ENGG1003 - Tuesday Week 9

Introduction to MATLAB
Variables & Arithmetic
Vectorisation

Brenton Schulz

University of Newcastle

May 6, 2019

Assumed Knowledge

- These notes are written for ENGG1003 and assume C was taught first
- In particular, they require knowledge of:
 - Program top-to-bottom sequential execution
 - Flow control (IF / WHILE / FOR / etc)
 - Variables

What is MATLAB?

- MATLAB is an interpreted programming language designed for quickly performing numerical analysis
- ▶ It is sometimes criticised for not being a "legitimate" programming language.
 - Engineers use it to solve a complex numerical problem quickly, then throw the code away
 - NB: The code is written quickly, it doesn't necessarily execute quickly (compared to a compiled language like C)
- Arithmetic is fast, flow control is very slow
 - Problems need vectorisation

...Interpreted?

- ➤ A language is compiled when the entire source code listing gets converted to a binary executable in one step
- An interpreted language is read and executed line-by-line
 - The language interpreter is running the whole time your code is running

...Interpreted?

- ➤ A language is compiled when the entire source code listing gets converted to a binary executable in one step
- An interpreted language is read and executed line-by-line
 - The language interpreter is running the whole time your code is running

...Interpreted?

- Interpreted languages are slower, but have the advantages of:
 - Being more forgiving of mistakes
 - Having more advanced memory management, eg:
 - Variables don't need to be declared
 - Arrays automatically grow and shrink as needed
 - Allowing code snippets to easily be executed in isolation

MATLAB Vs C

- Some big contrasts:
 - MATLAB is "weakly typed"
 - ► There are no strict data types
 - By default, (almost) everything is a complex valued array of type double
 - Arithmetic (mostly) follows rules of linear algebra
 - Somewhat beyond this course. We won't cover matrix multiplication.
 - Many language behaviours will make more sense after you've studied linear algebra
 - The fact that "everything is an array" makes for some possibly confusing rules
 - MATLAB has "high level" features like plotting
 - It is more of a "calculator engine" than a programming language

Installing MATLAB

- MATLAB is (expensive) commercial software
 - Python is more popular in industry (c.f. IEEE survey), partly because it is free
- The university pays a site licence which allows students to install it for free
 - Instructions here (hopefully...): https://
 uonau.service-now.com/itservices?
 id=kb_article_view&sysparm_
 article=KB0023081&sys_kb_id=
 a7ccc3334f3953c08e8fa90f0310c7f7
- ► The "standard" licence (for companies) is \$1260 per year, per computer

Installing Octave

- Octave is a cost-free (and open source)
 MATLAB-like interpreter
 - Some employers prefer this over MATLAB
- It will probably execute all of the code for this course without modification
- Available for Windows / Mac / Linux: https://www.gnu.org/software/ octave/download.html
- Demonstration of projects in Octave is fine
 - ▶ It tends to load much faster than MATLAB

Variable Classification

- MATLAB may be "weakly typed" but the following classifications are useful:
 - A scalar is a single number
 - A *vector* is a row or column of numbers
 - A 1D array in C
 - A matrix is rectangular array of numbers
 - A 2D array in C

Variable Classification

- MATLAB may be "weakly typed" but the following classifications are useful:
 - A scalar is a single number
 - A *vector* is a row or column of numbers
 - A 1D array in C
 - ► A *matrix* is rectangular array of numbers
 - A 2D array in C
- Arithmetic operations have different behaviours with different arguments, especially when mixed (eg: what does scalar plus vector do?)

Getting Started

- ► Lets load up MATLAB and:
 - Learn what the different GUI segments do
 - Allocate values to some random variables
 - Observe them appear in the "workspace"
 - Do some basic arithmetic on scalar variables
 - Run a basic script
 - Observe output suppression

Variable Allocation Syntax

- When allocating a constant to a variable we have a few basic methods:
 - Scalar: just like in C

$$x = 5$$

► Row Vector: space separated list inside []'s

$$x = [1 \ 2 \ 3 \ 4]$$

Column Vector: like row vectors, but uses ; to separate rows:

```
x = [1; 2; 3; 4]
```

Matrix: A mix of row and column syntax:

$$x = [1 \ 2 \ 3; \ 4 \ 5 \ 6; \ 7 \ 8 \ 9]$$

First, run the code from the previous slides

- First, run the code from the previous slides
- Observe that the variables are created automatically

- First, run the code from the previous slides
- Observe that the variables are created automatically
- Observe that MATLAB prints the result after each line
- Add a ; to the end of a line to suppress the output

- First, run the code from the previous slides
- Observe that the variables are created automatically
- Observe that MATLAB prints the result after each line
- Add a ; to the end of a line to suppress the output

Arithmetic

- For scalar data, MATLAB supports all basic arithmetic operators just like C
- It also supports exponents with ^
 - Shift-6 on a US keyboard
 - ▶ In C, this means a bitwise exclusive-OR