

Data, models and science

Jonathan Dushoff, McMaster University

DAIDD 2020

Introduction

Public health

Maternal mortality

Cholera

Yellow fever and malaria

Approaches to epidemiology

Goals

- Process of science
- ► How science informs public health
 - Specific examples
- Approaches to epidemiology

Science is a process

- Observe and experiment with reality to discover and challenge ideas about how it works
- A key to science is that everything is open to question
 - Science is the belief in the ignorance of experts Feynman

The process of science

Science without experiments

Introduction

Public health

Maternal mortality

Cholera

Yellow fever and malaria

Approaches to epidemiology

Introduction

Public health

Maternal mortality

Cholera

Yellow fever and malaria

Approaches to epidemiology

Maternal mortality

Clinic

1

- 2

Observation and action

- ▶ In 1840, medical students stopped visiting Clinic 1
- In 1847, a surgeon died from infection following a scalpel injury
 - Igor Semmelweiss made medical students wash their hands

11/38

Introduction

Public health

Maternal mortality Cholera

Yellow fever and malaria

Approaches to epidemiology

Cholera

- Is it caused by bad air, or bad water?
- What's bad about it?

Cholera and air (present)

Cholera and air

Introduction

Public health

Maternal mortality

Cholera

Yellow fever and malaria

Approaches to epidemiology

Yellow fever and malaria

- Ross determined the cause of malaria primarily by experiments on mosquitoes
- Reed determined the cause of yellow fever primarily by experiments on human volunteers

Introduction

Public health

Maternal mortality

Cholera

Yellow fever and malaria

Approaches to epidemiology

Data, models and science

- We're never finished, we compare models to data over and over again
- Data is what we use to develop and understand models
- Models are what we use to interpret data
 - and they can suggest what data we need to collect
- Complicated or hard-to-test theories may require dynamical models

Classical epidemiology

Dynamical epidemiology

- Avoid mechanism
- Control for non-independence of "units"

- ► Embrace mechanism
- Explicitly incorporate dependence between units
 - X is infected because Y infected them

Classical example

Classical example

Univariate means

Multivariate means

Dynamical examples

Rubella (present)

Measles (present)

Polio (present)

Influenza (present)

Bridging

- Classical epidemiology relies on statistics, avoids mechanism
- Mathematical epidemiology (the traditional approach to dynamical epidemiology) explores mechanism, avoids statistics
- Much modern dynamical epidemiology seeks ways to put dynamical mechanisms into a statistical framework
 - This is hard

Introduction

Public health

Maternal mortality

Cholera

Yellow fever and malaria

Approaches to epidemiology

- Science is an ongoing process
- Models are the way that we bridge between theory and reality
- Dynamical models have a key role
 - When we can't do experiments
 - When mechanisms are complex
- We should work to combine dynamics with statistical approaches

This presentation is made available through a Creative Commons Attribution-Noncommercial license. Details of the license and permitted uses are available at http://creativecommons.org/licenses/by-nc/3.0/

© 2019–2020, International Clinics on Infectious Disease Dynamics and Data

Title: Data, models and science Attribution: Jonathan Dushoff, McMaster University, DAIDD 2020

Source URL: https://figshare.com/collections/International_ Clinics_on_Infectious_Disease_Dynamics_and_Data/3788224 For further information please contact admin@ici3d.org.

