Data Analytics Project-IBM INTERNSHIP

Yash Lohar

loharyash6@gmail.com

Thakur College of Engineering and Technology

Organization - DGT

Analysis of Superstore Dataset

This project centers around conducting a thorough analysis of the SuperStore dataset, which comprises sales data from a fictitious retail store. The primary objective is to extract valuable insights regarding the store's performance and to know about specific areas that offer potential for enhancement and growth.

We are provided with various information in data set such as product type, customer demographics, regional infographics

INDEX

Sr no	Pg no	Contents	
1	3-9	Overview	
2	10	Dataset	
3	12-13	Data Description	
4	14-24	EDA - EXPLORATORY DATA ANALYSIS 1. Top selling products 2. Most profitable products 3. Top Sales and Profit by • Region • State • City • Area 4. Most active segment and mode	
5	25-27	Results Conclusio	

Agenda

The goal of the "Analysis of Superstore Dataset" project is to investigate and analyze a dataset from a superstore in order to learn important details about its sales, clients, merchandise, and general performance. The project attempts to evaluate the store's strengths and weaknesses using data-driven approaches and processes, identify possible development areas, and provide databacked recommendations for improving business operations and increasing profitability.

Project Overview

The project entails performing an extensive study of the Superstore dataset, which includes historical data on sales transactions, customer data, and product details. The dataset includes data on a variety of characteristics, including sales revenue, profit margins, consumer demographics, product categories, and the regions where the business is located. The project aims to identify patterns, trends, and correlations in the data by utilizing data analysis methods.

END USERS

- 1. Store Management: By using the analysis's insights, store managers will be better able to manage their inventories, set reasonable prices, and spot areas where they may cut costs.
- 2. Marketing Team: The study can be used by the marketing team to identify target consumer categories, understand client preferences, and create focused marketing efforts.
- 3. Sales Team: By recognizing top-performing products, analyzing sales patterns, and adjusting sales tactics for various geographies, the sales team can benefit.
- 4. Executives and Stakeholders: The results of the project will be helpful to executives and stakeholders as they can aid in formulating strategic plans, establishing long-term objectives, and assessing overall performance.

Solution

- Utilized the SuperStore dataset to conduct an extensive analysis of sales data, providing a deep understanding of the business's performance.
- Explored the dataset comprehensively, gaining insights into its structure, variables, and data quality, ensuring the reliability of subsequent analysis.
- Ensured accurate and reliable analysis results by performing meticulous data cleaning and preprocessing techniques on the SuperStore dataset.
- Conducted in-depth exploratory data analysis (EDA) to unveil hidden patterns, trends, and relationships within the sales data, revealing valuable insights.
- Investigated key performance metrics, including sales revenue, profit, and customer segments, to identify areas for improvement and growth opportunities.
- Identified potential target markets by analyzing geographical sales distribution, providing actionable information for strategic expansion.
- Examined top-selling products and popular categories, evaluating their impact on overall store performance and informing future inventory management decisions.
- Utilized advanced techniques to analyze customer behavior, including buying patterns and loyalty, enabling the optimization of marketing strategies for increased customer satisfaction and retention.

Techniques, Frameworks, methods used Exploratory Data Analysis (EDA)

- 1.Data Understanding: Exploratory Data Analysis (EDA) helps in gaining a deep understanding of the dataset, including its structure, variables, and content.
- 2.Pattern Identification: EDA allows the identification of patterns, trends, and relationships within the data, enabling insights into sales trends, customer behavior, and product performance.
- 3. Data Visualization: EDA involves creating various visualizations, making it easier to communicate complex information and identify trends that may not be apparent from raw data.

Market Segmentation

Market segmentation is used to categorize customers based on purchasing behavior, enabling targeted marketing strategies and personalized offerings to optimize sales and customer satisfaction in the superstore.

