

NVIDIA Jeston Nano 影像辨識工作坊

探索強大影像辨識功能

2019.07.13(六) 14:00-17:00

Fablab Taipei 台北市玉門街1號

1.專業網購

- ●IC電子零件

- ●感測器模組

- ●共編教材
- ●業界協同

2. 教學設備

- ●ROS 1.0/2.0
- ●智慧機器人移動平台

- 両足人型機器人
- ●智慧農場

3. Maker軍火庫

- ●STEAM教育
- micro: bit 多元應用
- ●國中生活科技
- 自造教育及科技中心規劃

4. 創客萊吧 MakerLab

5. 教學服務

- ●研習培訓
- ●產學合作
- ●師徒共學

6.客製化專案

- 教學設備應用開發

7. 專業研發設計

- ●IC電路設計
- 資料雲端化
- ●專案設計

8.海外代詢代購

- ●快、好、便宜 服務

講者介紹

喜歡學習與分享新科技的 工程師 \ 設計師 \ 程式與機器人教育者

林威志

專案工程師

github.com/kjoelovelife

IcShopping 淩耀電子

07 – 5564686 # 18 0931-912-173

 \searrow

joe@icshop.com.tw

→ 工作經歷

2015-2016 圓創力科技教育中心

機器人授課人員

帶領學生參與 2015、2016 WRO世界機器人競賽

2016-2017 **Mzone** 大港自造特區

敞長

參與 第零屆大港自造節、設展 2016台北Maker Faire 培訓 20位以上實習生 、管理 Maker space 各項機台研發 Maker 教案與商品、講授20場以上課程

2017-2018 標準桿實業有限公司

技術工程師

正修科技大學電子工程系新興科技研習 東方設計大學遊戲與玩具設計科 ROS - 機器人操作系統 人工智慧 Tensorflow與其應用 研究人員

2018 -- 凌

淩耀電子有限公司 教育事業部 - 專案工程師

ROS - 機器人操作系統 研究人員 研究人員 研究人員 研究人員 國立高雄科技大學 - 南科 Ai計畫 研究人員 創客來吧、來吧研究所 講師 黃雄科技大學 ROS研習營 講師

技能

Python

ROS

Illustrator

fusion360

今日課程規劃

預計花費:3小時

時 間

內容

13:50 - 14:00

報到

14:00 - 15:00

如何建立 Jetson Nano 操作環境

15:00 - 16:00

NVIDIA Jetson Nano使用心得分享

16:00 - 17:00

實作人臉辨識

* 時程將會依照課程進度而有所變更

今日課程重點

為了方便地使用 Jetson -nano : 系統環境的建立為主要目的

設備完整性

良好的設備將節省開發 時間,例如

- 電源的選擇
- 記憶體的配置
- 温度的可控性
- 鏡頭
- 輪胎
- 馬達控制器
- 雷達

:

♂ 系統環境建置

不同的硬體架構,需配 上不同的軟體、韌體與 系統,才能夠正常地開 發相關應用程式。

系統環境的完成度與否, 將會影響到應用程式開 發的時間。

</>>

應用程式開發

根據功能需求,決定所 需開發的程式語言。

目前主流的程式語言有

- C++
- Python
- Java
- Swift
- Julia

實際應用

根據前三項敘述方法, 打造出自己心目中的功 能應用。

如何建立 Jetson –nano 操作環境

Jetson-nano developer kit

Nvidia 官方映像檔所搭載系統為 Ubuntu 18.04 LTS 系統

人工智慧的開源

人工製智慧的爆炸性發展,

始於 2012年的 ImageNet 競賽。

其後相關的學者一致認為,人工智慧的技術發展 應具有開源的特性,以確保人工智慧相關技術能 夠持續爆炸性地發展。

Linux 系統一開始便以開源的特性,開源給全世界使用者自行修改使用。

讓使用者能夠依據個人的喜好、講求的功能性等因素,打造獨特的系統。

結合上述兩個關鍵因素,「開源的人工智慧」與「開源的系統」,便使得 Nvidia 以 Ubuntu 18.04 LTS 系統為基底,製作出 Jetson-nano Developer kit 所搭載的系統。

* 微軟也決定將 Linux 核心內納入 Windows系統

講者個人 github

目前測試之相關程式碼皆放在 https://github.com/kjoelovelife/Jetson_nano

豐富的開源資源

目前我已將測試 Jetson –nano Developer kit 的相關程式碼,放至 github上。

在此 github上·有各種關於 Jetson-nano 使用的心得與部落格連結;也有關於如何建立 Jetson_nano的使用環境腳本檔案。

透過這個 github · 將可以快速上手 Jetson - nano Developer Kit · 並學習使用 Jetson - nano 完成人工智慧技術的應用。

簡易遠端連線方式

主機可透過 SSH (Secure Shell)與 wifi, 遠端連線至 Jetson – nano Developer kit

IP: 192.168.1.32

(此為範例資訊)

- 1 將主機與 Jetson nano 連線至同一個 AP分享器
- 2 記錄 Jetson –nano 的 IP 位置、 使用者名稱
- 3 開啟終端機視窗
- **4** 輸入「ssh icshop@192.168.1.32」 (此為範例)
- 5 輸入 Jetson –nano 的 使用者密碼
- 注意: windows 系統主機須為 win 10以上系統 且須使用系統管理員身分開啟終端機

更新 pyton3-pip 工具

若要下載 Tensorflow-gpu套件, 則必須更新 python3-pip 工具

Python3 依賴套件的下載工具 – pip3

若是想使用 Python3 的各種程式庫、依賴套件‧例如 Tensorflow – gpu , numpy , matplotlib 等‧可透過 pip3 工具下載

