Sequences of Functions

Matthew Seguin

6.2.5

Let (f_n) be a sequence of functions on a common domain A.

Assume (f_n) converges uniformly on A to f.

Then for all $\delta > 0$ there exists an $N \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \delta$ whenever $x \in A$ and $n \ge N$.

Let $\epsilon > 0$ and let $\alpha = \epsilon/2$ then let N be so that for any $k \ge N$ we have $|f_k(x) - f(x)| < \alpha$ for all $x \in A$.

So for $m, n \ge N$ we have $|f_m(x) - f_n(x)| = |f_m(x) - f(x) + f(x) - f_n(x)| \le |f_m(x) - f(x)| + |f_n(x) - f(x)| < 2\alpha = \epsilon$.

This was for arbitrary $x \in A$ and is therefore true for all $x \in A$.

Similarly this was for all $\epsilon > 0$ and is therefore true for all $\epsilon > 0$.

So for all $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that when $m, n \geq N$ and $x \in A$ we have $|f_m(x) - f_n(x)| < \epsilon$.

Now assume that for all $\delta > 0$ there exists an $N \in \mathbb{N}$ such that when $m, n \geq N$ and $x \in A$ we have $|f_m(x) - f_n(x)| < \delta$.

Note that this N does not depend on x but rather only depends on δ . Then for each $x \in A$ we have that $(f_n(x))$ is Cauchy and therefore converges to some $y \in \mathbb{R}$.

So define the function f so that for each $x \in A$, f(x) is the value that $(f_n(x))$ converges to.

Let $\epsilon > 0$ and let $\alpha = \epsilon/2$. Then let $N_1 \in \mathbb{N}$ be such that $|f_n(x) - f_m(x)| < \alpha$ whenever $m, n \ge N_1$ and $x \in A$.

For $x \in A$ let $N_2 \in \mathbb{N}$ be such that $|f_m(x) - f(x)| < \alpha$ for $m \ge N_2$.

This is possible because $(f_m(x))$ is Cauchy for all $x \in A$.

Let $x \in A$, $n \ge N_1$, and $m \ge max\{N_1, N_2\}$.

Then we have that $|f_n(x) - f(x)| = |f_n(x) - f_m(x) + f_m(x) - f(x)| \le |f_n(x) - f_m(x)| + |f_m(x) - f(x)| < 2\alpha = \epsilon$.

This was for arbitrary $x \in A$ and is therefore true for all $x \in A$.

Note that here we are using $n \geq N_1$ which does not depend on x.

While N_2 and therefore $max\{N_1, N_2\}$ might depend on x we are only using it when introducing a new term and not in our original expression $|f_n(x) - f(x)|$.

So for all $\epsilon > 0$ we have found an $N = N_1$ such that when $n \ge N$ and $x \in A$ it follows that $|f_n(x) - f(x)| < \epsilon$.

Therefore $(f_n) \to f$ uniformly on A.

So $(f_n) \to f$ uniformly on A if and only if for all $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that when $m, n \geq N$ and $x \in A$ we

have
$$|f_m(x) - f_n(x)| < \epsilon \square$$

1

Let f be uniformly continuous on \mathbb{R} and let $f_n(x) = f(x + \frac{1}{n})$.

Then for all $\alpha > 0$ there exists a $\delta > 0$ such that $|x - y| < \delta$ implies $|f(x) - f(y)| < \alpha$.

So let $\epsilon > 0$ then let δ be such that $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$, and let $N \in \mathbb{N}$ be such that $\frac{1}{N} < \delta$. Such an N exists by the Archimedean property.

Then for $n \ge N$ we have $|x + \frac{1}{n} - x| = |\frac{1}{n}| = \frac{1}{n} < \delta$ and this implies $|f(x + \frac{1}{n}) - f(x)| = |f_n(x) - f(x)| < \epsilon$. This was for arbitrary $x \in \mathbb{R}$ and is therefore true for all $x \in \mathbb{R}$.

So for all $\epsilon > 0$ we have found an $N \in \mathbb{N}$ such that when $n \geq N$ and $x \in \mathbb{R}$ we have $|f_n(x) - f(x)| < \epsilon$. So $(f_n) \to f$ uniformly on \mathbb{R} .

