U.S.T.H.B. 2013-2014 Semestre 1

Faculté de Mathématiques

 $\mathbf{Math}\ \mathbf{3}:\ \mathbf{S\acute{e}ries}$

 $2^{\rm \grave{e}me}$ Lic, ST-GM, Section L

Examen final - 16 janvier 2014. Durée: 1h 30 minutes

Nom:		Matricule:		
Prénom:		Groupe :		
Exercice 1 (5 points)	: Quelle est la nature	des séries numériques	s suivantes :	
	$+\infty$ n^2	$+\infty$ \sim 2	+∞	

1)
$$\sum_{n=1}^{+\infty} \left(\frac{n+1}{n}\right)^{n^2}$$
 2) $\sum_{n=0}^{+\infty} \frac{(n!)^2}{(2n)!}$ 3) $\sum_{n=0}^{+\infty} e^{-\sqrt{n}}$

Exercice 2 (5 points):

- a) Étudier la convergence et la convergence absolue de $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^{\alpha}}$, $\alpha \in \mathbb{R}$.
- b) Calculer les sommes partielles $S_{2n} = \sum_{k=2}^{2n} \operatorname{Log}\left(1 + \frac{(-1)^k}{k}\right)$ et $S_{2n+1} = \sum_{k=2}^{2n+1} \operatorname{Log}\left(1 + \frac{(-1)^k}{k}\right)$, puis en déduire la nature de la série $\sum_{n=2}^{+\infty} \operatorname{Log}\left(1 + \frac{(-1)^n}{n}\right)$.

Exercice 3 (5 points):

- a) Calculer le rayon de convergence R de $\sum_{n=0}^{+\infty} (n^2 + n + 1) x^n$ et étudier sa convergence en $x = \pm R$.
- **b)** Calculer les sommes $\sum_{n=0}^{+\infty} nx^n$ et $\sum_{n=0}^{+\infty} n^2x^n$. <u>Indication</u>. Noter que $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}, x \in]-R, R[$.
- c) En déduire la somme $\sum_{n=0}^{+\infty} (n^2 + n + 1) x^{2n}.$

Exercice 4 (5 points) : Soit f la fonction 2π -périodique définie par

$$f(x) = \begin{cases} 0 & \text{si} \quad x \in]-\pi, 0], \\ 1 & \text{si} \quad x \in]0, \pi]. \end{cases}$$

- a) Tracer le graphe de la fonction f pour $x \in [-3\pi, 3\pi]$.
- **b)** Calculer les coefficients de Fourier a_n et b_n puis en déduire a_{2n}, a_{2n+1}, b_{2n} et b_{2n+1} .
- c) Écrire la série de Fourier σf associée à f et étudier sa convergence en $x=0,\frac{\pi}{2},\pi$.
- d) En déduire la somme de la série numérique $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$.
- e) En appliquant l'égalité de Parseval $\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx$,

calculer
$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}.$$

U.S.T.H.B. 2013-2014 Semestre 1

Faculté de Mathématiques

Math 3 : Séries

2^{ème} Lic, ST-GM, Section L

Examen final - 16 janvier 2014. Durée: 1h 30 minutes

Nom:	Matricule:
Prénom:	Groupe :

Exercice 1 (5 points): 1) 1,5 pts. 2) 2 pts. 3) 1,5 pts.

Quelle est la nature des séries numériques suivantes :

1)
$$\sum_{n=1}^{+\infty} \left(\frac{n+1}{n}\right)^{n^2}$$
 2) $\sum_{n=0}^{+\infty} \frac{(n!)^2}{(2n)!}$ 3) $\sum_{n=0}^{+\infty} e^{-\sqrt{n}}$

Réponse.

1) Le terme général $u_n = \left(\frac{n+1}{n}\right)^{n^2} > 0$ pour $n \ge 1$. En utilisant le critère de Cauchy

$$l = \lim_{n \to +\infty} \sqrt[n]{u_n} = \lim_{n \to +\infty} \left(u_n \right)^{\frac{1}{n}} = \lim_{n \to +\infty} \left(\left(\frac{n+1}{n} \right)^{n^2} \right)^{\frac{1}{n}} = \lim_{n \to +\infty} \left(\frac{n+1}{n} \right)^{\frac{n^2}{n}}$$
$$= \lim_{n \to +\infty} \left(\frac{n+1}{n} \right)^n = e \simeq 2,72 > 1.$$

Comme l > 1, alors la série $\sum_{n=1}^{+\infty} \left(\frac{n+1}{n}\right)^{n^2}$ est divergente.

