March 23, 2015

Chapter 5: Limits

Chapter 5: 1, 7, 8, 10, 15, 16, 18, 20, 21

lim means x within δ implies expression within ϵ of limit.

Failed

1ii remember *x* cannot equal 2, it approaches it! further factoring tricks:

•
$$a^3 + b^3 = (a+b)(a^2 - ab - b^2)$$

•
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

1iv recall polynomial factoring theorems and long division of polynomials. if a value for x is a zero, then polynomial can be factored with (x - value).

8 idea of limits not existing when a product exists.

Tips

Given, $\lim_{x\to 0} \frac{f(x)}{x} = l$,

$$\lim_{x\to 0}\frac{f(bx)}{x}=bl.$$

$$\frac{f(bx)}{x} = \frac{bf(bx)}{bx}$$

 $\frac{f(bx)}{x} = \frac{bf(bx)}{bx}$ Let y be a new input of f(x) then we have bl.

Chapter 6: Continuity

1, 3, 4, 7, 8, 10, 14, 15

f is continuous at a means

$$\lim_{x \to a} f(x) = f(a)$$

- rational functions are continuous use product, sums of f(x) = x are continuous
- elementary functions: c, x, log, exponents, trig are continuous easy to show using idea above

Failed

7. Suppose f(x + y) = f(x) + f(y) and f(x) is continuous at 0. Show f(x) is continuous at any a.

We want $|f(x) - f(a)| < \epsilon$ for all $|x - a| < \delta$. Tool: show f(-a) = -f(a) (look at f(a + 0)). Then problem is easy.

10. a. need inequality: $|x| - |y| \le |x - y|$ 10. b. every continuous function f(x) written as the sum of even and odd function. even $= \frac{f(x) + f(-x)}{2}$; odd $= \frac{f(x) - f(-x)}{2}$

Tips

graphing functions reveals continuity

Chapter 7: Three Hard Theorems

1(viii),(ix)(x), 3(ii), 5, 6, 10, 15, 18

Extreme Value Theorem and Intermediate Value Theorem and similar ideas.

Extreme Value Theorem

- 1. continuous \rightarrow bounded
- 2. $\{f(x): x \in [a,b]\}$ is non empty, so has l.u.b., say G
- 3. Suppose no input y generates G. contradition: consider $g(x) = \frac{1}{G f(x)}$ continuous, hence bounded, but since G is l.u.b., $g(x) > \frac{1}{G}$.

add proofs from next chapter

Failed

- 3. ii. use intermediate value theorem on g(x) = sin(x) x + 1 by finding values of the function greater/less than 0.
- 15. also IVT

Tips

Chapter 8: Least Upper Bound

skip

any set of reals with an upper bound has a least upper bound.

used to prove three hard theorems.

a function is uniformly continuous

$$|x - y| < \delta \rightarrow |f(x) - f(y)| < \epsilon$$

Tips

Chapter 9:Derivatives

2,3,4,5,6,8

a function is **differentiable**, if for all *a* in domain,

$$\lim_{h\to 0} \frac{f(a+h) - f(a)}{h}$$
 exists.

- differentiable implies continuous use $\lim_{x\to a} f(x) f(a)$ multiply by $\frac{h}{h}$
- cont $\not\rightarrow$ diff |x| is not differentiable at x = 0

Failed

- 2. factor cubic
- 3. algebra: multiply by the conjugate.
- 5. recall [x] is the largest integer less than or equal to x

Tips

factoring cubic: either a linear and quadratic or 3 linear terms. Search for linear factor (root). Think about factors of constant term.

To clean

$$\frac{\sqrt{a+h}-\sqrt{a}}{h}$$

multiply by conjugate $\sqrt{a+h} + \sqrt{a}$.

Chapter 10: differentiation, finding derivatives

1(v)(vi), 2(ix)(xvi), 15,16,18

- (fg)' = f'g' since limits decompose over products (similarly with sums and cf(x))
- quotient rule key is to write $\frac{f}{g}$ as $f * (\frac{1}{g})$ $\frac{d}{dx} \frac{1}{g(x)}$ careful to check expression makes sense.
- Chain Rule: f(g(a))' is f'(g(a))g'(a) use limit definition *must be careful to seperate case where g(a+h)-g(a)=0. see analysis

•

Chain proof

use
$$x \to 0$$
 by def, $\lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a} = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \frac{g(x) - g(a)}{x - a}$ (BIG STEP $x \to a$ becomes $g(x)$)
$$= \lim_{g(x) \to g(a)} \frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \lim_{x \to a} \frac{g(x) - g(a)}{x - a}$$
need to reason that $f(x) - f(a)$ is not zero.

Failed

Good!

Chapter 11: Significance of the Derivative

max, min, critical, l'hopital's rule 26,35,36,37,38, 48, 52, 63

Finding Max/Min

- max/min at a with f'(a) defined $\rightarrow f'(a) = 0$
- f'(x) can equal 0 even when f(x) is not at a local max or min. consider $f(x) = x^3$ with f'(0) = 0.

$$f'(x) = 0 \not\rightarrow \text{local max/min}$$

instead, x such that f'(x) = 0 is a **critical point**

- partial converse: f'(a) = 0 and f''(a) > 0 then min at a
- to find max/min, consider:
 - 1. critical points
 - 2. end points
 - 3. points where f'(x) doesn't exist

*works for continuous functions by Extreme Value Theorem; can't be sure min/max exist for non-continuous functions.

