

#### Outline

LP and Simplex

Diameter Problem

Formulation Kalai's Theorem

Algorithms
Algorithm  $S_2$ 

Algorithm  $S_0$ 

Summary

# A Subexponential Randomized Simplex Algorithm

Gil Kalai (extended abstract)

#### Shimrit Shtern

Presentation for

Polynomial time algorithms for linear programming 097328

Technion - Israel Institute of Technology

May 14, 2012



#### Outline

LP and Simplex

Diameter
Problem
Formulation
Kalai's

Kalai's Algorithms Algorithm  $S_2$  Algorithm  $S_0$ 

- LP and Simplex
- 2 Polyhedron Diameter Problem
  - Formulation
  - Kalai's Theorem
- Kalai's Algorithms
  - Algorithm  $S_2$
  - Algorithm  $S_0$
- 4 Summary



#### Perliminaries

Outlin

LP and Simplex

Polyhedron Diameter Problem

Formulation Kalai's Theorem

Algorithm  $S_2$ Algorithm  $S_2$ 

Summan

#### Linear Programming

Maximizing a linear function of d variables and n constraints over a the *feasable polyhedron*.

$$\max\{c^Tx:Ax\leq b\}$$

#### The dual

Minimizing a linear function of n variables and d constraints.

$$min\{b^Ty: A^Ty = c, y \ge 0\}$$



### Linear programming properties

#### Outline

LP and Simplex

Diameter Problem

Formulatio Kalai's Theorem

Algorithms
Algorithm  $S_2$ Algorithm

- The maximum (if exists) is achieved in one of the vertices.
- $P = \{x \in \Re^d : Ax \leq b\}$  the feasible polyhedron
- G(P) is the a graph which connects vertices in P if they form the end points of a 1-dimensional face of P.



#### Outline

LP and Simplex

Polyhedron Diameter Problem

Formulatio Kalai's

Kalai's

Algorithms
Algorithm

Algorithm  $S_0$ 





### The Simplex Algorithm

Outline

LP and Simplex

Polyhedron Diameter Problem Formulation

Kalai's Theorem

Algorithms Algorithm  $S_2$  Algorithm  $S_0$ 

• Introduction of the simplex [Dantzig, 1950]

- In each step we move from one feasible vertex v to an adjacent vertex w which has a higher objective function value.
- The choice of w is called the pivot rule.
- The simplex algorithm is a class of algorithms depending on the specific pivot rules.
- Number of pivot steps to the top.
- Common pivot rules proves to be exponential in worst case [Klee & Minty, 1971]
- Deterministic vs. Randomized pivot rules



## Backround - Strong Algorithms

Outline LP and

LP and Simplex

Polyhedron Diameter Problem Formulation Kalai's Theorem

Algorithms
Algorithm  $S_2$ Algorithm  $S_0$ 

Summa:

- A Strong algorithm the number of arithmetic operations depends only on d and n (does not depend on L).
- The ellipsoid method and interior point method are polynomial but not strong.
- The existence of a strong polynomial algorithm for LP is still open (found for specific types of LP)
- Strong algorithms for LP which are linear for fixed dimensions:  $O(2^{2^d}n)$  [Megiddo, 1984],  $O(3^{d^2}n)$  [Dyer, 1986], [Clarkson, 1986], O(d!n) [Seidel,1990]
- Clarkson (1988) randomized algorithm, solves  $O(d^2 log n)$  smaller linear programs with  $O(d^2)$  constraints and d variables with expected  $O(d^{\log \log n} + d^d) + O(d^2 n)$  operations.



# A strong sub-exponential algorithm for LP

Outlin

LP and Simplex

Polyhedron Diameter Problem

Kalai's Theorem

Algorithms
Algorithm  $S_2$ Algorithm  $S_0$ 

Summary

#### The Algorithm [Gil Kalai, 1992]

Randomized pivot rule with sub-exponential expected number of pivot steps

Used as a subroutine in Clarkson's Algorithm, we get a randomized dual-simplex algorithm which requires an expected  $d^{O\left(\sqrt{d/\log d} + \log\log n\right)} + O(d^2n)$  arithmetic operations.



#### Polyhedron Diameter Problem

Outlin

Polyhedron

Diameter Problem

Kalai's Theorem

Algorithm
Algorithm  $S_2$ Algorithm  $S_0$ 

- The longest shortest path between two vertices in a graph.
- Given an objective function, the longest shortest monotone path from a vertex to the top of the graph.
- An algorithm which finds a path from a vertex to the top of the graph.



