

CURSOS: CIÊNCIA DA COMPUTAÇÃO 1º Bimestre / 1º Semestre de 2022 DISCIPLINAS: Complexidade de Algoritmos I

NOT	A:
-----	----

Aluno(a):	R.A.:
-----------	-------

Prof. Dr. Guilherme Pina Cardim	31 / 03 / 2022

- 1) Sejam $T1(n) = 10n + 3\log_2 n + 25$, $T2(n) = 3n + 5n\log_3 n + 15n^2 + 8$ e $T3(n) = 15n^3 + 2n^2 + 9$ as equações que descrevem a complexidade de tempo dos algoritmos Alg1, Alg2 e Alg3, respectivamente, para entradas de tamanho n. A respeito da ordem de complexidade desses algoritmos, pode-se concluir que (0,5 pontos):
 - a) As complexidades assintóticas de Alg1, Alg2 e Alg3 estão, respectivamente, em O(n), $O(n \log n)$ e $O(n^3)$.
 - b) As complexidades assintóticas de Alg1, Alg2 e Alg3 estão, respectivamente, em O(n), $O(n^2)$ e $O(n^3)$.
 - c) As complexidades assintóticas de Alg1, Alg2 e Alg3 estão, respectivamente, em $O(\log n)$, $O(n \log n)$ e $O(n^3)$.
 - d) As complexidades assintóticas de Alg1, Alg2 e Alg3 estão, respectivamente, em O(n), $O(n \log n)$ e $O(n^3)$.
 - e) Alg1, Alg2 e Alg3 pertencem a mesma classe de complexidade assintótica.

Resposta: b

- 2) Um algoritmo tem complexidade $O(7m + 3n^3 + n^2 + \log_2 m + 3m^2 + \log_3 n)$. Contudo, podemos simplificar a complexidade apresentada para (0,5 pontos):
 - a) $O(m^2 + n^3)$
 - b) $O(n^3)$
 - c) $O(\log m + \log n)$
 - d) $O(m^2 + n^2)$
 - e) $O(m^3 + n^2)$

Resposta: a

3) Analise a afirmação abaixo e diga se ela é sempre verdadeira, sempre falsa ou se depende da situação. Para tanto, considere a função *f* assintoticamente não negativas. Explique sua resposta. (1,0 pontos)

$$f(n) = O(f(n)^3)$$

Resposta: É sempre verdadeira, pois o tempo para executar f(n) sempre será menor do que $O(f(n)^3)$.

Como $f(n) \le f(n)^3$ a afirmação é sempre verdadeira.

- 4) Um método de ordenação possui complexidade $O(n^2 \log n)$ e gasta exatamente 10 milissegundos para ordenar 100 elementos. Supondo que o tempo T(n) para ordenar n desses elementos é diretamente proporcional a $n^2 \log n$, ou seja, $T(n) = c \cdot n^2 \log n$: (1,5 pontos)
 - a) Estime a constante *c* utilizando uma base conveniente para o logaritmo (0,75 pontos).

Resposta:

$$T(n) = c. n^2 \log n$$
 e $T(n) = 10ms$ para $n = 100$, portanto:
$$10 = c. 100^2 \log_{10} 100$$
, como $\log_{10} 100 = 2$
$$10 = 20000$$
. c
$$c = \frac{1}{2000}$$

b) Estime o tempo consumido por esse algoritmo, em segundos, para ordenar 1000 elementos (0,75 pontos).

Resposta:

Considerando
$$c = \frac{1}{2000}$$
, $n = 1000$ e $T(n) = c$. $n^2 \log n$
$$T(1000) = \frac{1}{2000}$$
. $1000^2 \log_{10} 1000$, $como \log_{10} 1000 = 3$
$$T(1000) = \frac{1}{2000}$$
. $1000.1000.3$
$$T(1000) = \frac{3000}{2} = 1500 \ milisegundos = 1,5 \ segundos$$

5) Suponha que cada expressão abaixo represente o tempo T(n) consumido por um algoritmo para resolver um problema de tamanho n. Escreva os termos(s) dominante(s) para valores muito grandes de n e especifique o menor limite assintótico superior O(n) possível para cada algoritmo. (2,0 pontos)

