Short Notes on Complexity Theory Topics (Plain Text Version)

1. Complexity Classes

Complexity classes group problems based on how much time and space (memory) they need.

Examples:

P: Problems solved in polynomial time.

NP: Problems whose solutions can be verified in polynomial time.

PSPACE: Problems solvable using polynomial memory.

EXP: Problems solvable in exponential time.

2. Time Complexity

Measures how long an algorithm takes to run depending on input size n.

Expressed as Big-O notation:

Example: Linear search \rightarrow O(n), Binary search \rightarrow O(log n).

Helps compare algorithms and predict performance.

3. Space Complexity

Measures the total memory required by an algorithm to execute completely.

Includes input, output, and extra space for computation.

Example: Recursive programs may use extra stack memory.

4. Class P (Polynomial Time)

The class P includes all problems that can be solved efficiently by a normal (deterministic) computer in time proportional to a polynomial function of input size.

Examples:

Sorting (Merge Sort, Quick Sort)

Shortest Path (Dijkstra)

Matrix Multiplication

5. Class NP (Nondeterministic Polynomial Time)

The class NP includes problems for which a given solution can be verified quickly (in polynomial time).

These may not be easy to solve, but easy to check once a solution is guessed.

Examples:

Traveling Salesman Problem

Subset Sum

Satisfiability (SAT)

It is known that P is contained in NP, but we do not know if P equals NP (the famous P vs NP question).

6. Polynomial-Time Reductions

A reduction converts one problem (A) into another (B) using a polynomialtime function.

If A can be reduced to B and B is easy to solve, then A is also easy.

Reductions are used to prove that problems are NP-hard or NP-complete.

7. NP-Completeness

A problem is NP-complete if it is:

- 1. In NP (its solutions can be verified quickly), and
- 2. Every problem in NP can be converted to it using a polynomial-time reduction.

NP-complete problems are the hardest problems in NP.

Examples: SAT, Vertex Cover, Hamiltonian Cycle, Subset Sum.

If any NP-complete problem is solved efficiently, then every NP problem becomes solvable efficiently.

8. Cook-Levin Theorem

The first formal proof that an NP-complete problem exists.

It states that the Boolean Satisfiability (SAT) problem is NP-complete.

This theorem (proved by Stephen Cook in 1971 and Leonid Levin in 1973) started the field of NP-completeness.

Other NP-complete problems are proved by reducing SAT to them.

9. Vertex Cover Problem

Given a graph and a number k, decide whether there exists a set of at most k vertices such that every edge touches at least one of these vertices.

Used in network protection or facility placement problems.

NP-complete – proved by reducing from Clique or SAT.

Can be approximated but not solved exactly in polynomial time.

10. Hamiltonian Path Problem

Ask whether there exists a path in a graph that visits every vertex exactly once.

If the path returns to the starting point, it is a Hamiltonian Cycle.

Used in routing, scheduling, and games.

It is an NP-complete problem (very hard to solve for large graphs).

11. Subset Sum Problem

Given a set of numbers and a target sum S, check whether any subset adds up exactly to S.

Example: For $\{3, 34, 4, 12, 5, 2\}$, can we form $9? \rightarrow Yes$, using $\{4, 5\}$.

Important in cryptography and resource allocation.

NP-complete problem.

12. Hierarchy Theorems

These theorems show that giving an algorithm more time or more space allows it to solve strictly more problems.

Time Hierarchy Theorem: More time ⇒ more computational power.

Space Hierarchy Theorem: More space ⇒ more computational power.

These imply that P is smaller than EXP (P \subset EXP) and L is smaller than PSPACE.

13. Circuit Complexity

Studies how large or deep a Boolean circuit (a network of logic gates) must be to compute a given function.

The size = number of gates; depth = number of layers.

Used in hardware design, cryptography, and proving computational lower bounds.

Example: Parity and Majority functions are studied for their circuit complexity.
