UE 6
INITIATION À LA CONNAISSANCE DU
MÉDICAMENT

Pharmacocinétique

Cours N° 5

Dr. F. DESPAS

Pharmacocinétique

- Etude du devenir du Principe Actif (PA) dans l'organisme, depuis son administration jusqu'à son élimination
 - Absorption
 - Distribution
 - Métabolisation
 - Excrétion

Elimination

Phases A, D, M et E coexistent dans le temps

A. Excrétion

- 1. Définitions
- 2. Excrétion urinaire
 - a. Filtration urinaire
 - b. Réabsorption urinaire
 - c. Sécrétion tubulaire
- Excrétion biliaire

- 1. Définitions
- 2. Quantification de l'élimination
- 3. Sujets sains et t½ d'élimination
- 4. Facteurs modifiant t½ d'élimination

A. Excrétion

- 1. Définitions
- 2. Excrétion urinaire
 - a. Filtration urinaire
 - b. Réabsorption urinaire
 - c. Sécrétion tubulaire
- 3. Excrétion biliaire

- 1. Définitions
- 2. Quantification de l'élimination
- 3. Sujets sains et t½ d'élimination
- 4. Facteurs modifiant t½ d'élimination

1. Excrétion : Définitions

- Action consistant à rejeter le PA et/ou métabolites en dehors de l'organisme
 - Rein : excrétion urinaire (urine) +++
 - Foie : excrétion biliaire (bile) +
 - Glande mammaire (lait)
 - Poumons (air exhalé)
 - Peau (sueur)
 - Phanères (cheveux)
 - **—**
- Clairance : coefficient d'épuration plasmatique
 - Volume virtuel de plasma totalement débarrassé d'une substance par unité de temps
 - Ex.: Clairance rénale normale : ≥90 mL/min

A. Excrétion

- 1. Définitions
- 2. Excrétion urinaire
 - a. Filtration urinaire
 - b. Réabsorption urinaire
 - c. Sécrétion tubulaire
- 3. Excrétion biliaire

- 1. Définitions
- 2. Quantification de l'élimination
- 3. Sujets sains et t½ d'élimination
- 4. Facteurs modifiant t½ d'élimination

2. Excrétion urinaire

- Rein = principal organe d'excrétion du PA et/ou des métabolites
- Unité élémentaire du rein = néphron

• Trois étapes :

$$CL_{RENALE} = CL_{FG} + CL_{SEC} - CL_{REABS}$$

=> Urine

- 1. Filtration glomérulaire
- 2. Réabsorption tubulaire
- 3. Sécrétion tubulaire

2.a Filtration glomérulaire

- Glomérule rénal : filtre poreux (capsule de Bowman)
 - Passage des PA de la circulation systémique vers le filtrat urinaire (urine primitive)
 - Modalités de transfert : passage libre pour
 - PM< 65000 Da
 - Fraction libre des médicaments
 - Passage obligatoire pour tous les médicaments répondant aux critères de taille
- Clairance de filtration maximale= 125 ml/min

2.b Réabsorption tubulaire

- Retour du PA depuis le filtrat vers la circulation sanguine
 - Ne concerne que les Principes Actifs qui ont été filtrés
- Voie non obligatoire pour un médicament
- Modalités de transfert
 - Diffusion passive (sensible au pH urinaire)
 - Transport actif
- La réabsorption tubulaire ralentit/retarde l'excrétion
 - Modifiable par alcalinisation ou acidification des urines

Ex. Intoxication Aspirine (acide acétylsalicylique)

- Alcalinisation des urines diminue la réabsorption tubulaire
 - = Augmentation capacité d'excrétion

2.c Sécrétion tubulaire

- Transfert du PA de la circulation sanguines vers le filtrat urinaire
 - Concerne les molécules de PA qui n'ont pas (encore) été filtrées ou qui ont été réabsorbées
- Voie non obligatoire pour un médicament
- Modalités de transfert
 - Transport actif via transporteurs peu sélectifs
 - Saturables
 - Compétition +++
 - → Risques d'interactions médicamenteuses

Ex. : pénicillines, salicylés, AINS, certains diurétiques

Ex: Zidovudine (Retrovir®) + probénécide (Benemide®)

