HW15 Report

學號:b07901039 系級:電機二 姓名:劉知穎

1. (20%) Policy Gradient 方法

- a. 請閱讀及跑過範例程式,並試著改進 reward 計算的方式。
- b. 請說明你如何改進 reward 的算法,而不同的算法又如何影響訓練結果?

以下訓練使用 EPISODE_PER_BATCH = 10, NUM_BATCH = 1000, 使用 Adam optimizer, learning rate = 1e-3。Policy Gradient Network 結構和 sample code 相同。Testing 時測試 200 次,以 total rewards 的平均值和標準差衡量模型的好壞。

(1)
$$R_t = \sum_{t=1}^{T} r_t$$
 (範例程式)

Testing reward = 88.2523 ± 45.4772

a. $\gamma = 1$ (no discount)

Testing reward = 100.9911 ± 44.0909

Testing reward = 238.3641 ± 77.4247

c. $\gamma = 0.9$

Testing reward = -101.5930 ± 19.0525

結論:

將 rewards 改成由現在的 step 累加到最後,並加上 decay 的 gamma 得到的結果較累加從頭到尾的 rewards 好。因為現在的 action 直觀上應該對之後得到的 rewards 有影響,而對之前的沒有,且影響程度應該隨時間 decay。經過實驗, $\gamma=0.99$ 的效果最好。

2. (30%) 試著修改與比較至少三項超參數(神經網路大小、一個 batch 中的回合數等),並說明你觀察到什麼。

(1) 一個 batch 中的回合數等

 $\gamma=0.99$, NUM_BATCH = 1000, 使用 Adam optimizer, learning rate = 1e-3。Policy Gradient Network 結構和 sample code 相同。Testing 時測試 200 次,以 total rewards 的平均值和標準差衡量模型的好壞。

a. EPISODE_PER_BATCH = 5

Testing reward = 107.3212 ± 58.6640

b. EPISODE_PER_BATCH = 10

c. EPISODE_PER_BATCH = 20

Testing reward = 244.7109 ± 71.1298

結論:

增加一個 batch 中的 episodes 數得到的結果會較好,因為多次 episodes 得到的 state, actions, rewards 會較全面。缺點是訓練時間會增加。

EPISODE_PER_BATCH 從 10 增加到 20 得到的 Testing reward 的成長較從 5 增加到 10 小。因此這份報告主要以 EPISODE_PER_BATCH=10 做實驗。

(2) 神經網路大小

Policy Gradient Network 結構:

Linear(8, hidden_size) / Tanh() / Linear(hidden_size, hidden_size) / Tanh() / Linear(hiddren_size, 4) / Softmax()

 γ = 0.99, EPISODE_PER_BATCH = 10, NUM_BATCH = 1000, 使用 Adam optimizer, learning rate = 1e-3。Testing 時測試 200 次,以 total rewards 的平均值和標準差衡量模型的好壞。

a. hidden_size = 10

Testing reward = 234.2801 ± 78.2555

b. hidden_size = 16

Testing reward = 238.3641 ± 77.4247

c. hidden_size = 20

Testing reward = 209.1102 ± 105.6274

結論:

Hidden_size = 16 有最好的結果。

(3) Optimizer

 γ = 0.99, EPISODE_PER_BATCH = 10, NUM_BATCH = 1000, learning rate = 1e-3 \circ Policy Gradient Network 結構和 sample code 相同 \circ Testing 時測試 200 次,以 total rewards 的平均值和標準差衡量模型的好壞 \circ

a. SGD

b. Adam

Testing reward = 238.3641 ± 77.4247

結論:

使用 Adam 訓練較 SGD 穩定且能收斂到較好的成果。

(4) Learning rate

 $\gamma = 0.99$, EPISODE_PER_BATCH = 10, NUM_BATCH = 1000, 使用 Adam optimizer。Policy Gradient Network 結構和 sample code 相同。Testing 時 測試 200 次,以 total rewards 的平均值和標準差衡量模型的好壞。

a. Learning rate = 1e-3

Testing reward = 238.3641 \pm 77.4247

b. Learning rate = 5e-4

Testing reward = 98.1071 ± 61.4422

c. Learning rate = 5e-3

Testing reward = 255.9250 ± 51.2599

結論:

Learning rate 大時,訓練時 total rewards 成長得較快,但上下震盪也較嚴重。實驗結果 learning rate 在[1e-3, 5e-3]之間能有較好的結果。

2. (20%) Actor-Critic 方法

- a. 請同學們從 REINFORCE with baseline、Q Actor-Critic、A2C 等眾多方法中擇一實作。
- b. 請說明你的實做與前者 (Policy Gradient) 的差異。

實作 REINFORCE with baseline

實作方法:

訓練一個小型的 linear baseline network,以一整個 episode 的 states 為 input,一整個 episodes 的 rewards 為 target。每過一個 episode 更新一次 baseline network。Advantage $A_t=R_t-b_\phi(s_t)$,以 adavantage 和 log probability 每經過一個 epoch (EPISODE_PER_BATCH 次 episodes)更新一次 Policy Gradient Network 的參數。

Baseline Network 結構:

Linear(8, 10) / relu() / Linear(10, 1)

 $\gamma=0.99$, EPISODE_PER_BATCH = 10, NUM_BATCH = 1000, 使用 Adam optimizer, learning rate=1e-3。Policy Gradient Network 結構和 sample code 相同。Testing 時測試 200 次,以 total rewards 的平均值和標準差衡量模型的好壞。

Testing reward = 251.9961 ± 45.9528

結論:

增加 baseline 後得到的 testing rewards 平均值較高也較穩定 (標準差較小)。

3. (30%) 具體比較(數據、作圖)以上幾種方法有何差異,也請說明其各自的優 缺點為何。

(1) 演算法

演算法	Testing reward
Sample code	88.2523 ± 45.4772
Policy gradient + discount rewards $(\gamma = 0.99)$	238.3641 ± 77.4247
REINFORCE with baseline	251.9961 ± 45.9528

使用 REINFORCE with baseline 較原本 Policy gradient 在訓練時和測試時都較穩定,且 testing rewards 的平均值稍高於 policy gradient 的;但缺點是需要額外再訓練一個小 network,訓練上要花較多時間。

(2) 超參數

a. Reward discount γ

Reward discount γ	Testing reward
1	100.9911 ± 44.0909
0.99	238.3641 ± 77.4247
0.9	-101.5930 ± 19.0525

結論:

 $\gamma = 0.99$ 的效果最好。

b. EPISODE_PER_BATCH

EPISODE_PER_BATCH	Testing reward
5	107.3212 ± 58.6640
10	238.3641 ± 77.4247
20	244.7109 ± 71.1298

使用較大的 EPISODE_PER_BATCH 可以用較少 epoch 訓練到較高的 rewards · 且最終 testing rewards 會較高;但缺點是訓練時間會增長。

c. Policy Gradient Network hidden_size

hidden_size	Testing reward
10	234.2801 ± 78.2555
16	238.3641 ± 77.4247
20	209.1102 ± 105.6274

Hidden_size = 16 有最好的結果。

d. Learning rate

Learning rate	Testing reward
5e-4	98.1071 ± 61.4422
1e-3	238.3641 ± 77.4247
5e-3	255.9250 ± 51.2599

Learning rate 越大能越快到達較大的 accuracy,但訓練時 total rewards 的震盪會越大。