МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А.И. ГЕРЦЕНА»

Направление подготовки

09.03.01 – Информатика и вычислительная техника

Профиль «Технологии разработки программного обеспечения»

Лабораторная работа №2 часть 1

«Вариационные ряды и их графическое изображение»

Работу выполнили студенты 2 курса 2-1 группы:

Зухир Амира

Крючкова Анастасия

Стецук Максим

Максимова Ангелина

СОДЕРЖАНИЕ

Отчет Зухир Амиры	3
Отчет Крючковой Анастасии	13
Отчет Стецук Максима	23
Отчет Максимовой Ангелины	33

Зухир Амира ИВТ 2.1

Лабораторная работа №2 часть 1

Вариационные ряды и их графическое изображение

Цель лабораторной работы: построить дискретные и интервальные вариационные ряды и их графические изображения.

Инструменты: ПК ,Excel

Использованные формулы:

Частостью, относительной частотой или долей варианты называется число:

$$w_i = \frac{m_i}{n}$$

Пусть x некоторое число. Тогда количество вариантов m_x , значения которых меньше x, называется накопленной частотой, т.е.

$$m_{x} = \sum_{x_{i} < x} m_{i}$$

Отношение накопленной частоты к общему числу наблюдений п называется накопленной частостью:

$$w_x = \frac{m_x}{n} = \frac{1}{n} \sum_{x_i < x} m_i$$

Количество интервалов k по формуле Стерджерса:

$$k = 1 + 1.4 \ln n$$

Длина интервала равна:

$$\Delta = x_{\text{max}} - x_{\text{min}} / k$$

Эмпирической функцией распределения $F_n(x)$ называется функция, значение которой в точке x равно накопленной частоте, т.е.

$$F(x) = x = \frac{m_x}{n}$$

Эмпирической плотностью распределения непрерывного вариационного ряда называется функция

$$f_n(x) = \frac{m_i}{n\Delta}$$

Задание 1:

В результате тестирования группа из 24 человек набрала баллы: 4, 0, 3, 4, 1, 0, 3, 1, 0, 4, 0, 0, 3, 1, 0, 1, 1, 3, 2, 3, 1, 2, 1, 2. Построить дискретный вариационный ряд. Результаты вычислений представить в таблице. Вариационный ряд изобразить графически.

Таблицы:

	Α	В	С	D	Е	F	G
1	Xi	0	1	2	3	4	
2	mi	6	7	3	5	3	
2							

Xi	0	1	2	3	4	5	n	24
m xi	0	6	13	16	21	24	_	
W xi	0	0,25	0,541667	0,666667	0,875	1	↔	

Задание 2:

Дан ряд распределения хозяйств по количеству рабочих на 100 га сельскохозяйственных угодий (n=60)

12	6	8	6	10	11	7	10	12	8	7	7	6	7	8	6	11	9	11
9	10	11	9	10	7	8	8	8	11	9	8	7	5	9	7	7	14	11
9	8	7	4	7	5	5	10	7	7	5	8	10	10	15	10	10	13	12
11	15	16																

		60							
-	n	00							H
									L
	k	5,1	6						
)	xmax	16							
	xmin	4							
!									
;	Δ	2							
ļ									
i	16 or	гнесё	мкг	осле	дне	му ин	терв	алу	

Построить интервальный вариационный ряд. Результаты вычислений представить в таблице. Вариационный ряд изобразить графически.

Таблицы:

Вариа	нты Хі	[4;6)	[6;8)	[8;10)	[10;12)	[12;14)	[14;16)
Часто	ты Хі	5	16	15	16	4	4
ai	4	ι <u> </u>	8	10	12	2 14	1 10
Wai	(0,0833	0,35	0,6	0,8667	0,9333	3 1
Вариа	анты Хі	[4;6)	[6;8)	[8;10)	[10;12)	[12;14)	[14;16)
рі		0,0417	0,1333		0,1333		

Задание 3.1

Группа из 25 человек проходила опрос, где им предлагалось выбрать один из пяти вариантов ответа. Были получены такие ответы:

1	5	1	3	4
3	3	4	3	4
5	2	2	1	2
2	3	5	3	1
3	1	4	2	5
n	25			

Необходимо построить дискретный вариационный ряд, результат вычислений представить в таблице. Вариационный ряд изобразить графически.

