Purpose-built models

- It is tempting to "hack" existing tools to answer questions that they are not designed to answer
- A recent example we tackled is a rigorous test for relaxation of selection (or more generally a difference in selective regimes) in a part of the tree, relative to the rest of the tree
- Typical approaches have been to estimate dN/ dS rations from two sets of branches, and interpret an *elevation* in dN/dS as evidence of selective constraint relaxation
- Two problems with this approach

- An increase in mean dN/dS could also be caused by an intensification of selective forces.
- Post-hoc analyses (e.g., estimate branch-level dN/dS and then compare [t-test, etc] them as if they were observed quantities) discard a lot of information (e.g., variance of individual estimates), and make obviously wrong assumptions (e.g., estimates are uncorrelated).

Testing for selective relaxation

Sranches

Sites

Partition the image into horizontal bands (a priori); compare whether or not there is visual benefit to using separate 3-color palettes in two sets of bands instead of a single 3-color palette

[RELAX]: Compare whether or not the set of branches of interest (test set) has a significantly different dN/dS distribution than the rest of the tree (background), fitted jointly to the entire alignment. For relaxation testing, the two dN/dS distributions are related via a power transformation.