ORIE 4154 - Pricing and Market Design

Module 1: Capacity-based Revenue Management (Multiple Fare-Class Capacity Allocation)

Instructor: Sid Banerjee, ORIE

Sequential decision making: $\max_{a: \text{``Actions''}} \mathbb{E}_X[f(a,X)]$

Sequential decision making: $\max_{a: \text{``Actions''}} \mathbb{E}_X[f(a,X)]$

5 Components of formulation

Sequential decision making: $\max_{a: \text{``Actions''}} \mathbb{E}_X[f(a, X)]$

5 Components of formulation

• Horizon: T - discrete 'decision periods' $t = \{1, 2, ..., T\}$

Module 1: Capacity-based RM

Sequential decision making: $\max_{a:\text{"Actions"}} \mathbb{E}_X[f(a,X)]$

5 Components of formulation

- Horizon: T discrete 'decision periods' $t = \{1, 2, ..., T\}$
- State: $s_t \in \mathcal{S}_t$ concise summary of history

Sequential decision making: $\max_{a:\text{"Actions"}} \mathbb{E}_X[f(a,X)]$

5 Components of formulation

- Horizon: T discrete 'decision periods' $t = \{1, 2, ..., T\}$
- State: $s_t \in \mathscr{S}_t$ concise summary of history
- Action: $a_t \in \mathscr{A}(s_t)$ allowed set actions in each period

Sequential decision making: $\max_{a:\text{"Actions"}} \mathbb{E}_X[f(a,X)]$

5 Components of formulation

- Horizon: T discrete 'decision periods' $t = \{1, 2, ..., T\}$
- State: $s_t \in \mathcal{S}_t$ concise summary of history
- Action: $a_t \in \mathscr{A}(s_t)$ allowed set actions in each period
- Randomness/Disturbance: X_t determines state transition probability $p(s_{t+1}|s_t, a_t)$ (or $s_{t+1} = f(s_t, a_t, X_t)$)

Sequential decision making: $\max_{a:\text{"Actions"}} \mathbb{E}_X[f(a,X)]$

5 Components of formulation

- Horizon: T discrete 'decision periods' $t = \{1, 2, ..., T\}$
- State: $s_t \in \mathcal{S}_t$ concise summary of history
- Action: $a_t \in \mathscr{A}(s_t)$ allowed set actions in each period
- Randomness/Disturbance: X_t determines state transition probability $p(s_{t+1}|s_t, a_t)$ (or $s_{t+1} = f(s_t, a_t, X_t)$)
- Reward: $R_t(s_t, a_t, X_t)$ (or $R_t(s_{t+1}|s_t, a_t)$)

Sequential decision making: $\max_{a: \text{``Actions''}} \mathbb{E}_X[f(a,X)]$

Sequential decision making: $\max_{a:\text{"Actions"}} \mathbb{E}_X[f(a,X)]$

5 Components of formulation

Sequential decision making: $\max_{a: \text{"Actions"}} \mathbb{E}_X[f(a,X)]$

5 Components of formulation

• Horizon: T - discrete 'decision periods' $t = \{1, 2, ..., T\}$

Module 1: Capacity-based RM

Sequential decision making: $\max_{a: \text{"Actions"}} \mathbb{E}_X[f(a,X)]$

5 Components of formulation

- Horizon: T discrete 'decision periods' $t = \{1, 2, ..., T\}$
- State: $s_t \in \mathcal{S}_t$ concise summary of history

Sequential decision making: $\max_{a: \text{``Actions''}} \mathbb{E}_X[f(a, X)]$

5 Components of formulation

- Horizon: T discrete 'decision periods' $t = \{1, 2, ..., T\}$
- State: $s_t \in \mathcal{S}_t$ concise summary of history
- Action: $a_t \in \mathcal{A}(s_t)$ allowed set actions in each period

Sequential decision making: $\max_{a:\text{``Actions''}} \mathbb{E}_X[f(a,X)]$

5 Components of formulation

- Horizon: T discrete 'decision periods' $t = \{1, 2, ..., T\}$
- State: $s_t \in \mathcal{S}_t$ concise summary of history
- Action: $a_t \in \mathscr{A}(s_t)$ allowed set actions in each period
- Randomness/Disturbance: X_t determines state transition probability $p(s_{t+1}|s_t, a_t)$ (or $S_{t+1}(s_t, a_t, X_t)$)

