Homework #3

Raymond Deneckere

Fall 2016

- 1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = x^3/(x^2+y^2)$ for $(x,y) \neq (0,0)$, and f(0,0) = 0.
 - (a) Is f a continuous function?
 - (b) Compute the directional derivative of $f(\cdot)$ in the direction of the vector v=(1,1)
 - (c) Compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$
 - (d) Show that f(x, y) is not differentiable at (0, 0)

What do you conclude?

- 2. Is every point of every open set $E \subset \mathbb{R}^n$ a limit point of E? Answer the same question for closed sets in \mathbb{R}^n .
- 3. Let $f,g:[0,1]\to\mathbb{R}$ be continuous fuctions, and suppose that f(x)>g(x) for all $x\in[0,1]$. Prove or disprove the following statement: There exists $\Delta>0$ such that $f(x)\geqq g(x)+\Delta$ for all $x\in[0,1]$. What if instead f and g were only left continuous?
- 4. Let f be a continuous real-valued function on \mathbb{R} , of which it is known that f'(x) exists for all $x \neq 0$, and that $f'(x) \to 3$ as $x \to 0$. Does it follows that f'(0) exists? Either prove or disprove your statement.
- 5. Suppose that $f: \mathbb{R} \to \mathbb{R}$, and recall that x^* is a fixed point of $f(\cdot)$ if $f(x^*) = x^*$.
 - (a) If f is differentiable, and $f'(x) \neq 1$ for every real x, show that $f(\cdot)$ has at most one fixed point.

(b) Show that the function $f(\cdot)$ defined by the rule

$$f(x) = x + \frac{1}{1 - e^x}$$

has no fixed point, even though 0 < f'(x) < 1 for all real x.

- (c) Show that if there exists a constant c < 1 such that $|f'(x)| \le c$ for all real x, then a fixed point x^* of $f(\cdot)$ exists, and that $x^* = \lim_{n \to \infty} x_n$, where x_0 is an arbitrary real number, and $x_{n+1} = f(x_n)$ for all $n \ge 0$.
- (d) Show that the process described in (c) can be visualized by the zig-zag path $(x_0, x_1) \rightarrow (x_1, x_2) \rightarrow (x_2, x_3) \rightarrow (x_3, x_4) \rightarrow \dots$