ĆWICZENIE 3

Adaptacyjna modulacja Delta oraz kodek ADPCM

1. Adaptacyjna modulacja Delta.

Reguła aktualizacji parametru $\Delta(n)$ nie określa dokładnych wartości parametrów K i inicjalizacji $\Delta(0)$, reprezentuje to wzór 1.

$$\Delta(n) = \Delta(n-1)K^{e_{wy}(n)e_{wy}(n-1)}, \qquad \Delta(0) > 0, \qquad K > 1$$

Wzór 1.

W sposób optymalny należy wyznaczyć nieznane wartości. Za kryterium optymalizacji przyjmujemy SQNR, a zadanie optymalizacji 2D przyjmuje postać wzoru 2.

$$\max_{K, \ \Delta(0))} SQNR = 10 \log_{10}(\frac{\sum_{i=0}^{N-1} s^2(n)}{\sum_{i=0}^{N-1} (s(n) - s_q(n))^2}$$

Wzór 2.

W oparciu o obserwacje pętli sprzężenia zwrotnego zaproponowano wartość parametru Δ 1=0.01 (wartość początkowa parametru Δ (n) likwidacja stanów przejściowych) oraz zawężenie poszukiwań optymalnej wartości parametru k do przedziału od 1.01 (początek dużej dynamiki zmian parametru Δ (n)) do 2.0 (początek trwałego przełączania wartości parametru Δ (n) – permanentny szum śrutowy). W efekcie likwidacji stanu przejściowego problem optymalizacji 2D bez ograniczeń staje się problemem 1D z ograniczeniami (Δ (0) = 0,01, brak stanu przejściowego), pokazuje to wzór 3.

$$\max_{1,01 \le K \le 2,0} SQNR = 10 \log_{10}(\frac{E_s}{E_e})$$

Wzór 3.

W oparciu o wyznaczone z wykresu wartości **SQNR** oraz skrypt *petla2.m* wyznaczyłem optymalną wartość parametru k przy $\Delta 1=0.01$.

Wykres 1. SQNR=f(K) dla kwantyzera ADM przy Δ (0) =0,01.

Optymalnym punktem pracy kodera jest K=1,5 dla SQNR=13,5 [dB]. Prędkość dla tego punktu wynosi 32kb/s.

2. Badanie ADPCM 4ity, 32 kb/s

W oparciu o plik *adpcm_4b.m*, który symuluje działanie układu kodowania ADPCM opartego na filtrze typu FIR oraz kwantyzatorze czterobitowym, zbadałem zależność **SNR(M)**, gdzie *M* wynosi kolejno 5, 8, 10, 12, 15, 20 i jest rzędem filtru predykcyjnego przy długości sygnału wejściowego 30000 próbek. Przy realizacji tego punktu wykorzystałem skrypt *petla3.m* i zawarte w nim wartości stałych filtru adaptacyjnego.

Wykres 2. SQNR=f(M) dla kwantyzera ADPCM 4bitowego o prędkości v=32kb/s.

Optymalny punkt pracy SQNR wynosi M=8, SQNR=27,75 [dB]. Analizując wykres 2. można zauważyć, że od M=10 SQNR spada, świadczy to o rosnącej złożoności obliczeniowej, na tej podstawie można stwierdzić, iż dalsze zwiększanie długości filtru nie ma sensu, a wręcz powoduje spadek SQNR. Najoptymalniejsze SQNRy pochodzą z zakresu M=5 do M=10. Różnica między SQNR dla wartości M=5, a SQNR dla wartości M=8 wynosi 0,17 dB. W tej metodzie optymalizacyjnej możemy jedynie zwiększać długość filtru.

