11 Publication number:

0 310 675 B1

EUROPEAN PATENT SPECIFICATION

- 45 Date of publication of patent specification: 05.01.94 51 Int. Cl.5: A61K 7/06
- (2) Application number: 88902931.0
- ② Date of filing: 30.03.88
- International application number: PCT/JP88/00315
- (g) International publication number: WO 88/07360 (06.10.88 88/22)
- 4 HAIR-CARE PRODUCT COMPOSITION.
- 3 Priority: 31.03.87 JP 78184/87
- Date of publication of application:12.04.89 Bulletin 89/15
- Publication of the grant of the patent: 05.01.94 Bulletin 94/01
- Designated Contracting States:
 DE FR GB
- 66 References cited:

FR-A- 2 112 549

JP-A- 4 710 400

JP-A- 5 095 436

JP-A- 5 163 949

US-A- 3 251 742

CHEMICAL ABSTRACTS, vol. 84, 1976, page 388, abstract no. 49736t, Columbus, Ohio, US; & JP-A-75 95 436

73 Proprietor: KYOWA HAKKO KOGYO KABUSHIKI KAISHA

6-1, Ohte-machi 1-chome

Chiyoda-ku Tokyo 100(JP)

Proprietor: YAMAHATSU SANGYO KAISHA,

LTD.

1-1-25, Dojlma, Kita-ku Osaka-shi Osaka 530(JP)

② Inventor: TSUJINO, Yoshio 1-1-31, Hagurazaki

Izumisano-shi Osaka 598(JP)

Inventor: YOKOO, Yoshiharu

3-4-17, Yokoyama

Sagamihara-shi Kanagawa 229(JP)

Inventor: SAKATO, Kunlaki

987-37, Kamlogino

Atsugi-shi Kanagawa 243-02(JP)

Inventor: **HAGINO**, **Hiroshi** 3-16-1-701, **Kaminoge**

Setagaya-ku Tokyo 158(JP)

Representative: VOSSIUS & PARTNER Postfach 86 07 67

D-81634 München (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

Technical Field

The present invention relates to a hair preparation composition characterized in that a dielectron, reducing oxidase utilizing oxygen as an acceptor is incorporated as an active ingredient.

Background Art

Heretofore, with oxidation hair dyes, for oxidation polymerization of an oxidation dye and in order to bleach hair, hydrogen peroxide, sodium perborate, sodium percarbonate, etc. are used as the oxidizing agent.

Further, in general, for performing a permanent wave, there is employed a method which comprises reducingly cutting the S-S bond in hair with a first solution containing a reducing agent such as thioglycolic acid, cysteine,etc. as a main component and thereafter oxidizingly fixing this hair with a second solution containing an oxidizing agent such as sodium bromate, sodium perborate, hydrogen peroxide etc. as a main component.

However, the use of these oxidizing agents has a disadvantage that they are apt to damage hair and skin.

FR-A-2 112 549 discloses a process for dyeing hair, wherein a composition comprising an oxidase enzym and optionally sugar (as a diluent) is used.

US-A-3 251 742 discloses a process for dyeing hair, wherein a composition comprising the enzyms tyrosinase, polyphenolase, catacholase or laccase is used.

25 Disclosure of the Invention

35

The present invention is characterized by activating oxygen in air with an oxidase and effectively employing its oxidising power in the oxidizing course needed for the product.

A first object of the present invention is to provide a hair preparation composition which has a satisfactory effect with a mild oxidizing effect.

A second object of the present invention is to provide a hair preparation composition having an oxidizing function which is low in skin irritation and hardly damages hair and skin, such as an oxidation hair dye, an oxidation agent composition for permanent waving preparation, a bleaching agent for hair or body hair on hands and feet, etc.

The present invention is described in more detail below.

The present invention provides a hair preparation composition which contains at least one dielectron reducing oxidase utilizing oxygen as an acceptor.

The enzyme used in the present invention is a dielectron reducing oxidase utilizing oxygen as an acceptor selected from the group consisting of pyranose oxidase (hereinafter referred to as PROD), glucose oxidase (hereinafter referred to as GOD), glycerol oxidase, lactate oxidase, pyruvate oxidase and uricase, and a donor of said enzyme with the proviso that mutarotase is further contained in the composition if oxidase is glucose oxidase.

In the present invention, these enzymes are used either alone or as a combination of two or more thereof.

Further, in order that certain enzymes suitable for the present invention function, cofactors are required. For example, it is known that as cofactors, flavin adenine dinucleotide (hereinafter referred to as FAD) and iron ions are necessary for PROD; FAD and iron ions for GOD; and FAD for pyruvate oxidase.

These cofactors are generally contained as impurities in enzymes, and therefore, where the enzyme is described in the present specification, it is understood that it also contains the necessary cofactors unless otherwise specified.

