Příklad (3.1)

Nalezněte ireducibilní rozklad polynomu x^4 nad tělesy \mathbb{C} , \mathbb{R} a \mathbb{Z}_5 .

Řešení

Ze střední školy víme, že rovnice $x^4+1=0$ má 4 řešení tvaru $e^{k\frac{2\pi}{4}+\frac{\pi}{4}}$ (jelikož $-1=e^{\pi}$), tedy rozklad v $\mathbb C$ bude

$$x^{4} + 1 = \left(x - e^{\pi/4}\right) \cdot \left(x - e^{3\pi/4}\right) \cdot \left(x - e^{5\pi/4}\right) \cdot \left(x - e^{7\pi/4}\right) = \left(x - \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right) \cdot \left(x + \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right) \cdot \left(x + \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) \cdot \left(x - \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right),$$

jelikož polynomy stupně 1 jsou ireducibilní.

Příklad (3.2)

Nalezněte (nějaký) ireducibilní rozklad prvku $16 + i\sqrt{5}$ v oboru $\mathbb{Z}[i\sqrt{5}]$.

Řešení

Víme, že norma na $\mathbb{Z}[i\sqrt{5}]$ je dána $\nu(a+b\cdot i\sqrt{5})=|a^2-5b^2|$, tedy $\nu(16+i\sqrt{5})=|256-5|=251$. To je prvočíslo, tedy jediný prvek, která dělí naše číslo je ono samo a 1 a asociované prvky, protože norma je celočíselná a pokud a|b, tak $\nu(a)|\nu(b)$. Takže ireducibilní rozklad $16+i\sqrt{5}$ je třeba $16+i\sqrt{5}$.

Příklad (3.3)

Nalezněte největšího společného dělitele čísel 4+6i a 3-7i v oboru $\mathbb{Z}[i]$.

 $\check{R}e\check{s}eni$

Víme, že $\mathbb{Z}[i]$ je eulerovský, tedy použijeme eukleidův algoritmus.

Příklad (3.4)

Zvolme pevné $z\in\mathbb{C}$. Ukažte, že množina $\{f\in\mathbb{Q}[x]|f(z)=0\}$ tvoří ideál okruhu $\mathbb{Q}[x]$.

 $D\mathring{u}kaz$

Stačí ukázat uzavřenost na sčítání, opačný prvek a násobení libovolným prvkem $\mathbb{Q}[x]$:

$$f, g \in \mathbb{Q}[x] \land f(z) = g(z) = 0 \implies (f+g)(z) = 0 + 0 = 0,$$

$$f \in \mathbb{Q}[x] \land f(z) = 0 \implies (-f)(z) = -0 = 0,$$

$$f, g \in \mathbb{Q}[x] \land f(z) = 0 \implies (f \cdot g)(z) = f(z) \cdot g(z) = 0 \cdot g(z) = 0.$$