MATH2400 Assignment 4

Ryan White 44990392

26th of May, 2021

Question 1

Fix an interval [a, b]. Let $\mathcal{C}[a, b]$ be the set of continuous functions on [a, b]. For $f, g \in \mathcal{C}[a, b]$, define a dot product and norm by

$$f \cdot g := \int_a^b f(x)g(x) \, dx,$$
 $||f||_2 := \sqrt{f \cdot f} = \left(\int_a^b |f(x)|^2 \, dx\right)^{1/2}$

(note the absolute value is actually not necessary). The dot product is clearly bilinear and symmetric (you do not need to show this or that \cdot defines a dot product). Show that $\|\cdot\|_2$ is a norm on $\mathcal{C}[a,b]$.

A function $\|\cdot\|: X \to \mathbb{R}$ is defined as being a norm if the following properties hold (each will be proven for $\|\cdot\|_2: \mathcal{C}[a,b] \to \mathbb{R}$ under the respective property):

a. $||f|| \ge 0$, and ||f|| = 0 iff f = 0.

Firstly, take a function $f \in \mathcal{C}[a,b]$, where $a \neq b$. By construction, f is a continuous function on all [a,b]. By proof in Assignment 3, Question 5, $\int_a^b |f(x)| \, dx = 0$ if and only if f(x) = 0 on all [a,b]. It follows that $\int_a^b |f(x)|^2 \, dx = 0$ and $\left(\int_a^b |f(x)|^2 \, dx\right)^{1/2} = 0$ for all f(x) = 0. If any value of f(x) > 0, $f \in [a,b]$, then it follows that the integral (and it's square root) are greater than 0. Since this is of the form of the definition of the norm, $||f||_2 \ge 0$ for all $f(x) \in [a,b]$.

b. ||cf|| = |c| ||f|| for all $c \in \mathbb{R}$ and $f \in X$.

Proof is trivial for c = 0 or f = 0. Assume that $c \neq 0$ and $f \neq 0$, $f \in \mathcal{C}[a, b]$. Then,

$$\begin{aligned} \|cf\|_2 &= \sqrt{cf \cdot cf} \\ &= \left(\int_a^b cf(x) \times cf(x) \, dx \right)^{1/2} \\ &= \left(\int_a^b c^2 |f(x)|^2 \, dx \right)^{1/2} \\ &= \left(c^2 \int_a^b |f(x)|^2 \, dx \right)^{1/2} \\ &= |c| \left(\int_a^b |f(x)|^2 \, dx \right)^{1/2} = |c| \, \|f\|_2 \end{aligned}$$

And so the second property of norms has been shown for $\|\cdot\|_2$ on $\mathcal{C}[a, b]$.

c. $||f + g|| \le ||f|| + ||g||$ for all $f, g \in X$.

If f = 0 and/or g = 0, then the property would hold via previous proven properties. Take $||f + g||_2^2$, where $f, g \in \mathcal{C}[a, b]$. Then,

$$||f + g||^2 = ||f + g|| ||f + g||$$

= $f \cdot f + g \cdot g + 2(f \cdot g)$

By Cauchy-Schwarz inequality (Theorem 8.2.2 in Lebl II), $(f \cdot g) \leq ||f|| ||g||$. So,

$$||f + g||^2 \le f \cdot f + g \cdot g + 2(||f|| ||g||)$$
$$= ||f||^2 + ||g||^2 + 2(||f|| ||g||)$$
$$= (||f|| + ||g||)^2$$

Taking the square root of each side,

$$||f + g|| \le ||f|| + ||g||$$

And so the third property (and all others) has been shown for $\|\cdot\|_2$ being a norm on $\mathcal{C}[a, b]$.

Question 2

Consider the sequence of functions $f_n: [0,1] \to \mathbb{R}$ given by

$$f_n(x) = \begin{cases} 1 - nx & \text{if } 0 \le x \le 1/n, \\ 1 & \text{otherwise,} \end{cases}$$

for n > 0, which converges pointwise to f(x) = 1 as $n \to \infty$. Show that $\{f_n\}_{n=1}^{\infty}$ does not converge to f in the uniform norm, but it does converge using the norm defined in Problem (1). (As a consequence, for infinite dimensional vector spaces, there are norms that are not equivalent.)

