

Workshop: Machine Learning and Prediction Modelling

Decision Trees

Yannick Rothacher

SPF, HS2025

What is a decision tree?

Generally speaking, a decision tree is a diagram, which helps us determining

a course of action (e.g. "should I worry?")

- We can use decision trees for classification or regression
 - Such trees are the result of what is referred to as recursive partitioning
- Let's look at an example of a decision tree used for classification...

- We want to predict whether a person will cheat in his/her tax declaration based on some training data
- "Cheat" is the target variable (two levels: yes/no)
- The generated decision tree uses the three predictor variables to model whether someone will cheat or not:

- Use the generated tree to predict outcome of a new observation
- Work through the tree for prediction:

Test Data

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

- Use the generated tree to predict outcome of a new observation
- Work through the tree for prediction:

- Use the generated tree to predict outcome of a new observation
- Work through the tree for prediction:

- Use the generated tree to predict outcome of a new observation
- Work through the tree for prediction:

- Use the generated tree to predict outcome of a new observation
- Work through the tree for prediction:

- Use the generated tree to predict outcome of a new observation
- Work through the tree for prediction:

Decision tree – partitioning

A classic decision tree splits the data at each node based on one predictor variable

For the case of only **two predictor variables** we can visualize this in a 2D-coordinate system:

Model: Decision Tree

 X_1

Only straight lines!

Decision tree – partitioning

- A classic decision tree splits the data at each node based on one predictor variable
- For the case of only **two predictor variables** we can visualize this in a 2D-coordinate system:

Decision tree – partitioning

- A classic decision tree splits the data at each node based on one predictor variable
- For the case of only **two predictor variables** we can visualize this in a 2D-coordinate system:

Decision trees – over- and underfitting

- How deep should a tree be allowed to grow?
 - We can grow a tree until there are only pure partitions left (right figure below)
 - Same problem of over- and underfitting like with the KNN-classifier!
- Which one of the trees below is better?

Recap: Test-error

- Like in the case of the KNN-classifier we want to minimize the **test-error**
- Evaluation methods like e.g. cross-validation can of course also be applied to decision trees
 - Prevent over-fitting: Fully grown trees can be "pruned" (cut shorter) depending on whether a branch improves the fit to data evaluated by cross-validation

How are the partitions generated?

- Building a decision tree from scratch involves the following two questions at each node:
 - Which variable should be used for the next split?
 - Where along the chosen variable should we split?
- How can we decide what the best variable and split-location is?
- We will look at two different methods to solve these questions
 - ▶ 1) classic partitioning based on impurity measure (e.g. Gini-index)
 - 2) bias-free partitioning based on significance tests

Classification trees – impurity measure

- Main idea: Try to find the split, which reduces the impurity of the data the most
 - How can we measure "impurity"?
- ► The Gini index is one of the most common impurity measures

$$Gini=1-\sum_{i}^{C}p_{i}^{2}$$

Entropy is another common impurity $Entropy = -\sum_{i}^{C} p_{i} \log_{2}(p_{i})$ measure

$$Gini_{root} = 1 - ((11/15)^2 + (4/15)^2) = 0.391$$

$$Gini_L = 1 - ((2/6)^2 + (4/6)^2) = 0.444$$

 $Gini_R = 1 - ((0/9)^2 + (9/9)^2) = 0$

Gini-reduction (weighted by number of observations in each partition):

$$Gini_decrease = Gini_{root} - (6/15)*Gini_{L} - (9/15)*Gini_{R}$$

Classification trees – impurity measure

- Main idea: Try to find the split, which reduces the impurity of the data the most
 - How can we measure "impurity"?
- ► The Gini index is one of the most common impurity measures

$$Gini=1-\sum_{i}^{C}p_{i}^{2}$$

Entropy is another common impurity measure $Entropy = -\sum_{i}^{C} p_{i} \log_{2}(p_{i})$

X

$$Gini_{root} = 1 - ((11/15)^2 + (4/15)^2) = 0.391$$

$$Gini_L = 1 - ((2/6)^2 + (4/6)^2) = 0.444$$

 $Gini_R = 1 - ((0/9)^2 + (9/9)^2) = 0$

Gini-reduction (weighted by number of observations in each partition):

$$Gini_decrease = Gini_{root} - (6/15)*Gini_{L} - (9/15)*Gini_{R}$$

→ Choose the split with the largest Gini-reduction

Partition algorithm (impurity measure based)

- Start with a single region (encompassing all data)
- Iterate through the following steps:

For each region \mathbf{R} For each variable \mathbf{x}_i in \mathbf{R} For each possible split \mathbf{s}_i of \mathbf{x}_i Record impurity decrease

