Cubic regularized subspace Newton for non-convex optimization

Jim Zhao (University of Basel)

Aurelien Lucchi (University of Basel)

Nikita Doikov (EPFL)

AISTATS, Thailand May 4, 2025

Introduction: Non-convex Optimization

$$\min_{x} f(x), \qquad x \in \mathbb{R}^{n}$$

f is differentiable, can be non-convex

The Gradient Method. Iterate, for $k \ge 0$:

$$x_{k+1} := x_k - \alpha \nabla f(x_k), \text{ for some } \alpha > 0$$

Let the gradient be Lipschitz: $\|\nabla f(y) - \nabla f(x)\| \le L_1 \|y - x\|$. Set $\alpha := 1/L_1$ Then

$$f(x_k) - f(x_{k+1}) \ge \frac{1}{2L_1} \|\nabla f(x_k)\|^2 \ge \frac{1}{2L_1} \varepsilon^2$$

⇒ telescoping this bound, we obtain the complexity:

$$K = \frac{2L_1(f(x_0) - f^*)}{\varepsilon^2}$$

to find $\|\nabla f(\bar{x}_K)\| \leq \varepsilon$.

Cubic Regularization of Newton's Method

Let the Hessian be Lipschitz: $\|\nabla^2 f(x) - \nabla^2 f(y)\| \le L_2 \|x - y\|$ \Rightarrow global upper model of the objective, for $H \ge L_2$:

$$f(y) \leq \Omega_2(x;y) + \frac{H}{6}||y-x||^3, \quad \forall x, y \in \mathbb{R}^n$$

where
$$\Omega_2(x;y) := f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle \nabla^2 f(x)(y-x), y - x \rangle$$

Cubic Newton. Iterate, for $k \ge 0$:

$$x_{k+1} := \underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \left[\Omega_2(x_k; y) + \frac{H}{6} ||y - x_k||^3 \right]$$

[Griewank, 1981; Nesterov-Polyak, 2006; Cartis-Gould-Toint, 2011]

Cubic Newton: Analysis

$$x_{k+1} := \underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \left[\Omega_2(x_k; y) + \frac{H}{6} ||y - x_k||^3 \right]$$

Main Lemma. Let $H := L_2$. Then

$$f(x_k) - f(x_{k+1}) \ge \frac{1}{12\sqrt{L_2}} \|\nabla f(x_{k+1})\|^{3/2} \ge \frac{1}{12\sqrt{L_2}} \varepsilon^{3/2}$$

⇒ telescoping this bound, we obtain the complexity:

$$K = \frac{12\sqrt{L_2}(f(x_0) - f^*)}{\varepsilon^{3/2}}$$

iterations to find $\|\nabla f(\bar{x}_k)\| \leq \varepsilon$.

NB: for the Gradient Method we have $K = \frac{2L_1(f(x_0) - f^*)}{\varepsilon^2}$

▶ Price: more expensive steps. $\mathcal{O}(n^3)$ arithmetic operations to solve the subproblem

Coordinate Subspace Model

- ▶ Fix subset of coordinates: $S \subset \{1, ..., n\}$
- ▶ For any $y \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$, denote by

$$y_{[S]} \in \mathbb{R}^n, A_{[S]} \in \mathbb{R}^{n \times n}$$

the vector/matrix with zeroed $i \notin S$

Cubic subspace second-order model. For any $h \in \mathbb{R}^n$:

$$m_{x,S}(h) \stackrel{\text{def}}{=} f(x) + \langle \nabla f(x), h_{[S]} \rangle + \frac{1}{2} \langle \nabla^2 f(x) h_{[S]}, h_{[S]} \rangle + \frac{H}{6} \|h_{[S]}\|^3$$

$$= f(x) + \langle \nabla f(x)_{[S]}, h \rangle + \frac{1}{2} \langle \nabla^2 f(x)_{[S]}h, h \rangle + \frac{H}{6} \|h_{[S]}\|^3$$

▶ By smoothness, for a sufficiently large $H \ge L_2$, we have:

$$f(x+h) \leq m_{x,S}(h), \quad \forall x, h \in \mathbb{R}^n$$

 \Rightarrow at iteration $k \ge 0$, we compute next step as:

$$x_{k+1} = x_k + \underset{h}{\operatorname{argmin}} m_{x_k,S}(h)$$

$$= x_k - \left(\nabla^2 f(x_k)_{[S]} + \beta_k I\right)^{-1} \nabla f(x_k)_{[S]} \text{ for } \beta_k > 0$$

