



### MMICDL – Up-conversion Mixer Design

#### **2379568 Jiyun Kim**



#### **Contents**



- Introduction
- Design Procedure
  - Schematic view and simulation
  - Layout view and simulation
- Conclusion
  - Application

#### **Contents**



- Introduction
  - MMIC
    - Advantages and disadvantages
  - RF transmitter
  - Up-conversion Mixer and Design goal

#### I. Introduction



- MMIC (Monolithic microwave integrated circuits)
  - All circuits and components are fabricated directly on a single semiconductor
    - advantages
      - Compact size
      - low cost
      - Operates at high frequencies (K band and higher) reaching mmWave
    - challenges
      - waveguide effects have to be considered
      - Modelling and simulation have to be accurate to produce correctly
      - parasitics increases with frequency
      - Achievable output powers drop with frequency necessitating

### I. Introduction



RF Transmitter



### I. Introduction



### Up-conversion Mixer



### RF1 = LO – IF RF2 = LO + IF

### Design Goals

- 1dB compression point > 0dBm
- Gain > 10dB
- IF Bandwidth > 200MHz
- S11 < -15dB
- S22 < -15dB

### **II.** Design Procedure



- Schematic view and simulation
  - Single balance or Double balance
  - Core design (include transistor decision)
  - DC simulation
  - S-param simulation
  - output / input matching network
  - Design params check with HB simulation
- Layout view and simulation
  - Core Layout & EM simulation
  - S-param simulation
  - output / input matching network
  - Design params check with HB simulation
  - Inductor Layout design (Pcell) & EM simulation
  - Mixer Layout EM simulation
  - Design params check with HB simulation

### **II.** Design Procedure



- Schematic view and simulation
  - Single balance or Double balance
  - Core design (include transistor decision)
  - DC simulation
  - S-param simulation
  - output / input matching network
  - Design params check with HB simulation



- Balance Mixer : improves isolation
- Single Balance vs Double Balance
  - Unwanted LO component in output in Single Balance









### Core Design – transistor analysis







#### Core Design



#### Fixed Parameters

- VCC=3.6 V,VLO= 2.4V,VIF=0.89V
- Q0, Q1, Q2, Q3: npnhp4 and Q4, Q5: npnhp8 from SG25\_dev library from IHP
- Initial value LO\_POW=0dBm, LO\_FREQ=20GHz, IF POW=-30dBm, IF FREQ=100MHz



#### DC Simulation







#### DC Simulation







DC Simulation with annotation





■ S-parameter Simulation ( $Z0 = 100\Omega$ )







#### **Output Matching**

(L=540pH, C=64fF)



### **Input Matching**

■ (L=260pH, C=160fF)





■ Matched S-parameter Simulation ( $Z0 = 100\Omega$ )





■ Harmonic Balance (HB) Simulation – conversion gain vs IF frequency







■ Harmonic Balance (HB) Simulation – conversion gain vs LO power





### **Design goals**

- 1dB compression point > 0dBm
- Gain > 10dB
- IF Bandwidth > 200MHz
- S11 < -15dB
- S22 < -15dB

#### **Simulation Result**

- 1dB compression point
- Gain= 31.154dB
- IF Bandwidth = more than 3GHz
- S11= -39.263dB
- S22= -37.781dB

### **II.** Design Procedure



- Layout view and simulation
  - Core design
    - Core Layout & EM simulation
    - S-param simulation
    - output / input matching network
    - Design params check with HB simulation
  - Inductor Layout design (Pcell) & EM simulation
  - Mixer Layout EM simulation
    - Design params check with HB simulation



Core design





■ Test bench of EM simulated core layout





■ EM simulated core – S-parameter simulation





### **Output Matching**

(L=450pH, C=74fF)



### **Input Matching**

■ (L=280p, C=248fF)





■ Matched S-parameter Simulation ( $Z0 = 100\Omega$ )





Harmonic Balance (HB)
Simulation – conversion gain vs IF frequency





### Conversion gain vs LO power

### Conversion gain vs IF power







Harmonic Balance (HB)
Simulation – 1dB compression point



m17 IF\_POW=-23.000 lin1=3.407 Pout1=2.252



### **Design goals**

- 1dB compression point > 0dBm
- Gain > 10dB
- IF Bandwidth > 200MHz
- S11 < -15dB
- S22 < -15dB

#### **Simulation Result**

- 1dB compression point = 2.252dBm
- Gain = 23.349dB
- IF Bandwidth = more than 3GHz
- $\blacksquare$  S11 = -36.576dB
- $\blacksquare$  S22 = -29.234dB



