Apunts d'Àlgebra Multilineal i Geometria

ALEIX TORRES I CAMPS

1 Àlgebra Multilineal

1.1 La forma de Jordan

1.1.1 Introducció i repàs

Sigui **k** un cos (normalment **R** o **C**), sigui E in **k**-e.v. de dimensió finita (dim n), sigui $f: E \to E$ un endomorfisme, sigui $\mathcal{B} = \{e_1, \dots, e_n\}$ una base i sigui $M_{\mathcal{B}}(f) = A$ matriu bàsica per \mathcal{B} .

Aleshores, $v \in E$ és vep de vap $\lambda \in \mathbf{k}$ si v compleix que $f(v) = \lambda v$.

Direm que f diagonalitza si \exists base de veps \mathscr{B} : en aquest cas, la matriu $M_{\mathscr{B}}(f)$ és diagonal.

Quan sabem si una matriu o una aplicació diagonalitza? Fem servir el polinomi característic: $P_f(t) = \det(f - tId)$ de grau n. Aleshores, λ és vap $\iff P_f(\lambda) = 0$, per tant, $\{vap\} = \{\text{arrels de } P_f(t)\}$, la qual cosa és una manera de trobar el vaps.

Hipótesi: Sempre suposarem que el polinomi descomposa en el cos, és a dir, $P_f(t) = (-1)^n (t - \lambda)^{n_1} \cdots (t - \lambda)^{n_r}$, on $n_1 + \ldots + n_t = n$. Totes les arrels de $P_f(t)$ són de **k**. En particular, pels conplexos, això sempre és cert.

Teorema 1. El primer teorema de descomposició diu que podem separar l'espai vectorial en subespais invariants i sense intersecció entre ells tals que tots ells nuclis de l'aplicació f menys vap vegades la identitat, és a dir: $E = \ker(f - \lambda_1 \operatorname{Id})^{n_1} \oplus \cdots \oplus \ker(f - \lambda_r \operatorname{Id})^{n_r}$.

És a dir, si $\forall v \in E \implies v = v_1 + \ldots + v_r$, on $v_i \in \ker(f - \lambda_i \operatorname{Id})^{n_i}$ és a dir, $(f - \lambda_i \operatorname{Id})^{n_i}(v_i) = 0$.

Corol·lari 2. $n_1 = \cdots = n_r = 1 \implies f$ diagonalitza.

Teorema 3. Caylei-Hamilton: $P_f(A) = 0$. Considerem $m_f(t) \in \{Q(t)|Q(A) = 0\}$ que és el polinomi de grau mínim i mònic $\implies m_f(A) = 0$ i $m_f(t)|P_f(t)$ (el polinomi mínim divideix al polinomi característic). A més, $m_f(t) = (t - \lambda_1)^{m_1} \cdots (t - \lambda_r)^{m_r}$ té totes les arrels però de grau més petit o igual.

Proposició 4. f diagonalitza $\iff m_1 = \ldots = m_r = 1$.

Recordant el fet que $E = \ker(f - \lambda_1 \operatorname{Id})^{n_1} \oplus \cdots \oplus \ker(f - \lambda_r \operatorname{Id})^{n_r}$, a més sabem que: $\dim \ker(f - \lambda \operatorname{Id})^{n_1} = n_1$, $\ker(f - \lambda_i \operatorname{Id})^{n_i}$ son f-invariants, $f(\ker(f - \lambda_i \operatorname{Id})^{n_i}) \in \ker(f - \lambda_i \operatorname{Id})^{n_i}$.

Aleshores, per la propia descomposició de l'espai en nuclis, sabem que la matriu de l'aplicació com a mínim queda separada pels subespais de cada nucli. Ja que son espais separats i invariants.

Conclusió: la multiplicitat més gran del polinomi mínim és la mida màxima de la caixa que ens pot apareixer quan intentem fer diagonalització.

