Adaptation of my equations to a subdivided population. Notation, for a quantity Y that depends on two sites (Y = e, d, Q):

$$Y_{\text{self}} := Y_{i,i} \tag{1a}$$

$$Y_{\text{in}} := Y_{i,j}, \quad i \text{ and } j \neq i \text{ in the same deme;}$$
 (1b)

$$Y_{\text{out}} := Y_{i,j}, \quad i \text{ and } j \text{ in different demes.}$$
 (1c)

For a site i, G_i denotes the deme it is in, and notation $j \in G_i$ means that sites i and j are in the same deme.

The expected frequency of altruists in the population is given by

$$\mathbb{E}\left[\overline{X}\right] = p + \delta \frac{p(1-p)}{\mu} \left[b \left(\beta^D - \beta^I\right) - c \left(\gamma^D - \gamma^I\right) \right]. \tag{2}$$

Moran, Birth-Death

$$\beta_{\text{BD}}^{D} = \sum_{k,\ell=1}^{N} \frac{1-\mu}{N} e_{kl} Q_{lk}$$

$$= \sum_{k=1}^{N} \frac{1-\mu}{N} \Big(e_{\text{self}} + (n-1)e_{\text{in}} Q_{\text{in}} + (N-n)e_{\text{out}} Q_{\text{out}} \Big)$$

$$= (1-\mu) \Big(e_{\text{self}} + (n-1)e_{\text{in}} Q_{\text{in}} + (N-n)e_{\text{out}} Q_{\text{out}} \Big). \tag{3a}$$

$$\begin{split} \beta_{\text{BD}}^{I} &= \sum_{j,k,l=1}^{N} \left(\frac{d_{lj}}{N} - \frac{\mu}{N^2} \right) e_{kl} Q_{jk} \\ &= \frac{1}{N} \sum_{j=1}^{N} \left[\left(\sum_{l=1}^{N} d_{lj} e_{jl} \right) + \sum_{k \in G_j} \left(\sum_{l=1}^{N} d_{lj} e_{kl} Q_{\text{in}} Q_{\text{in}} \right) + \sum_{k \not\in G_j} \sum_{l=1}^{N} d_{lj} \left(e_{kl} Q_{\text{out}} Q_{\text{out}} \right) \right] \\ &+ \frac{\mu}{N^2} \sum_{j=1}^{N} \left(\sum_{l=1}^{N} e_{kl} \right) \left(\sum_{k=1}^{N} Q_{jk} \right) \\ &= \frac{1}{N} \sum_{j=1}^{N} \left[d_{\text{self}} e_{\text{self}} + (n-1) d_{\text{in}} e_{\text{in}} + (N-n) d_{\text{out}} e_{\text{out}} \right. \\ &+ \sum_{k \in G_j} \left(d_{\text{self}} e_{\text{self}} + d_{\text{self}} e_{\text{in}} + (n-2) d_{\text{in}} e_{\text{in}} + (N-n) d_{\text{out}} e_{\text{out}} \right) Q_{\text{in}} \\ &+ \sum_{k \not\in G_j} \left(d_{\text{self}} e_{\text{out}} + (n-1) d_{\text{in}} e_{\text{out}} + d_{\text{out}} e_{\text{self}} + (n-1) d_{\text{out}} e_{\text{in}} + (N-2n) d_{\text{out}} e_{\text{out}} \right) Q_{\text{out}} \right] \\ &- \frac{\mu}{N} \left(1 + (n-1) Q_{\text{in}} + (N-n) Q_{\text{out}} \right) \left(e_{\text{self}} + (n-1) e_{\text{in}} + (N-n) e_{\text{out}} \right) \\ &= d_{\text{self}} e_{\text{self}} + (n-1) d_{\text{in}} e_{\text{in}} + (N-n) d_{\text{out}} e_{\text{out}} \\ &+ (n-1) \left(d_{\text{in}} e_{\text{self}} + d_{\text{self}} e_{\text{in}} + (n-2) d_{\text{in}} e_{\text{in}} + (N-n) d_{\text{out}} e_{\text{out}} \right) Q_{\text{in}} \\ &+ (N-n) \left(d_{\text{self}} e_{\text{out}} + (n-1) d_{\text{in}} e_{\text{out}} + d_{\text{out}} e_{\text{self}} + (n-1) e_{\text{in}} + (N-2n) d_{\text{out}} e_{\text{out}} \right) Q_{\text{out}} \\ &- \frac{\mu}{N} \left(1 + (n-1) Q_{\text{in}} + (N-n) Q_{\text{out}} \right) \left(e_{\text{self}} + (n-1) e_{\text{in}} + (N-n) e_{\text{out}} \right) Q_{\text{out}} \end{aligned}$$

$$\gamma_{\rm BD}^D = 1 - \mu. \tag{3c}$$

$$\gamma_{\text{BD}}^{I} = \frac{1}{N} \sum_{j,k=1}^{N} \left(d_{kj} - \frac{\mu}{N} \right) Q_{jk}
= \frac{1}{N} \sum_{j=1}^{N} \left[d_{\text{self}} - \frac{\mu}{N} + (n-1) \left(d_{\text{in}} - \frac{\mu}{N} \right) Q_{\text{in}} + (N-n) \left(d_{\text{out}} - \frac{\mu}{N} \right) Q_{\text{out}} \right]
= d_{\text{self}} + (n-1) d_{\text{in}} Q_{\text{in}} + (N-n) d_{\text{out}} Q_{\text{out}}
- \frac{\mu}{N} (1 + (n-1) Q_{\text{in}} + (N-n) Q_{\text{out}})$$
(3d)

