# Elektrosztatikus mérés szimulációja multiprocesszoros környezetben

Bakró-Nagy István Szélessávú Hírközlés és Villamosságtan Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Budapest bakro.istvan@gmail.com Reichardt András Szélessávú Hírközlés és Villamosságtan Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Budapest reich@evt.bme.hu

Kivonat—Atomerő mikroszkóppal való fémezett felületű minta felületi töltéssűrűségének mérése során kritikus a tű és a minta közötti kapacitás ismerete. A kapacitás értékét közelítések mellett lehetséges analtikusan kifejezni. Numerikus szimulációval pontosabban ismerhetjük az értékét, ezáltal nagyobb felbontás is érhető el. A szimuláció során a lehetséges párhuzamosításokat felhasználva a számítási időt elfogadhatóra csökkentettük.

Index Terms—AFM, felületi töltéssűrűség, numerikus szimuláció, párhuzamos számítás, OpenCL, MATLAB Parallel Toolbox

#### I. BEVEZETÉS

1986-ban Binning demonstrálta az atomerő mikroszkóp (AFM) ötletét [1], ami mára a nanotechnológia egyik legfontosabb eszköze lett. Felhasználható képalkotásra, nanolitográfiára és adott anyag alakítására [2]. Az AFM apparátusa az adott minta felülete és a felette pásztázó kantilever végére erősített tű kölcsönhatásának vizsgálatát végzi. (lásd 1b. ábra) A felület és a tű közötti domináns kölcsönhatás határozza meg, hogy az anyag melyik fizikai mennyiségét kaphatjuk meg.



1. ábra. Az AFM apparátusa látható az (a) ábrán. A lázernyaláb a kantilever felületéről tükröződve egy fotódetektorra irányul. A tű pozícióját ez alapján nagy pontossággal ismerjük. A (b) ábrán a minta és a felette lévő tű modellje látható a kapacitás analitikus számításához. A tű R sugarú H magasságú és D távolságra van a mintától. (Forrás: [3])

Az AFM felhasználása kontakt illetve kopogtató üzemmódú lehet. A kontakt mód során a felületen végighúzzuk a tűt és mérjük a z irányű elmozdulását. Így képesek vagyunk a minta felületén lévő atomok elrendezéséről magasságtérképet adni. Kopogtató mód [4] során a tűt elemeljük a mintától és f frekvenciával rezegtetjük. A letapogatás során az átlagos minta-tű távolságot a kontakt módú magasságtérkép felhasználásával konstans értéken tartjuk. A kantilever dinamikáját ismerve a rezegtetés frekvenciájának eltéréséből számítható a tűre ható erő. Ezen erő nagyságát két tényező befolyásolja:

- a) a minta és a tű közötti feszültség,
- b) a minta felületi töltéssűrűség eloszlása.

A cikkben a felületi töltéssűrűség mérését tekintjük célnak. A [5], [3] szerint az erő a) komponensét a minta és a tű közötti kapacitásból az (1) szerint származtathatjuk.

$$F_s = -\frac{\mathrm{d}E}{\mathrm{d}D} = -\frac{\mathrm{d}(CV^2/2)}{\mathrm{d}D} = -\frac{1}{2}\frac{\mathrm{d}C}{\mathrm{d}D}V^2 \tag{1}$$

Ha a minta pásztázása során ezen a) erőkomponens konstansnak mondható, tehát a felületi érdesség kicsi, akkor a töltéssűrűg mérésében állandó hibát okoz. ami eliminálható. Az (1) számításában a kritikus elem a kapacitás értéke, amit numerikus számítás mellőzése esetén a [6] szerinti analitikus eredményt használhatjuk fel. A tű formályát a (1b ábra) szerintinek veszi és a mintát sík felületünek feltételezi. Ezen utóbbi feltételezés legtöbb esetben helyénvaló, viszont a minta nagyfokú érdessége és a tű egyedi formálya esetén érvényét veszti. Ilyen esetben a kapacitás értéke mintáról mintára változik és állandó hiba helyett, a mérést zajként terheli. A kapacitás numerikus szimulációjával ezen zajt is ki lehet küszöbölni. Persze ezen szimulációt minden egyes mérési pontban el kell végezni, aminek a kivitelezése csak multiprocesszoros környezetben lehetséges elfogadható idő alatt.

