Contents

1	\mathbf{Siec}	i, ćwiczenia	a 1														1
	1.1	Zadanie 1															1
	1.2	Zadanie 2															1
	1.3	Zadanie 3															2
	1.4	Zadanie 4															2
	1.5	Zadanie 5															2
	1.6	Zadanie 6															2
	1.7	Zadanie 7															4

1 Sieci, ćwiczenia 1

tags: sieci

1.1 Zadanie 1

- 10.1.2.3/8 jest to adres komputera. Adres sieci: 10.0.0.0/8, adres rozgłoszeniowy: 10.255.255.255/8, inny adres z sieci: 10.1.2.4/8.
- 156.17.0.0/16 jest to adres sieci. Adres rozgłoszeniowy: 156.17.255.255/16, adres jakiegoś komputera: 156.17.21.37/16.
- 99.99.99.99/27 prefiks to 01100011.01100011.01100011.011.
 Zatem jest to adres komputera. Adres sieci: 99.99.99.96/27,
 adres rozgłoszeniowy: 99.99.99.127/27, adres jakiegoś komputera: 99.99.99.99.100/27.
- 156.17.64.4/30 prefiks to 157.17.64.000001. Pierwszy adres w tej sieci to właśnie 156.17.64.4/30, więc jest to adres sieci. Adres rozgłoszeniowy to 156.17.64.7/30, adres jakiegoś komputera: 156.17.64.6/30.
- 123.123.123.123/32 prefiks jest równy temu adresowi. Jest to po prostu konkretny adres IP.

1.2 Zadanie 2

Adres pierwszej sieci: 10.10.0.0/19, Adres drugiej sieci: 10.10.32.0/19, Adres trzeciej sieci: 10.10.64.0/19, Adres czwartej sieci: 10.10.96.0/19, Adres piątej sieci: 10.10.128.0/17.

Wcześniej mieliśmy do użycia 2^16-2 adresów, teraz mamy do użycia 2^16-10 adresów, zatem o 8 mniej.

Najmniejsza podsieć jaką możemy zrobić musi mieć rozmiar co najmniej $2^{1}2$ adresów. Załóżmy, że dałoby się zrobić podsieć, która ma $2^{1}1$ adresów. Wtedy 4 pozostałe podsieci musiałby "sumować się" do $2^{16} - 2^{11} = 11111000...0_{(2)}$, ale rozmiary to potęgi dwójki, no więc widać że się nie da (jedynek jest > 4).

1.3 Zadanie 3

- 0.0.0.0/0 ---> A
- 10.0.0.0/22 ---> B
- 10.0.1.0/24 ---> C
- 10.0.1.8/29 ---> B
- 10.0.1.16/28 ---> B

1.4 Zadanie 4

- 0.0.0.0/0 ---> A
- 10.0.0.0/8 ---> B
- 10.3.0.0/24 ---> C
- 10.3.0.32/27 ---> B
- 10.3.0.64/26 ---> B

1.5 Zadanie 5

Wystarczy je posortować po długości prefiksu (tzn. te z dłuższym prefiksem powinny mieć większy priorytet). Chcemy wybierać najbardziej "szcegółowe" reguły (czyli te z dłuższym prefiksem podsieci). W takim razie, po posortowaniu, przechodząc od lewej do prawej po tablicy, w pierwszej kolejności rozważymy najbardziej szczegółowe reguły, dopiero później przechodząc do tych mniej. Niech dla pewnego adresu ip I zbiór pasujących reguł to $\{R_1,R_2,\ldots,R_k\}$, a odpowiadające im długości prefiksów to $l_1\leq l_2\leq\ldots\leq l_k$. Wtedy, w tak ułożonej tablicy routingu jak to opisaliśmy, reguły R_1,\ldots,R_k będą występowały w kolejności zadanej ciągiem l_i , zatem pierwsza reguła na jaką trafimy, to R_1 , a jest to najbardziej szczegółowa reguła dla I.

