

Graphes 2D et 3D

MATLAB

MATrix LABoratory

1- Graphes à deux dimensions

2- Graphes à trois dimensions

3- Commandes particulières

La commande plot

Elle permet de tracer des graphiques x y.

plot(x,y) trace y en fonction de x, x et y étant de mêmes dimensions.

Création automatique de figure.
Si une figure existe déjà, elle trace le graphe sur cette figure.

Pour créer une autre figure, utiliser la commande figure.

Exemple de programmation

$$X = -pi : 0.1 : pi ;$$

 $Y = sin(X);$

plot(X,Y)

grid on

xlabel (' angle')

ylabel (' sin(x) ')

title ('y = f(x)')

Création de la fonction à calculer

Tracé de la fonction

Mise en place d'un quadrillage

Légende de l'axe x

Légende de l'axe y

Titre de la figure

Résultat de la programmation

Pour tracer deux courbes sur la même figure

Utilisation de la fonction hold on

plot(x,y,'style1')
hold on
plot(x,-y,'style2')

Couleurs		Symboles		Type de Tracé		
У	jaune		point		ı	trait continu
m	magenta	0	cercle		•	pointillés
c	cyan	X	croix			trait-point
r	rouge	+	plus		I	trait-trait
g	vert	*	étoiles			
b	bleu	d	diamants			
W	blanc					
k	noir					

Exemple

```
X = -pi : 0.1 : pi ;
Y = \sin(X);
Z = -Y;
figure;
plot(X, Y, 'r*-')
hold on
plot(X,Z,'bd:');
xlabel (' angle')
title (' y = f(x) et z=-f(x)')
```


Pour tracer deux courbes dans la même fenêtre

Utilisation de la commande subplot

Découpe la fenêtre graphique en m lignes et n colonnes et trace la courbe dans la case n°p.

Pour fermer les fenêtres graphiques

close all

Courbes 3D

plot3(x,y,z)

```
t = -3*pi:pi/10:3*pi;
x = 4*\sin(t);
y = 4*\cos(t);
z = 2*t:
figure
plot3(x,y,z);
xlabel('x');
ylabel('y')
zlabel('z')
title('Hélice circulaire')
```


Surfaces

mesh(X,Y,Z) ou surf(X,Y,Z)

Exemple d'une parabole de type : $z = x^2 + y^2$.

$$x = -10:0.8:10;$$

y = x;

[X,Y]=meshgrid(x,y);

 $Z = X.^2 + Y.^2;$

mesh(X,Y,Z)

• • •

Création des vecteurs x et y.

Création de deux matrices X et Y qui définissent le domaine de calcul de Z.

Calcul de Z.

Représentation en « fil de fer » de la surface

Résultat de la programmation

Autres commandes: meshc, meshz, surf, surfc et surfl.

<u>Volumes</u>

[x,y,z]=cylinder(R, n)

R: variation du rayon

N : nombre de points sur la circonférence pour un rayon donné.

Exemple

t = -2*pi:pi/10:2*pi;r = sin(t).*exp(-0.1*t)+2;

[x,y,z]=cylinder(r,20);

surf(x,y,z)

—

Courbe génératrice de la surface de révolution.

Calcul des coordonnées des points de la surface

—

Tracé du volume

Résultat de la programmation

Commandes particulières

zoom

colorbar: apparition de la palette de couleurs.

On peut changer le style de la palette de couleur. Il existe: hsv, gray, hot, cool, copper, pink.

La commande est : **colormap(cool)**.

Commandes particulières

> rotation

