Fundamental Concepts

Fundamental Concepts	
$\boldsymbol{S}_{k}\left \boldsymbol{S}_{k};\pm\right\rangle =\frac{\hbar}{2}\left \boldsymbol{S}_{k};\pm\right\rangle$	Eigenkets of operator \boldsymbol{S}_k (S. 1.2.6)
$\left \alpha\right\rangle = \sum_{a'} c_{a'} \left a'\right\rangle$	Exapansion of an arbitrary ket $ \alpha\rangle$ (S. 1.2.8)
$\langle \beta \alpha \rangle = \langle \alpha \beta \rangle^*$	Complex conjugate of bra-ket (S. 1.2.12)
$\langle \alpha \alpha \rangle \ge 0$	Postulate of positive definite metric (S. 1.2.13)
$X = X^{\dagger}$	Condition of a hermitian operator (S. 1.2.25)
$(XY)^{\dagger} = X^{\dagger}Y^{\dagger}$	Hermitian conjugate distributivity (S. 1.2.29)
$A a'\rangle = a' a'\rangle$	Eigenkets of the hermitian operator A (S. 1.3.1)
$\langle a^{\prime\prime} A = a^{\prime\prime\ast} \langle a^{\prime\prime} $	Hermitian operator A on a bra (S. 1.3.2)
$\langle a^{\prime\prime} a^\prime\rangle=\delta_{a^{\prime\prime},a^\prime}$	Condition of an orthonormal set (S. 1.3.6)
$c_{a'} = \langle a' \alpha \rangle$	Technique for finding the expansion coefficient (S. 1.3.8)
$\sum_{i} = \left a' \right\rangle \left\langle a' \right = 1$	Identity operator (S. 1.3.11)
a ²	Normalization condition of expansion coefficients (S. 1.3.13)
a^{r}	To manual of condition of expansion countries (c. 10.10)
$\Lambda_{a'} \equiv \left a' \right\rangle \left\langle a' \right $	Definition of the projection operator (S. 1.3.15)
$P_{a'} = \left \left\langle a' \middle \alpha \right\rangle \right ^2$	Probability for a' (S. 1.4.4)
$\langle A \rangle \equiv \langle \alpha A \alpha \rangle$	Definition of expectation value (S 1.4.5)
$S_z = \frac{\hbar}{2} \left(+\rangle \left\langle + - -\rangle \left\langle - \right) \right.$	Spin-z operator in z-basis (S. 1.3.36)
$S_x = \frac{\hbar}{2} \left(+\rangle \left\langle - + -\rangle \left\langle + \right\rangle \right)$	Spin-x operator in z-basis (S. 1.4.18a)
$S_y = \frac{\hbar}{2} \left(-i \mid + \rangle \left\langle - \mid + i \mid - \rangle \left\langle + \mid \right\rangle \right)$) Spin-y operator in z-basis (S. 1.4.18b)
$ S_x;\pm\rangle = \frac{1}{\sqrt{2}} +\rangle \pm \frac{1}{\sqrt{2}} -\rangle$	Spin-x eigenkets in z-basis (S. 1.4.17a)
$ S_y;\pm\rangle = \frac{1}{\sqrt{2}} +\rangle \pm \frac{i}{\sqrt{2}} -\rangle$	Spin-y eigenkets in z-basis (S. 1.4.17b)
$ \mathbf{S}\cdot\hat{\mathbf{n}};+ angle = \cos\left(rac{ heta}{2} ight) + angle + e^{i\phi}\sin\left(rac{ heta}{2} ight) - angle$	
. ,	Arbitrary axis spin-up eigenkets in z-basis (S. Pr. 1.11)
$\left[S_i, S_j\right] = i\epsilon_{ijk} \hbar S_k$	Spin operator commutation relations (S. 1.4.20)
$\left\{S_i, S_j\right\} = \frac{1}{2} \hbar^2 \delta_{ij}$	Spin operator anticommutation relations (S. $1.4.21$)
