# Efficient Voice Activity Detection via Binarized Neural Networks

Jong Hwan Ko Josh Fromm <u>Matthai Philipose</u> Shuayb Zarar Ivan Tashev

Microsoft Georgia Tech U of Washington

## Voice Activity Detection (VAD)



Need to run on a fraction of a CPU

- Traditionally (pre-2016)
  - Based on Gaussian Mixture Models
  - Google WebRTC state of the art:
    - 20.5% error
    - 17 ms latency

#### VAD with DNNs



 Simple DNN on audio spectrogram

† I. Tashev and S. Mirsamadi, ITA 2016

- Results:
  - © 5.6% error (from 20.5%)
  - 😕 152ms (from 17ms)

Idea: Quantize DNN to very low (1-3 bit) bitwidths

#### Implementing Binarized Arithmetic

- Quantize floats to +/-1
- 1.122 \* -3.112 ==> 1 \* -1
- Notice:
  - 1 \* 1 = 1
  - 1 \* -1 = -1
  - -1 \* 1 = -1
  - -1\*-1 = 1
- Replacing -1 with 0, this is just XNOR
- Retrain model to convergence

```
1.2 3.12 -11.2 3.4 -2.12 -132.1 ... 0.2 -121.1, ...
64 floats

0b110100...1 0x0...
```

A[:64] . W[:64] == popc(A<sub>/64</sub> XNOR W<sub>/64</sub>)

## Cost/Benefit of Binarized Arithmetic

```
float x[], y[], w[];
for i in 1...N:
   y[j] += x[i] * w[i];
                                 2N ops
                                             ~40x fewer ops
                                             32x smaller
unsigned long x[], y[], w[];
                                3N/64 ops
for i in 1...N/64:
   y[j] += 64 - 2*popc(not(x b[i] xor w b[i]));
```

### Try Again, With Custom GEMM Operation

#### Per-frame error

(WebRTC=20.46%)

feature quantization bits

| bits         |
|--------------|
| tion         |
| quantization |
| han          |
| eight c      |
| weig         |

| Model | N32  | N8   | N4   | N2               | N1    |
|-------|------|------|------|------------------|-------|
| W32   | 5.55 |      |      |                  |       |
| W8    |      | 6.25 | 6.45 | 7.23             | 13.87 |
| W4    |      | 6.16 | 6.47 | 7.32             | 14.11 |
| W2    |      | 6.63 | 7.06 | 7.92 <b>&lt;</b> | 13.88 |
| W1    |      | 7.91 | 8.47 | 8.97             | 14.95 |

#### Sweet spot:

- © ~5ms latency (30.2x faster)
- © additional 2.4% accuracy loss