

A Hierarchical Framework for Relation Extraction with Reinforcement Learning

Introduction

Task definition

• **Relation extraction**: identify relations (e_s, r, e_t) , a triple consisting of a relation type r, a source entity e_s and a target entity e_t from unstructured texts.

Motivation

- Capture the **interaction** between entity mentions and relation types: most existing methods determine relation types only after all the entities have been recognized.
- Deal with **overlapping** relations : one entity may participate in multiple relations in the same sentence, and same entity pair in a sentence may be associated with different relations.

Figure 1: Examples for two types of overlapping relations.

• A novel paradigm with **hierarchical reinforcement learning** to deal with relation extraction by regarding the related entities as the arguments of a relation.

Figure 2: Overview of a hierarchical agent in relation extraction.

• **Relation Indicator**: the position in a sentence when sufficient information has been mentioned to identify a semantic relation.

Figure 3: Illustration of a two-level hierarchical policy structure. (Left) High-level policy for relation detection. (Right) Low-level policy for entity extraction.

• Option (high-level action): detect the *relation indicator*.

$$\mathcal{O} = \{ \mathtt{NR} \} \cup \mathcal{R}$$

• High-level reward: intermediate reward to check out the relation detection process, and final reward to evaluate the global performance in the sentence.

$$r_t^h = \begin{cases} -1, \text{ if } o_t \text{ not in } S \\ 0, \quad \text{if } o_t = \text{NR} \\ 1, \quad \text{if } o_t \text{ in } S. \end{cases}, \\ r_{fin}^h = F_\beta(S) = \frac{(1+\beta^2) \text{Prec} \cdot \text{Rec}}{\beta^2 \text{Prec} + \text{Rec}}$$

• Primitive action (low-level action): according to the proposed entity annotation scheme.

$$\mathcal{A} = (\{\mathtt{S},\mathtt{T},\mathtt{O}\} \times \{\mathtt{B},\mathtt{I}\}) \cup \{\mathtt{N}\}$$

• Low-level reward: the prediction error over gold-standard annotation.

$$r_t^l = \lambda(y_t) \cdot \text{sgn}(\alpha_t = y_t(o_{t'})), \lambda(y) = \begin{cases} 1, \text{ if } y \neq N \\ \alpha, \text{ if } y = N. \end{cases}$$

Experiment

Model	NYT10			NYT11			NYT10-sub			NYT11-plus		
	Prec	Rec	F_1	Prec	Rec	F_1	Prec	Rec	F_1	Prec	Rec	F_1
FCM	_	_	_	.432	.294	.350	_	_	_	.234	.199	.219
MultiR	_	_	_	.328	.306	.317	_	_	_	.241	.214	.227
CoType	_	_	_	.486	.386	.430	_	_	_	.291	.254	.271
SPTree	.492	.557	.522	.522	.541	.531	.272	.315	.292	.466	.229	.307
Tagging	.593	.381	.464	.469	.489	.479	.256	.237	.246	.292	.220	.250
CopyR	.569	.452	.504	.347	.534	.421	.392	.263	.315	.329	.224	.264
HRL	.714	.586	.644	.538	.538	.538	.815	.475	.600	.441	.321	.372

Table 1: (Left) Main results on relation extraction. (Right) Performance comparison on extracting overlapping relations.

	Model	ľ	NYT1	Ĺ	NYT11-plus			
	iviodei	Prec	Rec	F_1	Prec	Rec	F ₁	
	FCM	.502	.479	.490	.447	.327	.378	
	MultiR	.465	.439	.451	.423	.336	.375	
	CoType	.558	.558	.558	.491	.413	.449	
	SPTree	.650	.614	.631	.700	.343	.460	
	CopyR	.480	.714	.574	.626	.426	.507	
	HRL-Ent	.676	.676	.676	.577	.321	.413	
	HRL	.654	.654	.654	.626	.456	.527	

Table 2: Performance comparison on relation detection(classification) only.

The lawsuit contended that the chairman of the [News Corporation] Et-Company] Es-Founder , [[Rupert Murdoch] Es-Company] Et-Founder] Es-Nationality , promised certain rights to shareholders , including the vote on the poison pill , in return for their approval of the company 's plan to reincorporate in the United States from [Australia] Et-Nationality ·

Both [Steven A. Ballmer]_{Es-Company} , [[Microsoft]_{Et-Company}]_{Et-Company}]_{Et-Founder} , the chairman , have been involved in that debate inside the company , according to that person .

Table 3: Extraction examples by our model. A predicted relation indicator is marked in background color.

Figure 4: An example sentence which has two **overlapping relations** (Steve Belichick, parent-children, Bill Belichick), (Steve Belichick, place-of-death, Annapolis). The solid arrow indicates the high-level relation detection process, and the dashed arrow for low-level entity extraction. The dotted arrow marks a transition between the two processes.