

Nonlinear Regression

Some popular nonlinear regression models:

$$(y = ae^{bx})$$

$$(y = ax^b)$$

$$\left(y = \frac{ax}{b+x}\right)$$

$$(y = a_0 + a_1x + ... + a_mx^m)$$

Nonlinear Regression

Given n data points $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ best fit y = f(x) to the data, where f(x) is a nonlinear function of x.

Figure. Nonlinear regression model for discrete y vs. x data

Regression Exponential Model

Exponential Model

Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ best fit $y = ae^{bx}$ to the data.

Figure. Exponential model of nonlinear regression for y vs. x data

Finding Constants of Exponential Model

The sum of the square of the residuals is defined as:

$$S_r = \sum_{i=1}^n \left(y_i - ae^{bx_i} \right)^2$$

Differentiate with respect to a and b

$$\frac{\partial S_r}{\partial a} = \sum_{i=1}^n 2(y_i - ae^{bx_i})(-e^{bx_i}) = 0$$

$$\frac{\partial S_r}{\partial b} = \sum_{i=1}^n 2(y_i - ae^{bx_i}) - ax_i e^{bx_i} = 0$$

Finding Constants of Exponential Model

Rewriting the equations, we obtain

$$-\sum_{i=1}^{n} y_i e^{bx_i} + a \sum_{i=1}^{n} e^{2bx_i} = 0$$

$$\sum_{i=1}^{n} y_i x_i e^{bx_i} - a \sum_{i=1}^{n} x_i e^{2bx_i} = 0$$

Finding constants of Exponential Model

Solving the first equation for a yields

$$a = \frac{\sum_{i=1}^{n} y_i e^{bx_i}}{\sum_{i=1}^{n} e^{2bx_i}}$$

Substituting a back into the previous equation

$$\sum_{i=1}^{n} y_i x_i e^{bx_i} - \frac{\sum_{i=1}^{n} y_i e^{bx_i}}{\sum_{i=1}^{n} e^{2bx_i}} \sum_{i=1}^{n} x_i e^{2bx_i} = 0$$

The constant *b* can be found through numerical methods such as bisection method.

Example 1-Exponential Model

Many patients get concerned when a test involves injection of a radioactive material. For example for scanning a gallbladder, a few drops of Technetium-99m isotope is used. Half of the techritium-99m would be gone in about 6 hours. It, however, takes about 24 hours for the radiation levels to reach what we are exposed to in day-to-day activities. Below is given the relative intensity of radiation as a function of time.

Table. Relative intensity of radiation as a function of time.

t(hrs)	0	1	3	5	7	9
γ	1.000	0.891	0.708	0.562	0.447	0.355

Example 1-Exponential Model cont.

The relative intensity is related to time by the equation

$$\gamma = Ae^{\lambda t}$$

Find:

- a) The value of the regression constants A and λ
- b) The half-life of Technium-99m (half-life of a substance is the time it takes for a substance to lose half of its pharmacologic, physiologic, or radiologic activity)
- c) Radiation intensity after 24 hours

Plot of data

Constants of the Model

$$\gamma = Ae^{\lambda t}$$

The value of λ is found by solving the nonlinear equation

$$f(\lambda) = \sum_{i=1}^{n} \gamma_i t_i e^{\lambda t_i} - \frac{\sum_{i=1}^{n} \gamma_i e^{\lambda t_i}}{\sum_{i=1}^{n} e^{2\lambda t_i}} \sum_{i=1}^{n} t_i e^{2\lambda t_i} = 0$$

$$A = \frac{\sum_{i=1}^{n} \gamma_i e^{\lambda t_i}}{\sum_{i=1}^{n} e^{2\lambda t_i}}$$

Setting up the Equation in MATLAB

$$f(\lambda) = \sum_{i=1}^{n} \gamma_i t_i e^{\lambda t_i} - \frac{\sum_{i=1}^{n} \gamma_i e^{\lambda t_i}}{\sum_{i=1}^{n} e^{2\lambda t_i}} \sum_{i=1}^{n} t_i e^{2\lambda t_i} = 0$$

Represents the f(λ) function for different values of λ

Represents the $f(\lambda)=0$ line

The λ value of *intersection* corresponds to the solution of the *equation* $F(\lambda)=0$.

$$\lambda = -0.1151$$

t (hrs)	0	1	3	5	7	9
γ	1.000	0.891	0.708	0.562	0.447	0.355

http://numericalmethods.eng.usf.edu

Calculating the Other Constant

The value of A can now be calculated

$$A = \frac{\sum_{i=1}^{6} \gamma_{i} e^{\lambda t_{i}}}{\sum_{i=1}^{6} e^{2\lambda t_{i}}} = 0.9998$$

The exponential regression model then is

$$\gamma = 0.9998 \, e^{-0.1151t}$$

REMEMBER HOW TO SOLVE THIS EQUATION!!

