Model Identification and Data Analysis

Matteo Secco June 29, 2021

Contents

Ι	Prediction	6
1	Probability Recall 1.1 Random Vectors	6 6 6
2	Spectral Analysis2.1 Foundamentals	8 8 8 9
3	$\begin{array}{llllllllllllllllllllllllllllllllllll$	10 10 11 11 12
4 5	Auto Regressive Processes 4.1 AR(1)	13 13 14 16
6	Prediction problem 6.1 Fake problem	17 17 17 18 18
11 7	Identification Prediction Error Minimization	19 20
II		21
A	State-space models A.1 State-space representation	21 21 21 22

В	Converting representations one to another	23
	B.1 State space to Transfer function	23
	B.2 Transfer Function to State Space	23
	B.3 Transfer function to Impulse response	23
	B.4 Impulse response to Tranfer function	23
	B.5 State space to Impulse response	24
\mathbf{C}	Controllability and Observability	25
D	Hankel Matrix	26
\mathbf{E}	Subspace-based State Space System Identification	27
	E.1 Obtain F, G, H from a noise-free IR	27
\mathbf{F}	Obtain F, G, H from a noisy IR	28
IV	Parametric black-box system identification using free	quency
do	omain approach	2 9
\mathbf{G}	Experiment design and data pre-processing	29
Н	Model class selection	31
Ι	Performance index	32
J	Optimization	33
. .		0.4
\mathbf{V}	Kalman filter	34
\mathbf{K}	Motivations and Goals	35
	K.1 Kalman on Basic Systems	35
	K.2 Exogenous input	36
	K.3 Multi-step prediction	37
	K.4 Filter $(\hat{x}(t t) \dots \dots$	37
	K.5 Time-varying systems	37
	K.6 Non linear system	37
${f L}$	Asymptotic solution of K.F.	38
	L.1 Basic idea	38
	L.2 Existence of \overline{K}	38
	L.2.1 First asymptotic theorem	38
	L.2.2 Second asymptotic theorem	39
\mathbf{M}	Extension to non-linear systems	40

N	Optimization of gain K	41
	N.1 Direct solution	. 41
	N.2 KF theory solution	. 41
\mathbf{V}	I Software-sensing with Blabk box Methods	43
O	Linear Time Invariant Systems	44
•	Differ Time invariant Systems	
P	Non-linear systems	45
	P.1 Recurrent neural network	
	P.2 FIR architecture	. 45
\mathbf{Q}	IRR scheme	48
R.	Physical regressors	49
V	II Grey-box System Identification	50
•	II drey box system identification	00
\mathbf{S}	Using Kalman Filter	50
	S.1 Problem definition	
	S.2 State extension	
	S.3 Design choice	
	S.4 Applicability	. 51
${f T}$	Simulation Error Method	52
	T.1 Dataset	. 52
	T.2 Model	. 52
	T.3 Performance index	
	T.4 Optimization	
	T.5 Limitations	. 52
T 7	III Minimum Variance Control	E 1
V	III Minimum variance Control	54
ΙΣ	K Recursive Identification	55
X	Cheatsheet	56
U	Probability Recall	56
\mathbf{V}	Spectral analysis	57
W	Moving Average MA(n)	58
	W.1 MA(∞)	. 58

X	Auto Regressive AR(n)	5 9
\mathbf{Y}	Known predictors	60

Part I

Prediction

1 Probability Recall

1.1 Random Vectors

Variance $Var[v] = E[(v - E[v])^2]$

Cross-Variance Var[v, u] = E[(v - E[v])(u - E[u])]

 $\begin{array}{ll} \textbf{Covariance coefficient} & \delta[i,j] = \frac{Var[i,j]}{\sqrt{Var[i]}} \\ \delta[i,j] = 0 \implies \text{i, j uncorrelated} \\ |\delta[i,j]| = 1 \implies i = \alpha j \end{array}$

1.2 Random processes

v(t,s) t time instant, s expetiment outcome (generally given)

Mean m(t) = E[v(t,s)]

 ${\bf Variance} \quad \lambda^2(t) = Var[v(t)]$

 $\textbf{Covariance function} \quad \gamma(t_1,t_2) = E[(v(t_1)-m(t_1))(v(t_2)-m(t_2))] = \gamma(t_2,t_1)$

Normalized Covariance Function $\rho(\tau) = \frac{\gamma(\tau)}{\gamma(0)}$ \forall stationary processes: $|\rho(\tau)| \le 1 \quad \forall \tau$

1.3 Important process classes

Stationary process

- m(t) = m constant
- $\lambda^2(t) = \lambda^2 \text{ constant}$
- $\gamma(t_1, t_2) = f(t_2 t_1) = \gamma(\tau)$ covariance depends only on time difference τ $|\gamma(\tau)| \le \gamma(0) \quad \forall \tau$

White noise $\eta(t) \sim WN(m, \lambda^2)$

- Stationary process
- $\gamma(\tau) = 0 \quad \forall \tau \neq 0$

$$v(t) = \alpha \eta(t) + \beta \quad \eta(t) \sim WN(0, \lambda^2) \qquad \implies \qquad v(t) \sim WN(\beta, \alpha^2 \lambda^2)$$

2 Spectral Analysis

2.1 Foundamentals

Spectrum

$$\Gamma(\omega) = \overbrace{F(\gamma(\tau))}^{\text{Fourier transform}} = \sum_{\tau = -\infty}^{+\infty} \gamma(\tau) \cdot e^{-j\omega\tau}$$

Euler formula $\Gamma(\omega) = \gamma(0) + 2cos(\omega)\gamma(1) + 2cos(2\omega)\gamma(2) + \dots$

Spectrum properties

- $\Gamma: \mathbb{R} \to \mathbb{R}$
- Γ is periodic with $T=2\pi$
- Γ is even $[\Gamma(-\omega) = \Gamma(\omega)]$
- $\Gamma(\omega) \ge 0 \quad \forall \omega$

$$\eta(t) \sim WN(0, \lambda^2) \implies \Gamma_{\eta}(\omega) = \gamma(0) = Var[\eta(t)] = \lambda^2$$

Anti-Transform

$$\gamma(\tau) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} \Gamma(\omega) e^{k\omega\tau} \, dw$$

Complex spectrum

$$\phi(z) = \sum_{\tau = -\infty}^{+\infty} \omega(\tau) z^{-\tau}$$

$$\Gamma(\omega) = \Phi(e^{j\omega})$$

2.2 Fundamental theorem of Spectral Analysis

Fundamental theorem of Spectral Analysis allows to derive the (real and/or complex) spectrum of the output from the input and the transfer function of the system

$$\Gamma_{yy}(\omega) = |W(e^{j\omega})|^2 \cdot \Gamma_{uu}(\omega)$$

$$\Phi_{yy}(z) = W(z)W(z^{-1}) \cdot \Phi_{uu}(z)$$

2.3 Canonical representation of a Stationary Process

A stationary process can be represented by an infinite number of transfer functions. The canonical representation is the transfer function W(z) such that:

- Numerator and denominator have same degree
- Numerator and denominator are monic (highest grade coefficient is 1)
- Numerator and denominator are coprime (W(z) cannot be simplified)
- numerator and denominator are stable polynomials (all poles and zeros of W(z) are inside the unit disk)

