Data Structures and Algorithm

Xiaoqing Zheng zhengxq@fudan.edu.cn

Investment problem

□ Suppose that you try to in the stock market.

Deterministic algorithm

STOCK-INVESTMENT(n)

```
    best = 0
    for i ← 1 to n
    do investigate candidate i
    if candidate i is better than candidate best
    then best ← i
    buy candidate i
```

Total cost: $O(nc_i + mc_b)$

Worst case: $O(nc_b)$

Indicator random variable

Indicator random variable $I\{A\}$ associated with event A is defined as

$$I\{A\} = \begin{cases} 1 & \text{if } A \text{ occurs,} \\ 0 & \text{if } A \text{ does not occur.} \end{cases}$$

Analysis of investment problem

Let *X* be the random variable whose value equals the numbers of times we buy a new stock.

$$X_i = I\{\text{candidate } i \text{ is better}\} = \begin{cases} 1 \text{ if candidate } i \text{ is better,} \\ 0 \text{ if candidate } i \text{ is not better.} \end{cases}$$

and

$$\boldsymbol{X} = X_1 + X_2 + \ldots + X_n$$

Analysis of investment problem

Now we can compute E[X]:

$$E[X] = E\left[\sum_{i=1}^{n} X_{i}\right]$$

$$= \sum_{i=1}^{n} E[X_{i}]$$

$$= \sum_{i=1}^{n} 1/i$$

$$= \ln n + O(1)$$

Average cost: $O(lnnc_b)$

Randomized algorithm

RANDOMIZED-STOCK-INVESTMENT(n)

- 1. Randomly permute the list of candidates
- 2. best = 0
- 3. for $i \leftarrow 1$ to n
- 4. **do** investigate candidate *i*
- 5. **if** candidate *i* is better than candidate *best*
- 6. then $best \leftarrow i$
- 7. buy candidate i

Divide and conquer

Quicksort an *n*-element array:

1. *Divide:* Partition the array into two subarrays around a *pivot* x such that elements in lower subarray $\le x \le$ elements in upper subarray.

- 2. *Conquer:* Recursively sort the two subarrays.
- 3. *Combine:* Trivial.

Key: Linear-time partitioning subroutine.

Pseudocode for quicksort

```
QUICKSORT(A, p, r)

1. if p < r

2. then q \leftarrow \text{PARTITION}(A, p, r)

3. QUICKSORT(A, p, q - 1)

4. QUICKSORT(A, q + 1, r)
```

Initial call: QUICKSORT(A, 1, n)

now:
$$A[j] \le x$$

```
    4. do if A[j] ≤ x
    5. then i ← i + 1
    6. exchange A[i] ↔ A[j]
```


7. exchange
$$A[r] \leftrightarrow A[i+1]$$

Partitioning subroutine

```
PARTITION(A, p, r) //A[p ... r]
1. x \leftarrow A[r] //pivot = A[p]
2. i \leftarrow p - 1
3. for j \leftarrow p to r-1
4. do if A[j] \leq x
         then i \leftarrow i + 1
                exchange A[i] \leftrightarrow A[j]
7. exchange A[r] \leftrightarrow A[i+1]
8. return i+1
             \leq \chi
                              x \leq
```

Worst-case of quicksort

- □ Input sorted or reverse sorted.
- □ Partition around min or max element.
- □ One side of partition always has no elements.

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

$$= \Theta(1) + T(n-1) + \Theta(n)$$

$$= T(n-1) + \Theta(n)$$

$$= \Theta(n^2) (arithmetic series)$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n) = T(0) + T(n-1) + cn$$

$$T(n) = T(0) + T(n-1) + cn$$

$$Cn$$

$$C(n-1)$$

$$C(n-2)$$

$$T(0)$$

$$C(n-2)$$

$$\Theta(1)$$

$$T(n) = T(0) + T(n-1) + cn$$

$$\Theta\left(\sum_{k=1}^{n} k\right) = \Theta(n^{2})$$

$$h = n \qquad \Theta(1) \qquad c(n-2)$$

$$\Theta(1) \qquad \cdots$$

$$\Theta(1) \qquad \cdots$$

Nice-case analysis

If we're lucky, PARTITION splits the array evenly:

$$T(n) = 2T(n/2) + \Theta(n)$$

$$= \Theta(n \lg n) \quad \text{(same as merge sort)}$$

What if the split is always $\frac{1}{10} : \frac{9}{10}$?