A sequence of bounded functions converges uniformly if and only if

$$\lim_{n \to \infty} ||f_n - f||_u = 0$$

The question states that f converges to 1, so the sequence of bounded functions converges uniformly if and only if

$$\lim_{n\to\infty} ||f_n - 1||_u = 0$$

where the uniform norm is defined by $||f||_u = \sup\{|f(x)| : x \in S\}$. Thus,

$$\lim_{n \to \infty} ||f_n - f||_u = \lim_{n \to \infty} \sup \{|f_n - f| : 0 \le x \le 1/n, x \in [0, 1]\}$$

$$= \lim_{n \to \infty} \sup \{|1 - nx - 1| : 0 \le x \le 1/n, x \in [0, 1]\}$$

$$= \lim_{n \to \infty} \sup \{nx : 0 \le x \le 1/n, x \in [0, 1]\}$$

$$\le \lim_{n \to \infty} \sup \{1\}$$

$$= 1$$

with the third last step having the relation that $\frac{nx}{n} \leq 1$, $\forall x \in [0, 1]$. Therefore $\{f_n\}_{n=1}^{\infty}$ does not converge to f in the uniform norm.

Take instead the definition of convergence of a sequence of bound functions, but with the definition of the norm defined in Question 1, as

$$\lim_{n \to \infty} ||f_n - f|| = \lim_{n \to \infty} \sqrt{f_n \cdot f_n - f \cdot f} = \lim_{n \to \infty} \left(\int_a^b |f_n(x)|^2 - |f(x)|^2 \, dx \right)^{1/2}$$

DNF

Question 3

Show that the function defined by

$$f(x,y) = \begin{cases} x & \text{if } y = x^2, \\ 0 & \text{otherwise,} \end{cases}$$

is continuous at 0 with all directional derivatives defined at 0 but f is not differentiable at 0.

Firstly, the function is given by $f: \mathbb{R}^2 \to \mathbb{R}$. To satisfy the question, all three of the following criteria must be proven:

i. f(x, y) is continuous at (0, 0).

f(x, y) is continuous at 0 if

$$\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0)$$

It is clear to see that if $y = x^2$, as $y \to 0$, $x \to 0$ and the converse being true also. It follows that, in this case where $y = x^2$, $f(x, y) \to 0$ as $y, x \to 0$ since f(x, y) = x in this situation. If $y \neq x^2$, then f(x, y) = 0. Therefore, f(x, y) is continuous at 0.

ii. All directional derivatives of f exist at 0.

The directional derivative of a multivariate function at point (x, y) is given by

$$\frac{\partial}{\partial u}f(x,y) = \lim_{h \to 0} \frac{f(x+ah, y+bh) - f(x,y)}{h}$$

where \vec{u} is defined as $\vec{u} = \{a, b\}$ where $a, b \in \mathbb{R}$. Taking the directional derivative of f(x, y) at 0 along the curve $y = x^2 \Rightarrow bh = (ah)^2$,

$$\frac{\partial}{\partial u}f(0,0) = \lim_{h \to 0} \frac{f(ah,bh)}{h}$$
$$= \lim_{h \to 0} \frac{ah}{h} = \lim_{h \to 0} a = a$$

And so the directional derivative exists at 0, with $\vec{u} = (a, 0)$.

iii. f is not differentiable at 0.

f is differentiable if all of it's partial derivatives are continuous. Firstly, assume that all of the partial derivatives of f exist at 0. Take f(x,y) along the curve $y=x^2$. Along this curve, f(x,y)=x at every point. It is analogous to show the value as $f(x,y)=\sqrt{y}$. A contradiction is immediately found for showing continuity of the partial derivative with respect to y at 0:

$$\lim_{(x,y)\to 0} \frac{\partial}{\partial y} f(x,y) = \lim_{(x,y)\to 0} \frac{\partial}{\partial y} \sqrt{y}$$
$$= \lim_{(x,y)\to 0} \frac{1}{\sqrt{y}}$$

This limit is not defined, and so the partial derivative of f with respect to y is not continuous, meaning that f is not differentiable at 0.

Question 4

Using the definition of the derivative and limit, compute the derivative of the determinant function on 2×2 matrices at the identity (which we consider as a subset of \mathbb{R}^4 under the Euclidean norm).

Hint: For a matrix $H = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix}$, consider it close to 0 if $|h_{ij}| < \epsilon$ for all i, j = 1, 2.

