

Ministério da Educação UNIVERSIDADE FEDERAL DO PARANÁ Setor de Ciências Exatas Departamento de Química

Ficha 2

Disciplina: Físico-Química								Código: CQ319	
Natureza: (X) Obrigatória () Optativa (X) Semestral				()Anual ()Modular					
Pré-requisitos: CM312 – Cálculo II									
Co requisito:			Modalidade: (x) Presencial () Totalmente EaD (). % EaD*						
CH Total: 60 h	Pa	Padrão		tório	Campo	Estágio	Orien	tada	Prática Específica
CH semanal: 4	(PI	O): 0	: 0 (LB):30		(CP): 0	(ES): 0	(OR):0		(PE): 0
EMENTA (Unidade Didática)									
Fenômenos de superfície. Coloides e surfactantes. Propriedades coligativas das soluções. Adsorção em superfícies sólidas. Eletroquímica de sistemas em equilíbrio. Fundamentos de cinética eletroquímica. Aplicações de sistemas eletroquímicos e atualidades.									

PROGRAMA (itens de cada unidade didática)

- Fenômenos de superfície:
 - Tensão superficial, propriedades de superfícies curvas, ação capilar.
 - Surfactantes, concentração superficial de excesso, filmes de Langmuir-Blodgett, Forças de adesão e coesão, Tensão interfacial, aderência entre líquidos e de líquidos com sólidos.
 - Adsorção em superfícies sólidas, adsorção física e química.
 - Catálise heterogênea

- Colóides:

- Classificação dos colóides, sóis e seus métodos de preparação, a dupla camada elétrica nos sóis, coagulação pela adição de eletrólitos, teoria DLVO.
- Emulsões e seus métodos de preparação, agentes emulsificantes, emulsificação espontânea, coalescência.

- Equilíbrio de fases:

O potencial químico do solvente. Propriedades coligativas.

- Íons em solução

- Eletrólitos e sua condutividade.
- Comportamento da condutividade de eletrólitos fortes e fracos.
- Lei da migração independente dos íons.
- Mobilidades iônicas. Números de transporte.
- Propriedades termodinâmicas de íons em solução
- Atividades de íons. Lei de Debye-Hückel.

- Eletroquímica de Equilíbrio

- Celas eletroquímicas. Células galvânicas e eletrolíticas.
- Meias-reações. Tipos de eletrodos e tipos de células.
- O potencial da célula. Equação de Nernst.
- Constantes de equilíbrio a partir de potenciais de células.
- Potenciais padrões de eletrodos.
- Medida empírica dos potenciais padrões.
- Medida de coeficientes de atividade.
- Constantes de solubilidade.
- Medida de pH. Eletrodos seletivos.
- Determinação de funções termodinâmicas de reacões e meias-reações eletroquímicas.

- Cinética eletroquímica

- A dupla camada elétrica.
- Cinética da transferência de carga. Sobretensão.
- Energia de Gibbs de ativação da transferência de carga. Equação de Butler-Volmer.
- Eletrólise.
- Corrosão e proteção contra a corrosão.

OBJETIVO GERAL

Controlar processos químicos que envolvam transição e equilíbrio de fases e avaliar o papel das superfícies de materiais em processos físico-químicos. Aplicar o conhecimento químico sobre termodinâmica de reações de oxirredução e termodinâmica de íons em solução ao desenvolvimento de aparelhos elétricos como células eletroquímicas, células de condutividade, capacitores eletrolíticos e supercapacitores.

OBJETIVO ESPECÍFICO

Utilizar o conceito de tensão superficial para interpretar o papel da nucleação na formação de fases líquidas, o fenômeno da capilaridade e a formação de bolhas. Descrever métodos experimentais para determinação da tensão superficial. Avaliar o efeito da tensão interfacial na aderência entre fases. Descrever a ação de surfactantes sobre a tensão superficial e avaliá-la quantitativamente através da equação de tensão superficial de Gibbs. Descrever e classificar colóides. Descrever métodos de preparação de colóides. Descrever termodinamicamente e em termos de ligação o processo de adsorção, distinguindo adsorção física e química. Descrever quantitativamente (através de isotermas) o processo de adsorção, mostrando como obter isotermas experimentais através de dados da variação da cobertura fracional com a pressão. Calcular, através dos parâmetros das isotermas, a área efetiva ocupada por moléculas adsorvidas em superfícies. Utilizar a regra das fases para determinar o estado de equilíbrio de sistemas com várias fases e componentes. Interpretar termodinamicamente curvas de pontos de fusão e ebulição. Descrever mudanças de fase de soluções ideais e a influência de solutos em baixa concentração nas mudanças de fase do solvente. Descrever o processo de destilação de soluções ideais e de azeótropos, calculando o rendimento e a pureza do destilado. Descrever, através de diagramas de fase, o estado de misturas de líquidos parcialmente miscíveis, misturas de sólidos e líquidos e misturas de sólidos. Descrever soluções eletrolíticas distinguindo as interações (ons-solvente e (ons-íons, Determinar a condutância de soluções eletrolíticas e reconhecer a aplicabilidade de teorias sobre eletrólitos fracos e fortes. Escolher reações de oxidação e de redução adequadas à montagem de pilhas eletroquímicas, calculando a diferença de potencial resultante. Analisar os efeitos da concentração e da temperatura sobre o potencial de pilha. Estudar a interface eletrodo/solução em condição de polarização para diferentes reações. Reconhecer as diferenças entre os métodos experimentais usados para determinar parâmetros cinéticos em reações sobre superfícies sólidas.

