Persistance des données I DON2

Denis Boigelot, Geneviève Cuvelier, Selim Rexhep, Yannick Voglaire

Haute École Bruxelles-Brabant École Supérieure d'Informatique

Année académique 2020 / 2021

Plan du cours

- 0 Présentation
- 1 Introduction
- 2 Dépendance fonctionnelle
- 3 Schéma conceptuel
- 4 Projection et sélection5 Jointure
- 6 Agrégat
- 7 Sous-requête

8 - Fichiers

4 – Projection et sélection

- Introduction
- 2 Projection
- Selection
- Clauses SELECT et WHERE
- 5 Données extraites et données dérivées

- Introduction
 - SQL
 - L'algèbre relationnelle
- 2 Projection
- Selection
- Clauses SELECT et WHERE
- **5** Données extraites et données dérivées

SQL

Le SQL (Structured Query Language) est un langage informatique normalisé, servant à exploiter des bases de données relationnelles.

Etudiant					
EtuNo	EtuNom	EtuPnom	EtuSec	EtuAn	etuTel
32345	Dupont	Marc	R	2	Null
33568	Durant	Pierre	R	1	047857456
38514	Dupont	François	G	1	null

Figure - Ceci est une relation, un tableau, ou encore une table. Il contient 3 lignes/enregistrements.

Son sous-langage *DML* (Data Manipulation Language) permet de consulter le contenu des tables et de les modifier.

Il comporte 4 verbres.

- ♦ Create : La requête insert insère de nouvelles lignes dans une table
- ♦ Read : La requête select extrait des données des tables
- Update : La requête update modifie les valeurs de colonnes de lignes existantes
- Delete : La requête delete supprime des lignes d'une table

Le langage SQL contient également deux autres sous-langages :

- DDL (Data Definition Language), permettant de créer/supprimer des tables ou des colonnes.
- ♦ DCL (Data Control Language) permettant de contrôler (autoriser ou restreindre) l'accès aux différentes tables.

Ces sous-langages seront étudiés en deuxième année (cours de DON3).

Dans ce cours (DON2), nous ne verrons que le verbe Read (du souslangage DML).

Toute requête **SELECT**renvoie un résultat sous la forme d'une table.

Le langage **SQL** se base sur l'algèbre relationnelle

Nous étudierons brièvement l'algèbre relationnelle parallèlement à l'étude du langage SQL

Algèbre relationnelle

Algèbre relationnelle

« L'algèbre relationnelle est une théorie mathématique proche de la théorie des ensembles qui définit des opérations qui peuvent être effectuées sur des relations. »

https://fr.wikipedia.org/wiki/Algèbre_relationnelle

Rappel : la notion de relation a été définie précédemment. Cette notion nous fournit un cadre précis permettant d'étudier la structure d'une base de donnée relationnelle (ceci explique l'adjectif "relationnelle").

Algèbre relationnelle

En algèbre relationnelle, la notion de marqueur null n'existe pas!

Ceci est une conséquence du fait qu'une relation est un ensemble de n-uple (voir le Chapitre 3) et que, par définition, chaque composante d'un n-uple doit avoir une valeur.

Le modèle mathématique n'est donc pas tout à fait conforme à la réalité, où des colonnes facultatives peuvent exister dans les tables.

- Introduction
- 2 Projection
 - Projection et la clause SELECT
- Selection
- 4 Clauses SELECT et WHERE
- 5 Données extraites et données dérivées

SELECT

Ce chapitre étudie la requête **SELECT**opérant sur **une seule** table

Expression algébrique de la projection

$${\tt NOUVELLE_RELATION} = \pi_{\{ \tt attributs \ de \ la \ projection \}}(\textit{Relation})$$

$$\mathsf{NUMERO_NOM_CLIENT} = \pi_{\{\mathit{ncli},\mathit{nom}\}}(\mathit{Client})$$

Expression SQL

SELECT NCLI. NOM FROM client:

Expression algébrique de la projection

$$\mathsf{LOCALITE_CLIENT} = \pi_{\{\mathit{localite}\}}(\mathit{Client})$$

Expression SQL

SELECT DISTINCT localite FROM client:

