Schémas Compact Hermitiens sur la Sphère Séminaire Doctorants de Reims

Brachet Matthieu

Institut Elie Cartan de Lorraine

Vendredi 16 Octobre 2015

- Introduction
- 2 Ce qui existe déjà...
- Maillage "Cube-Sphere"
- Calcul du gradient sphèrique
- Dérivées Hermitiennes
- Benchmark
- Conclusion et perspectives

Introduction

Quoi?

Calcul des opérateurs différentiels classiques sur la sphère par des méthodes numériques

Pourquoi 1

Applications numériques en océanographie, climatologie, ...

Figure: (a) Océanographie(Image Mercator océan) - (b) Jet-Stream (ClimateReanalyzer.orgTM)

Introduction

Quoi?

Calcul des opérateurs différentiels classiques sur la sphère par des méthodes numériques

Pourquoi?

Applications numériques en océanographie, climatologie, ...

Figure: (a) Océanographie(Image Mercator océan) - (b) Jet-Stream (ClimateReanalyzer.org TM)

→ Maillage Longitude/Latitude

Figure: Maillage Longitude/Latitude

- Construction naturelle,
- Facile à manipuler,
- Problème des pôles.

→ Maillage Longitude/Latitude

Figure: Maillage Longitude/Latitude

- Construction naturelle,
- Facile à manipuler,
- Problème des pôles.

→ Maillage Ying/Yang Introduit par Akira Kageyama et Tetsuya Sato en 2004.

Figure: Maillage Ying/Yang

- Pas de problèmes de pôles,
- Hautement parallèlisable,
- Fort coût en calculs.

→ Maillage Ying/Yang Introduit par Akira Kageyama et Tetsuya Sato en 2004.

Figure: Maillage Ying/Yang

- Pas de problèmes de pôles,
- Hautement parallèlisable,
- Fort coût en calculs.

→ Maillage Isocahedrale

Introduit par Robert Sadourny, Akio Arakawa et Yale Mintz en 1968.

Figure: Maillage Isocahedrale

- Coût en calcul faible,
- Volume des éléments constant,
- Problème des pôles toujours présent.

→ Maillage Isocahedrale

Introduit par Robert Sadourny, Akio Arakawa et Yale Mintz en 1968.

Figure: Maillage Isocahedrale

- Coût en calcul faible,
- Volume des éléments constant,
- Problème des pôles toujours présent.

Maillage "Cube-Sphere"

ldée :

Construire une méthode rapide, précise et efficace pour calculer des opérateurs différentiels sur la sphère.

Poles :

- Nord : N(0,0,R),
- Sud : S(0,0,-R).

Poles:

- East : E(0, R, 0),
- West : W(0, -R, 0).

Maillage "Cube-Sphere"

ldée :

Construire une méthode rapide, précise et efficace pour calculer des opérateurs différentiels sur la sphère.

Poles:

- Nord : N(0,0,R),
- Sud : S(0, 0, -R).

Poles:

- East : E(0, R, 0),
- West : W(0, -R, 0).

Maillage "Cube-Sphere"

ldée :

Construire une méthode rapide, précise et efficace pour calculer des opérateurs différentiels sur la sphère.

Poles:

- Nord : N(0,0,R),
- Sud : S(0, 0, -R).

Poles:

- East : E(0, R, 0),
- West : W(0, -R, 0).

Création d'un maillage couvrant une partie de la sphère.

Figure: Cube-Sphere - Front (gauche) et Complet (droite)

Coordonnées

Figure: Coordonnées sur la CS

Dans ce système de coordonnées *M* est donné par :

- α abscisse curviligne le long du grand cercle "horizontal".
- \bullet η angle longitudinal.
- β abscisse curviligne le long du grand cercle "vertical".
- ξ angle latitudinal.

Coordonnées

Figure: Coordonnées sur la CS

Dans ce système de coordonnées M est donné par :

- α abscisse curviligne le long du grand cercle "horizontal".
- ullet η angle longitudinal.
- β abscisse curviligne le long du grand cercle "vertical".
- ullet ξ angle latitudinal.

