Your goal this assignment is to write a program to compute discrete log modulo a prime p. Let g be some element in Z_p^* and suppose you are given h in Z_p^* such that $h=g^x$ where $1 \le x \le 2^{40}$. Your goal is to find x. More precisely, the input to your program is p,g,h and the output is x.

The trivial algorithm for this problem is to try all 2^{40} possible values of x until the correct one is found, that is until we find an x satisfying $h=g^x$ in Z_p . This requires 2^{40} multiplications. In this program you will implement an algorithm that runs in time roughly $\sqrt{2^{40}} = 2^{20}$ using a meet in the middle attack.

Let $B=2^{20}$. Since x is less than B^2 we can write the unknown x base B as $x=x_0B+x_1$ where x_0,x_1 are in the range [0,B-1]. Then $h=g^x=g^{x_0B+x_1}=(g^B)^{x_0}$. g^{x_1} in Z_p . By moving the term g^{x_1} to the other side we obtain $\frac{h}{g^{x_1}}=(g^B)^{x_0}$ in Z_p .

The variables in this equation are x_0,x_1 and everything else is known: you are given g,h and $B=2^{20}$. Since the variables x_0 and x_1 are now on different sides of the equation we can find a solution using meet in the middle, using the below steps:

- 1. First build a hash table of all possible values of the left hand side h/g^{x_1} for $x_1=0,1,...,2^{20}$.
- 2. Then for each value $x_0=0,1,2,...,2^{20}$ check if the right hand side $(g^B)^{x_0}$ is in this hash table. If so, then you have found a solution (x_0,x_1) from which you can compute the required x as $x=x_0B+x_1$.

The overall work is about 2^{20} multiplications to build the table and another 2^{20} lookups in this table.

Now that we have an algorithm, here is the problem to solve:

p=134078079299425970995740249982058461274793658205923933777235614437217640300735469768018742 98166903427690031858186486050853753882811946569946433649006084171

g=117178298803662070095161175963353670885580849999989522055999794590639294997365837466705721 76471460312928594829675428279466566527115212748467589894601965568

h=323947510405045044356526437872806578864909752095244952783479245297198197614329255807385693

Each of these three numbers is about 153 digits. Find x such that $h=g^x$ in Z_p .

To solve this assignment it is best to use an environment that supports multi-precision and modular arithmetic. In Python you could use the <u>gmpy2</u> or <u>numbthy</u> modules. Both can be used for modular inversion and exponentiation. In C you can use <u>GMP</u>. In Java use a BigInteger class which can perform mod, modPow and modInverse operations.

Deliverables:

- 1. Your code file which helps you solve for a log value x.
- 2. For the given p, g, h values, a value x.
- 3. Description/Algorithm of how you came up with a solution, and why it works.