

École d'ingénieurs de l'université de Nantes

Spécialité Génie Electrique

ELECTRONIQUE ANALOGIQUE

FORMULAIRE - SEMESTRES 7 ET 8

R. MOREAU

- Quatrième année -

Reproduction interdite sans autorisation de l'auteur et de l'école

www.polytech.univ-nantes.fr

DUALITE TEMPS FREQUENCE – RAPPELS

FORMULAIRE

Décomposition en série de FOURIER :

L'harmonique d'ordre 1 est appelé « fondamental ».

Valeur efficace d'un signal périodique :

$$f_{eff}^2(t) = \frac{1}{T} \int_t^{t+T} f^2(\tau) d\tau = A_0^2 + \frac{1}{2} \sum_{n=1}^{\infty} C_n^2$$

Taux de distorsion harmonique :

$$THD = \frac{\sqrt{C_2^2 + C_3^2 + \dots + C_n^2}}{C_1}$$

<u>Transformation de FOURIER :</u>

	Domaine temporel —	Domaine fréquentiel
	x(t)	$TF[x(t)] = \int_{-\infty}^{+\infty} x(t) \cdot \exp(-2\pi jft) dt$
	$\overline{TF}[X(f)] = \int_{-\infty}^{+\infty} X(f) \cdot \exp(+2\pi jft) df$	X(f)
Translation temporelle	$x(t-t_0)$	$X(f).\exp(-2\pi jft_0)$
Translation fréquentielle	$x(t).\exp(+2\pi . j f_0 t)$	$X(f-f_0)$
Multiplication (×)	$x(t)\times y(t)$	$X(f)*Y(f) = \int_{-\infty}^{+\infty} X(v).Y(f-v)dv$
Convolution (*)	$x(t)*y(t) = \int_{-\infty}^{+\infty} x(\tau) \cdot y(t-\tau) d\tau$	$X(f) \times Y(f)$
Dérivée	$\frac{d^n x(t)}{dt^n}$	$(2\pi i f)^n X(f)$
Fenêtre rectangle Largeur de base T	$rect(t/T)=rect_T(t)$	$T.\operatorname{sinc}(\pi T)$
Fenêtre triangle Largeur de base 2T	$tri(t/T)=tri_T(t)$	$T.\mathrm{sinc}^2(\pi fT)$
Sinus cardinal	$\operatorname{sinc}(\pi Ft)$	$T.\operatorname{Rect}_F(f)$
Pic de Dirac	$\delta(t)$	1
Constante	1 ou K=cste	$\delta(f)$ ou $K.\delta(f)$
Peigne de Dirac	$\delta_{T_e}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - n.T_e)$	$\delta_{F_e}(f) = \frac{1}{T_e} \sum_{n=-\infty}^{+\infty} \delta(f - nF_e)$
Cosinus périodique	$\cos(2\pi f_0 t)$	$\frac{1}{2} \left[\delta (f + f_0) + \delta (f - f_0) \right]$
Sinus périodique	$\sin(2\pi f_0 t)$	$\frac{j}{2} \left[\delta (f + f_0) - \delta (f - f_0) \right]$
Exponentielle	$\exp(2\pi i f_0 t)$	$\delta (f-f_0)$
Impulsion cosinus (T ₀ <t)< td=""><td>$\cos(2\pi f_0 t) \times rect_T(t)$</td><td>$\frac{T}{2}\left[\operatorname{sinc}(\pi(f+f_0)T)+\operatorname{sinc}(\pi(f-f_0)T)\right]$</td></t)<>	$\cos(2\pi f_0 t) \times rect_T(t)$	$\frac{T}{2}\left[\operatorname{sinc}(\pi(f+f_0)T)+\operatorname{sinc}(\pi(f-f_0)T)\right]$
Impulsion rectangle périodique (T <t<sub>e)</t<sub>	$A.rect_T(t)*\delta_{_{T_e}}(t)$	$A.\frac{T}{T_e}\operatorname{sinc}(\pi f T) \times \delta_{F_e}(f)$

Fonctions trigonométriques, développements limités et primitives :

