T2K 3.010×10²⁰-POT Joint 3-Flavour Oscillation Analysis

Costas Andreopoulos^a, Anselmo Cervera^d, Thomas Dealtry^{a,b}, Lorena Escudero Sánchez^d, Nick Grant^c, Michel Sorel^d, and Panagiotis Stamoulis^d

^aParticle Physics Dept., Rutherford Appleton Laboratory, STFC
Harwell Science and Innovation Campus
Oxfordshire OX11 0QX, UK

^bSubdepartment of Particle Physics, University of Oxford
Denys Wilkinson Building, Keble Road
Oxfordshire OX1 3RH, UK

^cPhysics Dept., Lancaster University
Lancaster, LA1 4YB, UK

^dInstituto de Fisica Corpuscular
CSIC and University of Valencia
Valencia, Spain

Abstract

We report the results of the *VaLOR* (Valencia-Lancaster-Oxford-Rutherford) joint 3-flavour oscillation analysis on the combined Run 1+2+3 dataset. This dataset corresponds to an integrated JPARC neutrino beam exposure of 3.020×10^{20} POT.

In this analysis, the atmospheric squared-mass splitting $|\Delta m^2|$ (the Fogli-Lisi convention is used, see main text for details), the mixing angles $sin^2\theta_{23}$, $sin^2\theta_{13}$ and the CP-invariance violating phase δ_{CP} , are determined jointly through a simultaneous oscillation fit to the reconstructed energy spectrum of the SuperK single μ -like ring and single e-like ring event samples. The oscillation fit was performed in a 3-flavour framework including matter effects in constant density matter. Official T2K 2012 analysis inputs were used. All 83 systematics considered in this analysis were allowed to float in the fit.

The motivation for performing a joint 3-flavour oscillation fit is presented in detail and the results of this analysis are compared with the ones obtained by the stand-alone 3-flavour ν_e -appearance and ν_μ -disappearance analyses. The analysis reported here is the baseline VaLOR joint 3-flavour oscillation analysis, where possible, but currently unknown, correlations between the single μ -like ring and single e-like ring systematics related to FSI+SI and SK efficiencies were neglected. In the future those correlations will be used for the following Run1-4a joint oscillation analysis. If they were not available in time, then the potential effect of these correlations on our baseline analysis would be reported by the VaLOR group on a separate note.

Assuming normal hierarchy (NH), the joint 3-flavour oscillation fit to the observed reconstructed energy spectrum of single μ -like ring and single e-like ring events of the combined Run 1+2+3 dataset, with all mixing angles constrained to the physical region, yields $|\Delta m^2| = 2.494 \times 10^{-3} \ eV^2/c^4$, $\sin^2\theta_{23} = 0.516$, $\sin^2\theta_{13} = 0.029$ and $\delta_{CP} = 2.086$ as the best-fit values (p-value = 0.86). The corresponding results for inverted hierarchy (IH) are $|\Delta m^2| = 2.468 \times 10^{-3} \ eV^2/c^4$, $\sin^2\theta_{23} = 0.516$, $\sin^2\theta_{13} = 0.034$ and $\delta_{CP} = 0.922$ (p-value = 0.85). Both fits used 2012 PDG values for $\sin^2 2\theta_{12}$ and the solar squared-mass splitting δm^2 [24].

Confidence regions are constructed using the constant- $\Delta\chi^2$ method. For NH, the 90% (68%) CL allowed region for the four oscillation parameters can be summarized as 2.227×10^{-3} (2.332×10^{-3}) $eV^2/c^4<|\Delta m^2|<2.773\times10^{-3}$ (2.659×10^{-3}) eV^2/c^4 , 0.401 (0.433) $<\sin^2\theta_{23}<$ 0.628 (0.596), 0.006 (0.012) $<\sin^2\theta_{13}<$ 0.058 (0.048) and $-\pi$ ($-\pi$) $<\delta_{CP}<\pi$ (π). For IH, the corresponding 90% (68%) CL allowed regions are 2.218×10^{-3} (2.311×10^{-3}) $eV^2/c^4<|\Delta m^2|<2.729\times10^{-3}$ (2.627×10^{-3}) eV^2/c^4 , 0.397 (0.433) $<\sin^2\theta_{23}<$ 0.627 (0.596), 0.006 (0.013) $<\sin^2\theta_{13}<$ 0.069 (0.054) and $-\pi$ ($-\pi$) $<\delta_{CP}<\pi$ (π).

T2K internal note T2K-TN-154 v4 September 25, 2013

42 Contents

43	1	Introduction	27
44	2	Motivation	27
45	3	Choice of oscillation parameters	30
46	4	Predictions of single μ -like ring and single e-like ring event reconstructed energy spectrum in SuperK	31
47	5	Systematic effects in the prediction of the single μ -like ring and single e-like ring event reconstructed energy	
48	3	spectrum	38
49	6	Neutrino oscillation fitting	47
50		6.1 Minimization method	47
51		6.2 Goodness-of-fit tests	47
52		6.3 Toy-MC study of fitter performance	48
53		6.4 Construction of confidence regions	48
54	7	Results of the joint oscillation analysis with the Run 1+2+3 (3.010×10^{20} POT) dataset	49
55		7.1 Best-fit oscillation parameters and systematic parameter pulls	49
56		7.2 Goodness-of-fit tests	49
57		7.3 Best-fit single e-like ring and single μ -like ring event reconstructed energy spectra	49
58		7.4 Confidence regions	50
59	8	Summary	69
60	Ap	ppendices	71
61	A	Implementation of ν_e -appearance analysis in the $\it VaLOR$ analysis framework	72
62	В	Fitter performance. Study of residuals.	75
63		B.1 '4+0' fit	75
64		B.2 '4 + 83' fit	79
65	C	3.010×10^{20} POT fake dataset fits	95
66	D	3.010×10^{20} POT sensitivity studies	128
67	E	Difference between $\sin^2\!\theta_{23}$ values for maximal mixing and maximal disappearance.	136
68	F	Study of the effect of 12-sector (solar) oscillation parameters in the joint oscillation analysis	139
69	G	Further studies for δ_{CP}	140
70	н	Comparison between results in the two mass hierarchies using the Fogli and Lisi convention $(\Delta m^2 , \delta m^2)$ and	
71			146
72	I	Coverage studies	148
73		I.1 Coverage studies with statistical fluctuations only	
74		I.1.1 Coverage studies in 1D	150
75		I.1.2 Coverage studies in 2D	
76		I.2 Coverage studies in 2D including systematic variations	
77		I.3 Coverage studies in 2D including the other oscillation parameters in the fit	167

78 List of Figures

79	1	Examples of the effect of the interdependence between the oscillation parameters in the oscillation probabilities $P(x_1, x_2, x_3)$ (left) and $P(x_1, x_2, x_3)$ (right). These probabilities are computed for different values of size 200	
80		$P(\nu_{\mu} \to \nu_{\mu})$ (left) and $P(\nu_{\mu} \to \nu_{e})$ (right). These probabilities are computed for different values of $\sin^{2} 2\theta_{13}$	
81		(left) or $\sin^2 2\theta_{23}$ (right) with the other 3 parameters being fixed at $\sin^2 2\theta_{23} = 0.96$, $ \Delta m_{32}^2 = 2.4 \times 10^{-3}$ eV ² /c ⁴ , $\delta_{CP} = 0$ (left) or $\sin^2 2\theta_{13} = 0.1$, $ \Delta m_{32}^2 = 2.4 \times 10^{-3}$ eV ² /c ⁴ , $\delta_{CP} = 0$ (right)	28
82	2	Illustration of the effect of changing the assumed value of $\sin^2 2\theta_{23}$ in the ν_e -appearance contours for 7×10^{21}	20
83	2		
84		POT. Dashed lines are contours of the stand-alone ν_e -appearance analysis assuming maximal mixing ($\sin^2 2\theta_{23}$	
85		= 1.0), and solid lines are contours of the stand-alone ν_e -appearance analysis assuming $\sin^2 2\theta_{23} = 0.96$, the true	
86		value with which the toy experiment was created. The other parameters have the following values: $\sin^2 2\theta_{13} = 0.12 + \Delta_{12} + \Delta_{13} = 0.5$ The second of	
87		0.12 , $ \Delta m_{32}^2 = 2.5 \times 10^{-3} \text{ eV}^2/\text{c}^4$, and $\delta_{CP} = 0.5$. The confidence regions were constructed using the constant-	20
88	2	$\Delta \chi^2$ method, which is described in Sec. 6	29
89	3	Plot of the same contours as in Fig. 2 rescaling the contours for maximal prior $\sin^2 2\theta_{23} = 1.0$ with the cited	20
90	4	replacement of $\sin^2 2\theta_{13}$ by $2\sin^2 \theta_{23}\sin^2 2\theta_{13}$, using for θ_{23} the true value for the toy experiment	29
91	4		30
92	5	Effects of changing the convention for the inputs of the mass-squared splitting parameters on $P(\nu_{\mu} \rightarrow \nu_{\mu})$	
93		(left) and $P(\nu_{\mu} \to \nu_{e})$ (right): $ \Delta m_{32}^{2} = 2.32 \times 10^{-3} \text{ eV}^{2}/c^{4}$ (solid lines) and $ \Delta m^{2} = 2.32 \times 10^{-3} \text{ eV}^{2}/c^{4}$	
94		(dashed lines) for the normal hierarchy (blue) and inverted hierarchy (red). The other oscillation parameters are	
95	_	12	31
96	6	Predicted number of single μ -like ring events, as a function of $\sin^2 \theta_{23}$ and $ \Delta m^2 $, for an exposure of 3.010×10^{20}	
97		POT. The number of events was calculated using the BANFF-tuned MC templates. 2012 PDG values are used	
98	_	for $\sin^2 \theta_{13}$, $\sin^2 \theta_{12}$ and δm^2 and δ_{CP} =0. The numbers shown were generated assuming the normal hierarchy.	33
99	7	Predicted number of single e-like ring events, as a function of $\sin^2 \theta_{13}$ and δ_{CP} , for an exposure of 3.010×10^{20}	
100		POT. The number of events was calculated using the BANFF-tuned MC templates. 2012 PDG values are used	
101		for $\sin^2 \theta_{12}$, $ \Delta m^2 $ and δm^2 , while $\sin^2 \theta_{23}$ was set to 0.5. The numbers shown were generated assuming the	
102		normal hierarchy.	33
103	8	Predicted number of single μ -like ring events, as a function of $\sin^2 \theta_{13}$ and δ_{CP} , which are typically fixed to	
104		constant values by the stand-alone ν_{μ} -disappearance analysis, for an exposure of 3.010×10 ²⁰ POT. The number	
105		of events was calculated using the BANFF-tuned MC templates. 2012 PDG values are used for $\sin^2 \theta_{12}$, $ \Delta m^2 $	
106		, 20	33
107	9	Predicted number of single e-like ring events, as a function of $\sin^2 \theta_{23}$ and $ \Delta m^2 $, which are typically fixed to	
108		constant values by the stand-alone ν_e -appearance analysis, for an exposure of 3.010×10 ²⁰ POT. The number of	
109		events was calculated using the BANFF-tuned MC templates. 2012 PDG values are used for $\sin^2 \theta_{13}$, $\sin^2 \theta_{12}$	
110		Ç	33
111	10	Predicted reconstructed-energy spectrum of single μ -like ring events, and contributions from various true neu-	
112		trino reaction modes, for no oscillations and for an exposure of 3.010×10^{20} POT. The 28 components of the	
113		spectrum are calculated separately in the actual analysis, but, for this plot, are grouped into just 5 categories:	
114		ν_{μ} CCQE, ν_{μ} CCnonQE, $\bar{\nu}_{\mu}$ CC, $\nu_{e}/\bar{\nu}_{e}$ CC and NC. The spectrum was generated using the BANFF-tuned MC	
115		templates	35
116	11	Predicted reconstructed-energy spectrum of single e-like ring events, and contributions from various true neu-	
117		trino reaction modes, for no oscillations and for an exposure of 3.010×10^{20} POT. The 32 components of the	
118		spectrum are calculated separately in the actual analysis, but, for this plot, are grouped into just four categories:	
119		$\nu_{\mu}+\bar{\nu}_{\mu}$ CC, $\nu_{\mu}+\bar{\nu}_{\mu}$ NC, $\nu_{e}+\bar{\nu}_{e}$ (intrinsic beam component) and oscillated ν_{e} . The spectrum was generated using	
120			35
121	12	Predicted reconstructed-energy spectrum of single μ -like ring events, and contributions from various true neu-	
122		trino reaction modes, for oscillations with $\sin^2\theta_{23}$ =0.5 and $ \Delta m^2 $ =2.4×10 ⁻³ eV ² /c ⁴ The spectrum was gen-	
123		erated using the BANFF-tuned MC templates. 2012 PDG values are used for $\sin^2 \theta_{13}$, $\sin^2 \theta_{12}$ and δm^2 , while	
124		δ_{CP} =0. The spectrum shown was generated assuming the normal hierarchy. Note that the vertical axis is	
125		\mathcal{C}	35
126	13	Predicted reconstructed-energy spectrum of single e-like ring events, and contributions from various true neu-	
127		trino reaction modes, for oscillations with $\sin^2 \theta_{23}$ =0.5, $ \Delta m^2 $ =2.4×10 ⁻³ eV ² /c ⁴ , $\sin^2 \theta_{13}$ =0.098 and for an	
128		exposure of 3.010×10^{20} POT. The spectrum was generated using the BANFF-tuned MC templates. 2012 PDG	
129		values are used for $\sin^2 \theta_{12}$ and δm^2 , while δ_{CP} =0. The spectrum shown was generated assuming the normal	
130		hierarchy	35

131	14	Total error envelope of the single μ -like ring event reconstructed energy spectrum (top) and total error envelope
132		of the single e-like ring event reconstructed energy spectrum (bottom), for oscillations with $ \Delta m^2 $ = 2.36×10 ⁻³
133		eV^2/c^4 . $\sin^2\theta_{23}$ =0.5, $\sin^2\theta_{13}$ =0.025, δ_{CP} =0. 2012 PDG values are used for the solar parameters and the
134		normal mass hierarchy is assumed. The plot shown was calculated for an exposure of 3.010×10^{20} POT and
135		BANFF-tuned MC templates were used
136	15	Systematic parameter pulls for the 83 systematics allowed to float in the Run 1+2+3 joint 3-flavour oscillation
137		fit with Normal Hierarchy
138	16	Systematic parameter pulls for the 83 systematics allowed to float in the Run 1+2+3 joint 3-flavour oscillation
139		fit with Inverted Hierarchy
140	17	Distribution of χ^2_{qof} , the goodness-of-fit (gof) χ^2 , from 1k toy MC experiments generated at the Run 1+2+3
141		joint 3-flavour analysis best-fit oscillation point with Normal Hierarchy. The χ^2_{qof} value for the Run 1+2+3 data
142		(χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) + 3 (single e-like ring)
143		reconstructed energy binning scheme described in Sec. 6.2, \dots 54
144	18	Distribution of χ^2_{gof} from 1k toy MC experiments generated at the Run 1+2+3 stand-alone 3-flavour ν_{μ} dis-
	10	appearance analysis best-fit oscillation point with Normal Hierarchy. The χ^2_{qof} value for the Run 1+2+3 data
145		
146		(χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) reconstructed energy
147	10	binning scheme described in Sec. 6.2,
148	19	Distribution of χ^2_{gof} from 1k toy MC experiments generated at the Run 1+2+3 stand-alone 3-flavour ν_e appear-
149		ance analysis best-fit oscillation point with Normal Hierarchy. The χ^2_{gof} value for the Run 1+2+3 data (χ^2_{data})
150		is highlighted. All χ^2_{gof} values were computed using the 3 (single e-like ring) reconstructed energy binning
151		scheme as described in Sec. 6.2,
152	20	Distribution of χ^2_{gof} , the goodness-of-fit (gof) χ^2 , from 1k toy MC experiments generated at the Run 1+2+3
153		joint 3-flavour analysis best-fit oscillation point with Inverted Hierarchy. The χ^2_{qof} value for the Run 1+2+3
154		data (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) + 3 (single e-like
155		ring) reconstructed energy binning scheme described in Sec. 6.2
156	21	Distribution of χ^2_{gof} from 1k toy MC experiments generated at the Run 1+2+3 stand-alone 3-flavour ν_μ dis-
157		appearance analysis best-fit oscillation point with Inverted Hierarchy. The χ^2_{qof} value for the Run 1+2+3 data
158		(χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) reconstructed energy
159		binning scheme described in Sec. 6.2
160	22	Distribution of χ^2_{gof} from 1k toy MC experiments generated at the Run 1+2+3 stand-alone 3-flavour ν_e appear-
161		ance analysis best-fit oscillation point with Inverted Hierarchy. The χ^2_{qof} value for the Run 1+2+3 data (χ^2_{data})
162		is highlighted. All χ^2_{gof} values were computed using the 3 (single e-like ring) reconstructed energy binning
163		scheme as described in Sec. 6.2
164	23	Run 1+2+3 best-fit single μ -like ring event reconstructed energy spectrum for the fit with Normal Hierarchy
165	23	(black: joint 3-flavour oscillation analysis, blue: stand-alone ν_{μ} disappearance analysis). The distributions are
166		shown with the binning used in the fit
167	24	Run 1+2+3 best-fit single e-like ring event reconstructed energy spectrum for the fit with Normal Hierarchy
168		(black: joint 3-flavour oscillation analysis, red: stand-alone ν_e disappearance analysis). The distributions are
169		shown with the binning used in the fit
170	25	Run 1+2+3 best-fit single μ -like ring event reconstructed energy spectrum for the fit with Inverted Hierarchy
171		(black: joint 3-flavour oscillation analysis, blue: stand-alone ν_{μ} disappearance analysis). The distributions are
172		shown with the binning used in the fit
173	26	Run 1+2+3 best-fit single e-like ring event reconstructed energy spectrum for the fit with inverted Hierarchy
174		(black: joint 3-flavour oscillation analysis, red: stand-alone ν_e disappearance analysis). The distributions are
175		shown with the binning used in the fit
176	27	Run 1+2+3 best-fit single μ -like ring event reconstructed energy spectrum for the fit with Normal Hierarchy
177		(black: joint 3-flavour oscillation analysis, blue: stand-alone ν_{μ} disappearance analysis). The distributions are
178		shown with the coarse binning defined in the main text
179	28	Run 1+2+3 best-fit single e-like ring event reconstructed energy spectrum for the fit with Normal Hierarchy
180		(black: joint 3-flavour oscillation analysis, red: stand-alone ν_e disappearance analysis). The distributions are
181		shown with the coarse binning defined in the main text
182	29	Run 1+2+3 best-fit single μ -like ring event reconstructed energy spectrum for the fit with Inverted Hierarchy
183	-	(black: joint 3-flavour oscillation analysis, blue: stand-alone ν_{μ} disappearance analysis). The distributions are
184		shown with the coarse binning defined in the main text

185	30	Run 1+2+3 best-fit single e-like ring event reconstructed energy spectrum for the fit with inverted Hierarchy
186		(black: joint 3-flavour oscillation analysis, red: stand-alone ν_e disappearance analysis). The distributions are
187		shown with the coarse binning defined in the main text
188	31	Ratio of the Run 1+2+3 best-fit single μ -like ring event reconstructed energy spectra obtained from the joint
189		3-flavour oscillation and the stand-alone ν_{μ} disappearance analyses (joint / stand-alone) with Normal Hierarchy.
190		The distributions are shown with the binning used in the fit
191	32	Ratio of the Run 1+2+3 best-fit single e-like ring event reconstructed energy spectra obtained from the joint
192		3-flavour oscillation and the stand-alone ν_e appearance analyses. (joint / stand-alone) with Normal Hierarchy.
193		The distributions are shown with the binning used in the fit
194	33	Ratio of the Run 1+2+3 best-fit single μ -like ring event reconstructed energy spectra obtained from the joint 3-
195		flavour oscillation and the stand-alone ν_{μ} disappearance analyses (joint / stand-alone) with Inverted Hierarchy.
196		The distributions are shown with the binning used in the fit
197	34	Ratio of the Run 1+2+3 best-fit single e-like ring event reconstructed energy spectra obtained from the joint
198		3-flavour oscillation and the stand-alone ν_e appearance analyses. (joint / stand-alone) with Inverted Hierarchy.
199		The distributions are shown with the binning used in the fit
200	35	$\Delta \chi^2$ as function of $ \Delta m^2 $ from the analysis of the Run 1+2+3 dataset comparing the joint analysis (black) with
201		the stand-alone ν_{μ} disappearance (blue) for Normal Hierarchy. At each point, χ^2 was minimized with respect
202		to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters 62
203	36	$\Delta \chi^2$ as function of $sin^2\theta_{23}$ from the analysis of the Run 1+2+3 dataset comparing the joint analysis (black) with
204		the stand-alone ν_{μ} disappearance (blue) for Normal Hierarchy. At each point, χ^2 was minimized with respect
205		to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters 62
206	37	$\Delta \chi^2$ as function of $sin^2\theta_{13}$ from the analysis of the Run 1+2+3 dataset comparing the joint analysis (black)
207		with the stand-alone ν_e appearance (red) for Normal Hierarchy. At each point, χ^2 was minimized with respect
208		to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters 62
209	38	$\Delta \chi^2$ as function of δ_{CP} from the analysis of the Run 1+2+3 dataset for Normal Hierarchy. At each point, χ^2
210		was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all
211		relevant nuisance parameters
212	39	68% (dashed lines) and 90% (solid lines) CL regions in $(sin^2\theta_{23}, \Delta m^2)$ space from the analysis of the Run
213	37	1+2+3 dataset comparing the joint analysis (black) with the stand-alone ν_{μ} disappearance (blue) for Normal
214		Hierarchy. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not
215		considered to be fixed) and all relevant nuisance parameters. $\dots \dots \dots$
216	40	68% (dashed lines) and 90% (solid lines) CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space from the analysis of the Run
217		1+2+3 dataset comparing the joint analysis (black) with the stand-alone ν_e appearance (red) for Normal Hierar-
218		chy. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered
219		to be fixed) and all relevant nuisance parameters. Notice that different methods are used to construct confi-
220		dence regions for the joint analysis (global minimum) and for the stand-alone appearance analysis (raster scan).
221		Middle solid red line is the line of best-fit points from the raster scan in the stand-alone appearance analysis 63
222	41	68% (dashed lines) and 90% (solid lines) CL regions in $(sin^2\theta_{13}, \Delta m^2)$ space from the analysis of the Run
223		1+2+3 dataset for Normal Hierarchy. At each point, χ^2 was minimized with respect to all oscillation parameters
224		not shown (and not considered to be fixed) and all relevant nuisance parameters
225	42	68% (dashed lines) and 90% (solid lines) CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space from the analysis of the Run
226		1+2+3 dataset for Normal Hierarchy. At each point, χ^2 was minimized with respect to all oscillation parameters
227		not shown (and not considered to be fixed) and all relevant nuisance parameters. $\dots \dots \dots$
228	43	$\Delta \chi^2$ as function of $ \Delta m^2 $ from the joint 3-flavour oscillation analysis of the Run 1+2+3 dataset. Comparing
229	73	$\Delta \chi^2$ curves for Normal Hierarchy (black) and Inverted Hierarchy (azure). At each point, χ^2 was minimized
		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance
230		parameters
232	44	$\Delta \chi^2$ as function of $sin^2\theta_{23}$ from the 3-flavour oscillation analysis of the Run 1+2+3 dataset. Comparing
	77	$\Delta \chi^2$ curves for Normal Hierarchy (black) and Inverted Hierarchy (azure). At each point, χ^2 was minimized
233		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance
234		parameters
235	45	$\Delta \chi^2$ as function of $sin^2\theta_{13}$ from the 3-flavour oscillation analysis of the Run 1+2+3 dataset. Comparing
236	73	$\Delta \chi^2$ as function of $sin \ \theta_{13}$ from the 3-havour oscination analysis of the Run 1+2+3 dataset. Comparing $\Delta \chi^2$ curves for Normal Hierarchy (black) and Inverted Hierarchy (azure). At each point, χ^2 was minimized
237		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance
238		parameters
239		parameters

240	46	$\Delta \chi^2$ as function of δ_{CP} from the 3-flavour oscillation analysis of the Run 1+2+3 dataset. Comparing $\Delta \chi^2$	
241		curves for Normal Hierarchy (black) with Inverted Hierarchy (azure). At each point, χ^2 was minimized with	
242		respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance param-	
243		eters.	65
244	47	90% CL regions in $(sin^2\theta_{23}, \Delta m^2)$ space from the joint 3-flavour oscillation analysis of the Run 1+2+3	
245		dataset, comparing contours for the Normal Hierarchy (black) and Inverted Hierarchy (azure). At each point,	
246		χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all	
247		relevant nuisance parameters.	66
248	48	90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space from the joint 3-flavour oscillation analysis of the Run 1+2+3 dataset,	00
	10	comparing contours for the Normal Hierarchy (black) and Inverted Hierarchy (azure). At each point, χ^2 was	
249		minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant	
250			66
251	49	nuisance parameters	00
252	49		
253		dataset, comparing contours for the Normal Hierarchy (black) and Inverted Hierarchy (azure). At each point,	
254		χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all	<i>(</i> 7
255	7 0	relevant nuisance parameters.	67
256	50	90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space from the joint 3-flavour oscillation analysis of the Run 1+2+3	
257		dataset, comparing contours for the Normal Hierarchy (black) and Inverted Hierarchy (azure). At each point,	
258		χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all	
259		relevant nuisance parameters.	67
260	51	68% (dashed lines) and 90% (solid lines) CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space from the analysis of the Run	
261		1+2+3 dataset comparing the joint analysis (black) with the stand-alone ν_e appearance (red) for Normal Hier-	
262		archy, using the raster scan in both analyses. Middle solid black (red) line is the line of best-fit points from the	
263		raster scan in the joint (stand-alone appearance) analysis	68
264	52	68% (dashed lines) and 90% (solid lines) CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space from the analysis of the Run	
265		1+2+3 dataset comparing the joint analysis (black) with the stand-alone ν_e appearance (red) for Inverted Hier-	
266		archy, using the raster scan in both analyses. Middle solid black (red) line is the line of best-fit points from the	
267		raster scan in the joint (stand-alone appearance) analysis	68
268	53	MC predicted reconstructed neutrino energy distribution (area-normalized) for $\nu_{\mu} \to \nu_{e}$ CC signal (red), intrin-	
269		sic ν_e CC background (green) and NC background (blue) components obtained with VaLOR framework, using	
270		$sin^2(2\theta_{12}) = 0.8704$, $\Delta m_{21}^2 = 7.6 \times 10^{-5}$, $sin^2(2\theta_{23}) = 1.0$, $ \Delta m_{32}^2 = 2.4 \times 10^{-3}$, $\delta_{CP} = 0$ and normal	
271		hierarchy.	73
272	54	Distribution of predicted number of nu_e candidate events over 1×10^6 toy experiments with $sin^2(2\theta_{13}) = 0$,	
273		including statistical and systematic variations, for 3.010×10^{20} POT, $sin^2(2\theta_{12}) = 0.8704$, $\Delta m_{21}^2 = 7.6 \times 10^{20}$	
274		10^{-5} , $sin^2(2\theta_{23}) = 1.0$, $ \Delta m_{32}^2 = 2.4 \times 10^{-3}$, $\delta_{CP} = 0$ and normal hierarchy	73
275	55	$\Delta \chi^2$ distribution for the Run1+2+3 data fit assuming normal (left) and inverted (right) mass hierarchy, for	, .
276		2012 VaLOR appearance analysis (dashed blue) and 2012 official results from Fig. 21 in [15] (solid black -	
277		digitalized). Fixed values used: $sin^2(2\theta_{12}) = 0.8704$, $\Delta m_{21}^2 = 7.6 \times 10^{-5}$, $sin^2(2\theta_{23}) = 1.0$, $ \Delta m_{32}^2 = 1.0$	
		2.4×10^{-3} and $\delta_{CP} = 0$	74
278	56	Reconstructed energy spectrum at the best-fit point for Run1+2+3 data fit with the $VaLOR$ appearance analysis,	, 4
279	30	assuming $\delta_{CP} = 0$, $sin^2(2\theta_{12}) = 0.8704$, $\Delta m_{21}^2 = 7.6 \times 10^{-5}$, $sin^2(2\theta_{23}) = 1.0$, $ \Delta m_{32}^2 = 2.4 \times 10^{-3}$ and	
280		assuming $\partial CP = 0$, $Sth^{-1}(2v_{12}) = 0.0704$, $\Delta H_{21} = 7.0 \times 10^{-4}$, $Sth^{-1}(2v_{23}) = 1.0$, $ \Delta H_{32} = 2.4 \times 10^{-4}$ and normal hierarchy.	74
281	57	Distribution of residuals of the four oscillation parameters in the '4 + 0' fit for oscillation point # 0	76
282	57 50	1	
283	58	Distribution of residuals of the four oscillation parameters in the '4 + 0' fit for oscillation point # 9	76
284	59	Distribution of residuals of the four oscillation parameters in the '4 + 0' fit for oscillation point # 1	76
285	60	Distribution of residuals of the four oscillation parameters in the '4 + 0' fit for oscillation point # 2	76
286	61	Distribution of residuals of the four oscillation parameters in the '4 + 0' fit for oscillation point # 3	77
287	62	Distribution of residuals of the four oscillation parameters in the '4 + 0' fit for oscillation point # 4	77
288	63	Distribution of residuals of the four oscillation parameters in the '4 + 0' fit for oscillation point # 5	77
289	64	Distribution of residuals of the four oscillation parameters in the '4 + 0' fit for oscillation point # 6	77
290	65	Distribution of residuals of the four oscillation parameters in the '4 + 0' fit for oscillation point #7	78
291	66	Distribution of residuals of the four oscillation parameters in the $'4 + 0'$ fit for oscillation point #8	78
292	67	Distribution of residuals for $sin^2(\theta_{23})$ in the '4 + 0' fit for oscillation point # 1 with 3.010×10^{22} POT	78
293	68	Distribution of residuals of the four oscillation parameters in the $'4 + 83'$ fit for oscillation point # 0	81
294	69	Distribution of residuals of the four oscillation parameters in the $'4 + 83'$ fit for oscillation point # 9	81
295	70	Distribution of residuals of the four oscillation parameters in the $^{\prime}4 + 83^{\prime}$ fit for oscillation point # 1	81

296	71	1	81
297	72	•	82
298	73	•	82
299	74		82
300	75	•	82
301	76		83
302	77		83
303	78	, , , ,	84
304	79	· · · · · · · · · · · · · · · · · · ·	85
305	80		86
306	81	Distribution of residuals of the BANFF (30-32) and uncorrelated cross sections (I) systematic parameters in the	
307		1	87
308	82	Distribution of residuals of uncorrelated cross sections (II) systematic parameters in the '4 + 83' fit for oscilla-	
309			88
310	83	1	89
311	84		90
312	85	1	91
313	86	1	92
314	87		93
315	88	·	93
316	89		93
317	90	·	93
318	91	, ,	94
319	92	, ,	94
320	93	·	94
321	94		94
322	95		94
323	96	J 1	94
324	97	$\Delta \chi^2$ as function of $ \Delta m^2 $ for fake dataset #0. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$,	
325		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	07
326	0.0		97
327	98	$\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #0. At each point, χ^2 was minimized with respect to $ \Delta m^2 $,	
328		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	07
329	00		97
330	99	$\Delta \chi^2$ as function of $\sin^2 \theta_{13}$ for fake dataset #0. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$,	
331		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant	07
332	100		97
333	100	$\Delta \chi^2$ as function of δ_{CP} for fake dataset #0. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters	97
334	101		91
335	101	respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to	
336			97
337	102	68% and 90% CL regions in $(sin^2\theta_{13}, \Delta m^2)$ space for fake dataset #0. At each point, χ^2 was minimized	71
338	102	with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
339		i ,	97
340	103		71
341	103	respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect	
342		to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used	
343		to construct confidence regions for the joint analysis (global minimum) and for the stand-alone appearance	
344			97
345	104	68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #0. At each point, χ^2 was minimized)
346	104	with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
347			97
348	105	parameters)
349 350	103	$\Delta \chi$ as function of Δm for take dataset #1. At each point, χ was infinitely with respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
351			98
551		and refer and find the parameters for the disappearance and join (order).	70

352	106	$\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #1. At each point, χ^2 was minimized with respect to $ \Delta m^2 $,	
353		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	0.0
354		all relevant nuisance parameters for the disappearance analysis (blue).	98
355	107	$\Delta \chi^2$ as function of $sin^2\theta_{13}$ for fake dataset #1. At each point, χ^2 was minimized with respect to $sin^2\theta_{23}$,	
356		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant	
357		nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red)	98
358	108	$\Delta \chi^2$ as function of δ_{CP} for fake dataset #1. At each point, χ^2 was minimized with respect to all oscillation	
359		parameters not shown (and not considered to be fixed) and all relevant nuisance parameters	98
360	109	68% and 90% CL regions in $(sin^2\theta_{23}, \Delta m^2)$ space for fake dataset #1. At each point, χ^2 was minimized with	
361		respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to	
362		all relevant nuisance parameters for the disappearance analysis (blue)	98
363	110	68% and 90% CL regions in $(sin^2\theta_{13}, \Delta m^2)$ space for fake dataset #1. At each point, χ^2 was minimized	
364		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
365		parameters	98
366	111	68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #1. At each point, χ^2 was minimized with	
367		respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect	
368		to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used	
369		to construct confidence regions for the joint analysis (global minimum) and for the stand-alone appearance	
370		analysis (raster scan)	98
371	112	68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #1. At each point, χ^2 was minimized	
372		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
373		parameters	98
374	113	$\Delta \chi^2$ as function of $ \Delta m^2 $ for fake dataset #2. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$,	
375		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
376		all relevant nuisance parameters for the disappearance analysis (blue).	99
377	114	$\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #2. At each point, χ^2 was minimized with respect to $ \Delta m^2 $,	
378		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
379		all relevant nuisance parameters for the disappearance analysis (blue)	99
380	115	$\Delta \chi^2$ as function of $sin^2\theta_{13}$ for fake dataset #2. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$,	
381		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant	
382		nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red)	99
383	116	$\Delta \chi^2$ as function of δ_{CP} for fake dataset #2. At each point, χ^2 was minimized with respect to all oscillation	00
384	117	parameters not shown (and not considered to be fixed) and all relevant nuisance parameters	99
385	117	68% and 90% CL regions in $(\sin^2\theta_{23}, \Delta m^2)$ space for fake dataset #2. At each point, χ^2 was minimized with	
386		respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to	00
387	110	all relevant nuisance parameters for the disappearance analysis (blue)	99
388	118	68% and 90% CL regions in $(sin^2\theta_{13}, \Delta m^2)$ space for fake dataset #2. At each point, χ^2 was minimized	
389		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	00
390	110	parameters.	99
391	119	68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #2. At each point, χ^2 was minimized with	
392		respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect	
393		to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used	
394		to construct confidence regions for the joint analysis (global minimum) and for the stand-alone appearance	00
395	120	analysis (raster scan)	99
396	120	68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #2. At each point, χ^2 was minimized	
397		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	00
398	101	parameters	99
399	121	$\Delta \chi^2$ as function of $ \Delta m^2 $ for take dataset #3. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$,	
400		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	100
401	122		100
402	122	$\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #3. At each point, χ^2 was minimized with respect to $ \Delta m^2 $,	
403		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	100
404	122	all relevant nuisance parameters for the disappearance analysis (blue)	100
405	123	$\Delta \chi^{-}$ as function of $sin^{-}\theta_{13}$ for take dataset #3. At each point, χ^{-} was minimized with respect to $sin^{-}\theta_{23}$, $sin^{2}\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant	
406		nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red)	100
407		nuisance parameters (ocp is fixed to 0) for the appearance alianysis (led)	100

408	124	$\Delta \chi^2$ as function of δ_{CP} for fake dataset #3. At each point, χ^2 was minimized with respect to all oscillation	
409		parameters not shown (and not considered to be fixed) and all relevant nuisance parameters	100
410	125	68% and 90% CL regions in $(\sin^2\theta_{23}, \Delta m^2)$ space for fake dataset #3. At each point, χ^2 was minimized with	
411		respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to	
412		all relevant nuisance parameters for the disappearance analysis (blue)	100
413	126	68% and 90% CL regions in $(sin^2\theta_{13}, \Delta m^2)$ space for fake dataset #3. At each point, χ^2 was minimized	
414		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
415		parameters.	100
416	127	68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #3. At each point, χ^2 was minimized with	
417		respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect	
418		to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used	
419		to construct confidence regions for the joint analysis (global minimum) and for the stand-alone appearance	
420		analysis (raster scan).	100
421	128	68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #3. At each point, χ^2 was minimized	100
422		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
423		parameters	100
424	129	$\Delta \chi^2$ as function of $ \Delta m^2 $ for fake dataset #4. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$,	100
425	12)	$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$,	
			101
426	130	$\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #4. At each point, χ^2 was minimized with respect to $ \Delta m^2 $,	101
427	150	$\Delta \chi$ as function of $sin v_{23}$ for take dataset $\pi 4$. At each point, χ was infinitized with respect to $ \Delta m $, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
428		all relevant nuisance parameters for the disappearance analysis (blue)	101
429	121	$\Delta \chi^2$ as function of $\sin^2 \theta_{13}$ for fake dataset #4. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$,	101
430	131	$\Delta \chi$ as function of sin θ_{13} for take dataset #4. At each point, χ was infinitized with respect to sin θ_{23} , $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant	
431		nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red)	101
432	122	$\Delta \chi^2$ as function of δ_{CP} for fake dataset #4. At each point, χ^2 was minimized with respect to all oscillation	101
433	132		101
434	122	parameters not shown (and not considered to be fixed) and all relevant nuisance parameters	101
435	133	respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to	
436			101
437	124	all relevant nuisance parameters for the disappearance analysis (blue)	101
438	134	68% and 90% CL regions in $(sin^2\theta_{13}, \Delta m^2)$ space for fake dataset #4. At each point, χ^2 was minimized with respect to all against the all against the first parameters not shown (and not considered to be first) and all relevant regions	
439		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	101
440	125	parameters	101
441	133		
442		respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect	
443		to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used	
444		to construct confidence regions for the joint analysis (global minimum) and for the stand-alone appearance	101
445	126	analysis (raster scan)	101
446	130	68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #4. At each point, χ^2 was minimized	
447		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	101
448	107	parameters.	101
449	137	$\Delta \chi^2$ as function of $ \Delta m^2 $ for fake dataset #5. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$,	
450		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	400
451			102
452	138	$\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #5. At each point, χ^2 was minimized with respect to $ \Delta m^2 $,	
453		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	400
454		all relevant nuisance parameters for the disappearance analysis (blue)	102
455	139	$\Delta \chi^2$ as function of $sin^2\theta_{13}$ for fake dataset #5. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$,	
456		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant	100
457	4	nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red)	102
458	140	$\Delta \chi^2$ as function of δ_{CP} for fake dataset #5. At each point, χ^2 was minimized with respect to all oscillation	
459		parameters not shown (and not considered to be fixed) and all relevant nuisance parameters	102
460	141	68% and 90% CL regions in $(\sin^2\theta_{23}, \Delta m^2)$ space for fake dataset #5. At each point, χ^2 was minimized with	
461		respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to	405
462		all relevant nuisance parameters for the disappearance analysis (blue)	102

463 464	142	68% and 90% CL regions in $(sin^2\theta_{13}, \Delta m^2)$ space for fake dataset #5. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
465		parameters	02
466	143	68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #5. At each point, χ^2 was minimized with	
467		respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect	
468		to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used	
469		to construct confidence regions for the joint analysis (global minimum) and for the stand-alone appearance	
470			02
471	144	68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #5. At each point, χ^2 was minimized	
472		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
473			02
474	145		04
475	146		04
476	147		04
477	148	Distribution of χ^2_{qof} , the goodness-of-fit (gof) χ^2 , from 1k toy MC experiments generated at dataset #6 joint	
478		3-flavour analysis best-fit oscillation point. The χ^2_{qof} value for the dataset #6 (χ^2_{data}) is highlighted. All χ^2_{qof}	
479		values were computed using the 5 (single μ -like ring) + 1 (single e-like ring) reconstructed energy binning	
480			05
481	149	Distribution of χ^2_{qof} from 1k toy MC experiments generated at the dataset #6 stand-alone 3-flavour ν_μ disap-	
482		pearance analysis best-fit oscillation point. The χ^2_{qof} value for the dataset #6 (χ^2_{data}) is highlighted. All χ^2_{qof}	
483		values were computed using the 5 (single μ -like ring) reconstructed energy binning scheme described in Sec.	
484		6.2,	05
485	150	Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #6 stand-alone 3-flavour ν_e appear-	
486		ance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #6 (χ^2_{data}) is highlighted. All χ^2_{gof} values	
487			05
488	151	$\Delta \chi^2$ as function of $ \Delta m^2 $ for fake dataset #6. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$,	
489		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
490			06
491	152	$\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #6. At each point, χ^2 was minimized with respect to $ \Delta m^2 $,	
492		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
493			06
494	153	$\Delta \chi^2$ as function of $\sin^2 \theta_{13}$ for fake dataset #6. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$,	
495		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant	
496		nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red)	06
497	154	$\Delta \chi^2$ as function of δ_{CP} for fake dataset #6. At each point, χ^2 was minimized with respect to all oscillation	
498		parameters not shown (and not considered to be fixed) and all relevant nuisance parameters	06
499	155	68% and 90% CL regions in $(sin^2\theta_{23}, \Delta m^2)$ space for fake dataset #6. At each point, χ^2 was minimized with	
500		respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to	
501		all relevant nuisance parameters for the disappearance analysis (blue)	06
502	156	68% and 90% CL regions in $(sin^2\theta_{13}, \Delta m^2)$ space for fake dataset #6. At each point, χ^2 was minimized	
503		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
504		parameters	06
505	157	68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #6. At each point, χ^2 was minimized with	
506		respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect	
507		to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used	
508		to construct confidence regions for the joint analysis (global minimum) and for the stand-alone appearance	
509		analysis (raster scan)	06
510	158	68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #6. At each point, χ^2 was minimized	
511	-	with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
512		parameters	06
513	159	Single μ -like ring event best-fit reconstructed energy spectrum to fake dataset #7	
514	160	Single e-like ring event best-fit reconstructed energy spectrum to fake dataset #7	
515	161	Systematic parameter pulls for the oscillation fit to fake dataset #7	

516	162	Distribution of χ^2_{gof} , the goodness-of-fit (gof) χ^2 , from 1k toy MC experiments generated at dataset #7 joint	
517		3-flavour analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #7 (χ^2_{data}) is highlighted. All χ^2_{gof}	
518		values were computed using the 5 (single μ -like ring) + 3 (single e-like ring) reconstructed energy binning	
519			108
520	163	Distribution of χ^2_{qof} from 1k toy MC experiments generated at the dataset #7 stand-alone 3-flavour ν_μ disap-	
521		pearance analysis best-fit oscillation point. The χ^2_{qof} value for the dataset #7 (χ^2_{data}) is highlighted. All χ^2_{qof}	
522		values were computed using the 5 (single μ -like ring) reconstructed energy binning scheme described in Sec.	
523			108
524	164	Distribution of χ^2_{qof} from 1k toy MC experiments generated at the dataset #7 stand-alone 3-flavour ν_e appear-	100
	10.	ance analysis best-fit oscillation point. The χ^2_{qof} value for the dataset #7 (χ^2_{data}) is highlighted. All χ^2_{qof} values	
525			108
526	165	$\Delta \chi^2$ as function of $ \Delta m^2 $ for fake dataset #7. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$,	100
527	103	$\Delta \chi$ as function of Δm for take dataset πr . At each point, χ was infinitized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
528			109
529	166	$\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #7. At each point, χ^2 was minimized with respect to $ \Delta m^2 $,	10)
530	100	$\Delta \chi$ as function of sin θ_{23} for take dataset #7. At each point, χ was infinitized with respect to $ \Delta m $, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
531			109
532 533	167	$\Delta \chi^2$ as function of $sin^2\theta_{13}$ for fake dataset #7. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$,	10)
534	107	$\Delta \chi$ as function of 377° V_{13} for take dataset 47° . At each point, χ was minimized with respect to shift V_{23} , $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant	
535			109
536	168	$\Delta \chi^2$ as function of δ_{CP} for fake dataset #7. At each point, χ^2 was minimized with respect to all oscillation	10)
537	100		109
538	169	68% and 90% CL regions in $(sin^2\theta_{23}, \Delta m^2)$ space for fake dataset #7. At each point, χ^2 was minimized with	10)
539	10)	respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to	
540			109
541	170	68% and 90% CL regions in $(sin^2\theta_{13}, \Delta m^2)$ space for fake dataset #7. At each point, χ^2 was minimized	10)
542	170	with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
543			109
544	171		10)
545	-,-	respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect	
546		to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used	
547		to construct confidence regions for the joint analysis (global minimum) and for the stand-alone appearance	
548			109
549	172	68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #7. At each point, χ^2 was minimized	
550		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
551			109
552	173		110
553		Single e-like ring event best-fit reconstructed energy spectrum to fake dataset #8	
554	175	Systematic parameter pulls for the oscillation fit to fake dataset #8	
555	176	Distribution of χ^2_{gof} , the goodness-of-fit (gof) χ^2 , from 1k toy MC experiments generated at dataset #8 joint	
556		3-flavour analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #8 (χ^2_{data}) is highlighted. All χ^2_{gof}	
557		values were computed using the 5 (single μ -like ring) + 3 (single e-like ring) reconstructed energy binning	
558			111
559	177	Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #8 stand-alone 3-flavour ν_μ disap-	
560		pearance analysis best-fit oscillation point. The χ^2_{qof} value for the dataset #8 (χ^2_{data}) is highlighted. All χ^2_{qof}	
561		values were computed using the 5 (single μ -like ring) reconstructed energy binning scheme described in Sec.	
562			111
563	178	Distribution of χ^2_{qof} from 1k toy MC experiments generated at the dataset #8 stand-alone 3-flavour ν_e appear-	
	170	ance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #8 (χ^2_{data}) is highlighted. All χ^2_{gof} values	
564			111
565	170	$\Delta \chi^2$ as function of $ \Delta m^2 $ for fake dataset #8. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$,	111
566	117	$\Delta \chi$ as function of Δm for take dataset #6. At each point, χ was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
567			112
568	180	$\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #8. At each point, χ^2 was minimized with respect to $ \Delta m^2 $,	114
569	100	$\Delta \chi$ as function of sin θ_{23} for take dataset θ . At each point, χ was infinitized with respect to $ \Delta m $, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
570		all relevant nuisance parameters for the disappearance analysis (blue)	112
571		an recevant narrance parameters for the disappearance analysis (blue).	114

