

IN THE CLAIMS

Please cancel Claims 1-22. Please add new 23-52:

*S N
B*

23.

(new) An olefin polymerization method comprising the steps of contacting a polymerizable olefin with a supported catalyst composition comprising one or more fluorided support compositions; one or more metallocenes; and one or more activators, characterised in that the degree of fluoridation of the support allows association between the fluorided support and one or more activators such that when contacted with one or more metallocenes and α -olefin monomers, the supported catalyst composition exhibits a productivity of from 919 to 6012 g polymer/g metallocene·hr.

24.

(new) The method of Claim *23*, wherein the activity of the composition is from 38.8 to 207.3 kg polymer/mM metallocene·hr.

25.

(new) The method of Claim *23*, the support having a fluorine concentration is in the range of from 0.01 to 10.0 millimoles of fluorine per gram of support.

26.

(new) The method of Claim *23*, the support having a fluorine concentration is in the range of from 0.6 to 3.5 wt% of the support.

27.

(new) The method of Claim *23*, wherein the one or more activators are selected from alkylalumoxanes (MAO), non-coordinating anions, and activator anion neutral precursors, and combinations thereof.

28.

(new) The method of Claim *23*, wherein the one or more activators is selected from highly fluorinated tris-arylborane compounds and mixtures thereof.

- 7*
29. (new) The method of Claim 23, wherein the activator is selected from trisperfluorophenyl borane, trisperfluoronaphthyl borane, trisperfluorobiphenyl borane, tris(3,5-di(trifluoromethyl)phenyl)borane, tris(di-t-butylmethylsilyl)perfluorophenylborane, and mixtures thereof.
- 8*
30. (new) The method of Claim 23, wherein the one or more metallocenes is represented by the following:

AJ

wherein M is a metal of Group 4, 5, or 6 of the Periodic Table;

R¹ and R² are identical or different, and are one of a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a C₆-C₁₀ aryl group, a C₆-C₁₀ aryloxy group, a C₂-C₁₀ alkenyl group, a C₇-C₄₀ arylalkyl group, a C₇-C₄₀ alkylaryl group, a C₈-C₄₀ arylalkenyl group, or a halogen atom;

R⁵ and R⁶ are identical or different, are one of a halogen atom, a C₁-C₁₀ alkyl group, which may be halogenated, a C₆-C₁₀ aryl group, which may be halogenated, a C₂-C₁₀ alkenyl group, a C₇-C₄₀ -arylalkyl group, a C₇-C₄₀ alkylaryl group, a C₈-C₄₀ arylalkenyl group, a -NR₂¹⁵, -SR¹⁵, -OR¹⁵, -OSiR₃¹⁵ or -PR₂¹⁵ radical, wherein R¹⁵ is one of a halogen atom, a C₁-C₁₀ alkyl group, or a C₆-C₁₀ aryl group;

R⁷ is

AJ

-B(R¹¹)-, -Al(R¹¹)-, -Ge-, -Sn-, -O-, -S-, -SO-, -SO₂-, -N(R¹¹)-, -CO-, -P(R¹¹)-, or -P(O)(R¹¹)-;

wherein R¹¹, R¹² and R¹³ are identical or different and are a hydrogen atom, a halogen atom, a C₁-C₂₀ alkyl group, a C₁-C₂₀ fluoroalkyl group, a C₆-C₃₀ aryl group, a C₆-C₃₀ fluoroaryl group, a C₁-C₂₀ alkoxy group, a C₂-C₂₀ alkenyl group, a C₇-C₄₀ arylalkyl group, a C₈-C₄₀ arylalkenyl group, or a C₇-C₄₀ alkylaryl group; and wherein R¹¹ and R¹², or R¹¹ and R¹³, together with the atoms binding them, can form ring systems;

M² is silicon, germanium or tin;

R⁸ and R⁹ are identical or different and have the meanings stated for R¹¹;

m and n are identical or different and are zero, 1 or 2, m plus n being zero, 1 or 2; and

the radicals R³, R⁴, and R¹⁰ are identical or different and have the meanings stated for R¹¹, R¹² and R¹³.

