<u>Área personal</u> / Mis cursos / <u>03069 - MATEMATICA PARA COMPUTACION II - IIC2023</u> / <u>Arboles Binarios</u> / <u>Cuestionario N°1</u>

Comenzado el	domingo, 11 de junio de 2023, 13:00
Estado	Finalizado
Finalizado en	domingo, 11 de junio de 2023, 14:46
Tiempo empleado	1 hora 46 minutos
Puntos	30,07/34,00
Calificación	8.84 de 10.00 (88.45%)

Pregunta 1 Correcta Se puntúa 2,00 sobre 2,00

Considere el siguiente árbol:

Con base en la figura anterior, responda lo siguiente:

1. ¿Cuál es la raíz principal del mayor subárbol izquierdo?

Solución:

La raíz principal del mayor subárbol izquierdo corresponde a a

2. Determine el máximo nivel del árbol.

Solución:

El máximo nivel del árbol corresponde a 3

3. ¿La figura representa un árbol completo?

Solución:

La figura anterior si representa un árbol completo

4. Escriba un nodo que corresponde a una hoja.

Solución:

Un nodo que corresponde a una hoja corresponde a $\ \ \square$ $\ \checkmark$.

1. ¿Cuál es la raíz principal del mayor subárbol izquierdo?					
Solución:					
La raíz principal del subárbol izquierdo es $lpha$					
2. Determine el máximo nivel del árbol.					
Solución:					
El máximo nivel que tiene el árbol es 3.					
3. ¿La figura representa un árbol completo?					
Solución:					
Si representa un árbol completo.					
4. Escriba un nodo que corresponde a una hoja.					
Solución:					
De las opciones dadas la única correcta es π , pues es un nodo terminal					

Pregunta 2
Correcta
Se puntúa 2,00 sobre 2,00

Considere el siguiente árbol T:

Con base al árbol binario T anterior, responda las siguientes preguntas:

Respuestas.

 ${\bf a)}$ La profundidad o altura del árbol binario T corresponde a:

5

 ${f b}$) La cantidad de nodos externos del árbol binario T corresponde a:

6

Nota: Recuerde que no debe usar ningún otro carácter (ni espacio, punto, coma o símbolo) solamente debe usar números y en caso de ser necesario el signo negativo. En caso de usar fracciones debe escribirlas de la forma a/b para representar la fracción $\frac{a}{b}$.

Respuestas.

- a) Recuerde que la profundidad de un árbol binario T es el número máximo de nodos en una rama de T y que esta es una unidad mayor que el número de nivel, por lo tanto la profundidad de este T árbol es T.
- b) Los nodos externos son los que no tienen sucesores. Por lo tanto, la cantidad de nodos externos es 6.

Pregunta 3 Correcta

Se puntúa 3,00 sobre 3,00

Dado el árbol

Al insertar ITEM=30, este quedará como hijo derecho de

Nota: recuerde que no debe usar ningún otro carácter (ni espacio, punto, coma o símbolo) solamente debe usar números y en caso de ser necesario el signo negativo.

Para insertar ITEM=30 se debe recorrer el subárbol derecho, al llegar al nodo 29 se compara este con ITEM=30. Al ser mayor tomará lugar como su hijo derecho.

Correcta

Se puntúa 2,00 sobre 2,00

Considere la siguiente figura sobre un mínheap;

Según la información anterior, al eliminar la raíz del montículo, la nueva raíz del montículo corresponde al nodo 9

Aplicando el algoritmo de eliminación de la raíz, se tiene:

- _ Se elimina la raíz, sustituyéndola por el último nodo del árbol, el nodo 27. Se busca que el árbol vuelva a ser un mínheap.
- _ Se compara el nodo 27 con su hijo menor, como 27 > 9 se intercambian.
- _ Se compara el nodo 27 con su nuevo hijo menor, como 27 > 14 se intercambian.
- _ Se compara el nodo 27 con su nuevo hijo menor, como 27>17 se intercambian, ha encontrado su sitio apropiado.

El nuevo montículo queda de la siguiente manera:

Por lo tanto, la nueva raíz del montículo corresponde al nodo 9.

