

Investitionsrechnung für Haushalte

Anne Glatt 19.05.2020

Agenda

- Theorie: Investitionsrechnung
- Übung 3
- Ergebnisse Übung 1
- Fragen zu Übung 2
- Gruppenarbeit

Einführung in die Wirtschaftlichkeitsrechnung

Interpretationen und Funktionen von Zinsen:

- Entgelt für entliehenes Kapital
- Zeitpräferenz
- Allokationsmechanismus
- Risikoindikator

Aufzinsen

$$K_n = K_0(1+r)^n$$

 K_nWert der Zahlung nach n Jahren

*K*₀......Wert der Einzahlung zum Zeitpunkt 0

n...... Anzahl der Jahre

r.....Zinssatz p.a.

Geldwert in EUR

Aufzinsen

Abzinsen

$$K_0 = \frac{K_n}{(1+r)^n}$$

 K_nWert der Zahlung nach n Jahren

*K*₀......Wert der Einzahlung zum Zeitpunkt 0

n...... Anzahl der Jahre

r.....Zinssatz p.a.

Geldwert in EUR

Abzinsen

Zinsen

Beispiel:

Wirtschaftlichkeit von zwei Optionen

- Option 1:
 - Zeitpunkt 0: verleihen von 100 EUR
 - nach 4 Jahren: 130 EUR
- Option 2: Verzinsung mit 2,5%

Wirtschaftlichkeitsbewertung durch Kapitalwert von Option 1:

$$K_{0,1} = \frac{130 \,\mathrm{EUR}}{(1+0.025)^4} = 117.77 \,\mathrm{EUR}$$

Wirtschaftlichkeitsbewertung durch Endwert von Option 2:

$$K_{n,2} = 100 \,\mathrm{EUR}(1 + 0.025)^4 = 110.38 \,\mathrm{EUR}$$

Barwertmethode

Barwertmethode

$$NPV = -I_0 + \frac{E_1 - A_1}{(1+r)} + \frac{E_2 - A_2}{(1+r)^2} + \dots + \frac{E_n - A_n}{(1+r)^n} + \frac{L}{(1+r)^n}$$

$$= -I_0 + \frac{CF_1}{(1+r)} + \frac{CF_2}{(1+r)^2} + \dots + \frac{CF_n}{(1+r)^n} + \frac{L}{(1+r)^n}$$

$$= -I_0 + \sum_{i=1}^n \frac{CF_i}{(1+r)^i} + \frac{L}{(1+r)^n}$$

NPV Nettobarwert der Investition in EUR

*I*₀ Investitionskosten zum Zeitpunkt 0 in EUR

 E_i Einnahmen in der Periode i in EUR

 A_i Ausgaben, Kosten in der Periode i in EUR

 CF_i Cashflow in der Periode i in EUR

r Gewählter Kalkulationszinssatz bei Barwertrechnung bzw. gesuchter Zinssatz bei der Berechnung des internen Zinsfuß

L Restwert der Investition am Ende des Betrachtungszeitraums in EUR

n Betrachtungszeitraum in Jahren

Barwertmethode

Beispiel - Barwert in Abhängigkeit der Laufzeit bis 20 Jahre.

- Investitionszahlung zum Zeitpunkt 0: 1000 EUR
- jährlicher Cashflow: 100 EUR/a
- Kalkulationszinssatz: 2,5%

Eigenverbrauch und Überschusseinspeisung

$$Deckungsgrad_{energetisch} = \frac{Gesamterzeugung}{Stromverbrauch}$$

Akteure und Möglichkeiten am Strommarkt

Struktur von Energie- und Regelenergiemärkten

Spotmarkt

Day-Ahead Spotmarktpreis (Strompreis) am 27.11.2017

Quelle: epexspot

Aufgabe 3.1 – Verkauf der gesamten Produktion

- a. Berechnen Sie den Barwert (= Kapitalwert) einer 10 kWp PV-Anlage unter der Annahme, dass die gesamte Produktion am Spotmarkt verkauft wird.
 - Preise aus dem Jahr 2016 (Spotpreis.mat)
 - Annahme: 2016 steht exemplarisch für jedes kommende Jahr
 - Wie hoch dürfen die Investitionskosten maximal sein, damit die Wirtschaftlichkeit der Investition positiv bewertet wird (Barwert > 0)?
 - Stellen Sie die Entwicklung des Kapitalwerts (=Barwert) der Investition über die Lebensdauer in einem Diagramm dar.
- b. Führen Sie die Berechnung noch einmal unter der Annahme durch, dass Sie den aktuellen OeMAG Einspeisetarif für 13 Jahre erhalten.
 - Vergleich Sie diesen Fall mit dem nicht geförderten Fall.
 - Nach dem Vertragsende wird der Strom wieder bis zum Ende der Lebensdauer am Spotmarkt (Preise 2016) verkauft.
 - Annahme Anlagenleistung 10 kWp
 - http://www.oem-ag.at/de/foerderung/photovoltaik/

