Ejercicios del tercer set de slides

- 1. Funciones generatrices
- 2. Números de Stirling
- 3. Expresiones regulares
- 4. Sección de una función generatriz

Funciones generatrices

Ejercicio

Usar funciones generatrices para probar las siguientes identidades:

a)
$$\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$$
.

b)
$$\sum_{j=0}^{n} {j \choose r} = {n+1 \choose r+1}$$
.

c)
$$\sum_{k\geq 0} {k \choose n-k} = f_{n+1}, n \in \mathbb{Z}_{\geq 0}$$
, donde (f_n) son los números de Fibonacci.

Números de Stirling

Los números de Stirling de segunda clase $\binom{n}{k}$ cuentan la cantidad de particiones de un conjunto de n elementos en k subconjuntos (no vacíos).

- a) Probar que¹ $\binom{n}{k} = \binom{n-1}{k-1} + k \binom{n-1}{k}$
- b) Deducir que $\sum_{n\geq 0} {n \brace k} z^n = \frac{z^k}{(1-z)(1-2z)...(1-kz)}$.
- c) Utilizando fracciones simples, obtener una fórmula para $\binom{n}{k}$.

¹Escribimos $\binom{n}{k} = 0$ si n < k o k < 0. Por convención $\binom{0}{0} = 1$.

Expresiones regulares como árboles

Consideremos una clase combinatoria \mathcal{R} que representa las expresiones regulares como árboles unarios-binarios con:

- hojas decoradas con las letras "a", "b" o la palabra vacía " ε ".
- nodos internos binarios decoradas con los operadores unión "+" o concatenación "•",
- nodos internos unarios decoradas con el operador Kleene-star "*".

Dar una especificación combinatoria. Determinar la función generatriz suponiendo que la talla es la cantidad de nodos.

Sección de una función generatriz

Este ejercicio responde a la pregunta siguiente:

Pregunta

Dada una OGF $F(z) = \sum_{n \geq 0} a(n) z^n$, y un $q \in \mathbb{Z}_{\geq 1}$ ¿cómo obtener una fórmula para la sección $\sum_{n \geq 0} a(n q) z^{n q}$?

a) Sea $\omega = \exp(2\pi i/q)$, satisface $\omega^q = 1$, y además $\omega^0, \omega^1, \omega^2, \dots, \omega^{q-1}$ son todas las raíces q-ésimas de la unidad. Probar que

$$\sum_{n\geq 0} a(n\,q)\,z^{n\,q} = \frac{1}{q} \sum_{k=0}^{q-1} F(z\omega^k)\,. \tag{1}$$

b) Obtener una fórmula para $\sum_{n\geq 0} a(n\,q+r)\,z^{n\,q+r}$ con $r\in\{0,\ldots,q-1\}$.