Construction of Families of Permutation Trinomials over Finite Fields

Christian A. Rodriguez Alex D. Santos

Department of Computer Science University of Puerto Rico, Río Piedras

March 14, 2014

Table of Contents

- Introduction
- Our Problem
- Results

Table of Contents

- Introduction
- 2 Our Problem
- 3 Results

Finite Fields

Definition

A **finite field** \mathbb{F}_q is a field with $q = p^r$ elements where p is prime.

Example

$$\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$$

Addition: 2 + 2 = 4

$$2+2=4$$

 $4+4=8$

$$(mod 5) = 3$$

Multiplication:

$$2 \cdot 2 = 4$$

 $4 \cdot 4 = 16$
 $(\text{mod } 5) = 1$

Value Sets

Definition

Let f(x) be a polynomial defined over a finite field \mathbb{F}_q . Then the value set of f is defined as $V(f) = \{f(a) \mid a \in \mathbb{F}_q\}$

Example

Consider $f(x) = x^2$ defined over \mathbb{F}_5 .

Note:
$$f(0) = 0$$
, $f(1) = 1$, $f(2) = 4$, $f(3) = 4$, $f(4) = 1$

$$V(f) = \{0, 1, 4\}.$$

Definition

A polynomial f(x) defined over \mathbb{F}_q is a **permutation** polynomial if and only if $V(t) = \mathbb{F}_q$.

Definition

A polynomial f(x) defined over \mathbb{F}_q is a **permutation** polynomial if and only if $V(t) = \mathbb{F}_q$.

Example

Let $f(x) = x^3$ over \mathbb{F}_5 . Note: $V(f) = \{0, 1, 3, 2, 4\}$ so f(x) is a permutation polynomial over \mathbb{F}_5

Definition

A polynomial f(x) defined over \mathbb{F}_q is a **permutation** polynomial if and only if $V(t) = \mathbb{F}_q$.

Example

Let $f(x) = x^3$ over \mathbb{F}_5 . Note: $V(f) = \{0, 1, 3, 2, 4\}$ so f(x) is a permutation polynomial over \mathbb{F}_5

Example

Let $f(x) = x^2$ over \mathbb{F}_5 . We have that $V(f) = \{0, 1, 4\}$ so f(x) is not a permutation polynomial over \mathbb{F}_5 .

Definition

Definition

$$\mathbb{F}_5$$

Definition

$$\mathbb{F}_{5}$$
 $3^{1}_{3^{2}}=3$ $3^{3}_{4}=2$ $3^{4}_{5}=1$

Definition

$$\mathbb{F}_5$$
 $3^1=3$ $4^1=4$ $3^2=4$ $4^3=4$ $3^3=2$ $4^3=4$ $4^4=1$

Table of Contents

- Introduction
- 2 Our Problem
- 3 Results

- Everyting is known about Permutation Monomials
- Permutation Binomials have been studied extensively
- The next case is to study Permutation Trinomials

Permutation trinomials of the form $X^{\frac{q+1}{2}} + aX^{\frac{q-1}{d}+1} + bX$

$$f_{a,b} = X\left(X^{\frac{p-1}{2}} + aX^{\frac{p-1}{d}} + b\right)$$

Permutation trinomials of the form $X^{\frac{q+1}{2}} + aX^{\frac{q-1}{d}+1} + bX$

$$f_{a,b} = X\left(X^{rac{p-1}{2}} + aX^{rac{p-1}{d}} + b
ight), N(p,d) = ext{ number of permutations}$$

Permutation trinomials of the form $X^{\frac{q+1}{2}} + aX^{\frac{q-1}{d}+1} + bX$

$$f_{a,b} = X\left(X^{rac{p-1}{2}} + aX^{rac{p-1}{d}} + b
ight), N(p,d) = ext{ number of permutations}$$

р	N(p,3)	N(p,4)	N(p,6)	р	N(p,3)	N(p,4)	N(p,6)
13		8	18	61	60	304	30
17		16	_	67	78	_	108
19	0	_	0	73	54	440	54
29	_	48	_	79	96	_	48
31	0	_	18	89	_	680	_
37	12	132	12	97	174	840	102
41	1	140	_	101	_	940	_
43	48	_	36	103	162	_	72
53	_	244	_				

Our Polynomial

Let $d_1, d_2 \in \mathbb{N}$ such that $d_1 \mid (q-1)$ y $d_2 \mid (q-1)$. We are interested in the polynomial:

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

with $a, b \in \mathbb{F}_q^{\times}$.

Problem

Our Problem

Study the value set of polynomials of the form

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

and determine conditions in a, b such that they are permutation polynomials.

