資料科學 - 第三組期末報告

Sberbank Russian Housing Market

柯敦瀚 統計四 107304050

陳羿丞 資科碩一 110753138

蘇俊憲 資科碩一 110753158

朱進益 資科碩一 110753144

洪丞桀 資科三 108703045

Outline

- 專案簡介
- 資料預處理
- 特徵觀察
- 建造模型
- 輸出結果

Project introduction

Sberbank Russian Housing Market - 房地產價格預測

本次題目是Kaggle上2017年由

Sberbank(俄羅斯聯邦儲蓄銀行發表的競賽

內容旨在藉由巨量資料去分析特定地方的

房地產價格受影響的因素

並且預測出房地產價格

Input/Goal

以現有的所有資料去預測出價格

提供資料有 train.csv/ test.csv/ macro.csv train dataset裡面有 292筆特徵資料 macro dataset裡面有 100筆特徵資料 train data從居住條件到居住環境以及附近的條件 macro data是俄羅斯的經濟與房市大觀環境條件 我們的目標在於 price_doc 參數

Data Dictionary

30471 rows and **292** columns

```
> str(traindata)
'data.frame': 30471 obs. of 292 variables:
$ id
                                       : int 12345678910...
                                       : Factor w/ 1161 levels "2011-08-20", "2011-08-23",..: 1 2 3 4 5 6 7 8 9 10 ...
$ timestamp
$ full_sq
                                       : int 43 34 43 89 77 67 25 44 42 36 ...
$ life_sq
                                       : int 27 19 29 50 77 46 14 44 27 21 ...
$ floor
                                       : int 4 3 2 9 4 14 10 5 5 9 ...
$ max_floor
                                       : int NA ...
$ material
                                       : int NA ...
$ build_year
                                       : int NA ...
$ num_room
                                       : int NA ...
$ kitch_sa
                                       : int NA ...
$ state
                                       : int NA ...
$ product_type
                                       : Factor w/ 2 levels "Investment", "OwnerOccupier": 1 1 1 1 1 1 1 1 1 1 . . .
                                       : Factor w/ 146 levels "Ajeroport", "Akademicheskoe", ...: 10 71 130 66 7 74 123 10 45 51 ...
$ sub area
 ¢ ---- ...
                                             C407F70 0F00337 4000370 13F03F3C 03004C1
```

And 200+ variables more...

Data pre-processing

參考了Kaggle上面的很多文章

Correlation coefficient 去一一查看每個資料的關係

發現有非常多的參數都是沒有用的

對價格的預測幾乎是沒有正面影響

像是附近五百公尺的咖啡店價格根本沒有影響房價

Variables with almost zero variance

##	[1]	"culture_objects_top_25_raion"	"oil_chemistry_raion"
##	[3]	"railroad_terminal_raion"	"nuclear_reactor_raion"
##	[5]	"build_count_foam"	"big_road1_1line"
##	[7]	"railroad_1line"	"office_sqm_500"
##	[9]	"trc_sqm_500"	"cafe_count_500_price_4000"
##	[11]	"cafe_count_500_price_high"	"mosque_count_500"
##	[13]	"leisure_count_500"	"office_sqm_1000"
##	[15]	"trc_sqm_1000"	"cafe_count_1000_price_high"
##	[17]	"mosque_count_1000"	"cafe_count_1500_price_high"
##	[19]	"mosque_count_1500"	"cafe_count_2000_price_high"

Data pre-processing

對於NA值過多的特徵

假設他對房價毫無影響

我們採用的方式是**直接刪除該特徵**

結果也證明了沒有某些特徵

模型的預測會更加準確

Percent missing data by feature

Explore Data Analysis - month, year, weekend

Extracting month, year, weekday from timestamp

An upward trend with each passing year. But no trend with months or days.