2) Le terme général $u_n = \frac{(n!)^2}{(2n)!} > 0$ pour $n \ge 0$. En appliquant le critère de D'Alembert

$$l = \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \left(u_{n+1} \cdot \frac{1}{u_n} \right) = \lim_{n \to +\infty} \left(\frac{((n+1)!)^2}{(2(n+1))!} \cdot \frac{(2n)!}{(n!)^2} \right)$$

$$= \lim_{n \to +\infty} \left(\frac{(n+1)^2 (n!)^2}{(2n+2) (2n+2) \cdot (2n)!} \cdot \frac{(2n)!}{(n!)^2} \right) = \lim_{n \to +\infty} \frac{(n+1)^2}{(2n+2) (2n+2)}$$

$$= \lim_{n \to +\infty} \frac{n^2}{4n^2} = \frac{1}{4} < 1.$$

Comme l < 1, alors la série $\sum_{n=0}^{+\infty} \frac{(n!)^2}{(2n)!}$ est convergente.

3) On utilise la règle de Riemann pour cette série.

On a le terme général $u_n=e^{-\sqrt{n}}>0$ pour $n\geq 0$ et $\lim_{n\to +\infty}n^2u_n=\lim_{n\to +\infty}n^2e^{-\sqrt{n}}=0$, alors il existe M>0 tel que $n^2e^{-\sqrt{n}}\leq M$ pour tout $n\geq 0$. Ce qu'implique que

$$e^{-\sqrt{n}} \le \frac{M}{n^2}$$
 pour tout $n \ge 0$.

Alors la série $\sum_{n=0}^{+\infty} e^{-\sqrt{n}}$ est convergente.

Exercice 2 (5 points): a) 2 pts. b) 3 pts.

a) Étudier la convergence et la convergence absolue de $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^{\alpha}}$, $\alpha \in \mathbb{R}$.

b) Calculer les sommes partielles $S_{2n} = \sum_{k=2}^{2n} \operatorname{Log}\left(1 + \frac{(-1)^k}{k}\right)$ et $S_{2n+1} = \sum_{k=2}^{2n+1} \operatorname{Log}\left(1 + \frac{(-1)^k}{k}\right)$, puis en déduire la nature de la série $\sum_{n=2}^{+\infty} \operatorname{Log}\left(1 + \frac{(-1)^n}{n}\right)$.

Réponse.

- a) Le terme général $u_n = \frac{(-1)^n}{n^{\alpha}}$.
 - Si $\alpha \leq 0$, la limite $\lim_{n \to +\infty} u_n$ n'existe pas car

$$\lim_{n \to +\infty} u_{2n} = \lim_{n \to +\infty} \frac{1}{(2n)^{\alpha}} = \begin{cases} +\infty & \text{si } \alpha < 0, \\ 1 & \text{si } \alpha = 0, \end{cases}$$

 et

$$\lim_{n \to +\infty} u_{2n+1} = \lim_{n \to +\infty} \frac{-1}{(2n+1)^{\alpha}} = \begin{cases} -\infty & \text{si } \alpha < 0, \\ -1 & \text{si } \alpha = 0. \end{cases}$$

Alors, la série $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^{\alpha}}$, $\alpha \leq 0$ est divergente, donc à priori n'est pas absolument convergente.

- Si $\alpha > 1$, on a $\sum_{n=1}^{+\infty} \left| \frac{(-1)^n}{n^{\alpha}} \right| = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$ qu'est une série de Riemann convergente. Alors, la série $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^{\alpha}}$ est absolument convergente pour $\alpha > 1$.
- Si $0 < \alpha \le 1$, La suite $(|u_n|)_n = \left(\frac{1}{n^{\alpha}}\right)_n$ est décroissante et tend vers 0. Donc d'après le critère de Leibniz la série $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^{\alpha}}$ est convergente. Comme elle n'est pas absolument convergente, alors elle est semi convergente.
- b) Les sommes partielles sont

$$S_{2n} = \sum_{k=2}^{2n} \text{Log} \left(1 + \frac{(-1)^k}{k} \right)$$

$$= \text{Log} \left(1 + \frac{1}{2} \right) + \text{Log} \left(1 - \frac{1}{3} \right) + \text{Log} \left(1 + \frac{1}{4} \right) + \text{Log} \left(1 - \frac{1}{5} \right) + \dots + \text{Log} \left(1 + \frac{1}{2n} \right)$$

$$= \text{Log} \frac{3}{2} + \text{Log} \frac{2}{3} + \text{Log} \frac{5}{4} + \text{Log} \frac{4}{5} + \dots + \text{Log} \frac{2n+1}{2n}$$

$$= \text{Log} \left(\frac{3}{2} \cdot \frac{2}{3} \cdot \frac{5}{4} \cdot \frac{4}{5} \cdot \dots \cdot \frac{2n+1}{2n} \right) = \text{Log} \frac{2n+1}{2n}$$

