Resumen Semana 4

Equipo 19. Cálculo 3 - UNAM.

21 de agosto de 2020

I. Clase 16: 17/08/2020

Definición I.1. Sea $f: X \to Y$ una función y $A \subset X$, Definimos y denotamos la imagen de A por: $f(A) = \{y \in Y : y = f(x) \text{ para alguna } x \in A\}$

Figura 1: Imagen directa

Definición I.2. Sea $f: X \to Y$ una función y $M \subset Y$. Definimos y denotamos la imagen inversa de M por: $f^{-1}(M) = \{x \in X : f(x) \in M\}$

inversa.png

Figura 2: Imagen Inversa.

Proposición I.1. Sean $f: X \to Y$ una función $y A, B \subset X$. Entonces.

1.-
$$A \subset B \to f(A) \subset f(B)$$

Dem: $y \in f(A) \Rightarrow y = f(x)$ p.a. $x \in A$, además $A \subset B \Rightarrow x \in B \Rightarrow f(x) \in f(B)$
2.- $f(A \cup B) = f(A) \cup f(B)$
 $\Rightarrow f(A \cup B) \in f(A) \cup f(B)$
Sea $y \in f(A \cup B) \Rightarrow \exists x \in A \cup B \text{ t.q. } y = f(x)$
Si $x \in A \Rightarrow y = f(x) \in f(A) \Rightarrow y \in f(A) \cup f(B)$.

 \Leftarrow Si $x \in B$. Análogamente al caso anterior $A \subset (A \cup B) \Rightarrow f(A) \subset f(A \cup B)$ Por prop. 1 y $f(B) \subset f(A \cup B) \Rightarrow f(A) \cup f(B) \subset$

3.-
$$f(A \cap B) \subset f(A) \cap f(B)$$

 $A \cap B \subset A \text{ y } A \cap B \subset B \text{ Por prop. 1}$
 $f(A \cap B) \subset f(A)yf(A \cap B) \subset f(B)$
 $\Rightarrow f(A \cap B) \subset f(A) \cap f(B)$

Proposición I.2. Sean $f: X \to Y$ donde $M \subset Y$, $f^{-1}(M) = \{x \in X : f(x) \in M\}$

1.-
$$F \subset G \Rightarrow f^{-1}(F) \subset f^{-1}(G)$$

Dem: $x \in f^{-1}(F) \Rightarrow f(x) \in F \subset G \Rightarrow f(x) \in G \Rightarrow x \in f^{-1}(G)$.

$$\begin{array}{l} \text{2.- } f^{-1}(F \cup G) = f^{-1}(F) \cup f^{-1}(G) \\ \text{Dem:} \Rightarrow x \in f^{-1}(F \cup G) \Rightarrow f(x) \in F \cup G \Rightarrow f(x) \in F \Rightarrow x \in f^{-1}(F) \Rightarrow x \in f^{-1}(F) \cup f^{-1}(G) \end{array}$$

$$\Leftarrow f^{-1}(F) \cup f^{-1}(G) \subset f^{-1}(F \cup G) \\ F \subset F \cup G \Rightarrow f^{-1}(F) \subset f^{-1}(F \cup G) \text{ Por Prop.1} \Rightarrow G \subset F \cup G \Rightarrow f^{-1}(G) \subset f^{-1}(F \cup G) \Rightarrow f^{-1}(F) \cup f^{-1}(G) \subset f^{-1}(F \cup G).$$

$$4.- f^{-1}(F \setminus G) = f^{-1}(F) - f^{-1}(G)$$

$$\Rightarrow x \in f^{-1}(F \setminus G) \Rightarrow f(x) \in (F \setminus G) \Rightarrow f(x) \subset F \text{ y } f(x) \not\in G \Rightarrow x \in f^{-1}(F) \text{ y } x \not\in f^{-1}(G) \Rightarrow x \in f^{-1}(F) \setminus f^{-1}(G)$$

$$\Leftarrow x \in f^{-1}(F) \setminus f^{-1}(G) \Rightarrow x \in F^{-1}(F) \text{ y } x \not\in f^{-1}(G) \Rightarrow f(x) \in F \text{ y } f(x) \not\in (G) \Rightarrow f(x) \in F \setminus G \Rightarrow x \in f^{-1}(G)$$

II. Clase 17: 18/08/2020

Dudas.

