שיטת יעקובי למציאת ערכים עצמיים

הצגה באנליזה נומרית תשפ"ג, סמסטר חורף

מציגים: עוז דיאמונד, מתן קיכלר

רקע

"שיטה איטרטיבית הנותנת, בדיוק המבוקש, את הערכים העצמיים והוקטורים העצמיים של מטריצה הרמיטית."

– ויקיפדיה

ממציא השיטה הוא <u>יעקב יעקובי</u> (זה של היעקוביאן) בשנת 1846.

Carl Gustav Jacob Jacobi

שיטת יעקובי למציאת ערכים עצמיים

רקע

"שיטה איטרטיבית הנותנת, בדיוק המבוקש, את הערכים העצמיים והוקטורים העצמיים של מטריצה הרמיטית."

– ויקיפדיה

ממציא השיטה הוא <u>יעקב יעקובי</u> (זה של היעקוביאן) בשנת 1846.

Carl Gustav Jacob Jacobi

שיטת יעקובי למציאת ערכים עצמיים

• יישומים רבים (הרחבה).

הרעיון

להצמיד בכל איטרציה את המטריצה במטריצה אוניטרית, כך שסכום ריבועי האיברים שמחוץ לאלכסון יקטן, ובכך ללכסן את המטריצה.

דוגמה

$$A = \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}$$

:נרצה למצוא צורה אלכסונית - ערכים עצמיים באלכסון הראשי

$$P^{-1}AP=\left[egin{array}{cccc} rac{1}{\sqrt{2}} & 0 & -rac{1}{\sqrt{2}} \ 0 & 1 & 0 \ rac{1}{\sqrt{2}} & 0 & rac{1}{\sqrt{2}} \end{array}
ight]\cdot \left[egin{array}{cccc} 1 & \sqrt{2} & 2 \ \sqrt{2} & 3 & \sqrt{2} \ 2 & \sqrt{2} & 1 \end{array}
ight]\cdot \left[egin{array}{cccc} rac{1}{\sqrt{2}} & 0 & rac{1}{\sqrt{2}} \ 0 & 1 & 0 \ -rac{1}{\sqrt{2}} & 0 & rac{1}{\sqrt{2}} \end{array}
ight]= \left[egin{array}{cccc} 3 & 2 & 0 \ 2 & 3 & 0 \ 0 & 0 & -1 \end{array}
ight]$$
 איטרציה 1

$$P^{-1}AP = \left[egin{array}{cccc} rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} & 0 \ -rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} & 0 \ 0 & 0 & 1 \end{array}
ight] \cdot \left[egin{array}{cccc} 3 & 2 & 0 \ 2 & 3 & 0 \ 0 & 0 & -1 \end{array}
ight] \cdot \left[egin{array}{cccc} rac{1}{\sqrt{2}} & -rac{1}{\sqrt{2}} & 0 \ rac{1}{\sqrt{2}} & 0 \ 0 & 0 & 1 \end{array}
ight] = \left[egin{array}{cccc} 5 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & -1 \end{array}
ight]$$
 איטרציה 2

מוטיבציה למה?

אלגוריתם נאיבי

בניית פולינום אופייני למטריצה ומציאת שורשיו

- עבור סדר 5 ואילך אין נוסחהסגורה (תורת גלואה)
- פרוצדורה ארוכה (שגיאה גדולה)
 - חוסר יציבות

אלטרנטיבות

	קלט	אלגוריתם
העו והוו המ	מטריצה כללית	שיטת החזקה
העו ביור הווי המ	מטריצה כללית ומספר λ (קירוב לערך העצמי המבוקש)	שיטת החזקה ההפוכה
ל כל והוו	מטריצה כללית (יעיי יותר על מטריצת הסנברג)	אלגוריתם ^[1] QR
כל והוו	מטריצה סימטרית ממשית	איטרציות יעקובי
ו חלי העי	מטריצה סימטרית א מטריצה הרמיטית ומספר האטרציות	אלגוריתם לנצוש
חלי העי	מטריצה כללית ומספר האטרציות	אלגוריתם ארנולדי

