Chapter 3: Nerode

> U.D. nputación

. . . .

A condition for non regularity

Nerode's Theorem

Chapter 3: Nerode

U.D. Computación

DSIC - UPV

Index

Chapter 3: Nerode

U.D. omputaciór

. . . .

A conditio for non regularity

Nerode's Theorem

- Mathematical Requirements.
 - Equivalence relation, equivalence classes, quotient set...
 - Definitions
- A condition for non regularity
- Nerode's Theorem.

Definitions

Chapter 3: Nerode

U.D.

Definitions

A conditio for non regularity

Nerode's Theorem ■ Given a DFA $A = (Q, \Sigma, \delta, q_0, F)$ and $q \in Q$, the *Right language* of q in L is defined as:

$$R_q = \{x \in \Sigma^* : \delta(q, x) \in F\}$$

- Given a language $L \subseteq \Sigma^*$ and a DFA $A = (Q, \Sigma, \delta, q_0, F)$ such that L(A) = L, we say that A is reduced if for every $p, q \in Q$ such that $p \neq q$ it follows that $R_p \neq R_q$
- Given $L \subseteq \Sigma^*$, the Nerode's equivalence R_L is defined as:

$$x \equiv_{R_L} y \iff x^{-1}L = y^{-1}L$$

A condition for non regularity (1/2)

Chapter 3: Nerode

Computació

_

A condition for non regularity

Nerode's Theorem ■ If there exists an infinite sequence $(x_i)_{i \in \mathbb{N}}$ of words over Σ such that $\forall i, j, i \neq j$

$$\exists z \in \Sigma^* : x_i z \in L \text{ iff } x_j z \notin L$$

then L is not regular.

Proof:

- Suppose that *L* is regular and let *A* be a reduced DFA accepting *L*.
- For every $i \neq j$, the right lenguage of states $\delta(q_0, x_i)$ and $\delta(q_0, x_j)$ are different.
- Thus, if the condition holds, A DFA A for L would have an infinite number of states.

A condition for non regularity (2/2)

Chapter 3: Nerode

U.D. Computació

A condition for non regularity

Nerode's Theorem

- R_L is of infinite index if and only if there exists an infinite sequence $(x_i)_{i\in\mathbb{N}}$ of words over Σ such that $\forall i,j,\ i\neq j,$ $\exists z\in\Sigma^*: x_iz\in L \ iff \ x_jz\not\in L$
- For the previous result, this condition of non regularity, can be established as:

A condition for non regularity (2/2)

Chapter 3: Nerode

U.D. Computació

A condition for non regularity

Nerode's Theorem

- R_L is of infinite index if and only if there exists an infinite sequence $(x_i)_{i\in\mathbb{N}}$ of words over Σ such that $\forall i,j,\ i\neq j,$ $\exists z\in\Sigma^*\ :\ x_iz\in L\ iff\ x_jz\not\in L$
- For the previous result, this condition of non regularity, can be established as:

Given a language $L \subseteq \Sigma^*$, if R_L is of infinite index, then L is not regular

Nerode's Theorem

Chapter 3: Nerode

Computacio

. . . .

A condition for non regularity

Nerode's Theorem ■ Given a language $L \subseteq \Sigma^*$, the lenguaje L es regular if and only if R_L is of finite index.

Proof

- 1 For the non regularity condition, we have that if L is regular, then R_L is of finite index.
- 2 Suppose that R_L is of finite index. The fact that L is regular can be seen giving an algorithm to construct a DFA that accepts L from the classes of R_L :

$$A = (\Sigma^*/R_L, \Sigma, \delta, [\lambda]_{R_L}, L/R_L)$$

where:

$$\delta([x]_{R_L},a)=[xa]_{R_L}$$