Definition: Commutativity

Commutativity is a property of a Binary Operation where the order of the operands does not affect the result.

Formal Definition

A binary operation * on a set S is **commutative** (or **abelian**) if for all $a, b \in S$:

$$a * b = b * a$$

Examples of Commutative Operations

Arithmetic

- Addition: a + b = b + a
- Multiplication: $a \cdot b = b \cdot a$

Set Theory

- Union: $A \cup B = B \cup A$
- Intersection: $A \cap B = B \cap A$
- Symmetric difference: $A\triangle B = B\triangle A$

Logic

- **AND**: $p \wedge q = q \wedge p$
- **OR**: $p \lor q = q \lor p$
- **XOR**: $p \oplus q = q \oplus p$

Number Theory

- GCD: gcd(a, b) = gcd(b, a)
- LCM: lcm(a, b) = lcm(b, a)

Non-Commutative Operations

Arithmetic

- Subtraction: $a b \neq b a$ (unless a = b)
 - Example: 5-3=2 but 3-5=-2
- **Division**: $a \div b \neq b \div a$ (unless a = b or both equal 1)
 - Example: $6 \div 2 = 3$ but $2 \div 6 = \frac{1}{3}$

Linear Algebra

- Matrix multiplication: $AB \neq BA$ in general
- Cross product: $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ (anti-commutative)

Other

- Function composition: $f \circ g \neq g \circ f$ in general
- String concatenation: $"ab" \neq "ba"$

Importance

- 1. **Abelian Groups**: Groups with commutative operation
 - Examples: $(\mathbb{Z}, +), (\mathbb{R}^*, \cdot)$
- 2. Simplification: Allows reordering of terms
 - In expressions like a + b + c + d, can rearrange freely
- 3. Parallel Computation: Commutative operations can be parallelized more easily

Relationship with Other Properties

- Independent of Associativity: An operation can be:
 - Commutative but not associative
 - Associative but not commutative
 - Both (e.g., addition)
 - Neither (e.g., subtraction)

Special Cases

Commutators

For non-commutative operations, the **commutator** measures failure of commutativity: - In groups: $[a,b] = a*b*a^{-1}*b^{-1}$ - In rings: [a,b] = ab - ba

Graded Commutativity

In graded algebras: $ab = (-1)^{|a||b|}ba$ where |a| is the degree of a

Applications

- Cryptography: Commutative encryption allows flexible ordering
- Database queries: Commutative operations enable query optimization
- Physics: Commuting observables can be measured simultaneously

Dependency Graph

Local dependency graph