Calculus and Linear Algebra

Kaiwen Zhou

Contents

1	Calculus	2
	1.1 Leibniz integral rule	2
	1.2 Gradient	3
	1.3 Jacobian Matrix	3
	1.4 Hessian Matrix	4
	1.5 Taylor Expansion	4
2	Linear Algebra	5
3	Basics	5
4	Vector norms	5
5	Linear Equations, Elimination, Permutation	5
6	CR Decomposition	5
7	LU Decomposition	5
8	Inverse & Transpose	5
9	The rank of a matrix	6
10	Four Spaces	6
11	Determinant	6
12	Least squares	7
13	Orthogonal matrices	7
14	Projections	7
15	QR Decomposition	7
16	Eigenvalues and Eigenvectors	7
17	Diagonalizing a Matrix	8
18	Symmetric Matrix	8
19	Positive-Definite Matrix	8
20	Cholesky Decomposition	8
21	The Singular Value Decomposition	8
22	Triangular Matrix	11
23	Some nice problems	11

1 Calculus

Theorem 1.1. Taylor Expansion

$$f(x) = T_n(x) + R_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^i + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}, \quad \textit{for some} \quad \xi \in [a,x]$$

where we must have $\lim_{n\to\infty} R_n(x) = 0$.

We use $T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^i$ as the approximate for f(x), and $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$ as the error of approximation.

The bound for the remainder $R_n(x)$ is $|R_n(x)| \leq \frac{M}{(n+1)!}(x-a)^{n+1}$, $M = \max_{\xi \in [a,x]} |f^{(n+1)}(\xi)|$.

Lemma 1.2. (Useful Lemma for Differentiating Integrals) Let $p(x) = \int_x^C f(u)du$ and $q(x) = \int_C^x f(u)du$, where C a constant, it is easy to verify the following.

$$\frac{d}{dx}p(x) = -f(x), \quad \frac{d}{dx}q(x) = f(x)$$

1.1 Leibniz integral rule

Theorem 1.3. (Leibniz integral rule) In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form

$$\int_{a(x)}^{b(x)} f(x,t)dt$$

where $-\infty < a(x), b(x) < \infty$ and the integrands are functions dependent on x, the derivative of this integral is expressible as

$$\frac{d}{dx}\left(\int_{a(x)}^{b(x)} f(x,t)dt\right) = f(x,b(x)) \cdot \frac{d}{dx}b(x) - f(x,a(x)) \cdot \frac{d}{dx}a(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x}f(x,t)dt$$

where the partial derivative $\frac{\partial}{\partial x}$ indicates that inside the integral, only the variation of f(x,t) with x is considered in taking the derivative.

Solution: This comes straightaway from Leibniz rule and Chain rule. Let

$$g(x, a(x), b(x)) = \int_{a(x)}^{b(x)} f(t, x)dt$$

Using the Chain rule of integration

$$\begin{split} \frac{d}{dx}g(x,a(x),b(x)) &= \frac{\partial g}{\partial x}\frac{dx}{dx} + \frac{\partial g}{\partial a}\frac{da}{dx} + \frac{\partial g}{\partial b}g\frac{db}{dx} \\ Lemma~1.2 &\Longrightarrow = \int_{a(x)}^{b(x)}\frac{\partial}{\partial x}f(t,x)dt - f(a(x),x)\frac{d}{dx}a(x) + f(b(x),x)\frac{d}{dx}b(x) \end{split}$$

Remark 1.4.

- 1. When applying the Lemma 1.2 in the above proof, we treat b(x) and a(x) as constants when doing $\frac{\partial g}{\partial a}$ and $\frac{\partial g}{\partial b}$ respectively.
- 2. In the special case where the functions a(x) and b(x) are constants a(x) = a and b(x) = b with values that do not depend on x, this simplifies to:

$$\frac{d}{dx}\left(\int_{a}^{b} f(x,t)dt\right) = \int_{a}^{b} \frac{\partial}{\partial x} f(x,t)dt$$

3. If a(x) = a is constant and b(x) = x, which is another common situation (for example, in the proof of Cauchy's repeated integration formula), the Leibniz integral rule becomes:

$$\frac{d}{dx}\left(\int_{a}^{x} f(x,t)dt\right) = f(x,x) + \int_{a}^{x} \frac{\partial}{\partial x} f(x,t)dt$$

 \triangle

Problem 1.5. We have the integral equation

$$\int_0^x (1 + x + e^{x-t}) y(t) dt = g(x), \quad 0 \le x \le 1$$

By using Leibniz integral rule, we have that

$$g'(x) = (2+x)y(x) + \int_0^x (1+e^{x-t})y(t)dt$$

Where y and g are chosen to satisfy the condition of Leibniz integral rule.

Solution: In the above example, a(x) = 0, b(x) = x, $f(t, x) = (1 + x + e^x e^{-t}) y(t)$, we will have the above equation simplifies to,

$$\frac{d}{dx}g(x,a(x),b(x)) = \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(t,x)dt - f(a(x),x) \frac{d}{dx} a(x) + f(b(x),x) \frac{d}{dx} b(x)
= \int_{0}^{x} \frac{\partial}{\partial x} \left(1 + x + e^{x}e^{-t}\right) y(t)dt - \left(1 + x + e^{x}e^{0}\right) y(0) \frac{d}{dx} 0
+ \left(1 + x + e^{x}e^{-x}\right) y(x) \frac{d}{dx} x
= \int_{0}^{x} \left(1 + e^{x}e^{-t}\right) y(t)dt + (1 + x + 1) y(x)
= (2 + x) y(x) + \int_{0}^{x} \left(1 + e^{x-t}\right) y(t)dt.$$

1.2 Gradient

1.3 Jacobian Matrix

Suppose $\mathbf{f}: \mathbf{R}^n \to \mathbf{R}^m$ is a function such that each of its first-order partial derivatives exist on \mathbf{R}^n . This function takes a point $\mathbf{x} \in \mathbf{R}^n$ as input and produces the vector $\mathbf{f}(\mathbf{x}) \in \mathbf{R}^m$ as output. Then the Jacobian matrix of \mathbf{f} is defined to be an $m \times n$ matrix, denoted by \mathbf{J} , whose (i,j) th entry is $\mathbf{J}_{ij} = \frac{\partial f_i}{\partial x_i}$, or explicitly

$$\mathbf{J} = \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial x_1} & \cdots & \frac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \nabla^{\mathrm{T}} f_1 \\ \vdots \\ \nabla^{\mathrm{T}} f_m \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

where $\nabla^{\mathrm{T}} f_i$ is the transpose (row vector) of the gradient of the i component. The Jacobian matrix, whose entries are functions of \mathbf{x} , is denoted in various ways; common notations include $D\mathbf{f}$, $\mathbf{J}_{\mathbf{f}}$, $\nabla \mathbf{f}$, and $\frac{\partial (f_1,\ldots,f_m)}{\partial (x_1,\ldots,x_n)}$. Some authors define the Jacobian as the transpose of the form given above.

Example 1 Consider the function $f: \mathbb{R}^2 \to \mathbb{R}^2$, with $(x,y) \mapsto (f_1(x,y), f_2(x,y))$, given by

$$\mathbf{f}\left(\left[\begin{array}{c}x\\y\end{array}\right]\right) = \left[\begin{array}{c}f_1(x,y)\\f_2(x,y)\end{array}\right] = \left[\begin{array}{c}x^2y\\5x + \sin y\end{array}\right].$$

Then we have

$$f_1(x,y) = x^2 y$$

and

$$f_2(x,y) = 5x + \sin y$$

and the Jacobian matrix of f is

$$\mathbf{J_f}(x,y) = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} 2xy & x^2 \\ 5 & \cos y \end{bmatrix}$$

and the Jacobian determinant is

$$det\left(\mathbf{J_f}(x,y)\right) = 2xy\cos y - 5x^2$$

Example 2: polar-Cartesian transformation [edit] The transformation from polar coordinates (r, φ) to Cartesian coordinates (x, y), is given by the function $\mathbf{F} : \mathbf{R}^+ \times [0, 2\pi) \to \mathbf{R}^2$ with components:

$$x = r \cos \varphi$$

$$y = r \sin \varphi$$

$$\mathbf{J}_{\mathbf{F}}(r, \varphi) = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \varphi} \end{bmatrix} = \begin{bmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{bmatrix}$$

