III. ESPACES MÉTRIQUES COMPLETS

Espaces métriques complets

- 1) On admet que pour toute application injective $\varphi \colon \mathbb{R} \to \mathbb{R}$, la formule $\delta(x,y) = |\varphi(x) \varphi(y)|$ détermine une distance δ sur \mathbb{R} (généralisation de l'exercice 6 b de la feuille I).
 - a) L'espace métrique (\mathbb{R}, δ) est-il complet quand $\varphi(x) = e^x$ pour $x \in \mathbb{R}$?
 - b) Démontrer que (\mathbb{R}, δ) est complet si et seulement si $\varphi(\mathbb{R})$ est un fermé de \mathbb{R} (distance usuelle).
- 2) On note $\mathbb{C}[[X]]$ l'espace vectoriel $\mathbb{C}^{\mathbb{N}}$ muni du « produit » $((a_n)_{n\geq 0}, (b_n)_{n\geq 0}) \mapsto (\sum_{p+q=n} a_p b_q)_{n\geq 0}$. On dispose sur $\mathbb{C}[[X]]$ de la distance $d\colon (a,b)\mapsto 2^{-v(a-b)}$ déterminée par : $v((a_n)_{n\geq 0})=\min\{n\in\mathbb{N}\,|\,a_n\neq 0\}$ quand $(a_n)_{n\geq 0}\neq 0$ et $v(0)=+\infty$ (exercice 11 de la feuille I).
 - a) Démontrer que le sous-espace vectoriel $\mathbb{C}[X]$ de $\mathbb{C}[[X]]$, égal à $\mathbb{C}^{(\mathbb{N})}$, est dense dans $\mathbb{C}[[X]]$. Indication: vérifier qu'un $(a_n)_{n\geq 0} \in \mathbb{C}^{\mathbb{N}}$ s'écrit $\lim_{n\to +\infty} \sum_{k=0}^{n} a_k X^k$ (on le notera donc $\sum_{k=0}^{+\infty} a_k X^k$).
 - b) Démontrer que $\mathbb{C}[[X]]$ est complet.
- 3) L'application $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ est-elle uniformément continue?

Indication: on pourra considérer la suite $(\frac{1}{n+1})_{n\geq 0}$ et son image par f.

Théorème du point fixe

4) Déteminer celles des applications suivantes qui sont contractantes et celles qui ont un point fixe:

$$f_1: \]0,1] \to \]0,1]; \qquad f_2: \ [0,1] \to \mathbb{R} ; \qquad f_3: \ [1,2] \to \mathbb{R} ; \qquad f_4: \ \mathbb{R} \to \mathbb{R} .$$
 $x \mapsto \frac{x}{2} + 1 \qquad x \mapsto \frac{x+2}{x+1} \qquad x \mapsto \sqrt{1+x^2}.$

- 5) Soit $N: \mathbb{R}^n \to \mathbb{R}^n$ une application k-contractante.
 - a) Démontrer que l'application $A := id_{\mathbb{R}^n} N$ est bijective. Indication: fixer $y \in \mathbb{R}^n$ et utiliser l'application $N_y : x \mapsto N(x) + y$.
 - b) Démontrer que l'application A^{-1} est $\frac{1}{1-k}$ -lipschitzienne.
- 6) Soient $D_1, ..., D_k$ $(k \ge 2)$ des droites affines non-parallèles de l'espace affine euclidien \mathbb{R}^n . Pour chaque $i \in \{1, ..., k\}$, on note $p_i : \mathbb{R}^n \to \mathbb{R}^n$ la projection orthogonale sur D_i . (\star)
 - a) Démontrer que l'application $p_1 \circ p_k \circ p_{k-1} \circ \cdots \circ p_2$ est contractante.
 - b) En déduire qu'il existe $M_1 \in D_1, ..., M_k \in D_k$, tels que : $p_2(M_1) = M_2, ..., p_k(M_{k-1}) = M_k, \text{ et } p_1(M_k) = M_1.$
- 7) Soit $n_0 \geq 1$. On considère une norme $\| \|$ sur \mathbb{R}^{n_0} et la norme « subordonnée » $\| \| \|$ sur $\mathfrak{M}(n_0, \mathbb{R})$:

$$|||A||| := \sup_{\substack{X \in \mathbb{R}^{n_0} \\ X \neq 0}} \frac{||AX||}{||X||} \quad \text{pour } A \in \mathfrak{M}(n_0, \mathbb{R}).$$

