Logical Foundations

CS3100 Fall 2019

Review

Previously

· Prolog basics

This lecture

- · Logical foundations of prolog
 - First-order logic
 - Syntax, Semantics and properties
 - Definite Clause programs
 - Syntax, connection to prolog, SLD resolution

First-order logic

Terms and functions:

```
term := constant | variable | functions

functions := f(t1, t2, ..., tn) | g(t1, t2, ..., tn)

where f and g are function symbols.

where t1,t2... are terms.
```

Natural numbers

Consider the terms for encoding natural numbers \mathbb{N} .

- Constant: Let z be 0.
- **Functions**: Given the natural numbers x and y, let the function
 - s(x) represent the successor of x
 - mul(x, y) represent the product of x and y.

• square(x) represent the square of x.

First-order logic

```
f, g \in \text{formulas} := p(t_1, ..., t_n) where p is the predicate symbol | \neg f | f \land g | f \lor g | f \rightarrow g | f \leftrightarrow g | \forall X. f | \exists X. f where X is a variable
```

 $t \in \text{term}$:= constant | variable | functions

Predicates on natural numbers

- even(x) the natural number x is even.
- odd(x) the natural number x is odd.
- prime(x) the natural number x is prime.
- $\operatorname{divides}(x, y)$ the natural number x divides y.
- le(x, y) the natural number x is less than or equal to y
- gt(x, y) the natural number x is greater than y.

Precedence

From strongest to weakest

- 1. ¬
- 2. V
- 3. ∧
- $4. \rightarrow, \leftrightarrow$
- 5. ∀,∃

Precedence

Hence,

$$((\neg b) \land c) \rightarrow a)$$

can be simplified to

$$\neg b \land c \rightarrow a$$

Some statements on natural numbers

- Every natural number is even or odd, but not both.
- A natural number is even if and only if it is divisible by two.
- If some natural number, x, is even, then so is x^2 .
- A natural number x is even if and only if x + 1 is odd.
- Any prime number that is greater than 2 is odd.
- For any three natural numbers x, y, and z, if x divides y and y divides z, then x divides z.
- There exists an odd composite number (recall, composite number is greater than 1 and not prime).
- Every natural number greater than one has a prime divisor.

Some statements on natural numbers

- Every natural number is even or odd, but not both.
 - $\forall x. ((\text{even}(x) \lor \text{odd}(x)) \land \neg(\text{even}(x) \land \text{odd}(x)))$
- A natural number is even if and only if it is divisible by two.
 - $\forall x$. even(x) \leftrightarrow divides(2, x)
- If some natural number, x, is even, then so is x^2 .
 - $\forall x. \operatorname{even}(x) \rightarrow \operatorname{even}(\operatorname{square}(x))$

Some statements on natural numbers

- A natural number x is even if and only if x + 1 is odd.
 - $\forall x. \operatorname{even}(x) \leftrightarrow \operatorname{odd}(\operatorname{s}(x))$
- Any prime number that is greater than 2 is odd.
 - $\forall x. \text{ prime}(x) \land \text{gt}(x, \text{s}(\text{s}(z))) \rightarrow \text{odd}(x)$
- For any three natural numbers x, y, and z, if x divides y and y divides z, then x divides z.
 - $\forall x, y, z$. divides $(x, y) \land \text{divides}(y, z) \rightarrow \text{divides}(x, z)$

Some statements on natural numbers.