1.6 Zadanie 6

1.6.0.1 Krok 0:

	do A	do B	do C	do D	do E	do F
A	-	1				
В	1	-	1			
С		1	-		1	1
D				-	1	
\mathbf{E}			1	1	-	1
F			1		1	-

1.6.0.2 Krok 1:

	do A	do B	do C	do D	do E	do F
A	=	1	2 (via B)			
В	1	_	1		2 (via C)	2 (via C)
С	2 (via B)	1	-	2 (via E)	1	1
D			2 (via E)	-	1	2 (via E)
Е		2 (via C)	1	1	-	1
F		2 (via C)	1	2 (via E)	1	-

1.6.0.3 Krok 2:

	do A	do B	do C	do D	do E	do F
A	-	1	2 (via B)		3 (via B)	3 (via B)
В	1	-	1	3 (via C)	2 (via C)	2 (via C)
\mathbf{C}	2 (via B)	1	-	2 (via E)	1	1
D		3 (via E)	2 (via E)	-	1	2 (via E)
\mathbf{E}	3 (via C)	2 (via C)	1	1	-	1
F	3 (via C)	2 (via C)	1	2 (via E)	1	-

1.6.0.4 Krok 3:

	do A	do B	do C	do D	do E	do F
A	=	1	2 (via B)	4 (via B)	3 (via B)	3 (via B)
В	1	_	1	3 (via C)	2 (via C)	2 (via C)
С	2 (via B)	1	-	2 (via E)	1	1
D	4 (via E)	3 (via E)	2 (via E)	-	1	2 (via E)
\mathbf{E}	3 (via C)	2 (via C)	1	1	_	1

	do A	do B	do C	do D	do E	do F
F	3 (via C)	2 (via C)	1	2 (via E)	1	-

1.7 Zadanie 7

Łączymy bezpośrednio ze sobą routery A oraz D.

1.7.0.1 Krok 0:

	do A	do B	do C	do D	do E	do F
A	=	1	2 (via B)	1	3 (via B)	3 (via B)
В	1	-	1	3 (via C)	2 (via C)	2 (via C)
\mathbf{C}	2 (via B)	1	-	2 (via E)	1	1
D	1	3 (via E)	2 (via E)	_	1	2 (via E)
\mathbf{E}	3 (via C)	2 (via C)	1	1	-	1
F	3 (via C)	2 (via C)	1	2 (via E)	1	-

1.7.0.2 Krok 1:

	do A	do B	do C	do D	do E	do F
A	-	1	2 (via B)	1	2 (via D)	3 (via B)
В	1	-	1	2 (via A)	2 (via C)	2 (via C)
С	2 (via B)	1	-	2 (via E)	1	1
D	1	2 (via A)	2 (via E)	-	1	2 (via E)
\mathbf{E}	2 (via D)	2 (via C)	1	1	-	1
F	3 (via C)	2 (via C)	1	2 (via E)	1	-

Więcej się nie poprawi.

Pay wierschotkach pissemy ich odlegtość od E oraz 1. sonter na ścierce do E.

Zad, 20 B50 n=3k+1 da pennego & EN. wtedy sieć postaci ma zadana utasność. Powiedzmy, że A roześle jekaś niadomość. Wtedy rozsytanie skończy się Po czasie $2^{\Omega(n)}$ "Srodkoue rontary nazvijing S= A, Sz, ..., SwinB Udowodning nostepnjeges tere przy nzyciu idukcji: pe de jednassen. router S, begarie musiet spropagouve 2-1 Wiodomosai Dla l=1 tera jest ocrywista. Bat. teres dla l-1. Do routevé Si, wy reloriemie indukcyjnego dotne 2 - 2 wiedomosa, a prot zutem tezu

jost precuol-viwa. $5_{k-2} = 2^{k-2} + 2^{\frac{n}{3}} = 2$ (n)

图

A propagaje informację do C, B do J.

Jufoimaga nie zdąży dojść do routera F.

Teraz, wg algorytmu nejkrótszych śworek

router C ustali trasę do B przez D, E, .., J,

owalogicznie router J ustali trusę przez H, G, ..., C.

Teraz E miet ustalonę trusę E > D > C > P-B do

routera B. Jeśli wyślemy coś z C do B,

to dojdnie to do routera E, w którym wrón

to samo; truso do routera z nejburdziej

aktualnymi danymi o stenie sięci i pakciet

będnie krężyt.