Ejercicio 1. 2.- Calcular la ecuación parametrica de la recta que pasa por P(0,0,0) y es ortogonal a las rectas L_1 y L_2 cuyas ecuaciones parametricas están dadas por:

$$\left\{ \begin{array}{l} x=1+\lambda\\ y=-2+4\lambda\\ z=1+7\lambda \end{array} \right. \qquad \left\{ \begin{array}{l} x=4+\mu\\ y=1+2\mu\\ z=-1+5\mu \end{array} \right.$$

$$\Rightarrow L_1: (x, y, z) = \lambda \overline{u} + p_1 L_2: (x, y, z) = r \overline{v} + p_2 \Rightarrow L: (x, y, z) = t \overline{w} \Rightarrow \overline{w} = \overline{u} \times \overline{v}$$

$$\left\{ \begin{array}{l} x=1+\lambda \\ y=-2+4\lambda \\ z=1+7\lambda \end{array} \right. \left. \left\{ \begin{array}{l} x=4+\mu \\ y=1+2+4\mu \\ z=-1+5\mu \end{array} \right. \right.$$

$$(1,4,7) = \overline{u}, p_1 = (a,b,c) \Rightarrow (x,y,z) = \lambda(u_1,u_2,u_3) + p$$

$$\begin{cases} x = \lambda u_1 + a \\ y = \lambda u_2 + b \\ z = \lambda u_3 + c \end{cases}$$

$$L_2(1,2,5) = \overline{v} \Rightarrow \overline{w} = \overline{u} \times \overline{v} = (6,2,-2) \Rightarrow L: (x,y,z) = t(6,2,-2), t \in \mathbb{R} \Rightarrow \begin{cases} x = 6t \\ y = 2t \\ z = -2t \end{cases}$$

Ejercicio 2. 15.- Demuestre que el limite indicado no existe.

$$\lim_{(x,y)\to(0,0)}\frac{\sqrt[3]{x}y^2}{x+y^3}$$

Si evaluamos se indetermina entonces si $x=y\Rightarrow \frac{\sqrt[3]{x}x^2}{x+x^3}=\frac{x^{2/3}}{x+x^3}$

Si
$$x = y^3 \Rightarrow \frac{\sqrt[3]{y^3}y^2}{y^3 + y^3} = \frac{y^3}{2y^3} = \frac{1}{2}$$
 Si $x = t^6$ y $y = -t \Rightarrow \frac{\sqrt[3]{t^6}t^2}{t^6 - t^3} = \frac{t^4}{t^6 - t^3} = \frac{t}{t^3} = \frac{t}{t^3 - 1} \Rightarrow t \to 0 \Rightarrow 0$

Superficie de nivel

$$f(x,y,z)=z^2+(\sqrt{x^2+y^2}-2)^2-1 \text{ La gráfica vive en } \mathbb{R}^4, \text{ no la podemos dibujar.}$$
 Superficie de nivel C. $(x,y,z)/z^2+(\sqrt{x^2+y^2-2})^2-1=C$ $C=-1$ $C=0$ $C=1\Rightarrow \text{Si } x=0$ $(YZ)\Rightarrow \sqrt{y^2}=|y|$ $z^2+(|y|-2)^2-1=C$ $z^2+(|y|-2)^2=C+1>0$ Si $y=0$ $(XZ)\Rightarrow z^2+(x-2)^2=C+1$ Si $z=0\Rightarrow \sqrt{x^2+y^2-2}=C+1$ $x^2+y^2-4\sqrt{x^2+y^2+4}=C+1$

