

SEQUENCE LISTING

<110> SARCABAL, PATRICIA
CROUX, CHRISTIAN
SOUCAILLE, PHILIPPE

<120> METHOD FOR PREPARING 1,3-PROPANEDIOL BY A RECOMBINANT MICRO-ORGANISM IN THE ABSENCE OF COENZYME B12 OR ONE OF ITS PRECURSORS

<130> CHEP:004US

<140> 10/043,639

<141> 2002-01-09

<150> PCT/FR00/01981

<151> 2000-07-07

<150> FR 99/08939

<151> 1999-07-09

<160> 14

<170> PatentIn Ver. 2.1

<210> 1

<211> 2364

<212> DNA

<213> Clostridium butyricum

<400> 1

atgataagta aaggatttag tacccaaaca gaaagaataa atattttaaa ggctcaaata 60
ttaaatgcta aaccatgtgt tgaatcgaaa agagcaatat taataacaga atcattttaaa 120
caaacagaag gccagccagc aattttaaa agagcattgg cattgaaaaca cataacttgaa 180
aatatcccta taacaattag agatcaagaaa cttatagtgg gaagtttaac taaagaacca 240
aggccttcac aagtatttcc tgagtttct aataagtgg tacaagatga attggataga 300
ttaaataaga gaactggaga tgcattccaa atttcagaag aaagttaaa aaaattaaaa 360
gatgtctttg agtattggaa tggaaagaca acaagtggat tagcaacttc atatatgaca 420
gaggaaacaa gagaggcagt aaattgtgaa gtatttactg taggaaacta ctattataat 480
ggcgttaggac atgtatctgt agattatggaa aaagttttaa gggttggatt taatgggatt 540
ataaaatgagg ctaaggaaca attagaaaaaa aacaggagta tagatcctga ttttataaag 600
aaagaaaaat tcctaaatag tgtttattatc tcattgcgaag ctgcaataaac atatgtaaat 660
agatatgcta aaaaggctaa agagattgca gataatacaa gtgtatgc aagaaaaagct 720
gaattaaatg aaatagcaaa aatttggatc aaagtttcag gagagggagc taaatcttc 780
tatgaagcat gtcaatttatt ttgggttatt catgcataaa taaatataga atctaattgaa 840
cattcttattt ctccagctgt atttgcattc tacatgttac catattatgaa aatgtataaa 900
aatataacag ataagttgc tcaagaatta atagattgtt tctggattaa attaaatgat 960
attaataaaag taagagatga gatttcaact aaacattttg gtggttaccc aatgtatcaa 1020
aaattaattg ttgggggtca aaattcgaaa ggaaaaagatg caactaataa agtatcatat 1080
atggcatttag aagcagctgt ccatgtaaag ttgcctcagc catctttgtc agtaagaata 1140
tggaaataaga ctccagatga atttttgcatt agagcagcag aattaacttag agaagggtta 1200
ggacttcctg cttattataa tgatgaagtt attattccag cattgtttc tagaggttct 1260
acattagaag atgcaagaga ctacggaaa attggatgtg ttgaaccaca aaagccagga 1320
aaaacagaag gatggcatga ttccagcattt ttaatcttgc caagaatagt agagtttaact 1380
ataaaattctg gatttgataaa aaataaaacag attggaccta aaactcaaaa ttttgaagaa 1440
atgaaatcct ttgatgaatt catgaaagct tataaagctc aaatggagta ttttgtaaaa 1500
catatgtgct gtgctgataa ttgcatacatg attgcacatg cagaaagagc tccattacct 1560