Exemple 1. Sigui A la matriu d'una aplicació lineal de k^3 en una certa base:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Aleshores, calculem el polinomi característic $P_A(t)$.

$$P_A(t) = \begin{vmatrix} 1 - t & 0 & 0 \\ 2 & 1 - t & 0 \\ 0 & 0 & 1 - t \end{vmatrix} = (1 - t)^3$$

Per tant, té un únic vap $\lambda = 1$ que apareix 3 vegades. Automàticament, sabem que $\mathbf{k}^3 = \ker(A - 1\operatorname{Id})^3$. Tot i així, observem que:

$$(A - \mathrm{Id}) = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} (A - \mathrm{Id})^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

I que, per tant, veiem que $\mathbf{k}^3 = \ker(A - \operatorname{Id})^2$. Llavors el polinomi mínim no coincideix amb el polinomi característic sinó que $m_A(t) = (1 - t)^2$.

1.1.2 El teorema de Jordan

Sigui $f: E \to E$, on $E = \ker(f - \lambda \operatorname{Id})^m = \ker f_{\lambda}^m$ (abreugem la notació amb $f_{\lambda} := f - \lambda \operatorname{Id}$).

Definició 5. $v \in E$ és un **vep generalitzat d'alçada l** si $v \notin \ker(f_{\lambda}^k)$ per $k \leq l-1$, però si que $v \in \ker f_{\lambda}^l$. Que és el mateix que dir que $f_{\lambda}^k(v) \neq 0$ (per al mateix rang de k), però sí que $f_{\lambda}^l(v) = 0$.

Exemple 2. Sigui A la matriu d'una aplicació lineal a k^4 en la base $\{e_1, e_2, e_3, e_4\}$:

$$A = \begin{pmatrix} \lambda & 0 & 0 & 0 \\ 1 & \lambda & 0 & 0 \\ 0 & 1 & \lambda & 0 \\ 0 & 0 & 0 & \lambda \end{pmatrix}$$

Ara, observem que $f_{\lambda}(e_1) = f(e_1) - \lambda e_1 = e_2 \neq 0$, $f_{\lambda}^2(e_1) = f_{\lambda}(e_2) = e_3 \neq 0$, $f_{\lambda}^3(e_1) = f_{\lambda}^2(e_2) = f_{\lambda}(e_3) = 0$ i, per últim, $f_{\lambda}(e_4) = 0$. Per tant, e_1 és un vepg d'alçada 3, e_2 és un vepg d'alçada 2 i tant e_3 com e_4 són vepg d'alçada 1 i, per tant, veps ordinaris.

Proposició 6. Sigui v un vep generalitzat d'alçada l, aleshores $v, f_{\lambda}(v), f_{\lambda}^{2}(v), \ldots, f_{\lambda}^{l-1}(v)$ són linealment independents. Al subespai que generen l'anomenarem un cicle de Jordan de longitud l.

Demostraci'o. Suposem que son linealment dependents, aleshores existeix escalars els quals no son tots 0 tals que:

$$\mu_0 v + \mu_1 f_{\lambda}(v) + \ldots + \mu_{l-1} f_{\lambda}^{l-1}(v) = 0$$

Però ara apliquem f_{λ}^{l-1} i ens queda:

$$\mu_0 f_{\lambda}^{l-1}(v) + \mu_1 f_{\lambda}^l(v) + \ldots + \mu_{l-1} f_{\lambda}^{l-1+l-1}(v) = 0$$

Aleshores, com que v és un vep generalitzat d'alçada l, a partir del 2n son tots 0, per tant, no queda cap altra opció que $\mu_0=0$. Efectuant ara, per $1\leq i\leq l-2$, aquest procés de nou però amb f_{λ}^{l-i} veurem que $\mu_i=0$. I, per tant, hem vist que totes les μ són 0, amb la qual cosa, per definició, són linealment independents. \square

Proposició 7. Els cicles de Jordan són f-invariants. (Per simplificar la notació fem servir $u_k = f_{\lambda}^{k-1}(v)$).

Demostració. Per $k \neq l$, sabem que, $f_{\lambda}(u_k) = u_{k+1}$, és a dir, $f(u_k) = \lambda u_k + u_{k+1}$. Per tant, per aquesta part, és invariant. Per últim, quan fem $f_{\lambda}(u_l) = 0$, per ser v un vep generalitzat d'alçada l.

