Solubility Problems SOLUTIONS

- 1. Write balanced chemical equations and the K_{sp} expressions for the dissolving of the following compounds in
 - a) sodium sulfide

$$Na_2S_{(s)} \rightleftharpoons 2 Na^+_{(aq)} + S^{2-}_{(aq)}$$
 $K_{sp} = [Na^+]^2[S^{2-}]$

b) calcium iodide

$$Cal_{2(s)} \rightleftharpoons Ca^{2+}_{(aq)} + 2I_{(aq)}^{-}$$
 $K_{sp} = [Ca^{2+}][I]^{2}$

c) lithium carbonate

$$Li_2CO_{3(s)} \rightleftharpoons 2 Li^+_{(aq)} + CO_3^{2-}_{(aq)}$$
 $K_{sp} = [Li^+]^2[CO_3^{2-}]$

d) iron(II) sulfate

$$FeSO_{4(s)} \rightleftharpoons Fe^{2^{+}}_{(aq)} + SO_{4}^{2^{-}}_{(aq)}$$
 $K_{sp} = [Fe^{2^{+}}][SO_{4}^{2^{-}}]$

e) cobalt(II) nitrate

$$Co(NO_3)_{2(s)} = Co^{2+}_{(aq)} + 2 NO_3^{-}_{(aq)}$$
 $K_{sp} = [Co^{2+}][NO_3^{-}]^2$

f) barium phosphate

$$Ba_3(PO_4)_{2(s)} \Rightarrow 3 Ba^{2+}_{(aq)} + 2 PO_4^{3-}_{(aq)} K_{sp} = [Ba^{2+}]^3[PO_4^{3-}]^2$$

- 2. What are the concentrations of the resulting ions in saturated aqueous solutions of the following compounds?
 - a) lead (II) sulfate

$$\begin{array}{cccc} PbSO_{4(s)} \rightleftharpoons Pb^{2+}_{(aq)} + SO_{4}^{2-}_{(aq)} \\ & x & x \\ K_{sp} = [Fe^{2+}][SO_{4}^{2-}] \\ 1.8x10^{-8} = x^2 \end{array}$$

b) silver carbonate

$$Ag_{2}CO_{3(s)} \rightleftharpoons 2 Ag^{+}_{(aq)} + CO_{3}^{2-}_{(aq)}$$

 $2x x$
 $K_{sp} = [Ag^{+}]^{2}[CO_{3}^{2-}]$
 $8.5 \times 10^{-12} = 4x^{3}$

c) magnesium hydroxide

$$Mg(OH)_{2(s)} \rightleftharpoons Mg^{2+}_{(aq)} + 2 OH^{-}_{(aq)}$$
 $x \qquad 2x$
 $K_{sp} = [Mg^{2+}][OH^{-}]^{2}$

 $[Pb^{2+}=1.3x10^{-4} M, SO_4^{2-}=1.3x10^{-4} M]$ $x=1.3x10^{-4} M$ therefore $[Pb^{2+}]=1.3x10^{-4} M$ and $[SO_4^{2-}]=$ 1.3x10⁻⁴ M

[$Ag^{+}=2.6x10^{-4} M$, $CO_{3}^{2-}=1.3x10^{-4} M$] $x=1.3x10^{-4} M$ therefore $[Ag^{+}]=2.6x10^{-4} M$ and $[CO_{3}^{2-}]=$ 1.3x10⁻⁴ M

[Mg²⁺=1.1x10⁻⁴ M, OH⁻= 2.2x10⁻⁴ M]
5.6x10⁻¹²=
$$4x^3$$

x=1.1x10⁻⁴ M
therefore [Mg²⁺]=1.1x10⁻⁴ M and [OH⁻]=
2.2x10⁻⁴ M

- 3. Calculate the K_{sp} values of the following substances from their solubility in water.
 - a) silver chloride with a solubility of 1.6x10⁻³g/L

silver chloride with a solubility of
$$1.6 \times 10^{-3} \text{g/L}$$
 [1.2x10⁻¹⁰]
$$\text{MM=} 143.32 \text{g/mol}$$

$$x = \frac{1.6 \times 10^{-3} \text{g/L}}{143.32 \text{ g/mol}}$$

$$x = 1.1 \times 10^{-5} \text{ mol/L}$$
 [1.2x10⁻¹⁰]
$$\text{AgCl}_{(s)} \rightleftharpoons \text{Ag}^+_{(aq)} + \text{Cl}^-_{(aq)}$$

$$x = x$$

$$\text{K}_{sp} = [\text{Ag}^+][\text{Cl}^-]$$

$$\text{K}_{sp} = x^2$$

$$\text{K}_{sp} = (1.1 \times 10^{-5})^2$$

$$\text{K}_{sp} = 1.2 \times 10^{-10}$$

b) lithium carbonate with a solubility of 13.0 g/L

$$x = \frac{13.0 \, g \, / L}{73.89 \, g \, / mol}$$

$$x = 0.18 \ mol/L$$

$$[2.3x10^{-2}]$$

$$Li_2CO_{3(s)} \rightleftharpoons 2 Li^+_{(aq)} + CO_3^{2-}_{(aq)}$$

2x x

$$K_{sp} = [Li^{+}]^{2}[CO_{3}^{2-}]$$

$$K_{sp} = 4x^3$$

$$K_{sp} = 4(0.18)^3$$

$$K_{sp} = 2.3 \times 10^{-2}$$

4. Calculate the concentrations of ions in saturated aqueous solutions of the following.

$$AgCl_{(s)} \rightleftharpoons Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$$

