#flo #inclass

1 | Day one!

colledge level probabilty and distrubtion class based on the harvard course, which is a good resoruce!

- calculus based class (#review)
- · assuming we know
 - e shows up alot
 - * the limit as n -> inf of $(1 + \frac{x}{n})^n = e^x$
 - * $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} =$ (the taylor series expansion)
 - * and ofc set notation
- if you are ok w/ coding (hell yeah) make some sims! but not today
 - for today, we are naive!
- workin w/o computer screens (nah)
- · we should also have a notebook
 - we are gonna have a lot of absences (due to covid)
 - thus, organization is good!

but wait, what is naive?

- · experiment: doing a thing, which has a random outcome
 - eg. draw 2 cards form a deck
- the sample space: Ω . the set of all possible outcomes
 - $= \{(As, Ah), \dots\}$
- · event is subset of the sample space
 - eg. the second card is an ace
- the naive definition of probability (almost never works) is P(A) = {
 outcomes where a happens}{ outcomes}
 - aka, $\frac{|A|}{|\Omega|}$ where omega is the num of elements
 - idk why the first latex doesnt work

1.1 | the problem set!