572	181	$\Delta \chi^2$ as function of $sin^2\theta_{13}$ for fake dataset #8. At each point, χ^2 was minimized with respect to $sin^2\theta_{23}$,	
573		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant	
574		nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red)	12
575	182	$\Delta \chi^2$ as function of δ_{CP} for fake dataset #8. At each point, χ^2 was minimized with respect to all oscillation	
576		parameters not shown (and not considered to be fixed) and all relevant nuisance parameters	12
577	183	68% and 90% CL regions in $(sin^2\theta_{23}, \Delta m^2)$ space for fake dataset #8. At each point, χ^2 was minimized with	
578		respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to	
579		all relevant nuisance parameters for the disappearance analysis (blue)	12
580	184	68% and 90% CL regions in $(sin^2\theta_{13}, \Delta m^2)$ space for fake dataset #8. At each point, χ^2 was minimized	
581		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
582		parameters	12
583	185	68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #8. At each point, χ^2 was minimized with	
584		respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect	
585		to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used	
586		to construct confidence regions for the joint analysis (global minimum) and for the stand-alone appearance	
587			12
588	186	68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #8. At each point, χ^2 was minimized	
589		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
590			12
591	187	Single μ -like ring event best-fit reconstructed energy spectrum to fake dataset #9	
592	188	Single e-like ring event best-fit reconstructed energy spectrum to fake dataset #9	
593	189	Systematic parameter pulls for the oscillation fit to fake dataset #9	
594	190	Distribution of χ^2_{qof} , the goodness-of-fit (gof) χ^2 , from 1k toy MC experiments generated at dataset #9 joint	
	170	3-flavour analysis best-fit oscillation point. The χ^2_{qof} value for the dataset #9 (χ^2_{data}) is highlighted. All χ^2_{qof}	
595			
596		values were computed using the 5 (single μ -like ring) + 3 (single e-like ring) reconstructed energy binning scheme described in Sec. 6.2.	1 /
597	101		14
598	191	Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #9 stand-alone 3-flavour ν_{μ} disap-	
599		pearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #9 (χ^2_{data}) is highlighted. All χ^2_{gof}	
600		values were computed using the 5 (single μ -like ring) reconstructed energy binning scheme described in Sec.	
601	100	6.2	14
602	192	Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #9 stand-alone 3-flavour ν_e appearance of the latest #0 (2) in the latest #0 (2) in the latest #0 (2)	
603		ance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #9 (χ^2_{data}) is highlighted. All χ^2_{gof} values	1 1
604	102	were computed using the 3 (single e-like ring) reconstructed energy binning scheme as described in Sec. 6.2 11	14
605	193	$\Delta \chi^2$ as function of $ \Delta m^2 $ for fake dataset #9. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$,	
606		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	. ~
607	101	all relevant nuisance parameters for the disappearance analysis (blue)	15
608	194	$\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #9. At each point, χ^2 was minimized with respect to $ \Delta m^2 $,	
609		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
610		all relevant nuisance parameters for the disappearance analysis (blue)	15
611	195	$\Delta \chi^2$ as function of $sin^2\theta_{13}$ for fake dataset #9. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$,	
612		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant	
613		nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red)	15
614	196	$\Delta \chi^2$ as function of δ_{CP} for fake dataset #9. At each point, χ^2 was minimized with respect to all oscillation	
615		parameters not shown (and not considered to be fixed) and all relevant nuisance parameters	15
616	197	68% and 90% CL regions in $(sin^2\theta_{23}, \Delta m^2)$ space for fake dataset #9. At each point, χ^2 was minimized with	
617		respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to	
618		all relevant nuisance parameters for the disappearance analysis (blue)	15
619	198	68% and 90% CL regions in $(sin^2\theta_{13}, \Delta m^2)$ space for fake dataset #9. At each point, χ^2 was minimized	
620		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
621		parameters	15
622	199	68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #9. At each point, χ^2 was minimized with	
623		respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect	
624		to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used	
625		to construct confidence regions for the joint analysis (global minimum) and for the stand-alone appearance	
626		analysis (raster scan)	15

627	200	68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #9. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
628			15
629	201	1	
630	201		16
631	202	c c. 1	16
632	203		16
633	204	Distribution of χ^2_{gof} , the goodness-of-fit (gof) χ^2 , from 1k toy MC experiments generated at dataset #10 joint	
634		3-flavour analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #10 (χ^2_{data}) is highlighted. All χ^2_{gof}	
635		values were computed using the 5 (single μ -like ring) + 3 (single e-like ring) reconstructed energy binning	
636			17
637	205	Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #10 stand-alone 3-flavour ν_μ disap-	
638		pearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #10 (χ^2_{data}) is highlighted. All χ^2_{gof}	
639		values were computed using the 5 (single μ -like ring) reconstructed energy binning scheme described in Sec.	
640			17
641	206	Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #10 stand-alone 3-flavour ν_e ap-	
642		pearance analysis best-fit oscillation point. The χ^2_{qof} value for the dataset #10 (χ^2_{data}) is highlighted. All χ^2_{qof}	
643		values were computed using the 3 (single e-like ring) reconstructed energy binning scheme as described in Sec.	
644			17
645	207	$\Delta \chi^2$ as function of $ \Delta m^2 $ for fake dataset #10. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$,	
646		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
647			18
648	208	$\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #10. At each point, χ^2 was minimized with respect to $ \Delta m^2 $,	
649		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
650		all relevant nuisance parameters for the disappearance analysis (blue)	18
651	209	$\Delta \chi^2$ as function of $\sin^2 \theta_{13}$ for fake dataset #10. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$,	
652		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant	
653		nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red)	18
654	210	$\Delta \chi^2$ as function of δ_{CP} for fake dataset #10. At each point, χ^2 was minimized with respect to all oscillation	
655		parameters not shown (and not considered to be fixed) and all relevant nuisance parameters	18
656	211	68% and 90% CL regions in $(sin^2\theta_{23}, \Delta m^2)$ space for fake dataset #10. At each point, χ^2 was minimized	
657		with respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect	
658			18
659	212	68% and 90% CL regions in $(sin^2\theta_{13}, \Delta m^2)$ space for fake dataset #10. At each point, χ^2 was minimized	
660		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
661			18
662	213	68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #10. At each point, χ^2 was minimized with	
663		respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect	
664		to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used	
665		to construct confidence regions for the joint analysis (global minimum) and for the stand-alone appearance	
666		analysis (raster scan)	18
667	214	68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #10. At each point, χ^2 was minimized	
668		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
669		parameters	
670	215	Single μ -like ring event best-fit reconstructed energy spectrum to fake dataset #11	
671	216	Single e-like ring event best-fit reconstructed energy spectrum to fake dataset #11	
672	217	Systematic parameter pulls for the oscillation fit to fake dataset #11	19
673	218	Distribution of χ^2_{gof} , the goodness-of-fit (gof) χ^2 , from 1k toy MC experiments generated at dataset #11 joint	
674		3-flavour analysis best-fit oscillation point. The χ^2_{qof} value for the dataset #11 (χ^2_{data}) is highlighted. All χ^2_{qof}	
675		values were computed using the 5 (single μ -like ring) + 3 (single e-like ring) reconstructed energy binning	
676		scheme described in Sec. 6.2.	20
677	219	Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #11 stand-alone 3-flavour ν_μ disap-	
678		pearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #11 (χ^2_{data}) is highlighted. All χ^2_{gof}	
679		values were computed using the 5 (single μ -like ring) reconstructed energy binning scheme described in Sec.	
680		6.2	20

681	220	Distribution of χ^2_{qof} from 1k toy MC experiments generated at the dataset #11 stand-alone 3-flavour ν_e ap-	
682		pearance analysis best-fit oscillation point. The χ^2_{qof} value for the dataset #11 (χ^2_{data}) is highlighted. All χ^2_{qof}	
683		values were computed using the 3 (single e-like ring) reconstructed energy binning scheme as described in Sec.	
684		6.2	120
685	221	$\Delta \chi^2$ as function of $ \Delta m^2 $ for fake dataset #11. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$,	120
686	221	$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$,	
687		all relevant nuisance parameters for the disappearance analysis (blue)	121
	222	$\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #11. At each point, χ^2 was minimized with respect to $ \Delta m^2 $,	121
688		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
689		all relevant nuisance parameters for the disappearance analysis (blue)	121
690	223	$\Delta \chi^2$ as function of $sin^2\theta_{13}$ for fake dataset #11. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$,	121
691	223	$\Delta \chi$ as function of $sin \ \theta_{13}$ for face dataset #11. At each point, χ was infinitized with respect to sin θ_{23} , $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant	
692		nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red)	121
693	224	$\Delta \chi^2$ as function of δ_{CP} for fake dataset #11. At each point, χ^2 was minimized with respect to all oscillation	121
694	224	parameters not shown (and not considered to be fixed) and all relevant nuisance parameters	121
695	225		121
696	223	68% and 90% CL regions in $(sin^2\theta_{23}, \Delta m^2)$ space for fake dataset #11. At each point, χ^2 was minimized	
697		with respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect	101
698	226	to all relevant nuisance parameters for the disappearance analysis (blue)	121
699	226	68% and 90% CL regions in $(sin^2\theta_{13}, \Delta m^2)$ space for fake dataset #11. At each point, χ^2 was minimized	
700		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	101
701	227	parameters	121
702	227	68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #11. At each point, χ^2 was minimized with	
703		respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect	
704		to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used	
705		to construct confidence regions for the joint analysis (global minimum) and for the stand-alone appearance	
706		analysis (raster scan).	121
707	228	68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #11. At each point, χ^2 was minimized	
708		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
709		parameters	121
710	229	e , e , i	122
711	230	Single e-like ring event best-fit reconstructed energy spectrum to fake dataset #12	
712	231	Systematic parameter pulls for the oscillation fit to fake dataset #12	122
713	232	rigoj e	
714		3-flavour analysis best-fit oscillation point. The χ^2_{qof} value for the dataset #12 (χ^2_{data}) is highlighted. All χ^2_{qof}	
715		values were computed using the 5 (single μ -like ring) + 3 (single e-like ring) reconstructed energy binning	
716		scheme described in Sec. 6.2.	123
717	233	Distribution of χ^2_{qof} from 1k toy MC experiments generated at the dataset #12 stand-alone 3-flavour ν_{μ} disap-	
718		pearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #12 (χ^2_{data}) is highlighted. All χ^2_{gof}	
719		values were computed using the 5 (single μ -like ring) reconstructed energy binning scheme described in Sec.	
720		6.2.	123
721	234	Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #12 stand-alone 3-flavour ν_e ap-	
722		pearance analysis best-fit oscillation point. The χ^2_{qof} value for the dataset #12 (χ^2_{data}) is highlighted. All χ^2_{qof}	
723		values were computed using the 3 (single e-like ring) reconstructed energy binning scheme as described in Sec.	
724		6.2	123
725	235	$\Delta \chi^2$ as function of $ \Delta m^2 $ for fake dataset #12. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$,	123
726	233	$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$,	
727		all relevant nuisance parameters for the disappearance analysis (blue)	124
	236	$\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #12. At each point, χ^2 was minimized with respect to $ \Delta m^2 $,	127
728	230	$\Delta \chi$ as function of $3m \theta_{23}$ for face dataset #12. At each point, χ was infinitized with respect to Δm , $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
729		all relevant nuisance parameters for the disappearance analysis (blue)	124
730	227	$\Delta \chi^2$ as function of $sin^2\theta_{13}$ for fake dataset #12. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$,	14
731	231	$\Delta \chi$ as function of still θ_{13} for take dataset #12. At each point, χ was infinitized with respect to sill θ_{23} , $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant	
732			124
733	220	$\Delta \chi^2$ as function of δ_{CP} for fake dataset #12. At each point, χ^2 was minimized with respect to all oscillation	1.24
734	438		124
735		parameters not shown (and not considered to be fixed) and all relevant nuisance parameters	124

736	239	68% and 90% CL regions in $(sin^2\theta_{23}, \Delta m^2)$ space for fake dataset #12. At each point, χ^2 was minimized	
737		with respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect	101
738		to all relevant nuisance parameters for the disappearance analysis (blue).	124
739	240	68% and 90% CL regions in $(sin^2\theta_{13}, \Delta m^2)$ space for fake dataset #12. At each point, χ^2 was minimized	
740		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
741	244	parameters	124
742	241	68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #12. At each point, χ^2 was minimized with	
743		respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect	
744		to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used	
745		to construct confidence regions for the joint analysis (global minimum) and for the stand-alone appearance	
746		analysis (raster scan)	124
747	242	68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #12. At each point, χ^2 was minimized	
748		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
749	2.42	parameters	124
750	243	Single μ -like ring event best-fit reconstructed energy spectrum to fake dataset #13	125
751	244	Single e-like ring event best-fit reconstructed energy spectrum to fake dataset #13	125
752	245	Systematic parameter pulls for the oscillation fit to fake dataset #13	125
753	246	Distribution of χ^2_{gof} , the goodness-of-fit (gof) χ^2 , from 1k toy MC experiments generated at dataset #13 joint	
754		3-flavour analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #13 (χ^2_{data}) is highlighted. All χ^2_{gof}	
755		values were computed using the 5 (single μ -like ring) + 3 (single e-like ring) reconstructed energy binning	
756		scheme described in Sec. 6.2.	126
757	247	Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #13 stand-alone 3-flavour ν_μ disap-	
758		pearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #13 (χ^2_{data}) is highlighted. All χ^2_{gof}	
759		values were computed using the 5 (single μ -like ring) reconstructed energy binning scheme described in Sec.	
760		6.2.	126
761	248	Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #13 stand-alone 3-flavour ν_e ap-	
762		pearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #13 (χ^2_{data}) is highlighted. All χ^2_{gof}	
763		values were computed using the 3 (single e-like ring) reconstructed energy binning scheme as described in Sec.	
764		6.2.	126
765	249	$\Delta \chi^2$ as function of $ \Delta m^2 $ for fake dataset #13. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$,	
766		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
767		all relevant nuisance parameters for the disappearance analysis (blue)	127
768	250	$\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #13. At each point, χ^2 was minimized with respect to $ \Delta m^2 $,	
769		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
770		all relevant nuisance parameters for the disappearance analysis (blue)	127
771	251	$\Delta \chi^2$ as function of $sin^2\theta_{13}$ for fake dataset #13. At each point, χ^2 was minimized with respect to $sin^2\theta_{23}$,	
772		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant	
773	2.72	nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red)	127
774	252	$\Delta \chi^2$ as function of δ_{CP} for fake dataset #13. At each point, χ^2 was minimized with respect to all oscillation	107
775	252	parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.	127
776	253	68% and 90% CL regions in $(sin^2\theta_{23}, \Delta m^2)$ space for fake dataset #13. At each point, χ^2 was minimized	
777		with respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect	107
778	254	to all relevant nuisance parameters for the disappearance analysis (blue)	127
779	254	68% and 90% CL regions in $(sin^2\theta_{13}, \Delta m^2)$ space for fake dataset #13. At each point, χ^2 was minimized	
780		with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	107
781	255	parameters	127
782	233	68% and 90% CL regions in $(\sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #13. At each point, χ^2 was minimized with	
783		respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect	
784		to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used	
785		to construct confidence regions for the joint analysis (global minimum) and for the stand-alone appearance	127
786	256	analysis (raster scan)	12/
787	230	with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance	
788		parameters	127
789		parameters	14/

790	257	$\Delta \chi^2$ as a function of $ \Delta m^2 $ for true oscillation parameter point #0. χ^2 was averaged over hundreds of toy-	
791		MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all	
792		relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance	
793		parameters for the disappearance analysis (blue)	129
794	258	$\Delta \chi^2$ as function of $\sin^2 \theta_{23}$ for true oscillation parameter point #0. χ^2 was averaged over hundreds of toy-	
795		MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all	
796		relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and all relevant nuisance	
797		parameters for the disappearance analysis (blue)	129
798	259	$\Delta \chi^2$ as function of $\sin^2 \theta_{13}$ for true oscillation parameter point #0. χ^2 was averaged over hundreds of toy-MC	
799	20)	experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant	
		nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is	
800			129
801	260	fixed to 0) for the appearance analysis (red)	129
802	200	$\Delta \chi^{-}$ as function of δ_{CP} for true oscillation parameter point #0. χ^{-} was averaged over numerous of toy-ivic ex-	
803		periments and, for each experiment, it was minimized with respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$ and all relevant	120
804	261	nuisance parameters.	129
805	261	$\Delta \chi^2$ as function of $ \Delta m^2 $ for true oscillation parameter point #1. χ^2 was averaged over hundreds of toy-	
806		MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all	
807		relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance	
808		parameters for the disappearance analysis (blue).	129
809	262	$\Delta \chi^2$ as function of $\sin^2 \theta_{23}$ for true oscillation parameter point #1. χ^2 was averaged over hundreds of toy-	
810		MC experiments and, for each experiment, it was minimized with respect to $ \Delta m^2 $, $\sin^2 \theta_{13}$, δ_{CP} and all	
811		relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance	
812		parameters for the disappearance analysis (blue)	129
813	263	$\Delta \chi^2$ as function of $\sin^2 \theta_{13}$ for true oscillation parameter point #1. χ^2 was averaged over hundreds of toy-MC	
814		experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant	
815		nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is	
816		fixed to 0) for the appearance analysis (red).	129
817	264	$\Delta \chi^2$ as function of δ_{CP} for true oscillation parameter point #1. χ^2 was averaged over hundreds of toy-MC ex-	
818	_0.	periments and, for each experiment, it was minimized with respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$ and all relevant	
819		nuisance parameters	129
820	265	$\Delta \chi^2$ as function of $ \Delta m^2 $ for true oscillation parameter point #2. χ^2 was averaged over hundreds of toy-	12)
	203	MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all	
821		relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, θ_{CP} and an relevant nuisance	
822		parameters for the disappearance analysis (blue)	130
823	266	$\Delta \chi^2$ as function of $\sin^2 \theta_{23}$ for true oscillation parameter point #2. χ^2 was averaged over hundreds of toy-	130
824	200		
825		MC experiments and, for each experiment, it was minimized with respect to $ \Delta m^2 $, $\sin^2 \theta_{13}$, δ_{CP} and all	
826		relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance	120
827	267	parameters for the disappearance analysis (blue).	130
828	267	$\Delta \chi^2$ as function of $\sin^2 \theta_{13}$ for true oscillation parameter point #2. χ^2 was averaged over hundreds of toy-MC	
829		experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant	
830		nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is	
831		fixed to 0) for the appearance analysis (red)	130
832	268	$\Delta \chi^2$ as function of δ_{CP} for true oscillation parameter point #2. χ^2 was averaged over hundreds of toy-MC ex-	
833		periments and, for each experiment, it was minimized with respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$ and all relevant	
834		nuisance parameters	130
835	269	$\Delta \chi^2$ as function of $ \Delta m^2 $ for true oscillation parameter point #3. χ^2 was averaged over hundreds of toy-	
836		MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all	
837		relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance	
838		parameters for the disappearance analysis (blue)	130
839	270	$\Delta \chi^2$ as function of $\sin^2 \theta_{23}$ for true oscillation parameter point #3. χ^2 was averaged over hundreds of toy-	
840		MC experiments and, for each experiment, it was minimized with respect to $ \Delta m^2 $, $\sin^2 \theta_{13}$, δ_{CP} and all	
841		relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and all relevant nuisance	
842		parameters for the disappearance analysis (blue).	130
		I TITLE TO THE STATE OF THE STA	

843	271	$\Delta \chi^2$ as function of $\sin^2 \theta_{13}$ for true oscillation parameter point #3. χ^2 was averaged over hundreds of toy-MC	
844		experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant	
845		nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is	
846		fixed to 0) for the appearance analysis (red)	30
847	272	fixed to 0) for the appearance analysis (red)	
848		periments and, for each experiment, it was minimized with respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$ and all relevant	
849			30
850	273	nuisance parameters	
851		MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all	
852		relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and all relevant nuisance	
853			31
854	274	parameters for the disappearance analysis (blue)	<i>J</i> 1
855	-, .	MC experiments and, for each experiment, it was minimized with respect to $ \Delta m^2 $, $\sin^2 \theta_{13}$, δ_{CP} and all	
856		relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and all relevant nuisance	
857			31
	275	$\Delta \chi^2$ as function of $\sin^2 \theta_{13}$ for true oscillation parameter point #4. χ^2 was averaged over hundreds of toy-MC	51
858	213	experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant	
859		nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is	
860			31
861	276	fixed to 0) for the appearance analysis (red)	31
862	270	periments and, for each experiment, it was minimized with respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$ and all relevant	
863			21
864	277	nuisance parameters	31
865	277		
866		MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all	
867		relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and all relevant nuisance	21
868	270	parameters for the disappearance analysis (blue)	31
869	278	$\Delta \chi^2$ as function of $\sin^2 \theta_{23}$ for true oscillation parameter point #5. χ^2 was averaged over hundreds of toy-	
870		MC experiments and, for each experiment, it was minimized with respect to $ \Delta m^2 $, $\sin^2 \theta_{13}$, δ_{CP} and all	
871		relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance	2.1
872	270		31
873	279	$\Delta \chi^2$ as function of $\sin^2 \theta_{13}$ for true oscillation parameter point #5. χ^2 was averaged over hundreds of toy-MC	
874		experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant	
875		nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is	
876			31
877	280	$\Delta \chi^2$ as function of δ_{CP} for true oscillation parameter point #5. χ^2 was averaged over hundreds of toy-MC ex-	
878		periments and, for each experiment, it was minimized with respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$ and all relevant	
879			31
880	281	$\Delta \chi^2$ as function of $ \Delta m^2 $ for the best fit point found for Run1+2+3 with Normal Hierarchy. χ^2 was averaged	
881		over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$,	
882		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
883			.32
884	282	$\Delta \chi^2$ as function of $\sin^2 \theta_{23}$ for the best fit point found for Run1+2+3 with Normal Hierarchy. χ^2 was averaged	
885		over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$,	
886		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
887		1 11 , , ,	32
888	283	$\Delta \chi^2$ as function of $\sin^2 \theta_{13}$ for the best fit point found for Run1+2+3 with Normal Hierarchy. χ^2 was averaged	
889		over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$,	
890		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant	
891			32
892	284	$\Delta \chi^2$ as function of δ_{CP} for the best fit point found for Run1+2+3 with Normal Hierarchy. χ^2 was averaged over	
893		hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $ \Delta m^2 $, $\sin^2 \theta_{23}$,	
894		$\sin^2\theta_{13}$ and all relevant nuisance parameters	32
895	285	$\Delta \chi^2$ as function of $ \Delta m^2 $ for the best fit point found for Run1+2+3 with Inverted Hierarchy. χ^2 was averaged	
896		over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$,	
897		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and	
898		all relevant nuisance parameters for the disappearance analysis (blue)	32

899	286	$\Delta \chi^2$ as function of $\sin^2 \theta_{23}$ ffor the best fit point found for Run1+2+3 with Inverted Hierarchy. χ^2 was averaged	
900	_00	over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$,	
901		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$,	
902			132
903	287	$\Delta \chi^2$ as function of $\sin^2 \theta_{13}$ for the best fit point found for Run1+2+3 with Inverted Hierarchy. χ^2 was averaged	132
904	_0,	over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$,	
905		$\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant	
906			132
907	288	$\Delta \chi^2$ as function of δ_{CP} for the best fit point found for Run1+2+3 with Inverted Hierarchy. χ^2 was averaged	132
908	200	over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $ \Delta m^2 $,	
909			132
910	289	$\Delta \chi^2$ as function of $ \Delta m^2 $ for the best fit point found for Run1+2+3 with Normal Hierarchy. Oranged line is	132
	207	the result of the sensitivity study, where χ^2 was averaged over hundreds of toy-MC experiments and black line	
911 912			133
	290	$\Delta \chi^2$ as function of $\sin^2 \theta_{23}$ for the best fit point found for Run1+2+3 with Normal Hierarchy. Orange line is	133
913	290	the result of the sensitivity study, where χ^2 was averaged over hundreds of toy-MC experiments and black line	
914			133
915	201	$\Delta \chi^2$ as function of $\sin^2 \theta_{13}$ for the best fit point found for Run1+2+3 with Normal Hierarchy. Orange line is	133
916	291		
917		the result of the sensitivity study, where χ^2 was averaged over hundreds of toy-MC experiments and black line	122
918	202		133
919	292	$\Delta \chi^2$ as function of δ_{CP} for the best fit point found for Run1+2+3 with Normal Hierarchy. Orange line is the	
920		result of the sensitivity study, where χ^2 was averaged over hundreds of toy-MC experiments and black line is	100
921	202		133
922	293	$\Delta \chi^2$ as function of $ \Delta m^2 $ for the best fit point found for Run1+2+3 with Inverted Hierarchy. Orange line is	
923		the result of the sensitivity study, where χ^2 was averaged over hundreds of toy-MC experiments and black line	100
924	20.4		133
925	294	$\Delta \chi^2$ as function of $\sin^2 \theta_{23}$ for the best fit point found for Run1+2+3 with Inverted Hierarchy. Orange line is	
926		the result of the sensitivity study, where χ^2 was averaged over hundreds of toy-MC experiments and black line	
927	20.5		133
928	295	$\Delta \chi^2$ as function of $\sin^2 \theta_{13}$ for the best fit point found for Run1+2+3 with Inverted Hierarchy. Orange line is	
929		the result of the sensitivity study, where χ^2 was averaged over hundreds of toy-MC experiments and black line	
930	206		133
931	296	$\Delta \chi^2$ as function of δ_{CP} for the best fit point found for Run1+2+3 with Inverted Hierarchy. Orange line is the	
932		result of the sensitivity study, where χ^2 was averaged over hundreds of toy-MC experiments and black line is	
933			133
934	297	90% CL region in $(\sin^2 \theta_{23}, \Delta m^2)$ space for the best fit point found for Run1+2+3 with Normal Hierarchy.	
935		Orange line is the sensitivity contour that was computed by averaging the contours of the ensemble of hundreds	
936		of toy MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant	
937		nuisance parameters for the joint analysis. Black line is the result of the Run1+2+3 dataset fit	134
938	298	90% CL region in $(\sin^2 \theta_{13}, \Delta m^2)$ space for the best fit point found for Run1+2+3 with Normal Hierarchy.	
939		Orange line is the sensitivity contour that was computed by averaging the contours of the ensemble of hundreds	
940		of toy MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant	
941		nuisance parameters for the joint analysis. Black line is the result of the Run1+2+3 dataset fit	134
942	299	90% CL region in $(\sin^2 \theta_{23}, \delta_{CP})$ space for the best fit point found for Run1+2+3 with Normal Hierarchy.	
943		Orange line is the sensitivity contour that was computed by averaging the contours of the ensemble of hundreds	
944		of toy MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant	
945		nuisance parameters for the joint analysis. Black line is the result of the Run1+2+3 dataset fit	134
946	300	90% CL region in $(\sin^2 \theta_{23}, \sin^2 \theta_{13})$ space for the best fit point found for Run1+2+3 with Normal Hierarchy.	
947		Orange line is the sensitivity contour that was computed by averaging the contours of the ensemble of hundreds	
948		of toy MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant	
949		nuisance parameters for the joint analysis. Black line is the result of the Run1+2+3 dataset fit	134
950	301	90% CL region in $(\sin^2 \theta_{23}, \Delta m^2)$ space for the best fit point found for Run1+2+3 with Inverted Hierarchy.	
951		Orange line is the sensitivity contour that was computed by averaging the contours of the ensemble of hundreds	
952		of toy MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant	
953		nuisance parameters for the joint analysis. Black line is the result of the Run1+2+3 dataset fit	135

054	302	90% CL region in $(\sin^2 \theta_{13}, \Delta m^2)$ space for the best fit point found for Run1+2+3 with Inverted Hierarchy.	
954	302	Orange line is the sensitivity contour that was computed by averaging the contours of the ensemble of hundreds	
955		of toy MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant	
956		nuisance parameters for the joint analysis. Black line is the result of the Run1+2+3 dataset fit	135
957	303	90% CL region in $(\sin^2 \theta_{13}, \delta_{CP})$ space for the best fit point found for Run1+2+3 with Normal Hierarchy.	133
958	303	Orange line is the sensitivity contour that was computed by averaging the contours of the ensemble of hundreds	
959		of toy MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant	
960		nuisance parameters for the joint analysis. Black line is the result of the Run1+2+3 dataset fit	135
961 962	304		133
963	304	Orange line is the sensitivity contour that was computed by averaging the contours of the ensemble of hundreds	
		of toy MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant	
964 965		nuisance parameters for the joint analysis. Black line is the result of the Run1+2+3 dataset fit	135
966	305	The 3-flavour $P(\nu_{\mu} \to \nu_{\mu})$ with matter effects as a function of $\sin^2 \theta_{23}$ for different values of $\sin^2 \theta_{13}$ for the	133
967	303	normal mass hierarchy (left) and the inverted mass hierarchy (right); $ \Delta m_{32}^2 $ is fixed to 2.4×10^{-3} eV ² /c ⁴ and	
968		δ_{CP} is fixed to 0	136
969	306		150
970	500	dataset fit with Normal Hierarchy (left) and Inverted Hierarchy (right). The values for the left plot are:	
971		$\sin^2 \theta_{13} = 0.029$, $ \Delta m_{32}^2 = 2.494 \times 10^{-3}$ eV ² /c ⁴ and $\delta_{CP} = 2.086$. The values for the right plot are:	
972		$\sin^2 \theta_{13} = 0.024$, $ \Delta m_{32}^2 = 2.161 \times 10^{-2}$ eV/c ⁴ and $\delta_{CP} = 2.000$. The values for the right picture.	
972		at the best-fit value $\sin^2 \theta_{23} = 0.516$ (indicated with a green line)	138
973	307	$\sigma_{23} = 0.010$ (indicated with a green line).	150
974	307	fixed solar parameters and light colors for the fit with marginalized solar parameters	139
976	308	Fitted values of $\sin^2 2\theta_{12}$ (left) and Δm_{21}^2 (right) for the joint fit with marginalized solar parameters, for the	137
977	300	estimated final POT (7×10^{21})	139
978	309	True χ^2 surface in $(\sin^2 \theta_{13}, \delta_{CP})$ space for a toy experiment with true input values $\sin^2 \theta_{23} = 0.5$, $ \Delta m^2 =$	137
979	307	χ surface in (sin δ_{13} , δ_{CP}) space for a roy experiment with true input varies $\sin^{-}\delta_{23} = 0.8$, $ \Delta m = 2.36 \times 10^{-3} (eV^2/c^4)$, $\sin^2\theta_{13} = 0.025$ and δ_{CP} =0 and no fluctuations, fixing $\sin^2\theta_{23}$ and $ \Delta m^2 $ to their	
980		input values. Right, same true χ^2 surface zoomed around true input value for $\sin^2 \theta_{13}$	140
980	310		170
982	310	distribution of selected values of $\sin^2 \theta_{13}$ (left bottom plot) the values of δ_{CP} in the true χ^2 minimal band are	
983		found (left top plot) and a histogram is filled with them (right plot)	141
984	311		1.11
985	511	311 but replacing left top plot with the density of points in the true χ^2 minimal band	141
986	312		111
987	312	case. On the right, realistic case including the deviations in $\sin^2 \theta_{23}$ and $\sin^2 \theta_{13}$ from Fig. 57	142
988	313		1.2
	313	$\sin^2 \theta_{13} = 0.025$	142
989	314	True χ^2 surface in $\sin^2 \theta_{13}, \delta_{CP}$) space for a toy experiment without fluctuations and with true input values	142
990	314	$\sin^2 \theta_{23} = 0.5$, $ \Delta m^2 = 2.36 \times 10^{-3} (eV^2/c^4)$, $\sin^2 \theta_{13} = 0.025$ and $\delta_{CP} = \pi/2$, fixing $\sin^2 \theta_{23}$ and $ \Delta m^2 $	
991		to their input values. Right, same true χ^2 surface zoomed around true input value for $\sin^2 \theta_{13}$	1/13
992 993	315	True χ^2 surface in $\sin^2 \theta_{13}, \delta_{CP}$) space for a toy experiment without fluctuations and with true input values	143
994	313	$\sin^2 \theta_{23} = 0.5$, $ \Delta m^2 = 2.36 \times 10^{-3} (eV^2/c^4)$, $\sin^2 \theta_{13} = 0.025$ and $\delta_{CP} = -\pi/2$, fixing $\sin^2 \theta_{23}$ and	
995		$ \Delta m^2 $ to their input values. Right, same true χ^2 surface zoomed around true input value for $\sin^2 \theta_{13}$	143
996	316	Result of the test explained in figure 310, i.e. the distribution of selected points vs δ_{CP} . Left plot is for	143
997	310	$\delta_{CP} = \pi/2$ and right plot is for $\delta_{CP} = -\pi/2$	143
998	317	Result of the test explained in figure 310, i.e. the distribution of selected points vs δ_{CP} when including the	113
999	317	corresponding biases in $\sin^2 \theta_{23}$ and $\sin^2 \theta_{13}$ from Figs. 63 and 64. Left plot is for $\delta_{CP} = \pi/2$ and right plot is	
1000		for $\delta_{CP}=-\pi/2$	144
1000	318	Distribution of residuals of the four oscillation parameters in the '4 + 0' fit for oscillation point with values	177
1002	310	$\sin^2 \theta_{23} = 0.34$, $ \Delta m^2 = 2.4 \times 10^{-3} (eV^2/c^4)$, $\sin^2 \theta_{13} = 0.025$ and $\delta_{CP} = 0$ at the T2K goal POT	
1002		(7.8×10^{21}) constraining $\sin^2 \theta_{13}$ with an error of 10%	144
1003	310	Distribution of residuals of the four oscillation parameters in the '4 + 0' fit for oscillation point with values	177
1004	517	sin ² $\theta_{23}=0.34$, $ \Delta m^2 =2.4\times 10^{-3}(eV^2/c^4)$, $\sin^2\theta_{13}=0.025$ and $\delta_{CP}=\pi/2$ at the T2K goal POT	
1005		(7.8×10^{21}) constraining $\sin^2 \theta_{13}$ with an error of 10%	145
1006	320	Distribution of residuals of the four oscillation parameters in the '4 + 0' fit for oscillation point with values	173
1007	220	$\sin^2 \theta_{23} = 0.34$, $ \Delta m^2 = 2.4 \times 10^{-3} (eV^2/c^4)$, $\sin^2 \theta_{13} = 0.025$ and $\delta_{CP} = -\pi/2$ at the T2K goal POT	
1008		(7.8×10^{21})	145
. 303		(/ 20 //	113

1010	321	$P(\nu_{\mu} \to \nu_{\mu})$ survival probability in the 2-dimensional oscillation parameter spaces ($\sin^2 \theta_{23}$, $ \Delta m^2 $) (left) and	1.46
1011	222	\\ \\ \ \ \ \ \ \ \ \ \ \	146
1012	322	True χ^2 surface for the single ring μ -like sample of the Run1+2+3 dataset in the 2-dimensional oscillation	1.47
1013	222	parameter spaces ($\sin^2 \theta_{23}$, $ \Delta m^2 $) (left) and ($\sin^2 \theta_{23}$, $ \Delta m^2_{32} $) (right) for a fixed value of true $\chi^2 = 60$	14/
1014	323	90% CL for the Run1+2+3 dataset in the 2-dimensional oscillation parameter spaces ($\sin^2 \theta_{23}$, $ \Delta m^2 $) (left)	
1015		and $(\sin^2 \theta_{23}, \Delta m_{32}^2)$ (right) for the stand-alone ν_{μ} disappearance analysis with Normal Hierarchy (solid line)	1.47
1016	224	and Inverted Hierarchy (dashed line) with the constant $\Delta \chi^2$ method.	147
1017	324	Distribution of $\Delta \chi^2$ vs coverage in the $ \Delta m^2 $ parameter space from 1k toy MC experiments generated with	1.7.1
1018	225	the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend	151
1019	325	Distribution of $\Delta \chi^2$ vs coverage in the $ \Delta m^2 $ parameter space from 1k toy MC experiments generated with	151
1020	226	the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend	151
1021	326	Distribution of $\Delta \chi^2$ vs coverage in the $ \Delta m^2 $ parameter space from 1k toy MC experiments generated with	151
1022	227	the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend	151
1023	327	Distribution of $\Delta \chi^2$ vs coverage in the $ \Delta m^2 $ parameter space from 1k toy MC experiments generated with	151
1024	220	the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend	151
1025	328	Summary of figures 324-327 showing the value of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals vs the value	
1026	220	of $ \Delta m^2 $. Horizontal dashed lines show the canonical $\Delta \chi^2$ value for 1 degree of freedom	151
1027	329	Distribution of $\Delta \chi^2$ vs coverage in the $sin^2\theta_{23}$ parameter space from 1k toy MC experiments generated with	1.50
1028	220	the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend	152
1029	330	Distribution of $\Delta \chi^2$ vs coverage in the $sin^2\theta_{23}$ parameter space from 1k toy MC experiments generated with	1.50
1030	221	the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend	152
1031	331	Distribution of $\Delta \chi^2$ vs coverage in the $sin^2\theta_{23}$ parameter space from 1k toy MC experiments generated with	1.50
1032	222	the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend	152
1033	332	Distribution of $\Delta \chi^2$ vs coverage in the $sin^2\theta_{23}$ parameter space from 1k toy MC experiments generated with	1.50
1034	222	the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend	152
1035	333	Summary of figures 329-332 showing the value of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals vs the value	1.50
1036	224	of $sin^2\theta_{23}$. Horizontal dashed lines show the canonical $\Delta\chi^2$ value for 1 degree of freedom.	152
1037	334	Distribution of $\Delta \chi^2$ vs coverage in the $sin^2\theta_{13}$ parameter space from 1k toy MC experiments generated with	
1038	225	the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend	153
1039	335	Distribution of $\Delta \chi^2$ vs coverage in the $sin^2\theta_{13}$ parameter space from 1k toy MC experiments generated with	1.50
1040	226	the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend	153
1041	336	Distribution of $\Delta \chi^2$ vs coverage in the $sin^2\theta_{13}$ parameter space from 1k toy MC experiments generated with	1.50
1042	227	the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend	153
1043	337	Distribution of $\Delta \chi^2$ vs coverage in the $sin^2\theta_{13}$ parameter space from 1k toy MC experiments generated with	1.50
1044	220	the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend	153
1045	338	Distribution of $\Delta \chi^2$ vs coverage in the $sin^2\theta_{13}$ parameter space from 1k toy MC experiments generated with	1.50
1046	220	the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend	153
1047	339	Summary of figures 334-338 showing the value of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals vs the value	1.50
1048	240	of $sin^2\theta_{13}$. Horizontal dashed lines show the canonical $\Delta\chi^2$ value for 1 degree of freedom.	153
1049	340	Distribution of $\Delta \chi^2$ vs coverage in the δ_{CP} parameter space from 1k toy MC experiments generated with the	1.7.4
1050	2.41	Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.	154
1051	341	Distribution of $\Delta \chi^2$ vs coverage in the δ_{CP} parameter space from 1k toy MC experiments generated with the	1.7.4
1052	2.42	Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.	154
1053	342	Distribution of $\Delta \chi^2$ vs coverage in the δ_{CP} parameter space from 1k toy MC experiments generated with the	1.7.4
1054	2.42	Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend	154
1055	343	Distribution of $\Delta \chi^2$ vs coverage in the δ_{CP} parameter space from 1k toy MC experiments generated with the	154
1056	211	Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend	134
1057	344	Summary of figures 340-343 showing the value of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals vs the value of $\Delta \chi^2$ to the formula depend lines show the contribution of $\Delta \chi^2$ to the formula depend on the value of $\Delta \chi^2$ to the formula depend on the value of $\Delta \chi^2$ to the formula depend on the value of $\Delta \chi^2$ to the formula depend on the value of $\Delta \chi^2$ to the formula depend on the value of $\Delta \chi^2$ to the formula depend on the value of $\Delta \chi^2$ to the formula depend on the value of $\Delta \chi^2$ to th	154
1058	245	of δ_{CP} . Horizontal dashed lines show the canonical $\Delta \chi^2$ value for 1 degree of freedom	154
1059	343	Distribution of $\Delta \chi^2$ vs coverage in the $(sin^2\theta_{23}, \Delta m^2)$ parameter space from 1k toy MC experiments generated with the Pure 1-2-2 POT with statistical fluctuations at the assillation point indicated in the legand	
1060		erated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.	150
1061	246	Distribution of $\Delta \chi^2$ vs coverage in the $(sin^2\theta_{23}, \Delta m^2)$ parameter space from 1k toy MC experiments gen-	156
1062	340		
1063		erated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.	156
1064			130

1065 1066	347	Distribution of $\Delta \chi^2$ vs coverage in the $(sin^2\theta_{23}, \Delta m^2)$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.	56
1067 1068 1069	348	Distribution of $\Delta \chi^2$ vs coverage in the $(sin^2\theta_{23}, \Delta m^2)$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.	
1070 1071 1072	349	Summary of figures 345-348 showing the value of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals vs the value of $sin^2\theta_{23}$. Horizontal dashed lines show the canonical $\Delta \chi^2$ value for 2 degrees of freedom	
1073 1074	350	Distribution of $\Delta \chi^2$ vs coverage in the $(sin^2\theta_{13}, \Delta m^2)$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.	57
1075 1076 1077 1078	351	Distribution of $\Delta \chi^2$ vs coverage in the $(sin^2\theta_{13}, \Delta m^2)$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.	
1079 1080	352	Distribution of $\Delta \chi^2$ vs coverage in the $(sin^2\theta_{13}, \Delta m^2)$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.	
1081 1082 1083	353	Distribution of $\Delta \chi^2$ vs coverage in the $(sin^2\theta_{13}, \Delta m^2)$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.	
1084 1085 1086	354	Distribution of $\Delta \chi^2$ vs coverage in the $(sin^2\theta_{13}, \Delta m^2)$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.	
1087 1088 1089	355	Summary of figures 350-354 showing the value of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals vs the value of $sin^2\theta_{13}$. Horizontal dashed lines show the canonical $\Delta \chi^2$ value for 2 degrees of freedom	
1090 1091 1092	356	Distribution of $\Delta \chi^2$ vs coverage in the $(sin^2\theta_{13},\delta_{CP})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend. The solid red line shows the canonical $\Delta \chi^2$ pdf for 2 degrees of freedom and the dashed red line shows the canonical	
1093 1094 1095	357	$\Delta\chi^2$ pdf for 1 degree of freedom	58
1096 1097 1098 1099	358	$\Delta\chi^2$ pdf for 1 degree of freedom	58
1100 1101 1102 1103	359	red line shows the canonical $\Delta\chi^2$ pdf for 2 degrees of freedom and the dashed red line shows the canonical $\Delta\chi^2$ pdf for 1 degree of freedom	58
1104 1105 1106	360	red line shows the canonical $\Delta\chi^2$ pdf for 2 degrees of freedom and the dashed red line shows the canonical $\Delta\chi^2$ pdf for 1 degree of freedom	58
1107 1108 1109		with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend. The solid red line shows the canonical $\Delta\chi^2$ pdf for 2 degrees of freedom and the dashed red line shows the canonical $\Delta\chi^2$ pdf for 1 degree of freedom	58
1110 1111 1112	361	of $sin^2\theta_{13}$. Horizontal dashed lines show the canonical $\Delta\chi^2$ value for 2 degrees of freedom and 1 degree of freedom (see legend).	
1113 1114 1115	362	Distribution of $\Delta \chi^2$ vs coverage in the $(sin^2\theta_{13}, sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.	
1116 1117	363	Distribution of $\Delta \chi^2$ vs coverage in the $(sin^2\theta_{13}, sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.	
1118			צנ

