Visión por Computador II

CEAI, FIUBA

Profesores:

- Javier A. Kreiner, javkrei@gmail.com
- Andrés F. Brumovsky, abrumov@gmail.com

Cuarta clase:

- ResNet50 ejercicio de implementación
- Inception Network:
 - convoluciones 1x1
- Localización de objetos y landmarks
- Detección de objetos
- Algoritmo sliding windows
 - o ejercicio de implementación
- Familias:
 - o R-CNN
 - 7○ YOLC
 - Algoritmo YOLO

Versiones de ResNet

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112			7×7 , 64, stride 2		
				3×3 max pool, stric	le 2	
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, \underline{64} \\ 3\times3, \underline{64} \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\begin{bmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 4$	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\begin{bmatrix} 3 \times 3, \underline{256} \\ 3 \times 3, \underline{256} \end{bmatrix} \times 6$	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 6 $	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 23 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$
conv5_x	7×7	$\begin{bmatrix} 3\times3,512\\ 3\times3,512 \end{bmatrix} \times 2$	$\left[\begin{array}{c} 3\times3, 5\underline{12} \\ 3\times3, 5\underline{12} \end{array}\right] \times 3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $
	1×1		av	erage pool, 1000-d fc,	softmax	
FLO	OPs	1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^9	11.3×10^9

ResNet50

• Ejercicio de programación: https://colab.research.google.com/drive/14aKayg8puBmOaKiLHFetrL28_CnOzsAJ?usp=sharing

Red Inception

Motivación para la red Inception

[Szegedy et al. 2014. Going deeper with convolutions]

Problema de costo computacional

Convoluciones 1x1

Jamboard

Reducción de necesidad de cómputo utilizando convolución 1x1

Módulo Inception

- Ejemplo de Programación
- https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html

Arquitectura Inception _ Google Net

Tareas de visión por computadora

- Clasificación (en general un objeto)
- Localización (en general un objeto)
 - Clasificación + Localización (en general un objeto)
 - Detección (múltiples objetos de diferentes categorías)

Clasificación - Localización - Clasif.+Local. - Detección

Algunos datasets para detección

PASCAL VOC Dataset:
 http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html

COCO Dataset (Common Objects in COntext), https://cocodataset.org/

Localización

- Algoritmo de sliding windows
 - . Nos apoyamos sobre un clasificador existente
 - Desventaja: gran costo computacional
 - las bounding boxes no son muy precisas
 - Jamboard

I.V>0,5

Sliding Window

Cómo implementar sliding windows de manera convolucional

- Permite reutilizar los cálculos en el algoritmo de sliding windows
- Hace los cálculos en paralelo

Convertir en convolución:

Medida de performance de los algoritmos

- mAP: mean Average Precision para detección de objetos (hay otra definición para document retrieval)
- El algoritmo debe encontrar los objetos (ubicarlos en bounding boxes) y clasificarlos
- Tenemos que evaluar cuán correctas son las bounding boxes y cuán correcta es la clasificación

Descripción original, <u>página 11</u> de: http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf

Ground Truth

Supongamos que el algoritmo predice esto:

Comparando...

Intersection over Union (o Jaccard Index)

Cómo evaluar la salida de los modelos

- Los modelos retornan para cada imagen una lista de : una bounding box con una clase predicha y un nivel de confianza
- Las predicciones son asociadas a un objeto del ground truth si (IoU > 0.5) (para Pascal VOC es 0.5; para COCO se usan una serie de niveles de IoU de corte)
- Múltiples detecciones de un objeto son ranqueadas según el nivel de confianza asignado
- Si hay varias predicciones para un objeto sólo una se considera correcta, las demás incorrectas (el algoritmo debería descartar múltiples detecciones)
- Para cada clase del dataset se calcula la curva de precision/recall, que especifica el nivel de precisión (definida como proporción de los ejemplos por encima de un rango que pertenecen a la clase correcta) para un dado recall (proporción de los ejemplos positivos que aparecen por encima de un cierto rango)
- Average precision resume la forma de la curva de precision/recall, y es definido com la precision media en un conjunto de 11 niveles de recall equiespaciados: [0,0.1,...,1] (en Pascal VOC)
 - Es una medida que se evalúa por cada clase a clasificar, o sea, debe medirse a nivel del dataset
 - Es bastante buena para comparar métodos diferentes

Ejemplo

Supongamos que el dataset tiene sólo 5 manzanas y que el algoritmo retorna esto:

Rank	Correct?	Precision	Recall
1	True A	1.0	0.2
2	True 4	1.0	0.4
3	False 4	0.67	0.4
4	False	0.5	0.4
5	False	0.4	0.4
6	True 4	0.5	0.6
7	True	0.57	0.8
8	<u>Eals</u> e	0.5	0.8
9	False	0.44	0.8
10	True	0.5	(1.0)

