[PSI3472-2023. Aula 2. Início.]

Automatic differentiation

https://www.tensorflow.org/guide/autodiff

https://insights.willogy.io/tensorflow-part-3-automatic-differentiation/

https://medium.com/analytics-vidhya/tf-gradienttape-explained-for-keras-users-cc3f06276f22

[Programas no diretório ~/deep/keras/autodiff

I. O problema

Quando estudamos redes neurais, vimos que é necessário calcular as derivadas parciais da função custo em relação a cada peso e viés, para que possamos modificá-los para diminuir função custo, isto é, executar back-propagation:

$$w_{k} \rightarrow w'_{k} = w_{k} - \eta \frac{\partial C}{\partial w_{k}}$$
 (1)
$$b_{l} \rightarrow b'_{l} = b_{l} - \eta \frac{\partial C}{\partial b_{l}}$$
 (2)

Como é possível calcular as derivadas parciais eficientemente? Como as bibliotecas como TensorFlow e PyTorch calculam as derivadas parciais? As redes podem ser muito complexas e profundas, com desvios e execuções condicionais. Também pode haver operações complexas como convoluções, camadas recorrentes e camadas de atenção. Parece que TensorFlow faz alguma mágica para calcular as derivadas parciais... Acredito que é importante saber como as derivadas parciais são calculadas, pois é fundamental para o funcionamento das redes neurais. Para isso, precisamos analisar o que acontece nas camadas de baixo nível de Keras/TensorFlow.

1

II. Regra da cadeia

https://www.khanacademy.org/math/ap-calculus-ab/ab-differentiation-2-new/ab-3-1a/a/chain-rule-reviewhttps://pt.wikipedia.org/wiki/Regra_da_cadeia

1) A regra da cadeia é uma fórmula para calcular a derivada da função composta.

$$(f \circ g)'(x) = f'(g(x))g'(x)$$
 ou $\frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$ (3)

2) Exemplo de regra da cadeia:

https://en.wikipedia.org/wiki/Chain_rule

Vamos calcular a derivada da função:

$$f(x) = e^{\sin(x^2)} \quad (4)$$

Para isso, consideramos que a função f(x) é composta como f(x) = f(u(v(x))):

$$v(x)=x^{2} \rightarrow dv/dx = 2x$$

$$u(v)=\sin(v) \rightarrow du/dv = \cos(v)$$

$$f(u)=\exp(u) \rightarrow df/du = \exp(u)$$
(5)

Aplicando a regra da cadeia:

$$\frac{df}{dx} = \frac{df}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx} \quad , (6)$$

Obtemos a expressão algébrica para a derivada de *f*, em função de variáveis intermediárias *u* e *v*.

$$\frac{df}{dx} = e^u \cdot \cos(v) \cdot 2x \quad (7)$$

Se substituirmos as variáveis *u* e *v* pelas expressões correspondentes, obtemos a expressão algébrica da derivada parcial:

$$\frac{df}{dx} = e^{\sin(x^2)} \cdot \cos(x^2) \cdot 2x \quad (8)$$

3) Diferenciação automática.

À medida que a função f torna-se mais complexa, a expressão algébrica da derivada (8) fica cada vez mais longa e rapidamente torna-se impraticável escrevê-la ou calculá-la. Isto é especialmente verdade em deep learning, onde a função custo final é composta por muitas funções intermediárias. Além disso, muitas vezes não é possível escrever a derivada como uma expressão algébrica simples, como no caso de execução condicional. Diferenciação automática consegue superar essas dificuldades.

II. GradientTape

Antes de prosseguirmos, vamos ver que TensorFlow consegue calcular facilmente as derivadas parciais da função $f(x)=e^{\sin(x^2)}$ acima, usando uma API chamada GradientTape. Digamos que queiramos calcular, para x=2, as derivadas parciais df/du, df/dv e df/dx. O programa abaixo faz isso.

```
#~/deep/keras/autodiff/autodiff2.py
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf

x = tf.Variable(2.0)

with tf.GradientTape(persistent=True) as tape:
    v = tf.pow(x,2) # ou v=x**2
    u = tf.sin(v)
    f = tf.exp(u)

dfdu = tape.gradient(f, u); print("dfdu:",dfdu.numpy())
dudv = tape.gradient(u, v); print("dudv:",dudv.numpy())
dvdx = tape.gradient(v, x); print("dvdx:",dvdx.numpy())
dfdv = tape.gradient(f, v); print("dfdv:",dfdv.numpy())
dfdv = tape.gradient(f, v); print("dfdv:",dfdv.numpy())
dfdx = tape.gradient(f, x); print("dfdx:",dfdx.numpy())
dddx = tape.gradient(u, x); print("ddx:",dudx.numpy())
del tape
```