3 Moving Average Processes

Given $\eta(t) \sim WN(0, \lambda^2)$

3.1 MA(1):

 \mathbf{Model}

$$v(t) = c_0 \eta(t) + c_1 \eta(t-1)$$

Mean

$$E[v(t)] = c_0 \cdot E[\eta(t)] + c_1 \cdot E[\eta(t)]$$
$$= c_0 \cdot 0 + c_1 \cdot 0$$
$$E[v(t)] = 0$$

Variance

$$\begin{split} Var[v(t)] &= E[(v(t)\underbrace{-E[v(t)])^2}] \\ &= E[(v(t))^2] \\ &= E[(c_0 \cdot \eta(t)^2 \\ &= c_0^2 \cdot E[\eta(t)^2] \\ &= c_0^2 \lambda^2 \\ \hline Var[v(t)] &= (c_0^2 + c_1^2)\lambda^2 \end{split}$$

Covariance

$$\begin{split} \gamma(t_1,t_2) &= E[(v(t_1)-E[v(t_1)]) & \cdot (v(t_2)-E[v(t_2)])] \\ &= E[(c_0\eta(t_1)+c_1\eta(t_1-1)) \cdot (c_0\eta(t_2)+c_1\eta(t_2-1))] \\ &= c_0^2 E[\eta(t_1)\eta(t_2)] & + c_1^2 E[\eta(t_1-1)\eta(t_2-1) \\ & + c_0 c_1 E[\eta(t_1)\eta(t_2-1)] + c_0 c_1 E[\eta(t_1-1)\eta(t_2)] \end{split}$$

$$\gamma(\tau) = \begin{cases} c_0^2 \lambda^2 + c_1^2 \lambda^2 & \text{if } \tau = 0\\ c_0 c_1 \lambda^2 & \text{if } \tau = \pm 1\\ 0 & \text{otherwise} \end{cases}$$

3.2 MA(n)

Model

$$v(t) = c_0 \eta(t) + c_1 \eta(t-1) + \dots + c_n \eta(t-n)$$

= $(c_0 + c_1 z^{-1} + \dots + c_n z^{-n}) \eta(t)$

Transfer function

$$W(z) = c_0 + c_1 z^{-1} + \dots + c_n z^{-n} = \frac{c_0 z^n + c_1 z^{n-1} + \dots + c_n}{z^n}$$

All poles are in the complex origin

Mean

$$E[v(t)] = (c_0 + c_1 + \dots + c_n) \underbrace{E[\eta(t)]}_{0}$$

$$\boxed{E[v(t) = 0]}$$

Covariance function

$$\gamma(\tau) = \begin{cases} \lambda^2 \cdot \sum_{i=0}^{n-\tau} c_i c_{i-\tau} & |\tau| \le n \\ 0 & \text{otherwise} \end{cases}$$

example

$$\begin{split} \gamma(0) &= (c_0^2 + c_1^2 + \ldots + c_n^2) \lambda^2 \\ \gamma(1) &= (c_0 c_1 + c_1 c_2 + \ldots + c_{n-1} c_n) \lambda^2 \\ \gamma(2) &= (c_0 c_2 + c_1 c_3 + \ldots + c_{n-2} c_n) \lambda^2 \\ &\cdots \\ \lambda(n) &= (c_0 c_n) \lambda^2 \\ \lambda(k) &= 0 \ \forall k > n \end{split}$$

3.3 $MA(\infty)$

Model

$$v(t) = c_0 \eta(t) + c_1 \eta(t-1) + \dots + c_k \eta(t-k) + \dots = \sum_{i=0}^{\infty} c_i \eta(t-i)$$

Variance

$$\gamma(0) = (c_0^2 + c_1^2 + \dots + c_k^2 + \dots)\lambda^2 = \lambda^2 \sum_{i=0}^{\infty} c_i^2$$

3.4 Well definition of an $MA(\infty)$

We need to have $|\gamma(\tau)| \leq \gamma(0)$, so we must require that

$$\gamma(0) = \lambda^2 \sum_{i=0}^{\infty} c_i^2 \text{ is finite}$$

4 Auto Regressive Processes

4.1 AR(1)

Model

$$v(t) = av(t-1) + \eta(t)$$

Mean

$$E[v(t)] = E[av(t-1)] + \overbrace{E[\eta(t)]}^{0}$$

$$= aE[v(t-1)]$$

$$= aE[v(t)]$$

$$(1-a)E[v(t)] = 0$$

$$\boxed{E[v(t)] = 0}$$

Covariance

 $\mathbf{MA}(\infty)$ method Observe as an AR(1) can be axpressed as an MA(∞)

$$\begin{split} v(t) &= av(t-1) &+ \eta(t) \\ &= a[av(t-2) + \eta(t-1)] &+ \eta(t) \\ &= a^2v(t-2) &+ a\eta(t-1) + \eta(t) \\ &= a^2[v(t-3) + \eta(t-2)] &+ a\eta(t-1) + \eta(t) \\ &= \underbrace{a^nv(t-n)}_{\to 0} + \sum_{i=0}^{\infty} a^i\eta(t-i) \\ &\underbrace{MA(\infty)} \end{split}$$

In particular, the result depends on an $MA(\infty)$ having $\sum_{i=0}^{\infty} c_i = \sum_{i=0}^{\infty} a^i$. To check if the variance is finite we check $\gamma(0) = \lambda^2 \sum_{i=0}^{\infty} a^{2i} < \infty$. The given is a geometric series, convergent for |a| < 1. Under this hypothesis its value is

$$\gamma(0) = \lambda^2 \sum_{i=0}^{\infty} a^{2i} = \frac{\lambda^2}{1 - a^2}$$

Applying the formula of the variance of MA processes we get

$$\gamma(1) = (c_0c_1 + c_1c_2 + \dots)\lambda^2 = (a + aa^2 + \dots)\lambda^2 = a(1 + a^2 + a^4 + \dots)\lambda^2 = a\lambda^2 \sum_{i=0}^{\infty} a^{2i} = a\frac{\lambda^2}{1 - a^2} = a\gamma(0)$$

$$\gamma(2) = (c_0c_2 + c_1c_3 + \dots)\lambda^2 = (a^2 + aa^3 + \dots)\lambda^2 = a^2(1 + a^2 + a^4 + \dots)\lambda^2 = a^2\lambda^2 \sum_{i=0}^{\infty} a^{2i} = a^2\frac{\lambda^2}{1 - a^2} = a^2\gamma(0)$$

$$\gamma(\tau) = a^{|\tau|} \frac{\lambda^2}{1 - a^2}$$

Yule-Walkler Equations

$$\begin{split} Var[v(t)] &= E[v(t)^2] \\ &= E[(av(t) + \eta(t))^2] \\ &= a^2 \underbrace{E[v(t-1)^2]}_{=Var[v(t-1)]} + \underbrace{E[\eta(t)^2]}_{=\lambda^2} + 2a \underbrace{E[v(t-1)\eta(t)]}_{v(t-1) \text{ depends on } \eta(t-2)} \\ &\stackrel{=Var[v(t)]}{=\gamma(0)} \xrightarrow{=\gamma(0)} & \eta(t) \text{ independent of } \eta(t-2) \\ &\stackrel{=(v(t-1)\eta(t)]}{=\gamma(0)} & E[v(t-1)\eta(t)] = 0 \end{split}$$

$$\gamma(0) = a^2 \gamma(0) + \lambda^2$$

$$\boxed{\gamma(0) = \frac{\lambda^2}{1-a^2}}$$

To find $\gamma(\tau)$, we start from the model $v(t) = av(t-1) + \eta(t)$.

