第3讲 从加法自动计算看机器硬件实现一逻辑运算与逻辑门电路

战渡臣

哈尔滨工业大学计算学部教学委员会主任 国家教学名师

18686783018, dechen@hit.edu.cn

计算机是怎样完成计算的?

示例

$$0+0 = 0$$

 $0+1 = 1$
 $1+0 = 1$
 $1+1 = 10$

计算机器是怎样完成加法运算的, 你知道吗?

计算机的本质是逻辑

【逻辑】与基本逻辑运算

逻辑是指事物因果之间所遵循的规律,是现实中普适的思维方式

◆ 逻辑的基本表现形式是命题与推理,推理即依据由简单命题的判断推导得出复杂命题的判断结论的过程。

【命题】一个命题由语句表述,即内容为"真"或为"假"的一个判断语句! 【命题的运算】如果命题由X,Y,Z等表示,其值可能为"真"或为"假",则两个命题X,Y之间是可以进行运算的:

【与】运算(AND): 当X和Y都为真时, X AND Y也为真; 其他情况, X AND Y均为假。

【或】运算(OR): 当X和Y都为假时, X OR Y也为假; 其他情况, X OR Y均为真。

【非】运算(NOT): 当X为真时, NOT X为假;当X为假时, NOT X为真。

【异或】运算(XOR): 当X和Y都为真或都为假时, X XOR Y为假; 否则, X XOR Y为真。

· "与"运算:两把 钥匙都有才能开门

"或"运算:只要有任何一把钥匙便能开门

计算机的本质是逻辑

0和1的计算:基本逻辑运算

注: 1表示 真, 0表示 假

用0和1来表示逻辑运算

- ■【AND】: "与"运算 有0为0,全1为1
- ■【OR】: "或"运算 有1为1, 全0为0
- ■【NOT】: "非"运算 非0则1, 非1则0
- ■【XOR】: "异或"运算 相同为0, 不同为1

0	0	1	1
AND 0	AND 1	AND 0	AND 1
0	0	0	- 1/2/N
0	0	1	1
OR 0	OR 1	OR 0	OR 1
0	1	1	1,
NOT 0		NOT 1	
1		0	
0	0	1	1
XOR 0	XOR 1	XOR 0	XOR 1
0	1	<u> </u>	0

用基本逻辑运算实现复杂计算

【示例】二进制加法运算可用逻辑计算来实现

二进制的加法运算规则

不考虑进位
$$\left\{ \begin{array}{l} S_i = A_i XOR B_i \\ C_{i+1} = A_i AND B_i \end{array} \right.$$

考虑进位
$$\left\{\begin{array}{l} S_i = (A_i \, XOR \, B_i) \, \, XOR \, \, C_i \\ C_{i+1} = ((A_i \, XOR \, B_i) \, \, \, AND \, C_i) \, \, OR \, (A_i \, \, AND \, B_i) \end{array}\right.$$

$$\begin{array}{c|c} & A_i \\ & B_i \\ \hline \\ C_{i+1} & S_i \end{array}$$

$$\begin{array}{ccc} & A_i \\ B_i \\ C_i \\ \end{array}$$

用基本逻辑运算实现复杂计算

【枚举-计算-验证】证明复杂逻辑运算的正确性

用电子技术实现基本逻辑运算

基本逻辑运算的电子实现:逻辑门

电信号: 0V (低电平) 和 5V (高电平)

用二极管、三极管实现基本逻辑运算的电路

F = A AND B 【**与**门】电路

F = A OR B 【或门】电路

F = NOT A 【非门】电路

用电子技术实现基本逻辑运算

集成电路示意

【与门】电路符号 左侧是输入,右侧是输出

1Y = 1A AND 1B

2Y = 2A AND 2B

3Y = 3A AND 3B

4Y = 4A AND 4B

用电子技术实现基本逻辑运算

逻辑门的符号表示

注意: 左侧是输入,右侧是输出 输入是电信号的0或者1, 输出是对输入做相应的运算,也 是电信号的0或者1

加法运算是这样实现的

二进制加法运算用逻辑门电路的组合来实现

加法运算是这样实现的

二进制加法运算用逻辑门电路的组合来实现

枚举-计算-验证:通过枚举所有可能的输入,可验证一位加法器实现的正确性

加法运算是这样实现的

二进制加法运算用逻辑门电路的组合来实现

多位加法器的实现

- 用已验证正确的一位加法器,来实现更为复杂的多位加法器
- 用已验证正确的多位加法器,来实现更为复杂的乘法器/ 除法器等(略)

【分层构造】低层电路已验证正确,可被封装起来;用已封装的已验证的低层电路可构造更为复杂的高层电路;如此一层层构造。

集成电路是这样复杂起来的

集成电路是这样的...

intel penium 4

摩尔定律: 芯片可容纳的晶体管数目大约每经过18个月便会增加一倍: 2021年达到的

计算机的本质是逻辑

小结: 符号化、计算化与自动化

语义符号化 → 符号计算化 → 计算0(和)1化 → 0(和)1自动化→ 分层构造化→ 构造集成化