# II. A FELADAT

A minta egy fémezett felület, aminek magasságtérképét mérések eredményeként adott pontossággal ismerjük. A mérések egy négyzetes háló felett történtek, amelynek a háló mindkét vízszintes irányában  $\delta_x = \delta_y \simeq 180 nm$  azonos felbontása, illetve a függőleges  $\delta_z \simeq 20 nm$  felbontása volt. A töltéssűrűség méréséhez szükséges második pásztázás során a tűt felemeljük és a mintához képest  $V_{tu}$  potenciálra kapcsoljuk. Ezután a fémezett felülettől mindig azonos távolságra rezegtetjük és ezen hosszú hegyes tűre ható erőt mérjük.

Végső cél olyan szimulátor építése, amelynek segítségével közel valós időben lehetséges a mérés alapján a felületi töltéseloszlásról korrigált/pontosabb információt kapni.

A cikkben felhasznált magasságtérkép-mérési eredmény (2. ábra) egy  $512\times512$  méretű szürkeárnyalatos \*.tiff állomány, amely értéke 0-255-ig terjed.

#### III. SZIMULÁCIÓ

III-A. Fizikai probléma matematikai formalizálása

A megoldandó feladat egy elektrosztatikus feladat. A minta és a tű közötti térben nincsenek töltések, így itt a Poisson egyenlet helyett a Laplace-egyenlet (2) érvényes.

$$\Delta V(x, y, z) = 0 \tag{2}$$

Az egyenletet későbbiekben részletezett (III-B) megfontolások végett egy redukált 3D-s téren oldjuk meg. Ezen 3D-s térre egy inhomogén



2. ábra. Méréssel kapott magasságtérkép. Felbontás  $d_x = d_y = 120nm \ d_z = 18.03nm$ 

ponthálót illesztünk, amelynek vízszintesen  $d_x=d_y$ , függőlegesen  $d_z$  a felbontása. A függőleges felbontás megegyezik a használt AFM apparátus felbontásával  $d_z=\delta_z$ . Az így kapott térbeli háló minden pontjához hozzárendeljük az  $V_{i,j,k}\simeq V(id_x,jd_y,kd_z)$  potenciált. Dirichlet határfeltételek a felület fémezése, amely zérus potenciálú és az adott  $(V_{tu})$  potenciálú tű fémes felülete. A térnek a minta felületétől különböző határfelületén homogén Neumann feltételt alkalmazunk a szimmetriák (végtelen tér) és a töltésmentesség miatt.

Az így adódó lineáris egyenletrendszer megoldására lehetséges direkt és iteratív megoldó algoritmusokat alkalmazni. A párhuzamosítási szándékok miatt az iteratív megoldást választottuk, mivel a multiprocesszoros környezetek tipikusan kevés fajlagos-memóriával <sup>1</sup> rendelkeznek. Ekkor nem teljesen pontos megoldást kapunk, azonban gyorsabban juthatunk el a kívánt eredményhez. A számítási pontosság növelhető az iterációt leállító konvergencia követelmény keményebb megszabásával, ami persze több iterációt jelent.

Az iteratív megoldás során a megoldás aktuális értékének kiszámításához az előző megoldásból indulunk ki. A (2) egyenletben szereplő deriválást az elsőrendű Taylor közelítés alkalmazásával a (3) szerinti 6-pontos sémát kapjuk.

$$V_{ijk}^{n+1} = \Delta_1 \cdot \left( V_{i-1,j,k}^n + V_{i+1,j,k}^n + V_{i,j-1,k}^n + V_{i,j+1,k}^n \right) + \Delta_2 \cdot \left( V_{i,j,k-1}^n + V_{i,j,k+1}^n \right)$$
(3)

ahol  $V_{i,j,k}^n$  az az n-dik iterációs lépésben az i,j,k indexű pontban mérhető potenciált jelöli,  $\Delta_1$  a vízszintes felbontásból,  $\Delta_2$  a függőleges felbontásból adódó állandó.

# III-B. Szimuláció felépítése

A felületmérés során a vízszintes felbontás jóval kissebb, mint a függőleges felbontás, azaz a pontok vízszintes távolsága sokkal nagyobb a függőlegesnél  $d_x=d_y=120nm\gg d_z=10nm$  (lásd II. rész). A Coulomb-kölcsönhatás a távolság négyzetével fordítottan arányos, így az előbb említettek értelmében egy mérési pont szomszédjait, pontosabban egy redukált környezetét szükséges csupán szimulálni (Másképpen megfogalmazva a vízszintes mérési pontok távolsága jóval nagyobb mint a Coulomb-kölcsönhatás effektív távolsága). Ezzel az elhanyagolással a feladat már numerikusan kezelhető méretűre csökken.

