

<u>Lecture 14: Wald's Test, Likelihood</u> <u>Ratio Test, and Implicit Hypothesis</u>

课程 □ Unit 4 Hypothesis testing □ Test

☐ 12. Testing Implicit Hypotheses I

12. Testing Implicit Hypotheses I Implicit Hypothesis Testing and the Delta Method

Deriving a Test for Implicit Hypotheses

In the next few problems, we derive a general method for testing hypotheses of the form

$$H_{0}:g\left(heta ^{st }
ight) =0$$

$$H_{1}:g\left(heta ^{st }
ight)
eq0$$

where g is a function of an unknown parameter θ^* . We refer to such hypotheses as **implicit** since θ^* is not isolated in the equations defining the null and alternative hypotheses.

Let's suppose that

- $heta^* \in \mathbb{R}^d$ is unknown.
- ullet $g:\mathbb{R}^d o\mathbb{R}^k$ has is continuously differentiable (*i.e.*, the gradient abla g is continuous).
- $\hat{m{ heta}}_{m{n}}$ is an asymptotically normal estimator; *i.e.*,

$$\sqrt{n}\left(\hat{ heta}_{n}- heta^{*}
ight) \xrightarrow[n o \infty]{(d)} \mathcal{N}\left(\mathbf{0},\Sigma\left(heta^{*}
ight)
ight), \quad \Sigma\left(heta^{*}
ight) \in \mathbb{R}^{d imes d}.$$

Testing Implicit Hypotheses I: The Delta Method

1/1 point (graded)

Recall that $\hat{m{ heta}}_n$ is an asymptotically normal estimator; *i.e.*,

$$\sqrt{n}\left(\hat{ heta}_{n}- heta^{*}
ight) \xrightarrow[n o \infty]{(d)} \mathcal{N}\left(\mathbf{0},\Sigma\left(heta^{*}
ight)
ight), \quad \Sigma\left(heta^{*}
ight) \in \mathbb{R}^{d imes d}.$$

This implies, by the Delta method, that $g\left(\hat{m{ heta}}_n
ight)$ is also asymptotically normal; *i.e.*,

$$\sqrt{n}\left(g\left(\hat{ heta}_{n}
ight)-g\left(heta^{*}
ight)
ight) \xrightarrow[n
ightarrow \infty]{(d)} \mathcal{N}\left(\mathbf{0},\Gamma\left(heta^{*}
ight)
ight), \quad \Gamma\left(heta^{*}
ight) \in \mathbb{R}^{k imes k}.$$

Which of the following is $\Gamma\left(\theta^{*}\right)$, the asymptotic covariance matrix?

- $^{\circ}$ $\nabla g(heta^*)^T \Sigma\left(heta^*
 ight)$
- $^{ullet} \;
 abla g(heta^*)^T \Sigma \left(heta^*
 ight)
 abla g \left(heta^*
 ight) oxtless$
- $\bigcirc \nabla g\left(heta^{*}\right)\Sigma\left(heta^{*}\right)
 abla g\left(heta^{*}
 ight)^{T}$
- $^{\circ}$ $\nabla g(heta^*)^{-1} \Sigma \left(heta^*
 ight) \left(
 abla g(heta^*)^{-1}
 ight)^T$

Solution:

The Delta method states that if

$$\sqrt{n}\left(\hat{ heta}_{n}- heta^{*}
ight) \stackrel{(d)}{\longrightarrow} \mathcal{N}\left(\mathbf{0},\Sigma\left(heta^{*}
ight)
ight),$$

then

$$\sqrt{n}\left(g\left(\hat{ heta}_{n}
ight)-g\left(heta^{*}
ight)
ight) \xrightarrow[n o \infty]{(d)} \mathcal{N}\left(\mathbf{0},
abla g(heta^{*})^{T} \Sigma\left(heta^{*}
ight)
abla g\left(heta^{*}
ight)
ight) \in \mathbb{R}^{k imes k}$$

provided that g is continuously differentiable. Hence the second answer choice $\nabla g(\theta^*)^T \Sigma\left(\theta^*\right) \nabla g\left(\theta^*\right)$ is correct.