Soient $A, N \in \mathfrak{M}(n_0, \mathbb{R})$ tels que A = I - N et ||N|| < 1, et $B \in \mathbb{R}^{n_0}$. On verra dans la feuille V que A est inversible. On note $X \in \mathbb{R}^{n_0}$ la solution de AX = B. Soit $X_0 \in \mathbb{R}^{n_0}$. On définit $(X^{(n)})_{n \geq 0}$ par : $X^{(0)} = X_0$ et $X^{(n+1)} = NX^{(n)} + B$ pour $n \geq 0$. Démontrer que $X^{(n)} \xrightarrow[n \to +\infty]{} X$ avec $\|X^{(n)} - X\| \leq \frac{\|N\|^n}{1 - \|N\|} \|X^{(1)} - X^{(0)}\|$ pour tout $n \geq 0$.

 (\star) Soient $M, N \in \mathbb{R}^n$. Le point $p_i(M)$ est l'unique $M' \in D_i$ tel que $\overrightarrow{MM'} \perp \overrightarrow{D_i}$. D'où : $\overrightarrow{p_i(M)p_i(N)} = \overrightarrow{p_i}(\overrightarrow{MN})$.

Espaces de Banach

- 8) On munit $\mathbb{R}[X]$ de la norme infini sur [0,1]: $||P||_{L^{\infty}([0,1])} = \sup_{x \in [0,1]} |P(x)|$ pour $P \in \mathbb{R}[X]$.
 - a) Soit $n \in \mathbb{N}$. L'espace vectoriel $\mathbb{R}_n[X]$ muni de $\| \|_{L^{\infty}([0,1])}$ est-il un espace de Banach?
 - b) L'espace vectoriel $\mathbb{R}[X]$ muni de $\| \|_{L^{\infty}([0,1])}$ est-il un espace de Banach?
- 9) On munit $E = \mathscr{C}([0,1],\mathbb{R})$ de la norme $\| \ \|_1$ définie par : $\| f \|_1 = \int_0^1 |f(x)| \, \mathrm{d}x$ pour $f \in E$.
 - a) Si $n \ge 2$, on détermine $f_n : [0,1] \to \mathbb{R}$ par : $f_n|_{[0,\frac{1}{2}-\frac{1}{n}]} = 0$, $f_n|_{[\frac{1}{2}-\frac{1}{n},\frac{1}{2}+\frac{1}{n}]}$ affine, $f_n|_{[\frac{1}{2}+\frac{1}{n},1]} = 1$. Démontrer que $(f_n)_{n\geq 2}$ est une suite de Cauchy dans $(E, \| \|_1)$.
 - b) On suppose que la suite $(f_n)_{n\geq 2}$ converge dans $(E, \|\ \|_1)$ vers un élément f. Démontrer que $\int_0^{\frac{1}{2}} |f(x)| dx = 0$ et $\int_{\frac{1}{2}}^1 |f(x) - 1| dx = 0$.
 - c) En déduire que l'espace vectoriel normé $(E, \| \|_1)$ n'est pas un espace de Banach.
- 10) a) Soient A un ensemble et $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Démontrer que l'espace vectoriel $(\mathbb{K}^A)_b$ des applications bornées de A dans \mathbb{K} , muni de $\| \|_{\infty}$, est un espace de Banach.
 - b) On note : $c_0 := \{(a_n)_{n \ge 0} \in \mathbb{C}^{\mathbb{N}} \mid a_n \xrightarrow[n \to +\infty]{} 0\} \subseteq l^{\infty}.$ Démontrer que c_0 , muni $\| \|_{\infty}$, est un espace de Banach.
 - c) Soit X un espace topologique. Démontrer que l'espace vectoriel $\mathscr{C}_b(X,\mathbb{C})$ formé des applications continues bornées de X dans \mathbb{C} , muni de $\| \|_{\infty}$, est un espace de Banach.
 - d) Soit $r \in]0,1[$. On considère $f \colon \mathscr{C}([-r,r],\mathbb{R}) \to \mathscr{C}([-r,r],\mathbb{R})$ où $\psi \colon [-r,r] \to \mathbb{R}$. $\varphi \mapsto \psi \quad x \mapsto \int_0^x \varphi(t) \mathrm{d}t + 1$ Déduire du théorème du point fixe que f admet un unique point fixe. Déterminer ce point fixe par un calcul direct.
- 11) On note $\mathscr{C}^1([0,1],\mathbb{R})$ l'espace vectoriel formé des applications de classe C^1 de [0,1] dans \mathbb{R} .
 - a) Le sous-espace vectoriel $\mathscr{C}^1([0,1],\mathbb{R})$ de $\mathscr{C}([0,1],\mathbb{R})$ est-il un espace de Banach pour $\|\cdot\|_{\infty}$?
 - b) On pose : $||f|| := ||f||_{\infty} + ||f'||_{\infty}$ pour $f \in \mathcal{C}^1([0,1], \mathbb{R})$. Démontrer que $\mathscr{C}^1([0,1],\mathbb{R})$ muni de $\| \|$ est un espace de Banach.

