Inducción simple y fuerte

Clase 18

IIC 1253

Prof. Cristian Riveros

Inducción

Outline

Inducción simple

¡Cuidado!

Inducción fuerte

Outline

Inducción simple

¡Cuidado!

Inducción fuerte

Principio de inducción sobre los naturales

Principio de inducción simple

Para una afirmación P(x) sobre los naturales, si P(x) cumple que:

- 1. P(0) es verdadero,
- 2. para todo $n \in \mathbb{N}$, si P(n) es verdadero, entonces P(n+1) es verdadero, entonces para todo $n \in \mathbb{N}$ se tiene que P(n) es verdadero.

Notación

- P(0) se llama el **caso base**.
- En el paso 2.
 - P(n) se llama la hipótesis de inducción.
 - P(n+1) se llama la **tesis de inducción** o paso inductivo.

Ejemplo de demostración por inducción

Ejemplo

Supongamos la afirmación:

$$P(n) := \sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

1.
$$P(0): 2^0 = 2^{0+1} - 1 = 1$$

2. si
$$P(n)$$
: $\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$ es verdadero, entonces:

$$\mathbf{P(n+1)}: \quad \sum_{i=0}^{n+1} 2^{i} = 2^{0} + 2^{1} + \dots + 2^{n} + 2^{n+1}$$
$$= 2^{n+1} - 1 + 2^{n+1}$$
$$= 2 \cdot 2^{n+1} - 1$$
$$= 2^{n+2} - 1$$

Por lo tanto, P(n) es verdadero para todo $n \in \mathbb{N}$.

Principio de inducción sobre los naturales

Principio de inducción simple

Para una afirmación P(x) sobre los naturales, si P(x) cumple que:

- 1. P(0) es verdadero,
- 2. para todo $n \in \mathbb{N}$, si P(n) es verdadero, entonces P(n+1) es verdadero, entonces para todo $n \in \mathbb{N}$ se tiene que P(n) es verdadero.

En lógica de predicados

Para todo predicado $P(\cdot)$ en \mathbb{N} , la siguiente formula es siempre verdadera:

$$\left(\underbrace{P(0)}_{\mathsf{CB}} \land \left(\underbrace{\forall n. P(n) \rightarrow P(n+1)}_{\mathsf{HI}}\right)\right) \rightarrow \forall n. P(n)$$

¿por qué se cumple este principio? ¿es un axioma de №?

Axiomas de N

Axiomas de Peano (extracto)

- 1. El número $0 \in \mathbb{N}$.
- 2. Si $n \in \mathbb{N}$, entonces $(n+1) \in \mathbb{N}$ donde n+1 es el sucesor de n.
- 3. Todo $n \in \mathbb{N}$ tal que $n \neq 0$ tiene un sucesor en \mathbb{N} .
- 4. Principio del buen orden:

Todo subconjunto $A \subseteq \mathbb{N}$ tiene un elemento mínimo.

¿cómo podemos derivar de estos axiomas el principio de inducción?

Teorema

El principio del buen orden implica el principio de inducción.

Principio del buen orden implica inducción

Demostración

Suponemos que el principio del buen orden se cumple en N.

Por **contradicción** suponga que existe $P(\cdot)$ en \mathbb{N} tal que el **principio de inducción es falso**:

$$\neg \left(\left(P(0) \land \left(\forall n. P(n) \rightarrow P(n+1) \right) \right) \rightarrow \forall n. P(n) \right)$$

$$\neg \left(\neg \left(P(0) \land \left(\forall n. P(n) \rightarrow P(n+1) \right) \right) \lor \forall n. P(n) \right)$$

$$\left(P(0) \land \left(\forall n. P(n) \rightarrow P(n+1) \right) \right) \land \neg \forall n. P(n)$$

$$P(0) \land \left(\forall n. P(n) \rightarrow P(n+1) \right) \land \exists n. \neg P(n)$$

Defina el conjunto $A = \{n \in \mathbb{N} \mid P(n) \text{ es verdadero}\}$. Por lo tanto:

- 1. $0 \in A$
- 2. $\forall n \in \mathbb{N}$. $(n \in A \rightarrow (n+1) \in A)$
- 3. El conjunto $B = \mathbb{N} \setminus A$ es no vacío.

Principio del buen orden implica inducción

Demostración

Defina el conjunto $A = \{n \in \mathbb{N} \mid P(n) \text{ es verdadero}\}$. Por lo tanto:

- $1.0 \in A$
- 2. $\forall n \in \mathbb{N}$. $(n \in A \rightarrow (n+1) \in A)$
- 3. El conjunto $B = \mathbb{N} \setminus A$ es no vacío.

