

SEA regression report summary

Sample ID	
001f-int-i 70° 1	
001f-int-i 65° 2	
001f-int-i 60° 3	

Details				
Software and regression log				
Software about	Semilab - Spectroscopic Ellipsometry Analyzer - SEA			
Software version	1.7.1			
Officially licensed to	MIT			
Operator	operator			
Date and time of regression	01-04-2022 14:32			
Comments				

Regression results

Measurement information	Measurement information				
Measurement 1					
Measurement file path	C:\Users\emmabat\ito-si\001f-int-i.smdx				
Angle of Incidence	70°				
Measurement 2					
Measurement file path	C:\Users\emmabat\ito	-si\001f	-int-i.smdx		
Angle of Incidence	65°				
Measurement 3					
Measurement file path	C:\Users\emmabat\ito	-si\001f	-int-i.smdx		
Angle of Incidence	60°				
Regression details					
Regression 1 (EllipsoReflectance)					
Wavelength range	300.14 - 1599.16 nm				
Angle of Incidence	70°				
Fit to	<n>, <k></k></n>	<n>, <k></k></n>			
Regression 2 (EllipsoReflectance)					
Wavelength range	300.14 - 1599.16 nm				
Angle of Incidence	65°				
Fit to	<n>, <k></k></n>				
Regression 3 (EllipsoReflectance)					
Wavelength range	300.14 - 1599.16 nm				
Angle of Incidence	60°				
Fit to	<n>, <k></k></n>				
Angular Aperture	0°				
Fit algorithm	LMA				
Results					
Parameters	Value	Fitted	2 σ confidence limit	Unit	
Model					
AOI Shift	0			0	
Angular Aperture	0			0	
Phase 2 (ITO_3)					
Thickness	72.926	Х	0.17747	nm	
f	0.47313	Х	0.013389		
E0 (eV)	3.36139	Х	0.0097788	eV	
Γ (eV)	1.13727	Х	0.014591	eV	
E_p (eV)	0.68304	Х	0.0065775	eV	
E_Γ (eV)	0.32207	Х	0.010351	eV	
f	0.17232	Х	0.020649		
E0 (eV)	4.23062	Х	0.025419	eV	
Γ (eV)	0.73109	Х	0.094856	eV	
Eps_inf	1.62856	Х	0.01572		
Phase 1 (ITO_3)					
Thickness	112.339	Х	0.17076	nm	
f	0.16357				
E0 (eV)	3.74618			eV	
· · · · · · · · · · · · · · · · · · ·	1			1	

F () ()	0.00045			
Γ (eV)	0.62015	eV		
E_p (eV)	1.09856	eV		
E_Γ (eV)	0.22823	eV		
f	0.43808			
E0 (eV)	4.29829	eV		
Γ (eV)	0.24163	eV		
Eps_inf	3.4998			
Derived parameters	Value			
Phase 2 (ITO_3)				
n @ 632.8 nm	1.5463			
k @ 632.8 nm	0.077			
Phase 1 (ITO_3)				
n @ 632.8 nm	1.9911			
k @ 632.8 nm	0.0202			
Substrate (si)				
n @ 632.8 nm	3.8811			
k @ 632.8 nm	0.0195			
Drude derived parameters	Value	Unit		
Phase 2 (ITO_3)				
Conductivity (S/m)	1.9486E+04 ± 1001.5242	S/m		
Resistivity (mΩ.cm)	5.132 ± 0.2638	mΩ.cm		
Resistance (Ω/sq)	703.7193 ± 37.8822	Ω/sq		
N type dopant concentration (at/cm3)	8.4589E+19 ± 1.6291E+18	at/cm3		
P type dopant concentration (at/cm3)	1.2519E+20 ± 2.4111E+18	at/cm3		
N type dopant mobility (cm2/Vs)	14.3778 ± 0.7892	cm2/Vs		
P type dopant mobility (cm2/Vs)	9.7147 ± 0.5332	cm2/Vs		
Phase 1 (ITO_3)				
Conductivity (S/m)	7.1131E+04 ± 0	S/m		
Resistivity (mΩ.cm)	1.4058 ± 0	mΩ.cm		
Resistance (Ω/sq)	125.1441 ± 0.1902	Ω/sq		
N type dopant concentration (at/cm3)	2.1881E+20 ± 0	at/cm3		
P type dopant concentration (at/cm3)	3.2384E+20 ± 0	at/cm3		
N type dopant mobility (cm2/Vs)	20.2898 ± 0	cm2/Vs		
P type dopant mobility (cm2/Vs)	13.7093 ± 0	cm2/Vs		
Fit quality				
R^2	0.99758			
RMSE	0.03526			
1				

