0.1 Galoistheorie und Anwendungen

Definition 0.1 (Fixkörper). Seien E,K Körper, ist $G \leq \operatorname{Aut}(E)$ eine Untergruppe, so heißt

$$E^G = \{ \alpha \in E \mid \sigma(\alpha) = \alpha, \forall \sigma \in G \}$$

der Fixkörper von E unter G.

Bemerkung. $E^G \subseteq E$ ist ein Unterkörper

Beweis. (Übung) Sei
$$\alpha \in E^G \setminus \{0\}$$
, dann: $1 = \sigma(1) = \sigma(\alpha \cdot \alpha^{-1}) = \sigma(\alpha)\sigma(\alpha^{-1}), \forall \sigma \in G \implies \alpha^{-1} = \sigma(\alpha^{-1}) \forall \sigma \in G.$

Definition 0.2.

- (a) $\Gamma_E := \{G \leq \operatorname{Aut}(E)\}\$
- (b) $\Sigma_E := \{ K \subseteq E \mid K \text{ Unterk\"orper} \}$
- (c) $\operatorname{Inv}_E: \Gamma_E \to \Sigma_E, G \mapsto E^G = \operatorname{Inv}_E(G)$
- (d) $\operatorname{Gal}_E : \Sigma_E \to \Gamma_E, K \mapsto \operatorname{Gal}_E(K) := \operatorname{Aut}_K(E) = \{ \sigma \in \operatorname{Aut}(E) \mid \sigma|_K = \operatorname{id}_K \}$

Lemma 0.3. (a) Die Abbildungen Inv_E und Gal_E sind inklusionsumkehrend.

- (b) $\operatorname{Inv}_E(\operatorname{Gal}_E(K)) \supseteq K$
- (c) $\operatorname{Gal}_E(\operatorname{Inv}_E(G)) \supseteq G$

Beweis. TODO

Bemerkung. Ziel: Unter geeigneten Einschränkungen an G bzw. K wollen wir "Gleichheit" in (b) und (c) (für $\Gamma_{E/K}$ und $\Sigma_{E/K}$), dann erhalten wir eine Bijektion:

$$G \in \Gamma_{E/K} \stackrel{1-1}{\longleftrightarrow} F \in \Sigma_{E/K}$$

Satz 0.4. Für eine endliche Körpererweiterung $E \supset K$ sind äquivalent:

- (i) E ist Zerfällungskörper eines seperablen Polynoms in K[X]
- (ii) $E \supseteq K$ ist normal und seperabel.
- (iii) $E \supseteq K$ ist separated und $\operatorname{Hom}_K(E, \overline{E}) = \operatorname{Aut}_K(E)$
- (iv) $\# \operatorname{Aut}_K(E) = [E : K]$

Beweis. TODO. \Box

Definition 0.5 (Galoiserweiterung/Galoisgruppe). Erfüllt $E \supseteq K$ Oberkörper mit $[E:K] < \infty$ die äquivalenten Bedingungen aus Satz 4, so heißt E/K Galoissch (oder eine Galoiserweiterung von K) (genauer $E \supseteq K$ ist endlich Galoissch)In diesem Fall definiert man die **Galoisgruppe** von E über K als

$$\operatorname{Gal}(E/K) := \operatorname{Aut}_K(E) = \operatorname{Gal}_E(K)$$

Korollar 0.6. Sei $E \supseteq K$ Galoissch und sei $F \subseteq E$ Unterkörper mit $F \supseteq K$, dann:

- (a) $E \supseteq F$ ist Galoissch.
- (b) Es sind äquivalent:
 - (i) $F \supseteq K$ Galoissch
 - (ii) $F \supseteq K$ normal
 - (iii) $\forall \sigma \in \operatorname{Gal}(E/K) : \sigma(F) = F.$

Beweis. TODO □

Satz 0.7. Sei $G \leq \text{Aut}(E)$ endliche Untergruppe, dann gelten

- (a) $[E:E^G] = \#G$
- (b) $E \supseteq E^G$ ist Galoissch und $G : Gal(E/E^G) = Aut_{E^G}(E)$

Beweis. TODO

Korollar 0.8. $G \leq \operatorname{Aut}(E)$ endliche Untergruppe $\implies G = \operatorname{Gal}_E(\operatorname{Inv}_E(G))$

Korollar 0.9. Sei $E \supseteq K$ Galoissch, dann gilt $Inv_E(Gal_E(K)) = K$

Beweis. TODO

Übung 0.10. Sei $G \leq \operatorname{Aut}(E)$ endliche Untergruppe und $K = E^G$, G wirkt auf E durch

$$G \times E \to E, (\sigma, \alpha) \mapsto \sigma(\alpha)$$

Sei $\alpha \in E$ und $A = G\alpha$ die G-Bahn durch α , definiere $\mu := \prod_{\beta \in A} (X - \beta)$, dann gelten: $\mu \in K[X], \mu = \mu_{\alpha,K}$ und μ ist seperabel.