ttcttgcat caatgggtga taattgtatc ggaaaaggaa agagcttca agatgggtg 1620
gcagaatata acttcagtgg accacaagggt gttggagtag ctaatattgg agattcatta 1680
gttgcagtta aaaaaattgt gtttgatgaa aataagatta ctccttcaga attaaagaaa 1740
acattaaata atgattttaa aaattcagaa gaaatacaag ccttactaaa aaatgctcct 1800
aagtttggaa atgatattga tgaagttgat aatttagcta gagagggtgc attagtatac 1860
tgtagagaag ttaataaaata tacaaatcca aggggaggaa attttcaacc aggattatat 1920
ccatcttcaa ttaatgtata ttttggaaagc ttaacaggtg ctactccaga tggaaggaaa 1980
tccggacaac cattagctga tggggtttct ccatcaagag gctgtgatgt atctggacct 2040
actgcagctt gtaactcagt tagtaaaatta gatcattta tagcttcaaa tggaacttta 2100
tttaatcaaa aattccatcc gtcagcatta aaagggtata atggattaat gaatttatca 2160
tcattaataa gaagtttattt tgatcaaaag ggatttcatg ttcaatttaa tgtaatagat 2220
aaaaaaaaat tacttgcagc aaaaaaaaaat cctgaaaaat atcaagattt aattgttaga 2280
gttgcaggat atagtgcaca gttcatttct ttagataaaat ctattcaaaa tgatattatt 2340
gcaagaactg aacatgttat gtaa 2364

<210> 2
<211> 915
<212> DNA
<213> Clostridium butyricum

<400> 2
atgagtaagg agataaaaagg cgttttattt aacatacaaa aattttcggt acatgatggg 60
ccttggaaataa gaactatagt attttttaag ggatgttcaa tgcgtgctt atggtgca 120
aatccagaat cccaaatgtat taaacctcaa gtaatgttta ataaaaattt atgtacaaaa 180
tgtggaaagat gtaaatctca atgtaaaagt gcagggtattt atatgaattc agaatatagg 240
atagataaaaa gcaaatgtac agagtgtaca aaatgtgtt ataattgctt aagcggggca 300
cttggttattt aaggaaggaa ttacagtgtt gaagacgtt taaaggaatt gaaaaaaagat 360
agtgttcaat atagaagatc aaacgggttga attacactat ctggaggggga agtattactt 420
caaccagatt ttgcagtggc gcttttaaaa gagtgtaaat catatggctg gcacactgcc 480
atggaaacag caatgtatgt taatagtgaa tctgtaaaaa aagtaattcc atatataat 540
ctggctatga ttgatataaa aagtatgaat gatgaaatcc ataggaaatt tacaggagt 600
agtaacgaaa taatattaca aaacattaaa ttaagtgtatc aatttagctaa agaaataata 660
atcagaattc ctgtaataga aggatttaat gcagatttac aaagtatagg agcaatagct 720
caattttcaa aatcattaac aaatcttaaa agaataagatc ttcttccata ccataattat 780
ggagaaaaata agtatacaagc aatttggaaaga gaggattttt tgaaagaact aaaatcacct 840
atggaaagaca aaatggaaag attaaaagct ttagttgaaa tcatggaaat accgtgcaca 900
atggagctg agtaa 915

<210> 3
<211> 28
<212> DNA
<213> Clostridium butyricum

<400> 3
tagataaaaac aaacaaaaat gttattat 28

<210> 4
<211> 1158
<212> DNA
<213> Clostridium butyricum

<400> 4
atgagaatgt atgatttattt agtaccaagt gttaaacttta tgggagcaaa ttcagtatca 60
gttagtaggtg aaagatgcaa aatatttaggt ggaaaaaaag cattgatagt tacagataag 120