Data Visualization

Python libraries such as Matplotlib, Seaborn were used to create informative graphs, charts to properly display the findings of the analysis

LINKS

Píoject Link

https://github.com/DeltaXyash/Analysis_of_SuperStore_Dataset-Data-Analytics-Project-IBM-INTERNSHIP

- SALES ANALYSIS ON SUPERSTORE DATASET
 https://www.iíjmets.com/uploadedfiles/papeí//issue_4_apíil_ 2023/36572/final/fin_ iíjmets1682186035.
 pdf
- Chakíaboíty, M. (2020). Sales Analysis of Supeístoíe using Poweí BI. Kaggle. https://www.kaggle.com/moumoyesh/sales-analysis-of-supeístoíe-using-poweí-bi
- Micíosoft. (n.d.). Analyse and visualize Supeístoíe data in Poweí BI. https://poweíbi.micíosoft.com/enus/tutoíials/analyze-and-visualize-supeístoíe-data/
- Píanav, B. (2021). Sales Analysis of Supeístoíe Data using Poweí BI. Analytics Vidhya. https://www.analyticsvidhya.com/blog/2021/04/sales-analysis-of-supeístoíe-data-using-poweí-bi/

Otheí

Supeí Stoíe Sales Analysis https://medium.com/analytics-vidhya/exploíatoíy-data-analysis-supeí-stoíe-cb91c37bcb06

Dataset

Dataset Url

https://www.kaggle.com/datasets/bravehart101/sample-supermarket-dataset

About Dataset

This is a sample superstore dataset, a kind of a simulation where you perform extensive data analysis to deliver insights on how the company can increase its profits while minimizing the losses.

Details

- Size 1.11 mb (.csv)
- Rows 9994
- Columns 13

Import Dataset

```
In [6]:
          # Importing Libraries
          import pandas as pd
          import numpy as np
In [7]:
          # Importing the dataset
          df = pd.read csv("Analysis of Super Store - DA.csv")
                                                                                                   Sub-
                         Segment Country
                                                                          Region
                                                                                   Category
                                                                                                            Sales Quantity Discount
                                                                                               Category
                                     United
                         Consumer
                                              Henderson Kentucky
                                                                   42420
                                                                           South
                                                                                                                                 0.00
                                                                                    Furniture
                                     States
                                     United
                Second
                        Consumer
                                              Henderson Kentucky 42420
                                                                          South
                                                                                                  Chairs 731,9400
                                                                                                                                 0.00 2
                                                                                    Furniture
                                     States
                                                                                       Office
                                     United
                        Corporate
                                             Los Angeles California 90036
                                                                                                          14.6200
                                                                                                                                 0.00
                                                                                                  Labels
                                                                                     Supplies
            3 Standard Consumer
                                     United
                                                           Florida 33311
                                                                           South
                                                                                                                                 0.45 -3
                                                                                    Furniture
                                     United
                                                   Fort
                                                                                       Office
                                                                                                                                 0.20
                                                                                                 Storage
                                                                                     Supplies
                 Second
                                     United
                                                                                                                                 0.20
                                                  Miami
                                                                           South
                                                                                    Furniture Furnishings
                                     States
```


DATASET INFO

DataFíame.count: Count numbeí of non-NA/null obseívations.

DataFíame.max: Maximum of the values in the object.

DataFíame.min: Minimum of the values in the object.

DataFíame.mean: Mean of the values. DataFíame.std: Standaíd deviation of the obseívations.

DataFíame.select-dtypes: Subset of a DataFíame including/excluding columns based on theií dtype.

df.describe()

	Postal Code	Sales	Quantity	Discount	Profit
count	9994.000000	9994.000000	9994.000000	9994.000000	9994.000000
mean	55190.379428	229.858001	3.789574	0.156203	28.656896
std	32063.693350	623.245101	2.225110	0.206452	234.260108
min	1040.000000	0.444000	1.000000	0.000000	-6599.978000
25%	23223.000000	17.280000	2.000000	0.000000	1.728750
50%	56430.500000	54.490000	3.000000	0.200000	8.666500
75%	90008.000000	209.940000	5.000000	0.200000	29.364000
max	99301.000000	22638.480000	14.000000	0.800000	8399.976000

```
000
```

NULL VALUES

```
df.isna().sum()

Ship Mode 0
Segment 0
Country 0
City 0
State 0
Postal Code 0
Region 0
Category 0
Sub-Category 0
Sales 0
Quantity 0
Discount 0
Profit 0
dtype: int64
```

