NUEVA VERSIÓN DEL PROYECTO INTEGRADOR

Título:

"Detección de ciberacoso en publicaciones en español usando redes neuronales recurrentes (LSTM)"

1. PLANTEAMIENTO DEL PROBLEMA

1. Contexto

En el Perú, el ciberacoso se ha consolidado como una de las principales formas de violencia digital, afectando especialmente a adolescentes y jóvenes. Según el Ministerio de la Mujer y Poblaciones Vulnerables (MIMP, 2024) y el INEI (2023), cerca del 70% de los jóvenes entre 12 y 24 años ha presenciado o sufrido algún tipo de agresión en línea, mientras que 1 de cada 3 ha sido víctima directa. Las plataformas más asociadas son Facebook (58%), Instagram (23%) y TikTok (14%), donde predominan los insultos, la difusión de imágenes sin consentimiento y la suplantación de identidad. Esta realidad genera graves consecuencias emocionales y sociales —como ansiedad, aislamiento y deserción escolar— y evidencia la necesidad de herramientas que permitan una detección oportuna y confiable de comportamientos abusivos en entornos digitales.

2. Problemática detectada

Actualmente, la identificación del ciberacoso en redes sociales se realiza de manera manual y reactiva, dependiendo del reporte de usuarios o de equipos humanos de moderación. Este proceso es lento, subjetivo y costoso, lo que impide responder a tiempo ante conductas dañinas.

A pesar del avance de la inteligencia artificial, **no existen herramientas** automatizadas y accesibles en español que identifiquen con precisión el ciberacoso en textos digitales.

Los grandes modelos de lenguaje (LLMs), como ChatGPT o LLaMA, han demostrado capacidad para interpretar el contexto y la intención de los mensajes, pero aún presentan limitaciones en el manejo del español local, ambigüedades lingüísticas y sesgos culturales, lo que afecta su desempeño en escenarios reales.

Esta brecha tecnológica impide contar con soluciones efectivas para monitorear, clasificar y alertar de manera temprana sobre comportamientos de ciberacoso en redes sociales peruanas.

3. Hipótesis

La implementación de un modelo de detección de ciberacoso en español, basado en técnicas de aprendizaje automático y modelos de lenguaje de gran escala (LLMs), permitirá identificar de manera precisa y automática mensajes con contenido

abusivo en redes sociales, reduciendo la dependencia del análisis manual y mejorando la capacidad de respuesta ante situaciones de violencia digital.

4. Objetivo general

Desarrollar e implementar un sistema automatizado de detección de ciberacoso en español, basado en modelos de lenguaje y aprendizaje automático, que permita identificar y clasificar mensajes abusivos en redes sociales de manera rápida, precisa y ética, contribuyendo a la prevención y mitigación de la violencia digital en el Perú.

• e. Objetivos específicos

- 1. Recolectar y preparar datos etiquetados en español de redes sociales con presencia o ausencia de lenguaje abusivo.
- 2. Aplicar técnicas de limpieza y preprocesamiento de texto (tokenización, lematización, stopwords).
- 3. Entrenar una **red neuronal LSTM** con TensorFlow para clasificar mensajes según su nivel de agresividad.
- 4. Evaluar el rendimiento del modelo mediante métricas de clasificación (accuracy, recall, F1-score).
- 5. Implementar una **API web con FastAPI** para analizar mensajes nuevos en tiempo real.

2. ACCESO A DATOS

a. Datasets seleccionados

Se utilizarán fuentes públicas y académicas que contienen **textos en español etiquetados** por tipo de agresión o discurso de odio:

Fuente	Descripción	Tipo de texto	Enlace
sp_tweets_cyberbullying	Tweets en español con etiquetas de ciberacoso	Twitter	<u>GitHub –</u> ximenamar/sp_tweets_cyberbullying
Hate Speech Spanish Superset	Dataset unificado de hate speech en español	Twitter, foros	Hugging Face – manueltonneau/spanish-hate- speech-superset

Fuente

Descripción

de texto

Dataset
académico
validado sobre
detección de ciberacoso en español

Tipo

MDPI Dataset (Appl. Sci. 2021, 11(22), 10706

b. Tipo de datos

- No estructurados (texto corto).
- Variables:
 - o text → contenido del tweet o mensaje
 - o label → 0 = no ofensivo / 1 = ofensivo

• c. Volumen estimado

Entre 20,000 y 60,000 ejemplos, suficientes para entrenar un modelo de deep learning.

d. Ética y confidencialidad

Los datasets son públicos y anonimizados. No se usa información personal. El proyecto tiene **fines académicos y sociales** (no comerciales).