$\sin(a).\sin(b) = \frac{1}{2} \left[\cos(a-b) - \cos(a+b)\right]$	$\sin(a) + \sin(b) = 2\sin\left[\frac{(a+b)}{2}\right] \cos\left[\frac{(a-b)}{2}\right]$
$\cos(a).\cos(b) = \frac{1}{2} \left[\cos(a-b) + \cos(a+b)\right]$	$\sin(a) - \sin(b) = 2 \cdot \cos\left[\frac{(a+b)}{2}\right] \sin\left[\frac{(a-b)}{2}\right]$
$\sin(a).\cos(b) = \frac{1}{2} \left[\sin(a+b) + \sin(a-b) \right]$	
$\cos(a).\sin(b) = \frac{1}{2} \left[\sin(a+b) - \sin(a-b) \right]$	$\cos(a) + \cos(b) = 2 \cdot \cos\left[\frac{(a+b)}{2}\right] \cos\left[\frac{(a-b)}{2}\right]$
	$\cos(a) - \cos(b) = -2.\sin\left[\frac{(a+b)}{2}\right] \sin\left[\frac{(a-b)}{2}\right]$
$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$ $\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$	$\frac{1}{\cos^2(a)} = 1 + \tan^2(a)$
$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$	$\frac{1}{\sin^2(a)} = 1 + \cot^2(a)$
$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$ $\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$	$\sin(2a) = \frac{2\tan(a)}{1+\tan^2(a)}$
$1-\tan(a)\tan(b)$ $\tan(a)-\tan(b)$	$1+\tan^2(a)$ $1-\tan^2(a)$
$\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$	$\cos(2a) = \frac{1 - \tan^2(a)}{1 + \tan^2(a)}$
	$\tan(2a) = \frac{2\tan(a)}{1-\tan^2(a)}$
$2.\sin^2(a) = (1-\cos(2a))$	Formule de MOIVRE :
$2.\cos^{2}(a) = (1+\cos(2a))$ $\cos^{2}(a) + \sin^{2}(a) = 1$	$\left[\rho(\cos(\varphi) + j.\sin(\varphi))\right]^n = \rho^n \left[\cos(n\varphi) + j.\sin(n\varphi)\right]$
	exemple: $\frac{\sin(3a)=3.\sin(a)-4.\sin^3(a)}{\cos(3a)=4.\cos^3(a)-3.\cos(a)}$
r ³ r ⁵ r ⁷	
$\sin(x) = x - \frac{x}{3!} + \frac{x}{5!} - \frac{x}{7!} + \dots$	$sh(x)=x+\frac{x}{3!}+\frac{x}{5!}+\frac{x}{7!}+\dots$
$\cos(x)=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\dots$	$ch(x)=1+\frac{x^2}{2!}+\frac{x^4}{4!}+\frac{x^6}{6!}+\dots$
$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$ $\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$ $\tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \dots$	$sh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$ $ch(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$ $th(x) = x - \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \dots$
3 15 315	3 15 315
$\exp(x)=1+x+\frac{x^2}{2!}+\frac{x^3}{2!}+\frac{x^4}{4!}+\frac{x^5}{5!}+\dots$	$(1\pm x)^{\alpha} = 1\pm \alpha \cdot x + \frac{\alpha(\alpha-1)}{2!} \cdot x^2 \pm \frac{\alpha(\alpha-1)(\alpha-2)}{3!} \cdot x^3 + \dots$
$\exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \dots$ $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$	$(1\pm x)^{\alpha} = 1\pm \alpha.x + \frac{\alpha(\alpha-1)}{2!}.x^{2} \pm \frac{\alpha(\alpha-1)(\alpha-2)}{3!}.x^{3} +$ $(1\pm x)^{-\alpha} = 1\mp \alpha.x + \frac{\alpha(\alpha+1)}{2!}.x^{2} \mp \frac{\alpha(\alpha+1)(\alpha+2)}{3!}.x^{3} +$
2 3 4	$m>0$ et $\alpha>0$
$ch(x) = \frac{\exp(x) + \exp(-x)}{2}$	$\arg ch(x) = \ln\left(x + \sqrt{x^2 - 1}\right) \text{ pour } x > 1$
$sh(x) = \frac{\exp(x) - \exp(-x)}{2}$	$\arg sh(x) = \ln(x + \sqrt{x^2 + 1}) \text{ pour } x \in \Re$
$th(x) = \frac{sh(x)}{ch(x)}$	$\arg th(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) \text{ pour } x < 1$
primitive de $\left(\frac{h'(x)}{h(x)}\right)$: $Ln(h(x))$	primitive de $\left(\frac{1}{\sin(x)}\right)$: $Ln \left(\tan\left(\frac{x}{2}\right)\right)$
primitive de $(\sin(x))$: $-\cos(x)$	primitive de $\left(\frac{1}{\sin^2(x)}\right)$: $-\cot an(x)$
L	

Oscillateurs:

Critère de BARKHAUSEN : A.B=1, A et B complexes

Fréquence d'oscillation circuit LC : $f_{osc} = \frac{1}{2\pi\sqrt{LC}}$

Modulations:

(Pour des signaux sinusoïdaux $s_m(t)$ et $s_C(t)$ de fréquences respectives f_m et f_c)

Modulation d'amplitude avec porteuse : $s(t) = A_C (1 + k A_m \cos(2\pi f_m t)) \cdot \cos(2\pi f_C t)$

Détection d'enveloppe avec un premier ordre RC : $\frac{2\pi m f_m}{\sqrt{1-m^2}} < \frac{1}{RC} << f_C$

Rapport signal à bruit AM : $SNR = \frac{m^2}{2 + m^2} \frac{Si}{\eta \cdot f_{MAX}}$ avec $S_i = \frac{A_C^2}{2} \left[1 + \frac{m^2}{2} \right]$ et $\eta = \text{DSP}$ du bruit