$$T(n) = T(\frac{1}{10}n) + T(\frac{9}{10}n) + \Theta(n)$$

Analysis of nice case

Total: O(nlgn)

Randomized quicksort

Partition around a *random* element around A[t], where t chosen uniformly at random from $\{p \dots r\}$

RANDOMIZED-PARTITION(A, p, r)

- 1. $i \leftarrow \text{RAMDOM}(p, r)$
- 2. exchange $A[r] \leftrightarrow A[i]$
- 3. **return** PARTITION(A, p, r)

We will show that the expected time is O(nlgn)

Analysis of quicksort

Running time of **QUICKSORT** is O(n + X)

- *n* be the number of call to PARTITION
- X be the number of comparisons performed in line 4 of PARTITION

```
PARTITION(A, p, r) //A[p ... r]

1. x \leftarrow A[r] //pivot = A[p]

2. i \leftarrow p - 1

3. for j \leftarrow p to r - 1

4. do if A[j] \le x

5. then i \leftarrow i + 1

6. exchange A[i] \leftrightarrow A[j]

7. exchange A[r] \leftrightarrow A[i + 1]

8. return i + 1
```

Running time and comparisons

 $Z_{ij} = \{ z_i, z_{i+1}, ..., z_j \}$ to be the set of elements between z_i and z_j , inclusive.

$$X_{ij} = I \{ z_i \text{ is compared to } z_j \}$$

Total number of comparisons performed by the algorithm

$$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$$

Number of comparisons

The pivot element 7 is compared to all other elements, but no number from the first set (e.g. 2) is or ever will be compared to any number from the second set (e.g. 9).

Expected running time

$$E(X) = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right]$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{ij}\right]$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr\left\{z_{i} \text{ is compared to } z_{j}\right\}$$

$$Pr\left\{z_{i} \text{ is compared to } z_{j}\right\}$$

$$= \Pr\left\{z_{i} \text{ is first pivot chosen form } Z_{ij}\right\}$$

$$+ \Pr\left\{z_{j} \text{ is first pivot chosen form } Z_{ij}\right\}$$

$$= \frac{1}{j-i+1} + \frac{1}{j-i+1} = \frac{2}{j-i+1}$$

Expected running time

$$E(X) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \quad \text{note: } k = j-i$$

$$< \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k}$$

$$= \sum_{i=1}^{n-1} O(\lg n) \qquad \sum_{k=1}^{n} \frac{1}{k} = \ln n + O(1)$$

$$= O(n \lg n) \qquad \square$$

Quicksort in practice

- □ Quicksort is a *general-purpose* sorting algorithm.
- □ Quicksort is typically over *twice* as fast as merge sort.
- □ Quicksort behaves well even with *caching and virtual memory*.
- □ Quicksort is *great*.

Randomized algorithms

- □ Algorithms that make decisions based on random.
- □ Can "fool" the adversary.
- □ The running time (or even correctness) is a random variable; we measure the *expected* running time.
- We assume all random choices are *independent*.
- □ This is *not* the average case!

Max heap

Max-heaps and min-heaps

Max-heap property is that for every node *i* other than the root

$$A[PARENT(i)] \ge A[i]$$

Min-heap property is that for every node *i* other than the root

$$A[PARENT(i)] \le A[i]$$

$$O(h) = O(lgn)$$

MAX-HEAPIFY(A, i) 1. $l \leftarrow \text{LEFT}(i)$ 2. $r \leftarrow \text{RIGHT}(i)$ 3. if $l \leq heap\text{-}size[A]$ and A[l] > A[i]

- 4. then $largest \leftarrow l$
- 5. else $largest \leftarrow i$
- 6. if $r \le heap\text{-}size[A]$ and A[r] > A[largest]
- 7. then $largest \leftarrow r$
- 8. if $largest \neq i$
- 9. **then** exchange $A[i] \leftrightarrow A[largest]$
- 10. MAX-HEAPIFY(A, largest)

Build max heap

BUILD-MAX-HEAP(A)

- 1. heap- $size[A] \leftarrow length[A]$
- 2. **for** $i \leftarrow |length[A]/2|$ **downto** 1
- 3. **do** MAX-HEAPIFY(A, i)

O(nlgn)

This is *upper bound* and is not asymptotically *tight*.

