CSE232: Discrete Mathematics Assignment 6: Suggested answers

December 20, 2020

1. [10pts] For each graph F, G and H, determine whether it has a Hamilton circuit. Justify your answers. (If it has a Hamilton circuit, demonstrate the exact circuit in the graph. Otherwise, explain the reason in detail).

Answer. The graphs F and G have Hamilton circuits. (See Figure 1.)

Figure 1: F and G have Hamilton circuits.

The graph H does not have any Hamilton circuit. We prove it by contradiction. So suppose that there is a Hamilton circuit C. As $\deg(s)=2$, the edges $\{s,p\}$ and $\{s,r\}$ must be in C. Similarly, as $\deg(q)=2$, the edges $\{q,p\}$ and $\{q,r\}$ must be in C. But in addition, C must contain the edge $\{p,t\}$ or the edge $\{u,r\}$, because H must visit the vertices of the inner square

 $\{t, u, v, w\}$. It means that p or r is visited more than once, which is impossible because C is a Hamilton circuit.

2. [10pts] Let T be an ordered binary tree with vertex set $\{A, B, C, D, E, F, G\}$. Suppose that the inorder traversal of T is ABCDEFG and its preorder traversal is EBADCFG. Draw T and explain how you constructed it.

Answer. As the preorder traversal starts with E, vertex E must be the root. Then the inorder traversal tells us that the left subtree has vertices A, B, C and D, and the right subtree has vertices F and G. (See Figure 2a.)

Figure 2: Solution to Problem 3.

The preorder traversal of the left subtree of E is BADC so its root is B. Its inorder traversal is ABCD so the left subtree of B consists of A only, and its right subtree has vertices F and G. (See Figure 2b.) The preorder traversal of the right subtree at F is FG, so the root is F. The inorder traversal is FG so G is the right child.

Finally, the preorder traversal of the right subtree of B is DC so D is its root. The inorder traversal is CD so C is the left child. (See Figure 2c.) So we have obtained the tree T.

- **3.** Consider the following relation R over \mathbb{Z} : $R = \{(x,y) \mid x+y \text{ is even}\}.$
 - (a) [5pts] Is R a partial order? Justify your answer.
 - (b) [5pts] Is R an equivalence relation? Justify your answer.

Answer a. No, it is not a partial order, because it is not antisymmetric. Counterexample: x = 0, y = 2. Then $(x, y) \in R$ and $(y, x) \in R$, but $x \neq y$.

Answer b. Yes, it is an equivalence relation, because it is:

- Reflexive: For any $x \in \mathbb{Z}$, x + x = 2x is even, so $(x, x) \in \mathbb{Z}$.
- Symmetric: Suppose $(x, y) \in R$. Then x + y is even. It means that y + x = x + y is even. So $(y, x) \in R$.
- Transitive: Suppose $(x,y) \in R$ and $(y,z) \in R$. Then $x+y \equiv 0 \pmod{2}$ and $y+z \equiv 0 \pmod{2}$. So

$$x + z \equiv x + 2y + z \pmod{2}$$
 because $2y \equiv 0 \pmod{2}$

$$\equiv (x + y) + (y + z) \pmod{2}$$

$$\equiv 0 + 0 \pmod{2}$$

$$\equiv 0 \pmod{2}$$

so
$$(x, z) \in R$$
.

4. Consider the following relation over \mathbb{Z}^+ :

$$(p,q) \in R$$
 if and only if $\exists k \in \mathbb{Z}^+ (q=p^k)$.

- (a) [5pts] Prove that R is a partial order.
- (b) [5pts] Determine the set of all the upper bounds of $\{2,3\}$ according to R.

Answer a. We need to check that R is reflexive, antisymmetric and transitive. the proofs are below.

- Let $p \in R$. Then $p = p^1$ so $(p, p) \in R$. Thus R is **reflexive**.
- Suppose that $(p,q) \in R$ and $(q,p) \in R$. Then there exist positive integers k and ℓ such that $q = p^k$ and $p = q^\ell$. Therefore $p = q^\ell = p^{k\ell} = p^{k\ell}$. Since $k \ge 1$ and $\ell \ge 1$, and since $p \ge 1$, there are two cases:
 - If p = 1, then q = 1 because $q = p^k$, and thus p = q.
 - If $p \ge 2$, since $p = p^{k\ell}$, we must have $k = \ell = 1$. Since $q = p^k$, it implies that p = q.

In any case, we have p = q, which proves that R is **antisymmetric**.

• Suppose that $(p,q) \in R$ and $(q,r) \in R$. Then there exist positive integers k and ℓ such that $q = p^k$ and $r = q^\ell$. Therefore $r = q^\ell = (p^k)^\ell = p^{k\ell}$, so $(r,q) \in R$. Hence R is **transitive**.

Answer b. Suppose that q is an upper bound of $\{2,3\}$. Then we must have $(2,q) \in R$ and $(3,q) \in R$. So we have $q = 2^k = 3^\ell$ for some positive integers k and ℓ . So 2^k and 3^ℓ are two different prime factorizations of q. But this is impossible by the fundamental theorem of arithmetic.

Conclustion: {2,3} has no upper bound, so the set of upper bounds is **the empty set**.