Firstly, define a matrix $H = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix}$ such that ||H|| is ϵ close to 0, $\epsilon > 0$. For A to be a derivative of det: $\mathbb{R}^4 \to \mathbb{R}$ at the identity I, the following must be true

$$\lim_{H \to 0} \frac{\|\det(I + H) - \det(I) - AH\|}{\|H\|} = 0$$

By properties of determinants, det(I) = 1. det(I + H) can be computed, with first calculating

$$I + H = \begin{bmatrix} 1 + h_{11} & 0 + h_{12} \\ 0 + h_{21} & 1 + h_{22} \end{bmatrix}$$

$$= \begin{bmatrix} 1 + h_{11} & h_{12} \\ h_{21} & 1 + h_{22} \end{bmatrix}$$

$$\Rightarrow \det(I + H) = (1 + h_{11})(1 + h_{22}) - h_{12}h_{21} = 1 + h_{11} + h_{22} + h_{11}h_{22} - h_{12}h_{21}$$

$$\Rightarrow \det(I + H) - \det(I) = 1 + h_{11} + h_{22} + h_{11}h_{22} - h_{12}h_{21} - 1$$

$$= h_{11} + h_{22} + h_{11}h_{22} - h_{12}h_{21}$$

Now, expanding on the norms in the above limit gives

$$\lim_{H \to 0} \frac{\sqrt{(\det(I+H) - \det(I) - AH)^2}}{\sqrt{{h_{11}}^2 + {h_{12}}^2 + {h_{21}}^2 + {h_{22}}^2}} = 0$$

$$\Rightarrow \lim_{H \to 0} \frac{\sqrt{(h_{11} + h_{22} + {h_{11}}{h_{22} - h_{12}{h_{21}} - AH)^2}}}{\sqrt{{h_{11}}^2 + {h_{12}}^2 + {h_{21}}^2 + {h_{22}}^2}} = 0$$

For the left hand side to satisfy being zero, take

$$0 = h_{11} + h_{22} + h_{11}h_{22} - h_{12}h_{21} - AH$$

$$\Rightarrow AH = h_{11} + h_{22} + h_{11}h_{22} - h_{12}h_{21}$$

So for some example 2×2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, the linear operator (derivative of the determinant function at the identity) A would correspond to the 'function,'

$$A = a + d + ad - bc$$

Question 5

Let S denote the set of sequences whose series are absolutely convergent. We define two norms on S by

$$\|\{a_n\}_{n=0}^{\infty}\|_1 = \sum_{n=0}^{\infty} |a_n|, \qquad \|\{a_n\}_{n=0}^{\infty}\|_{\sup} = \sup\{|a_n|\}_{n=0}^{\infty}.$$

(Note that S is the set of sequences such that $||a||_1 < \infty$. The sup-norm is sometimes called the ∞ -norm.) Define a linear operator $\Sigma \colon S \to \mathbb{R}$ by

$$\Sigma(\{a_n\}_{n=0}^{\infty}) = \sum_{n=0}^{\infty} a_n$$

(i) Compute the operator norm of Σ using $\|\cdot\|_1$.

By the definition of the operator norm,

$$||A|| = \sup\{||Ax|| \mid x \in X \text{ s.t. } ||x|| = 1\}$$

For the operator \sum on S,

$$\left\| \sum \right\|_{S} = \sup \left\{ \left\| \sum_{n=1}^{\infty} a_{n} \right\| \mid a_{n} \in a \in S, \|a_{n}\| = 1 \right\}$$

$$= \sup \left\{ \frac{\left\| \sum \{a_{n}\} \right\|}{\left\| \{a_{n}\} \right\|} \right\}$$

$$= \sup \left\{ \frac{\left| \sum \{a_{n}\} \right|}{\sum \left| \{a_{n}\} \right|} \right\}$$

Due to a proposition in absolute convergence of series, $|\sum a_n| \leq \sum |a_n|$ due to the possibility of negative values of a_n . Therefore,

$$\left\| \sum \right\|_{S} = \sup \left\{ \frac{\left| \sum \{a_n\} \right|}{\sum |\{a_n\}|} \right\} \le \sup\{1\}$$
< 1

(ii) Show that the operator norm of Σ using $\|\cdot\|_{\sup}$ is unbounded.

$$\left\| \sum \right\|_{\sup} = \sup \left\{ \left\| \sum_{n=0}^{\infty} a_n \right\|_{\sup} |a_n \in a \in S, ||a_n|| = 1 \right\}$$
$$= \sup \left\{ \frac{\sup \left| \sum_{n=0}^{\infty} \{a_n\} \right|}{\sup \{|a_n|\}} \right\}$$

Since $\{a_n\}$ is convergent, $\sup\{|a_n|\} = A \in \mathbb{R}^+$, and

$$\left\| \sum \right\|_{\sup} = \sup \left\{ \frac{\sup \left| \sum_{n=0}^{\infty} \{a_n\} \right|}{A} \right\}$$
$$= \frac{\sup \left| \sum_{n=0}^{\infty} \{a_n\} \right|}{A}$$
$$= \frac{nA}{A} = n$$

But since $n \to \infty$, the operator norm using $\|\cdot\|_{\sup}$ is unbounded.