Definició 8. Un cicle de Jordan de longitud l dona a lloc un Bloc de Jordan.

$$J_{\lambda} = \begin{pmatrix} \lambda & 0 & \cdots & 0 & 0 \\ 1 & \lambda & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda & 0 \\ 0 & 0 & \cdots & 1 & \lambda \end{pmatrix}$$

Definició 9. Una base de Jordan de f és una vase de E formada per cicles de Jordan.

$$M_{\mathscr{J}} = \begin{pmatrix} J_{\lambda_1} & 0 & \cdots & 0 \\ 0 & J_{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{\lambda_r} \end{pmatrix}$$

Teorema 10. Si el polinomi característic $P_f(t)$ descompon completament, aleshores, existeixen bases de Jordan.

Demostraci'o. Anem a verue el cas en dimensi\'o 2. Sigui $f: \mathbf{k}^2 \to \mathbf{k}^2$ un endomorfisme amb un únic vap λ amb $m_f(t) = (t - \lambda)^2$ i per tant, aquest és l'únic cas que no diagonalitza.

Agafem $u \in \mathbf{k}^2$ tal que $f_{\lambda}(u) \neq 0$ (per tant, u no és vep). Aleshores, escollim v de la següent manera: $v = f(u) - \lambda(u)$. Llavors la base $\{u, v\}$ és un base de Jordan. Amb matriu:

$$\begin{pmatrix} \lambda & 0 \\ 1 & \lambda \end{pmatrix}$$

Ara, en general, per a cada bloc, busquem un vector generador d'ordre el bloc (l). És a dir, v vepg d'alçada l, és a dir, que estigui en el ker f_{λ}^{l} però no en el ker f_{λ}^{l-1} . Recordem que $0 \subset \ker f_{\lambda} \subset \cdots \subset \ker f_{\lambda}^{l}$.

Suposem f tal que $P_f(t) = (\lambda - t)^n$, aleshores \exists una base de Jordan.

En efecte, sigui $d_i = \dim \ker f_{\lambda}^i$. Farem un edifici on la planta i té amplada $l_m = d_i - d_{i-1}$. Escollim $u_1^m, \ldots, u_{l_m}^m \in \ker f_{\lambda}^m \setminus \ker f_{\lambda}^{m-1}$ de manera que sigui l.i. u_i^m són vepg d'alçada m, considerem $f_{\lambda}^k(u_i^m)$.

Lema 11. $f_{\lambda}^k(u_i^m)$ per $1 \leq i \leq l_m$ i per $0 \leq k \leq m-1$, són l.i

Demostraci'o. Suposem que tenim unes constants no totes nul·les μ tals que:

$$\sum_{k=0}^{m-1} \sum_{i=1}^{l_m} \mu_{ki} f_{\lambda}^k(u_i^m) = 0$$

Apliquem f_{λ}^{m-1} . Només ens queda el pis superior, el k=0 i, per tant, $\sum_{i=1}^{l_m} \mu_{0i} f_{\lambda}^{m-1}(u_i^m) = 0$, però aquests ja sabiem que eren l.i. Aleshores les seves μ_0 són totes 0. Encara ens queden les $k \geq 1$.

Ara apliquem f_{λ}^{m-2} , només ens queden el segon pis superior, ara fem:

$$\sum_{i=1}^{l_{m-1}} \mu_{1i} f_{\lambda}^{m-1}(u_i^m) = f_{\lambda}^{m-1}(\sum_{i=1}^{l_{m-1}} \mu_{1i}(u_i^m)) = 0$$

Però, com que sabem que els vectors de dins són l.i. totes les μ_1 han de ser 0 altra vegada. Reproduint aquest procés per a cada pis, arribem a que totes les μ són 0.

Baixem un pis, estem a ker $f_{\lambda}^{m-1} \setminus \ker f_{\lambda}^{m-2}$ amb amplada l_{m-1} . Veurem que ker $f_{\lambda}^{m-1} = \langle f_{\lambda}(u_{1}^{m}), \dots, f_{\lambda}(u_{l_{m}}^{m}) \rangle$ $\oplus \ker f_{\lambda}^{m-2} \oplus V_{m-1} = (*) = u_{m-1} \oplus \ker f_{\lambda}^{m-2} \oplus V_{m-1}$. Aleshores, caldria escollir, $u_{1}^{m-1}, \dots, u_{r_{m-1}}^{m-1} \in V_{m-1} = \ker f_{\lambda}^{m-1} \setminus u_{m-1} \oplus \ker f_{\lambda}^{m-2}$ l.i. vepg d'alçada m-1.

