

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE BRASÍLIA

Eixo de Desenvolvimento de Software - Plano de Ensino

Curso:	Tecnologia em Sistemas para Internet			Turma:	2021
Módulo:	3	Ano:	2021.2	Turno:	Noturno
Comp. Curricular:	Analise e Projeto de Sistemas para Internet				
Horário:	segunda-feira: 14:00 - 16:00 / 16:40 - 18:20 e terça-feira: 19:00 - 20:40 / 21:00 - 22:40				
Docente:	Fábio Ferraz Fernandez				
Carga Horária:	80	Hora aula:	60 min	Qtd.Aulas	20 encontros de 4 horas aula

Ementa

Processo de engenharia de requisitos.

Técnicas de modelagem enfocando os diferentes paradigmas para definição de requisitos.

Requisitos funcionais e não funcionais.

Prototipagem.

Gerência de requisitos.

Análise e Design orientados a objetos.

Noções básicas de: prototipação, arquitetura de software, padrões e frameworks de software.

Uso de ferramentas para análise e design orientados a objetos.

Habilidades

Conduzir projetos, programas e atividades de aplicação da tecnologia da informação com qualidade e segurança.

Dominar ferramentas computacionais que envolvam Sistemas para Internet.

Conduzir projetos de manutenção e de aperfeiçoamento tecnológico em sistemas de informação.

Participar do desenvolvimento de projetos físicos e lógicos para informatização de processos administrativos.

Elaborar mecanismos de proteção para sistemas de informação compartilhada.

Participar de grupos de desenvolvimento de projetos de software, aplicações ou sistemas de informação.

Competências

Identificar e documentar requisitos.

Manter e evoluir requisitos funcionais e não funcionais.

Prototipar software.

Projetar arquitetura de sistemas orientados a objetos.

METODOLOGIA	RECURSOS INSTRUCIONAIS		
Aulas expositivas;	Material de apoio;		
Atividades práticas;	Ambiente Virtual de Aprendizagem;		
Discussões e Pesquisas.	Vídeo-aulas;		

INSTRUMENTOS E FORMAS DE AVALIAÇÃO DA APRENDIZAGEM

Além do percentual de assiduidade nas aulas (Frequência >= 75%), serão utilizados 3 critérios para avaliação dos alunos cuja soma (Nota >= 6,0) encaminhará para aprovação ou reprovação na disciplina.

Exercícios em sala (com enfoque dos objetivos da disciplina) (30%)

Trabalhos em projetos individuais e em grupo (40%)

Avaliação global da participação e contribuição para as aulas (30%)

OBSERVAÇÕES

Justificativas para ausência somente as amparadas por lei.

Podem ser feitas individualmente ou em duplas. Observe as orientações para cada atividade.

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE BRASÍLIA

Base Tecnológica	Conteúdos		
Fundamentos de Engenharia de Software Modelos de ciclo de vida; fases e atividades de processos de software. Apresentação e aplicação do RUP. Levantamento de requisitos funcionais e não funcionais.	Processo de software <u>Modelos</u> e processo unificado (RUP)		
Análise e design orientado a objetos Linguagem Unificada de Modelagem Diagramas de UML incluindo casos de uso, classe e sequência.	Esquema de visões (4+1) Diagramas UML 2		

Craig Larman - Applying UML and Pattern (2005)

Programar é divertido, mas desenvolver um software de qualidade é difícil. UML não é análise e projeto orientado a objetos, ou um método é apenas uma notação de diagramas.

Alex E. Bell - Death by UML Fever (2004)

... "não é incomum as pessoas acreditarem que, independentemente da tarefa na qual estejam envolvidas, o mero uso da UML de alguma forma legitima seus esforços ou garante o valor dos artefatos produzidos."

Gerência de Requisitos

O que é Regra de Negócio?

RUP - Processo de Desenvolvimento de Software

Análise e Projeto no RUP (UFU)

RUP para Criação de Valor (UFPE)

UML

As 5 fases mais importantes da UML Visões Arquiteturais UML 2.5 Diagrams Overview IBM Modelos e Diagramas UML

Diagramas de Atividades

Diagramas comportamentais casos de uso, sequência e atividade

<u>Diagramas de Caso de Uso</u>

All You Need to Know About Use Case Modeling

<u>Use Cases - what Every Project Manager Should Know</u>

UFRGS Abordagem Baseada em Objetivos para Construção de Casos de Uso e Cenários

Diagramas de Classe

Entendendo o Diagrama de Classes da UML Diagramas de Classe para a Fase de Projeto

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE BRASÍLIA

<u>Lucidchart - o que é um diagrama de classe UML?</u>

Diagramas de Pacotes

<u>Tutorial sobre diagramas de pacotes</u> <u>UML package diagrams overview</u>

Exemplos de Diagramas

UML Diagrams templates

Métodos Ágeis

Quando devo utilizar Scrum ou Kanban?

