CSU – RAMS – SCM

Comprehensive Variable List

This document contains single-column-model (SCM) information and the full list of input/output variables that RAMS microphysics-radiation-aerosol SCM requires and produces.

Prepared by:

Stephen Saleeby
Department of Atmospheric Science
Colorado State University

Last updated: 6 August, 2021

Getting Started

- 1. Unpack the RAMS SCM code.
- 2. The SCM driver program is named "main.f90". The primary code sits within the directory named something like "6.3.02". The primary code directory structure mimics the RAMS directory tree.
- 2. Alter the "Makefile" section "Include Definitions" to have correct paths and same compiler and compiler flags as RAMS. Type "make" to compile the code. The executable will be something like "rams-6.3.02"
- 3. Alter the default name-list "RAMSIN" to your specifications. Most of the flags are the same as in the RAMS name-list, so please consult the RAMS name-list documentation if you need help. Flags custom to the SCM have comments in the SCM name-list. The name-list must be named "RAMSIN".
- 4. By default, the SCM reads input files from directory "scm.in" and writes to directory "scm.out". To run the full (non-customized) SCM you need the "scm.in" single-column text files that are generated from RAMS as discussed below. If you already have these input files in the "scm.in" directory and you have created the output directory "scm.out", then you can run the SCM by running the executable. Text format output files should be created in the "scm.out" directory. If you run for more than 1 time step, the files are appended over time.
- 5. A set of directories with input/output files for testing are included in the SCM package ("scm.in.test" and "scm.out.test") so that you can test the code with the default RAMSIN namelist file. These test directories contain the initial column data before and after a physics time step from a single column in a RAMS supercell simulation at a particular time step. Copy the files from "scm.in.test" to "scm.in". The "scm.out" directory should be initially empty (the SCM code will automatically remove any old files in "scm.out"). After you compile and run the SCM, you will see output in the "scm.out" directory. This will contain the variables updated after 1 time step (unless you specify more time steps in RAMSIN). You can compare the files from input and output to see how things have changed within a single physics time step by running the bash script as "z.diff.sc 1". You can compare your test output in "scm.out" to that in "scm.out.test" to see how your results compare to the default test output by running the bash script as "z.diff.sc 2 scm.out scm.out.test". (Use of a different compiler will likely give slightly different results.)

Introduction

a. The RAMS SCM stand-alone model runs the RAMS aerosol, Harrington radiation, and microphysics packages. The SCM must be fed a number of required input fields as text format single column files, runs the single column physics, and then outputs updated fields each time-step as new appended text files. The main RAMS model has name-list flags that can be used to generate the text files that drive the SCM. When turned on, the user chooses what time and which I,J (X,Y) column is output to the text files. A different file is generated for each needed

variable such as "up.txt", "wp.txt", "theta.txt", "cccnp.txt", etc. Each file contains data for the single chosen column. RAMS produces the text files before the calls to physics into directory "scm.in" and then produces a set of files after all the physics calls into directory "scm.out". By doing this, one can compare the variable columns before and after the chosen time step. Also, the output text files can be used to verify that RAMS and the SCM produce the same physics results. The user needs to make sure the directories "scm.in" and "scm.out" are present in the runtime RAMS directory.

- b. There is no feedback from the microphysics to the dynamics (UP, VP, WP, PP) or total water field (RTP), but the radiation and physics does update the temperature (THP, THETA) due to radiative heating and latent heating/cooling, and RTP is updated due to sedimentation only. The physics will update hydrometeor mixing ratios and diagnose water vapor (RV), but these must remain in balance with total water (RTP). This means that running the SCM for multiple time steps without feedbacks will limit some applications. The SCM is physics only; no vertical transport occurs, but hydrometeor sedimentation allows particles to fall. The SCM can be run multiple time steps for testing physics, such as sedimentation, but the user must anticipate which testing applications will have limitations due to lack of feedbacks.
- c. The SCM name-list "RAMSIN" has flags that allow the user to turn microphysics processes on and off for testing purposes. The user is responsible for understanding the implications of turning some processes on and off. For example, if you turn off everything but sedimentation and but still have NaN checking turned on, then you may end up crashing the model since RTP, RV, and hydrometeor mixing ratios may get unbalanced. But in this example, you do not care about RTP and RV; your focus is on falling hydrometeors only which do not need information on RTP or RV.