Satz 0.11 (Hauptsatz der Galoistheorie). Sei $E \supseteq K$ Galoissch mit Galoisgruppe $G = \operatorname{Gal}(E/K)$, seien

$$\Gamma_{E/K} = \{H \leq G\}, \quad \Sigma_{E/K} = \{F \subseteq E \ Unterk\"{o}rper \mid K \subseteq F\}$$

dann gelten:

(a) Die Abbildungen:

$$\Gamma_{E/K} \xrightarrow{\operatorname{Inv}_E: H \mapsto E^H} \Sigma_{E/K}$$

sind zueinander inverse Bijektionen.

- (b) Inv_E und Gal_E sind inklusionsumkehrend.
- (c) Es gelten $[E:E^H] = \#H$ und $\#\operatorname{Gal}(E/F) = [E:F]$
- (d) Sei $F \in \Sigma_{E/K}$ und H = Gal(E/F), dann:
 - (i) $\forall \sigma \in G \ gilt$

$$\sigma(F) \xleftarrow{\operatorname{Gal}_{E}(\cdot)} \sigma H \sigma^{-1}$$

d.h. $E^{\sigma H \sigma^{-1}} = \sigma(E^H) = \sigma(F)$ und $Gal(E/\sigma(F)) = \sigma Gal(E/F)\sigma^{-1}$

(ii) Die Abbildung

$$\psi: {}^{N_G(H)}\!/_H \longrightarrow \operatorname{Aut}_K(F)$$
$$\sigma H \longmapsto \sigma|_F$$

ist wohl-definiert und ein Gruppenisomorphismus.

(iii) $F\supseteq K$ Galoissch \iff $H\unlhd G$ ist Normalteiler, in diesem Fall definiert ψ einen Gruppenisomorphismus

$$\psi: {}^{\textstyle C}\!\!/_{\textstyle H} \longrightarrow \operatorname{Gal}(F/K)$$

$$\sigma H \longmapsto \sigma|_F$$

Wiederholung. $N_G(H) := \{g \in G \mid gHg^{-1} = H\}$

Korollar 0.12. $E \supseteq K$ endlich seperabel, dann gilt:

$$M = \{F \subseteq E \ Unterk\"{o}rper \mid K \subseteq F\}$$
 ist endlich.

Satz 0.13. Jede endliche Gruppe G ist die Galoisgruppe für eine geeignete Galoiserweiterung $E \supseteq K$.

Bemerkung 0.14.

$$\psi: G = \operatorname{Gal}(E/K) \longrightarrow \operatorname{Bij}(\{\alpha_1, \dots, \alpha_n\}) \cong S_n$$

$$\sigma \longmapsto \sigma|_{\{\alpha_1, \dots, \alpha_n\}}$$

ist wohl-definiert und ein injektiver Gruppenhomomorphismus. D.h. G ist isomorph zu einer Untergruppe von S_n . Ist f irred. so wirkt G transitiv.

Beispiel 0.15. Sei $E\subseteq\mathbb{C}$ der Zerfällungskörper über \mathbb{Q} zu $f=X^4-5\in\mathbb{Z}[X]\subseteq\mathbb{Q}[X]$. Wir wissen:

- (a) f seperabel (\mathbb{Q} perfekt)
- (b) f irred. (Eisenstein mit p = 5)
- (c) Nullstellenmenge von f ist $Z = \{\pm \sqrt[4]{5}, \pm i\sqrt[4]{5}\}$
- (d) $E = \mathbb{Q}(Z) = \mathbb{Q}(i, \sqrt[4]{5})$
- (e) Einige Unterkörper von E:

- (f) $[E:\mathbb{Q}]=8$. f ist irred. als Polynom in $\mathbb{Q}(i)[X]$ und $E\supseteq\mathbb{Q}(i)$ ist der Stammkörper zu f. (und auch der Zerfällungskörper von f über $\mathbb{Q}(i)$)
- (g) $\mathbb{Q}(i) \supseteq \mathbb{Q}$ ist Galoissch, denn $\mathbb{Q}(i) \supseteq \mathbb{Q}$ ist der Zerfällungskörper von $X^2 + 1$.
- (h) $G = \operatorname{Gal}(E/Q)$ ist eine Gruppe mit 8 Elementen. G wirkt auf $Z \stackrel{\#Z}{\Longrightarrow} G$ ist isomorph zu einer Untergruppe von S_4
- (i) $[E:\mathbb{Q}(i)] = 4$ (nach (f) und (a)) und $N := \operatorname{Gal}(E/\mathbb{Q}(i)) \subseteq \operatorname{Bij}(Z) \cong S_4$ und sie ist transitiv, da $f \in \mathbb{Q}(i)[X]$ irred. Sei $\rho \in N$ der Automorphismus mit $\rho(\underbrace{\sqrt[4]{5}}_{\alpha_1}) = \underbrace{i\sqrt[4]{5}}_{\alpha_2}$ (Gruppe transitiv).

