IGLAVA

FUNKCIJE VIŠE REALNIH PROMENLJIVIH

U nauci i praksi često se javljaju situacije u kojima postoji zavisnost izmedju nekoliko realnih veličina a,b,c,\ldots,h pri čemu je jedna od njih potpuno odredjena vrednostima ostalih. U tom smislu dovoljno je podsetiti se sledećih primera.

(a) Zapremina kvadra sa stranicama dužine a,b i c izračunava se po obrascu

$$V = abc$$
.

(b) Površina kvadra sa stranicama dužine a, b, c izračunava se po formuli

$$P = 2(ab + ac + bc).$$

Obe formule daju vezu izmedju četiri realne promenljive pri čemu su V i P zavisno promenljive dok su a,b i c nezavisno promenljive. Navedeni primeri jasno ukazuju na potrebu za proučavanjem funkcija više promenljivih.

Što se tiče funkcija više promenljivih, ovde će biti dati, uz maksimalno nastojanje kompozicije celine, samo oni delovi koji će biti neposredno primenjivani u glavama o višestrukim integralima, vektorskoj analizi sa teorijom polja i glavi posvećenij kompleksnim funkcijama. Smatramo da se čitoc ne sreće prvi put sa osnovnim pojmovima o funkcijama više promenljivih.

1. GRANIČNA VREDNOST I NEPREKIDNOST

1.1. Definicija funkcije više promenljivih i neki istaknuti podskupovi u \mathbb{E}^n

1.1.1. Definicija. Funkcija n promenljivih je svako jednoznačno preslikavanje

$$f:D\longrightarrow E$$

sa skupa $D \subseteq E^n$ na skup $E \subseteq R$.

Pošto je tačka $x \in E^n$ uredjena n-torka realnih brojeva tj. $x = (x_1, \ldots, x_n)$ često se za funkciju n promenljivih koristi oznaka

$$y = f(x_1, \dots, x_n),$$

gde su x_1, x_2, \ldots, x_n nezavisno promenljive dok je y zavisno promenljiva.

Često tačke iz E^n označavamo velikim slovima latinice pa u tom slu
ăju za funkciju f definisanu na skupu $D \in E^n$ sa vrednostima u skupu real
nih brojeva R koristimo i sledeće oznake

$$z = f(M), M \in D \subset E^n \vee f : D \longrightarrow R.$$

Dalja razmatranja funkcija više promenljivih, uglavnom, biće usmerena na funkcije dve i tri promenljive, a što se lako uopštava za slučajeve kada je n > 3.

Za ispitivanje funkcija više promenljivih važni su otvorena kugla i otvorenn-dimenzioni pravougaonik. Otvorena kugla je definisana za metričke prostore a ovde se primenjije za prostor E^n .

1.1.2. Definicija. Neka je $a=(a_1,\ldots,a_n)\in E^n$ i δ_1,\ldots,δ_n pozitivni realni brojevi. *Otvoreni n-dimenzioni pravougaonik* definiše se kao podskup od E^n sledećom jednakošću :

$$P[a, \delta_i, i = 1, ..., n) = \{x \in E^n : a_i - \delta_i < x_i < a_i + \delta_i\}.$$

Tačka a je centar pravougaonika $P[a, \delta, i = 1, \dots, n)$ dok su pozitivmi brojevi $\delta_i, i = 1, \dots, n$ dužine njegovih stranica.

 $Zatvoren n-dimenzioni pravouga
onik u oznaci <math display="inline">P[a,\delta,i=1,\ldots,n]$ analogno se definiše kao skup

$$P[a, \delta_i, i = 1, ..., n] = \{x \in E^n : a_i - \delta_i \le x_i \le a_i + \delta_i\}.$$

1.1.3. Definicija. Neka je $y=f(x_1,\ldots,x_n)$ funkcija definisana na skupu $D\subset E^n$. Grafik funkcije f je skup $G_f\subset E^{n+1}$ koji je definisan na sledeći način.

$$G_f = \{(x_1, \dots, x_n, y) : y = f(x_1, \dots, x_n); (x_1, \dots, x_n) \in D\}.$$

Razume se, da za $n \in \{1,2\}$ grafik ima odredjenu vizuelnu predstavu, a za n > 2 nje nema.

1.1.4. Definicija. Neka je $a=(a_1,\ldots,a_n)$ tačka iz E^n i α_1,\ldots,α_n realni brojevi. Skup sih tačaka $x=(x_1,\ldots,x_n)$ iz E^n koje su odredjene relacijom

$$\frac{x_1 - a_1}{\alpha_1} = \ldots = \frac{x_n - a_n}{\alpha_n}$$

je prava u prostoru E^n . Brojevi $\alpha_1, \ldots, \alpha_n$ su koeficijenti pravca.

Primedba. Putanja (put) definisana za metričke prostore kao podskup prostora koji je neprekidna slika odsečka $[0, \alpha], \alpha > 0$, za prostore E^2 i E^3 naziva se krivom.

1.2. Granična vrednost funkcije više promenljivih

1.2.1. Definicija. Neka je y = f(x) funkcija definisana na skupu $D \subset E^n$ sa kodomenom $\Re(f) \subset R$ i neka je $a \in E^n$ granična (adherentna) neizolovana tačka skupa D. Kaže se da je broj $A \in R$ granična vrednost funkcije f(x) u tački a, što se simbolički zapisuje sa $A = \lim_{x \to a} f(x)$, ako za svako $\epsilon > 0$ egzistira $\delta > 0$ tako da je za sve $x \in D$ za koje je $d(a, x) < \delta$ sledi $|f(x) - A| < \epsilon$.

Ova definicija poznata je kao okolinska ili Košijeva definicija jer su skupovi $\{f(x) \in R : |f(x) - A| < \epsilon\} \subset R$ i $\{x \in E^n : d(a,x) < \delta\} \subset E^n$ otvorene okoline tačaka A i a u metričkim prostorima R i E^n . Osim ove poznata je i Hajneova definicija granične vrednosti preko nizova.

1.2.2. Definicija. Neka je y = f(x) funkcija definisana na skupu $D \subset E^n$ sa kodomenom $\Re(f) \subset R$ i neka je $a \in E^n$ granična neizolovana tačka skupa D. Broj $A \in R$ je granična vrednost funkkcije f(x) u tački a ako za svaki niz (x_n) tačaka iz D koji konvergira tački a niz vrednosti $(f(x_n))$ konvergira broju A.

Neposredno se dokazuje ekvivalentnost ove dve definicije. Medjutim, Hajneova definicija može se praktično iskoristiti za utvrdjivanje nepostojanja granične vrednosti funkcije u datoj tački.

1.2.3. Primer. Dokazati da funkcija $f(x,y) = \frac{x^2y}{(x^2+y)^2}$ u tački (0,0), nema graničnu vrednost.

Rešenje. Tačka $(0,0) \notin D_f$ ali je granična neizolovana tačka za $D_f = E^2 \setminus \{(0,0)\}$. Niz tačaka $(x_n,y_n) \in D_f$ gde je $x_n = \frac{1}{n}$ i $y_n = \frac{1}{n}$ konvergira tački (0,0), a niz vrednosti $f(x_n,y_n) = \frac{n}{(n+1)^2}$ konvergira nuli.

Takodje niz (x_n, y_n) gde je $x_n = \frac{1}{n}$, a $y_n = \frac{1}{n^2}$ konvergira tački (0,0) dok niz vrednosti $f(x_n, y_n)$ konvergira broju $\frac{1}{4}$. Dakle, funkcija $f(x,y) = \frac{x^2y}{(x^2+y)^2}$ nema graničnu vrednost u tački (0,0).

- **1.2.4. Definicija.** Neka je y = f(x) funkcija definisana na skupu $D \subset E^n$ i $a \in E^n$ granična neizolovana tačka skupa D. Neka je dalje p prava u E^n koja sadrži tačku a, i $D_0 = p \cap D \neq \emptyset$. Ako egzistira granična vrednost funkcije f(x) u tački a pri čemu $x \in D_0$ kaže se da funkcija f(x) ima graničnu vrednost u tački a po pravoj p (po pravcu p)
- **1.2.5. Definicija.** Neka je $D_0 = \mathcal{L} \cap D \neq \emptyset$ gde je D skup iz predhodne definicije i \mathcal{L} kriva koja prolazi kroz tačku a. Kaže se da funkcija f(x) ima graničnu vradnost u tački a po krivoj \mathcal{L} , ako egzistira $\lim_{x \to a} f(x)$, pri čemu $x \in D_0$.

Napomena. Ako funkcija f(x) ima graničnu vrednost u tački a, razume se da ima i graničnu vrednost po svakoj pravoj (krivoj) koja sadrži tačku a, a ima neprazan presek sa domenom funkcije. Šta više, ove granične vrednosti istovetne su sa graničnom vrednosti funkcije f(x) u tački a.

Prema ovoj primedbi jasno je da funkcija nema graničnu vrednost u tački ako po dva različita pravca (po pravoj i krivoj ili po dve različite krive) kroz datu tačku ima dve različite granične vrednosti.

1.2.6. Primer. Neka je $f(x,y) = \frac{x^2y}{x^4+y^2}$. Dokazati da

$$\lim_{(x,y)\to(0,0)} f(x,y),$$

ne postoji.

