УДК 621.039.51

ОЦЕНКА ЭНЕРГОВЫДЕЛЕНИЯ В МИШЕНИ С УРАНСОДЕРЖАЩИМ МАТЕРИАЛОМ ПРИ ПРОИЗВОДСТВЕ "Мо С ИСПОЛЬЗОВАНИЕМ МИШЕНЕЙ УСОВЕРШЕНСТВОВАННОЙ КОНСТРУКЦИИ НА РЕАКТОРЕ ВВР-ц

О.Ю. Кочнов*, В.В. Колесов**, Р.В. Фомин**

- *Обнинский филиал ГНЦ РФ НИФХИ им. Л.Я. Карпова, г. Обнинск
- * * Обнинский институт атомной энергетики НИЯУ МИФИ, г. Обнинск

Увеличение производства ⁹⁹Мо в условиях мирового дефицита является актуальной задачей. При переходе на новую мишень проточного типа [1] для наработки ⁹⁹Мо возникла необходимость оценки энерговыделения для обоих типов мишеней. Результаты расчетов показали значительное увеличения энерговыделения для модернизированной мишени.

Ключевые слова: реактор ВВР-ц, ⁹⁹Мо, энерговыделение.

Key words: WWR-c reactor, ⁹⁹Mo, energy deposition.

ВВЕДЕНИЕ

В качестве расчетной модели для определения энерговыделения в мишенях использовалась прецизионная трехмерная модель активной зоны реактора ВВР-ц [2].

Мишень для производства осколочного ⁹⁹Мо должна удовлетворять следующим требованиям:

- иметь размеры и конструкцию, которые позволяют обеспечить ее загрузку в канал ядерного реактора и выгрузку из него;
 - содержать достаточное количество ²³⁵U;
- обеспечивать барьер, препятствующий выбросу радиоактивных продуктов и особенно газов во время и после облучения;
- конструкция мишени должна быть легко разборной в условиях горячей камеры:
- иметь конструкцию и состав, обеспечивающие ее химическую переработку в горячей камере за минимальное время.

Целесообразно, чтобы в процессе радиохимической переработки мишени количество жидких радиоактивных отходов было минимальным. Длительность переработки урановой мишени существенным образом влияет на выход ⁹⁹Мо. Из-за распада каждый час теряется около 1,5% образовавшегося в мишени ⁹⁹Мо. Поэтому операции с мишенью при ее разделке в горячей камере должны быть достаточно простыми и легко выполнимыми.

В настоящее время для производства осколочного 99 Мо используется мишень, содержащая уран высокого обогащения (около 90 %) по 235 U.

постановка задачи

На рисунках 1–3 приводятся конструкции и расположения стандартной используемой в настоящее время мишени типа «стакан в стакане». Конструкция мишени, помимо удовлетворения основным требованиям при работе в реакторе, ориентирована на удобство переработки ее в условиях горячей камеры.

Рис. 1. Конструкция стандартной мишени для производства 99 Мо типа «стакан в стакане»

Рис. 2. Детализация стандартной мишени для производства 99 Мо в модели активной зоны реактора ВВР-ц

Рис. 3. Расположение стандартных мишеней в экспериментальном канале

Загрузка смеси в мишень осуществляется с помощью разработанного механического устройства. Одновременно с загрузкой происходит уплотнение засыпки. После заварки мишени осуществляется проверка ее на герметичность при температуре 200°С. Конструкция мишени оказалась работоспособной и не претерпела существенных изменений за весь период наработки ⁹⁹Мо в институте. Изменялись лишь величина загрузки урана и состав компонента разбавителя.

Мишень может быть установлена как в экспериментальный канал с естественной циркуляцией, так и в каналы с принудительным охлаждением. При этом загрузка мишени по ²³⁵U может отличаться более чем в 10 раз. Для увеличения наработки ⁹⁹Мо в канале дальнейшая модернизация существующей конструкции мишени была направлена на увеличение в ней количества загруженного урана. При этом были увеличены габаритные размеры мишени и предложено техническое решение, облегчающее расцепление двух цилиндров после взрезки мишени.

