Contents

0.1	Cavley's theorem															1

0.1 Cayley's theorem

Cayley's theorem states that every group G is isomorphic to a subgroup of the symmetric group acting on G.

Multiplication by a member of G is a bijective function, as for each g there is also a g^{-1} .

This means that multiplication of each member of G is a permutation, and so is a subset of the symmetric group on G.