Ezen módon egy mért pont  $3\times 3$ -as környezetét vesszük figyelembe, a középső pont felett lévő elektródát (tűt) feltételezve. A szimulációs tér alsó felületét a mért magassági  $3\times 3$  mintákból kell meghatároznunk. Mivel ezen pontokra úgy is tekinthetünk, mint a

<sup>1</sup>Fajlagos alatt az egy szimulációra jutó memóriát értem. (Természetesen ezen szimulációk egyszerre futnak, így a fajlagos-memória akkumulálódik.)

minta magasság-függvényének a mintavételezésével kapott mintáira, így a közbülső pontokat interpolációval (mozgó átlagolással) kapjuk meg. Az interpoláció  $N_{ip}$  faktorával  $^2$  lehetséges a szimulációs tér vízszintes felbontását  $d_x = d_y = \delta_x/N_{ip}$  megkapni.

A szimulációk során a felület magasságának mérési adatait már ismertnek feltételezzük. A teljes magasságtérkép pontjait külön-külön vizsgáljuk. Egyetlen pontban a mérési eredmény kiszámításának lépései az alábbiak :

- 1) A pont körüli felület 3 × 3-as mérési részének megállapítása,
- Közbenső (virtuális) mérési pontokkal a belső felbontás növelése interpolációval,
- 3) Szimulálandó tér méretének számítása,
- Direkt/iteratív megoldó algoritmussal a tér meghatározása, a tűre ható erő számítása illetve a tű alatti töltésmennyiség számítása,
- 5) Adatok mentése.

#### IV. A SZIMULÁTOR BEMUTATÁSA

A prototípus algoritmus fejlesztése MATLAB környezetben történt, ami később referenciaként szolgál. Alap MATLAB utasításokat használva több órát vesz igénybe a szimuláció futtatása. A MATLAB Parallel Toolbox-nak segítségével a szimulációt lehetséges párhuzamosan több processzormagon futtatni. Ezzel párszoros sebesség növekezés érhető el. A következőkben magát az algoritmust és az OpenCL keretrendszerben történő implementációját mutatjuk be. Majd az eredmények bemutatása során kerül összevetésre a MATLAB referencia, a MATLAB Parallel Toolbox segítséggel, az OpenCL processzoron és az OpenCL GPU-n való futtatási ideje.

### IV-A. A lépések részletezése

IV-A1. Interpoláció: A korábban elmondottak alapján a felületet további virtuális pontokkal egészítjük ki. Az virtuális mérési pontokat a legegyszerűbb síklapos közelítéssel alkothatjuk meg, a magasságmérési felbontás figyelembevételével. A szimulátorban egy általánosabb módszert alkalmazunk, ami egy 2D-s mozgó átlagoló szűrővel való simítás. A szűrővel aluláteresztést tudunk elérni, ami a minta magasságának mintavételezése utáni rekonstrukcióját jelenti. Egy ilyen interpoláció eredményét láthatjuk a 3. ábrán.



3. ábra.  $3\times 3$  mérési pont  $11\times 11$  pontba való interpolációja

*IV-A2. A szimulálandó tér mérete:* A szimulálandó tér (hasáb) alapja adott az előzőleg említett interpolált felületként, míg a magassága nem. Ezt a következő két mennyiség közül a nagyobbikkal határoztuk meg:

 $<sup>^2</sup>N_{ip}$ -szeresére növeljük a pontok számát.



4. ábra. A mérési eredmény egy vonal menti részlete (folytonos vonal) és az ezen mérési pontokhoz számított szimulációs tér magassága (szaggatott-vonal)

- Középső pont fölött lévő tű közepének magassága,
- A (3 × 3) környezet legalacsonyabb és legmagasabb pontjának különbsége.

A magasságtérkép egy vonalának részlete látható a 4. ábrán, továbbá a szimulálandó tér (hasáb) magassága.

IV-A3. Iteratív megoldó algoritmus: Az iterációhoz a térháló pontjaihoz két mátrixot (tömbböt) rendelünk, ami a pontok potenciáljának aktuális ( $\mathbf{U_{now}}$ ) és előző ( $\mathbf{U_{prev}}$ ) értékeit tartalmazza. Az aktuális értékeket (3) szerint számítjuk, majd az egész térre számítjuk az előzővel vett különbségének négyzetösszegét (normáját). E mérték képviseli a konvergencia szintjét, amit az iteráció során vizsgálva jutunk el a kívánt konvergencia szintre. Ha nem értük el a konvergencia szintet, akkor az előző két mátrixot felcserélve iterálunk tovább.