Modulation de phase : $s(t)=A_{C}.\cos(\omega_{C}t+k'.s_{m}(t))$

Modulation de fréquence : $s(t) = A_C \cdot \cos\left(\omega_C t + k'' \int s_m(t) dt\right)$ ou $s(t) = A_C \cdot \cos(\omega_C t + \beta \sin(\omega_m t))$

Rapport signal à bruit FM : $SNR = \frac{3}{2} \frac{A_C^2}{2} \frac{(\Delta f)^2}{\eta_i f_{MAX}^3}$ avec Δf déviation max de fréquence

Bruit:

Valeurs efficaces des courants à vide : $\sigma_{iTHo}^2 = \frac{4.k.T.B}{R}$, $\sigma_{iGo}^2 = 2.e.I_0.B$

Facteur de bruit d'un quadripôle : $Fb = Fb_1 + \frac{Fb_2 - 1}{G_1} + \frac{Fb_3 - 1}{G_1G_2} + \dots + \frac{Fb_k - 1}{\prod\limits_{i=1}^{k-1}G_i}$

Divers:

$$\overline{V(t)=V_{\infty}}-(V_{\infty}-V_{0}).\exp\left(-\frac{t}{\tau}\right)$$

u=R.i (u : tension, R : résistance, i : courant – on ne sait jamais !!!)

$$i = C \frac{du(t)}{dt}, \ u = L \frac{di(t)}{dt}$$
si $\tau \frac{dx(t)}{dt} + x(t) = 0$ alors, $x(t) = k \cdot \exp\left(-\frac{t}{\tau}\right)$

$$\sin(x) = \frac{\exp(jx) - \exp(-jx)}{2i} \text{ et } \cos(x) = \frac{\exp(jx) + \exp(-jx)}{2}$$

$$\exp(jx) = \cos(x) + j \cdot \sin(x)$$

$$\ln(a.b) = \ln(a) + \ln(b)$$

$$\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$$

$$\ln\left(\sqrt[n]{a}\right) = \frac{1}{n} \ln(a)$$

 $\exp(a+b)=\exp(a).\exp(b)$

Formulaire filtres

Type de filtre	Sélectivité <i>k</i> <1	Fréquence de référence	Largeur de bande relative Δx
Filtre passe-bas	$\frac{f_P}{f_A}$	f_P	Totalive Ziv
Filtre passe-haut	$rac{f_A}{f_P}$	$f_{_{P}}$	
Filtre passe-bande	$\frac{f_{P+} - f_{P-}}{f_{A+} - f_{A-}}$	f_0	$\frac{f_{P+} - f_{P-}}{f_0}$
Filtre coupe-bande	$\frac{f_{A+} - f_{A-}}{f_{P+} - f_{P-}}$	f_0	$\frac{f_{A+} - f_{A-}}{f_0}$

Filtre passe-bas	Filtre passe-haut	Filtre passe-bande de	Filtre coupe-bande de
Tittle passe-bas	Tittle passe-flaut	largeur ∆x	largeur ∆x
<u>s</u>	$\underline{s} \rightarrow \frac{1}{\underline{s}}$	$\underline{s} \to \frac{1}{\Delta x} \left(\underline{s} + \frac{1}{\underline{s}} \right)$	$\underline{s} \to \frac{\Delta x}{\left(\underline{s} + \frac{1}{s}\right)}$
	6.17		<u>s</u>)
L_n	$C=1/L_n$	$L_n/\Delta x$ (s) $\Delta x/L_n$	$\begin{array}{c cccc} L_n \Delta x & (/\!/) & 1/\Delta x L_n \\ \hline & & & \end{array}$
	⊣⊢	-M-H	£
		••	
C_n	$L=1/C_n$	$C_n/\Delta x$ (//) $\Delta x/C_n$	$C_n \Delta x$ (s) $1/\Delta x C_n$
⊢			المسلا
"		│ │	
n	D.		D.
R_n	R_n	R_n	R_n

$$|H(jx)|^2 = \frac{K^2}{A(x)} = \frac{K^2}{1 + \varepsilon^2 x^{2n}} ou = \frac{K^2}{1 + \varepsilon^2 T_n^2(x)} ou = \frac{K^2}{1 + \varepsilon^2 L_n(x^2)}$$

Butterworth Tchébyscheff Legendre

notations:
$$x = |\underline{s}| = \left| \frac{p}{\omega_0} \right| = \left| \frac{j\omega}{\omega_0} \right| = \frac{\omega}{\omega_0}$$

 1^{er} ordre : $T_{PBas}(\underline{s}) = \frac{K}{1+\underline{s}}$ ou $T_{PH}(\underline{s}) = \frac{K.\underline{s}}{1+\underline{s}}$

$$2^{\text{ème}} \text{ ordre}: T_{PBas}(\underline{s}) = \frac{K}{1 + 2\zeta \underline{s} + \underline{s}^2} \text{ ou } T_{PH}(\underline{s}) = \frac{K\underline{s}^2}{1 + 2\zeta \underline{s} + \underline{s}^2} \text{ ou } T_{PBande}(\underline{s}) = \frac{K.2\zeta \underline{s}}{1 + 2\zeta \underline{s} + \underline{s}^2}$$