tttctaaaag atatggaagg tggagctgtt gaattaacag ttaaatattt aaaagaagct 180
ggatttagatg ttgtatatta tgacggagtt gaaccaaatac caaaagatgt taatgttata 240
gaaggattaa aaatatttaa agaagaaaat tgtgacatga tagtaactgt aggtggagga 300
agttcgcatg attgcggtaa gggaatagga attgctgcaa cacatgaagg agatcttat 360
gattatgcag gaatagaaac acttgtcaat ccattgccac caatagttagc tgtaaatact 420
actgcaggaa ctgcttagtga attaactcgt cattgtgtat tgactaatac aaaaaagaaa 480
ataaaatttg ttatagttag ctggagaaat ttgcctctag tatctataaa tgatccaatg 540
cttatggtca aaaaacctgc aggattaaca gcagctacag gaatggatgc tttAACACAT 600
gcaatagaag catatgtatc aaaagatgca aatccagtaa cagatgcttc agcaatacaa 660
gctattaaat taatttcaca aaatttaaga caagctgtag cttaggaga aaatcttcaa 720
gcaagagaaa atatggctta tgcatcatta ctgcaggaa tggcatttaa taatgctaatt 780
ttaggatatg tacatgcaat ggctcatcaa ttagggggac tgatgatgat ggcacatgg 840
gttgctaatg caatgttatt accacatgtt gaacgttata atatgctatc aaatcctaag 900
aagtttgcag atatagcaga atttatggaa gaaaatatat ctggactttc tgtaatggaa 960
gcagcagaga aagccataaa tgcaatgttc aggcttcag aggatgttgg aattccgaaa 1020
agtctaaagg agatggagt gaaacaagaa gatttgagc atatggcaga actagcttt 1080
ttagatggaa atgcctttag caatccaaga aaaggaaatg caaaagatat tataaatattt 1140
tttaaggctg cttattaa 1158

<210> 5
<211> 4963
<212> DNA
<213> Clostridium butyricum

<400> 5
gaataaaaagt tatctataaa tgataaaaagt cattattaga taactttta tttaaaata 60
actactaata aaaagttcaa agaataattac agtagacatt tgaaagaatg caatgataaa 120
caattgtatt agttttaact ttagataaaaa caaacaaaaa tgttattatt agccaagaaa 180
atactgttac aaaagaaaag agaaaaacat agcaaaagag taccaatatt aagcaataaa 240
gttggtaaa atattatcaa taaaatgata agattagata aaccaagtaa gaatgtgatt 300
ggaggagtaa aaatgataag taaaggattt agtacccaaa cagaaagaat aaatatttt 360
aaggctcaaa tattaaatgc taaaccatgt gttgaatcag aaagagcaat attaataaca 420
gaatcattta aacaaacaga aggccagcca gcaattttaa gaagagcatt ggcattgaaa 480
cacatacttg aaaatatccc tataacaatt agagatcaag aacttatagt gggaaagtta 540
actaaagaac cagatgcttc acaagtattt cctgagttt ctaataagtg gttacaagat 600
gaattggata gattaaataa gagaactgga gatgcattcc aaatttaaga agaaagtaaa 660
gaaaaattaa aagatgtctt tgtagtattgg aatggaaaga caacaagtga gttagcaact 720
tcatatatga cagaggaaac aaaagatgca gtaaattgtg aagtatttac tgtaggaaac 780
tactattata atggcgtagg acatgtatct gtagattatg gaaaagtatt aagggttgg 840
tttaatggaa ttataaatga ggctaaggaa caatttagaaa aaaacaggag tatagatcct 900
gattttataaa agaaagaaaa attccttaat agtgttatta tctcatgcga agctgcaata 960
acatatgtaa atagatatgc taaaaaggct aaagagattt cagataatac aaaagatgca 1020
aaaagaaaaag ctgaattaaa tgaaatagca aaaatttggt caaaagatac aggagaggg 1080
gctaaatctt tctatgaagc atgtcaattt ttttggttt tacatgcaat aataaatata 1140
gaatctaatg gacattctat ttctccagct agatttgcattt aatccagtaa tccatattat 1200
gaaaatgata agaataattac agataagttt gctattaaat taatgattt gtaattggatt 1260
aaattaaatg atattaataa agtaagagat gagatttcaa ctaaacattt tggtggttac 1320
catatgtatc aaaaattaat tggatgggtt caaaaatttgc aaggaaaaaga tgcaactaat 1380
aaagtatcat atatggctt agaagcagct gtccatgtaa agttgcctca gccatcttg 1440
tcagtaagaa tatggataaa gactccagat gattttggc tttagagcagc aggattaact 1500
agagaagggt taggacttcc tgcttattat aatgatgaaat ttattattcc agcattagtt 1560
tcttagaggtc ttacatttgc atatagcaga gactacggaa taattggatg tggtgaacca 1620
caaaagccag gaaaaacaga aggatggcat gattatgcatt tcttaatct tgaaagaata 1680
gtagagttaa ctataaatttcc tggatggat aaaaaagaac agattggacc taaaactcaa 1740
aattttgaag aaaggaaatc ctttgcatttgc aatggcataa tcaaatggag 1800
tattttgtaa aacatatgtt ctgtgcattt aatgataag atattgcataa tgcaataaga 1860