Для построения вариационного ряда различные значения признака располагаем в порядке их возрастания и под каждым из этих значений записываем его частоту:

Xi	1	2	3	4	5
m i	5	5	7	4	4

Строим график полигона частот:

Находим накопленные частоты и частости:

Xi	1	2	3	4	5	6
Mxi	0	5	10	17	21	25
Wxi	0	0,2	0,4	0,68	0,84	1

Строим график кумулянты:

Строим график эмпирической функции распределения:

Задание 3.2

Построение непрерывного вариационного ряда

Среднее количество потребляемой холодной воды (в м3) за месяц в первой парадной из 48 квартир:

8	7	8,1	9	11	11	8,8	10	11	8,1	12	12
8,9	8,2	10	8	7,9	8	10	8	9,7	10	7,2	5,9
11	10	12	7,9	9,5	7	9,1	7,9	7	11	9,7	8,3
7,8	11,1	9	9,9	8,7	10	11	9,9	8,7	9	8,4	7,9
n	48										
k	4,87	5									
Xmax	12,3										
Xmin	5,9										
Δ	1,28										
Отне	сём ма	ксиму	/м в п	ослед	цний и	интер	вал				

Произведите группировку по среднему количеству воды за месяц. Составьте непрерывный (интервальный) вариационный ряд.

По данным таблицы определяем Xmin = 5,9; Xmax = 12.3

Разобьем множество значений выборки на интервалы. Число интервалов по формуле равно:

Находим k по формуле Стерджерса: $k = 4,87 \approx 5$

Получим:

-число интервалов: 5

-начало первого интервала $x_{min} = 5.8$

-конец последнего интервала $x_{max} = 12.3$

Длина каждого интервала будет равна = (12,3 - 5,9)/5 = 1,23

Подсчитаем число вариант, попадающих в каждый интервал. Получим вариационный ряд:

Варианты Хі	[5,9;7,18)	[7,18;8,46)	[8,46;9,74)	[9,74;11,02)	[11,02;12,3)
Частоты Хі	4	15	11	13	5

По данным таблицы строим полигон и гистограмму:

Строим эмпирическую функцию распределения. Для этого вычислим накопленные частоты:

ai	5,9	7,18	8,46	9,74	11	12,3
Wai	0	0,08	0,4	0,63	0,9	1

По формуле вычислим значения эмпирической плотности вероятности для каждого интервала:

Варианты Хі	[5,9;7,18)	[7,18;8,46)	[8,46;9,74)	[9,74;11,02)	[11,02;12,3)
pi	0,065	0,244	0,179	0,212	0,081

Строим график эмпирической плотности и эмпирической функции распределения:

Вывод: Мы построили дискретные и интервальные вариационные ряды и их графические изображения.

Крючкова Анастасия ИВТ 2.1

Лабораторная работа №2 часть 1

Вариационные ряды и их графическое изображение

Цель лабораторной работы: построить дискретные и интервальные вариационные ряды и их графические изображения.

Инструменты: ПК ,Excel

Использованные формулы:

Частостью, относительной частотой или долей варианты называется число:

$$w_i = \frac{m_i}{n}$$

Пусть x некоторое число. Тогда количество вариантов m_x , значения которых меньше x, называется накопленной частотой, т.е.

$$m_{x} = \sum_{x_{i} < x} m_{i}$$

Отношение накопленной частоты к общему числу наблюдений п называется накопленной частостью:

$$w_x = \frac{m_x}{n} = \frac{1}{n} \sum_{x_i < x} m_i$$

Количество интервалов k по формуле Стерджерса:

$$k = 1 + 1.4 \ln n$$

Длина интервала равна:

$$\Delta = x_{\text{max}} - x_{\text{min}} / k$$

Эмпирической функцией распределения $F_n(x)$ называется функция, значение которой в точке x равно накопленной частоте, т.е.

$$F(x) = x = \frac{m_x}{n}$$

Эмпирической плотностью распределения непрерывного вариационного ряда называется функция

$$f_n(x) = \frac{m_i}{n\Delta}$$

Задание 1:

В результате тестирования группа из 24 человек набрала баллы: 4, 0, 3, 4, 1, 0, 3, 1, 0, 4, 0, 0, 3, 1, 0, 1, 1, 3, 2, 3, 1, 2, 1, 2. Построить дискретный вариационный ряд. Результаты вычислений представить в таблице. Вариационный ряд изобразить графически.

