台北市立松山高中 97學年度 高二社會組 寒假數學作業題

一、多重選擇題(計四題):

) $\triangle ABC$ 中,D,E,F 三點分別在 \overline{BC} , \overline{CA} , \overline{AB} 上,且滿足 $\overline{BC} = 3\overline{BD}$, $\overline{CA} = 3\overline{CE}$, $\overrightarrow{AB} = 3\overrightarrow{AF}$, \overrightarrow{AF} $(A)\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \overrightarrow{0}$ $(B)\overrightarrow{AF} + \overrightarrow{BD} + \overrightarrow{CE} = \overrightarrow{0}$ $(C)\overrightarrow{3AD} = 2\overrightarrow{AB} + \overrightarrow{AC}$ $(D) 3\overrightarrow{AQ} = \overrightarrow{AB} + \overrightarrow{AC} \quad (E) \overrightarrow{AP} + \overrightarrow{BP} + \overrightarrow{CP} = \overrightarrow{0} \circ$

答案:全

解析: (A)〇: \overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} $= \left(\frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}\right) + \left(\frac{2}{3}\overrightarrow{BC} + \frac{1}{3}\overrightarrow{BA}\right) + \left(\frac{2}{3}\overrightarrow{CA} + \frac{1}{3}\overrightarrow{CB}\right)$ $= \frac{1}{3} \overrightarrow{AB} + \frac{1}{3} \overrightarrow{BC} + \frac{1}{3} \overrightarrow{CA} = \frac{1}{3} (\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}) = \overrightarrow{0}$

$$(B)\bigcirc : \overrightarrow{AF} + \overrightarrow{BD} + \overrightarrow{CE} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{BC} + \frac{1}{3}\overrightarrow{CA} = \frac{1}{3}(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}) = \overrightarrow{0}$$

$$(C)\bigcirc : \overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} \Rightarrow 3\overrightarrow{AD} = 2\overrightarrow{AB} + \overrightarrow{AC}$$

$$(\,D\,)\bigcirc:Q\,\mathbb{\mathbb{A}}\,\triangle DEF\,\, \mathrm{in}\,\, \underline{\bullet}\, \mathrm{in}\, \underline{\bullet}\, \overline{\mathrm{AQ}} = \frac{1}{3}\,\overline{\mathrm{AD}} + \frac{1}{3}\,\overline{\mathrm{AE}} + \frac{1}{3}\,\overline{\mathrm{AF}}$$

$$XB-D-C$$
且 $\overline{BD}:\overline{DC}=1:2$,所以

$$\overrightarrow{AQ} = \frac{1}{3} \left(\frac{2}{3} \overrightarrow{AB} + \frac{1}{3} \overrightarrow{AC} \right) + \frac{1}{3} \left(\frac{2}{3} \overrightarrow{AC} \right) + \frac{1}{3} \left(\frac{1}{3} \overrightarrow{AB} \right) = \frac{1}{3} \overrightarrow{AB} + \frac{1}{3} \overrightarrow{AC}$$

故
$$3\overrightarrow{AQ} = \overrightarrow{AB} + \overrightarrow{AC}$$

$$(E)$$
○: P 點為△ABC 的重心 \Rightarrow $\overrightarrow{AP} + \overrightarrow{BP} + \overrightarrow{CP} = \overrightarrow{0}$

故選(A)(B)(C)(D)(E)

2. () 參數方程式
$$\begin{cases} x=1+t \\ y=3-2t \end{cases}$$
 , $t \ge 0$ 與下列何者表同一圖形?

(A)
$$\begin{cases} x=1-2s \\ y=3+4s \end{cases}$$
, $s \le 0$ (B) $\begin{cases} x=s \\ y=5-2s \end{cases}$, $s \ge 1$ (C) $\begin{cases} x=s-1 \\ y=7-2s \end{cases}$, $s \ge 2$

(D)
$$\begin{cases} x = 2s + 1 \\ y = 3 - 4s \end{cases}$$
, $s \ge 1$ (E) $\begin{cases} x = s + 3 \\ y = 1 - 2s \end{cases}$, $s \ge 3$

答案:(A)(B)(C)

解析: 參數 $\begin{cases} x=1+t \\ v=3-2t \end{cases}$, $t \ge 0 \Rightarrow t=1$ 時, (x,y)=(2,1)

⇒ 表以點 (1,3) 為端點,且過點 (2,1) 之射線

(B)○:
$$\begin{cases} x = s \\ y = 5 - 2s \end{cases}$$
 , $s \ge 1 \Rightarrow s = 1$ 時,表端點(1,3); $s = 2$ 時,表點(2,1),所以 $s \ge 1$

與原圖形相同

$$(\,C\,)\bigcirc: \begin{cases} x=s-1 \\ y=7-2s \end{cases}, \, s \geqq 2 \Rightarrow s=2 \text{ 時,表端點} \, (\,1\,,\,3\,) \, \, \, ; \, s=3 \text{ 時,表點} \, (\,2\,,\,1\,) \, \, \, , \, \text{所以} \, s \geqq 2 \text{ 與}$$

原圖形相同

(D)×:
$$\begin{cases} x = 2s + 1 \\ y = 3 - 4s \end{cases}, s \ge 1 \Rightarrow s = 1 \text{ 時,表端點} (3, -1) (不合)$$

$$(E)$$
 \times : $\begin{cases} x = s + 3 \\ y = 1 - 2s \end{cases}$, $s \ge 3 \Rightarrow s = 3$ 時,表端點 $(6, -5)$ (不合)

故選(A)(B)(C)

- 3. () 在坐標平面上,下列五組條件中,哪幾組可決定一圓?
 - (A)過三點 (1, -3) , (2, 6) , (4, 24)
 - (B)以(1,0)與(3,4)為一直徑的兩端點
 - (C)過四點 (1,0) , (-1,0) , (0,1) 與 (0,-1)
 - (D)圓心為(-1,2),且與x軸及y軸都相切。

答案:(B)(C)

|解析|: (A) 過(1,-3), (2,6)之直線為9x-y+12=0

又 (4,24) 在 9x-y+12=0 上,即 (1,-3), (2,6), (4,24) 三點共線

故無法決定一圓

(B)以 (1,0) 與 (3,4) 為一直徑的兩端點之圓方程式為 (x-1) (x-3)+(y-0) (y -4)=0

$$\Rightarrow x^2 + y^2 - 4x - 4y + 3 = 0$$

故可決定一圓

 $(\,C\,)$ 過四點 $(\,1\,\,,\,0\,)$, $(\,-1\,\,,\,0\,)$, $(\,0\,\,,\,1\,)$ 與 $(\,0\,\,,\,-1\,)$ 之圓方程式為 $x^2+y^2=1$

故可決定一圓

- (D)圓心為(-1,2)之圓不可能同時與x軸及y軸相切
- (:. 圓心 (-1, 2) 與 x 軸相切之半徑為 1 與 y 軸相切之半徑為 2, 故此圓不存在)

4. ()設
$$A$$
 (4 , 4) , B (1 , 5), C (-3 , 3),若 $\triangle ABC$ 之外接圓方程式為 $x^2+y^2+dx+ey+f=0$,則

- (A) d+e+2=0 (B) d+f+24=0 (C) d+e+f+26=0
- (D) d+2e=d (E) d+2e+3f=50 °

答案:(A)(C)(D)

解析:
$$\therefore$$
 \triangle ABC 之外接圓方程式為 $x^2+y^2+dx+ey+f=0$

且
$$A(4,4)$$
 , $B(1,5)$, $C(-3,3)$

$$\begin{cases} 16+16+4d+4e+1=\\ 1+25+d+5e+f=0\\ 0+0-3d+3e+f=0 \end{cases}$$

$$\Rightarrow \begin{cases} 4d + 4e + f = -32 \\ d + 5e + f = -26 \\ -3d + 3e + f = -18 \end{cases}$$

- \Rightarrow d=-2, e=0, f=-24
- (A) d+e+2=-2+0+2=0 正確
- (B) d+f+24=(-2)+(-24)+24=-2≠0 錯誤
- (C)d+e+f+26=(-2)+0+(-24)+26=0 正確

(D)
$$d+2e=(-2)+2\cdot 0=(-2)=d$$
 正確

(E)
$$d+2e+3f=(-2)+2\cdot 0+3\cdot (-24)=-74 \neq 50$$
 錯誤

故選(A)(C)(D)

二、單一選擇題(計三題):

5. () 下列何者為方程式 $x=1+\sqrt{4-y^2}$ 的圖形?

答案:(E)

解析: $x=1+\sqrt{4-y^2}$

$$\Rightarrow$$
 x - 1 = $\sqrt{4 - y^2} \ge 0$

$$\Rightarrow \begin{cases} (x-1)^2 = 4 - y^2 \\ (x-1) \ge 0 \end{cases} \Rightarrow \begin{cases} (x-1)^2 + y^2 = 4 \\ x \ge 1 \end{cases}$$

∴圖形為以(1,0)為圓心,半徑為2的圓的右半部,故選(E)

6. () 參數方程式 $\begin{cases} x=1+2\cos\theta \\ y=2-2\sin\theta \end{cases}$, $0\leq\theta\leq\frac{2\pi}{3}$ 的圖形為下列何者?

答案:(C)

⇒
$$(x-1)^2 + (y-2)^2 = 4$$
 且參數 ϕ 之限制為 $-\frac{2\pi}{3} \le \phi \le 0$

故圖形如下

7. () 琳達到畫廊賞畫(如圖),牆壁上懸掛一幅張大千的山水畫 AB,A點,B點分別離地4公尺,2公尺高,若琳達的眼睛 C離地1.5公尺高,則 C離牆壁多遠時,她對該幅「山水畫」的視

角最大? $(A)\frac{\sqrt{5}}{3}$ $(B)\frac{\sqrt{5}}{2}$ $(C)\sqrt{5}$ $(D)2\sqrt{5}$ $(E)3\sqrt{5}$ 公尺。

答案:(B)

解析:過C作L直線平行地面

作一圓通過A,B且與L相切於C

則 C 即為琳達眼睛之位置,此時 $\overline{PB} = \frac{1}{2}$ 公尺

$$\overline{PA} \!=\! \frac{5}{2} \, \& \mathcal{R} \, , \, \, \text{fi} \, \, \overline{PC}^2 \!=\! \overline{PB} x \overline{PA} \!=\! \frac{1}{2} x \frac{5}{2} \!=\! \frac{5}{4} \, \, (\, \& \, \mathcal{R} \,)$$

∴
$$\overline{PC} = \frac{\sqrt{5}}{2}$$
 公尺

三、選擇、填充題(計三題):

8. 已知方程組
$$\begin{cases} x+y+2z=-2\\ x+2y+3z=\alpha\\ x+3y+4z=\beta\\ x+4y+5z=\beta^2 \end{cases}$$
 有解,其中 α , β 皆為非整數之常數,則 $\alpha=$ 【 】, $\beta=$ 【

】。〔78.數甲〕

答案:
$$-\frac{5}{4}$$
; $-\frac{1}{2}$

解析:
$$\begin{cases} x+y+2z=-2 & \cdots & 1 \\ x+2y+3z=\alpha & \cdots & 2 \\ x+3y+4z=\beta & \cdots & 3 \\ x+4y+5z=\beta^2 & \cdots & 4 \end{cases} \Rightarrow \begin{cases} 2-1 \\ 3-2 \\ 4-3 \end{cases} \begin{cases} y+z=\alpha+2 \\ y+z=\beta-\alpha \\ y+z=\beta^2-\beta \end{cases}$$

故
$$\begin{cases} \alpha + 2 = \beta - \alpha \cdots 5 \\ \alpha + 2 = \beta^2 - \beta \cdots 6 \end{cases}$$

由 5 得 $\alpha = \frac{\beta}{2} - 1$,代入 6 得 $(\frac{\beta}{2} - 1) + 2 = \beta^2 - \beta$
即 $2\beta^2 - 3\beta - 2 = 0 \Rightarrow \beta = 2$ 或 $-\frac{1}{2}$ $(2 \pi \triangle)$
 $\Rightarrow \alpha = -\frac{1}{4} - 1 = -\frac{5}{4}$

9. ()設一球之球心與一正立方體之中心重合,考慮球面與正立方體所有邊的交點,則交點的個數不可能是 (A)0 (B)8 (C)12 (D)16 (E)24。[90.數甲]

答案:(D)

解析:考慮球在正方體內部慢慢變大

設球心 O, 半徑 r, 正立方體邊長 a

(1)當 $r < \frac{\sqrt{2}}{2}a$ 時,球在正立方體內部,故球與邊皆不相交 ...交點個數為 0

球在正方體内部

(2)當 $r = \frac{\sqrt{2}}{2}a$ 時,球與邊相切,共 12 個交點

球與每邊相切

(3)當 $\frac{\sqrt{2}}{2}$ a < r < $\frac{\sqrt{3}}{2}$ a 時,球與每條邊有 2 個交點 ∴ 共有 2×12=24 個交點

球與每邊交兩點

(4)當 $r = \frac{\sqrt{3}}{2}$ a 時,球與每個頂點相接 ∴ 共有 8 個交點

球渦正方體之頂點

(5)當 $r>\frac{\sqrt{3}}{2}a$ 時,正立方體在球內部,故球與邊皆不相交 ...交點個數為 0

正方體在球内部

故(D)16個交點是不可能的,選(D)

10. 在坐標空間中,球面 S 交 xy 平面於一半徑為 $\sqrt{13}$,圓心為 (2,3,0) 的圓,且 S 通過點 (6,6,6)

6) ,則S的半徑為【

】。〔95.數甲〕

答案: √29

解析:球心 A(a,b,c) 在 xy 平面垂足為 B(a,b,0)=(2,3,0) ,因此 a=2 ,b=3 即球心 A(2,3,c) ,設 P(6,6,6) ,則 S 半徑為 \overline{AP}

