SEQUENCE LISTING

<110> Merck & Co., Inc. Istituto di Ricerche di Biologia Molecolare P. Angeletti S.p.A. <120> HCV REPLICONS CONTAINING NS5B FROM GENOTYPE 2B <130> 21564Y PCT <150> 60/517,605 <151> 2003-11-05 <160> 28 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 591 <212> PRT <213> Artificial Sequence <220> <223> modified NS5B <221> VARIANT <222> (5)...(5) <223> Xaa = threonine or serine <221> VARIANT <222> (24)...(24) <223> Xaa = asparagine or serine <221> VARIANT <222> (31)...(31) <223> Xaa = methionine or isoleucine <221> VARIANT <222> (376)...(376) <223> Xaa = isoleucine or leucine <400> 1 Ser Met Ser Tyr Xaa Trp Thr Gly Ala Leu Ile Thr Pro Cys Gly Pro 10 Glu Glu Glu Lys Leu Pro Ile Xaa Pro Leu Ser Asn Ser Leu Xaa Arg 25 Phe His Asn Lys Val Tyr Ser Thr Thr Ser Arg Ser Ala Ser Leu Arg 35 40 45 Ala Lys Lys Val Thr Phe Asp Arg Val Gln Val Leu Asp Ala His Tyr 50 Asp Ser Val Leu Gln Asp Val Lys Arg Ala Ala Ser Lys Val Ser Ala 65 70 75 80 Arg Leu Leu Thr Val Glu Glu Ala Cys Ala Leu Thr Pro Pro His Ser

