Linear and non-linear classifiers

Tuesday, September 10, 2019 2:34 PM

· Machine Learning

La Supervised Learning

Basic Models - Decision Trees
- linear and non-linear classifiers

Inspired by Numerical Methods. -Regression Review.

Examples $\langle X_1, X_2, X_3 ... X_n, Y \rangle$

 $X_i \in \mathbb{R}$ $Y \in \mathbb{R}$

we are tyying to learn $?=(x_1,x_2,...x_n): Y$

Linear regression.

Assume $Y = w_0 + x_1 w_1 + x_2 w_2 + x_3 w_3 + + x_n w_n$ where w_i are unknown.

Find such $w_i!!$

- Introduce $X_0 = 1$ always. then: $\hat{Y} = \sum_{i=0}^{n} w_i X_i$

Error Function: to compare ? and Y $Evror (E) = \sum_{e \in E} (Y(e) - \widehat{Y}(e))^2$ $= \sum_{e \in E} (Y(e) - \sum_{i=0}^{n} w_i X_i(e))^2$

New Section 1 Page 1

find wis that minimize Error (E)?

Gradient Descent Technique:

I terative Method to find Minima of Functions

(0/8000

differentiable.

$$a_{n+1} \leftarrow a_n + n \cdot f'(a)$$

1 earning derivative of f''

tate

So: Apply Gradient Descent to our Error (E) function:

Examples:

 $\hat{Y} = w_0 + \chi_1 w_1$ Ervor

$$Y = w_0 + \chi_1 w_1$$

$$= \left(-\left(w_0 + \chi_1 w_1 \right)^2 \right)$$

. update rule:

if using Sum of square Errors

$$\frac{\partial}{\partial x} = \frac{1}{2} - \frac{1}{2} \cdot (\frac{1}{2}(e) - \frac{1}{2}(e)) \cdot \times_{i}(e)$$

 $\frac{\partial}{\partial w_{i}} = \sum_{e \in E} -2 \cdot (Y(e) - \hat{Y}(e)) \cdot X_{i}(e)$

Compute for each W: & Enorth & -2.8(e). X;(e)

update each W: by -y + & Erar(E)

Repeat until stop criteria reached.

- S(e)'s become small - changes to wi become small.

· Variant: incremental Gradient Descent.

- update wi after each example. - 2 has been absorbed by 9

Wi := Wi + n · S(e) · Xi(e)

+ approaches solution faster

- does not converges.

- Stochastic = choose examples at random.
- Batched Gradient descent: update of some number ne of examples

 O starts with ne=1 afterwards he increases until ne=1E1

 O vary the size of 1 start with large value, decrease latter

PROCEDURE LinearLearner (E, eta)

- E : set of examples, each of the form <X1, X2, X3, ..., Y>
- eta : learning rate.

initialize w0,...,wn randomly REPEAT

FOR EACH example e in E DO

Ycap := \sum_i wi * Xi(e)

delta := Y(e) - Ycap

update := eta * delta

FOR EACH wi DO

wi := wi + update * Xi(e)

UNTIL some stop criteria is true

RETURN w0,...,wn

from regression to Classification.

Xo, X1, ... Xn ER YER. & regression YE (0,1) = classification

Examples

	Cats?	Celebrity?	Comedy?	Food?	Watch?
e1	True	False	False	True	Yes
e2	True	True	True	False	No
е3	False	False	True	False	Yes
e4	True	False	False	False	Yes
e5	True	False	True	False	No
e6	True	False	False	True	Yes
e7	False	False	True	True	Yes
e8	True	True	True	True	No
- 0	7	F	F	+	?

regression:
$$\hat{Y} = \sum_{i=0}^{n} x_i W_i$$
 $\hat{Y} \in \mathbb{R}$

Squash function $\hat{\mathbf{v}} = f\left(\frac{2}{5} \times_{i} \mathbf{v}_{i}\right)$ f squashes into [0...2]

one option for
$$f$$
: Step function $f(x)$ $\begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise.} \end{cases}$