Moran, Death-Birth

$$\beta_{\text{DB}}^{D} = \frac{1-\mu}{N} \sum_{j,k=1}^{N} Q_{jk} e_{jk} = \beta_{\text{BD}}^{D}$$

$$= (1-\mu) \Big(e_{\text{self}} + (n-1)e_{\text{in}}Q_{\text{in}} + (N-n)e_{\text{out}}Q_{\text{out}} \Big). \tag{4a}$$

$$\beta_{\text{DB}}^{I} = \frac{1 - \mu}{N} \sum_{i,j,k,l=1}^{N} d_{ji} d_{li} e_{kl} Q_{jk}$$
 (4b)

Presented in the table in the appendix.

$$\gamma_{\rm DB}^D = 1 - \mu = \gamma_{\rm BD}^D. \tag{4c}$$

$$\begin{split} \gamma_{\mathrm{DB}}^{I} &= (1 - \mu) \sum_{i,j,k=1}^{N} \frac{d_{ji} d_{ki}}{N} Q_{jk} \\ &= \frac{1 - \mu}{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \left(d_{ji} d_{ji} + \sum_{k \neq j} d_{ji} d_{ki} Q_{\mathrm{in}} + \sum_{k \notin G_{j}} d_{ji} d_{ki} Q_{\mathrm{out}} \right) \\ &= \frac{1 - \mu}{N} \sum_{j=1}^{N} \left[d_{\mathrm{self}} d_{\mathrm{self}} + (n-1) d_{\mathrm{in}} d_{\mathrm{in}} + (N-n) d_{\mathrm{out}} d_{\mathrm{out}} \right. \\ &+ (n-1) \left(d_{\mathrm{self}} d_{\mathrm{in}} + d_{\mathrm{in}} d_{\mathrm{self}} + (n-2) d_{\mathrm{in}} d_{\mathrm{in}} + (N-n) d_{\mathrm{out}} d_{\mathrm{out}} \right) Q_{\mathrm{in}} \\ &+ (N-n) \left(d_{\mathrm{self}} d_{\mathrm{out}} + (n-1) d_{\mathrm{in}} d_{\mathrm{out}} + d_{\mathrm{out}} d_{\mathrm{self}} + (n-1) d_{\mathrm{out}} d_{\mathrm{in}} + (N-2n) d_{\mathrm{out}} d_{\mathrm{out}} \right) Q_{\mathrm{out}} \right] \end{split}$$

$$(4d)$$

Probabilities of identity by descent

WF est faux. Il faut utiliser les formules Fourier...!

Moran For $i = \neq j$,

$$Q_{ij} = \frac{1-\mu}{2} \sum_{k=1}^{N} \left(d_{kj} Q_{ki} + d_{ki} Q_{kj} \right).$$
 (5a)

For $j \neq i$, $j \in G_i$,

$$Q_{\rm in} = \frac{1-\mu}{2} \Big((d_{\rm in} + d_{\rm self} Q_{\rm in}) + (d_{\rm self} Q_{\rm in} + d_{\rm in}) + (n-2) (d_{\rm in} Q_{\rm in} + d_{\rm in} Q_{\rm in}) + (N-n) (d_{\rm out} Q_{\rm out} + d_{\rm out} Q_{\rm out}) \Big)$$

$$= (1-\mu) \Big(d_{\rm in} + d_{\rm self} Q_{\rm in} + (n-2) d_{\rm in} Q_{\rm in} + (N-n) d_{\rm out} Q_{\rm out} \Big). \tag{5b}$$

And for $j \not\in G_i$,

$$Q_{\text{out}} = \frac{1 - \mu}{2} \Big((d_{\text{out}} + d_{\text{self}} Q_{\text{out}}) + (n - 1) (d_{\text{out}} Q_{\text{in}} + d_{\text{in}} Q_{\text{out}})$$

$$+ (d_{\text{self}} Q_{\text{out}} + d_{\text{out}}) + (n - 1) (d_{\text{in}} Q_{\text{out}} + d_{\text{out}} Q_{\text{in}})$$

$$+ (N - 2n) (d_{\text{out}} Q_{\text{out}} + d_{\text{out}} Q_{\text{out}}) \Big)$$

$$= (1 - \mu) \Big(d_{\text{out}} + d_{\text{self}} Q_{\text{out}} + (n - 1) (d_{\text{out}} Q_{\text{in}} + d_{\text{in}} Q_{\text{out}}) + (N - 2n) d_{\text{out}} Q_{\text{out}} \Big)$$
(5c)

