MEME15203 Statistical Inference

Assignment 4

UNIVERSITI TUNKU ABDUL RAHMAN

Faculty: FES Unit Code: MEME15203

Course: MAC Unit Title: Statistical Inference Year: 1,2 Lecturer: Dr Yong Chin Khian

Session: January 2022

Due by: 7/4/2022

- Q1. Let $X \sim NB(r, 0.49)$. Derive the most powerful test of size $\alpha = 0.134$ of $H_0: r = 1$ against $H_1: r = 3$ based on an observed value of X. Compute the power of this test for the alternative r = 3.
- Q2. Consider a random sample of size n from a uniform distribution, $X_i \sim U(0, \theta)$. Find the UMP test of size α of $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ by first deriving a most powerful test of simple hypotheses and then extending it to composite hypotheses. (20 marks)
- Q3. Let $X_1, X_2, ..., X_n$ denote a random sample from a normal distribution with mean $\mu(\text{unknown})$ and variance σ^2 . For testing $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 < \sigma_0^2$, show that the likelihood ratio test is equivalent to the χ^2 test. (20 marks)
- Q4. Let $X_1, ..., X_{20}$ denote a random sample from a Weibull distribution, $X_i \sim WEI(2,\theta)$. Show that a UMP size 0.03 test of $H_0: \theta \geq 2$ versus $H_1: \theta < 2$ using Theorem 3 is $\{\sum X_i^2 \leq k\}$, and then determine k. (20 marks)
- Q5. Consider a random sample of size n from a Bernoulli distribution, $X_i \sim BIN(10, p)$. Derive a UMP test of $H_0: p \geq p_0$ versus $H_1: p < p_0$ using monotone likelihood ratio property. (10 marks)
- Q6. If $X_i | \lambda \sim POI(\lambda)$ and a Bayesian uses a prior for λ that is Gamma with parameters $\alpha = 7$ and $\theta = \frac{1}{100}$, suppose x_1, x_2, \dots, x_n have been observed, what is the Bayes test of $H_0: \lambda \leq 5$ versus $H_1: \lambda > 5$? (10 marks)