NASA Technical Memorandum 85878

NASA TM-85878

NASA-TM-85878-VOL-1 19840016259

Acoustic Measurements of a Full-Scale Rotor with Four Tip Shapes Vol. 1. Text, Appendix A and Appendix B

Marianne Mosher

April 1984

LIBRARY COPY

MAY 24 1984

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

DISPLAY 04/2/2

84N24327*# ISSUE 14 PAGE 2221 CATEGORY 71 RPT#:

NASA-TM-85878-VOL-1 A-9602-VOL-1 NAS 1.15:85878-VOL-1 84/04/00 90 PAGES

UNCLASSIFIED DOCUMENT

UTTL: Acoustic measurements of a full-scale rotor with four tip shapes. Volume 1: Text, appendices A and B

AUTH: A/MOSHER, M.

CORP: National Aeronautics and Space Administration. Ames Research Center, Moffett Field, Calif. AVAIL.NTIS SAP: HC A05/MF A01

MAJS: /*ACOUSTIC MEASUREMENT/*BLADE TIPS/*HELICOPTERS/*ROTARY WINGS/*WIND TUNNEL

TESTS

MINS: / AIRFOIL PROFILES/ NOISE SPECTRA/ SOUND PRESSURE/ TABLES (DATA)

ABA: Author

ABS: A full-scale helicopter with four different blade-tip geometries was

tested in the 40- by 80-foot wind tunnel at Ames Research Center.

Performance, loads, and noise were measured. The four tip shapes tested were rectangular, tapered, swept, and swept-tapered. Noise measurements from that test are presented in the form of tables and plots. The noise data include measurements of the sound pressure level in dB, dBA, and

tone-corrected PNdB; for all of the conditions tested. Detailed

measurements, 1/3-octave spectra and time-histories for some selected data are included as well as plots of dBA as function of test condition. Some performance measurements are given to aid interpretation of the noise

ENTER:

Acoustic Measurements of a Full-Scale Rotor with Four Tip Shapes Vol. 1. Text, Appendix A and Appendix B

Marianne Mosher, Ames Research Center, Moffett Field, California

Ames Research Center Moffett Field, California 94035

CONTENTS

Summary	1
Symbols	1
Introduction	3
Description of Model and Test	4
Data Acquisition and Reduction	4
Results	5
Conclusions	6
References	7
Tables	8
Figures	14
Appendix A: Background Wind-tunnel Noise Corrections	18
Appendix B: Tabulated Acoustic Data: All Data Points	32
Appendic C: Tabulated Acoustic Data: Selected Data Points	87
Appendix D: Plots of 1/3-Octave Spectra	158
Appendix E: Time-histories	284
Appendix F: Acoustic Trends as a Function of Rotor-lift Coefficient	358

ACOUSTIC MEASUREMENTS OF A FULL-SCALE ROTOR

WITH FOUR TIP SHAPES

Marianne Mosher

Ames Research Center

SUMMARY

A full-scale helicopter with four different blade-tip geometries was tested in the 40- by 80-Foot Wind Tunnel at Ames Research Center. Performance, loads, and noise were measured. The four tip shapes tested were rectangular, tapered, swept, and swept-tapered. This report presents noise measurements from that test in the form of tables and plots. The noise data include measurements of the sound pressure level in dB, dBA, and tone-corrected PNdB, for all of the conditions tested. Also included are the detailed measurements, 1/3-octave spectra and time-histories for some selected data, and plots of dBA as function of test condition. Some performance measurements are included to aid interpretation of the noise data.

SYMBOLS

A		coefficient	in	backgrou	ınd-no	oise	curve	fit
---	--	-------------	----	----------	--------	------	------------------------	-----

- B coefficient in background-noise curve fit
- c speed of sound, m/sec
- blade chord, m

dB sound pressure level, $20 \log(P_{rms}/P_{ref})$

dBA A-weighted sound pressure level, $20 \log(P_{rms}/P_{ref})$

dBB background sound pressure level, $20 \log (P_{rms} / P_{ref})$

dBC sound pressure level corrected for background noise

 M_{at} advancing-tip Mach number, $(1 + \mu)M_{tip}$

 M_{tip} rotor rotational Mach number, $\Omega R/c$

N number of blades

P rotor power, W

PNdB tone-corrected perceived noise level

 P_{ref} reference pressure (0.00002 N/m²)

P_{rms} root-mean-square sound pressure, N/m²

R rotor radius, m

r distance to microphone from rotor hub, m

rpm rotor rotational speed, rev/min

S reference blade area, NcR, m²

t thickness

V wind-tunnel speed, knots or m/sec

x distance upstream from rotor center, m

y distance left from rotor center looking upstream, m

z distance up from midway between hubs, m

angle of attack of rotor shaft, deg δ tab angle deflection, deg μ rotor advance ratio, $V/\Omega R$ ρ air density, kg/m^2 σ solidity, $S/\pi R^2$ ϕ angle below rotor plane, $tan^{-1}(-z/r)$, deg ψ azimuth angle from downstream, $tan^{-1}(-y/-x)$, deg Ω rotational speed, rad/sec

INTRODUCTION

The outboard section of a helicopter rotor blade has a significant influence on the aerodynamic and noise characteristics of the rotor system. The noise sources are stronger at the tip of a rotor where the Mach number is high. A change in rotor-blade geometry at the tip of a rotor is expected to produce some change in the aerodynamic and noise characteristics of that rotor.

A full-scale S-76 rotor with four sets of interchangeable tips was tested in the Ames 40- by 80-Foot Wind Tunnel during March of 1977. The four tip geometries tested were rectangular, tapered, swept, and swept-tapered. This report presents a brief description of the rotor, the blade-tip geometries, testing, and analysis, and an extensive listing of the noise measurements from that test.

DESCRIPTION OF MODEL AND TEST

The rotor system tested is shown in figure 1 mounted on the rotor-test apparatus in the 40- by 80-Foot Wind Tunnel. Two electric motors in the rotor-test apparatus powered the rotor. Parameters describing the rotor are listed in table 1 and basic blade geometry is listed in table 2. Descriptions of the model and test are given in references 1 to 5. Figure 2 shows the four tip shapes used. For a more detailed description of the blade geometry see reference 5.

DATA ACQUISITION AND REDUCTION

The acoustic data for this test were acquired using seven 1.3-cm condenser microphones equipped with nose cones to reduce wind-induced noise. Five of these microphones were located upstream of the model, and two were located near the The microphone locations are listed in table 3 and shown in figure 3. Signal conditioners were used to control the gain of the acoustic signal and to power the microphones. The acoustic signals were recorded on tape using a 14track frequency-modulated (FM) tape recorder running at 7 1/2 ips. a bandwidth of 5 kHz. All microphones were calibrated once each day using a 124-dB, 250-Hz signal from a pistonphone. At each data point, a 50-sec sample of acoustic data was recorded for later analysis. In order to ensure a maximum signal-to-noise ratio, the gain of the acoustic signal was adjusted in 10-dB intervals. A schematic of the data-acquisition system is shown in figure 4. Details of data acquisition, along with some results from this test, are given in references 6 to 8.

The acoustic data from this test were analyzed with a minicomputer time-series data system. Figure 5 shows a flowchart of the equipment used for data reduction. Data are digitized at a sample rate of 20 kHz while being played back through a low-pass filter with a cutoff frequency of 10 kHz to prevent aliasing. From the digitized data, the minicomputer generated 1/3-octave spectra from 1-Hz spectra in the range of 10 to 200 Hz, and from 10-Hz spectra in the range of 250 Hz to 10 kHz. The minicomputer also computed dB, dBA, and PNdB from the 1/3-octave spectra and the

first 10 blade passage harmonics from the 1-Hz, narrow-band spectra. The computed acoustic data were then transferred into a computer containing the data base with all of the measured test parameters. Background noise corrections, were made as described in appendix A. Details of this 1/3-octave analysis are given in references 8 through 10.

Time-histories of the acoustic pressures were made to examine the waveform. Triggering with a 1/rev signal and averaging reinforced the periodic components of the waveform and reduced the random components. The acoustic signal was sampled at the rate of 5,120 Hz after being low-pass filtered with a cutoff frequency of 2 kHz. Details of this data processing are given in references 9 and 11.

RESULTS

The acoustic data are listed in appendixes B-F in the form of tables and plots. Each appendix displays a different type of data for each of the four tip shapes. Data are ordered in the appendixes according to tip shape, advancing-tip Mach number (rotational-tip Mach number and wind-tunnel speed), tip-path-plane angle, and rotor-lift coefficient. Tables 4 to 8 list where data are in each appendix B through F respectively. These tables appear at the back of this part of the report and are repeated in each appendix.

A brief listing of performance and acoustic data is given in appendix B for all of the data points in the test. Wherever the data are missing or of questionable quality due to the equipment, acoustic data are given the value 0.

Appendix C contains a more extensive table of performance and acoustic data for a smaller number of data points.

Detailed plots are given for some selected data. Noise measurements from a microphone located 3 rotor radii in front of the rotor and a microphone under the rotor are used. Appendix D contains 1/3-octave plots. Each 1/3-octave plot shows three curves: an uncorrected raw data spectrum, a background-noise spectrum, and a data spectrum corrected for the background noise. By displaying both raw data and data corrected for background noise, the extent to which the background noise contaminates

the data can be observed.

Appendix E contains representative pressure time-histories. The time-histories show a raw waveform for each data point and a waveform from 50 synchronous signals for some of the data. Only some averaged data are shown due to data-acquisition or data-reduction problems.

Noise trends with variations in rotor operating condition are shown for a few microphones. The the sound pressure levels measured in dBA are shown as a function of rotor lift coefficient in appendix F.

CONCLUSIONS

A full-scale modern helicopter was tested in the Ames 40- by 80-Foot Wind Tunnel. Performance, loads, and noise were measured for four tip shapes. The rotor was run through a large range of operating conditions covering wind-tunnel speeds of 30 to 175 knots, tip Mach numbers of 0.550 to 0.700, advance ratios of 0.075 to 0.400, lift coefficients of -0.01 to 0.14, and shaft angles of -10° to 10° . The acoustic data presented in this report cover the tested range for all four tip shapes, matching conditions as closely as possible to allow comparison. Some acoustic data are presented for all test conditions. The more detailed data concentrate on the conditions of normal forward flight; high-speed forward flight, in which high-speed thickness noise is present; and descending flight, in which blade vortex interaction noise is present.

REFERENCES

- 1. Stroub, R. H.: Full-Scale Wind Tunnel Test of a Modern Helicopter Main Rotor—Investigation of Tip Mach Number Effects and Comparisons of Four Tip Shapes. paper no. 3, 34th Annual National Forum of the American Helicopter Society, Washington D.C., May 1978.
- 2. Stroub, R. H.: An Investigation of a Full-Scale Rotor with Four Blade Tip Planform Shapes. NASA TM-78580, May 1979.
- 3. Stroub, R. H.; Rabbot, J. P., Jr.; and Niebank, C. F.: Rotor Blade Tip Shape Effects on Performance and Control Loads from Full-Scale Wind Tunnel Testing. Jo. American Helicopter Soc., vol. 24, no. 5, Oct. 1979.
- 4. Rabbott, J. P., Jr.; and Niebank, C. F.: Experimental Effects of Tip Shape Effects on Performance and Control Loads., paper no. 61, 34th Annual National Forum of the American Helicopter Society, Washington, D.C. May 1978.
- 5. Johnson, W. R.: Performance and Loads Data From a Wind Tunnel Test of a Full-Scale Rotor With Four Blade Tip Planforms. NASA TM-81229, Sep. 1980.
- 6. Lee, A.: Acoustical Effects of Blade Tip Changes on a Full-Scale Helicopter Rotor in a Wind Tunnel. NASA CR-152082, 1978.
- 7. Lee, A.; and Mosher M.: A Study of the Noise Radiation from Four Helicopter Rotor Blades. NASA CP-2052, 1978.
- 8. Mosher, M.: Acoustics of Rotors Utilizing Circulation Control. AIAA-81-0092, Jan. 1981.
- 9. Mosher, M., Tung, N., and Jarocki, S.: Measuring Helicopter noise in the 40- by 80-Foot Wind Tunnel. FHA Report No. 26, Aug. 1983.
- 10. Mosher, M.: Acoustic Measurements of the X-Wing Rotor. NASA TM-84292, June 1983.
- 11. Stefanski, P. K.:Ensemble Averaging of Acoustic Data. NASA CR-166400, Sep. 1982.

TABLE 1.-DESCRIPTION OF ROTOR

Item	Quantity
Number of blades	4
Diameter, 2R	13.41 m
Solidity	0.0748
Thickness ratio	0.095
Twist	—10.°

TABLE 2.-DESCRIPTION OF ROTOR BLADE AIRFOIL AND GEOMETRY

Radial station, r/R	Airfoil	Tab	Chord, m
0.182 - 0.189	SC1513-R8	$\delta = -1.66^{\circ}$ c = 1.27 cm t = 0.127 cm	0.398
0.189 - 0.455	Transition		0.398
0.455 - 0.795	SC1095-R8	$\delta = -2.0^{\circ}$ c = 1.27 cm t = 0.127 cm	0.398
0.795 - 0.833	Transition		0.398
0.833 - 0.951	SC1095	$\delta = -3.0^{\circ}$ $c = 1.27 \text{ cm}$ $t = 0.127 \text{ cm}$	0.394
0.951 - 1.000	SC1095	$\delta = -3.0^{\circ}$ c = 1.27 cm t = 0.102 cm	Root 0.394 Tapered tip 0.237

TABLE 3.-MICROPHONE POSITIONS

Microphone	y, m	\mathbf{z}, \mathbf{m}	z, m	r, m	r/R	θ , deg	ψ , deg
1	19.8	-0.6	-5.3	20.5	3.06	15	178
2	2.7	-1.9	-3.1	4.5	0.67	44	145
3	19.2	0.0	-4.2	19.7	2.93	12	180
4	18.6	0.6	-2.6	18.8	2.80	8	182
5	19.0	-5.6	-4.2	20.2	3.02	12	164
6	3.5	-3.6	-3.9	6.3	0.95	38	134
7	19.0	5.6	-4.2	20.2	3.02	12	196

TABLE 4.-KEY TO ACOUSTIC DATA TABULATED IN APPENDIX B

Operating condition					Tip planfo	orm, page	e numbers	•
	μ	M_{tip}	\mathbf{M}_{at}	V	Swept-tapered	Swept	Tapered	Rectangular
	0.200	0.550	0.660	73	34			■ W1
	.075	.595	.640	30	35			
	.150	.595	.685	60	36			·
	.200	.600	.720	80	38	59	68	78
	.250	.600	.750	100	41			
	.300	.600	.780	120	43	61	70	80
	.375	.600	.825	150	47	63	73	83
	.390	.595	.825	160		64		85
	.400	.600	.840	160	49			
	.250	.650	.815	107	53			
	.375	.650	.895	164	54	65		·
	.375	.685	.940	170	56	67	76	
	.250	.700	.875	115	57		pire mai	an ex
	.375	.700	.965	175	58		77	86

TABLE 5.-KEY TO ACOUSTIC DATA TABULATED IN APPENDIX C

Operating condition

Tip planform, page numbers

μ	M_{tip}	M_{at}	\mathbf{V}	Swept-tapered	Swept	Tapered	Rectangular
0.200	0.550	0.660	73	89	M M		
.075	.595	.640	30	set set			
.150	.595	.685	60	91	init em		
.200	.600	.720	80	92	118	131	146
.250	.600	.750	100	97	-		
.300	.600	.780	120	100	121	134	150
.375	.600	.825	150	105	124	139	154
.400	.600	.840	160	107	/		
$.250^{\circ}$.650	.815	107	110		 ,	·
.375	.650	.895	164	111	127	142	156
.375	.685	.940	170	114		142	
.250	.700	.875	115	115			
.375	.700	.965	175	116		144	