The Jacobian determinant is equal to r. This can be used to transform integrals between the two coordinate systems:

$$\iint_{\mathbf{F}(A)} f(x,y) dx dy = \iint_A f(r\cos\varphi, r\sin\varphi) r dr d\varphi.$$

Example 3: spherical-Cartesian transformation [edit] The transformation from spherical coordinates $(r, \varphi, \theta)^{[6]}$ to Cartesian coordinates (x, y, z), is given by the function $\mathbf{F} : \mathbf{R}^+ \times [0, \pi) \times [0, 2\pi) \to \mathbf{R}^3$ with components:

$$x = r \sin \varphi \cos \theta;$$

$$y = r \sin \varphi \sin \theta;$$

$$z = r \cos \varphi.$$

The Jacobian matrix for this coordinate change is

$$\mathbf{J_F}(r,\varphi,\theta) = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \varphi} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \varphi} & \frac{\partial y}{\partial \theta} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \varphi} & \frac{\partial z}{\partial \theta} \end{bmatrix} = \begin{bmatrix} \sin\varphi\cos\theta & r\cos\varphi\cos\theta & -r\sin\varphi\sin\theta \\ \sin\varphi\sin\theta & r\cos\varphi\sin\theta & r\sin\varphi\cos\theta \\ \cos\varphi & -r\sin\varphi & 0 \end{bmatrix}$$

The determinant is $r^2 \sin \varphi$. Since dV = dx dy dz is the volume for a rectangular differential volume element (because the volume of a rectangular prism is the product of its sides), we can interpret $dV = r^2 \sin \varphi dr d\varphi d\theta$ as the volume of the spherical differential volume element. Unlike rectangular differential volume element's volume, this differential volume element's volume is not a constant, and varies with coordinates $(r \text{ and } \varphi)$. It can be used to transform integrals between the two coordinate systems:

$$\iiint_{\mathbf{F}(U)} f(x, y, z) dx dy dz = \iiint_{U} f(r \sin \varphi \cos \theta, r \sin \varphi \sin \theta, r \cos \varphi) r^{2} \sin \varphi dr d\varphi d\theta$$

Example 4: The Jacobian matrix of the function ${f F}:{f R}^3 \to {f R}^4$ with components

$$y_1 = x_1$$

 $y_2 = 5x_3$
 $y_3 = 4x_2^2 - 2x_3$
 $y_4 = x_3 \sin x_1$

is

$$\mathbf{J_F}(x_1, x_2, x_3) = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \frac{\partial y_1}{\partial x_3} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \frac{\partial y_2}{\partial x_3} \\ \frac{\partial y_3}{\partial x_1} & \frac{\partial y_3}{\partial x_2} & \frac{\partial y_3}{\partial x_3} \\ \frac{\partial y_4}{\partial x_1} & \frac{\partial y_4}{\partial x_2} & \frac{\partial y_4}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 5 \\ 0 & 8x_2 & -2 \\ x_3 \cos x_1 & 0 & \sin x_1 \end{bmatrix}.$$

This example shows that the Jacobian matrix need not be a square matrix.

Example 5: The Jacobian determinant of the function ${\bf F}:{\bf R}^3\to{\bf R}^3$ with components

$$y_1 = 5x_2$$

 $y_2 = 4x_1^2 - 2\sin(x_2x_3)$
 $y_3 = x_2x_3$

is

$$\begin{vmatrix} 0 & 5 & 0 \\ 8x_1 & -2x_3\cos(x_2x_3) & -2x_2\cos(x_2x_3) \\ 0 & x_3 & x_2 \end{vmatrix} = -8x_1 \begin{vmatrix} 5 & 0 \\ x_3 & x_2 \end{vmatrix} = -40x_1x_2.$$

From this we see that \mathbf{F} reverses orientation near those points where x_1 and x_2 have the same sign; the function is locally invertible everywhere except near points where $x_1=0$ or $x_2=0$. Intuitively, if one starts with a tiny object around the point (1,2,3) and apply \mathbf{F} to that object, one will get a resulting object with approximately $40\times 1\times 2=80$ times the volume of the original one, with orientation reversed.

1.4 Hessian Matrix

1.5 Taylor Expansion

2 Linear Algebra

3 Basics

Proposition 3.1. 1. $\alpha \vec{v} + \beta \vec{u}$ - linear combination.

2. $\alpha \vec{a}$ - line; $\alpha \vec{a} + \beta b$ - plane; $\alpha \vec{a} + \beta \vec{b} + 8\vec{c}$ - space.

Proposition 3.2. $\vec{a} = (a_1, a_2, a_3), \vec{b} = (b_1, b_2, b_3).$

1.
$$\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3 = \vec{b} \cdot \vec{a} = \vec{a}^{\top}b = \vec{b}^{\top}\vec{a}$$

2.
$$\|\vec{a}\| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

3.
$$\frac{\vec{a} \cdot \vec{b}}{\|a\| \|b\|} = \cos \theta$$

4.
$$|\vec{a} \cdot \vec{b}| \leq ||\vec{a}|| ||\vec{b}||$$
 (Cauchy-Schwartz)

5. if
$$\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a}, \vec{b}$$
 perpendicular $\Rightarrow ||\vec{a}||^2 + ||\vec{b}||^2 = ||\vec{a} - \vec{b}||^2$.

6. *unit vector*:
$$\|\vec{a}\| = 1 = \frac{\vec{b}}{\|\vec{b}\|}$$

7.
$$\vec{a}^{\top}\vec{b}$$
 - inner product; $\vec{a}\vec{b}^{\top}$ - outer product

8.
$$e_i^{\top} A = Row_i(A)$$
.

9. $lower triangular matrix \cdot lower triangular matrix = lower triangular matrix$.

Proposition 3.3.

1. Linearly independence:
$$\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \overrightarrow{0}$$
 only if $\alpha = \beta = \gamma = 0$

2. linearly dependence:
$$\exists (\alpha, \beta, \gamma) \neq (0, 0, 0) \text{ sit. } \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \overrightarrow{0}$$
.

5 Linear Equations, Elimination, Permutation

Linear Equations Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, linear equations take the form

$$Ax = b$$

where we must solve for $x \in \mathbb{R}^n$.

Understandings of Ax = b

- $A\vec{x}$: matrix A acts on \vec{x} .
- General Thinking: The column picture of $A\vec{x}=\vec{b}$. A combination of n columns of A produces the vector \vec{b} .
- Geometric Thinking: The row picture of $A\vec{x} = \vec{b}$ coefficient matrix Matrix A can be view as a coefficient matrix, then m equations from m rows give m planes $(P_i : \text{row}_i \cdot \vec{x} b_i = 0)$ meeting at \vec{x} .

Four possibilities for solutions

- $r = m = n \Longrightarrow R = \lceil I \rceil$, Ax = b has exactly one solution.
- $r = m, r < n \Longrightarrow R = \begin{bmatrix} I & F \end{bmatrix}$, Ax = b has ∞ solution.

•
$$r < m, r = n \Longrightarrow R = \begin{bmatrix} I \\ \mathbf{0} \end{bmatrix}$$
, $Ax = b$ has 0 or 1 solution.

•
$$r < m, r < n \Longrightarrow R = \begin{bmatrix} I & F \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$
, $Ax = b$ has 0 or ∞ solution.

Idea of Elimination

The core idea is to convert A to an upper Triangular matrix A' (Elimination), then solve for \vec{x} from x_n to x_1 (Back substitution). E.g.

3. $\begin{bmatrix} | & | & | \\ \vec{a} & \vec{b} & \vec{c} \\ | & | & | \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \vec{0} \Longrightarrow \begin{cases} \text{linearly independence} \Longrightarrow A - invertible. \\ \text{linearly dependence } A - singular (not invertible) \end{cases}$

Matix Multiplication

- $AB = A \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{bmatrix} = \begin{bmatrix} \vec{A}\vec{b}_1 & A\overrightarrow{b_2} & A\overrightarrow{b_3} \end{bmatrix}$
- $Row_i(AB) = A \cdot Row_i(B)$.
- $Row_i(AB) = Row_i(A) \cdot B$.

