Operational Reactor Safety 22.091/22.903

Professor Andrew C. Kadak Professor of the Practice

Boiling Water Reactors Lecture 15

Topics to be Covered

- Steam Cycle
- Recirculation
- Chimney
- Steam separation
- Heat removal
- Operating with voids
- Plant systems
- Reactor Protective System
- Safety Systems

BWR Plant Layout

Figure 7-1. Reactor Building, Fuel Building, and Auxillary Building

BWR Plant Schematic

BWR Early

FIGURE 14-6

Engineered safety systems for an early BWR. (From W. B. Cottrell, "The ECCS Rule-Making Hearing," Nuclear Safety, vol. 15, no. 1, Jan.-Feb. 1974.)

Source unknown. All rights reserved. This content is excluded from our Creative Commons license.

Reactor Assembly

Figure 2-1. Reactor Assembly

Steam and Recirculation System

Jet Pumps – Recirculation System

Steam Separator and Dryer

Key Systems of BWRs

- Standby Liquid Control System (SLCS)
 - For redundant shutdown contains boron
- Reactor Core Isolation Cooling System (RCIC)
 - Deals with loss of feedwater flow
- Emergency Core Cooling System (ECCS)
 - Safety Relief Valve Automatic Depressurization System
 - High Pressure Coolant Injection System (HPCI)
 - Low Pressure Coolant Injection System (LPCI)
- Control Rod Drive System
 - Hydraulic Control Units from bottom of reactor vessel
- Residual Heat Removal System decay heat removal

Prof. Andrew C. Kadak, 2008 Page 16

ECCS

Massachusetts Institute of Techn

Department of Nuclear Science & Eng

INJECTION MODE OF RHR

Source unknown. All rights reserved. This content is excluded from our Creative Commons license.

For more information, see http://ocw.mit.edu/fairuse.

Figure 4-6. Emergency Core Cooling System

Reactor Power Control

- Control rods gross power changes
- Recirculation Flow +/- 25 % power
 - Increase flow increase power
- Turbine Control Pressure control constant
 - Generator demands more power turbine slows down – pressure decreases – more steam created increase turbine power –then increase recirculation flow to compensate for reactivity loss.
- Recall BWRs have negative void coefficient and Positive pressure coefficient

Reactor Trip Systems

- High Pressure in Drywell
- Low water level in reactor vessel
- High pressure in reactor vessel
- High neutron flux
- High water level in scram discharge volume (control rods)
- Closing of turbine stop or fast closure of turbine control valves
- Main steam line isolation
- High radiation levels in main steam lines
- Leak detection
- Low pressure in turbine inlet

Prof. Andrew C. Kadak, 2008 Page 20

Trip Functions

- Insertion of control rods (hydraulic control units in bottom)
- Nuclear System Isolation
 - Reactor Coolant Pressure Boundary
 - Containment Isolation
 - Closed System Isolation

Homework

- Read BWR handouts
- Problem 3.3 El Wakil

MIT OpenCourseWare http://ocw.mit.edu

22.091 Nuclear Reactor Safety Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.