Struktura a architektura počítačů

Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické

© Hana Kubátová, 2021

Aritmetické operace a jejich realizace, pohyblivá řádová čárka

BI-SAP, březen 2021

Obsah

- Zobrazení čísel se znaménkem v počítači
 - Přímý, aditivní a doplňkový kód a operace sčítání a odčítání včetně přetečení
- Realizace aritmetických operací vč. optimalizace
- Čísla s pohyblivou řádovou čárkou
 - Zobrazení v řádové mřížce
 - Provádění základních aritmetických operací
 - Normalizovaný tvar, skrytá jednička

Řádová mřížka (opakování)

- Zobrazení čísel na počítači je limitováno (rozsahem registrů, paměť. míst, apod.)
- **Řádová mřížka určuje formát zobrazitelných čísel** (tj. definuje nejvyšší řád *n* a nejnižší řád *-m*)

Příklad řádových mřížek pro I = 4

Aritmetické operace v ř.m.: chyby

- Někdy se lze chybám vyhnout změnou délky ř.m.
 - rozšiřování × zkracování ř.m.

(Rozšíření ř.m. může být realizováno např. uložením do dvou registrů)

- Při ztrátě přesnosti můžeme velikost chyby ovlivnit způsobem zaokrouhlení
 - zaokrouhlení nahoru/dolů
 - zaokrouhlení s preferencí sudé číslice
 - zaokrouhlení s preferencí většího čísla

Zaokrouhlení v ř.m.

Zaokrouhlení dolů (oříznutí)

Zaokrouhlení nahoru

Jak to realizovat v HW?

Zaokrouhli 0,1011

na 3 místa
0,1011

+ 0,0001

0,1100

 $0,6875_{10}$ zaokrouhleno správně na $0,688_{10}$ Zde $0,75_{10}$ zatímco dolu 0,101 tzn. jen $0,625_{10}$

... zaokrouhlení

Zaokrouhlení s preferencí sudé číslice

Zaokrouhlení s preferencí většího čísla

Řádová čárka vzhledem k ř.m.

- Pevně definovaná pozice \Rightarrow **čísla s pevnou řádovou čárkou** (fixed-point)
 - nejpoužívanější

Řádová čárka je definována posunem vůči definované pozici \Rightarrow **čísla s pohyblivou řádovou čárkou** (*floating*point)

Počáteční pozice řád. čárky, vůči níž je vztažen "posun".

číslo ve posun řád. zlomkovém čárky tvaru

rezervováno

pro znaménko

Zobrazení čísel se znaménkem

- Standardní polyadické soustavy ⇒ pouze nezáporná čísla
- Zobrazení i záporných čísel ⇒ číselné kódy
 - popisují transformaci z omezené množiny celých čísel do omezené množiny nezáporných čísel
- Nejpoužívanější číselné kódy:
 - přímý
 - o aditivní
 - doplňkový

Přímý kód

Opakování:

- Nejvyšší řád ř.m. představuje znaménko, zbytek ř.m. je absolutní hodnota
- Znaménko reprezentováno číslicí:

• Znázornění zobrazení:

+/- absolutní hodnota

... přímý kód

M = 1000 ... tzn. 3bitová čísla

X		P(X))	
+0	0	0	0	←kladná nula
+1	0	0	1	
+2	0	1	0	
+3	0	1	1	
-0	1	0	0	←záporná nula
-1	1	0	1	
-2	1	1	0	
-3	1	1	1	

Sčítačka pro nezáporná čísla, popis

- p_i.... přenos do řádu icarry
- q_i přenos z řádu i
- $M = 8 = 2^3 = 1000_2 = (111 + 1)_2$

$$S = \begin{cases} A + B & \text{je-li } q^* = 0 \\ A + B - M & \text{je-li } q^* = 1 \end{cases}$$

• zde: q* signalizace nesprávného výsledku

Poznámka: přenos (carry) je vždy výstup z bloku sčítačky, v některých případech (tzn. zde) je použitý pro signalizaci nesprávného výsledku (tzn. přeplnění, overflow)

Sčítačka pro nezáporná čísla

$$S = A + B \dots jen někdy$$

$$A = ...a_2 a_1 a_0$$

$$B = ...b_2b_1b_0$$

Stačila by půlsčítačka

Odčítání

Pracuji zvlášť se znaménkem a absolutní hodnotou

Absolutní hodnota je nezáporné číslo:

Příklad pro 3 bitová nezáporná čísla:

$$B=101 \ \overline{B}=010$$
 $B + \overline{B} = 111 = 1000 - 1 = M - 1$
 $-B = \overline{B} + 1 - M$
 $A - B = A + \overline{B} + 1 - M$

Aby byl výsledek správně, musí být možné odečíst modul (tj. přenos/carry)!