4 Vector norms

A norm $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ is a function satisfying the properties:

- ||x|| = 0 if and only if x = 0 (definiteness)
- ||cx|| = |c|||x|| for all $c \in \mathbb{R}$ (homogeneity)
- $||x + y|| \le ||x|| + ||y||$ (triangle inequality)

Common examples of norms:

- $||x||_1 = |x_1| + \cdots + |x_n|$ (the 1-norm)
- $\|x\|_2 = \sqrt{x_1^2 + \dots + x_n^2}$ (the 2-norm / Euclidean norm) -> default norm
- $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$ (max-norm)

Elimination matrix
$$E_{ij}=egin{bmatrix}1&&&&\\&1&&&\\-l&&\ddots&&\\&&&1\end{bmatrix}$$
 where $e_{ij}=-l$ is use to reduce the

(i, j) entry of A, a_{ij} , to zero.

$$E_{ij}A = \begin{bmatrix} \vdots \\ Row_i - l \cdot Row_1 \\ \vdots \end{bmatrix}, \quad E_{ij}^{-1} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ l & & \ddots & \\ & & & 1 \end{bmatrix}$$

Permutation Matrix

$$P_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} -\vec{e_1}^\top - \\ -\vec{e_3}^\top - \\ -\vec{e_2}^\top - \end{bmatrix}$$

 $P_{23}A$ exchanges Row 2 & Row 3 of matrix A.

- Permutation matrix is orthogonal matrix, i.e., $P^{\top} = P^{-1}, PP^{\top} = I$.
- Sometimes we need to exchange some rows of A so it can be reduced to a valid rref R. In this case, we need permutation matrix P.

E.g. $\begin{bmatrix} 0 & 2 \\ 3 & -2 \end{bmatrix}$ can be fixed though has 0 as the first pivot $\Rightarrow \begin{bmatrix} 3 & -2 \\ 0 & 2 \end{bmatrix} \rightarrow$ a row exchange produces an upper triangular matrix.

• For the ease of Elimination & Permutation for both sides of $A\vec{x} = \vec{b}$ we create an augmented matrix $L = \begin{bmatrix} A & \vec{b} \end{bmatrix}$ and let elimination and permutation matrices act on L.

$$(E_{ij}P_{ij}\cdots)\cdot\begin{bmatrix}A&\vec{b}\end{bmatrix}$$

Pivots

• Pivots are on the diagonal of the triangle after elimination. We need n pivots to solve for n unknowns

6 CR Decomposition

7 LU Decomposition

8 Inverse & Transpose

Proposition 8.1. (Basic properties of the matrix inverse and transpose):

$$\begin{array}{c|c} A^{-1} \text{ is unique if it exists.} & \left(A^{-1}\right)^{-1} = A & \left(A^{-1}\right)^{\top} = \left(A^{\top}\right)^{-1} \\ \hline (AB)^{-1} = B^{-1}A^{-1} & \left(A^{\top}\right)^{\top} = A & \left(AB\right)^{\top} = B^{\top}A^{\top} \end{array}$$

left-inverse = right inverse = two-sided inverse

Suppose
$$BA = I \& AC = I \Rightarrow B = B(AC) = (BA)C = C$$
.

Gauss - Jordan Elimination for computing A^{-1} By using $A^{-1}[A \mid I] = \begin{bmatrix} I \mid A^{-1} \end{bmatrix}$ where $\begin{bmatrix} A \mid I \end{bmatrix}$ is the augmented matrix. \Rightarrow convert $\begin{bmatrix} A \mid I \end{bmatrix} \rightarrow \begin{bmatrix} I \mid A \end{bmatrix}$ using elimination matrix.

Figure 1: inverse all in one

9 The rank of a matrix

Note: When considering rank, think about the rref (the row reduced echelon form) of a matrix.

 $\operatorname{rank}(A) = \operatorname{maximum} \operatorname{number} \operatorname{of} \operatorname{linearly} \operatorname{independent} \operatorname{columns} = \operatorname{maximum} \operatorname{number} \operatorname{of} \operatorname{linearly} \operatorname{independent} \operatorname{rows} = \operatorname{number} \operatorname{of} \operatorname{pivots}$

If $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ then

- $rank(A) \le min(m, n)$
- $rank(AB) \le min(rank(A), rank(B)) \le min(m, n, p)$
- if rank(A) = n then rank(AB) = rank(B)
- if rank(B) = n then rank(AB) = rank(A)

So multiplying by an invertible matrix does not alter the rank.

General properties of the matrix rank:

- $rank(A + B) \le rank(A) + rank(B)$
- $\operatorname{rank}(A) = \operatorname{rank}(A^{\top}) = \operatorname{rank}(A^{\top}A) = \operatorname{rank}(AA^{\top})$
- $A \in \mathbb{R}^{n \times n}$ is invertible if and only if rank(A) = n.
- rank-1 matrix $A = cuv^{\top}$ where $u \in \mathbb{R}^m$, $v \in \mathbb{R}^n$ and $A \in \mathbb{R}^{m \times n}$.
- rank-2 matrix $A = au_1v_1^\top + bu_2v_2^\top$ where $u_i \in \mathbb{R}^m$, $v_i \in \mathbb{R}^n$ and $A \in \mathbb{R}^{m \times n}$.
- rank-k matrix $A = \sum_{i=1}^k a_i u_i v_i^{\top}$ where $u_i \in \mathbb{R}^m$, $v_i \in \mathbb{R}^n$ and $A \in \mathbb{R}^{m \times n}$.

10 Four Spaces

Vector Space:

Subspace: A is a subspace, \subseteq , of S if $\forall u, v \in S, a, b$ -constant, we have $au + bv \in S$.

Basis: Vector spaces are linearly independent & span the space. (e.g. The columns of every invertible matrix give a basis for \mathbb{R}^n .) The dimension of the space is the number of basis in the set of basis.

Four Space: Given $A \in \mathbb{R}^{m \times n}$, we have the definitions:

- Range/Column/Image space: $R(A) = C(A) = Im(A) = \{Ax \mid x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$.
- Row space: $C(A^{\top}) \subseteq \mathbb{R}^n$.

- Null/Kernel space: $N(A) = Ker(A) = \{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$.
- Left-Null space: $N(A^{\top}) = Ker(A^{\top}) = \{x \in \mathbb{R}^m \mid A^{\top}x = 0\} \subseteq \mathbb{R}^m$.

Properties:

- The column space of $A \iff$ the row space of A^{\top} .
- $0 \in N(A) = Ker(A)$.
- Rank-Nullity Theorem: rank(A) + dim(N(A)) = n
- $\dim(Im(A)) = \dim(Im(A^{\top})) = rank(A) = r$
- $\dim(N(A)) = n r$, $\dim(N(A^{\top})) = m r$.

Space Orthogonality: The orthogonal complement of a subspace V, V^{\perp} , contains every vector that is perpendicular to V.

- $C(A^{\top})=N(A)^{\perp}$, i.e. The row space is perpendicular to the null space. (Think Ax=0.)
- $C(A)=N(A^{\top})^{\perp}$, i.e. The column space is perpendicular to the null space of A^{\top} (left-null space).(Think $A^{\top}x=0$.)
- Suppose $A \in \mathbb{R}^{m \times n}$, $\forall x \in \mathbb{R}^n$, it can be represented as $x = x_r + x_n$ where $x_r \in C(A^\top)$ and $x_n \in N(A)$.

rref of A: Suppose R = rref(A), then

- + $C(A^{\top}) = C(R^{\top})$, i.e. same row space.
- $C(A) \neq C(R)$, the lase few entries of C(R) could only be zero.
- $\dim(C(A)) = \dim(C(R))$, $(Ax = 0 \Longrightarrow Rx = 0)$.
- N(A) = N(R).

Link to equation Ax = b

The following statements are equivalent:

- There exists a solution to the equation Ax = b.
- $b \in R(A)$.
- $\operatorname{rank}(A) = \operatorname{rank}([A \ b])$

The following statements are equivalent:

- Solutions to the equation Ax = b are unique.
- $N(A) = \{0\}.$
- $\operatorname{rank}(A) = n$.