$$X \qquad X$$

$$K_{sp} = [Ag^+][CI^-]$$

[Ag⁺=9.2x10⁻⁹ M,
$$\Gamma$$
= 9.2x10⁻² M]
8.5x10⁻¹⁷= x^2

$$x = 9.2x10^{-9}$$

therefore $[Ag^+]=9.2x10^{-9} M$ and $[Cl^-]=9.2x10^{-9} M$

$$SrCO_{3(s)} \rightleftharpoons Sr^{2+}_{(aq)} + CO_3^{2-}_{(aq)}$$

 X
 $K_{sp} = [Sr^{2+}][CO_3^{2-}]$

[
$$Sr^{2+}=2.4x10^{-5} M, CO_3^{2-}=2.4x10^{-5} M$$
]
5.6x10⁻¹⁰= x²

$$x=2.4x10^{-5} M$$

therefore $[Sr^{2+}]=2.4x10^{-5}$ M and $[CO_3^{2-}]=2.4x10^{-5}$ M

5. What are the ion concentrations in saturated solutions of the following:

a) lead(II) iodide

$$PbI_{2(s)} \rightleftharpoons Pb^{2+}_{(aq)} + 2I^{-}_{(aq)}$$
 x
 $2x$
 $K_{sn} = [Pb^{2+}][I^{-}]^{2}$

$$8.5 \times 10^{-9} = 4 \times^{3}$$

 $\times = 1.3 \times 10^{-3} \text{ M}$

 $[Pb^{2+}=1.3x10^{-3} M, I=2.6x10^{-3} M]$

therefore $[Pb^{2+}]=1.3x10^{-3}$ M and $[I^{-}]=2.6x10^{-6}$ M

b) silver sulfate

$$Ag^{2}SO_{4(s)} \rightleftharpoons 2 Ag^{+}_{(aq)} + SO_{4}^{2-}_{(aq)}$$

 $2x x$
 $K_{sp} = [Ag^{+}]^{2}[SO_{4}^{2-}]$

[Ag⁺=2.8x10⁻² M,
$$SO_4^{2^-}$$
= 1.1x10⁻² M]

$$1.2x10^{-5}=4x^3$$

 $x=5.7x10^{-3}$ M

therefore $[Ag^+]=0.011 \text{ M}$ and $[SO_4^{2-}]=1.1 \times 10^{-2} \text{ M}$

c) iron(III) hydroxide

Fe(OH)_{3 (s)}
$$\rightleftharpoons$$
 Fe³⁺_(aq) + 3 OH⁻_(aq)
x 3x
K_{sp}= [Fe³⁺][OH⁻]³

$$[Fe^{3+}=9.9x10^{-11} M, OH^{-}=3.0x10^{-10} M]$$

$$2.6x10^{-39} = 27x^4$$

x=9.9x10⁻¹¹ M

therefore $[Fe^{3+}]=9.9x10^{-11} M$ and $[OH^{-}]=3.0x10^{-10} M$

6. Calculate the K_{sp} values of the substances below from their solubility in water:

a) thallium(I) chloride, 3.4 g/L at 25°C

MM=239.85 g/mol

$$x = \frac{3.4 \text{ g/L}}{239.85 \text{ g/mol}}$$

$$x = 0.014 \ mol/L$$

$$TICI_{(s)} \rightleftharpoons TI^{+}_{(aq)} + CI^{-}_{(aq)}$$
 $\times \times \times$

[2.0x10⁻⁴]

$$K_{sp} = [TI^{+}][CI^{-}]$$

$$K_{sp} = x^2$$

$$K_{sp} = (0.014)^2$$

$$K_{sp} = 2.0 \times 10^{-4}$$

b) silver bromide, 1.3x10⁻⁴ g/L at 20°C

MM=187.80 g/mol

$$x = \frac{1.3x10^{-4} g/L}{187.80 g/mol}$$

$$x = 6.9x10^{-7} mol/L$$

c) calcium fluoride, 1.6x10⁻² g/L at 20°C MM=78.80 g/mol

$$x = \frac{1.6x10^{-2} g/L}{78.80 g/mol}$$
$$x = 2.0x10^{-4} mol/L$$

$$[4.8x10^{-13}]$$

$$AgBr_{(s)} \rightleftharpoons Ag^{+}_{(aq)} + Br^{-}_{(aq)}$$

$$x$$

$$K_{sp} = [Ag^{+}][Br^{-}]$$

$$K_{sp} = x^{2}$$

$$K_{sp} = (6.9x10^{-7})^{2}$$

$$K_{sp} = 4.8x10^{-13}$$

$$[3.4x10^{-11}] \\ CaF_{2(s)} &\rightleftharpoons Ca^{2+}_{(aq)} + 2 \ F^{-}_{(aq)} \\ x & 2x \\ K_{sp} &= [Ca^{2+}][F^{-}] \\ K_{sp} &= 4x^{3} \\ K_{sp} &= 4(2.0x10^{-4})^{3} \\ K_{sp} &= 3.4x10^{-11}$$

7. Calculate the maximum iodide ion concentration for lead(II) iodide dissolved in a 1.00x10⁻² M solution of [9.2x10⁻⁴ M] lead(II) nitrate.

