

Causal Data Science

Lecture 8.1: Estimation methods 2

Lecturer: Sara Magliacane

UvA - Spring 2024

Last class: Exact matching (simplified)

- Usually for ATT, sometimes for ATE
- Intution: find the most similar couple of units in terms of covariates X, such that one is in the treatment and the other in the control group

Usually for ATT, with M multiple matches

$$A\hat{T}T = \frac{1}{n_t} \sum_{i=1}^{n_t} (Y_i - \frac{1}{M} \sum_{j=1}^{M} Y_{m_j(i)})$$

 $Y_{m_i(i)}$ match j for i

Usually for ATT, with M multiple matches

$$A\hat{T}T = \frac{1}{n_t} \sum_{i=1}^{n_t} (Y_i - \frac{1}{M} \sum_{j=1}^{M} Y_{m_j(i)})$$

 $Y_{m_i(i)}$ match j for i

$$M=1$$

$$A\hat{T}T = \frac{1}{5} \sum_{i=1}^{5} (Y_i - Y_{m(i)})$$

$$\hat{A}T = \frac{1}{5}[1 + 1 + 0 + 0] = \frac{2}{5}$$

Usually for ATT, with M multiple matches

$$A\hat{T}T = \frac{1}{5} \sum_{i=1}^{5} (Y_i - \frac{1}{2} \sum_{i=1}^{M} Y_{m_j(i)})$$

M = 2

$$A\hat{T}T = \frac{1}{5}[1+1-\frac{1}{2}+\frac{2}{2}] = \frac{1}{5}\cdot\frac{5}{2} = \frac{1}{2}$$

• ATE with M multiple matches (e.g. M=2, can be random):

$$A\hat{T}E = \frac{1}{n_t + n_c} \left[\sum_{i=1}^{n_t} (Y_i - \frac{1}{M} \sum_{j=1}^{M} Y_{m_j(i)}) + \sum_{j=1}^{n_c} (\frac{1}{M} \sum_{i=1}^{M} Y_{m_i(j)} - Y_j) \right]$$

$$A\hat{T}E = \frac{1}{10} \left[\frac{5}{2} + 3 + \frac{1}{2} - \frac{1}{2} \right] = \frac{11}{20}$$

Last class: Propensity score matching (PSM)

- Assumptions: binary treatment T, X is valid adjustment set
- Propensity score: the probability of getting assigned the treatment

$$e(x)$$
 $\pi(x) := P(T = 1 | X = x)$

Conditional ignorability

• We can show that $T \perp \!\!\! \perp \mathbf{X} \mid \pi(\mathbf{X})$ and that if $Y(0), Y(1) \perp \!\!\! \perp T \mid \mathbf{X}$ then

$$Y(0), Y(1) \perp T \mid \pi(\mathbf{X})$$

e.g. with logistic regression

- We can estimate π from data and use it to match
 - If X has a lot of covariates, it is easier to match since it's a single number

Estimation method: Inverse probability weighting (IPW)

- Idea: rather than match (and discard some samples), reweight (downweight or upweight) samples
- Inverse probability (of treatment) weighting: weight by inverse of probability of treatment received:
 - For treated T=1: weight by the inverse of $\pi=P(T=1|\mathbf{X})$
 - For untreated T=0: weight by the inverse of $1-\pi=P(T=0|\mathbf{X})$

Inverse probability weighting (IPW) - derivation

We can estimate the average causal effect/average treatment effect

ATE =
$$\mathbb{E}[Y(t=1) - Y(t=0)] = \mathbb{E}[Y|do(T=1)] - \mathbb{E}[Y|do(T=0)]$$

X is a valid adjustment set for the causal effect of T on Y, so:

$$P(Y = y | do(T = 1)) = \sum_{\mathbf{x}} P(Y = y | \mathbf{X} = \mathbf{x}, T = 1) P(\mathbf{X} = \mathbf{x})$$

Inverse probability weighting (IPW) - derivation

We can estimate the average causal effect/average treatment effect

ATE =
$$\mathbb{E}[Y(t=1) - Y(t=0)] = \mathbb{E}[Y|do(T=1)] - \mathbb{E}[Y|do(T=0)]$$

X is a valid adjustment set for the causal effect of T on Y, so:

$$P(Y = y | \operatorname{do}(T = t)) = \sum_{\mathbf{x}} P(Y = y | \mathbf{X} = \mathbf{x}, T = t) P(\mathbf{X} = \mathbf{x})$$

$$\mathbb{E}[Y | \operatorname{do}(T = t)] = \sum_{\mathbf{y}} y \sum_{\mathbf{x}} P(Y = y | \mathbf{X} = \mathbf{x}, T = t) P(\mathbf{X} = \mathbf{x})$$

