8 Лекция 8

8.1 Граф

G(V,E) — граф, где V — множество вершин, E — множество ребер.

8.2 Маршрут

Маршрут длинны k:

$$v_0e_1v_1e_2v_2\dots v_{k-1}e_kv_k$$

Замечания:

- 1. Если граф простой, то из маршрута можно отбросить рёбера e.
- 2. Маршрут длинны 0 вершина.

8.3 Замкнутый маршрут

Маршрут называется замкнутым, если начальная и конечная вершины совпадают.

8.4 Цепь

Незамкнутый маршрут называется цепью, если рёбра попарно различны.

8.5 Простая цепь

Цепь, где вершины не повторяются называется простой.

8.6 Цикл

Замкнутый маршрут называется циклом, если нет повторяющихся рёбер.

8.7 Простой цикл

Цикл называется простым, если нет повторяющихся вершин.

8.8 Регулярный граф

Граф G = (V,E) – регулярный, если степени вершин равны

$$\forall v \in V : \deg v = e$$

8.9 Расстояние

Расстояние d(u,v) — кратчайший маршрут от u до v.

8.10 Диаметр

Диаметр графа — расстояние между самыми удалёнными вершинами.

8.11 Подграф

Подграф G'=(V',E') состоит из части вершин $(V'\subset V)$ и рёбер $(E'\subset E)$ графа G=(V,E)

8.12 Дополнительный граф

G = G(V,E) — простой граф, граф $\bar{G} = (V,\bar{E})$ — дополнительный, если

$$\{u,v\} \in E \Leftrightarrow \{u,v\} \in \bar{E}$$

8.13 Связный граф

Граф G = (V, E) называется связным, если любые две вершины соединеный маршрутом.

8.14 Компонент связности

G = (V,E) – компонент связности, если он является макимальным по включению связным подграфом.

8.15 Мост

 $e \in E$ – мост (перешеек), если после его удаления количество компонентов связности в исходном графе увеличивается.

8.16 Разделяющая точка

 $v\subset V$ — разделяющая точка, если удаление этой точки приводит к увеличению компонентов связности в исходном графе.

8.17 Изоморфизм графа

 $G_1=(V_1,E_1),\,G_2=(V_2,E_2)$ – простые.

 $G_1\cong G_2$ – изоморфны, если существует взаимосвязь: $\exists \varphi: V_1 \to V_2$, такая что:

$$\{u,v\} \in E_1 \Leftrightarrow \{\varphi(u),\varphi(v)\} \in E_2$$

8.18 Необходимые признаки изоморфности:

 $G_1 \cong G_2$:

- 1. $|V_1| = |V_2|$
- 2. $|E_1| = |E_2|$
- 3. Набор степеней вершин одинаков.