Email Spam Classification

Spam is becoming even more prevalent as automated bots are becoming increasingly advanced, mimicking human language and behavior in even more convincing ways. Classification problems present a challenge in minimizing:

False Positives: a regular email classified as spam

False Negatives: a spam email classified as a regular email

In classification tasks, the question of tuning a model as to limit one or the other presents a tough choice. Additionally, one 'class' can be a minority of the dataset, but be very important to classify 100% correctly. For example, the classification of a life-threatening, but rare condition, those with the disease would be a minority of the data, but the cost of classifying those with the condition as healthy would be catastrophic. On the other hand, classifying those without the disease as having it, would just mean a follow-up test. The priority for such a project would be greatly minimizing **false negatives**, a diseased subject classified as healthy.

In 2023, studies have shown **46%** of emails are spam, which is relatively balanced. Additionally, the cost of a regular email being caught as spam is a lot higher than a spam email being allowed into the inbox. For spam emails, I chose to **minimize false positives**..

Generalized Training: Spam Classification

The words (that indicate spam) in this dataset will likely be different from other datasets. The goal is to evaluate which algorithms, scaling, split_method, and other methods for their strengths in training on labeled spam datasets.

Which training methodology will be best suited to train a...

- 1) 'Strict' Spam filter: Never Misses a Spam Email
- 'Relaxed' Spam filter: Never Misclassifies a Real Email as Spam
- 3) 'Balanced' Spam filter: Least Number of Errors period

EDA

Word Counts: Real Emails vs. Spam Emails

The distribution of word counts are very similar, when taking into account the class imbalance through normalization.

Spam contains a higher number of emails above ~6,000 words.

count 1500.00 mean 1458.79 std 2283.84 min 8.00 25% 316.00 50% 632.00 75% 1506.00

29178.00

SPAM EMAILS

REG EIVIAILS				
count	3672.00			
mean	1045.39			
std	1478.04			
min	21.00			
25%	244.00			
50%	551.50			
75%	1293.75			
max	27319.00			

DEC ENAMIC

Number of Unique Words

The distribution of 'word count' by email is fairly similar, with the number of emails.

REG	EMAILS	SPAM	EMAILS
count	3672.00	count	1500.00
mean	161.90	mean	189.83
std	100.07	std	136.47
min	18.00	min	9.00
25%	87.00	25%	103.00
50%	142.00	50%	155.00
75%	214.00	75%	234.00
max	839.00	max	774.00

Different distributions

Regular emails skewed towards 25-50 unique words.

Spam emails skewed towards 150-175 unique words.

Spam emails have a higher percentage of emails above 400 unique words.

25 Least Correlated & 25 Most Correlated Words with Spam

Logistic Regression

Point BiSerial

Less Spam		Spam More Spam		Less Spam More	More Spam	
	Coefficient Coefficient		Coefficient	Correlation	Correlation	
Feature		Feature		Feature Feature	Á	
enron	-2.076216	one	1.206206	thanks -0.271433 more	0.258152	
hpl	-1.256958	z	1.083168	hpl -0.266518 out	0.228187	
hp	-1.007039	mo	1.017817	hanks -0.266070 able	0.222219	
deal	-0.907440	rm	0.963883	thank -0.262384 best	0.221703	
tax	-0.873753	men	0.939673	attached -0.236558 ui	0.220253	
attached	-0.800511	ali	0.838998	daren -0.236180 sex	0.220092	
have	-0.731578	sa	0.837437	forwarded -0.230765 sec	0.217402	
nom	-0.723420	ur	0.804109	subject -0.227754 money	0.217215	
hou	-0.720882	ca	0.800978	hp -0.225846 soft	0.213382	
if	-0.719598	only	0.761055	aren -0.206063	0.212413	
aren	-0.674872	ad	0.737519	nom -0.202600 mo	0.210056	
meter	-0.656242		0.731307	farmer -0.194693		
tu	-0.647107	http	0.689261	questions -0.193163 prescription		
da	-0.630307	II		deal -0.190407		
xis	-0.603930	ve	0.660917	than -0.188514		
met	-0.595181	gr	0.658574	volume -0.188005		
please	-0.593304	money	0.647384	enron -0.186740		
755T-055W	-0.593304	gra	0.636383	question -0.185967		
daren		of	0.630562	xis -0.179113		
mb	-0.586000	hi	0.622273	meter -0.166499		
list	-0.583050	our	0.611170	please -0.162304		
att	-0.575460	here	0.585819	offer		
gas	-0.557245	pa	0.585172	pm -0.161234		
question	-0.555821	dr	0.577433	mmhtu -0.157753		
file	-0.546511	no	0.577027	gas -0.156652	0.186026	
thank	-0.543298	her	0.563221	9		

