Hypothesis tests with binomial example

STAT 587 (Engineering) Iowa State University

September 30, 2020

Statistical hypothesis testing

A hypothesis test consists of two hypotheses,

- ullet null hypothesis (H_0) and
- ullet an alternative hypothesis (H_A) ,

Statistical hypothesis testing

A hypothesis test consists of two hypotheses,

- null hypothesis (H_0) and
- an alternative hypothesis (H_A) ,

which make claims about parameter(s) in a model,

Statistical hypothesis testing

A hypothesis test consists of two hypotheses,

- ullet null hypothesis (H_0) and
- an alternative hypothesis (H_A) ,

which make claims about parameter(s) in a model, and a decision to either

- reject the null hypothesis or
- fail to reject the null hypothesis.

If $Y \sim Bin(n,\theta)$, then some hypothesis tests are

$$H_0: \theta = \theta_0$$

If $Y \sim Bin(n, \theta)$, then some hypothesis tests are

$$H_0: \theta = \theta_0 \qquad ext{versus} \qquad H_A: heta
eq heta_0$$

If $Y \sim Bin(n, \theta)$, then some hypothesis tests are

$$H_0: heta = heta_0$$
 versus $H_A: heta
eq heta_0$

$$H_0: \theta \leq \theta_0 \qquad {
m versus} \qquad H_A: heta > heta_0$$

If $Y \sim Bin(n, \theta)$, then some hypothesis tests are

$$H_0: \theta = \theta_0$$
 versus $H_A: \theta \neq \theta_0$

or

$$H_0: \theta \leq \theta_0$$
 versus $H_A: \theta > \theta_0$

$$H_0: heta \geq heta_0 \qquad ext{versus} \qquad H_A: heta < heta_0$$

If $Y \sim Bin(n, \theta)$, then some hypothesis tests are

$$H_0: \theta = \theta_0$$
 versus $H_A: \theta \neq \theta_0$

or

$$H_0: \theta = \theta_0$$
 versus $H_A: \theta > \theta_0$

$$H_0: heta = heta_0 \qquad ext{versus} \qquad H_A: heta < heta_0$$

Let $Y \sim Bin(n, \theta)$ with

$$H_0: \theta = 0.5 \qquad \text{versus} \qquad H_A: \theta \neq 0.5.$$

Let $Y \sim Bin(n, \theta)$ with

$$H_0: \theta = 0.5$$
 versus $H_A: \theta \neq 0.5$.

You collect data and observe y=6 out of n=13 attempts.

Let $Y \sim Bin(n, \theta)$ with

$$H_0: \theta = 0.5 \qquad \text{versus} \qquad H_A: \theta \neq 0.5.$$

You collect data and observe y=6 out of n=13 attempts. Should you reject H_0 ?

Let $Y \sim Bin(n, \theta)$ with

$$H_0: \theta = 0.5$$
 versus $H_A: \theta \neq 0.5$.

You collect data and observe y=6 out of n=13 attempts. Should you reject H_0 ? Probably not since $6 \approx E[Y] = 6.5$ if H_0 is true.

Let $Y \sim Bin(n, \theta)$ with

$$H_0: \theta = 0.5$$
 versus $H_A: \theta \neq 0.5$.

You collect data and observe y=6 out of n=13 attempts. Should you reject H_0 ? Probably not since $6 \approx E[Y] = 6.5$ if H_0 is true.

What if you observed y = 2?

Let $Y \sim Bin(n, \theta)$ with

$$H_0: \theta = 0.5$$
 versus $H_A: \theta \neq 0.5$.

You collect data and observe y=6 out of n=13 attempts. Should you reject H_0 ? Probably not since $6 \approx E[Y] = 6.5$ if H_0 is true.

What if you observed y = 2? Well, $P(Y = 2) \approx 0.01$.

Let $Y \sim Bin(n, \theta)$ with

$$H_0: \theta = 0.5$$
 versus $H_A: \theta \neq 0.5$.

You collect data and observe $y=6500\ \mathrm{out}\ \mathrm{of}\ n=13000\ \mathrm{attempts}.$

Let $Y \sim Bin(n, \theta)$ with

$$H_0: \theta = 0.5$$
 versus $H_A: \theta \neq 0.5.$

You collect data and observe y=6500 out of n=13000 attempts. Should you reject H_0 ?

Let $Y \sim Bin(n, \theta)$ with

$$H_0: \theta = 0.5$$
 versus $H_A: \theta \neq 0.5$.

You collect data and observe y = 6500 out of n = 13000 attempts. Should you reject H_0 ? Probably not since 6500 = E[Y] if H_0 is true.

