Aufgabe 3

(a) Beweis. Sei $I \in \mathbb{R}$ wie in der Aufgabenstellung definiert. Sei $\Gamma : [0, \infty) \to \mathbb{R}, x \mapsto \int_x^\infty \frac{1}{u^2(t)} dt$. Γ ist auf seinem Definitionsbereich definiert, denn es gilt

$$\Gamma(x) = I - \int_0^x \frac{1}{u^2(t)} dt, \quad \forall x \in \mathbb{R}_{\geqslant 0}.$$

Insbesondere existiert $\int_0^x \frac{1}{u^2(t)} dt \in \mathbb{R}$ für beliebige $x \in \mathbb{R}_{\geqslant 0}$, da $\frac{1}{u^2}$ über jedes Intervall $[0, \alpha]$, $\alpha \in \mathbb{R}$ integrierbar sein muss (notwendige Bedingung für die Existenz des uneigentlichen Integrals).

Sei $u:[0,\infty)\to\mathbb{R}, x\mapsto u(x)$ eine Lösung von $(\star\star)$, das heißt

$$u'' + pu = 0. (1)$$

Sei $b = u\Gamma$. Die Ableitungen lauten:

$$b' = u'\Gamma + u\Gamma' = u'\Gamma - u\frac{1}{u^2} = u'\Gamma - \frac{1}{u}$$
$$b'' = u''\Gamma + u'\Gamma' + \frac{u'}{u^2} = u''\Gamma - \frac{u'}{u^2} + \frac{u'}{u^2} = u''\Gamma.$$

Verifiziere den Ansatz $b = u\Gamma$ für $(\star\star)$.

$$b'' + pb = u''\Gamma + pu\Gamma = \Gamma(u'' + pu) \stackrel{(1)}{=} \Gamma \cdot 0 = 0.$$

(b) Beweis. Sei $\Psi:[0,\infty)\to\mathbb{R}, x\mapsto\int_0^x\frac{1}{u^2(t)}dt$. Die Funktion Ψ ist auf seinem Definitionsbereich definiert, da $\int_0^x\frac{1}{u^2(t)}dt$ für jedes $x\in[0,\infty)$ existiert aufgrund von $I=\lim_{x\to\infty}\int_0^x\frac{dt}{u^2(t)}=\infty$ (um den Grenzwert überhaupt bilden zu können, muss $\frac{1}{u^2}$ auf $[0,\alpha], \alpha\in\mathbb{R}$ integrierbar sein).

Sei $w := u \Psi$, wobei u wie in Aufgabe 3(a) definiert ist.

$$w' = u'\Psi + u\Psi' = u'\Psi + \frac{u}{u^2} = u'\Psi + \frac{1}{u}$$
$$w'' = u''\Psi + u'\Psi' - \frac{u'}{u^2} = u''\Psi + \frac{u'}{u^2} - \frac{u'}{u^2} = u''\Psi.$$

Verifiziere den Ansatz $w = u\Psi$ für $(\star\star)$.

$$w'' + pw = u''\Psi + pu\Psi = \Psi(u'' + pu) \stackrel{(1)}{=} \Psi \cdot 0 = 0.$$

- (c) Sei u eine Lösung mit $I := \int_0^\infty \frac{dx}{u^2(x)} \in \mathbb{R}_{>0} \cup \{\infty\}.$
 - Wie in Aufgabe (a) und (b) gezeigt, existieren zwei Lösungen u und $u\Phi$ mit

$$\Phi(x) := egin{cases} \Gamma(x), & \quad \text{falls I} < \infty \\ \Psi(x), & \quad \text{falls I} = \infty. \end{cases}$$

• $\mathfrak u$ ist nach Voraussetzung positiv. $\mathfrak u\Phi$ ist ebenfalls positiv, denn Φ ist positiv. Das sieht man wie folgt: $\mathfrak u$ muss eine stetige Funktion sein, sonst würde es nicht die Differentialgleichung lösen. Daher ist auch $\frac{1}{\mathfrak u^2}$ stetig wegen $\mathfrak u(\mathfrak x)\neq 0$ für alle $\mathfrak x\in\mathbb R_{>0}$. Daher ist das Integral von $\frac{1}{\mathfrak u^2}$ auf einem beliebigen Intervall $[\alpha,\beta]\subset\mathbb R_{\geqslant 0}$ positiv nach dem Mittelwertsatz der Integralrechnung.

$$\underbrace{\frac{1}{u(\xi)^2}}_{\geq 0}\underbrace{\frac{1}{(\beta - \alpha)}}_{\geq 0} = \int_{\alpha}^{\beta} \frac{1}{u^2(t)} dt, \quad \xi \in [\alpha, \beta]$$

• Falls $I < \infty$:

$$y_1 := u\Phi, y_1' = u'\Phi - \frac{1}{u}, y_2 := u, y_2' = u'$$

 $y_1y_2' - y_1'y_2 = uu'\Phi - (uu'\Phi - 1) = 1.$

Falls $I = \infty$:

$$y_1 := u, y_1' = u', y_2 := u\Phi, y_2' = u'\Phi + \frac{1}{u}$$

 $y_1y_2' - y_1'y_2 = uu'\Phi + 1 - u'u\Phi = 1.$

• Falls $I < \infty$: $y_1 := u\Phi, y_2 := u$.

$$\begin{split} \Omega &:= \frac{y_1}{y_2} = \Phi = \Gamma \\ \Omega' &= \Gamma' = -\frac{1}{u^2} < 0. \end{split}$$

Falls $I = \infty$: $y_1 := u, y_2 := u\Phi$.

$$\Omega := \frac{y_1}{y_2} = \frac{u}{u\Phi} = \frac{1}{\Psi}$$

$$\Omega' = -\frac{\Psi'}{\Psi^2} = -\underbrace{\frac{1}{u^2}}_{\text{total}}\underbrace{\frac{1}{\Psi^2}}_{\text{total}} < 0$$

• Falls $I < \infty$: $y_1 := u\Phi, y_2 := u$. Es gilt

$$\frac{y_1(x)}{y_2(x)} = \Gamma(x) = I - \int_0^x \frac{1}{u^2(t)} dt.$$

Nun ist $\int_0^x \frac{dt}{u^2(t)} \to I$ für $x \to \infty$. Also $\Gamma(x) \to 0$ für $x \to \infty$.

Falls $I = \infty$: $y_1 := u, y_2 := u\Phi$. Es gilt

$$\frac{y_1(x)}{y_2(x)} = \frac{1}{\Psi(x)} = \frac{1}{\int_0^x \frac{1}{u^2(t)} dt}.$$

Da für $x \to \infty$ die Funktion $\Psi(x)$ gegen $I = \infty$ läuft, ist $\frac{1}{\Psi(x)} \to 0$ für $x \to \infty$.