Rešenje. Ovde je $D_f = E^2 \setminus (0,0)$. Proizvoljna prava p koja prolazi kroz tačku (0,0) ima jednačinu

$$\frac{x}{\alpha} = \frac{y}{\beta} = t, \ \alpha^2 + \beta^2 > 0.$$

Tačka $(x,y)=(\alpha t,\beta t)$ sa prave p konvergira tački (0,0) ako $t\to 0$ i tada je

$$\lim_{(x,y)\to(0,0)}\frac{x^2y}{x^4+y^2} = \lim_{t\to 0}\frac{\alpha^2\beta t}{\alpha^4t^2+\beta} = 0,$$

tj, granična vrednost funkcije f(x,y) po proizvoljnoj pravoj koja prolazi kroz tačku (0,0) jednaka je 0. Medjutim, ako tačka (x,y) pripada paraboli

$$\mathcal{P} = \{ (x, y) \in E^2 : y = x^2 \},\$$

tačka $(x,y) \rightarrow (0,0)$ ako $x \rightarrow 0.$ Otuda je za $x \rightarrow 0$ i $y = x^2$

$$\lim_{(x,y)\to(0,0)}\frac{x^2y}{x^4+y^2}=\lim_{x\to0}\frac{x^4}{2x^4}=\frac{1}{2}.$$

Dakle, funkcija $f(x,y) = \frac{x^2y}{x^4+y^2}$ nema graničnu vrednost u tački (0,0).

1.2.7. Teorema. Neka je $g_1 = \lim_{x \to x_0} f(x), \ x \in E^n \ i \ g_2 = \lim_{x \to x_0} \varphi(x), \ x \in E^n, \ pri \ \check{c}emu \ su \ g_1, g_2 \in R. \ Tada \ je$

$$\lim_{x \to x_0} [f(x) \pm \varphi(x)] = g_1 \pm g_2, \tag{1}$$

$$\lim_{x \to x_0} [f(x) \cdot \varphi(x)] = g_1 \cdot g_2, \tag{2}$$

$$\lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \frac{g_1}{g_2}, \ g_2 \neq 0, \ \varphi(x) \neq 0, \tag{3}$$

$$\lim_{x \to x_0} [C \cdot f(x)] = C \cdot g_1, C - konstanta. \tag{4}$$

Dokaz ove teoreme isti je kao i za realne funkcije jedne realne promenljive pa se ovde izostavlja.

1.2.8. Definicija. Granična vrednost oblika

$$\lim_{x_{i_1} \to x_{i_1}^0} (\lim_{x_{i_2} \to x_{i_2}^0} (\dots \lim_{x_{i_n} \to x_{i_n}^0} f(x_1, \dots, x_n) \dots)),$$

gde je $i_1i_2\ldots i_n$ neka permutacija brojeva $1,2,\ldots,n$ a $M_0=(x_1^0,\ldots,x_n^0)$ granična neizolovana tačka skupa $D_f\subset E^n$, naziva se uzastopni (ponovljeni) limes funkcije f(M) u tački M_0 $(M=(x_1,\ldots,x_n)\in D_f\subset E^n)$.

1.2.9. Teorema. Neka egzistiraju limesi

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = g, \ g \in R,$$
 (a)

i

$$\lim_{x \to x_0} f(x, y) = \varphi(y), \tag{b}$$

za svako y iz neke okoline $(y_0 - \delta, y_0 + \delta), y \neq y_0$. Tada je

$$\lim_{y \to y_0} \left[\lim_{x \to x_0} f(x, y) \right] = g. \tag{c}$$

Dokaz. Ako uvedem oznake $M=(x,y), M_0=(x_0,y_0),$ prema (a) imamo

$$0 < d(M, M_0) < \delta \Rightarrow |f(M) - g| < \epsilon.$$

Pošto je $d(M, M_0) = \sqrt{(x-x_0)^2 + (y-y_0)^2} \ge |y-y_0|$ to neposredno sledi

$$0 < |y - y_0| < \delta| \Rightarrow |f(x, y) - g| < \epsilon.$$

Ako se u ovoj relaciji pusti da $x \to x_0$, tada, sobzirom na (b), dobija se

$$0 < |y - y_0| < \delta \Rightarrow |\varphi(y) - g| \le \epsilon$$
,

tj,

$$\lim_{y \to y_0} \varphi(y) = \lim_{y \to y_0} [\lim_{x \to x_0} f(x, y)] = g.$$

Ukoliko pored uslova (a) i (b) egzistira i limes $\psi(x) = \lim_{y \to y_0} f(x, y)$, tad egzistira i uzastopni limes

$$\lim_{x \to x_0} [\lim_{y \to y_0} f(x, y)] = g. \blacksquare$$

1.2.10. Primeri.

(a) Funkcija $f(x,y) = x \sin \frac{1}{y} + y \sin \frac{1}{x}$, $x \cdot y \neq 0$ ima graničnu vrednost u tački (0,0) jer je

$$|f(x,y)| = |x\sin\frac{1}{y} + y\sin\frac{1}{x}| \le |x| + |y| \Rightarrow \lim_{(x,y)\to(0,0)} f(x,y) = 0.$$

Medjutim, uzastopi (ponovljeni) limesi ne egzistiraju jer, kao što je poznato, ne egzistiraju

$$\lim_{x \to 0} y \sin \frac{1}{x} \wedge \lim_{y \to 0} x \sin \frac{1}{y}.$$

(b) Za funkciju $f(x,y)=\frac{x\cdot y}{x^2+y^2},\ x^2+y^2\neq 0$ u tački (0,0) egzistiraju oba ponovljena limesa. Šta više

$$\lim_{x \to x_0} \left[\lim_{y \to y_0} f(x, y) \right] = \lim_{y \to y_0} \left[\lim_{x \to x_0} f(x, y) \right] = 0.$$

Medjutim, ova funkcija nema graničnu vrednost u tački (0,0) jer je granična vrednost po pravoj y=x

$$\lim_{x \to 0} f(x, x) = \frac{1}{2},$$

a po paraboli $y = x^2$

$$\lim_{x \to 0} f(x, x^2) = 0. \blacklozenge$$

1.3. Osnovna svojstva neprekidnih funkcija.

- **1.3.1. Definicija.** Neka je funkcija $f(M), M = (x_1, \dots, x_n)$ zadata na skupu $D \subset E^n$.
 - (a) Funkcija f(M) neprekidna je u tački $M_0 \in D$ ako egzistira

$$\lim_{M \to M_0} f(M) \wedge \lim_{M \to M_0} f(M) = F(M_0).$$

- (b) Funkcija f(M) neprekidna je na skupu D ako je neprekidna u svakoj tački skupa D.
- **1.3.2. Definicija.** Neka je $M_0\in D_f$ fiksirana tačka i $M\in D_f$ proizvoljna tačka domena D_f funkcije $z=f(M), M\in D_f$. Broj Δz odredjen jednakošću

$$\Delta z = f(M) - f(M_0),$$

naziva se totalni priraštaj funkcije f(M) u tački M_0 .

Kako se ovde razmatraju uglavnom funkcije dve i tri promenljive, za koordinate tačaka M(x, y) i $M_0(x_0, y_0)$ koriste se sledeće veze

$$x = x_0 + \Delta x \wedge y = y_0 + \Delta y$$
,

gde je Δx priraštaj argumenta x, a Δy pritaštaj argumenta y. U tom slučaju totali priraštaj Δz , funkcije z = f(x, y), biće

$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0).$$

Sledeća teorema sledi neposredno iz definicije neprekidnosti funkcije u tački.

- **1.3.3. Teorema.** Funkcija $z=f(M),\ M\in D_f$ neprekidna je u tački $M_0\in D_f$ ako i samo ako je $\lim_{M\to M_0}\Delta z=0.$
- **1.3.4. Teorema.** Zbir, razlika, proizvod i količnik (imenilac različit od nule) neprekidnih funkcija takodje je neprekidna funkcija.

Dokaz ove teoreme isti je kao i za reane funkcije jedne promenljive.

1.3.5. Definicija. Neka su realne funkcije

$$u = \varphi(x, y) = \varphi(M) \land v = \psi(x, y) = \psi(M)$$

definisane na skupu $D \subset E^2$ i neka je $\Delta \subset E^2$ skup tačaka P(u,v) čije su koordinate odredjene ovim jednačinama, kaže se da je funkcija

$$z = f(u, v) = f(P)$$

složena funkcija argumenata x i y.

1.3.6. Teorema. Neka su funkcije $u = \varphi(x,y)$ i $v = \psi(x,y)$ neprekidne u tački $M_0(x_0,y_0)$, a funkcija z = f(u,v) neprekidna u tački $P_0(u_0,v_0)$, gde je $u_0 = \varphi(M_0)$ i $v_0 = \psi(M_0)$. Tada je složena funkcija z = f(u,v) neprekidna u tački $M_0(x_0,y_0)$.

