Introduction to Real Analysis

Tianyu Du

Tuesday 10th September, 2019

This work is licensed under a Creative Commons "Attribution-NonCommercial 4.0 International" license.

Contents

1	\mathbf{The}	Axiom of Completeness	2
	1.1	Preliminaries	2
	1.2	Density of Rational Numbers	4

1 The Axiom of Completeness

1.1 Preliminaries

Definition 1.1. A set $A \subset \mathbb{R}$ is bounded above if

$$\exists u \in \mathbb{R} \ s.t. \ \forall a \in A, \ u \ge a \tag{1.1}$$

It is said to be **bounded below** if

$$\exists l \in \mathbb{R} \ s.t. \ \forall a \in A, \ l \le a \tag{1.2}$$

Example 1.1. The set of integers, \mathbb{Z} , is neither bounded from above nor below. Sets $\{1, 2, 3\}$ and $\{\frac{1}{n} : n \in \mathbb{N}\}$ are bounded from both above and below.

Notation 1.1. Let $A \subset \mathbb{R}$, we use A^{\uparrow} and A^{\downarrow} to denote collections of upper bounds of A and lower bounds of A. Note that A^{\uparrow} and A^{\downarrow} are potentially empty.

Definition 1.2. A real number $s \in \mathbb{R}$ is the **least upper bound(supremum)** for a set $A \subset \mathbb{R}$ if $s \in A^{\uparrow}$ and $\forall u \in A^{\uparrow}$, $s \leq u$. Such s is denoted as $s := \sup A$.

Definition 1.3. A real number $f \in \mathbb{R}$ is the **greatest lower bound (infimum)** for A if $f \in A^{\downarrow}$ and $\forall l \in A^{\downarrow}$, $l \leq f$. Such f is often written as $f := \inf A$.

Axiom 1.1 (The Axiom of Completeness/Least Upper Bounded Property). $\forall \emptyset \neq A \subset \mathbb{R}$ such that $A^{\uparrow} \neq \emptyset$, $\exists \sup A$.

Definition 1.4. Let $\emptyset \neq A \subset \mathbb{R}$, $a_0 \in A$ is the **maximum** of A if $\forall a \in A, a_0 \geq a$; $a_1 \in A$ is the **minimum** of A if $\forall a \in A, a_1 \leq a$.

Example 1.2. $\mathbb{Q} \subset \mathbb{R}$ does not satisfy the axiom of completeness.

Proposition 1.1. Let $\emptyset \neq A \subset \mathbb{R}$ bounded above, and $c \in \mathbb{R}$. Define $c + A := \{a + c : a \in A\}$. Then

$$\sup(c+A) = c + \sup A \tag{1.3}$$

Proof. Step 1: Show $c + \sup A \in (c + A)^{\uparrow}$:

Let $x \in c+A$, $\exists a \in A \text{ s.t. } x = c+a$. Then, $x = c+a \leq c+\sup A$. Therefore, $x \leq c+\sup A \ \forall x \in A$, which implies what desired.

Step 2: Show $\forall u \in (c+A)^{\uparrow}$, $c + \sup A \leq u$:

Let $u \in (c+A)^{\uparrow}$, then $u \ge c+a \ \forall a \in A \implies u-c \ge a \ \forall a \in A \implies u-c \in A \uparrow \implies u-c \ge \sup A \implies u \ge c+\sup A$.

Hence,
$$\sup(c+A) = c + \sup A$$
.

Lemma 1.1 (Alternative Definition of Supremum). Let $s \in A^{\uparrow}$ for some nonempty $A \subset \mathbb{R}$. The following statements are equivalent:

- (i) $s = \sup A$;
- (ii) $\forall \varepsilon, \exists a \in A, s.t. \ a > s \varepsilon \text{ (i.e. } s \varepsilon \notin A^{\uparrow}).$

Proof. Immediately.