Wright-Fisher For $j \neq i$,

$$Q_{ij} = (1 - \mu)^2 \sum_{k,l=1}^{N} d_{ki} d_{lj} Q_{kl}.$$
 (6a)

When $j \neq i$, $j \in G_i$,

$$Q_{\text{in}} = (1 - \mu)^{2} \left[\left(d_{\text{self}} d_{\text{in}} + d_{\text{in}} d_{\text{self}} + (n - 2) d_{\text{in}} d_{\text{in}} + (N - n) d_{\text{out}} d_{\text{out}} \right) \right.$$

$$\left. + \left(d_{\text{self}} d_{\text{self}} + (n - 2) d_{\text{self}} d_{\text{in}} \right.$$

$$\left. + (n - 1) d_{\text{in}} d_{\text{in}} + (n - 2) d_{\text{in}} d_{\text{self}} \right.$$

$$\left. + (n - 2) (n - 2) d_{\text{in}} d_{\text{in}} + (N - n) (n - 1) d_{\text{out}} d_{\text{out}} \right) Q_{\text{in}} \right.$$

$$\left. + \left((N - n) d_{\text{self}} d_{\text{out}} + (N - n) (n - 1) d_{\text{in}} d_{\text{out}} \right.$$

$$\left. + (N - n) d_{\text{out}} d_{\text{self}} + (N - n) (n - 1) d_{\text{out}} d_{\text{in}} \right.$$

$$\left. + (N - n) (N - 2n) d_{\text{out}} d_{\text{out}} \right) Q_{\text{out}} \right]$$

$$= (1 - \mu)^{2} \left[\left(2 d_{\text{in}} d_{\text{self}} + (n - 2) d_{\text{in}}^{2} + (N - n) d_{\text{out}}^{2} \right) \right.$$

$$\left. + \left(d_{\text{self}}^{2} + 2 (n - 2) d_{\text{self}} d_{\text{in}} + (n^{2} - 3n + 3) d_{\text{in}}^{2} + + (N - n) (n - 1) d_{\text{out}}^{2} \right) Q_{\text{in}} \right.$$

$$\left. + \left(2 (N - n) d_{\text{self}} d_{\text{out}} + 2 (N - n) (n - 1) d_{\text{in}} d_{\text{out}} \right.$$

$$\left. + (N - n) (N - 2n) d_{\text{out}} d_{\text{out}} \right) Q_{\text{out}} \right]$$

$$\left. + (6b)$$

And when $j \not\in G_i$, we have

$$Q_{\text{out}} = (1 - \mu)^{2} \left[\left(2d_{\text{self}}d_{\text{out}} + 2(n - 1)d_{\text{in}}d_{\text{out}} + (N - 2n)d_{\text{out}}^{2} \right) + \left(2(n - 1)d_{\text{self}}d_{\text{out}} + 2(n - 1)^{2}d_{\text{in}}d_{\text{out}} + (N - 2n)(n - 1)d_{\text{out}}^{2} \right) Q_{\text{in}} + \left(d_{\text{self}}d_{\text{self}} + (n - 1)d_{\text{self}}d_{\text{in}} + (N - 2n)d_{\text{self}}d_{\text{out}} + (n - 1)d_{\text{in}}d_{\text{self}} + (n - 1)^{2}d_{\text{in}}^{2} + (n - 1)(N - 2n)d_{\text{in}}d_{\text{out}} + (N - n)d_{\text{out}}d_{\text{self}} + (N - n)(n - 1)d_{\text{out}}d_{\text{in}} + (N - n)(N - 2n)d_{\text{out}}d_{\text{out}} \right) Q_{\text{out}} \right].$$
(6c)

PAS FINI

Appendix

All combinations for i, j, k, l. Notation: (i, j) means that i and j are in the same deme, but are different; G_i refers to the deme containing site i.

