Decision Trees

Practical work n° 9

toumi mustapha abderahmane 11 november 2019

keywords: machine learning, python, data sets, sklearn, pandas, decision trees,

1 Abstract

A Decision Tree is a simple representation for classifying examples. It is a Supervised Machine Learning where the data is continuously split according to a certain parameter

2 Methods and Materials

1. Materials:

1. software:

- MySQL dbms
- Navicat for MySql

2.hardware:

- processeur : i3 VI

- ram : 8mb

-hard disk: 125 gb

3 Results

In this work we have the data set "Train_v2" which represent a financial info about each interviewee

So we are trying to classify this interviewee our output is "bank_account " define whether this interviewee have or doesn't have a bank account , the input is the rest of columns except "unique_id"

First lets use pandas to read our $Train_v2$.csv and see what we have , we can get info and shape too

```
[61] > MI
      import os
      import numpy as np
      import pandas as pd
      import matplotlib.pyplot as plt
      from sklearn import tree, metrics
      data = pd.read_csv("Train_v2.csv")
      data.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 23524 entries, 0 to 23523
                                 23524 non-null object
     year
                                 23524 non-null object
                                 23524 non-null object
     bank account
     location_type
     cellphone_access
     household size
                                 23524 non-null int64
     age_of_respondent
                                 23524 non-null int64
     gender of respondent
                                 23524 non-null object
     relationship with head
                                 23524 non-null object
     marital status
     education level
     job_type
                                 23524 non-null object
     dtypes: int64(3), object(10) memory usage: 2.3+ MB
```

Figure 1: read csv and get some info

Now lets drop the unique id and see how the data look like again

[62]	▶ MI													
	<pre>data = data.drop(['uniqueid'], axis=1)</pre>													
	D MI													
[63]	3]													
1.0														
		country	year	bank_account	location_type	cellphone_access	household_size	age_of_respondent	gender_of_respondent	relationship_w				
		Kenya	2018	Yes	Rural	Yes		24	Female					
	1	Kenya	2018	No	Rural	No		70	Female	Head of H				
	2	Kenya	2018	Yes	Urban	Yes		26	Male	Other				
		Kenya	2018	No	Rural	Yes		34	Female	Head of H				
	4	Kenya	2018	No	Urban	No	8	26	Male					
[64]	D	M↓												
L 1	data.shape													
	(2	3524, 1	2)											

Figure 2: drop unique_id and display the head and shape of the data

Now we are ready to convert our columns to a unique numeric types using factorize

da da da da da da da da	<pre>data['bank_account'], class_names = pd.factorize(data['bank_account']) data['country'],_ = pd.factorize(data['country']) data['year'],_ = pd.factorize(data['year']) data['location_type'],_ = pd.factorize(data['location_type']) data['cellphone_access'],_ = pd.factorize(data['cellphone_access']) data['household_size'],_ = pd.factorize(data['household_size']) data['age_of_respondent'],_ = pd.factorize(data['age_of_respondent']) data['gender_of_respondent'],_ = pd.factorize(data['gender_of_respondent']) data['relationship_with_head'],_ = pd.factorize(data['relationship_with_head']) data['marital_status'],_ = pd.factorize(data['marital_status']) data['education_level'],_ = pd.factorize(data['education_level']) data['job_type'],_ = pd.factorize(data['job_type']) data.head()</pre>											
	country	vear	hank account	location type	cellnhone access	household size	age of respondent	gender_of_respondent	relationshin w			
	0	0	0	0	0	0	0	9	resuctionionsp_#			
1	0	0	1		1		1					
2	0	0	0		Ø		2					
	0	0	1	0	0	1		0				
4	0	0	1	1	1	2	2	1				
67] Þ	M↓											

Figure 3: Convert columns to numeric types

Separate data into an input 'x' and output 'y'

Figure 4: input is x and the output is y

Now we are ready to split the data into training and testing , and start the training and the prediction phase after that we will calculate the miss classified samples and the accuracy

```
from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(x,y,test_size = 0.3, random_state = 0)

[72] 

Mi

dtree = tree.DecisionTreeClassifier(criterion='entropy', max_depth=6, random_state=0)
    dtree.fit(X_train, y_train)

#use the model to make prediction
    y_pred = dtree.predict(X_test)|
    count_misclassified = (y_test != y_pred).sum()
    print('Misclassified samples: {}'.format(count_misclassified))

Misclassified samples: 918

[73] 

Mu

accuracy = metrics.accuracy_score(y_test, y_pred)
    print('Accuracy: {:.2f}'.format(accuracy))

Accuracy: 0.87
```

Figure 5: Train, Split, Predict

Display the tree using "graphviz"

```
import graphviz
feature_names = x.columns
dot_data = tree.export_graphviz(dtree, out_file=None, filled=True, rounded=True,
feature_names=feature_names,
class_names=class_names)
import os
os.environ["PATH"] += os.pathsep + 'C:/Users/icom/.conda/pkgs/graphviz-2.38-hfd603c8_2/Library/bin/graphviz'
graph = graphviz.Source(dot_data)
graph
```

Figure 6: code to visualize decision tree using graphviz

Visualissation of the tree is in this file below "Source.gv"

4 Conclusion

The accuracy was 87% with 918 miss classified samples this was a good result