gctccattac	cttcttggtc	accacatgtt	gataattgtt	tcggaaaagg	aaagagcaat	1920
caagctgttag	gtgcagaata	taacttcagt	ggaccacaag	gtgttggagt	agctaatttt	1980
ggagattcat	tagttgcagt	taaaaaaattt	gtgttggat	aaaataagat	tactcctca	2040
gaattaaaga	aaacattaaa	taatgatttt	aaaaatttcag	aagaataaca	agccttaacta	2100
aaaaatgctc	ctaagttgg	aatgatattt	gatgaagttt	ataatttagc	tagaggggt	2160
gcattagtt	actgttagaga	agttaaaaaa	tatacaaattc	caaggggagg	aaattttcaa	2220
ccaggattat	atccatcttc	aattaatgtt	tatTTTggaa	gcttaacagg	tgctactcca	2280
gatggaaagga	aatccggaca	accattagct	gatgggggtt	ctccatcaag	aggctgttat	2340
gtatctggac	ctactgcagc	ttgttaactca	gttagtaaat	tagatcattt	tatagcttca	2400
aatggaaacct	tatTTTatca	aaaattccat	ccgtcagcat	taaaaggtga	taatggattt	2460
atgaatttat	catcattaaat	aagaagttat	tttgcataaa	agggatttca	tgttcaattt	2520
aatgttaatag	ataaaaaaaat	attacttgca	gcacaaaaaa	atccgtaaaa	atatcaagat	2580
ttaatttgtt	gagttgcagg	atatacgca	cagttcattt	ctttagataa	atctatttca	2640
aatgatattt	ttgcaagaac	tgaacatgtt	atgttttttt	agctttttaa	ggggataaaaa	2700
gtaatgagta	aggagataaa	aggcgtttt	ttaacatcac	aaaaattttt	gttacatgtat	2760
gggcctggaa	taagaactat	agtattttt	aagggtatgtt	caatgtcg	cttaggtgc	2820
agtaatccag	aatcccaga	tattaaacctt	caagtaatgt	ttaataaaaa	tttatgtaca	2880
aaatgtggaa	gatgttataatc	tcaatgtaaa	agtgcaggta	ttgatattgaa	ttcagaatata	2940
aggatagata	aaagcaatgt	tacagagtgt	acaaaatgtt	ttgataattt	cttaagcggg	3000
gcacttggta	ttgaaggaag	gaattacagt	gttgaagacg	ttataaaggaa	attgaaaaaa	3060
gatagtgtt	aatatagaag	atcaaacggt	gaaatttacac	tatctggagg	ggaagtattt	3120
cttcaaccag	atTTTgcagt	ggagctttt	aaagagtgtt	aatcatatgg	ctggcacact	3180
gccattgaaa	cagcaatgtt	tgttaatagt	gaatctgttt	aaaaagtaat	tccatataata	3240
gatctggcta	tgattgat	aaaaagtatg	aatgttataa	tccataggaa	atttacagga	3300
gtgagtaacg	aaataatattt	acaaaacattt	aaattaatgt	atgaatttagc	taaagaaata	3360
ataatcagaa	ttcctgtat	agaaggattt	aatgcagattt	tacaaatgtat	aggagcaata	3420
