Lifelong Learning:Problem Statement & Approach to Solutions

Abhishek Aich aaich@ece.ucr.edu

Department of Electrical and Computer Engineering

Overview

1. Problem Statement

Overview

1. Problem Statement

2. Approach to Solutions

Overview

1. Problem Statement

2. Approach to Solutions

 Approach #1: Overcoming Catastrophic Forgetting in Neural Networks

 Approach #2: Memory Aware Synapses: Learning what (not) to forget

Define 'Forgetting':

▶ While learning a new task, neural networks have the tendencies to overwrite the parameters necessary to perform well at a previously trained task.

^[1] Robert Hecht-Nielsen. "Theory of the backpropagation neural network". In: Neural networks for perception. Elsevier, 1992, pp. 65–93.

Define 'Forgetting':

While learning a new task, neural networks have the tendencies to overwrite the parameters necessary to perform well at a previously trained task.

e.g. a neural network trained to add 1 to a digit, and then trained to add 2 to a digit, would be unable to add 1 to a digit $^{[1]}$.

^[1] Robert Hecht-Nielsen. "Theory of the backpropagation neural network". In: Neural networks for perception. Elsevier, 1992, pp. 65–93.

What are the assumptions?

- ▶ Tasks are in particular sequence as well as disjoint.
- Tasks may correspond to
 - different datasets, or
 - different splits of a dataset

without overlap in category labels.

▶ When training a task, only the data related to that task is accessible.

More Formally · · ·

- According to Kirkpatrick et al.^[2]:
 - Set of tasks from the same dataset,
 e.g. classifying digits from the MNIST dataset.
 - Fixed sequence of tasks.
 - Offline storage of Fisher Information Matrix for each task and previous tasks model.

^[2] James Kirkpatrick et al. "Overcoming catastrophic forgetting in neural networks". In: Proceedings of the national academy of sciences (2017), p. 201611835.

^[3] Rahaf Aljundi et al. "Memory Aware Synapses: Learning what (not) to forget". In: arXiv preprint arXiv:1711.09601 (2017).

More Formally · · ·

- ► According to Aljundi et al.^[3]:
 - Set of tasks from different datasets,
 e.g. From datasets MIT Scenes for indoor scene classification and
 Caltech-UCSD Birds for fine-grained bird classification.
 - Fixed sequence of tasks.
 - Offline storage needed for importance weights and model parameters.

^[2] James Kirkpatrick et al. "Overcoming catastrophic forgetting in neural networks". In: Proceedings of the national academy of sciences (2017), p. 201611835.

^[3] Rahaf Aljundi et al. "Memory Aware Synapses: Learning what (not) to forget". In: arXiv preprint arXiv:1711.09601 (2017).

Approach #1: Overcoming Catastrophic Forgetting in Neural Networks^[2]

Let the set of weights and biases of a task γ , be denoted as θ_{γ} , and the estimated set as θ_{γ}^* .

- ▶ Goal: Target 'forgetting' in learning sequence of tasks by constraining important parameters to stay close to their old values.
- ▶ **Key**: There are many configurations of θ_A that will result in the same performance^[1].

^[2] James Kirkpatrick et al. "Overcoming catastrophic forgetting in neural networks". In: *Proceedings of the national academy of sciences* (2017), p. 201611835.

^[1] Robert Hecht-Nielsen. "Theory of the backpropagation neural network". In: Neural networks for perception. Elsevier, 1992, pp. 65–93.

Approach #1: Overcoming Catastrophic Forgetting in Neural Networks

▶ **Key**: There are many configurations of θ_A that will result in the same performance^[1].

Figure 1: A space representing all possible configurations of θ_A

^[1] Robert Hecht-Nielsen. "Theory of the backpropagation neural network". In: Neural networks for perception. Elsevier, 1992, pp. 65–93.

Approach #1: Overcoming Catastrophic Forgetting in Neural Networks

▶ **Assumption**: There is a solution for task B, θ_B^* , that is close to the previously found solution for task A, θ_A^* .

Figure 2: Solution space of θ_A and θ_B

Approach #1: Overcoming Catastrophic Forgetting in Neural Networks

▶ **Assumption**: There is a solution for task B, θ_B^* , that is close to the previously found solution for task A, θ_A^* .

Figure 3: Solution space of θ_{γ} 's for all γ tasks

Approach #1: Overcoming Catastrophic Forgetting in Neural Networks

Towards a solution · · ·

Figure 4: Train the network as it is: results in 'Forgetting'

Approach #1: Overcoming Catastrophic Forgetting in Neural Networks

Towards a solution · · ·

Say the parameters are made rigid and treated equally, then the network performs poorly for both the tasks.

Figure 5: Make no change in the parameters of previous tasks

Approach #1: Overcoming Catastrophic Forgetting in Neural Networks

Towards a solution · · ·

Say the parameters are made flexible and treated according to their importance, then the network performs well for both the tasks.

Figure 6: Make changes in the parameters of the previous tasks depending on their importance

Approach #1: Overcoming Catastrophic Forgetting in Neural Networks

What is the "importance" decided?

