1 Convergence in Euclidian Space

1.1 Convergence of v_t

{sec:vEuclidian}

Boyd's theorem shows that \mathbb{T} defines a contraction mapping in an φ -bounded space. We now show that \mathbb{T} also defines a contraction mapping in Euclidian space.

Calling v* the unique fixed point of the operator \mathbb{T} , since v*(m) = \mathbb{T} v*(m),

$$\|\mathbf{v}_{T-n+1} - \mathbf{v}^*\|_{\varphi} \le \alpha^{n-1} \|\mathbf{v}_T - \mathbf{v}^*\|_{\varphi}.$$
 (1)

On the other hand, $\mathbf{v}_T - \mathbf{v}^* \in \mathcal{C}_{\varphi}(\mathcal{A}, \mathcal{B})$ and $\kappa = \|\mathbf{v}_T - \mathbf{v}^*\|_{\varphi} < \infty$ because \mathbf{v}_T and \mathbf{v}^* are in $\mathcal{C}_{\varphi}(\mathcal{A}, \mathcal{B})$. It follows that

$$|\mathbf{v}_{T-n+1}(m) - \mathbf{v}^*(m)| \le \kappa \alpha^{n-1} |\varphi(m)|. \tag{2}$$

Then we obtain

$$\lim_{n \to \infty} \mathbf{v}_{T-n+1}(m) = \mathbf{v}^*(m). \tag{3}$$

Since $\mathbf{v}_T(m) = \frac{m^{1-\gamma}}{1-\gamma}, \ \mathbf{v}_{T-1}(m) \leq \frac{(\overline{\kappa}m)^{1-\gamma}}{1-\gamma} < \mathbf{v}_T(m)$. On the other hand, $\mathbf{v}_{T-1} \leq \mathbf{v}_T$ means $\mathbb{T}\mathbf{v}_{T-1} \leq \mathbb{T}\mathbf{v}_T$, in other words, $\mathbf{v}_{T-2}(m) \leq \mathbf{v}_{T-1}(m)$. Inductively one gets $\mathbf{v}_{T-n}(m) \geq \mathbf{v}_{T-n-1}(m)$. This means that $\{\mathbf{v}_{T-n+1}(m)\}_{n=1}^{\infty}$ is a decreasing sequence, bounded below by \mathbf{v}^* .

1.2 Convergence of c_t

{subsec:cConverges

Given the proof that the value functions converge, we now show the pointwise convergence of consumption functions $\{c_{T-n+1}(m)\}_{n=1}^{\infty}$.

Consider any convergent subsequence $\{c_{T-n(i)}(m)\}$ of $\{c_{T-n+1}(m)\}_{n=1}^{\infty}$ converging to c^* . By the definition of $c_{T-n}(m)$, we have

$$u(c_{T-n(i)}(m)) + \beta \mathbb{E}_{T-n(i)} [\mathcal{G}_{T-n(i)+1}^{1-\gamma} \mathbf{v}_{T-n(i)+1}(m)]$$

$$\geq u(c_{T-n(i)}) + \beta \mathbb{E}_{T-n(i)} [\mathcal{G}_{T-n(i)+1}^{1-\gamma} \mathbf{v}_{T-n(i)+1}(m)],$$
(4)

for any $c_{T-n(i)} \in [\underline{\underline{\kappa}}m, \overline{\kappa}m]$. Now letting n(i) go to infinity, it follows that the left hand side converges to $\mathbf{u}(c^*) + \beta \mathbb{E}_t[\mathcal{G}_t^{1-\gamma}\mathbf{v}(m)]$, and the right hand side converges to $\mathbf{u}(c_{T-n(i)}) + \beta \mathbb{E}_t[\mathcal{G}_t^{1-\gamma}\mathbf{v}(m)]$. So the limit of the preceding inequality as n(i) approaches infinity implies

$$\mathbf{u}(c^*) + \beta \mathbb{E}_t[\mathcal{G}_{t+1}^{1-\gamma} \mathbf{v}(m)] \ge \mathbf{u}(c_{T-n(i)}) + \beta \mathbb{E}_t[\mathcal{G}_{t+1}^{1-\gamma} \mathbf{v}(m)]. \tag{5}$$

Hence, $c^* \in \underset{c_{T-n(i)} \in [\underline{\underline{\kappa}}m,\overline{\kappa}m]}{\arg \max} \left\{ \mathbf{u}(c_{T-n(i)}) + \beta \mathbb{E}_t[\mathcal{G}_{t+1}^{1-\gamma}\mathbf{v}(m)] \right\}$. By the uniqueness of $\mathbf{c}(m)$, $c^* = \mathbf{c}(m)$.