Dynamic Heterogeneous Panels

Contents

1	\mathbf{Mo}	del, asymptotic property of LS and IV estimator	2
	1.1	The models and Assumptions	2
		1.1.1 Fixed effects model	2
		1.1.2 Trend model	2
	1.2	IV estimator	3
	1.3	Asymptotic property of LS estimator	3
		1.3.1 Mean group LS estimator	5
	1.4	Asymptotic property of IV estimator	8
		1.4.1 Mean group IV estimator	9
2	Cho	posing the number of instruments	10
3	Estimation method on dynamic heterogeneous panel data model		
	wit	h multifactor error structure	10
	3.1	Norkutes' (2019) IVMG estimator	10
4	Monte Carlo simulation design		11
	4.1	dynamic heterogeneous panels data model without error factor structure	11
	4.2	Dynamic heterogeneous panels data model with multi-factor error	
		structure	11
5	Monte Carlo simulation results		13
	5.1	Dynamic Heterogeneous Panels without multifactor error structure .	13
	5.2	Dynamic Heterogeneous Panels with multifactor error structure	14
6	Short summary		14
	6.1	Dynamic Heterogeneous Panels without multifactor error structure .	14
	6.2	Dynamic Heterogeneous Panels with multifactor error structure	15
Reference			16

1 Model, asymptotic property of LS and IV estimator

1.1 The models and Assumptions

1.1.1 Fixed effects model

Consider the dynamic heterogeneous panels data model with fixed effects:

$$y_{i,t} = \alpha_i + \phi_i y_{i,t-1} + \boldsymbol{x}'_{i,t} \boldsymbol{\beta}_i + u_{i,t}, \text{ for } i = 1, \dots N; t = 1, \dots, T,$$

= $\boldsymbol{w}'_{i,t} \boldsymbol{\theta} + \alpha_i + u_{i,t},$ (1)

where $\boldsymbol{x}_{i,t}$ and $\boldsymbol{\beta}_i$ are $k \times 1$ vectors and $\boldsymbol{w}_{i,t} = \left(\phi_i, \boldsymbol{\beta}_i'\right)'$ is a $(1+k) \times 1$ vector. Stacking the T observations for each i, we have

$$\mathbf{y}_i = \mathbf{W}_i \boldsymbol{\theta}_i + \alpha_i \boldsymbol{\iota}_T + \boldsymbol{u}_i, \tag{2}$$

where $\boldsymbol{y}_{i} = (y_{i,1}, \dots, y_{i,T})'$, $\boldsymbol{W}_{i} = (\boldsymbol{w}_{i,1}, \dots, \boldsymbol{w}_{i,T})'$, $\iota_{T} = (1, \dots, 1)'$ and $\boldsymbol{u}_{i} = (u_{i,1}, \dots, u_{i,T})'$.

Due to the incidental parameters problem arise, we use forward filter to the model by Moon and Phillips (2000), Hayakawa (2009) and Hayakawa et al. (2019). We define the $(T-1) \times 1$ forward demeaning matrix as

$$\mathbf{F} = diag(c_1, c_2, \dots c_{T-1}) \begin{bmatrix} 1 & \frac{-1}{T-1} & \cdots & \cdots & \frac{-1}{T-1} \\ \vdots & 1 & \frac{-1}{T-2} & \cdots & \frac{-1}{T-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -1 \end{bmatrix},$$
(3)

where $c_t = \sqrt{(T-t)(T-t+1)}$. Multiply \boldsymbol{F} to model (2), the model can expressed as

$$\tilde{\boldsymbol{y}}_i = \tilde{\boldsymbol{W}}_i \boldsymbol{\theta} + \tilde{\boldsymbol{u}}_i, \tag{4}$$

where $\tilde{\boldsymbol{y}}_{i} = \boldsymbol{F}\boldsymbol{y}_{i} = (\tilde{\boldsymbol{y}}_{i,1}, \dots, \tilde{\boldsymbol{y}}_{i,T-1})'$, $\tilde{\boldsymbol{W}}_{i} = \boldsymbol{F}\boldsymbol{W}_{i} = (\tilde{\boldsymbol{w}}_{i,1}, \dots, \tilde{\boldsymbol{w}}_{i,T-1})'$ and $\tilde{\boldsymbol{u}}_{i} = \boldsymbol{F}\boldsymbol{u}_{i} = (\tilde{\boldsymbol{u}}_{i,1}, \dots, \tilde{\boldsymbol{u}}_{i,T-1})'$ with $\tilde{\boldsymbol{y}}_{i,t} = c_{t} \left[y_{i,t} - (y_{i,t+1} + \dots + y_{i,T}) / (T-t) \right]$ for $t = 1, \dots, T-1$.

1.1.2 Trend model

Consider the dynamic heterogeneous panels data model with fixed effects and heterogeneous time trends:

$$y_{i,t} = \alpha_i + \eta_i t + \phi_i y_{i,t-1} + \mathbf{x}'_{i,t} \boldsymbol{\beta}_i + u_{i,t}, \text{ for } i = 1, ..., N; t = 1, ..., T,$$

= $\mathbf{w}'_{i,t} \boldsymbol{\theta} + \alpha_i + \eta_i t + u_{i,t},$ (5)

where $\boldsymbol{x}_{i,t}$ and $\boldsymbol{\beta}_i$ are $k \times 1$ vectors and $\boldsymbol{w}_{i,t} = \left(\phi_i, \boldsymbol{\beta}_i'\right)'$ is a $(1+k) \times 1$ vector. Stacking the T observations for each i, we have

$$\boldsymbol{y}_i = \boldsymbol{W}_i \boldsymbol{\theta}_i + \alpha_i \boldsymbol{\iota}_T + \eta_i \boldsymbol{\tau}_T + \boldsymbol{u}_i, \tag{6}$$

where $\boldsymbol{\tau}_{T}=(1,2,\ldots,T)^{'}$. Again, we define the forward demeaning matrix as

$$\boldsymbol{F}^{\tau} = diag(c_{1}^{\tau}, c_{2}^{\tau}, \dots c_{T-2}^{\tau}) \begin{bmatrix} 1 & \frac{2(-2(T-2))}{(T-1)(T-2)} & \frac{2(-2(T-2)+3)}{(T-1)(T-2)} & \cdots & \frac{2(-2(T-2)+3(T-2))}{(T-1)(T-2)} \\ 0 & 1 & \frac{2(-2(T-3))}{(T-2)(T-3)} & \cdots & \frac{2(-2(T-3)+3(T-3))}{(T-3)(T-4)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \frac{2(-2+3)}{2\cdot 1} \end{bmatrix},$$

$$(7)$$

where $c_t^{\tau} = \sqrt{(T-t)(T-t-1)/(T-t-1)(T-t+2)}$. Multiply \mathbf{F} to model (6), the model can expressed as

$$\tilde{\boldsymbol{y}}_{i}^{\tau} = \tilde{\boldsymbol{W}}_{i}^{\tau} \boldsymbol{\theta} + \tilde{\boldsymbol{u}}_{i}^{\tau}, \tag{8}$$

where
$$\tilde{\boldsymbol{y}}_{i}^{\tau} = \boldsymbol{F}^{\tau} \boldsymbol{y}_{i} = (\tilde{\boldsymbol{y}}_{i,1}^{\tau}, \dots, \tilde{\boldsymbol{y}}_{i,T-2}^{\tau})^{'}, \ \tilde{\boldsymbol{W}}_{i}^{\tau} = \boldsymbol{F}^{\tau} \boldsymbol{W}_{i} \ \text{and} \ \tilde{\boldsymbol{u}}_{i}^{\tau} = \boldsymbol{F}^{\tau} \boldsymbol{u}_{i}.$$

Assumption 1 $x_{i,t}$ and $u_{i,t}$ are independently distributed for all t and s.

