Adventures in Covariance

EES 5891-03
Bayesian Statistical Methods
Jonathan Gilligan

Class #20: Tuesday, November 08 2022

Adventures in Covariance

Varying Intercepts and Slopes

- Coffee Robot Example
 - A robot visits N cafes
 - Estimate the average waiting time *W* to get a coffee.
 - Model:

```
W_{	ext{cafe}} \sim 	ext{Normal}(\mu_{	ext{cafe}}, \sigma)
\mu_{	ext{cafe}} = lpha_{	ext{cafe}}
lpha_{	ext{cafe}} \sim 	ext{Normal}(5, 2)
\sigma \sim 	ext{Expoonential}(1)
```

- Different times of day
 - Morning (busier) vs. afternoon (less busy)
 - Model:

$$W_{ ext{cafe}} \sim ext{Normal}(\mu_{ ext{cafe}}, \sigma)$$
 $\mu_{ ext{cafe}} = lpha_{ ext{cafe}} + eta_{ ext{cafe}} A$
 $lpha_{ ext{cafe}} \sim ext{Normal}(5, 2)$
 $eta_{ ext{cafe}} \sim ext{Normal}(-1, 0.5)$
 $\sigma \sim ext{Expoonential}(1)$

Something's missing ...

Correlations

- Some cafes are very popular, and others are not popular
- Popular cafes are busy
 - Big differences between morning and afternoon
- Unpopular cafes aren't busy
 - Not much difference between morning and afternoon
- Covariance between slopes (β) and intercepts (α).

Modeling covariance

Covariance matrix

variance of interceptscovariance of intercepts and slopescovariance of intercepts and slopesvariance of slopes

$$egin{pmatrix} \sigma_{lpha}^2 & \sigma_{lpha}\sigma_{eta}
ho \ \sigma_{lpha}\sigma_{eta}
ho & \sigma_{eta}^2 \end{pmatrix}$$

lacksquare ho is the correlation between slopes and intercepts ($-1 \le
ho \le 1$).

Simulation modeling

Simulation modeling

What Is Covariance?

Fitting the Model: Varying Slopes, Varying Intercept

Fitting the Model

Model:

$$W \sim \mathsf{Normal}(\mu, \sigma)$$
 $\mu = lpha_\mathsf{cafe} + eta_\mathsf{cafe} A$
 $egin{bmatrix} lpha_\mathsf{cafe} \ eta_\mathsf{cafe} \end{bmatrix} \sim \mathsf{MVNormal}\left(egin{bmatrix} lpha \ eta \end{bmatrix}, S
ight)$
 $S = egin{bmatrix} \sigma_lpha & 0 \ 0 & \sigma_eta \end{pmatrix} R egin{bmatrix} \sigma_lpha & 0 \ 0 & \sigma_eta \end{pmatrix}$

Priors

$$lpha \sim {\sf Normal}(5,2)$$
 $eta \sim {\sf Normal}(-1,0.5)$
 $eta \sim {\sf Exponential}(1)$
 $eta_{lpha} \sim {\sf Exponential}(1)$
 $eta_{eta} \sim {\sf Exponential}(1)$
 $R \sim {\sf LKJcorr}(2)$

- LKJ prior:
 - Weakly-informative prior for correlation matrices.

LKJ Priors

Correlation matrix:

$$R = \begin{pmatrix} 1 &
ho \\
ho & 1 \end{pmatrix}$$

- LKJcorr (η)
 - $\eta > 1$: the greater η is, the more unlikely extreme correlations are

Fitting the model

Model

```
set.seed(867530)
mdl_cafe <- ulam(
    alist(
        wait ~ normal(mu, sigma),
        mu <- a_cafe[cafe] + b_cafe[cafe] * afternoon,
        c(a_cafe,b_cafe)[cafe] ~ multi_normal(c(a, b), Rho,
        sigma_cafe),
        a ~ normal(5, 2),
        b ~ normal(-1, 0.5),
        sigma_cafe ~ exponential(1),
        sigma ~ exponential(1),
        Rho ~ lkj_corr(2)
    ), data=d, chains = 4, cores = 4)</pre>
```

