» Momentum Methods: Motivation

- In steep, narrow valleys moving in direction of steepest descent might not be best. For example:
- $*~f(\mathbf{x}) = \mathbf{x}_1^2 + 10\mathbf{x}_2^2$, starting value $\mathbf{x} = [1.5, 1.5]$, constant step size alpha = 0.15

- * Wouldn't it be faster to take a less zig-zag path towards minimum?
- * What if we took the average of the zig-zag steps?

» Momentum Methods: Motivation

- Oscillations or "chattering" are common when function is non-smooth. For example:
- * f(x) = |x|, starting value x0 = 1, constant step size alpha = 0.1

- Function decreases until it reaches vicinity of minimum, then oscillates forever - never converges to minimum.
- * What if we averaged the oscillations and used that value for x?

» Weighted Sum/Running Average

- * $z_{t+1} = \beta z_t + u_t$ with $z_0 = 0$, $0 < \beta < 1$
- * Expanding this out:

$$z_1 = u_0$$

 $z_2 = \beta z_1 + u_1 = \beta u_0 + u_1$
 $z_3 = \beta z_2 + u_2 = \beta^2 u_0 + \beta u_1 + u_2$

so z_t is weighted sum of u_0, u_1, \dots, u_{t-1} . E.g. with $\beta = 0.9$ then $\beta = 0.9$, $\beta^2 = 0.81$, $\beta^3 = 0.729$ etc

» Weighted Sum/Running Average

- * Example: $\beta = 0.9$, $u_t = (-1)^t$ i.e. $u_0 = 0$, $u_1 = 1$, $u_2 = +1$, $u_3 = -1$, ...
- * $z_{t+1} = \beta z_t + u_t$, $z_0 = 0$:

 $*~z_t$ tends to smooth out (or average) the zig-zags

» Weighted Sum/Running Average

* Example: $\beta = 0.9$, $u_t = (-1)^t$ i.e. $u_0 = 0$, $u_1 = 1$, $u_2 = +1$, $u_3 = -1$, ...

- * $1 + \beta + \beta^2 + \cdots = 1/(1 \beta)$, so often scale z_t by 1β i.e. use $z_{t+1} = \beta z_t + (1 \beta)u_t$
- * Another way to think about this: suppose $u_t = constant u$ and $z_t = constant z$.
 - * $z = \beta z + (1 \beta)u$ rearranges to $(1 \beta)z = (1 \beta)u$ i.e. z = u.
 - * $z = \beta z + u$ rearranges to $(1 \beta)z = u$ i.e. $z = u/(1 \beta)$.

» Polyak Momentum/Heavy Ball

$$\mathbf{x}_0 = \mathbf{x}0; \mathbf{z}_0 = 0; \mathbf{t} = 0$$
 for \mathbf{k} in range(num_iters):
$$\mathbf{z}_{t+1} = \beta \mathbf{z}_t + \alpha \nabla f(\mathbf{x}_t)$$

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \mathbf{z}_{t+1}$$

$$\mathbf{t} = \mathbf{t} + 1$$

* Step z_t at iteration t is weighted sum of past gradients $\alpha \nabla f$:

$$z_{t+1} = \beta^{t-1} \alpha \nabla f(\mathbf{x}_0) + \beta^{t-2} \alpha \nabla f(\mathbf{x}_1) + \dots + \alpha \nabla f(\mathbf{x}_t)$$

- * Need to manually select β and α .
- * A typical choice for β seems to be 0.9, but there is not a universal value and a poor choice can make performance worse than using constant step size
- st When eta=0 recover constant step size strategy
- * Since $1+\beta+\beta^2+\cdots=1/(1-\beta)$, we're effectively using scaling baseline step size $\alpha/(1-\beta)$ i.e. for $\beta=0.9$ using 10α

» Too Much Momentum

- * Example: $f = x^2$, starting point x = 1
- * HB $\beta=0.9,\,\alpha_0=0.01,$ constant $\alpha_0=0.1$ (so HB α_0 is $1-\beta$ times constant α_0)

- Adding momentum seems ot have introduced new oscillations!
 What's going on here ...
- * Hint: see that x overshoots (goes past) the minimum at x = 0