Aufgabe 3.1 – Verkauf der gesamten Produktion

Parameter:

Zinssatz = 4%

Systemkosten = 1200 €/kWp

Betriebskosten/Versicherung = 4 €/(kWp a)

Lebensdauer/Betrachtungszeitraum = 25 a

Einspeisetarif_{OeMAG} = 8,24 Cent/kWh

Förderdauer_{OeMAG} =13 a

https://www.oem-

ag.at/fileadmin/user_upload/Dokumente/gesetze/2015_12_23_OESE

T-VO_2016.pdf

Aufgabe 3.2 - Eigenverbrauch

- a. Berechnen Sie den Eigenverbrauch und die Überschusseinspeisung einer 5kWp-Anlage für 5 der gegebenen 30 Haushalte.
 - PV Einspeiseprofil.mat
 - LeistungHaushalte.mat
 - Standort Wien
 - Ausrichtung der PV-Anlage: Azimut=180°, Neigungswinkel=30°
- b. Stellen Sie die Entwicklung des Eigenverbrauchsanteils und der Deckungsgrade der Haushalte für eine Anlagengröße von 0 bis 20 kWp für die 5 Haushalte dar.
- c. Erstellen Sie eine Grafik, in der die Erzeugung, die Last und der Eigenverbrauch für die Woche 3 und 25 für Haushalt 1 dargestellt wird. Verwenden Sie für die Darstellung des Eigenverbrauchs die Plot-Funktion area.

Aufgabe 3.3 – Barwert

- Erstellen Sie eine Investitionsrechnung (Barwert) für die 5 gegebenen Haushalte und einer Anlagengröße von 5 kWp.
 - Vergleichen Sie dazu den Fall mit PV-Anlage mit dem Fall ohne PV-Erzeugung.
 - Für den Eigenverbrauch setzen Sie eine Ersparnis in Höhe des Haushaltsstrompreises (arbeitsabhängiger Anteil) an.
 - → Annahme: 15 cent/kWh
 - Nehmen Sie für die Überschusseinspeisung einen Einspeisetarif von 5 cent/kWh an.
- b. Wie hoch dürfen die spezifischen Investitionskosten (EUR/kW) je Haushalt maximal sein, damit die Investition als wirtschaftlich gewertet wird?

Aufgabe 3.4 – Recherche

- a. Wie beurteilen Sie auf Basis der in der dieser Übung erlangten Erkenntnisse die Wirtschaftlichkeit von PV-Anlagen in Österreich?
- b. Sollten Ihrer Meinung nach PV-Anlagen in Österreich weiterhin gefördert werden?

(Beantworten Sie jede Frage in maximal 8 Sätzen! – Weniger ist auch möglich!)

Abgabe

1. Protokoll

- Das Protokoll beinhaltet:
 - Ergebnisse und Lösungsweg kommentieren
 - Ergebnisse, bevorzugt auch in graphischer Darstellung
 - Schlussfolgerungen
 - Überflüssigen Text vermeiden, max. 10-15 Seiten
- Das <u>Erscheinungsbild und die wissenschaftliche Gestaltung des Protokolls</u> wird in die Beurteilung miteinbezogen.
 - <u>https://www.wissenschaftliches-arbeiten.org/</u>
 - Kriterien: Inhaltsverzeichnis, Abbildung- und Tabellenbeschriftung, Verweise, Modellbeschreibung, Lesbarkeit…
- Eine LaTeX Vorlage finden Sie im TUWEL (nicht verpflichtend).
- Abgabe des Protokolls <u>als pdf Datei</u>.

2. Ausführbarer Matlab Code

Als Gruppenabgabe (Protokoll + Code gemeinsam als zip-Datei) ins TUWEL hochladen!

Deadline: 01.06.2020, 23:59 (keine spätere Abgabe möglich)

Fragen: glatt@eeg.tuwien.ac.at

Ergebnisse

Übung 1

1.1 Jahreserzeugung

1.2 a. Leistungsdauerlinie

1.2 b. Monatliche Erträge

1.2 c. Minimale und maximale Erträge

	Tag	Datum	Energie[Wh]
Min 1	340	06.12	231
Min 2	331	27.11	248
Min 3	365	31.12	255
Min 4	337	03.12	261
Min 5	362	28.12	271

	Tag	Datum	Energie[Wh]
Max 5	174	23.06	6131
Max 4	185	04.07	6137
Max 3	154	03.06	6145
Max 2	175	24.06	6168
Max 1	172	21.06	6178

Table 1: 5 Tage mit dem geringsten Ertrag

Table 2: 5 Tage mit dem höchsten Ertrag

1.2 d. Anteile der Strahlung

1.2.e Durchschnittliche Stromproduktion

Fragen zu Aufgabe 2.3

Je nach Standortauswahl kann es zu Fehlermeldung bei Aufruf der Funktion Load Strahlung.m kommen

→ Angepasste Datei in TUWEL hochgeladen