. 159
. 159
. 159
. 160
. 160
. 160
. 160
. 160
. 161
. 161
. 161
. 161
. 161
. 162
. 162
. 162
. 162
. 162

1175	383	Summary of figures 362-381 showing the value of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals vs the value
1176		of $sin^2\theta_{13}$. Horizontal dashed lines show the canonical $\Delta\chi^2$ value for 2 degrees of freedom
1177	384	Summary of figures 362-381 showing the value of $\Delta \chi^2$ at 68% confidence intervals in Z axis (color) vs the
1178		value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis
1179	385	value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis
1180		value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis
1181	386	Summary of figures 362-381 showing the value of $\Delta \chi^2$ at 99% confidence intervals in Z axis (color) vs the
1182		value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis
1183	387	Summary of values of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{23}, \Delta m^2)$
1184		vs the value of $sin^2\theta_{23}$. True input values for the other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$,
1185		$sin^2\theta_{13}=0.025$ and $\delta_{CP}=0.$
1186	388	
1187		vs the value of $sin^2\theta_{13}$. True input values for the other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$,
1188		$sin^2\theta_{23}=0.5$ and $\delta_{CP}=0.$
1189	389	Summary of values of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(\sin^2 \theta_{13}, \delta_{CP})$
1190		vs the value of $sin^2\theta_{13}$. True input values for the other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$,
1191		$sin^2\theta_{23}=0.5$ and $\delta_{CP}=0.$
1192	390	Summary of values of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(\sin^2\theta_{13}, \sin^2\theta_{23})$
1193		vs the value of $sin^2\theta_{23}$. True input values for the other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$ and δ_{CP}
1194		= 0
1195	391	
1196		vs the value of $sin^2\theta_{13}$. True input values for the other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$ and δ_{CP}
1197		= 0
1198	392	
1199		vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis. True input values for the other oscillation parameters:
1200		$ \Delta m^2 = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0$
1201	393	
1202		vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis. True input values for the other oscillation parameters:
1203		$ \Delta m^2 = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0$
1204	394	
1205		vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis. True input values for the other oscillation parameters:
1206		$ \Delta m^2 = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0$
1207	395	
1208		vs the value of $sin^2\theta_{23}$ with statistical fluctuations only and fitting $sin^2\theta_{13}$ and δ_{CP} . True input values for the
1209		other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$, $\sin^2 \theta_{13} = 0.025$ and $\delta_{CP} = 0$
1210	396	
1211		vs the value of $sin^2\theta_{23}$ with statistical fluctuations and systematic variations and fitting $sin^2\theta_{13}$ and δ_{CP} . True
1212		input values for the other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$, $\sin^2\theta_{13} = 0.025$ and $\delta_{CP} = 0$ 168
1213	397	Summary of the values of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(\sin^2 \theta_{13} \Delta m^2)$
1214	υ,,	vs the value of $sin^2\theta_{13}$ with statistical fluctuations only and fitting $sin^2\theta_{23}$ and δ_{CP} . True input values for the
1215		other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$, $sin^2\theta_{23} = 0.5$ and $\delta_{CP} = 0.\dots$ 168
1216	398	Summary of the values of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13}, \Delta m^2)$
1217	370	vs the value of $sin^2\theta_{13}$ with statistical fluctuations and systematic variations and fitting $sin^2\theta_{23}$ and δ_{CP} . True
1217		input values for the other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$, $\sin^2\theta_{23} = 0.5$ and $\delta_{CP} = 0$
1219	399	Summary of the values of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(\sin^2 \theta_{13}, \delta_{CP})$
		vs the value of $sin^2\theta_{13}$ with statistical fluctuations only and fitting $sin^2\theta_{23}$ and $ \Delta m^2 $. True input values for
1220		the other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$, $\sin^2 \theta_{23} = 0.5$ and $\delta_{CP} = 0.\dots$ 168
1221	400	Summary of the values of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13}, \delta_{CP})$
	700	vs the value of $sin^2\theta_{13}$ with statistical fluctuations and systematic variations and fitting $sin^2\theta_{23}$ and $ \Delta m_2 $.
1223		True input values for the other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$, $\sin^2\theta_{23} = 0.5$ and $\delta_{CP} = 0$ 168
1224	401	Summary of the values of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(\sin^2 \theta_{13}, \sin^2 \theta_{23})$
1225	- 01	vs the value of $sin^2\theta_{23}$ with statistical fluctuations only and fitting $ \Delta m^2 $ and δ_{CP} . True input values for the
1226		other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0.$
1227	402	Summary of the values of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13}, sin^2\theta_{23})$
1228	402	vs the value of $sin^2\theta_{23}$ with statistical fluctuations and systematic variations and fitting $ \Delta m^2 $ and δ_{CP} . True
1229		input values for the other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0.$
1230		input values for the other oscillation parameters. $ \Delta m = 2.50 \times 10^{\circ}$ and $\theta CP = 0$ 109

1231	403	7 / 10/ 20/
1232		vs the value of $sin^2\theta_{13}$ with statistical fluctuations only and fitting $ \Delta m^2 $ and δ_{CP} . True input values for the
1233		other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0.$
1234	404	Summary of the values of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13}, sin^2\theta_{23})$
1235		vs the value of $sin^2\theta_{13}$ with statistical fluctuations and systematic variations and fitting $ \Delta m^2 $ and δ_{CP} . True
1236		input values for the other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0.$
1237	405	Summary of values of $\Delta \chi^2$ at 68% confidence intervals in Z axis (color) in the 2D parameter space $(sin^2\theta_{13}, sin^2\theta_{23})$
1238		vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis for toy experiments with statistical fluctuations only
1239		and fitting $ \Delta m^2 $ and δ_{CP} . True input values for the other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$ and
1240		$\delta_{CP} = 0.$
1241	406	Summary of values of $\Delta \chi^2$ at 68% confidence intervals in Z axis (color) in the 2D parameter space $(sin^2\theta_{13}, sin^2\theta_{23})$
1242		vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis for toy experiments with statistical fluctuations and
1243		systematic fluctuations and fitting $ \Delta m^2 $ and δ_{CP} . True input values for the other oscillation parameters:
1244		$ \Delta m^2 = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0$
1245	407	Summary of values of $\Delta \chi^2$ at 90% confidence intervals in Z axis (color) in the 2D parameter space $(sin^2\theta_{13}, sin^2\theta_{23})$
1246		vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis for toy experiments with statistical fluctuations only
1247		and fitting $ \Delta m^2 $ and δ_{CP} . True input values for the other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$ and
1248		$\delta_{CP} = 0.$
1249	408	Summary of values of $\Delta \chi^2$ at 90% confidence intervals in Z axis (color) in the 2D parameter space $(sin^2\theta_{13}, sin^2\theta_{23})$
1250	.00	vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis for toy experiments with statistical fluctuations and
1251		systematic fluctuations and fitting $ \Delta m^2 $ and δ_{CP} . True input values for the other oscillation parameters:
1252		$ \Delta m^2 = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0.\dots$ 170
1253	409	Summary of values of $\Delta \chi^2$ at 99% confidence intervals in Z axis (color) in the 2D parameter space $(sin^2\theta_{13}, sin^2\theta_{23})$
1254	107	vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis for toy experiments with statistical fluctuations only
1255		and fitting $ \Delta m^2 $ and δ_{CP} . True input values for the other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$ and
1256		$\delta_{CP} = 0.$
1257	410	Summary of values of $\Delta \chi^2$ at 99% confidence intervals in Z axis (color) in the 2D parameter space $(sin^2\theta_{13}, sin^2\theta_{23})$
1258	410	vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis for toy experiments with statistical fluctuations and
		systematic fluctuations and fitting $ \Delta m^2 $ and δ_{CP} . True input values for the other oscillation parameters:
1259 1260		systematic inectiations and fitting $ \Delta m $ and δ_{CP} . The input values for the other oscillation parameters. $ \Delta m^2 = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0.\dots$ 170
1261	411	Summary of the values of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(\sin^2\theta_{13}, \Delta m^2)$
	711	vs the value of $sin^2\theta_{13}$ with statistical fluctuations only and fixing $sin^2\theta_{23}$ and δ_{CP} . True input values for the
1262		other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$, $sin^2\theta_{23} = 0.35$ and $\delta_{CP} = 0.$
1263	412	Summary of the values of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(\sin^2\theta_{13}, \Delta m^2)$
1264	712	vs the value of $sin^2\theta_{13}$ with statistical fluctuations only and fitting $sin^2\theta_{23}$ and fixing δ_{CP} . True input values
1265		for the other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$, $sin^2\theta_{23} = 0.35$ and $\delta_{CP} = 0$
1266	112	Summary of the values of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13}, \Delta m^2)$
1267	413	vs the value of $sin^2\theta_{13}$ with statistical fluctuations only and fitting δ_{CP} and fixing $sin^2\theta_{23}$. True input values
1268		for the other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$, $sin^2\theta_{23} = 0.35$ and $\delta_{CP} = 0$
1269	414	
1270	414	
1271		vs the value of $sin^2\theta_{13}$ with statistical fluctuations only and fitting $sin^2\theta_{23}$ and δ_{CP} . True input values for the
1272	415	other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$, $sin^2\theta_{23} = 0.35$ and $\delta_{CP} = 0.$
1273	415	vs the value of $sin^2\theta_{13}$ with statistical fluctuations and systematic variations and fitting $sin^2\theta_{23}$ and δ_{CP} . True
1274		
1275	116	input values for the other oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$, $\sin^2\theta_{23} = 0.35$ and $\delta_{CP} = 0$ 171
1276	410	Summary of the values of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals in the 1D parameter space $sin^2\theta_{23}$
1277		vs the value of $sin^2\theta_{23}$ with statistical fluctuations only where $\Delta\chi^2$ was calculated as follows: a first fit was
1278		done fitting only δ_{CP} , fixing the other three oscillation parameters to their true input value, and χ^2_{init} was
1279		obtained; then a second fit was done fitting δ_{CP} and $\sin^2\theta_{23}$, keeping $\sin^2\theta_{13}$ and $ \Delta m^2 $ fixed to their true
1280		input values and χ_{bf}^2 was obtained, computing finally $\Delta \chi^2 = \chi_{init}^2 - \chi_{bf}^2$. True input values for the other
1281		oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$, $\sin^2 \theta_{13} = 0.025$ and $\delta_{CP} = 0$

1282	41/	Summary of the values of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals in the 1D parameter space $ \Delta m^2 $	
1283		vs the value of $ \Delta m^2 $ with statistical fluctuations only where $\Delta \chi^2$ was calculated as follows: a first fit was	
1284		done fitting only δ_{CP} , fixing the other three oscillation parameters to their true input value, and χ^2_{init} was	
1285		obtained; then a second fit was done fitting δ_{CP} and $ \Delta m^2 $, keeping $\sin^2\theta_{13}$ and $\sin^2\theta_{23}$ fixed to their true	
1286		input values and χ^2_{bf} was obtained, computing finally $\Delta \chi^2 = \chi^2_{init} - \chi^2_{bf}$. True input values for the other	
1287		oscillation parameters: $sin^2\theta_{23}=0.5, sin^2\theta_{13}=0.025$ and $\delta_{CP}=0.\ldots$	172
1288	418	Summary of the values of $\Delta \chi^2$ at 99%, 90% and 68% confidence intervals in the 1D parameter space $sin^2\theta_{13}$	
1289		vs the value of $sin^2\theta_{13}$ with statistical fluctuations only where $\Delta\chi^2$ was calculated as follows: a first fit was	
1290		done fitting only δ_{CP} , fixing the other three oscillation parameters to their true input value, and χ^2_{init} was	
1291		obtained; then a second fit was done fitting δ_{CP} and $sin^2\theta_{13}$, keeping $sin^2\theta_{23}$ and $ \Delta m^2 $ fixed to their true	
1292		input values and χ^2_{bf} was obtained, computing finally $\Delta \chi^2 = \chi^2_{init} - \chi^2_{bf}$. True input values for the other	
1293		oscillation parameters: $ \Delta m^2 = 2.36 \times 10^{-3}$, $\sin^2 \theta_{23} = 0.5$ and $\delta_{CP} = 0.\dots\dots\dots\dots\dots\dots$	172
	419	Comparison between the value of $sin^2\theta_{13}$ giving the true minimum χ^2 found scanning the $(sin^2\theta_{13}, \delta_{CP})$	1/2
1294	717	parameter space with the best-fit value result from the fit over 100 toy experiments created at true input values:	
1295		$ \Delta m^2 = 2.36 \times 10^{-3}$, $sin^2\theta_{23} = 0.5$, $sin^2\theta_{13} = 0.025$ and $\delta_{CP} = 0$. Results present a good agreement within	
1296		the step sizes used ($\delta sin^2\theta_{13} = 0.001$ and $\delta_{CP} = 0.025$)	173
1297	420	Comparison between the value of δ_{CP} giving the true minimum χ^2 found scanning the $(\sin^2\theta_{13}, \delta_{CP})$ pa-	173
1298	420	rameter space with the best-fit value result from the fit over 100 toy experiments created at true input values:	
1299		$ \Delta m^2 = 2.36 \times 10^{-3}$, $sin^2\theta_{23} = 0.5$, $sin^2\theta_{13} = 0.025$ and $\delta_{CP} = 0$. Results present a good agreement within	
1300		the step sizes used $(\delta sin^2\theta_{13} = 0.001)$ and $\delta_{CP} = 0.020$ and $\delta_{CP} = 0.020$	172
1301		the step sizes used ($osin \ \sigma_{13} = 0.001$ and $o_{CP} = 0.02$)	1/3
	List of T	Tables	
1302	List of		
1303	1	Values used for $\sin^2 2\theta_{12}$ and Δm_{21}^2 in the joint oscillation analysis	32
1304	2	List of the MC templates used for the calculation of the $VaLOR$ single μ -like ring and single e-like ring event	
1305		reconstructed energy spectrun p.d.f.s. The symbol √indicates, in any row, for which of the samples defined in	
1306		the last two columns the MC template defined in the first column is used. Notice that the MC templates used	
1307		for NC modes are different for single μ -like ring and single e-like ring	34
1308	3	Calculated numbers of single μ -like ring and single e-like ring events without oscillations using the nominal	
1309		MC templates, the NA61-tuned MC templates and the BANFF-tuned MC templates. The total numbers of	
1310		events and the numbers of events from each mode considered in this analysis are shown. These numbers were	
1311		calculated for an exposure of 3.010×10^{20} POT. Note that different NC MC templates are used for predicting	
1312		the number of single μ -like ring and single e-like ring events	36
1313	4	Calculated numbers of single μ -like ring and single e-like ring events with oscillations using the nominal MC	
1314		templates, the NA61-tuned MC templates and the BANFF-tuned MC templates. The total numbers of events	
1315		and the numbers of events from each mode considered in this analysis are shown. These numbers were cal-	
1316		culated for an exposure of 3.010×10^{20} POT and oscillations with δ_{CP} =0, $\sin^2 \theta_{13}$ =0.025, $\sin^2 \theta_{23}$ =0.5 and	
1317		$ \Delta m^2 $ = 2.4×10 ⁻³ eV ² /c ⁴ . The 2012 PDG parameters are used for $\sin^2 \theta_{12}$ and δm^2 . The normal hierarchy	
1318		is assumed. Note that different NC MC templates are used for predicting the number of single μ -like ring and	
1319		single e-like ring events.	37
1320	5	Summary table of SuperK detector systematics. The nuisance parameter symbols used in this paper are shown	51
1321	3	in the first column. An index r in the nuisance parameter symbol denotes dependence on reconstructed energy	
1321		while an index t denotes dependence on true energy. An index i is used where multiple systematic parameters,	
		typically correlated between themselves, are grouped together.	39
1323	6	Summary table of BANFF systematics. The nuisance parameter symbols used in this paper are shown in the first	23
1324	U	column. An index r in the nuisance parameter symbol denotes dependence on reconstructed energy while an	
1325		index t denotes dependence on true energy. An index i is used where multiple systematic parameters, typically	
1326			40
1327	7	correlated between themselves, are grouped together.	40
1328	7	Summary table of Uncorrelated cross-section systematics. The nuisance parameter symbols used in this paper	
1329		are shown in the first column. An index r in the nuisance parameter symbol denotes dependence on reconstructed anarray while an index t denotes dependence on true anarray. An index is used where multiple systems	
1330		structed energy while an index t denotes dependence on true energy. An index i is used where multiple system-	11
1331	O	atic parameters, typically correlated between themselves, are grouped together.	41
1332	8	Summary table of FSI+SI systematics. The nuisance parameter symbols used in this paper are shown in the first	
1333		column. An index r in the nuisance parameter symbol denotes dependence on reconstructed energy while an	
1334		index t denotes dependence on true energy. An index i is used where multiple systematic parameters, typically	40
1335		correlated between themselves, are grouped together.	42

1336	9	List of all systematic parameters included in the joint oscillation analysis. A √symbol indicates whether the	
1337		systematic parameter is applied on the single μ -like ring and single e-like ring MC templates	43
1338	10	A \checkmark symbol denotes that the given single μ -like ring MC template is modified when the given systematic param-	
1339		eter is tweaked. The table lists all systematic parameters, relevant to single μ -like ring events, considered in this	
1340		analysis (first column) and all 28 MC templates used for constructing the single μ -like ring event reconstructed	
1341		energy spectrum p.d.f (first row).	44
1342	11	A √ symbol denotes that the given single e-like ring MC template is modified when the given systematic param-	
1343		eter is tweaked. The table lists all systematic parameters, relevant to single e-like ring events, considered in this	
1344		analysis (first column) and all 32 MC templates used for constructing the single e-like ring event reconstructed	
1345		energy spectrum p.d.f (first row).	45
1346	12	Effect of 1σ systematic parameter variation on the number of single μ -like ring and single e-like ring events,	
1347		computed for oscillations with $ \Delta m^2 = 2.36 \times 10^{-3} \ eV^2/c^4$. $\sin^2 \theta_{23} = 0.5$, $\sin^2 \theta_{13} = 0.025$, $\delta_{CP} = 0$. 2012 PDG	
1348		values are used for the solar parameters and the normal mass hierarchy is assumed. The numbers shown were	
1349		calculated for an exposure of 3.010×10^{20} POT and BANFF-tuned MC templates were used	46
1350	13	Summary of best-fit parameters for the joint 3-flavour oscillation fit, and the stand-alone 3-flavour ν_{μ} disap-	
1351		pearance and ν_e appearance fits to the Run 1+2+3 dataset. The quoted best-fit χ^2 values were computed from	
1352		the test-statistic minimized in the fit (likelihood ratio) with the reconstructed energy binning used in each fit.	
1353		The table also shows the p-values obtained from the goodness-of-fit test of Sec. 6.2	49
1354	14	Predicted number of ν_e candidate events for the Run1+2+3 POT before BANFF tuning (that is, after external	
1355		flux reweighting using default 11c SK MC with the 11b tuned version 3.2), for VaLOR appearance analysis	
1356		(black) compared to official appearance analysis (blue) as in Table 1 of [15], using $sin^2(2\theta_{12}) = 0.8704$,	
1357		$\Delta m_{21}^2 = 7.6 \times 10^{-5}, \sin^2(2\theta_{23}) = 1.0, \Delta m_{32}^2 = 2.4 \times 10^{-3}, \delta_{CP} = 0$ and normal hierarchy	72
1358	15	Predicted number of ν_e candidate events for the Run1+2+3 POT after applying BANFF tuning (post ND280	
1359		fitted values) for VaLOR appearance analysis (black) compared to official appearance analysis (blue) as in Table	
1360		9 of [15], using $sin^2(2\theta_{12}) = 0.8704$, $\Delta m_{21}^2 = 7.6 \times 10^{-5}$, $sin^2(2\theta_{23}) = 1.0$, $ \Delta m_{32}^2 = 2.4 \times 10^{-3}$, $\delta_{CP} = 0$	
1361		and normal hierarchy.	72
1362	16	Best-fit points and confidence intervals for $sin^2(2\theta_{13})$ obtained from Fig. 55, with $\delta_{CP}=0$, $sin^2(2\theta_{12})=$	
1363		0.8704 , $\Delta m_{21}^2 = 7.6 \times 10^{-5}$, $sin^2(2\theta_{23}) = 1.0$ and $ \Delta m_{32}^2 = 2.4 \times 10^{-3}$, for normal (NH) and inverted (IH)	
1364		hierarchy	74
1365	17	True input values for the different oscillation points used in the study of fitter performance	75
1366	18	The numbering of systematic parameters for figures 87 - B.2	80
1367	19	True input values (shown in bold) and VALOR best-fit values for a test ensemble of 6 fake datasets with no	
1368		statistical fluctuations.	96
1369	20	True input values (shown in bold) and VALOR best-fit values for a test ensemble of 7 fake datasets with	
1370			103
1371	21	True oscillation parameter points used in the sensitivity study. $\sin^2 \theta_{12}$ and δm^2 were fixed to 0.857 and	
1372		$7.5 \times 10^{-5} \text{ eV}^2/\text{c}^4$ respectively (2012 PDG values)	128
1373	22	True input values of the oscillation parameters when not varied used for the coverage checks	149

1. Introduction

In this technical note, we report the results of a joint 3-flavour oscillation analysis, performed by the Valencia-Lancaster-Oxford-Rutherford (VaLOR) group, on the combined Run 1+2+3 (3.010×10²⁰ POT) dataset. This dataset was collected in three run periods: in January - June 2010 (Run1, 0.323×10^{20} POT), in November 2010 - March 2011 (Run2, 1.108×10^{20} POT) and, following the recovery work from the damage of the 2011 Tohoku earthquake, in March - June 2012 (Run3, 1.579×10^{20} POT). The motivation for our joint 3-flavour oscillation analysis is presented in Sec. 2.

In this analysis, the atmospheric squared-mass splitting $|\Delta m^2|$, the mixing angles $\sin^2\theta_{23}$, $\sin^2\theta_{13}$ and the CP-violating phase δ_{CP} , are determined together through a simultaneous fit of the reconstructed energy spectra of both the SuperK single μ -like ring and single e-like ring event samples. In contrast to the stand-alone ν_e -appearance and ν_μ -disappearance fits, our the joint 3-flavour oscillation fit does not have to assume prior values for any of these four oscillation parameters and all correlations between them are taken into account.

This analysis is a continuation of the work presented in Refs. [1], [2], [3] and [4]. This work brings together the standard VaLOR 3-flavour ν_{μ} -disappearance analysis and a new 3-flavour ν_{e} -appearance analysis developed within the VaLOR analysis framework. A validation of the new 3-flavour ν_{e} -appearance analysis is presented in Appendix A.

This analysis is performed using neutrino oscillation probabilities computed in a 3-flavour framework including constant-density matter effects. Details of our oscillation probability calculations, estimates of the numerical accuracy of our calculations and comparisons with other oscillation probability codes, are given in Appendices A and B of Ref. [4]. The Fogli-Lisi convention is used for the atmospheric mass-squared splitting, and this is explained in Sec. 3.

We consider a total of 83 efficiency, energy scale, neutrino flux, neutrino cross-section, initial-state nuclear environment and final-state rescattering systematics. These systematic parameters and their effects on the extrapolated single μ -like ring event and single e-like ring event reconstructed energy spectrum are described in Sec. 5.

As in our previous analyses, the oscillation fit was made using the likelihood-ratio method [29]. All 83 systematics considered in this analysis were allowed to float in the fit. The oscillation fitting method is presented in detail in Sec. 6, and the chosen goodness-of-fit test, suitable for the Run 1+2+3 statistics, is described in Sec. 6.2. The fitter performance has been tested in detail using toy MC experiments and the results of these tests are presented in Appendix B.

Joint 3-flavour oscillation fits of fake datasets have been studied in detail and the results are presented in Appendix C. These fits were performed using the complete VaLOR analysis with an integrated exposure of 3.010×10^{20} POT. Fit results from the joint 3-flavour oscillation analysis are contrasted with those from the stand-alone ν_e -appearance and ν_μ -disappearance fits. Sensitivity studies have also been performed for an integrated exposure of 3.010×10^{20} POT, and the results are shown in Appendix D.

A sutdy on the coverage of the different confidence intervals using the constant $\Delta \chi^2$ method is presented in Appendix I.

The results of the joint measurement of $|\Delta m^2|$, $\sin^2\theta_{23}$, $\sin^2\theta_{13}$ and δ_{CP} , and the systematic parameter pulls, using the Run 1+2+3 dataset are given in Sec. 7.1, and the goodness-of-fit tests are presented in Sec. 7.2. The best-fit single μ -like ring and single e-like ring event reconstructed energy spectra are shown in Sec. 7.3. In Sec. 7.4, profile $\Delta \chi^2$ distributions are presented for each of $|\Delta m^2|$, $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and 68% and 90% confidence regions are presented in following four 2-dimensional oscillation parameter spaces: $(\sin^2\theta_{23}, |\Delta m^2|)$, $(\sin^2\theta_{13}, |\Delta m^2|)$, $(\sin^2\theta_{13}, \delta_{CP})$ and $(\sin^2\theta_{23}, \sin^2\theta_{13})$. Wherever possible, the Run 1+2+3 joint 3-flavour oscillation fit results are compared with the Run 1+2+3 results obtained by the stand-alone ν_e -appearance and ν_μ -disappearance fits.

Finally, a summary is given in Sec. 8.

2. Motivation

To date, two types of T2K oscillation analyses exist [4, 16]:

- ν_e -appearance analyses, in which $\sin^2 2\theta_{13}$ and δ_{CP} are determined simultaneously using the SuperK single e-like ring event sample. In these analyses, the values of $|\Delta m_{32}^2|$ and $\sin^2 2\theta_{23}$ are fixed and a neutrino mass hierarchy is assumed. To find the best-fit point and confidence interval for $\sin^2 2\theta_{13}$, this type of analysis typically fixes δ_{CP} to 0.0. The confidence region in the $(\sin^2 2\theta_{13}, \delta_{CP})$ space is usually calculated using a raster scan.
- ν_{μ} -disappearance analyses, in which $|\Delta m^2_{32}|$ and $\sin^2 2\theta_{23}$ are determined simultaneously using the SuperK single μ -like ring event sample. In these analyses, the values of $\sin^2 2\theta_{13}$ and δ_{CP} are fixed and a neutrino mass hierarchy is assumed.

However the oscillation parameters that are fixed have a non-negligible effect on $P(\nu_{\mu} \rightarrow \nu_{\mu})$ and $P(\nu_{\mu} \rightarrow \nu_{e})$, and this is shown in Fig. 1. The fixed oscillation parameters can also have a significant impact on the confidence regions, as demonstrated in Fig. 2 for the stand-alone ν_{e} -appearance analysis, which typically uses fixed values of $|\Delta m_{32}^{2}|$ and $\sin^{2} 2\theta_{23}$.

The motivation for the joint oscillation analysis is to avoid fixing any of $|\Delta m_{32}^2|$, $\sin^2\theta_{23}$, $\sin^2\theta_{13}$ or δ_{CP}^{-1} and to perform a joint determination of all four oscillation parameters with a simultaneous 3-flavour fit of the single μ -like ring and single e-like ring event samples.

On the basis that the $\nu_{\mu} \rightarrow \nu_{e}$ oscillation probability is given, to first order, by

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(1.27 \Delta m_{13}^{2} \frac{L}{E} \right) \tag{1}$$

it is claimed in our papers [17] that "For non-maximal $sin^22\theta_{23}$, the confidence intervals remain unchanged to first order by replacing $sin^22\theta_{13}$ by $2sin^2\theta_{23}sin^22\theta_{13}$.". But there is a problem with this rescaling of $P(\nu_{\mu} \to \nu_{e})$ by $2\sin^2\theta_{23}$ as the octant of θ_{23} is unknown (if it is non-maximal). Since this mixing angle appears in Eq. 1 as $\sin^2\theta_{23}$, a solution in the second octant ($\sin^2\theta_{23} > 0.5$) would move the contours to the right, while a solution in the first octant ($\sin^2\theta_{23} < 0.5$) would move the contours to the left. As the stand-alone analyses are using $\sin^22\theta$ variables, there is no information to decide which of the two rescalings is correct.

The general validity of the cited assumption can be explored by performing a toy demonstration: In Fig. 2, best-fit values and contours are shown for a toy experiment with true $\sin^2 2\theta_{23} = 0.96$, using the true (solid lines) or maximal mixing (dashed lines) priors for $\sin^2 2\theta_{23}$ (and keeping it constant throughout the fitting). Then, in Fig.3, the contours obtained with maximal prior after rescaling them (dashed lines) are shown, and again the contours obtained with the actual true value as prior (solid lines, same as in Fig. 2). It is obvious that a difference remains between the contours obtained with the two methods. This arises from the fact that Eq. 1 is only a first-order approximation and the effect of the subdominant terms can be important, especially for larger values of δ_{CP} .

Figure 1: Examples of the effect of the interdependence between the oscillation parameters in the oscillation probabilities $P(\nu_{\mu} \to \nu_{\mu})$ (left) and $P(\nu_{\mu} \to \nu_{e})$ (right). These probabilities are computed for different values of $\sin^{2}2\theta_{13}$ (left) or $\sin^{2}2\theta_{23}$ (right) with the other 3 parameters being fixed at $\sin^{2}2\theta_{23}$ = 0.96, $|\Delta m_{32}^{2}| = 2.4 \times 10^{-3} \text{ eV}^{2}/\text{c}^{4}$, $\delta_{CP} = 0$ (left) or $\sin^{2}2\theta_{13} = 0.1$, $|\Delta m_{32}^{2}| = 2.4 \times 10^{-3} \text{ eV}^{2}/\text{c}^{4}$, $\delta_{CP} = 0$ (right).

¹The effect of including the remaining 12-sector parameters, Δm_{21}^2 and $\sin^2 \theta_{12}$, in the T2K fit has been studied and it is negligible (see Sec. F).

Figure 2: Illustration of the effect of changing the assumed value of $\sin^2 2\theta_{23}$ in the ν_e -appearance contours for 7×10^{21} POT. Dashed lines are contours of the stand-alone ν_e -appearance analysis assuming maximal mixing ($\sin^2 2\theta_{23} = 1.0$), and solid lines are contours of the stand-alone ν_e -appearance analysis assuming $\sin^2 2\theta_{23} = 0.96$, the true value with which the toy experiment was created. The other parameters have the following values: $\sin^2 2\theta_{13} = 0.12$, $|\Delta m_{32}^2| = 2.5\times10^{-3}~{\rm eV}^2/{\rm c}^4$, and $\delta_{CP} = 0.5$. The confidence regions were constructed using the constant- $\Delta\chi^2$ method, which is described in Sec. 6.

Figure 3: Plot of the same contours as in Fig. 2 rescaling the contours for maximal prior $\sin^2 2\theta_{23} = 1.0$ with the cited replacement of $\sin^2 2\theta_{13}$ by $2\sin^2\theta_{23}\sin^2 2\theta_{13}$, using for θ_{23} the true value for the toy experiment.

3. Choice of oscillation parameters

This analysis departs from choices which have been followed historically in the T2K stand-alone ν_e -appearance and ν_μ -disappearance analyses by changing the oscillation mixing parameters and the mass-squared splitting parameters. There is a strong motivation for this change in the context of a joint 3-flavour analysis, and it is outlined below.

1444 Neutrino mixing parameters

1441

1443

1448

1450

1451

1452

1453

1454

1456 1457

1459

1461

In the stand-alone ν_{μ} -disappearance analysis, $\sin^2 2\theta_{23}$ is typically measured since it appears in the first-order approximate formula for the ν_{μ} survival probability:

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E_{\nu}}\right) \tag{2}$$

In the stand-alone analysis, it is nearly impossible to distinguish θ_{23} from $\pi/2 - \theta_{23}$, as both inputs give the same value for $\sin^2 2\theta_{23}$ and, therefore, the same ν_{μ} -survival probability This is the so-called octant ambiguity.

Figure 4: $\sin^2 \theta_{23}$ (appears in leading-order term of $P(\nu_{\mu} \to \nu_{e})$ vs $\sin^2 2\theta_{23}$ (appears in leading-order term of $P(\nu_{\mu} \to \nu_{\mu})$.

Looking at the leading-order approximation of $P(\nu_{\mu} \to \nu_{e})$, the 23-sector mixing parameter appears as $\sin^2 \theta_{23}$:

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}2\theta_{13}\sin^{2}\theta_{23}\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E_{\nu}}\right)$$
(3)

it is possible to lift the octant degeneracy by combining the ν_{μ} -disappearance and ν_{e} -appearance analyses, as shown graphically in Fig. 4. It is therefore a more natural choice for the joint 3-flavour oscillation analysis to fit for $\sin^{2}\theta_{ij}$ rather than $\sin^{2}2\theta_{ij}$, and this is the choice that has been implemented in the VALOR analysis framework. The option to fit for $\sin^{2}2\theta_{ij}$ has also been retained for backward compatibility and to allow validation checks.

Mass-squared splitting parameters

Previous T2K analyses have used the following mass-squared splitting parameters:

$$(|\Delta m_{32}^2|, \Delta m_{21}^2)$$

which are defined as $\Delta m_{ij}^2 = m_i^2 - m_j^2$ according to the PDG notation [24]. The mass hierarchy is set through the sign of Δm_{32}^2 i.e. $\Delta m_{32}^2 = |\Delta m_{32}^2|$ in the normal hierarchy and $\Delta m_{32}^2 = -|\Delta m_{32}^2|$ in the inverted hierarchy. The remaining mass-squared splitting is defined as $\Delta m_{31}^2 = \Delta m_{32}^2 + \Delta m_{21}^2$ for both hierarchies.

In the normal hierarchy (NH) $m_1^2 < m_2^2 < < m_3^2$, while in the inverted hierarchy (IH) $m_3^2 < < m_1^2 < m_2^2$, i.e. $|\Delta m_{31}^2|$ is the largest mass-squared splitting in the NH, whereas $|\Delta m_{32}^2|$ is the largest in the IH. This means that it is not possible to compare

In the normal hierarchy (NH) $m_1^2 < m_2^2 < m_3^2$, while in the inverted hierarchy (IH) $m_3^2 < m_1^2 < m_2^2$, i.e. $|\Delta m_{31}^2|$ is the largest mass-squared splitting in the NH, whereas $|\Delta m_{32}^2|$ is the largest in the IH. This means that it is not possible to compare the two hierarchies if the atmospheric mass-squared difference is input as $|\Delta m_{32}^2|$. This has been pointed out by several authors and different schemes are typically employed in global oscillation fits to circumvent this issue. The VaLOR joint oscillation analysis uses the scheme defined by Fogli and Lisi in [21] [25] in which $(|\Delta m_{32}^2|, \Delta m_{21}^2)$ are replaced by:

$$\left(|\Delta m^2|,\delta m^2\right)$$

1463

1464

1465

1466

1467

1470

1471

1472

1473

1474

1475

where $\Delta m^2 = \left(m_3^2 - \frac{m_1^2 + m_2^2}{2}\right) = \left(\frac{\Delta m_{31}^2 + \Delta m_{32}^2}{2}\right)$ and $\delta m^2 = \Delta m_{21}^2$. $|\Delta m^2|$ is the "atmospheric" squared-mass splitting, which has the same absolute value for both mass hierarchies. δm^2 is the "solar" squared-mass splitting which is known to be positive. When the mass-squared splittings are input as $(\Delta m^2, \delta m^2)$, the mass hierarchy is set through the sign of $|\Delta m^2|$, and Δm_{31}^2 are calculated as

$$\Delta m_{32}^2 = \Delta m^2 - \frac{\delta m^2}{2}$$

$$\Delta m_{31}^2 = \Delta m^2 + \frac{\delta m^2}{2}$$

for both mass hierarchies. The ability to input the mass-squared differences as $(|\Delta m_{32}^2|, \Delta m_{21}^2)$ has also been retained for backward compatibility and to allow various validation checks.

The effects of changing the convention for the inputs of the mass-squared splitting parameters on $P(\nu_{\mu} \to \nu_{\mu})$ and $P(\nu_{\mu} \to \nu_{e})$ are shown in Fig. 5.

Figure 5: Effects of changing the convention for the inputs of the mass-squared splitting parameters on $P(\nu_{\mu} \rightarrow \nu_{\mu})$ (left) and $P(\nu_{\mu} \rightarrow \nu_{e})$ (right): $|\Delta m_{32}^{2}| = 2.32 \times 10^{-3} \text{ eV}^{2}/c^{4}$ (solid lines) and $|\Delta m^{2}| = 2.32 \times 10^{-3} \text{ eV}^{2}/c^{4}$ (dashed lines) for the normal hierarchy (blue) and inverted hierarchy (red). The other oscillation parameters are $\sin^{2} 2\theta_{12} = 0.857$, $\delta m^{2} = 7.5 \times 10^{-5} \text{ eV}^{2}/c^{4}$, $\sin^{2} 2\theta_{13} = 0.098$ (2012 PDG values), $\delta_{CP} = 0$ and $\sin^{2} 2\theta_{23} = 0.9$.

Section H illustrates the difference in the comparison between results in the two mass hierarchies when using the Fogli and Lisi convention $(|\Delta m^2|, \delta m^2)$ and the previous convention $(|\Delta m^2_{32}|, \Delta m^2_{21})$.

Treatment of solar (12-sector) oscillation parameters

A study has been made in which $\sin^2 2\theta_{12}$ and Δm_{21}^2 were allowed to float in the fit of the single μ -like ring Super K sample, and the results are shown in Appendix F. It was found that the fitter returned extreme values of these parameters (see Fig. 308), and this is because they have no effect on the single μ -like ring sample. For this reason, these parameters were fixed throughout this analysis to the values in table 1.

4. Predictions of single μ -like ring and single e-like ring event reconstructed energy spectrum in SuperK

The predicted number $N_{SK;s,r}$ of events in the r^{th} reconstructed energy bin in the SuperK sample s (single μ -like ring or single e-like ring) is computed as follows:

Parameter	Value				
$\sin^2 2\theta_{12}$	0.857				
$\sin^2 \theta_{12}$	0.311				
Δm_{21}^2	$7.5 \times 10^{-5} \text{ eV}^2/\text{c}^4$				

Table 1: Values used for $\sin^2 2\theta_{12}$ and Δm_{21}^2 in the joint oscillation analysis

1477

1478

1479

1481

1483

1485

1487

1489

1490

1491

1492

1493

1494

1496

1497

1498

1499

1501

1502

1503

1505

1507

1509

1510

1511

1512

1513

1514

1515

$$N_{SK;s,r}^{exp} = \sum_{m} \sum_{t} \sum_{r'} P_{m,t} \cdot T_{r,r',f_{\Delta E},s} \cdot S_{s,m,t,r',\mathbf{f}} \cdot N_{SK;s,m,r',t}^{MC}$$

$$\tag{4}$$

In Eq. 4, $N_{SK;s,m,rt,t}^{MC}$ is the input SuperK Monte Carlo (MC) template describing the number of events in the sample s, with true reaction mode m, that can be found in the true energy bin t and in the reconstructed energy bin r. Notice that r. index indicates a SuperK reconstructed energy bin in absence of a shift in reconstructed energy scale and the index r indicates a SuperK reconstructed energy bin after a shift in the reconstructed energy scale is applied. The construction of the nominal MC templates was presented in detail in Sec. 2.2 of Ref. [4] describing the VaLOR 2012 Run 1+2+3 ν_{μ} -disappearance analysis. The method described there was extended to construct the MC templates relevant for the calculation of the predicted single e-like ring event reconstructed energy p.d.f. The nominal MC templates are reweighted using both flux-tuning weights based on NA61 hadro-production data (see Sec. 2.3 of Ref. [4]) and flux and cross-section tuning weights based on ND280 data (see Sec. 2.4 of Ref. [4]). For the calculation of the single μ -like ring event reconstructed energy p.d.f., the same 28 MC templates are used as in the VaLOR 2012 Run 1+2+3 ν_{μ} -disappearance analysis (see Sec. 2.2.4 in [4]). However 32 MC templates are used for the calculation of the single e-like ring event reconstructed energy p.d.f. as a different choice was made for the NC MC templates. For the single μ -like ring p.d.f. the 'NC1 π^{\pm} ' and 'NC other' MC templates are used, whereas for the single e-like ring p.d.f. the 'NC1 π^0 ', 'NC coherent' and 'NC other' templates are used. Consequently, the definition of 'NC other' is different for the two samples. In total, 60 MC templates are used for the calculation of the combined single μ -like ring and single e-like ring event reconstructed energy p.d.fs. These templates are listed in Tab. 2. The MC template binning for the single μ -like ring sample is unchanged from the VaLOR 2012 Run 1+2+3 ν_{μ} -disappearance analysis². For the single e-like ring sample the MC templates have the same 84 true energy bins used for the single μ -like ring sample and 25 reconstructed energy bins from 0 to 1.25 GeV (50 MeV/bin).

The term $S_{s,m,t,r',\vec{f}}$ in Eq. 4 is an overall, multiplicative, systematic error factor depending on the sample s, the reaction mode m, the true energy bin t, the reconstructed energy bin r' and a vector of nuisance (systematic) parameters \vec{f} . A summary of the nuisance parameters considered in this analysis is given in Sec. 5 of this note. $T_{r;r';f_{\Delta E}}$ is a transfer function describing the migration of events between the reconstructed energy bins r and r' due to a potential shift in the SuperK reconstructed energy scale, expressed here in terms of the nuisance parameter $f_{\Delta E}$. Finally, $P_{m:t}$ is the 3-flavour oscillation probability applied in the true energy bin t of the SuperK MC template which corresponds to mode m. The CC MC templates constructed from the unoscillated MC samples are weighted with the corresponding survival probability: The ν_{μ} CC templates are weighted with $P(\nu_{\mu} \to \nu_{\mu})$, the $\bar{\nu}_{\mu}$ CC templates with $P(\bar{\nu}_{\mu} \to \bar{\nu}_{\mu})$, the ν_{e} CC templates with $P(\nu_{e} \to \nu_{e})$ and the $\bar{\nu}_{e}$ CC templates with $P(\bar{\nu}_e \to \bar{\nu}_e)$. The CC MC templates made from the oscillated ν_e MC sample are weighted with $P(\nu_\mu \to \nu_e)$ (the sample was generated assuming 100% of ν_{μ} oscillate to ν_{e}). Contributions from ν_{τ} -CC and $\bar{\nu}_{\tau}$ -CC are neglected, as their energy threshold is around 3.5 GeV and their effect is negligible. The same oscillation parameters are used for both ν_{μ} and $\bar{\nu}_{\mu}$ oscillations. Oscillations are not applied to the NC MC templates since they serve as proxies for the mixtures of $\nu_e + \nu_\mu + \nu_ au$ NC and $\bar{\nu}_e + \bar{\nu}_\mu + \bar{\nu}_\tau$ NC MC templates which are unchanged under 3-flavour oscillations. All oscillation probabilities are computed in a 3-flavour framework including matter effects in constant-density matter (assuming an Earth crust density of 2.6 g/cm³). Custom oscillation probability calculation code was developed within the VaLOR analysis framework. Details and estimates of the numerical accuracy of this code can be found in Appendices A and B of Ref. [4].

Fig. 6 (Fig. 7) shows the predicted number of single μ -like ring (single e-like ring) events as a function of $\sin^2\theta_{23}$ and $|\Delta m^2|$ ($\sin^2\theta_{13}$ and δ_{CP}), that is, the only two oscillations parameters allowed to float by the stand-alone ν_{μ} -disappearance (ν_e -appearance) analysis. In Fig. 8 (Fig. 9), the predicted number of single μ -like ring (single e-like ring) events is shown as function of $\sin^2\theta_{13}$ and δ_{CP} ($\sin^2\theta_{23}$ and $|\Delta m^2|$). This dependency has been ignored by the stand-alone ν_{μ} -disappearance (ν_e -appearance) analysis to date, but it is taken into account in the joint 3-flavour oscillation analysis.

² Each MC templates has 6132 2-dimensional bins (= 84 true energy bins × 73 reconstructed energy bins). The 84 true energy bins are arranged as follows: 6 50-MeV bins from 0-0.3 GeV, 28 25-MeV bins from 0.3-1 GeV, 40 50-MeV bins from 1-3 GeV, 5 100-MeV bin from 3-3.5 GeV, 1 bin from 3.5-4 GeV, 1 bin from 4-5 GeV, 1 bin from 5-7 GeV, 1 bin from 7-10 GeV and 1 bin from 10-30 GeV. The 73 reconstructed energy bins are as follows: 60 50-MeV bins from 0-3 GeV, 4 250-MeV bins from 3-4 GeV, 4 500-MeV bins from 4-6 GeV, 4 1000-MeV bins from 6-10 GeV and 1 bin from 10-30 GeV.