$[A, B] \equiv AB - BA$ $\{A, B\} \equiv AB + BA$	Definition of the commutator (S. 1.4.22a) Definition of the anticommutator (S. 1.4.22b)
[A,B]=0	Condition for two observables to be compatible (S. 1.4.26)
$A \left a', b' \right\rangle = a' \left a', b' \right\rangle$ $B \left a', b' \right\rangle = b' \left a', b' \right\rangle$	Property of a simultaneous eigenket of A and B
$\langle (\Delta A)^2 \rangle = \langle A^2 \rangle - \langle A \rangle^2$	Dispersion of A (S. 1.4.51)
$\langle (\Delta A)^2 \rangle \langle (\Delta B)^2 \rangle \ge \frac{1}{4} \langle [A, B] \rangle $	$ 2\rangle ^2$ Uncertainty relation (S. 1.4.53)
$\int d\xi' \left \xi' \right\rangle \left\langle \xi' \right = 1$	Identity operator for continuous variables (S. 1.6.2b)
$\mathcal{J}(d\mathbf{x'}) \mathbf{x'} \rangle = \mathbf{x'} + d\mathbf{x'} \rangle$	Infinitesimal translation operator on ket (S. $1.6.12$)
$\mathcal{J}(d\mathbf{x'}) = 1 - i\mathbf{p} \cdot d\mathbf{x'}/\hbar$	Definition of infinitesimal translation operator (S. $1.6.32$)
$\mathcal{J}(\Delta x'\hat{\mathbf{x}}) \left \mathbf{x}' \right\rangle = \left \mathbf{x}' + \Delta x' \hat{\mathbf{x}} \right\rangle$	Finite translation operator on ket (S. 1.6.35)
$\mathcal{J}(\Delta x'\hat{\mathbf{x}}) = \exp\left(-\frac{ip_x \Delta x'}{\hbar}\right)$	Definition of finite translation operator (S. 1.6.36)
$\langle (\Delta x)^2 \rangle \langle (\Delta p_x)^2 \rangle \ge \hbar^2 / 4$	WH's position-momentum uncertainty relation (S. $1.6.34$)
$[x_i, x_j] = 0, [p_i, p_j] = 0, [x_i, x_j] = 0, [x_i, x_j] = [x_i, x_j] = 0, [x_i, x_j] = 0,$	$[x_i, p_j] = i\hbar \delta_{ij}$ Canonical commutation relations (S. 1.6.46)
$[A, BC] \equiv [A, B]C + B[A, C]$ [A, [B, C]] + [B, [C, A]] + [C, [A]]	Commutator distributivity (S. 1.6.50e) [A, B] = 0 Jacobi Identity (S. 1.6.50f)
$x x' \rangle = x' x' \rangle$	Definition of the position ket (S. 1.7.1)
$\left\langle x^{\prime\prime}\middle x^{\prime}\right\rangle =\delta(x-x^{\prime})$	Position ket normalization condition (S. 1.7.2)
$\langle x' \alpha \rangle = \psi_{\alpha}(x')$	Definition of the position-space wave function (S. 1.7.5)
$p = -i\hbar \frac{\partial}{\partial x'}$	Momentum operator in terms of (S. 1.7.18)
$\psi_{\alpha}(\mathbf{x'}) = \left[\frac{1}{(2\pi\hbar)^{3/2}}\right] \int d^3x' \exp\left(\frac{i\mathbf{p'} \cdot \mathbf{x'}}{\hbar}\right) \phi_{\alpha}(\mathbf{p'})$	
Fourier transform from momentum to position space (S. 1.7.51a)	
$\phi_{\alpha}(\mathbf{p}') = \left[\frac{1}{(2\pi\hbar)^{3/2}}\right] \int d^3x' \epsilon$	$\exp\left(\frac{-\mathbf{p}'\cdot\mathbf{x}'}{\hbar}\right)\psi_{\alpha}(\mathbf{x}')$
Four	rier transform from position to momentum space (S. 1.7.51b)

