Задача А. Биномиальная куча

Имя входного файла: binomial.in Имя выходного файла: binomial.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Реализуйте биномиальную кучу.

Формат входных данных

В первой строке содержится два целых числа: N- общее количество куч и M- количество операций $(1\leqslant N\leqslant 1000,1\leqslant M\leqslant 1\,000\,000)$. Изначально все кучи пусты.

Требуется поддерживать следующие операции:

- 0 v а добавить элемент со значением v в кучу с номером a. Вновь добавленный элемент имеет уникальный индекс равный порядковому номеру соответствующей операции добавления. Нумерация начинается с единицы.
- 1 а b переложить все элементы из кучи с номером a в кучу с номером b. После этой операции куча a становится пустой.
- 2 і удалить элемент с индексом i.
- 3 і v—присвоить элементу с индексом i значение v. Гарантируется, что элемент существует.
- 4 а вывести на отдельной строке значение минимального элемента в куче с номером a. Гарантируется, что куча не пуста.
- 5 а удалить минимальный элемент из кучи с номером a. Если таковых несколько, то выбирается элемент с минимальным индексом. Гарантируется, что куча не пуста.

Формат выходных данных

Для каждой операции поиска минимального элемента выведите единственное число: значение искомого элемента.

binomial.in	binomial.out
3 19	10
0 1 10	5
4 1	7
0 2 5	7
0 2 7	10
4 2	3
3 2 20	10
4 2	8
1 2 1	
4 1	
5 1	
4 1	
3 2 3	
4 1	
2 2	
4 1	
0 1 9	
1 1 3	
0 3 8	
4 3	

Задача В. Левацкая или косая куча

Имя входного файла: binomial.in Имя выходного файла: binomial.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Реализуйте левацкую или косую кучу.

Формат входных данных

В первой строке содержится два целых числа: N — общее количество куч и M — количество операций ($1 \le N \le 1000, 1 \le M \le 1000000$). Изначально все кучи пусты.

Требуется поддерживать следующие операции:

- 0 v а добавить элемент со значением v в кучу с номером a. Вновь добавленный элемент имеет уникальный индекс равный порядковому номеру соответствующей <u>операции добавления</u>. Нумерация начинается с единицы.
- 1 а b переложить все элементы из кучи с номером a в кучу с номером b. После этой операции куча a становится пустой.
- 2 і удалить элемент с индексом i.
- 3 і v присвоить элементу с индексом i значение v. Гарантируется, что элемент существует.
- 4 а вывести на отдельной строке значение минимального элемента в куче с номером a. Гарантируется, что куча не пуста.
- 5 а удалить минимальный элемент из кучи с номером a. Если таковых несколько, то выбирается элемент с минимальным индексом. Гарантируется, что куча не пуста.

Формат выходных данных

Для каждой операции поиска минимального элемента выведите единственное число: значение искомого элемента.

binomial.in	binomial.out
3 19	10
0 1 10	5
4 1	7
0 2 5	7
0 2 7	10
4 2	3
3 2 20	10
4 2	8
1 2 1	
4 1	
5 1	
4 1	
3 2 3	
4 1	
2 2	
4 1	
0 1 9	
1 1 3	
0 3 8	
4 3	

Задача С. Алгоритм двух китайцев

Имя входного файла: chinese.in Имя выходного файла: chinese.out Ограничение по времени: 6 секунд Ограничение по памяти: 256 мегабайт

Вам дан взвешенный ориентированный граф, содержащий n вершин и m рёбер. Найдите минимально возможную сумму весов n-1 ребра, которые нужно оставить в графе, чтобы из вершины с номером 1 по этим ребрам можно было добраться до любой другой вершины.

Формат входных данных

В первой строке даны два целых числа n и m $(1 \le n \le 1000, 0 \le m \le 10000)$ — количество вершин и ребер в графе.

В следующих m строках даны ребра графа. Ребро описывается тройкой чисел a_i , b_i и w_i $(1 \le a_i, b_i \le n; -10^9 \le w_i \le 10^9)$ — номер вершины, из которой исходит ребро, номер вершины, в которую входит ребро, и вес ребра.