Complété d'un espace métrique

- 12) Soit (E,d) un espace métrique. On dit qu'un espace métrique $(\widetilde{E},\widetilde{d})$ muni d'une application isométrique $\tilde{i}: E \to E$ est un complété de (E, d) si (E, \tilde{d}) est complet et $\tilde{i}(E)$ est dense dans E.
 - a) Décrire, par exemple, un complété de l'espace vectoriel $\mathbb{R}[X]$ muni de $\| \|_{L^{\infty}([0,1])}$.
 - b) Soit $x_0 \in E$. Pour tous $x, z \in E$, on pose $\varphi_x(z) := d(x, z) d(x_0, z)$. Démontrer que les φ_x vérifient : $\varphi_x \in (\mathbb{R}^E)_b$ et $\|\varphi_x - \varphi_y\|_{\infty} = d(x,y)$ pour $x, y \in E$. En déduire un complété de (E, d).
 - c) On suppose donnés deux complétés $(\widetilde{E}, \widetilde{d})$ et $(\widetilde{E}, \widetilde{d})$ de E. Démontrer qu'il existe une bijection isométrique $j: \widetilde{E} \to \widetilde{E}$ telle que $\widetilde{i} = j \circ \widetilde{i}$.

Séries absolument convergentes

- 13) Soient $n_0 \geq 1$ et $A, B \in \mathfrak{M}(n_0, \mathbb{C})$. On fixe une norme subordonnée $\| \| \|$ sur $\mathfrak{M}(n_0, \mathbb{C})$ (exercice 7).

 - a) Démontrer que la série $(\sum \frac{A^n}{n!})_{n\geq 0}$ converge dans $\mathfrak{M}(n_0,\mathbb{C})$. b) On pose : $\exp A = \sum_{n=0}^{+\infty} \frac{A^n}{n!}$. Démontrer que : $\det(\exp A) = e^{\operatorname{tr} A}$.
 - c) On suppose que BA = AB. Vérifier que : $\exp(A + B) = \exp A \exp B$. Indication : remarquer que $\sum_{k=0}^{n} \frac{(A+B)^k}{k!} = \sum_{0 \le i+j \le n} \frac{A^i B^j}{i!j!}$ pour tout $n \ge 0$.

 d) En déduire que pour toute $A \in \mathfrak{M}(n_0, \mathbb{R})$ antisymétrique, on a : $\exp A \in SO(n_0, \mathbb{R})$.