1.2 IV estimator

We use current and lagged values of x_i as instruments, as

$$\boldsymbol{Z}_{i}^{(j)} = (\boldsymbol{x}_{i,\cdot}, \boldsymbol{x}_{i,-1}, \dots, \boldsymbol{x}_{i,-j})', \qquad (9)$$

where $Z_i^{(j)}$ is $T \times (j+1)k$ matrix with $j \ge 1$.

Then, we can define IV estimator in fixed effect model of $\boldsymbol{\theta}_i^b$ as

$$\hat{\boldsymbol{\theta}}_{IV,i}^{b} = \left(\tilde{\boldsymbol{W}}_{i}^{'} \boldsymbol{P}_{i}^{(j)} \tilde{\boldsymbol{W}}_{i}\right)^{-1} \tilde{\boldsymbol{W}}_{i}^{'} \boldsymbol{P}_{i}^{(j)} \tilde{\boldsymbol{y}}_{i}, \tag{10}$$

where $\boldsymbol{P}_{i}^{(j)} = \boldsymbol{Z}_{i}^{(j)} \left(\boldsymbol{Z}_{i}^{(j)'} \boldsymbol{Z}_{i}^{(j)}\right)^{-1} \boldsymbol{Z}_{i}^{(j)'}$ and b=1 corresponds to the fixed effects model while b=2 corresponds to the trend models.

1.3 Asymptotic property of LS estimator

Based on heterogenous dynamic panel data model (1), we can obtain fixed effect estimator as

$$\hat{\boldsymbol{\theta}}_{LS,i} = \begin{pmatrix} \hat{\phi}_i \\ \hat{\beta}_i \end{pmatrix} = \begin{pmatrix} \frac{\sum_{t=1}^T \tilde{y}_{i,t-1}^2}{T} & \frac{\sum_{t=1}^T \tilde{y}_{i,t-1} \tilde{x}_{i,t}}{T} \\ \frac{\sum_{t=1}^T \tilde{x}_{i,t} \tilde{y}_{i,t-1}}{T} & \frac{\sum_{t=1}^T \tilde{x}_{i,t}^2}{T} \end{pmatrix}^{-1} \begin{pmatrix} \frac{\sum_{t=1}^T \tilde{y}_{i,t-1} \tilde{y}_{i,t}}{T} \\ \frac{\sum_{t=1}^T \tilde{x}_{i,t} \tilde{y}_{i,t}}{T} \end{pmatrix}, \quad (11)$$

where $\tilde{y}_{i,t} = y_{i,t} - \bar{y}_i$, $\tilde{y}_{i,t-1} = y_{i,t-1} - \bar{y}_{i,-1}\iota_T$ and $\tilde{x}_{i,t} = x_{i,t} - \bar{x}_i$ with $\bar{y}_i = \frac{1}{T} \sum_{t=1}^{T} y_{i,t}$, $\bar{y}_{i,-1} = \frac{1}{T} \sum_{t=1}^{T} y_{i,t-1}$, $\bar{x}_i = \frac{1}{T} \sum_{t=1}^{T} x_{i,t}$. Under equation (1), we have

$$\begin{pmatrix} \hat{\phi}_i - \phi_i \\ \hat{\beta}_i - \beta_i \end{pmatrix} = \begin{pmatrix} \frac{\sum_{t=1}^T \tilde{y}_{i,t-1}^2}{T} & \frac{\sum_{t=1}^T \tilde{y}_{i,t-1} \tilde{x}_{i,t}}{T} \\ \frac{\sum_{t=1}^T \tilde{x}_{i,t} \tilde{y}_{i,t-1}}{T} & \frac{\sum_{t=1}^T \tilde{x}_{i,t}^2}{T} \end{pmatrix}^{-1} \begin{pmatrix} \frac{\sum_{t=1}^T \tilde{y}_{i,t-1} \tilde{u}_{i,t}}{T} \\ \frac{\sum_{t=1}^T \tilde{x}_{i,t} \tilde{u}_{i,t}}{T} \end{pmatrix},$$
(12)

where $\tilde{u}_{i,t}$ is $u_{i,t} - \bar{u}_i$ with $\bar{u}_i = \frac{1}{T} \sum_{t=1}^{T} u_{i,t}$.

Now, we can investigate asymptotic bias by taking the probability limit as

$$A_{\phi i}^{(1)} = \lim_{T \to \infty} \left(\frac{\sum_{t=1}^{T} \tilde{y}_{i,t-1} \tilde{u}_{i,t}}{T} \right). \tag{13}$$

Then $A_i^{(1)}$ can be taken expectations as

$$A_{\phi i}^{(1)} = E(y_{i,t-1} - \bar{y}_{i,-1})(u_{i,t} - \bar{u}_i) = E(y_{i,t-1}u_{i,t}) - E(y_{i,t-1}\bar{u}_i) - E(\bar{y}_{i,-1}u_{i,t}) + E(\bar{y}_{i,-1}\bar{u}_i),$$
(14)

where $E(y_{i,t-1}u_{i,t}) = 0$.

And we assume $y_{i,t}$ has started from a long time period in the past, so we have

$$y_{i,t} = \frac{\alpha_i}{(1 - \phi_i)} + \sum_{s=0}^{\infty} \beta_i \phi_i^s x_{i,t-s} + \sum_{s=0}^{\infty} \phi_i^s u_{i,t-s},$$
 (15)

Then, we have

$$A_{\phi i}^{(1)} = -E\left(\left(\sum_{s=0}^{\infty} \phi_{i}^{s} u_{i,t-s-1}\right) \left(\frac{1}{T} \sum_{t=1}^{T} u_{i,t}\right)\right) - E\left(\frac{u_{i,t}}{T} \sum_{t=1}^{T} \sum_{s=0}^{\infty} \phi_{i}^{s} u_{i,t-s-1}\right) + \left(\frac{1}{T} \sum_{t=1}^{T} \sum_{s=0}^{\infty} \phi_{i}^{s} u_{i,t-s-1}\right) \left(\frac{1}{T} \sum_{t=1}^{T} u_{i,t}\right).$$

