Olimpiada Naţională de Matematică Etapa Naţională, Bucureşti, 7 aprilie 2015

CLASA a VIII-a - Soluții și bareme orientative

Problema 1. Arătați că pentru orice numere reale a, b, c > 0 cu a + b + c = 3 are loc inegalitatea:

$$2(ab + bc + ca) - 3abc \ge a\sqrt{\frac{b^2 + c^2}{2}} + b\sqrt{\frac{c^2 + a^2}{2}} + c\sqrt{\frac{a^2 + b^2}{2}}.$$

Soluție. Folosind eventual faptul că $\frac{b+c}{2} \leq \sqrt{\frac{b^2+c^2}{2}}$, se arată că:

$$a\sqrt{\frac{b^2+c^2}{2}} + b\sqrt{\frac{a^2+c^2}{2}} + c\sqrt{\frac{a^2+b^2}{2}} \le 2\left(ab+bc+ca\right) - 2abc\left(\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a}\right)$$

Inegalitatea din enunt se obține observând că

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \ge \frac{(1+1+1)^2}{2(a+b+c)} = \frac{3}{2}$$

 $2_{
m p}$

Problema 2. Fie ABCA'B'C' un trunchi de piramidă triunghiulară. Se consideră punctele $D \in (AA')$, $E \in (BB')$ și $F \in (CC')$ astfel încât planele (AEF) și (DB'C') să fie paralele. Demonstrați că planele (A'EF) și (DBC) sunt paralele.

Solutie.

Notăm cu V vârful piramidei din care provine trunchiul.

Cu teorema lui Thales, din $DB' \parallel AE$ și $A'B' \parallel AB$, rezultă:

$$\frac{VD}{VA} = \frac{VB'}{VE}$$
, respectiv $\frac{VA'}{VA} = \frac{VB'}{VB}$.

Din $EF\parallel B'C'\parallel BC$ și $A'E\parallel DB$ rezultă $(A'EF)\parallel (DBC)$. $\mathbf{1p}$

Problema 3. Se notează cu p(a) prima cifră a numărului natural a. Arătați că fiecare dintre mulțimile

$$A = \{n \in \mathbb{N} \mid p(5^n) - p(2^n) > 0\}$$
 si $B = \{n \in \mathbb{N} \mid p(5^n) - p(2^n) < 0\}$

conţine o infinitate de elemente.

Din $2^{n_k} < 10^k < 2^{n_k+1}$, înmulțind prima inegalitate cu 2, rezultă $10^k < 2^{n_k+1} < 2 \cdot 10^k$ (1), deci $p(2^{n_k+1}) = 1 \dots 1$

Înmulțind inegalitățile (2) cu 5^{n_k} , obținem $10^{k-1} \cdot 5^{n_k+1} < 10^{n_k} < 10^k \cdot 5^{n_k}$, de unde împărțind prima inegalitate cu $5 \cdot 10^{k-1}$ și a doua cu 10^k , obținem $10^{n_k-k} < 5^{n_k} < 2 \cdot 10^{n_k-k}$, deci $p(5^{n_k}) = 1 < p(2^{n_k})$. 1 p

Problema 4. Într-un tetraedru regulat ABCD se construiesc plane paralele la fețele tetraedrului, astfel încât fiecare muchie este împărțită în 6 segmente congruente. Aceste plane determină pe fețele, muchiile și în interiorul tetraedrului o mulțime de 80 de puncte de intersecție, notată V.

Determinați numărul maxim de elemente ale unei submulțimi W a mulțimii $V \cup \{A, B, C, D\}$ care are proprietatea:

oricare trei puncte distincte din W sunt necoliniare, iar planul determinat de acestea nu este paralel cu niciuna dintre fețele tetraedrului ABCD.

Soluţie. Putem presupune că lungimea înălţimii tetraedrului ABCD este egală cu 6.

Notând $T = (a_1 + a_2 + ... + a_k) + (b_1 + b_2 + ... + b_k) + (c_1 + c_2 + ... + c_k) + (d_1 + d_2 + ... + d_k)$, rezultă T = 6k.

Pentru k par, k=2s, avem $a_1+a_2+...+a_k \geq 2\cdot 0 + 2\cdot 1 + ... + 2\cdot (s-1) = s^2-s$. Obţinem $T=12s \geq 4s^2-4s$, deci $s\leq 4$ și $k\leq 8$.