Using a pocket calculator, one may notice that by applying the cosine key repeatedly to the value one obtains a sequence of real numbers $x_1=\cos x_0=1.$ $x_2=\cos x_1=0.54030230586814$

$$x_3 = \cos x_2 = 0.857553215846393$$

$$\vdots$$

$$x_{21} = \cos x_{20} = 0.739184399771494$$

which tends to the value $x_\infty=0.739085\ldots$, which is the point where the functions x and $\cos x$ intersect. The iteration can be written as

$$x_{n+1} = \cos x_n \text{ for } n = 0, 1, 2, \dots \text{ with } x_0 = 1.$$

The limit x_{∞} satisfies the transcendental equation

Write a for loop that performs the iteration
$$x_{n+1} = \cos x_n$$
 starting from the initial condition $x_0 = 0$ and stops when the absolute value of the difference $|x_{n+1} - x_n|$ between two consecutive iterations is less than a prescribed tolerance $\epsilon = 10^{-12}$. Print out the final value x_{n+1} to 16 digits of accuracy. In how many iterations did your loop converge? What is the

 $\cos x = x$.

consecutive iterations is less than a prescribed tolerance $\epsilon = 10^{-12}$. Print out the final value x_{n+1} to 16 digits of accuracy. In how many iterations did your loop converge? What is the final error in the above transcedental equation? (Hint: use the final value to compute and print out the difference $x - \cos x$.)