Por el principio del buen orden tenemos que:

- existe un menor elemento $n^* \in B$. (¿por qué?)
- $n^* \neq 0 \text{ y } n^* 1 \in A.$ (¿por qué?)
- como $n^* 1 \in A$, entonces $n^* \in A$. (¿por qué?)

Como $n^* \in A$ y $n^* \notin A$, (contradicción) por lo tanto el principio de inducción es siempre verdadero.

Principio del buen orden implica inducción

Teorema

El principio del buen orden implica el principio de inducción.

Algunos comentarios

 Es posible demostrar que el principo de inducción implica el principio del buen orden.

(Ejercicio)

 Un puede considerar el principio de inducción como un axioma de los naturales.

Algunas variaciones del principio de inducción

Principio de inducción simple (multiples casos base)

Para todo predicado $P(\cdot)$ y $k \in \mathbb{N}$ la siguiente formula es siempre verdadera:

$$\left(\begin{array}{ccc} P(0) \wedge P(1) \wedge \dots \wedge P(k) & \wedge & \left(\forall \, n \geq k. \, P(n) \rightarrow P(n+1) \, \right) \end{array} \right) \ \rightarrow \ \forall \, n. \, P(n)$$

¿Cuál es la ventaja de la versión anterior?

Principio de inducción simple (caso base extendido)

Para todo predicado $P(\cdot)$ y $k \in \mathbb{N}$ la siguiente formula es siempre verdadera:

$$(P(k) \land (\forall n \ge k. P(n) \rightarrow P(n+1))) \rightarrow \forall n \ge k. P(n)$$

Estas alternativas al principio de inducción simple pueden ser muy útiles.

Algunas variaciones del principio de inducción

$$(P(k) \land (\forall n \geq k. P(n) \rightarrow P(n+1))) \rightarrow \forall n \geq k. P(n)$$

Ejemplo

$$n! > 2^n$$
 es verdadero **para todo** $n \ge 4$

- 1. $P(4): 4! = 24 > 16 = 2^4$
- 2. si P(n): $n! > 2^n$ es verdadero con $n \ge 4$, entonces:

$$\begin{array}{lll} \mathbf{P(n+1)}: & (n+1)! & = & n! \cdot (n+1) \\ & > & 2^n \cdot (n+1) & (\mathsf{por}\;\mathsf{HI}) \\ & > & 2^n \cdot 4 & (\mathsf{como}\; n \ge 4) \\ & > & 2^{n+1} \end{array}$$

Por lo tanto, P(n) es verdadero para todo $n \ge 4$.

Outline

Inducción simple

¡Cuidado!

Inducción fuerte

Cuidado con el uso del principio de inducción

Suponga que quiere demostrar la siguiente propiedad para todo $n \in \mathbb{N}$:

2n + 1 es divisible por 2.

Demostración por inducción

Para un n cualquiera, suponga que es verdad que 2n + 1 es divisible por 2, en otras palabras, existe un k tal que 2n + 1 = 2k.

PD: 2(n+1)+1 es divisible por 2.

$$2 \cdot (n+1) + 1 = 2n + 2 + 1 = (2n+1) + 2$$

= $2k + 2$
= $2 \cdot (k+1)$

... entonces $2 \cdot (n+1) + 1$ es divisible por 2.

Por el **principio de inducción**, 2n+1 es divisible por 2 para todo $n \in \mathbb{N}$.

MUCHO cuidado con el uso del principio de inducción

Suponga que queremos demostrar la siguiente propiedad para todo $n \ge 1$:

P(n) := En cualquier conjunto de n caballos, todos tienen el mismo color.

Demostración por inducción

 $\mathbf{P}(\mathbf{1})$: En un conjunto de 1 caballo, todos tienen el mismo color.

 $P(n) \rightarrow P(n+1)$: suponga que P(n) es cierto y demostramos P(n+1).

Sea $\{c_1, \ldots, c_{n+1}\}$ el conjunto de n+1 caballos.

- Como $\{c_1, \ldots, c_n\}$ tiene n caballos, entonces por HI todos los caballos c_1, \ldots, c_n tienen el mismo color.
- Como $\{c_2, \ldots, c_{n+1}\}$ también tiene n caballos, entonces por HI todos los caballos c_2, \ldots, c_{n+1} tienen el mismo color.
- Por lo tanto, todos los caballos c_1, \ldots, c_{n+1} tienen el mismo color.

Outline

Inducción simple

¡Cuidado!

Inducción fuerte

Principio de inducción fuerte

Principio de inducción fuerte

Para una afirmación P sobre \mathbb{N} , si P cumple que para todo $n \in \mathbb{N}$:

P(k) es verdadero **para todo k** < **n**, entonces P(n) es verdadero entonces para todo $n \in \mathbb{N}$ se tiene que P(n) es verdadero.

