II.2 Data Fusion in IoT WSN

Assoc. Prof. Tham Chen Khong Dept of ECE, NUS

CEG5103/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Collaborative Signal Processing (CSP)

- In principle, more information about a phenomenon can be gathered from multiple measurements
 - Multiple sensing modalities (acoustic, seismic, etc.)
 - Multiple nodes
- Limited local information gathered by a single node necessitates CSP
 - Inconsistencies between measurements, such as due to malfunctioning nodes, can be resolved
- Variability in signal characteristics and environmental conditions necessitates CSP
 - Complementary information from multiple measurements can improve performance

Reference

[Brooks03] R. Brooks, P Ramanathan and A.K. Sayeed, "Distributed Target Classification and Tracking in Sensor Networks", Proceedings of IEEE, vol. 91, no. 8, Aug 2003.

CEG5103/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.2

3

Categorization of CSP Algorithms Based on **Communication Burden**

Within

- Intra-node collaboration
 - Multiple sensing modalities
 - E.g., combining acoustic and seismic measurements
 - No communication burden since collaboration is at a particular node
 - · Higher computational burden at the node
- Inter-node collaboration
 - Combining measurements at different nodes
 - Higher communication burden since data is exchanged between nodes
 - Higher computational burden at manager node

Categorization of CSP Algorithms Based on Computational Burden

(a) • Data fusion

- Time series for different measurements are combined
- Higher computational burden since higher dimensional data is jointly processed
- Higher communication burden if different measurements from different nodes

(d)

Decision fusion

Decisions (hard or soft) based on different measurements are combined

- Lower computational burden since node lower dimensional data (decisions) is jointly processed

- Lower computational burden since node lower dimensional data (decisions) is

 Higher communication burden if the component decisions are made at different nodes

CEG5103/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.2

Various Forms of CSP

- Single Node, Multiple Modality (SN, MM)
 - Simplest form of CSP: no communication burden
 - Decision fusion
 - Data fusion (higher computational burden)
- Multiple Node, Single Modality (MN, SM)
 - Higher communication burden
 - · Decision fusion
 - Data fusion (higher computational burden)
- Multiple Node, Multiple Modality (MN, MM)
 - Highest communication and computational burden
 - Decision fusion across modalities and nodes
 - Data fusion across modalities, decision fusion across nodes
 - Data fusion across modalities and nodes

Single Target Classification: Overview

Single measurement classifiers

- MAP/ML Gaussian classifiers
- NN classifiers (benchmark)
- -" Training and Performance Evaluation
- Confusion matrices

Multiple measurement classifiers CSP

- Data fusion (dependent measurements) (in depth)
- Decision fusion (independent measurements) (not in depth)
- Different possibilities for CSP-based classification
 - Single node, multiple sensing modalities (SN, MM)
 - Multiple nodes, single sensing modality (MN, SM)
 - Multiple nodes, multiple sensing modalities (MN, MM)

The basic ideas illustrate general CSP principles in distributed decision making

CEG5103/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.2

Single Measurement Classifier

M=3 bus car motorcycle

1,2,3

- M possible target classes: $\omega_m \in \Omega = \{m = 1, \cdots, M\}$
- **x** : N-dim. (complex-valued) event feature vector
 - **x** belongs to m-th class with probability $P(\omega_m)$

• C: classifier assigns one of the classes to x

Maximum A Posteriori 1/2/3 MAP: $C(\mathbf{x}) = m$ if $P(\omega_m \mid \mathbf{x}) = \max_{j=1,\dots,M} P(\omega_j \mid \mathbf{x})$

Bayes rule: $C(\mathbf{x}) = \arg \max_{\mathbf{P}(\mathbf{x} \mid \omega_i)} P(\omega_i)$

Maximum Likelihood

Equal priors (ML): $C(\mathbf{x}) = \arg \max P(\mathbf{x} \mid \omega)$

P(W₁) = P(W₂) = P(W₃) CEG5103/EE5024 IoT Sensor Networks

CK Tham, ECE NUS

Lecture II.2

P(Wz | 7c)?
|Skelihood|
|Bayes Theorem |
|P(A|B)=P(BH)P(A)
|P(B)

