1. Данные

Использование кластер-анализа для решения данной задачи наиболее эффективно. В общем случае кластер-анализ предназначен для объединения некоторых объектов в классы (кластеры) таким образом, чтобы в один класс попадали максимально схожие, а объекты различных классов максимально отличались друг от друга. Количественный показатель сходства рассчитывается заданным способом на основании данных, характеризующих объекты

Сгруппируем по признакам совокупности данных

соэ	лейкоциты	глюкоза		
5	10,8	4,5		
5	17,2	6,2		
29	6,8	4,3		
15	10,8	4,5		
3	10,5	4,3		
25	18,5	6,5		
5	5,6	4,3		
9	8,3	6,2		
3	7,2	1,3		
15	16	5,6		
4	16,7	5		
3	12,3	3,1		
3	10,3	4,5		
10	14	4,3		
5	15,8	3,5		

Данные взяты из БД СХ и РГ 1998-2002. https://rosinformagrotech.ru/db/bd-agrotekhnologij

2. Единицы измерения и расстояние между элементами

Стандартизируем данные

- 1			
	1	2	3
	009	лейкоцмты	глюкоза
1	-0,5149987	-0,3035845	0,09725851
2	-0,5149987	1,24663428	1,17555939
3	2,38186883	-1,2724713	-0,0296004
4	0,69202946	-0,3035845	0,09725851
5	-0,7564043	-0,376251	1,36584777
6	1,89905758	1,56152247	-0,0296004
7	-0,5149987	-1,5631373	1,23898885
8	-0,0321874	-0,9091387	-1,9324843
9	-0,7564043	-1,1755826	-1,9324843
10	0,69202946	0,95596826	0,79498261
11	-0,6357015	1,12552344	0,41440583
12	-0,7564043	0,05974802	-0,790754
13	-0,7564043	-0,4246954	0,09725851
14	0,0885154	0,47152488	-0,0296004
15	-0,5149987	0,90752392	-0,5370361

3. ИЕРАРХИЧЕСКИЙ АЛГОРИТМ

Посчитаем расстояния по формуле Евклида:

$$d(\vec{x}, \vec{y}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_m - y_m)^2}$$

Суть иерархической кластеризации состоит в последовательном объединении меньших кластеров в большие. Алгоритм иерархической кластеризации начинает работу с формирование несвязанных кластеров, помещая каждый из объектов в отдельный кластер.

Определяется способ интерпретации матрицы расстояний, чтобы объединить два или более кластера следующего уровня. Процесс повторяется, пока не получим резкого скачка в минимальном расстоянии.

Существет 3 метода поиска необходимых расстояний:

- Принцип «ближнего соседа»
- Принцип средних связей
- Принцип «дальнего соседа»

	Euclidean distances (an)														
Case No.	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8	C_9	C_10	C_11	C_12	C_13	C_14	C_15
C_1	0,00	1,89	3,06	1,21	1,29	3,05	1,70	2,17	2,22	1,88	1,47	0,99	0,27	0,99	1,37
C_2	1,89	0,00	4,02	2,24	1,65	2,72	2,81	3,81	3,95	1,30	0,78	2,31	2,00	1,55	1,75
C_3	3,06	4,02	0,00	1,95	3,55	2,87	3,18	3,10	3,67	2,92	3,88	3,49	3,25	2,88	3,66
C_4	1,21	2,24	1,95	0,00	1,93	2,23	2,08	2,24	2,64	1,44	1,98	1,74	1,45	0,99	1,82
C_5	1,29	1,65	3,55	1,93	0,00	3,57	1,22	3,42	3,39	2,05	1,78	2,20	1,27	1,84	2,31
C_6	3,05	2,72	2,87	2,23	3,57	0,00	4,15	3,67	4,26	1,58	2,61	3,14	3,32	2,11	2,55
C_7	1,70	2,81	3,18	2,08	1,22	4,15	0,00	3,27	3,20	2,83	2,81	2,61	1,63	2,47	3,04
C_8	2,17	3,81	3,10	2,24	3,42	3,67	3,27	0,00	0,77	3,38	3,16	1,66	2,21	2,35	2,34
C_9	2,22	3,95	3,67	2,64	3,39	4,26	3,20	0,77	0,00	3,75	3,29	1,68	2,16	2,65	2,52
C_10	1,88	1,30	2,92	1,44	2,05	1,58	2,83	3,38	3,75	0,00	1,39	2,33	2,12	1,13	1,80
C_11	1,47	0,78	3,88	1,98	1,78	2,61	2,81	3,16	3,29	1,39	0,00	1,61	1,59	1,07	0,98
C_12	0,99	2,31	3,49	1,74	2,20	3,14	2,61	1,66	1,68	2,33	1,61	0,00	1,01	1,21	0,92
C_13	0,27	2,00	3,25	1,45	1,27	3,32	1,63	2,21	2,16	2,12	1,59	1,01	0,00	1,24	1,50
C_14	0,99	1,55	2,88	0,99	1,84	2,11	2,47	2,35	2,65	1,13	1,07	1,21	1,24	0,00	0,90
C_15	1,37	1,75	3,66	1,82	2,31	2,55	3,04	2,34	2,52	1,80	0,98	0,92	1,50	0,90	0,00

- 1) Получили матрицу 15 на 15.
- 2) Далее найдем минимальное расстояние. Это расстояние равно 0,223. И объединим 5 и 13 в один кластер.
- 3) Матрица теперь 14 на 14. Пересчитаем ее. Расстояние до нового кластера будем брать по принципу «ближнего соседа».
- 4) Повторяем весь алгоритм, пока не получим резкого скачка в минимальном расстоянии.