#### Definitions

Outline

Simplex Polyhed

Problem
Formulation
Kalai's
Theorem

Kalai's Algorithms Algorithm  $S_2$  Algorithm  $S_0$ 

- L(d, n) class of LPs , d variables, n constraints .
- $O \in L(d, n)$  with objective function  $\phi$ .
- $\bullet$  P the feasible polyhedron of O
- $\bullet$  G(P)- the feasible polyhedron graph.
- Given G(P) = (V, E),  $\phi$  we define  $\vec{G}(O) = (V, \tilde{E})$  the problem graph:

$$(v, w) \in \tilde{E} \Leftrightarrow \{v, w\} \in E, \phi(w) > \phi(v)$$

• Extension:

If  $\phi$  is not bounded on P we add vertex  $v = \infty$ :  $\phi(v) = \infty$  and (w, v) exists if there is a 1-dimensional face containing w on which  $\phi$  is not bounded above.



#### Definitions (cont.)





- $\delta(G(P))$  diameter of the graph G(P).
- Optimal set -

$$W = \{w \in V : \phi(w) \ge \phi(v) \quad \forall v \in V\}$$

- h(v) the minimal length of a directed path from vertex v to some  $w \in W$ .
- $\delta(\vec{G}(O))$  height of  $\vec{G}(O)$

$$\delta(\vec{G}(O)) = \max_{v \in V} h(v)$$



## Diameter and Height Bounds

Formulation

• Diameter and Height of a polyhedra set:

$$\Delta(d,n) = \max_{O \in L(d,n)} \delta(G(P))$$
 
$$H(d,n) = \max_{O \in L(d,n)} \delta(\vec{G}(O))$$

- $\Delta(d,n) \leq H(d,n)$
- Hirsch conjuncture:  $\Delta(d,n) \leq n-d$  proven false for unbounded polyhedra [Klee & Walkup, 1967]
- The best lower bound known :  $\Delta(d,n) \geq n-d+\lfloor \frac{d}{5} \rfloor$
- Upper bound:
  - Exponential:  $\Delta(d,n) < n2^{d-3}$  [Larman, 1970].
  - Quasi polynomial:  $\Delta(d, n) < n^{2 \log d + 3}$  [Gil Kalai,1992],  $n^{\log d+1}$  [Kalai & Kleitman,1992]



### Properties

Outlin

LP and Simple:

Polyhedron
Diameter
Problem
Formulation

Formulation Kalai's Theorem

Kalai's
Algorithms
Algorithm  $S_2$ Algorithm

Summary

#### The objective

Finding a sub-exponential bound for for H(d, n)

H(d,n) - minimal # of pivot steps when each step can have unlimited computational power.



#### More definitions

Outlin

LP and Simplex

Diameter
Problem
Formulation

Kalai's Algorithms Algorithm

- $\mathcal{F}$  facets of P (d-1 dimensional faces)
- $U(w) \subset \mathcal{F}$  the active facets of P with respect to w -

$$U(w) = \{F \in \mathcal{F} : \max\{\phi(x) : x \in F\} > \phi(w)\}$$

- $\bullet \ u(w) = |U(w)|$
- $\bar{H}(d,n) = \max_{O \in L(d,\cdot)} \max_{v \in V: u(v) \le n} h(v)$
- $H(d,n) \leq \bar{H}(d,n)$



# A sub-exponential bound

#### Outlin

LP and Simple:

Diameter
Problem
Formulation
Kalai's

Theorem
Kalai's
Algorithms

 $\tilde{S}_0$ 

Summary

#### Theorem

$$\bar{H}(d,n) \le n \left( \begin{array}{c} d + \log n \\ \log n \end{array} \right) \le n^{\log d + 1}$$

We obtain this bound by finding a recursive formula for  $\bar{H}(d,n)$ .



# A sub-exponential bound

#### Outlin

LP and Simplex

Polyhedron
Diameter
Problem
Formulation
Kalai's
Theorem

Kalai's Algorithms Algorithm  $S_2$  Algorithm  $S_0$ 

Summai

#### Proof outline

- We can reach n k + 1 active facets in at most  $\bar{H}(d, n k)$
- There exist an optimal vertex w in one of those facets  $u(w) \le k-1$
- We obtain the maximal vertex in that facet in  $\bar{H}(d-1, n-1)$  steps.
- We continue from w with at most  $\bar{H}(d, k-1)$  steps.

$$\bar{H}(d,n) \le \bar{H}(d,n-k) + \bar{H}(d-1,n-1) + \bar{H}(d,k-1)$$



# A sub-exponential bound - Proof

utline

LP and Simplex

Diameter
Problem
Formulation

Algorithms
Algorithm  $S_2$ Algorithm  $S_0$ 

- $O \in L(d,\cdot), \vec{G}(O) = (V, \tilde{E}), v \in V$  such that  $u(v) \leq n$
- Let  $S \subset U(v)$  and |S| = k
- B is the upper bound on the shortest monotone path from v to either a vertex in S or the top of P.