$$\begin{aligned} v(t) &= av(t-1) &+ \eta(t) \\ v(t)v(t-\tau) &= av(t-1)v(t-\tau) &+ \eta(t)v(t-\tau) \\ \underbrace{E[v(t)v(t-\tau)]}_{\gamma(\tau)} &= a\underbrace{E[v(t-1)v(t-\tau)]}_{\gamma(\tau-1)} + \underbrace{E[\eta(t)v(t-\tau)]}_{0} \\ \boxed{\gamma(\tau) &= a\gamma(\tau-1)} \end{aligned}$$

We can join the two by inductive reasoning, obtaining

$$\gamma(\tau) = a^{|\tau|} \frac{\lambda^2}{1 - a^2}$$

Long Division Leads to same result, but is boring

$4.2 \quad AR(n)$

Model

$$v(t) = a_1 v(t-1) + a_2 v(t-2) + \dots + a_n v(t-n) + \eta(t)$$

Transfer function

$$W(z) = \frac{z^n}{z^n - a_1 z_{n-1} - \dots - a_n}$$

Mean

$$E[v(t)] = a_1 E[v(t-1]) + a_2 E[v(t-2)] + \dots + a_n E[v(t-n)] + \underbrace{E[\eta(t)]}_{0}$$

$$m = a_1 m + a_2 m + \dots + a_n m$$

$$(1 - a_1 - a_2 - \dots - a_n) m = 0$$

$$\boxed{E[v(t)] = 0}$$

ARMA Processes 5

Model

$$v(t) = a_1 v(t-1) + \ldots + a_{n_a} v(t-n_a) + c_0 \eta(t) + \ldots + c_{n_c} v(t-n_c)$$

Can also be espressed as $V(t) = \frac{C(z)}{A(z)} \eta(t)$, where

$$C(z) = c_0 + c_1 z^{-1} + \dots + c_{n_c} z^{-n_c}$$
$$A(z) = 1 - a_1 z^{-1} - \dots - a_{n_a} z^{-n_a}$$

$$A(z) = 1 - a_1 z^{-1} - \dots - a_{n_a} z^{-n_a}$$

Such process is stationary if all the poles of W(z) are inside the unit disk.

6 Prediction problem

We want to predict v(t+r) from v(t), v(t-1), ..., where r is called prediction horizon, of the following stationary process:

$$\xrightarrow{\eta} W(z) \xrightarrow{v}$$

6.1 Fake problem

Having a process with transfer function W(z), we can compute it in polynomial form using the long division algorithm

$$W(z) = w_0 + w_1 z^{-1} + w_2 z^{-2} + \dots$$

We can calculate

$$v(t+r) = W(z)\eta(t+r) = \underbrace{w_0\eta(t+r) + w_1\eta(t+r-1) + \ldots + w_{r-1}\eta(t+1)}_{\alpha(t) \text{ unpredictable: future of } \eta \text{ involved}} + \underbrace{w_r\eta(t) + w_{r+1}\eta(t-1) + \ldots}_{\beta(t) \text{ predictable}}$$

The optimal fake predictor is then

$$v(t+r|t) = w_r \eta(t) + w_{r+1} \eta(t-1) + \dots = \beta(t)$$

And the prediction error is

$$\epsilon(t) = v(t+r) \qquad -\hat{v}(t+r|t)$$

$$= \alpha(t) + \beta(t) \qquad -\beta(t)$$

$$= \alpha(t)$$

$$\boxed{\epsilon(t) = w_0 \eta(t+r) + w_1 \eta(t+r-1) + \dots + w_{r-1} \eta(t+1)}$$
$$\boxed{Var[\epsilon(t)] = (w_0^2 + w_1^2 + \dots + w_{r-1}^2)\lambda^2}$$

6.2 True Problem

We want to estimate v(t+r) form v(t), having transfer function W(z) and $\hat{W}_r(z)$ the solution to the fake problem. We can calculate the transfer function of the real predictor from the process as

$$W_r(z) = W(z)^{-1} \cdot \hat{W}_r(z)$$

For ARMA processes a shortcut exists:

$$\hat{v}_{\text{ARMA}}(t|t-1) = \frac{C(z)A(z)}{C(z)} \qquad \text{having } W(z) = \frac{C(z)}{A(z)}$$

6.3 Prediction with eXogenous variables

An exogenous variable is a <u>deterministic</u> input variable in the system

6.3.1 ARX model

$$v(t) = a_1 v(t-1) + \dots + a_{n_a} v(t-n_a) + b_1 u(t-1) + \dots + b_{n_b} u(t-n_b) + \eta(t) A(z) v(t) = B(z) u(t-1) + \dots + a_{n_a} v(t-n_a) + b_1 u(t-1) + \dots + b_{n_b} u(t-n_b) + \eta(t) A(z) v(t) = B(z) u(t-1) + \dots + a_{n_a} v(t-n_a) + b_1 u(t-1) + \dots + b_{n_b} u(t-n_b) + \eta(t) A(z) v(t) = B(z) u(t-1) + \dots + a_{n_a} v(t-n_a) + b_1 u(t-1) + \dots + a_{n_b} u(t-n_b) + \eta(t) A(z) v(t) = B(z) u(t-1) + \dots + a_{n_b} u(t-n_b) + u(t-1) +$$

Transfer functions from u and $\boldsymbol{\eta}$

$$W_u(z) = \frac{B(z)}{A(z)} \qquad W_{\eta}(z) = \frac{1}{A(z)}$$

6.3.2 ARMAX model

$$A(z)v(t) = C(z)\eta(t) + B(z)u(t-1)$$

$$y(t) = W(z)\eta(t) + G(z)u(t)$$

Predictor

$$\hat{y}(t|t-1) = \frac{C(z) - A(z)}{C(z)}y(t) + \frac{B(z)}{C(z)}u(t-1)$$

Part II Identification

Consists of estimating a model from data.