Extract samples from posterior

- Posterior is well within the prior:
 - The data are determining the posterior

Shrinkage and Regularization

• Shrinkage: Estimates for each cafe move toward the average

Instrumental Variables

Instrumental Variables

- Effect of education on wages
 - Does more school improve future wages?
 - Complication: People who are motivated and disciplined are likely to stay in school longer, and also earn more regardless of schooling:

- U is an unobserved variable that describes the person's work ethic and self-discipline.
- The backdoor path $E \leftarrow U \rightarrow W$ prevents us from drawing causal inferences from correlations between E and W.

• Instrumental variables:

- *Q* can be an **instrumental variable** if:
 - 1. It's independent of U.
 - 2. It's not independent of *E*.
 - 3. Q cannot influence W except through E.

Models with Instrumental Variables

- What are instrumental variables?
- Natural experiments
- We don't have enough control of the system to do controlled experiments
- SO we use natural variations in *instrumental* variables as natural experiments

• DAG:

- ullet We can't just put Q in a regression model
 - E is a collider of Q and U.
 - The collider opens up a *non-causal* path from Q to W, which creates a false correlation between Q and W, even if E doesn't influence W.
 - **Q** is a **bias amplifier**.

Example of Instrumental Variable

• Example:

- *Q* is the season of the year
 - Students born earlier complete fewer grades by the time they reach the age where they can leave school (drop out).
 - Q is not influenced by any of the other variables

Generate simulated data:

```
set.seed(73)
N <- 500

U_sim <- rnorm(N)
Q_sim <- sample(1:4, size = N, replace = TRUE)
E_sim <- rnorm(N, U_sim + Q_sim)
W_sim <- rnorm(N, U_sim + 0 * E_sim)

dat_sim <- list(
    W=standardize(W_sim),
    E=standardize(E_sim),
    Q=standardize(Q_sim)
)</pre>
```

• Notice that in the simulated data, E has no effect on W.

Writing a model

```
mdl_wages <- ulam(
    alist(
        W ~ dnorm(mu, sigma),
        mu <- aW + bEW * E,
        aW ~ dnorm(0, 0.2),
        bEW ~ dnorm(0, 0.5),
        sigma ~ dexp(1)
    ), data = dat_sim, chains = 4, cores = 4)</pre>
```

```
precis_show(precis(mdl_wages, digits = 2))
```

```
## mean sd 5.5% 94.5% n_eff Rhat4
## aW 0.00 0.04 -0.06 0.07 1737 1
## bEW 0.40 0.04 0.33 0.46 1648 1
## sigma 0.92 0.03 0.88 0.96 1924 1
```

• The influence of U causes the model to incorrectly think E has a significant effect on W.

```
mdl_wages_q <- ulam(
    alist(
        W ~ dnorm(mu, sigma),
        mu <- aW + bEW * E + bQW * Q,
        aW ~ dnorm(0, 0.2),
        bEW ~ dnorm(0, 0.5),
        bQW ~ dnorm(0, 0.5),
        sigma ~ dexp(1)
), data = dat_sim, chains = 4, cores = 4)</pre>
```

```
precis_show(precis(mdl_wages_q, digits = 2))
```

```
## mean sd 5.5% 94.5% n_eff Rhat4
## aW 0.00 0.04 -0.06 0.06 1876 1
## bEW 0.64 0.05 0.57 0.71 1189 1
## bQW -0.41 0.05 -0.48 -0.33 1533 1
## sigma 0.86 0.03 0.82 0.90 1875 1
```

- This is even worse:
 - The estimate of the effect of *E* is even larger
 - The model also thinks Q has a direct effect on W.

