Тема розрахунково-графічної роботи РГР- виконання кусочно-лінійної апроксимації.

Завдання для розрахунково-графічної роботи:

- 1.Побудувати графік функції y=f(x) для діапазону зміни аргументу $x_{min} \le x \le x_{max}$. Значення y=f(x), x_{min} та x_{max} узяти з таблиці варіантів. Место для уравнения.
- 2.Визначити другу похідну функції d^2y/dx^2 та побудувати її графік для діапазону зміни аргументу $x_{min} \le x \le x_{max}$.
- 3.Побудувати графік модулю другої похідної функції $|\mathbf{d}^2\mathbf{y}/\mathbf{d}\mathbf{x}^2|$ для діапазону зміни аргументу $\mathbf{x}_{\min} \leq \mathbf{x} \leq \mathbf{x}_{\max}$.
- 4.Проаналізувати графік нелінійної залежності функції **y=f(x)**, з'ясувавши характер опуклості та вгнутості функції по частинам, наявність точок перегинання та наявність точок розриву першого роду другої похідної функції.
- 5.Обрати початкову точку (або початкові точки) апроксимації для подальших розрахунків, зазначивши її (або їх) на графіках $\mathbf{y} = \mathbf{f}(\mathbf{x})$ та $|\mathbf{d}^2\mathbf{y}/\mathbf{d}\mathbf{x}^2|$, визначити абсцису цієї початкової точки \mathbf{x}_0^1 (або абсциси початкових точок \mathbf{x}_0^1 , \mathbf{x}_0^2 тощо).
- 6.По графіку $|\mathbf{d^2y/dx^2}|$ обрати напрямок (або напрямки) розрахунків значень $\mathbf{h_i} = \mathbf{x_{i-x_{i-1}}}$ ($\mathbf{i=\overline{1,n}}$) Место для уравнения. від початкової точки (або від початкових точок) та зазначити його (або їх) на цьому графіку у вигляді стрілок над графіком $|\mathbf{d^2y/dx^2}|$.
- P.S.: Значення \mathbf{x}_{i-1} це значення абсциси початкової точки \mathbf{i} -ой (\mathbf{i} = $\mathbf{0}$, \mathbf{n} - $\mathbf{1}$) лінійної частини ломаної лінії, що обчислюється, а значення \mathbf{x}_i це значення абсциси кінцевої точки лінійної частини ломаної лінії, що обчислюється.
- 7.Визначити методику розрахунків значень \mathbf{h}_i ($\mathbf{i}=\overline{1,n}$) та обрати формули для розрахунку значень: $\mathbf{h} = \sqrt{8}\Delta_{\text{max}}\mathbf{f}/\mathbf{A}_i$ або $\mathbf{h}_i = \sqrt{1}6\Delta_{\text{max}}\mathbf{f}/\mathbf{A}_i$, де \mathbf{A}_i максимальне по модулю значення другої похідної на \mathbf{i} ій частині ломаної лінії, що розраховується.
- *P.S.:* Якщо друга похідна функції має точку розриву першого роду, тобто при деякому значенні \mathbf{x}_m значення $\mathbf{A}_i\left(\mathbf{x}_m\right) = \infty$, то тоді розрахунок перших значень \mathbf{h}_m для перших частин ламаної з правого та з лівого боків від \mathbf{x}_m неможливо виконати, використовуючи одну з наведених формул, оскільки при $\mathbf{A}_i\left(\mathbf{x}_m\right) = \infty$ \mathbf{h}_m дорівнює $\mathbf{0}$. В даному випадку треба використовувати зовсім іншу методику розрахунку перших значень \mathbf{h}_m (дивись додаток 1).
- 8.Підібрати таке значення похибки $\Delta_{max}f$, при якому в результаті розрахунків \mathbf{h}_i ($\mathbf{i}=\overline{1,n}$) отримаємо $\mathbf{n}=\mathbf{8}$ або $\mathbf{n}=\mathbf{9}$, тобто отримаємо апроксимуючу ломану лінію з 8 або з 9 частин. Виконати розрахунок усіх значень \mathbf{h}_i ($\mathbf{i}=\overline{1,n}$) та здійснити нумерацію вузлів (вершин ломаної лінії), починаючи з номера $\mathbf{0}$.
- P.S.:Значення \mathbf{h}_i ($\mathbf{i}=\overline{\mathbf{1},\mathbf{n}}$) потрібно округлити до четвертого знаку після коми в менший бік; значення \mathbf{h}_i для останньої частини, тобто значення \mathbf{h}_n , дозволяється зменшити не більш, ніж на 0.002.
- 9.Здійснити розрахунок абсцис \mathbf{x}_i ($\mathbf{i}=\overline{\mathbf{1},\mathbf{n}}$) починаючи з \mathbf{x}_0 , початкових ординат \mathbf{y}_i^p ($\mathbf{i}=\overline{\mathbf{0},\mathbf{n}}$) вузлів апроксимації (вершин ламаної лінії), що належать функції $\mathbf{y}=\mathbf{f}(\mathbf{x})$, та кінцевих ординат \mathbf{y}_i^k ($\mathbf{i}=\overline{\mathbf{0},\mathbf{n}}$), вузлів апроксимації з урахуванням корекції, яку здійснюють для отримання знакозмінної похибки апроксимації.
- P.S.:Значення \mathbf{y}_{i}^{p} ($\mathbf{i}=\overline{\mathbf{0},n}$) та \mathbf{y}_{i}^{k} ($\mathbf{i}=\overline{\mathbf{0},n}$) потрібно округлити до четвертого знаку після коми (округлення здійснюється згідно загальних правил округлення).
- 10.Побудувати графік апроксимуючої функції (ломаної лінії) **у=ф(x),** використовуючи отримані значення \mathbf{x}_i ($\mathbf{i}=\overline{\mathbf{0},\mathbf{n}}$) та \mathbf{y}_i^k ($\mathbf{i}=\overline{\mathbf{0},\mathbf{n}}$)

