

DIVISOR DE TENSIÓN Y DIVISOR DE CORRIENTE

DIVISOR DE TENSIÓN

DIVISOR DE CORRIENTE

PUENTE DE WHEATSTONE

Analizando la tensión en los nodos A y B, se obtiene:

$$U_{AB} = U_A - U_B = Uf \cdot \left(\frac{R_2}{R_1 + R_2} - \frac{R_4}{R_3 + R_4}\right)$$

Si las R son iguales, el paréntesis vale $\it cero$ y $\it U_{\it AB}=0$

Dicha condición también puede ocurrir si se cumple que: $R_2R_3=R_1R_4$

el puente está en equilibrio y éste *no depende* de *Uf*

Por lo tanto, si se cumple dicha condición de equilibrio y tres de las resistencias del puente fuesen conocidas, es posible calcular la resistencia restante (incógnita). Si R_2 es la incógnita, despejando resulta:

$$R_2 = \frac{R_1 R_4}{R_3}$$

PUENTE DE WHEATSTONE

Si ahora se supone que todas las R son iguales, pero una de ellas varía en un factor x, tal que

$$x = \frac{\Delta R}{R}$$

la situación de equilibrio desaparece.

Luego, operando en la expresión de U_{AB} resulta

$$U_{AB} = \frac{Uf}{4} \frac{x}{\left(1 + \frac{x}{2}\right)}$$

esta relación no es lineal

Pero si x << 1 se puede aproximar a

$$U_{AB} \approx \frac{Uf}{4} x$$

PUENTE DE WHEATSTONE

Si ahora dos de las R varían en un factor x, resulta

$$U_{AB} = \frac{Uf}{2} \frac{x}{\left(1 + \frac{x}{2}\right)}$$

Ahora, si x << 1 $U_{AB} \approx \frac{Uf}{2}x$

Y la sensibilidad del puente se duplica

PUENTE DE WHEATSTONE

Si finalmente, las cuatro R varían en un factor x, resulta

$$U_{AB} = Uf \cdot x$$

Esta relación es lineal independientemente del valor de x

Y la sensibilidad del puente se duplica respecto del caso anterior

VOLTÍMETRO Y AMPERÍMETRO

Clasificación (punto de vista tecnológico)

Amperímetro elemental (elemento básico, derivado del galvanómetro)

Voltímetro elemental (elemento básico, derivado del conversor A/D)

A partir de cualquiera de ellos puede construirse el otro

VOLTÍMETRO Y AMPERÍMETRO

En general, los valores de tensiones y corrientes a medir serán completamente arbitrarios y de valores que pueden superar la capacidad máxima (corriente y tensión) de los instrumentos elementales, por lo cual se hace necesario modificar los mismos para adaptarlos a dichas condiciones de funcionamiento.

En la electrotecnia se puede definir el *alcance* o *rango* de un instrumento de medición como el valor máximo que es capaz de medir sin sobrepasar los valores admisibles de tensión y corriente, manteniendo además valores confiables en sus correspondientes indicaciones.

Por lo tanto, a partir de los instrumentos elementales vistos, se van a plantear las modificaciones necesarias para conseguir ampliar el alcance de los mismos.

Para ello se utilizarán los conceptos de divisor de tensión y divisor de corriente ya vistos.

VOLTÍMETRO Y AMPERÍMETRO Alcance

Amperímetro analógico

I_{D3} R_{D3}

Voltímetro analógico

Resistencia multiplicadora

¿Cómo se calculan las resistencias para obtener diferentes alcances?

VOLTÍMETRO Y AMPERÍMETRO Alcance

Lineamientos para el cálculo de los alcances

Al utilizar un galvanómetro (o amperímetro elemental) para construir un instrumento de diferentes alcances, debe tenerse en cuenta la *corriente máxima* que éste debe soportar.

Por lo tanto, para el caso de un amperímetro con diferentes alcances, la mencionada corriente máxima y la resistencia interna R_A del galvanómetro *definirán una tensión* que se tomará como referencia para el cálculo de las *resistencias derivadoras* R_D de los respectivos alcances.