Calcul du gradient sphèrique

Gradient :

$$\nabla_{s} u = \frac{\partial u}{\partial \xi}_{|\eta} g^{\xi} + \frac{\partial u}{\partial \eta}_{|\xi} g^{\eta}$$

 $ightarrow rac{\partial u}{\partial \xi}_{|\eta}$ et $rac{\partial u}{\partial \eta}_{|\xi}$: pas le long des grands cercles. Exprimer dans (α, β) .

Gradient sur la CS

$$\nabla_{s} u = \frac{\partial u}{\partial \alpha_{|\eta}} \left(\cos \eta \frac{1 + \tan^{2} \xi}{1 + \cos^{2} \eta \tan^{2} \xi} \right) g^{\xi} + \frac{\partial u}{\partial \beta_{|\xi}} \left(\cos \xi \frac{1 + \tan^{2} \eta}{1 + \cos^{2} \xi \tan^{2} \eta} \right) g^{\eta}$$

 \rightarrow Évaluer $\frac{\partial u}{\partial \alpha|_{\eta}}$ et $\frac{\partial u}{\partial \beta|_{\xi}}$ en chaque point du maillage.

Calcul du gradient sphèrique

Gradient :

$$\nabla_{\mathbf{s}} u = \frac{\partial u}{\partial \xi}_{|\eta} \mathbf{g}^{\xi} + \frac{\partial u}{\partial \eta}_{|\xi} \mathbf{g}^{\eta}$$

 $ightarrow rac{\partial u}{\partial \xi}_{|\eta}$ et $rac{\partial u}{\partial \eta}_{|\xi}$: pas le long des grands cercles. Exprimer dans (α, β) .

Gradient sur la CS

$$\nabla_{s} u = \frac{\partial u}{\partial \alpha_{|\eta}} \left(\cos \eta \frac{1 + \tan^{2} \xi}{1 + \cos^{2} \eta \tan^{2} \xi} \right) g^{\xi} + \frac{\partial u}{\partial \beta_{|\xi}} \left(\cos \xi \frac{1 + \tan^{2} \eta}{1 + \cos^{2} \xi \tan^{2} \eta} \right) g^{\eta}$$

ightarrow Évaluer $\frac{\partial u}{\partial \alpha|_{\eta}}$ et $\frac{\partial u}{\partial \beta|_{\mathcal{E}}}$ en chaque point du maillage.

Calcul du gradient sphèrique

Gradient :

$$\nabla_{\mathbf{s}} u = \frac{\partial u}{\partial \xi}_{|\eta} \mathbf{g}^{\xi} + \frac{\partial u}{\partial \eta}_{|\xi} \mathbf{g}^{\eta}$$

 $ightarrow rac{\partial u}{\partial \xi}_{|\eta}$ et $rac{\partial u}{\partial \eta}_{|\xi}$: pas le long des grands cercles. Exprimer dans (α, β) .

Gradient sur la CS

$$\nabla_{s} u = \frac{\partial u}{\partial \alpha_{|\eta}} \left(\cos \eta \frac{1 + \tan^{2} \xi}{1 + \cos^{2} \eta \tan^{2} \xi} \right) g^{\xi} + \frac{\partial u}{\partial \beta_{|\xi}} \left(\cos \xi \frac{1 + \tan^{2} \eta}{1 + \cos^{2} \xi \tan^{2} \eta} \right) g^{\eta}$$

 \rightarrow Évaluer $\frac{\partial u}{\partial \alpha|_{\eta}}$ et $\frac{\partial u}{\partial \beta|_{\varepsilon}}$ en chaque point du maillage.