gctcaatttt	caaaatcatt	aacaatctt	aaaagaatag	atcttcttcc	ataccataat	3480
tatggagaaa	ataagtatca	agcaatttgg	agagagtattt	ctttagaaaga	actaaaatca	3540
cctagtaaag	acaaaatgg	aagattaaaa	gttttagttt	aaatcatggg	aataccgtgc	3600
acaattggag	ctgagtaata	gtagctttac	atcagatattt	ttaaaaacaa	ttttaaattt	3660
aaaggagaag	attgcatatg	agaatgtatg	attatTTTgt	accaagtgtt	aactttatgg	3720
gagcaaattt	agatcagta	gttagtttttt	gatgcataat	attaggttgg	aaaaaagcat	3780
tgatagttac	agataagttt	ctaaaagata	tggaaagggtt	agctgttgg	ttaacagttt	3840
aatattttaa	agaagcttgg	ttagatgtt	tatattatgt	cggagttttt	ccaaatccaa	3900
aagatgtt	tgttatagaa	ggattaaaaaa	tatTTTaaaga	agaaaaatttt	gacatgatag	3960
taactgttag	tggaggaagt	tcgcatgatt	gccccgttgg	aataggaattt	gctgcaacac	4020
atgaaggaga	tctttatgt	tatgcaggaa	tagaaacact	tgtcaatcca	ttgccacca	4080
tagtagctgt	aaataactact	gcaggaactt	ctagtgtttt	aactcgtcat	tgtgtatttt	4140
ctaataaaaa	aaagaaaaata	aaattttttt	tagttgttt	gagaaatttt	cctcttagtat	4200
ctataaaatgt	tccaatgtt	atggtcaaaa	accctgcagg	attaaacagca	gctacaggaa	4260
tggatgtttt	aacacatgtt	atagaagcat	atgttataaa	agatgttttt	ccagtaacag	4320
atgcttcagc	aatacaagct	attnaatttt	tttcacaaaa	ttaagacaa	gctgtatctt	4380
taggagaaaa	tcttgaagca	agagaaaata	tggcttatgc	atcattactt	gcaggaatgg	4440
catttaataa	tgcttaattt	ggatatgtac	atgcataatgc	tcatcaattt	gggggactgt	4500
atgatatggc	acatgggttt	gctaattgtt	tgcttattacc	acatgttttt	cgttataata	4560
tgctatcaaa	tcctttaaaag	tttgcagata	tagcagaattt	tatggggagaa	aatatatctg	4620
gactttctgt	aatggaaagca	gcagagaaag	ccataaaatgc	aatgttccagg	cttccagagg	4680
atgttggaaat	tccgaaaatgt	ctaaaggata	tggggatgttt	acaagaagat	tttgagcata	4740
tggcagaact	agctttttt	gatggaaatgt	cctttagcaa	tccaaagaaaa	ggaaatgca	4800
aagatattat	aaatattttt	aaggctgttt	attaattat	actatttttt	ggattcaag	4860
taaaagataa	aagatataata	tattagattt	aagattttat	tataggctaa	caacaaagaa	4920
caagttaagt	attaaactta	gcttggtctt	tgttggttat	ttt		4963

