Announcements

- Homework 6 is due Tuesday
- My office hours tomorrow will be 11 AM 12 PM.
- Email is coming for vote on midterm ground rules
- Project Assignment will be posted soon

Today's Lecture

- Other error measures and target types
- Approximation-generalization tradeoff
 - Bias Variance decomposition
 - Learning curves

ERROR MEASURES AND TARGET TYPES

WE HAD
$$E_{in}(h) = \frac{1}{N} \sum_{n=a_1}^{N} \left[h(x_n) \neq f(x_n) \right]$$

CAN INSTEAD USE:
$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} \left[h(x_n) - f(x_n) \right]^2$$

$$E_{out}(h) = \mathbb{E} \left[h(x) - f(x) \right]^2$$

APPROXIMATION - GENERALIZATION TRADEOFF
NOTE: BEROW, hy IS BEST HYPOTHESIS AS CHOSEN BY D (USING LEARNING AZEARIT A.) (A) (B) = E { [hy (x)-f(x)]}
TAKE ITO OF BOTH SIDES
W.r.t. all datasets of of size N. [En { Eour (hg)}] = [En { RHS}]

w.r.t. all datasets at of size N	'.
E { E (hg))} = E { RHS}	_
DEFINE: Ty (x)= Ex {hy (x)}	_
$\approx \frac{1}{k} \stackrel{\text{def}}{\underset{k=1}{\text{def}}} (x)$	_
BEST HY10" BASED ON	
D _k .	_

AML EXAMPLE 2.8

$$f(x) = \sin(\pi x)$$

DATASET $D = \{(x_1, y_1); (x_2, y_2)\}$ =) N=2.

H: SET OF ALL HORIZONTAL LINES:

A .: SET OF ALL LINES:

LEARNING ALGORITHM: 26: b= 41+42

24: LINE PASSING THROUGH (4, 4,) AND (x2, y2).

LEARNING CURVES

REVIEW:

$$\mathbb{E}_{\infty}\left\{\mathbb{E}_{\text{out}}\left(h_{g}^{(\delta)}\right)\right\}=\mathbb{E}_{\chi}\left\{bias(\chi)+var(\chi)\right\}$$

bias (x) =
$$\left[h_g(x) - f(x) \right]^2$$

 $var(x) = \left[h_g(x) - f(x) \right]^2$

$$E_{out}(h_g^{(\beta)}) \leq E_{IN}(h_g^{(\beta)}) + E(N, \mathcal{H}, S)$$

WITH PROBABILITY=1-8.

("Evc)

