WHAT IS CLAIMED IS:

1	A reaction mixture for producing a product saccharide, wherein the		
2	reaction mixture comprises an acceptor saccharide and a first type of plant or microorganis		
3	cell that produces: a) a nucleotide sugar, and b) a first recombinant glycosyltransferase that		
4	catalyzes the transfer of a sugar from the nucleotide sugar to the acceptor saccharide to form		
5	the product saccharide.		
1	2. The reaction mixture of claim 1, wherein the cells are selected from one		
2	or more of the group consisting of bacterial cells, yeast cells, fungal cells, and plant cells.		
1	3. The reaction mixture of claim 1, wherein the cells are permeabilized or		
2	otherwise disrupted.		
1	4. The reaction mixture of claim 1, wherein the glycosyltransferase is a		
2	fucosyltransferase and the nucleotide sugar is GDP-fucose.		
1	5. The reaction mixture of claim 1, wherein the glycosyltransferase is a		
2	sialyltransferase and the nucleotide sugar is CMP-sialic acid		
1	6. The reaction mixture of claim 1, wherein nucleotide sugar is selected		
2	from the group consisting of UDP-Gal, UDP-Glc, UDP-Glucuronic acid, UDP-GalNAc,		
3	UDP-Galacturonic acid, GDP-mannose.		
1	7. The reaction mixture of claim 1, wherein the first type of cell produces		
2	the nucleotide sugar at an elevated level compared to a wild-type cell.		
1	8. The reaction mixture of claim 7, wherein the elevated level of the		
2	nucleotide sugar results from a deficiency in the ability of the cell to incorporate the		
3	nucleotide sugar into a polysaccharide normally produced by the cell.		

1	9. The reaction mixture of claim 7, wherein the elevated level of the		
2	nucleotide sugar is at least 10% higher than the level of the nucleotide sugar produced by th		
3	wild-type cell.		
1	10. The reaction mixture of claim 9, wherein the elevated level of the		
2	nucleotide sugar is at least 25% higher than the level of the nucleotide sugar produced by the		
3	wild-type cell.		
1	11. The reaction mixture of claim 1, wherein the nucleotide sugar is		
2	synthesized by an enzymatic pathway that includes one or more enzymes that are expressed		
3	from heterologous genes.		
	40 m		
1	12. The reaction mixture of claim 11, wherein the recombinant		
2	glycosyltransferase is a sialyltransferase, the nucleotide sugar is CMP-sialic acid and the		
3	heterologous gene encodes CMP-sialic acid synthetase.		
1	13. The reaction mixture of claim 12, wherein the acceptor saccharide is		
2	lactose and the product saccharide is sialyllactose.		
2	lactose and the product saccharide is staryhactose.		
1	14. The reaction mixture of claim 11, wherein the recombinant		
2	glycosyltransferase is a \$1,4-GalNAc transferase and the nucleotide sugar is UDP-GalNAc.		
1	15. The reaction mixture of claim 14, wherein the acceptor is lactose and		
2	the product saccharide is β1,4-GalNAc-lactose.		
1	16. The reaction mixture of claim 11, wherein the recombinant		
2	glycosyltransferase is a galactosyltransferase and the nucleotide sugar is UDP-Gal.		
1	17. The reaction mixture of claim 16, wherein the galactosyltransferase is		
2	an α 1,3-galactosyltransferase and the product saccharide contains a terminal α 1,3-linked		
3	galactose residue.		

1	18. The reaction mixture of claim 11, wherein the enzymatic pathway	
2	comprises a full or partial sugar nucleotide regeneration cycle.	
1	19. The reaction mixture of claim 18, wherein the nucleotide sugar is UDP-	
2	GalNAc and the sugar nucleotide regeneration cycle comprises a set of enzymes selected	
3	from the group consisting of:	
4	UDP-GalNAc epimerase, UDP-GlcNAc pyrophosphorylase, GlcNAc-1-	
5	kinase, polyphosphate kinase and pyruvate kinase; and	
6	UDP-GalNAc pyrophosphorylase, GlcNAc-1-kinase, polyphosphate	
7	kinase and pyruvate kinase.	
٥		
1	20. The reaction mixture of claim 19, wherein the reaction mixture further	
2	comprises a second cell type that produces a nucleotide that is used as a substrate for the	
3	sugar nucleotide regeneration cycle.	
	\	
1	21. The reaction mixture of claim 20, wherein the second cell type	
2	comprises an exogenous gene that encodes a nucleotide synthetase polypeptide that catalyzes	
3	the synthesis of the nucleotide.	
1	22. The reaction mixture of claim 21, wherein the first cell type comprises	
2	exogenous genes that encode a) a fusion protein that comprises a polypeptide having 3'-	
3	sialyltransferase activity and a polypeptide that has CMP-sialic acid synthetase activity; and	
4	b) enzymes that catalyze the synthesis of sialic acid from GlcNAc;	
5	and the second cell type comprises an exogenous gene that encodes	
6	CMP-synthetase.	
1	23. The reaction mixture of claim 21, wherein the first cell type is E. coli	
2	and the second cell type is yeast or Corynebacterium.	