Формат выходных данных

Если нельзя оставить подмножество ребер так, чтобы из вершины с номером 1 можно было добраться до любой другой, в единственной строке выведите «NO».

Иначе, в первой строке выведите «YES», а во второй строке выведите минимальную возможную сумму весов ребер, которых необходимо оставить.

chinese.in	chinese.out
2 1	NO
2 1 10	
4 5	YES
1 2 2	6
1 3 3	
1 4 3	
2 3 2	
2 4 2	

Задача D. Словарь

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Петя и Дима работают над новым алгоритмом сжатия данных. Их задача состоит в том, что сжать данный набор слов. Для этого они хотят построить корневое дерево, где на каждом ребре написана ровно одна буква.

Определим для такого дерева словарь, который содержит в точности те слова, которые могут быть получены конкатенацией букв на некотором пути в этом дереве (не обязательно начинающемся в корне), идущим вниз к листу (но не обязательно заканчивающимся в листе).

Ребята хотят построить такое дерево, для которого соотвествующий словарь будет содержать все слова из исходного множества (и, возможно, какие-то еще слова). Среди таких деревьев они хотят выбрать то, которое содержит минимальное количество вершин. Помогите им!

На картинке выше корень дерева имеет номер 1, а путь от вершины 7 до вершины 5 соответствует слову «north», путь от вершины 16 до вершины 12 соответствует слову «eastern», путь от вершины 29 до вершины 2 соответствует слову «european», путь от вершины 3 до вершины 25 соответствует слову «regional», а путь от вершины 1 до вершины 31 соответствует слову "contest".

Формат входных данных

Первая строка входных данных содержит число слов в множестве n ($1 \le n \le 50$). Следующие n строк содержат различные непустые слова, по одному на строке, каждое из которых состоит из маленьких английских букв. Каждое слово состоит из не более, чем 10 символов.

Формат выходных данных

В первой строке выведите количество вершин в исходном дереве m. В следующих m строках выведите описания вершин дерева. Вершины нумеруются с 1, описание вершины состоит из номера вершины-предка и символа, написанного на ребре, ведущего предка. Для корневой вершины описание должно состоять из единственного числа 0.

Примеры

стандартный ввод	стандартный вывод
5	31
north	0
eastern	1 c
european	2 0
regional	3 n
contest	4 t
	5 e
	6 u
	7 r
	8 0
	9 p
	10 e
	11 a
	12 s
	13 t
	14 e
	15 r
	16 n
	17 o
	18 r
	19 t
	20 h
	19 e
	22 g
	23 i
	24 o
	25 n
	26 a
	27 1
	12 n
	6 s
	30 t

Замечание

Пример соответствует рисунку из условия.

Задача Е. Алгоритм двух китайцев. Эпизод второй

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Вам дан взвешенный ориентированный граф, содержащий n вершин и m рёбер. Найдите минимально возможную сумму весов n-1 ребра, которые нужно оставить в графе, чтобы из вершины с номером 1 по этим ребрам можно было добраться до любой другой вершины.

Формат входных данных

Входные данные содержат описание одного или более тестов.

Каждый тест описывается следующим образом. В первой строке даны два целых числа n и m $(1 \le n \le 100\,000,\ 0 \le m \le 300\,000)$ — количество вершин и ребер в графе.

В следующих m строках даны ребра графа. Ребро описывается тройкой чисел a_i , b_i и w_i $(1 \le a_i, b_i \le n; -10^5 \le w_i \le 10^9)$ — номер вершины, из которой исходит ребро, номер вершины, в которую входит ребро, и вес ребра.

Сумма n по всем тестам не более $100\,000$. Сумма m по всем тестам не более $300\,000$.

Формат выходных данных

Для каждого теста выведите или суммарный вес выбранных рёбер, или «NO», если нельзя оставить подмножество рёбер так, чтобы из вершины с номером 1 можно было добраться до любой другой.