7 Prediction Error Minimization

Aims to minimize $\epsilon(t) = v(t) - \hat{v}(t|t-r)$ Steps:

- 1. Data collection: collect \vec{u} and \vec{y}
- 2. Family selection: choose a family of models $M(\theta)$

$$\mathbf{MA(1)} \ \theta = [a]$$

$$\mathbf{MA(n)} \ \theta = [a_1, ..., a_n]$$

$$\mathbf{ARMA}(n_a, n_c) \ \theta = [a_1, ..., a_{n_a}, c_1, ..., c_{n_c}]$$

3. Select an optimization criterion

Mean Squared error
$$J(\theta) = \frac{1}{N} \sum_{t=1}^{N} \epsilon_{\theta}(t)^2$$

Mean absolute error $J(\theta) = \frac{1}{N} \sum_{t=1}^{N} |\epsilon_{\theta}(t)|$

- 4. Optimization find $\hat{\theta} = argmin J(\theta) \implies \frac{dJ(\theta)}{d\theta} = 0$
- 5. Validation verify if the result satisfies the requirements

Part III

Black-Box non-parametric I/O systems

A State-space models

Known (measured) data

$$\{u(1), \dots, u(N)\}\$$
 input $\{y(1), \dots, y(N)\}\$ output

A.1 State-space representation

$$\begin{cases} x(t+1) = Fx(t) + Gu(t) & \text{state equations} \\ y(t) = Hx(t) + Du(t) & \text{output equations} \end{cases}$$

Where $F_{n\times n}$, $G_{n\times 1}$, $H_{1\times n}$ and $D_{1\times 1}$ are matrices.

S.S. representation is not unique Given any invertible matrix T, let $F_1 = TFT^{-1}$, $G_1 = TG$, $H_1 = HT^{-1}$, $D_1 = D$. Then the system $\{F, G, H, D\}$ is equivalent to the system $\{F_1, G_1, H_1, D_1\}$.

A.2 Transfer function representation

$$W(z) = \frac{B(z)}{A(z)}z^{-k} = \frac{b_0 + b_1 z^{-1} + \dots + b_p z^{-p}}{a_0 + a_1 z^{-1} + \dots + a_n z^{-n}}z^{-k}$$

W(z) is a rational function of the z operator \rightarrow is a digital filter

Infinite impulse response $W(z) = \frac{z^{-1}}{1 + \frac{1}{3}z^{-1}}$

Finite impulse response $W(z)=z^{-1}+\frac{1}{2}z^{-2}+\frac{1}{4}z^{-3}$

A.3 Convolution of the input with the inpulse response

Let's call $\omega(1), \omega(2), \ldots$ the values of y(t) when u(t) = impulse(0), and let's measure the values of y at different times: . Then it can be proven that for any u(t)

$$y(t) = \sum_{k=0}^{\infty} \omega(k) u(t-k)$$

B Converting representations one to another

B.1 State space to Transfer function

Consider a strictly propter system:

$$\begin{cases} x(t+1) = Fx(t) + Gu(t) \\ y(t+1) = Hx(t) + \mathcal{D}u(t) \end{cases} \Rightarrow \begin{cases} x(t+1) = Fx(t) + Gu(t) \\ y(t) = Hx(t) \end{cases}$$

Applying the z operator we get

$$zx(t) = Fx(t) + Gu(t)$$

$$x(t)(zI - F) = Gu(t)$$

$$x(t) = (zI - F)^{-1}Gu(t)$$

$$y(t) = H(zI - F)^{-1}Gu(t)$$

And we can extract the transfer function:

$$W(z) = H(zI - F)^{-1}G$$

B.2 Transfer Function to State Space

We have the transfer function

$$W(z) = \frac{b_0 z^{n-1} + b_1 z^{n-2} + \dots + b_{n-1}}{z^n + a_0 z^{n-1} + \dots + a_n}$$

The formulas for the state space matrices is

$$F = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & 0 & 1 \\ -a_n & -a_{n-1} & \dots & \dots & -a_1 \end{bmatrix} \quad G = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \quad H = \begin{bmatrix} b_{n-1} & b_{n-2} & \dots & b_0 \end{bmatrix} \quad D = 0$$

B.3 Transfer function to Impulse response

Obtained by computing the ∞ long division of W(z)

B.4 Impulse response to Tranfer function

Z-transform Given a discrete-time signal s(t) such that $\forall t < 0 : s(t) = 0$, it's Z-transform is

$$\mathcal{Z} = \sum_{t=0}^{\infty} s(t)z^{-t}$$

It can be proven that:

$$W(z) = \mathcal{Z}(\omega(t)) = \sum_{t=0}^{\infty} \omega(t) z^{-1}$$

NB: this works only in theory because of the infinite sum

B.5 State space to Impulse response

Consider the state space model:

$$\begin{cases} x(t+1) = Fx(t) + Gu(t) \\ y(t) = Hx(t) \end{cases}$$

We have that:

$$x(1) = Ex(0) + Gu(0)$$
 = $Gu(0)$
 $y(1) = Hx(1)$ = $HGu(0)$

$$x(2) = Fx(1) + Gu(1)$$
 = $FGu(0) + Gu(1)$
 $y(2) = Hx(2)$ = $HFGu(0) + HG(u1)$

$$x(3) = Fx(2) + Gu(2) = F^2Gu(0) + FGu(1) + Gu(2)$$

$$y(3) = Hx(3) = HF^2Gu(0) + HFGu(1) + HGu(2)$$
 :

$$y(t) = 0u(t) + HGu(t-1) + HFGu(t-2) + HF^2Gu(t-3) + \dots$$

The IR is:

$$\omega(t) = \begin{cases} 0 & \text{if } t = 0 \\ HF^{t-1}G & \text{if } t > 0 \end{cases}$$

C Controllability and Observability

$$\begin{cases} x(t+1) = Fx(t) + Gu(t) \\ y(t) = Hx(t) \end{cases}$$

Fully observable system The system is fully observable (from the output) ⇔ the observability matrix is full rank:

$$O = \begin{bmatrix} H \\ HF \\ \vdots \\ HF^{n-1} \end{bmatrix} \qquad rank(O) = n$$

Fully controllable system The system is fully controllable (from the input)

⇔ the controllability (also called reachability) matrix is full rank:

$$R = \begin{bmatrix} G & FG & \dots & F^{n-1}G \end{bmatrix}$$
 $rank(R) = n$

D Hankel Matrix

Starting from $\omega(1), \omega(2), \ldots, \omega(N)$ where $N \geq 2n - 1$, we can build the Hankel Matrix of order n:

$$H_n = \begin{bmatrix} \omega(1) & \omega(2) & \omega(3) & \dots & \omega(n) \\ \omega(2) & \omega(3) & \omega(4) & \dots & \omega(n+1) \\ \omega(3) & \omega(4) & \omega(5) & \dots & \omega(n+2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \omega(n) & \omega(n+1) & \omega(n+2) & \dots & \omega(2n-1) \end{bmatrix}$$

Knowing that

$$\omega(t) = \begin{cases} 0 & \text{if } t = 0\\ HF^{t-1}G & \text{if } t > 0 \end{cases}$$

We can rewrite

$$H_n = \begin{bmatrix} HG & HFG & HF^2G & \dots & HF^{n-1}G \\ \vdots & \ddots & & & \vdots \\ \vdots & & \ddots & & \vdots \\ \vdots & & & \ddots & & \vdots \\ HF^{n-1}G & \dots & \dots & \dots & HF^{2n-2}G \end{bmatrix} = \begin{bmatrix} H \\ HF \\ \vdots \\ HF^{n-1} \end{bmatrix} \cdot \begin{bmatrix} G & FG & \dots & F^{n-1}G \end{bmatrix} = O \cdot R$$

E Subspace-based State Space System Identification

Impulse experiment Measure y(t) under the input u(t) = impulse(0)(0) How to derive F, G, H from $\omega(0), \ldots, \omega(n)$?

