A0–A2: One-Stroke Solutions on Finite Grids

Invariance Quotients, Training Boundaries, and Least Admissible Constants

Opoch

Abstract

We present a single, self-contained formula that deterministically solves all finite-grid transformation tasks (ARC-style) without enumerating rule families or performing search. The construction starts from three axioms (A0–A2), computes an *input-invariance quotient* from the union of inputs, extracts a *training boundary* on quotient classes, and writes a *least admissible constant* per class. Because classes are disjoint and each class is written with a constant, the least fixed point collapses to a single paint step. We specify the objects, prove existence and uniqueness, and give three dataset examples with verification receipts.

Contents

1	Axioms A0–A2 (Foundational Constraints)	1
2	Model, Normalization, and Data	2
3	Input-Invariance Quotient	2
4	Training Boundary and Canonical Colorizer	3
5	The One-Stroke Least Fixed Point	3
6	Receipts (Deterministic Verification Plan)	3
7		4 4 4
8	Discussion and Limitations	5
9	Conclusion	5

1 Axioms A0-A2 (Foundational Constraints)

A0 (No minted differences).

Work in a presented frame where all free symmetries (palette relabeling by input statistics, rigid D_4 pose selection, anchored translation) are applied once and for all to inputs. These isometries are invertible and add no new facts.

A1 (Exactness; no remainder).

Any transformation accepted by the solver must reproduce training outputs *exactly*. All internal constraints are *monotone* (they only remove inconsistent options) and never introduce content not forced by inputs and training equality constraints.

A2 (Composition by equality).

Interfaces (overlaps, canvas joins, periodic seams) impose equalities; these are enforced as closures until a unique *least fixed point* exists on a finite product lattice. Composition order does not affect the least fixed point.

2 Model, Normalization, and Data

A grid is a function $X: \Omega \to C$, where $\Omega \subset \mathbb{N}^2$ is finite and $C = \{0, 1, \dots, 9\}$ is the color set. A task t has training pairs $\{(X_{t,i}, Y_{t,i})\}_{i=1}^{m_t}$ and a single test input $X_{t,*}$.

Definition 2.1 (Present (inputs-only normalization)). Let Π_{G_t} be the idempotent normalization applied to all inputs of task t:

- 1. palette canonicalization pooled across training inputs (no outputs are used),
- 2. rigid D_4 pose selection to lexicographically smallest raster,
- 3. anchored translation (move the union bounding box to origin).

Record the inverse U_t^{-1} to un-present at the end. Define $\tilde{X}_{t,i} = \Pi_{G_t}(X_{t,i})$, $\tilde{X}_{t,*} = \Pi_{G_t}(X_{t,*})$, and for boundary checking only also $\tilde{Y}_{t,i} = \Pi_{G_t}(Y_{t,i})$. Let $\mathcal{U}_t = \{\tilde{X}_{t,1}, \ldots, \tilde{X}_{t,m_t}, \tilde{X}_{t,*}\}$ and Ω_t be their union of cell addresses.

3 Input-Invariance Quotient

We formalize "use only distinctions present in the inputs" by closing under input-preserving mappings.

Definition 3.1 (Invariance monoid). Let F_t be the monoid of endomaps $f: \Omega_t \to \Omega_t$ generated by:

- 1. local neighborhood isomorphisms of any finite radius (captures union-neighborhood refinement to stabilization and any present D_4 symmetry),
- 2. isometries swapping repeated panes/blocks that are exactly equal in \mathcal{U}_t ,
- 3. idempotent retractions forgetting pure coordinates inside repeated structures (residue classes, component interiors, hole interiors/outlines).

Each generator is input-only and does not mint distinctions.

Definition 3.2 (Quotient by input-invariance). Define $x \sim_t y$ iff f(x) = y for some $f \in \langle \mathsf{F}_t \rangle$. The quotient

$$q_t: \ \Omega_t \twoheadrightarrow Q_t \stackrel{\text{def}}{=} \ \Omega_t/\sim_t$$

is the input-invariance quotient: the finest partition of cells that remain indistinguishable under input-preserving mappings. Since Ω_t is finite and the generators act on finite data, Q_t is finite.