	$PbI_{2(s)}$	$\Rightarrow Pb^{2+}_{(aq)} +$	2 I (aq)
MR	1	1	2
1		0.0100	0
С		+x	+2x
E		0.0100+x	2x

$$K_{sp} = [Pb^{2+}][I^{-}]^{2}$$

8.5x10⁻⁹ = (1.00x10⁻² + *) [2x]²
x=4.6x10⁻⁴
 $[I^{-}]$ =9.2x10⁻⁴ M

8. Calculate the maximum barium ion concentration in a 0.010 M aqueous solution of sodium sulfate. The K_{sp} of barium sulfate is 1.1x10⁻¹¹. [1.1x10⁻⁹]

	BaSO ₄	$_{(s)} \Rightarrow Ba^{2+}_{(aq)}$	+ SO ₄ (aq)
MR	1	1	1
1		0	0.010
С		+x	+x
Е		х	0.010+x

$$K_{sp} = [Ba^{2+}][SO_4^{2-}]$$

1.1x10⁻¹¹=[Ba²⁺](0.010 + *)
[Ba²⁺]= 1.1x10⁻⁹

9. Calculate the maximum magnesium ion concentration in a 0.020 M aqueous solution of barium hydroxide. The K_{sp} of magnesium hydroxide is $1.2x10^{-11}$. [7.5x10⁻⁹]

Mg(0	$OH)_{2(s)} \rightleftharpoons$	$Mg^{2+}_{(aq)} + 2$	OH ⁻ (aq)
MR	1	1	2
1		0	0.040
С		+x	+2x
Ε		Х	0.040+2x

$$0.040/K_{sp} > 1000$$
, approx. works

$$K_{sp} = [Mg^{2+}][OH^{-}]^{2}$$

1.2x10⁻¹¹= $[Mg^{2+}](0.040 + \frac{2x}{2})^{2}$
 $[Mg^{2+}] = 7.5x10^{-9} M$

10. Upon addition of hydroxide ions to sea water, Mg(OH)₂ precipitates. If the magnesium ion concentration in sea water is 5.3x10⁻² M, calculate the maximum hydroxide ion concentration in sea water. [1.0x10⁻⁵]

$$\begin{split} & \text{Mg(OH)}_{2(s)} \rightleftharpoons \text{Mg}^{2^{+}}_{(aq)} + 2 \text{ OH}^{-}_{(aq)}, \quad [\text{Mg}^{2^{+}}] = 5.3 \text{x} 10^{-2} \text{ M} \\ & \text{K}_{sp} = [\text{Mg}^{2^{+}}][\text{OH}^{-}]^{2} \\ & 5.6 \text{x} 10^{-12} = [5.3 \text{x} 10^{-2}] \text{ [OH}^{-}]^{2} \\ & [\text{Mg}^{2^{+}}] = 1.0 \text{x} 10^{-5} \end{split}$$

Name: _____

11. A sample of sea water contains 0.53 M of Cl $^{-1}$ ions and 8.4x10 $^{-4}$ M of Br $^{-1}$ ions. What concentration of added Ag $^{+1}$ ions would cause precipitation of AgCl and AgBr $^{-1}$? Which of these two halides would precipitate first? The K_{sp} for AgCl is 1.6x10 $^{-3}$ and the K_{sp} for AgBr is 6.5x10 $^{-13}$. [Cl $^{-1}$ 3.0x10 $^{-3}$ 8 Br $^{-1}$ 7.7x10 $^{-10}$ 9, AgBr precipitates first]

Since the K_{sp} for AgBr is smaller than the K_{sp} for AgCl, AgBr will precipitate first.

For Cl̄ For Br̄ $AgCl_{(s)} \rightleftharpoons Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$ $AgBr_{(s)} \rightleftharpoons Ag^{+}_{(aq)} + Br^{-}_{(aq)}$ $K_{sp} = [Ag^{+}][Cl^{-}]$ $K_{sp} = [Ag^{+}][Br^{-}]$ $6.5x10^{-13} = [Ag^{+}][8.4x10^{-4}]$ $[Ag^{+}] = 3.0x10^{-3} \text{ M}$ $[Ag^{+}] = 7.7x10^{-10} \text{ M}$

12. How many mg of Pb²⁺ must be present in 10.0 mL of 0.135 M NaCl solution for PbCl₂ to precipitate? [1.4 mg]

13. Will a precipitate of CaF_2 form when 0.084 g of sodium fluoride is dissolved in 1.00 L of a 0.010 M aqueous solution of calcium chloride. K_{sp} for calcium fluoride is 3.9×10^{-11} . [Q=4.0x10⁻⁸, yes a ppt will form]