Lema 12 (*). Cal comprovar que $u_{m-1} \cap \ker f_{\lambda}^{m-2} = 0$. I per tant que la seva suma sigui directa.

Demostraci'o. Sigui $w \in u_{m-1} \cap \ker f_{\lambda}^{m-2}$ i el descomponem en elements de de u_{m-1} , llavors apliquem f_{λ}^{m-2} i, com que $w \in \ker f_{\lambda}^{m-2}$ el resultat hauria de ser 0, però ens queda:

$$0 = f_{\lambda}^{m-2}(w) = f_{\lambda}^{m-2}(\sum \mu_i f_{\lambda}(u_i^m)) = f_{\lambda}^{m-1}(\sum \mu_i u_i^m)$$

Ara, com que els elements que hi ha dins del parentesis són l.i. i no pertanyen al ker f_{λ}^{m-1} , no pot haver constants diferents de 0 tals que el resultat sigui. Per tant, hem arribat a contradicció i les constants han de

ser 0 i w=0. Aleshores, l'intersecció és buida i hem acabat.

Seguint el mateix raonament per a cada pis, obtenim una base de Jordan.

Exemple 3. Sigui A la matriu d'una aplicació lineal.

$$\begin{pmatrix} 4 & 0 & 0 & -1 & 1 \\ -1 & 3 & 0 & 1 & 0 \\ 1 & 0 & 3 & 0 & 0 \\ 1 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 & 3 \end{pmatrix}$$

En aquest cas, $P_A(t) = (3-t)^5$, $m_A(t) = (t-3)^3$ i $d_1 = 2, d_2 = 4$ i $d_3 = 5$.

$$\begin{array}{c|c} e_1 \\ \hline f_{\lambda}(e_1) & v \\ \hline f_{\lambda}^2(e_1) & f_{\lambda}(v) \\ \end{array}$$

 $u_1^3 \in \ker(A - 3\operatorname{Id})^3 \setminus \ker(A - 3\operatorname{Id})^2$, com per exemple, $u_1^3 = e_1$, $f_{\lambda}(u_1^3) = (4, -1, 1, 1, 0)$ i $f_{\lambda}^2(u_1) = e_3$.

Ara, cal $v \in \ker(A - 3\operatorname{Id})^2 \setminus \ker(A - 3\operatorname{Id}) \oplus \langle f_{\lambda}(u_1^3) \rangle$. Per exemple, v = (-1, 0, 0, 0, 1) i $f_{\lambda}(v) = (0, 1, -1, 0, 0)$.

Observació 13. La quantitat de cicles de longitud exactament k és 2 dim ker f_{λ}^{k} – dim ker f_{λ}^{k-1} – dim ker f_{λ}^{k-1} . Per tant, la quantitat de caixes de mida k depèn només de f (i de λ).

Observació 14. La reduïda de Jordan és única, llevat de reordenació dels Blocs.

Corol·lari 15. A, B son matrius conjugades $(\exists \in GL_n(\mathbf{k}), B = S^{-1}AS) \iff J_A = J_B$.

Exemple 4. Sigui B:

$$\begin{pmatrix}
1 & 0 & 2 & -6 \\
0 & 1 & -1 & 3 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 2
\end{pmatrix}$$

Veiem que $P_B(t) = (t-1)^3(t-2)$, que $m_B(t) = (t-1)^2(t-2)$ i, pel primer teorema de descomposició $E = \ker(B - \operatorname{Id})^2 \oplus \ker(B - 2\operatorname{Id})$. Per tant, $u_1 \in \ker(B - \operatorname{Id})^2 \setminus \ker(B - \operatorname{Id})$, $u_2 = f_{\lambda}(u_1)$ i anar fent...

