Sampled MuZero: Learning and Planning in Complex Action Spaces (High Dimensional Discrete or Continuous)

A. Planing

Selection:

In each node, agent select action a^k according to the UCB score:

$$a^k = rg \max_a \left[Q(s,a) + \hat{eta}/eta p(s,a) \cdot rac{\sqrt{\sum_b N(s,b)}}{1+N(s,a)} \left(c_1 + \log\left(rac{\sum_b N(s,b) + c_2 + 1}{c_2}
ight)
ight)
ight]$$
 We usually use $eta = p$, thus $\hat{eta}/eta p(s,a) = \hat{eta}(s,a)$.

Sampled-based Policy Improvement.

From left to right, current policy $\pi(a|s)$, the empirical distribution $\hat{\beta}(a|s)$, the sample-based improved policy $\hat{I}_{\beta}\pi(a|s)$, the improved policy $I\pi(a|s)$, respectively. As the number of samples K increases, $\hat{I}_{\beta}\pi(a|s)$ converges to $I\pi(a|s)$.

B. Acting

C. Training

D. Loss

$$l_t(heta) = \sum_{k=0}^K l^r \left(u_{t+k}, oldsymbol{r_t^k}
ight) + l^v \left(z_{t+k}, oldsymbol{v_t^k}
ight) + KL \left(\pi_{t+k}, oldsymbol{\mathbf{p}_t^k}
ight) + c \| heta\|$$

where, π_{t+k} is the MCTS search policy (normalized visit counts), also called the sampled-based improved policy $\hat{I}_{\beta}\pi(a|s)$, which is a discrete categorical distribution.

 \mathbf{p}_t^k is the predicted (potentially continuous) policy distribution. The policy loss (KL divergence) is calculated in the **sampled** actions.