- Inhibition sécrétion tubulaire = Réduction capacité excrétoire de l'Antirétroviral

A. Excrétion

- 1. Définitions
- 2. Excrétion urinaire
 - a. Filtration urinaire
 - b. Réabsorption urinaire
 - c. Sécrétion tubulaire
- 3. Excrétion biliaire

- 1. Définitions
- 2. Quantification de l'élimination
- 3. Sujets sains et t½ d'élimination
- 4. Facteurs modifiant t½ d'élimination

3. Excrétion biliaire

- PA et/ou métabolites : circulation sanguine
 - => Foie (parenchyme hépatique)
 - => canalicules biliaires
 - => vésicule biliaire
 - => tube digestif
 - Élimination fécale +++
 - Réabsorption (cycle entéro-hépatique)
 - Métabolites glucuroconjugués très hydrophile mais glucoronidases des bactéries du tube digestif

- Concerne surtout les grosses molécules et les métabolites conjugués
- Modalités de transfert
 - Fait intervenir des transporteurs membranaires (PGP...)

Pharmacocinétique

- Etude du devenir du Principe Actif (PA) dans l'organisme, depuis son administration jusqu'à son élimination
 - Absorption
 - Distribution
 - Métabolisation
 - Excrétion

Phases A, D, M et E coexistent dans le temps

Elimination

A. Excrétion

- 1. Définitions
- 2. Excrétion urinaire
 - a. Filtration urinaire
 - b. Réabsorption urinaire
 - c. Sécrétion tubulaire
- 3. Excrétion biliaire

- 1. Définitions
- 2. Quantification de l'élimination
- 3. Sujets sains et t½ d'élimination
- 4. Facteurs modifiant t½ d'élimination

1. Elimination: définitions

- Etude de la disparition du PA de l'organisme
 - Elimination = Métabolisation + Excrétion
- Pour l'organisme entier
 - Clairance totale : coefficient d'épuration plasmatique totale (ml/min)

$$CL_{TOTALE} = CL_{HEP} + CL_{REIN} + CL_{AUTRES}$$

- Clairance totale
 - CLt= dose/SSC
 - SSC: Méthode des trapèzes
- Clairance hépatique
 - CL_{HEP} = CL_{METABOLISATION} + CL _{EXCRETION BILIAIRE}
 - Coefficient d'extraction = <u>C entrée C sortie</u>
 C entrée
 - CL_{HEP} = débit sanguin (Q) x Coefficient extraction (E)

A. Excrétion

- 1. Définitions
- 2. Excrétion urinaire
 - a. Filtration urinaire
 - b. Réabsorption urinaire
 - c. Sécrétion tubulaire
- 3. Excrétion biliaire

- 1. Définitions
- 2. Quantification de l'élimination
- 3. Sujets sains et t½ d'élimination
- 4. Facteurs modifiant t½ d'élimination

2. Quantification de l'élimination

- Etude de la disparition du PA de l'organisme
 - Elimination = Métabolisation + Excrétion

METHODOLOGIE (Phase I, II):

- 1° Injection dose (X mg) médicament I.V.
- 2° Prélèvement sanguin 5min (t0)
- 3° Prélèvement sanguin 10min (t1)
- 4° Prélèvement sanguin 15min (t2)
- 5° Prélèvement sanguin 20min (t3)
- 6° Prélèvement sanguin 25min (t4)

 A tout instant la vitesse d'élimination (quantité par unité de temps) du médicament est proportionnelle à la concentration plasmatique du médicament

$$CI = \frac{dQ/dt}{C}$$
 (en tout temps t)

2. Quantification de l'élimination

• Demi-vie (t½) d'élimination

 Temps nécessaire (sec, min, heures ou jours) pour que la concentration plasmatique en PA diminue de moitié

$$C_{(t)} = C_0 e^{-ke(t)}$$
; $k_e = \ln 2 / t^{1/2}$

2. Quantification de l'élimination

t	fraction éliminée
t=t _{1/2}	50%
t=2t _{1/2}	75%
t=3t _{1/2}	87%
t=4t _{1/2}	94%
t=5t _{1/2}	97%
t=6t _{1/2}	98%
t=7t _{1/2}	99%
t=8t _{1/2}	99,6%
t=9t _{1/2}	99,8%
: t=∞	100%

