Prediction of Regulatory Networks from Expression and Chromatin Data

Ivan G. Costa, RWTH Aachen University, Germany

Marcel Schulz, Saarland University & Max Planck Institute for Informatics,

Germany

Matthias Heinig, Helmholtz Center Munich, Germany

Deutsches Forschungszentrum für Gesundheit und Umwelt

Overview

Time	Topic	Who
2:30 - 2:45	Introduction / gene regulation / transcription / chromatin	IC
2:45 - 3:00	Introduction ChIP-seq peak calling	MH
3:00 - 3:50	Practical peak calling	MH & JH
4:15 - 4:30	Introduction Footprints	IC
4:30 - 4:45	Introduction Regulatory networks	MS
4:45 - 5:50	Practical Regulatory Networks	IG, MS & FS
5:50 - 6:00	Q & A session	all

Material - https://github.com/SchulzLab/EpigenomicsTutorial-ISMB2017

Team

Ivan Costa (IC)

Matthias Heinig (MH)

Johann Hawe

Marcel Schulz(MH)

Florian Schmidt (FS)

Introduction to Footprints

Ivan G. Costa RWTH Aachen University, Germany

www.costalab.org

Chromatin and Cell Memory/Plasticity

Histone Code

Transcription

H3K79me2, H3k36me3

Active Regions

H3K27ac, H3K9ac

Active Promoters

H3K4me3

Active Enhancers

H3K4me1

Repressed Prom.

H3K27me3

Repressed Regions

H3K9me3

NGS and Chromatin

Source: Meyer, C.A. and Liu X.S. (2014). Nature Reviews Genetics.

DNA - Protein interactions with DNase-seq

DNA - Protein interactions with DNase-seq

Detection of Active Binding Sites

Detection of Active Binding Sites

HINT (Hmm-based IdeNtification of Transcription factor footprints)

- scan DNase and/or ChIP-Seq (activating marks) to predict footprints
- normalization for cleavage bias and global artifacts
- obtain cell independent models

8 State HMM

Method - HINT

- Emissions multivariate Gaussian (signal and slope of histone and DNase)
- HMM trained on manually annotated region

DNase-seq Artifacts - Cleavage Bias

 DNase I prefers to bind (and cleave) some DNA regions ...

... than other DNA regions.

- Example*: We observe a ~3.5
 higher frequency of reads starting
 in ACCGGG than the frequency of
 ACCGGG in the genome.
- For a given position i around a kmer with x_i reads

corrected $x_i = x_i / bias_{k-mer}$

Gold Standard - TF ChIP-Seq and motif search

Gold Standard - TF ChIP-Seq and motif search

Evaluation on 88 Transcription factors H1-ESC and K562

Baseline methods

- PWM sequence based motifs
- TC number of DNase reads

Proposed Methods

- HINT-DN (DNase), HINT-HM (H3K4me3 & H3K4me1)

Competing Methods

BinDNAse, Boyle, Centipede,
 Cuellar, DNAse2TF, FLR. FOS,
 Neph, PIQ, Wellington

Evaluation on 88 Transcription factors H1-ESC and K562

- Pyvivi sequence based motifs
- TC number of DNase reads
- **Proposed Methods**
 - HINT-DN (DNase), HINT-HM (H3K4me3 & H3K4me1)

BinDNAse, Boyle, Centipede, Cuellar, DNAse2TF, FLR. FOS, Neph, PIQ, Wellington

Evaluations - Which histone modifications?

Analysis on 2 cells over 83 TFs (Chr1 only)

Gusmao EG et. al, Bioinformatics, 30(22):3143-51.

DNA - Protein interactions with ATAC-seq

Alignment & Downstream Analysis

DNA - Protein interactions with ATAC-seq

Open Chromatin Protocols - Comparison

Open Chromatin Protocols - Comparison

Overview

Footprint analysis

- allow detection of cell specific binding sites
- cleavage bias correction is crucial in DNAse-seq

Alternatie chromatin protocols (ATAC-seq)

- alternative for experiments with low cell counts
- footprinting is comparable to DNase-seq
 - also requires bias correction

Practical Footprints

Ivan G. Costa RWTH Aachen University, Germany

www.costalab.org

ATAC-seq profiles (bigWig) and Footprints around Zap70 locus

ATAC-seq, Histones and Footprints around Zap70 locus

ATAC-seq, Histones and Footprints around Zap70 locus

Motif Matching of Pu.1 and Elk4

ATAC-seq profiles around Pu.1(Spi1) and Elk4

