4 Mixed strategies

4.8 Two-player zero-sum games

		Payoff for P1			
		P2			
		1	2	3	
P1	1	3	5	-2	
	2	-5	7	1	

Player 1's perspective.

P2 wants: $\max\{-3x_1^1 + 5x_2^1, -5x_1^1 - 7x_2^1, 2x_1^1 - x_2^1\}.$

P1 wants: $\max\{\min\{3x_1^1 - 5x_2^1, 5x_1^1 + 7x_2^1, -2x_1^1 + x_2^1\}\}$

Let U_1 be this maximum. $U_1 \leq each$ term in the min.

May
$$U_1$$

S.t. $U_1 \leq 3x_1' - 5x_2'$
 $U_1 \leq 5x_1' + 7x_2'$
 $U_1 \leq -2x_1' + x_2'$
 $X_1' + X_2' = 1$
 $X_1' \times x_2' \geq 0$

U1 is the wilty for P1.

General form:

Player 2's perspective. Suppose P2 plays $x^2 = (x_1^2, x_2^2, x_3^2)$.

P1 plays their best response $\max \{3x_1^2 + 5x_2^2 - 2x_3^2, -5x_1^2 + 7x_2^2 + x_3^2\}$.

P2 wants $\min \{\max \{..., 3\}\}$.

min
$$U_2$$

s.c. $U_2 \ge 3x_1^2 + 5x_2^2 - 2x_3^2$
 $U_4 \ge -5x_1^2 + 7x_2^2 + x_3^2$
 $x_1^2 + x_2^2 + x_3^2 = 1$
 $x_1^2 \times x_2^2 \times x_3^2 \ge 0$

General form . horizontal vector

Min U_2 s.t. $U_2 \ge row_i(A) \cdot x^2 \quad \forall i \in S$, $\sum_{j \in S_2} x_j^2 = 1$ $x^2 \ge 0$

Note: us is the utility of PI.
P2's utility is - Uz.

Observations.

The LPs for Pl and P2 are duals (exercise: check).

Both have feasible solutions (any probability distribution along with a small u_1 , a big u_2).

So both have optimal solutions.

By Strong duality, both have the same optimal value.

Optimal solution gives NE, optimal value = utility for P1.

A modified simplex solves the LP in poly time.

Theorem 11.

Any 2-player zero-sum game with finitely many strategies has a NE, and this can be efficiently computed.

Optimal solutions to the example.

P1:
$$x_1' = \frac{6}{11}$$
, $x_2' = \frac{5}{11}$, $u_1 = -\frac{7}{11}$,
P2: $x_1^2 = \frac{3}{11}$, $x_2^2 = 0$, $x_3^2 = \frac{8}{11}$, $u_2 = -\frac{7}{11}$ uniting $\frac{7}{11}$.

5 Nash's theorem

Theorem 12. (Nash's theorem)

Every strategic game with finitely many players and pure strategies has a Nash equilibrium.

A proof of this uses Brouwer's fixed point theorem.

5.1 Brouwer's fixed point theorem

Theorem 13. (Brouwer)

Let X be a convex and compact set in a finite-dimensional Euclidean Space. Let $f: X \to X$ be a continuous function. Then there exists $X_0 \in X$ such that $f(X_0) = X_0$ (fixed point).

Example. Let X = [0, 1]. Consider any continuous function $f : [0, 1] \to [0, 1]$.

Terminology from the theorem.

- · Euclidean space: essentially IR with dot product (define distance & angle)
- Convex: Take any 2 points in the set, the line segment joining them is entirely in the set.
- · Compact: closed and bounded.

Closed: (roughly) any "boundary" points are in the set.
e.g. [0,1] is closed, [0,1) is not closed.

Bounded: There exists a constant that bounds the distance between any 2 points. e.g. [0,1] is compact, IR is not.

Illustration.

Take this map and put it On the floor. Fred point theorem =) I some point on the map that sit directly on top of its actual location. (Assume this part of the Earth is flat.)

Counterexample when X is not compact.

$$f(x)=x^2$$

 $X = (O(1), Open, f(x)=x^2, f: X \rightarrow X, x \neq f(x).$

X= (R unbounded. f(x)=x+1 does not have a fixed point,

Counterexample when X is not convex.

Noe convex

Rocare the region by a bit. No fixed point.

5.2 Defining the set X

We want to use Brouwer's fixed point theorem when X is the set of all mixed strategy profiles Δ of a finite strategic game.

For player & with $S_i = \{(,...,k\}, \Delta^i = \{(x_1^i,...,x_k^i) : x_j \ge 0, x_1^i + ... + x_k^i = 1\}$

With n players,
$$\Delta = \Delta^1 \times \Delta^2 \times \cdots \times \Delta^n$$
. This is also convex and compact. We will use Δ in applying Browner's theorem.

5.3 Main idea of applying Brouwer's theorem

Example. Rock paper scissors.

	R	P	S
R	0,0	-1, 1	1, -1
P	1, -1	0,0	-1, 1
S	-1, 1	1, -1	0,0