# Unsupervised Point-Cloud Reconstruction

Luca Barco s276072@studenti.polito.it
Stefano Bergia s276124@studenti.polito.it
Daniela De Angelis s277493@studenti.polito.it

Politecnico di Torino
Machine Learning and Artificial Intelligence
A.Y. 2020/2021





#### What is a **Point-Cloud**?

- Set of points
- Unordered and unstructured
- Represents an object
- Close to sensor data (e.g. LiDAR Camera)





**Cannot directly use traditional CNN Models** 

# How deep learning methods deal with **Point-Clouds**?

To deal with Point-Clouds, deep learning methods must guarantee:

- **Permutation Invariance**: invariant to *N!* permutations of the input.
- Geometric Transformations Invariance: Rigid transformation (e.g. rotation) applied to the input should not alter the performed task results.

# Build a Point-Cloud Auto-Encoder

### How to extract information from a Point-Cloud?



#### How to **extract information** from a Point-Cloud?



# Our problem: train a Point-Cloud Auto-Encoder



# Starting point: PointNet and DGCNN

PointNet<sup>[1]</sup> and DGCNN<sup>[2]</sup> are supervised deep learning method for Point-Clouds classification and segmentation.



They extract the main features of a Point-Cloud



Use their features extractors in an unsupervised Auto-Encoder

#### **Auto-Encoder's Architecture**



#### Main components:

- Feature Extractor (based on PointNet<sup>[1]</sup> or DGCNN<sup>[2]</sup>)
- Encoder
- Fully Connected Decoder
- Loss function based on Chamfer Distance

#### Auto-Encoder's Architecture: PointNet[1] Feature Extractor

**PointNet**<sup>[1]</sup>: deep learning method for Point-Clouds classification and segmentation.

- **Permutation Invariance**: guaranteed using a symmetric function to aggregate information from each of the points (e.g. Max Pooling).
- Geometric Transformations Invariance: guaranteed using Transformer Networks (T-Net) in euclidean space.
- It aggregates global features into a unique vector

#### Auto-Encoder's Architecture: PointNet[1] Feature Extractor

#### PointNet<sup>[1]</sup> Architecture: Features extraction



#### Auto-Encoder's Architecture: DGCNN<sup>[2]</sup> Feature Extractor

**DGCNN**<sup>[2]</sup>: deep learning method for Point-Clouds classification and segmentation based on computation of direct graph representing local structures.

- Permutation Invariance : guaranteed using a symmetric function (e.g. Max Pooling) to aggregate information at each layer.
- **Geometric Transformations Invariance**: guaranteed using the neighbourhood graph.
- It aggregates both global and local features into a unique vector

#### Auto-Encoder's Architecture: DGCNN<sup>[2]</sup> Feature Extractor

- **Dynamic Graph:** the graph is updated at each layer
- EdgeConv: convolutional layer working on the dynamic graph



## Auto-Encoder's Architecture: DGCNN<sup>[2]</sup> Graph Computation

#### How is the graph computed?

Using an Edge function: asymmetric function that considers each point x<sub>i</sub> and its neighbourhood (x<sub>i</sub>-x<sub>i</sub>)



#### Auto-Encoder's Architecture: Encoder and Decoder



- Encoder: Further refinement of features of the input Point-Cloud
- Decoder: Fully-Connected layers to reconstruct the input Point-Cloud

#### Auto-Encoder's Architecture: Loss Function

Distance metric: Chamfer Distance<sup>[3]</sup>

Given two point sets 
$$P_1$$
,  $P_2 \rightarrow d_{CD}(P_1, P_2) = \sum_{x \in P_1} \min_{y \in P_2} ||x - y||_2^2 + \sum_{y \in P_2} \min_{x \in P_1} ||x - y||_2^2 + \sum_{y \in P_2} \min_{x \in P_1} ||x - y||_2^2$ 

- "pseudo-symmetrical" behaviour:
  - o For each point in P<sub>1</sub>, compute the squared distance with respect to the nearest point in P<sub>2</sub>
  - The same for each point in P<sub>2</sub>
  - Sum these two components

**Loss Function**: average of the Chamfer Distance over N points of Point-clouds  $P_1$  and  $P_2$  multiplied by a w factor (in our work w=100)

$$L(P_1, P_2) = \frac{w}{2N} \cdot d_{CD}(P_1, P_2)$$

# **Auto-Encoder**: Training

- Training Dataset: ShapeNet<sup>[4]</sup>
- Training on seven classes of data:

Airplane, Chair, Table, Lamp, Car, Motorbike, Mug.

