COGNOME:	NO	<u>ME</u>		04
MATRICOLA:		<u>'</u>		<u>[[]</u>
DOCENTE:				
Domanda 1		Risultato		
Si convertano	i seguenti numeri da decimale a emento a 2 su 8 bit:		_	
Si riportino TUTTI i	passaggi			
Domanda 2 Determinare se la	seguente uguaglianza Booleana è ver	: A AND (B OR C) OR I	NOT(A OR NOT(C)) = (A AND B)
OR C			- ((-),	, , ,
Domanda 3				
Descrivere breve	emente il ruolo del program counte	nell'esecuzione di u	ın programma	

Domanda 4 (PROGRAMMAZIONE)

Una centralina elettronica per il controllo del motore di un'automobile è dotata di un insieme di 10 sensori in grado di misurare una serie di parametri del motore (es. velocità, temperatura, accelerazione ecc.). Indipendentemente dalla natura della grandezza misurata ogni lettura è acquisita sotto forma di un numero reale. La centralina acquisisce i 10 dati una volta ogni 10 ms e li salva in una riga di un file denominato misure.txtseparando i 10 numeri con uno spazio.

Si scriva un programma C in grado di analizzare il file misure.txtper rilevare anomalie del motore usando il seguente criterio.

Un file <u>limiti.txt</u> composto da 10 righe contiene il valore minimo e il valore massimo accettabile per la misura di ogni sensore. La prima riga è associata al primo sensore, la seconda riga al secondo sensore e così via.

Per ogni riga del file misure.txt il programma deve analizzare la media delle ultime 5 misure effettuate da ogni sensore e contare il numero di sensori la cui media è fuori dai limiti riportati nel file limiti.txt. Se il numero di sensori fuori limite è maggiore di un numero intero L passato al programma come parametro a riga di comando si verifica un'anomalia e il programma deve stampare sullo schermo un messaggio riportando la riga del file in cui si è verificata l'anomalia (si numerino le righe a partire da 1). Il controllo delle righe del file deve iniziare a partire dalla riga 5 in modo da avere abbastanza misure precedenti per effettuare la media.

Alla fine dell'analisi il programma deve stampare il numero totale di anomalie rilevate.

Si assuma che:

- Il numero di righe del file misure.txt non sia noto a priori, ma sicuramente maggiore o uguale a 5
- Il formato dei file misure txt è limit txt sia corretto

ESEMPIO

Misure.txt

			-	_									
							0.94						
							1.22			8.99			
8.9	_	_	_		2.73				8.27	2.43	ок ок ок ок		
						7.37		5.53		0.49		7	
_							5.70				3.95 3.24 7.06 4.52 5.72 4.56 4.14 5.95 5.72 4.48		
			_				8.01				OK OK OK OK OK		
	07 2.		_			7.62			7.82	3.10	4.44 4.49 6.07 4.80 5.76 3.19 5.56 6.95 5.33 4.85	7	
	4 2.			9.34		4.00			3.20	2.68		_	
	_	_	-		6.74		2.23	9.60		1.23			
7.4	16 0.	.85 6	.73	6.09	5.87	6.73	1.90	6.96	1.34	2.60			
2.1	15 1.			3.25			6.44	8.75	3.95	5.72	C:\> cerca_anomalie.exe 5	Limit	ti.txt
5.3				0.17				7.85	2.80	8.42	Anomalia rilevata alla riga 5		
5.8	37 1.	.70 8	3.14	2.13	5.12	9.97	8.06	6.62	1.78	4.47	Anomalia rilevata alla riga 7	4.00	
5.2	21 2.	.18 8	8.80	9.89	0.03	4.20	8.09	7.25	9.05	5.28	Anomalia rilevata alla riga 16	2.00	3.00
6.1	16 2.		.99	2.86	4.46	0.57	6.08	9.59	1.38	8.14	Anomalia rilevata alla riga 18	5.01	7.02
7.3	34 9.			9.23				1.60	1.21		Anomalia rilevata alla riga 19	3.10	7.03
0.3	39 4.	.05 9	.56	9.75	9.85	5.94	0.40	3.56	2.47	6.29	Anomalia rilevata alla riga 21	2.00	6.00
2.0	3.	.85 9	.62	9.21	6.71	9.10	6.50	8.07	4.98	9.44	Anomalia rilevata alla riga 25	5.00	5.50
4.0	1 9.	.02 9	.61	0.06	9.05	8.54	3.38	4.91	9.15	7.27	Anomalia rilevata alla riga 26		
4.9	8 3.	.11 4	1.55	0.47	0.01	2.81	1.48	2.73	6.71	1.52	Anomalia rilevata alla riga 27	3.00	4.00
2.4	6 1.	.00 3	3.91	0.50	4.72	2.94	0.20	1.04	5.30	4.89	Anomalia rilevata alla riga 29	6.00	6.20
2.3	31 0.	.76 1	.34	5.77	0.25	7.87	7.70	8.09	9.14	0.77	Anomalia rilevata alla riga 30	4.00	6.00
7.6	9 4.	.54 5	.74	9.39	1.10	8.68	6.47	4.42	2.99	7.71	Anomalia rilevata alla riga 31	3.50	6.90
7.3	32 1.	.14 2	2.35	0.22	1.13	2.84	9.16	6.79	8.97	9.91	Totale anomalie rilevate: 12		
1.9				4.61				7.51	1.37	2.86	locale anomalie filevace. 12		
9.9	96 0.	.83 9	9.94	7.21	2.57	0.76	2.79	0.18	1.70	9.38			
6.1	15 9.	.50 8	3.72	4.78	1.56	5.03	9.42	5.76	2.74	4.81			
2.9	8 3.	.51 8	3.07	6.60	7.24	0.59	9.95	4.80	8.61	2.84			
8.8	36 4.	.95 8	3.91	7.15	6.92	6.20	3.31	0.19	1.66	5.25			
5.2	29 8.	.25 9	.31	1.19	4.42	2.73	6.51	1.96	7.05	1.21			
2.9	90 9.	.53 0).97	2.83	8.38	6.82	7.62	1.26	5.30	1.58			