#### O--+1:--

LP and Simplex

Polyhedron Diameter Problem

Kalai's Theorem

Algorithms
Algorithm  $S_2$ Algorithm

- case 1:  $\exists F \in S : v \in F \text{ then } B = 0$
- case 2:  $\forall F \in S : v \notin F$ 
  - Let O' the problem where  $\mathcal{F}' = U(v) \bigcup \{F : v \in F\} \setminus S$  and P' the feasible polyhedron.
  - $\bullet$  v is a vertex in the new problem.
  - In P' we have  $u(v) \le n k \Rightarrow h(v) \le \bar{H}(d, n k)$





Outline

LP and Simplex

Polyhedron
Diameter
Problem
Formulation
Kalai's

Kalai's
Algorithms  $S_2$ Algorithm  $S_0$ 

- conclusion:  $B \leq \bar{H}(d, n k)$ . why?
  - If the path which defines h(v) is in P we have the latter inequality.
  - Otherwise,  $\exists (x,y)$  in the path such that  $x \in P$  and  $y \notin P \Rightarrow \exists z \in S$  which is on the edge between x and y







Outlin

LP and Simplex

Polyhedron
Diameter
Problem
Formulation
Kalai's
Theorem

Kalai's Algorithms Algorithm  $S_2$  Algorithm

- Since this is true for every subgroup of size k we can reach at least n k + 1 facets in  $\bar{H}(d, n k)$  steps.
- On a certain facet it takes  $\bar{H}(d-1, n-1)$  steps to get to the maximal vertex in that facet.
- The top vertex among those n-k+1 facets w satisfies  $u(w) \le k-1$
- We then get the recursive formula:

$$\bar{H}(d,n) \le \bar{H}(d-1,n-1) + \bar{H}(d,n-k) + \bar{H}(d,k-1)$$



Outline

LP and Simplex

Polyhedron
Diameter
Problem
Formulation
Kalai's
Theorem

Kalai's
Algorithms
Algorithm  $S_2$ Algorithm  $S_0$ 

Summar

• The recursive formula for  $\bar{H}(d, n)$ :

$$\bar{H}(d,n) \le \bar{H}(d-1,n-1) + \bar{H}(d,n-k) + \bar{H}(d,k-1)$$

• Setting  $k = \lceil \frac{n}{2} \rceil$  and defining  $f(d,t) = 2^t \bar{H}(d,2^t)$  we get:

$$\begin{array}{lcl} f(d,t) & \leq & f(d-1,t) + f(d,t-1) & \Rightarrow \\ f(d,t) & \leq & \left( \begin{array}{c} d+t \\ t \end{array} \right) & \Rightarrow \\ \bar{H}(d,n) & \leq & n \left( \begin{array}{c} d+\log n \\ \log n \end{array} \right) \end{array}$$



#### Some remarks

Outline

LP and Simplex

Polyhedron
Diameter
Problem
Formulation
Kalai's
Theorem

Kalai's Algorithms  $S_2$  Algorithm  $S_2$  Algorithm  $S_0$ 

- Bound on  $\Delta(d, n)$  suggests every (primal) simplex algorithm needs at least a linear in n number of pivot steps.
- The upper bound is slightly super linear in n (for fixed d). Is there a linear bound?



### Kalai's Algorithms

Outline LP and

LP and Simplex

Polyhedron
Diameter
Problem
Formulation
Kalai's

Kalai's Algorithms

Algorithm  $S_2$ Algorithm

- Kalai presents three algorithms which are produced by 3 randomized pivot rules. (We will present two of them).
- The analysis of these algorithms is done by recursion.
- All the algorithms yield a sub-exponential expected number of pivot steps.
- Each pivot step takes at most  $O(d^2n)$  and generates at most 1 random variable



# Assumptions and General Step

Outline LP and

Simplex Polyhedro:

Diameter Problem Formulation Kalai's

Kalai's Algorithms Algorithm

Algorithm  $S_0$ 

Summai

- P is a simple polyhedron , i.e. each vertex is the intersection of exactly d facets.
- We start from a feasible vertex v.
- We can "find" vertices on r active facets