Second aphien for f: sigmoid function $f(x) = \frac{1}{1 + e^{-x}} = sig(x)$

$$f(x) = \frac{1}{1 + e^{-x}} = sig(x)$$

form of linear classification: "Logistic Regression" $\hat{Y}(e) = \text{sig}\left(\sum_{i=0}^{n} w_i X_i(e)\right)$

$$\frac{\partial \text{ Evor}(E)}{\partial w_{i}} = \frac{\partial}{\partial w_{i}} \underbrace{\sum_{e \in E} \left(Y(e) - sig\left(\sum_{i=0}^{n} w_{i} \times_{i}(e)\right)\right)^{-1}}_{c \in E} \\
= \underbrace{\sum_{e \in E} 2 \cdot \left(\frac{\partial}{\partial w_{i}} \left(Y(e) - sig\left(\sum_{i=0}^{n} w_{i} \times_{i}(e)\right)\right)\right)}_{c \in E} \\
= \underbrace{\sum_{e \in E} 2 \cdot \left(Y(e) - sig\left(\sum_{i=0}^{n} w_{i} \times_{i}(e)\right) \cdot \frac{\partial}{\partial w_{i}} \left(sig\left(\sum_{i=0}^{n} V_{i} \times_{i}(e)\right)\right)\right)}_{c \in E} \\
= \underbrace{\sum_{e \in E} 2 \cdot \left(Y(e) - sig\left(\sum_{i=0}^{n} w_{i} \times_{i}(e)\right) \cdot \frac{\partial}{\partial w_{i}} \left(sig\left(\sum_{i=0}^{n} V_{i} \times_{i}(e)\right)\right)\right)}_{c \in E} \\
= \underbrace{\sum_{e \in E} 2 \cdot \left(Y(e) - sig\left(\sum_{i=0}^{n} w_{i} \times_{i}(e)\right) \cdot \frac{\partial}{\partial w_{i}} \left(sig\left(\sum_{i=0}^{n} V_{i} \times_{i}(e)\right)\right)\right)}_{c \in E} \\
= \underbrace{\sum_{e \in E} 2 \cdot \left(Y(e) - sig\left(\sum_{i=0}^{n} w_{i} \times_{i}(e)\right) \cdot \frac{\partial}{\partial w_{i}} \left(sig\left(\sum_{i=0}^{n} V_{i} \times_{i}(e)\right)\right)\right)}_{c \in E} \\
= \underbrace{\sum_{e \in E} 2 \cdot \left(Y(e) - sig\left(\sum_{i=0}^{n} w_{i} \times_{i}(e)\right) \cdot \frac{\partial}{\partial w_{i}} \left(sig\left(\sum_{i=0}^{n} V_{i} \times_{i}(e)\right)\right)\right)}_{c \in E} \\
= \underbrace{\sum_{e \in E} 2 \cdot \left(Y(e) - sig\left(\sum_{i=0}^{n} w_{i} \times_{i}(e)\right) \cdot \frac{\partial}{\partial w_{i}} \left(sig\left(\sum_{i=0}^{n} V_{i} \times_{i}(e)\right)\right)\right)}_{c \in E} \\
= \underbrace{\sum_{e \in E} 2 \cdot \left(Y(e) - sig\left(\sum_{i=0}^{n} w_{i} \times_{i}(e)\right) \cdot \frac{\partial}{\partial w_{i}} \left(sig\left(\sum_{i=0}^{n} V_{i} \times_{i}(e)\right)\right)\right)}_{c \in E} \\
= \underbrace{\sum_{e \in E} 2 \cdot \left(Y(e) - sig\left(\sum_{i=0}^{n} w_{i} \times_{i}(e)\right) \cdot \frac{\partial}{\partial w_{i}} \left(sig\left(\sum_{i=0}^{n} V_{i} \times_{i}(e)\right)\right)\right)}_{c \in E} \\
= \underbrace{\sum_{e \in E} 2 \cdot \left(Y(e) - sig\left(\sum_{i=0}^{n} w_{i} \times_{i}(e)\right) \cdot \frac{\partial}{\partial w_{i}} \left(sig\left(\sum_{i=0}^{n} V_{i} \times_{i}(e)\right)\right)\right)}_{c \in E} \\
= \underbrace{\sum_{e \in E} 2 \cdot \left(Y(e) - sig\left(\sum_{i=0}^{n} w_{i} \times_{i}(e)\right) \cdot \frac{\partial}{\partial w_{i}} \left(sig\left(\sum_{i=0}^{n} V_{i} \times_{i}(e)\right)\right)\right)}_{c \in E} \\
= \underbrace{\sum_{e \in E} 2 \cdot \left(Y(e) - sig\left(\sum_{i=0}^{n} w_{i} \times_{i}(e)\right) \cdot \frac{\partial}{\partial w_{i}} \left(sig\left(\sum_{i=0}^{n} V_{i} \times_{i}(e)\right)\right)}_{c \in E} \\
= \underbrace{\sum_{e \in E} 2 \cdot \left(Y(e) - sig\left(\sum_{i=0}^{n} w_{i} \times_{i}(e)\right) \cdot \frac{\partial}{\partial w_{i}} \left(sig\left(\sum_{i=0}^{n} V_{i} \times_{i}(e)\right)\right)}_{c \in E} \\
= \underbrace{\sum_{e \in E} 2 \cdot \left(Y(e) - sig\left(\sum_{i=0}^{n} w_{i} \times_{i}(e)\right)}_{c \in E} \\
= \underbrace{\sum_{e \in E} 2 \cdot \left(Y(e) - sig\left(\sum_{i=0}^{n} w_{i} \times_{i}(e)\right) \cdot \frac{\partial}{\partial w_{i}} \left(sig\left(\sum_{i=0}^{n} W_{i} \times_{i}(e)\right)\right)}_{c \in E} \\
= \underbrace{\sum_{e \in E} 2 \cdot \left(Y(e) - sig\left(\sum_{i=0}^{n} w_{i} \times_{i}(e)\right)}_{c \in E} \\
= \underbrace{\sum_{e \in E} 2 \cdot \left(Y(e) - sig\left(\sum_$$