Class Weights

Because of 2023 studies showing 46% spam in reality and taking into account the 71% / 29% class imbalance, class weights can be set at an inverse proportionality to mimic this split that uses roughly **double** class weight for spam. However, with spam classification we want to **increase the cost of a false positive**, in order to limit a regular email being marked as spam. Therefore, the class weights I found optimal after testing was **28% more weight for spam.** (class weight = {0: 1, 1: 1.28}) 'mimics' a 63% / 37% split for real / spam email representation.

Modeling

- Scalars: MinMax, MaxAbs, Standard
- Split Methods: TrainTestSplit, StratifiedKFold, StratifiedShuffleSplit
- Models: RandomForest, CatBoost, LGBM, LogisticRegression
- Sampling: SMOTE vs. 'Un-SMOTE'
- Class Weights: Spam Weighted 128% vs. Unweighted

Results: 3 Optimized Model Classes

#1 'Relaxed' Spam Filter: No real emails in spam

- 100% real: Logistic Regression, SSS, MinMax/MaxAbs, SMOTE
 - 74% Threshold: <u>13.33% of spam allowed</u>
 - Alt: CatBoost, SKF, unSMOTE, unweighted
 - 82% Threshold: 16.33% of spam allowed
- 99.5% real: Logistic Regression, SSS, MinMax/MaxAbs, Un-SMOTE
 - 58.61% Threshold: 8.33% of spam allowed, 0.36% real emails in spam
 - Alt: CatBoost, SKF, SMOTE, Weighted
 - 84% Threshold: 8.7% spam allowed, 0.36% real emails in spam

#2 'Strict' Spam Filter: No spam missed

- 100% spam: RandomForest, TT, MinMax, SMOTE, Unweighted
 - 49% Threshold: 7.82% of real emails marked as spam
 - Alt: CatBoost, TrainTest, Any Scaler, Un-SMOTE, Unweighted
 - 23% Threshold: 11.88% of real emails marked as spam
- 99.5% spam: RandomForest, SSS, MinMax, SMOTE, Unweighted
 - 48% Threshold: 5.67% of real emails marked as spam, 0.33% of spam missed
 - Alt: LGBM, SKF, Any Scaler/Smote/Weights
 - 16% Threshold: 7.72% of real emails marked as spam, 0.33% of spam missed

#3 'Balanced' Filter: Harmonic mean of missed spam and real into spam

- LightGBM, SKF, StandardScaler, SMOTE
 - 57% Threshold: 0.9785 f1-score
 - 2.95% of real emails in spam box, 1.33% of spam emails in inbox
- LGBM, SSS, MinMax/MaxAbs, unSMOTE
 - o 52% Threshold: 0.9735 f1-score
 - 3.39% of real emails in spam box, 2% of spam emails in inbox

ROC AUC

True Positive Rate (Y-axis): TP / TP + FN (Recall)

Measures the Number of True Positives for every False Negative.

'Spam Classification Rate': Number of spam classifications for every actual spam email

False Positive Rate (X-axis): FP / FP + TN

Measures the Number of False Positives for every True Negative.

'Regular Misclassification Rate': Number of regular emails caught as spam for every actual regular email

Top of the graph: the farthest left curve performs with the best precision at 100% recall. LGBM, SKF, Agnostic towards: Scaler, Smote, Weights

Left of the graph: the **highest** curve classifies the highest number of spam (recall) at the moment it makes its first mistake in classifying the first regular email as spam

CatBoost, SKF, Any Scaler, Smote, Weights

'Strict' Spam Filters ('No Spam Allowed')

RandomForest150 MinMax/MaxAbs TrainTest SMOTE Unweighted

Effect of SMOTE:

Increased Precision at 100% Recall, Orange to Red, Green to Blue

Effect of Class Weights:

Decreased Precision at 100% Recall Orange to Green, Red to Blue.