The Choose $(\mathbf{x}_i, \mathbf{s}_i)$ which gives maximum impurity decrease

 \rightarrow Replace **R** with **R**_R and **R**_I

- Stop splitting either based on a stopping rule or when there is no more impurity reduction possible
 - Stopping rule example: Stop splitting when a branch contains less than a certain percentage of the data

$$Gini=1-\sum_{i}^{C}p_{i}^{2}$$

library(rpart)

Decision tree in R – rpart

- rpart is an R-package to fit decision trees (impurity measure based)
- Here an example of fitting a (classification) tree to the "Iris" data set:

```
tree.iris <- rpart(Species ~., data=iris) # default uses Gini-index</pre>
plot(tree.iris, margin = 0.1)
text(tree.iris, use.n = TRUE)
# Predict training data (use type = 'prob' to get probabilities):
pred.tree <- predict(tree.iris, iris, type = 'class')</pre>
# Confusion matrix:
(confT <- table(pred.tree, iris$Species))</pre>
                                                                    Petal.Length < 2.45
pred.tree setosa versicolor virginica
  setosa
                   50
                                           0
  versicolor
  virginica
                                          45
                                                                                 Petal.Width< 1.75
                                                           setosa
# Training-error:
                                                             50/0/0
diag(confT) <- 0</pre>
missCount <- sum(confT)</pre>
                                                                            versicolor
                                                                                              virginica
(trainErr <- missCount/nrow(iris))</pre>
                                                                              0/49/5
                                                                                               0/1/45
[1] 0.04
```


Decision tree in R – rpart

- rpart is an R-package to fit decision trees (impurity measure based)
- Here an example of fitting a (classification) tree to the "Iris" data set:

What is this?

```
library(rpart)
tree.iris <- rpart(Species ~., data=iris) # default uses Gini-index</pre>
plot(tree.iris, margin = 0.1)
text(tree.iris, use.n = TRUE)
# Predict training data (use type = 'prob' to get probabilities):
pred.tree <- predict(tree.iris, iris, type = 'class')</pre>
# Confusion matrix:
(confT <- table(pred.tree, iris$Species))</pre>
                                                                    Petal.Length < 2.45
pred.tree
              setosa versicolor virginica
  setosa
                   50
                                           0
  versicolor
  virginica
                                          45
                                                                                  Petal.Width< 1.75
                                                            setosa
# Training-error:
                                                             50/0/0
diag(confT) <- 0</pre>
missCount <- sum(confT)</pre>
                                                                             versicolor
                                                                                              virginica
(trainErr <- missCount/nrow(iris))</pre>
                                                                              0/49/5
                                                                                               0/1/45
[1] 0.04
```


Problems with rpart

- Using an impurity measure based approach to select splits suffers from an inherent bias in certain cases
 - This bias is related to the **number of splits** that are possible for each variable
- How many splits are there per variable?
- For **continuous** variable (numeric):

 Moving a split in between points does not affect the impurity reduction

 X₂

 X₃

 X₄

 X₁

 X₁

 X₁

 X₂

 X₃

 X₄

 X₁
 - \triangleright For the five data points above, there are only **four ways** to separate the data (along X_1)
- What about other types of variables?

Problems with rpart

- We can also include categorical variables (factors) as predictors in a decision tree
- How many splits are possible for factors?
 - E.g. two-level factor (levels: a,b) a I b split1
 - E.g. four-level factor (levels: a,b,c,d):
 - a I b,c,d split1
 - b I a,c,d split2
 - c I a,b,d split3
 - d I a,b,c split4
 - a,b I c,d split5
 - a,c I b,d split6
 - a,d I b,c split7
 - **k**-level factor: $number \ of \ splits = 2^{(k-1)} 1$
- Single, Divorced

 Single, Divorced

 Single, Divorced

 Taxinc

 Single, Divorced

 Taxinc

 Source: Tan, Steinbach, Kumar

Married

120K

Splitting Attributes

→ 10-levels: 511 splits

With increasing number of levels we can apply an exponentially growing number of splits

Problems with rpart

With increasing number of levels we can apply an exponentially growing number of splits

E.g. **two**-level factor (levels: a,b)

E.g. **four**-level factor (levels: a,b,c,d):

a I b split1

a I b,c,d split1

b I a,c,d split2 c I a,b,d split3

d I a,b,c split4 ab I c,d split5 ac I b,d split6

ad I b,c split7

- ➤ The difference in numbers of splits between continuous variables, factors with few levels and factors with many levels creates an issue of multiple comparisons
- Multiple comparisons problem in decision trees:
 - Even if there is no real relation between predictors and the target variable, under certain circumstances multi-level factors will be preferably selected for splitting compared to numerical variables or factors with few levels because they get more "chances" to reach a high impurity-decrease (even if this decrease is only achieved by pure luck)
 - More chances in the sense that more splits can be evaluated (more chances to get lucky)
 - Ideally, we do not want our decision trees to be biased in their variable selection

