TALLER DE PROCESAMIENTO DE SEÑALES (81.)

Guía de Trabajos Prácticos

Versión 1.0

Primer cuatrimestre 2024

Guía 1

- 1.1 📾 Sin utilizar loops (for/while) convertir a escala de grises la imagen pikachu_vs_charmander.jpeg implementando las siguientes técnicas:
- (a) $\frac{\min(R,G,B) + \max(R,G,B)}{2}$
- **(b)** $\frac{R+G+B}{3}$
- (c) 0.3R + 0.59G + 0.11B (utilice el comando @)
 - : Utilice las funciones imread e imshow (matplotlib).
- ${f 1.2} \equiv {
 m Sin}$ utilizar loops (for/while), utilizando indexación edite la imagen AFALogo. bmp para
- (a) Cortar las letras dentro del logo.
- (b) Cortar las estrellas y tranpsonerlas.
- (c) Generar una mascara separando el color de fondo del logotipo.
- (d) Cambiar el color de fondo de blanco a negro.
- (e) Espejar la imagen (izquierda a derecha).
- (g) Agregar la 3era estrella.
- 1.3 Sea la función de densidad de probabilidad

$$p_{XY}(x,y) = \frac{3}{4} \mathbb{1} \left\{ 0 < y < 1 + x^2, 0 < x < 1 \right\}$$

- : Se recomienda resolver las integrales con un software.
- (a) Calcular y graficar en una misma figura el soporte, la esperanza condicional $\mathbb{E}[Y|X=x]$ y la recta de regresión.
- (b) Calcular el error bayesiano.
- 1.4 Ima Una conocida cadena de comida rápida desea predecir la ganancia de una sucursal en función de la cantidad de habitantes de la ciudad para decidir si conviene abrirla o no. El archivo mc.txt contiene la base de datos a utilizar. La primera columna es la población de la ciudad (de a 10.000 personas) y la segunda es la ganancia (de a \$USD 10.000). Los valores negativos indican pérdidas.
- (a) Implemente su propio código, utilizando matrices, para realizar una regresión lineal que minimice el error cuadrático medio. ¿Cuanto vale dicho error?
- (b) Visualizar los datos con scatter (matplotlib) y superponer la recta de regresión estimada sobre ellos.
- (c) Diseñe una grilla de puntos que le permita graficar la función costo en un gráfico 3d utilizando plot_surface de matplotlib.
- (d) Predecir la ganancia de una ciudad de 35.000 habitantes.

- 1.5 Repita el Ejercicio 1.4 utilizando gradiente descendente (elegir el learning rate con prueba y error). Luego:
- (a) Graficar la función costo en función de las iteraciones del entrenamiento.
- (b) Encuentre el learning rate óptimo.
- (c) Calcular el número de condición y la velocidad de convergencia para el *learning* rate óptimo.
- 1.6 In Una inmobiliaria desea automatizar la tarea de tazar terrenos. El archivo inmobiliaria.txt contiene la base de datos de casas en Portland, Oregon. La primer columna corresponde con dimensión del terreno (en pies cuadrados), la segunda corresponde a la cantidad de dormitorios y la tercera al precio (en dólares).
- (a) Realizar una regresión lineal utilizando LinearRegression de sklearn.
- (b) Realizar una regresión lineal utilizando gradiente descendente. Graficar la función costo en función de las iteraciones del entrenamiento.
- (c) Predecir el costo de una propiedad de 1650 pies cuadrados y 3 dormitorios utilizando las dos regresiones estimadas previamente. Comparar resultados.
- 1.7
 Se desea analizar los vientos que ocurren en un parque eólico. El archivo molinos.csv contiene datos de potencias acumuladas por un parque eólico para los diferentes vientos. La columna Velocity contiene el módulo de la velocidad del viento en ese instante y la comulna Direction el ángulo de la velocidad medido en sentido horario ubicando el cero en vientos que provienen del norte. Finalmente las columnas P contiene las potencias acumuladas por cada molino.
- (a) Las potencias negativas son errores de medición. Reemplazar todos estos valores con el valor medio de los valores restantes.
- : El comando SimpleImputer (sklearn) puede ser util.
- (b) Expresar la velocidad en coordenadas cartesianas.
- (c) Entrenar un regresor lineal que estime la velocidad del viento (dos dimensiones cartesianas) en función de las potencias.
- : El comando MultiOutputRegressor (sklearn) puede ser de gran utilidad.
- 1.8 📾 La inmobiliaria desea volver a automatizar la tarea de tazar terrenos, esta vez con datos de California. El archivo inmobiliaria.csv contiene dichos datos.
- (a) Explorar los datos usando read_csv (pandas). Indicar cantidad de muestras, nombre y tipo de dato de cada feature.
- (b) Reporte las frecuencias de las variables categóricas.
- (c) Para analizar las variables numéricas utilice el comando pairplot (seaborn). Explique que representan los gráficos.
- (d) Utilice el comando SimpleImputer (sklearn) para completar los valores faltantes con los más frecuentes.
- (e) Utilice el comando get_dummies (pandas) para codifique las variables categóricas como one-hot.