Programa: Autodiff2.py

Note que:

- 1) TensorFlow nunca calcula as expressões algébricas completas das derivadas parciais (equação 8). TensorFlow calcula apenas as derivadas parciais no ponto desejado (x=2).
- 2) O programa acima utiliza as funções próprias do TensorFlow (tf.pow, tf.sin, tf.exp) para calcular a função. Se usasse uma única função de outras bibliotecas (como de numpy ou da biblioteca padrão de Python) seria impossível calcular as derivadas parciais.

Nota 1: A propriedade *persistent=True* faz com que a fita não seja apagada quando se calcula uma derivada parcial. Caso contrário, a fita seria apagada quando calculasse uma derivada parcial.

Nota 2: Quando não precisar mais do tape, apague-o para economizar memória: "del tape".

III. Diferenciação automática

Como podemos calcular, para x=2 (por exemplo), as derivadas df/du, df/dv e df/dx? Há três possibilidades.

Método 1) A primeira é achar uma expressão algébrica para cada uma das derivadas. O problema desta abordagem é que as expressões ficam muito longas quando a função f for composta por muitas funções intermediárias. Quando há execução condicional, pode não ser possível escrever uma expressão para a derivada. Se quiser calcular (df/dx)(x=2) por exte método (usando Octave), substituímos x por 2 na equação (8), obtendo:

```
>> x=2
>> dfdx=exp(sin(x^2))*cos(x^2)*2*x
dfdx = -1.2267
```

Método 2) A segunda é calcular a aproximação numérica da derivada, calculando:

$$\frac{df(x)}{dx} \approx \frac{f(x+\varepsilon) - f(x-\varepsilon)}{2\varepsilon}$$

O problema desta abordagem é a imprecisão numérica. Além disso, precisamos "chutar" um valor adequado para ε . Se quiser calcular (df/dx)(x=2) por este método:

```
>> x=2
>> epsilon=1e-3
>> x1=x-epsilon
>> x2=x+epsilon
>> f1=exp(sin(x1^2))
>> f2=exp(sin(x2^2))
>> dfdx=(f2-f1)/(2*epsilon)
dfdx = -1.2267
```

Método 3) A diferenciação automática (autodiff) é a terceira opção. É usada pelo TensorFlow e PyTorch. A autodiff não calcula a expressão algébrica inteira (equação 8) das derivadas nem usa diferenciação numérica calculando $f(x\pm\varepsilon)$. Em vez disso, para cada função componente da f, calcula-se a sua derivada (equação 7).

Figura: Autodiff de uma função composta.

Depois, usando as expressões das derivadas das funções constituintes, calcula-se o valor numérico da derivada apenas no ponto x desejado (no nosso exemplo, x=2).

Figura: Autodiff com feed-forward e back-propagation.

O processo de calcular derivada parcial consiste de dois passos:

- Feed-forward onde se calcula f(2) passo a passo (quadrados azuis na figura acima, na ordem enumerada).
- Back-propagation, onde se calculam as derivadas parciais *df/du*, *df/dv* e *df/dx* usando os valores calculados no feed-forward e multiplicando as derivadas parciais conforme regra da cadeia (os quadrados amarelos e verdes, na ordem enumerada). Repare que as derivadas são calculadas de frente para trás, daí o nome "back-propagation".

Os valores calculados coincidem com os resultados obtidos pelo programa Autodiff2.py, método 1 e método 2. Com o que vimos, é possível intuir o que deve ser gravado no GradientTape do TensorFlow para poder calcular as derivadas: a sequência de todas as operações efetuadas envolvendo o parâmetro (peso ou viés) a respeito do qual gostaríamos de calcular a derivada parcial da função final *f*.

IV. Autodiff em perceptron com função custo

Como um exemplo mais próximo de rede neural, vamos calcular as derivadas parciais dos parâmetros w_1 , w_2 e b num perceptron com função de custo MSE usando autodiff.