$$(16)$$

Hence, from above equation, we have

$$A_{\phi i}^{(1)} = -\frac{1}{T}E\left\{\left(u_{i,t-1} + u_{i,t-2}\phi_i^1 + u_{i,t-3}\phi_i^2 + \dots\right)\left(u_{i,1} + \dots + u_{i,t-1} + u_{i,t} + \dots + u_{i,T}\right)\right\} - \frac{1}{T}E\left\{u_{i,t}\sum_{s=1}^{T}\left(u_{i,s-1}\phi_i^0 + u_{i,s-2}\phi_i^1 + \dots + u_{i,s-t-1}\phi_i^t + \dots + u_{i,s-T-1}\phi_i^T + \dots\right)\right\} + \frac{1}{T}E\left\{\left(\sum_{s=1}^{T}u_{i,s-1}\phi_i^0 + \sum_{s=1}^{T}u_{i,s-2}\phi_i^1 + \dots + \sum_{s=1}^{T}u_{i,s-t-1}\phi_i^t + \dots + \sum_{s=1}^{T}u_{i,s-T-1}\phi_i^T + \dots\right)\right\} - \frac{1}{T}E\left\{\left(\sum_{s=1}^{T}u_{i,s-1}\phi_i^0 + \sum_{s=1}^{T}u_{i,s-2}\phi_i^1 + \dots + \sum_{s=1}^{T}u_{i,s-t-1}\phi_i^t + \dots + \sum_{s=1}^{T}u_{i,s-T-1}\phi_i^T + \dots\right)\right\} - \frac{1}{T}E\left\{\left(\sum_{s=1}^{T}u_{i,s-1}\phi_i^0 + \sum_{s=1}^{T}u_{i,s-2}\phi_i^1 + \dots + \sum_{s=1}^{T}u_{i,s-t-1}\phi_i^t + \dots + \sum_{s=1}^{T}u_{i,s-T-1}\phi_i^T + \dots\right)\right\} - \frac{1}{T}E\left\{\left(\sum_{s=1}^{T}u_{i,s-1}\phi_i^0 + \sum_{s=1}^{T}u_{i,s-2}\phi_i^1 + \dots + \sum_{s=1}^{T}u_{i,s-t-1}\phi_i^t + \dots + \sum_{s=1}^{T}u_{i,s-T-1}\phi_i^T + \dots\right)\right\} - \frac{1}{T}E\left\{\left(\sum_{s=1}^{T}u_{i,s-1}\phi_i^0 + \sum_{s=1}^{T}u_{i,s-2}\phi_i^1 + \dots + \sum_{s=1}^{T}u_{i,s-t-1}\phi_i^t + \dots + \sum_{s=1}^{T}u_{i,s-T-1}\phi_i^T + \dots\right\}\right\}$$

$$= -\frac{\sigma_u^2}{T}\left(1 - \phi_i^{t-1}\right) - \frac{\sigma_u^2}{T}\left(1 - \phi_i^{T-t}\right) + \frac{1}{T}\left(1 - \phi_i^T\right)}{\left(1 - \phi_i\right)}\right\}.$$

$$= -\frac{\sigma_u^2}{T}\left(1 - \phi_i\right) \left(1 - \phi_i^{t-1} - \phi_i^{T-t}\right) + \frac{1}{T}\left(1 - \phi_i^T\right)}{\left(1 - \phi_i\right)}\right\}.$$

$$(17)$$

Therefore, we can see the bias of $\hat{\phi}_i$ is $O(T^{-1})$.

To be more compact, we can rewrite the model as,

$$\tilde{\boldsymbol{y}}_i = \tilde{\boldsymbol{W}}_i \boldsymbol{\theta}_i + \tilde{\boldsymbol{u}}_i, \tag{18}$$

where $\tilde{\boldsymbol{y}}_i = (\tilde{\boldsymbol{y}}_{i,1}, \dots, \tilde{\boldsymbol{y}}_{i,T})'$ is $T \times 1$ vector, $\tilde{\boldsymbol{W}}_i = (\tilde{\boldsymbol{w}}_{i,1}, \dots, \tilde{\boldsymbol{w}}_{i,T})'$ is $T \times 2$ matrix and $\tilde{\boldsymbol{u}}_i = (\tilde{\boldsymbol{u}}_{i,1}, \dots, \tilde{\boldsymbol{u}}_{i,T})$ is $T \times 1$ vector with $\tilde{\boldsymbol{w}}_{i,t} = (y_{i,t-1} - \bar{y}_{i,-1}, x_{i,t} - \bar{x}_i)'$, for $t = 1, \dots, T$ and $i = 1, \dots, N$.

Also, we define our interested parameter as

$$(\phi_i, \beta_i)' = \boldsymbol{\theta}_i = \boldsymbol{\theta} + \boldsymbol{\lambda}_i, \tag{19}$$

where $\lambda_i \stackrel{i.i.d.}{\sim} (0, \Sigma_{\lambda})$. The lest square estimator, $\hat{\boldsymbol{\theta}}_{LS,i}$, can be expressed as

$$\hat{\boldsymbol{\theta}}_{LS,i} = \left(\frac{\tilde{\boldsymbol{W}}_{i}'\tilde{\boldsymbol{W}}_{i}}{T}\right)^{-1} \frac{\tilde{\boldsymbol{W}}_{i}'\tilde{\boldsymbol{y}}_{i}}{T}.$$
(20)

From above discussion and assumptions, we have following theorem

Theorem 1

$$\sqrt{T} \left(\hat{\boldsymbol{\theta}}_{IV,i} - \boldsymbol{\theta}_i \right) \stackrel{d}{\to} N \left(\mathbf{0}, \boldsymbol{Q}_i^{-1} \boldsymbol{\Sigma}_{LS,i} \boldsymbol{Q}_i^{-1} \right),$$
(21)

where $\Sigma_{LS,i} = \operatorname{plim}_{T \to \infty} T^{-1} \tilde{\boldsymbol{W}}_{i}^{'} \tilde{\boldsymbol{u}}_{i} \tilde{\boldsymbol{u}}_{i}^{'} \tilde{\boldsymbol{W}}_{i} \text{ and } \boldsymbol{Q}_{i} = \operatorname{plim}_{T \to \infty} T^{-1} \tilde{\boldsymbol{W}}_{i}^{'} \tilde{\boldsymbol{W}}_{i}$

1.3.1 Mean group LS estimator

Now, we define the mean group estimator of θ :

$$\hat{\boldsymbol{\theta}}_{LSMG} = \frac{1}{N} \sum_{i=1}^{N} \hat{\boldsymbol{\theta}}_{LSi}.$$
 (22)

And we can show that the asymptotic property of $\hat{\boldsymbol{\theta}}_{LSMG}$, as

$$\hat{\boldsymbol{\theta}}_{LSMG} = N^{-1} \sum_{i=1}^{N} \left(\frac{\tilde{\boldsymbol{W}}_{i}' \tilde{\boldsymbol{W}}_{i}}{T} \right)^{-1} \frac{\tilde{\boldsymbol{W}}_{i}' \tilde{\boldsymbol{y}}_{i}}{T}$$

$$= \bar{\boldsymbol{\theta}} + N^{-1} \sum_{i=1}^{N} \left(\frac{\tilde{\boldsymbol{W}}_{i}' \tilde{\boldsymbol{W}}_{i}}{T} \right)^{-1} \frac{\tilde{\boldsymbol{W}}_{i}' \tilde{\boldsymbol{u}}_{i}}{T},$$
(23)

where $\bar{\boldsymbol{\theta}} = N^{-1} \sum_{i=1}^{N} \boldsymbol{\theta}_i$. For fixed N and large T, we have

$$\underset{T \to \infty}{\text{plim}} \hat{\boldsymbol{\theta}}_{LSMG} = \bar{\boldsymbol{\theta}} + N^{-1} \sum_{i=1}^{N} \underset{T \to \infty}{\text{plim}} \left(\frac{\tilde{\boldsymbol{W}}_{i}' \tilde{\boldsymbol{W}}_{i}}{T} \right)^{-1} \underset{T \to \infty}{\text{plim}} \left(\frac{\tilde{\boldsymbol{W}}_{i}' \tilde{\boldsymbol{u}}_{i}}{T} \right) \tag{24}$$