- There exists an odd composite number.
 - $\exists x. \operatorname{odd}(x) \land \operatorname{composite}(x)$
- Every natural number greater than one has a prime divisor.
 - $\forall x. \operatorname{gt}(x, \operatorname{s}(z)) \to (\exists p. \operatorname{prime}(p) \land \operatorname{divides}(p, x))$

Logical Equivalences

$$\neg \neg f \equiv f$$

$$f \to g \equiv \neg f \lor g$$

$$f \leftrightarrow g \equiv (f \to g) \land (g \to f)$$

$$\neg (f \lor g) \equiv \neg f \land \neg g$$

$$\neg (f \land g) \equiv \neg f \lor \neg g$$

$$\neg \forall x. f(x) \equiv \exists x. \neg f(x)$$

$$\neg \exists x. f(x) \equiv \forall x. \neg f(x)$$

Logical Equivalences

$$\forall x. (f(x) \land g(x)) \equiv (\forall x. f(x)) \land (\forall x. g(x))$$

$$\forall x. (f(x) \lor g(x)) \not\equiv (\forall x. f(x)) \lor (\forall x. g(x))$$

Pick f as even and g as odd.

$$\exists x. (f(x) \lor g(x)) \equiv (\exists x. f(x)) \lor (\exists x. g(x))$$

$$\exists x. (f(x) \land g(x)) \not\equiv (\exists x. f(x)) \land (\exists x. g(x))$$

Pick f as even and g as odd.

Inference rules

$$\frac{f \quad f \to g}{g} \quad (\to E) \qquad \frac{\forall x. f(x)}{f(t)} \quad (\forall E)$$

$$\frac{f(t)}{\exists x. f(x)} \qquad (\exists I) \qquad \qquad \frac{f \quad g}{f \land g} \qquad (\land I)$$

Interpretation

- What we have seen so far is a syntactic study of first-order logic.
 - Semantics = meaning of first-order logic formulas.
- Given an alphabet A from which terms are drawn from and a domain \mathcal{D} , an **interpretation** maps:
 - each constant $c \in A$ to an element in \mathcal{D}
 - each *n*-ary function $f \in A$ to a function $\mathcal{D}^n \to \mathcal{D}$
 - each *n*-ary preducate $p \in A$ to a relation $D_1 \times ... \times D_n$

Interpretation

For our running example, choose the domain of natural numbers $\mathbb N$ with

- The constant z maps to 0.
- The function s(x) maps to the function s(x) = x + 1
- The predicate le maps to the relation ≤

Models

- A **model** for a set of first-order logic formulas is equivalent to the assignment to truth variables in predicate logic.
- A interpretation M for a set of first-order logic formulas P is a model for P iff every formula of P is true in M.
- If M is a model for f, we write $M \models f$, which is read as "models" or "satisfies".

Models

Take $f = \forall y$. le(z, y). The following are models for f

- Domain \mathbb{N} , z maps to 0, s(x) maps to s(x) = x + 1 and le maps to \leq .
- Domain \mathbb{N} , z maps to 0, s(x) maps to s(x) = x + 2 and le maps to \leq .
- Domain \mathbb{N} , z maps to 0, s(x) maps to s(x) = x and le maps to \leq .

whereas the following aren't:

- The integer domain \mathbb{Z}, \ldots
- Domain \mathbb{N} , z maps to 0, s(x) maps to s(x) = x + 1 and le maps to \geq

Quiz

Which of these interpretations are models of $f = \forall y. le(z, y)$?

- 1. Domain \mathbb{N} , z maps to 1, s(x) maps to s(x) = x + 1 and le maps to \leq .
- 2. Domain \mathbb{N} , z maps to 1, s(x) maps to s(x) = x * 2 and le maps to \leq .
- 3. Domain \mathbb{N} , z maps to 0, s(x) maps to s(x) = x + 1 and le maps to <.
- 4. Domain is the domain of sets, z maps to \emptyset , s(x) maps to $s(x) = \{x\}$ and $le(x, y) = x \subseteq y \lor \exists e \in y. le(x, e).$

Quiz

Which of these interpretations are models of $f = \forall y. le(z, y)$?