Sequential decision making: $\max_{a: \text{"Actions"}} \mathbb{E}_X[f(a,X)]$

5 Components of formulation

- Horizon: T discrete 'decision periods' $t = \{1, 2, ..., T\}$
- State: $s_t \in \mathcal{S}_t$ concise summary of history
- Action: $a_t \in \mathscr{A}(s_t)$ allowed set actions in each period
- Randomness/Disturbance: X_t determines state transition probability $p(s_{t+1}|s_t, a_t)$ (or $S_{t+1}(s_t, a_t, X_t)$)
- Reward: $R_t(s_t, a_t, X_t)$ (or $R_t(s_{t+1}|s_t, a_t)$)

Sequential decision making: $\max_{a: \text{"Actions"}} \mathbb{E}_X[f(a,X)]$

5 Components of formulation

- Horizon: T discrete 'decision periods' $t = \{1, 2, ..., T\}$
- State: $s_t \in \mathscr{S}_t$ concise summary of history
- Action: $a_t \in \mathscr{A}(s_t)$ allowed set actions in each period
- Randomness/Disturbance: X_t determines state transition probability $p(s_{t+1}|s_t, a_t)$ (or $S_{t+1}(s_t, a_t, X_t)$)
- Reward: $R_t(s_t, a_t, X_t)$ (or $R_t(s_{t+1}|s_t, a_t)$)

Reformulated Problem: $\max_{a_1(S_1), a_2(S_2), \dots, a_T(S_T)} \sum_{t=1}^T \mathbb{E}\left[R_t(S_t, a_t, X_t)\right]$

- Horizon: T State: $s_t \in \mathcal{S}_t$ Action: $a_t \in \mathcal{A}(s_t)$
- Randomness: X_t determines $p(s_{t+1}|s_t, a_t)$ (or $S_{t+1}(s_t, a_t, X_t)$)
- Reward: $R_t(s_t, a_t, X_t)$ (or $R_t(s_{t+1}|s_t, a_t)$)

- Horizon: T State: $s_t \in \mathscr{S}_t$ Action: $a_t \in \mathscr{A}(s_t)$
- Randomness: X_t determines $p(s_{t+1}|s_t, a_t)$ (or $S_{t+1}(s_t, a_t, X_t)$)
- Reward: $R_t(s_t, a_t, X_t)$ (or $R_t(s_{t+1}|s_t, a_t)$)

- Horizon: T State: $s_t \in \mathscr{S}_t$ Action: $a_t \in \mathscr{A}(s_t)$
- Randomness: X_t determines $p(s_{t+1}|s_t, a_t)$ (or $S_{t+1}(s_t, a_t, X_t)$)
- Reward: $R_t(s_t, a_t, X_t)$ (or $R_t(s_{t+1}|s_t, a_t)$)

- Horizon: T State: $s_t \in \mathcal{S}_t$ Action: $a_t \in \mathcal{A}(s_t)$
- Randomness: X_t determines $p(s_{t+1}|s_t, a_t)$ (or $S_{t+1}(s_t, a_t, X_t)$)
- Reward: $R_t(s_t, a_t, X_t)$ (or $R_t(s_{t+1}|s_t, a_t)$)

• Value function: $V_t(s) \triangleq \text{Maximum possible total expected}$ reward over periods $\{t, t+1, \dots, T\}$

- Horizon: T State: $s_t \in \mathcal{S}_t$ Action: $a_t \in \mathcal{A}(s_t)$
- Randomness: X_t determines $p(s_{t+1}|s_t, a_t)$ (or $S_{t+1}(s_t, a_t, X_t)$)
- Reward: $R_t(s_t, a_t, X_t)$ (or $R_t(s_{t+1}|s_t, a_t)$)

- Value function: $V_t(s) \triangleq \text{Maximum possible total expected}$ reward over periods $\{t, t+1, \dots, T\}$
- Terminal reward: $V_T(s) = \max_{a \in \mathscr{A}(s)} \sum_{x \in \mathscr{S}} p(x|s,a) R_T(x|s,a)$