Dokaz. Neka je $(M_n) \subset D$ bilo koji niz koji konvergira ka $M_0 \in D$, i neka je

$$u_n = \varphi(M_n), \ v_n = \psi(M_n), \ P_n(u_n, v_n).$$

Pošto su funkcije φ i ψ neprekidne u tački M_0 , to je

$$\lim_{M_n \to M_0} u_n = \lim_{M_n \to M_0} \varphi(M_n) = \varphi(M_0) = u_0$$

i

$$\lim_{M_n \to M_0} v_n = \lim_{M_n \to M_0} \psi(M_n) = \psi(M_0) = v_0.$$

Dakle, niz (P_n) konvergira ka P_0 . Kako je funkcija f neprekidna u tački P_0 , to je

$$\lim_{M \to M_0} f(P_n) = f(P_0),$$

odnosno

$$\lim_{M_n \to M_0} f(\varphi(M_n), \psi(M_n)) = f(\varphi(M_0), \psi(M_0)).$$

Prema tome, složena funkcija z = f(u, v) je neprekidna u tački M_0 .

Sledeće teoreme dokazuju se analogno kao u slučaju funkcije jedne promenljive, pa se daju bez dokaza.

- **1.3.7. Teorema.** Ako je funkcija f neprekidna u tački $M_0 \in E^2$ i ako je $f(M_0) > 0$, $f(M_0) < 0$, tada postoji δ -okolina tačke M_0 u kojoj je f > 0, odnosno f < 0.
- **1.3.8.** Definicija. Funkcija f je ograničena na skupu $D \subset E^2$, ako postoje realni brojevi p i q takvi da je

$$(\forall M \in D) \quad p \le f(M) \le q.$$

1.3.9. Definicija. Ako važi

$$(\forall M \in D) \quad f(M) \le f(M_0),$$

odnosno

$$(\forall M \in D) \quad f(M) \ge f(M_0),$$

onda je $f(M_0)$ najveća, odnosno najmanja vrednost funkcije f na skupu $D \subset E^2$, a što se označava sa

$$f(M_0) = \max_{M \in D} f(M),$$

odnosno

$$f(M_0) = \min_{M \in D} f(M).$$

- **1.3.10.** Teorema. Neprekidna funkcija na zatvorenoj i ograničenoj (kompaktnoj) oblasti $G \subset E^2$ ima najveći i najmanju vrednost u toj oblasti.
- **1.3.11. Teorema.** Neka je f neprekidna na oblasti $D \subset E^2$ i neka su M i N proizvoljne tačke iz D u kojima je $f(M) \neq f(N)$. Tada za svaki broj A, sa svojstvom f(M) < A < f(N) ili f(N) < A < f(M), egzistira tačka $P \in D$ takva da je A = f(P).
- **1.3.12. Definicija.** Funkcija f definisana na skupu $S \subset E^2$ je ravnomerno (uniformno) neprekidna na skupu S, ako za svako $\epsilon > 0$ egzistira broj $\delta > 0$, tako, da za sve tačke M, N iz S važi

$$d(M, N) < \delta \Rightarrow |f(M) - f(N)| < \epsilon$$
.

Napomena. Prema ovoj definiciji, razume se da svaka ravnomerno neprekidna funkcija je neprekidna. Medjutim, obrnuto nije uvek tačno. Tako na primer funkcija $f(x) = \frac{1}{x}, x \in (0,1]$ je neprekidna, a nije ravnomerno neprekidna.

Sledeća teorema odnosi se na uslove pod kojima je tačno obrnuto tvrdjenje.

1.3.13. Teorema. Neprekidna funkcija f na kompaktnoj oblasti $D \subset E^2$ ravnomerno je neprekidna na D.

2. DIFERENCIJABILNOST I EKSTREMNE VREDNOSI

2.1. Parcijalni izvodi, diferencijabilnost i Tejlorova formula

Neka je $M_0(x_0, y_0) \in D_f$ fiksiana tačka domena D_f funkcije z = f(x, y). Odrediémo izvod funkcije jedne promenljive

$$z = f(x, y_0)$$

u tački $x=x_0$. Priraštaj $\Delta_x z$ te funkcije, koji je odredjen jednakošću

$$\Delta_x z = f(x_0 + \Delta x, y_0) - f(x_0, y_0),$$

naziva se parcijalni priraštaj funkcije f u tački M_0 po x.

2.1.1. Definicija. Ako postoji limes količnika $\frac{\Delta_x z}{\Delta x}$ kada $\Delta x \to 0$, onda se naziva parcijalnim izvodom funkcije f u tački M_0 po x i označava sa

$$\frac{\partial z}{\partial x} = \lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x}.$$

Na isti način definiše se i parcijalni izvod funkcije f u tački M_0 po y.

$$\frac{\partial z}{\partial y} = \lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y}.$$

Uobičajene oznake za parcijalne izvode su sledeće :

$$\frac{\partial z}{\partial x}, \ \frac{\partial z}{\partial y}, \ z_x', \ z_y', \ z_x, \ z_y, f_x', \ f_y', \ f_x, f_y.$$

Pravila izračunavanja parcijalnih izvoda funkcije z = f(x, y) su poznata pravila izračunavanja izvoda funkcije jedne promenljive.

Totalni priraštaj funkcije z = f(x, y) u tački $M(x, y) \in D_f$, prema ranije uvedenim oznakama je

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y),$$

pri čemu $(x + \Delta x, y + \Delta y) \in D_f$. Uvedimo sledeću oznaku :

$$\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}.$$

Razume se da $\rho \to 0 \iff \Delta x \to 0 \land \Delta y \to 0$.

2.1.2. Definicija. Funkcija f je diferencijabilna u tački M ako se njen totalni priraštaj može predstaviti u obliku

$$\Delta z = A\Delta x + B\Delta y + \alpha \Delta x + \beta \Delta y$$

gde su Ai Bbrojevi koji ne zavise od Δx i $\Delta y,$ već samo od xi y,a pri čemu je

$$\lim_{\rho \to 0} \alpha = 0 \wedge \lim_{\rho \to 0} \beta = 0$$

i
$$\alpha = \beta = 0$$
 za $\Delta x = \Delta y = 0$.

Prema ovoj definiciji neposredno se zaključuje da je svaka diferencijabilna funkcija u tački i neprekidna u toj tački, a osim toga, ona u toj tački ima parcijalne izvode.

Naredna teorema daje dovoljne uslove diferencijabilnosti funkcije u datoj tački.

2.1.3. Teorema. Ako funkcija z = f(x, y) ima parcijalne izvode u nekoj δ -okolini tačke $M_0(x_0, y_0)$ i ako su parcijalni izvodi neprekidni u tački M_0 , tada je ona diferencijabilna u tački M_0 .

Dokaz. Neka je $B[M_0, \delta)$ δ -okolina tačke M_0 u kojoj postoje parcijalni izvodi f'_x i f'_y . Totalni priraštaj funkcije

$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0),$$

pri čemu $(x_0+\Delta x,y_0+\Delta y)\in B[M_0,\delta),$ može se prikazati u obliku zbira dveju razlika

$$\Delta z = [f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y)] + [f(x_0, y_0 + \Delta y) - f(x_0, y_0)].$$

Svaka od tih razlika u srednjim zagradama predstavlja parcijalni priraštaj funkcije jedne promenljive. Šta više, na svaku od ovih razlika, može se primeniti Lagranžova teorema, pa je

$$\Delta z = f_x'(x_0 + \theta \Delta x, y_0 + \Delta y) \Delta x + f_y'(x_0, y_0 + \theta_1 \Delta y) \Delta y,$$

gde je

$$0 < \theta < 1, \ 0 < \theta_1 < 1.$$

Pošto su funkcije f'_x i f'_y neprekidne u tački $M_0(x_0, y_0)$, to je

$$f'_x(x_0 + \theta \Delta x, y_0 + \Delta y) = f'_x(x_0, y_0) + \alpha,$$

$$f'_y(x_0, y_0 + \theta_1 \Delta y) = f'_y(x_0, y_0) + \beta,$$

pri čemu je

$$\lim_{\rho \to 0} \alpha = 0 \wedge \lim_{\rho \to 0} \beta = 0.$$

Dakle,

$$\Delta z = f'(x_0, y_0)\Delta x + f'_y(x_0, y_0)\Delta y + \alpha \Delta x + \beta \Delta y,$$

što znači da je funkcija f diferencijabilna u tački M_0 .
■

2.1.4. Teorema. Ako je funkcija f diferencijabilna u svakoj tački oblasti $G \subset E^2$, i ako su njeni parcijalni izvodi u svakoj tački te oblasti jednaki nuli, onda je f konstanta u oblasti G.

Dokaz. Neka je $M_0 \in G$ fiksirana i $M \in G$ proizvoljna tačka oblasti G. Pošto je G otvoren i povezan skup, postoji izlomljena linija $M_0M_1 \dots M$ koja spaja tačke M_0 i M i sadržana je u G. Ako se na priraštaj $\Delta z = f(M_1) - f(M_0)$ primeni formula

$$\Delta z = f_x'(x_0 + \theta \Delta x, y_0 + \Delta y)\Delta x + f_y'(x_0, y_0 + \theta_1 \Delta y)\Delta y,$$

gde je

$$0 < \theta < 1, \ 0 < \theta_1 < 1,$$

i uzme u obzir da su parcijalni izvodi jednaki nuli, dobiće se da je $f(M_0) = f(M_1)$. Nastavljajući tako od temena do temena izlomljene linije, dobijamo f(M) = C gde je $C = f(M_0)$.

