BAMS1623 DISCRETE MATHEMATICS

Tutorial 6

1. Let *R* be the relation whose digraph is given as follow:

- i) List all paths of length 1.
- ii) List all paths of length 3 starting from vertex a.
- iii) Find a cycle starting at vertex d.
- iv) Draw a digraph of R^2 .
- v) Find $\mathbf{M}_{R^{\infty}}$ and R^{∞} .
- 2. Let *R* be the relation whose digraph is given as below. If π_1 : 2, 3, 5, 6, 7 and π_2 : 7, 5, 6, 4, find the composition $\pi_2 \circ \pi_1$.

- 3. Determine whether the given relation on $A = \{1, 2, 3, 4\}$ is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive. Explain your answers.
 - i) $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)\}$
 - ii) $R = \{(1, 3), (1, 1), (3, 1), (1, 2), (3, 3), (4, 4)\}$
 - iii) $R = \emptyset$
 - iv) $R = \{(1, 2), (1, 3), (3, 1), (1, 1), (3, 3), (3, 2), (1, 4), (4, 2), (3, 4)\}$

BAMS1623 DISCRETE MATHEMATICS

4. Let $A = \{w, x, y, z\}$. Determine whether the relation R whose matrix \mathbf{M}_R given below is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive. Explain your answers.

i)
$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

ii)
$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

5. Let $A = \{1, 2, 3, 4, 5\}$. Determine whether the relation R whose digraph is given below is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive. Explain your answers.

- 6. Let *R* be the following symmetric relation on the set $A = \{1, 2, 3, 4, 5\}$ where $R = \{(1, 2), (2, 1), (3, 4), (4, 3), (3, 5), (5, 3), (4, 5), (5, 4), (5, 5)\}$. Draw the graph of *R*.
- 7. Consider the graph of a symmetric relation R on $A = \{1, 2, 3, 4, 5, 6, 7\}$ is shown as follows. Determine R.

