

)1	ffice U	se Only	

Semester One 2016 Examination Period

		Examination	Period				
	Fac	ulty of Informati	ion Technolo	ogy			
EXAM CODES:	FIT	L008 / FIT2085					
TITLE OF PAPER:	INT	RODUCTION TO COM	IPUTER SCIENC	E - PAPER 1			
EXAM DURATION	1: 3 ho	ours writing time					
READING TIME:	10 ו	minutes					
THIS PAPER IS FO	R STUDENTS STUD	YING AT: (tick where	applicable)				
☐ Berwick☐ Caulfield☐ Parkville	✓ Clayton ☐ Gippsland ☐ Other (specify	✓ Malaysia ☐ Peninsula)	☐ Off Campu☐ Monash Ex	_	☐ Open☐ Sth Af	_	
your exam. This in calculator, pencil Items/materials or your possession. No examination or noting down continuous following your examination or following your examination or noting down continuous following your examination or notinuous following your examination	ncludes books, not case, or writing on n your desk, chair, materials are to be ontent of exam maam. with the above ins	in your possession ares, paper, electronic of any part of your bod in your clothing or or eremoved from the reterial for personal us	device/s, mobile y. Any authoris therwise on you oom. This inclu- e or to share wi	e phone, sman sed items are ur person will des retaining, th any other p	t watch/de listed below be deemed copying, no person by a	evice, w. d to be in nemorisir any mean	ng is
offence under Pai	t 7 of the Monash	University (Council) I	Regulations.	Page	Marks	Page	Marks
				3		21	
AUTHORISED MA	TERIALS			5		23	
OPEN BOOK		☐ YES	X NO	7		25	
0. 1. 200 K			<i>x</i> c	9		27	
CALCULATORS		☐ YES	X NO	11		29	
				13		31	
SPECIFICALLY PER		☐ YES	X NO	15		33	
if yes, items perm	nitted are:			17		35	
				19		Total	
Candio	lates must comple	te this section if requ	uired to write au	nswers within	this pape	r	

Can	didates must complete this section if requ	ired to write answers	within this paper
STUDENT ID:		DESK NUMBER:	

Question 1 [10 marks]

This question is about MIPS programming and function calls. Translate the following Python code faithfully into MIPS assembly language. Make sure you follow the MIPS function calling and memory usage conventions as discussed in the lectures. Use only instructions in the MIPS reference sheet.

Python Code	MIPS Code
def func(n):	
if n == 1:	
return 1	
else:	
return n * func(n//2)	

Question 2 [7 marks]

This question is about Iterators. Using Python define a NegativeIterator iterator class. This Iterator should work with a standard Python list. An instance of this class iterates through all the negative elements of the list without modifying the list. For example:

```
>>> itr = NegativeIterator([3,-8,-6,0,-11])
>>> next(itr)
-8
>>> next(itr)
-6
>>> next(itr)
-11
>>> next(itr)
Stop Iteration
```

Your class must have the three methods: __init__, __iter__ and __next__.

Question 3 [8 marks]

Consider the two classes Node and List as seen in the lectures, which define a List ADT implemented using a linked structure:

```
class Node:
    def __init__ (self, item = None, link = None):
        self.item = item
        self.next = link

class List:
    def __init__ (self):
        self.head = None

    def is_empty (self):
        return self.head is None
```

Define the method delete_item(self, item), which deletes all the items in the list that have the value item. For example, assume alist is a List and alist.head points to the first node in the following structure:

After calling alist.delete_item(1), alist should have the following structure with all the items of value 1 removed:

Question 4 [6 marks = 5 + 1]

This questions is about Heaps.

(a) Suppose a min-heap is represented using an array. Write a Python function def is_valid_heap(array), which given an array returns True if the array represents a valid min-heap, and returns False otherwise.

(b) Using Big-O notation, provide and explain the worst-time complexity of the function you defined in part a. No explanation means no marks.

Question 5 [10 marks = 2 + 3 + 3 + 2]

This question is about sorting algorithms.

(a) What is a stable sorting algorithm?

(b) Is selection sort stable? Explain your answer and provide an example to make your case.

(c) Using Python, write a function def insertion_sort(a_list), which takes as input a list of numbers and sorts this list into increasing order using insertion sort.

(d) What are best and worst-case time complexity for Insertion Sort in Big-O notation. When do they occur? Explain your answer (no explanation means no marks).

