Advanced Machine Learning Subsidary Notes

Lecture 12: Singular Value Decomposition (SVD)

Adam Prügel-Bennett

February 9, 2024

1 Keywords

• Singular Valued Decomposition, SVD, general linear maps

2 Main Points

2.1 Singular Value Decomposition

- Any $n \times m$ matrix, **X** can be decomposed as $\mathbf{X} = \mathbf{U} \mathbf{S} \mathbf{V}^\mathsf{T}$
 - ${\bf U}$ is an $n \times n$ orthogonal matrix
 - **S** is an $n \times m$ matrix with zeros everywhere except the diagonal where $S_{ii} = s_i \geq 0$
 - **V** is an $m \times m$ orthogonal matrix
- The values s_i are known as the singular values of **X**
- The SVD of a symmetric matrix is just the eigen-decomposition

Economical SVD

- If n > m some algorithms won't bother outputting the last n m columns of **U**
- If m < m some algorithms won't bother outputting the last m n columns of **V**
- In this case it will output a square **S** matrix

2.2 General Linear Mapping

- · Recall that matrices are the most general linear operators
- Since any matrix ${\bf M}$ can be written as ${\bf U}\,{\bf S}\,{\bf V}^T$ we can interpret any linear mapping as doing three operations
 - A rotation (with possibly a reflection) defined by V^T
 - A rescaling of each coordinate by s_i
 - A rotation (with possibly a reflection) defined by **U**

Duality

- Using $\mathbf{X} = \mathbf{U} \mathbf{S} \mathbf{V}^\mathsf{T}$ then
 - $* C = X X^T = USS^TU$
 - $* D = X^TX = VS^TSV$
- SS^T and S^TS are diagonal elements with non-zero diagonal elements s_i^2

2.3 Ridge Regression

- Ridge regression is linear regression with an L_2 regulariser
- Adding a regulariser $\nu \| \boldsymbol{w} \|^2$ the weights, \boldsymbol{w}^* , that minimise the loss function are given by $\boldsymbol{w}^* = (\mathbf{X}^\mathsf{T}\mathbf{X} + \nu \mathbf{I})^{-1}\mathbf{X}^\mathsf{T}\boldsymbol{y}$
- Using $\mathbf{X} = \mathbf{U} \mathbf{S} \mathbf{V}^T$ then

$$oldsymbol{w}^* = oldsymbol{\mathsf{V}}\,ar{\mathsf{S}}^+oldsymbol{\mathsf{U}}^\mathsf{T}oldsymbol{y}$$

where \bar{S}^+ is a regularised pseudo-inverse of S given by

$$\bar{\mathbf{S}}^+ = (\mathbf{S}^\mathsf{T}\mathbf{S} + \nu\,\mathbf{I})^{-1}\mathbf{S}$$

- If $\nu = 0$ this is equal to the pseudo-inverse of **S**
- $\bar{\bf S}^+$ is and $n \times m$ matrix which is zero everywhere except on the diagonal, where $\bar{S}^+_{ii} = \frac{s_i}{s_i^2 + \nu}$
 - Note if $s_i=0$ linear regression has an infinity of solutions and the pseudo-inverse of **X** does not exist (setting $\nu=0$ we get $S_{ii}^+=1/s_i$ which is not define when $s_i=0$)
 - In the regularised case $\bar{S}^+_{ii}=0$ (we have selected one of the solutions that minimise the squared error)
 - If $s_i \ll \nu$ then without the regularisation term the inverse is very ill-conditions while with the regularisation term \bar{S}^+_{ii} will be small
 - If $s_i \gg \nu$ then $\bar{S}^+_{ii} \approx \frac{1}{s_i} = S^+_{ii}$
- Adding a L_2 regulariser means that the optimum weights, w^* , will be less sensitive to the training data reducing the variance in the bias-variance dilemma

3 Exercises

3.1 Ridge regression

- Ridge regression is just linear regression with an L_2 regularier
 - 1. Derive the optimal weights in ridge regression
 - 2. Show that using $\mathbf{X} = \mathbf{U} \mathbf{S} \mathbf{V}^\mathsf{T}$ then $\boldsymbol{w}^* = \mathbf{V} (\mathbf{S}^\mathsf{T} \mathbf{S} + \nu \mathbf{I})^{-1} \mathbf{S} \mathbf{U} \boldsymbol{y}$
- · See answers