If we were only given that f was continuous on \mathbb{R} the δ could depend on both ϵ and the point of continuity. So we would not be able to guarantee the existence of a uniform N for $|f_n(x) - f(x)|$ that works for all $x \in \mathbb{R}$.

For an example take $f(x) = x^2$ which we have seen previously is continuous on \mathbb{R} .

We have
$$f_n(x) = f(x + \frac{1}{n}) = (x + \frac{1}{n})^2 = x^2 + \frac{2x}{n} + \frac{1}{n^2}$$
.

So we have
$$|f_n(x) - f(x)| = \left| \frac{2x}{n} + \frac{1}{n^2} \right| = \frac{1}{n} |2x + \frac{1}{n}|$$
.

Since f has its domain as all of $\mathbb R$ the 2x term is unbounded so for $\epsilon>0$ you can not find an $N\in\mathbb N$ such that when $n\geq N$ and $x\in\mathbb R$ we have $|f_n(x)-f(x)|=\frac{1}{n}|2x+\frac{1}{n}|<\epsilon$ simply because you can always choose x large enough so that this inequality doesn't hold.

6.3.2

Let
$$h_n(x) = \sqrt{x^2 + \frac{1}{n}}$$
.

a.

Simply taking the limit we get $\lim_{n\to\infty} h_n(x) = \lim_{n\to\infty} \sqrt{x^2 + \frac{1}{n}} = \sqrt{x^2} = |x|$.

Now proving this is the limit and that convergence is uniform:

We have seen previously that \sqrt{y} is uniformly continuous on $[0, \infty)$.

So for all $\alpha > 0$ there exists a $\delta > 0$ such that $|x - y| < \delta$ implies $|\sqrt{x} - \sqrt{y}| < \alpha$ when $x, y \in [0, \infty)$.

Let $\epsilon > 0$ and let δ be such that $|x - y| < \delta$ implies $|\sqrt{x} - \sqrt{y}| < \epsilon$. Then let $N \in \mathbb{N}$ be so that $\frac{1}{N} < \delta$.

Such an N exists by the Archimedean property.

Note that $x^2 \ge 0$ for all $x \in \mathbb{R}$ and $\frac{1}{m} > 0$ for all $m \in \mathbb{N}$, so $x^2 + \frac{1}{n} \in (0, \infty) \subset [0, \infty)$ for all $x \in \mathbb{R}$ and all $n \in \mathbb{N}$.

Also
$$x^2 \in [0, \infty)$$
 for all $x \in \mathbb{R}$.

Then for $n \geq N$ we have $|x^2 + \frac{1}{n} - x^2| = \left|\frac{1}{n}\right| = \frac{1}{n} \leq \frac{1}{N} < \delta$.

This implies $|h_n(x) - h(x)| = |\sqrt{x^2 + \frac{1}{n}} - \sqrt{x^2}| < \epsilon$ whenever $n \ge N$ and $x \in \mathbb{R}$.

This was for arbitrary $\epsilon > 0$ and is therefore true for all $\epsilon > 0$.

So
$$(h_n(x)) \to |x|$$
 uniformly \square

b. We know $h_n'(x) = (\frac{1}{2\sqrt{x^2 + \frac{1}{n}}})(2x) = \frac{x}{\sqrt{x^2 + \frac{1}{n}}}$ by using the algebraic differentiability theorem.

Fix some $x \in \mathbb{R}$ then $(h'_n(x))$ is a sequence of real numbers.

If
$$x = 0$$
 then $(h'_n(x)) = (\frac{0}{\sqrt{0 + \frac{1}{n}}}) = (0) \to 0$ clearly.

Otherwise $(x) \to x \neq 0$ and we have seen from part a that $(\sqrt{x^2 + \frac{1}{n}}) \to |x| \neq 0$.

Since each of these is a sequence of real numbers we have by the algebraic limit theorem that $(h'_n(x)) \to \frac{x}{|x|}$ for $x \neq 0$.

So for $x \in \mathbb{R}$ if x < 0 then $(h'_n(x)) \to -1$, if x = 0 then $(h'_n(x)) \to 0$, and if x > 0 then $(h'_n(x)) \to 1$.

