

au(1)	00010100
$\tau(2)$	00110010
$\tau(3)$	10011011
au(4)	11011110
au(5)	00111011
• • •	• • •

Generic Group Model

[Shoup 97] — Random Labels

- $\triangleright \ \tau: \mathbb{Z}_p \to \mathbb{G} = \{0,1\}^m \text{ (random injection)}$ \triangleright Interpret $\tau(x)$ as g^x
- ▷ Oracles:

$exttt{Mult}(au(x), au(y))\coloneqq au(x+y),$ and $\operatorname{Inv}(\tau(x)) \coloneqq \tau(-x),$

Justification

- For certain elliptic curve groups, the best known attacks are all generic
- We can often get a tighter security bound in the GGM
- Counterexamples are artificially crafted
 [Den02]

 $\mathtt{Mult}(10101010, 10011011)$

Generic Group Model

[Shoup 97] — Random Labels

- \triangleright Models generic attacks in a cyclic group $G = \langle g \rangle$
- $\triangleright \ \tau : \mathbb{Z}_p \to \mathbb{G} = \{0,1\}^m$ (random injection)
- \triangleright Interpret $\tau(x)$ as g^x
- ▷ Oracles:

$$\operatorname{Mult}(\tau(x),\tau(y))\coloneqq \tau(x+y), \text{ and }$$

$$\operatorname{Inv}(\tau(x)) \coloneqq \tau(-x),$$

au(1)	00010100
$\tau(2)$	00110010
$\tau(3)$	10011011
au(4)	11011110
au(5)	00111011
• • •	• • •

Justification

- For certain elliptic curve groups, the best known attacks are all **generic**
- We can often get a tighter security bound in the GGM
- Counterexamples are artificially crafted
 [Den02]

Mult(10101010, 10011011)

Bridge-Finding Game

In the Generic Group Model

au(y)	$ec{a}$	b			