1	24. The reaction mixture of claim 1, wherein the first type of cell produces a	
2	second recombinant glycosyltransferase that catalyzes the transfer of a sugar from the	
3	nucleotide sugar to the product saccharide to form a further glycosylated product saccharide.	
1	25. The reaction mixture of claim 24, wherein the nucleotide sugar is UDP-	
2	Gal, the first recombinant glycosyltransferase is an β 1,4-galactosyltransferase and the second	
3	recombinant glycosyltransferase is an α 1,3-galactosyltransferase.	
1	26. The reaction mixture of claim 25, wherein the acceptor saccharide is	
2	$Glc(R)\beta$ -O-R ¹ , wherein R ¹ is -(CH ₂) _n -COX; X is selected from the group consisting of OH,	
3	OR ² , -NHNH ₂ , R is OH or NAc; R ² is a hydrogen, a saccharide, an oligosaccharide or an	
4	aglycon group having at least one carbon atom, and n is an integer from 2 to 18.	
1	27. The reaction mixture of claim 25, wherein the UDP-Gal is generated by	
2	enzymes that are expressed from exogenous genes that encode UDP-Gal 4' epimerase and	
3	UDP-Glc pyrophosphorylase.	
1	28. The reaction mixture of claim 1, wherein the cell further comprises: a)	
2	an enzymatic system for producing at least a second nucleotide sugar, and b) at least a	
3	second recombinant glycosyltransferase that catalyzes transfer of a sugar from the second	
4	nucleotide sugar to the product sugar.	
1	29. The reaction mixture of claim 28, wherein:	
2	the first recombinant glycosyltransferase is a GlcNAc transferase and	
3	the first nucleotide sugar is UDP-GlcNAc; and	
4	the second recombinant glycosyltransferase is a galactosyltransferase	
5	and the second nucleotide sugar is UDP-galactose.	
1	30. The reaction mixture of claim 29, wherein the reaction mixture forms	
2	lacto-N-neotetraose (LNnT).	

1	31. The reaction mixture of claim 1, wherein the reaction mixture also	
2	comprises at least a second type of cell that produces a) a second nucleotide sugar, and b) a	
3	second recombinant glycosyltransferase that catalyzes the transfer of the sugar from the	
4	second nucleotide sugar to the product saccharide.	
1	32. The reaction mixture of claim 31, wherein the first glycosyltransferase	
2	is a galactosyltransferase and the second glycosyltransferase is a GalNAc transferase.	
1	33. The reaction mixture of claim 31, wherein:	
2	the first cell type comprises a recombinant β1,4-GalNAc transferase, a	
3	recombinant β1,4-Gal transferase, UDP-GalNAc and UDP-Gal; and	
4	the second cell type comprises a recombinant α2,3-sialyltransferase and	
5	CMP-sialic acid.	
1	34. The reaction mixture of claim 33, wherein the CMP-sialic acid is	
2	produced from CTP and GlcNAc by an enzymatic system in the second cell type that	
3	includes recombinant enzymes CMP-sialic acid synthetase, GlcNAc epimerase, NeuAc	
4	aldolase, and CMP-synthetase.	
1	35. The reaction mixture of claim 33, wherein the acceptor saccharide is	
2	lactosylceramide or lyso-lactosylceramide and the product saccharide is ganglioside GM2.	
1	36. The reaction mixture of claim 33, wherein the second cell type further	
2	comprises a recombinant α2,8-sialyltransferase.	
1	37. The reaction mixture of claim 36, wherein the acceptor is	
2	lactosylceramide or lyso-lactosylceramide and the product saccharide is GD ₂ .	

