

7CPAPS_Statistics

2023-2024

Module Outline

Content of this Module

- How to use regression analysis to predict the value of a dependent variable based on a value of an independent variable.
- Understanding the meaning of the regression coefficients b₀ and b₁.
- Evaluating the assumptions of regression analysis and know what to do if the assumptions are violated.
- Making inferences about the slope and correlation coefficient.
- Estimating mean values and predicting individual values.

Correlation vs. Regression

 A scatter plot can be used to show the relationship between two variables.

- Correlation analysis is used to measure the strength of the association (linear relationship) between two variables.
 - Correlation is only concerned with strength of the relationship.
 - No causal effect is implied with correlation.

Types of Relationships

Linear relationships

Curvilinear relationships

Types of Relationships

Types of Relationships

Introduction to Regression Analysis

- Regression analysis is used to:
 - Predict the value of a dependent variable based on the value of at least one independent variable.
 - Explain the impact of changes in an independent variable on the dependent variable.

Dependent variable: the variable we wish to

predict or explain.

Independent variable: the variable used to predict

or explain the dependent

variable.

Simple Linear Regression Model

- Only one independent variable, X.
- Relationship between X and Y is described by a linear function.
- Changes in Y are assumed to be related to changes in X.

Simple Linear Regression Model

Simple Linear Regression Model

Simple Linear Regression Equation (Prediction Line)

The simple linear regression equation provides an estimate of the population regression line.

The Least Squares Method

 b₀ and b₁ are obtained by finding the values that minimize the sum of the squared differences between Y and Ŷ

$$\min \sum (Y_i - \hat{Y}_i)^2 = \min \sum (Y_i - (b_0 + b_1 X_i))^2$$

- The coefficients b₀ and b₁, and other regression results, will be found using Excel.
- The calculations for b₀ and b₁ are not shown here but are available in the textbook section 13.2.

Interpretation of the Slope and the Intercept

b₀ is the estimated mean value of Y when the value of X is zero.

 b₁ is the estimated change in the mean value of Y as a result of a one-unit increase in X.

Simple Linear Regression Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet).
- A random sample of 10 houses is selected.
 - Dependent variable (Y) = house price in \$1,000s.
 - Independent variable (X) = square feet.

Simple Linear Regression Example: Data

House Price in \$1000s (Y)	Square Feet (X)
245	1,400
312	1,600
279	1,700
308	1,875
199	1,100
219	1,550
405	2,350
324	2,450
319	1,425
255	1,700

Simple Linear Regression Example: Scatter Plot

House price model: Scatter Plot

Simple Linear Regression Example: Excel Output

Regression Statistics

Multiple R	0.76211
R Square	0.58082
Adjusted R Square	0.52842
Standard Error	41.33032
Observations	10

The regression equation is:

ANOVA	/				
	df	SS	MS	F	Significance F
Regression	1/	18934.9348	18934.9348	11.0848	0.01039
Residual	8	13665.5652	1708.1957		
Total	9	32600.5000			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Simple Linear Regression Example: Graphical Representation

House price model: Scatter Plot and Prediction Line

Simple Linear Regression Example: Interpretation of b_o

- b₀ is the estimated mean value of Y when the value of X is zero (if X = 0 is in the range of observed X values)
- Because a house cannot have a square footage of 0, b₀
 has no practical application

Simple Linear Regression Example: Interpreting b₁

- b₁ estimates the change in the mean value
 of Y as a result of a one-unit increase in X.
- Here, $b_1 = 0.10977$ tells us that the mean value of a house increases by 0.10977(\$1,000) = \$109.77, on average, for each additional one square foot of size.

Simple Linear Regression Example: Making Predictions

Predict the price for a house with 2,000 square feet:

house price =
$$98.25 + 0.1098$$
 (sq.ft.)
= $98.25 + 0.1098$ (2,000)
= 317.85

The predicted price for a house with 2,000 square feet is 317.85(\$1,000s) = \$317,850

Simple Linear Regression Example: Making Predictions

 When using a regression model for prediction, only predict within the relevant range of data

Measures of Variation

Total variation is made up of two parts:

$$SST = SSR + SSE$$

Total Sum of Squares

Regression Sum of Squares

Error Sum of Squares

$$SST = \sum (Y_i - \overline{Y})^2$$

$$SSR = \sum (\hat{Y}_i - \overline{Y})^2$$

$$SSR = \sum (\hat{Y}_i - \overline{Y})^2 | SSE = \sum (Y_i - \hat{Y}_i)^2 |$$

where:

 \overline{Y} = Mean value of the dependent variable

Y_i = Observed value of the dependent variable

 \hat{Y}_i = Predicted value of Y for the given X_i value

Measures of Variation

- SST = total sum of squares (Total Variation.)
 - Measures the variation of the Y_i values around their mean Y.
- SSR = regression sum of squares (Explained Variation.)
 - Variation attributable to the relationship between X and Y.
- SSE = error sum of squares (Unexplained Variation.)
 - Variation in Y attributable to factors other than X.

