The Distributional Effects of "Fulfilled By Amazon" (FBA)

Garud Iyengar[†], **Yuanzhe Ma**[†], Thomas Rivera[‡], Fahad Saleh^{*}, and Jay Sethuraman[†]

†Department of Industrial Engineering and Operations Research, Columbia University
*School of Business, Wake Forest University

†Desautels Faculty of Management, McGill University

Introduction

Fulfillment by Amazon

- Fulfillment by Amazon (FBA): a fulfillment service that Amazon offers to merchants for a per-unit fee
- In 2020, nearly 50% of merchants on Amazon uses FBA
- Merchants have a 20–25% increase in sales after using FBA
- **Question:** what are the *welfare* implications of FBA upon consumers, merchants, and Amazon?
- **Answer:** 2 outcomes:
- 1. Consumers, merchants with low fulfillment service quality and Amazon gain, but merchants with high fulfillment service quality lose
- 2. Amazon extracts all gains of FBA, others stay the same

Model

- Static setting: time $t \in \{0, 1, 2\}$
- Three types of agents: consumers, two merchants, and a platform
- $\underline{t} = 0$: platform sets platform fee based on revenue and FBA fee per quantity
- $\underline{t} = \underline{1}$: each merchant decides if to use platform/ FBA and sets price (cannot use FBA off the platform)
- $\underline{t} = 2$: consumers buy from one merchant or an outside option with utility 0
- Each participant is rational: maximizes her own utility

Merchants' setup

Two merchants $j \in \{H, L\}$ defined by

- $-\theta_i > 0$: product quality
- $-\sigma_i \geq 0$: fulfillment service quality, $\sigma_H > \sigma_L$, normalize $\sigma_L = 0$

At t=1 merchant $j\in\{H,L\}$ simultaneously makes 3 decisions:

- $1. \rho_i \in \{0, 1\}$: join platform with fee f or not
- 2. $\eta_j \in \{0, 1\}$: use FBA with fee T or not, using FBA changes σ_j to $\sigma_P \equiv \sigma_H$
- 3. $P_i \ge 0$: price set for the product
- 4. Use $d_i := (\rho_i, \eta_i, P_i)$ to represent actions of Merchant j

Model details

Merchants' problem

Merchant j solve (assume d_{-i} fixed)

$$d_j^{\star}(f,T) = (\rho_j^{\star}(f,T), \eta_j^{\star}(f,T), P_j^{\star}(f,T)) \in \underset{\rho_j \in \{0,1\}, \eta_j \in \{0,1\}, P_j \ge 0}{\arg \max} \Pi_j(\rho_j, \eta_j, P_j, d_{-j})$$

 $\Pi_j(\rho_j, \eta_j, P_j, d_{-j})$: profit of Merchant j

 $Q_j(\rho_j, \eta_j, P_j, d_{-j})$: demand of Merchant j

f: platform fee

T: FBA fee

$$\Pi_{j}(\rho_{j}, \eta_{j}, P_{j}, d_{-j}) = \begin{cases}
P_{j} \cdot Q_{j} & \text{if } \rho_{j} = 0 \\
P_{j} \cdot Q_{j} - f \cdot P_{j} \cdot Q_{j} & \text{if } \rho_{j} = 1, \eta_{j} = 0 \\
P_{j} \cdot Q_{j} - f \cdot P_{j} \cdot Q_{j} - T \cdot Q_{j} & \text{if } \rho_{j} = 1, \eta_{j} = 1
\end{cases}$$

Platform's problem

Platform anticipates $P_j^*(f,T), Q_j^*(f,T)$ given fees (f,T), and sets fees optimally to solve:

$$(f^*, T^*) \in \underset{f \in [0,1], T \ge 0}{\operatorname{arg max}} \Pi_P(f, T; d)$$

$$\Pi_{P}(f, T; d) = f\left(\sum_{j \in M_{P}^{\star}(f, T)} \underbrace{P_{j}^{\star}(f, T) \cdot Q_{j}^{\star}(d(f, T))}_{\text{revenue of } j}\right) + T\left(\sum_{j \in M_{F}^{\star}(f, T)} \underbrace{Q_{j}^{\star}(d(f, T))}_{\text{demand of } j}\right)$$