Informatica – 03/02/2017 – durata complessiva: 2h

COGNOME:	NOME	
MATRICOLA:		<u> </u>
DOCENTE:		

Domanda 1	Risultato			
Si convertano i seguenti numeri da decimale a binario in modulo e segno su 8 bit:	X =			
98 = X _{MS}				
$-63_{10} = Y_{MS}$	Y=			
Si riportino TUTTI i passaggi				

Domanda 2
Determinare se la seguente uguaglianza Booleana è vera: (A AND B) OR (A AND C) OR (A AND NOT(B)) OR (NOT(B) AND C) = A OR (NOT(B) AND C)

Domanda 3						
Descrivere brevemente cosa è la ALU in un microprocessore.						

Domanda 4 (PROGRAMMAZIONE)

Una centralina elettronica per il controllo del motore di un'automobile è dotata di un insieme di 8 sensori in grado di misurare una serie di parametri del motore (es. velocità, temperatura, accelerazione ecc.). Indipendentemente dalla natura della grandezza misurata ogni lettura è acquisita sotto forma di un numero reale. La centralina acquisisce i 8 dati una volta ogni 10 ms e li salva in una riga di un file denominato misure.txtseparando gli 8 numeri con uno spazio.

Si scriva un programma C in grado di analizzare il file misure.txt per rilevare il corretto funzionamento del motore usando il seguente criterio.

Un file limiti.txt composto da 8 righe contiene il valore minimo e il valore massimo accettabile per la misura di ogni sensore. La prima riga è associata al primo sensore, la seconda riga al secondo sensore e così via.

Per ogni riga del file misure.txt il programma deve analizzare la media delle ultime 4 misure effettuate da ogni sensore e contare il numero di sensori la cui media cade all'interno dei valori leciti per il sensore riportati nel file limiti.txt. Se il numero di sensori corretti è maggiore di un numero intero L passato al programma come parametro a riga di comando il motore funziona correttamente e il programma deve stampare sullo schermo un messaggio riportando la riga del file in cui si è registrato il corretto funzionamento (si numerino le righe a partire da 1). Il controllo delle righe del file deve iniziare a partire dalla riga 4 in modo da avere abbastanza misure precedenti per effettuare la media.

Alla fine dell'analisi il programma deve stampare il numero totale di controlli in cui è stato rilevato un corretto funzionamento del motore.

Si assuma che:

- Il numero di righe del file misure.txt non sia noto a priori, ma sicuramente maggiore o uguale a 4
- Il formato dei file misure.txt è limit.txt sia corretto

ESEMPIO