TABLE 6.-KEY TO 1/3-OCTAVE SPECTRA IN APPENDIX D

Operat	ing cond	lition		Tip planfo	orm, page	numbers	· ,
μ M_{tip} M_{at} V		Swept-tapered	Swept	Tapered	Rectangular		
0.200	0.550	0.660	73		. ==	aa ee	
.075	.595	.640	30				•••
.150	.595	.685	60			,	
.200	.600	.720	80	160	202	230	260
.250	.600	.750	100		****		, ·
.300	.600	.780	120	170	206	238	268
.375	.600	.825	150	178	214	246	274
.400	.600	.840	160		10 cm	 :	
.250	.650	.815	107	NA SE			
.375	.650	.895	164	186	220		278
.375	.685	.940	170	192	226	252	en 100
.250	.700	.875	115				•
.375	.700	.965	175	198	, *-	256	esp ten

TABLE 7.-KEY TO TIME-HISTORIES IN APPENDIX E

Operating condition				Tip planf	orm, page	numbers	
μ	\mathbf{M}_{tip}	M_{at}	\mathbf{v}	Swept-tapered	Swept	Tapered	Rectangular
0.200	0.550	0.660	73				
.075	.595	.640	30				en de la companya de La companya de la co
.150	.595	.685	60	,	800 TO		
.200	.600	.720	80	286	304	324	344
.250	.600	.750	100				
.300	.600	.780	120				
.375	.600	.825	150	290	308	332	352
.400	.600	.840	160				
.250	.650	.815	107				
.375	.650	.895	164	296	316	••• 1	354
.375	.685	.940	170		•		
.250	.700	.875	115				
375	700	965	175	300		3/10	

TABLE 8.-KEY TO GRAPHS OF ACOUSTIC TRENDS IN APPENDIX F

Operating condition

Tip planform, page numbers

μ	M_{tip}	Mat	V	Swept-tapered	Swept	Tapered	Rectangular
0.200	0.550	0.660	73				
.075	.595	.640	30	- - -			
.150	.595	.685	60	and the second s		-	
.200	.600	.720	80	360	378	396	414
.250	.600	.750	100		***		
.300	.600	.780	120	366	384	402	420
.375	.600	.825	150	372	390	408	426
.400	.600	.840	160	,	, · · ·	40 to	
.250	.650	.815	107		*		•••
.375	.650	.895	164				
.375	.685	.940	170				
.250	.700	.875	115	*			
.375	.700	.965	175				′

Figure 1. S-76 Rotor in the Ames 40- by 80-Foot Wind Tunnel.

THE HOUSE MESSEL MITTER

Figure 2. Tip Shapes Tested.

Figure 3. Microphone Locations.

Figure 4. Flow chart of equipment used in acoustic data acquisition.

Figure 5. Flow chart of equipment used in acoustic data reduction.

APPENDIX A

BACKGROUND WIND-TUNNEL NOISE CORRECTION

The background noise was determined by a curve fitted to each 1/3-octave band for each microphone and subtracted on a power basis to obtain 1/3-octave spectra corrected for background-noise. The background-noise data were taken from another test described in reference 9. Microphone locations were matched as much as possible between the two tests. This procedure should give adequate background noise because background-noise measurements made on several rotor models over several years in the Ames 40-by 80-Foot Wind Tunnel have been very consistent for microphones located in similar positions.

The curve fit used on the background noise describes the 1/3-octave level as a linear function of the logarithm of the wind-tunnel velocity. This is the correct functional form if the sound pressure is proportional to the velocity raised to a power (equivalent to the Mach number raised to a power in this subsonic wind tunnel). The curve fit is

$$dBB(i) = A(i) + B(i) \cdot log(V)$$

with A and B solved for in a least squares linear regression. The tables show the coefficients for all seven microphones, i=1,...,7. These averaged background data are a very good match to the actual background noise except at the lowest frequencies at which the wind-tunnel fan harmonics determine the noise. The wind-tunnel fan drive was variable speed so the frequencies of the harmonics, as well as the amplitude, increase as the velocity increases. The poor fit at the lower frequencies will not affect the corrections for rotor noise because the rotor harmonic noise is much louder than the noise of the wind tunnel. The 1/3-octave plots (figs A1 to A7) show the background-noise spectra for several wind-tunnel velocities from 60 to 175 knots for the seven microphones.

The formula used to apply background corrections is

$$dBC(i) = 10 \cdot \log \left[10^{\frac{dB(i)}{10}} - 10^{\frac{dBB(i)}{10}} \right]$$

Figure A8 shows the effect of this correction on a 1/3-octave plot containing raw data, background noise and sound levels with the background noise subtracted.

BACKGROUND NOISE CURVE FIT DB = A + B * LGG(V)

1/3 CCTAVE	MICROF	PHONE, 1	MICROP	HONE 2
CENTER FREQUENCY	Α	В	A	В
10.0	-28.53	51.60	-13.36	47.44
12.5	-18.17	47.11	-2.94	42.26
16.0	-4.14	44.28	-36.25	61.67
- 23.0	15.65	36.11	-15.07	53.93
25.0	-26.41	54 .7 9	-27.35	59 .30
31.5	-8.49	46.68	-7.38	48.16
40.0	-1.57	45.59	-15.79	53.82
50.0	-48.80	70.10	-16.13	53.97
63.0	-11.75	51.74	-12.11	52.79
80 . 0	-38.56	66.12	-12.08	54-17
100.0	-14.54	54.89	-d .∪7	52.92
1.25.0	3.15	46.63	30.61	30.57
160.0	-21.57	57.29	-16.87	57.45
300∙0	-11.77	53 • 24	-5.46	50.91
250.0	7.41	43.64	-u.85	47.63
315.∂	-6.74	50.11	-2.15	48.38
400.0	8.50	42.25	10.26	42.01
500.0	5.91	43.28	10.96	41.48
630.0	26.24	34.21	-U.19	47.20
800 . 0	-5.01	48.13	-15.23	53 • 85
1000.0	-21.36	55.70	-23.72	57.68
1250.0	-34.01	61.99	-40.26	65.88
1600.0	-20.11	55.62	-21.58	56.37
2000.0	-31.16	59.06	-22.06	55.63
2500.0	-31.39	58.74	-22.15	55.38
3150.0	-39.02	62.02	-22.43	55.64
4129.1	-40.21	61.99	-16.82	52.89
5000-0	-52.11	63.04	-24.47	56.37
63 CJ. 3	-37.51	60.71	-23.34	56.02
8000.0	-32.20	57.80	-10.15	52.73

Table A2. Background Noise Coefficients for Microphones 3 and 4.

BACKCROUND NOISE CURVE FAT DB = A + B * LOG(V)

1/3 CCTAVE	MICROPHO	ONE 3	MICROP	HONE 4
CENTER FREQUENCY	A 2.	В	A	В
				•
10.0	-28.53	51.60	-20.53	51.60
12.5	-18.17	47.11	-18.17	47.11
16.0	-4.14	44.28	-4.14	44.28
20.3	15.65	36.11	15.05	36.11
25.0	-26.41	54.79	-26.41	54.79
31.5	-8.49	46.68	-8.49	46.68
40.0	-1.57	45.59	-1.57	45.59
50.0	-48.80	70.10	-40.80	70.10
63.0	-11.75	51.74	-11.75	51.74
80.0	-38.56	66.12	-38.56	66.12
100.0	-14.54	54.39	-14.54	54.89
125.0	3.15	46.63	3.15	46.63
160.0	-21.57	57.29	-21.57	57.29
200.0	-11.77	53.24	-11.77	53.24
250.0	7.41	43.64	7.41	43.64
315.0	-6.94	50.11	-6.94	50.11
400.0	8.50	42.25	8.50	42.25
500.0	5.91	43.28	5.91	43.28
630.0	26.24	34.21	20.24	34.21
800.0	-5.01	48.13	-5.J1	48.13
1000.0	-21.36	55.70	-21.36	55.70
1250.0	-34.01	61.39	-34.01	61.99
1600.0	-20.11	55.62	-20.11	55.62
2000.0	-31.16	59.06	-31.16	59.06
2500.0	-31.39	58.74	-31.39	58.74
3150.0	-39.02	62.03	-39.02	62.02
4000.0	-40.21	61.99	-43.21	61.99
5000.0	-52.11	68.04	-52.11	68.04
6300.0	-37.51	60.71	-37.51	60.71
8000.0	-32.20	57.80	-32.20	57.80

Table A3. Background Noise Coefficients for Microphones 5 and 6.

BACKGROUND NOISE CURVE FIT - DB = A + B * LDG(V)

1/3 ECTAVE	MICROPHONE 5		MICROPHONE 6	
CENTER FREQUENCY	Λ.	B	A.	В
				•
• •	3 00	4.2 ° m.4		, , , , , , , , , , , , , , , , , , ,
10.0	-7.33	46.34	-10.36	47.44
12.5	11.69	35.79	-2.94	42.26
16.0	36.43	27.16	-36.25	61.67
20.0	-22.32	55 • 25	-15.07	53.93
25.0	-51.06	69.71	-27.85	59 . 30
31.5	2.75	43.01	-7.38	48.16
40.0	- 5.53	47.47	-15.79	53.82
50.0	-24.90	58 • 85	-10.13	53.97
63 . 0	-0.31	46.27	-12.11	52.79
80.0	-42.18	69.26	-12.38	54.17
100.0	-17.27	56.73	-8.U7	52.92
125.0	11.68	42.64	30.61	30.57
160.0	-13.19	53.63	-18.87	57.45
200.0	-9.94	52.39	-5.46	50.91
250.0	14.50	40.13	-0.85	47.63
315.0	-9.65	51.50	-2.15	48.38
400.0	17.85	37.82	10.26	42.01
503.0	9.12	41.82	10.96	41.48
630.0	13.12	40.37	-0.19	47.20
800.0	-10.52	51.08	-15.23	53.85
1000.0	-20.35	56.16	-23.72	57.68
1250.0	-31.96	61.01	-40.26	65.88
1600.0	-16.18	53.76	-21.58	56.37
2000.0	-25.98	56.99	-22.06	55.63
2500•0	-33.07	59.83	-22.15	55.38
3150.0	-40.94	63.45	-22.43	55.64
4000.0	-43.29	64.13	-16.82	52.89
5000.0	-43.81	63.57	-24.47	56.37
6300•0	-16.51	50.39	-23.34	56.02
8000.0	-32.68	56.62	-16.15	52 . 73

Table A4. Background Noise Coefficients for Microphone 7.

BACKGROUND NOISE CURVE FIT DB = A + B * LOG(V)

1/3	CCTAVE			MICRO	PHONE 7
CENTER	FREQUE	NCY	•	A	. B
	10.0			-2.60	41.47
	12.5			-19.26	48.03
	16.0			9.37	37.20
	20.0			-13.74	51.99
	25.0			-30.79	58.74
	31.5			-3.12	45.35
e de la companya de l	40.0			-19.02	54.54
	50.0			-3.61	47.22
	63.0			-7.62	49.87
	80.0			-34.12	65.08
	00.0			-15.32	56 • 65
	25.0			39.07	30.46
	60.0			-22.25	59.08
	00.0			-24.23	59.45
	50.0			-3.65	49.18
	15.0			-12.29	52.95
	20.0			10.35	41.67
	00.0			7.59	42.86
	30.0			47.78	24.68
	00.0			-2.25	47.68
	00.0			-23.23	57.87
and the second s	50.0			-17.63	54.78
	00.0			-16.25	53.73
	00.0			-22.24	55.39
	00.0			-27.70	57.49
	50.0			-29.40	58.20
	03.0			-26.27	55.67
and the second s	00.0			-28.91	56.83
	00.0			-27.57	55.24
	00.0			-21.94	51.94

APPENDIX B

TABULATED ACOUSTIC DATA: ALL DATA POINTS

This appendix provides a brief listing of performance and acoustic data for all of the data points in the test. Wherever the data are missing or of questionable quality due to the equipment, acoustic data are given the value 0. Table 4, which lists the order in which the data are presented, is repeated here for convenience. Symbols used in the listing are defined below.

Symbol	Quantity
ALPHA CLR/S MAT	angle of shaft from vertical, positive aft, deg rotor lift coefficient, $\frac{L}{\rho S(\Omega R)^2}$ advancing-tip Mach number
MIC1 MIC2	dBA measured at microphone 1; not corrected for background noise
MIC3	dBA measured at microphone 2; not corrected for background noise dBA measured at microphone 3; not corrected for background noise
MIC4 MIC5	dBA measured at microphone 4; not corrected for background noise
MIC6	dBA measured at microphone 5; not corrected for background noise dBA measured at microphone 6; not corrected for background noise
MIC7	dBA measured at microphone 7; not corrected for background noise
MTIP PT	rotational tip Mach number test-point number
RUN V	test-run number wind-tunnel velocity, knots
V/OR	advance ratio

TABLE 4.-KEY TO ACOUSTIC DATA TABULATED IN APPENDIX B

Operating condition

Tip planform, page numbers

					191		
μ	\mathbf{M}_{tip}	M_{at}	\mathbf{V}	Swept-tapered	Swept	Tapered	Rectangular
0.200	0.550	0.660	73	34		· —	501.00 1
.075	.595	.640	30	35	100 000		
.150	.595	.685	··· 60	36	1		
.200	.600	.720	80	38	59	68	78
.250	.600	.750	100	41		·	
.300	.600	.780	120	43	61	70	80
.375	.600	.825	150	47	63	73	83
.390	.595	.825	160	**	64		85
.400	.600	.840	160	49	ber 6m	<u></u>	
.250	.650	.815	107	53			
.375	.650	.895	164	54	65		
.375	.685	.940	170	56	67	76	
.250	.700	.875	115	57			
.375	.700	.965	175	58		77	86

Table B1. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

SWEPT	TAPE	ERED TIP		V =	73.0	MAT =	0.660	MTIP= 0.550	V/OR=	0.200	
RUN	PT	CLR/S	ALPHA	міс	21	MIC2	MIC3	HIC4	MIC5	MIC6	MIC7
12	16	-0.0020	0.0	100.	.6	104.8	101.7	100.1	103.8	0.0	100.7
12	17	0.0393	0.0	102.	1	109.2	102.0	101.7	105-1	0.0	100.8
12	18	0.0593	0.0	103.	. 4	0.0	104.2	102.8	105.5	0.0	0.0
12	19	0.0795	0.0	104.	.7	0.0	105.4	104.7	0.0	0.0	0.0
12	20	0.1002	0.0	105.	. 9	110.5	108.5	105.3	109.1	0.0	106.0
12	21	0.0504	-2.5	105.	. 9	110.5	108.5	105.3	109.1	0.0	106-0
12	22	0.0709	-2.5	102.	0	107.2	105.6	99.5	104.6	0.0	101.0
12	23	0.0919	-2.5	104.	. 0	108.0	103.5	104.4	106.3	0.0	103.1
12	24	0.1116	-2.5	103.	8	107.9	105.3	103.1	107.4	0.0	102.7
12	25	0.0418	-5.0	100.	. 2	103.2	101.3	97.7	102.2	0.0	101.0
12	26	0.0632	-5.0	100.	. 6	107.1	100.3	101-4	103.1	128.1	99.9
12	27	0.0841	-5.0	101.	. 0	107.1	101.3	100.7	103.8	0.0	101.1
12	28	0.1038	-5.0	100.	5	107.5	101.7	101.0	104.2	0.0	99.9
12	29	0.1211	-5.0	101.	.7	106.2	102.5	101.3	105.7	0.0	101.3