IV-A4. Adatok mentése: Tesztelhetőségi megfontolások végett nem csak a tűre ható erőt (villamos térerősséget) exportáljuk, hanem a konvergencia szintjének változását és az interpolált felületet is. Az exportálandó menyiségek "kis" mérete miatt egyszerű \*.csv fájlként kerülnek mentésre. Ezen fájlok további poszt-processzálása MATLAB vagy munkalap kezelő szoftverrel is elvégezhető.

## IV-B. OpenCL architektúrája

Az Open Computing Language (OpenCL) keretrendszer [7] közös nyelvet, magas szintű programozási interfészt és hardware absztrakciót nyújt a fejlesztőknek adat- vagy feladat párhuzamos számítások gyorsítására különböző számítóegységen (CPU, GPU, FPGA, DSP, ...). Az OpenCL modellje a különböző "device"-okra bontható, amik több "compute unit"-ot (processzor-magot) tartalmaznak és ezeket heterogén módon kezeli.



5. ábra. OpenCL "device" architektúra [7]

A "compute unit"-ok kiéheztetésének elkerülése végett több ezer "work-item" virtuális osztozik rajta. Továbbá ezen "work-item"-ek "work-group"-okba vannak rendezve (később részletezett megfontolások végett). A "compute unit" kiéheztetését a "device"-on található memória chipek lassúsága okozza. Ennek hárdveres megoldása a több

szintű prediktív cache memória beiktatása a "compute unit" és a külső memória közé. Mivel a bank szervezett külső memóriák hozzáférési ideje relatíve nagy így a memória szervezésére nagy hangsúlyt kell fektetni.

Az OpenCL négy memória szintet különböztet meg, ami az II táblázatban és az 5. ábrán látható. Ahhoz, hogy a rendszerben rejlő teljesítményt kiaknázzuk, három fontos kérdést kell a szimulátor magjának implementálásakor megválaszolnunk:

- Mennyit?: Tisztában kell lennünk az aktuális memória fogyasztással és a szükséges memóriamérettel.
- Honnan-hova?: Fontos, hogy a lehető legközelebb legyen az adat a "work-item"-hez.
- Mikor?: Mivel a memória művelet alatt a "work-item" nem dolgozik, így átadja a helyét egy másiknak. Ennek a megfelelő szinkronizációjával nagyobb kihasználtság érhető el (load balance).

II. táblázat. OpenCL memória szintek

|          | Global          | Constant              | Local                 | Private     |
|----------|-----------------|-----------------------|-----------------------|-------------|
| Host     | Dinamikusan R/W | Din. R/W              | Din. R/W              |             |
| Kernel   | R/W             | Statikusan R          | Satik. R/W            | Statik. R/W |
| Sebesség | Lassú           | Gyors                 | Gyors                 | Regiszter   |
| Méret    | 1 Gbyte <       | $\sim 64~{\rm Kbyte}$ | $\sim 16~{\rm Kbyte}$ | < 1 Kbyte   |

OpenCL keretrendszerben történő programozás során két programot kell írnunk. Az egyik a "host"-on fut, ami elvégzi a probléma összeállítását, memória allokálását, argumentumok beállítását és a kernel (másik program) meghívását a "device"-on. A kernel futása végeztével a "host" program kiolvassa a "device"-ból a kívánt eredményt.

## IV-C. Implementációhoz szükséges megfontolások

A következőkben egy kissebb teljesítményű notebook videókártyát veszek alapul a megfontolások demonstrálására. Ez az nVidia GeForce 330M, 575 MHz-en futó 48 CUDA core-al, 1024GB memóriával és OpenCL 1.0 kompatibilitással. A videókártya továbbiakban fontos paraméterei a III. táblázatban látható.