9
31.

(new) The method of Claim 23, wherein the one or more metallocenes is selected from Dimethylsilandiylbis (2-methyl-4-phenyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2-methyl-4,5-benzoindenyl) zirconium dimethyl; Dimethylsilandiylbis(2-methyl-4,6-diisopropylindenyl) zirconium dimethyl; Dimethylsilandiylbis(2-ethyl-4-

AJ

phenyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis (2-ethyl-4-naphthyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2-methyl-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2-methyl-4,5-diisopropyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2,4,6-trimethyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2-methyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2-ethyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis(2,5,6-trimethyl-1-indenyl) zirconium dimethyl; Dimethylsilandiylbis (2-methyl-4-phenyl-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2-methyl-4,5-benzoindenyl) zirconium dichloride; Dimethylsilandiylbis(2-methyl-4,6-diisopropylindenyl) zirconium dichloride; Dimethylsilandiylbis(2-ethyl-4-phenyl-1-indenyl) zirconium dichloride; Dimethylsilandiylbis (2-ethyl-4-naphthyl-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2-methyl-indenyl) zirconium dichloride; Dimethylsilandiylbis(2-methyl-4,5-diisopropyl-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2,4,6-trimethyl-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2-methyl-1-indenyl) zirconium dichloride; Dimethylsilandiylbis(2-ethyl-1-indenyl) zirconium dichloride, and Dimethylsilandiylbis(2,5,6-trimethyl-1-indenyl) zirconium dichloride, and mixtures thereof.

- 10
32. (new) The method of Claim 28, wherein the fluorided support composition is selected from the following fluorided supports: talc, clay, silica, alumina, magnesia, zirconia, iron oxides, boria, calcium oxide, zinc oxide, barium oxide thoria, aluminum phosphate gel, polyvinylchloride or substituted polystyrene, and mixtures thereof.

- 11
33. (new) The method of Claim 23, wherein the supported catalyst composition exhibits a productivity of from 919 to 5180 g polymer/g metallocene·hr.
- 12
34. (new) The method of Claim 23, wherein the supported catalyst composition exhibits a productivity of from 1125 to 6012 g polymer/g metallocene·hr.
- 13
35. (new) The method of Claim 23, wherein the supported catalyst composition exhibits a productivity of from 1125 to 5180 g polymer/g metallocene·hr.
- 14
36. (new) The method of Claim 23, wherein the α -olefin monomers are propylene.
- 15
37. (new) The method of Claim 23, wherein a support and a fluoriding agent are contacted with one another at from 200°C to 600°C to produce the fluorided support composition.
- 16
38. (new) A polyolefin produced by the method of Claim 23.
- 17
39. (new) An olefin polymerization method comprising the steps of contacting a polymerizable olefin with a supported catalyst composition comprising a fluorided support composition; and at least one highly fluorinated tris-arylborane bound to the fluorided support composition.
- 18
40. (new) The method of Claim 39, wherein the at least one highly fluorinated tris-arylborane is selected from tris-perfluorophenyl borane, trisperfluoronaphthyl borane, trisperfluorobiphenyl borane, tris(3,5-

di(trifluoromethyl)phenyl)borane,
butylmethylsilyl)perfluorophenylborane, and mixtures thereof.

- (15)* *(17)*
41. (new) The method of Claim 39, wherein the support also comprises at least one metallocene represented by the following:

wherein M is titanium, zirconium, or hafnium;

R¹ and R² are identical or different, and are one of a hydrogen atom, a C₁-C₁₀ alkyl group, a C₁-C₁₀ alkoxy group, a C₆-C₁₀ aryl group, a C₆-C₁₀ aryloxy group, a C₂-C₁₀ alkenyl group, a C₇-C₄₀ arylalkyl group, a C₇-C₄₀ alkylaryl group, a C₈-C₄₀ arylalkenyl group, or a halogen atom;