The donor varies depending on the enzyme, and for example, there are used D-glucose, L-sorbose and D-xylose for PROD; D-glucose for GOD; glycerol, dihydroxyacetone for glycerol oxidase; lactic acid and its salts for lactate oxidase; pyruvic acid and its salts for pyruvate oxidase; and uric acid and its salts for uricase.

The amount of the enzyme incorporated is 1 unit/100g to 1 x 10^8 units/100g, preferably 1 x 10^2 units/100g to 1 x 10^5 units/100g as the concentration in actual use on hair.

The amount of the donor is 0.01% by weight to 60% by weight, preferably 1% by weight to 35% by weight, as the concentration in actual use on hair.

In the present invention, where D-glucose is used as the donor, PROD is preferred as the enzyme. This is because PROD acts on both α -type and β -type of D-glucose.

Where GOD is used, it is preferred to use it in combination with mutarotase. This is because mutarotase performes rearrangement of D-glucose from α -type to β -type.

It is known that the activity of enzymes can be maintained and stabilized at as high level as possible by the enzyme immobilization method. The immobilized enzyme can be used in the present invention.

In order to solubilize the enzyme also in an organic solvent and further in order that the activity of the enzyme may manifest itself in an organic solvent, it is possible to chemically bind a synthetic polymer or a natural polymer onto the surface of the enzyme protein molecules. This modified enzyme is also included in the enzymes of the present invention.

Particular embodiments of the invention are set out in claims 2-8.

30

The present invention also provides a hair dye composition which contains an oxidation hair dye, the above-described enzyme and/or a donor of said enzyme.

The hair dye composition of the present invention is employed in three forms, namely, (1) a hair dye consisting of three packages, (2) a hair dye consisting of two packages, and (3) a hair dye consisting of one package.

As the dye used for the oxidation hair dye, all of the ordinary oxidation dyes may be used. In addition to resorcin, there are described in Hair Dye Standard Material Specifications (third revision, May 1985, Japan Hair Color Industrial Society, Hair Dye Meeting), for example, 5-aminoorthocresol, 3,3'-iminodiphenol, 2,4-diaminophenol hydrochloride, toluene-2,5-diamine hydrochloride, paraphenylenediamine hydrochloride, N-phenylparaphenylenediamine hydrochloride, metaphenylenediamine hydrochloride, orthoaminophenol, catechol. N-phenylparaphenylenediamine acetate, 2,6-diaminopyridine, 1,5-dihydroxynaphthalene, diphenylamine, toluene-2,5-diamine, toluene-3,4-diamine, α-naphthol, paraaminophenylsulfamic acid, paraaminophenol, paraphenylenediamine, paramethylaminophenol, hydroquinone, pyrogallol, N-phenylparaphenylenediamine, phloroglucine, metaaminophenol, metaphenylenediamine, 5-aminoorthocresol sulfate, orthoaminophenol sulfate, orthochloroparaphenylenediamine sulfate, 4,4'-diaminodiphenylamine sulfate, paraaminophenol sulfate, toluene-2.5-diamine sulfate. paraphenylenediamine methylaminophenol sulfate, metaaminophenol sulfate and metaphenylenediamine sulfate.

Further, 2,4-diaminophenoxyethanol hydrochloride and 5-(2-hydroxyethylamino)-2-methylphenol were also added.

Furthermore, in general, direct dyes often used in combination with oxidation dyes are also included in the oxidation dyes in a wide sense, for example, 2-amino-4-nitrophenol, 2-amino-5-nitrophenol, 1-amino-4-methylaminoanthraquinone, nitroparaphenylenediamine hydrochloride, 1,4-diaminoanthraquinone, nitroparaphenylenediamine, picramic acid, sodium picramate, picric acid, 2-amino-5-nitrophenol sulfate, nitroparaphenylenediamine sulfate, paranitroorthophenylenediamine sulfate, paranitroorthophenylenediamine sulfate, etc.

In general, with the oxidation hair dyes, for oxidation polymerization of the oxidation dye and in order to bleach hair, hydrogen peroxide is used at a concentration in use of 1.5% by weight to 4.0% by weight. At this concentration, damage of hair to some degree is inevitable and also skin trouble might be caused depending on the user.

In the present invention, since oxygen in air is activated and utilized, hair damage and skin trouble are less occurred and also the same dyeing and bleaching effects as that by the conventional method may be imparted.

On the other hand, heretofore, there have been found two or three techniques which utilize an enzyme in the hair treating techniques with oxidation hair dyes.

For example, in Japanese Published Unexamined Patent Application No. 10400/1972, there is proposed a method for dyeing hair which comprises (1) a peroxidase enzyme, (2) hydrogen peroxide and (3) an oxidation dye.

