Matrix Transposition

Transposition is a vital matrix operation that reverses the rows and columns of a matrix by flipping the row and column indices. The transpose of a matrix is denoted as A^T . Observe that the diagonal elements remain unchanged. See Figure 10-4.

(1,1) a	(1,2) b	(1,3) c	becomes	(1,1) a	(1,2) d	(1,3) g
(2,1) d	(2,2) e	(2,3) f		(2,1) b	(2,2) e	(2,3) h
(3,1) g	(3,2) h	(3,3) i		(3,1) c	(3,2) f	(3,3) i

Figure 10-4. Matrix transpose

Let's see an example.

The Inverse of a Matrix

A $m \times m$ matrix A (also called a square matrix) has an inverse if A times another matrix B results in the identity matrix I also of shape $m \times m$. This matrix B is called the inverse of A and is denoted as A^{-1} . This relationship is formally written as

$$AA^{-1} = A^{-1}A = I$$

However, not all matrices have an inverse. A matrix with an inverse is called a *nonsingular* or *invertible* matrix, while those without an inverse are known as *singular* or *degenerate*.

Note A square matrix is a matrix that has the same number of rows and columns.

Let's use NumPy to get the inverse of a matrix. Some linear algebra modules are found in a sub-module of NumPy called **linalg**.

NumPy also implements the *Moore-Penrose pseudo inverse*, which gives an inverse derivation for degenerate matrices. Here, we use the **pinv** method to find the inverses of invertible matrices.