Date: April 13 Made by Eric

Problem A. Write $D_n = \langle a^{2m} = b^2 = 1, bab^{-1} = a^{-1} \rangle$

First consider a^i where $1 \le i \le 2m - 1$ and $i \ne m$

Clearly $\langle a \rangle \subseteq C_G(a^i)$, so $(G: C_G(a^i)) \leq 2$

Notice $bab^{-1} = a^{-1} \implies a = ba^{-1}b^{-1} \implies ba^ib^{-1} = b(ba^{-1}b^{-1})^ib^{-1} = b^2a^{-i}b^{-2} = a^{-i}$

If $(G: C_G(a^i)) = 1$, then $G = C_G(a^i)$; yet $ba^ib^{-1} = a^{-i} = a^{2m-i} \neq a^i$ indicate $G \neq C_G(a^i)$, so we know $(G: C_G(a^i)) = 2$

Then $|(a^i)^G| = 2$

$$a^{-i} = ba^ib^{-1} \implies a^{-1} \in (a^i)^G$$

So we know $(a^{i})^{G} = \{a^{i}, a^{-i}\}$

Now we consider a^m

Clearly $a \in C_G(a^m)$

Notice $ba = a^{-1}b$

So $ba^{m}b^{-1} = a^{-m}bb^{-1} = a^{m}$, that is $b \in C_{G}(a^{m})$

Then $G = \langle a, b \rangle \subseteq C_G(a^m)$

So
$$|(a^m)^G| = (G : C_G(a^m)) = 1$$

So
$$(a^m)^G = \{a^m\}$$

So far we already find the following equivalence class $\{a^m\}, \{a, a^{-1}\}, \cdots, \{a^{m-1}, a^{m+1}\}$

And obviously we have equivalence class $\{e\}$

Notice all element in D_n can be uniquely expressed in the form $a^k b^j$, where $0 \le k < n$ and $0 \le j < 2$ fact 1

So we only have to find equivalence classes for the elements a^kb in G where $0 \le k < 2m$

From **fact 1**, we deduce
$$b^G = \{a^k b^j b (a^k b^j)\}^{-1} | 0 \le k < 2m, 0 \le j < 2\} = \{a^k b^j b b^{-k} a^{-k} | 0 \le k < 2m, 0 \le j < 2\} = \{a^k b a^{-k} | 0 \le k < 2m\}$$

Notice
$$bab^{-1} = a^{-1} \implies ba^{-1} = ab$$

So
$$b^G = \{a^k b a^{-k} | 0 \le k < 2m, 0 \le j < 2\} = \{a^{2k} b | 0 \le k < 2m\}$$

Again from fact 1, we deduce $(ab)^G = \{a^kb^j(ab)(a^kb^j)^{-1}|0\leq k<2m, 0\leq j<2\}$

Notice $ba^{-1} = ab$ and $ba = a^{-1}b$

So we deduce,
$$(ab)^G = \{a^kb^j(ab)(a^kb^j)^{-1}|0 \le k < 2m, 0 \le j < 2\} = \{a^{\pm 1}a^kba^{-k}|0 \le k < 2m\} = \{a^{2k\pm 1}b|0 \le k < 2m\}$$

Then from **fact 1**, our proof is completed by finding the remaining two equivalence classes as $\{a^{2k}b|0\leq k<2m\}$ and $\{a^{2k\pm1}b|0\leq k<2m\}$

Problem B.

Cycle type
$$(1,1,1,1,1)$$
 $(2,1,1,1)$ $(3,1,1)$ $(2,2,1)$ $(4,1)$ $(3,2)$ (5) Representative $x \in G$ e $(1,2)$ $(1,2,3)$ $(1,2)(3,4)$ $(1,2,3,4)$ $(1,2,3)(4,5)$ $(1,2,3,4)$ $|x^G|$ 1 10 20 15 30 20 24 $|C_G(x)|$ 120 12 6 8 4 6 3

Notice $(G:C_G(x))=|x^G|$, so we only have to figure out $|x^G|$, then we can figure out $|C_G(x)|=\frac{|S_5|}{|x^G|}=\frac{120}{|x^G|}$

Now we give the reason of how we have the number for $|x^G|$ for each cycle type

Case: Cycle type
$$(1, 1, 1, 1, 1)$$

Obviously e is the only choice, so $|x^G| = 1$

Case: Cycle type
$$(2, 1, 1, 1)$$

$$|x^G| = {5 \choose 2} = 10$$

Case: Cycle type (3, 1, 1)

$$|x^G| = {5 \choose 3} * 2 = 20$$

2 stands for fixing one element and the two other elements can move freely

Case: Cycle type
$$(2, 2, 1)$$

$$|x^G| = {5 \choose 4} \frac{{4 \choose 2}}{2} = 15$$

We pick 4 element for the two 2-cycle first, and pair them into two 2-cycle and have $\frac{\binom{4}{2}}{2}$ choices

Case: Cycle type (4, 1)

$$|x^G| = {5 \choose 4} * 3! = 30$$

3! stands for fixing one element and the other 3 elements can move freely

Case: Cycle type (3,2)

$$|x^G| = {5 \choose 3} * 2 = 20$$

2 stands for fixing one element in the $3\mbox{-cycle}$ and the other elements cam move freely

$$|x^G| = 4! = 24$$

4! stands for fixing one element in the 4-cycle and the other elements can move freely