Linear regression

Linear regression assumes that the relationship between two variables, x and y, can be modelled by a straight line:

$$y = \beta_0 + \beta_1 x$$

where β_0 is the intercept and β_1 the slope.

- x is called the explanatory or the predictor variable,
- y is called the response variable.

Linear regression

Theory

Reality

Look for linear trend

Examine the scatter plot

Fitting a line

Figure: A scatterplot showing head length against total length for 104 brushtail possums. A point representing a possum with head length 94.1mm and total length 89cm is highlighted.

Fitting a line

Probabilistic interepretation

$$y = \beta_0 + \beta_1 x + \epsilon,$$

where ϵ is a random variable with mean 0.

The fitted line

$$\hat{y}=b_0+b_1x,$$

is the expected value of y for fixed x.

Residuals

Residuals are the leftover variation in the data after accounting for the model fit:

$$Data = Fit + Residual$$

The residual of the i^{th} observation (x_i, y_i) is the difference of the observed response (y_i) and the response we would predict based on the model fit (\hat{y}_i) :

$$e_i = y_i - \hat{y}_i$$

We typically identify \hat{y}_i by plugging x_i into the model.

Residuals

Fitted line:

$$\hat{y} = 41 + 0.59x$$

Observations:

- ► × is (77.0, 85.3) ⇒ $e_{\times} = y_{\times} (41 + 0.59x_{\times}) = -1.1$
- ► + is (85.0, 98.6) ⇒ $e_+ = y_+ \hat{y}_+ = 7.45$

Residual plot

Residual plots-Linear models

Q: How well does a linear model fit the data?

Figure: Sample data with their best fitting lines (top row) and their corresponding residual plots (bottom row).

Correlation R

Correlation, which always takes values between -1 and 1, describes the *strength of the linear relationship* between two variables. We denote the correlation by R.

Formally:

The **correlation**, R, for observations (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) is:

$$R = \frac{1}{n-1} \sum_{i=1}^{n} \frac{x_{i} - \bar{x}}{s_{x}} \frac{y_{i} - \bar{y}}{s_{y}}$$

where \bar{x} , \bar{y} , s_x , and s_y are the sample means and standard deviations for each variable.

Correlation

Figure: Sample scatterplots and their correlations. The first row shows variables with a positive relationship, represented by the trend up and to the right. The second row shows variables with a negative trend, where a large value in one variable is associated with a low value in the other.

Correlation

The correlation quantifies the strength of a **linear** trend!!!!

Figure: Sample scatterplots and their correlations. In each case, there is a strong relationship between the variables. However, the correlation is not very strong, and the relationship is not linear.

Correlation

$$R = 0.66^1$$

¹http://tylervigen.com/

Fitting a line

Which line is optimal?

Figure: Gift aid and family income for a random sample of 50 freshman students from Elmhurst College. Two lines are fit to the data, the solid line being the *least squares line*.

Conditions

- ▶ **Linearity** The data should show a linear trend.
- Nearly normal residuals The residuals must be nearly normal. When this condition is found to be unreasonable, it is usually because of outliers or concerns about influential points.
- ► **Constant variability** The variability of points around the least squares line remains roughly constant.

Counterexamples

Least squares

Least Squares regression

Choose the line that **minimises** the sum of the square residuals:

$$e_1^1 + e_2^2 + \cdots + e_n^2$$

This is the **least square line**, with parameters

$$b_0 = \bar{y} - b_1 \bar{x}$$
 and $b_1 = \frac{s_y}{s_x} R$,

where \bar{x} , \bar{y} , s_x , and s_y are the sample means and standard deviations for each variable, and b_0 , b_1 are the point estimates of β_0 and β_1 respectively.

