

MA1102 Grunnkurs i

Analyse II

Vår 2017

Norges teknisk—naturvitenskapelige universitet Institutt for matematiske fag

Løsningsforslag — Øving 13

- $\boxed{1}$ a) Forholdstesten gir at konvergensradien er 1. $x=\pm 1$ gir en divergent rekke, så rekken konvergerer for |x|<1.
 - b) Om vi deriverer rekken leddvis får vi

$$\sum_{n=0}^{\infty} x^{2n} = \frac{1}{1 - x^2}.$$

Den opprinnelige rekken har verdien 0 for x = 0, så

$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1} = \int_0^x \frac{dt}{1-t^2} = \frac{1}{2} \int_0^x \left(\frac{1}{1+t} + \frac{1}{1-t} \right) dt = \frac{1}{2} \ln \frac{1+x}{1-x}.$$

2 Vi setter $f(x) = \arctan(2x) - x$ og finner

$$f'(x) = \frac{1 - 4x^2}{1 + 4x^2}$$

slik at f er voksende på [0,1/2] og avtagende på $[1/2,\infty)$. Siden f(0)=0, har f ingen nullpunkter i (0,1/2]. Og siden f er avtagende på $[1/2,\infty)$, har den høyst ett nullpunkt i dette intervallet. Ved skjæringssetningen finnes minst ett nullpunkt i (1/2,2), fordi f(1/2) > 0 og f(2) < 0.

Newtons metode $(x_{n+1} = x_n - f(x_n)/f'(x_n))$ gir følgende tabell:

n	x_n	$f(x_n)$	$f'(x_n)$
0	1	0.10715	-0.60000
1	1.17858	-0.00901	-0.69495
2	1.16562	-0.00004	

 $x_2 = 1.16562$ gir en god tilnærming til x_* , siden $f(x_2)$ er liten (og f' ikke er spesielt liten i nærheten av x_2).

 $\boxed{\bf 3}$ **a)** Vi setter inn taylorrekken for $\cos t$ og integrerer leddvis:

$$f(x) = \int_0^x \sum_{k=1}^\infty \frac{(-1)^{k-1} t^{2k-1}}{(2k)!} dt = \sum_{k=1}^\infty \frac{(-1)^{k-1} x^{2k}}{(2k)! \cdot 2k}.$$

b) Vi har spesielt

$$f(1) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k)! \cdot 2k}$$

som er en alternerende rekke med avtagende ledd, slik at feilen i en delsum alltid er mellom 0 og neste ledd. Vi har $6! \cdot 6 = 720 \cdot 6 = 4320$, så leddet med k=3 har allerede absoluttverdi mindre enn 0,001. En tilnærmet verdi med ønsket nøyaktighet er

$$f(1) \approx \frac{1}{2! \cdot 2} - \frac{1}{4! \cdot 4} = \frac{1}{4} - \frac{1}{96} \approx 0.2396.$$

 $\boxed{4}$ $(3^2)!=362880$, så det er *plausibelt* at det er nok å ta med leddene n=0,1,2 i begge summene. For den første er dette korrekt, på grunn av alternerende rekketest med tilhørende feilestimat. En god nok tilnærming til den første summen er dermed

$$1 - 1 + \frac{1}{4!} = \frac{1}{24} \approx 0.041667.$$

For den andre summen er det også korrekt, men der må vi jobbe litt hardere: Merk for eksempel at forholdet mellom ledd n+1 og ledd nummer n er

$$\frac{(n^2)!}{((n+1)^2)!} = \frac{1}{(n^2+1)(n^2+2)\cdots(n+1)^2} < \frac{1}{(n+1)^2} \le \frac{1}{16}$$

for $n \geq 3$ så vi kan sammenligne med geometrisk rekke:

$$\sum_{n=3}^{\infty} \frac{1}{(n^2)!} < \sum_{n=3}^{\infty} \frac{1}{(3^2)! \cdot 16^{n-3}} = \frac{16}{9! \cdot 15} < 10^{-4}$$

med (svært!) god margin. En god nok tilnærming til den andre summen er dermed

$$1 + 1 + \frac{1}{4!} = 2 + \frac{1}{24} \approx 2.041667.$$

[5] Vi kompletterer kvadratet og dividerer med 3, og får

$$(x-1)^2 - \frac{y^2}{3} = 1,$$

som er standardformelen for en hyperbel med sentrum i (1,0), a=1 og $b=\sqrt{3}$. Asymptotene er gitt ved

$$(x-1)^2 - \frac{y^2}{3} = 0$$
, det vil si $y = \pm \sqrt{3}(x-1)$.

Vi har generelt $a^2 + b^2 = (\epsilon a)^2$, med våre tall blir $\epsilon = \sqrt{1+3} = 2$.

Avstandene fra sentrum til styrelinje, skjæringen med x-aksen og til brennpunktet danner en geometrisk rekke med faktor $\epsilon=2$, altså 1/2, 1 og 2 (vi skal ha a i midten, altså 1). Så vi har en styrelinje i x=1+1/2=3/2 og et brennpunkt i x=1+2=3. Den andre styrelinjen og det andre brennpunktet ligger symmetrisk om sentrum, så styrelinjene er gitt ved x=3/2 og 1/2 og brennpunktene ligger i (3,0) og (-1,0).