Plot of data and regression curve

Relative Intensity After 24 hrs

The relative intensity of radiation after 24 hours

$$\gamma = 0.9998 \times e^{-0.1151(24)}$$
$$= 6.3160 \times 10^{-2}$$

This result implies that only

$$\frac{6.316 \times 10^{-2}}{0.9998} \times 100 = 6.317\%$$

radioactive intensity is left after 24 hours.

Homework

- What is the half-life of Technetium 99m isotope?
- Write a program in the language of your choice to find the constants of the model.
- Compare the constants of this regression model with the one where the data is transformed.
- What if the model was $\gamma = e^{\lambda t}$?

Polynomial Model

Given
$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$
 best fit $y = a_0 + a_1 x + ... + a_m x^m$ $(m \le n - 1)$ to a given data set.

Figure. Polynomial model for nonlinear regression of y vs. x data

Polynomial Model cont.

The residual at each data point is given by

$$E_i = y_i - a_0 - a_1 x_i - \dots - a_m x_i^m$$

The sum of the square of the residuals then is

$$S_r = \sum_{i=1}^n E_i^2$$

$$= \sum_{i=1}^{n} (y_i - a_0 - a_1 x_i - \dots - a_m x_i^m)^2$$

Polynomial Model cont.

To find the constants of the polynomial model, we set the derivatives with respect to a_i where i = 1, ...m, equal to zero.

$$\frac{\partial S_r}{\partial a_0} = \sum_{i=1}^n 2 \cdot (y_i - a_0 - a_1 x_i - \dots - a_m x_i^m) (-1) = 0$$

$$\frac{\partial S_r}{\partial a_1} = \sum_{i=1}^n 2 \cdot (y_i - a_0 - a_1 x_i - \dots - a_m x_i^m) (-x_i) = 0$$

$$\frac{\partial S_r}{\partial a_m} = \sum_{i=1}^n 2 \cdot (y_i - a_0 - a_1 x_i - \dots - a_m x_i^m) (-x_i^m) = 0$$

Polynomial Model cont.

These equations in matrix form are given by

$$\begin{bmatrix} n & \left(\sum_{i=1}^{n} x_{i}\right) & \cdot & \cdot & \left(\sum_{i=1}^{n} x_{i}^{m}\right) \\ \left(\sum_{i=1}^{n} x_{i}\right) & \left(\sum_{i=1}^{n} x_{i}^{2}\right) & \cdot & \cdot & \left(\sum_{i=1}^{n} x_{i}^{m+1}\right) \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \left(\sum_{i=1}^{n} x_{i}^{m}\right) & \left(\sum_{i=1}^{n} x_{i}^{m+1}\right) & \cdot & \cdot & \left(\sum_{i=1}^{n} x_{i}^{2m}\right) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_{i} \\ a_{1} \\ \cdot & \cdot \\ a_{m} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} y_{i} \\ \sum_{i=1}^{n} x_{i} y_{i} \\ \cdot & \cdot \\ \sum_{i=1}^{n} x_{i}^{m} y_{i} \end{bmatrix}$$

The above equations are then solved for a_0, a_1, \dots, a_m

Example 2-Polynomial Model

Regress the thermal expansion coefficient vs. temperature data to a second order polynomial.

Table. Data points for temperature vs α

Temperature, T (°F)	Coefficient of thermal expansion, α (in/in/°F)
80	6.47×10 ⁻⁶
40	6.24×10 ⁻⁶
-40	5.72×10 ⁻⁶
-120	5.09×10 ⁻⁶
-200	4.30×10 ⁻⁶
-280	3.33×10 ⁻⁶
-340	2.45×10 ⁻⁶

Figure. Data points for thermal expansion coefficient vs temperature.

Example 2-Polynomial Model cont.

