

ПАКЕТ PARAVIEW: ВИЗУАЛИЗАЦИЯ РЕЗУЛЬТАТОВ РАСЧЕТОВ

М.В. Крапошин (НИЦ Курчатовский институт) О.И. Самоваров (Институт системного программирования РАН) С.В. Стрижак (ГОУ ВПО МГТУ им. Баумана)

PARAVIEW. СОДЕРЖАНИЕ

- 1) ParaView концепция
- 2) Диалоговые окна ParaView
- 3) Практика использования ParaView

PARAVIEW. ПАКЕТ ДЛЯ ВИЗУАЛИЗАЦИИ

Пакет ParaView (http://www.paraview.org/) разрабатывается компанией KitWare (http://www.kitware.com/) и предназначен (а также заточен) для визуализации больших массивов данных, в том числе, с привлечением парадигмы параллельных вычислений. В настоящее время пакет интегрирован в OpenFOAM и UniHUB.

Москва, Институт Системного Программирования РАН, 25-26 апреля 2011г.

PARAVIEW. ДОСТУПНЫЕ РУКОВОДСТВА ПО ИСПОЛЬЗОВАНИЮ

Основным источником данных должен быть в первую очередь сайт http://www.paraview.org/

Здесь можно либо заказать твердые копии книг (~80-200\$) http://www.paraview.org/paraview/help/book.html

Либо воспользоваться открытыми материалами, расположенными на сайте:

ЧаВо (FAQ) - http://paraview.org/Wiki/ParaView:FAQ - основные вопросы, возникающие при эксплуатации данного программного средства

Вики (Wiki) - http://paraview.org/Wiki/ParaView - ресурс посвящен широкому кругу задач, связанных с визуализацией (компиляция, учебники, использование, анимация и пр.)

Страница документации - http://www.paraview.org/paraview/help/documentation.html - список официальных руководств по использованию (пользователя и программиста), обучающие курсы, ссылки на другие ресурсы

И, наконец, сопровождающая программу документация

PARAVIEW. КРАЕУГОЛЬНЫЙ КАМЕНЬ— КОНВЕЙЕР ВИЗУАЛИЗАЦИИ

PARAVIEW. СОДЕРЖАНИЕ

- 1) ParaView концепция
- 2) Диалоговые окна ParaView
- 3) Практика использования ParaView

PARAVIEW. 3ΑΠΥCK

Запуск осуществляется из командной строки:

- либо paraFoam в папке задачи OpenFOAM
- либо paraview в любой точке файловой системы

В первом случае будет использоваться встроенный

драйвер OpenFOAM, во-втором — нужно будет

открывать результаты.

После запуска и загрузки данных следует перейти к нужному моменту времени (см. поле Time) и нажать на кнопку Apply (зелёного цвета)

<u>ParaView</u>

csimsoft. Los Alamos

PARAVIEW. OCHOBHOE OKHO (1)

PARAVIEW. ПАНЕЛЬ УПРАВЛЕНИЯ ОБЪЕКТОМ (1)

Панель свойств (Properties)

Выбор доступных для отображения объектов

Общие параметры отображения (показывать или нет подмножества, внутренние зоны, пропускать ли нулевой момент времени и пр.)

Выбор доступных частей объекта — объём + поверхности ГУ

Выбор полей, доступных для отображения в объёме и на поверхности объекта. Поля могут быть: объёмными, Лагранжевыми, точечными

PARAVIEW. ПАНЕЛЬ УПРАВЛЕНИЯ ОБЪЕКТОМ (2)

Панель отображения (Display)

Управление отображением объекта, быстрое наведение на него фокуса

Выбор способа раскрашивания видимой части объекта (поверхности, рёбер, точек или объёма) — либо одним цветом либо по шкале, соответствующей диапазону значений поля

Показывать ли шкалу значений координат?

Выбор способа показа объекта — как поверхность, как точки, как рёбра, как объём или только охватывающий куб. Здесь же выбирается способ интерполяции и материал объекта

PARAVIEW. ПАНЕЛЬ УПРАВЛЕНИЯ ОБЪЕКТОМ (3)

Панель отображения (Display), продолжение

Управление параметрами освещения объекта

Способы представления «задних» частей объекта

Геометрические преобразования: перемещение, масштабирование, вращение и центральная точка

Москва, Институт Системного Программирования РАН, 25-26 апреля 2011г.