- 7 demi-vies sont nécessaires à l'élimination de 99% de la dose absorbée
- Durée d'exposition d'un médicament :
 - Durée de traitement + 7 demi-vies

A. Excrétion

- 1. Définitions
- 2. Excrétion urinaire
 - a. Filtration urinaire
 - b. Réabsorption urinaire
 - c. Sécrétion tubulaire
- 3. Excrétion biliaire

- 1. Définitions
- 2. Quantification de l'élimination
- 3. Sujets sains et t½ d'élimination
- 4. Facteurs modifiant t½ d'élimination

3. Sujets sains et t½ d'élimination

- Pour un même PA chez sujet sain (Phase I), la vitesse d'élimination (t½) est fonction des propriétés physicochimiques du principe actif (RCP) :
- VIDAL 2019
 Le Dictionnaire

- Paramètre composite, qui dépend de :
 - Vd (+ médicament est distribué, + il faudra de temps pour l'éliminer)
 - Clairance (+ capacités d'épuration sont grandes, il faudra de temps pour l'éliminer)

- Définition d'une posologie usuelle appropriée : Posologie
 - Exemples de t ½ de médicaments :
 - Paracetamol: t ½ = 2 heures
 - Amlodipine : t ½ = 40 heures
 - Amiodarone : t ½ = de 20 à 100 jours

- →0,5 à 1 g jusqu'à 4 f/j
- →5 mg 1 f/j
- → 200 mg tous les 2 j

A. Excrétion

- 1. Définitions
- 2. Excrétion urinaire
 - a. Filtration urinaire
 - b. Réabsorption urinaire
 - c. Sécrétion tubulaire
- 3. Excrétion biliaire

- 1. Définitions
- 2. Quantification de l'élimination
- 3. Sujets sains et t½ d'élimination
- 4. Facteurs modifiant t½ d'élimination

4. Facteurs modifiant t½ d'élimination

- Effets des pathologies sur t ½
 - Pour un médicament à excrétion rénale prédominante
 - Si patient insuffisant rénal (clairance rénale du patient <60 mL/min)
 - Augmentation t ½ du médicament chez ce patient
 - Pour un médicament à élimination hépatique prédominante
 - Si patient insuffisant hépatique (cirrhose, hépatite...)
 - Augmentation t ½ du médicament chez ce patient
 - → Adaptation posologique (cf. RCP)
 - → Choix autre médicament élimination différente

Ex : Diazepam (Valium®) : $t\frac{1}{2}$ = 20 heures à 20 ans, 80 heures à 80 ans

Métabolisation hépatique ET excrétion rénale

4. Facteurs modifiant t½ d'élimination

- Effets des interactions médicamenteuses sur t ½:
 - Si compétition voies d'éliminations (métabolisation et/ou excrétion):
 - Augmentation t ½ chez ce patient
 - **→** Adaptation posologique (cf. RCP)
 - → Choix autre médicament élimination différente

Polymorphisme génétique

- Protéines impliquées dans pharmacocinétique sont codés par des gènes
 - Ex.: CYP2D6
 - » Statut de métaboliseur lent (7% des caucasiens)
 - » Statut métaboliseur ultrarapide (1% des caucasiens)
 - Ex. Codéine

Elimination des médicaments...

- Mme Y. 32 ans enceinte de 7 mois arrive aux urgences de Tarbes (rempla d'été...). Elle présente des bouffées d'angoisse qu'elle traite par automédication Valium cp 10mg
 - Automédication judicieuse dans contexte de grossesse ?
 - Diazepam (Valium®)
 - ½ vie : 20 heures à 20 ans, 80 heures à 80 ans
 - Effets pharmacologiques des benzodiazépines :
 - » Hypnotique
 - » Anxiolytique
 - » Myorelaxant
 - » Anticonvulsivant
 - Quels effets délétères identifiez-vous pour L'accouchement ?
 - » Ne pas oublier? ACCOUCHEMENT= mère + Nouveau-Né
 - Si BZD indispensable, sur quelle critère pharmacocinétique baser son choix ?

Merci de votre attention