90

95

85

	Lys		100					105					110		
Arg	Arg	Ala 115	Val	Asn	His	Ile	Arg 120	Ser	Val	Trp	Glu	Asp 125	Leu	Leu	Glu
Asp	Gln 130	His	Thr	Pro	Ile	Asp 135	Thr	Thr	Ile	Met	Ala 140	Lys	Asn	Glu	Val
Phe 145	Cys	Ile	Asp	Pro	Thr 150	Lys	Gly	Gly	Lys	Lys 155	Pro	Ala	Arg	Leu	Ile 160
Val	Tyr	Pro	Asp	Leu 165	Gly	Val	Arg	Val	Cys 170	Glu	Lys	Met	Ala	Leu 175	Tyr
Asp	Ile	Ala	Gln 180	Lys	Leu	Pro	Lys	Ala 185	Ile	Met	Gly	Pro	Ser 190	Tyr	Gly
Phe	Gln	Tyr 195	Ser	Pro	Ala	Glu	Arg 200	Val	Asp	Phe	Leu	Leu 205	Lys	Ala	Trp
Gly	Ser 210	Lys	Lys	Asp	Pro		Gly		Ser	Tyr	Asp 220	Thr	Arg	Cys	Phe
225	Ser				230					235					240
Gln	Ala	Cys	Ser	Leu 245	Pro	Gln	Glu	Ala	Arg 250	Thr	Val	Ile	His	Ser 255	Leu
	Glu		260	_		_	_	265					270		
	Cys	275					280					285			
Met	Gly 290	Asn	Thr	Met	Thr	Cys 295	Tyr	Ile	Lys	Ala	Leu 300	Ala	Ala	Cys	Lys
Ala 305	Ala	Gly	Ile	Val	Asp 310	Pro	Val	Met	Leu	Val 315	Cys	Gly	Asp	Asp	Leu 320
Val	Val	Ile	Ser	Glu 325	Ser	Gln	Gly	Asn	Glu 330	Glu	Asp	Glu	Arg	Asn 335	Leu
_	Ala		340					345					350		
Leu	Pro	Arg 355	Pro	Glu	Tyr	Asp	Leu 360	Glu	Leu	Ile	Thr	Ser 365	Cys	Ser	Ser
Asn	Val 370	Ser	Val	Ala	Leu	Asp 375	Ser	Arg	Gly	Arg	Arg 380	Arg	Tyr	Phe	Leu
Thr 385	Arg	Asp	Pro	Thr	Thr 390	Pro	Xaa	Thr	Arg	Ala 395	Ala	Trp _.	Glu	Thr	Val 400
Arg	His	Ser	Pro	Val 405	Asn	Ser	Trp	Leu	Gly 410	Asn	Ile	Ile	Gln	Tyr 415	Ala
Pro	Thr	Ile	Trp 420	Val	Arg	Met	Val	Ile 425		Thr			Phe 430	Ser	Ile
Leu	Leu	Ala 435	Gln	Asp	Thr	Leu	Asn 440	Gln	Asn	Leu	Asn	Phe 445	Glu	Met	Tyr
Gly	Ala 450	Val	Tyr	Ser	Val	Asn 455	Pro	Leu	Asp	Leu	Pro 460	Ala	Ile	Ile	Glu
Arg 465	Leu	His	Gly	Leu	Glu 470	Ala	Phe	Ser	Leu	His 475	Thr	Tyr	Ser	Pro	His 480
Glu	Leu	Ser	Arg	Val 485	Ala	Ala	Thr	Leu	Arg 490	Lys	Leu	Gly	Ala	Pro 495	Pro
Leu	Arg	Ala	Trp 500	Lys	Ser	Arg	Ala	Arg 505	Ala	Val	Arg	Ala	Ser 510	Leu	Ile
Ala	Gln	Gly 515	Ala	Arg	Ala	Ala	Ile 520	Cys	Gly	Arg	Tyr	Leu 525	Phe	Asn	Trp

```
Ala Val Lys Thr Lys Leu Lys Leu Thr Pro Leu Pro Glu Ala Ser Arg
                                             540
                        535
    530
Leu Asp Leu Ser Gly Trp Phe Thr Val Gly Ala Gly Gly Gly Asp Ile
                    550
545
                                         555
                                                             560
Tyr His Ser Val Ser His Ala Arg Pro Arg Leu Leu Leu Cys Leu
                565
                                     570
                                                         575
Leu Leu Ser Val Gly Val Gly Ile Phe Leu Leu Pro Asp Arg
                                 585
            580
                                                     590
<210> 2
<211> 1776
<212> DNA
<213> Artificial Sequence
<220>
<223> modified NS5B
<221> variation
<222> (3) ... (3)
<223> n = A or T
<221> variation
<222> (9)...(9)
<223> n = C or A
<221> variation
<222> (13)...(13)
<223> n = A or T
<221> variation
