CS 33

Data Representation

Number Representation

- Hindu-Arabic numerals
 - developed by Hindus starting in 5th century
 - » positional notation
 - » symbol for 0
 - adopted and modified somewhat later by Arabs
 - » known by them as "Rakam Al-Hind" (Hindu numeral system)
 - 1999 rather than MCMXCIX
 - » (try doing long division with Roman numerals!)

Which Base?

- 1999
 - base 10

$$9.10^{0}+9.10^{1}+9.10^{2}+1.10^{3}$$

- base 2
 - » 11111001111
 - $1 \cdot 2^{0} + 1 \cdot 2^{1} + 1 \cdot 2^{2} + 1 \cdot 2^{3} + 0 \cdot 2^{4} + 0 + 2^{5} + 1 \cdot 2^{6} + 1 \cdot 2^{7} + 1 \cdot 2^{8} + 1 \cdot 2^{9} + 1 \cdot 2^{10}$
- base 8
 - » 3717
 - $7.8^{0}+1.8^{1}+7.8^{2}+3.8^{3}$
 - » why are we interested?
- base 16
 - » 7CF
 - 15·16⁰+12·16¹+7·16²
 - » why are we interested?

Words ...

12-bit computer word

16-bit computer word

Algorithm ...

```
void baseX(unsigned int num, unsigned int base) {
   char digits[] = {'0', '1', '2', '3', '4', '5', '6', ... };
   char buf[8*sizeof(unsigned int)+1];
   int i;
   for (i = sizeof(buf) - 2; i >= 0; i--) {
      buf[i] = digits[num%base];
      num /= base;
      if (num == 0)
        break;
   buf[sizeof(buf) - 1] = '\0';
   printf("%s\n", &buf[i]);
```

Or ...

```
$ bc
obase=16
1999
7CF
$
```

Quiz 1

- What's the decimal (base 10) equivalent of 23₁₆?
 - a) 19
 - b) 33
 - c) 35
 - d) 37

Encoding Byte Values

- Byte = 8 bits
 - binary 000000002 to 1111111112
 - decimal: 0₁₀ to 255₁₀
 - hexadecimal 00₁₆ to FF₁₆
 - » base 16 number representation
 - » use characters '0' to '9' and 'A' to 'F'
 - » write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

Hex Decimal Binary

0	0	0000
1	1	0001
1 2 3	1 2 3	0010
3		0011
4 5 6 7 8 9	<u>4</u> 5	0100
5	5	0101
6	6	0110
7	7 8	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

Boolean Algebra

- Developed by George Boole in 19th Century
 - algebraic representation of logic
 - » encode "true" as 1 and "false" as 0

And

Or

■ A&B = 1 when both A=1 and B=1

 \blacksquare A | B = 1 when either A=1 or B=1

&	0	1
0	0	0
1	0	1

Not

Exclusive-Or (Xor)

■ ~A = 1 when A=0

■ A^B = 1 when either A=1 or B=1, but not both

~	
0	1
1	0

General Boolean Algebras

- Operate on bit vectors
 - operations applied bitwise

All of the properties of boolean algebra apply

Example: Representing & Manipulating Sets

Representation

– width-w bit vector represents subsets of {0, ..., w–1}

$$-a_i = 1 \text{ iff } j \in A$$

01101001 { 0, 3, 5, 6 }
76543210

01010101 { 0, 2, 4, 6 }
76543210

Operations

&	intersection	01000001	{ 0, 6 }
	union	01111101	{ 0, 2, 3, 4, 5, 6 }
٨	symmetric difference	00111100	{ 2, 3, 4, 5 }
~	complement	10101010	{ 1, 3, 5, 7 }

Bit-Level Operations in C

- Operations &, ∣, ~, ^ available in C
 - apply to any "integral" data type

```
» long, int, short, char
```

- view arguments as bit vectors
- arguments applied bit-wise
- Examples (char datatype)

```
\sim 0x41 \rightarrow 0xBE
\sim 01000001_2 \rightarrow 10111110_2
\sim 0x00 \rightarrow 0xFF
\sim 00000000_2 \rightarrow 11111111_2
0x69 & 0x55 \rightarrow 0x41
01101001_2 & 01010101_2 \rightarrow 01000001_2
0x69 \mid 0x55 \rightarrow 0x7D
01101001_2 \mid 01010101_2 \rightarrow 01111101_2
```

Contrast: Logic Operations in C

Contrast to Logical Operators

```
- &&, ||, !
» view 0 as "false"
» anything nonzero as "true"
» always return 0 or 1
» early termination/short-circuited execution
```