Further, in Japanese Published Examined Patent Application No. 47778/1976, there is proposed a composition of dithiothreitol or/and dithioerythritol as a first solution, one, or two or more of the compounds selected from the group (1) tyrosine and/or DL-\$\beta\$-(3,4-dihydroxyphenyl)alanine or a derivative thereof, (2) 5-hydroxyindole, methyl 5,6-dihydroxyindole-2-carboxylate, tyramine, dopamine, 6-hydroxydopamine and pyrocatechol as a second solution, and a persulfuric acid salt as a third solution, which further incorporates tyrosinase in the second solution or the third solution.

Further, in Japanese Published Examined Patent Application No. 31325/1983, there is also proposed a hair dye consisting of four liquids of (1) pyrocatechol, (2) a water-soluble salt of zinc, copper or iron, (3) a peroxidase and (4) hydrogen peroxide.

These are all those utilizing only the oxidizing effect of the initially incorporated hydrogen peroxide or persulfuric acid salt, and the incorporated hydrogen peroxide or persulfuric acid salt, and the incorporated enzyme is also different, and further, in Japanese published Examined Patent Application Nos. 47778/1976 and 31325/1983, the precursors of the dyes are specified and thus their intentions are different from the present invention.

Furthermore, the present invention may also be applied to a bleaching agent for unwanted body hair, and a bleaching agent for hair.

In addition, the present invention provides a permanent wave oxidation composition containing a dielectron reducing oxidase utilizing oxygen as an acceptor and a donor of said enzyme, the so-called second solution. Heretofore, the first solution is a reducing agent incorporating thioglycolic acid and/or cysteine, etc., and the second solution is an aqueous solution of an oxidizing agent such as sodium bromate, potassium bromate, sodium perborate, hydrogen peroxide, etc.

In general, the concentration of the hydrogen peroxide is used at 1.0% by weight to 2.5% by weight. At this concentration, damage of hair to some degree is inevitable and skin trouble might be caused depending on the user.

In the present invention, since oxygen in air is utilized, damage of hair and skin trouble are less occurred and also the same oxidation fixing effect as that by the conventional method may be imparted.

Test Examples are given below.

The percent is % by weight, and for the units of the enzyme amounts, there were used D-glucose units for GOD and PROD; uric acid units for uricase; hydrogen peroxide units for peroxidase; and α -D-glucose units for mutarotase.

Test Example 1 Dyeing Test

As shown in Table 1, oxidizing solutions were prepared from three kinds of oxidases, i.e. GOD, PROD and uricase and also from combinations of these oxidases with mutarotase and/or peroxidase, and as comparisons, from hydrogen peroxide and purified water alone containing no oxidizing agent.

These were tested for two items. Namely, the hair dyeing effect and the finish of hair were compared and judged according to the following methods and the results are set forth in Table 1.

[Testing Method]

30

Ten ml of a solution obtained by mixing a dye solution and an oxidizing solution at a ratio of 1:1 is coated on a goat hair bundle of 2g in weight and 10 cm in length, treated for 30 minutes, washed with water, shampooed and dried.

The evaluation of the dyeing effect and the finish of hair were done according to the following standard.

A: Evaluation of the dyeing effect

40 Dyeing properties

①: Dyed in a thick dark brown color

o: Dyed in a dark brown color

Δ: Dyed in a shallow dark brown color

45 x: Hardly dyed

B: Finish of hair (as compared with the untreated hair)

o: Soft and combing is smooth

Δ : Somewhat soft but combing is inferior

x: Softness is lost and also combing is inferior

												tiesent Thenting	vention
	1-1*	1-2*	1-3*	1-4.	1-5*	1-6*	1-70	1-8*	1-9*	1-10+	1-11	1-12	1-13
(Dye Solution)													
Paraphenylenediamine	0.1%	0.14	0.10	0.11	0.14	0.13	0.11	0.1%	0.19	0.11	0.11	0.1%	81.0
D-Glucose	3.6	3.6	3.6	3.6	3.6	1	1	1	1	1	!	1	1
Uric acid	l	1	1	1	1	3.4	J. 4	3.4	J. 4	۵.۲		1	1
Thioglycolic acid	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Ammonium hydroxide (30%)	1	1	1	1	1		ı	1	1	1		adjusted	1
Potassium hydroxide	adjusted	adjunted to pil 7.0	edjusted to pK 7.0	adjusted to pil 7.0	adjusted to py 7.0	adjusted adjusted	adjusted	adjusted	adjusted	adjusted	adjusted	i	adjusted
Purified water													
						Balance							
(Oxiditing Solution)													
Hydrogen peroxide solution (35%)	1	ı	1	ı	1	ì	1		1	1	1	14.7	14.7
GOD (2.4 units/mg)	8.3	8.3	8.3	ł	-	1	1	1	i	1	1		1
PROD (1 unit/mg)	1	1	1	20.0	20.0	1	l	1	1	1		1	1
Uricase (2.8 unics/mg)	1		1	-	-	2.0	2.0	2.0	2.0	2.0	-	1	1
Mutarotase (0.95 unit/mg)	1	0.2	0.2	-		l	ı	1	1	ı	ı	1	1
Peroxidase (112 units/mg)	ı	l	0.0058	1	0.0058	1	ı	١	ı	0.0058	ı	[1
Purified water	Î					Balance							1
Dyeing Effect	▷	0	0	0	0	0	•	0	0	0	×	0	0
Finish of Hair	0	0	0	0	0	0	0	0	0	0		×	*
											į		

