Solving Classification Problems

Swetha Kolalapudi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Understand the Naive Bayes algorithm

Solve Sentiment Analysis using the Naive Bayes algorithm

Understand the Support Vector Machines Algorithm

Solve Ad Detection using Support Vector Machines algorithm

Sentiment Analysis

Problem Statement

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Features

Text 1	Positive
Text 2	Positive
Text 3	Negative
Text 4	Positive
Text 5	Negative
Text 6	Positive
-	-
-	-
-	-
Text 100	Positive

Training Data

A corpus i.e. large body of texts already labelled as positive/negative

Term Frequency Representation

li de la companya de
Positive
Positive
Negative
Positive
Negative
Positive
•
-
-
Positive

Represent a text using frequency of words in the text

Term Frequency Representation

Positive
Positive
Negative
Positive
Negative
Positive
-
-
-
Positive

Each element in a tuple represents the frequency of some word

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Positive
Positive
Negative
Positive
Negative
Positive
-
-
<u>-</u>
Positive

If we pick a comment at random, the probability of

Positive Po

Negative 1-Po

 \mathbf{P}_0

Negative 1-P₀

Positive
Positive
Negative
Positive
Negative
Positive
-
-
<u>.</u>
Positive

Comments/texts are made up of words

 \mathbf{P}_0

Negative $1-P_0$

Positive
Positive
Negative
Positive
Negative
Positive
-
=
-
Positive

We can compute a Positivity Score and Negativity Score for every word

Ex: The word "Happy"

PosHappy

Sum frequency of "Happy" in positive comments

Sum frequency of "Happy" in the entire corpus

NegHappy = 1-PosHappy

Positive Po

Negative 1-Po

	Positive
Нарру	90%
Love	95%
Food	50%
Hate	10%
Bad	30%
-	
-	-
-	-

Use all this to classify any new comments

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Problem Statement

Define the problem statement Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Given any new comment

"Love the food!"

Positivity score

Negativity score

Compare the 2 scores

Poscomment = Posword1*Posword2*....

Similarly, we compute a Neg score and compare the 2

Why "Naive"?

Poscomment = Posword1*Posword2*....

Each word contributes independently

Why "Naive"?

Poscomment = Posword1*Posword2*....

No term accounting for a two or more words appearing together

Why "Naive"?

The independence assumption is the reason why

Naive Bayes algorithm is called "Naive"

Independence Assumption

Naive Bayes is not any less powerful

Strengths of Naive Bayes

Excellent results for many classification problems

Robust models

Use Naive Bayes

When you have very little training data

When you have less information about the problem itself

Ad Detection

Problem Statement

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Features

Image Features

Height, Width Page URL Image URL Page text Image Caption text

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

SVM - Training Phase

Training Data

A large dataset of images which are already labelled as Ad/Non-Ad

SVM - Training Phase

Represent all the images as points in an N-Dimensional Hypercube

A line is a 1dimensional shape

Any point on a line can be represented using 1 number

A square is a 2-Dimensional shape

Any point in a square can be represented using 2 numbers

A cube is a 3dimensional shape

Any point in a cube can be represented with 3 numbers

A set of N numbers represents a point in an N-Dimensional Hypercube

SVM - Training Phase

Represent all the images as points in an N-Dimensional Hypercube

Training Phase

Training Phase

The hyperplane acts as a boundary between Ads/Non-Ads

Typical Classification Setup

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

"Test the model" using test data

Typical Classification Setup

Problem Statement

Define the problem statement

Features

Represent the training data and test data using numerical attributes

Training

"Train a model" using the training data

Test

"Test the model" using test data

Test Phase

Test Phase

Check which side of the boundary the new image falls on

Test Phase

The dataset for this demo is from the UCI Machine Learning Repository

Sentiment Labelled Sentences Data Set

Download: Data Folder, Data Set Description

Abstract: The dataset contains sentences labelled with positive or negative sentiment.

https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences

The data set has sentences from 3 sources

IMDB reviews

Yelp reviews

Amazon reviews

Each line in the data set

review labe Wasted two hours. 0

Demo

Implement Naive Bayes algorithm on the Sentiment Labelled Sentences data set

Use the Scikit-Learn Module in Python

The dataset for this demo is from the UCI Machine Learning Repository

Internet Advertisements Data Set

Download: Data Folder, Data Set Description

Abstract: This dataset represents a set of possible advertisements on Internet pages.

https://archive.ics.uci.edu/ml/datasets/Internet+Advertisements

Each image is

- labelled as Ad/Non-Ad
- represented using~1500 attributes

```
height: continuous.
                      possibly missing
width: continuous.
                      possibly missing
aratio: continuous.
                      possibly missing
local: 0,1.
 457 features from url terms, each of the form "url*term1+term2...";
 for example:
url*images+buttons: 0,1.
 495 features from origurl terms, in same form; for example:
origurl*labyrinth: 0,1.
472 features from ancurl terms, in same form; for example:
ancurl*search+direct: 0,1.
 111 features from alt terms, in same form; for example:
alt*your: 0,1.
 19 features from caption terms
caption*and: 0,1.
```

1557 numerical attributes

ad. / nonad.

Demo

Implement SVM on the Internet Advertisements data set

Summary

Understand the Naive Bayes algorithm

Solve Sentiment Analysis using the Naive Bayes algorithm

Understand the Support Vector Machines Algorithm

Solve Ad Detection using Support Vector Machines algorithm