Guia do Scrum 2017

Scrum - a arte de fazer o dobro - Jeff Sutherland

SBOK-Guide-2013-Portuguese

Exemplo de adoção de Scrum TRT PR 9ª Região

Como Usar o Trello para Android

Histórias de Usuários: 08 dicas para criar users stories excelentes

Modelagem

Responsabilidades Colaboração Modelo CRC

Coursera Identificando Classes com Java e Modelagem CRC

Criador de Cartão CRC

UFPR Cartões CRC (Class Responsibility Card)

UML.ORG CRC Modeling (Ambler, 1998)

UML e Desenvolvimento

UFU Atividades típicas do processo de desenvolvimento

<u>USP Um método completo para Desenvolvimento Orientado a Objetos com UML: da análise</u> à implementação em Java

<u>UFSC Desenvolvimento de componentes para App Inventor e servidor para dispositivos IoT</u> <u>Using smartphones to motivate secondary school students for informatics</u>

Laundry appinventor

UML para Java

Padrões de design utilizados nos pacotes java.io, java.util e java.net

Conteúdos correlatos em outros programas universitários

Unesp Disciplina Projeto e Desenvolvimento de Sistemas de Informação

UFCG Análise e Projeto de Sistemas Orientados a Objeto

UFPR Projeto de Software

IPRJ Análise e Projeto Orientados por Objetos

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE BRASÍLIA

Cronograma de Aulas

Mês	Data	N. de Aulas	Conteúdos
Outubro	1 semana	4	Síncrona 1 - Apresentação da disciplina e do plano de ensino.
Outubro	1 semana	4	Síncrona 2 - Modelos e processo unificado (RUP).
Outubro	2 semana	4	Assíncrona 2 - Processo de engenharia de requisitos.
Outubro	3 semana	4	Síncrona 3 - Manifesto ágil. Scrum, kanban e XP.
Outubro	4 semana	4	Assíncrona 3 - Manifesto ágil. Scrum, kanban e XP.
Novembro	1 semana	4	Síncrona 4 - Requisitos funcionais e não funcionais.
Novembro	2 semana	4	Síncrona 5 - UML Esquema de visões (4+1)
Novembro	3 semana	4	Assíncrona 5 - Diagramas de Casos de uso.
Novembro	4 semana	4	Síncrona 6 - Diagrama de Atividades.
Novembro	4 semana	4	Assíncrona 6 - Diagrama de Atividades.
Dezembro	1 semana	4	Síncrona 7 - Diagrama de classes
Dezembro	2 semana	4	Assíncrona 7 - Diagrama de classes
Dezembro	3 semana	4	Síncrona 8 - Padrões de design "Gang of Four"
Dezembro	3 semana	4	Assíncrona 8 - Padrões de design pacotes java.io, java.util e java.net
Janeiro	1 semana	4	Síncrona 10 - Instruções para elaboração Projeto prático integrado.
Janeiro	2 semana	4	Síncrona 11 - Projeto prático integrado.
Janeiro	3 semana	4	Síncrona 12 - Projeto prático integrado.
Janeiro	4 semana	4	Síncrona 13 - Projeto prático integrado.
Janeiro	4 semana	4	Síncrona 14 - Entrega final do projeto prático integrado.
Fevereiro	1 semana	4	Síncrona 15 - Entrega de Notas

Avaliação da disciplina do Professor Gustavo

Usou o RUP para descrever o conceito de processo unificado como modelos de ciclos de fases para produção de software regidos por disciplinas específicas.

Mostrou software para montagem de projeto RUP em Gantt

BPM com o modelo de Gerenciamento e modelagem de processos de negócio nas organizações.

5W2H para descrever as atividades na etapa de modelagem do BPM

HEFLO para modelar o processo em BPM

Utilizou ficha para descrever sequencialmente as ações de caso de uso

Lucidchart para caso de USO (Macro e específico de um módulo do sistema)

Método ágil como forma de entregas de curto que geram valor em relação ao método tradicional que desenha o todo software de uma vez..