Wartości $\binom{n}{k}$ dla małych n i k:

n	0	1	2	3	4	5	6	7	8	9
0	1	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0
2	0	1	1	0	0	0	0	0	0	0
3	0	1	3	1	0	0	0	0	0	0
4	0	1	7	6	1	0	0	0	0	0
5	0	1	15	25	10	1	0	0	0	0
6	0	1	31	90	65	15	1	0	0	0
7	0	1	63	301	350	140	21	1	0	0
8	0	1	127	966	1701	1050	266	28	1	0
9	0	1	255	3025	7770	6951	2646	462	36	1

Uwaga!

W przypadku, gdy $n\geqslant 0$ i k<0 zakładamy, że $\displaystyle {n\choose k}=0.$

B. Pawlik

Potęgi kroczące

Definicja

Niech $m \geqslant 0$ będzie liczbą całkowitą.

• Dolną silnią nazywamy wyrażenie

$$x^{\underline{m}} = x(x-1)(x-2)\cdots(x-m+1).$$

• Górną silnią nazywamy wyrażenie

$$x^{\overline{m}} = x(x+1)(x+2)\cdots(x+m-1).$$

Wyrażenie $x^{\underline{m}}$ czytamy "x do m-tej ubywającej", a $x^{\overline{m}}$ — "x do m-tej przybywającej".

Twierdzenie

Dla n > 0 zachodzi zależność rekurencyjna

$$\binom{n}{k} = \binom{n-1}{k-1} + k \cdot \binom{n-1}{k}.$$

Dowód. (1/2)

Niech $S=\{a_1,a_2,\ldots,a_n\}$. Określimy liczbę podziałów S na k niepustych podzbiorów S_1,S_2,\ldots,S_k . Zauważmy, że w każdym takim podziale elementy a_1,a_2,\ldots,a_{n-1} można przydzielić <u>albo</u> do zbiorów S_1,S_2,\ldots,S_{k-1} <u>albo</u> do zbiorów $S_1,S_2,\ldots,S_{k-1},S_k$ (w obu przypadkach każdy z wymienionych zbiorów posiada co najmniej jeden z elementów a_1,\ldots,a_{n-1}).

W pierwszym przypadku mamy $\binom{n-1}{k-1}$ możliwości. Zauważmy, że dla każdego takiego podziału element a_n tworzy jednoznaczenie jednoelementowy ostatni zbiór $S_k\colon S_k=\{a_n\}.$

Liczby Stirlinga drugiego rodzaju

Definicja

Podziałem skończonego zbioru S nazywamy rodzinę parami rozłącznych podzbiorów $\{S_1,S_2,\ldots,S_k\}$ zbioru S taką, że

$$S_1 \cup S_2 \cup \ldots \cup S_k = S$$
.

Definicja (liczby Stirlinga drugiego rodzaju)

Symbol $\binom{n}{k}$ (czyt. k podzbiorów n) oznacza liczbę sposobów podziału zbioru n-elementowego na k niepustych podzbiorów.

Liczby Stirlinga drugiego rodzaju występują częściej niż liczby Stirlinga pierwszego rodzaju, więc zaczynamy od nich — tak jak James Stirling w swojej książce *Methodus Differentialis* (1730).

Przykład

Wyznacz wartość $\binom{4}{2}$.

Wyznaczymy liczbę podziałów zbioru czterolementowego $\{a,b,c,d\}$ na dwa niepuste zbiory. Zauważmy, że 4=1+3=2+2, więc dany zbiór możemy zapisać jako sumę zbiórów trój- oraz jednoelementowego lub dwóch dwuelementowych:

$$1+3: \quad \{a\} \cup \{b,c,d\}, \quad \{b\} \cup \{c,d,e\}, \quad \{c\} \cup \{a,b,d\}, \quad \{d\} \cup \{a,b,c\}, \\ 2+2: \quad \{a,b\} \cup \{c,d\}, \quad \{a,c\} \cup \{b,d\}, \quad \{a,d\} \cup \{b,c\}.$$

Zatem
$$\binom{4}{2} = 7$$
.

Dowód. (2/2)

Mamy

$$\begin{split} x^n &= x \cdot x^{n-1} \overset{(ZI)}{=} x \cdot \sum_{k=0}^{n-1} \binom{n-1}{k} x^{\underline{k}} = \sum_{k=0}^{n-1} \binom{n-1}{k} x^{\underline{k}} \cdot x = \\ &= \sum_{k=0}^{n-1} \binom{n-1}{k} (x^{\underline{k+1}} + kx^{\underline{k}}) = \sum_{k=0}^{n-1} \binom{n-1}{k} x^{\underline{k+1}} + \sum_{k=0}^{n-1} \binom{n-1}{k} kx^{\underline{k}} = \\ &= 0 + \sum_{k=1}^{n} \binom{n-1}{k-1} x^{\underline{k}} + \sum_{k=0}^{n-1} \binom{n-1}{k} kx^{\underline{k}} + 0 = \\ &= \binom{n-1}{-1} x^{\underline{0}} + \sum_{k=1}^{n} \binom{n-1}{k-1} x^{\underline{k}} + \sum_{k=0}^{n-1} \binom{n-1}{k} kx^{\underline{k}} + \binom{n-1}{n} nx^{\underline{n}} = \\ &= \sum_{k=0}^{n} \binom{n-1}{k-1} x^{\underline{k}} + \sum_{k=0}^{n} \binom{n-1}{k} kx^{\underline{k}} = \sum_{k=0}^{n} \binom{n-1}{k-1} + \binom{n-1}{k} k \cdot x^{\underline{k}} = \\ &= \sum_{k=0}^{n} \binom{n}{k} \cdot x^{\underline{k}}. \end{split}$$