$$\implies \rho^2(\sqrt[4]{5}) = \rho(i\sqrt[4]{5}) \underset{\rho|_{\mathbb{Q}(i)} = \mathrm{id}_{\mathbb{Q}(i)}}{=} i\rho(\sqrt[4]{5}) = ii\sqrt[4]{5} = \underbrace{-\sqrt[4]{5}}_{\alpha_3}$$

analog ist

$$\rho^3(\sqrt[4]{5}) = \underbrace{-i\sqrt[4]{5}}_{\alpha_4}, \quad \rho^4 = \mathrm{id}_E$$

d.h. $N = \langle \rho \rangle$ unr ρ hat Ordnung 4 $(N \cong \mathbb{Z}/4\mathbb{Z})$

(j) Wir wissen $N \subseteq G$, da $\mathbb{Q}(i) \supseteq \mathbb{Q}$ Galoissch (\implies Gal $(E/\mathbb{Q}(i)) \subseteq$ Gal (E/\mathbb{Q}) normal)

$$\underset{\text{von } S_4}{\overset{\text{als U.G}}{\Longrightarrow}} G \le N_{S_4} (\underbrace{N}_{\langle (1\ 2\ 3\ 4) \rangle})$$

Behauptung: $\#N_{S_4}(N) = 8 \iff G = N_{S_4}(N)$ ist vollständig bestimmt.

Beweis. Sei
$$\tau \in N_{S_4}(N) \implies \tau \rho \tau^{-1} \in \langle \rho \rangle \implies \tau \rho \tau^{-1} \in \{\rho, \rho^{-1}\}$$

Fall 1: Betrachte
$$\tau \rho \tau^{-1} = \rho \ (\iff \tau (1 \ 2 \ 3 \ 4) \tau^{-1} = (1 \ 2 \ 3 \ 4))$$

$$(\tau(1) \ \tau(2) \ \tau(3) \ \tau(4)) = (1 \ 2 \ 3 \ 4)$$

Zykeldarstellung ist eindeutig bis auf Zykelpermutation der Einträge.

$$\implies \tau = \mathrm{id}, \tau = \rho, \underbrace{\tau = \rho^2}_{(\tau(1) \ \tau(2) \ \tau(3) \ \tau(4)) = (3\ 4\ 1\ 2)}, \tau = \rho^3$$

$$\iff \tau \in \langle \rho \rangle.$$

Fall 2: Für $\tau \rho \tau^{-1} = \rho^{-1} \iff (\tau(1) \ \tau(2) \ \tau(3) \ \tau(4)) = (4 \ 3 \ 2 \ 1)$ also $(= (3 \ 2 \ 1 \ 4) = (2 \ 1 \ 4 \ 3) = (1 \ 4 \ 3 \ 2)) \implies 4$ Möglichkeiten für τ :

$$\tau \in \{\underbrace{(1\ 3)}_{=:\sigma}, (2\ 4), (1\ 4)(2\ 3), (1\ 2)(4\ 3)\} = \sigma \cdot \langle \rho \rangle$$

Fazit: $G = N_{S_4}(N)$ hat 8 Elemente. Veranschaulichung der Permutationen $(1\ 2\ 3\ 4), (1\ 3)(2\ 4), (1\ 2)(3\ 4)$ und $(1\ 4)(2\ 3)$

 $G \cong D_4$ Diedergruppe auf regulärem 4-Eck.