стандартный вывод
NO
6

Задача F. Хунг Фу

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Даны два массива целых чисел a и b длины n. Рассмотрим следующую формулу:

$$\sum_{i=1}^{n} \min_{1 \leqslant j \leqslant i} a_i \oplus b_j.$$

Вычислив пару раз значение этой функции, можно заметить, что важен порядок элементов в массиве. Нужно минимизировать значение этого выражения, применив какую-то перестановку к массивам a и b. Другими словами, нужно найти перестановку p, которая минимизирует следующую функцию:

$$F(p) = \sum_{i=1}^{n} \min_{1 \leqslant j \leqslant i} a_{p_i} \oplus b_{p_j}.$$

Найдите и выведите лексикографически минимальную перестановку p, минимизирующую функцию.

Формат входных данных

На первой строке дано одно целое число n: размер массивов $(1 \leqslant n \leqslant 50)$.

На второй строке даны n целых чисел a_i : элементы массива a ($0 \le a_i \le 1\,000\,000$).

На третьей строке даны n целых чисел b_i : элементы массива b ($0 \le b_i \le 1\,000\,000$).

Формат выходных данных

На первой строке выведите одно целое число: минимально возможное значение функции.

На второй строке выведите n целых чисел: лексикографически минимальная перестановка p, минимизирующая значение функции.

стандартный ввод	стандартный вывод
3	1
1 2 3	2 3 1
3 2 1	

Задача G. Персистентная приоритетная очередь

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 4 секунды Ограничение по памяти: 256 мегабайт

Требуется реализовать структуру данных, которая хранит мультимножество и умеет изменять любую свою предыдущую версию, выполняя одну из этих операций:

- 1. Заданы v и x, требуется добавить в множество v элемент со значением x, после чего вывести минимальный элемент в получившемся множестве.
- 2. Заданы v и u, требуется объединить множества с номерами v и u, после чего вывести минимальный элемент в получившемся множестве.
- 3. Задано v, требуется вывести минимальный элемент в множестве v, после чего удалить минимальный элемент из множества v. Если множество пустое, то вывести, что множество пустое, и создать новое пустое множество.

Изначально есть одно пустое множество с номером 0. После операции с номером i множество, получаемое во время этой операции, получает номер i.

Формат входных данных

Первая строка содержит число n — количество операций для выполнения.

От вас потребуется отвечать на запросы в онлайне, при этом поддерживая переменную s. Она изначально равна нулю. После каждой операции, она пересчитывается следующим образом через предыдущее значение: если ответ на запрос равен x, то $s = (s_{old} + x) \mod 239017$. Если же ответом на запрос является слово **empty**, то s не изменяется.

В следующих n строках заданы запросы.

Запросы первого типа описываются строкой 1 а b, где a и b — неотрицательные целые числа, которые описывают v и x для соответствующего запроса, как $v = (a+s) \bmod i$ и $x = (b+17s) \bmod (10^9+1)$, где i — номер соответствующего запроса.

Запросы второго типа описываются строкой 2 а b, где a и b — неотрицательные целые числа, которые описывают v и для соответствующего запроса, как $v=(a+s) \bmod i$ и $u=(b+13s) \bmod i$, где i — номер соответствующего запроса.

Запросы третьего типа описываются строкой 3 а, где a — неотрицательное целое число, которые описывает v для соответствующего запроса, как $v=(a+s) \bmod i$, где i — номер соответствующего запроса.

Число запросов не превышает $200\,000$. Гарантируется, что мощность любого созданного мультимножества не превышает 2^{63} .

Формат выходных данных

Требуется вывести ровно n строк, в каждой строке должно находиться неотрицательное целое число либо слово empty.

Для запросов первого и второго типа требуется вывести значение минимального элемента в только что созданном множестве, либо слово **empty**, если множество пустое.

Для запросов третьего типа требуется вывести минимальный элемент в множестве, либо слово еmpty, если множество пустое.

ЛКШ.2022.Август.Параллель 9.День 9. Кучки-могучки Костромская область, Берендеевы Поляны, 14 августа

стандартный ввод	стандартный вывод
9	2
1 0 2	3
1 0 999999970	2
2 2 0	2
3 0	2
2 4 4	2
3 0	2
3 0	3
3 0	empty
3 8	