FAERS Team

Daiwik Bommireddipally, Sydney Chau,

Ryan Mersereau, Carina Fu

Introduction

- FAERS (FDA Adverse Event Reporting System) contains information on medication errors and adverse event reports.
- Voluntary self reporting by healthcare professionals, consumers, and manufacturers.
- Designed to support the FDA's post marketing safety surveillance program for drug and therapeutic products.
- Used to help evaluate safety concerns and create regulatory actions to improve product safety and public health.
- There may be duplicate reports due to submissions by a consumer and a sponsor.

Introduction

- Data from faers_ascii_2018q4 and faers_ascii_2020q4.
- Response variables of interest were dechal and rechal
- **dechal**: Dechallenge code, indicating if reaction abated when drug therapy was stopped.
- **rechal**: Rechallenge code, indicating if reaction recurred when drug therapy was restarted.

CODE MEANING_TEXT

Y Positive rechallenge
N Negative rechallenge
U Unknown
D Does not apply

Predictor Variables of Interest

Variable	Description	Example
Age	Patient Age at event	30
Age code (age_cod)	Unit abbreviation for age	YR (years), MON (months)
Sex	Patient sex	M (Male)
Weight (wt)	Numeric value of patient weight	150
Weight code (wt_code)	Unit abbreviation for weight	LBS (pounds)
To_mfr	Whether the reporter also notified the manufacturer	Y (Yes)

Predictor Variables of Interest Cont.

Variable	Description	Example
Occp_cod	Reporter occupation	MD - Physician PH - Pharmacist OT - Other LW - Lawyer CN - Consumer
Reporter_country	Country of the reporter	US
Occr_country	Country where event occurred	US
Role_cod	Code for drugs role in event	PS - Primary suspect drug
Route	Route of drug administration	Oral
Outc_cod	Code for patient outcome	DE - Death

Cleaning

library(dplyr)
 library(readr)
 Read in 7 .txt files and remove variables not in the email. Also, OUTC20Q4.txt file has variable outc_cod and RPSR20Q4.txt file has variable rpsr_cod that match the same primaryid.

-	primaryid [‡]	outc_cod
1	37363932	ОТ
2	39629172	OT, DS
3	41627247	CA, OT
4	41923193	но
5	42021114	DE
6	56585445	DE, HO
7	57118383	НО
8	57528163	но
9	59057815	но
10	59297543	HO, OT, DE
11	62923272	но
12	63523522	OT, CA
13	63657203	DE, OT
14	63690602	ОТ
15	63716933	но, от
16	63890722	ОТ
17	63926532	OT, DS
18	64138616	OT, DE

Showing 1 to 19 of 281,559 entries, 2 total

7-1	Ø₽ U	
_	primaryid [‡]	rpsr_cod ‡
1	183341011	CSM
2	183341351	CSM
3	183341411	HP
4	183341581	HP
5	183341621	HP
6	183341641	CSM
7	183344721	HP
8	183344761	HP
9	183344811	HP
10	183344861	CSM
11	183344891	HP
12	183344981	CSM
13	183345041	HP
14	183345551	HP
15	183345601	HP
16	183345731	CSM
17	183346331	HP
18	183346591	HP

Showing 1 to 19 of 14,287 entries, 2 total columns

Cleaning

- 2. Find unique primaryid: distinct(primaryid)
- 3. Find the intersection of unique primaryid: common_primaryid <-Reduce(intersect, list(of unique primaryid find above))
- 4. Merged data and filter 12 + 2 variables we are interested in by filter(!is.na(var name))

But there are many sequence variables e.g. caseversion, drug_seq, indi_drug_seq, dsg_drug_seq — cause duplicates

5. Remove rows with duplicate primaryid, only keep the first appeared primaryid. Most sequences are 1.

Classification Trees (Dechal)


```
Variables actually used in tree construction:
[1] "as.factor(occp_cod)"
Number of terminal nodes: 3
Residual mean deviance: 1.711 = 3680 / 2151
Misclassification error rate: 0.4884 = 1052 / 2154
Variables actually used in tree construction:
[1] "as.factor(occp_cod)" "as.factor(to_mfr)"
Number of terminal nodes: 4
Residual mean deviance: 1.702 = 3410 / 2003
Misclassification error rate: 0.418 = 839 / 2007
```

 Classification trees for "Dechal" variables from both 2018 Q4 and 2020 Q4 datasets.