R

Single Measurement Classifier - Pictorially

CEG5103/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.2

9

Gaussian Classifiers

- Assume that for class j, \mathbf{x} has a Gaussian distribution with mean vector $\mathbf{\mu}_j = \mathrm{E}_j[\mathbf{x}]$ and covariance matrix $\mathbf{\Sigma}_j = E_j[(\mathbf{x} \mathbf{\mu}_j)(\mathbf{x} \mathbf{\mu}_j)^T]$
 - $E_{j}[ullet]$ denotes ensemble average over class j
 - Superscript T denotes transpose
- Likelihood function for class j

$$P(\mathbf{x}|\omega_{j}) = \frac{1}{\pi^{N}|\mathbf{\Sigma}_{j}|} \exp\left[-(\mathbf{x} - \mathbf{\mu}_{j})^{T} \mathbf{\Sigma}_{j}^{-1} (\mathbf{x} - \mathbf{\mu}_{j})\right]$$
$$-\log P(\mathbf{x}|\omega_{j}) = \log |\mathbf{\Sigma}_{j}| + (\mathbf{x} - \mathbf{\mu}_{j})^{T} \mathbf{\Sigma}_{j}^{-1} (\mathbf{x} - \mathbf{\mu}_{j})$$

CEG5103/EE5024 IoT Sensor Networks
CK Tham, ECE NUS

Training and Performance Assessment

training events available for each class

3-way cross validation – partition data into 3 sets (S₁, S₂, S₃) with equal number of events for each class

Three sets of experiments:

Train	Test
S_1, S_2	S_3
	\Box

Train	Test
S_1, S_3	S_2

Train	Test
S_2, S_3	S_{1}
	\square

CEG5103/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.2

11

Training and Testing

- In each experiment we have:
 - Training phase: estimate mean and covariance for each class from the two training data sets

For
$$\mathbf{x}_{n} \in \omega_{j}$$
 $j = 1, ..., M$

$$\hat{\boldsymbol{\mu}}_{j} = \frac{1}{N_{0}} \sum_{n=1}^{N_{0}} \mathbf{x}_{n} \Rightarrow \hat{\boldsymbol{\Sigma}}_{j} = \frac{1}{N_{0}} \sum_{n=1}^{N_{0}} (\mathbf{x}_{n} - \boldsymbol{\mu}_{j}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{j})^{T}$$
feature vectors in class j

- Testing phase: Using $(\hat{\pmb{\mu}}_{_{j}},\hat{\pmb{\Sigma}}_{_{j}})$ estimated from the two training data sets, test the performance of the classifier on the third testing set make classification docision

$$\rightarrow C(\mathbf{x}) = \underset{j=1,\dots,M}{\operatorname{arg}} \max_{j=1,\dots,M} P(\mathbf{x} \mid \omega_j) \qquad \text{for each feature vector } \mathbf{x}$$
in the 3rd test set

Confusion Matrix (multi-class)

Classifier Decision

				Section 6			
		$\omega_{\rm m}$	1	2		М	
	-	1 20 e.g.bus	n_{11}	n ₁₂ 2	6×	n _{1M} ×	20
Actual class	•	2 CM	n ₂₁	n_{22}		n _{2M}	
	-	: motorcycle			•••		
	•	M :	n _{M1}	n _{M2}		n _{MM}	

 $\begin{array}{c} \text{true factual} & \text{classifier} \\ [\text{CM}]_{ij} = n_{ij} = \text{number of events from } \omega_i \text{ classified as } \omega_j \text{ decision} \\ \end{array}$

CEG5103/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.2

13

Probability of Detection, Probability of False Alarm, Belief

Probability of detection for class m

$$\rightarrow PD_{m} = \frac{n_{mm}}{\sum_{j=1}^{M} n_{mj}} \qquad (m-th row)$$

Probability of false alarm for class m

$$PFA_{m} = \frac{\displaystyle\sum_{k=1, k \neq m}^{M} n_{km}}{\displaystyle\sum_{k=1, k \neq m}^{M} \displaystyle\sum_{j=1}^{M} n_{kj}}$$

