Evaluation report of polar codes

In this report the performance of polar codes will be evaluated. A specific decoder implementation with the use of likelihood cashes will be used for the evaluation. According to ¹ a complexity of O (N log N) should be achieved.

For each evaluation random messages will be generated and compared after the decoding. The following parameters are relevant for those evaluations:

Blocklength:

Blocklength (Length of code word) is defined by the amount of bits which will be transferred through the binary erasure channel.

Information bitrate:

The relation between information bits and parity bits. (Information bitrate of 0.5 and blocklength of 8 would mean 4 bits of parity and 4 bits of information. Information bitrate of 0.25 and a blocklength of 8 would mean 2 information bits and 6 parity bits)

Epsilon:

Epsilon defines the erasure rate of the binary erasure channel. (An Epsilon of 0.25 would mean that 25% of the code word will be erased)

Error rate:

The rate of unsuccessful decoded messages (code words which could not be decoded). An error rate of 0.5 would mean, that 50% of all code words could not be decoded.

Time

Time will be measured in seconds.

¹ http://ipgdemos.epfl.ch/polarcodestutorial/

Time and space complexity:

In the first evaluation the complexity of the decoder (O (N log N)) will be evaluated. Every blocklength between 4 and 1024 will be tested with 100 iterations per blocklength. Information bitrate will be 0.5 and an epsilon of 0.25. The X-Axis (Blocklength) is scaled logarithmic:

The results show that the complexity of encoding is almost linear (O (N log N)). (Note that the complexity appears as polynomial because of the logarithmic scale)

Blocklengths:

In this test the influence of the blocklength on the error rate will be evaluated.

Run1:

Information Bitrate:	0.25
Epsilon:	0.7

The time for encoding and decoding is similar to the previous test. Therefore the complexity of O (N log N) could be proven. There is a small rise of errors of blecklengths 32 and 64. After the error rate drops again to 0. In further tests with this configuration, a fluctuation of error rates before the blocklength of 64 could have always been observed and then the error rate always drops to 0.

Run2:

Information Bitrate:	0.75
Epsilon:	0.2

In this scenario the error rate fluctuates at the beginning and after a blocklength of 32 it rises constantly. This shows that having a lower information bitrate (More parity checks per code word) has a larger impact of transferring successful message over the BEC than the erasure rate itself.

Run3:

Information Bitrate:	0.2
Epsilon:	0.5

This configuration proves that in order to have an efficient transmission a low information bitrate is necessary. It also proves, that the channel capacity improves with the blocklength (The longer the length, the more mistakes can be corrected).

Finding best information bitrate:

In this evaluation a various blocklengths had been chosen. The Epsilon is fixed on 0.5. The information bit rate rises from 0.2 to 0.5 in order to find the best performance.

Blocklength: 2048 (2^11)

Blocklength: 4096 (2^12)

Blocklength: 8192 (2^13)

Blocklength 8192 (2^14):

Varying epsilon rate:

In this evaluation the bitrate will be fixed on 0.3 and the epsilon erasure rate will slowly rise from 0 to 1. The test will be performed for different blocklengths:

Blocklength 128 (2^7)

Blocklength: 8192 (2^13)

Ideal parameters:

The goal of this test is to find ideal parameters for the most efficient use of polar codes for a blocklength of 256. Different erasure rates will be tested to find the best bitrate configuration.

Epsilon: 0.2

Epsilon: 0.3

Epsilon: 0.4

Epsilon: 0.5

Epsilon: 0.6

The following table visualizes the ideal parameters for blocklengths of 256:

Epsilon:	Ideal information bitrate:	Acceptable information bitrate:
0.2	0.55	0.65
0.3	0.4	0.55
0.4	0.3	0.45
0.5	0.25	0.3
0.6	0.2	0.25