Examples (char datatype)

```
!0x41 → 0x00

!0x00 → 0x01

!!0x41 → 0x01

0x69 && 0x55 → 0x01

0x69 || 0x55 → 0x01

p && *p (avoids null pointer access)
```

Contrast: Logic Operations in C

Contrast to Logical Operators

Watch out for && vs. & (and || vs. |)...
One of the more common oopsies in
C programming

```
!0x00 → 0x01
!!0x41 → 0x01
0x69 && 0x55 → 0x01
0x69 || 0x55 → 0x01
p && *p (avoids null pointer access)
```

Shift Operations

- Left Shift: x << y
 - shift bit-vector x left y positions
 - throw away extra bits on left
 - » fill with 0's on right
- Right Shift: x >> y
 - shift bit-vector x right y positions
 - » throw away extra bits on right
 - logical shift
 - » fill with 0's on left
 - arithmetic shift
 - » replicate most significant bit on left
- Undefined Behavior
 - shift amount < 0 or ≥ word size

Argument x	01100010	
<< 3	00010000	
Log. >> 2	00011000	
Arith. >> 2	00011000	

Argument x	10100010	
<< 3	00010000	
Log. >> 2	00101000	
Arith. >> 2	11101000	

Sign-magnitude

value =
$$(-1)^{b_{W-1}} \cdot \sum_{i=0}^{w-2} b_i \cdot 2^i$$

two representations of zero!

- Ones' complement
 - negate a number by forming its bitwise complement

value =
$$-b_{w-1}(2^{w-1}-1) + \sum_{i=0}^{w-2} b_i \cdot 2^i$$

$$= \sum_{i=0}^{w-1} b_i \cdot 2^i$$

$$= \sum_{i=0}^{w-2} b_i \cdot 2^i \quad \text{if } b_{w-1} = 0$$

$$= w-2$$

$$= \sum_{i=0}^{w-2} (b_i-1)\cdot 2^i \quad \text{if } b_{w-1} = 1$$

two zeroes!

Two's complement

 $b_{w-1} = 0 \Rightarrow$ non-negative number

value =
$$\sum_{i=0}^{w-2} b_i \cdot 2^i$$

 $b_{w-1} = 1 \Rightarrow negative number$

value =
$$(-1) \cdot 2^{w-1} + \sum_{i=0}^{w-2} b_i \cdot 2^i$$

Negating two's complement

$$value = -b_{w-1}2^{w-1} + \sum_{i=0}^{w-2} b_i 2^i$$

– how to compute –value? (~value)+1

Negating two's complement (continued)

value + (
$$\sim$$
value + 1)
= (value + \sim value) + 1
= (2 w -1) + 1
= 2 w W 0 0 0

Quiz 2

- We have a computer with 4-bit words that uses two's complement to represent negative numbers. What is the result of subtracting 0010 (2) from 0001 (1)?
 - a) 0111
 - b) 1001
 - c) 1110
 - d) 1111

Numeric Ranges

Unsigned Values

$$- UMin = 0$$
 $000...0$
 $- UMax = 2^{w} - 1$
 $111...1$

Two's Complement Values

$$- TMin = -2^{w-1}$$

$$100...0$$

$$- TMax = 2^{w-1} - 1$$

$$011...1$$

Other Values

Values for W = 16

	Decimal	Hex	Binary	
UMax	65535	FF FF	11111111 11111111	
TMax	32767	7F FF	01111111 11111111	
TMin	-32768	80 00	10000000 000000000	
-1	-1	FF FF	11111111 11111111	
0	0	00 00	00000000 00000000	

Values for Different Word Sizes

		W			
	8	16	64		
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615	
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807	
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808	

Observations

$$|TMin| = TMax + 1$$

» Asymmetric range
 $UMax = 2 * TMax + 1$

C Programming

- #include imits.h>
- declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- values platform-specific

Quiz 3

- What is –TMin (assuming two's complement signed integers)?
 - a) TMin
 - b) TMax
 - c) 0
 - d) 1

4-Bit Computer Arithmetic

Signed vs. Unsigned in C

Constants

- by default are considered to be signed integers
- unsigned if have "U" as suffix

```
OU, 4294967259U
```

Casting

explicit casting between signed & unsigned

```
int tx, ty;
unsigned int ux, uy; // "unsigned" means "unsigned int"
tx = (int) ux;
uy = (unsigned int) ty;
```