A Better Model of Instrumental Variables

• Formula:

```
W \sim \mathsf{Normal}(\mu_W, \sigma_W)
      \mu_W = \alpha_W + \beta_{EW}E + U
          E \sim \mathsf{Normal}(\mu_E, \sigma_E)
       \mu_{E} = \alpha_{E} + \beta_{QE}Q + U
          Q \sim \text{Categorical}([0.25, 0.25, 0.25, 0.25])
          U \sim \text{Normal}(0, 1)
\left(egin{array}{c}W\\ \digamma\end{array}
ight)\sim {\sf MVNormal}\left(\left(egin{array}{c}\mu_{W}\\ \mu_{E}\end{array}
ight),S
ight)
      \mu_W = \alpha_W + \beta_{EW} E
       \mu_{\mathsf{E}} = \alpha_{\mathsf{E}} + \beta_{\mathsf{QE}} \mathbf{Q}
```

Model code

```
mdl_wages_inst <- ulam(
    alist(
        c(W,E) ~ multi_normal(c(muW, muE), Rho, Sigma),
        muW <- aW + bEW * E,
        muE <- aE + bQE * Q,
        c(aW,aE) ~ normal(0, 0.2),
        c(bEW,bQE) ~ normal(0, 0.5),
        Rho ~ lkj_corr(2),
        Sigma ~ exponential(1)
    ), data = dat_sim, chains = 4, cores = 4)</pre>
```

```
precis_show(precis(mdl_wages_inst, digits = 2, depth=3))
```

```
sd 5.5% 94.5% n eff Rhat4
           0.00 0.03 -0.06 0.05 1782
           0.00 0.05 -0.07 0.07 1643
           0.59 0.04 0.53 0.64 1482
           -0.05 0.07 -0.17 0.07
## Rho[1,1]
          1.00 0.00 1.00 1.00
## Rho[1,2]
          0.54 0.05 0.46 0.62
## Rho[2,1] 0.54 0.05 0.46 0.62
## Rho[2,2]
          1.00 0.00 1.00 1.00
          1.03 0.05 0.96 1.10
## Sigma[1]
## Sigma[2]
          0.81 0.02 0.77 0.85
```

• μ_{EW} is consistent with zero, as it ought to be.

New Data

• Generate new data, where *E* has a positive effect on wages.

```
set.seed(73)
N <- 500

U_sim <- rnorm(N)
Q_sim <- sample(1:4, size = N, replace = TRUE)
E_sim <- rnorm(N, U_sim + Q_sim)
W_sim <- rnorm(N, U_sim + 0.3 * E_sim)

dat_sim_2 <- list(
    W=standardize(W_sim),
    E=standardize(E_sim),
    Q=standardize(Q_sim)
)</pre>
```

Rerun the model with new data:

• β_{EW} is consistent with the correct value 0.3.

Gaussian Processes

Continuous Categories

- Everything we've looked at with multilevel models so far has studied the varying effects of discrete categories (cafes, individual chimpanzees, academic departments, etc.).
 - Data is organized in discrete clusters.
 - There's no special order to the clusters, no significance of being cluster #1.
 - What about clustering on continuously distributed variables?
 - Height
 - Age
 - Income
 - Gaussian Process models allow us to study variation in slope or intercept for continuously distributed predictor variables.

 Distribution of Tools across the islands of Oceania

The Data

```
library(rethinking)
data(Kline)
data("islandsDistMatrix")

d <- Kline
dist <- islandsDistMatrix

kable(d)</pre>
```

culture	population	contact	total_tools	mean_TU
Malekula	1100	low	13	3.2
Tikopia	1500	low	22	4.7
Santa Cruz	3600	low	24	4.0
Yap	4791	high	43	5.0
Lau Fiji	7400	high	33	5.0
Trobriand	8000	high	19	4.0
Chuuk	9200	high	40	3.8
Manus	13000	low	28	6.6
Tonga	17500	high	55	5.4
Hawaii	275000	low	71	6.6

- culture: Name of island culture
- population: Historical population size
- **contact:** low or high contact rate with other islands
- total tools: number of tools in historical tool kit
- mean TU: a measure of tool complexity
- Distance matrix (thousands of km):