Quantum Dynamics $\mathcal{U}(t, t_0) = \exp\left[\frac{-iH(t - t_0)}{\hbar}\right]$ Time-evolution operator (S. 2.1.28) $[A, H] = 0 \Rightarrow H |a'\rangle = E_{a'} |a'\rangle$ Definition of energy eigenkets (S. 2.1.34) $|\alpha,t_{0}=0;t\rangle=\exp\left(\frac{-iHt}{\hbar}\right)|\alpha,t_{0}=0\rangle=\sum_{a'}\left|a'\right\rangle\left\langle a'\right|\alpha\right\rangle\exp\left(\frac{-iE_{a'}t}{\hbar}\right)$ Time-evolution of expansion coefficients (S. 2.1.38) $H=-\left(rac{eB}{m_{c,c}}
ight)S_{z}$ Hamiltonian of a spin-1/2 particle in uniform magnetic field (S. 2.1.50) $\mathcal{U}_{S}(t,0) = \exp\left(\frac{-i\omega S_{z}t}{\hbar}\right)$ Time-evolution of spin states (S. 2.1.54) Commutator of position and function of momentum (S. 2.2.23a)
$$\begin{split} \left[x_i, F(\mathbf{p})\right] &= i\hbar \frac{\partial F}{\partial p_i} \\ \left[p_i, G(\mathbf{x})\right] &= -i\hbar \frac{\partial G}{\partial x_i} \end{split}$$
Commutator of momentum and function of position (S. 2.2.23b) $H = \frac{\mathbf{p}^2}{2} + V(x)$ General expression for the Hamiltonian (S. 2.2.31) $m \frac{\mathrm{d}^2}{\mathrm{d}t^2} \langle \mathbf{x} \rangle = \frac{\mathrm{d} \langle \mathbf{p} \rangle}{\mathrm{d}t} = - \langle \nabla V(\mathbf{x}) \rangle$ Ehrenfest's theorem (S. 2.2.36) $H = \frac{p^2}{2m} + \frac{m\omega^2 x^2}{2}$ Hamiltonian of the simple harmonic oscillator (S. 2.3.1) $E_n = \left(n + \frac{1}{2}\right) \hbar \omega$ Energy eigenvalues of the SHO (S. 2.3.9) $a = \sqrt{\frac{m\omega}{2\hbar}} \left(x + \frac{ip}{m\omega} \right)$ Definition of the lowering operator (S. 2.3.2) $a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(x - \frac{ip}{m\omega} \right)$ Definition of the raising operator (S. 2.3.2) $a |n\rangle = \sqrt{n} |n-1\rangle$ Behaviour of lowering operator (S. 2.3.16) Behaviour of the raising operator (S. 2.3.17) $x = \sqrt{\frac{\hbar}{2m\omega}}(a + a^{\dagger})$ Position operator in terms of raising/lowering operators (S. 2.3.24) $p=i\sqrt{\frac{m\hbar\omega}{2}}(-a+a^{\dagger})$ Momentum operator in terms of raising/lowering ops. (S. 2.3.24) $x_0 \equiv \sqrt{\frac{\hbar}{m\omega}}$ $\left\langle x'\middle|0\right\rangle = \left(\frac{1}{\pi^{1/4}\sqrt{x_0}}\right) \exp\left[-\frac{1}{2}\left(\frac{x'}{x_0}\right)^2\right]$ Ground state wavefunction for SHO (S. 2.3.30) $\left\langle x'\Big|1\right\rangle = \left\langle x'\Big|a^{\dagger}\Big|0\right\rangle$ Technique for evaluating higher wavefunctions of the SHO (S. 2.3.31) $i\hbar \frac{\partial}{\partial t} \psi(\mathbf{x'}, t) = -\left(\frac{\hbar^2}{2m}\right) \nabla'^2 \psi(\mathbf{x'}) + V(\mathbf{x'}) \psi(\mathbf{x'}, t)$ Schrödinger's time-dependent wave equation (S. 2.4.8) $-\left(\frac{\hbar^2}{2m}\right) {\nabla'}^2 u_E(\mathbf{x'}) + V(\mathbf{x'}) u_E(\mathbf{x'}) = E u_E(\mathbf{x'})$ Schrödinger's time-independent wave equation (S. 2.4.11) $\left\{ \frac{1}{[V(x) - E]^{1/4}} \right\} \exp \left[-\frac{1}{\hbar} \int_{x}^{x_1} dx' \sqrt{2m[V(x') - E]} \right]$ $\rightarrow \left\{\frac{2}{[E-V(x)]^{1/4}}\right\} \cos \left[\frac{1}{\hbar} \int_{x_1}^x dx' \sqrt{2m[E-V(x')]} - \frac{\pi}{4}\right]$ $\left\{\frac{1}{\left[V(x)-E\right]^{1/4}}\right\} \exp\left[-\frac{1}{\hbar} \int_{x_2}^x dx' \sqrt{2m[V(x')-E]} \;\right]$ $\to \left\{ \frac{2}{[E - V(x)]^{1/4}} \right\} \cos \left[\frac{1}{\hbar} \int_{x}^{x_2} dx' \sqrt{2m[E - V(x')]} - \frac{\pi}{4} \right]$