Measures of Variation

Excel Output Of The Measures Of Variation

10	ANOVA					
11		df	SS	MS	F	Significance F
12	Regression	1	18934.9348	18934.9348	11.0848	0.0104
13	Residual	8	13665.5652	1708.1957		
14	Total	9	32600.5000			

SST = SSR + SSE 32,600.5000 = 18,934.9348 + 13,665.5652

Coefficient of Determination, r²

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable.
- The coefficient of determination is also called r-square and is denoted as r².

$$r^2 = \frac{SSR}{SST} = \frac{\text{regression sum of squares}}{\text{total sum of squares}}$$

note: $0 \le r^2 \le 1$

Examples of Approximate r² Values

Perfect linear relationship between X and Y.

100% of the variation in Y is explained by variation in X.

Examples of Approximate r² Values

Weaker linear relationships between X and Y.

Some but not all of the variation in Y is explained by variation in X.

Examples of Approximate r² Values

 $r^2=0$

No linear relationship between X and Y.

The value of Y does not depend on X. (None of the variation in Y is explained by variation in X.)

Simple Linear Regression Example: Coefficient of Determination, r² in Excel

Regression Statistics				
Multiple R	0.76211			
R Square	0.58082			
Adjusted R Square	0.52842			
Standard Error	41.33032			
Observations	10			

$$r^2 = \frac{SSR}{SST} = \frac{18,934.9348}{32,600.5000} = 0.58082$$

58.08% of the variation in house prices is explained by variation in square feet.

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Standard Error of Estimate

 The standard deviation of the variation of observations around the regression line is estimated by:

$$S_{YX} = \sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n-2}}$$

Where

SSE = error sum of squares n = sample size

Simple Linear Regression Example: Standard Error of Estimate in Excel

10

Regression Statistics

Multiple R	0.76211
R Square	0.58082
Adjusted R Square	0.52842
Standard Error	41 33032

Observations

 $S_{YX} = 41.33032$

ANOVA					
	df	SS	MS	F	Significance F
Regression	1	18934.9348	18934.9348	11.0848	0.01039
Residual	8	13665.5652	1708.1957		
Total	9	32600.5000			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Comparing Standard Errors

 S_{YX} is a measure of the variation of observed Y values from the regression line.

The magnitude of S_{YX} should always be judged relative to the size of the Y values in the sample data.

i.e., S_{YX} = \$41.33K is moderately small relative to house prices in the \$200K - \$400K range

Assumptions of Regression: L.I.N.E

- <u>L</u>inearity:
 - The relationship between X and Y is linear.
- Independence of Errors:
 - Error values are statistically independent.
 - Particularly important when data are collected over a period of time.
- Normality of Error:
 - Error values are normally distributed for any given value of X.
- <u>Equal Variance</u> (also called homoscedasticity):
 - The probability distribution of the errors has constant variance.

Residual Analysis

$$e_{\scriptscriptstyle i} = Y_{\scriptscriptstyle i} - \hat{Y}_{\scriptscriptstyle i}$$

- The residual for observation i, e_i, is the difference between its observed and predicted value.
- Check the assumptions of regression by examining the residuals:
 - Examine for linearity assumption.
 - Evaluate independence assumption.
 - Evaluate normal distribution assumption.
 - Examine for constant variance (homoscedasticity) for all levels of X.
- Graphical Analysis of Residuals
 - Can plot residuals vs. X.

Residual Analysis for Linearity

Residual Analysis for Independence

Checking for Normality

- Examine the Stem-and-Leaf Display of the Residuals.
- Examine the Boxplot of the Residuals.
- Examine the Histogram of the Residuals.
- Construct a Normal Probability Plot of the Residuals.

Residual Analysis for Normality

When using a normal probability plot, normal errors will approximately display in a straight line.