	j	k	l	Notation	Count	d_{ii}	d_{li}	e_{kl}	Q_{jk}
1	j = i	k = i	l = i	(i = j = k = l)	1	$d_{ m self}$	$d_{ m self}$	$e_{ m self}$	$\frac{1}{1}$
2	j = i	k = i	$l \neq i; l \in G_i$	(i=j=k,l)	n-1	$d_{ m self}$	$d_{ m in}$	$e_{\rm in}$	1
3	j = i	k = i	$l \not\in G_i$	(i = j = k), (l)	N-n	$d_{ m self}$	$d_{ m out}$	$e_{ m out}$	1
4	j = i	$k \neq i; k \in G_i$	l = i	(i=j=l,k)	n-1	$d_{ m self}$	$d_{ m self}$	$e_{\rm in}$	$Q_{\rm in}$
5	j = i	$k \neq i; k \in G_i$	l = k	(i = j, k = l)	n-1	$d_{ m self}$	$d_{ m in}$	$e_{ m self}$	$Q_{\rm in}$
6	j = i	$k \neq i; k \in G_i$	$l\neq i,k;l\in G_i$	(i=j,k,l)	(n-1)(n-2)	$d_{ m self}$	$d_{ m in}$	$e_{\rm in}$	$Q_{\rm in}$
7	j = i	$k \neq i; k \in G_i$	$l \not\in G_i$	(i=j,k),(l)	(n-1)(N-n)	$d_{ m self}$	$d_{ m out}$	$e_{ m out}$	$Q_{\rm in}$
8	j = i	$k \not\in G_i$	l = i = j	(i=j=l),(k)	(N-n)	$d_{ m self}$	$d_{ m self}$	$e_{ m out}$	Q_{out}
9	j = i	$k \not\in G_i$	$l \neq i, l \in G_i$	(i=j,l),(k)	(N-n)(n-1)	$d_{ m self}$	$d_{ m in}$	e_{out}	Q_{out}
10	j = i	$k \not\in G_i$	l = k	(i=j), (k=l)	(N-n)	$d_{ m self}$	$d_{ m out}$	$e_{ m self}$	Q_{out}
11	j = i	$k \not\in G_i$	$l \neq k; l \in G_k$	(i=j),(k,l)	(N-n)(n-1)	$d_{ m self}$	$d_{ m out}$	$e_{\rm in}$	Q_{out}
12	j = i	$k \not\in G_i$	$l \not\in G_i, G_k$	(i=j),(k),(l)	(N-n)(N-2n)	$d_{ m self}$	$d_{ m out}$	$e_{ m out}$	Q_{out}
13	$j\neq i, j\in G_i$	k = i	l = i	(i=k=l,j)	(n-1)	$d_{ m in}$	$d_{ m self}$	$e_{ m self}$	$Q_{\rm in}$
14	$j \neq i, j \in G_i$	k = i	l = j	(i = k, j = l)	(n-1)	$d_{ m in}$	$d_{ m in}$	$e_{\rm in}$	$Q_{\rm in}$
15	$j\neq i, j\in G_i$	k = i	$l\neq i,j;l\in G_i$	(i=k,j,l)	(n-1)(n-2)	$d_{ m in}$	$d_{ m in}$	$e_{\rm in}$	$Q_{\rm in}$
16	$j\neq i, j\in G_i$	k = i	$l \not\in G_i$	(i=k,j),(l)	(n-1)(N-n)	$d_{ m in}$	$d_{ m out}$	$e_{ m out}$	$Q_{\rm in}$
17	$j\neq i, j\in G_i$	k = j	l = i	(i = l, j = k)	(n-1)	$d_{ m in}$	$d_{ m self}$	$e_{\rm in}$	1
18	$j\neq i, j\in G_i$	k = j	l = j	(i, j = k = l)	(n-1)	$d_{ m in}$	$d_{ m in}$	$e_{ m self}$	1
19	$j\neq i, j\in G_i$	k = j	$l\neq i,j;l\in G_i$	(i, j = k, l)	(n-1)(n-2)	$d_{ m in}$	$d_{ m in}$	$e_{\rm in}$	1
20	$j\neq i, j\in G_i$	k = j	$l \not\in G_i$	(i, j = k), (l)	(n-1)(N-n)	$d_{ m in}$	$d_{ m out}$	e_{out}	1
21	$j\neq i, j\in G_i$	$k \neq i, j; k \in G_i$	l = i	(i=l,j,k)	(n-1)(n-2)	$d_{ m in}$	$d_{ m self}$	$e_{\rm in}$	$Q_{\rm in}$
22	$j\neq i, j\in G_i$	$k \neq i, j; k \in G_i$	l = j	(i,j=l,k)	(n-1)(n-2)	$d_{ m in}$	$d_{ m in}$	$e_{\rm in}$	$Q_{\rm in}$
23	$j\neq i, j\in G_i$	$k\neq i,j;k\in G_i$	l = k	(i, j, k = l)	(n-1)(n-2)	$d_{ m in}$	$d_{ m in}$	$e_{ m self}$	$Q_{\rm in}$
24	$j\neq i, j\in G_i$	$k \neq i, j; k \in G_i$	$l\neq i,j,k;l\in G_i$	(i, j, k, l)	(n-1)(n-2)(n-3)	$d_{ m in}$	$d_{ m in}$	$e_{\rm in}$	$Q_{\rm in}$
25	$j\neq i, j\in G_i$	$k \neq i, j; k \in G_i$	$l \not\in G_i$	(i, j, k), (l)	(n-1)(n-2)(N-n)	$d_{ m in}$	$d_{ m out}$	e_{out}	$Q_{\rm in}$