• eta : learning rate.

```
initialize w0,...,wn randomly REPEAT FOR EACH example e in E DO p := \operatorname{sig}(\sum_i \text{ wi * Xi(e)}) delta := Y(e) - p update := eta * delta * p * (1 - p) FOR EACH wi DO wi := wi + update * Xi(e) UNTIL some stop criteria is true RETURN w0,...,wn
```

	Cats?	Celebrity?	Comedy?	Food?	Watch?
e1	True	False	False	True	Yes
e2	True	True	True	False	No
е3	False	False	True	False	Yes
e4	True	False	False	False	Yes
e5	True	False	True	False	No
e6	True	False	False	True	Yes
e7	False	False	True	True	Yes
e8	True	True	True	True	No

$$\hat{Y}(e) = SIg \left(w_0 + w_1 \left(ats(e) + w_2 \left(elebrity(e) + w_3 \left(conedy(e) + w_4 \left(elebrity(e) + w_4 \left(eleb$$

Example 2: (X1, X2, X3.. Xn) Y= (cat, dog, don't) technicke.

Year = {t, F} Ydon = {r, F} Ydonut = {T, F}

indicater variables

Step Function:

$$f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise.} \end{cases}$$

Frank Rosenblatt: "Perceptron" circuit f(&wixi)

'58 "(Perceptrons) are the embryo of an electronic computer that will be able to talk, see, write, translate languages and reproduce itself and be conscious of its existence."

'69 = Marvin Minsky "Perception"
Seymour Paper

xor function

= first AI winter.

Y(E) is a line. (hyperplane)

Data non-linearly separatable

why just & wixi ????

a Sufficienty complicated model can fit any data.

a Sufficienty complicated model can fit

When faced with more than one explanation prefer the simplest one. Ockham's Razor:

modify algorithm with a "regularizer" a component that rewards simplicity and punishes complexity

$$\hat{Y}(e) = sig\left(\sum_{i=0}^{n} w_{i} \times i\right)$$

$$E vrov\left(E\right) = \sum_{e} \left(Y(e) - \hat{Y}(e)\right) + \lambda \left(\sum_{i=0}^{n} |w_{i}|\right)$$

regularization regularizer L1

$$\frac{\partial}{\partial w} = \left(\frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{$$

· Errors & Pitfalls

- Bias: Learner to find inperfect model

- representation model not good enough

- Search is not good enough

- Data is not good - Lack data

- Data is noisy

- Overfitting:

Learner specializes to the training data.

One technique to avoid over Fifting: Cross-Validation

Data

pick 1 fold to test train on remaining folds 5-folds. Repeal K times.

Use all the date to train