因此
$$\sqrt{4^2+3^2+\ (c-6)^2} = \sqrt{c^2+\ (\sqrt{13})^2}$$

即
$$c^2 - 12c + 61 = c^2 + 13$$
 , 得 $c = 4$

故 S 的半徑為
$$\sqrt{4^2 + (\sqrt{13})^2} = \sqrt{29}$$

四、填充題(計七十五題):

11.
$$|\overrightarrow{u}| = 1$$
, $|\overrightarrow{v}| = 2$, \overrightarrow{u} 與 \overrightarrow{v} 的夾角為 60° , $\overrightarrow{OP} = \overrightarrow{u} + \overrightarrow{v}$, $\overrightarrow{OQ} = 2\overrightarrow{u} - \overrightarrow{v}$, 則 $|\overrightarrow{PQ}| = \mathbb{I}$

答案: √13

解析:
$$|\overrightarrow{PQ}|^2 = |\overrightarrow{OQ} - \overrightarrow{OP}|^2 = |(2\overrightarrow{u} - \overrightarrow{v}) - (\overrightarrow{u} + \overrightarrow{v})|^2$$

 $= |\overrightarrow{u} - 2\overrightarrow{v}|^2 = |\overrightarrow{u}|^2 - 4\overrightarrow{u} \cdot \overrightarrow{v} + 4|\overrightarrow{v}|^2$
 $= 1^2 - 4|\overrightarrow{u}||\overrightarrow{v}|\cos 60^\circ + 4 \times 2^2$
 $= 1 - 4 \times 1 \times 2 \times \frac{1}{2} + 16 = 13$
故 $|\overrightarrow{PO}| = \sqrt{13}$

12. 設平行四邊形 ABCD, E在 \overline{AD} 上, $\overline{AE} = 2\overline{ED}$, F在 \overline{AB} 上, $\overline{AF} = 3\overline{FB}$, 若 \overline{CF} 與 \overline{BE} 交於 \overline{PR} 则 \overline{EE} 以 \overline

且
$$\overrightarrow{AP} = x\overrightarrow{AB} + y\overrightarrow{AC}$$
,則數對 $(x,y) = [$

答案: $(\frac{9}{14}, \frac{1}{7})$

解析:
$$\overrightarrow{AP} = x\overrightarrow{AB} + y\overrightarrow{AC}$$

$$(1)\overrightarrow{AP} = x\overrightarrow{AB} + y(\overrightarrow{AB} + \overrightarrow{AD}) = (x+y)\overrightarrow{AB} + y\overrightarrow{AD} = (x+y)\overrightarrow{AB} + \frac{3}{2}y\overrightarrow{AE}$$

因為 E-P-B, 所以
$$(x+y) + \frac{3}{2}y=1 \Rightarrow 2x+5y=2$$

$$(2)\overrightarrow{AP} = x (\frac{4}{3}\overrightarrow{AF}) + y\overrightarrow{AC} = \frac{4}{3} x\overrightarrow{AF} + y\overrightarrow{AC}$$

因為
$$C-P-F$$
,所以 $\frac{4}{3}x+y=1 \Rightarrow 4x+3y=3$

$$(3)$$
 $\begin{cases} 2x+5y=2\\ 4x+3y=3 \end{cases}$ 解得 $x=\frac{9}{14}$, $y=\frac{1}{7}$

故數對
$$(x,y) = (\frac{9}{14}, \frac{1}{7})$$

13. 正△ABC 之邊長為 2 , D , E 分別為 BC 上之三等分點 , 則 AD · AE = 【 】。

答案: $\frac{26}{9}$

解析:
$$\overrightarrow{AD} \cdot \overrightarrow{AE} = (\frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}) \cdot (\frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC})$$

$$= \frac{2}{9} |\overrightarrow{AB}|^2 + \frac{5}{9}\overrightarrow{AB} \cdot \overrightarrow{AC} + \frac{2}{9} |\overrightarrow{AC}|^2$$

$$= \frac{2}{9} \times 4 + \frac{5}{9} \times 2 \times 2 \times \cos 60^\circ + \frac{2}{9} \times 4$$

$$= \frac{8}{9} + \frac{10}{9} + \frac{8}{9} = \frac{26}{9}$$

14. 如圖,ABCD 為一平行四邊形, \overrightarrow{BP} : $\overrightarrow{PC} = \overrightarrow{CQ}$: $\overrightarrow{QD} = 2:1$,設 \overrightarrow{BQ} 與 \overrightarrow{DP} 交於 M,若 $\overrightarrow{AM} = m\overrightarrow{AD} + n\overrightarrow{AB}$,則數對 $(m,n) = \mathbb{I}$

答案: $(\frac{6}{7}, \frac{3}{7})$

解析:

由孟氏定理得
$$\frac{\overline{BP}}{\overline{PC}} \cdot \frac{\overline{CD}}{\overline{DO}} \cdot \frac{\overline{QM}}{\overline{MB}} = 1$$

$$\Rightarrow \frac{\overline{QM}}{\overline{MB}} = \frac{\overline{PC}}{\overline{BP}} \cdot \frac{\overline{DQ}}{\overline{CD}} = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$$

$$\Rightarrow \overrightarrow{AM} = \frac{1}{7} \overrightarrow{AB} + \frac{6}{7} \overrightarrow{AQ} = \frac{1}{7} \overrightarrow{AB} + \frac{6}{7} (\overrightarrow{AD} + \overrightarrow{DQ}) = \frac{1}{7} \overrightarrow{AB} + \frac{6}{7} (\overrightarrow{AD} + \frac{1}{3} \overrightarrow{AB}) = \frac{6}{7} \overrightarrow{AD} + \frac{1}{3} \overrightarrow{AB} = \frac{6}{7} \overrightarrow{AD} + \frac{1}{3} \overrightarrow{AD} = \frac{6}{7} \overrightarrow{AD} = \frac{6}{7$$

$$\frac{3}{7}\overrightarrow{AB}$$
,

故
$$m = \frac{6}{7}$$
, $n = \frac{3}{7}$, 數對 $(m, n) = (\frac{6}{7}, \frac{3}{7})$

15. 設平行四邊形 ABCD, E在 \overrightarrow{AB} 上, \overrightarrow{AE} =3 \overrightarrow{EB} , F在 \overrightarrow{AD} 上, \overrightarrow{AF} =3 \overrightarrow{FD} , 若 \overrightarrow{CF} 交 \overrightarrow{ED} 於 P, 且 $\overrightarrow{AP} = x\overrightarrow{AB} + y\overrightarrow{AD}$, y = $\mathbf{J} \cdot \mathbf{y} = \mathbf{I}$

答案:
$$\frac{3}{19}$$
; $\frac{15}{19}$

解析:

$$\overrightarrow{AP} = x\overrightarrow{AB} + y\overrightarrow{AD} = \frac{4}{3}x\overrightarrow{AE} + y\overrightarrow{AD} \Rightarrow \frac{4}{3}x + y = 1 \dots 1$$

$$\overrightarrow{AP} = x\overrightarrow{AB} + y\overrightarrow{AD} = x (\overrightarrow{AC} - \overrightarrow{BC}) + y\overrightarrow{AD} = x\overrightarrow{AC} + (-x+y) \overrightarrow{AD}$$

$$=x\overrightarrow{AC} + \frac{4}{3}(-x+y)\overrightarrow{AF}$$

$$\Rightarrow x + \frac{4}{3} (-x+y) = 1 \cdots 2$$

由 1 、 2 解得
$$x = \frac{3}{19}$$
 , $y = \frac{15}{19}$

16. 於△ABC 中, \overline{AB} =2, \overline{AC} =3, \overline{BC} = $\sqrt{7}$,H 為△ABC 之垂心,若 \overline{AH} = $x\overline{AB}$ + $y\overline{AC}$,則 x=【] , y= [

答案: $\frac{2}{2}$; $\frac{1}{0}$

解析:
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} \left(|\overrightarrow{AB}|^2 + |\overrightarrow{AC}|^2 - |\overrightarrow{BC}|^2 \right) = \frac{1}{2} (4+9-7) = 3$$

又 H 為
$$\wedge$$
 ABC \neq 垂 \sim \rightarrow $\overrightarrow{AB} \cdot \overrightarrow{AH} = \overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AC} \cdot \overrightarrow{AH} = 3$

又 H 為
$$\triangle$$
ABC 之垂 \odot \Rightarrow $\overrightarrow{AB} \cdot \overrightarrow{AH} = \overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AC} \cdot \overrightarrow{AH} = 3$
所以 $\left\{ \overrightarrow{AH} \cdot \overrightarrow{AB} = x \mid \overrightarrow{AB} \mid ^2 + y\overrightarrow{AB} \cdot \overrightarrow{AC} \right\} \left\{ \overrightarrow{AX} + 3y = 3 \right\} \left\{ \overrightarrow{AH} \cdot \overrightarrow{AC} = x\overrightarrow{AB} \cdot \overrightarrow{AC} + y \mid \overrightarrow{AC} \mid ^2 \right\} \left\{ 3x + 9y = 3 \right\}$

解得
$$x = \frac{2}{3}$$
 , $y = \frac{1}{9}$

17. \triangle ABC 內部一點 P,滿足 $2\overrightarrow{PA}+3\overrightarrow{PB}+4\overrightarrow{PC}=0$,則 \triangle PAB: \triangle PAC: \triangle PBC=【 】。

答案:4:3:2

解析: $2\overline{PA} + 3\overline{PB} + 4\overline{PC} = \overline{0}$

 $\Rightarrow \triangle PBC : \triangle PCA : \triangle PAB = 2 : 3 : 4$

 $\Rightarrow \triangle PAB : \triangle PAC : \triangle PBC = 4 : 3 : 2$

18. 設 E 為 \triangle ABC 之外 α ,且 \overline{AB} =4, \overline{BC} =5, \overline{CA} =6,若 \overline{AE} = α \overline{AB} + β \overline{AC} ,則 α = 【

] , $\beta =$ []

答案: $\frac{4}{35}$; $\frac{16}{35}$

解析: E 為△ABC 之外心 ⇒ $\overrightarrow{AE} \cdot \overrightarrow{AB} = \frac{1}{2} | \overrightarrow{AB} |^2, \overrightarrow{AE} \cdot \overrightarrow{AC} = \frac{1}{2} | \overrightarrow{AC} |^2$

又 $\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} \ (b^2 + c^2 - a^2) = \frac{1}{2} \ (36 + 16 - 25) = \frac{27}{2}$,所以

 $\overrightarrow{AE} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC} \Rightarrow \begin{cases} \overrightarrow{AE} \cdot \overrightarrow{AB} = \alpha | \overrightarrow{AB} |^2 + \beta \overrightarrow{AB} \cdot \overrightarrow{AC} \\ \overrightarrow{AE} \cdot \overrightarrow{AC} = \alpha \overrightarrow{AB} \cdot \overrightarrow{AC} + \beta | \overrightarrow{AC} |^2 \Rightarrow \begin{cases} 16\alpha + \frac{27}{2}\beta = 8 \\ \frac{27}{2}\alpha + 36\beta = 18 \end{cases}$

解得 $\alpha = \frac{4}{35}$, $\beta = \frac{16}{35}$

答案: $(\frac{8}{3}, -\frac{2}{3})$; (-4, 2)

解析: $\overline{AB} = \sqrt{8^2 + 6^2} = 10$, $\overline{AC} = \sqrt{3^2 + 4^2} = 5$

 $(1)\overline{AP}$ 是內角平分線 $\Rightarrow \overline{BP}: \overline{PC} = 2: 1 \Rightarrow P(\frac{1}{3} \times 6 + \frac{2}{3} \times 1, \frac{1}{3} \times (-2) + \frac{2}{3} \times 0) = P(\frac{8}{3}, \frac{2}{3} \times 1)$

 $-\frac{2}{3}$)

 $(2)\overline{AQ}$ 是外角平分線 \Rightarrow \overline{BQ} : $\overline{QC} = 2:1 \Rightarrow Q$ (2-6,0-(-2)) = Q (-4,2)

 $20. \vec{a} = (1,1)$, $\vec{b} = (2,-4)$, $\vec{c} = t\vec{a} + \vec{b}$ (t 為實數) ,則 $|\vec{c}|$ 之最小值為【 】。

答案: 3√2

解析: $\vec{c} = t\vec{a} + \vec{b} = t(1,1) + (2,-4) = (t+2,t-4)$

$$\Rightarrow |\overrightarrow{c}| = \sqrt{(t+2)^2 + (t-4)^2} = \sqrt{2t^2 - 4t + 20} = \sqrt{2(t-1)^2 + 18}$$

所以當 t=1 時, $|\overrightarrow{c}|$ 有最小值 $\sqrt{18}=3\sqrt{2}$

21. 如圖,O(0,0),X(1,0), \overline{OA} =2, \overline{AB} =4, \overline{BC} =4, $\angle AOX$ =45°, $\angle OAB$ =105°, $\angle ABC$ =120°,則 C 點的坐標為【 】。

答案:
$$(\sqrt{2}, \sqrt{2}+4\sqrt{3})$$

解析:

 \overrightarrow{AB} 之方向角為 $360^{\circ} - 105^{\circ} - (180^{\circ} - 45^{\circ}) = 120^{\circ}$ \overrightarrow{BC} 之方向角為 $120^{\circ} - (180^{\circ} - 120^{\circ}) = 60^{\circ}$

$$\begin{cases} \overrightarrow{OA} = (2\cos 45^{\circ}, 2\sin 45^{\circ}) = (\sqrt{2}, \sqrt{2}) \\ \overrightarrow{AB} = (4\cos^{1} 20^{\circ}, 4\sin^{1} 20^{\circ}) = (-2, 2\sqrt{3}) \\ \overrightarrow{BC} = (4\cos 60^{\circ}, 4\sin 60^{\circ}) = (2, 2\sqrt{3}) \end{cases}$$