PROCEDIMENTOS DIDÁTICOS

Aulas presenciais com projeção de slides, vídeos do YouTube. O professor estará à disposição dos alunos para atendimento presencial no seu escritório do Departamento de Química.

FORMAS DE AVALIAÇÃO

Cinco provas escritas com mesmo peso na nota final. A nota final será a média simples das provas.

Cronograma:

19/10	Apresentação. Condutividade de soluções de eletrólitos. Eletrólitos fortes e				
	fracos.				
21/10	Lei da migração independente dos íons. Mobilidades iônicas.				
26/10	Números de transporte. Propriedades termodinâmicas de íons em solução.				
28/10	Atividades de íons. Lei de Debye-Hückel.				
04/11	Celas eletroquímicas. Meias-reações. Tipos de eletrodos e celas.				
09/11	Primeira prova				
11/11	O potencial da cela eletroquímica. Equação de Nernst.				
16/11	Potenciais padrões de eletrodos. Constantes de equilíbrio a partir de potenciais				

	de celas.
18/11	Determinação de funções termodinâmicas de reações e meias-reações
	eletroquímicas.
23/11	Eletrodos seletivos. Pilhas comerciais. Supercapacitores.
25/11	Dependência do potencial de equilíbrio com a temperatura.
30/11	A dupla camada elétrica. Cinética da transferência de carga em superfícies.
02/12	Segunda prova
07/12	Equação de Butler-Volmer. Cinética da eletrólise. Cinética do funcionamento
	galvânico da célula eletroquímica.
09/12	Corrosão e proteção contra a corrosão.
14/12	Tensão superficial. Efeitos de pressão em superfícies curvas. Capilaridade.
16/12	Tensão interfacial e aderência
21/12	Surfactantes
23/12	Terceira prova
18/01	Filmes superficiais.
20/01	Adsorção em fase sólida. Isotermas de adsorção. Entalpia isostérica de adsorção.
25/01	Adsorção em fase sólida. Quimisorção. Isotermas empíricas.
27/01	Quarta prova
01/02	Catálise heterogênea.
03/02	Colóides
08/02	Sóis
10/02	Emulsões.
15/02	Transições de fase do solvente. Propriedades coligativas.
17/02	Quinta prova
22/02	Provas de segunda chamada (quarta feira de cinzas)
01/03	Prova final

BIBLIOGRAFIA BÁSICA (mínimo 03 títulos)

- 1. CASTELLAN, G. W. Fundamentos de Físico-Química, LTC, vol. 1.
- 2. LEVINE, I. N. Physical chemistry, McGraw-Hill, 3a, 4a, 5a, 6a ou 7aedição.
- 3. SHAW, D. Introdução à Química dos Colóides e de Superfícies, Editora Edgard Blücher Ltda, 1975.
- 4. BRETT C.; BRETT, A. M. O. Electrochemistry: principles, methods and applications. Oxford Oxford University Press, 1993.
- 5. PETER ATKINS, JULIO DE PAULA, JAMES KEELER, Physical Chemistry 11th ed (2018) Oxford University Press

BIBLIOGRAFIA COMPLEMENTAR (mínimo 05 títulos)

- 1. MOORE, W. J. Físico-Química, Edgard Blücher, tradução da 4a ed. americana, vol. 1 e 2.
- 2. MARON, S. H. &PRUTTON, C. F. Principles of physical chemistry, Collier McMillan, 4a ediçã
- 3. ANTROPOV, L. I. Theoretical eletrochemistry, Editora MIR, Moscow, 1972.
- 4. DAMASKIN, B. B. &PETRI, O. A. Fundamentos de la electroquímica teórica, Ed. MIR, Moscow, 1980
- 5. BARD, A. J.; FAULKNER, L. R. Electrochemical methods: fundamentals and applications. 2nd ed. New York: John Willey &Sons,2001.

Professor da Disciplina:	
Assinatura:	
Chefe de Departamento ou Unidade equivalente: Assinatura:	