C	
	_

	j	k	l	Notation	Count	d_{ii}	d_{li}	e_{kl}	Q_{jk}
26	$j \neq i; j \in G_i$	$k \not\in G_i$	l = i	(i = l, j), (k)	(n-1)(N-n)	$d_{ m in}$	$d_{ m self}$	e_{out}	Qout
27	$j \neq i; j \in G_i$	$k \not\in G_i$	l = j	(i, j = l), (k)	(n-1)(N-n)	$d_{ m in}$	$d_{ m in}$	$e_{ m out}$	Qout
28	$j \neq i; j \in G_i$	$k \not\in G_i$	$l \neq i, j; l \in G_i$	(i,j,l),(k)	(n-1)(N-n)(n-2)	d_{in}	d_{in}	$e_{ m out}$	Q_{out}
29	$j\neq i; j\in G_i$	$k \not\in G_i$	l = k	(i,j),(k=l)	(n-1)(N-n)	$d_{ m in}$	$d_{ m out}$	$e_{ m self}$	Qout
30	$j \neq i; j \in G_i$	$k \not\in G_i$	$l \neq k; l \in G_k$	(i,j),(k,l)	(n-1)(N-n)(n-1)	$d_{ m in}$	$d_{ m out}$	e_{in}	Q_{out}
31	$j\neq i; j\in G_i$	$k \not\in G_i$	$l \not\in G_i, G_k$	(i,j),(k),(l)	(n-1)(N-n)(N-2n)	$d_{ m in}$	$d_{ m out}$	e_{out}	Q_{out}
32	$j \not\in G_i$	k = i	l = i	(i=k=l),(j)	(N-n)	$d_{ m out}$	$d_{ m self}$	$e_{ m self}$	Q_{out}
33	$j \not\in G_i$	k = i	$l \neq i; l \in G_i$	(i=k,l),(j)	(N-n)(n-1)	$d_{ m out}$	$d_{ m in}$	e_{in}	Q_{out}
34	$j \not\in G_i$	k = i	l = j	(i=k), (j=l)	(N-n)	$d_{ m out}$	$d_{ m out}$	e_{out}	Q_{out}
35	$j \not\in G_i$	k = i	$l\neq j; l\in G_j$	(i=k),(j,l)	(N-n)(n-1)	$d_{ m out}$	$d_{ m out}$	e_{out}	Q_{out}
36	$j \not\in G_i$	k = i	$l \not\in G_i, G_j$	(i=k),(j),(l)	(N-n)(N-2n)	$d_{ m out}$	$d_{ m out}$	e_{out}	Q_{out}
37	$j \not\in G_i$	$k \neq i; k \in G_i$	l = i	(i=l,k),(j)	(N-n)(n-1)	$d_{ m out}$	$d_{ m self}$	e_{in}	Q_{out}
38	$j \not\in G_i$	$k \neq i; k \in G_i$	l = k	(i, k = l), (j)	(N-n)(n-1)	$d_{ m out}$	$d_{ m in}$	$e_{ m self}$	Q_{out}
39	$j \not\in G_i$	$k \neq i; k \in G_i$	$l\neq i,k;l\in G_i$	(i,k,l),(j)	(N-n)(n-1)(n-2)	$d_{ m out}$	$d_{ m in}$	e_{in}	Q_{out}
40	$j \not\in G_i$	$k \neq i; k \in G_i$	l = j	(i,k),(j=l)	(N-n)(n-1)	$d_{ m out}$	$d_{ m out}$	e_{out}	Q_{out}
41	$j \not\in G_i$	$k \neq i; k \in G_i$	$l \neq j; l \in G_j$	(i,k),(j,l)	(N-n)(n-1)(n-1)	$d_{ m out}$	$d_{ m out}$	e_{out}	Q_{out}
42	$j \not\in G_i$	$k \neq i; k \in G_i$	$l \not\in G_i, G_j$	(i,k),(j),(l)	(N-n)(n-1)(N-2n)	$d_{ m out}$	$d_{ m out}$	e_{out}	Q_{out}
43	$j \not\in G_i$	k = j	l = i	(i=l), (j=k)	(N-n)	$d_{ m out}$	$d_{ m self}$	e_{out}	1
44	$j \not\in G_i$	k = j	$l \neq i; l \in G_i$	(i,l),(j=k)	(N-n)(n-1)	$d_{ m out}$	$d_{ m in}$	e_{out}	1
45	$j \not\in G_i$	k = j	l = j	(i), (j=k=l)	(N-n)	$d_{ m out}$	$d_{ m out}$	$e_{ m self}$	1
46	$j \not\in G_i$	k = j	$l\neq j; l\in G_j$	(i), (j=k,l)	(N-n)(n-1)	$d_{ m out}$	$d_{ m out}$	e_{in}	1
47	$j \not\in G_i$	k = j	$l \not\in G_i, G_j$	(i), (j=k), (l)	(N-n)(N-2n)	$d_{ m out}$	$d_{ m out}$	$e_{ m out}$	1

