Results

NOTE: this is the SOLUTION to Quiz 3.

The correct answers are indicated for each question, with explanations as needed.

Dr. Manikas

Your Answers:

1 4 points possible

Assume that C variables are assigned to MIPS registers as follows:

$$X = \$s0, Y = \$s1$$

Also assume that the base addresses of C arrays are stored in the following MIPS registers:

A: \$s2

What is the corresponding MIPS code for the following C statement?

X = Y - A[10];

Solutions to Questions 1 and 3 are at the end of this document

4/4 points

You are given the MIPS assembly code instruction or \$s0, \$s1, \$s2. The corresponding machine code for this instruction (in hexadecimal form) is:

- 0232 8019
- 0250 8019

Feedback

General Feedback

Using the MIPS Reference Sheet, we see that the **or** instruction uses the R-format:

op rs rt rd shamt funct

6 bits 5 5 5 6

Opcode **op** for **or** is $0 = 000000_2$

Function code **funct** for **or** is $25_{16} = 100101_2$

Shift amount field **shamt** = $0 = 00000_2$

Also from MIPS Reference Sheet, **or** operation is R[rd] = R[rs] | R[rt]

So our register values are:

- $rs = $s1 = register 17 = 10001_2$
- $rt = $s2 = register 18 = 10010_2$
- $rd = $s0 = register 16 = 10000_2$

Filling in the R-format fields with the bit patterns gives the **binary representation**:

op rs rt rd shamt funct

6 bits 5 5 5 6

000000 10001 10010 10000 00000 100101

The bitstring becomes: **0000 0010 0011 0010 1000 0000 0010 0101**₂

To get the **hexadecimal form**, convert each set of 4 bits to its hex equivalent:

0000 0010	0011	0010	1000	0000	0010	0101

0 2 3 2 8 0 2 5

Or:

02328025

3 4 points possible

You are given the following machine code instruction for MIPS in hexadecimal form: **0xAD490020**. What is the corresponding **MIPS instruction** (assembly language form)?

Solutions to Questions 1 and 3 are at the end of this document

4 4/4 points

Assume we have the following MIPS code, starting at memory address **1000H**.

If we use PC relative addressing, what is the **constant** for **LOOP** in the **bne** instruction?

1000H LOOP: addi \$t1,\$t1,4 1004H sub \$t0,\$t3,\$t4 1008H addi \$t2,\$t2,-1 100CH bne \$t2,\$zero,LOOP

1010H DONE: sw \$t0,16(\$s0)

Feedback

General Feedback

bne instruction is located at address 100CH in memory. After it is fetched, the program counter is incremented by 4 (PC = 100CH + 4H = 1010H)

Target address = PC + 4(offset)

Target address = 1000H (address of LOOP label)

PC = 1010H

So, offset = $\frac{16}{4} = \frac{1000H - 1010H}{4} = \frac{-16}{4} = \frac{-4}{4}$

4/4 points

The MIPS Datapath is executing the instruction Iw \$s1, 32(\$s0)

The control signals for this instruction are the following (fill in 0 or 1 for each value):

Feedback

General Feedback

lw \$s1, 32(\$s0))	
Control Sign	al Valı	ue Comments
ALUSrc	1	Second ALU operand is offset
MemRead	1	Reading data from memory
MemWrite	0	No data memory writes
MemtoReg	1	Register Write comes from data memory

Question 1 Solution

Assume that C variables are assigned to MIPS registers as follows:

$$X = $s0, Y = $s1$$

Also assume that the base addresses of C arrays are stored in the following MIPS registers:

A: \$s2

What is the corresponding MIPS code for the following C statement?

$$X = Y - A[10];$$

SOLUTION:

$$X = Y - A[10];$$

Variable X = register \$s0, variable Y = register \$s1

Base address for array A is stored in \$s2 (location of A[0])

Offset of A[10] from base address A[0] is 10*4 = 40 (since 4 bytes per array element)

Possible MIPS assembly code is:

```
lw $t0,40($s2) # add 40(10*4 BYTES/WORD) to base address sub $s0,$s1,$t0 # X = Y - A[10]
```

Question 3 Solution

You are given the following machine code instruction for MIPS in hexadecimal form: **0xAD490020**. What is the corresponding **MIPS instruction** (assembly language form)?

SOLUTION:

First, convert hexadecimal form to binary:

Α	D	4	9	0	0	2	0
1010	1101	0100	1001	0000	0000	0010	0000

The first 6 bits are the opcode for the instruction: $10\ 1011_2 = 2B_{16} = sw$ instruction (from MIPS Reference sheet)

The sw instruction uses the I-format:

6 bits	5 bits	5 bits	16 bits
opcode	rs	rt	offset
101011	01010	01001	0000 0000 0010 0000

Operation for sw instruction is: M[R[rs] + SignExtImm] = R[rt]

Syntax for sw instruction in MIPS assembly is: sw rt, SignExtImm(rs)

SignExtImm = offset = $0000\ 0000\ 0010\ 0000_2 = 0020_{16} = 32$

rs = 01010 = register 10 = \$t2

rt = 01001 = register 9 = \$t1

So the MIPS instruction is: sw \$t1, 32(\$t2)