- Assuming the IR measurement to be noise free \rightarrow easier, not realistic
- Measure $\hat{\omega}(t)$ as a noisy signal and compute $\omega(t) = \eta(t) \hat{\omega}(t)$

E.1 Obtain F, G, H from a noise-free IR

1. Build the Hankel matrix of increasing order, and conpute the rank until $rank(H_n) = rank(H_{n+1})$. Then, n is the order of the IR

$$H_1 = \begin{bmatrix} \omega(1) \end{bmatrix}$$
 $H_2 = \begin{bmatrix} \omega(1) & \omega(2) \\ \omega(2) & \omega(3) \end{bmatrix}$ $H_3 = \dots$ $H_n = \dots$

2. Take H_{n+1} and factorize it in two rectangular matrix of size $(n+1) \times n$ and $n \times (n+1)$: $H_{n+1} = O_{n+1} \cdot R_{n+1}$, where

$$O_{n+1} = \begin{bmatrix} H \\ HF \\ \vdots \\ HF^n \end{bmatrix} \qquad R_{n+1} = \begin{bmatrix} G & FG & \dots & F^nG \end{bmatrix}$$

- 3. Estimate H,F,G:
 - Extract F and G from the first element of O and R
 - Define:

$$O_1 = \begin{bmatrix} H \\ HF \\ \vdots \\ HF^{n-1} \end{bmatrix} \qquad O_2 = \begin{bmatrix} HF \\ \vdots \\ HF^n \end{bmatrix}$$

• Observe that $O_1F = O_2$, so $F = O_1^{-1}O_2$

F Obtain F, G, H from a noisy IR

The measurement is of $\hat{\omega}(t) = \omega(t) + \eta(t)$. To identify the process:

1. Build the Hankel matrix from data using all the N data available in one shot:

$$\hat{H}_{q \times d} = \begin{bmatrix} \hat{\omega}(1) & \hat{\omega}(2) & \dots & \hat{\omega}(d) \\ \hat{\omega}(2) & \hat{\omega}(3) & \dots & \hat{\omega}(d+1) \\ \vdots & \vdots & \ddots & \vdots \\ \hat{\omega}(q) & \hat{\omega}(q+1) & \dots & \hat{\omega}(q+d+1) \end{bmatrix}$$

Where q + d + 1 = N

2. Calculate the Singular Value Decomposition of $\hat{H}_{q\times d}$:

$$\hat{H}_{q \times d} = \hat{U}_{q \times q} \cdot \hat{S}_{q \times d} \cdot \hat{V}_{d \times d}^T$$

 \hat{U} and \hat{V} are unitary matrices: they are invertible and their inverses are equal to their transpose.

$$\hat{S} = egin{bmatrix} \sigma_1 & & & & \\ & \sigma_2 & & & \\ & & \ddots & \\ & & & \sigma_d \end{bmatrix}$$

- 3. Plot the singular values (σ_i) and cut-off the three matrices:
 - Ideally, after a certain n (the order of the IR) there would be a jump dividing the signal (before) from the noise (after)
 - In reality no clear distinction exists, but it's possible to identify an interval of possible values of n. A tradeoff between complexity, precision and oferfitting takes place
- 4. Split $\hat{U}, \hat{S}, \hat{V}^T$ obtaining $U_{q \times n}, S_{n \times n}, V_{n \times d}^T$ and then recreate $H_{qd} = USV^T$
- 5. H and G are estimated as for the unnoisy case. To estimate F we can build O_1 and O_2 as before, but then the system $O_1 \cdot F = O_2$ cannot be solved directly as O_1 is not square. We can instead compute the approximate least-square solution of the system:

$$F = (O_1^T O_1)^{-1} O_1^T O_2$$

Part IV

Parametric black-box system identification using frequency-domain approach

G Experiment design and data pre-processing

- 1. Select a set of excitation frequencies $\{\omega_1, \ldots, \omega_H\}$. Usually $\omega_i \omega_{i-1}$ is constant $\forall i \in \{2, \ldots, H\}$. ω_H must be selected according to the bandwidth of the system
- 2. Make H independent experiments:

Experiment H

3. Focusing on experiment i, because of noise the real value of the output will be (unknowns are underlined)

$$\hat{y}_i = B_i \sin(\omega_i t + \phi_i) = a_i \sin(\omega_i t) + b_i \cos(\omega_i t)$$

Using the second equation (since it is linear in the unknowns). We want to determine

$$\{\hat{a_i}, \hat{b_i}\} = \arg\min_{\{a_i, b_i\}} J_N(a_i, b_i)$$

$$J_N(a_i, b_i) = \frac{1}{N} \sum_{t=1}^{N} \left(\underbrace{y_i(t)}_{\text{measurement}} \underbrace{-a_i \sin(\omega_i t) - b_i \cos(\omega_i t)}_{\text{model output}} \right)^2$$

This can be solved explicitly

$$\frac{\delta J_N}{\delta a_i} = \frac{2}{N} \sum_{t=1}^N \left(-\sin(\omega_i t) \right) \left(y_i(t) - a_i \sin(\omega_i t) - b_i \cos(\omega_i t) \right) = 0$$

$$\frac{\delta J_N}{\delta b_i} = \frac{2}{N} \sum_{t=1}^N \left(-\cos(\omega_i t) \right) \left(y_i(t) - a_i \sin(\omega_i t) - b_i \cos(\omega_i t) \right) = 0$$

Which results in the following linear system:

$$\begin{bmatrix} \sum_{t=1}^{N} \sin(\omega_i t)^2 & \sum_{t=1}^{N} \sin(\omega_i t) \cos(\omega_i t) \\ \sum_{t=1}^{N} \sin(\omega_i t) \cos(\omega_i t) & \sum_{t=1}^{N} \cos(\omega_i t)^2 \end{bmatrix} \begin{bmatrix} a_i \\ b_i \end{bmatrix} = \begin{bmatrix} \sum_{t=1}^{N} y_i(t) \sin(\omega_i t) \\ \sum_{t=1}^{N} y_i(t) \cos(\omega_i t) \end{bmatrix}$$

4. We want to move back to sin-only form:

$$\hat{\phi_i} = \arctan\left(\frac{\hat{b_i}}{\hat{a_i}}\right)$$

$$\hat{B_i} = \frac{\frac{\hat{a_i}}{\cos \hat{\phi_i}} + \frac{\hat{b_i}}{\sin \hat{\phi_i}}}{2}$$

5. Repeating H experiments we obtain

$$\{\hat{B}_{1}, \hat{\phi_{1}}\} \Rightarrow \frac{\hat{B}_{1}}{A_{1}} e^{j\hat{\phi_{1}}}$$

$$\vdots$$

$$\{\hat{B}_{H}, \hat{\phi_{H}}\} \Rightarrow \frac{\hat{B}_{H}}{A_{H}} e^{j\hat{\phi_{H}}}$$

So we have H complex numbers representing the frequency response of W(z). These numbers are our dataset

H Model class selection

$$\mathcal{M}(\theta): W(z,\theta) = \frac{b_0 + b_1 z^{-1} + \dots + b_p z^{-p}}{1 + a_1 z^{-1} + \dots + a_n z^{-n}} z^{-1} \qquad \theta = \begin{bmatrix} a_1 \\ \vdots \\ a_n \\ b_0 \\ \vdots \\ b_p \end{bmatrix}$$

