INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4094 8-stage shift-and-store bus register

Product specification
File under Integrated Circuits, IC06

December 1990

8-stage shift-and-store bus register

74HC/HCT4094

FEATURES

· Output capability: standard

I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4094 are high-speed Si-gate CMOS devices and are pin compatible with the "4094" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4094 are 8-stage serial shift registers having a storage latch associated with each stage for strobing data from the serial input (D) to the parallel buffered 3-state outputs (QP $_0$ to QP $_7$). The parallel outputs may be connected directly to common bus lines. Data is shifted on the positive-going clock (CP) transitions.

The data in each shift register stage is transferred to the storage register when the strobe input (STR) is HIGH. Data in the storage register appears at the outputs whenever the output enable input (OE) signal is HIGH.

Two serial outputs (QS_1 and QS_2) are available for cascading a number of "4094" devices. Data is available at QS_1 on the positive-going clock edges to allow high-speed operation in cascaded systems in which the clock rise time is fast. The same serial information is available at QS_2 on the next negative-going clock edge and is for cascading "4094" devices when the clock rise time is slow.

APPLICATIONS

- · Serial-to-parallel data conversion
- · Remote control holding register

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	PARAMETER	CONDITIONS	TYP	LINUT	
	PARAMETER	CONDITIONS	НС	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$			
	CP to QS ₁		15	19	ns
	CP to QS ₂		13	18	ns
	CP to QP _n		20	21	ns
	STR to QP _n		18	19	ns
f _{max}	maximum clock frequency		95	86	MHz
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	83	92	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

 f_0 = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

8-stage shift-and-store bus register

74HC/HCT4094

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	STR	strobe input
2	D	serial input
3	СР	clock input
4, 5, 6, 7,14, 13, 12, 11	QP ₀ to QP ₇	parallel outputs
8	GND	ground (0 V)
9, 10	QS ₁ , QS ₂	serial outputs
15	OE	output enable input
16	V _{CC}	positive supply voltage

8-stage shift-and-store bus register

74HC/HCT4094

8-stage shift-and-store bus register

74HC/HCT4094

FUNCTION TABLE

	IN	IPUTS		PARALLE	EL OUTPUTS	SERIAL OUTPUTS			
СР	OE	STR	D	QP ₀	QP _n	QS ₁	QS ₂		
1	L	Х	Х	Z	Z	Q' ₆	NC		
\downarrow	L	Χ	X	Z	Z	NC	QP ₇		
1	Н	L	X	NC	NC	Q' ₆	NC		
1	Н	Н	L	L	QP _{n - 1}	Q' ₆	NC		
1	Н	Н	Н	Н	QP _{n - 1}	Q' ₆	NC		
\downarrow	H	Н	Н	NC	NC	NC	QP ₇		

Notes

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

Z = high impedance OFF-state

NC= no change

↑ = LOW-to-HIGH CP transition

 \downarrow = HIGH-to-LOW CP transition

 Q_{6}^{\prime} = the information in the seventh register stage is transferred to the 8th register stage and QS_{n} output at the positive clock edge

8-stage shift-and-store bus register

74HC/HCT4094

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS		
		74HC										
SYMBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(*)		
t _{PHL} / t _{PLH}	propagation delay CP to QS ₁		50 18 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7	
t _{PHL} / t _{PLH}	propagation delay CP to QS ₂		44 16 13	135 27 23		170 34 29		205 41 35	ns	2.0 4.5 6.0	Fig.7	
t _{PHL} / t _{PLH}	propagation delay CP to QP _n		63 23 18	195 39 33		245 49 42		295 59 50	ns	2.0 4.5 6.0	Fig.7	
t _{PHL} / t _{PLH}	propagation delay STR to QP _n		58 21 17	180 36 31		225 45 38		270 54 46	ns	2.0 4.5 6.0	Fig.8	
t _{PZH} / t _{PZL}	3-state output enable time OE to QP _n		55 20 16	175 35 30		220 44 37		265 53 45	ns	2.0 4.5 6.0	Fig.9	
t _{PHZ} / t _{PLZ}	3-state output disable time OE to QP _n		41 15 12	125 25 21		155 31 26		190 38 32	ns	2.0 4.5 6.0	Fig.9	
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5	Fig.7	
t _W	clock pulse width HIGH or LOW	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7	
t _W	strobe pulse width HIGH	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.8	
t _{su}	set-up time D to CP	50 10 9	14 5 4		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig.10	
t _{su}	set-up time CP to STR	100 20 17	28 10 8		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig.8	

8-stage shift-and-store bus register

74HC/HCT4094

				•	T _{amb} (°		TEST CONDITIONS				
SYMBOL	PARAMETER				74HC			WAVEEODMO			
		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(-)	
t _h	hold time D to CP	3 3 3	-6 -2 -2		3 3 3		3 3 3		ns	2.0 4.5 6.0	Fig.10
t _h	hold time CP to STR	0 0 0	-14 -5 -4		0 0 0		0 0 0		ns	2.0 4.5 6.0	Fig.8
f _{max}	maximum clock pulse frequency	6.0 30 35	28 87 103		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.7

8-stage shift-and-store bus register

74HC/HCT4094

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
OE, CP	1.50
D	0.40
STR	1.00

8-stage shift-and-store bus register

74HC/HCT4094

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)								TEST CONDITIONS		
SYMBOL	PARAMETER	74HCT									WAVEFORMS	
STWIDOL	PARAIVIETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(*)		
t _{PHL} / t _{PLH}	propagation delay CP to QS ₁		23	39		49		59	ns	4.5	Fig.7	
t _{PHL} / t _{PLH}	propagation delay CP to QS ₂		21	36		45		54	ns	4.5	Fig.7	
t _{PHL} / t _{PLH}	propagation delay CP to QP _n		25	43		54		65	ns	4.5	Fig.7	
t _{PHL} / t _{PLH}	propagation delay STR to QP _n		22	39		49		59	ns	4.5	Fig.8	
t _{PZH} / t _{PZL}	3-state output enable time OE to QP _n		20	35		44		53	ns	4.5	Fig.9	
t _{PHZ} / t _{PLZ}	3-state output disable time OE to QP _n		21	35		44		53	ns	4.5	Fig.9	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.7	
t _W	clock pulse width HIGH or LOW	16	7		20		24		ns	4.5	Fig.7	
t _W	strobe pulse width HIGH	16	5		20		24		ns	4.5	Fig.8	
t _{su}	set-up time D to CP	10	4		13		15		ns	4.5	Fig.10	
t _{su}	set-up time CP to STR	20	9		25		30		ns	4.5	Fig.8	
t _h	hold time D to CP	4	0		4		4		ns	4.5	Fig.10	
t _h	hold time CP to STR	0	-4		0		0		ns	4.5	Fig.8	
f _{max}	maximum clock pulse frequency	30	80		24		20		MHz	4.5	Fig.7	

8-stage shift-and-store bus register

74HC/HCT4094

AC WAVEFORMS

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.7 Waveforms showing the clock (CP) to output (QP_n, QS₁, QS₂) propagation delays, the clock pulse width and the maximum clock frequency.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.8 Waveforms showing the strobe (STR) to output (QP_n) propagation delays and the strobe pulse width and the clock set-up and hold times for the strobe input.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.9 Waveforms showing the 3-state enable and disable times for input OE.

(1) HC : $V_M = 50\%$; $V_I = GND \text{ to } V_{CC}$. HCT: $V_M = 1.3 \text{ V}$; $V_I = GND \text{ to } 3 \text{ V}$.

Fig.10 Waveforms showing the data set-up and hold times for the data input (D).

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".