As seen from the above-described results, the method utilizing hydrogen peroxide as the oxidizing agent is excellent in the dyeing properties, but poor in the finish of hair. By the method utilizing purified water alone, the hair was hardly dyed. According to the present invention, a good finish of hair can be obtained while retaining almost the same dyeing effect as that by using hydrogen peroxide as the oxidizing agent.

Further, the dyeing properties were improved by the combined use with mutarotase and/or peroxidase rather than by using GOD alone.

Test Example 2 Waving Test

5

After treating with a first solution (reducing agent) of a permanent wave formulation, there was used as a second solution (oxidation agent) a composition incorporating uricase or, as a comparison, a composition incorporating sodium bromate or a composition composed of purified water alone. Three items, i.e. the wave index, wave retention coefficient and degree of skin roughness by an interdigital dropping method were examined by the following methods and the results are set forth in Table 2.

Table 2

15	(Birch Colution (Bodumina)				
7.5	[First Solution (Reducing A	_			
	Ammonium thioglycolate				13.0%
	(50% as thioglycolic a	cid)			
20	Ammonium hydroxide (30	%)	P	djusted 1	to pH 9.0
	Purified water				Balance
	[Second Solution (Oxidation	Agent)]			
25		2-1*	2-2*	2-3	2-4
	Sodium bromate	-	-	-	8.0%
	Potassium urate	2.5%	2.5%	-	_
	Uricase				
30	(2.8 units/mg)	2.0	2.0	-	-
	Peroxidase				
	(112 units/mg)	-	0.003	-	-
35					
	Purified water		Bala	ince	
	Wave index (%)	61.0	59.8	60.2	59.3
	Wave retention				
40	coefficient (%)	58.7	62.0	4.5	62.5
	Degree of skin				
	roughness	0	0	0	x
45	* Present invention				

before the treatment with the second solution.

The uricase in the formulation is added just

[Wave Index and Wave Retention Coefficient Measuring Tests]

Note:

50

55

(I) Twenty hairs described below were made into a bundle, fixed to a plastic measuring comb by winding the hairs in zigzags, dipped in the first solution (reducing agent) havig the composition shown in Table 2 at 30 °C for 10 minutes, then rinsed thoroughly with water, and thereafter dipped in the second solution (oxidation agent) at 30 °C for 10 minutes respectively. After rinsing with water, it was removed from the measuring comb, and the degree of waving was measured according to Kirby method (Proceedings of the Scientific Section, Vol. 26, p. 12, 1956).

Hair: Human hair of 15 cm in length (10-year-old female, untreated hair), washed with a 10% aqueous solution of sodium laurylsulfate and dried in air.

(II) The hair used in (I) was dipped in a 10% aqueous solution of sodium laurylsulfate at 60°C for 20 minutes, washed with water and maltreated. Its wave index was compared with the wave index before the maltreatment and the wave retention coefficient was calculated according to the following equation.

Wave Retention Coefficient (%) =

5 [Test by an Interdigital Dropping Method]

Three parts between fingers (between the second and third fingers, between the third and fourth fingers and between the fourth and fifth fingers) of either of right and left hand of the panel were examined to confirm that there is no abnormality of the skin. Thereafter, the second solution (oxidation agent) of the composition shown in Table 2 was dropped on the interdigital parts at a rate of 0.7 ml/min by a constant flow rate pump for 10 minutes, left for 5 minutes, washed with warm water of about 40 °C for 15 seconds, and dried with towel; this operation was repeated twice a day for 6 days, between the former three days and the latter three days, a two-day interval was taken, and the degree of skin roughness was observed by comparing with the hand not tested.

The experimental panel was consisted of 20 females of 22 - 52 years old. The evaluation of the degree of skin roughness was done according to the following standard. A: Evaluation of Skin Roughness

- Skin roughness is not observed.
- Δ: Minute wrinkles are observed.
- x: Wrinkles, dryness and roughness of skin are observed.

From the above-described results, it is obvious that the present invention has the same waving effect as the conventional product incorporating sodium bromate and that there is almost no waving effect with purified water alone.

