King's County Housing Dataset

Module 1 Final Project Emily Pfeifer

Cleaning the data

- Making sure each column was encoded as the correct data type
- Finding and eliminating (or replacing) Null Values
- Addressing multicollinearity (right figure)
- Using mean-normalization to standardize our data
- One-hot encoding our data

Exploratory Data Analysis

- Posing meaningful questions A few questions that we would like answered:
 - What is more important to a home buyer, the size of the lot or the size of the house (sqft_above)?
 - Do people usually get a bargain on a house because it's old (looking at the variable yr_built)?
 - Are there any negative relationships in our data?
- → Checking for normality with KDE plots and assumption of linearity with scatter plots
- → The power of joint plots!

Modeling the Data

- Ordinary Least Squares
- Experimenting with log transformations
- Dealing with categorical data
- Which predictors make the final cut?

4	3	2	1	0	
p-value	slope	intercept	r_squared	ind_var	0
0	113810	540511	0.0956069	bedrooms	1
0	193567	540511	0.276559	bathrooms	2
1.43018e-37	32367.3	540511	0.00773284	sqft_lot	3
0	94357.7	540511	0.0657177	floors	4
0	97896.5	540511	0.0707395	waterfront	5
0	145347	540511	0.155934	view	6
2.85642e-07	12989.4	540511	0.00124538	condition	7
0	222738	540511	0.366198	sqft_above	8
0	119627	540511	0.10563	sqft_basement	9
2.29715e-15	20045.1	540511	0.00296582	yr_built	10
5.0166e-65	42961.3	540511	0.0136233	yr_renovated	11
0	112818	540511	0.0939466	lat	12
0.00131008	8134.66	540511	0.000488434	long	13
0	215845	540511	0.343883	sqft_living15	14
8.59256e-34	30620.9	540511	0.00692089	sqft_lot15	15

_

Holdout Validation

- How well can we predict new data?
- Feature ranking on the data (5,66,10)
 - Extracting the best features, muting the noisy ones.
- Test-Train-Split
 - Training the model on 20% of the data, comparing the Mean of Squared Errors
- k-fold Cross Validation
 - Sample divided into k sub-samples
 - One retained for testing, the rest for training

_

Interpretations

- The final model included predictors bathrooms, sqft_above, lat, sqft_living15 and zipcode
- The had r-squared values of 0.303, 0.361, 0.202, 0.385, and 0.531, respectively
- They were all statistically significant with p-values < .05
- Bathrooms had a co-efficient of .291
- Sqft_above had a co-efficient of .317
- Sqft_living15 had a co-efficient of .327
 - This means for a unit increase in any one of these variables, there was an increase in the price that a house sold for by about .3 units.