Analysis of building a heap

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) = O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right)$$

$$< O\left(n \sum_{h=0}^{\infty} \frac{h}{2^h}\right) \quad \left(\sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} = 2\right)$$

$$= O(n) \qquad \square$$

i

14

HEAPSORT(A)

- 1. BUILD-MAX-HEAP(A)
- 2. for $i \leftarrow length[A]$ downto 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. $heap\text{-}size[A] \leftarrow heap\text{-}size[A] 1$
- 5. MAX-HEAPIFY(A, 1)

O(nlgn)

Priority queues

A priority queue is a data structure for maintaining a set of S of elements, each with an associated value called a key.

A max-priority queue supports the following operations.

- INSERT(S, x) inserts the element x into the set S.
- MAXIMUM(S) returns the element S with the largest key.
- EXTRACT-MAX(S) removes and returns the element S with the largest key.
- INCREASE-KEY(S, x, k) increase the value of element x's key to the new value k, which is assumed to be at least as large as x's current key value.

Operation of priority queues

HEAP-EXTRACT-MAX(A)

- 1. **if** heap-size[A] < 1
- 2. **then error** "heap underflow"
- $3. max \leftarrow A[1]$
- $4. A[1] \leftarrow A[heap\text{-}size[A]]$
- 5. heap- $size[A] \leftarrow heap$ -size[A] 1
- 6. MAX-HEAPIFY(A, 1)
- 7. return *max*

O(lgn)

Heap-increase-key

Heap-increase-key

Heap-increase-key

Heap-increase-key

Operation of priority queues

HEAP-INCREASE-KEY(A, i, key)

- 1. **if** key < A[i]
- 2. **then error** "new key is smaller than current key"
- $3. A[i] \leftarrow key$
- 4. while i > 1 and A[PARENT(i)] < A[i]
- 5. do exchange $A[i] \leftrightarrow A[PARENT(i)]$
- 6. $i \leftarrow PARENT(i)$

O(lgn)

Operation of priority queues

MAX-HEAP-INSERT(A, key)

- 1. heap- $size[A] \leftarrow heap$ -size[A] + 1
- 2. $A[heap-size[A]] \leftarrow -\infty$
- 3. HEAP-INCREASE-KEY(A, heap-size[A], key)

O(lgn)

Sort algorithm

Running time	Worst-case	Average-case	In place
Heap sort	nlgn	nlgn	Yes
Quick sort	n^2	nlgn	Yes
Insertion sort	n^2	n^2	Yes
Merge sort	nlgn	nlgn	No

Comparison sort

- □ All of our algorithms used *comparisons*.
- \square All of our algorithms have the running time $\Omega(nlgn)$.
- □ Is it the best that we can do using just comparisons?

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i > a_j$.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i > a_j$.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i > a_j$.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i > a_j$.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i > a_j$.

Each leaf contains a permutation $< \pi(1), \pi(2), \cdots, \pi(n) >$ to indicate that the ordering $< a_{\pi(1)} \le a_{\pi(2)} \le \cdots \le a_{\pi(n)} >$ has been established.

Decision-tree model

A decision tree can model the execution of any comparison sort:

- One tree for each input size *n*.
- View the algorithm as splitting whenever it compares two elements.
- The tree contains the comparisons along all possible instruction traces.
- The number of comparisons done by the algorithm on a given input = the length of the path taken.
- Worst-case number of comparisons = max path length
 height of tree.

Lower bound for decision tree sorting

Theorem. Any decision tree that can sort n elements must have height $\Omega(nlgn)$.