<222> (15)...(15)
<223> n = A or C
<221> variation
<222> (21)...(21)
<223> n - A or G
<221> variation
<222> (24)...(24)
<223> n = C or G
<221> variation
<222> (28)...(28)
<223> n = T or C
<221> modified_base
<222> (30)...(30)
<223> n = G or C
<221> variation
<222> (33)...(33)
<223> n = C or A
<221> variation
<222> (71)...(71)
```

```
<223> n = A or G
<221> variation
<222> (83)...(83)
<223> n = G or T
<221> variation
<222> (1174)...(1174)
<223> n = A or C
<400> 2
tcnatgtcnt acncntggac nggngccntn atnacaccat gtgggcccga agaggagaag 60
ttaccgatca nccctctgag taattcgctc atncggttcc ataataaggt gtactccaca 120
acctcgagga gtgcctctct gagggcaaag aaggtgactt ttgacagggt gcaggtgctg 180
gacgcacact atgactcagt cttgcaggac gttaagcggg ccgcctctaa ggttagtgcg 240
aggeteetea eggtagagga ageetgegeg etgaceeege eecaeteege caaategega 300
tacggatttg gggcaaaaga ggtgcgcagc ttatctagga gggccgttaa ccacatccgg 360
tccgtgtggg aggacctcct ggaagaccaa cataccccaa ttgacacaac tatcatggct 420
aaaaatgagg tgttctgcat tgatccaact aaaggtggga aaaagccagc tcgcctcatc 480
gtataccccg accttggggt cagggtgtgc gaaaagatgg ccctctatga catcgcacaa 540
aagcttccca aagcgataat ggggccatcc tatgggttcc aatactctcc cgcagaacgg 600
gtcgatttcc tcctcaaagc ttggggaagt aagaaggacc caatggggtt ctcgtatgac 660
acccgctgct ttgactcaac cgtcacggag agggacataa gaacagaaga atccatatat 720
caggettgtt ctctgcctca agaagccaga actgtcatac actcgctcac tgagagactt 780
tacgtaggag ggcccatgac aaacagcaaa gggcaatcct gcggctacag gcgttgccgc 840
gcaagcggtg ttttcaccac cagcatgggg aataccatga catgttacat caaagccctt 900
gcagcgtgta aggctgcagg gatcgtggac cctgttatgt tggtgtgtgg agacgacctg 960
gtcgtcatct cagagagcca aggtaacgag gaggacgagc gaaacctgag agctttcacg 1020
gaggctatga ccaggtattc cgccctccc ggtgaccttc ccagaccgga atatgacttg 1080
gagcttataa catcctgctc ctcaaacgta tcggtagcgc tggactctcg gggtcgccgc 1140
cggtacttcc taaccagaga ccctaccact ccantcaccc gagctgcttg ggaaacagta 1200
agacactccc ctgtcaattc ttggctgggc aacatcatcc agtacgcccc cacaatctgg 1260
gtccggatgg tcataatgac tcacttcttc tccatactat tggcccagga cactctgaac 1320
caaaatctca attttgagat gtacggggca gtatactcgg tcaatccatt agacctaccg 1380
gccataattg aaaggctaca tgggcttgaa gccttttcac tgcacacata ctctcccac 1440
gaactctcac gggtggcagc aactctcaga aaacttggag cgcctcccct tagagcgtgg 1500
aagagtcggg cgcgtgccgt gagagcttca ctcatcgccc aaggagcgag ggcggccatt 1560
tgtggccgct acctcttcaa ctgggcggtg aaaacaaagc tcaaactcac tccattgccc 1620
gaggcgagcc gcctggattt atccgggtgg ttcaccgtgg gcgccggcgg gggcgacatt 1680
tatcacageg tgtcgcatgc ccgaccccgc ctattactcc tttgcctact cctacttagc 1740
gtaggagtag gcatctttt actccccgat cgatga
                                                                  1776
<210> 3
<211> 1394
<212> PRT
<213> Artificial Sequence
<220>
<223> modified NS3-5A
<221> VARIANT
<222> (1215)...(1215)
<223> Xaa = asparagine or serine
<221> VARIANT
```