Regression graphs

Phase 2 (ITO_3) - Dispersion graphs

Phase 1 (ITO_3) - Dispersion graphs

Substrate (si) - Dispersion graphs

Correlation coefficients	
Ph2 - ITO_3 - Thickness Ph2 - Lorentz[1] - f	0.3031
Ph2 - ITO_3 - Thickness Ph2 - Lorentz[1] - E0 (eV)	0.3031
Ph2 - ITO 3 - Thickness Ph2 - Lorentz[1] - Γ (eV)	0.3741
Ph2 - ITO_3 - Thickness Ph2 - Drude[2] - E_p (eV)	0.2296
Ph2 - ITO_3 - Thickness Ph2 - Drude[2] - Ε_Γ (eV)	0.0474
Ph2 - ITO_3 - Thickness Ph2 - Lorentz[3] - f	-0.3639
Ph2 - ITO 3 - Thickness Ph2 - Lorentz[3] - E0 (eV)	-0.3689
Ph2 - ITO_3 - Thickness Ph2 - Lorentz[3] - Γ (eV)	-0.2477
Ph2 - ITO_3 - Thickness Ph2 - Eps_inf	0.422
Ph2 - Lorentz[1] - f Ph2 - Lorentz[1] - E0 (eV)	0.9338
Ph2 - Lorentz[1] - f Ph2 - Lorentz[1] - Γ (eV)	0.8605
Ph2 - Lorentz[1] - f Ph2 - Drude[2] - E p (eV)	0.3883
Ph2 - Lorentz[1] - f Ph2 - Drude[2] - E_Γ (eV)	-0.1984
Ph2 - Lorentz[1] - f Ph2 - Lorentz[3] - f	-0.93
Ph2 - Lorentz[1] - f Ph2 - Lorentz[3] - E0 (eV)	-0.5606
Ph2 - Lorentz[1] - f Ph2 - Lorentz[3] - Γ (eV)	-0.9254
Ph2 - Lorentz[1] - f Ph2 - Eps_inf	0.6159
Ph2 - Lorentz[1] - E0 (eV) Ph2 - Lorentz[1] - Γ (eV)	0.8838
Ph2 - Lorentz[1] - E0 (eV) Ph2 - Drude[2] - E_p (eV)	0.3372
Ph2 - Lorentz[1] - E0 (eV) Ph2 - Drude[2] - Ε_Γ (eV)	-0.2179
Ph2 - Lorentz[1] - E0 (eV) Ph2 - Lorentz[3] - f	-0.834
Ph2 - Lorentz[1] - E0 (eV) Ph2 - Lorentz[3] - E0 (eV)	-0.4127
Ph2 - Lorentz[1] - E0 (eV) Ph2 - Lorentz[3] - Γ (eV)	-0.7907
Ph2 - Lorentz[1] - E0 (eV) Ph2 - Eps_inf	0.5279
Ph2 - Lorentz[1] - \(\text{(eV)} \text{Ph2} - \text{Drude[2]} - \text{E_p (eV)} \)	0.3702
Ph2 - Lorentz[1] - \(\text{(eV)} \text{Ph2} - \text{Drude[2]} - \text{E}_\(\text{(eV)} \)	-0.3392
Ph2 - Lorentz[1] - \(\text{(eV)} \) Ph2 - Lorentz[3] - \(\text{(eV)} \)	-0.7474
Ph2 - Lorentz[1] - F (eV) Ph2 - Lorentz[3] - E0 (eV)	-0.4243
Ph2 - Lorentz[1] - Γ (eV) Ph2 - Lorentz[3] - Γ (eV)	-0.7021
Ph2 - Lorentz[1] - \(\text{(eV)} \text{Ph2} - \text{Eps_inf} \)	0.5012
Ph2 - Drude[2] - E_p (eV) Ph2 - Drude[2] - E_Γ (eV)	-0.1954
Ph2 - Drude[2] - E_p (eV) Ph2 - Lorentz[3] - f	-0.4925
Ph2 - Drude[2] - E_p (eV) Ph2 - Lorentz[3] - E0 (eV)	-0.4349
Ph2 - Drude[2] - E_p (eV) Ph2 - Lorentz[3] - Γ (eV)	-0.348
Ph2 - Drude[2] - E_p (eV) Ph2 - Eps_inf	0.7839
Ph2 - Drude[2] - E_Γ (eV) Ph2 - Lorentz[3] - f	0.1131
Ph2 - Drude[2] - E_Γ (eV) Ph2 - Lorentz[3] - E0 (eV)	-0.0146
Ph2 - Drude[2] - Ε_Γ (eV) Ph2 - Lorentz[3] - Γ (eV)	0.0602
Ph2 - Drude[2] - E_Γ (eV) Ph2 - Eps_inf	-0.1327
Ph2 - Lorentz[3] - f Ph2 - Lorentz[3] - E0 (eV)	0.7639
Ph2 - Lorentz[3] - f Ph2 - Lorentz[3] - Γ (eV)	0.9404
Ph2 - Lorentz[3] - f Ph2 - Eps_inf	-0.8098
Ph2 - Lorentz[3] - E0 (eV) Ph2 - Lorentz[3] - Γ (eV)	0.7053
Ph2 - Lorentz[3] - E0 (eV) Ph2 - Eps_inf	-0.7677
Ph2 - Lorentz[3] - Γ (eV) Ph2 - Eps_inf	-0.6406