Untergruppenverband:

5 Unterkörper mit $[E:F]=2, [F:\mathbb{Q}]=4$ und 3 Unterkörper mit $[F:\mathbb{Q}]=2$

Beispielklassen von Galoiserweiterungen 0.2

0.2.1Endliche Körper

Sei p Primzahl und $\overline{\mathbb{F}}_p$ ein (fest gewählter) algebraischer Abschluss von \mathbb{F}_p . Sei $\varphi:\overline{\mathbb{F}}_p\to\overline{\mathbb{F}}_p, \alpha\mapsto\alpha^p$, es gilt $\varphi\in\mathrm{Aut}(\overline{\mathbb{F}}_p)$. φ ist surjektiv, da $\overline{\mathbb{F}}_p$ perfekt (als algebraischer Abschluss) und φ injektiv, Homom. klar \Longrightarrow Es gibt auch φ^{-1} , d.h. jedes $\alpha\in\overline{\mathbb{F}}_p$ besitzt eine eindeutige p-te Wurzel. \Longrightarrow $\forall m\in\mathbb{Z}$ haben $\varphi^m\in\mathrm{Aut}(\overline{\mathbb{F}}_p)$, d.h. $\mathbb{Z}\cong\{\varphi^m:m\in\mathbb{Z}\}\subseteq\mathrm{Aut}(\overline{\mathbb{F}}_p)$ ist

Untergruppe.

Satz 0.16.

$$(a) \ \mathbb{F}_{p^n} := (\overline{\mathbb{F}}_p)^{\varphi^n} = \{\alpha \in \overline{\mathbb{F}}_p \mid \varphi^n(\alpha) = \alpha^{p^n} \stackrel{!}{=} \alpha\} \subseteq \overline{\mathbb{F}}_p \ \textit{ist Unterk\"orper}.$$

- (b) $\#\mathbb{F}_{p^n} = p^n \text{ und } \mathbb{F}_{p^n} \text{ ist der Zerfällungskörper von } f_n := X^{p^n} X \in \mathbb{F}_p[X].$
- (c) Bis auf Isomorphie \exists ! Körper mit p^n Elementen.
- (d) $F\ddot{u}r \ m, n \in \mathbb{N}$ gilt: $\mathbb{F}_{p^m} \subseteq \mathbb{F}_{p^n} \iff m \mid n$
- (e) Gilt $m \mid n$, so ist $\mathbb{F}_{p^n} \supseteq \mathbb{F}_{p^m}$ Galoissch mit Gruppe $\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_{p^m}) = \langle \varphi^m \rangle$ ist zyklisch von der Ordnung $\ell = \frac{n}{m}$.

Beweis. TODO □

0.2.2 Einheitswurzelkörper (Kreisteilungskörper)

Definition 0.17. Sei $n \in \mathbb{N}$, ein Element $\rho \in \overline{K}^{\times}$ heißt primitive n-te Einheitswurzel (EW) \iff ord $(\rho) = n$ als Element der Gruppe $(\overline{K}^{\times}, 1, \cdot)$.

Lemma 0.18. Sei $G \leq (\overline{K}^{\times}, 1, \cdot)$ endliche Untergruppe, dann ist G zyklisch.

Beweis. Sei n = #G und $n' := \exp(G)$, wir wissen $n' \mid n$. Da G abelsch: G zyklisch $\iff n' = n$. Annahme $n' < n \ (\implies \forall \alpha \in G \text{ gilt } \alpha^{n'} - 1 = 0)$

$$\implies G \subseteq \underbrace{\left\{\alpha \in K \mid \alpha \text{ ist Nst. von } X^{n'} - 1\right\}}_{\text{Menge hat höchstens Kardinalität } n'} \implies n = \#G \le n' \text{ Widerspruch.}$$

 $\implies n' = n \text{ (wissen schon } n' \text{ teilt } n).$

Beispiel. $\mathbb{F}_{p^n}^{\times}$ ist zyklische Gruppe der Ordnung p^{n-1}

Proposition 0.19. Sei $p = \operatorname{char} K$, sei $n \in \mathbb{N}$, dann: \overline{K} enthält eine primitive n-te Einheitswurzel $\iff p \nmid n$.

Beispiel.

- (a) $\operatorname{char} K = 0 \implies \overline{K}$ enthält primitive n-te Einheitswurzel für alle $n \in \mathbb{N}$
- (b) $K = \mathbb{C} \implies e^{2\pi i/n}$ ist primitive n-te Einheitswurzel. Die Elemente

$$\{(e^{2\pi i/n})^j \mid j \in \{0, \dots, n-1\}\}$$

bilden ein regelmäßiges n-Eck, deswegen heißt auch $\mathbb{Q}(e^{2\pi i/n})$ n-ter Kreisteilungskörper (über \mathbb{Q}). $e^{2\pi i/n}$ ist algebraisch, da Nst. von $X^n - 1$

Beweis (von Proposition 19). TODO.