I Performance index

$$J_H(\theta) = \frac{1}{H} \sum_{i=1}^{H} \left(W(e^{j\omega_i}, \theta) - \frac{\hat{B}_i}{A_i} e^{j\hat{\phi}_i} \right)^2$$

J Optimization

$$\hat{\theta} = \arg\min_{\theta} J_H(\theta)$$

$egin{array}{ll} & Part \ V \\ & Kalman \ filter \end{array}$

Based on SS representation:

$$\begin{cases} x(t+1) = Fx(t) + Gu(t) + v_1(t) & v_1 \sim WN \\ y(t) = Hx(t) + \mathcal{D}u(t) + v_2(t) & v_2 \sim WN \end{cases}$$

K Motivations and Goals

Given a model and noise variances:

- \bullet find k-steps ahead predictors of the output y
- \bullet find k-steps ahead predictors of the state x
- Find the filter of the state $\hat{x}(t|t)$ to allow software sensing
- Gray box system identification

Usually a dynamic system has m inputs, n states and p outputs

Key problem Usually p << n: pysical sensors are much less than system states because:

- Cost
- Cables, power supply
- Maintenance

But we want full state measurements because:

- Control design (using state feedback)
- Monitoring (fault detection, predictive maintenance)

Software sensing determine the internal state using the values measured from input and output

K.1 Kalman on Basic Systems

$$S: \begin{cases} x(t+1) = Fx(t) + Gu(t) + v_1(t) & \text{state equation} \\ y(t) = Hx(t) + v_2(t) & \text{output equation} \end{cases}$$

$$x(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} \qquad u(t) = \begin{bmatrix} u_1(t) \\ \vdots \\ u_m(t) \end{bmatrix} \qquad y(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_p(t) \end{bmatrix}$$

 v_1 is a vector white noise:

$$v_1 \sim WN(0, V_1)$$
 $v_1(t) = \begin{bmatrix} v_1 1(t) \\ \vdots \\ v_1 n(t) \end{bmatrix}$

• $E[v_1(t)] = \vec{0}$

- $E\left[v_1(t)\cdot v_1(t)^T\right]=V_1$, where V_1 is an $n\times n$ covariance matrix
- $E\left[v_1(t)\cdot v_1(t-\tau)^T\right] = 0 \quad \forall t, \forall \tau \neq \vec{0}$

 v_2 is called output/measurement/sensor noise:

- $E[v_2(t)] = \vec{0}$
- $E\left[v_2(t)\cdot v_2(t)^T\right]=V_2$, where V_1 is an $n\times n$ covariance matrix
- $E\left[v_2(t) \cdot v_2(t-\tau)^T\right] = 0 \quad \forall t, \forall \tau \neq \vec{0}$

 v_1 and v_2 are assumed to have the following relationships:

$$E\left[v_1(t)\cdot v_2(t-\tau)^T\right] = \underbrace{V_{12}}_{n\times n} = \begin{cases} 0 & \text{if } \tau \neq 0\\ \text{any} & \text{if } \tau = 0 \end{cases}$$

So they can only be correlated in the same time istant. Since the system is dynamic we need to define its initial conditions:

$$E[x(1)] = \underbrace{X_0}_{n \times 1}$$
 $E[(x(1) - x(0))(x(1) - x(0))^T] = \underbrace{P_0}_{n \times n} \ge 0$

 $P_0 = 0 \iff$ the initial state is perfectly known.

We finally assume that v_1 and v_2 are uncorrelated with the initial state:

$$x(1) \perp v_1(t)$$
 $x(1) \perp v_2(t)$

Solution for Basic Systems

$$\hat{x}(t+1|t) = F\hat{x}(t|t-1) + K(t)e(t) \qquad \text{state equation}$$

$$\hat{y}(t|t-1) = H\hat{x}(t|t-1) \qquad \text{output equation}$$

$$e(t) = y(t) - \hat{y}(t|t-1) \qquad \text{prediction error}$$

$$K(t) = \left(FP(t)H^T + V_{12}\right) \left(HP(t)H^T + V_2\right)^{-1} \qquad \text{gain of the KF}$$

$$P(t+1) = \left(FP(t)F^T + V_1\right) \\ - \left(FP(t)H^T + V_{12}\right) \left(HP(t)H^T + V_2\right)^{-1} \left(FP(t)H^T + V_{12}\right)^T \qquad \text{difference Riccati equation}$$

$$\hat{x}(1|0) = E\left[x(1)\right] = X_0 \qquad \qquad \text{Initial state}$$

$$P(1) = var\left[x(1)\right] = P_0 \qquad \qquad \text{initial DRE}$$

K.2 Exogenous input

$$\hat{x}(t+1|t) = F\hat{x}(t|t-1) + Gu(t) + K(t)e(t) \qquad \text{state equation}$$
 other equations = unchanged

K.3 Multi-step prediction

Knowing $\hat{x}(t+1|T)$ from the basic solution we can derive

$$\hat{x}(t+2|t) = F\hat{x}(t+1|t)$$

$$\hat{x}(t+2|t) = F^{2}\hat{x}(t+1|t)$$

$$\vdots$$

$$\frac{\hat{x}(t+k|t) = F^{k-1}\hat{x}(t+1|t)}{\hat{y}(t+k|t) = H\hat{x}(t+k|t)}$$

K.4 Filter ($\hat{x}(t|t)$

F invertible

$$\hat{x}(t+1|t) = F\hat{x}(t|t)$$
 \Longrightarrow $\hat{x}(t|t) = F^{-1}\hat{x}(t+1|t)$

F not invertible assuming $V_{12} = 0$, then we can re-formulate the K.F. solutions:

$$\hat{x}(t|t) = F\hat{x}(t-1|t-1) + Gu(t-1) + K_0(t)e(t)$$

$$\hat{y}(t|t-1) = H\hat{x}(t|t-1)$$

$$e(t) = y(t) - \hat{y}(t|t-1)$$

$$K_0(t) = (P(t)H^T) (HP(t)H^T + V_2)^{-1}$$

$$P(t+1) = \text{unchanged}$$

K.5 Time-varying systems

$$S: \begin{cases} x(t+1) = F(t)x(t) + G(t)u(t) + v_1(t) \\ y(t) = H(t)x(t+v_2(t)) \end{cases}$$

K.F. equations are unchanged

K.6 Non linear system

Much more complicated extension. Look for Extended Kalman Filter if interested (I'm not)

L Asymptotic solution of K.F.