Residual Analysis for Equal Variance

Residual Analysis: Checking For Linearity

RESIDUAL OUTPUT					
	Predicted House Price	Residuals			
1	251.9232	-6.9232			
2	273.8767	38.1233			
3	284.8535	-5.8535			
4	304.0628	3.9371			
5	218.9928	-19.9928			
6	268.3883	-49.3883			
7	356.2025	48.7975			
8	367.1793	-43.1793			
9	254.6674	64.3326			
10	284.8535	-29.8535			

Linear Model Assumption Is Appropriate

Residual Analysis: Checking For Independence

RESIDUAL OUTPUT						
	Predicted House Price	Residuals				
1	251.9232	-6.9232				
2	273.8767	38.1233				
3	284.8535	-5.8535				
4	304.0628	3.9371				
5	218.9928	-19.9928				
6	268.3883	-49.3883				
7	356.2025	48.7975				
8	367.1793	-43.1793				
9	254.6674	64.3326				
10	284.8535	-29.8535				

Independence Assumption Is Appropriate

Residual Analysis: Checking For Normality

RESIDUAL OUTPUT					
	Predicted House Price	Residuals			
1	251.9232	-6.9232			
2	273.8767	38.1233			
3	284.8535	-5.8535			
4	304.0628	3.9371			
5	218.9928	-19.9928			
6	268.3883	-49.3883			
7	356.2025	48.7975			
8	367.1793	-43.1793			
9	254.6674	64.3326			
10	284.8535	-29.8535			

Normality Assumption Is Appropriate

Residual Analysis: Checking For Constant Variance

RESIDUAL OUTPUT					
	Predicted House Price	Residuals			
1	251.9232	-6.9232			
2	273.8767	38.1233			
3	284.8535	-5.8535			
4	304.0628	3.9371			
5	218.9928	-19.9928			
6	268.3883	-49.3883			
7	356.2025	48.7975			
8	367.1793	-43.1793			
9	254.6674	64.3326			
10	284.8535	-29.8535			

Constant Variance Assumption Is Appropriate

Measuring Autocorrelation: The Durbin-Watson Statistic

- Used when data are collected over time to detect if autocorrelation is present.
- Autocorrelation exists if residuals in one time period are related to residuals in another period.

Autocorrelation

 Autocorrelation is correlation of the errors (residuals) over time.

 Here, residuals show a cyclical pattern, not random. Cyclical patterns are a sign of positive autocorrelation.

Time (t) Residual Plot

 Violates the regression assumption that residuals are random and independent.

The Durbin-Watson Statistic

 The Durbin-Watson statistic is used to test for autocorrelation.

H₀: positive autocorrelation does not exist

H₁: positive autocorrelation is present

$$D = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$$

- The possible range is $0 \le D \le 4$.
- D should be close to 2 if H₀ is true.
- D less than 2 may signal positive autocorrelation, D greater than 2 may signal negative autocorrelation.

H₀: positive autocorrelation does not exist

H₁: positive autocorrelation is present

- Calculate the Durbin-Watson test statistic = D.
 (The Durbin-Watson Statistic can be found using Excel.)
- Find the values d_L and d_U from the Durbin-Watson table.
 (for sample size n and number of independent variables k.)

Suppose we have the following time series data:

Is there autocorrelation?

• Example with n = 25:

Excel output:

Durbin-Watson Calculations				
Sum of Squared Difference of Residuals	3296.18			
Sum of Squared Residuals	3279.98			
Durbin-Watson Statistic	1.00494			

$$D = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2} = \frac{3296.18}{3279.98} = 1.00494$$

- Here, n = 25 and there is k = 1 one independent variable
- Using the Durbin-Watson table, $d_L = 1.29$ and $d_U = 1.45$
- D = $1.00494 < d_L = 1.29$, so reject H₀ and conclude that significant positive autocorrelation exists

Inferences About the Slope

The standard error of the regression slope coefficient (b₁) is estimated by:

$$S_{b_1} = \frac{S_{YX}}{\sqrt{SSX}} = \frac{S_{YX}}{\sqrt{\sum (X_i - \overline{X})^2}}$$

where:

 S_{b_1} = Estimate of the standard error of the slope.

$$S_{YX} = \sqrt{\frac{SSE}{n-2}}$$
 = Standard error of the estimate.