Classification Trees (Rechal)

Variables actually used in tree construction:

[1] "as.factor(occp_cod)" "as.factor(route)"

Number of terminal nodes: 3

Residual mean deviance: 1.151 = 2475 / 2151 Misclassification error rate: 0.1908 = 411 / 2154

Number of terminal nodes: 3

Residual mean deviance: 0.9726 = 1949 / 2004 Misclassification error rate: 0.156 = 313 / 2007

 Classification trees for "Rechal" variables from both 2018 Q4 and 2020 Q4 datasets.

Classification Models for 2020Q4 data

Logistic Regression (Dechal)

```
Coefficients: (4 not defined because of singularities)
                                                     Estimate Std. Error z value Pr(>|z|)
(Intercept)
                                                    -6.252e+01 4.404e+03 -0.014 0.988675
                                                    -4.732e-02 3.217e-03 -14.709 < 2e-16 ***
as.factor(age cod)YR
                                                    1.907e+01 3.261e+03 0.006 0.995335
as.factor(sex)M
                                                    3.766e-01 1.262e-01
                                                                         2.983 0.002852 **
                                                    3.200e-02 2.617e-03 12.228 < 2e-16 ***
as.factor(wt cod)LBS
                                                    1.548e+01 1.111e+03 0.014 0.988880
as.factor(to_mfr)Y
                                                    -2.720e-01 1.712e-01 -1.589 0.112016
as.factor(occp_cod)HP
                                                    1.310e+00 3.285e-01
                                                                          3.989 6.63e-05 ***
as.factor(occp_cod)MD
                                                    4.116e+00 4.253e-01 9.678 < 2e-16 ***
as.factor(occp_cod)PH
                                                    4.594e+00 2.305e-01 19.929 < 2e-16 ***
as.factor(reporter_country)DE
                                                    1.993e+01 2.306e+03 0.009 0.993104
as.factor(reporter_country)GB
                                                    -2.698e+00 9.786e-01 -2.757 0.005839 **
as.factor(reporter_country)IN
                                                    -1.567e+01 1.017e+03 -0.015 0.987711
as.factor(reporter_country)US
                                                    1.335e+00 3.891e-01
                                                                          3.431 0.000602 ***
as.factor(occr_country)DE
as.factor(occr_country)GB
                                                           NΔ
                                                                             ΝΔ
as.factor(occr_country)IN
                                                           NA
                                                                             NA
as.factor(occr_country)US
                                                           NA
as.factor(role_cod)SS
                                                     8.203e-01 1.681e-01
                                                                          4.880 1.06e-06 ***
as.factor(route)INTRA-AURAL
                                                     4.224e+01 4.790e+03
                                                                          0.009 0.992965
as.factor(route)INTRACAVITY
                                                     2.146e-01 1.856e+03
as.factor(route)Intradermal
                                                     3.722e+01 6.649e+03
as.factor(route)Intramuscular
                                                     2.027e+01 1.292e+03
                                                                          0.016 0.987484
as.factor(route)Intravenous (not otherwise specified) 1.936e+01 1.292e+03
as.factor(route)Intravenous bolus
                                                     3.996e+01 2.400e+03
as.factor(route)Intravenous drip
                                                     2.031e+01 1.292e+03
as.factor(route)Occlusive dressing technique
                                                     3.740e+01 3.981e+03
as.factor(route)Ophthalmic
                                                     2.352e+01 1.292e+03
                                                                         0.018 0.985479
as.factor(route)0ral
                                                     2.281e+01 1.292e+03 0.018 0.985921
as.factor(route)Respiratory (inhalation)
                                                    2.378e+01 1.292e+03 0.018 0.985318
as.factor(route)Subcutaneous
                                                     2.215e+01 1.292e+03 0.017 0.986328
as.factor(route)Sublinaual
                                                     4.030e+01 1.666e+03
                                                                          0.024 0.980703
as.factor(route)Topical
                                                     2.261e+01 1.292e+03 0.017 0.986043
as.factor(route)Transdermal
                                                     2.706e+01 1.292e+03 0.021 0.983295
as.factor(route)Vaainal
                                                     2.640e+01 1.292e+03 0.020 0.983705
```

```
as.factor(outc_cod)DE
                                                      1.769e+01 2.663e+03
                                                                           0.007 0.994699
as.factor(outc_cod)DS
                                                      1.811e+01 2.663e+03
                                                                           0.007 0.994573
as.factor(outc_cod)H0
                                                                           0.007 0.994343
as.factor(outc_cod)LT
                                                                            0.007 0.994580
as.factor(outc cod)OT
                                                                            0.007 0.994171
as.factor(outc_cod)RI
                                                      3.359e+01 2.682e+03
                                                                           0.013 0.990009
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 5681.2 on 4274 degrees of freedom
Residual deviance: 2721.1 on 4238 degrees of freedom
  (1372 observations deleted due to missingness)
AIC: 2795.1
Number of Fisher Scoring iterations: 17
```