На рисунках 4, 5 представлена конструкция модифицированной мишени. Мишень с проточным охлаждением представляет собой трубчатую конструкцию со сквозным проходом воды для улучшения теплосъема. Между внутренней и наружной трубками помещается смесь ²³⁵U (90 %) и оксида цинка. Одновременно в канал устанавливается не более двух мишеней. Предварительные оценки показали возможность увеличения загрузки урана за счет улучшения теплоотвода от мише-

Рис. 4. Конструкция модифицированной мишени для производства 99 Мо

Рис. 5. Детализация модифицированной мишени для производства ⁹⁹Мо в модели активной зоны реактора ВВР-ц

ни и, как следствие, увеличения наработки 99 Мо в 1.7 раза по сравнению с мишенью типа «стакан в стакане».

На рисунках 6, 7 приводится горизонтальный и вертикальный разрезы части модели активной зоны с экспериментальным каналом 4-1 и установленной в нем мишенью.

Рис. 6. Экспериментальный канал 4-1 с установленными модифицированными мишенями (горизонтальный разрез)

Рис. 7. Экспериментальный канал 4-1 с установленными модифицированными мишенями (вертикальный разрез)

Топливо мишени представляет собой смесь U_3O_8 + ZnO с обогащением по 235 U, равным 90 %, с массой U_3O_8 – 15 г и ZnO – 75 г. Температура топлива в мишени полагалась равной 175°C, в активной зоне – 75°C, тепловая мощность реактора – равной 10 МВт.

РЕЗУЛЬТАТЫ РАСЧЕТОВ

На рисунках 8, 9 приводится энергетическое распределение плотности потока нейтронов в стандартной и модифицированной мишенях. Из рисунков видно, что в трех из четырех стаканов модифицированной мишени плотность потока тепловых нейтронов превышает соответствующую плотность потока тепловых нейтронов стандартной мишени. Это приводит к значительному увеличению энерговыделения в модифицированной мишени. Результаты расчетов энерговыделения в контейнерах для стандартной и модифицированной мишеней приведены в табл. 1, 2.

Рис. 8. Энергетическое распределение плотности потока нейтронов в каждом из четырех стаканов стандартной мишени: $\square - 0$ –0,2 кэВ; $\square - 0$,2–5 кэВ; $\square - 5$ кэВ–10 МэВ

Рис. 9. Энергетическое распределение плотности потока нейтронов в каждом из двух стаканов модифицированной мишени: $\square - 0$ –0,2 кэВ; $\square - 0$,2–5 кэВ; $\square - 5$ кэВ–10 МэВ

Энерговыделение в контейнерах стандартной мишени

Таблица 1

Энерговыделение от нейтронов и фотонов	Модель			
	МВт	МВт/г U-235	MΒτ/r U ₃ O ₈	
Первая снизу из четырех	0.0057	0.00166	0.00126	
Вторая снизу из четырех	0.0062	0.00181	0.00138	
Третья снизу из четырех	0.0051	0.00149	0.00113	
Четвертая снизу из четырех	0.0026	0.00076	0.00058	
Общее	0.0196	0.00143	0.00109	
Масса U-235 в одной мишени = 3.4242 г, $U_3O_8 - 4.5$ г.				
$K_{e\!f\!f}$	1.00897±0.00034			

Энерговыделение в контейнерах модифицированной мишени

Таблица 2

Энерговыделение от нейтронов и фотонов	МВт	МВт/г U-235	МВт/г U ₃ O ₈	
Нижняя мишень	0.0169	0.00148	0.00112	
Верхняя мишень	0.0160	0.00140	0.00106	
Общее	0.0329	0.00144	0.00109	
Масса U-235 в одной мишени 11.4243 г, U₃0 ₈ − 15 г.				
$K_{_{ m eff}}$	1.01097±0.00034			

ЗАКЛЮЧЕНИЕ

В результате проведенных исследований показано значительное увеличение энерговыделения в мишенях новой улучшенной конструкции проточного типа.

Мощность модифицированного канала с принудительным охлаждением составила 32.9 кВт, что почти в 1.7 раза больше (19.6 кВт) энерговыделения в канале при загрузке мишеней старой конструкции типа «стакан в стакане» (см. табл. 1,

2). Это позволяет нарабатывать большее количество радионуклида ⁹⁹Мо при таких же уровне мощности и кампании реактора ВВР-ц. При этом себестоимость молибден-технециевых генераторов может быть уменьшена и, как следствие, диагностические процедуры для онкологических больных станут доступнее.

