Семейство хэш-функций SHA. SHA-512

Индивидуальный доклад

Доборщук В.В.

15 ноября 2022

Российский университет дружбы народов, Москва, Россия

Докладчик

- Доборщук Владимир Владимирович
- студент группы НФИмд-02-22, студ. билет 1132223451
- учебный ассистент кафедры прикладной информатики и теории вероятностей
- Российский университет дружбы народов
- · doborshchuk-vv@rudn.ru

Цели и задачи

Цели и задачи

Цель работы — изучить семейство хеш-функций SHA.

Задачи:

- Рассмотреть алгоритмы хэш-функций семейства;
- В частности рассмотреть алгоритм SHA-512.

Введение

Хеш-функция - это вычислительный метод, который может отображать неопределенный размер данных в фиксированный размер данных. Или, проще говоря, преобразование выводит числовое значение, которое характеризуется входными данными. Криптографическая хэш-функция использует необратимые (односторонние) математические функции, чтобы сгенерировать хеш-значение из входных данных. Одним из распространенных способов генерации криптографических хешей является использование блочных шифров.

Требования к хэш-функциям

К надежным с точки зрения криптографии хеш-функциям должны быть предъявлены следующие основные требования:

- 1. Хеш-функция должна представлять из себя одностороннюю функцию т.е. по образу (хешу) невозможно или почти невозможно найти исходный прообраз (сообщение).
- 2. Функция хеширования должна быть устойчива к коллизиям. Коллизия это пара исходных сообщений, имеющая одинаковое выходное значение. Считается, что относительно быстрое нахождение коллизии в алгоритме хеширования делает подобный алгоритм ненадёжным с точки зрения криптоанализа.

Перейдем к подробному рассмотрению и оценке семейства хэш-функций SHA.

Семейство хеш-функций SHA

Семейство хеш-функций SHA

- · SHA-1
- · SHA-2 (SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/256 и SHA-512/224)
- SHA-3

Secure Hash Algorithm 1 — алгоритм криптографического хеширования. Описан в RFC 3174. Для входного сообщения произвольной длины (максимум $2^{64}-1$ бит, что равно 2 эксабайта) алгоритм генерирует 160-битное хеш-значение, называемое также дайджестом сообщения. Используется во многих криптографических приложениях и протоколах.

SHA-1 реализует хеш-функцию, построенную на идее функции сжатия. Входами функции сжатия являются блок сообщения длиной 512 бит и выход предыдущего блока сообщения. Выход представляет собой значение всех хеш-блоков до этого момента. Иными словами хеш блока M_i равен $h_i=f(M_i,h_{i-1})$. Хеш-значением всего сообщения является выход последнего блока.

Исходное сообщение разбивается на блоки по 512 бит в каждом. Последний блок дополняется до длины, кратной 512 бит.

Инициализируются пять 32-битовых переменных.

A = a = 0x67452301

B = b = 0xEFCDAB89

C = c = 0x98BADCFE

D = d = 0x10325476

E = e = 0xC3D2E1F0

Определяются четыре нелинейные операции и четыре константы.

$$F_t(m,l,k) = (m \wedge l) \vee (\bar{m} \wedge k), \quad K_t = \text{Ox5A827999}, \quad 0 \leq t \leq 19$$

$$F_t(m,l,k) = m \oplus l \oplus k, \quad K_t = \text{Ox6ED9EBA1}, \quad 20 \leq t \leq 39$$

$$F_t(m,l,k) = (m \wedge l) \vee (m \wedge k) \vee (l \wedge k), \quad K_t = \text{Ox8F1BBCDC}, \quad 40 \leq t \leq 59$$

$$F_t(m,l,k) = m \oplus l \oplus k, \quad K_t = \text{OxCA62C1D6}, \quad 60 \leq t \leq 79$$

Далее, главный цикл итеративно обрабатывает каждый 512-битный блок. В начале каждого цикла вводятся переменные a, b, c, d, e, которые инициализируются значениями A, B, C, D, E, соответственно. Блок сообщения преобразуется из шестнадцати 32-битовых слов M_i в восемьдесят 32-битовых слов W_j по следующему правилу:

$$W_t = M_t \quad \text{при } 0 \le t \le 15$$

$$W_t = (W_{t-3} \oplus W_{t-8} \oplus W_{t-14} \oplus W_{t-16}) << 1 \quad \text{при } 16 \le t \le 79,$$

где << - это циклический сдвиг влево, операция сдвига двоичного представления передаваемого значения на n бит влево (в нашем случае сдвиг будет равен 1).

для
$$t$$
 от 0 до 79
$$\mathrm{temp} = (a << 5) + F_t(b,c,d) + e + W_t + K_t$$
 $e=d$
$$d=c$$

$$c=b << 30$$

$$b=a$$

$$a=\mathrm{temp},$$

где "+" — сложение беззнаковых 32-битных целых чисел с отбрасыванием избытка (33-го бита).

