Social Interactions in the Demand for Private Health Insurance: Evidence from Linked Employer-Employee Data

Ali Furkan Kalay¹ Alicia N. Rambaldi² Christiern Rose²

¹Macquarie University Centre for Health Economy ²The University of Queensland

19 September 2024

AHES Conference 2024

Motivation

- Do peers' health conditions affect PHI demand?
- If so, for whom? why?

Motivation

- Do peers' health conditions affect PHI demand?
- If so, for whom? why?

Introduction

- This study investigates the effects of coworkers' health condition on private health insurance (PHI) demand using Australian linked employee-employer data.
- Coworkers as "free consultants" in many decisions.
 - "Maven Influence"
- Peer effects in transitional probabilities:

Data

- Newly available high quality linked administrative data, similar to Scandinavian countries.
- Population-based administrative records.
 - Individual tax records + health records + other
- Advantages:
 - Australia is larger and culturally distinct from countries in which such data are typically available.
 - Small firms!

• Australia has a universal healthcare system called Medicare.

- Australia has a universal healthcare system called Medicare.
- Pharmaceutical Benefits Scheme (PBS): a government-funded program that provides subsidized prescription medicines.

- Australia has a universal healthcare system called Medicare.
- Pharmaceutical Benefits Scheme (PBS): a government-funded program that provides subsidized prescription medicines.
- Filter: Patients need a prescription from a physician to utilize PBS.
 - "Expenditure and prescriptions twelve months to 30 June 2016" (Thomas & Marlton, 2016)

- Australia has a universal healthcare system called Medicare.
- Pharmaceutical Benefits Scheme (PBS): a government-funded program that provides subsidized prescription medicines.
- Filter: Patients need a prescription from a physician to utilize PBS.
 - "Expenditure and prescriptions twelve months to 30 June 2016" (Thomas & Marlton, 2016)
- Variable: The total number of PBS Transactions in the financial year 2015-2016 (PTC)

PBS Utilization by Age, Gender and PHI Status

Figure: PTC by Age, Gender and PHI Status

PHI Status by Age and Gender

Figure: PHI Status by Age and Gender

Econometric Specification

- Linear probability model (Boucher & Bramoullé, 2020).
- Identification strategy exploits the availability of consumer decisions in the two consecutive financial years.
- Model transition probabilities

$$\mathbb{P}\left[y_{i,t+1}=1|\mathbf{y}_{i,t}=\mathbf{Y},a_{j,Y},h_{i,t},\overline{h}_{-i,t},\mathbf{z}_{i,t},\mathbf{x}_{i,t+1}\right]$$
(1)

where

- $a_{j,Y}$: The firm j fixed effects conditional on Y at time t.
- $h_{i,t}$: The health proxy variable at time t.
- $\overline{h}_{-i,t}$: Co-workers' average h, excluding i at time t.
 - Main interest!!

Identification Strategy

Results

Specifications	PHI Uptake	PHI Continuation
$ln(PTC_{i,t})$	0.0053***	0.0017***
, ,	(0.0002)	(0.0002)
Co-worker average	0.0029*	0.0007
	(0.0017)	(8000.0)
Obs.	3,791,887	5,893,954
R2	0.080	0.038

Results: By Gender (Our Baseline)

	PHI u _l	ptake	PHI continuation			
Gender	Female	Male	Female	Male		
$ln(PTC_{i,t})$	0.0067*** (0.0003)	0.0035*** (0.0004)	0.0016*** (0.0002)	0.0016*** (0.0003)		
Co-worker average	0.0136*** (0.0044)	-0.0029 (0.0030)	-0.0003 (0.0018)	0.0002 (0.0020)		
Obs. R ²	1,737,497 0.079	2,054,390 0.082	3,024,033 0.034	2,869,921 0.040		

Results: Nonlinearity

Male 40 10 20 30 40
T2** 0.0002 0.0000 0.0006 0.0006
553** -0.0023 -0.0022 -0.0096 0.0006 0307) (0.0089) (0.0121) (0.0155) (0.0205)
7,497 2,054,390 2,054,390 2,054,390 2,054,390 079 0.082 0.082 0.082 0.082

