

Solusi Tutorial 4

Pengantar Sistem Digital

2023-2024 Gasal

RAE

Solusi Tutorial

Rilis - 15/11/2023

Keterangan revisi

- 1. Jelaskan operasi yang dilakukan register transfer berikut! Jika invalid, sebutkan penyebabnya!
 - a. $K1: R2 \leftarrow R1, R1 \leftarrow R2$

VALID. Jika K1 bernilai 1, isi dari R1 dan R2 akan di-swap

b. K1 V K2 : R1 ← R2 V R1

INVALID. Condition OR di LHS harus dalam bentuk '+'

c. K1 + K1 : R2 ← R1 + R1

VALID. Dua kali nilai R1 akan dimasukkan ke dalam R2

d. $\overline{K0}$. K1 : R1 \leftarrow R1 \oplus R2

K0 . K1 : R2 ← R1 ⊕ R2

VALID. Jika K0 bernilai 0 dan K1 bernilai 1, maka hasil *bitwise* X0R dari R1 dan R2 akan dimasukkan ke dalam R1. Namun, jika K0 bernilai 1 dan K1 bernilai 1, hasil *bitwise* X0R dari R1 dan R2 akan dimasukkan ke R2.

e. $K1 \wedge \overline{K2} : R0 \leftarrow R1 \wedge R2$

INVALID. Invalid dikarenakan Condition AND di LHS harus dalam bentuk ".

f. K1. K2. K3: $\overline{R1} \leftarrow R2 - 17$

INVALID. Register yang akan di-assign value-nya tidak boleh dioperasikan

2. Misal diberikan 3 register 8-bit dengan keadaan awal sebagai berikut:

• Ra: 1100 1100

• Rb: 1010 1010

• Rc: 0101 0101

Selanjutnya, 6 micro-operation berikut akan dilakukan secara berurutan:

a. Ra
$$\leftarrow \overline{Ra} + 1$$

b. Rb
$$\leftarrow$$
 Rb + \overline{Ra} + 1

- c. Rc $\leftarrow \overline{Rc}$
- d. Ra ← Rc 1
- e. $Rb \leftarrow Rb \oplus Rc$

f.
$$Rc \leftarrow Rc + Rb$$

Tuliskanlah isi dari register yang bersangkutan setelah dilakukannya setiap micro-operation di atas. Sertakan cara mendapatkan hasil tersebut secara singkat.

Keterangan: Apabila terdapat overflow atau carry out setelah arithmetic micro-operation, asumsikan register tetap hanya akan menyimpan 8-bit dan mengabaikan overflow atau carry out bit tersebut.

Solusi:

a. Ra $\leftarrow \overline{Ra} + 1$

Ra = 0011 0100

Rb: 1010 1010

Rc: 0101 0101

b. Rb \leftarrow Rb + \overline{Ra} + 1

Ra = 0011 0100

Rb = 0111 0110

Rc = 0101 0101

c. $Rc \leftarrow \overline{Rc}$

Ra = 0011 0100

Rb = 0111 0110

Rc = 1010 1010

d. Ra ← Rc - 1

Ra = 1010 1001

Rb = 0111 0110

Rc = 1010 1010

e. $Rb \leftarrow Rb \oplus Rc$

Ra = 1010 1001

Rb = 1101 1100

Rc = 1010 1010

f. Ra = 1010 1001

Rb = 1101 1100

Rc = 1000 0110

3. Buatlah state table 1 dimensi dengan register A dan input B dengan register transfer seperti berikut:

 $\overline{CX} \cdot \overline{CY} : \text{Hold State}$ $\overline{CX} \cdot \overline{CY} : A \leftarrow \overline{A} \wedge B$ $CX \cdot \overline{CY} : A \leftarrow A \vee B$ $CX \cdot CY : A \leftarrow A \oplus \overline{B}$

Solusi:

Control Input		Present State	Input	Next State
CX	CY	A(t)	B(t)	A(T+1)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

4. Perhatikan gambar register di bawah

Asumsikan *input pin* 'InputFill' akan selalu bernilai 0. Isilah bagian tabel yang kosong

Clock	l ₃ l ₂ l ₁ l ₀	Shift	$Q_3 Q_2 Q_1 Q_0$
to	1100	0	1100 (load input)
t ₁	0110	1	0110 (shift right)
t ₂	1101	1	0011 (shift right)
t ₃	0110	0	0110 (load input)
t ₄	1110	1	0011 (shift right)
t ₅	1110	1	0001 (shift right)

Asumsikan bahwa t0, t1, t2, t3, t4, t5 adalah saat clock naik (rising edge).