Typical single μ -like ring (single e-like ring) event reconstructed energy spectra, and spectral components, are shown in Fig. 10 (Fig. 11) for no oscillations and in Fig. 12 (Fig. 13) for oscillations with typical parameters (see caption). All these plots are generated for an exposure of 3.010×10^{20} POT and using the BANFF-tuned MC templates.

Finally, the calculated numbers of single μ -like ring and single e-like ring events using the nominal MC templates, the NA61-tuned MC templates and the BANFF-tuned MC templates are shown in Tab. 3 for no oscillations and in Tab. 4 for oscillations with typical parameters (see caption). The total numbers of events and the numbers of events from each mode considered in this analysis are shown. These numbers were calculated for an exposure of 3.010×10^{20} POT.

1517

1518

1519

1520

1521

1522

1523

Figure 6: Predicted number of single μ -like ring events, as a function of $\sin^2\theta_{23}$ and $|\Delta m^2|$, for an exposure of 3.010×10^{20} POT. The number of events was calculated using the BANFF-tuned MC templates. 2012 PDG values are used for $\sin^2\theta_{13}$, $\sin^2\theta_{12}$ and δm^2 and δ_{CP} =0. The numbers shown were generated assuming the normal hierarchy.

Figure 7: Predicted number of single e-like ring events, as a function of $\sin^2\theta_{13}$ and δ_{CP} , for an exposure of 3.010×10^{20} POT. The number of events was calculated using the BANFF-tuned MC templates. 2012 PDG values are used for $\sin^2\theta_{12}$, $|\Delta m^2|$ and δm^2 , while $\sin^2\theta_{23}$ was set to 0.5. The numbers shown were generated assuming the normal hierarchy.

Figure 8: Predicted number of single μ -like ring events, as a function of $\sin^2\theta_{13}$ and δ_{CP} , which are typically fixed to constant values by the standalone ν_{μ} -disappearance analysis, for an exposure of 3.010×10^{20} POT. The number of events was calculated using the BANFF-tuned MC templates. 2012 PDG values are used for $\sin^2\theta_{12}$, $|\Delta m^2|$ and δm^2 , while $\sin^2\theta_{23}$ was set to 0.5. The numbers shown were generated assuming the normal hierarchy.

Figure 9: Predicted number of single e-like ring events, as a function of $\sin^2\theta_{23}$ and $|\Delta m^2|$, which are typically fixed to constant values by the stand-alone ν_e -appearance analysis, for an exposure of 3.010×10^{20} POT. The number of events was calculated using the BANFF-tuned MC templates. 2012 PDG values are used for $\sin^2\theta_{13}$, $\sin^2\theta_{12}$ and δm^2 and δ_{CP} =0. The numbers shown were generated assuming the normal hierarchy.

	single μ -like ring sample	single e-like ring sample
ν_{μ} CCQE	single μ like ring sumple	single c like ring sample
$\nu_{\mu} \text{ CC } 1\pi$	v √	V √
ν_{μ} CC coherent	· · ·	· · ·
ν_{μ} CC other		· /
ν_{μ} CC other ν_{μ}/ν_{τ} NC $1\pi^{+/-}$, v
ν_{μ}/ν_{τ} NC $1\pi^0$	·	
ν_{μ}/ν_{τ} NC coherent		V ✓
ν_{μ}/ν_{τ} NC coherent ν_{μ}/ν_{τ} NC other		V ✓
$\bar{\nu}_{\mu}n\nu_{\tau}$ IVE other $\bar{\nu}_{\mu}$ CCQE		V ✓
$\bar{\nu}_{\mu}$ CC 1π		V ✓
$\bar{\nu}_{\mu}$ CC coherent	V ✓	V ✓
$\bar{\nu}_{\mu}$ CC other		
$\bar{\nu}_{\mu}$ CC other $\bar{\nu}_{\mu}/\bar{\nu}_{\tau}$ NC $1\pi^{+/-}$		· ·
ν_{μ}/ν_{τ} NC $1\pi^0$	·	
ν_{μ}/ν_{τ} NC coherent		√ √
$\bar{\nu}_{\mu}/\bar{\nu}_{\tau}$ NC coherent $\bar{\nu}_{\mu}/\bar{\nu}_{\tau}$ NC other		∨ ✓
ν_{μ} ν_{τ} NC other ν_{e} CCQE	V	∨ ✓
$\nu_e \text{ CCQE}$ $\nu_e \text{ CC } 1\pi$	V	∨ ✓
ν_e CC 1π ν_e CC coherent	V	√
ν_e CC coherent ν_e CC other	V	V
ν_e CC other ν_e NC $1\pi^{+/-}$	V	· ·
ν_e NC $1\pi^{-7}$ ν_{μ}/ν_{τ} NC $1\pi^0$,	
ν_{μ}/ν_{τ} NC coherent		√ √
$\bar{\nu}_{\mu}/\bar{\nu}_{\tau}$ NC coherent $\bar{\nu}_{\mu}/\bar{\nu}_{\tau}$ NC other		∨ ✓
ν_{μ} ν_{e} CCQE	V	∨ ✓
$\nu_e \text{ CCQE}$ $\nu_e \text{ CC } 1\pi$	√	
ν_e CC 1π ν_e CC coherent	V	√
ν_e CC conerent ν_e CC other	√ ✓	√
ν_e CC other ν_e NC $1\pi^{+/-}$	V	,
	,	
$\nu_{\mu}/\nu_{\tau} \text{ NC } 1\pi^{0}$		V
ν_{μ}/ν_{τ} NC coherent ν_{e} NC other		V
	V	V
$\bar{\nu}_e$ CCQE	V	V
$\bar{\nu}_e \text{ CC } 1\pi$	V	V
$\bar{\nu}_e$ CC coherent	V	V
$\bar{\nu}_e$ CC other	V	v
$\bar{\nu}_e \text{ NC } 1\pi^{+/-}$	✓	
$\nu_{\mu}/\nu_{\tau} \text{ NC } 1\pi^0$		√
ν_{μ}/ν_{τ} NC coherent		√
$\bar{\nu}_e$ NC other	√	√
Osc. ν_e CCQE	√	√
Osc. ν_e CC 1 π	√	√
Osc. ν_e CC coherent	√	√
Osc. ν_e CC other	 	√

Table 2: List of the MC templates used for the calculation of the VaLOR single μ-like ring and single e-like ring event reconstructed energy spectrun p.d.f.s. The symbol $\sqrt{}$ indicates, in any row, for which of the samples defined in the last two columns the MC template defined in the first column is used. Notice that the MC templates used for NC modes are different for single μ-like ring and single e-like ring.

Figure 10: Predicted reconstructed-energy spectrum of single μ -like ring events, and contributions from various true neutrino reaction modes, for no oscillations and for an exposure of 3.010×10^{20} POT. The 28 components of the spectrum are calculated separately in the actual analysis, but, for this plot, are grouped into just 5 categories: ν_{μ} CCQE, ν_{μ} CCnonQE, $\bar{\nu}_{\mu}$ CC, $\nu_{e}/\bar{\nu}_{e}$ CC and NC. The spectrum was generated using the BANFF-tuned MC templates.

Figure 11: Predicted reconstructed-energy spectrum of single e-like ring events, and contributions from various true neutrino reaction modes, for no oscillations and for an exposure of 3.010×10^{20} POT. The 32 components of the spectrum are calculated separately in the actual analysis, but, for this plot, are grouped into just four categories: $\nu_{\mu}+\bar{\nu}_{\mu}$ CC, $\nu_{\mu}+\bar{\nu}_{\mu}$ NC, $\nu_{e}+\bar{\nu}_{e}$ (intrinsic beam component) and oscillated ν_{e} . The spectrum was generated using the BANFF-tuned MC templates.

Figure 12: Predicted reconstructed-energy spectrum of single μ -like ring events, and contributions from various true neutrino reaction modes, for oscillations with $\sin^2\theta_{23}$ =0.5 and $|\Delta m^2|$ =2.4×10⁻³ eV²/c⁴ The spectrum was generated using the BANFF-tuned MC templates. 2012 PDG values are used for $\sin^2\theta_{13}$, $\sin^2\theta_{12}$ and δm^2 , while δ_{CP} =0. The spectrum shown was generated assuming the normal hierarchy. Note that the vertical axis is zoomed in by a factor of 4 compared with Fig. 10.

Figure 13: Predicted reconstructed-energy spectrum of single e-like ring events, and contributions from various true neutrino reaction modes, for oscillations with $\sin^2\theta_{23}$ =0.5, $|\Delta m^2|$ =2.4×10⁻³ eV²/c⁴, $\sin^2\theta_{13}$ =0.098 and for an exposure of 3.010×10²0 POT. The spectrum was generated using the BANFF-tuned MC templates. 2012 PDG values are used for $\sin^2\theta_{12}$ and δm^2 , while δ_{CP} =0. The spectrum shown was generated assuming the normal hierarchy.

	N_{SK}					
	single μ -like ring			single e-like ring		
	Nominal	NA61-tuned	BANFF-tuned	Nominal	NA61-tuned	BANFF-tuned
Total	190.986	210.465	204.624	2.971	3.239	3.380
ν_{μ} CCQE	151.820	166.354	154.915	0.217	0.237	0.223
ν_{μ} CC 1π	25.718	28.880	34.955	0.060	0.066	0.083
ν_{μ} CC coherent	0.898	1.005	0.950	0.0	0.0	0.0
ν_{μ} CC other	3.585	4.315	4.199	0.006	0.007	0.006
$\nu_{\mu}/\nu_{\tau} \text{ NC } 1\pi^{+/-} \text{ (1R}\mu \text{ only)}$	1.493	1.697	1.626	_	_	_
$\nu_{\mu}/\nu_{\tau} \text{ NC } 1\pi^0 \text{ (1R}_e \text{ only)}$	_	-	-	0.574	0.649	0.715
ν_{μ}/ν_{τ} NC coherent (1R _e only)	-	-	-	0.193	0.218	0.208
ν_{μ}/ν_{τ} NC other	1.295	1.522	1.467	0.245	0.286	0.275
$ar{ u}_{\mu}$ CCQE	4.119	4.460	3.978	0.002	0.002	0.002
$\bar{\nu}_{\mu}$ CC 1π	1.337	1.445	1.763	0.0004	0.0004	0.0005
$\bar{\nu}_{\mu}$ CC coherent	0.195	0.211	0.203	0.0001	0.0001	0.0001
$\bar{\nu}_{\mu}$ CC other	0.237	0.254	0.248	0.0	0.0	0.0
$\bar{\nu}_{\mu}/\bar{\nu}_{\tau} \text{ NC } 1\pi^{+/-} (1R\mu \text{ only})$	0.080	0.092	0.090	_	_	_
$\nu_{\mu}/\nu_{\tau} \text{ NC } 1\pi^0 \text{ (1R}_e \text{ only)}$	_	-	-	0.028	0.031	0.035
ν_{μ}/ν_{τ} NC coherent (1R _e only)	_	-	-	0.018	0.020	0.019
$\bar{\nu}_{\mu}/\bar{\nu}_{\tau}$ NC other	0.073	0.079	0.078	0.014	0.015	0.015
$ u_e \text{ CCQE} $	0.016	0.017	0.016	1.114	1.180	1.134
$ u_e ext{ CC } 1\pi$	0.009	0.010	0.013	0.352	0.377	0.505
ν_e CC coherent	0.0004	0.0004	0.0004	0.005	0.005	0.005
ν_e CC other	0.003	0.003	0.003	0.028	0.030	0.029
$\nu_e \text{ NC } 1\pi^{+/-} \text{ (1R}\mu \text{ only)}$	0.042	0.050	0.049	-	-	-
$\nu_{\mu}/\nu_{\tau} \text{ NC } 1\pi^0 \text{ (1R}_e \text{ only)}$	-	-	-	0.015	0.018	0.020
ν_{μ}/ν_{τ} NC coherent (1R _e only)	-	-	-	0.004	0.005	0.005
ν_e NC other	0.005	0.057	0.057	0.009	0.010	0.010
$ar{ u}_e$ CCQE	0.0008	0.0008	0.0008	0.052	0.052	0.051
$ar{ u}_e$ CC 1 π	0.0006	0.0006	0.0007	0.021	0.021	0.029
$\bar{\nu}_e$ CC coherent	0.00007	0.00007	0.00007	0.004	0.004	0.004
$\bar{\nu}_e$ CC other	0.0002	0.0002	0.0002	0.002	0.002	0.002
$\bar{\nu}_e \text{ NC } 1\pi^{+/-} \text{ (1R}\mu \text{ only)}$	0.006	0.006	0.006	-	-	-
$\nu_{\mu}/\nu_{\tau} \text{ NC } 1\pi^0 \text{ (1R}_e \text{ only)}$	-	-	-	0.002	0.002	0.002
ν_{μ}/ν_{τ} NC coherent (1R _e only)	-	-	-	0.0009	0.0009	0.0009
$\bar{\nu}_e$ NC other		0.006	0.006	0.001	0.001	0.001
Oscillated ν_e CCQE	0	0	0	0	0	0
Oscillated ν_e CC 1π	0	0	0	0	0	0
Oscillated ν_e CC coherent	0	0	0	0	0	0
Oscillated ν_e CC other	0	0	0	0	0	0

Table 3: Calculated numbers of single μ -like ring and single e-like ring events without oscillations using the nominal MC templates, the NA61-tuned MC templates and the BANFF-tuned MC templates. The total numbers of events and the numbers of events from each mode considered in this analysis are shown. These numbers were calculated for an exposure of 3.010×10^{20} POT. Note that different NC MC templates are used for predicting the number of single μ -like ring and single e-like ring events.

	N_{SK}												
		single μ -like			single e-like	ring							
	Nominal	NA61-tuned	BANFF-tuned	Nominal	NA61-tuned	BANFF-tuned							
Total	54.264	60.939	59.799	10.036	10.961	11.012							
$ u_{\mu}$ CCQE	30.926	34.183	30.962	0.028	0.031	0.028							
ν_{μ} CC 1π	13.198	15.137	17.572	0.021	0.023	0.029							
ν_{μ} CC coherent	0.377	0.434	0.412	0.000	0.000	0.000							
ν_{μ} CC other	3.210	3.888	3.796	0.003	0.003	0.003							
ν_{μ}/ν_{τ} NC $1\pi^{+/-}$ (1R μ -like only)	1.492	1.697	1.626	-	-	-							
$\nu_{\mu}/\nu_{\tau} \text{ NC } 1\pi^0 \text{ (1R}_e \text{ only)}$	_	_	-	0.574	0.649	0.715							
ν_{μ}/ν_{τ} NC coherent (1R _e only)	-	_	-	0.193	0.218	0.208							
ν_{μ}/ν_{τ} NC other	1.294	1.522	1.466	0.248	0.286	0.274							
$ar{ u}_{\mu}$ CCQE	2.071	2.244	1.936	0.0006	0.0007	0.0006							
$\bar{\nu}_{\mu}$ CC 1π	0.976	1.053	1.254	0.0002	0.0002	0.0002							
$\bar{\nu}_{\mu}$ CC coherent	0.107	0.116	0.111	0.00007	0.00007	0.00007							
$\bar{\nu}_{\mu}$ CC other	0.211	0.226	0.221	0.000	0.000	0.000							
$\bar{\nu}_{\mu}/\bar{\nu}_{\tau} \text{ NC } 1\pi^{+/-} \text{ (1R}\mu \text{ only)}$	0.084	0.092	0.090	_	-	-							
$\nu_{\mu}/\nu_{\tau} \text{ NC } 1\pi^0 \text{ (1R}_e \text{ only)}$	_	_	-	0.028	0.030	0.034							
ν_{μ}/ν_{τ} NC coherent (1R _e only)	-	-	-	0.018	0.019	0.018							
$\bar{\nu}_{\mu}/\bar{\nu}_{\tau}$ NC other	0.073	0.079	0.077	0.013	0.015	0.014							
$ u_e$ CCQE	0.014	0.015	0.014	1.025	1.085	1.042							
ν_e CC 1 π	0.008	0.009	0.012	0.331	0.355	0.476							
$ u_e$ CC coherent	0.0004	0.0004	0.0003	0.004	0.004	0.004							
ν_e CC other	0.002	0.003	0.002	0.026	0.029	0.028							
$\nu_e \text{ NC } 1\pi^{+/-} \text{ (1R}\mu \text{ only)}$	0.042	0.048	0.048	_	-	-							
$\nu_{\mu}/\nu_{\tau} \text{ NC } 1\pi^0 \text{ (1R}_e \text{ only)}$	_	_	-	0.015	0.017	0.020							
ν_{μ}/ν_{τ} NC coherent (1R _e only)	_	_	-	0.004	0.005	0.004							
ν_e NC other	0.049	0.057	0.057	0.009	0.010	0.010							
$ar{ u}_e$ CCQE	0.0008	0.0007	0.0007	0.048	0.048	0.047							
$ar{ u}_e$ CC 1 π	0.0006	0.0005	0.0007	0.020	0.020	0.027							
$\bar{ u}_e$ CC coherent	0.00007	0.00007	0.00007	0.003	0.003	0.003							
$\bar{ u}_e$ CC other	0.0002	0.0002	0.0002	0.002	0.001	0.001							
$\bar{\nu}_e$ NC $1\pi^{+/-}$ (1R μ only)	0.006	0.005	0.005	_	-	-							
$\nu_{\mu}/\nu_{\tau} \text{ NC } 1\pi^0 \text{ (1R}_e \text{ only)}$	_	_	-	0.001	0.001	0.002							
ν_{μ}/ν_{τ} NC coherent (1R _e only)	_	_	-	0.0009	0.0009	0.0009							
$\bar{ u}_e$ NC other	0.006	0.005	0.006	0.001	0.001	0.001							
Oscillated ν_e CCQE	0.080	0.088	0.083	6.378	6.965	6.567							
Oscillated ν_e CC 1π	0.025	0.026	0.034	0.996	1.090	1.406							
Oscillated ν_e CC coherent	0.002	0.002	0.001	0.020	0.022	0.021							
Oscillated ν_e CC other	0.0006	0.0006	0.0006	0.014	0.015	0.014							

Table 4: Calculated numbers of single μ -like ring and single e-like ring events with oscillations using the nominal MC templates, the NA61-tuned MC templates and the BANFF-tuned MC templates. The total numbers of events and the numbers of events from each mode considered in this analysis are shown. These numbers were calculated for an exposure of 3.010×10^{20} POT and oscillations with δ_{CP} =0, $\sin^2\theta_{13}$ =0.025, $\sin^2\theta_{23}$ =0.5 and $|\Delta m^2|$ =2.4×10⁻³ eV²/c⁴. The 2012 PDG parameters are used for $\sin^2\theta_{12}$ and δm^2 . The normal hierarchy is assumed. Note that different NC MC templates are used for predicting the number of single μ -like ring and single e-like ring events.

5. Systematic effects in the prediction of the single μ -like ring and single e-like ring event reconstructed energy spectrum

This analysis considers 83 systematic parameters which can be grouped into 4 categories:

• 20 SuperK detector parameters (see Tab. 5).

1526

1527

1529

1533

1535

1536

1537

- 33 correlated flux and cross-section parameters tuned by the BANFF group to ND280 data (see Tab. 6).
- 12 uncorrelated cross-section parameters (see Tab. 7).
 - 18 intranuclear and secondary interaction parameters (see Tab. 8).

A detailed description of the systematics considered in this analysis and their implementation may be found in Sec. 3 of Ref. [4] and in [15, 16].

These systematic parameters are applied to single μ -like ring and single e-like ring MC as shown in Tab. 9. In particular, systematics are applies to single μ -like ring (single e-like ring) MC templates as shown in Tab. 10 (Tab. 11). Tab. 12 shows the effect of 1σ systematic parameter variation on the number of single μ -like ring and single e-like ring events with typical oscillation parameters. In Fig. 14 the total error envelope of the single μ -like ring and the single e-like ring event reconstructed energy spectrum are presented with typical oscillation parameters. In the baseline VaLOR joint 3-flavour oscillation analysis reported here, all possible, but currently unknown, correlations between the single μ -like ring and single e-like ring SuperK efficiency systematics are neglected. The effect of these correlations will be reported in a separate technical note.

SuperK detector systematics relevant both to single μ -like ring and single e-like ring events

 $f_{E:r}^{SK}$

Reconstructed energy scale systematic. The energy scale uncertainty is estimated to be 2.3% [5]. The effect of the uncertainty is calculated by scaling the bin edges of the MC templates and, assuming uniform distribution of events within the bins, calculating the number of events gained from / lost to neighboring bins.

SuperK detector systematics relevant only to single μ -like ring events

 ν_{μ} , $\bar{\nu}_{\mu}$ CCQE ring-counting efficiency systematic. Three correlated systematic parameters are included (i=0,1,2) corresponding to different reconstructed energy ranges [5].

 1σ fractional error

	Farameter	Description	10 Hactional error
$f_{CCQERCi;r}^{SK}$	0	$E_{reco} < 0.4 \text{ GeV}$ $0.4 \text{ GeV} \le E_{reco} \le 1.1 \text{ GeV}$ $E_{reco} > 1.1 \text{ GeV}$	1.7%
	1	$0.4 \mathrm{GeV} \le E_{reco} \le 1.1 \mathrm{GeV}$	3.5%
	2	$E_{reco} > 1.1 \mathrm{GeV}$	9.3%
ar.			ombined systematic due to fiducial volume,
$f_{CCQEoth;r}^{SK}$		momentum cut and decay electron	cut efficiency uncertainties. The estimated
	uncertainty is 1.8% [5],[6].		

Parameter | Description

 $f_{CCnonQE;r}^{SK}$ ν_{μ} , $\bar{\nu}_{\mu}$ CCnQE efficiency systematic. The estimated uncertainty is 20% [5],[6].

 $f_{NC;r}^{SK}$ NC efficiency systematic. The estimated uncertainty is 111% [5],[6].

 $f_{\nu_e;r}^{SK}$ $\nu_e, \bar{\nu}_e$ efficiency systematic. The estimated uncertainty is 100% [5],[6].

SuperK detector systematics relevant only to single e-like ring events

Single e-like ring event efficiency systematics. Twelve correlated parameters are included (i=0,...,11) corresponding to different modes and reconstructed energy bins.

Parar	neter	Description	1σ fractional error
	0	Oscillated ν_e CC efficiency, $E_{reco} < 0.35 \mathrm{GeV}$	0.026
	1	Oscillated ν_e CC efficiency, 0.35 GeV $\leq E_{reco} \leq 0.8$ GeV	0.031
	2	Oscillated ν_e CC efficiency, $E_{reco} > 0.8$ GeV	0.034
	3	ν_{μ} CC efficiency, $E_{reco} < 0.35 \mathrm{GeV}$	1.303
$f_{1Rei;r}^{SK}$	4	ν_{μ} CC efficiency, 0.35 GeV $\leq E_{reco} \leq 0.8$ GeV	1.087
J1Rei;r	5	ν_{μ} CC efficiency, $E_{reco} > 0.8 \text{ GeV}$	1.027
	6	ν_e CC efficiency, $E_{reco} < 0.35 { m GeV}$	0.025
	7	ν_e CC efficiency, 0.35 GeV $\leq E_{reco} \leq 0.8$ GeV	0.028
	8	ν_e CC efficiency, $E_{reco} > 0.8 {\rm GeV}$	0.054
	9	NC efficiency, $E_{reco} < 0.35 \mathrm{GeV}$	0.497
	10	NC efficiency, $0.35 \text{ GeV} \leq E_{reco} \leq 0.8 \text{ GeV}$	0.169
	11	NC efficiency, $E_{reco} > 0.8 \text{ GeV}$	0.170

Table 5: Summary table of SuperK detector systematics. The nuisance parameter symbols used in this paper are shown in the first column. An index r in the nuisance parameter symbol denotes dependence on reconstructed energy while an index t denotes dependence on true energy. An index i is used where multiple systematic parameters, typically correlated between themselves, are grouped together.

Correlated flux and cross-section (BANFF) systematics

Flux and cross-section parameters tuned by BANFF group on ND280 data. Thirty-three correlated parameters are included (i=0,...,32).

	Parameter	Description	Best-fit	1σ (pre/post)-fit fractional error
	0	ν_{μ} flux normalisation, E = 0.0 - 0.4 GeV	0.995	0.119/0.092
	1	ν_{μ} flux normalisation, E = 0.4 - 0.5 GeV	1.007	0.129/0.098
	2	ν_{μ} flux normalisation, E = 0.5 - 0.6 GeV	1.002	0.203/0.090
	3	ν_{μ} flux normalisation, E = 0.6 - 0.7 GeV	0.963	0.126/0.081
	4	ν_{μ} flux normalisation, E = 0.7 - 1.0 GeV	0.901	0.140/0.095
	5	ν_{μ} flux normalisation, E = 1.0 - 1.5 GeV	0.910	0.120/0.084
	6	ν_{μ} flux normalisation, E = 1.5 - 2.5 GeV	0.936	0.102/0.076
	7	ν_{μ} flux normalisation, E = 2.5 - 3.5 GeV	0.967	0.093/0.070
	8	ν_{μ} flux normalisation, E = 3.5 - 5.0 GeV	0.988	0.110/0.083
	9	ν_{μ} flux normalisation, E = 5.0 - 7.0 GeV	0.997	0.152/0.107
	10	ν_{μ} flux normalisation, E = 7.0 - 30.0 GeV	1.004	0.189/0.142
	11	$\bar{\nu}_{\mu}$ flux normalisation, E = 0.0 - 0.7 GeV	0.980	0.131/0.108
	12	$\bar{\nu}_{\mu}$ flux normalisation, E = 0.7 - 1.0 GeV	0.958	0.116/0.094
	13	$\bar{\nu}_{\mu}$ flux normalisation, E = 1.0 - 1.5 GeV	0.947	0.119/0.098
	14	$\bar{\nu}_{\mu}$ flux normalisation, E = 1.5 - 2.5 GeV	0.953	0.120/0.106
$f_{i;t,r}^{banff}$	15	$\bar{\nu}_{\mu}$ flux normalisation, E = 2.5 -30.0 GeV	0.985	0.120/0.107
	16	ν_e flux normalisation, E = 0.0 - 0.5 GeV	0.982	0.126/0.102
	17	ν_e flux normalisation, E = 0.5 - 0.7 GeV	0.985	0.122/0.098
	18	ν_e flux normalisation, E = 0.7 - 0.8 GeV	0.984	0.137/0.113
	19	ν_e flux normalisation, E = 0.8 - 1.5 GeV	0.968	0.104/0.078
	20	ν_e flux normalisation, E = 1.5 - 2.5 GeV	0.986	0.102/0.077
	21	ν_e flux normalisation, E = 2.5 - 4.0 GeV	0.997	0.122/0.085
	22	ν_e flux normalisation, E = 4.0 - 30.0 GeV	1.008	0.168/0.124
	23	$\bar{\nu}_e$ flux normalisation, E = 0.0 - 2.5 GeV	0.987	0.191/0.182
	24	$\bar{\nu}_e$ flux normalisation, E = 0.0 - 2.5 GeV	1.017	0.139/0.107
	25	CCQE axial-mass scaling factor	1.049	0.372/0.160
	26	Resonance-production axial-mass scaling factor	1.011	0.183/0.105
	27	CCQE normalisation, $E = 0.0 - 1.5 \text{ GeV}$	0.951	0.110/0.086
	28	CCQE normalisation, $E = 1.5 - 3.5 \text{ GeV}$	0.708	0.300/0.209
	29	CCQE normalisation, $E = 3.5 - 30.0 \text{ GeV}$	1.347	0.300/0.225
	30	$CC1\pi$ normalisation, E = 0.0 - 2.5 GeV	1.370	0.317/0.204
	31	$CC1\pi$ normalisation, E = 2.5 - 30.0 GeV	1.016	0.400/0.282
	32	$NC1\pi^0$ normalisation	1.153	0.328/0.267

Table 6: Summary table of BANFF systematics. The nuisance parameter symbols used in this paper are shown in the first column. An index r in the nuisance parameter symbol denotes dependence on reconstructed energy while an index t denotes dependence on true energy. An index i is used where multiple systematic parameters, typically correlated between themselves, are grouped together.

Uncorrelated cross-	-section systematics
$f_{pF;t,r}$	Uncertainty in Fermi momentum for ^{16}O was taken to be 225 ± 30 MeV [12].
$f_{bindE;t,r}$	Uncertainty in binding energy for ^{16}O ws taken to be 27 ± 9 MeV [12].
$f_{SF;t,r}$	Nuclear environment modeling systematic; switch from Fermi Gas (RFG) to Spectral Function (SF) model (CCQE only). $0 (RFG) - 1 (SF)$
$f_{\pi-less\Delta;t,r}$	Systematic due to uncertainty on the fraction of π -less Δ decays in resonance neutrino-production events. A 20% uncertainty was assumed [12].
$f_{CCothShape;t,r}$	Systematic due to the uncertainty in CC multipion, CC DIS and CC resonant η , K and photon production cross-section. A 40% uncertainty was assumed [12].
$f_{Wshape;t,r}$	Systematic due to the uncertainty in the shape of the initial pion momentum distribution (before final-state interactions) in resonance interactions. A 52% uncertainty was assumed [12].
$f_{CCcoh;t}$	Systematic due to the uncertainty on the CC coherent cross-section. A 100% uncertainty was assumed [12].
$f_{NCcoh;t}$	Systematic due to the uncertainty on the NC coherent cross-section. A 30%uncertainty was assumed [12].
$f_{NC1\pi^{\pm};t}$	Systematic due to the uncertainty on the NC1 π^{\pm} cross-section. A 30% uncertainty was assumed [12].
$f_{NCoth;t}$	Systematic die to the uncertainty on the NC other (all but single π^{\pm}) cross-section. A 30% uncertainty was assumed [12].
$f_{CC u_e;t}$	Systematic due to the uncertainty on the ν_e / ν_μ CC cross-section ratio [11]. A 3% uncertainty was assumed.
$f_{CCar{ u};t}$	Systematic due to the uncertainty on the $\bar{\nu}$ / ν CC cross-section ratio. A 40% uncertainty was assumed.

Table 7: Summary table of Uncorrelated cross-section systematics. The nuisance parameter symbols used in this paper are shown in the first column. An index r in the nuisance parameter symbol denotes dependence on reconstructed energy while an index t denotes dependence on true energy. An index i is used where multiple systematic parameters, typically correlated between themselves, are grouped together.

FSI+SI systematics relevant only to single μ -like ring events

FSI (final state interaction / intranuclear hadron transport) and SI (secondary interaction / detector hadron transport) systematic parameters. Six correlated parameters are included (i=0,...,5) corresponding to different modes and reconstructed energy bins.

	Parameter	Description	1σ fractional error
7.7	0	$ u_{\mu} \& \bar{\nu}_{\mu} \text{ CCQE}, E_{reco} < 0.4 \text{ GeV} $	3.6×10^{-5}
$f_{1R\mu i;r}^{FSI}$	1	ν_{μ} & $\bar{\nu}_{\mu}$ CCQE, 0.4 GeV $\leq E_{reco} \leq 1.1$ GeV	7.1×10^{-4}
	2	ν_{μ} & $\bar{\nu}_{\mu}$ CCQE, $E_{reco} > 1.1$ GeV	2.8×10^{-3}
	3	ν_{μ} & $\bar{\nu}_{\mu}$ CCnonQE	8.7×10^{-2}
	4	$ u_e \& \bar{\nu}_e$ CC	1.13×10^{-2}
	5	All NC	7.7×10^{-2}

FSI+SI systematics relevant only to single e-like ring events

FSI (final state interaction / intranuclear hadron transport) and SI (secondary interaction / detector hadron transport) systematic parameters. Twelve correlated parameters are included (i=0,...,11) corresponding to different modes and reconstructed energy bins.

	Parameter	Description	1σ fractional error
	6	Oscillated ν_e CC, $E_{reco} < 0.35$ GeV	0.11
	7	Oscillated ν_e CC, 0.035 GeV $\leq E_{reco} \leq 0.8$ GeV	1.2×10^{-2}
	8	Oscillated ν_e CC, $E_{reco} > 0.8 \text{ GeV}$	7.3×10^{-3}
	9	$ u_{\mu}$ CC, $E_{reco} < 0.35 \mathrm{GeV}$	3.7×10^{-2}
$f_{1Rei;r}^{FSI}$	10	ν_{μ} CC, $0.35 \mathrm{GeV} \leq E_{reco} \leq 0.8 \mathrm{GeV}$	6.2×10^{-2}
	11	ν_{μ} CC, $E_{reco} > 0.8$ GeV	7.7×10^{-2}
	12	ν_e CC, $E_{reco} < 0.35$ GeV	6.0×10^{-2}
	13	ν_e CC, 0.35 GeV $\leq E_{reco} \leq 0.8$ GeV	3.1×10^{-2}
	14	ν_e CC, $E_{reco} > 0.8$ GeV	3.2×10^{-2}
	15	$NC, E_{reco} < 0.35 \text{ GeV}$	8.5×10^{-2}
	16	NC, $0.35 \text{ GeV} \leq E_{reco} \leq 0.8 \text{ GeV}$	7.6×10^{-2}
	17	$NC, E_{reco} > 0.8 \text{ GeV}$	4.3×10^{-2}

Table 8: Summary table of FSI+SI systematics. The nuisance parameter symbols used in this paper are shown in the first column. An index r in the nuisance parameter symbol denotes dependence on reconstructed energy while an index t denotes dependence on true energy. An index i is used where multiple systematic parameters, typically correlated between themselves, are grouped together.

Type	Systematics	Comment	$1R_{\mu}$	$1R_e$	N_{syst}
	$f_{0;t,r}^{banff} - f_{24;t,r}^{banff}$	$ u_{\mu}, ar{ u_{\mu}}, u_{e} ext{ and } ar{ u_{e}} ext{ flux}$	\	√	25
FFF	$f_{25;t,r}^{banff}$	CCQE axial mass			1
BANFF	$_{f}banff$	resonance-production axial mass	✓	√	1
	$J_{26;t,r}$ $cbanff$ $cbanff$		✓	√	
	$f_{27;t,r}^{banff} - f_{29;t,r}^{banff}$	CCQE normalization	✓	✓	3
	$f_{30;t,r}^{banff} - f_{31;t,r}^{banff}$	$CC1\pi$ normalization	√	√	2
	$f_{32;t,r}^{banff}$	$NC1\pi^0$	_	✓	1
	$f_{pF;t,r}$	Fermi momentum	√	√	1
Uncorrelated cross-section	$f_{bindE;t,r}$	Binding energy	1	1	1
ss-se	$f_{SF;t,r}$	Nuclear modeling			1
cros	$f_{Wshape;t,r}$	Shape of the π momentum distribution	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•	1
lated	$f_{\pi-less\Delta;t,r}$	π -less Δ decay	√	✓	1
orre		CC other shape	√	√	1
Unc	$f_{CCothShape;t,r}$		✓	✓	
	$f_{CCcoh;t}$	CC coherent cross-section	✓	✓	1
	$f_{NC1\pi^{\pm};t}$	$NC1\pi^{\pm}$ cross-section NC coherent cross-section	✓	-	1
	$\begin{cases} f_{NCcoh;t} \\ f_{NCoth;t} \end{cases}$	NC other cross-section		•	1
	$f_{CC u_e;t}$	$\sigma_{\nu_e}/\sigma_{\nu_\mu}$ ratio	√	✓	1
	$f_{CCar{ u};t}$	$\sigma_{\overline{\nu}}/\sigma_{\nu}$ ratio	√	√	1
	·		✓	✓	
	$f_{E;r}^{SK}$	Reconstructed energy scale	✓	✓	1
tor	$f_{CCQERC0;r}^{SK}$ -	$ u_{\mu}, \bar{\nu}_{\mu}$ CCQE ring-counting efficiency	√	_	3
erK detector	$\begin{array}{c} f_{CCQERC2;r}^{SK} \\ f_{CCQEoth;r}^{SK} \end{array}$	$\nu_{\mu}, \bar{\nu}_{\mu}$ CCQE other efficiency	1	_	1
ırK ç	$f_{CC,nonQE;r}^{SK}$	$ u_{\mu}, \bar{\nu}_{\mu} $ CCnonQE efficiency	√ ·	_	1
Supe	$f_{\nu_e;r}^{SK} \\ f_{NC;r}^{SK}$	$\nu_e, \bar{\nu}_e$ CC efficiency	√	_	1
	fSK _ fSK	NC efficiency Osc. ν_e CC efficiency	√	_	3
	$\int \mathbf{r} SK = \mathbf{r} SK$	ν_{μ} , $\bar{\nu}_{\mu}$ CC efficiency	_	\	3
	$f_{1Re3;r}^{SK}$ - $f_{1Re8;r}^{SK}$	$\nu_e, \bar{\nu}_e$ CC efficiency	_	\ \ \	3
	$f_{1Re9;r}^{SK}$ - $f_{1Re11;r}^{SK}$	NC efficiency	_	✓	3
	$f_{1Ru0:r}^{FSI}$ - $f_{1Ru2:r}^{FSI}$	$ u_{\mu}, \bar{\nu}_{\mu}$ CCQE	√	-	3
	$f_{1R\mu3;r}^{FSI}$ f_{1R}^{FSI}	$ u_{\mu}, \bar{\nu}_{\mu}$ CCnonQE	✓	-	1
150	$\begin{cases} f_{1R\mu4;r}^{FSI} \\ f^{FSI} \end{cases}$	$ u_e, ar{ u}_e$ CC	✓	-	1
FSI+SI	$J1R\mu5;r$	NC	 	_	1
F	$f_{1Re0;r}^{FSI}$ - $f_{1Re2;r}^{FSI}$	Osc. ν_e	-	√	3
	$J1Re3;r$ $J1Re5;r$ ιFSI ιFSI	$ \nu_{\mu}, \bar{\nu}_{\mu}$ CC	-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3
	$f_{1Re6;r}^{ISI} - f_{1Re8;r}^{IRe8;r} \ f_{1Re9;r}^{FSI} - f_{1Re11;r}^{FSI}$	$ u_e, \bar{\nu}_e \text{ CC} $	_	√	3 3
Total	J 1Re9;r - J 1Re11;r		1 -	<u> </u>	
Total					83

Table 9: List of all systematic parameters included in the joint oscillation analysis. A \checkmark symbol indicates whether the systematic parameter is applied on the single μ -like ring and single e-like ring MC templates.

Second S																												ent	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ш		herent	her	#_	ther	ш	L-	herent	her	#_	ther	[1]		herent	her	+!	her	[17]		herent	her	+	her	CQE	;C1π	C coher	C other
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		CCQ	CC11	CCC	CC ot	NC11	NC of	CCQI	CC11	CC CC	CC of	NC17	NC of	CCQE	CC1π	30,00	CC of	NC1 ^π	NC ot	CCQE	CC1 _π	3C cc	CC of	NC13	NC ot	-ve C	- <i>v</i> e C	- <i>v</i> _e C	-v _e C
Second S		$^{\prime}_{\mu}$	ν_{μ}	ν_{μ}	$ u_{\mu} $	ν_{μ}	ν_{μ}	$\bar{\nu}_{\mu}$	$ar{ u_{\mu}}$	$ar{ u_{\mu}}$	$ar{ u}_{\mu}$	$ar{ u_{\mu}}$	$ar{ u_{\mu}}$	ν_e (ν_e (ν_e (ν_e (ν_e]	ν_e]	$ar{ u_e}$ ($ar{ u_e}$ ($ar{ u_e}$ ($ar{ u_e}$ ($ar{ u_e}$]	$ar{ u_e}$]	Osc	Osc	Osc	Osc
$ \int SCO_{OBRC_{2ir}} V = V = V = V = V = V = V = V = V = V$	$f_{E;r}^{SK}$	✓	✓	✓	✓	√	√	√	✓	✓	✓	✓	√	√	✓	✓	✓	✓	✓	√	✓	✓	✓	√	✓	✓	✓	✓	√
$ \int \frac{g \mathcal{E}_{CQEOLOR}}{g \mathcal{E}_{CQEOLOR}} = \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_{CCQERC0;r}^{SK}$	✓						✓																					
$ \int \frac{SC_{OQEothir}}{SC_{OQEothir}} \forall $	$f_{CCQERC1;r}^{SK}$	✓						✓																					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_{CCQERC2;r}^{SK}$	✓						✓																					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$f_{CCQEoth;r}^{SK}$	✓						✓																					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$f_{CCnQE;r}^{SK}$		✓	✓	✓				✓	✓	✓																		
	$f_{NC;r}^{SK}$					✓	✓					✓	√					√	√					✓	✓				
	$f_{\nu_e;r}^{SK}$													✓	✓	✓	✓			√	✓	✓	✓			√	✓	✓	✓
		√	✓	✓	√	√	√																						
flast,								√	✓	✓	✓	✓	√																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														√	✓	√	✓	√	✓										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																				√	✓	✓	√	√	✓				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		√						√						√						√						✓			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_{26;t,r}^{banff}$		√		√	√	√		√		√	√	√		✓		✓	√	✓		√		√	√	✓		✓		√
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		√						√						√						√						√			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		√						√						√						√						✓			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		√						√						√						√						√			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			√						✓						✓						√						✓		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			√						√						√						√						√		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		√						√						√						√						√			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_{SF;t,r}$	√						✓						✓						√						√			
	$f_{\pi-less\Delta;t,r}$		√			√	√		√			√	√		✓			√	√		√			√	✓		✓		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_{bindE;t,r}$	√						√						√						√						√			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_{CCothShape;t,r}$				√						√						✓						√						√
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_{Wshape;t,r}$					√	√					√	√					√	√					√	√				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_{CCcoh;t}$			√						✓						√						✓						✓	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_{NC1\pi^{\pm};t}$					√						√						√						√					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_{NCoth;t}$						✓						√						√						✓				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_{CC\nu_e;t}$													√	✓	√	✓			√	✓	✓	√			√	✓	√	√
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								√	✓	✓	√									√	√	✓	✓						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		√						√																					
$f_{1R\mu 2;r}^{FSI}$ \checkmark		√						√																					
		1						√																					
$\left[egin{array}{c c c c c c c c c c c c c c c c c c c $	$f_{1R\mu3;r}^{FSI}$		1	√	√				√	√	√																		
$f_{1R\mu 4;r}^{FSI}$														√	√	1	√			√	1	√	✓			1	✓	√	~
$f_{1R\mu5;r}^{FSI}$						√	√					√	√					√	√					√	√				

Table 10: A $\sqrt{\ }$ symbol denotes that the given single μ -like ring MC template is modified when the given systematic parameter is tweaked. The table lists all systematic parameters, relevant to single μ -like ring events, considered in this analysis (first column) and all 28 MC templates used for constructing the single μ -like ring event reconstructed energy spectrum p.d.f (first row).