<222> (904)...(904) <223> Xaa = valine or alanine <400> 3 Met Ala Pro Ile Thr Ala Tyr Ser Gln Gln Thr Arg Gly Leu Leu Gly Cys Ile Ile Thr Ser Leu Thr Gly Arg Asp Lys Asn Gln Val Glu Gly Glu Val Gln Val Val Ser Thr Ala Thr Gln Ser Phe Leu Ala Thr Cys Val Asn Gly Val Cys Trp Thr Val Tyr His Gly Ala Gly Ser Lys Thr Leu Ala Gly Pro Lys Gly Pro Ile Thr Gln Met Tyr Thr Asn Val Asp Gln Asp Leu Val Gly Trp Gln Ala Pro Pro Gly Ala Arg Ser Leu Thr Pro Cys Thr Cys Gly Ser Ser Asp Leu Tyr Leu Val Thr Arg His Ala Asp Val Ile Pro Val Arg Arg Gly Asp Ser Arg Gly Ser Leu Leu Ser Pro Arg Pro Val Ser Tyr Leu Lys Gly Ser Ser Gly Gly Pro Leu Leu Cys Pro Ser Gly His Ala Val Gly Ile Phe Arg Ala Ala Val Cys Thr Arg Gly Val Ala Lys Ala Val Asp Phe Val Pro Val Glu Ser Met Glu Thr Thr Met Arg Ser Pro Val Phe Thr Asp Asn Ser Ser Pro Pro Ala Val Pro Gln Thr Phe Gln Val Ala His Leu His Ala Pro Thr Gly Ser Gly Lys Ser Thr Lys Val Pro Ala Ala Tyr Ala Ala Gln Gly Tyr Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly Phe Gly 230 235 Ala Tyr Met Ser Lys Ala His Gly Ile Asp Pro Asn Ile Arg Thr Gly Val Arg Thr Ile Thr Thr Gly Ala Pro Val Thr Tyr Ser Thr Tyr Gly Lys Phe Leu Ala Asp Gly Gly Cys Ser Gly Gly Ala Tyr Asp Ile Ile Ile Cys Asp Glu Cys His Ser Thr Asp Ser Thr Thr Ile Leu Gly Ile Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Ala Arg Leu Val Val Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Val Pro His Pro Asn Ile Glu Glu Val Ala Leu Ser Asn Thr Gly Glu Ile Pro Phe Tyr Gly Lys Ala Ile Pro Ile Glu Ala Ile Arg Gly Gly Arg His Leu Ile Phe Cys His Ser Lys Lys Lys Cys Asp Glu Leu Ala Ala Lys Leu Ser Gly Leu Gly Ile Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ser Val

