8

TESTUL nr. 3

1. Să se raționalizeze numitorul fracției $\frac{1}{2-\sqrt{2}+\sqrt{3}-\sqrt{6}}$

a) $\sqrt{3} + 2\sqrt{2}$; b) $\sqrt{3} + 2$; c) $-(2 + \sqrt{3} + \sqrt{2} + \sqrt{6})$;

d) $2-\sqrt{3}+\sqrt{2}+\sqrt{6}$; c) $2+\sqrt{3}+\sqrt{2}-\sqrt{6}$; f) $2-\sqrt{3}-\sqrt{2}+\sqrt{6}$.

2. Să se afle $k \in \mathbb{R}$ astfel încât pentru orice $x, y \in \mathbb{R}$ să aibă loc inegalitatea: $x^2 - xy + 2y^2 + x - 2y + h > 0$

a) $h \in (4, \infty)$; b) $h \in (0, 4)$; c) $h \in (\frac{1}{7}, \infty)$;

d) $h \in \left(\frac{4}{7}, \infty\right)$; c) $h \in \left[\frac{4}{7}, \infty\right)$; f) $h \in \left[7, \infty\right)$.

3. Să se rezelve inecuația $\log_{1/2}(5-2^x) > 2-x$.

a) $x > \ln 5$; b) $2 < x < \frac{\ln 5}{\ln 2}$; c) $\ln 2 < x < 2$;

d) $\ln 5 < x < 2$; c) $x > \ln 2$:

f) nici un răspuns din cele

anterioare nu este corect.

4. Să se aducă la forma cea mai simplă expresia $E = \frac{C_n^k}{C^k + C^{k+1}}$

unde 1 < k < n.

a) $\frac{k+1}{n+1}$; b) $\frac{k}{n+1}$; c) $\frac{k(k+1)}{n(n+1)}$;

d) $\frac{k+1}{n(n+1)}$; e) $\frac{k}{n(n+1)}$; f) $\frac{2k+1}{n+1}$.

5. Pentru ce velori ale parametrului real m ecuația $x^4 - mx^3 + mx - 1 = 0$ are toate rădăcinile reale?

a) $m \in [0, \infty)$;

b) $m \in (2, \infty)$; c) $m \in (-\infty, -1) \cup (1, \infty)$;

d)
$$m \in (-\infty, -2] \cup [2, \infty)$$
; c) $m \in (-\infty, -2) \cup [1, \infty)$; f) $m \in [1, \infty)$.

6. Să se determine cel mai mare divizor comun al polinoamelor $P(X) = (X-1)^{3}(X+1)^{2}(X-3)(X+4)$ si $Q(X) = (X-1)(X+1)(X+4)^{2}$:

a)
$$(X-1)(X+4)(X+1)$$
;

a)
$$(X-1)(X+4)(X+1)$$
; b) $(X-1)^{3}(X+1)^{2}(X+4)^{2}$;

c)
$$(X-1)(X+4)$$
:

d)
$$(X-1)^{1}(X+1)^{2}$$
;

f)
$$(X-1)^3(X+1)(X+4)$$
.

7. Să se determine toate polinoamele $f \in \mathbb{R}[X]$ de gradul al doilea care verifică condiția: $f(X^2) = f^2(X)$ pentru orice $x \in \mathbb{R}$.

a)
$$X^2-1$$
; b) X^2+X ; c) X^2+X-1

a)
$$X^2-1$$
; b) X^2+X ; c) X^2+X-1 ; d) X^2+2X ; e) X^2 ; f) $-X^2$.

8. Să se afle matricea $(A+B)^2$ dacă $A = \begin{pmatrix} 2 & 1 \\ 0 & -1 \end{pmatrix}$ și $B = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}$.

a)
$$\begin{pmatrix} 3 & 0 \\ -1 & 4 \end{pmatrix}$$
;

a)
$$\begin{pmatrix} 3 & 0 \\ -1 & 4 \end{pmatrix}$$
; b) $\begin{pmatrix} 11 & -4 \\ -2 & -1 \end{pmatrix}$; c) $\begin{pmatrix} 7 & 4 \\ 10 & -3 \end{pmatrix}$;

c)
$$\begin{pmatrix} 7 & 4 \\ 10 & -3 \end{pmatrix}$$
;

d)
$$\begin{pmatrix} 9 & 0 \\ 4 & 1 \end{pmatrix}$$
;

d)
$$\begin{pmatrix} 9 & 0 \\ 4 & 1 \end{pmatrix}$$
; e) $\begin{pmatrix} 9 & 4 \\ -2 & 3 \end{pmatrix}$; i) $\begin{pmatrix} 0 & 9 \\ 1 & 4 \end{pmatrix}$.

