	 _	 	 	 	(4)	 		
33 37								
Reg. No	1 1			. 1	(i)			

B.Tech DEGREE EXAMINATION, DECEMBER 2023

Fifth to Seventh Semester

18CSE392T - MACHINE LEARNING - I

(For the candidates admitted during the academic year 2020 - 2021 & 2021 - 2022)

Note:

age 1 of 4

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
 ii. Part - B and Part - C should be answered in answer booklet.

	art - D and Fart - C should be answered in a	nswer booklet.			
Tim	e: 3 Hours	4	Max. N	Marks:	: 100
	$PART - A (20 \times 1 = Answer all Que$	· ·	Marl	ks BL	CO
1.	Identify the type of learning in which both (A) Semi Supervised Learning (C) Reinforcement Learning	input and output attributes available. (B) Supervised Learning (D) Unsupervised Learning	1	1	1
2.	 Which of the following statement is TRUE (A) Outliers should be identified and removed always from a dataset. (C) Outliers is a data point that is significantly close to other data points. 	(B) Outliers can never be present in the test set. (D) The nature of our business problem determines how outliers are used.	1	2	1
3.	What kind of algorithm can be used for "Fr (A) Generating Pattern (C) Prediction	uture currency exchange rates"? (B) Recognition Pattern (D) Anomalies	1	2	1
4.	is not an example of classical (A) Speech Recognition (C) Face Recognition	ification. (B) Character Recognition (D) Game Playing	1	2	1
5.	Which of the following evaluation metric regression output to compare with target? (A) AUC-ROC (C) Logloss	cs can not be applied in case of logistic (B) Accuracy (D) Mean-Squared-Error	1	.2	2
6.	What's the the hypothesis of logistic regres (A) to limit the cost function between 0 and 1 (C) to limit the cost function between -infinity and +infinity	sion? (B) to limit the cost function between -1 and 1 (D) to limit the cost function between 0 and +infinity	1	2	2
7.	Naïve Bayes algorithm is based on problems. (A) Candidate elimination algorithm (C) EM algorithm	and used for solving classification (B) Bayes Theorem (D) RM algorithm	1	1	2
8.	The confusion matrix visualizes the or predicted classes. (A) Stability (C) Accuracy	of a classifier by comparing the actual and (B) Connectivity (D) Compactability	·1		2
9.	What's the penalty term for the Ridge regre. (A) the square of the magnitude of the coefficients (C) the absolute sum of the coefficients	(B) the square root of the magnitude of the coefficients (D) the sum of the coefficients	I		3

05DF5-7-18CSE392T

10.	PCA works better if there is		1	2	3
	 A linear structure in the data If the data lies on a curved surface an If variables are scaled in the same un 				
	(A) 1 and 2	(B) 2 and 3			
1	(C) 1 and 3	(D) 1, 2 and 3			
11.	Suppose you are dealing with a 4-class class an SVM model on the data. For that, you are How many times do we need to train our SV	using the One-vs-all method. /M model in such a case?	1	3	3
	(A) 1	(B) 2			
	(C) 3	(D) 4			
12.	Which of the following distance measure do in k-NN?	o we use in case of categorical variables	1	3	3
	 Hamming Distance Euclidean Distance Manhattan Distance 				
	(A) 1	(B) 2			
	(C) 3	(D) 1 & 3			
13.	What is the minimum no. of variables/ featu	res required to perform clustering?	1	2	4
	(A) 0	(B) 1			
	(C) 2	(D) 3			
14.	Which of the following clustering algorithm (A) K- Means	follows a top to bottom approach? (B) Divisible	1	1	4
	(C) Agglomerative	(D) Hierarchical			
15.	Which of the following clustering algo-	orithms suffers from the problem of	1	4	4
	convergence at local optima?	-			
	1. K- Means clustering algorithm	·			
	 Agglomerative clustering algorithm Expectation-Maximization clustering 	algorithm			
	4. Diverse clustering algorithm	- mgo			
	(A) 1 only	(B) 2 and 3		2	
	(C) 2 and 4	(D) 1 and 3			
16.	In which of the following cases will K-Mean	ns clustering fail to give good results?	1	4	4
	1. Data points with outliers	5, 5 5			
	2. Data points with different densities				
	3. Data points with round shapes4. Data points with non-convex shapes				
	(A) 2 and 3	(B) 1 and 2			
	(C) 1, 2 and 4	(D) 2 and 4			
17.		a random variable, it characterizes the	1	1	5
	(A) Information Gain	(B) Gini Index			
	(C) Entropy	(D) Gain Ratio			
18.		n a randomly chosen element would be	1	1	5
	(A) Information Gain	(B) Gini Index			
	(C) Entropy	(D) Gain Ratio			

