Given an orthogonal family $(u_k)_{k\in K}$, for any finite subset I of K, we often call sums of the form $\sum_{i\in I} \lambda_i u_i$ partial sums of Fourier series, and if these partial sums converge to a limit denoted as $\sum_{k\in K} c_k u_k$, we call $\sum_{k\in K} c_k u_k$ a Fourier series.

However, we have to make sense of such sums! Indeed, when K is unordered or uncountable, the notion of limit or sum has not been defined. This can be done as follows (for more details, see Dixmier [51]):

Definition A.2. Given a normed vector space E (say, a Hilbert space), for any nonempty index set K, we say that a family $(u_k)_{k \in K}$ of vectors in E is summable with sum $v \in E$ iff for every $\epsilon > 0$, there is some finite subset I of K, such that,

$$\left\| v - \sum_{j \in J} u_j \right\| < \epsilon$$

for every finite subset J with $I \subseteq J \subseteq K$. We say that the family $(u_k)_{k \in K}$ is summable iff there is some $v \in E$ such that $(u_k)_{k \in K}$ is summable with sum v. A family $(u_k)_{k \in K}$ is a Cauchy family iff for every $\epsilon > 0$, there is a finite subset I of K, such that,

$$\left\| \sum_{j \in J} u_j \right\| < \epsilon$$

for every finite subset J of K with $I \cap J = \emptyset$,

If $(u_k)_{k \in K}$ is summable with sum v, we usually denote v as $\sum_{k \in K} u_k$. The following technical proposition will be needed:

Proposition A.1. Let E be a complete normed vector space (say, a Hilbert space).

- (1) For any nonempty index set K, a family $(u_k)_{k\in K}$ is summable iff it is a Cauchy family.
- (2) Given a family $(r_k)_{k\in K}$ of nonnegative reals $r_k \geq 0$, if there is some real number B>0 such that $\sum_{i\in I} r_i < B$ for every finite subset I of K, then $(r_k)_{k\in K}$ is summable and $\sum_{k\in K} r_k = r$, where r is least upper bound of the set of finite sums $\sum_{i\in I} r_i$ $(I\subseteq K)$.

Proof. (1) If $(u_k)_{k\in K}$ is summable, for every finite subset I of K, let

$$u_I = \sum_{i \in I} u_i$$
 and $u = \sum_{k \in K} u_k$

For every $\epsilon > 0$, there is some finite subset I of K such that

$$||u-u_L||<\epsilon/2$$

for all finite subsets L such that $I \subseteq L \subseteq K$. For every finite subset J of K such that $I \cap J = \emptyset$, since $I \subseteq I \cup J \subseteq K$ and $I \cup J$ is finite, we have

$$||u - u_{I \cup J}|| < \epsilon/2$$
 and $||u - u_I|| < \epsilon/2$,