Facultatea/Colegiul	

Numărul legitimației de bancă Numele Prenumele tatălui Prenumele

CHESTIONAR DE CONCURS

DISCIPLINA: Algebră și Elemente de Analiză Matematică M1A

VARIANTA E

- 1. Soluțiile x_1, x_2, x_3 ale ecuației $x^3 3x 10 = 0$ satisfac condițiile (6 pct.)
 - a) $x_1 = x_2 \in \mathbb{R}, x_3 \in \mathbb{C}$; b) $x_1, x_2, x_3 \in \mathbb{C} \setminus \mathbb{R}$; c) $x_1 = x_2 \in \mathbb{C} \setminus \mathbb{R}, x_3 \in \mathbb{C}$; d) $x_1, x_2 \in \mathbb{R}, x_3 \in \mathbb{C} \setminus \mathbb{R}$;
 - e) $x_1 \in \mathbb{R}, x_2, x_3 \in \mathbb{C} \setminus \mathbb{R}$; f) $x_1, x_2, x_3 \in \mathbb{R}$.
- 2. Să se determine parametrul $m \in \mathbb{R}$ dacă graficul funcției $f : \mathbb{R} \to \mathbb{R}$,

$$f(x) = x^3 - 2(m+1)x^2 + (m^2 + 2m + 2)x - 2m$$

intersectează axa Ox în trei puncte distincte.. (6 pct.)

- a) $m \in (-\infty, -2 2\sqrt{2}) \cup (-2 + 2\sqrt{2}, \infty)$; b) $m \neq -2 + 2\sqrt{2}$; c) $m \in (-2 2\sqrt{2}, -2 + 2\sqrt{2})$; d) $m \neq 1$;
- e) $m \in (-\infty, -2 2\sqrt{2}) \cup (-2 + 2\sqrt{2}, 1) \cup (1, \infty)$; f) nu există m.
- 3. Fie $e_1 = (1,-1,0)$ și $e_2 = (1,1,0)$. Să se precizeze pentru care din vectorii e_3 de mai jos, vectorii e_1, e_2, e_3 sunt liniar independenți în \mathbb{R}^3 . (6 pct.)
 - a) $e_3 = (-2,2,0)$; b) $e_3 = (2,3,0)$; c) $e_3 = (2,-2,0)$; d) $e_3 = (0,0,1)$; e) $e_3 = (0,0,0)$; f) $e_3 = (5,5,0)$.
- **4.** Să se calculeze $\lim_{x\to 0} \frac{1}{x} \int_{x+3}^{2x+3} t \sqrt{t^3 + 9} \, dt$ (8 pct.)
 - a) ∞ ; b) 10; c) 18; d) 0; e) 14; f) 20.
- 5. Fie curba de ecuație $y = 2x^3 + 4x$. Aflați $m \in \mathbb{R}$ știind că dreapta de ecuație y = mx + 4 este tangentă la curbă. (8 pct.)
 - a) m = 8; b) m = 12; c) m = 2; d) m = -1; e) m = -6; f) m = 10.
- 6. Fie N numărul de soluții reale ale ecuației $2^x = x^2$. Decideți: (8 pct.)
 - a) N = 2; b) N = 4; c) N = 1; d) ecuația are numai soluții întregi; e) N = 3; f) N = 0.
- 7. Primitivele $\int \frac{\mathrm{d}x}{\sin^2 x \cdot \cos^2 x}$ sunt (4 pct.)
 - a) tg x ctg x + C; b) x + ctg x + C; c) $\frac{1}{\sin^2 x} + C$; d) x + tg x + C; e) tg x + ctg x + C; f) $\frac{1}{\cos^2 x} + C$.
- 8. Să se calculeze $\lim_{x\to 0} \frac{\sin^2 x}{x^2 + x^2 \cos x}$. (4 pct.)
 - a) limita nu există; b) 0; c) ∞ ; d) $\frac{1}{2}$; e) 1; f) 2.

- 9. Suma pătratelor soluțiilor ecuației $x^2 4x + 1 = 0$ este (4 pct.)
 - a) 10; b) 12; c) 4; d) -12; e) 14; f) 16.
- 10. Suma numerelor naturale *n* ce satisfac inegalitatea $\left(1+\frac{1}{n}\right)\cdot C_n^2 < 8$ este (4 pct.)
 - a) 8; b) 5; c) 7; d) 6; e) 10; f) 9.
- 11. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cos(x-1) + e^{x^2}$. Să se calculeze f'(1). (4 pct.)
 - a) 0; b) e; c) 2e; d) 1; e) $\frac{1}{e}$; f) e^2 .
- 12. Să se determine o funcție polinomială P, de grad cel mult doi, care verifică condițiile P(1) = 1, P'(1) = 0, P''(1) = 2. (4 pct.)
 - a) $x^2 + x + 1$; b) $-x^2 + 2x$; c) $x^2 + x + 2$; d) $-x^2 + 2x + 2$; e) $-x^2 2x 2$; f) $x^2 2x + 2$.
- 13. Să se rezolve inecuația $\frac{1-x}{x} > 0$. (4pct.)
 - a) (-1,0); b) [-1,1]; c) [0,1); d) (0,1); e) $(-\infty,0) \cup (1,\infty)$; f) nu are soluții.
- 14. Să se rezolve inecuația $\ln e^x + xe^{\ln x} < 2$. (4 pct.)
 - a) $x \in (-2,1)$; b) nu are soluții; c) x > 1; d) x > 0; e) $x \in (0,1)$; f) $x \in (0,e)$.
- **15.** Să se găsească $l = \lim_{n \to \infty} (n + 2 \sqrt{n^2 + n + 3})$. (4 pct.)
 - a) l = 1; b) $l = \infty$; c) $l = \frac{3}{2}$; d) l = 0; e) l = -1; f) nu există.
- 16. Pe mulțimea \mathbb{R}^3 se definește legea de compoziție $(x_1, y_1, z_1) * (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 \cdot z_2)$. Găsiți elementul neutru. (4 pct.)
 - a) (1,0,0); b) (0,0,1); c) (1,1,0); d) (0,1,1); e) (1,0,1); f) (0,1,0).
- 17. Matricea $A = \begin{pmatrix} a & 1 & 1 \\ 1 & -1 & a \\ 2 & 1 & 3 \end{pmatrix}$, cu $a \in \mathbb{R}$, este inversabilă pentru (4 pct.)
 - a) $a \in \{-1,0\}$; b) $a \in \mathbb{R}$; c) nu există; d) $a \neq 0$; e) $a \in \mathbb{R} \setminus \{-1,0\}$; f) $a \neq -1$.
- 18. Funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x^2 + x + 1, & x > 0 \\ ax + b, & x \le 0 \end{cases}$, este continuă dacă (4 pct.)
 - a) a = b = -1; b) a = 1, $b \in \mathbb{R}$; c) $a \in \mathbb{R}$, b = 1; d) a = 1, b = 2; e) a = -1, b = 2; f) a = 1, b > 1.