- Horizon: T State: $s_t \in \mathscr{S}_t$ Action: $a_t \in \mathscr{A}(s_t)$
- Randomness: X_t determines $p(s_{t+1}|s_t, a_t)$ (or $S_{t+1}(s_t, a_t, X_t)$)
- Reward: $R_t(s_t, a_t, X_t)$ (or $R_t(s_{t+1}|s_t, a_t)$)

- Value function: $V_t(s) \triangleq \text{Maximum possible total expected}$ reward over periods $\{t, t+1, \dots, T\}$
- Terminal reward: $V_T(s) = \max_{a \in \mathscr{A}(s)} \sum_{x \in \mathscr{S}} p(x|s,a) R_T(x|s,a)$
- Bellman Optimality Equation:

$$V_t(s) = \max_{a \in \mathcal{A}(s)} \mathbb{E} [R_t(s, a, X_t) + V_{t+1}(S_{t+1}(s, a, X_t))]$$

= $\max_{a \in \mathcal{A}(s)} \sum_{x} p(x|s, a) [R_t(x|s, a) + V_{t+1}(x)]$

Dynamic Programming: Example

- Horizon: T State: $s_t \in \mathscr{S}_t$ Action: $a_t \in \mathscr{A}(s_t)$
- Randomness: X_t determines $p(s_{t+1}|s_t, a_t)$ (or $S_{t+1}(s_t, a_t, X_t)$)
- Reward: $R_t(s_t, a_t, X_t)$ (or $R_t(s_{t+1}|s_t, a_t)$)
- Value function: $V_t(s) \triangleq \text{Max } \mathbb{E}[R_t + R_{t+1} + \ldots + R_T]$
- Bellman Eqn: $V_t(s) = \max_{a \in \mathscr{A}(s)} \sum_{x} p(x|s,a) \left[R_t(x|s,a) + V_{t+1}(x) \right]$

5/9

Dynamic Programming: Example

- Horizon: T State: $s_t \in \mathscr{S}_t$ Action: $a_t \in \mathscr{A}(s_t)$
- Randomness: X_t determines $p(s_{t+1}|s_t,a_t)$ (or $S_{t+1}(s_t,a_t,X_t)$)
- Reward: $R_t(s_t, a_t, X_t)$ (or $R_t(s_{t+1}|s_t, a_t)$)
- Value function: $V_t(s) \triangleq \text{Max } \mathbb{E}[R_t + R_{t+1} + \ldots + R_T]$
- Bellman Eqn: $V_t(s) = \max_{a \in \mathscr{A}(s)} \sum_{x} p(x|s,a) \left[R_t(x|s,a) + V_{t+1}(x) \right]$

Toothpick game (from last class)

- State: $s_t = \#$ of toothpicks at beginning of epoch t
- Actions: Pick $\mathscr{A}(s_t) = \{1,2\}$ toothpicks
- Randomness: $X_t \sim \text{UNIF}\{1,2\}$; $S_{t+1}(s_t, a_t, X_t) = s_t a_t X_t$
- Reward: $R_t(s_t, a_t, X_t) = \mathbb{1}_{\{s_t > 0, s_t a_t = 0\}}$
- Bellman Eqn: $V_t(s) = \max_{a \in \{1,2\}} \left[0.5 \cdot \left[V_{t+1}(s-a-1) + V_{t+1}(s-a-2) \right] \right]$

- Seller constraints:
 - (Setting) Capacity Cn fare-classes with prices $p_1 > p_2 > p_3 > \ldots > p_n$

- Seller constraints:
 - (Setting) Capacity C
 n fare-classes with prices p₁ > p₂ > p₃ > ... > p_n
- Buyer behavior and information structure:
 - (Perfect Segmentation) Fare-classes arrive separately
 - (Dynamics) Sequential arrival in increasing order of fares
 - (Demand) Independent demand for fare-class $i: D_i \sim F_i$

- Seller constraints:
 - (Setting) Capacity Cn fare-classes with prices $p_1 > p_2 > p_3 > \ldots > p_n$
- Buyer behavior and information structure:
 - (Perfect Segmentation) Fare-classes arrive separately
 - (Dynamics) Sequential arrival in increasing order of fares
 - (Demand) Independent demand for fare-class $i: D_i \sim F_i$