B. Pawlik

Wartości $\begin{bmatrix} n \\ k \end{bmatrix}$ dla małych wartości k:

• k = 0.

Podobnie jak w przypadku liczb Stirlinga drugiego rodzaju mamy $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1$

 $\operatorname{oraz} \begin{bmatrix} n \\ 0 \end{bmatrix} = 0 \text{ dla } n > 0.$

• k = 1

Oczywiście $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0$. Pamiętamy, że zbiór n-elementowy ma dokładnie n! permutacji. Każdemu cyklowi odpowiada dokładnie n permutacji (każda rozpoczyna się od innego elementu danego zbioru), zatem

$$\begin{bmatrix} n \\ 1 \end{bmatrix} = \frac{n!}{n} = (n-1)!$$

Dowód. (2/2)

W drugim przypadku mamy ${n-1 \brace k}$ możliwości podziału zbioru $\{a_1,a_2,\ldots,a_{k-1}\}$ na S_1,S_2,\ldots,S_k . Zauważmy, że w przypadku każdego takiego podziału element a_n może trafić do jednego z k zbiorów S_1,S_2,\ldots,S_k . Zatem w tym przypadku mamy $k \cdot {n-1 \brace k}$ możliwości.

Ostatecznie

$$\binom{n}{k} = \binom{n-1}{k-1} + k \cdot \binom{n-1}{k}.$$

Liczby Stirlinga pierwszego rodzaju

Definicja

Cyklem nazywamy cykliczne ustawienia elementów danego zbioru.

Przykładowo jednym z cykli zbioru $\{A,B,C,D\}$ jest cykl w którym A przechodzi na $D,\ D$ na $B,\ B$ na $C,\$ a C na A. Ten cykl zapisujemy w postaci [A,D,B,C]. Oczywiście

$$[A, D, B, C] = [D, B, C, A] = [B, C, A, D] = [C, A, D, B].$$

Definicja (liczby Stirlinga pierwszego rodzaju)

Symbol $\binom{n}{k}$ (czyt. k cykli n) oznacza liczbę sposobów na rozmieszczenie n elementów w k rozłącznych cyklach.

Liczby szczególne

dr inż. Bartłomiej Pawlik

19 czerwca 2024

Funkcja φ -Eulera

Definicja

Liczby całkowite a i b nazywamy **względnie pierwszymi**, gdy $\mathsf{NWD}(a,b) = 1$.

Zapis $a \perp b$ oznacza, że a i b są liczbami względnie pierwszymi.

Stwierdzenie

Liczby $\frac{a}{\mathsf{NWD}(a,b)}$ i $\frac{b}{\mathsf{NWD}(a,b)}$ są względnie pierwsze.

Przykład

 $\mathsf{NWD}(48,180) = 12$, więc 48 i 180nie są liczbami względnie pierwszymi.

$$\frac{48}{12} = 4$$
, $\frac{180}{12} = 15$.

Zauważmy, że NWD(4,15) = 1. Zatem $4 \perp 15$.

Poprawność algorytmu Euklidesa

- Algorytm produkuje <u>malejący</u> ciąg liczb całkowitych nieujemnych $r_1 > r_2 > \ldots > r_n$ (jedna liczba w jednym kroku). Zatem algorytm zatrzymuje się po skończonej liczbie kroków (nie większej niż wartość r_1).
- Z własności NWD(a, b) = NWD(a qb, b) otrzymujemy

$$\begin{aligned} \mathsf{NWD}(a,b) &= \mathsf{NWD}(b,r_1) = \mathsf{NWD}(r_1,r_2) = \ldots = \mathsf{NWD}(r_{n-1},r_n) = \\ &= \mathsf{NWD}(r_n,0) = r_n \end{aligned}$$

Definicja NWD

Niech $a,b\in\mathbb{Z}$ i niech co najmniej jedna z nich jest różna od 0. Liczbę naturalną d nazywamy **największym wspólnym dzielnikiem** liczb a i b, gdy

- d|a i d|b,
- jeżeli dla $c \in \mathbb{N}$ mamy c|a i c|b, to c|d.

Największy wspólny dzielnik liczba i b oznaczamy jako NWD(a,b).