14. In which of the following reactions does a precipitate form?

 $CaF_{2(s)} \rightleftharpoons Ca^{2+}_{(aq)} + 2 F_{(aq)}^{-}$

a) $10.0 \text{ mL of } 0.010 \text{ M AgNO}_3 \text{ and } 10.0 \text{ mL of } 0.10 \text{ M Na}_2\text{SO}_4$. (K_{so} for $Ag_2SO_4=1.2\times10^{-5}$) [Q=1.25x10⁻⁶]

$$\begin{split} [\mathsf{Ag}^+] = & (0.010 \text{ L})(0.010 \text{ M})/(0.020 \text{ L}) \\ &= 0.0050 \text{ M} \\ & \mathsf{K_{sp}} = [\mathsf{Ag}^+][\mathsf{SO_4}^{2^-}] \\ & \mathsf{Q} = [\mathsf{Ag}^+]_A^2[\mathsf{SO_4}^{2^-}]_A \\ [\mathsf{SO_4}^{2^-}] = & (0.010 \text{ L})(0.010 \text{ M})/(0.020 \text{ L}) \\ &= 0.050 \text{ M} \\ \mathsf{Ag_2SO_{4(s)}} &\rightleftharpoons 2 \text{ Ag}^+_{(aq)} + \mathsf{SO_4}^{2^-}_{(aq)} \end{split} \qquad \begin{aligned} &\mathsf{K_{sp}} = [\mathsf{Ag}^+][\mathsf{SO_4}^{2^-}] \\ &\mathsf{Q} = (0.0050 \text{ M})^2(0.050 \text{ M}) \\ &\mathsf{Q} = 1.25 \times 10^{-6} \\ &\mathsf{Q} \text{ is less than } \mathsf{K_{sp}} \text{ therefore no precipitate will form.} \end{aligned}$$

b) 1.0 mL of 0.10 M Ca(NO₃)₂ and 1.0 L of 0.010 M NaF. (K_{sp} for CaF₂ 3.45×10⁻¹¹) [Q=1.0x10⁻⁸]

 Name: _____

c) 5.0 mL of 0.0040 M AgNO₃ and 15 mL of a solution containing 1.5 mg of Br ions. $[Q=9.5x10^{-7}]$

[Ag⁺]=(0.0050 L)(0.0040 M)/(0.020 L) = 0.0010 M

n of Br =
$$(0.0015 \text{ g})/(79.90 \text{ g/mol})$$

= $1.9 \times 10^{-5} \text{ mol}$
[Br]= $(1.9 \times 10^{-5} \text{ mol})/(0.020 \text{ L})$
= $9.5 \times 10^{-4} \text{ M}$

 $AgBr_{(s)} \rightleftharpoons Ag^{+}_{(aq)} + Br^{-}_{(aq)}$

 $K_{sp} = [Ag^{+}][Br^{-}] = 5.4x10^{-13}$

 $Q=[Ag^{\dagger}]_{A}[Br^{-}]_{A}$

 $Q=(0.0010 \text{ M})(9.5 \times 10^{-4} \text{ M})$

 $Q=9.5x10^{-7} M$

Q is greater than K_{sp} therefore a precipitate will form.

15. Would you expect a precipitate of silver bromate ($K_{sp}=1.2 \times 10^{-11}$) to form when 50.0 mL of 0.0020 M silver nitrate is added to 250.0 mL of 0.020 M potassium bromate. [Q=5.6x10⁻⁶]

 $[Ag^{+}]=(0.050 \text{ L})(0.0020 \text{ M})/(0.300 \text{ L})$

 $= 3.3 \times 10^{-4} M$

[BrO₃-]=(0.250 L)(0.020 M)/(0.300 L) = 0.017 M

 $AgBrO_{3(s)} \rightleftharpoons Ag^{+}_{(aq)} + BrO_{3}^{-}_{(aq)}$

 $K_{sp} = [Ag^{+}][BrO_{3}^{-}] = 1.2x10^{-11}$

 $Q=[Ag^+]_A[BrO_3]_A$

 $Q=(3.3\times10^{-4} M)(0.0167 M)$

 $Q=5.6x10^{-6} M$

Q is greater than K_{sp} therefore a precipitate will form.

16. Will a precipitate of $Mg(OH)_2$ form when 1.00 mL of 0.010 M $Ca(OH)_2$ is added to 1.0 L of 0.20 M $Mg(NO_3)_2$. You may ignore the volume change caused by the addition of 1.00 mL. [Q=8.0x10⁻¹¹]

 $[Mg^{2+}]=(1.0 L)(0.20 M)/(1.00 L)$

= 0.20 M

 $[OH^{-}]=(2)(0.0010 L)(0.010 M)/(1.00 L)$ = 2.0x10⁻⁵ M

 $Mg(OH)_{2(s)} \rightleftharpoons Mg^{2+}_{(aq)} + 2 OH^{-}_{(aq)}$

 $K_{sp} = [Mg^{2+}][OH^{-}]^{2} = 3.45 \times 10^{-11}$

 $Q = [Mg^{2+}]_A [OH^{-}]_A^2$

 $Q = (0.20 \text{ M})(2.0 \times 10^{-5} \text{ M})^2$

 $Q = 8.0 \times 10^{-11}$

Q is greater than K_{sp} therefore a precipitate will form.

