Problem 1

We want to show

a group G has p elements of order $p \implies G$ is not cyclic

We proceed by contrapositive. Assume the group G is cyclic and generated by g. We know that by Lagrange's theorem that if there are any elements of order p, p must divide the order of the group so |G| = pn. And since G is assumed to be cyclic the only elements that have order p will be $g^n, g^{2n}, \ldots g^{(p-1)n}$. But there are only p-1 of these elements.

Problem 2

We want to show that $|Perm(\mathbb{N})| = \infty$ and that $Perm(\mathbb{N})$ is not a cyclic group.

For the sake of contradiction, assume $|Perm(\mathbb{N})| = n$. Then consider the transpositions $(1,2), (3,4), \dots (2n-1,2n), (2n+1,2n+2)$ since all these are transpositions of natural numbers they will be in the group, and we have found n+1 of them, contradicting our original claim that the order of the group was finite. Similarly we can show that $Perm(\mathbb{N})$ is not cyclic because cylic groups must always be abelian (since powers of elements commute with themselves), but $(12)(23) \neq (23)(12)$.

Problem 3

We want to show

G is infinite, cyclic $\implies G$ contains no finite subgroups

Let's assume for the sake of contradiction that $G = \langle g \rangle, |G| = \infty$ and assume that $H < G, |H| = n < \infty$. H must contain some g^m . Then by closure $e, g^{2m}, g^{3m}, \ldots, g^{nm} \in H$ (and for all $\neq e$ since $|G| = \infty$), which violates our assumption that |H| = n because we have found n + 1 elements in H.

Problem 4

We want to show

a finite group is the union of proper subgroups \iff it is not cyclic

We start by showing that the LHS \implies RHS using contrapositive, ie we show that a group being cyclic implies that the group is not the union of proper subgroups. We know that every cyclic group of order n is generated by $\phi(n)$ elements, so any subgroup containing any one of those elements would contain all elements of the group, so there is no subgroup containing it.

Next we show that LHS \Leftarrow RHS. Assume our group G is not cyclic, by definition of not cyclic there is no such element $g \in G : \langle g \rangle = G$. Then we can take an element $g_1 \in G$ and we know $\langle g_1 \rangle \subset G$. We can then choose a $g_2 \in G \setminus \langle g_1 \rangle$ and we know that $\langle g_2 \rangle \subset G$. Since G is finite we know this process must terminate and we can write $G = \bigcup \langle g_i \rangle$.

Problem 5

We want to show that in some group

```
|a| relatively prime to |b| \implies \langle a \rangle \cap \langle b \rangle = e
```

We again proceed by the contrapositive. Assume that $\langle a \rangle \cap \langle b \rangle$ contains some element $g \neq e$. Then we know that $\langle g \rangle \subseteq \langle a \rangle, \langle b \rangle$. And since by Lagrange's theorem we know that the order of a subgroup must divide the group and we know that $|\langle g \rangle| \neq 1$ because $g \neq e$, it must be that |a| is not relatively prime to |b|.

Problem 6

We want to show that no group can contain exactly two elements of order 2.

We proceed by contradiction. Consider a group G containing exactly two unique elements of order 2, |a| = |b| = 2 or $a^2 = b^2 = e$ or $a = a^{-1}, b = b^{-1}$.

Take the case where the case where a, b commute. Then $ab \neq e$ (since $a \neq b$) and $(ab)^2 = abba = aa = e$, so ab also has order 2.

Now take the case where a,b do not commute. Then aba^{-1} will clearly have order 2. And $aba^{-1} \neq b$ since otherwise a,b would commute. And $aba^{-1} \neq a$ since otherwise a=b. And $aba^{-1} \neq e$ since otherwise b=e