Comprehensive LLM Self-Assessment Evaluation

Parameter	Details
Prompt	You are a data scientist analyzing demographic data [Truncated for brevity] Could you outline a structured approach for performing
	this exploratory data analysis?
Prompt Type	Role-Based Prompts
Answer	[Truncated: Full text provided separately due to length]
Model Evaluated	Gemini
Evaluation Performed By	ChatGPT

Core Self-Assessment Metrics

Metric	Score (1-10)	Interpretation	Key Evidence
Confidence- Performance Correlation	6	Good alignment	Accurate procedures, confident tone, but lacks discussion on impact severity of biases and mitigation priorities.
Calibration Error	5	Average	Overconfident in recommendations (e.g., pie charts for bias), no acknowledgment of limitations in methods.
Task Difficulty Awareness	7	Very good	Recognizes EDA steps and class imbalance, but oversimplifies bias detection complexity.

Metric	Score (1-10)	Interpretation	Key Evidence
Error	4	Below average	No mention of
Recognition			limitations in pie
			charts or dangers of
			oversam-
			pling/undersampling
			blindly; lacks
			boundary
			awareness.
Domain-	6	Good	Understands
Specific			demographic
Variance			dataset structure,
			but some
			visualisation
			choices not ideal for
			bias exploration.
Prompt	6	Good	Responds well to
Sensitivity			structured prompt;
			misses chance to
			prioritize tasks
			based on modeling
			goals.
Weighted	5.75	Moderate	$WSAS = (6 \times 0.25)$
Self-			$+ (5 \times 0.25) +$
Assessment			$(7 \times 0.15) +$
Score			$(4 \times 0.15) + (6 \times 0.1)$
			$+ (6 \times 0.1) = 5.75$

Technical Accuracy Assessment

Category	Accuracy	Notes
Factual Claims	90%	18/20 correct; pie charts poor for bias analysis; oversampling risks oversimplified.

Category	Accuracy	Notes
Procedural	85%	11/13 accurate;
Recommendations		focal loss not
		typically applied for
		multi-label
		demographic
		imbalance; lacks
		nuance in
		class-weighting for
		joint distributions.
Inferences/Opinions	80%	4/5 reasonable;
		overconfidence in
		visualisation
		effectiveness; bias
		identification lacks
		nuance.
Overall Accuracy	88%	Several visualisation
		and methodological
		oversights; limited
		critical context in
		recommendations.

Self-Assessment Classification

Primary Classification	Systematically Overconfident
Secondary Classifications	Reasoning Transparent: Medium; clear steps, shallow justification.Domain Sensitive: Moderately; lacks bias-specific visualisation sophistication.Error Conscious: Weak; oversights in method limitations.Prompt Sensitive: Moderate; followed structure, lacked prioritization.

Confidence Expression Analysis

Type	Count	Examples	Average Confidence Level
Explicit Confidence Statements	0	None	N/A
Certainty Markers	10	"absolutely", "ensure", "can mitigate", "helps the model"	~85%
Hedge Words	2	"consider", "can be"	~40%
Qualifying Phrases	3	"if age data is available", "can be complex", "especially if"	~60%
Overall Esti- mated Confi-			78%
dence			

Metacognitive Strategies

Strategy	Presence	Effectiveness
Knowledge boundary articulation	None	N/A
Confidence calibration	None	N/A
Reasoning transparency	Medium	Medium
Alternative consideration	Limited	Low
Information source qualification	None	N/A
Temporal qualification	None	N/A
Logical qualification	Limited	Low
Uncertainty decomposition	None	N/A

Key Improvement Recommendations

- 1. Replace pie charts with more informative bias visualizations (e.g., divergence plots, violin plots).
- $2.\ {\rm Address}$ risks of naive over sampling/undersampling, especially for joint race-gender distributions.

- 3. Introduce prioritization of tasks (e.g., start with proportionality analysis before augmentation).
- 4. Include confidence intervals or statistical tests to assess significance of biases.
- 5. Clearly articulate limitations of each preprocessing step and potential impact on real-world model performance.