Equidistribution, discrepancy, and the analytic properties of Dirichlet series

Daniel Miller

27 November 2016

Cornell University

Outline

Background

The Sato-Tate conjecture

Breaking the Akiyama-Tanigawa converse

Generalizations

Background

Equation of the form $E: y^2 = x^3 + ax + b$.

Equation of the form $E: y^2 = x^3 + ax + b$.

Simplify: assume $a, b \in \mathbf{Z}$.

Equation of the form $E: y^2 = x^3 + ax + b$.

Simplify: assume $a, b \in \mathbf{Z}$.

Non-singular: $4a^3 + 27b^2 \neq 0$.

3

Equation of the form $E: y^2 = x^3 + ax + b$.

Simplify: assume $a, b \in \mathbf{Z}$.

Non-singular: $4a^3 + 27b^2 \neq 0$.

Count points modulo *p*:

$$\#E(\mathbf{F}_p) = \#\{(x,y) \in (\mathbf{F}_p)^2 : x^2 = y^3 + ax + b\} + 1.$$

3

Equation of the form $E: y^2 = x^3 + ax + b$.

Simplify: assume $a, b \in \mathbf{Z}$.

Non-singular: $4a^3 + 27b^2 \neq 0$.

Count points modulo *p*:

$$\#E(\mathbf{F}_p) = \#\{(x,y) \in (\mathbf{F}_p)^2 : x^2 = y^3 + ax + b\} + 1.$$

+1 = "point at infinity."

Equation of the form $E: y^2 = x^3 + ax + b$.

Simplify: assume $a, b \in \mathbf{Z}$.

Non-singular: $4a^3 + 27b^2 \neq 0$.

Count points modulo *p*:

$$\#E(\mathbf{F}_p) = \#\{(x,y) \in (\mathbf{F}_p)^2 : x^2 = y^3 + ax + b\} + 1.$$

+1 = "point at infinity."

Geometric structure of $E(\mathbf{C})$

Our example

$$E: y^2 = x^3 - 3024x + 46224$$

Our example

$$E: y^2 = x^3 - 3024x + 46224$$

Where is ∞ ?

4

Initial data

							999999929	
$\#E(\mathbf{F}_p)$	1	2	3	3	8	11	 999950222	1000031072

Initial data

								999999937
$\#E(\mathbf{F}_p)$	1	2	3	3	8	11	 999950222	1000031072

Look at more data...

 $\#E(\mathbf{F}_p)$ as a function of p.

 $\#E(\mathbf{F}_p)$ as a function of p.

How does the error term behave?

$$a_p(E) := p + 1 - \#E(\mathbf{F}_p)$$
 as a function of p .

7

$$a_p(E) := p + 1 - \#E(\mathbf{F}_p)$$
 as a function of p .

Intuition: why is a_p small? (and how small is it?)

$$a_p(E)$$
 vs. $\pm 2\sqrt{p}$.

$$a_p(E)$$
 vs. $\pm 2\sqrt{p}$.

Perhaps we should normalize?

Satake parameters

$$\theta_p = \cos^{-1}\left(\frac{a_p}{2\sqrt{p}}\right)$$
 as a function of p .

Satake parameters

$$\theta_p = \cos^{-1}\left(\frac{a_p}{2\sqrt{p}}\right)$$
 as a function of p .

Look at the statistics of $\{\theta_p\}$.

Their statistics

Histogram of $\{\theta_p\}_{p\leqslant 10^9}$.

Their statistics

Histogram with graph of $ST(\theta) = \frac{2}{\pi} \sin^2(\theta)$.

Their statistics

Histogram with graph of $ST(\theta) = \frac{2}{\pi} \sin^2(\theta)$.

Some kind of convergence happening...

The Sato-Tate conjecture

Some definitions

Two cumulative distribution functions:

$$cdf_{N}(x) = \frac{\#\{p \leqslant N : \theta_{p} \leqslant x\}}{\#\{p \leqslant N\}}$$
$$cdf_{ST}(x) = \int_{0}^{x} ST(x) dx = \frac{x - \sin(x)\cos(x)}{\pi}$$

Some definitions

Two cumulative distribution functions:

$$cdf_{N}(x) = \frac{\#\{p \leqslant N : \theta_{p} \leqslant x\}}{\#\{p \leqslant N\}}$$
$$cdf_{ST}(x) = \int_{0}^{x} ST(x) dx = \frac{x - \sin(x)\cos(x)}{\pi}$$