III. táblázat. nVidia GeForce 330M OpenCL tulajdonságai

| MAX_COMPUTE_UNITS        | 6          |
|--------------------------|------------|
| MAX_WORK_GROUP_SIZES     | 512 512 64 |
| GLOBAL_MEM_SIZE          | 1073020928 |
| MAX_CONSTANT_BUFFER_SIZE | 65536      |
| LOCAL_MEM_SIZE           | 16384      |

Ha a tér, ahol a laplace egyenletet meg kell oldanunk nagyon nagy, akkor érdemes szétbontani kissebb alterekre és azokhoz rendelni egyegy "work-item"-et. Mivel a diszkrét Laplace egyenlet egy pontja a szomszédos pontokkal szoros kapcsolatban van, így az összefüggő "work-item"-eket egy "work-group"-ba érdemes szervezni, mivel így az átlapolódó pontok értékét a szomszédos "work-item"-ek is tudják írni és olvasni. Az ilyen típusú problémának méretét a MAX\_WORK\_GROUP\_SIZES tulajdonság korlátozza.

Jelen esetben a mérési eredmény egy pontjához tartozó tér átlagosan  $11 \times 11 \times 30$  pontból áll. Tehát a korábbi nem áll fenn és egyszerű megfeleltetéssel szétoszthatjuk a feladatot. A teljes tér  $512 \times 512 \times 11 \times 11 \times 30$  méretű, ami 951k pont. A tárolásához single-precision mellett ennek a számnak a 4-szerese szükségeltetik byte-okban mérve. Mivel ez a videókártyán nem áll rendelkezésre, így szétbontjuk kissebb feladatrészekre.

I. táblázat. OpenCL futási idő eredmények 12 × 12 mérési pontra

|                                         | Globális memória       | Lokális memória, ha befér            | Lokális memória bufferelés             |
|-----------------------------------------|------------------------|--------------------------------------|----------------------------------------|
| Globális tranzakciók<br>száma átlagosan | $12\times12\times32.3$ | $12\times12\times32.3$               | $12 \times 12 \times 32.3$             |
| Lokális tranzakciók<br>száma átlagosan  | 0                      | $0.48 \times 12 \times 12 \times 30$ | $2.08 \times 12 \times 12 \times 32.3$ |
| Futási idő                              | 5990 ms                | 2530 ms                              | 510 ms                                 |
| Fajlagos futási idő                     | 410 ms                 | 170 ms                               | 3.5 ms                                 |

Ezen feladatrészek méretét egy paraméter állításával lehet változtati és az implementált algoritmus ettől generikusan függ. Emellett az interpoláció mértéke  $N_{ip}$  is paraméterrel generikusan állítható. Az algoritmus generikusságát csupán a futási időben történő dinamikus memória allokációval lehetséges megvalósítani. A korábban említettek végett (II táblázat) az allokáció csak a "host" programban történhet.

#### IV-D. Memória szervezés

IV-D1. Csak globális memória használata: Az algoritmus pszeudó kódjának direkt leképezése esetén a "host"-on allokálunk memóriát a "device" globális memóriájában, majd a megfelelő adatokat ide másoljuk és a kernel is itt ír és olvas. A problémát a globális memória nagy hozzáférési ideje jelenti, ami miatt sok "work-item" tétlenül a memóriára fog várakozni. Ilyenkor az egy mérési pontra vonatkoztatott szimulációs idő a referenciánál is lassabb.

IV-D2. Globális memória és adott esetben lokális memória használata: Kis erőfeszítéssel nagy javulást lehet elérni, ha a mérési ponthoz tartozó szimulációs tér éppen belefér a lokális memóriába. Tehát, mielőtt az (3) szerinti iteratív megoldót futtatnánk először a globális memóriából a lokális memóriába töltjük át a kérdéses pontokat, majd számolunk rajta és a végén visszatöltjük a globális memóriába. E javítással a referenciával azonos sebességet tudunk elérni

IV-D3. Globális memória és minden adódó alkalomkor a lokális memória használata: Nagyobb erőfeszítést igényel, hogy minden alkalommal a globális memóriával való kommunikációt a lokális memória közbeékelésével tegyük. Ezt úgy lehet felfogni, mintha a globális memóriát lokális memória méretű kvantumokban tudnám csak elérni. Ekkor nagy odafigyelést kíván a memóriacímzés megfelelő prgramozása, de eredményképp gyorsulás érhető el.

Összegezve elmondható, hogy az aktuálisan használt adat tárolását a lehető legközelebb kell tartani a "compute-unit"-hoz.

#### V. EREDMÉNYEK

# V-A. MATLAB implementációk

A referenciaként szolgáló MATLAB algoritmus lineáris programszervezést alkalmazva az elérhető fajlagos futási idő  $\sim 100ms$ .