Таблицы:

	Α	В	С	D	Е	F	G
1	Xi	0	1	2	3	4	
2	mi	6	7	3	5	3	
2							

Xi	0	1	2	3	4	5	n	24
m xi	0	6	13	16	21	24	_	
W xi	0	0,25	0,541667	0,666667	0,875	1	¢	

Задание 2:

Дан ряд распределения хозяйств по количеству рабочих на 100 га сельскохозяйственных угодий (n=60)

12	6	8	6	10	11	7	10	12	8	7	7	6	7	8	6	11	9	11
9	10	11	9	10	7	8	8	8	11	9	8	7	5	9	7	7	14	11
9	8	7	4	7	5	5	10	7	7	5	8	10	10	15	10	10	13	12
11	15	16																

	n	60							
	k	5,1	6						
)	xmax	16							
	xmin	4							
!									
;	Δ	2							
ŀ									
i	16 o	гнесё	мкг	осле	дне	му ин	терв	алу	

Построить интервальный вариационный ряд. Результаты вычислений представить в таблице. Вариационный ряд изобразить графически.

Таблицы:

	Варианты Хі Частоты Хі		[4;6)	[6;8)	[8;10)	[10;12)	[12;14)	[14;16)
			5 16		15	16	4	4
a	ai	4	ļ 6	8	10	12	2 14	1 16
١	Nai	C	0,0833	0,35	0,6	0,8667	0,9333	3 1
	Вариа	нты Хі	[4;6)	[6;8)	[8;10)	[10;12)	[12;14)	[14;16)
	pi		0,0417	0,1333	0,125	0,1333	0,0333	0,0333

Задание 3.1

Группа из 25 человек проходила опрос, где им предлагалось выбрать один из пяти вариантов ответа. Были получены такие ответы:

1	5	1	3	4
3	3	4	3	4
5	2	2	1	2
2	3	5	3	1
3	1	4	2	5
n	25			

Необходимо построить дискретный вариационный ряд, результат вычислений представить в таблице. Вариационный ряд изобразить графически.

Для построения вариационного ряда различные значения признака располагаем в порядке их возрастания и под каждым из этих значений записываем его частоту:

Xi	1	2	3	4	5
m i	5	5	7	4	4

Строим график полигона частот:

Находим накопленные частоты и частости:

Xi	1	2	3	4	5	6
Mxi	0	5	10	17	21	25
Wxi	0	0,2	0,4	0,68	0,84	1

Строим график кумулянты:

Строим график эмпирической функции распределения:

Задание 3.2

Построение непрерывного вариационного ряда

Среднее количество потребляемой холодной воды (в м3) за месяц в первой парадной из 48 квартир:

8	7	8,1	9	11	11	8,8	10	11	8,1	12	12
8,9	8,2	10	8	7,9	8	10	8	9,7	10	7,2	5,9
11	10	12	7,9	9,5	7	9,1	7,9	7	11	9,7	8,3
7,8	11,1	9	9,9	8,7	10	11	9,9	8,7	9	8,4	7,9
n	48										
k	4,87	5									
Xmax	12,3										
Xmin	5,9										
Δ	1,28										
Отне	сём ма	ксим	умвп	ослед	цний і	интер	вал				

Произведите группировку по среднему количеству воды за месяц. Составьте непрерывный (интервальный) вариационный ряд.

По данным таблицы определяем Xmin = 5,9; Xmax = 12.3

Разобьем множество значений выборки на интервалы. Число интервалов по формуле равно:

Находим k по формуле Стерджерса: $k = 4,87 \approx 5$

Получим:

-число интервалов: 5

-начало первого интервала $x_{min} = 5.8$

-конец последнего интервала $x_{max} = 12.3$

Длина каждого интервала будет равна = (12,3 - 5,9)/5 = 1,23

Подсчитаем число вариант, попадающих в каждый интервал. Получим вариационный ряд:

Варианты Хі	[5,9;7,18)	[7,18;8,46)	[8,46;9,74)	[9,74;11,02)	[11,02;12,3)
Частоты Хі	4	15	11	13	5

По данным таблицы строим полигон и гистограмму:

Строим эмпирическую функцию распределения. Для этого вычислим накопленные частоты:

ć	ai	5,9	7,18	8,46	9,74	11	12,3
١	Wai	0	0,08	0,4	0,63	0,9	1

По формуле вычислим значения эмпирической плотности вероятности для каждого интервала:

Варианты Хі	[5,9;7,18)	[7,18;8,46)	[8,46;9,74)	[9,74;11,02)	[11,02;12,3)
pi	0,065	0,244	0,179	0,212	0,081

Строим график эмпирической плотности и эмпирической функции распределения:

Вывод: Мы построили дискретные и интервальные вариационные ряды и их графические изображения.

