Thesis title: High Dynamics GNSS Receiver

Topic number: AGD67

Student Name: Cameron Cooke Student ID: z3288185

A. **Problem statement**

Development of High Dynamics GNSS receivers are vital for reducing the financial
burden of spaceflight. Accurate guidance can significantly reduce the fuel burn
Required, and helps ensure the safety of the crew. Unfortunately, high dynamics
significantly challenges the existing NAMURU GNSS receiver due to the stresses
placed up the tracking loops.

B. Objective

Improve the breaking point of the NAMURU receiver
Reduce the phase jitter of the NAMURU receiver
Develop a better understanding of the operation of the receiver
Simulate Launch and Re-Entry, ensuring reliable operation

C. My solution

Use a Monte Carlo simulation to identify significantly better settings to use
Analytically develop a value for the phase jitter due to vibration
Demonstrated operation during launch and re-entry using a GNSS simulator

D. **Contributions** (at most one per line, most important first)

E. Suggestions for future work

Further analysis of discrepancy between phase jitter and loop bandwidths
Measurement of Vibration errors using shaker-table
Implement changes in receiver

While I may have benefited from discussion with other people, I certify that this thesis is entirely my own work, except where appropriately documented acknowledgements are included.

Signature: Cameron Cooke Date: 29 October 2015

Thesis Pointers

List relevant page numbers in the column on the left. Be precise and selective: Don't list all pages of your thesis!

22	Problem Statement
22	Objective

Theory (up to 5 most relevant ideas)

34	PLL
101	Dynamics
38	Tracking loops
25	GNSS receivers

Method of solution (up to 5 most relevant points)

61	Novel method for identifying optimum PLL bandwidth
80	Monte-Carlo simulation
52	Developing Laplace domain model
52	Identifying that PLL/FLL is actually PLL

Contributions (most important first)

61	Novel method for identifying optimum PLL bandwidth
80	Monte-Carlo simulation
83	Validating software simulation with hardware performance
52	Developing Laplace domain model
52	Identifying that PLL/FLL is actually PLL

My work

45	System block diagrams/algorithms/equations solved
	Description of assessment criteria used
75	Description of procedure (e.g. for experiments)

Results

83	Succinct presentation of results
92	Analysis
92	Significance of results

Conclusion

95	Statement of whether the outcomes met the objectives
95	Suggestions for future research

Literature: (up to 5 most important references)

Ward	Phillip W Ward. Performance comparisons		
	between fll, pll and a novel fll-assisted-pll		
	carrier tracking loop under rf interference		
	conditions. In Proceedings of the 11th		
	International Technical Meeting of the		
	Satellite Division of The Institute of		
	Navigation, pages 783–795, 1998.		

Kaplan	Elliott Kaplan and Christopher Hegarty.		
	Understanding GPS: principles and		
	applications. Artech house, 2005.		
Kazemi	Pejman Lotfali Kazemi. Development of new		
	filter and tracking schemes for weak gps		
	signal tracking. Calgary, Alberta. Canada,		
	University of Calgary. Department of		
	Geomatics Engineering, 2010.		
Gardner	Floyd M Gardner. Phaselock techniques. John		
	Wiley & Sons, 2005		