Figura: Um perceptron com função custo MSE.

Vamos supor i_1 =0.5, i_2 =-0.3, y=0.4, w_1 =-0.2, w_2 =0.2, b=0.1. Para treinar a rede, precisamos calcular as derivadas parciais de c em relação a w_1 , w_2 e b, isto é, dc/dw_1 , dc/dw_2 e dc/db. Os valores de i_1 , i_2 e y podem ser considerados constantes para o cálculo das derivadas. Vamos fazer primeiro o feed-forward:

```
z = w_1i_1+w_2i_2+b = -0.06

p = \sigma(z) = 0.48500

c = (p-y)^2 = 0.0072258
```

Vamos fazer back-propagation:

c =
$$(p-y)^2 = p^2 - 2yp + y^2$$
 \rightarrow dc/dp = $2p - 2y$ \rightarrow dc/dp $(p=0.485) = 0.17$ $p = \sigma(z)$ \rightarrow dp/dz = $\sigma(z)(1-\sigma(z))$ \rightarrow dp/dz $(z=-0.06) = 0.24978$ Nota: A derivada de sigmoide $\sigma(z)$ é $\sigma(z)(1-\sigma(z))$.

Para calcular as 3 derivadas parciais:

```
z=w_1i_1+w_2i_2+b \rightarrow dz/dw_1 = i_1 = 0.5

dz/dw_2 = i_2 = -0.3

dz/db = 1
```

Portanto,

```
 \begin{aligned} & dc/dw_1 = (dc/dp) \times (dp/dz) \times (dz/dw_1) = 0.17001 \times 0.24978 \times 0.5 = 0.021233 \\ & dc/dw_2 = (dc/dp) \times (dp/dz) \times (dz/dw_2) = 0.17001 \times 0.24978 \times -0.3 = -0.012740 \\ & dc/db = (dc/dp) \times (dp/dz) \times (dz/db) = 0.17001 \times 0.24978 \times 1 = 0.042465 \end{aligned}
```

Vamos verificar se os resultados acima calculados manualmente estão corretos calculando as mesmas derivadas com GradientTape do TensorFlow:

```
#~/deep/keras/autodiff/perceptron1.py
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf

i1 = tf.constant(0.5)
i2 = tf.constant(-0.3)
y = tf.constant(0.4)

w1 = tf.Variable(-0.2)
w2 = tf.Variable(0.2)
b = tf.Variable(0.1)

with tf.GradientTape(persistent=True) as tape:
    z = w1*i1+w2*i2+b
    p = tf.math.sigmoid(z)
    c = (p-y)**2

dcdw1 = tape.gradient(c, w1); print("dcdw1:",dcdw1.numpy())
dcdw2 = tape.gradient(c, w2); print("dcdw2:",dcdw2.numpy())
dcdb = tape.gradient(c, b); print("dcdb: ",dcdb.numpy())
```

Programa: Perceptron1.py

Saída:

dcdw1: 0.021232
dcdw2: -0.0127392
dcdb: 0.042464

Os cálculos feitos manualmente coincidem com os do TensorFlow.

[PSI3472-2023 Lição de casa #2 das aulas 1 e 2 (vale 5 pontos)] Considere a seguinte rede neural:

Escreva um programa TensorFlow que calcula as derivadas parciais dc/dw1, dc/dw2, dc/dw3, dc/dw4, dc/dw5, dc/dw6, dc/db1, dc/db2 e dc/db3 quando:

w1=-0.2, w2=0.5, w3=0.9, w4=-0.6, w5=0.2, w6=-0.4, b1=0.4, b2=-0.2, b3=-0.5 i1=0.6, i2=-0.3, y=1

Solução privada em ~/deep/keras/autodiff/regressao1.py dcdw1: -0.09824643 dcdw2: 0.049123216

dcdw1: -0.09824643 dcdw2: 0.049123216 dcdw3: 0.184564 dcdw4: -0.092282 dcdw5: -1.751102 dcdw6: -2.0625236 dcdb1: -0.16374405 dcdb2: 0.30760664 dcdb3: -3.2887366

V. Autodiff com convolução, relu e MAE

Agora, vamos ver como autodiff funciona numa rede convolucional com função de ativação relu.