Стецук Максим ИВТ 2.1

Лабораторная работа №2 часть 1

Вариационные ряды и их графическое изображение

Цель лабораторной работы: построить дискретные и интервальные вариационные ряды и их графические изображения.

Инструменты: ПК ,Excel

Использованные формулы:

Частостью, относительной частотой или долей варианты называется число:

$$w_i = \frac{m_i}{n}$$

Пусть x некоторое число. Тогда количество вариантов m_x , значения которых меньше x, называется накопленной частотой, т.е.

$$m_{x} = \sum_{x_{i} < x} m_{i}$$

Отношение накопленной частоты к общему числу наблюдений п называется накопленной частостью:

$$w_x = \frac{m_x}{n} = \frac{1}{n} \sum_{x_i < x} m_i$$

Количество интервалов k по формуле Стерджерса:

$$k = 1 + 1.4 \ln n$$

Длина интервала равна:

$$\Delta = x_{\text{max}} - x_{\text{min}} / k$$

Эмпирической функцией распределения $F_n(x)$ называется функция, значение которой в точке x равно накопленной частоте, т.е.

$$F(x) = x = \frac{m_x}{n}$$

Эмпирической плотностью распределения непрерывного вариационного ряда называется функция

$$f_n(x) = \frac{m_i}{n\Delta}$$

Задание 1:

В результате тестирования группа из 24 человек набрала баллы: 4, 0, 3, 4, 1, 0, 3, 1, 0, 4, 0, 0, 3, 1, 0, 1, 1, 3, 2, 3, 1, 2, 1, 2. Построить дискретный вариационный ряд. Результаты вычислений представить в таблице. Вариационный ряд изобразить графически.

Таблицы:

	Α	В	С	D	Е	F	G
1	Xi	0	1	2	3	4	
2	mi	6	7	3	5	3	
2							

Xi	0	1	2	3	4	5	n	24
m xi	0	6	13	16	21	24	_	
W xi	0	0,25	0,541667	0,666667	0,875	1	¢	

Задание 2:

Дан ряд распределения хозяйств по количеству рабочих на 100 га сельскохозяйственных угодий (n=60)

12	6	8	6	10	11	7	10	12	8	7	7	6	7	8	6	11	9	11
9	10	11	9	10	7	8	8	8	11	9	8	7	5	9	7	7	14	11
9	8	7	4	7	5	5	10	7	7	5	8	10	10	15	10	10	13	12
11	15	16																

	n	60						
	k	5,1	6					
)	xmax	16						
	xmin	4						
!								
;	Δ	2						
ļ								
i	16 or	гнесё	мкг	осле	дне	му ин	терв	алу

Построить интервальный вариационный ряд. Результаты вычислений представить в таблице. Вариационный ряд изобразить графически.

Таблицы:

	Вариа	нты Хі	[4;6)	[6;8)	[8;10)	[10;12)	[12;14)	[14;16)
	Частоты Хі		5	16	15	16	4	4
é	ai	4	ι <u> </u>	5 8	10	12	2 14	1 16
١	Vai	C	0,0833	0,35	0,6	0,8667	0,9333	3 1
	Варианты Хі		[4;6)	[6;8)	[8;10)	[10;12)	[12;14)	[14;16)
	F	oi	0,0417	0,1333	0,125	0,1333	0,0333	0,0333
-								

Задание 3.1

Группа из 25 человек проходила опрос, где им предлагалось выбрать один из пяти вариантов ответа. Были получены такие ответы:

1	5	1	3	4
3	3	4	3	4
5	2	2	1	2
2	3	5	3	1
3	1	4	2	5
n	25			

Необходимо построить дискретный вариационный ряд, результат вычислений представить в таблице. Вариационный ряд изобразить графически.