Let $Y \sim Bin(n, \theta)$ with

$$H_0: \theta = 0.5$$
 versus $H_A: \theta \neq 0.5$.

You collect data and observe y=6500 out of n=13000 attempts. Should you reject H_0 ? Probably not since 6500=E[Y] if H_0 is true. But $P(Y=6500)\approx 0.007$.

p-value: the probability of observing a test statistic as or more extreme than observed if the null hypothesis is true

p-value: the probability of observing a test statistic as or more extreme than observed if the null hypothesis is true

The as or more extreme region is determined by the alternative hypothesis.

p-value: the probability of observing a test statistic as or more extreme than observed if the null hypothesis is true

The as or more extreme region is determined by the alternative hypothesis.

For example, if $Y \sim Bin(n,\theta)$ and $H_0: \theta = \theta_0$ then

$$H_A: \theta < \theta_0$$

p-value: the probability of observing a test statistic as or more extreme than observed if the null hypothesis is true

The as or more extreme region is determined by the alternative hypothesis.

For example, if $Y \sim Bin(n,\theta)$ and $H_0: \theta = \theta_0$ then

$$H_A: \theta < \theta_0 \implies Y \leq y$$

p-value: the probability of observing a test statistic as or more extreme than observed if the null hypothesis is true

The as or more extreme region is determined by the alternative hypothesis.

For example, if $Y \sim Bin(n,\theta)$ and $H_0: \theta = \theta_0$ then

$$H_A: \theta < \theta_0 \implies Y \leq y$$

$$H_A: \theta > \theta_0$$

p-value: the probability of observing a test statistic as or more extreme than observed if the null hypothesis is true

The as or more extreme region is determined by the alternative hypothesis.

For example, if $Y \sim Bin(n,\theta)$ and $H_0: \theta = \theta_0$ then

$$H_A: \theta < \theta_0 \implies Y \le y$$

$$H_A: \theta > \theta_0 \implies Y \geq y$$

p-value: the probability of observing a test statistic as or more extreme than observed if the null hypothesis is true

The as or more extreme region is determined by the alternative hypothesis.

For example, if $Y \sim Bin(n,\theta)$ and $H_0: \theta = \theta_0$ then

$$H_A: \theta < \theta_0 \implies Y \leq y$$

or

$$H_A: \theta > \theta_0 \implies Y \ge y$$

$$H_A: \theta \neq \theta_0$$

p-value: the probability of observing a test statistic as or more extreme than observed if the null hypothesis is true

The as or more extreme region is determined by the alternative hypothesis.

For example, if $Y \sim Bin(n, \theta)$ and $H_0: \theta = \theta_0$ then

$$H_A: \theta < \theta_0 \implies Y \le y$$

or

$$H_A: \theta > \theta_0 \implies Y \ge y$$

$$H_A: \theta \neq \theta_0 \implies |Y - n\theta_0| \ge |y - n\theta_0|.$$

as or more extreme regions

$$H_A: \theta < 0.5 \implies p$$
-value = $P(Y \le y)$

$$H_A: \theta < 0.5 \implies p$$
-value = $P(Y \le y)$

```
pbinom(y, size = n, prob = theta0)
```

$$H_A: \theta < 0.5 \implies p\text{-value} = P(Y \leq y)$$

$$H_A: \theta > 0.5 \implies p\text{-value} = P(Y \geq y)$$

$$H_A: \theta < 0.5 \implies p\text{-value} = P(Y \le y)$$

$$H_A: \theta > 0.5 \implies p\text{-value} = P(Y \geq y) = 1 - P(Y \leq y - 1)$$

$$H_A: \theta < 0.5 \implies p\text{-value} = P(Y \le y)$$

[1] 0.01123047

$$H_A: \theta > 0.5 \implies p\text{-value} = P(Y \geq y) = 1 - P(Y \leq y - 1)$$

```
1-pbinom(y-1, size = n, prob = theta0)
```

$$H_A: \theta < 0.5 \implies p$$
-value $= P(Y \le y)$

$$H_A: \theta > 0.5 \implies p$$
-value $= P(Y \ge y) = 1 - P(Y \le y - 1)$

[1] 0.998291

$$H_A: \theta \neq 0.5 \implies p\text{-value} = P(|Y - n\theta_0| \leq |y - n\theta_0|)$$

$$H_A: \theta < 0.5 \implies p$$
-value $= P(Y \le y)$

$$H_A: \theta > 0.5 \implies p$$
-value = $P(Y \ge y) = 1 - P(Y \le y - 1)$

$$1-pbinom(y-1, size = n, prob = theta0)$$

[1] 0.998291

$$H_A: \theta \neq 0.5 \implies p\text{-value} = P(|Y - n\theta_0| \leq |y - n\theta_0|)$$

$$2*pbinom(y, size = n, prob = theta0)$$

R Calculation

 $H_A: \theta < 0.5$

$$H_A: \theta < 0.5$$

 $\label{eq:binom.test} \textbf{binom.test}(\texttt{y, n, p = theta0, alternative = "less"}) \textbf{$p.$} value$

