

Métodos Numéricos em Física Médica 7^a aula

ESTATÍSTICA III

IV. Indicadores de alcance.

- Nas aulas anteriores vimos como determinar indicadores de posição de uma amostra de dados estatísticos.
- Outros indicadores importantes são os indicadores de alcance ou de distância.
- Estes indicadores permitem determinar a "distância" dos dados estatísticos aos indicadores de medida central.

Variância	Desvio padrão	Erro padrão
$Var(X) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$		
$Var(X) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2$	$\sigma = \sqrt{Var(X)}$	$\varepsilon = \frac{\sigma}{\sqrt{N}}$
$Var(X) = \int_{-\infty}^{+\infty} x^2 f(x) dx - \left(\int_{-\infty}^{+\infty} x f(x) dx \right)^2$		
		Python, excel

V. Distribuições...

V. Distribuições

n = 3

• Imaginemos que temos um conjunto de 100 pacientes, em que existe uma probabilidade "p" de serem alérgicos a um determinado fármaco. Se retirarmos aleatoriamente 10 paciente um a um deste conjunto qual a probabilidade de termos 10 alérgicos ao fármaco?

n = 4

$$n=1$$
 Probabilidade "p" que 1 seja alérgico
Probabilidade "q=1-p" que 0 sejam alérgico

$$n=2$$
 Probabilidade " p^2 " que 2 sejam alérgicos Probabilidade " $pq+qp=2pq$ " que 1 sejam alérgicos Probabilidade " q^2 " que 0 sejam alérgicos

Probabilidade "
$$p^3$$
" que 3 sejam alérgicos
Probabilidade " $ppq+pqp+qpp$ " = $3p^2q$ " que 2 sejam alérgicos
Probabilidade " $qqp+qpq+pqq$ " = $3q^2p$ " que 2 sejam alérgicos
Probabilidade " q^3 " que 0 sejam alérgicos

Probabilidade "
$$p^4$$
" que 4 sejam alérgicos

Probabilidade " $pppq + pqpp + qppp + ppqp$ " = $4p^3q$ " que 3 sejam alérgicos

Probabilidade " $ppqq + pqpq + qqpp + qpqp + pqqp + qppq$ " = $6p^2q^2$ " que 2

Probabilidade " $qqqp + qpqq + pqqq + qqpq$ " = $4q^3p$ " que 1 seja alérgico

Probabilidade " q^3 " que 0 sejam alérgicos

V. Distribuições

Combinações de "n' possibilidades para "k' sucessos

$$C_k^n = \binom{n}{k} = \frac{n!}{k! (n-k)!}$$

VI. Distribuição binomial.

- Estávamos a desenhar o triângulo de Pascal.
- Os termos que estávamos a obter representam as probabilidades de obter 'k' sucessos em 'n' tentativas., há uma combinação desses possíveis números 'n' para obter 'k' sucessos, $C_k^n = \binom{n}{k} = \frac{n!}{k!(n-k)!}$.
- Sendo assim a probabilidade de de ter 'k' sucessos, P(k,n) em 'n' tentativas é dada por:

$$P(k,n) = \frac{n!}{k!(n-k)!} p^{k} q^{n-k} = {n \choose k} p^{k} q^{n-k}$$

- Esta distribuição é conhecida como distribuição binomial.
- Esta distribuição é muito utilizada não só em estatística como em muitas áreas científicas.

VII. Distribuição binomial.

Quando a distribuição é binomial?

- O número de testes é finito.
- Só existem dois resultados possíveis a cada teste (S/N, Cara/Coroa, 'pos/neg, etc).
- Os resultados são independentes uns dos outros.

Identificar qual destes resulta numa distribuição binomial:

- Num centro de medicina nuclear, os pacientes que fazem terapia com I-131 podem reportar o seguinte estado no fim de cada sessão: "sem efeitos secundários", "com efeitos secundários leves", "com efeitos secundários fortes". O João retirou da base de dados 100 resultados aleatórios.
- Num centro de radiologia 5% dos exames de TC usam demasiada radiação. O João está a fazer um estudo e retira da base de dados 100 resultados aleatórios.
- Num centro de radioterapia, existem 10 aceleradores lineares, 5 calibrados, e 5 não calibrados. O João começa a testar um a um para ver qual está calibrado.

VII. Distribuição binomial.

Distribuição (pmf

$$P(k,n) = \frac{n!}{k!(n-k)!} p^k q^{n-k} = \binom{n}{k} p^k q^{n-k}$$

Cumulativa (cdf)

$$cdf(k,n) = \sum_{i=0}^{k} {n \choose i} p^{i} q^{n-i}$$

média

np

mediana

$$np$$
 ou $(n+1)p$

moda

$$(n+1)p$$
 ou $(n+1)p-1$

variância

desvio padrão

$$\sqrt{npq}$$

python