

- Multipath TCP適用時のデータセンターネットワークでのショートフローに対する影響の改善 Shogo Fujii - sekiya labratory

14-MU

Outline

Today's requirement for large-scales cloud data center is getting higher and higher, for example web search engine and SNS(Social networking service) demands soft real-time response. Multipath TCP (MPTCP) improves throughput on modern topology which has multipath on host-to-host traffic. However, some researchers reported MPTCP affects short flow traffic negatively. In my research, I figure out why negative effect happens with two negative factors, bottleneck at aggregation switch and multiplexed flow patterns in one host.

Background

Big data growth matters seriously ...

Approach in data center

Scale-out, redundancy, cloud service

Improving datacenter network with MPTCP MPTCP affects short flow traffic negatively[10]

commonly using distributed processing application in data center

- Why short flow?
- 80% of data center traffic is short flow[16]
- Partition / Aggregate structure [3]

Short flows in datacenter network is matter

Related work: approaching for switch, protocol etc...[9, 11]
In my research –

- 1. Using modern topology for massive resources
- 2. Seamless operation: without special implementation and device
- Application friendly: optimizing the specified traffic patterns

Goal: Constantly high performance datacenter network with

Exploratory approach

- As the result of reproduction experiment[20],
- 1. MPTCP generates more traffic data, and causes delay with packet loss.
- 2. MPTCP has not achieved perfect effectiveness, only with 2 paths.
- **Hypothesis**: Using uncongested path, improving the performance of short flow.
- Purpose
- 1. validate the hypothesis.
- 2. figure out why negative effect for short flows happens.

Simulation environment

Topology: 4-node(2-pairs) FatTree like topology _{Edge}
Simulator: ns-3 DCE(Direct Code Execution)

Benchmark traffic

Background flow with MPTCP and 2~70KB short flow on average 200ms (poisson arivals), and measuring FCT(Flow completion time) for short flow - 1000times on simulation.

Fig.2 Simulation topology

Fig3: Flow completion time and link utilization for 70kb benchmark traffic

Analysis

Effect of link utilization and short flow interval

What happens?

1. Queue buildup-Fig7(b)

Long-lived background flow cause the length of the bottleneck queue to grow.

output queue

2. Incast-Fig7(a)

Many flows coverage on the same interface of aggregate switch over a short period of time, synchronously.

- Impairment on the short flows:
- queue-buildup delay, they are in queue behind packets from the large flows, even when no encounter with bursty traffic.
- 2. packet loss.
- Solution :

Reducing the size of the queues at aggregation switch

Conclusion

- Validated the hypothesis from reproduction experiment, and improving the performance of short flow by selecting uncongested path.
- Clarified short flow delays arise under what circumstances; Queue buildup and Incast patterns, and gave the direction for solutions.
- Reproducing these problems in a real world, and proposing the method for avoiding pressuring aggregating switch queue.
- Analyzing the unclear point of short flow delay, application or hardware side etc. as my future work.