|_{\mathbf{W}_{0}^{2,p}(U)} + 2C\|\cdot\|_{\mathbf{L}^{p}(U)} + \|D^{2}(\,\cdot\,)\|_{\mathbf{L}^{p}(U)} \\ &\leq \frac{1}{2}\|\cdot\|_{\mathbf{W}_{0}^{2,p}(U)} + 2C\|\cdot\|_{\mathbf{L}^{p}(U)} + 2C\|D^{2}(\,\cdot\,)\|_{\mathbf{L}^{p}(U)} \\ &= \frac{1}{2}\|\cdot\|_{\mathbf{W}_{0}^{2,p}(U)} + 2C\|\cdot\|\,, \end{split}$$

which we can rearrange to

$$\|\cdot\|_{W_0^{2,p}(U)} \le 4C\|\cdot\|$$
.