11 Determinant

Proposition 11.1. (Basic 3)

- 1. swapping two columns: $|\begin{bmatrix} \cdots & a_i & \cdots & a_j & \cdots \end{bmatrix}| = -|\begin{bmatrix} \cdots & a_j & \cdots & a_i & \cdots \end{bmatrix}|$
- 2. $|\begin{bmatrix} \cdots & \alpha u + \beta v & \cdots \end{bmatrix}| = \alpha |\begin{bmatrix} \cdots & u & \cdots \end{bmatrix}| + \beta |\begin{bmatrix} \cdots & v & \cdots \end{bmatrix}|$
- 3. duplicates: $|\begin{bmatrix} \cdots & a_i & \cdots & a_i & \cdots \end{bmatrix}| = 0$

Proposition 11.2. If A is singular $\iff \{a_1 \cdots a_n\}$ linearly dependent $\iff |A| = 0$.

Hint: singular -> one of the columns / rows linearly depends on the rest -> use Basic 2 and 3.

Proposition 11.3. *I.* |I| = 1, $|P^{permu}| = 1/-1$ (use Basic 1), $|P^{ortho}| = 1/-1$.

- $] \mid 2. \mid A \mid = \mid A^{\top} \mid$
 - 3. $|AB| = |A| \cdot |B|$
 - 4. $|A^{-1}| = \frac{1}{|A|}$
 - 5. Orthogonal matrix $|Q| = \pm |1|$ because $Q^{\top}Q = I$ gives $|Q|^2 = 1$.

6. Triangular matrix $|U| = u_{11}u_{22}\cdots u_{nn}$

7.
$$|A| = |LU| = |L| \cdot |U| = product of the pivots u_{ii}$$

8.
$$\begin{vmatrix} A & 0 \\ 0 & B \end{vmatrix} = |A| \cdot |B|, \quad \begin{vmatrix} A & C \\ 0 & B \end{vmatrix} = |A| \cdot |B|.$$

Proposition 11.4. (Cramer's Rule) Cramer's Rule to Solve Ax = b Start from

$$\left[egin{array}{ccc} m{A} \end{array}
ight] \left[egin{array}{ccc} m{x_1} & 0 & 0 \ m{x_2} & 1 & 0 \ m{x_3} & 0 & 1 \end{array}
ight] = \left[egin{array}{ccc} m{b_1} & a_{12} & a_{13} \ m{b_2} & a_{22} & a_{23} \ m{b_3} & a_{32} & a_{33} \end{array}
ight] = m{B_1}$$

$$\textit{Use} \left(\det \boldsymbol{A} \right) \left(\boldsymbol{x}_1 \right) = \left(\det \boldsymbol{B}_1 \right) \textit{to find } \boldsymbol{x}_1 \quad \overset{\textit{Same}}{\textit{idea}} \quad [A] \left[\begin{array}{ccc} 1 & x_1 & 0 \\ 0 & x_2 & 0 \\ 0 & x_3 & 1 \end{array} \right] = \left[\begin{array}{ccc} a_1 & b & a_3 \end{array} \right] = B_2 \quad \begin{matrix} x_1 = \frac{\det B_1}{\det A} \\ x_2 = \frac{\det B_2}{\det A} \end{matrix}$$
 Cramer's Rule is usually not efficient! Too many determinants

$$\begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 12 \\ 22 \end{bmatrix} \quad \boldsymbol{B}_1 = \begin{bmatrix} 12 & 2 \\ 22 & 4 \end{bmatrix} \quad \boldsymbol{B}_2 = \begin{bmatrix} 3 & 12 \\ 5 & 22 \end{bmatrix} \quad x_1 = \frac{\det B_1}{\det A} = \frac{4}{2} \quad x_2 = \frac{2}{2}$$

12 Least squares

Suppose $A \in \mathbb{R}^{n \times p}$. When the linear equations Ax = b are overdetermined (n > p) and there is no solution, we minimize the 2-norm of the residual:

$$\text{minimize} \|Ax - b\|_2 \Longrightarrow A^{\top} A \hat{x} = A^{\top} b \longrightarrow \textbf{Normal Equation}$$

The normal equations have a unique solution iff rank(A) = p (full column rank / the columns of A are linearly independent). Why? Because $A^{\top}A \in \mathbb{R}^{p \times p}$ and $Im(A^{\top}A) = Im(A) \Longrightarrow rank(A^{\top}A) = rank(A) = p \Longrightarrow A^{\top}A$ is full rank.

Then,

$$\hat{x} = \left(A^{\top}A\right)^{-1}A^{\top}b = A^{\dagger}b$$

where $A^{\dagger} = (A^{\top}A)^{-1}A^{\top}$ is the Moore-Penrose inverse (or pseudo-inverse).

13 Orthogonal matrices

A square matrix U is orthogonal if $U^{\top}U = I$.

Some properties of orthogonal U and V:

- Orthogonal Columns and Rows: $u_i \cdot u_j = 0$, $||u_i|| = ||u_j|| = 1$.
- **Orthogonal Basis**: The columns (or rows) of an orthogonal matrix form an orthogonal basis for the vector space.
- Orthogonal transformations preserve angles & length: $(Ux)^{\top}(Uz) = x^{\top}z$ and $\|Ux\|_2 = \|x\|_2$.
- Certain matrix norms are also invariant: $\|UAV\|_2 = \|A\|_2$ and $\|UAV\|_F = \|A\|_F$
- If U is square, $U^\top U = U U^\top = I$ and $U^{-1} = U^\top.$
- UV is orthogonal.

Every subspace has an orthonormal basis: For any $A\in\mathbb{R}^{m\times n}$, there exists an orthogonal $U\in\mathbb{R}^{m\times r}$ such that R(A)=R(U) and $r=\mathrm{rank}(A)$. One way to find U is using Gram-Schmidt.

14 Projections

If $P \in \mathbb{R}^{n \times n}$ satisfies $P^2 = P$, $P^\top = P$ it's called a projection matrix.

In general, $P: \mathbb{R}^n \to S$, where $S \subseteq \mathbb{R}^n$ is a subspace.

If P is a projection matrix, so is (I - P). We can uniquely decompose:

$$x = u + v = Px + (I - P)x$$
 where $u \in S, v \in S^{\perp}$

Pythagorean theorem: $||x||_2^2 = ||u||_2^2 + ||v||_2^2$

If $A \in \mathbb{R}^{m \times n}$ has linearly independent columns, then the projection onto R(A) is given by $P = A (A^{\top}A)^{-1} A^{\top}$.

$$e \perp R(A) \Longrightarrow (b - Ax)^{\top} A = 0 \Longrightarrow x = \left(A^{\top} A\right)^{-1} A^{\top} b \Longrightarrow p = Ax = A \left(A^{\top} A\right)^{-1} A^{\top} b$$

Least-squares: decompose b using the projection above:

$$b = A (A^{\top} A)^{-1} A^{\top} b + (I - A (A^{\top} A)^{-1} A^{\top}) b$$
$$= A\hat{x} + (b - A\hat{x})$$

where $\hat{x} = (A^{\top}A)^{-1}A^{\top}b$ is the LS estimate. Therefore the optimal residual is orthogonal to $A\hat{x}$.

15 QR Decomposition

16 Eigenvalues and Eigenvectors

Intuition: The whole idea is to avoid the complexity presented by matrix A. It's generally more convenient to deal with λx instead of Ax.

Basics: Suppose $A \in \mathbb{R}^{n \times n}$ is a square matrix.

- $A^k x = \lambda^k x$.
- $\bullet \ A^{-1}x = \lambda^{-1}x.$
- $(A+cI)x = (\lambda+c)x$.
- If α is an eigenvalue of A and β is an eigenvalue of B, then $\alpha\beta$ is NOT an eigenvalue of AB; and $\alpha + \beta$ is NOT an eigenvalue of A+B.
- $Ax = \lambda x \Longrightarrow (A \lambda I)x$ to have non-zero solutions for $x \Longrightarrow (A \lambda I)$ is singular $\Longrightarrow \det(A \lambda I) = 0$.
- The mapping between eigenvalue and eigenvector is 1-to-1.
 But why are there cases where one eigenvalue maps to two eigenvector?
 This is because there could be two eigenvalues having the same value.
- If $A \in \mathbb{R}^{n \times n}$, then A has at most n different eigenvalues.

- If $A \in \mathbb{R}^{n \times n}$ has $d \leq n$ distinct eigenvalues $\lambda_1, \ldots, \lambda_d$, then we have at least d independent eigenvectors. (E.g. Identity matrix I has only 1 distinct eigenvalue, but it has e_1, e_2, \ldots, e_n , in total, n independent eigenvectors.)
- Eigenvectors x_1, \dots, x_j correspond to distinct eigenvalues are linearly independent.
- One eigenvector (unit) of $\cal A$ cannot correspond to two or more different eigenvalues.