Specific Details

- 1. Note that in the variable list below, the variables labeled as "INPUT" need to be passed to the SCM physics if interfaced to another parent model or read in via text format single column files if using SCM as a stand-alone physics model. As discussed above, the main RAMS model can be used to generate the input text files for driving the SCM. (Some caveats to this are explained below.)
- 2. For the pressure variable, RAMS initializes with PI0 and PP, but there is a flag in the namelist and code to input PRESSURE (rather than PI0 and PP) if that is what is available from the parent model. This associated RAMSIN name-list variable is IPRESS.
- 3. For the temperature variable, RAMS initializes and prognoses with THP, but there is a flag in the name-list and code to input THETA (rather than THP) if that is what is available from the parent model. However, THETA and THP are equal at time=0 when no condensate exists. So, THP will become the prognostic variable since it is required within the RAMS microphysics, and the model will diagnose THETA from updated THP. The associated RAMSIN name-list variable is ITHETA.

- 4. For the moisture variable, RAMS initializes and prognoses with RTP, but there is a flag in the name-list and code to input RV (rather than RTP) if that is what is available from the parent model. However, RTP and RV are equal at time=0 when no condensate (liquid or ice) exists. So, RTP will become the prognostic variable since it is required within the RAMS microphysics, and the model will diagnose RV from updated RTP and prognostic condensate mixing ratios. The associated RAMSIN name-list variable is IRV.
- 5. The remainder of the non-input variables that are custom to RAMS physics are dynamically allocated with their given names as at the beginning of the SCM code. The SCM is set up to be able to be called separately for each column by a parent model. It could be adapted to run over a parallel-subdomain in the horizontal as is done in the main RAMS model. Variables are currently set up as 3D variables (z,x,y), as is done in RAMS, but with x=y=1, and z varies with the number of vertical levels.
- 6. The vertical coordinate is a sigma-Z coordinate. This is absolutely required in the RAMS physics for hydrometeor sedimentation. Model levels heights are also used in several other areas of the physics including radiation, dust/sea-salt lofting, and aerosol deposition. These physics packages are designed around a sigma-Z coordinate. The sigma-Z coordinate is terrain following by definition; however, over terrain, an adjustment is made to squeeze the layers together so that the model top level is flat. This requires input of topography on T (scalar) levels (Arakawa-C type vertical grid stagger).
- 7. To customize the input for the SCM you can add your own routines as needed or use the subroutine "init_custom" in file "micro/mic_init_scm.f90". For example, you could input a specified rain mixing ratio and number concentration for a single grid cell, turn off everything but sedimentation in the name-list, and run sedimentation for many time steps and see the progression of rain mixing ratio and number concentration over time as drops fall through the column. In this example, many of the input files would not be needed (such as U,V,W, etc), but the user needs to consider these sorts of things before proceeding.

SEE THE VARIABLE LIST BELOW

RAMS Variables				
ASCII Name	dimensions	units	Description	
	(5) INPUT GR	ID AND TOP	POGRAPHY	
GLAT	nx,ny	deg	(INPUT) Latitude	
GLON	nx,ny	deg	(INPUT) Longitude	
ZT	nz	m	(INPUT) Vertical grid point	
			elevation above ground on	
			vertical staggered scalar T-grid	
ZM	nz	m	(INPUT) Vertical grid point	
			elevation above ground on	
			vertical staggered M-grid	
TOPT	nx,ny	m	(INPUT) topography height at	
			scalar grid point	

	(11) DYNAMICS & THERMODYNAMICS			
PIO	nx,ny,nz	J/(kg*K)	(INPUT) Base state PI = Exner function * Cp, where Exner- function = T/Θ = (p/p00)^(Rd/Cp)	
PP	nx,ny,nz	J/(kg*K)	(INPUT) Past perturbation Exner function (PI-prime)	
PRESSURE	nx,ny,nz	Pa	(INPUT) Air pressure	
UP	nx,ny,nz	m/s	(INPUT) Past U (zonal) wind component	
VP	nx,ny,nz	m/s	(INPUT) Past V (meridional) wind component	
WP	nx,ny,nz	m/s	(INPUT) Past W (vertical) wind component	
ТНР	nx,ny,nz	K	(INPUT) Theta-IL, ice-liquid potential temperature	
RTP	nx,ny,nz	kg/kg	(INPUT) Total water mixing ratio (water vapor + condensate) (prognostic variable)	
THETA	nx,ny,nz	K	(INPUT) Potential temperature	
RV	nx,ny,nz	kg/kg	(INPUT) Water vapor mixing ratio	
DN0	nx,ny,nz	kg/m^3	(INPUT) reference state air density	