Expression algébrique de la projection

$$\mathsf{COMPTE_CLIENT} = \pi_{\{\mathit{compte}\}}(\mathit{Client})$$

Expression SQL

SELECT DISTINCT compte FROM client:

SELECT ncli, nom, localite **FROM** client;

NCLI	NOM	LOCALITE
B062	GOFFIN	Namur
B112	HANSENNE	Poitiers
B332	MONTI	Genève
B512	GILLET	Toulouse
C003	AVRON	Toulouse
C123	MERCIER	Namur
C400	FERARD	Poitiers
D063	MERCIER	Toulouse
F010	TOUSSAINT	Poitiers
F011	PONCELET	Toulouse
F400	JACOB	Bruxelles
K111	VANBIST	Lille
K729	NEUMAN	Toulouse
L422	FRANCK	Namur
S127	VANDERKA	Namur
S712	GUILLAUME	Paris

SELECT *

* = liste des colonnes

FROM client;

- Introduction
- 2 Projection
- Selection
 - Sélection et clause WHERE
- Clauses SELECT et WHERE
- **5** Données extraites et données dérivées

Sélection

Expression algébrique de la sélection

NOUVELLE_RELATION =
$$\sigma_{\{\text{condition de la s\'election}\}}(Relation)$$

CLIENT_CAT_B2 =
$$\sigma_{\{cat='B2'\}}(Client)$$

Expression SQL

SELECT *

FROM client

WHERE cat = 'B2':

Sélection

Expression algébrique de la projection et de la sélection

$$\label{eq:nom_localite} \begin{split} & \mathsf{NO_CLIENT_B2_PASGENEVE} = \\ & \pi_{\{nom,localite\}} \big(\sigma_{\{cat='B2'\ ET\ localite\}='Gen\grave{\mathsf{e}}\mathsf{ve}'\}} \big(\mathit{client} \big) \big) \end{split}$$

attention à l'ordre des opérations

Expression SQL

SELECT nom, localite

FROM client

WHERE cat = 'B2' **AND** localite ! = 'Genève';

Exercices

Etudiant					
EtuNo	EtuNom	EtuPnom	EtuSec	EtuAn	etuTel
32345	Dupont	Marc	R	2	0455334455
33568	Durant	Pierre	R	1	047857456
38514	Dupont	François	G	1	34578901

Sémantique

étudiants régulièrement inscrits à l'ESI pour une certaine année académique

etuNo: numéro de l'étudiant (un numéro n'est utilisé que pour un seul étudiant),

etuNom/etuPnom : les noms et prénoms de l'étudiant,

etuSec : identification de la section dans laquelle l'étudiant est inscrit,

etuAn : bloc (année) dans lequel l'étudiant est inscrit,

etuTel : numéro de téléphone de l'étudiant

Exercices

Etudiant					
EtuNo	EtuNom	EtuPnom	EtuSec	EtuAn	etuTel
32345	Dupont	Marc	R	2	0455334455
33568	Durant	Pierre	R	1	047857456
38514	Dupont	François	G	1	34578901

- Fournissez une expression relationnelle donnant les identifications de sections organisées dans lesquelles au moins un étudiant est inscrit.
- Fournissez une expression relationnelle donnant les identifications de sections organisées dans lesquelles au moins un étudiant de troisième bloc (année) est inscrit.

Exercices

Etudiant					
EtuNo	EtuNom	EtuPnom	EtuSec	EtuAn	etuTel
32345	Dupont	Marc	R	2	0455334455
33568	Durant	Pierre	R	1	047857456
38514	Dupont	François	G	1	34578901

Donnez la sémantique de chacune des relations définies par les expressions suivantes :

- 1 $\sigma_{\{(etuAn=2 \ OU \ etuAn=3) \ ET \ etuSec='R'\}}(Etudiant)$
- 2 $\pi_{\{etuSec\}}(\sigma_{\{etuNom='Durant'\ ET\ etuAn=1\}}(Etudiant))$
- $\pi_{\{etuSec,etuTel\}}(\sigma_{\{etuNom\ !=\ 'Durant'\ OU\ etuAn\ !=\ 1\}}(Etudiant))$

