Axiomas de congruência (parte I)

Aula 11 - 29/03/2019

Sumário

- Distância como conceito primitivo
- Axioma da compatibilidade da régua
- Axioma da congruência
- Comprimento de um vector
- Vectores ortogonais
- Subespaço dos vectores ortogonais a um dado vector

Comprimento de um segmento de recta

Na geometria afim não é possível comparar comprimentos em rectas que não sejam paralelas. Necessitamos então de um novo conceito primitivo, que será o comprimento de um segmento de recta ou distância entre dois pontos. Denotamos a distância entre dois pontos A e B por \overline{AB} .

Fixada uma unidade de comprimento e uma recta r, vamos assumir que existe uma régua em r tal que a distância entre os pontos com coordenada 0 e 1 é igual à unidade de comprimento pré-fixada. Desta forma, para que haja compatibilidade com a noção de razão na geometria afim, a distância entre dois pontos A e B da recta r, terá de ser igual a |a-b|, onde $A\mapsto a$ e $B\mapsto b$.

R.10 Axioma da compatibilidade da régua. Para cada recta r, existe pelo menos uma régua em r com a seguinte propriedade: para quaisquer pontos $A, B \in r$, tem-se $\overline{AB} = |a - b|$, onde a e b são as coordenadas de A e de B respectivamente.

Uma régua em r que satisfaz $\overline{AB} = |a - b|$ diz-se régua standard.

Razões e distâncias

A partir do axioma da compatibilidade da régua, podemos deduzir que $\overline{AB} = \overline{BA}$ e que $\overline{AB} = 0$ se e só se A = B.

Vamos agora relacionar a noção de razão entre pontos colineares com a noção de distância.

Proposição. Sejam A, B, C três pontos colineares. Tem-se que

$$AB : BC = \overline{AB} : \overline{BC} \text{ se } \overline{AB} + \overline{BC} = \overline{AC}.$$

Caso contrário, $AB : BC = -\overline{AB} : \overline{BC}$.

Dem. Consideremos uma régua standard na recta AB e sejam a,b,c as coordenadas dos pontos A,B,C respectivamente. Podemos assumir, sem perda de generalidade que $a \le c$. Temos que a condição $\overline{AB} + \overline{BC} = \overline{AC}$ corresponde a |b-a|+|c-b|=|c-a|, que é verdadeira se e só se $a \le b \le c$, ou seja, se b-a e c-b são positivos. Assim

$$AB:BC=(b-a):(c-b)=|b-a|:|c-b|=\overline{AB}:\overline{BC}.$$

Se $\overline{AB} + \overline{BC} \neq \overline{AC}$, então b-a e c-b têm sinais opostos. Portanto

$$AB:BC=(b-a):(c-b)=-|b-a|:|c-b|=-\overline{AB}:\overline{BC}.$$

Nota. Esta proposição é importante porque distingue o caso em que $B \in [AC]$ do caso em que $B \notin [AC]$.

Axioma de congruência e triângulos congruentes

O próximo axioma vai permitir comparar distâncias entre pontos que não estão em rectas paralelas.

Definição. Os triângulos [ABC] e [A'B'C'] dizem-se congruentes se lados correspondentes têm comprimentos iguais, ou seja,

$$\overline{AB} = \overline{A'B'}, \ \overline{AC} = \overline{A'C'}, \ \overline{BC} = \overline{B'C'}.$$

R.10 Axioma da congruência. Sejam [ABC] e [A'B'C'] triângulos congruentes. Seja $D \in AC$ e seja $D' \in A'C'$.

Se
$$AD : DC = A'D' : D'C'$$
, então $\overline{BD} = \overline{B'D'}$.

Nota. Este axioma afirma que se as distâncias \overline{AB} , \overline{AC} , \overline{BC} estão determinadas, então a distância de B a qualquer ponto D na recta AC também está determinada.