Proposition 0.20. Sei $\zeta \in \overline{K}^{\times}$ primitive n-te Einheitswurzel (insbesondere $p = \operatorname{char} K \nmid n$), dann:

- (a) $K(\zeta)$ ist Zerfällungskörper des seperablen Polynoms $h_n = X^n 1$ über K und insbesondere ist $K(\zeta)$ Galoissch über K.
- (b) Sei $H := \{ \xi \in \overline{K}^{\times} \mid \xi^n = 1 \}$, dann gibt es zu ξ ein eindeutiges $n_{\xi} \in \{1, \ldots, n\}$ mit $\zeta^{n_{\xi}} = \xi$.

(c) Die Abbildung

$$G:=\operatorname{Gal}(K(\zeta)/K)\to \left(\mathbb{Z}_{n\mathbb{Z}}\right)^{\times}, \sigma\mapsto n_{\sigma(\zeta)}\mod n$$

ist wohl-definiert und ein Gruppenmonomorphismus. Insbesondere ist G abelsch (also auflösbar)

Beweis. TODO.

Satz 0.21.

(a) ϕ_n ist irred. in $\mathbb{Z}[X]$

(b) $\mathbb{Q}(\zeta_n): \mathbb{Q} = \operatorname{Grad} \phi_n = \#\mathbb{Z}_n^{\times}$

(c) $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \to \left(\mathbb{Z}/n\mathbb{Z}\right)^{\times}, \sigma \mapsto \overline{m}_{\sigma} \text{ ans Bew. von 20 ist Gruppenisomorphismus.}$

Beweis. TODO.

0.2.3 Galoiserweiterungen von Grad p (eine Primzahl)

Satz 0.22 (Kummererweiterungen). Gelte p Primzahl, $p \nmid \operatorname{char} K$, gelte: K enthält eine primitive p-te Einheitswurzel ζ_p (d.h. $K^{\times} \supseteq N_p := \langle \zeta_p \rangle$ und $N_p \cong \mathbb{Z}/p\mathbb{Z}$). Sei $f = X^p - a, a \in K$, sei E ein Zerfällungskörper von f und $b \in \overline{K}$ eine Nullstelle von f. Dann:

- (a) f hat die Nullstelle $b \cdot \zeta_p^i$, $i \in \{0, \dots, p-1\}$
- (b) E = K(b) ist Zerfällungskörper von f und $E \supseteq K$ Galoissch. (f seperabel)
- (c) Die Abbildung $\varphi: \operatorname{Gal}(E/K) \to N_p, \sigma \mapsto \frac{\sigma(b)}{b}$ ist wohl-definiert und ein Gruppenmonomorphismus.
- (d) Es sind äquivalent:
 - (i) [E:K] = p
 - (ii) f ist irred.
 - (iii) f hat keine Nullstelle in K
 - (iv) φ ist ein Isomorphismus.
- (e) Ist Umgekehrt $E \supseteq K$ Galoissch mit $Gal(E/K) \cong \mathbb{Z}/p\mathbb{Z}$, so ist E ein Zerfällungskörper über K eines irred. Polynoms der Form $X^p c \in K[X]$, wobei $c \in K^{\times}/K^{\times p}$.

Proposition 0.23 (Übung, Lineare Algebra). Sei V ein endlich dimensionaler K-Vektorraum und $\sigma \in \operatorname{Aut}_K(V)$ mit $\operatorname{ord}(\sigma) = p$, dann:

(a) Das Minimalpolynom von σ ist $X^p - 1$

- (b) Gilt $p \neq \operatorname{char} K$, so besitzt σ einen Eigenwert ζ , welcher eine primitive p-te Einheitswurzel ist.
- (c) Gilt $p = \operatorname{char} K$, so enthält die Jordanform von σ einen $d \times d$ -Block folgender Form mit d > 1

$$\begin{pmatrix} 1 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 1 \end{pmatrix}$$

Notation. Für $m \in \mathbb{N}$ mit char $K \nmid n$, so sei $N_k := \{ \zeta \in \overline{K} \mid \zeta^n = 1 \} \ (= \mathbb{Z}/n\mathbb{Z})$

Satz 0.24 (Kummererweiterungen). Sei p primzahl mit $p \nmid \operatorname{char} K$ und gelte: K enthält eine primitive p-te Einheitswurzel ζ_p (d.h. $K^{\times} \supseteq N_p := \langle \zeta_p \rangle$ und $N_p \cong \mathbb{Z}/p\mathbb{Z}$) und $b \in \overline{K}$ eine Nst. von f, dann:

- (a) f hat die Nst. $b \cdot \zeta_p^i$, $i \in \{0, \dots, p-1\}$
- (b) E = K(b) ist ZK von f und E/K galoissch. (f seperabel)
- (c) Die Abbildung $\varphi: \operatorname{Gal}(E/K) \to N_p, \sigma \mapsto \frac{\sigma(b)}{b}$ ist wohl-def Gruppenn-monomorphismus.
- (d) Es sind äquivalent:
 - (i) [E:K] = p
 - (ii) f ist irred.
 - (iii) f hat keine Nst in K
 - (iv) φ ist ein Isomorphismsus.
- (e) Ist umgekehrt E/K galoissch mit $Gal(E/K) \cong \mathbb{Z}_p$, so ist E ZK über K eines irred. Polynoms der Form $X^p c \in K[X]$ (wobei $c \in K^{\times} \setminus K^{\times p}$)

Satz 0.25 (Artin-Schreier Erweiterungen). Sei $p = \operatorname{char} K > 0$, $f = X^p - X - a \in K[X]$ und sei E/K der E/K von E/K und sei E/K und sei E/K der E/K von E/K und sei E/K und sei E/K der E/K von E/K und sei E/K u

- (a) $E = K(\beta)$ und $T = \{\beta + i \cdot 1_K\}, i$ $in\{0, \dots, p-1\}$ ist die Nullstellenmenge von f.
- (b) E/K ist qaloiisch
- (c) $\varphi : \operatorname{Gal}(E/K) \to \mathbb{F}_p, \sigma \mapsto \sigma(\beta) \beta$ ist ein Gruppenmonom. (\mathbb{F}_p sei identifiziert mit dem Primkörper von K)
- (d) Es sind äquivalent
 - (i) [E:K] = p
 - (ii) f ist irred.
 - (iii) f hat keine Nst. in K
 - (iv) φ ist bijektiv
 - (v) $a \in K \setminus y(K)$ für $y : K \to K$ der Gruppenhom. $X \mapsto X^p X$
- (e) Ist Umgekehrt F/K galoissch vom Grad p, so ist F ZK eines Polynoms der Form $X^p X b \in K[X]$ mit $b \in K \setminus y(K)$ (verwendet z.B. 23c)

0.3 Auflösbarkeit durch Radikale

Definition 0.26. Sei $p = \operatorname{char} K \geq 0$,

- (i) Eine Kette von Körpererweiterungen $K = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n$ heißt:
 - (a) Wurzelturm \iff für $i \in \{1, ..., n\}$ existieren $\alpha_i \in K_i$ und $e_i \in \mathbb{N} \setminus p\mathbb{N}$ sodass $K_i = K_{i-1}(\alpha_i)$ und $\alpha_i^{e_i} \in K_{i-1}$.
 - (b) Quadratwurzelturm $\iff p \neq 2$ und für $i \in \{1, ..., n\}$ existieren $\alpha_i \in K_i$ mit $\alpha_i^2 \in K_{i-1}$ und $K_i = K_i(\alpha_i)$.
- (ii) Ein Oberkörper E/K heißt (Quadrat-)Wurzelerweiterung $\iff \exists$ (Quadrat-)Wurzelturm wie in (i) mit $E \subseteq K_n$
- (iii) $f \in K[X]$ heißt auflösbar durch Radikale (Wurzelausdrücke) \iff der ZK von f ist eine Wurzelerweiterung.

Notation. QW = Quadratwurzel und W- = Wurzel

Bemerkung (Übung). Wegen $e_i \in \mathbb{N} \setminus p\mathbb{N}$ ist $K_i \supseteq K_{i-1}$ stets seperabel $(X^{e_i} - \alpha_i^{e_i} \in K_{i-1}[X])$

Lemma 0.27. Seien $E, E' \subseteq \overline{K}$ Oberkörper von K, dann:

- (a) Ist E/K eine (Q)W-Erweiterung und $\sigma \in \operatorname{Hom}_K(E, \overline{E})$, so ist $\sigma(E) \supseteq K$ eine (Q)W-Erweiterung
- (b) Sind E, E' (Q)W-Erweiterungen von K, so auch E[E'] = E'[E]
- (c) Ist E/K eine Q(W)-Erweiterung, so ist die normale Hülle von E eine (Q)W-Erweiterung von K.