Explore Data Analysis - build year

- 時間資料分布不均,大致上是右偏
- 位於 1970 到 2000 年為一個分佈, 2000 年後為另一個
- 觀察發現 1950 年前的波動性極大, 1950後逐漸穩定

Explore Data Analysis: 觀察幾個重要的變數

• 多數的資料有有三間或小於三間房間

- 觀察房子價格跟買的用途的關係
- 投資或家用是否有影響 >> 投資用的房子比家用的房子賣得多

Model-RandomForest

	PC1	PC2	PC3	PC4	PC5	PC6
1	-0.38815520	0.02928363	0.03480449	0.0004469820	-0.001938400	0.002159991
2	-0.37680555	0.02893570	0.03806354	0.0041676640	-0.001252289	0.001787335
3	0.06388236	0.07285331	0.02380022	0.0005461602	0.003023358	0.001664856
4	-0.29596931	0.05284529	0.04719196	0.0133202463	-0.005152651	0.001264901
5	-0.37711888	0.03059530	0.03748995	0.0045679913	-0.002233853	0.001744311
6	0.10711896	-0.17541397	0.06156278	-0.0016041496	-0.038909206	0.002730725
	P	C7	PC8	PC9	PC10	
1	-0.00022945	0.0018895	811 -6.9140	68e-04 -0.0002	013482	
2	-0.004134647	77 0.0008826	625 6.0938	23e-05 -0.0004	203463	
3	-0.006761586	07 0.0142664	004 4.1498	53e-03 0.0051	117971	
4	-0.004509656	68 0.0007381	771 -9.5530	07e-04 -0.0004	373865	
5	-0.003868583	33 0.0008610	004 -1.3127	55e-05 -0.0002	639678	
6	0.00903976	55 0.0277662	456 -2.2453	35e-02 0.0137	234006	

1	method	f	rom						
	as.zoo.data.fra	ame z	00						
	full_sq life_	sq f	loor	max_floor	material	build_year	num_room	kitch_sq	state
1	43	27	4.0	12	1	2014	2	6	2
2	34	19	3.0	12	1	2014	2	6	2
3	43	29	2.0	12	1	2014	2	6	2
4	89	50	9.0	12	1	2014	2	6	2
5	77	77	4.0	12	1	2014	2	6	2
6	67	46	14.0	12	1	2014	2	6	2
7	25	14	10.0	12	1	2014	2	6	2
8	44	44	5.0	12	1	2014	2	6	2
9	42	27	5.0	12	1	2014	2	6	2
10	36	21	9.0	12	1	2014	2	6	2
11	36	19	12.0	12	1	2014	2	6	2
12	38	19	11.0	12	1	2014	2	6	2
13	43	28	4.0	12	1	2014	2	6	2
14	31	31	4.0	12	1	2014	2	6	2
							_		

```
build_count_monolith build_count_panel build_count_foam
                                                       build_count_slag
Min. : 0.00
                    Min.
                         : 0.0
                                           : 0.0000
                                                       Min. : 0.000
1st Qu.: 3.00
                    1st Qu.: 46.0
                                      1st Qu.: 0.0000
                                                       1st Qu.: 0.000
Median: 6.00
                    Median: 92.0
                                      Median : 0.0000
                                                       Median : 0.000
Mean
     : 11.05
                    Mean
                           :104.7
                                           : 0.1385
                                                       Mean : 3.756
3rd Qu.: 11.00
                    3rd Qu.:134.0
                                      3rd Qu.: 0.0000
                                                       3rd Qu.: 1.000
Max.
      :127.00
                    Max.
                           :431.0
                                            :11.0000
                                                       Max. :84.000
build_count_mix
                raion_build_count_with_builddate_info build_count_before_1920
     :0.0000
                Min. : 1.0
                                                     Min. : 0.0
1st Qu.:0.0000
                1st Qu.: 196.0
                                                     1st Qu.: 0.0
Median :0.0000
                Median : 271.0
                                                     Median: 0.0
      :0.4793
                      : 318.9
                                                     Mean : 15.8
3rd Qu.:0.0000
                3rd Qu.: 371.0
                                                      3rd Qu.: 2.0
      :9.0000
                       :1680.0
                                                            :371.0
build_count_1921.1945 build_count_1946.1970 build_count_1971.1995
     : 0.00
Min.
                     Min. : 0.0
                                           Min. : 0.00
1st Qu.: 0.00
                     1st Qu.: 40.0
                                           1st Qu.: 42.00
Median: 2.00
                     Median :135.0
                                           Median : 71.00
      : 22.67
                            :140.4
                                                : 78.63
3rd Qu.: 14.00
                     3rd Qu.:193.0
                                           3rd Qu.:103.00
      :382.00
                            :845.0
                                                 :246.00
build_count_after_1995
                         ID metro
                                       metro_min_avto
                                                       metro_km_avto
Min. : 0.00
                            : 1.00
                                       Min. : 0.000
1st Qu.: 16.00
                      1st Qu.: 27.00
                                       1st Qu.: 1.721
                                                       1st Qu.: 1.037
                      Median : 53.00
                                       Median : 2.803
Median : 24.00
                                                       Median : 1.784
     : 55.07
                            : 72.48
                                            : 4.961
                                                             : 3.701
3rd Qu.: 53.00
                      3rd Qu.:108.00
                                       3rd Qu.: 4.832
                                                       3rd Qu.: 3.777
      :799.00
                             :223.00
                                             :61.438
                                                             :74.906
```