- 11. Здійснити розрахунок значень кутових коефіцієнтів (значень тангенсів кутів нахилу) $\mathbf{k}_{\mathbf{i}}$ ($\mathbf{i} = \overline{\mathbf{1}, \mathbf{n}}$)лінійних частин ломаної лінії.
- 12.Виконати розкладання апроксимуючої функції (ломаної лінії) **у=ф(х)** на окремі доданки {лінійні та елементарні нелінійні (лінійні з обмеженням на нульовому рівні)}, починаючи з точки, яка має абсцису $\mathbf{x_0}^a$. Значення $\mathbf{x_0}^a$ узяти з таблиці варіантів.
- 13.Над кожним елементарним нелінійним доданком зазначити його квадрант (I, II, III чи IV) та режим {на відкривання (на В) чи на закривання (на З)}
- 14.3дійснити розрахунок наступних значень:
 - значення $\phi(x_0^a)$ для першого лінійного доданку;
 - значення $\mathbf{b}_0 = \mathbf{k}_0$ та \mathbf{x}_0 для другого лінійного доданку;
 - значень $\mathbf{b}_i = \mathbf{k}_i \mathbf{k}_{i-1}$ та \mathbf{x}_{REFi} для кожного елементарного нелінійного доданку.
- P.S.:Значення \mathbf{k}_i це значення кутового коефіцієнту лінійної частини ломаної лінії, що розглядається, а значення \mathbf{k}_{i-1} це значення кутового коефіцієнту попередньої лінійної частини відносно тієї, що розглядається.

Додаток 1: Методика розрахунку перших значень h_i в разі, якщо A_i (x_i) = ∞ .

