

ECE 57000

Kernel method and Support vector machine

Chaoyue Liu Fall 2024

Linear models have limited performance (e.g., decision boundary is <u>linear</u>)

Separation may be easier in higher dimensions

Figure source: https://www.engati.com/glossary/kernel-method

Feature map

Input space

$$\mathbf{x} = (x_1, x_2)^T$$

Model

$$f_{\mathbf{w}}(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x})$$

Decision boundary

$$\mathbf{w}^T \mathbf{x} = 0$$
$$(w_1 x_1 + w_2 x_2 = 0)$$

Decision boundary

$$\phi(\mathbf{x}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2)^T$$

$$f_{\mathbf{w}'}(\mathbf{x}) = \sigma(\mathbf{w}'^T \phi(\mathbf{x}))$$

$$\mathbf{w}^{\prime T} \phi(\mathbf{x}) = 0$$

e.g.
$$x_1^2 + x_2^2 = 1$$

Feature map

Input space: x

Feature space: $\phi(x) = (1, x, x^2, x^3, \dots, x^M)^T$

Model: $f_{\mathbf{w}'}(x) = \mathbf{w}'^T \phi(x)$

The model is basically a *M*-degree polynomial of *x*

Larger M gives better fit of the training data

Downside of feature map

In practice, input **x** has a large dimension d. (for example, d > 1000) What if we want the M-degree polynomial feature?

$$\phi(\mathbf{x}) = (1, x_1, \dots, x_d, x_1^2, x_1 x_2, \dots, x_1^M, \dots, x_d^M)$$

$$d^M$$

Dimension of the feature vector $\phi(\mathbf{x})$, and weight \mathbf{w} : $\sim d^{M}$ (a huge number)

Downside of feature map

In practice, input **x** has a large dimension d. (for example, d > 1000)

Dimension of the feature vector $\phi(\mathbf{x})$, and weight \mathbf{w} : $\sim d^{M}$ (a huge number)

Q: Do we really need to compute the whole vectors $\phi(\mathbf{x})$ and \mathbf{w} ?

A: we only care about the inner product $\mathbf{w}^T \phi(\mathbf{x})$ which is a scalar.

recall: gradient descent:
$$\mathbf{w}^{t+1} - \mathbf{w}^t = \eta \frac{1}{n} \sum_{i=1}^n (f(\mathbf{x}_i) - y_i) \cdot \phi(\mathbf{x}_i)$$

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i \cdot \phi(\mathbf{x}_i)$$
, for some coefficients α_i

$$f(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i \cdot \phi^T(\mathbf{x}_i) \phi(\mathbf{x})$$
We only need the inner products of feature vectors

$$\phi(\mathbf{x}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

$$\phi(\mathbf{z}) = (1, \sqrt{2}z_1, \sqrt{2}z_2, z_1^2, \sqrt{2}z_1z_2, z_2^2)$$

$$\phi^T(\mathbf{x})\phi(\mathbf{z}) = 1 + 2x_1z_1 + 2x_2z_2 + x_1^2z_1^2 + 2x_1x_2z_1z_2 + x_2^2z_2^2$$

$$= (1 + x_1z_1 + x_2z_2)^2$$

$$= (1 + \mathbf{x}^T\mathbf{z})^2 =: K(\mathbf{x}^T\mathbf{z})$$

More generally, for *M*-degree polynomials:

$$\phi(\mathbf{x}) = (1, x_1, \dots, x_d, x_1^2, x_1 x_2, \dots, x_1^M, \dots, x_d^M) \sim d^M \text{ dimensional}$$

$$\phi^T(\mathbf{x})\phi(\mathbf{z}) = K(\mathbf{x}^T \mathbf{z}) = (1 + \mathbf{x}^T \mathbf{z})^M$$

More generally, for *M*-degree polynomials:

 $\phi^T(\mathbf{x})\phi(\mathbf{z}) = K(\mathbf{x}^T\mathbf{z}) = (1 + \mathbf{x}^T\mathbf{z})^M$

$$\phi(\mathbf{x}) = (1, x_1, \dots, x_d, x_1^2, x_1 x_2, \dots, x_1^M, \dots, x_d^M) \sim d^M \text{ dimensional}$$

$$\phi(\mathbf{z}) = (1, z_1, \dots, z_d, z_1^2, z_1 z_2, \dots, z_1^M, \dots, z_d^M)$$

$$f(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) = \sum_{i=1}^{n} \alpha_{i} \cdot \phi^{\mathrm{T}}(\mathbf{x}_{i}) \phi(\mathbf{x})$$
$$= \sum_{i=1}^{n} \alpha_{i} \cdot K(\mathbf{x}_{i}, \mathbf{x})$$

Instead of learning a high-dimensional weight vector \mathbf{w} , we just need to learn the coefficients α_i .

One step further:

- we don't even need to know what feature maps are used
- we only need the kernel information

Kernel:
$$K(\cdot,\cdot)$$
: $\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ need a pair of inputs

Polynomial kernel: $K(\mathbf{x}, \mathbf{z}) = (\mathbf{1} + \mathbf{x}^T \mathbf{z})^M$ Gaussian kernel: $K(\mathbf{x}, \mathbf{z}) = \exp(-\|\mathbf{x} - \mathbf{z}\|^2/\sigma^2)$ Laplace kernel: $K(\mathbf{x}, \mathbf{z}) = \exp(-\gamma \|\mathbf{x} - \mathbf{z}\|)$

Support vector machine (SVM)

Setting: consider a <u>linearly separable</u> data with two classes

The latter is preferable, because it has a larger margin.

Support vector machine (SVM)

Decision boundary: $\mathbf{w}^T \mathbf{x} + b = 0$

Q: does (\mathbf{w}, b) and $\alpha(\mathbf{w}, b)$ give the same decision boundary?

Normalize (\mathbf{w}, b) :

let the closest data points \mathbf{x} satisfy $y \cdot (\mathbf{w}^T \mathbf{x} + b) = 1$, and others with $y' \cdot (\mathbf{w}^T \mathbf{x}' + b) > 1$

Compute the margin:

$$\mathbf{w}^{T}\mathbf{x} + b = 1$$

$$\mathbf{w}^{T}(\mathbf{x} - \mathbf{z}) + b = 0$$

$$\mathbf{w}^{T}\mathbf{z} = \|\mathbf{w}\| \|\mathbf{z}\| = 1$$

$$\downarrow$$

$$\text{margin: } \|\mathbf{z}\| = \frac{1}{\|\mathbf{w}\|}$$

Support vector machine (SVM)

Goal: maximize the margin $\frac{1}{\|\mathbf{w}\|}$, equivalent to minimize $\|\mathbf{w}\|^2$

minimize
$$\|\mathbf{w}\|^2$$

subject to: $y_i \cdot (\mathbf{w}^T \mathbf{x}_i + b) \ge 1, \forall i$

What if the data is <u>not</u> linearly separable? Soft margin

Minimize

$$\|\mathbf{w}\|^2 + C \sum_{i=1}^n Hinge(\mathbf{y}_i(\mathbf{w}^T\mathbf{x}_i + b))$$

$$Hinge(z) = \max(0, 1-z)$$