$\iiint \int (\frac{1}{6} \left(2 t \atop 1 \right) \mathcal{R}^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \mathcal{R}^{\theta}_{\phantom{\alpha_{i}} \theta} + 6 \mathcal{R}^{\alpha \beta \chi}_{\phantom{\alpha_{i}} \alpha} \mathcal{T}^{\alpha \beta \chi}_{\phantom{\alpha_{i}} \alpha} + 6 f^{\alpha \beta}_{\phantom{\alpha_{i}} \alpha} \tau \left(\Delta + \mathcal{K}\right)_{\alpha \beta} - 4 t \atop 1 \right) \mathcal{R}^{\theta}_{\phantom{\alpha_{i}} \theta} \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} + 4 t \atop 1 \right) \mathcal{R}^{\theta}_{\phantom{\alpha_{i}} \theta} \partial_{i} f^{\alpha}_{\phantom{\alpha_{i}} \alpha} - 2 t \atop 1 \right) \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} - 2 t \atop 1 \right) \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \partial_{\theta} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} + 4 t \atop 1 \right) \mathcal{R}^{\theta}_{\phantom{\alpha_{i}} \theta} \partial_{i} f^{\alpha}_{\phantom{\alpha_{i}} \alpha} - 2 t \atop 1 \right) \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \partial_{\theta} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} + 4 t \atop 1 \right) \mathcal{R}^{\theta}_{\phantom{\alpha_{i}} \theta} \partial_{i} f^{\alpha}_{\phantom{\alpha_{i}} \alpha} - 2 t \atop 1 \right) \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \partial_{\theta} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} + 4 t \atop 1 \right) \mathcal{R}^{\theta}_{\phantom{\alpha_{i}} \theta} \partial_{i} f^{\alpha}_{\phantom{\alpha_{i}} \alpha} - 2 t \atop 1 \right) \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \partial_{\theta} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} + 4 t \atop 1 \right) \mathcal{R}^{\theta}_{\phantom{\alpha_{i}} \theta} \partial_{i} f^{\alpha}_{\phantom{\alpha_{i}} \alpha} - 2 t \atop 1 \right) \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \partial_{\theta} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} + 4 t \atop 1 \right) \mathcal{R}^{\theta}_{\phantom{\alpha_{i}} \theta} \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} - 2 t \atop 1 \right) \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \partial_{\theta} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} + 4 t \atop 1 \right) \mathcal{R}^{\theta}_{\phantom{\alpha_{i}} \theta} \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} - 2 t \atop 1 \right) \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} + 4 t \atop 1 \right) \mathcal{R}^{\theta}_{\phantom{\alpha_{i}} \alpha} \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} - 2 t \atop 1 \right) \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} + 4 t \atop 1 \right) \mathcal{R}^{\theta}_{\phantom{\alpha_{i}} \alpha} \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} - 2 t \atop 1 \right) \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} + 4 t \atop 1 \right) \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} - 2 t \atop 1 \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} + 4 t \atop 1 \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} + 4 t \atop 1 \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} + 4 t \atop 1 \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} + 4 t \atop 1 \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} + 4 t \atop 1 \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} + 4 t \atop 1 \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} + 4 t \atop 1 \partial_{i} f^{\alpha_{i}}_{\phantom{\alpha_{i}} \alpha} \partial_{i} f^{\alpha$ $4 t \cdot \partial^{\prime} f^{\alpha}_{\ \alpha} \partial_{\theta} f^{\theta}_{, \ } + 8 r \cdot \partial_{\beta} \mathcal{A}_{\alpha_{l}\theta} \partial^{\theta} \mathcal{A}^{\alpha\beta_{l}} - 4 r \cdot \partial_{\beta} \mathcal{A}_{\alpha_{\theta_{l}}} \partial^{\theta} \mathcal{A}^{\alpha\beta_{l}} + 4 r \cdot \partial_{\beta} \mathcal{A}_{\alpha_{\theta_{l}}} \partial^{\theta} \mathcal{A}^{\alpha\beta_{l}} - 4 r \cdot \partial_{\beta} \mathcal{A}_{\alpha_{\theta_{l}}} \partial^{\theta} \mathcal{A}^{\alpha\beta_{l}} + 4 r \cdot \partial_{\beta} \mathcal{A}_{\alpha_{\theta_{l}}} \partial^{\theta} \mathcal{A}^{\alpha\beta_{l}} - 4 r \cdot \partial_{\beta} \mathcal{A}^{\alpha\beta_{l}} \partial^{\theta} \mathcal{A}^{\alpha\beta_{l}} - 4 r \cdot \partial_{\beta} \mathcal{A}^{\alpha\beta_{l}} \partial^{\theta} \mathcal{A}^{\alpha\beta_{l}$ $2r_{2}\partial_{i}\mathcal{A}_{\alpha\beta\theta}\partial^{\theta}\mathcal{R}^{\alpha\beta\prime}+2r_{2}\partial_{\theta}\mathcal{A}_{\alpha\beta\imath}\partial^{\theta}\mathcal{R}^{\alpha\beta\prime}-4r_{2}\partial_{\theta}\mathcal{A}_{\alpha\imath\beta}\partial^{\theta}\mathcal{R}^{\alpha\beta\prime}+4t_{1}\mathcal{A}_{\beta\alpha}\partial^{\theta}f^{\alpha\prime}+4t_{2}\mathcal{A}_{\beta\alpha}\partial^{\theta}f^{\alpha\prime}-4r_{2}\partial_{\alpha\beta}\partial^{\alpha\beta}\partial$ $4t_1\partial_{\alpha}f_{_{'\theta}}\partial^{\theta}f^{\alpha\prime}+2t_2\partial_{\alpha}f_{_{'\theta}}\partial^{\theta}f^{\alpha\prime}-4t_1\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}+2t_1\partial_{\imath}f_{_{\alpha\theta}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}+2t_1\partial_{\imath}f_{_{\alpha\theta}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}+2t_1\partial_{\imath}f_{_{\alpha\theta}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}+2t_1\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f_{_{\theta\prime}}\partial^{\theta}f^{\alpha\prime}-t_2\partial_{\alpha}f^{\alpha\prime}-t_2\partial_{\alpha}f^{\alpha\prime}-t_2\partial_{\alpha}f^{\alpha\prime}-t_2\partial_{\alpha}f^{\alpha\prime}-t_2\partial_$ $t. \frac{\partial_{i}f_{\alpha\theta}}{\partial^{\theta}f^{\alpha i}} + 4t. \frac{\partial_{\theta}f_{\alpha i}}{\partial^{\theta}f^{\alpha i}} + t. \frac{\partial_{\theta}f_{\alpha i}}{\partial^{\theta}f^{\alpha i}} + 2t. \frac{\partial_{\theta}f_{i\alpha}}{\partial^{\theta}f^{\alpha i}} - t. \frac{\partial_{\theta}f_{i\alpha}}{\partial^{\theta}f^{\alpha i}} + 2t. \frac{\partial_{\theta}f_{i$ $2\,(t_{_{1}}\,+\,t_{_{1}})\,\,\mathcal{A}_{_{\alpha_{l}\theta}}\,\,(\,\mathcal{A}^{^{\alpha_{l}\theta}}\,+\,2\,\partial^{\theta}f^{^{\alpha_{l}}})\,+\,2\,\,\mathcal{A}_{_{\alpha\theta_{l}}}\,\,((t_{_{1}}\,-\,2\,t_{_{1}})\,\,\mathcal{A}^{^{\alpha_{l}\theta}}\,+\,2\,(2\,t_{_{1}}\,-\,t_{_{1}})\,\partial^{\theta}f^{^{\alpha_{l}}})))[t,\,x,\,y,\,z]\,dz\,dy\,dx\,dt$ Wave operator ^{0,+} 𝒯 †