	$ u_{\mu} $ CCQE	$ u_{\mu} \operatorname{CC1}_{\pi} $	$ u_{\mu} $ CC coherent	$ u_{\mu} $ CC other	$ u_{\mu} \operatorname{NCI}_{\pi^0} $	$ u_{\mu} $ NC coherent	$ u_{\mu} $ NC other	$ar{ u_{\mu}}$ CCQE	$\bar{\nu_{\mu}}$ CC1 π	$\bar{ u_{\mu}}$ CC coherent	$ar{ u_{\mu}}$ CC other	$\bar{\nu_{\mu}} \text{ NC1} \pi^0$	$ar{ u_{\mu}}$ NC coherent	$ar{ u_{\mu}}$ NC other	ν _e CCQE	$ u_e \text{ CC} 1\pi $	ν_e CC coherent	ν_e CC other	$\nu_e \text{ NC1} \pi^0$	$ u_e $ NC coherent	ν_e NC other	$ar{ u_e}$ CCQE	$ar{ u_e}$ CC1 π	$ar{ u_e}$ CC coherent	$ar{ u_e}$ CC other	$\bar{\nu_e} \ \mathrm{NC1} \pi^0$	$ar{ u_e}$ NC coherent	$ar{ u_e}$ NC other	Osc- ν_e CCQE	Osc- ν_e CC1 π	Osc- ν_e CC coherent	Osc- ν_e CC other
$f_{E;r}^{SK}$	√	√	√	√	√	√	✓	✓	√	√	√	√	√	✓	✓	✓	✓	√	√	√	√	√	✓	✓	√	√	✓	√	√	√	✓	✓
$f_{1Re0;r}^{SK}$ - $f_{1Re2;r}^{SK}$																													√	√	√	✓
$f_{1Re3;r}^{SK}$ - $f_{1Re5;r}^{SK}$	√	√	√	√				√	1	√	√																					
$f_{1Re6;r}^{SK}$ - $f_{1Re8;r}^{SK}$															✓	✓	✓	✓				✓	✓	✓	√							
$f_{1Re9;r}^{SK}$ - $f_{1Re11;r}^{SK}$					√	√	✓					√	√	✓					√	√	✓					✓	√	√				
$f_{0;t,r}^{banff}$ - $f_{10;t,r}^{banff}$	✓	✓	✓	✓	√	√	√																									
$f_{11;t,r}^{banff} - f_{15;t,r}^{banff}$								1	√	√	√	√	√	✓																		
$f_{16;t,r}^{banff} - f_{22;t,r}^{banff}$															✓	√	✓	✓	√	✓	✓											
$f_{23;t,r}^{banff}$ - $f_{24;t,r}^{banff}$																						√	✓	✓	✓	✓	✓	√				
$f_{25;t,r}^{banff}$	√							1							√							√							√			
$f_{26;t,r}^{banff}$		✓		✓	✓	√	✓		✓		√	√	✓	✓		√		✓	√	✓	✓		√		√		✓	√		✓		√
$f_{27;t,r}^{banff}$	√							✓							✓							√							√			
$f_{28;t,r}^{banff}$	√							✓							√							✓							√			
$f_{29;t,r}^{banff}$	✓							✓							✓							✓							✓			
$f_{30;t,r}^{banff}$		√							✓							✓							✓							✓		
$f_{31;t,r}^{banff}$							✓							✓							✓							✓				
$f_{32;t,r}^{banff}$									✓							✓							√							✓		
$f_{pF;t,r}$	√							✓							✓							√							√			
$f_{SF;t,r}$	√							✓							√							✓							√			
$f_{\pi-less\Delta;t,r}$		√			√		✓		✓			√		✓		✓			√		✓		√			✓		✓		✓		
$f_{bindE;t,r}$	√							✓							√							√							√			
$f_{CCothShape;t,r}$				√							√							✓							√							√
$f_{Wshape;t,r}$					√		✓					√		✓					√		✓					✓		✓				
$f_{CCcoh;t}$			✓							√							✓							✓							√	
$f_{NC1\pi^0;t}$					✓							√								✓							✓					
$f_{NCoth;t}$							✓							✓							✓							✓				
$f_{CC\nu_e;t}$															√	√	√	✓				√	✓	✓	✓				√	√	√	√
$f_{CCar{ u};t}$								√	✓	✓	✓											✓	✓	✓	√							
$f_{1Re0;r}^{FSI} - f_{1Re2;r}^{FSI}$																													✓	✓	✓	✓
$f_{1Re3;r}^{FSI} - f_{1Re5;r}^{FSI}$	✓	✓	✓	✓				√	√	✓	√																					
$f_{1Re6;r}^{FSI} - f_{1Re8;r}^{FSI}$															√	✓	✓	✓				√	√	✓	✓							
$f_{1Re9;r}^{FSI} - f_{1Re11;r}^{FSI}$					√	√	✓					√	√	✓					√	√	✓					√	√	√				

Table 11: A \checkmark symbol denotes that the given single e-like ring MC template is modified when the given systematic parameter is tweaked. The table lists all systematic parameters, relevant to single e-like ring events, considered in this analysis (first column) and all 32 MC templates used for constructing the single e-like ring event reconstructed energy spectrum p.d.f (first row).

Source of uncertainty	$1R\mu \delta N_{SK}/N_{SK}$	1Re $\delta N_{SK}/N_{SK}$
SuperK detector	10.05%	3.20%
BANFF (prefit)	21.66%	24.57%
BANFF (postfit)	4.13%	4.71%
Uncorrelated XSec	6.34%	4.18%
FSI+SI	3.49%	2.30%
Total (BANFF prefit)	25.33%	25.14%
Total (BANFF postfit)	13.32%	7.52%

Table 12: Effect of 1σ systematic parameter variation on the number of single μ -like ring and single e-like ring events, computed for oscillations with $|\Delta m^2|$ =2.36×10⁻³ eV^2/c^4 . $\sin^2\theta_{23}$ =0.5, $\sin^2\theta_{13}$ =0.025, δ_{CP} =0. 2012 PDG values are used for the solar parameters and the normal mass hierarchy is assumed. The numbers shown were calculated for an exposure of 3.010×10²⁰ POT and BANFF-tuned MC templates were used.

Figure 14: Total error envelope of the single μ -like ring event reconstructed energy spectrum (top) and total error envelope of the single e-like ring event reconstructed energy spectrum (bottom), for oscillations with $|\Delta m^2|$ =2.36×10⁻³ eV^2/c^4 . $\sin^2\theta_{23}$ =0.5, $\sin^2\theta_{13}$ =0.025, δ_{CP} =0. 2012 PDG values are used for the solar parameters and the normal mass hierarchy is assumed. The plot shown was calculated for an exposure of 3.010×10²⁰ POT and BANFF-tuned MC templates were used.

6. Neutrino oscillation fitting

6.1. Minimization method

The VaLOR joint 3-flavour analysis uses a binned likelihood-ratio method. Measurements of the oscillation parameters $|\Delta m^2|$, $\sin^2\theta_{23}$, $\sin^2\theta_{13}$ and δ_{CP}^3 are obtained by comparing the observed and predicted reconstructed single μ -like ring and single e-like ring energy spectra in SuperK. Let N_μ and N_e be the numbers of reconstructed energy bins considered for the single μ -like ring and single e-like ring samples respectively, and a be a $1 \times N_s$ - dimensional array of systematic (nuisance) parameters that affect the SuperK reconstructed energy spectrum prediction of either sample e.g. parameters that control the beam, neutrino interaction simulations and the detector response. Best-fit values are obtained by minimizing:

$$-2\ln\lambda(|\Delta m^{2}|, \sin^{2}\theta_{23}, \sin^{2}\theta_{13}, \delta_{CP}; \mathbf{a}) = 2 \cdot \sum_{r=0}^{N_{\mu}-1} \left[(N_{SK;\mu,r}^{exp} - N_{SK;\mu,r}^{obs}) + N_{SK;\mu,r}^{obs} \cdot \ln\left(\frac{N_{SK;\mu,r}^{obs}}{N_{SK;\mu,r}^{exp}}\right) \right]$$

$$+ 2 \cdot \sum_{r=0}^{N_{e}-1} \left[(N_{SK;e,r}^{exp} - N_{SK;e,r}^{obs}) + N_{SK;e,r}^{obs} \cdot \ln\left(\frac{N_{SK;e,r}^{obs}}{N_{SK;e,r}^{exp}}\right) \right]$$

$$+ (\mathbf{a} - \mathbf{a_0})^{T} \cdot \mathbf{C}^{-1} \cdot (\mathbf{a} - \mathbf{a_0})$$

$$(5)$$

where $N_{SK;\mu,r}^{obs}$ ($N_{SK;e,r}^{obs}$) is the observed number of single μ -like ring (single e-like ring) events in the r^{th} bin, and $N_{SK;\mu,r}^{exp}$ ($N_{SK;e,r}^{exp}$) is the corresponding expected number of events; this expected number is a function of $|\Delta m^2|$, $\sin^2\theta_{23}$, $\sin^2\theta_{13}$ and δ_{CP} and the nuisance parameter vector a. Also $\mathbf{a_0}$ is a $1\times N_s$ - dimensional array containing the nominal values of the systematic parameters, \mathbf{a}^T is the transpose of \mathbf{a} , and \mathbf{C} is the systematic parameter covariance matrix of dimension $N_s\times N_s$. For the stand-alone ν_μ -disappearance (ν_e -appearance) fit, only the single μ -like ring (single e-like ring) sample is used and the corresponding term in Eq. 5 is dropped.

The likelihood-ratio method used in this analysis is equivalent to the extended maximum likelihood method used in the alternative T2K oscillation analysis (see [1, 29] for more details). The advantage of the likelihood-ratio method, compared with the extended maximum-likelihood method, is that in the large-sample limit, the quantity $-2\ln\lambda(|\Delta m^2|,\sin^2\theta_{23},\sin^2\theta_{13},\delta_{CP};\mathbf{a})$ in Eq.5 has a χ^2 distribution and it can therefore be used as a goodness-of-fit test. In this note $-2\ln\lambda(|\Delta m^2|,\sin^2\theta_{23},\sin^2\theta_{13},\delta_{CP};\mathbf{a})$ and $\chi^2(|\Delta m^2|,\sin^2\theta_{23},\sin^2\theta_{13},\delta_{CP};\mathbf{a})$ are used interchangeably.

In the joint 3-flavour oscillation analysis fits, all 83 systematic parameters are allowed to float, whereas in the stand-alone analyses (which use a single SuperK sample) only the relevant systematics are used (see Tab. 9).

The search for the minimum value of $-2\ln\lambda(|\Delta m^2|,\sin^2\theta_{23},\sin^2\theta_{13},\delta_{CP};\mathbf{a})$ is performed in the range $1.0\times10^{-3}~\text{eV}^2/\text{c}^4\le |\Delta m^2|\le 6.0\times10^{-3}~\text{eV}^2/\text{c}^4, 0.0\le \sin^2\theta_{23}\le 1.0, 0.0\le \sin^2\theta_{13}\le 1.0$ and $-\pi\le\delta_{CP}\le\pi$. Systematic parameters included in the oscillation fit are constrained in the range $[-2\sigma_s, +2\sigma_s]$ where σ_s is the one standard deviation error assigned to each systematic parameter⁴. Validations studies were done with systematic parameters fitted in a wider range $[-5\sigma_s, +5\sigma_s]$ with no difference in the results. However, the Run1+2+3 data fit will be updated with a wider range such as $[-5\sigma_s, +5\sigma_s]$. Values of systematic parameters that give a negative predicted number of events in any reconstructed energy bin are not allowed. If this scenario arises, the number of events is changed to +1E-8 in that bin. This is done for the sum of all the interaction modes rather than for each mode separately.

The minimization is performed with Minuit [30], using the Migrad method. If Migrad does not converge, the starting values of the oscillation parameters are re-initialised: the new initial values are randomly drawn from uniform distributions in the ranges $2.0 \cdot 10^{-3} \le |\Delta m^2| \le 3.0 \cdot 10^{-3}$, $0.35 \le \sin^2\theta_{23} \le 0.65$, $0.015 \le \sin^2\theta_{13} \le 0.035$ and the fit is retried. This is repeated 25 times. If the fits still fail to converge, the Simplex algorithm is used.

6.2. Goodness-of-fit tests

The problem of defining a general goodness-of-fit for sparsely populated distributions was discussed in detail during the development of the Run 1+2+3 stand-alone ν_{μ} -disappearance and ν_{e} -appearance analyses. See for example [31]. It was pointed out that, for the Run 1+2+3 statistics, the shape information is not as helpful in forming p-values as the rate information. It was decided that p-values will be calculated using the rate and the reconstructed energy distribution, and that the distribution will use a very coarse binning scheme to ensure that there are sufficient numbers of events in each bin.

 $^{^3}$ A study has been made in which $\sin^2\theta_{12}$ and δm^2 were allowed to float in the fit and the results are shown in Appendix F. The effect was negligible and, in the analysis reported here, they were simply fixed to $\sin^2\theta_{12} = 0.311$ and $\delta m^2 = 7.5 \times 10^{-5} \text{ eV}^2/c^4$.

⁴ Such an error is defined for all but one of the systematic parameters considered in this analysis. The exception is the systematic parameter f_{SF} which parametrises the uncertainty on nuclear modelling, switching between the Relativistic Fermi Gas (RFG) and Spectral Function (SF) models. The allowed range of the parameter f_{SF} in the oscillation fit is [0,1].

A similar approach is used for the joint 3-flavour analysis presented here. For the single μ -like ring sample, 5 reconstructed energy bins are used: 0-0.4, 0.4-0.7, 0.7-1.0, 1.0-2.0 and 2.0-30.0 GeV. For the single e-like ring sample, 3 reconstructed energy bins are used: 0-0.35, 0.35-0.80, 0.80-1.25 GeV. In this note, p-values for the joint 3-flavour fit are computed following the 5+3 binning scheme described above. When p-values are quoted for the stand-alone ν_{μ} -disappearance (ν_{e} -appearance) analysis, the corresponding 5 (3) bin scheme of the single μ -like ring (single e-like ring) event sample is used.

The goodness-of-fit tests that will be shown are built using 1000 toy MC experiments created at the best-fit point to be tested, with statistical and systematic fluctuations. Then, each toy MC experiment is fitted in the coarse binning described above, including the four oscillation parameters and all systematics in the joint 3-flavour fit. For the stand-alone disappearance the fit is performed for $sin^2\theta_{23}$, Δm^2 and the relevant systematics, being the other two oscillation parameters $sin^2\theta_{13}$, δ_{CP} fixed to the usual values. For the stand-alone appearance the fit is performed for $sin^2\theta_{13}$ and the relevant systematics, being the other oscillation parameters fixed to the usual values (with maximal mixing $sin^2\theta_{23} = 0.5$ and $\delta_{CP} = 0$).

6.3. Toy-MC study of fitter performance

The performance of the fitter has been evaluated using ensembles of 1k toy MC experiments generated at different oscillation points with an exposure of 3.010×10^{20} POT. Two kinds of studies were performed with toy MC experiments. First, the simulated experiments included only statistical fluctuations and were fitted with the '4 + 0' fit, i.e. fitting only for oscillation parameters. A second ensemble of toy MC experiments including not only statistical fluctuations but also fluctuations of all systematic parameters was created. Those toy MC experiments were fitted with the '4 + 83' fit, i.e. fitting for oscillation parameters and for all systematic parameters. No issue was identified regarding the fitter performance, the results from these studies were as expected. In addition, the distributions of residuals for the oscillation parameters from both studies, doing '4 + 0' or '4 + 83' fits are consistent, indicating that no unexpected features appear when including fluctuations of the systematic parameters and when fitting for them.

6.4. Construction of confidence regions

In the analysis reported here, confidence regions are constructed using the constant $\Delta\chi^2$ method. 68% and 90% CL limits will be reported for each of $|\Delta m^2|$, $sin^2\theta_{23}$, $sin^2\theta_{13}$ and δ_{CP} oscillation parameters. In addition, 2-dimensional confidence regions for 68% and 90% CL will be shown for the following combinations of parameters: $(sin^2\theta_{23}, |\Delta m^2|)$, $(sin^2\theta_{13}, \delta_{CP})$ and $(sin^2\theta_{23}, sin^2\theta_{13})$.

The first step to construct confidence contours in an oscillation parameter space is to build the $\Delta\chi^2$ surface in that space. The oscillation parameter space is divided into a regular grid. The following grid spacing is used in all confidence region construction methods: $\delta|\Delta m^2|=0.05\times 10^{-3}eV^2/c^4$, $\delta\sin^2\theta_{23}=0.01$, $\delta\sin^2\theta_{13}=0.005$ and $\delta(\delta_{CP})=2\pi/50$. For the joint 3-flavour analysis confidence regions, the χ^2 is minimized at each grid point with respect to all 83 nuisance parameters considered in this analysis and all oscillation parameters not shown on the plot (and not considered to be fixed). For the stand-alone analyses, only the relevant systematics were used.

The confidence regions for the joint analysis are constructed by finding the global best-fit point (fitting all oscillation parameters and all systematic parameters at the same time) and calculating the lines of constant $\Delta\chi^2$ from this point⁵. In the case of the stand-alone appearance analysis, a special procedure is followed to construct the confidence regions in $(sin^2\theta_{13}, \delta_{CP})$ space imitating the actual stand-alone analyses in T2K. In this method, called $raster\ scan$, a best-fit value of $sin^2\theta_{13}$ is found for each fixed value of δ_{CP} , resulting in a line of best-fit points instead of a single best-fit point. Then, confidence intervals in $sin^2\theta_{13}$ at a fixed δ_{CP} are found with respect to each best-fit $sin^2\theta_{13}$ using the 1D $\Delta\chi^2$ critical values [27].

A full Feldman-Cousins construction in the 4-dimensional ($|\Delta m^2|$, $sin^2\theta_{23}$, $sin^2\theta_{13}$ and δ_{CP}) space, including all 83 systematics, is computationally prohibitive. This analysis produces limits on each of the 4 oscillation parameters and, also, confidence regions in 4 2-dimensional surfaces within the 4-dimensional oscillational parameter space. There is no established procedure on how to sample the 4-dimensional oscillation space and generate a toy-MC ensemble for the calculation of the critical $\Delta\chi^2$ values needed for producing the limits or the 2-dimensional contours. We were confronted with this issue both for the Run 1+2 disappearance analysis PRD paper and the Run 1+2+3 disappearance analysis PRL paper, but no satisfactory solution was found. We are aware that the same issue has baffled other collaborations too. In the presence of this ambiguity over how to produce profile Feldman-Cousins contours, we propose that this analysis produces contours only using the constant $\Delta\chi^2$ method. Coverage studies are presented in Sec. I. If a non-ambiguous procedure is found, based on our experience running the Feldman-Cousins confidence region construction for the ν_μ -disappearance analysis, we estimate that about ~50,000 CPU·days would be needed for the joint analysis. The VaLOR group could prepare these contours in the time-scale of two months.

⁵ For 1 fit parameter, the critical values of $\Delta\chi^2$ used are 1.00 (68% CL), 2.71 (90% CL), 3.84 (95% CL), 6.63 (99% CL). For 2 parameters fitted simultaneously, the critical values of $\Delta\chi^2$ used are 2.30 (68% CL), 4.61 (90% CL), 5.99 (95% CL), 9.21 (99% CL).

7. Results of the joint oscillation analysis with the Run 1+2+3 (3.010 \times 10²⁰ POT) dataset

7.1. Best-fit oscillation parameters and systematic parameter pulls

A joint 3-flavour oscillation fit, using the method described in Sec. 6 was performed simultaneously on the single e-like ring and single μ -like ring event reconstructed energy spectra of the 3.010×10^{20} POT Run 1+2+3 dataset. This fit allowed all 83 nuisance parameters considered in this work to float. This analysis found $|\Delta m^2| = 2.494\times10^{-3}~eV^2/c^4$, $\sin^2\theta_{23} = 0.516$, $\sin^2\theta_{13} = 0.029$ and $\delta_{CP} = 2.086$ to be the joint 3-flavour oscillation best-fit values for the Run 1+2+3 dataset for Normal Hierarchy and $|\Delta m^2| = 2.468\times10^{-3}~eV^2/c^4$, $\sin^2\theta_{23} = 0.516$, $\sin^2\theta_{13} = 0.034$ and $\delta_{CP} = 0.921$ for Inverted Hierarchy.

Stand-alone 3-flavour ν_{μ} disappearance and ν_{e} appearance analyses were also performed on the Run 1+2+3 dataset. In the stand-alone ν_{μ} disappearance analysis, $|\Delta m^{2}|$ and $\sin^{2}\theta_{23}$ were determined by fitting the single μ -like ring event reconstructed energy spectrum keeping $\sin^{2}\theta_{13}$ and δ_{CP} fixed, as was done in our published result, and allowing all 57 nuisance parameters relevant to this analysis to float. Similarly, in the stand-alone ν_{e} appearance analysis, $\sin^{2}\theta_{13}$ and δ_{CP} were determined by fitting the single e-like ring event reconstructed energy spectrum, keeping $|\Delta m^{2}|$ and $\sin^{2}\theta_{23}$ fixed, as was done in our published result, and allowing all 69 nuisance parameters relevant to this analysis to float. The results of these fits are summarized in Tab. 13. In this table are the relevant best-fit oscillation parameters, the observed and expected number of single e-like ring and single μ -like ring events, and goodness-of-fit figures. Notice that the best-fit value for $\sin^{2}\theta_{23}$ is the same in both hierarchies although the best-fit value for the other parameters is different. The reason for this result will be investigated in Sec. E.

The pull for each systematic parameter f included in the fit, is calculated as

$$\frac{f_{bf} - f_{nom}}{\sigma_{bf}},\tag{6}$$

where f_{bf} is the best-fit value of the systematic parameter, f_{nom} is the nominal value of the parameter (corresponding to no systematic variation), and σ_{bf} is the Migrad error output from Minuit. The pulls of all systematic parameters allowed to float in the joint 3-flavour oscillation fit to the Run 1+2+3 dataset are shown in Figs. 15 for the fit assuming Normal Hierarchy, and in Fig. 16 for the fit assuming Inverted Hierarchy. From these figures, it is apparent that most systematic parameters barely move from their nominal values. We note that, although all relevant systematic parameters are allowed to float in these fits, few of them move by more than $\pm 0.1\sigma$. When a systematic parameter that is free to move stays close to its nominal value, this means that the reduction in χ^2 from moving that parameter is less than the corresponding increase in the penalty term in equation 5. Only certain systematics are able to change the predicted reconstructed energy spectrum to a sufficient extent to offset the penalty term.

7.2. Goodness-of-fit tests

Goodness-of-fit tests were performed as described in Sec. 6.2, and the p-values for the joint 3-flavour oscillation fit and the stand-alone ν_{μ} disappearance and ν_{e} appearance fits to the Run 1+2+3 dataset are shown in Tab. 13. The χ^{2} distributions from which the p-values were calculated are shown for the Run 1+2+3 joint 3-flavour oscillation fit in Fig. 17 (20), while for the stand-alone ν_{μ} disappearance fit it is shown in Fig. 18 (21) and for the stand-alone ν_{e} appearance it is shown in Fig. 19 (22) for Normal (Inverted) Hierarchy. All fits have a high degree of plausibility.

Analysis	Run	Hierarchy/	$ \Delta m^2 $	$\sin^2 \theta_{23}$	$\sin^2 \theta_{13}$	δ_{CP}	$N_{obs}^{1R\mu}$	$N_{exp}^{1R\mu}$	N_{obs}^{1Re}	N_{exp}^{1Re}	χ^2/ndf	p-value
		Octant	$10^{-3}eV^2/c^4$					1		1		
2012 joint	1+2+3	NH/1st	2.494	0.516	0.029	2.086	58	57.697	11	10.452	72.26/94	0.86
$2012 \nu_{\mu}$ disap.	1+2+3	NH/1st	2.479	0.514	_	_	58	57.901	11	_	56.05/71	0.90
2012 ν_e app.	1+2+3	NH/1st	_	_	0.023	0(fixed)	58	-	11	10.477	16.47/24	0.67
2012 joint	1+2+3	NH/2nd	2.493	0.516	0.029	2.074	58	57.712	11	10.452	72.26/94	
$2012 \nu_{\mu}$ disap.	1+2+3	NH/2nd	2.479	0.514	_	_	58	57.903	11	_	56.05/71	
$2012 \nu_e$ app.	1+2+3	NH/2nd	_	_	0.023	0(fixed)	58	-	11	10.477	16.47/24	
2012 joint	1+2+3	IH/1st	2.468	0.516	0.034	0.921	58	57.715	11	10.454	72.26/94	0.85
$2012 \nu_{\mu}$ disap.	1+2+3	IH/1st	2.474	0.512	_	_	58	57.891	11	_	56.05/71	0.90
$2012 \nu_e$ app.	1+2+3	IH/1st	_	_	0.029	0(fixed)	58	-	11	10.435	16.42/24	0.58
2012 joint	1+2+3	IH/2nd	2.468	0.516	0.034	0.922	58	57.723	11	10.454	72.26/94	
$2012 \nu_{\mu}$ disap.	1+2+3	IH/2nd	2.474	0.512	_	_	58	57.891	11	-	56.05/71	
$2012 \nu_e$ app.	1+2+3	IH/2nd	-	-	0.029	0(fixed)	58	-	11	10.435	16.42/24	

Table 13: Summary of best-fit parameters for the joint 3-flavour oscillation fit, and the stand-alone 3-flavour ν_{μ} disappearance and ν_{e} appearance fits to the Run 1+2+3 dataset. The quoted best-fit χ^{2} values were computed from the test-statistic minimized in the fit (likelihood ratio) with the reconstructed energy binning used in each fit. The table also shows the p-values obtained from the goodness-of-fit test of Sec. 6.2.

7.3. Best-fit single e-like ring and single μ -like ring event reconstructed energy spectra

The reconstructed neutrino energy distribution of single μ -like ring (single e-like ring) events in the Run 1+2+3 dataset is shown in Fig. 23 (Fig. 24) along with best-fit prediction of the joint 3-flavour oscillation analysis, assuming Normal Hierarchy.

In Fig. 23 we superimpose the best-fit prediction from the stand-alone 3-flavour ν_{μ} disappearance analysis, while in In Fig. 24 we superimpose the best-fit prediction from the stand-alone 3-flavour ν_{e} appearance analysis. The distributions are shown with the reconstructed neutrino energy binning that was used in the fitting procedure (see footnote 2 in Sec. 4). The single μ -like ring (single e-like ring) best-fit prediction of the joint 3-flavour oscillation analysis, assuming Inverted Hierarchy, are shown in Fig. 25 (Fig. 26).

Since the reconstructed energy binning used in the fit is relatively fine, it can be beneficial to see the above distributions using a coarser binning scheme⁶. The re-binned reconstructed neutrino energy distribution of single μ -like ring and single e-like ring events for both mass hierarchies are shown in Figs. 27 - 30.

Finally, the ratio of the best-fit reconstructed neutrino energy distribution of single μ -like ring (single e-like ring) events obtained from the joint 3-flavour oscillation analysis and the stand-alone ν_{μ} disappearance (ν_{e} appearance) analysis is shown in Fig. 31 (Fig. 32) for Normal Hierarchy and in Fig. 33 (Fig. 34) for Inverted Hierarchy.

The best-fit single μ -like ring reconstructed energy spectrum from the joint analysis is almost identical to that from the stand-alone ν_{μ} -disappearance analysis from 0.6 - 1.2 GeV, but is slightly lower from 0.3 - 0.6 GeV and >1.2 GeV, and this is true for both mass hierarchies. Meanwhile the ratio of the best-fit single e-like ring reconstructed energy spectrum from the joint analysis to that from the stand-alone ν_{e} -appearance analysis shows different behaviour for the two hierarchies. For the normal hierarchy (NH), this ratio is <1 from 0.1 - 0.3 GeV, >1 from 0.3 - 0.55 GeV, and <1 above 0.55 GeV. However, for the inverted hierarchy (IH) the ratio is <1 from 0.1 - 0.6 GeV and >1 above 0.6 GeV.

7.4. Confidence regions

The marginalized $\Delta\chi^2$ distribution as function of each of $|\Delta m^2|$, $sin^2\theta_{23}$, $sin^2\theta_{13}$ and δ_{CP} oscillation parameters for the joint 3-flavour oscillation fit to the Run 1+2+3 dataset is shown in Figs. 35 - 38. From these plots, the 90% (68%) CL allowed region for the four oscillation parameters can be summarized as 2.227×10^{-3} (2.332×10^{-3}) $eV^2/c^4<|\Delta m^2|<2.773\times10^{-3}$ (2.659×10^{-3}) eV^2/c^4 , 0.401 (0.433) $< sin^2\theta_{23} < 0.628$ (0.596), 0.006 (0.012) $< sin^2\theta_{13} < 0.058$ (0.048) and $-\pi$ ($-\pi$) $< \delta_{CP} < \pi$ (π) for Normal Hierarchy and 2.218×10^{-3} (2.311×10^{-3}) $eV^2/c^4<|\Delta m^2|<2.729\times10^{-3}$ (2.627×10^{-3}) eV^2/c^4 , 0.397 (0.433) $< sin^2\theta_{23} < 0.627$ (0.596), 0.006 (0.013) $< sin^2\theta_{13} < 0.069$ (0.054) and $-\pi$ ($-\pi$) $< \delta_{CP} < \pi$ (π) for Inverted Hierarchy.

The correlations between the oscillation parameters were also studied. In Figs. 39 - 42, we present, respectively, the the 68% and 90% CL regions in the following four 2-dimensional oscillation parameter spaces: $(sin^2\theta_{23}, |\Delta m^2|)$, $(sin^2\theta_{13}, |\Delta m^2|)$, $(sin^2\theta_{13}, \delta_{CP})$ and $(sin^2\theta_{23}, sin^2\theta_{13})$. Results from the stand-alone Run 1+2+3 ν_{μ} disappearance and ν_e appearance analyses are superimposed wherever possible.

Comparisons between the confidence regions obtain from the joint 3-flavour oscillation fits under difference mass hierarchy assumptions are shown in Figs. 43 - 50.

To construct the plots shown in this subsection, the same procedure is followed as in Appendix C. In joint 3-flavour analysis plots, the value of χ^2 was minimized with respect to all 83 nuisance parameters and the oscillation parameters not shown on the plot (except from the solar parameters, $sin^2\theta_{12}$ and δm^2 which, as shown in Appendix F, have a negligible effect and they are fixed to constant values for all the joint and stand-alone analyses). In the plots shown for the stand-alone ν_μ disappearance analysis, unless explicitly stated, $sin^2\theta_{13}$ and δ_{CP} are fixed to constant values, as was done for our published results, and χ^2 was minimized with respect to all 48 nuisance parameters relevant to that analysis. Similarly, for the stand-alone ν_e appearance analysis, unless explicitly stated, $sin^2\theta_{23}$ and $|\Delta m^2|$ are also fixed to constant values, as was done for our published results, and χ^2 was minimized with respect to all 64 nuisance parameters relevant to that analysis.

The $\Delta\chi^2$ distributions of $|\Delta m^2|$ and $\sin^2\theta_{23}$ are almost identical for the joint analysis and the stand-alone ν_μ -disappearance analysis. However the $\Delta\chi^2$ distribution of $\sin^2\theta_{13}$ is wider for the joint analysis than for the stand-alone ν_e -appearance analysis. This is due to the partial degeneracy of this parameter with $\sin^2\theta_{23}$ when fitting the single e-like ring sample. Since $\sin^2\theta_{23}$ is fitted in the joint analysis, the $\Delta\chi^2$ distribution of $\sin^2\theta_{13}$ is wider than in the stand-alone analysis in which $\sin^2\theta_{23}$ is fixed. There is very good agreement between the confidence contours in the $(\sin^2\theta_{23}, |\Delta m^2|)$ space from the joint analysis and those from the stand-alone ν_μ -disappearance analysis. Contours in the $(\sin^2\theta_{13}, \delta_{CP})$ space are wider for the joint analysis with respect to the contours obtained for the stand-alone appearance analysis. The main reason is the different method used (global minimum vs raster scan). In Figs. 51 and 52 the same method (raster scan) was used for both the joint and the stand-alone appearance analysis to fit Run1+2+3 dataset in Normal and Inverted Hierarchy respectively. Contours from the joint analysis agree very well with those from the stand-alone ν_e -appearance analysis when using the raster scan method in both analyses.

⁶ For the single μ -like ring event sample 16 reconstructed energy bins are used arranged as follows: 1 0.3-GeV bin in 0 - 0.3 GeV, 8 0.1-GeV bins in 0.3 - 1.1 GeV, 1 0.15-GeV bin in 1.1 GeV - 1.25 GeV, 1 0.25-GeV bin in 1.25 - 1.5 GeV GeV, 1 0.5-GeV bin in 1.5 - 2 GeV, 2 1-GeV bin in 2-4 GeV, 1 2-GeV bin in 4-6 GeV and 1 bin above 6 GeV. For the single e-like ring event sample 4 0.3 GeV bins in 0-1.2 GeV are used.

The $\Delta\chi^2$ distributions for $|\Delta m^2|$ and $\sin^2\theta_{23}$ are very similar between the NH and IH. However the distribution for $\sin^2\theta_{13}$ and δ_{CP} is shifted to higher values for the IH compared with the NH, while the distribution for δ_{CP} is shifted to lower values. The confidence contours in the $(\sin^2\theta_{23}, |\Delta m^2|)$ space agree very well between the NH and IH, but the upper limit in the $(\sin^2\theta_{13}, \delta_{CP})$ space is higher for the IH than for the NH.

Figure 15: Systematic parameter pulls for the 83 systematics allowed to float in the Run 1+2+3 joint 3-flavour oscillation fit with Normal Hierarchy.

Figure 16: Systematic parameter pulls for the 83 systematics allowed to float in the Run 1+2+3 joint 3-flavour oscillation fit with Inverted Hierarchy.

Figure 17: Distribution of χ^2_{gof} , the goodness-of-fit (gof) χ^2 , from 1k toy MC experiments generated at the Run 1+2+3 joint 3-flavour analysis best-fit oscillation point with Normal Hierarchy. The χ^2_{gof} value for the Run 1+2+3 data (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) + 3 (single e-like ring) reconstructed energy binning scheme described in Sec. 6.2,

Figure 18: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the Run 1+2+3 stand-alone 3-flavour ν_{μ} disappearance analysis best-fit oscillation point with Normal Hierarchy. The χ^2_{gof} value for the Run 1+2+3 data (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) reconstructed energy binning scheme described in Sec. 6.2,

Figure 19: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the Run 1+2+3 stand-alone 3-flavour ν_e appearance analysis best-fit oscillation point with Normal Hierarchy. The χ^2_{gof} value for the Run 1+2+3 data (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 3 (single e-like ring) reconstructed energy binning scheme as described in Sec. 6.2,

Figure 20: Distribution of χ^2_{gof} , the goodness-of-fit (gof) χ^2 , from 1k toy MC experiments generated at the Run 1+2+3 joint 3-flavour analysis best-fit oscillation point with Inverted Hierarchy. The χ^2_{gof} value for the Run 1+2+3 data (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) + 3 (single e-like ring) reconstructed energy binning scheme described in Sec. 6.2.

Figure 21: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the Run 1+2+3 stand-alone 3-flavour ν_{μ} disappearance analysis best-fit oscillation point with Inverted Hierarchy. The χ^2_{gof} value for the Run 1+2+3 data (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) reconstructed energy binning scheme described in Sec. 6.2.

Figure 22: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the Run 1+2+3 stand-alone 3-flavour ν_e appearance analysis best-fit oscillation point with Inverted Hierarchy. The χ^2_{gof} value for the Run 1+2+3 data (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 3 (single e-like ring) reconstructed energy binning scheme as described in Sec. 6.2.

Figure 23: Run 1+2+3 best-fit single μ -like ring event reconstructed energy spectrum for the fit with Normal Hierarchy (black: joint 3-flavour oscillation analysis, blue: stand-alone ν_{μ} disappearance analysis). The distributions are shown with the binning used in the fit.

Figure 24: Run 1+2+3 best-fit single e-like ring event reconstructed energy spectrum for the fit with Normal Hierarchy (black: joint 3-flavour oscillation analysis, red: stand-alone ν_e disappearance analysis). The distributions are shown with the binning used in the fit.

Figure 25: Run 1+2+3 best-fit single μ -like ring event reconstructed energy spectrum for the fit with Inverted Hierarchy (black: joint 3-flavour oscillation analysis, blue: stand-alone ν_{μ} disappearance analysis). The distributions are shown with the binning used in the fit.

Figure 26: Run 1+2+3 best-fit single e-like ring event reconstructed energy spectrum for the fit with inverted Hierarchy (black: joint 3-flavour oscillation analysis, red: stand-alone ν_e disappearance analysis). The distributions are shown with the binning used in the fit.

Figure 27: Run 1+2+3 best-fit single μ -like ring event reconstructed energy spectrum for the fit with Normal Hierarchy (black: joint 3-flavour oscillation analysis, blue: stand-alone ν_{μ} disappearance analysis). The distributions are shown with the coarse binning defined in the main text.

Figure 28: Run 1+2+3 best-fit single e-like ring event reconstructed energy spectrum for the fit with Normal Hierarchy (black: joint 3-flavour oscillation analysis, red: stand-alone ν_e disappearance analysis). The distributions are shown with the coarse binning defined in the main text.

Figure 29: Run 1+2+3 best-fit single μ -like ring event reconstructed energy spectrum for the fit with Inverted Hierarchy (black: joint 3-flavour oscillation analysis, blue: stand-alone ν_{μ} disappearance analysis). The distributions are shown with the coarse binning defined in the main text.

Figure 30: Run 1+2+3 best-fit single e-like ring event reconstructed energy spectrum for the fit with inverted Hierarchy (black: joint 3-flavour oscillation analysis, red: stand-alone ν_e disappearance analysis). The distributions are shown with the coarse binning defined in the main text.

Figure 31: Ratio of the Run 1+2+3 best-fit single μ -like ring event reconstructed energy spectra obtained from the joint 3-flavour oscillation and the stand-alone ν_{μ} disappearance analyses (joint / stand-alone) with Normal Hierarchy. The distributions are shown with the binning used in the fit.

Figure 32: Ratio of the Run 1+2+3 best-fit single e-like ring event reconstructed energy spectra obtained from the joint 3-flavour oscillation and the stand-alone ν_e appearance analyses. (joint / stand-alone) with Normal Hierarchy. The distributions are shown with the binning used in the fit.

Figure 33: Ratio of the Run 1+2+3 best-fit single μ -like ring event reconstructed energy spectra obtained from the joint 3-flavour oscillation and the stand-alone ν_{μ} disappearance analyses (joint / stand-alone) with Inverted Hierarchy. The distributions are shown with the binning used in the fit.

Figure 34: Ratio of the Run 1+2+3 best-fit single e-like ring event reconstructed energy spectra obtained from the joint 3-flavour oscillation and the stand-alone ν_e appearance analyses. (joint / stand-alone) with Inverted Hierarchy. The distributions are shown with the binning used in the fit.

Figure 35: $\Delta\chi^2$ as function of $|\Delta m^2|$ from the analysis of the Run 1+2+3 dataset comparing the joint analysis (black) with the stand-alone ν_μ disappearance (blue) for Normal Hierarchy. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 37: $\Delta\chi^2$ as function of $sin^2\theta_{13}$ from the analysis of the Run 1+2+3 dataset comparing the joint analysis (black) with the stand-alone ν_e appearance (red) for Normal Hierarchy. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 36: $\Delta\chi^2$ as function of $sin^2\theta_{23}$ from the analysis of the Run 1+2+3 dataset comparing the joint analysis (black) with the stand-alone ν_μ disappearance (blue) for Normal Hierarchy. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 38: $\Delta\chi^2$ as function of δ_{CP} from the analysis of the Run 1+2+3 dataset for Normal Hierarchy. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 39: 68% (dashed lines) and 90% (solid lines) CL regions in $(sin^2\theta_{23}, |\Delta m^2|)$ space from the analysis of the Run 1+2+3 dataset comparing the joint analysis (black) with the stand-alone ν_{μ} disappearance (blue) for Normal Hierarchy. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 40: 68% (dashed lines) and 90% (solid lines) CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space from the analysis of the Run 1+2+3 dataset comparing the joint analysis (black) with the stand-alone ν_e appearance (red) for Normal Hierarchy. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters. Notice that different methods are used to construct confidence regions for the joint analysis (global minimum) and for the stand-alone appearance analysis (raster scan). Middle solid red line is the line of best-fit points from the raster scan in the stand-alone appearance analysis.

Figure 41: 68% (dashed lines) and 90% (solid lines) CL regions in $(sin^2\theta_{13}, |\Delta m^2|)$ space from the analysis of the Run 1+2+3 dataset for Normal Hierarchy. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 42: 68% (dashed lines) and 90% (solid lines) CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space from the analysis of the Run 1+2+3 dataset for Normal Hierarchy. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 43: $\Delta\chi^2$ as function of $|\Delta m^2|$ from the joint 3-flavour oscillation analysis of the Run 1+2+3 dataset. Comparing $\Delta\chi^2$ curves for Normal Hierarchy (black) and Inverted Hierarchy (azure). At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 44: $\Delta\chi^2$ as function of $sin^2\theta_{23}$ from the 3-flavour oscillation analysis of the Run 1+2+3 dataset. Comparing $\Delta\chi^2$ curves for Normal Hierarchy (black) and Inverted Hierarchy (azure). At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 45: $\Delta\chi^2$ as function of $sin^2\theta_{13}$ from the 3-flavour oscillation analysis of the Run 1+2+3 dataset. Comparing $\Delta\chi^2$ curves for Normal Hierarchy (black) and Inverted Hierarchy (azure). At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 46: $\Delta\chi^2$ as function of δ_{CP} from the 3-flavour oscillation analysis of the Run 1+2+3 dataset. Comparing $\Delta\chi^2$ curves for Normal Hierarchy (black) with Inverted Hierarchy (azure). At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 47: 90% CL regions in $(sin^2\theta_{23}, |\Delta m^2|)$ space from the joint 3-flavour oscillation analysis of the Run 1+2+3 dataset, comparing contours for the Normal Hierarchy (black) and Inverted Hierarchy (azure). At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 48: 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space from the joint 3-flavour oscillation analysis of the Run 1+2+3 dataset, comparing contours for the Normal Hierarchy (black) and Inverted Hierarchy (azure). At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 49: 90% CL regions in $(sin^2\theta_{13}, |\Delta m^2|)$ space from the joint 3-flavour oscillation analysis of the Run 1+2+3 dataset, comparing contours for the Normal Hierarchy (black) and Inverted Hierarchy (azure). At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 50: 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space from the joint 3-flavour oscillation analysis of the Run 1+2+3 dataset, comparing contours for the Normal Hierarchy (black) and Inverted Hierarchy (azure). At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 51: 68% (dashed lines) and 90% (solid lines) CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space from the analysis of the Run 1+2+3 dataset comparing the joint analysis (black) with the stand-alone ν_e appearance (red) for Normal Hierarchy, using the raster scan in both analyses. Middle solid black (red) line is the line of best-fit points from the raster scan in the joint (stand-alone appearance) analysis.

Figure 52: 68% (dashed lines) and 90% (solid lines) CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space from the analysis of the Run 1+2+3 dataset comparing the joint analysis (black) with the stand-alone ν_e appearance (red) for Inverted Hierarchy, using the raster scan in both analyses. Middle solid black (red) line is the line of best-fit points from the raster scan in the joint (stand-alone appearance) analysis.

8. Summary

This technical note reports a joint 3-flavour oscillation analysis by the VaLOR group on the combined Run 1+2+3 dataset, which corresponds to an integrated neutrino beam exposure of 3.020×10^{20} POT. The joint analysis determines $|\Delta m^2|$, $\sin^2\theta_{23}$, $\sin^2\theta_{13}$ and δ_{CP} together by making a simultaneous fit of the reconstructed energy spectra of the single μ -like ring and single e-like ring SuperK event samples. This fit is performed in a 3-flavour framework including constant-density matter effects. Official 2012 T2K analysis inputs are used, and all 83 systematic parameters considered in the analysis (see Sec. 5) are allowed to float in the fit. The Fogli-Lisi convention is used for the "atmospheric" mass-squared splitting $|\Delta m^2|$ (see Sec. 3). The "solar" oscillation parameters $\sin^2\theta_{12}$ and Δm^2_{21} have been found to have a negligible effect (see appendix F), and are fixed at 0.311 and 7.5×10^{-5} eV²/c⁴ respectively (the 2012 PDG values).

This analysis has been extensively validated. The ν_{μ} -disappearance analysis is identical to the 2012 VaLOR analysis reported in Ref. [4], and the ν_{e} -appearance analysis has been validated against the official 2012 analyses (see appendix A). Studies have been made of fitter residuals (appendix B), fits of 3.020×10^{20} POT fake datasets (appendix C) and the T2K expected sensitivity for 3.020×10^{20} POT (appendix D). These studies have shown that the joint analysis fitter is performing as expected.

In the present version of the analysis, correlations between the single μ -like ring and single e-like ring systematic uncertainties have been neglected, but they will be studied and reported in a future version.

For the normal hierarchy (NH), the joint analysis fit of the reconstructed energy spectra of the single μ -like ring and single e-like ring SuperK event samples gives $|\Delta m^2| = 2.494 \times 10^{-3} \ eV^2/c^4$, $\sin^2\theta_{23} = 0.516$, $\sin^2\theta_{13} = 0.029$ and $\delta_{CP} = 2.086$. The corresponding best-fit values for the inverted hierarchy (IH) are $|\Delta m^2| = 2.468 \times 10^{-3} \ eV^2/c^4$, $\sin^2\theta_{23} = 0.516$, $\sin^2\theta_{13} = 0.034$ and $\delta_{CP} = 0.922$.

Confidence regions are constructed using the constant- $\Delta\chi^2$ method. For the NH, the 90% (68%) C.L. allowed region for the four fitted oscillation parameters can be summarized as 2.227×10^{-3} (2.332×10^{-3}) eV 2 /c 4 < $|\Delta m^2|$ < 2.773×10^{-3} (2.659×10^{-3}) eV 2 /c 4 , 0.401 (0.433) < $\sin^2\theta_{23}$ < 0.628 (0.596), 0.006 (0.012) < $\sin^2\theta_{13}$ < 0.058 (0.048) and - π (- π) < δ_{CP} < π (π). For the IH, the corresponding 90% (68%) C.L. allowed regions are 2.218 ×10 $^{-3}$ (2.311×10 $^{-3}$) eV 2 /c 4 < $|\Delta m^2|$ < 2.729 ×10 $^{-3}$ (2.627×10 $^{-3}$) eV 2 /c 4 , 0.397 (0.433) < $\sin^2\theta_{23}$ < 0.627 (0.596), 0.006 (0.013) < $\sin^2\theta_{13}$ < 0.069 (0.054) and - π (- π) < δ_{CP} < π (π).

The joint analysis has the advantage compared with the stand-alone analyses that it does not need to assume the values of any of the oscillation parameters $|\Delta m^2|$, $\sin^2\theta_{23}$, $\sin^2\theta_{13}$ and δ_{CP} . In particular, the value of $\sin^2\theta_{23}$ is not assumed as in the stand-alone ν_e -appearance analysis, but is constrained by the fit of the reconstructed energy spectrum of the single μ -like ring SuperK event sample.