Rank	Correct?	Precision	Recall
1	True	1.0 ↑	0.2 1
2	True	1.0 -	0.4 ↑
3	False	0.67 ↓	0.4 -
4	False	0.5 ↓	0.4 -
5	False	0.4 ↓	0.4 -
6	True	0.5 ↑	0.6
7	True	0.57 1	0.8 †

Curva de precision/recall

En Pascal VOC interpolan:

Finalmente se toman 11 intervalos y se hace el promedio

$$AP = \frac{1}{11} \times (AP_r(0) + AP_r(0.1) + ... + AP_r(1.0))$$

Y en el ejemplo dado:

$$\underline{AP} = (5 \times 1.0 + 4 \times 0.57 + 2 \times 0.5)/11 = 0.7527$$

Algoritmos

- Métodos de dos etapas:
 - R-CNN (region proposals CNN)
 - Fast R-CNN
 - Faster R-CNN
 - otras variaciones
- Métodos de una etapa:
 - YOLO (You Only Look Once)
 - Otros: RetinaNet, <u>SSD</u> (Single-shot detection)

R-CNN: Regions with CNN features

R-CNN

- En la primera etapa, búsqueda selectiva (selective search):
 - Se genera una sub-segmentación inicial, se generan muchas regiones candidatas
 - Se usa un algoritmo greedy para combinar recursivamente regiones similares en regiones mayores
 - Se usan las regiones generadas para producir las propuestas de regiones candidatas (region proposals), alrededor de 2000 por imagen
 - http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
- Segunda etapa:
 - Cada una de las regiones es pasada por una red convolucional que extrae features
 - En la capa final se utiliza una Support Vector Machine para clasificar cada región propuesta y asignarle un nivel de confianza a cada región
 - Se utiliza non-max suppression para cada clase para determinar las regiones que sobreviven
- paper original: Rich feature hierarchies for accurate object detection and semantic segmentation https://arxiv.org/pdf/1311.2524.pdf

Non-max supression

- Primero descartamos las regiones que tengan confianza < umbral 1 (e.g. 0.4)
- Consideremos una clase y tomemos todas las regiones clasificadas como de esa clase para una imagen
- Se ordenan las regiones por nivel de confianza,
 - se toma la que tiene mayor nivel de confianza, se eligen todas las que tienen IoU > (umbral2 (e.g. 0.5) y son descartadas
 - o se toma la proxima region por nivel de confianza
 - hasta terminar la lista

Algoritmo YOLO

- Algoritmo de una sola etapa
- Muy veloz
- Varias versiones
- YOLO watches youtube: https://www.youtube.com/watch?v=U9c1gXO8xEU
- YOLO watches nature: https://www.youtube.com/watch?v=dTcfAuCEV3A
- artículo original: You Only Look Once: Unified, Real-Time Object Detection:
 https://arxiv.org/pdf/1506.02640.pdf

Clasificación + Localización

- Ejemplo en Jamboard de cómo 'construir' el dataset
- ¿Cómo definir la función de pérdida?

$$\begin{split} \lambda_{\textbf{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ + \lambda_{\textbf{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ + \sum_{i=0}^{S^2} \mathbb{1}_{i}^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2 \end{split}$$

Clasificación + Localización

Ejemplos

Vector:

Vector:

Grilla sobre la imagen, vamos a clasificar y localizar en cada celda

- 1. Perro
- 2. Gato
- 3. Conejo

Salida del algoritmo:

- Cada celda de la grilla se representa por un vector
- Un objeto es asignado a una celda si su centro está dentro de ella
- Volumen de salida: #celdas_w x #celdas_h x (1 + 4 + #clases)
 - Comparado a sliding windows:
 - o permite determinar una bounding box mucho más precisa
 - o es convolucional

Otra idea: anchor boxes

• ¿Cómo tener varios objetos en la misma celda?

$$\mathbf{y} = \begin{bmatrix} p_{c_2} \\ b_x \\ b_y \\ b_h \\ b_w \\ c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

Anchor box 2:

Antes: cada objeto en la imagen de entrenamiento es asignado a una celda de la grilla que contiene el punto medio del objeto.

Ahora: Cada objeto en la imagen de entrenamiento es asignado a la celda de la grilla que contiene el centro del objeto y a la anchor box con la cual tiene mayor IoU.

Anchor box 1: Anchor box 2:

•

Kahoot de detección de objetos

POSIBLES Trabajo final

- Competencias en kaggle:
 - https://www.kaggle.com/c/siim-covid19-detection/overview
 - https://www.kaggle.com/c/imaterialist-fashion-2020-fgvc7/overview
 - https://www.kaggle.com/c/flower-classification-with-tpus
 - https://www.kaggle.com/c/bengaliai-cv19/leaderboard
 - https://www.kaggle.com/c/Kannada-MNIST
 - https://www.kaggle.com/c/understanding cloud organization/data
 - https://www.kaggle.com/c/severstal-steel-defect-detection/overview