1.2 Aplicacions de Jordan

Sigui $A \in \mathcal{M}_n(\mathbf{k})$, $P_A(k)$ descompon completament, \exists base de Jordan, una matriu J i una matriu invertible S tal que $J = S^{-1}AS$, o equivalentment $A = SJS^{-1}$.

1. Potències de A: A^k .

Observació 16. $A^k = (SJS^{-1})^k = (SJS^{-1})(SJS^{-1}) \cdot (SJS^{-1}) = (SJ^kS^{-1})$. Per tant, només cal calcular J^k .

Observació 17. La matriu de Jordan J és una matriu per blocs. Aleshores:

$$J^{k} = \begin{pmatrix} J_{1}^{k} & 0 & \cdots & 0 \\ 0 & J_{2}^{k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{m}^{k} \end{pmatrix}$$

4

Podem suposar que $J = J_l(\lambda)$ (que només té un bloc).

Observació 18. Podem escriure J = D + N on D és una matriu diagonal (on tots els valors son el vap λ) i la matriu N és una matriu amb uns a la diagonal inferior. Aquesta matriu N compleix que la matriu N^k té només 1's a la diagonal k inferior. Per tant, en cada poténcia, es reduix en 1 el nombre de uns i arriba un poténcia l tal que $N^l = 0$ que és la matriu 0.

Observació 19. Les matrius N i D commuten $(D^n N^m = ^n D^m)$. Ja que $D^n N^m = \lambda^n \operatorname{Id} N^m = \lambda^n N^m = N^m \lambda^n \operatorname{Id} = N^m D^n$. Aleshores, quan fem J^k dona:

$$J^{k} = (D+N)^{k} = D^{k} + kD^{k-1}N + \dots + N^{k} = \lambda \operatorname{Id} + k\lambda^{-1}N + \binom{k}{2}\lambda^{k-2}N^{2} + \dots + \binom{k}{k-1}\lambda N^{k-1} + N^{k}$$

Proposició 20. Sigui l el nombre tal que $N^l = 0$ (bàsicament l és la mida de la matriu). Aleshores

$$J^{k} = \begin{pmatrix} \lambda^{k} & 0 & 0 & \cdots & 0 \\ 0 & \lambda^{k} & 0 & \cdots & 0 \\ 0 & 0 & \lambda^{k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \\ 0 & 0 & 0 & \cdots & J_{m}^{k} \end{pmatrix}$$

2. Exponencial d'una matriu.

Sigui A una matriu, aleshores definim l'exponencial d'una matriu com:

$$e^{A} = \sum_{n>0} \frac{1}{n!} A^{n} = \operatorname{Id} + A + \frac{1}{2!} A^{2} + \dots + \frac{1}{n!} A^{n} + \dots$$

(Faltarien fer comprovacions com que convergeix)

Formalment podem fer: $e^A = e^{SJS^{-1}} = Se^JS^{-1}$ i $e^J = e^{D+N} = e^De^N$. I, a partir d'aquí, queda clar que $e^D = e^{\lambda} \operatorname{Id}$ i que $e^N = \operatorname{Id} + N + \frac{1}{2!}N^2 + \dots + \frac{1}{(l-1)!}N^{l-1} + 0$. Per tant, podem veure que:

$$e^{J} = e^{\lambda} \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 0 \\ \frac{1}{2!} & 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{(l-1)!} & \frac{1}{(l-2)!} & \frac{1}{(l-3)!} & \cdots & 1 \end{pmatrix}$$

3. Sistemes lineals d'e.d.o. amb coef. constants.

Tenim un sistema de la forma:

$$x'_1 = a_{11}x_1(t) + \dots + a_{1n}x_n(t)$$

 \dots
 $x'_n = a_{n1}x_1(t) + \dots + a_{nn}x_n(t)$

És a dir, x'(t) = Ax(t), amb $x(t) = (x_1(t), \dots, x_n(t))$ i $A \in \mathcal{M}_n(\mathbf{R})$.

Pel cas n = 1, x'(t) = ax(t), fem $\frac{x'(t)}{x(t)} = a$, integrant, $\ln x(t) = at + b$, llavors $x(t) = e^{at}e^b = ce^{at}$. I per deduir la t ens calen unes condicions inicials.