		PHI continuation							
Gender	Female				Male				
PTC threshold	10	20	30	40	10	20	30	40	
Prop. co-workers exceeding threshold	0.0065 (0.0045)	-0.0004 (0.0057)	-0.0039 (0.0075)	-0.0057 (0.0102)	0.0095* (0.0053)	0.0102 (0.0068)	0.0132 (0.0082)	0.0218** (0.0099)	
Obs. R ²	3,024,033 0.034	3,024,033 0.034	3,024,033 0.034	3,024,033 0.034	2,869,921 0.040	2,869,921 0.040	2,869,921 0.040	2,869,921 0.040	

Why do People Purchase PHI in Australia?

Salient Risk Hypothesis

Table 5 Individual characteristics by reasons given for purchasing health insurance.

marvidual characteristics by reasons given for par	enasing nearen in	ouruneer				
	No insurance	Reason given for p	rchasing private he	ealth insurance		
		Sense of security	Greater choice, less wait	Financial reasons	Always had it	Age, health condition
Percent of sample (percent of insured sample)	52.9	22.1 (46.9)	21.6 (46.0)	9.4 (19.9)	8.1 (17.1)	4.1 (8.7)
Fair or poor health	0.246	0.119	0.131	0.087	0.162	0.320*
No. of long-term health conditions	2.97	2.89	3.08	2.70	3.31	3.69
Hospital nights in last 12 months	0.337	0.247	0.309	0.185	0.349	0.612
Had a GP visit last 2 weeks	0.261	0.214	0.221	0.172	0.240	0.332
Never a smoker	0.377	0.525	0.519	0.477	0.530	0.515
Sedentary	0.408	0.268	0.287	0.239	0.296	0.346
Moderate to vigorous exercise	0.247	0.335	0.325	0.364	0.330	0.252
Post-graduate degree	0.032	0.085	0.097	0.134	0.068	0.080*
Bachelors degree	0.081	0.179	0.182	0.243	0.151	0.175
Mental health index	16.31	14.37	14.49"	14.42	14.28	16.38
Employed	0.511	0.693	0.674	0.845	0.562	0.602
Mean income decile	4.22	6.59	6.47	7.72	6.23	5.83°

Note: The groups formed by the different reasons for purchasing insurance are not mutually exclusive.

Buchmueller, T. C., Fiebig, D. G., Jones, G., & Savage, E. (2013). Preference heterogeneity and selection in private health insurance: The case of Australia. Journal of Health Economics, 32(5), 757-767.

Difference between the mean for a particular insured group and the mean for the group without insurance is significant at the .05 level.

Why do People Purchase PHI in Australia?

- Financial Reasons
 - Reduced tax liabilities
 - Lifetime health cover
- Mealth Reasons
 - Access to private hospitals
 - Choice of doctor and flexibility in selecting treatment options
 - Coverage for extras such as dental and physiotherapy
 - Shorter waiting times for elective surgeries

Why do People Purchase PHI in Australia?

- Financial Reasons
 - Reduced tax liabilities
 - Lifetime health cover
- Health Reasons
 - Access to private hospitals
 - Choice of doctor and flexibility in selecting treatment options
 - Coverage for extras such as dental and physiotherapy
 - Shorter waiting times for elective surgeries
 - In Reddit discussions related to purchasing private health insurance (PHI) during 2015 and 2016:
 - 854 comments were categorized by ChatGPT.
 - 183 users provided reasons for purchasing an LLM:
 - Health reasons: 81 users
 - Financial reasons: 76 users
 - Both health and financial reasons: 26 users

Conclusion

- We estimate contextual peer effects (Manski, 1993) without instrumental variables by exploiting the availability of consumers' decisions in two consecutive periods.
- Results:
 - Co-workers' bad health conditions increase PHI demand only for females if they did not own PHI in the past.
 - Alternative Measures
 - We find that effects are stronger for singles and older females.
 - By Family Structure By Age
 - Exclusion of large firms increases efficiency and the magnitude of coefficient.
 - Firm Size Restrictions
 - Extreme health conditions have stronger effects.

Thank You!

