Math 1271 Spring 2021

Worksheet 7*

1. Find the antiderivative of the following functions.

(a)
$$x^4 - 2x^3$$
 - Solution: $\frac{x^5}{5} - \frac{x^4}{2} + C$

(b)
$$x^{24}$$
 – Solution: $\frac{x^{25}}{25} + C$

(c)
$$x^{-1}$$
 – Solution: $\ln |x| + C$. Don't forget the absolute value!

(d)
$$t^{6/7} - \sqrt{t}$$
 - Solution: $\frac{t^{13/7}}{7/13} - \frac{t^{3/2}}{3/2} + C$

(e)
$$\sin x - \cos x - \text{Solution: } -\cos x - \sin x + C$$

(f)
$$7 - \text{Solution: } 7x + C$$

(g)
$$0$$
 – Solution: C

(h)
$$\sec^2 x + \frac{1}{x} + e^x$$
 – Solution: $\tan x + \ln |x| + e^x + C$

- (i) $\frac{\sqrt{t-t^{7/4}}}{t\sqrt{t}}$. Solution: Split this up into two different parts. $\frac{\sqrt{t-t^{7/4}}}{t\sqrt{t}} = \frac{\sqrt{t}}{t\sqrt{t}} \frac{t^{7/4}}{t\sqrt{t}} = \frac{1}{t} t^{1/4}$ (subtract the powers). Then we can do the reverse power rule, and the antiderivative is $\ln|t| + \frac{t^{5/4}}{5/4}$.
- 2. Find f if f''(x) = 4, f'(0) = 3, and f(1) = 6.

Solution: Since f''(x) = 4, $f'(x) = 4x + C_1$ for some constant C_1 . Since f'(0) = 3, we plug in 3 for x, and this tells us that $3 = f'(0) = 4 \cdot 0 + C_1$, so $C_1 = 3$. This means that f'(x) = 4x + 3, so $f(x) = 2x^2 + 3x + C_2$ for some constant C_2 . Since f(1) = 6, we plug in 1 for x, and this tells us that $6 = f(1) = 2 \cdot 1^2 + 3 \cdot 1 + C_2$, so $C_2 = 1$. Therefore, $f(x) = 2x^2 + 3x + 1$.

3. (Section 4.9, Example 4) Find f if $f''(x) = 12x^2 + 6x - 4$, f(0) = 4, and f(1) = 1.

Solution: Since $f''(x) = 12x^2 + 6x - 4$, $f'(x) = 4x^3 + 3x^2 - 4x + C_1$ for some constant C_1 . We can't figure out C_1 yet, so lets keep going. $f(x) = x^4 + x^3 - 2x^2 + C_1x + C_2$ for some constant C_2 . Since f(0) = 4, we plug in 0 for x, and this tells us that $C_2 = 4$. Since f(1) = 1, we plug in 1 for x, and this tells us that $C_1 = -3$, so $f(x) = x^4 + x^3 - 2x^2 - 3x + 4$.

4. (Section 5.1, Problem 4)

^{*}Created by Andy Hardt

- (a) Estimate the area under the graph of $f(x) = \sin x$ from x = 0 to $x = \frac{\pi}{2}$ using four approximating rectangles and right endpoints. Sketch the graph and the rectangles. Is your estimate an underestimate or an overestimate? Solution: We're going to get $\frac{\pi}{8}(\sin\frac{\pi}{8} + \sin\frac{2\pi}{8} + \sin\frac{3\pi}{8} + \sin\frac{4\pi}{8})$, and this will be an overestimate.
- (b) Repeat part (a) using left endpoints. Solution: We're going to get $\frac{\pi}{8}(0 + \sin\frac{\pi}{8} + \sin\frac{2\pi}{8} + \sin\frac{3\pi}{8})$, and this will be an underestimate.
- 5. Use Definition 2 to find an expression for the area under the graph of $f(x) = x^2, 0 \le x \le 10$ as a limit. Do not evaluate the limit.

Solution: We do the Riemann sum for n rectangles. The width of each rectangle is $\frac{10}{n}$. The height of the first rectangle is $(\frac{10}{n})^2$, the height of the second rectangle is $(\frac{20}{n})^2$, and so on (since our equation is $f(x) = x^2$). So the sum of the areas of the rectangles is:

$$\frac{10}{n} \left(\left(\frac{10}{n} \right)^2 + \left(\frac{20}{n} \right)^2 + \ldots + \left(\frac{10n}{n} \right)^2 \right) = \frac{10}{n} \sum_{i=1}^n \left(\frac{10i}{n} \right)^2$$

(look up "sigma" sum notation if you don't remember what this means). Then to get the actual area, we take the limit, so the answer is

$$\lim_{n \to \infty} \frac{10}{n} \sum_{i=1}^{n} \left(\frac{10i}{n}\right)^{2}.$$