Discrepancy

$$\operatorname{disc}_{E}(N) = \sup_{0 \leqslant x \leqslant \pi} |\operatorname{cdf}_{N}(x) - \operatorname{cdf}_{ST}(x)|.$$

Some definitions

Two cumulative distribution functions:

$$cdf_{N}(x) = \frac{\#\{p \leqslant N : \theta_{p} \leqslant x\}}{\#\{p \leqslant N\}}$$
$$cdf_{ST}(x) = \int_{0}^{x} ST(x) dx = \frac{x - \sin(x)\cos(x)}{\pi}$$

Discrepancy

$$\operatorname{disc}_{E}(N) = \sup_{0 \leqslant x \leqslant \pi} |\operatorname{cdf}_{N}(x) - \operatorname{cdf}_{ST}(x)|.$$

Other ways to measure distabce between distributions?

Theorem (Sato-Tate)

For any elliptic curve E, $\operatorname{disc}_E(N) \to 0$ as $N \to \infty$.

Theorem (Sato-Tate)

For any elliptic curve E, $\operatorname{disc}_E(N) \to 0$ as $N \to \infty$.

Conjecture (Akiyama-Tanigawa)

For any elliptic curve E, $\operatorname{disc}_E(N) = O_E(N^{-\frac{1}{2}+\epsilon})$.

Theorem (Sato-Tate)

For any elliptic curve E, $\operatorname{disc}_E(N) \to 0$ as $N \to \infty$.

Conjecture (Akiyama-Tanigawa)

For any elliptic curve E, $\operatorname{disc}_E(N) = O_E(N^{-\frac{1}{2}+\epsilon})$.

Theorem

The Akiyama-Tanigawa conjecture implies the Riemann Hypothesis (for the elliptic curve).

Theorem (Sato-Tate)

For any elliptic curve E, $\operatorname{disc}_E(N) \to 0$ as $N \to \infty$.

Conjecture (Akiyama-Tanigawa)

For any elliptic curve E, $\operatorname{disc}_E(N) = O_E(N^{-\frac{1}{2}+\epsilon})$.

Theorem

The Akiyama–Tanigawa conjecture implies the Riemann Hypothesis (for the elliptic curve).

Key idea: Koksma-Hlawka inequality.

Definition (Riemann zeta function)

$$\zeta(s) = \prod_{p} \frac{1}{1 - p^{-s}} = \sum_{n \geqslant 1} \frac{1}{n^{s}}$$

Definition (Riemann zeta function)

$$\zeta(s) = \prod_{p} \frac{1}{1 - p^{-s}} = \sum_{n \geqslant 1} \frac{1}{n^{s}}$$

Definition (L-function of elliptic curve)

$$L(E,s) = \prod_{p} \frac{1}{(1 - e^{i\theta_{p}} p^{-s})(1 - e^{-i\theta_{p}} p^{-s})}$$

Definition (Riemann zeta function)

$$\zeta(s) = \prod_{p} \frac{1}{1 - p^{-s}} = \sum_{n \geqslant 1} \frac{1}{n^{s}}$$

Definition (L-function of elliptic curve)

$$L(E,s) = \prod_{p} \frac{1}{(1 - e^{i\theta_{p}} p^{-s})(1 - e^{-i\theta_{p}} p^{-s})}$$

Definition (strange Dirichlet series)

$$L_f(E,s) = \prod_p \frac{1}{1 - f(\theta_p)p^{-s}}$$

Definition (Riemann zeta function)

$$\zeta(s) = \prod_{p} \frac{1}{1 - p^{-s}} = \sum_{n \ge 1} \frac{1}{n^s}$$

Definition (L-function of elliptic curve)

$$L(E,s) = \prod_{p} \frac{1}{(1 - e^{i\theta_{p}} p^{-s})(1 - e^{-i\theta_{p}} p^{-s})}$$

Definition (strange Dirichlet series)

$$L_f(E,s) = \prod_{p} \frac{1}{1 - f(\theta_p)p^{-s}}$$

(Standing assumption: $\int f \cdot ST = 0$.)

L-functions on the complex plane

A-T for Riemann zeta function:

$$\left| \# \{ p \leqslant N \} - \int_0^x \frac{t}{\log t} \, \mathrm{d}t \right| = O(\sqrt{N})$$

A-T for Riemann zeta function:

$$\left| \# \{ p \leqslant N \} - \int_0^x \frac{t}{\log t} \, \mathrm{d}t \right| = O(\sqrt{N})$$

(Equivalent to Riemann Hypothesis.)