Otherwise, $A\vec{x} = \lambda_1 \vec{x}$, $A\vec{x} = \lambda_2 \vec{x}$, $\lambda_1 \neq \lambda_2 \Rightarrow 0 = (\lambda_1 - \lambda_2) \vec{x} \Rightarrow \vec{x} = 0$; and that's a contradiction!

- Elementary matrices E,P, row-exchange/permutation matrices DOES NOT preserve eigenvalues.

Characteristic Polynomial:

 $A - \lambda I$: characteristic polunomial of A; $|A - \lambda I|$ is the characteristic equation of A.

- Vieta's Formula: $\sum_{i=1}^n \lambda_i = trace(A) = \sum_{i=1}^n a_{ii}$ and $\prod_{i=1}^n \lambda_i = |A|$.
- Eigenvalues of a triangular matrix lie along its diagonal. (Because $\det(A) = \prod_{i=1}^n a_{ii}$ if $A \in \mathbb{R}^{n \times n}$ is triangular. $\Longrightarrow \det(A \lambda I) = \prod_{i=1}^n (a_{ii} \lambda)$.)

17 Diagonalizing a Matrix

Suppose $A \in \mathbb{R}^{n \times n}$ has n linearly independent eigenvectors x_1, x_2, \dots, x_n . Set

$$X = \begin{bmatrix} | & & | \\ x_1 & \cdots & x_n \\ | & & | \end{bmatrix}$$
 and $\Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$, then we have $AX = X\Lambda$. Since

X is formed by n linearly independent vectors, X is invertible. Hence

$$A = X\Lambda X^{-1}$$

Properties:

• Any matrix with no repeated eigenvalues, i.e. n eigenvalues, can be diagonalized.

If $\lambda_1, \ldots, \lambda_n$ are all different \Longrightarrow we have $\geq n$ independent eigenvectors. Since $\dim(A) = n$, we have exactly n eigenvectors. Hence, X is invertible.

- $A^k = (X\Lambda X^{-1})^k = X\Lambda^k X^{-1}$.
- If all eigenvalues of A has $|\lambda|<1$, then $\lim_{k\to\infty}\Lambda^k=0$. Since matrix $A^k=XA^kX^{-1}$, $\lim_{k\to\infty}A^k=0$ matrix.
- If $A=S\Lambda S^{-1}$, then $A^{-1}=S\Lambda^{-1}S^{-1}$ (same eigenvectors, inverse eigenvalues).
- If A has 0 as its eigenvalue, then $Ax = 0x \implies Ax = 0$ has non-zero eigenvectors, $\implies A$ is singular.

18 Symmetric Matrix

$$S = S^{\top} \in \mathbb{R}^{n \times n}$$
.

Properties:

- \bullet S has only real eigenvalues.
- (Important!) S always has n independent, mutually orthogonal eigenvectors (a set of orthonormal basis).

Spectral Theorem Every real symmetric matrix has factorization $S = Q\Lambda Q^{\top}$, with n (counting multiplicities) real eigenvalues in Λ and orthonormal eigenvectors as columns of Q:

$$S = Q\Lambda Q^{-1} = Q\Lambda Q^{\top} = \lambda_1 q_1 q_1^{\top} + \dots + \lambda_n q_n q_n^{\top}$$

where q_i 's are orthonormal eigenvectors of S.

Symmetric Matrix Decompositions

· LU:

$$A = LDU = LDL^{\top} = LD^{1/2}(LD^{1/2})^{\top}$$

where the 4th term is the *square-root-free* Cholesky Decomposition of A which is only valid if A is positive definite, since you want eigenvalues to be all positive so that you could take the square root.

Note: It is reminiscent of the eigen-decomposition of real symmetric matrices, $A=Q\Lambda Q^{\top}$, but is quite different in practice because Λ and D are not similar matrices.

· SVD:

$$S = Q\Lambda Q^{-1} = Q\Lambda Q^{\top} \stackrel{S \text{ is positive-definite}}{======} U\Sigma V^{\top}$$

Proposition 18.1. For any matrix $A \in \mathbb{R}^{m \times n}$, the matrix $A^{\top}A \in \mathbb{R}^{n \times n}$ is always square, symmetric, and positive semi-definite $(\forall x \neq 0, x^{\top}A^{\top}Ax = \|Ax\|^2 \geq 0)$. If in addition A has linearly independent columns, then A^TA is positive definite.

Skew-symmetric Matrix $A^{\top} = -A$.

GM, AM

- Geometric Multiplicity = GM = dim of Null space of $(A \lambda I)$: counts the independent eigenvectors for λ .
- Algebraic Mutciplicity =AM \to look at roots of $\det(A-\lambda I)$: counts the repetition of λ among the eigenvalues.

E.g. If A has $\lambda = 4, 4, 4 \Rightarrow AM = 3$, GM = 1, 2, or 3.

If for $A, GM \leq AM$. That means we have an eigenvalue repeated AM times but have only GM lines of eigenvectors correspond to it \Rightarrow lack of independent eigenvectors for $\mathbb{R}^{n \times n}$ eigenvector matrix $X. \Rightarrow A$ is not diagonalizable.

Similar Matrices:

If $B \in \mathbb{R}^{n \times n}$ - invertible, $C \in \mathbb{R}^{n \times n}$ - constant matrix, then $A = BCB^{-1}$ are similar matrices (one for each choice of invertible matrix B).

• All matrices $A = BCB^{-1}$ are "similar". They all share the eigenvalues of C. Proof:

$$(A - \lambda I) = BCB^{-1} - \lambda I = BCB^{-1} - B\lambda IB^{-1} = B(C - \lambda I)B^{-1}$$

Then, we have

$$\det(C - \lambda I) = \det(A - \lambda I)$$

Hence, they share the same set of eigenvalues as C's.

- Eigenvalues are purely imaginary.
- A always has n independent, mutually orthogonal eigenvectors (a set of orthonormal basis).

Quadratic Form $q = x^{T}Qx$, where Q is a symmetic matrix.

E.g. Consider the case of quadratic forms in three variables x,y,z. The matrix Q has the form

$$Q = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & k \end{bmatrix}$$

The above formula gives

$$q = ax^{2} + ey^{2} + kz^{2} + (b+d)xy + (c+g)xz + (f+h)yz.$$

So, two different matrices define the same quadratic form if and only if they have the same elements on the diagonal and the same values for the sums b+d, c+g and f+h. In particular, the quadratic form q is defined by a unique symmetric matrix

$$Q = \begin{bmatrix} a & \frac{b+d}{2} & \frac{c+g}{2} \\ \frac{b+d}{2} & e & \frac{f+h}{2} \\ \frac{c+g}{2} & \frac{f+h}{2} & k \end{bmatrix}$$

19 Positive-Definite Matrix

A positive definite if

- 1. A is symmetric.
- 2. Eigenvalues of A are all positive.
- 3. All the upper-left determinants are positive
- 4. $x^T A x > 0$ unless x = 0.
 - If A and B are positive definite then so is A+B.

Example: For symmetric positive-definite matrix A, we have

$$A = \begin{bmatrix} 4 & 12 & -16 \\ 12 & 37 & -43 \\ -16 & -43 & 98 \end{bmatrix} = Q\Lambda Q^{\top} = \begin{bmatrix} -0.16 & 0.21 & 0.96 \\ -0.45 & 0.84 & -0.26 \\ 0.87 & 0.48 & 0.04 \end{bmatrix} \begin{bmatrix} 123.47 & 0 & 0 \\ 0 & 15.50 & 0 \\ 0 & 0 & 0.018 \end{bmatrix} \begin{bmatrix} -0.16 & 0.21 & 0.96 \\ -0.45 & 0.84 & -0.26 \\ 0.87 & 0.48 & 0.04 \end{bmatrix} = U\Sigma V^{\top}$$

$$= LL^{\top} = \begin{bmatrix} 2 & 0 & 0 \\ 6 & 1 & 0 \\ -8 & 5 & 3 \end{bmatrix} \begin{bmatrix} 2 & 6 & -8 \\ 0 & 1 & 5 \\ 0 & 0 & 3 \end{bmatrix} = LDL^{\top} \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -4 & 5 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 9 \end{bmatrix} \begin{bmatrix} 1 & 3 & -4 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{bmatrix}$$

20 Cholesky Decomposition

21 The Singular Value Decomposition

For any matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$, there exist orthogonal matrices \mathbf{U} , \mathbf{V} and a $m \times n$ diagonal matrix $\mathbf{\Sigma}$

$$\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_m] \in \mathbb{R}^{m \times m}$$

$$\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_n] \in \mathbb{R}^{n \times n}$$

$$\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_p) \in \mathbb{R}^{m \times n}, p := \min\{m, n\}$$

with $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p \geq 0$, such that

$$\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}'$$

To be more specific, matrix $\mathbf{X} \in \mathbb{C}_r^{m imes n}$ can be decomposed as

$$\mathbf{X} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^* = \begin{bmatrix} \mathbf{U}_{\mathcal{R}} & \mathbf{U}_{\mathcal{N}} \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & & & \\ \vdots & \ddots & & & \\ & & \sigma_r & & \\ \hline & \vdots & & \ddots & \\ & & & 0 \end{bmatrix} \begin{bmatrix} \mathbf{V}_{\mathcal{R}}^* \\ \mathbf{V}_{\mathcal{N}}^* \end{bmatrix} = \begin{bmatrix} u_1 & \dots & u_r & u_{r+1} & \dots & u_m \end{bmatrix} \begin{bmatrix} \mathbf{S}_{r \times r} & \mathbf{0} \\ \vdots & v_r^* \\ v_{r+1}^* \vdots & \vdots \\ v_n^* \end{bmatrix} \longrightarrow \mathbf{full} \, \mathbf{SVD}$$

$$\xrightarrow{\text{spectral decomposition}} \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^\top + \sum_{i=r+1}^p 0 \cdot \mathbf{u}_i \mathbf{v}_i^\top = \mathbf{U}_{\mathcal{R}} \mathbf{S}_{r \times r} \mathbf{V}_{\mathcal{R}}^* \longrightarrow \mathbf{Compact} \, \mathbf{SVD}$$

$$\approx \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^\top, k \leq t \longrightarrow \mathbf{Truncated} \, \mathbf{SVD}$$

The r positive singular values are real and ordered (descending) and are the square root of non-zero eigenvalues of the product matrices A^*A and AA^* . Please note that the singular values only correspond to range space vectors, i.e., $\mathbf{U}_{\mathcal{R}}$ and $\mathbf{V}_{\mathcal{R}}$.

Remark 21.1.

- 1. This decomposition is not unique: the singular values part Σ is unique; however the signs in the left and right singular vectors can be interchanged. Besides when at least one singular value is zero, there are many possible corresponding singular vectors.
- 2. if X is **real symmetric** then (spectral theorem) it is diagonalizable and therefore has at least one eigen-decomposition $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{-1} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top}$. In general this decomposition is not unique: the eigenvalues part $\mathbf{\Lambda}$ is unique; however the eigenvectors part \mathbf{Q} is only unique if no eigenvalue is zero.
- 3. If X is a real symmetric and at least positive semi-definite, then Σ is a diagonal matrix containing the eigenvalues, and U = V. That is, the SVD

$$X \xrightarrow{\underline{SVD}} U\Sigma V^\top \xrightarrow{\underline{U=V=Q,\Sigma=\Lambda}} Q\Lambda Q^\top \longrightarrow \text{eigen-decomposition}$$

 \triangle

Fundamental Subspaces

The column vectors of \mathbf{U} are called **left singular vectors** and are an orthonormal span of \mathbb{C}^m (column space) $\mathbf{C}^n = \mathcal{R}(\mathbf{X}^*) \oplus \mathcal{N}(\mathbf{X})$.

The column vectors of \mathbf{V} are called **right singular vectors** are an orthonormal span of \mathbb{C}^n (row space) $\mathbf{C}^m = \mathcal{R}(\mathbf{X}) \oplus \mathcal{N}(\mathbf{X}^*)$.

matrix		subspace	orthogonal projection matrix
$\mathbf{U}_{\mathcal{R}} \in \mathbb{C}^{m imes r}$	$\mathcal{R}\left(\mathbf{X} ight)$	$= extsf{span}\left\{u_1,\ldots,u_r ight\}$	$\mathbf{U}_{\mathcal{R}}\mathbf{U}_{\mathcal{R}}^{ op}$ orth proj onto $\mathcal{R}\left(\mathbf{X} ight)$
$\mathbf{V}_{\mathcal{R}} \in \mathbb{C}^{n imes r}$	$\mathcal{R}\left(\mathbf{X}^{*} ight)$	$= \operatorname{span}\left\{v_1,\ldots,v_r ight\}$	$\mathbf{V}_{\mathcal{R}}\mathbf{V}_{\mathcal{R}}^{T}$ orth proj onto $\mathcal{R}\left(\mathbf{X}^{*} ight)$
$\mathbf{U}_{\mathcal{N}} \in \mathbb{C}^{m imes m - r}$	$\mathcal{N}\left(\mathbf{X}^{*} ight)$	$= \mathrm{span}\left\{u_{r+1},\ldots,u_m\right\}$	$\mathbf{U}_{\mathcal{N}}\mathbf{U}_{\mathcal{N}}^{T}$ orth proj onto $\mathcal{N}\left(\mathbf{X}^{*} ight)$
$\mathbf{V}_{\mathcal{N}} \in \mathbb{C}^{n imes n - r}$	$\mathcal{N}\left(\mathbf{X} ight)$	$= \operatorname{span}\left\{v_{r+1},\ldots,v_n\right\}$	$\mathbf{V}_{\mathcal{N}}\mathbf{V}_{\mathcal{N}}^{T}$ orth proj onto $\mathcal{N}\left(\mathbf{X}\right)$

The singular value decomposition provides an orthonormal basis for the four fundamental subspaces.

Remark 21.2.

1. Use the property that $\mathbf{X}\mathbf{v}_i = \sigma_i\mathbf{u}_i, i = 1, \dots, r$, then \mathbf{u}_i is in $\mathcal{R}(\mathbf{X})$. Now since $\mathrm{rank}\,\mathbf{X} = r$ and \mathbf{u}_i 's are orthogonal to each other, we obtain $\mathcal{R}(\mathbf{X}) = \mathrm{span}\,\{u_1, \dots, u_r\}$. Similarly, from $\mathbf{A}^{\top}\mathbf{u}_i = \sigma_i\mathbf{v}_i, i = 1, \dots, r$, we obtain $\mathrm{span}\,\{v_1, \dots, v_r\}\,\mathbf{V}_{\mathcal{R}}\mathbf{V}_{\mathcal{R}}^{\top}$.

 \triangle

Properties of the SVD

Basics

$$\begin{cases} \mathbf{A}^{\top} \mathbf{A} &= \mathbf{V} \left(\Sigma^{\top} \Sigma \right) \mathbf{V}^{\top} \Longrightarrow \mathbf{A}^{\top} \mathbf{A} \mathbf{V} = \mathbf{V} \left(\Sigma^{\top} \Sigma \right) \xrightarrow{\Sigma^{\top} \Sigma \text{ diagonal}} \Sigma^{\top} \Sigma \mathbf{V} \\ \mathbf{A} \mathbf{A}^{\top} &= \mathbf{U} \left(\Sigma \Sigma^{\top} \right) \mathbf{U}^{\top} \Longrightarrow \mathbf{A} \mathbf{A}^{\top} \mathbf{U} = \mathbf{V} \left(\Sigma \Sigma^{\top} \right) \xrightarrow{\Sigma \Sigma^{\top} \text{ diagonal}} \Sigma \Sigma^{\top} \mathbf{U} \end{cases}$$

- $\mathbf{A}\mathbf{v}_i = \sigma_i \mathbf{u}_i$ and $\mathbf{A}^{\top} \mathbf{u}_i = \sigma_i \mathbf{v}_i$
- $\operatorname{rank}(A) = \operatorname{rank} \Sigma = r$.
- $\sigma_A^2 = \sigma_{AA^\top} = \sigma_{A^\top A}$. That is, The singular values of $A^\top A$ and AA^\top are $\sigma_1^2, \dots, \sigma_n^2$, and thus $\left\|A^\top A\right\|_2 = \left\|AA^\top\right\|_2 = \sigma_{\max}^2$.
- The right singular vectors (columns of V) are eigenvectors of $A^{\top}A$
- The left singular vectors (columns of U) are eigenvectors of AA^{\top}

Matrix Norm

If $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $p := \min\{m, n\}$, then the following identities hold

$$\|\mathbf{A}\|_{F} := \sqrt{\sum_{i=1,j=1}^{m,n} |a_{ij}|^{2}} = \sqrt{\sigma_{1}^{2} + \ldots + \sigma_{p}^{2}},$$
$$\|\mathbf{A}\|_{2} := \max \frac{\|\mathbf{A}\mathbf{v}\|_{2}}{\|\mathbf{v}\|_{2}} = \sigma_{1},$$
$$\min \frac{\|\mathbf{A}\mathbf{v}\|_{2}}{\|\mathbf{v}\|_{2}} = \sigma_{n}(m \ge n).$$

Eckart-Young Theorem

Suppose $\mathbf{X} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i', k < r = \operatorname{rank}(\mathbf{X})$ and denote by $\mathbf{X}_k := \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i'$ the k-truncated SVD of \mathbf{X} . Then \mathbf{X}_k is the best rank- k approximation of \mathbf{X} both in the L^2 -norm and the Frobenius norm, that is

$$\min_{\mathbf{Y} \text{ s.t. } \operatorname{rank}(\mathbf{Y}) = k} \|\mathbf{X} - \mathbf{Y}\|_2 = \|\mathbf{X} - \mathbf{X}_k\|_2 = \sigma_{k+1}$$

and

$$\min_{\mathbf{Y} \text{ s.t. } \operatorname{rank}(\mathbf{Y}) = k} \|\mathbf{X} - \mathbf{Y}\|_F^2 = \|\mathbf{X} - \mathbf{X}_k\|_F^2 = \sum_{k=1}^N \sigma_i^2$$

SVD and Linear Regression

Suppose $\mathbf{b} \in \mathbb{R}^m$ and $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}' \in \mathbb{R}^{m \times n}$ with $r = \mathrm{rank}(\mathbf{A})$ and

$$\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_m]$$

 $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_n]$

Then

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 = \sum_{i=1}^r \frac{\mathbf{u}_i'\mathbf{b}}{\sigma_i} \mathbf{v}_i$$

and

$$\|\mathbf{A}\mathbf{x}^* - \mathbf{b}\|_2^2 = \sum_{i=r+1}^m (\mathbf{u}_i'\mathbf{b})^2$$

The Moore-Penrose Generalized Inverse

Suppose $\mathbf{A}=\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}'=\sum_{i=1}^r\sigma_i\mathbf{u}_i\mathbf{v}_i$ with $r=\mathrm{rank}(\mathbf{A})$. Then we define the Moore-Penrose inverse of \mathbf{A} by

 $\mathbf{A}^\dagger := \mathbf{V} \mathbf{\Sigma}^\dagger \mathbf{U}$

where

$$\mathbf{\Sigma}^{\dagger} = \left(\Sigma^{\top}\Sigma\right)^{-1}\Sigma^{\top} = \operatorname{diag}\left(\sigma_{1}^{-1}, \dots, \sigma_{r}^{-1}, 0, \dots, 0\right) \in \mathbb{R}^{n \times m}$$

It is easy to verify that $\mathbf{A}^+ \mathrm{satisfies}$ the four Moore-Penrose conditions

$$\mathbf{A}\mathbf{A}^{+}\mathbf{A}=\mathbf{A}, \mathbf{A}^{+}\mathbf{A}\mathbf{A}^{+}=\mathbf{A}^{+}, \left(\mathbf{A}\mathbf{A}^{+}\right)'=\mathbf{A}\mathbf{A}^{+}, \left(\mathbf{A}^{+}\mathbf{A}\right)'=\mathbf{A}^{+}\mathbf{A}$$

Remark 21.3. There is an infinite number of ways in which one can define a pseudo inverse. What makes the Moore-Penrose inverse useful is that it is **unique**. In other words, there is no other inverse that satisfies the Moore-Penrose conditions above.

Note that from the Moore-Penrose conditions it follows that $\mathbf{A}\mathbf{A}^+$ and $\mathbf{A}^+\mathbf{A}$ are orthogonal projections onto range (\mathbf{A}) and range (\mathbf{A}') , respectively.

 \triangle

22 Triangular Matrix

- The eigenvalues of a triangular matrix are the entries on its main diagonal.
- The determinant of a triangular matrix is the product of its diagonal.

23 Some nice problems

Proposition 23.1. Diagonally dominant matrices are invertible. Diagonally dominant: $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$

Solution: If $\exists \vec{x} \neq \overrightarrow{0}$ s.t. $A\vec{x} = \overrightarrow{0}$, $A \in \mathbb{R}^{n \times n}$. then $\sum_{j=1}^{n} a_{ij}x_j = 0 \quad \forall i \in [1, n], i \in Z^+$ W LOG suppose $|\vec{x}_i| \geq |\vec{x}_k| \quad \forall k \neq i \quad k \in [1, n], k \in Z^+$. $\Rightarrow |a_{ii}| x_i| = |\sum_{j \neq i} a_{ij} x_j| \leqslant \sum_{j \neq i} |a_{ij}| |x_j|$ That's a contradiction since we have.

$$|a_{ii}| |x_i| > \left(\sum_{j \neq i} |a_{ij}|\right) |x_i| > \sum_{j \neq i} |a_{ij}| |x_j|$$

Proposition 23.2. Prove that matrix $A = au_1v_1^\top + bu_2v_2^\top$ where $u_i \in \mathbb{R}^m$, $v_i \in \mathbb{R}^n$ and $A \in \mathbb{R}^{m \times n}$ is a rank-2 matrix.

Solution: We have

$$A = u_1 v_1^\top + u_2 v_2^\top = \begin{bmatrix} | & | \\ u_1 & u_2 \\ | & | \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} - & v_1^\top & - \\ - & v_2^\top & - \end{bmatrix} = UV \Longrightarrow rankA = 0$$

Proposition 23.3. Suppose $A \in \mathbb{R}^{m \times n}$, $\forall x \in \mathbb{R}^n$, it can be represented as $x = x_r + x_n$ where $x_r \in C(A^\top)$ and $x_n \in N(A)$.

Solution:

Proposition 23.4. Eigenvectors x_1, \ldots, x_j that correspond to distinct eigenvalues are linearly independent.

Solution: Assume dependent $c_i\vec{x}_i + c_j\vec{x}_j = 0 \Longrightarrow \lambda_i c_i\vec{x}_i + \lambda_i c_j\vec{x}_j = 0$. We have

$$\Rightarrow A\left(c_{i}\vec{x}_{i}+c_{j}\vec{x}_{j}\right) = \lambda_{i}c_{i}\vec{x}_{i} + \lambda_{j}c_{j}\overrightarrow{x}_{j} = \lambda_{i}c_{i}\vec{x}_{i} + \lambda_{i}c_{j}\vec{x}_{j} + (\lambda_{j}-\lambda_{i})c_{j}\vec{x}_{j} = 0 \Longrightarrow (\lambda_{j}-\lambda_{i})c_{j}\vec{x}_{j} = 0 \Longrightarrow c_{j} = 0 \Longrightarrow c_{i} = 0.$$

This proof can be extended to $c_1\vec{x}_i + c_2\vec{x}_i + \cdots + c_j\vec{x}_j = 0$

Proposition 23.5. A, B share the same n independent eigenvectors if and only if AB = BA.

Solution:

"____

Suppose A,B share same n independent eigenvectors. $\vec{v}_1,\ldots,\vec{V}_n$, then A,B have eigen-decompositions $A=S\Lambda_aS^{-1},B=S\Lambda_bS^{-1}$.

$$\Rightarrow AB = S\Lambda_a S^{-1} S\Lambda_b S^{-1} = S\Lambda_a \Lambda_b S^{-1} = S\Lambda_b \Lambda_a S^{-1} = BA$$

"←

Suppose AB=BA, and $\vec{v}_1,\ldots,\vec{v}_n$ are n unit-length, independent eigenvectors of A, then

$$AB\overrightarrow{v_i} = BA\overrightarrow{v_i} = B\alpha_i\overrightarrow{v_i} = \alpha_i B\overrightarrow{v_i} \Rightarrow B\overrightarrow{v_i}$$
 is eigenvector of $AB\overrightarrow{v_i} = BA\overrightarrow{v_i} = BA\overrightarrow{v_i}$

Since the eigenvectors of A are independent, we have $B\overrightarrow{v_i}=\beta\overrightarrow{v_i}\Rightarrow\overrightarrow{v_i}$ is an eigenvector of B.