(4) SURFACE CHARACTERISTICS					
(Th	(There are 2 surface patches: 1=water/ocean, 2=land)				
LEAF_CLASS nx,ny,np # (INPUT) vegetation class					
PATCH_AREA	PATCH_AREA nx,ny,np fraction (INPUT) patch fractional area				
SOIL_WATER nx,ny,nzg,np m^3/m^3 (INPUT) volumetric soil					
moisture					
SOIL_TEXT	nx,ny,np	#	(INPUT) soil textural class		

(19) HYDROMETEOR MIXING RATIOS, NUMBER			
	CONCEN	TRATION, E	NERGY
RCP	nx,ny,nz	kg/kg	cloud mixing ratio
RDP	nx,ny,nz	kg/kg	drizzle mixing ratio
RRP	nx,ny,nz	kg/kg	rain mixing ratio
RPP	nx,ny,nz	kg/kg	pristine ice mixing ratio
RSP	nx,ny,nz	kg/kg	snow mixing ratio
RAP	nx,ny,nz	kg/kg	aggregates mixing ratio
RGP	nx,ny,nz	kg/kg	graupel mixing ratio
RHP	nx,ny,nz	kg/kg	hail mixing ratio
CCP	nx,ny,nz	#/kg	cloud droplet number
			concentration
CDP	nx,ny,nz	#/kg	drizzle droplet number
			concentration
CRP	nx,ny,nz	#/kg	rain drop number
			concentration
CPP	nx,ny,nz	#/kg	pristine ice particle number
			concentration
CSP	nx,ny,nz	#/kg	snow particle number
			concentration
CAP	nx,ny,nz	#/kg	aggregates number
			concentration
CGP	nx,ny,nz	#/kg	graupel particle number
			concentration
CHP	nx,ny,nz	#/kg	hailstone number
			concentration
Q2	nx,ny,nz	J/kg	rain internal energy
Q6	nx,ny,nz	J/kg	graupel internal energy
Q7	nx,ny,nz	J/kg	hail internal energy

(24) AEROSOLS MASS MIXING RATIOS AND					
NUMBER CONCENTRATION					
CCCNP	nx,ny,nz	#/kg	ccn number concentration		
GCCNP nx,ny,nz #/kg gccn number concentration					
DUSTFRAC	, ,, , , , , , , , , , , , , , , , , , ,				

MD1NP	nx,ny,nz	#/kg	sub-micron dust number
I I I I I I I I I I I I I I I I I I I	1121,113,112	"/**8	concentration
MD2NP	nx,ny,nz	#/kg	super-micron dust number
		,8	concentration
ABC1NP	nx,ny,nz	#/kg	Absorbing carbon (1% BC,
		,8	99% OC) number
			concentration
ABC2NP	nx,ny,nz	#/kg	Absorbing carbon (2% BC,
		,8	98% OC) number
			concentration
SALT_FILM_NP	nx,ny,nz	#/kg	sea-salt film drop number
		, 8	concentration
SALT_JET_NP	nx,ny,nz	#/kg	sea-salt jet drop number
-, -		, 8	concentration
SALT_SPUM_NP	nx,ny,nz	#/kg	sea-salt spume drop number
		, 0	concentration
REGEN_AERO1_NP	nx,ny,nz	#/kg	sub-micron regenerated
		, 3	aerosol number concentration
REGEN_AERO2_NP	nx,ny,nz	#/kg	super-micron regenerated
			aerosol number concentration
CCCMP	nx,ny,nz	kg/kg	ccn mass mixing ratio
GCCMP	nx,ny,nz	kg/kg	gccn mass mixing ratio
MD1MP	nx,ny,nz	kg/kg	sub-micron dust mass mixing
			ratio
MD2MP	nx,ny,nz	kg/kg	super-micron dust mass
			mixing ratio
ABC1MP	nx,ny,nz	#/kg	Absorbing carbon (1% BC,
			99% OC) mass mixing ratio
ABC2MP	nx,ny,nz	#/kg	Absorbing carbon (2% BC,
			98% OC) mass mixing ratio
SALT_FILM_MP	nx,ny,nz	kg/kg	sea-salt film drop mass mixing
			ratio
SALT_JET_MP	nx,ny,nz	kg/kg	sea-salt jet drop mass mixing
			ratio
SALT_SPUM_MP	nx,ny,nz	kg/kg	sea-salt spume drop mass
			mixing ratio
REGEN_AERO1_MP	nx,ny,nz	kg/kg	sub-micron regenerated
			aerosol mass mixing ratio
REGEN_AERO2_MP	nx,ny,nz	kg/kg	super-micron regenerated
			aerosol mass mixing ratio
CIFNP	nx,ny,nz	#/kg	ice nuclei number
			concentration (Meyers,
			DeMott-limited schemes)