• **Mean Value Theorem** For *f* continuous and differentiable on (*a*, *b*), there is *x* such that

$$f'(x) = \frac{f(b) - f(a)}{b - a}$$

"instantaneous rate of change equals the average rate of change at some x"

- f'(x) = 0 for all $x \to f(x) = c$ idea: take any interval [a, b], then by IVT f(b) = f(a)
- Cauchy Mean Value Theorem (generalization of MVT) for f, g continuous on [a, b] and differentiable on (a, b), there is x such that

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(x)}{g'(x)}$$

*careful g'(x), $f'(x) \neq 0$.

• L'Hopital's Rule For

$$\lim_{x \to a} f(x) = 0 \text{ and } \lim_{x \to a} = 0$$

and $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ exists. Then,

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$
 exists

and

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

*note applies if $\lim x \to af(x)$ (and g(x)) = $\pm \infty$.

Mean Value Theorem proof uses Rolle's Theorem.

Rolle's Theorem: For f continuous and differentiable on (a, b) with f(a) = f(b),

there is
$$x$$
 such that $f'(x) = 0$

idea there exists min, max by EVT, somewhere inside or at endpoints implying f'(x) = 0 for some x

Mean Value Theorem

define $h(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$. Then use Rolle's Theorem on h(x) to show h'(y) = 0 for some y.

Failed

26: try plugging in number, consider 2 cases.

Tips

Chapter 12: Inverse Functions

1;5;6;7i)-iv),vii);8;11a)-c);22;23;26;33;37 something

Failed

Tips

• to find inverse of functions: f(x) = x + 1. Let $y = f^{-1}(x)$. Then y + 1 = x, meaing $y = f^{-1}(x) = x - 1$.

Curiosities

Binomial Theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Polynomials

$$1 + r + r^2 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}$$

set $S = 1 + r + ... + r^n$, multiply by r, and solve

Cauchy Schwarz

$$\sum x_i y_i \le \sqrt{\sum x_i^2} \sqrt{\sum y_i^2}$$

look into proof

Complex: Birth of Sin, Cos

Define, for
$$z \in \mathbb{C}$$
: $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$
 $\cos(z) = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots$
 $\sin(z) = \frac{z}{1!} - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} \dots$

We derive Euler's formula,

$$e^{ix} = \cos(x) + i\sin(x)$$

Set x above to 2a, then

$$e^{i2a} = (e^{ia})^2$$
= $(\cos(a) + i\sin(a))^2$
= $\cos^2(a) + 2i\cos(a)\sin(a) - \sin^2(a)$

 e^{i2a} also equals $\cos(2a) + i\sin(2a)$. So real parts/imaginary parts are equal,

$$\cos(2a) = \cos^2(a) + \sin^2(a)$$

$$\sin(2a) = 2\cos(a)\sin(a)$$

8

Can prove sin(a + b) identity similarly.

Complex Numbers

for
$$a, b \in \mathbb{C}$$
,

a * b = number with length a*b, angle a + b

Trig

Master Identities:

$$\sin(x + y) = \sin(x)\cos(y) + \sin(y)\cos(x)$$
$$\cos(x + y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$

*remember sin is odd $(\sin(-x) = -\sin(x))$; cos is even.

from these derive the rest.

Exercsies

1.
$$\tan^2(x)\sin(x) = \tan^2(x)$$

2.
$$2\cos^2(x) + \sin(x) - 2 = 0$$

use $\cos^2(x) = 1 - \sin^2(x)$.

Log

$$\log(ab) = \log(a) + \log(b)$$
$$\log(a^m) = m \log(a)$$
why?

$$\log(a^m) = \log(a...a),$$

= $\log(a) + \log(a) + ... + \log(a),$
= $m \log(a).$

Derivatives

$$\frac{d}{dx}\arcsin(x) = \frac{1}{\sqrt{1+x^2}}$$

$$\frac{d}{dx}\arctan(x) = \frac{1}{1+x^2}$$
proofs?

$$\frac{d}{dx}a^{x} = a^{x}ln(a)$$

$$\int \frac{1}{x} = ln(|x|) + c$$

Integration Tricks

$$\int_{-\infty}^{\infty} e^{-x^2} dx$$

is nontrivial.

Idea is to consider $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2} e^{-y^2} dx dy$ and use polar coordinates to integrate. (see machine learning hw1)

For **Integrating a Polynomial over a sphere** see trick in paper by Folland.

Min and Max in \mathbb{R}

$$max(a,b) = \frac{a+b}{2} + \frac{|a-b|}{2}$$

(a+b)/2 takes you to midpoint. |a-b|/2 adds the remaining half to the larger number

$$min(a,b) = \frac{a+b}{2} - \frac{|a-b|}{2}$$

similar idea, except goes down by the half