DIY Bioinformatics: BLAST & friends

Richard Tillett
NV INBRE Bioinformatics Core
Feb 24, 2017

Today's goal

 My goal today is to help you answer one question...

"What am I going to do with this!?" | Appletree2.fasta : | | | Appletree2 complete sequence, 73808 bp including 10 bp | | 3' overhang (TCGAACGGCC), Cluster | 1. | | AGCGACACTITICTCTCTGGAATITCAGGCAAGAACATAAGGGGCCGAGGTGG | | CCCCCTAACCCCCTGGTAGAGGCAAAATAGGGCAAGGTCGAGGTTGG | | CGGAAGCTAGGCGGGTCGAGAGTCCCGTGCAGGCACTAGAAAGGCCGC | | CGGAAGCTAGGCGCGGTCGAGAGTCCCGTGCAGGCACTTGAAAAGGCCGC |

We'll make some sense of it (starting with BLAST)!

How will we do make sense of it?

- <u>Using the Basic Local Alignment Search</u> <u>Tool (BLAST)</u>
- · What is BLAST?
- BLAST is a set of tools used to identify imperfect matches (similarity) between a query nucleotide/protein sequence with sequences stored in a database. For a given query sequence, BLAST reports sequences with aligned regions of similarity.

BLAST

- Basic Local Alignment Search Tool
- based on Smith-Waterman (SW) local alignment
 - SW alignment employs a type of math called dynamic programming
- BLAST uses a heuristic (shortcut) called word method

BLAST basics

- · BLAST needs two things:
 - A query
 - Nucleotide or protein sequence
 - · Typically in FASTA format text
 - · A database to search
 - On web-based blasts, this will be a dropdown menu

FASTA

>gi|5524211|gb|AAD44166.1| cytochrome b [Elephas maximus maximus]
LCLYTHIGRNIYYGSYLYSETWNTGIMLLLITMATAFMGYVLPWGQMSFWGATVITN
LFSAIPYIGTHLVEHIWGGFSVDKATLANFFAFHFILPFTMVALAGVHLTFLEHTGSN
NPLGITTSBOBINFPHFYYTKDFIGLILIILLILLLIALLEPMIGGPDNHHPADFLNTPLHI
KPEWYFLFAYAILRSVPNKLGGVLALFLSIVILGLMPFLHTSKHRSMMLRPLSQALFWTL TMDLLTLTWIGSQPVEYPYTIIGQMASILYFSIILAFLPIAGXIENY

PSEQUENCE_2

MTEITAANWKELRESTGAGMMDCKNALSETNGDFDKAVQLLREKGLGKAAKKADRLA
ABGLVSVKVSDDFTIAANRPSYLSYEDLDMTFVENBYKALVAELEKENEERRRIKKDPNNP
EHIKIPPASRSKQLSDALIKEAEREKIKEELKAGKPEKTHONIT JEKKNISFIADNSQLDS
KLTLMGQFYVMDDKKTVEQVIAEKEKEFGGKIKIVEFICFEVGEGLEKKTEDFAAEVAA

SATVSEINSETDFVAKNDQFIALTKDTTAHIQSNSLQSVEELHSSTINGVKFEEYLKS QIATIGENLVVRRFATLKAGANGVVNGYIHTNGRVGVVIAAACDSAEVASKSRDLLRQ

- A very basic specification consisting of:
 - >Definition line
 One or more lines of sequence
 Nucleotide OR protein
 File named as .fasta, .fa, .fna, .faa, .txt

Why use BLAST?

"What is my sequence and what does it do?"

- You obtained DNA sequence from an experiment and need to know more about it
- Comparing the novel sequence to known protein sequences to hypothesize gene function
- Comparing a partial sequence to whole genome
- Finding homologs to interesting genes in your favorite species
- Specialized BLASTs
 - Make gene-specific primers for PCR (Primer-BLAST)
 - Screen a sequence for vectors (VecScreen)
 - Comparing two sequences (bl2seq)

Types of BLASTing

- BLASTN: DNA query vs DNA database
- BLASTP: protein query vs protein database
- BLASTX: DNA query translated into all six reading frames to produce translated protein sequences, which are the used to query a protein sequences, which are the used to query a protein sequence $\frac{1}{2}$
- TBLASTN: protein query vs a DNA sequence database with seqs translated into all 6 reading frames
- TBLASTX: DNA query sequence translated into all 6 reading frames against DNA seq db translated into all 6 reading frames

Database Similarity Searching

general goal

- submit a sequence of interest (query)
- find most similar sequences from XX databases
- the most similar sequences <u>may</u> have the most similar function to query sequence

E-Values

rules of thumb

E < 10⁻⁵⁰ \Rightarrow high confidence of homologous relationships 10⁻⁵⁰ < E < .01 \Rightarrow result of homology

.01 < E < 10 → no significance, perhaps remote homology

E > 10 → two sequences are randomly related

Nota Bene: as E is directly dependent on the length of the database, as the database(s) increase in length, E will increase, which likely will yield less hits

Schlauch BCH709 Fall 2016

How BLAST Works

- 1. Make lookup table of "words" for guery
- 2. Scan database for hits (word match/seed)
- 3. Extend alignment both directions
 - Ungapped extensions of hits (initial HSPs)
 - Gapped extensions (no traceback)
 - Gapped extensions (traceback + alignment details)

Tao Tao, NLM, NIH, Bethesda, MD

Nucleotide Words

Make a lookup table based on the word size.

11-mer

ATGCTGCTAGTCGATGACGTAGCTACCGATAT

ATGCTGCTAGT

ATGCTGCTAGTCGATGACGTAGCTACC

TGCTGCTAGTC

GCTGCTAGTCG

CTGCTAGTCGA

TGCTAGTCGATGACGTAGCTACCGATA

Tao Tao, NLM, NIH, Bethesda, MD

Word Hits & Extensions

Nucleotide: one exact match

ATGCTGCTAGTCGATGACGTAGCTA

CTAGTCGATGA

TAGTCGATGA

Protein: two matches within 40 residues
PHAIEKCYTGCTLAQEADDTA

TIDK EAD EAD

Tao Tao, NLM, NIH, Bethesda, MD

BLAST Parameters

- Max target sequences: how many possible alignments you want to BLAST to return
- <u>Automatically adjust parameters for short sequences:</u> defaults: BLOSUM62, for short sequences, PAM30 shorter sequences = 50 bases,
- Expect threshold: how many matches from the database should be due to chance alone?
- Word size: the length of the word that the BLAST algorithm first uses between the query and database sequences (and then extends left and right) defaults: 3 or 6 AA's; 11 bases, smaller values are more sensitive

BLAST Parameters

- <u>Max matches in a query range</u>: you can limit the number of matches to a particular part of a sequence
- · <u>Match/Mismatch Scores</u>: select from pull-down menu
- <u>Gap Costs</u>: choose from specifics or use a linear function
- <u>Filter</u>: you can filter out low-complexity regions or known repeat regions based on organism
- <u>Mask</u>: you can highlight parts of your sequence to be filtered by the filter above

Schlauch BCH709 Fall 2016

BLAST Parameters

- before aligning, you may want to exclude regions of low complexity ~ regions containing short repeats
- · they make up ~15% of all protein sequence data
- · may artificially increase the similarity score
- alignment software allows you to mask these regions
 - hard masking: excludes the regions completely
 - soft masking: excludes the regions in first step but uses them for the extension step

Schlauch BCU700 Fall 2016

Test drive time!

Go to

https://github.com/rltillett/diy-blast/

& click "diy blast.md"