- **1.1** Необхідно між точкою $[\mathbf{x}_m, \mathbf{f}(\mathbf{x}_m)]$ та точкою $[\mathbf{x}_m + \mathbf{h}_m, \mathbf{f}(\mathbf{x}_m + \mathbf{h}_m)]$ провести пряму лінію та записати рівняння для цієї лінії: $\mathbf{y} = \mathbf{F}(\mathbf{x}) = \mathbf{f}(\mathbf{x}_m) + \mathbf{b}_m(\mathbf{x} \mathbf{x}_m)$, де $\mathbf{b}_m = \{\mathbf{f}(\mathbf{x}_m + \mathbf{h}_m) \mathbf{f}(\mathbf{x}_m)\} / \mathbf{h}_m$.
- **1.2** Абсолютна похибка інтерполяції розраховується по формулі $\Delta f(x) = f(x)$ F(x), а для зазначеної частини ломаної лінії ця формула має наступний вигляд $\Delta f(x) = f(x)$ $\{f(x_m) + b_m(x x_m)\}$. Слід зазначити, що на границях зазначеного інтервалу абсолютна похибка дорівнює нулю, тобто $\Delta f(x_m) = \Delta f(x_m + h_m) = 0$, а для якогось значення $x_k \{x_m < x_k < x_m + h_m\}$ абсолютна похибка інтерполяції має екстремум.
- **1.3** Визначити першу похідну для $\Delta f(x)$, тобто $d[\Delta f(x)] / dx$, та знайти залежність $x_k(h_m)$ з рівняння $d[\Delta f(x)] / dx = 0$. Враховуючи, що в нашому випадку $\Delta f(x) = f(x) \{f(x_m) + b_m(x x_m)\}$, отримуємо рівняння $d[\Delta f(x)]/dx = df/dx b_m = 0$ або $df/dx = \{f(x_m + h_m) f(x_m)\} / h_m$. Таким чином, рівняння для визначення залежності $x_k(h_m)$ має наступний вигляд:

$$df/dx (x_k) = \{f(x_m+h_m) - f(x_m)\} / h_m$$
.

- **1.4** Знайти максимальне значення абсолютної похибки $\Delta_{max}f = |\Delta f(x_k)| = |f(x_k) F(x_k)|$ та отримати залежність $\Delta_{max}f = \Psi(h_m)$, з якої необхідно отримати обернену залежність $h_m = \Psi^{-1}(\Delta_{max}f)$.
- P.S.: Визначення оберненої залежності $\mathbf{h}_m = \mathbf{\Psi}^{-1}(\Delta_{max}\mathbf{f})$ може бути достатньо складним, або навіть неможливим. Але, враховуючи те, що значення $\Delta_{max}\mathbf{f}$ при розрахунках підбирається, то при розрахунку першого інтервалу найпростіше вибрати значення \mathbf{h}_m , потім знайти значення \mathbf{x}_k та визначити значення $\Delta_{max}\mathbf{f}$, яке в подальшому використовувати для розрахунків інших \mathbf{h}_i

Таблиця варіантів завдань для розрахунково-графічної роботи.

№ п/п	y=f(x) для x ≤ 0	y=f(x) для x ≥ 0	X _{min}	X _{max}	X ₀ ^a
01	e ^{-x} +x-2	-(e ^{-x} +x)	-1	+1	X _{max}
02	-lg (x+3)	-lg (x+3)	-2	+2	X ₀
03	V- x	-√ x	-1	+1	X ₁
04	√(1-cosx)	-√(1-cosx)	-π/2	+π/2	X ₂
05	1/(3+x)	1/(3+x)	-2	+2	Х3
06	√-sinx	-√sinx	-π/2	+π/2	X ₄
07	-sin(x+π/4)	-sin(x+π/4)	-π/4	+π/4	X ₅
08	cos(x+π/4)	cos(x+π/4)	-π/4	+π/4	x ₆
09	-x-arcsinx	-x-arcsinx	-0.2	+0.2	X _{min}
10	-x²+sinx	-x²+sinx	-π/2	+π/2	X _{max}
11	secx-2	-secx	-π/3	+π/3	X ₀
12	-1/(2+x²)	-1+1/(2+x²)	-1	+1	X ₁
13	-(x²+2x)	-(x²+2x)	-0.5	+0.5	X ₂
14	cos(x+π/3)	cos(x+π/3)	-π/6	+π/6	Х3
15	-x ² -x ³	-x ² -x ³	-0.5	+0.5	X ₄
16	arcsinx ²	-arcsinx ²	-0.5	+0.5	X ₅
17	-(x ² +3x+5)	-(x²+3x+5)	-1	+1	X 6
18	lg (1-x)	-lg (1+x)	-2	+2	X _{min}
19	x²	-x ²	-1	+1	X _{max}
20	-sinx	-sinx	-π/4	+π/4	X ₀
21	-(x +3) ²	-(x +3) ²	-1	+1	X ₁
22	³√x²	-³√x²	-1	+1	X ₂
23	e ^{-x}	e-x	-2	+2	X ₃
24	sinx-x	sinx-x	-1	+1	X ₄
25	√{1-(1+x)²}	-√{1-(1-x)²}	-1	+1	X ₅
26	In(x²+2)	-ln(x²+2)+2ln2	-1	+1	x ₆
27	- 2-x³	- 2 - x ³	-1	+1	X _{min}

