evaluation metrics

confidence intervals

 For large samples, a good approximation is to assume error is normally distributed

CI for Error =
$$E \pm Z_{\alpha} \sqrt{\frac{E(1-E)}{N}}$$

- E = error rate
- □ N = sample size

CI Width	80%	90%	95%	99%
Z_{α}	1.28	1.64	1.96	2.58

confusion matrix

for binary classification

	Predicted	Predicted	
	True	False	Ni walan af tiwasa
Actually	True	False	Number of times algorithm confuses
True	Positive (TP)	Negative (FN)	true with false
Actually	False	True	
False	Positive (FP)	Negative (TN)	

for multiclass

class skewportion of positive samples of all

ROC curves: binary classification

aspects being plotted:

x-axis: FPR

y-axis: TPR

note:

"... rate"'s denominator is always the number of positive / negatives samples!

best possible performance:

true positive = 1, false positive = 0, predictions all correct

creating ROC curves

- Approach
 - Sort output values for test set
 - Locate boundaries between examples with different classifications
 - Compute the FPR and TPR for each boundary
 - □ Plot each (FPR, TPR) point
 - Connect the points

"boundaries" means threshold

set of best classifiers: convex hull

"never optimal" because:

there's always interpolation methods to create a model on the convex hull

- Two (FPR,TPR) points
 - M1 (0.0,0.6)
 - M2 (0.8,1.0)
- □ Goal: FPR = 0.2, TPR = 0.7
- Flip biased coin
 - Select M1 with p = 0.75
 - Select M2 with p = 0.25

False Positive Rate

AUC: area under the ROC curve:

AUC is the Wilcoxon-Mann-Whitney statistic:

Probability that any random positive example is ranked ahead of any random negative example

problem: depends on skew

suppose we want to focus on detecting positives:

if there's lots and lots of negative examples, low FPR could also mean lots of FPs e.g. not good in cancer diagnosis

PR curves

aspects being plotted:

x-axis: recall = TPR

y-axis: precision = TP / (TP + FP)

• best possible performance:

• !! precision interpolation is counterintuitive !!

because precision's denominator does not only contain objective values

correlation between precision & skew

unachievable region

for probability estimation: calibration

motivation: make predicted probability close to reality

measurement:

calibration method: for example, post process predicted scores

evaluating real-valued outputs

- root-mean square error
- mean absolute error
- relative error

□ Relative error =
$$\frac{\sum_{i=1}^{N} (f(x_i) - y_i)^2}{\sum_{i=1}^{N} (\bar{y} - y_i)^2}$$

- 1 = no better than "always predict mean";
- 0 = perfect prediction