

Special graph

วันนี้ในวิชาทฤษฎีกราฟอาจารย์ผู้สอนได้สอนเกี่ยวกับกราฟพิเศษชนิดหนึ่งที่มีลักษณะเป็นกราฟบริบูรณ์ (Complete graph) โดยที่ค่าน้ำหนักของเส้นเชื่อมแต่ละเส้นมีได้เพียง 2 ค่า คือ 0 กับ 1 ดังนั้นเพื่อความเข้าใจ เนื้อหามากขึ้นอาจารย์ผู้สอนให้นักเรียนหาค่าน้ำหนักที่น้อยที่สุดของ Minimum spanning tree ของกราฟชนิดนี้ หมายเหตุ : กราฟบริบูรณ์ คือ กราฟที่ทุกคู่ของโหนดจะมีเส้นเชื่อมถึงกัน

ข้อมูลนำเข้า:

บรรทัดแรก เป็นจำนวนเต็ม 2 จำนวน คือ M และ N โดยที่ M ($1 \le M \le 1,000$) เป็นจำนวนโหนดของกราฟ และ N ($1 \le N \le 300,000$) เป็นจำนวนเส้นเชื่อมที่มีค่าน้ำหนักเท่ากับ 1 บรรทัดที่ 2 - N + 1 มีจำนวนเต็ม 2 จำนวน ซึ่งเป็นหมายเลขกำกับโหนดทั้งสองที่มีค่าหนักของเส้นเชื่อมระหว่าง โหนดเท่ากับ 1

ข้อมูลนำออก:

จำนวนหนึ่งบรรทัดแสดงจำนวนน้ำหนักที่น้อยที่สุดของ Minimum spanning tree ของกราฟพิเศษ

Input	Output
6 11	2
1 3	
1 4	
1 5	
1 6	
2 3	
2 4	
25	
26	
3 4	
3 5	
36	

Minimum spanning tree for each edge

กำหนดให้ G เป็นกราฟแบบไม่มีทิศทางที่ประกอบด้วยโหนดจำนวน N โหนด ซึ่งแต่ละโหนดจะมี หมายเลขกำกับตั้งแต่ 1 ถึง N และมีเส้นเชื่อมระหว่างโหนดจำนวน M เส้น โดยแต่ละเส้นเชื่อมจะมีค่าน้ำหนัก แตกต่างกัน ให้นักเรียนเขียนโปรแกรมเพื่อแสดงค่าน้ำหนักของ Minimum spanning tree ของกราฟ G ที่มีเส้น เชื่อมระหว่างโหนดคู่ใด ๆ

ข้อมูลนำเข้า:

บรรทัดแรก เป็นจำนวนเต็ม 2 จำนวน คือ M และ N โดยที่ M ($1 \le M \le 1,000$) เป็นจำนวนโหนดของกราฟ และ N ($1 \le N \le 1,000$) เป็นจำนวนเส้นเชื่อม

บรรทัดที่ 2 – N+1 แต่ละบรรทัดมีจำนวนเต็ม 3 จำนวน ซึ่งเป็นข้อมูลของเส้นเชื่อมแต่ละเส้น ตัวเลข 2 ตัวแรก เป็นหมายเลขกำกับโหนดระหว่างเส้นเชื่อม และตัวเลขตัวที่ 3 เป็นค่าน้ำหนักของเส้นเชื่อม W (0 ≤ W ≤ 100)

ข้อมูลนำออก:

จำนวน N บรรทัด แสดงค่าน้ำหนักของ Minimum spanning tree ที่มีเส้นเชื่อมระหว่างโหนดใดๆ โดยเรียงตาม เส้นเชื่อมที่รับข้อมูลเข้ามา

Input	Output
5 7	9 3 1 3
1 2 3	8
1 3 1	11 5 (7)
1 4 5	8
2 3 2	8 (5)
2 5 3	8
3 4 2	9
4 5 4	
4 6	62
1 2 38	96
1 3 72	46
2 3 13	121
3 4 97	46
4 1 11	46
4 2 22	

30/100

MST query

กำหนดให้ G เป็นกราฟแบบไม่มีทิศทางที่ประกอบด้วยโหนดจำนวน N โหนด ซึ่งแต่ละโหนดจะมี หมายเลขกำกับตั้งแต่ 1 ถึง N และมีเส้นเชื่อมระหว่างโหนดจำนวน M เส้น โดยแต่ละเส้นเชื่อมจะมีค่าน้ำหนัก แตกต่างกัน ให้นักเรียนเขียนโปรแกรมเพื่อทำตาม Query ที่กำหนด โดย Query มีทั้งหมด 3 แบบ คือ