References

- [1] C.Andreopoulos, T.Dealtry, J.Dobson, N.Grant, M.Haigh, J.Ilic, G.Pearce and A.Weber, T2K 3.23×10¹⁹-POT Muon-1746 Neutrino Disappearance Analysis, T2K-TN-036(v4), 1747
- http://www.t2k.org/docs/technotes/036 1748
- [2] C.Andreopoulos, T.Dealtry, J.Dobson, N.Grant, M.Haigh, J.Ilic, G.Pearce and A.Weber, T2K 1.431×10²⁰-POT Muon-1749 Neutrino Disappearance Analysis, T2K-TN-064(v3), 1750 http://www.t2k.org/docs/technotes/064 1751
- [3] C.Andreopoulos, T.Dealtry, L.Escudero and N.Grant, T2K 1.431×10²⁰-POT 3-Flavour Muon-Neutrino Disappearance 1752 Analysis, T2K-TN-087(v1), 1753 http://www.t2k.org/docs/technotes/087 1754
- [4] C.Andreopoulos, T.Dealtry, L.Escudero and N.Grant, T2K 3.010×10²⁰-POT 3-Flavour Muon-Neutrino Disappearance 1755 Analysis T2K-TN-141(v5), 1756 http://www.t2k.org/docs/technotes/141 1757
- [5] M. Otani and J. Kameda, Super K events and updated systematic errors with 1.43×10²⁰ POT, T2K-TN-065(v8), 1758 http://www.t2k.org/docs/technotes/065 1759
- [6] J. Kameda and R. Wendell, Study on Super-K events and systematic errors relevant for the ν_{μ} disappearance analysis with 1760 $T2K 3.23 \times 10^{19} POT data T2K-TN-034$, 1761 http://www.t2k.org/docs/technotes/034 1762
- [7] ND280 number of selected events and systematics (10dv3 flux), 1763 http://www.t2k.org/asg/oagroup/nd280-offaxis 1764 See also T2K-TN-015(v5) at http://www.t2k.org/docs/technotes/015 1765
- [8] Beam working group, NSK/NND normalisation uncertainty v3.1, 1766 http://www.t2k.org/beam/NuFlux/FluxRelease/10d/nsknnderrv3 1767
- [9] Beam working group, 10dv3 shape error for SK ν_{μ} flux, 1768 http://www.t2k.org/beam/NuFlux/FluxRelease/10d/shapeerrorv31 1769 See also T2K-TN-066(v3) at http://www.t2k.org/docs/technotes/066
- [10] NIWG group, NIWG errors for 10a analysis, 1771 http://www.t2k.org/asg/oagroup/oa_niwg
- [11] P. de Perio et al., Cross section parameters for the 2012a oscillation analysis, T2K-TN-108(v1.3a) 1773
- [12] P. de Perio et al., Implementation of the NIWG cross-section parametrization, T2K-TN-113(v1.2)
- [13] J. Albert and K. Okumura, First ν_e oscillation analysis with T2K 2010a beam data, T2K-TN-042(v1.2.1), 1775 http://www.t2k.org/docs/technotes/042 1776
- [14] J. Albert and K. Okumura, Updated ν_e oscillation analysis with Run 1+2 data, T2K-TN-052(v1.1), 1777 http://www.t2k.org/docs/technotes/052 1778
- [15] S. Nakayama, ν_e appearance analysis with maximum likelihood fit to neutrino energy spectrum, T2K-TN-109(v7.1), 1779 http://www.t2k.org/docs/technotes/109 1780
- [16] K. Sakashita et al., Electron neutrino appearance analysis with electron momentum and angle distribution T2K-TN-1781 1782 http://www.t2k.org/docs/technotes/114
- [17] K.Abe, et al., Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam, 1784 Phys. Rev. Lett. 107, 041801 (2011). 1785
- [18] Official release of electron neutrino appearance code and results (internal) http://www.t2k.org/asg/oagroup/anacode 1786
- [19] Study on SK ν_e candidates and systematic errors with T2K 3.23 $\times 10^{19}$ POT data http://www.t2k.org/docs/technotes/028, 1787 T2K-TN-028 1788

- [20] Y.Hayato, A neutrino interaction simulation program library NEUT, Acta Phys.Polon.B40:2477-2489,2009.
- [21] G.L.Fogli, E.Lisi et al., Evidence of theta(13)>0 from global neutrino data analysis, arXiv:1106.6028 [hep-ph]
- [22] M. C. Gonzalez-Garcia, Michele Maltoni, Jordi Salvado, Thomas Schwetz, Global fit to three neutrino mixing: critical look at present precision, arXiv:1209.3023 [hep-ph]
- ¹⁷⁹³ [23] The KamLAND collaboration, Precision Measurement of Neutrino Oscillation Parameters with KamLAND, arXiv:0801.4589 [hep-ex]
- 1795 [24] J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) (URL: http://pdg.lbl.gov)
- 1796 [25] G.Fogli's talk (pages 4,5,6) in NNN05 conference, http://nnn05.in2p3.fr/schedule.html
- [26] Numerical recipes: the art of scientific computing, Cambridge University Press, 3rd edition, ISBN 978-0-521-88068-0, pp100-102
- [27] G.J. Feldman and R.D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys.Rev.D57:3873-3889,1998; physics/9711021
- 1801 [28] R.D. Cousins and V.L.Highland, Nucl.Instr. and Meth. A320:331035, 1992.
- 1802 [29] G. Cowan (1998) Statistical data analysis, Oxford University Press, ISBN 0-19-850155-2.
- [30] F.James, M.Roos, Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations, Comput.Phys.Commun. 10:343 (1975)
- 1805 [31] http://www.t2k.org/asg/oagroup/meeting/20120416/lowstat/view

A. Implementation of ν_e -appearance analysis in the VaLOR analysis framework

The analysis presented in this note uses a modified version of the framework used by the 2012 3-flavour ν_{μ} -disappearance analysis performed by the Rutherford-Oxford-Lancs group and reported in [4]. One of the main extensions of the framework is the ability to analyze single e-like ring events, a mandatory ingredient for the joint fit. This new *VaLOR* ν_e -appearance analysis uses the same inputs as the official 2012 ν_e -appearance analysis [15, 16].

In order to validate the VaLOR ν_e -appearance implementation a comparison with the the official 2012 ν_e -appearance analysis in [15] (the one using reconstructed energy spectrum) will be presented now. For this comparison, the same values of oscillation parameters are used: $sin^2(2\theta_{12}) = 0.8704$, $\Delta m^2_{21} = 7.6 \times 10^{-5}$, $sin^2(2\theta_{23}) = 1.0$, $|\Delta m^2_{32}| = 2.4 \times 10^{-3}$, $\delta_{CP} = 0$ and normal hierarchy.

Tables 14 and 15 show the predicted number of ν_e candidate events corresponding to Run1+2+3 POT for both analyses, before (Table 14) and after (Table 15) BANFF tuning. The agreement is excellent before BANFF tuning, while small differences in Table 15 are due to different BANFF versions used (VaLOR, as explained in [4], is using a more recent BANFF version than the one used for the 2012 official appearance analyses).

Events	$\sin^2(2\theta_{13}) = 0$	$sin^2(2\theta_{13}) = 0$	$sin^2(2\theta_{13}) = 0.1$	$sin^2(2\theta_{13}) = 0.1$
	(official)	(VaLOR)	(official)	(VaLOR)
Total	3.18	3.175	11.11	11.106
$ u_{\mu} $	1.21	1.211	1.21	1.211
$ar{ u_{\mu}}$	0.07	0.067	0.07	0.067
$ u_e $	1.62	1.622	1.50	1.505
$ar{ u_e}$	0.08	0.083	0.08	0.079
osc. ν_e	0.19	0.192	8.24	8.245

Table 14: Predicted number of ν_e candidate events for the Run1+2+3 POT before BANFF tuning (that is, after external flux reweighting using default 11c SK MC with the 11b tuned version 3.2), for VaLOR appearance analysis (black) compared to official appearance analysis (blue) as in Table 1 of [15], using $sin^2(2\theta_{12})=0.8704, \Delta m_{21}^2=7.6\times 10^{-5}, sin^2(2\theta_{23})=1.0, |\Delta m_{32}^2|=2.4\times 10^{-3}, \delta_{CP}=0$ and normal hierarchy.

Events	$sin^2(2\theta_{13}) = 0$	$sin^2(2\theta_{13}) = 0$	$sin^2(2\theta_{13}) = 0.1$	$sin^2(2\theta_{13}) = 0.1$
	(official)	(VaLOR)	(official)	(VaLOR)
Total	3.29	3.210	11.19	11.052
$ u_{\mu}$	1.18	1.163	1.18	1.163
$ar{ u_{\mu}}$	0.07	0.065	0.07	0.065
$ u_e $	1.75	1.703	1.63	1.581
$ar{ u_e}$	0.09	0.089	0.09	0.084
osc. ν_e	0.19	0.189	8.23	8.158

Table 15: Predicted number of ν_e candidate events for the Run1+2+3 POT after applying BANFF tuning (post ND280 fitted values) for VaLOR appearance analysis (black) compared to official appearance analysis (blue) as in Table 9 of [15], using $sin^2(2\theta_{12}) = 0.8704$, $\Delta m_{21}^2 = 7.6 \times 10^{-5}$, $sin^2(2\theta_{23}) = 1.0$, $|\Delta m_{32}^2| = 2.4 \times 10^{-3}$, $\delta_{CP} = 0$ and normal hierarchy.

Fig. 53 presents the MC predicted reconstructed neutrino energy distribution (area-normalized) for $\nu_{\mu} \rightarrow \nu_{e}$ CC signal, intrinsic ν_{e} CC background and NC background components obtained with the *VaLOR* framework, in excellent agreement with Fig. 1 in [15] for the official appearance analysis.

A p-value test similar to the one described in [15] has been performed. $11 \nu_e$ candidates has been observed in the Run1+2+3 data-set. The p-value is defined as the probability for observing 11 or more ν_e candidate events in the 3.010×10^{20} POT data with the $sin^2(2\theta_{13})=0$ hypothesis. 1×10^6 toy experiments with statistical and systematic variations were created in order to compute that probability. Fig. 54 shows the distribution of the number of ν_e candidate events observed. The p-value, corresponding to the area above 11 (white region), is $\approx 8\times 10^{-4}$, equivalent to a $\approx 3\sigma$ significance. These values,

Figure 53: MC predicted reconstructed neutrino energy distribution (area-normalized) for $\nu_{\mu} \rightarrow \nu_{e}$ CC signal (red), intrinsic ν_{e} CC background (green) and NC background (blue) components obtained with *VaLOR* framework, using $sin^{2}(2\theta_{12})=0.8704$, $\Delta m_{21}^{2}=7.6\times10^{-5}$, $sin^{2}(2\theta_{23})=1.0$, $|\Delta m_{32}^{2}|=2.4\times10^{-3}$, $\delta_{CP}=0$ and normal hierarchy.

although computed with 100 times less toy experiments, are very close to the ones obtained in [15] (p-value = 8.6×10^{-4} , 3.1σ significance).

Figure 54: Distribution of predicted number of nu_e candidate events over 1×10^6 toy experiments with $sin^2(2\theta_{13})=0$, including statistical and systematic variations, for 3.010×10^{20} POT, $sin^2(2\theta_{12})=0.8704$, $\Delta m^2_{21}=7.6\times 10^{-5}$, $sin^2(2\theta_{23})=1.0$, $|\Delta m^2_{32}|=2.4\times 10^{-3}$, $\delta_{CP}=0$ and normal hierarchy.

The fit to the Run1+2+3 data-set is the next step in the validation. Fig. 55 shows the $\Delta\chi^2$ curve for normal (left) and inverted (right) hierarchy, in great agreement with Fig. 20 in [15]. The corresponding best-fit point and confidence intervals for $sin^2(2\theta_{13})$ are summarized in table 16. Finally, the reconstructed energy spectrum at the best-fit point is presented in Fig. 56, which is again in excellent agreement with Fig. 21 in [15].

1829

1830

1831

1832

1833

1834

From these comparisons and other detailed tests not shown here, it is concluded that the 2012 *VaLOR* stand-alone ν_e -appearance analysis gives equivalent results to the T2K official appearance analyses.

Figure 55: $\Delta\chi^2$ distribution for the Run1+2+3 data fit assuming normal (left) and inverted (right) mass hierarchy, for 2012 *VaLOR* appearance analysis (dashed blue) and 2012 official results from Fig. 21 in [15] (solid black - digitalized). Fixed values used: $sin^2(2\theta_{12})=0.8704, \Delta m_{21}^2=7.6\times10^{-5}, sin^2(2\theta_{23})=1.0, |\Delta m_{32}^2|=2.4\times10^{-3}$ and $\delta_{CP}=0$.

	NH (TN109)	NH (VaLOR)	IH (TN109)	IH (VaLOR)
Best fit	0.092	0.092	0.112	0.112
68 % C.L.	0.053-0.141	0.053-0.141	0.065-0.170	0.065 - 0.170
90 % C.L.	0.033-0.179	0.033-0.178	0.040-0.215	0.041 - 0.214

Table 16: Best-fit points and confidence intervals for $sin^2(2\theta_{13})$ obtained from Fig. 55, with $\delta_{CP}=0$, $sin^2(2\theta_{12})=0.8704$, $\Delta m^2_{21}=7.6\times 10^{-5}$, $sin^2(2\theta_{23})=1.0$ and $|\Delta m^2_{32}|=2.4\times 10^{-3}$, for normal (NH) and inverted (IH) hierarchy.

Figure 56: Reconstructed energy spectrum at the best-fit point for Run1+2+3 data fit with the VaLOR appearance analysis, assuming $\delta_{CP}=0$, $sin^2(2\theta_{12})=0.8704$, $\Delta m^2_{21}=7.6\times 10^{-5}$, $sin^2(2\theta_{23})=1.0$, $|\Delta m^2_{32}|=2.4\times 10^{-3}$ and normal hierarchy.

B. Fitter performance. Study of residuals.

The fitter performance has been evaluated for different configurations: oscillation points, number of POT, levels of throwing systematics and fitters were varied. Residual distributions (best fit value - input value) are presented in this section. For each study, 1000 toy datasets were created and fitted using MINUIT (MIGRAD), as explained in Sec. 6. Table 17 shows the true input values of the oscillation parameters for the different oscillation points studied.

Oscillation point	$ \Delta m^2 (\text{eV}^2/\text{c}^4)$	$\sin^2\!\theta_{23}$	$\sin^2 \theta_{13}$	δ_{CP}	Mass Hierarchy
0	2.36	0.5	0.025	0	NH
1	2.36	0.38	0.025	0	NH
2	2.36	0.62	0.025	0	NH
3	2.36	0.5	0.015	0	NH
4	2.36	0.5	0.035	0	NH
5	2.36	0.5	0.025	$-\frac{\pi}{2}$	NH
6	2.36	0.5	0.025	$\frac{\pi}{2}$	NH
7	2.2	0.5	0.025	0	NH
8	2.8	0.5	0.025	0	NH
9	2.36	0.5	0.025	0	IH

Table 17: True input values for the different oscillation points used in the study of fitter performance.

B.1. '4 + 0' fit

Figs. 57 - 66 show the distribution of residuals of the four oscillation parameters for each set described in table 17 at 3.010×10^{20} POT. The distribution of residuals for δ_{CP} should not be taken into account due to the insensitivity to this parameter at current POT. A pileup similar to the one observed at maximal mixing $sin^2(2\theta_{23})=1.0$ in the stand-alone disappearance analysis is now appearing at the center of symmetry of the $P(\nu_{\mu} \to \nu_{\mu})$ curve, which corresponds with the maximal disappearance (the difference between $sin^2(\theta_{23})$ values for maximal disappearance and maximal mixing is explained in Sec. E). This pile-up is reduced when the input value for $sin^2(\theta_{23})$ is far from 0.5 (see figures 59 and 60) and disappears if the POT is increased, as shown in figure 67. In general there are no unexpected features.

Figure 57: Distribution of residuals of the four oscillation parameters in the '4 + 0' fit for oscillation point # 0.

Figure 58: Distribution of residuals of the four oscillation parameters in the '4 \pm 0' fit for oscillation point #9.

Figure 59: Distribution of residuals of the four oscillation parameters in the '4 \pm 0' fit for oscillation point # 1.

Figure 60: Distribution of residuals of the four oscillation parameters in the '4 \pm 0' fit for oscillation point # 2.

Figure 61: Distribution of residuals of the four oscillation parameters in the '4 \pm 0' fit for oscillation point # 3.

Figure 62: Distribution of residuals of the four oscillation parameters in the '4 \pm 0' fit for oscillation point # 4.

Figure 63: Distribution of residuals of the four oscillation parameters in the '4 \pm 0' fit for oscillation point # 5.

Figure 64: Distribution of residuals of the four oscillation parameters in the '4 \pm 0' fit for oscillation point # 6.

Figure 65: Distribution of residuals of the four oscillation parameters in the '4 \pm 0' fit for oscillation point # 7.

Figure 66: Distribution of residuals of the four oscillation parameters in the '4 \pm 0' fit for oscillation point # 8.

Figure 67: Distribution of residuals for $sin^2(\theta_{23})$ in the '4 + 0' fit for oscillation point # 1 with 3.010×10^{22} POT.

B.2. $^{\prime}4 + 83^{\prime}$ fit

Figs. 68 - 77 show the distribution of residuals of the four oscillation parameters for each set described in table 17 at 3.010×10^{20} POT, with all systematic fluctuations. As an example, Figs. 78 - 86 show the distribution of residuals for each systematic parameter for oscillation point # 0. For the rest of oscillation points only summary plots showing the mean and its error $(\frac{RMS}{\sqrt{N}})$ for all systematic parameters will be presented (Figs. 87 - B.2) The numbering convention for the systematic parameters in those figures can be found in table 18. After comparing figures 68 - 77 with 57 - 66 it can be concluded that fitting all systematics does not change the distributions of residuals for the oscillation parameters. From Figs. 87 - B.2 there are three systematics with a "biased" mean of the distribution of residuals. The reason for this was found and will be explained now. Apart from that there are still no unexpected features.

The three systematics with a "biased" mean of the distribution of residuals are:

- 1. **Spectral function**: The reason for the distribution of residuals for this parameter to be "biased" is the special distribution function used to tweak this systematic parameter, which is uniform from 0 to 1, centered at 0.5, instead of gaussian. It was checked that when using a gaussian distribution as for the rest, this "bias" disappeared. However, the use of a uniform function will be kept for this parameter as it was done for the disappearance analysis.
- 2. **Pi-less delta decay**: The explanation for the "bias" in its distribution of residuals comes from the special response function used for this for this parameter, which was only calculated up to -1σ and then propagated to -3σ with the same value as for -1σ . This pathology disappears when constraining this parameter with boundaries -1σ to 1σ .
- 3. $1R_{\mu}$ NC efficiency: The reason for this parameter to have a "biased" distribution of residuals comes from the low statistics at current POT. When Poisson fluctuations are made of the bin contents of the E_{reco} distributions, a downward fluctuation is more likely than an upward fluctuation (see replies to comments and revision history for TN141). Adding the fact that the NC modes are distributed around the oscillation maximum, the (most likely) downwards Poisson fluctuations translate into a (most likely) negative value of the NC efficiency, explaining a "bias" to negative values for this parameter. It was checked that the "bias" in the distribution depends on the true input value of $sin^2\theta_{23}$, disappearing when $sin^2\theta_{23}$ is far away from 0.5; and also that it decreases as well when increasing the POT.

#	Systematic
0 -24	BANFF ν_{μ} , $\bar{\nu_{\mu}}$, ν_{e} and $\bar{\nu_{e}}$ flux bins
25	BANFF CCQE axial mass
26	BANFF resonance-production axial mass
27-29	CCQE normalization
30-31	$CC 1\pi$ normalization
32	$NC1\pi0$
33	Fermi momentum
34	Nuclear modeling (Spectral function)
35	Binding energy
36	Shape of π momentum distribution (W shape)
37	CC other shape
38	π -less Δ decay
39	CC coherent normalization
40	NC $1\pi^{\pm}$ normalization
41	NC coherent normalization
42	NC other normalization
43	$\sigma_{\nu_e}/\sigma_{\nu_\mu}$ ratio
44	$\sigma_{\bar{\nu}}/\sigma_{\nu}$ ratio
45	Reconstructed energy scale
46-48	ν_{μ} , $\bar{\nu_{\mu}}$ CCQE ring counting efficiency
49	$\nu_{\mu}, \bar{\nu_{\mu}}$ CCQE other efficiency
50	$\nu_{\mu}, \bar{\nu_{\mu}}$ CCnonQE efficiency
51	NC efficiency
52	$\nu_e, \bar{\nu_e}$ CC efficiency
53-55	$1R_e$ osc. ν_e CC efficiency
56-58	$1R_e \nu_{\mu}, \bar{\nu_{\mu}}$ CC efficiency
59-61	$1R_e \ \nu_e, \bar{\nu_e}$ CC efficiency
62-64	$1R_e$ NC efficiency
65-67	$1R_{\mu}$ FSI: ν_{μ} , $\bar{\nu_{\mu}}$ CCQE
68	R_{μ} FSI: ν_{μ} , $\bar{\nu_{\mu}}$ CCnonQE efficiency
69	R_{μ} FSI: $\nu_e, \bar{\nu_e}$ CC
70	R_{μ} FSI: NC
71-73	$1R_e$ FS: osc. ν_e CC
74-76	$1R_e$ FSI: ν_{μ} , $\bar{\nu_{\mu}}$ CC
77-79	$1R_e$ FSI: ν_e , $\bar{\nu_e}$ CC
80-82	$1R_e$ FSI: NC

Table 18: The numbering of systematic parameters for figures 87 - B.2

Figure 68: Distribution of residuals of the four oscillation parameters in the '4 \pm 83' fit for oscillation point # 0.

Figure 69: Distribution of residuals of the four oscillation parameters in the '4 + 83' fit for oscillation point # 9.

Figure 70: Distribution of residuals of the four oscillation parameters in the '4 + 83' fit for oscillation point # 1.

Figure 71: Distribution of residuals of the four oscillation parameters in the '4 + 83' fit for oscillation point # 2.

Figure 72: Distribution of residuals of the four oscillation parameters in the '4 + 83' fit for oscillation point # 3.

Figure 73: Distribution of residuals of the four oscillation parameters in the '4 + 83' fit for oscillation point # 4.

Figure 74: Distribution of residuals of the four oscillation parameters in the '4 + 83' fit for oscillation point # 5.

Figure 75: Distribution of residuals of the four oscillation parameters in the '4 + 83' fit for oscillation point # 6.

Figure 77: Distribution of residuals of the four oscillation parameters in the '4 \pm 83' fit for oscillation point # 8.

Figure 78: Distribution of residuals of the BANFF (0-9) systematic parameters in the '4 + 83' fit for oscillation point #0.

Figure 79: Distribution of residuals of the BANFF (10-19) systematic parameters in the $^{\prime}4+83^{\prime}$ fit for oscillation point # 0.

Figure 80: Distribution of residuals of the BANFF (20-29) systematic parameters in the $^{\prime}4+83^{\prime}$ fit for oscillation point # 0.

Figure 81: Distribution of residuals of the BANFF (30-32) and uncorrelated cross sections (I) systematic parameters in the '4 + 83' fit for oscillation point #0.

Figure 82: Distribution of residuals of uncorrelated cross sections (II) systematic parameters in the '4 + 83' fit for oscillation point # 0.

Figure 83: Distribution of residuals of SK detector (I) systematic parameters in the $^{\prime}4+83^{\prime}$ fit for oscillation point # 0.

Figure 84: Distribution of residuals of SK detector (II) systematic parameters in the $^{\prime}4+83^{\prime}$ fit for oscillation point # 0.

Figure 85: Distribution of residuals of FSI+SI (I) systematic parameters in the $^{\prime}4+83^{\prime}$ fit for oscillation point # 0.

Figure 86: Distribution of residuals of FSI+SI (I) systematic parameters in the $^{\prime}4+83^{\prime}$ fit for oscillation point # 0.

Figure 87: Summary of distribution of residuals of systematic parameters in the '4 + 83' fit for oscillation point # 0.

Residuals for systematics 0.5 0.4 0.3 0.2 0.1 -0.1 -0.2 -0.3 -0.4 -0.5 0 10 20 30 40 50 60 70 80 Parameter

Figure 88: Summary of distribution of residuals of systematic parameters in the $^{\prime}4+83^{\prime}$ fit for oscillation point # 1.

Figure 89: Summary of distribution of residuals of systematic parameters in the $^{\prime}4+83^{\prime}$ fit for oscillation point # 2.

Figure 90: Summary of distribution of residuals of systematic parameters in the $^{\prime}4+83^{\circ}$ fit for oscillation point # 3.

Figure 91: Summary of distribution of residuals of systematic parameters in the $^44 + 83^\circ$ fit for oscillation point # 4.

Figure 92: Summary of distribution of residuals of systematic parameters in the $^{\prime}4+83^{\prime}$ fit for oscillation point # 5.

Figure 93: Summary of distribution of residuals of systematic parameters in the $^44 + 83^\circ$ fit for oscillation point # 6.

Figure 94: Summary of distribution of residuals of systematic parameters in the $^{\prime}4+83^{\prime}$ fit for oscillation point #7.

Figure 95: Summary of distribution of residuals of systematic parameters in the $^{\prime}4+83^{\prime}$ fit for oscillation point # 8.

Figure 96: Summary of distribution of residuals of systematic parameters in the $^{\prime}4+83^{\prime}$ fit for oscillation point # 9.

C. 3.010×10^{20} POT fake dataset fits

In order to validate the joint 3-flavour analysis, fake single μ -like ring and single e-like ring datasets were created for an equivalent exposure of 3.010×10^{20} POT. Two different studies were done: 1) using data sets without statistical fluctuations and 2) using datasets with statistical fluctuations. For each of these datasets, the true oscillation parameters, mass hierarchy, systematic variations and the generated numbers of single μ -like ring and single e-like ring events are shown in Tab. 19 for datasets with no statistical fluctuations and in Tab. 20 for datasets with statistical fluctuations. Each of these datasets was fitted three times: 1) using the VaLOR joint 3-flavour oscillation analysis, 2) with the VaLOR stand-alone ν_e appearance analysis and 3) with the VaLOR stand-alone ν_μ -disappearance analysis. The best-fit values of the oscillation parameters for those fits are also given in Tables 19 and 20, along with the goodness-of-fit and the number of single μ -like ring and single e-like ring events computed from the best-fit spectra. The corresponding figures are 97-144 for fake data sets with no statistical fluctuations and 145-161 for fake data sets with statistical fluctuations.

The profile $\Delta\chi^2$ distribution is also presented for the fit of each fake dataset as a function of each of the oscillation parameters $|\Delta m^2|$, $\sin^2\theta_{23}$, $\sin^2\theta_{13}$ and δ_{CP} . In addition, the 68% and 90% CL regions are given in the following four 2-dimensional oscillation parameter spaces: $(\sin^2\theta_{23}, |\Delta m^2|)$, $(\sin^2\theta_{13}, |\Delta m^2|)$, $(\sin^2\theta_{13}, \delta_{CP})$ and $(\sin^2\theta_{23}, \sin^2\theta_{13})$.

In all profile $\Delta\chi^2$ and confidence region plots shown for the joint 3-flavour analysis, the value of χ^2 was minimized with respect to all 83 nuisance parameters and the oscillation parameters from $|\Delta m^2|$, $\sin^2\theta_{23}$, $\sin^2\theta_{13}$ and δ_{CP} not shown on the plot (as explained in App. F, $\sin^2\theta_{12}$ and δm^2 have a negligible effect and they are fixed to 0.311 and $7.5\times10^{-5}~{\rm eV^2/c^4}$ respectively for all the joint and stand-alone ν_e -appearance and ν_μ -disappearance analyses). In the profile $\Delta\chi^2$ and confidence region plots shown for the stand-alone ν_e appearance analysis, $\sin^2\theta_{23}$ and $|\Delta m^2|$ are also fixed to 0.5 and $2.4\times10^{-3}~{\rm eV^2/c^4}$ respectively, and the χ^2 was minimized with respect to $\sin^2\theta_{13}$, δ_{CP} and all 69 nuisance parameters relevant for that analysis. Similarly, for ν_μ disappearance, $\sin^2\theta_{13}$ and δ_{CP} are fixed to 0.025 and 0 respectively, and the χ^2 was minimized with respect to $\sin^2\theta_{23}$, $|\Delta m^2|$ and all 57 nuisance parameters relevant to that analysis. These fixed values of the oscillation parameters are the same as those used in the T2K published results.

Confidence regions are found with respect to a χ^2 global minimum reported in Tab. 19 or in Tab. 20 (except for the standalone ν_e appearance result in ($\sin^2\theta_{13}$, δ_{CP}) space where the raster scan was used) using the constant- $\Delta\chi^2$ method (see Section 6).

The following color scheme is used for all plots:

- green → true,
- black $\rightarrow VaLOR$ joint 3-flavour oscillation analysis,
- red \rightarrow VaLOR stand-alone ν_e appearance analysis, and
- blue $\rightarrow VaLOR$ stand-alone ν_{μ} disappearance analysis.

From the results of the joint oscillation analysis in these fake dataset fits the following conclusions can be extracted:

- 1. The results show in general a good recovery of the true input value of the oscillation parameters at the best fit point.
- 2. There is no sensitivity to δ_{CP} at current POT as can be observed for instance in Fig. 100.
- 3. As expected, when a best fit value of δ_{CP} is different to the true one, this can cause, due to their intrinsic degeneracy, a bias in the best fit value of $sin^2\theta_{13}$. This bias in $sin^2\theta_{13}$ translates, in turn, into a bias in $sin^2\theta_{23}$.
- 4. Other interesting confidence regions in oscillation parameter spaces different to the usual ones, $(\sin^2 \theta_{13}, |\Delta m^2|)$ and $(\sin^2 \theta_{23}, \sin^2 \theta_{13})$, can be studied with satisfactory results when using the joint oscillation analysis.
- 5. In this work, the difference in the confidence regions for the disappearance oscillation parameters ($\sin^2 \theta_{23}$, $|\Delta m^2|$) with different mass hierarchies was studied for the first time (compare Fig. 101 with Fig. 141).
- 6. Using the joint oscillation analysis it is also possible to investigate the octant degeneracy in $\sin^2 \theta_{23}$ as the single e-like ring sample has been added (see for instance Figs. 106, 109 and 112).

Comparing the results of stand-alone analyses with the ones for the joint analysis:

- 1. A larger uncertainty is found for $\sin^2 \theta_{13}$ with the joint analysis (wider χ^2 profiles in Figs. 99, 107, 115, 123, 131 and 139) because its correlations with $\sin^2 \theta_{23}$ and δ_{CP} are taken into account.
- 2. For the stand-alone appearance analysis, biases appear in the best-fit value of $\sin^2\theta_{13}$ when the value of $\sin^2\theta_{23}$ or δ_{CP} does not correspond to the value assumed as prior (typically $\sin^2\theta_{23}$ =0.5 and δ_{CP} =0), as shown in Table 19 for sets #1 and #3. Fitting them in the joint analysis solves this problem.
- 3. The confidence regions in the 2-dimensional oscillation parameter spaces obtained with the joint analysis are comparable in size with the ones obtained with stand-alone analyses, because despite the fact that more parameters are included in the fit, this is compensated by the extra information added when working simultaneously with the single μ -like ring and single e-like ring samples.

Set	Fit	$ \Delta m^2 $	$\sin^2 \theta_{23}$	$\sin^2 \theta_{13}$	δ_{CP}	MH	$N_{SK}^{1R\mu}$	N_{SK}^{1Re}	Figures			
		$(\times 10^{-3} \text{ eV}^2/\text{c}^4)$					5K	511	C			
0	true	2.36	0.5	0.025	0.0	Normal	59.745	10.981				
	fit (joint)	2.361	0.500	0.023	-0.279	(fixed)	59.742	10.975	97 - 104			
	fit (ν_e app.)	_	_	0.025	0(fixed)		_	10.982				
	fit (ν_{μ} disapp.)	2.361	0.497	_	_		59.759	_				
1	true	2.36	0.38	0.025	0.0	Normal	69.475	9.199				
	fit (joint)	2.360	0.380	0.025	0.014	(fixed)	69.474	9.202	105 - 112			
	fit (ν_e app.)	_	_	0.019	0(fixed)		_	9.200				
	fit (ν_{μ} disapp.)	2.360	0.380	_	_		69.471	_				
2	true	2.36	0.5	0.015	0.0	Normal	59.688	7.993				
	fit (joint)	2.360	0.506	0.017	0.322	(fixed)	59.676	7.997	113 - 120			
	fit (ν_e app.)	_	_	0.015	0(fixed)		_	7.991				
	fit (ν_{μ} disapp.)	2.360	0.500	_	_		59.726	_				
3	true	2.36	0.5	0.025	$-\pi/2$	Normal	60.006	12.838				
	fit (joint)	2.360	0.529	0.024	-1.522	(fixed)	60.017	12.848	121 - 128			
	fit (ν_e app.)	_	_	0.031	0(fixed)		_	12.860				
	fit (ν_{μ} disapp.)	2.349	0.497	_	_		60.018	_				
4	true	2.2	0.5	0.025	0.0	Normal	64.195	10.956				
	fit (joint)	2.200	0.527	0.024	0.076	(fixed)	64.188	10.955	129 - 136			
	fit (ν_e app.)	_	_	0.025	0(fixed)		_	10.962				
	fit (ν_{μ} disapp.)	2.199	0.501	_	_		64.206	_				
5	true	2.36	0.5	0.025	0.0	Inverted	59.577	9.559				
	fit (joint)	2.359	0.496	0.022	-0.445	(fixed)	59.583	9.558	137 - 144			
	fit (ν_e app.)	_	_	0.025	0(fixed)		_	9.560				
	fit (ν_{μ} disapp.)	2.361	0.496	_	_		59.593	_				

Table 19: True input values (shown in bold) and VALOR best-fit values for a test ensemble of 6 fake datasets with no statistical fluctuations.

ters for the joint analysis (black)

and with respect to $\sin^2\theta_{23}$ and all

relevant nuisance parameters for

the disappearance analysis (blue).

Figure 97: $\Delta \chi^2$ as function of $|\Delta m^2|$ for fake dataset #0. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameand all relevant

Figure 98: $\Delta\chi^2$ as function of $\sin^2\theta_{23}$ for fake dataset #0. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 99: $\Delta\chi^2$ as function of $\sin^2\theta_{13}$ for fake dataset #0. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 100: $\Delta\chi^2$ as function of δ_{CP} for fake dataset #0. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 101: 68% and 90% CL regions in $(sin^2\theta_{23}, |\Delta m^2|)$ space for fake dataset #0. At each point, χ^2 was minimized with respect to $\sin^2\theta_{13}, \delta_{CP}$ and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the disappearance analysis (blue).

Figure 102: 68% and 90% CL regions in $(sin^2\theta_{13},|\Delta m^2|)$ space for fake dataset #0. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 103: 68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #0. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used to construct confidence regions for the joint analysis (global minimum) and for the stand-alone appearance analysis (raster scan).

Figure 104: 68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #0. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

the disappearance analysis (blue).

Figure 106: $\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #1. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 107: $\Delta \chi^2$ as function of $sin^2\theta_{13}$ for fake dataset #1. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 108: $\Delta \chi^2$ as function of δ_{CP} for fake dataset #1. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 109: 68% and 90% CL regions in $(sin^2\theta_{23}, |\Delta m^2|)$ space for fake dataset #1. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the disappearance analysis (blue).

Figure 110: 68% and 90% CL regions in $(sin^2\theta_{13}, |\Delta m^2|)$ space for fake dataset #1. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 111: 68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #1. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used to construct confidence 98 regions for the joint analysis (global minimum) and for the stand-alone appearance analysis (raster scan).

Figure 112: 68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #1. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 113: $\Delta \chi^2$ as function of $|\Delta m^2|$ for fake dataset #2. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 114: $\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #2. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 115: $\Delta \chi^2$ as function of $sin^2\theta_{13}$ for fake dataset #2. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 116: $\Delta \chi^2$ as function of δ_{CP} for fake dataset #2. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 117: 68% and 90% CL regions in $(sin^2\theta_{23}, |\Delta m^2|)$ space for fake

dataset #2. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the disappearance analysis (blue).

Figure 119: 68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #2. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used to construct confidence 99 regions for the joint analysis (global minimum) and for the stand-alone appearance analysis (raster scan).

Figure 120: 68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #2. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 121: $\Delta\chi^2$ as function of $|\Delta m^2|$ for fake dataset #3. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 122: $\Delta\chi^2$ as function of $\sin^2\theta_{23}$ for fake dataset #3. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 123: $\Delta\chi^2$ as function of $\sin^2\theta_{13}$ for fake dataset #3. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 124: $\Delta\chi^2$ as function of δ_{CP} for fake dataset #3. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 125: 68% and 90% CL regions in $(sin^2\theta_{23}, |\Delta m^2|)$ space for fake dataset #3. At each point, χ^2 was minimized with respect to $\sin^2\theta_{13}, \delta_{CP}$ and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the disappearance analysis (blue).

Figure 126: 68% and 90% CL regions in $(sin^2\theta_{13},|\Delta m^2|)$ space for fake dataset #3. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 127: 68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #3. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used to construct confidence 100 regions for the joint analysis (global minimum) and for the stand-alone appearance analysis (raster scan).

Figure 128: 68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #3. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 129: $\Delta\chi^2$ as function of $|\Delta m^2|$ for fake dataset #4. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 130: $\Delta\chi^2$ as function of $\sin^2\theta_{23}$ for take dataset #4. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 131: $\Delta\chi^2$ as function of $\sin^2\theta_{13}$ for fake dataset #4. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 132: $\Delta\chi^2$ as function of δ_{CP} for fake dataset #4. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 133: 68% and 90% CL regions in $(sin^2\theta_{23}, |\Delta m^2|)$ space for fake dataset #4. At each point, χ^2 was minimized with respect to $\sin^2\theta_{13}, \delta_{CP}$ and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the disappearance analysis (blue).

Figure 134: 68% and 90% CL regions in $(sin^2\theta_{13},|\Delta m^2|)$ space for fake dataset #4. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 135: 68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #4. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used to construct confidence 101 regions for the joint analysis (global minimum) and for the stand-alone appearance analysis (raster scan).

Figure 136: 68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #4. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 137: $\Delta \chi^2$ as function of $|\Delta m^2|$ for fake dataset #5. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 138: $\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #5. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 139: $\Delta \chi^2$ as function of $sin^2\theta_{13}$ for fake dataset #5. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 140: $\Delta \chi^2$ as function of δ_{CP} for fake dataset #5. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 141: 68% and 90% CL regions in $(sin^2\theta_{23}, |\Delta m^2|)$ space for fake dataset #5. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the disappearance analysis (blue).

Figure 142: 68% and 90% CL regions in $(sin^2\theta_{13}, |\Delta m^2|)$ space for fake dataset #5. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 144: 68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #5. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Systematics	Nominal	See Fig.	- 75	100	Random	See Fig.	172		E_{reco}	: ::	See Fig. 173 -	186		Nominal	See Fig.	187 -	200		Nominal	See Fig.	201 -	214		Nominal	See Fig.	228	Nominal	See Fig.		242		Nominal	See Fig.	2 4 5 -	
p-value	I	0.95	80 0	0.81	ı	0.35	0.20	0.53	ı	!	0.17	0.39	60.0	1	0.73		0.71	0.49	ı	0.30		0.43	0.27	ı	0.25	0.08		0.93		0.85	0.76	ı	0.58	09.0	0.53
χ^2 /ndf	ı	81.85/94	16 08/77	65.09/71	1	73.86/94	22.70/24	52.24/71	I		74.34/94	16.65/24	58.10/71	I	101.18/94		29.70/24	72.07/71	ı	78.51/94		17.13/24	62.16/71	ı	75.27/94	24.58/24		90.38/94		18.67/24	72.36/71	ı	73.72/94	15.82/24	58.09/71
N_{SK}^{1Re}	7	6.752	6 7/11		11	10.962	10.894	-	12	(12.679	12.695	ı	11	11.138		11.272	ı	w	5.087		5.047	1	13	12.594	12.541	7	6.972		6.961	ı	11	11.374	11.450	I
$N_{SK}^{1R\mu}$	63	288.09		61.010	55	54.802	ı	55.406	55	,	56.166	ı	56.821	53	61.157		ı	60.964	27	56.061		1	56.235	69	68.012	- 68 452	53	57.620		ı	57.665	25	54.485	I	54.708
MH	Normal	(paxy)			Normal	(fixed)			Normal	,	(fixed)			Normal	(fixed)				Normal	(fixed)				Normal	(fixed)		Normal	(fixed)	,			Inverted	(fixed)		
δ_{CP}	0.0	2.110	Offrad)	O(11/2Cd)	0.0	0.722	0(fixed)	_	0.0	1	0.707	0(fixed)	Ĺ	0.0	-0.263		0(fixed)	1	0.0	1.072		0(fixed)	_	$-\pi/2$	0.70	0(fixed)	0.0	3.141		0(fixed)	ı	0.0	-0.379	0(fixed)	ı
$\sin^2 \theta_{13}$	0.025	0.016	0.011	1.0.0	0.025	0.030	0.026	ı	0.025	6	0.036	0.032	I	0.025	0.030		0.026	1	0.015	0.009		900.0	1	0.025	0.048	0.031	0.025	0.013		0.012	ı	0.025	0.029	0.033	ı
$\sin^2 \theta_{23}$	0.5	0.509		0.514	0.5	0.516	I	0.514	0.5	(0.520	I	0.514	0.38	0.400		1	0.403	0.5	0.505		1	0.514	0.5	0.389	0 384	0.50	0.506		I	0.513	0.5	0.513	1	0.511
$\begin{vmatrix} \Delta m^2 \\ (\times 10^{-3} \\ \text{eV}^2/\text{c}^4) \end{vmatrix}$	2.36	2.369		2.356	2.36	2.511	ı	2.492	2.36		2.431	1	2.431	2.36	2.317		1	2.278	2.36	2.427		ı	2.420	2.36	2.455	7 411	2.2	2.234		1	2.220	2.36	2.503	1 (2.513
Set	6 true	fit (joint)	fit (1, and)	fit $(\nu_e \text{ disapp.})$	7 true	fit (joint)	fit (ν_e app.)	fit (ν_{μ} disapp.)	8 true		fit (joint)	fit (ν_e app.)	fit $(\nu_{\mu} \text{ disapp.})$	9 true	fit (joint)		fit (ν_e app.)	fit (ν_{μ} disapp.)	10 true	fit (joint)		fit (ν_e app.)	fit (ν_{μ} disapp.)	11 true	fit (joint)	fit (ν_e app.)	12 frue	fit (joint)	•	fit (ν_e app.)	fit (ν_{μ} disapp.)	13 true	fit (joint)	$\text{fit } (\nu_e \text{ app.})$	fit (ν_{μ} disapp.)

Table 20: True input values (shown in bold) and VALOR best-fit values for a test ensemble of 7 fake datasets with statistical fluctuations

Figure 145: Single μ -like ring event best-fit reconstructed energy spectrum to fake dataset #6.

Figure 146: Single e-like ring event best-fit reconstructed energy spectrum to fake dataset #6.

Figure 147: Systematic parameter pulls for the oscillation fit to fake dataset #6.

Figure 148: Distribution of χ^2_{gof} , the goodness-of-fit (gof) χ^2 , from 1k toy MC experiments generated at dataset #6 joint 3-flavour analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #6 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) + 1 (single e-like ring) reconstructed energy binning scheme described in Sec. 6.2,

Figure 149: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #6 stand-alone 3-flavour ν_{μ} disappearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #6 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) reconstructed energy binning scheme described in Sec. 6.2,

Figure 150: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #6 stand-alone 3-flavour ν_e appearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #6 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using a single reconstructed energy bin, as described in Sec. 6.2,

Figure 151: $\Delta\chi^2$ as function of $|\Delta m^2|$ for fake dataset #6. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 152: $\Delta\chi^2$ as function of $\sin^2\theta_{23}$ for fake dataset #6. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 153: $\Delta\chi^2$ as function of $\sin^2\theta_{13}$ for fake dataset #6. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 154: $\Delta\chi^2$ as function of δ_{CP} for fake dataset #6. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 155: 68% and 90% CL regions in $(sin^2\theta_{23}, |\Delta m^2|)$ space for fake dataset #6. At each point, χ^2 was minimized with respect to $\sin^2\theta_{13}, \delta_{CP}$ and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the disappearance analysis (blue).

Figure 156: 68% and 90% CL regions in $(sin^2\theta_{13},|\Delta m^2|)$ space for fake dataset #6. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 157: 68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #6. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used to construct confidence 106 regions for the joint analysis (global minimum) and for the stand-alone appearance analysis (raster scan).

Figure 158: 68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #6. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 159: Single μ -like ring event best-fit reconstructed energy spectrum to fake dataset #7.

Figure 160: Single e-like ring event best-fit reconstructed energy spectrum to fake dataset #7.

Figure 161: Systematic parameter pulls for the oscillation fit to fake dataset #7.

Figure 162: Distribution of χ^2_{gof} , the goodness-of-fit (gof) χ^2 , from 1k toy MC experiments generated at dataset #7 joint 3-flavour analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #7 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) + 3 (single e-like ring) reconstructed energy binning scheme described in Sec. 6.2.

