Data-Driven Decision Making - Assignment Project

201306-citibike-tripdata file contains a descriptive analysis of the CitiBike company in New York in the period of June 2013. The file contains columns:

- Trip duration in seconds (how long the bike trip lasted from start to finish)
- Start time (the date and time of day where the trip started)
- Stop time (the date and time of day where the trip lasted)
- Start station ID (the ID number of the station which the trip started)
- Start station name (the name of the station which the trip started)
- Start station latitude (value of the vertical (north/south) axis in the coordinate plane, used in maps to locate)
- Start station longitude (value of horizontal (east/west) axis in the coordinate plane, used in maps to locate)
- End station ID (the ID number of the station which the trip ended)
- End station name (the name of the station which the trip ended)
- End station latitude (value of the vertical (north/south) axis in the coordinate plane, used in maps to locate)
- End station longitude (value of horizontal (east/west) axis in the coordinate plane, used in maps to locate)
- Bike ID (the ID of the bike that was used)
- User Type (if the person using the bike is a customer or a subscriber/annual member)
- Birth Year (the birthdate of the person using the bike)
- Gender (the gender of the person using the bike)

Each row in the data represents a single use of the bike from start to finish and the description of the user (the person that rents the bikes).

Missing values (NULL):

There were some missing values in the data (in the thousands!) that had the value "NULL". I changed the value "NULL" and replaced it with "Unknown", using ctrl+H:

Figure 1: Replacing "NULL" with "Unknown".

Why I choose to have the missing values is because I believe the missing values is still a value that can be analyzed. What I mean by that is that I fund no missing values or "NULL" in the "start station name" column, but a lot in the "end station name" column (also in other columns like end station latitude/longitude). It could mean that rented bikes from start stations did not end in an end station, but rather in unknown places in New York city, where people just ended their biketrip in unknown locations. Or people just rented a bike and never actually go nowhere. It could be a lot of reasons. Maybe keeping the missing values will make the analysis difficult. Maybe I have to delete the missing values. I will try to figure this out in this assignment. So long KISS (Keep it simple stupid) ③

Assignment 1:

To create three new variables (columns), the first thing that I did was to use "text to columns" inside the "data" tab to split column B, since column B has both the date and time in the same column. (Note that before I used "text to columns" I copied column B and pasted it in column Q). Figure 1 below shows the result.

Figure 2: Making columns "starttime date" and "starttime hour".

To make the last column, column S "starttime dow" I used formula =weekday and added column Q in the formula. I got number 7, which means Saturday (in excel 1 is from Sunday to 7 that is Saturday, as

you probably know). I would like to have the text of a day instead of numbers, so I used "format cells", then custom inside category and typed dddd, as shown in the next page.

Figure 3: Using "format cells" to replace 7 to Saturday.

!s					Cells	Ed	iting		^
									~
	м	Ν	0	Р	Q	R	S	т	_
id	usertype	birth year	gender		Starttime Date	Starttime Hour	Starttime Dow		$\neg \Box$
78	Subscriber	1983	1		01.06.2013	0:00:01	Saturday		
49	Subscriber	1984	1		01.06.2013	0:00:08	Saturday		
99	Customer	NULL	0		01.06.2013	0:00:44	Saturday		
52	Subscriber	1960	1		01.06.2013	0:01:04	Saturday		
67	Subscriber	1983	1		01.06.2013	0:01:22	Saturday		
45	Customer	NULL	0		01.06.2013	0:01:47	Saturday		
93	Subscriber	1991	1		01.06.2013	0:02:33	Saturday		
OC	Subscriber	1981	1		01.06.2013	0:03:29	Saturday		
34	Subscriber	1984	1		01.06.2013	0:03:47	Saturday		
OC	Subscriber	1987	1		01.06.2013	0:04:22	Saturday		
81	Subscriber	1960	1		01.06.2013	0:04:28	Saturday		
86	Customer	NULL	O		01.06.2013	0:04:41	Saturday		
39	Subscriber	1981	1		01.06.2013	0:05:13	Saturday		
08	Customer	NULL	0		01.06.2013	0:05:21	Saturday		
51	Subscriber	1987	1		01.06.2013	0:06:44	Saturday		
80	Subscriber	1979	2		01.06.2013	0:03:36	Saturday		
98	Subscriber	1984	1		01.06.2013	0:03:45	Saturday		
72	Customer	NULL	0		01.06.2013	0:07:29	Saturday		
49	Customer	NULL	0		01.06.2013	0:08:10	Saturday		
76	Customer	NULL	O		01.06.2013	0:08:53	Saturday		
39	Subscriber	1967	1		01.06.2013	0:09:25	Saturday		
22	Subscriber	1982	1		01.06.2013	0:09:52	Saturday		
01	Subscriber	1977	1		01.06.2013	0:10:28	Saturday		
28	Subscriber	1969	1		01.06.2013	0:10:45	Saturday		
14	Subscriber	1985	1		01.06.2013	0:11:00	Saturday		
53	Subscriber	1979	1		01.06.2013	0:10:50	Saturday		
15	Subscriber	1982	1		01.06.2013	0:11:10	Saturday		
70	Customer	NULL	O		01.06.2013	0:11:30	Saturday		
77	Subscriber	1970	1		01.06.2013	0:11:52	Saturday		
89	Subscriber	1957	1		01.06.2013	0:11:53	Saturday		
63	Subscriber	1982	1		01.06.2013	0:12:28	Saturday		
54	Subscriber	1982	1		01.06.2013	0:12:33	Saturday		
55	Subscriber	1976	1		01.06.2013	0:14:16	Saturday		
43	Subscriber	1969	2		01.06.2013	0:14:47	Saturday		
06	Subscriber	1980	2		01.06.2013	0:15:01	Saturday		
64	Customer	NULL	O		01.06.2013	0:14:58	Saturday		

Figure 4: Saturday instead of 7.

24hour clock:

The hour on both column "starttime hour" and "stoptime hour" I chose to use a 24hour clock instead of using a.m. and p.m. I tried to use a.m. and p.m., but my excel for some reason got stuck every time I tried to use a.m./p.m., and my whole sheet got weird and just kept loading. But from the information on Kaggle, it seems that they used a 24hour clock on their data.

Assignment 2:

To look at which day of the week rentals are most popular and least popular, I used a chart to visualize a total of bike rentals from 01.06.2013 to 01.07.2013. To find the values, I used =COUNTIF.

Figure 5: Rentals most popular/least popular from 01.06.13 to 01.07.13.

As the chart shows:

- Most popular days for renting a bike is in the weekends, Saturdays and Sundays. It could be because people regularly have the day off from work/school, and that people has more time to do recreational purposes or visiting and meeting friends and family.
- Least popular days for renting a bike is in the start of a week, Mondays and Tuesdays. It could be because people are at work or school. It could also mean that people has done

recreational activities in the weekend and is likely not that active on Mondays and Tuesdays. They rather want to stay at home.

The average number of rented bikes on weekends compare to the average number of rented bikes during working days is shown below by using formula =average. The average number from Monday to Friday is 70963 rented bikes. On weekends from Saturday to Sunday the average rented bikes are 111443.

• Though there are only two days in a weekend, the average amount of people renting bikes is still higher than in working days which has five days total.

Figure 6: Compared average rented bikes on weekends (Saturdays to Sundays) vs. working days (from Mondays to Fridays)

Now, which hour in a day is the most popular and the least popular time to rent a bike in New York City from 01.06.13 to 01.07.13? To find that out, I created a chart using bins with a duration of 2 hours between each graph (except the first and last hour in a day). I used formula =FREQUENCY(\$R\$2:\$R\$577704;AB22:AB34).

Figure 7: Showing time of day rental bikes are used.

- The most popular time people renting bikes was between 17:00:01 to 19:00:00 in the evening with a total of 107251 rental bikes. This could be the time when people are finish at work to either travel home or meet family and friend etc.
- The least popular time was between 03:00:01 to 05:00:00 in the morning with a total of 2776 rental bikes. This explanation could be that people normally sleeps at that time of day.

The most popular start stations for bike rentals is shown below. I used a PivotTable to find the top 10 most popular start stations.

Figure 8: Top 10 start stations

The least popular start stations for bike rentals is also shown below.

Count of start station name

10 least popular start stations

Figure 9: 10 least popular start stations for bike rentals

Figure 8 and figure 9 shows:

- The most popular start station to rent a bike was at West 20 Street & 11 Avenue with 5983 between 01.06.13 to 01.07.13.
- The least popular start station to rent a bike was at MLSWKiosk with only 2 bikes between 01.06.13 to 01.07.13.

It's quite the difference between the most and the least. Maybe the area in West 20 Street & 11 Avenue is a well-known station to rent a bike. Maybe it's located in an area where other transportations meet, like a bus station or a boat pier. It could be a lot of reasons. Why the MLSWKiosk has a low rental result in that same period could be that the location is at an area where most people ether rides the bus, subway, car etc. Maybe the kiosk is located in a far-off area.

The most popular destinations for people how rented bikes are shown below:

Figure 10: Most popular destination for rental bikes

What the chart shows:

- Destination "Unknown" shows, by far, the most frequent value in the chart. It can be that
 most of the time people how rents bikes don't travel to an end station, but rather leave the
 bikes in unknown places. I hope CitiBike in New York had some kind of tracking devices on
 their bikes in 2013. If not, this could be costly business to run if 18059 bikes went missing!
- The most popular destination, or end station was West 20 street & 11 Avenue with 5742 rented bikes. It's the most popular destination and the most popular start station (as shown in figure 10).
- The second most popular destination was East 17 & Broadway with 5530 rented bikes. The same address was also the second most popular start station (as shown in figure 10).
- As I said earlier, the reason why I chose to have the missing values in the data "unknown" is because it maybe has a logical meaning.

The least popular destination is shown below:

Figure 11: Top 10 least popular destinations between 01.06.13 to 01.07.13.

What the chart shows:

- MLSWKiosk was the least popular destination for people renting bikes with a value of 2. Like in figure 9, MLSWKiosk was the least popular start station with also 2 bikes from 01.06.13 to 01.07.13.
- Park Ave & St. Edwards Street was the second least popular destination, followed by DeKalb Avenue & Skillman Street. The same address was the second least popular start station to rent a bike, as shown in figure 10.

Are start stations and end stations usually the same or different?

That question was hard to figure out. After getting a tip from a fellow student in Discord, I used the station IDs to see if the ID numbers starts and ends matches between the same rows on the sheet. I'm not quite sure if I understood the question completely, but I figured out a solution:

 To find both matching values and not matching values in the same rows I used the =IF function as shown below.

C2	*	× <	fx =	IF(A2=B2;"I	Match";"No	Match")
	Α	В	С	D	Е	F
1	start station id	end station id				
2	444	434	No Match		Match	
3	444	434	No Match		No Match	
4	406	406	Match		Total	
5	475	262	No Match			
6	2008	310	No Match			
7	485	406	No Match			Same sta
8	285	532	No Match			Different
9	509	521	No Match			
10	265	436	No Match			
11	404	303	No Match		Ar	e star
12	423	314	No Match			
13	502	532	No Match			
14	241	365	No Match			

Figure 12: Finding if start stations and end stations are the same or different using =IF

• After finding thousands of "Match" and "No Match" inside column A and B, I then summarized "Match" and "No Match" by using the =COUNTIF function as shown below:

fx	=COUN	TIF(C:C;E2)	
D	Е	F	G
	Match	23624	
	No Match	554079	
	Total	577703	

Figure 13: Using =COUNTIF to sum "Match" and "No Match".

- So now I got my values that I was looking for. The word "Match" got replaced with "Same station" and "No Match" got replaced with "Different station/unknown".
- Then I made a chart showing if the destination for people renting bikes ended at the same place as the starting station, or if the destination ended in a different station/unknown location.

Figure 14: Showing if the destination for people renting bikes ended at the same place as the starting station, or if the destination ended in a different station/unknown location in %.

What the pie chart is showing:

- 96 % of the people who rented bikes usually did not end their destination in the same station where they started from. The bikes ended in other stations or in an unknown area.
- Only 4 % of trips with rented bikes ended at the same station where the bikes started from.

Note: "In this point of assignment my excel started to load a lot and sometimes crashed. I tried to delete all rows and columns that where empty, even changed to a new workbook and copy/paste single columns for analysis, but it kept crashing. Instead of copying charts directly from excel to word, I took a screenshot of every chart and copied it in word. I spent hours of valuable time waiting, fixing, finding ways to make excel run better. Sometimes I had to do calculations all over again. I also had a hard time using the Data Analysis Toolpak because it just kept loading and crashing when I tried to find some results of the data using the tool".

This "scene" (picture above) became more and more frequent.

Assignment 3:

By the help of the Data Analysis Toolpak in excel I got (finally....) some important values to use in this assignment:

С	D
tripdurati	on
Mean	1372.570279
Standard Error	11.87797129
Median	874
Mode	547
Standard Deviation	9028.063033
Sample Variance	81505922.12
Kurtosis	78921.68157
Skewness	224.0203653
Range	3876418
Minimum	61
Maximum	3876479
Sum	792937968
Count	577703

Figure 15: Using the Data Analysis Toolpak in excel.

- The values calculated by the Toolpak already shows me that the values inside column "trip durations" has some extreme variations.
- Sample variance has a variability of 81505922. This tells me the degree of spread in the data. The variance is so different in the relation to the mean value of 1372,57.
- The standard deviation is quite high. High standard deviation means that the values in the column are spread out.
- The range between minimum and maximum has a range of 3876418.

- Skewness looks like its skewed to the right/positive.
- As I can remember, if the mean is greater than the median, the distribution of the "trip durations" column has to be skewed positively/right side.
- The most frequent value in the column is 547. This could mean that most rented bike duration has a duration of 547 seconds. What I mean about that is that people who rent bikes has an average use of 547 seconds. Said differently, the average trip lasts about 9 minutes.

It looks like the data shows some extreme outliers. I think it would be difficult to make a histogram based on the extreme outliers in the "trip durations" column.

Outliers:

Investigating on the outliers, I checked the "Custom Sort" and got this information:

Q	R	S	U	V
tripduration	Starttime Date	Starttime Hour	Stoptime Date	Stoptime Hour
3876479	04.06.2013	04:51:57	19.07.2013	01:39:56
2742506	02.06.2013	13:11:18	04.07.2013	06:59:44
1860069	19.06.2013	12:32:51	11.07.2013	01:14:00
1331178	05.06.2013	11:42:36	20.06.2013	21:28:54
1239509	23.06.2013	20:36:50	08.07.2013	04:55:19
1048424	14.06.2013	15:40:53	26.06.2013	18:54:37
865531	19.06.2013	18:49:01	29.06.2013	19:14:32
764344	12.06.2013	14:47:54	21.06.2013	11:06:58
661180	16.06.2013	19:17:53	24.06.2013	10:57:33
625137	13.06.2013	18:14:29	20.06.2013	23:53:26
606864	16.06.2013	13:39:29	23.06.2013	14:13:53
576471	03.06.2013	19:49:15	10.06.2013	11:57:06
565786	05.06.2013	08:07:58	11.06.2013	21:17:44
563884	23.06.2013	06:14:17	29.06.2013	18:52:21
531099	08.06.2013	16:19:05	14.06.2013	19:50:44
528411	16.06.2013	19:01:24	22.06.2013	21:48:15
521552	22.06.2013	18:13:29	28.06.2013	19:06:01
504367	08.06.2013	22:17:05	14.06.2013	18:23:12
451931	09.06.2013	11:45:18	14.06.2013	17:17:29
394499	15.06.2013	21:27:47	20.06.2013	11:02:46
354318	05.06.2013	12:41:59	09.06.2013	15:07:17
340149	03.06.2013	22:53:28	07.06.2013	21:22:37
328384	02.06.2013	20:16:37	06.06.2013	15:29:41
315372	09.06.2013	12:39:46	13.06.2013	04:15:58
302588	05.06.2013	14:12:10	09.06.2013	02:15:18
295345	05 06 2013	07·01·37	08 06 2013	17·04·02

Figure 16: Checking for outliers

- Trip duration 3876479 on column Q: There is one individual who rented a bike from 04.06.13 to 19.07.13. That's 46 days.
- The second longest rented bike was from 02.06.13 to 04.07.13. That's 33 days.
- That's a long way from the average rented bike duration of 547 seconds (9 minutes).

Using the IQR method:

		·	
✓ fx =E2/R	OWS(\$A:\$	A)	
С	D	E	F
Trip Duratio	n	Number of outliers	Percentage of outliers
Q1	514	24893	2.37 %
Q3	1398		
IQR	884		
Fence Multiplier	1.5		
Inner Fence (lower)	-812		
Outer Fence (upper)	2724		

Figure 17: Detecting outliers using IQR

Figure 17 shows:

- The IQR method detected 24893 outliers in column "trip duration".
- The number of outliers is just 2.37 % of the whole data in the column.

Using the z-score method:

Figure 18: Detecting outliers using z-score

Figure 18 shows:

- The z-score method detected 1700 outliers in column "trip duration".
- The number of outliers is just 0.16 % of the whole data in the column.

Figure 19: Histogram

The line chart shows:

- People who rents bikes usually rents it between a duration of 100 seconds (1,5 minute) to 3000 seconds (50 minutes). This is the most used duration time out of 577703 times a bike was used/rented between 01.06.13 to 01.07.13.
- Histogram shows a right skewness
- The mean is 1372.57 and higher than median 874
- As the line shows, mean better represents the central tendency of the distribution of the chart.
- Using =percentile.inc like the figure below to show if the histogram matches the percentile.

Using this histogram was based on the data in figure 20 (next page), using percentile and finding out where the trip duration was most common.

fx =PERCENTILE.INC(\$A			
С	D	Е	F
25th percentile	0.25	514	This means that 25 % of the trip duration are from 514 seconds or less
50th percentile	0.5	874	This means that 50 $\%$ of the trip duration are from 874 seconds or less
75th percentile	0.75	1398	This means that 75 $\%$ of the trip duration are from 1398 seconds or les
95th percentile	0.95	2544	This means that 95 % of the trip duration are from 2544 seconds or les
		25 %	
		50 %	
		75 %	
		95 %	

Figure 20: Percentile of 25th, 50th, 75th and 95th.

С	D	Е	F
25th percentile	0.25	514	This means that 25 % of the trip duration are from 514 seconds or less
50th percentile	0.5	874	This means that 50 % of the trip duration are from 874 seconds or less
75th percentile	0.75	1398	This means that 75 % of the trip duration are from 1398 seconds or less
95th percentile	0.95	2544	This means that 95 $\%$ of the trip duration are from 2544 seconds or les
		25 %	
		50 %	
		75 %	
		95 %	

Figure 21: Using =percentrank.inc to check if the formula and the value matches the %.

The most frequent numbers in column Trip Duration is shown below:

I used some formulas that didn't made the result I wanted, so I had to google it and used the formula in this site: https://www.exceldemy.com/how-to-find-most-frequent-numbers-excel/. Before this I used formulas such as =mode.sngl, =isnumber, =max, =vlookup etc. After finding the values that I was looking for, I started making a chart to show the result.

{=MODE(IF(ISERROR(MATCH(\$A\$2:\$A\$577704;\$F\$1:F1;0));\$A\$2:\$A\$577704))}											
)	Е	F	G	Н	1						
		Top 5 numbers	Frequency		Percentile	Tripdu					
		547	532		5th						
70279		484	517		25th						
97129		530	512		50th						
874		452	507		75th						
547		451	505		95th						

Figure 20: Finding the most frequent trip durations on rented bikes.

Figure 21: Top 5 trip durations

- That using a rented bike for 547 seconds was the most common time a rental lasted.
- 532 people had the same amount of time spent renting a bike.

To understand this better, I could try to rather use minutes instead of seconds as shown below:

Figure 22: Simpler chart of most frequent minutes spent renting bikes

Note:

- The 9-minute bar is a combine value of the 1st and 3rd frequent duration in figure 21. The total is wrong and it should be 1044 total, not 1077.
- The 8-minute bar is the second bar in figure 21.
- The 7.5 minute bar is a combine value of the 2nd, 4th and 5th bar in figure 21.

Assignment 4:

Finding the Euclidean distance between column "start stations" to "end station". This calculates the shortest possible distance between two locations.

• I made a new column called Euclidean distance:

2	· >	f_x =SQR	T((A2-C2)^2+(B2-D2)	^2)	
4	А	В	С	D	Е
	start station latitude	start station longitude	end station latitude	end station longitude	Eculidean Distance
	40.7423543	-73.98915076	40.74317449	-74.00366443	0.014536827
	40.7423543	-73.98915076	40.74317449	-74.00366443	0.014536827
	40.69512845	-73.99595065	40.69512845	-73.99595065	0
	40.73524276	-73.98758561	40.6917823	-73.9737299	0.045615702
,	40.70569254	-74.01677685	40.68926942	-73.98912867	0.032158059
	40.75038009	-73.98338988	40.69512845	-73.99595065	0.056661421
	40.73454567	-73.99074142	40.710451	-73.960876	0.038373121
1	40.7454973	-74.00197139	40.75096735	-73.99444208	0.009306554
0	40.72229346	-73.99147535	40.68216564	-73.95399026	0.05491242
1	40.7405826	-74.00550867	40.72362738	-73.99949601	0.017989763
2	40.76584941	-73.98690506	40.69383	-73.990539	0.072111032
3	40.714215	-73.981346	40.710451	-73.960876	0.020813183
4	40.68981035	-73.97493121	40.68223166	-73.9614583	0.015458197
5	40.7462009	-73.98855723	40.75096735	-73.99444208	0.007573012
5	40.744023	-73.976056	40.71413089	-73.9970468	0.036526044
7	40.7149787	-74.013012	40.728145	-73.990214	0.026326797
В	40.7149787	-74.013012	40.728846	-74.008591	0.014554973
9	40.73827428	-73.98751968	40.73827428	-73.98751968	0
0	40.71939226	-74.00247214	40.76228826	-73.98336183	0.046960311
1	40.7462009	-73.98855723	40.75096735	-73.99444208	0.007573012
2	40.74734825	-73.99723551	40.74734825	-73.99723551	0
3	40.73401143	-74.00293877	40.73492695	-73.99200509	0.010971943
4	40.76095756	-73.96724467	40.73291553	-74.00711384	0.048743268
5	40.76669671	-73.99061728	40.72621788	-73.98379855	0.041049126
5	40.74475148	-73.99915362	40.74475148	-73.99915362	0
7	40.73781509	-73.99994661	40.73649403	-73.99704374	0.003189334
3	40.74394314	-73.97966069	40.73587678	-73.98205027	0.008412863
9	40.72210379	-73.99724901	40.72019576	-73.98997825	0.007516949
)	40.722055	-73.989111	40.72066442	-73.98517977	0.004169926
1	40.74734825	-73.99723551	40.751873	-73.977706	0.020046823
2	40.73935542	-73.99931783	40.76669671	-73.99061728	0.028692259
3	40.7262807	-73.98978041	40.72453734	-73.98185424	0.008115632
4	40.71893904	-73.99266288	40.71406667	-73.99293911	0.004880194
5	40.71893904	-73.99266288	40.71893904	-73.99266288	0
6	40.73291553	-74.00711384	40.73291553	-74.00711384	0
7	40.71602118	-73.99974372	40.72362738	-73.99949601	0.007610232

Figure 23: Finding the Euclidean distance using formula =SQRT.

NOTE: I had to make a new sheet in fear of my excel crashing again. If not, I would have made a new column inside the sheet 201306-citibike-tripdata.

NOTE: When calculating the Euclidean and Manhattan distance I noticed that there where data that could affect assignment 5.

Α	В	С	D	E	F
40.69475701	-73.99052739	40.72938685	-73.97772429	0.036920796	0.04743294
40.71911552	-74.00666661	40.7262807	-73.98978041	0.018343488	0.02405138
40.73221853	-73.98165557	40.75455731	-73.96592976	0.027318898	0.03806459
40.71260486	-73.96264403	40.722055	-73.989111	0.028103481	0.03591711
40.7262807	-73.98978041	40.73221853	-73.98165557	0.010063342	0.01406267
40.69089272	-73.99612349	40.69165183	-73.9999786	0.003929137	0.00461422
40.69239502	-73.99337909	40.68382604	-73.97632328	0.01908738	0.02562479
40.69089272	-73.99612349	40.69165183	-73.9999786	0.003929137	0.00461422
40.756014	-73.967416	40.735238	-74.000271	0.038872782	0.053631
40.7284186	-73.98713956	40.74780373	-73.9734419	0.023736241	0.03308279
40.73935542	-73.99931783	0	0	84.47244592	114.7386733
40.72362738	-73.99949601	40.76370739	-73.9851615	0.042566247	0.05441452
40.75513557	-73.98658032	40.73971301	-73.99456405	0.017366499	0.02340629
40.75513557	-73.98658032	40.74195138	-74.00803013	0.025177713	0.034634
40.73261787	-73.99158043	40.70569254	-74.01677685	0.036875913	0.05212175
40.69196035	-73.96536851	40.69363137	-73.96223558	0.003550712	0.00480395
40.759107	-73.959223	40.7462009	-73.98855723	0.032047847	0.04224033
40.7643971	-73.97371465	40.73587678	-73.98205027	0.029713485	0.03685594
40.76341379	-73.99667444	40.76269882	-73.99301222	0.003731359	0.00437719
40.71602118	-73.99974372	40.71602118	-73.99974372	0	0
40.71406667	-73.99293911	40.71625008	-74.0091059	0.016313564	0.0183502
40.71406667	-73.99293911	40.73971301	-73.99456405	0.025697766	0.02727128
40.68764484	-73.96968902	40.68851534	-73.9647628	0.005002541	0.00579672
40.75019995	-73.99093085	40.746745	-74.007756	0.017176215	0.0202801
40.72066442	-73.98517977	40.71602118	-73.99974372	0.015286213	0.01920719
40.71260486	-73.96264403	40.71260486	-73.96264403	0	0
40.72362738	-73.99949601	40.72679454	-73.99695094	0.004063039	0.00571223
40.74290902	-73.97706058	40.73587678	-73.98205027	0.00862261	0.01202193
40.74290902	-73.97706058	0	0	84.45466315	114.7199696
40.7172274	-73.98802084	40.70862144	-74.00722156	0.021041155	0.02780668
40.72405549	-74.00965965	40.71602118	-73.99974372	0.012762281	0.01795024
40.71260486	-73.96264403	40.73291553	-74.00711384	0.048888519	0.06478048
40.69308257	-73.97178913	40.71117416	-74.00016545	0.033652952	0.04646791
40.71625008	-74.0091059	40.73543934	-73.99453948	0.024091664	0.03375568
40.74395411	-73.99144871	40.76009437	-73.99461843	0.01644856	0.01930998

Figure 24: Missing values 1.

The red line shows missing data from column C and D. That's missing data of "end station latitude" and "end station longitude". Without that data, the Euclidean and Manhattan distance values are useless. Because it doesn't show the true value of the distance.

Like in the yellow line, the start and end distance are identical. No wonder the Euclidean and Manhattan distances are at value 0, and the mode tells me it's the most frequent value in the data.

Let's look at some sheets including/adding some important columns so we can have more insights of the data. I'll go back to sheet 201306-citibike-tripdata.

Figure 25: Missing values 2.

The figure shows:

- That even though column "end station ID", "end station name", "end station latitude, and "end station longitude" are missing, the data still shows values in column "trip duration", "start date", "stop time date" etc., as shown in figure 25.
- I counted 18059 missing rows in column H, I, J and K.
- The missing data in columns H, I, J and K makes it difficult to calculate the distance. Data is
 useless when calculating the distance since there is no data that tells us where in New York
 the bike trip ended. We have only the date and time that shows us when the bike rent
 ended.

Let's look at the gray line in figure 25 as an example:

- The person renting the bike from 07:59:35 in the morning till 17:42:21 in the afternoon/evening in 01.06.13, had a trip duration of 34966 sec. That's over 9 hours bike rent. Still, we don't know the distance of the trip.
- Could be that the trip didn't ended in an end station, but some random place in the city.

I think that the missing values in distance should not be in the data in finding the values of the distance in assignment 5. The 18059 rows will not be included. Because as shown in figure 23 and 24, the data of distance will be misleading.

If we look again in figure 24, the yellow lines are also values that should not be in the data in finding the distance, since the person who rented the bike never left the start station. I'll show some examples under:

Α	D	E	F	G	н	1	J	К	Q	R	Т	U
ripduration	start station	id start station name	start station latitude	start station longitude	end station i	id end station name	end station latitude	end station longitude	Starttime Date	Starttime Hour	Stoptime Date	Stoptime Hou
695	44	14 Broadway & W 24 St	40.7423543	-73.98915076	43	4 9 Ave & W 18 St	40.74317449	-74.00366443	01.06.2013	00:00:01	01.06.2013	00:11:36
693	44	14 Broadway & W 24 St	40.7423543	-73.98915076	43	4 9 Ave & W 18 St	40.74317449	-74.00366443	01.06.2013	00:00:08	01.06.2013	00:11:4:
2059	40	06 Hicks St & Montague St	40.69512845	-73.99595065	40	6 Hicks St & Montague St	40.69512845	-73.99595065	01.06.2013	00:00:44	01.06.2013	00:35:0
123	4	75 E 15 St & Irving PI	40.73524276	-73.98758561	26	2 Washington Park	40.6917823	-73.9737299	01.06.2013	00:01:04	01.06.2013	00:03:0
1521	200	08 Little West St & 1 PI	40.70569254	-74.01677685	31	0 State St & Smith St	40.68926942	-73.98912867	01.06.2013	00:01:22	01.06.2013	00:26:4
2028	41	85 W 37 St & 5 Ave	40.75038009	-73.98338988	40	6 Hicks St & Montague St	40.69512845	-73.99595065	01.06.2013	00:01:47	01.06.2013	00:35:3
2057	28	B5 Broadway & E 14 St	40.73454567	-73.99074142	53	2 S 5 Pl & S 5 St	40.710451	-73.960876	01.06.2013	00:02:33	01.06.2013	00:36:5
369	50	09 9 Ave & W 22 St	40.7454973	-74.00197139	52	1 8 Ave & W 31 St N	40.75096735	-73.99444208	01.06.2013	00:03:29	01.06.2013	00:09:3
1829	26	55 Stanton St & Chrystie St	40.72229346	-73.99147535	43	6 Hancock St & Bedford Ave	40.68216564	-73.95399026	01.06.2013	00:03:47	01.06.2013	00:34:1
829	40	04 9 Ave & W 14 St	40.7405826	-74.00550867	30	3 Mercer St & Spring St	40.72362738	-73.99949601	01.06.2013	00:04:22	01.06.2013	00:18:1
1316	42	23 W 54 St & 9 Ave	40.76584941	-73.98690506	31	4 Cadman Plaza West & Montague St	40.69383	-73.990539	01.06.2013	00:04:28	01.06.2013	00:26:2
1456	50	02 Henry St & Grand St	40.714215	-73.981346	53	2 S 5 Pl & S 5 St	40.710451	-73.960876	01.06.2013	00:04:41	01.06.2013	00:28:5
386	24	11 DeKalb Ave & S Portland Av	€ 40.68981035	-73.97493121	36	5 Fulton St & Grand Ave	40.68223166	-73.9614583	01.06.2013	00:05:13	01.06.2013	00:11:3
924	41	36 Broadway & W 29 St	40.7462009	-73.98855723	52	1 8 Ave & W 31 St N	40.75096735	-73.99444208	01.06.2013	00:05:21	01.06.2013	00:20:4
1233	52	27 E 33 St & 2 Ave	40.744023	-73.976056	29	6 Division St & Bowery	40.71413089	-73.9970468	01.06.2013	00:06:44	01.06.2013	00:27:1
512	30	09 Murray St & West St	40.7149787	-74.013012	30	O Shevchenko PI & E 7 St	40.728145	-73.990214	01.06.2013	00:03:36	01.06.2013	00:12:0
505	30	09 Murray St & West St	40.7149787	-74.013012	34	7 Greenwich St & W Houston St	40.728846	-74.008591	01.06.2013	00:03:45	01.06.2013	00:12:1
833	50	03 E 20 St & Park Ave	40.73827428	-73.98751968	50	3 E 20 St & Park Ave	40.73827428	-73.98751968	01.06.2013	00:07:29	01.06.2013	00:21:2
1818	25	57 Lispenard St & Broadway	40.71939226	-74.00247214	50	0 Broadway & W 51 St	40.76228826	-73.98336183	01.06.2013	00:08:10	01.06.2013	00:38:2
682	48	36 Broadway & W 29 St	40.7462009	-73.98855723	52	1 8 Ave & W 31 St N	40.75096735	-73.99444208	01.06.2013	00:08:53	01.06.2013	00:20:1
899	49	94 W 26 St & 8 Ave	40.74734825	-73.99723551	49	4 W 26 St & 8 Ave	40.74734825	-73.99723551	01.06.2013	00:09:25	01.06.2013	00:24:2
626	38	80 W 4 St & 7 Ave S	40.73401143	-74.00293877	38	2 University PI & E 14 St	40.73492695	-73.99200509	01.06.2013	00:09:52	01.06.2013	00:20:1
219	30	05 E 58 St & 3 Ave	40.76095756	-73.96724467	35	8 Christopher St & Greenwich St	40.73291553	-74.00711384	01.06.2013	00:10:28	01.06.2013	00:14:0

Figure 25: Missing values 3

The figure shows:

NOTE: On figure 24 the yellow lines are now replaced with red lines. I had some issues loading excel again and had to repeat the analysis.

- The two red lines shows rented bikes with exactly the same start latitude/longitude as in end latitude/longitude.
- The upper red line in figure 25: Even though rented time lasted from 00:00:44 till 00:35:03 nighttime with a trip duration of 2059 (34 minutes), the bike never leaved the start station. The figure shows start station and end station are the same.
- I counted 23625 after getting value of 0 in calculating both Euclidean and Manhattan distance.

This mean that those data can't be in the calculation of distance since I believe the trip never left the start station. Trip duration only show the amount of time spent renting the bike.

This leaves me to not include 38443 of 577703 data observations in the citibike-tripdata in finding the different values in distance.

NOTE: I had big issues in excel when filling the blank rows. I used a lot of time finding ways to make it work. Like in trip durations, I copied and pasted the distance in a new workbook, but it kept crashing and loading to infinity...

Note:

This was a big issue. I spent hours in figuring how to get excel to work with me. It just kept crashing and loading. It stopped completely when filling the empty rows (figure above) after deleting the values/missing values that I believed didn't fit in finding the distance. I used all the tips in Discord, changed to new workbook, copy/paste single columns for analysis, etc. etc., but it kept crashing. I even changed computers. I used a lot of time on this. Did all the work finding the right way to analyze the distance and couldn't continue my work. I'm so sorry I didn't finish assignment 5 because of this issue.

Assignment 6:

A naïve prediction:

In this assignment I made a new sheet called predictions. First prediction was to make a naïve prediction. I made three columns, Day and Rentals (as shown in the assignment pdf), then made a column called Quantity Prediction.

-	=	\times	~	fx	=\$D\$31
	C		D		E
Da	У	Rei	ntals	Qua	ntity Prediction
1	1		872	2	
2			1597	1	
3			759	8	
4			1578	2	
5			1569	0	
6			1242	O	
7			122	6	
8			1800	7	
9			2103	4	
10			389	7	
11			1259	6	
12			1679	5	
13			801	6	
14			1494	2	
15			2517	8	
16			2196	6	
17			1965	9	
18			1372	4	
19			2414	2	
20			2660	3	
21			2799	7	
22			2928	1	
23			2806	5	
24			2425	1	
25			2782	7	
26			2949	9	
27			2433	4	
28			2781	8	
29			2975	3	
30			2490	9	24909
1					24909
2					24909
3					24909
4					24909
5					24909
6					24909
7					24909

Figure 26: Making a naïve prediction of rental bikes.

- To find values inside coulum rentals, I used =countif
- Finding prediction on 01.07.13 to 07.07.13 I used =\$D\$31.
- Since the number of rental bikes in 30.06.13 was 24909, the naïve prediction will predict that the same amount of bikes will be rented from 01.07.13 to 07.07.13.
- The chart is shown below.

Figure 27: Naïve prediction.

The chart shows:

- That the prediction value from 01.07. to 07.07. as the same value and therefore a straight line.
- This shows a prediction but maybe not quite realistic.

The average forecast:

This prediction focuses on the average or the mean value. Finding the mean value using =average on column D "Rentals", gives me a value of 19257. This will be the value of prediction the first 7 days in juli.

).ZU13	25	2/82/	
5.2013	26	29499	
5.2013	27	24334	
5.2013	28	27818	
5.2013	29	29753	
5.2013	30	24909	24909
5.2013	1		19256.73
5.2013	2		19256.73
5.2013	3		19256.73
5.2013	4		19256.73
5.2013	5		19256.73
5.2013	6		19256.73
5.2013	7		19256.73
5.2013			
5.2013			
5.2013			

Figure 28: Making an average forecast of rented bikes.

Figure 29: Average forecast.

- A straight line like the naïve prediction, but with a different value.
- The same as chart figure 27, this maybe not quite realistic.

Conclusion of the two charts:

Both the naïve prediction and the average forecast on predicting forward values represents little qualitative insights. Both predictions shows us just a linear line of value even though the lines are of some difference.

Adaptive average forecast:

In this forecast I started to find the average of the first 7 values (7 days) in column D. Then I made a new column called "adaptive average forecast using =average starting from day 8 all the way to the date 07.07.

√ fx	=AVERAG	GE(D2:D9)
C	D	E F
Day	Rentals	Adaptive average forcast
1	8722	
2	15971	
3	7598	
4	15782	
5	15690	
6	12420	
7	1226	
8	18007	11927
9	21034	13466
10	3897	11956.75
11	12596	12581.5
12	16795	12708.125
13	8016	11748.875
14	14942	12064.125
15	25178	15058.125
16	21966	15553
17	19659	15381.125
18	13724	16609.5
19	24142	18052.75
20	26603	19278.75
21	27997	21776.375
22	29281	23568.75
23	28065	23929.625
24	24251	24215.25
25	27827	25236.25
26	29499	27208.125
27	24334	27232.125
28	27818	27384
29	29753	27603.5
30	24909	27057
1		26913
2		27356.66667
3		27262.6
4		26703.5
5		27493.33333
6		27331
7		24909

Figure 30: Making adaptive average forecast

Figure 31: Adaptive mean forecast

• By finding the first 7 days average value, the chart shows us two lines, where the adaptive average forecast (gray line) predicted the past, while the orange shows us what actually happened. The gay line also predicts the first 7 days in July.

Drift projection:

This prediction is to show the trending values of past data.

C	D	E
Day	Rentals	Drift projection
1	8722	
2	15971	
3	7598	
4	15782	
5	15690	
6	12420	
7	1226	
8	18007	
9	21034	
10	3897	
11	12596	
12	16795	
13	8016	
14	14942	
15	25178	
16	21966	
17	19659	
18	13724	
19	24142	
20	26603	
21	27997	
22	29281	
23	28065	
24	24251	
25	27827	
26	29499	
27	24334	
28	27818	
29	29753	
30	24909	24909
1		25467.17241
2		26025.34483
3		26583.51724
4		27141.68966
5		27699.86207
6		28258.03448
7		28816 2069

Figure 32: Making a drift projection chart.

Figure 33: Drift projection chart.

- An upwards line trending value.
- The trend of increased rented bikes in the past will make the drift projection go up. This is because the prediction follows the trend.

Naïve seasonal method:

To make the naïve seasonal method I copied the values from date 01.06 to 07.06. and pasted it from 01.07. to 07.07.

- fx	=D2	
C	D	E
Day	Rentals	Naive sesonal predic
1	8722	
2	15971	
3	7598	
4	15782	
5	15690	
6	12420	
7	1226	
8	18007	
9	21034	
10	3897	
11	12596	
12	16795	
13	8016	
14	14942	
15	25178	
16	21966	
17	19659	
18	13724	
19	24142	
20	26603	
21	27997	
22	29281	
23	28065	
24	24251	
25	27827	
26	29499	
27	24334	
28	27818	
29	29753	
30	24909	24909
1		8722
2		15971
3		7598
4		15782
5		15690
6		12420
7		1226

Figure 34: Making a naïve seasonal chart.

Figure 35: Naïve seasonal prediction.

- The prediction shows us the same value as in the values from 01.06. to 07.06.
- The prediction shows us a falling rate of rented bikes. But if it follows the same pattern as in June, the line will go up the following day.

Assignment 7:

Using a linear trend and exponential trend inside the charts.

Naïve seasonal projection:

Figure 36: Linear trend telling us that the value is decreasing.

Figure 37: Exponential trend showing an increasing high rate of downfall in values. Not quite sure if I did this right....

Drift projection:

Figure 38: Linear line shows that the values are increasing with a steady rate.

Figure 39: Exponential trend showing a rise in rates.

Adaptive forecast:

Figure 40: Exponential trend showing an increase in values.

Figure 41: Like in exponential trend, the linear trend also shows a steady increase in values.

Average forecast:

Figure 42: Exponential trend that shows a decrease in values.

Figure 43: Like in figure 42, the linear trend shows a steady decreasing rate.

Naïve prediction:

Figure 44: Exponential trend is not suitable in this chart because the naïve prediction forces the trendline to be at a zero value.

Figure 45: The tend line is constant and does not show us a decrease or increase because of the prediction.