Task 1:		
Grand canonical e	nsemble	
energy levels: E, 2E	,3e,,ME	
N particles		
occupancy (n) is 0 o	r For Fermions	
partition function for 1 p $ -\beta[\xi-\mu] $ $ Z_{\xi} = + \xi $	urticle, ground state energy	
$Z_{2e} = 1 + e^{\beta[26 - \mu]}$		
-β[ME-n] Z _{ME} = 1 + e	$Z_{tot} = \prod_{i=1}^{M} (1 + e^{\beta}[i\epsilon - 1])$	u])
Task 2:	state # particles	# particles W/ E= E
a) Microstates:	I N	0
	2 N-1	
	3 N-2	2.
-	5 5 6	9 9 0
	N	<i>N</i> -1
	N+1 0	

$$Z = \sum_{k=0}^{N} \frac{N!}{k!(N-k)!} - \beta k \epsilon = (1 + e^{-\beta \epsilon})^{N}$$

$$P(E_s) = \begin{pmatrix} N \\ E \\ E \end{pmatrix} \frac{C}{Z}$$

C)
$$\langle N_o \rangle_c = \frac{1}{Z} \sum_{k=0}^{N} (N-k) {N \choose k} e^{-ikt} = \frac{N}{1+e^{-ikt}}$$

$$\langle n_{\varepsilon} \rangle_{c} = \frac{1}{Z} \sum_{k=0}^{N} \kappa \left(\frac{N}{k} \right) e^{-\beta \kappa \varepsilon} = \frac{N}{1 + e^{\beta \varepsilon}}$$

d)
$$z = \frac{N}{2}$$
 - BKE = $\frac{e^{\beta \epsilon} - e^{N\beta \epsilon}}{e^{\beta \epsilon} - 1}$

$$P(\xi) = \frac{e^{-\beta \xi}}{Z} = \frac{e^{-\beta \xi}(e^{\beta \xi} - 1)}{e^{\beta \xi} - N\beta \xi}$$

$$(N+1)e^{(N+1)\beta\epsilon}$$

$$\langle n_{\epsilon} \rangle = \frac{1}{e^{\beta \epsilon} - 1} - \frac{(N+1) e^{(N+1)\beta \epsilon}}{e^{(N+1)\beta \epsilon} - 1}$$

$$P) \quad \Omega_G = \sum_{N=0}^{\infty} e^{\beta nN} Z = (e^{\beta(n-\epsilon)} - 1)(e^{\beta n} - 1) \qquad n < 0$$