# **EPITA**

# Mathématiques

Contrôle de mi-semestre S3

Octobre 2023

Durée: 3 heures

| Nom:    |  |
|---------|--|
| Prénom: |  |
| Classe: |  |

## NOTE:

Le barème est sur 40 points. La note sera ramenée sur 20 par une simple division par 2.

# Consigne:

- Lire l'énoncé entier avant de commencer. Il y en a en tout 7 exercices.
- Si vous parvenez pas à démontrer un résultat donné explicitement dans l'énoncé d'une question, vous pouvez admettre ce résultat et continuer l'exercice.
- Documents et calculatrices interdits.
- Répondre directement sur les feuilles jointes, dans les espaces prévus. Aucune autre feuille ne sera corrigée.
- Ne pas écrire au crayon de papier.

| Exercice 1 (6 points) |
|-----------------------|
| 1 D/4 l l- l          |

| 1. | Déterminer la nature de la série de terme général: $u_n = \ln(\cos(\frac{1}{n}))$ . Justifier proprement.  |
|----|------------------------------------------------------------------------------------------------------------|
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
| 2. | Déterminer la nature de la série de terme général: $u_n = \frac{(n!)^2}{(3n)!}$ . Justifier proprement.    |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
| 3. | Déterminer la nature de la série de terme général: $u_n = \frac{(-1)^n}{n \ln(n)}$ . Justifier proprement. |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |
|    |                                                                                                            |

Exercice 2 (6 points)

Considérons la série de terme général  $u_n = \frac{(-1)^n}{\sqrt{n} + (-1)^n}$ .

1. Trouver  $a \in \mathbb{R}$  tel que  $u_n = \frac{(-1)^n}{\sqrt{n}} + \frac{a}{n} + o(\frac{1}{n})$ .

| <br> |
|------|
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

2. Déterminer la nature de  $\Sigma u_n$ .

| <br> |
|------|------|------|------|------|------|------|------|------|------|
| <br> |
|      |      |      |      |      |      |      |      |      |      |
| <br> |

3. Montrer que  $u_n \sim \frac{(-1)^n}{\sqrt{n}}$ .

| <br>••••• |       |       |
|-----------|-------|-------|
| <br>••••• | ••••• |       |
| <br>••••• | ••••• |       |
| <br>••••• | ••••• | ••••• |
| <br>      |       |       |

4. Les séries  $\Sigma u_n$  et  $\Sigma \frac{(-1)^n}{\sqrt{n}}$  sont-elles de même nature? Expliquer.

## Exercice 3 (7 points)

Soit  $a \in ]0,\pi[$ . On considère la suite  $(u_n)$  définie pour tout  $n \in \mathbb{N}^*$  par:

$$u_n = n! \times \prod_{k=1}^n \sin\left(\frac{a}{k}\right) = n! \times \left(\sin\left(\frac{a}{1}\right)\sin\left(\frac{a}{2}\right) \dots \sin\left(\frac{a}{n}\right)\right)$$

On admet que cette suite  $(u_n)$  est strictement positive. Le but de l'exercice est d'étudier la nature de  $\Sigma u_n$  en fonction de a.

| 1. |       | ippose dans cette question que a $\neq 1$ . En utilisant la règle de d'Alembert, discuter la nature de $\sum u_n$ en on de a.     |
|----|-------|-----------------------------------------------------------------------------------------------------------------------------------|
|    |       |                                                                                                                                   |
|    |       |                                                                                                                                   |
|    |       |                                                                                                                                   |
|    |       |                                                                                                                                   |
| 2. | On su | appose dans cette question que a=1. Considérons la série $\sum \ln(n \sin(\frac{1}{n}))$ et la suite $(S_n)$ de ses sommes elles. |
|    | (a)   | Montrer que pour tout $n \in \mathbb{N}^*$ , $S_n = \ln(u_n)$ .                                                                   |
|    |       |                                                                                                                                   |
|    |       |                                                                                                                                   |
|    |       |                                                                                                                                   |
|    | (b)   | Étudier la nature de $\sum \ln(n\sin(\frac{1}{n}))$ .                                                                             |
|    |       |                                                                                                                                   |
|    |       |                                                                                                                                   |
|    |       |                                                                                                                                   |
|    |       |                                                                                                                                   |
|    |       |                                                                                                                                   |
|    |       |                                                                                                                                   |
|    | (c)   | Que peut-on en déduire sur la suite $(u_n)$ ?                                                                                     |
|    |       |                                                                                                                                   |
|    |       |                                                                                                                                   |
|    |       |                                                                                                                                   |
|    | (d)   | La série $\Sigma u_n$ est-elle convergente?                                                                                       |
|    |       |                                                                                                                                   |
|    |       |                                                                                                                                   |
|    |       |                                                                                                                                   |

# Exercice 4 (5,5 points)

Soient  $(u_n)$  et  $(v_n)$  deux suites réelles strictement positives.

| 1. | On s | uppose dans cette question que $(u_n) \leq (v_n)$ à partir d'un certain rang. Ainsi, il existe $n_0 \in \mathbb{N}$ tel que    |
|----|------|--------------------------------------------------------------------------------------------------------------------------------|
|    |      | $\forall n \in \mathbb{N}, n \geqslant n_0 \Longrightarrow u_n \leqslant v_n$                                                  |
|    | Dans | s chacune des expressions ci-dessous, remplacer les pointillés par un des symboles $\Longrightarrow$ , $\Longleftrightarrow$ : |
|    |      |                                                                                                                                |
|    |      | $\sum u_n$ converge $\sum v_n$ converge.                                                                                       |
|    | (b)  | $\Sigma u_n$ diverge $\Sigma v_n$ diverge.                                                                                     |
| 2. | On s | uppose maintenant qu'au voisinage de $+\infty$ , $u_n \sim v_n$ .                                                              |
|    | (a)  | Que peut-on dire des séries $\Sigma u_n$ et $\Sigma v_n$ ?                                                                     |
|    |      |                                                                                                                                |
|    | (b)  | Démontrer cette propriéte. On pourra admettre sans démonstration les résultats de la question 1.                               |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |
|    |      |                                                                                                                                |

### Exercice 5 (6,5 points)

Un étudiant passe un examen sous forme de QCM. L'examen contient 20 questions et chaque question est notée sur 1 point. La note totale de l'épreuve est donc une note sur 20. C'est un QCM sans points négatifs ni points intermédiaires: à chaque question, la note obtenue ne peut être que 0 ou 1.

