If
$$\overrightarrow{V} \neq \overrightarrow{O}$$

(1) \overrightarrow{V} is a with vector called the direction of \overrightarrow{V}

(2) The equation

Jan 11-11:20 AM

$$\overrightarrow{V} = |\overrightarrow{V}| \frac{\overrightarrow{V}}{|\overrightarrow{V}|}$$
expusses \overrightarrow{V} as its

lugth times its

direction
$$(x) |\overrightarrow{V}| = 3i - 5j$$
is a valocity vector,

Jan 11-11:24 AM

expuss
$$\overrightarrow{V}$$
 as a product of its speed times its direction of motion:

 $\overrightarrow{V} = 3i - 5j = (3, -5)$
 $|\overrightarrow{V}| = \sqrt{9 + 25} = \sqrt{34}$

Jan 11-11:26 AM

unit vector,
$$\frac{\vec{V}}{|\vec{V}|}$$

$$= \frac{3i - 5j}{\sqrt{34}}$$

$$\vec{V} = |\vec{V}| \frac{\vec{V}}{|\vec{V}|} \rightarrow \text{direction}$$
speed

Jan 11-11:29 AM

$$\overrightarrow{\nabla} = \sqrt{34} \left(\frac{3}{\sqrt{34}} i - \frac{5}{\sqrt{34}} \right)$$

Jan 11-11:30 AM

Define Dot product
The dot product
dnoted by
$$\vec{u} \cdot \vec{v}$$
(\vec{u} dot \vec{v}) of

Jan 11-11:35 AM

Untitled.notebook January 11, 2019

Vectors
$$\vec{u} = \langle u_1, u_2, u_3 \rangle$$

and $\vec{V} = \langle v_1, v_2, v_3 \rangle$
is the scalar
quantity given by
 $\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$

Jan 11-11:36 AM

Jan 11-11:38 AM

Def n:
The angle
$$\Theta$$
 between two nonzuo vectors \overrightarrow{U} and \overrightarrow{V} is given

Jan 11-11:42 AM

by
$$\Theta = (os^{-1}(\overrightarrow{u} \cdot \overrightarrow{v}))$$
 $|\overrightarrow{u}||\overrightarrow{v}|$
 $0 \le \Theta \le \pi$

$$|\overrightarrow{u}||\overrightarrow{v}|| \cos \Theta$$

Jan 11-11:43 AM

Two nonzuro vectors

The and
$$\vec{V}$$
 are

Onthogonal (perpendicular)

If and only if

 $\vec{V} = \vec{V} = \vec{V}$

I'e $\vec{\Theta} = \vec{N}$

Jan 11-11:48 AM

Jan 11-11:49 AM

Untitled.notebook January 11, 2019

$$\overrightarrow{U} \cdot \overrightarrow{V} = 0 + 0 + 0$$

$$= 10 \neq 0$$

$$\text{Not onthogonal}$$

$$\Theta = 0 \Rightarrow \overrightarrow{u} \cdot \overrightarrow{V} = |\overrightarrow{u}||\overrightarrow{V}| \text{ (as 0)}$$

$$\overrightarrow{U} \cdot \overrightarrow{V} = |\overrightarrow{u}||\overrightarrow{V}| \text{ (as T)}$$

$$= -|\overrightarrow{u}||\overrightarrow{V}|$$

Jan 11-11:50 AM

$$\begin{array}{c}
3 \overline{u} \cdot (\overline{v} + \overline{u}) \\
= \overline{u} \cdot \overline{v} + \overline{u} \cdot \overline{u} \\
4 \overline{u} \cdot \overline{u} = |\overline{u}| \\
5 \overline{u} \cdot \overline{u} = 0
\end{array}$$

Jan 11-11:58 AM

Jan 11-12:04 PM

Dot product proputies

If
$$\overrightarrow{U}$$
, \overrightarrow{V} and \overrightarrow{W}

one any vectors and

 \overrightarrow{C} is a scalar, then

 \overrightarrow{U} $\overrightarrow{U} \cdot \overrightarrow{V} = \overrightarrow{V} \cdot \overrightarrow{U}$
 \overrightarrow{U} $\overrightarrow{U} \cdot \overrightarrow{V} = \overrightarrow{U} \cdot (\overrightarrow{V})$
 $\overrightarrow{U} \cdot \overrightarrow{V} = \overrightarrow{U} \cdot (\overrightarrow{V})$
 $\overrightarrow{U} \cdot \overrightarrow{V} = \overrightarrow{U} \cdot (\overrightarrow{V})$

Jan 11-11:55 AM

The victor projection

Of in onto
$$V$$

is the victor

 $Proj_{V} = \left(\frac{\hat{U} \cdot \hat{V}}{|V|^2}\right)^{\hat{V}}$

The scalar component

Of \hat{U} in the direction

Jan 11-12:02 PM

(Ex) Deturine the projection of
$$\overline{u} = \langle 2, 1, -1 \rangle$$
 onto $\overline{v} = \langle 1, 0, -2 \rangle$ Proj $\overline{u} = \langle \overline{u}, \overline{v} \rangle$

Jan 11-12:10 PM

Untitled.notebook January 11, 2019

$$= \frac{2 + 0 + 2(21,0,-2)}{1 + 0 + 4}$$

$$= \frac{4}{5}(1,0,-2)$$

$$= \frac{4}{5}(1,-2)$$

$$= \frac{4}{5}(1,-2)$$

Jan 11-12:11 PM