	(38) Al	EROSOLS T	RACKING
IFNNUCP	nx,ny,nz	#/kg	ice nuclei already nucleated
IMMERCP	nx,ny,nz	#/kg	ice nuclei within cloud droplets
IMMERDP	nx,ny,nz	#/kg	ice nuclei within drizzle
			droplets
IMMERRP	nx,ny,nz	#/kg	ice nuclei within rain droplets
CNMCP	nx,ny,nz	kg/kg	total aerosol mass within cloud
			droplets
CNMDP	nx,ny,nz	kg/kg	total aerosol mass within
			drizzle
CNMRP	nx,ny,nz	kg/kg	total aerosol mass within rain
CNMPP	nx,ny,nz	kg/kg	total aerosol mass within
			pristine ice
CNMSP	nx,ny,nz	kg/kg	total aerosol mass within snow
CNMAP	nx,ny,nz	kg/kg	total aerosol mass within
			aggregates
CNMGP	nx,ny,nz	kg/kg	total aerosol mass within
			graupel
CNMHP	nx,ny,nz	kg/kg	total aerosol mass within hail
DNMCP	nx,ny,nz	kg/kg	total dust mass within cloud
			droplets
DNMDP	nx,ny,nz	kg/kg	total dust mass within dizzle
DNMRP	nx,ny,nz	kg/kg	total dust mass within rain
DNMPP	nx,ny,nz	kg/kg	total dust mass within pristine
DUILOR		1 (1	ice
DNMSP	nx,ny,nz	kg/kg	total dust mass within snow
DNMAP	nx,ny,nz	kg/kg	total dust mass within
DAIMCD		1 /1	aggregates
DNMGP	nx,ny,nz	kg/kg	total dust mass within graupel
DNMHP	nx,ny,nz	kg/kg	total dust mass within hail
DINCP	nx,ny,nz	kg/kg	dust mass within cloud
DINDD	**********	lva /lva	droplets via ice nucleation dust mass within dizzle via ice
DINDP	nx,ny,nz	kg/kg	nucleation
DINRP	ny ny ng	lza /lza	dust mass within rain via ice
DINKP	nx,ny,nz	kg/kg	nucleation
DINPP	ny ny nz	kg/kg	dust mass within pristine ice
DINIT	nx,ny,nz	ng/ng	via ice nucleation
DINSP	nx,ny,nz	kg/kg	dust mass within snow via ice
DINOI	IIA,IIY,IIL	15/ 15	nucleation
DINAP	nx,ny,nz	kg/kg	dust mass within aggregates
DIMI	IIA,IIY,IIL	15/ 15	via ice nucleation
DINGP	nx,ny,nz	kg/kg	dust mass within graupel via
Ziiidi	1123,119,112	**6/ **6	ice nucleation

