4. ПРОГРАММИРОВАНИЕ ЦИКЛИЧЕСКИХ АЛГОРИТМОВ

Цель работы: изучение программирования циклических алгоритмов, изучение операторов цикла с параметром, с предусловием и с постусловием.

Методические указания

Контрольные вопросы

- 1. Что такое циклический вычислительный процесс?
- Опишите необходимые действия при организации циклических процессов.
- 3. Оператор цикла с параметром.
- 4. Оператор цикла с предусловием.
- 5. Оператор цикла с постусловием.
- 6. Отличия цикла с предусловием от цикла с постусловием.
- 7. Вложенные циклы.

Упражнения для самостоятельной работы

Составьте блок-схему алгоритма и напишите программу для вычисления значения функции для произвольного значения аргумента.

им значения функции для пров

$$y = \begin{cases} \frac{1}{\sin(x) + 2}, & ecnu \ x < 0 \\ x^{-2}, & ecnu \ 1 > x \ge 0 \\ x^{15}, & ecnu \ 1 < x \end{cases}$$

$$y = \begin{cases} 0, & ecnu \ x < -\pi \\ |\sin(x)|, & ecnu \ -\pi \le x \le \pi \end{cases}$$

$$y = \begin{cases} 0, & ecnu \ \pi \le x \le \frac{3}{2}\pi \\ x - \frac{3}{2}\pi, & ecnu \ \frac{3}{2}\pi \le x \end{cases}$$

3)
$$y = \begin{cases} x, & ecnu \ x < -\pi \\ \sqrt{|x|}, & ecnu \ -\pi \le x \le \pi \\ 0, & ecnu \ \pi \le x \end{cases}$$
4)
$$y = \begin{cases} -3\sqrt[3]{x+1}, & ecnu \ x < -2 \\ x, & ecnu \ -2 \le x \le 5 \\ 3, & ecnu \ x > 5 \end{cases}$$

Задание к лабораторной работе

Задание 1. Разработайте алгоритм и напишите программы для нахождения конечных сумм или произведений:

№ вари-	Задание
анта	
1	$p = \prod_{i=1}^{n} \sin(\frac{i\pi}{3}x)$, при $x = 1.1$;
2	$d = \prod_{i=1}^{m} \left 1 + \frac{1}{x^i} \right $, при $x = 2$;
3	$k = \prod_{i=1}^{n} (1 + \sqrt{i \cdot x})$
4	$s = \sum_{j=-5}^{5} (x^{j} + y^{j})$ $t = \sum_{k=2}^{5} \sqrt[k]{x}$ $r = \sum_{k=2}^{10} a^{i} \cos(\frac{\pi}{x})$
5	$t = \sum_{k=2}^{5} \sqrt[k]{x}$, при x = 4;
6	$r = \sum_{i=0}^{10} a^i \cos(\frac{\pi}{i+1})$, при $a = 1.2$.
7	$q = \sum_{k=-10}^{10} e^{\frac{\pi k}{4}x + \frac{\pi}{6}}$, при $x = 1$;
8	$d = \prod_{i=1}^{m} \left 1 + x^{\frac{i}{m}} \right $, при $x = 0.1$

$$s = \sum_{j=-5}^{m} \left(\frac{x}{|j|+1} + y\right), \text{ при x = -1; y = 1;}$$

$$k = \prod_{j=1}^{n} \left(1 + \cos\left(\frac{n}{6}x + \frac{1}{n}\right)\right), \text{ при x = } \pi/2$$

 $\it 3adanue~2$. Разработайте алгоритм и напишите программы для решения следующих задач.

№ вари-	Задание
анта	
1	Вычислить сумму цифр числа <i>n</i> .
2	Вывести на печать все делители числа <i>n</i> .
3	Определить, сколько раз цифра <i>d</i> встречается в десятич-
	ной записи числа n.
4	Вычистить произведение цифр числа <i>п</i> .
5	Найти наибольший общий делитель двух чисел.
6	Найти наименьшее общее кратное двух чисел
7	Вывести представление целого числа в двоичной си-
	стеме счисления
8	Вывести представление целого числа в восьмеричной
	системе счисления
9	Вывести представление целого числа в шестнадцате-
	ричной системе счисления
10	Определить, является ли число n простым.

 $\it 3adanue\ 3.$ Разработайте алгоритм и напишите программы для решения следующих задач.

№ вари-	Задание
анта	
1	$p = \sum_{j=1}^{m} \prod_{i=1}^{n} \sin(\frac{i\pi}{3j}x)$
2	$d = \prod_{i=1}^{m} \sum_{j=1}^{n} \left 1 + \frac{1}{x^{i+j}} \right $

3	n m ; ;
	$k = \prod_{i=1}^{n} \prod_{j=1}^{m} (1 + \sqrt{\frac{ i-j }{i+j}} \cdot x)$
4	$s = \sum_{i=0}^{3} \sum_{j=-5}^{5} (x^{i} + y^{j})$
5	$t = \prod_{n=1}^{4} \sum_{k=2}^{5} \sqrt[k]{x^n}$
6	$r = \sum_{i=0}^{10} \prod_{j=0}^{10} a^{i} \cos(\frac{\pi}{i+j+1})$
7	$p = \prod_{i=1}^{n} \sum_{j=-1}^{m+1} \cos(\frac{i\pi}{4}x + \frac{j}{6})$
8	$t = \prod_{n=1}^{4} \sum_{k=2}^{5} \sqrt[3]{(x+k)^n}$
9	$k = \prod_{i=1}^{n} \prod_{j=1}^{m} (1 + \sqrt{\frac{ i-j }{i+j} \cdot x})$
10	$S = \sum_{i=-1}^{1} \sum_{j=-1}^{1} (x^{i+j} y^{j-i})$