순서논리회로 분석

D 플립플롭 회로 분석

순차회로 분석(D filp-flop의 경우)

주어진 순차회로로부터 순차회로식(플립플롭 입력방정식)을 구하고 상태표를 작성한 후에 상태도를 작성한다.

순차회로도

[플립플롭 입력방정식]

$$D_A = Ax + Bx$$
$$D_B = A'x$$

$$y = Ax^{c} + Bx^{c}$$

상태표

			The state of the s		
현재	상태	입력	다음	출력	
Α	В	x	A	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

[플립플롭 입력방정식]

$$D_A = Ax + Bx$$

$$D_B = A'x$$

$$y = Ax' + Bx'$$

상태도

 $D_{A}(t+1)=D_{A}(t)$ 이러한 속성으로 D-ff의 경우 입력방정식으로 부터 다음 상태를 tnlqr 유도 할 수 있다

JK 플립플롭 회로 분석

순차회로 분석(JK filp-flop의 경우)

주어진 순차회로로부터 순차회로식을 구하고 상태표를 작성한 후
 에 상태도를 작성한다.

(1) F-F 입력방정식 JA=B, KA= x'B JB=x', KB= x ⊕ A

(1) F-F 입력방정식 JA=B, KA= x'B JB=x', KB= x ⊕ A

입력방정식을 이용하여 채움

~ .	-		
ST.	ate	12	ble
υu	214	10	

현재	상태	입력	1	플립플	다음	상태		
Α	В	x	J_A	K_A	$J_{\mathcal{B}}$	$K_{\mathcal{B}}$	A(t+1)	B(t+1)
0	0	0	0	0	1	0		
0	0	1	0	0	0	1		
0	1	0	1	1	1	0		
0	1	1	1	0	0	1		
1	0	0	0	0	1	1		
1	0	1	0	0	0	0		
1	1	0	1	1	1	1		
1	1	1	1	0	0	0		

특성표를 이용하여 다음상태를 채운다

	JK Flip-Flop									
J	K	Operation								
0	0	Q(t)	No change							
0	1	0	Reset							
1	0	1	Set							
1	1	Q(t)	Complement							

State Table

현재	상택	입력	- 1	플립플	롭 입력	4	다음	상태
A /	В	x	J_A	K_A	$J_{\mathcal{B}}$	$K_{\mathcal{B}}$	A(t+1)	B(t+1)
0	0	0	0	0	1	0	0	1
0	0	1	0	0	0	1	0	0
0	1	0	1	1	1	0	1	1
0	1	1	1	0	0		1	0
1	0	0	0	0	1	1	1	1
1	0	1	0	0	0	0	1	0
1	1	0	1	1	1	1	0	0
1	1	1	1	0	0	0	1	1

상태표를이용 상태도를 작성한다.

순서논리회로 설계

3 순서 논리 회로의 설계

□여기표

- 플립플롭의 특성표: 현재 상태와 입력값이 주어졌을 때, 다음 상태가 어떻게 변하는가를 나타내는 표
- 플립플롭의 여기표(excitation table): 현재 상태에서 다음 상태로 변했을 때 플립플롭의 입력조건이 어떤 상태인가를 나타내는 표
- 플립플롭의 여기표는 순서논리회로를 설계할 때 자주 사용

❖ SR 플립플롭의 여기표

SR 입력을 동시에 1로 하면 다음 출력을 예상 할 수 없어 사용하지 않음

❖ JK 플립플롭의 여기표

SR 플립플롭의 1, 1을 입력했을 때의 상태를 개선

❖ D플립플롭의 여기표

그림 3-79 D 플립플롭의 여기표 유도 과정

❖ T플립플롭의 여기표

그림 3-80 T 플립플롭의 여기표 유도 과정

- □ 순서 논리 회로의 설계 과정
 - 설계 사양으로부터 상태도와 상태표 작성
 - ② 플립플롭의 수와 종류 결정
 - ③ 플립플롭의 입력, 출력 및 각 상태에 문자 기호 부여
 - 4 상태표를 이용해 회로의 상태 여기표 작성
 - ⑤ 간소화 방법을 이용해 출력 함수와 플립플롭의 입력 함수 유도
 - **⑥** 순서 논리 회로도 작성

● 설계 사양으로부터 상태도와 상태표 작성

그림 3-81 순서 논리 회로에 대한 상태도

표 3-8 그림 3-81의 상태표

현재	상태	입력	다음	상태
A	B	\mathcal{X}	A	B
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

② 플립플롭의 수와 종류 결정하고 ③ 각 상태에 문자 기호 부여

- 네 가지 상태가 있으므로 플립플롭이 2개 필요하며, 각 플립플롭에 문자 A와 B를 할당한다.
- *JK* 플립플롭을 이용한다.

n개의 서로 다른 상태를 나타내려면 플립플롭이 $\lceil \log_2 n \rceil$ 개 필요하다.예를 들어 n=10이면 $\log_2 10$ $\approx 3.219이므로 플립플롭이 <math>\lceil \log_2 10 \rceil$ =4개 필요하다.