2.1.5. Definicija. Ako je funkcija z=f(x,y) diferencijabilna u tački M(x,y), onda izraz dz odredjen jednakošću

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy,$$

gde je $dx = \Delta x$ i $dy = \Delta y$, naziva se totalni diferencijal funkcije f u tački M.

Parcijalne izvode

$$\frac{\partial z}{\partial x} = f'_x(x, y) \wedge \frac{\partial z}{\partial y} = f'_y(x, y),$$

ubuduće zvaćemo prvim parcijalnim izvodima, ili, parcijalnim izvodima prvog reda funkcije f. Drugi parcijalni izvodi, ili, parcijalni izvodi drugog reda funkcije f su prvi parcijalni izvodi funkcija f'_x i f'_y . Za njihovo predstavljanje koriste se sledeći simboli:

$$\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = f''_{xx} = f_{xx} = z_{xx},$$

$$\frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = f''_{xy} = f_{xy} = z_{xy},$$

$$\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = f''_{yx} = f_{yx} = z_{yx},$$

$$\frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = f''_{yy} = f_{yy} = z_{yy}.$$

Izvodi z_{xy} i z_{yx} poznati su kao mešoviti parcijalni izvodi drugog reda

Od parcijalnih izvoda drugog reda na isti način formiraju se parcijalni izvodi trećeg reda, itd.

2.1.6. Teorema. Neka funkcija f ima parcijalne izvode f_x , f_y , f_{xy} , f_{yx} u svim tačkama oblasti $G \subset E^2$. Ako su mešoviti izvodi f_{xy} i f_{yx} neprekidni na G, tada je za sve $M(x,y) \in G$

$$f_{xy} = f_{yx}$$
.

Dokaz. Za proizvoljnu tačku $M(x,y) \in G$ formirajmo sledeći izraz

$$u = f(x + \Delta x, y + \Delta y) - f(x, y + \Delta y) - f(x + \Delta x, y) + f(x, y). \tag{*}$$

Dokaz izvodimo u dva dela.

1º Ako se uvede pomoćna funkcija

$$\varphi(x,y) = f(x + \Delta x, y) - f(x,y),$$

tada se (*) može napisati u obliku

$$u = \varphi(x, y + \Delta y) - \varphi(x, y).$$

Primenom Lagranžove formule konačnih priraštaja po y na segmentu

$$[y, y + \Delta y],$$

dobijamo

$$u = \varphi_y'(x, y + \theta \Delta y) \Delta y,$$

ili, u ekvivalentnom obliku

$$u = [f'_{u}(x + \Delta x, y + \theta \Delta y) - f'_{u}(x, y + \theta \Delta y)]\Delta y.$$

Ako se sada na ovu razliku primeni Lagranžova formula po x, dobiće se

$$u = f_{ux}''(x + \theta_1 \Delta x, y + \theta \Delta y) \Delta x \Delta y.$$

2⁰ Ukoliko se podje od pomoćne funkcije

$$\psi(x,y) = f(x,y + \Delta y) - f(x,y),$$

onda, na sličan način kao pod 1⁰, dobićemo

$$u = \psi(x + \Delta x, y) - \psi(x, y) = \psi'_x(x + \theta_2 \Delta x, y) \Delta x,$$

odnosno

$$u = f_{xy}''(x + \theta_2 \Delta x, y + \theta_3 \Delta y) \Delta x \Delta y.$$

Dakle, došli smo do jednakosti

$$f_{ux}''(x+\theta_1\Delta x,y+\theta\Delta y)\Delta x\Delta y=f_{xy}''(x+\theta_2\Delta x,y+\theta_3\Delta y)\Delta x\Delta y.$$

Prelaskom na limes kada $\Delta x \to 0$ i $\Delta y \to 0$, koristeći pri tome neprekidnost fukcija f''_{ux} , f''_{ux} u tački M(x,y), dobijamo da je

$$f_{xy}''(xy) = f_{yx}''(x,y), (x,y) \in G. \blacksquare$$

Neka je funkcija f neprekidna u svim tačkama oblasti $G \subset E^2$. Za funkciju f kaže se da je:

- 1^0 Element klase $C^n(G)$, $n \in N$, ako su svi njeni parcijalni izvodi do n-tog reda zaključno neprekidni na G, a simbolički se označava sa $f \in C^n(G)$.
- 2^0 Element klase $C^\infty(G)$ ako su svi njeni parcijalni izvodi ma kog reda neprekidni na G. Piše se $f\in C^\infty(G).$

Ako je funkcija f samo neprekidna na G, onda se piše $f \in C(G)$.

Naredna teorema je generalizacija prethodne, a dokaz se zasniva na prethodnj teoremi.

2.1.7. Teorema. Ako je $f \in C^n(G)$, onda n-ti parcijalni izvod funkcije F u svim tačkama oblasti G ne zavisi od poretka diferenciranja, tj. važi

$$\frac{\partial^n f}{\partial x^k \partial y^{n-k}} = \frac{\partial^n f}{\partial y^{n-k} \partial x^k}.$$

U daljem tekstu pozabavimo se pitanjem diferencijabilnosti složene funkcije

$$z = f(u, v),$$

gde je

$$u = \varphi(x, y) \wedge v = \psi(x, y).$$

2.1.8. Teorema. Neka su funkcije φ i ψ diferencijabilne u tački M(x,y) i funkcija f diferencijabilna u tački P(u,v), gde je $u=\varphi(M)$ i $v=\psi(M)$.

Tada je složena funkcija $z = f(\varphi(M), \psi(M))$ diferencijabilna u M(x, y), i pri tome je:

$$z_x = z_u \cdot u_x + z_v \cdot v_x,$$

$$z_y = z_u \cdot u_y + z_v \cdot v_y.$$

 $\mathbf{Dokaz.}\,$ Pošto je funkcija f diferencija
bilna u tački P(u,v),to će u toj tački biti

$$\Delta z = z_u \Delta u + z_v \Delta v + \alpha \Delta u + \beta \Delta v,$$

pri čemu je

$$\lim_{\rho \to 0} \alpha = 0 \wedge \lim_{\rho \to 0} \beta = 0,$$

gde je
$$\rho = \sqrt{(\Delta u)^2 + (\Delta v)^2}$$
 i

$$\rho \to 0 \iff \Delta u \to 0 \land \Delta v \to 0.$$

Ako se totalni priraštaji Δu i Δv zamene parcijalnim priraštajima $\Delta_x u$ i $\Delta_x v$, dobiće se da je

$$\Delta_x z = z_u \Delta_x u + z_v \Delta_x v + \alpha \Delta_x u + \beta \Delta_x v.$$

Deljenjem ove jednakosti sa Δx , imamo

$$\frac{\Delta_x z}{\Delta x} = z_u \frac{\Delta_x u}{\Delta x} + z_v \frac{\Delta_x v}{\Delta x} + \alpha \frac{\Delta_x u}{\Delta x} + \beta \frac{\Delta_x v}{\Delta x}.$$

Pošto su funkcije $\varphi,\ \psi$ i f diferencijabilne, pa prema tome i neprekidne, važi:

$$\Delta x \to 0 \Rightarrow (\Delta_x u \to 0 \land \Delta_x v \to 0) \Rightarrow (\alpha \to 0 \land \beta \to 0).$$

Primenom ovih činjenica pri prelasku na limes u poslednjoj jednakosti, dobijamo da je

$$z_x = z_u \cdot u_x + z_v \cdot v_x.$$

Na isti način izvodi se i druga formula ove teoreme.

■

- **2.1.9.** Posledice. Prethodna teorema implicira sledeća svojstva složenih funkcija.
 - (a) Ako je z = f(u), $u = \varphi(x, y)$, tada je

$$z_x = z_u \cdot u_x \wedge z_y = z_u \cdot u_y.$$

(b) Ukoliko je $z = f(u, v), u = \varphi(x)$ i $v = \psi(x)$, tada je

$$z_x = z_u \cdot u_x + z_v \cdot v_x.$$

(c) Za totalni diferencijal služene funkcije iz prethodne teoreme važe sedeće ekvivalentne jednakosti

$$dz = z_x \cdot dx + z_y \cdot dy \iff dz = (z_u \cdot u_x + z_v \cdot v_x)dx + (z_u \cdot u_y + z_v \cdot v_y)dy \iff dz = z_u \cdot du + z_v \cdot dv,$$

gde je

$$du = u_x \cdot dx + u_y \cdot dy \wedge dv = v_x \cdot dx + v_y \cdot dy.$$

Svojstvo (c) poznato je kao invarijantnost forme prvog diferencijala. Drugim rečima, forma totalnog diferencijala je ista, bez obzira da li su u i v nezavisno promenljive ili funkcije.

U daljem tekstu totalni diferencijal funkcije z = f(x, y)

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$

zvaćemo prvi diferencijal, ili diferencijal prvog reda funkcije f. Drugi diferencijal ili diferencijal drugog reda funkcije f je prvi diferencijal funkcije dz, a označava se sa d^2z . To znači

$$d^{2}z = d(dz) = (z'_{x}dx + z'_{y}dy)'_{x}dx + (z'_{x}dx + z'_{y}dy)'_{y}dy$$

= $(z''_{xx}dx + z''_{yx}dy)dx + (z''_{xy}dx + z''_{yy}dy)dy$
= $z''_{xx}dx^{2} + 2z''_{xy}dxdy + z''_{yy}dy^{2},$

gde je

$$(dx)^2 = dx^2$$
, $(dy)^2 = dy^2$, $z''_{xy} = z''_{yx}$.

