- **Abstract**
- Introduction
 - General coal information
 - Why we are interested in simulating soot
 - **Previous Work**
 - LES coal simulations without soot
 - Simulations with soot
 - Xu et al (LES)
 - Takahashi et al (LES)
 - Brown simulation (RANS)
- **Model Description**
 - Soot modeling
 - Brown model
 - Mono model
 - Include equations? (no)
 - MoMIC model
 - Computational tools
 - Arches overview
 - Models used
 - Devolatilization
 - **Char Oxidation**
 - Radiation
 - **Dynamic Smagorinsky**
 - **DQMOM**
- Simulation Details
 - Case list
 - Coal properties
 - Experimental setup
 - Reactor geometry and picture
 - Stream properties
- Results and Discussion
 - General simulation results and observations
 - Compare simulation with experiment
 - **Temperature**
 - Soot
 - Mass fractions
 - Compare with Sootless case
 - Temperature
 - Richness theory
 - Soot volume fraction
 - Other variables
- Conclusions

Intro
- Motivation - previous work / Lit Rev.
- what we're doing
- prescribe stimpson.
- outline of the paper. Model Description. - Arches - Cool Description - Damon - rete redels - Char oxid - Devol - Rudiation - finite Differency - Wall treatments - Good models Sim. Details . Reactor Geometry . Glid

· Streams (comp, flow). · Coal properties

- Ultimate, Proximate, HAV

. Case list

Results. · Time trace toss. · General -> Detailed . Items

- Means: T, Y, Tax, soot, Vel, etc.

- Exp Comp: T, Soot. - T.C. Collection have of in Madel

- Revolation / heat flux.

- Soot/no Soot/no Coupling Conc. / Refs