PCE-Bayesian Inference-Excavation deflection

1 - INITIALIZE UQLAB

2 - RETRIEVE DATA SETS

X = input elastic modulus E and loading position δ to begin PCE

```
X = xlsread("excavation_data",2);
Y = xlsread("excavation_data.xlsx",3);
```

3 - INPUT MODEL/PRIOR DISTRIBUTION OF THE MODEL PARAMETERS

PCE requires a choice of polynomial basis, a probabilistic input model needs to be defined. Specify the marginals of the probabilistic input model:

```
%Young's modulus
InputOpt.Marginals(1).Name = 'Elastic modulus';
InputOpt.Marginals(1).Type = 'Gaussian';
InputOpt.Marginals(1).Moments = [210000000,30000000];

%loading position
InputOpt.Marginals(2).Name = 'Loading position';
InputOpt.Marginals(2).Type = 'Gaussian';
InputOpt.Marginals(2).Moments = [0,1];

%Create an INPUT object based on the specified marginals:
myInput = uq_createInput(InputOpt);
```

4 - SURROGATE MODEL/POLYNOMIAL CHAOS EXPANSION (PCE) METAMODEL

Select PCE as the metamodeling tool:

```
MetaOpts.Type = 'Metamodel';
MetaOpts.MetaType = 'PCE';
MetaOpts.Method = 'LARS';
MetaOpts.TruncOptions.qNorm = 0.75;
```

Loop to the surrogate model; Use FEA data

```
MetaOpts.ExpDesign.X = X;
MetaOpts.ExpDesign.Y = Y;
```

Set the maximum polynomial degree to 5:

```
MetaOpts.Degree = 2:10;
```

Create the metamodel object and add it to UQLab:

```
mySurrogateModel = uq_createModel(MetaOpts);
     Calculating the PCE coefficients by regression.
警告: Warning: numerical instability!! Gamma for LAR iteration 11 was set to 0 to prevent crashes.
The estimation of PCE coefficients converged at polynomial degree 5 and qNorm 0.75 for output variable 1
Final LOO error estimate: 3.042282e-03
                   Calculation finished!
     Calculating the PCE coefficients by regression.
警告: Warning: numerical instability!! Gamma for LAR iteration 10 was set to 0 to prevent crashes.
警告: Warning: numerical instability!! Gamma for LAR iteration 12 was set to 0 to prevent crashes.
警告: Warning: numerical instability!! Gamma for LAR iteration 13 was set to 0 to prevent crashes.
警告: Warning: numerical instability!! Gamma for LAR iteration 13 was set to 0 to prevent crashes.
The estimation of PCE coefficients converged at polynomial degree 7 and qNorm 0.75 for output variable 2
Final LOO error estimate: 1.093585e-03
                   Calculation finished!
     Calculating the PCE coefficients by regression.
警告: Warning: numerical instability!! Gamma for LAR iteration 10 was set to 0 to prevent crashes.
The estimation of PCE coefficients converged at polynomial degree 5 and qNorm 0.75 for output variable 3
Final LOO error estimate: 5.376560e-04
                   Calculation finished!
_ _ _
--- Calculating the PCE coefficients by regression.
警告: Warning: numerical instability!! Gamma for LAR iteration 10 was set to 0 to prevent crashes.
警告: Warning: numerical instability!! Gamma for LAR iteration 11 was set to 0 to prevent crashes.
警告: Warning: numerical instability!! Gamma for LAR iteration 12 was set to 0 to prevent crashes.
警告: Warning: numerical instability!! Gamma for LAR iteration 13 was set to 0 to prevent crashes.
The estimation of PCE coefficients converged at polynomial degree 6 and qNorm 0.75 for output variable 4
Final LOO error estimate: 1.352357e-03
                   Calculation finished!
     Calculating the PCE coefficients by regression.
警告: Warning: numerical instability!! Gamma for LAR iteration 11 was set to 0 to prevent crashes.
警告: Warning: numerical instability!! Gamma for LAR iteration 12 was set to 0 to prevent crashes.
警告: Warning: numerical instability!! Gamma for LAR iteration 13 was set to 0 to prevent crashes.
警告: Warning: numerical instability!! Gamma for LAR iteration 13 was set to 0 to prevent crashes.
The estimation of PCE coefficients converged at polynomial degree 4 and qNorm 0.75 for output variable 5
Final LOO error estimate: 1.221514e-03
                   Calculation finished!
     Calculating the PCE coefficients by regression.
警告: Warning: numerical instability!! Gamma for LAR iteration 10 was set to 0 to prevent crashes.
警告: Warning: numerical instability!! Gamma for LAR iteration 13 was set to 0 to prevent crashes.
The estimation of PCE coefficients converged at polynomial degree 5 and qNorm 0.75 for output variable 6
Final LOO error estimate: 2.801315e-03
```

```
Calculation finished!
     Calculating the PCE coefficients by regression. ---
警告: Warning: numerical instability!! Gamma for LAR iteration 13 was set to 0 to prevent crashes.
The estimation of PCE coefficients converged at polynomial degree 5 and qNorm 0.75 for output variable 7
Final LOO error estimate: 5.925357e-03
                   Calculation finished!
     Calculating the PCE coefficients by regression.
The estimation of PCE coefficients converged at polynomial degree 4 and qNorm 0.75 for output variable 8
Final LOO error estimate: 2.236863e-03
                   Calculation finished!
     Calculating the PCE coefficients by regression.
                                                    ---
The estimation of PCE coefficients converged at polynomial degree 4 and qNorm 0.75 for output variable 9
Final LOO error estimate: 2.066843e-03
                   Calculation finished!
%Plot the ture vs. predicted values
YPCE = uq_evalModel(mySurrogateModel,X);
uq_plot(Y,YPCE,'+');
hold on;
uq_plot([min(Y) max(Y)], [min(Y) max(Y)], 'k');
axis equal;
axis([min(Y(:)) max(Y(:)) min(Y(:)) max(Y(:))]);
xlabel('True');ylabel('Predicted');
hold off;
```