Question 6 [8 marks = 2 + 2 + 2 + 2]

This question is about Time complexity. For each of the given Python functions, state and explain the complexity in Big-O notation. If appropriate discuss best and worst cases. No explanation means no marks.

```
(a) def func_a(the_list):
    total = 0
    for item in the_list:
        for i in range(5):
        total = total + i * item
```

```
(c) def func_c(the_list):
    total = 0
    for i in range(len(the_list)):
        total = total + the_list[i]
        if i < 0:
            break</pre>
```

Question 7 [10 marks]

Suppose you have a Queue class which implements a Queue ADT using some data structure (you do not need to know which one) and defines the following methods:

- __init__()
- append(item)
- serve()
- is_empty()

You also have a Stack class which implements a Stack ADT using some data structure (you do not need to know which one) and defines the following methods:

- __init__()
- push(item)
- pop()
- is_empty()

Using Python, write a function def magnitude(a_queue). This function takes as input a queue of numbers sorted in increasing order. The function then returns a new queue with the numbers sorted according to their absolute value, in increasing order. For example: given a queue [-322, -180, -5, 3, 7, 10, 180, 360]; the function would return a queue with values [3, -5, 7, 10, -180, 180, -322, 360]. You should only interact with the Queue and the Stack through the operations given above.

Question 8 [10 marks = 3 + 5 + 2]

(a) How can we address collisions in Hash Tables? List at least 3 different approaches, covered in the lectures, and explain how they differ from each other.

(b) Consider the class Hash which has the instance variables array, table_size, and count, and the following methods: __init__(), hash(the_key) and rehash().

Using Linear Probing, define a method __setitem__(self, key, data) which inserts the data into the Hash Table at the position calculated using the key. If a collision occurs, the method should resolve it using linear probing. If the Hash Table is full, rehash the Hash Table and proceed to insert as above.

(c) List one advantage and one disadvantage of Separate Chaining over Linear Probing? Explain your answer.

Question 9 [12 marks = 2 + 2 + 3 + 3 + 2]

A Dequeue is a Queue that supports operations to add and serve items to and from the front and the rear of the Queue. This question is about implementing a Dequeue ADT based on an array. All the method implementations should be circular to avoid wasting space in the underlying array. Use assertions to deal with potential errors. The constructor and two additional methods are defined as follows:

```
class CircularDeQueue:
    def __init__(self, size):
        assert size > 0, "Size should be positive"
        self.the_array = size*[None]
        self.count = 0
        self.rear = 0
        self.front = 0

def is_empty(self):
        return self.count == 0

def is_full(self):
        return self.count >= len(self.the_array)
```

(a) Implement the method def append_rear(self, new_item), which appends a new_item at the rear of the Queue.

(b) Implement the method def serve_front(self), which removes from the Queue and returns the object at the front of the Queue.

- (c) Implement the method def append_front(self), which appends a new_item at the front of the Queue.
 (d) Implement the method def serve_rear(self), which takes the object at the rear of the Queue, removing it from the queue and returning it.
- (e) Implement the method def print_items(self), which prints all the objects in the Queue from the front to the rear. Each element should be printed in one line.

Question 10 [7 marks = 3 + 2 + 2]

Consider the ADT SortedList and the class defined below:

```
class SortedList:
    def __init__(self, size):
        assert size > 0, "Size should be positive"
        self.the_array = size*[None]
        self.count = 0

def __len__(self):
    return self.count
```

(a) Implement the class method def _binary_search(self, item), which returns the index of item if it is in the list, or -1 if the item is not in the list. Your implementation should have worst-case time complexity $O(\log n)$.

(b) Calling the method _binary_search defined in part a, implement def index(self, item). This method should return the index of the first occurrence of item in the list, or raise a ValueError exception if item is not in the list.

(c) What is the best-case time complexity of the method index(self, item), and when does it occur? Explain your answer.

Question 11 [6 marks = 3 + 1 + 1 + 1]

This question is about Binary Trees and Binary Search Trees.

(a) State the outcomes of printing the elements of the Binary Tree below in pre-order, in-order and post-order.

(b) What are the best-case and worst-case time complexities in terms of the number of nodes, for an algorithm that prints the elements of a Binary Tree in pre-order. Explain your answer. No explanation means no marks.

(c) Fill in the nodes in the Binary Tree below with the elements from the list [1, 5, 6, 7, 9, 10, 4] so that it is a valid Binary Search Tree.

(d) What is the worst-case time complexity for an algorithm that searchs for an item in a Binary Search Tree. Explain your answer. No explanation means no marks.

Question 12 [6 marks = 4 + 2]

The next two questions are about recursion.

(a) Consider the following partial implementation of a Binary Tree.

```
class TreeNode:
    def __init__(self, item=None, left=None, right=None):
        self.item = item
        self.left = left
        self.right = right

def __str__(self):
        return str(self.item)

class BinaryTree:
    def __init__(self):
        self.root = None

def is_empty(self):
        return self.root is None
```

Using Python write a method def height(self) for the class BinaryTree that computes the height of a given tree using recursion.