Schrödinger's time-independent wave equation (S. 2.4.11)
$$\left\{\frac{1}{[V(x)-E]^{1/4}}\right\} \exp\left[-\frac{1}{\hbar} \int_{x}^{x_1} dx' \sqrt{2m[V(x')-E]}\right]$$

$$\left\{\frac{1}{[V(x)-E]^{1/4}}\right\} \exp\left[-\frac{1}{\hbar} \int_{x}^{x_1} dx' \sqrt{2m[V(x')-E]}\right]$$
WKB I \rightarrow II (S. 2.5.48)

$$\rightarrow \left\{ \frac{2}{[E - V(x)]^{1/4}} \right\} \cos \left[\frac{1}{\hbar} \int_{x_1}^x dx' \sqrt{2m[E - V(x')]} - \frac{\pi}{4} \right]
\left\{ \frac{1}{[V(x) - E]^{1/4}} \right\} \exp \left[-\frac{1}{\hbar} \int_{x_2}^x dx' \sqrt{2m[V(x') - E]} \right]
\rightarrow \left\{ \frac{2}{[E - V(x)]^{1/4}} \right\} \cos \left[\frac{1}{\hbar} \int_{x}^{x_2} dx' \sqrt{2m[E - V(x')]} - \frac{\pi}{4} \right]$$
WKB III \rightarrow II (S. 2.5.48)

$$\int_{x_1}^{x_2} dx \sqrt{2m[E-V(x)]} = \left(n+\frac{1}{2}\right)\pi\hbar$$
 WKB quantization condition (S. 2.5.50)
$$E=V(x_1), \quad E=V(x_2)$$
 Classical turning points (S. 2.5.53)

Theory of Angular Momentum

 $[J_i,J_j]=i\hbar\epsilon_{ijk}J_z$ Fundamental commutation relations of angular momentum (S. 3.1.20) $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ Pauli spin matrices (S. 3.2.32) $\{\sigma_i, \sigma_j\} = 2\delta_{ij}$ Anticommutation relation for Pauli matrices (S. 3.2.34)

Commutation relation for Pauli matrices (S. 3.2.35) $[\sigma_i,\sigma_j]=2i\epsilon_{ijk}\sigma_k$

$$\mathcal{D}(\hat{\mathbf{n}},\phi) = \exp\left(\frac{-i\boldsymbol{\sigma}\cdot\hat{\mathbf{n}}}{2}\right) = \mathbf{1}\cos\left(\frac{\phi}{2}\right) - i\boldsymbol{\sigma}\cdot\hat{\mathbf{n}}\sin\left(\frac{\phi}{2}\right) \qquad \text{Spin-1/2 rotation (S. 3.2.44)}$$

$$\mathcal{D}(\alpha,\beta,\gamma) = \begin{pmatrix} e^{-i(\alpha+\gamma)/2}\cos(\beta/2) & -e^{-i(\alpha-\gamma)/2}\sin(\beta/2) \\ e^{i(\alpha-\gamma)/2}\sin(\beta/2) & e^{i(\alpha+\gamma)/2}\cos(\beta/2) \end{pmatrix} \text{ Euler angle } \mathcal{D} \text{ (S. 3.3.21)}$$

$$U(a,b) = \begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix}$$
 General unitary unimodular matrix (S. 3.3.7)

$$\begin{pmatrix} -b^* & a^* \end{pmatrix}$$
 $\begin{vmatrix} a \end{vmatrix}^2 + \begin{vmatrix} b \end{vmatrix}^2 = 1$
Unimodular condition (S. 3.3.8)

$$U(a,b)U^{\dagger}(a,b)$$
 Unitary condition (S. 3.3.9)

$$\mathbb{T}_{w_i} = 1$$
 Normalization condition for fractional populations (S. 3.4.5)

$$ho \equiv \sum w_i \left| lpha^{(i)} \right\rangle \left\langle lpha^{(i)} \right|$$
 Definition of the density operator (S. 3.4.8)