En el caso del voltímetro construido a partir del galvanómetro, para la determinación de las *resistencias* $multiplicadoras R_M$ de los distintos alcances se tendrá en cuenta la máxima corriente admitida por el amperímetro elemental y la correspondiente tensión máxima de cada alcance.

VOLTÍMETRO Y AMPERÍMETRO Alcance

Voltímetro digital

Resistencia multiplicadora

Amperimetro digital

$$\begin{array}{c|c} + U_{V} \\ \hline \\ R_{D} \\ \hline \\ R_{D} \\ \hline \end{array}$$

Resistencia derivadora

Las resistencias para obtener diferentes alcances se calculan teniendo en cuenta los criterios anteriores, pero destacando ahora que la limitación del conversor A/D (o voltímetro elemental) es su capacidad de soportar una tensión máxima.

MEDICIONES Y ERRORES

^(*) Se le da este nombre a la más pequeña fracción de la magnitud a medir que es detectable en nuestro instrumento o sistema de medida. En el caso de los instrumentos digitales su determinación es inmediata: es el digito menos significativo. En los analógicos corresponderá a la mas pequeña fracción de división que sea posible determinar.

MEDICIÓN DE RESISTENCIAS CON VOLTÍMETRO Y AMPERÍMETRO

- > Se basa en la ley de Ohm, utilizando instrumentos reales.
- > Dadas las características de los instrumentos reales, los valores de tensión y corriente medidos no siempre se corresponden con la tensión y corriente presentes en la resistencia a medir.
- ➤ En consecuencia, estas mediciones presentarán *errores* que dependerán de diferentes factores, como se verá.
- ➤ Es importante cuantificar dichos errores, dado que nos permitirán evaluar cuan *buena* es la medición que estamos realizando (incertidumbre).

MEDICIÓN DE RESISTENCIAS CON VOLTÍMETRO Y **AMPERÍMETRO**

Conexión corta

$$R_{\scriptscriptstyle m} = rac{U_{\scriptscriptstyle m}}{I_{\scriptscriptstyle m}}$$
 pero $R_{\scriptscriptstyle X} = rac{U_{\scriptscriptstyle m}}{I_{\scriptscriptstyle X}} = rac{U_{\scriptscriptstyle m}}{I_{\scriptscriptstyle m}}$

pues, aplicando LKC en el nodo, resulta

$$Im = Iv + Ix$$

Dado que Rx y Rv están en paralelo

$$R_m = \frac{R_V R_X}{R_V + R_X}$$

Y finalmente queda

$$R_{\chi} = \frac{R_{m}R_{v}}{R_{v} - R_{m}}$$

Los errores absoluto y relativo, Respectivamente, son

$$\Delta R=R_m$$
 - $R_X=-rac{{R_m}^2}{R_V$ - R_m} $\qquad \qquad \qquad e_R=rac{\Delta R}{R_X}=-rac{R_m}{R_V}$

$$e_R = \frac{\Delta R}{R_X} = -\frac{R_m}{R_V}$$

MEDICIÓN DE RESISTENCIAS CON VOLTÍMETRO Y AMPERÍMETRO

Conexión larga

pues
$$Um = U_A + Ux$$

Luego
$$R_m = R_A + R_X$$

$$R_X = R_A - R_m$$

Finalmente:

$$\Delta R = R_m - R_X = R_A$$

$$e_R = \frac{\Delta R}{R_X} = \frac{R_A}{R_m - R_A} \simeq \frac{R_A}{R_m}$$

pues
$$R_A << R_m$$

¿Cuál es la conexión más conveniente?

MEDICIÓN DE RESISTENCIAS CON VOLTÍMETRO Y AMPERÍMETRO

Se pueden plantear las expresiones de los errores relativos de ambas conexiones

$$e_{L} = \frac{R_{A}}{R_{m}}$$

$$e_{C} = -\frac{R_{m}}{R_{V}}$$

$$|e_{L}| = |e_{C}|$$

$$\frac{R_{m}}{R_{V}} = \frac{R_{A}}{R_{m}}$$

Estos resultados muestran cuál de las dos conexiones resulta más conveniente (menor error relativo) en función de las resistencias internas de los instrumentos respecto de la resistencia a medir.