Table B1. continued. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

SWFP	TAPE	RED TIP		V= 30.0	MAT=	0.640	MTIP= 0.595	V/OR=	0.075	
RUN	PΤ	CLR/S	ALPHA	MIC1	MIC2	MTC3	MIC4	NIC5	MIC6	MIC7
61	4	0.0711	0.0	105.8	109.4	106.1	105.8	0.0	110.3	106-5
61	5	0.0713	0.0	104.2	107.7	104.5	103.7	0.0	108.6	105.0
61	8	0.0706	10.0	108.5	110.9	108.1	107.7	0.0	111.3	107.0
61	10	0.0724	0.0	104.7	108.1	104.5	104.4	0.0	108.3.	105.0
61	11	0.0706	0.0	103.3	107.1	103.0	103.3	0.0	107.6	104-1
61	12	0.0742	0.0	104.7	108.3	105.0	104.9	0.0	108.8	105.0
61	13	0.0724	0.0	103.8	107.3	104.0	103.3	0.0	108.3	104.5
61	14	0.0711	0.0	103.8	107.3	104.0	103.3	0.0	108.3	104.5
61	15	0.0714	0.0	104.4	108.1	104.3	104.3	0.0	108.7	105.0
61	16	0.0899	0.0	107.2	110.2	107.8	107.4	0.0	111.3	108.2
61	17	0.0521	0.0	104.1	106.9	104.3	102.0	0.0	106.4	102.3
61	18	0.0787	5.0	104.4	107.8	105.2	104.4	0.0	108.0	104.8
61	19	0.0651	-5.0	103.5	107.6	103.5	103.2	0.0	107.3	103.5
61	20	0.0727	0.0	103.5	107.6	103.5	103.2	0.0	107.3	103.5

Table B1. continued. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

SWEPT	TAP	ERED TIP		v= 60.0	MAT=	0.685	MTIP= 0.595	V/OR=	0.150	
RUN	PТ	CLR/S	ALPHA	MIC1	MIC2	HIC3	MIC4	MIC5	MIC6	MIC7
7	4	0.0196	0.0	101.4	105.8	101-1	101.9	102.4	105.6	100.5
8	4	-0.0012	0.0	101.4	105.8	101.1	101.9	102.4	. 105.6	100.5
8	5	0.0202	0.0	101.4	105.8	101.1	101.9	102.4	105.6	100.5
8	6	0.0401	0.0	101.4	105.8	101.1	101.9	102.4	105.6	100.5
8	7	0.0599	0.0	101.4	105.8	101.1	101.9	102-4	105.6	100.5
8	8	0.0801	0.0	101.4	105.8	101-1	101.9	102.4	105.6	100.5
8	9	0.0910	0.0	101.4	105.8	101.1	101.9	102.4	105.6	100.5
8	10	0.1012	0.0	101.4	105.8	101.1	101.9	102.4	105.6	100.5
8	11	0.1099	0.0	108.6	113.0	108.2	0.0	109.4	112.3	107.7
8	12	0.1206	0.0	110.0	113.7	109.0	0.0	109.6	113.1	107.8
8	13	0.1303	0.0	109.7	113.1	109.3	0.0	110.2	112.3	108.6
8	14	0.1379	0.0	108.5	112.3	108.8	0.0	109.7	112.8	108.4
8	15	0.0334	-2.5	101.7	107.1	101.9	0.0	101.4	105.5	100.4
9	3	0.0218	-5.0	99.8	104.2	100.7	0.0	100.5	104.4	99.0
9	4	0.0409	-5.0	99.3	104.4	102.6	0.0	101.2	104.4	99.5
9	5	0.0541	-5.0	101.7	104.6	101.5	0.0	101.1	103.6	101.7
9	6	0.0708	-5.0	104.6	107.8	102.7	0.0	103.1	104.9	99.1
9	7	0.0862	-5.0	103.6	107.4	102.5	0.0	102.3	106.5	101.4

Table B1. continued. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

SWEPT TAPERED TIP			V= 60.0 MAT= 0.685			MTIP= 0.595	V/OR			
PUN	PT	CLP/S	ALPHA	MIC1	MIC2	MIC3	MIC4	NIC5	MIC6	MIC7
9,	8.	0.0939	-5.0	102.5	107.9	103.9	0.0	113.0	106.4	103.9
9	9	0.0216	-5.0	101.5	103.9	100.0	0.0	100.1	104.5	98.6

Table B1. continued. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

SWEPT	TAPE	EPED TIP		v = 80.	O MAT=	0.720	MTIP= 0.600	V/OR=	- 0-200	
RUN	PΤ	CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	MI C6	MIC7
10	3	0.0496	-5.0	100.0	107.6	101.3	0.0	0.0	104.4	103.9
10	4	0.0613	-5.0	102.0	108.5	102.1	0.0	0.0	. 104.9	105.0
10	5	0.0818	-5.0	101.6	108.8	102.9	0.0	0.0	103.8	104.8
10	6	0.0923	-5.0	103.1	108.1	103.1	0.0	0.0	108.6	100.7
10	7	0.1012	-5.0	102.4	107-6	104.9	0.0	0.0	106.2	100.6
10	8	0.1111	-5.0	102.4	107.8	103.6	0.0	0.0	106.3	103.8
10	9	0.1195	-5.0	103.9	108-7	104.5	0.0	0.0	107.0	103.0
10	10	-0.0048	0.0	103.8	107.7	104.4	0.0	0.0	107.4	104.0
10	11	0.0155	0.0	103.3	107-2	103.1	0.0	0.0	107.2	101.8
10	12	0.0373	0.0	104.2	107.8	103.8	0.0	0.0	107.8	104.1
10	13	0.0576	0.0	106.0	0.0	107.1	0.0	0.0	0.0	104.9
10	14	0.0781	0.0	105.4	0.0	106.4	0.0	0.0	0.0	105.2
10	15	0.0931	0.0	108.5	114.7	109.8	0.0	0.0	112.6	0.0
10	16	0.1191	0.0	112.6	0.0	112.6	0.0	0.0	118.2	112.2
10	17	0.0075	-2.5	104-1	107.5	104.5	0.0	0.0	108.1	102.7
10	18	0.0293	-2.5	102.3	106.5	103.4	0.0	0.0	106.6	102.3
10	19	0.0495	-2.5	102.4	109.7	102.9	0.0	0.0	106.9	102.0
10	20	0.0694	-2.5	104.9	110.1	103.8	0.0	0.0	108.2	103.5

			**			1.00				
SWEPT	TAPE	RED TIP		V= 80.0	MAT=	0.720	MTIP= 0.600	V/OR=	0.200	
RUN	PT	CLP/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	NIC6	MIC7
10	21	0.0894	-2.5	104.6	111.2	105.8	0.0	0.0	107.5	103.9
10	22	0.1091	-2.5	105.8	109.7	106.7	0.0	0.0	109.6	105.5
10	23	0.1193	-2.5	107.2	110.6	107.5	0.0	0.0	0.0	107.4
10	24	0.0532	-7.5	106.0	109.7	102.0	0.0	0.0	103.7	104-2
10	25	0.0749	-7. 5	101.0	108.8	0.0	0.0	0.0	106.1	103-1
10	26	0.0939	-7.5	0.0	104.6	0.0	0.0	0.0	107.6	101.7
11	2	0.0538	-7.5	104.3	109.5	103.2	103.2	102.3	106.1	99.8
11	3	0.0751	-7.5	102.0	105.7	103.8	104.7	104.0	106.3	103.8
11	4	0.0950	-7.5	101.7	108-8	102.3	104.5	101.4	105.1	102.4
11	5	0.1043	-7.5	101.2	107.4	102.2	103.8	102-2	106.6	103.2
11	6	0.1140	-7.5	102.9	106.2	104.0	103.9	103.9	107.9	105.0
11	7	0.1217	-7.5	103.5	107.7	104.3	103.0	103.7	107.6	104.5
11	8	0.1264	-7.5	105.6	109.5	106.5	105.6	105.2	109.5	106.5
11	9	0.0297	10.0	100.6	102.9	101.6	100.2	100.7	103.3	101.3
11	10	0.0382	10.0	100.8	103.3	101.4	100.3	101.0	103.5	101.5
11	11	0.0472	10.0	101.0	103.2	101.6	100.6	101.7	103.9	102.4
11	12	0.0696	10.0	101.8	104.7	102.6	101.5	102.6	104.4	102.1
11	13	0.0898	10.0	103.1	105.8	104.1	103.1	103.9	106.1	103.7

Table B1. continued. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

SWFPT	TAP	ERED TIP		V = 80	-TAM 0.	0.720	MTIP= 0.600	V/ OR=	0.200	
RUN	РT	CLR/S	ALPHA	MIC1	MIC2	HIC3	MIC4	MIC5	MIC6	MIC7
11	14	0.1113	10.0	105.5	107-1	106.2	105.0	105.4	107.9	105.3
11	15	0.1225	10.0	105.8	108.0	107.0	105.5	108.8	108.5	105.9
26	7	0.0913	-7.5	108.5	110.3	108.8	106.4	0.0	110.5	109.5
26	8	0.0997	-7.5	108.0	110.7	109.2	107.9	0.0	112.2	113.5
63	2	0.0827	-2.9	104.1	107.0	105.2	103.6	0.0	107.4	104.6
63	3	0.0739	-2.9	101.1	105.0	102.0	101.9	0.0	105.4	101.2
63	4	0.0894	-2.9	105.9	109.9	107.0	105.7	0.0	109.9	106.3
63	20	0.0500	-3.8	101.5	104.1	101.9	100.5	0.0	104.2	98.8
63	21	0.0829	-2.9	102.5	107.3	102.9	102.3	0.0	107.5	100.8

Table B1. continued. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

SWEPT	TAP	ERED TIP		v= 100.0	MAT=	0.750	MTIP= 0.600	V/OR=	0.250	
RUN	PΤ	CLR/S	ALPHA	MIC1	MIC2	MTC3	MIC4	MTC5	MIC6	HIC7
11	19	-0.0019	0.0	106.0	108.8	106.9	106.1	109.1	0.0	105.7
11	20	0.0178	0.0	106.4	108.4	107.1	105.5	108.6	. 0.0	105.3
11	21	0.0383	0.0	106.6	109.2	107.8	105.6	103.9	0.0	106.5
11	22	0.0581	0.0	108.4	109.7	108.1	107.2	110.2	0.0	106.8
11	23	0.0779	0.0	109.3	111.3	108.9	109.2	112.2	0.0	108.8
11	24	0.0993	0.0	112.2	112.8	112.5	111-1	114-8	0.0	111-2
11	25	0.1175	0.0	114.9	115.9	114.9	114.1	0.0	0.0	0.0
11	26	0.1248	0.0	116.0	117.8	116.1	116.1	119.5	0.0	116.8
11	27	0.0586	-5.0	106.9	109.2	106.1	103.3	107.7	0.0	104.8
11	28	0.0781	-5.0	104.6	109.2	105.0	104.3	107.1	0.0	105.1
12	6,	0.0391	0.0	106.6	108.8	107.7	106.1	108.8	0.0	105.9
12	7	0.0791	0.0	110.0	111.2	110.2	108.9	112.1	0.0	109.3
12	8	0.0592	-5.0	105.0	109.2	105.8	105.5	109.0	0.0	104.5
12	9	0.0785	-5.0	106.2	112.1	107.5	106.5	108.7	0.0	0.0
12	10	0.0980	-5.0	106.3	108.6	107.6	105.1	108.2	0.0	104.2
12	11	0.1143	-5.0	106.5	108.1	106.7	105.9	109.0	0.0	105.8
12	12	0.0470	-2.5	106.5	108.1	106.7	105.9	109.0	0.0	105.8
12	13	0.0686	-2.5	106.5	109.9	107.4	105.3	109.3	···· · · · · · · · · · · · · · · · · ·	107.2

Table B1. continued. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

SWEPT	TAPE	RED TIP		V = 100.0	MAT=	0.750	MTIP= 0.600	V/DR=	0.250	
RUN	PΤ	CLR/S	ALPHA	MIC1	MIC2	MTC3	MIC4	MIC5	MIC6	MIC7
12	14	0.0884	-2.5	107.5	110.3	107-0	107.3	111.0	0.0	106.9
12	15	0.1073	-2.5	107.8	111.8	108.0	108.2	111.4	0.0	108.9
54	16	0.0578	-5.0	105.2	107.0	105.1	103.5	0.0	106.1	102.9
54	17	0.0774	-5.0	104.8	106.9	105.0	103.5	0.0	106.2	103.6
54	18	0.0982	-5.0	105.0	107.3	106.5	103.9	112.7	106.6	105.0
54	19	0.0830	-5.0	105.0	107.3	106.5	103.9	112.7	106.6	105.0
54	20	0.0794	-5.0	106.0	107.3	105.5	103.9	112.7	106.6	105.0

SWEPT	TAP	ERED TIP		V= 120.0	MAT=	0.780	MTIP= 0.600	V/OR=	0.300	
RUN	PT	CLR/S	ALPHA	MIC1	MIC2	- MIC3	MTC4	MIC5	MIC6	HIC7
14	3	-0.0033	0.0	112.0	113.3	111.6	109.9	0-0	0-0	108.5
14	4	0.0147	0.0	110.4	111.0	110.7	107.5	0.0	0.0	106.8
14	5	0.0351	0.0	110.4	110.8	110.5	107.7	0.0	0 - 0	106.5
. 14	6	0.0532	0.0	110.4	111.6	111.1	107.9	0.0	0.0	106.7
14	7	0.0721	0.0	110.2	112.7	110.4	108.2	0.0	0.0	109.2
14	8	0.0913	0.0	112.3	115.5	113.0	109.6	0.0	114.7	111.4
14	9	0.1080	0.0	112.8	0.0	113.5	111.9	0.0	116.3	113.2
14	10	0.0323	-5.0	108.4	110.3	108.2	105.3	0.0	109.3	105.9
14	11	0.0521	-5.0	107.5	110.3	108.5	105.3	117.7	109.6	106.2
14	12	0.0707	-5.0	107.7	110.8	108.8	105.9	117.5	110.4	106.3
14	13	0.0893	-5.0	107.9	110.3	108.9	105.3	117.3	109-8	105.4
14	14	0.1052	-5.0	108.6	109.3	109.7	105.8	0.0	111.1	105.8
14	15	0.1104	-5.0	112.2	113.8	112.3	108.2	0.0	114-1	108.0
14	16	0.0738	-5.0	108.8	110.2	109-2	105.3	0.0	110-3	106.3
14	17	0.0730	-5.0	109.3	112.1	110.0	107.3	116.9	112.2	108.4
14	18	0.0287	-10.0	107.8	111.0	108.3	0.0	114.4	0.0	106.6
14	19	0.0483	-10.0	107.2	109.8	108.3	105.6	114.0	110.0	108.1
14	20	0.0683	-10.0	108.3	110.3	108.4	105.1	115.4	110.0	107.5

