High Training Time

Neural Networks taking a lot of time to converge

Reason: Change in Data Distribution across layers

Problem : Change in Data Distribution across layers

Problem: Change in Data Distribution across layers

Problem: Change in Data Distribution across layers

Internal Covariate Shift

Solution: BatchNormalization

BN (wwh) H_1 $\widetilde{wx}(wx)$

Without BatchNorm

With BatchNorm

BatchNormalization: Technical Perspective

$$\mu_B = \frac{1}{m} \sum_{i=1}^m x^i$$

Batch Mean

$$\sigma_B^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu_B)^2$$

Batch Variance

$$\widehat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \varepsilon}}$$

Normalize

$$y_i = \gamma \widehat{x} + \beta \equiv BN_{\gamma,\beta}\widehat{x_i}$$

Scale and Shift

Thank You