Figura: Autodiff numa rede convolucional com ativação relu.

Suponha que queremos treinar a rede acima, escolhendo a convolução K que minimiza o custo c. Precisamos calcular dc/dK.

Vamos fazer feed-forward:

F = conv2d(A) = [-0.09, 0.01] G = relu(F) = [0.00, 0.01] p = avePool(G) = 0.005 c = | p-y | = | 0.005 - 0.01 | = 0.005

Nota: Se quiser fazer convolução em Octave ou Matlab, deve fazer antes a rotação do Kernel K por 180 graus. F = conv2d(A, rot90(K,2)) = [-0.09, 0.01]

```
Vamos fazer back-propagation. c = |p-y| \rightarrow dc/dp = -1 se p < y; +1 se p > y; indefinido se p = y. \rightarrow dc/dp = -1, pois p < y. Aqui, o cálculo da derivada se divide em dois caminhos: p = avePool(G) = (G1+G2)/2 \rightarrow dp/dG_1 = 0.5; dp/dG2 = 0.5. G_1 = relu(F_1) \rightarrow dG_1/dF_1 = 0 se F_1 < 0; +1 se F_1 > 0; indefinido se F_1 = 0. \rightarrow dG_1/dF_1 = 0 (pois F_1 < 0). G_2 = relu(F_2) \rightarrow dG_2/dF_2 = 0 se F_2 < 0; +1 se F_2 > 0; indefinido se F_2 = 0. \rightarrow dG_2/dF_2 = 1 (pois F_2 > 0). F_1 = A_{11}K_{11} + A_{12}K_{12} + A_{21}K_{21} + A_{22}K_{22} = 0.4K_{11} + 0.2K_{12} + 0.9K_{21} + 0.1K_{22} \rightarrow dF_1/dK = [0.4, 0.2; 0.9, 0.1] F_2 = A_{12}K_{11} + A_{13}K_{12} + A_{22}K_{21} + A_{23}K_{22} = 0.2K_{11} + 0.7K_{12} + 0.1K_{21} + 0.5K_{22} \rightarrow dF_2/dK = [0.2, 0.7; 0.1, 0.5] Vamos aplicar a regra da cadeia: dc/dK = (dc/dp) \times (dp/dG) \times (dG/dF) \times (dF/dK) = (dc/dp) \times (dp/dG_1) \times (dG_1/dF_1) \times (dF_1/dK) + (dc/dp) \times (dp/dG_2) \times (dG_2/dF_2) \times (dF_2/dK) = (-1) \times 0.5 \times 0 \times [0.4, 0.2; 0.9, 0.1] + (-1) \times 0.5 \times 1 \times [0.2, 0.7; 0.1, 0.5] = (-0.5) \times [0.2, 0.7; 0.1, 0.5] = [-0.1, -0.35; -0.05, -0.25]
```

Agora, vamos verificar as nossas contas manuais estão corretas (ou não), comparando dc/dK acima com o obtido pelo TensorFlow.

```
#~/deep/keras/autodiff/conv1.py
import numpy as np
import tensorflow as tf
A_in=np.array([[0.4, 0.2, 0.7],[0.9, 0.1, 0.5]], dtype=np.float32)
A=tf.constant(A_in, dtype=tf.float32)
K_{in}=np.array([[0.3, -0.4], [-0.2, 0.5]], dtype=np.float32)
K_in=np.reshape(K_in, (2, 2, 1, 1))
K=tf.Variable(K_in, dtype=tf.float32)
y=tf.constant(0.01, dtype=tf.float32)
with tf.GradientTape(persistent=True) as tape:
   F=tf.nn.conv2d(A, K, strides=(1, 1, 1, 1), padding='VALID') \\ F=tf.reshape(F, (1,1,2,1)); print("F",F.numpy().reshape(2,))
   G=tf.nn.relu(F); print("G", G.numpy().reshape(2,))
   p=tf.nn.avg_pool2d(G,(1,2),(1,1),"VALID"); p=tf.reshape(p, (1,))
   print("p", p.numpy().reshape(1,))
   c=tf.abs(p-y); print("c", c.numpy().reshape(1,))
dcdp = tape.gradient(c, p); print("dcdp:",dcdp.numpy().reshape(1,))
dpdG = tape.gradient(p, G); print("dpdG:",dpdG.numpy().reshape(2,))
dGdF = tape.gradient(G, F); print("dGdF:",dGdF.numpy().reshape(2,))
dFdK = tape.gradient(F, K); print("dFdK:",dFdK.numpy().reshape(2,2))
dcdK = tape.gradient(c, K); print("dcdK:",dcdK.numpy().reshape(2,2))
dcdG = tape.gradient(c, G); print("dcdG:",dcdG.numpy().reshape(2,))
dcdF = tape.gradient(c, F); print("dcdF:",dcdF.numpy().reshape(2,))
```

