Capitolo 1: BI come strumento di supporto alle decisioni

1.1: Business Intelligence

Nel mondo moderno il valore dell'informazione sale incessantemente in quanto è necessario per analizzare l'operato dell'azienda, monitorare eventuali progressi verso obiettivi previsti (vendite previste, costi stimati ecc.) ed organizzare attività aziendali in maniera efficiente. Tuttavia, il reperimento dell'informazione è un processo non banale e laborioso quando si devono trattare moli di dati di dimensioni enormi quali possono essere i dati di vendita annuali di un'azienda o i costi di produzione relativi ad uno specifico prodotto. Inoltre, le aziende necessitano di tali informazioni in tempi brevi, spesso organizzate in modo personalizzato e di conservare i dati in modo centralizzato e non volatile.

Con *Business Intelligence* si intende l'insieme degli strumenti e dei procedimenti per selezionare, aggregare, correggere e trasformare i dati grezzi in conoscenza utile per supportare processi decisionali. Qui di seguito sono riportate alcune delle varie tecniche di Business Intelligence quali:

- Data Mining
- Reporting
- Analisi Statistica
- Analisi Descrittiva
- Query
- Metriche e Benchmarking delle prestazioni
- Ecc...

1.2: Data Warehousing

Il Data Warehousing è una collezione di metodi, tecnologie e strumenti di ausilio al knowledge worker (dirigente, amministratore, gestore, analista) per condurre analisi dei dati finalizzate all'attuazione dei processi decisionali e al miglioramento del patrimonio informativo. [1]

È un sistema di data management di supporto alla BI che permette di centralizzare e consolidare dati da diverse origini, mantenere grandi quantità di dati storici e su cui possono essere eseguite query e analisi. Il processo di Data Warehousing offre i seguenti vantaggi:

- Accessibilità a utenti con scarse conoscenze informatiche
- Integrazione dei dati sulla base di un modello standard dell'impresa
- Flessibilità di interrogazione per ottenere il massimo dalle informazioni presenti
- Sintesi per analisi mirate ed efficaci
- Rappresentazione multidimensionali per offrire all'utente una visione intuitiva ed efficacemente manipolabile delle informazioni
- Correttezza e completezza dei dati integrati

Il fulcro di questo processo è il Data Warehouse, una collezione di dati di supporto per il processo decisionale che presenta le seguenti caratteristiche: orientato ai soggetti, integrato e consistente, rappresentativa dell'evoluzione temporale, non volatile. [2]

1.2.1: Orientato ai soggetti

A differenza dei database relazionali, progettati con il focus sulle applicazioni che andranno ad utilizzarli, il Data Warehouse è progettato in vista degli utenti finali che andranno ad usufruirne.

^{[1]:} Slide 9 Corso Business Intelligence, S.Rizzi

^{[2]:} Slide 12 Corso Business Intelligence, S.Rizzi

1.2.2: Integrato e consistente

Appoggiandosi a più fonti di dati eterogenee provenienti da basi di dati relazionali, sistemi informativi esterni o addirittura documenti non strutturati, è necessario unificare e assicurarsi che questi dati siano uniformi e renderli tali qualora non lo fossero.

Questo è il ruolo degli strumenti di ETL (Extraction, Transformation and Loading).

Figura 1: funzioni degli strumenti di ETL

1.2.3: Rappresentativa dell'evoluzione temporale

A differenza dei DB relazionali, in un DW il tempo è parte delle chiavi e i dati contenuti non possono essere aggiornati o sovrascritti.

1.2.4: Non volatile

In un DB relazionale i dati sono soggetti ad operazioni di Insert, Update e Delete, il che rende i dati non persistenti. In un DW i dati vengono caricati una volta e non verranno più modificati o rimossi. Il problema si sposta dalla gestione delle transazioni al query-throughput.

1.3: Architetture Data Warehouse

Affinché un'architettura di Data Warehouse funzioni, sono necessari dei requisiti:

- Separazione: l'elaborazione analitica e transizionale devono essere mantenute il più possibile separate
- Scalabilità: l'architettura deve poter essere facilmente ridimensionata a fronte della crescita nel tempo dei volumi di dati e del numero di utenti da gestire
- Estendibilità: deve essere possibile adottare nuove tecnologie e applicazioni senza riprogettare integralmente il sistema
- Sicurezza: controllo sugli accessi
- Amministrabilità: è necessario limitare la complessità dell'attività amministrativa

A fronte di questi requisiti ci sono varie implementazioni, differenziate dal numero di livelli di cui si compongono. Qui di seguito è descritta l'architettura a due livelli.

1.3.1 Architettura a due livelli

Figura 2: Architettura a due livelli

I due livelli che compongono questa architettura sono il livello sorgenti, composto da tutte le fonti di dati, e il livello Data Warehouse, dove il DW è composto da ulteriori "sotto DW" chiamati Data Mart, ossia *sottoinsiemi o aggregazioni di parte dei dati presenti nel DW primario*. Essi possono essere dipendenti, se usati per suddividere un DW che sarebbe altrimenti troppo grande per essere gestito agilmente e migliorare le prestazioni, o indipendenti, se alimentato direttamente da una fonte dati e sfruttato per facilitare la fase progettuale rendendo più difficile lo schema di accesso ai dati.