<210> 6
<211> 783
<212> PRT

<213> Clostridium butyricum

<400> 6
Met Ile Ser Lys Gly Phe Ser Thr Thr Glu Arg Ile Asn Ile Leu Lys
1 5 10 15

Ala Gln Ile Leu Asn Ala Lys Pro Cys Val Glu Ser Glu Arg Ala Ile
20 25 30

Leu Ile Thr Glu Ser Phe Lys Gln Thr Gly Gln Pro Ala Ile Leu Arg
35 40 45

Arg Ala Leu Ala Leu Lys His Ile Leu Glu Asn Ile Pro Ile Thr Ile
50 55 60

Arg Asp Gln Glu Leu Ile Val Gly Ser Leu Thr Lys Glu Pro Arg Ser
65 70 75 80

Ser Gln Val Phe Pro Glu Phe Ser Asn Lys Trp Leu Gln Asp Glu Leu
85 90 95

Asp Arg Leu Asn Lys Arg Thr Gly Asp Ala Phe Gln Ile Ser Glu Glu
100 105 110

Ser Lys Glu Lys Leu Lys Asp Val Phe Glu Tyr Trp Asn Gly Lys Thr
115 120 125

Thr Ser Glu Leu Ala Thr Ser Tyr Met Thr Glu Glu Thr Arg Glu Ala
130 135 140

Val Asn Cys Glu Val Phe Thr Val Gly Asn Tyr Tyr Tyr Asn Gly Val
145 150 155 160

Gly His Val Ser Val Asp Tyr Lys Val Leu Arg Val Gly Phe Asn Gly
165 170 175

Ile Ile Asn Glu Ala Lys Glu Gln Leu Glu Lys Asn Arg Ser Asp Pro
180 185 190

Asp Phe Ile Lys Lys Glu Lys Phe Leu Asn Ser Val Ile Ile Ser Cys
195 200 205

Glu Ala Ala Ile Thr Tyr Val Asn Arg Tyr Ala Lys Lys Ala Lys Glu
210 215 220

Ile Ala Asp Asn Thr Ser Asp Ala Lys Arg Lys Ala Glu Leu Asn Glu
225 230 235 240

Ile Ala Lys Ile Cys Ser Lys Val Ser Gly Glu Gly Ala Lys Ser Phe
245 250 255

Tyr Glu Ala Cys Gln Leu Phe Trp Phe Ile His Ala Ile Ile Asn Ile
260 265 270

Glu Ser Asn Gly His Ser Ile Ser Pro Ala Arg Phe Asp Gln Tyr Met
275 280 285

Tyr Pro Tyr Tyr Glu Asn Asp Lys Asn Ile Thr Asp Lys Phe Ala Gln
290 295 300

Glu Leu Ile Asp Cys Ile Trp Ile Lys Leu Asn Asp Ile Asn Lys Val
305 310 315 320

Arg Asp Glu Ile Ser Thr Lys His Phe Gly Gly Tyr Pro Met Tyr Gln
325 330 335

Lys Leu Ile Val Gly Gly Gln Asn Ser Glu Gly Lys Asp Ala Thr Asn
340 345 350

Lys Val Ser Tyr Met Ala Leu Glu Ala Ala Val His Val Lys Leu Pro
355 360 365

Gln Pro Ser Leu Ser Val Arg Ile Trp Asn Lys Thr Pro Asp Glu Phe
370 375 380

Leu Leu Arg Ala Ala Glu Leu Thr Arg Glu Gly Leu Gly Leu Pro Ala
385 390 395 400

Tyr Tyr Asn Asp Glu Val Ile Ile Pro Ala Leu Val Ser Arg Gly Leu
405 410 415

Thr Leu Glu Asp Ala Arg Asp Tyr Gly Ile Ile Gly Cys Val Glu Pro
420 425 430

Gln Lys Pro Gly Lys Thr Glu Gly Trp His Asp Ser Ala Phe Phe Asn
435 440 445

Leu Ala Arg Ile Val Glu Leu Thr Ile Asn Ser Gly Phe Asp Lys Asn
450 455 460

Lys Gln Ile Gly Pro Lys Thr Gln Asn Phe Glu Glu Met Lys Ser Phe
465 470 475 480

Asp Glu Phe Met Lys Ala Tyr Lys Ala Gln Met Glu Tyr Phe Val Lys
485 490 495

His Met Cys Cys Ala Asp Asn Cys Ile Asp Ile Ala His Ala Glu Arg
500 505 510

Ala Pro Leu Pro Phe Leu Ser Ser Met Val Asp Asn Cys Ile Gly Lys
515 520 525

Gly Lys Ser Leu Gln Asp Gly Gly Ala Glu Tyr Asn Phe Ser Gly Pro
530 535 540

Gln Gly Val Gly Val Ala Asn Ile Gly Asp Ser Leu Val Ala Val Lys
545 550 555 560