Model-RandomForest

RMSLE(Root Mean Squared Log Error)

$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (log(\hat{y}_i + 1) - log(y_i + 1))^2}$$

- 異常值被大幅縮小,因此消減了它們的影響。
- 由於對數的性質,RMLSE 可以 廣義地看作是預測值與實際值 之間的相對誤差誤差。

$$log(x_i+1) - log(y_i+1) = log(x_i+1) / (y_i+1)$$

RMSE(Root Mean Square Error)

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$$

異常值的存在會使誤差項爆炸 到非常高的值。

RMSE

```
[1] train-rmse:8217503.700000+25576.297255 test-rmse:8221296.300000+140217.893859 Multiple eval metrics are present. Will use test_rmse for early stopping. Will train until test_rmse hasn't improved in 150 rounds.

[51] train-rmse:2522840.800000+25862.893131 test-rmse:2885752.150000+160606.036570 [101] train-rmse:2193154.550000+22335.683373 test-rmse:2708084.950000+165185.636743 [151] train-rmse:2071055.725000+16831.106152 test-rmse:2663814.800000+165684.592686 [201] train-rmse:1981774.075000+15726.751355 test-rmse:2644994.750000+162207.731152 [251] train-rmse:1908577.575000+12947.968328 test-rmse:2631935.200000+160754.028252
```

test-rmse:2624417.950000+157948.910663

train-rmse:1849687.700000+11107.380766

RMSLE

[51]	train-rmsle:0.464680+0.001385	test-rmsle:0.474202+0.009407
[101]	train-rmsle:0.460318+0.001926	test-rmsle:0.474541+0.010645
[151]	train-rmsle:0.452715+0.001941	test-rmsle:0.471574+0.010924
[201]	train-rmsle:0.445581+0.001847	test-rmsle:0.469593+0.011004
[251]	train-rmsle:0.439506+0.002106	test-rmsle:0.468427+0.010675
[301]	train-rmsle:0.433681+0.001985	test-rmsle:0.467494+0.010734
[351]	train-rmsle:0.428090+0.001756	test-rmsle:0.466769+0.010897
[400]	train-rmsle:0.422472+0.001909	test-rmsle:0.466277+0.010953
-		

Result

Submission and Description Private Score Public Score Use for Final Score prop_price_xgb_fix.csv 0.34189 0.34214

diminutes to go by 1101DS@NCCU_110753158

add submission details

Result

Result

Public Lea	aderboar	d Private Leaderboar	rd —				
			approximately 65% of the test darboard reflects the final standin			C Refre	sh
#	△pub	Team Name	Notebook	Team Members	Score @	Entries	Last
1	_	alijs & Evgeny			0.30087	311	5Y
2	4 9	data_mining2			0.30925	151	5Y
3	27	Computer says no			0.31032	110	5Y

Reference

- https://www.kaggle.com/creatrol/basic-time-series-analysis-feature-selection
- https://www.kaggle.com/arathee2/creating-some-useful-additional-features/report
- https://www.kaggle.com/captcalculator/a-very-extensive-sberbank-exploratory-analysis
- https://rpubs.com/skydome20/R-Note16-Ensemble Learning
- https://www.kaggle.com/keerthip/random-forest
- https://www.kaggle.com/abhishekkant/another-xgb-model
- https://medium.com/analytics-vidhya/root-mean-square-log-error-rmse-vs-rmlse-935c6cc1802a