Ile	Pro	Thr	Ile	Gly 405		Val		Val	Val 410		Thr	Asp	Ala	Leu 415	Met
Thr	Gly	Tyr	Thr 420		Asp	Phe	Asp	Ser 425		Ile	Asp	Cys	Asn 430	Thr	Cys
		435					440					445	Thr		
	450					455					460		Arg		_
465					470					475			Thr		480
				485					490				Glu	495	
			500					505		i			Thr 510		
		515					520					525	Cys		_
	530					535	·				540		His		_
545					550					555			Phe		560
				565					570				Ala	575	
			580					585					Lys 590		
		595					600					605	Val Ala		
	610					615					620			_	
625					630					635			Val	_	640
				645					650				Ser	655	
			660					665					Val 670		_
		675					680					685	Cys		
	690					695					700		Gln		_
705					710				,	715			Ala	ı	720
				725					730				:	735	_
			740					745					Leu 750		
		755					760					765	Met		
	770					775					780		Leu		
785					790					795			Pro		800
				805					810				Val	815	
Ile	Gly	Leu	Gly 820	Lys	Val	Leu	Val	Asp 825	Ile	Leu	Ala	Gly	Tyr 830	Gly	Ala

Gly	Val	Ala 835		Ala	Leu	Val	Ala 840	Phe	Lys	Val	Met	Ser 845	Gly	Glu	Met
Pro	Ser 850		Glu	Asp	Leu	Val 855		Leu	Leu	Pro	Ala 860	Ile	Leu	Ser	Pro
865					870					875		Leu		_	880
				885					890			Arg		895	
			900					905				Tyr	910		
	ŕ	915					920					Ser 925		,	
	930					935					940	Glu			
945			,		950					955		Asp			960
				965					970			Lys		975	
		r	980					985					990		Gly
		995					1000)				1005	5		Ala
	1010)				1015	5				1020	0			Pro
1025	5				1030)				1035	õ				Tyr 1040
				1045	5				1050)				1055	5
			1060)				1065	5				1070)	Gly
		1075	5				1080)				Val 1085	5		
	1090	}				1095	5				1100		·		
1105	5				1110)				1115	5	Arg			1120
				1125	5				1130)				1135	5
			1140)				1145	,	•			1150)	_
Pro	Ser	His 1155			Ala							Leu 1165		Arg	Gly
	1170)				1175	5				1180				
1185	5				1190	ļ				1195	<u>, </u>	Pro			1200
				1205	; ;				1210)		Gly	_	1215	•
			1220)			4	1225					1230		_
Pro	Leu	Arg	Ala	Glu	Glu	Asp			Glu	Val	Ser	Val		Ala	Glu
		1235	;				1240					1245 Pro			

```
Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Ser Trp Lys Asp Pro Asp
1265
                    1270
                                        1275
Tyr Val Pro Pro Val Val His Gly Cys Pro Leu Pro Pro Ile Lys Ala
                1285
                                    1290
                                                         1295
Pro Pro Ile Pro Pro Pro Arg Arg Lys Arg Thr Val Val Leu Thr Glu
                                 1305
            1300
                                                     1310
Ser Ser Val Ser Ser Ala Leu Ala Glu Leu Ala Thr Lys Thr Phe Gly
        1315
                            1320
                                                 1325
Ser Ser Glu Ser Ser Ala Val Asp Ser Gly Thr Ala Thr Ala Leu Pro
    1330
                        1335
                                             1340
Asp Gln Ala Ser Asp Asp Gly Asp Lys Gly Ser Asp Val Glu Ser Tyr
1345
                    1350
                                        1355
Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly Asp Pro Asp Leu Ser
                1365
                                    1370
                                                         1375
Asp Gly Ser Trp Ser Thr Val Ser Glu Glu Ala Ser Glu Asp Val Val
            1380
                                1385
                                                     1390
Cys Cys
<210> 4
<211> 4182
<212> DNA
<213> Artificial Sequence
<220>
<223> modified NS3-5A
<221> variation
<222> (2711)...(2711)
<223> n = T or C
<221> variation
<222> (3645)...(3645)
<223> n = A or G
<400> 4
atggcgccca tcacggccta ctcccaacag acgcggggcc tacttggttg catcatcact 60
agccttacag gccgggacaa gaaccaggtc gagggagagg ttcaggtggt ttccaccgca 120
acacaatcct tcctggcgac ctgcgtcaac ggcgtgtgtt ggaccgttta ccatggtgct 180
ggctcaaaga ccttagccgg cccaaagggg ccaatcaccc agatgtacac taatgtggac 240
caggacctcg tcggctggca ggcgccccc ggggcgcgtt ccttgacacc atgcacctgt 300
ggcagctcag acctttactt ggtcacgaga catgctgacg tcattccggt gcgccggcgg 360
ggcgacagta gggggagcct gctctcccc aggcctgtct cctacttgaa gggctcttcg 420
ggtggtccac tgctctgccc ttcggggcac gctgtgggca tcttccgggc tgccgtatgc 480
acccgggggg ttgcgaaggc ggtggacttt gtgcccgtag agtccatgga aactactatg 540
cggtctccgg tcttcacgga caactcatcc ccccggccg taccgcagac atttcaagtg 600
gcccacctac acgctcccac tggcagcggc aagagtacta aagtgccggc tgcatatgca 660
gcccaagggt acaaggtgct cgtcctcaat ccgtccgttg ccgctacctt agggtttggg 720
gcgtatatgt ctaaggcaca cggtattgac cccaacatca gaactggggt aaggaccatt 780
accacaggcg cccccgtcac atactctacc tatggcaagt ttcttgccga tggtggttgc 840
tctgggggcg cttatgacat cataatatgt gatgagtgcc attcaactga ctcgactaca 900
atcttgggca tcggcacagt cctggaccaa gcggagacgg ctggagcgcg gcttgtcgtg 960
ctcgccaccg ctacgcctcc gggatcggtc accgtgccac acccaaacat cgaggaggtg 1020
gccctgtcta atactggaga gatccccttc tatggcaaag ccatccccat tgaagccatc 1080
agggggggaa ggcatctcat tttctgtcat tccaagaaga agtgcgacga gctcgccgca 1140
```