Then, from section 1.1, we know that $\operatorname{plim}_{T\to\infty}\left(\frac{\tilde{\mathbf{W}}_i'\tilde{\mathbf{u}}_i}{T}\right)=O_p(1)$. Thus, we can obtain

$$\underset{T \to \infty}{\text{plim}} \, \hat{\boldsymbol{\theta}}_{LSMG} = \bar{\boldsymbol{\theta}}. \tag{25}$$

When $N \to \infty$ and $T \to \infty$ and by the law of large numbers, we can see that

$$\underset{T \to \infty, N \to \infty}{\text{plim}} \hat{\boldsymbol{\theta}}_{LSMG} = \boldsymbol{\theta}. \tag{26}$$

And the variance estimator of $\hat{\boldsymbol{\theta}}_{LSMG}$ is given by

$$\hat{\Sigma}_{LS,\lambda} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\hat{\boldsymbol{\theta}}_{LS,i} - \hat{\boldsymbol{\theta}}_{LSMG} \right) \left(\hat{\boldsymbol{\theta}}_{LS,i} - \hat{\boldsymbol{\theta}}_{LSMG} \right)'. \tag{27}$$

We show that $\hat{\Sigma}_{LS,\lambda}$ is consistent when $N \to \infty$ and $T \to \infty$.

$$\sum_{i=1}^{N} \left(\hat{\boldsymbol{\theta}}_{LS,i} - \hat{\boldsymbol{\theta}}_{LSMG} \right) \left(\hat{\boldsymbol{\theta}}_{LS,i} - \hat{\boldsymbol{\theta}}_{LSMG} \right)' = \sum_{i=1}^{N} \left(\hat{\boldsymbol{\theta}}_{LS,i} - E \left(\hat{\boldsymbol{\theta}}_{LS,i} \right) \right) \left(\hat{\boldsymbol{\theta}}_{LS,i} - E \left(\hat{\boldsymbol{\theta}}_{LS,i} \right) \right)' \\
+ \sum_{i=1}^{N} \left(\hat{\boldsymbol{\theta}}_{LSMG} - E \left(\hat{\boldsymbol{\theta}}_{LS,i} \right) \right) \left(\hat{\boldsymbol{\theta}}_{LSMG} - E \left(\hat{\boldsymbol{\theta}}_{LS,i} \right) \right)' \\
- \sum_{i=1}^{N} \left(\hat{\boldsymbol{\theta}}_{LSMG} - E \left(\hat{\boldsymbol{\theta}}_{LS,i} \right) \right) \left(\hat{\boldsymbol{\theta}}_{LS,i} - E \left(\hat{\boldsymbol{\theta}}_{LS,i} \right) \right)' \\
- \sum_{i=1}^{N} \left(\hat{\boldsymbol{\theta}}_{LS,i} - E \left(\hat{\boldsymbol{\theta}}_{LS,i} \right) \right) \left(\hat{\boldsymbol{\theta}}_{LSMG} - E \left(\hat{\boldsymbol{\theta}}_{LS,i} \right) \right)'. \tag{28}$$

Taking expectation on equation (28), we have

$$E\left(\sum_{i=1}^{N} \left(\hat{\boldsymbol{\theta}}_{LS,i} - \hat{\boldsymbol{\theta}}_{LSMG}\right) \left(\hat{\boldsymbol{\theta}}_{LS,i} - \hat{\boldsymbol{\theta}}_{LSMG}\right)'\right) = \sum_{i=1}^{N} Var\left(\hat{\boldsymbol{\theta}}_{LS,i}\right) + \sum_{i=1}^{N} \hat{\boldsymbol{\theta}}_{LSMG} \hat{\boldsymbol{\theta}}_{LSMG}' + \sum_{i=1}^{N} E\left(\hat{\boldsymbol{\theta}}_{LS,i}\right) E\left(\hat{\boldsymbol{\theta}}_{LS,i}\right)' - \sum_{i=1}^{N} \hat{\boldsymbol{\theta}}_{LSMG} \hat{\boldsymbol{\theta}}_{LS,i}' + \sum_{i=1}^{N} E\left(\hat{\boldsymbol{\theta}}_{LS,i}\right) \hat{\boldsymbol{\theta}}_{LS,i}' - \sum_{i=1}^{N} \hat{\boldsymbol{\theta}}_{LSMG} E\left(\hat{\boldsymbol{\theta}}_{LS,i}\right)' - \sum_{i=1}^{N} \hat{\boldsymbol{\theta}}_{LS,i} \hat{\boldsymbol{\theta}}_{LS,i}' + \sum_{i=1}^{N} \hat{\boldsymbol{\theta}}_{LS,i} E\left(\hat{\boldsymbol{\theta}}_{LS,i}\right)' - \sum_{i=1}^{N} E\left(\hat{\boldsymbol{\theta}}_{LS,i}\right) E\left(\hat{\boldsymbol{\theta}}_{LS,i}\right)' = \sum_{i=1}^{N} Var\left(\hat{\boldsymbol{\theta}}_{LS,i}\right) - NE\left(\hat{\boldsymbol{\theta}}_{LSMG} \hat{\boldsymbol{\theta}}_{LSMG}'\right) + \sum_{i=1}^{N} E\left(\hat{\boldsymbol{\theta}}_{LS,i}\right) E\left(\hat{\boldsymbol{\theta}}_{LS,i}\right)'$$

$$(29)$$

and

$$E\left(\hat{\boldsymbol{\theta}}_{LSMG}\hat{\boldsymbol{\theta}}_{LSMG}'\right) = \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} E\left(\hat{\boldsymbol{\theta}}_{LS,i}\hat{\boldsymbol{\theta}}_{LS,i}'\right). \tag{30}$$

And, we also have

$$E\left(\hat{\boldsymbol{\theta}}_{LSMG}\hat{\boldsymbol{\theta}}_{LSMG}'\right) = \frac{1}{N^2} \left(\sum_{i=1}^{N} Var\left(\hat{\boldsymbol{\theta}}_{LS,i}\right) + \sum_{i=1}^{N} \sum_{j=1}^{N} E\left(\hat{\boldsymbol{\theta}}_{LS,i}\hat{\boldsymbol{\theta}}_{LS,i}'\right)\right). \tag{31}$$

Then,

$$E\left(\sum_{i=1}^{N} \left(\hat{\boldsymbol{\theta}}_{LS,i} - \hat{\boldsymbol{\theta}}_{LSMG}\right) \left(\hat{\boldsymbol{\theta}}_{LS,i} - \hat{\boldsymbol{\theta}}_{LSMG}\right)'\right) = \left(1 - \frac{1}{N}\right) \sum_{i=1}^{N} Var\left(\hat{\boldsymbol{\theta}}_{LS,i}\right) + \sum_{i=1}^{N} E\left(\hat{\boldsymbol{\theta}}_{LS,i}\hat{\boldsymbol{\theta}}_{LS,i}'\right) - \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} E\left(\hat{\boldsymbol{\theta}}_{LS,i}\hat{\boldsymbol{\theta}}_{LS,i}'\right).$$
(32)

From above equation (32), we can observe the bias term as,

$$\aleph = \sum_{i=1}^{N} E\left(\hat{\boldsymbol{\theta}}_{LS,i} \hat{\boldsymbol{\theta}}_{LS,i}'\right) - \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} E\left(\hat{\boldsymbol{\theta}}_{LS,i} \hat{\boldsymbol{\theta}}_{LS,i}'\right).$$
(33)

