Euler Angles and Rotation Matrix

KITECH 양광웅 작성

물체의 회전을 표현하기 위한 오일러 각(Euler Angles)와 회전행렬(Rotation Matrix)에 대해 알아보고, 오일러 각과 회전행렬 간의 관계를 알아보자.

Rotation Matrix

회전행렬(Rotation Matrix)은 방향코사인행렬(Direction Cosine Matrix)이라 부르기도 한다. 회전좌표계 (n,o,a)의 각 축이 기준좌표계 (x,y,z)의 각 축과 이루는 방향코사인(direction cosine)으로 구성되기 때문이다.

$$\mathbf{R} = \begin{bmatrix} n_x & o_x & a_x \\ n_y & o_y & a_y \\ n_z & o_z & a_z \end{bmatrix}$$

회전행렬의 각 열벡터 $\mathbf{n} = (n_x, n_y, n_z)^T$, $\mathbf{o} = (o_x, o_y, o_z)^T$, $\mathbf{a} = (a_x, a_y, a_z)^T$ 는 단위벡터이고 서로 직교하는 성질이 있다.

 $\mathbf{n} \cdot \mathbf{o} = 0$, $\mathbf{o} \cdot \mathbf{a} = 0$, $\mathbf{a} \cdot \mathbf{n} = 0$.

$$\|\mathbf{n}\| = 1, \|\mathbf{o}\| = 1, \|\mathbf{a}\| = 1.$$

그래서 회전행렬은 직교행렬(Orthogonal matrix) 이 되며 다음과 같은 성질이 있다.

$$\mathbf{R}^T \mathbf{R} = \mathbf{I},$$
$$\mathbf{R}^T = \mathbf{R}^{-1}$$

이와 같은 성질은 회전행렬의 역(inverse)을 전치(transpose)만으로 구할 수 있기 때문에, 물체의 좌표변환과 역변환을 쉽게 계산할 수 있도록 한다.

Euler Angles

오일러각(Euler Angles)는 3차원 공간에서 물체의 방위를 표시하기 위한 3개 각도의 조합이다. 오일러각으로 물체를 회전할 때는 회전 순서에 주의하여야 한다. 회전순서(X축→Y축→Z축 or Z축→Y축→X축 등 각 축 별 회전 순서의 조합)에 따라 물체의 회전된 최종 방위가 달라지기 때문이

일반적으로 ZYX (Roll-Pitch-Yaw) 회전과 XYZ 회전이 주로 사용된다.

ZYX(Roll-Pitch-Yaw) Angles:

기준좌표계에 대한 물체좌표계의 회전 결과는 다음과 같이 계산된다:

- 1. 기준좌표계를 X-축(Yaw)을 중심으로 ϕ 만큼 회전한다: $\mathbf{R}_{_{\mathrm{Y}}}(\phi)$
- 2. 기준좌표계를 Y-축(Pitch)을 중심으로 θ 만큼 회전한다: $\mathbf{R}_{v}(\theta)$
- 3. 기준좌표계를 Z-축(Roll)을 중심으로 ψ 만큼 회전한다: $\mathbf{R}_z(\psi)$

$$\mathbf{R}_{zvx} = \mathbf{R}_{z}(\psi)\mathbf{R}_{v}(\theta)\mathbf{R}_{x}(\phi)$$

$$= \begin{bmatrix} \cos\theta\cos\psi & \sin\phi\sin\theta\cos\psi - \cos\phi\sin\psi & \cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi \\ \cos\theta\sin\psi & \sin\phi\sin\theta\sin\psi + \cos\phi\cos\psi & \cos\phi\sin\theta\sin\psi - \sin\phi\cos\psi \\ -\sin\theta & \sin\phi\cos\theta & \cos\phi\cos\theta \end{bmatrix}$$

$$\mathbf{R}_{x}(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi & \cos\phi \end{bmatrix} \quad \mathbf{R}_{y}(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \quad \mathbf{R}_{z}(\psi) = \begin{bmatrix} \cos\psi & -\sin\psi & 0 \\ \sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

XYZ Angles:

기준좌표계에 대한 물체좌표계의 회전 결과는 다음과 같이 계산된다:

- 1. 기준좌표계를 Z-축 중심으로 ψ 만큼 회전한다: $\mathbf{R}_{_{z}}(\psi)$
- 2. 기준좌표계를 Y-축을 중심으로 θ 만큼 회전한다: $\mathbf{R}_{y}(\theta)$
- 3. 기준좌표계를 X-축을 중심으로 ϕ 만큼 회전한다: $\mathbf{R}_{_{X}}(\phi)$

$$\mathbf{R}_{xyz} = \mathbf{R}_{x}(\phi)\mathbf{R}_{y}(\theta)\mathbf{R}_{z}(\psi)$$

$$= \begin{bmatrix} \cos\theta\cos\psi & -\cos\theta\sin\psi & \sin\theta \\ \cos\phi\sin\psi + \sin\phi\sin\theta\cos\psi & \cos\phi\cos\psi - \sin\phi\sin\theta\sin\psi & -\sin\phi\cos\theta \\ \sin\phi\sin\psi - \cos\phi\sin\theta\cos\psi & \sin\phi\cos\psi + \cos\phi\sin\theta\sin\psi & \cos\phi\cos\theta \end{bmatrix}$$

Rotation Matrix and Small Angles

회전행렬에서 각도의 변화가 적다면 $\cos \alpha \approx 1$, $\sin \alpha \approx \alpha$ 로 볼 수 있다. 회전행렬에서 비선형 요소인 $\sin \alpha$ cos를 소거하면 다음과 같이 쓸 수 있다.

ZYX(Roll-Pitch-Yaw) Angles:

$$\mathbf{R}_{zyx} \approx \begin{bmatrix} 1 & \theta \psi - \phi & \theta + \phi \psi \\ \phi & \phi \theta \psi + 1 & \phi \theta - \psi \\ -\theta & \psi & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & -\phi & \theta \\ \phi & 1 & -\psi \\ -\theta & \psi & 1 \end{bmatrix}$$

XYZ Angles:

$$\mathbf{R}_{xyz} \approx \begin{bmatrix} 1 & -\psi & \theta \\ \psi + \phi\theta & 1 - \phi\theta\psi & -\phi \\ \phi\psi - \theta & \phi + \theta\psi & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & -\psi & \theta \\ \psi & 1 & -\phi \\ -\theta & \phi & 1 \end{bmatrix}$$

Rotation Matrix to Euler Angles

회전행렬 ${f R}$ 로부터 오일러각을 다음과 같이 계산할 수 있다. 다음 식에서 사용되는 r_{ij} 는 행렬 ${f R}$ 의 i 행과 j 열의 원소다.

$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

ZYX(Roll-Pitch-Yaw) Angles:

 θ 가 $(-\pi/2, \pi/2)$ 일 때는 다음과 같다.

$$\psi = \operatorname{atan} 2(r_{21}, r_{11}),$$

 $\theta = \operatorname{asin} (-r_{31}),$
 $\phi = \operatorname{atan} 2(r_{32}, r_{33}).$

 θ 가 $(\pi/2, 3\pi/2)$ 일 때는 다음과 같다.

$$\psi = \operatorname{atan} 2(-r_{21}, -r_{11}),$$

 $\theta = \operatorname{asin}(-r_{31}),$
 $\phi = \operatorname{atan} 2(-r_{32}, -r_{33}).$

Pitch 각이 $\pi/2$ 근처일 때는 $\cos\theta\approx0$ 이 된다. 이때는 다음과 같이 계산한다.

$$r_{23} - r_{12} = (\sin \theta + 1)\sin(\psi - \phi),$$

$$r_{13} + r_{22} = (\sin \theta + 1)\cos(\psi - \phi),$$

$$r_{23} + r_{12} = (\sin \theta - 1)\sin(\psi + \phi),$$

$$r_{13} - r_{22} = (\sin \theta - 1)\cos(\psi + \phi).$$

$$\psi = \operatorname{atan} 2(r_{23} + r_{12}, r_{13} - r_{22}),$$

$$\theta = \operatorname{asin}\left(-r_{31}\right),\,$$

$$\phi = \psi - \text{atan } 2(r_{23} - r_{12}, r_{13} + r_{22}).$$

XYZ Angles:

$$heta$$
가 $(-\pi/2, \pi/2)$ 일 때는 다음과 같다.

$$\phi = \text{atan } 2(-r_{23}, r_{33}),$$

$$\theta = \operatorname{asin}(r_{33}),$$

$$\psi = \operatorname{atan} 2(-r_{12}, r_{11}).$$

$$heta$$
가 $(\pi/2, 3\pi/2)$ 일 때는 다음과 같다.

$$\phi = \text{atan } 2(r_{23}, -r_{33}),$$

$$\theta = \operatorname{asin}(r_{33}),$$

$$\psi = \text{atan } 2(r_{12}, -r_{11}).$$