Inverse probability weighting (IPW) - derivation

$$\mathbb{E}[Y|\operatorname{do}(T=t)] = \sum_{y} \sum_{\mathbf{x}} y \cdot P(Y=y|\mathbf{X}=\mathbf{x}, T=t) P(\mathbf{X}=\mathbf{x})$$

$$= \sum_{y} \sum_{\mathbf{x}} y \cdot P(Y=y|\mathbf{X}=\mathbf{x}, T=t) P(\mathbf{X}=\mathbf{x}) \frac{P(T=t|\mathbf{X}=\mathbf{x})}{P(T=t|\mathbf{X}=\mathbf{x})}$$

$$= \sum_{y} \sum_{\mathbf{x}} y \cdot P(Y=y|\mathbf{X}=\mathbf{x}, T=t) P(\mathbf{X}=\mathbf{x}) \frac{P(T=t|\mathbf{X}=\mathbf{x})}{P(T=t|\mathbf{X}=\mathbf{x})}$$

$$= \sum_{y} \sum_{\mathbf{x}} y \cdot P(Y=y|\mathbf{X}=\mathbf{x}, T=t) P(\mathbf{X}=\mathbf{x}) \frac{P(T=t|\mathbf{X}=\mathbf{x})}{P(T=t|\mathbf{X}=\mathbf{x})}$$

$$= \sum_{y} \sum_{\mathbf{x}} \frac{y \cdot P(Y=y, \mathbf{X}=\mathbf{x}, T=t)}{P(T=t|\mathbf{X}=\mathbf{x})} \pi \text{ for } t=1, (1-\pi) \text{ for } t=0$$

Estimation method: Inverse probability weighting (IPW)

- Inverse probability (of treatment) weighting: weight by inverse of probability of treatment received:
 - For treated T=1: weight by the inverse of $\pi=P(T=1|\mathbf{X})$
 - For untreated T=0: weight by the inverse of $1-\pi=P(T=0|\mathbf{X})$

$$\hat{\mathbb{E}}(Y(t=1)) = \frac{1}{n} \sum_{i=1}^{n} Y_i \cdot 1\{T=1\} \cdot \frac{1}{P(T=1|X_i)}$$

$$\hat{\mathbb{E}}(Y(t=0)) = \frac{1}{n} \sum_{i=1}^{n} Y_i \cdot 1\{T=0\} \cdot \frac{1}{P(T=0|X_i)}$$
 (1 - π)

IPW Example

$$P(T=1 | X=1) = 0.1$$

$$P(T=1 | X=0) = 0.8$$

$$P(T=1 | X=0) = 0.8$$

$$P(T=1 | X=0) = 0.3$$

$$P(T=0 | X=0) = 0.2$$

$$P(t=0|X=0)=0.2$$

IPW Example

$$P(T=1 | X=1) = 0.1$$

$$P(T=1 | X=0) = 0.8$$

$$P(T=1 | X=0) = 0.3$$

$$P(T=0 | X=1) = 0.3$$

$$P(T=0 | X=0) = 0.2$$

Reweight by
$$\frac{1}{P(T_i|X_i)}$$

We can estimate the average causal effect/average treatment effect

ATE =
$$\mathbb{E}[Y(t=1) - Y(t=0)] = \mathbb{E}_{\mathbf{X}}[\mathbb{E}[Y(t=1)|\mathbf{X}] - \mathbb{E}[Y(t=0)|\mathbf{X}]]$$

Outcome model

 $\hat{\mu}(1,\mathbf{X})$
 $\hat{\mu}(0,\mathbf{X})$

We still assume X is a valid adjustment set!

We can estimate the average causal effect/average treatment effect

ATE =
$$\mathbb{E}[Y(t=1) - Y(t=0)] = \mathbb{E}_{\mathbf{X}}[\mathbb{E}[Y(t=1)|\mathbf{X}] - \mathbb{E}[Y(t=0)|\mathbf{X}]]$$

 $\hat{\mu}(1,\mathbf{X})$
 $\hat{\mu}(0,\mathbf{X})$

$$A\hat{T}E = \frac{1}{n} \sum_{i=1}^{n} \hat{\mu}(1, \mathbf{x}_i) - \hat{\mu}(0, \mathbf{x}_i)$$

We still assume X is a valid adjustment set!