Logistic Regression (Rechal)

```
Coefficients: (4 not defined because of singularities)
                                                     Estimate Std. Error z value Pr(>|z|)
(Intercept)
                                                    1.645e+01 4.397e+03 0.004 0.99702
                                                    -7.575e-03 2.878e-03 -2.632 0.00848 **
as.factor(age_cod)YR
                                                   -1.831e+01 3.261e+03 -0.006 0.99552
as.factor(sex)M
                                                   -5.194e-01 1.311e-01 -3.961 7.47e-05 ***
                                                   -1.811e-03 2.189e-03 -0.827 0.40797
as.factor(wt_cod)LBS
                                                    1.812e+01 1.463e+03 0.012 0.99012
as.factor(to_mfr)Y
                                                    7.129e-02 1.787e-01 0.399 0.68990
as.factor(occp_cod)HP
                                                   -1.830e+00 2.537e-01 -7.215 5.40e-13 ***
as.factor(occp_cod)MD
                                                   -2.561e+00 2.247e-01 -11.397 < 2e-16 ***
as.factor(occp_cod)PH
                                                   -3.331e+00 1.639e-01 -20.323 < 2e-16 ***
as.factor(reporter_country)DE
                                                    2.179e+01 2.306e+03 0.009 0.99246
as.factor(reporter_country)GB
                                                    4.678e+00 7.862e-01 5.949 2.69e-09 ***
as.factor(reporter_country)IN
                                                    2.308e+01 9.949e+02 0.023 0.98149
as.factor(reporter_country)US
                                                    4.049e+00 3.108e-01 13.028 < 2e-16 ***
as.factor(occr_country)DE
as.factor(occr_country)GB
                                                           NA
                                                                     NA
                                                                             NA
                                                                                     NA
                                                                     NA
                                                                             NΔ
                                                                                     ΝΔ
as.factor(occr_country)IN
as.factor(occr_country)US
as.factor(role_cod)SS
                                                   -5.723e-02 1.446e-01
                                                                         -0.396
as.factor(route)INTRA-AURAL
                                                    3.373e+01 4.784e+03
as.factor(route)INTRACAVITY
                                                    3.616e+01
                                                              1.839e+03
as.factor(route)Intradermal
                                                   -1.633e+00 6.645e+03
as.factor(route)Intramuscular
                                                    1.678e+01 1.269e+03
as.factor(route)Intravenous (not otherwise specified) 1.658e+01 1.269e+03
as.factor(route)Intravenous bolus
                                                   -1.646e+00 2.705e+03
as.factor(route)Intravenous drip
                                                    1.670e+01 1.269e+03
                                                                          0.013
as.factor(route)Occlusive dressing technique
                                                    4.225e-01 3.974e+03
as.factor(route)Ophthalmic
                                                                         0.014 0.98893
as.factor(route)0ral
                                                                         0.013 0.98948
as.factor(route)Respiratory (inhalation)
                                                    3.332e+01 1.439e+03
                                                                         0.023 0.98152
as.factor(route)Subcutaneous
                                                    1.435e+01 1.269e+03
                                                                                0.99098
                                                                          0.011
as.factor(route)Sublingual
                                                    3.402e+01 1.783e+03
                                                                          0.019 0.98478
as.factor(route)Topical
                                                    1.536e+01 1.269e+03
                                                                         0.012 0.99034
as.factor(route)Transdermal
                                                    3.304e+01 1.328e+03 0.025 0.98014
as.factor(route)Vaginal
                                                    1.647e+01 1.269e+03 0.013 0.98964
as.factor(outc_cod)DE
                                                   -1.552e+01 2.663e+03 -0.006 0.99535
as.factor(outc_cod)DS
                                                   -1.630e+01 2.663e+03 -0.006 0.99512
as.factor(outc_cod)HO
                                                   -1.664e+01 2.663e+03 -0.006 0.99501
```

