A Data-Driven Approach to Understand and Prevent Customer Loss

Predicting Customer Churn in Banking

 Vamshi Krishna Perabathula

Why Are Our Customers Leaving?

- Business
 Understanding Problem
 Definition
- Imagine you're running a bank, and you notice some customers are leaving. It's like they're breaking up with you, and that hurts your business. Our goal is to create a smart system that can predict which customers might leave so we can give them some extra love and keep them around.

Understanding Our Customer Data

Data Understanding

- We've got a treasure trove of information about our customers over 10,000 records! It tells a detailed story about each person, including their credit score, demographics, and balance. Notably, about 20% of customers have left the bank, and we want to understand why.
- Key Points:
- 10,000 records with customer info.
- Attributes: Credit score, age, location, balance.
- 20% churn rate.

<class 'pandas.core.frame.DataFrame'> RowNumber CustomerId CreditScore Age RangeIndex: 10000 entries, 0 to 9999 10000.000000 10000,00000 1.000000e+04 10000,000000 count 5000.50000 1.569094e+07 650.528800 38.921800 Data columns (total 14 columns): mean 96.653299 std 2886.89568 7.193619e+04 10.487806 Column Non-Null Count Dtype min 1.00000 1.556570e+07 350.000000 18,000000 25% 1.562853e+07 32.000000 2500.75000 584.000000 RowNumber 10000 non-null int64 0 50% 5000.50000 1,569074e+07 652,000000 37.000000 75% 7500.25000 1.575323e+07 44.000000 718.000000 CustomerId 10000 non-null int64 10000.00000 1.581569e+07 max 850.000000 92,000000 Surname 10000 non-null object CreditScore 10000 non-null int64 Balance NumOfProducts IsActiveMember \ HasCrCard Geography 10000 non-null object 10000,0000000 10000.000000 count 10000,00000 10000.000000 76485,889288 0.70550 Gender 10000 non-null object 1.530200 0.515100 mean std 0.581654 0.45584 0.499797 62397.405202 6 Age 10000 non-null int64 min 0.000000 1.000000 0.00000 0.000000 Tenure 10000 non-null int64 25% 0.000000 1.000000 0.00000 0.000000 Balance 10000 non-null float64 1.00000 50% 97198,540000 1.000000 1.000000 NumOfProducts 10000 non-null int64 75% 127644.240000 2.000000 1.00000 1.000000 1.00000 250898,090000 4.000000 1.000000 max HasCrCard 10000 non-null int64 IsActiveMember int64 10000 non-null EstimatedSalary Exited float64 EstimatedSalary 10000 non-null 10000,000000 10000.000000 count Exited 10000 non-null int64 100090.239881 0.203700 mean std 0.402769 dtypes: float64(2), int64(9), object(3) 57510.492818 min 11.580000 0.000000 memory usage: 1.1+ MB 25% 51002.110000 0.000000 None 50% 100193,915000 0.000000 75% 149388.247500 0.000000

max

199992.480000

1.000000

Tenure \

10000,000000

5.012800

2.892174

0.000000

3.000000

5.000000

7.000000

10.000000

```
RowNumber
                   0
CustomerId
                   0
Surname
                   0
CreditScore
Geography
                   0
Gender
                   0
Age
Tenure
Balance
                   0
NumOfProducts
HasCrCard
                   0
IsActiveMember
                   0
EstimatedSalary
                   0
Exited
                   0
dtype: int64
```

Cleaning and Digging Deep into Data

 Data Preparation & Exploratory Data Analysis

- **Data Cleaning**: Removed unnecessary information like customer IDs.
- Exploratory Analysis: Patterns discovered in the data.
- Key Findings:
 - Older customers with larger balances are more likely to leave.
 - Customers from Germany leave more often.
 - Customers with multiple products are less likely to leave

- 0.8

- 0.4

- 0.2

- 0.0

- -0.2

Building the Predictive Systems

Modeling

- Developed two models:
 - Logistic Regression: A straightforward yes/no prediction.
 - Random Forest: A more complex decision-making model.
- Goal: Predict if a customer will stay or leave.

Logistic Regression Results:

Accuracy: 0.811

Classification Report:

	precision	recall	f1-score	support
0	0.83	0.96	0.89	1607
1	0.55	0.20	0.29	393
accuracy			0.81	2000
macro avg	0.69	0.58	0.59	2000
weighted avg	0.78	0.81	0.77	2000

Random Forest Results: Accuracy: 0.8665

Classification Report:

		precision	recall	f1-score	support
	0	0.88	0.96	0.92	1607
	1	0.76	0.47	0.58	393
accur	acy			0.87	2000
macro	avg	0.82	0.72	0.75	2000
weighted	avg	0.86	0.87	0.85	2000

How Well Do Our Models Perform?

Evaluation

- Accuracy: Both models predicted correctly about 86% of the time.
- Random Forest performed slightly better at identifying potential leavers.
- Key Predictors: Customer age, balance, and location.

What Did We Learn & What Can We Do?

 Summary and Recommendations

- We can predict customer churn accurately.
- Focus Areas:
 - Older customers and those with high balances need extra perks.
 - Improve customer experience for German customers.
 - Encourage multi-product usage to boost retention.
- **Next Steps**: Can Continue improving the model and apply targeted retention strategies.

Thank You