We can estimate the average causal effect/average treatment effect

ATE =
$$\mathbb{E}[Y(t=1) - Y(t=0)] = \mathbb{E}_{\mathbf{X}}[\mathbb{E}[Y(t=1)|\mathbf{X}] - \mathbb{E}[Y(t=0)|\mathbf{X}]]$$

 $\hat{\mu}(1,\mathbf{X})$
 $\hat{\mu}(0,\mathbf{X})$

$$A\hat{T}E = \frac{1}{n} \sum_{i=1}^{n} \hat{\mu}(1, \mathbf{x}_i) - \hat{\mu}(0, \mathbf{x}_i)$$
 We still assume **X** is a valid adjustment set!

We can also estimate the conditional average treatment effect:

CATE(w) =
$$\mathbb{E}[Y(t = 1) - Y(t = 0) | W = w]$$

We can estimate the average causal effect/average treatment effect

ATE =
$$\mathbb{E}[Y(t=1) - Y(t=0)] = \mathbb{E}_{\mathbf{X}}[\mathbb{E}[Y(t=1)|\mathbf{X}] - \mathbb{E}[Y(t=0)|\mathbf{X}]]$$

 $\hat{\mu}(1,\mathbf{X})$
 $\hat{\mu}(0,\mathbf{X})$

$$A\hat{T}E = \frac{1}{n} \sum_{i=1}^{n} \hat{\mu}(1, \mathbf{x}_i) - \hat{\mu}(0, \mathbf{x}_i)$$

We assume $X \cup W$ is a valid adjustment set!

We can also estimate the conditional average treatment effect:

$$CATE(\mathbf{w}) = \mathbb{E}[Y(t=1) - Y(t=0) | \mathbf{W} = \mathbf{w}]$$

$$= \mathbb{E}_{\mathbf{X}}[\mathbb{E}[Y(t=1) | \mathbf{X}, \mathbf{W} = \mathbf{w}] - \mathbb{E}[Y(t=0) | \mathbf{X}, \mathbf{W} = \mathbf{w}]]$$

$$\hat{\mu}(1, \mathbf{x}_i, \mathbf{w})$$

$$\hat{\mu}(0, \mathbf{x}_i, \mathbf{w})$$

S-learners [Küntzel et al 2019]

• We learn a single model to predict the both potential outcomes $Y_i(0), Y_i(1)$

$$A\hat{T}E = \frac{1}{n} \sum_{i=1}^{n} \hat{\mu}(1, \mathbf{x}_{i}) - \hat{\mu}(0, \mathbf{x}_{i})$$

$$CA\hat{T}E(w) = \frac{1}{n_{w}} \sum_{i=1}^{n} 1(W = w) [\hat{\mu}(1, \mathbf{x}_{i}, w) - \hat{\mu}(0, \mathbf{x}_{i}, w)]$$

ullet Issue: for high-dimensional X, S-learners can ignore the treatment

X-learners [Küntzel et al 2019]

- 1. Learn two separate models $\hat{\mu}_1(\mathbf{x}_i)$ (only treated) and $\hat{\mu}_0(\mathbf{x}_i)$ (only control)
- 2. We impute the treatment effect per unit (individual treatment effect)

Treatment group

$$\hat{\tau}_{i,1} = Y_i - \hat{\mu}_0(\mathbf{x}_i)$$

Control group

$$\hat{\tau}_{i,0} = \hat{\mu}_1(\mathbf{x}_i) - Y_i$$

Estimated from control

Estimated from treated

Unit	Y(0)	Y(1)	Т	X
1	?	1	1	1
2	1	?	0	1
3	?	0	1	0
4	0	?	0	0
5	?	1	1	1
6	?	0	1	0

X-learners [Küntzel et al 2019]

- 1. Learn two separate models $\hat{\mu}_1(\mathbf{x}_i)$ (only treated) and $\hat{\mu}_0(\mathbf{x}_i)$ (only control)
- 2. We impute the treatment effect per unit (individual treatment effect)

Treatment group

$$\hat{\tau}_{i,1} = Y_i - \hat{\mu}_0(\mathbf{x}_i)$$

Control group

$$\hat{\tau}_{i,0} = \hat{\mu}_1(\mathbf{x}_i) - Y_i$$

Estimated from control

Unit	Y(0)	Y(1)	Т	X
1	?	1	1	1
2	1	?	0	1
3	?	0	1	0
4	0	?	0	0
5	?	1	1	1
6	?	0	1	0

Estimated from treated

Unit	Y(0)	Y(1)	Т	X
1	1	1	1	1
2	1	0	0	1
3	1	0	1	0
4	0	0	0	0
5	1	1	1	1
6	1	0	1	0

X-learners [Küntzel et al 2019]

- 1. Learn two separate models $\hat{\mu}_1(\mathbf{x}_i)$ (only treated) and $\hat{\mu}_0(\mathbf{x}_i)$ (only control)
- 2. We impute the treatment effect per unit (individual treatment effect)