Further, with the product incorporating sodium bromate, skin roughness is observed, while with the oxidation agent of the present invention, the skin roughness of the panel is remarkably prevented.

Brief Description of the Drawing

Fig. 1 is a cross-sectional view of a piston can used in Examples of the present invention.

40 Examples

25

35

45

50

The present invention is described in more detail by the following examples.

Example 1 One-package Hair Dye (Cream)

	Paraphenylenediamine	1.35%
1	Orthoaminophenol	0.1
	Resorcin	0.25
Ì	Cetanol	6.0
	Oleyl alcohol	5.0
	Polyoxyethylene cetyl ether (15 E.O.)	7.0
	Liquid paraffin	10.0
	Stearyltrimethylammonium chloride	1.0
	Propylene glycol	2.0
	Uricase (2.8 units/mg)	1.0
	Uric acid	5.3
	Disodium edetate	0.2
]	Thioglycolic acid	0.1
	Monoethanolamine, purified water	Balance
	(The pH is adjusted to 8.5 with monoetha	nolamine.)

This composition is coated on a white hair, which is treated at 30 °C for 30 minutes, then washed with water, shampooed and dried.

The white hair was dyed in grayish color.

Example 2 One-package Hair Dye (Gel)

Paraphenylenediamine	0.08%
Orthoaminophenol	0.04
Nitroparaphenylenediamine	0.4
2-Amino-4-nitrophenol	0.4
Resorcin	0.1
Sodium carboxymethyl cellulose	7.5
Uricase (2.8 units/mg)	1.07
Potassium urate	2.44
Thioglycolic acid	0.1
Purified water	Balance

This composition is coated on a white hair, which is treated at 30 °C for 30 minutes, then washed with water, shampooed and dried.

The white hair was dyed in reddish brown color.

45

5

10

15

20

30

35

50

Example 3 One-package Hair Dye (Hair cream type)

ų	Paraphenylenediamine	0.135%
	Orthoaminophenol	0.01
	Resorcin	0.025
	Cetanol	6.0
	Oleyl alcohol	5.0
	Polyoxyethylene cetyl ether (15 E.O.)	7.0
	Polyoxyethylene cetyl ether (10 E.O.)	3.5
	Liquid paraffin	10.0
	Stearyltrimethylammonium chloride	1.0
	Liquid lanolin	1.0
	Uricase (2.8 units/mg)	1.0
	Uric acid	1.1%
	Disodium edetate	0.2
	Ascorbic acid	0.2
	Potassium hydroxide, purified water	Balance
	(The pH is adjusted to 7.5 with potassium	n hydroxide.)

This composition is coated on a white hair, which is treated for 10 to 30 minutes. The hair is immediately washed or shampooed and dried.

This composition was similarly used on the white hair every day for 10 days, to find that the hair had been dyed in grayish color.

Example 4 One-package Hair Dye (Treatment type)

,	•	

35

40

45

50

5

10

15

20

25

Paraphenylenediamine	0.04%
Orthoaminophenol	0.04%
Nitroparaphenylenediamine	0.20
2-Amino-4-nitrophenol	0.20
Resorcin	0.20
Cetyltrimethylammonium chloride	2.5
Stearyltrimethylammonium chloride	1.0
Isopropyl myristylate	7.0
Cetanol	5.0
Stearyl alcohol	2.0
Liquid paraffin	4.0
Liquid Ianolin	0.5
Propylene glycol	0.5
Uricase (2.8 units/mg)	1.0
Uric acid	5.1
Peroxidase (112 units/mg)	0.003
Thioglycolic acid	0.1
Potassium hydroxide, purified water	Balance
(The pH is adjusted to 7.5 with potassium	hydroxide.)

This composition is coated on a white hair, which is treated at 30 °C for 30 minutes, then washed with water, shampooed and dried. The white hair was dyed in reddish brown color. Further, like the conventional hair treatment, it was coated on the previously shampooed hair, which was treated at 30 to 40 °C for 5 to 10 minutes, and washed with water.

This precedure was repeated on the white hair for 10 days, to find that the hair was dyed in reddish brown color.

Example 5 One-package Hair Dye (Powder)

Paraphenylenediamine sulfate 10.0 % Orthoaminophenol sulfate 3.0 Paramethylaminophenol sulfate 2.0 Sodium carboxymethyl cellulose 24.0 Sodium carbonate 7.36 Uric acid 14.17 Uricase (2.8 units/mg) 8.30 Dextrin Balance

First, to 6 g of the above-described composition is added purified water until the total volume is 50 ml, for preparation of a dye solution.

This dye solution is coated on a white hair, which is treated at 30 °C for 30 minutes, washed with water, shampooed and dried.

The white hair was dyed in dark reddish brown color.

In this powder hair dye, where water is not contained in the starting material, the stability was improved.