L'utilizzo di un'architettura a due livelli comporta numerosi vantaggi quali:

- Informazioni di buona qualità continuamente disponibili a livello di DW anche quando è temporaneamente precluso l'accesso alle sorgenti.
- Le interrogazioni analitiche effettuate sul DW non interferiscono con la gestione delle transazioni a livello operazionale.
- L'organizzazione logica del DW è basata su un modello multidimensionale mentre le sorgenti offrono modelli relazionali o semi-strutturati.
- Discordanza temporale e di granularità tra sistemi OLTP, che trattano dati correnti e al massimo livello di dettaglio, e sistemi OLAP che operano su dati storici e di sintesi.
- A livello del warehouse è possibile impiegare tecniche specifiche per ottimizzare le prestazioni per applicazioni di analisi e reportistica

Capitolo 2: Descrizione Software utilizzati

In questo capitolo si tratteranno i software che sono stati impiegati per l'elaborazione del progetto di tesi.

Segue un elenco dei vari software per poi approfondire ognuno di essi nello specifico:

- *SQL Server Management Studio (SSMS)*: è un ambiente integrato per la gestione di qualsiasi infrastruttura SQL. SSMS integra un'ampia gamma di strumenti grafici con numerosi editor di script avanzati per offrire accesso a SQL Server per gli sviluppatori e gli amministratori di database qualsiasi sia il livello di competenza.
- *SQL Analysis Services (SSAS)*: è un motore dati analitici usato nel supporto decisionale e nell'analisi aziendale. Fornisce funzionalità del modello di dati semantico di livello aziendale per le applicazioni di business intelligence (BI), di analisi dei dati e di Reporting, ad esempio Power BI, Excel, Reporting Services e altri strumenti di visualizzazione dei dati.
- Visual Studio Analysis Services projects: è un'estensione di Visual Studio che fornisce la possibilità di progettare e costruire modelli tabulari e multidimensionali dispiegati poi in SQL Server Analysis Services, Power BI o Azure Analysis Services.
- *Visual Studio Reporting Services*: è un'estensione di Visual Studio che fornisce la possibilità di progettare e creare (anche tramite wizard) report professionali.
- *SQL Server Reporting Services (SSRS)*: offre un set di servizi e strumenti locali per creare, distribuire e gestire report impaginati e per dispositivi mobili anche a partire da modelli SSAS.

Tutti i software impiegati sono proprietari Microsoft ed è stata utilizzata la distribuzione 2019 per Visual Studio e la 2017 per i servizi relativi alla suite SQL.

2.1 SQL Server Management Studio

Figura 3: logo di Microsoft SQL Server Management Studio

Microsoft SQL Server Management Studio è uno degli ambienti di sviluppo e gestione per tipo di infrastruttura SQL più usati. Ciò è dovuto alla sua facilità d'uso per utenti meno esperti e dalla flessibilità e potenza se usato da mani esperte.

La peculiarità di SSMS è la possibilità di mantenere aperte più connessioni e navigare liberamente tra di esse mentre agisce in tempo reale su oggetti e tabelle.

L'ambiente include, oltre a tool grafici, editor testuali per scrivere script in vari linguaggi quali SQL, DAX, DMX, MDX ecc.

Siccome SSMS è stato pensato per essere affiancato a Visual Studio, un progetto sviluppato in tale ambiente gode di numerose estensioni e funzioni integrate per permettere agli sviluppatori di lavorare in maniera agile ed efficace.

2.2 SQL Analysis Services

Figura 4: logo di Microsoft SQL Analysis Services

Microsoft SQL Server Analysis Services è uno strumento del pacchetto Business Intelligence di SQL Server insieme a Reporting Services ed Integration Services e la sua funzione è offrire supporto per il data mining e OLAP (online analytical processing).

SSAS aggrega informazioni disseminati in pià DataBase o tabelle in modelli tabulari o multidimensionali e supporta il linguaggio XML come DDL (data definition language) e MDX, LINQ, SQL (una parte), DMX e DAX come DML (data Manipulation Language).

2.3 Visual Studio Analysis Services projects

Estensione di Visual Studio che permette di creare un modello tabulare o multidimensionale a partire dai dati contenuti in DataBase. È inoltre possibile ritoccare, selezionare, ordinare e aggregare i dati prima di inserirli nel modello.

Dopodiché è possibile creare relazioni tra vari campi, gerarchie, misure sulle varie tabelle e dividere i dati in diverse partizioni o creare gruppi di utenti che potranno accedere a specifiche informazioni del modello.

Infine, il modello può essere distribuito su un server di SQL Analysis Services.

2.4 Visual Studio Reporting Services

Estensione di Visual Studio che permette di creare dei report impaginati a partire da modelli tabulari o multidimensionali reperiti da un server di SQL Analysis Services.

Reporting Services consente di generare report anche tramite wizard e di gestire tutti gli aspetti di un report quali parametri (visibili o no all'utente finale), set di dati estratti dai modelli SSAS usando query scritte in SQL, DMX, DAX o MDX ed elementi grafici quali indicatori, grafici di ogni tipo.

Ultimato il report è possibile pubblicarlo su SQL Reporting Services o un'altra piattaforma di visualizzazione report.

2.5 SQL Server Reporting Services

Figura 5: logo di Microsoft SQL Server Reporting Services

Microsoft SQL Server Reporting Services permette sia di visualizzare progetti di report creati esternamente sia di crearli. È possibile creare e gestire separatamente le origini dati, i set di dati e le pagine di report con impostazioni di sicurezza, piani di aggiornamento cache e simulazioni di esecuzione con calcolo dei tempi.

SSRS si presenta come un sito web molto intuitivo e strutturato come un filesystem dove l'utente seleziona la cartella contente il report desiderato e visionarlo (è compito degli admin nascondere le parti non pensate per essere viste dagli utenti).