Comprimento de um vector - |v|

Faz sentido definir comprimento de um vector v como a distância entre os seus extremos, ou seja, se v(X) = Y, então $|v| = \overline{XY}$.

Para mostrar que podemos definir o comprimento de ν desta forma, necessitamos de uma proposição sobre comprimentos de lados opostos de um paralelogramo.

Proposição. Seja [ABCD] um paralelogramo. Então

$$\overline{AB} = \overline{CD}$$
 e $\overline{AD} = \overline{BC}$.

Dem. Exercício.

Nota. Temos que se A, A' são pontos e v é um vector, então [AA'v(A')v(A)] é um paralelogramo, logo, pela proposição anterior, temos que

$$\overline{Av(A)} = \overline{A'v(A')}.$$

Definição. O comprimento de v, que denotamos |v|, é a distância entre X e v(X), para qualquer ponto X. Um vector de comprimento 1 é designado *vector unitário*.

Nota. É fácil verificar que, se $\lambda \in \mathbb{R}$, então $|\lambda v| = |\lambda| |v|$. Em particular |-v| = |v|.

Vectores ortogonais e rectas perpendiculares

Definição. Sejam u e v vectores. Dizemos que u e v são ortogonais se |v+u|=|v-u|.

Observemos que o vector $\vec{0}$ é ortogonal a qualquer vector.

Proposição. Sejam u e v vectores ortogonais. Então, para quaisquer números reais λ e μ , os vectores λu e μv são ortogonais. **Dem.** Exercício.

Definição. Dizemos que duas rectas r e s são perpendiculares se forem concorrentes e se qualquer vector paralelo a r é ortogonal a qualquer vector paralelo a s.

Nota. Recorde-se que um vector v é paralelo a uma recta r se $v(X) \in r$, qualquer que seja $X \in r$.

Ortogonalidade da média

Lema. Sejam u_1, u_2, v vectores do espaço, não necessariamente complanares, tais que u_1, u_2 são ambos ortogonais a v. Então o vector $w = \frac{1}{2}(u_1 + u_2)$ também é ortogonal a v.

Dem. Seja O a origem e sejam X, Y, A, B, C pontos tais que

$$v = \overrightarrow{OX}, \ -v = \overrightarrow{OY}, \ u_1 = \overrightarrow{OA}, \ u_2 = \overrightarrow{OB}, \ \overrightarrow{OC} = w = \frac{1}{2}(u_1 + u_2) = \frac{1}{2}\left(\overrightarrow{OA} + \overrightarrow{OB}\right).$$

Pelo teorema da razão, os pontos A,B,C são colineares e C satisfaz AC:CB=1:1. Como u_1 e v são ortogonais e u_2 e v são ortogonais, temos que

$$\overline{XA} = |u_1 - v| = |u_1 + v| = \overline{YA} \ e \ \overline{XB} = |u_2 - v| = |u_2 + v| = \overline{YB}.$$

Assim, concluimos que $\triangle(XAB)$ e $\triangle(YAB)$ são congruentes. Pelo axioma da congruência, temos $|w-v|=\overline{XC}=\overline{YC}=|w+v|$, ou seja, v é ortogonal $\overrightarrow{OC}=w$.

Subespaço dos vectores ortogonais a um dado vector

Proposição. Seja v um vector de S. Então o conjunto de todos os vectores ortogonais a v é um subespaço vectorial de \vec{S} .

Dem. Seja v um vector e seja v^{\perp} o conjunto de todos os vectores ortogonais a v.

Temos que $\vec{0} \in v^{\perp}$.

Por outro lado, se $\lambda_1,\lambda_2\in\mathbb{R}$ e $u_1,u_2\in v^\perp$, temos que

$$2\lambda_1u_1,\ 2\lambda_2u_2\in v^{\perp}.$$

Pelo lema anterior, temos que

$$\frac{1}{2}(2\lambda_1 u_1 + 2\lambda_2 u_2) = \lambda_1 u_1 + \lambda_2 u_2 \in v^{\perp}.$$