Prior belief in the classifier decisions (via training)

$$P(\mathbf{x} \in \omega_{m} \mid C(\mathbf{x}) = \mathbf{j}) = \frac{n_{mj}}{\sum_{i=1}^{M} n_{ij}}$$
 (j-th column)

Binary Classification

Confusion Matrix for Binary Classification

CEG5103/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.2

15

Benchmark: Nearest Neighbor (NN) Classifier

- S^{Tr}-- the set of all training event feature vecto<u>rs **x**</u>^{Tr} (containing all classes)
- X -- test event feature vector to be classified

$$C_{NN}(\mathbf{x}) = class \left(\arg \min_{\mathbf{x}^{Tr} \in S^{Tr}} \left\| \mathbf{x} - \mathbf{x}^{Tr} \right\| \right)$$

That is, find the *training feature vector* that is closest to the *test feature vector*. Assign the label of the closest training feature vector to the test event

Multiple Measurements

- K measurements (from a detected event)
 - Different nodes or sensing modalities
- x_k -- event feature vector for k-th measurement
- Classifier C assigns one of the M classes to the K event measurements $\{x_1, \dots, x_K\}$

$$C(\boldsymbol{x}_{1},\cdots,\boldsymbol{x}_{K}) = \underset{j=1,\cdots,M}{\text{measurements}} P(\boldsymbol{\omega}_{j} \mid \boldsymbol{x}_{1},\cdots,\boldsymbol{x}_{K})$$

Equal priors (ML):
$$C(\mathbf{x}_1, \dots, \mathbf{x}_K) = \arg \max_{j=1,\dots,M} P(\mathbf{x}_1, \dots, \mathbf{x}_K \mid \omega_j)$$

CEG5103/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.2

17

Data Fusion – Gaussian Classifier

• Assume that different measurements $(\{x_1, \dots, x_K\})$ are jointly Gaussian and *correlated*

For
$$\omega_j$$
, $j = 1, \dots, M$

the concatenated event feature vector (KN dim.)

is Gaussian with mean and covariance:

$$\mathbf{x}^{c} = \begin{bmatrix} \mathbf{x}_{1} \\ \vdots \\ \mathbf{x}_{K} \end{bmatrix}$$

$$\underline{\boldsymbol{\mu}_{j}^{c}} = \mathbf{E}_{j} [\mathbf{x}^{c}] = \mathbf{E}_{j} [\mathbf{x}^{c}] \begin{bmatrix} \mathbf{\mu}_{j,1} \\ \vdots \\ \mathbf{\mu}_{j,K} \end{bmatrix}$$

$$\boldsymbol{\Sigma}_{j}^{c} = E_{j} [(\mathbf{x}^{c} - \boldsymbol{\mu}_{j}^{c})(\mathbf{x}^{c} - \boldsymbol{\mu}_{j}^{c})^{T}] = \begin{bmatrix} \boldsymbol{\Sigma}_{j,11}, \cdots, \boldsymbol{\Sigma}_{j,1K} \\ \vdots \\ \boldsymbol{\Sigma}_{j,K1}, \cdots, \boldsymbol{\Sigma}_{j,KK} \end{bmatrix}$$

 (μ_j^c, Σ_j^c) characterize the j-th class and can be estimated from training data \rightarrow cross-validation, CM's, PD, PFA, belief

CEG5103/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Multiple Measurement Classifier – Data Fusion

M=3 classes

CEG5103/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.2

19

Data Fusion – NN Classifier

• Let S^{Tr} denote the set of all *concatenated* training event feature vectors \mathbf{x}^{cTr} (containing all classes)

$$\mathbf{x}^{\text{cTr}} = \begin{bmatrix} \mathbf{x}_{1}^{\text{Tr}} \\ \vdots \\ \mathbf{x}_{K}^{\text{Tr}} \end{bmatrix}$$
 (NK dimensional)

 Let X^c denote the concatenated test event feature vector to be classified

$$C_{NN}(\mathbf{x}_1, \dots, \mathbf{x}_k) = class \left(\arg \min_{\mathbf{x}^{cTr} \in S^{Tr}} \left\| \mathbf{x}^c - \mathbf{x}^{cTr} \right\| \right)$$