We are to fit the data to the polynomial regression model

$$\alpha = a_0 + a_1 T + a_2 T^2$$

The coefficients a_0, a_1, a_2 are found by differentiating the sum of the square of the residuals with respect to each variable and setting the values equal to zero to obtain

$$\begin{bmatrix} n & \left(\sum_{i=1}^{n} T_{i}\right) & \left(\sum_{i=1}^{n} T_{i}^{2}\right) \\ \left(\sum_{i=1}^{n} T_{i}\right) & \left(\sum_{i=1}^{n} T_{i}^{2}\right) & \left(\sum_{i=1}^{n} T_{i}^{3}\right) \\ \left(\sum_{i=1}^{n} T_{i}^{2}\right) & \left(\sum_{i=1}^{n} T_{i}^{3}\right) & \left(\sum_{i=1}^{n} T_{i}^{4}\right) \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} \alpha_{i} \\ \sum_{i=1}^{n} T_{i} & \alpha_{i} \\ \sum_{i=1}^{n} T_{i}^{2} & \alpha_{i} \end{bmatrix}$$

Example 2-Polynomial Model cont.

The necessary summations are as follows

Table. Data points for temperature vs. α

Temperature, T (°F)	Coefficient of thermal expansion, α (in/in/°F)				
80	6.47×10 ⁻⁶				
40	6.24×10 ⁻⁶				
-40	5.72×10 ⁻⁶				
-120	5.09×10 ⁻⁶				
-200	4.30×10 ⁻⁶				
-280	3.33×10 ⁻⁶				
-340	2.45×10 ⁻⁶				

$$\sum_{i=1}^{7} T_i^2 = 2.5580 \times 10^5$$

$$\sum_{i=1}^{7} T_i^3 = -7.0472 \times 10^7$$

$$\sum_{i=1}^{7} T_i^4 = 2.1363 \times 10^{10}$$

$$\sum_{i=1}^{7} \alpha_i = 3.3600 \times 10^{-5}$$

$$\sum_{i=1}^{7} T_i \alpha_i = -2.6978 \times 10^{-3}$$

$$\sum_{i=1}^{7} T_i^2 \alpha_i = 8.5013 \times 10^{-1}$$

Example 2-Polynomial Model cont.

Using these summations, we can now calculate a_0, a_1, a_2

$$\begin{bmatrix} 7.0000 & -8.6000 \times 10^{2} & 2.5800 \times 10^{5} \\ -8.600 \times 10^{2} & 2.5800 \times 10^{5} & -7.0472 \times 10^{7} \\ 2.5800 \times 10^{5} & -7.0472 \times 10^{7} & 2.1363 \times 10^{10} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} 3.3600 \times 10^{-5} \\ -2.6978 \times 10^{-3} \\ 8.5013 \times 10^{-1} \end{bmatrix}$$

Solving the above system of simultaneous linear equations we have

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 6.0217 \times 10^{-6} \\ 6.2782 \times 10^{-9} \\ -1.2218 \times 10^{-11} \end{bmatrix}$$

The polynomial regression model is then

$$\alpha = a_0 + a_1 T + a_2 T^2$$

$$= 6.0217 \times 10^{-6} + 6.2782 \times 10^{-9} \text{ T} - 1.2218 \times 10^{-11} \text{ T}^2$$

Transformation of Data

To find the constants of many nonlinear models, it results in solving simultaneous nonlinear equations. For mathematical convenience, some of the data for such models can be transformed. For example, the data for an exponential model can be transformed.

As shown in the previous example, many chemical and physical processes are governed by the equation,

$$y = ae^{bx}$$

Taking the natural log of both sides yields,

$$\ln y = \ln a + bx$$

Let
$$z = \ln y$$
 and $a_0 = \ln a$

We now have a linear regression model where $z = a_0 + a_1 x$

(implying)
$$a = e^{a_o}$$
 with $a_1 = b$

Linearization of data cont.

Using linear model regression methods,

$$a_{1} = \frac{n \sum_{i=1}^{n} x_{i} z_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} z_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$a_0 = \overline{z} - a_1 \, \overline{x}$$

Once a_o, a_1 are found, the original constants of the model are found as

$$b = a_1$$

$$a = e^{a_0}$$

Example 3-Linearization of data

Many patients get concerned when a test involves injection of a radioactive material. For example for scanning a gallbladder, a few drops of Technetium-99m isotope is used. Half of the technetium-99m would be gone in about 6 hours. It, however, takes about 24 hours for the radiation levels to reach what we are exposed to in day-to-day activities. Below is given the relative intensity of radiation as a function of time.