Corollary. Any comparison sorting algorithm has worst-case running time $\Omega(nlgn)$.

Corollary 2. Merge sort and Heap sort are asymptotically optimal comparison sorting algorithms.

Lower bound for decision tree sorting

Theorem. Any decision tree that can sort n elements must have height $\Omega(nlgn)$.

Proof.

- The tree must contain $\geq n!$ leaves, since there are n! possible permutations
- A height-h binary tree has $\leq 2^h$ leaves
- Thus, $2^h \ge$ number of leaves $\ge n!$, or $h \ge lg(n!)$

Proof

$$h \ge \lg(n!)$$

$$= \lg(n(n-1)(n-2)\cdots(2)(1))$$

$$= \lg n + \lg(n-1) + \lg(n-2) + \cdots + \lg 2 + \lg 1$$

$$\ge \lg n + \lg(n-1) + \lg(n-2) + \cdots + \lg(n/2)$$

$$\ge \frac{n}{2} \lg \frac{n}{2}$$

$$= \frac{n}{2} (\lg n - \lg 2)$$

$$= \Omega(n \lg n) \quad \square$$

Example: sorting 3 elements

Recall $h \ge lg(n!)$

- n = 3
- n! = 6
- lg6 = 2.58
- Sorting 3 elements requires ≥ 3 comparisons in the worst case

Thinking

Is any sort algorithm the run in linear time?

Answer: Yes!

Needless to say, these algorithms use operations other than comparisons to determine the sorted order.

Sorting in linear time

Counting sort: No comparisons between elements.

- *Input:* A[1 ... n], where $A[j] \in \{1, 2, ..., k\}$.
- *Output:* $B[1 \dots n]$, sorted.
- Auxiliary storage: C[1 ... k].

Counting-sort example

1. for
$$i \leftarrow 1$$
 to k

2. **do**
$$C[i] \leftarrow 0$$

- 3. **for** $j \leftarrow 1$ **to** length[A]
- 4. **do** $C[A[j]] \leftarrow C[A[j]] + 1$

- 3. **for** $j \leftarrow 1$ **to** length[A]
- 4. **do** $C[A[j]] \leftarrow C[A[j]] + 1$

- 3. **for** $j \leftarrow 1$ **to** length[A]
- 4. **do** $C[A[j]] \leftarrow C[A[j]] + 1$

- 3. **for** $j \leftarrow 1$ **to** length[A]
- 4. **do** $C[A[j]] \leftarrow C[A[j]] + 1$

- 3. **for** $j \leftarrow 1$ **to** length[A]
- 4. **do** $C[A[j]] \leftarrow C[A[j]] + 1$

<i>A</i> :	4	1	3	4	3	<i>C</i> :	1	0	2	2
_										
<i>B</i> :						<i>C</i> ':	1	0	2	2

5. for
$$i \leftarrow 2$$
 to k

6. **do**
$$C[i] \leftarrow C[i] + C[i-1]$$

5. for
$$i \leftarrow 2$$
 to k

6. **do**
$$C[i] \leftarrow C[i] + C[i-1]$$

5. for
$$i \leftarrow 2$$
 to k

6. **do**
$$C[i] \leftarrow C[i] + C[i-1]$$

<i>A</i> :	4	1	3	4	3	<i>C</i> :	1	0	2	2
						_				
<i>B</i> :						<i>C</i> ':	1	1	3	5

5. for
$$i \leftarrow 2$$
 to k

6. **do**
$$C[i] \leftarrow C[i] + C[i-1]$$

```
      1
      2
      3
      4
      5

      A:
      4
      1
      3
      4
      3

      1
      2
      3
      4
      5
      1
      2
      3
      4

      B:
      C':
      1
      1
      3
      5
```

7. for
$$j \leftarrow length[A]$$
 downto 1

8. **do**
$$B[C[A[j]]] \leftarrow A[j]$$

9.
$$C[A[j]] \leftarrow C[A[j]] - 1$$

- 7. for $j \leftarrow length[A]$ downto 1
- 8. **do** $B[C[A[j]]] \leftarrow A[j]$
- 9. $C[A[j]] \leftarrow C[A[j]] 1$