5 - MEASUREMENT DATA

myData.y = xlsread("excavation_data.xlsx",4)';

```
myData.Name = 'middleDeflection';
position = 1:9

position = 1×9
    1     2     3     4     5     6     7     8     9

for i = 1:size(X,1)

    p = plot(position',Y(i,:)');
    hold on

end
axis equal;
xlabel('Distance (m)','FontSize',20);ylabel('Deflection(m)',"FontSize",20);
q = scatter(position,myData.y,200,'r','o');
```

```
legend(q(1), 'measurement', 'FontSize', 20);
hold off;
```


6 - BAYESIAN ANALYSIS

```
%The options of the Bayesian inversion analysis are specified with the following
structure:BayesOpts.Type = 'Inversion';
BayesOpts.Type = 'Inversion';
BayesOpts.Data = myData;

%Run the Bayesian inversion analysis:
myBayesianAnalysis = uq_createAnalysis(BayesOpts);
```

The discrepancy was not specified, using unknown i.i.d. Gaussian discrepancy...
The solver was not specified, using MCMC
The sampler was not specified, using affine invariant ensemble sampler Starting AIES...

|########### 100.00%

```
%print and display
uq_postProcessInversion(myBayesianAnalysis,'priorPredictive',1000);
uq_print(myBayesianAnalysis);
```

```
%-----%
  Number of calibrated model parameters:
                                    2
  Number of non-calibrated model parameters:
  Number of calibrated discrepancy parameters:
%----- Data and Discrepancy
% Data-/Discrepancy group 1:
  Number of independent observations:
  Discrepancy:
    Type:
                                          Gaussian
    Discrepancy family:
                                          Row
    Discrepancy parameters known:
                                          No
  Associated outputs:
    Model 1:
       Output dimensions:
                                          1
                                          to
%----- Solver
                                          MCMC
  Solution method:
  Algorithm:
                                          AIES
  Duration (HH:MM:SS):
                                          00:01:08
  Number of sample points:
                                          3.00e+04
```

%----- Posterior Marginals

Elastic modulus 2.3e+08 1.6e+07 (2e+08 - 2.7e+08) Model Loading position -0.19 1.1 (-2.2 - 1.6) Model Sigma2 0.14 0.095 (0.0076 - 0.3) Discrepancy Sigma2 0.52 0.36 (0.03 - 1.1) Discrepancy Sigma2 1 0.69 (0.052 - 2.2) Discrepancy Sigma2 1.3 0.9 (0.091 - 3) Discrepancy Sigma2 1.4 1 (0.062 - 3.4) Discrepancy		Parameter	Mean	Std	(0.025-0.97) Quant.	Туре	
Sigma2	- 	Loading position Sigma2	-0.19 0.14 0.52 1 1.3 1.4 1.1 0.48	1.1 0.095 0.36 0.69 0.9 1 0.93 0.68 0.33	(-2.2 - 1.6) (0.0076 - 0.3) (0.03 - 1.1) (0.052 - 2.2) (0.091 - 3) (0.062 - 3.4) (0.067 - 3.1) (0.05 - 2.2) (0.018 - 1.1)	Model Discrepancy	-

%----- Point estimate

Parameter	Mean	Parameter Type
Elastic modulus Loading position	2.3e+08 -0.19	Model Model
Sigma2 Sigma2	0.14	Discrepancy Discrepancy
Sigma2	1 1	Discrepancy
Sigma2	1.3	Discrepancy

Sigma2	1.4	Discrepancy	
Sigma2	1.4	Discrepancy	
Sigma2	1.1	Discrepancy	
Sigma2	0.48	Discrepancy	
Sigma2	0.13	Discrepancy	

%----- Correlation matrix (model parameters)

	 	Elastic modulus	Loading position	
Elastic modulus Loading position			0.12 1	

%----- Correlation matrix, 6 most important (discrepancy parameters)

		Sigma2	Sigma2	Sigma2	Sigma2	Sigma2	Sigma2
Sigma2 Sigma2 Sigma2 Sigma2 Sigma2		1 -0.016 0.1 -0.15 0.041 -0.23	-0.016 1 -0.25 0.065 -0.18 -0.02	0.1 -0.25 1 -0.079 -0.049 0.0074	-0.15 0.065 -0.079 1 -0.22 -0.15	0.041 -0.18 -0.049 -0.22 1 0.078	-0.23 -0.02 0.0074 -0.15 0.078 1

uq_display(myBayesianAnalysis);

Prior Sample

Posterior Sample