Odčítání

sčítání přenos *q**carry odčítání výpujčka *v**borow

$$\overline{q^*} = v^*$$

$$q^* = 1$$
 $v^* = 0$ \Leftrightarrow $B - A \ge 0$ $q^* = 0$ \Leftrightarrow $v^* = 1$ \Leftrightarrow $B - A < 0$

Odčítačka pro nezáporná čísla

Sčítání a odčítání v přímém kódu

A + B, A – B, výsledek ulož do A

kde

 $A \sim (zA, aA),$

 $B \sim (zB, aB)$

z – znaménko,

a – absolutní hodnota

Pokud nevyjde přenos, vyšel záporný výsledek, který neumíme zobrazit, proto je třeba negovat znaménko a odečíst výsledek od 0.

Sčítačka-odčítačka pro nezáporná čísla

- složitější řízení, protože detekce přeplnění záleží na operaci
- sčítání ... přeplnění (zde přenos) pro q*=1
- odčítání přeplnění (zde výpůjčka) pro

Aditivní kód

- Též označovaný jako "kód s posunutou nulou"
- Formální definice: $\mathcal{A}(X) = X + K$ pro $-K \le X < M K$
- K vhodná konstanta

často se volí: $K = \frac{1}{2} M$

Označení znaménka není explicitní jako u přímého kódu ->
je "implicitní" součástí zobrazovaného čísla jako u dopňkového kódu.

Příklady – aditivní kód

$$-25_{10} \xrightarrow{\mathcal{A}} 4 9 7 5$$

$$+0.05_{10} \xrightarrow{\mathcal{A}} 1 0 5 0$$

$$+101_{2} \xrightarrow{\mathcal{A}} 1 1 0 1$$

$$-0.11_{2} \xrightarrow{\mathcal{A}} 0 0 1 0$$

Převod aditivní ↔ doplňkový Přičtení aditivní konstanty (+ K)

Doplňkový kód

Opakování

Definice:
$$\mathcal{D}(X) = \begin{cases} X, & \text{je-li } X >= 0 \\ M + X, & \text{je-li } X < 0 \end{cases}$$

Příklad – napsat všechna 3 bitová čísla (M = 1000, ε = 1, l = 3)

X		D(X,)
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
-4	1	0	0
-3	1	0	1
-2	1	1	0
-1	1	1	1

Znaménko je určeno prvním bitem zleva, ale tento bit je organickou součástí obrazu !!!

Sčítání a odčítání v doplňkovém kódu

		D(A) + D(B)	D(A+B)
1	$A \ge 0 B \ge 0$	A + B	A + B
	$A \ge 0 B < 0$	A + B + M	$\int A + B$
2	$A < 0 B \ge 0$	A+B+W	A+B+M
3	A < 0 B < 0	A+B+M+M	A + B + M

$$D(A + B) = \begin{cases} D(A) + D(B) \\ D(A) + D(B) - M \end{cases}$$

Sečtou se obrazy a ignoruje se přenos!!!

Odčítání:

$$\mathcal{D}(-B) = \overline{\mathcal{D}(B)} + 1$$

$$A - B = D(A) + D(B) + 1$$

detekce přeplnění je stejná jako u sčítání

Přeplnění

Přeplnění (overflow) není přenos (carry) !!!!!

Přeplnění ... podle bloku sčítačky pro nejvyšší řád

а	b	р	q	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Detekce přeplnění

Detekce přeplnění

Přeplnění:

tzn. v nejvyšším řádu sčítačky bude:

nebo

$$over = p \oplus q$$

nebo také:

$$over = \overline{a}\overline{b}s + ab\overline{s}$$

S ⁻	а	b	р	σ	S
0	0	0	0	0	0
~	0	0	1	0	1
2	0	1	0	0	1
3	0	1	1	~	0
4	~	0	0	0	1
5	1	0	1	1	0
6	7	1	0	~	0
7	1	1	1	1	1

p#q

Realizace detekce přeplnění - overflow

Sčítačka-odčítačka v doplňkovém kódu

Sčítačka-odčítačka v doplňkovém kódu

včetně detekce přeplnění, realizace z hradel (bloky Σ už známe)

Sčítačka-odčítačka -demo

http://www.ecs.umass.edu/ece/koren/arith/simulator/Add/ripple/ripple.html

Problém: správný součet vypadne až po průchodu přes všechny bloky sčítačky

Jak to zrychlit?

- Návrh vícebitové sčítačky dvouúrovňově (tzn. že obvod pro dvoubitovou sčítačku bude mít 5 vstupů a 3 výstupy ... které?)
- Přenos se nemusí uplatnit vždy: jen když se v bloku generuje nebo se přes blok šíří ...
- Jak to předpovědět?

Zrychlení činnosti sčítačky

Přerušení vazeb, tzn. zamezení šíření přenosů přes všechny bloky. Ale bude to znamenat přidání další logiky Jak to odvodit ze vstupů?