Taking expectation on equation (26), we have

$$E\left(\hat{\boldsymbol{\theta}}_{LS,i}\right) = \boldsymbol{\theta} + E\left(b_i\right),\tag{34}$$

From equation (33), we know that

$$\aleph = \sum_{i=1}^{N} E(b_i) E(b'_i) - \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} E(b_i) E(b'_j).$$
 (35)

When $T \to \infty$, $\aleph = 0$. Therefore, we have following theorem

Theorem 2 When $(T, N) \xrightarrow{j} \infty$ such that $N/T \to c$ with $0 < c < \infty$,

1.

$$\sqrt{N}\left(\hat{\boldsymbol{\theta}}_{LSMG} - \boldsymbol{\theta}\right) \stackrel{d}{\to} N\left(\mathbf{0}, \boldsymbol{\Sigma}_{LS,\lambda}\right).$$
 (36)

2.

$$\hat{\Sigma}_{LS,\lambda} \stackrel{p}{\to} \Sigma_{LS,\lambda} \tag{37}$$

where

$$\hat{\Sigma}_{LS,\lambda} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\hat{\boldsymbol{\theta}}_{LS,i} - \hat{\boldsymbol{\theta}}_{LSMG} \right) \left(\hat{\boldsymbol{\theta}}_{LS,i} - \hat{\boldsymbol{\theta}}_{LSMG} \right)'. \tag{38}$$

Asymptotic property of IV estimator

We use current and lagged values of x_i as instruments, as

$$\tilde{\boldsymbol{Z}}_{i,t} = (\tilde{\boldsymbol{x}}_i, \tilde{\boldsymbol{x}}_{i,-1})', \tag{39}$$

where $\mathbf{\tilde{Z}}_i$ is $T \times 2$ vector.

Assumption 2 $A_i = \operatorname{plim}_{T \to \infty} \tilde{A}_{i,T}$ has full column rank, $B_i = \operatorname{plim}_{T \to \infty} \tilde{B}_{i,T}$ and $\mathbf{\Sigma}_i = \operatorname{plim}_{T \to \infty} T^{-1} \mathbf{Z}_i' \mathbf{u}_i \mathbf{u}_i' \mathbf{Z}$ has positive definite, uniformly, where $\tilde{\mathbf{A}}_{i,T} = \frac{1}{T} \tilde{\mathbf{Z}}_i' \tilde{\mathbf{W}}_i$ and $\tilde{m{B}}_{i,T} = \frac{1}{T} \tilde{m{Z}}_i \tilde{m{Z}}_i$

Then, the IV estimator can be expressed as

$$\hat{\boldsymbol{\theta}}_{IV,i} = \left(\tilde{\boldsymbol{A}}_{i,T}'\tilde{\boldsymbol{B}}_{i,T}^{-1}\tilde{\boldsymbol{A}}_{i,T}\right)\tilde{\boldsymbol{A}}_{i,T}'\tilde{\boldsymbol{B}}_{i,T}^{-1}\tilde{\boldsymbol{g}}_{i,T},\tag{40}$$

where

$$\tilde{\boldsymbol{g}}_{i,T} = \frac{1}{T} \tilde{\boldsymbol{Z}}_{i}^{'} \tilde{\boldsymbol{y}}_{i}, \tag{41}$$

and $\tilde{\boldsymbol{W}}_{i} = \left(\tilde{w}_{i,1}^{'}, \dots, \tilde{w}_{i,T}^{'}\right)^{'}$ is $T \times 2$ matrix From above equation, we have

$$\sqrt{T}\left(\hat{\boldsymbol{\theta}}_{IV,i} - \boldsymbol{\theta}_{i}\right) = \left(\tilde{\boldsymbol{A}}_{i,T}^{'}\tilde{\boldsymbol{B}}_{i,T}^{-1}\tilde{\boldsymbol{A}}_{i,T}\right)\tilde{\boldsymbol{A}}_{i,T}^{'}\tilde{\boldsymbol{B}}_{i,T}^{-1}\left(T^{-1/2}\tilde{\boldsymbol{Z}}_{i}^{'}\tilde{\boldsymbol{u}}_{i}\right)$$
(42)

Then, the property of $T^{-1/2}\tilde{\boldsymbol{Z}}_{i}^{'}\tilde{\boldsymbol{u}}_{i}$ is given by following proposition.

proposition 1 Under above assumptions, as $(N,T) \stackrel{j}{\to} \infty$ such that $N/T \to c$ with $0 < c < \infty$, for each i, we have

$$N^{-1}\tilde{\boldsymbol{Z}}_{i}^{'}\tilde{\boldsymbol{u}}_{i} \stackrel{p}{\to} \boldsymbol{0},$$
and
$$T^{-1/2}\tilde{\boldsymbol{Z}}_{i}^{'}\tilde{\boldsymbol{u}}_{i} \stackrel{d}{\to} N\left(\boldsymbol{0}, \boldsymbol{\Sigma}_{i}\right).$$
(43)

Thus, IV estimator, $\theta_{IV,i}$ is \sqrt{T} consistent to θ_i and this estimator does not have Nickell's bias. Then, we have following theorem

Theorem 1

As $(N,T) \to \infty$ such that $N/T \to c$ with $0 < c < \infty$. for each i,

$$\sqrt{T}\left(\hat{\boldsymbol{\theta}}_{IV,i} - \boldsymbol{\theta}_i\right) \stackrel{d}{\to} N\left(\mathbf{0}, \left(\boldsymbol{A}_i'\boldsymbol{B}_i^{-1}\boldsymbol{A}_i\right)^{-1} \boldsymbol{A}_i'\boldsymbol{B}_i^{-1}\boldsymbol{\Sigma}_i \boldsymbol{B}_i^{-1}\boldsymbol{A}_i \left(\boldsymbol{A}_i'\boldsymbol{B}_i^{-1}\boldsymbol{A}_i\right)\right). \tag{44}$$

1.4.1 Mean group IV estimator

Now, we define the mean group estimator of θ :

$$\hat{\boldsymbol{\theta}}_{IVMG} = \frac{1}{N} \sum_{i=1}^{N} \hat{\boldsymbol{\theta}}_{IVi}.$$
(45)

And we can show that the asymptotic property of $\hat{\boldsymbol{\theta}}_{IVMG}$, as

$$\hat{\boldsymbol{\theta}}_{IVMG} - \boldsymbol{\theta} = \frac{1}{N} \sum_{i=1}^{N} \left(\hat{\boldsymbol{\theta}}_{IV,i} - \boldsymbol{\theta} \right) = \frac{1}{N} \sum_{i=1}^{N} \left(\hat{\boldsymbol{\theta}}_{IV,i} - \boldsymbol{\theta}_i \right) + \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\lambda}_i, \quad (46)$$

where

$$\frac{1}{N} \sum_{i=1}^{N} \left(\hat{\boldsymbol{\theta}}_{IV,i} - \boldsymbol{\theta}_i \right) = \frac{1}{N} \sum_{i=1}^{N} \left(\tilde{\boldsymbol{A}}_{i,T}^{'} \tilde{\boldsymbol{B}}_{i,T}^{-1} \tilde{\boldsymbol{A}}_{i,T} \right)^{-1} \tilde{\boldsymbol{A}}_{i,T}^{'} \tilde{\boldsymbol{B}}_{i,T}^{-1} \left(T^{-1} \tilde{\boldsymbol{Z}}_{i}^{'} \tilde{\boldsymbol{u}}_{i} \right)
= O_{p} \left(\delta_{NT}^{-2} \right),$$
(47)

where $\delta_{NT} = \min\{\sqrt{N}, \sqrt{T}\}$. We note that $\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \lambda_i = O_p(N^{-1/2})$, if $\delta_{NT}^{-(2+\varsigma)} \to 0$ for any $\varsigma > 0$, we have

$$\sqrt{N}\left(\hat{\boldsymbol{\theta}}_{IVMG} - \boldsymbol{\theta}\right) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \boldsymbol{\lambda}_{i} + o_{p}\left(1\right). \tag{48}$$