	Malekula	Tikopia	Santa Cruz	Yap	Lau Fiji	Trobriand
Malekula	0.000	0.475	0.631	4.363	1.234	2.036
Tikopia	0.475	0.000	0.315	4.173	1.236	2.007
Santa Cruz	0.631	0.315	0.000	3.859	1.550	1.708
Yap	4.363	4.173	3.859	0.000	5.391	2.462
Lau Fiji	1.234	1.236	1.550	5.391	0.000	3.219
Trobriand	2.036	2.007	1.708	2.462	3.219	0.000

Modeling Tool Acquisition

• Single-level Model:

$$T \sim \mathsf{Poisson}(\lambda)$$
 $\lambda = lpha P^eta/\gamma$

Multilevel model:

$$T \sim \mathsf{Poisson}(\lambda)$$
 $\lambda = \mathsf{exp}(k_{\mathsf{society}}) \alpha P^{eta}/\gamma$

- k is the varying intercept.
- Instead of assigning it randomly to each society category, we're going to try to predict it from the distance of other islands.

$$egin{pmatrix} k_1 \ k_2 \ k_3 \ \cdots \ k_{10} \end{pmatrix} \sim \mathsf{MVNormal} egin{pmatrix} \left(\begin{pmatrix} 0 \ 0 \ 0 \end{pmatrix}, K \ \cdots \ k_{1j} \end{pmatrix} = \eta^2 \exp(-
ho^2 D_{i,j}^2) + \delta_{i,j} \sigma^2 \end{pmatrix}$$

- $D_{i,j}$ is the distance between islands i and j
- $\delta_{i,j}$ is 1 if i == j and 0 otherwise.
- 10-dimensional prior
- Covariance matrix K: $K_{i,j}$ is the covariance between societies i and j.
 - $\exp(-\rho^2 D_{i,j}^2)$ gives the covariance its shape.

Covariance Function

- Shape of the covariance function:
 - lacksquare Set ho=1

The dashed line is a linear distance, the solid has squared distance.

Gaussian Process Model

```
data(Kline2) # load the ordinary data, now with coordinates
d <- Kline2
d$society <- 1:10 # index observations
dat list <- list(</pre>
    T = d$total tools,
    P = dpopulation,
    society = d$society,
    Dmat=islandsDistMatrix )
mdl gp <- ulam(</pre>
    alist(
        T ~ dpois(lambda),
        lambda \leftarrow (a * P^b / g) * exp(k[society]),
        vector[10]:k ~ multi normal(0, SIGMA),
        matrix[10,10]:SIGMA <- cov GPL2(Dmat, etasq, rhosq,</pre>
        0.01),
        c(a,b,g) \sim dexp(1),
        etasq \sim dexp(2),
        rhosq \sim dexp(0.5)
    ), data=dat list, chains=4, cores=4, iter=2000 )
```

precis_show(precis(mdl_gp, digits=2, depth=3))

```
mean sd 5.5% 94.5% n eff Rhat4
## k[1] -0.17 0.29 -0.66 0.29
## k[2] -0.03 0.29 -0.48 0.43 871
## k[3] -0.07 0.27 -0.50 0.35 854
## k[4] 0.34 0.26 -0.04 0.76 880
## k[5] 0.07 0.25 -0.31 0.45 867
## k[6] -0.38 0.27 -0.83 0.01 943
## k[7] 0.14 0.25 -0.24 0.52 860
## k[8] -0.21 0.25 -0.61 0.17
                            898
## k[9] 0.26 0.24 -0.10 0.64
                           865
## k[10] -0.16 0.34 -0.69 0.37 1213
## q
      0.58 0.56 0.07 1.62
## b 0.27 0.08 0.14 0.41
                           1309
## a 1.40 1.08 0.25 3.43 2208
## etasq 0.18 0.19 0.03 0.52
                           763
## rhosq 1.36 1.70 0.08 4.58 1861
```

Posterior vs. Prior Covariance

Posterior on the distance matrix

Computer posterior median covariance:

- Notice the cluster at the top left
- Map

Maps