- 7. for $j \leftarrow length[A]$ downto 1
- 8. do $B[C[A[j]]] \leftarrow A[j]$
- 9. $C[A[j]] \leftarrow C[A[j]] 1$

- 7. for $j \leftarrow length[A]$ downto 1
- 8. **do** $B[C[A[j]]] \leftarrow A[j]$
- 9. $C[A[j]] \leftarrow C[A[j]] 1$

- 7. for $j \leftarrow length[A]$ downto 1
- 8. **do** $B[C[A[j]]] \leftarrow A[j]$
- 9. $C[A[j]] \leftarrow C[A[j]] 1$

- 7. for $j \leftarrow length[A]$ downto 1
- 8. do $B[C[A[j]]] \leftarrow A[j]$
- 9. $C[A[j]] \leftarrow C[A[j]] 1$

- 7. for $j \leftarrow length[A]$ downto 1
- 8. **do** $B[C[A[j]]] \leftarrow A[j]$
- 9. $C[A[j]] \leftarrow C[A[j]] 1$

- 7. for $j \leftarrow length[A]$ downto 1
- 8. **do** $B[C[A[j]]] \leftarrow A[j]$
- 9. $C[A[j]] \leftarrow C[A[j]] 1$

- 7. for $j \leftarrow length[A]$ downto 1
- 8. **do** $B[C[A[j]]] \leftarrow A[j]$
- 9. $C[A[j]] \leftarrow C[A[j]] 1$

- 7. for $j \leftarrow length[A]$ downto 1
- 8. do $B[C[A[j]]] \leftarrow A[j]$
- 9. $C[A[j]] \leftarrow C[A[j]] 1$

- 7. for $j \leftarrow length[A]$ downto 1
- 8. **do** $B[C[A[j]]] \leftarrow A[j]$
- 9. $C[A[j]] \leftarrow C[A[j]] 1$

done

Counting sort

```
COUNTING-SORT(A, B, k)
1. for i \leftarrow 1 to k
2. do C[i] \leftarrow 0
3. for j \leftarrow 1 to length[A]
      do C[A[j]] \leftarrow C[A[j]] + 1
5. for i \leftarrow 2 to k
6. do C[i] \leftarrow C[i] + C[i-1]
7. for j \leftarrow length[A] downto 1
      \operatorname{do} B[C[A[j]]] \leftarrow A[j]
                                                 \Theta(n)
           C[A[j]] \leftarrow C[A[j]] - 1
                                                \Theta(n+k)
```

Running time

If k = O(n), then counting sort takes $\Theta(n)$ time.

- But, sorting takes $\Omega(nlgn)$ time!
- Why?

Answer:

- Comparison sorting takes $\Omega(nlgn)$ time.
- Counting sort is not a *comparison sort*.
- In fact, not a single comparison between elements occurs!

Stable sorting

Counting sort is a *stable* sort: it preserves the input order among equal elements.

Radix sort

- □ Digit-by-digit sort.
- Hollerith's original (bad) idea: sort on most-significant digit first.
- □ Good idea: Sort on *least-significant digit first* with auxiliary *stable* sort.

```
329
```

3 5 5

```
      3 2 9
      7 2 0

      4 5 7
      3 5 5

      6 5 7
      4 4 6

      8 3 9
      4 5 7

      4 3 6
      6 5 7

      7 2 0
      3 2 9

      3 5 5
      8 3 9
```

3 2	9	7	2	0	7	2	0
4 5	7	3	5	5	3	2	9
65	7	4	4	6	4	3	6
83	9	4	5	7	8	3	9
43	6	6	5	7	3	5	5
72	0	3	2	9	4	5	7
3 5	5	8	3	9	6	5	7
							-

329	7	20	7	2	0	3	29
457	3	5 5	3	2	9	3	5 5
657	4	46	4	3	6	4	3 6
839	4	5 7	8	3	9	4	5 7
436	6	5 7	3	5	5	6	5 7
720	3	29	4	5	7	7	20
355	8	3 9	6	5	7	8	3 9
		X					

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order *t* − 1 digits.
- Sort on digit *t*.