					tgtgtccgtc	
ataccaacta	tcggagacgt	cgttgtcgtg	gcaacagacg	ctctgatgac	gggctatacg	1260
ggcgactttg	actcagtgat	cgactgtaac	acatgtgtca	cccagacagt	cgacttcagc	1320
ttggatccca	ccttcaccat	tgagacgacg	accgtgcctc	aagacgcagt	gtcgcgctcg	1380
cagcggcggg	gtaggactgg	cagaggtagg	atgggcatct	acaggtttgt	gactccggga	1440
gaacggccct	cgggcatgtt	cgattcctcg	gtcctgtgtg	agtgctatga	cgcgggctgt	1500
gcttggtacg	agctcacccc	cgccgagacc	tcggttaggt	tgcgggccta	cctgaacaca	1560
					cacaggcctc	
					cttcccctac	
ctggtagcat	accaagccac	ggtgtgcgcc	agggctcagg	ccccacctcc	atcatgggat	1740
					acccttgctg	
					caaatacatc	
					ggtgggcgga	
gtccttgcag	ctctggccgc	gtattgcctg	acaacaggca	gtgtggtcat	tgtgggtagg	1980
attatcttgt	ccgggaggcc	ggctattgtt	cccgacaggg	agtttctcta	ccaggagttc	2040
gatgaaatgg	aagagtgcgc	ctcgcacctc	ccttacatcg	agcagggaat	gcagctcgcc	2100
gagcaattca	agcagaaagc	gctcgggtta	ctgcaaacag	ccaccaaaca	agcggaggct	2160
gctgctcccg	tggtggagtc	caagtggcga	gcccttgaga	cattctgggc	gaagcacatg	2220
tggaatttca	tcagcgggat	acagtactta	gcaggcttat	ccactctgcc	tgggaacccc	2280
gcaatagcat	cattgatggc	attcacagcc	tctatcacca	gcccgctcac	cacccaaagt	2340
accctcctgt	ttaacatctt	gggggggtgg	gtggctgccc	aactcgcccc	ccccagcgcc	2400
gcttcggctt	tcgtgggcgc	cggcatcgcc	ggtgcggctg	ttggcagcat	aggccttggg	2460
aaggtgcttg	tggacattct	ggcgggttat	ggagcaggag	tggccggcgc	gctcgtggcc	2520
ttcaaggtca	tgagcggcga	gatgccctcc	accgaggacc	tggtcaatct	acttcctgcc	2580
atcctctctc	ctggcgccct	ggtcgtcggg	gtcgtgtgtg	cagcaatact	gcgtcgacac	2640
gtgggtccgg	gagagggggc	tgtgcagtgg	atgaaccggc	tgatagcgtt	cgcctcgcgg	2700
ggtaatcatg	tttcccccac	gcactatgtg	cctgagagcg	acgccgcagc	gcgtgttact	2760
cagatcctct	ccagccttac	catcactcag	ctgctgaaaa	ggctccacca	gtggattaat	2820
gaagactgct	ccacaccgtg	ttccggctcg	tggctaaggg	atgtttggga	ctggatatgc	2880
acggtgttga	ctgacttcaa	gacctggctc	cagtccaagc	tcctgccgca	gctaccggga	2940
gtcccttttt	tctcgtgcca	acgcgggtac	aagggagtct	ggcggggaga	cggcatcatg	3000
caaaccacct	gcccatgtgg	agcacagatc	accggacatg	tcaaaaacgg	ttccatgagg	3060
atcgtcgggc	ctaagacctg	cagcaacacg	tggcatggaa	cattccccat	caacgcatac	3120
accacgggcc	cctgcacacc	ctctccagcg	ccaaactatt	ctagggcgct	gtggcgggtg	3180
gccgctgagg	agtacgtgga	ggtcacgcgg	gtgggggatt	tccactacgt	gacgggcatg	3240
accactgaca	acgtaaagtg	cccatgccag	gttccggctc	ctgaattctt	cacggaggtg	3300
gacggagtgc	ggttgcacag	gtacgctccg	gcgtgcaggc	ctctcctacg	ggaggaggtt	3360
acattccagg	tcgggctcaa	ccaatacctg	gttgggtcac	agctaccatg	cgagcccgaa	3420
ccggatgtag	cagtgctcac	ttccatgctc	accgacccct	cccacatcac	agcagaaacg	3480
gctaagcgta	ggttggccag	ggggtctccc	ccctccttgg	ccagctcttc	agctatccag	3540
					ggacgctgac	
					ccgcgtggag	
tcggagaaca	aggtggtagt	cctggactct	ttcgacccgc	ttcgagcgga	ggaggatgag	3720
agggaagtat	ccgttccggc	ggagatcctg	cggaaatcca	agaagttccc	cgcagcgatg	3780
cccatctggg	cgcgcccgga	ttacaaccct	ccactgttag	agtcctggaa	ggacccggac	3840
tacgtccctc	cggtggtgca	cgggtgcccg	ttgccaccta	tcaaggcccc	tccaatacca	3900
cctccacgga	gaaagaggac	ggttgtccta	acagagtcct	ccgtgtcttc	tgccttagcg	3960
						4020
					tgagtcgtac	
					cgggtcttgg	
tctaccgtga	gcgaggaagc	tagtgaggat	gtcgtctgct	gc		4182
			-			