Ali Furkan Kalay

Email: alifurkan.kalay@mq.edu.au

Web: alfurka.github.io

Additional Slides

- Microfoundation
- Literature
- Firm Size Distribution
- Other Estimations
- Alternative Health Measurement

Summary

Literature: Insurance

- Lieber & Skimmyhorn (2018) investigate the peer effects in financial decisions such as retirement savings, life insurance, and charitable giving.
 - Peers affect charitable giving decision, but do not affect retirement savings or insurance purchase.
 - Observability of the decision could be critical.
- Handel et al. (2024) investigate the determinants of choice quality in the Netherlands.
 - People tend to choose similar plans as their peers.

Literature: Econometrics

- Binary outcomes with linear probability model (Boucher & Bramoullé, 2020)
- Our econometric results also relate to the discussions on heterogeneity in peer effects estimations (Lin et al., 2021).
- Microfoundations:
 - The linear-in-means model implies a quadratic utility function that is very restrictive.
 - Boucher et al. (2024) shows individuals often deviate from LIM behavior and propose an alternative with the CES utility function.
 - Conventional identification strategies may be inadequate (Bramoullé et al., 2009).
 - Our empirical strategy does not impose any restriction of the consumers' utility function (regarding the endogenous effects).

Firm Sizes

Microfoundations

- The linear-in-means model implies a quadratic utility function that is very restrictive.
- Research by Boucher et al. (Econometrica) shows individuals often deviate from LIM behavior and propose an alternative with the CES utility function.
 - Conventional identification strategies may be inadequate (Bramoullé et al., 2009).
- Our empirical strategy does not impose any restriction of the consumers' utility function (regarding the endogenous peer effects),

$$y = f(\bar{y}) + \gamma \bar{x} + \beta x + \epsilon.$$

On Contextual Effects Identification Problem

- Boucher et al. (2024): Point out misspecification problem with linear-in-means models (Manski, 1993; Bramoullé et al., 2009).
 - Theoretical and empirical implications demonstrated.
- This implies that any misspecification of endogenous effects terms will potentially cause spurious contextual effects (purpose of this paper).

$$y = f(\bar{y}) + \gamma \bar{x} + \beta x + \epsilon.$$

- Our identification approach prevents such spurious correlation mechanically.
 - Con: Cannot attain efficiency gains via network sparsity restrictions: Homophily (McPherson et al., 2001; Currarini et al., 2009). This can be seen in our estimated standard errors.

Identification (1): Measuring Health

$$h_{i,t} = \ln(PTC_{i,t}) - \mathbb{E}\left[\ln(PTC_{i,t})|PHI_{i,t} = y, j, \mathbf{z}_{i,t}\right]$$
(2)

- **Un/Healthy**: Deviations from the gender-age norms $(z_{i,t})$.
- We assume Equation 2 linear in $z_{i,t}$.
 - In practice, it is a non-linearized linear model.
- Plugging linearized Equation (2) to the main model, we show that own health and co-worker's health condition are identified from PTC coefficients $(p_{i,t} = \ln(PTC_{i,t}))$,

$$\mathbb{P}[y_{i,t+1} = 1 | y_{i,t} = Y, \dots]
= c_{j,Y} + \frac{\alpha_Y}{\rho_{i,t}} + \frac{\beta_Y}{\rho_{i,t}} \overline{\rho}_{-i,t} + z'_{i,t}\theta_Y + \overline{z}'_{-i,t}\lambda_Y + x'_{i,t+1}\delta_Y.$$

Econometrics Specification

Identification: Endogenous Peer Effects

$$\mathbb{P}[y_{i,t+1} = 1 | y_{i,t} = Y, \dots]
= \underline{c_{j,Y}} + \alpha_Y p_{i,t} + \beta_Y \overline{p}_{-i,t} + \underline{z}'_{i,t} \theta_Y + \overline{z}'_{-i,t} \lambda_Y + \underline{x}'_{i,t+1} \delta_Y.$$
(3)

- Firm fixed effects $(c_{j,Y})$: Allowed to vary with the transitional direction, i.e., Y.
 - Sample Sorting: Firm-level correlated effects.
 - Endogenous Peer Effects: Co-workers average PHI ownership excluding i in the firm.
 - Main identification challenge in peer effects estimations (Manski, 1993; Bramoullé et al., 2009).
 - We exploit the fact that the outcome variable is binary and \overline{y}_{-i} can only take two values within the firm conditional on $y_{i,t-1} \in \{0,1\}$.
- Source of Identification: Variation in firm sizes.