Figure 163: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #7 stand-alone 3-flavour ν_{μ} disappearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #7 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) reconstructed energy binning scheme described in Sec. 6.2.

Figure 164: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #7 stand-alone 3-flavour ν_e appearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #7 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 3 (single e-like ring) reconstructed energy binning scheme as described in Sec. 6.2.

Figure 165: $\Delta \chi^2$ as function of $|\Delta m^2|$ for fake dataset #7. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 166: $\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #7. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 167: $\Delta \chi^2$ as function of $sin^2\theta_{13}$ for fake dataset #7. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 168: $\Delta \chi^2$ as function of δ_{CP} for fake dataset #7. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

|∆ m²| 2.8 2.6 2.4 2.2 $\sin^{2}(\theta_{13})$ 80

Figure 169: 68% and 90% CL regions in $(sin^2\theta_{23}, |\Delta m^2|)$ space for fake dataset #7. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the disappearance analysis (blue).

Figure 170: 68% and 90% CL regions in $(sin^2\theta_{13}, |\Delta m^2|)$ space for fake dataset #7. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 171: 68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #7. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used to construct confidence 109 regions for the joint analysis (global minimum) and for the stand-alone appearance analysis (raster scan).

Figure 172: 68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #7. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 173: Single μ -like ring event best-fit reconstructed energy spectrum to fake dataset #8.

Figure 174: Single e-like ring event best-fit reconstructed energy spectrum to fake dataset #8.

Figure 175: Systematic parameter pulls for the oscillation fit to fake dataset #8.

Figure 176: Distribution of χ^2_{gof} , the goodness-of-fit (gof) χ^2 , from 1k toy MC experiments generated at dataset #8 joint 3-flavour analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #8 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) + 3 (single e-like ring) reconstructed energy binning scheme described in Sec. 6.2.

Figure 177: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #8 stand-alone 3-flavour ν_{μ} disappearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #8 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) reconstructed energy binning scheme described in Sec. 6.2.

Figure 178: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #8 stand-alone 3-flavour ν_e appearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #8 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 3 (single e-like ring) reconstructed energy binning scheme as described in Sec. 6.2.

Figure 179: $\Delta \chi^2$ as function of $|\Delta m^2|$ for fake dataset #8. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 180: $\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #8. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 181: $\Delta \chi^2$ as function of $sin^2\theta_{13}$ for fake dataset #8. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 182: $\Delta \chi^2$ as function of δ_{CP} for fake dataset #8. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 183: 68% and 90% CL regions in $(sin^2\theta_{23}, |\Delta m^2|)$ space for fake dataset #8. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the disappearance analysis (blue).

Figure 184: 68% and 90% CL regions in $(sin^2\theta_{13}, |\Delta m^2|)$ space for fake dataset #8. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 186: 68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #8. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 187: Single μ -like ring event best-fit reconstructed energy spectrum to fake dataset #9.

Figure 188: Single e-like ring event best-fit reconstructed energy spectrum to fake dataset #9.

Figure 189: Systematic parameter pulls for the oscillation fit to fake dataset #9.

Figure 190: Distribution of χ^2_{gof} , the goodness-of-fit (gof) χ^2 , from 1k toy MC experiments generated at dataset #9 joint 3-flavour analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #9 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) + 3 (single e-like ring) reconstructed energy binning scheme described in Sec. 6.2.

Figure 191: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #9 stand-alone 3-flavour ν_{μ} disappearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #9 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) reconstructed energy binning scheme described in Sec. 6.2.

Figure 192: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #9 stand-alone 3-flavour ν_e appearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #9 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 3 (single e-like ring) reconstructed energy binning scheme as described in Sec. 6.2.

Figure 193: $\Delta\chi^2$ as function of $|\Delta m^2|$ for fake dataset #9. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 194: $\Delta\chi^2$ as function of $\sin^2\theta_{23}$ for fake dataset #9. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 195: $\Delta\chi^2$ as function of $\sin^2\theta_{13}$ for fake dataset #9. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 196: $\Delta\chi^2$ as function of δ_{CP} for fake dataset #9. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 197: 68% and 90% CL regions in $(sin^2\theta_{23}, |\Delta m^2|)$ space for fake dataset #9. At each point, χ^2 was minimized with respect to $\sin^2\theta_{13}, \delta_{CP}$ and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the disappearance analysis (blue).

Figure 198: 68% and 90% CL regions in $(sin^2\theta_{13},|\Delta m^2|)$ space for fake dataset #9. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 199: 68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #9. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used to construct confidence 115 regions for the joint analysis (global minimum) and for the stand-alone appearance analysis (raster scan).

Figure 200: 68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #9. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 201: Single μ -like ring event best-fit reconstructed energy spectrum to fake dataset #10.

Figure 202: Single e-like ring event best-fit reconstructed energy spectrum to fake dataset #10.

Figure 203: Systematic parameter pulls for the oscillation fit to fake dataset #10.

Figure 204: Distribution of χ^2_{gof} , the goodness-of-fit (gof) χ^2 , from 1k toy MC experiments generated at dataset #10 joint 3-flavour analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #10 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) + 3 (single e-like ring) reconstructed energy binning scheme described in Sec. 6.2.

Figure 205: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #10 stand-alone 3-flavour ν_{μ} disappearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #10 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) reconstructed energy binning scheme described in Sec. 6.2.

Figure 206: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #10 stand-alone 3-flavour ν_e appearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #10 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 3 (single e-like ring) reconstructed energy binning scheme as described in Sec. 6.2.

Figure 207: $\Delta \chi^2$ as function of $|\Delta m^2|$ for fake dataset #10. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 208: $\Delta \chi^2$ as function of $sin^2\theta_{23}$ for fake dataset #10. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2 \theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 209: $\Delta \chi^2$ as function of $sin^2\theta_{13}$ for fake dataset #10. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 210: $\Delta \chi^2$ as function of δ_{CP} for fake dataset #10. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 211: 68% and 90% CL regions in $(sin^2\theta_{23}, |\Delta m^2|)$ space for fake dataset #10. At each point, χ^2 was minimized with respect to $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the disappearance analysis (blue).

Figure 212: 68% and 90% CL regions in $(sin^2\theta_{13}, |\Delta m^2|)$ space for fake dataset #10. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 214: 68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #10. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 215: Single μ -like ring event best-fit reconstructed energy spectrum to fake dataset #11.

Figure 216: Single e-like ring event best-fit reconstructed energy spectrum to fake dataset #11.

Figure 217: Systematic parameter pulls for the oscillation fit to fake dataset #11.

Figure 218: Distribution of χ^2_{gof} , the goodness-of-fit (gof) χ^2 , from 1k toy MC experiments generated at dataset #11 joint 3-flavour analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #11 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) + 3 (single e-like ring) reconstructed energy binning scheme described in Sec. 6.2.

Figure 219: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #11 stand-alone 3-flavour ν_{μ} disappearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #11 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) reconstructed energy binning scheme described in Sec. 6.2.

Figure 220: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #11 stand-alone 3-flavour ν_e appearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #11 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 3 (single e-like ring) reconstructed energy binning scheme as described in Sec. 6.2.

Figure 221: $\Delta\chi^2$ as function of $|\Delta m^2|$ for fake dataset #11. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 222: $\Delta\chi^2$ as function of $\sin^2\theta_{23}$ for fake dataset #11. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 223: $\Delta\chi^2$ as function of $sin^2\theta_{13}$ for fake dataset #11. At each point, χ^2 was minimized with respect to $sin^2\theta_{23}$, $sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 224: $\Delta\chi^2$ as function of δ_{CP} for fake dataset #11. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 225: 68% and 90% CL regions in $(sin^2\theta_{23}, |\Delta m^2|)$ space for fake dataset #11. At each point, χ^2 was minimized with respect to $\sin^2\theta_{13}, \delta_{CP}$ and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the disappearance analysis (blue).

Figure 226: 68% and 90% CL regions in $(sin^2\theta_{13},|\Delta m^2|)$ space for fake dataset #11. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 227: 68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #11. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used to construct confidence 123 regions for the joint analysis (global minimum) and for the stand-alone appearance analysis (raster scan).

Figure 228: 68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #11. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 229: Single μ -like ring event best-fit reconstructed energy spectrum to fake dataset #12.

Figure 230: Single e-like ring event best-fit reconstructed energy spectrum to fake dataset #12.

Figure 231: Systematic parameter pulls for the oscillation fit to fake dataset #12.

Figure 232: Distribution of χ^2_{gof} , the goodness-of-fit (gof) χ^2 , from 1k toy MC experiments generated at dataset #12 joint 3-flavour analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #12 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) + 3 (single e-like ring) reconstructed energy binning scheme described in Sec. 6.2.

Figure 233: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #12 stand-alone 3-flavour ν_{μ} disappearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #12 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) reconstructed energy binning scheme described in Sec. 6.2.

Figure 234: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #12 stand-alone 3-flavour ν_e appearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #12 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 3 (single e-like ring) reconstructed energy binning scheme as described in Sec. 6.2.

Figure 235: $\Delta\chi^2$ as function of $|\Delta m^2|$ for fake dataset #12. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for

the disappearance analysis (blue).

Figure 236: $\Delta\chi^2$ as function of $\sin^2\theta_{23}$ for fake dataset #12. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 237: $\Delta\chi^2$ as function of $\sin^2\theta_{13}$ for fake dataset #12. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 238: $\Delta\chi^2$ as function of δ_{CP} for fake dataset #12. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 239: 68% and 90% CL regions in $(sin^2\theta_{23}, |\Delta m^2|)$ space for fake dataset #12. At each point, χ^2 was minimized with respect to $\sin^2\theta_{13}, \delta_{CP}$ and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the disappearance analysis (blue).

Figure 240: 68% and 90% CL regions in $(sin^2\theta_{13},|\Delta m^2|)$ space for fake dataset #12. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 241: 68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #12. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used to construct confidence 124 regions for the joint analysis (global minimum) and for the stand-alone appearance analysis (raster scan).

Figure 242: 68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #12. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 243: Single μ -like ring event best-fit reconstructed energy spectrum to fake dataset #13.

Figure 244: Single e-like ring event best-fit reconstructed energy spectrum to fake dataset #13.

Figure 245: Systematic parameter pulls for the oscillation fit to fake dataset #13.

Figure 246: Distribution of χ^2_{gof} , the goodness-of-fit (gof) χ^2 , from 1k toy MC experiments generated at dataset #13 joint 3-flavour analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #13 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) + 3 (single e-like ring) reconstructed energy binning scheme described in Sec. 6.2.

Figure 247: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #13 stand-alone 3-flavour ν_{μ} disappearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #13 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 5 (single μ -like ring) reconstructed energy binning scheme described in Sec. 6.2.

Figure 248: Distribution of χ^2_{gof} from 1k toy MC experiments generated at the dataset #13 stand-alone 3-flavour ν_e appearance analysis best-fit oscillation point. The χ^2_{gof} value for the dataset #13 (χ^2_{data}) is highlighted. All χ^2_{gof} values were computed using the 3 (single e-like ring) reconstructed energy binning scheme as described in Sec. 6.2.

Figure 249: $\Delta \chi^2$ as function of $|\Delta m^2|$ for fake dataset #13. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for

the disappearance analysis (blue).

Figure 250: $\Delta\chi^2$ as function of $\sin^2\theta_{23}$ for fake dataset #13. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 251: $\Delta\chi^2$ as function of $\sin^2\theta_{13}$ for fake dataset #13. At each point, χ^2 was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 252: $\Delta\chi^2$ as function of δ_{CP} for fake dataset #13. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 253: 68% and 90% CL regions in $(sin^2\theta_{23}, |\Delta m^2|)$ space for fake dataset #13. At each point, χ^2 was minimized with respect to $\sin^2\theta_{13}, \delta_{CP}$ and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the disappearance analysis (blue).

Figure 254: 68% and 90% CL regions in $(sin^2\theta_{13},|\Delta m^2|)$ space for fake dataset #13. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

Figure 255: 68% and 90% CL regions in $(sin^2\theta_{13}, \delta_{CP})$ space for fake dataset #13. At each point, χ^2 was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{23}$ and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters for the appearance analysis (red). Notice that different methods are used to construct confidence 127 regions for the joint analysis (global minimum) and for the stand-alone appearance analysis (raster scan).

Figure 256: 68% and 90% CL regions in $(sin^2\theta_{23}, sin^2\theta_{13})$ space for fake dataset #13. At each point, χ^2 was minimized with respect to all oscillation parameters not shown (and not considered to be fixed) and all relevant nuisance parameters.

D. 3.010×10^{20} POT sensitivity studies

A sensitivity study was performed at each of the true oscillation parameter points shown in Tab. 21. For each point the profile $\Delta \chi^2$ distribution is shown as a function of each of the oscillation parameters $|\Delta m^2|$, $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$ and δ_{CP} .

In addition, a sensitivity study was performed at the best fit point found for the Run1+2+3 data fit in both hierarchies (Sec. 7). For these best-fit points, the 90% CL regions are also presented in the following four 2-dimensional oscillation parameter spaces: $(\sin^2 \theta_{23}, |\Delta m^2|), (\sin^2 \theta_{13}, |\Delta m^2|), (\sin^2 \theta_{13}, \delta_{CP})$ and $(\sin^2 \theta_{23}, \sin^2 \theta_{13})$.

To generate each one of the 1-dimensional plots, an average χ^2 was calculated as a function of the oscillation parameters shown on the plot, using fits to an ensemble of several hundreds of toy MC experiments with statistical and systematic fluctuations. In the joint 3-flavour analysis plots, for each toy experiment the χ^2 was minimized with respect to all 83 nuisance parameters and the other oscillation parameters not shown on the plot (as explained in Sec. F, $\sin^2\theta_{12}$ and δm^2 have a negligible effect and they were fixed to 0.311 and 7.5×10^{-5} eV 2 /c 4 respectively throughout this analysis). In the stand-alone ν_e -appearance analysis plots, $\sin^2\theta_{23}$ and $|\Delta m^2|$ were also fixed, and the χ^2 was minimized with respect to all 69 nuisance parameters relevant to that analysis, while in the stand-alone ν_μ -disappearance plots $\sin^2\theta_{13}$ and δ_{CP} were fixed, and the χ^2 was minimized with respect to all 57 nuisance parameters relevant to that analysis. This is identical to the method used for the T2K published results. In the plots showing the 90% CL regions in the four 2-dimensional oscillation parameter spaces for the best-fit points found for the Run1+2+3 data fit in both hierarchies, the sensitivity contours were computed by averaging the contours of the ensemble of toy MC experiments generated with statistical fluctuations and all systematic parameters randomized.

The following color scheme is used for all plots:

- green \rightarrow true,
 - black → VaLOR joint 3-flavour oscillation analysis,
 - red \rightarrow VaLOR stand-alone ν_e appearance analysis,
 - blue \rightarrow VaLOR stand-alone ν_{μ} disappearance analysis, and
 - orange → VaLOR joint 3-flavour oscillation analysis, result of the sensitivity study, when compared with data fit.

Sensitivities for true oscillation parameter points in table 21 are shown in Figs. 257 - 280. The sensitivity studies done for true oscillation parameters corresponding to the Run1+2+3 data best-fit point are shown compared with the result from the Run1+2+3 data fit in Figs. 281 - 288 (1-dimensional) and in Figs. 297 - 300 (2-dimensional) for Normal Hierarchy. For Inverted Hierarchy the same study is presented in Figs. 285 - 288 (1-dimensional) and in Figs. 301 - 304 (2-dimensional). Notice that no smoothing was applied to the contours result of the sensitivity studies in Figs. 297 - 304.

The results from these sensitivity studies are consistent with the ones obtained in the study of residuals presented in Sec. B. As an example, in Figs. 257 - 260 sensitivity studies for point #0 in table 21 are presented. It is clear that in Fig. 258 the distribution of averaged $\Delta\chi^2$ got smoothed centered at the center of symmetry of the $P(\nu_{\mu} \to \nu_{\mu})$ curve (maximal disappearance), whose value, slightly different to the true input value for $\sin^2\theta_{23}$, depends on the true input value of $\sin^2\theta_{13}$ (see Sec. E). Due to this feature, a small bias appears for $|\Delta m^2|$ in Fig. 257, exactly the same that was found in Figs. 57 or 68.

No unexpected features were found.

Point	$ \Delta m^2 $ (eV ² /c ⁴)	$\sin^2\!\theta_{23}$	$\sin^2\!\theta_{13}$	δ_{CP}	Hierarchy
0	2.36×10^{-3}	0.5	0.025	0	Normal
1	2.36×10^{-3}	0.38	0.025	0	Normal
2	2.36×10^{-3}	0.5	0.015	0	Normal
3	2.36×10^{-3}	0.5	0.025	$-\pi/2$	Normal
4	2.2×10^{-3}	0.5	0.025	0	Normal
5	2.36×10^{-3}	0.5	0.025	0	Inverted

Table 21: True oscillation parameter points used in the sensitivity study. $\sin^2 \theta_{12}$ and δm^2 were fixed to 0.857 and 7.5×10^{-5} eV²/c⁴ respectively (2012 PDG values).

Figure 257: $\Delta\chi^2$ as a function of $|\Delta m^2|$ for true oscillation parameter point #0. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 258: $\Delta\chi^2$ as function of $\sin^2\theta_{23}$ for true oscillation parameter point #0. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 259: $\Delta\chi^2$ as function of $\sin^2\theta_{13}$ for true oscillation parameter point #0. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 260: $\Delta\chi^2$ as function of δ_{CP} for true oscillation parameter point #0. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{23}$, $\sin^2\theta_{13}$ and all relevant nuisance parameters.

Figure 261: $\Delta\chi^2$ as function of $|\Delta m^2|$ for true oscillation parameter point #1. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 262: $\Delta\chi^2$ as function of $\sin^2\theta_{23}$ for true oscillation parameter point #1. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 263: $\Delta \chi^2$ as function of $\sin^2 \theta_{13}$ for true oscillation parameter point #1. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2 \theta_{23}$, $\sin^2 \theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 264: $\Delta\chi^2$ as function of δ_{CP} for true oscillation parameter point #1. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{23}$, $\sin^2\theta_{13}$ and all relevant nuisance parameters.

Figure 265: $\Delta\chi^2$ as function of $|\Delta m^2|$ for true oscillation parameter point #2. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 266: $\Delta\chi^2$ as function of $\sin^2\theta_{23}$ for true oscillation parameter point #2. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 267: $\Delta\chi^2$ as function of $\sin^2\theta_{13}$ for true oscillation parameter point #2. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 268: $\Delta\chi^2$ as function of δ_{CP} for true oscillation parameter point #2. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{23}$, $\sin^2\theta_{13}$ and all relevant nuisance parameters.

Figure 269: $\Delta\chi^2$ as function of $|\Delta m^2|$ for true oscillation parameter point #3. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 270: $\Delta\chi^2$ as function of $\sin^2\theta_{23}$ for true oscillation parameter point #3. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 271: $\Delta\chi^2$ as function of $\sin^2\theta_{13}$ for true oscillation parameter point #3. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 272: $\Delta\chi^2$ as function of δ_{CP} for true oscillation parameter point #3. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{23}$, $\sin^2\theta_{13}$ and all relevant nuisance parameters.

Figure 273: $\Delta\chi^2$ as function of $|\Delta m^2|$ for true oscillation parameter point #4. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 274: $\Delta\chi^2$ as function of $\sin^2\theta_{23}$ for true oscillation parameter point #4. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 275: $\Delta\chi^2$ as function of $\sin^2\theta_{13}$ for true oscillation parameter point #4. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 276: $\Delta\chi^2$ as function of δ_{CP} for true oscillation parameter point #4. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{23}$, $\sin^2\theta_{13}$ and all relevant nuisance parameters.

Figure 277: $\Delta\chi^2$ as function of $|\Delta m^2|$ for true oscillation parameter point #5. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 278: $\Delta\chi^2$ as function of $\sin^2\theta_{23}$ for true oscillation parameter point #5. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 279: $\Delta\chi^2$ as function of $\sin^2\theta_{13}$ for true oscillation parameter point #5. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 280: $\Delta\chi^2$ as function of δ_{CP} for true oscillation parameter point #5. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{23}$, $\sin^2\theta_{13}$ and all relevant nuisance parameters.

Figure 281: $\Delta\chi^2$ as function of $|\Delta m^2|$ for the best fit point found for Run1+2+3 with Normal Hierarchy. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 282: $\Delta\chi^2$ as function of $\sin^2\theta_{23}$ for the best fit point found for Run1+2+3 with Normal Hierarchy. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 283: $\Delta\chi^2$ as function of $\sin^2\theta_{13}$ for the best fit point found for Run1+2+3 with Normal Hierarchy. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters $(\delta_{CP}$ is fixed to 0) for the appearance analysis (red).

Figure 284: $\Delta\chi^2$ as function of δ_{CP} for the best fit point found for Run1+2+3 with Normal Hierarchy. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{23}$, $\sin^2\theta_{13}$ and all relevant nuisance parameters.

Figure 285: $\Delta\chi^2$ as function of $|\Delta m^2|$ for the best fit point found for Run1+2+3 with Inverted Hierarchy. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 286: $\Delta\chi^2$ as function of $\sin^2\theta_{23}$ ffor the best fit point found for Run1+2+3 with Inverted Hierarchy. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to $\sin^2\theta_{23}$ and all relevant nuisance parameters for the disappearance analysis (blue).

Figure 287: $\Delta\chi^2$ as function of $\sin^2\theta_{13}$ for the best fit point found for Run1+2+3 with Inverted Hierarchy. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis (black) and with respect to all relevant nuisance parameters (δ_{CP} is fixed to 0) for the appearance analysis (red).

Figure 288: $\Delta\chi^2$ as function of δ_{CP} for the best fit point found for Run1+2+3 with Inverted Hierarchy. χ^2 was averaged over hundreds of toy-MC experiments and, for each experiment, it was minimized with respect to $|\Delta m^2|$, $\sin^2\theta_{23}$, $\sin^2\theta_{13}$ and all relevant nuisance parameters.

Figure 289: $\Delta\chi^2$ as function of $|\Delta m^2|$ for the best fit point found for Run1+2+3 with Normal Hierarchy. Oranged line is the result of the sensitivity study, where χ^2 was averaged over hundreds of toy-MC experiments and black line is the result of the Run1+2+3 dataset fit.

Figure 290: $\Delta\chi^2$ as function of $\sin^2\theta_{23}$ for the best fit point found for Run1+2+3 with Normal Hierarchy. Orange line is the result of the sensitivity study, where χ^2 was averaged over hundreds of toy-MC experiments and black line is the result of the Run1+2+3 dataset fit.

Figure 291: $\Delta\chi^2$ as function of $\sin^2\theta_{13}$ for the best fit point found for Run1+2+3 with Normal Hierarchy. Orange line is the result of the sensitivity study, where χ^2 was averaged over hundreds of toy-MC experiments and black line is the result of the Run1+2+3 dataset fit.

Figure 292: $\Delta\chi^2$ as function of δ_{CP} for the best fit point found for Run1+2+3 with Normal Hierarchy. Orange line is the result of the sensitivity study, where χ^2 was averaged over hundreds of toy-MC experiments and black line is the result of the Run1+2+3 dataset fit.

Figure 293: $\Delta\chi^2$ as function of $|\Delta m^2|$ for the best fit point found for Run1+2+3 with Inverted Hierarchy. Orange line is the result of the sensitivity study, where χ^2 was averaged over hundreds of toy-MC experiments and black line is the result of the Run1+2+3 dataset fit.

Figure 294: $\Delta\chi^2$ as function of $\sin^2\theta_{23}$ for the best fit point found for Run1+2+3 with Inverted Hierarchy. Orange line is the result of the sensitivity study, where χ^2 was averaged over hundreds of toy-MC experiments and black line is the result of the Run1+2+3 dataset fit.

Figure 295: $\Delta\chi^2$ as function of $\sin^2\theta_{13}$ for the best fit point found for Run1+2+3 with Inverted Hierarchy. Orange line is the result of the sensitivity study, where χ^2 was averaged over hundreds of toy-MC experiments and black line is the result of the Run1+2+3 dataset fit.

Figure 296: $\Delta\chi^2$ as function of δ_{CP} for the best fit point found for Run1+2+3 with Inverted Hierarchy. Orange line is the result of the sensitivity study, where χ^2 was averaged over hundreds of toy-MC experiments and black line is the result of the Run1+2+3 dataset fit.

Figure 297: 90% CL region in $(\sin^2\theta_{23},|\Delta m^2|)$ space for the best fit point found for Run1+2+3 with Normal Hierarchy. Orange line is the sensitivity contour that was computed by averaging the contours of the ensemble of hundreds of toy MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis. Black line is the result of the Run1+2+3 dataset fit.

Figure 298: 90% CL region in $(\sin^2\theta_{13}, |\Delta m^2|)$ space for the best fit point found for Run1+2+3 with Normal Hierarchy. Orange line is the sensitivity contour that was computed by averaging the contours of the ensemble of hundreds of toy MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis. Black line is the result of the Run1+2+3 dataset fit.

Figure 299: 90% CL region in $(\sin^2\theta_{23}, \delta_{CP})$ space for the best fit point found for Run1+2+3 with Normal Hierarchy. Orange line is the sensitivity contour that was computed by averaging the contours of the ensemble of hundreds of toy MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{13}, \delta_{CP}$ and all relevant nuisance parameters for the joint analysis. Black line is the result of the Run1+2+3 dataset fit.

Figure 300: 90% CL region in $(\sin^2\theta_{23},\sin^2\theta_{13})$ space for the best fit point found for Run1+2+3 with Normal Hierarchy. Orange line is the sensitivity contour that was computed by averaging the contours of the ensemble of hundreds of toy MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis. Black line is the result of the Run1+2+3 dataset fit.

Figure 301: 90% CL region in $(\sin^2\theta_{23},|\Delta m^2|)$ space for the best fit point found for Run1+2+3 with Inverted Hierarchy. Orange line is the sensitivity contour that was computed by averaging the contours of the ensemble of hundreds of toy MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis. Black line is the result of the Run1+2+3 dataset fit.

Figure 302: 90% CL region in $(\sin^2\theta_{13}, |\Delta m^2|)$ space for the best fit point found for Run1+2+3 with Inverted Hierarchy. Orange line is the sensitivity contour that was computed by averaging the contours of the ensemble of hundreds of toy MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{13}, \delta_{CP}$ and all relevant nuisance parameters for the joint analysis. Black line is the result of the Run1+2+3 dataset fit.

Figure 303: 90% CL region in ($\sin^2\theta_{13}$, δ_{CP}) space for the best fit point found for Run1+2+3 with Normal Hierarchy. Orange line is the sensitivity contour that was computed by averaging the contours of the ensemble of hundreds of toy MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis. Black line is the result of the Run1+2+3 dataset fit.

Figure 304: 90% CL region in $(\sin^2\theta_{23}, \sin^2\theta_{13})$ space for the best fit point found for Run1+2+3 with Normal Hierarchy. Orange line is the sensitivity contour that was computed by averaging the contours of the ensemble of hundreds of toy MC experiments and, for each experiment, it was minimized with respect to $\sin^2\theta_{13}$, δ_{CP} and all relevant nuisance parameters for the joint analysis. Black line is the result of the Run1+2+3 dataset fit.

E. Difference between $\sin^2\theta_{23}$ values for maximal mixing and maximal disappearance.

As it has been already shown in this note, $\Delta \chi^2$ is not always symmetric with respect to $\sin^2 \theta_{23} = 0.5$. The reason for this behaviour will be explained in this section.

The distribution of $\Delta\chi^2$ vs $\sin^2\theta_{23}$ has two minima which are at values of $\sin^2\theta_{23}$ that are symmetric with respect to a center of symmetry (see, for example, figure 106). It seems natural to think that this center of symmetry must be at exactly $\sin^2\theta_{23}=0.5$ since the value of $\sin^22\theta_{23}$ is exactly identical for θ_{23} and $\pi/2-\theta_{23}$. However it will be shown in this section that the position of the center of symmetry depends on the value of $\sin^2\theta_{13}$ and that it is at 0.5 only if $\sin^2\theta_{13}=0$.

All the results in this technical note include matter effects, but the following calculation is made using the 3-flavour vacuum oscillation probabilities so that the algebra is manageable:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} \mathcal{R}e \left[U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^* \right] sin^2 \left(\frac{\Delta m_{ij}^2 L}{4E} \right)$$

$$+2 \sum_{i>j} \mathcal{I}m \left[U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^* \right] sin \left(\frac{\Delta m_{ij}^2 L}{2E} \right)$$

$$(7)$$

where U_{ab} represents the ab element of the PMNS matrix:

$$U = \begin{pmatrix} c_{12}c_{13} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{13}s_{23}c_{12}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - s_{13}c_{12}c_{23}e^{i\delta} & -s_{23}c_{12} - s_{12}c_{23}s_{13}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$$
(8)

with $s_{12} = \sin(\theta_{12})$, $c_{12} = \cos(\theta_{12})$, etc.

1959

1960

1961

1962

1963

1964

1965

1966

1970

1972

1974

1975

The ν_{μ} -survival probability is plotted as a function of $\sin^2(\theta_{23})$ in figure 305 for different values of $\sin^2(\theta_{13})$. From this figure, it can be seen that the center of symmetry is only at $\sin^2(\theta_{23}) = 0.5$ for $\sin^2(\theta_{13}) = 0$ and that it moves to higher values of $\sin^2(\theta_{23})$ as $\sin^2(\theta_{13})$ increases, for both mass hierarchies. The center of symmetry of the $P(\nu_{\mu} \to \nu_{\mu})$ curve corresponds to its minimum and therefore to the maximal disappearance, so both terms, center of symmetry of the $P(\nu_{\mu} \to \nu_{\mu})$ curve and maximal disappearance are equivalent.

The 3-flavour ν_{μ} -survival probability is

Figure 305: The 3-flavour $P(\nu_{\mu} \to \nu_{\mu})$ with matter effects as a function of $\sin^2\theta_{23}$ for different values of $\sin^2\theta_{13}$ for the normal mass hierarchy (left) and the inverted mass hierarchy (right); $|\Delta m_{32}^2|$ is fixed to $2.4 \times 10^{-3} \text{ eV}^2/\text{c}^4$ and δ_{CP} is fixed to 0.

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - 4|U_{\mu 2}|^{2}|U_{\mu 1}|^{2}sin^{2}\left(\frac{\Delta m_{21}^{2}L}{4E}\right) - 4|U_{\mu 3}|^{2}|U_{\mu 1}|^{2}sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) - 4|U_{\mu 3}|^{2}|U_{\mu 2}|^{2}sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E}\right)$$

$$(9)$$

where from equation 8 the PMNS matrix elements are

$$|U_{\mu 1}|^2 = s_{12}^2 c_{23}^2 + s_{13}^2 s_{23}^2 c_{12}^2 + 2s_{12} s_{13} s_{23} c_{12} c_{23} cos(\delta)$$

$$|U_{\mu 2}|^2 = c_{12}^2 c_{23}^2 + s_{13}^2 s_{23}^2 s_{12}^2 - 2s_{12} s_{13} s_{23} c_{12} c_{23} cos(\delta)$$

$$|U_{\mu 3}|^2 = s_{23}^2 c_{13}^2$$
(10)

The movement of the center of symmetry can be explained mathematically by making some approximations to the 3-flavour $P(\nu_{\mu} \to \nu_{\mu})$ in equation 9. Neglecting Δm^2_{21} , and therefore setting $\Delta m^2_{32} \approx \Delta m^2_{31}$, the third terms in $|U_{\mu 1}|^2$ and $|U_{\mu 2}|^2$ cancel each other,

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - 4\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) c_{13}^{2} s_{23}^{2} \left[s_{12}^{2} c_{23}^{2} + c_{12}^{2} s_{13}^{2} s_{23}^{2} + c_{12}^{2} c_{23}^{2} + s_{12}^{2} s_{13}^{2} s_{23}^{2}\right]$$

$$= 1 - 4\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) c_{13}^{2} s_{23}^{2} \left(s_{12}^{2} + c_{12}^{2}\right) \left[c_{23}^{2} + s_{13}^{2} s_{23}^{2}\right]$$

$$= 1 - 4\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) c_{13}^{2} s_{23}^{2} \left[c_{23}^{2} + s_{13}^{2} s_{23}^{2}\right]$$
(11)

1977 Equation 11 can be written as

$$y \approx 1 - 4Ax(1-k)\left[(1-x) + kx\right] = 1 - 4Ax(1-k) + 4Ax^2(1-k)^2 \tag{12}$$

where $A = \sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right)$, $x = s_{23}^2 = \sin^2(\theta_{23})$ and $k = s_{13}^2 = \sin^2(\theta_{13})$. The minimum of this equation can be found setting the first derivative to zero:

$$\frac{dy}{dx} = -4A(1-k) + 8Ax(1-k)^2 \tag{13}$$

Since $A \neq 0$ and $(1-k) \neq 0$ (for an angle $\theta_{13} < \pi/2$), the value of x at which the oscillation probability is at a minimum is

$$x_{min} = \frac{1}{2(1-k)} \tag{14}$$

It is clear from equation 14 that x_{min} is at $\frac{1}{2}$ when $\sin^2(\theta_{13}) = 0$. Also the only physically-allowed values of $\sin^2(\theta_{13})$ are ≥ 0 , and this means that x_{min} is at $\sin^2(\theta_{23}) > \frac{1}{2}$ when $\sin^2(\theta_{13})$ is non-zero. This simple result explains the dependence on $\sin^2(\theta_{13})$ of the center of symmetry of the $P(\nu_{\mu} \to \nu_{\mu})$ curve, and therefore the dependence on $\sin^2(\theta_{13})$ of the center of symmetry between the two minima of the $\Delta\chi^2$ distribution when plotted against $\sin^2(\theta_{23})$.

As the true value of $\sin^2(\theta_{23})$ approaches the center of symmetry, the two minima become more difficult to separate. If the true value of $\sin^2(\theta_{23})$ is exactly at the center of symmetry, there is only a single minimum in the distribution of $\Delta\chi^2$ against $\sin^2(\theta_{23})$. For a value of $\sin^2(\theta_{23})$ close to the center of symmetry, the χ^2 distribution becomes smoothed around the center of symmetry when statistical fluctuations are added, and the two minima disappear ending up in a single larger minimum combination of both (see for example Fig. 258). This is the explanation of the bias observed in the distribution of residuals for $\sin^2(\theta_{23})$ for any oscillation point with true input value $\sin^2(\theta_{23}) = 0.5$ in Sec. B.

Usually one of the minima is in each octant, but it is also possible that both minima could be in the second octant. For example, the center of symmetry is at $\sin^2(\theta_{23}) \approx 0.513$ if $\sin^2(\theta_{13}) \approx 0.025$ (from reactor experiments). If the best fit is very close to this center of symmetry, say at $\sin^2(\theta_{23}) = 0.505$, the second minimum is at $\sin^2(\theta_{23}) = 0.521$, i.e. both minima are in the second octant.

As observed in Tab. 13, the best-fit value for $\sin^2\theta_{23}$ is the same in both hierarchies although the best-fit values for the other oscillation parameters are different. Already in Fig. 305 one can see that the bias in $\sin^2\theta_{23}$ with respect to 0.5 at the center of symmetry of the $P(\nu_{\mu} \to \nu_{\mu})$ curve is different for same values of $\sin^2\theta_{13}$ depending on the mass hierarchy selected (being the difference with 0.5 smaller for Inverted Hierarchy). Figure 306 shows the 3-flavour $P(\nu_{\mu} \to \nu_{\mu})$ oscillation probability with matter effects as a function of $\sin^2\theta_{23}$ for the best-fit value found for Run1+2+3 dataset with Normal (left) and Inverted (right) Hierarchy. In this figure it is clear that the minimum is found at the best-fit value $\sin^2\theta_{23} = 0.516$ (indicated with a green line) in both hierarchies.

Figure 306: The 3-flavour $P(\nu_{\mu} \to \nu_{\mu})$ with matter effects as a function of $\sin^2\theta_{23}$ for the best fit value found for Run1+2+3 dataset fit with Normal Hierarchy (left) and Inverted Hierarchy (right). The values for the left plot are: $\sin^2\theta_{13} = 0.029$, $|\Delta m_{32}^2| = 2.494 \times 10^{-3} \text{ eV}^2/\text{c}^4$ and $\delta_{CP} = 2.086$. The values for the right plot are: $\sin^2\theta_{13} = 0.034$, $|\Delta m_{32}^2| = 2.468 \times 10^{-3} \text{ eV}^2/\text{c}^4$ and $\delta_{CP} = 0.921$. In both hierarchies the minimum is found at the best-fit value $\sin^2\theta_{23} = 0.516$ (indicated with a green line).

F. Study of the effect of 12-sector (solar) oscillation parameters in the joint oscillation analysis

2002

2003

2004

2005

2006

The effect of including solar parameters, $\sin^2 2\theta_{12}$ and Δm_{21}^2 , in the joint fit has been studied. These parameters were allowed to vary in the fit and were marginalized. As shown in Fig. 307, confidence contours became larger when solar parameters are included in the fit. The best fit point for those parameters is at their extreme values allowed in the fit (see Fig. 308), demonstrating that the joint analysis is unable to fit them, even for the estimated final POT.

Figure 307: $\sin^2 2\theta_{23}$ versus Δm^2_{32} confidence regions for the estimated final POT (7×10²¹). Dark colors for the fit with fixed solar parameters and light colors for the fit with marginalized solar parameters.

Figure 308: Fitted values of $\sin^2 2\theta_{12}$ (left) and Δm_{21}^2 (right) for the joint fit with marginalized solar parameters, for the estimated final POT (7×10²¹).

G. Further studies for δ_{CP}

Further studies were performed in order to understand the results for δ_{CP} in Sec. B. The residuals (fitted value - true input value) for δ_{CP} in figures 57-77 show that the fitter tends to return 0 or $\pm \pi$ irrespective of the true input value. This behaviour is due to the correlations between $\sin^2 \theta_{13}$ and δ_{CP} as it will be explained in this section.

To see how the correlation between $\sin^2 \theta_{13}$ and δ_{CP} explains the distribution of residuals, the following test was performed:

- 1. For one toy experiment with the same true input values as in Fig.57 and no fluctuations, the true χ^2 surface in $(\sin^2\theta_{13}, \delta_{CP})$ space (fixing $\sin^2\theta_{23}$ and $|\Delta m^2|$ to their input values) was built. The true χ^2 surface can be found in Fig. 309. Notice that when zooming the true χ^2 surface around a value of $\sin^2\theta_{13}$ (Fig. 309, right plot) the difference in χ^2 for different values of δ_{CP} is very small at current POT.
- 2. For a selected value of $\sin^2 \theta_{13}$, the values of δ_{CP} in the true χ^2 surface with a value of χ^2 in a minimal band defined (with χ^2 smaller than a certain value) are found and a histogram is filled with them.
- 3. Different values of $\sin^2 \theta_{23}$ are selected following a Gaussian distribution around the true input value to reproduce the effect of the distribution of residuals for this parameter in Fig. 57.

Figure 309: True χ^2 surface in $(\sin^2\theta_{13},\delta_{CP})$ space for a toy experiment with true input values $\sin^2\theta_{23}=0.5, |\Delta m^2|=2.36\times 10^{-3}(eV^2/c^4), \sin^2\theta_{13}=0.025$ and $\delta_{CP}=0$ and no fluctuations, fixing $\sin^2\theta_{23}$ and $|\Delta m^2|$ to their input values. Right, same true χ^2 surface zoomed around true input value for $\sin^2\theta_{13}$.

Figure 310 explains graphically the test made. Figure 311 complements this explanation showing in left top plot the density of points in the true χ^2 minimal band.

The result of the test (Fig. 312, left plot) presents three peaks in the values of $\delta_{CP}=0$ and $\delta_{CP}=\pm\pi$. The fact that the $P_{\nu_{\mu}\to\nu_{e}}$ oscillation probability is almost identical for those values (see Fig. 313) explains these three peaks as well as the S-shape observed in the true χ^{2} surface in Fig. 309.

A more realistic result can be obtained if the test is repeated including the deviations in $\sin^2\theta_{23}$ and $\sin^2\theta_{13}$ from Fig. 57. This is done fixing $\sin^2\theta_{23}$ in the construction of the true χ^2 surface to a value slightly different to the one used to create the toy experiment and centering the Gaussian distribution of selected values of $\sin^2\theta_{13}$ slightly biased with respect to its true input value. In this case the central peak is not centered at 0 but biased as can be observed in Fig. 312, right plot, in good agreement with the distribution of residuals for δ_{CP} in Fig. 57.

Now the test was performed again using as true input values $\delta_{CP}=\pm\pi/2$. Figures 314 and 315 show the true χ^2 surface in $(\sin^2\theta_{13},\delta_{CP})$ space for a toy experiment without fluctuations with true input value $\delta_{CP}=\pi/2$ and $\delta_{CP}=-\pi/2$ respectively and a zoom around the true input value for $\sin^2\theta_{13}$. The rest of input values are the same as for Fig. 309. From the zoom of the true χ^2 surface (right plots in 314 and 315) it is clear that selecting values of $\sin^2\theta_{13}$ around its true input value is only going to intersect with the minimum band in one area, giving then a single peak in the distribution for δ_{CP} . The results of the test for these two toy experiments are shown in Fig. 316 ($\delta_{CP}=\pi/2$ left plot, $\delta_{CP}=-\pi/2$ right plot). Those results do not show three peaks as the test for $\delta_{CP}=0$ but a single peak around the true input value, because no other values of δ_{CP} give the same value of $P_{\nu_u\to\nu_e}$ as that for either $\delta_{CP}=\pi/2$ or $\delta_{CP}=-\pi/2$.

However, to reproduce the results observed in Figs. 63 and 64 is necessary to include the biases in $\sin^2 \theta_{23}$ and $\sin^2 \theta_{13}$ which are much more important now. The result is presented in Fig. 317. Notice that Figs.63 and 64 show the distribution of

Figure 310: Graphical explanation of the test made to understand the distribution of residuals for δ_{CP} . For the Gaussian distribution of selected values of $\sin^2\theta_{13}$ (left bottom plot) the values of δ_{CP} in the true χ^2 minimal band are found (left top plot) and a histogram is filled with them (right plot).

Figure 311: Graphical explanation of the test made to understand the distribution of residuals for δ_{CP} . Same as in figure 311 but replacing left top plot with the density of points in the true χ^2 minimal band.

Figure 312: Result of the test explained in figure 310, i.e. the distribution of selected points vs δ_{CP} . On the left, perfect case. On the right, realistic case including the deviations in $\sin^2\theta_{23}$ and $\sin^2\theta_{13}$ from Fig. 57.

Figure 313: $P_{\nu_{\mu} \rightarrow \nu_{e}}$ oscillation probability vs δ_{CP} with values $\sin^{2}\theta_{23} = 0.5$, $|\Delta m^{2}| = 2.36 \times 10^{-3} (eV^{2}/c^{4})$ and $\sin^{2}\theta_{13} = 0.025$.

residuals (bestfit - input value) and the result of this test in Fig.317 shows a distribution comparable to bestfit values (not (bestfit - input value)).

The same test was repeated for $\delta_{CP}=\pm\pi/2$ including the biases in $\sin^2\theta_{23}$ and $\sin^2\theta_{13}$ from Figs.63 and 64. Notice that the bias in $\sin^2\theta_{13}$ is much larger than in the case of $\delta_{CP}=0$ and with opposite senses (mean in $\sin^2\theta_{13}\approx-0.005$ for $\delta_{CP}=\pi/2$ and mean in $\sin^2\theta_{13}\approx0.006$ for $\delta_{CP}=-\pi/2$, while mean in $\sin^2\theta_{13}\approx0.0007$ for $\delta_{CP}=0$). The result of this new test is shown in Fig. 317. As expected, even for those true input values of $\delta_{CP}=\pm\pi/2$ the distribution vs δ_{CP} presents three peaks at $\delta_{CP}=0$ and $\delta_{CP}=\pm\pi$ when including the corresponding biases in $\sin^2\theta_{23}$ and $\sin^2\theta_{13}$.

An attempt was made to improve the sensitivity to δ_{CP} by constraining the fitted values of the other oscillation parameters. It was found that the sensitivity was improved if $\sin^2 \theta_{13}$ was constrained at larger POT (at current POT the constraint in $\sin^2 \theta_{13}$ is not efficient due to the small sensitivity): the bias in fitting δ_{CP} was removed if $\sin^2 \theta_{13}$ was constrained through the penalty term in equation 5 with an error of 10%, and this is shown in figure 318.

Figure 314: True χ^2 surface in $\sin^2\theta_{13}$, δ_{CP}) space for a toy experiment without fluctuations and with true input values $\sin^2\theta_{23}=0.5, |\Delta m^2|=2.36\times 10^{-3}(eV^2/c^4), \sin^2\theta_{13}=0.025$ and $\delta_{CP}=\pi/2$, fixing $\sin^2\theta_{23}$ and $|\Delta m^2|$ to their input values. Right, same true χ^2 surface zoomed around true input value for $\sin^2\theta_{13}$.