28	-arcsinx	-arcsinx	-0.5	+0.5	X _{max}
29	-arctgx	-arctgx	-1	+1	X ₀
30	-xcosx	-xcosx	-π/4	+π/4	X ₁
31	-√cosx	√cosx - 2	-π/2	+π/2	X ₂
32	-xe-x	-xe ^{-x}	-0.5	+0.5	Х3
33	xsinx	-xsinx	-π/4	+π/4	X ₄
34	-ln(x+3)	-ln(x+3)	-1	+1	X ₅
35	sin²x	-sin²x	-π/2	+π/2	X ₆
36	-x√(-x)	-x√x	-1	+1	X _{min}
37	1-e ^x	-1+e ^x	-0.5	+0.5	X _{max}
38	(x-1)ln(x+2)	-(x+1)ln(x+2)	-0.5	+0.5	X ₀
39	$-x^3 + 0.5$	$-x^3 + 0.5$	-0.5	+0.5	X ₁
40	-³√x	-³√x	-1	+1	X ₂
41	√(xsinx)	-√(xsinx)	-π/2	+π/2	Х3
42	-x(secx-2)	-xsecx	-π/3	+π/3	X ₄
43	-xlg (1-x)	-xlg (1+x)	-2	+2	X ₅
44	-x ⁵	-x ⁵	-1	+1	X ₆
45	-e ^{-x} sinx	-e ^{-x} sinx	-π/2	+π/2	X _{min}
46	xarcsinx	-xarcsinx	-0.5	+0.5	X _{max}
47	e⁻×V-x	-e⁻×√x	-1	+1	X ₀
48	-tgx	-tgx	-π/4	+π/4	X ₁
49	-shx	-shx	-1	+1	X ₂
50	x³sinx	- x³sinx	-π/2	+π/2	X ₃
51	-xarcsinx ²	-xarcsinx ²	-1	+1	X ₄
52	-cos²x	cos²x-2	-π/2	+π/2	X ₅
53	-x(1-e ^x)	-x(1-e ^{-x})	-0.5	+0.5	X ₆
54	-arcshx	-arcshx	-1	+1	X _{min}
55	-(x ² +2)	(x²-2x)	-1	+1	0

56	In(-x+1)	ln(x+1)	-2	+2	x ₀
57	-(x²+2x)	-2ln(x+1)	-1	+1	X ₁
58	2 - cos²x	cos²x	-π/2	+π/2	X ₂
59	2 -Vcosx	√cosx	-π/2	+π/2	Х3
60	1/(1+e ^x)	1/(1+e ^x)	-1	+1	X ₄
61	-sinx-x	-sinx-x	-1	+1	X ₅
62	-2×	-2×	-1	+1	x ₆
63	-x√(-sinx)	-x√sinx	-π/2	+π/2	X _{min}
64	(1-x) ^{-x}	(1+x) ^{-x}	-0.5	+0.5	X _{max}
65	-x³	-x ³	-1	+1	X ₀
66	x³arcsinx	- x³arcsinx	-0.5	+0.5	X ₁
67	lg (x ² +2) -2lg2	-lg (x ² +2)	-0.5	+0.5	X ₂
68	- e ^x	- e ^x	-1	+1	Х3
69	e ^{-x+1} - x	e ^{-x+1} - x	-1	+1	X ₄
70	-x²sinx	- x²sinx	-π/2	+π/2	X ₅
71	xtgx	-xtgx	-π/4	+π/4	x ₆
72	x²cosx	-x²cosx	-π/2	+π/2	X _{min}
73	x²(e-x - 1)	x²(e-x – 1)	-1	+1	X _{max}
74	e ^{-x} +x-1	-(e ^{-x} +x-1)	-1	+1	х ₀
75	-log ₂ (x + 3)	-log₂(x + 3)	-1	+1	X ₁
76	1 + √- x	1 - Vx	-1	+1	X ₂
77	1/(2+x)	1/(2+x)	-1	+1	Х3
78	-sin(x + π/3)	-sin(x + π/3)	-π/3	+π/3	X ₄
79	cos(x + π/3)	cos(x + π/3)	-π/3	+π/3	X ₅
80	-x³ - arcsinx	-x³ - arcsinx	-0.2	+0.2	X ₆
81	e ^{-x} +x -2	-1 -√ x	-1	+1	X _{min}
82	1/(4+x)	1/(4+x)	-3	+3	X _{max}
83	√(1-cosx)	-√sinx	-π/2	+π/2	X ₀