En lógica de predicados

Para todo predicado $P(\cdot)$ en \mathbb{N} , la siguiente formula es siempre verdadera:

$$(\forall n. (\forall k < n. P(k)) \rightarrow P(n)) \rightarrow \forall n. P(n)$$

¿dónde esta el caso base en el principio anterior?

Ejemplo de usar casos anteriores

Ejemplo (función de Fibonacci)

$$F(0) = 0$$

 $F(1) = 1$
 $F(n) = F(n-1) + F(n-2)$ para $n \ge 2$

¿cómo calculamos el valor de F(n) para un n cualquiera?

$$F(0) = 0$$

$$F(1) = 1$$

$$F(2) = F(1) + F(0) = 1 + 0 = 1$$

$$F(3) = F(2) + F(1) = 1 + 1 = 2$$

$$F(4) = F(3) + F(2) = 2 + 1 = 3$$

$$F(5) = F(4) + F(3) = 3 + 2 = 5$$

$$F(6) = \dots$$

Ejemplo de usar casos anteriores

Ejemplo (función de Fibonacci)

$$P(n) := F(n) \le 2^n$$
 para todo n

- 1. $P(0): F(0) = 0 \le 2^0$
- 2. $P(1): F(1) = 1 \le 2^1$
- 3. si P(k): $F(k) \le 2^k$ es verdadero para todo k < n, entonces:

$$P(n): F(n) = F(n-1) + F(n-2)$$

$$\leq 2^{n-1} + 2^{n-2}$$
 (por HI)
$$\leq 2^{n-1} + 2^{n-1}$$

$$< 2^{n}$$

Por lo tanto, P(n) es verdadero para todo $n \in \mathbb{N}$.

Ejemplo de usar TODOS los casos anteriores

Ejemplo

$$X(0) := 0$$

 $X(n) := X(0) + X(1) + ... + X(n-1) + n \text{ para } n \ge 1$

PD:
$$X(n) = 2^n - 1$$

1.
$$X(0) = 2^0 - 1 = 0$$

2. Suponga que $X(k) = 2^k - 1$ para todo k < n y demostramos para $n \ge 1$:

$$X(n) = X(0) + ... + X(n-1) + n = (2^{0} - 1) + ... + (2^{n-1} - 1) + n$$

$$= \sum_{i=0}^{n-1} 2^{i} - (\sum_{i=0}^{n-1} 1) + n$$

$$= \sum_{i=0}^{n-1} 2^{i}$$

$$= 2^{n} - 1 (i \text{por qué?})$$

Por lo tanto, $X(n) = 2^n - 1$ es verdadero para todo $n \in \mathbb{N}$.

Equivalencia de principios de inducción

Teorema

Las siguientes condiciones son equivalentes:

- 1. Principio del buen orden.
- 2. Principio de inducción simple.
- 3. Principio de inducción fuerte.

Demostraremos solo que $2. \Rightarrow 3.$

Equivalencia de principios de inducción

Demostración: 2. \Rightarrow 3.

Suponemos que se cumple el principio de inducción simple sobre \mathbb{N} :

$$(P(0) \land (\forall n. P(n) \rightarrow P(n+1))) \rightarrow \forall n. P(n)$$

PD: $(\forall n. (\forall k < n. P(k)) \rightarrow P(n)) \rightarrow \forall n. P(n).$

Suponga que se cumple: $\forall n. (\forall k < n. P(k)) \rightarrow P(n)$ (*)

PD: $\forall n$. P(n)

¿se cumplen las condiciones del principio de inducción simple?

- 1. P(0) es verdadero ?
- 2. $\forall n. P(n) \rightarrow P(n+1)$ es verdadero ?

Equivalencia de principios de inducción

Demostración: 2. \Rightarrow 3.

Suponemos que se cumple el principio de inducción simple sobre \mathbb{N} .

PD:
$$(\forall n. (\forall k < n. P(k)) \rightarrow P(n)) \rightarrow \forall n. P(n).$$

Suponga que se cumple:
$$\forall n. (\forall k < n. P(k)) \rightarrow P(n)$$
 (*)

PD: $\forall n$. P(n)

Defina el predicado $P'(n) := \forall k < n. P(k)$.

1.
$$P'(0)$$
 es verdadero ?

2.
$$\forall n. P'(n) \rightarrow P'(n+1)$$
 es verdadero ?

■ Entonces,
$$\forall n. P'(n)$$
. (¿por qué?)

Por lo tanto,
$$\forall n. \ P(n)$$
. (¿por qué?)