Theorem 1.1 (Nested Interval Property). Let $(I_n)_n$ be a sequence of closed intervals $I_n := [a_n, b_n]$ such that these intervals are *nested* in a sense that

$$I_{n+1} \subset I_n \ \forall n \in \mathbb{N} \tag{1.4}$$

Then,

$$\bigcap_{n\in\mathbb{N}} I_n \neq \emptyset \tag{1.5}$$

Proof. Note that the sequence $(a_n)_{n\in\mathbb{N}}$ is bounded above by any b_k , by the completeness axiom, there exists $a^* := \sup_{n\in\mathbb{N}} a_n$. Since $a^* \in (a_n)^{\uparrow}$, $a^* \geq a_n \ \forall n \in \mathbb{N}$. Further, because a^* is the least upper bound, then for every upper bound b_n , it must be $a^* \leq b_n \ \forall n \in \mathbb{N}$. Therefore, $x^* \in [a_n, b_n] \ \forall n \in \mathbb{N}$. That is, $x^* \in \bigcap_{n \in \mathbb{N}} I_n$.

Note that NIP requires all intervals to be closed. One instance when this fails to hold: $\bigcap_{n\in\mathbb{N}} \left(0,\frac{1}{n}\right) = \emptyset$.

Theorem 1.2 (Archimedean Property).

- (i) $\forall x \in \mathbb{R}, \exists n \in \mathbb{N} \ s.t. \ n > x;$
- (ii) $\forall y \in \mathbb{R}_{++}, \exists n \in \mathbb{N} \ s.t. \frac{1}{n} < y.$

Archimedean property of natural numbers can be interpreted as there is no real number that bounds \mathbb{N} . This interpretation can be seen by considering the negations of above statements:

- (i) $\exists x \in \mathbb{R} \ s.t. \ \forall n \in \mathbb{N}, \ n \leq x;$
- (ii) $\exists y \in \mathbb{R}_{++} \ s.t. \ \forall n \in \mathbb{N}, \ y \leq \frac{1}{n}$.

Proof of (i) by Contradiction. Suppose the negated statement (i) is true, \mathbb{N} is bounded above. By the completeness axiom, there exists $a^* := \sup \mathbb{N}$. $\exists n \in \mathbb{N} \text{ s.t. } a^* - 1 < n$. In this case, $a^* < n + 1 \in \mathbb{N}$, which means $a^* \notin \mathbb{N}^{\uparrow}$ and leads to a contradiction.

Proof of (ii). Let $y^* \in \mathbb{R}_{++}$, take $x = \frac{1}{y}$. By statement (i), there exists $n^* \in \mathbb{N}$ such that $n > \frac{1}{y}$. Because y > 0, $\frac{1}{n} < y$.

1.2 Density of Rational Numbers

Theorem 1.3. For every $a, b \in \mathbb{R}$ such that a < b, there exists $r \in \mathbb{Q}$ such that a < r < b.

The above theorem says \mathbb{Q} is in fact **dense** in \mathbb{R} . More generally, one says a set $A \subset X$ is dense whenever the closure of A, $\overline{A} = X$.

Proof. Step 1: Since b-a>0, by the first Archimedean property, there exists $n\in\mathbb{N}$ such that $n>\frac{1}{b-a}$. Such natural number satisfies $\frac{1}{n}< b-a$.

Step 2: Let m be smallest integer such that m > an. That is, $m-1 \le an < m$. Obviously, $a < \frac{m}{n}$ since n > 0. Further, since $m \le an+1$, with results from step (i), m < bn-1+1 = bn, and $\frac{m}{n} < b$. Therefore $\frac{m}{n} \in (a,b)$.

Theorem 1.4. $\exists \alpha \in \mathbb{R} \ s.t.\alpha^2 = 2$.

Proof. Let $\Omega:=\{t\in\mathbb{R}:t^2<2\}$, which is obviously a set in \mathbb{R} bounded from above. By the completeness axiom, Ω possesses a supremum, and we claim $\alpha:=\sup\Omega$ satisfies $\alpha^2=2$. Suppose $\alpha^2>2$, then there exists $\varepsilon>0$ such that $\alpha^2-2\alpha\varepsilon+\varepsilon^2>2$. Therefore, $\alpha>\alpha-\varepsilon\in\Omega^{\uparrow}$, which contradicts the fact that α is the least upper bound. Suppose $\alpha^2<2$, then there exists some $\varepsilon>0$ such that $\alpha+\varepsilon\in\Omega$, which contradicts the assumption that α is an upper bound. Hence, it must be the case that $\alpha^2=2$.