MEDICIÓN DE POTENCIA

VATÍMETRO O WÁTTMETRO

$$P_{W} = U_{ef}I_{ef}coslpha_{ui}$$

Símbolo

Símbolo "antiguo"

MEDICIÓN DE POTENCIA EN SISTEMAS TRIFÁSICOS

Si el sistema es de **generador simétrico y equilibrado** y la **carga es equilibrada y en estrella**, basta tomar la lectura de un vatímetro **conectado entre una fase y neutro** y multiplicarla por 3:

$$P = 3 \ U_{efFase} I_{efFase} cos \alpha_{ui}$$

Ejercicio:

Si el sistema es de **generador simétrico y equilibrado** y la carga es **equilibrada y en triángulo**, ¿se puede determinar **P** en forma simple como en el caso anterior?

UR US UT Tensiones de fase

URS UST UTR Tensiones de línea

MEDICIÓN DE POTENCIA EN SISTEMAS TRIFÁSICOS

Para el caso general de medición en sistemas trifásicos se utiliza el **Método de Aron**^(*), el cual se puede demostrar mediante el **teorema de Blondel**^(**):

"Para medir la potencia activa total de un sistema de **N conductores** basta utilizar **N-1 vatímetros** y sumar las lecturas, cada una con su signo".

Los vatímetros tienen que estar correctamente conectados, lo que significa que debe existir un punto común de conexión entre todos los wáttmetros y se deben respetar las polaridades instantáneas en el circuito respecto de cada instrumento.

^(*)**Hermann Aron** (Polonia), inventó el wattimetro y patentó el primer medidor de energía eléctrica en la década de 1880.

^(**) André Blondel (Francia), publicó la demostración del teorema y la validez del método de medición en 1893.

MEDICIÓN DE POTENCIA EN SISTEMAS TRIFÁSICOS

Circuito trifásico con neutro (de impedancia cero).

Al tener 4 conductores (N) se necesitan 3 vatímetros (N-1):

$$P_{WR} = U_R I_R \cos \alpha_R$$

$$P_{WS} = U_S I_S \cos \alpha_S$$

$$P_{WT} = U_T I_T \cos \alpha_T$$

Conductor neutro: punto común de conexión

Finalmente
$$P_T = P_{WR} + P_{WS} + P_{WT}$$

 $Y las P_W son positivas pues los \alpha \leq \pi/2 siempre$

MEDICIÓN DE POTENCIA EN SISTEMAS TRIFÁSICOS

Si el sistema es de tres hilos (no hay neutro) sólo se necesitan 2 vatímetros (N-1)

$$P_{W1} = U_{RT}I_R \cos \alpha_{U_A}$$

$$P_{W2} = U_{ST}I_S \cos \alpha_{U_A}$$

$$P_{W2} = U_{ST}I_S \cos \alpha_U$$

 \mathcal{U}_{RT} \mathcal{U}_{ST} Tensiones de línea i_R i_S i_T Corrientes de línea

Ahora conductor de fase T: punto común de conexión

URT!

Finalmente
$$P_T = P_{W1} + P_{W2}$$

con los signos que correspondan

¿cuáles son?

RESUMEN

- > Repaso de divisor de tensión, divisor de corriente y puente de Wheatstone
- > Aplicaciones del puente de Wheatstone: medición y determinación de la variación de resistencias
- > Construcción de voltímetros y amperímetros a partir de medidores elementales
- Concepto de mediciones y errores
- > Medición de resistencias con voltímetro y amperímetro y cálculo de los errores de medida
- Medición de potencia: wáttmetro
- ➤ Medición de potencia en sistemas trifásicos

BIBLIOGRAFÍA

- Circuitos eléctricos. Parte 1. Deorsola-Morcelle. Cap 2.
- Circuitos eléctricos. Parte 2. Morcelle-Deorsola. Cap 1 y 3.
- Circuitos eléctricos. Nilsson. Cap 3.
- Circuitos eléctricos y magnéticos. Spinadel. Cap 9.
- > Análisis básico de circuitos eléctricos. Johnson-Hilburn-Johnson.Cap 2.