TCP vs UDP - Complete Study Notes

Overview

Both TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) are **transport layer protocols** used for data transmission, but they have fundamental differences in their approach and characteristics.

Key Differences Between TCP and UDP

1. Connection Type

TCP - Connection Oriented

- Must establish a connection before data transmission
- Data transmission starts only after connection is established
- Similar to a telephone network connection must be made first

UDP - Connectionless

- No connection establishment required
- Starts data transmission immediately upon receiving data from application layer
- Doesn't care about establishing connections

2. Reliability

TCP - Highly Reliable

- Provides guarantee that all data bytes will definitely reach the receiver
- Uses connection-based reliability (like telephone network)
- If data doesn't reach once, uses re-transmission
- Has acknowledgment system:
 - Receiver sends acknowledgment when packet is received
 - Can use negative acknowledgments
 - If no acknowledgment received, sender retransmits

UDP - Less Reliable

- No guarantee of data delivery
- Lost packets are simply lost no retransmission

- No acknowledgment system
- "Fire and forget" approach

3. Packet Ordering

TCP - Maintains Order

- Packets always reach in the correct sequence
- Example: If sending packets P1, P2, P3 → they arrive as P1, P2, P3
- Uses single network path, ensuring ordered delivery
- Like telephone conversation first line reaches first, then second, then third

UDP - No Ordering Guarantee

- Packets can arrive in any order
- Example: Sending P1, P2, P3 → might arrive as P2, P1, P3 or any sequence
- Uses different network paths for different packets
- Since packets follow different networks, they may reach out of order

4. Error Control

TCP - Mandatory Error Control

- Checksum is mandatory
- Must calculate checksum before sending
- Sender includes checksum with data
- Receiver calculates checksum and matches with sender's checksum
- If checksums match → no error detected

UDP - Optional Error Control

- Checksum is optional
- UDP header has 16-bit checksum field
- Can send data without checksum by putting all zeros (0000000000000) in checksum field
- If you want error detection, can include checksum

5. Transmission Speed

TCP - Relatively Slower

- Not inherently slow, but slower compared to UDP
- Must establish connection first
- Follows single network path
- If congestion occurs on that path, speed decreases
- Additional overhead due to reliability mechanisms

UDP - Faster Transmission

- No connection establishment delay
- Starts transmission immediately upon receiving data from application layer
- Uses multiple network paths (different routes)
- If one route is congested, other routes remain available
- Packets reach faster due to multiple path availability

6. Overhead

Overhead Definition:

- Payload = Pure data from application layer (the actual message)
- Overhead = Extra information (headers) needed to send the payload
- For M amount of data, need to add X amount of header information

TCP - Higher Overhead

Header size: 20-60 bytes

Minimum header: 20 bytes (160 bits)

Maximum header: 60 bytes

Contains many fields: flow control, error control, flags, options, etc.

UDP - Lower Overhead

- Header size: Fixed 8 bytes only
- Regardless of data size, always 8 bytes of header
- Much simpler header structure
- **Comparison**: TCP minimum (20B) > UDP fixed (8B) → TCP has more overhead

7. Flow Control and Congestion Control

TCP - Has Both Controls

Flow Control:

- Considers receiver's capacity to accept data
- "How much data can the receiver handle?"

Congestion Control:

- Considers network capacity
- "What is the network's current load capacity?"
- Uses algorithms like AIMD (Additive Increase Multiplicative Decrease)
- Cannot directly measure network load, so uses algorithms to estimate

Handling Congestion:

- If router receives too much data and becomes overloaded
- Your packet may get discarded due to buffer overflow
- TCP detects this and performs re-transmission
- Sends the same packet again

UDP - No Flow/Congestion Control

- No algorithms for flow or congestion control
- If packet is lost due to congestion → it's permanently lost
- No retransmission mechanism
- Doesn't care about receiver capacity or network load

Real-World Applications and Examples

TCP Applications (Reliability Required)

1. HTTP (HyperText Transfer Protocol)

- Used for webpage transmission
- HTTP itself is not reliable
- Always uses TCP to achieve reliability
- Ensures no data loss during webpage loading

2. FTP (File Transfer Protocol)

- Used for file transfers to/from servers
- **Critical requirement**: Every single byte must reach destination
- Example: If downloading a file and even 1 byte is lost → file becomes corrupted and won't open

• File integrity is crucial → TCP's reliability is essential

3. YouTube (High Definition)

- HD video streaming uses TCP
- Ensures all video data reaches user
- User gets complete data as requested
- May cause slower buffering due to TCP's reliability mechanisms

UDP Applications (Speed Required)

1. DNS (Domain Name Server)

- When finding IP address from domain name
- Send domain name → receive IP address
- Speed is more important than perfect reliability for quick lookups

2. BOOTP, DHCP, RIP

- BOOTP: Bootstrap Protocol
- DHCP: Dynamic Host Configuration Protocol
- RIP: Routing Information Protocol
- All require fast transmission rather than guaranteed delivery

3. Live Video Conferencing (Skype, etc.)

- **Requirement**: Screen should not freeze/stop
- Acceptable: Little blur or quality reduction
- Not acceptable: Complete screen loss
- Speed is prioritized over perfect quality
- Better to have slightly blurred real-time video than perfect but delayed video

4. YouTube (Standard Definition)

- Lower quality video streaming can use UDP
- Acceptable to lose some data for faster streaming
- Trade-off between quality and speed

Decision Criteria: When to Use Which?

Use TCP When:

- Reliability is crucial
- Data integrity must be maintained
- Complete data delivery is required
- Examples: File downloads, web browsing, email, database transactions

Use UDP When:

- Speed is the priority
- Real-time communication needed
- Some data loss is acceptable
- Examples: Live streaming, online gaming, DNS queries, live video calls

Summary Table

Feature	ТСР	UDP
Connection	Connection-oriented	Connectionless
Reliability	High (guaranteed delivery)	Low (no guarantee)
Ordering	Maintains packet order	No ordering guarantee
Error Control	Mandatory checksum	Optional checksum
Speed	Slower (relative to UDP)	Faster
Overhead	High (20-60 bytes header)	Low (8 bytes header)
Flow Control	Yes	No
Congestion Control	Yes (AIMD algorithm)	No
Retransmission	Yes	No
Acknowledgments	Yes	No
•		

Key Analogies to Remember

- 1. **TCP = Telephone Network**: Must establish connection before communication, reliable delivery, ordered conversation
- 2. **UDP = Postal System**: Send letters immediately, no guarantee of delivery order or even delivery, but faster to send
- 3. **TCP Overhead = Sending a package with tracking, insurance, signature confirmation** (more overhead but guaranteed delivery)
- 4. **UDP Overhead = Sending a postcard** (minimal overhead, quick delivery, but no guarantees)