$\overset{1^{+}}{\cdot}\mathcal{H}^{\parallel}\dagger^{\alpha\beta}$	$\frac{1}{6} (t_1 + 4t_1)$	$-\frac{t2t.}{3\sqrt{2}}$	$-\frac{i k (t2 t.)}{3 \sqrt{2}}$	0	0	0	0				
$^{1^{+}}\mathcal{A}^{\scriptscriptstyle\perp}$ $^{+}$	$-\frac{t2t.}{3\sqrt{2}}$	$\frac{t.+t.}{\frac{1}{3}}$	$\frac{1}{3}ik(t_1+t_1)$	0	0	0	0				
$^{1\overset{+}{.}}f^{\parallel}+^{\alpha\beta}$	$\frac{i k (t 2 t.)}{3 \sqrt{2}}$	$-\frac{1}{3}ik(t_1+t_2)$	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0				
$^{1.}\mathcal{A}^{\parallel}$ lpha	0	0	0	$\frac{t}{6}$	$\frac{\frac{t_1}{1}}{3\sqrt{2}}$	0	i k t . 1 3				
¹: <i>'</i>	0	0	0	$\frac{\frac{t}{1}}{3\sqrt{2}}$	$\frac{t}{3}$	0	$\frac{1}{3} i \sqrt{2} kt.$				
$\frac{1}{2}f^{\parallel} + \alpha$	0	0	0	0	0	0	0				
$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	$-\frac{1}{3}ikt.$	$-\frac{1}{3}i\sqrt{2}kt.$	0	$\frac{2 k^2 t}{3}$	$^{2,+}\mathcal{A}^{\parallel}{}_{\alpha\beta}$ $^{2,-}$	$f^{\parallel}_{\alpha\beta}^{}$	$\mathcal{A}^{\parallel}{}_{lphaeta\chi}$	
							$^{2^{+}}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$\frac{t}{2}$ -	$-\frac{i kt}{\sqrt{2}}$	0	
							$2.^+f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i kt.}{\sqrt{2}}$	$k^2 t$	0	
							$2^{-}\mathcal{A}^{\parallel}$ † $^{\alpha\beta\chi}$	0	0	t. <u>1</u> 2	
Saturated propagat	tor										
$0.7^{+}\sigma^{\parallel} 0.7^{+}\tau^{\parallel} 0.7^{+}\tau^{\perp} 0.7^{-}\sigma^{\parallel}$											
$0.^{+}\sigma^{\parallel} + 0 0 0$											
0^{+}_{0} + 0 0 0											