CEG5103/EE5024 IoT Sensor Networks CK Tham. ECE NUS

Note: meaning of K is different Forms of Data Fusion in CSP

K modalities, P nodes

- Data fusion of multiple modalities (e.g, acoustic and seismic) at each node (SN, MM)
 - Higher comp. burden (NK dim. data)
 - No additional comm. burden
- Data fusion of a single modality at multiple nodes (MN, SM)
 - Higher computational burden at manager node (PN dim. data)
 - Higher communication burden due to transmission of N dim. data from different nodes to the manager node
- Data fusion of multiple modalities at multiple nodes (MN, MM)
 - Highest computational burden at manager node (NKP dim. data)
 - Highest communication burden due to transmission of KN dim. multi-modality data from different nodes to the manager node

CEG5103/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.2

Pros and Cons of Data Fusion

- Pros
 - Maximal exploitation of available information in multiple time series
 - Potentially the best performing classification scheme
- Cons
 - High computational burden
 - High communication burden if data fusion across nodes
 - Need larger amount of data for training
 - Inconsistencies between measurements could cause performance degradation (e.g. malfunctioning nodes)
- In contrast, Decision Fusion:
 - has lower computational and communication burden
 - however, different measurements have to be independent or uncorrelated (not covered here)

uSually not satisfied

in practice, still not too bad

Experiments: Seismic Feature Characteristics

vibration

- · Seismic signals
 - Sampling rate reduction from 4960 Hz to 512 Hz
 - 512-pt FFT of 512-sample (256-overlap) segments
 - 1 Hz resolution
 - The first 100 positive frequency FFT samples used (100 Hz)
 - 2-pt averaging of the 100 FFT samples yields the final N=50 dimensional FFT feature vectors
 - · 2 Hz resolutions
 - About 10-50 feature vectors in each event depending on the vehicle
 - Event feature vector matrix X is 50x10 to 50x50

Single mo ascrement

- 50 dimensional mean event feature vectors x
- Complex or absolute value FFT features

CEG5103/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.2

23

Class Descriptions

- Tracked vehicle class: AAV (Amphibious Assault Vehicle)
- Wheeled vehicle class: DW (Dragon Wagon) and HMWV (Humvee)
- Locomotion Class and Vehicle Class classification
- Approximately equal number of training and testing events for all classes
- 3-way cross validation for performance assessment

Representative Acoustic FFT Features

AAV - tracked (Amphibious Assault Vehicle)

HMV - wheeled (Humvee)

DW - wheeled (Dragon Wagon)

25

CEG5103/EE5024 IoT Sensor Networks

CK Tham, ECE NUS

SITEX02 Data. DARPA SenseIT Program Lecture II.2

Representative Seismic FFT Features

- a) AAV (tracked)
- b) DW (wheeled)
- HMMWV (wheeled)

SITEX02 Data. DARPA SenseIT Program

CEG5103/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.2

26

Single Node Single Modality (SN, SM) – **Locomotion Class**

Absolute-value FFT acoustic features

NN Classifier (benchmark)

		da	ssifier
	$C(\mathbf{X})$	Wheeled	Tracked
actual	Wheeled	102	18
	Tracked	1	119

PFA = 0.01, 0.15

tracked Wheelod PD = 0.91, 0.82, Ave = 0.86PFA = 0.18, 0.09

PD = 0.85, 0.99, Ave = 0.92

lower

120 events for each class

CEG5103/EE5024 IoT Sensor Networks

CK Tham, ECE NUS

Lecture II.2

27

Single Node Single Modality (SN, SM) -**Vehicle Class**

Absolute-value FFT acoustic features

Gaussian Classifier

NN Classifier (benchmark)

$\omega_{\rm m}^{\rm C(X)}$	AAV	DW	HMV	
AAV	53/	5	2	60
DW	12 77	42	6	
HMV	15	14	31	120 Juot AAV
A	AV DN	V HMV		- Mix-