So $(h'_n(x))$ converges for all $x \in \mathbb{R}$ and therefore $(h'_n(x)) \to g(x)$ pointwise, where g(0) = 0, g(x) = -1 for x < 0, and g(x) = 1 for x > 0.

However this convergence can not be uniform for any neighborhood of 0 because if it was this would imply that the limit of (h_n) is differentiable at 0, but we know that the limit is |x| which is not differentiable at 0 so the convergence of (h'_n) can not be uniform.

Let
$$g_n(x) = \frac{nx+x^2}{2n} = \frac{x}{2} + \frac{x^2}{2n}$$
 for $n \in \mathbb{N}$.

a. Simply taking the limit we get $\lim_{n\to\infty} g_n(x) = \lim_{n\to\infty} \frac{x}{2} + \frac{x^2}{2n} = \frac{x}{2}$.

This is the pointwise limit and works because of the following:

Consider any point $x \in \mathbb{R}$ then $(g_n(x)) = (\frac{x}{2} + \frac{x^2}{2n})$. Clearly $(\frac{x}{2}) \to \frac{x}{2}$ since x is a fixed constant. We also know $(\frac{1}{n}) \to 0$ so by the algebraic limit theorem $(\frac{x^2}{2n}) \to 0$. So by the algebraic limit theorem $(g_n(x)) \to \frac{x}{2}$.

We have seen that x is differentiable on \mathbb{R} so $\lim_{n\to\infty}g_n(x)=g(x)=\frac{x}{2}$ is differentiable on \mathbb{R} by the algebraic differentiability theorem and $g'(x)=\frac{1}{2}$.

b. For each $n \in \mathbb{N}$ we get $g'_n(x) = \frac{1}{2} + \frac{2x}{2n} = \frac{1}{2} + \frac{x}{n}$.

Let $M>0,\,\epsilon>0,$ and $N>\frac{M}{\epsilon},$ such an $N\in\mathbb{N}$ exists since $\epsilon\neq 0$ and \mathbb{N} is unbounded.

Then for
$$n \geq N$$
 and $x \in [-M,M]$ we have $|g_n(x) - \frac{1}{2}| = |\frac{1}{2} + \frac{x}{n} - \frac{1}{2}| = |\frac{x}{n}| = \frac{|x|}{n} \leq \frac{M}{n} \leq \frac{M}{N} < \frac{M}{M/\epsilon} = \epsilon$.

This was for arbitrary $x \in [-M, M]$ and is therefore true for all $x \in [-M, M]$. So $(g'_n) \to \frac{1}{2}$ uniformly on [-M, M].

This was also for arbitrary M>0 and is therefore true for all M>0 so $(g'_n)\to \frac{1}{2}$ uniformly on every interval [-M,M].

We have already seen in part a that $(g_n(x))$ converges for every $x \in \mathbb{R}$ so there exists an $x_0 \in \mathbb{R}$ such that $(g_n(x_0))$ converges and therefore $(g_n(x)) \to g(x) = \frac{x}{2}$ uniformly on every interval [-M, M] and therefore on \mathbb{R} . Furthermore

 $(g'_n) \to g'$, all of this is by theorem 6.3.3 in the book that is mentioned in the problem.

C. Let
$$f_n(x) = \frac{nx^2 + 1}{2n + x} = \frac{x^2 + \frac{1}{n}}{2 + \frac{x}{n}}$$
 for $n \in \mathbb{N}$.

First we want to compute the pointwise limit of (f_n) so let $x \in \mathbb{R}$.

Then by the algebraic limit theorem we know $(\frac{x}{n}) \to 0$, and so $(2 + \frac{x}{n}) \to 2$.

We also know by the algebraic limit theorem that $(x^2 + \frac{1}{n}) \to x^2$, and so $(f_n(x)) = (\frac{x^2 + \frac{1}{n}}{2 + \frac{x}{n}}) \to \frac{x^2}{2} = f(x)$.

So
$$f'(x) = \frac{2x}{2} = x$$

For each $n \in \mathbb{N}$ we have $f_n'(x) = \frac{(2nx)(2n+x)-(1)(nx^2+1)}{(2n+x)^2} = \frac{4n^2x+2nx^2-nx^2-1}{4n^2+4nx+x^2} = \frac{nx^2+4n^2x-1}{x^2+4nx+4n^2}$.