Programa: Conv1.py

Saída:

Podemos verificar que dc/dK calculado manualmente coincide com dc/dK calculado pelo TensorFlow.

Camada personalizada (custom layer)

Programas em ~/deep/keras/densa/fromScratch.

1) Copio abaixo o programa "regression.py" (da apostila densakeras-ead) com pequenas alterações que não fazem diferença no resultado final:

```
# from1.py
import os; os.environ['TF_CPP_MIN_LOG_LEVEL']='3'
import tensorflow as tf
import tensorflow.keras as keras
import tensorflow.keras.layers as layers
import tensorflow.keras.activations as activations
from tensorflow.keras import optimizers
import numpy as np
model = keras.Sequential()
model.add(layers.Input(shape=(2,)))
model.add(layers.Dense(2))
model.add(layers.Activation(activations.sigmoid))
model.add(layers.Dense(2))
sgd=optimizers.SGD(learning_rate=1)
model.compile(optimizer=sgd, loss='mse')
AX = np.matrix('0.9 0.1; 0.1 0.9',dtype='float32')
AY = np.matrix('0.1 0.9; 0.9 0.1', dtype='float32')
model.fit(AX, AY, epochs=120, batch_size=1, verbose=0)
QX = np.matrix('0.9 0.1; 0.1 0.9; 0.8 0.0; 0.2 0.9', dtype='float32')
print("QX="); print(QX)
QP=model.predict(QX,verbose=0)
print("QP="); print(QP)
```

Programa from 1.py.

Figura: Estrutura da rede neural do programa from1.py

```
Saída:

QX=

[[0.9 0.1]

[0.1 0.9]

[0.8 0.]

[0.2 0.9]]

QP=

[[0.09999999 0.9]

[0.9 0.10000002]

[0.13876095 0.9329134]

[0.82762444 0.1424768]]
```

2) Agora que sabemos como TensorFlow calcula as derivadas parciais, estamos prontos para implementar camadas personalizadas. Algumas vezes, pode ser necessário criar camadas diferentes das que estão pré-implementadas em Keras/TensorFlow.

Para criar uma camada personalizada, basta criar uma classe derivada da classe Layer de Keras. Não é necessário trabalhar explicitamente com GradientTape — classe Layer vai cuidar disso. Porém, é preciso usar apenas as operações do TensorFlow. Caso contrário, a operação não será gravada no GradientTape e não será possível calcular as derivadas parciais pela autodiff.

Para aprendermos implementar novas camadas em Keras/TensorFlow, vamos substituir as duas camadas Dense por camadas personalizadas MyDense.

```
# from2.py
import os; os.environ['TF_CPP_MIN_LOG_LEVEL']='3'
import tensorflow as tf
import tensorflow.keras as keras
import tensorflow.keras.layers as layers
import tensorflow.keras.activations as activations
from tensorflow.keras import optimizers
import numpy as np
#https://www.tensorflow.org/tutorials/customization/custom_layers
#http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L1.pdf
class MyDense(tf.keras.layers.Layer):
 #Funciona para qualquer numero de entradas e saidas
  def __init__(self, output_dim):
    super(MyDense, self).__init__()
   self.num_outputs = output_dim
 def build(self, input_shape):
    self.W = self.add_weight("W",
    [input_shape[1], self.num_outputs], initializer="glorot_uniform")
self.b = self.add_weight("b", [1, self.num_outputs], initializer="zeros")
 def call(self, inputs):
    z = tf.matmul(inputs, self.W) + self.b
    return z
model = keras.Sequential()
model.add(layers.Input(shape=(2,)))
model.add(MyDense(2))
model.add(layers.Activation(activations.sigmoid))
model.add(MyDense(2))
sgd=optimizers.SGD(learning_rate=1)
model.compile(optimizer=sgd, loss='mse')
AX = np.matrix('0.9 0.1; 0.1 0.9', dtype='float32')
AY = np.matrix('0.1 0.9; 0.9 0.1', dtype='float32')
model.fit(AX, AY, epochs=120, batch_size=1, verbose=0)
QX = np.matrix('0.9 0.1; 0.1 0.9; 0.8 0.0; 0.2 0.9', dtype='float32')
print("QX="); print(QX)
QP=model.predict(QX,verbose=0)
print("QP="); print(QP)
```