Diferencijal trećeg reda, ili treći diferencijal funkcije f je prvi diferencijal drugog diferencijala fukcije f; označava se sa $d^3z = d(d^2z)$.

2.1.10. Definicija. Ako funkcija z = f(x, y) = f(M) ima parcijalne izvode do n-tog reda u tačkiM, tada se prvi diferencijal funkcije $d^{n-1}z$ zove diferencijal n-tog reda ili n-ti diferencijal funkcije f u tački M, i označava se sa d^nz .

To znači

$$d^nz = d(d^{n-1}z); n \in N, n \ge 2.$$

Ako se uvede operator

$$d = \left(dx\frac{\partial}{\partial x} + dy\frac{\partial}{\partial y}\right),\,$$

tada se $d^n z$ može napisati u obliku

$$d^n z = \left(dx \frac{\partial}{\partial x} + dy \frac{\partial}{\partial y}\right)^n z.$$

Prethodna formula koristi se na taj način što se n-ti stepen zbira razvija po binomnoj formuli, a zatim se operatorima diferenciranja "priključuje" funkcija z = f(x, y). Na primer,

$$d^{2}z = \left(dx\frac{\partial}{\partial x} + dy\frac{\partial}{\partial y}\right)^{2}z$$

$$= \left(dx^{2}\frac{\partial^{2}}{\partial x^{2}} + 2dxdy\frac{\partial^{2}}{\partial x\partial y} + dy^{2}\frac{\partial^{2}}{\partial y^{2}}\right)z$$

$$= \frac{\partial^{2}z}{\partial x^{2}}dx^{2} + 2\frac{\partial^{2}z}{\partial x\partial y}dxdy + \frac{\partial^{2}z}{\partial y^{2}}dy^{2}.$$

Ovde treba istaći da se diferencijali dz i d^2z često pišu u obliku

$$dz = pdx + qdy \ i \ d^2z = rdx^2 + 2sdxdy + tdy^2$$

gde se koriste Monžove oznake:

$$p = z_x, q = z_y, r = z_{xx}, s = z_{xy}, t = z_{yy}, (z_{xy} = z_{yx}).$$

Sledeća teorema daje Tejlorovu furmulu za funkciju f(x,y) sa centrom razlaganja u tački $M_0(x_0,y_0)$ i ostatkom R_n u Lagranžovom obliku.

2.1.11. Teorema. Ako neprekidna funkcija z = f(x,y) = f(M) ima neprekidne parcijalne izvode do n+1-reda zaključno u nekoj δ -okolini $B[M_0,\delta)$ tačke $M_0(x_0,y_0)$, tada za svaku tačku $M(x_0+\Delta x,y_0+\Delta y) \in B[M_0,\delta)$ postoji $\theta \in (0,1)$, tako da važi

$$f(M) = f(M_0) + df(M_0) + \frac{d^2 f(M_0)}{2!} + \ldots + \frac{d^n f(M_0)}{n!} + R_n,$$

gde je

$$R_n = \frac{d^{n+1}f(M^*)}{(n+1)!}, M^*(x_0 + \theta \Delta x, y_0 + \theta \Delta y).$$

Dokaz. Neka je

$$x = x_0 + t\Delta x$$
, $y = y_0 + t\Delta y$, $0 \le t \le 1$ $(dx = \Delta x, dy = \Delta y)$

i

$$F(t) = f(x, y) = f(x_0 + t\Delta x, y_0 + t\Delta y).$$

Ako se u Maklorenovoj formuli funkcije jedne promenljive F(t):

$$F(t) = F(0) + t \cdot F'(0) + \frac{t^2}{2}F''(0) + \dots + \frac{t^n}{n!}F^{(n)}(0) + \frac{t^{n+1}}{(n+1)!}F^{(n+1)}(\theta t),$$

stavi t=1, dobiće se

$$F(1) = F(0) + F'(0) + \frac{1}{2}F''(0) + \dots + \frac{1}{n!}F^{(n)}(0) + \frac{1}{(n+1)!}F^{(n+1)}(\theta t).$$

Dalje će biti

$$F(1) = f(x_0 + \Delta x, y_0 + \Delta y) = f(M),$$

$$F(0) = f(x_0, y_0) = f(M_0),$$

$$F'(0) = [f_x \Delta x + f_y \Delta y]|_{t=0} = f_x(M_0) \Delta x + f_y(M_0) \Delta y = df(M_0),$$

$$F''(0) = [f_{xx} \Delta x^2 + 2f_{xy} \Delta x \Delta y + f_{yy} \Delta y^2]|_{t=0} = d^2 f(M_0),$$
.......
$$F^{(n)}(0) = d^n f(M_0),$$

$$F^{(n+1)}(\theta) = d^{n+1} f(M^*).$$

Ako se ove vrednosti zamene u Maklorenovom izrazu, dobiće se Tejlorova formula.■

2.2. Ekstremne vrednosti

Neka je data funkcija

$$z = f(x, y) = f(M), M \in D_f \subset E^2,$$

i neka je

$$\Delta z = f(M) - f(M_0)$$

njen totalni priraštaj u tački $M_0 \in D_f$.

2.2.1. Definicija. Kaže se da funkcija

$$z = f(x, y) = f(M), M \in D_f \subset E^2,$$

ima lokalni maksimum (minimum) u tački $M_0 \in D_f$ ako egzistira okolina G tačke M_0 sa svojstvom

$$(\forall M \in G, M \neq M_0) \Delta z = f(M) - f(M_0) < 0 (\Delta z = f(M) - f(M_0) > 0).$$

Tačka M_0 naziva se tačkom lokanog maksimuma (minimuma)

Tačke lokalnog maksimuma i minimuma nazivaju se tačkama lokanog ekstremuma, a vrednosti funkcije u njima su lokalni ekstremumi funkcije.

2.2.2. Definicija. Tačka $M_0(x_0,y_0)$ je stacionarna tačka funkcije f ako je

$$f'_x(M_0) = 0 \land f'_y(M_0) = 0.$$

Očigledno, ako je M_0 stacionarna tačka diferencijabilne funkcije f, onda je

$$df(M_0) = 0.$$

2.2.3. Teorema. Ako je M_0 tačka lokalnog ekstremuma diferencijabilne funkcije f, onda je M_0 stacionarna tačka te funkcije.

Dokaz. Pošto funkcija z=f(x,y) ima lokalni ekstremum u tački $M_0(x_0,y_0)$ to i funkcija jedne promenljive $\varphi(x)=f(x,y_0)$ ima lokalni ekstremum u tački $x=x_0$, pa prema poznatoj teoremi za funkciju jedne promenljive, mora biti $\varphi'(x_0)=0$, odnosno $f_x'(x_0,y_0)=0$. Na isti način dokazuje se da je $f_y'(x_0,y_0)=0$. Prema prethodnoj definiciji, M_0 je stacionarna tačka funkcije f.

Primetimo da stacionarna tačka funkcije nije uvek i tačka lokalnog ekstremuma funkcije. Na primer, ako je z=xy, onda je $z_x=y$ i $z_y=x$, pa je $M_0(0,0)$ stacionarna tačka funkcije. Medjutim, tačka M_0 nije tačka lokalnog ekstremuma, jer, totalni priraštaj $\Delta z=\Delta x\Delta y$ nema konstantan znak ni u jednoj okolini tačke M_0 .

U sledećoj teoremi daju se dovoljni uslovi za egzistenciju lokalnog ekstremuma u stacionarnoj tački funkcije

$$z = f(x, y) = f(M), M \in G \subset E^2,$$

pri čemu je G oblast (otvoren i povezan skup) iz E^2 . Koristićemo pomoćnu funkciju

$$D(M) = (rt - s^2)\Big|_{M}, \ M \in G,$$

gde je

$$r = z_{xx}, \ s = z_{xy}, \ t = z_{yy}.$$

2.2.4. Teorema. Neka je funkcija f element klase $C^3(G)$ i neka je $M_0 \in G$ njena stacionarna tačka, tj.

$$f \in C^3(G) \wedge df(M_0) = 0.$$

Tada:

 1^0 Ako je $D(M_0) > 0$, M_0 je tačka lokalnog ekstremuma funkcije, i to, tačka lokalnog minimuma ako je $r(M_0) > 0$ i tačka lokalnog maksimuma ako je $r(M_0) < 0$.