3. TIPO DE SOLUCIÓN A ELABORAR

- a. Técnica de IA
 - Red neuronal recurrente (LSTM) implementada con TensorFlow/Keras.
 - Arquitectura:
 - 1. **Embedding Layer:** conversión de palabras en vectores.
 - 2. LSTM Layer: captura de dependencias semánticas.
 - 3. **Dropout:** reducción de sobreajuste.
 - 4. **Dense Layer (sigmoid):** salida binaria (ciberacoso o no).
- b. Flujo del modelo
- 1. Recolección de datos

Obtención de textos en español desde datasets abiertos (*sp_tweets_cyberbullying*, *Spanish Hate Speech Superset*, *MDPI*).

- → Se conforma un dataset etiquetado (ofensivo / no ofensivo).
- 2. Preprocesamiento

Limpieza y normalización de texto:

- Eliminación de símbolos, emojis y URLs
- Tokenización y lematización
- Eliminación de stopwords
 Resultado: textos convertidos a secuencias numéricas.

3. Vectorización

Cada palabra se transforma en vectores mediante una capa Embedding, capturando el significado semántico.

- 4. Entrenamiento del modelo LSTM
 - Arquitectura: Embedding → LSTM → Dropout → Dense (sigmoid)
 - Entrenamiento con binary_crossentropy y optimizador Adam.
 - Validación y ajuste de hiperparámetros.
- 5. Evaluación

Se calculan métricas de desempeño: accuracy, precision, recall, F1-score y matriz de confusión.

• 6. Despliegue

El modelo se guarda (.h5) y se despliega:

- Local: API con FastAPI para análisis en tiempo real.
- En la nube: Azure ML Studio (endpoint REST para integración externa).

• c. Herramientas

Etapa Herramienta

Limpieza de texto Python, NLTK, spaCy

Modelado TensorFlow / Keras

Evaluación Scikit-learn

API Web FastAPI

Despliegue Azure Machine Learning Studio o Azure Functions

Semana	Fechas	Actividades	Entregables
1	8–14 set	Definición del problema, búsqueda de datasets y objetivos del proyecto	Documento de planteamiento
2	15–21 set	Descarga y exploración de datasets seleccionados	CSV unificado
3	22–28 set	Limpieza, tokenización y vectorización del texto	Dataset preprocesado
4	29 set–5 oct	Entrenamiento inicial del modelo LSTM	Notebook con resultados preliminares
5	6–12 oct	Evaluación y optimización del modelo	Reporte con métricas finales
6	13–19 oct	Implementación de API con FastAPI	API funcional local
7	20–26 oct	Despliegue en Azure Machine Learning Studio	Endpoint o demostración
8	27 oct–2 nov	Redacción del informe técnico final	Documento Word/PDF
9	3–9 nov	Preparación de presentación ejecutiva	PowerPoint ejecutiva
10	10–20 nov	Sustentación final	Presentación y código final

5. RESULTADOS ESPERADOS

- Un modelo capaz de **detectar mensajes de ciberacoso** con una precisión >85%.
- API REST accesible para analizar texto en español.
- Posibilidad de integración en aplicaciones educativas o de redes sociales.
- Contribución ética: promover un uso responsable y seguro del lenguaje digital.

○ 6. DESPLIEGUE EN AZURE

Plan de despliegue:

- 1. Exportar el modelo entrenado como archivo .h5.
- 2. Subirlo a Azure Machine Learning Studio y registrarlo.
- 3. Crear un inference pipeline y endpoint REST.
- 4. Conectarlo a FastAPI o Postman para pruebas.

Alternativa:

Si el tiempo lo impide, usar **Azure Cognitive Services (Language)** para mostrar la integración de un servicio IA en la nube con textos en español.

6 7. CONCLUSIÓN EJECUTIVA

El proyecto demuestra la aplicación práctica de la inteligencia artificial en un problema social relevante: la detección de ciberacoso en redes sociales. Usando procesamiento de lenguaje natural (NLP) y redes neuronales recurrentes (LSTM), se propone una herramienta escalable capaz de analizar mensajes en español, ofreciendo una solución con valor real, impacto social y despliegue profesional en Azure.

🐧 Formato de Presentación Ejecutiva (recomendado para PowerPoint)

Diapositiv	a Contenido	Duración	
1	Título, autor, diplomado, docente 30 seg		
2	Contexto y problemática	1 min	
3	Hipótesis y objetivos	1 min	
4	Dataset y fuentes	1 min	
5	Metodología (pipeline LSTM)	1.5 min	
6	Resultados esperados	1 min	
7	Despliegue en Azure	1 min	
8	Conclusiones e impacto	1 min	