SWEP	T TAP	ERED TIP		V= 120.0	MAT=	0.780	MTIP= 0.600	V/OR=	0.300	
RUN	PT	CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	HIC6	MIC7
15	3	0.0385	-7.5	109.9	111.2	109.0	106.8	107-1	0.0	108.6
15	4	0.0465	-7.5	108.2	113.3	108.3	105.5	107.9	. 0.0	106.4
15	5	0.0575	-7.5	107.7	111.3	108.0	105.3	108.0	0.0	106.0
15	6	0.0754	-7.5	107.6	111.2	107.7	104.9	107.9	0.0	105.4
15	7	0.0935	-7.5	108-1	110.1	108.6	104.8	103.0	0.0	106.4
15	8	0.1023	-7.5	108.0	110.2	108.5	105.3	108.6	0.0	105.2
15	9	0.0257	6.0	108.5	109.5	108.9	106.8	107.9	0.0	106.2
15	10	0.0419	6.0	109.1	109.5	109.3	106.8	108.2	0.0	106.4
15	11	0.0614	6.0	109.2	109.8	109-1	107.0	108.7	0.0	106.3
15	12	0.0789	6.0	109.4	109.6	109.2	106.4	108.3	0.0	106.4
15.	13	0.0987	6.0	108.7	109.9	108.9	106.9	108.6	0.0	106.7
15	14	0.1165	6.0	109.4	110.4	109.4	108.0	109.3	0.0	107.4
15	15	0.1230	6.0	109.7	111.6	110.2	108.3	109.8	0.0	108.1
22	2	-0.0014	0.0	109.7	111.6	110.2	108.3	109.8	0.0	108.1
22	3	0.0561	-2.5	109.7	110.4	109.2	108.3	0.0	0.0	107.8
22	4	0.0733	-2.5	109.7	112.6	109.3	108.5	0.0	0.0	107-9
22	5	0.0889	-2.5	110.1	112.5	109.4	109.3	0.0	0.0	110.6
22	6	0.0576	-6.5	108.0	110.3	108.4	107.6	0.0	0.0	107.1

SWEPT	TAPE	ERED TIP		V= 120.0	MAT=	0.780	MTIP= 0.600	V/OR=	0.300	
RUN	PT	CLR/S	ALPHA	MIC1	MIC2	MTC3	MIC4	MIC5	MIC6	MIC7
22	7	0.0748	-5.5	108.5	110.1	108.3	107.2	0.0	0.0	107.6
22	8	0.0748	-6.5	108.9	111.4	108.7	107.8	0.0	0.0	108.0
22	9	0.0901	-6.5	108.6	110.9	109.3	107.3	0.0	0.0	110.0
22	10	0.0610	-10.5	108.7	109.7	109.1	107.8	0.0	0.0	108.2
22	11	0.0599	-10.5	108.9	110.3	108.7	107.7	0.0	0.0	108.0
22	12	0.0759	-10.5	108.0	110.0	108.2	107.2	0.0	0.0	108.0
22	13	0.0781	-10.5	107.8	110.2	109.8	107.3	0.0	0.0	109.1
22	14	0.0924	-10.5	108.0	109.6	108.8	106.9	0.0	0.0	110.1
22	15	0.0608	-11.5	107.9	110.9	108.4	107-4	0.0	0.0	108.0
22	16	0.0771	-11.5	108.2	111.7	108.1	106.6	0.0	0.0	111-2
22	17	0.0922	-11.5	108.9	111.4	108.2	107.0	0.0	0.0	110.7
60	3	0.0702	-2.5	107.3	108.6	107.0	106.5	0.0	109.3	106.2
60	4	0.0689	-2.5	107.6	109.0	107.4	106.7	0.0	109.7	106.0
60	5	0.0565	-2.5	106.8	107.9	106.8	106.2	0.0	109.6	105.6
60	6	0.0812	-2.5	107.8	110.5	107.9	107.2	0.0	110.7	107.0
60	7	0.0684	-2.5	106.8	108.2	107.1	106.0	0.0	109.5	105.9
60	8	0.0680	-2.5	107-4	108.3	107.2	106.6	0.0	109.1	105.8
60	9	0.0692	-2.5	107.4	108.2	106.9	106.5	0.0	109.7	105.8

Table B1. continued. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

SWEP	T TAPE	RED TIP		V= 120.0	MAT=	0.780	MTIP= 0.600	V/OR=	0.300	· .
RUN	PT	CLR/S	ALPHA	MT C1	MIC2	M TC3	MIC4	MIC5	MIC6	HIC7
60	10	0.0957	-2.5	108.5	111.0	108.3	107.8	0.0	110.9	107.5
60	11	0.1080	-2.5	112.0	117.7	111.9	112.0	0.0	115.6	111.6
60	12	0.0420	-2.5	106.9	107.8	106.8	105.5	0.0	109.1	105.5
60	13	0.0689	-2.5	107.2	108.4	107.3	106.2	0.0	109.3	105.5
60	14	0.0570	-3.6	107.1	108.1	107.1	105.5	0.0	108.8	105.5
60	15	0.0788	-0.5	107-8	109.6	108.2	107.1	0.0	109.7	106.8
60	16	0.0680	-2.5	107.2	109.5	107.5	106-2	0.0	108.9	105.4
60	17	0.0687	-2.5	107.0	107.9	107.3	106.1	0.0	109.0	105.6
60	18	0.0685	-2.5	107.5	108.1	107.0	106.2	0.0	109.0	105.8
63	5	0.0522	-6.2	107.2	108.0	106.7	106.1	0.0	108.7	105.4
63	6	0.0807	-4.2	107.1	109.5	107.8	106.5	0.0	109.0	105.9

4

Table B1. continued. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

SWEPT	TAP	ERED TIP		V= 150.0	MAT=	0.825	MTIP= 0.600	V/OR=	0.375	
RUN	P T	CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	MIC6	MIC7
19	23	0.0385	-5.0	112.7	113.3	113.1	111.4	0.0	0.0	111-1
19	24	0.0572	-5.0	113.2	114.0	113.8	111.4	0.0 .	0.0	111.5
19	25	0.0740	-5.0	113.4	114.4	113.5	111.7	0.0	0.0	112-4
19	26	0.0889	-5.0	113.5	114.0	113.6	112.2	0.0	0.0	113.2
19	27	0.1003	-5.0	116.2	116.7	115.6	113.6	116.3	0.0	116.5
19	28	0.0950	-5.0	114-2	115.8	114.2	112.9	116.0	0.0	115.5
19	29	-0.0053	0.0	115.0	115.9	114.8	114.1	0.0	0.0	113.4
19	30	0.0130	0.0	114.3	114.6	114.5	113.8	0.0	0.0	112.3
19	31	0.0307	0.0	113-8	114.3	114.1	112.5	0.0	0.0	111.6
19	32	0.0461	0.0	113.8	113.7	114.0	112.9	113.2	0.0	111-4
19	33	0.0634	0.0	113.9	114.4	114.1	112.9	0.0	0.0	111-0
19	34	0.0800	0.0	113.8	114.4	114.1	112.9	0.0	0.0	111.0
19	35	0.0954	0.0	113.9	114.4	114.1	112.9	0.0	0.0	111.0
20	6	0.0889	-3.0	112.5	114.9	113.0	111.5	0.0	117-2	115.5
21	3	0.0965	0.0	115.7	117.5	116.5	113.6	0.0	118.9	115.3
21	4	0.1029	0.0	115.7	117.5	115.6	114.3	0.0	119.9	117.6
21	5	0.0506	-10.0	112-8	114.9	114.0	111.4	0.0	116.3	115.0
21	6	0.0670	-10.0	113.5	114.8	114.2	111.4	0.0	115.5	115.9

Table B1. continued. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

SWEPT	TAPE	RED TIP		V= 150.0	MAT=	0.825	MTIP= 0.600	V/DR=	0.375	
RUN	ΡT	CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	MIC6	HIC7
21	7	0.0825	-10.0	114.4	115.1	114.8	112.1	0.0	117.4	118.5
21	8	0.0759	-10.0	115.1	115.8	115.8	111.5	0.0	116.8	115.7
21	9	0.0328	-10.0	112.4	113.8	113.2	111.7	0.0	115.2	113.7
21	10	0.0753	-10.0	113.3	114.8	114.4	111-9	0-0	116.1	117-3
54	13	0.0770	-4.5	115.4	115.2	115.3	111.2	121.7	116.5	112.0
55	18	0.0717	-5.0	113.4	115.0	113.5	111.3	0.0	116.0	113.0
55	19	0.0799	-5.0	113.5	114.4	113.3	111.6	0.0	115.3	112-0

							•			
	0.400	V/ OR=	MTIP= 0.600	0.840	MAT=	V= 160.0		ERED TIP	TAPE	SWEPT
MIC7	MIC6	MIC5	MIC4	MIC3	MIC2	MIC1	ALPHA	CLR/S	PΤ	RUN
0.0	117.9	0.0	115.2	115.9	116.7	116.2	0.0	-0.0019	3	17
114-4	. 117.8	114.9	115.1	115.6	116.1	115.8	0.0	0.0138	4	17
113.5	116.5	115.0	114.2	115.0	115.4	115.2	0.0	0.0315	5	17
113.6	116.6	114.8	114.2	115.2	114.7	115.0	0.0	0.0474	6	17
113.0	117.4	115.3	114.2	115.6	115.3	115.4	0.0	0.0645	7	17
114.7	116.8	115.3	114.4	115.5	115.8	115.5	0.0	0.0806	8	17
0.0	117.9	0.0	115.6	116.1	116.9	115.7	0.0	0.0877	9	17
0.0	118.9	0.0	115.9	116.8	117.9	116.2	0.0	0.0950	10	17
113.3	116.6	115.3	113.4	115.0	114.8	114.7	-5.0	0.0382	11	17
113.4	116.7	115.1	114.3	115.4	115.8	115.2	-5.0	0.0563	12	17
115.8	117.4	0.0	113.6	115.5	115.6	115.2	-5.0	0.0719	13	17
115.0	118.1	0.0	114.9	116.1	116.0	115.8	-5.0	0.0780	14	17
113.4	119.0	117.8	114.2	116.2	115.8	116.1	-5.0	0.0849	15	17
113.6	119.2	119.6	114.6	116.6	118.2	117.3	-5.0	0.0923	16	17
114.3	117.1	108.9	113.1	113.9	115.0	114.4	-5.0	0.0366	3	19
114.8	117.6	0.0	113.8	114.8	115.0	114.5	-5.0	0.0523	4	19
0.0	118.4	0.0	113.6	115.8	112.9	113.5	-5.0	0.0901	5	19
115.4	118.6	0.0	113.3	115.3	115.7	115.6	-5.0	0.0699	6	19

Table B1. continued. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

SWEPT	TAP	ERFD TIP		V= 160.0	MAT=	0.840	MTIP= 0.600	V/DR=	0-400	
RUN	PΤ	CLP/S	ALPHA	MIC1	MIC2	MIC3	HIC4	MIC5	MIC6	MIC7
19	7	0.0777	-5.0	114.7	115.8	114.7	113.8	0.0	117.4	114-1
19	8	0.0769	-5.0	114.6	115.3	115.1	113.1	0.0	. 117.1	115.7
19	9	0.0974	0.0	116.1	117.6	115.8	114.9	0.0	119.5	0.0
19	10	0.1037	0.0	116.7	117.7	117.1	115.0	0.0	0.0	0.0
19	11	0.0555	-7.5	114.4	115.6	114.5	113.2	0.0	117.0	113.2
19	12	0.0639	-7.5	114.6	115.9	114.6	112.7	0.0	117.0	115.6
19	13	0.0714	-7.5	114.7	115.5	114.6	113.0	0.0	117.7	115.0
19	14	0.0781	-7.5	115.7	117.0	115.2	113.3	115.9	118.4	111.4
19	15	0.0861	-7. 5	115.4	117.8	115.4	113.6	117.2	118.8	111.4
19	16	0.0903	-7.5	117.9	118.5	117.4	115.1	120.0	0.0	112-2
19	17	0.0282	5.0	115.6	114.9	115.9	113.6	0.0	0.0	113.8
19	18	0.0427	6.0	115.2	115.0	115.4	113.5	0.0	0.0	113.5
19	19	0.0580	6.0	115.6	114.6	115.2	113.8	0.0	0.0	113.2
19	20	0.0753	6.0	115.0	114.7	114.9	113.8	0.0	0.0	112.6
19	21	0.0894	5.0	114.9	115.2	115.1	113.8	0.0	0.0	112.5
21	11	0.0281	-10.0	113.9	115.4	114.2	112.9	0.0	116.9	114.6
21	12	0.0445	-10.0	114.0	115.5	114.6	112.7	0.0	116.9	115.6
21	13	0.0610	-10.0	114.4	115.5	114.6	112.7	0.0	116.7	116.4

Table B1. continued. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

SWEPT	TAPE	RED TIP		V= 160.0	MAT=	0.840	MTIP= 0.600	V/OR=	- 0.400	
RUN	PT	CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	HIC6	MIC7
21	14	0.0586	-10.0	0.0	116.1	114.8	113.0	0.0	117.0	117-1
22	18	0.0614	-9.0	114.2	114.6	115.0	113.0	0.0	0.0	114.6
22	19	0.0756	-9.0	114.8	115.1	115.3	113.0	0.0	0.0	116.6
22	20	0.0650	-9.0	114.3	114.6	114.7	112.7	0.0	0.0	114.4
22	21	0.0680	-9.0	114.6	114.9	114.9	112.6	0.0	0.0	115.3
22	22	0.0554	-7.0	114.7	115.0	115.4	113.7	0.0	0.0	113.8
22	23	0.0741	-7.0	115.0	115.2	115.1	113.0	0.0	0.0	116-1
22	24	0.0709	-7-0	114.8	114.6	114.9	112.9	0.0	0.0	114.5
53	3	0.0728	-4.6	114.9	114.6	114.3	111.2	0.0	116.4	113.1
53	4	0.0741	-4.6	114.3	114.4	114.1	111.3	0.0	115.7	113.2
53	5	0.0606	-4.6	114-3	114-9	114.1	111.1	0.0	116.4	113.7
53	6	0.0883	-4.6	114.5	115.2	114.5	111.5	126.1	116.7	115.8
53	7	0.0764	-4.6	114.0	115.1	114.2	110.8	124.8	115.8	114.6
53	8	0.0740	-4.6	114.2	115.1	114.5	111.5	125.4	116.5	113.4
53	9	0.0760	-4.5	116.2	115.7	115.8	111.5	125.1	116.3	113.9
54	3	0.0753	-4.6	115.0	115.1	114.4	111.6	123.5	116.7	113-0
54	4	0.0892	-4.6	116.2	115.8	116.0	111.8	124.1	117.4	114-1
54	5	0.0614	-4.6	114.4	115.5	114.2	111.4	122.7	116.1	111.9

Table B1. continued. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

			•				* ·		·	
SWEPT	TAPE	RED TIP		V= 160.0	MAT=	0.840	MTIP= 0.600	V/ OR=	0.400	
RUN	PT	CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	MIC6	MIC7
54	6	0.0652	-6.5	114.0	115.1	114.0	111.6	122.9	117.1	112.8
54	7	0.0875	-2.6	114.8	115.2	114.5	112.1	123.3	117.0	113.9
54	8	0.0747	-4.6	114-2	115.1	114.1	111.5	122.5	116.8	113.3
54	9	0.0752	-4.6	114.4	114.4	114.2	111.7	123.2	117.0	112.4
54	10	0.0739	-4.6	113.9	113.3	113.5	111.6	121.9	115.9	111.5
54	11	0.0758	-4.6	114.2	114.9	113.9	111.6	122.3	116.6	112-1
54	12	0.0733	-4.6	114.5	115.1	114.0	112.2	122.6	116.7	112.1
63	7	0.0546	-7.6	113.4	113.5	113.8	111.8	0.0	115.6	111.7
63	8	0.0793	-6.3	113.8	113.3	113.8	112.2	0.0	114.8	112.0
63	9	0.0325	-5.0	113.8	113.9	114.0	112.3	0.0	115.5	112.1
63	10	0.0495	-5.0	114.0	113.6	114.0	112.1	0.0	115.8	112.2
63	11	0.0691	-5.0	114.5	114.4	114.2	112.5	0.0	116.2	111.8 ;
63	12	0.0843	-5.0	113.7	113.3	113.8	112.0	0.0	115.6	111.9
63	13	0.0734	-5.0	113.7	113.4	113.7	112.0	0.0	115.3	111.5

