$learning_rate = -1.00, reg_par = -1.00$ 2.00 10 1.75 8 1.50 1.25 6 1.00

 $learning_rate = -1.44$, $reg_par = -1.44$

1.0-

 $learning_rate = -1.89$, $reg_par = -1.89$

 $learning_rate = -2.33, reg_par = -2.33$ 2.00 4.0 1.75 3.5 1.50 3.0 1.25

3.0 -

 $learning_rate = -2.78$, $reg_par = -2.78$

3.0 -

 $learning_rate = -3.22, reg_par = -3.22$

learning_rate = -3.67, reg_par = -3.67

learning_rate = -4.11, reg_par = -4.11 2.00 2.00-

learning_rate = -4.56, reg_par = -4.56

2.00
1.75
3.0
2.5-

learning rate = -5.00, reg par = -5.00

2.00 8 -1.75 1.50 6 1.25

 $learning_rate = -1.00, reg_par = -1.00$

3.0 -

 $learning_rate = -1.44$, $reg_par = -1.44$

learning rate = -1.89, reg par = -1.89

1.0 2.00 1.75 8.0 1.50 1.25

 $learning_rate = -2.33, reg_par = -2.33$

R² explained variance

 $learning_rate = -2.78$, $reg_par = -2.78$

 $learning_rate = -3.22, reg_par = -3.22$

2.00 -

learning rate = -3.67, reg par = -3.67

 $learning_rate = -4.11, reg_par = -4.11$ 2.00 3.0 1.75 2.5 1.50 2.0 1.25

learning rate = -4.56, reg par = -4.56

2.00 - 4.0 -

 $learning_rate = -5.00, reg_par = -5.00$

1.0 6 8.0 5

 $learning_rate = -1.00, reg_par = -1.00$

2.00 5 -1.75 4 -1.50 1.25

 $learning_rate = -1.44$, $reg_par = -1.44$

learning_rate = -1.89, reg_par = -1.89

 $learning_rate = -2.33, reg_par = -2.33$ 2.00 3.0 1.75 2.5 1.50 2.0 1.25

2.00 -

learning rate = -2.78, reg par = -2.78

2.00 -

learning rate = -3.22, reg par = -3.22

 $learning_rate = -3.67, reg_par = -3.67$

learning_rate = -4.11, reg_par = -4.11 2.00 1.75-

learning_rate = -4.56, reg_par = -4.56

1.0 - 2.00 -

 $learning_rate = -5.00, reg_par = -5.00$

2.00 - 4.0 -

learning_rate = -1.00, reg_par = -1.00

 $learning_rate = -1.44$, $reg_par = -1.44$

learning_rate = -1.89, reg_par = -1.89

2.00
1.75-

 $learning_rate = -2.33, reg_par = -2.33$ 3.0 3.0 2.5 2.5 2.0 2.0

 $learning_rate = -2.78$, $reg_par = -2.78$

learning rate = -3.22, reg par = -3.22

2.00

learning rate = -3.67, reg par = -3.67

learning_rate = -4.11, reg_par = -4.11 2.00 1.75-

learning_rate = -4.56, reg_par = -4.56

2.00-

2.00

 $learning_rate = -5.00, reg_par = -5.00$

 $learning_rate = -1.00, reg_par = -1.00$ 2.00 10 1.75 8 1.50 1.25 counts 6 1.00

2.00 -1.75 -

 $learning_rate = -1.44$, $reg_par = -1.44$

2.00 3.0 1.75 2.5 1.50 2.0 1.25

 $learning_rate = -1.89$, $reg_par = -1.89$

1.0 2.00 1.75

 $learning_rate = -2.33, reg_par = -2.33$

learning_rate = -2.78, reg_par = -2.78

1.0 3.0 2.5 8.0 2.0

 $learning_rate = -3.22, reg_par = -3.22$

R² explained variance

learning_rate = -3.67, reg_par = -3.67

2.00
1.75-

learning_rate = -4.11, reg_par = -4.11 2.00 1.75-

2.00 - 3.0 -

 $learning_rate = -4.56$, $reg_par = -4.56$

2.00-

 $learning_rate = -5.00, reg_par = -5.00$

1.0 6 -5 8.0

 $learning_rate = -1.00, reg_par = -1.00$

1.0

learning_rate = -1.44, reg_par = -1.44

2.00

 $learning_rate = -1.89$, $reg_par = -1.89$

learning rate = -2.33, reg par = -2.332.00 2.00 1.75 1.75