 $\frac{1}{k^{2}r_{.}+t_{.}} = 1^{+}\sigma^{\parallel}_{\alpha\beta} = 1^{+}\sigma^{\perp}_{\alpha\beta} = 1^{+}\tau^{\parallel}_{\alpha\beta}$ $1^{+}\sigma^{\parallel}_{\alpha\beta} + \frac{2(t_{.}+t_{.})}{\frac{1}{2}} = \frac{\sqrt{2}(t_{.}-2t_{.})}{3(1+k^{2})t_{.}t_{.}} = \frac{i\sqrt{2}k(t_{.}-2t_{.})}{3(1+k^{2})t_{.}t_{.}}$

 $1^{+}\sigma^{1}\uparrow^{\alpha\beta} \boxed{ \frac{\sqrt{2} \ (t_{1}-2 \, t_{.})}{3 \, (1+k^{2}) \, t_{.} \, t_{.}} \quad \frac{t_{1}+4 \, t_{.}}{3 \, (1+k^{2})^{2} \, t_{.} \, t_{.}} \quad \frac{i \, k \, (t_{.}+4 \, t_{.})}{3 \, (1+k^{2})^{2} \, t_{.} \, t_{.}}}{3 \, (1+k^{2})^{2} \, t_{.} \, t_{.}}$

$\frac{1}{7}\tau^{\perp} + \alpha$

 $^{1}\tau^{\parallel}+^{\alpha}$

PSALTer results panel

Spin-parity form	Covariant form	Multiplicitie
$0^{+}_{\cdot}\tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==0$	1
$0.^{+}\tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$	1
$0.^+\sigma^{\parallel}=0$	$\partial_{\beta}\sigma^{\alpha}_{\alpha}{}^{\beta} == 0$	1
$2ik \cdot 1 \cdot \sigma^{ ^{\alpha}} + 1 \cdot \tau^{ ^{\alpha}} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+2\left(\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta}_{\ \beta}^{\ \chi}-\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\sigma^{\beta\alpha}_{\ \beta}\right)==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3
1. tl a == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$1 \sigma^{\parallel^{\alpha}} = 1 \sigma^{\perp^{\alpha}}$	$\partial_{\chi}\partial^{\alpha}\sigma^{\beta}_{\ \beta}{}^{\chi} + \partial_{\chi}\partial^{\chi}\sigma^{\beta\alpha}_{\ \beta} = 0$	3
$i k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta}==$	3
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$-2 i k ^{2^{+}} \sigma^{\parallel^{\alpha\beta}} + 2^{+} \tau^{\parallel^{\alpha\beta}} == 0$	$-i\left(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\delta}+2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi}_{\chi}-\right.$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}-$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\chi \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} +$	
	$4 \mathbb{i} k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\ \delta}^{\ \epsilon} - 6 \mathbb{i} k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6 \mathbb{i} k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \beta \delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} -$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta}) == 0$	
Total expected gauge generators:		

0

 $\frac{6\sqrt{2}}{(3+4k^2)^2t_{.1}} \quad \frac{12}{(3+4k^2)^2t_{.1}} \quad 0 \quad \frac{12i\sqrt{2}k}{(3+4k^2)^2t_{.1}}$

 $\frac{12\,i\,k}{(3+4\,k^2)^2\,t_{_{\stackrel{1}{1}}}}\,\,-\frac{12\,i\,\sqrt{2}\,k}{(3+4\,k^2)^2\,t_{_{\stackrel{1}{1}}}}\quad 0\quad \, \frac{24\,k^2}{(3+4\,k^2)^2\,t_{_{\stackrel{1}{1}}}}$

 $^{2}\sigma^{\parallel}_{\alpha\beta\chi}$

0

0

<u>2</u>

 $2^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$

 $^{2^{+}}\sigma^{\parallel}{}_{\alpha\beta}$

 $2^{-}\sigma^{\parallel} + \alpha^{\alpha\beta\chi}$

(No particles)

r. < 0 &&t. > 0