R⁵ and R⁶ are identical or different, are one of a halogen atom, a C₁-C₁₀ alkyl group, which may be halogenated, a C₆-C₁₀ aryl group, which may be halogenated, a C₂-C₁₀ alkenyl group, a C₇-C₄₀ -arylalkyl group, a C₇-C₄₀ alkylaryl group, a C₈-C₄₀ arylalkenyl group, a -NR₂¹⁵, -SR¹⁵, -OR¹⁵, -OSiR₃¹⁵ or -PR₂¹⁵ radical, wherein R¹⁵ is one of a halogen atom, a C₁-C₁₀ alkyl group, or a C₆-C₁₀ aryl group;

R⁷ is

-B(R¹¹)-, -Al(R¹¹)-, -Ge-, -Sn-, -O-, -S-, -SO-, -SO₂-, -N(R¹¹)-, -CO-,
 -P(R¹¹)-, or -P(O)(R¹¹)-;

wherein R¹¹, R¹² and R¹³ are identical or different and are a hydrogen atom, a halogen atom, a C₁-C₂₀ alkyl group, a C₁-C₂₀ fluoroalkyl group, a C₆-C₃₀ aryl group, a C₆-C₃₀ fluoroaryl group, a C₁-C₂₀ alkoxy group, a C₂-C₂₀ alkenyl group, a C₇-C₄₀ arylalkyl group, a C₈-C₄₀ arylalkenyl group, or a C₇-C₄₀ alkylaryl group; and wherein R¹¹ and R¹², or R¹¹ and R¹³, together with the atoms binding them, can form ring systems;

M² is silicon, germanium or tin;

R⁸ and R⁹ are identical or different and have the meanings stated for R¹¹;

m and n are identical or different and are zero, 1 or 2, m plus n being zero, 1 or 2; and

the radicals R³, R⁴, and R¹⁰ are identical or different and have the meanings stated for R¹¹, R¹² and R¹³.

20 *19*
 42. (New) The method of Claim *41*, wherein R₁ and R₂ are methyl groups.

21 *17*
 43. (new) The method of Claim *39*, having a fluorine concentration is in the range of from 0.01 to 10.0 millimoles of fluorine per gram of support.

22. 44. (new) The method of Claim 39, having a fluorine concentration is in the range of from 0.6 to 3.5 wt% of the support.

23. 45. AJ (new) The method of Claim 39, wherein the fluorided support composition is selected from fluorided talc, clay, silica, alumina, magnesia, zirconia, iron oxides, boria, calcium oxide, zinc oxide, barium oxide thoria, aluminum phosphate gel, polyvinylchloride or substituted polystyrene, and mixtures thereof.

24. 46. (new) The method of Claim 39, wherein the support and a fluoriding agent are contacted with one another at from 100°C to 1000°C to produce the fluorided support composition.

25. 47. (new) The method of Claim 39, wherein a support and a fluoriding agent are contacted with one another at from 200°C to 600°C to produce the fluorided support composition.

26. 48. (new) The method of Claim 47, wherein the fluoriding agent is selected from NH₄BF₄, (NH₄)₂SiF₆, NH₄PF₆, NH₄F, (NH₄)₂TaF₇, NH₄NbF₄, (NH₄)₂GeF₆, (NH₄)₂SmF₆, (NH₄)₂TiF₆, (NH₄)₂ZrF₆, MoF₆, ReF₆, GaF₃, SO₂ClF, F₂, SiF₄, SF₆, ClF₃, ClF₅, BrF₅, IF₇, NF₃, HF, BF₃, NHF₂ and NH₄HF₂ and mixtures thereof.

27. 49. (new) The method of Claim 39, wherein the supported catalyst composition exhibits a productivity of from 919 to 5180 g polymer/g metallocene·hr.

28. 50. (new) The method of Claim 39, wherein the supported catalyst composition exhibits a productivity of from 1125 to 6012 g polymer/g metallocene·hr.

AJ
51. (new) The method of Claim 39, wherein the supported catalyst composition exhibits a productivity of from 1125 to 5180 g polymer/g metallocene·hr.

AJ
52. (new) A polyolefin produced by the method of Claim 39.

RECEIVED
U.S. PATENT AND TRADEMARK OFFICE