19.	 Which of the following is/are true about Random Forest and Gradient Boosting ensemble methods? Both methods can be used for classification task Random Forest is use for classification whereas Gradient Boosting is use for regression task Random Forest is use for regression whereas Gradient Boosting is use for Classification task Both methods can be used for regression task (A) 1 (B) 1 & 2 	1	3	5
	(C) 1 & 4 (D) 2 & 4			_
20.	Which of the following is not an Machine Learning strategies in ANNs? (A) Unsupervised Learning (B) Reinforcement Learning (C) Supreme Learning (D) Supervised Learning	1	1	5.
	PART - B ($5 \times 4 = 20 \text{ Marks}$)	Marks	BL	CO
	Answer any 5 Questions			
21.	Compare and contrast Overfitting and Underfitting.	4	2	1
22.	Explain the Curse of dimensionality with example.	4	3 =	1
23.	Why K-Fold Cross Validation is required? Explain the concept with suitable diagram.	4	2	2
24.	For the below mentioned data, find y using python code. y = mx+c. Write the python code for this. Note: import the required libraries, split the data, train the model and test the model. Skill Score Salary 18		3	2
25	How does the KNN algorithm make the predictions on the unseen dataset?	4	3	3
	How the k-medoids algorithm works.	4	1	4
	What is the role of the Activation functions in Neural Networks? List popular Activation Functions used in Neural Networks.	4	2	5
	PART - C ($5 \times 12 = 60 \text{ Marks}$) Answer all Questions	Marks	BL	CO
28.	 (a) Summarize the types of machine learning with examples. (OR) (b) Explain (i) Bias, Variance and its tradeoff. (ii) Parametric and non-parametric model 	12	2	1

29. (a) Consider the given Dataset ,Apply Naive Baye's Algorithm and Predict that if a fruit has the following properties then which type of the fruit it is Fruit = {Yellow, Sweet, long}

12 3

2

Frequency Table:

Fruit	Yellow	Sweet	Long	Total
Mango	350	450	0	650
Banana	400	300	350	400
Others	50	100	50	150
Total	800	850	400	1200

(OR)

- (b) Explain logistic regression with suitable example
- 30. (a) Write the working principle of different SVM classifiers with suitable example.

12 4 3

12

3

(OR)

(b) Using the PCA algorithm, for the given sample

	Example 1	Example 2	Example 3	Example 4
X1	4	8	13	7
X2	11	4	5	14

- i) Compute the number of sample, features and covariance matrix of all ordered pairs.
- ii) Compute the corresponding Eigenvalues and Eigenvectors.

31. (a) Cluster the following set of data using k-means algorithm with initial value of objects 2 and 5 with the coordinate values (4,6) and (12,4) as initial seeds.

Objects	X coodinates	Y coordinates
1	2	4
2	4	6
3	6	8
4	10	4
5	12.	4

(OR)

- (b) Explain the following
 - i) Spectral clustering
 - ii) Hierarchical clustering
 - iii) Agglomerative clustering
- 32. (a) Explain CART (Classification & Regression tree) algorithm with example.

12 4 5

(OR)

(b) With the given dataset of two features (X1 and X2) and a binary target variable (Y) representing whether a customer buys a product (1 for "buys" and 0 for "doesn't buy"). Solve the binary classification using random forest algorithm.

X1	X2	Y
2	3	1
3	3	0
3	2	1
1	2	0
1	3	1

* * * * *