<210> 5 <211> 34

<212> DNA

<213> Artificial Sequence	
<220>	
<223> primer	
	a
<400> 5	
aaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaa	34
<210> 6	
<211> 23	
<212> DNA <213> Artificial Sequence	
-213> Attituat sequence	
<220>	
<223> primer	
-	
<400> 6	
atggagaaga aggtcattgt gtg	23
<210> 7	
<211> 23 <212> DNA	
<213> Artificial Sequence	
VZIO III CIII CILICIAI DOGACIICO	
<220>	
<223> primer	
<400> 7	
gctcccatta ctgcctacac tca	23
-210s 0	
<210> 8 <211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 8	
ccgctctacc gagcgggag t	21
<210> 9	
<211> 25	
<212> DNA	Ŧ
<213> Artificial Sequence	
<220>	
<223> primer	
.400.	
<400> 9	O !"
ctctcctcaa gcgtattcaa caagg	25
<210> 10	
<211> 25	
<212> DNA	

<213> Artificial Sequence	
<220>	
<223> primer	
<400> 10 ccgtgcagcg taggtttcag ccgta	~ =
cegegeageg taggetteag eegta	25
<210> 11	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 11	
cccattgtat gggatctgat ctgg	24
<210> 12	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<u>-</u>	
<400> 12	
caagctgaag tcgactgtct gggtgaca	28
<210> 13	
<211> 29	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 13	
tacttggtca cgagacatgc tgacgtcat	29
<210> 14	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	,
<223> primer	
<400> 14	
ggagaggata gcagggagt	19
<210> 15	
<211> 29	
<212> DNIA	

<213> Artificial Sequence	
<220>	
<223> primer	
<400> 15	
cgtatatgtc taaggcacac ggtattgac	29
-210- 1 <i>C</i>	
<210> 16 <211> 28	
<212> DNA	
<213> Artificial Sequence	
4220s	
<220> <223> primer	
<400> 16	
ggctggtgat agaggctgtg aatgccat	28
<210> 17	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
.400. 15	
<400> 17	0.0
ggatcaaatg tggaagtgtc tcatacgg	28
<210> 18	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 18	
tcgaggttgt ggagtacac	19
	>
<210> 19	
<211> 29	
<212> DNA <213> Artificial Sequence	
varax arctrictar peducince	
<220>	
<223> primer	
<400> 19	
gcaatagcat cattgatggc attcacagc	29
-210× 20	
<210> 20 <211> 20	
<212> DNA	

