Lecture 3: Complementary Metal Oxide Semiconductor (CMOS)

Outline

- CMOS Inverter Operating Principle
 - Operating in logical high, low and transitions
- CMOS Inverter Voltage Transfer Characteristic (VTC)
 - Five operating regions
 - VTC Construction
- CMOS Inverter Reliability and Design Rules
 - Switching Threshold
 - Noise Margin 噪声容忍门限

Review: Switch Model of MOSFET

NMOS Transistor

PMOS Transistor

Review: I-V Curve of MOSFET

Long-Channel MOSFET Pinch-Off Saturation

Short-Channel MOSFET Velocity Saturation

Review: MOSFET Unified Model

$$V_{\rm GT} = V_{\rm GS} - V_{\rm T}$$

lacktriangle Active region ($V_{\rm GT} \ge 0$) Lin, Sat, V-Sat

$$I_{DS} = \mu_n C_{ox} \cdot \frac{W}{L} \cdot (V_{GT} \cdot V_{\min} - \frac{V_{\min}^2}{2}) \cdot (1 + \lambda V_{DS})$$

$$V_{\min} = \min (V_{DS}, V_{GT}, V_{DSAT})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Lin \quad Sat \quad V-Sat$$

The CMOS Inverter

$$V_{\rm in} = 0$$

$$V_{\rm GSn} = V_{\rm in} = 0 \rightarrow {\sf NMOS\ OFF}$$

 $/V_{\rm GSp}/=V_{\rm DD} - V_{\rm in} > |V_{\rm Tp}| \rightarrow {\sf PMOS\ ON}$

- \Box The output is connected to V_{DD} through a low-impedance path.
- ☐ The equivalent circuit is an RC circuit.
- □In steady state, $V_{\text{out}} = V_{\text{DD}}$, $V_{\text{DSp}} = 0$, NMOS OFF, PMOS in deep linear region, no static current.

$$V_{\rm in} = V_{\rm DD}$$

$$V_{\rm GSn} = V_{\rm DD} > V_{\rm Tn} \rightarrow {
m NMOS~ON}$$

 $/V_{\rm GSp}/=V_{\rm DD} - V_{\rm DD} = 0 \rightarrow {
m PMOS~OFF}$

- □ The output is connected to GND through a low-impedance path.
- ☐ The equivalent circuit is an RC circuit.
- □In steady state, $V_{out} = 0$, $V_{DSn} = 0$, PMOS OFF, NMOS in deep linear region, no static current.

- \square The V_{DD} charges the output through PMOS \rightarrow Pull-Up Process.
- □ Finally, $V_{\text{out}} = 0 \rightarrow V_{\text{DD}}$.

- ☐ The output discharges through NMOS to GND → Pull-Down Process.
- □ Finally, $V_{\text{out}} = V_{\text{DD}} \rightarrow 0$.

- \square The Inversion function is realized \rightarrow CMOS Inverter.
- □ Rather than directly connect output, input controls the on/off of MOSFET and charge/discharge of capacitance

Ideal Static CMOS Properties

- ☐ Full rail-to-rail swing.
 - $-V_{OL} = 0, V_{OH} = V_{DD}$
- □ Logic levels independent on transistor size.
 - "Ratio-less" logic
- \square Low output impedance (k Ω range).
- \square High input impendence ($\sim \infty$).
- **□** No direct-path current in steady state.
 - No static power dissipation