III. CLASE 18: 19/08/2020

(a)
$$(\bigcup_{\alpha \in I} A_{\alpha}) \cap B = \bigcup_{\alpha \in I} (A_{\alpha} \cap B)$$

$$\Rightarrow x \in (\cup_{\alpha \in I} A_{\alpha}) \cap B$$

P.D.
$$x \in \bigcup_{\alpha \in I} (A_{\alpha} \cap B)$$

$$x \in \bigcup_{\alpha \in I} A_{\alpha} \ y \ x \in B \Rightarrow x \in A_{\alpha 0} \text{ para algún, } \alpha_0 \in I \Rightarrow x \in A_{\alpha 0} \cup B \Rightarrow \bigcap_{\alpha \in I} (\bigcup_{\alpha \in I} (A_{\alpha} \cap B)).$$

$$\Leftarrow x \in \cup_{\alpha \in I} (A_{\alpha} \cap B) \Rightarrow \exists \alpha_0 \in I \text{ t.q. } x \in A_{\alpha 0} \cap B \Rightarrow x \in A_{\alpha 0} \text{ y } x \in B \Rightarrow x \in \cup_{\alpha \in I} \text{ y } x \in (\cup_{\alpha \in I} A_{\alpha}) \cap B$$

$$F = \{A_{\alpha} : \alpha \in I\}$$

(a)
$$(\bigcup_{\alpha \in I} A_{\alpha})^c = \bigcap_{\alpha \in I} A_{\alpha}^c$$

(b)
$$(\bigcap_{\alpha \in I} A_{\alpha})^c = \bigcup_{\alpha \in I} A_{\alpha}^c$$

Demostración

$$\begin{array}{l} \Rightarrow x \in (\cap_{\alpha \in I} A_{\alpha})^{c} \Rightarrow x \notin A_{\alpha} \forall \alpha \in I \Rightarrow \text{Para cada } \alpha \in I, x \in A_{\alpha}^{c} \Rightarrow x \in \cup_{\alpha \in I} A_{\alpha}^{c} \\ \Leftarrow x \in \cap_{\alpha \in I} A_{\alpha}^{c} \Rightarrow x \in A_{\alpha}^{c} \forall \alpha \in I \Rightarrow \notin A_{\alpha} \forall \alpha \in I \Rightarrow x \notin \cup_{\alpha \in I} A_{\alpha} \Rightarrow x \in (\cap_{\alpha \in I} A_{\alpha})^{c} \end{array}$$

5.- Demuestre que $\bigcap_{k=1}^{\infty} B_{\frac{1}{K}}(0) = \{0\}$

$$\bigcap_{k \in \mathbb{N}} \left(-\frac{1}{k}, \frac{1}{k} \right) = \{ 0 \} \text{ si } \bigcap \left(\frac{1}{k}, \frac{1}{k} \right) \neq \{ 0 \} \Rightarrow \exists \epsilon > 0 \text{ t.q. } 0 < \epsilon < \frac{1}{k} \forall k \in \mathbb{N}$$

 $\mathbb N$ no están acotados superiormente.

9.- Sea A= $\{\frac{n}{n+1}: n \in \mathbb{N}\}$ Demuestra que A tiene solo un punto de acumulación. ¿Quien es la adherencia de A? y $F_r(A)$ y A°

$$B_r(\frac{2}{3})|\frac{2}{3}) \cap A = \emptyset$$

Af.
$$\forall (B_{\epsilon}(1)|\{1\}) \cap A \neq \emptyset$$

Sup. por el contrario que $\exists \epsilon > 0$ t.q. $(B_{\epsilon}(1)|\{1\}) \cap A \neq \emptyset \Rightarrow \frac{n}{n+1} \leq 1 - \epsilon \forall n \in \mathbb{N}$

$$\Rightarrow n \le (n+1)(1-\epsilon) \forall n \in \mathbb{N}$$

$$\Rightarrow n \leq n - n\epsilon + 1 - \epsilon \forall n \in \mathbb{N} \Rightarrow n \leq \frac{1 - \epsilon}{\epsilon} \forall n \in \mathbb{N}!$$

Composición de funciones continuas.

Sean $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ y $g: V \subset \mathbb{R}^m \to \mathbb{R}^p$ donde U es abierto en \mathbb{R}^n y V es abierto en \mathbb{R}^m Si f es continua en $x_0 \in U$ entonces la función compuesta $g \circ f: U \subset \mathbb{R}^p$ es continua en x_0

Demostración.