<213> Artificial Sequence	
<220>	
<223> primer	
<400> 20	
ggcctcgatg aggtcagcgt	20
<210> 21	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 21	
ctctcctcaa gcgtattcaa caagg	0.5
· · · · · · · · · · · · · · · · · · ·	25
<210> 22	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 22	
gtaaagtgcc cgtgtcaggt	20
<210> 23 <211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 23	·
catgatagtt gtgtcaattg g	21
<210> 24	
<211> 19	
<212> DNA	
<213> Artifial Sequence	
<400> 24	
gtctaccgtg agcgaggaa	19
•	
<210> 25 <211> 21	
<211> 21 <212> DNA	
<213> Artificial Sequence	
<220>	

```
<223> primer
<400> 25
atactcctgg acaggggccc t
                                                                    21
<210> 26
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 26
gcgcgcgcat cgatcgggga gtaaaaagat gcctac
                                                                    36
<210> 27
<211> 783
<212> DNA
<213> modified NS4B
<400> 27
gcctccaaag ccgcctcat tgaggaaggg cagcggatgg cggagatgct caaatctaag 60
atacaaggcc tcctacaaca ggccacaagg caagctcaag acatacagcc agctatacag 120
tcatcatggc ccaagcttga acaattttgg gccaaacaca tgtggaactt catcagtggt 180
atacagtacc tagcaggact ctccacccta ccgggaaatc ctgcagtagc atcaatgatg 240
gcttttagcg ccgcgctgac tagcccacta cccaccagca ccaccatcct cttgaacatc 300
atgggaggat ggttggcctc tcagattgcc cccctgccg gagccactgg cttcgttgtc 360
agtggtctag tgggggggc cgtcggaagc ataggcctgg gtaagatact ggtggacgtt 420
ttggccgggt acggcgcagg catttcaggg gccctcgtag cttttaagat catgagcggc 480
gagaagccca cggtagaaga cgttgtgaat ctcctgcctg ctattctgtc tcctggtgcg 540
ttggtagtgg gagtcatctg tgcagcaatc ctgcgtcgac acgtgggtcc gggagagggg 600
gctgtgcagt ggatgaaccg gctgatagcg ttcgcctcgc ggggtaatca tgcttcccc 660
acgcactatg tgcctgagag cgacgccgca gcgcgtgtta ctcagatcct ctccagcctt 720
accatcactc agctgctgaa aaggctccac cagtggatta atgaagactg ctccacaccg 780
tgt
<210> 28
<211> 261
<212> PRT
<213> modified NS4B
<400> 28
Ala Ser Lys Ala Ala Leu Ile Glu Glu Gly Gln Arg Met Ala Glu Met
 1
                                    10
Leu Lys Ser Lys Ile Gln Gly Leu Leu Gln Gln Ala Thr Arg Gln Ala
                                25
                                                     30
Gln Asp Ile Gln Pro Ala Ile Gln Ser Ser Trp Pro Lys Leu Glu Gln
        35
                            40
                                                 45
Phe Trp Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu
    50
                        55
                                             60
Ala Gly Leu Ser Thr Leu Pro Gly Asn Pro Ala Val Ala Ser Met Met
                    70
                                                             80
Ala Phe Ser Ala Ala Leu Thr Ser Pro Leu Pro Thr Ser Thr Thr Ile
                85
                                    90
                                                         95
```

Leu	Leu	Asn	Ile 100	Met	Gly	Gly	Trp	Leu 105	Ala	Ser	Gln	Ile	Ala 110	Pro	Pro
Ala	Gly	Ala 115	Thr	Gly	Phe	Val	Val 120	Ser	Gly	Leu	Val	Gly 125	Ala	Ala	Val
Gly	Ser 130	Ile	Gly	Leu	Gly	Lys 135	Ile	Leu	Val	Asp	Val 140	Leu	Ala	Gly	Tyr
Gly 145	Ala	Gly	Ile	Ser	Gly 150	Ala	Leu	Val	Ala	Phe 155	Lys	Ile	Met	Ser	Gly 160
Glu	Lys	Pro	Thr	Val 165	Glu	Asp	Val	Val	Asn 170	Leu	Leu	Pro	Ala	Ile 175	Leu
Ser	Pro	Gly	Ala 180	Leu	Val	Val	Gly	Val 185	Ile	Cys	Ala	Ala	Ile 190	Leu	Arg
Arg	His	Val 195	Gly	Pro	Gly	Glu	Gly 200	Ala	Val	Gln	Trp	Met 205	Asn	Arg	Leu
Ile	Ala 210	Phe	Ala	Ser	Arg	Gly 215	Asn	His	Ala	Ser	Pro 220	Thr	His	Tyr	Val
Pro 225	Glu	Ser	Asp	Ala	Ala 230	Ala	Arg	Val	Thr	Gln 235	Ile	Leu	Ser	Ser	Leu 240
Thr	Ile	Thr	Gln	Leu 245	Leu	Lys	Arg	Leu	His 250	Gln	Trp	Ile	Asn	Glu 255	Asp
Cys	Ser	Thr	Pro 260	Cys											