  - 2 Solve an LP with group S known constraints (facets) recursively and obtain a solution z
  - **3** If z is in P then z is optimal.
  - **4** If z is not in P find the first edge E on the path which leaves the P. The last point on E in P is the intersection with facet  $F \notin S$ .
  - **6**  $z := E \cap F$ ,  $S := S \cup F$ , k := k + 1
  - $\mathbf{6}$  If we have r facets, stop; otherwise go to step 2



# Algorithm $S_2$

Outline

LP and Simplex

Polyhedron
Diameter
Problem
Formulation
Kalai's
Theorem

Kalai's Algorithms Algorithm S<sub>2</sub> Algorithm S<sub>0</sub> • Start from some vertex v:

- **1** Find vertices in r active facets  $F_1, F_2, \ldots, F_r$
- ② Pick at random a facet from the r facets you reached.
- $\bullet$  Find w the optimal vertex on that facet.
- $\bullet$  Go back to step 1 beginning from w
- If we're going back to previously visited vertices why is this a simplex algorithm?
- What is u(w)?



# Algorithm $S_2$ - Analysis

Outline

LP and Simplex

Polyhedron Diameter Problem Formulation

Kalai's
Algorithms
Algorithm
S2

Summary

- Let  $f_2(d, n)$  be the maximal expected number of pivot steps needed using algorithm  $S_2$  for any problem in L(d, n).
- The recursive formula for  $f_2(d, n)$  implied from this algorithm is:

$$f_2(d,n) \le \sum_{i=d}^r f_2(d,i) + f_2(d-1,n-1) + \frac{1}{r} \sum_{i=1}^r f_2(d,n-i)$$

• Choosing  $r = \max\{d, \frac{n}{2}\}$  we get

$$f_2(d,n) \le \sum_{i=d}^{\frac{n}{2}} f_2(d,i) + f_2(d-1,n-1) + \frac{2}{n} \sum_{i=1}^{\frac{n}{2}} f_2(d,n-i)$$



### Algorithm $S_2$ - Analysis

#### Outlin

LP and Simplex

Polyhedro Diameter

Formulation
Kalai's
Theorem

Kalai's

Algorithms

 $S_2$ Algorithm  $S_0$ 

Summary

#### Bounds

$$f_2(d, n) \leq n^{O(\sqrt{\frac{d}{\log d}})}$$

$$f_2(d, Kd) \leq 2^{O(\sqrt{dK})}$$

$$f_2(d, d + m) \leq 2^{O(\sqrt{m \log d})}$$



## Algorithm $S_0$

Outline

LP and Simplex

Polyhedron Diameter Problem

Formulation Kalai's Theorem

Kalai's Algorithms Algorithm

 $\stackrel{-}{S_0}$ 

- Start from some vertex v:
  - 1 Pick at random a facet containing the current vertex.
  - ② Find w the optimal vertex on that facet.
  - $\bullet$  Go back to step 1 beginning from w.
- What is u(w)?



## Algorithm $S_0$ - Analysis

Outline

Simplex

Polyhedron
Diameter
Problem
Formulation

Kalai's Algorithms

Algorithm

- Let  $f_0(d, n)$  be the maximal expected number of pivot steps needed using algorithm  $S_0$  for any problem in L(d, n).
- The recursive formula for  $f_0(d, n)$  implied from this algorithm is:

$$f_0(d,n) \le f_0(d-1,n-1) + \frac{1}{d} \sum_{i=0}^{d-1} f_0(d,n-i)$$



### Algorithm $S_0$ - Analysis

#### Outlin

LP and Simplex

Polyhedror Diameter Problem

Formulatio Kalai's

Kalai's Algorithms

S<sub>2</sub>
Algorithm

Summary

#### Bounds

$$f_0(d, d+m) \le 2^{O(\sqrt{m \log d})}$$

which is generally worse than the  $f_2$  bound (specifically for  $n = O(d^2)$ )



