3.3.2 Refraction, diffraction and interference

3.3.2.1 Interference

- Coherence
 - Waves with a constant phase difference and the same frequency and wavelength
- Monochromatic
 - Light waves with a single wavelength only
- Lasers
 - Coherent and monochromatic
 - Usually used as sources of light in diffraction experiments as they form clear interference patterns
- · Path difference
 - The difference in the distance travelled by two waves from their sources to where they meet
- Interference of monochromatic light
 - Path difference = $n\lambda \rightarrow$ constructive interference, gives maximum intensity / reinforcement
 - Path difference = $\left(n + \frac{1}{2}\right)\lambda \rightarrow$ destructive interference, gives 0 intensity / cancellation
- Interference of longitudinal waves (sound waves)
 - Constructive / reinforcement
 - Compression + compression / rarefaction + rarefaction → greater volume
 - Destructive / cancellation
 - Compression + rarefaction → 0 volume, used for noise cancellation
- Young's double slit experiment
 - Condition for light source
 - Monochromatic → colour filter
 - Coherent → single silt between light source and double silt
 - Laser is both monochromatic + coherent so no colour filter / single slit needed
 - Procedure
 - Shine a coherent light source through 2 slits about the same size as the wavelength laser light so the light diffracts / use 2 coherent sources
 - Each slit acts as a coherent point source making a pattern of light and dark fringes
 - \circ Light fringes are formed where the light from both slits meet **in phase** and **interferes constructively** (path difference = $n\lambda$)
 - O ark fringes are formed where the light from both slits meets **completely out of phase** and **interferes destructively** (path difference = $\left(n + \frac{1}{2}\right)\lambda$)

- (Bright) Fringe spacing
 - λD wavelength × distance between slit and screen

Path difference= λ

- $\sin \theta = \frac{\lambda}{\frac{S}{N}}$ • $\tan \theta = \frac{W}{N}$
- When θ is small: $\sin \theta \approx \tan \theta \approx \theta$ so $\frac{\lambda}{s} = \frac{w}{R}$
- Hence $w = \frac{\lambda D}{s}$
- Significance of Young's double slit experiment
 - Proved the wave nature of light since diffraction and interference are wave properties
 - Proved that EM radiation must act as a wave
 - Disproved the theories that light is formed of tiny particles
 - Knowledge and understanding of any scientific concept changes over time in accordance to the experimental evidence gathered by the scientific community
- Interference pattern with white light
 - Wider maxima
 - Less intense diffraction pattern with a central white fringe (all colours are present)
 - Alternating bright fringes which are spectra, violet is **the** closest to the central maximum and red is **the** furthest
- Safety precautions with lasers
 - Do not look directly at a laser beam even when it is reflected
 - Wear laser safety goggles
 - Don't shine the laser at reflective surfaces
 - Display a warning sign
 - Never shine the laser at a person

3.3.2.2 Diffraction

- Single silt diffraction
 - Monochromatic light
 - Central maximum with highest frequency
 - Decreasing intensity fringes on both sides, equally spaced
 - Central fringe is twice the width of other fringes

- White (non-monochromatic) light
 - o White central maxima
 - Fringes on both sides show as spectrums
 - o Red furthest, violet closest to the centre

- Narrower slit = lower intensity for all fringes + wider spacing as waves are more diffracted
- Longer wavelength = more diffracted so wider spacing and fringes
- · Fringe spacing for single slit diffraction
 - $w = \frac{D\lambda}{a}$
 - Central fringe = $\frac{2D\lambda}{a}$ wide
- · Diffraction grating
 - A slide containing many equally spaced slits very close together
 - When monochromatic light is passed through a diffraction grating the interference pattern is much **sharper and brighter** than it would be after being passed through a double slit
 - Light passing through each slit is diffracted
 - The diffracted light waves from adjacent slits reinforce each other in certain directions only and cancel out in all other directions
 - Distances from the centre where maxima occur = $d \sin \theta = n\lambda$ (d = distance between slits)
 - Angle of diffraction between each transmitted beam and the central beam increases if light of a longer wavelength or a grating with closer slits is used