(b) Quick-sort is a recursive sorting algorithm that relies on a partition method with linear time complexity. If you had a magic algorithm to do the partition in O(1) time, what would be the best and worst case time complexity of Quick-sort? Explain your answer. No explanation means no marks.

Table 1: SPIM system calls

			peu		must	rted		peu		if	rac-	nter	the	ter-	vith				simula-	
Notes			value is signed		string n	be terminated	with '\0'	value is signed		returns	\$a1-1 charac-	ters or Enter	typed, the	string is ter-	minated with	,0/,	1		ends sim	tion
Returns					ı			\$v0 = entered	integer	ı							volume $volume$ v	of first byte	1	
Arguments			a0 = value to	print	\$a0 = address	of string to	print	1		\$a0 = address	to store string	at	\$a1 = max-	imum number	of chars		a0 = number	of bytes	ı	
Service			Print integer		Print string			Input integer		Input string							Allocate	memory	Exit	
Call	code	(\$^0			4			5		∞							6		10	

Table 2: General-purpose registers

)
Number	Name	Purpose
R00	\$zero	provides constant zero
R01	\$at	reserved for assembler
R02, R03	\$v0, \$v1	system call code, return value
R04-R07	\$a0\$a3	system call and function arguments
R08-R15	\$t0\$t7	temporary storage (caller-saved)
R16-R23	\$s0\$s7	temporary storage (callee-saved)
R24, R25	\$t8, \$t9	temporary storage (caller-saved)
R26, R27	\$k0, \$k1	reserved for kernel code
R28	\$gp	pointer to global area
R29	\$sp	stack pointer
R30	\$fp	frame pointer
R31	\$ra	return address

Table 3: Assembler directives

.data	assemble into data segment
.text	assemble into text (code) segment
byte $b1[, b2,]$	allocate byte(s), with initial value(s)
[.half h1[, h2,]	allocate halfword(s), with initial value(s)
word w1[, w2,]	allocate word(s) with initial value(s)
space n	allocate n bytes of uninitialized, unaligned space
align n	align the next item to a 2 ⁿ -byte boundary
ascii "string"	allocate ASCII string, do not terminate
.asciiz "string"	allocate ASCII string, terminate with '\0'

Table 4: Function calling convention

On function call:	Callee:	saves \$ra and \$fp on stack	copies \$sp to \$fp	allocates local variables on stack
On funct	Caller:	saves temporary registers on stack	passes arguments on stack	calls function using jal fn_label

On function return:

CII ICIICII I COCIIII	OII I COCTII:
Callee:	Caller:
sets \$v0 to return value	clears arguments off stack
clears local variables off stack	restores temporary registers off stack
restores saved \$fp and \$ra off stack	uses return value in \$v0
returns to caller with jr \$ra	

Table 5: Instruction Set

A partial instruction set is on the next page. The following conventions apply.

Instruction Format

Src2; source operand - may be an immediate value or a register value Rdest: destination, must be a register

Rsrc, Rsrc1, Rsrc2: source operand(s), - must be a register value(s)

Imm: Immediate value, may be 32 or 16 bits

Addr: Address in the form: offset(Rsrc) ie. absolute address = Rsrc + offset Imm16: Immediate 16-bit value label: label of an instruction

 \star : pseudoinstruction

Immediate Form -: no immediate form, or this is the immediate form

 $\star:$ immediate form synthesized as pseduo instruction **Unsigned form** (append 'u' to instruction name):