$\omega_{\rm m}^{\rm C(X)}$	AAV	DW	HMV
AAV	43	9	8
DW	0	49	11
HMV	1	13	46

PD = 0.88, 0.70, 0.52, Ave = 0.70 60 AAV

PD = 0.72, 0.82, 0.77, Ave = 0.77

PFA = 0.22, 0.16, 0.07

PFA = 0.01, 0.18, 0.16

60 events for each vehicle

Single Node Multiple Modality (SN, MM) Data Fusion – Locomotion Class

Multiple measurements
Acoustic and seismic features

Gaussian Classifier

$\omega_{\rm m}^{\rm C(X)}$	Wheeled	Tracked
Wheeled	117	3
Tracked	25	95

PD = 0.97, 0.80, Ave = 0.88

PFA = 0.21, 0.02

NN Classifier (benchmark)

$\omega_{\rm m}^{\rm C(X)}$	Wheeled	Tracked
Wheeled	106	14
Tracked	4	116

PD = 0.88, 0.97, Ave = 0.92

PFA = 0.03, 0.12

120 events for each class

CEG5103/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.2

29

4

Single Node Multiple Modality (SN, MM) Data Fusion – Vehicle Class

Acoustic and seismic features

Gaussian Classifier

$\omega_{\rm m}^{\rm C(X)}$	AAV	DW	HMV
AAV	59	0	1
DW	9	46	5
HMV	25	12	23

PD = 0.98, 0.77, 0.38, Ave = 0.71

NN Classifier (benchmark)

$\omega_{\rm m}^{\rm C(X)}$	AAV	DW	HMV
AAV	43	6	11
DW	0	47	13
HMV	1	22	37

PD = 0.72, 0.78, 0.62, Ave = 0.71

PFA = 0.28, 0.10, 0.05 PFA = 0.01, 0.23, 0.20

60 events for each vehicle

Comparison of Various Forms of CSP – Locomotion Class

Gaussian Classifier

(SN, SM)

$\omega_{\rm m}^{\rm C(X)}$	Wheeled	Tracked
Wheeled	109	11
Tracked	22	98

$$Ave = 0.86$$

$$PFA = 0.18, 0.09$$

(SN, MM) - Data Fusion (SN, MM) - Dec. Fusion

$\omega_{\rm m}^{\rm C(X)}$	Wheeled	Tracked
Wheeled	117	3
Tracked	25	95

$$PD = 0.97, 0.80,$$

$$Ave = 0.88$$

$$PFA = 0.21, 0.02$$

$\omega_{\rm m}^{\rm C(X)}$	Wheeled	Tracked
Wheeled	110	10
Tracked	32	88

$$PD = 0.92, 0.73,$$

$$PFA = 0.27, 0.08$$

lightly higher

CEG5103/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.2

31

Comparison of Various Forms of CSP – Vehicle Class

Gaussian Classifier

(SN, SM)

$C(\mathbf{X})$	AAV	DW	HMV
AAV	53	5	2
DW	12	42	6
HMV	15	14	31

$$PD = 0.88, 0.70, 0.52,$$

Ave = 0.70

$$PFA = 0.22, 0.16, 0.07$$

(SN, MM) - Data Fusion

$C(\mathbf{X})$	AAV	DW	HMV
AAV	59	0	1
DW	9	46	5
HMV	25	12	23

Ave =
$$0.71$$

(SN, MM) – Dec. Fusion

$C(\mathbf{X})$ ω_{m}	AAV	DW	HMV
AAV	55	5	0
DW	8	44	8
HMV	20	13	27

$$PD = 0.92, 0.73, 0.45,$$

$$Ave = 0.70$$

Inconsistencies between modalities are present

Challenges

- Uncertainty in temporal and spatial measurements critically affects estimation:
 - Uncertainty in node locations
 - Uncertainty in timing and synchronization
- Variability in signal characteristics:
 - Doppler shifts due to motion
 - Gear shifts, acceleration in vehicles
- Variability in environmental/sensor conditions:
 - Most algorithms exploit prior statistical information about sources
 - Observed statistical characteristics can vary markedly depending on environmental conditions, such as terrain, foliage, rain, wind etc.
- Variability in sensor characteristics (e.g., gain calibration)
- A key challenge is to develop CSP algorithms that are robust to such uncertainty/variability in measurements and conditions

CEG5103/EE5024 IoT Sensor Networks CK Tham, ECE NUS

Lecture II.2

33

Questions?