And the variance estimator of $\hat{\boldsymbol{\theta}}_{IVMG}$ is given by

$$\hat{\Sigma}_{IV,\lambda} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\hat{\boldsymbol{\theta}}_{IV,i} - \hat{\boldsymbol{\theta}}_{IVMG} \right) \left(\hat{\boldsymbol{\theta}}_{IV,i} - \hat{\boldsymbol{\theta}}_{IVMG} \right)'. \tag{49}$$

Follow Norkute et al. (2019), we can show that $\hat{\Sigma}_{IV,\lambda}$ is consistent and it does not have small T bias. Firstly, we decompose (49) as

$$\sum_{i=1}^{N} \left(\hat{\boldsymbol{\theta}}_{IV,i} - \boldsymbol{\theta} + \boldsymbol{\theta} - \hat{\boldsymbol{\theta}}_{IVMG} \right) \left(\hat{\boldsymbol{\theta}}_{IV,i} - \boldsymbol{\theta} + \boldsymbol{\theta} - \hat{\boldsymbol{\theta}}_{IVMG} \right)^{'} =$$

$$\sum_{i=1}^{N} \boldsymbol{\lambda}_{i} \boldsymbol{\lambda}_{i}^{'} + \sum_{i=1}^{N} \left(\hat{\boldsymbol{\theta}}_{IV,i} - \boldsymbol{\theta}_{i} \right) \left(\hat{\boldsymbol{\theta}}_{IV,i} - \boldsymbol{\theta}_{i} \right)^{'} + \sum_{i=1}^{N} \left(\hat{\boldsymbol{\theta}}_{IV,i} - \boldsymbol{\theta}_{i} \right) \boldsymbol{\lambda}_{i} + \sum_{i=1}^{N} \boldsymbol{\lambda}_{i} \left(\hat{\boldsymbol{\theta}}_{IV,i} - \boldsymbol{\theta}_{i} \right) -$$

$$N \left(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}_{IVMG} \right)^{'} \left(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}_{IVMG} \right). \tag{50}$$

Then we can show consistent of $\hat{\Sigma}_{IV,\lambda}$ as

$$\hat{\Sigma}_{IV,\lambda} - \Sigma_{IV,\lambda} = \frac{1}{N-1} \sum_{i=1}^{N} \left(\lambda_{i} \lambda_{i}^{'} - \Sigma_{IV,\lambda} \right) + \frac{1}{N-1} \sum_{i=1}^{N} \left(\hat{\boldsymbol{\theta}}_{IV,i} - \boldsymbol{\theta}_{i} \right) \left(\hat{\boldsymbol{\theta}}_{IV,i} - \boldsymbol{\theta}_{i} \right)^{'}
+ \frac{1}{N-1} \sum_{i=1}^{N} \left(\hat{\boldsymbol{\theta}}_{IV,i} - \boldsymbol{\theta}_{i} \right) \lambda_{i} + \frac{1}{N-1} \sum_{i=1}^{N} \lambda_{i} \left(\hat{\boldsymbol{\theta}}_{IV,i} - \boldsymbol{\theta}_{i} \right) -
\frac{N}{N-1} \left(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}_{IVMG} \right)^{'} \left(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}_{IVMG} \right) = o_{p}(1).$$
(51)

Then, we can see that the asymptotic property of $\hat{\boldsymbol{\theta}}_{IVMG}$ as,

$$\sqrt{N}\left(\hat{\boldsymbol{\theta}}_{IVMG} - \boldsymbol{\theta}\right) \stackrel{d}{\to} N\left(\mathbf{0}, \boldsymbol{\Sigma}_{IV,\lambda}\right).$$
 (52)

2 Choosing the number of instruments

When $\{x_{i,t}\}_{t=1-j}^T$ for $j \geq 1$ are available (j+1) instruments can be used. And we also know that using more instruments, estimator are more efficient but more biased.

3 Estimation method on dynamic heterogeneous panel data model with multifactor error structure

For convenient, we assume the number of regressor is 1 and we express the model as

$$y_{i,t} = \phi_i y_{i,t-1} + \sum_{\ell=1}^k \beta_{\ell i} x_{\ell i,t} + u_{i,t}, \text{ for } i = 1, \dots, N; t = 1, \dots, T, \ell = 1, \dots, k.$$
 (53)

Consider the model (50), we drawn $x_{\ell i,t}$ as

$$x_{\ell i,t} = \gamma_{xi}^{0'} f_{xt}^0 + \varepsilon_{xi,t} \tag{54}$$

and the idiosyncratic errors of the process for $y_{i,t}$ as

$$u_{i,t} = \gamma_{yi}^{0'} f_{yt}^0 + \varepsilon_{yi,t}, \tag{55}$$

where γ_{yi}^0 and γ_{xi}^0 are $m_y \times 1$ and $m_x \times 1$ true factor loading respectively, f_{yt}^0 and f_{xt}^0 are $m_y \times 1$ and $m_x \times 1$ true vector of unobservable factors respectively.

3.1 Norkutes' (2019) IVMG estimator

We asymptotically eliminate the common factor in x_i by projecting matrix, $M_{F_x^0}$.

$$\boldsymbol{M}_{F_{x}^{0}} = \boldsymbol{I}_{T} - \boldsymbol{F}_{x}^{0} \left(\boldsymbol{F}_{x}^{0'} \boldsymbol{F}_{x}^{0}\right)^{-1} \boldsymbol{F}_{x}^{0'}; \boldsymbol{M}_{F_{x,-1}^{0}} = \boldsymbol{I}_{T} - \boldsymbol{F}_{x,-1}^{0} \left(\boldsymbol{F}_{x,-1}^{0'} \boldsymbol{F}_{x,-1}^{0}\right)^{-1} \boldsymbol{F}_{x,-1}^{0'}$$
(56)

And using the defactored covariates as instruments, as

$$\boldsymbol{Z}_{IVi} = \left(\boldsymbol{M}_{F_X^0} \boldsymbol{x}_i, \boldsymbol{M}_{F_{x,-1}^0} \boldsymbol{X}_{i,-1}\right)$$
 (57)