Simulation: DGP

$$\begin{split} \mathbb{P}[y_{i,1} &= 1 | y_{i,0}, \bar{y}_{-i,0}, x_{i,1}, \bar{x}_{-i,1}^{0}, \bar{x}_{-i,1}^{1}] = \\ & \alpha y_{i,0} + \gamma x_{i,1} & \text{(own effects)} \\ & + (1 - y_{i,0}) \rho_0 \bar{y}_{-i,0} + y_{i,0} \rho_1 \bar{y}_{-i,0} & \text{(endogenous effects)} \\ & + (1 - y_{i,0}) \beta_{00} \bar{x}_{-i,1}^{0} + (1 - y_{i,0}) \beta_{10} \bar{x}_{-i,1}^{1} \\ & + y_{i,0} \beta_{01} \bar{x}_{-i,1}^{0} + y_{i,0} \beta_{11} \bar{x}_{-i,1}^{1} & \text{(contextual effects)} \end{split}$$

Simulation: Results

Results: Relationship

	PHI uptake						
Spouse?		Yes			No		
Gender	All	Female	Male	All	Female	Male	
Co-worker average	0.0007	0.0016	-0.0035	0.0037	0.0133**	-0.0005	
	(0.0020)	(0.0091)	(0.0056)	(0.0031)	(0.0067)	(0.0044)	
Obs.	1,536,854	693,895	842,959	2,255,033	1,043,602	1,211,431	
R^2	0.014	0.014	0.013	0.144	0.138	0.152	
	PHI continuation						
Spouse?		Yes			No		
Gender	All	Female	Male	All	Female	Male	
Co-worker average	0.0011*	0.0019	0.0010	0.0000	0.0021	-0.0018	
	(0.0007)	(0.0019)	(0.0023)	(0.0031)	(0.0056)	(0.0053)	
Obs.	3,613,842	1,797,295	1,816,547	2,280,112	1,226,738	1,053,374	
R^2	0.023	0.022	0.023	0.037	0.033	0.040	

Robustness Check: Alternative Measure

Decision		PHI uptake	1	PHI continuation			
Gender	All	Female	Male	All	Female	Male	
${\ln(PPC_{i,t}+1)}$	0.0029***	0.0038***	0.0019***	0.0015***	0.0017***	0.0012***	
	(0.0001)	(0.0002)	(0.0002)	(0.0001)	(0.0001)	(0.0002)	
Co-worker average	0.0016*	0.0067***	-0.0012	0.0006	0.0000	-0.0003	
	(8000.0)	(0.0023)	(0.0014)	(0.0004)	(0.0010)	(0.0011)	
Obs.	3,791,887	1,737,497	2,054,390	5,893,954	3,024,033	2,869,921	
R^2	0.080	0.079	0.082	0.038	0.034	0.040	

Appendix

Summary

Robustness Check: Firm Size Restrictions

	PHI uptake							
Gender		Female			Male			
Maximum firm size	50	200	1000	50	200	1000		
$ln(PTC_{i,t}+1)$	0.0079***	0.0073***	0.0072***	0.0045***	0.0040***	0.0037***		
	(8000.0)	(0.0005)	(0.0004)	(0.0005)	(0.0004)	(0.0003)		
Co-worker average	0.0206***	0.0176***	0.0169***	0.0020	0.0005	-0.0010		
	(0.0053)	(0.0048)	(0.0045)	(0.0032)	(0.0029)	(0.0028)		
Obs.	457,083	714,344	991,399	658,552	1,016,928	1,376,536		
R^2	0.098	0.095	0.088	0.096	0.097	0.092		
	PHI continuation							
Gender		Female			Male			
Maximum firm size	50	200	1000	50	200	1000		
$ln(PTC_{i,t}+1)$	0.0015***	0.0019***	0.0019***	0.0012***	0.0016***	0.0017***		
,	(0.0004)	(0.0003)	(0.0002)	(0.0004)	(0.0002)	(0.0002)		
Co-worker average	-0.0006	0.0006	0.0010	-0.0007	0.0004	0.0004		
	(0.0021)	(0.0019)	(0.0018)	(0.0021)	(0.0019)	(0.0018)		
Obs.	748,841	1,101,305	1,555,456	793,805	1,203,204	1,730,320		
R^2	0.043	0.040	0.037	0.049	0.046	0.043		
		Appendix	Summary					