- 開起 **Jetson-nanom**終端機・輸入更新指令 「pip3 install –upgrade pip」
- ② 修改「 /usr/bin/pip3 」的部分程式碼,必要時可再更改回來

```
from pip import main

if __name__ == '__main__':

sys.exit(main())
```

```
from pip import __main__
if __name__ == '__main__':
    svs.exit( main , main())
```


安裝 opencv-contrib

Opencv的擴充套件之一, 可快速使用神經網路模型進行訓練與推論

目前僅能從源碼安裝源碼網址:

https://github.com/opencv/opencv contrib

安裝 Jetbot Services

- ☑ 可使用 O'led 查詢 Jetson nano developer kit 部份當前資訊
- ☑ 可快速使用 Jupyter 進行遠端連線
- ☑ 可執行 Jetbot 的範例程式

Jetson – nano developer kit _{使用心得}

Jetson – nano ? Jetson – nano developer kit?

Jetson – nano

單一嵌入式晶片

Jetson-nano developer kit

開發套件組

預計上市時間

2019/6

價格

129 美元

上市時間

2019/4

價格

99美元

Jetson – nano developer kit

簡單介紹

JETSON NANO SPECIFICATIONS

GPU	128 Core Maxwell 472 GFLOPs (FP16)	
CPU	4 core ARM A57 @ 1.43 GHz	
Memory	4 GB 64 bit LPDDR4 25.6 GB/s	
Storage	16 GB eMMC	
Video Encode	4K @ 30 4x 1080p @ 30 8x 720p @ 30 (H.264/H.265)	
Video Decode	4K @ 60 2x 4K @ 30 8x 1080p @ 30 16x 720p @ 30 (H.264/H.265)	
Camera	12 (3x4 or 4x2) MIPI CSI-2 DPHY 1.1 lanes (1.5 Gbps)	
Display	HDMI 2.0 or DP1.2 eDP 1.4 DSI (1 x2) 2 simultaneous	
UPHY	1 x1/2/4 PCIE 1 USB 3.0	
SDIO/SPI/SysiOs/GPI Os/I2C	1x SDIO / 2x SPI / 5x SysIO / 13x GPIOs / 6x I2C	

Maker 的小型 AI 單板電腦套件

Maker 的小型 AI 單板電腦套件

- 1 microSD card slot for main storage
- 40-pin expansion header
- Micro-USB port for 5V power input or for data
- Gigabit Ethernet port

- USB 3.0 ports (x4)
- 6 HDMI output port
- 7 DisplayPort connector
- OC Barrel jack for 5V power input
- 9 MIPI CSI camera connector

其實是個小型吃電怪獸

為了能夠執行神經網路的運算, Jetson –nano 預設所使用的功率 為 10W。雖有 5W 功率模式可供 選擇,但若是使用一般的行動電 源卻也難以負荷過大的瞬間電流。

為了解決因為瞬間電流,而產生 的死機問題,我進行了多項嘗試。 最後發展出了「桌上開發組」 、「行動開發組」兩組套件。

電源接孔的選擇

DC jack 接孔較容易找尋 5V / 4A 的變壓器

輕巧的 MicroUSB 與耐用的 DC Jack 中,我選擇使用 DC Jack

Jetson-nano 桌上型

穩定電源輸出的桌上型周邊設備(連結)

全配(含 Jetson-nano)

標配(不含 Jetson-nano)

使用 DC Jack 的注意事項

請記得在加上 短路帽、電壓一樣須為 5V

使用 DC Jack 時須注意

DC Jack 的規格為 5.5x2.1 (mm)。 電壓須注意仍須為 5V。 電流建議 4A 上下,避免因為瞬間 電流過大而造成的死機。

連接短路帽後, MicroUSB 電源 供應端將會失去作用。

為何要使用 DC Jack接頭? 更新 Jetpack會使用到。

GPIO腳位

與樹莓派一模一樣

樹莓派

Jetson-nano Developer kit

但要注意的是標示正確與否

Jetson-nano developer kit 很貼心的把每個腳位的編號 與功能都列在旁邊。 但或許是為了趕上發布時間, 有小部分腳位標示錯誤。 例如本次測試的板子標示為

6、8號腳位,但實際上是

8、10號腳位。

Jetson-nano V.S. Raspberry pi

	Jetson Nano	Raspberry Pi
СРИ	64-bit Quad-core ARM A57 (1.43 GHz)	1.4 GHz 64-bit quad-core ARM Cortex-A53
GPU	128-Core Nvidia Maxwell	Broadcom VideoCore IV
RAM	4GB DDR4	1GB DDR2
WIFI	Х	802.11ac
Bluetooth	Х	LE 4.2
Ethernet	Gigbit	Gigbit (300Mbps max)
GPIO	40 pin	40 pin
	USB 2.0 x 3	
USB	USB 3.0 x 1	USB 2.0 x 4
Audio	х	Audio jack
Power	5~10W	400 mA (2.0W)
Price	\$99	\$35
算力	472 Gflops	24 Gflop

僅有 gigabit ethernet port

需自行安裝**藍芽、wifi等無線模組**

不太方便的物聯網開發套件

官方售出的 Jetson-nano developer kit ,其中並無包含藍芽、wifi 等無線模組,因此需自行安裝。

本次測試時使用 Intel8265AC無線網卡網路卡與 EDIMAX 7811-Un USB網路卡

Jet – falcon 千年鷹

能夠使用 Jetbot的移動平台

人臉辨識實作

人臉辨識主要步驟

蒐集資料、 訓練模型 、 開始偵測