Table B1. continued. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

SWEPT	TAPE	RED TIP		V= 107.0	MAT=	0.815	MTIP= 0.650	V/OR=	0.250	
RUN	P T	CLR/S	ALPHA	MIC1	HIC2	місз	MIC4	MIC5	MIC6	MIC7
55	9	0.0567	0.0	110.1	111.5	109.4	109.5	117.3	112.6	108.3
55	12	0.0585	-5.0	106.5	107.9	106.9	104.9	114-8	. 108-1	104-8
55	13	0.0775	-5.0	107.5	107.7	106.9	105.4	115.4	108-8	105.4
55	14	0.0972	-5.0	108.9	109.1	108.8	106.5	115.9	109.6	106.5
55	15	0.0571	0.0	111.2	112.5	110.9	109.4	118.9	113.1	108.5
55	16	0.0776	0.0	111.9	113.3	111.4	109.5	0.0	114.5	109.7
55	17	0.0985	0.0	115.2	116.7	114.0	114.0	0.0	117.9	113.4

Table B1. continued. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

SWEPT	TAP	ERED TIP		V= 154.0	MAT=	0.895	MTIP= 0.650	V/OR=	0.375	
RUN	PT	CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	MIC6	MIC7
21	16	-0.0014	0.0	118.2	118.6	117.8	117.0	0.0	120.0	0.0
21	17	0.0148	0.0	117.1	117.1	117.4	116.5	0.0	. 118.9	116.2
21	18	0.0313	0.0	117.1	117.1	117.4	116.5	0.0	118.9	116.2
21	19	0.0488	0.0	117.1	117.1	117.4	116.5	0.0	118.9	116.2
21	20	0.0668	0.0	116.1	116.5	116.4	115.9	0.0	118.9	115.5
21	21	0.0836	0.0	116.3	117.0	116.5	115.7	0.0	118.7	116.0
21	22	0.0917	0.0	116.8	117.5	116.9	116.3	0.0	119.1	116.1
21	23	0.0947	0.0	116.8	117.2	116.8	116.6	0.0	119.5	115.9
21	24	0.0402	-5.0	115.7	116.5	116.1	115.2	0.0	118.9	115.1
21	25	0.0600	-5.0	116.6	116.6	116.6	115.5	0.0	118.8	115.3
21	26	0.0755	-5.0	116.7	117.4	115.4	116.2	0.0	119.0	116.0
21	27	0.0846	-5.0	116.4	116.3	116.1	115.9	0.0	118.5	115.9
21	28	0.0914	-5.0	116.7	117.3	116.3	116.9	0.0	118.3	117.8
21	29	0.0935	-5.0	117.3	117.7	116.6	116.9	0.0	0.0	118.1
21	30	0.0503	-5.0	116.3	116.1	116.9	114.6	0.0	0.0	115.9
21	31	0.0523	-5.0	115.0	115.2	115.5	115.1	0.0	0.0	115.3
21	32	0.0509	-10.0	114.6	115.1	115.4	114-2	0.0	0.0	114-1
21	33	0.0598	-10.0	114.6	115.1	115.4	114.2	0.0	0.0	114.1

Table B1. continued. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

SWEPT	TAPE	RED TIP		V= 154.0	MAT=	0.895	MTIP= 0.650	V/DR=	0.375	
RUN	PΤ	CLR/S	ALPHA	MIC1	MIC2	WIC3	MIC4	MIC5	MIC6	HIC7
21	34	0.0677	-10.0	115.4	115.7	115.9	115.1	0.0	0.0	115.1
21	35	0.0757	-10.0	115.5	115.7	115.9	114.7	0.0	0-0	115.3
21	36	0.0813	-10.0	115.3	115.9	115.9	115.2	0.0	0.0	116.2
21	37	0.0333	-10.0	115.7	115.7	115.8	115.0	0.0	0.0	114-2
5 5	22	0.0545	-5.0	115.9	115.3	115.6	114.6	123.1	117.5	113.7
5 5	23	0.0746	-5.0	115.8	115.2	115.4	114.7	123.2	117.5	113.9
55	25	0.0815	-5.0	116.1	115.6	115.1	114.5	123.5	117.7	114.3
55	26	0.0734	-5.0	117.1	117.1	116.6	115.8	123.5	118.5	114.4
55	27	0.0741	-5.0	116.1	115.3	115.7	114.8	124.3	117.1	114.3
63	14	0.0375	-5.0	115.1	114.7	114.6	113.5	0.0	116.3	112-4
63	15	0.0579	-5.0	114.8	114.6	114.3	113.6	0.0	116.6	112.5
63	16	0.0666	-5.0	114.8	114.1	114.5	113.3	0.0	115.7	112.6
63	17	0.0749	-5.0	114.7	114.4	114.7	113.6	0.0	116.1	112.8
63	18	0.0799	-5.0	114.8	114.0	114.8	113.5	0.0	115.9	112.5

Table B1. continued. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

SWEPT TAPERED TIP		V= 170.0 MAT= 0.940			MTIP= 0.685 V/DR= 0.375					
RUN	PΤ	CLR/S	ALPHA	MIC1	MIC2	HIC3	MIC4	MIC5	MIC6	MIC7
55	28	0.0379	-5.0	122.1	118.3	123-1	0.0	0.0	120.1	121.2
55	29	0.0554	-5.0	0.0	119.3	0.0	0.0	0.0	120.0	122.0
55	30	0.0652	-5.0	122.1	118.7	122.7	0.0	0.0	120.6	121.7
55	31	0.0731	-5.0	122.0	119.1	122-9	0.0	0.0	120.1	122.3
55	32	-0.0026	0.0	100.5	104.5	101.2	100.8	108.9	104.5	100.5
55	33	-0.0012	0.0	101.2	104.6	101.4	101.4	109.2	.105.3	101.7
55	34	0.0559	-7.5	0.0	119.1	0.0	0.0	0.0	119.6	0.0
5 5	35	0.0686	-7.5	124-2	119.8	125.7	0.0	0.0	120.4	0.0
55	36	0.0502	-2.5	122.2	121.0	122-1	0.0	0.0	120.5	121.6
55	37	0.0704	-2.5	122.5	121.0	123-0	0.0	0.0	121.5	122.4
55	38	0.0775	-2.5	122.5	120.5	123.5	0.0	0.0	121.2	122.5
55	39	0.0590	-2.5	121.6	120.7	122.4	0.0	0.0	121.2	122.0
55	40	0.0776	-2.5	122.5	121.3	123.3	0.0	0.0	122.1	123.2
55	41	0.0318	-2.5	121.8	120.3	122.9	0.0	0.0	120.9	122.6

Table B1. continued. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

SWEPT TAPERED TIP			V= 115.0	MAT=	0.875	MTIP= 0.700	V/DR= 0.250			
PUN	PT	CLP/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	MIC6	MIC7
55	3	0.0583	-5.0	110.4	109.4	109.6	108.9	0.0	110.6	107-9
55	4	0.0770	-5.0	110.7	109.6	110.3	108.8	0.0	110.8	108.1
55	5	0.0986	-5.0	113.3	111.4	112.9	110.7	0.0	112.4	109-0
5 5	6	0.0574	0.0	113.2	113.8	112.8	111.8	0.0	114.9	111-3
55	7	0.0795	0 • 0	115.6	116.4	115.0	114.2	0.0	117.7	113.6
55	8	0.1000	0.0	120.0	117.5	118.5	116.9	125.8	119.7	116.9

Table B1. continued. Acoustic dBA Measurements for the Swept Tapered Tip Rotor.

SWEPT TAPERED TIP		V= 175.0 MAT= 0.965		MTIP= 0.700 V/OR= 0.375						
RUN	ΡT	CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	MIC6	MIC7
56	3	0.0530	-5.0	129.3	121.8	130.7	130.6	127.9	121.7	128.7
56	4	0.0707	-5.0	129.5	121.9	130.3	130.9	128.2	121.7	128.3
56	5	0.0783	-5.0	128.7	120.6	130.2	130.9	127.8	121.9	128.6
56	6	0.0831	-5.0	129.5	121.4	130.5	131.2	128.5	122-1	128-1
56	7	0.0617	-5.0	130.1	121.0	130.9	0.0	0. • 0	122.5	128.5
56	8	0.0494	-2.5	127.1	122.3	128.8	0.0	127.5	123.1	127.7
56	9	0.0658	-2.5	127.9	122.1	129.2	0.0	127.7	123.2	128.4
56	10	0.0832	-2.5	128.0	122.3	129.1	0.0	126.5	123.4	127.8
56	11	0.0879	-2.5	128.5	122.3	129.0	0.0	127.2	124.2	127-4

SWEP	TIP			V= 80.	O MAT=	0.720	MTIP= 0.600	V/OR=	- 0.200	
RUN	ΡŤ	CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	MIC6	MIC7
48	4	0.0642	-5.0	100.5	106.0	101.4	102.0	0.0	106.1	102.5
48	5	0.0855	-5.0	101.5	108.8	102.6	101.8	0.0	108.3	100-4
48	6	0.1084	-5.0	103.5	107.8	103.3	105.2	0.0	108.6	102-1
48	7	0.1179	-5.0	103.4	110.6	104.6	104.3	0.0	109.3	103.6
48	3	0.1207	-5.0	104.3	110.1	104.9	105.0	0.0	109.4	104.0
48	9	0.0492	-2.5	101.4	106.1	101.8	101.9	0.0	106.0	101-4
48	10	0.0725	-2.5	102.2	106.8	104.9	102.9	0.0	105.9	101.4
48	11	0.0955	-2.5	103.5	110.0	105.1	104.9	0.0	109.0	102.8
48	12	0.1053	-2.5	105.2	110.5	106.2	106.5	0.0	110.5	105.8
48	13	0.1160	-2.5	107.1	113.0	107.7	108.8	0.0	112.0	107.3
48	14	0.1251	-2.5	110.4	0.0	110.9	110.8	0.0	114.3	112.1
48	15	-0.0046	0.0	98.5	103.3	99-1	99.6	0.0	103.1	98.7
48	16	-0.0032	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
48	17	0.0432	-5.0	101.7	105.7	102.9	102.6	0.0	106.2	99.7
48	18	-0.0072	0.0	105.9	109.1	106.9	104.7	0.0	108.8	102-4
48	19	0.0152	0.0	104.0	106.9	104.9	104.3	0.0	108.0	101.8
48	20	0.0394	9.0	105.0	107.4	104.9	104.0	0.0	108.8	103.6
48	21	0.0511	0.0	105.5	108.3	105.5	104.4	0.0	109.1	103.0

Table B2. continued. Acoustic dBA Measurements for the Swept Tip Rotor.

SWEPT TIP			V= 80.0	MAT= 0.720		MTIP= 0.600	V/DR= 0.200			
RUN	PT	CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	MIC6	MIC7
48	22	0.0844	0.0	107.4	111.1	107.8	106.8	0.0	110.7	106.7
48	23	0.1059	0.0	112.1	0.0	112.5	113.8	0.0	0.0	111.9
48	24	0.1173	0.0	114.9	0.0	114.7	116.1	0.0	0.0	113.8
48	25	0.1271	0.0	115.8	0.0	116.0	116.0	0.0	0.0	0.0

Table B2. continued. Acoustic dBA Measurements for the Swept Tip Rotor.

SWEPT	TIP			V= 120.0	MAT=	0.780	MTIP= 0.600	V/OR=	0.300	
RUN	PT	CLR/S	ALPHA	MIC1	MIC2	MIC3	MTC4	MIC5	MIC6	MIC7
49	3	0.0300	-5.0	107.1	109.0	107.8	106.2	0.0	109.8	105-2
49	4	0.0544	-5.0	106.9	109.0	107.8	105.9	0.0	109.8	104.9
49	5	0.0746	-5.0	107.9	108.6	108.0	106.8	0.0	109.4	105.4
49	6	0.0946	-5.0	107.2	109.8	108.1	106.4	0.0	109.7	106.4
49	7	0.1043	-5.0	107.3	109.6	108.1	106.2	0.0	109.9	105.8
49	8	0.1095	-5.0	109.4	111.4	109.9	107.4	0.0	112.0	106.4
49	9	0.0391	-10.0	106.7	109.4	107.7	105.3	0.0	109.5	105.4
49	10	0.0517	-10.0	106.4	109.3	107.0	106.0	0.0	108.4	105.4
49	11	0.0721	-10.0	105.4	109.4	107.6	105.5	0.0	109.2	106.3
49	12	0.0902	-10.0	108.6	110.1	109.3	105.8	0.0	109.6	105-8
49	13	0.0807	-10.0	106.8	109.0	108.1	105.9	0.0	109.5	106.3
49	14	-0.0072	0.0	109.0	112.7	109.9	108.6	0.0	111.8	107.7
49	15	0.0143	0.0	108.6	110.8	109.0	108.1	0.0	111.2	106-8
49	16	0.0350	0.0	108.3	110.6	108.6	107.3	0.0	111.0	106.6
49	17	0.0551	0.0	108.3	110.7	109.2	107.6	0.0	111.6	107-1
49	18	0.0785	0.0	108.6	111.4	109.4	107.9	0.0	111.6	107.4
49	19	0.0974	0.0	110.7	113.6	111.5	109.8	0.0	113.6	110.5
49	20	0.1077	0.0	111.5	114.5	111.3	109.9	0.0	114.1	110.1

Table B2. continued. Acoustic dBA Measurements for the Swept Tip Rotor.

SWEPT TIP			V= 120.0	MAT=	0.780	MTIP= 0.600	V/DR= 0.300			
RUN	PT	CLR/S	ALPHA	MTC1	MIC2	MIC3	MIC4	MIC5	MIC6	MIC7
49	21	0.1159	0.0	113.7	0.0	114.0	113.2	0.0	117.3	0.0
49	22	-0.0045	0.0	113.7	0.0	114.0	113.2	0.0	117.3	0.0
49	23	-0.0035	0.0	99.7	105.1	101.0	100.2	0.0	104.4	100.8
49	24	0.0434	-5.0	112.9	113.6	113.6	111.5	0.0	115.0	112.7
49	25	0.0505	-5.0	112.1	113.9	113.3	111.1	0.0	115.8	113.5
49	26	0.0808	-5.0	112.8	114.2	113.5	111.3	0.0	114.8	114.3
49	27	0.0895	-5.0	113.1	114.1	113.1	111.0	0.0	115.3	115.0
49	28	0.0965	-5.0	113.1	114.1	113.1	111.0	0.0	115.3	115.0
49	29	0.0429	-10.0	111.8	112.5	112.9	110.4	0.0	114.8	111.7

Table B2. continued. Acoustic dBA Measurements for the Swept Tip Rotor.

