Exercices

oui.

12 septembre 2023

Table des matières

1	Une Démonstration du Théorème de Cayley-Hamilton	1
2	Des Partitions d'un Ensemble fini	1

1 Une Démonstration du Théorème de Cayley-Hamilton

On se propose ici de démontrer le théorème de Cayley-Hamilton sur $\mathbb C$ par des méthodes analytiques.

On assimilera ici \mathbb{C} et $\mathbb{C}I_n$ où $n \in \mathbb{N}$.

On prend $A \in M_n(\mathbb{C})$

- 1. Montrer que pour $z \in \mathbb{C}$ suffisamment grand, $\det(z A) \neq 0$
- 2. En déduire que pour r assez grand, l'intégrale $\int_{-\pi}^{+\pi} \frac{(re^{i\theta})^{k+1}}{re^{i\theta}-A} \frac{d\theta}{2\pi}$ a un sens.

2 Des Partitions d'un Ensemble fini

On note b_n le nombre de partitions d'un ensemble à n éléments.

- 1. Calculer b_0, \ldots, b_3
- 2. Trouver une relation de récurrence entre les b_n
- 3. Exprimer $\sum_{n=0}^{\infty} b_n \frac{x^n}{n!}$
- 4. Donner une expression de b_n