מקור: ויקיפדיה

אלטרנטיבות

	אלגוריתם	קלט	פלט
	שיטת החזקה	מטריצה כללית	הערך העצמי הגדול והווקטור העצמי המתאים לו
	שיטת החזקה ההפוכה	מטריצה כללית ומספר λ (קירוב לערך העצמי המבוקש)	הערך העצמי הקרוב ביותר לλ ואת הווקטור העצמי המתאים לו
ī	גוריתם [1]	מטריצה כללית (יעיל יותר על מטריצת הסנברג)	כל הערכים והווקטורים העצמיים
	טרציות קובי	מטריצה סימטרית ממשית	כל הערכים והווקטורים העצמיים
	אלגוריתם לנצוש	מטריצה סימטרית או מטריצה הרמיטית ומספר האטרציות	חלק מהערכים העצמיים
	אלגוריתם ארנולדי	מטריצה כללית ומספר האטרציות	חלק מהערכים העצמיים

למה לא שיטת QR?

יעקובי

יתרונות

- •עבור מטריצות סימטריות סדר התכנסות ריבועי
 - •עיבוד מקבילי

חסרונות

•לא עובד על מטריצה שאינה סימטרית

QR

יתרונות

- •עובד על כל מטריצה ריבועית
- לרוב, חיסכון בחישוב המטריצה ההופכית

חסרונות

•חוסר יציבות נומרית של תהליך גרם שמידט

מקור: ויקיפדיה

למה לא שיטת QR?

אלטרנטיבות

	אלגוריתם	קלט	פלט
	שיטת החזקה	מטריצה כללית	הערך העצמי הגדול והווקטור העצמי המתאים לו
ı	שיטת החזקה ההפוכה	מטריצה כללית ומספר λ (קירוב לערך העצמי המבוקש)	הערך העצמי הקרוב ביותר לλ ואת הווקטור העצמי המתאים לו
1	גוריתם ^[1] כ	מטריצה כללית (יעיל יותר על מטריצת הסנברג)	כל הערכים והווקטורים העצמיים
	טרציות קובי	מטריצה סימטרית ממשית	כל הערכים והווקטורים העצמיים
	אלגוריתם לנצוש	מטריצה סימטרית או מטריצה הרמיטית ומספר האטרציות	חלק מהערכים העצמיים
	אלגוריתם ארנולדי	מטריצה כללית ומספר האטרציות	חלק מהערכים העצמיים

יעקובי

יתרונות

•עבור מטריצות סימטריות <mark>סדר</mark> התכנסות ריבועי

עיבוד מקבילי•

חסרונות

•לא עובד על מטריצה שאינה סימטרית

QR

יתרונות

- •עובד על כל מטריצה ריבועית
- לרוב, חיסכון בחישוב המטריצה ההופכית

חסרונות

•חוסר יציבות נומרית של תהליך גרם שמידט

מקור: ויקיפדיה

תיאור האלגוריתם

כל עוד האיברים מחוץ לאלכסון הראשי של מטריצה A אינם אפסים:

A ניצור מטריצת גיבנט P בזווית
$$\theta$$
 בעלת מימדים של P ניצור מטריצת גיבנט P ניצור $-\sin\theta$ p j,j , p i,i $\leftarrow\cos\theta$

מאחר ש-P אורתוגונלית, ההופכית שלה
$$\overline{P}_1^1$$
, היא למעשה מתקבלת על ידי שיחלוף. כלומר $P^{-1}=P^{-1}$. נאתחל את A במטריצה P^{-1} A.

