

AD-A071 228

NAVY UNDERWATER SOUND LAB NEW LONDON CT  
METHOD FOR OBTAINING STATISTICAL ACCELERATION DATA IN A DESTROY--ETC(U)  
OCT 64 6 E CHRISTENSEN, D A NICHOLS  
USL-TM-933-355-64

F/G 14/2

UNCLASSIFIED

NL

| OF |  
ADA  
071228



END  
DATE  
FILED  
8-79  
DDC



002226

AD-A071228

DDC FILE COPY

933-355-64

002226

UNCLASSIFIED

**LEVEL II**

MO Project

Project No. 4

Purchaser Code 1622

COPY NO. 12

USL Problem  
No. 1-650-01-00METHOD FOR OBTAINING STATISTICAL  
ACCELERATION DATA IN A DESTROYER AT SEA.

By

(10) Glendon E. Christensen

and

(9) Donald A. Nichols

USL Technical Memorandum No. 933-355-64

(11) 19 October 1964

(12) 24p.

JUL 16 1979

F

## INTRODUCTION

(14) USL-TM-933-355-64

In the design of hoist systems, towlines, and towed bodies for variable depth sonar, it is necessary to have quantitative data on the forces acting on VDS components. These data are especially necessary in designing large VDS systems where the forces on towed bodies and in towlines may be as high as 75,000 pounds.

Among the significant forces are those that are caused by vertical ship accelerations, which can be sensed by suitable accelerometers. If statistical accelerometers on destroyers are used to obtain data in the North Atlantic, a statistical presentation of the accumulated data over a year's time can be made to form a reasonably accurate picture of vertical accelerations to be expected.

The purpose of this technical memorandum is to describe accelerometer equipment and to explain how the data should be taken and recorded.

## DESCRIPTION OF EQUIPMENT AND INSTALLATION

Equipment

Each statistical-accelerometer assembly consists of two major components: (1) the sensor unit and (2) the counter-and-power-supply unit. The assembly is shown by Figure 1.

The vertical acceleration sensor unit is the Giannini Controls Corporation Model 2432; its size is about 3 inches x 1.3 inches x 1.4 inches. This unit senses instantaneous values of positive acceleration that exceed these 4 thresholds: 1.20g, 1.35g, 1.50g, and 1.65g.

15

|                             |  |
|-----------------------------|--|
| DISTRIBUTION STATEMENT A    |  |
| Approved for public release |  |
| Distribution Unlimited      |  |

933-356

-1-

Oct 64  
254 200 LB

USL Tech. Memo.  
No. 933-355-64

The counter-and-power-supply unit has an approximate size of 8 inches wide x 17 inches long x 8 inches high and an approximate weight of 35 pounds, including 45 feet of MCOS-6 cable. The multiple counter is the counting component of Giannini Controls Corporation Model 2432 statistical accelerometer. It records, on 4 electromechanical counters, the number of times the sensor experiences the positive accelerations that exceed the set thresholds. Each counter records the count for a particular threshold. The power supply converts the 115-volt AC source to 38 volts DC at 1.5 amps and requires about 100 watts input.

#### Operation

An example of how bow acceleration could vary with time is shown in Figure 2. The X's on the curve show the times that acceleration thresholds are counted by the multiple counter. During the period of time shown, counter #1 registered 4 instances where the acceleration exceeded the threshold of 1.20g; counter #2 registered 3 instances where the acceleration exceeded the threshold of 1.35g; counter #3 registered 3 instances where the acceleration exceeded the threshold of 1.50g; and counter #4 registered 2 instances where the acceleration exceeded the threshold of 1.65g. Counters located amidships and at the stern behave similarly.

#### Installation

The three vertical acceleration sensor units must be mounted vertically and rigidly. They should be located in: (1) the after-steering ram room at the waterline and near the aft perpendicular; (2) the compartment at the midship location, and (3) in the bow at the waterline and near the forward perpendicular.

Each of the 3 counter-and-power-supply units should be mounted on a shelf within a 45-foot cable length of its sensor and such that the 4 counters of each unit can be easily read. It should also be located within a 25-foot cable length of a 115-volt AC power outlet.

The 2 units at each of the 3 locations are supplied and installed by USNUSL. Figure 3 diagrammatically shows an installation; figures 4 and 5 are photographs of the 2 units that were installed in the USS MOALE (DD-693). The MOALE installation was for 2 months of use only; the clamped sensor is not typical of a 1-year installation.