Treatment group

$$\hat{\tau}_{i,1} = Y_i - \hat{\mu}_0(\mathbf{x}_i)$$

Control group

$$\hat{\tau}_{i,0} = \hat{\mu}_1(\mathbf{x}_i) - Y_i$$

Estimated from control

Estimated from treated

- 3. Learn two separate models $\hat{\tau}_1(\mathbf{x}_i)$ (only treated) and $\hat{\tau}_0(\mathbf{x}_i)$ (only control)
- 4. The final estimator is a weighted average where $g(\mathbf{x}): \mathcal{X} \to [0,1]$

$$\hat{\tau}(\mathbf{x}) = g(\mathbf{x}_i)\hat{\tau}_1(\mathbf{x}_i) + (1 - g(\mathbf{x}_i))\hat{\tau}_0(\mathbf{x}_i)$$

Issues: Inverse probability weighting (IPW)

- Inverse probability (of treatment) weighting: weight by inverse of estimated probability of treatment received:
 - For treated T=1: weight by the inverse of $\hat{\pi}(X_i)$
 - For untreated T=0: weight by the inverse of $1-\hat{\pi}(X_i)$

$$\hat{\mathbb{E}}(Y(t=1)) = \frac{1}{n} \sum_{i=1}^{n} Y_i \cdot T_i \cdot \frac{1}{\hat{\pi}(X_i)}$$

We estimate $\hat{\pi}$ e.g. with logistic regression

What if the estimated $\hat{\pi}(X_i)$ is biased?

$$\hat{\mathbb{E}}(Y(t=0)) = \frac{1}{n} \sum_{i=1}^{n} Y_i \cdot (1 - T_i) \cdot \frac{1}{1 - \hat{\pi}(X_i)}$$

Advanced: Augmented Inverse probability weighting (AIPW)

- We assume we can estimate in an unbiased way at least one of the two:
 - 1. Propensity scores $\hat{\pi}(\mathbf{x}_i)$
 - 2. S-learner (outcome model) $\hat{\mu}(t_i, \mathbf{x}_i) \approx y_i$

Then:
$$A\hat{T}E_{S-learn} = \frac{1}{n} \sum_{i=1}^{n} \hat{\mu}(1, \mathbf{x}_i) - \hat{\mu}(0, \mathbf{x}_i)$$

Adjustment on the residuals of the S-learner with IPW

$$\hat{\text{Adj}}_{S-learm} = \frac{1}{n} \sum_{i=1}^{n} \frac{T_i}{\hat{\pi}(x_i)} (Y_i - \hat{\mu}(1, x_i)) - \frac{1 - T_i}{1 - \hat{\pi}(x_i)} (Y_i - \hat{\mu}(0, x_i))$$

$$\hat{ATE}_{AIPW} = \hat{ATE}_{S-learn} + \hat{Adj}_{S-learn}$$

This is unbiased if either propensity score or S-learner are unbiased

-> we say this is a doubly robust method

Advanced: Missing data (very briefly)

- Typical approaches in practice (depending on the assumptions):
 - Remove all samples with a missing feature (listwise deletion), or
 - Ignore the problem and use the non-missing features of all samples, or
 - Impute (predict) the missing values

Advanced: Missing data (very briefly)

- Typical approaches in practice (depending on the assumptions):
 - Remove all samples with a missing feature (listwise deletion), or
 - Ignore the problem and use the non-missing features of all samples, or
 - Impute (predict) the missing values
- Typical assumptions (see talk by Karthika Mohan):
 - R_X is an indicator variable that is 0 if X is missing and 1 otherwise
 - Missing completely at random (MCAR): $R_X \perp \!\!\! \perp X_V$ (all variables)
 - Missing at random (MAR): $R_X \perp\!\!\!\perp X \mid \mathbf{X_V} \backslash \{X\}$
 - Missing not at random (MNAR) anything else

Advanced: Missing at random (MAR)

- Missing completely at random (MCAR): coin toss, quite unrealistic
- Missing at random (MAR): missing at random given the completely observed (not missing) variables
 - Similar to ignorability/unconfoundedness
 - Imputation with EM
 - Multiple imputation (Rubin 1987) impute m datasets, analyse, combine
 - (Augmented) IPW can be used to analyse/estimate ATE of each dataset
 - See http://scikit-learn.org/stable/modules/impute.html#impute, http://scikit-learn.org/stable/modules/impute.html#impute, http://scikit-learn.org/stable/modules/impute.html#impute, http://scikit-learn.org/stable/modules/impute.html#impute, https://scikit-learn.org/stable/modules/impute.html#impute, https://scikit-learn.org/stable/modules/impute.html