Прогноз значений CLTV клиентов «Райффайзен Банка»

# Команда MYNI

Михаил Сарафанов Юлия Борисова Наталья Власова Ирина Макаркина



# Команда



Михаил Сарафанов

mik\_sar@mail.ru

Студент 1 курса магистратуры ИТМО Направление: Big data and Machine Learning



#### Юлия Борисова

yulashka.htm@yandex.ru

Студентка 1 курса магистратуры ИНоЗ СПбГУ Направление: Картография и геоинформатика



#### Наталья Власова

natalya9vlasova@gmail.com

Студентка 1 курса магистратуры ВШМ СПбГУ Haправление: Business analytics and Big data



#### Ирина Макаркина

st079308@student.spbu.ru

Студентка 1 курса магистратуры ВШМ СПбГУ Направление: Business analytics and Big data

## Подготовка данных

#### Результаты первичного анализа

- Признаки 'cu\_education\_level' и 'cu\_eduaction\_level' закодированы по-разному, но несут одну и ту же информацию
- Для некоторых признаков отсутствует значительная часть данных (NaN), поэтому при построении модели они не использовались:

область работы клиента (cu\_empl\_area) уровень должности клиента (cu\_empl\_level) баланс кредитных карт (cc\_balance) баланс автокредитов (cl\_balance) баланс ипотеки (ml\_balance)

баланс кредитов (pl\_balance) баланс депозитов (td\_volume) баланс счетов (ca\_volume) баланс накопительных счетов (sa\_volume) баланс инвестиций (mf\_volume)

В результате построения диаграммы Кливленда было выявлено, что подавляющее большинство значений доходности лежит в диапазоне от 0 до 4000 единиц, однако присутствуют и значения более 8000. В рамках данной задачи мы не будем считать такие объекты выбросами

#### Целевая переменная



Поскольку для расчета метрики CLTV традиционным\* способом данных недостаточно, показатель CLTV рассчитывался на основе признака gi\_smooth\_3m как сумма значений за второе полугодие

#### Диаграмма Кливленда для доходов от клиентов



<sup>\*</sup>Традиционно при расчете CLTV компании также используют значения маркетинговых затрат и чистой прибыли

# Предложенные признаки

 Анализ категориальных признаков выявил, что пол и город клиента не разделяют целевую функцию в достаточной степени, однако немного лучше с этой задачей справляются следующие признаки:







• Был произведен синтез новых переменных, однако к существенному улучшению качества модели в последствии это не привело, поэтому в модель они включены не были



#### Для создания моделей были выбраны следующие признаки



Метод

# Модели



#### Линейная регрессия



#### Метод опорных векторов

#### Конфигурация

Использовалась LASSOрегрессия с параметром регуляризации альфа = 5

Использовалось радиальное базисное ядро, параметр C = 200

#### Качество модели

| • | Средняя абсолютная ошибка<br>на тестовой выборке (MAE)                 | 93.8  |
|---|------------------------------------------------------------------------|-------|
| • | Средняя медианная ошибка на<br>тестовой выборке                        | 32.5  |
| • | Корень из<br>среднеквадратической ошибки<br>на тестовой выборке (RMSE) | 156.1 |

| • | Средняя абсолютная ошибка на тестовой выборке (MAE)                    | 61.6  |
|---|------------------------------------------------------------------------|-------|
| • | Средняя медианная ошибка на<br>тестовой выборке                        | 21.5  |
| • | Корень из<br>среднеквадратической ошибки<br>на тестовой выборке (RMSE) | 137.9 |

#### Сбалансированность модели

# Масштабируемость Не может быть использована с одинаковой точностью для предсказания СLTV на различные периоды

МАРЕ выше уровня наивного алгоритма

Простота
Линейная регрессия
– одна из самых простых моделей

Точность

#### Масштабируемость

При незначительном изменении входных предикторов, модель будет способна прогнозировать с различной заблаговременностью





# Результаты

#### В качестве финальной модели был выбран метод опорных векторов

Распределение ошибок не смещено и симметрично, условие гомоскедастичности соблюдается при прогнозе на величину превышающую 500 единиц







В качестве основных предикторов в модели выступает временной ряд, составленный из среднемесячных значений доходности при незначительном изменении длины временного ряда и гиперпараметров модели, модель будет способна принимать на вход векторы любой необходимости величины, и при любой предсказывать заблаговременностю

Тестирование двух выборок (фактических и предсказанных моделью значений) на принадлежность одной генеральной совокупности с помощью критерия Колмогорова-Смирнова показало, что данные выборки можно считать «похожими», а значит, прогноз модели достаточно точен





# Использование данных и модели

### Важнейшие факторы и области дальнейшего глубинного анализа



Сегментация клиентов по модели использования банка («зарплатники», продуктов «вкладчики», «пользователи кредитных продуктов», «диджиталориентированные»)



Сопоставление гипотез данной модели с моделью скоринга (например, влияние количества кредитных продуктов на скоринг и CLTV)



Влияние наличия зарплатных карт на CLTV -> базис для стратегии развития партнерских отношений и зарплатных проектов



Влияние использования онлайн-банкинга на CLTV -> базис для дальнейшего развития онлайн-приложения



Оценка влияния смс-рассылок на CLTV: определение оптимального количества смс в месяц, оценка эффективности кампаний



Выявление наиболее популярных продуктов банка + продуктов, наиболее распространенных среди самых лояльных потребителей

#### Дальнейшее использование созданной модели:

Определение и управление лояльностью клиентов





Настройка персональных предложений по CMC и pushуведомлениям



Повышение качества скоринговых процедур и предсказания платежеспособности клиента