DINHP	nx,ny,nz	kg/kg	dust mass within hail via ice
			nucleation
SNMCP	nx,ny,nz	kg/kg	total soluble aerosol mass
	_		within cloud droplets
SNMDP	nx,ny,nz	kg/kg	total soluble aerosol mass
			within dizzle
SNMRP	nx,ny,nz	kg/kg	total soluble aerosol mass
			within rain
SNMPP	nx,ny,nz	kg/kg	total soluble aerosol mass
			within pristine ice
SNMSP	nx,ny,nz	kg/kg	total soluble aerosol mass
			within snow
SNMAP	nx,ny,nz	kg/kg	total soluble aerosol mass
			within aggregates
SNMGP	nx,ny,nz	kg/kg	total soluble aerosol mass
			within graupel
SNMHP	nx,ny,nz	kg/kg	total soluble aerosol mass
			within hail
RESOL_AERO1_MP	nx,ny,nz	kg/kg	sub-micron regenerated
			aerosol soluble mass mixing
			ratio
RESOL_AERO2_MP	nx,ny,nz	kg/kg	super-micron regenerated
			aerosol soluble mass mixing
			ratio

	(28) PRECIPITATION				
PCPVR	nx,ny,nz	kg/m^2/s	rain precipitation rate (3D)		
PCPVP	nx,ny,nz	kg/m^2/s	pristine ice precipitation rate (3D)		
PCPVS	nx,ny,nz	kg/m^2/s	snow precipitation rate (3D)		
PCPVA	nx,ny,nz	kg/m^2/s	aggregates precipitation rate (3D)		
PCPVG	nx,ny,nz	kg/m^2/s	graupel precipitation rate (3D)		
PCPVH	nx,ny,nz	kg/m^2/s	hail precipitation rate (3D)		
PCPVD	nx,ny,nz	kg/m^2/s	drizzle precipitation rate (3D)		
PCPRR	nx,ny	kg/m^2/s	surface rain precipitation rate		
PCPRP	nx,ny	kg/m^2/s	surface pristine ice precipitation rate		
PCPRS	nx,ny	kg/m^2/s	surface snow precipitation rate		
PCPRA	nx,ny	kg/m^2/s	surface aggregates precipitation rate		
PCPRG	nx,ny	kg/m^2/s	surface graupel precipitation rate		
PCPRH	nx,ny	kg/m^2/s	surface hail precipitation rate		

PCPRD	nx,ny	kg/m^2/s	surface drizzle precipitation
			rate
ACCPR	nx,ny	kg/m^2	accumulated rain over the
			course of the simulation
ACCPP	nx,ny	kg/m^2	accumulated pristine ice over
			the course of the simulation
ACCPS	nx,ny	kg/m^2	accumulated snow over the
			course of the simulation
ACCPA	nx,ny	kg/m^2	accumulated aggregates over
AGGRG		1 / 10	the course of the simulation
ACCPG	nx,ny	kg/m^2	accumulated graupel over the
ACCIDIT		1 / 40	course of the simulation
АССРН	nx,ny	kg/m^2	accumulated hail over the
ACCDD		1 / A 2	course of the simulation
ACCPD	nx,ny	kg/m^2	accumulated drizzle over the course of the simulation
PCPG	ny ny	lra/m A2	
PCPG	nx,ny	kg/m^2	microphysics precipitation per timestep (for water, kg/m ² =
			mm), Used by LEAF/SIB surface
			models
QPCPG	nx,ny	J/m^2	microphysics precipitation
Q1 G1 G	1121,111,), III =	energy per timestep, Used by
			LEAF surface model
DPCPG	nx,ny	m	microphysics precipitation
	. ,		depth per timestep, Used by
			LEAF surface model
ACCPDUST	nx,ny	kg/m^2	surface accumulated mass of
			aerosols identified as dust (via
			nucleation and wet
			scavenging)
ACCPAERO	nx,ny	kg/m^2	Total surface accumulated
			mass of aerosols (via
			nucleation and wet
			scavenging)
PCPRDUST	nx,ny	kg/m^2/s	surface accumulation rate of
			aerosols identified as dust (via
			nucleation and wet
DCDD A ED C		1 / 40 /	scavenging)
PCPRAERO	nx,ny	kg/m^2/s	Total surface accumulation
			rate of aerosols (via nucleation
			and wet scavenging)

(11) RADIATION			
FTHRD	nx,ny,nz	K/s	radiative heating rate
BEXT	nx,ny,nz	km	visibility