Remark 3.3 (Effective construction). In practice we compute Q_t by a finite refinement on \mathcal{U}_t : seed by (color, 3×3 patch); run several rounds of union neighborhood refinement (a 1-WL style refinement on the union) with global label compression; escalate once to 8-neighborhoods only if needed; refine by exact pane symmetries, row/col residues for small divisors of (H, W) with smallest offsets, and per-color components/holes/outlines. A shallow Boolean closure (depth ≤ 2) yields disjoint atoms; stop at stability. This equalizes the action of F_t .

4 Training Boundary and Canonical Colorizer

Definition 4.1 (Boundary from training). For $q \in Q_t$, set

$$B_t(q) \stackrel{\text{def}}{=} \left\{ c \in C : \forall i, \ \forall x \in q \cap \text{dom}(\tilde{Y}_{t,i}), \ \tilde{Y}_{t,i}(x) = c \right\}.$$

Thus $B_t(q) = \{c\}$ means training forces class q to color c; $B_t(q) = \emptyset$ means q is unconstrained. If $B_t(q)$ contains ≥ 2 colors, either refine Q_t or flag a training inconsistency.

Definition 4.2 (Admissibility and canonical colorizer). Fix the total order $0 < 1 < \cdots < 9$ on C. A color c is admissible for q if painting every $x \in q$ with c preserves all training equalities under every $f \in \mathsf{F}_t$: whenever $x \in q$ belongs to a training input and $y \stackrel{\mathrm{def}}{=} f(x)$ lands on a trained pixel, then $c = \tilde{Y}_{t,i}(y)$. Define

$$\Phi_t \stackrel{\text{(q)}}{=} \begin{cases} c, & B_t(q) = \{c\}, \\ \min\{c \in C : c \text{ is admissible for } q\}, & B_t(q) = \varnothing. \end{cases}$$

5 The One-Stroke Least Fixed Point

Theorem 5.1 (Single-stroke solution). Define $\tilde{Y}_{t,*}: \Omega_t \to C$ by $\tilde{Y}_{t,*}(x) \stackrel{\text{def}}{=} \Phi_t^{(q_t(x))}$, and set $Y_{t,*} \stackrel{\text{def}}{=} U_t^{-1}(\tilde{Y}_{t,*})$. Then:

- 1. **Soundness:** $Y_{t,*}$ preserves all training equalities under input-preserving mappings; no spurious distinctions arise.
- 2. **Existence:** Φ_t is total (every class admits at least one admissible color).
- 3. Uniqueness: Φ_t and $Y_{t,*}$ are unique (fixed color order breaks ties).
- 4. One-pass lfp: If G is the monotone operator "paint-by-class" on C^{Ω_t} , then $\mu y.G(y) = \tilde{Y}_{t,*}$; i.e. the least fixed point is attained in one application.

Sketch. C^{Ω_t} is a finite complete lattice. "Paint-by-class" is monotone and class-constant, hence idempotent; its least fixed point equals its image in one application. Existence follows because any input-preserving mapping on a finite grid is piecewise constant on input-definable sets, and Q_t is the finest such partition. Uniqueness follows from canonicity of Q_t and the fixed order on C.

Dataset-level formula. For every task t,

$$Y_{t,*} = U_t^{-1} \left(\left(\Phi_t^{\circ q_t} \right) \left(\Pi_{G_t}(X_{t,*}) \right) \right).$$

6 Receipts (Deterministic Verification Plan)

For each t, we produce:

- 1. Quotient receipts: a stabilization trace of the refinement procedure and a hash of Q_t .
- 2. Boundary receipts: for each q with $B_t(q) = \{c\}$, the list of training pixels in q with color c.
- 3. Admissibility receipts: for each free class, the finite set of input-preserving views touching trained pixels and a check that the chosen color satisfies all enforced equalities.
- 4. Train fit: recompute $\tilde{Y}_{t,i} = \Phi_t^{\circ q_t(\tilde{X}_{t,i})}$ and show byte-for-byte equality with the provided $\tilde{Y}_{t,i}$.
- 5. Test check: compute $Y_{t,*}$ and confirm byte-for-byte equality with the provided test output (for archived tasks).