17. One litre of solution has 100.0 mg of Ba²⁺ and 10.0 g of Sr²⁺. Within what range must the [CrO₄²⁻] be to precipitate barium without precipitating strontium. (K_{sp} BaCrO₄=1.2x10⁻¹⁰ K_{sp} SrCrO₄=3.6x10⁻⁵) [1.6x10⁻⁷ M < [CrO₄²⁻] < 3.3x10⁻⁴M]

Since the K_{sp} for BaCrO₄ is smaller than the K_{sp} for SrCrO₄, BaCrO₄ will precipitate first.

For Ba²⁺

n of Ba²⁺ = (0.100 g)/137.33g/mol) = $7.3x10^{-4}$ mol [Ba²⁺]=($7.3x10^{-4}$ mol)/1.0 L = $7.3x10^{-4}$ M

$$\begin{split} & \mathsf{BaCrO_{4\,(s)}} \rightleftharpoons \mathsf{Ba^{2^+}}_{(\mathsf{aq})} + \mathsf{CrO_4}^{2^-}_{(\mathsf{aq})} \\ & \mathsf{K_{sp}} = [\mathsf{Ba^{2^+}}][\;\mathsf{CrO_4}^{2^-}] \\ & 1.2 x 10^{-10} = [7.3 x 10^{-4} \;\mathsf{M}] \;[\;\mathsf{CrO_4}^{2^-}] \end{split}$$

 $[CrO_4^{2-}]=1.6x10^{-7} M$

Therefore $1.6x10^{-7} \text{ M} < [\text{CrO}_4^{\ 2^-}] < 3.3x10^{-4} \text{M}$

For Sr²⁺

n of Ba²⁺ = (10.0 g)/87.62g/mol) = 0.11 mol

[Ba²⁺]=(0.11 mol)/1.0 L = 0.11 M

 $SrCrO_{4(s)} \rightleftharpoons Sr^{2+}_{(aq)} + CrO_4^{2-}_{(aq)}$

 $K_{sp} = [Sr_{-}^{2+}][CrO_4^{2-}]$

 $3.6x10^{-5} = [0.11 \text{ M}] [\text{CrO}_4^{2-}]$

 $[CrO_4^{2-}]=3.3x10^{-4} M$

18. A 0.010 M aqueous solution of Na_2SO_4 is added one drop at a time to 1.00 L of 0.0010 M lead(II) nitrate. What is the minimum volume of sodium sulfate that must be added to form a precipitate of lead(II) sulfate. The K_{sp} for lead(II) sulfate is 1.3×10^{-8} . [1.3 mL]

$$\begin{split} \text{PbSO}_{4\,\text{(s)}} &\rightleftharpoons \text{Pb}^{2^{+}}\text{(aq)} + \text{SO}_{4}^{2^{-}}\text{(aq)} \\ \text{K}_{\text{sp}} &= [\text{Pb}^{2^{+}}][\text{SO}_{4}^{2^{-}}] \\ 1.3\text{x}10^{-8} &= (0.0010 \text{ M}) [\text{SO}_{4}^{2^{-}}] \\ [\text{SO}_{4}^{2^{-}}] &= 1.3\text{x}10^{-5} \end{split}$$

To determine the volume of 0.01M Na₂SO₄

$$c_1v_1=c_2v_2$$

 $v_1=c_2v_2/c_1$
 $v_1=(1.3\times10^{-5})(1.00L)/(0.010 M)$
 $v_1=1.3\times10^{-3} L = 1.3 mL$

19. Compare the molar solubility of Pbl₂ in a) pure water and b) in 0.10 M Nal.

[a) 1.3x10⁻³, b) 8.5x10⁻⁷]

a) in pure water

$$PbI_{2(s)} \rightleftharpoons Pb^{2+}_{(aq)} + 2I^{-}_{(aq)}$$

$$x 2x$$

$$K_{sp} = [Pb^{2+}][I^{-}]^{2}$$

$$8.5x10^{-9} = 4x^{3}$$

$$x = 1.3x10^{-3}$$

Therefore the molar solubility in water is 1.3x10⁻³ M.

b) in 0.10 M NaI $K_{sp} = 8.5 \times 10^{-9}$

	$Pbl_{2(s)} =$	= Pb ²⁺ _(aq) +	⊦ 2 I (aq)
MR	1	1	2
ı		0	0.10
С		+x	+x
E		Х	0.10+x