איברי המטריצה שואפים לערכים העצמיים בכל איטרציה

 $\theta = \frac{1}{2} \tan^{-1} \left(\frac{2a_{ij}}{a_{ii} - a_{ii}} \right)$

3

תיאור האלגוריתם

קירוב מצוין. מטפר טופי של איטרציות

כל עוד האיברים מחוץ לאלכסון הראש כ מטריצה A אינם אפסים: בצע K פעמים:

- בחר באלמנט הגדול ביותר בערכו המוחלט שמחוץ בחר באלמנט הגדול ביותר איבר pivot , a i,j לאלכסון הראשי
- A ניצור מטריצת גיבנט P בזווית θ בעלת מימדים של P ניצור מטריצת גיבנט P בזווית θ בעלת מימדים של p i,j \leftarrow sin θ p j,i \leftarrow ros θ
- מאחר ש-P אורתוגונלית, ההופכית שלה P^{-1} , היא למעשה מתקבלת על ידי שיחלוף. כלומר $P^{-1} = P^{-1}$. נאתחל את A במטריצה $A \leftarrow P^{-1}AP$.

 $\theta = \frac{1}{2} \tan^{-1} \left(\frac{2a_{ij}}{a_{ii} - a_{ii}} \right)$

.3

א קלט, מטריצה

$$\begin{array}{ccccc}
1 & \sqrt{2} & 2 \\
\sqrt{2} & 3 & \sqrt{2} \\
2 & \sqrt{2} & 1
\end{array}$$

1. מחוץ לאלכסון

איבר מקסימאלי

$$a i,j \leftarrow a_{13} = 2$$

דוגמה לפעולת השיטה

יצירת מטריצה P

$$\begin{bmatrix} \frac{\cos\theta}{\sqrt{2}} & 0 & \frac{\sin\theta}{\sqrt{2}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\sin\theta & \cos\theta \end{bmatrix} - \frac{\cos\theta}{\cos\theta}$$

$$\theta = \frac{1}{2} \tan^{-1} \left(\frac{2a_{13}}{a_{11} - a_{33}} \right) = \frac{\pi}{4}$$

דוגמה לפעולת השיטה

פישוב P¹AP

$$P^{-1}AP = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix} \cdot \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

נבצע שוב את האלגוריתם

האיברים מחוץ לאלכסון הראשי אינם קרובים לאפס

$$\begin{bmatrix} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

1. מחוץ לאלכסון

איבר מקסימאלי

$$a i,j \leftarrow a_{12} = 2$$

איטרציה שניה

יצירת מטריצה P

$$\begin{bmatrix} \frac{\cos\theta}{\sqrt{2}} & \frac{\sin\theta}{\sqrt{2}} & 0\\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{\sin\theta}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$\theta = \frac{1}{2} \tan^{-1} \left(\frac{2a_{12}}{a_{11} - a_{22}} \right) = \frac{\pi}{4}$$

איטרציה שניה

.3

P^1AP שוב Π

$$P^{-1}AP = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 & 0\\ 2 & 3 & 0\\ 0 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1 \end{bmatrix}$$

 $\lambda 1 = 5$

$$\lambda 2 = 1$$

$$\lambda 3 = -1$$

לכן הערכים העצמיים של המטריצה של המקורית הם:

משמעות גיאומטרית

מטריצת סיבוב ב-2D

סיבוב ב- θ רדיאנים בכיוון החיובי בשני מימדים. הדטרמיננטה שלה 1

$$R(\theta) = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}$$
ואכן,

$$R(\theta) \cdot \left[\begin{array}{c} 1 \\ 0 \end{array} \right] = \left[\begin{array}{c} \cos(\theta) \\ \sin(\theta) \end{array} \right]$$

סיבובי גיבנס ב- 3D

$$R_x(heta) = egin{bmatrix} 1 & 0 & 0 \ 0 & \cos heta & -\sin heta \ 0 & \sin heta & \cos heta \end{bmatrix}$$

$$R_y(heta) = egin{bmatrix} \cos heta & 0 & \sin heta \ 0 & 1 & 0 \ -\sin heta & 0 & \cos heta \end{bmatrix}$$

$$R_z(heta) = egin{bmatrix} \cos heta & -\sin heta & 0 \ \sin heta & \cos heta & 0 \ 0 & 0 & 1 \end{bmatrix}$$