Przykład

$$\mathsf{NWD}(6,8) = 2, \quad \mathsf{NWD}(14,-17) = 1, \quad \mathsf{NWD}(-3,-9) = 3, \quad \mathsf{NWD}(0,24) = 24.$$

Stwierdzenie

Jeżeli $a \perp b$, to $\varphi(ab) = \varphi(a)\varphi(b)$.

Z dwóch ostatnich stwierdzeń wynika następujące

Twierdzenie

Niech $p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_k^{\alpha_k}$ będzie postacią kanoniczną liczby $n \in \mathbb{N}/\{1\}$. Wtedy

$$\varphi(n) = n \cdot \prod_{i=1}^{k} \left(1 - \frac{1}{p_i}\right).$$

Podstawowe twierdzenie arytmetyki

Każdą liczbę całkowitą dodatnią można przedstawić jako iloczyn liczb pierwszych. Przedstawienie takie jest jednoznaczne z dokładnością do kolejności czynników.

Przykład

$$12 = 2 \cdot 2 \cdot 3 = 2 \cdot 3 \cdot 2 = 3 \cdot 2 \cdot 2$$

Wniosek

Każda większa od 1 liczba naturalna n może być jednoznacznie zapisana w tzw. **postaci kanonicznej**

$$n = q_1^{\alpha_1} \cdot q_2^{\alpha_2} \cdot \ldots \cdot q_k^{\alpha_k},$$

gdzie q_i są liczbami pierwszymi, α_i są liczbami naturalnymi oraz $q_1 < q_2 < \ldots < q_k$.

Przykład

Postacią kanoniczną liczby 12 jest $2^2 \cdot 3$.

Elementy teorii liczb

dr inż. Bartłomiej Pawlik

23 kwietnia 2024

Współczynniki rozkładu silni

Twierdzenie

Niech n będzie liczbą całkowitą dodatnią i niech $\alpha_p(N)$ oznacza największą potęgę liczby p dzielącą liczbę N. Wtedy

$$\alpha_p(n!) = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \ldots = \sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor.$$

Przykład

Wskaż największą potęgę liczby 3 dzieląca liczbę 100!

Korzystając z powyższego wzoru mamy

$$\alpha_3(100!) = \left\lfloor \frac{100}{3} \right\rfloor + \left\lfloor \frac{100}{9} \right\rfloor + \left\lfloor \frac{100}{27} \right\rfloor + \left\lfloor \frac{100}{81} \right\rfloor + \left\lfloor \frac{100}{243} \right\rfloor + \dots =$$

$$= 33 + 11 + 3 + 1 + 0 + \dots = 48.$$

Zatem szukana potęga to 3^{48} .

Stwierdzenie

Dla dowolnej liczby pierwszej p i liczby całkowitej dodatniej α zachodzi:

- $\varphi(p) = p 1$,
- $\varphi(p^{\alpha}) = p^{\alpha} \cdot \left(1 \frac{1}{p}\right)$.

Dowód.

- ullet Liczba pierwsza p jest względnie pierwsza z każdą z liczb $1,2,\ldots,p-1.$
- Zauważmy, że jedynie wielokrotności liczby pierwszej p mają wspólny nietrywialny dzielnik z p^{α} . Zatem w zbiorze $\{1,2,\ldots,p^{\alpha}-1\}$ liczbami niebędącymi liczbami względnie pierwszymi z p^{α} są

$$1 \cdot p, \ 2 \cdot p, \ \ldots, \ (p^{\alpha-1}-1) \cdot p,$$

więc ich liczba wynosi $p^{\alpha-1}-1$. Zatem

$$\varphi\left(p^{\alpha}\right)=\left(p^{\alpha}-1\right)-\left(p^{\alpha-1}-1\right)=p^{\alpha}-p^{\alpha-1}=p^{\alpha}\left(1-\frac{1}{n}\right).$$

Definicja

Dla każdej liczby $n\in\mathbb{N}/\{1\}$ określamy liczbę $\varphi(n)$ jako liczbę dodatnich liczb całkowitych mniejszych od n i względnie pierwszych z n:

$$\varphi(n) = \Big| \{ 1 \leqslant k < n : k \perp n \} \Big|.$$

Funkcję $\varphi = \varphi(n)$ nazywamy funkcją φ -Eulera.

Przykład

Obliczmy NWD(k, 12) dla k mniejszych od 12:

NWD(3, 12) = 3, NWD(6, 12) = 6, NWD(9, 12) = 3,

7atem

$$\varphi(12) = |\{1, 5, 7, 11\}| = 4.$$

Własności NWD i NWW

Niech $a, b \in \mathbb{Z}/\{0\}$ i $q \in \mathbb{Z}$.

- **3** Jeżeli a|b, to $\mathsf{NWD}(a,b) = |a|$ i $\mathsf{NWW}(a,b) = |b|$.
- $\verb"OND"(a,b) = \verb"NWD"(|a|,|b|) \text{ i } \verb"NWW"(a,b) = \verb"NWW"(|a|,|b|).$

5 / 24