Lys Ile Val Phe Asp Glu Asn Lys Ile Thr Pro Ser Glu Leu Lys Lys
565 570 575

Thr Leu Asn Asn Asp Phe Lys Asn Ser Glu Glu Ile Gln Ala Leu Leu
580 585 590

Lys Asn Ala Pro Lys Phe Gly Asn Asp Ile Asp Glu Val Asp Asn Leu
595 600 605

Ala Arg Glu Gly Ala Leu Val Tyr Cys Arg Glu Val Asn Lys Tyr Thr
610 615 620

Asn Pro Arg Gly Gly Asn Phe Gln Pro Gly Leu Tyr Pro Ser Ser Ile
625 630 635 640

Asn Val Tyr Phe Gly Ser Leu Thr Gly Ala Thr Pro Asp Gly Arg Lys
645 650 655

Ser Gly Gln Pro Leu Ala Asp Gly Val Ser Pro Ser Arg Gly Cys Asp
660 665 670

Val Ser Gly Pro Thr Ala Ala Cys Asn Ser Val Ser Lys Leu Asp His
675 680 685

Phe Ile Ala Ser Asn Gly Thr Leu Phe Asn Gln Lys Phe His Pro Ser
690 695 700

Ala Leu Lys Gly Asp Asn Gly Leu Met Asn Leu Ser Ser Leu Ile Arg
705 710 715 720

Ser Tyr Phe Asp Gln Lys Gly Phe His Val Gln Phe Asn Val Ile Asp
725 730 735

Lys Lys Ile Leu Leu Ala Ala Gln Lys Asn Pro Glu Lys Tyr Gln Asp
740 745 750

Leu Ile Val Arg Val Ala Gly Tyr Ser Ala Gln Phe Ile Ser Leu Asp
755 760 765

Lys Ser Ile Gln Asn Asp Ile Ile Ala Arg Thr Glu His Val Met
770 775 780

<210> 7
<211> 304
<212> PRT
<213> Clostridium butyricum

<400> 7
Met Ser Lys Glu Ile Lys Gly Val Leu Phe Asn Ile Gln Lys Phe Ser
1 5 10 15

Leu His Asp Gly Pro Gly Ile Arg Thr Ile Val Phe Phe Lys Gly Cys
20 25 30

Ser Met Ser Cys Leu Trp Cys Ser Asn Pro Glu Ser Gln Asp Ile Lys
35 40 45

Pro Gln Val Met Phe Asn Lys Asn Leu Cys Thr Lys Cys Gly Arg Cys
50 55 60

Lys Ser Gln Cys Lys Ser Ala Gly Ile Asp Met Asn Ser Glu Tyr Arg
65 70 75 80

Ile	Asp	Lys	Ser	Lys	Cys	Thr	Glu	Cys	Thr	Lys	Cys	Val	Asp	Asn	Cys
							85			90					95
Leu	Ser	Gly	Ala	Leu	Val	Ile	Glu	Gly	Arg	Asn	Tyr	Ser	Val	Glu	Asp
							100			105					110
Val	Ile	Lys	Glu	Leu	Lys	Asp	Ser	Val	Gln	Tyr	Arg	Arg	Ser	Asn	
							115			120					125
Gly	Gly	Ile	Thr	Leu	Ser	Gly	Gly	Glu	Val	Leu	Leu	Gln	Pro	Asp	Phe
							130			135					140
Ala	Val	Glu	Leu	Leu	Lys	Glu	Cys	Lys	Ser	Tyr	Gly	Trp	His	Thr	Ala
							145			150					160
Ile	Glu	Thr	Ala	Met	Tyr	Val	Asn	Ser	Glu	Ser	Val	Lys	Lys	Val	Ile
							165			170					175
Pro	Tyr	Ile	Asp	Leu	Ala	Met	Ile	Asp	Ile	Lys	Ser	Met	Asn	Asp	Glu
							180			185					190
Ile	His	Arg	Lys	Phe	Thr	Gly	Val	Ser	Asn	Glu	Ile	Ile	Leu	Gln	Asn
							195			200					205
Ile	Lys	Leu	Ser	Asp	Glu	Leu	Ala	Lys	Glu	Ile	Ile	Arg	Ile	Pro	
							210			215					220
Val	Ile	Glu	Gly	Phe	Asn	Ala	Asp	Leu	Gln	Ser	Ile	Gly	Ala	Ile	Ala
							225			230					240
Gln	Phe	Ser	Lys	Ser	Leu	Thr	Asn	Leu	Lys	Arg	Ile	Asp	Leu	Leu	Pro
							245			250					255
Tyr	His	Asn	Tyr	Gly	Glu	Asn	Lys	Tyr	Gln	Ala	Ile	Gly	Arg	Glu	Tyr
							260			265					270
Ser	Leu	Lys	Glu	Leu	Lys	Ser	Pro	Ser	Lys	Asp	Lys	Met	Glu	Arg	Leu
							275			280					285
Lys	Ala	Leu	Val	Glu	Ile	Met	Gly	Ile	Pro	Cys	Thr	Ile	Gly	Ala	Glu
							290			295					300

