MTH210: Lab 8

Linear Regression, MLE, Ridge, and Newton-Raphson

1. Load the cars dataset in R:

```
data(cars)
```

Fit a linear regression model using maximum likelihood with response y being the distance and x being speed. Remember to include an intercept term in X by making the first column as a column of 1s. $\underline{\text{Do}}$ not use inbuilt functions in R to fit the model.

2. Load the fuel2001 dataset in R:

```
fuel2001 <- read.csv("https://dvats.github.io/assets/fuel2001.csv", row.names = 1)</pre>
```

- a. Fit the linear regression model using maximum likelihood with response FuelC. Remember to include an intercept in X. What is your final estimate of β and σ^2 ?
- b. For $\lambda = 1$, what is the ridge regression estimator of β ?
- 3. Simulating data in R: Let $X \in \mathbb{R}^{n \times p}$ be the design matrix, where all entries in its first column equal one (to form an intercept). Let $x_{i,j}$ be the (i,j)th element of X. For the i^{th} case, $x_{i1} = 1$ and x_{i2}, \ldots, x_{ip} are the values of the p-1 predictors. Let y_i be the response for the \$i\$th case and define $y = (y_1, \ldots, y_n)^T$. The model assumes that y is a realization of the random vector:

$$Y \sim N_n(X\beta_*, \sigma_*^2 I_n)$$
,

where $\beta_* \in \mathbb{R}^p$ are unknown regression coefficients and $\sigma_*^2 > 0$ is the unknown variance. We would like to generate data that actually follows the following model. This is useful when building too methods and different estimation techniques for β .

a. Study the code below and understand how the data is being generated according to the model:

```
set.seed(1)
n <- 50
p <- 5
sigma2.star <- 1/2
beta.star <- rnorm(p)</pre>
```

```
X <- cbind(1, matrix(rnorm(n*(p-1)), nrow = n, ncol = (p-1)))
y <- X %*% beta.star + rnorm(n, mean = 0, sd = sqrt(sigma2.star))</pre>
```

- b. Having generated the above (y,X), obtain the MLE of β . Is the MLE roughly close to β^* ? What happens when you increase n = 500?
- c. Repeat the data generation process, but now change p = 100 and keep n = 50. Can you find the traditional MLE in this case?
- d. For the above data find the ridge regression estimator of β for $\lambda = 0.01, 0.1, 1, 10$.
- 4. Write a Newton-Raphson code to find the MLE of α for Gamma $(\alpha, 1)$ distribution. That is, suppose $X_1, X_2, \dots, X_n \stackrel{iid}{\sim} \operatorname{Gamma}(\alpha, 1)$, then write a function to obtain $\hat{\alpha}_{MLE}$.

In order to implement this, you will need data that is from $Gamma(\alpha, 1)$. You may use the following:

```
set.seed(100)
alpha <- 5 #true value of alpha
n <- 10 # actual data size is small first
dat <- rgamma(n, shape = alpha, rate = 1)</pre>
```

The above generates n=10 observations. Use dat to obtain the MLE of α . You will need the pracma library in R to calculate the derivatives of $\Gamma(\cdot)$ function.

```
library(pracma) #for psi function
?psi
```

5. Using both Newton-Raphson and gradient ascent algorithm, maximize objective function

$$f(x) = \cos(x) \quad x \in [-\pi, 3\pi].$$