Programa from 2.py.

Saída: QX= [[0.9 0.1] [0.1 0.9] [0.8 0.] [0.2 0.9]] QP= [[0.09999999 0.9 [0.90000004 0.10000002] [0.13584077 0.8724962] [0.8098951 0.18530202]]

Podemos ver que tanto programa from1.py como from2.py efetuam corretamente a regressão. As duas saídas não são exatamente iguais devido à inicialização aleatória de pesos e vieses.

Referências:

https://www.guru99.com/tensor-tensorflow.html

https://www.tensorflow.org/tutorials/customization/custom_layers

http://introtodeeplearning.com/slides/6S191 MIT DeepLearning L1.pdf

Exercício: Pense em alguma alteração da camada MyDense que possa ser útil para alguma aplicação.

3) Para que fique mais claro o que está acontecendo na camada MyDense, vamos usar variáveis comuns de TensorFlow (em vez de add_weight) e calcular manualmente a multiplicação matricial. Vamos fixar MyDense para ter número de entradas 2 e saídas também 2.

Além disso, vamos "chutar" manualmente os valores iniciais dos pesos imitando a inicialização "glorot_uniform" (em vez de inicializar automaticamente). A iniciação "glorot_uniform" escolhe amostras da distribuição uniforme no intervalo [-limit, +limit] onde

$$limit = \sqrt{\frac{6}{fanin + fanout}} = \sqrt{\frac{6}{2+2}} \approx 1,225 .$$

```
# from3.py
import os; os.environ['TF_CPP_MIN_LOG_LEVEL']='3'
import tensorflow as tf
import tensorflow.keras as keras
import tensorflow.keras.layers as layers
import tensorflow.keras.activations as activations
from tensorflow.keras import optimizers
import numpy as np
#https://www.tensorflow.org/tutorials/customization/custom_layers
#http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L1.pdf
class MyDense(tf.keras.layers.Layer):
  #So funciona para 2 entradas e 2 saidas
  def __init__(self):
    super(MyDense, self).__init__()
    self.num_outputs = 2
  def build(self, input_shape):
    self.W = tf.Variable( [0.3, -0.8], [-0.4, 0.2] ], dtype=tf.float32, name="W" ) self.b = tf.Variable( [0,0], dtype=tf.float32, name="b");
  def call(self, inputs):
    # A dimensao 0 (indicada por ":") e' para permitir rodar batches.
z0 = inputs[:,0]*self.W[0,0]+inputs[:,1]*self.W[1,0]+self.b[0];
z1 = inputs[:,0]*self.W[0,1]+inputs[:,1]*self.W[1,0]+self.b[1];
z = tf.stack([z0,z1], axis=1, name="z")
    return z
model = keras.Sequential()
model.add(layers.Input(shape=(2,)))
model.add(MyDense())
model.add(layers.Activation(activations.sigmoid))
model.add(MyDense())
sgd=optimizers.SGD(learning_rate=1)
model.compile(optimizer=sgd, loss='mse')
AX = np.matrix('0.9 0.1; 0.1 0.9', dtype='float32')
AY = np.matrix('0.1 0.9; 0.9 0.1', dtype='float32')
#batch_size deve ser 1 ou 2
model.fit(AX, AY, epochs=120, batch_size=1, shuffle=False, verbose=0)
QX = np.matrix('0.9 0.1; 0.1 0.9; 0.8 0.0; 0.2 0.9', dtype='float32')
print("QX="); print(QX)
QP=model.predict(QX,verbose=0)
print("QP="); print(QP)
```

