Lecture 8: Deep learning, CNN, Autoencoders

Deep learning

- ANNs with a single hidden layer are universal approximators
 - o E.g. OR, AND, NOT
- It's efficient to **stack** several hidden layers \rightarrow Deep neural networks

Representation learning

- Consecutive layers form representations of the input of increasing complexity
- ANN using complex non-linear representation
- A hidden layer can be though of as the *transformed feature space* (e.g. $\mathbf{u} = \phi(\mathbf{x})$)
- Parameters of such a transformation are learned from data
- ANN layers as data transformation:

pre-processed data

the model

Depth v.s. width

- · Width: single infinitely wide layer gives a universal approximator
- Depth: yields more accurate models
- Seek to mimic layered complexity in a network
- However vanishing gradient problem affects learning with very deep models

Convolutional Neural Networks

- In this example
 - \circ C = 1, (2C+1) is the filter size

• Stride = 1 a is input vector

- For 2D images
- For computer vision
 - o Use 5 filters for 2D convolution
 - o Downsampling could be Max Pooling
 - o Use 10 filters for 3D convolution

Components of CNN

- Convolutional layers
 - o Complex input representations based on convolution operation
 - o Weights of the filters are learned from training data
- Downsampling
 - o Re-scales to smaller resolution, imits parameter explosion
 - o Usually via Max Pooling
- Fully connected parts and output layer
 - o Merges representations together

Downsampling via max pooling

- Special type of processing layer. For m imes m patch

$$v = max(u_{11}, u_{12}, ..., u_{mm})$$

- Strictly speaking, not everywhere differentiable (pooling layers not differentiable). Instead, gradient is defined according to "sub-gradient"
- Max pooling:
 - $\circ~$ Tiny changes in values of u_{ij} that is not max do not change v
 - $\circ \hspace{0.2cm}$ If u_{ij} is max value, tiny changes in that value change v linearly
 - \circ Use $rac{\partial v}{\partial u_{ij}}=1$ if $u_{ij}=v$, and $rac{\partial v}{\partial u_{ij}}$ otherwise
- Forward pass records maximising element, which is then used in the backward pass during back-propagation

Convolution as a regulariser

Convolution as a regulariser

Autoencoder

- ullet Given data without labels $x_1,...,x_n$
 - \circ Set $y_i \equiv x_i$ (target/output = input)
 - \circ train an ANN to predict $z(x_i) pprox x_i$ (approximate input)

ullet Set bottleneck layer (**representation**) u in middle "thinner" than input

Bottleneck

- ullet Manage to train a network that gives a good **restoration** of the original signal $z(x_i)pprox x_i$
- That means that the data structure can be effectively described (encoded) by a lower dimensional representation u

Dimensionality reduction

- Autoencoders can used for compression and dimensionality reduction via a non-linear transformation
- If you use linear activation functions and only one hidden layer, then the setup becomes almost that of PCA

Lecture 9: Support Vector Machine

Linear hard-margin SVM

- Binary classifier
 - \circ $s = b + \sum_{i=1}^{m} x_i w_i$
 - \circ Predict class A if $s \geq 0$
 - $\circ\;$ Predict class B if s<0
- Linear classifier
 - $\circ \; s$ is a linear function of inputs, and the **separating boundary** is linear
- Model the data as linearly separable
 - o There exists a hyperplane perfectly separating the classes
- Training using all data at once

SVM vs. Perceptron

- Given learned parameter value, an SVM makes predictions exactly like a perceptron
- Different ways to learn parameter
 - o SVM: maximise margin
 - o Perceptron: min perceptron loss

Separation boundary

- Choosing parameters means choosing a separating boundary (hyperplane)
- For perceptron, all boundaries that separates classes perfectly are equally good
 - o since perceptron loss is 0 for all of them
- For SVM, it aim to find the separation boundary that maximises the margin between the classes
- Margin is defined by the location(b) and orientation(w) of the separating boundary, which are defined by SVM parameters
 - o Space between two dashed lines

Margin width

- Distance between the hyperplane and the nearest data points
 - o therefore, distance to the nearest red and blue points are the same
- Points on margin boundaries called support vectors

SVM Parameters

- ullet The separation boundary is defined by parameters ${f w}$ and b
 - $\circ~~\boldsymbol{w}$: vetor normal (perpendicular) to the boundary
 - ∘ b: bias / intercept
- ullet For a point X, let X_p denote the **projection** of X onto the hyperplane
- Distance from point to hyperplane

$$\circ \ ||r|| = \pm rac{w'x+b}{||w||}$$

- In training data, y_i corresponds to binary label (-1 or 1)
 - $\circ \;\; y_i$ encode the side of the boundary each x_i is on
- Thus, distance from i-th point to a perfect hyperplane:

$$\circ \ ||r_i|| = rac{y_i(w'x_i+b)}{||w||}$$

SVM: Finding separating boundary

- Margin width = distance from the hyperplane to the closest point
- SVM Objective:
 - o Maximise ($\min_{i=1,\dots,n} \frac{y_i(w'x_i+b)}{||w||}$) as a function of ${\bf w}$ and b
 - Problem: non-unique representation of separating boundary (hyperplane)
 - ullet i.e. can use any $lpha(w'x+b)= ilde{w}'x+ ilde{b}=0$
 - Infinite number of solutions
 - o Possible solution to **resolve ambiguity**:
 - \circ Measure the distance to the closest point (i^*) and rescale param s.t.
 - \blacksquare margin: $\frac{y_{i^*}\left(w'x_{i^*}+b\right)}{||w||}=\frac{1}{||w||}$
 - (Arbitrary set the numerator to 1 to get unique values of **w** and *b*)
- SVM Objective with extra requirement:
 - $\circ \ \ \text{Extra requirement: Set margin width} = \frac{y_{i^*}\left(w'x_{i^*} + b\right)}{||w||} = \frac{1}{||w||}$
 - \circ i^* denotes index of closest example to boundary
- Therefore, (hard margin) SVM aims to find:
 - $\circ \ \operatorname*{arg\,min}_{w}||w||$ s.t. $y_{i}(w'x_{i}+b)\geq 1$ for i=1,...,n
 - \circ Minimum ||w|| => maximise margin
 - o Constraint: perfect separation of points

SVM as regularised ERM

- SVM objective
 - $\circ ~ rg \min_{\cdot \cdot \cdot} ||w||$: data-independent regularisation term
 - $\circ \ \ y_i(w'x_i+b) \geq 1$ for i=1,...,n: constraints as data-dependent training error
 - Can be interpreted as loss
 - ullet $l_{\infty}=0$ if prediction correct
 - ullet $l_{\infty}=\infty$ if prediction wrong (give infinite loss to make perfect separation)