Harris Spahic

4/4/2021

"I pledge my honor I have abided by the Stevens Honor System"

Problem 9.37

Part A:
$$(1 = \text{small}, 2 = \text{medium}, 3 = \text{large}, 4 = \text{total})$$

	F					
	sampleClaims	notAllowed	total			
1	57	6	63			
2	17	5	22			
3	5	1	6			
4	79	12	91			
	I					

Part B: (where 1st = % not for small, 2nd is % not for medium, 3rd is % not for large)

```
[1] 0.0952381 0.2272727 0.1666667
```

Part C:

The large strata has an expected value less than 5 so we combine the medium # and large strata.

Part D:

HO => No relationship between Sampled claims and whether claim is not allowed

Part E:

```
Pearson's Chi-squared test with Yates' continuity correction data: data  \text{X-squared} = 1.4725, \text{ df} = 1, \text{ p-value} = 0.2249
```

> # Assuming an alpha less than 0.05, since the p-value of our significance test is > # greater than 0.05, we fail to reject the null hypothesis. Thus we do not know > # whether there is or is not a relationship between the two variables.

Problem 9.38

Part A:

```
> paste("Small estimate value: ", small_est, sep = "")
[1] "Small estimate value: 318.285714285714"
> paste("Medium estimate value: ", medium_est, sep = "")
[1] "Medium estimate value: 55.909090909090"
> paste("Large estimated value: ", large_est, sep ="")
[1] "Large estimated value: 9.6666666666667"
```

Part B:

```
> paste("Margin of Error for small: \(\pi\'\), SE_pop[1], sep = "")
[1] "Margin of Error for small: \(\pm\)123.597211995607"
> paste("Margin of Error for medium: \(\pi\'\), SE_pop[2], sep = "")
[1] "Margin of Error for medium: \(\pm\)21.9791325800337"
> paste("Margin of Error for large: \(\pi\'\), SE_pop[3], sep = "")
[1] "Margin of Error for large: \(\pm\)8.82441898202768"
```

Problem 9.50

```
Probabilities: (1st = group 1, 2nd = group 2, ., 5th = group 5) 
> expected 
[1] 0.27425312 0.18591904 0.07965567 0.18591904 0.27425312
```

Goodness of Fit & Expected number: (expected = expected numbers)

```
> data
    samples expected
1    139 137.12656
2    102 92.95952
3    71 39.82784
4    78 92.95952
5    140 137.12656

Pearson's Chi-squared test

data: data
X-squared = 9.6728, df = 4, p-value = 0.04631
```

Problem 9.51

Intervals:

Group 1	Group 2	Group 3	Group 4	Group 5
X < -1.5	-1.5 < X <-0.75	-0.75 < X < 0.75	0.75 < X < 1.5	1.5 < X

Data & Expected Number: (samples = counted numbers in interval, expected = expected number in interval)

```
samples expected
1 139 137.12656
2 102 92.95952
3 71 39.82784
4 78 92.95952
5 140 137.12656
```

Goodness of Fit:

```
Pearson's Chi-squared test
```

```
data: data
X-squared = 9.6728, df = 4, p-value = 0.04631
```