1	36. The reaction mixture of claim 1, wherein the reaction mixture also	
2	comprises a second type of cell that produces a nucleotide from which is synthesized the	
3	nucleotide sugar produced by the first type of cell.	
1	39. The reaction mixture of claim 38, wherein nucleotide produced by the	
2	second cell type and the corresponding nucleotide sugar are selected from the group	
3	consisting of:	
4	UTP: UDP-Gal, UDP-GalNAc, UDP-GlcNAc, UDP-Glc, UDP-	
5	glucuronic acid, or UDP-galacturonic acid;	
6	GTP: GDP-Fuc; and	
7	CTP: CMP-sialic acid.	
1	40. A cell that produces a product saccharide, wherein the cell comprises:	
2	a) a recombinant gene that encodes a glycosyltransferase;	
3	b) an enzymatic system for forming a nucleotide sugar that is a	
4	substrate for the glycosyltransferase; and	
5	c) an exogenous saccharide acceptor moiety;	
6	wherein the glycosyltransferase catalyzes the transfer of a sugar from	
7	the nucleotide sugar to the acceptor moiety to produce the product saccharide.	
1	41. The cell of claim 40, wherein the enzymatic system for forming a	
2	nucleotide sugar comprises cycle enzymes for regenerating the nucleotide sugar.	
1	42. The cell of claim 40, wherein the recombinant gene that encodes a	
2	glycosyltransferase is a heterologous gene.	
	40 mm 11 0 1 1 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1	43. The cell of claim 40, wherein the cell forms the nucleotide sugar at an	
2	elevated level compared to a wild-type cell.	

1	44.	The cell of claim 43, wherein the elevated level of nucleotide sugar
2	results from a defic	eiency in the ability of the cell to incorporate the nucleotide sugar into a
3	polysaccharide nor	mally produced by the cell.
1	45.	The cell of claim 44, wherein the deficiency is due to a reduced level of
2	a polysaccharide gl	ycosyltransferase activity.
1	46.	The cell of claim 40, wherein the product saccharide is produced at a
		•
2	concentration of at	least about 1 mivi.
. 1	47.	The cell of claim 40, wherein the enzymatic system for forming a
2	nucleotide sugar co	omprises an enzyme encoded by a heterologous gene.
	^	
1	July 02 48.	The cell of claim 47, wherein the enzyme encoded by the heterologous
2	gene is one or more of:	
3		a GDP-mannose dehydratase, a GDP-mannose 3,5-epimerase, and a
4	GDP-mannose 4-re	eductase;
5		a UDP-galactose 4' epimerase;
6		a UDP-GalNAc 4' epimerase;
7		a CMP-sialic acid synthetase;
8		a pyrophosphorylase selected from the group consisting of a UDP-Glc
9	pyrophosphorylase	, a UDP-Gal pyrophosphorylase, a UDP-GalNAc pyrophosphorylase, a
10	GDP-mannose pyro	ophosphorylase, and a UDP-GlcNAc pyrophosphorylase;
11		a kinase selected from the group consisting of myokinase, pyruvate
12	kinase, acetyl kinase, creatine kinase; and	
13		pyruvate decarboxylase.
1	49.	The cell of claim 48, wherein the nucleotide sugar is GDP-fucose.
1	5,0.	A cell that produces a sulfated polysaccharide, the cell comprising:

3	an enzymatic system that produces PAPS.	
1	51. The cell of claim 50, wherein the sulfated polysaccharide is selected	
2	from the group consisting of heparin sulfate and carragenin.	
1	52. The cell of claim 50, wherein the enzymatic system that produces PAPS	
2	comprises one or more enzymes that are expressed from exogenous genes.	
1	53. A method of producing a product saccharide, the method comprising	
2	contacting a microorganism or plant cell with an acceptor saccharide, wherein the cell	
3	comprises:	
$)^4$	a) an enzymatic system for forming a nucleotide sugar; and	
/ ₅	b) a recombinant glycosyltransferase which catalyzes the transfer of a	
6	sugar from the nucleotide sugar to the acceptor saccharide to produce the product saccharide	
1	54. The method of claim 53, wherein the glycosyltransferase is encoded by	
2	a heterologous gene.	
1	55. The method of claim 53, wherein the glycosyltransferase is encoded by	
2	a gene that is endogenous to the cell and is produced by the cell at an elevated level	
3	compared to a wild-type cell.	
1	56. The method of claim 53, wherein the product saccharide is produced at	
2	a concentration of at least about 1 mM.	
1	57. The method of claim 53, wherein the cell is permeabilized.	
1	58. The method of claim 53, wherein the cell is an intact cell.	
1	59. The method of claim 53, wherein the enzymatic system for forming a	

a heterologous gene that encodes a sulfotransferase; and

outo

2

nucleotide sugar comprises an enzyme that is encoded by a heterologous gene.