A kód minimális változtatásával elérhető a párhuzamos végrehajtás. Ezt a for ciklusok Parallel Toolbox beli parfor utasítására cserélve érhetjük el. 4 processzormaggal rendelkező PC-n legjobb esetben a negyedére csökkenhet a futási idő. Valójában ez sose történik meg. A MATLAB Parallel Toolbox-a az egyes szimulácókat adott processzormagra osztja el. Korábban láttuk, hogy ezen szimulácók lépésigénye nagyban eltér egymástól, így előáll az a sajnálatos eset, hogy 3 mag tétlenül a negyedikre vár, ami miatt ez nem tekinthető járható útnak.

#### V-B. OpenCL implementációk

OpenCL keretrendszer segítségével írt programot a GPU-n futtatva a I. táblázatban látható eredményeket kapjuk. Csupán a globális memóriát használva a referenciához képest romlik a teljesítmény. Ezt a videókártya prediktív cache nélküli kialakításának és a globális memórájának a kiéheztetésének tudhatjuk be. A lokális memória használata a futási időt drasztikusan le tudja csökkenteni, ami a korábban ismertetett memória szervezési megfontolások helyességét igazolia.

# VI. ÖSSZEGZÉS

A cikkben összefoglaltam az AFM felületi töltéssűrűség méréstechnikáját, amiben azonosítottam a kapacitás értékének kritikus voltát. Ezidáig a kapacitás értékének a [6], [3] szerinti közelítéseket tartalmazó analitikus eredményt lehetett felhasználni.

Feladatként ezen kapacitás értékét számító szimulátor építését tűztem ki, aminek elfogaható időn belül kell eredményt szolgáltatnia. A párhuzamosítás lehetősége triviálisan adódott. A hordozhatóság és a gyorsabb végrehajtás végett a szimulátort OpenCL környezetben implementáltam, ami a szimulátor heterogén multiproszesszoros környezetben való futtatását lehetővé teszi.

Az eredményeket ismertetve a szimulátor futási idejében látványos gyorsulást tapasztaltam, ami az érdesebb felületek esetén is elfogadhatóan pontos eredményt tud szolgáltatni.

A szimuláció felhasználásával történő töltéssűrűség származtatása még várat magára, ugyanígy ezen származtatás validálására való mérési összeállítás kidolgolgozása. A szimulátor magját képező lineáris egyenletrendszer iterációs megoldó konvergenciájának bizonyítása és az alternatív direkt megoldó vizsgálata is további feladat.

#### HIVATKOZÁSOK

- [1] G. Binnig, C. F. Quate, and C. Gerber, "Atomic force microscope," Phys. Rev. Lett., vol. 56, pp. 930–933, Mar 1986. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.56.930
- [2] B. Vasić, M. Kratzer, A. Matković, A. Nevosad, U. Ralević, D. Jovanović, C. Ganser, C. Teichert, and R. Gajić, "Atomic force microscopy based manipulation of graphene using dynamic plowing lithography," *Nanotechnology*, vol. 24, no. 1, p. 015303, 2013. [Online]. Available: http://stacks.iop.org/0957-4484/24/i=1/a=015303
- [3] H.-J. Butt, B. Cappella, and M. Kappl, "Force measurements Technique, force with the atomic microscope: interpretation and applications," Surface Science Reports, vol. 152, 2005. [Online]. Available: pp. http://www.sciencedirect.com/science/article/pii/S0167572905000488
- [4] Y. Martin, C. C. Williams, and H. K. Wickramasinghe, "Atomic force microscope–force mapping and profiling on a sub 100 a scale." *Journal of Applied Physics*, vol. 61, no. 10, pp. 4723–4729, 1987. [Online]. Available: http://scitation.aip.org/content/aip/journal/jap/61/10/10.1063/1.338807
- [5] H.-J. Butt, "Measuring electrostatic, van der waals, and hydration forces in electrolyte solutions with an atomic force microscope," *Biophys J.*, vol. 60(6), p. 1438–1444., 1991. [Online]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1260203/
- [6] S. Hudlet, M. Saint Jean, C. Guthmann, and J. Berger, "Evaluation of the capacitive force between an atomic force microscopy tip and a metallic surface," *The European Physical Journal B - Condensed Matter and Complex Systems*, vol. 2, no. 1, pp. 5–10, 1998. [Online]. Available: http://dx.doi.org/10.1007/s100510050219
- [7] Khronos OpenCL Working Group, The OpenCL Specification, version 1.0, 6 August 2010. [Online]. Available http://www.khronos.org/registry/cl/specs/opencl-1.0.pdf