Ćwiczenie nr 25: Interferencja fal akustycznych

1 Wprowadzenie

1.1 Cel doświadczenia

Celem doświadczenia było wyznaczenie prędkości dźwięku w powietrzu metodą interferencji fal akustycznych, przy użyciu rury Quinckego oraz wyznaczenie wartości wykładnika adiabaty $\kappa = Cp/Cv$ dla powietrza.

1.2 Opis stanowiska

W skład stanowiska weszły:

- rura Quinckego (z miarką o dokładności 1mm)
- generator częstotliwości 20 Hz 20 kHz(z licznikiem do odczytu częstotliwości)
- oscyloskop

Do odczytu temperatury powietrza użyliśmy termometru ściennego o dokładności 1°C.

Rys. w1. Układ pomiarowy^[1]

2 Sposób wykonania doświadczenia

Doświadczenie rozpoczęliśmy od zapoznania się ze sprzętem wchodzącym w skład stanowiska, włączenia urządzeń i odczytania temperatury panującej w pomieszczeniu. Korzystając z generatora mocy, regulowaliśmy wysyłane częstotliwości w zakresie 2000Hz – 3400Hz. Dla każdej ustalonej częstotliwości odczytywaliśmy położenie minimów interferencyjnych na oscyloskopie i odpowiadającą im odległość na miarce – za każdym razem sprawdzaliśmy występowanie minimów rozpoczynając od pozycji ramienia stałego (0 cm). Obliczyliśmy następnie różnice między kolejnymi minimami, co pozwoliło nam na wyliczenie długości fali oraz w dalszej kolejności – prędkości dźwięku i wykładnika adiabaty.

3 Wyniki pomiarów

Częstotliwość f	Położenie kolejnych minimów [cm]					Różnica położeń kolejnych minimów [cm]				Długość fali λ	Prędkość dźwięku v
[Hz]	a_1	\mathbf{a}_2	\mathbf{a}_3	a ₄	a ₅	Δ_1	Δ_2	Δ_3	Δ_4	[cm]	[m/s]
2000	5,2	13,9	22,4	31,1	39,6	8,7	8,5	8,7	8,5	17,20	344,00
2100	4,5	12,8	20,9	29,1	37,4	8,3	8,1	8,2	8,3	16,45	345,45
2200	4,7	12,6	20,4	28,2	36,1	7,9	7,8	7,8	7,9	15,70	345,40
2300	4,4	12,0	19,5	27,0	34,4	7,6	7,5	7,5	7,4	15,00	345,00
2400	3,9	11,1	18,2	25,4	32,6	7,2	7,1	7,2	7,2	14,35	344,40
2500	3,9	11,0	17,7	24,7	31,5	7,1	6,7	7,0	6,8	13,80	345,00
2600	3,5	10,1	16,7	23,4	30,0	6,6	6,6	6,7	6,6	13,25	344,50
2700	3,1	9,6	15,9	22,5	28,7	6,5	6,3	6,6	6,2	12,80	345,60
2800	3,0	9,2	15,5	21,6	27,7	6,2	6,3	6,1	6,1	12,35	345,80
2900	2,6	8,5	14,5	20,5	26,4	5,9	6,0	6,0	5,9	11,90	345,10
3000	2,7	8,5	14,2	20,0	25,7	5,8	5,7	5,8	5,7	11,50	345,00
3100	2,5	8,0	13,7	19,3	24,8	5,5	5,7	5,6	5,5	11,15	345,65
3200	2,2	7,5	12,9	18,1	23,7	5,3	5,4	5,2	5,6	10,75	344,00
3300	2,4	7,8	13,1	18,2	23,4	5,4	5,3	5,1	5,2	10,50	346,50
3400	2,1	7,1	12,1	17,3	22,5	5,0	5,0	5,2	5,2	10,20	346,80

Temperatura	[°C]	22
Temperatura		

Aby uzupełnić dwie ostatnie kolumny, skorzystaliśmy z zależności:

$$\lambda = 2 \frac{\sum \Delta_i}{n}$$

oraz:

$$v = \lambda f$$

4 Opracowanie wyników pomiarów

4.1 Wykres

Wykres zależności v(f) dla fali dźwiękowej:

Na podstawie wykresu otrzymanych wartości v w funkcji częstotliwości drgań źródła f, potwierdziliśmy, że prędkość dźwięku nie zależy od częstotliwości.

Brak istotnych odchyleń wyników sugeruje, że pomiary nie zawierają błędów grubych.