SWUP	nx,ny,nz	W/m^2	upwelling shortwave radiation
SWDN	nx,ny,nz	W/m^2	downwelling shortwave
			radiation
LWUP	nx,ny,nz	W/m^2	upwelling longwave radiation
LWDN	nx,ny,nz	W/m^2	downwelling longwave
			radiation
RSHORT	nx,ny	W/m^2	surface downwelling
			shortwave radiation
RLONG	nx,ny	W/m^2	surface downwelling longwave
			radiation
RLONGUP	nx,ny	W/m^2	(INPUT) surface upwelling
			longwave radiation
AODT	nx,ny	unitless	Aerosol optical depth in visible
			radiation band-3
ALBEDT	nx,ny	fraction	(INPUT) surface albedo

(14) BUDGET VARIABLES for IMBUDGET >=1

All budgets are accumulated (Total) values unless otherwise noted as being instantaneous values. Accumulated budgets are summed each timestep between analysis (A) output file writes and then reset. They are not reset for LITE or MEAN file outputs. "Total" budgets end with a "T". Instantaneous budgets have the same name but without the "T".

LATHEATVAPT	nx,ny,nz	d0 or dT	change in (T or Θ) due to vapor
			diffusion and cloud & ice
			nucleation
LATHEATFRZT	nx,ny,nz	d0 or dT	change in (T or Θ) due to
			collision-coalescence and
			melting routines
LATHEATVAP	nx,ny,nz	d0 or dT	Instantaneous / single
			timestep (T or Θ) due to vapor
			diffusion and cloud & ice
			nucleation
LATHEATFRZ	nx,ny,nz	d0 or dT	Instantaneous / single
			timestep (T or Θ) due to
			collision-coalescence and
			melting routines
NUCCLDRT	nx,ny,nz	kg/kg	nucleation of cloud and drizzle
			water mixing ratio
NUCICERT	nx,ny,nz	kg/kg	nucleation of pristine ice
	-		mixing ratio from all
			nucleation mechanisms

VAPLIQT	nx,ny,nz	kg/kg	vapor deposition summed for all liquid hydrometeor species (this can be + or - depending on growth or evaporation)
VAPICET	nx,ny,nz	kg/kg	vapor deposition summed for all ice hydrometeor species (this can be + or - depending on growth or evaporation)
MELTICET	nx,ny,nz	kg/kg	melting of all ice species in melting routine (these are the category mass transfers due to melting)
CLD2RAINT	nx,ny,nz	kg/kg	cloud water transferred to rain via collection
RIMECLDT	nx,ny,nz	kg/kg	cloud water collected by all ice species (rcx values; see mic_coll.f90) (mass transfer from cloud)
RAIN2ICET	nx,ny,nz	kg/kg	rain water collected by ice species (rcx values; see mic_coll.f90) (mass transfer from rain)
ICE2RAINT	nx,ny,nz	kg/kg	ice melting due to collection of rain (rcy values; see mic_coll.f90) (mass transfer ice to rain)
AGGREGATET	nx,ny,nz	kg/kg	ice amount transferred to aggregates via collection

(29) BUDGET VARIABLES for IMBUDGET >=2

All budgets are accumulated (Total) values unless otherwise noted as being instantaneous values. Accumulated budgets are summed each timestep between analysis (A) output file writes and then reset. They are not reset for LITE or MEAN file outputs. "Total" budgets end with a "T".

INUCHOMRT	nx,ny,nz	kg/kg	homogeneous droplet freezing ice nucleation
INUCCONTRT	nx,ny,nz	kg/kg	contact freezing ice nucleation
INUCIFNRT	nx,ny,nz	kg/kg	condensation/immersion freezing ice nucleation from ice nuclei
INUCHAZRT	nx,ny,nz	kg/kg	haze droplet nucleation tied to aerosol concentration
VAPCLDT	nx,ny,nz	kg/kg	vapor diffusion / evaporation on cloud droplets
VAPRAINT	nx,ny,nz	kg/kg	vapor diffusion / evaporation on

