Esercizio 1. La funzione f(x,y,z,w) è uguale ad 1 se e solo se $y+z+\overline{w}=0$ o $\bar{x}zw=1$. La funzione g(x,y,z,w) è uguale a 0 se $y\bar{z}=0$, non è specificata se $y\bar{z}w=1$, ed è uguale ad 1 negli altri casi. Scrivere le tabelle di verità e disegnare il circuito che implementa f e g usando il numero minimo di multiplexer 2-a-1.

×	J	2	W	F	9		
0	0	0	0	0	0		
0	0	0	\	0	0		
0	0	(0	+	0		
00000	0	1	(1	0	_	
0	(0	0	0	1		
	l	0	(0	X		_
0	((\bigcirc	0	0		_
0,00	Ī	((1	0		
1	0	0	0	0	0		_
Ī	0	0	(1	0		
_	0	(0	0	0		
(0	l	1	0	0		_
1	ı	0	0	0	(
<u> </u>	(0	(0	X		
(1	, (0	0	10		
1) ((0	0		

CONSIDER IT AS A MISTARD.

matricol	a	
	u	

Esercizio 2 Analizzare il circuito sequenziale in figura. Scrivere la tabella degli stati futuri e disegnare il diagramma di transizione degli stati.

5, =	5. S.
	X+Si
Q = 3	So +Si

	Sı	So	X	Si	2,	Q
	0	0	0	\	0	0
_	0	0	\	\	0	0
	0	(0		0	1
_	D	l	1	$\frac{1}{2}$	-	
	1	0	0		 	. [
-	Ī	0	-	1	0	
_	1	\	0	1	0	

STARTING STATE IS SI=1 So=0

matricol	2	
Hatito	a	

Esercizio 3 Considerare la seguente PLA e scrivere:

- L'espressione per le funzioni Y and Z
- Trasformare l'espressione f = Y + Z, usando assiomi e teoremi dell'algebra di Boole, nella forma SOP canonica

Esercizio 3 Considerare la seguente PLA e scrivere:

- L'espressione per le funzioni Y and Z
- Trasformare l'espressione f = Y + Z, usando assiomi e teoremi dell'algebra di Boole, nella forma SOP canonica

J= CD +ACD + ABC + ABCD 2= BD +ACD

Y + Z = CO + A OD + ABC + ABCD + BD =

ADBC + ADBC + ADBC + ABCD + BD =

+ ABCD + ABCD + ABCD + ABCD +

+ ABCD + ABCD + ABCD +

+ ABCD + ABCD + ABCD + ABCD =

ABCD+ ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ +ABCD

matrico	la	
matrico	ıa	

Esercizio 4 Convertire il numero in base 10 X = -37,75 nel formato IEEE 754 half-precision. Poi convertire Y = 0xC580 in una stringa binaria e interpretare tale stringa come un numero IEEE 754 half-precision. Calcolare X+Y in formato IEEE 754 half-precision e controllare la correttezza del risultato riconvertendolo in base 10.

matricola_____

$$X = 100101.11 = 1.0010111 \times 2^{5}$$

$$X = 100101.11 = 1.0010111 \times 2^{5}$$

$$X = 100101.11 = 1.0010111 \times 2^{5}$$

$$X = 10010111000$$

$$X = 1101000010111000$$

$$X = 10010110000$$

$$X = 10010110000$$

$$X = 10010101 = 100101000$$

$$X = 10010101 = 1000101000$$

$$X = 10010101 = 1000101000$$

$$X = 10010101 = 1000101000$$

$$X = 10010101 = 100010101000$$

$$X = 10010101 = 100010101000$$

$$X = 10010101 = 1000101000$$

$$X = 10010101 = 100010101000$$

$$X = 10010101000$$

$$X = 100101000$$

$$X = 10010000$$

$$X = 10010000$$

$$X = 1001000$$

$$X = 100000$$

$$X = 1$$

matricola	
matricola	

Esercizio 5 Considerare l'espressione $f = (yw \oplus zw) + yz$. Semplificarla e portarla in forma POS usando teoremi ed assiomi dell'algebra di Boole. Scrivere poi f in forma NAND e NOR.