j	k	l	Notation	Count	d_{ji}	d_{li}	e_{kl}	Q_{jk}
48 $j \not\in G_i$	$k \neq j; k \in G_j$	l = i	(i=l),(j,k)	(N-n)(n-1)	$d_{ m out}$	$d_{ m self}$	e_{out}	$Q_{\rm in}$
49 $j \not\in G_i$	$k \neq j; k \in G_j$	$l\neq i; l\in G_i$	(i,l),(j,k)	(N-n)(n-1)(n-1)	$d_{ m out}$	$d_{ m in}$	e_{out}	$Q_{\rm in}$
50 $j \not\in G_i$	$k \neq j; k \in G_j$	l = j	(i), (j=l,k)	(N-n)(n-1)	$d_{ m out}$	$d_{ m out}$	$e_{\rm in}$	$Q_{\rm in}$
51 $j \not\in G_i$	$k \neq j; k \in G_j$	l = k	(i), (j, k = l)	(N-n)(n-1)	$d_{ m out}$	$d_{ m out}$	$e_{ m self}$	$Q_{\rm in}$
52 $j \not\in G_i$	$k \neq j; k \in G_j$	$l\neq j,k;l\in G_j$	(i),(j,k,l)	(N-n)(n-1)(n-2)	$d_{ m out}$	$d_{ m out}$	$e_{\rm in}$	$Q_{\rm in}$
53 $j \not\in G_i$	$k \neq j; k \in G_j$	$l \not\in G_i, G_j$	(i),(j,k),(l)	(N-n)(n-1)(N-2n)	$d_{ m out}$	$d_{ m out}$	e_{out}	$Q_{\rm in}$
54 $j \not\in G_i$	$k \not\in G_i, G_j$	l = i	(i=l),(j),(k)	(N-n)(N-2n)	$d_{ m out}$	$d_{ m self}$	e_{out}	Q_{out}
55 $j \not\in G_i$	$k \not\in G_i, G_j$	$l \neq i; l \in G_i$	(i,l),(j),(k)	(N-n)(N-2n)(n-1)	$d_{ m out}$	$d_{ m in}$	e_{out}	Q_{out}
56 $j \not\in G_i$	$k \not\in G_i, G_j$	l = j	(i), (j=l), (k)	(N-n)(N-2n)	$d_{ m out}$	$d_{ m out}$	e_{out}	Q_{out}
57 $j \not\in G_i$	$k \not\in G_i, G_j$	$l\neq j; l\in G_j$	(i),(j,l),(k)	(N-n)(N-2n)(n-1)	$d_{ m out}$	$d_{ m out}$	e_{out}	Q_{out}
58 $j \not\in G_i$	$k \not\in G_i, G_j$	l = k	(i),(j),(k=l)	(N-n)(N-2n)	$d_{ m out}$	$d_{ m out}$	$e_{ m self}$	Q_{out}
59 $j \not\in G_i$	$k \not\in G_i, G_j$	$l\neq k; l\in G_k$	(i),(j),(k,l)	(N-n)(N-2n)(n-1)	$d_{ m out}$	$d_{ m out}$	e_{in}	Q_{out}
60 $j \not\in G_i$	$k \not\in G_i, G_j$	$l \not\in G_i, G_j, G_k$	(i),(j),(k),(l)	(N-n)(N-2n)(N-3n)	$d_{ m out}$	$d_{ m out}$	e_{out}	Q_{out}

A Island model

With self replacement

$$d_{\text{self}} = d_{\text{in}} = \frac{1 - m}{n},\tag{7a}$$

$$d_{\text{out}} = \frac{m}{N - n}. (7b)$$

Without self-replacement

$$d_{\text{self}} = 0, \tag{8a}$$

$$d_{\rm in} = \frac{1-m}{n-1},\tag{8b}$$

$$d_{\text{out}} = \frac{m}{N - n}.$$
 (8c)

B IDB

B.1 Moran

Using the formulas for a 2D graph in REF Debarre 2017,

$$\tilde{\mathcal{D}}_{q_1}^{Q_1} = \sum_{l_1=0}^{N_1-1} \sum_{l_2=0}^{N_2-1} \tilde{d}_{l_1} \exp\left(-i\frac{2\pi q_1 l_1}{N_1}\right) \exp\left(-i\frac{2\pi q_2 l_2}{N_2}\right)$$
(9a)

$$\tilde{Q}_{r_{2}}^{r_{1}} = \frac{1}{N} \sum_{q_{1}=0}^{N_{1}-1} \sum_{q_{2}=0}^{N_{2}-1} \frac{\mu \lambda_{M}'}{1 - (1 - \mu) \tilde{D}_{q_{1}}^{r_{1}}} \exp\left(i \frac{2\pi q_{1} r_{1}}{N_{1}}\right) \exp\left(i \frac{2\pi q_{2} r_{2}}{N_{2}}\right)$$
(9b)