#### INSTRUCTIONS

| INSTRUCTIONS                                                                                                                            | Dist. | Avail and/or special |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|
| Accelerometer Data (Bow, Midship, Fantail):<br>1. Connect the counter-and-power-supply unit to a 115-volt AC source.<br>(See figure 1). | A     | Codes                |

#### Accelerometer Data (Bow, Midship, Fantail):

1. Connect the counter-and-power-supply unit to a 115-volt AC source.  
(See figure 1).

USL Tech. Memo.  
No. 933-355-64

2. Turn counting unit switch to "ON" position upon leaving port. (The light above the switch will then be on).

Note: The counting unit should run continuously throughout the test; do not turn it off or permit the AC source to be disconnected. If power failure occurs, record the duration of same on the proper data sheet or sheets.

3. Record simultaneously, on the data sheets provided, the accelerometer readings and other required data every 4 hours, on the hour, during the time at sea. See figures 6, 7, and 8 for specimen and blank data sheets for use in recording acceleration data for the fantail, midship, and bow locations.

4. Turn counter-and-power-supply unit switch to "OFF" position upon entering port.

#### Bridge Data

1. Record bridge data once every 4 hours, on the hour, simultaneously with recording data from each counter-and-power-supply unit. Fill in bridge data sheet (see Figure 9) as explained below:

- a. ship speed - obtain from most accurate and reliable source.
- b. direction of sea - make best estimate in degrees relative to ship's heading.
- c. wave height - make best estimate from observation at ship's fantail.
- d. wind direction - read directly from indicator in degrees relative to ship's heading.
- e. wind speed - read directly from indicator.
- f. ship's position - determine approximate position to nearest minute.
- g. ship's heading - give in degrees, true.

2. Bridge data are to be derived from readings taken at the time of reading and not as an average over the previous 4-hour period.

USL Tech. Memo.  
No. 933-355-64

REMARKS

Blank data forms USNUSL-917, USNUSL-917A, USNUSL-917B, and USNUSL-917C will be supplied by USNUSL. One of the writers will contact each ship about once every two months to collect the data and to discuss any problems that may occur.

*Glendon E. Christensen*  
GLENDON E. CHRISTENSEN  
Mechanical Engineer

*Donald A. Nichols*

DONALD A. NICHOLS  
Senior Project Engineer

USL Tech. Memo.  
No. 933-355-64



Figure 1 to USL Tech. Memo. No. 933-355-64

USL Tech. Memo.  
No. 933-355-64



Figure 2 to USL Tech. Memo. No. 933-355-64

INSTALLATION ARRANGEMENT



FIG. 3 TO USL TECH. MEMO 933-355-64



USL Tech Memo No. 933-385-64

Official Photograph

U. S. Navy Underwater Sound Laboratory  
NP24 - 24837 - 10 - 64



USL Tech Memo No. 933-365-64

U. S. Navy Underwater Sound Laboratory  
NP24 - 24838 - 10 - 64

Official Photograph

PANTAIL DATA FOR ACCELEROMETER  
UN+USS-9178

SHIP

| DATE<br>YEAR 1965 | TIME<br>OF DAY<br>(LOCAL) | MEASURING PERIOD    |         |            |      |         |            | ACCELERATION COUNTER |         |            |    |         |            | PERSON TAKING<br>DATA |
|-------------------|---------------------------|---------------------|---------|------------|------|---------|------------|----------------------|---------|------------|----|---------|------------|-----------------------|
|                   |                           | DURATION<br>(Hours) | READING | DIFFERENCE | #1   | READING | DIFFERENCE | #2                   | READING | DIFFERENCE | #3 | READING | DIFFERENCE |                       |
| 12 FEB            | 2400                      | —                   | 9726    |            | 6856 | 3964    |            | 3894                 |         |            |    |         |            |                       |
| 13 FEB            | 0400                      | 4                   | 9734    |            | 6863 | 3965    |            | 3894                 |         |            |    |         |            |                       |
| 13 FEB            | 0800                      | 4                   | 9759    |            | 6889 | 3970    |            | 3896                 |         |            |    |         |            |                       |
| 13 FEB            | 1200                      | 4                   | 9782    |            | 6908 | 3976    |            | 3897                 |         |            |    |         |            |                       |
| 13 FEB            | 1608                      | 4                   | 9782    |            | 6908 | 3976    |            | 3897                 |         |            |    |         |            |                       |
| 13 FEB            | 2000                      | 4                   | 9782    |            | 6908 | 3976    |            | 3897                 |         |            |    |         |            |                       |
| 13 FEB            | 2400                      | 4                   | 9782    |            | 6908 | 3976    |            | 3897                 |         |            |    |         |            |                       |