4 Experiments

4.1 SVD

Using Matlab/Octave or python have a play with svd

```
% construct a random matrix
X = randn(3,4)
[U,S,V] = svd(X)
                       % compute singular value decomposition
U*S*V'
                       % should be the same as X
                       % should be the identity up to round error
U*U '
\mathsf{U}^{\, \shortmid} \, * \mathsf{U}
                       % should be the identity up to round error
V*V^{I}
                        % should be the identity up to round error
V^{\scriptscriptstyle \mathsf{I}} * V
                       % should be the identity up to round error
[Ue,L1] = eig(X*X') % Ue should be the same as U up to permutation
S*S'
                       % same as L1 up to permutation
```

```
[Ve,L2] = eig(X'*X) % Ve should be the same as V up to permutation
S'*S % same as L2 up to permutation
```

```
inv(X'*X + 0.1*eye(4)) % check identity V*inv(S'*S + 0.1*eye(4))*V' % should be the same
```

4.2 Verify Identity

- Again use Matlab/Octave or python
- For a random 4×5 matrix **X**
 - Check that using $\mathbf{X} = \mathbf{U} \mathbf{S} \mathbf{V}^\mathsf{T}$ that

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \eta \mathbf{I})^{-1} = \mathbf{V} (\mathbf{S}^{\mathsf{T}}\mathbf{S} + \nu \mathbf{I})^{-1}\mathbf{V}^{\mathsf{T}}$$

holds for some random matrix using Matlab/Octave or python

- Examine S^TS , $S^TS + 0.1$ I. $(S^TS + 0.1$ I)⁻¹ and $(S^TS + 0.1$ I)⁻¹ S^T
- See if you can invert $\mathbf{X}^T\mathbf{X}$: it is singular, but due to rounding errors it might be inverted (it was a scary matrix when I tried it)

```
X = randn(4,5) % construct a random matrix
[U,S,V] = svd(X) % compute singular value decomposition

inv(X'*X + 0.1*eye(5)) % check identity
V*inv(S'*S + 0.1*eye(5))*V' % should be the same

S'*S % singular
S'*S + 0.1*eye(5) % now invertible
inv(S'*S + 0.1*eye(5))
inv(S'*S + 0.1*eye(5))
inv(S'*S + 0.1*eye(5))*S' % 4x5 diagonal matrix

inv(X'*X) % shouldn't be able to do this
```

5 Answers

5.1 Ridge regression

1. It is straightforward to show

$$\boldsymbol{w}^* = (\mathbf{X}^\mathsf{T} \, \mathbf{X} + \nu \, \mathbf{I})^{-1} \mathbf{X}^{-1} \boldsymbol{y}$$

2. The only hard part is to show is that

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \nu \mathbf{I})^{-1} = \mathbf{V} (\mathbf{S}^{\mathsf{T}}\mathbf{S} + \nu \mathbf{I})^{-1}\mathbf{V}^{\mathsf{T}}$$

- It is easy to show that $\mathbf{X}^T\mathbf{X} = \mathbf{V} \mathbf{S}^T\mathbf{S} \mathbf{V}^T$
- But we also have $\mathbf{I} = \mathbf{V} \mathbf{V}^T$ as \mathbf{V} is an orthogonal matrix
- Thus $\mathbf{M} = \mathbf{X}^T \mathbf{X} + \nu \mathbf{I} = \mathbf{V} (\mathbf{S}^T \mathbf{S} + \nu \mathbf{I}) \mathbf{V}^T = \mathbf{V} \mathbf{W} \mathbf{V}^T$ where $\mathbf{W} = \mathbf{S}^T \mathbf{S} + \nu \mathbf{I}$
- But $(\mathbf{A} \mathbf{B} \mathbf{C})^{-1} = \mathbf{C}^{-1} \mathbf{B}^{-1} \mathbf{A}^{-1}$ (which we can verify by multiplying $\mathbf{C}^{-1} \mathbf{B}^{-1} \mathbf{A}^{-1}$ on either the left or right by $\mathbf{A} \mathbf{B} \mathbf{C}$)
- Thus $\mathbf{M}^{-1} = (\mathbf{V} \mathbf{W} \mathbf{V}^{\mathsf{T}})^{-1} = (\mathbf{V})^{\mathsf{T}-1} \mathbf{W}^{-1} \mathbf{V}^{-1} = \mathbf{V} \mathbf{W} \mathbf{V}^{\mathsf{T}}$ where we use $\mathbf{V}^{-1} = \mathbf{V}^{\mathsf{T}}$ as \mathbf{V} is an orthogonal matrix