 W oparciu o analizę złożoności obliczeniowej algorytmu (N_m - ilość elementarnych mnożeń "od próbki do próbki") oraz jakość sygnału po rekonstrukcji (wartość SQNR) dokonałem wyboru optymalnej długości filtru adaptacyjnego M dla wybranych λ zgodnie z kryterium:

$$\max V(M) = SQNR(M) - (\lambda * N_m(M)), dla \lambda = 0, 0.1, 0.5 \text{ oraz } 1,$$

gdzie człon $\lambda*N_m$ pełni tutaj rolę funkcję kary za zbyt dużą złożoność obliczeniową algorytmu ($\lambda=0.1$ " procesor o dużej mocy obliczeniowej", $\lambda=0.5$ (zwykły procesor) i $\lambda=1.0$ – procesor o małej mocy obliczeniowej), a $N_m=3M+5$ to ilość elementarnych operacji wykonywanych w trybie pracy sekwencyjnej, czyli "od próbki do próbki".

M-długość filtru	SQNR	N_m =3 M +5	Liczba	V(M)	V(M)	V(M)
	[dB],	$(\mathbf{M}>0)$	operacji/s	dla	dla	dla
	λ=0	złożoność	przy fs=8 kHz	λ=0.1	λ=0.5	λ=1.0
0	21.00	2	16 000	20.8	20.0	19.0
2	26.21	11	88 000	25.11	20.71	15.21
5	27.58	20	160 000	25.58	17.58	7.58
8	27.75	29	232 000	24.85	13.25	-1.25
10	27.58	35	280 000	24.08	10.08	-7.42

Tabela 1. Analiza złożoności obliczeniowej oraz jakość sygnału po rekonstrukcji (SQNR), a także wybór optymalnej długości filtru adaptacyjnego dla wybranych wartości λ.

Dla λ =0 najoptymalniejsze V=27,75 (M=8), sygnalizuje to na dobry procesor. Dla λ =0,1 najoptymalniejsze V=25,58 (M=5), procesor o dużej mocy obliczeniowej. Dla λ =0,5 najoptymalniejsze V=20,71 (M=2), zwykły procesor. Dla λ =1,0 najoptymalniejsze V=19,0 (M=0), najlepiej nie włączać tej gałęzi albo zastosować kwantyzator dynamiczny, złożoność obliczeniowa jest za duża dla procesora.

 Prędkość transmisji wynosząca 32kb/s jest potrzebna do realizacji analizowanego kodera ADPCM b=4 bity przy fs=8000Hz.

$$v = 4bity * 8000Hz = 32kb/s$$

Prędkość v nie zależy od długości filtru.

3. ZADANIE WŁASNE

• W oparciu o plik adpcm_3b.m, który symuluje działanie układu kodowania ADPCM opartego na filtrze typu FIR oraz kwantyzer trzybitowy, zbadałem zależność SNR(M), gdzie M (M=2, 3, 5, 8, 10) jest rzędem filtru predykcyjnego przy długości sygnału wejściowego 30000 próbek. Przy realizacji tego punktu wykorzystałem skrypt petla4.m i zawarte w nim wartości stałych filtru adaptacyjnego.

Wykres 2. SQNR=f(M) dla kwantyzera ADPCM 3 bity, 24kb/s.

Analizując wykres można zauważyć, że optymalny punkt pracy dla SQNR (max) wynosi 22,9107 dB, M=8. Wartości M od M=5 do M=10 mają podobne wartości, różnica pomiędzy M=5, a M=8 wynosi 0,1047 dB. Nie opłaca się analizować kolejnych wartości (M>10), ponieważ rosnąca złożoność obliczeniowa obniża SQNR.

 W oparciu o analizę złożoności obliczeniowej algorytmu (Im - ilość elementarnych mnożeń od próbki do próbki) oraz jakość sygnału po rekonstrukcji (wartość SQNR) dokonałem wyboru optymalnej długości filtru adaptacyjnego M zgodnie z kryterium:

max
$$V(M)=SQNR(M) - \lambda*N_m(M)$$
, dla $\lambda=0, 0.1, 0.5$ oraz 1,

gdzie człon $\lambda*N_m$ pełni tutaj rolę funkcję kary za zbyt dużą złożoność obliczeniową algorytmu ($\lambda=0.1$ " procesor o dużej mocy obliczeniowej", $\lambda=0.5$ (zwykły procesor) i $\lambda=1.0$ – procesor o małej mocy obliczeniowej) a N_m to ilość elementarnych operacji wykonywanych od próbki do próbki.