[1] 0.01123047

$$H_A: \theta < 0.5$$

$$H_A: \theta > 0.5$$

$$H_A: \theta < 0.5$$

$$H_A: \theta > 0.5$$

```
binom.test(y, n, p = theta0, alternative = "greater")$p.value
[1] 0.998291
```

$$H_A: \theta < 0.5$$

$$H_A: \theta > 0.5$$

```
binom.test(y, n, p = theta0, alternative = "greater")$p.value
[1] 0.998291
```

$$H_A: \theta \neq 0.5$$

$$H_A: \theta < 0.5$$

$$H_A: \theta > 0.5$$

```
binom.test(y, n, p = theta0, alternative = "greater")$p.value
[1] 0.998291
```

$$H_A: \theta \neq 0.5$$

```
binom.test(y, n, p = theta0, alternative = "two.sided")$p.value
[1] 0.02246094
```

Make a decision to either

- reject the null hypothesis or
- fail to reject the null hypothesis.

Make a decision to either

- reject the null hypothesis or
- fail to reject the null hypothesis.

Select a significance level a

Make a decision to either

- reject the null hypothesis or
- fail to reject the null hypothesis.

Select a significance level a and

• reject if p-value < a

Make a decision to either

- reject the null hypothesis or
- fail to reject the null hypothesis.

Select a significance level a and

- $\bullet \ \ {\rm reject} \ \ {\it if} \ \ p{\rm -value} < a \ \ {\rm otherwise}$
- fail to reject.

Decisions

	Truth	
Decision	H_0 true	H_0 not true
reject H_0	type I error	correct
fail to reject H_0	correct	type II error

Decisions

	Truth	
Decision	H_0 true	H_0 not true
reject H_0	type I error	correct
fail to reject H_0	correct	type II error

Then

significance level a is $P(\text{reject } H_0|H_0 \text{ true})$

Decisions

	Truth	
Decision	H_0 true	H_0 not true
reject H_0	type I error	correct
fail to reject H_0	correct	type II error

Then

significance level a is $P(\text{reject } H_0|H_0 \text{ true})$

and

power is $P(\text{reject } H_0|H_0 \text{ not true}).$

The null hypothesis is a model.

The null hypothesis is a model. For example,

$$H_0: Y \sim Bin(n, \theta_0)$$

if we reject H_0 , then we are saying the data are incompatible with this model.

The null hypothesis is a model. For example,

$$H_0: Y \sim Bin(n, \theta_0)$$

if we reject H_0 , then we are saying the data are incompatible with this model.

Recall that
$$Y = \sum_{i=1}^{n} X_i$$
 for $X_i \stackrel{ind}{\sim} Ber(\theta)$.

The null hypothesis is a model. For example,

$$H_0: Y \sim Bin(n, \theta_0)$$

if we reject H_0 , then we are saying the data are incompatible with this model.

Recall that
$$Y = \sum_{i=1}^{n} X_i$$
 for $X_i \stackrel{ind}{\sim} Ber(\theta)$.

So, possibly

ullet the X_i are not independent

The null hypothesis is a model. For example,

$$H_0: Y \sim Bin(n, \theta_0)$$

if we reject H_0 , then we are saying the data are incompatible with this model.

Recall that
$$Y = \sum_{i=1}^{n} X_i$$
 for $X_i \stackrel{ind}{\sim} Ber(\theta)$.

So, possibly

- ullet the X_i are not independent or
- ullet they don't have a common heta

The null hypothesis is a model. For example,

$$H_0: Y \sim Bin(n, \theta_0)$$

if we reject H_0 , then we are saying the data are incompatible with this model.

Recall that
$$Y = \sum_{i=1}^{n} X_i$$
 for $X_i \stackrel{ind}{\sim} Ber(\theta)$.

So, possibly

- \bullet the X_i are not independent or
- ullet they don't have a common heta or
- $\theta \neq \theta_0$

The null hypothesis is a model. For example,

$$H_0: Y \sim Bin(n, \theta_0)$$

if we reject H_0 , then we are saying the data are incompatible with this model.