- Two scenarios:
  - Training on all seven classes jointly
  - Training on single classes



# Auto-Encoder: Training on all 7-classes vs single

#### Two Architectures:

- PNet\_AE\_512 : PointNet based AE, Encoder lower level size: 512
- o **DGCNN\_AE\_512**: DGCNN based AE, Encoder lower level size: 512

# Training on all seven classes jointly: Testing loss results

| Category  | PNet_AE_512 | DGCNN_AE_512 |
|-----------|-------------|--------------|
| Airplane  | 0.100       | 0.105        |
| Chair     | 0.191       | 0.190        |
| Table     | 0.207       | 0.219        |
| Lamp      | 0.301       | 0.272        |
| Car       | 0.245       | 0.256        |
| Motorbike | 0.186       | 0.193        |
| Mug       | 0.381       | 0.364        |
| Avg       | 0.230       | 0.228        |

# Training on single classes: Testing loss results

| Category  | PtNet_AE_512 | DGCNN_AE_512 |
|-----------|--------------|--------------|
| Airplane  | 0,113        | 0,099        |
| Chair     | 0,221        | 0,197        |
| Table     | 0,227        | 0,228        |
| Lamp      | 0,387        | 0,499        |
| Car       | 0,294        | 0,254        |
| Motorbike | 0,225        | 0,236        |
| Mug       | 0,582        | 0,585        |
| Avg       | 0,293        | 0,300        |

# Auto-Encoder: Training on all 7-classes vs single



# Regardless of the architecture, results look better when training on all 7-classes jointly!





average shape

reconstruct others

# Auto-Encoder: Testing on novel categories

Testing the models trained on all seven classes jointly on novel unseen categories:

- Similar: Basket, Bicycle, Bowl, Helmet, Microphone, Rifle, Watercraft
- **Dissimilar**: Bookshelf, Bottle, clock, Microwave, Pianoforte, Telephone

#### Testing on novel categories: Testing loss results

|            | Category   | PNet_AE_512 | DGCNN_AE_512 |
|------------|------------|-------------|--------------|
| Similar    | Basket     | 0.711       | 0.606        |
|            | Bicycle    | 0.408       | 0.399        |
|            | Bowl       | 1.072       | 0.747        |
|            | Helmet     | 0.902       | 0.732        |
|            | Microphone | 1.635       | 0.694        |
|            | Rifle      | 0.201       | 0.197        |
|            | Watercraft | 0.261       | 0.259        |
|            | Avg        | 0.741       | 0.516        |
| Dissimilar | Bookshelf  | 0.576       | 0.551        |
|            | Bottle     | 0.330       | 0.307        |
|            | Clock      | 0.702       | 0.562        |
|            | Microwave  | 0.494       | 0.517        |
|            | Pianoforte | 0.732       | 0.631        |
|            | Telephone  | 0.494       | 0.424        |
|            | Avg        | 0.584       | 0.499        |



# **Auto-Encoder**: Examples of outputs

#### Similar:







Uses Motorbike features!

#### Dissimilar:







**Uses Car Features!** 

# Auto-Encoder Loss Function issue: local density

**Problem:** it doesn't preserve local density

Loss of finer details

**Input Point-Cloud** 



**Reconstructed Point-Cloud** 



Lower densities for legs and bars, higher density for the plane



Errors in low density regions are penalized much more



Few points are assigned to low density regions

# Auto-Encoder: Pros, cons and improvements

#### **PROS**



Good at reconstructing general shape of the object



Good at "transfer" local features learned for an object to reconstruct another one



Small embedding size

#### **CONS**





Bad at preserving local density

#### **IMPROVEMENTS**



Adjust the loss function to preserve density and better reconstruct finer details

# Point-Cloud Completion: Complete a cropped Point-Cloud

# How to **complete** a cropped Point-Cloud?



# Starting point: PF-Net[4]

**PF-Net**<sup>[4]</sup> is a deep learning method to reconstruct 3-D objects considering only the missing part



Use their idea with our Auto-Encoder

# How to **complete** a cropped Point-Cloud? **Our proposal**



#### Key concepts:

- Point-Cloud cropping → reconstruct only the Missing Part
- PointNet based Auto-Encoder
  - o input: Cropped Point-Cloud
  - output: Reconstructed Missing Part Point-Cloud
- Final result: Reconstructed Missing Part + Cropped → complete object Point-Cloud
- Objective: good reconstruction of Missing Part + keep global object shape homogeneous

