Colle 7 MPSI/MP2I Jeudi 30 novembre 2023

Planche 1

- 1. Théorème de Bolzano-Weierstrass. Énoncé et démonstration. Démonstration dans le cas réel.
- 2. La suite $\left(\sqrt{\sqrt{n+1}-\sqrt{n-1}}\right)_{n\in\mathbb{N}^*}$ admet -elle une limite?
- 3. Soit $(a,b) \in (\mathbb{R}_+^*)^2$ tel que $a \leq b$. On définit par récurrence deux suites réelles $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ via

$$a_0 = a$$
, $b_0 = b$ et $\forall n \in \mathbb{N}, a_{n+1} = \sqrt{a_n b_n}$, $b_{n+1} = \frac{a_n + b_n}{2}$

Montrer que cette définition est légitime puis que les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes.

Planche 2

- 1. Théorème de convergence monotone. Énoncé et démonstration.
- 2. La suite $\left(e^{e^{e^{-n}}}-e\right)_{n\in\mathbb{N}}$ admet-elle une limite?
- 3. Soit $\theta \in \mathbb{R}2 \setminus \pi\mathbb{Z}$. Montrer que la suite $(\cos(n\theta))_{n \in \mathbb{N}}$ est divergente.

Planche 3

- 1. Théorème d'encadrement. Énoncé et démonstration.
- 2. On définit la suite u via $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \cos(u_n)$. Étudier la suite u.
- 3. Soit a une suite réelle positive bornée et u la suite définie par récurrence via

$$u_0 > 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{u_n + a_n + 1}$

Montrer que *u* converge si et seulement si *a* converge.

Bonus

Étude de u définie par $u_0 > 0$, $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2 - \sqrt{u_n}}$.