RandomForest150, MaxAbs, Train/Test, SMOTE, unweighted

49% thresh

7.82% of real emails caught as spam

F1: 0.9593

As a 'backup' option, CatBoost may generalize better to new data. However, it performs slightly worse on this dataset:

CatBoost, TrainTest, any scaler, Un-SMOTE, Unweighted

23% thresh

11.88% of real emails caught as spam

f1: 0.9425

(Smote/Weighted option marginally worse)

index RandomForest150_sss_MinMaxScaler_smote_unweighted 0.967638 RandomForest150_sss_MaxAbsScaler_smote_weighted LGBM_skf_MaxAbsScaler_unsmote_unweighted 0.958333 LGBM_skf_MaxAbsScaler_unsmote_weighted 0.958333 LGBM_skf_StandardScaler_unsmote_unweighted 0.958333 LGBM skf StandardScaler unsmote weighted 0.958333 LGBM_skf_MinMax\$caler_unsmote_unweighted 0.958333 LGBM_skf_MinMaxScaler_unsmote_weighted 0.958333 LGBM skf StandardScaler smote unweighted 0.956800 LGBM_skf_StandardScaler_smote_weighted 0.956800 RandomForest150_skf_StandardScaler_smote_weighted 0.953748 CatBoost tt MaxAbsScaler unsmote weighted 0.952998 CatBoost_tt_StandardScaler_unsmote_weighted 0.952998 CatBoost_tt_MinMax\$caler_unsmote_weighted 0.952998 LGBM skf MinMaxScaler smote weighted 0.952229

RF150: Steep drops when increasing threshold to classify all spam as spam (100% recall)

RandomForest150, SSS, MinMax, SMOTE, Unweighted

Threshold: 48%

f1: 0.9676

5.67% of real emails caught as spam

0.33% of spam missed

LGBM, SKF, Agnostic towards SMOTE/Weights/Scaling Except StandardScaler w/ smote

Threshold: 16%

f1: 0.9583

7.72% of real emails caught as spam

0.33% of spam missed

'Relaxed' Spam Filter: Top Recall with 100% Precision

LogisticRegression, SSS, MinMax/MaxAbs, SMOTE

13.33% Spam Allowed into inbox f1: 0.9286

CatBoost, SKF, (any scaler), unsmote, weighted

82.36% threshold No real emails caught as spam 16.33% spam emails into inbox F1: 0.9111

Greater than 99.5% Precision

LogisticRegression, SSS, MinMax/MaxAbs, UnSmote, Unweighted/Weighted

Threshold: 58.61%

0.36% Real emails caught as spam

8.33% spam emails in inbox

f1: 0.9549

CatBoost, SKF, SMOTE, weighted Threshold: 84%

0.36% Real emails caught as spam 8.70% spam emails in inbox

f1: 0.9530

Only loses 0.0034 recall, performs with higher f1 at lower precisions

index	
LogisticRegression_sss_MinMaxScaler_unsmote_weighted	
CatBoost_skf_MinMaxScaler_smote_weighted	0.953043
LogisticRegression_sss_MinMaxScaler_smote_weighted	0.942004
LogisticRegression_sss_StandardScaler_smote_weighted	0.938272
CatBoost_skf_MinMaxScaler_unsmote_weighted	0.936396
CatBoost_skf_MinMaxScaler_smote_unweighted	0.932624
LGBM_skf_MinMaxScaler_unsmote_weighted	0.926916