Литература

- 1. Kochnov O.Yu., Pozdeev V.V. Prospects for the Development of Mo-99 Production Consistent with WWR-c Reactor Modernization at the Branch of FSUE «Karpov Institute of Physical Chemistry»/ International Conf. on Research Reactors, IAEA, Morocco-2011. P. 60-61.
- 2. Колесов В.В., Кочнов О.Ю., Волков Ю.В., Украинцев В.Ф., Фомин Р.В. Создание прецизионной модели реактора ВВР-ц для последующей оптимизации его конструкции и наработки 99 Мо и других радионуклидов//Известия вузов. Ядерная энергетика. 2011. N 12 12 13 13 13 14 15

Поступила в редакцию 28.05.2012

ABSTRACTS OF THE PAPERS

УДК 621.039.51

New Technique to Reformat Multigroup Cross-Sections for Monte-Carlo Calculation \I.R. Suslov, I.V. Tormyshev, K.G. Mel'nikov; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering). — Obninsk, 2012. — 8 pages, 3 tables, 2 illustrations. — References, 21 titles.

New method to calculate equiprobability bins from Legendre expansion scattering cross-sections is proposed. The method uses a correction of equiprobability bins boundaries to provide a conservation of the first angular moment. The code CRSRD-ST to reformat cross sections from DTF to ACE format with proposed technique is developed. Numerical results shows the method proposed significantly improves an agreement between deterministic and Monte-Carlo calculations.

УДК 621.039.51

Boundary Resonance Effects in the Fast Reactor with the Heterogeneous Core\A.A. Bezborodov, E.V. Dolgov, D.A. Klinov, V.V. Kolesov, V.Yu. Stogov, I.R. Suslov, V.I. Folomeev; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering). — Obninsk, 2012. — 10 pages, 2 tables, 4 illustrations. — References, 10 titles.

Boundary resonance effects is considering with the application of the high-speed subgroup approximation technique employment in practical tasks for description of neutron cross-sections interactions with media nuclides nuclei in resonance part of energy for physical simulation of the fast reactor plants with the heterogeneous core.

УДК 621.039.51

Energy Deposition Evaluation in the Target with Uranium-Containing Material for the ⁹⁹Mo Production in WWR-C Reactor with the Impruved Design of Target\0.Yu. Kochnov, V.V. Kolesov, R.V. Fomin; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering). – Obninsk, 2012. – 7 pages, 2 tables, 9 illustrations. – References, 2 titles.

Increased production of the ⁹⁹Mo in the context of rising global demand is an urgent task. The new type of target for ⁹⁹Mo producing in WWR-c reactor technological channels was developed. A series of calculations to estimate energy deposition for standard and modified target were done. A considerable energy deposition increasing in modified target was found.

УДК 621.039.56

Method of ¹⁶N Generation for Test of Radiation Controlled Cannels on Nuclear Power Stations with Water-Cooled Reactors \V.A. Khryachkov, I.P. Bondarenko, P.A. Dvornikov, B.V. Zhuravlev, S.N. Kovtun, T.A. Khromyleva, A.V. Pavlov, N.G. Roschin; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering). – Obninsk, 2012. – 5 pages, 3 illustrations. – References, 3 titles.

The preferences of 19 F(n, α) 16 N nuclear reaction use for radiation control channels test on water-cooled power reactors are analyzed. The new measurements for more accurate determination of 19 F(n, α) 16 N reaction cross section energy dependence have been carried out. A set of new methods for background reducing and improvement of events determination reliability was developed.

УДК 621.039.524.44:697.93

Calculation-based Justification for the Algorithm of Pipelines Leak Control by Air Humidity\P.A. Dvornikov, S.N. Kovtun, A.A. Budarin, V.P. Polionov, N.N. Titarenko, D.M. Shvetsov, N.G. Roshchin, A.L. Matveev, E.L. Matveev; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya energetica» (Communications of Higher Schools. Nuclear Power Engineering). – Obninsk, 2012. – 10 pages, 9 tables, 3 illustrations. – References, 9 titles.

Dynamic processes in thermal insulation of power plants pipelines caused by depressurization are the goal of the research. Simulation of various leaks was realized by using adapted computer code KUPOL-M developed in SSC RF IPPE.

УДК 621.039.58

Analysis of the Errors Committed by NPP MCR Operators during Implementation of Operating Procedures \ N.V. Pleshakova, A.N. Anokhin; Editorial board of journal «Izvestia visshikh uchebnikh zavedeniy. Yadernaya