Results: By Age

	PHI uptake							
Age		Less than 35	ī		35 or Older			
Gender	All Female Male All Female				Male			
Co-worker average	-0.0015 (0.0048)	0.0103 (0.0101)	-0.0053 (0.0064)	0.0041** (0.0019)	0.0154*** (0.0058)	-0.0003 (0.0042)		
Obs. R^2	1,895,073 0.062	859,243 0.061	1,035,830 0.064	1,896,814 0.104	878,254 0.097	1,018,560 0.109		
	PHI continuation							
Age		Less than 35	ī		35 or Older			
Gender	AII	Female	Male	AII	Female	Male		
Co-worker average	-0.0004 (0.0043)	0.0065 (0.0088)	-0.0045 (0.0075)	0.0009 (0.0006)	0.0001 (0.0016)	0.0030 (0.0020)		
Obs. R^2	1,914,289 0.029	1,004,482 0.027	909,807 0.031	3,979,665 0.017	2,019,551 0.016	1,960,114 0.019		

Patient Contribution Distribution

Patient Contribution Distribution

Patient Contribution by Age

Conclusion

- We estimate contextual peer effects (Manski, 1993) without instrumental variables by exploiting the availability of consumers' decisions in two consecutive periods.
- Implied Structural Model is Flexible unlike empirical literature on peer effects.
- We find significant heterogeneity, which is often difficult to disentangle due to data limitations.

A Simple Example for Identification

A simple example: Consider a firm, j with four employees. Assume $PHI_{1,t} = PHI_{2,t} = 1$ and $PHI_{3,t} = PHI_{4,t} = 0$. The average PHI ownership excluding the focal individual is computed as $\overline{PHI}_{-i,t} = 1/3$, i = 1, 2 and $\overline{PHI}_{-i,t} = 2/3$, i = 3, 4. These terms are captured by $c_{j,1}$ and $c_{j,0}$, respectively.

Appendix Identification (2)

References I

- Boucher, V., & Bramoullé, Y. (2020). *Binary outcomes and linear interactions*. CEPR Discussion Paper No. DP15505.
- Boucher, V., Rendall, M., Ushchev, P., & Zenou, Y. (2024). Toward a general theory of peer effects. *Econometrica*, 92(2), 543–565.
- Bramoullé, Y., Djebbari, H., & Fortin, B. (2009). Identification of peer effects through social networks. *Journal of econometrics*, 150(1), 41–55.
- Currarini, S., Jackson, M. O., & Pin, P. (2009). An economic model of friendship: Homophily, minorities, and segregation. *Econometrica*, 77(4), 1003–1045.
- Handel, B., Kolstad, J., Minten, T., & Spinnewijn, J. (2024). The socio-economic distribution of choice quality: Evidence from health insurance in the netherlands. *American Economic Review: Insights*.
- Lieber, E. M., & Skimmyhorn, W. (2018). Peer effects in financial decision-making. *Journal of Public Economics*, *163*, 37–59.

References II

- Lin, Z., Tang, X., & Yu, N. N. (2021). Uncovering heterogeneous social effects in binary choices. *Journal of Econometrics*, 222(2), 959–973.
- Manski, C. F. (1993). Identification of endogenous social effects: The reflection problem. *The review of economic studies*, 60(3), 531–542.
- McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. *Annual review of sociology*, *27*(1), 415–444.
- Thomas, G., & Marlton, P. (2016, 12). Expenditure and prescriptions twelve months to 30 june 2016 (Tech. Rep.). Australian Department of Health. Retrieved from https://www.pbs.gov.au/info/statistics/pbs-expenditure-prescriptions-30-june-2016