CatBoost, Smote, Weighted Highest AUC when Precision > 0.975

Balanced Performance

	recall_at_precision_1	precision_at_recall_1	max_f1_score	optimal_threshold
model				
LGBM_skf_StandardScaler_smote_weighted	0.603333	0.842697	0.978512	0.57369
LGBM_skf_StandardScaler_smote_unweighted	0.603333	0.842697	0.978512	0.57369
CatBoost_sss_MinMaxScaler_unsmote_weighted	0.706667	0.777202	0.976589	0.556067
CatBoost_sss_MaxAbsScaler_unsmote_weighted	0.706667	0.777202	0.976589	0.55606
CatBoost_sss_StandardScaler_unsmote_weighted	0.706667	0.777202	0.976589	0.55606
LGBM_skf_MaxAbsScaler_smote_unweighted	0.570000	0.808625	0.975042	0.65521
LGBM_skf_MaxAbsScaler_smote_weighted	0.570000	0.808625	0.975042	0.65521
LGBM_skf_MinMaxScaler_smote_unweighted	0.570000	0.808625	0.975042	0.65521
LGBM_skf_MinMaxScaler_smote_weighted	0.570000	0.808625	0.975042	0.65521
CatBoost_skf_StandardScaler_smote_weighted	0.706667	0.789474	0.974790	0.71849
CatBoost_skf_MinMaxScaler_smote_weighted	0.706667	0.789474	0.974790	0.71849
CatBoost_skf_MaxAbsScaler_smote_weighted	0.706667	0.789474	0.974790	0.71849
LGBM_sss_MinMaxScaler_unsmote_weighted	0.816667	0.699301	0.973510	0.53022
LGBM_sss_MinMaxScaler_unsmote_unweighted	0.816667	0.699301	0.973510	0.53022
LGBM_sss_MaxAbsScaler_unsmote_weighted	0.816667	0.699301	0.973510	0.53022
LGBM_sss_MaxAbsScaler_unsmote_unweighted	0.816667	0.699301	0.973510	0.53022
CatBoost_tt_MinMaxScaler_unsmote_weighted	0.488136	0.870206	0.973064	0.54042
CatBoost_tt_MaxAbsScaler_unsmote_weighted	0.488136	0.870206	0.973064	0.54042
CatBoost_tt_StandardScaler_unsmote_weighted	0.488136	0.870206	0.973064	0.54042
CatBoost_skf_MinMaxScaler_unsmote_weighted	0.836667	0.773196	0.971993	0.42921
CatBoost_skf_StandardScaler_unsmote_weighted	0.836667	0.773196	0.971993	0.42921
CatBoost_skf_MaxAbsScaler_unsmote_weighted	0.836667	0.773196	0.971993	0.42921
$CatBoost_skf_MinMaxScaler_unsmote_unweighted$	0.826667	0.750000	0.971901	0.40010
CatBoost_skf_StandardScaler_unsmote_unweighted	0.826667	0.750000	0.971901	0.40010
CatBoost_skf_MaxAbsScaler_unsmote_unweighted	0.826667	0.750000	0.971901	0.40010

Higher Precision: LGBM, SSS

MinMax/MaxAbs

Either Smote/ Either weights

Despite having lower f1 score by 0.5%, the higher recall with 100% precision: 19.33% of spam allowed at a 95% threshold is more fit for

Setting threshold lower to 52%:

f1: 0.9735

3.39% of real emails classified as spam

2% of spam allowed

Highest f1 score

LGBM, SKF, SMOTE, StandardScaler 57% Threshold: f1: 0.9785 2.95% of real emails in spam box, 1.33% of spam emails in inbox

Feature Importances

CatBoost		LightGBM		
Importance		Importanc		
Feature		Feature	1976	
daren	5.438446	the	55	
hp	4.468740	will	52	
attached	4.239964	daren	38	
subject	3.522506	Z	35	
http	3.079105	day	32	
forwarded	2.452588	deal	32	
nom	2.381251	hp	30	
hanks	2.281593	questions	29	
the	2.183810	th	29	
will	1.878456	forwarded	28	
ali	1.814586	V	27	
gas	1.806800	employee	26	
aren	1.631602	texas	26	
II	1.361174	mo	26	
mo	1.345133	you	26	
texas	1.282203	s	25	
questions	1.281647	attached	25	
deal	1.216775	р	24	
z	1.101859	ali	24	
th	1.069406	money	24	
thanks	1.054868	sitara	23	
your	0.988475	volume	23	
thank	0.957558	r	23	
please	0.952757	ÎÎ	23	
for	0.894902	is	22	