Dado $\epsilon > 0$, por ser g continua en $f(x_0)$, existen n > 0 tal que. $||y - f(x_0)|| < n \Rightarrow ||g(y) - g(f(x))|| < \epsilon$

Como f es continua en x_0 , existe $\delta > 0$ tal que

$$||x - x_0|| < \delta \Rightarrow ||f(x) - f()x_0|| < n$$

De ambas aplicaciones concluimos que dado $\epsilon>0$, existe $\delta>0$ tal que

$$||x - x_0|| < \delta \Rightarrow ||g(f(x_0))|| < \epsilon$$

Por lo tanto $g \circ f$ es continua en x_0

IV. Clase 19: 20/08/2020

Dudas.

f es una parametrizacion de una curva. $(\cos t, \sin t, 1 - \sin t) \Rightarrow \begin{cases} x = \cos t \\ y = \sin t \end{cases}$ Ecuación parametrica. $z = 1 - \sin t$

Sabemos $\cos^2 t + \sin^2 t = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow z = 1 - y \Rightarrow 0x + y + z - 1 = 0 \Rightarrow (0, 1, 1) = \overline{n}$

Ecuación de la Recta.

$$(x, y, z) = t\overline{u} + \overline{v}, t \in \mathbb{R}$$

Param.
$$\gamma: \mathbb{R} \to \mathbb{R}^3 \Rightarrow \gamma(t) = t\overline{u} + \overline{v} \Rightarrow t \to t\overline{u} + \overline{v}$$

$$f: \mathbb{R}^3 \to \mathbb{R}$$
 Función escalar

$$f(x, y, z) = z^2 + (\sqrt{x^2 + y^2} - 2)^2 - 1$$

Encontrar la superficie de nivel para $C_1=-1,\,C_2=0,\,C_3=1\Rightarrow z^2+(\sqrt{x^2+y^2}-2)^2-1=-1$

