Reporte Comparativo de Modelos de Predicción

Este informe presenta un análisis comparativo de varios modelos predictivos entrenados para estimar el tiempo de producción.

Especificaciones de la Máquina

CPU: Intel Core i7-11800H @ 2.30GHz

RAM: 16 GB DDR4

GPU: NVIDIA RTX 3060

Visualizaciones del Análisis Exploratorio (EDA)

Histograma de Producción

Distribución de Tiempo de Producción

Matriz de Correlación

Preprocesamiento de Datos

Se aplicaron técnicas de limpieza, codificación de variables categóricas (One-Hot Encoding) y escalado de características (StandardScaler) para preparar los datos antes del entrenamiento.

Métricas de Evaluación de Modelos

Modelo	MAE	MSE	R²	Tiempo (s)
Red Neuronal ANN	5.625	44.995	-0.052	15.20
Random Forest	5.561	43.346	-0.013	3.10
XGBoost	5.761	47.924	-0.120	2.50

Predicciones vs. Valores Reales

Red Neuronal ANN

Random Forest

Coeficiente U de Theil

Red Neuronal ANN: U = 0.2601

Random Forest: U = 0.2496

XGBoost: U = 0.2610

Prueba de Diebold-Mariano

Comparación	Estadístico DM	Valor p
ANN vs RF	-1.441	0.150
ANN vs XGB	1.720	0.086
RF vs XGB	3.682	0.000

Conclusión

Tras analizar las métricas de rendimiento, los tests estadísticos y los tiempos de entrenamiento, el modelo con el mejor desempeño general, considerando el balance entre precisión y eficiencia, fue: Random Forest.