- 1. Domain \mathbb{N} , z maps to 1, s(x) maps to s(x) = x + 1 and le maps to \leq . yes
- 2. Domain \mathbb{N} , z maps to 1, s(x) maps to s(x) = x * 2 and le maps to s(x) = x * 2.
- 3. Domain \mathbb{N} , z maps to 0, s(x) maps to s(x) = x + 1 and le maps to <. **no**
- 4. Domain is the domain of sets, z maps to \emptyset , s(x) maps to $s(x) = \{x\}$ and $le(x, y) = x \subseteq y \lor \exists e \in y. le(x, e).$ **yes**

Models

- A set of forumulas *P* is said to be **satisfiable** if there is a model *M* for *P*.
- Some formulas do not have models. Easiest one is $f \land \neg f$
 - Such (set of) formulas are said to be **unsatisfiable**.

Logical consequence & validity

Given a set of formulas P, a formula f is said to be a logical consequence of P iff for every model M of P, $M \models f$.

How can you prove this?

- Show that $\neg f$ is false in every model M of P.
 - Equivalent to, $P \cup \neg f$ is **unsatisfiable**.

A formula f is said to be **valid**, if it is true in every model (written as $\models f$).

Theorem: It is undecidable whether a given first-order logic formula f is **valid**.

Restricting the language

- Clearly, the full first-order logic is not a practical model for computation as it is undecidable.
 - How can we do better?
- Restrict the language such that the language is **semi-decidable**.
- ullet A language L is said to be **decidable** if there exists a turing machine that
 - accepts every string in L and
 - rejects every string not in L
- A language L is said to be semi-decidable if there exists a turing machine that

- accepts every string in L and
- for every string not in L, rejects it or loops forever.

Definite logic programs

- Definite clauses are such a restriction on first-order logic that is semi-decidable.
- · Prolog is basically programming with definite clauses.
- In order to define definite clauses formally, we need some auxiliary definitions.

Definite clauses

- An atomic forumla is a formula without connectives.
 - even(x) and prime(x)
 - but not $\neg even(x)$, $even(x) \lor prime(y)$
- A **clause** is a first-order logic formula of the form $\forall (L_1 \lor ... \lor L_n)$, where every L_i is an atomic formula (a postive literal) or the negation of an atomic formula (a negative literal).
- A definite clause is a clause with exactly one positive literal.
 - $\forall (A_0 \vee \neg A_1 \ldots \vee \neg A_n)$
 - Usually written down as, $A_0 \leftarrow A_1 \wedge ... \wedge A_n$, for $n \geq 0$.
 - or more simply, $A_0 \leftarrow A_1, \dots, A_n$, for $n \ge 0$.
- · A definite program is a finite set of definite clauses.

Definite Clauses and Prolog

- Prolog facts are definite clauses with no negative literals.
 - The prolog fact even(z) is equivalent to
 - the definite clause $\forall z$. even $(z) \leftarrow T$, where T stands for true.
- · Prolog rules are definite clauses.
 - The prolog rule ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y) is equivalent to
 - the definite clause $\forall x, y, z$. ancestor $(x, y) \leftarrow \operatorname{parent}(x, z) \land \operatorname{ancestor}(z, y)$
 - equivalent to, $\forall x, y$. ancestor $(x, y) \leftarrow \exists z$. parent $(x, z) \land$ ancestor(z, y)

Consistency of Definite Clause Programs

- Every definite clause program has a model!
- Proof
 - there is no way to encode negative information in definite clause programs.

- Hence, there is no way to construct an inconsistent system (such as $f \land \neg f$).
- Therefore, every definite clause program has a model.

Prolog Queries

- Let us assume that the prolog program *P* is family tree of House Stark encoded in the previous lecture.
- We would like to answer "is Rickard the ancestor of Robb?"
 - q = ancestor(rickard, robb)
- · We construct a logical statement
 - ¬ancestor(rickard, robb)
 - which is the **negation** of the original question.

Prolog Queries

- The system attempts to show that $\neg ancestor(rickard, robb)$ is false in every model of P.
 - equivalent to showing $P \cup \{\neg ancestor(rickard, robb)\}$ is unsatisfiable.
- Then, we can conclude that for every model M of P, $M \vDash q$.
 - that is, "Rickard is the ancestor of Robb".