- 1. AssignZero(u, v) := เป็นการเปลี่ยนค่าน้ำหนักของเส้นเชื่อมระหว่างโหนด u และ v ให้เป็น 0
- 2. AssignOriginal(u, v) := เป็นการเปลี่ยนค่าน้ำหนักของเส้นเชื่อมระหว่างโหนด u และ v ให้มีค่า เท่ากับค่าตั้งต้น
- 3. MstWeight() := ส่งค่าน้ำหนักที่น้อยที่สุดของ Minimum spanning tree ของกราฟ G

ข้อมูลนำเข้า:

บรรทัดแรก เป็นจำนวนเต็ม 3 จำนวน คือ M N และ Q โดยที่ M ($1 \le M \le 10,000$) เป็นจำนวนโหนดของกราฟ N ($1 \le N \le 10$) เป็นจำนวนเส้นเชื่อม และ Q ($1 \le M \le 10,000$) เป็นจำนวน Query

ข้อมูลนำออก:

จำนวนบรรทัดจะเท่ากับจำนวน Query ประเภทที่ 3 โดยแต่ละบรรทัดจะแสดงค่าน้ำหนักที่น้อยที่สุดของ Minimum spanning tree ของกราฟ G ณ เวลานั้น

Input	Output
4 4 5	3
1 2 1	2
2 3 1	3
3 4 1	
4 1 1	
3	
1 1 2	
3	
2 1 2	
3	

20/100

D-dimensional MST

กำหนดให้ G เป็นกราฟแบบไม่มีทิศทางบน D-dimension space ที่ประกอบด้วยโหนดจำนวน N โหนด ซึ่งโหนดที่ i จะอยู่ที่พิกัด (x_{i,1},x_{i,2},x_{i,3},...,x_{i,D}) โดยน้ำหนักของเส้นเชื่อมระหว่างโหนด i และ j ใดๆ จะมีค่าเท่ากับ

$$|x_{i,1}-x_{j,1}|+|x_{i,2}-x_{j,2}|+|x_{i,3}-x_{j,3}|+...+|x_{i,D}-x_{j,D}|$$

จงเขียนโปรแกรมเพื่อหาค่าน้ำหนักสูงสุดของ Maximum spanning tree ของกราฟ G

ข้อมูลนำเข้า:

บรรทัดแรก เป็นจำนวนเต็ม 2 จำนวน คือ N และ D โดยที่ N ($1 \le N \le 10,000$) เป็นจำนวนโหนดของกราฟ และ D ($1 \le D \le 5$) เป็นจำนวน Dimension ของ Space บรรทัดที่ 2 - N + 1 แต่ละบรรทัดมีจำนวนเต็ม D ตัว แทนพิกัดของโหนด

ข้อมูลนำออก:

จำนวนหนึ่งบรรทัดแสดงจำนวนน้ำหนักที่มากกว่าที่สุดของ Maximum spanning tree ของกราฟ

Input	Output
2 2	2
1 1	
2 2	
3 4	65
1 5 20 10	
7 4 9 7	
19 7 4 13	

ในไทม์แลนด์มีหมู่บ้านทั้งหมด N หมู่บ้าน ที่ตั้งอยู่ในแนวเดียวกัน โดยแต่ละหมู่บ้านจะมีหมายเลขกำกับ ตั้งแต่ลำดับที่ 1 ถึง N (จากซ้ายไปขวา) โดยบางหมู่บ้านมีไฟฟ้าใช้แต่ในบางหมู่บ้านก็ไม่มีไฟฟ้าใช้ ท่านผู้นำของ ไทม์แลนด์ตัดสินใจว่าควรจัดหาไฟฟ้าให้กับทุกหมู่บ้าน ดังนั้นเขาจึงตัดสินใจซื้อสายไฟฟ้าจำนวนหนึ่งเพื่อเชื่อมต่อ หมู่บ้านที่ไม่มีไฟฟ้าไปยังหมู่บ้านที่มีไฟฟ้าใช้ เนื่องจากไทม์แลนด์ไม่ต้องการใช้เงินจำนวนมากเกินไปในการซื้อ สายไฟฟ้า คุณจะต้องช่วยหาความยาวของสายไฟฟ้าที่ไทมแลนด์ควรซื้อน้อยที่สุด

ข้อมูลนำเข้า:

บรรทัดแรก เป็นจำนวนเต็ม 1 จำนวน คือ T (1 ≤ T ≤ 10) แทนจำนวน Test case
บรรทัดแรกของแต่ละ Test case เป็นจำนวนเต็ม 1 จำนวน คือ N (1 ≤ N ≤ 1,000) แทนจำนวนหมู่บ้าน
บรรทัดที่สองของแต่ละ Test case เป็นข้อความยาว N ตัวอักษร ซึ่งมีค่าเป็น '0' และ '1' เพื่อแทนข้อมูลของแต่
ละหมู่บ้านเรียงกันไป โดย '0' แทนการไม่มีไฟฟ้าใช้ และ '1' แทนการมีไฟฟ้าใช้
บรรทัดที่สามของแต่ละ Test case เป็นจำนวนเต็ม N จำนวนที่แยกด้วยช่องว่าง เพื่อแทนพิกัดของแต่ละหมู่บ้าน
ตั้งแต่หมู่บ้านที่ 1 ถึงหมู่บ้านที่ N