22. 設A(3,4),B(1,-1),O(0,0),S={P|\overrightarrow{OP}=\alpha\overrightarrow{OA}+\beta\overrightarrow{OB}, \alpha\geq 0, \beta\geq 0, \alpha+ β ≤1 $\}$,則S 所成圖形之面積為【

答案: $\frac{7}{2}$

解析: \overrightarrow{OA} = (3,4) , \overrightarrow{OB} = (1,-1) ,設 \overrightarrow{OA} , \overrightarrow{OB} 之夾角 θ

$$\cos \theta = \frac{\overrightarrow{OA} \cdot \overrightarrow{OB}}{|\overrightarrow{OA}| |\overrightarrow{OB}|} = \frac{3 \times 1 + 4 \times (-1)}{5 \times \sqrt{2}} = \frac{-1}{5\sqrt{2}} \Rightarrow \sin \theta = \frac{7}{5\sqrt{2}}$$

S 的圖形為 \triangle AOB (如圖) \Rightarrow \triangle AOB $= \frac{1}{2} \overline{OA} \cdot \overline{OB} \cdot \sin \theta = \frac{1}{2} \times 5 \times \sqrt{2} \times \frac{7}{5\sqrt{2}} = \frac{7}{2}$

- 23. 設 P(8,9) , Q(-2,4) , R(1,8) , 則: $(1)\overrightarrow{QP}$ 在 \overrightarrow{QR} 方向上的正射影為【 】。

 - (2)P點在直線 QR 上的正射影點為【] 。

答案:(1)(6,8);(2)(4,12)

解析:(1) \overrightarrow{QP} = (10,5) , \overrightarrow{QR} = (3,4) ,設點 P 在直線 QR 上的投影點為 P' 則 \overrightarrow{QP} 在 \overrightarrow{QR} 方向上的正射影 $\overrightarrow{QP}' = \frac{\overrightarrow{QP} \cdot \overrightarrow{QR}}{|\overrightarrow{QR}|^2} \overrightarrow{QR} = 2(3,4) = (6,8)$ $(2)\overline{OP'} = \overline{OO} + \overline{OP'} = (-2, 4) + (6, 8) = (4, 12)$

24. 過點 (2,4) ,且與直線 2x+y+1=0 夾成 $\frac{\pi}{4}$ 角之直線方程式為【 】

答案: 3x-y-2=0 或 x+3y-14=0

解析:〈解法一〉

設此直線為 y=mx+k,取其法向量 $\overrightarrow{n}_1=(m,-1)$,再取 $\overrightarrow{n}_2=(2,1)$ 為直線 2x+y+1=0 之法向量,因為兩直線夾角為 $\frac{\pi}{4}$

⇒ 2
$$(2m-1)^2 = 5 (m^2+1)$$
 ⇒ $3m^2 - 8m - 3 = 0$ ⇒ $m = 3$ 或 $-\frac{1}{3}$

又此直線過點(2,4),故此直線方程式為3x-y-2=0或x+3y-14=0〈解法二〉

設所求直線斜率為m,而已知直線2x+y+1=0之斜率為-2

代入夾角公式
$$\frac{m_1-m_2}{1+m_1m_2} = \pm \tan\theta \Rightarrow \frac{m-(-2)}{1-2m} = \pm 1$$

$$\Rightarrow m+2\pm (1-2m) = 0 \Rightarrow m=3 \ \text{\&} -\frac{1}{3}$$

又此直線過點(2,4),故此直線方程式為3x-y-2=0或x+3y-14=0

25. 連接雨點 A (1,2) 和 B (-2,1) 的線段被直線 L:x+2y-3=0 分成雨段 \overline{AP} , \overline{BP} ,則 $\frac{\overline{AP}}{\overline{BP}}=$ 【

] 。

答案: $\frac{2}{3}$

解析:
$$\frac{\overline{AP}}{\overline{BP}} = \frac{d (A, L)}{d (B, L)} = \frac{\frac{|1+2\times2-3|}{\sqrt{1+4}}}{\frac{|-2+2\times1-3|}{\sqrt{1+4}}} = \frac{2}{3}$$

26. 兩直線 3x+4y-7=0 及 4x+3y+2=0 所夾鈍角的平分線方程式為【 】。

答案:x-y+9=0

解析:
$$\frac{|3x+4y-7|}{5} = \frac{|4x+3y+2|}{5} \Rightarrow (3x+4y-7) = \pm (4x+3y+2)$$

$$\Rightarrow 7x + 7y - 5 = 0 \text{ d} x - y + 9 = 0$$

由下圖知鈍角平分線之斜率應為正

⇒ 所求鈍角平分線方程式為 x-y+9=0

- 27. 三直線 $L_1:2x+y+1=0$, $L_2:x+2y-1=0$, $L_3:2x-y-7=0$ 圍成 $\triangle ABC$,則 $\triangle ABC$ 的
 - (1)內心坐標為【】
 - (2)外心坐標為【】。
 - (3)重心坐標為【 】。
 - (4)垂心坐標為【 】。

答案:
$$(1)(\frac{3}{2}, -\frac{3}{2})$$
; $(2)(\frac{1}{4}, -\frac{3}{2})$; $(3)(\frac{7}{6}, -\frac{4}{3})$; $(4)(3, -1)$

解析: 由三直線 L_1 , L_2 , L_3 方程式可得 A (-1,1), B (3,-1), C $(\frac{3}{2},-4)$

$$(1)$$
 $\frac{\left|x+2y-1\right|}{\sqrt{5}} = \frac{\left|2x+y+1\right|}{\sqrt{5}}$ 且 $\angle A$ 平分線位於異號區 $\Rightarrow x+y=0$

$$\frac{\left| \mathbf{x} + 2\mathbf{y} - 1 \right|}{\sqrt{5}} = \frac{\left| 2\mathbf{x} - \mathbf{y} - 7 \right|}{\sqrt{5}}$$
且 $\angle B$ 平分線位於同號區 $\Rightarrow \mathbf{x} - 3\mathbf{y} - 6 = 0$

由 $\angle A$, $\angle B$ 平分線之交點可得內心坐標為 $(\frac{3}{2}, -\frac{3}{2})$

(2)由直線 L_2 的斜率為 $-\frac{1}{2}$,直線 L_3 的斜率為 2,可知 $L_2 \perp L_3$

所以△ABC 為直角三角形 ⇒ 外心在 \overline{AC} 中點 $(\frac{1}{4}, -\frac{3}{2})$

$$(3)$$
三頂點 A $(-1,1)$,B $(3,-1)$,C $(\frac{3}{2},-4)$

$$\Rightarrow \psi \, \overset{\text{\tiny{b}}}{\otimes} \, \left(\, \frac{1}{3} \, \left(\, -1 + 3 + \frac{3}{2} \,\right) \, \right. \, , \, \, \frac{1}{3} \, \left(\, 1 + \, \left(\, -1\,\right) \, + \, \left(\, -4\,\right) \,\,\right) \,\, \right) \, = \, \left(\, \frac{7}{6} \, \cdot \, -\frac{4}{3} \,\right)$$

(4)直角三角形的垂心為直角頂,故垂心為頂點 B 的坐標 (3,-1)

28. 若點 P(1,-3), Q(-4,2) 在直線 3x+ky-2=0 之異側,則 k 之範圍為【】。

答案: k > 7 或 $k < \frac{1}{3}$

解析: $P \cdot Q$ 在異側 ⇒ [3x1+(-3)k-2][3x(-4)+2k-2]<0

$$\Rightarrow (-3k+1) (2k-14) < 0$$

$$\Rightarrow (3k-1) (k-7) > 0$$

$$\Rightarrow$$
 k>7 \neq k< $\frac{1}{3}$

29. 一黏貼於地面之實心三角錐 O-ABC, \overline{OA} , \overline{OB} , \overline{OC} 雨雨互相垂直, $\overline{OA}=\overline{OB}=3$, $\overline{OC}=4$,又點 E,F分別在 \overline{OA} , \overline{BC} 上,且 $\overline{AE}=2$, $\overline{OF}\bot\overline{BC}$,今有一隻螞蟻欲自 E 點爬行四面體表面至 F 點,求 其爬行最短路徑長為【

答案: $\frac{\sqrt{241}}{5}$

解析:路徑有 $E \to \overline{OB} \to F$ 及 $E \to \overline{OC} \to F$ 雨種

 $(1)E → \overline{OB} → F$ 時,將 $\triangle OAB$ 沿 \overline{OB} 折起

使 O, A, B, C 共平面, 如下圖,

則
$$\overline{\text{CF}} = \sqrt{\overline{\text{OC}}^2 - \overline{\text{OF}}^2} = \sqrt{4^2 - (\frac{3 \times 4}{5})^2} = \frac{16}{5}$$

ரு
$$\overline{EF}^2 = \overline{CE}^2 + \overline{CF}^2 - 2 \cdot \overline{CE} \cdot \overline{CF} \cdot \cos \theta$$

$$=5^2+\left(\frac{16}{5}\right)^2-2\cdot 5\cdot \frac{16}{5}\cdot \frac{4}{5}=\frac{241}{25}$$

$$\Rightarrow \overline{\text{EF}} = \frac{\sqrt{241}}{5}$$

(2)E→ \overline{OC} →F時,將△OAC 沿 \overline{OC} 折起

使 O, A, B, C 共平面, 如下圖,

則
$$\overline{\mathrm{BF}} = \sqrt{\overline{\mathrm{OB}}^2 - \overline{\mathrm{OF}}^2} = \sqrt{3^2 - (\frac{3 \times 4}{5})^2} = \frac{9}{5}$$

ரு
$$\overline{EF}^2 = \overline{BE}^2 + \overline{BF}^2 - 2 \cdot \overline{BE} \cdot \overline{BF} \cdot \cos \theta$$

$$=4^2+\left(\frac{9}{5}\right)^2-2\cdot 4\cdot \frac{9}{5}\cdot \frac{3}{5}=\frac{265}{25}$$

$$\Rightarrow \overline{\text{EF}} = \frac{\sqrt{265}}{5}$$

由
$$(1)$$
、 (2) 比較得, $E \rightarrow \overline{OB} \rightarrow F$ 可得最短路徑 $\overline{EF} = \frac{\sqrt{241}}{5}$

30. 不共面三射線 OX,OY,OZ 互成 30° 角,P 在射線 OX 上,且 $\overline{OP}=2$,若 P 至平面 YOZ 之投影為 Q,Q 至射線 OY 之垂足為 R,直線 QR 交射線 OZ 於 S,則 $\overline{PS}^2+\overline{OR}^2=$ 【 】。

答案: $11-4\sqrt{3}$

解析: \overrightarrow{PQ} 上平面 YOZ, 且 \overrightarrow{QR} 上 \overrightarrow{OY} , 由三垂線定理知 \overrightarrow{PR} 上 \overrightarrow{OY}

(1)在 \triangle OPR 中 \therefore \angle ORP=90 $^{\circ}$, \angle POR=30 $^{\circ}$,且 \overline{OP} =2

故 $\overline{OR} = \overline{OP} \cos 30^{\circ} = 2 \cos 30^{\circ} = \sqrt{3}$

在 \triangle OSR 中 \therefore \angle ORS=90°, \angle SOR=30°, 且 $\overline{OR} = \sqrt{3}$

故 $\overline{RS}=1$, $\overline{OS}=2$

(2)在△OPS中,由餘弦定律知

$$\overline{PS}^2 = \overline{OP}^2 + \overline{OS}^2 - 2\overline{OP} \cdot \overline{OS} \cdot \cos 30^\circ = 2^2 + 2^2 - 2 \cdot 2 \cdot 2 \cdot \frac{\sqrt{3}}{2} = 8 - 4\sqrt{3}$$

$$\Rightarrow \overline{PS} = \sqrt{8 - 4\sqrt{3}} = \sqrt{8 - 2\sqrt{12}} = \sqrt{6} - \sqrt{2}$$

(3)故
$$\overline{PS}^2 + \overline{OR}^2 = (\sqrt{6} - \sqrt{2})^2 + (\sqrt{3})^2 = 6 + 2 - 4\sqrt{3} + 3 = 11 - 4\sqrt{3}$$

31. 如圖,設 L 為兩平面 E_1 及 E_2 的交線,而 E_1 , E_2 所成兩面角的銳角為 60° ,若 A 點在 E_1 上但不在 L 上, B 點在 L 上, \overrightarrow{AB} 與 L 所夾銳角為 30° , $\overrightarrow{AB} = 2$,則 \overrightarrow{AB} 在 E_2 上的投影 $\overrightarrow{A'B}$ 的長度為 【

•

答案: $\frac{\sqrt{13}}{2}$

解析: $: \overline{AA}' \perp E_2$, 設 $\overline{A'C} \perp L$

則由三垂線定理知 AC⊥L

$$\therefore \overline{AB} = 2 \quad \therefore \overline{AC} = \overline{AB} \sin 30^{\circ} = 1 \quad \cancel{X} \quad \overline{BC} = \sqrt{3}$$

∵二面角為 60° ∴∠ACA'=60°

$$\therefore \overline{A'C} = \overline{AC} \cdot \cos 60^{\circ} = 1 \cdot \frac{1}{2} = \frac{1}{2}$$

在直角
$$\triangle$$
A'BC 中, $\overline{\text{A'B}} = \sqrt{(\sqrt{3})^2 + (\frac{1}{2})^2} = \frac{\sqrt{13}}{2}$

32. 如圖,有一個各稜等長的金字塔,設其四個正三角形的斜面中相鄰兩面的夾角為 α ,則 $\cos \alpha = \mathbb{I}$

答案: $-\frac{1}{3}$

解析:設 PB 之中點為 M,又△PAB,△PBC 都是正三角形

$$\Rightarrow \overline{AP} = \overline{AB} \cdot \overline{CP} = \overline{CB}$$

$$\therefore \overline{AM} \perp \overline{PB}$$
 , $\overline{CM} \perp \overline{PB}$