 $0.10/K_{sp} > 1000$, approx. works

$$K_{sp} = [Pb^{2+}][1]^2$$

8.5x10⁻⁹= x(0.10+x)²
8.5x10⁻⁹= x(0.10+ *)²
x= 8.5x10⁻⁷

Therefore the molar solubility in 0.10 Nal is 8.5x10⁻⁷M

20. How many grams of SrCO₃ will dissolve in 250 mL of 0.080 mol/L SrNO₃?

 $[2.6x10^{-7} g]$

	SrCO _{3(s)}	\Rightarrow $Sr^{2+}_{(aq)} +$	CO_3^{2-} (aq)
MR	1	1	1
1		0.080	0
С		+x	+χ
E		0.080+x	Х

 $0.080/K_{sp} > 1000$, approx. works $K_{sp} = 5.6 \times 10^{-10}$

$$K_{sp} = [Sr^{2+}][CO_3^{2-}]$$

5.6x10⁻¹⁰=(0.080+ *)(x)
x= 7.0x10⁻⁹

MM=147.63 g/mol m=nMM m=(1.8x10⁻⁹ mol)(147.63 g/mol) m=2.6x10⁻⁷ g

21. For each of the following substances, calculate the milligrams per millilitre of metallic ion that can remain at equilibrium in a solution having a $[OH^{-}]=1.0x10^{-4}$.

a)
$$Zn(OH)_2$$
, $K_{sp}=4.3x10^{-17}$

 $[2.8x10^{-7}mg/mL]$

$$\begin{split} &Zn(OH)_{2(s)} = Zn^{2+}_{(aq)} + 2 \; OH^{-}_{(aq)} \\ &K_{sp} = [Zn^{2+}][OH^{-}]^{2} \\ &4.3x10^{-17} = [Zn^{2+}](1.0x10^{-4})^{2} \\ &[Zn^{2+}] = 4.3x10^{-9} \; M \end{split}$$

sol =
$$(4.3x10^{-9} \text{ mol/L})(65.38 \text{ g/mol})$$

= $2.8x10^{-7} \text{ g/L}$
= $2.8x10^{-7} \text{ mg/mL}$

Name: __

b) Fe(OH)₃, K_{sp}=2.6x10⁻³⁹

 $[1.5x10^{-25} \text{ mg/mL}]$

Fe(OH)_{3(s)} \Rightarrow Fe³⁺_(aq) + 3 OH⁻_(aq) K_{sp}=[Fe³⁺][OH⁻]³ 2.6x10⁻³⁹=[Fe³⁺](1.0x10⁻⁴)³ $[Fe^{3+}]=2.6x10^{-27} M$

 $sol = (2.6x10^{-27} mol/L)(55.85 g/mol)$ $= 1.5 \times 10^{-25} \text{ g/L}$ $=1.5x10^{-25}$ mg/mL

c) $Mg(OH)_2$, $K_{sp}=5.6\times10^{-12}$

 $[1.4x10^{-2} \text{ mg/mL}]$

 $Mg(OH)_{2(s)} \rightleftharpoons Mg^{2+}_{(aq)} + 2 OH^{-}_{(aq)}$

 $K_{sp} = [Mg^{2+}][OH^{-}]^{2}$ $5.6x10^{-12} = [Mg^{2+}](1.0x10^{-4})^2$ $[Mg^{2+}]=5.6x10^{-4} M$

 $sol = (5.6x10^{-4} mol/L)(24.31 g/mol)$ $= 1.4 \times 10^{-2} \text{ g/L}$ =1.4x10⁻² mg/mL

22. Calculate the [Ag⁺] needed to begin precipitation of each of the following anions from solutions containing 1 mg of anion per mL of solution.

a) Br

[4.2x10⁻¹¹]

n of $Br^{-} = 0.0010 \text{ g}/79.90 \text{ g/mol}$ $= 1.3 \times 10^{-5} \text{ mol}$ $[Br^{-}]=1.3x10^{-5}/0.0010L$ $= 1.3 \times 10^{-2} M$

 $AgBr_{(s)} \rightleftharpoons Ag^{+}_{(aq)} + Br^{-}_{(aq)}$ $K_{sp} = [Ag^{\dagger}][Br^{\dagger}]$ $5.4x10^{-13}=[Ag^{+}][1.3x10^{-2}M]$ $[Ag^{+}]=4.2x10^{-11} M$

b) S^{2-} ($K_{sn}=1.8\times10^{-50}$) [7.6x10⁻²⁵]

n of $S^{2-} = 0.0010 \text{ g/}32.06 \text{ g/mol}$ $= 3.1 \times 10^{-5} \text{ mol}$ $[S^{2}]=3.1\times10^{-5}/0.0010L$ $= 3.1 \times 10^{-2} M$

 $Ag_2S_{(s)} \rightleftharpoons 2 Ag^+_{(aq)} + S^{2-}_{(aq)}$ $K_{sp} = [Ag^{+}]^{2}[S^{2-}]$ $1.8 \times 10^{-50} = [Ag^{+}]^{2} [3.1 \times 10^{-2} M]$ $[Ag^{+}]=7.6x10^{-25} M$

c) BrO₃ [6.8x10⁻³]

n of $BrO_3 = 0.0010 \text{ g}/127.90 \text{ g/mol}$ $= 7.8 \times 10^{-6} \text{ mol}$ $[BrO_3^-]=7.8x10^{-6}/0.0010L$ $= 7.8 \times 10^{-3} M$