# Point-cloud completion: Point-Cloud cropping

- Set of viewpoints
- For each one

Remove the 256 nearest points



- 1) Cropped Point-Cloud
- 2) Missing Part Point-Cloud



# Point-cloud completion: Loss function

- **P**<sub>at</sub>: Ground Truth Point-Cloud
- **P**<sub>m</sub>: Missing-Part Point-Cloud
- P<sub>c</sub>: Cropped Point-Cloud
- P<sub>rm</sub>: Reconstructed Missing-Part Point-Cloud
- $P_r = P_c + P_{rm}$ : Reconstructed Point-Cloud given by concatenation of Prm and Pc.
- L(P<sub>1</sub>: P<sub>2</sub>) as the mean Chamfer Distance between Point-Clouds P1 and P2.
- r: weighting parameters to balance the two terms
- $\rightarrow$  Matching Loss function

$$L_{PCC} = L(P_{rm}, P_m) + r \cdot (L(P_r, P_{gt}))$$

good reconstruction of missing part (also called **Vanilla Loss Function**)

keep global shape homogeneous

# Point-cloud completion: Vanilla vs Matching loss



# Point-cloud completion: Training

#### Training on all seven classes jointly

 Airplane, Chair, Table, Lamp, Car, Motorbike, Mug.

|       | Category  | PNet_AE_512        |                     |
|-------|-----------|--------------------|---------------------|
|       | Category  | Vanilla Loss Model | Matching Loss Model |
| Known | Airplane  | 0.103              | 0.102               |
|       | Chair     | 0.181              | 0.167               |
|       | Table     | 0.180              | 0.191               |
|       | Lamp      | 0.592              | 0.639               |
|       | Car       | 0.181              | 0.249               |
|       | Motorbike | 0.130              | 0.372               |
|       | Mug       | 0.283              | 0.422               |
|       | Avg       | 0.236              | 0.306               |

Table Testing Loss results for Point-Cloud Completion (training on all 7 known classes jointly using Vanilla Loss and Matching Loss). Testing Loss: mean Chamfer Distance only on the missing part.



# Point-cloud completion: Testing on novel categories

| **         | Category   | PNet_AE_512        |                     |
|------------|------------|--------------------|---------------------|
|            |            | Vanilla Loss Model | Matching Loss Model |
|            | Basket     | 0.264              | 0.249               |
|            | Bicycle    | 0.155              | 0.159               |
|            | Bowl       | 0.474              | 0.416               |
| Similar    | Helmet     | 0.287              | 0.287               |
| Similar    | Microphone | 2.426              | 2.168               |
|            | Rifle      | 0.152              | 0.141               |
|            | Watercraft | 0.087              | 0.094               |
|            | Avg        | 0,549              | 0.502               |
| Dissimilar | Bookshelf  | 0.239              | 0.226               |
|            | Bottle     | 0.174              | 0.184               |
|            | Clock      | 0.257              | 0.281               |
|            | Microwave  | 0.251              | 0.242               |
|            | Pianoforte | 0.168              | 0.188               |
|            | Telephone  | 0.252              | 0.219               |
|            | Avg        | 0,223              | 0.224               |

Table . Testing Loss results for Point-Cloud Completion (training on all 7 known classes jointly using Vanilla Loss and Matching Loss). Testing Loss: mean Chamfer Distance only on the missing part.



## Point-cloud completion: Pros, cons and improvements

#### **PROS**



Good at reconstructing general shape of the object



Good at "transfer" local features learned for an object to reconstruct another one



Small embedding size

#### **CONS**



Bad at reconstructing finer details



Bad at preserving symmetry

#### **IMPROVEMENTS**



Adjust the loss function to preserve symmetry and better reconstruct finer details

# Thanks for your attention!



mage 'Smile - Statistical Machine Intelligence and Learning Engine (haifengl.github.ig

Luca Barco s276072@studenti.polito.it
Stefano Bergia s276124@studenti.polito.it
Daniela De Angelis s277493@studenti.polito.it

Politecnico di Torino
Machine Learning and Artificial Intelligence
A.Y. 2020/2021





Image: polito.it