» Too Much Momentum

* Example: $f(x) = x^2$, $\frac{df}{dx}(x) = 2x$

* Step at iteration t is $z_{t+1} = \beta^{t-1} \alpha \frac{df}{dx}(x_0) + \beta^{t-2} \alpha \frac{df}{dx}(x_1) + \dots + \alpha \frac{df}{dx}(x_t)$

- * ${\it x}\approx 0$ around #iteration 12, but HB step size is high, so shoot right past the minimum.
- * x then becomes negative, and so does df/dx. HB step size starts to decrease \rightarrow but takes a while for step to become negative due to momentum/averaging, so x overshoots
- * $x \approx 0$ around #iteration 38, HB step size again big, so overshoot

- * Example: $f = x^2$, starting point x = 1
- * HB $\beta=0.9$, $\alpha=0.01$, constant $\alpha_0=0.1$

* HB $\beta=0.25$, lpha=0.075, constant $lpha_0=0.1$

* Decreasing β (reducing momentum i.e. weight given to past gradients) removes the oscillations.

- * Example: $f = x^2$, starting point x = 1
- * HB $\beta=0.25$, $\alpha=0.075$, constant $\alpha_0=0.1$

*~ HB eta=0.25, lpha=1, constant $lpha_0=0.95$

- * For constant step size, $\alpha_0 > 1$ gives divergent solution, and very oscillatory solutions for $\alpha_0 > 0.9$.
- * With HB can use larger step size without destabilising solution ightarrow faster convergence

- * Quadratic:
- * HB $\beta=0.9$, $\alpha=0.01$, constant $\alpha_0=0.1$

* HB $\beta=0.25$, $\alpha=0.075$, constant $\alpha_0=0.1$

* Again, HB overshoots minimum when $\beta=0.9$ and increases oscillations. Using less momentum $\beta=0.25$ removes oscillations \rightarrow performance no better than constant step size strategy but with HB can increase step size

- * Quadratic:
- * HB eta=0.25, lpha=0.075, constant $lpha_0=0.1$

st Increase step size: HB eta=0.25, lpha=0.2, constant $lpha_0=0.175$

st Increasing constant step size $lpha_0$ to 0.2 causes solution to diverge

- * Quadratic loss:
- * HB eta=0.9, lpha=0.05, constant $lpha_0=0.5$

st HB eta=0.25, lpha=0.375, constant $lpha_0=0.5$

* Similarly to last example: $\beta=0.9$ increases oscillations, $\beta=0.25$ offers little benefit but wit HB can increase step size

- * Rosenbrock function:
- * HB $\beta = 0.9$, $\alpha = 0.0002$, constant $\alpha_0 = 0.002$

- * Finally an example where $\beta=0.9$ doesn't increase oscillations.
- * Performance of HB is similar to constant step size when HB lpha=0.0002 is (1-eta) times constant $lpha_0=0.002$
- * HB allows use of larger α without destabilising solution. HB $\beta=0.9$, $\alpha=0.0003$, constant $\alpha_0=0.008$

- * Toy neural net loss:
- * HB $\beta=0.9$, $\alpha=0.075$, constant $\alpha_0=0.75$

* Again HB allows larger α than constant step strategy e.g. HB $\beta=0.9,\,\alpha=7.5,$ constant $\alpha_0=75$

- * Non-smooth function $f(x) = |x_1| + x_2^2$
- * HB $\beta = 0.9$, $\alpha = 0.0005$, constant $\alpha_0 = 0.005$

* HB $\beta=0.25$, $\alpha=0.004$, constant $\alpha_0=0.005$

- * Higher momentum ($\beta = 0.9$) reduces oscillations, as expected
- st In this example can't increase HB lpha further without destabilising, but already faster than constant step size strategy

» Summary

- * Use of momentum can reduce oscillations/chattering
- * But need to manually tune momentum parameter β , a poor choice can increase oscillations/chattering
- * Also need to manually tune α
- * HB can allow use of a larger step size lpha without causing solution to diverge o faster convergence than with constant step size strategy