 $\begin{array}{l} \Rightarrow z^2 + (\sqrt{x^2 + y^2} - 2)^2 = 0 \text{ Superficie en } \mathbb{R}^3 \text{ trazar } x = 0 \text{ plano } (\text{YZ}) \Rightarrow z^2 + (|y| - 2)^2 = 1 \Rightarrow \sqrt{y^2} = |y| \Rightarrow y = 2 \\ \text{o } y = -2 \Rightarrow \text{Sol.} \{0, 2, 0\}, \{0, -2, 0\} \text{ Con } y = 0 \text{ plano } (ZX) \ z^2 + (|x| - 2)^2 = 1 \text{ circulo de radio } 0 \Rightarrow \text{Sol } \{(2, 0, 0), (-2, 0, 0)\} \\ z = 0 \text{ Plano } (\text{XY}) \Rightarrow (\sqrt{x^2 + y^2} - 2)^2 = 0 \Rightarrow \sqrt{x^2 + y^2} - 2 = 0 \Rightarrow x^2 + y^2 = 4 \Rightarrow (\sqrt{x^2 + y^2} - 2) = 1 \Rightarrow x^2 + y^2 = 9 \\ \Rightarrow \text{ Circulo con radio } 3 \\ z^2 + (\sqrt{x^2 + y^2} - 2)^2 - 1 \Rightarrow z^2 = -(\sqrt{x^2 + y^2} - 2)^2 + 1 \Rightarrow z = \pm \sqrt{1 - (\sqrt{x^2 + y^2} - 2)^2} \text{ Si } (x, y) \text{ cumple } 1 - (\sqrt{x^2 + y^2} - 2)^2 \geq 0 \Rightarrow 1 \geq (\sqrt{x^2 + y^2} - 2)^2 \text{ Frontera} \Rightarrow 1 = \sqrt{x^2 + y^2} - 2 \Rightarrow 3^2 = x^2 + y^2 \text{ Es un circulo de radio } 3 \\ z = (\sqrt{x^2 + y^2} - 2)^2 \geq 0 \Rightarrow 1 \geq (\sqrt{x^2 + y^2} - 2)^2 \text{ Frontera} \Rightarrow 1 = \sqrt{x^2 + y^2} - 2 \Rightarrow 3^2 = x^2 + y^2 \text{ Es un circulo de radio } 3 \\ z = (\sqrt{x^2 + y^2} - 2)^2 \geq 0 \Rightarrow 1 \geq (\sqrt{x^2 + y^2} - 2)^2 \text{ Frontera} \Rightarrow 1 = \sqrt{x^2 + y^2} - 2 \Rightarrow 3^2 = x^2 + y^2 \text{ Es un circulo de radio } 3 \\ z = (\sqrt{x^2 + y^2} - 2)^2 \geq 0 \Rightarrow 1 \geq (\sqrt{x^2 + y^2} - 2)^2 \text{ Frontera} \Rightarrow 1 = \sqrt{x^2 + y^2} - 2 \Rightarrow 3^2 = x^2 + y^2 \text{ Es un circulo de radio } 3 \\ z = (\sqrt{x^2 + y^2} - 2)^2 \geq 0 \Rightarrow 1 \geq (\sqrt{x^2 + y^2} - 2)^2 \text{ Frontera} \Rightarrow 1 = \sqrt{x^2 + y^2} - 2 \Rightarrow 3^2 = x^2 + y^2 \text{ Es un circulo de radio } 3 \\ z = (\sqrt{x^2 + y^2} - 2)^2 \geq 0 \Rightarrow 1 \geq (\sqrt{x^2 + y^2} - 2)^2 \text{ Frontera} \Rightarrow 1 = \sqrt{x^2 + y^2} - 2 \Rightarrow 3^2 = x^2 + y^2 \text{ Es un circulo de radio } 3 \\ z = (\sqrt{x^2 + y^2} - 2)^2 \geq 0 \Rightarrow 1 \geq (\sqrt{x^2 + y^2} - 2)^2 \text{ Frontera} \Rightarrow 1 = \sqrt{x^2 + y^2} - 2 \Rightarrow 3^2 = x^2 + y^2 \text{ Es un circulo de radio } 3 \\ z = (\sqrt{x^2 + y^2} - 2)^2 + \sqrt{x^2 + y^2} - 2 \Rightarrow 3^2 = x^2 + y^2 \text{ Es un circulo de radio } 3 \\ z = (\sqrt{x^2 + y^2} - 2)^2 + \sqrt{x^2 + y^2} - 2 \Rightarrow 3^2 = x^2 + y^2 \text{ Es un circulo de radio } 3 \\ z = (\sqrt{x^2 + y^2} - 2)^2 + \sqrt{x^2 + y^2} - 2 \Rightarrow 3^2 = x^2 + y^2 \text{ Es un circulo de radio } 3 \\ z = (\sqrt{x^2 + y^2} - 2)^2 + \sqrt{x^2 + y^2} - 2 \Rightarrow 3^2 = x^2 + y^2 \text{ Es un circulo de radio } 3 \\ z = (\sqrt{x^2 + y^2} - 2)^2 + \sqrt{x^2 + y^2} - 2 \Rightarrow 3^2 = x^2 + y^2 \text{ Es un ci$

$$\begin{cases} x = -1 + 2\lambda + 3\mu \\ y = 4\lambda - \mu \Rightarrow 2x - 5y + z = 0 : \pi_2 \\ z = 2 - 3\lambda + 2\mu \end{cases}$$

 $\pi: (x, y, z) = t\overline{u} + s\overline{v} + P$

 $\overline{u} \times \overline{v} = \overline{n} = \Pi \cap \Pi$

 $<(x,y,z)-P,\overline{n}>=0$ Ecuación del plano

 $\Rightarrow \Pi_1 = \lambda \overline{\alpha} + \mu \overline{\beta} + \overline{\gamma} = (x, y, z) \Rightarrow \lambda(2, 4, -3) + \mu(3, \frac{-1}{\beta}, 2) + (-1, 0, 2) \Rightarrow \overline{\alpha} \times \overline{\beta} = \overline{n_1}$

 $\Rightarrow \Pi_1 : \langle \overline{x} - \overline{\Gamma}, \overline{n_1} = 0 \text{ Ecuación cartesiana.}$