 2^0 U slučaju $D(M_0) < 0$, M_0 nije tačka lokalnog ekstremuma funkcije f. **Dokaz.** Iz Tejlorove formule

$$f(M) = f(M_0) + df(M_0) + \frac{1}{2}d^2f(M_0) + \frac{\epsilon}{2},$$

gde je

$$\lim_{\rho \to 0} \frac{\epsilon}{\rho^2} = 0, \ \rho^2 = (\Delta x)^2 + (\Delta y)^2.$$

Ako izvršimo zamenu

$$\Delta z = f(M) - f(M_0) \wedge df(M_0) = 0,$$

imamo

$$2\Delta z = d^2 f(M_0) + \epsilon.$$

Pošto je ϵ proizvoljno mali broj, znak totalnog priraštaja Δz ima isti znak kao i totalni diferencijal

$$d^{2}f(M_{0}) = r(M_{0})(\Delta x)^{2} + 2s(M_{0})\Delta x\Delta y + t(M_{0})(\Delta y)^{2},$$

odnosno

$$d^2 f(M_0) = \begin{cases} r(M_0)(\Delta x)^2, & \Delta y = 0\\ T(k)(\Delta y)^2, & \Delta y \neq 0 \end{cases}$$

gde je

$$T(k) = r(M_0)k^2 + 2s(M_0)k + t(M_0), \ k = \frac{\Delta x}{\Delta y}, (-\infty < k < +\infty).$$

Treba ispitati znak kvadratnog trinoma T, čija je diskriminanta

$$\Delta(M_0) = -D(M_0) = (s^2 - rt)\Big|_{M_0}$$

 $1^0 D(M_0) > 0.$

- (a) $r(M_0)>0$. Kako je T>0, to je $\Delta z>0$ u nekoj okolini tačke M_0 , što znači da je M_0 tačka lokalnog minimuma.
- (b) $r(M_0)<0$. Ovde je T<0 i $\Delta z<0$ u nekoj okolini tačke M_0 , pa je M_0 tačka lokalnog maksimuma.

$$2^0 D(M_0) < 0.$$

Kvadratni trinom T ima različite znake, tj. Δz ima različite znake u svakoj okolini tačke M_0 , pa tačka M_0 nije tačka lokalnog ekstremuma funkcije f.

$$3^0 D(M_0) = 0.$$

U ovom slučaju ekstremne vrednosti funkcije f u tački M_0 utvrdjuju se po definiciji.

2.2.5. Primer. Naći lokalne ekstremume funkcije z = xy(1 - x - y).

Rešenje. Domen finkcije je ravan E^2 , a njeni parcijalni izvodi su

$$p = y(1 - 2x - y), \ q = x(1 - 2y - x),$$

 $r = -2y, \ s = 1 - 2x - 2y, \ t = -2x.$

Pomoćna funkcija D je

$$D(M) = 4xy - (1 - 2x - 2y)^2.$$

Rešavanjem sistema jednačina

$$y(1-2x-y) = 0$$
, $x(1-2y-x) = 0$,

dobijamo stacionarne tačke:

$$M_1(0,0), M_2(0,1), M_3(1,0), M_4(\frac{1}{3},\frac{1}{3}).$$

Prema prethodnoj teoremi ispitujemo prirodu stacionarnih tačaka.

Kako je

$$D(M_1) = 4 \cdot 0 - (1 - 2 \cdot 0 - 2 \cdot 0)^2 < 0,$$

tačka M_1 nije tačka lokalnog ekstremuma funkcije. Na isti način utvrdjuje se da M_2 i M_3 nisu tačke lokalnog ekstremuma. Za tačku M_4 imamo

$$D(M_4) = 4\frac{1}{3}\frac{1}{3} - \left(1 - \frac{2}{3} - \frac{2}{3}\right)^2 > 0,$$

$$r(M_4) = -\frac{2}{3},$$

što znači da je tačka lokalnog maksimuma funkcije. Lokalni maksimum funkcije \boldsymbol{f} je

$$f(\frac{1}{3}, \frac{1}{3}) = \frac{1}{27}.$$

2.3. Uslovni (vezani) ekstremumi.

Često se u matematici i njenim primenama pojavljuju i takvi slučajevi u kojima treba odrediti ekstremume funkcije z = f(x, y) pod uslovom da su x i y vezani nekom jednačinom.

2.3.1. Primer. Odrediti dimenzije pravougaonoka maksimalne površine, datog obima $4a \ (a > 0)$.

Rešenje. Ako dužine stranica označimo sa x i y, a površinu sa z, dobićemo

$$z = xy, \ x + y = 2a.$$

Eliminacijom promenljive y pomoću veze y=2a-x, dolazi se do funkcije jedne promenljive z=x(2a-x), koja ima maksimum u tački x=a. Stoga je x=y=a i $z=a^2$. Očigledno, ovde se ne traži ekstremum funkcije f na njenom definicionom domenu $D:x>0,\ y>0$ nego na jednom njegovom delu (odsečku) $L:y=2a-x,\ 0< x<2a$. U geometriskom smislu treba odrediti tačku ekstrmuma presečne krive (prabole) površi z=xy i ravni x+y=2a. Primetimo da lokalni ekstremum funkcije f ne postoji u tački $M_0(a,a).$

2.3.2. Definicija. Neka je na oblasti $G \subset E^2$ definisana funkcija z = f(x,y) i neka je $L = \{(x,y) : g(x,y) = 0\}$ podoblast oblasti G, gde je g(x,y) funkcija definisana u oblasti G. Ako egzistira lokalni ekstremum funkcije $z = f(x,y) : (x,y) \in L$ onda se taj ekstremum naziva vezanim (uslovnim) ekstremumom funkcije f, a jednačina g(x,y) = 0 jednačinom veze.

Očigledno, ako je $M \in L$ tačka lokalnog ekstremuma funkcije f, onda je ona istovremeno i tačka uslovnog ekstremuma te funkcije, jer:

$$\Delta z < 0 \lor \Delta z > 0 \Rightarrow \Delta z_L < 0 \lor \Delta z_L > 0.$$

Obrnuto ne mora biti tačno što smo videli u prethodnom primeru.

Za izračunavanje uslovnih ekstremuma koristi se metod elimiacije i Lagranžov metod.

1⁰ Metod eliminacije

Posmatramo jednačine

$$z = f(x, y),$$
$$q(x, y) = 0.$$

Ako je moguće rešiti jednačinu veze po jednoj promenljivoj, na primer po y, dakle y=d(x), gde je $g(x,d(x))\equiv 0$, onda će lokalni ekstremum funkcije F(x)=f(x,d(x)) biti istovremeno uslovni ekstremum funkcije f (vid. 2.3.1. Primer).

2^0 Lagrnžov metod

Ovaj metod koristi se u slučajevima kada nije moguće rešiti jednačinu veze po jednoj promenljivoj. Polazimo dakle od jednačina

$$z = f(x, y),$$
$$g(x, y) = 0.$$

i pretpostavimo da je

$$f, g \in C^2(G), \land g_y \neq 0, (x, y) \in L.$$

Ovi uslovi obezbedjuju da jednačina g(x,y)=0 definiše implicitno diferencijabilnu funkciju y=y(x), a o čemu će se čitalac detaljnije upoznati u sledećem odeljku.

Obrazujmo novu, pomoćnu funkciju, oblika

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y),$$

gde je λ proizvoljan realan parametar. Funkcija F zove se Lagranžova funkcija a parametar λ Lagranžov množitelj. Pošto je $g=0,\ (x,y)\in L,$ to je

$$(\forall \lambda \in R) \ \Delta F = \Delta f, \ (x, y) \in L.$$

Kako je $g_y \neq 0, \ (x,y) \in L,$ možemo pretpostaviti da parametar λ zadovoljava uslov

$$F_y = f_y + \lambda g_y = 0, \ (x, y) \in L.$$

 $Potreban\ uslov\ vezanog\ ekstremuma.$ Neka je $M(x,y)\in L$ tačka vezanog ekstremuma funkcije f i neka je diferencijabilna funkcija y=y(x) implicitno odredjena jednačinom veze g(x,y)=0. U tom slučaju, iz jednačina

$$z(x) = f(x, y(x)), \quad g(x, y(x)) = 0,$$

nužno sledi, da je u tački M:

$$z'(x) = f_x + f_y y' = 0, \quad g_x + g_y y' = 0.$$

Zaista, ako se u jednačini

$$F_y = f_y + \lambda g_y = 0, \ (x, y) \in L.$$

stave koordinate tačke M i nadje odgovarajuća vrednost parametra λ , imamo

$$F_x = f_x + \lambda g_x = -f_y y' - \lambda g_y y' = -y'(f_y + \lambda g_y) = -y' \cdot 0 = 0.$$

Prema tome, tačka M vezanog ekstremuma funkcije f je stacionarna tačka Lagranžove funkcije F, tj.

$$F_x(M) = F_y(M) = 0 \iff dF(M, \lambda) = 0,$$

gde je
$$F(M, \lambda) = F(x, y, \lambda)$$
.

