Объединённый институт ядерных исследований Лаборатория физики высоких энергий

Овчаренко Егор Владимирович

Разработка методов моделирования физических установок и сбора данных и их применение для детектора черенковских колец эксперимента CBM

> Специальность 01.04.01 -Приборы и методы экспериментальной физики

Диссертация на соискание учёной степени кандидата физико-матемаческих наук

Научный руководитель:

к.ф.-м.н. С.Г. Белогуров

Дубна - 2017

Введение

1 Результаты

1.1 Построение события

Тот факт, что физическая программа эксперимента СВМ подразумевает исследование очень редких явлений, для которых практически невозможно вырабатывать аппаратный триггер, привёл к решению разработать и использовать бестриггерную систему считывания. В бестриггерной системе считывания каждый канал передней электроники вырабатывает сообщение при преодолении входным аналоговым сигналом установленного порога. Получается, что электроника выдаёт для программного обеспечения непрерывный поток никак не сгруппированных сообщений, содержащих временную отметку. Для того, чтобы выполнять физический анализ, необходимо в этом непрерывном потоке выделять осмысленные группы, которые мы называем событиями. Строго говоря, задача построения событий — это одномерная задача кластеризации на оси времени с последующим отбором кластеров по некоторым критериям.

Задача также усложнена тем фактом, что электроника не может обеспечить непрерывный поток сообщений, упорядоченных по времени регистрации. Происходит группировка сообщений в так называемые DAQ-события, которые необходимы для обеспечения передачи информации, а сообщения внутри DAQ-событий могут быть упорядочны произвольно. Соответственно первый этап построения события — упорядочивание сообщений.

В данных с пучковых тестов 2014 г., для того, чтобы определить, является ли распознанная группа событием, можно использовать сигналы с детекторов пучка — пороговых черенковских счётчиков, годоскопов и др. В лабораторных данных, где выполнялись измерения с лазером, в качестве триггера можно использовать сигнал от генератора, управляющего лазером. В ситуации, когда нет дополнительной информации, как в случае полного детектора RICH в итоговом эксперименте, необходимо принимать решение о том, является распознанная группа событием, или нет, на основе исключительно информации, полученной из этой группы. Распознанный кластер может являться событием, но чаще всего будет состоять из одного сообщения — шумового хита. Следовательно можно использовать кол-во хитов в событии для подавления шумов, что особенно актуально для дететора СВМ RICH, где выполняется реконструкция черенковских колец, требующая некоторого минимального числа хитов в плоскости реконструкции.

(Сначала общая идея, что в любом случае будет некоторое временное окно и все сообщения попадающие в окно формируют событие. Размеры окна — один из параметров построителя событий, которым можно играть с целью повышения эффективности.)

(А здесь можно описать предлагаемый алгоритм)

1.2 LeadingEdgeDiff

Один из этапов обработки данных — построение событий. В данной работе рассматривается два типа событий — сигналы от лазера и сигналы от черенковского кольца. В любом случае, событие — это структура данных, содержащая информацию о хитах, сгруппированных по времени. Каждый хит содержит, как минимум, временную отметку момента прихода переднего фронта сигнала и номер канала, который в случае СВМ RICH указывает номер пикселя фоточувствительной камеры, т.е. говорит о геометрическом положений зарегистрированного фотона.

Данное исследование посвящено, в первую очередь, временным характеристикам системы считывания, поэтому в основном речь пойдёт о временных отметках.

Т.к. событие имеет максимальную ширину, определяемую размерами окна в алгоритме построения событий, распределения могут иметь "обрезанные хвосты", которые, однако, невозможно избежать.

Очевидно, что для каждого события можно построить несколько распределений, которые на большом массиве данных, т.е. на многих событиях, характеризуют систему считывания и могут быть использованы для калибровки электроники с целью повышения временного разрешения системы.

