Job No.: Central Demolition Address: Turners Rd Extension Feilding, Feilding, New Zealand Date: 22/05/2024

Latitude: -40.254541 Longitude: 175.550567 Elevation: 53.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N1	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	8 m
Wind Region	NZ2	Terrain Category	1.88	Design Wind Speed	40.58 m/s
Wind Pressure	0.99 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Open

For roof Cp, i = 0.5355

For roof CP,e from 0 m To 3.75 m Cpe = -1.1 pe = -0.77 KPa pnet = -1.19 KPa

For roof CP,e from 3.75 m To 7.50 m Cpe = -0.8 pe = -0.56 KPa pnet = -0.98 KPa

For wall Windward Cp, i = 0.5355 side Wall Cp, i = -0.52

For wall Windward and Leeward CP,e from 0 m To 38.40 m Cpe = 0.7 pe = 0.62 KPa pnet = 1.13 KPa

For side wall CP,e from 0 m To 7.50 m Cpe = pe = -0.58 KPa pnet = -0.07 KPa

Maximum Upward pressure used in roof member Design = 1.19 KPa

Maximum Downward pressure used in roof member Design = 0.69 KPa

Maximum Wall pressure used in Design = 1.13 KPa

Maximum Racking pressure used in Design = 1.06 KPa

Design Summary

Purlin Design

Purlin Spacing = 850 mm Purlin Span = 4650 mm Try Purlin 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.77 S1 Downward =11.27 S1 Upward =18.02

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	0.78 Kn-m	Capacity	2.23 Kn-m	Passing Percentage	285.90 %
$M_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	2.27 Kn-m	Capacity	2.97 Kn-m	Passing Percentage	130.84 %
Mo.9D-WnUp	-2.22 Kn-m	Capacity	-2.86 Kn-m	Passing Percentage	128.83 %
V _{1.35D}	0.67 Kn	Capacity	9.65 Kn	Passing Percentage	1440.30 %

Second page

 $V_{1.2D+1.5L~1.2D+Sn~1.2D+WnDn}$ 1.96 Kn Capacity 12.86 Kn Passing Percentage 656.12 % $V_{0.9D-WnUp}$ -1.91 Kn Capacity -16.08 Kn Passing Percentage 841.88 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 13.31 mm

Limit by Woolcock et al, 1999 Span/240 = 19.17 mm

Deflection under Dead and Service Wind = 18.75 mm

Limit by Woolcock et al, 1999 Span/100 = 46.00 mm

Reactions

Maximum downward = 1.96 kn Maximum upward = -1.91 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 4800 mm Internal Rafter Span = 9850 mm Try Rafter 2x450x45 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 9.45 S1 Upward = 9.45

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	19.65 Kn-m	Capacity	65.4 Kn-m	Passing Percentage	332.82 %
$M_{1,2D+1,5L\ 1,2D+Sn\ 1,2D+WnDn}$	57.63 Kn-m	Capacity	87.2 Kn-m	Passing Percentage	151.31 %
M0.9D-WnUp	-56.18 Kn-m	Capacity	-109 Kn-m	Passing Percentage	194.02 %
V _{1.35D}	7.98 Kn	Capacity	69.04 Kn	Passing Percentage	865.16 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	23.40 Kn	Capacity	92.04 Kn	Passing Percentage	393.33 %
$ m V_{0.9D-WnUp}$	-22.81 Kn	Capacity	-115.06 Kn	Passing Percentage	504.43 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 22.445 mm

Limit by Woolcock et al, 1999 Span/240 = 41.67 mm

Deflection under Dead and Service Wind = 35.125 mm

Limit by Woolcock et al, 1999 Span/100 = 100.00 mm

Reactions

Maximum downward = 23.40 kn Maximum upward = -22.81 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 4

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 90 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 58.22 Kn > -22.81 Kn

Rafter Design External

External Rafter Load Width = 2400 mm

External Rafter Span = 9850 mm

Try Rafter 450x45 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.72

K8 Upward =0.72 S1 Downward =19.04 S1 Upward =19.04

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	9.82 Kn-m	Capacity	23.45 Kn-m	Passing Percentage	238.80 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	28.82 Kn-m	Capacity	31.26 Kn-m	Passing Percentage	108.47 %
$M_{0.9D\text{-W}nUp}$	-28.09 Kn-m	Capacity	-39.08 Kn-m	Passing Percentage	139.12 %
V _{1.35D}	3.99 Kn	Capacity	34.52 Kn	Passing Percentage	865.16 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	11.70 Kn	Capacity	46.02 Kn	Passing Percentage	393.33 %
V0.9D-WnUp	-11.41 Kn	Capacity	-57.53 Kn	Passing Percentage	504.21 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 24.94 mm
Deflection under Dead and Service Wind = 35.12 mm

Limit by Woolcock et al, 1999 Span/240= 41.67 mm Limit by Woolcock et al, 1999 Span/100 = 100.00 mm

Reactions

Maximum downward = 11.70 kn Maximum upward = -11.41 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 4

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 45 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

 $V = phi \times k1 \times k4 \times k5 \times fs \times b \times ds \dots (Eq 4.12) = -65.11 \text{ kn} > -11.41 \text{ Kn}$

Single Shear Capacity under short term loads = -29.11 Kn > -11.41 Kn

Girt Design Front and Back

Girt's Spacing = 1300 mm Girt's Span = 4800 mm Try Girt 300x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.94

K8 Upward =0.54 S1 Downward =13.93 S1 Upward =22.75

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+snow 4.23 Kn-m Capacity 4.56 Kn-m Passing Percentage 107.80 % V_{0.9D-WnUp} 3.53 Kn Capacity 24.12 Kn Passing Percentage 683.29 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 13.47 mm

Limit by Woolcock et al, 1999 Span/100 = 48.00 mm

Sag during installation = 32.19 mm

Reactions

Maximum = 3.53 kn

Girt Design Sides

Girt's Spacing = 0 mm Girt's Span = 5000 mm Try Girt SG8 Dry

Moisture Condition = Wet (Moisture in timber is less than 18% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = NaN

K8 Upward = NaN S1 Downward = NaN S1 Upward = NaN

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 0.00 Kn-m Capacity NaN Kn-m Passing Percentage NaN % V0.9D-WnUp 0.00 Kn Capacity 0.00 Kn Passing Percentage NaN %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = NaN mm Limit by Woolcock et al. 1999 Span/100 = 50.00 mm

Sag during installation = NaN mm

Reactions

Maximum = 0.00 kn

Middle Pole Design

Geometry

350 SED H5 (Minimum 375 dia. at Floor Level)	Dry Use	Height	7550 mm
Area	103154 mm2	As	77365.4296875 mm2
Ix	847191750 mm4	Zx	4674161 mm3
Iy	847191750 mm4	Zx	4674161 mm3
Lateral Restraint	1300 mm c/c		

Loads

Total Area over Pole = 24 m^2

Dead	6.00 Kn	Live	6.00 Kn
Wind Down	16.56 Kn	Snow	0.00 Kn
Moment wind	60.90 Kn-m		
Phi	0.8	K8	1.00
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNcx Wind	1485.42 Kn	PhiMnx Wind	135.74 Kn-m	PhiVnx Wind	183.20 Kn
PhiNcx Dead	891.25 Kn	PhiMnx Dead	81.44 Kn-m	PhiVnx Dead	109.92 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.47 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.22 < 1 OK$

Deflection at top under service lateral loads = 65.91 mm < 75.50 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
K0 =	$(1-\sin(30))/(1+\sin(30))$				
Kp=	$(1+\sin(30)) / (1-\sin(30))$				

Geometry For Middle Bay Pole

Ds = 0.6 mm Pile Diameter

L= 2500 mm Pile embedment length

f1 = 6000 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Pile Properties

Safety Factory 0.55

Hu = 16.38 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 57.55 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 1.06 < 1 OK

End Pole Design

Geometry For End Bay Pole

Geometry

300 SED H5 (Minimum 325 dia. at Floor Level) Dry Use Height 7550 mm

Area 76660 mm2 As 57495.1171875 mm2
Ix 467896461 mm4 Zx 2994537 mm3
Iy 467896461 mm4 Zx 2994537 mm3

Lateral Restraint mm c/c

Loads

Total Area over Pole = 24 m2

 Dead
 6.00 Kn
 Live
 6.00 Kn

 Wind Down
 16.56 Kn
 Snow
 0.00 Kn

Moment Wind 30.45 Kn-m

 Phi
 0.8
 K8
 0.49

 K1 snow
 0.8
 K1 Dead
 0.6

K1 wind 1

Material

Peeling Steaming Normal Dry Use fb = 36.3 MPa $f_S =$ 2.96 MPa fc = 18 MPa fp = 7.2 MPa 9257 MPa ft =22 MPa E =

Capacities

PhiNex Wind 538.38 Kn PhiMnx Wind 42.41 Kn-m PhiVnx Wind 136.15 Kn

7/9

PhiNcx Dead 323.03 Kn PhiMnx Dead 25.45 Kn-m PhiVnx Dead 81.69 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.77 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.57 < 1 OK$

Deflection at top under service lateral loads = 63.06 mm < 79.80 mm

Ds = 0.6 mm Pile Diameter

L = 2000 mm Pile embedment length

fl = 6000 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 24 m^2

Moment Wind = 30.45 Kn-m Shear Wind = 5.08 Kn

Pile Properties

Safety Factory 0.55

Hu = 8.91 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 30.81 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.99 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L= 2000 mm Pile embedment length

f1 = 6000 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 30.45 Kn-m Shear Wind = 5.08 Kn

Pile Properties

Safety Factory 0.55

Hu = 8.91 Kn Ultimate Lateral Strength of the Pile, Short pile

8/9

Mu = 30.81 Kn-m

Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.99 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2500) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2500)

Skin Friction = 50.48 Kn

Weight of Pile + Pile Skin Friction = 53.24 Kn

Uplift on one Pile = 23.16 Kn

Uplift is ok