משמעות גיאומטרית

מטריצות <u>סיבובי גיבנס</u> הן מטריצות סיבוב אשר מסובבות במישור 2D תחת מרחב n מימדי:

- ulletאיברי האלכסון הראשי 1-ים ullet
- איברים מחוץ לאלכסון הראשי 0-ים
 - :i,j אם הסיבוב בזווית θ במישור \bullet
- $\sin\theta$ מקבל i,j האיבר במקום ה \circ
- $-\sin\theta$ האיבר במקום ה j,i מקבל \circ
- $\cos\theta$ האיבר במקום ה i,i מקבל \circ
- $\cos\theta$ האיבר במקום ה j,j מקבל \circ

3D -סיבובי גיבנס בx,yבמישור

משמעות גיאומטרית

מטריצות <u>סיבובי גיבנס</u> הן מטריצות סיבוב אשר מסובבות במישור 2D תחת מרחב n מימדי:

- איברי האלכסון הראשי 1-ים
- איברים מחוץ לאלכסון הראשי 0-ים
 - :i,j אם הסיבוב בזווית θ במישור
- $\sin \theta$ האיבר במקום ה i,j מקבל \circ
- $-\sin\theta$ מקבל j,i מקבל \circ
- $\cos\theta$ האיבר במקום ה i,i מקבל \circ
- cosθ האיבר במקום ה j,j מקבל \circ

הצורה הכללית - גיבנס ב-n מימדים

$$s = \sin\theta$$
 עיבוב במישור $c = \cos\theta$

משמעות גיאומטרית

מטריצות <u>סיבובי גיבנס</u> הן מטריצות סיבוב אשר מסובבות במישור 2D תחת מרחב n מימדי:

- \bullet איברי האלכסון הראשי 1-ים
- איברים מחוץ לאלכסון הראשי 0-ים
 - :i,j אם הסיבוב בזווית θ במישור
- $\sin\theta$ מקבל i,j האיבר במקום ה \circ
- $-\sin\theta$ האיבר במקום ה j,i מקבל \circ
- $\cos\theta$ האיבר במקום ה i,i מקבל \circ
- $\cos\theta$ האיבר במקום ה j,j מקבל \circ

משמעות גיאומטרית

למעשה, ניתן לתאר **מטריצה** ממשית סימטרית כטרנספורמציה שמעתיקה:

- מעגל היחידה → לאליפסה(מטריצות 2x2)
- כדור היחידה → לאליפסואיד (מטריצות 3x3)
- היפר-כדור היחידה → להיפר-אליפסואיד (מטריצות nxn)

$$A = \begin{bmatrix} 1 & \sqrt{2} & 2\\ \sqrt{2} & 3 & \sqrt{2}\\ 2 & \sqrt{2} & 1 \end{bmatrix}$$

חיתוך האלפסואיד עם המישורים:

חיתוך האלפסואיד עם המיווורים

$$A = \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}$$

יאומטרית

האליפסואיד מיושר עם הצירים

$$A^* =$$

$$\begin{bmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 \mathbf{a}
 \mathbf{b}
 \mathbf{a}

שיטת יעקובי

מימוש השיטה ב-MATLAB

```
function eigenvalues = jacobi_eigenvalues(A, K)
   n = size(A, 1);
   for k = 1:K
       max_off_diag = max(max(abs(triu(A,1))));
       if max_off_diag == 0 % already a diagonal matrix
           break:
       [i, j] = find(abs(A - diag(diag(A))) == max_off_diag, 1);
       theta = 0.5 * atan(2 * A(i,j) / (A(i,i) - A(j,j)));
       R = eye(n); % Givens rotation matrix
       R(i,i) = cos(theta);
       R(j,j) = cos(theta);
       R(i,j) = -\sin(theta);
       R(j,i) = sin(theta);
       A = R' * A * R;
   end
   eigenvalues = diag(A);
```

פקודות הרצה