How to read the tables

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	24.3193	1.2915	18.83	0.0000
family_income	-0.0431	0.0108	-3.98	0.0002

Interpreting regression

From the table $b_0 = 24.32$ and $b_1 = -0.0431$, hence the least square line is:

$$\hat{y} = 24.32 - 0.0431x$$

Or

$$\widehat{aid} = 24.3 - 0.0431 \times family_income$$

Interpretation of slope For each additional \$1,000 of family income, we would expect a student to receive a net difference of $\$1,000 \times (-0.0431) = -\43.10 in aid on average, i.e. \$43.10 *less*.

Interpretation of intercept The estimated intercept $b_0 = 24.3$ (in \$1000s) describes the average aid if a student's family had no income.

Strength of fit

Sum of square errors:

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

SSE provides a measure of variation in the *y* values that remains unexplained after using the linear regression model.

R-squared

$$R^2 = 1 - \frac{SSE}{s_y^2}$$

R-squared can be interpreted as the proportion of the total variation in the y values that is explained by the variable x in least square line.

Example: For the Gift aid and family income data the correlation is R = -0.499 and the strength of fit is $R^2 = 0.25$.

Extrapolation

Extrapolation is applying a model estimate to values outside the realm of the original data.

Beware!!!

Example

The fitted line for the gift aid at Elmhurst college, with respect to family income, is

$$\hat{y} = 24.32 - 0.0431x$$

Can we predict the gift aid of a student with family income of \$ 1million?

▶ Apply the model, the financial aid for the student is

$$\hat{y} = -18.8$$

- ▶ The student must pay extra -\$ 18.800
- ► This is unrealistic, since Elmhurst college only charges a tuition fee.

Categorical predictors

Categorical variables can be incorporated in linear models.

Data Ebay auctions for a video game, *Mario Kart* for the Nintendo Wii, where both the total price of the auction and the condition of the game were recorded.

Goal Fit a linear model of the form:

$$\widehat{price} = \beta_0 + \beta_1 \times \text{cond_new},$$

Formally,

$$\hat{y} = \beta_0 + \beta_1 x,$$

where y is the price of the game in dollars and x is a categorical variable, with x=0 if the game is used and x=1 if the game is new.

Categorical predictors

Least square regression

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	42.87	0.81	52.67	0.0000
cond_new	10.90	1.26	8.66	0.0000

Least square line

$$\hat{y} = 42.87 + 10.9x$$

Interpretation

- ▶ The intercept indicates that, the average selling price of a used version of the game is \$42.87.
- ► The slope indicates that, on average, new games sell for about \$10.90 more than used games.

Residuals

Residuals

- Points that fall horizontally away from the centre of the cloud tend to pull harder on the line, so we call them points with high leverage.
- ▶ If one of these high leverage points does appear to actually invoke its influence on the slope of the line then we call it an influential point².
- If there are outliers in the data, they should not be removed or ignored without a good reason. Whatever final model is fit to the data would not be very helpful if it ignores the most exceptional cases.
- ▶ Be cautious about using a categorical predictor when one of the levels has very few observations. When this happens, those few observations become influential points.

²cases (3), (4), and (5)

Inference for linear regression

Hypothesis: In America's two-party system, one political theory suggests the higher the unemployment rate, the worse the President's party will do in the midterm elections.

Read the tables

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-6.7142	5.4567	-1.23	0.2300
unemp	-1.0010	0.8717	-1.15	0.2617
				df = 25

Least square line

$$\hat{y} = -6.71 - 1.00 \times x,$$

where y denotes the % change in House seats for President's party and x the unemployment rate.

Hypothesis testing

 H_0 : $\beta_1 = 0$.

 H_A : $\beta_1 < 0$.

Or

 H_0 : The true linear model has slope zero.

H_A: The true linear model has a slope less than zero. The higher the unemployment, the greater the loss for the President's party in the House of Representatives.

Hypothesis Testing

- From the table P(>|t|) = 0.2617.
- For a one-sided test p-value = P(>|t|)/2 = 0.13 > 0.05
- ► There is no strong evidence to suggests that the higher the unemployment rate, the worse the President's party will do in the midterm elections.