We can easily see that some of the other given answer choices are incorrect by inspecting the dimensions of the matrices involved. Note that ∇g is a $d \times k$ matrix and $\Sigma \left(\theta^*\right)$ is a $d \times d$ matrix.

- The matrix product $\nabla g(\theta^*)^T \Sigma(\theta^*)$ will exist, but it is not a square matrix unless k=d. Hence, this cannot be a covariance matrix, so the first answer choice is incorrect.
- The matrix product given by $\nabla g(\theta^*) \Sigma(\theta^*) \nabla g(\theta^*)^T$ will not exist if $k \neq d$, so the third answer choice is incorrect.
- The fourth answer choice is incorrect. Since ∇g is a $d \times k$ matrix, it will not be invertible if $d \neq k$. Hence, the matrix product $\nabla g(\theta^*)^{-1} \Sigma \left(\theta^*\right) \nabla g(\theta^*)^{-T}$ will not exist in general.

提交

你已经尝试了1次(总共可以尝试3次)

☐ Answers are displayed within the problem

Testing Implicit Hypotheses II: Renormalizing

As above, by the Delta method, we have that

$$\sqrt{n}\left(g\left(\hat{ heta}_{n}
ight)-g\left(heta^{*}
ight)
ight) \stackrel{(d)}{\longrightarrow} \mathcal{N}\left(\mathbf{0},\Gamma\left(heta^{*}
ight)
ight),$$

for some matrix $\Gamma\left(heta^{*}
ight)\in\mathbb{R}^{k imes k}$.

For some real number x,

$$\sqrt{n}\Gamma(heta^*)^x\left(g\left(\hat{ heta}_n
ight)-g\left(heta^*
ight)
ight) \xrightarrow[n o \infty]{(d)} \mathcal{N}\left(\mathbf{0},I_k
ight).$$

(You are allowed to assume $\Gamma(\theta^*)^x$ exists for any $x\in\mathbb{R}$.)

What is \boldsymbol{x} ?

-1/2

☐ **Answer:** -0.5

Solution:

By the properties of multivariate Gaussians, if $\mathbf{Z} \sim \mathcal{N}\left(\mathbf{0}, \Gamma\left(\mathbf{ heta}^*
ight)
ight)$, then

$$\Gamma(heta^*)^{-1/2} \mathbf{Z} \sim \mathcal{N}\left(\mathbf{0}, I_k
ight)$$

provided that $\Gamma(\theta^*)^{-1/2}$ exists. We proved this property in general in the problem "Review: Manipulating Multivariate Gaussians" in the vertical "Introduction to Wald's Test" from this lecture.

Remark: For a square matrix M, we are guaranteed that $M^{-1/2}$ exists if M is positive-definite. In particular, since $\Gamma\left(\theta^{*}\right)$ is a covariance matrix, it is guaranteed to be positive semidefinite. So then $\Gamma(\theta^{*})^{-1/2}$ exists if and only if $\Gamma\left(\theta^{*}\right)$ is invertible. Moreover, by the previous problem,

$$\Gamma\left(heta^{*}
ight) =
abla g(heta^{*})^{T} \Sigma\left(heta^{*}
ight)
abla g\left(heta^{*}
ight).$$

Hence, $\Gamma\left(\theta^{*}\right)$ is invertible if Σ is invertible and $\nabla g\left(\theta^{*}\right)$ is rank k.

提交

你已经尝试了1次(总共可以尝试3次)

Answers are displayed within the problem

讨论

显示讨论

主题: Unit 4 Hypothesis testing:Lecture 14: Wald's Test, Likelihood Ratio Test, and Implicit Hypothesis Test / 12. Testing Implicit Hypotheses I