84	cos(x+π/4)	sin(x+π/4)	-π/4	+π/4	0
85	1/(2+x)	-1 +1/(2+x²)	-1	+1	X ₂
86	√-sinx	-√sinx	-π/2	+π/2	Х3
87	-x-arcsinx	-x²-arcsinx	-0.2	+0.2	X ₄
88	secx-1	-secx+1	-π/3	+π/3	X ₅
89	cos(x+π/3)+1	cos(x+π/3)+1	-π/6	+π/6	X ₆
90	-√cosx	-x ² +sinx-1	-π/2	+π/2	X _{min}
91	-(x ² +3x+0.5)	-1+1/(2+x²)	-1	+1	X _{max}
92	-x ² -x ³	$-(x^2+2x)$	-0.5	+0.5	X ₀
93	-(x ² + 2x)	-arcsinx ²	-0.5	+0.5	X ₁
94	lg (1-x)+2	-(x²+3x+2)	-1	+1	0
95	e ^{-x} -1	-x ²	-1	+1	Х3
96	x² +e-x	$^{3}V\{x^{2}+1\}$	-1	+1	X ₄
97	e ^{-x}	e ^x	-2	+2	X ₅
98	$\sqrt{1-(1+x)^2}$	sinx-x	-1	+1	X ₆
99	- 2-x ³ - In3	-ln(x+3)-2	-1	+1	X _{min}
100	-xe ^{-x}	-arcsinx	-0.5	+0.5	X _{max}
101	-√cosx	-x√{(-sinx) + 1}	-π/2	+π/2	0
102	sin²x	√(xsinx)	-π/2	+π/2	X ₁
103	-x ⁵	-x√x	-1	+1	X ₂
104	-e ^x	-arctgx-1	-1	+1	Х3
105	xarcsinx	-xarcsinx	-0.5	+0.5	X ₄
106	x³shx	-x³shx	-1	+1	X ₅
107	-x(1-e ^x)	x³arcsinx	-0.5	+0.5	X ₆
108	-2×	-2×	-1	+1	X _{min}
109	(1-x) ^x	1+x(1+x) ^{-x}	-0.5	+0.5	X _{max}
110	-xv(-sinx)	-x√sinx	-π/2	+π/2	X ₀
111	-1+√-x	-(e-x +x)	-1	+1	X ₁

112	√-sinx	-√(1-cosx)	-π/2	+π/2	X ₂
113	-sin(x+π/4)	-cos(x+π/4)	-π/4	+π/4	0
114	1/(2+x²)	1/(2+x)	-2	+2	X ₄
115	x- lg(x+3)	x- lg(x+3)	-2	+2	X ₅
116	x³√-sinx	-x√sinx	-π/2	+π/2	X ₆
117	x²-arcsinx	-x-arcsinx	-0.2	+0.2	X _{min}
118	secx -3	-secx - 1	-π/3	+π/3	X _{max}
119	cos(x + π/3) - 1	cos(x + π/3) - 1	-π/6	+π/6	X ₀
120	-x ² +sinx-1	√{cosx} - 2	-π/2	+π/2	X ₁
121	-(x² +3x)	-0.5 +1/(2+x²)	-1	+1	X ₂
122	-(x² +2x)	-x ² - x ³	-0.5	+0.5	Х3
123	-arcsinx ²	-x ² - x ³	-0.5	+0.5	X ₄
124	-(x² +3x+2)	-lg (1+x) - 2	-2	+2	X ₅
125	³√{x² +1}	x²+e-x	-1	+1	x ₆
126	2+e ^x	2+e ^{-x}	-1	+1	X _{min}
127	sinx–x	-√{1- (1-x)²}	-1	+1	X _{max}
128	-ln(x+3)+1	1- x ³ - ln3	-1	+1	X ₀
129	-arcsinx	-xe ^{-x}	-0.5	+0.5	X ₁
130	-xV{(-sinx) +1}	-√cosx	-π/2	+π/2	0
131	√(xsinx)	sin²x	-π/2	+π/2	Х3
132	1/(1+e ^x)	-x√x + 0.5	-1	+1	X ₄
133	-arctgx-1	- e ^x	-1	+1	X ₅
134	xarcsinx	-xarcsinx	-0.5	+0.5	x ₆
135	1-shx	1-shx	-1	+1	X _{min}
136	x ³ arcsinx	-x(1- e ^{-x})	-0.5	+0.5	X _{max}
137	-x2 ^x	-x2 ^{-x}	-1	+1	X ₀
138	(1-x) ^x	(1+x²)-×	-0.5	+0.5	X ₁
139	-xv(-sinx)	-x²√sinx	-π/2	+π/2	X ₂