Table. Relative intensity of radiation as a function of time

t(hrs)	0	1	3	5	7	9
γ	1.000	0.891	0.708	0.562	0.447	0.355

Figure. Data points of relative radiation intensity vs. time

Find:

- a) The value of the regression constants A and λ
- b) The half-life of Technium-99m
- c) Radiation intensity after 24 hours

The relative intensity is related to time by the equation

$$\gamma = Ae^{\lambda t}$$

Exponential model given as,

$$\gamma = Ae^{\lambda t}$$

$$\ln(\gamma) = \ln(A) + \lambda t$$
 Assuming $z = \ln \gamma$, $a_o = \ln(A)$ and $a_1 = \lambda$ we obtain
$$z = a_0 + a_1 t$$

This is a linear relationship between z and t

Using this linear relationship, we can calculate a_0, a_1 where

$$a_{1} = \frac{n \sum_{i=1}^{n} t_{i} z_{i} - \sum_{i=1}^{n} t_{i} \sum_{i=1}^{n} z_{i}}{n \sum_{i=1}^{n} t_{1}^{2} - \left(\sum_{i=1}^{n} t_{i}\right)^{2}}$$

and

$$a_0 = \overline{z} - a_1 \overline{t}$$

$$\lambda = a_1$$

$$A = e^{a_0}$$

Summations for data linearization are as follows

Table. Summation data for linearization of data model

i	t_i	γ_i	$z_{i} = \ln \gamma_{i}$	$t_i z_i$	t_i^2
1	0	1	0.00000	0.0000	0.0000
2	1	0.891	-0.11541	-0.11541	1.0000
3	3	0.708	-0.34531	-1.0359	9.0000
4	5	0.562	-0.57625	-2.8813	25.000
5	7	0.447	-0.80520	-5.6364	49.000
6	9	0.355	-1.0356	-9.3207	81.000
Σ	25.000		-2.8778	-18.990	165.00

With
$$n = 6$$

$$\sum_{i=1}^{6} t_i = 25.000$$

$$\sum_{i=1}^{6} z_i = -2.8778$$

$$\sum_{i=1}^{6} t_i z_i = -18.990$$

$$\sum_{i=1}^{6} t_i^2 = 165.00$$

Calculating a_0, a_1

$$a_1 = \frac{6(-18.990) - (25)(-2.8778)}{6(165.00) - (25)^2} = -0.11505$$

$$a_0 = \frac{-2.8778}{6} - (-0.11505)\frac{25}{6} = -2.6150 \times 10^{-4}$$

Since

$$a_0 = \ln(A)$$

$$A = e^{a_0}$$

$$= e^{-2.6150 \times 10^{-4}} = 0.99974$$

also

$$\lambda = a_1 = -0.11505$$

Slightly different than what we found before !!

Resulting model is $\gamma = 0.99974 \times e^{-0.11505 t}$

Figure. Relative intensity of radiation as a function of temperature using linearization of data model.

The regression formula is then

$$\gamma = 0.99974 \times e^{-0.11505 t}$$

b) Half life of Technetium 99 is when $\left| \gamma = \frac{1}{2} \gamma \right|_{t=0}$

$$\gamma = \frac{1}{2} \gamma \bigg|_{t=0}$$

$$0.99974 \times e^{-0.11505 t} = \frac{1}{2} (0.99974) e^{-0.11505 (0)}$$

$$e^{-0.11508t} = 0.5$$

$$-0.11505 t = \ln(0.5)$$

$$t = 6.0248 \ hours$$

c) The relative intensity of radiation after 24 hours is then

$$\gamma = 0.99974e^{-0.11505(24)} \\
= 0.063200$$

This implies that only $\frac{6.3200 \times 10^{-2}}{0.99983} \times 100 = 6.3216\%$ of the radioactive material is left after 24 hours.

Comparison

Comparison of exponential model with and without data linearization:

Table. Comparison for exponential model with and without data linearization.

	With data linearization (Example 3)	Without data linearization (Example 1)	
A	0.99974	0.99983	
λ	-0.11505	-0.11508	
Half-Life (hrs)	6.0248	6.0232	
Relative intensity after 24 hrs.	6.3200×10 ⁻²	6.3160×10^{-2}	

The values are very similar so data linearization was suitable to find the constants of the nonlinear exponential model in this case.

System of linear equations

In mathematics, a system of linear equations (or linear system) is a collection of linear equations involving the same set of variables. For example,

$$3x + 2y - z = 1$$
$$2x - 2y + 4z = -2$$
$$-x + \frac{1}{2}y - z = 0$$

System of linear equations

A general system of *m* linear equations with *n* unknowns can be written as

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m.$$

System of linear equations

Each unknown is a weight for a column vector in a linear combination.

$$x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

System of Nonlinear Equations

In a nonlinear system of equations, the equation(s) to be solved cannot be written as a linear combination of the unknown variables or functions that appear in it (them). It does not matter if nonlinear known functions appear in the equations.