SLD Resolution

- The whole point of restricting the first-order logic language to definite clauses is to have a better decision procedue.
- There is a semi-decidable decision procedure for definite clauses called SLD resolution.
 - SLD = Selective Linear Resolution with Definite Clauses.
 - given an unsatisfiable set of formulae it is guaranteed to derive false
 - however given a satisfiable set, it may never terminate.

SLD Resolution example

```
father(rickard,ned).
father(rickard,brandon).
father(rickard,lyanna).
father(ned,robb).
father(ned,sansa).
father(ned,arya).
parent(X,Y) :- father(X,Y).
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
?- ancestor(rickard, robb).
```

SLD Resolution example

- The logical version goal is ¬ancestor(rickard,robb).
- The system attemps to disprove this by finding a counter-example.
 - How can I derive ancestor(rickard, robb) ?
- I can see a rule ancestor(X,Y) :- parent(X,Y) which allows me to derive ancestor(X,Y).
 - the logical equivalent is, $\forall x, y. (ancestor(x, y) \leftarrow parent(x, y)).$
- Deduce:
 - Apply $(\forall E)$ rule for x and y and pick x = rickard and y = robb.
 - Apply $(\rightarrow E)$ rule on the result to get a new goal parent(rickard, robb).
- The original goal to derive ancestor(rickard,robb) has been replaced by the goal to derive parent(rickard,robb).

SLD Resolution example

- How can you derive parent(rickard,robb)?
- Observe the rule parent(X,Y) :- father(X,Y)
 - logical equivalent is $\forall x, y. \ parent(x, y) \leftarrow father(x, y)$.
- **Deduce**: Apply rules $(\forall E)$ and $(\rightarrow E)$.
- New goal: father(rickard, robb).
- · No fact matches this goal!
 - Backtrack!

SLD Resolution example

- How can I derive ancestor(rickard, robb)?
- Observe the rule ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y)

- logical equivalent is $\forall x, y. \ ancestor(x, y) \leftarrow \exists z. \ parent(x, z) \land ancestor(z, y)$
- **Deduce**: Apply rules $(\forall E), (\rightarrow E), (\exists I), (\land I)$ in that order.
- We get two new goals, parent(rickard, Z) and ancestor(Z, robb) where Z is the same variable introduced by $(\exists I)$.

SLD Resolution example

- The goal parent(rickard, Z) in turn leads to the goal father(rickard, Z).
 - The first rule father(rickard, ned) unifies with this goal with Z = ned.
 - Hence, the first goal is proved.
- The other goal is now specialised to ancestor (ned, robb) .
- The second goal can now be proved as ancestor(ned,robb) ←
 parent(ned,robb) ← father(ned,robb).
 - We have a fact father (ned, robb) . Hence, proved.

SLD Resolution example

- By deriving q = ancestor(rickard, robb) from the given program P, we have shown that $P \cup \{\neg q\}$ is unsatisfiable.
- Hence, ancestor(rickard, robb) is a logical consequence of the given program P.

Computation is deduction

- When a prolog program computes the result of the query, it is performing logical deduction through SLD resolution.
- In our example,
 - We picked the clauses in the order they appear in the program
 - Did a depth-first search for proof
 - Given the conjunction of goals $g1 \wedge g2$, chose to prove g1 first.
- SWI-Prolog implementation has the same behaviour
 - Other prolog implementation may choose different strategies BFS instead of DFS, pick last conjunct in a conjunction of goals, etc.

Tracing in SWI-Prolog

```
father(rickard,ned).
father(rickard,brandon).
father(rickard,lyanna).
father(ned,robb).
father(ned,sansa).
father(ned,arya).
parent(X,Y) :- father(X,Y).
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
?- ancestor(rickard, robb).
```

Fin.