Exemple

Le tableau suivant présente le nombre de repas pris chaque semaine par les élèves d'un lycée professionnel :

Nombre de repas	0	1	2	3	4	5
Nombre d'élèves	56	24	72	99	259	115

Ici le mode est 4, car 259 > 56 et 259 > 24 et 259 > 72 et 259 > 99 et 259 > 115.

Exemple

Le 1^{er} novembre 2012, on a relevé le prix du gazole sur 10 points de vente du département du Territoire de Belfort. Les 10 prix rangés dans l'ordre croissant sont :

Ran	g 1	2	3	4	5	6	7	8	9	10
Prix	1,368	1,369	1,374	1,375	1,377	1,379	1,385	1,408	1,450	1,460

Ici N = 10 est pair.

La médiane Me de la série est donc la moyenne entre les 5^e et 6^e valeurs :

$$Me = \frac{n_5 + n_6}{2} = \frac{1,377 + 1,379}{2} = 1,378$$

La moitié des prix pratiqués est donc inférieure ou égale à 1,378 €.

Exemple

Ici on considère la répartition des prix du gazole dans l'ensemble des 25 stations du département :

Prix	1,368	1,369	1,374	1,375	1,377	1,379	1,385	1,408	1,450	1,460
Nb. de stations	2	5	2	4	1	4	2	1	3	1

Moyenne des prix des 25 stations :

$$\bar{x} = \frac{1,368 \times 2 + 1,369 \times 5 + \dots + 1,450 \times 3 + 1,460}{25} = 1,3884$$

1

Le prix moyen observé pour ces 25 stations est 1,3884 €.

Exemple

Les 10 prix rangés par ordre croissant sont :

Rang	1	2	3	4	5	6	7	8	9	10
Prix	1,368	1,369	1,374	1,375	1,377	1,379	1,385	1,408	1,450	1,460

L'étendue de la série est e=1,460-1,368=0,092 €.

Exemple

- Dans l'exemple ci-dessus, on a N = 10, donc N n'est pas un multiple de 4. $r_1 = 0.25 \times N = 0.25 \times 10 = 2.5$ et $r_3 = 0.75 \times N = 0.75 \times 10 = 7.5$
- Calcul du premier quartile Q_1 :
 - \rightarrow le plus petit entier supérieur à $r_1 = 2,5$ est 3;
 - $\rightarrow~Q_1$ correspond à la 3^e valeur de la série : $Q_1=1,374$
- Calcul du troisième quartile Q3:
 - \rightarrow le plus petit entier supérieur à $r_3 = 7,5$ est 8;
 - $\rightarrow \, Q_3$ correspond à la 8^e valeur de la série : $Q_3=1,408$

25 % des prix pratiqués sont inférieurs ou égaux à 1,374 € et 75 % des prix pratiqués sont inférieurs à 1,408 €.

• L'écart interquartile $Q_3 - Q_1$ vaut $1,408 - 1,374 = 0,034 \in$.

Exemple

Ces deux graphiques représentent deux séries de même effectif et de de même moyenne $\bar{x}=11.$

 $\sigma_A < \sigma_B$: les valeurs de la série ${\bf B}$ sont plus dispersées que celles de la série ${\bf A}$ autour de $\bar x$.

Exemple

Boite à moustache correspondant à l'exemple :

Exemple

Boite à moustache correspondant à l'exemple :

