Examen

FIS1231 - Física General Termodinámica Prof. Germán Varas - Prof. Aux. Nicolás Carrasco Martes 20 de agosto de 2019 (duración: 2hrs)

Nota: Presente sus resultados de forma clara, ordenada y con letra legible. Una respuesta está correcta cuando tanto el método como el resultado son correctos.

P1.- Relación fundamental de un gas ideal - La entropía de un gas monoatómico perfecto que contiene n moles se escribe como

$$S = nR \left(\ln \frac{V}{n} + \frac{3}{2} \ln \frac{U}{n} + C \right)$$

donde C es una constante.

- Calcule en función de las variables (U, V, n) la temperatura T, la presión p y el potencial químico del gas μ . (2pts)
- Deducir la energía interna U, la presión p y el potencial químico μ en función de las variables (T, V, n). (2pts)
- Calcular la capacidad térmica a volumen constante $C_v = (\partial U/\partial T)_{V,n}$ y la compresibilidad isotermica $\kappa = -(1/V)(\partial V/\partial p)_{T,n}$. (2pts)

P2. Capacidad térmica de un gas ideal - Considerando S = S(T, V) demuestre que

$$C_p - C_v = VT \frac{\beta^2}{\kappa} ,$$

donde $\beta = 1/V(\partial V/\partial T)_p$ es el coeficiente de dilatación térmica y $\kappa = -1/V(\partial V/\partial p)_T$ la compresibilidad isotérmica.

P3. Ecuación del virial - Exprese la ecuación de estado de van der Waals en términos de la expansión del virial, esto es, una expansión en términos de 1/V de la forma

$$\frac{pV}{RT} = 1 + \frac{B}{V} + \frac{C}{V^2} + \cdots$$

1

y calcule la temperatura de Boyle T_B (cuando $B(T_B)=0$).