4.2 Wartość średnia prędkości i niepewność pomiarowa i porównanie z wartością teoretyczną

Korzystając z wyników pomiarów wyliczamy wartość średnią prędkości:

$$\bar{v} = \frac{\sum \Delta v_i}{n} = \frac{5178,2\frac{m}{s}}{15} \approx 345,21\frac{m}{s}$$

oraz niepewność typu A:

$$u(\bar{v}) = \sqrt{\frac{\sum (v_i - \bar{v})^2}{n(n-1)}} = \sqrt{\frac{9,2125}{15 \cdot 14}} \approx 0,21 \left[\frac{m}{s}\right]$$

Stosowanie metody typu A dla obliczenia niepewności było uzasadnione tym, że w pomiarze dominował błąd przypadkowy związany z określeniem położenia minimum natężenia dźwięku.

Przeliczając wartość tabelaryczną prędkości dźwięku w temperaturze 0 °C ($v = 331, 5 \frac{m}{s}$ [1]) na temperaturę 22 °C otrzymujemy:

$$v_{20} = 331,5 \frac{m}{s} \sqrt{\frac{(273,15+22)K}{273,15K}} \approx 344,59 \frac{m}{s}$$
 [4]

Z prawa przenoszenia niepewności:

$$u(v_{20}) = v_{20} \frac{\frac{1}{2}u(T)}{T} \approx 344,59 \frac{m}{s} \frac{\frac{1}{2}K}{273,15K} \approx 0.63 \frac{m}{s}$$

Zatem jako wartość teoretyczną v_{20} uznajemy wartości w zakresie (343,96 – 345,22) $\frac{m}{s}$

Otrzymana wartość prędkości dla temperatury 22°C (345,21m/s) mieści się w tym zakresie, zatem jest zgodna z wartością teoretyczną w zakresie niepewności pomiarowej.

4.3 Wartość prędkości dla temperatury $t_0 = 0^{\circ}C = 273,15 \text{ K oraz } u(v_0)$

$$v_0 = \overline{v} \sqrt{\frac{T_0}{T}} = 345,21 \frac{m}{s} \cdot \sqrt{\frac{273,15 \, K}{(273,15+22)K}} \approx 332,10 \frac{m}{s}$$

Korzystając z prawa przenoszenia niepewności, przyjmując u(T) = 1K, niepewność względna wynosi:

$$\frac{u(v_0)}{v_0} = \sqrt{\left(\frac{u(\overline{v})}{\overline{v}}\right)^2 + \left(\frac{-\frac{1}{2}u(T)}{T}\right)^2}$$

Stad:

$$u(v_0) = v_0 \cdot \sqrt{\left(\frac{u(\overline{v})}{\overline{v}}\right)^2 + \left(\frac{-\frac{1}{2}u(T)}{T}\right)^2} = 332, 10 \frac{m}{s} \cdot \sqrt{\left(\frac{0,21}{345,21}\right)^2 + \left(\frac{-\frac{1}{2}}{273,15}\right)^2} \approx 0,65 \frac{m}{s}$$

Wartość tablicowa prędkości dźwięku w temperaturze 0 °C jest równa:

$$v = 331, 5 \frac{m}{s}$$
 [1]

Ponieważ

$$|v-v_0|=0, 6\frac{m}{s}< u(v_0)$$

otrzymana wartość prędkości jest zgodna z wartością tabelaryczną w zakresie niepewności pomiarowej i nie musimy korzystać z niepewności rozszerzonej.

4.3 Wartość wykładnika adiabaty ĸ

Korzystając z zależności:

$$v = \sqrt{\frac{\kappa RT}{\mu}}$$

gdzie: T – temperatura bezwzględna, R – uniwersalna stała gazowa, μ – masa molowa molekuł gazu, κ - wykładnik adiabaty

Otrzymujemy:

$$\kappa = \frac{v^2 \mu}{RT}$$

Dla powietrza, które jest mieszaniną gazów, masę molową μ przyjmujemy jako średnią ważoną

$$\mu = \sum \mu_i \cdot w_i$$

Przybliżony skład powietrza^[1]:

- azot 78%
- tlen 21%
- argon 1%

Masa molowa ^[2]:

 $\mu_{N2} = 28 \text{ g/mol}$

 $\mu_{02} = 32 \text{ g/mol}$

 $\mu_{Ar} = 40 \text{ g/mol}$

$$\mu = 0.78 \cdot 28 \frac{g}{mol} + 0.21 \cdot 32 \frac{g}{mol} + 0.01 \cdot 40 \frac{g}{mol} = 28.96 \frac{g}{mol}$$