- (f) Utilice el comando train_test_split (sklearn) para definir dos conjuntos con las proporciones 75% y 25%. Grafique los histogramas de ambos conjuntos (superpuestos) de la mediana del valor de las propiedades.
- (g) Utilice el comando StandardScaler (sklearn) para normalizar cada variable numérica. Utilice el conjunto de entrenamiento para fijar la normalización y apliquela a ambos conjuntos.
- (h) Realizar una regresión lineal para predecir la mediana del valor de la propiedad en función del resto de las variables. Indicar el ECM de entrenamiento y testeo.
- **1.9** Hallar una solución matricial al problema de regresión lineal sin sesgo y con regularización L2. ¿A que se aproxima la solución si el el algoritmo está muy regularizado?
- 1.10
 Se desea estimar la cantidad de agua que fluye por una presa a partir de la variación del nivel de agua. El archivo represa.csv contiene los datos a utilizar, definiendo los conjuntos de entrenamiento, validación y testeo.
- (a) Visualice el dataset de entrenamiento a partir de un gráfico scatter.
- (b) Realice una regresión lineal utilizando LinearRegression de sklearn. Grafique la recta de regresión estimada sobre la el scatter.
- (c) Realice una regresión polinómica de orden 8 sin regularización. Grafique la función de regresión estimada sobre el scatter.
- (d) Utilizando sklearn.linear_model.Ridge, repetir el inciso anterior regularizando con $\lambda = 1$ y $\lambda = 100$.
- (e) Graficar el error cuadrático medio en función del hiperparámetro de regularización λ para el conjunto de entrenamiento y validación. ¿Que valor minimiza el error de validación?
- (f) Calcular el error cuadrático medio de testeo para el hiperparámetro elegido en el inciso anterior.

Guía 2

- **2.1** Sea $Y \sim \text{Ber}(3/4)$, $X|Y=0 \sim \mathcal{N}(0,4)$ y $X|Y=1 \sim \mathcal{N}(0,1)$. Calcular la $P_{Y|X}(y|x)$, el clasificador bayesiano y graficarlo sobre la distribución mezcla (conjunta). Además computar el error bayesiano, el error de un clasificador al azar y el error del clasificador dummy.
- 🖒: Se recomienda resolver las integrales y graficar con un software.
- 2.2 Encontrar el clasificador óptimo pero permitiendo decisiones aleatorias (no solamente determinísticas).
- Suponga que $\hat{Y}|X=x\sim Q(\cdot|x)$ tal que la verdadera Y e \hat{Y} son independientes cuando X=x (porque la única dependencia entre ambas pasa por X). Encontrar la $Q(\hat{y}|x)$ que minimiza la probabilidad de error $\mathbf{P}(Y\neq\hat{Y})$.
- **2.3** Sean p y q dos distribuciones Bernoulli de parámetros $\frac{1}{2}$ y $\frac{1}{4}$ respectivamente. Calcular $\mathrm{KL}(p\|q)$ y $\mathrm{KL}(q\|p)$.
- **2.4** Sea $\mathcal X$ un conjunto discreto de átomos y sea X una variable aleatoria que toma valores en $\mathcal X$. Encuentre la distribución que maximiza la entropía.
- \mathfrak{L} : Analizar $\mathrm{KL}(p\|u)$ con u(x) la función de probabilidad uniforme en \mathcal{X} .
- **2.5** Hallar la distribución que maximiza la entorpía diferencial para variables aleatorias de varianza σ^2 .
- \mathfrak{S} : Analizar $\mathrm{KL}(p\|\varphi)$ con $\varphi(z)$ la función de densidad de una variable aleatoria normal con varianza σ^2 .
- **2.6** Sea $p = \sigma(z)$ la función sigmoide.
- (a) Calcular la función inversa $\sigma^{-1}(p)$ con $p \in (0, 1)$.
- (b) Calcular la derivada $\sigma'(z)$. Encontrar sus valores mínimo y su máximo, y los puntos donde los alcanza.
- (c) Escribir la derivada en función de p.
- 2.7 🖮 Un profesor desea estimar si un alumno va a aprobar o no la materia en base a la nota de dos parcialitos. El archivo parcialitos. txt contiene una base de datos con las notas de cada estudiante en los parcialitos y si, efectivamente, aprobó o no la materia.
- (\mathbf{a}) Hallar una expresión analítica para la función costo y su correspondiente gradiente.
- (b) Realizar una regresión logística utilizando gradiente descendente y graficar la función costo en función de las iteraciones del entrenamiento.
- (c) Realizar una regresión logística utilizando

BIBLIOGRAFÍA SUGERIDA

- 1. "Pattern Recognition and Machine Learning", C. Bishop.
- 2. "The Elements of Statistical Learning: Data Mining, Inference, and Prediction", J. Hastie, T. Tibshirani, R. Friedman.
- 3. "Machine Learning: A Probabilistic Perspective", K. Murphy.
- 4. "Introduction to Machine Learning with Python: A Guide for Data Scientists", A. Müller, S. Guido.
- 5. "Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference", C. Davidson-Pilon.
- 6. "Pattern Classification", R. Duda, P. Hart, D. Stork.
- 7. "Deep Learning", I. Goodfellow, Y. Bengio, A. Courville.
- 8. "Elements of Information Theory", T. Cover, J. Thomas.
- 9. "Elements of Causal Inference: Foundations and Learning Algorithms", J. Peters, D. Janzing, B. Schölkopf.
- 10. "Foundations of Machine Learning", M. Mohri, A. Rostamizadeh, A. Talwal-kar.
- 11. "Data Analysis: A Bayesian Tutorial", D. Sivia and J.Skilling.
- 12. "The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation", C. Robert.