SWEPT	TIP				MAT=	0.825	MTIP= 0.600	V/DR= 0.375		
RUN	PT	CLR/S	ALPHA	MTC1	MIC2	MIC3	MIC4	MIC5	NIC6	HIC7
49	24	0.0434	-5.0	112.9	113.6	113.6	111.5	0.0	115.0	112.7
49	25	0.0605	-5.0	112.1	113.9	113.3	111.1	0.0	115.8	113.5
49	26	0.0808	-5.0	112.8	114.2	113.5	111.3	0.0	114.8	114.3
49	27	0.0895	-5.0	113-1	114.1	113-1	111.0	0.0	115.3	115.0
49	28	0.0965	-5.0	113-1	114.1	113.1	111.0	0.0	115.3	115.0
49	29	0.0429	-10.0	111-8	112.5	112.9	110.4	0.0	114.8	111.7
49	30	0.0525	-10.0	112.3	113.5	113.1	110.8	0.0	113.6	113.6
49	31	0.0605	-10.0	111-8	112.2	113.2	110.6	0.0	113.8	114.4
49	32	0.0713	-10.0	111.7	112.7	113.2	110.7	0.0	114.3	114.3
49	33	-0.0068	0.0	113.6	115.8	114.2	113.0	0.0	116.5	115.3
49	34	0.0123	0.0	113.0	114.0	113.5	112.0	0.0	115.4	115.1
49	35	0.0332	0.0	112.7	113.8	113.6	111.6	0.0	116.4	112.3
49	36	0.0502	0.0	112.3	116.0	113.8	111.8	0.0	115.0	112.6
49	37	0.0694	0.0	113.1	113.9	114-0	112.1	0.0	116.0	112-4
49	38	0.0871	0.0	113.0	113.4	114.1	112.0	0.0	114.7	113.3
49	39	0.0950	0.0	113.4	114.6	113.8	111.9	0.0	115.9	114.5
49	40	0.1028	0.0	113-4	115.2	114.5	112.4	0.0	116.2	115.0
51	40	0.0731	-4.6	114.5	113.5	114.6	110.5	113.2	114.2	113.4

SWEPT	TIP			V= 160.0	MAT=	0.825	MTIP= 0.595	V/OR=	0.390	
RUN	PT	CLR/S	ALPHA	MIC1	MIC2	MTC3	MIC4	MIC5	MIC6	MIC7
51	25	0.0735	-4.6	113.5	114.6	113.4	110.8	115.9	115.3	114.7
51	26	0.0535	-4.5	114.4	114.1	113.2	110.5	115.4	114.5	115.8
51	27	0.0870	-4.6	113.9	115.3	114.0	111.5	115.2	115.7	115.3
51	28	0.0733	-4.6	115.4	115.2	114.8	110.9	115.8	114.8	114.6
51	29	0.0730	-4.6	113.7	114.0	112.8	110.5	115.5	114.4	114.1
51	30	0.0736	-4.6	113.1	113.2	112.7	110.6	115.1	114.3	114.7
51	31	0.0588	-6.6	113.2	113.5	113.1	110.4	115.8	114.8	114.7
51	32	0.0879	-2.5	115.1	114.9	113.4	111.3	115.5	115.7	115.1
51	33	0.0729	-4.6	113.0	114.0	113.5	110.7	114.7	114.9	114.5
51	34	0.0882	-4.6	115.2	114.8	115.1	110.9	114.9	115.7	115.3
51	35	0.0548	-4.6	112.8	114.2	113.1	110.4	114.7	114.7	113.2
51	36	0.0730	-4.6	113.1	113.0	113.3	111.1	114.6	114.8	114.9
51	37	0.0706	-4.6	114.9	113.8	114.8	110.7	114.3	115.1	114.1
51	38	0.0711	-4.6	113.0	113.8	113.5	110.8	113.9	114.4	114.6
51	39	0.0590	-4.6	113.4	114.3	113.3	111.2	115.4	115.6	114.8

Table B2. continued. Acoustic dBA Measurements for the Swept Tip Rotor.

SWEPT	TIP			V= 164.0	MAT=	0.895	MTIP= 0.650	V/OR=	0.375	
RUN	PT	. CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	MIC6	MIC7
49	43	0.0418	-5.0	115.8	117.0	115.3	115.6	0.0	118.6	115.3
49	44	0.0626	-5.0	116.0	118.0	116.4	115.5	0.0	118.3	115.2
49	45	0.0704	-5.0	116.2	117.2	116.3	116.2	0.0	118.2	115.6
51	3	0.0502	-5.0	117.3	118.8	117.1	116.0	0.0	120.4	115.8
51	4	0.0603	-5.0	125.3	117.9	117.0	116.1	0.0	120.2	115.8
51	5	0.0692	-5.0	117.0	117.4	116.8	115.6	0.0	120-1	115.8
51	6	0.0778	-5.0	119.2	117.7	119.0	115.2	0.0	120.1	115.8
51	7	0.0883	-5.0	118.1	118.3	117.8	116.6	0.0	120.2	115.6
51	8	0.0906	-5.0	117.4	117.7	115.9	116.4	0.0	120.0	115.9
51	9	0.0328	-10.0	117.3	115.5	116.7	114.1	0.0	117.8	113.8
51	10	0.0430	-10.0	115.9	115.0	116.3	114.6	0.0	118.1	114.6
51	11	0.0526	-10.0	116.9	115.7	116.8	113.7	0.0	117.5	114.3
51	12	0.0623	-10.0	117.8	115.2	116.5	115.1	0.0	118.1	114.8
51	13	0.0671	-10.0	117.0	114.8	116.9	113.9	0.0	117.5	114-7
51	14	-0.0039	0.0	118.4	119.2	118.0	117.2	0.0	120.0	117.6
51	15	0.0100	0.0	117.4	117.9	117.3	116.3	0.0	119.0	116.6
51	16	0.0306	0.0	117.7	117.3	117.3	116.7	0.0	118.4	116.2
51	17	0.0491	0.0	118.2	117.1	117.9	116.0	0.0	118.4	115.3

Table B2. continued. Acoustic dBA Measurements for the Swept Tip Rotor.

SWEPT	TIP			V= 164.0	# # T =	0.895	MTIP= 0.650	V/DR=	0.375	
RUN	PT .	CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	MIC6	MIC7
51	18	0.0591	0.0	118.2	117.1	117.9	116.0	0.0	118.3	115.5
51	19	0.0685	0.0	117.4	116.4	117.0	116.2	0.0	. 117.9	115.8
51	20	0.0781	0.0	117.2	116.7	117.0	115.2	0.0	118.1	115.5
5 1	21	0.0861	0.0	117.2	116.6	116.7	115.5	0.0	118.4	115.9
51	22	0.0939	0.0	118.9	117.5	117.6	115.3	0.0	118.3	115.5
59	5	0.0546	-5.0	117.1	117.7	116.6	116.0	0.0	119.4	114.4
59	6	0.0748	-5.0	117.1	118.2	116.5	115.4	0.0	119.8	115.2
59	7	0.0933	-5.0	117.4	118.4	117.4	116.6	0-0	119.9	115.7

Table B2. continued. Acoustic dBA Measurements for the Swept Tip Rotor.

SWEPT	TIP			v= 170.0	=TAM	0.940	MTIP= 0.685	V/OR=	0.375	
RUN	PΤ	CLR/S	ALPHA	MTC1	MIC2	MIC3	MIC4	MIC5	MIC6	MIC7
59	8	0.0464	-5.0	0.0	119.6	0.0	0.0	0.0	119.7	0-0
59	9	0.0651	-5.0	0.0	120.3	0.0	0.0	0.0	120.4	0.0
59	10	0.0764	-5.0	0.0	120.4	0.0	0.0	0.0	120.9	0.0
59	11	0.0568	-5.0	0 - 0	120.0	0.0	0.0	0.0	120.0	0.0
59	12	0.0513	-2.5	123.6	121.0	124.5	0.0	0.0	121.4	0.0
59	13	0.0609	-2.5	0.0	120.3	123.5	0.0	0.0	121.7	0.0
59	14	0.0692	-2.5	0.0	120.5	0.0	0.0	0.0	120.7	0.0
59	15	0.0811	-2.5	123.3	120.4	123.8	0.0	0.0	121.1	0.0
59	16	0.0520	-7.5	0.0	119.1	0.0	0.0	0.0	120.1	0.0
59	17	0-0711	-7.5	0.0	119.6	0.0	0.0	0.0	120.8	0-0
59	18	0.0770	-7.5	0.0	119.0	0.0	0.0	0.0	121.3	0.0

Table B3. Acoustic dBA Measurements for the Tapered Tip Rotor.

TAPE	RED T	IP		V= 80.	O MAT=	0.720	MTIP= 0.600	V/OR=	= 0-200	
RUN	ΡŢ	CLR/S	ALPHA	MIC1	MIC2	MTC3	MIC4	MIC5	MIC6	MIC7
23	3	-0.0091	0.0	106.6	109.7	107.2		108.4	110.5	110.1
23	4	0.0129	0.0	107.4	107.8	107.5	105.5	107.2	109.6	109.9
23	5	0.0349	0.0	106.0	108.2	105.8	106.0	107.8	109.4	106-7
23	6	0.0584	0.0	108.1	108.4	108.0	106.3	0.0	109.3	106.7
23	7	0.0808	0.0	108.8	112.0	108.9	107.8	0.0	112.0	107.6
23	8	0-1037	0.0	111-3	116.8	111.2	112.1	0.0	114.6	112.1
23	9	0.1149	0.0	114.4	0.0	114.6	114.9	114.5	117.5	114.1
23	10	0.1253	0.0	117.0	0.0	117.0	117.1	117.1	119.5	116.8
23	11	0.1344	0.0	119.5	0.0	118.9	120.0	119.5	0.0	0.0
23	12	0.1374	0.0	120.9	122.5	0.0	120.7	0.0	123.5	0.0
23	13	0.0266	-2.5	106.2	107.7	106.2	104.4	109.2	107.6	105.4
23	14	0.0485	-2.5	105.1	108.5	105.5	103.6	0.0	108.0	103.2
23	15	0.0731	-2.5	105.6	111.4	106.3	104.5	0.0	108.4	104.3
23	16	0.0955	-2.5	108.4	112.0	107.3	107.8	0.0	110.4	107.2
23	17	0.1172	-2.5	107.7	113.2	107.9	108.9	0.0	111.7	111.4
23	18	0.1263	-2.5	112.7	0.0	112.4	112.4	0.0	115.3	113.7
23	19	0.1288	-2.5	116.4	0.0	115.2	115.5	0.0	0.0	116.9
23	20	-0.0043	0.0	116.4	0.0	115.2	115.5	0.0	0.0	116.9

Table B3. continued. Acoustic dBA Measurements for the Tapered Tip Rotor.

TAPE	TAPERED TIP			V = 80.0	MAT=	0.720	MTIP= 0.600	V/OR=	0.200	
RUN	PT	CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	MIC6	MIC7
23	21	-0.0050	0.0	102.1	105.5	102.2	102.3	0.0	105.9	101.5
23	22	0.0423	-5.0	104.7	107.3	104.3	102.8	0.0	. 106.5	102.7
23	23	0.0647	-5.0	105.4	107.7	104.3	103.0	0.0	108.6	105.7
23	24	0.0378	-5.0°	104.3	107.7	103.3	107.2	0.0	109.1	107-8
23	25	0.1094	-5.0	104.9	110.0	104.3	105.8	0.0	110.6	109.8
23	26	0.1182	-5.0	106.9	112.1	106.1	105.4	0.0	110.8	110.1
23	27	0.1248	-5.0	110.4	112.7	109.9	107.9	0.0	111.9	112.3
23	28	0.0256	10.0	107.5	105.5	107.3	104.1	112.2	108.8	108.9
23	29	0.0468	10.0	107.3	106.1	107.2	104.0	110.1	109.2	108.4
23	30	0.0633	10.0	109.1	107.2	108.8	105.0	114.0	109.3	109.0
23	31.	0.0907	10.0	109.0	108.1	108.7	106.3	112.0	110.6	109.2
23	32	0.1141	10.0	109.3	109.6	109.1	107.0	114.0	112.6	110.2
23	33	0.1362	10.0	110.5	109.8	110.0	108.1	114.5	112.5	111.0
23	34	0.1454	10.0	108.9	110.4	109.1	107.9	113.5	111.4	109-7

TAPE	RED TI	p		V= 120.0	MAT=	0.780	MTIP= 0.600	V/DR=	0.300	
RUN	PΤ	CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	MIC6	MIC7
24	3	0.0013	0.0	112.1	112.6	111.5	110.5	0.0	114.7	113.1
24	Ą	0.0108	0.0	110.9	111.8	111.2	110.1	0.0	113.8	111.3
24	-5	0.0327	0.0	110.8	111.0	110.3	108.9	0.0	112.1	110.6
24	6	0.0538	0.0	110.2	111.3	110.2	109.1	0.0	111.9	108-5
24	7	0.0751	0.0	109.9	111.6	110.5	109.5	0.0	112.1	108.8
24	8	0.0959	0.0	111.1	113.0	111.2	110.1	0.0	113.9	111.0
24	9	0.1055	0.0	113.3	116.0	112.6	112.5	0.0	115.8	114.2
24	10	0.1148	0.0	114.9	118.0	115.5	115.1	0.0	117.6	0.0
24	11	0.1208	0.0	118.3	120.6	117.6	117.2	0.0	120.2	119.4
24	12	0.0271	7.5	112.6	111.7	112.4	110.0	0.0	114.5	111.5
24	13	0.0463	7.5	112.1	111.5	111.4	109.8	0.0	113.5	110.7
24	14	0.0667	7.5	112.2	111.7	111-9	109.8	0.0	113.7	110.7
24	15	0.0859	7.5	111.0	111.1	111.3	109.3	0.0	112.5	110.3
24	16	0.1066	7.5	111.3	110.9	111.3	109.5	0.0	112.9	109.4
24	17	0.1156	7.5	111.1	111.9	111.2	109.7	0.0	112.7	109.3
24	18	0.1231	7.5	110.9	112.4	111-1	109.7	0.0	112.8	109.5
25	3	0.0505	-5.0	108.0	109.0	108.6	107.4	0.0	110.3	105.3
25	4	0.0729	-5.0	107.6	108.8	109.4	107.2	0.0	111.6	107.1

Table B3. continued. Acoustic dBA Measurements for the Tapered Tip Rotor.

TAPE	RED TI	P		V= 120.0	MAT=	0.780	MTIP= 0.600	V/ OR=	0.300	
RUN	PΤ	CLR/S	ALPHA	MIC1	HIC2	MIC3	MIC4	MIC5	MIC6	MIC7
25	5	0.0921	-5.0	107.8	109.8	110.0	106.9	0.0	111.6	110.2
25	6	0.1014	-5.0	108.4	110.8	109.2	106.9	0.0	113.2	110.6
25	7	0.1050	-5.0	109.2	111.9	110.4	108-2	0.0	114.3	113.6
25	8	0.0504	-10.0	108.3	112.2	109.1	106.0	0.0	110-7	109-1
25	9	0.0611	-10.0	107.3	110.8	108.2	106.3	0.0	110-4	109.5
25	10	0.0710	-10.0	107.6	112.2	108.3	105.7	0.0	110.7	110.5
25	11	0.0812	-10.0	108.5	112.3	108.3	106.1	0.0	111.2	110.0
26	3	0.0836	-5.0	108.4	110.4	108.6	106-1	0.0	110.1	108.7
26	4	0.0495	-7.5	107.9	112.5	108.0	108-8	0.0	109.1	107.4
26	5	0.0610	-7.5	107.7	112.0	108.8	106.3	0.0	109.1	107.6
26	6	0.0816	-7.5	108.7	109.7	108.7	107.1	0.0	110.7	109.7
26	7	0.0913	-7.5	108.5	110.3	108.8	106-4	0.0	110.5	109.5
26	8	0.0997	-7.5	108.0	110.7	109.2	107.9	0.0	112.2	113.5
26	9	0.1046	-7.5	110.1	114.4	111.1	108.6	0.0	115.1	116.9
28	3	0.0652	-2.5	108.1	108.1	108.8	107.0	0.0	110.6	111.1
28	4	0.0592	-2.5	108.1	108.1	108.8	107.0	0.0	110.6	111.1
28	5	0.0568	-2.5	107.2	109.0	108.4	107.4	0.0	110.0	110.6
28	6	0.0805	-2.5	108.7	110.2	108.7	107.3	0.0	110.6	109.8

Table B3. continued. Acoustic dBA Measurements for the Tapered Tip Rotor.

