

Modelo viscoelástico

Os materiais elásticos, tendo a capacidade de dissipar a energia mecânica devido aos efeitos viscosos, são caracterizados como materiais viscoelásticos.

Para estados de tensão multiaxial, a relação constitutiva pode ser escrita como:

$$g(t) = \int_{0}^{t} 2G(t-\tau) \frac{\partial \underline{\varepsilon}}{\partial \tau} \partial \tau + \underbrace{I}_{0}^{t} K(t-\tau) \frac{\partial \phi}{\partial \tau} \partial \tau$$

onde: e(bar) e ϕ são deformações relativa e volumétrica, G(t -) e K(t -) são funções de relaxamento de cisalhamento e de relaxamento de volume.

As funções de relaxamento podem ser representadas pelo modelo mecânico conhecido como Generalized Maxwell Model (modelo generalizado de Maxwell) com três expressões:

$$G(t) = G_o \left[1 - \sum_{i=1}^{N_G} g_i \left(1 - e^{-t/\tau_i^G} \right) \right]$$

$$K(t) = K_o \left[1 - \sum_{i=1}^{N_K} k_i \left(1 - e^{-t/\tau_i^K} \right) \right]$$

onde: $G_0 = E / 2(1+v)$, módulo de cisalhamento inicial (t=0)

e $K_0 = E / 3(1 - 2v)$, módulo de volume inicial (t=0)

 g_i , k_i , τ_i G , e τ_i K são os módulos de cisalhamento e volume e períodos correspondentes.

O efeito da temperatura no comportamento do material é introduzido mediante o princípio de correspondência entre o tempo e a temperatura. A forma matemática do princípio é:

$$G_{\alpha}(t,T) = G_{\alpha}(\gamma t, T_{\alpha})$$

em que yt é o tempo reduzido e y é a função de troca. A equação de Williams-Landel-Ferry (WLF) é utilizada para aproximação da função.

$$\ln \gamma = \left(\frac{C_1 \bar{T}}{C_2 + \bar{T}}\right) \ln (10), \ \bar{T} = T - T_o$$

em que T_0 é a temperatura de referência escolhida geralmente como a temperatura de transição vítrea; C1 e C2 são constantes que dependem do material.

Parâmetro	Propriedade do material
Parâmetros elásticos lineares	Módulo elástico em X
	Coeficiente de Poisson em xy
	Módulo de cisalhamento em XY
Parâmetros da função relaxamento	Módulo de relaxamento de cisão (1 a 8)
	representam g1, g2,,g8 nas equações do Modelo de Maxwell Generalizado.
	Valores de tempo (Módulo de relaxamento de cisão 1 a 8) (representa τ_1^g , τ_2^g ,, τ_8^g nas equações do Modelo Generalizado de Maxwell)
	Módulo de relaxamento de cisão (1 a 8)
	Valores de tempo (Módulo de relaxamento de cisão 1 a 8) (representa τ_1^g , τ_2^g ,, τ_8^g nas equações do Modelo Generalizado de Maxwell)
Parâmetros da equação WLF	Temperatura de Transição Vítrea
	representa T ₀ na equação WLF
	Primeira constante da equação Williams-Landel-Ferry
	representa C ₁ na equação WLF
	Segunda constante da equação Williams-Landel-Ferry representa C_2 na equação WLF

Ao definir a curva de relaxamento de cisalhamento ou em massa na guia Tabelas e curvas, o primeiro ponto da curva é o módulo G_1 ou K_1 módulos no tempo t_1 . No momento t=0, o programa calcula automaticamente G_0 ou K_0 a partir do Módulo elástico e do Coeficiente de Poisson.

O modelo de material viscoelástico pode ser usado para elementos de casca espessa ou sólida, de qualidade alta ou de rascunho.

O tempo tem valores reais na análise não linear quando você usa o modelo de material viscoelástico.