DP Formulation

• $n \text{ periods: } \{n, n-1, ..., 1\}$

- Seller constraints:
 - (Setting) Capacity Cn fare-classes with prices $p_1 > p_2 > p_3 > \ldots > p_n$
- Buyer behavior and information structure:
 - (Perfect Segmentation) Fare-classes arrive separately
 - (Dynamics) Sequential arrival in increasing order of fares
 - (Demand) Independent demand for fare-class $i: D_i \sim F_i$

DP Formulation

- *n* periods: $\{n, n-1, ..., 1\}$
- State: s_k = available capacity when fare-class k arrives

- Seller constraints:
 - (Setting) Capacity Cn fare-classes with prices $p_1 > p_2 > p_3 > \ldots > p_n$
- Buyer behavior and information structure:
 - (Perfect Segmentation) Fare-classes arrive separately
 - (Dynamics) Sequential arrival in increasing order of fares
 - (Demand) Independent demand for fare-class $i: D_i \sim F_i$

DP Formulation

- $n \text{ periods: } \{n, n-1, ..., 1\}$
- State: s_k = available capacity when fare-class k arrives
- Action: Allocate $s_k y_k$ capacity at fare p_k

- Seller constraints:
 - (Setting) Capacity Cn fare-classes with prices $p_1 > p_2 > p_3 > \ldots > p_n$
- Buyer behavior and information structure:
 - (Perfect Segmentation) Fare-classes arrive separately
 - (Dynamics) Sequential arrival in increasing order of fares
 - (Demand) Independent demand for fare-class $i: D_i \sim F_i$

DP Formulation

- $n \text{ periods: } \{n, n-1, ..., 1\}$
- State: s_k = available capacity when fare-class k arrives
- Action: Allocate $s_k y_k$ capacity at fare p_k
- Bellman Eqn: For $k \in \{n, n-1, ..., 2\}$ $V_k(s_k) = \max_{y_k \in \{0, ..., s_k\}} \mathbb{E}\left[p_k \cdot \min\{D_k, s_k - y_k\} + V_{k-1}\left(\max\{s_k - D_k, y_k\}\right)\right]$

DP Formulation

- State: s_k = available capacity when fare-class k arrives
- Action: Allocate $s_k y_k$ capacity at fare p_k
- Bellman Eqn: For $k \in \{n, n-1, \dots, 2\}$

$$V_k(s_k) = \max_{y_k \in \{0, \dots, s_k\}} \mathbb{E}\left[p_k \cdot \min\{D_k, s_k - y_k\} + V_{k-1}(\max\{s_k - D_k, y_k\})\right]$$

DP Formulation

- State: s_k = available capacity when fare-class k arrives
- Action: Allocate $s_k y_k$ capacity at fare p_k
- Bellman Eqn: For $k \in \{n, n-1, ..., 2\}$ $V_k(s_k) = \max_{y_k \in \{0, ..., s_k\}} \mathbb{E}\left[p_k \cdot \min\{D_k, s_k - y_k\} + V_{k-1}\left(\max\{s_k - D_k, y_k\}\right)\right]$

To solve this: use backward induction

DP Formulation

- State: s_k = available capacity when fare-class k arrives
- Action: Allocate $s_k y_k$ capacity at fare p_k
- Bellman Eqn: For $k \in \{n, n-1, ..., 2\}$ $V_k(s_k) = \max_{y_k \in \{0, ..., s_k\}} \mathbb{E}\left[p_k \cdot \min\{D_k, s_k y_k\} + V_{k-1}\left(\max\{s_k D_k, y_k\}\right)\right]$

To solve this: use backward induction

- For $s_1 \in \{0, 1, ..., C\}$, we have $V_1(s_1) = \mathbb{E}[p_1 \max\{s_1, D_1\}]$

DP Formulation

- State: s_k = available capacity when fare-class k arrives
- Action: Allocate $s_k y_k$ capacity at fare p_k
- Bellman Eqn: For $k \in \{n, n-1, ..., 2\}$ $V_k(s_k) = \max_{y_k \in \{0, ..., s_k\}} \mathbb{E}\left[p_k \cdot \min\{D_k, s_k - y_k\} + V_{k-1}\left(\max\{s_k - D_k, y_k\}\right)\right]$

To solve this: use backward induction

- For $s_1 \in \{0, 1, ..., C\}$, we have $V_1(s_1) = \mathbb{E}[p_1 \max\{s_1, D_1\}]$
- Given $V_{k-1}(\cdot)$, can compute $V_k(\cdot)$ via Bellman Eqn.