140	-3×	-2 ^{-x}	-1	+1	Х3
141	-2+√-x	-(e ^{-x} +x+1)	-1	+1	0
142	1+V-sinx	1-√(1-cosx)	-π/2	+π/2	X ₅
143	x ² -lg(x+3)	x-lg(x+3)	-2	+2	X ₆
144	-1/(2+x²)	-1/(2+x)	-1	+1	X _{min}
145	x-lg(x ² +3)	x-lg(x ³ +3)	-2	+2	X _{max}
146	√xsinx	-√sinx	-π/2	+π/2	X ₀
147	-x³-arcsinx	-x-arcsinx	-0.2	+0.2	X ₁
148	secx-1.5	-secx+0.5	-π/3	+π/3	X ₂
149	cos(x+π/3)-0.5x	cos(x+π/3)+0.5x	-π/6	+π/6	Х3
150	-x²+sinx	√cosx -1	-π/2	+π/2	X ₄
151	-(x ² +3x+1)	-1.5+1/(2+x²)	-1	+1	X ₅
152	-(x ² +2x-1)	-x ² -x ³ +1	-0.5	+0.5	X ₆
153	-x ² -x ³	-arcsinx ²	-0.5	+0.5	X _{min}
154	lg (1-x)-3	-(x²+3x+3)	-1	+1	X _{max}
155	e ^{-x}	1-x ²	-1	+1	X ₀
156	x²+ex	-³√{x²+1}	-1	+1	0
157	-√{1-(1-x)²}	sinx-x	-1	+1	X ₂
158	³ Vx ² -1	- 1-x ⁵	-1	+1	Х3
159	e ^x V-x	-arcsinx	-0.5	+0.5	X ₄
160	-√cosx	cos²x	-π/2	+π/2	X ₅
161	√(xsinx)	sin²x	-π/2	+π/2	X ₆
162	e ^x V-x	-arctgx	-1	+1	X _{min}
163	xarcsinx	-xarcsinx	-0.5	+0.5	X _{max}
164	x²shx	x²shx	-1	+1	X ₀
165	-x³(1-e ^x)	-x(1 - e ^{-x})	-0.5	+0.5	X ₁
166	-x2 ^{-x}	-x2 ^x	-1	+1	X ₂
167	(1+x²) ^{-x}	(1+x) ^{-x}	-0.5	+0.5	Х3

168	-x√(-sinx)	-x√sin²x	-π/2	+π/2	X 4
169	-4×	-3 ^{-x}	-1	+1	X 5
170	-chx	-chx	-1	+1	X 6
171	-3+√-x	-(e ^{-x} +x+2)	-1	+1	0
172	x+V-sinx	x-√(1-cosx)	-π/2	+π/2	X _{max}
173	x-lg (x+3)	x ² -lg (x+3)	-1	+1	X ₀
174	x-1/(2+x²)	x-1/(2+x)	-1	+1	X ₁
175	-x²-x	-arcsinx ²	-0.5	+0.5	X ₂
176	√-sinx	-√xsinx	-π/2	+π/2	Х3
177	-x-arcsinx	-x³-arcsinx	-0.2	+0.2	X ₄
178	-x+secx-2	x-secx	-π/3	+π/3	0
179	-xcos(x+π/3)	xcos(x+π/3)	-π/6	+π/6	X ₆
180	-x²+sinx+2	√cosx +1	-π/2	+π/2	X _{min}