 et

$$S_{2n+1} = \sum_{k=2}^{2n+1} \text{Log}\left(1 + \frac{(-1)^k}{k}\right)$$

$$= \text{Log}\left(1 + \frac{1}{2}\right) + \text{Log}\left(1 - \frac{1}{3}\right) + \dots + \text{Log}\left(1 - \frac{1}{2n-1}\right) + \text{Log}\left(1 + \frac{1}{2n}\right) + \text{Log}\left(1 - \frac{1}{2n+1}\right)$$

$$= \text{Log}\frac{3}{2} + \text{Log}\frac{2}{3} + + \dots + \text{Log}\frac{2n+1}{2n} + \text{Log}\frac{2n}{2n+1}$$

$$= \text{Log}\left(\frac{3}{2} \cdot \frac{2}{3} \cdot \dots \cdot \frac{2n+1}{2n} \cdot \frac{2n}{2n+1}\right) = \text{Log}1 = 0.$$

Alors,

$$S_n = \sum_{k=2}^n \operatorname{Log}\left(1 + \frac{(-1)^k}{k}\right) = \begin{cases} \operatorname{Log}\frac{2n+1}{2n} & \text{si } n \text{ est pair,} \\ 0 & \text{si } n \text{ est impair.} \end{cases}$$

On en déduit que $\lim_{n\to+\infty} S_n=0$. Par conséquent, la série $\sum_{n=2}^{+\infty} \operatorname{Log}\left(1+\frac{(-1)^n}{n}\right)$ est convergente et sa somme S=0.

Exercice 3 (5 points): a) 1,5. pts b) 2 pts. c) 1,5 pts.

a) Calculer le rayon de convergence R de $\sum_{n=0}^{+\infty} (n^2 + n + 1) x^n$ et étudier sa convergence en $x = \pm R$.

b) Calculer les sommes
$$\sum_{n=0}^{+\infty} nx^n$$
 et $\sum_{n=0}^{+\infty} n^2x^n$. Indication. Noter que $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}, x \in]-R, R[$.

c) En déduire la somme $\sum_{n=0}^{+\infty} (n^2 + n + 1) x^{2n}.$

Réponse.

a) On a $a_n = n^2 + n + 1$ et

$$\frac{1}{R} = \lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \left| \frac{(n+1)^2 + (n+1) + 1}{n^2 + n + 1} \right| = \lim_{n \to +\infty} \frac{n^2 + 3n + 3}{n^2 + n + 1} = 1,$$

donc $R = \frac{1}{1} = 1$.

Pour x = R = 1, on a $\sum_{n=0}^{+\infty} (n^2 + n + 1) x^n = \sum_{n=0}^{+\infty} (n^2 + n + 1)$ qu'est divergente car

$$\lim_{n \to +\infty} \left(n^2 + n + 1 \right) = +\infty \neq 0.$$

Pour x = -R = -1, on a $\sum_{n=0}^{+\infty} (n^2 + n + 1) x^n = \sum_{n=0}^{+\infty} (n^2 + n + 1) (-1)^n$ qu'est divergente car

$$\lim_{n \to +\infty} (n^2 + n + 1) (-1)^n \text{ n'existe pas.}$$

b) On a $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$. Par dérivation on a $\sum_{n=1}^{+\infty} nx^{n-1} = \left(\frac{1}{1-x}\right)' = \frac{1}{(1-x)^2}$. En multipliant par x,

on obtient $\sum_{n=0}^{+\infty} nx^n = \frac{x}{(1-x)^2}$. Dérivant à nouveau, on a $\sum_{n=1}^{+\infty} n^2x^{n-1} = \frac{1+x}{(1-x)^3}$. Une autre fois on

multiplie par x et on obtient $\sum_{n=0}^{+\infty} n^2 x^n = \frac{x+x^2}{(1-x)^3}$

c) On a

$$\sum_{n=0}^{+\infty} (n^2 + n + 1) x^n = \sum_{n=0}^{+\infty} n^2 x^n + \sum_{n=0}^{+\infty} n x^n + \sum_{n=0}^{+\infty} x^n$$
$$= \frac{x + x^2}{(1 - x)^3} + \frac{x}{(1 - x)^2} + \frac{1}{1 - x} = \frac{1 + x^2}{(1 - x)^3}$$

Par suit, en remplaçant x par x^2 , on déduit que

$$\sum_{n=0}^{+\infty} (n^2 + n + 1) x^{2n} = \frac{1 + x^4}{(1 - x^2)^3}.$$

Exercice 4 (5 points): a) 1 pt. b) 2 pts. c) 1 pt. d) 0.5 pt. e) 0.5 pt.

