

Mikroişlemcili Sistemler ve Laboratuvarı 4.HAFTA

8255

Çok sayıda porta ihtiyaç duyulduğunda basit giriş/çıkış birimleri yetersiz kalır.

8255; Intel ve birçok diğer mikroişlemciler için kullanılabilen, genel amaçlı programlanabilir bir I/O cihazıdır.

Ayrı ayrı programlanabilen 12'şer pinden oluşan 2 grup halinde bulunan ve 3 ana modda çalışan 24 adet I/O pinine sahiptir.

Mod O'da, her gruptaki 12 I/O pini, 4'lü ve 8'li kümeler halinde giriş yada çıkış olarak programlanabilir.

Mod 1'de, her gruptaki 8'li hat giriş yada çıkış olarak programlanabilirken, geri kalan 4 pinden 3'ü elşıkışma ve kesme kontrol sinyalleri olarak kullanılır.

Mod 2 çift yönlü hat konfigürasyonu olarak düzenlenmiştir.

8255 Pin Detayları

D0 - D7 pinleri cihaz için veri giriş/çıkış hatlarıdır. Bütün bilgi bu 8 veri hattından 8255'e yazılır yada 8255'ten okunur.

CS (*Chip Select Input*). Pin lojik-0 ise 8255 aktif olur ve mikroişlemci 8255'e veri yazar yada 8255 üzerinden veri okur.

RD (Read Input)

WR (Write Input)

A0 - A1 (*Address Inputs*) Bu pinlerin mantıksal kombinasyonuna göre (00, 01, 10 ve 11) hangi dahili kaydedicini kullanılacağı belirlenir.

RESET

PAO - PA7, PBO - PB7, PCO - PC7 Bu sinyaller 8-bit I/O portları olarak kullanılır. Başka çevre birimlerine bağlanabilir. 8255; 3 adet 8 bit I/O porta sahiptir ve herbiri harici cihazın fiziksel hatlarına bağlanabilir. Port A (PA), Port B (PB) ve Port C (PC) olarak adlandırılır.

8255 Blok Diyagramı

Port A ve Port B 8 bit olarak kullanılırken, Port C ise mod seçeneğine göre Port A ya da Port B ile ilişkilendirilebilir yada tamamen bağımsız olarak kullanılabilir.

http://www.sharpmz.org/mz-700/8255ovview.htm

8255- Kontrol Kelimesi

8255'i yapılandırmak için detayları şekilde verilen kontrol kelimesindeki (Control Word) D7-D0 pinleri istenilen moda göre yapılandırılarak 8255'e yüklenmelidir.

http://www.sharpmz.org/mz-700/8255ovview.htm

8255 Adresleme A1-A0

CS	A1	Α0	Seçilen	Adres
0	0	0	Port A	C0h
0	0	1	Port B	C1h
0	1	0	Port C	C2h
0	1	1	Kontrol Saklayıcısı	C3h
1	Х	Χ	8255 Seçilemez	

Kontrol Kelimesi

Kontrol Kelimesi CW-Control Word

8255 Çalışma Modları

- Mod 0 Basit giriş veya çıkış
 - A ve B portunun tüm kapıları ya alıcı ya da verici konumlanır.
 - C portunun kapıları ise denetim kütüğünün D0-3 bitlerine uygun olarak konumlanır.
- Mod 1 El sıkışma (handshaking) ile basit giriş veya çıkış
 - A ve B portunun tüm kapıları ya alıcı ya da verici konumlanır.
 - C portunun üst kısmı A ve alt kısmı B portuna el sıkışma (handshaking) işlemleri için destek verir.
 - PC2, B portu için hazır giriş olarak görev yapar. PC1 ise B portu için A1 girişi olarak görev yapar.
 - Hazır bilgisinin alınması ile kesme üretilmek isteniyorsa PCO bu amaçla kullanılabilir.
- Mod 2 El sıkışma ile iki yönlü I/O
 - Sadece A portu ve C üst için geçerlidir.
 - Bu modda A portu iki yönlü kullanılabilir.

Örnek: 8255 üzerinden 7 parçalı gösterge sürme

- Bu örnekte 7 Parçalı Göstergede gösterilmek isteten değer karşılığı bit dizisi PBO hattından seri olarak 74164 (seri giriş/paralel çıkış kaydedici) üzerinden göstergeye aktarılmaktadır.
- PC4-PC7 hatlarından ise hangi göstergenin aktif olacağı bilgisi clk sinyali ile belirlenmektedir.