- : no unsigned form, or this is the unsigned form

Table 6: MIPS instruction set

T	7.5		T 1.	TT 1 1 C ()
Instruction format	Meaning	Operation	Immediate	Unsigned form(u)
			form	
add Rdest, Rsrc1, Rsrc2	Add	Rdest = Rsrc1 + Rsrc2	addi	no overflow trap
sub Rdest, Rsrc1, Rsrc2	Subtract	Rdest = Rsrc1 - Rsrc2	*	no overflow trap
mul Rdest, Rsrc1, Rsrc2 *	Multiply	Rdest = Rsrc1 * Rsrc2	*	unsigned operands
mulo Rdest, Rsrc1, Rsrc2 *	Multiply	Rdest = Rsrc1 * Rsrc2	*	unsigned operands
maio reacest, resion, resion	(with 32-bit overflow)	100000 100101 100102	^	ansigned operands
mult Danel Danel	1 ` /	III.I a Dana1 * Dana9		unaimo ad an anan da
mult Rsrc1, Rsrc2	Multiply	Hi:Lo = Rsrc1 * Rsrc2	-	unsigned operands
	(machine instruction)			
div Rdest, Rsrc1, Rsrc2 \star	Divide	Rdest=Rsrc1/Rsrc2	*	unsigned operands
div Rsrc1, Rsrc2	Divide	Lo = Rsrc1/Rsrc2;	-	unsigned operands
	(machine instruction)	Hi = Rsrc1 % Rsrc2		
rem Rdest, Rsrc1, Rsrc2 *	Remainder	Rdest = Rsrc1 % Rsrc2	*	unsigned operands
neg Rdest, Rsrc ⋆	Negate	Rdest = -Rsrc1	_	no overflow trap
and Rdest, Rsrc1, Rsrc2	Bitwise AND	Rdest = Rsrc1 & Rsrc2	andi	-
or Rdest, Rsrc1, Rsrc2	Bitwise OR	$Rdest = Rsrc1 \mid Rsrc2$	ori .	-
xor Rdest, Rsrc1, Rsrc2	Bitwise XOR	$Rdest = Rsrc1 \wedge Rsrc2$	xori	-
nor Rdest, Rsrc1, Rsrc2	Bitwise NOR	$Rdest = \sim (Rsrc1 \mid Rsrc2)$	*	-
not Rdest, Rsrc \star	Bitwise NOT	$Rdest = \sim (Rsrc)$	_	-
sll Rdest, Rsrc1, Rsrc2	Shift Left Logical	Rdest = Rsrc1 << Rsrc2	-	-
srl Rdest, Rsrc1, Rsrc2	Shift Right Logical	Rdest = Rsrc1 >> Rsrc2	_	_
		(MSB=0)		
sra Rdest, Rsrc1, Rsrc2	Shift Right Arithmetic	Rdest = Rsrc1 >> Rsrc2	_	
sia nuest, nsici, nsicz	Sint Right Arthinetic		_	-
		(MSB preserved)		
move Rdest, Rsrc \star	Move	Rdest=Rsrc	-	-
mfhi Rdest	Move from Hi	Rdest = Hi	-	-
mflo Rdest	Move from Lo	Rdest = Lo	-	-
li Rdest, Imm ⋆	Load immediate	Rdest=Imm	-	-
lui Rdest, Imm16	Load upper immediate	Rdest=Imm16 << Imm	_	_
la Rdest, Addr(or label) *	Load Address	Rdest=Addr	_	_
la Ruest, Addi (or label) x	Load Address		_	_
	T 11	(or Rdest=label)		. 1 1 .
lb Rdest, Addr (or label \star)	Load byte	Rdest = mem8[Addr]	-	zero-extends data
$ $ lh Rdest, Addr (or label \star)	Load halfword	Rdest = mem16[Addr]	-	zero-extends data
$ $ lw Rdest, Addr (or label \star)	Load word	Rdest = mem32[Addr]	-	-
sb Rsrc2, Addr (or label \star)	Store byte	mem8[Addr] = Rsrc2	-	-
sh Rsrc2, Addr (or label *)	Store halfword	mem16[Addr] = Rsrc2	_	_
sw Rsrc2, Addr (or label *)	Store word	mem32[Addr] = Rsrc2	_	_
beq Rsrc1, Rsrc2, label	Branch if equal	if (Rsrc1 == Rsrc2)		
bed fisici, fisicz, label	Dranch ii equal	PC = label	*	-
,				
bne Rsrc1, Rsrc2, label	Branch if not equal	if $(Rsrc1 != Rsrc2)$	*	-
		PC = label		
blt Rsrc1, Rsrc2, label \star	Branch if less than	if $(Rsrc1 < Rsrc2)$	*	unsigned operands
		PC = label		_
ble Rsrc1, Rsrc2, label ⋆	Branch if less than or equal	if $(Rsrc1 \le Rsrc2)$	*	unsigned operands
, 100102, 100101	l section of equal	PC = label		O or
hat Rerel Parel label	Branch if greater than			unsigned operands
bgt Rsrc1, Rsrc2, label \star	Dranch ii greater than	$\inf \left(\text{Rsrc1} > \text{Rsrc2} \right)$	*	unsigned operands
, -, -, -, -, -, -, -, -, -, -, -, -, -,	D 1.46	PC = label		
bge Rsrc1, Rsrc2, label \star	Branch if greater than or	if $(Rsrc1 >= Rsrc2)$	*	unsigned operands
	equal	PC = label		
slt Rdest, Rsrc1, Rsrc2	Set if less than	if $(Rsrc1 < Rsrc2)$	slti	unsigned operands
		Rdest=1		
		else Rdest=0		
j label	Jump	PC = label		
~	1		-	-
jal label	Jump and link	\$ra = PC + 4;	-	-
		PC = label		
jr Rsrc	Jump register	PC = Rsrc	-	-
jalr Rsrc	Jump and link register	ra = PC + 4;	-	-
		PC = Rsrc		
syscall	System call	depends on call code in \$v0	_	-
		. GODONGO ON CONTROLL WALL	1	i e e e e e e e e e e e e e e e e e e e