LDA

```
lda(rechal ~ sex + to_mfr + occp_cod, data = training)
Prior probabilities of groups:
0.80919540 0.05057471 0.14022989
Group means:
      sexM to mfrY occp codMD occp codOT occp codPH
D 0.4267045 0.1176136 0.04829545 0.11193182 0.33693182
N 0.3727273 0.1272727 0.03636364 0.06363636 0.40000000
Y 0.3344262 0.1344262 0.01967213 0.03934426 0.08852459
Coefficients of linear discriminants:
sexM -0.03455616 1.1845157
to_mfrY -0.02314959 -0.3781145
occp_codMD -1.85454532 1.0686860
occp_cod0T -1.94387384 1.9643566
occp_codPH -2.12804817 -1.0960542
Proportion of trace:
  LD1 LD2
0.9573 0.0427
Γ17 0.809434
```

```
lda(dechal ~ sex + to_mfr + occp_cod, data = training)
Prior probabilities of groups:
0.2400000 0.3213793 0.4386207
Group means:
     sexM to_mfrY occp_codMD occp_codOT occp_codPH
D 0.4597701 0.1187739 0.09386973 0.31034483 0.53065134
N 0.3505007 0.1258941 0.02575107 0.01716738 0.08869814
Y 0.4287212 0.1174004 0.02935010 0.04402516 0.34067086
Coefficients of linear discriminants:
          0.2014743 0.27851440
to_mfrY -0.1940921 -0.01798082
occp_codMD -2.4004316 -1.04875934
occp_codOT -3.5050634 -1.79804992
occp_codPH -2.2217364 1.44208714
Proportion of trace:
 LD1 LD2
0.9655 0.0345
「17 0.4735849
```

```
lda(rechal ~ sex + to_mfr + occp_cod, data = training2)
Prior probabilities of groups:
0.85107446 0.04697651 0.10194903
      sexM to_mfrY occp_codHP occp_codMD occp_codPH
D 0.4650617 0.2166765 0.11802701 0.08220787 0.5079272
N 0.4787234 0.1489362 0.08510638 0.04255319 0.5744681
Y 0.3774510 0.1274510 0.05882353 0.04901961 0.1568627
Coefficients of linear discriminants:
          0.04804544 -0.01258204
sexM
to mfrY -0.11872410 1.78387298
occp_codHP -2.02255697 1.01341299
occp_codMD -1.89950145 1.89623367
occp_codPH -2.26534204 -0.75862868
Proportion of trace:
  LD1 LD2
0.9621 0.0379
[1] 0.8501946
```

```
lda(dechal ~ sex + to_mfr + occp_cod, data = training2)
Prior probabilities of groups:
0.3848076 0.2298851 0.3853073
Group means:
      sexM to_mfrY occp_codHP occp_codMD occp_codPH
D 0.5090909 0.3181818 0.19740260 0.13896104 0.6220779
N 0.3739130 0.1760870 0.05652174 0.02608696 0.1913043
 Y 0.4539559 0.1076524 0.05577173 0.04539559 0.4980545
Coefficients of linear discriminants:
          -0.01984342 -0.03880481
to_mfrY -0.56405886 -2.03892688
occp_codHP -2.83850052 -0.61113026
occp_codMD -2.97969830 -0.33766248
occp_codPH -2.22509082 1.36557374
Proportion of trace:
 LD1 LD2
0.9071 0.0929
 tab4 <- table(Predicted = p4. Actual = testing2$dechal)
 - sum(diaa(tab4))/sum(tab4)
[1] 0.5836576
```