Dovoljn uslov vezanog ekstremuma. Neka je $M(x,y) \in L$ stacionarna tačka funkcije F. Koristeći se Tejlorovom formulom za funkciju F u tački M, nalazimo

$$\Delta f = \Delta F = \frac{1}{2}d^2F + \frac{\epsilon}{2}, (x, y) \in L.$$

gde je

$$\lim_{\rho \to 0} \frac{\epsilon}{\rho^2} = 0, \ \rho^2 = (\Delta x)^2 + (\Delta y)^2.$$

Znak totalnog priraštaja Δf funkcije f na L zavisi dakle od znaka diferencijala d^2F , $(x,y) \in L$, za dovoljno malo ϵ . Pri tome, u tački M je:

$$d^{2}F(M,\lambda) = F_{xx}(dx)^{2} + 2F_{xy}dxdy + F_{yy}(dy)^{2},$$

$$g_{x}dx + g_{y}dy = 0.$$

Odatle, eliminacijom diferencijala dypomoću veze $dy=-\frac{g_x}{g_y}dx,$ dobijamo

$$d^{2}F(M,\lambda) = \left(F_{xx} - 2F_{xy}\frac{g_{x}}{g_{y}} + F_{yy}\frac{(g_{x})^{2}}{(g_{y})^{2}}\right)(dx)^{2}, (dx \neq 0).$$

Na osnovu definicije vezanog ekstremuma i poslednje formule, dolazimo do sledećih zaključaka:

- 1. Ako je $d^2F(M,\lambda) < 0$, M je tačka uslovnog maksimuma funkcije f.
- 2. Ukoliko je $d^2F(M,\lambda) > 0, M$ je tačka uslovnog minimuma funkcije f.
- 3. Za $d^2F(M,\lambda)=0$, potrebna su dopunska ispitivanja ("neodredjen" slučaj).
 - 2.3.2. Primer. Naći uslovne ekstremume funkcije

$$z = f(x, y) = x^2 + 2xy + y^2,$$

ako je

$$L: g(x,y) \equiv 2x^2 + y^2 - 6 = 0.$$

Rešenje. Najpre odredjujemo stacionarne tačke Lagranžove funkcije

$$F(x, y, \lambda) = x^2 + 2xy + y^2 + \lambda(2x^2 + y^2 - 6).$$

Rešavanjem sistema jednačina

$$F_x = 2x + 2y + 4\lambda x = 0,$$

 $F_y = 2y + 2x + 2\lambda y = 0,$

$$F_{\lambda} = 2x^2 + y^2 - 6 = 0.$$

Naime iz prve dve jednačine sistema izračunamo x i y pa zamenimo u trećoj. Dobićemo jednačinu četvrtog stepena po λ i pri tome svakoj vrednosti za λ odgovara po jedna stacionarna tačka. Nalazimo

$$\lambda_1 = -\frac{3}{2}, \ M_1(1,2); \ \lambda_2 = -\frac{3}{2}, \ M_2(-1,-2)$$

$$\lambda_3 = 0, \ M_3(\sqrt{2}, -\sqrt{2}); \lambda_4 = 0, \ M_4(-\sqrt{2}, \sqrt{2}).$$

Treba ispitati stacionarne tačke M_k ; $k \in \{1, 2, 3, 4\}$. Kako je

$$F_{xx}=2+4\lambda,\ F_{xy}=2,\ F_{yy}=2+2\lambda,$$

$$4xdx+2ydy=0\iff dy=-\frac{2x}{y}\ (y\neq 0),$$

to je

$$d^{2}F(M,\lambda) = \left[(2+4\lambda) - \frac{8x}{y} + (2+2\lambda) \frac{4x^{2}}{y^{2}} \right] dx^{2}.$$

Dalje će biti

$$d^2F(M_1, \lambda_1) = -9dx^2 < 0,$$

pa je tačka M_1 , prema izloženom, tačka uslovnog maksimuma, $f(M_1) = 9$. Na sličan, nalazimo

$$d^2F(M_2, \lambda_2) = -9dx^2 < 0,$$

pa je M_2 tačka uslovnog maksimuma, $f(M_2) = 9$.

$$d^2F(M_3, \lambda_3) = d^2F(M_4, \lambda_4) = 18dx^2 > 0,$$

 M_3 i M_4 su tačke uslovnog minimuma, $f(M_3) = f(M_4) = 0.$

Primetimo da dobojeni uslovni ekstremumi predstavljaju ekstremume funkcije f u tačkama elipse $\mathcal{L}: 2x^2 + y^2 - 6 = 0$, koja je rub oblasti

$$G = \{(x, y) : 2x^2 + y^2 - 6 < 0\}.$$

3. PRESLIKAVANJE I IMPLICITNE FUNKCIJE

3.1. Preslikavanje, Jakobijan i implicitne funkcije. Egzistencija i diferencijabilnost implicitne funkcije.

Sa pojmom preslikavanja sreli smo se na početku ove glave. Medjutim, u linearnoj algebri, na primer, pojam matrice se vezuje za preslikavanje. Jednačinama

$$y_1 = a_{11}x_1 + \dots + a_{1n}x_n,$$

 \vdots
 $y_m = a_{m1}x_1 + \dots + a_{mn}x_n,$

definisano je preslikavanje tačke $X(x_1,\ldots,x_n)\in E^n$ u tačku $Y(y_1,\ldots,y_m)$ prostora E^m . Dati sistem može se predstaviti i matrično u obliku

$$Y = AX$$

gde je

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \dots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}, \ X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \ Y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

Opštiji slučaj preslikavanja dat je sistemom jednačina

$$y_1 = f_1(x_1, \dots, x_n),$$

$$\vdots$$

$$y_m = f_m(x_1, \dots, x_n),$$

gde su f_1, \ldots, f_m proizvoljne funkcije n promenljivih. Ovaj sistem može se formalno izraziti u obliku

$$Y = f(X),$$

gde je f matrica kolona sa elementima f_1, \ldots, f_m .

Neka je zadat sistem linearnih jednačina

$$y_1 = a_{11}x_1 + \dots + a_{1n}x_n,$$

 \vdots
 $y_n = a_{n1}x_1 + \dots + a_{nn}x_n.$

Njime se definiše jedno preslikavanje iz E^n u E^n , a koje se može izraziti u obliku

$$Y = AX$$
,

inverzno preslikavanje se definiše pomoću

$$X = A^{-1}Y,$$

gde je A^{-1} inverzna matrica matrice A.

Potreban i dovoljan uslov za egzistenciju inverznog preslikavanja je regularnost matrice A ($det A \neq 0$). Ako egzistira inverzno preslikavanje, tj. matrica A je regularna, kaže se da je preslikavanje Y = AX regularno.

U opštem slučaju kada je preslikavanje $F:E^n\longrightarrow E^n$ izraženo sistemom funkcija

$$y_1 = f_1(x_1, \dots, x_n),$$

$$\vdots$$

$$y_n = f_n(x_1, \dots, x_n),$$

$$(1)$$

uvodi se sledeća definicija.

3.1.1. Definicija. Preslikavanje $F: D \longrightarrow E^n$ je regularno u oblasti $D \subset E^n$ ako funkcije f_1, \ldots, f_n imaju neprekidne parcijalne izvode po svim promenljivim i ako je detrmunanta

$$J = \begin{vmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & & \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{vmatrix}$$

različita od nule u oblasti D.

Funkcionalna determinanta Jnaziva se $\mathit{Jakobijanom}$ preslikavanja Fi često se piše u obliku

$$J = \frac{D(y_1, \dots, y_n)}{D(x_1, \dots, x_n)}.$$

U dovoljno maloj kugli sa centrom u tački $A(a_1, \ldots, a_n)$, sadržanoj u oblasti D, sistem jednačina (1) može se zameniti sa sistemom jednačina tangentnih ravni na površima zadatim svakom od jednačina sistema (1) u tački A. Prema tome, imamo

$$y_1 \approx f_1(a_1, \dots, a_n) + \frac{\partial f_1}{\partial x_1}(x_1 - a_1) \dots + \frac{\partial f_1}{\partial x_n}(x_n - a_n),$$

:

$$y_n \approx f_n(a_1, \dots, a_n) + \frac{\partial f_n}{\partial x_1}(x_1 - a_1) \dots + \frac{\partial f_n}{\partial x_n}(x_n - a_n),$$

pri čemu se parcijalni izvodi uzimaju u tački A. Kao što se vidi, matrica ove linearne transformacije sastavljena je od parcijalnih izvoda funkcija f_1, \ldots, f_n po svim promenljivim i njena determinanta predstavlja već definisani Jakobijan.

Neka je dato preslikavanje

$$x_1 = g_1(t_1, \dots, t_n),$$

$$\vdots$$

$$x_n = g_n(t_1, \dots, t_n),$$
(2)

gde su g_1, \ldots, g_n diferencijabilne funkcije u nekoj oblasti W kojoj pripadaju tačke $T(t_1, \ldots, t_n)$. Ako se pomnože determinante sistema (1) i (2) i iskoristi svojstvo det(AB) = det(A)det(B), dobiće se

$$\begin{vmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & & & \\ \frac{\partial y_n}{\partial x_1} & \cdots & \frac{\partial y_n}{\partial x_n} \end{vmatrix} \cdot \begin{vmatrix} \frac{\partial x_1}{\partial t_1} & \cdots & \frac{\partial x_1}{\partial t_n} \\ \vdots & & & \\ \frac{\partial x_n}{\partial t_1} & \cdots & \frac{\partial x_n}{\partial t_n} \end{vmatrix} =$$

$$= \begin{vmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_1}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_n}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_n}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_n}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_n}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_n}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_n}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_n}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_n}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_n}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_n}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_n}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_n}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_n}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_n}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_n}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_n}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_n}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_n}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1} & + \cdots & + \frac{\partial y_n}{\partial x_n} & \frac{\partial x_n}{\partial t_1} \\ \vdots & & & \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial x_1}{\partial t_1}$$

Determinanta na desnoj strani ove jednakosti je ustvari Jakobijan

$$\begin{vmatrix} \frac{\partial y_1}{\partial t_1} & \cdots & \frac{\partial y_1}{\partial t_n} \\ \vdots & & & \\ \frac{\partial y_n}{\partial t_1} & \cdots & \frac{\partial y_n}{\partial t_n} \end{vmatrix}.$$

Prema tome, važi jednakost

$$\frac{D(y_1,\ldots,y_n)}{D(x_1,\ldots,x_n)}\cdot\frac{D(x_1,\ldots,x_n)}{D(t_1,\ldots,t_n)}=\frac{D(y_1,\ldots,y_n)}{D(t_1,\ldots,t_n)}.$$

Ova jednakost može se uopštiti na slučaj kada je dato više posrednih preslikavanja.

