To be submitted Thursday, April 10 in class

Problem 1: [Stationarity] Let $(Z_t: t \in \mathbb{Z})$ be a sequence of independent zero mean normal random variables with variance σ^2 and let a, b and c be constants. Which of the following processes are weakly and/or strictly stationary? For each weakly stationary process specify the mean and the ACVF.

- (a) $X_t = a + bZ_t + cZ_{t-1}$;
- (b) $X_t = Z_t \cos(ct) + Z_{t-1} \sin(ct)$;
- (c) $X_t = a + bZ_0$;

(d) $X_t = Z_t Z_{t-1}$.

Problem 2: [U.S. Population] Download the file population.xls from the course website. It contains the size of the population in the U.S.A. at ten-year intervals from 1790 to 2000.

- (a) Plot the data;
- (b) Assuming the model $X_t = m_t + Z_t$, $E[Z_t] = 0$, fit a polynomial trend \hat{m}_t to the data;
- (c) Plot the residuals $\hat{Z}_t = X_t \hat{m}_t$. Comment on the quality of the fitted model;
- (d) Use the fitted model to predict the population size in 2010 and 2020 (using predicted noise values of zero).

Problem 3: [Projection Theorem] If \mathcal{M} is a closed subspace of a Hilbert space \mathcal{H} and $x \in \mathcal{H}$, prove that

$$\min_{y \in \mathcal{M}} ||x - y|| = \max \{ |\langle x, z \rangle| \colon z \in \mathcal{M}^{\perp}, ||z|| = 1 \},$$

where \mathcal{M}^{\perp} is the orthogonal complement of \mathcal{M} .

Problem 4: [Prediction Equations] If $X_t = Z_t - \theta Z_{t-1}$, where $|\theta| < 1$ and $(Z_t : t \in \mathbb{Z})$ is a sequence of uncorrelated random variables, each with mean 0 and variance σ^2 , show by checking the prediction equations that the best mean square predictor of X_{n+1} in $\overline{sp}(X_j : j \le n)$ is

$$\hat{X}_{n+1} = -\sum_{j=1}^{\infty} \theta^j X_{n+1-j}.$$

What is the mean squared error of \hat{X}_{n+1} ?