Пусть событие содержит N хитов. Введём внутри события нумерацию хитов от 0 до N. Пусть внутри события хиты упорядочены по времени, т.е. хит с временной отметкой t_0 был зарегистрирован раньше остальных, а хит с временной отметкой t_N — позже всех. Такой порядок может, например, обеспечиваться естественным образом алгоритмом построения событий. Введём в рассмотрение распределение ω разностей временных отметок всех хитов, кроме первого, относительно первого, т.е. распределение $t_j - t_0$, где $j \in [1..N]$. Также введём распределение σ всех пар временных отметок одного события, т.е. $t_j - t_i$, где $i \in [0..N], j \in [0..N], i \neq j$.

В идеальной ситуации, если событие соответствует одной вспышке лазера или одному черенковскому кольцу, и отсутствуют факторы, размывающие время регистрации, все разницы были бы равны нулю. В качестве таких размывающих факторов можно привести, например, следующие: временные характеристики лазера, разброс геометрических путей

черенковских фотонов, разброс времени прохождения электронной лавины в динодной системе ФЭУ, дребезг сигналов в передней электронике. Из-за перечисленных явлений распределение ω имеет следующую форму — (описание). Распределение σ — (описание).

Представляется возможность анализировать различные области фоточувствительной камеры. Интересно группировать хиты в соответствии с тем, какой электроникой они обрабатываются. В данном анализе было введено 4 подмножества: 1 пара каналов, 16 каналов одной платы передней электроники, 64 канала одного МА ФЭУ, 256 каналов 4 МА ФЭУ, образующих площадку 2х2 МА ФЭУ в одном углу камеры. При том, что вся фоточувствительная камера на пучковых тестах имела размер 4х4 МА ФЭУ, рассматривать более 4 МА ФЭУ одновременно не имеет смысла, т.к. в прототипе были установлены различные модели МА ФЭУ, некоторые покрытые сместителем спектра, а некоторые нет.

Отсюда следует, что

1.3 Исследование спектросместителя с помощью флюориметра

Были проведены независимые флюорометрические измерения пара-терфениловой плёнки, нанесённой по той же технологиий (dip-coating), что применяется для напыления сместителя спектра на поверхность МА ФЭУ в СВМ RICH. Измеренный временной профиль приведён на рисунке 1, а результаты фитирования— в таблице 1.

Данный фит неплохо воспроизводится функцией
$$f(t)=10\cdot (A_1\cdot e^{-(t-1)/\tau_1}+A_2\cdot e^{-(t-1)/\tau_2}+A_3\cdot e^{-(t-1)/\tau_3})$$

со значениями амплитуд и времён, приведёнными в таблице 1. Здесь единица в скобке возле переменной t означает сдвиг графика по горизонтали на 1 нс и обусловлена разрешением измерительного прибора.

1.4 Прямые измерения временного профиля спектросместителя

Можно фитировать распределение WLS_on или WLS_off 4-мя компонентами, а можно фитировать их разницу WLS_diff трёмя компонентами. Можно фитировать функцией с зафиксированными временами, чтобы определить амплитуды, а можно фитировать функцией, где параметрами являются и времена и амплитуды.

1.4.1 Прямые фотоны

В результате анализа экспериментальных данных были получены две гистограммы — с и без сместителя спектра. Первый этап — фитирование профиля без сместителя спектра. В результате фитирования одной экспонентой в различных диапазонах и с различными начальными условиями было получено значение временной постоянной 0.65 нс.

1.4.2 Фитирование WLS diff

Заключение

Основные результаты диссертационной работы
Науная новизна результатов, полученных автором
Представление основных положений и результатов
Публикации

Список литературы

[1] bibitem1

Таблица 1: Результаты фитирования флюорометрических измерений сместителя спектра.

τ , HC	амплитуда	амплитуда, нормированная по 2-й компоненте
1.4	1387	5.15613
3.8	269	1.00000
45.0	19	0.07063

Рис. 1:

Рис. 2:

Рис. 3:

fhDiffFirstInTimeOnePMTGood_3

Рис. 4:

Рис. 5: