Aspects of the Statistical Approach to Speech Recognition (isitttalk.tex)

Frederick Jelinek
Center for Language and Speech Processing
Johns Hopkins University
Baltimore, MD

June 29, 2001

1 Terminology

Speech recognition:

Automatic transcription of the sound of speech into text

Speech understanding:

Determination of intended meaning of observed speech

3	Recognition	Approach	Based	on	"available"	Expert	Knowle	edge
_		1 1						

1. A basic pronunciation of words is known (see any dictionary). It can be expressed as strings from the international phonetic alphabet:

2. Fast speech and co-articulation rules are known from phonology, so transformation by rule to surface form is possible:

- 3. Confusion between phones can be estimated from place of articulation studies and psycho-acoustics
 - I.e., we can find out how frequently s changes into z, how frequently into f, into e, etc.

4 The "expert" procedure

1. Segment speech into successive phones

2. Perform pattern match on the segments: extract a string of most likely phones from the speech signal

5 The "expert" procedure (cont.)

3. Estimating confusion penalties compute the "distance" between hypothesized words and the extracted phones

K	I	\check{S}	recognized string
B	I	\check{S}	hypothesized string
-3	0	0	penalties

- 4. Find what was said with the help a heuristic search based on
 - a grammar of English
 - and
 - an error scoring system determined by experts

7 The accepted statistical decision criterion

• Denote word sequences by

$$\mathbf{W} \doteq w_1 w_2 ... w_n$$
 (the spoken sentence)

$$\widehat{\mathbf{W}} \doteq \hat{w}_1 \hat{w}_2 ... \hat{w}_n$$
 (the transcribed speech)

where we *ignore* the possibility that the number of transcribed and uttered words may be different.

• "Obviously", the recognizer should decide for that word sequence $\widehat{\mathbf{W}}$ which occurred most frequently when the acoustics \mathbf{A} were observed. Or, written mathematically,

$$\widehat{\mathbf{W}} = \arg \max_{\mathbf{W}} P(\mathbf{W}|\mathbf{A}) = \arg \max_{\mathbf{W}} P(\mathbf{A}|\mathbf{W}) \times P(\mathbf{W})$$

• **Remark:** In cases of *research* interest, it is too much to hope to recover sentences perfectly. Hence we should want to *minimize* the word error rate. The criterion does that only approximately.

8 Consequent component modules of a recognizer

- We conclude that a recognizer must have
 - An **acoustic processor** which transforms the observed speech into a string of symbols **A** to be handled by the computer
 - A **hypothesis search module** which seeks the word string $\widehat{\mathbf{W}}$ that attains the maximum of $P(\mathbf{A}|\mathbf{W}) \times P(\mathbf{W})$.
- The search is based on **models** of the speech processes:
 - **Acoustic model:** to compute the probability $P(\mathbf{A}|\mathbf{W})$ that when speaker utters \mathbf{W} the speech will be transformed by the acoustic processor into the string \mathbf{A} .
 - Language model: to compute the probability $P(\mathbf{W})$ that the speaker will wish to utter the words \mathbf{W}

9 The Communication Theory Approach to Speech Recognition

10 The basic pronunciation model

• The system contains a finite pronunciation lexicon specifying a correspondence between each word and its *baseform* expressed as a phonetic sequence

• An utterance **W** is transformed into a phonetic string by replacing each of its words by its baseform followed by a delimiter

blue chair
$$\leftrightarrow$$
 | B L Ú | Č É R |

• Phones are pronounced according to their immediate context: the acoustic model of a phone is a *tri-phone*

$$|-B+l, b-L+\acute{u}, l-\acute{u}+|, \acute{u}-|+\check{c}, |-\check{c}+\acute{e}, \check{c}-\acute{E}+r, \acute{e}-R+|$$

11 The basic acoustic model

- The microphone input is transformed by a signal processor into a sequence $a_1a_2...a_k...$ of vectors of *cepstral* coefficients
 - Vectors are generated 100 times a second
- Each tri-phone corresponds to a hidden Markov model (HMM) of the same structure:

- Transitions take place once every centi-second. States generate normally distributed vectors.
 - Tri-phones differ in that their statistical parameters have different values.
 - The parameter values are estimated from transcribed speech data by the EM algorithm.

12 The basic language model

ullet Almost universally a trigram language model is used

$$P(\mathbf{W}) = \prod_{i=1}^{n} P(w_i|w_{i-2}, w_{i-1})$$

• The probabilities are estimated from trigram counts collected from text data. Smoothing is required:

$$P(c|a,b) = \begin{cases} f(c|a,b) & \text{if } C(a,b,c) \ge 6\\ \alpha Q_T(c|a,b) & \text{if } 6 > C(a,b,c) \ge 1\\ \beta(a,b) P(c|b) & \text{otherwise} \end{cases}$$

• The above is back-off smoothing. $Q_T(c|a,b)$ is a Good - Turing estimate based on the counts C(a,b,c)

13 Advantages of the HMM formulation

- Simple and uniform structure
- The complete model for the task (including the language model) is one large composite HMM:
 - the transitions between words are *ordinary* HMM transitions between the *final* state of the previous word and the *initial* state of the next word

14 Advantages of the HMM formulation (cont.)

- The search for the best word sequence $\widehat{\mathbf{W}}$ is just a search for the best path through the **trellis** of the **composite HMM**.
 - The hypothesis search is mostly based on the Viterbi algorithm and sometimes on the stack algorithm.
- We can determine the values of the model parameters directly from speech data:
 - Using the special case (forward backward) of the EM algorithm
 - * This is a maximum likelihood approach (maximum mutual information also possible)
 - Applies to all languages

	62 64 65 66	61	987654	. 22 2	1636 1637 1638 1639 1640 1640	94 95 96 97 98	ე დ		4321
			to contact parts point for	role thing that			We	A Three Please	The This One
	during I involved would within	being	to are with were requiring still	and from				also do need	are will the
	•			the					8
•				next		respond supply write me resolve	insert • • • • • • • • • • • • • • • • • • •	get the use provide	know have understand do
			d & to	two			<u>a</u>	any a problem	the this these problems
			to week days	meeting months years				+ - ₁	issues problems the
				• of	mailroom marketplace provision reception shop important	facts jobs MVS old	tools factors	other time people operators	necessary data information above

.

16 Another example of the power of trigrams

Reconstruction of a short sentence from a bag of words:

- Scramble words of a sentence
- Use trigram language model to find most probable word order, i.e.,
 - From set $\{v_1, v_2, ..., v_n\}$ find the sequence

$$w_1 = v_{i_1}, w_2 = v_{i_2}, ..., w_n = v_{i_n}$$

that will maximize the value of

$$P(w_1w_2...w_n) \doteq P(w_1)P(w_2|w_1)P(w_3|w_1w_2)...P(w_n|w_{n-2}w_{n-1})$$

17 Sentence reconstruction results

• 38 randomly selected sentences of $n \leq 10$ words

• 24 sentences reconstructed exactly (63%).

• 9 more reconstructions have same meaning as originals (24%)

• Reconstruction error only 13%.

18 Reconstruction examples

• Meaning preserved:

would I report directly to you?

I would report directly to you?

he did this several hours later . this he did several hours later .

• Meaning destroyed:

19 Natural Language Processing (NLP) tasks

- Under the influence of success in automatic speech recognition (ASR), the communication theory formulation is being applied also to the following problems:
 - Tagging: part-of-speech assignment to text (POS)
 - Machine translation (MT)
 - Text parsing

20 Communication theory formulation of the MT problem

21 A mathematical formulation of MT

- Example: French—to—English translation:
 - $-\mathbf{F}$ is observed French word string

$$\mathbf{F} = f_1, f_2, ..., f_K \qquad f_i \in \mathcal{F}$$

 $-\mathbf{E}$ is hypothesized underlying English text

$$\mathbf{E} = e_1, e_2, ..., e_n \qquad e_i \in \mathcal{E}$$

• The translation machine seeks

$$\widehat{\mathbf{E}} = \arg \max_{\mathbf{E}} P(\mathbf{E}) P(\mathbf{F} \mid \mathbf{E}, K)$$

• $P(\mathbf{E})$ is provided by an English language model (LM). The main problem is designing a model of the *transformation* process $P(\mathbf{F} \mid \mathbf{E}, K)$.

22 The basic transformation model $P(\mathbf{F} \mid \mathbf{E}, K)$.

- Based on alignment **L** between **F** and **E** stating which subset of words $\{f_{i,1}, ..., f_{i,m_i}\}$ of **F** have their "origin" in particular words e_i of **E**.
 - The alignment is specified by *labeling* each word f_j of $\mathbf{F}, 1 \leq j \leq K$ by a label $l \in \{1, 2, ..., n\}$
- We then get

$$P(\mathbf{F} \mid \mathbf{E}, K) = \sum_{\mathbf{L}} P(\mathbf{F}, \mathbf{L} \mid \mathbf{E}, K)$$

where

$$P(\mathbf{F}, \mathbf{L} \mid \mathbf{E}, K) = P(\mathbf{F} \mid \mathbf{L}, \mathbf{E}, K) P(\mathbf{L} \mid \mathbf{E}, K)$$

and

$$P(\mathbf{F} \mid \mathbf{L}, \mathbf{E}, K) = \prod_{i=1}^{n} Q(m_i | e_i) \prod_{j=1}^{m_i} P(f_{i,j} | e_i)$$

- $P(\mathbf{L} \mid \mathbf{E}, K)$ is a rather complex *permutation* probability that is independent of \mathbf{F} itself, and is made up of factors that depend on the words e_i .
- The transformation process $P(\mathbf{F} \mid \mathbf{E}, K)$ is **hidden**, and is not sequential!
 - The parameters can be extracted by an iterative re-estimation process from a database of mutual bi-lingual translations.

23 Aligning French and English words

24 Essentials of the statistical approach

- Choice of structure of the parametric model
 - Based on intuitive understanding of the process
 - A compromise between precision and feasibility of parameter estimation
- Automatic estimation of statistical parameter values from data based on a clearly defined criterion
 - Data needs human annotation
 - Data is invariably sparse
- Overcoming data sparseness
 - Equivalence classification of states in parameter space
 - Smoothing of estimated parameter statistics
- Objective evaluation of performance based on annotated data
 - Possible for ASR, POS, and parsing
 - Human judgement required for MT

25 Overcoming sparseness: equivalence classification

- In no NLP area is the available data sufficient for direct estimation of probabilities of the distinguishing phenomena. E.g., in ASR:
 - Tri-phone HMM building blocks: ~75 phones \Longrightarrow 421, 875 tri-phones \Longrightarrow 1, 265, 625 states
 - Tri-gram language model: ~60K words $\Longrightarrow 2.16 \times 10^{14}$ parameters
- Phenomena must be put into equivalence classes to which statistical parameters will correspond
- Automatic class selection on the basis of relevant training data:
 - top-down: decision trees
 - bottom-up: agglomerative clustering
- Both methods have *cross-entropy* as criterion

26 Example: tri-phone clustering

- 1. Train-up monophone model and use it to segment transcribed speech
- 2. Divide the speech into a training and check portion
 - In each portion, for each monophone and state (3 states per phone) obtain a collection of speech vector sequences:

 $\{z_{11}z_{12}...z_{1k_1}\}, \{z_{21}z_{22}...z_{2k_2}\}, ..., \{z_{n1}z_{n2}...z_{nk_n}\},$ each sequence corresponding to the specific tri-phone context.

- 3. Questions concerning *phonetic* context (e.g., in the speech transcription, is the preceding phone a fricative?) divide both collections into two subsets
 - Create two states, fitting the *training* statistics of each to the corresponding data subset
 - Test the likelihood of generating the check sequences from the corresponding two states

27 Example: tri-phone clustering (cont.)

- 4. Choose that question (and its split) for which the likelihood of the check sequences is highest.
- 5. Keep splitting until stopping criterion met.
- 6. Using the obtained state equivalence classification, train-up the total tri-phone acoustic model
- 7. Iterate

- 28 Aligning speech with tri-phone states in context
 - Baseform:

29 Comments on decision tree method

- Method is greedy
- Choice of the basic set of questions depends on intuition (expert knowledge)
- Chou algorithms generates questions directly from data, but suffers from data sparseness
- ullet Main draw-back of decision trees is $data\ fragmentation$
 - Paradox: method used to overcome data sparseness suffers itself from the same sparseness

30 Overcoming sparseness: maximum entropy estimation

- Maximum entropy method estimates distributions $P(\mathbf{x})$ by insisting that
 - $-P(\mathbf{x})$ satisfy prescribed linear constraints

$$\sum_{\mathbf{x}} P(\mathbf{x}) k_i(\mathbf{x}) = d(i) \qquad i = 1, 2, ..., M$$

- given the constraints, the entropy of the chosen distribution should be maximal
- In practice, $k_i(\mathbf{x})$ are indicator functions chosen so that d(i) is its believed value.
 - The idea is that while data is sparse, there is enough of it to reliably estimate the marginal.
 - E.g., voting: estimate $P(x, y_1, ..., y_k)$ when $P(x, y_i)$, i = 1, ..., k are thought reliably estimated
- $P(\mathbf{x})$ is a product of factors, one for each constraint in which \mathbf{x} participates:

$$P(\mathbf{x}) = \prod_{i=1}^{M} e^{\lambda_i \, k_i(\mathbf{x})}$$

 λ_i 's must be determined so resulting $P(\mathbf{x})$ satisfies imposed constraints.

31 Example: Language modeling

- Memory of trigram model is too short
 - A pentagram is better, **however**, the number of its parameters is excessive
- But: we could have an approximation to a pentagram model $P(w_1, w_2, w_3, w_4, w_5)$ by constraining marginals
 - E.g. $P(w_3, w_4, w_5), P(w_2, w_5), P(w_1, w_5), \text{ etc.}$
- We can add grammatical constraints, in the form of parts of speech $g \in \{\text{NOUN}, \text{VERB}, \text{PREPOSITION}, ...\}$:

$$\sum_{\mathbf{x}} P(w_4, w_5) k_g(w_4) = f(g, w_5) \text{ where } k_g(w) = \begin{cases} 1 & \text{if } g(w) = g \\ 0 & \text{otherwise} \end{cases}$$

32 Comments on maximum entropy method

• Method warps the probability distribution so it satisfies the imposed constraints

• Advantages:

- Natural way of handling simultaneous conditions

• Draw-backs:

- Excessive computational effort (and/or storage requirement) to determine λ_i s
- Difficulty of finding an efficient set of constraint functions $k_i(\mathbf{x})$
- Necessity of knowing targets d(i) exactly
- Assumption that whatever we don't know exactly, we don't know at all.

33 In conclusion

- The statistical approach provides us with a unified point of view applicable to all languages and requiring a minimum of expert preparation
- A clear statement of the problem and of the goal
 - Search for $\widehat{\mathbf{W}}$ maximizing $P(\mathbf{A}|\mathbf{W}) \times P(\mathbf{W})$
- The entire design of the recognizer is based on actual data related to the process:
 - Raw and transcribed speech (for **A** and $P(\mathbf{A}|\mathbf{W})$)
 - Training text (for $P(\mathbf{W})$)
- Current speech recognizers (based on a vocabulary of 60 thousand words) are capable of transcribing natural dictated speech with less than a 10% error rate.
- The next challenges:
 - Real speech and text understanding
 - Machine translation