PARAVIEW. ПАНЕЛЬ УПРАВЛЕНИЯ ОБЪЕКТОМ (4)

Панель информации (information)

Информация о расчетной сетке: путь к файлу, число ячеек, число узлов, объём занимаемой памяти

Информация о максимальных и минимальных значениях выбранных полей

Информация о границах расчетной области и доступных временных интервалов

PARAVIEW. ОСНОВНАЯ ПРИБОРНАЯ ПАНЕЛЬ (1)

точек, граней и рёбер

PARAVIEW. ОСНОВНАЯ ПРИБОРНАЯ ПАНЕЛЬ (2)

Некоторые основные фильтры (по порядку слева направо):

- калькулятор алгебраические преобразования над полями;
- изоповерхности построение поверхностей постоянного значения;
- рассечение получение части объекта, ограниченной некоторой поверхностью;
- срез получение плоского среза объекта;
- выделение по значению выбор тех ячеек, в которых поле удовлетворяет определенному условию;
- извлечение подмножества извлекает выбранное подмножество в виде самостоятельного объекта;
- векторное поле визуализирует выбранное векторное поле;
- линии тока строит траектории случайных частиц под действием векторного поля;
- деформация по направлению деформирует объект в соответсвии с выбранным векторным полем;
- группировка группирует несколько наборов данных в один
- разделение отделяет один набор данных од общего

PARAVIEW. OCHOBHOE МЕНЮ ПРОГРАММЫ

Для создания новых объектов и операций с ними служат группы меню «ИСТОЧНИКИ» (SOURCES) и «ФИЛЬТРЫ» (FILTERS)

PARAVIEW. OCHOBHOE МЕНЮ ПРОГРАММЫ: ФИЛЬТРЫ

PARAVIEW. ОСНОВНОЕ МЕНЮ ПРОГРАММЫ: ИСТОЧНИКИ

«Источники» - это геометрические объекты, которые можно создавать в окне визуализации в дополнении к основной расчетной модели — трехмерные тела (куб, цилиндр, диск), линейки, оси координат, текст, плоскости и др.

PARAVIEW. СОДЕРЖАНИЕ

- 1) ParaView концепция
- 2) Диалоговые окна ParaView
- 3) Практика использования ParaView

PARAVIEW. ПРАКТИКУМ ИСПОЛЬЗОВАНИЯ (1) ОКНО ПРИЛОЖЕНИЯ

PARAVIEW. ПРАКТИКУМ ИСПОЛЬЗОВАНИЯ (2) ОТКРЫВАЕМ ФАЙЛ

PARAVIEW. ПРАКТИКУМ ИСПОЛЬЗОВАНИЯ (3) РАСЧЕТНАЯ ОБЛАСТЬ (И/ИЛИ СЕТОЧНЫЕ ЛИНИИ)

PARAVIEW. ПРАКТИКУМ ИСПОЛЬЗОВАНИЯ (4) ВИЗУАЛИЗАЦИЯ СКАЛЯРНОГО ПОЛЯ

PARAVIEW. ПРАКТИКУМ ИСПОЛЬЗОВАНИЯ (5) ВИЗУАЛИЗАЦИЯ СКАЛЯРНОГО ПОЛЯ С ИНТЕРПОЛЯЦИЕЙ

PARAVIEW. ПРАКТИКУМ ИСПОЛЬЗОВАНИЯ (6) ВИЗУАЛИЗАЦИЯ МОДУЛЯ ВЕКТОРНОГО ПОЛЯ

PARAVIEW. ПРАКТИКУМ ИСПОЛЬЗОВАНИЯ (7) ВИЗУАЛИЗАЦИЯ ВЕКТОРНОГО ПОЛЯ

PARAVIEW. ПРАКТИКУМ ИСПОЛЬЗОВАНИЯ (8) ВИЗУАЛИЗАЦИЯ ЛИНИЙ ТОКА ВЕКТОРНОГО ПОЛЯ

PARAVIEW. ПРАКТИКУМ ИСПОЛЬЗОВАНИЯ (9) ЗАДАНИЕ ПРОЗРАЧНОСТИ ОБЪЕКТА

PARAVIEW. ПРАКТИКУМ ИСПОЛЬЗОВАНИЯ (10) ГРАФИК РАСПРЕДЕЛЕНИЯ ВДОЛЬ НАПРАВЛЕНИЯ (1)

PARAVIEW. ПРАКТИКУМ ИСПОЛЬЗОВАНИЯ (11) ГРАФИК РАСПРЕДЕЛЕНИЯ ВДОЛЬ НАПРАВЛЕНИЯ (2)

PARAVIEW. ПРАКТИКУМ ИСПОЛЬЗОВАНИЯ (12) АНАЛИЗ ИНТЕГРАЛЬНЫХ ВЕЛИЧИН (1)

PARAVIEW. ПРАКТИКУМ ИСПОЛЬЗОВАНИЯ (12) АНАЛИЗ ИНТЕГРАЛЬНЫХ ВЕЛИЧИН (2)

PARAVIEW. ПРАКТИКУМ ИСПОЛЬЗОВАНИЯ (12) АНАЛИЗ ИНТЕГРАЛЬНЫХ ВЕЛИЧИН (3)

LABPLOT. АНАЛИЗ РЕЗУЛЬТАТОВ

PARAVIEW. ЗАКЛЮЧЕНИЕ

Пакет ParaView может использоваться как самостоятельное приложение (можно скачать с сайта http://www.paraview.org/ и скомпилировать (нужны пакеты cmake и Qt), как часть OpenFOAM, в составе UniHUB

Рассмотрены основные операции, связанные с визуализацией и анализом полученных в результате расчетов полей