Algebraic Geometry — Exercises 20 February 2007

- 1. (3 points) Let A be a ring (as usual commutative with unit).
 - a) Show that A has a maximal ideal if A is not the zero ring.
 - b) Show that an ideal $I \subset A$ is maximal if and only if A/I is a field.
 - c) Show that an ideal $I \subset A$ is prime if and only if A/I is an integral domain.
 - d) Let A^{\times} be the multiplicative group of A. Show that A^{\times} and $\bigcup_{\substack{\mathfrak{m}\subset A\\ \max, \, \mathrm{id.}}} \mathfrak{m}$
 - e) The ring A is called *local* if it has exactly one maximal ideal. Show that A is local if and only if $A A^{\times}$ is an ideal of A.
- **2.** (3 points) Let k be an algebraically closed field, and let a_1, \ldots, a_r be distinct elements of $\mathbf{A}^1(k) = k$.
 - a) Give a basis for the k-vector space of regular functions on $\mathbf{A}^1(k)$ $\{a_1, \ldots, a_r\}$.
 - b) Give a basis for the k-vector space of $\mathcal{O}_{\mathbf{A}^1(k),0}$, the stalk at 0 of the sheaf of regular functions on $\mathbf{A}^1(k)$.
- **3.** (3 points) Show that k[x,y] is the k-algebra of regular functions on $\mathbf{A}^2(k) \{(0,0)\}$.
- 4. (2 points) Hartshorne, Exercise II.1.14.
- **5.** (2 points) Hartshorne, Exercise II.1.15.