Введение в теорию вероятностей

Лектор: проф. Булинский Александр Вадимович 1 октября 2025 г.

Содержание

1	Лекция 2										3
	1.1	Дискретные вероятностные пространства									4

1 Лекция 2

Определение. Множество Ω называется множеством элементарных исходов. Множество $A \in 2^{\Omega}$ назывется событием.

Определение. Множество $\mathcal{A} \in 2^{\Omega}$ такое, что $\mathcal{A} \neq \varnothing$ называется алгеброй, если

1. $\Omega \in \mathcal{F}$

2.
$$A \in \mathcal{A} \Rightarrow \bar{A} = \Omega \setminus A \in \mathcal{A}$$

3.
$$A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$$

Утверждение. (Следствия из определения алгебры)

1.
$$\Omega \in \mathcal{A}$$
, так как для непустого $A \in \mathcal{A} : \bar{A} \in \mathcal{A} \Rightarrow A \cup \bar{A} = \Omega \in \mathcal{A}$

2.
$$\varnothing \in \mathcal{A}$$
, так как $\Omega \in \mathcal{A} \Rightarrow \bar{\Omega} = \varnothing \in \mathcal{A}$

3.
$$A_1, \ldots, A_n \in \mathcal{A} \Rightarrow \bigcup_{i=1}^n A_i \in \mathcal{A}$$

4.
$$A \cap B \in \mathcal{A}$$
, если $A, B \in \mathcal{A}$, так как $A \cap B = \overline{\overline{A} \cup \overline{B}}$

5.
$$A_1, \ldots, A_n \in \mathcal{A} \Rightarrow \bigcap_{i=1}^n A_i \in \mathcal{A}$$

6.
$$A \setminus B \in \mathcal{A}$$
, так как $A \setminus B = A \cap \bar{B}$

Определение. Множество $\mathcal{F} \in 2^{\Omega}$ такое, что $\mathcal{F} \neq \emptyset$ называется σ -алгеброй, если

1. $\Omega \in \mathcal{F}$

2.
$$A \in \mathcal{F} \Rightarrow \bar{A} \in \mathcal{F}$$

3.
$$\forall i \in \mathbb{N} : A_i \in \mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} A_i \in \mathcal{F}$$

 $\mathbf{3}$ амечание. \mathcal{F} - σ -алгебра $\Rightarrow \mathcal{F}$ - алгебра.

Замечание. Наименьшая по включению σ -алгебра, содержащая M, обозначается $\sigma\{M\} = \bigcap_{\alpha} g_{\alpha}$, где g_{α} - σ -алгебра, содержащая все элементы M.

Определение. Мерой на системе множеств U называется функция $\mu:U\to [0,+\infty]$ такая, что

1.
$$\forall n : A_n \in U$$

2.

$$\bigcup_{n=1}^{\infty} A_n \in U$$

- 3. $\forall i \neq j : A_i \cap A_j = \emptyset$
- 4. Выполнено свойство счетной аддитивности (такая мера называется счетноаддитивной):

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n)$$

Замечание. Если U - σ -алгебра, то условие

$$\bigcup_{n=1}^{\infty} A_n \in U$$

можно упустить.

Пример. (Мера Дирака)

Пусть $B \subset S$

$$\delta_x(B) = \begin{cases} 1, & x \in B, \\ 0, & x \notin B \end{cases}$$

Упражнение: доказать, что $\delta_x(.)$ является мерой на 2^S

Определение. Мера P на пространтсве (Ω, \mathcal{F}) такая, что $P(\Omega) = 1$ называется вероятностью.

1.1 Дискретные вероятностные пространства

Определение. Пусть $\Omega = \{\omega_n\}_{n \in J}$ не более чем счетно, $\mathcal{F} = 2^{\Omega}$, причем

$$P_n = P(\{\omega_n\}) \ge 0, \ \sum_{n \in J} P_n = 1$$

Пусть $A \subset \Omega$, определим вероятность так:

$$P(A) = \sum_{k:\omega_k \in A}^n P_k$$

такое вероятностное пространство называется дискретным.

Упражнение. Доказать, что определенное выше P является вероятностью.

Определение. (Классическое определение вероятности)

Пусть $|\Omega|=N<\infty$ и положим $P_k=P(\{\omega_k\})=\frac{1}{N}.$ Тогда

$$P(A) = \sum_{k:\omega_k \in A}^n P_k = \frac{|A|}{N} = \frac{|A|}{|\Omega|}$$

Определение. Система M подмножеств множества S называется π -системой, если $A,B\in M\Rightarrow A\cap B\in M$

Определение. Сисмтема M подмножеств множества S называется λ -системой, если

- 1. $S \in M$
- 2. $A, B \in M \Rightarrow B \setminus A \in M$
- 3. $A_1, A_2, \dots \in M$ и $A_n \nearrow A$, то $A \in M$. $(A_n \nearrow A \Leftrightarrow A_n \subset A_{n+1}, \ \forall n \in \mathbb{N} \ \text{и} \ A = \bigcup_{n=1}^{\infty} A_n)$

Теорема. Система $\mathcal F$ подмножеств S является σ -алгеброй $\Leftrightarrow \mathcal F$ одновременно π -система и λ -система.

Доказательство.

- (\Rightarrow) : По следствию из определения алгебры: $A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$, значит, \mathcal{F} является π -системой. Теперь проверим условия λ -системы:
 - 1. $S \in \mathcal{F}$ выполнено по проеделению алгебры.
 - 2. $A, B \in \mathcal{F}, A \subset B$, причем $B \setminus A = B \cap \bar{A} \Rightarrow B \setminus A \in \mathcal{F}$.
 - 3. $A_1,A_2,\dots\in\mathcal{F},\ A=\bigcup_{n=1}^\infty A_n\Rightarrow$ по свойству σ -алгебры $A\in\mathcal{F}.$
- (\Leftarrow) : Проверим определению σ -алгебры:
 - 1. $S \in \mathcal{F}$ выполнено по первому свойству λ -системы.
 - 2. $S \in \mathcal{F}, \ A \subset S \Rightarrow S \setminus A \in \mathcal{F}$ выполнено по второму свойству λ -системы.
 - 3. Пусть $B_1, B_2, \dots \in \mathcal{F}, \ A_m := \bigcup_{n=1}^m B_n$ при этом

$$A_m = \bigcup_{n=1}^m B_n = \overline{\left(\bigcap_{n=1}^m \overline{B}_n\right)} \in \mathcal{F} \Rightarrow A_m \nearrow \bigcup_{n=1}^\infty B_n \Rightarrow \bigcup_{n=1}^\infty B_n \in \mathcal{F}$$

Теорема. Пусть M - π -система, D - λ -система и $M \subset D$. Тогда

$$\sigma\{M\} = \lambda\{M\} \subset D$$

5