故
$$\angle AMC = \alpha$$
 (二面角的定義)

$$\Rightarrow \overline{AP} = 1 \Rightarrow \overline{AM} = \overline{CM} = \frac{\sqrt{3}}{2}$$

$$\nearrow \overline{AC} = \sqrt{\overline{AB}^2 + \overline{BC}^2} = \sqrt{1^2 + 1^2} = \sqrt{2}$$

在△ACM 中,由餘弦定律得
$$\cos \alpha = \frac{\overline{AM}^2 + \overline{CM}^2 - \overline{AC}^2}{2\overline{AM} \cdot \overline{CM}} = \frac{\frac{3}{4} + \frac{3}{4} - 2}{2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}} = -\frac{1}{3}$$

33. 四個半徑均為 r 的球體,組成一三角堆垛,求此堆垛的高度為【】。

答案:
$$(2+\frac{2\sqrt{6}}{3})$$
 r

解析:(1)考慮四個球球心所形成的正四面體 ABCD

此四面體邊長為2r,高為AE

錯誤!=
$$\frac{\sqrt{3}}{2}$$
 · 2r · $\frac{2}{3}$ = $\frac{2\sqrt{3}$ r

$$\overline{AE}^2 = \overline{AD}^2 - \overline{DE}^2 = (2r)^2 - (\frac{2\sqrt{3}r}{3})^2 = \frac{8}{3}r^2$$

$$\Rightarrow \overline{AE} = \sqrt{\frac{8}{3}r^2} = \frac{2\sqrt{6}}{3}r = (2 + \frac{2\sqrt{6}}{3}) r$$

(2)堆垛下方三顆球的球心距離底面的高度為 r, 上方的球, 球心距離最高點的距離也為 r,

所以此堆垛的高度為
$$2r + \frac{2\sqrt{6}}{3}r = (2 + \frac{2\sqrt{6}}{3})r$$

34. 在空間中有一點 P(2,1,-3),則:

(1)點P在x軸之正射影的坐標為【

(3)點P對z軸之對稱點的坐標為【

- 1
- (2)點P對xy平面之對稱點的坐標為【
-] 。

答案:(1)(2,0,0);(2)(2,1,3);(3)(-2,-1,-3)

解析: (1)在 x 軸之正射影的坐標 $\Rightarrow x$ 坐標不變, y, z 坐標變成 0

$$(2,1,-3) \Rightarrow (2,0,0)$$

(2)對 xy 平面之對稱點的坐標 ⇒ x, y 坐標不變, z 坐標加負號

$$(2,1,-3) \Rightarrow (2,1,3)$$

(3)對 z 軸之對稱點的坐標 ⇒ x,y 坐標加負號,z 坐標不變

$$(2,1,-3) \Rightarrow (-2,-1,-3)$$

35. 設線段 QR 在 xy 平面,yz 平面,zx 平面上之射影長分別為 $2\sqrt{2}$,3,4,則 \overline{QR} 之長為【

] 。

答案: $\frac{\sqrt{66}}{2}$

解析: 設 Q (x₁, y₁, z₁), R (x₂, y₂, z₂)

 $\therefore Q$,R 在 xy 平面上之投影點分別為 Q_1 $(x_1,y_1,0)$, R_1 $(x_2,y_2,0)$ $\Rightarrow \overline{Q_1R_1} = 2\sqrt{2}$

$$(x_2-x_1)^2+(y_2-y_1)^2=(2\sqrt{2})^2=8\cdots$$

由
$$\frac{1+2+3}{2}$$
 得 $(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2=\frac{33}{2}$

$$\therefore \overline{QR} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} = \sqrt{\frac{33}{2}} = \frac{\sqrt{66}}{2}$$

36. 設 P 點向三坐標軸引垂線,其垂足均在各軸的正向部分,且到 x,y,z 軸的距離依序為 5, $\sqrt{34}$,

 $\sqrt{41}$, 求 P 點 坐 標 為 【 】 。

答案: (5,4,3)

解析: 設 P (x,y,z)

$$\begin{cases} y^2 + z^2 = 25 \cdots & 1 \\ x^2 + z^2 = 34 \cdots & 2 \\ x^2 + y^2 = 41 \cdots & 3 \end{cases}$$

$$\frac{1+2+3}{2}$$
 \Rightarrow $x^2+y^2+z^2=50$

$$\Rightarrow x^2 = 25 , y^2 = 16 , z^2 = 9$$

$$\therefore_{x}$$
, y , $z>0$ $\therefore_{x}=5$, $y=4$, $z=3$

$$\Rightarrow P(5,4,3)$$

37. x , y 為實數 , 試求 $\sqrt{(x-1)^2+(y+2)^2+25}$ + $\sqrt{(x+3)^2+(y-1)^2+36}$ 之最小值為【 】。

答案: √146

解析:原式的幾何意義為 xy 平面上一點到 (1, -2, 5) 及 (-3, 1, 6) 的距離和

故原式的最小值即是 (1,-2,-5) 與 (-3,1,6) 的距離 = $\sqrt{4^2+3^2+11^2}=\sqrt{146}$

38. 設 A (3,4,2), B (2,7,-4), P 為 xy 平面上任一點,則:

答案: $(1)\sqrt{14}$; $(2)\sqrt{46}$

解析:(1)A對xy平面的對稱點A'(3,4,-2)

$$\overline{A'B} = \sqrt{1+9+4} = \sqrt{14}$$

$$(2) \mid \overline{AP} - \overline{BP} \mid$$
之最大值= $\overline{AB} = \sqrt{1+9+36} = \sqrt{46}$

39. 空間中三點 A (1, -2,5), B (3,7,1), C (-1,3,5),則:

$$(1)\overrightarrow{AB}\times\overrightarrow{AC} = [$$

答案:(1)(20,8,28);(2) $2\sqrt{78}$

解析:
$$(1)$$
 \overrightarrow{AB} = $(2 \cdot 9 \cdot -4)$, \overrightarrow{AC} = $(-2 \cdot 5 \cdot 0)$ $\overrightarrow{AB} \times \overrightarrow{AC}$ = $(\begin{vmatrix} 9 & -4 \\ 5 & 0 \end{vmatrix}, \begin{vmatrix} -4 & 2 \\ 0 & -2 \end{vmatrix}, \begin{vmatrix} 2 & 9 \\ -2 & 5 \end{vmatrix})$ = $(20 \cdot 8 \cdot 28)$

(2)
$$\triangle$$
 ABC 面積 $=\frac{1}{2}$ | $\overrightarrow{AB} \times \overrightarrow{AC}$ | $=\frac{1}{2} \sqrt{20^2 + 8^2 + 28^2} = 2\sqrt{78}$

$$40$$
. 設 x , y , z 為實數 ,且 $x^2+y^2+z^2=9$,求 $x+2y-z$ 的最小值為【

$$=$$
 [] \circ

答案:
$$-3\sqrt{6}$$
; $(-\frac{\sqrt{6}}{2}, -\sqrt{6}, \frac{\sqrt{6}}{2})$

解析:根據柯西不等式,
$$(x^2+y^2+z^2)$$
 $[1^2+2^2+(-1)^2] \ge (x+2y-z)^2$

$$\Rightarrow 9 \times 6 \ge (x + 2y - z)^2$$

$$\Rightarrow -3\sqrt{6} \leq x + 2y - z \leq 3\sqrt{6}$$

此時
$$\frac{x}{1} = \frac{y}{2} = \frac{z}{-1} = t \Rightarrow x = t, y = 2t, z = -t$$

$$\Rightarrow$$
 t+4t+t=-3 $\sqrt{6}$ \Rightarrow t=- $\frac{\sqrt{6}}{2}$

$$(x, y, z) = (-\frac{\sqrt{6}}{2}, -\sqrt{6}, \frac{\sqrt{6}}{2})$$

41.
$$x$$
, y , z 均為正數,且 $2x+y+z=6$,求 $\sqrt{x}+\sqrt{y}+\sqrt{z}$ 之最大值為【 】。

答案: √15

解析:根據柯西不等式,〔($\sqrt{2x}$) $^2+$ (\sqrt{y}) $^2+$ (\sqrt{z}) 2 〕〔($\frac{1}{\sqrt{2}}$) $^2+1^2+1^2$ 〕 \geq ($\sqrt{x}+\sqrt{y}+$

$$\sqrt{z}$$
)²

$$\Rightarrow (2x+y+z) \cdot (\frac{1}{2}+1+1) \ge (\sqrt{x} + \sqrt{y} + \sqrt{z})^2$$

$$\Rightarrow$$
 6× $\frac{5}{2}$ \geq $(\sqrt{x} + \sqrt{y} + \sqrt{z})^2$

$$\Rightarrow -\sqrt{15} \leq \sqrt{x} + \sqrt{y} + \sqrt{z} \leq \sqrt{15}$$

∴最大值為√15

42.
$$x>0$$
, $y>0$,求 $(4x+\frac{1}{9y})$ $(\frac{1}{x}+25y)$ 之最小值為【 】。

答案: $\frac{121}{9}$

解析: 根據柯西不等式,〔(
$$2\sqrt{x}$$
) $^2+(\frac{1}{3\sqrt{y}})^2$ 〕〔($\frac{1}{\sqrt{x}}$) $^2+(5\sqrt{y})^2$ 〕 $\ge (2+\frac{5}{3})^2$

$$\therefore (4x + \frac{1}{9y}) (\frac{1}{x} + 25y) \ge \frac{121}{9}$$

43. 設
$$\triangle$$
ABC 中, $a=\overline{BC}=3$, $b=\overline{CA}=4$, $c=\overline{AB}=5$,在 \triangle ABC 內部一點 P 到 \overline{BC} , \overline{CA} , \overline{AB} 的距離分別為 x,y,z,則 $x^2+y^2+z^2$ 之最小值為【

答案: $\frac{72}{25}$

$$\therefore \frac{1}{2} \times 3 \times 4 = \frac{1}{2} \times 3 \times x + \frac{1}{2} \times 4 \times y + \frac{1}{2} \times 5 \times z$$

$$\Rightarrow$$
 3x+4y+5z=12

由柯西不等式
$$(x^2+y^2+z^2)$$
 $(3^2+4^2+5^2)$

$$\geq (x \times 3 + y \times 4 + z \times 5)^2 \Rightarrow (x^2 + y^2 + z^2) \times 50 \geq 12^2 \Rightarrow x^2 + y^2 + z^2 \geq \frac{72}{25}$$

•

$$44$$
. 設 $A(1,4,-3)$, $B(5,6,7)$,則 \overline{AB} 的垂直平分面為【

答案: 2x+y+5z=21

解析:
$$\overrightarrow{AB}$$
 = (4,2,10)//(2,1,5)

且
$$\overline{AB}$$
 中點 $M \left(\frac{1+5}{2}, \frac{4+6}{2}, \frac{-3+7}{2} \right) = M \left(3, 5, 2 \right)$

∴設平面
$$E: 2x+y+5z=k$$
 , 將 $M(3,5,2)$ 代入 E

$$6+5+10=21=k$$
 :.E: $2x+y+5z=21$

45. 設 P (-1,1,2), Q (2,0,-3), R (5,1,-2), 則平面 PQR 之方程式為【 】

0

答案:
$$2x-9y+3z+5=0$$

解析:
$$\overrightarrow{PQ} = (3, -1, -5)$$
, $\overrightarrow{PR} = (6, 0, -4)$
 -1 -5 3 -1
 0 -4 6 0
 4 -18 6

$$\overrightarrow{PQ} \times \overrightarrow{PR} = (4, -18, 6) // (2, -9, 3)$$

取 $\overrightarrow{n} = (2, -9, 3)$, 過點 $P(-1, 1, 2)$
平面為 $2(x+1) - 9(y-1) + 3(z-2) = 0$
即 $2x - 9y + 3z + 5 = 0$

46. 一平面與平面 3x+2y+z+11=0 平行,且其三軸之截距和為 22,試求其方程式為【

.

答案: 3x+2y+z=12

解析: 設平面 E:
$$3x+2y+z=k \Rightarrow \frac{x}{\frac{k}{3}} + \frac{y}{\frac{k}{2}} + \frac{z}{k} = 1$$

$$\therefore \frac{k}{3} + \frac{k}{2} + k = 22 \Rightarrow 2k + 3k + 6k = 132$$

$$\Rightarrow 11k = 132 \Rightarrow k = 12$$

$$\therefore E : 3x + 2y + z = 12$$

47. 設
$$A(1, 2, 3)$$
 與 $B(3, 0, 1)$,求 \overline{AB} 在平面 $E: x+y+z+2=0$ 的正射影長為【 】

答案: $\frac{4\sqrt{6}}{3}$

解析:
$$\overrightarrow{AB} = (2, -2, -2)$$
, $|\overrightarrow{AB}| = \sqrt{4+4+4} = 2\sqrt{3}$ $\overrightarrow{n} = (1, 1, 1)$

$$\therefore \cos \theta = \frac{2 - 2 - 2}{2\sqrt{3} \cdot \sqrt{3}} = -\frac{1}{3} \Rightarrow \sin \theta = \frac{2\sqrt{2}}{3}$$

$$\therefore \overline{A'B'} = \overline{AB} \cdot \sin \theta = 2\sqrt{3} \cdot \frac{2\sqrt{2}}{3} = \frac{4\sqrt{6}}{3}$$

答案: $\frac{3\sqrt{3}}{2}$

:.d (E₁, E₂) =
$$\frac{14-5}{\sqrt{4+4+4}} = \frac{9}{2\sqrt{3}} = \frac{3\sqrt{3}}{2}$$

49. 點
$$(x,y,z)$$
 在平面 $E: 2x+y-2z=5$ 上移動,求 $\sqrt{(x-3)^2+y^2+(z+1)^2}$ 的最小值為【

] 。

答案:1

解析:所求即點(3,0,-1)到平面E的距離

$$d = \frac{|6+0+2-5|}{\sqrt{4+1+4}} = \frac{3}{3} = 1$$

50. 設平面 $E_1: x+2y-2z-1=0$, $E_2: 2x+y-2z+3=0$,試求:

(1)E₁與E₂之夾角平分面之方程式為【

۰

(2)E₁ 與E₂之所夾銳角平分面之方程式為【

答案: (1)x-y+4=0 或 3x+3y-4z+2=0; (2)3x+3y-4z+2=0

解析: (1) $\frac{|x+2y-2z-1|}{\sqrt{1+4+4}} = \frac{|2x+y-2z+3|}{\sqrt{4+1+4}}$

$$\Rightarrow$$
 $(x+2y-2z-1) = \pm (2x+y-2z+3)$

$$\Rightarrow x-y+4=0 \neq 3x+3y-4z+2=0$$

(2)取 E_1 上一點 (1,0,0)

分別求(1,0,0)到兩角平分面的距離,較小的為銳角平分面

$$\frac{\left| 1+4 \right|}{\sqrt{1+1}} > \frac{\left| 3+2 \right|}{\sqrt{9+9+16}}$$

∴3x+3y-4z+2=0 為銳角平分面

51. 過 2x-3y+2z=2 與 6x+y+z=1 的交線且平行 x 軸之平面方程式為【 】。

答案: 2y-z+1=0

解析: 設平面 E: (2x-3y+2z-2)+k(6x+y+z-1)=0

$$\Rightarrow$$
 (6k+2) x+ (k-3) y+ (k+2) z+ (-k-2) =0

∴ 法向量
$$\vec{n} = (6k+2, k-3, k+2)$$
 與 x 軸方向向量 $\vec{v} = (1, 0, 0)$ 垂直

$$\Rightarrow (6k+2, k-3, k+2) \cdot (1, 0, 0) = 0 \Rightarrow 6k+2=0 \Rightarrow k=-\frac{1}{3}$$

:.E
$$(2x-3y+2z-2) -\frac{1}{3} (6x+y+z-1) = 0$$

$$\Rightarrow 2y-z+1=0$$

52. 空間中一點 (2,3,1) 關於平面 x+2y+3z-6=0 的對稱點坐標為【 】。

答案: $(\frac{9}{7}, \frac{11}{7}, -\frac{8}{7})$

解析: 設投影點坐標為 H(2+t,3+2t,1+3t)代入平面

$$2+t+6+4t+3+9t-6=0 \Rightarrow t=-\frac{5}{14}$$

:.H
$$(\frac{23}{14}, \frac{16}{7}, -\frac{1}{14})$$

∴對稱點 A'
$$(2 \cdot \frac{23}{14} - 2 \cdot 2 \cdot \frac{16}{7} - 3 \cdot 2 \cdot (-\frac{1}{14}) - 1) = (\frac{9}{7} \cdot \frac{11}{7} \cdot -\frac{8}{7})$$

53. 設二平面 x+2y+3z=6 與 2x-3y-z=5 的交線為 $\frac{x-4}{a}=\frac{y-c}{b}=\frac{z-d}{-1}$,求 a+b+c+d= 【

•

答案:3

解析: 令 $\overrightarrow{u} = (1, 2, 3)$, $\overrightarrow{v} = (2, -3, -1)$ $\overrightarrow{u} \times \overrightarrow{v} = (\begin{vmatrix} 2 & 3 \\ -3 & -1 \end{vmatrix}, \begin{vmatrix} 3 & 1 \\ -1 & 2 \end{vmatrix}, \begin{vmatrix} 1 & 2 \\ 2 & -3 \end{vmatrix})$

$$= (7,7,-7) // (1,1,-1) \Rightarrow a=1,b=1$$

$$\Rightarrow x=4,\begin{cases} 2y+3z=2\\ -3y-z=-3 \end{cases} \Rightarrow \begin{cases} y=1\\ z=0 \end{cases} \Rightarrow c=1,d=0$$

$$\therefore a+b+c+d=3$$

54. 試求由直線 L:
$$\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{2}$$
 及點 A (4,3,1) 所決定的平面方程式為【 】。

答案: 2x-6y+z=-9

解析: 取 L 上一點 B
$$(1, 2, 1)$$

則 $\overrightarrow{AB} = (-3, -1, 0)$
又 $\overrightarrow{v} = (2, 1, 2)$
 $\therefore \overrightarrow{n} = (\begin{vmatrix} -1 & 0 \\ 1 & 2 \end{vmatrix}, \begin{vmatrix} 0 & -3 \\ 2 & 2 \end{vmatrix}, \begin{vmatrix} -3 & -1 \\ 2 & 1 \end{vmatrix}) = (-2, 6, -1)$
∴ \Rightarrow E: $2x - 6y + z = k$

A
$$(4,3,1)$$
 代入 $\Rightarrow 8-18+1=-9=k$

$$\therefore E : 2x - 6y + z = -9$$

55. 已知
$$L_1$$
: $\frac{x-4}{3} = \frac{y-2}{-1} = \frac{z-1}{2}$ 與 L_2 : $\frac{x-5}{-7} = \frac{y-3}{1} = \frac{z+2}{a}$ 相交,則 $a = \mathbb{I}$ 】,兩直線的交

點坐標為【

答案:-1; (-2,4,-3)

解析:
$$\begin{cases} 4+3t=5-7k \cdots & 1 \\ 2-t=3+k \cdots & 2 \\ 1+2t=-2+ak \cdots & 3 \end{cases}$$

由 1 、 2 ⇒
$$\begin{cases} 3t+7k=1 \\ t+k=-1 \end{cases}$$
 ⇒ $\begin{cases} t=-2 \\ k=1 \end{cases}$ 代入 3
 $1-4=-2+a\Rightarrow a=-1$ 交點 $(4-6,2+2,1-4)=(-2,4,-3)$

56. 在空間中,有一點 A
$$(1, 2, -1)$$
 及一直線 L: $\frac{x-2}{1} = \frac{y-7}{2} = \frac{z-6}{1}$,則:

(1)點A到直線L的距離為【】

(2)點A到直線L的正射影坐標為【 】。

答案: $(1)\sqrt{21}$;(2)(-1,1,3)

解析: 設 L 上一點 B
$$(2+t, 7+2t, 6+t)$$

 $\overrightarrow{AB} = (1+t, 5+2t, 7+t)$
 $\overrightarrow{AB} \cdot (1, 2, 1) = 1+t+10+4t+7+t=6t+18=0 \Rightarrow t=-3$
 $\Rightarrow B = (-1, 1, 3)$
 $\overrightarrow{AB} = \sqrt{4+1+16} = \sqrt{21}$

57. 兩直線
$$L_1$$
: $\frac{x-11}{4} = \frac{y+5}{-3} = \frac{z+7}{-1}$ 與 L_2 : $\frac{x+5}{3} = \frac{y-4}{-4} = \frac{z-6}{-2}$ 不共平面,則:

(1)包含 L_2 且與 L_1 平行之平面 E 方程式為【 】

(2) L₁ 與 L₂ 之間的公垂線段長為【 】。

答案: (1)2x+5y-7z+32=0; $(2)\sqrt{78}$

解析:

$$\begin{array}{c|c}
A(11, -5, -7) \\
\hline
d \\
L_1
\end{array}$$

(1)將
$$L_2$$
 改成兩面式為
$$\begin{cases} \frac{x+5}{3} = \frac{y-4}{-4} \\ \frac{y-4}{-4} = \frac{z-6}{-2} \end{cases} \Rightarrow \begin{cases} 4x+3y+8=0 \\ y-2z+8=0 \end{cases}$$

則包含 L_2 之平面E可設為(4x+3y+8)+k(y-2z+8)=0

$$\Rightarrow 4x + (3+k) y-2kz+ (8+8k) =0$$
 (*)

其法向量為 $\vec{n} = (4, 3+k, -2k)$

若 L₁//E

則 n 垂直 L_1 之方向向量 (4, -3, -1)

$$\Rightarrow$$
 16-3 (3+k) - (-2k) =0 \Rightarrow k=7 代回 (*)

得所求平面方程式為 4x+10y-14z+64=0

$$\mathbb{E}_{p} 2x + 5y - 7z + 32 = 0$$

$$(2)$$
在 L_1 上取一點 $A(11, -5, -7)$,則

d (L₁, L₂) = d (A, E) =
$$\frac{|22-25+49+32|}{\sqrt{4+25+49}} = \sqrt{78}$$

答案: $\frac{3}{2}$

解析: 考慮增廣矩陣:
$$\begin{bmatrix} 1 & -1 & 2 & 1-a \\ 1 & 3 & -3 & 1+a \\ 3 & 1 & 1 & a \end{bmatrix} \xrightarrow{\times} (-1)$$

$$\rightarrow
\begin{bmatrix}
1 & -1 & 2 & 1-a \\
0 & 4 & -5 & 2a \\
0 & 0 & 0 & 2a-3
\end{bmatrix}$$

有解,因此
$$2a-3=0 \Rightarrow a=\frac{3}{2}$$

59. 設
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 3$$
, $\begin{vmatrix} a & b \\ e & f \end{vmatrix} = -1$,則 $\begin{vmatrix} 3a & 3b \\ c+2e & d+2f \end{vmatrix} =$ 【

答案:3

解析:
$$\begin{vmatrix} 3a & 3b \\ c+2e & d+2f \end{vmatrix} = \begin{vmatrix} 3a & 3b \\ c & d \end{vmatrix} + \begin{vmatrix} 3a & 3b \\ 2e & 2f \end{vmatrix} = 3 \begin{vmatrix} a & b \\ c & d \end{vmatrix} + 3 \cdot 2 \begin{vmatrix} a & b \\ e & f \end{vmatrix} = 3 \cdot 3 + 6 \cdot (-1) = 3$$

60. 三直線 x-y-9=0,x+2y=0 及 3x-y-7=0 所圍成之三角形的面積為【

答案:21

61. 已知
$$xyz \neq 0$$
 且 $3x+y-2z=2x+3y-3z=5x+4y-5z$,則 $\frac{2x^2+y^2-z^2+3xy}{x^2+5y^2+z^2-5yz}=$ 【 】。

答案: $\frac{39}{9}$

解析: 由已知得
$$\begin{cases} 3x+y-2z=2x+3y-3z \\ 2x+3y-3z=5x+4y-5z \end{cases} \Rightarrow \begin{cases} x-2y+z=0 \\ 3x+y-2z=0 \end{cases}$$
故 $x:y:z=\begin{vmatrix} -2 & 1 \\ 1 & -2 \end{vmatrix}:\begin{vmatrix} 1 & 1 \\ -2 & 3 \end{vmatrix}:\begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix}=3:5:7$
令 $x=3t$, $y=5t$, $z=7t$

$$\frac{2x^2+y^2-z^2+3xy}{x^2+5y^2+z^2-5yz} = \frac{18t^2+25t^2-49t^2+45t^2}{9t^2+125t^2+49t^2-175t^2} = \frac{39t^2}{8t^2} = \frac{39}{8}$$

答案: (6,3)

解析:除(0,0)外尚有其他解,因此方程組有無限多組解

⇒
$$\Delta = \begin{vmatrix} 3 & a \\ 2 & 4 \end{vmatrix} = 0$$
 且 $\Delta_y = \begin{vmatrix} 3 & 0 \\ 2 & b-3 \end{vmatrix} = 0$
⇒ $12 - 2a = 0$ 且 $3(b - 3) = 0$
故 $a = 6$, $b = 3$, 數對 $(a, b) = (6, 3)$

$$63. \ \, \dot{\Xi} \left\{ \begin{aligned} &a_1x + b_1y = c_1 \\ &a_2x + b_2y = c_2 \end{aligned} \right. \text{ 之解為} \left. (2 \cdot -3) \right. \text{ , 則} \left\{ \begin{aligned} &(2a_1 - 3b_1) \ x + 2b_1y + c_1 = 0 \\ &(2a_2 - 3b_2) \ x + 2b_2y + c_2 = 0 \end{aligned} \right. \text{ 之解為數對} \left. (x \cdot y) \right. = \text{ 【 } \right.$$

答案: (-1,0)

解析:由
$$\left\{ \begin{array}{l} (2a_1-3b_1) \ x+2b_1y=-c_1 \\ (2a_2-3b_2) \ x+2b_2y=-c_2 \end{array} \right.$$
符 $\left\{ \begin{array}{l} (-2x) \ a_1+ \ (3x-2y) \ b_1=c_1 \\ (-2x) \ a_2+ \ (3x-2y) \ b_2=c_2 \end{array} \right.$,因此 $\left\{ \begin{array}{l} -2x=2 \\ 3x-2y=-3 \end{array} \right.$ 符 $\left\{ \begin{array}{l} x=-1 \\ y=0 \end{array} \right.$

故數對 (x, y) = (-1, 0)

64. 設 A(2,5),B(4,-1),若 \overline{AB} 為圓 C之一弦,且弦心距為 $\sqrt{10}$,則圓 C之方程式為【 】。(請以標準式表示)

答案: $(x-6)^2 + (y-3)^2 = 20$ 或 $x^2 + (y-1)^2 = 20$

解析:

設圓心 O,錯誤! 之中點為 M

$$x m_{\overline{AB}} = \frac{-1-5}{4-2} = -3$$

$$\therefore m_{\overrightarrow{OM}} = \frac{1}{3}$$

$$\Rightarrow \overrightarrow{OM} : \frac{y-2}{x-3} = \frac{1}{3}$$

$$\Rightarrow \overrightarrow{OM} : x - 3y + 3 = 0$$

$$令O(3t-3,t)$$

$$\sqrt{AB} = \sqrt{(4-2)^2 + (-1-5)^2} = 2\sqrt{10}$$

$$\Rightarrow \overline{AM} = \sqrt{10}$$

$$\Rightarrow$$
 r= \overline{OA} = $\sqrt{(\sqrt{10})^2+(\sqrt{10})^2}$ = $\sqrt{20}$

$$\sqrt{SA} = \sqrt{(3t-5)^2 + (t-5)^2} = \sqrt{20}$$

$$\Rightarrow 10t^2 - 40t + 30 = 0$$

$$\Rightarrow$$
 t²-4t+3=0

⇒ 圓方程式為
$$(x-6)^2 + (y-3)^2 = 20$$
 或 $x^2 + (y-1)^2 = 20$

65. 設半徑為 5 的圓 C 與直線 L: 4x+3y+17=0 相切於 P (-2,-3) ,則圓 C 的圓心坐標為【

】或【 】。

答案: (2,0) 或 (-6,-6)

解析:

設圓心 Q(a,b) $: \overrightarrow{PQ} \perp L$ $: \overrightarrow{PQ} = t\overrightarrow{n} = t(4,3) = (4t,3t)$

由
$$\overline{PQ}$$
=5 得 (4t) ²+ (3t) ²=25 ⇒ t=±1

$$\therefore \overrightarrow{PQ} = \pm (4,3) , \Leftrightarrow (a+2,b+3) = \pm (4,3)$$

$$\Rightarrow Q(a,b) = (2,0) \not \leq (-6,-6)$$

66. 以 A(2, -3), B(-4, 1) 為一直徑之兩端點的圓方程式為【

】。(請以一般式表示

答案: $x^2+y^2+2x+2y-11=0$

解析: 由直徑式得
$$(x-2)$$
 $(x+4)$ $+$ $(y+3)$ $(y-1)$ $=0$ $\Rightarrow x^2+2x-8+y^2+2y-3=0$ $\Rightarrow x^2+y^2+2x+2y-11=0$

- 67. 自定點 A(6,0) 作線段 \overline{AP} ,當 P 點繞原點作一圓,若此圓半徑為 2,則:
 - (1)AP 之中點所成圖形之方程式為【

•

(2)在 \overline{AP} 上取一點Q使 \overline{AQ} : \overline{QP} =3:2,則Q所成圖形之方程式為【

] 。

答案:
$$(1)(x-3)^2+y^2=1$$
; $(2)(5x-12)^2+(5y)^2=36$

解析:
$$(1)$$
令 P (x, y) $\therefore x^2 + y^2 = 2^2 = 4 \cdots (*)$

又今 \overline{AP} 中點坐標為(X,Y)

$$\therefore \begin{cases} X = \frac{x+6}{2} \\ Y = \frac{y+2}{2} \end{cases} \Rightarrow \begin{cases} x = 2X - 6 \\ y = 2Y \end{cases}$$
 $\% \land (*)$

得
$$(2X-6)^2 + (2Y)^2 = 2^2 \Rightarrow (X-3)^2 + Y^2 = 1$$

∴方程式為 (x-3) ²+y²=1

$$(2)$$
 \diamondsuit Q (s ⋅ t) \therefore \overline{AQ} : \overline{QP} = 3 : 2

$$\Rightarrow (5s-12)^2 + (5t)^2 = 36$$

68. 已知 A(3,0) 為圓 $(x-1)^2 + (y-2)^2 = 8$ 上一點,過 A 之所有弦中點之軌跡方程式為【】。

答案: $x^2+y^2-4x-2y+3=0$ 且 $(x,y) \neq (3,0)$

解析:

設 $P(\alpha, \beta)$ 為圓上異於 A 之點 $(P \land A)$ 時, \overline{PA} 不為弦)

設M為PA之中點

$$\Rightarrow x = \frac{\alpha + 3}{2} , y = \frac{\beta + 0}{2}$$

$$\Rightarrow \alpha = 2x - 3$$
, $\beta = 2y$

∴ $P(\alpha, \beta)$ 在圓上且異於 A 點

∴
$$(\alpha-1)^2+(\beta-2)^2=8$$
 且 $(\alpha,\beta)\neq(3,0)$

將 $\alpha = 2x - 3$, $\beta = 2y$ 代入上式得

$$(2x-4)^2 + (2y-2)^2 = 8 \text{ L} (2x-3, 2y) \neq (3, 0)$$

$$\Rightarrow (x-2)^2 + (y-1)^2 = 2 \mathbb{1} (x, y) \neq (3, 0)$$

$$\Rightarrow$$
 $x^2+y^2-4x-2y+3=0$ \perp $(x \cdot y) \neq (3 \cdot 0)$

〈另解〉所求之弦中點軌跡為以 OA 為直徑之圓但不含 A 點 (∵A 在圓上)

∴所求:
$$(x-3)$$
 $(x-1)$ + $(y-0)$ $(y-2)$ =0 且 (x,y) ≠ $(3,0)$

 $\Rightarrow x^2 + y^2 - 4x - 2y + 3 = 0 \, \text{l.} (x, y) \neq (3, 0)$

69. 點 A(-3,4),圓 $C: x^2+y^2-4x+2y+1=0$,若直線過 A 且與圓 C 相交於 P,Q 兩點,且 \overline{PQ}

$$=2\sqrt{3}$$
,則 \overrightarrow{PQ} 之方程式為【

.

答案: 4x+3y=0 或 3x+4y-7=0

解析: C: $(x-2)^2 + (y+1)^2 = 4$

∴ 圓心 O (2, -1), 半徑 r=2

設PO之斜率為m

則
$$\overrightarrow{PQ}$$
: $\frac{y-4}{x-(-3)}$ =m

$$\Rightarrow \overrightarrow{PQ} : mx - y + 4 + 3m = 0$$

設M為PO之中點

則
$$\overline{MQ} = \frac{1}{2} \overline{PQ} = \sqrt{3}$$

$$\Rightarrow \overline{OM} = \sqrt{\overline{OQ}^2 - \overline{MQ}^2} = \sqrt{2^2 - (\sqrt{3})^2} = 1$$

$$x \overline{OM} = d (O, \overrightarrow{PQ})$$

$$\Rightarrow 1 = \frac{|2m+1+4+3m|}{\sqrt{m^2 + (-1)^2}}$$

$$\Rightarrow$$
 m = $-\frac{4}{3}$ $\stackrel{?}{=}$ $\frac{3}{4}$

⇒
$$\overrightarrow{PQ}$$
 之方程式為 $4x+3y=0$ 或 $3x+4y-7=0$

70. 過
$$P(1,2)$$
 作圓 $x^2+y^2-4x+2y-4=0$ 之一割線,交圓於 A,B ,則 $\overline{PA}\cdot\overline{PB}=$ 【 】。

答案:1

解析: P 至圓 $x^2+y^2-4x+2y-4=0$ 之切線段長為

$$T = \sqrt{1^2 + 2^2 - 4 \times 1 + 2 \times 2 - 4} = 1$$

$$\Rightarrow \overline{PA} \cdot \overline{PB} = T^2 = 1$$

71. 若圓 $x^2+y^2+ax+by+c=0$ 與兩平行線 3x+4y-1=0,3x+4y-21=0 相切且圓心在直線 2x-y=0] , b= [0上,則a=【 .

答案:-2;-4

解析:

 $:: x^2 + y^2 + ax + by + c = 0$ 與兩平行線 3x + 4y - 1 = 0 及 3x + 4y - 21 = 0 相切

∴圓心在
$$3x+4y-(\frac{1+21}{2})=0$$
 上

即圓心在 3x+4v-11=0 上

又已知圓心在 2x-y=0 上

∴圓心即為 3x+4y-11=0 與 2x-y=0 之交點

⇒ 圓心坐標為 (1,2)

$$\Rightarrow$$
 r = $\frac{|3 \times 1 + 4 \times 2 - 1|}{\sqrt{3^2 + 4^2}} = \frac{10}{5} = 2$

⇒ 圓方程式為 $(x-1)^2 + (y-2)^2 = 2^2$

$$\Rightarrow x^2 + y^2 - 2x - 4y + 1 = 0$$

$$\Rightarrow$$
 a=-2, b=-4

72. 求過點 (1, -8) 且與 x, y 軸均相切之圓方程式為【 】。

答案: $(x-5)^2 + (y+5)^2 = 25$ 或 $(x-13)^2 + (y+13)^2 = 169$

解析:::(1,-8)在第四象限

二.圓心亦在第四象限

∴ 設圓心 (h, -h), 半徑為 h

$$\Rightarrow$$
 (x-h) ²+ (y+h) ²=h² 過 (1, -8)

$$\Rightarrow (1-h)^2 + (-8+h)^2 = h^2$$

$$\Rightarrow$$
 h²-18h+65=0

$$\Rightarrow (h-5) (h-13) = 0$$

⇒ 所求為
$$(x-5)^2 + (y+5)^2 = 25$$
 或 $(x-13)^2 + (y+13)^2 = 169$

73. 一圓 $C: (x-11)^2 + (y-9)^2 = 9$ 及一點 A(-4,6),自 A 發射出的光線,到達 x 軸上的一點 P,經 x 軸反射後,會與圓 C 相交,試求此種 P 點所在的範圍之長度為【 】。

答案: $\frac{7}{2}$

解析: A(-4,6) 對稱於 x 軸之對稱點 A'(-4,-6)

過 A' 與圓 C 相切的直線設為 y+6=m(x+4)

則 d (O,L) =r
$$\Rightarrow \frac{|11m-9+4m-6|}{\sqrt{m^2+1}} = 3$$

$$\Rightarrow$$
 12m²-25m+12=0

$$\Rightarrow$$
 (3m-4) (4m-3) =0 ∴m= $\frac{4}{3}$ $\stackrel{?}{\cancel{3}}$ $\frac{3}{4}$

∴ 切線為
$$y+6=\frac{4}{3}(x+4)$$
 或 $y+6=\frac{3}{4}(x+4)$

與 x 軸交點,令 y=0
$$\Rightarrow$$
 x= $\frac{1}{2}$ 或 4 ... P 的範圍長度為 $\left| 4-\frac{1}{2} \right| = \frac{7}{2}$

74. 已知圓 $C: x^2 + y^2 + 8x + 4y + 10 = 0$ 及一定點 P(1,3),自 P 向圓 C 作兩條切線得切點 A,B,則

- (1)切線方程式為【
- (2)切點弦所在直線之方程式為【 】,又 \overline{AB} =【 】。 $(3) \diamondsuit \angle APB = \theta \text{ , } \text{則 } \sin \theta = \text{【 } \text{】 , } \triangle PAB \text{ 之面積為【 } \text{】 。}$
-] 。 (4)△PAB 之外接圓方程式為【

答案:(1) x-3y+8=0 或 3x-y=0;(2) x+y+4=0; $4\sqrt{2}$;(3) $\frac{4}{5}$;16;(4) $x^2+y^2+3x-y-1$

10 = 0

解析: (1) C: $(x+4)^2 + (y+2)^2 = 10$

設切線斜率為m

則切線方程式為 $\frac{y-3}{y-1}=m$

$$\Rightarrow$$
 mx-y+3-m=0

::相切

$$\therefore \frac{|-4m+2+3-m|}{\sqrt{m^2+(-1)^2}} = \sqrt{10}$$

$$\Rightarrow$$
 3m²-10m+3=0

$$\Rightarrow$$
 m = $\frac{1}{3}$ $\stackrel{1}{\lesssim}$ 3

∴切線方程式為 x-3y+8=0 或 3x-y=0

$$(2)\overrightarrow{AB}: 1 \cdot x + 3 \cdot y + 8 \cdot \frac{1+x}{2} + 4 \cdot \frac{3+y}{2} + 10 = 0$$

$$\Rightarrow \overrightarrow{AB} : x+y+4=0$$

$$\overline{PA} = \sqrt{1^2 + 3^2 + 8 \cdot 1 + 4 \cdot 3 + 10} = 2\sqrt{10}$$

$$\overline{OA} = r = \sqrt{10}$$

$$\overline{OP} = \sqrt{(1-(-4))^2+(3-(-2))^2} = 5\sqrt{2}$$

設 M 為 \overline{AB} 與 \overline{OP} 之交點

則M為AB之中點

$$\Rightarrow \overline{AM} = \frac{\overline{OA} \cdot \overline{AP}}{\overline{OP}} = \frac{\sqrt{10} \cdot 2\sqrt{10}}{5\sqrt{2}} = 2\sqrt{2}$$

$$\Rightarrow \overline{AB} = 2\overline{AM} = 4\sqrt{2}$$

則
$$\sin \phi = \frac{\overline{OA}}{\overline{OP}} = \frac{\sqrt{10}}{5\sqrt{2}} = \frac{\sqrt{5}}{5}$$

$$\cos \phi = \frac{\overline{PA}}{\overline{OP}} = \frac{2\sqrt{10}}{5\sqrt{2}} = \frac{2\sqrt{5}}{5}$$

$$\mathbf{X}\theta = 2\phi$$

$$\Rightarrow \sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} = 2 \cdot \sin \phi \cos \phi = 2 \cdot \frac{\sqrt{5}}{5} \cdot \frac{2\sqrt{5}}{5} = \frac{4}{5}$$

$$\triangle PAB$$
 面積 = $\frac{1}{2} \overline{PA} \cdot \overline{PB} \cdot \sin \theta = \frac{1}{2} \cdot 2\sqrt{10} \cdot 2\sqrt{10} \cdot \frac{4}{5} = 16$

(4)△PAB之外接圓即為以PO為直徑之圓

⇒ 所求:
$$(x+4)$$
 $(x-1)$ + $(y+2)$ $(y-3)$ =0

$$\Rightarrow x^2 + y^2 + 3x - y - 10 = 0$$

75. 過圓 $x^2+y^2+2x-4y+1=0$ 與直線 2x-y+4=0 之交點,且與 y 軸相切之圓方程式為【

答案: $x^2+y^2+6x-6y+9=0$ 或 $x^2+y^2+14x-10y+25=0$

解析: 設所求之圓方程式為 $x^2+y^2+2x-4y+1+k(2x-y+4)=0$ (*)

::與 v 軸相切

$$\therefore x=0$$
 代入(*) 得 $y^2-(k+4)y+4k+1=0$

:相切

$$(k+4)^2-4(4k+1)=0$$

$$\Rightarrow$$
 k²-8k+12=0

 \Rightarrow k=2 $\stackrel{.}{=}$ 6

∴所求之圓方程式為 $x^2+y^2+6x-6y+9=0$ 或 $x^2+y^2+14x-10y+25=0$

76. 若平面 E: x-2y+2z+k=0 與球面 $S: x^2+y^2+z^2+2x-4y-4=0$ 相交(含相切),則 k 的範圍為

答案: -4≦k≦14;5

解析:S:
$$(x+1)^2 + (y-2)^2 + z^2 = 9$$

:E與S相交

$$\therefore$$
d (O, E) \leq r

$$\Rightarrow \frac{\left| -1 - 2 \cdot 2 + 2 \cdot 0 + k \right|}{\sqrt{1^2 + (-2)^2 + 2^2}} \le 3$$

$$\Rightarrow | k-5 | \leq 9$$

$$\Rightarrow -4 \leq k \leq 14$$

若E與S相交成最大圓

則 E 過 S 之球心 O (-1, 2, 0)

$$\Rightarrow -1-2 \cdot 2+2 \cdot 0+k=0$$

$$\Rightarrow$$
 k=5

77. 球面 $S: x^2+y^2+z^2-2x+4y+2z+2=0$,平面 E: x+2y+2z+k-2=0 (k>0) ,若平面 E 與球面 S相切,則k=【 】,切點坐標為【 .