Example 6 Aerosol Type Hair Dye

[Stock Solution]	
Paraphenylenediamine	0.4%
Paraaminophenol	0.1
Orthoaminophenol	0.5
Resorcin	0.8
PROD (1 unit/mg)	10.0
D-Glucose	5.5
Propylene glycol	2.0
Thioglycolic acid	0.1%
0.1M Phosphate buffer (pH 6.5)	Balance

First, the above-described composition is injected into a piston can (double container system, Fig. 1), and then carbon dioxide is injected from a gas filling line so that the initial volume be about 1/3 of the container and the initial pressure be about 8 to 9 kg/cm² to prepare an aerosol type hair dye.

As the propellant, there may be used a compressed gas such as nitrogen and laughing gas as well as carbon dioxide and a liquefied gas such as Furon 11, 12, 114 and LPG either alone or in combination.

This hair dye is coated on a white hair, which is treated at 30 °C for 30 minutes, washed with water, shampooed and dried.

The white hair was dyed in grayish color.

This aerosol type hair dye has improved stability of PROD since it is brought into contact with air and/or the propellant during storage. Further, it is also possible to replace the piston can by a bag-in can and an EXXEL SYSTEM (product of CONTAINER INDUSTRIES INC., America) which ejects the contents by directly applying the rubber pressure to the container.

50

5

10

20

25

30

35

Example 7 Two-packages Hair Dye (Shampoo Type)

Paraphenylenediamine	0.28%
Paraaminophenol	0.1
Orthoaminophenol	0.14
Nitroparaphenylenediamine	0.02
Resorcin	0.4
Polyoxyethylene lauryl ether sodium sulfate (3 E.O.)	10.0
Coconut oil fatty acid amide propyldimethylaminoacetic acid betaine	4.0
Coconut oil fatty acid diethanolamide	5.0
D-Glucose	5.5%
Propylene glycol	1.0
GOD (2.4 units/mg)	4.15
Mutarotase (0.95 units/mg)	0.1
Peroxidase (112 units/mg)	0.0029
0.1 M phosphate buffer (pH 6.5)	Balance

This composition is coated on a white hair, which is treated at 30 °C for 30 minutes, washed with water and dried.

The white hair was dyed in slightly purple-tinted brown color.

Further, like the conventional shampoo, this composition is coated on a white hair at 30 °C for 3 to 5 minutes, then immediately washed with water and dried. When this procedure was repeated on the white hair once a day for 10 days, it was dyed in slightly purple-tinted brown color.

Example 8 Two-packages Hair Dye

30

35

40

[Coloring Base]	
Paraphenylenediamine	2.7%
Orthoaminophenol	0.2
Resorcin	0.5
Sodium laurylsulfate	1.0
D-Glucose	11.0
Disodium editate	0.1
Ascorbic acid	0.4
Ammonium hydroxide, Purified water	Balance
(The pH is adjusted to 7.0 with ammonium	n hydroxide.)

45

50

55

[Enzyme solution]	
PROD (1 unit/mg)	20.0%
Peroxidase (112 units/mg)	0.006
Glycerin	3.0
0.1M Phosphate buffer (pH 6.5)	Balance

First, a solution obtained by mixing the coloring base and the enzyme solution at a ratio of 1:1 is coated on a white hair, which is treated at 30 °C for 30 minutes, then washed with water, shampooed and dried.

The white hair was dyed in grayish color.

Example 9 Two-packages Hair Dye

5	[Coloring Base]	
	Paraphenylenediamine	0.8%
	Paraaminophenol	0.2
	Orthoaminophenol	1.0
	Resorcin	1.6
10	Oleic acid	20.0
	Bis-2-hydroxyethylsorbitanamine	9.0
	Hydroxyethylstearylamide	6.0
	Propylene glycol	12.0
	Isopropanol	10.0
5	Disodium editate	0.3
	Sodium sulfite	0.3
	Ammonium hydroxide, purified water	Balance

20

[Enzyme Powder]	
Uricase (2.8 units/mg)	15.4%
Uric acid	84.6

25

30

First, a solution obtained by mixing the coloring base and the enzyme powder at a ratio of 14:1 is coated on a white hair, which is treated at 30 °C for 30 minutes, washed with water, shampooed, and dried. The white hair was dyed in gray-tinted brown color.