### Algorithm $S_0$ - Dual Form

Outline

Simplex

Polyhedron Diameter Problem Formulation

Kalai's Algorithms

Algorithm  $S_0$ 

- Independent work of Micha Sharir and Emo Welzl [1992] found a combinatorial randomized algorithm for Linear Programming
- The algorithm is a dual simplex algorithm, a variation of the dual form of  $S_0$ .
- The number of expected operation given this algorithm [J. Matoušk, Sharir and Welzl, 1992]:

$$\min\{O(d^22^dn), e^{2\sqrt{d\ln(n/\sqrt{d})} + O(\sqrt{d} + \ln n)}\}$$



#### Conclusions

Outline

Simplex

Polyhedron Diameter Problem Formulation

Kalai's

 $\begin{array}{c} {\rm Algorithms} \\ {\rm Algorithm} \\ {S_2} \end{array}$ 

Summary

- Using oracle instead of randomization algorithm  $S_2$  becomes quasi-polynomial (bound on H(d, n)).
- Using Kalai's algorithm as a subroutine in Clarksons algorithm we get an algorithm with expected arithmetic operations:  $d^{O\left(\sqrt{d/\log d} + \log\log n\right)} + O(d^2n)$ .

#### Example:

- d = 1,000,000
- n = 2d (implying  $2^{O(\sqrt{d})}$  pivot steps)
- $10^{400,000}$  vertices.
- $10^{3,000}$  expected pivot steps using  $S_2$ .
- $H(d,n) < 10^{50}$



## Open questions

Outline

LP and Simplex

Diameter
Problem
Formulation
Kalai's

Kalai's Algorithms Algorithm  $S_2$  Algorithm  $S_0$ 

- Is there a strong polynomial algorithm for linear programming?
- Decide if  $\Delta(d, n)$  and H(d, n) are polynomial.
- Decide if H(d, n) is linear in n for a fixed dimension d.
- Deterministic sub-exponential pivot rules.
- Better randomized pivot rules.
- Give a randomized (primal) pivot rule for which for a fixed dimension the complexity is at most  $O(n^C)$ .



#### $\operatorname{Outline}$

LP and Simplex

Polyhedror Diameter

Formulation

Theorem

Algorithms

 $S_2$ Algorithm

Summary

# Questions?

# **Dual Simplex**

Additional Material Clarkson's Algorithm S<sub>2</sub> So

- Tries to finds a subset of constraints S which contain optimal basis B.
- How?

  - ② Choose some R set of m constraints m > d.
  - **3** Use standard simplex algorithm to compute optimum over  $R \bigcup S$  returns vertex v.
  - ① Computes Z, the set of violated constraints. If Z is empty than v is optimal.
  - **6** Update  $S = S \bigcup Z$  and return to step 2.
- At most d iterations to obtain a solution.
- $\bullet$  determine m such that Z is not too large.



#### Clarkson's Algorithm

Additional Material Clarkson's Algorithm

- In Clarkson's algorithm, R is random and of size  $d\sqrt{n}$
- Insures an expected  $\sqrt{n}$  constraints violated at each iteration.
- If there are less than  $9d^2$  constraints, the optimum is found using a simple algorithm as a base subroutine.
- At most  $O(d^2 log n)$  calls to the base subroutine.





### Why is $S_2$ a simplex?

Lets look at the randomization in a slightly different way:

- Order the facets we encounter by the order we encounter them, e.g.  $F_1$  is the first facet we encounter and  $F_r$  the last.
- Generate, in advance, a random number s between 1 and r.
- Proceed in the algorithm until you reached the  $F_s$  then stop.

This way we do not go back to a vertex we already visited.



# What is the degree of w?

Additional Material Clarkson's Algorithm S<sub>2</sub> Again lets look at the randomization in a slightly different way:

• Order the facets we encounter by their maximal vertex value:

$$i>j\Rightarrow \max\{\phi(v):v\in F_{(i)}\}\geq \max\{\phi(v):v\in F_{(j)}\}$$

- In other words if we denote  $v_{(i)}$  the optimal vertex of facet  $F_{(i)}$  we have that  $u(v_{(i)}) \leq n i$ .
- Starting from vertex v for which  $u(v) \leq n$  with probability  $\frac{1}{r}$  we reach a vertex w for which:

$$u(w) \le n - i \quad \forall i = 1, \dots, r$$

# What is the degree of w in $S_0$ ?

Additional Material Clarkson's Algorithm  $S_2$  $S_0$ 

- Notice that any vertex v has at most 1 inactive facet (only if the objective function is parallel to that facet)
- Assuming that all facets containing v are active with probabilities of  $\frac{1}{d}$  we have:

$$u(w) \le n - i \quad \forall i = 1, \dots, d$$

• Assuming that v has one inactive facet then with probability  $\frac{1}{d} w = v$  and with probabilities of  $\frac{1}{d}$  we have:

$$u(w) \le n - i \quad \forall i = 1, \dots, d - 1$$

• The latter case is of course worse.