$$i)\begin{pmatrix} 0 & 9 \\ 1 & 4 \end{pmatrix}.$$

9. Să se gisească valorile parametrului real α pentru care sistemul liniar și $x-\alpha v+z=0$ omogen $\{\alpha x + y - 2z = 0 \text{ admite și alte soluții în afară de soluția banală.}$ 3x + y + 3z = 0

a)
$$\alpha = 2$$
;

b)
$$\alpha = -\frac{1}{3}$$
;

b)
$$\alpha = -\frac{1}{3}$$
; c) $\alpha = \frac{1}{2}$ si $\alpha = -\frac{1}{3}$;

d)
$$\alpha = -\frac{1}{2}$$
 si $\alpha = -\frac{1}{3}$;

d)
$$\alpha = -\frac{1}{2} \sin \alpha = -\frac{1}{3}$$
; e) $\alpha = -2 \sin \alpha = -\frac{1}{3}$; f) $\alpha = 2 \sin \alpha = -\frac{1}{3}$.

10. Se consideră șirul de funcții $f_s: \mathbb{R} \to \mathbb{R}$ definit prin reiația de recurență:

$$f_n(x) = f_{n-1}\left(x + \frac{1}{2}\right) - f_{n-1}(x)$$
 cu $f_1(x) = e^x$. Să se determine termenul general $f_n(x)$ al şirului.

a) e^{x} ; b) $(e^{x}-1)^{n}$; c) $e^{x}(\sqrt{e}-1)^{n-1}$; d) $e^{x}(e-1)^{n-1}$; c) $(\sqrt{e}-1)^{n}e^{x}$; f) $(\sqrt{e}-1)^{n}$.

11. Se cere să se afle mulțimea în care funcția $f:[1,\infty)\to\mathbb{R}$, $f(x) = \sqrt{x+8-6\sqrt{x-1}}$ este derivabilă.

a) $(1, \infty)$; b) $(1, 10) \cup (10, \infty)$;

c) (1, 4)U(4, ∞);

d) (4, \infty); c) (10, \infty);

1) (1, 4].

12. Sā se afle $\lim_{x \to 2} (\sqrt[3]{(x+1)(x+2)(x+3)} - x)$:

a) 2; b) ∞ ; c) 0; d) 1; e) 1/2; f) $\frac{1}{2}$.

13. Să se determine toate asimptotele la graficul $f(x) = x - x^2 \ln \left(1 + \frac{1}{x}\right), \quad x \in (-\infty, -1) \cup (0, \infty).$

a) y = 0 si y = -1; b) x = -1 si $y = \frac{1}{2}$; c) x = 0 si y = 1;

d) y = 2; c) x = -1 si x = 0; f) $y = \frac{1}{2}$.

Să se determine mulțimea punctelor pe care $f(x) = x \ln(-x)$, x < 0 este strict descrescătoare.

a) $\left(-\frac{1}{e},0\right)$; b) $\left(-e,0\right)$; c) $\left(-\infty,-\frac{1}{e}\right)$;

d) $(-\infty, -e)$; e) $(-\infty, -1)$; f) (-1, 0).

15. Fie $f(x) = \frac{1}{2}$, $x \ne 0$. Să se determine suma infinită

 $S = 1 + f(n) - \frac{1}{4} f'(n) + \frac{1}{24} f''(n) - \dots + \frac{(-1)^k}{4k} f^{(k)}(n) + \dots$

a) $\frac{2}{n-1}$; b) $\frac{1}{n-1}$; c) $\frac{n}{n-1}$;

d) $\frac{2}{n}$; e) $\frac{1}{n(n-1)}$; f) $\frac{n-1}{n}$.

16. Să se determine punctele intermediare ce apar în teorema lui Lagrange

pentru funcția
$$f(x) = \begin{cases} x^2 - x, & x \in [0, 1) \\ \ln x, & x \in [1, e] \end{cases}$$
.

- a) $\frac{1}{2e}$; b) $\frac{1}{e}$ si \sqrt{e} ; c) $\frac{1}{2}(1+\frac{1}{e})$;
- d) $\frac{1}{2}\left(1-\frac{1}{e}\right)$; c) $\frac{e}{\sqrt{2}}$;
- $0 = \sin \frac{1}{2}$.

17. Să se afle valoarea integralei $\int_0^{\pi/2} x \sin^2 x \, dx$:

- a) $\frac{\pi^2 + 4}{16}$; b) $\frac{\pi^2 + 4}{8}$; c) $\frac{\pi^2}{8}$;

- a) $\frac{\pi^2+2}{16}$; e) $\frac{\pi^2+2}{8}$; f) $\frac{2\pi^2+1}{8}$.

18. Folosind definiția integralei definite să se calculeze

$$\lim_{n \to \infty} n \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+n)^2} \right].$$
a) 1; b) $\frac{1}{2}$; c) $\frac{3}{2}$; d) $\frac{2}{3}$; e) $\frac{1}{2}$; f) $\frac{1}{4}$.