Phys. 6430 - THEORY OF RELATIVITY - HOMEWORK 3

Due in class on Thursday, October 13.

1. Conserved quantities.

- a). By examining the geodesic equations prove that if the metric $g_{\mu\nu}$ does not depend on one of the coordinates x_{β} , then $\frac{dx_{\beta}}{d\tau}$ is constant along the particles trajectory.
- b). Show that if a vector field ξ_{μ} satisfies Killing's equations

$$\xi_{\beta;\alpha} + \xi_{\alpha;\beta} = 0$$

then along a geodesic $\xi_{\alpha} \frac{dx^{\alpha}}{d\tau} = const.$

c). Find ten Killing fields of Minkowski spacetime.

2. Linearized Einstein equations.

Derive the linearized Einstein equations in the limit of weak gravity.

a). Take $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ and treat $h_{\mu\nu}$ as small. Show that under the linearized general coordinate transformation h transforms as

$$h_{\mu\nu} \rightarrow h_{\mu\nu} - \xi_{\mu,\nu} - \xi_{\nu,\mu}$$
.

where $\xi_{\mu}(x)$ are arbitrary functions.

b). Now define a "tensor"

$$\bar{h}_{\mu\nu} = h_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} h_{\lambda}^{\lambda}$$

Show that the following is an acceptable gauge condition ("Lorentz gauge")

$$\bar{h}^{\mu\nu}_{,\nu} = 0$$

c). Show that in this gauge the linearized Einstein equations read

$$\Delta \bar{h}^{\mu\nu} = -16\pi G T^{\mu\nu}$$

where Δ is the D'Alembert operator.

3. Postnewtonian corrections due to rotation.

Here you will calculate the first corrections to Newtonian solution cused by a source that rotates.

- a). Suppose a spherical body of uniform density ρ and radius R rotates rigidly abut the x^3 axis with constant angular velocity ω . Write down the components of $T^{0\nu}$ in a Lorentz frame at rest with respect to the center of mass of the body, assuming ρ , R and ω are independent of time. For each component work to the lowest order in ωR .
- b). The general solution to the equation $\nabla^2 f = g$ which vanishes at infinity is given by

$$f(x) = -\frac{1}{4\pi} \int \frac{g(y)}{|x-y|} d^3y.$$

Use this to solve the linearized Einstein equation of \bar{h}^{00} and \bar{h}^{0i} . Obtain the solutions only outside the body and only to the lowest nonvanishing order in 1/r, where r is the distance to the body's center of mass. Express the result for \bar{h}^{0i} in terms of the body's angular momentum. Find the metric tensor within this approximation, and transform it to spherical coordinates.

- c). Because the metric is independent of time and the azimuthal angle ϕ , particles orbiting this body will have $\frac{dt}{d\tau}$ and $\frac{d\phi}{d\tau}$ constant along their trajectories. Consider a particle of nonzero rest mass in a circular orbit of radius r in the equatorial plane. To lowest order in ω calculate the difference between its orbital period in the positive sense (i.e. rotating in the sense of the central body's rotation) and in the negative sense.
- d). Take the central body to be Sun $(M=2\times10^{30} \text{ kg}, R=7\times10^8 \text{ m}, \omega=3\times10^{-6} \text{ s}^{-1}.)$ and the orbiting particle Earth $(r=1.5\times10^{11} \text{ m}).$ What would be the difference in the year between positive and negative orbits?