Capítulo 3

Límite y continuidad

3.1 Límite

1. Usando la definición de límite, demuestre que:

(a)
$$\lim_{x \to 1} (3x + 1) = 4$$

(b)
$$\lim_{x\to 0} x^2 = 0$$

2. ¿A qué intervalo debe pertenecer x si f(x) debe estar a una distancia menor que ϵ del número L?

(a)
$$f(x) = 2x - 1$$
, $\epsilon = 0.02$, $L = 3$

(b)
$$f(x) = x^2$$
, $\epsilon = 0.1$, $L = 4$

3. En cada uno de los siguientes casos encontrar un δ tal que $|f(x) - l| < \epsilon$ para todo x que satisface $0 < |x - a| < \delta$:

(a)
$$f(x) = x^4$$
; $a = 2, l = 16$

(b)
$$f(x) = \frac{1}{x}$$
; $a = 1, l = 1$

4. (a) Si no existen los límites $\lim_{x\to a} f(x)$, $\lim_{x\to a} g(x)$, ¿pueden existir $\lim_{x\to a} [f(x)+g(x)]$ o $\lim_{x\to a} f(x)g(x)$?

(b) Si existen $\lim_{x\to a} f(x)$ y $\lim_{x\to a} [f(x)+g(x)]$, ¿debe existir $\lim_{x\to a} g(x)$?

(c) Si existe $\lim_{x\to a} f(x)$ y no existe $\lim_{x\to a} g(x)$, ¿puede existir $\lim_{x\to a} [f(x)+g(x)]$?

(d) Si existen $\lim_{x\to a} f(x)$ y $\lim_{x\to a} f(x)g(x)$, ¿se puede concluir que existe $\lim_{x\to a} g(x)$?

5. Calcule los límites indicados:

(a)
$$\lim_{x \to 1} \frac{x^3 + 1}{x + 1}$$

(b)
$$\lim_{x \to -1} \frac{x^3 + 1}{x + 1}$$

(c)
$$\lim_{x \to 4} \frac{x^2 - 6x + 8}{x^2 - 5x + 4}$$

(d)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x}$$

(e)
$$\lim_{x\to 0} \frac{\sqrt{1+x^2}-1}{1-\sqrt{1-x^2}}$$

(f)
$$\lim_{x\to 0} \frac{\tan 3x}{x}$$

(g)
$$\lim_{x \to 0} \frac{\ln(1+6x)}{x(x-7)}$$

(h)
$$\lim_{x \to 0^{-}} \frac{\sqrt{x^2}}{x}$$

(i)
$$\lim_{x\to 0^+} x^x$$

(j)
$$\lim_{x\to 0^+} x^{\ln x}$$

(k)
$$\lim_{x \to 0^+} \frac{1 - \cos x}{x^2}$$

(l)
$$\lim_{x \to \infty} \frac{x^3 + 1}{x + 1}$$

(m)
$$\lim_{x \to \infty} \frac{x^2 + x}{1 + 3x^2}$$

(n)
$$\lim_{x \to \infty} \frac{x - \ln \sqrt{x} + \sin x}{2x - \sqrt{x} \ln x^3}$$

(o)
$$\lim_{x\to\infty} (1+x^6+x^{12}) e^{-x}$$

(p)
$$\lim_{x \to \infty} x \operatorname{sen} \frac{1}{x}$$

(q)
$$\lim_{x \to \infty} \frac{x^{2x} + (2x)^x}{x^{2x} - (2x)^x}$$

3.2 Continuidad

6. Determine -si los hay- los puntos del dominio de f(x) en los que la función es discontinua. Estudiar la existencia de límites laterales en cada uno de dichos puntos.

(a)
$$f(x) = x^3 - 4x^2 + 1$$

(b)
$$f(x) = \frac{x}{x+1}$$

(c)
$$f(x) = \begin{cases} x^2 & x > 2 \\ x & x < 2 \end{cases}$$

(d)
$$f(x) = \begin{cases} x^2 & x > 1 \\ x & x \le 1 \end{cases}$$

(e)
$$f(x) = H(x-1)$$
, donde $H(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$

7. Investigue para que valores de x están definidas las siguientes funciones, luego determine los puntos de discontinuidad.

(a)
$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & x \neq 2\\ 1 & x = 2 \end{cases}$$

(b)
$$h(x) = \frac{\sqrt{x+1}}{\sqrt{|x|}}$$

(c)
$$h(x) = \frac{x^2 - 1}{\sqrt{x^2 - 1}}$$

(d)
$$f(x) = \begin{cases} \frac{|x|}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

(e)
$$f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

8. (a) Determine la constante c para que g(x) sea continua en \mathbb{R}

$$g(x) = \begin{cases} x^2 - c & x < 4\\ cx + 20 & x \ge 4 \end{cases}$$

(b) Grafique g(x) con el valor de c encontrado en el ítem anterior.

9. ¿Para cuáles de las siguientes funciones f existe una función continua F de dominio \mathbb{R} que satisface F(x) = f(x) si $x \in D(f)$? Obtenga F en cada caso en que exista:

(a)
$$f(x) = \frac{x^2 - 4}{x - 2}$$

(b)
$$f(x) = \frac{|x|}{x}$$

(c)
$$f(x) = \sqrt[3]{x} \ln x^2$$

(d)
$$f(x) = (1+x^2)^{1/x^2}$$

(e)
$$f(x) = \arctan(\ln |x|)$$

$$(f) f(x) = x \ln \frac{1}{x^2}$$

(g)
$$f(x) = \frac{x^2 - 1}{\sqrt{x^2 - 1}}$$

10. Empleando el teorema del valor intermedio demuestre que hay una solución de la ecuación en el intervalo dado:

(a)
$$x^3 - 3x = -1$$
, $(0, 1)$

(b)
$$x^5 - 2x^4 - x - 3 = 0$$
, (2,3)

(c)
$$x^3 + 2x = x^2 + 1$$
, (0,1)

(d)
$$x = cos(x), (0, \pi/2)$$

(e)
$$x^2 = \sqrt{x+1}$$
, $(1,2)$

Respuestas a algunos ejercicios

3.2. CONTINUIDAD

- (6a) continua en \mathbb{R}
- (6b) continua en su dominio
- (6c) discontinua en x = 2; $\lim_{x \to 2^{-}} = 2$; $\lim_{x \to 2^{+}} = 4$ (9a) F(x) = x + 2
- (6d) continua en \mathbb{R}
- (6e) discontinua en x = 1; $\lim_{x \to 1^{-}} = 0$; $\lim_{x \to 1^{+}} = 1$ (9c) F(0) = 0
- (7a) $D(f) = \mathbb{R}$; discontinua en x = 2
- (7b) $D(f) = \{0\}$, continua en su dominio.
- (7c) $D(f) = (-\infty, -1) \cup (1, \infty)$, continua en D(f)
- (7d) $D(f) = \mathbb{R}$, discontinua en x = 0
- (7e) $D(f) = \mathbb{R}$, continua

(8)
$$c = -4/5$$

(9a)
$$F(x) = x + 2$$

(9c)
$$F(0) = 0$$

(9d)
$$F(0) = e$$

(9e)
$$F(0) = -\pi/2$$

(9f)
$$F(0) = 0$$

(9g) Infinitas F posibles

Ej:
$$F(x) = \sqrt{x^2 - 1}$$

$$|x| \ge 1, 0 \text{ si } x \in (-1, 1)$$