

CPU: Part I

Complete Course on Computer Organization & Architecture for GATE 2024 & 2025

CPU & Data Path

By: Vishvadeep Gothi

CPU

By: Vishvadeep Gothi

- 1. CPU Cycle: time in which cpv can perform smallest micro-operat

 2. CPU Clock rate or cpv frequency =

 3. CPI (gdes per instruction) => ro. of crv ydes to execute on instruction

 4. Execution Time
- 1 inst execution time = CPI my * cycle time

n inst'execution lime = n * (pImy * Crucycle

n instresceation time = n * CPIClock rate

$$k = 10^3$$
 milli (m) = 10^{-3}
 $m = 10^6$ micro (M) = 10^{-6}
 $G = 10^9$ nano(n) = 10^{-9}
 $pico(p) = 10^{-12}$

clock rule => 5 GHZ cycle time = 1 5 4 Hg = 1 n sec = 0.2 nsec

MIPS (Milliam Instra Per second)

rétrie to measure CPU's performance

in t seands, no. of instris executed = m

in 2 second, -11 = M

= clock rete

$$MIPS = \frac{clock Nate}{CP \pm 106}$$

•

Average CPI

Consider computing the overall CPI for a machine A for which the following performance measures were recorded when executing a set of benchmark programs. Assume that the clock rate of the CPU is 200 MHz

Instruction Category	Number of Instructions	No. of cycles per Instruction	cycles needed
ALU	48	1	48 +0 1 = 48
Load & Store	10	3	10 *3 = 30
Branch	39	4	33*4 - 156
Other	3	5	3*5= 15
	Total = 100 inst's	Total	249

Am = 1.6 Question GATE-2014

Consider two processors P1 and P2 executing the same instruction set. Assume that under identical conditions, for the same input, a program running on P2 takes 25% less t ime but incurs 20% more CPI (clock cycles per instruction) as compared to the program runni in GHz) is

ng on P1. If	the clock frequency o	of P1 is 1GHz, then the clo	ck frequency of P2 (in
	PI ¥	PZ	n1 = n2
no.of instro	3))	112	
time	t)	t2 = 0.75 t1	
CPT	C	C= 1.2C,	
Lry	fi = 144	f ₂ =	

$$\frac{h_1}{c_1} = \frac{h_2}{d_2 * f_2}$$

$$f_2 = \frac{1.2}{0.75} * 196$$

Datapath

Collection of functional units such as arithmetic logic units or multipliers Perform data processing operations

Instruction felch: AR <- PC DR - MAR $IR \leftarrow DR, Pc \leftarrow Pc + 1$ Inst => -RO -R1 + R2 Micro-operaths > 5 <- RI T < R2 AC <- S+T Ro - Ac

 $S \leftarrow RI$ $AC \leftarrow S + 1$ $R1 \leftarrow AC$

value on AC <- 5+1 SP - AC AR (- SP DR - PC

All mem. access operators => 3 cpv cycles
Rest all -11 --- => 1 cp cycle

Instr Letch => 1+3+ 1=5 cycles

Inoth fitch =>

AR ~ PC

PCout, ARIn

DR (- MEAR)

ARout, Memrend, DRIN

IR - DR, Pc-Pc+1 DRout, IREN, PGnc

Which one of the following is the correct order of execution of the above steps?

(D) 3, 5, 1, 2, 4

Consider the following data path diagram.

3, 5, 2, 1,4

GATE-2020

Consider an instruction: R0 ← R1 + R2. The following steps are used to execute it over the given data path. Assume that PC is incremented appropriately. The subscripts r and w indicate read and write operations, respectively.

- 1. R2r, TEMP1r, ALUadd, TEMP2w
- 2., R1r, TEMP1w
- 3. PCr, MARw, MEMr
- 4. TEMP2r, ROw
- 5. MDR_{r.} IR_w

Control Unit

Control Unit Organization

Hardwired Control Unit

Control logic is implemented with Gates, flip-flops, decoders and other digital circuits.

Advantage: Can be optimized to produce a faster mode of operation.

Disadvantage: Rearranging the wires among various components is difficult.

Hardwired Control Unit

Question GATE-2005

A hardwired CPU uses 10 control signals S1 to S10, in various time steps T1 to T5, to implement 4 instructions I1 to I4 as shown below:

	Tl	T2	T3	T4	T5
11	S1, S3, S5	S2, S4, S6	S1, S7	S10	S3, S8
12	S1, S3, S5	S8, S9, S10	\$5, \$6, \$7	S6	S10
I3	S1, S3, S5	S7, S8, S10	S2, S6, S9	S10	S1, S3
I 4	S1, S3, S5	S2, S6, S7	S5, S10	S6, S9	S10

Which of the following pairs of expressions represent the circuit for generating control signals S5 and S10 respectively?

(A)

S5=T1+I2-T3 and

S10=(I1+I3)·T4+(I2+I4)·T5

(B) S5=T1+(I2+I4)·T3 and

S10=(I1+I3)·T4+(I2+I4)·T5

(C) S5=T1+(I2+I4)·T3 and

S10=(I2+I3+I4)·T2+(I1+I3)·T4+(I2+I4)·T5

(D) S5=T1+(I2+I4)·T3 and

S10=(I2+I3)·T2+I4·T3+(I1+I3)·T4+(I2+I4)·T5

Happy Learning.!