Figure 315: True χ^2 surface in $\sin^2\theta_{13}$, δ_{CP}) space for a toy experiment without fluctuations and with true input values $\sin^2\theta_{23}=0.5, |\Delta m^2|=2.36\times 10^{-3}(eV^2/c^4), \sin^2\theta_{13}=0.025$ and $\delta_{CP}=-\pi/2$, fixing $\sin^2\theta_{23}$ and $|\Delta m^2|$ to their input values. Right, same true χ^2 surface zoomed around true input value for $\sin^2\theta_{13}$.

Figure 316: Result of the test explained in figure 310, i.e. the distribution of selected points vs δ_{CP} . Left plot is for $\delta_{CP}=\pi/2$ and right plot is for $\delta_{CP}=-\pi/2$.

Figure 317: Result of the test explained in figure 310, i.e. the distribution of selected points vs δ_{CP} when including the corresponding biases in $\sin^2\theta_{23}$ and $\sin^2\theta_{13}$ from Figs. 63 and 64. Left plot is for $\delta_{CP}=\pi/2$ and right plot is for $\delta_{CP}=-\pi/2$.

Figure 318: Distribution of residuals of the four oscillation parameters in the '4 + 0' fit for oscillation point with values $\sin^2\theta_{23}=0.34, \ |\Delta m^2|=2.4\times 10^{-3}(eV^2/c^4), \sin^2\theta_{13}=0.025$ and $\delta_{CP}=0$ at the T2K goal POT (7.8×10^{21}) constraining $\sin^2\theta_{13}$ with an error of 10%.

The sensitivity improves when constraining θ_{13} since δ_{CP} is always found in combination with $\sin \theta_{13}$ in the PMNS matrix:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(15)

The test presented in Fig. 318 shows that the distribution of residuals is well behaved and centered at the true value also for δ_{CP} at larger POT, discarding any intrinsic problems in the fitter. It can be repeated for different true input values of δ_{CP} . Figures 319 and 320 shows the same study of residuals for a true input value of $\delta_{CP} = \pi/2$ and $\delta_{CP} = -\pi/2$ respectively. The asymmetry in the residuals for $\sin^2\theta_{13}$ in Figs. 319 and 320 can be explained with the shape of $P_{\nu_{\mu}\to\nu_{e}}$ in Fig. 313. When the true input value is $\delta_{CP} = \pi/2$ then $P_{\nu_{\mu}\to\nu_{e}}$ is at a minimum, and any different value of δ_{CP} gives a larger $P_{\nu_{\mu}\to\nu_{e}}$ so that the fitter tends to compensate this decreasing the fitted value of $\sin^2\theta_{13}$, creating a negative bias. The opposite happens when the true input value is $\delta_{CP} = -\pi/2$: in this case $P_{\nu_{\mu}\to\nu_{e}}$ is at a maximum and any other value of δ_{CP} makes $P_{\nu_{\mu}\to\nu_{e}}$ to be smaller so that the fitter tries to compensate increasing the fitted value of $\sin^2\theta_{13}$, creating a positive bias.

Figure 319: Distribution of residuals of the four oscillation parameters in the '4 + 0' fit for oscillation point with values $\sin^2\theta_{23}=0.34, \ |\Delta m^2|=2.4\times 10^{-3}(eV^2/c^4), \sin^2\theta_{13}=0.025$ and $\delta_{CP}=\pi/2$ at the T2K goal POT (7.8×10^{21}) constraining $\sin^2\theta_{13}$ with an error of 10%.

Figure 320: Distribution of residuals of the four oscillation parameters in the '4 + 0' fit for oscillation point with values $\sin^2\theta_{23}=0.34, \ |\Delta m^2|=2.4\times 10^{-3}(eV^2/c^4), \sin^2\theta_{13}=0.025$ and $\delta_{CP}=-\pi/2$ at the T2K goal POT (7.8×10^{21}) .

From the results presented in this appendix it can be concluded that the distributions of residuals for δ_{CP} in figures 57-77 make sense.

2059

2060

H. Comparison between results in the two mass hierarchies using the Fogli and Lisi convention $(|\Delta m^2|, \delta m^2)$ and the $(|\Delta m^2_{32}|, \Delta m^2_{21})$ convention.

As discussed in Sec. 3, the VaLOR joint oscillation analysis uses the scheme defined by Fogli and Lisi in [21] [25] in which $(|\Delta m_{32}^2|, \Delta m_{21}^2)$ are replaced by $(|\Delta m^2|, \delta m^2)$. This change was adopted in order to compare results with Normal and Inverted mass hierarchies. It is not possible to compare the two hierarchies if the atmospheric mass-squared difference is input as $|\Delta m_{32}^2|$, because in that convention $|\Delta m_{31}^2|$ is the largest mass-squared splitting in the NH, whereas $|\Delta m_{32}^2|$ is the largest in the IH. Then, when comparing results in the two mass hierarchies using $|\Delta m_{32}^2|$, an artificial difference appears between the two results simply because the quantity compared, $|\Delta m_{32}^2|$, has a different meaning in each hierarchy. This fact will be illustrated in this section.

Figure 321 shows the $P(\nu_{\mu} \to \nu_{\mu})$ survival probability in the 2-dimensional oscillation parameter spaces ($\sin^2 \theta_{23}$, $|\Delta m^2|$) (left) and ($\sin^2 \theta_{23}$, $|\Delta m^2_{32}|$) (right) for a fixed value of $P(\nu_{\mu} \to \nu_{\mu}) = 0.05$. Clearly, the results for NH (solid line) and IH (dashed line) in the plot on the left (using Fogli and Lisi convention) are almost identical since the quantity compared, $|\Delta m^2|$, is the same in both hierarchies. However, in the plot on the right a clear difference appears between the oscillation probability in NH and IH, due to the fact that the quantity compared, $|\Delta m^2_{32}|$, has a different meaning in each hierarchy.

Figure 321: $P(\nu_{\mu} \rightarrow \nu_{\mu})$ survival probability in the 2-dimensional oscillation parameter spaces $(\sin^2\theta_{23}, |\Delta m^2|)$ (left) and $(\sin^2\theta_{23}, |\Delta m^2|)$ (right) for a fixed value of $P(\nu_{\mu} \rightarrow \nu_{\mu}) = 0.05$.

Figure 322 shows the true χ^2 surface for the single ring μ -like sample of the Run1+2+3 dataset in the 2-dimensional oscillation parameter spaces ($\sin^2\theta_{23}$, $|\Delta m^2|$) (left) and ($\sin^2\theta_{23}$, $|\Delta m^2_{32}|$) (right). A contour is drawn in this figure for a fixed value of true $\chi^2=60$ in order to compare a line of points with the same vale of true χ^2 in both mass hierarchies. The behaviour in the plots in Figure 322 is exactly the same as observed in Figure 321.

Figure 323 shows the 90% CL for the Run1+2+3 dataset in the 2-dimensional oscillation parameter spaces ($\sin^2\theta_{23}$, $|\Delta m^2|$) (left) and ($\sin^2\theta_{23}$, $|\Delta m^2_{32}|$) (right) for the stand-alone ν_μ disappearance analysis with Normal Hierarchy (solid line) and Inverted Hierarchy (dashed line) with the constant $\Delta\chi^2$ method. As shown in this figure, an artificial difference between the contours in both hierarchies appears when using ($\sin^2\theta_{23}$, $|\Delta m^2_{32}|$) because the quantity $|\Delta m^2_{32}|$ has a different meaning in each mass hierarchy (it is the largest mass-squared splitting in IH whereas the second largest in NH). There is almost no difference between the contours in both hierarchies when using the Fogli and Lisi convention ($\sin^2\theta_{23}$, $|\Delta m^2|$).

Figure 322: True χ^2 surface for the single ring μ -like sample of the Run1+2+3 dataset in the 2-dimensional oscillation parameter spaces ($\sin^2\theta_{23}, |\Delta m^2|$) (left) and ($\sin^2\theta_{23}, |\Delta m^2_{32}|$) (right) for a fixed value of true $\chi^2=60$.

Figure 323: 90% CL for the Run1+2+3 dataset in the 2-dimensional oscillation parameter spaces $(\sin^2\theta_{23}, |\Delta m^2|)$ (left) and $(\sin^2\theta_{23}, |\Delta m^2_{32}|)$ (right) for the stand-alone ν_μ disappearance analysis with Normal Hierarchy (solid line) and Inverted Hierarchy (dashed line) with the constant $\Delta\chi^2$ method.

I. Coverage studies

 The studies presented in this section are intended to check if the coverage of the confidence intervals obtained with the constant $\Delta \chi^2$ method used in this technical note is correct.

For these studies, sets of toy MC experiments at different oscillation points were produced, using an ensemble of 1000 toy MC experiments at each oscillation point considered. For those toy experiments, critical values of $\Delta \chi^2$ have been calculated and compared with the canonical $\Delta \chi^2$ values for different confidence levels.

At least two effects can produce differences between the critical values of $\Delta\chi^2$ in the toy experiments and the canonical values: physical boundaries and systematic variations. Other reasons as stated in [27] are not considered in this study since they refer to extreme values of $|\Delta m^2|$, out of the range of our analysis. In order to produce the closest possible scenario to the actual fit in the results of the joint analysis, the oscillation parameters that are not under study in each 2D parameter space must be fitted. The results of these tests are in Sec.I.2. But first other simpler studies were done in order to separate the two effects mentioned. Thus, in Sec. I.1 checks with toy experiments with statistical fluctuations only are presented and in Sec.I.2 checks were made including systematic fluctuations too, in both cases fixing the other oscillation parameters not studied to their true input values. Now the three different kinds of coverage checks are described.

Firstly, for the coverage checks with statistical fluctuations only presented in Sec. I.1, the procedure is as follows:

- At a certain oscillation point, 1k toy experiments were created with statistical fluctuations.
- The true value of χ^2 (χ^2_{true}) was computed for each toy experiment fixing the oscillation parameters to the true input values used to calculate the toy experiment.
- A fit was performed for each toy experiment fitting oscillation parameters only, the ones corresponding to the parameter space under study. For instance, when studying the $1D \sin^2\theta_{23}$ parameter space, only $\sin^2\theta_{23}$ was included in the fit, when studying the $\sin^2\theta_{23}$, $|\Delta m^2|$ parameter space both $(\sin^2\theta_{23}$ and $|\Delta m^2|$ were fitted. The other oscillation parameters were fixed to their true input values.
- The value of $\Delta \chi^2$ was calculated for each toy experiment as the difference between the true χ^2 and the value of χ^2 at the best-fit point.

$$\Delta \chi^2 = \chi^2_{true} - \chi^2_{bf}$$

• Finally the critical $\Delta\chi^2$ value for a given confidence interval N% was obtained as the value of $\Delta\chi^2$ for which N% of the toy experiments had a $\Delta\chi^2$ smaller than that critical value.

These studies were produced for different scenarios in 1D (I.1.1) and 2D (I.1.2). In the 2D parameter spaces several oscillation points were selected varying those oscillation parameters where a physical boundary is present. For instance, in the $(sin^2\theta_{23},|\Delta m^2|)$ parameter space, grid points were studied for different values of $sin^2\theta_{23}$.

Secondly, studies including systematic variations were done in Sec.I.2 These studies were produced for 2D parameter spaces, considering the same oscillation points as in Sec. I.1.2. The procedure in these studies is the following:

- At a certain oscillation point, 1k toy experiments were created with statistical fluctuations and random systematic variations.
- A first value of χ^2 (χ^2_{init}) was obtained for each toy experiment fixing the oscillation parameters to the true input values and fitting the systematic parameters.
- A second fit was performed for each toy experiment fitting oscillation parameters and systematic errors, obtaining χ^2_{bf} . Like in the case with only statistical fluctuations, the oscillation parameters included in the fit were the ones corresponding to the parameter space under study.
- The value of $\Delta \chi^2$ was calculated for each toy experiment as the difference $\Delta \chi^2 = \chi^2_{init} \chi^2_{bf}$, and the critical $\Delta \chi^2$ value for a given confidence interval N% was obtained as explained for the tests with statistical fluctuations only.

Finally, the effect of fitting the rest of oscillation parameters was incorporated in a third set of checks in Sec. I.3, considering the same oscillation points as in Sec.I.2. The procedure in these studies is the following:

At a certain oscillation point, 1k toy experiments were created with statistical fluctuations and random systematic variations.

- A first value of χ^2 (χ^2_{init}) was obtained for each toy experiment fixing the oscillation parameters under study to the true input values and fitting the systematic parameters and the other two oscillation parameters.
- A second fit was performed for each toy experiment fitting the four oscillation parameters and systematic errors, obtaining χ_{bf}^2 .
- The value of $\Delta \chi^2$ was calculated for each toy experiment as the difference $\Delta \chi^2 = \chi^2_{init} \chi^2_{bf}$, and the critical $\Delta \chi^2$ value for a given confidence interval N% was obtained as explained for the tests with statistical fluctuations only.

In every study, the values of the oscillation parameters that remain fixed are the following:

Parameter	Value
$\sin^2 \theta_{12}$	0.311
$\sin^2 \theta_{13}$	0.025
$\sin^2 \theta_{23}$	0.5
δm^2	$7.5 \times 10^{-5} \text{ eV}^2/\text{c}^4$
$ \Delta m^2 $	$2.36 \times 10^{-5} \text{ eV}^2/\text{c}^4$
δ_{CP}	0

Table 22: True input values of the oscillation parameters when not varied used for the coverage checks.

Conclusions

From the studies presented in next pages the following conclusions can be extracted:

- There is a good agreement between $\Delta \chi^2$ vs coverage distributions and the canonical $\Delta \chi^2$ pdf for 1 degree and 2 degrees of freedom when away from the physical boundaries, that means when $|sin^2\theta_{23} 0.5| \ge 0.1$ and $sin^2\theta_{13} \ge 0.005$, with statistical and systematic fluctuations and fixing the other oscillation parameters to their true input values.
- There is overcoverage for intervals close to a physical boundary, i.e. when $|sin^2\theta_{23} 0.5| < 0.1$ or $sin^2\theta_{13} < 0.005$. This overcoverage is due to the pile-up of best fits at the physical boundary, where they have a smaller $\Delta\chi^2$ than in an unconstrained fit.
- The parameter δ_{CP} is acting like a nuisance parameter, not like a real degree of freedom in the fits, due to the limited sensitivity to this parameter at current POT. So when δ_{CP} is a fitted parameter in Secs. I.2 and I.1, the plots clearly show that the coverage is similar to the canonical value for one degree of freedom less than the number of fitted parameters.
- There is a general overcoverage for intervals when the check is done not fixing the other oscillation parameters to their true values but including them in the fit as shown in Sec.I.3. This behaviour is independent of the addition of systematic fluctuations, appearing the same overcoverage with statistical fluctuations only, as can be clearly observed when comparing both kind of plots (for instance 397 vs 398).
- Compared with the same studies done fixing the other oscillation parameters, the overcoverage found when fitting them is more significant in the 2D parameter spaces $(sin^2\theta_{13}, |\Delta m^2|)$ and $(sin^2\theta_{13}, sin^2\theta_{23})$. After several checks made at the end of the section, seems clear that the extra overcoverage appears when $sin^2\theta_{13}$ and δ_{CP} are both fitted at the same time
- The parameter δ_{CP} is producing overcoverage in two ways: firstly, as explained in a previous bullet, it is not acting as a real degree of freedom itself, and secondly, due to the correlation existing between δ_{CP} and $sin^2\theta_{13}$, these two parameters are not independent degrees of freedom and overcoverage is appearing when both are fitted together.

2160 I.1. Coverage studies with statistical fluctuations only

I.1.1. Coverage studies in 1D

The checks presented in this subsection were done following this procedure:

- At a certain oscillation point, 1k toy experiments were created with statistical fluctuations.
- The true value of χ^2 (χ^2_{true}) was computed for each toy experiment fixing the oscillation parameters to the true input values used to calculate the toy experiment.
- A fit was performed for each toy experiment fitting oscillation parameters only, the ones corresponding to the parameter space under study. For instance, when studying the $1D \sin^2\theta_{23}$ parameter space, only $\sin^2\theta_{23}$ was included in the fit, when studying the $\sin^2\theta_{23}, |\Delta m^2|$ parameter space both $(\sin^2\theta_{23} \text{ and } |\Delta m^2|)$ were fitted. The other oscillation parameters were fixed to their true input values.
- The value of $\Delta \chi^2$ was calculated for each toy experiment as the difference between the true χ^2 and the value of χ^2 at the best-fit point.

$$\Delta \chi^2 = \chi^2_{true} - \chi^2_{bf}$$

• Finally the critical $\Delta \chi^2$ value for a given confidence interval N% was obtained as the value of $\Delta \chi^2$ for which N% of the toy experiments had a $\Delta \chi^2$ smaller than that critical value.

The following figures in this subsection show the distribution of $\Delta\chi^2$ vs coverage (black lines) for different oscillation points in 1D parameter spaces, overlaying the canonical $\Delta\chi^2$ pdf for 1 degree of freedom (red lines). Figures 324-327 show the distribution of $\Delta\chi^2$ vs coverage for different values of $|\Delta m^2|$, calculated with 1k toy experiments with statistical fluctuations and fitting for $|\Delta m^2|$ only (as it is a 1D test the other three oscillation parameters are fixed). In Fig. 328 a summary of the previous plots is presented, showing the value of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals vs the value of $|\Delta m^2|$. Similarly for $sin^2\theta_{23}$ in Figs. 329-333 and $sin^2\theta_{13}$ in Figs. 334-339

For δ_{CP} the distributions can be observed in Figs. 340-344. From those figures, there is already a sense that this parameter is not acting as a real degree of freedom like the rest of oscillation parameters, but more like a nuisance parameter instead.

Figure 324: Distribution of $\Delta\chi^2$ vs coverage in the $|\Delta m^2|$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 325: Distribution of $\Delta\chi^2$ vs coverage in the $|\Delta m^2|$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 326: Distribution of $\Delta\chi^2$ vs coverage in the $|\Delta m^2|$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 327: Distribution of $\Delta\chi^2$ vs coverage in the $|\Delta m^2|$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 328: Summary of figures 324-327 showing the value of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals vs the value of $|\Delta m^2|$. Horizontal dashed lines show the canonical $\Delta\chi^2$ value for 1 degree of freedom.

Figure 329: Distribution of $\Delta\chi^2$ vs coverage in the $sin^2\theta_{23}$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 330: Distribution of $\Delta\chi^2$ vs coverage in the $sin^2\theta_{23}$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 331: Distribution of $\Delta\chi^2$ vs coverage in the $sin^2\theta_{23}$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 332: Distribution of $\Delta\chi^2$ vs coverage in the $sin^2\theta_{23}$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 333: Summary of figures 329-332 showing the value of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals vs the value of $sin^2\theta_{23}$. Horizontal dashed lines show the canonical $\Delta\chi^2$ value for 1 degree of freedom

Figure 334: Distribution of $\Delta\chi^2$ vs coverage in the $sin^2\theta_{13}$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 335: Distribution of $\Delta\chi^2$ vs coverage in the $sin^2\theta_{13}$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 336: Distribution of $\Delta\chi^2$ vs coverage in the $sin^2\theta_{13}$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 337: Distribution of $\Delta\chi^2$ vs coverage in the $sin^2\theta_{13}$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 338: Distribution of $\Delta\chi^2$ vs coverage in the $sin^2\theta_{13}$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 339: Summary of figures 334-338 showing the value of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals vs the value of $sin^2\theta_{13}$. Horizontal dashed lines show the canonical $\Delta\chi^2$ value for 1 degree of freedom.

Figure 340: Distribution of $\Delta\chi^2$ vs coverage in the δ_{CP} parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 341: Distribution of $\Delta\chi^2$ vs coverage in the δ_{CP} parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 342: Distribution of $\Delta\chi^2$ vs coverage in the δ_{CP} parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 343: Distribution of $\Delta\chi^2$ vs coverage in the δ_{CP} parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 344: Summary of figures 340-343 showing the value of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals vs the value of δ_{CP} . Horizontal dashed lines show the canonical $\Delta\chi^2$ value for 1 degree of freedom.

I.1.2. Coverage studies in 2D

In this subsection the distribution of $\Delta\chi^2$ vs coverage is presented for different oscillation points in the 2D parameter spaces where our results are presented, overlaying the canonical $\Delta\chi^2$ pdf for 2 degrees of freedom (red lines). The procedure is the same described in previous subsection.

Figures 345-348 show the distribution of $\Delta\chi^2$ vs coverage in the 2D parameter space $(sin^2\theta_{23},|\Delta m^2|)$, calculated with 1k toy experiments with statistical fluctuations and fitting for $sin^2\theta_{23}$ and $|\Delta m^2|$, for different values of $sin^2\theta_{23}$ (to investigate the physical boundary concerning this parameter). In Fig. 349 a summary of the previous plots is presented, showing the value of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals vs the value of $sin^2\theta_{23}$. Similarly for the 2D parameter space $(sin^2\theta_{13},|\Delta m^2|)$ in Figs. 350-355.

The distributions for the parameter space $(sin^2\theta_{13},\delta_{CP})$ are plotted differently, including in Figs. 356-359 the canonical $\Delta\chi^2$ pdf both for 2 degrees of freedom (red solid lines) and 1 degree of freedom (red dashed lines). In Fig. 361 the lines with the canonical values of $\Delta\chi^2$ are also shown with different colors for 2 and 1 degrees of freedom (see legend). It is clear than in this special parameter space the distributions are closer to the ones corresponding to 1 degree of freedom than the ones for the 2 degrees of freedom, indicating again than the behaviour of δ_{CP} is similar to a nuisance parameter's one.

Finally in the distributions for the parameter space $(sin^2\theta_{13}, sin^2\theta_{23})$, physical boundaries are present in both oscillation parameters so more grid points are to be studied with the combination of the selected values in the other 2D parameter spaces. Those distributions are presented in Figs. 362-381 and a summary vs $sin^2\theta_{23}$ in Fig. 382 and vs $sin^2\theta_{13}$ in Fig. 383. Then a summary is presented with the value of $\Delta\chi^2$ in Z axis (color) vs $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis at 68% confidence interval in Fig. 384, at 90% confidence interval in Fig. 385 and at 99% confidence interval in Fig. 386.

Figure 345: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{23},|\Delta m^2|)$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 346: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{23},|\Delta m^2|)$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 347: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{23},|\Delta m^2|)$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 348: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{23},|\Delta m^2|)$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 349: Summary of figures 345-348 showing the value of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals vs the value of $sin^2\theta_{23}$. Horizontal dashed lines show the canonical $\Delta\chi^2$ value for 2 degrees of freedom.

Figure 350: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},|\Delta m^2|)$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

 $\sin^2\theta_{23} = 0.50$ $\sin^2\theta_{13} = 0.005$

 $\Delta m^2 = 0.00236$

 δ_{CP} = 0.00

Figure 352: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},|\Delta m^2|)$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 353: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},|\Delta m^2|)$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 354: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},|\Delta m^2|)$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 355: Summary of figures 350-354 showing the value of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals vs the value of $sin^2\theta_{13}$. Horizontal dashed lines show the canonical $\Delta\chi^2$ value for 2 degrees of freedom.

Figure 356: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},\delta_{CP})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend. The solid red line shows the canonical $\Delta\chi^2$ pdf for 2 degrees of freedom and the dashed red line shows the canonical $\Delta\chi^2$ pdf for 1 degree of freedom.

Figure 358: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},\delta_{CP})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend. The solid red line shows the canonical $\Delta\chi^2$ pdf for 2 degrees of freedom and the dashed red line shows the canonical $\Delta\chi^2$ pdf for 1 degree of freedom.

Figure 360: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},\delta_{CP})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend. The solid red line shows the canonical $\Delta\chi^2$ pdf for 2 degrees of freedom and the dashed red line shows the canonical $\Delta\chi^2$ pdf for 1 degree of freedom.

Figure 357: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},\delta_{CP})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend. The solid red line shows the canonical $\Delta\chi^2$ pdf for 2 degrees of freedom and the dashed red line shows the canonical $\Delta\chi^2$ pdf for 1 degree of freedom.

Figure 359: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},\delta_{CP})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend. The solid red line shows the canonical $\Delta\chi^2$ pdf for 2 degrees of freedom and the dashed red line shows the canonical $\Delta\chi^2$ pdf for 1 degree of freedom.

Figure 361: Summary of figures 356-360 showing the value of $\Delta\chi^2$ at 15%, 90% and 68% confidence intervals vs the value of $sin^2\theta_{13}$. Horizontal dashed lines show the canonical $\Delta\chi^2$ value for 2 degrees of freedom and 1 degree of freedom (see legend).

Figure 362: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 363: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 364: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 365: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13}, sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 366: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 367: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 368: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 369: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 370: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13}, sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 371: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 372: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 373: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 374: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 375: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 376: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 377: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 378: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 379: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 380: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 381: Distribution of $\Delta\chi^2$ vs coverage in the $(sin^2\theta_{13},sin^2\theta_{23})$ parameter space from 1k toy MC experiments generated with the Run 1+2+3 POT with statistical fluctuations at the oscillation point indicated in the legend.

Figure 382: Summary of figures 362-381 showing the value of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals vs the value of $sin^2\theta_{23}$. Horizontal dashed lines show the canonical $\Delta\chi^2$ value for 2 degrees of freedom.

Figure 383: Summary of figures 362-381 showing the value of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals vs the value of $sin^2\theta_{13}$. Horizontal dashed lines show the canonical $\Delta\chi^2$ value for 2 degrees of freedom.

Figure 384: Summary of figures 362-381 showing the value of $\Delta\chi^2$ at 68% confidence intervals in Z axis (color) vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis.

Figure 385: Summary of figures 362-381 showing the value of $\Delta\chi^2$ at 90% confidence intervals in Z axis (color) vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis.

Figure 386: Summary of figures 362-381 showing the value of $\Delta\chi^2$ at 99% confidence intervals in Z axis (color) vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis.

I.2. Coverage studies in 2D including systematic variations

The coverage studies in this subsection are presented for the same oscillation points in the 2D parameter spaces seen previously, now applying systematic variations to the toy MC experiments and fitting for systematics along with the corresponding oscillation parameters. The procedure is the following:

- At a certain oscillation point, 1k toy experiments were created with statistical fluctuations and random systematic variations.
- A first value of χ^2 (χ^2_{init}) was obtained for each toy experiment fixing the oscillation parameters to the true input values and fitting the systematic parameters.
- A second fit was performed for each toy experiment fitting oscillation parameters and systematic errors, obtaining χ^2_{bf} . Like in the case with only statistical fluctuations, the oscillation parameters included in the fit were the ones corresponding to the parameter space under study.
- The value of $\Delta \chi^2$ was calculated for each toy experiment as the difference $\Delta \chi^2 = \chi^2_{init} \chi^2_{bf}$, and the critical $\Delta \chi^2$ value for a given confidence interval N% was obtained as explained for the tests with statistical fluctuations only.

In this subsection only summary plots like Fig. 349 in previous subsection are presented. They are built in the same way, first plotting the distribution of $\Delta\chi^2$ vs coverage like in Figs. 345-348, but those plots were omitted now. Thus, Fig.387 is the summary plot for the 2D parameter space $(sin^2\theta_{23},|\Delta m^2|)$, Fig. 388 for the 2D parameter space $(sin^2\theta_{13},|\Delta m^2|)$ and Fig. 389 for the 2D parameter space $(sin^2\theta_{13},\delta_{CP})$.

For the 2D parameter space $(sin^2\theta_{13}, sin^2\theta_{23})$ summaries are presented in Fig. 390 and in Fig. 391 showing the values of $\Delta\chi^2$ vs $sin^2\theta_{23}$ and $sin^2\theta_{13}$ respectively and then a summary is presented with the value of $\Delta\chi^2$ in Z axis (color) vs $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis at 68% confidence interval in Fig. 392, at 90% confidence interval in Fig. 393 and at 99% confidence interval in Fig. 394.

Results obtained in this section including systematic variations are similar to the ones with statistical fluctuations only.

Figure 387: Summary of values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{23},|\Delta m^2|)$ vs the value of $sin^2\theta_{23}$. True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}, sin^2\theta_{13} = 0.025$ and $\delta_{CP} = 0$.

Figure 388: Summary of values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13},|\Delta m^2|)$ vs the value of $sin^2\theta_{13}$. True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}, sin^2\theta_{23} = 0.5$ and $\delta_{CP} = 0$.

Figure 389: Summary of values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13},|\delta_{CP}|)$ vs the value of $sin^2\theta_{13}$. True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}, sin^2\theta_{23} = 0.5$ and $\delta_{CP} = 0$.

Figure 390: Summary of values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13},sin^2\theta_{23})$ vs the value of $sin^2\theta_{23}$. True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0$.

Figure 391: Summary of values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13},sin^2\theta_{23})$ vs the value of $sin^2\theta_{13}$. True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0$.

Figure 392: Summary of values of $\Delta\chi^2$ at 68% confidence intervals in Z axis (color) in the 2D parameter space $(sin^2\theta_{13},sin^2\theta_{23})$ vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis. True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0$.

Figure 393: Summary of values of $\Delta\chi^2$ at 90% confidence intervals in Z axis (color) in the 2D parameter space $(sin^2\theta_{13},sin^2\theta_{23})$ vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis. True input values for the other oscillation parameters: $|\Delta m^2|=2.36\times 10^{-3}$ and δ_{CP} =0.

Figure 394: Summary of values of $\Delta\chi^2$ at 99% confidence intervals in Z axis (color) in the 2D parameter space $(sin^2\theta_{13},sin^2\theta_{23})$ vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis. True input values for the other oscillation parameters: $|\Delta m^2|=2.36\times 10^{-3}$ and $\delta_{CP}=0$.

1.3. Coverage studies in 2D including the other oscillation parameters in the fit

In this subsection the studies are done for the same oscillation points in the 2D parameter spaces seen previously, but including the other two oscillation parameters in the fit in order to reproduce the same scenario as the fits done for the results in this analysis. The studies will be presented with statistical fluctuations only and with systematic variations added. In both cases none of the oscillation parameters remains fixed to its true value now: those that are not under study are now fitted in both fits as explained at the beginning of the section. So the procedure is as follows (similarly for statistical fluctuations only, removing systematics from both fits):

- At a certain oscillation point, 1k toy experiments were created with statistical fluctuations and random systematic variations.
- A first value of χ^2 (χ^2_{init}) was obtained for each toy experiment fixing the oscillation parameters under study to the true input values and fitting the systematic parameters and the other two oscillation parameters.
- A second fit was performed for each toy experiment fitting the four oscillation parameters and systematic errors, obtaining χ^2_{bf} .
- The value of $\Delta \chi^2$ was calculated for each toy experiment as the difference $\Delta \chi^2 = \chi^2_{init} \chi^2_{bf}$, and the critical $\Delta \chi^2$ value for a given confidence interval N% was obtained as explained for the tests with statistical fluctuations only.

In this subsection only summary plots are presented. For the 2D parameter space $(sin^2\theta_{23}, |\Delta m^2|)$, Figures 395 and 396 are the summary plots with statistical fluctuations only and including systematic variations respectively. The same for the 2D parameter space $(sin^2\theta_{13}, |\Delta m^2|)$ in Figs. 397 and 398 and Figs. 399 and 400 for the 2D parameter space $(sin^2\theta_{13}, |\Delta m^2|)$ in Figs. 397 and 398 and Figs. 399 and 400 for the 2D parameter space $(sin^2\theta_{13}, |\Delta m^2|)$.

For the 2D parameter space $(sin^2\theta_{13}, sin^2\theta_{23})$ summaries are presented in Figs. 401 and 403 with statistical fluctuations only and in Figs. 402 and 404 with systematic variations, showing the values of $\Delta\chi^2$ vs $sin^2\theta_{23}$ and $sin^2\theta_{13}$. Then a summary is presented with the value of $\Delta\chi^2$ in Z axis (color) vs $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis at 68% confidence interval in Figs. 405 and 406, at 90% confidence interval in Figs. 407 and 408 and at 99% confidence interval in Figs. 409 and 410.

Results obtained in this section present a general overcoverage. This behaviour seems to be independent of the addition of systematic fluctuations, appearing the same overcoverage with statistical fluctuations only, as can be clearly observed when comparing both kind of plots (for instance 395 vs 396). On the other hand, compared with the same studies done fixing the other oscillation parameters, the overcoverage found when fitting them is more significant in the 2D parameter space $(\sin^2\theta_{23}, |\Delta m^2|)$.

To investigate the reduction of the critical value of $\Delta\chi^2$ when the other oscillation parameters are fitted in the study, an additional set of plots was done with true input value $sin^2\theta_{23}=0.35$ to minimize boundary effects related to this parameter. The additional checks were made trying to separate different effects, and therefore they introduce new parameters in the fit one by one: Fig.411 presents the distribution with statistical fluctuations only and fixing $sin^2\theta_{23}$ and δ_{CP} to their true input values, then Fig. 412 presents the distribution with statistical fluctuations only, fitting $sin^2\theta_{23}$ and fixing δ_{CP} . Until this step results are in good agreement with the critical values for 2 degrees of freedom. However, when now δ_{CP} is included in the fit, results present the extra overcoverage observed in the studies in this subsection. This overcoverage is now almost identical when fitting δ_{CP} fixing $sin^2\theta_{23}$ in Fig. 413 and when fitting both parameters without (Fig 414) and with systematic variations (Fig. 415). So clearly the extra overcoverage found is due to some pathological behaviour of the parameter δ_{CP} .

Looking deeper, this overcoverage does not appear due to simply adding δ_{CP} in the fit, but it is related to the correlation between δ_{CP} and $sin^2\theta_{13}$. This can be seen in the following tests done (made with only 200 toy experiments). Fig 416 presents the 1D distribution for different values of $sin^2\theta_{23}$ with statistical fluctuations only where two fits were done: the first one is fitting only δ_{CP} , fixing the other three oscillation parameters to their true input value, and the second one is fitting δ_{CP} and $sin^2\theta_{23}$, keeping $sin^2\theta_{13}$ and $|\Delta m^2|$ fixed to their true input values. If Fig 416 is compared with 333, there is no extra overcoverage appearing due to the addition of δ_{CP} in the fit. Similarly with $|\Delta m^2|$, comparing Fig. 417 with Fig. 328. It is however when the fit is including $sin^2\theta_{13}$ that the overcoverage appears as can be seen in Fig. 418 with critical values clearly smaller than the ones obtained in Fig. 339.

In order to discard that the fit could be giving as result a local minimum in the $(sin^2\theta_{13},\delta_{CP})$ space, the following test was done: for 100 toy experiments with statistical fluctuations, the values of $sin^2\theta_{13}$ and δ_{CP} were scanned and the values giving the minimum true χ^2 were compared with the best-fit values result from the fit. The values found scanning agree very well within the step sizes used $(\delta sin^2\theta_{13}=0.001$ and $\delta_{CP}=0.02)$ with the ones given by the fitter as it is presented in Fig.419 and Fig.420, so it indicates that the fitter is giving the real global minimum.

Figure 395: Summary of the values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{23},|\Delta m^2|)$ vs the value of $sin^2\theta_{23}$ with statistical fluctuations only and fitting $sin^2\theta_{13}$ and δ_{CP} . True input values for the other oscillation parameters: $|\Delta m^2|=2.36\times 10^{-3}, sin^2\theta_{13}=0.025$ and $\delta_{CP}=0$.

Figure 397: Summary of the values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13},|\Delta m^2|)$ vs the value of $sin^2\theta_{13}$ with statistical fluctuations only and fitting $sin^2\theta_{23}$ and δ_{CP} . True input values for the other oscillation parameters: $|\Delta m^2|=2.36\times 10^{-3}, sin^2\theta_{23}=0.5$ and $\delta_{CP}=0$.

Figure 399: Summary of the values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13},\delta_{CP})$ vs the value of $sin^2\theta_{13}$ with statistical fluctuations only and fitting $sin^2\theta_{23}$ and $|\Delta m^2|$. True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}, sin^2\theta_{23} = 0.5$ and $\delta_{CP} = 0$.

Figure 396: Summary of the values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{23},|\Delta m^2|)$ vs the value of $sin^2\theta_{23}$ with statistical fluctuations and systematic variations and fitting $sin^2\theta_{13}$ and δ_{CP} . True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}, sin^2\theta_{13} = 0.025$ and $\delta_{CP} = 0$.

Figure 398: Summary of the values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13},|\Delta m^2|)$ vs the value of $sin^2\theta_{13}$ with statistical fluctuations and systematic variations and fitting $sin^2\theta_{23}$ and δ_{CP} . True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}, sin^2\theta_{23} = 0.5$ and $\delta_{CP} = 0$.

Figure 400: Summary of the values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13},\delta_{CP})$ vs the value of $sin^2\theta_{13}$ with statistical fluctuations and systematic variations and fitting $sin^2\theta_{23}$ and $|\Delta m_2|$. True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}, sin^2\theta_{23} = 0.5$ and $\delta_{CP} = 0$.

Figure 401: Summary of the values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13},sin^2\theta_{23})$ vs the value of $sin^2\theta_{23}$ with statistical fluctuations only and fitting $|\Delta m^2|$ and δ_{CP} . True input values for the other oscillation parameters: $|\Delta m^2|=2.36\times 10^{-3}$ and $\delta_{CP}=0$.

Figure 403: Summary of the values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13},sin^2\theta_{23})$ vs the value of $sin^2\theta_{13}$ with statistical fluctuations only and fitting $|\Delta m^2|$ and δ_{CP} . True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0$.

Figure 402: Summary of the values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13},sin^2\theta_{23})$ vs the value of $sin^2\theta_{23}$ with statistical fluctuations and systematic variations and fitting $|\Delta m^2|$ and δ_{CP} . True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0$.

Figure 404: Summary of the values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13},sin^2\theta_{23})$ vs the value of $sin^2\theta_{13}$ with statistical fluctuations and systematic variations and fitting $|\Delta m^2|$ and δ_{CP} . True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0$.

Figure 405: Summary of values of $\Delta\chi^2$ at 68% confidence intervals in Z axis (color) in the 2D parameter space $(sin^2\theta_{13},sin^2\theta_{23})$ vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis for toy experiments with statistical fluctuations only and fitting $|\Delta m^2|$ and δ_{CP} . True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0$.

Figure 407: Summary of values of $\Delta\chi^2$ at 90% confidence intervals in Z axis (color) in the 2D parameter space $(sin^2\theta_{13},sin^2\theta_{23})$ vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis for toy experiments with statistical fluctuations only and fitting $|\Delta m^2|$ and δ_{CP} . True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0$.

Figure 409: Summary of values of $\Delta\chi^2$ at 99% confidence intervals in Z axis (color) in the 2D parameter space $(sin^2\theta_{13},sin^2\theta_{23})$ vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis for toy experiments with statistical fluctuations only and fitting $|\Delta m^2|$ and δ_{CP} . True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0$.

Figure 406: Summary of values of $\Delta\chi^2$ at 68% confidence intervals in Z axis (color) in the 2D parameter space $(sin^2\theta_{13},sin^2\theta_{23})$ vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis for toy experiments with statistical fluctuations and systematic fluctuations and fitting $|\Delta m^2|$ and δ_{CP} . True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0$.

Figure 408: Summary of values of $\Delta\chi^2$ at 90% confidence intervals in Z axis (color) in the 2D parameter space $(sin^2\theta_{13},sin^2\theta_{23})$ vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis for toy experiments with statistical fluctuations and systematic fluctuations and fitting $|\Delta m^2|$ and δ_{CP} . True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0$.

Figure 410: Summary of values of $\Delta\chi^2$ at 99% confidence intervals in 170 axis (color) in the 2D parameter space $(sin^2\theta_{13},sin^2\theta_{23})$ vs the value of $sin^2\theta_{23}$ in X axis and $sin^2\theta_{13}$ in Y axis for toy experiments with statistical fluctuations and systematic fluctuations and fitting $|\Delta m^2|$ and δ_{CP} . True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}$ and $\delta_{CP} = 0$.

Figure 411: Summary of the values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13},|\Delta m^2|)$ vs the value of $sin^2\theta_{13}$ with statistical fluctuations only and fixing $sin^2\theta_{23}$ and δ_{CP} . True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}, sin^2\theta_{23} = 0.35$ and $\delta_{CP} = 0$.

Figure 412: Summary of the values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13},|\Delta m^2|)$ vs the value of $sin^2\theta_{13}$ with statistical fluctuations only and **fitting** $sin^2\theta_{23}$ **and fixing** δ_{CP} . True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}, sin^2\theta_{23} = 0.35$ and $\delta_{CP} = 0$.

Figure 413: Summary of the values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13},|\Delta m^2|)$ vs the value of $sin^2\theta_{13}$ with statistical fluctuations only and **fitting** δ_{CP} and **fixing** $sin^2\theta_{23}$. True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}, sin^2\theta_{23} = 0.35$ and $\delta_{CP} = 0$.

Figure 414: Summary of the values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13},|\Delta m^2|)$ vs the value of $sin^2\theta_{13}$ with statistical fluctuations only and **fitting** $sin^2\theta_{23}$ **and** δ_{CP} . True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}$, $sin^2\theta_{23} = 0.35$ and $\delta_{CP} = 0$.

Figure 415: Summary of the values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 2D parameter space $(sin^2\theta_{13},|\Delta m^2|)$ vs the value of $sin^2\theta_{13}$ with statistical fluctuations and systematic variations and fitting $sin^2\theta_{23}$ and δ_{CP} . True input values for the other oscillation parameters: $|\Delta m^2| = 2.36 \times 10^{-3}, sin^2\theta_{23} = 0.35$ and $\delta_{CP} = 0$.

Figure 416: Summary of the values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 1D parameter space $sin^2\theta_{23}$ vs the value of $sin^2\theta_{23}$ with statistical fluctuations only where $\Delta\chi^2$ was calculated as folllows: a first fit was done fitting only δ_{CP} , fixing the other three oscillation parameters to their true input value, and χ^2_{init} was obtained; then a second fit was done fitting δ_{CP} and $sin^2\theta_{23}$, keeping $sin^2\theta_{13}$ and $|\Delta m^2|$ fixed to their true input values and χ^2_{bf} was obtained, computing finally $\Delta\chi^2=\chi^2_{init}-\chi^2_{bf}$. True input values for the other oscillation parameters: $|\Delta m^2|=2.36\times 10^{-3}$, $sin^2\theta_{13}=0.025$ and $\delta_{CP}=0$.

Figure 417: Summary of the values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 1D parameter space $|\Delta m^2|$ vs the value of $|\Delta m^2|$ with statistical fluctuations only where $\Delta\chi^2$ was calculated as folllows: a first fit was done fitting only δ_{CP} , fixing the other three oscillation parameters to their true input value, and χ^2_{init} was obtained; then a second fit was done fitting δ_{CP} and $|\Delta m^2|$, keeping $sin^2\theta_{13}$ and $sin^2\theta_{23}$ fixed to their true input values and χ^2_{bf} was obtained, computing finally $\Delta\chi^2=\chi^2_{init}-\chi^2_{bf}$. True input values for the other oscillation parameters: $sin^2\theta_{23}=0.5, sin^2\theta_{13}=0.025$ and $\delta_{CP}=0$.

Figure 418: Summary of the values of $\Delta\chi^2$ at 99%, 90% and 68% confidence intervals in the 1D parameter space $sin^2\theta_{13}$ vs the value of $sin^2\theta_{13}$ with statistical fluctuations only where $\Delta\chi^2$ was calculated as folllows: a first fit was done fitting only δ_{CP} , fixing the other three oscillation parameters to their true input value, and χ^2_{init} was obtained; then a second fit was done fitting δ_{CP} and $sin^2\theta_{13}$, keeping $sin^2\theta_{23}$ and $|\Delta m^2|$ fixed to their true input values and χ^2_{bf} was obtained, computing finally $\Delta\chi^2=\chi^2_{init}-\chi^2_{bf}$. True input values for the other oscillation parameters: $|\Delta m^2|=2.36\times 10^{-3}$, $sin^2\theta_{23}=0.5$ and $\delta_{CP}=0$.

Figure 419: Comparison between the value of $sin^2\theta_{13}$ giving the true minimum χ^2 found scanning the $(sin^2\theta_{13},\delta_{CP})$ parameter space with the best-fit value result from the fit over 100 toy experiments created at true input values: $|\Delta m^2| = 2.36 \times 10^{-3}, sin^2\theta_{23} = 0.5, sin^2\theta_{13} = 0.025$ and $\delta_{CP} = 0$. Results present a good agreement within the step sizes used $(\delta sin^2\theta_{13} = 0.001$ and $\delta_{CP} = 0.02)$.

Figure 420: Comparison between the value of δ_{CP} giving the true minimum χ^2 found scanning the $(sin^2\theta_{13},\delta_{CP})$ parameter space with the best-fit value result from the fit over 100 toy experiments created at true input values: $|\Delta m^2| = 2.36 \times 10^{-3}, sin^2\theta_{23} = 0.5, sin^2\theta_{13} = 0.025$ and $\delta_{CP} = 0$. Results present a good agreement within the step sizes used $(\delta sin^2\theta_{13} = 0.001$ and $\delta_{CP} = 0.02)$.