

- Linux dispone de un intérprete de órdenes (terminal o Shell).
- El terminal hace de interfaz entre el usuario y el propio sistema operativo.
- Es una forma de acceder al sistema sin usar interfaz gráfica.
- Para acceder a una terminal se puede hacer de dos formas:
- Una es con una aplicación como el terminal de GNOME, xterm o konsole de KDE, que son emuladores de la terminal dentro de una interfaz visual. Podemos acceder a la aplicación terminal (en ubuntu) desde Aplicaciones → Accesorios → Terminal
- Otra forma es salirse del entorno gráfico y acceder a un entorno completamente en modo texto. Para esto, debemos teclear Control+Alt+F1. Linux proporciona por defecto seis terminales de este tipo, de Control+Alt+F1 a Control+Alt+F6. Si queremos volver al modo gráfico lo hacemos con Alt+F7.

El terminal muestra un indicador (#, \$) de línea de ordenes esperando a que se introduzca un comando

Al abrir un terminal nos encontraremos en la ruta /home/usuario

usuario@nombre_pc: ~\$ → usuario normal
usuario@nombre_pc: ~# → super usuario (administrador)

~ (vírgula) significa que estamos en la ruta /home/usuario

Si salimos de ahí veremos:

usuario@nombre_pc: ruta absoluta\$

man <command> (manual)

Nos muestra el manual del comando

usuario@mipc:~\$ man -printf

Busca la palabra clave printf entre las descripciones breves

Para salir del manual presionamos Q o Ctrl + F2

Is <opciones> <ruta> (list)

Muestra archivos en una carpeta

Is (sin parámetros) lista archivos y directorios (en distintos colores) del directorio actual.

ls -a muestra todos los archivos y directorios incluyendo los ocultos

Is -s muestra el tamaño de cada fichero listado

ls -I muestra permisos, números de enlaces rígidos, nombre del propietario, grupo al que pertenece, tamaño, fecha de la última modificación

Is -t ordena los archivos por fecha de modificación, el más nuevo primero

Is -S ordena el listado según el tamaño de los archivos

usuario@mipc:~\$ Is -al

También podemos usar rutas relativas o absolutas

usuario@mipc:~\$ ls -l /home/usuario/car1/car3

El archivo . hace referencia a sí mismo y el .. al directorio padre


```
cd <opciones> <ruta> (change directory)
```

Cambiar el directorio de trabajo (change directory)

cd . directorio actual (. es del mismo directorio)

cd (sin parámetros) lleva al HOMEde tu usuario

cd ~ lleva al home de tu usuario.

cd .. sube un directorio, directorio padre

cd / lleva al directorio raíz

cd - lleva al último directorio en que hayas estado

usuario@mipc:~\$ cd

usuario@mipc:~\$ cd ~

usuario@mipc:~\$ cd ..

usuario@mipc:~\$ cd /

mkdir <opciones> <nombre del directorio> (make directory)

Crear un directorio

- -m modo permisos en octal (usuario/grupo/otros usuarios)
- **-p** crea el directorio padre y los subdirectorios si no existen, si existe solo crea el sub directorio

Ejemplos:

Crear el directorio car 6 en /home/usuario usuario@mipc:~\$ mkdir car6

Crear el directorio car 6 en /home/usuario usuario@mipc:~\$ mkdir /home/usuario/car6

Crear el directorio car 6 en /home/usuario con permisos de lectura y escritura para el usuario y para el resto ninguno usuario@mipc:~\$ mkdir -m600 car6

rm <file> (remove)

Borrar directorios y archivos.

Archivos:

rm sin parámetros borra archivo sin pedir confirmación

rm **–f** borra el archivo sin pedir confirmación, e ignora los archivos inexistentes (no muestra mensaje de error)

rm –i pide confirmación al borrar el archivo

Directorios:

rm –r <directorio> : borra el directorio y todo su contenido.

rm -R <directorio> : borra el directorio y todo su contenido en forma recursiva

rmdir <directorio> : borra el directorio si está vacío

usuario@mipc:~\$~/car1\$ rm arc1.txt usuario@mipc:~\$~/car1\$ rm arc1.txt

usuario@mipc:~\$~/car1\$ rm -f arc1.txt

usuario@mipc:~\$~/car1\$

cp <opciones> <fichero origen> <destino> (copy)

Copiar un archivo o directorio en el directorio especificado

- -i pregunta antes de sobrescribir un archivo
- n no sobrescribe archivos existentes
- -f si el archivo de destino ya existe y no pude ser leído lo borra y lo intenta copiar de nuevo
- -p mantiene los permisos y los propietarios de los archivos copiados
- **-u** copia sólo cuando el archivo de origen es más reciente que el archivo destino, o cuando el archivo no existe.
- -R copia el directorio y todo su contenido

```
usuario@mipc:~$ cp arc4.txt ../../car2
usuario@mipc:~$ cp arc4.txt /home/usuario/car2
usuario@mipc:~$ cp -i arc4.txt ../../car1
```


mv <opciones> <origen> <destino> (move)

Mover o renombrar archivos o directorios. El archivo es borrado y creado en la otra ruta, la ruta destino debe existir.