Two numbers that differ in digit *t* are correctly sorted.

Two numbers equal in digit t are put in the same order as the input \Longrightarrow correct order.

Radix sort

RADIX-SORT(A, d)

- 1. for $i \leftarrow 1$ to d
- 2. **do** use a stable sort to sort array A on digit i
 - $\Theta(d(n+k))$ Each digit can take on up to k possible values

when d is constant and $k = O(n) \implies \Theta(n)$

Operation of bucket sort

Bucket sort

- Bucket sort runs in linear time when the input is drawn from a *uniform distribution*.
- Bucket sort assumes that the input is generated by a random process that distributes elements uniformly over the *interval* [0, 1).
- □ The idea of bucket sort is to divide the interval [0, 1) into n equal-sized subintervals, or *buckets*, and then distribute the n input numbers into buckets.

Bucket sort

BUCKET-SORT(A)

- $1. n \leftarrow length[A]$
- 2. for $j \leftarrow 1$ to n
- 3. **do** insert A[i] into list B[|nA[i]|]
- 4. for $i \leftarrow 0$ to n-1
- 5. **do** sort list B[i] with insertion sort
- 6. concatenate the list B[1], B[2], ..., B[n] together in order

Let n_i be the random variable denoting the number of elements placed in bucket B[i]. Since insertion sort runs in quadratic time, the running time of bucket sort is

$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$$

$$E[T(n)] = E\left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)\right]$$

$$= \Theta(n) + \sum_{i=0}^{n-1} E\left[O(n_i^2)\right]$$

$$= \Theta(n) + \sum_{i=0}^{n-1} O\left(E\left[n_i^2\right]\right)$$

$$= \Theta(n) + \sum_{i=0}^{n-1} O\left(2 - 1/n\right)$$

$$= \Theta(n)$$

 $X_{ij} = I \{A[j] \text{ falls in bucket } i\}$ for i = 0, 1, ..., n - 1 and j = 1, 2, ..., n. Thus,

$$n_i = \sum_{j=1}^n X_{ij}$$

$$E\left[n_i^2\right] = E\left[\left(\sum_{j=1}^n X_{ij}\right)^2\right]$$

$$E\left[n_{i}^{2}\right] = E\left[\left(\sum_{j=1}^{n} X_{ij}\right)^{2}\right]$$

$$= E\left[\sum_{j=1}^{n} \sum_{k=1}^{n} X_{ij} X_{ik}\right]$$

$$= E\left[\sum_{j=1}^{n} X_{ij}^{2} + \sum_{1 \leq j \leq n} \sum_{\substack{1 \leq k \leq n \\ k \neq j}} X_{ij} X_{ik}\right]$$

$$= \sum_{j=1}^{n} E\left[X_{ij}^{2}\right] + \sum_{1 \leq j \leq n} \sum_{\substack{1 \leq k \leq n \\ k \neq j}} E\left[X_{ij} X_{ik}\right]$$

$$E[X_{ij}^{2}] = 1 \cdot \frac{1}{n} + 0 \cdot \left(1 - \frac{1}{n}\right)$$
$$= \frac{1}{n}$$

$$E\left[X_{ij}X_{ik}\right] = E\left[X_{ij}\right]E\left[X_{ik}\right]$$
$$= \frac{1}{n} \cdot \frac{1}{n}$$
$$= \left(\frac{1}{n}\right)^{2}$$

$$E\left[n_{i}^{2}\right] = \sum_{j=1}^{n} E\left[X_{ij}^{2}\right] + \sum_{1 \leq j \leq n} \sum_{\substack{1 \leq k \leq n \\ k \neq j}} E\left[X_{ij}X_{ik}\right]$$

$$= n \cdot \frac{1}{n} + n(n-1) \cdot \left(\frac{1}{n}\right)^{2}$$

$$= 1 + \frac{n-1}{n}$$

$$= 2 - \frac{1}{n}$$

Any question?

Xiaoqing Zheng Fundan University