Expressão	Termo(s) Dominante(s)	0()
$5 + 0.001n^3 + 0.025n$	$0.001n^3$	$O(n^3)$
$100n + 0.01n^2$	$0.01n^2$	$O(n^2)$
$500n + 100n^{1.5} + 2.5$	$100n^{1.5}$	$O(n^{1.5})$
$0.01n + 100n^2$	$100n^2$	$O(n^2)$
$0.3n + 5n^{1.5} + 2.5n^{1.75}$	$2.5n^{1.75}$	$O(n^{1.75})$
$n^2\log_2(n) + n(\log_2(n))^2$	$n^2 \log_2(n)$	$O(n^2 \log n)$
$2n + n^{0.5} + 0.5$	2 <i>n</i>	O(n)
$n\log_3(n) + n\log_2(n)$	$n\log_3(n)/n\log_2(n)$	$O(n \log n)$
$100n\log_2(n) + n^3 + 100n$	n^3	$O(n^3)$
$5n^3 + n^2 \log n$	$5n^3$	$O(n^3)$

6) Analise o algoritmo abaixo, escrito em C, que recebe um vetor, v, de tamanho igual a n e determine o menor limite assintótico superior para o pior caso em função do parâmetro n. Explique como obteve sua resposta. (1,0 ponto)

```
double funcao(int * v, int n){
   int i, op;
   double res = 1;
                                                O(n)
   for(i=0;i<n;i++){</pre>
        op = *(v+i) %3;
        switch(op){
                                                  O(n)
                 for(j=n-1; j>=0; j--)
                     res *= v[j];
                 break;
            case 2:
                                                   O(\log n)
                 for(j=n; j>0; j/=2)
                      res /= v[j];
                 break;
                                                 O(n^2)
                 for(j=0;j<n*n;j++){</pre>
                      if(j<n)</pre>
                          res += v[j];
                          res += v[(j*j)-n];
                                               0(1)
                 return -1;
                                                            O(n).O(n^2) = O(n^3)
   return res;
```

- 7) Suponha que ofereçam a você dois pacotes de software, $\bf A$ e $\bf B$, para processamento dos dados da sua empresa, que contêm 10^7 registros. Sabendo que o tempo de processamento médio do pacote $\bf A$ é $T_A(n)=500n$ milissegundos, e o tempo médio de $\bf B$ é $T_B(n)=2n^2$ milissegundos, responda: (1,5 pontos)
 - a) Qual desses pacotes é o mais indicado para processar os dados da empresa? (0,75 pontos)

Resposta:

Calculando
$$T_A(n)$$
, com $n=10^7$
Como $T_A(n)=500n$, $T_A(10^7)=500.10^7$ milissegundos
 $T_A(10^7)=50.10^8$ milissegundos
 $T_A(10^7)=5.10^9$ milissegundos = 5.10^6 segundos

Calculando
$$T_B(n)$$
, com $n=10^7$
Como $T_B(n)=2n^2$, $T_B(10^7)=2$. $(10^7)^2=2.10^{14}$ milissegundos $T_B(10^7)=2.10^{11}$ segundos

Como $T_A(10^7) < T_B(10^7)$, o pacote A é o mais apropriado para a empresa.

b) A partir de quantos registros um dos pacotes passa a ser melhor que o outro? (0,75 pontos)

Resposta:

Nesse caso precisamos encontrar o valor de n, tal que $T_A(n) = T_B(n)$, logo:

$$T_A(n) = T_B(n)$$

$$500. n = 2. n^2$$

$$2n^2 - 500n = 0$$

$$n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{500 \pm \sqrt{500^2 - 4.2.0}}{2.2} = \frac{500 \pm 500}{4}$$

$$n_1 = \frac{1000}{4} = 250 \text{ e } n_2 = \frac{0}{4} = 0$$

Como o valor 0 não responde a nossa questão, nos sobra apenas o valor 250. Além disso, já vimos que para um valor de n maior do que 250, o pacote A se torna mais eficiente do que o pacote B, então podemos afirmar que o pacote A se torna mais eficiente do que o pacote B a partir do valor 250 para n.