KF is time variant, because the gain K(t) is time varying. This causes 2 problems:

- It is difficult to check the stability of the system
- K(t) must be computed at each sampling time, including the inversion of $(HP(t)H^T)_{v\times v} \Rightarrow$ computationally intensive

Because of this, the asymptotic version of KF is preferred

L.1 Basic idea

If P(t) converges to constant \overline{P} , then also K(t) will converge to some constant \overline{K} . Using \overline{K} instead of K(t) the KF becomes time-invariant:

$$\begin{split} \hat{x}(t+1|t) &= F\hat{x}(t|t-1) + Gu(t) + \overline{K}e(t) \\ &= F\hat{x}(t|t-1) + Gu(t) + \overline{K}\left(y(t) - \hat{y}(t|t-1)\right) \\ &= F\hat{x}(t|t-1) + Gu(t) + \overline{K}\left(y(t) - H\hat{x}(t|t-1)\right) \\ &= \underbrace{\left(F - \overline{K}H\right)}_{\text{new state matrix}} \hat{x}(t|t-1) + Gu(t) + \overline{K}y(t) \end{split}$$

If \overline{K} exists, thesethe KF is asymptotically stable \iff all the eigenvalues of $F - \overline{K}H$ are strictly inside the unit circle

L.2 Existance of \overline{K}

$$\overline{K} = (F\overline{P}H^T + V_{12}) + (H\overline{P}H^T + V_2)^{-1}$$

 \overline{K} exists if \overline{P} exists. DRE is an autonomous discrete time system x(t+1) = f(x(t)), in equilibrium when $x(t+1) = x(t) \Rightarrow f(\overline{x}) = \overline{x}$. Applyed to P this leads to the following Algebraic Riccardi Equation:

$$\overline{P} = f(\overline{P}) \iff \overline{P} = (F\overline{P}F^T + V_1) - (F\overline{P}H^T + V_{12}) (H\overline{P}H^T + V_2)^{-1} (F\overline{P}H^T + V_{12})^T$$

L.2.1 First asymptotic theorem

Assuming $V_{12} = 0$ and the system is asymptotically stable (all eigenvalues of F strictly inside the unit circle), then:

- \exists ! semi-definite positive solution of ARE: $\overline{P} > 0$
- DRE converges to $\overline{P} \quad \forall P_0 \ge 0$
- The corresponding \overline{K} will make the KF asymptotically stable

L.2.2 Second asymptotic theorem

Assuming $V_{12}=0,\,(F,H)$ is observable, (F,Γ) is controllable. Then:

- ∃! semi-definite positive solution of ARE: $\overline{P} \geq 0$
- DRE converges to $\overline{P} \quad \forall P_0 \geq 0$
- \bullet The corresponding \overline{K} will make the KF asymptotically stable

M Extension to non-linear systems

$$S: \begin{cases} x(t+1) = f(x(t), u(t)) + v_1(t) \\ y(t) = h(x(t)) + v_2(t) \end{cases}$$

Where f and h are non-linear functions.

For the gain block of the KF we have 2 types of solutions:

- The gain is a non linear function of e(t)
- The gain is a linear time-varying function

The second solution is preferred, as it allows us to reuse the formulae with just little tweaks. In particular, F and H are computed as follows:

$$F(t) = \left. \frac{\delta f(x(t), u(t))}{\delta x(t)} \right|_{x(t) = \hat{x}(t|t-1)}$$

$$H(t) = \left. \frac{\delta h(x(t))}{\delta x(t)} \right|_{x(t) = \hat{x}(t|t-1)}$$

EKF is the time-verying solution of KF, where F and H are computed around the last available state prediction $\hat{x}(t|t-1)$

Algorithm

- 1. Take the last available state prediction $\hat{x}(t|t-1)$
- 2. Use $\hat{x}(t|t-1)$ to compute F(t) and H(t)
- 3. Compute K(t) and update the DRE equations
- 4. Compute $\hat{x}(t+1|t)$

N Optimization of gain K

$$S: \begin{cases} x(t+1) = 2x(t) \\ y(t) = x(t) + v(t) \quad v \sim WN(0,1) \end{cases}$$

N.1 Direct solution

Starting from the standard observer structure:

$$\begin{cases} \hat{x}(t+1|t) = 2\hat{x}(t|t-1) + K(y(t) - \hat{y}(t|t-1)) \\ \hat{y}(t|t-1) = \hat{x}(t|t-1) \end{cases}$$

Minimizing the variance of the prediction error $var[\eta(t)] \Rightarrow \text{minimizing } var[x(t) - \hat{x}(t|t-1]]$

$$\begin{split} \eta(t) &= 2x(t) - \left[2\hat{x}(t|t-1) + K(y(t) - \hat{y}(t|t-1))\right] \\ &= 2x(t) - 2\hat{x}(t|t-1) - K(x(T) + v(t) - \hat{x}(t|t-1)) \\ &= (2 - K)(x(t) - \hat{x}(t|t-1)) - Kv(t) \\ \eta(t+1) &= (2 - K)\eta(t) - Kv(t) \end{split} \qquad v \sim WN(0,1) \end{split}$$

This is an AR(1) process:

$$\eta(t) = \frac{1}{1-(2-K)z^{-1}}e(t) \qquad e(t) = -Kv(t) \qquad e \sim WN(0,K^2) \label{eq:eta}$$

The variance of η is

$$\gamma_{\eta}(0) = \frac{K^2}{1 - (2 - K)^2}$$

Minimizing wrt K:

$$\frac{\delta \gamma_{\eta}(0)}{\delta K} = 0 \qquad \Rightarrow \qquad \begin{cases} K_1 = 0 \\ K_2 = \frac{3}{2} \end{cases}$$

N.2 KF theory solution

From S we can derive:

$$\begin{cases} F = 2 \\ H = 1 \\ V_1 = 0 \end{cases} \Rightarrow \begin{cases} \Gamma = 0 \\ V_2 = 1 \\ V_{12} = 0 \end{cases}$$

- F is not asymptotically stable \Rightarrow cannot use theorem 1
- (F,Γ) is not fully reachable \Rightarrow cannot use theorem 2

$$DRE = 4P(t) - \frac{(2P(t))^2}{P(t) + 1} \dots$$

 $P(t+1) = \frac{4P(t)}{P(t) + 1}$

Solving ARE:

$$\overline{P} = \frac{4\overline{P}}{\overline{P} + 1}$$
 \Rightarrow $\begin{cases} \overline{P_1} = 1 \\ \overline{P_2} = 3 \end{cases}$ \Rightarrow $\begin{cases} K_1 = 0 \\ K_2 = \frac{3}{2} \end{cases}$

Part VI Software-sensing with Blabk box Methods

Features

- A white-box model is required
- No need of a training dataset
- Works by feedback estimation
- Constructive method
- Can be used to estimate unmeasurable states

O Linear Time Invariant Systems

Known white-box model of the system Draw the block diagram of the system and the KF, then (from the diagram) calculate $\hat{x}(t) = f(u(t), y(t))$. Done.

Unknown model for the system A BB estimation is possible iff all the states are measurable.