- ▶ Bias-free partitioning has been proposed to solve this problem (e.g. see Hothorn et al. 2006)
 - Main idea: Use significance tests instead of impurity measures to select variable and next split
- How does it work?
 - ➤ The selection process is more clearly separated into
 - 1) Choosing the next splitting variable and
 - 2) Choosing the splitting location along the chosen variable

- Choosing the next splitting variable:
 - ➤ Test for each variable whether it has a significant association with the target variable (e.g. think of correlation test for numerical variables and of ANOVA for categorical variables). Collect the associated p-values (can be compared between tests)
 - If no variable shows a significant p-value stop splitting (integrated stopping rule)
 - Otherwise choose the variable with the lowest p-value for the next split

Choosing the next splitting variable:

Actual implementation uses special permutation tests (called "conditional inference tests") that are available for all types of variables.

- ▶ Test for each variable whether it has a significant association with the target variable (e.g. think of correlation test for numerical variables and of ANOVA for categorical variables). Collect the associated p-values (can be compared between tests)
- If no variable shows a significant p-value stop splitting (integrated stopping rule)
- Otherwise choose the variable with the lowest p-value for the next split

Choosing the next splitting variable:

Actual implementation uses special permutation tests (called "conditional inference tests") that are available for all types of variables.

- ➤ Test for each variable whether it has a significant association with the target variable (e.g. think of correlation test for numerical variables and of ANOVA for categorical variables). Collect the associated p-values (can be compared between tests)
- If no variable shows a significant p-value stop splitting (integrated stopping rule)
- Otherwise choose the variable with the lowest p-value for the next split
- Choosing the next splitting location:
 - Calculate for each possible split (along the chosen variable) a test-statistic (expressing the difference between the created partitions, could also use impurity measure) and select split with the highest test-statistic
- Using this approach, there is **no bias** in the selection of different variable-types

Bias-free partitioning in R

- "partykit" is an R-package which includes functions to fit bias-free (significance test based) decision trees (ctree()-function)
- Fitting a classification tree to the "Iris" data set

```
> library(partykit)
> ctree.iris <- ctree(Species ~., data=iris) # fit tree
> plot(ctree.iris)
> pred.ctree <- predict(ctree.iris, newdata=iris, type='response')
> confT <- table(pred.ctree, iris$Species) # Confusion matrix</pre>
```

```
> confT
pred.ctree setosa versicolor virginica
setosa 50 0 0
versicolor 0 49 5
virginica 0 1 45
```


Decision trees for regression

- Decision trees can be used for classification (categorical target variable) and for regression (numerical target variable)
- The general principle behind building the tree structure does not change
 - E.g. use **mean squared error** as "impurity measure" instead of Gini-index

$$MSE = \frac{1}{n} \sum_{i}^{n} (x_i - \bar{x})^2$$

- We try to find the splits which best reduce the mean squared error
- With ctree we can fit a bias-free regression tree (again based on significance tests)

Decision trees for regression

- Decision trees can be used for classification (categorical target variable) and for regression (numerical target variable)
- ➤ The general principle behind building the tree structure does not change
 - E.g. use **mean squared error** as "impurity measure" instead of Gini-index

$$MSE = \frac{1}{n} \sum_{i}^{n} (x_i - \bar{x})^2$$

- We try to find the splits which best reduce the mean squared error
- With ctree we can fit a bias-free regression tree (again based on significance tests)

Regression tree in R

Example of fitting a regression tree to the "Iris" data using ctree()

```
library(partykit)
ctree.iris <- ctree(Sepal.Length ~., data=iris) # fit regression tree
plot(ctree.iris)
# Get the predicted values (for training data):
pred.ctree <- predict(ctree.iris, newdata=iris, type='response')</pre>
```


Decision trees – Summary

- Advantages of decision trees:
 - Good interpretability
 - No assumptions regarding distributions
 - Can capture non-linear structures and complex interactions
- Disadvantages:
 - Single trees are instable (small changes in data can give different-looking tree, especially if underlying pattern is complex)
 - In case of not pruned rpart-trees: Tend to overfit
 - Needs a lot of data to capture linear structures

Caution: In case of different types of predictor variables use algorithm with bias-free variable selection (ctree in R)

Further reading

Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and Random Forests. Psychological Methods, 14 (4), 323–348. doi: 10.1037/a0016973