Pregunta 5
Parcialmente correcta
Se puntúa 1,07 sobre 2,00

Considere el siguiente árbol binario:

Complete los siguientes espacios de tal manera que la secuencia de letras, sea la impresión del recorrido del árbol en inorden:

Para escribir el recorrido en in orden se debe hacer lo siguiente:

- Se recorre el subárbol izquierdo.
- Se procesa la raíz.
- · Se recorre el subárbol derecho.

Con base en lo anterior el recorrido del árbol en inorden corresponde a: RBUSAPT.

Correcta

Se puntúa 2,00 sobre 2,00

Observe el siguiente árbol:

Su recorrido postorden corresponde a:

Respuesta:

RPQVSNUTOM

Nota: Recuerde que no se debe usar ningún otro caracter (ni espacio, punto, símbolo) solamente debe usar números y/o letras en mayúscula según corresponda.

El recorrido en postorden del árbol dado corresponde a: RPQVSNUTOM.

Observe la siguiente representación secuencial de un árbol:

¿Es P el hijo izquierdo de N?

Seleccione una:

Verdadero

Falso

Observe que el nodo N está en la posición 2, así su hijo izquierdo ocuparía la posición 2n, es decir $2 \cdot 2 = 4$ que efectivamente corresponde al nodo P.

La respuesta correcta es 'Verdadero'

Incorrecta

Se puntúa 0,00 sobre 3,00

Considere la siguiente expresión algebraica y escríbala en forma de prefijo polaco. Utilice: * producto, / división, + suma, - resta, ↑ potencias.

$$\frac{(x+1)(x-1)}{r^2}$$

Seleccione una:

$$\bigcirc$$
 a. $*\uparrow x2/+x1-x1$

$$\bigcirc$$
 b. $/*+x1-x1\uparrow x2$

$$\circ$$
 c. $/*+-x1\uparrow x2$

$$\bullet$$
 d. $*+x1-x1/\uparrow x2$

Respuesta incorrecta.

Antes de escribir la expresión algebraica dada en prefijo polaco, se procede a dibujar el árbol que corresponde a dicha expresión. De acuerdo con la expresión algebraica, la raíz del árbol es el nodo /. Luego,

- 1. El subárbol izquierdo tiene como raíz el nodo *. De este subárbol se tiene:
 - El subárbol izquierdo tiene como raíz el nodo +. De este subárbol se tiene:
 - ullet El subárbol izquierdo tiene como raíz el nodo x, es un nodo terminal.
 - El subárbol derecho tiene como raíz el nodo 1, es un nodo terminal.
 - $\circ~$ El subárbol derecho tiene como raíz el nodo . De este subárbol se tiene:
 - $\,\blacksquare\,$ El subárbol izquierdo tiene como raíz el nodo x, es un nodo terminal.
 - El subárbol derecho tiene como raíz el nodo 1, es un nodo terminal.
- 2. El subárbol derecho tiene como raíz el nodo \(\). De este subárbol se tiene:
 - \circ El subárbol izquierdo tiene como raíz el nodo x, es un nodo terminal.
 - El subárbol derecho tiene como raíz el nodo 2, es un nodo terminal.

El árbol que corresponde a la expresión algebraica es:

Para escribir en forma de prefijo polaco la expresión dada, se realiza un recorrido en preorden del árbol binario anterior, es decir: $/*+x1-x1\uparrow x2$

La respuesta correcta es: $/*+x1-x1\uparrow x2$

Pregunta 9
Correcta
Se puntúa 4,00 sobre 4,00

Considere la siguiente tabla con datos y pesos:

Dato	С	L	N	0	R	Т
Peso	3	27	8	32	17	49

Según la información brindada en la tabla anterior, y considerando el árbol T (debe colocar los hijos menores a la izquierda) que se obtiene al aplicar el algoritmo de Huffman sobre los datos y sus pesos respectivos, escriba:

a) el valor del hijo derecho de la raíz del árbol T corresponde a:

b) la longitud del camino ponderado mínimo P del árbol T corresponde a:

NOTA: Recuerde que no debe usar ningún otro carácter (ni espacio, punto, coma o símbolo) solamente debe usar números y/o letras en mayúscula según corresponda.

