Radar Data Analysis Dashboard

Visualizing Patterns and Insights

An exploration of radar data using advanced visualization techniques to uncover patterns, relationships, and insights across multiple dimensions.

Data Overview

The radar dataset contains 42,294 records with 9 variables capturing various aspects of radar signals.

The data includes spatial coordinates, velocity measurements, and classification labels.

Radar Chart Analysis

Radar charts visualize multiple variables simultaneously, revealing patterns across different dimensions.

Each axis represents a variable, and each color represents a different label category.

Average Variable Values by Label Category

- Label 1 (Vehicle) shows higher velocity and speed values.
- Label 2 (Animal) exhibits distinctive intensity patterns.
- Label 0 (Human) has moderate values with higher risk range.
- Distance variable shows notable variation across categories.

Bar Chart Analysis

Bar charts provide a clear comparison of values across different categories. Here we analyze key metrics across the three label categories in our radar dataset.

Velocity Risk Range Speed

Average Velocity by Label Category

- Label 1 (Vehicle) shows highest average velocity. Label 0 (Human) exhibits highest risk assessment.
- Speed metric varies significantly between categories.
- These comparisons reveal distinctive characteristics.

Scatter Plot Analysis

Scatter plots reveal relationships between two continuous variables, with points colored by label category. This visualization shows the relationship between X and Y coordinates.

X-Y Coordinate Distribution by Label Category

- Label 0 (Human) clusters in the central region. Label 1 (Vehicle) shows wider spread across
 - Label 1 (Vehicle) shows wider spread across axes.
- Label 2 (Animal) exhibits distinct clustering patterns.
- Clear separation boundaries exist between categories.

Bubble Chart Analysis

Bubble charts extend scatter plots by adding a third dimension represented by bubble size. This visualization shows distance (x-axis), velocity (y-axis), and risk range (bubble size).

Distance vs. Velocity with Risk Range (Bubble Size)

- Label 1 (Vehicle) has larger bubbles, indicating Label 0 (Human) shows consistent risk higher risk.
 - assessment patterns.
- lower risk.
- Label 2 (Animal) has smaller bubbles, showing Higher velocities correlate with increased risk ranges.

Sunburst Chart Analysis

Sunburst charts visualize hierarchical data through concentric rings, with each ring representing a level in the hierarchy. This D3.js visualization shows the distribution of radar data across nested categories.

- Label categories show distinct risk distribution Vehicle data has more high-velocity patterns.
- Human data shows greater variation in risk assessment.
- subcategories.
- Hierarchical view reveals nested patterns not visible in other charts.

Interactive Dashboard Preview

The interactive dashboard provides a comprehensive view of the radar data with real-time filtering, customizable visualizations, and drill-down capabilities for deeper analysis.

Conclusion & Insights

Our analysis of the radar data has revealed significant patterns and relationships across different dimensions, providing valuable insights for classification and risk assessment.

Key Findings

- Label 1 (Vehicle) shows higher velocity and speed measurements.
- Risk range values are highest for Label 0 (Human).
- Spatial distribution shows distinct clustering patterns.
- Distance-velocity relationship provides strong classification power.

Visualization Insights

- Radar charts highlight multi-dimensional differences.
- Sunburst charts reveal hierarchical patterns in risk assessment.
- Bubble charts demonstrate relationships between three variables.
- Interactive filtering helps identify outliers and anomalies.

Recommended Next Steps Implement ML models for automated classification ▼ Develop anomaly detection algorithms Expand the interactive dashboard ■ Integrate real-time data processing