Let M > 0 and $\epsilon > 0$. Then for $x \in [-M, M]$ we have the following:

$$x^{2} + 4nx + 4n^{2} = (x + 2n)^{2} \ge 0$$
 so $|x^{2} + 4nx + 4n^{2}| = x^{2} + 4nx + 4n^{2}$

Also note that $x+M \ge 0$ so $4n(x+M) \ge 0$ and $x^2 + 4n(x+M) \ge 0$ since $x^2 \ge 0$.

So
$$x^2 + 4n(x+M) + 4n^2 \ge 4n^2$$
 and therefore $x^2 + 4nx + 4n^2 \ge 4n^2 - 4nM$.

Then by letting n > M we have $x^2 + 4nx + 4n^2 \ge 4n^2 - 4nM > 0$. So $0 < \frac{1}{x^2 + 4nx + 4n^2} \le \frac{1}{4n^2 - 4nM}$.

And so
$$|f'_n(x) - x| = |\frac{nx^2 + 4n^2x - 1}{x^2 + 4nx + 4n^2} - x| = |\frac{nx^2 + 4n^2x - 1 - x(x^2 + 4nx + 4n^2)}{x^2 + 4nx + 4n^2}| = |\frac{nx^2 + 4n^2x - 1 - x(x^2 + 4nx + 4n^2)}{x^2 + 4nx + 4n^2}| = |\frac{1}{x^2 +$$

 $n \to \infty$ because the denominator gets arbitrarily large while the numerator gets arbitrarily close to $3M^2$, a constant.

Since this doesn't depend on x we can choose an N large enough so that for $n \geq N$ and $x \in [-M, M]$ we have

 $|f_n'(x) - x| < \epsilon$ so $(f_n'(x)) \to x$ uniformly on every interval [-M, M] and therefore on \mathbb{R} .

So again by theorem 6.3.3 $(f_n(x)) \to f(x) = \frac{x^2}{2}$ uniformly and $(f'_n(x)) \to f'(x) = x$.

6.3.6

a.

From section 5.4 let h(x) = |x| for $x \in [-1, 1]$ and h(x + 2) = h(x) extending h to all of \mathbb{R} and take $g(x) = \sum_{n=0}^{\infty} \frac{1}{2^n} h(2^n x)$, this section showed that this function is nowhere differentiable. Furthermore this function is bounded uniformly for all $x \in \mathbb{R}$ because g(x + 2) = g(x) by the nature of h(x) and g is continuous on [-1, 1] and therefore the range of g on [-1, 1] is also compact and hence bounded, so g is bounded on uniformly on all of \mathbb{R} . So define $(f_n(x)) = (\frac{g(x)}{n})$ then for each $n \in \mathbb{N}$ we have f_n is nowhere differentiable, however since g is bounded we get $(f_n(x)) \to 0$ which is clearly everywhere differentiable.

So this is such an example of a sequence of nowhere differentiable functions that converge to an everywhere differentiable function.

b. For $n \in \mathbb{N}$ let $f_n(x) = n$.

Clearly $f_n(x)$ does not converge for any $x \in \mathbb{R}$ since the sequence (n) is unbounded and therefore can not converge. However for any fixed $n \in \mathbb{N}$ we have $f'_n(x) = 0$.

Letting $\epsilon > 0$ and N = 1 we get for all $n \ge 1$ and therefore for all $n \in \mathbb{N}$ when $x \in \mathbb{R}$ we have $|f'_n(x) - 0| = |0 - 0| = 0 < \epsilon$. So $(f'_n(x)) \to 0$ uniformly but $f_n(x)$ does not converge for any $x \in \mathbb{R}$.

C. This is not possible, let (f_n) be a sequence of functions defined on A such that (f_n) and (f'_n) converge uniformly.

Then we have that $(f'_n) \to g$ uniformly for some function g.

Furthermore there exists an $x_0 \in A$ such that $(f_n(x_0))$ converges since (f_n) converges uniformly and therefore converges pointwise for all $x \in A$.

This implies that $(f_n) \to f$ uniformly for some function f (this we already knew) but this also implies that f is differentiable on A and f' = g via the theorems in section 6.3.