Для построения вариационного ряда различные значения признака располагаем в порядке их возрастания и под каждым из этих значений записываем его частоту:

Xi	1	2	3	4	5
m i	5	5	7	4	4

Строим график полигона частот:

Находим накопленные частоты и частости:

Xi	1	2	3	4	5	6
Mxi	0	5	10	17	21	25
Wxi	0	0,2	0,4	0,68	0,84	1

Строим график кумулянты:

Строим график эмпирической функции распределения:

Задание 3.2

Построение непрерывного вариационного ряда

Среднее количество потребляемой холодной воды (в м3) за месяц в первой парадной из 48 квартир:

8	7	8,1	9	11	11	8,8	10	11	8,1	12	12
8,9	8,2	10	8	7,9	8	10	8	9,7	10	7,2	5,9
11	10	12	7,9	9,5	7	9,1	7,9	7	11	9,7	8,3
7,8	11,1	9	9,9	8,7	10	11	9,9	8,7	9	8,4	7,9
n	48										
k	4,87	5									
Xmax	12,3										
Xmin	5,9										
Δ	1,28										
Отне	сём ма	ксиму	/м в п	ослед	цний и	интер	вал				

Произведите группировку по среднему количеству воды за месяц. Составьте непрерывный (интервальный) вариационный ряд.

По данным таблицы определяем Xmin = 5,9; Xmax = 12.3

Разобьем множество значений выборки на интервалы. Число интервалов по формуле равно:

Находим k по формуле Стерджерса: $k = 4,87 \approx 5$

Получим:

-число интервалов: 5

-начало первого интервала $x_{min} = 5.8$

-конец последнего интервала $x_{max} = 12.3$

Длина каждого интервала будет равна = (12,3 - 5,9)/5 = 1,23

Подсчитаем число вариант, попадающих в каждый интервал. Получим вариационный ряд:

Варианты Хі	[5,9;7,18)	[7,18;8,46)	[8,46;9,74)	[9,74;11,02)	[11,02;12,3)
Частоты Хі	4	15	11	13	5

По данным таблицы строим полигон и гистограмму:

Строим эмпирическую функцию распределения. Для этого вычислим накопленные частоты:

ai	5,9	7,18	8,46	9,74	11	12,3
Wai	0	0,08	0,4	0,63	0,9	1

По формуле вычислим значения эмпирической плотности вероятности для каждого интервала:

Варианты Хі	[5,9;7,18)	[7,18;8,46)	[8,46;9,74)	[9,74;11,02)	[11,02;12,3)
pi	0,065	0,244	0,179	0,212	0,081

Строим график эмпирической плотности и эмпирической функции распределения:

Вывод: Мы построили дискретные и интервальные вариационные ряды и их графические изображения.

Максимова Ангелина ИВТ 2.1

Лабораторная работа №2 часть 1

Вариационные ряды и их графическое изображение

Цель лабораторной работы: построить дискретные и интервальные вариационные ряды и их графические изображения.

Инструменты: ПК ,Excel

Использованные формулы:

Частостью, относительной частотой или долей варианты называется число:

$$w_i = \frac{m_i}{n}$$

Пусть x некоторое число. Тогда количество вариантов m_x , значения которых меньше x, называется накопленной частотой, т.е.

$$m_{x} = \sum_{x_{i} < x} m_{i}$$

Отношение накопленной частоты к общему числу наблюдений п называется накопленной частостью:

$$w_x = \frac{m_x}{n} = \frac{1}{n} \sum_{x_i < x} m_i$$

Количество интервалов k по формуле Стерджерса:

$$k = 1 + 1.4 \ln n$$

Длина интервала равна:

$$\Delta = x_{\text{max}} - x_{\text{min}} / k$$

Эмпирической функцией распределения $F_n(x)$ называется функция, значение которой в точке x равно накопленной частоте, т.е.

$$F(x) = x = \frac{m_x}{n}$$

Эмпирической плотностью распределения непрерывного вариационного ряда называется функция

$$f_n(x) = \frac{m_i}{n\Delta}$$

Задание 1:

В результате тестирования группа из 24 человек набрала баллы: 4, 0, 3, 4, 1, 0, 3, 1, 0, 4, 0, 0, 3, 1, 0, 1, 1, 3, 2, 3, 1, 2, 1, 2. Построить дискретный вариационный ряд. Результаты вычислений представить в таблице. Вариационный ряд изобразить графически.

