

Chapter 4

SIMPLIFICATION of LOGIC CIRCUITS

AB	0 0	0 1	1 1	10
0 0				
0 1				
1 1				
1 0				

AB	0 0	0 1	1 1	10
0 0	1		1	1
0 1	1			1
1 1	1			1
1 0	1		1	1

AB	0 0	0 1	1 1	10
0 0	1		1	1
0 1	1			1
1 1	1			1
1 0	1		1	1

\ CD	ı			=	B'C + D'
AB	0 0	0 1	1 1	10	
0 0	1		1	1	В'С
0 1	1			1	D'
1 1	1			1	
1 0	1		1	1	

AB CD	0 0	0 1	1 1	10
0 0				
0 1				
1 1				
1 0				

AB	0 0	0 1	1 1	10
0 0	0			
0 1				
1 1				
1 0	0			

AB CD	0 0	0 1	1 1	10
0 0	0			0
0 1				
1 1				
1 0	0			

AB CD	0 0	0 1	1 1	10
0 0	0			0
0 1				
1 1				
1 0	0	0		

AB	0 0	0 1	1 1	10
0 0	0			0
0 1	0			
1 1				
1 0	0	0		

AB	0 0	0 1	1 1	10
0 0	0			0
0 1	0			
1 1	0			
1 0	0	0		

• Simplify (B+C+D) (A+B+C'+D) (A'+B+C+D')
(A+B'+C+D) (A'+B'+C+D) =(A+B+D)(C+D)(A'+B+C)

Advantages of using K-map

- Can be done more systematically
- Much simpler to find minimum solutions
- Easier to see what is happening

Simplification: Quine-McCluskey

- Advantages
 - Specific step by step procedure
 - Can be applied to problems with many variables
 - Suitable for machine computation

Simplification: Quine-McCluskey

- Steps
 - Construct prime implicants table
 - Construct prime implicants chart
 - Select all essential prime implicants
 - Select a minimal cover from the remaining prime implicants

Constructing Prime Implicants Table

- List terms in a column using their binary representation
 - Group terms so that each group contains minterms with the same number of 1's
 - Place groupings which differ by only one literal adjacent to one another

- 1 0001
- 3 0011
- 7 0111
- 8 1000
- 14 1110
- 15 1111

• Simplify $F = \sum_{m=1}^{\infty} m(1,3,7,8,14,15)$

		(Col	lumn 1
1	0001	1		0001
3	0011	8	3	1000
7	0111			
8	1000	3	3	0011
14	1110			
15	1111	7	7	0111
		1	4	1110
		1	5	1111

Constructing Prime Implicants Table

- Perform exhaustive search for logically adjacent terms between adjacent groups
 - Each term should be checked off
 - Combine each pair of terms into a single term replacing the differing literal with '-'
 - Repeat procedure until no further terms can be created
 - All unchecked terms are prime implicants

• Simplify $F = \sum_{m=1}^{\infty} m(1,3,7,8,14,15)$

	Column 1	Column 2
1 0001	1 0001	
3 0011	8 1000	
7 0111		
8 1000	3 0011	
14 1110		
15 1111	<i>7</i> 0111	
	14 1110	
	15 1111	

• Simplify $F = \sum_{m=1}^{\infty} m(1,3,7,8,14,15)$

	Column 1			Column 2	
0001	1	0001	\checkmark	1,3	00-1
0011	8	1000			
0111					
1000	3	0011	$\sqrt{}$		
1110					
1111	7	0111			
	14	1110			
	15	1111			
	0011	0001 1 0011 8 0111 1 1000 3 11110 7 14	0001 1 0001 0011 8 1000 0111 1000 3 0011 1110	0001 1 0001 √ 0011 8 1000 0111 1000 3 0011 √ 1110 1111 7 0111 14 1110	0001 1 0001 √ 1,3 0011 8 1000 0111 1000 3 0011 √ 1110 1111 7 0111 14 1110

		Column 1			Column 2	
1	0001	1	0001	\checkmark	1,3	00-1
3	0011	8	1000			
7	0111				3,7	0-11
8	1000	3	0011	$\sqrt{}$		
14	1110					
15	1111	7	0111	$\sqrt{}$		
		14	1110			
		15	1111			

		Column 1			Column 2	
1	0001	1	0001	\checkmark	1,3	00-1
3	0011	8	1000			
7	0111				3,7	0-11
8	1000	3	0011	\checkmark		
14	1110				7,15	-111
15	1111	7	0111	\checkmark		
		14	1110			
		15	1111	$\sqrt{}$		

		Column 1			Column 2	
1	0001	1	0001	$\sqrt{}$	1,3	00-1
3	0011	8	1000			
7	0111				3,7	0-11
8	1000	3	0011	$\sqrt{}$		
14	1110				7,15	-111
15	1111	7	0111	$\sqrt{}$	14,15	111-
		14	1110	$\sqrt{}$		
		15	1111	1		

• Simplify $F = \sum m(1,3,7,8,14,15)$

		Column 1			Column 2		
1	0001	1	0001	V	1,3	00-1	
3	0011	8	1000				
7	0111				3,7	0-11	
8	1000	3	0011	V			
14	1110				7,15	-111	
15	1111	7	0111	V	14,15	111-	
		14	1110 1	\checkmark			
		1 5	1111 4	J			

Prime
implicants:
AB'C'D'
A'B'D
A'CD
BCD
ABC

Construct Prime Implicants Chart

- Terms are listed horizontally
- Prime implicants are listed vertically
- Place an X whenever a prime implicant covers a minterm

Example 15 3 7 8 14 1000 8 1,3 00-1 3,7 0-11 7,15 -111 14,15 111-

Example 3 14 15 8 1000 8 X 1,3 00-1 X X 3,7 0-11 X X 7,15 -111 X X 14,15 111-X X

Select Essential Prime Implicants

Select Essential Prime Implicants

Select Essential Prime Implicants

Select Minimum Cover 15 1000 0-11 X 7,15 -111 14,15-111-

Minimum Expression

- Essential prime implicants + the prime implicants that cover the columns that were not removed
- Hence

$$-F = AB'C'D' + A'B'D + ABC$$

Select Minimum Cover 15 1000 0-11 X *7*,15 -111 14,15 1111-

Minimum Expression

- Essential prime implicants + the prime implicants that cover the columns that were not removed
- Hence

$$-F = AB'C'D' + A'B'D + ABC + BCD$$