M-długość filtru	SQNR	N_m=3M+5	Liczba	V(M)	V(M)	V(M)
	[dB],	(M >0)	operacji/s	dla	dla	dla
	λ=0	złożoność	przy fs=8 kHz	λ=0.1	λ=0.5	λ=1.0
2	21,03	11	88 000	19.93	15.53	10.03
3	21,85	14	112000	20.45	14.85	7.85
5	22,80	20	160000	20.80	12.80	2.80
8	22,91	29	232000	20.01	8.41	-6.09
10	22,85	35	280000	19.35	5.35	-12.15

Tabela2. Analiza złożoności obliczeniowej oraz jakość sygnału po rekonstrukcji (SQNR), a także wybór optymalnej długości filtru adaptacyjnego dla wybranych wartości λ.

Dla λ =0 najoptymalniejsze V=22,91 (M=8), sygnalizuje to na dobry procesor. Dla λ =0,1 najoptymalniejsze V=20,80 (M=5), procesor o dużej mocy obliczeniowej. Dla λ =0,5 najoptymalniejsze V=15,53 (M=2), zwykły procesor. Dla λ =1,0 najoptymalniejsze V=10,03 (M=2), najlepiej nie włączać tej gałęzi albo zastosować kwantyzator dynamiczny, złożoność obliczeniowa jest za duża dla procesora.

• Szybkość transmisji 24kb/s jest potrzebna do realizacji analizowanego kodera ADPCM **b=3** bity przy fs=8000 Hz.

$$v = 3bity * 8000Hz = 24kb/s$$

Prędkość v nie zależy od długości filtru M.

4. Wnioski końcowe

Reguła aktualizacji parametru $\Delta(n)$ nie określa dokładnych wartości parametrów K i inicjalizacji Δ (0). Za kryterium optymalizacji przyjmujemy SQNR.

W efekcie likwidacji stanu przejściowego problem optymalizacji 2D bez ograniczeń staje się problemem 1D z ograniczeniami $1,01 \le K \le 2,0$.

Badając zależność SQNR=f(K) dla kwantyzera ADM przy Δ (0) = 0,01 optymalnym punktem pracy kodera jest K=1,5 dla SQNR=13,5 [dB]. Prędkość dla tego punktu wynosi 32kb/s.

Dla kwantyzera ADPCM 4bitowowego optymalny punkt pracy SQNR wynosi M=8, SQNR=27,75 [dB]. Dla λ =0 najoptymalniejsze V=27,75 (M=8), dla λ =0,1 najoptymalniejsze V=25,58 (M=5), dla λ =0,5 najoptymalniejsze V=20,71 (M=2), dla λ =1,0 najoptymalniejsze V=19,0. Do realizacji analizowanego kodera potrzebna jest prędkość transmisji 32kb/s.

Dla kwantyzera ADPCM 3 bitowego optymalny punkt pracy SQNR wynosi 22,9107 dB, M=8. Dla λ =0 najoptymalniejsze V=22,91 (M=8), dla λ =0,1 najoptymalniejsze V=20,80 (M=5), dla λ =0,5 najoptymalniejsze V=15,53 (M=2), dla λ =1,0 najoptymalniejsze V=10,03 (M=2). Do realizacji analizowanego kodera potrzebna jest prędkość transmisji 24kb/s.

Dla obydwóch analizowanych kwantyzerów złożoność obliczeniowa dla M>10 spada, ponadto różnice pomiędzy M=5, M=8 są minimalne (dla 4 bitowego 0,17 dB, dla 3 bitowego 0,1047 dB).