<210> 8
<211> 385
<212> PRT
<213> Clostridium butyricum

<400> 8
Met Arg Met Tyr Asp Tyr Leu Val Pro Ser Val Asn Phe Met Gly Ala
1 5 10 15
Asn Ser Val Ser Val Val Gly Glu Arg Cys Lys Ile Leu Gly Gly Lys

20

25

30

Lys Ala Leu Ile Val Thr Asp Lys Phe Leu Lys Asp Met Glu Gly Gly
35 40 45

Ala Val Glu Leu Thr Val Lys Tyr Leu Lys Glu Ala Gly Leu Asp Val
50 55 60

Val Tyr Tyr Asp Gly Val Glu Pro Asn Pro Lys Asp Val Asn Val Ile
65 70 75 80

Glu Gly Leu Lys Ile Phe Lys Glu Glu Asn Cys Asp Met Ile Val Thr
85 90 95

Val Gly Gly Ser Ser His Asp Cys Gly Lys Gly Ile Gly Ile Ala
100 105 110

Ala Thr His Glu Gly Asp Leu Tyr Asp Tyr Ala Gly Ile Glu Thr Leu
115 120 125

Val Asn Pro Leu Pro Pro Ile Val Ala Val Asn Thr Thr Ala Gly Thr
130 135 140

Ala Ser Glu Leu Thr Arg His Cys Val Leu Thr Asn Thr Lys Lys Lys
145 150 155 160

Ile Lys Phe Val Ile Val Ser Trp Arg Asn Leu Pro Leu Val Ser Ile
165 170 175

Asn Asp Pro Met Leu Met Val Lys Lys Pro Ala Gly Leu Thr Ala Ala
180 185 190

Thr Gly Met Asp Ala Leu Thr His Ala Ile Glu Ala Tyr Val Ser Lys
195 200 205

Asp Ala Asn Pro Val Thr Asp Ala Ser Ala Ile Gln Ala Ile Lys Leu
210 215 220

Ile Ser Gln Asn Leu Arg Gln Ala Val Ala Leu Gly Glu Asn Leu Glu
225 230 235 240

Ala Arg Glu Asn Met Ala Tyr Ala Ser Leu Leu Ala Gly Met Ala Phe
245 250 255

Asn Asn Ala Asn Leu Gly Tyr Val His Ala Met Ala His Gln Leu Gly
260 265 270

Gly Leu Tyr Asp Met Ala His Gly Val Ala Asn Ala Met Leu Leu Pro
275 280 285

His Val Glu Arg Tyr Asn Met Leu Ser Asn Pro Lys Lys Phe Ala Asp
290 295 300

Ile Ala Glu Phe Met Gly Glu Asn Ile Ser Gly Leu Ser Val Met Glu
305 310 315 320

Ala Ala Glu Lys Ala Ile Asn Ala Met Phe Arg Leu Ser Glu Asp Val

325 330 335
Gly Ile Pro Lys Ser Leu Lys Glu Met Gly Val Lys Gln Glu Asp Phe
340 345 350

Glu His Met Ala Glu Leu Ala Leu Leu Asp Gly Asn Ala Phe Ser Asn
355 360 365

Pro Arg Lys Gly Asn Ala Lys Asp Ile Ile Asn Ile Phe Lys Ala Ala
370 375 380

Tyr
385

<210> 9
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 9
cgcgatccg tgattggagg agtaaaaatg ataag 35

<210> 10
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 10
tcccccgggg gaatccttta aatagtattta attaataaagc 40

<210> 11
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
Primer

<400> 11
gttacccggg gctcctgcag ctcgactttt taac 34

<210> 12
<211> 34
<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Primer

<400> 12
tttcacccgg gaaacagctt tgaccatgt tacg 34

<210> 13
<211> 31
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Primer

<400> 13
tttgatccag tatctataaa tgatccaatg c 31

<210> 14
<211> 36
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Primer

<400> 14
tttagatcttt taaaatagtat taattaataa gcagcc 36