Example 10 Three-packages Hair Dye

35	[Coloring Base]	
	Paraphenylenediamine	0.56%
	Paraaminophenol	0.20
	Orthoaminophenol	0.28
40	Nitroparaphenylenediamine	0.04
40	Resorcin	0.80%
	Liquid paraffin	5.0
	Lanolin alcohol	2.0
	Polyoxyethylene lauryl ether phosphate (3 E.O.)	2.0
45	Lauric acid diethanolamide	5.0
40	Thioglycolic acid	0.2
	Disodium editate	0.1
	0.1M Phosphate buffer (pH 6.5)	Balance

50

[Substrate Solution]	
D-Glucose	21.6%
Purified water	Balance

[Enzyme Solution]	
Mutarotase (0.95 unit/mg)	0.4%
GOD (2.4 units/mg)	16.6
Peroxidase (112 units/mg)	0.0116
Glycerin	3.0
0.1M Phosphate buffer (pH 7.0)	Balance

First, a solution obtained by mixing the coloring base, the substrate solution and the enzyme solution at a ratio of 2:1:1 is coated on a white hair, which is treated at 30 °C for 30 minutes, washed with water, shampooed and dried.

The white hair was dyed in slightly purple-tinted brown color.

Example 11 Cold Waving Preparation Mainly Containing Thioglycolic Acid (Thioglycolic Acid-based Permanent Waving Agent)

[First Solution (Reducing Agent)]

20

25

5

Ammonium thioglycolate solution (50% as thioglycolic acid)	13.0%
Polyoxyethylene oleyl ether (10 E.O.)	1.0
Polyoxyethylene cetyl ether (20 E.O.)	1.0
Sodium lauryl sulfate	0.5
Hydrolyzed collagen solution (20%)	2.0
Disodium editate	0.1%
Ammonium hydroxide, purified water	Balance
(The pH is adjusted to 9.1 with ammonium hydroxide.)	

30

[Second Solution (Oxidation Agent)]

35

PROD (1 unit/mg)	20.0%
Peroxidase (112 units/mg)	0.0058
D-Glucose	3.6
Glycerin	3.0
Purified water	Balance

40

First, in a conventional manner, a hair is protected on the tip with paper, wound on a plastic rod of 1.5 cm in diameter, dipped in the first solution of the above-described composition at 30 °C for 10 minutes, washed with running water for 1 minute, then dipped in the second solution at 30 °C for 10 minutes, and washed with water, to thereby conduct permanent waving treatment.

As a result, the hair was imparted with a uniform wave from the root to the tip, and also the touch was good.

50

55

Example 12 Cold Waving Preparation Mainly Containing Cysteine (Cysteine-based Permanent Waving Agent)

[First Solution (Reducing Agent)]

L-Cysteine Hydrochloride
Cetanol
Oleyl alcohol
Polyoxyethylene cetyl ether (10 E.O.)
Polyoxyethylene cetyl ether (15 E.O.)
Disodium editate
Monoethanolamine, purified water

(The pH is adjusted to 9.1 with monoethanolamine.)

[Second Solution (Oxidation Agent)]

20

5

10

15

GOD (2.4 units/mg)	8.3%
Mutarotase (0.95 unit/mg)	0.2%
Peroxidase (112 units/mg)	0.0058
D-Glucose	3.6
Sorbitol	3.0
Purified water	Balance
Note: GOD in the formulation is added just before the treatment with the second solution.	

30

25

Using the above-described composition, permanent waving treatment was conducted in a manner similar to that in Example 11.

As a result, the hair was imparted with a uniform wave from the root to the tip, and also the touch was good.

Example 13 Heat-Waving Preparation Mainly Containing Thioglycolic Acid

[First Solution (Reducing Agent)]

40

Ammonium thioglycolate (50% as thioglycolic acid)	10.0%
Cetanol	0.5
Oleyl alcohol	0.5
Polyoxyethyl cetyl ether (10 E.O.)	0.5
Polyoxyethylene cetyl ether (15 E.O.)	1.0
Disodium editate	0.1
Ammonium bicarbonate, purified water	Balance
(The nH is adjusted to 7.5 with ammonium bicarbonate.)	

50

55

45

[Second Solution (Oxidation Agent)]

The same agent as the second solution in Example 11 is used.

Using the above-described composition, permanent waving treatment was conducted in a manner similar to that in Example 11, except that both treatments with the first solution and the second solution were conducted at 45 °C.

As a result, the hair was imparted with a uniform wave from the root to the tip, and also the touch was good.

Claims

1. A hair preparation composition comprising at leapt one dielectron reducing exidase selected from the group consisting of pyranose oxidase, glucose oxidase, glycerol oxidase, lactate oxidase, pyruvate oxidase and uricase and a donor of said enzyme with the proviso that mutarotase is further contained in the composition if the oxidase is glucose oxidase.

10

- 2. A hair dye composition which consists of three packages, i.e. a package comprising an oxidation dye, a package comprising an enzyme recited in Claim 1 and a package comprising a donor of said enzyme.
- 3. A hair dye composition which consists of two packages, i.e. a package comprising one component selected from the group consisting of an oxidation dye, an enzyme recited in Claim 1 and a donor of 15 said enzyme; and a package comprising the remaining two components.
 - 4. A one-package type hair dye composition which comprises an oxidation dye, an enzyme recited in Claim 1 and a donor of said enzyme.