The first step IV estimator can be expressed as

$$\hat{\varphi}_{IVi} = \left(\left(\frac{\boldsymbol{Z}_{i}' \boldsymbol{M}_{F_{X}^{0}} \boldsymbol{W}_{i}}{T} \right)' \left(\frac{\boldsymbol{Z}_{i}' \boldsymbol{M}_{F_{X}^{0}} \boldsymbol{Z}_{i}}{T} \right)^{-1} \left(\frac{\boldsymbol{Z}_{i}' \boldsymbol{M}_{F_{X}^{0}} \boldsymbol{W}_{i}}{T} \right) \right)^{-1}$$

$$\left(\left(\frac{\boldsymbol{Z}_{i}' \boldsymbol{M}_{F_{X}^{0}} \boldsymbol{W}_{i}}{T} \right)' \left(\frac{\boldsymbol{Z}_{i}' \boldsymbol{M}_{F_{X}^{0}} \boldsymbol{Z}_{i}}{T} \right)^{-1} \left(\frac{\boldsymbol{Z}_{i}' \boldsymbol{M}_{F_{X}^{0}} \boldsymbol{y}_{i}}{T} \right) \right).$$
(58)

4 Monte Carlo simulation design

4.1 dynamic heterogeneous panels data model without error factor structure

The data generating process:

$$y_{i,t} = \phi_i y_{i,t-1} + \sum_{\ell=1}^k \beta_{\ell i} x_{\ell i,t} + u_{i,t}, \text{ for } i = 1, \dots N; t = -49, \dots, T,$$

$$x_{\ell i,t} = \sum_{\ell=1}^k \phi_{\ell i} x_{\ell i,t-1} + v_{\ell i,t},$$
(59)

where $u_{i,t} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$, and $v_{\ell i,t} = \rho_{v,\ell} v_{\ell i,t-1} + \left(1 - \rho_{v,\ell}^2\right)^{\frac{1}{2}} \varpi_{\ell i,t}, \varpi_{\ell i,t} \stackrel{i.i.d.}{\sim} U(0.5, 1.5)$, $\rho_{v,\ell} = 0.5$.

The slope coefficients are generated as

$$\phi_i = \phi + \eta_{\phi i}, \ \beta_{1,i} = \beta_1 + \eta_{\beta_1 i} \ and \ \beta_{2,i} = \beta_2 + \eta_{\beta_2 i}.$$
 (60)

Here we consider $\phi \in \{0.5\}$, $\beta_1 = 3$ and $\beta_2 = 1$. For the design of heterogenous slopes, $\eta_{\phi i} \stackrel{i.i.d.}{\sim} U(-c,c)$, and

$$\eta_{\beta_{\ell}i} = \left(1 - \rho_{\beta}^2\right)^{1/2} \eta_{\phi i}.$$
(61)

Here, we set c = 0.2, $\rho_{\beta} = 0.4$ for $\ell = 1, 2$.

4.2 Dynamic heterogeneous panels data model with multifactor error structure

This Monte Carlo simulation design same as Norkute et al. (2019). For convenience, we rewrite the data generating process as bellow

$$y_{i,t} = \alpha_i + \phi_i y_{i,t-1} + \sum_{\ell=1}^k \beta_{\ell i} x_{\ell i,t} + u_{i,t}, \text{ for } i = 1, \dots N; t = -49, \dots, T.$$
(62)

We allow error factor structure in the model as

$$u_{i,t} = \sum_{s=1}^{m_y} \gamma_{si}^0 f_{s,t}^0 + \varepsilon_{i,t},$$
 (64)

where

$$f_{st}^{0} = \rho_{st}^{0} f_{st-1}^{0} + \left(1 - \rho_{fs}^{2}\right)^{1/2} \zeta_{st}, \tag{65}$$

with $\zeta_{s,t} \stackrel{i.i.d.}{\sim} N(0,1)$ for $s=1,\ldots m_y$. We assume k=2 and $m_y=1+k=3$ and set $\rho_{s,t}^0=0.5$ for all s. The error term, $\varepsilon_{i,t}$, setting as

$$\varepsilon_{i,t} = \varsigma_{\varepsilon} \sigma_{it} \left(\epsilon_{it} - 1 \right) / \sqrt{2},$$
(66)

where $\epsilon_{it} \stackrel{i.i.d.}{\sim} \chi_1^2$, $\sigma_{it}^2 = \eta_i \varphi_t$, $\eta_i \stackrel{i.i.d.}{\sim} \chi_2^2/2$, and $\varphi_t = t/T$ for $t = 0, \dots, T$. And we set

$$\varsigma_{\varepsilon} = \frac{\pi_{\mu}}{1 - \pi_{\mu}} m_{y}. \tag{67}$$

we set $\pi_{\mu} \in \{3/4\}$.

The process of regressors is

$$x_{\ell it} = \mu_{\ell i} + \sum_{\ell=1}^{k} \phi_{\ell i} x_{\ell i, t-1} + \sum_{s=1}^{m_x} \gamma_{\ell s i}^0 f_{s, t}^0 + v_{\ell i t}, \text{ for } i = 1, \dots N; t = -49, \dots, T; \ell = 1, 2.$$
(68)

We set number of factor, m_x , is 2. Therefore, $\mathbf{f}_{y,t}^0 = (f_{1t}^0, f_{2t}^0, f_{3t}^0)'$ and $\mathbf{f}_{x,t}^0 = (f_{1t}^0, f_{2t}^0)'$. We set

$$v_{\ell i,t} = \rho_{v,\ell} v_{\ell i,t-1} + \left(1 - \rho_{v,\ell}^2\right)^{\frac{1}{2}} \varpi_{\ell i,t}, for \, \ell = 1, 2, \tag{69}$$

where $\rho_{v,\ell} = 0.5$ for all ℓ . The individual effect is

$$\alpha_i^* \stackrel{i.i.d.}{\sim} N\left(0, (1-\rho_i)^2\right), \ \mu_{\ell i}^* = \rho_{\mu,\ell}\alpha_i^* + \left(1-\rho_{\mu,\ell}^2\right)^{1/2}\omega_{\ell i},$$
 (70)

where $\omega \stackrel{i.i.d.}{\sim} N\left(0, (1-\rho_i)^2\right)$ and $\rho_{\mu,\ell} = 0.5$.

Now, we define the factor loading in $u_{i,t}$ are generated as $\gamma_{si}^{0*} \stackrel{i.i.d.}{\sim} N(0,1)$, for $s = 1, \ldots, m_y = 3$, and the factor loading in x_{1it} and x_{2it} are drawn as

$$\gamma_{1si}^{0*} = \rho_{\gamma,1s} \gamma_{3i}^{0*} + \left(1 - \rho_{\gamma,1s}^{2}\right)^{1/2} \xi_{1si}; \; \xi_{1si} \stackrel{i.i.d.}{\sim} N\left(0,1\right);
\gamma_{2si}^{0*} = \rho_{\gamma,2s} \gamma_{si}^{0*} + \left(1 - \rho_{\gamma,2s}^{2}\right)^{1/2} \xi_{2si}; \; \xi_{2si} \stackrel{i.i.d.}{\sim} N\left(0,1\right);$$
(71)

for $s=1,\ldots,m_x=2$. We set $\rho_{\gamma,11}=\rho_{\gamma,12}\in\{0.5\}$ and $\rho_{\gamma,21}=\rho_{\gamma,22}=0.5$. The factor loading are generated as

$$\Gamma = \Gamma^0 + \Gamma_i^{0*} \tag{72}$$

where

$$\Gamma_i^0 = \begin{bmatrix} \gamma_{1i}^0 & \gamma_{11i}^0 & \gamma_{21i}^0 \\ \gamma_{2i}^0 & \gamma_{12i}^0 & \gamma_{22i}^0 \\ \gamma_{3i}^0 & 0 & 0 \end{bmatrix}$$
(73)

and

$$\Gamma_i^{0*} = \begin{bmatrix} \gamma_{1i}^{0*} & \gamma_{11i}^{0*} & \gamma_{21i}^{0*} \\ \gamma_{2i}^{0*} & \gamma_{12i}^{0*} & \gamma_{22i}^{0*} \\ \gamma_{3i}^{0*} & 0 & 0 \end{bmatrix} .$$
(74)

We set

$$\mathbf{\Gamma}^0 = \begin{bmatrix} 1/4 & 1/4 & -1\\ 1/2 & -1 & 1/4\\ 1/2 & 0 & 0 \end{bmatrix} . \tag{75}$$

And

$$\alpha_i = \alpha + \alpha_i^*, \ \mu_{\ell i} = \mu_{\ell} + \mu_{\ell i}^*, \tag{76}$$

where $\alpha = 1/2$, $\mu_1 = 1$, $\mu_2 = -1/2$.