R² explained variance

learning_rate = -2.78, reg_par = -2.78

2.00 -

learning rate = -3.22, reg par = -3.22

2.00

learning rate = -3.67, reg par = -3.67

 $learning_rate = -4.11, reg_par = -4.11$ 1.0 3.0 2.5 8.0 2.0 1.5

R² explained variance

learning_rate = -4.56, reg_par = -4.56

2.00
1.75-

 $learning_rate = -1.00, reg_par = -1.00$

1.0

 $learning_rate = -1.44$, $reg_par = -1.44$

learning_rate = -1.89, reg_par = -1.89

1.0 2.00 1.75 8.0 1.50 1.25

 $learning_rate = -2.33, reg_par = -2.33$

2.00

learning rate = -2.78, reg par = -2.78

2.00 3.0 1.75 2.5 1.50 2.0 1.25

 $learning_rate = -3.22, reg_par = -3.22$

2.00 -

learning rate = -3.67, reg par = -3.67

learning_rate = -4.11, reg_par = -4.11 2.00 1.75-

2.00 -

 $learning_rate = -4.56$, $reg_par = -4.56$

1.0 - 2.00 -

 $learning_rate = -5.00, reg_par = -5.00$

 $learning_rate = -1.00, reg_par = -1.00$ 3.0 10 2.5 8 2.0 6

2.00 - 4.0 -

 $learning_rate = -1.44$, $reg_par = -1.44$

 $learning_rate = -1.89$, $reg_par = -1.89$ 1.0 3.0 2.5 8.0 2.0 1.5

 $learning_rate = -2.33$, $reg_par = -2.33$ 1.0 3.0 2.5 8.0 2.0

2.00 - 3.0 -

 $learning_rate = -2.78$, $reg_par = -2.78$

2.00 -

learning rate = -3.22, reg par = -3.22

 $learning_rate = -3.67, reg_par = -3.67$ 3.0 3.0 2.5 2.5 2.0 2.0

learning_rate = -4.11, reg_par = -4.11 2.00 1.75-

learning_rate = -4.56, reg_par = -4.56

2.00 - 4.0 -

 $learning_rate = -5.00, reg_par = -5.00$

 $learning_rate = -1.00, reg_par = -1.00$ 3.0 10 2.5 8 2.0 6

2.00 6 -1.75 5 1.50

 $learning_rate = -1.44$, $reg_par = -1.44$

R² explained variance

 $learning_rate = -1.89$, $reg_par = -1.89$ 2.00 3.0 1.75 2.5 1.50 2.0 1.25

 $learning_rate = -2.33$, $reg_par = -2.33$ 1.0 3.0 2.5 8.0 2.0 1.5

2.00 -

 $learning_rate = -2.78$, $reg_par = -2.78$

 $learning_rate = -3.22, reg_par = -3.22$ 3.0 4.0 3.5 2.5 3.0 2.0

R² explained variance

 $learning_rate = -3.67, reg_par = -3.67$ 2.00 4.0 1.75 3.5 1.50 3.0 1.25 1.00

R² explained variance Mean Squared Error [AUC²]

 $learning_rate = -4.11, reg_par = -4.11$ 1.0 3.0 2.5 8.0 2.0 counts 9.0 1.5 0.4

 $learning_rate = -5.00, reg_par = -5.00$ 2.00 3.0 1.75 2.5 -1.50 2.0 1.25

3.0 10 2.5 8 2.0

 $learning_rate = -1.00, reg_par = -1.00$

 $learning_rate = -1.44$, $reg_par = -1.44$ 2.00 10 1.75 1.50 8

R² explained variance

 $learning_rate = -1.89$, $reg_par = -1.89$ 2.00 10 1.75 1.50 8 1.25 counts 6 1.00

 $learning_rate = -2.33, reg_par = -2.33$ 2.00 10 1.75 1.50 8 1.25 counts 6 1.00

learning_rate = -2.78, reg_par = -2.78

2.00
1.75-

2.00 10 1.75 8 1.50 1.25 6 1.00

learning rate = -3.22, reg par = -3.22

learning rate = -3.67, reg par = -3.672.00 10 1.75 1.50 8 1.25 counts 6 1.00

 $learning_rate = -4.11, reg_par = -4.11$ 2.00 10 1.75 1.50 8 1.25 counts 6 1.00 0.75 4 -0.50

0.25

0.00

 $learning_rate = -4.56$, $reg_par = -4.56$ 2.00 10 1.75 1.50 8 1.25 6

 $learning_rate = -5.00, reg_par = -5.00$ 2.00 10 1.75 1.50 8 1.25 6