BELLEK ORGANIZASYONU

- Mikroişlemciye bağlanan tüm çevre birimleri (Bellekler, I/O portları vb.) adreslenebilir alanlardır ve bu birimlere veri yazarken yada birimlerden veri okurken adresleri üzerinden işlem yapılır.
- Bu sebeple mikroişlemcili sistem tasarımı yapılırken çevre birimlerinin başlangıçta adreslerinin belirlenmesi ve bu adres değerlerine göre kontrol devresi tasarlanmalıdır.
- Kontrol devreleri; adres ve veri yollarını ortak kullanan çevre birimlerinden hangisinin bu yollara erişim hakkı olacağını girilen adres değerine göre donanımsal olarak belirleyen bir tasarımdır.

Bellek Organizasyonu

- Kontrol devresi tasarlanırken Adres yolunun yüksek bitleri seçici eleman olarak tercih edilir.
- Kontrol devresi temel mantık kapılarından oluşabileceği gibi dekoderlerden de oluşabilir.

74138 Dekoderi

74136, dekoderi çıkışları terslenmiştir. ABC girişlerinden C en yüksek değerliktedir.

3 adet yetki (G1, G2A ve G2B) girişine sahiptir.

Bu girişlerden G1=1, G2A=0 ve G2B=0 olduğu durumda dekoder aktif olur ve ABC girişlerinin durum değerine göre çıkışlardan sadece bir adedini lojik-0 diğerlerini lojik-1 yapar.

BELLEK ORGANIZASYONU

8	bit	256	
10	bit	1K	0000 ← ► 03FF
11	bit	2K	0000 ← ► 07FF
12	bit	4K	0000 ← ► 0FFF
13	bit	8K	0000 ← ► 1FFF
14	bit	16K	0000 ← → 3FFF
15	bit	32K	0000 ← ▶ 7FFF
16	bit	64K	0000 ← ► FFFF

ÖNEMLİ: Yüksek değerlikli bitler hafıza birimini seçmek için , düşük değerlikli bitler adres yolu için kullanılırlar.

2 adet 2048 x 8 bitlik EPROM ' un 4096 x 8 bitlik bir bellek birimi haline getiriniz

2 adet 2K EPROM bağlantısı

2K -> 0000 - 07FF yani 11 bit

4096 x 8 bit olmuş oldu.

4 adet 2K x 8 lik RAM ' i 8K x 8 bitlik RAM haline getirelim. 8K için 13 bit lazım 2K için 11 bit lazım

	0 0 0 0	0 0 0 0	0 0 0 0	0000
2K				
	1111	1111	0111	0000
	0 0 0 0	0000	1000	0000
2K				
	1111	1111	1111	0000
	0 0 0 0	0 0 0 0	0 0 0 0	0001
2K				
	1111	1111	0111	0001
	0 0 0 0	0 0 0 0	1000	0001
2K				
	1111	1111	1111	0001

ÖRNEK 2 (DEVAMI)

ÖRNEK 2 (DEVAMI)

4K X 8 EPROM ve 2K X 8 RWM hafızaları adresleyerek tasarımı gerçekleyiniz.

EPROM 0000h adresinden başlayacak ve RWM ardından devam edecek.

ÖRNEK 3 (DEVAMI)

4K X 8 RAM ve 4K X 8 ROM kullanarak 12K X 8 RAM ve 4K X 8 ROM belleği oluşturmak isteniliyor. RAM bellek adresi (4000h)₁₆ adresinden ,ROM belleğin başlangıç adresi ise (F000h)₁₆ oluşmaktadır.Bellek mimarisini oluşturunuz.

3 RAM 1 ROM gerekli

ÖRNEK 4 (DEVAMI)

8K X 8 EPROM ,32 K X 8 RAM1 , 8255 (8K gibi düşünün) , 16 X 8 RAM2 kullanarak bellek mimarisini oluşturunuz.

0 0 0 0	0000	0 0 0 0	0000	0000h
0001	1111	1111	1111	1FFFh
0010	0 0 0 0	0000	0000	2000h
1001	1111	1111	1111	9FFFh
1010	0000	0000	0000	A000h
1011	1111	1111	1111	BFFFh
1100	0000	0000	0000	C000h
1111	1111	1111	1111	FFFFh

ÖRNEK 5 (DEVAMI)

8085 Hafıza ve IO/M Örneği

Memory Map | FFFF | 2Kx8 | | E000 | RAM | | DFFF | BOŞ | | C000 | | BFFF | BOŞ | | A000 | | 9FFF | BOŞ | | 8000 | 7FFF |

6000

5FFF

4000

3FFF

2000

1FFF

0000

BOŞ

BOŞ

8Kx8

RAM

2Kx8 EPROM

IO Map		
FF	BOŞ	
E0		
DF C0	BOŞ	
BF	4 Byte	
A0	IO3	
9F	BOŞ	
80	2 - 3	
7F	BOŞ	
60	3	
5F	8 Byte	
40	102	
3F	BOŞ	
20	3	
1F	4 Byte	
00	IO1	