The slope coefficients are generated as

$$\phi_i = \phi + \eta_{\phi i}, \ \beta_{1,i} = \beta_1 + \eta_{\beta_1 i} \ and \ \beta_{2,i} = \beta_2 + \eta_{\beta_2 i}.$$
 (77)

Here we consider $\phi \in \{0.5\}$, $\beta_1 = 3$ and $\beta_2 = 1$. For the design of heterogenous slopes, $\eta_{\phi i} \stackrel{i.i.d.}{\sim} U(-c,c)$, and

$$\eta_{\beta_{\ell}i} = \left[(2c)^2 / 12 \right] \rho_{\beta} \xi_{\beta\ell i} + \left(1 - \rho_{\beta}^2 \right)^{1/2} \eta_{\phi i}, \tag{78}$$

where

$$\xi_{\beta\ell i} = \frac{\bar{v_{\ell i}^2} - \bar{v_{\ell}^2}}{\left[N^{-1} \sum_{i=1}^{N} \left(\bar{v_{\ell i}^2} - \bar{v_{\ell}^2}\right)^2\right]^{1/2}},\tag{79}$$

with $v_{elli}^{\bar{2}} = T^{-1} \sum_{t=1}^{T} v_{\ell i t}^{2}$, $\bar{v_{\ell}^{2}} = N^{-1} \sum_{i=1}^{N} \bar{v_{\ell i}^{2}}$, for $\ell = 1, 2$. Here, we set c = 0.2, $\rho_{\beta} = 0.4$ for $\ell = 1, 2$. And

$$\varsigma_v^2 = \varsigma_\varepsilon^2 \left[SNR - \frac{\rho_v^2}{1 - \rho_v^2} \right] \left(\frac{\beta_1^2 + \beta_2^2}{1 - \rho_v^2} \right)^{-1},$$
(80)

where SNR = 4. For the (T, N), we consider $T \in \{25, 50, 100, 200\}$ and $N \in \{25, 50, 100, 200\}$.

5 Monte Carlo simulation results

5.1 Dynamic Heterogeneous Panels without multifactor error structure

We consider ARDL(1,0) model.

$$\phi \in \{0.5\} .$$

$$\beta_1 = 3.$$

$$\beta_2 = 1.$$

$$u_{i,t} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1).$$

$$\varpi_{\ell i,t} \stackrel{i.i.d.}{\sim} U(0.5, 1.5).$$

$$\rho_{v,\ell} = 0.5.$$

$$c = 0.2$$
.

$$\rho_{\beta} = 0.4.$$

$$T \in \{25, 50, 100, 200\}$$
.

$$N \in \{25, 50, 100, 200\}$$
.

LSMG estimator is provided in sheet 1 of MC.xlsx file. IVMG estimator is provided in sheet 2 of MC.xlsx file.

5.2 Dynamic Heterogeneous Panels with multifactor error structure

```
We consider ARDL(1,0) model.
\phi \in \{0.5\}.
\beta_1 = 3.
\beta_2 = 1.
k=2.
m_y = 1 + k = 3.
m_x = k = 2.
\zeta_{s,t} \overset{i.i.d.}{\sim} N(0,1)
\pi_{\mu} \in \{3/4\}.
\rho_{s,t}^0 = 0.5.
\rho_{v,\ell} = 0.5.
\rho_{\mu,\ell} = 0.5.
\begin{array}{l} \gamma_{0*}^{0*} \overset{i.i.d.}{\sim} N\left(0,1\right). \\ \xi_{1si} \overset{i.i.d.}{\sim} N\left(0,1\right). \end{array}
\xi_{2si} \stackrel{i.i.d.}{\sim} N(0,1).
\rho_{\gamma,11} = \rho_{\gamma,12} \in \{0.5\}.
\rho_{\gamma,21} = \rho_{\gamma,22} = 0.5.
\mathbf{\Gamma}^0 = \begin{bmatrix} 1/4 & 1/4 & -1 \\ 1/2 & -1 & 1/4 \\ 1/2 & 0 & 0 \end{bmatrix}.
\alpha = 1/2.
\mu_1 = 1.
\mu_2 = -1/2.
c = 0.2.
\rho_{\beta} = 0.4.
SNR = 4.
T \in \{25, 50, 100, 200\}.
N \in \{25, 50, 100, 200\}.
```

IVMG estimator is provided in sheet 3 of MC.xlsx file.

6 Short summary

6.1 Dynamic Heterogeneous Panels without multifactor error structure

1. The performance of IVMG estimator is better than LSMG estimator in bias and RMSE.

6.2 Dynamic Heterogeneous Panels with multifactor error structure

1. When N and T increase, the performance of IVMG estimator is good in bias and RMSE.

Related literature to dynamic Heterogeneous Panels with multifactor error structure: Chudik and Pesaran (2015) and Norkute et al. (2019).

Related literature to choosing number of instruments: Donald and Newey (2001), Swanson (2005), Carrasco (2012), Bai and Ng (2010) and Kang (2019).

References

- Bai, J. and S. Ng (2010). Instrumental variable estimation in a data rich environment. Econometric Theory 26, 1577–1606.
- Carrasco, M. (2012). A regularization approach to the many instruments problem. Journal of Econometrics 170, 383–398.
- Chudik, A. and M. H. Pesaran (2015). Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. *Journal of Econometrics* 188, 393–420.
- Donald, S. G. and W. K. Newey (2001). Choosing the number of instruments. *Econometrica* 69, 1161–1191.
- Hayakawa, K. (2009). A simple efficient instrumental variable estimator in panel ar(p) models when both n and t are large. *Econometric Theory 25*, 873–890.
- Hayakawa, K., M. Qi, and J. Breitung (2019). Double filter instrumental variable estimation of panel data models with weakly exogenous variables. *Econometric Reviews* 38, 1055–1088.
- Kang, B. (2019). Higher order approximation of iv estimators with invalid instruments.
- Moon, H. R. and P. C. Phillips (2000). Estimation of autoregressive roots near unity using panel data. *Econometric Theory* 16, 927–997.
- Norkute, M., V. Sarafidis, T. Yamagata, and G. Cui (2019). Instrumental variable estimation of dynamic linear panel data models with defactored regressors and a multifactor error structure. ISER Discussion Paper No. 1019.
- Swanson, J. C. C. N. R. (2005). Consistent estimation with a large number of weak instruments. *Econometrica* 73, 1673–1692.