Predikce přenosů

Analýza toho, kdy se s přenos uplatní v následujícím bloku (blocích):

Predikce přenosů

NOT-AND-OR

Realizace (full adder)

FA:
Full Adder

poloviční sčítacκa (half adder)

HA Half Adder

S = a xor b

q = a.b

Predikce přenosů

NOT-AND-OR

$$s = (a \oplus b) \oplus p$$

$$q = ab + p(a \oplus b)$$

$$G = ab$$

$$P = a \oplus b$$

Sčítačka-odčítačka v procesoru

	m	р*	Carry	Overflow
ADD	0	0	q*	over
ADC	0	Carry	q*	over
SUB	1	1	q*	over
SBB	1	Carry	q*	over

B

m

Realita v procesoru

	m	p*	Carry	Overflow
ADD	0	0	q*	over
ADC	0	Carry	q*	over
SUB	1	1	q*	over
SBB	1	Carry	q*	over

Hardware (ALU, kombinační logika, řadič) realizuje operaci, nastaví příznaky (přeplnění – overflow, přenos - carry, a i další informace o výsledku, např. znaménko, nulový výsledek), které pak software interpretuje podle aktuální potřeby.

Výsledek sčítání a odčítání (to co vypadne z ALU) je stejné, záleží na interpretaci, tzn. zda jde o číslo nezáporné nebo se znaménkem

Příklady pro 8 bitová čísla

Sečtěte čísla 75₁₆ + BC₁₆ v 8 bitovém procesoru

Interpretace:

- čísla nezáporná (celá): součet je 31 s detekcí nesprávného výsledku (1 v carry), ale včetně přenosu lze na 9 bitech získat 131 (dva registry)
- čísla v doplňkovém kódu: součet je 31 a je správně, protože sčítáme +75 + (- 44), overflow = 0
- čísla v přímém kódu: vlastně odčítáme, ale 7 bitů: 75 3C = + 39

Příklady pro 8 bitová čísla

Sečtěte čísla 4A₁₆ + E5₁₆ v 8 bitovém procesoru

Interpretace:

- <u>čísla nezáporná (celá): součet je 2F</u> s detekcí nesprávného výsledku (1 v carry), ale včetně přenosu lze na 9 bitech získat 12F (dva registry)
- v doplňkovém kódu: součet je 2F a je správně, protože sčítáme +4A + (-1B), overflow = 0
- v přímém kódu: odčítáme 7 bitů: 4A 65 = -1B, výsledek na 8b: 9B0100 1010
 + 1110 0101
 110 0101
 100 1010
 + 001 1010
 + 1
 0 110 0101
 001 1011

nevyšel přenos, tzn. že výsledek není správně – musíme ho odečíst od 0 a negovat znaménko

Příklady pro 8 bitová čísla

Sečtěte čísla 8A₁₆ + 35₁₆ v 8 bitovém procesoru

Interpretace:

- čísla nezáporná (celá): součet je BF a nulový přenos (carry=0),
- v doplňkovém kódu: součet je BF (-41) a je správně, protože sčítáme
 -76 + 35, overflow = 0
- v přímém kódu: odčítáme 7 bitů: -0A + 35 = + 2B, na 8b: 2B

nevyšel přenos, tzn. že výsledek není správně – musíme ho odečíst od 0 a negovat znaménko A

Pohyblivá řádová čárka

Čísla s pevnou řádovou čárkou mají výrazně omezený rozsah

Př. z = 2, délka ř.m. l = 32 (tj. 32-bitové číslo)

max. celé číslo

... $A < 2^{32} < 5.10^9$

min. zlomkové číslo

... $A > 2^{-32} > 2 \cdot 10^{-9}$

• Pro zvětšení rozsahu přidáme exponent e

X·z^e … odpovídá posunu řádové čárky v čísle X o e

⇒ čísla s pohyblivou řádovou čárkou

...pohyblivá řádová čárka

- Řádová mřížka má 2 části (podmřížky):
 - mantisa (m) informace o "hodnotě" čísla, často zlomkový tvar
 - exponent (e) informace o pozici řád. čárky, celé číslo
- m i e používají kódy pro zobrazení čísel se znaménkem
- Ukázky možných formátů ř. m.

...pohyblivá řádová čárka

- Normalizovaný tvar
 - je tvar čísla, kdy už nelze mantisu posunout více doleva
 - zjednodušuje aritmetické operace
- Normalizovaný tvar operandů nezaručí normalizovaný tvar výsledku
 - ⇒ normalizace
 - tj. úprava výsledku na normalizovaný tvar
 - nutno provádět po každé operaci
- Př.

0	5	0	0	2	5	nenormaliz. tvar	0	0	2	5	0	0
0	4	9	2	5	0	normalizovaný tvar	2	5	0	0	9	8

$$A = 0.025_{10}$$

...pohyblivá řádová čárka

Skrytá jednička

- předp. z = 2, normaliz. tvar, M přímý kód, $M \neq 0$, $\mathcal{A}(e) \neq 0$, aditivní konstanta 11 (3₁₀)
 - ⇒ v nejvyšším řádu mantisy bude vždy 1
 - ⇒ tuto 1 můžeme "skrýt" (tj. vynechat ze zápisu čísla v ř.m.)

• V případě $\mathcal{A}(e) = 0$ se skrytá jednička nepoužívá!!!