Recall that
$$Y = \sum_{i=1}^{n} X_i$$
 for $X_i \stackrel{ind}{\sim} Ber(\theta)$.

So, possibly

- \bullet the X_i are not independent or
- ullet they don't have a common heta or
- ullet $heta
 eq heta_0$ or
- you just got unlucky.

The null hypothesis is a model. For example,

$$H_0: Y \sim Bin(n, \theta_0)$$

if we reject H_0 , then we are saying the data are incompatible with this model.

Recall that
$$Y = \sum_{i=1}^{n} X_i$$
 for $X_i \stackrel{ind}{\sim} Ber(\theta)$.

So, possibly

- \bullet the X_i are not independent or
- ullet they don't have a common heta or
- $\theta \neq \theta_0$ or
- you just got unlucky.

If we fail to reject H_0 ,

The null hypothesis is a model. For example,

$$H_0: Y \sim Bin(n, \theta_0)$$

if we reject H_0 , then we are saying the data are incompatible with this model.

Recall that $Y = \sum_{i=1}^{n} X_i$ for $X_i \stackrel{ind}{\sim} Ber(\theta)$.

So, possibly

- the X_i are not independent or
- ullet they don't have a common heta or
- $\theta \neq \theta_0$ or
- you just got unlucky.

If we fail to reject H_0 , insufficient evidence to say that the data are incompatible with this model.

You are playing a game of Dragonwood and a friend rolled a four 3 times in 6 attempts.

You are playing a game of Dragonwood and a friend rolled a four 3 times in 6 attempts. Did your friend (somehow) increase the probability of rolling a 4?

You are playing a game of Dragonwood and a friend rolled a four 3 times in 6 attempts. Did your friend (somehow) increase the probability of rolling a 4?

Let Y be the number of fours rolled and assume $Y \sim Bin(6,\theta)$.

You are playing a game of Dragonwood and a friend rolled a four 3 times in 6 attempts. Did your friend (somehow) increase the probability of rolling a 4?

Let Y be the number of fours rolled and assume $Y \sim Bin(6, \theta)$. You observed y = 3

You are playing a game of Dragonwood and a friend rolled a four 3 times in 6 attempts. Did your friend (somehow) increase the probability of rolling a 4?

Let Y be the number of fours rolled and assume $Y \sim Bin(6,\theta)$. You observed y=3 and are testing

$$H_0: \theta = \frac{1}{6}$$

You are playing a game of Dragonwood and a friend rolled a four 3 times in 6 attempts. Did your friend (somehow) increase the probability of rolling a 4?

Let Y be the number of fours rolled and assume $Y \sim Bin(6,\theta)$. You observed y=3 and are testing

$$H_0: heta = rac{1}{6}$$
 versus $H_A: heta > rac{1}{6}.$

You are playing a game of Dragonwood and a friend rolled a four 3 times in 6 attempts. Did your friend (somehow) increase the probability of rolling a 4?

Let Y be the number of fours rolled and assume $Y \sim Bin(6,\theta)$. You observed y=3 and are testing

$$H_0: \theta = rac{1}{6}$$
 versus $H_A: heta > rac{1}{6}$.

```
binom.test(3, 6, p = 1/6, alternative = "greater")$p.value
```

[1] 0.06228567

You are playing a game of Dragonwood and a friend rolled a four 3 times in 6 attempts. Did your friend (somehow) increase the probability of rolling a 4?

Let Y be the number of fours rolled and assume $Y \sim Bin(6,\theta)$. You observed y=3 and are testing

$$H_0: heta = rac{1}{6}$$
 versus $H_A: heta > rac{1}{6}.$

```
binom.test(3, 6, p = 1/6, alternative = "greater")$p.value
[1] 0.06228567
```

With a signficance level of a=0.05, you fail to reject the null hypothesis.

Summary

• Hypothesis tests:

$$H_0: \theta = heta_0 \qquad {
m versus} \qquad H_A: heta
eq heta_0$$

Summary

• Hypothesis tests:

$$H_0: \theta = \theta_0$$
 versus $H_A: \theta
eq \theta_0$

- Use *p*-values to determine whether to
 - reject the null hypothesis or
 - fail to reject the null hypothesis.

Summary

Hypothesis tests:

$$H_0: \theta = \theta_0$$
 versus $H_A: \theta \neq \theta_0$

- Use *p*-values to determine whether to
 - reject the null hypothesis or
 - fail to reject the null hypothesis.
- More assessment is required to determine if other model assumptions hold.