Мы получили 6 кластеров:

- 1) 6
- 2) 3
- 3) 8,9
- 4) 2,10,11,14,15
- 5) 1,4,12,13
- 6) 5,7

4. АЛГОРИТМ К-СРЕДНИХ

Что из себя представляет данный алгоритм?

- 1) Задаем произвольные начальные значения центров
- 2) На каждой итерации перевычисляется центр масс для каждого кластера, полученного на предыдущем шаге, затем векторы разбиваются на кластеры вновь в соответствии с тем, какой из новых центров оказался ближе по выбранной метрике.
- 3) Алгоритм завершается, когда на какой-то итерации не происходит изменения внутрикластерного расстояния

	Euclide	Euclidean distances (an)													
Case No.	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8	C_9	C_10	C_11	C_12	C_13	C_14	C_15
C_1	0,00	1,89	3,06	1,21	1,29	3,05	1,70	2,17	2,22	1,88	1,47	0,99	0,27	0,99	1,37
C_2	1,89	0,00	4,02	2,24	1,65	2,72	2,81	3,81	3,95	1,30	0,78	2,31	2,00	1,55	1,75
C_3	3,06	4,02	0,00	1,95	3,55	2,87	3,18	3,10	3,67	2,92	3,88	3,49	3,25	2,88	3,66
C_4	1,21	2,24	1,95	0,00	1,93	2,23	2,08	2,24	2,64	1,44	1,98	1,74	1,45	0,99	1,82
C_5	1,29	1,65	3,55	1,93	0,00	3,57	1,22	3,42	3,39	2,05	1,78	2,20	1,27	1,84	2,31
C_6	3,05	2,72	2,87	2,23	3,57	0,00	4,15	3,67	4,26	1,58	2,61	3,14	3,32	2,11	2,55
C_7	1,70	2,81	3,18	2,08	1,22	4,15	0,00	3,27	3,20	2,83	2,81	2,61	1,63	2,47	3,04
C_8	2,17	3,81	3,10	2,24	3,42	3,67	3,27	0,00	0,77	3,38	3,16	1,66	2,21	2,35	2,34
C_9	2,22	3,95	3,67	2,64	3,39	4,26	3,20	0,77	0,00	3,75	3,29	1,68	2,16	2,65	2,52
C_10	1,88	1,30	2,92	1,44	2,05	1,58	2,83	3,38	3,75	0,00	1,39	2,33	2,12	1,13	1,80
C_11	1,47	0,78	3,88	1,98	1,78	2,61	2,81	3,16	3,29	1,39	0,00	1,61	1,59	1,07	0,98
C_12	0,99	2,31	3,49	1,74	2,20	3,14	2,61	1,66	1,68	2,33	1,61	0,00	1,01	1,21	0,92
C_13	0,27	2,00	3,25	1,45	1,27	3,32	1,63	2,21	2,16	2,12	1,59	1,01	0,00	1,24	1,50
C_14	0,99	1,55	2,88	0,99	1,84	2,11	2,47	2,35	2,65	1,13	1,07	1,21	1,24	0,00	0,90
C_15	1,37	1,75	3,66	1,82	2,31	2,55	3,04	2,34	2,52	1,80	0,98	0,92	1,50	0,90	0,00

	1	2	3	4	5	(5
	1,89; 1,56; -	2,38 ; -1,27; -	-0,394; -1,042		-0,33; -0,243; -	-0,635 ; -0,969;	
центры:	0,029	0,029	; -1,932	-0,177;0,94;0,36	0,1247	1,302	

Заметим, что совпадает с результатом иерархического алгоритма

Сравнение результатов с помощью многочлена качества

Сумма внутриклассовых дисперсий:

$$Q_1(S) = \sum_{l=1}^K \sum_{X_i \in S_l} \varrho^2(X_i, \overline{X}_l),$$

И сумма попарных внутриклассовых расстояний:

$$Q_2(S) = \sum_{l=1}^{K} \sum_{X_i, X_j \in S_l} \varrho^2(X_i, X_j)$$

Оценим качество разбиения для кластеров.

Q1(S) = 0

Q2(S) = 0

Q3(S) = 0.297

Q4(S) = 3,427

Q5(S) = 2, 1657

Q6(S) = 0,7415

$$\Sigma = 6,6325$$

Качество разбиения среднее.

Вывод

Мы получили 6 кластеров после кластеризации

- 1) 6
- 2) 3
- 3) 8,9
- 4) 2,10,11,14,15
- 5) 1,4,12,13
- 6) 5,7