Examenul national de bacalaureat 2025

Proba E. c)

Matematică *M_mate-info*

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Se consideră numerele complexe $z_1 = 4 + i$ și $z_2 = 2 4i$. Arătați că $i \cdot z_1 + z_2 = 1$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 3x + 5$. Determinați numerele reale a pentru care punctul A(a,5) aparține graficului funcției f.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_6(7x-5) = \log_6(x+1) + \frac{1}{\log_2 6}$
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie multiplu impar al lui 9.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,0), B(2,4) și C(5,a), unde a este număr real. Determinați numărul real a, știind că dreptele OB și AC sunt paralele.
- **5p 6.** Se consideră triunghiul ABC, cu AB = 6, BC = 10 și $\cos B = \frac{4}{5}$. Arătați că aria triunghiului ABC este egală cu 18.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, A = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$ și $B(x) = \begin{pmatrix} 1 & x & 0 \\ 0 & 1 & x \\ -x & 0 & 1 \end{pmatrix}$, unde x este

număr real.

- **5p** a) Arătați că det A = 1.
- **5p b)** Arătați că $A B(x) \cdot A = xI_3$, pentru orice număr real x.
- **5p** c) Pentru fiecare număr real x se consideră matricea C(x) astfel încât $A \cdot C(x) = B(x)$. Arătați că C(x) C(y) = (y x)A, pentru orice numere reale x și y.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție $x * y = x^2y + xy^2 + x + y$.
- **5p** a) Arătați că 1*3=16.
- **5p b)** Determinați numerele reale nenule x pentru care $x * \frac{2}{x} = 9x$.
- **5p** c) Determinați perechile (m,n) de numere întregi, cu $m \le n$, pentru care m * n = 1.

SUBIECTUL al III-lea (30 de puncte)

- 1. Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{\ln x}{x^3}$.
- **5p** a) Arătați că $f'(x) = \frac{1 3\ln x}{x^4}, x \in (0, +\infty).$
- **5p** | **b**) Determinați ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.
- 5p c) Determinați mulțimea numerelor reale m pentru care ecuația f(x) = m are cel puțin o soluție.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x + x^2 1$.
- **5p** a) Arătați că $\int_{1}^{4} \left(f(x) e^{x} \right) dx = 18.$
- **5p b)** Arătați că $\int_{1}^{2} \frac{e^{x}}{f(x) x^{2}} dx = \ln(e+1)$.
- **5p** c) Demonstrați că $\int_{0}^{1} \frac{x}{f(x)+1} dx \le 1 \frac{2}{e}$.

Pagina 2 din 2