Multimodal Knowledge Graph Embeddings

Presented by: Parsa Revanth, Advisor: Dr.Anand Mishra

> Indian Institute of Technology Jodhpur

> > May 7, 2022

Introduction: What is Knowledge Graph

- Knowledge graph is a network of entities
- Knowledge graph is represented as set of triplets (Subject, Relation, Object)

Introduction: Applications of Knowledge Graph

- Question Answering System
- Recommender System
- ► Information Retrieval

Problem Statement

- One of the task for Knowledge graph completion is link prediction
- ► Learn the low-dimensional representations of entities and the relations in a knowledge graph

Problem Statement

- Multimodality is using image and text information
- Multimodality is a complementary

Contributions

- 1. Detailed survey of knowledge graph embeddings techniques and their implementations
- 2. Exploring few of knowledge graph embedding techniques for multimodal data on two datasets

Survey of Knowledge Graph Embeddings

1. TransE [NeurIPS'13]

$$f_r(h,t) = \|h+r-t\|_{I1/I2}.$$

(1)

2. TransH [AAAI'14]

$$\mathbf{h}_{\perp} = \mathbf{h} - \mathbf{w}_r^{\top} \mathbf{h} \mathbf{w}_r, \mathbf{t}_{\perp} = \mathbf{t} - \mathbf{w}_r^{\top} \mathbf{t} \mathbf{w}_r$$

$$f_r(h,t) = \|\mathbf{h}_{\perp} + d_r - \mathbf{t}_{\perp}\|_{l2}.$$

(2)

3. TransR [AAAI'15]

$$\mathbf{h}_{\perp} = \mathbf{M}_r \mathbf{h}, \mathbf{t}_{\perp} = \mathbf{M}_r \mathbf{t}$$

$$f_r(h,t) = \|\mathbf{h}_{\perp} + r - \mathbf{t}_{\perp}\|_{l2}.$$

(4)

(5)

4. TransD [IJCNLP'15]

$$M_{rh} = \mathbf{r}' \mathbf{h}'^{\top} + \mathbf{I}, M_{rt} = \mathbf{r}' \mathbf{t}'^{\top} + \mathbf{I}.$$
 (6)

$$\mathbf{h}_{\perp} = \mathbf{M}_{rh}\mathbf{h}, \mathbf{t}_{\perp} = \mathbf{M}_{rt}\mathbf{t}. \tag{7}$$

$$f_r(h,t) = \|\mathbf{h}_{\perp} + r - \mathbf{t}_{\perp}\|_{l2}.$$

(8)

1. RESCAL [ICML'11]

$$\mathbf{Z_r} = \mathbf{A} \mathbf{M_r} \mathbf{A}^{\top}. \tag{9}$$

$$f_r(h,t) = \mathbf{h}^\top \mathbf{M_r} \mathbf{t}. \tag{10}$$

2. Distmult [ICLR'15]

$$f_r(h,t) = \mathbf{h}^{\top} \mathbf{diag}(\mathbf{r}) \mathbf{t}.$$
 (11)

2. Distmult [ICLR'15]

$$f_r(h,t) = \mathbf{h}^{\top} \mathbf{diag}(\mathbf{r}) \mathbf{t}.$$
 (11)

3. ComplEx [ICML'16]

$$f_r(h, t) = \text{Re}(\mathbf{h}^{\top} \text{diag}(\mathbf{r})\mathbf{t}').$$
 (12)

2. Distmult [ICLR'15]

$$f_r(h,t) = \mathbf{h}^{\top} \mathbf{diag}(\mathbf{r}) \mathbf{t}.$$
 (11)

3. ComplEx [ICML'16]

$$f_r(h, t) = \text{Re}(\mathbf{h}^{\top} \text{diag}(\mathbf{r})\mathbf{t}').$$
 (12)

4. HolE [AAAI'16]

$$f_r(h,t) = \mathbf{r}^{\top}(\mathbf{h} * \mathbf{t}).$$
 (13)

2. Distmult [ICLR'15]

$$f_r(h,t) = \mathbf{h}^{\top} \mathbf{diag}(\mathbf{r}) \mathbf{t}.$$
 (11)

3. ComplEx [ICML'16]

$$f_r(h, t) = \text{Re}(\mathbf{h}^{\top} \text{diag}(\mathbf{r})\mathbf{t}').$$
 (12)

4. HolE [AAAI'16]

$$f_r(h,t) = \mathbf{r}^{\top}(\mathbf{h} * \mathbf{t}). \tag{13}$$

5. SimplE [NeurIPS'18]

$$f_r(h,t) = \frac{1}{2}(\mathbf{h} \circ \mathbf{rt} + \mathbf{t} \circ \mathbf{r'h}).$$
 (14)

