

Plano de Disciplina: Design de Software

Carga Horária: 80 horas

#### **Ementa**

- Arquitetura de software e modelagem de sistemas de informação. Atividades de modelagem em um ciclo de vida e no processo de software. Técnicas de levantamento de dados, especificação de processos, requisitos funcionais e não funcionais de software e regras de negócio. Declaração do escopo do projeto de software. Abordagens de modelagem Orientada a Objetos. Projetos de software Orientados a Objetos. UML aplicado à modelagem O.O. Elaboração de cronograma do projeto de software para apoio à gestão do tempo, monitoramento e controle de tarefas. Gerenciamento de configuração e mudanças.
- Modelagem de sistemas assistida por computador (CASE).

# **Objetivos**

- Fazer levantamento de requisitos
- Usar ferramentas CASE
- Modelar aplicações orientadas a objetos em UML a partir de uma especificação de requisitos.
- Representar corretamente funcionalidades do sistema utilizando UML.
- Documentar sistemas utilizando a UML.
- Utilizar ferramentas para Modelagem OO.

## Conteúdos

- 1) Conceitos básicos de orientação a objetos
  - a) Objetos
  - b) Classes
  - c) Atributos
  - d) Métodos
  - e) Estado, comportamento e identidade de um objeto
  - f) Encapsulamento
  - g) Dependência entre classes
  - h) Associações: multiplicidade e navegabilidade
  - i) Herança
  - j) Polimorfismo
  - k) Troca de mensagens entre objetos
- 2) Introdução ao UML
  - a) Diagramas Estruturais
  - b) Diagrama de objetos
  - c) Diagrama de classes



- d) Diagrama de componentes
- e) Diagrama de instalação
- f) Diagrama de pacotes
- g) Diagrama de estrutura
- h) Diagramas Comportamentais
- i) Diagrama de Caso de Uso
- j) Diagrama de Estados
- k) Diagrama de atividade
- I) Diagramas de Interação
- m) Diagrama de sequência
- n) Diagrama de Interatividade
- o) Diagrama de colaboração
- p) Diagrama de tempo
- 3) Mapeamento Objeto x Relacional.
- 4) Ferramentas para Modelagem OO.

# Metodologia de Ensino

- Apresentação de modelos de Aplicações
- Aulas expositivas e dialógicas
- Leituras Complementares
- Atividades de laboratórios virtuais
- Resolução de exercícios e problemas
- Pesquisas e seminários
- Jogos e experiências práticas de aplicação
- Debates
- Utilização de aplicativos, filmes, publicações, divulgação científica da web, livros

## Bibliografia Básica:

GALLOTTI, G. M. A. (Org.). Arquitetura de software. Pearson: 2017. SOMMERVILLE, I. Engenharia de software. 10.ed. Pearson: 2019

PFLEEGER, S. L. Engenharia de software: teoria e prática. 2.ed. Pearson: 2003

## **Bibliografia Complementar:**

GALLOTTI, G. M. A. Qualidade de software. Pearson: 2015

BRAGA, P. H. Teste de software. Pearson: 2016

MEDEIROS, E. Desenvolvendo software com UML 2.0 definitivo. Pearson: 2004

ASCENCIO, A. F. G.; CAMPOS, E. A. V. de. Fundamentos da programação de computadores. 3.ed.

Pearson: 2012