AnáliseEE / MIENGBIOM

Lisa Santos

Linhas e superfícies de nível

Linhas e superfícies de nível

Sejam U um aberto de \mathbb{R}^n e $f:U\to\mathbb{R}$ uma função. Ao conjunto

$$\Sigma_c = \{ X \in U : f(X) = c \}$$

chamamos superfície de nível c de f, se n=3 ou linha de nível c de f, se n=2.

Suponhamos que $X_0 \in U$ e f é derivável numa vizinhança de X_0 . Se $\nabla f(X_0) \neq \mathbf{0}$ então

$$\nabla f(X_0) \perp \Sigma_c$$
.

De facto, se I é um intervalo e $\gamma:I\to\mathbb{R}^n$ é uma curva tal que $\gamma(t)\in\Sigma_c$, para todo o $t\in I$ e $\gamma(t_0)=X_0$ então

$$\forall t \in I \quad f(\gamma(t)) = c.$$

Como o segundo membro é constante, derivando, obtemos

$$\forall t \in I \quad \nabla f(\gamma(t)) \cdot \gamma'(t) = 0,$$

concluindo que

$$\nabla f(X_0) \cdot \gamma'(t_0) = 0.$$

Reta normal e plano tangente a Σ_c

Como, dado $X_0 \in \Sigma_c$, se verifica que

$$\nabla f(X_0) \perp \Sigma_c$$

então a equação vetorial da reta normal a Σ_c que passa em X_0 pode ser expressa por

$$X = X_0 + \lambda \nabla f(X_0) \qquad \forall \lambda \in \mathbb{R}.$$

A equação cartesiana do plano tangente a Σ_c em X_0 pode ser calculada do seguinte modo:

$$\nabla f(X_0) \cdot (X - X_0) = 0.$$

Plano tangente a Σ_c

Dado um vetor (a,b,c) não nulo, a equação cartesiana do plano ortogonal ao vetor (a,b,c) que passa no ponto (x_0,y_0,z_0) é dada por

$$ax + by + cz = d$$

sendo $d = ax_0 + by_0 + cz_0$.

Dado $X_0=(x_0,y_0,z_0)\in \Sigma_c$, uma vez que o vetor $\nabla f(X_0)$ é ortogonal ao plano tangente a Σ_c nesse ponto, então a equação cartesiana do plano tangente a Σ_c em X_0 é

$$\frac{\partial f}{\partial x}(X_0)x + \frac{\partial f}{\partial y}(X_0)y + \frac{\partial f}{\partial z}(X_0)z = \frac{\partial f}{\partial x}(X_0)x_0 + \frac{\partial f}{\partial y}(X_0)y_0 + \frac{\partial f}{\partial z}(X_0)z_0.$$