TAPE	RED TI	P		V= 120.0	MAT=	0.780	MTIP= 0.600	V/DR=	- 0.300	
RUN	PT	CLR/S	ALPHA	MIC1	HIC2	MIC3	MIC4	MIC5	MIC6	HIC7
28	7	0.0686	-2.5	108.8	110.1	109.3	108.9	0.0	109.8	110.4
28	8	0.0680	-2.5	108.2	109.8	108.2	106.7	0.0	111.0	109.6
28	9	0.0593	-2.5	107.7	110.2	109.1	106.0	0.0	111.3	110.4
28	12	0.0659	-2.5	107.9	109.6	107.5	105.6	0.0	111.0	109.4
28	13	0.0553	-4.5	108.3	108.3	108.7	106.3	0.0	110.1	110.3
28	14	0.0797	-0.5	108.6	109.9	108.7	107.1	0.0	109.9	108.7

TAPE	RED T	IP		V= 150.0	MAT=	0.825	MTIP= 0.600	V/OR=	0.375	
RUN	PT	CLP/S	ALPHA	MIC1	MIC2	MTC3	MIC4	MIC5	MIC6	MIC7
25	12	-0.0084	0.0	115.8	117.2	116.5	114.5	0.0	118.9	116.1
25	13	0.0102	0.0	116.4	116.4	116.7	113.1	0.0	. 117.3	114.9
25	14	0.0298	0.0	114.9	114-2	115.0	112.9	0.0	116.5	114.3
2 5	15	0.0490	0.0	114.8	114.0	115.0	112.9	0.0	117.2	113.7
25	16	0.0675	0.0	114.8	114.3	115.2	113.2	0.0	116.6	114.4
25	17	0.0849	0.0	114-4	114.5	115.0	112.9	0-0	116.3	113.7
25	18	0.0933	0 • 0	114.9	114.8	114.9	112.9	0.0	116.9	115.2
25	19	0.1009	0.0	114.9	115.2	115.5	113.7	0.0	118.3	115.9
26	10	0.0496	-5.0	114.0	115.8	114.6	112.4	0.0	116.1	112.9
26	11	0.0588	-5.0	113.8	115.6	114.7	112.0	0.0	116.4	113.4
26	12	0.0774	-5.0	114.4	124.9	114.9	111.8	0.0	117.2	114-1
26	13	0.0871	-5.0	114.5	116.5	114.8	112.3	0.0	117.4	117.3
26	14	0.0423	-10.0	113.1	113.5	114.4	111.8	0.0	115.6	113.7
26	15	0.0524	-10.0	114.1	114.1	115.1	112.1	0.0	116.6	112.7
26	16	0.0604	-10.0	113.9	114.3	114.4	111.5	0.0	117.7	114.0
26	17	0.0707	-10.0	115.3	115.1	115.4	112.3	0.0	117.5	116.5
26	18	-0.0031	0.0	100.9	105.0	101.9	102.0	0.0	105.5	102-1
26	19	0.0757	-10.0	114.1	114.6	114.9	111.3	0.0	117.1	115.1

Table B3. continued. Acoustic dBA Measurements for the Tapered Tip Rotor.

TAPE	RED TI	[P		V= 150.0	MAT=	0.825	MTIP= 0.600	V/ 0R=	0.375	
RUN	PΤ	CLR/S	ALPHA	MIC1	MIC2	MTC3	MIC4	MIC5	MIC6	MIC7
26	20	0.0244	6.0	114.8	114.9	115.5	112.8	0.0	117.6	114.4
26	21	0.0430	6.0	114.5	114.2	114.8	112.6	0.0	. 116.4	114.5
26	22	0.0516	6.0	114-1	114.1	114.7	112.2	0.0	116.2	114.0
26	23	0.0609	6.0	114.0	113.9	114.6	112.4	0.0	116.0	113.0
25	24	0.0592	5.0	114.3	114.1	114.6	112.2	0.0	116.2	113.6
26	25	0.0769	6.0	114.0	113.6	114.7	112.3	0.0	116.0	113.0
26	26	0.0849	6.0	113.7	114.3	114.4	112.0	0.0	115.8	112.1
30	10	0.0699	-4.2	113.1	114.8	113.5	111.2	0.0	115.7	117.6
30	11	0.0702	-4.2	114.2	115.2	114.5	111.5	0.0	115.6	117.5
30	12	0.0564	-4.2	113.7	113.9	113.8	111.2	0.0	116.0	115.0
30	13	0.0870	-4.2	114.0	115.6	113.9	111.9	0.0	116.4	116.5
30	14	0.0724	-4.2	114.3	116.2	114.0	111.8	0.0	116.7	116.8
30	15	0.0707	-4.2	113.5	114.8	113.8	111.2	0.0	115.5	117.6
30	16	0.0716	-4.2	115.1	115.5	114.5	112.0	0.0	116.3	116.1
30	17	0.0983	-4.2	114.9	116.5	115.3	113.2	0.0	117.2	118.7
30	18	0.0395	-4.2	113-2	114.8	113.6	111.5	0.0	115.1	115.6
30	19	0.0849	-2.2	113.2	114.9	113.6	111.5	0.0	115.1	115.6
30	20	0.0533	-6.2	114.0	115.0	114.4	112.4	0.0	117.9	116.4

Table B3. continued. Acoustic dBA Measurements for the Tapered Tip Rotor.

TAPE	RED TI	D		V= 150.0	MAT=	0.825	MTIP= 0.600	V/DR=	0.375	
RUN	PT	CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	MIC6	MIC7
30	21	0.0723	-4.2	114.7	114.6	114.9	112.4	0.0	118.4	117.6
30	22	0.0734	-4.2	114.6	114.9	115.0	112.9	0.0	118.7	117-4
30	23	0.0717	-4-2	115.5	116.1	115.1	112.1	0.0	118.3	116.7
30	24	0.0723	-4.2	114.8	116.1	114.8	112.1	0.0	117.7	117-2
30	25	0.0723	-4.2	114.5	115.7	113.9	112.4	0.0	117.7	116.8
30	26	0.0711	-4.2	114.3	116.1	115.1	112.6	0.0	118.1	117.6
32	3	0.0232	5.0	114.7	114.7	115.2	113.3	111-8	117.5	115.0
32	4	0.0410	6.0	116.0	115.5	116.1	113.0	111.4	117.2	113.9
32	5	0.0520	6.0	114.1	114.4	114.9	113.0	111.0	116.8	114.0

Table B3. continued. Acoustic dBA Measurements for the Tapered Tip Rotor.

TAPE	PED TI	P		V= 170.0	MAT=	0.940	MTIP= 0.585	V/DR=	0.375	
RUN	PΤ	CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	HIC5	MIC6	MIC7
57	8	0.0383	-5.0	114.1	114.4	114.9	113.0	111.0	116.8	114.0
58	3	0.0384	-5.0	0.0	118.4	0.0	0.0	0.0	119.9	0.0
58	4	0.0574	-5.0	0.0	118.9	0.0	0.0	0.0	119.8	0.0
58	5	0.0696	-5.0	123.8	118.2	125.2	126.6	0.0	119.3	124.0
58	6	0.0778	-5.0	122.0	118.2	123.7	125.0	0.0	119.4	123.1
58	7	0.0817	-5.0	122.8	118.2	124.1	125.5	132.9	119.0	122.7
58	8	0.0514	-2.5	121.7	120.4	123.4	125.3	133.9	120.6	122.9
58	9	0.0505	-2.5	121.7	119.5	122.8	125.0	0.0	120.1	123.6
58	11	0.0706	-2.5	120.2	119.6	120.6	122.8	131.2	119.9	120.9
58	12	0.0780	-2.5	121.1	119.4	121.9	124.6	132.6	119.8	122-1
58	15	0.0536	-7.5	124.8	117.5	126.9	126.7	0.0	118.7	124-8
58	16	0.0691	-7.5	124.1	118.0	126.0	126.1	0.0	118.9	124-1

Table B3. continued. Acoustic dBA Measurements for the Tapered Tip Rotor.

TAPE	RED TI	P		V= 175.0) MAT=	0.965	MTIP= 0.700	V/OR=	0.375	
RUN	PT	CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	MIC6	MIC7
58	17	0.0478	-7.5	130.6	119.2	132.1	131.0	0.0	121.2	129.7
58	18	0.0700	-7.5	130.0	119.3	130.7	130.2	0.0	121.3	129.9
58	19	0.0560	-5.0	130.2	120.8	131-1	131.2	0.0	122.1	129.3
58	20	0.0558	-5.0	129.7	121.5	131.0	131.0	0.0	121.6	129.0
58	21	0.0762	-5.0	130-6	122.2	131.1	131.4	0.0	123.7	129.1
58	22	0.0846	-5.0	129.3	121.5	130.5	130.5	0.0	122.9	129.0
58	23	0.0522	-2.5	129.0	0.0	129.5	130.5	0.0	123.9	128-5
58	24	0.0685	-2.5	129-2	124.0	130.0	130.7	0.0	123.0	128.8
58	26	0.0783	-2.5	127.9	122.7	129.0	130.6	0.0	123.1	128.0

RECT	A NG UL A	R TIP		V= 80.0	MAT=	0.720	MTIP= 0.600	V/0R=	0.200	
RUN	PT	CLR/S	ÄLPHA	MIC1	MIC2	MIC3	MIC4	MIC5	MIC6	MI C7
39	. 3	0.0270	-2.5	102.7	105.8	103.0	102.5	0.0	106.7	102.8
39	4	0.0498	-2.5	102.2	106.6	102.6	102.4	0.0	106.2	102.3
39	5	0.0737	-2.5	104.5	109.2	104.9	104.1	0.0	107.5	102.9
39	6	0.0953	-2.5	104.8	110.9	104.2	106.4	0.0	109.7	104.7
39	7	0.1075	-2.5	104.5	111.3	105.8	106.7	0.0	109.6	106.0
39	8	0.1174	-2.5	105.8	111.8	106.6	107.2	0.0	110-4	107.2
39	9	0.0409	-5.0	100.6	106.7	102.5	102.3	0.0	105.0	102.3
39	10	0.0634	-5.0	101.3	108.4	102.7	104.8	0.0	105.8	100.7
39	11	0.0891	-5.0	103.9	105.8	102.4	103.9	0.0	107.1	104.8
39	12	0.1099	-5.0	105.4	107.7	105.3	105.3	0.0	108.4	104.2
39	13	0.1176	-5.0	104.1	110.9	105.1	105.1	0.0	109.7	107.2
39	14	-0.0055	0.0	101.0	105.8	101.9	102.1	0.0	105.6	101.6
39	15	-0.0102	0.0	104.7	198.7	105.2	104.3	0.0	109.6	106.6
39	16	0.0109	0.0	104.0	106.3	104.3	103.6	0.0	107.0	103.5
39	17	0.0347	0.0	104.3	108.4	104.4	104.0	0.0	108.5	104.1
39	18	0.0586	0.0	104.4	108.1	104.7	104.8	0.0	108.1	103.7
39	19	0.0798	0.0	107.5	112.5	108.4	108.0	0.0	111.7	105.9
39	20	0.1050	0.0	111.3	0.0	112.4	112.9	0.0	116.7	111.8

Table B4. continued. Acoustic dBA Measurements for the Rectangular Tip Rotor.

RECTA	NGULA	R TIP		V= 80.	= TAM 0.	0.720	MTIP= 0.600	V/OR=	0.200	
RUN	PT	CLP/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	MIC6	MIC7
30	21	0.1152	0.0	113.6	0.0	113.7	115.0	0.0	118.7	114.0
39	22	0.1248	0.0	115.8	0.0	116.7	116.4	0.0	0.0	114.8
39	23	0.0465	10.0	105.8	105.5	106.3	103.5	0.0	107.8	101.2
39	24	0.0688	10.0	105.9	105.7	106.0	104.0	0.0	107.9	102.5
39	25	0.0902	10.0	106.3	107.0	106.6	104.9	0.0	108.5	103.6
39	26	0.1131	10.0	108.2	109.4	108.3	106.9	0.0	112.0	104.9
39	27	0.1370	10.0	109.4	109.7	109.7	108.9	0.0	112.0	106.6
39	28	0.1449	10.0	107.8	110-6	108.1	108.1	0.0	110.9	107.5
39	29	0.0248	10.0	104.0	104.7	104.7	102.7	0.0	107.0	101.8

Table B4. continued. Acoustic dBA Measurements for the Rectangular Tip Rotor.

RECT	ANGUL	AR TIP		V= 120.0	MAT=	0.780	MTIP= 0.600	V/OR=	0.300	
RUN	PΤ	CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	MIC6	HIC7
40	. 3	0.0293	-5.0	108.0	109.9	108.5	106.7	0.0	111-0	105.7
40	4	0.0498	-5.0	107.7	108.9	108.8	107.1	0.0	110.5	105.8
40	5	0.0717	-5.0	107.1	110.0	108.5	106.8	0.0	110.4	105.8
40	6	0.0910	-5.0	107.3	112.0	108.4	106.8	0-0	110.5	106.4
40	7	0.1001	-5.0	108.0	112.3	109.4	107.4	0.0	111.8	106.9
40	8	0.1074	-5.0	108.9	112.5	109.9	108.7	0.0	112.6	109-2
40	9	0.0253	-10.0	106.9	110.0	108.0	105.9	0.0	110.8	105.4
40	10	0.0481	-10.0	105.9	111.3	108.2	106.8	0.0	110.1	105.9
40	11	0.0695	-10.0	106.7	110.2	107.9	105.9	0.0	110.1	106.3
40	12	0.0887	-10.0	107.7	110.7	107.9	106.7	0.0	110.9	107-1
40	13	0.0984	-10.0	107.5	111.4	109.1	107.4	0.0	111.8	106.2
40	14	-0.0103	0.0	110.6	113.2	111.0	109.9	0.0	113.8	109.8
40	15	0.0115	0.0	109.5	112.0	110.2	109.3	0.0	112.7	108.0
40	16	0.0350	0.0	108.9	110.8	109.5	108.6	0.0	111.7	107.3
40	17	0.0550	0.0	109.1	111.3	109.7	108.6	0.0	112.5	108.8
40	18	0.0764	0.0	109.5	112.1	109.8	109.1	0.0	112.2	108.8
40	19	0.0951	0.0	111.3	113.7	111.3	110.2	0.0	114.8	109.8
40	20	0.1143	0.0	114.1	116.3	114.5	114.3	0.0	116.2	0.0

Table B4. continued. Acoustic dBA Measurements for the Rectangular Tip Rotor.

