→ Import Libraries

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
```

→ Import Dataset

data = pd.read_csv('abalone.csv')
data

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 columns

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64

```
2
     Diameter
                     4177 non-null
                                     float64
 3
     Height
                     4177 non-null
                                     float64
 4
    Whole weight
                     4177 non-null
                                     float64
 5
     Shucked weight 4177 non-null
                                     float64
    Viscera weight 4177 non-null
                                     float64
 7
     Shell weight
                                     float64
                     4177 non-null
                                     int64
 8
     Rings
                     4177 non-null
dtypes: float64(7), int64(1), object(1)
memory usage: 293.8+ KB
```

▼ Univariate Analysis

```
plt.hist(data['Sex']);
plt.xlabel('Sex');
```



```
plt.hist(data['Rings']);
plt.xlabel('Rings');
```



```
sns.boxplot(x=data['Length'])
plt.xlabel('Length');
```


plt.hist(data['Diameter']);
plt.xlabel('Diameter');

plt.hist(data['Height']);
plt.xlabel('Height');

sns.boxplot(x=data['Whole weight'])
plt.xlabel('Whole weight');

sns.boxplot(x=data['Shucked weight'])
plt.xlabel('Shucked weight');

plt.hist(data['Viscera weight']);
plt.xlabel('Viscera weight');


```
plt.hist(data['Shell weight']);
plt.xlabel('Shell weight');
```


▼ Bivariate Analysis

```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Height"], y=data["Whole weight"]);
plt.xlabel('Height');
plt.ylabel('Whole weight');
```



```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Length"], y=data["Height"]);
plt.xlabel('Length');
plt.ylabel('Height');
```



```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Diameter"], y=data["Height"]);
plt.xlabel('Diameter');
plt.ylabel('Height');
```



```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Length"], y=data["Diameter"]);
plt.xlabel('Length');
plt.ylabel('Diameter');
```

```
plt.figure(figsize=(10, 6))
plt.scatter(x=data["Shucked weight"], y=data["Whole weight"]);
plt.xlabel('Shucked weight');
plt.ylabel('Whole weight');
```



```
plt.figure(figsize=(10, 6))
plt.scatter(x=data["Viscera weight"], y=data["Whole weight"]);
plt.xlabel('Viscera weight');
plt.ylabel('Whole weight');
```


Multi-variate Analysis

```
sns.pairplot(data, hue='Sex');
```


plt.figure(figsize=(10, 6));
sns.heatmap(data.corr(), annot=True);

Descriptive Statistics

Shucked weight 🚪	0.9	0.89	0.77	0.97	1	0.93	0.88	0.42	
<pre>data.describe()</pre>									

	Viscera weight	Shucked weight	Whole weight	Height	Diameter	Length	
41	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	count
	0.180594	0.359367	0.828742	0.139516	0.407881	0.523992	mean
	0.109614	0.221963	0.490389	0.041827	0.099240	0.120093	std
	0.000500	0.001000	0.002000	0.000000	0.055000	0.075000	min
	0.093500	0.186000	0.441500	0.115000	0.350000	0.450000	25%
	0.171000	0.336000	0.799500	0.140000	0.425000	0.545000	50%
	0.253000	0.502000	1.153000	0.165000	0.480000	0.615000	75%
	0.760000	1.488000	2.825500	1.130000	0.650000	0.815000	max

Handling Missing Values

data.isna().sum()

Sex 0
Length 0
Diameter 0
Height 0
Whole weight 0
Shucked weight 0
Viscera weight 0
Shell weight 0
Rings 0
dtype: int64

Outlier Handling

```
numeric_cols = ['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight', 'Viscera
def boxplots(cols):
```

```
fig, axes = plt.subplots(4, 2, figsize=(15, 20))
    t=0
    for i in range(4):
        for j in range(2):
            sns.boxplot(ax=axes[i][j], data=data, x=cols[t])
    plt.show()
def Flooring outlier(col):
    Q1 = data[col].quantile(0.25)
    Q3 = data[col].quantile(0.75)
    IQR = Q3 - Q1
    whisker_width = 1.5
    lower_whisker = Q1 -(whisker_width*IQR)
    upper_whisker = Q3 + (whisker_width*IQR)
    data[col]=np.where(data[col]>upper_whisker,upper_whisker,np.where(data[col]<lower_whis</pre>
print('Before Outliers Handling')
print('='*100)
boxplots(numeric_cols)
for col in numeric_cols:
    Flooring_outlier(col)
print('\n\nAfter Outliers Handling')
print('='*100)
boxplots(numeric_cols)
```


After Outliers Handling

▼ Encode Categorical Columns

data = pd.get_dummies(data, columns = ['Sex'])
data

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	Se
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15.0	
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7.0	
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9.0	
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10.0	
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7.0	
	••••								
4172	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11.0	
4173	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10.0	
4174	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9.0	
4175	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10.0	
4176	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12.0	

1177 rowe x 11 columns

Split Data into Dependent & Independent Columns

```
Y = data[['Rings']]
X = data.drop(['Rings'], axis=1)
```

Scale the independent Variables

Train Test Split

Model Training & Testing