Bemerkung. Gilt $E' = K[\alpha_1, \dots, \alpha_n]$, so hat man $E[E'] = E[\alpha_1, \dots, \alpha_n]$

Beispiel 0.28. Sei $n \in \mathbb{N}$ mit $p \nmid n$ und $\zeta \in \overline{K}$ eine primitive n-te EW, dann ist $K[\zeta] \supseteq K$ eine W-Erweiterung $(\zeta^n = 1 \in K)$

Bemerkung 0.29 (Übung). Sei $\zeta \in \overline{K}$ eine primitive *n*-te EW, und $E \subseteq \overline{K}$ ein Oberkörper von K, mit $[E:K] < \infty$, dann:

- (a) Die Abbildung $\varphi: \operatorname{Gal}(E(\zeta)/E) \to \operatorname{Gal}(K(\zeta)/K), \sigma \mapsto \sigma|_{K(\zeta)}$ ist wohl def und ein Gruppenmonom.
- (b) $[E(\zeta):E]$ teilt $[K(\zeta):K]$
- (c) $[E(\zeta):K]$ teilt [E:K]

Satz 0.30. Für eine Galoiserweiterung E/K sind äquivalent:

- (i) E/K ist Wurzelerweiterung
- (ii) $\operatorname{Gal}(E/K)$ ist auflösbar und $\exists m \in \mathbb{N}, p \nmid m : p \nmid [E[N_m] : K[N_m]]$

Bemerkung. Im Fall p = 0 entfällt.

Korollar 0.31. Sei $f \in K[X] \setminus K$ seperabel mit $ZK E_f/K$, dann: f ist auflösbar durch Radikale $\stackrel{5.30}{\Longleftrightarrow}$ $Gal(E_f/K)$ ist auflösbar und $\exists m$ (mit char $K \nmid m$), sodass char $K \nmid [E_f(\zeta_m) : K(\zeta_m)]$.

In den Übungen: $\exists f \in \mathbb{Q}[X] \setminus \mathbb{Q}, \deg f = 5, \operatorname{Gal}(\mathbb{Q}_f/\mathbb{Q}) \cong S_5 \implies f$ nicht auflösbar durch Radikale.

Andersherum: Alle Untergruppen von S_n für $n \leq 4$ sind auflösbar (Ordnung < 60) \implies ist $f \in \mathbb{Q}[X] \setminus \mathbb{Q}$ irred. vom Grad $n \leq 4$, so ist f auflösbar durch Radikale \implies Die allgemeine Gleichung vom Grad 5 (oder $n \geq 5$) ist nicht auflösbar.

Bemerkung 0.32. Die Galoistheorie hilft auch, die Lösungsformeln zu finden $(n \le 4)$ (Hungerford - Algebra).

0.4 Konstruierbarkeit mit Zirkel und Lineal

Sei S eine endliche Teilmenge der reellen Ebene \mathbb{R}^2 (üblicherweise $S = \{(0,0),(1,0)\}$), Frage: Welche Punkte der Ebene lassen sich mit Zirkel und Lineal aus S konstruieren?

Konkrete Fragen (alle Konstr. mit Zirkel und Lineal):

- A) Lassen sich beliebige Winkel 3-teilen?
- B) Kann ein zum Einheitskreis flächengleiches Quadrat konstruieren? (Quadratur des Kreises)
- C) Kann man die Seitenlänge eines Würfels mit Volumen 2 konstruieren?
- D) Für welche $n \in \mathbb{N}$ kann man ein regelmäßiges n-Eck konstruieren.

Im Weiteren: Wir identifizieren R^2 mit $\mathbb C$ und nehmen an, $0,1\in S\subset \mathbb C$ mit der Metrik d(z,z')=|z-z'|.

- Für $P \neq Q$ in $\mathbb C$ sei \overline{PQ} die Gerade durch P und Q
- Für $P \in \mathbb{C}, r \in \mathbb{R}_{\geq 0}$ sei $C_r(P) = \{z \in \mathbb{C} \mid |z P| = r\}$ die Kreislinie um P zum Radius r.

Definition 0.33 (Elementare Konstruktionen mit Zirkel und Lineal). Zu $P_1 \neq P_2, P_3 \neq P_4, P_5 \neq P_6$ in S konstruiere

- (1) Schnittpunkt $\overline{P_1P_2} \cap \overline{P_3P_4}$
- (2) Schnittpunkte $\overline{P_1P_2} \cap C_r(P_5), r = |P_6 P_5|$
- (3) Schnittpunkte $C_{r_1}(P_1) \cap C_{r_3}(P_3), r_1 = |P_1 P_2|, r_3 = |P_3 P_4|$

Notation. Zu geg. S definiere $\widetilde{S}=S\cup$ Menge der aus S elementar konstruierbaren Punkte.

Definition 0.34. (rekursiv) $S_0 = S$, $S_{n+1} = \widetilde{S}_n$ und $C(S) = \bigcup_{n \in \mathbb{N}_0} S_n \subseteq \mathbb{C}$ Menge aller aus S konstruierbaren Punkte.