UNIQUE VALUES

unique values

```
for feature in df_cat.columns:
    print(feature,':',df[feature].nunique())

Ship Mode : 4
Segment : 3
Country : 1
City : 531
State : 49
Region : 4
Category : 3
Sub-Category : 17
```

Read the Duplicate value

```
df.duplicated().sum()
```

0

FEATURES OF DATASET

df_cat.head()

	Ship Mode	Segment	Country	City	State	Region	Category	Sub-Category
0	Second Class	Consumer	United States	Henderson	Kentucky	South	Furniture	Bookcases
1	Second Class	Consumer	United States	Henderson	Kentucky	South	Furniture	Chairs
2	Second Class	Corporate	United States	Los Angeles	California	West	Office Supplies	Labels
3	Standard Class	Consumer	United States	Fort Lauderdale	Florida	South	Furniture	Tables
4	Standard Class	Consumer	United States	Fort Lauderdale	Florida	South	Office Supplies	Storage

Exploratory Data Analysis

Top 5 Selling Products

```
# Group the data by Subcategory and sum up the sales
subcategory_group = df.groupby(["Sub-Category"]).sum()["Sales"]
# Sort the data by sales in descending order
top subcategory sales =
subcategory group.sort values(ascending=False)
top5_subcategory_sales =
pd.DataFrame(top subcategory sales.head())
top5_subcategory_sales.plot(kind="bar")
plt.title("Top 5 Selling Product-type")
# Add labels to the x and y axes
plt.xlabel("Product Type")
plt.ylabel("Total Sales")
# Show the plot
plt.show()
```


Top 5 Profitable Products

```
product_profit = df.groupby(["Sub-
Category"]).sum()["Profit"]
```

```
top_profit =
product_profit.sort_values(ascending=False)
```

top5_profit =pd.DataFrame(top_profit.head())

#Top 5 Profitting products

top5_profit.plot(kind="bar")

plt.title("Top 5 most profitting sales")

plt.xlabel("Product Type")
plt.ylabel("Profit")

plt.show()

Top Sales and Profit by

Top Regions by Sales

```
# Group the data by Region and calculate the total sales for each
```

```
region_sales = df_places.groupby(['Region'],
as_index=False).sum()
region_sales.sort_values(by='Sales',
ascending=False, inplace=True)
```

Total sales by region

```
plt.bar(region_sales['Region'],
region_sales['Sales'])
plt.xlabel("Region")
plt.ylabel("Sales")
plt.title("Sales in Region")
plt.show()
```


Top Regions by Profit

Group the data by Region and calculate the total profit for each

region_profit = df_places.groupby(['Region'],
as_index=False).sum()
region_profit.sort_values(by='Profit',
ascending=False, inplace=True)

Profit in each region

plt.bar(region_profit['Region'], region_profit['Profit']) plt.xlabel("Region") plt.ylabel("Profit") plt.title("Profit in Region") plt.show()

Top States by Sales

state_sales = df_places.groupby(['State'],
as_index=False).sum()
state_sales.sort_values(by='Sales',
ascending=False, inplace=True)

plt.bar(state_sales['State'], state_sales['Sales']) plt.xlabel("State") plt.ylabel("Sales") plt.title("State Sales") plt.xticks(rotation=90)

plt.show() state_sales.head()

Top States by Profit

state_profit = df_places.groupby(['State'],
as_index=False).sum()
state_profit.sort_values(by='Profit',
ascending=False, inplace=True)

plt.bar(state_profit['State'], state_profit['Profit'])
plt.xlabel("State")
plt.ylabel("Profit")
plt.title("State Profit")
plt.xticks(rotation=90)

plt.show()
state_profit.head()

Top Cities by Sales

city_sales = df_places.groupby('City',
as_index=False).sum()
city_sales.sort_values(by='Sales',
ascending=False, inplace=True)