Según la información brindada, se aplica el algoritmo de Huffman:

	C	L	N	O	R	Т
1)	3	27	8	32	17	49
2)		27	<u>11</u>	32	17	49
3)		27		32	<u>28</u>	49
4)				32	<u>55</u>	49
5)					55	<u>81</u>
6)						136

Con los datos de la tabla anterior, se construye el árbol T:

Por lo que, el valor del hijo derecho de la raíz del árbol T corresponde a 81.

Además, la longitud de camino ponderado mínimo viene dado por:

$$P = 27 \cdot 2 + 3 \cdot 4 + 8 \cdot 4 + 17 \cdot 3 + 32 \cdot 2 + 49 \cdot 2$$

$$P = 311$$

Correcta

Se puntúa 2,00 sobre 2,00

Dado el siguiente árbol T:

Los bits obtenidos, mediante el código de Huffman, para el dato ${\cal I}$ corresponden a:

Nota: Recuerde que no se debe usar ningún otro caracter (ni espacio, punto, símbolo) solamente debe usar números y/o letras en mayúscula según corresponda.

Considerando que a cada arista en T se asigna 0 si apunta al hijo izquierdo y un 1 si apunta al hijo derecho de cada nodo, entonces para llegar al nodo I se debe tomar dos veces a la derecha y una vez a la izquierda desde la raíz.

Con esto obtenemos que la codificación para ${\it I}$ viene dada por ${\it I}:110$

Finalizado

Se puntúa 5,00 sobre 5,00

Dado el siguiente árbol binario de búsqueda T.

- a) Escriba un algoritmo que permita insertar ITEM = 88 en T.
- b) Dibuje el árbol resultante de insertar ITEM = 88 en $T_{\rm r}$ señalando el camino recorrido.

Nota: Recuerde que debe subir una fotografía del procedimiento de respuesta de este ítem. El mismo debe desarrollarlo a mano (no digital) y deberá agregar su nombre, número de cédula y firmar al final del ejercicio, si esto no se presenta la respuesta no será calificada.

11_KristelCastro.jpeg

Solución:

- a) Se debe realizar el siguiente algoritmo:
- ITEM = 88 se compara con la raíz R = 73, como 88 > 73 se procede al hijo derecho. (1 punto)
- ITEM = 88 se compara con 80, como 88 >80 se procede al hijo derecho. (1 punto)
- ITEM = 88 se compara con 82, como 88 > 82 se procede al hijo derecho. (1 punto)
- ITEM = 88 se compara con 83, como 88 > 83 se procede al hijo derecho. Como no hay nodo en esa posición, se inserta ITEM = 88. (1 punto)
- b) El árbol resultante de insertar ITEM = 88 sería:

Comentario:

Finalizado

Se puntúa 5,00 sobre 5,00

Sean A, B, C, D, E, F seis datos con los siguiente pesos asignados:

DATO: A B C D E F PESO: 4 5 6 26 71 66

- a) Realice el algoritmo de Huffman.
- b) Dibuje el árbol con camino ponderado mínimo.
- c) Codifique la letra D.

Nota: Recuerde que debe subir una fotografía del procedimiento de respuesta de este ítem. El mismo debe desarrollarlo a mano (no digital) y deberá agregar su nombre, número de cédula y firmar al final del ejercicio. Si esto no se presenta, la respuesta no será calificada.

12 KristelCastro.jpeg

Respuesta a)

Realizamos el algoritmo de Huffman de la siguiente manera:

- 1) 4 5 6 26 71 66
- 9 6 26 71 66 2)
- 3) 15 26 71 66
- 41 71 66 4)
- 71 107 5)
- 6) 178

(2 puntos)

Respuesta b)

El Árbol con camino ponderado mínimo es el siguiente:

(2 puntos)

Respuesta c)

La codificación para la letra D corresponde a: 101 (1 punto)

Comentario:

■ Vídeos de tutorías: Capítulo #1

Ir a...

Equipo Base Cuestionario N°1 ▶