We have

$$\begin{split} \tilde{\mathcal{D}}_{q_{1}}^{q_{1}} &= d_{\text{self}} + \sum_{l_{2}=1}^{N_{2}-1} d_{\text{in}} \exp\left(-i\frac{2\pi q_{2} l_{2}}{N_{2}}\right) + \sum_{l_{1}=1}^{N_{1}-1} \sum_{l_{2}=0}^{N_{2}-1} d_{\text{out}} \exp\left(-i\frac{2\pi q_{1} l_{1}}{N_{1}}\right) \exp\left(-i\frac{2\pi q_{2} l_{2}}{N_{2}}\right) \\ &= d_{\text{self}} + \left(\delta_{q_{2}}(N_{2}-1) + (1-\delta_{q_{2}})(-1)\right) d_{\text{in}} + \left(\delta_{q_{1}}(N_{1}-1) + (1-\delta_{q_{1}})(-1)\right) \left(\delta_{q_{2}}N_{2}\right) d_{\text{out}} \\ &= d_{\text{self}} + \left(\delta_{q_{2}}N_{2}-1\right) d_{\text{in}} + \left(\delta_{q_{1}}N_{1}-1\right) \delta_{q_{2}}N_{2} d_{\text{out}}. \end{split} \tag{10a}$$

Whether there is self-replacement or not, we have $N_1 = D$ and $N_2 = n$, and

$$\tilde{\mathcal{D}}_0 = 1,\tag{11a}$$

$$\tilde{\mathcal{D}}_{q_1} = 1 - m - \frac{m}{d-1} \quad (q_1 \not\equiv 0 \pmod{N_1}),$$
 (11b)

$$\tilde{\mathcal{D}}_{q_1} = d_{\text{self}} - d_{\text{in}} \quad (q_2 \not\equiv 0 \pmod{N_2}).$$
 (11c)

So for $\tilde{\mathcal{Q}}$,

$$\tilde{Q}_{r_{1}}^{r_{1}} = \frac{\mu \lambda_{M}'}{N} \left[\frac{1}{1 - (1 - \mu)\tilde{D}_{0}} + \sum_{q_{2}=1}^{N_{2}-1} \frac{1}{1 - (1 - \mu)\tilde{D}_{0}} \exp\left(-i\frac{2\pi q_{2}r_{2}}{N_{2}}\right) + \sum_{q_{1}=1}^{N_{1}-1} \frac{1}{1 - (1 - \mu)\tilde{D}_{q_{1}}} \exp\left(-i\frac{2\pi q_{1}r_{1}}{N_{1}}\right) + \sum_{q_{1}=1}^{N_{1}-1} \sum_{q_{2}=1}^{N_{2}-1} \frac{1}{1 - (1 - \mu)\tilde{D}_{q_{1}}} \exp\left(-i\frac{2\pi q_{1}r_{1}}{N_{1}}\right) \exp\left(-i\frac{2\pi q_{2}r_{2}}{N_{2}}\right) \right] \\
= \frac{\mu \lambda_{M}'}{N} \left[\frac{1}{1 - (1 - \mu)} + \frac{1}{1 - (1 - \mu)(d_{\text{self}} - d_{\text{in}})} (\delta_{r_{2}}N_{2} - 1) + \frac{1}{1 - (1 - \mu)(1 - m - \frac{m}{d - 1})} (\delta_{r_{1}}N_{1} - 1) + \frac{1}{1 - (1 - \mu)(d_{\text{self}} - d_{\text{in}})} (\delta_{r_{1}}N_{1} - 1) (\delta_{r_{2}}N_{2} - 1) \right]. \tag{12a}$$

In particular,

$$\tilde{Q}_{0} = \frac{\mu \lambda_{M}'}{N} \left[\frac{1}{\mu} + \frac{1}{1 - (1 - \mu)(d_{\text{self}} - d_{\text{in}})} (n - 1) + \frac{1}{1 - (1 - \mu)(1 - m - \frac{m}{d - 1})} (D - 1) + \frac{1}{1 - (1 - \mu)(d_{\text{self}} - d_{\text{in}})} (D - 1) (n - 1) \right]$$

$$= 1. \tag{12b}$$

We find λ'_M using the above equation. When $r_1 = 0$, the two individuals are in the same deme. They are different when $r_2 \not\equiv 0$:

$$Q_{\rm in} = \frac{\mu \lambda_M'}{N} \left[\frac{1}{\mu} + \frac{1}{1 - (1 - \mu)(d_{\rm self} - d_{\rm in})} (-1) + \frac{1}{1 - (1 - \mu)(1 - m - \frac{m}{d - 1})} (D - 1) + \frac{1}{1 - (1 - \mu)(d_{\rm self} - d_{\rm in})} (D - 1) (-1) \right].$$

$$(12c)$$

And when $r_1 \not\equiv 0$, the two individuals are in different demes:

$$Q_{\text{out}} = \frac{\mu \lambda_M'}{N} \left[\frac{1}{\mu} + \frac{1}{1 - (1 - \mu)(d_{\text{self}} - d_{\text{in}})} (-1) + \frac{1}{1 - (1 - \mu)(1 - m - \frac{m}{d - 1})} (-1) + \frac{1}{1 - (1 - \mu)(d_{\text{self}} - d_{\text{in}})} \right].$$
(12d)