RECT	ANGULA	R TIP		V= 120.0	MAT=	0.780	MTIP= 0.600	V/OR=	0.300	
RUN	PΤ	CLP/S	ALPHA	MIC1	MTC2	MIC3	MIC4	MIC5	MIC6	MIC7
40	21	0.1207	0.0	116.5	119.1	117.0	115.9	0.0	118.8	115.8
41	. 3	0.0196	5.0	105.6	108.9	106.5	105.1	0.0	109.4	107.6
41	• 4	0.0422	6.0	108.8	110.5	109.3	108.6	0.0	112.1	107.5
41	5	0.0628	6.0	108.7	110.4	109.2	108.2	0.0	111.6	107.4
41	6	0.0819	5.0	109.0	110.4	109.5	108.2	0.0	111.9	107.5
41	7	0.1043	6.0	108.6	110.2	109.0	108.1	0.0	111.4	107-6
41	8	0.1128	6.0	108.8	110.7	109.5	108.6	0.0	111.6	108-2
41	9	0.1202	6.0	109.3	111.5	109.9	109.8	0.0	112.2	109.0
42	3	0.0696	-2.5	108.8	110.3	108.7	107.7	0.0	111.2	106.4
42	4	0.0690	-2.5	108.5	109.9	108.4	107.1	0.0	111.2	106.6
42	5	0.0575	-2.5	108.1	109.6	107.6	107.3	0.0	110.3	106.6
47	6	0.0849	-2.5	108.8	111.5	109.1	107.9	0.0	111.2	108.4
42	7	0.0702	-2.5	107.8	110.1	103.3	107.1	0.0	110.9	108-1
42	8	0.0692	-2.5	107.2	109.8	108.8	106.7	0.0	110.0	106.5
42	9	0.0706	-2.5	108-2	109.5	108.4	107.4	0.0	111.0	108.0
42	10	0.1003	-2.5	109-6	113-2	110.7	110.0	0.0	113.1	108.4
42	11	0.0360	-2.5	107.3	109.4	108.0	106.8	0.0	110.6	108.0
42	12	0.0694	-2.5	107.2	109.7	108.7	107.6	0.0	111.3	108-2

Table B4. continued. Acoustic dBA Measurements for the Rectangular Tip Rotor.

RECT	ANGULI	AR TIP		V= 120.0	MAT=	0.780	MTIP= 0.600	V/OR=	0.300	
RUN	PT	CLR/S	ALPHA	MIC1	MIC2	MIC3	HIC4	MIC5	MIC6	MIC7
42	13	0.1002	-2.5	109.0	113.7	109.5	109.1	0.0	112.9	109.3
42	14	0.0385	-2.5	107.2	108.7	108.1	107.8	0.0	111.2	106.9
42	15	0.0695	-2.5	107.2	109.5	108.9	107.9	0.0	111.5	108.2
42	16	0.0574	-4.5	107.2	108.4	108.3	107.3	0.0	109.9	106.1
42	17	0.0806	-0.5	108.4	110.9	108.8	108.1	0.0	110.8	107.1
42	18	0.0690	-2.5	107.5	110.5	108.1	107.1	0.0	110.8	106.5
42	19	0.0694	-2.5	107.9	110.9	108.4	107.0	0.0	110.4	106.5
42	20	0.0692	-2.5	107.8	110.4	108.2	106.8	0.0	111.7	107.0
42	21	0.0686	-2.5	107.5	110.3	108.4	106.7	0.0	110.0	107.6

Table B4. continued. Acoustic dBA Measurements for the Rectangular Tip Rotor.

RECT	ANGUL	AR TIP		V= 150.0	MAT=	0.825	MTIP= 0.600	V/OR=	0.375	
RUN	PΤ	CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	MIC5	MIC6	HI C7
41	10	0.0505	-5.0	113.0	115.0	113.7	112-1	0.0	115.1	110.9
41	11	0.0508	-5.0	112.9	115.7	113.6	112.1	0.0	. 115.8	111.3
41	12	0.0620	-5.0	112.6	114.9	113.8	111.6	0.0	115.8	110.6
41	13	0.0801	-5.0	112.3	114.5	113.9	112.1	0.0	115.7	110.9
41	14	0.0877	-5.0	113.2	115.5	114.3	112.0	0.0	116.4	111.2
41	15	0.0946	-5.0	113.2	114.5	114.8	112.5	0.0	117.3	112.0
41	16	0.0320	-10.0	111.7	113.3	112.9	110.9	0.0	115.1	110.6
41	17	0.0553	-10.0	112.4	113.4	113.6	111.2	0.0	115.9	110.3
41	18	0.0720	-10.0	112.9	112.9	113.5	111.2	0.0	115.3	110.5
41	19	0.0760	-10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41	20	-0.0112	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41	21	0.0104	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41	22	0.0280	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41	23	0.0494	0.0	0 • 0	0.0	0.0	0.0	0.0	0.0	0.0
41	24	0.0678	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41	25	0.0864	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41	26	0.0958	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41	27	0.1023	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table B4. continued. Acoustic dBA Measurements for the Rectangular Tip Rotor.

RECT	ANGULA	R TIP		V= 150.0	MAT=	0.825	MTIP= 0.600	V/OR=	0.375	
PUN	PT	CLR/S	ALPHA	MIC1	MIC2	MIC3	MIC4	HTC5	MIC6	MIC7
41	28	0.1056	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
42	24	0.0249	6.0	113.5	114.1	114.4	112.6	0.0	. 116.7	111.5
42	25	0.0437	5.0	113.4	114.0	114.6	112.2	0.0	116.4	111.3
42	26	0.0620	6.0	113.1	113.9	114.5	112.3	0.0	115.6	111-4
42	27	0.0785	6.0	112.8	114.0	113.9	112.2	0.0	116.1	111.5
42	28	0.0876	5.0	112.8	114.0	114.5	112.0	0.0	115.7	111.3
42	29	0.0957	6.0	112.7	113.8	113.9	112.1	0.0	115.7	111-1
42	30	0.0938	6.0	112.3	113.9	113.8	112.3	0.0	115.9	111.5
45	12	0.0741	-4.6	113.1	116.9	113.5	111.2	124.2	115.1	109.9

00

Table B4. continued. Acoustic dBA Measurements for the Rectangular Tip Rotor.

RFCT.	ANGULAI	R TIP		V= 155.0	MAT =	0.825	MTIP= 0.59	5 V/DR=	= 0390:	•
RUN	PT	CLP/S	ALPHA	MIC1	MIC2	MIC3	MIC4	HIC5	MIC6	MIC7
43	3	0.0737	-4-6	115.2	117.8	115.8	113.3	124.6	118.9	111.1
43	4	0.0727	-4.6	115.5	117.6	115.7	113.0	124-4	118.8	110.6
43	5	0.0558	-4.6	115.1	116.7	114.6	112.9	123.5	117.9	110.4
43	6	0.0867	-4.6	115.6	117.6	115.5	113.4	123.9	118.6	111.6
43	7	0.0717	-4.6	115.5	118.6	115.5	113.0	123.4	118.5	111.0
43	8	0.0704	-4.5	115.2	117.5	115-2	113.0	123-4	117.8	110.8
43	9	0.0718	-4.6	115.2	118.2	115.4	113.4	123.5	117.5	110.5
43	10	0.0970	-4.6	114.9	117.9	115.0	113.1	123.5	117.3	111.3
43	11	0.0556	-4.6	114.3	118.0	114.7	112.8	123.2	116.3	110.7
43	12	0.0706	-4.6	114.3	117.8	114.5	112.8	122-4	116.6	110.6
45	3	0.0719	-4.6	0.0	116.5	114.3	112-1	113.9	115.9	110.8
45	4	0.0580	-5.6	113.6	116.2	113.7	111.4	112.8	115.0	110.5
45	6	0.0733	-4.6	113.7	115.3	113.9	112.7	113.9	115.2	111.0
45	7	0.0710	-4.6	113.8	115.0	114.0	111.8	0.0	116.0	111-5
45	8	0.0870	-2.6	114.6	117.2	114.6	112.4	0.0	116.5	111.5
45	9	0.0728	-4.5	114.2	116.4	113.9	111.5	0.0	115.5	116.9
45	10	0.0698	-4.6	114-1	117.2	114.3	112.1	0.0	116.5	110.9
45	11	0.0719	-4.6	114.1	117.0	113.9	111.7	0.0	115.4	110.8

Table B4. continued. Acoustic dBA Measurements for the Rectangular Tip Rotor.

RECT	ANGUL	AR TIP		V= 175.0	MAT=	0.965	MTIP= 0.700	V/OR=	0.375	
RUN	ΡŢ	CLP/S	ALPHA	MIC1	MIC2	MTC3	HIC4	MIC5	HIC6	MIC7
46	3	0.0411	-5.0	117.8	118.6	117.0	115.9	121.2	119.2	114.3
46	4	0.0615	-5.0	117.3	119.2	115.9	116.0	120.9	. 118.9	114.4
46	5	0.0703	-5.0	116.7	118.5	116.5	116.0	120.8	119.2	113.9
46	6	0.0784	-5.0	118.2	118.5	117.6	116.2	120.5	118.6	114.5
46	7	0.0890	-5.0	116.9	118.3	116.4	115.6	120.4	118.8	114.4
46	8	0.0920	-5.0	116.9	118.4	116.4	115.4	120.4	118.9	114.8
46	9	0.0333	-10.0	115.8	114.6	115.3	114.5	119.3	116.3	112.6
46	10	0.0439	-10.0	116.8	114.8	116.8	114.4	119.1	116.4	112.3
46	11	0.0528	-10.0	115.8	114.3	115.4	114.1	118.6	115.9	112.5
46	12	0.0732	-10.0	116.8	115.0	116.5	114.5	118.7	116.4	112.5
46	13	0.0820	-10.0	117.3	115.5	116.8	114.7	118.8	116.9	113.5
46	14	-0.0126	0.0	118.6	119.3	117.7	117.2	121.8	119.7	116.3
46	15	0.0077	0.0	117.9	118.0	117.3	116.5	121.4	118.8	116.1
46	16	0.0275	0.0	118.3	117.5	117.9	116.8	121.2	118.5	115.0
46	17	0.0451	0 • 0	116.3	116.4	117.0	116.9	121.4	118.0	114.7
46	18	0.0530	0.0	118.1	117.3	117.9	116.6	121.6	118.3	114.4
46	19	0.0521	0.0	117.5	116.6	117.6	116.2	121.6	118.1	114.8
46	20	0.0721	0.0	117.5	116.1	115.4	116.1	121.5	118.3	114.9

	2. Government Accession No.		3. Recipient's Catalog	g No.
4. Title and Subtitle	<u> </u>		5. Report Date	
Acoustic Measurements of	a Full-Scale Rotor	with L	April 1984	
Four Tip Shapes; Vol. I:			6. Performing Organia ATP	zation Code
7. Author(s)			8. Performing Organiz	ration Report No.
Marianne Mosher			A-9602	
). Performing Organization Name and Address			10. Work Unit No. T-3419	
Ames Research Center Moffett Field, CA 94035			11. Contract or Grant	No.
•		•	13. Type of Report ar	nd Period Covered
2. Sponsoring Agency Name and Address			Technical M	
National Aëronautics and	Space Administrati	on	14. Sponsoring Agency	
Washington DC, 20546			505-24-11	
. Supplementary Notes		· · · · · · · · · · · · · · · · · · ·		
	nne Mosher, Ames Re tt Field, CA (415)			
Abstract				
rectangular, tapered, sw measurements from that to data include measurement	est in the form of		l plots. The	
corrected PNdB, for all detailed measurements, 1 selected data, and plots performance measurements	of the conditions t /3-octave spectra a of dBA as function	ested. Al nd time-hi of test c	so included stories for ondition. S	are the some ome
corrected PNdB, for all detailed measurements, 1 selected data, and plots	of the conditions t /3-octave spectra a of dBA as function	ested. Al nd time-hi of test c	so included stories for ondition. S	and tone- are the some ome
corrected PNdB, for all detailed measurements, 1 selected data, and plots performance measurements	of the conditions t /3-octave spectra a of dBA as function	ested. Al nd time-hi of test c	so included stories for ondition. S	and tone- are the some ome
corrected PNdB, for all detailed measurements, 1 selected data, and plots performance measurements	of the conditions t /3-octave spectra a of dBA as function	ested. Al nd time-hi of test c	so included stories for ondition. S	and tone- are the some ome
corrected PNdB, for all detailed measurements, 1 selected data, and plots performance measurements	of the conditions t /3-octave spectra a of dBA as function	ested. Al nd time-hi of test c	so included stories for ondition. S	and tone- are the some ome
corrected PNdB, for all detailed measurements, 1 selected data, and plots performance measurements	of the conditions t /3-octave spectra a of dBA as function	ested. Al nd time-hi of test c	so included stories for ondition. S	and tone- are the some ome
corrected PNdB, for all detailed measurements, 1 selected data, and plots performance measurements	of the conditions t /3-octave spectra a of dBA as function	ested. Al nd time-hi of test c	so included stories for ondition. S	and tone- are the some ome
corrected PNdB, for all detailed measurements, 1 selected data, and plots performance measurements	of the conditions t /3-octave spectra a of dBA as function	ested. Al nd time-hi of test c	so included stories for ondition. S	and tone- are the some ome
corrected PNdB, for all detailed measurements, 1 selected data, and plots performance measurements	of the conditions t /3-octave spectra a of dBA as function	ested. Al nd time-hi of test c	so included stories for ondition. S	and tone- are the some ome
corrected PNdB, for all detailed measurements, 1 selected data, and plots performance measurements data.	of the conditions t /3-octave spectra a of dBA as function are included to ai	ested. Al nd time-hi of test c d interpre	so included stories for ondition. Station of the	and tone- are the some ome
corrected PNdB, for all detailed measurements, 1 selected data, and plots performance measurements data. Key Words (Suggested by Author(s))	of the conditions t /3-octave spectra a of dBA as function are included to ai	ested. Al nd time-hi of test c	so included stories for ondition. Station of the	and tone- are the some ome
corrected PNdB, for all detailed measurements, 1 selected data, and plots performance measurements data. Key Words (Suggested by Author(s)) Wind-tunnel tests	of the conditions t /3-octave spectra a of dBA as function are included to ai	ested. Al nd time-hi of test o d interpre	so included stories for ondition. Station of the	and tone- are the some ome
corrected PNdB, for all detailed measurements, 1 selected data, and plots performance measurements data. Key Words (Suggested by Author(s)) Wind-tunnel tests Helicopter noise	of the conditions t /3-octave spectra a of dBA as function are included to ai	ested. Al nd time-hi of test o d interpre	so included stories for ondition. Station of the	and tone- are the some ome e noise
corrected PNdB, for all detailed measurements, I selected data, and plots performance measurements data. Key Words (Suggested by Author(s)) Wind-tunnel tests Helicopter noise Rotor noise S-76	of the conditions t /3-octave spectra a of dBA as function are included to ai	ested. Al nd time-hi of test o d interpre	so included stories for ondition. Station of the	and tone- are the some ome e noise
corrected PNdB, for all detailed measurements, I selected data, and plots performance measurements data. Key Words (Suggested by Author(s)) Wind-tunnel tests Helicopter noise Rotor noise S-76	of the conditions t /3-octave spectra a of dBA as function are included to ai	ested. Al nd time-hi of test o d interpre	so included stories for ondition. Station of the	and tone- are the some ome e noise ry: 71
corrected PNdB, for all detailed measurements, 1 selected data, and plots performance measurements data. Key Words (Suggested by Author(s)) Wind-tunnel tests Helicopter noise Rotor noise S-76	of the conditions t /3-octave spectra a of dBA as function are included to ai	ested. Al nd time-hi of test o d interpre	so included stories for ondition. Station of the	and tone- are the some ome e noise

		uni
		- 15
		* F