1. R-GCN [ESWC'18]

$$q_i^{(l+1)} = \sigma \left(\sum_{r \in \mathcal{R}} \sum_{j \in \mathcal{N}_r^r} \frac{1}{c_{i,r}} W_r^{(l)} q_j^{(l)} + W_0^{(l)} q_i^{(l)} \right). \tag{15}$$

$$f_r(h, t) = \mathbf{h}^{\top} \mathbf{R} \mathbf{t}.$$

(16)

2. ConvE [AAAI'18]

$$f_r(h,t) = f(vec(f([h;r]*w))W)t.$$
(17)

3. ConvKB [NAACL'18]

$$f_r(h,t) = f(vec(f([h;r;t]*w))W).$$

(18)

4. Conv-TransE [AAAI'19]

$$f_r(h,t) = f(vec(M_{(h,r)}))W)t.$$

(19)

5. CapsE [NAACL'19]

$$f_r(h, t) = ||(capsnet(f[h; r; t] * k))||.$$

Model architecture

Datasets used in the project

S.No	Dataset	Entities	Relations	-	Images			
3.140	Dataset	Littles	Relations	Train	Test	Valid	illiages	
1	FB15k-237	14505	237	272115	17535	20466	12237	
2	WN18RR	40943	11	86835	3034	3134	-	
3	YAGO3-10	123143	37	1079040	5000	5000	61223	

Results

Table 1: Results on WN18RR dataset

S.No	Dataset	Modal	Embedding	Data type	Embedding	Hits @ (%)		
3.110	3.NO Dataset	iviodai	Technique		Dimension	10	3	1
1		Translational	TransE	Entity	200	45.51	37.24	0.22
2			TransH			45.42	37.68	0.21
3			TransR			39.52	36.18	0.59
4			TransD			45.42	37.38	0.24
5	WN18RR	Matrix factorization	Distmult	Entity	200	46.09	36.57	23.87
6			ComplEx			47.52	42.17	33.77
7			SimplE			45.33	39.04	28.65
8		Neural network	ConvE	Entity	200	38.61	28.73	4.20
9			R-GCN		100	43.97	40.03	34.56

Results

Table 2: Results on FB15k-237 dataset

S No	S.No Dataset	Modal	Embedding	Data type	Embedding	Hits @ (%))
3.110			Technique		Dimension	10	3	1
1		Translational	TransE	Entity	200	47.73	32.71	19.28
2				Entity + Image		38.59	25.65	17.12
3	1		TransH	Entity		48.59	33.55	20.39
4				Entity + Image		39.81	26.98	17.56
5	1		TransR	Entity		48.70	34.09	21.29
6	FB15k-237		TransD	Littly		48.36	33.32	19.96
7		Matrix factorization	Distmult	Entity	200	34.31	20.01	9.94
8			ComplEx			40.94	26.82	14.88
9			SimplE			36.12	21.30	10.14
10		Neural network	ConvE	Entity	100	30.20	16.46	8.37
11			R-GCN			41.85	26.07	15.29

Results

Table 3: Results on YAGO3-10 dataset

C No	S.No Dataset	Modal	Embedding Data type	Embedding	Hits @ (%)			
3.110			Technique	Бата туре	Dimension	10	3	1
1		Translational	TransE	Entity	300	61.93	46.78	29.45
2				Entity + Image	350	24.55	14.31	7.79
3			TransH	Entity	300	65.07	49.92	16.04
4	YAGO3-10			Entity + Image		24.03	13.74	8.02
5			TransR	Entity		18.96	10.72	5.28
6			TransD	Littly		32.93	20.15	10.03
7		Matrix factorization	Distmult	Entity	300	19.30	7.86	3.06
8			ComplEx			34.06	14.73	3.02
9			SimplE			21.24	8.50	3.15
10		Neural network	ConvE	Entity	100	4.98	3.85	2.5
11			R-GCN			16.04	8.57	4.99

I did a detailed survey on knowledge graph embedding techniques

- I did a detailed survey on knowledge graph embedding techniques
- Implemented four translational embedding techniques TransE, TransH, TransR, and TransD for the entity only data

- I did a detailed survey on knowledge graph embedding techniques
- ► Implemented four translational embedding techniques TransE, TransH, TransR, and TransD for the entity only data
- Implemented three matrix factorization-based embedding techniques Distmult, ComplEx, and SimplE for the entity only data

- ▶ I did a detailed survey on knowledge graph embedding techniques
- ► Implemented four translational embedding techniques TransE, TransH, TransR, and TransD for the entity only data
- Implemented three matrix factorization-based embedding techniques Distmult, ComplEx, and SimplE for the entity only data
- ► Implemented two neural network-based embedding techniques ConvE and R-GCN for the entity only data.

- I did a detailed survey on knowledge graph embedding techniques
- ► Implemented four translational embedding techniques TransE, TransH, TransR, and TransD for the entity only data
- Implemented three matrix factorization-based embedding techniques Distmult, ComplEx, and SimplE for the entity only data
- ► Implemented two neural network-based embedding techniques ConvE and R-GCN for the entity only data.
- ► For the entity and image data, I implemented TransE and TransH embedding techniques.

Thank You