Table of Contents

- Introduction
- Our Problem
- Results

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

$$a = \alpha^i, b = \alpha^j, \alpha$$
 a primitive root in \mathbb{F}_q

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

 $a = \alpha^i, b = \alpha^j, \alpha$ a primitive root in \mathbb{F}_q

$$(a,b) \sim (a',b') \Longleftrightarrow$$

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

 $a = \alpha^i, b = \alpha^j, \alpha$ a primitive root in \mathbb{F}_q

$$(a,b)\sim (a',b')\Longleftrightarrow$$

$$a' = \alpha^{i+h(\frac{q-1}{d_1} - \frac{q-1}{d_2})}$$

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

 $a = \alpha^i, b = \alpha^j, \alpha$ a primitive root in \mathbb{F}_q

$$(a,b)\sim (a',b')\Longleftrightarrow$$

$$\mathbf{a}' = \alpha^{i + h(\frac{q-1}{d_1} - \frac{q-1}{d_2})}$$

$$\mathbf{b}' = \alpha^{j+h(\frac{q-1}{d_1})}$$

$$f_{a,b}(X) = X^r(X^6 + aX^4 + b)$$

$$q = 13, d_1 = 2, d_2 = 3, \alpha = 2$$

$$f_{a,b}(X) = X^r(X^6 + aX^4 + b)$$
 $q = 13, d_1 = 2, d_2 = 3, \alpha = 2$
 $a = 4 = 2^2, b = 8 = 2^3$
 $a' = \alpha^{i+h(\frac{q-1}{d_1} - \frac{q-1}{d_2})}, b' = \alpha^{j+h(\frac{q-1}{d_1})}$

$$f_{a,b}(X) = X^r(X^6 + aX^4 + b)$$
 $q = 13, d_1 = 2, d_2 = 3, \alpha = 2$
 $a = 4 = 2^2, b = 8 = 2^3$
 $a' = \alpha^{i+h(\frac{q-1}{d_1} - \frac{q-1}{d_2})}, b' = \alpha^{j+h(\frac{q-1}{d_1})}$
 $(2^2, 2^3) \sim (a', b') \iff a' = 2^{2+2h}, b' = 2^{3+6h}$

$$f_{a,b}(X) = X^r(X^6 + aX^4 + b)$$
 $q = 13, d_1 = 2, d_2 = 3, \alpha = 2$
 $a = 4 = 2^2, b = 8 = 2^3$
 $a' = \alpha^{i+h(\frac{q-1}{d_1} - \frac{q-1}{d_2})}, b' = \alpha^{j+h(\frac{q-1}{d_1})}$
 $(2^2, 2^3) \sim (a', b') \iff a' = 2^{2+2h}, b' = 2^{3+6h}$
 $h = 1:(2^2, 2^3) \sim (2^4, 2^9)$

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

Lemma

The relation \sim defined previously is an equivalence relation.

 $f_{a,b}$ with equivalence classes:

$$[f_{a,b}] = [f_{\alpha^i,\alpha^j}] = \{f_{a',b'} \mid (a,b) \sim (a',b')\}$$

Polynomial Results

Number of Permutation Polynomials

Value set correspondence

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

Theorem

Suppose that $f_{a,b} \sim f_{a',b'}$ then $|V(f_{a,b})| = |V(f_{a',b'})|$.

Example

Let
$$q=13, d_1=2, d_2=3, a=4, b=8$$
. Since $(2^2, 2^3) \sim (2^4, 2^9)$ we have that $|V(f_{2^2, 2^3})| = |V(f_{2^4, 2^9})| = 7$

Permutation Polynomial correspondence

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

Corollary

Suppose that $f_{a,b}$ is a permutation polynomial and $f_{a,b} \sim f_{a',b'}$, then $f_{a',b'}$ is also a permutation polynomial.

Size of equivalence classes

$$f_{a,b}(X) = X^r(X^{\frac{q-1}{d_1}} + aX^{\frac{q-1}{d_2}} + b)$$

Proposition

 $|[f_{a,b}]| = lcm(d_1, d_2)$ where lcm(x, y) is the least common multiple of x and y.

Example

Let q = 13, $d_1 = 2$, $d_2 = 3$, a = 4, b = 8. Note that lcm(2,3) = 6 These are the elements of (a, b):

Polynomials Results

Number of Permutation Polynomials

(16, 1), (25, 36),

* Note that the number of polynomials in each cell is 6 = lcm(2, 3)

* The polynomials within each cell have value sets of the same size. The size of the value sets associated to different cells might or might not be equal.

Polynomial Results

Proposition

The number of polynomials of the form $f_{a,b}(X)$ with $|V(f_{a,b})| = n$ is a multiple of $lcm(d_1, d_2)$

Corollary

The number of permutation polynomials of the form $f_{a,b}(X)$ is a multiple of $lcm(d_1, d_2)$

Future Work

- Find necessary and sufficient conditions such that $V(f_{a,b}) = \mathbb{F}_q$
- Generalize results to polynomials with more terms and with exponents not divisors of q-1:

$$f_{a,b}(X) = X^r(X^{d_1} + aX^{d_2} + b)$$