■ Inductor design — LO port (L= 280.1pH with Q-factor value 17.863)



| Pcell parameters defined in skill pcell IDE |                            |      |  |
|---------------------------------------------|----------------------------|------|--|
| cond_width                                  | TW(track width)            | 8.5u |  |
| coil_length                                 |                            | 87u  |  |
| width                                       | ID(inner-turn diameter)    | 57u  |  |
| sep                                         | D(Distance between tracks) | 8.5u |  |
| gnd_sep                                     | GPS(Ground path side )     | 75u  |  |
| gnd_size                                    | GPW(Ground path width)     | 30u  |  |
| turns                                       | N (Number of turns)        | 1.5  |  |
| coil_exit                                   |                            | 2    |  |

Karlsruhe Institute of Technology

- Inductor design LO port
  - L= 280.1pH
  - Q-factor = 17.863







freq=20.00 GHz L\_2port3=2.801E-10







■ Inductor design — RF port (L = 422.1pH with Q-factor value 19.574)



| Pcell parameters defined in skill pcell IDE |                            |     |  |
|---------------------------------------------|----------------------------|-----|--|
| cond_width                                  | TW(track width)            | 8u  |  |
| coil_length                                 |                            | 60u |  |
| width                                       | ID(inner-turn diameter)    | 40u |  |
| sep                                         | D(Distance between tracks) | 8u  |  |
| gnd_sep                                     | GPS(Ground path side )     | 75u |  |
| gnd_size                                    | GPW(Ground path width)     | 30u |  |
| turns                                       | N (Number of turns)        | 1.5 |  |
| coil_exit                                   |                            | 2   |  |



- Inductor design LO port
  - L= 422.1pH
  - Q-factor = 19.574













EM simulated final layout with inductors and capacitors







### S-parameter simulation





Harmonic Balance (HB)
Simulation – conversion gain vs IF frequency





### Conversion gain vs LO power

### Conversion gain vs IF power







Harmonic Balance (HB)
Simulation – 1dB compression point





### **Design goals**

- 1dB compression point > 0dBm
- Gain > 10dB
- IF Bandwidth > 200MHz
- S11 < -15dB
- S22 < -15dB

#### **Simulation Result**

- 1dB compression point = 2.876dBm
- Gain = 22.952dB
- IF Bandwidth = more than 3GHz
- $\blacksquare$  S11 = -17.043dB
- $\blacksquare$  S22 = -19.937dB

#### **III.** Conclusion



- IF frequency = 150MHz, LO frequency= 20GHz, RF frequency = 20.15GHz, BW > 3GHz
- Application
  - Broadband application
    - High quality
    - Large amount of data transmission

#### **III.** Conclusion



- RF frequency = 20.15GHz
- Application
  - SHF band
    - Modern communications technologies
    - modern radars
    - DTH services
    - 5GHz Wi-Fi channel
    - radio astronomy
    - mobile networks
    - TV broadcasting satellites
    - microwave devices
    - broadcasting satellites
    - amateur radio

| Frequency Band                                         | ITU band number | Frequency     |
|--------------------------------------------------------|-----------------|---------------|
| Extremely low fre quency (ELF)                         | 1               | 3 Hz-30 Hz    |
| Super low freque ncy (SLF)                             | 2               | 30 Hz-300 Hz  |
| Ultra low frequen cy (ULF)                             | 3               | 300 Hz-3 kHz  |
| Very low frequen cy (VLF)                              | 4               | 3–30 kHz      |
| Low frequency (L<br>F)                                 | 5               | 30–300 kHz    |
| Medium frequen cy (MF)                                 | 6               | 300–3,000 kHz |
| High frequency (<br>HF)                                | 7               | 3–30 MHz      |
| Very high freque ncy (VHF)                             | 8               | 30–300 MHz    |
| Ultra high freque<br>ncy (UHF)                         | 9               | 300–3,000 MHz |
| Super high freque ncy (SHF)                            | 10              | 3–30 GHz      |
| Extremely high fr equency (EHF)                        | 11              | 30–300 GHz    |
| Terahertz or trem<br>endously high fre<br>quency (THF) | 12              | 300–3,000 GHz |

ITU classification of frequency bands (<a href="https://resources.pcb.cadence.com/blog/2022-an-overview-of-frequency-bands-and-their-applications">https://resources.pcb.cadence.com/blog/2022-an-overview-of-frequency-bands-and-their-applications</a>)



### **III.** Conclusion



- RF frequency = 20.15GHz
- Application
  - K-band(Radar waves)
    - police radars operate in USA
    - short-range communication
      - automatic door openers
      - collision avoidance systems
      - blind spot monitoring systems in vehicles
  - K-band MMIC
    - local-multipoint distribution services (LMDS)
    - digital point-to-point radio services
    - fixed satellites

| T                |
|------------------|
| Band designation |
| HF               |
| VHF              |
| ULF              |
| L                |
| S                |
| С                |
| X                |
| Ku               |
| K                |
| Ка               |
| V                |
| W                |
| mm or G          |
|                  |

IEEE classifications of frequency bands(https://resources.pcb.cadence.com/blog/2022-an-overview-of-frequency-bands-and-their-applications)