Suppose we have K tasks to be trained. Kirkpatrick et al. derive the following loss equation:

$$\mathcal{L}(\theta_{1:K}) = \mathcal{L}(\theta_K) + \frac{1}{2} \sum_{i} \lambda_K (\mathbf{F}_{1:K-1})_{ii} (\theta_i - \theta_{1:K-1,i}^*)^2$$

- $ightharpoonup \mathcal{L}(\theta_{1:K}) = \mathsf{Current} \; \mathsf{total} \; \mathsf{loss} \; \mathsf{to} \; \mathsf{be} \; \mathsf{minimized}$
- $\mathcal{L}(\theta_K) = \text{Loss for the current task only}$
- $\theta^*_{1:K-1} = \text{Optimal parameters for previous } K-1 \text{ tasks}$
- λ = Hyperparameter that decides the influence of the importance of previous tasks
- ▶ $\mathbf{F}_{1:K-1}$ = Fisher information matrix (Indicates the importance)

Approach #1: Overcoming Catastrophic Forgetting in Neural Networks

FIM holds the answer · · ·

- ▶ Once a network is trained to a configuration θ_{γ}^* , $\mathbf{F}_{\theta_{\gamma}^*}$ indicates how prone each dimension in the parameter space is to causing forgetting when gradient descent updates the model to learn a new task.
- Preferable to move along the directions with low Fisher information.
- ▶ This approach uses $\mathbf{F}_{\theta_{\gamma}^*}$ in the regularization term to penalize moving in directions with higher Fisher information (more likely to result in forgetting of already-learned tasks).

Approach #1: Overcoming Catastrophic Forgetting in Neural Networks

FIM holds the answer · · ·

Assume the given network is already in trained in Task A. Then,

$$\theta_A^* = \arg\min_{\theta} \{-\log p(\theta|\mathcal{D}_A)\}$$

The gradient of $-\log p(\theta|\mathcal{D}_A)$ with respect to θ is 0 at θ_A^* , therefore $-\log p(\theta|\mathcal{D}_A)$ can be locally approximated as the following quadratic form (2nd order Taylor series around θ_A^*):

$$-\log p(\theta|\mathcal{D}_{\mathcal{A}}) pprox rac{1}{2}(\theta- heta_{\mathcal{A}}^*)\mathbf{H}(heta_{\mathcal{A}}^*)(heta- heta_{\mathcal{A}}^*)$$

where $\mathbf{H}(\theta_A^*) = \text{Hessian of } -\log p(\theta|\mathcal{D}_A) \text{ w.r.t. } \theta$, evaluated at θ_A^* . Further, $\mathbf{H}(\theta_A^*) \succeq 0$ as θ_A^* is assumed to be a local minimum.

Approach #1: Overcoming Catastrophic Forgetting in Neural Networks

FIM holds the answer · · ·

Now, assuming that θ_A^* achieves near-perfect predictions on Task A, we can write

$$\mathbf{H}(\theta_A^*) pprox N_A \cdot \mathbf{F}(\theta_A^*)$$

where N_A is the number of IID observations in \mathcal{D}_A , $\mathbf{F}(\theta_A^*)$ is the empirical Fisher information matrix on Task A.

As the parameter space is high dimensional, EWC makes a further diagonal approximation of $\mathbf{F}(\theta_A^*)$, treating its off-diagonal entries as 0.

Approach #2: Memory Aware Synapses: Learning what (not) to forget^[3]

- ► This approach estimates an importance weight for each parameter in the network.
- ▶ Importance weights approximate the sensitivity of the learned function to a parameter change rather than a measure of the (inverse of) parameter uncertainty as in Approach #1.

^[3] Rahaf Aljundi et al. "Memory Aware Synapses: Learning what (not) to forget". In: arXiv preprint arXiv:1711.09601 (2017).

Approach #2: Memory Aware Synapses: Learning what (not) to forget

- ▶ In a learning sequence, we start with task T_1 , training the model to minimize the task loss \mathcal{L}_1 on the training data (X_1, \hat{Y}_1) .
- ▶ After convergence, the model has learned a function F that maps input X_1 to output Y_1 .
- ▶ Goal: Preserve this mapping while learning additional tasks.

Approach #2: Memory Aware Synapses: Learning what (not) to forget

- ▶ In a learning sequence, we start with task T_1 , training the model to minimize the task loss \mathcal{L}_1 on the training data (X_1, \hat{Y}_1) .
- ▶ After convergence, the model has learned a function F that maps input X_1 to output Y_1 .
- ▶ Goal: Preserve this mapping while learning additional tasks.
- ▶ **Key:** Measure sensitivity of the parameters!

Approach #2: Memory Aware Synapses: Learning what (not) to forget

Towards a solution · · ·

For a given data point x_k , the output of the network is $F(x_k; \theta)$. Suppose we introduce a small perturbation in the parameters θ , this results in a change given by

$$F(x_k; \theta + \delta) - F(x_k; \theta) \approx \sum_{i,j} g_{ij}(x_k) \cdot \delta_{ij}$$

where $g_{ij}(x_k) = \frac{\partial F(x_k; \theta)}{\partial \theta_{ij}} = \text{gradient of the learned function w.r.t.}$ the parameter θ_{ij} evaluated at x_k .

Approach #2: Memory Aware Synapses: Learning what (not) to forget

Towards a solution · · ·

Finally, the "importance" is measured by the magnitude of gradient $g_{ij}(x_k)$. Accumulate the gradients overall given data points to obtain

Importance weight,
$$\Omega_{ij} = \frac{1}{N} \sum_{k=1}^{N} \|g_{ij}(x_k)\|$$

- Parameters with
 - small Ω_{ij} do not affect the output much \rightarrow should be changed to minimize the loss for subsequent tasks.
 - large Ω_{ij} affect the output much \to should be left unchanged to minimize the loss for subsequent tasks.

Approach #2: Memory Aware Synapses: Learning what (not) to forget

Similar loss equation but different method for importance \cdots

When a new task T_K is to be learned, we have a regularizer that penalizes changes to parameters as per their importance in addition to the new task loss $\mathcal{L}(\theta_K)$:

$$\mathcal{L}(\theta_{1:K}) = \mathcal{L}(\theta_K) + \frac{1}{2} \sum_{i,j} \lambda_K (\Omega_{1:K-1})_{ij} (\theta_{i,j} - (\theta_{1:K-1})_{i,j}^*)^2$$

Thank You!