- Introduction
- 2 Projection
- Selection
- Clauses SELECT et WHERE
 - Condition simple
 - Condition plus complexe
- 5 Données extraites et données dérivées

SQL - Ordre de lecture

- 6 : **SELECT** liste d'expressions
- 1: **FROM** table(s) et jointures
- 2: WHERE conditions sur les lignes

Extraction simple

SELECT ncli, nom
FROM client
WHERE localite =' Toulouse';

NCLI	NOM
B512	GILLET
C003	AVRON
D063	MERCIER
F011	PONCELET
K729	NEUMAN

Extraction simple

```
SELECT localite

FROM client

WHERE cat = {}^{\prime}C1{}^{\prime};
```

Poitiers Namur Poitiers Namur Namur

lignes en double

SELECT DISTINCT localite **FROM** client **WHERE** $cat = {}'C1'$;

Namur Poitiers

Extraction plus complexe - Le marqueur null

```
SELECT ncli

FROM client

WHERE cat = null ;
```

no data found

NULL ne peut être comparé à rien même pas à lui-même!

SELECT ncli

FROM client

WHERE cat IS null ;

D063 K729

Extraction plus complexe - Le marqueur null

```
SELECT ncli
FROM client
WHERE cat! = null;

no data found
Toujours pas de comparaison pour les NULLs!

SELECT ncli
FROM client
WHERE cat IS NOT null;

14 rows returned
```

Extraction plus complexe

```
SELECT ncli
    FROM client
   WHERE cat IN ('C1', 'C2', 'C3');
SELECT ncli
    FROM client
   WHERE localite NOT IN ('Toulouse',' Breda');
SELECT ncli
    FROM client
    WHERE compte BETWEEN 1000 AND 4000;
```

Extraction plus complexe

```
SELECT ncli
FROM client
WHERE cat LIKE 'B_'; pour un et un seul caractère
```

```
SELECT npro
```

FROM produit

```
WHERE libelle LIKE '%SAPIN%'; '% pour 0 ou plusieurs caractères
```

Un masque définit une famille de chaînes de caractères :

```
'B_' donnera 'B1', 'Bd', 'B', ...
'B_' ne donnera pas 'B', 'dB', 'B', 'b1', 'B12', ...
'%SAPIN%' donnera 'UN SAPIN5', '+SAPIN', 'SAPIN B', 'SAPIN', ...
'%SAPIN%' ne donnera pas 'Beau Sapin', 'PIN', 'Achetez S A P I N!', ...
```

Extraction plus complexe

```
FROM client
WHERE localite =' Toulouse' AND compte < 0 ;

SELECT nom, adresse, compte
FROM client
WHERE compte > 0 AND (cat =' C1' OR localite =' Paris') ;
```

- Introduction
- 2 Projection
- 3 Selection
- 4 Clauses SELECT et WHERE
- 5 Données extraites et données dérivées

Expressions de calcul

```
SELECT 'TVA de', npro, ' = ', 0.21*prix*qstock FROM produit WHERE qstock > 500 ;
```

TVA de	NPRO	=	0,21*PRIX*QSTOCK
TVA de	CS264	=	67788
TVA de	PA45	=	12789
TVA de	PH222	=	37770.6
TVA de	PS222	=	47397

SELECT NPRO **AS** Produit, 0.21*prix*qstock **AS** Valeur_TVA **FROM** produit

WHERE qstock > 500;

Valeur_TVA est un alias de colonne

Produit	Valeur_TVA
CS264	67788
PA45	12789
PH222	37770.6
PS222	47397

Exercices de sémantique

- SELECT *
 FROM client ;
- 2 SELECT DISTINCT ncli
 FROM commande
 WHERE ncom BETWEEN 30178 AND 30188 ;
- 3 SELECT qstock * prix FROM produit WHERE libelle LIKE 'CHE%';

Exercices de sémantique

- SELECT nom, ncli FROM client WHERE cat NOT IN ('B1',' C1') AND cat IS NOT null ;
- 2 SELECT DISTINCT npro
 FROM produit
 WHERE libelle LIKE '%SAPIN%' AND
 prix BETWEEN 100 AND 150;