答案: 13 或 1;
$$(\frac{1}{3}, -\frac{10}{3}, -\frac{7}{3})$$
 或 $(\frac{5}{3}, -\frac{2}{3}, \frac{1}{3})$

解析: S:
$$(x-1)^2 + (y+2)^2 + (z+1)^2 = 4$$

若E與S相切,則d(O,E) = r

$$\Rightarrow \frac{\left|1+2\cdot(-2)+2\cdot(-1)+k-2\right|}{\sqrt{1^2+2^2+2^2}} = 2$$

$$\Rightarrow | k-7 | = 6$$

$$\Rightarrow$$
 k=13 或 1

(1)
$$k=13$$
,則 $E: x+2y+2z+11=0$

切點即為O對E之投影點

$$\Rightarrow (\ 1 - \frac{1 \cdot 1 \cdot 6}{1^2 + 2^2 + 2^2} \ \cdot \ -2 - \frac{1 \cdot 2 \cdot 6}{1^2 + 2^2 + 2^2} \ \cdot \ -1 - \frac{1 \cdot 2 \cdot 6}{1^2 + 2^2 + 2^2} \)$$

故切點坐標為
$$(\frac{1}{3}, -\frac{10}{3}, -\frac{7}{3})$$

$$(2)$$
 $k=1$,則 $E: x+2y+2z-1=0$

切點即為O對E之投影點

$$\Rightarrow (1 - \frac{1 \cdot 1 \cdot (-6)}{1^2 + 2^2 + 2^2} \cdot -2 - \frac{1 \cdot 2 \cdot (-6)}{1^2 + 2^2 + 2^2} \cdot -1 - \frac{1 \cdot 2 \cdot (-6)}{1^2 + 2^2 + 2^2})$$

故切點坐標為
$$(\frac{5}{3}, -\frac{2}{3}, \frac{1}{3})$$

78. 點 P (x, y, z) 為球面 $x^2+y^2+z^2-2x+4y+4z=0$,則:

$$(2)(x-4)^2+(y+4)^2+(z-4)^2$$
之最小值為【

答案:(1)18;0;(2)16

解析:
$$x^2+y^2+z^2-2x+4y+4z=0$$

$$\Rightarrow (x-1)^2 + (y+2)^2 + (z+2)^2 = 9$$

球心
$$O(1, -2, -2)$$
 , 半徑 $r=3$

$$(1) \geqslant 2x - y - 2z + 1 = k$$

$$\Rightarrow$$
 2x-y-2z+1-k=0 表 - 平面

∴P
$$(x, y, z)$$
 在 $x^2+y^2+z^2-2x+4y+4z=0$ 上

 $\therefore 2x-y-2z+1-k=0$ 與 $x^2+y^2+z^2-2x+4y+4z=0$ 有交點即 O 至 2x-y-2z+1-k=0 之距離不大於 r

$$\Rightarrow \frac{|2+2+4+1-k|}{\sqrt{2^2+(-1)^2+(-2)^2}} \le 3$$

$$\Rightarrow |9-k| \leq 9$$

$$\Rightarrow -9 \leq k - 9 \leq 9$$

 $\Rightarrow 0 \le k \le 18$

$$(2)(x-4)^2+(y+4)^2+(z-4)^2$$
 表 (x,y,z) 至 $(4,-4,4)$ 之距離平方

$$(4-1)^2 + (-4+2)^2 + (4+2)^2 = 49 > 9$$

:. (4, -4, 4) 在球面外部

又
$$(4, -4, 4)$$
 至球面之最短距離為 $\sqrt{(4-1)^2+(-4+2)^2+(4+2)^2}-3=4$

故
$$(x-4)^2 + (y+4)^2 + (z-4)^2$$
 之最小值為 $4^2=16$

79. 設球 $S: x^2 + y^2 + z^2 - 2x + 2y + 4z - 10 = 0$ 與平面 E: 2x - y + 2z - 8 = 0 相交得一圓,則此圓的圓心為【 】,半徑為【 】。

答案: (3, -2, 0); $\sqrt{7}$

解析:

S:
$$(x-1)^2 + (y+1)^2 + (z+2)^2 = 16$$

設S與E之截圓為C,圓心為A,半徑為r

$$\overline{OA} = d(O, A) = \frac{|2 \cdot 1 - (-1) + 2 \cdot (-2) - 8|}{\sqrt{2^2 + (-1)^2 + 2^2}} = \frac{9}{3} = 3$$

$$\Rightarrow$$
 r = $\sqrt{R^2 - \overline{OA}^2} = \sqrt{16 - 9} = \sqrt{7}$

又A為O對E之投影點

$$\therefore A \left(1 - \frac{1 \cdot 2 \cdot (-9)}{2^2 + (-1)^2 + 2^2} , -1 - \frac{1 \cdot (-1) \cdot (-9)}{2^2 + (-1)^2 + 2^2} , -2 - \frac{1 \cdot 2 \cdot (-9)}{2^2 + (-1)^2 + 2^2} \right)$$

$$\Rightarrow A \left(3, -2, 0 \right)$$

80. 一球面與 xy 平面交於平面上之圓 $(x+1)^2+(y-3)^2=7^2$,且通過點 A(5,6,2),則此球面之方程式為【 】。

答案: $(x+1)^2 + (v-3)^2 + z^2 = 49$

解析:

設所求之球面為 S, 其球心為 O, 半徑為 R

與 xy 平面交於圓 C,圓 C 之圓心為 B(-1,3,0) ,半徑為 7

∵OB 與 xy 平面垂直

 $\overrightarrow{OB}/\overrightarrow{N}$

$$\Rightarrow \overrightarrow{OB} : \begin{cases} x = -1 \\ y = 3 \\ z = 0 + t \end{cases}, t \in \mathbb{R}$$

故可令
$$O(-1,3,t)$$

$$\Rightarrow \overline{OB} = |t-0| = |t|$$

$$\Rightarrow$$
 R = $\sqrt{\overline{OB}^2 + 7^2} = \overline{OA}$

$$\Rightarrow$$
 t²+49= \overline{OA} ²= (-1-5)²+ (3-6)²+ (t-2)²

$$\Rightarrow$$
 $t^2+49=t^2-4t+49$

$$\Rightarrow t=0$$

$$\therefore$$
O $(-1, 3, 0)$, $R = \sqrt{0^2 + 7^2} = 7$

$$\Rightarrow$$
 S: $(x+1)^2 + (y-3)^2 + z^2 = 49$

81. 一球面 S 切平面 E:x-2y-2z=7 於點 (3,-1,-1) ,且過點 P(1,1,-3) ,則此球面之方程式為【 】。

答案:
$$x^2 + (y-5)^2 + (z-5)^2 = 81$$

解析: 設 S:
$$x^2+y^2+z^2+2ax+2by+2cz+d=0$$

過
$$(3,-1,-1)$$
與 S 相切之平面方程式為

$$3x-y-z+a(x+3)+b(y-1)+c(z-1)+d=0$$

$$\Rightarrow$$
 (3+a) x+ (b-1) y+ (c-1) z=-3a+b+c-d

$$\Rightarrow \frac{3+a}{1} = \frac{b-1}{-2} = \frac{c-1}{-2}$$

$$=\frac{-3a+b+c-d}{7}\cdots\cdots 1$$

$$11+1+9+2a+2b-6c+d=0$$

$$\Rightarrow$$
 2a+2b-6c+d+11=0......2

由 1 可得
$$\begin{cases} 10a-b-c+d+21=0\cdots\cdots & 3\\ 6a-9b-2c+2d+7=0\cdots\cdots & 4\\ 6a-2b-9c+2d+7=0\cdots\cdots & 5 \end{cases}$$

由 2 、 3 、 4 、 5 得
$$a=0$$
 , $b=-5$, $c=-5$, $d=-31$

$$\Rightarrow$$
 S: $x^2+y^2+z^2-10y-10z-31=0$

$$\Rightarrow$$
 S : x^2 + $(y-5)^2$ + $(z-5)^2$ = 81

82. 設 $S: x^2 + y^2 + z^2 = 9$, $L: \frac{x-7}{2} = \frac{y+3}{-6} = \frac{z-4}{5}$,則包含直線 L 且與球面 S 相切之切平面方程式為

答案: x+2y+2z-9=0 或 2x-y-2z-9=0

解析: L:
$$\frac{x-7}{2} = \frac{y+3}{-6} = \frac{z-4}{5}$$

$$\Rightarrow L : \begin{cases} \frac{x-7}{2} = \frac{y+3}{-6} \\ \frac{y+3}{-6} = \frac{z-4}{5} \end{cases}$$

$$\Rightarrow L : \begin{cases} 3x + y - 18 = 0 \\ 5y + 6z - 9 = 0 \end{cases}$$

包含L之平面E可令為3x+y-18+k(5y+6z-9)=0

$$\Rightarrow$$
 E: 3x+ (5k+1) y+6kz-9k-18=0

$$S$$
之球心 $O(0,0,0)$,半徑 $r=3$

∵S與E相切

$$\therefore$$
d (O, E) = r

$$\Rightarrow \frac{|-9k-18|}{\sqrt{3^2+(5k+1)^2+(6k)^2}} = 3$$

$$\Rightarrow |3k+6| = \sqrt{61k^2 + 10k + 10}$$

$$\Rightarrow$$
 9k²+36k+36=61k²+10k+10

$$\Rightarrow 52k^2 - 26k - 26 = 0$$

$$\Rightarrow 2k^2-k-1=0$$

$$\Rightarrow$$
 k=1 \preceq $-\frac{1}{2}$

⇒ E:
$$3x+6y+6z-27=0$$
 或 $3x-\frac{3}{2}y-3z-\frac{27}{2}=0$

即
$$E: x+2y+2z-9=0$$
 或 $2x-y-2z-9=0$

83. 一球面 $S: x^2 + y^2 + z^2 - 4x + 2y - 6z + 5 = 0$ 及球外一點 P(3, 2, 4),由點 P 向球 S 作切線,則所有的切點形成一個圓 C,試回答下列各題:

(1)點P到球面S的切線段長為【 】

(2)圓C所在的平面方程式為【 】。

(3)圓C的面積為【 】。

答案: $(1)\sqrt{2}$; (2)x+3y+z-11=0; $(3)\frac{18}{11}\pi$

解析: (1) P至S之切線段長為 $\sqrt{3^2+2^2+4^2-4\cdot 3+2\cdot 2-4\cdot 6+5}=\sqrt{2}$

(2) 圓 C 所在的平面方程式為
$$3x+2y+4z-4 \cdot \frac{3+x}{2} + 2 \cdot \frac{2+y}{2} - 6 \cdot \frac{4+z}{2} + 5 = 0$$

$$\Rightarrow$$
 3x+2y+4z-6-2x+2+y-12-3z+5=0

$$\Rightarrow$$
 x+3y+z-11=0

(3) 設 E: x+3y+z-11=0

S:
$$(x-2)^2 + (y+1)^2 + (z-3)^2 = 9$$

球心 O (2, −1, 3), 半徑 R=3

設圓 C 之圓心為 A, 半徑為 r

$$\overline{OA} = d(O, E) = \frac{|2-3+3-11|}{\sqrt{1^2+3^2+1^2}} = \frac{9}{\sqrt{11}}$$

$$\Rightarrow r = \sqrt{R^2 - \overline{OA}^2} = \sqrt{9 - \frac{81}{11}} = \sqrt{\frac{18}{11}}$$

∴圓 C 的面積為
$$\pi$$
 $r^2 = \frac{18}{11}\pi$

84. 在空間中,球面 $x^2+y^2+z^2=10$ 上有兩點 A~(1~,0~,-3)~, $B~(-2~,\sqrt{5}~,1)~$,一隻螞蟻沿球面

從A爬至B,則最小距離為【

] 。

答案: $\frac{2\sqrt{10}\pi}{3}$

解析:
$$\overline{AB} = \sqrt{(1+2)^2 + (0-\sqrt{5})^2 + (-3-1)^2}$$

$$=\sqrt{9+5+16}=\sqrt{30}$$

$$\therefore \cos \theta = \frac{(\sqrt{10})^2 + (\sqrt{10})^2 - (\sqrt{30})^2}{2 \times \sqrt{10} \times \sqrt{10}} = -\frac{1}{2}$$

$$\therefore \theta = 120^{\circ} = \frac{2\pi}{3}$$

$$\therefore \widehat{AB} = r \cdot \theta = \sqrt{10} \cdot \frac{2\pi}{3} = \frac{2\sqrt{10}\pi}{3}$$