Dérivées Hermitiennes

u assez régulière et périodique. Alors :

$$\frac{u(x+h) - u(x-h)}{2h} = u'(x) + \frac{h^2}{6} \underbrace{u^{(3)}(x)}_{=(u'(x))''} + \mathcal{O}(h^4)$$

$$\frac{u(x+h) - u(x-h)}{2h} = u'(x) + \frac{h^2}{6} \frac{u'(x-h) - 2u'(x) + u'(x+h)}{h^2} + \mathcal{O}(h^4)$$

Après simplification

$$\frac{u(x+h) - u(x-h)}{2h} = \frac{1}{6} \left[u'(x-h) + 4u'(x) + u'(x+h) \right] + \mathcal{O}\left(h^4\right)$$

Dérivées Hermitiennes

u assez régulière et périodique. Alors :

$$\frac{u(x+h) - u(x-h)}{2h} = u'(x) + \frac{h^2}{6} \underbrace{u^{(3)}(x)}_{=(u'(x))''} + \mathcal{O}(h^4)$$

$$\frac{u(x+h) - u(x-h)}{2h} = u'(x) + \frac{h^2}{6} \frac{u'(x-h) - 2u'(x) + u'(x+h)}{h^2} + \mathcal{O}(h^4)$$

Après simplification

$$\frac{u(x+h) - u(x-h)}{2h} = \frac{1}{6} \left[u'(x-h) + 4u'(x) + u'(x+h) \right] + \mathcal{O}\left(h^4\right)$$

Dérivées Hermitiennes

u assez régulière et périodique. Alors :

$$\frac{u(x+h) - u(x-h)}{2h} = u'(x) + \frac{h^2}{6} \underbrace{u^{(3)}(x)}_{=(u'(x))''} + \mathcal{O}(h^4)$$

$$\frac{u(x+h) - u(x-h)}{2h} = u'(x) + \frac{h^2}{6} \frac{u'(x-h) - 2u'(x) + u'(x+h)}{h^2} + \mathcal{O}(h^4)$$

Après simplification :

$$\frac{u(x+h) - u(x-h)}{2h} = \frac{1}{6} \left[u'(x-h) + 4u'(x) + u'(x+h) \right] + \mathcal{O}\left(h^4\right)$$

Schéma compact

•
$$U' = [u'_1, \ldots, u'_N]^T \approx [u'(x_1), \ldots, u'(x_N)]^T$$

•
$$U = [u_1, ..., u_N]^T$$

Alors

$$\frac{1}{2h} \begin{pmatrix} 0 & 1 & & & -1 \\ -1 & 0 & 1 & (0) & & \\ & \ddots & \ddots & \ddots & \\ & (0) & -1 & 0 & 1 \\ 1 & & & -1 & 0 \end{pmatrix} U = \frac{1}{6} \begin{pmatrix} 4 & 1 & & & 1 \\ 1 & 4 & 1 & (0) & & \\ & \ddots & \ddots & \ddots & \\ & (0) & 1 & 4 & 1 \\ 1 & & & 1 & 4 \end{pmatrix} U'$$

- ightarrow Résolution d'un système linéaire sur chaque grand cercle.
- ightarrow Existence d'un solveur rapide combinant l'algorithme de Thomas et la formule de Shermann-Morisson-Woodbury.

Schéma compact

•
$$U' = [u'_1, \ldots, u'_N]^T \approx [u'(x_1), \ldots, u'(x_N)]^T$$

$$U = [u_1, \ldots, u_N]^T$$

Alors:

$$\frac{1}{2h} \begin{pmatrix} 0 & 1 & & & & -1 \\ -1 & 0 & 1 & (0) & & \\ & \ddots & \ddots & \ddots & & \\ & (0) & -1 & 0 & 1 \\ 1 & & & -1 & 0 \end{pmatrix} U = \frac{1}{6} \begin{pmatrix} 4 & 1 & & & 1 \\ 1 & 4 & 1 & (0) & & \\ & \ddots & \ddots & \ddots & & \\ & (0) & 1 & 4 & 1 \\ 1 & & & 1 & 4 \end{pmatrix} U'$$

- ightarrow Résolution d'un système linéaire sur chaque grand cercle
- → Existence d'un solveur rapide combinant l'algorithme de Thomas et la formule de Shermann-Morisson-Woodbury.

