Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Retake the assignment in 23h 53m

Go to next item

1 / 1 point

1.	Consider	using this	encoder-dec	oder model	for machine	translation.

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

- True
- False
- ∠ ZExpand
- **⊘** Correct

 $\textbf{2.} \quad \text{In beam search, if you increase the beam width B, which of the following would you expect to be true? Check all that apply.}$

1 / 1 point

- Beam search will generally find better solutions (i.e. do a better job maximizing $P(y \mid x)$)
 - ✓ Correct
- Beam search will run more slowly.
- ✓ Correct
- Beam search will converge after fewer steps.
- Beam search will use up more memory.
 - ✓ Correct

Great, you got all the right answers.

3. True/False: In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly long translations.

1/1 point

	○ True	
	∠ [™] Expand	
	Correct In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.	
4.	Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y . Your algorithm uses beam search to try to find the value of y that maximizes $P(y\mid x)$.	1 / 1 point
	On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."	
	According to your model,	
	$P(\hat{y}\mid x) = 1.95*10^{-7}$	
	$P(y^* \mid x) = 3.42*10^{-9}$	
	True/False: Trying a different network architecture could help correct this example.	
	True	
	○ False	
	∠ ⁷ Expand	
	\bigcirc Correct $P(y^* \mid x) < P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm. If the RNN model is at fault, then a deeper layer of analysis could help to figure out if you should add regularization, get more training data, or try a different network architecture.	
5.	Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggests you should focus your attention on improving the RNN.	1 / 1 point
	○ True	
	False	
	∠ [™] Expand	
	\bigcirc correct $P(y^* \mid x) > P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.	

6. Consider the attention model for machine translation.

1 / 1 point

Further, here is the formula for $\alpha^{< t,t'>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_x} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha^{< t,t'>}$ are true? Check all that apply.

- We expect $\alpha^{< t, t'>}$ to be generally larger for values of $\alpha^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)
- \bigcirc $\alpha^{< t, t'>}$ is equal to the amount of attention $y^{< t>}$ should pay to a < t'>
- $\bigcap \quad \sum \alpha^{< t, t'>} = 0$
- $igcap \sum_{t'} lpha^{< t, t'>} = -1$

 \bigcirc Correct $\alpha^{< t,t'>} = \text{amount of attention } y^{< t>} \text{ should pay to } a^{< t'>}$

7. The network learns where to "pay attention" by learning the values $e^{< t, t'>}$, which are computed using a small neural network:

1/1 point

We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t,t'>}$ which in turn depends on $e^{< t,t'>}$; so at the time we need to evaluate this network, we haven't computed $s^{< t>}$ yet.

- True
- False

∠⁷ Expand

⊘ Correct

8. Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:

1/1 point

- \bigcirc The input sequence length T_x is small.
- $igcolon The input sequence length <math>T_x$ is large.

	∠ ⁷ Expand	
	⊘ Correct	
9.		1/1 point
	Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?	
	kk_eeeee_p_eeeeeeeerrrrr	
	○ keper	
	kkeeeeepeeeeeerrrrr	
	keeper	
	○ ke epe r	
	∠ [¬] Expand	
	Correct The basic rule for the CTC cost function is to collapse repeated characters not separated by "blank". If a character is repeated, but separated by a "blank", it is included in the string.	
10.	In trigger word detection, if the target label for $x^{< t>}$ is 1:	1/1 point
	There is exactly one trigger word.	
	The total time that the trigger word detection algorithm has been running is 1.	
	Only one word has been stated.	
	Someone has just finished saying the trigger word at time <i>t</i> .	
	∠ [≯] Expand	
	 ✓ Correct Target labels indicate whether or not a trigger word has been said. 	