 $AgBr_{(s)} \rightleftharpoons Ag^{+}_{(aq)} + BrO_{3}^{-}_{(aq)}$ $K_{sp} = [Ag^+][BrO_3^-]$ $5.3x10^{-5}=[Ag^{+}][7.8x10^{-3} M]$ $[Ag^{+}]=6.8x10^{-3} M$

d) CrO₄²⁻ [1.2x10⁻⁵]

n of CrO_4^{2-} = 0.0010 g/116.00 g/mol $= 8.6 \times 10^{-6} \text{ mol}$ $[CrO_4^{2-}]=8.6x10^{-6}/0.0010L$ $= 8.6 \times 10^{-3} \text{ M}$

 $Ag_2CrO_{4(s)} \rightleftharpoons 2 Ag^+_{(aq)} + CrO_4^{2-}_{(aq)}$ $K_{sp} = [Ag^{+}]^{2} [CrO_{4}^{2}]$ $1.1x10^{-12} = [Ag^{+}]^{2} [7.8x10^{-3} M]$ $[Ag^{+}]=1.2x10^{-5} M$

23. What is the solubility in mol/L of AgBr in a solution resulting from the addition of 50.0 mL of 0.010 CaBr₂ to 50.0 mL of 0.0080 M AgNO₃? (K_{sp} =5.4x10⁻¹³) [9.0x10⁻¹¹]

Excess CaBr₂ =
$$5.0x10^{-4}$$
-2.0x10⁻⁴ (amount used)
= $3.0x10^{-4}$ mol

Initial [Br $^{-}$] = 2(3.0x10 $^{-4}$ mol)/0.100 L = 6.0x10 $^{-3}$ M

	AgBr _(s)	\Rightarrow Ag $^{+}$ (aq) + Br (aq)
MR	1	1	1
ı		0	6.0x10 ⁻³
С		+x	+x
Е		Х	6.0x10 ⁻³ +x

 K_{sp} = 5.4x10⁻¹³ 0.0060/Ksp>1000 Approx works

$$K_{sp} = [Ag^+][Br^-]$$

5.4x10⁻¹³=(x)(6.0x10⁻³+ x)
x=9.0x10⁻¹¹

The solubility of AgBr is 9.0x10⁻¹¹

24. If 50.0 mL of 0.10 M AgNO₃ is added to 150 mL of 0.10 M CaCl₂, what is the resulting concentration of each ion in the final solution? $(K_{so}=1.8\times10^{-10})$ $[Ag^+=1.4\times10^{-9}M, Cl^-=0.125 M, NO_3^-=0.025M, Ca^{2+}=0.075 M]$

Excess $CaCl_2 = 0.015-0.0025$ (amount used) = 0.0125 mol

Initial $[Cl^{-}] = 2(0.0125)/0.200 L = 0.125 M$

	$AgCl_{(s)} =$	\Rightarrow $Ag^{+}_{(aq)}$	+ Cl ⁻ (aq)
MR	1	1	1
I		0	0.125
С		+x	+x
E		Х	0.125+x

K_{sp}= 1.8x10⁻¹⁰ 0.125/Ksp>1000 Approx works

$$K_{sp} = [Ag^{+}][Br^{-}]$$

1.8x10⁻¹⁰=(0.125+ *)(x)
x=1.4x10⁻⁹

 $[Ag^{+}] = 1.4 \times 10^{-9} \text{ M}$ $[Cl^{-}] = 0.125 \text{ M}$ $[NO_{3}^{-}] = (0.050 \text{ L})(0.10 \text{ M})/0.200 \text{ L} = 0.025 \text{ M}$ $[Ca^{2+}] = (0.150 \text{ L})(0.10 \text{ M})/0.200 \text{ L} = 0.075 \text{ M}$

25. What volume of 0.10 M CaBr₂ must be added to 100.0 mL of 0.10 M of Pb(NO₃)₂, before a precipitate of PbBr₂ (K_{sp} =1.4x10⁻⁸) starts to form. Assume the total volume remains at 100.0 mL. [0.19 mL]

PbBr_{2 (s)}
$$\rightleftharpoons$$
 Pb²⁺_(aq) + 2 Br⁻_(aq)
 $K_{sp} = [Pb^{2+}][Br^{-}]^{2}$
1.4x10⁻⁸=(0.10 M)[Br⁻]²
[Br⁻]=3.7x10⁻⁴

To determine the volume of 0.10 M CaBr₂ $c_1v_1=c_2v_2$ $v_1=c_2v_2/c_1$ $v_1=(3.7x10^{-4})(0.100 \text{ L})/2(0.10 \text{ M})$