После этого к A, B, C, D, E прибавляются значения a, b, c, d, e, соответственно.

Хеш-функции семейства SHA-2 построены на основе структуры Меркла — Дамгора.

Рис. 1: Структура Меркла-Дамгора для хэш-функции

Характеристики SHA-2

Таблица 1: Технические характеристики SHA-2

Хеш-функция	Длина дайджеста сообщения (бит)	Длина внутреннего состояния (бит)	Длина блока (бит)	Максимальная длина сообщения (бит)	Длина слова (бит)	Количество итераций в цикле	Скорость (MiB/s)
SHA-256	256/	256 (8 × 32)	512	$2^{64}-1$	32	64	139
SHA-224	224	-//-	-//-	-//-	-//-	-//-	-//-
SHA-512	512/	512 (8 × 64)	1024	$2^{128}-1$	64	80	154
SHA-384	384/	-//-	-//-	-//-	-//-	-//-	-//-
SHA-512/256	256/	-//-	-//-	-//-	-//-	-//-	-//-
SHA-512/224	224	-//-	-//-	-//-	-//-	-//-	-//-

Особенности SHA-2

В SHA-2 используются следующие логические операторы:

- · || конкатенация,
- \cdot + сложение,
- · AND побитовое «И»,
- · XOR исключающее «ИЛИ»,
- · SHR логический сдвиг вправо,
- \cdot ROTR циклический сдвиг вправо.

SHA-512

SHA-512 очень близок к SHA-256, за исключением того, что он использует 1024 битные «блоки» и принимает в качестве входных данных длину строки длиной 2^{128} бит. SHA-512 также имеет другие алгоритмические модификации по сравнению с SHA-256. SHA-512 имеет структуру:

- слова имеют длину 64 бита,
- используется 80 раундов вместо 64,
- сообщение разбито на чанки по 1024 бит,
- начальные значения переменных и константы расширены до 64 бит,
- постоянные для каждого из 80 раундов 80 первых простых чисел,
- · сдвиг в операциях rotr и shr производится на другое число позиций.

Ввиду алгоритмической схожести SHA-2 с SHA-1 и наличия у последней потенциальных уязвимостей принято решение, что SHA-3 будет базироваться на совершенно ином алгоритме. 2 октября 2012 года NIST утвердил в качестве SHA-3 алгоритм Кессак.

SHA-3 (Keccak) – алгоритм хеширования переменной разрядности, разработанный группой во главе с Йоаном Дайменом в 2012 году. 5 августа 2015 года алгоритм утверждён и опубликован в качестве стандарта FIPS 202. Алгоритм SHA-3 построен по принципу криптографической губки.

В его основе произошли следующие изменения:

- \cdot Количество раундов было увеличено с 12 + l до 12 + 2l;
- · Padding был изменён со сложной формы на более простую;
- \cdot Скорость (rate) r была увеличена до предела безопасности (ранее округлялась вниз до ближайшей степени 2).

Схема SHA-3

Схема SHA-3 (Keccak) состоит из двух этапов:

- 1. Absorbing (впитывание). Исходное сообщение M подвергается многораундовым перестановкам f.
- 2. Squeezing (отжатие). Вывод получившегося в результате перестановок значения $\it Z$.

Рис. 2: Cxeмa SHA-3 (Keccak)

Заключение

Заключение

В рамках изучения семейства хэш-функций SHA, мы:

- изучили историю возникновения семейства и его путь изменения, развития;
- · узнали о критериях оценки хэш-функций (по которым проходит криптоанализ алгоритмов): односторонности и минимизация коллизий;
- выяснили, какие уязвимости присутствуют у SHA-1 и SHA-2, при этом они практически идентичны, а также изучили разницу между поколенями хэш-функций;
- нашли информацию о том, что SHA-1 больше не используется, повсеместно сейчас используют алгоритмы SHA-2, и вероятен переход в будущем на SHA-3.

Список использованной литературы

- 1. Eastlake D., Jones P. September 2001, US Secure Hash Algorithm 1 (SHA1). RFC 3174.
- 2. Burr W.E. NIST Comments on Cryptanalytic Attacks on SHA-1 // NIST. govComputer Security Division-Computer Security Resource Center [online]. 2006.
- 3. Ferguson N., Schneier B., Kohno T. Cryptography engineering: design principles and practical applications. John Wiley & Sons, 2011.
- 4. Hansen T., Eastlake D.E. US secure hash algorithms (SHA and HMAC-SHA) // RFC 4634. 2006.
- 5. Coron J.-S. и др. Merkle-Damgård revisited: How to construct a hash function // Annual International Cryptology Conference. Springer, 2005. C. 430–448.
- 6. Gilbert H., Handschuh H. Security analysis of SHA-256 and sisters // International workshop on selected areas in cryptography. Springer, 2003. C. 175–193.
- 7. Bertoni G. и др. Keccak // Annual international conference on the theory and applications of cryptographic techniques. Springer, 2013. C. 313–314.