ข้อมูลนำออก:

จำนวน T บรรทัด แสดงความยาวของสายไฟฟ้าที่น้อยที่สุดที่จะต้องซื้อในแต่ละ Test case

Input	Output
1	0
3	
111	
3 6 9	
2	1
2	5
01	
1 2	
3	
100	
1 5 6	

ข้อสอบแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 11 ณ มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตตรัง

ข้อสอบมีทั้งหมด 3 ข้อ 15 หน้า วันที่ 4 มิถุนายน 2558 เวลา 9.00 – 12.00 น.

สถานที่ศักดิ์สิทธิ์ (Sacred Places)

ตามราชประเพณี มีการกำหนดให้มีราชพิธีประจำปีที่องค์รายาต้องไปสักการะสถานที่ศักดิ์สิทธิ์ของ บุหงาตันหยงนครจำนวน N แห่ง แต่ละแห่งถูกระบุชื่อด้วยจำนวนเต็มตั้งแต่ 1 ถึง N และมีเส้นทางเชื่อมต่อ ระหว่างกันรวมทั้งสิ้น M สาย เส้นที่ i ยาว l_i เมตร $(1 \leq i \leq M)$ โดยทุกสถานที่ศักดิ์สิทธิ์จะมีเส้นทางอย่าง น้อยหนึ่งสายเชื่อมกับสถานที่ศักดิ์สิทธิ์อื่น และอาจมีเส้นทางมากกว่าหนึ่งสายเชื่อมสถานที่ศักดิ์สิทธิ์สองแห่ง ใด ๆ อย่างไรก็ตามเส้นทางที่มีอยู่ทั้งหมดหรือบางส่วนจะสามารถทำให้องค์รายาดำเนินไปยังสถานที่ศักดิ์สิทธิ์ ครบทุกแห่งได้

ในราชประเพณี กำหนดไว้ว่า

- 1. เพื่อความสะดวกในการรักษาความปลอดภัย เส้นทางที่องค์รายาดำเนินผ่านต้องมีจำนวนน้อยที่สุด แต่ยัง สามารถดำเนินไปยังทุกสถานที่ศักดิ์สิทธิ์ได้ครบ โดย K ($1 \le K \le M$) แทนจำนวนเส้นทางที่ถูกเลือก เพื่อใช้ในการดำเนินขององค์รายา
- 2. เพื่อให้ประชาชนได้ถวายพระพรอย่างทั่วถึง ความยาวรวมของเส้นทางทั้ง K สายที่องค์รายาดำเนินผ่าน ต้องเป็นระยะทางยาวที่สุด
- 3. เพื่อเป็นการเฉลิมพระเกียรติ ในแต่ละเส้นทางที่องค์รายาผ่านต้องปักธงประจำองค์รายาทุกหนึ่งเมตร โดยเริ่มปักธงแรกที่ระยะหนึ่งเมตรจากสถานที่ศักดิ์สิทธิ์ที่ด้านหนึ่ง และปักธงต่อไปทุก ๆ หนึ่งเมตร จนกระทั่งถึงระยะหนึ่งเมตรก่อนสถานที่ศักดิ์สิทธิ์อีกด้านหนึ่งจึงปักธงสุดท้ายของเส้นทางนั้น ดังนั้น จำนวนธงตลอดเส้นทางสายที่ i ซึ่งถูกเลือกใช้จะเป็น l_i-1 ในกรณีที่สถานที่ศักดิ์สิทธิ์สองแห่งถูกเชื่อม ด้วยเส้นทางความยาวหนึ่งเมตร จะไม่มีการใช้ธงสำหรับเส้นทางสายนั้น

ตัวอย่างที่ 1 ตัวอย่างเส้นทางที่ถูกเลือกใช้ในราชพิธีสักการะสถานที่ศักดิ์สิทธิ์และจำนวนธงทั้งหมดที่ใช้

ทางมุขมนตรีจำเป็นต้องทราบถึงจำนวนธงที่ต้องใช้ ในราชพิธีสักการะสถานที่ศักดิ์สิทธิ์ขององค์รายาเพื่อ จัดเตรียมธงที่ใช้ให้เพียงพอ จากตัวอย่างที่ 1 สถานที่ศักดิ์สิทธิ์ 1 ถึง 6 ถูกเชื่อมด้วยเส้นทางต่าง ๆ จำนวนเก้า สาย ดังรูป เส้นทางห้าสายที่ถูกเลือกตามราชประเพณี มีธงปักรวมทั้งสิ้น 33 ฝืน