a .	~ 3 60.	The method of claim 59, wherein the enzyme encoded by the
July 1	heterologous gene is	
2	neterologous gene i	\
3		a GDP-mannose dehydratase, a GDP-4-keto-6-deoxy-D-mannose 3,5-
4	epimerase, and a GI	OP-4-keto-6-deoxy-L-glucose 4-reductase;
5		a UDP-galactose 4' epimerase;
6		a UDP-GalNAc 4' epimerase;
7		a CMP-sialic acid synthetase;
8		a pyrophosphorylase selected from the group consisting of a UDP-Glc
9	pyrophosphorylase,	a UDP-Gal pyrophosphorylase, a UDP-GalNAc pyrophosphorylase, a
10	GDP-mannose pyro	phosphorylase, and a UDP-GlcNAc pyrophosphorylase; a kinase
11	selected from the gr	oup consisting of myokinase, pyruvate kinase, acetyl kinase, creatine
12	kinase; and	1
13		pyruvate decarboxylase.
1	61.	The method of claim 59, wherein the enzyme for forming a nucleotide
2 ·	sugar and the glycos	syltransferase are expressed as a fusion protein.
1	62.	The method of claim 61, wherein the fusion protein comprises a CMP-
2	sialic acid synthetas	e activity and a sialyltransferase activity.
1	63.	The method of claim 61, wherein the fusion protein comprises a
2	galactosyltransferas	e activity and a UDP-Gal 4' epimerase activity.
1	64.	The method of claim 61, wherein the fusion protein comprises a
2	GalNAc transferase	activity and a UDP-GlcNAc 4' epimerase activity.
1	65.	The method of claim 53, wherein the nucleotide sugar is GDP-fucose
2	and the glycosyltrar	nsferase is a fucosyltransferase.

1	66.	The method of claim 53, wherein the cell forms the nucleotide sugar at	
2	an elevated level co	ompared to a wild-type cell.	
1	67.	The method of claim 66, wherein the elevated level of nucleotide sugar	
2	results from a defic	ciency in the ability of the cell to incorporate the nucleotide sugar into a	
3	polysaccharide nor	mally produced by the cell.	
1	68.	The method of claim 67, wherein the deficiency is due to a reduced	
2	level of a polysaccl	haride glycosyltransferase activity.	
1	69.	The method of claim 53, wherein the cell/nucleotide sugar are selected	
2	from the group consisting of:		
3		Azotobacter vinelandii/GDP-Man;	
4		Pseudomonas sp./UDP-Glc and GDP-Man;	
5		Rhizobium sp./UDP-Glc, UDP-Gal, GDP-Man;	
6		Erwinia sp./UDP-Gal, UDP-Glc;	
7		Escherichia sp./UDP-GlcNAc, UDP-Gal, CMP-NeuAc, GDP-Fuc;	
8		Klebsiella sp./UDP-Gal, UDP-GlcNAc, UDP-Glc, UDP-GlcNAc;	
9		Hansenula jadinii/ GDP-Man, GDP-Fuc;	
10		Candida famata/UDP-Glc, UDP-Gal, UDP-GlcNAc;	
11		Saccharomyces cerevisiae/UDP-Glc, UDP-Gal, GDP-Man, GDP-	
12	GlcNAc; and		
13		X. campesti/UDP-Glc, GDP-Man.	
1	70.	The method of claim 53, wherein the cell is Azotobacter vinelandii, the	
2	nucleotide sugar is	GDP-mannose, the acceptor saccharide is lactose, the glycosyltransferase	
3	is mannosyl transfe	erase, and the product saccharide is mannosyl lactose.	

1

- 71. The method of claim 53, wherein the cell is E. coli, the nucleotide sugar
- 2 is CMP-sialic acid, the acceptor saccharide is lactose, the glycosyltransferase is a
- 3 sialyltransferase, and the product saccharide is sialyllactose.

33/