④ 상태표를 이용해 회로의 상태 여기표 작성

표 3-9 상태 여기표

TO 0 0	-11 412 1-11								\	
현재	상태	입력	다음	상태		플립플	롭 입력			
A	В	\boldsymbol{x}	A	В	J_A	K_{A}	J_{B}	K_{B}		
0	0	0	0	0	0	×	0	×		- \
0	0	1	0	1	0	×	1	×		
0	1	0	1	0	1	×	×	1		
0	1	1	0	1	0	×	×	0	JK 플립플롭의 여기된	Æ
1	0	0	1	0	×	0	0	×	Q(t) $Q(t+1)$ J	K
1	0	1	1	1	×	0	1	×		×
1	1	0	1	1	×	0	×	0	0 1 1 1 0 ×	X 1
1	1	1	0	0	×	1	×	1		0

④ 상태표를 이용해 회로의 상태 여기표 작성

표 3-9 상태 여기표

현재	상태	입력	다음	상태	플립플롭 입력				
A	В	$\boldsymbol{\mathcal{X}}$	A	В	J_A	$K_{\!\scriptscriptstyle A}$	J_{B}	K_{B}	
0	0	0	0	0	0	×	0	×	
0	0	1	0	1	0	×	1	×	
0	1	0	1	0	1	×	×	1	
0	1	1	0	1	0	×	×	0	$J\!K$ 플립플롭의 여기표
1	0	0	1	0	×	0	0	×	Q(t) $Q(t+1)$ J K
1	0	1	1	1	×	0	1	×	0 0 0 ×
1	1	0	1	1	×	0	×	0	0 1 1 X 1 0 X 1
1	1	1	0	0	×	1	×	1	1 1 × 0

⑤ 간소화 방법을 이용해 출력 함수와 플립플롭의 입력 함수 유도

그림 3-82 카르노 맵을 이용한 간소화 과정

⑥ 순서 논리 회로도 작성

$$J_A = B\overline{x}$$
, $K_A = Bx$
 $J_B = x$, $K_B = A \odot x$

그림 3-83 순서 논리 회로의 구현

D 플립플롭을 이용한 설계

D 플립플롭을 이용한 설계

현재	상태	입력	다음	상태	출력	플립플	롭 입력
Α	В	Х	A(t+1)	B(t+1)	Υ	A(t+1)	B(t+1)
0	0	0	0	0	0	0	0
0	0	1	0	1	1	0	1
0	1	0	1	0	0	1	0
0	1	1	0	1	0	0	1
1	0	0	1	0	0	1	0
1	0	1	1	1	1	1	1
1	1	0	1	1	0	1	1
1	1	1	0	0	0	0	0

$$\begin{split} &D_A = A\,\overline{B}\, + B\,\overline{X} \\ &D_B = \overline{A}\,X + \overline{B}\,X + AB\,\overline{X} \\ &Y = \overline{B}\,X \end{split}$$

D 플립플롭은 다음상태가 곧 플립플롭 입력이므로 각각의 플립플롭 입력에 대해 현재상 태와 입력으로 플립플롭 입력 방정식을 카르나 맵을 이용하 여 구할 수 있다.

D 플립플롭을 이용한 설계

D 플립플롭을 이용한 설계

 $Y = \overline{B}X$

10	
$D_{A} = A\overline{B} + B\overline{X}$ $D_{B} = \overline{A}X + \overline{B}X + AB\overline{X}$	

현재	상태	입력	다음	다음상태		플립플	롭 입력
Α	В	Х	A(t+1)	B(t+1)	Υ	A(t+1)	B(t+1)
0	0	0	0	0	0	0	0
0	0	1	0	1	1	0	1
0	1	0	1	0	0	1	0
0	1	1	0	1	0	0	1
1	0	0	1	0	0	1	0
1	0	1	1	1	1	1	1
1	1	0	1	1	0	1	1
1	1	1	0	0	0	0	0

$$D_A(t) = A \; \overline{B} + B \; \overline{X}$$

 $A\left(t+1\right)=D_{\!A}\left(t\right)$

수고하셨습니다!