

What is claimed is:

1. A method for pre-stack migration of common offset seismic traces obtained from a subterranean region where the seismic velocity varies both laterally (with x) and vertically (with z), said method comprising the steps of:
 - a) selecting seismic velocity functions $v(z)$ at at least two lateral (x_s) locations (at least three locations for 3D application) in said subterranean region, the number of such locations being determined by the degree of lateral velocity variation;
 - b) transforming said common offset seismic data traces from the space-time ($x-t$) domain to the wave number - frequency ($k-\omega$) domain;
 - c) calculating a travel time map for each x_s location using the velocity function selected for such location;
 - d) calculating for each travel time map from step (c) a corresponding map of τ as a function of wave number p , where $\omega\tau$ is the phase shift in the $k-\omega$ domain corresponding to the migration time shift in the $x-t$ domain;
 - e) using the τ -maps to find $\tau(p)$ as a linear function of x with a certain slope at each depth (z) in the subterranean region;
 - f) forming the migrated image from said seismic traces in the $\omega-k$ domain using pre-stack time migration with k shifted by an amount equal to the τ slope from step (e) multiplied by ω ; and
 - g) reverse transforming said migrated image back to the space-time ($x-t$) domain.
2. The method of claim 1, wherein said transformation is a double Fourier transform.

3. The method of claim 1, wherein the Finn-Winbow method provides the corresponding map of τ .
4. A method for producing hydrocarbons from a subterranean region where the seismic velocity varies both laterally (with x) and vertically (with z), using common offset seismic data obtained from said region, said method comprising the steps:
 - a) selecting seismic velocity functions $v(z)$ at at least two lateral (x_s) locations in said subterranean region, the number of such locations being determined by the degree of lateral velocity variation;
 - b) transforming said common offset seismic data traces from the space-time ($x-t$) domain to the wave number - frequency ($k-\omega$) domain;
 - c) calculating a travel time map for each x_s location using the velocity function selected for such location;
 - d) calculating for each travel time map from step (c) a corresponding map of τ as a function of wave number p , where $\omega\tau$ is the phase shift in the $k-\omega$ domain corresponding to the migration time shift in the $x-t$ domain;
 - e) using the τ -maps to find $\tau(p)$ as a linear function of x with a certain slope at each depth (z) in the subterranean region;
 - f) forming the migrated image from said seismic traces in the $\omega-k$ domain using pre-stack time migration with k shifted by an amount equal to the τ slope from step (e) multiplied by ω ;
 - g) reverse transforming said migrated image back to the space-time ($x-t$) domain;
 - h) using the migrated images from step (g) to assess the commercial hydrocarbon potential of the subterranean region; and

- 28 -

- i) producing any hydrocarbons identified in step (h).