20

- An oxidation agent composition for permanent waving preparation which comprises an enzyme recited in Claim 1 and a donor of said enzyme.
- 6. An oxidation agent composition for permanent waving preparation which consists of two packages, i.e. a package comprising an enzyme recited in Claim 1 and a package comprising a donor of said 25 enzyme.
 - 7. A hair preparation composition which comprises an enzyme recited in Claim 1, a donor of said enzyme and a peroxidase.

30

8. A hair preparation composition according to Claim 1, wherein the oxidase is glucose oxidase and mutarotase is further contained.

Patentansprüche

35

1. Haarbehandlungsmittel, umfassend mindestens eine zwei Elektronen reduzierende Oxidase ausgewählt von der Gruppe bestehend aus Pyranoseoxidase, Glucoseoxidase, Glycerinoxidase, Lactatoxidase, Pyruvatoxidase und Urikase und einem Donor für dieses Enzym mit der Maßgabe, daß weiterhin Mutarotase in dem Mittel enthalten ist, falls die Oxidase Glucoseoxidase ist.

40

Haarfärbemittel, bestehend aus drei Packungen, d.h. einer Packung, umfassend einen Oxidationsfarbstoff, einer Packung, umfassend ein in Anspruch 1 genanntes Enzym und einer Packung, umfassend einen Donor für dieses Enzym.

- 3. Haarfärbemittel, bestehend aus zwei Packungen, d.h. einer Packung, umfassend einen Bestandteil ausgewählt aus der Gruppe bestehend aus einem Oxidationsfarbstoff, einem in Anspruch 1 genannten Enzym und einem Donor für dieses Enzym und einer Packung, umfassend die übrigen zwei Bestand-
- 4. Haarfärbemittel der Einpackungs-Art, umfassend einen Oxidationsfarbstoff, ein in Anspruch 1 genanntes Enzym und einen Donor für dieses Enzym.
 - 5. Oxidationsmittelzusammensetzung zur Herstellung einer Dauerwelle, umfassend ein in Anspruch 1 genanntes Enzym und einen Donor für dieses Enzym.

55

6. Oxidationsmittelzusammensetzung zur Herstellung einer Dauerwelle, umfassend zwei Packungen, d.h. eine Packung, umfassend ein in Anspruch 1 genanntes Enzym und eine Packung, umfassend einen Donor für dieses Enzym.

- Haarbehandlungsmittel, umfassend ein in Anspruch 1 genanntes Enzym, einen Donor für dieses Enzym und eine Peroxidase.
- 8. Haarbehandlungsmittel nach Anspruch 1, wobei die Oxidase eine Glucoseoxidase ist und weiterhin Mutarotase enthalten ist.

Revendications

5

10

30

40

45

50

- 1. Formulation pour traitement capillaire, comprenant au moins une oxydo-réductase à deux électrons, choisie dans le groupe que constituent la pyranose-oxydase, la glucose-oxydase, la glycérol-oxydase, la lactate-oxydase, la pyruvate-oxydase et l'uricase, ainsi qu'un donneur pour ladite enzyme, avec la condition que la composition contienne également de la mutarotase si l'oxydase présente est la glucose-oxydase.
- 75 2. Formulation pour teinture capillaire, présentée en trois compartiments, c'est-à-dire un compartiment contenant un précurseur de colorant d'oxydation, un compartiment contenant une enzyme mentionnée dans la revendication 1, et un compartiment contenant un donneur pour ladite enzyme.
- 3. Formulation pour teinture capillaire, présentée en deux compartiments, c'est-à-dire un compartiment contenant un composant choisi dans le groupe que constituent un précurseur de colorant d'oxydation, une enzyme mentionnée dans la revendication 1, et un donneur pour ladite enzyme, et un compartiment contenant les deux autres composants.
- 4. Formulation pour teinture capillaire, présentée en un seul compartiment, comportant un précurseur de colorant d'oxydation, une enzyme mentionnée dans la revendication 1, et un donneur pour ladite enzyme.
 - Formulation d'agent oxydant pour traitement de réalisation de permanente, qui comporte une enzyme mentionnée dans la revendication 1, et un donneur pour ladite enzyme.
 - 6. Formulation d'agent oxydant pour traitement de réalisation de permanente, présentée en deux compartiments, c'est-à-dire un compartiment contenant une enzyme mentionnée dans la revendication 1, et un compartiment contenant un donneur pour ladite enzyme.
- 7. Formulation pour traitement capillaire, qui comporte une enzyme mentionnée dans la revendication 1, un donneur pour ladite enzyme et une peroxydase.
 - 8. Formulation pour traitement conforme à la revendication 1, dans laquelle l'oxydase est la glucoseoxydase et qui contient en outre de la mutarotase.

Fig. 1