DP Formulation

- State: s_k = available capacity when fare-class k arrives
- Action: Allocate $s_k y_k$ capacity at fare p_k
- Bellman Eqn: For $k \in \{n, n-1, ..., 2\}$ $V_k(s_k) = \max_{y_k \in \{0, ..., s_k\}} \mathbb{E}\left[p_k \cdot \min\{D_k, s_k y_k\} + V_{k-1}\left(\max\{s_k D_k, y_k\}\right)\right]$

To solve this: use backward induction

- For $s_1 \in \{0, 1, ..., C\}$, we have $V_1(s_1) = \mathbb{E}[p_1 \max\{s_1, D_1\}]$
- Given $V_{k-1}(\cdot)$, can compute $V_k(\cdot)$ via Bellman Eqn.
- If D_i s are discrete rv on $\{0, 1, ..., C\}$, then running time is nC^2 (# of periods ×# of states × time to compute expectation)

DP Formulation

- State: s_k = available capacity when fare-class k arrives
- Action: Allocate $s_k y_k$ capacity at fare p_k
- Bellman Eqn: For $k \in \{n, n-1, ..., 2\}$ $V_k(s_k) = \max_{y_k \in \{0, ..., s_k\}} \mathbb{E}\left[p_k \cdot \min\{D_k, s_k y_k\} + V_{k-1}\left(\max\{s_k D_k, y_k\}\right)\right]$

To solve this: use backward induction

- For $s_1 \in \{0, 1, ..., C\}$, we have $V_1(s_1) = \mathbb{E}[p_1 \max\{s_1, D_1\}]$
- Given $V_{k-1}(\cdot)$, can compute $V_k(\cdot)$ via Bellman Eqn.
- If D_i s are discrete rv on $\{0,1,\ldots,C\}$, then running time is nC^2 (# of periods ×# of states × time to compute expectation)

Unsatisfying - not interpretable, highly model dependent

DP Formulation

- State: s_k = available capacity when fare-class k arrives
- Action: Allocate $s_k y_k$ capacity at fare p_k
- Bellman Eqn: For $k \in \{n, n-1, ..., 2\}$ $V_k(s_k) = \max_{y_k \in \{0, ..., s_k\}} \mathbb{E}\left[p_k \cdot \min\{D_k, s_k y_k\} + V_{k-1}\left(\max\{s_k D_k, y_k\}\right)\right]$

To solve this: use backward induction

- For $s_1 \in \{0, 1, ..., C\}$, we have $V_1(s_1) = \mathbb{E}[p_1 \max\{s_1, D_1\}]$
- Given $V_{k-1}(\cdot)$, can compute $V_k(\cdot)$ via Bellman Eqn.
- If D_i s are discrete rv on $\{0,1,\ldots,C\}$, then running time is nC^2 (# of periods ×# of states × time to compute expectation)

Unsatisfying - not interpretable, highly model dependent Would like to understand structure of optimal solution

- s_k = available capacity for fare-class k; allocate $s_k y_k$ at p_k
- Bellman Eqn: For $k \in \{n, n-1, ..., 2\}$ $V_k(s_k) = \max_{y_k \in \{0, ..., s_k\}} \mathbb{E}\left[p_k \cdot \min\{D_k, s_k - y_k\} + V_{k-1}\left(\max\{s_k - D_k, y_k\}\right)\right]$

- s_k = available capacity for fare-class k; allocate $s_k y_k$ at p_k
- Bellman Eqn: For $k \in \{n, n-1, \dots, 2\}$ $V_k(s_k) = \max_{y_k \in \{0, \dots, s_k\}} \mathbb{E}\left[p_k \cdot \min\{D_k, s_k - y_k\} + V_{k-1}(\max\{s_k - D_k, y_k\})\right]$