26. How many litres of water at 25°C must be added to mercury(II) sulfide $(K_{sp}=3.0x10^{-54})$ in order for 1 mercury atom to be present in solution? (HINT: You will need Avogadro's number) [1000 L]

$$\begin{split} HgS_{(s)} &\rightleftharpoons Hg^{2^{+}}{}_{(aq)} \ + \ S^{2^{-}}{}_{(aq)} \\ & x & x \\ & K_{sp} = [Hg^{2^{+}}][S^{2^{-}}] \\ & 3.0x10^{-54} = x^{2} \\ & x = 1.7x10^{-27} \\ & [Hg^{2^{+}}] = 1.7x10^{-27} \end{split}$$

n Hg²⁺ = 1 atom/N_A (6.02x10²³)
=
$$1.7x10^{-24}$$
 mol

c=n/V V=n/c V=1.7x10⁻²⁴ mol/1.7x10⁻²⁷ V=1.0x10³ L

 $v_1 = 1.9 \times 10^{-4} L = 0.19 mL$

27. A 100.0 mL sample of 1.00 M Na₂SO₄ is added to 200.0 mL of 1.00 M BaCl₂. Determine the mass of BaSO₄ that precipitates from solution and the concentration of all ions at equilibrium. [m=23.3 g, Ba²⁺ =0.333 M, Cl =1.33 M, SO_4^{2-} = 3.33 X10⁻¹⁰ M, Na⁺=0.667 M]

$$Na_2SO_{4 (aq)} + BaCl_{2 (aq)} \rightarrow 2 NaCl_{(aq)} + BaSO_{4 (s)}$$
c 1.00 1.00
V 0.100 0.200
n 0.100 0.200

Excess $BaCl_2 = 0.200-0.100$ (amount used) = 0.100 mol

Initial $[Ba^{2+}] = 0.100 \text{ mol}/0.300 \text{ L} = 0.33 \text{ M}$

	BaSO _{4 (s)}	⇒ Ba ² (aq)	+ SO ₄ * _{(aq}
MR	1	1	1
- 1		0.33	0
С		+x	+x
Е		0.33+x	Х

$$K_{sp} = [Ba^{2+}][SO_4^{2-}]$$

1.1 x 10⁻¹⁰=(0.33+ *)(x)
x=3.3x10⁻¹⁰

To find mass of ppt

n of BaSO₄ made = 0.100 mol n dissolved = $(3.3x10^{-10} \,\mathrm{M})(0.300 \,\mathrm{L}) = 9.9x10^{-11} \,\mathrm{mol}$

n of ppt =
$$0.100 - 9.9 \times 10^{-11}$$
 mol = 0.100 mol

 $[Ba^{2+}] = 0.33 M$ $[SO_4^{2-}] = 3.3 \times 10^{-10} M$ $[Cl^{-}] = 2(0.20 L)(1.00 M)/0.300 L = 1.33 M$ $[Na^{+}] = 2(1.00 \text{ M})(0.100 \text{ L})/0.300 \text{L} = 0.67 \text{ M}$

28. A 1.50 L sample of 0.250 M NaOH is added to 1.00 L of 0.150 M Mg(NO₃)₂. Calculate the mass of Mg(OH)₂ that precipitates and the concentration of all ions in solution at equilibrium. [m=8.75 g, Mg²⁺ = $6.22x10^{-9}$ M, $OH^{-}=0.0300 \text{ M}, NO_{3}^{-}=0.120 \text{ M}, Na^{+}=0.150 \text{ M}$

	2 NaOH (aq) +	$Mg(NO_3)_{2 (aq)} \rightarrow 2 NaNO_{3 (aq)} +$			
Mg(OF	I) _{2 (s)}				
С	0.250	0.150			
V	1.50 L	1.00			
n	0.375	0.150			
LF	0.375/2= 0.188	0.150/1 =0.150			
		Limiting			
Excess NaOH = 0.375-0.300 (amount used)					
= 0.075 mol					

Initial $[OH^{-}] = 0.075 \text{ mol}/2.50 \text{ L} = 0.0300 \text{ M}$

$$Mg(OH)_{2 (s)} = Mg^{2+}_{(aq)} + 2 OH^{-}_{(aq)}$$

MR	1	1	2
1		0	0.0300
С		+x	+2x
Е		х	0.0300+2x

n of $Mg(OH)_2$ made = 0.150 mol n dissolved = $(6.22 \times 10^{-9} \,\mathrm{M})(2.50 \,\mathrm{L}) = 1.6 \times 10^{-8} \,\mathrm{mol}$

n of ppt =
$$0.150 - 1.6 \times 10^{-8}$$
 mol
= 0.150 mol

 $[Mg^{2+}] = 6.22 \times 10^{-9} M$ $[OH^{-}] = 0.0300 M$ $[NO_3] = 2(1.00 L)(0.150 M)/2.50 L = 0.120 M$ $[Na^{\dagger}] = (1.50 L)(0.250 M)/2.50 L = 0.150 M$

 $K_{sp} = 5.6 \times 10^{-12}$ 0.0300/Ksp>1000 Approx works

$$K_{sp} = [Mg^{2+}][OH^{-}]^{2}$$

5.6 x 10⁻¹²=(x)(0.0300+ 2x)²
x=6.22x10⁻⁹