$$[A] = \operatorname{tr}(\rho A) \qquad \qquad \operatorname{Ensemble average} \; (S. \ 3.4.10) \\ \operatorname{tr}(\rho^2) = 1 \qquad \qquad \operatorname{Property} \; \text{of a pure ensemble} \; (3.4.15) \\ \rho(t) = \mathcal{U}(t,t_0)\rho(t_0)\mathcal{U}^\dagger(t,t_0) \qquad \qquad \operatorname{Time-evolution} \; \text{of an ensemble} \; (S. \ Pr. \ 3.11) \\ \mathbf{J}^2 \equiv J_x^2 + J_y^2 + J_z^2 \qquad \operatorname{Definition} \; \text{of the total angular momentum operator} \; (\operatorname{TAM}) \; (S. \ 3.5.1) \\ [\mathbf{J}^2,J_k] = 0, \; (k=1,2,3) \qquad \qquad \operatorname{TAM} \; \operatorname{commutivity} \; (S. \ 3.5.2) \\ \mathbf{J}^2 \mid_{J,m} = j(j+1)\hbar^2 \mid_{J,m} \rangle \qquad \qquad \operatorname{TAM} \; \operatorname{communivity} \; (S. \ 3.5.34a) \\ J_z \mid_{J,m} = m\hbar \mid_{J,m} \rangle \qquad \qquad \operatorname{TAM} \; \operatorname{component} \; \operatorname{operator} \; \operatorname{eigenvalue} \; (S. \ 3.5.34b) \\ J_+ \mid_{J,m} \rangle = \sqrt{(j-m)(j+m+1)}\hbar \mid_{J,m+1} \rangle \; \operatorname{TAM} \; \operatorname{raising} \; \operatorname{operator} \; \operatorname{eigenvalue} \; (S. \ 3.5.34b) \\ J_- \mid_{J,m} \rangle = \sqrt{(j+m)(j-m+1)}\hbar \mid_{J,m-1} \rangle \; \operatorname{TAM} \; \operatorname{lowering} \; \operatorname{operator} \; \operatorname{eigenvalue} \; (S. \ 3.5.40) \\ \mathcal{D}_{m'm}^{(j)} = \left\langle_{J,m'} \mid_{\exp} \left(\frac{-iJ \cdot \hat{n}\phi}{\hbar} \right) \mid_{J,m} \right\rangle \qquad \qquad \operatorname{Wigner} \; \operatorname{functions} \; (S. \ 3.5.42) \\ \mathcal{D}_{m'm}^{(j)} (\alpha,\beta,\gamma) = e^{-i(m'\alpha+m\gamma)} d_{m'm}^{(j)} (\beta) \qquad \operatorname{Redefinition} \; \operatorname{of} \; \operatorname{the} \; \operatorname{rotation} \; \operatorname{operator} \; (S. \ 3.5.50) \\ d_{m'm}^{(j)} (\beta) \equiv \left\langle_{J,m'} \mid_{\exp} \left(\frac{-iJ_J\beta}{\hbar} \right) \mid_{J,m} \right\rangle \qquad \operatorname{Rotation} \; \operatorname{operator} \; \operatorname{j-dependence} \; (S. \ 3.5.51) \\ d^{(1/2)} = \left(\frac{\cos\left(\frac{\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)} \cos\left(\frac{\beta}{2}\right) \right) \qquad \operatorname{Spin-1/2} \; \operatorname{case} \; (S. \ 3.5.52) \\ d^{(1)} (\beta) = \left(\frac{1}{2}(1+\cos\beta) - \frac{1}{\sqrt{2}} \sin\beta - \frac{1}{2}(1-\cos\beta) \\ \frac{1}{\sqrt{2}} \sin\beta - \cos\beta - \frac{1}{\sqrt{2}} \sin\beta - \frac{1}{\sqrt{2}} (1+\cos\beta) \right) \qquad \operatorname{Spin-1} \; \operatorname{case} \; (S. \ 3.5.57) \\ L = \mathbf{x} \times \mathbf{p} \qquad \qquad \operatorname{Definition} \; \operatorname{of} \; \operatorname{orbital} \; \operatorname{angular} \; \operatorname{momentum} \; (\operatorname{OAM} \; (S. \ 3.6.16) \\ \left\langle_{\mathbf{x}'} \mid_{h,l,m} \right\rangle = R_{nl}(r)Y_l^m(\theta,\phi) \qquad \qquad \operatorname{Energy} \; \operatorname{eigenfunctions}, \; \operatorname{seperable} \; \operatorname{solution} \; (S. \ 3.6.22) \\ \left\langle_{\hat{\mathbf{n}}} \mid_{l,m} \right\rangle = Y_l^m(\theta,\phi) = Y_l^m(\hat{\mathbf{n}}) \qquad \qquad \operatorname{Energy} \; \operatorname{eigenfunctions}, \; \operatorname{seperable} \; \operatorname{solution} \; (S. \ 3.6.23) \\ L_2 \mid_{l,m} \right\rangle = l(l+1)\hbar^2 \mid_{l,m} \rangle \qquad \qquad \operatorname{Eigenvalue} \; \text{of} \; \operatorname{tho} \; \operatorname{OAM} \; \operatorname{operator} \; (S. \ 3.6.27) \\ \operatorname{Eigenvalue} \; \text{of} \; \operatorname{tho} \; \operatorname{OAM} \; \operatorname{operator} \; (S. \$$