Inferences About the Slope: t Test

- t test for a population slope:
 - Is there a linear relationship between X and Y?
- Null and alternative hypotheses:
 - H_0 : $\beta_1 = 0$ (no linear relationship)
 - H_1 : $\beta_1 \neq 0$ (linear relationship does exist)
- Test statistic :

$$t_{STAT} = \frac{b_1 - \beta_1}{S_{b_1}}$$

$$d.f. = n - 2$$

where:

$$\beta_1$$
 = hypothesized slope

$$S_{b1}$$
 = standard
error of the slope

House Price in \$1000s (y)	Square Feet (x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Estimated Regression Equation:

house price = 98.25 + 0.1098 (sq.ft.)

The slope of this model is 0.1098

Is there a relationship between the square footage of the house and its sales price?

 H_0 : $\beta_1 = 0$

From Excel output:

 H_1 : $\beta_1 \neq 0$

	Coefficients	Standard Error	t Stat	P-value
Intercept	98.24833	58.03348	1.69296	0.12892
Square Feet	0.10977	0.03297	3.32938	0.01039

b₁

$$t_{\text{STAT}} = \frac{b_1 - \beta_1}{S_{b_1}} = \frac{0.10977 - 0}{0.03297} = 3.32938$$

Test Statistic:
$$\mathbf{t_{STAT}} = 3.329$$

$$\mathbf{H_0: } \beta_1 = 0$$

$$\mathbf{H_1: } \beta_1 \neq 0$$

Decision: Reject H₀.

There is sufficient evidence that square footage affects house price.

 H_0 : $\beta_1 = 0$

From Excel output: $H_1: \beta_1 \neq 0$

	Coefficients	Standard Error	t Stat	P-value
Intercept	98.24833	58.03348	1.69296	0.12892
Square Feet	0.10977	0.03297	3.32938	0.01039

p-value

Decision: Reject H_0 , since p-value $< \alpha$.

There is sufficient evidence that square footage affects house price.

F Test for The Slope

F Test statistic:

where

$$F_{STAT} = \frac{MSR}{MSE}$$

$$MSR = \frac{SSR}{k}$$

$$MSE = \frac{SSE}{n-k-1}$$

where F_{STAT} follows an F distribution with k numerator and (n - k - 1) denominator degrees of freedom.

(k = the number of independent variables in the regression model.)

F-Test for The Slope: Excel Output

Regression S	tatistics					
Multiple R	0.76211	M	ISR 18	,934.9	348	
R Square	0.58082	$F_{\text{CTAT}} = -$	—— = —		=1	1.0848
Adjusted R Square	0.52842	N.	ISE 1,	708.19	957	
Standard Error	41.33032					
Observations	10	With 1 and	•			p-value for
		of freedom				the F-Test
ANOVA	df	ss	MS	F /	/ Significance	e F
Regression	1	18934.9348	18934.9348	11.0848	0.010	39
Residual	8	13665.5652	1708.1957			
Total	9	32600.5000				

F Test for The Slope

Test Statistic:

$$F_{STAT} = \frac{MSR}{MSE} = 11.08$$

Decision:

Reject H_0 at $\alpha = 0.05$.

Conclusion:

There is sufficient evidence that house size affects selling price.

Confidence Interval Estimate for the Slope

Confidence Interval Estimate of the Slope:

$$\mathbf{b}_1 \pm t_{\alpha/2} \mathbf{S}_{\mathbf{b}_1}$$

$$d.f. = n - 2$$

Excel Printout for House Prices:

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580
		/				

At 95% level of confidence, the confidence interval for the slope is (0.0337, 0.1858).

Confidence Interval Estimate for the Slope

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Since the units of the house price variable is \$1,000s, we are 95% confident that the average impact on sales price is between \$33.74 and \$185.80 per square foot of house size

This 95% confidence interval does not include 0.

Conclusion: There is a significant relationship between house price and square feet at the .05 level of significance.

t Test for A Correlation Coefficient

Hypotheses

$$H_0$$
: $\rho = 0$ (no correlation between X and Y)
 H_1 : $\rho \neq 0$ (correlation exists)

Test statistic

$$t_{STAT} = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

(with n-2 degrees of freedom)

where
$$r = +\sqrt{r^2} \text{ if } b_1 > 0$$

$$r = -\sqrt{r^2} \text{ if } b_1 < 0$$

t-test For A Correlation Coefficient

Is there evidence of a linear relationship between square feet and house price at the .05 level of significance?

$$H_0$$
: $\rho = 0$ (No correlation)
 H_1 : $\rho \neq 0$ (correlation exists)
 $\alpha = .05$, $df = 10 - 2 = 8$

$$t_{STAT} = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}} = \frac{.762 - 0}{\sqrt{\frac{1 - .762^2}{10 - 2}}} = 3.329$$

t-test For A Correlation Coefficient

Decision:

Reject H₀.

