Product recommendation based on purchase history

IE 7275 Fall-2020

Final Project

Tushar Sharma

Problem definition

- We are given 16 months of past purchase history of financial products of a bank's customers
- Product offerings are such as credit card, guarantees, loans, pensions and investments
- Need to recommend them products they might be interested in
- Customer demographics like age, rent, employment, residence
- Find top 7 products to be recommended to each customer

Data Description

• The downloaded files from Kaggle are training and testing dataset with information of ~950K customers and their 16-month activity

- 20 demographic features and 24 product purchase binaries split by purchase month
- Almost all demographic features have missing values

Preprocessing – Missing values & Outliers

Markov Assumption

• A Markov chain is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event.

Model Formulation

- X(t-n): Demographics & Products present in month 't-n'
- Y(t-n): New products added in 't-n+1' = Products present in month (t-n+1) Products present in 't-n'
 - 'n' = $\{0,16\}$
 - State 't' is the last month for which Y is given
 - State 't+1' is the last month for which X is given
- We need to predict Y(t+1)|X(t+1) if we assume markov-chain of order 1 and Y(t+1)|X(t+1),X(t) for order 2

Preprocessing – Data Preparation

We need to create X and Y such that they follow our assumptions

- Take a month's data and stack in X, and products in next month and stack in Y
- Subtract Products in Y with corresponding products in X to get 'added products'

Evaluation criteria

Accuracy

$$Accuracy = \frac{True_{positive} + True_{negative}}{True_{positive} + True_{negative} + False_{positive} + False_{negative}}$$

• Precision

$$Precision = \frac{True_{positive}}{True_{positive} + False_{positive}}$$

$$AP = \sum_{k=0}^{k=n-1} [Recalls(k) - Recalls(k+1)] * Precisions(k)$$
 $Recalls(n) = 0, Precisions(n) = 1$
 $n = Number\ of\ thresholds.$

Recall

$$Recall = \frac{True_{positive}}{True_{positive} + False_{negative}}$$

• Mean Average Precision

$$mAP = \frac{1}{n} \sum_{k=1}^{n} AP_k$$

$$AP_k = \text{the AP of class } k$$

$$n = \text{the number of classes}$$

Proposed techniques

- Decision Trees
- Gradient Boosting Trees
- Association rules

Decision Trees

DecisionTreeClassifier(random_state=40, criterion='gini',max_depth=18)

Accuracy	Precision	MAP@7
92.554%	97.099%	0.02339

DecisionTreeClassifier(random_state=40, criterion='gini',max_depth=5)

Accuracy	Precision	MAP@7
92.048%	96.540%	0.02339

Decision Trees

Proposed techniques

- Decision Trees
- Gradient Boosting Trees
- Association rules

Gradient Boosting Trees

• Prediction is given as:
$$\hat{y}_i = \sum_{k=1}^K f_k(x_i), f_k \in \mathcal{F}$$

$$\hat{y}_i = \sum_{k=1}^{K} f_k(x_i), f_k \in \mathcal{F}$$

- where K is the number of trees, f is a function in the functional space F, and F is the set of all possible CARTs
- Additive training: Trees are added at each step of training and the objective function for t^{th} tree:

$$\hat{y}_{i}^{(t)} = \sum_{k=1}^{t} f_{k}(x_{i}) = \hat{y}_{i}^{(t-1)} + f_{t}(x_{i})$$

$$\text{obj}^{(t)} = \sum_{i=1}^{n} l(y_{i}, \hat{y}_{i}^{(t)}) + \sum_{i=1}^{t} \Omega(f_{i})$$

$$= \sum_{i=1}^{n} l(y_{i}, \hat{y}_{i}^{(t-1)} + f_{t}(x_{i})) + \Omega(f_{t})$$

$$\sum_{i=1}^{n} [g_{i}f_{t}(x_{i}) + \frac{1}{2}h_{i}f_{t}^{2}(x_{i})] + \Omega(f_{t})$$

l: loss function, Ω: Regularization term, g: gradient of first order, h: gradient of second order

Gradient Boosting Trees

GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=3,random_state=0,subsample=0.5)

Accuracy	Precision	MAP@7
92.554%	97.003%	0.02283

GradientBoostingClassifier(n_estimators=50, learning_rate=0.1, max_depth=1,random_state=0,subsample=0.5)

Accuracy	Precision	MAP@7
92.048%	96.540%	0.02312

GradientBoostingClassifier(n_estimators=300, learning_rate=0.1, max_depth=1,random_state=0,subsample=0.5)

Accuracy	Precision	MAP@7
92.706%	96.844%	0.02312

Proposed techniques

- Decision Trees
- Gradient Boosting Trees
- Association rules

Association Rule Mining

- We consider only products purchased to find frequent purchasing patterns
- Rules are learnt using Fpgrowth algorithm
 - fpgrowth(train, min_support=0.00001, use_colnames=False, max_len=None, verbose=0)
- The rules are filtered to get consequents as 1-itemset
- Using learned rules we use confidence as a product scoring metric and predict recommendations for next month

MAP@7 0.01144

Association Rule Mining

support	itemsets	Description		
0.650577	(ind_cco_fin_ult1)	Current Accounts		
0.061361	(ind_tjcr_fin_ult1)	Credit Card		
0.038844	(ind_ctpp_fin_ult1)	particular Plus Account		
0.025175	(ind_valo_fin_ult1)	Securities		
0.164312	(ind_recibo_ult1)	Direct Debit		

Association Rule Mining

antecedents	consequents	antecedent support	consequent support	support	confidence	li	ift
(ind_tjcr_fin_ult1, ind_ctju_fin_ult1, ind_cco	(ind_ecue_fin_ult1)	0.000010	0.085633	0.000010	1.0	11.677795	
(ind_tjcr_fin_ult1, ind_ecue_fin_ult1, ind_rec	(ind_nomina_ult1)	0.000024	0.073545	0.000024	1.0	13.597206	
(ind_tjcr_fin_ult1, ind_ecue_fin_ult1, ind_rec	(ind_nom_pens_ult1)	0.000020	0.078929	0.000020	1.0	12.669620	
(ind_plan_fin_ult1, ind_nom_pens_ult1, ind_cco	(ind_recibo_ult1)	0.000038	0.164312	0.000038	1.0	6.085993	
(ind_tjcr_fin_ult1, ind_ecue_fin_ult1, ind_rec	(ind_recibo_ult1)	0.000024	0.164312	0.000024	1.0	6.085993	

Conclusions

 Product purchased features are more important than demographics in recommendation

Future Work and Improvements

- Since products purchased are most important features there is scope to improve association rules technique
- We should consider markov chains of order > 1 for classification
- Sequential modelling such as Hidden markov model and Recurrent Neural Networks can be explored to learn transition probabilities

Thank You Question and Comments