- 85. 設地球的半徑為 6400 公里, A, B 兩地均在北緯 45°線上, A 在東經 35°, B 在西經 55°, 則:
 - (1)在北緯 45°線上,A,B 兩地的緯線長為【
- 】公里。

- (2)A,B兩地的球面距離為【
- 】公里。

答案:(1)1600 $\sqrt{2}\pi$;(2) $\frac{6400}{3}\pi$

解析:(1)如圖,北緯45°所在圓O'的半徑

$$\overline{\text{O'P}} = \overline{\text{OP}} \times \sin 45^{\circ} = 6400 \times \frac{\sqrt{2}}{2} = 3200\sqrt{2}$$

$$2 \angle AO'B = 35^{\circ} + 55^{\circ} = 90^{\circ}$$

∴ A,B 兩地的緯線長=
$$2\pi \times 3200\sqrt{2} \times \frac{90^{\circ}}{360^{\circ}} = 1600\sqrt{2}\pi$$
 (公里)

$$(2)\triangle O'AB + \therefore \angle AO'B = 90^{\circ}$$

$$\therefore \overline{AB} = \overline{O'A} \times \sqrt{2} = 3200\sqrt{2} \times \sqrt{2} = 6400$$

故△OAB 為正三角形

五、計算題(計六題):

86. 設某圓之圓心為 O,半徑為 2,設 $\triangle ABC$ 為此圓的一內接三角形,而 $\angle A=60^\circ$, $\angle B=45^\circ$,試求 $|\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}|$ 之值。

答案:

如圖, $\angle A = 60^{\circ} \Rightarrow \angle BOC = 120^{\circ}$,

$$\angle B$$
=45° \Rightarrow $\angle COA$ =90°, 且得 $\angle AOB$ =150°

$$|\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}|^2 = |\overrightarrow{OA}|^2 + |\overrightarrow{OB}|^2 + |\overrightarrow{OC}|^2 + 2 (\overrightarrow{OA} \cdot \overrightarrow{OB} + \overrightarrow{OB} \cdot \overrightarrow{OC} + \overrightarrow{OC} \cdot \overrightarrow{OA})$$

= $2^2 + 2^2 + 2^2 + 2 (2 \times 2 \times \cos 150^\circ + 2 \times 2 \times \cos 120^\circ + 2 \times 2 \times \cos 90^\circ)$

=12+2
$$\left(4x\left(-\frac{\sqrt{3}}{2}\right) + 4x\left(-\frac{1}{2}\right) + 4x0\right)$$

$$= 8 - 4\sqrt{3}$$

故 |
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$
 | $= \sqrt{8 - 4\sqrt{3}} = \sqrt{6} - \sqrt{2}$

$$5 : \sqrt{6} - \sqrt{2}$$

87. 設x,y為實數,若2x-3y=26,則 x^2+y^2 之最小值為何?並求此時數對 (x,y)為何?

答案:
$$[2^2 + (-3)^2](x^2+y^2) \ge (2x-3y)^2$$

$$\Rightarrow$$
 13 (x^2+y^2) \ge 26²

$$\Rightarrow x^2 + y^2 \ge 52$$
,所以 $x^2 + y^2$ 有最小值 52

此時
$$\frac{x}{2} = \frac{y}{-3}$$
 ⇒ 令 $x = 2t$, $y = -3t$ 代入 $2x - 3y = 26$

$$\Rightarrow$$
 4t+9t=26 \neq t=2

$$\Rightarrow$$
 x=4, y=-6

故
$$x^2+y^2$$
 有最小值 52, 此時數對 $(x,y)=(4,-6)$

答: 最小值為
$$52$$
, 此時數對 $(x,y) = (4,-6)$

88. 設 A (1,0,0), B (0,1,0), C (0,0,1) 及 D 為一正四面體之四個頂點, 求 D 點坐標。 答案:

$$\overline{DA} = \overline{DB} = \overline{DC} = \overline{AB} = \sqrt{1^2 + 1^2 + 0^2} = \sqrt{2}$$

$$\Rightarrow 3x^2 - 2x - 1 = 0 \Rightarrow (3x + 1) (x - 1) = 0 \Rightarrow x = -\frac{1}{3} \not \propto x = 1$$

∴D
$$\left(-\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}\right)$$
 ø $\left(1, 1, 1\right)$

答:
$$\left(-\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}\right)$$
 或 $(1, 1, 1)$

- 89. 空間中三點 A (5,1,-3), B (11,4,0), C (7,3,-2), 試求下列各值:
 - $(1)\overline{AB}$ 在 \overline{AC} 上的正射影。
 - (2)線段 AB 在直線 AC 上的正射影長。
 - (3)點B在AC上的投影點坐標。

答案:
$$\overrightarrow{AB}$$
= (6,3,3), \overrightarrow{AC} = (2,2,1)

$$(1)\frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AC}|^2}\overrightarrow{AC} = \frac{12+6+3}{9} (2 \cdot 2 \cdot 1)$$

$$= \frac{7}{3} (2 \cdot 2 \cdot 1) = (\frac{14}{3} \cdot \frac{14}{3} \cdot \frac{7}{3})$$

$$(2)\sqrt{(\frac{14}{3})^2+(\frac{14}{3})^2+(\frac{7}{3})^2}=\sqrt{(\frac{7}{3})^2(4+4+1)}=\frac{7}{3}\times 3=7$$

$$(3)(5,1,-3)+(\frac{14}{3},\frac{14}{3},\frac{7}{3})=(\frac{29}{3},\frac{17}{3},-\frac{2}{3})$$

答:(1)(
$$\frac{14}{3}$$
, $\frac{14}{3}$, $\frac{7}{3}$);(2)7;(3)($\frac{29}{3}$, $\frac{17}{3}$, $-\frac{2}{3}$)

90. 兩歪斜線
$$L_1$$
: $\frac{x+5}{2} = \frac{y-5}{-1} = \frac{z+6}{3}$, L_2 : $\frac{x-1}{1} = \frac{y+7}{2} = \frac{z-3}{-1}$,求 L_1 , L_2 之公垂線 L 的對稱比例 式。

答案: 設
$$P(-5+2t, 5-t, -6+3t) \in L_1, Q(1+s, -7+2s, 3-s) \in L_2$$

$$\overrightarrow{PQ} = (s-2t+6, 2s+t-12, -s-3t+9)$$

$$\therefore (s-2t+6, 2s+t-12, -s-3t+9) \cdot (2, -1, 3) = 0$$

$$(s-2t+6, 2s+t-12, -s-3t+9) \cdot (1, 2, -1) = 0$$

$$\Rightarrow \begin{cases} -3s - 14t + 51 = 0 \\ 6s + 3t - 27 = 0 \end{cases} \Rightarrow \begin{cases} s = 3 \\ t = 3 \end{cases}$$

∴P
$$(1, 2, 3)$$
, Q $(4, -1, 0)$ ∴ $\overrightarrow{PQ} = (3, -3, -3) // (1, -1, -1)$

$$\therefore$$
L: $\frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-3}{-1}$

- 91. 兩圓: $C_1: x^2+y^2-6x-2y+1=0$, $C_2: x^2+y^2+4x+3=0$,則:
 - (1) C₁ 與 C₂ 之內公切線段長為何?
 - (2) C₁ 與 C₂ 之內公切線交點坐標為何?[屏東高中]

答案:

$$(1)$$
 \mathbb{R} C_1 : $x^2+y^2-6x-2y+1=0 \Rightarrow (x-3)^2+(y-1)^2=9$

圓心為
$$O_1(3,1)$$
,半徑為 $r_1=3$

$$\mathbb{Q} \quad \mathbb{C}_2 : x^2 + y^2 + 4x + 3 = 0 \Rightarrow (x+2)^2 + y^2 = 1$$

圓心為
$$O_2(-2,0)$$
, 半徑為 $r_2=1$

作兩圓之一公切線段 PO

$$\overline{O_1P} \perp \overline{PQ} \perp \overline{O_2Q} \perp \overline{PQ}$$

過
$$O_1$$
 作 \overrightarrow{PQ} 之平行線,交 $\overrightarrow{O_2Q}$ 於 R ,則 $\overrightarrow{O_1R} = \overrightarrow{PQ}$

在直角
$$\triangle O_1O_2R$$
中, $\overline{O_1O_2}^2 = \overline{O_1R}^2 + \overline{O_2R}^2$

$$\Rightarrow (3+2)^2 + (1-0)^2 = \overline{PO}^2 + (1+3)^2 \Rightarrow \overline{PO}^2 = 26 - 16 = 10$$

$$\therefore \overline{PQ} = \sqrt{10}$$

(2)令兩內公切線之交點為 A,則 A $\in \overline{O_1O_2}$ 且 $\overline{O_1A}:\overline{AO_2}=r_1:r_2=3:1$

:.A
$$(\frac{3 \times (-2) + 1 \times 3}{3 + 1}, \frac{3 \times 0 + 1 \times 1}{3 + 1}) = (-\frac{3}{4}, \frac{1}{4})$$

答:
$$(1)\sqrt{10}$$
; $(2)(-\frac{3}{4},\frac{1}{4})$

六、(課本範例與隨堂練習)計算證明題(計一題):

92. 坐標空間中,求直線 $L: \frac{x+1}{2} = \frac{y-1}{-2} = \frac{z+2}{1}$ 被球面 $S: x^2 + y^2 + z^2 = 25$ 所截出的線段長。〔3-3 隨 堂練習 6〕

答案:直線 L 的參數式為 $\begin{cases} x = 2t-1 \\ y = -2t+1 \\ z = t-2 \end{cases}$

設 L 上的點 P (2t-1, -2t+1, t-2)

球面S的球心O(0,0,0),則

$$\overline{OP} = \sqrt{(2t-1)^2 + (-2t+1)^2 + (t-2)^2} = \sqrt{9t^2 - 12t + 6}$$

$$= \sqrt{9(t-\frac{2}{3})^2 + 2} \ge \sqrt{2}$$

即球心 O 與直線 L 的距離為 $\sqrt{2}$

故弦長是 $2\sqrt{5^2-(\sqrt{2})^2}=2\sqrt{23}$

答: $2\sqrt{23}$

七、(習題)計算證明題(計三題):

93. 一公路依地形迂迴而建,如下圖所示。從 A 地到 B 地,B 地到 C 地,C 地到 D 地,距離分別是 $4\sqrt{3}$,11,6 公里,而 AB 與 BC,BC 與 CD 間,兩公路的夾角分別是 90° , 120° ,試求 A 地到 D 地 的直線距離。 [1-1 習題 11]

答案:所求 $\overline{AD} = |\overrightarrow{AD}|$,而 $\overline{AD} = \overline{AB} + \overline{BC} + \overline{CD}$ 由下圖可知 \overline{AB} 與 \overline{BC} , \overline{BC} 與 \overline{CD} , \overline{AB} 與 \overline{CD} 的夾角分別是 90° , 60° , 30°

$$A = \begin{bmatrix} \frac{30^{\circ}}{60^{\circ}} \\ 11 \\ C & 6 & D \end{bmatrix}$$

数 |
$$\overrightarrow{AD}$$
 | 2 = (\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}) · (\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD})
$$= |\overrightarrow{AB}|^2 + |\overrightarrow{BC}|^2 + |\overrightarrow{CD}|^2 + 2\overrightarrow{AB} \cdot \overrightarrow{BC} + 2\overrightarrow{BC} \cdot \overrightarrow{CD} + 2\overrightarrow{AB} \cdot \overrightarrow{CD}$$

=
$$(4\sqrt{3})^2 + 11^2 + 6^2 + 2 \cdot 0 + 2 \cdot 11 \cdot 6 \cdot \cos 60^{\circ} + 2 \cdot 4\sqrt{3} \cdot 6 \cdot \cos 30^{\circ}$$

$$=48+121+36+66+72=343$$

得出 |
$$\overrightarrow{AD}$$
 | = $\sqrt{343}$ = $7\sqrt{7}$ (公里)

答:7√7 公里

94. 設一地球儀南北極之點坐標分別為 S(1,2,-1) ,N(5,-2,3) ,試求包含北緯 30° 線之平面方程式。 [3-3 習題 10]

答案:

球半徑
$$R = \overline{ON}$$
,因此 $\overline{OP} = R \sin 30^\circ = \frac{1}{2} \overline{ON}$

P 坐標為
$$\frac{3}{4}$$
 (5, -2, 3) + $\frac{1}{4}$ (1, 2, -1)

$$= (4, -1, 2)$$

又 $\overrightarrow{PN} = (1, -1, 1)$ 為平面 E 之法向量

故平面為
$$(x-4) - (y+1) + (z-2) = 0$$
, 即 $x-y+z-7=0$

答:x-y+z-7=0

95. 坐標空間中,球面 S 的方程式為 $x^2+y^2+z^2+6x+6y-6z+23=0$,R 是球面 S 上的點,點 P 在 xy 平面上,點 A 的坐標是 (-1,1,1),求 $\overline{AP}+\overline{PR}$ 的最小值。 [3-3 習題 11]

答案:

球面 S: $(x+3)^2 + (y+3)^2 + (z-3)^2 = 4$,球心 Q(-3, -3, 3),半徑 2 A(-1, 1, 1)對 xy 平面的對稱點 B(-1, 1, -1)

 $\overline{AP} + \overline{PR} = \overline{BP} + \overline{PR} \ge \overline{BR} \ge \overline{BQ} - \overline{QR}$

而 $\overline{BQ} = \sqrt{2^2 + 4^2 + 4^2} = 6$, \overline{QR} 即半徑 2

因此最小值為 \overline{BQ} $-\overline{QR}$ =6-2=4

答:4