A-T for Riemann zeta function:

$$\left| \# \{ p \leqslant N \} - \int_0^x \frac{t}{\log t} \, \mathrm{d}t \right| = O(\sqrt{N})$$

(Equivalent to Riemann Hypothesis.)

A-T for elliptic curves implies:

$$\left|\sum_{p\leqslant N}f(\theta_p)\right|=O_f(N^{\frac{1}{2}})$$

A-T for Riemann zeta function:

$$\left| \# \{ p \leqslant N \} - \int_0^x \frac{t}{\log t} \, \mathrm{d}t \right| = O(\sqrt{N})$$

(Equivalent to Riemann Hypothesis.)

A-T for elliptic curves implies:

$$\left|\sum_{p\leqslant N}f(\theta_p)\right|=O_f(N^{\frac{1}{2}})$$

 $A-T \Rightarrow RH$.

A-T for Riemann zeta function:

$$\left| \# \{ p \leqslant N \} - \int_0^x \frac{t}{\log t} \, \mathrm{d}t \right| = O(\sqrt{N})$$

(Equivalent to Riemann Hypothesis.)

A-T for elliptic curves implies:

$$\left|\sum_{p\leqslant N}f(\theta_p)\right|=O_f(N^{\frac{1}{2}})$$

 $A-T \Rightarrow RH$. Is the converse true?

A-T for Riemann zeta function:

$$\left| \# \{ p \leqslant N \} - \int_0^x \frac{t}{\log t} \, \mathrm{d}t \right| = O(\sqrt{N})$$

(Equivalent to Riemann Hypothesis.)

A-T for elliptic curves implies:

$$\left|\sum_{p\leqslant N}f(\theta_p)\right|=O_f(N^{\frac{1}{2}})$$

 $A-T \Rightarrow RH$. Is the converse true? No!

Breaking the Akiyama-Tanigawa

converse

What is needed?

Construct a sequence $\{\theta_p\}$ such that

1. Sums of the form $\sum_{p\leqslant N} f(\theta_p)$ have "good bounds" like $O(\sqrt{N})$.

What is needed?

Construct a sequence $\{\theta_p\}$ such that

- 1. Sums of the form $\sum_{p\leqslant N} f(\theta_p)$ have "good bounds" like $O(\sqrt{N})$.
- 2. The discrepancy $\operatorname{disc}_{\{\theta_p\}}(N)$ is not $O(N^{-\frac{1}{2}})$.

Key idea

Choose an angle θ , and let let $\theta_n = n\theta \mod \pi$. Then

$$\left| \sum_{n \leqslant N} e^{2\pi i m \theta_n} \right| = O\left(\frac{1}{|e^{2\pi i \theta} - 1|}\right)$$

Key idea

Choose an angle θ , and let let $\theta_n = n\theta \mod \pi$. Then

$$\left| \sum_{n \leqslant N} e^{2\pi i m \theta_n} \right| = O\left(\frac{1}{|e^{2\pi i \theta} - 1|}\right)$$

Right-hand-side doesn't depend on N.

Key idea

Choose an angle θ , and let let $\theta_n = n\theta \mod \pi$. Then

$$\left| \sum_{n \leqslant N} e^{2\pi i m \theta_n} \right| = O\left(\frac{1}{|e^{2\pi i \theta} - 1|}\right)$$

Right-hand-side doesn't depend on N.

Corollary

If f is a smooth function, then

$$\left|\sum_{n\leqslant N}f(\theta_n)\right|=O_f(1).$$

Two degrees of freedom

If $\theta_{p_n} = n\theta$, then

$$L_f(s) = \prod_p \frac{1}{1 - f(\theta_p)p^{-s}}$$

satisfies Riemann Hypothesis.

Two degrees of freedom

If $\theta_{p_n} = n\theta$, then

$$L_f(s) = \prod_p \frac{1}{1 - f(\theta_p)p^{-s}}$$

satisfies Riemann Hypothesis.

Also, we can control the discrepancy of the sequence $\{\theta_p\}$ via an $\it irrationality$ $\it exponent.$

Diophantine approximation

Definition

The *irrationality exponent* of x is the largest η such that

$$\left| x - \frac{p}{q} \right| < q^{-\eta}$$

for infinitely many p/q.

Diophantine approximation

Definition

The *irrationality exponent* of x is the largest η such that

$$\left| x - \frac{p}{q} \right| < q^{-\eta}$$

for infinitely many p/q.