Conclusion:

There is evidence of a linear association at the 5% level of significance.

Estimating Mean Values and Predicting Individual Values

Goal: Form intervals around Y to express uncertainty about the value of Y for a given X_i.

Confidence Interval for the Mean of Y, Given X

Confidence interval estimate for the mean value of Y given a particular X_i.

Confidence interval for $\mu_{Y|X=X_i}$:

$$\hat{Y} \pm t_{\alpha/2} S_{YX} \sqrt{h_i}$$

Size of interval varies according to distance away from mean, \overline{X} .

$$h_i = \frac{1}{n} + \frac{(X_i - \overline{X})^2}{SSX} = \frac{1}{n} + \frac{(X_i - \overline{X})^2}{\sum (X_i - \overline{X})^2}$$

Prediction Interval for an Individual Y, Given X

Confidence interval estimate for an **Individual value of Y** given a particular X_i.

Confidence interval for
$$Y_{X=X_i}$$
:
$$\hat{Y} \pm t_{\alpha/2} S_{YX} \sqrt{1 + h_i}$$

This extra term adds to the interval width to reflect the added uncertainty for an individual case.

Estimation of Mean Values: Example

Confidence Interval Estimate for $\mu_{Y|X=X_i}$

Find the 95% confidence interval for the mean price of 2,000 square-foot houses.

Predicted Price $\hat{Y}_{i} = 317.85 \ (\$1,000s)$

$$\hat{Y} \pm t_{0.025} S_{YX} \sqrt{\frac{1}{n} + \frac{(X_i - \overline{X})^2}{\sum (X_i - \overline{X})^2}} = 317.85 \pm 37.12$$

The confidence interval endpoints (from Excel) are 280.66 and 354.90, or from \$280,660 to \$354,900.

Estimation of Individual Values: Example

Prediction Interval Estimate for $Y_{X=X_i}$

Find the 95% prediction interval for an individual house with 2,000 square feet.

Predicted Price $\hat{Y}_{i} = 317.85 \ (\$1,000s)$

$$\hat{Y} \pm t_{0.025} S_{YX} \sqrt{1 + \frac{1}{n} + \frac{(X_i - \overline{X})^2}{\sum (X_i - \overline{X})^2}} = 317.85 \pm 102.28$$

The prediction interval endpoints from Excel are 215.50 and 420.07, or from \$215,500 to \$420,070.

Pitfalls of Regression Analysis

- Lacking an awareness of the assumptions of least-squares regression.
- Not knowing how to evaluate the assumptions of leastsquares regression.
- Not knowing the alternatives to least-squares regression if a particular assumption is violated.
- Using a regression model without knowledge of the subject matter.
- Extrapolating outside the relevant range.
- Concluding that a significant relationship identified always reflects a cause-and-effect relationship.

Strategies for Avoiding the Pitfalls of Regression

- Start with a scatter plot of X vs. Y to observe possible relationship.
- Perform residual analysis to check the assumptions:
 - Plot the residuals vs. X to check for violations of assumptions such as homoscedasticity.
 - Use a histogram, stem-and-leaf display, boxplot, or normal probability plot of the residuals to uncover possible nonnormality.

Strategies for Avoiding the Pitfalls of Regression

- If there is violation of any assumption, use alternative methods or models.
- If there is no evidence of assumption violation, then test for the significance of the regression. .coefficients and construct confidence intervals and prediction intervals.
- Refrain from making predictions or forecasts outside the relevant range.
- Remember that the relationships identified in observational studies may or may not be due to causeand-effect relationships.

Module Summary

In this module we discussed:

- How to use regression analysis to predict the value of a dependent variable based on a value of an independent variable.
- Understanding the meaning of the regression coefficients b₀ and b₁.
- Evaluating the assumptions of regression analysis and know what to do if the assumptions are violated.
- Making inferences about the slope and correlation coefficient.
- Estimating mean values and predicting individual values.