[3]

Code No: 131AB

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year I Semester Examinations, May/June - 2017 MATHEMATICS-II

(Common to CE, ME, MCT, MMT, MIE, CEE, MSNT)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

Part- A (25 Marks)

1.a) Find
$$\lim_{t \to 0} f(t)$$
, if $L(f(t)) = \frac{s}{s^2 + w^2}$. [2]

b) Find the inverse Laplace Transform of
$$\frac{s+5}{(s+1)(s+3)}$$
. [3]

c) Find the value of
$$\int_0^\infty \frac{dx}{1+x^4}$$
. [2]

d) Evaluate
$$\int_0^1 x^{11} (1-x)^{16} dx$$
. [3]

e) Find the area enclosed between the parabola
$$y = x^2$$
 and the line $y = x$. [2]

f) Evaluate
$$\int_0^{\frac{\pi}{4}} \cos^2 x \, dx.$$
 [3]

g) Find the magnitude of the gradient of the function
$$f(x, y, z) = xyz^3$$
 at $(1, 0, 2)$. [2]

h) The velocity vector in 2-dimensional field is
$$\overline{V} = 2xy\overline{i} + (2y^2 - x^2)\overline{j}$$
. Find the *curl* \overline{V} .

i) Find the Curl of the gradient of the scalar field $V = 2x^2y + 3y^2z + 4z^2x$. [2]

j) Find the divergence of the vector field \overline{A} at (1, -1, 1) $\overline{A} = x^2 z \overline{i} + xy \overline{j} - yz^2 \overline{k}$. [3]

Part-B (50 Marks)

2.a) State and prove the second shifting theorem of Laplace Transform.

b) Find
$$L(F(t))$$
 if $F(t) = \begin{cases} \sin\left(t - \frac{\pi}{3}\right), & t > \frac{\pi}{3} \\ 0, & t < \frac{\pi}{3} \end{cases}$ [5+5]

www.ManaResults.co.in

- 3.a) Find the Laplace Transform of $F(t) = a + bt + \frac{c}{\sqrt{t}}$.
 - b) Solve using Laplace Transform $\frac{d^2y}{dt^2} + \frac{dy}{dt} 2y = 3\cos 3t 11\sin 3t, \quad y(0) = 0, \quad y'(0) = 16.$
- 4.a) Show that $\int_0^{\frac{\pi}{2}} \sqrt{\tan \theta} \ d\theta = \int_0^{\frac{\pi}{2}} \sqrt{\cot \theta} \ d\theta = \frac{\pi}{\sqrt{2}}.$
 - b) Evaluate $\frac{\beta(m+1,n)}{\beta(m,n)}$. [5+5]

OR

- 5. Show that $\Gamma m \Gamma\left(m + \frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2m-1}} \Gamma\left(2m\right), m > 0.$ [10]
- 6. Find the mass, center of gravity and moment of inertia relative to the x-axis, y-axis and origin of a rectangle $0 \le x \le 4$, $0 \le y \le 2$ having the mass density function f(x, y) = xy.

OR

- 7. Change the order of integration in $\int_0^1 \int_{x^2}^{2-x} xy \, dy \, dx$ and integrate it. [10]
- 8.a) Show that $\operatorname{div}(r^n r) = (n+3)r^{-n}$.
 - b) If $u = \frac{1}{r}$, find grad(div u). [5+5]

ΛR

- 9.a) Show that $div(\overline{A} \times \overline{B}) = \overline{B}.curl\overline{A} \overline{A}.curl\overline{B}$.
 - b) Find the gradient of the Scalar function $f(x, y, z) = x^2y^2 + xy^2 z^2$ at (3, 1, 1). [5+5]
- 10. Verify the Gauss's divergence theorem for $\overline{F} = (x^2 yz)\overline{i} + (y^2 zx)\overline{j} + (z^2 xy)\overline{k}$ over the rectangular parallelepiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$. [10]

OR

11. Evaluate $\oint_c x^2 dx + 2y dy - dz$ by Stoke's theorem where C is the curve $x^2 + y^2 = 4$, z = 2.

---00000---