(SPECIMEN DATA SHEET)

MIDSHIP DATA FOR ACCELEROMETER  
U.S.N.U.S.L.-817A

LIBRARY DATA

270

ACCELERATION COUNTER

BOW DATA FOR ACCELEROMETER  
U.S. NAVY 1917

BUON UALIA

270

ACCELERATION COUNTER MEASURING PERIOD

BRIDGE DATA FOR ACCELEROMETER  
U.S.N. U.S.-97C

UG-97C

| DATE<br>YEAR 196 <u>5</u> | TIME<br>OF<br>DAY<br>(LOCAL) | SEA                                 |                             |                                     | RELATIVE WIND    |                                    |                                     | SHIP POSITION |      |             | SHIP<br>COURSE<br>(True) | PERSON TAKING<br>DATA |
|---------------------------|------------------------------|-------------------------------------|-----------------------------|-------------------------------------|------------------|------------------------------------|-------------------------------------|---------------|------|-------------|--------------------------|-----------------------|
|                           |                              | DIRECTION<br>(Degrees-<br>Relative) | WAVE<br>HEIGHT<br>(Fathoms) | DIRECTION<br>(Degrees-<br>Relative) | SPEED<br>(Knots) | LATITUDE<br>(Degrees-<br>Relative) | LONGITUDE<br>(Degrees-<br>Relative) |               |      |             |                          |                       |
| 2 FEB                     | 2400                         | 14                                  | 305°                        | 15°                                 | 300              | 33                                 | 34° - 47' N                         | 73° - 47' W   | 024  | ENS. J. DOE |                          |                       |
| 3 FEB                     | 0400                         | 11                                  | 350                         | 18°                                 | 020              | 38                                 | 35° - 24' N                         | 73° - 22' W   | 024  | ENS. J. DOE |                          |                       |
| 3 FEB                     | 0800                         | 10                                  | 225°                        | 25°                                 | 330              | 50                                 | 36° - 14' N                         | 72° - 54' W   | 015° | ENS. J. DOE |                          |                       |
| 3 FEB                     | 1200                         | 10                                  | 240°                        | 25°                                 | 240              | 47                                 | 36° - 35' N                         | 72° - 24' W   | 000  | EHS. J. DOE |                          |                       |
| 3 FEB                     | 1600                         | 13                                  | 345°                        | 6°                                  | 330              | 10                                 | 37° - 26' N                         | 72° - 1' W    | 010  | ENS. J. DOE |                          |                       |
| 3 FEB                     | 2000                         | 15°                                 | 330                         | 3°                                  | 315°             | 15°                                | 38° - 20' N                         | 71° - 54' W   | 010  | EHS. J. DOE |                          |                       |
| 3 FEB                     | 2400                         | 22                                  | 350                         | 3°                                  | 335°             | 15°                                | 39° - 46' N                         | 71° - 34' W   | 010  | ENS. J. DOE |                          |                       |

(SPECIMEN DATA SHEET)

(SPECIMEN DATA SHEET)

USL Tech. Memo.  
No. 933-355-64

Distribution List

External

BUSHIPS (Code 1633)  
COMCRUDESLANT (Code 413)(2)  
COMDESDERGRU TWO (CMDR H. Fridge)(2)  
CO, USS HUGH PURVIS (DD-709)(2)  
CO, USS MOALE (DD-693)(2)  
BUSHIPS (Code 1633D)(2)  
BUSHIPS (Code 1622)

Internal

Code 100  
Code 101  
Code 900  
Code 900A  
Code 900B  
Code 900C  
Code 930  
Code 930A  
Code 933  
Code 933.2  
Code 933.3  
G. Christensen  
S. Rupinski  
Code 930S(3)  
Code 902  
Code 904  
Code 904.2(5)