Suppose instead we know D_K before choosing y_k

```
s<sub>k</sub> units of
capacity
```

fare-class k Lavailable

- s_k = available capacity for fare-class k; allocate $s_k y_k$ at p_k
- Bellman Eqn: For $k \in \{n, n-1, \dots, 2\}$ $V_k(s_k) = \max_{y_k \in \{0, \dots, s_k\}} \mathbb{E}\left[p_k \cdot \min\{D_k, s_k y_k\} + V_{k-1}\left(\max\{s_k D_k, y_k\}\right)\right]$

- s_k = available capacity for fare-class k; allocate $s_k y_k$ at p_k
- Bellman Eqn: For $k \in \{n, n-1, ..., 2\}$ $V_k(s_k) = \max_{y_k \in \{0, ..., s_k\}} \mathbb{E}\left[p_k \cdot \min\{D_k, s_k y_k\} + V_{k-1}\left(\max\{s_k D_k, y_k\}\right)\right]$

- s_k = available capacity for fare-class k; allocate $s_k y_k$ at p_k
- Bellman Eqn: For $k \in \{n, n-1, ..., 2\}$ $V_k(s_k) = \max_{y_k \in \{0, ..., s_k\}} \mathbb{E}\left[p_k \cdot \min\{D_k, s_k y_k\} + V_{k-1}\left(\max\{s_k D_k, y_k\}\right)\right]$

- s_k = available capacity for fare-class k; allocate $s_k y_k$ at p_k
- Bellman Eqn: For $k \in \{n, n-1, ..., 2\}$ $V_k(s_k) = \max_{y_k \in \{0, ..., s_k\}} \mathbb{E}\left[p_k \cdot \min\{D_k, s_k - y_k\} + V_{k-1}\left(\max\{s_k - D_k, y_k\}\right)\right]$

- $\bullet \ \, \text{Let} \,\, \widehat{V}_k(s_k|D_k) = \text{value fn given} \,\, D_k \,\, ; \,\, \widehat{V}_k(s_k) = \mathbb{E}[\widehat{V}_k(s_k|D_k)] \\ \widehat{V}_k(s_k,D_k) = \max_{y_k \in \{(s_k-D_k)^+,\dots,s_k\}} p_k \cdot (s_k-y_k) + \mathbb{E}\left[\widehat{V}_{k-1}(y_k|D_{k-1})\right]$
- Modified Bellman Eqn: For $k \in \{n, n-1, ..., 2\}$ $\widehat{V}_k(s_k) = p_k s_k + \mathbb{E} \left[\max_{y_k \in \{(s_k D_k)^+, ..., s_k\}} \left\{ -p_k y_k + \widehat{V}_{k-1}(y_k) \right\} \right]$

- Original Bellman Eqn: For $k \in \{n, n-1, \dots, 2\}$ $V_k(s_k) = \max_{y_k \in \{0, \dots, s_k\}} \mathbb{E}\left[p_k \cdot \min\{D_k, s_k y_k\} + V_{k-1}\left(\max\{s_k D_k, y_k\}\right)\right]$
- $$\begin{split} \bullet \ \widehat{V}_k(s_k|D_k) &= \text{value fn given } D_k \ ; \ \widehat{V}_k(s_k) = \mathbb{E}[\widehat{V}_k(s_k|D_k)] \\ \widehat{V}_k(s_k,D_k) &= \max_{y_k \in \{(s_k-D_k)^+,\dots,s_k\}} p_k \cdot (s_k-y_k) + \mathbb{E}\left[\widehat{V}_{k-1}(y_k|D_{k-1})\right] \end{split}$$
- Modified Bellman Eqn: For $k \in \{n, n-1, ..., 2\}$ $\widehat{V}_k(s_k) = p_k s_k + \mathbb{E} \left[\max_{y_k \in \{(s_k D_k)^+, ..., s_k\}} \left\{ -p_k y_k + \widehat{V}_{k-1}(y_k) \right\} \right]$