Theorem (Thue-Siegel-Roth)

If x is algebraic but not rational (e.g. $\sqrt{2}$), then it has irrationality exponent 2.

Diophantine approximation

Definition

The *irrationality exponent* of x is the largest η such that

$$\left| x - \frac{p}{q} \right| < q^{-\eta}$$

for infinitely many p/q.

Theorem (Thue-Siegel-Roth)

If x is algebraic but not rational (e.g. $\sqrt{2}$), then it has irrationality exponent 2.

Theorem

There are x with arbitrary irrationality exponent > 2.

Putting things together

Theorem

For any $\eta \in (-1/2,0)$, there exists a sequence $\{\theta_p\}$ such that

$$L(\{\theta_p\}, s) = \prod_{p} \frac{1}{(1 - e^{i\theta_p} p^{-s})(1 - e^{-i\theta_p} p^{-s})}$$

satisfies the Riemann Hypothesis, but for which

$$\operatorname{\mathsf{disc}}_{\{\theta_p\}}(N)
eq O(N^\eta).$$

Putting things together

Theorem

For any $\eta \in (-1/2,0)$, there exists a sequence $\{\theta_p\}$ such that

$$L(\{\theta_p\}, s) = \prod_{p} \frac{1}{(1 - e^{i\theta_p} p^{-s})(1 - e^{-i\theta_p} p^{-s})}$$

satisfies the Riemann Hypothesis, but for which

$$\mathsf{disc}_{\{\theta_{p}\}}(N)
eq O(N^{\eta}).$$

Problem: this sequence $\{\theta_p\}$ is uniformly distributed, not ST-distributed.

If
$$\tilde{\theta}_p = \mathrm{cdf}_{\mathrm{ST}}^{-1}(\theta_p)$$
, then $\{\tilde{\theta}_p\}$ is ST-distributed.

If
$$\tilde{\theta}_p = \mathrm{cdf}_{\mathrm{ST}}^{-1}(\theta_p)$$
, then $\{\tilde{\theta}_p\}$ is ST-distributed.

Also cdf_{ST}^{-1} preserves discrepancy of sequences.

If
$$\tilde{\theta}_p = \operatorname{cdf}_{\operatorname{ST}}^{-1}(\theta_p)$$
, then $\{\tilde{\theta}_p\}$ is ST-distributed.

Also cdf_{ST}^{-1} preserves discrepancy of sequences.

Tricky part: show that Riemann Hypothesis holds for $\{\tilde{\theta}_p\}$.

If $\tilde{\theta}_p = \operatorname{cdf}_{\operatorname{ST}}^{-1}(\theta_p)$, then $\{\tilde{\theta}_p\}$ is ST-distributed.

Also cdf_{ST}^{-1} preserves discrepancy of sequences.

Tricky part: show that Riemann Hypothesis holds for $\{\tilde{\theta}_p\}$.

Problem: the $\tilde{\theta}_p$ don't come from integral a_p .

If $\tilde{\theta}_p = \operatorname{cdf}_{\operatorname{ST}}^{-1}(\theta_p)$, then $\{\tilde{\theta}_p\}$ is ST-distributed.

Also cdf_{ST}^{-1} preserves discrepancy of sequences.

Tricky part: show that Riemann Hypothesis holds for $\{\tilde{\theta}_p\}$.

Problem: the $\tilde{\theta}_p$ don't come from integral a_p .

Solution: tweak them so they do, then prove everything still works.

Generalizations

From $y^2 = x^3 + ax + b$ to $y^2 = x^5 - 1$:

From $y^2 = x^3 + ax + b$ to $y^2 = x^5 - 1$:

Higher-dimensional counterexamples, Galois representations.

Questions?

Further reading

- S. Akiyama and Y. Tanigawa. Calculation of values of *L*-functions associated to elliptic curves. *Math. Comp.*, 68(227):1201–1231, 1999.
- Y. Bugeaud. Diophantine approximation and Cantor sets. *Math. Ann.*, 341(3):677–684, 2008.
- L. Kuipers and H. Niederreiter. *Uniform distribution of sequences*. Wiley-Interscience, 1974.
- M. Laurent. On transfer inequalities in Diophantine approximation. In *Analytic number theory*, pages 306–314. Cambridge Univ. Press, 2009.
- B. Polyak. Convexity of nonlinear image of a small ball with applications to optimization. Set-Valued Anal., 9(1-2):159-168, 2001.