Таблицы:

	Α	В	С	D	Е	F	G
1	Xi	0	1	2	3	4	
2	mi	6	7	3	5	3	
2							

Xi	0	1	2	3	4	5	n	24
m xi	0	6	13	16	21	24	_	
W xi	0	0,25	0,541667	0,666667	0,875	1	¢	

Задание 2:

Дан ряд распределения хозяйств по количеству рабочих на 100 га сельскохозяйственных угодий (n=60)

12	6	8	6	10	11	7	10	12	8	7	7	6	7	8	6	11	9	11
9	10	11	9	10	7	8	8	8	11	9	8	7	5	9	7	7	14	11
9	8	7	4	7	5	5	10	7	7	5	8	10	10	15	10	10	13	12
11	15	16																

	n	60							
	k	5,1	6						
)	xmax	16							
	xmin	4							
!									
;	Δ	2							
ļ									
i	16 o	гнесё	мкг	осле	дне	му ин	терв	алу	L

Построить интервальный вариационный ряд. Результаты вычислений представить в таблице. Вариационный ряд изобразить графически.

Таблицы:

1	Вариа	нты Хі	[4;6)	[6;8)	[8;10)	[10;12)	[12;14)	[14;16)
	Частоты Xi		5	16	15	16	4	4
· · · ·								
é	ai	4	↓ 6	5 8	10	12	2 14	1 16
١	Nai	0	0,0833	0,35	0,6	0,8667	0,9333	3 1
	Вариа	нты Хі	[4;6)	[6;8)	[8;10)	[10;12)	[12;14)	[14;16)
	pi		0,0417	0,1333	0,125	0,1333	0,0333	0,0333

Задание 3.1

Группа из 25 человек проходила опрос, где им предлагалось выбрать один из пяти вариантов ответа. Были получены такие ответы:

	_	_	_	
1	5	1	3	4
3	3	4	3	4
5	2	2	1	2
2	3	5	3	1
3	1	4	2	5
n	25			

Необходимо построить дискретный вариационный ряд, результат вычислений представить в таблице. Вариационный ряд изобразить графически.

Для построения вариационного ряда различные значения признака располагаем в порядке их возрастания и под каждым из этих значений записываем его частоту:

Xi	1	2	3	4	5
m i	5	5	7	4	4

Строим график полигона частот:

Находим накопленные частоты и частости:

Xi	1	2	3	4	5	6
Mxi	0	5	10	17	21	25
Wxi	0	0,2	0,4	0,68	0,84	1

Строим график кумулянты:

Строим график эмпирической функции распределения:

Задание 3.2

Построение непрерывного вариационного ряда

Среднее количество потребляемой холодной воды (в м3) за месяц в первой парадной из 48 квартир:

8	7	8,1	9	11	11	8,8	10	11	8,1	12	12
8,9	8,2	10	8	7,9	8	10	8	9,7	10	7,2	5,9
11	10	12	7,9	9,5	7	9,1	7,9	7	11	9,7	8,3
7,8	11,1	9	9,9	8,7	10	11	9,9	8,7	9	8,4	7,9
n	48										
k	4,87	5									
Xmax	12,3										
Xmin	5,9										
Δ	1,28										
Отне	сём ма	ксиму	/м в п	ослед	цний и	интер	вал				

Произведите группировку по среднему количеству воды за месяц. Составьте непрерывный (интервальный) вариационный ряд.

По данным таблицы определяем Xmin = 5,9; Xmax = 12.3

Разобьем множество значений выборки на интервалы. Число интервалов по формуле равно:

Находим k по формуле Стерджерса: $k = 4,87 \approx 5$

Получим:

-число интервалов: 5

-начало первого интервала $x_{min} = 5.8$

-конец последнего интервала $x_{max} = 12.3$

Длина каждого интервала будет равна = (12,3 - 5,9)/5 = 1,23

Подсчитаем число вариант, попадающих в каждый интервал. Получим вариационный ряд:

Варианты Хі	[5,9;7,18)	[7,18;8,46)	[8,46;9,74)	[9,74;11,02)	[11,02;12,3)
Частоты Хі	4	15	11	13	5

По данным таблицы строим полигон и гистограмму:

Строим эмпирическую функцию распределения. Для этого вычислим накопленные частоты:

ai	5,9	7,18	8,46	9,74	11	12,3
Wai	0	0,08	0,4	0,63	0,9	1

По формуле вычислим значения эмпирической плотности вероятности для каждого интервала:

Варианты Хі	[5,9;7,18)	[7,18;8,46)	[8,46;9,74)	[9,74;11,02)	[11,02;12,3)
pi	0,065	0,244	0,179	0,212	0,081

Строим график эмпирической плотности и эмпирической функции распределения:

Вывод: Мы построили дискретные и интервальные вариационные ряды и их графические изображения.