Proposition 23.6. How can you estimate the eigenvalues of any A? (Gershgorin)

Solution: Intuition: Every eigenvalue of A must be "near" at least one of the entries a_{ii} on the main diagonal; i.e. every λ is in the circle around one or more diagonal entries a_{ii} :

$$|a_{ii} - \lambda| \le R_i = \sum_{j \ne i} |a_{ij}|$$

 $\text{If } \lambda \text{ is eigenvalue} \Rightarrow (A-\lambda I) \text{ is singular} \Rightarrow \det(A-\lambda I) = 0 \Rightarrow (A-\lambda I) \text{ is not invertible.} \Rightarrow (A-\lambda I) \text{ is not diagonally dominant.}$

$$\Rightarrow \exists i \text{ sit } |a_{ii} - \lambda| \leq R_i$$

Proposition 23.7. (Spectral Theorem) Every real symmetric matrix has factorization $S = Q\Lambda Q^{\top}$, with real eigenvalues in Λ and orthonormal eigenvectors as columns of Q:

$$S = Q\Lambda Q^{-1} = Q\Lambda Q^{\top}$$

Solution:

1. All eigenvalues are real. Suppose $S\vec{x} = \lambda \vec{x}$ where $\lambda = a + bi, b \neq 0$. Take conjugate, we get

$$S\overline{\vec{x}} = \bar{\lambda}\overline{\vec{x}} \Rightarrow \overline{\vec{x}}^{\top}S^{\top} = \bar{\lambda}\overline{\vec{x}}^{\top} \Rightarrow \overline{\vec{x}}^{\top}S^{\top}\vec{x} = \bar{\lambda}\overline{\vec{x}}^{\top}\vec{x}$$

Since $S\vec{x} = \lambda \vec{x}$, we have $\overline{\vec{x}}^{\top} S^{\top} \vec{x} = \lambda \overline{\vec{x}}^{\top} \vec{x}$, then

$$\Rightarrow 0 = (\lambda - \bar{\lambda}) \overline{\vec{x}}^{\top} \vec{x} \Rightarrow \lambda = \bar{\lambda} \Rightarrow b = 0$$
 contradiction!

Hence, $\lambda \in \mathbb{R}$.

2. Eigenvectors of a real symmetric matrix (when they correspond to different λ 's) are always perpendicular.

Suppose $S\vec{x}_1 = \lambda_1\vec{x}_1; S\vec{x}_2 = \lambda_2\vec{x}_2; \lambda_1 \neq \lambda_2$, then

$$\lambda_1 \vec{x}_2^\top \vec{x}_1 = \vec{x}_2^\top S \vec{x_1} \xrightarrow{constant} \left(\vec{x}_2^\top S \vec{x}_1 \right)^\top = \vec{x}_1^\top S^\top \vec{x}_2 \xrightarrow{symmetric} \vec{x}_1^\top S \vec{x}_2 = \lambda_2 \vec{x}_1^\top \vec{x}_2$$

Since $\vec{x}_2^{\top}\vec{x}_1 \stackrel{constant}{=\!=\!=\!=} \vec{x}_1^{\top}\vec{x}_2$, we have

$$(\lambda_2 - \lambda_1) \vec{x}_2^{\top} \vec{x}_1 \Rightarrow \vec{x}_2^{\top} \vec{x}_1 = 0 \rightarrow \text{ orthogonal.}$$

Problem 23.8. 2-norm of orthogonal transformation of a matrix is invariant: For any matrix A and an orthogonal matrix Q, we have

$$||QA||_2 = ||A||_2$$
 and $||AQ||_2 = ||A||_2$

Solution: For the first equation, we have

$$||QA||_2^2 = (QAx)^T (QAx) = (Ax)^T (Ax) = ||A||_2^2$$

For the second equation, recall that the 2-norm for matrices is defined as

$$||B||_2 = \sup_{||x||=1} ||Bx||$$

But for any orthogonal matrix Q we have that ||Qx|| = ||x||. Thus, we can write

$$||AQ||_2 = \sup_{\|x\|=1} ||AQx|| = \sup_{\|Qx\|=1} ||AQx|| = \sup_{\|y\|=1} ||Ay|| = ||A||_2.$$

Together, if U, V are comformable and orthogonal, then we have

$$||UAV||_2 = ||A||_2$$

Theorem 23.9. (Shur's Theorem) If A is a square real matrix with real eigenvalues, then there is an orthogonal matrix Q and an upper triangular matrix T such that $A = QTQ^{T}$.

Solution: Note that $A = QTQ^T \Leftrightarrow AQ = QT$. Let q_1 be an eigenvector of norm 1, with eigenvalue λ_1 . Let q_2, \ldots, q_n be any orthonormal vectors orthogonal to q_1 . Let $Q_1 = [q_1, \ldots, q_n]$. Then $Q_1^TQ_1 = I$, and

$$oldsymbol{Q}_1^{ ext{T}} oldsymbol{A} oldsymbol{Q}_1 = \left(egin{array}{cc} \lambda_1 & \cdots \ \underline{0} & oldsymbol{A}_2 \end{array}
ight)$$

Now I claim that A_2 has eigenvalues $\lambda_2, \ldots, \lambda_n$. This is true because

$$det(\boldsymbol{A} - \lambda \boldsymbol{I}) = det \boldsymbol{Q}_{1}^{T} det(\boldsymbol{A} - \lambda \boldsymbol{I}) det \boldsymbol{Q}_{1} = det \left(\boldsymbol{Q}_{1}^{T} (\boldsymbol{A} - \lambda \boldsymbol{I}) \boldsymbol{Q}_{1} \right)$$

$$= det \left(\boldsymbol{Q}_{1}^{T} \boldsymbol{A} \boldsymbol{Q}_{1} - \lambda \boldsymbol{Q}_{1}^{T} \boldsymbol{Q}_{1} \right) = det \left(\begin{array}{cc} (\lambda_{1} - \lambda) & \dots \\ \mathbf{0} & (\boldsymbol{A}_{2} - \lambda \boldsymbol{I}) \end{array} \right)$$

$$= (\lambda_{1} - \lambda) det \left(\boldsymbol{A}_{2} - \lambda \boldsymbol{I} \right).$$

So A_2 has real eigenvalues, namely $\lambda_2, \ldots, \lambda_n$. Now we proceed by induction. Suppose we have proved the theorem for n=k. Then we use this fact to prove the theorem is true for n=k+1. Note that the theorem is trivial if n=1.

So for n = k + 1, we proceed as above and then apply the known theorem to A_2 , which is $k \times k$. We find that $A_2 = Q_2T_2Q_2^T$. Now this is the hard part. Let Q_1 and A_2 be as above, and let

$$oldsymbol{Q} = oldsymbol{Q}_1 \left(egin{array}{cc} 1 & oldsymbol{0} \ oldsymbol{0} & oldsymbol{Q}_2 \end{array}
ight)$$

Then

$$egin{aligned} oldsymbol{AQ} = & oldsymbol{AQ}_1 \left(egin{array}{ccc} 1 & oldsymbol{0} & oldsymbol{Q}_2 \end{array}
ight) = oldsymbol{Q}_1 \left(egin{array}{ccc} \lambda_1 & \dots & \ 0 & oldsymbol{A}_2 oldsymbol{Q}_2 \end{array}
ight) = oldsymbol{Q}_1 \left(egin{array}{ccc} \lambda_1 & \dots & \ 0 & oldsymbol{Q}_2 oldsymbol{T}_2 \end{array}
ight) = oldsymbol{Q}_1 \left(egin{array}{ccc} 1 & oldsymbol{0} & oldsymbol{Q}_2 \\ oldsymbol{0} & oldsymbol{Q}_2 \end{array}
ight) \left(egin{array}{ccc} \lambda_1 & \dots & \ 0 & oldsymbol{Q}_2 \end{array}
ight) = oldsymbol{Q} oldsymbol{T} \end{aligned}$$

where T is upper triangular. So AQ=QT , or $A=QTQ^{\mathrm{T}}$.