Projekt - testowanie i optymalizacja sieci CNN

Wymagania:

- 1. Należy przygotować sobie bazę danych do klasyfikacji zdjęć (binarną lub wieloklasową).
- Wytrenować model na sieci ResNet50 od zera (bez transfer learningu) na CPU

 uzyskane wyniki (czas treningu oraz dokładność) będą stanowić base line
 dla kolejnych wyników.
- 3. W celu optymalizacji szybkości treningu zastosować:
 - a. akcelerator GPU przygotować raport porównawczy z czasem trenowania bez i z GPU,
 - b. transfer learning przygotować raport porównawczy z transfer learningiem i bez, interesuje nas tutaj dojście do pewnego poziomu dokładności np. 80%.
- 4. W celu optymalizacji dokładności zastosować:
 - a. normalizację przygotować raport porównawczy z normalizacją danych i bez.
 - b. augumentację danych przygotować raport porównawczy z augumentacją i bez + informacją jakie przekształcenia zostały przeprowadzone.
 - c. dropout przygotować raport porównawczy z zastosowaniem dropoutu i bez.
 - d. dokładanie danych przygotować raport porównawczy z dołożeniem nowej partii danych i bez.
 - e. różne rozmiary wejściowe (np. 96×96, 160×160, 224×224) przygotować raport porównawczy dla każdego rozmiaru.

- f. różny rozmiar Batch size (np. 32, 64, 128) przygotować raport porównawczy dla każdego rozmiaru.
- g. różne struktury sieci (np. VGG16, ResNet101, InceptionV3, MobileNet) przygotować raport porównawczy dla każdej sieci (min. 4).

Zakres rozszerzony

Zastosowanie narzędzia ML Ops (Clear ML uruchomiony lokalnie np. za pomocą dockera) do:

- 1. Raportowania uzyskanych wyników z eksperymentów.
- Automatycznej optymalizacji hiperparametrów (struktury sieci, rozmiaru wejściowego, batch size itd.).

Forma prezentacji

1. Student prezentuje kod i raporty na swoim komputerze w IDE (nie potrzeba prezentacji w PowerPoint itp.).

Ocenianie

Oceniany będzie sposób technicznego/programistycznego podejścia do problemów, które rodzą przedstawione wymagania. W tym również jakość przygotowanych raportów jak i wysokość uzyskanych dokładności.