 $M_P^{\star}(f,T) = \text{set of merchants using platform}$ $M_F^{\star}(f,T) = \text{set of merchants using FBA} \subseteq M_P^{\star}(f,T)$

Consumers' problem

- A measure of consumers indexed by $i \in [0, 1 + \Delta]$
- Utility $U_i(j, d_j)$ of consumer i from buying Product j as a function of Merchant j's decisions, $d_j = (\rho_j, \eta_j, P_j)$:

$$U_i(j, d_j) = \underbrace{X_{i,j}}_{\text{Consumption Value}} - \underbrace{P_j}_{\text{Product Price}} + \underbrace{s_j(\rho_j, \eta_j)}_{\text{Fulfillment Service Value}}$$

• $X_{i,j} \sim \exp(\theta_j^{-1})$, independent across $i, j, \mathbb{E}(X_{i,j}) = \theta_j$

$$s_j(\rho_j, \eta_j) = \begin{cases} \sigma_P & \text{if } \rho_j \cdot \eta_j = 1\\ \sigma_j & \text{otherwise} \end{cases}$$

• Outside option with utility 0

Demand function and main results

- Consumer $i \in [0, 1]$ sees product sold by all merchants
- Consumer $i \in (1, 1 + \Delta]$ sees Product j only if Merchant j sells on the platform, i.e., $\rho_j = 1$

Demand of Merchant j when both merchants make decisions $d = (d_L, d_H)$

$$Q_{j,[0,1]}(d_j, d_{-j}) = \underbrace{\left(1 - \frac{\theta_j^{-1}}{\theta_j^{-1} + \theta_{-j}^{-1}} \cdot \pi_{-j}(d_{-j})\right) \cdot \pi_j(d_j)}_{\text{does not depend on } d_j} \cdot \pi_j(d_j)$$

where $\pi_j(d_j) = e^{-\theta_j^{-1}(P_j - s_j(\rho_j, \eta_j))^+} = \mathbb{P}(U_i(j, d_j) > 0)$

$$Q_{j,\Delta}(d_j, d_{-j}) = \rho_j \Delta \underbrace{\left(1 - \frac{\theta_j^{-1}}{\theta_j^{-1} + \theta_{-j}^{-1}} \rho_{-j} \pi_{-j} (d_{-j})\right) \cdot \pi_j(d_j)}_{\text{does not depend on } d_i} \cdot \pi_j(d_j)$$

- Compare 2 equilibria: with/ without FBA
- Merchant L: weakly better, $\sigma_L \uparrow \sigma_P$, T^* not too large
- Merchant H: weakly worse, even though $P_{H,\text{FBA}}^{\star} = P_{H}^{\star}$
- Consumers: weakly better, $P_{L,\text{FBA}}^{\star} P_{L}^{\star} \leq \sigma_{P} \sigma_{L}$
- Platform: strictly better:
- -No FBA (force $\eta_i = 0$): both use platform, $P_H^{\star} = \theta_H$, $P_L^{\star} = \theta_L$
- -With FBA: both use platform, only L uses FBA, $P_{H,\text{FBA}}^{\star} = \theta_H, P_{L,\text{FBA}}^{\star}$ $\theta_L + \frac{T^{\star}}{1-f^{\star}}$
- 1. When effects on merchants and consumers are zero: platform takes all values generated through FBA
- 2. Otherwise: only H loses, everyone else gains

When will H lose, L, consumers, and platform gain?

- $\bullet \theta_L$ is small
- T^* is "interior": L strictly prefers to use FBA
- 1. θ_L small: Q_L sensitive to $T \uparrow$, difficult to extract values from FBA
- 2. θ_L larger: Q_L less sensitive to $T \uparrow$, easier to extract values from FBA