Beispiel 0.35. Folgende Konstruktionen sind mit Zirkel und Lineal durchführbar (siehe Schule Klasse 9)

- (a) Die Parallele zu einer Geraden durch einer geg. Punkt
- (b) Die Senkrechte zu einer Geraden durch einer geg. Punkt
- (c) die Mittepunkt zu 2 geg. Punkten
- (d) Das Spiegelbild eines Punktes an einer Geraden
- (e) Die Summe von Winkeln
- (f) Die Halbierung von Winkeln
- (g) Die Negation von Winkeln

Lemma 0.36. Seien $z, z_1, z_2 \in C(S), S \supseteq \{0, 1\}, z \neq 0, dann:$

- (a) $z_1 + z_2 \in C(S)$
- (b) $-z \in C(S)$
- (c) $\Re(z), \Im(z), \overline{z} \in C(S)$
- (d) $|z| \in C(S)$
- (e) $|z_1| \cdot |z_2|$ und $z_1 \cdot z_2 \in C(S)$
- (f) $|z|^{-1}, z^{-1} \in C(S)$
- (g) $\sqrt{|z|} \in C(S)$
- (h) $\{\xi \in \mathbb{C} \mid \xi^2 = z\} \subseteq C(S)$ (2 Punkte in \mathbb{C})

Satz 0.37. Sei $\overline{S} = {\overline{z} \mid z \in S}$, dann gelten:

C(S) ist ein Unterkörper von \mathbb{C} der $C(S \cup \overline{S})$ enthält.

 $z \in C(S) \iff \mathbb{Q}(S \cup \overline{S})(z) \text{ ist eine } QW\text{-Erweiterung von } \mathbb{Q}(S \cup \overline{S})$

Korollar 0.38. Für $S = \{0, 1\}$ sind äquivalent:

- (a) $z \in C(S)$
- (b) $\mathbb{Q}(z)/\mathbb{Q}$ ist eine QW-Erweiterung von \mathbb{Q}
- (c) z ist algebraisch über \mathbb{Q} und der ZK E von $\mu_{z,\mathbb{Q}}$ erfüllt $[E:\mathbb{Q}]$ ist 2-Potenz
- (d) z ist algebraisch über \mathbb{Q} und für E aus (c) gilt $\operatorname{Gal}(E/\mathbb{Q})$ ist 2-Gruppe

0.5 Anwendungen

Satz 0.39. π , $\sqrt[3]{2}$, $\zeta_n = e^{2\pi i/n}$ sind nicht konstruierbar über \mathbb{Q}

Bemerkung. Frage D: reguläre n-Ecke. die eulersche ϕ -Funktion ist die Abbildung:

$$\mathbb{N} \to \mathbb{N}, n \mapsto \#\mathbb{Z}_n^{\times} =: \phi(n)$$

Lemma 0.40. Sei p Primzahl, $k \in \mathbb{N}$, es gelten:

(a)
$$\phi(p^k) = p^k - p^{k-1} = \phi(p)p^{k-1} \ (\phi(p) = p - 1)$$

(b)
$$\phi(mn) = \phi(m)\phi(n)$$
 soften $ggT(n,m) = 1$

(c) Für $n = 2^k p_1^{e_1} \cdot \ldots \cdot p_k^{e_k}$ mit Primzahlen $2 < p_1 < \cdots < p_k$ und $e_i \in \mathbb{N}$ gilt

$$\phi(n) = 2^{k-1}(p_1 - 1) \cdots (p_{k-1})p_1^{e_1 - 1} \cdot \dots \cdot p_k^{e_k - 1}$$

Satz 0.41 (Gauß). Sei $\zeta_n = e^{2\pi i/n}$, dann sind äquivalent:

- (a) Das reguläre n-Eck (mit Umkreisradius 1) ist konstruierbar
- (b) $\zeta_n \in C(\{0,1\})$
- (c) $\phi(n)$ ist 2-Potenz
- (d) n ist von der Form $2^k p_1 \cdot \ldots \cdot p_k$ mit $p_1 < \cdots < p_k$ Fermatprimzahlen

Definition 0.42. $F_{\ell} = 2^{2^{\ell}} + 1$ heißt ℓ -te Fermatzahl.

Fermat vermutet: F_{ℓ} ist eine Primzahl $\forall \ell \in \mathbb{N}_0$, falsch! da $F_0 = 3, F_1 = 5, F_2 = 17, F_3 = 257, F_4 = 65537, F_5 = 2^{32} + 1 \approx 4$ Milliarden. Nach Euler ist 641 | F_5 . Inzwischen ist bekannt F_5, \ldots, F_{11} sind keine Primzahlen und für 324 Fermatzahlen bekannt, sie sind nicht Primzahlen. Außer F_0 bis F_4 keine Primzahlen bisher. Neue Vermutung: Das sind alle??