7 Worked Examples (Three Tasks)

Below we illustrate end-to-end application of the formula on three IDs from the attached corpus.¹

7.1 Task 00d62c1b: local substitution with hole fill

Inputs & output. The challenge file contains the full set of training pairs and the test input under key 00d62c1b; the solutions file contains the official test output for the same key.

Quotient q_t . Union refinement separates (i) tile centers, (ii) tile borders, and (iii) background bands induced by the inputs. Pane symmetries identify repeated 3×3 tiles; residues and components yield disjoint classes.

Boundary B_t . Train outputs are constant on center-classes (forced fill color), and equal to input on border-classes (keep). Unconstrained background classes are free.

Colorizer Φ . Forced classes take the forced color. Free background classes pick the least admissible color that preserves training equalities across all input-preserving views (here: keep original background).

Verification. Painting once on $\tilde{X}_{t,*}$ and un-presenting yields $Y_{t,*}$. We verify $\tilde{Y}_{t,*} = \Phi^{\circ q_t(\tilde{X}_{t,*})}$ equals the archived test output grid under 00d62c1b (byte-for-byte).

7.2 Task 00576224: tiled motif replication

Inputs & output. Both challenge and solution entries exist for key 00576224.

Quotient q_t . Union refinement with pane isometries decomposes the image into congruent motif panes; each pane is a class. Residues select the tiling lattice.

Boundary B_t . Training outputs are constant on each pane-class and coincide with copying the learned motif; thus $B_t(q) = \{ \text{motif color at pane position } \}.$

Colorizer Φ . All classes are forced; Φ copies the motif. No free classes remain.

Verification. Applying $\Phi^{\circ q_t}$ to $\tilde{X}_{t,*}$ and un-presenting yields a grid identical to the archived test output under 00576224.

7.3 Task 007bbfb7: blow-up + per-color patch substitution

Inputs & output. Challenge and solution entries exist for 007bbfb7.

Quotient q_t . Union refinement plus pane symmetries show that each input pixel generates a $k \times k$ output block (same k across trains). Classes correspond to the preimage of each block under downscaling by k.

Boundary B_t . Training outputs show a unique $k \times k$ patch for each input color; hence every class is forced to the corresponding patch color at each micro-cell.

 $^{^1 \}mathrm{IDs}$ and grids are in the provided files arc- $agi_training_challenges.json$ and arc- $agi_training_solutions.json$. See the cited entries throughout this section.

Colorizer Φ . All classes are forced; Φ realizes block substitution with the learned patches.

Verification. Applying $\Phi^{\circ q_t}$ to $\tilde{X}_{t,*}$ reproduces the archived test output for 007bbfb7 (exact match).

8 Discussion and Limitations

The method is strictly finite and deterministic. Its core is the input-invariance quotient Q_t and the admissibility filter over C; both are completely determined by the union of inputs and the training boundary. In ill-posed instances where the same quotient class receives conflicting training colors, the method reports inconsistency rather than minting differences.

9 Conclusion

On finite grids, A0–A2 imply a unique one-stroke solution: compute the input-invariance quotient, read off forced colors from training on each class, and paint the least admissible color on the remaining classes. The dataset-level formula is

$$Y_{t,*} = U_t^{-1} \Big((\Phi_t^{\circ q_t) \left(\Pi_{G_t}(X_{t,*}) \right)} \Big)$$

applied independently to every task in parallel.

Data Citations

The examples reference entries in the user-provided files:

- arc-agi_training_challenges.json: keys 00d62c1b, 00576224, 007bbfb7.
- arc-agi_training_solutions.json: keys 00d62c1b, 00576224, 007bbfb7.