 $R = 8,314 \ 462 \ 618 \ 2 \ \text{J/(K·mol)}^{[2]}$

T = 273, 15 K

$$\kappa = \frac{{v_0}^2 \mu}{RT} = \frac{\left(332, 10 \frac{m}{s}\right)^2 \cdot 28, 96 \cdot 10^{-3} \frac{kg}{mol}}{8,3144626182 \frac{J}{mol \cdot K} \cdot 273, 15K} \approx 1,4064$$

Liczymy niepewność u(κ):

$$\frac{\boldsymbol{u}(\kappa)}{\kappa} = \sqrt{\left(\frac{2 \cdot \boldsymbol{u}(v_0)}{v_0}\right)^2} = \frac{2 \cdot \boldsymbol{u}(v_0)}{v_0}$$

$$u(\kappa) = \kappa \frac{2 \cdot u(v_0)}{v_0} \approx 0.0055$$

Wartość wykładnika adiabaty κ_t dla powietrza w temp 0°C wynosi 1,40 [3].

$$|\kappa - \kappa_t| = 1,4064 - 1,4000 = 0,0034 < u(\kappa)$$

Otrzymana wartość jest więc zgodna z wartością tabelaryczną w zakresie niepewności pomiarowej i nie jest konieczne stosowanie niepewności rozszerzonej.

4 Wnioski

Zgodnie z przewidywaniami uzyskane wyniki są zgodne z wartościami tabelarycznymi w zakresie niepewności pomiarowej.

Dokładne wyznaczenie prędkości dźwięku w powietrzu przy użyciu rury Quinckego pozwoliło na wyliczenie wartości wykładnika adiabaty dla powietrza z dużą dokładnością.

Obliczone niepewności pomiarowe wynikały przede wszystkim z trudności z odczytem minimów interferencyjnych na oscyloskopie. W niewielkim stopniu do wyliczonej wartości mogły przyczynić się dźwięki obecne w sali laboratoryjnej oraz zależność od warunków pogodowych – ciśnienia, temperatury i wilgotności.

Doświadczenie potwierdziło brak zależności prędkości od częstotliwości.

5 Źródła

[1]https://pf.agh.edu.pl/home/wfiis/pracfiz/Opisy_cwiczen/25_wykon.pdf, data dostępu: 10.10.2024

[2]https://www.cke.gov.pl/images/ EGZAMIN MATURALNY OD 2023/Informatory/wybrane wz ory stale fizykochemiczne EM2023.pdf, data dostępu: 10.10.2024

[3] https://pf.agh.edu.pl/home/wfiis/pracfiz/Opisy_cwiczen/25_opis.pdf, data dostępu: 10.10.2024

Załącznik: wyniki pomiarów przesłane po zajęciach 8.10.2024

Częstotli wość f	Położenie kolejnych minimów [cm]					Różnica położeń kolejnych minimów [cm]				Długość fali λ	Prędkość dźwięku v
[Hz]	a_1	a_2	a ₃	a_4	a ₅	Δ_1	Δ_2	Δ ₃	Δ_4	[cm]	[m/s]
2000	5,2	13,9	22,4	31,1	39,6	8,7	8,5	8,7	8,5	17,2	344
2100	4,5	12,8	20,9	29,1	37,4	8,3	8,1	8,2	8,3	16,45	345,45
2200	4,7	12,6	20,4	28,2	36,1	7,9	7,8	7,8	7,9	15,7	345,4
2300	4,4	12	19,5	27	34,4	7,6	7,5	7,5	7,4	15	345
2400	3,9	11,1	18,2	25,4	32,6	7,2	7,1	7,2	7,2	14,35	344,4
2500	3,9	11	17,7	24,7	31,5	7,1	6,7	7	6,8	13,8	345
2600	3,5	10,1	16,7	23,4	30	6,6	6,6	6,7	6,6	13,25	344,5
2700	3,1	9,6	15,9	22,5	28,7	6,5	6,3	6,6	6,2	12,8	345,6
2800	3	9,2	15,5	21,6	27,7	6,2	6,3	6,1	6,1	12,35	345,8
2900	2,6	8,5	14,5	20,5	26,4	5,9	6	6	5,9	11,9	345,1
3000	2,7	8,5	14,2	20	25,7	5,8	5,7	5,8	5,7	11,5	345
3100	2,5	8	13,7	19,3	24,8	5,5	5,7	5,6	5,5	11,15	345,65
3200	2,2	7,5	12,9	18,1	23,7	5,3	5,4	5,2	5,6	10,75	344
3300	2,4	7,8	13,1	18,2	23,4	5,4	5,3	5,1	5,2	10,5	346,5
3400	2,1	7,1	12,1	17,3	22,5	5	5	5,2	5,2	10,2	346,8

Temperatura [°C]	22