Schéma compact

•
$$U' = [u'_1, \ldots, u'_N]^T \approx [u'(x_1), \ldots, u'(x_N)]^T$$

•
$$U = [u_1, \ldots, u_N]^T$$

Alors:

$$\frac{1}{2h} \begin{pmatrix} 0 & 1 & & & & -1 \\ -1 & 0 & 1 & (0) & & \\ & \ddots & \ddots & \ddots & & \\ & (0) & -1 & 0 & 1 \\ 1 & & & -1 & 0 \end{pmatrix} U = \frac{1}{6} \begin{pmatrix} 4 & 1 & & & 1 \\ 1 & 4 & 1 & (0) & & \\ & \ddots & \ddots & \ddots & & \\ & (0) & 1 & 4 & 1 \\ 1 & & & 1 & 4 \end{pmatrix} U'$$

- → Résolution d'un système linéaire sur chaque grand cercle.
- \rightarrow Existence d'un solveur rapide combinant l'algorithme de Thomas et la formule de Shermann-Morisson-Woodbury.

Problème...

Les points des cercles ne coïncident pas avec les points du maillage

Figure: grand cercle

Solution

- Interpolation d'Hermite
 - \rightarrow Faible coût en calcul.
 - → Phénomène de Runge... Grosse erreur due au grand nombre de points.
- Choix du spline cubique
 - → Systèmes linéaires à résoudre.
 - \rightarrow Erreur en $\mathcal{O}\left(h^4\right)$.

Problème...

Les points des cercles ne coïncident pas avec les points du maillage

Figure: grand cercle

Solution

- Interpolation d'Hermite
 - \rightarrow Faible coût en calcul.
 - → Phénomène de Runge... Grosse erreur due au grand nombre de points.
- Choix du spline cubique
 - → Systèmes linéaires à résoudre.
 - \rightarrow Erreur en $\mathcal{O}(h^4)$.

Benchmark

Résolution de :

$$\begin{cases} \frac{\partial h}{\partial t} + \mathbf{c} \cdot \nabla_{S} h = 0 \\ h(\mathbf{x}, t = 0) = h_{0}(\mathbf{x}) \end{cases}$$

 ${f x}$ sur la sphère, t>0

Discrétisation

- En espace : comme vu plus tôt,
- En temps : méthode RK4 (ordre 4 et explicite) avec filtrage en espace des hautes fréquences (ordre 10).

Benchmark

Résolution de :

$$\begin{cases} \frac{\partial h}{\partial t} + \mathbf{c} \cdot \nabla_{\mathcal{S}} h = 0 \\ h(\mathbf{x}, t = 0) = h_0(\mathbf{x}) \end{cases}$$

 ${f x}$ sur la sphère, t>0

Discrétisation :

- En espace : comme vu plus tôt,
- En temps : méthode RK4 (ordre 4 et explicite) avec filtrage en espace des hautes fréquences (ordre 10).

Test 1: BUMP en rotation

Idée :

- c et h_0 donnés,
- faire tourner une "cloche" (le BUMP) autour de la sphère.

Figure: Test 1 : Bump en rotation - 40 mailles par face - CFL=0.9

Test 2: Vortex stationnaire

Idée :

- c et h_0 donnés,
- Formation d'une "tempête" (vortex) sur une zone localisée de la sphère.

Figure: Test 2 : Vortex stationnaire - 40 mailles par face - CFL=0.9

Conclusion et perspectives

Bilan

- Méthode rapide (solveurs rapides) et précise (ordre 4),
- Bons résultats sur les tests.

Avenir.

- Accélération du calcul,
- Mise en place d'un zoom LDC,
- Résolution de l'équation de Saint-Venant.

Conclusion et perspectives

Bilan

- Méthode rapide (solveurs rapides) et précise (ordre 4),
- Bons résultats sur les tests.

Avenir...

- Accélération du calcul,
- Mise en place d'un zoom LDC,
- Résolution de l'équation de Saint-Venant.

Merci de votre attention :)