- Original Bellman Eqn: For $k \in \{n, n-1, \ldots, 2\}$ $V_k(s_k) = \max_{y_k \in \{0, \ldots, s_k\}} \mathbb{E}\left[p_k \cdot \min\{D_k, s_k y_k\} + V_{k-1}\left(\max\{s_k D_k, y_k\}\right)\right]$
- $$\begin{split} \bullet & \ \widehat{V}_k(s_k|D_k) = \text{value fn given } D_k \ ; \ \widehat{V}_k(s_k) = \mathbb{E}[\widehat{V}_k(s_k|D_k)] \\ & \ \widehat{V}_k(s_k,D_k) = \max_{y_k \in \{(s_k-D_k)^+,\dots,s_k\}} p_k \cdot (s_k-y_k) + \mathbb{E}\left[\widehat{V}_{k-1}(y_k|D_{k-1})\right] \end{split}$$
- Modified Bellman Eqn: For $k \in \{n, n-1, ..., 2\}$ $\widehat{V}_k(s_k) = p_k s_k + \mathbb{E} \left[\max_{y_k \in \{(s_k D_k)^+, ..., s_k\}} \left\{ -p_k y_k + \widehat{V}_{k-1}(y_k) \right\} \right]$

Proposition: $\widehat{V}_k(s) \ge V_k(s)$ for all $k \in \{n, n-1, \dots, 1\}$, $s \in \mathbb{N}$

- Original Bellman Eqn: For $k \in \{n, n-1, \ldots, 2\}$ $V_k(s_k) = \max_{y_k \in \{0, \ldots, s_k\}} \mathbb{E}\left[p_k \cdot \min\{D_k, s_k y_k\} + V_{k-1}\left(\max\{s_k D_k, y_k\}\right)\right]$
- $$\begin{split} \bullet & \ \widehat{V}_k(s_k|D_k) = \text{value fn given } D_k \ ; \ \widehat{V}_k(s_k) = \mathbb{E}[\widehat{V}_k(s_k|D_k)] \\ & \ \widehat{V}_k(s_k,D_k) = \max_{y_k \in \{(s_k-D_k)^+,\dots,s_k\}} p_k \cdot (s_k-y_k) + \mathbb{E}\left[\widehat{V}_{k-1}(y_k|D_{k-1})\right] \end{split}$$
- Modified Bellman Eqn: For $k \in \{n, n-1, \dots, 2\}$ $\widehat{V}_k(s_k) = p_k s_k + \mathbb{E} \left[\max_{y_k \in \{(s_k D_k)^+, \dots, s_k\}} \left\{ -p_k y_k + \widehat{V}_{k-1}(y_k) \right\} \right]$

Proposition: $\widehat{V}_k(s) \ge V_k(s)$ for all $k \in \{n, n-1, \dots, 1\}$, $s \in \mathbb{N}$

- Can always ignore D_k and choose fixed y_k

- Original Bellman Eqn: For $k \in \{n, n-1, \ldots, 2\}$ $V_k(s_k) = \max_{y_k \in \{0, \ldots, s_k\}} \mathbb{E}\left[p_k \cdot \min\{D_k, s_k y_k\} + V_{k-1}\left(\max\{s_k D_k, y_k\}\right)\right]$
- $$\begin{split} \bullet \ \widehat{V}_k(s_k|D_k) &= \text{value fn given } D_k \ ; \ \widehat{V}_k(s_k) = \mathbb{E}[\widehat{V}_k(s_k|D_k)] \\ \widehat{V}_k(s_k,D_k) &= \max_{y_k \in \{(s_k-D_k)^+,\dots,s_k\}} p_k \cdot (s_k-y_k) + \mathbb{E}\left[\widehat{V}_{k-1}(y_k|D_{k-1})\right] \end{split}$$
- Modified Bellman Eqn: For $k \in \{n, n-1, ..., 2\}$ $\widehat{V}_k(s_k) = p_k s_k + \mathbb{E} \left[\max_{y_k \in \{(s_k D_k)^+, ..., s_k\}} \left\{ -p_k y_k + \widehat{V}_{k-1}(y_k) \right\} \right]$
- Proposition: $\widehat{V}_k(s) \ge V_k(s)$ for all $k \in \{n, n-1, \dots, 1\}$, $s \in \mathbb{N}$
 - Can always ignore D_k and choose fixed y_k
 - If we can design policy with $V_k(\cdot) = \widehat{V}_k(\cdot)$, then we are done!