L'étudiant s'est mal préparé à l'examen et choisit de répondre au hasard. Ses réponses aux questions sont indépendantes et, pour chaque question, il a une même probabilités  $p \in ]0,1[$  que sa réponse soit juste.

| 1. | Pour  | tout k $\in$ {1,2,,20}, on définit la variable aléatoire $X_k$ = "Note de l'étudiant à la question k". |
|----|-------|--------------------------------------------------------------------------------------------------------|
|    | (a)   | Soit k $\in$ {1,2,,20}. Donner la loi de $X_k$ .                                                       |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    | (b)   | En déduire la fonction génératrice $G_{X_k}$ de $X_k$ .                                                |
|    | (c)   | En utilisant $G_{X_k}$ , calculer l'espérance et la variance de $X_k$ .                                |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
| 2. | Consi | idérons la variable aléatoire $Y=$ "Note totale obtenue par l'étudiant à l'épreuve."                   |
|    | (a)   | Donner en justifiant la fonction génératrice de Y.                                                     |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    | (b)   | En déduire la loi de Y.                                                                                |
|    | (6)   | En deduite la foi de 1.                                                                                |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    | (a)   | Calcular Pagráran es et la region es de V                                                              |
|    | (c)   | Calculer l'espérance et la variance de Y.                                                              |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    |       |                                                                                                        |
|    |       |                                                                                                        |

| xer | cice 6 (6 points)                                                                                                                                                                                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | Trouver le rayon de convergence $R_1$ de la série entière $\sum \frac{x^n}{n!}$ . Justifier votre réponse.                                                                                         |
|     |                                                                                                                                                                                                    |
| 2.  | Rappeler (sans justifier) une expression simple (à l'aide des fonctions usuelles) de sa fonction somme, définie pour tout $x \in ]-R_1; R_1[$ par $f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$     |
| 3.  | En déduire le rayon de convergence et une expression simple de la fonction somme de $\sum \frac{2^n}{n!} x^n$ .                                                                                    |
|     |                                                                                                                                                                                                    |
| 4.  | Trouver une expression simple de $\sum_{n=3}^{+\infty} \frac{x^n}{(n-3)!}$ .                                                                                                                       |
| 5.  | Démontrer que la fonction g : $x \mapsto \frac{1}{1+2x}$ peut se mettre sous la forme $g(x) = \sum_{n=0}^{+\infty} (-2)^n x^n$ .<br>Quel est le rayon de convergence $R_2$ de cette série entière? |
|     |                                                                                                                                                                                                    |
| 6.  | Exprimer sous la forme d'une série entière la fonction $x\mapsto \ln(1+2x)$ et donner son rayon de convergence.                                                                                    |
|     |                                                                                                                                                                                                    |

| Exercice 7 (4 points)  Considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t) = ae^{2t}$ c  1. Quelle est la valeur de a?  2. En écrivant $G_X(t)$ sous forme d'une série entière, en déduire la loi de X.  3. Calculer l'espérance et la variance de X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------|
| Considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière x admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière x admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable $G_X(t)=ae^{2t}$ considérons une |       |                                                                                                                                       |
| Considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière x admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière x admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable $G_X(t)=ae^{2t}$ considérons une |       |                                                                                                                                       |
| Considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière x admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière x admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable $G_X(t)=ae^{2t}$ considérons une |       |                                                                                                                                       |
| Considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière x admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière x admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable $G_X(t)=ae^{2t}$ considérons une |       |                                                                                                                                       |
| Considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière x admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière x admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable $G_X(t)=ae^{2t}$ considérons une |       |                                                                                                                                       |
| Considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière x admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière x admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable $G_X(t)=ae^{2t}$ considérons une |       |                                                                                                                                       |
| Considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière x admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable aléatoire entière x admettant une fonction génératrice de la forme $G_X(t)=ae^{2t}$ considérons une variable $G_X(t)=ae^{2t}$ considérons une | TD    |                                                                                                                                       |
| 1. Quelle est la valeur de a?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Consi | rcice (4 points)<br>idérons une variable aléatoire entière X admettant une fonction génératrice de la forme $G_{\rm Y}(t)=ae^{2t}$ où |
| 2. En écrivant $G_X(t)$ sous forme d'une série entière, en déduire la loi de X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | <b>~</b>                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.    | En écrivant $G_X(t)$ sous forme d'une série entière, en déduire la loi de X.                                                          |
| 3. Calculer l'espérance et la variance de X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                                                                       |
| 3. Calculer l'espérance et la variance de X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                                                                       |
| 3. Calculer l'espérance et la variance de X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                                                                       |
| 3. Calculer l'espérance et la variance de X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                                                                       |
| 3. Calculer l'espérance et la variance de X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                                                                       |
| 3. Calculer l'espérance et la variance de X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.    | Calculer l'espérance et la variance de X.                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                                                       |