- implicit casting also occurs via assignments and procedure calls

```
tx = ux;

uy = ty;
```

Casting Surprises

- Expression evaluation
 - if there is a mix of unsigned and signed in single expression,
 signed values implicitly cast to unsigned
 - including comparison operations <, >, ==, <=, >=
 - examples for W = 32: TMIN = -2,147,483,648, TMAX = 2,147,483,647

Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Sign Extension

- Task:
 - given w-bit signed integer x
 - convert it to w+k-bit integer with same value
- Rule:
 - make k copies of sign bit:

Sign Extension Example

```
short int x = 15213;
int     ix = (int) x;
short int y = -15213;
int     iy = (int) y;
```

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	1111111 1111111 11000100 10010011

- Converting from smaller to larger integer data type
 - C automatically performs sign extension

Does it Work?

$$val_{w} = -2^{w-1} + \sum_{i=0}^{w-2} b_{i} \cdot 2^{i}$$

$$val_{w+1} = -2^{w} + 2^{w-1} + \sum_{i=0}^{w-2} b_{i} \cdot 2^{i}$$

$$= -2^{w-1} + \sum_{i=0}^{w-2} b_{i} \cdot 2^{i}$$

$$val_{w+2} = -2^{w+1} + 2^{w} + 2^{w-1} + \sum_{i=0}^{w-2} b_{i} \cdot 2^{i}$$

$$= -2^{w} + 2^{w-1} + \sum_{i=0}^{w-2} b_{i} \cdot 2^{i}$$

$$= -2^{w-1} + \sum_{i=0}^{w-2} b_{i} \cdot 2^{i}$$

Power-of-2 Multiply with Shift

Operation

 $-u \ll k gives u * 2^k$

true product: w+k bits

discard k bits: w bits

both signed and unsigned

operands: w bits

Examples

- most machines shift and add faster than multiply

 $u * 2^{k}$

» compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

- Quotient of unsigned by power of 2
 - $-u \gg k \text{ gives } [u / 2^k]$
 - uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Signed Power-of-2 Divide with Shift

- Quotient of signed by power of 2
 - $-x \gg k \text{ gives } [x / 2^k]$
 - uses arithmetic shift
 - rounds wrong direction when x < 0

	Division	Computed	Hex	Binary	
У	-15213	-15213	C4 93	11000100 10010011	
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001	
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001	
y >> 8	-59.4257813	-60	FF C4	1111111 11000100	

Correct Power-of-2 Divide

- Quotient of negative number by power of 2
 - want $[x / 2^k]$ (round toward 0)
 - compute as $[(x+2^k-1)/2^k]$
 - » in C: (x + (1 << k) -1) >> k
 - » biases dividend toward 0

Case 1: no rounding

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: rounding

Biasing adds 1 to final result

Why Should I Use Unsigned?

- Don't use just because number nonnegative
 - easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

- can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

- Do use when performing modular arithmetic
 - multiprecision arithmetic
- Do use when using bits to represent sets
 - logical right shift, no sign extension

Byte-Oriented Memory Organization

- Programs refer to data by address
 - conceptually, envision it as a very large array of bytes
 - » in reality, it's not, but can think of it that way
 - an address is like an index into that array
 - » and, a pointer variable stores an address
- Note: system provides private address spaces to each "process"
 - think of a process as a program being executed
 - so, a program can clobber its own data, but not that of others

Machine Words

- Any given computer has a "word size"
 - nominal size of integer-valued data
 - » and of addresses
 - until recently, most machines used 32 bits (4 bytes) as word size
 - » limits addresses to 4GB (2³² bytes)
 - » become too small for memory-intensive applications
 - leading to emergence of computers with 64-bit word size
 - machines still support multiple data formats
 - » fractions or multiples of word size
 - » always integral number of bytes

Word-Oriented Memory Organization

- Addresses specify byte locations
 - address of first byte in word
 - addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Byte Ordering

- Four-byte integer
 - 0x7654321
- Stored at location 0x100
 - which byte is at 0x100?
 - which byte is at 0x103?

01	23	45	67
0x100	0x101	0x102	0x103

Little-endian

67 45 23 01

Big-endian

0x100 0x101 0x102 0x103

Byte Ordering (2)

Quiz 4

```
int main() {
  long x=1;
  proc(x);
  return 0;
}

void proc(int arg) {
  printf("%d\n", arg);
}
```

What value is printed on a big-endian 64-bit computer?

- a) 0
- b) 1
- c) 2^{32}
- d) 2³²-1