En general, sense comprovació, és $x(t) = e^{At}x_0$, de la mateixa forma, x_0 són per les condicions inicials.

1.3 Formes quadràtiques

Motivació: Estudiar polinokmis homogenis (de més d'una variable) de grau 2.

Definició 21. Una forma bilinial ϕ simétrica sobre E és una aplicació $\phi: E \times E \to \mathbf{k}$ tal que:

- 1. $\phi(u_1 + u_2, v) = \phi(u_1, v) + \phi(u_2, v)$
- 2. $\phi(\lambda u, v) = \lambda \phi(u, v)$
- 3. $\phi(u,v) = \phi(v,u)$

Exemple 5. Alguns exemples:

- 1. $k = \mathbb{R}$ un producte escalar (euclidià) és una forma bilineal simètrica a més és def.positiva.
- 2. $k = \mathbb{R}$, $E = \mathbb{R}^2$ amb $\phi((x_1, y_1), (x_2, y_2)) = y_1 x_2 + y_2 x_1$ és bilineal i simètrica, però no definida postiva.

Definició 22. La forma quadràtica q_{ϕ} associada a ϕ és l'aplicació

$$q_{\phi}: E \to \mathbf{k}$$

 $u \to q_{\phi}(u) := \phi(u, u)$

Proposició 23. Propietats:

- 1. $q(\lambda u) = \lambda^2 q(u)$
- 2. $\phi(u,v) = \frac{1}{2}[q(u+v) q(u) q(v)]$ (amb $k \neq p.e. \mathbb{R}, C$)
- 3. Hi ha una bijecció $\{\phi \text{ formes bilineals simètriques }\} \leftrightarrow \{q \text{ formes quadràtiques }\}$. Si tinc una ϕ em determina una q_{ϕ} i si tinc una q aquesta determina una ψ tal que $q = q_{\psi}$.

Demostració.

- 1. $q(\lambda u) = \phi(\lambda u, \lambda u) = \lambda^2 = \phi(u, u) = \lambda^2 q(u)$
- 2. $q(u+v) = \phi(u+v, u+v) = \phi(u, u) + \phi(u, v) + \phi(v, u) + \phi(v, v)$ I aillem.
- 3. Col·lorari de l'apartat anterior.

Formes bilineals i quadràtiques en una base \mathscr{B} . $\mathscr{B} = \{e_1, \cdots, e_n\}$ base de E. $u = x_1e_1 + x_2e_2 + \cdots + x_ne_n$ i $v = y_1e_1 + \cdots + y_ne_n$. I sigui ϕ una forma bilineal. Llavors

$$\phi(u,v) = \phi(x_1e_1 + \dots + x_ne_n, y_1e_1 + \dots + y_ne_n) = \sum x_iy_i\phi(e_i,e_j)$$

Definició 24. La matriu de ϕ en la base \mathscr{B} és $A = (a_{ij})$ amb $a_{ij} = \phi(e_1, e_2)$.

Llavors, $\phi(u,v) = \sum a_{ij}x_iy_j$ i $q(u) = \phi(u,u) = \sum a_{ij}x_iy_j$ que és un polinomi homogeni de grau 2 en les coordenades de u en \mathscr{B} .

Observació 25. $\phi(u,v) = X^t A Y =$

$$= \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix} \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Canvi de base: Sigui $\mathscr{B}' = \{u_1, \dots, u_n\}$ un nova base i tenim $u = x'_1u_1 + \dots + x'_nu_n$ i ϕ una forma bilineal. Sigui S la matriu de canvi de base de SX' = X, llavors

$$X^t A Y = (SX')^t A (SY') = X'^t (S^t A S) Y'$$

Proposició 26. $M_{\mathscr{B}'}(\phi) = B = S^t A S$

Observació 27. $B = S^t A S$, S inveritble.

- 1. rang(A)=rang(B). Llavors podem definir rang $\phi = rang(A)$.
- 2. $\det A \neq \det B$ perquè $\det B = \det S^2 \det A$.

Una manera de veure-ho és $\hat{\phi}: E \to E^*$ que agafa u i l'envia a $\phi(u, -)$.

1.4 Tensors