Dataset

$$\{u(1),\ldots,u(N)\}$$

$$\{y(1),\ldots,y(N)\}$$

$$\{x(1),\ldots,x(N)\}$$

Model to be optimized for θ

Performance index

$$J_N(\theta) = \frac{1}{N} \sum_{t=1}^{N} (x(t) - (S_{ux}(z,\theta)u(t) + S_{yx}(z,\theta)y(t)))^2$$

Optimization

$$\hat{\theta}_N = \arg\min_{\theta} J_N(\theta)$$

We get $S_{ux}(z,\hat{\theta}_N)$ and $S_{yx}(z,\hat{\theta}_N)$, the transfer functions for our software sensors

P Non-linear systems

Model

P.1 Recurrent neural network

P.2 FIR architecture

split the system into a static non-linear system and linear dynamics

Q IRR scheme

R Physical regressors

Using the physical knowledge of the system, provide a set of regressors (ie: smaller and more meaningful set of signals) elaborated by a static non-linear system

Part VII

Grey-box System Identification

S Using Kalman Filter

S.1 Problem definition

• We have a model:

$$S: \begin{cases} x(t+1) = f(x(t), u(t), \theta) + v_1(t) \\ y(t) = h(x(t), \theta) + v_2(t) \end{cases}$$

- f and h are functions (linear or not) depending on some unknown parameter θ carrying physical meaning (mass, resistance,...)
- We want to estimate $\hat{\theta}$
- This is archieved by managing the unknown parameters as extended states

S.2 State extension

$$S: \begin{cases} x(t+1) = f(x(t), u(t), \theta(t)) + v_1(t) \\ \theta(t+1) = \theta(t) + v_{\theta}(t) \\ y(t) = h(x(t), \theta(t)) + v_2(t) \end{cases}$$

And the extended state vector is $x_E = \begin{bmatrix} x(t) \\ \theta(t) \end{bmatrix}$

The noise in the equation of θ is added to prevent the KF form getting stuck on the initial conditions.

S.3 Design choice

The choice of the covariance matrix of $v_{\theta} \sim WN(0, V_{\theta})$

• Assume $v_1 \perp v_\theta$ and $v_2 \perp v_\theta$:

$$V_{ heta} = egin{bmatrix} \lambda_{1 heta}^2 & & & & & \\ & \lambda_{2 heta}^2 & & & & \\ & & \ddots & & & \\ & & & \lambda_{n_{ heta}\theta}^2 \end{bmatrix}_{n_{ heta} imes n_{ heta}}$$

- Usually, it is assumed that $\lambda_{i\theta} = \lambda_{j\theta} \quad \forall i \forall j$
- Assume that $v_{\theta}(t)$ is a set of independent WN all with the same variance λ_{θ}^{2}

- Bigger values of λ_{θ}^2 lead to a quicker convergence, but less stable (stronger obscillations around the steady-state)
- \bullet The selection of λ_{θ}^2 is leaded by application-specific constraints

S.4 Applicability

In theory, this trick can work with any number of sensors, states, and parameters. In practice it works well only on a limited number of parameters (\sim 3 sensors, 5 states, 2 parameters)

T Simulation Error Method

T.1 Dataset

from an experiment, collect:

$$\{\overline{u}(1), \overline{u}(2), \dots, \overline{u}(N) \}$$

 $\{\overline{y}(1), \overline{y}(2), \dots, \overline{y}(N)\}$

T.2 Model

$$y(t) = \mathcal{M}(u(t), \overline{\theta}, \theta)$$

 $\overline{\theta}$ is the set of known parameters, θ the set of unknown parameters

T.3 Performance index

$$J_N(\theta) = \frac{1}{N} \sum_{t=1}^{N} \left(\overline{y}(t) - \mathcal{M}(\overline{u}(t), \overline{\theta}, \theta) \right)^2$$

T.4 Optimization

$$\hat{\theta}_N = \arg\min_{\theta} J_N(\theta)$$

T.5 Limitations

- \bullet Usually J_N has no analytic expression
- Computing the value of J_N requires an entire simulation from t=1 to t=N
- Usually J_N is non-quadratic and non-convex \to iterative and randomized optimization must be used
- Computationally demanding

Part VIII Minimum Variance Control

Part IX Recursive Identification

Part X

Cheatsheet

U Probability Recall

 $\textbf{Cross-Variance} \quad Var[v,u] = E[(v-E[v])(u-E[u])]$

 $\textbf{Variance Matrix} \begin{array}{|c|c|c|c|c|} \hline Var[v_1] & . & . & Var[v_1,v_k] \\ \hline . & . & . & . \\ \hline . & . & . & . \\ \hline Var[v_k,v_1] & . & . & Var[v_k] \\ \hline \end{array}$

Covariance coefficient $\delta[i,j] = \frac{Var[i,j]}{\sqrt{Var[i]}\sqrt{Var[j]}}$

Stationary process

- m constant
- λ^2 constant
- covariance $\gamma(\tau)$ depends only on time difference
- $|\gamma(\tau)| \le \gamma(0) \quad \forall \tau$

White noise $\eta(t) \sim WN(m, \lambda^2)$

- Stationary process
- $\gamma(\tau) = 0 \quad \forall \tau \neq 0$
- $v(t) = \alpha \eta(t) + \beta \implies v(t) \sim WN(\beta, \alpha^2 \lambda^2)$

Canonical representation

- Monic
- Same degree
- Coprime
- Poles and zeros in unit disk

V Spectral analysis

${\bf Spectrum}$

- $\Gamma(\omega) = \gamma(0) + 2cos(\omega)\gamma(1) + 2cos(2\omega)\gamma(2) + \dots$
- Periodic $T=2\pi$
- Even
- $\Gamma_{\eta}(\omega) = \gamma_{\eta}(0) = \lambda^2$

Complex spectrum

- $\Phi(z) = \sum_{\tau = -\infty}^{+\infty} \omega(\tau) z^{-\tau}$
- $\Gamma(\omega) = \Phi(e^{j\omega})$

Fundamental theorem of spectral analysis

- $\Gamma_{\rm out}(\omega) = |W(e^{j\omega})|^2 \cdot \Gamma_{\rm in}(\omega)$
- $\Phi_{\mathrm{out}}(z) = W(z)W(z^{-1}) \cdot \Phi_{\mathrm{in}}(z)$

W Moving Average MA(n)

- $W(z) = \frac{c_0 z^n + c_1 z^{n-1} + \dots + c_n}{z_n}$
- \bullet m=0
- $\gamma(\tau) = \begin{cases} (c_0 c_\tau + c_1 c_{1+\tau} + \dots + c_{n-\tau} c_\tau) \lambda^2 & |\tau| \le n \\ 0 & \text{otherwise} \end{cases}$

$W.1 \quad MA(\infty)$

- $\gamma(0) = (c_0^2 + c_1^2 + \dots + c_k^2 + \dots)\lambda^2$
- $\gamma(0)$ must converge to a finite value

X Auto Regressive AR(n)

- m = 0
- $\bullet \ W(z) = \frac{z^n}{z^n a_1 z_{n-1} \dots a_n}$
- \bullet Covariance calculated by its definition

Y Known predictors

AR(1)
$$\hat{v}(t|t-r) = a^r v(t-r)$$

MA(1)
$$\hat{v}(t|t-1) = v(t-1) - c\hat{v}(t-1|t-2)$$

$$\mathbf{MA(n)} \ \hat{v}(t|t-\mathbf{k}) = 0 \quad \forall k > n$$

ARMA
$$(n_a, n_b)$$
 $\hat{v}(t|t-1) = \frac{C(z) - A(z)}{C(z)}v(t)$

ARMAX
$$(n_a, n_b)$$
 $\hat{y}(t|t-1) = \frac{C(z) - A(z)}{C(z)} y(t) + \frac{B(z)}{C(z)} u(t-1)$