K-Nearest Neighbors (KNN)

dechalY Actual 0 1 0 359 125 1 164 107 [1] 0.6172185

```
dechalN
Predicted
Actual 0 1
0 567 13
1 161 14
[1] 0.7695364
```

```
Predicted
Actual 0 1
0 684 0
1 71 0
[1] 0.9059603
```

CODE MEANING_TEXT

Positive rechallenge
Negative rechallenge
Unknown
Not in the dataset
Does not apply

Reference group:

SexF, to_mfrN, occp_codCN,dechalD, rechalD Example code:

Perform kNN classification

Problem:

occp_codHP in the dataset but not in the introduction file provided on the website.

	Abbreviat:	ion for the reporter's type of	occupation in the
		version of a case.	
OCCP_COD	CODE MD PH OT LW CN	MEANING TEXT Physician Pharmacist Other health-professional Lawyer Consumer	Not in the dataset

Naive Bayes → dechal

```
# Split the data and set seed.
set.seed(123)
train_indices <- sample(seq_len(nrow(data1)), 0.7 * nrow(data1))
train_data <- data1[train_indices, ]
test data <- data1[-train indices, ]
# NB model
nb_model <- naiveBayes(dechal ~ sex + to_mfr + occp_cod, data=data1)
# Make predictions
predictions <- predict(nb_model, newdata = test_data)</pre>
# Print out confusion_matrix and accuracy
confusion_matrix <- table(predictions, test_data$dechal)
accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix)
print(confusion_matrix)
cat("Accuracy:", accuracy, "\n")
```

```
predictions D N Y
D 257 37 123
N 8 93 84
Y 44 45 64
Accuracy: 0.5483444
```

Naive Bayes → rechal

```
# Split the data and set seed.
set.seed(123)
train_indices <- sample(seq_len(nrow(data1)), 0.7 * nrow(data1))
train_data <- data1[train_indices, ]
test data <- data1[-train indices, ]
# NB model
nb model2 <- naiveBayes(rechal~ sex + to_mfr + occp_cod,data=data1)
# Make predictions
predictions2 <- predict(nb_model2, newdata = test_data)</pre>
# Print out confusion_matrix and accuracy
confusion_matrix2 <- table(predictions, test_data$rechal)
accuracy2 <- sum(diag(confusion_matrix2)) / sum(confusion_matrix2)</pre>
print(confusion_matrix2)
cat("Accuracy:", accuracy2, "\n")
```

```
predictions D N Y
D 386 19 12
N 136 5 44
Y 126 12 15
Accuracy: 0.5377483
```

Challenges

- 1. Large dataset with too many variables and missing values.
- 2. Variable not in the introduction file exist in the null data.
- 3. rept_cod, mfr_sndr, and val_vbm have only one unique observed value, while drugname, prod_ai,indi_pt,pt,start_dt, and end_dt have more than 20 unique observed values
- 4. Logistic regression models run but do not converge
- The following variables needed to be removed for LDA/QDA because of problems encountered: age, age_cod, wt, wt_cod, reporter_country, occr_country, role_cod, route, outc_cod

Null counts for selected fields from Demographic file.

Column Name	Total Count	Missing Count	
AGE	436148	206147	
AGE_COD	436148	206119	
AGE_GRP	436148	360350	
CASE	436148	0	
EVENT_DT	436148	217138	
FDA_DT	436148	0	
MFR_DT	436148	17647	
MFR_NUM	436148	17640	
MFR_SNDR	436148	0	
WT	436148	353036	
WT_COD	436148	353036	
REPT_DT	436148	123	
REPORTER_COUNTRY	436148	0	
OCCR_COUNTRY	436148	685	