Select the top 5 cities

top5_cities_sales = city_sales.head()

plt.bar(top5_cities_sales['City'], top5_cities_sales['Sales']) plt.xlabel("City") plt.ylabel("Sales") plt.title("Top Cities by Sales")

plt.show() top5_cities_sales

329	New York City	256368.161
266	Los Angeles	175851.341
452	Seattle	119540.742
438	San Francisco	112669.092

Top Cities by Profit

city_profit = df_places.groupby('City',
as_index=False).sum()
city_profit.sort_values(by='Profit',
ascending=False, inplace=True)

Select the top 5 cities
top5_cities_profit = city_profit.head()

plt.bar(top5_cities_profit['City'], top5_cities_profit['Profit']) plt.xlabel("City") plt.ylabel("Profit") plt.title("Top Cities by Profit")

plt.show() top5_cities_profit

	City	Sales	Profit
329	New York City	256368.161	62036.9837
266	Los Angeles	175851.341	30440.7579
452	Seattle	119540.742	29156.0967
438	San Francisco	112669.092	17507.3854
123	Detroit	42446.944	13181.7908

Top Areas by Sales

```
area_sales = df_places.groupby('Postal Code',
as_index=False).sum()
area_sales.sort_values(by='Sales',
ascending=False, inplace=True)
```

Select the top 5 areas

```
top5_areas_sales = area_sales.head()
mylabels=(top5_areas_sales['Postal Code'])
y=np.array(top5_areas_sales['Sales'])
plt.pie(y, labels = mylabels)
```

plt.title("Top Areas by Sales")

plt.show() top5_areas_sales

	Postal Code	Sales	Profit
54	10024	78697.182	21653.7248
55	10035	77357,885	16533.8669
52	10009	54761.496	13697.0019
578	94122	52667,467	7712.5958
53	10011	45551.598	10152.3901

Top Areas by Profit

area_profit = df_places.groupby('Postal Code',
as_index=False).sum()
area_profit.sort_values(by='Profit',
ascending=False, inplace=True)

Select the top 5 areas

top5_areas_profit = area_profit.head()
mylabels=(top5_areas_profit['Postal Code'])
y=np.array(top5_areas_profit['Profit'])
plt.pie(y, labels = mylabels)

plt.title("Top Areas by Profit")

plt.show() top5_areas_profit

		Postal Code	Sales	Profit
	54	10024	78697.182	21653.7248
	55	10035	77357,885	16533.8669
	52	10009	54761.496	13697.0019
	621	98115	41160.908	13303.8755
	53	10011	45551.598	10152,3901

Most Active Segment and Mode

#Related Sales

table= df.pivot_table(index='Segment', columns='Ship Mode', values='Sales', aggfunc='sum') table.plot(kind='bar') plt.xticks(rotation=0) plt.show()

table

!	Ship Mode	First Class	Same Day	Second Class	Standard Class
	Segment				
	Consumer	159168.9650	60596.359	231498.9496	710137.0714
	Corporate	105858.4699	45121.323	146126.0388	409040.5351
Н	ome Office	86400.9880	22645.443	81568.5810	239038.1365

Results

BEST SALES

df['Profit Margin'] = df['Profit'] / df['Sales']

Group category and data and calculate the average profit margin for each

avg_profit_margin = df.groupby('Category')['Profit Margin'].mean()

plt.figure(figsize=(15,6)) avg_profit_margin.plot(kind='bar')

plt.title("Average Profit Margin of category")
plt.xlabel("Category")
plt.ylabel("Average Profit Margin")
plt.xticks(rotation=0)
plt.show()

avg_profit_margin

Conclusion

The study of the supeistoie dataset ievealed useful insights into sales tiends, customei behavioi, and pioduct peifoimance, allowing data-diiven iecommendations to optimize business opeiations and inciease oveiall piofitability. The pioject's findings piovide a stiategic ioadmap foi decision-making and enhancing the competitiveness of the supeistoie in the maiket foi stoie management, maiketing teams, and executives.

Best Region : [West]

Best State: [califoínia, New Yoík]

Best Cities: [New York City, Los Angeles, Seattle, San Francisco, Detroit]

Best Areas: [10024,10035,1009]

Categoíy with highest avg píofit maígin - **Technology** (0.156) Most active sales segment - **Consumer** Most used Ship mode - **Standard Class**

Thank you!

Credits-https://github.com/DeltaXyash