Stochastic Subspace Cubic Newton

Init: $x_0 \in \mathbb{R}^n$ and subspace size $1 \le \tau \le n$

Iteration, $k \ge 0$:

- 1. Sample $S_k \subset \{1, \ldots, n\}$ of size $|S_k| = \tau$
- 2. Estimate regularization parameter H_k
- 3. Compute Subspace Cubic Step:

$$x_{k+1} = x_k + \operatorname{argmin}_h m_{x_k, S_k}(h)$$

$$= x_k + \operatorname*{argmin}_h \left\{ \langle \nabla f(x_k)_{[S_k]} h, h \rangle + \tfrac{1}{2} \langle \nabla^2 f(x_k)_{[S_k]} h, h \rangle + \tfrac{H_k}{6} \|h\|^3 \right\}$$

- ▶ The cost of solving the subproblem is $\mathcal{O}(\tau^3)$
- ▶ Very efficient for small $\tau \ll n$

[D-Richtárik, 2018; Cartis-Scheinberg, 2018; Hanzely-D-Richtárik-Nesterov, 2020; Hanzely, 2024]

New Result: Global Convergence

Lemma. For any $x \in \mathbb{R}^n$ and $|S| = \tau$, we have

$$\mathbb{E}\|\nabla f(x)_{[S]} - \nabla f(x)\| \leq \sqrt{1 - \frac{\tau}{n}}\|\nabla f(x)\|$$

$$\mathbb{E}\|\nabla^2 f(x)_{[S]} - \nabla^2 f(x)\| \leq \sqrt{1 - \frac{\tau(\tau - 1)}{n(n - 1)}}\|\nabla^2 f(x)\|_F$$

▶ The error \rightarrow 0 with $\tau \rightarrow n$

Theorem. To reach $\mathbb{E}[\|\nabla f(x_K)\|] \leq \varepsilon$ it is enough to perform

$$K = \mathcal{O}\left(\left[\frac{n}{\tau}\right]^{3/2} \frac{\sqrt{L_2}(f(x_0) - f^*)}{\varepsilon^{3/2}} + n^{1/2} \left(1 - \frac{\tau(\tau - 1)}{n(n - 1)}\right)^{1/2} \left[\frac{n}{\tau}\right]^2 \frac{L_1(f(x_0) - f^*)}{\varepsilon^2}\right)$$

- $\tau = n$: Full Cubic Newton
- ightharpoonup au = 1: Coordinate Descent
- ▶ Arithmetic complexity of each iteration is $\mathcal{O}(\tau^3)$

Experiment: Logistic Regression

b the best: Stochastic Subspace Cubic Newton with $\tau = 100$

New Result: Adaptive Sampling

▶ Idea: at iteration $k \ge 0$ sample different number of coordinates $\tau(S_k)$

Theorem, Set.

$$\tau(S_k) = n \cdot \max \left\{ 1 - \frac{\delta^{-2} \|x_k - x_{k-1}\|^2}{\|\nabla f(x_k)\|^2}, \ \sqrt{1 - \frac{\delta^{-2} \|x_k - x_{k-1}\|}{\|\nabla^2 f(x_k)\|_F^2}} \right\}$$

Then, with probability at least $1-\delta$ we have

$$\max\Bigl\{\|\nabla f(\bar{x}_K)\|^{3/2},\,[-\lambda_{\min}(\nabla^2 f(x))]^3\Bigr\} \ \leq \ \mathcal{O}\Bigl(\tfrac{1}{K}\Bigr)$$

- Convergence to a second-order stationary point
- ▶ It can be $\tau(S_k) \ll n$

Conclusions

- ► Cubic regularization ⇒ global convergence for Newton's method
- ► Stochastic subspaces significantly reduce the arithmetic cost

$$\mathcal{O}(n^3) \mapsto \mathcal{O}(\boldsymbol{\tau}^3)$$

- ▶ We show that Stochastic Subspace Cubic Newton possesses
 - fast global rates for non-convex optimization
 - convergence to a second-order stationary point under adaptive sampling
 - o good practical performance

Thank you for your attention!