Podemos ver que o programa continua funcionando.

```
Saída:

QX=

[[0.9 0.1]

[0.1 0.9]

[0.8 0.]

[0.2 0.9]]

QP=

[[0.1 0.9

[0.90000004 0.10000002]

[0.11033662 0.89271045]

[0.8298143 0.16628951]]
```

4) Para debugar o que acontece dentro do custom layer, é necessário compilar usando opção $run_eagerly=True$. Se não colocar esse comando, o print dentro do custom layer não é impresso. TensorFlow funciona desta forma para garantir a velocidade computacional. O programa rodará muito mais devagar com a opção $run_eagerly=True$.

https://keras.io/examples/keras recipes/debugging tips/

```
# from4.py
import os; os.environ['TF_CPP_MIN_LOG_LEVEL']='3'
import tensorflow as tf
import tensorflow.keras as keras
import tensorflow.keras.layers as layers
import tensorflow.keras.activations as activations
from tensorflow.keras import optimizers
import numpy as np; import sys
#https://www.tensorflow.org/tutorials/customization/custom_layers
#http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L1.pdf
class MyDense(tf.keras.layers.Layer):
  #So funciona para 2 entradas e 2 saidas
  def __init__(self):
    super(MyDense, self).__init__()
    self.num_outputs = 2
  def build(self, input_shape):
    if input_shape[1]!=2: sys.exit("Erro: Dimensao de entrada deve ser 2")
    self.W00 = tf.Variable(0.3, name="W00"); self.W01 = tf.Variable(-0.8, name="W01");
    self.W10 = tf.Variable(-0.4, name="W10"); self.W11 = tf.Variable(-0.2, name="W11"); self.b0 = tf.Variable(-0.0, name="b0"); self.b1 = tf.Variable(-0.0, name="b1");
  def call(self, inputs):
    # A dimensao 0 (indicada por ":") e' para permitir rodar batches.
    print("inputs=",inputs)
    z0 = inputs[:,0]*self.W00+inputs[:,1]*self.W10+self.b0;
    z1 = inputs[:,0]*self.W01+inputs[:,1]*self.W11+self.b1;
z = tf.stack([z0,z1], axis=1, name="z")
    print(" z=",z)
return z
model = keras.Sequential()
model.add(layers.Input(shape=(2,)))
model.add(MyDense())
model.add(layers.Activation(activations.sigmoid))
model.add(MyDense())
sgd=optimizers.SGD(learning_rate=1)
model.compile(optimizer=sgd, loss="mse", run_eagerly=True)
AX = np.matrix('0.9 0.1; 0.1 0.9', dtype='float32')
AY = np.matrix('0.1 0.9; 0.9 0.1', dtype='float32')
#batch_size deve ser 1 ou 2
print("<<<<<<< Treino <<<<<<")</pre>
model.fit(AX, AY, epochs=120, batch_size=1, shuffle=False, verbose=0)
QX = np.matrix('0.9 0.1; 0.1 0.9; 0.8 0.0; 0.2 0.9', dtype='float32')
print("QX="); print(QX)
QP=model.predict(QX,verbose=0)
print("QP="); print(QP)
```

Agora, podemos debugar o que acontece dentro da camada MyDense.

As últimas saídas do treino:

A impressão acima mostra que a rede converteu [0.9 0.1] em [0.1 0.9] e vice-versa. Também é possível observar as ativações entre as duas camadas.

Saídas durante o teste:

```
inputs= tf.Tensor(
[0.90.1]
 [0.1 0.9]
 [0.8 0. ]
 [0.2 \ 0.9]], shape=(4, 2), dtype=float32)
  z= tf.Tensor(
[[-1.9235604 -1.9927275]
 [-1.2987914 0.6264709]
 [-1.8094821 -1.9071858]
                       ]], shape=(4, 2), dtype=float32)
 [-1.3948787 0.42
inputs= tf.Tensor(
[[0.12746507 0.11996861]
 [0.21436849 0.6516889 ]
 [0.14070073 0.12929733]
 [0.19863003 0.60348326]], shape=(4, 2), dtype=float32)
 z= tf.Tensor(
[[0.1
             0.9
 [0.9
             0.10000002]
 [0.11852115 0.8831827 ]
 [0.82446176 0.17439479]], shape=(4, 2), dtype=float32)
```

[PSI3472-2023. Aula 2. Fim.]