- -f si el archivo destino existe, no pregunta y sobrescribe el archivo
- -i si el archivo destino existe, pregunta si quiere sobrescribe el archivo
- **-u** mover sólo cuando el archivo de origen es más reciente que el archivo destino, o cuando el archivo no existe.

Renombrar el archivo arch1.txt a arch2.txt usuario@mipc:~\$ mv arch1.txt arch2.txt

Mover el archivo arc4.txt a la carpeta car1 usuario@mipc:~\$ mv arc4.txt ../../car1

usuario@mipc:~\$ mv car4/*../car2 usuario@mipc:~\$ mv car4 ../car2 usuario@mipc:~\$ mv *.txt ../car2

find, locate

Buscar un archivo dentro del sistema.

- -name busca por nombre y distingue entre mayúsculas y minúsculas
- -iname busca por nombre y no distingue entre mayúsculas y minúsculas

usuario@mipc:~\$ find *.txt

Buscar todos los archivos XXX1.txt dentro de la carpeta car1 usuario@mipc:~\$ find ???1.txt

usuario@mipc:~\$ find car1/*.txt

usuario@mipc:~\$ find car1/-size +50k

usuario@mipc:~\$ find -name arc1.txt

ps <opciones> (process status)

Mostrar el estado de los procesos

Muestra qué procesos están corriendo en nuestro sistema. Cada proceso está identificado con un número llamado **PID** (process ID).

- -A o e Lista los procesos de todos los usuarios
- -u Lista información de los proceso del propio usuario
- -x Lista procesos de todas las terminales y usuarios
- -a Lista los procesos de los usuarios

Para ver las opciones de ps, usamos **ps - - help**

usuario@mipc:~\$ ps aux

Descripción de columnas de ps:

User: muestra de quien es el proceso

PID: Identificación del número de proceso.

% Cpu: porcentaje de la Cpu que está tomando este proceso% Mem: porcentaje de memoria que está tomando el proceso

VSZ: cantidad de memoria virtual que está tomando el proceso

RSS: cantidad de memoria residente que está tomando el proceso

Stat: Estado del proceso y pueden ser:

s: durmiendo

R: proceso alojado en la CPU, ejecutándose

D: Ininterrumpible de dormir

T: El proceso tuvo un error o fue detenido

Z: proceso en Zombi

START: fecha en la que el proceso empezó

TIME: tiempo que el proceso lleva alojado en la CPU

Command: Nombre del proceso y sus parámetros de la línea de comando

TTY: Terminal que ejecuta el proceso

Un programa en ejecución es un proceso, un programa de usuario es un proceso, una tarea de sistema también puede ser un proceso .

pstree

Mostrar todos los procesos jerarquizados en forma de árbol.

`-inetd(4927)

kill <PID>

Eliminar un proceso kill

free

Muestra información sobre el estado de la memoria del sistema, tanto la swap o de intercambio (páginas que han sido movidas a disco) como la memoria física. También muestra el buffer utilizado por el kernel.

usuario@mipc:~\$ free

	total	used	free	shared	buffers	cached
Mem:	2049900	814300	1235600	0	63444	457588
-/+ buffers/cache: 293		293268	1756632			
Swan.	2085884	0	2085884			

top

Ordena en tiempo real los procesos según el consumo de CPU, memoria RAM, SWAP, entre otras características.

PID: Identificación del número de proceso

USER: usuario que corre la aplicación

PR: prioridad efectiva del proceso

NI: es un nivel para establecer la prioridad del proceso, mientras menor es mayor es la

prioridad

VIRT: Total de memoria virtual usada (código, datos, memoria usadas por las librerías compartidas que utiliza el proceso y páginas que han sido movidas a disco (swap)

RES: Tamaño de segmento residente, es decir lo que ocupa nuestro proceso en RAM (código y datos únicamente)

SHR: memoria compartida que utiliza el programa, es la cantidad de memoria que se estima que este proceso está compartiendo con otros

S: Estado del proceso

% Cpu: porcentaje de la Cpu que está tomando este proceso

% Mem: porcentaje de memoria que está tomando el proceso

TIME+: tiempo de Cpu usado por el proceso desde que se creó

COMMAND: el comando que se está ejecutando

file <archivo>

Mostrar el tipo de un archivo: file usuario@mipc:~\$ file arc1.txt

cat <archivo>

Mostrar el contenido de un archivo, cat usuario@mipc:~\$ cat arc1

clear

Corre pantalla del terminal hacia arriba y deja la última línea visible pero no borra las líneas anteriores

reset

Borra lo que estaba escrito en la pantalla del terminal

cal

calendario en pantalla

date

fecha y hora actuales

Comandos para apagar el equipo

halt: Apaga el equipo

reboot: Reinicia el equipo

shutdown -h now: Apaga el equipo **shutdown -r now:** Reinicia el equipo