Lesson 1.1: Why Distributed Computing?

DISTRIBUTED COMPUTING WITH SPARK SQL

Why Distributed Computing?

Brooke Wenig/Conor Murphy Machine Learning Practice Lead/ Data Scientist, Databricks

Continuing and Professional Education

Learning Objectives

Motivate the business need for processing big data

Identify key concepts related to distributed computing

Slide 3: Qualities of Big Data

Qualities of Big Data

Volume

Velocity

Variety

Veracity

Slide 4: Big Data Defined

Slide 5: Apache Spark

Slide 6: Spark is Multilingual and Supports Many Languages

Spark Supports Many Languages

SQL

Python

Scala

Java

R

Slide 7: Why Spark is Popular

Why Spark is Popular

Reads & processes data from many sources

Works with many file types

Solves many data problems faced by analysts

Slide 8: Apache Spark: Origin Story

Slide 9: Apache Spark: Origin Story

Slide 10: Apache Spark: Origin Story

Slide 11: Let's Count Some M&Ms

Slide 12: Measure by Weight?

Slide 13: Involving Others

Slide 14: How Do You Aggregate All of the Counts Among Your Friends?

Slide 15: Drivers and Executors

Slide 16: Drivers and Executors

Slide 17: Why More Computing Power Isn't Always Faster

Slide 18: Distributing Computation is Parallelism

Amdahl's Law

The amount of acceleration we would see from parallelizing a task is a function of what portion of the task can be completed in parallel

Slide 20: Linear Scalability

Slide 21: Scalability

Learn about core Spark concepts