Chapter 16 Application of derivatives

EE24BTECH11063 - Y.Harsha Vardhan Reddy

G · COMPREHENSION BASED OFFICTIONS

N BASED QUESTIONS	
AGE-1	
, if it is known that a continuos further then the equation $f(x) = 0$	unction f on R is
	(2007-4 marks)
b) one point	
d) more than two points	
as only one root is	(2007 - 4marks)
b) 1	
d) $\log_e 2$	
ch equation $ke^x - x = 0$ has two	distinct roots is
b) $\left(\frac{1}{e},1\right)$	
d) (0,1)	
SAGE-2	
	AGE-1 e R , assumes positive and negative, if it is known that a continuos further then the eequation $f(x) = 0$ is eal constant. b) one point d) more than two points as only one root is b) 1 d) $\log_e 2$ ch equation $ke^x - x = 0$ has two b) $\left(\frac{1}{e}, 1\right)$

Let

$$f(x) = (1 - x)^2 \sin^2 x + x^2 forall x \in \mathbb{R}$$
 (1)

and let

$$g(x) = \int_{1}^{x} \left(\frac{2(t-1)}{t+1} - \ln t\right) f(t) dt for all x \in (1, \infty).$$
 (2)

4) Consider the statements:

P: There exists some $x \in \mathbb{R}$ such that $f(x) + 2x = 2(1 + x^2)$ Q: There exists some $x \in \mathbb{R}$ such that 2f(x) + 1 = 2x(1 + x)

Then (2012)

- a) both P and Q are true
- b) P is true and Q is false
- c) P is false and Q is true
- d) both P and Q are false
- 5) Which of the following is true? (2012)
 - a) g is increasing on $(1, \infty)$
 - b) g is decreasing on $(1, \infty)$
 - c) g is increasing in (1,2) and decreasing on $(2,\infty)$
 - d) g is decreasing in (1,2) and increasing on $(2,\infty)$

PASSAGE-3

Let $f(x) : [0,1] \to \mathbb{R}$ (the set of all real numbers) be a function. Suppose the function f is twice differentiable, f(0) = f(1) = 0 and satisfies

$$f''(x) - 2f'(x) + f(x) \ge e^x, x \in [0, 1]. \tag{3}$$

6) Which of the following is true for interval

? (*JEEAdv*.2013)

a) $0 < f(x) < \infty$

b) $-\frac{1}{2} < f(x) < \frac{1}{2}$

c) $-\frac{1}{4} < f(x) < 1$

- d) $-\infty < f(x) < 0$
- 7) If the function $e^{-x}f(x)$ assumes its minimum in the interval [0, 1] at $x = \frac{1}{4}$, which of the following is true?

(JEEAdv.2013)

- 1) f'(x) < f(x), $\frac{1}{4} < x < \frac{3}{4}$
- 2) f'(x) > f(x), $0 < x < \frac{1}{4}$
- 3) f'(x) < f(x), $0 < x < \frac{1}{4}$
- 4) f'(x) < f(x), $\frac{3}{4} < x < 1$

I:Integer Value Correct Type

1) The maximum value of the function $f(x) = 2x^3 - 15x^2 + 36x - 48$ on the set $A = \{x|x^2 + 20 \le 9x\}$ is

(2009)

- 2) Let p(x) be a polynomial of degree 4 having extremum at x = 1, 2 and $\lim_{x \to 0} \left(1 + \frac{p(x)}{x^2}\right) = 2$. Then the value of p(2) is
- 3) Let f be a real-valued differentiable function on \mathbf{R} (these to fall real numbers) such that f(1) = 1. If the y-intercept of the tangent at any point P(x, y) on the curve y = f(x) is equal to the cube of the abscissa of P, then find the value of f(-3)

(2010)