B.2 Wright-Fisher

$$\begin{split} \tilde{\mathcal{Q}}_{r_{2}}^{r_{1}} &= \frac{1}{N} \sum_{q_{1}=0}^{N_{1}-1} \sum_{q_{2}=0}^{N_{2}-1} \frac{\mu \lambda'_{WF}}{1 - (1 - \mu)^{2} (\tilde{\mathcal{D}}_{q_{1}})^{2}} \exp\left(-i \frac{2\pi q_{1} r_{1}}{N_{1}}\right) \exp\left(-i \frac{2\pi q_{2} r_{2}}{N_{2}}\right) \\ &= \frac{1}{N} \left[\frac{\mu \lambda'_{WF}}{1 - (1 - \mu)^{2} (\tilde{\mathcal{D}}_{0})^{2}} + \sum_{q_{2}=1}^{N_{2}-1} \frac{\mu \lambda'_{WF}}{1 - (1 - \mu)^{2} (\tilde{\mathcal{D}}_{0})^{2}} \exp\left(-i \frac{2\pi q_{1} r_{1}}{N_{2}}\right) \right. \\ &\quad + \sum_{q_{1}=1}^{N_{1}-1} \frac{\mu \lambda'_{WF}}{1 - (1 - \mu)^{2} (\tilde{\mathcal{D}}_{q_{1}})^{2}} \exp\left(-i \frac{2\pi q_{1} r_{1}}{N_{1}}\right) \\ &\quad + \sum_{q_{1}=1}^{N_{1}-1} \sum_{q_{2}=1}^{N_{2}-1} \frac{\mu \lambda'_{WF}}{1 - (1 - \mu)^{2} (\tilde{\mathcal{D}}_{q_{1}})^{2}} \exp\left(-i \frac{2\pi q_{1} r_{1}}{N_{1}}\right) \exp\left(-i \frac{2\pi q_{2} r_{2}}{N_{2}}\right) \right] \quad (13) \\ &\quad = \frac{\mu \lambda'_{WF}}{N} \left[\frac{1}{1 - (1 - \mu)^{2}} + \frac{1}{1 - (1 - \mu)^{2} (d_{\text{self}} - d_{\text{in}})^{2}} (\delta_{q_{1}} N_{1} - 1) \right. \\ &\quad + \frac{1}{1 - (1 - \mu)^{2} (d_{\text{self}} - d_{\text{in}})^{2}} (\delta_{q_{1}} N_{1} - 1) \left. + \frac{1}{1 - (1 - \mu)^{2} (d_{\text{self}} - d_{\text{in}})^{2}} (\delta_{q_{1}} N_{1} - 1) \right] \\ &\quad = \frac{\mu \lambda'_{WF}}{N} \left[\frac{1}{1 - (1 - \mu)^{2}} + \frac{1}{1 - (1 - \mu)^{2} (d_{\text{self}} - d_{\text{in}})^{2}} (\delta_{q_{1}} N_{1} - 1) \right. \\ &\quad + \frac{1}{1 - (1 - \mu)^{2} (1 - m - \frac{m}{d - 1})^{2}} (\delta_{q_{1}} N_{1} - 1) \right]. \quad (14) \end{split}$$

To find λ'_{WF} , we solve

$$1 = \frac{\mu \lambda_{WF}'}{N} \left[\frac{1}{1 - (1 - \mu)^2} + \frac{1}{1 - (1 - \mu)^2 (d_{\text{self}} - d_{\text{in}})^2} (N_2 - 1) N_1 + \frac{1}{1 - (1 - \mu)^2 (1 - m - \frac{m}{d - 1})^2} (N_1 - 1) \right]. \tag{15a}$$

Then,

$$Q_{\rm in} = \frac{\mu \lambda_{WF}'}{N} \left[\frac{1}{1 - (1 - \mu)^2} - \frac{1}{1 - (1 - \mu)^2 (d_{\rm self} - d_{\rm in})^2} N_1 + \frac{1}{1 - (1 - \mu)^2 (1 - m - \frac{m}{d - 1})^2} (N_1 - 1) \right].$$

and

$$Q_{\text{out}} = \frac{\mu \lambda'_{WF}}{N} \left[\frac{1}{1 - (1 - \mu)^2} - \frac{1}{1 - (1 - \mu)^2 (1 - m - \frac{m}{d - 1})^2} \right].$$
(15c)