- · White light incident
 - · Spectrum is seen when white light is used
 - Different colours of light have different maxima positions
 - Line absorption spectra and line emission spectra can determine the elements in a substance (photoelectric effect)
- Maximum number of orders visible

- Use $\theta = 90^{\circ}$
- $n_{max} = \left| \frac{d}{\lambda} \right|$
- Measuring wavelength of light
 - Diffraction patterns are measured using a spectrometer
 - Angles measured accurate to 1 arc minute $(\frac{1}{60})^\circ$
 - It can be used to study light from any source and measure wavelengths very accurately
 - Angle measured using a known wavelength → grating spacing calculated
 - Grating can then be used to measure the wavelength of any light
- · Applications of diffraction grating
 - Diffraction gratings can be used to observe and measure spectral lines
 - Line emission spectra can be used to identify elements in the vapour gas of the vapour lamp (similar to line absorption spectra)

3.3.2.3 Refraction at a plane surface

- Refraction
 - Change of direction and wavelength when a wave crosses a boundary and its speed changes
- Refractive index of a substance
 - $n = \frac{c}{c_s} = \frac{\sin i}{\sin r}$
 - Refractive index of air ≈ 1
 - Higher refractive index = light travels slower in the substance
- · Snell's law
 - $n_1 \sin \theta_1 = n_2 \sin \theta_2$
- Total internal reflection (TIR)
 - For ray going from more dense to less dense substance & the angle of incidence exceeds the critical angle
 - No refracted light wave since the angle of refraction > 90° so all the light is reflected
- · Critical angle
 - The angle of incidence at which the angle of refraction is 90°
 - $\bullet \quad \sin \theta_c = \frac{n_2}{n_1} (n_2 > n_1)$
- Optical fibre structure
 - Cladding
 - Protects the outer surface of the core from scratching
 - o Ensure that no light leaves the core
 - RI of cladding < RI of core
 - Similar RI between cladding and core: larger critical angle → less reflection → less modal dispersion
 - RI of cladding much smaller than core: smaller critical angle → less light escape → more light collected
 - Core
 - The transmission medium for EM waves to progress
- Types of optical fibre
 - Step index fibre
 - The refractive index of each component increases moving from the outside to the centre of the fibre
 - The refractive index within each component is **uniform**
 - Graded index fibre
 - Has a core that has a **gradually decreasing** refractive index
- Pulse broadening
 - The length of a pulse is widened so it may overlap with the next pulse
 - Distorts the information in the final pulse
- · Pulse absorption
 - Energy is absorbed by the fibre
 - Amplitude is reduced so information can be lost

- Solution
 - Use more transparent core
 - Use pulse repeaters to regenerate the pulse before significant pulse broadening has taken place
- Material / spectral dispersion
 - · Happens if white light is used instead of monochromatic light
 - Light waves interact with the material
 - Red light has the longest wavelength it travels the fastest in the materials
 - Violet light has the shortest wavelength it travels the slowest in the materials
 - Causes pulse broadening
 - Solution
 - Use monochromatic light
- Modal / multipath dispersion
 - Light waves entered at different angles of incidence so they are spread out
 - They travel different distances as they take different paths and arrive at the other end at different times
 - · Causes pulse broadening
 - Solution
 - Use a narrower core (monomode fibre)
 - Use a cladding with its refractive index as close to the core as possible (larger critical angle → less refraction)
- Applications of optical fibres
 - Endoscopes
 - Transmission of data for communications
- Producing coherent image
 - An incoherent bundle cannot be used to form an image because the ends of the individual fibres are arranged randomly so the image is incorrect
 - In a coherent bundle, the fibres have the same spatial position at each end of the bundle.
 - The light emitted from the end of the bundle is an **exact copy** of the incident light and **a single image** can be reproduced and analysed
 - Coherent bundles are expensive to manufacture so incoherent bundles are used for illumination
- Advantages of optical fibres
 - · Less loss of strength
 - No interference
 - Greater bandwidth for more information per second
 - Increased security