			rain
VAPPRIST	nx,ny,nz	kg/kg	vapor diffusion / evaporation on
VIII I 1110 I	1121,114,112	1.8/ 1.8	pristine ice
VAPSNOWT	nx,ny,nz	kg/kg	vapor diffusion / evaporation on
VIII SINO W I	IIX,IIY,IIZ	N6/ N6	snow
VAPAGGRT	nx,ny,nz	kg/kg	vapor diffusion / evaporation on
VALAGGET	IIA,IIY,IIZ	Ng/ Ng	aggregates
VAPGRAUT	nx,ny,nz	kg/kg	vapor diffusion / evaporation on
VALUIMOI	IIX,IIY,IIZ	Ng/ Ng	graupel
VAPHAILT	nx,ny,nz	kg/kg	vapor diffusion / evaporation on
VALUALLI	IIA,IIY,IIZ	Ng/ Ng	hail
VAPDRIZT	nx,ny,nz	kg/kg	vapor diffusion / evaporation on
VALDKIZI	IIX,IIY,IIZ	Ng/Ng	drizzle droplets
MELTPRIST	ny ny nz	kg/kg	mass transfer from pristine ice
MELIFRISI	nx,ny,nz	Kg/Kg	due to melting
MELTSNOWT	ny ny nz	kg/kg	mass transfer from snow due to
MELISNOWI	nx,ny,nz	Kg/Kg	
MELTAGGRT	NV NV NZ	lra /lra	melting
MELIAGGRI	nx,ny,nz	kg/kg	mass transfer from aggregates
MELTGRAUT		lva /lva	due to melting
MELIGRAUI	nx,ny,nz	kg/kg	mass transfer from graupel due
		1 /1	to melting
MELTHAILT	nx,ny,nz	kg/kg	mass transfer from hail due to
DIMECI DONOME		1/1	melting
RIMECLDSNOWT	nx,ny,nz	kg/kg	mass transfer from cloud due to
DIMECI DACCDE		1/1	riming by snow
RIMECLDAGGRT	nx,ny,nz	kg/kg	mass transfer from cloud due to
DIMEGI DODAHII		1 /1	riming by aggregates
RIMECLDGRAUT	nx,ny,nz	kg/kg	mass transfer from cloud due to
DIMEGLEUM		1 /1	riming by graupel
RIMECLDHAILT	nx,ny,nz	kg/kg	mass transfer from cloud due to
D A INIODDE		1 /1	riming by hail
RAIN2PRT	nx,ny,nz	kg/kg	mass transfer from rain due to
DAINGCNE		1 /1	collisions with pristine ice
RAIN2SNT	nx,ny,nz	kg/kg	mass transfer from rain due to
DAINO A CE		1 /1	collisions with snow
RAIN2AGT	nx,ny,nz	kg/kg	mass transfer from rain due to
DAING CDT		1	collisions with aggregates
RAIN2GRT	nx,ny,nz	kg/kg	mass transfer from rain due to
DAINOMAT		1 /1	collisions with graupel
RAIN2HAT	nx,ny,nz	kg/kg	mass transfer from rain due to
10000000000000000000000000000000000000			collisions with hail
AGGRSELFPRIST	nx,ny,nz	kg/kg	mass transfer to aggregates due
			to pristine ice self-collection
AGGRSELFSNOWT	nx,ny,nz	kg/kg	mass transfer to aggregates due
			to snow self-collection

AGGRPRISSNOWT	nx,ny,nz	kg/kg	mass transfer to aggregates due
			to pristine ice / snow collisions

(4) BUDGET VARIABLES for IMBUDGET >=3

All budgets are accumulated (Total) values unless otherwise noted as being instantaneous values. Accumulated budgets are summed each timestep between analysis (A) output file writes and then reset. They are not reset for LITE or MEAN file outputs. "Total" budgets end with a "T".

DUST1CLDRT	nx,ny,nz	kg/kg	nucleation of cloud droplet
			mixing ratio from dust mode 1
DUST2CLDRT	nx,ny,nz	kg/kg	nucleation of cloud droplet
			mixing ratio from dust mode 2
DUST1DRZRT	nx,ny,nz	kg/kg	nucleation of drizzle droplet
			mixing ratio from dust mode 1
DUST2DRZRT	nx,ny,nz	kg/kg	nucleation of drizzle droplet
	-		mixing ratio from dust mode 2