งานของคุณ

จงเขียนโปรแกรมคอมพิวเตอร์ที่มีประสิทธิภาพ เพื่อคำนวณจำนวนธงทั้งหมดที่ต้องใช้ในราชพิธี สักการะสถานที่ศักดิ์สิทธิ์

ข้อมูลนำเข้า

มีจำนวน M+1 บรรทัด ดังนี้

บรรทัดแรก	มีจำนวนเต็มสองจำนวน ประกอบด้วย		
	N ระบุแสดงจำนวนสถานที่ศักดิ์สิทธิ์ และ		
	M ระบุจำนวนเส้นทางที่เชื่อมต่อสถานที่ศักดิ์สิทธิ์เหล่านั้น		
	โดยแต่ละจำนวนถูกคั่นด้วยช่องว่างหนึ่งช่องว่าง กำหนดให้		
	$2 \le N \le 200,000$		
	$1 \le M \le 1,000,000$		
บรรทัดที่ 2 ถึง $M+1$	แต่ละบรรทัดมีจำนวนเต็มสามจำนวน สองจำนวนแรกคือ s_i และ d_i ระบุ		
	สถานที่ศักดิ์สิทธิ์สองแห่งที่เชื่อมกันด้วยเส้นทางเส้นที่ i และจำนวนสุดท้ายคือ		
	$l_{ m i}$ ระบุความยาวของเส้นทางในหน่วยเมตร กำหนดให้		
	$1 \le s_i \le N$		
	$1 \le d_i \le N$		
	$1 \le l_i \le 100,000$		
	$1 \le i \le M$		

ข้อมูลส่งออก

มีหนึ่งบรรทัด แสดงจำนวนธงทั้งหมดที่ต้องใช้ในราชพิธีสักการะสถานที่ศักดิ์สิทธิ์

ตัวอย่างที่ 1

ข้อมูลนำเข้า	ข้อมูลส่งออก	
6 9	33	
1 2 8		
2 3 6		
1 4 6		
4 2 6		
4 5 8		
257		
5 6 5		
269		
3 6 5		

ตัวอย่างที่ 2

ข้อมูลนำเข้า	ข้อมูลส่งออก
4 6	4
1 2 1	
3 4 1	
1 3 2	
4 1 3	
2 3 2	
3 1 1	

ข้อกำหนด

หัวข้อ	เงื่อนไข
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)
ข้อมูลส่งออก	Standard Output (จอภาพ)
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล	1 วินาที
หน่วยความจำสูงที่สุดที่ใช้ประมวลผล	512 MB
คะแนนสูงสุดของโจทย์	100 คะแนน
เงื่อนไขการรันโปรแกรม	โปรแกรมจะต้องคอมไพล์ผ่าน

ข้อกำหนดอื่น

ผู้เข้าแข่งขันจะต้องระบุชื่อแฟ้มข้อมูลและส่วนหัวของโปรแกรมให้สอดคล้องกับภาษาและคอมไพเลอร์ที่ใช้ดังนี้

ภาษา C ภาษา C++		
/*	/*	
TASK: place.c	TASK: place.cpp	
LANG: C	LANG: C++	
AUTHOR: YourName YourLastName	AUTHOR: YourName YourLastName	
CENTER: YourCenter	CENTER: YourCenter	
*/	*/	

ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ

1. ข้อมูลแนะนำที่เกี่ยวข้องกับชุดทดสอบ มีดังนี้

ระดับข้อมูล ทดสอบ	สำหรับข้อมูล ขนาด <i>N</i>	สำหรับข้อมูล ขนาด <i>M</i>	สำหรับข้อมูลขนาด $l_{ m i}$	คะแนนสูงสุดที่เป็นไป ได้โดยประมาณ	เงื่อนไข
1.	≤ 10	≤ 20	$l_{ m i}$ เท่ากันทุกตัว	10%	ชุดทดสอบ
2.	≤ 10	≤ 20	$1 \le l_i \le 100,000$	30%	ทั้งหมดเป็น
3.	≤ 1,000	≤ 10,000	$1 \le l_i \le 100,000$	70%	อิสระต่อกัน
4.	≤ 200,000	≤ 1,000,000	$1 \le l_i \le 100,000$	100%	

- 2. ควรใช้คำสั่ง scanf ในการรับข้อมูลนำเข้า
- 3. ข้อมูลส่งออกของโจทย์ข้อนี้อาจจะมีค่าเกินกว่า 2³² ควรพิจารณาการใช้ตัวแปรขนาด 64 บิต