CS 760: Machine Learning

Spring 2024

Homework 3: Logistic Regression

Authors: Jed Pulley

DO NOT POLLUTE! AVOID PRINTING, OR PRINT 2-SIDED MULTIPAGE.

Problem 3.1

- (a) I used good ol' fashioned guess and check. I set the iterations to 3000 and printed out the weights after every 100 iterations. Once the values started to level off, I considered that convergence
- (b) It took me about 3000 iterations to converge.
- (c) I performed min-max normalization to avoid running into a RuntimeWarning (when the exponential got WAY too big), so my results for $\hat{\theta}$ were:

 $\left[-6.75837555, 4.55726066, -14.28891882, -3.05890586, -0.50213527, 7.82165471\right]$

- (d) The maximum log-likelihood of $\hat{\theta}$ is: -470.15901001623024
- (e) From Theorem 6.2 in the Logistic Regression notes, we can see that $\hat{\theta} \xrightarrow{d} \mathcal{N}(\theta^*, I_{\theta^*}^{-1})$ where the Fisher Information is shown as:

$$I_{\theta^*} = \sum_{i=1}^{N} \frac{e^{-\theta^{*T} \mathbf{x}_i}}{(1 + e^{-\theta^{*T} \mathbf{x}_i})^2} \mathbf{x}_i \mathbf{x}_i^\mathsf{T}$$

Problem 3.2

- (a) Borrowing from the Logistic Regression notes again, we can see that the MLE of the log-odds $\hat{\omega} := \hat{\theta}^{\mathsf{T}} \mathsf{x}$ where $\hat{\theta}$ are the true parameters, θ^* .
- (b) Furthermore, the asymptotic distribution of $\hat{\omega}$ is defined as $\hat{\omega} \xrightarrow{d} \mathcal{N}(\theta^{*\mathsf{T}}\mathbf{x}, \mathbf{x}^{\mathsf{T}}I_{\theta^{*}}^{-1}\mathbf{x})$

Problem 3.3

(a) I maximized my feature vector, having my entire family on board in the cheapest class and fare I could find. With that, my feature vector looked like so:

$$[Pclass = 3, male = 0, age = 24, siblings = 7, parents = 2, fare = 8]$$

When I run this through my model, unfortunately I do not survive. As I tested other values, I found that affluent women were far more likely to survive.

- (b) Given $\tau = \Phi_{\mathcal{N}}^{-1}(\frac{\alpha}{2}|0, \mathbf{x}^{\mathsf{T}}I_{\theta^*}^{-1}\mathbf{x})$
- (c)

Problem 3.4

- (a)
- (b)
- (c)