Ako se u sistemu (2) uvede smena $t_1 = y_1, \ldots, t_n = y_n$, pri čemu se funkcije g_1, \ldots, g_n dobijaju iz sistema (1), tj. ako postoji inverzno preslikavanje f^{-1} , tada iz poslednje jednakosti imamo

$$\frac{D(y_1,\ldots,y_n)}{D(x_1,\ldots,x_n)}\cdot\frac{D(x_1,\ldots,x_n)}{D(y_1,\ldots,y_n)}=1,$$

pa je

$$\frac{D(y_1,\ldots,y_n)}{D(x_1,\ldots,x_n)} = \frac{1}{\frac{D(x_1,\ldots,x_n)}{D(y_1,\ldots,y_n)}}.$$

3.1.2. Definicija. Rešenje sistema jednačina

$$F_1(x_1, \dots, x_m; y_1, \dots, y_n) = 0,$$

$$\vdots$$

$$F_n(x_1, \dots, x_m; y_1, \dots, y_n) = 0,$$
(3)

na skupu $E_X\subset E^m$ predstavlja sistem funkcija

$$y_1 = f_1(x_1, \dots, x_m), \dots, y_n = f_n(x_1, \dots, x_m),$$

koji identički zadovoljava (3).

3.1.3. Definicija. Funkcije koje su date posredstvom sistema jednačina nazivaju se *implicitnim* funkcijama.

Neka je dat sistem jednačina

$$F_1(x_1, \dots, x_m; y_1, \dots, y_n) = 0,$$

$$\vdots$$

$$F_n(x_1, \dots, x_m; y_1, \dots, y_n) = 0,$$

i neka je $P_0(x_1^0,\ldots,x_m^0;y_1^0,\ldots,y_n^0)$ tačka iz E^{m+n} čije koordinate zadovoljavaju ovaj sistem. Egzistencija i jedinstvenost sistema implicitnih funkcija, dati su sledećom teoremom:

3.1.4. Teorema. Ako su funkcije F_1, \ldots, F_n neprekidne i imaju neprekidne izvode po promenljivim y_1, \ldots, y_n u oblasti $D \subset E^{m+n}$ u kojoj je sadržana tačka P_0 i ako je Jakobijan

$$\frac{D(F_1,\ldots,F_n)}{D(y_1,\ldots,y_n)}.$$

u tački P_0 različit od nule, tada egzistira jedinstven sistem nepekidnih funkcija

$$y_1 = f_1(x_1, \dots, x_m), \dots, y_n = f_n(x_1, \dots, x_m),$$

koji identički zadovoljava (3) i početne uslove

$$y_1^0 = f_1(x_1^0, \dots, x_m^0), \dots, y_n^0 = f_n(x_1^0, \dots, x_m^0).$$

Dokaz. Jednostavnosti radi dokaz se daje za slučaj kada je data samo jedna jednačina,

$$F(x,y) = 0,$$

pri čemu su F i F_y neprekidne funkcije u okolini D tačke $P_0(x_0,y_0)$, a osim toga je, $F(x_0,y_0)=0$ i $F_y(x_0,y_0)\neq 0$. Kako je $F_y(x_0,y_0)\neq 0$, ne umanjujući opštost dokaza, predpostavimo da je $F_y(x_0,y_0)>0$. To znači da postoji ϵ -okolina tačke y_0 takva da je

$$F(x_0, y_0 - \epsilon) < 0 \land F(x_0, y_0 + \epsilon) > 0.$$

Neka su tačke $(x_0, y_0 - \epsilon)$ i $(x_0, x_0 + \epsilon)$ sadržane u oblasti D, u kojoj je funkcija F(x, y) neprekidna. Prema poznatom svojstvu neprekidnih funkcija, egzistira δ -okolina tačke x_0 takva da za sve $x \in (x_0 - \delta, x_0 + \delta)$ važe nejednakosti

$$F(x, y_0 - \epsilon) < 0 \land F(x, y_0 + \epsilon) > 0.$$

Prema poznatom svojstvu o medjuvrednosti za neprekidne fukcije, sledi da za svako $x \in (x_0 - \delta, x_0 + \delta)$ egzistira samo jedno $y \in (y_0 - \epsilon, y_0 + \epsilon)$ tako da je F(x,y) = 0. Dakle, na ovaj način u δ -okolini tačke x_0 odredjena je funkcija y = f(x) koja zadovoljava identitet $F(x, f(x)) \equiv 0$.

Zbog uslova $F_y(x,y) > 0$ funkcija F(x,y) je rastuća po y u okolini tačke (x_0,y_0) pa je funkcija y = f(x) jedinstvena u δ -okolini tačke x_0 .

3.1.5. Teorema. Ako pored uslova sadržanih u 4.5.4, funkcije F_1, \ldots, F_n su i diferencijabilne u okolini $U_0 \subset E^{m+n}$ tačke $(x_1^0, \ldots, x_m^0; y_1^0, \ldots, y_n^0)$, tada su funkcije $f_1, \ldots, f_n)$ diferencijabilne u okolini tačke (x_1^0, \ldots, x_m^0) .

Razmotrimo nekoliko čestih slučajeva diferenciranja implicitnih funkcija. 1^{0} . Neka je funkcija y = f(x) zadata implicitno jednakošću

$$F(x,y)=0.$$

Ako ovu jednakost diferenciramo, imamo

$$F_x dx + F_y dy = 0, (4)$$

a odavde je

$$y' = \frac{dy}{dx} = -\frac{F_x}{F_y}.$$

Ponovljenim diferenciranjem jednakosti (4) dobijamo

$$F_{xx}dx^2 + 2F_{xy}dxdy + F_{yy}dy^2 + F_yd^2y = 0,$$

odakle je

$$y'' = \frac{d^2y}{dx^2} = -\frac{1}{F_y}(F_{xx} + 2F_{xy}y' + F_{yy}y'^2).$$

Zamenom y' na desnoj strani ove jednakosti, dobijamo

$$y'' = -\frac{1}{F_y^3} (F_{xx} F_y^2 - 2F_{xy} F_x F_y + F_{yy} F_x^2).$$

 2^0 . Neka jednačina F(x,y,z)=0 definiše funkciju z=f(x,y). Ako ovu jednačinu diferenciramo redom poxiy,dobijamo

$$F_x + F_z \frac{\partial z}{\partial x} = 0, \ F_y + F_z \frac{\partial z}{\partial y} = 0,$$
 (5)

odakle je

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} \wedge \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}.$$

Ako, na primer, prvu jednakost u (5) diferenciramo po x, imamo

$$F_{xx} + F_{xz} \frac{\partial z}{\partial x} + F_{yz} \frac{\partial z}{\partial x} + F_{zz} \left(\frac{\partial z}{\partial x} \right)^2 + F_z \frac{\partial^2 z}{\partial x^2}.$$

Vraćanjem na smenu $\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$, nalazimo

$$\frac{\partial^2 z}{\partial x^2} = -\frac{1}{F_z^3} (F_{xx} F_z^2 - 2F_{xz} F_x F_z + F_{zz} F_x^2).$$

Na sličan način izračunavamo

$$\frac{\partial^2 z}{\partial y^2} = -\frac{1}{F^3} (F_{yy} F_z^2 - 2F_{yz} F_y F_z + F_{zz} F_y^2).$$

Diferenciranjem prve jednakosti u (5) po y, nalazimo

$$F_{xy} + F_{xz} \frac{\partial z}{\partial y} + F_{yz} \frac{\partial z}{\partial x} + F_{zz} \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} + F_z \frac{\partial^2 z}{\partial x \partial y}.$$

Smenjujući

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} \wedge \frac{\partial z}{\partial y} = -\frac{F_y}{F_z},$$

imamo

$$\frac{\partial^2 z}{\partial x \partial y} = -\frac{1}{F_z^3} (F_{xy} F_z^2 - F_{xz} F_y F_z - F_{yz} F_x F_z + F_{zz} F_x F_y).$$

 3^0 . Jednačine F(x,y,z)=0 i $G(x,y,z)=\!\!\!)$ odredjuju funkcije y=f(x) i z=g(x).Ako ove jednačine diferenciramo pox,dobijamo

$$F_x + F_y y' + F_z z' = 0 \wedge G_x + G_y y' + G_z z' = 0.$$

Odavde nalazimo y' i z', tj.

$$y' = -\frac{\begin{vmatrix} F_x & F_z \\ G_x & G_z \end{vmatrix}}{\begin{vmatrix} F_y & F_z \\ G_y & G_z \end{vmatrix}}, \ z' = -\frac{\begin{vmatrix} F_y & F_x \\ G_y & G_x \end{vmatrix}}{\begin{vmatrix} F_y & F_z \\ G_y & G_z \end{vmatrix}}.$$