Soit f la fonction 2π -périodique définie par

$$f(x) = \begin{cases} 0 & \text{si} \quad x \in]-\pi, 0], \\ 1 & \text{si} \quad x \in]0, \pi]. \end{cases}$$

- a) Tracer le graphe de la fonction f pour $x \in [-3\pi, 3\pi]$.
- b) Calculer les coefficients de Fourier a_n et b_n puis en déduire a_{2n}, a_{2n+1}, b_{2n} et b_{2n+1} .
- c) Écrire la série de Fourier σf associée à f et étudier sa convergence en $x=0,\frac{\pi}{2},\pi$.
- d) En déduire la somme de la série numérique $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$.
- e) En appliquant l'égalité de Parseval $\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx$, calculer $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$.

Réponse.

a)

b) La fonction 2π -périodique f n'est ni paire ni impaire.

Alors les coefficients de Fourier sont donnés par

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{\pi} 1 dx = \frac{1}{\pi} [x]_{0}^{\pi} = 1,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{1}{\pi} \int_{0}^{\pi} \cos(nx) dx = \left[\frac{1}{\pi} \frac{\sin(nx)}{n} \right]_{0}^{\pi} = 0$$

 et

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx = \frac{1}{\pi} \int_{0}^{\pi} \sin(nx) dx = \left[-\frac{1}{\pi} \frac{\cos(nx)}{n} \right]_{0}^{\pi}$$
$$= \frac{-\cos(n\pi)}{\pi n} - \left(\frac{-1}{\pi n} \right) = \frac{1 - (-1)^n}{\pi n}.$$

On remarque que $a_{2n} = 0$, $a_{2n+1} = 0$, $b_{2n} = 0$ et $b_{2n+1} = \frac{2}{\pi (2n+1)}$.

c) La série de Fourier σf associée à f est

$$\sigma f(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right] = \frac{a_0}{2} + \sum_{n=1}^{+\infty} b_n \sin(nx)$$
$$= \frac{a_0}{2} + \sum_{n=0}^{+\infty} b_{2n+1} \sin((2n+1)x) = \frac{1}{2} + \sum_{n=0}^{+\infty} \frac{2}{\pi (2n+1)} \sin((2n+1)x).$$

Le fonction f est continue en $\frac{\pi}{2}$, les points de discontinuité sont 0 et π et on a

$$f(0-0) = 0$$
, $f(0+0) = 1$, $f(\pi-0) = 1$, $f(\pi+0) = 0$.

La fonction f est dérivable en $\frac{\pi}{2}$. En 0 on a

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0 - 0)}{x - 0} = \lim_{x \to 0^{-}} \frac{0 - 0}{x} = 0 \text{ et } \lim_{x \to 0^{+}} \frac{f(x) - f(0 + 0)}{x - 0} = \lim_{x \to 0^{+}} \frac{1 - 1}{x} = 0,$$

et de même en π :

$$\lim_{x \to \pi^{-}} \frac{f(x) - f(\pi - 0)}{x - \pi} = \lim_{x \to \pi^{-}} \frac{1 - 1}{x - \pi} = 0 \text{ et } \lim_{x \to \pi^{+}} \frac{f(x) - f(\pi + 0)}{x - \pi} = \lim_{x \to \pi^{+}} \frac{0 - 0}{x - \pi} = 0.$$

d) La fonction f vérifie les conditions de Dirichlet en 0, $\frac{\pi}{2}$ et π , donc sa série de Fourier associée est convergente en ces points. Pour $x = \frac{\pi}{2}$ on a

$$\sigma f\left(\frac{\pi}{2}\right) = \frac{1}{2} + \sum_{n=0}^{+\infty} \frac{2}{\pi (2n+1)} \sin\left((2n+1)\frac{\pi}{2}\right) = 1.$$

Comme $\sin\left((2n+1)\frac{\pi}{2}\right) = (-1)^n$, il vient

$$\frac{1}{2} + \sum_{n=0}^{+\infty} \frac{2}{\pi (2n+1)} (-1)^n = 1.$$

On en déduit

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}.$$

e) En appliquant l'égalité de Parseval $\frac{a_0^2}{2} + \sum_{n=1}^{+\infty} (a_n^2 + b_n^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx$, il vient

$$\frac{a_0^2}{2} + \sum_{n=0}^{+\infty} (b_{2n+1})^2 = \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx = \frac{1}{\pi} \int_{0}^{\pi} 1 dx = \frac{1}{\pi} (\pi) = 1.$$

en remplaçant a_0 et b_{2n+1} par leur valeurs, on obtient

$$\frac{1}{2} + \sum_{n=0}^{+\infty} \frac{4}{\pi^2 (2n+1)^2} = 1,$$

d'où

$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}.$$