Bias in Machine Learning: An Adversarial Approach

Solange Garcia de Alford, Steven Hayden, Nicole Wittlin
Master of Science in Data Science
Southern Methodist University, Dallas, TX 75275, USA

Introduction

- Bias is very prevalent, occurring in ML models at preprocess, in-process, post-process stages.
- Examples of ML bias are widely known COMPAS, Amazon hiring algorithm/resume scan, Word2Vec.
 Most are binary: protected class vs unprotected class.
- Our study focuses on eliminating bias stemming from AGE when predicting employee attrition.

Main Topics

- Adversarial learning can be leveraged to mitigate bias and unfairness.
- Competing models of GAN, where Predictor (P) tries hinder Discriminator (D) with fake data, while feedback from D tries to hinder P prediction ability.
- Our study: P -- predict employee prediction; D -predict age.
- Goal: improve group fairness via demographic parity (DP) (all equally likely of positive outcome (TP + FP)).

ACCUR

Model Architecture

Baseline Model

- Logistic Model
- $\hat{y}_{Attrition} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_n x_n + \varepsilon$

Adversarial Models

- $\hat{y}_{Attrition} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_n x_n + \varepsilon$
- $\hat{A}_{Age} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_n x_n + \varepsilon$
- Loss = $-\alpha \sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$

Results -

- Improved DP: range Pre-GAN for all groups between 94-100%; Post-GAN range 98-100%.
- Small trade-off between Accuracy and Fairness Post-GAN: accuracy decreased 2% but DP increased 6%.
- **Demonstrate work beyond binary classes**: can work toward having more than one unprotected group.
- See Results Chart

IBM Employee Attrition Dataset												
Attrition: 84% NO / 16% YES Age binned in 5-year ranges												
											iges	
			М	ore	at	triti	on	<=	ag	е 3	35	
At	400	n ● N										
Count of Attrition	200											
Cor	100											
			<=25	>25 <=		>30 8 <=3!	5	>35 & <=40	>40 <=4 Deca	45	>45 & <=50	>50

5, 50] > 50 Overall
696 0.7941 0.8587
130 0.7941 0.8315
5, 50] > 50 Overall
565 1.0 0.9375
1.0 0.9972
() ·

Conclusions / Future Work

- Bias must be addressed in advance and throughout – NOT as an afterthought.
- Re-run study with larger, real dataset and/or pre-processed data that balances attrition % or sampled differently.
- Refine code with Early Stop, when the adversary has sufficiently mitigated bias and correlation is no longer detected in the adversarial model for Z(x), Age.
- We CANNOT and MUST NOT replace the inquisitiveness, skepticism, mortal imagination and compassion that humans bring to bear to on ML.