

Combinational Logic

Instructor: Jenny Song

Review

- Compiler converts a single HLL file into a single assembly file . $c \rightarrow .s$
- Assembler removes pseudo-instructions, converts what it can to machine language, and creates a checklist for linker (relocation table) $.s \rightarrow .o$
 - Resolves addresses by making 2 passes (for internal forward references)
- Linker combines several object files and resolves absolute addresses
 .o → .out
 - —Enable separate compilation and use of libraries
- Loader loads the executable into memory and begins execution .out → [running]

Agenda

- CALL Review
- Hardware Design Overview
- Switches and Transistors
- CMOS Networks
- Combinational Logic
 - Combinational Logic Gates
 - Truth Tables
 - Boolean Algebra
 - Circuit Simplification

Overview

Why study hardware design?

- Be able to answer to the question "How does a computer work?"
- We need some digital systems knowledge to build our own processor
- Understand how code is actually executed on a computer
- Understand capabilities and limitations of HW in general and processors in particular
- What processors can do fast and what they can't do fast (avoid slow things if you want your code to run fast!)
- Background for other more in-depth classes EECS151, CS152
- There is just so much you can do with standard processors: you may need to design own custom hardware for extra performance.

Synchronous Digital Systems (SDS)

Hardware of a processor, such as a RISC-V processor, is an example of a Synchronous Digital System

Synchronous:

- All operations coordinated by a central clock
 - "Heartbeat" of the system! (processor frequency)

Digital:

- Represent all values with two discrete values
- Electrical signals are treated as 1's and 0's
 - 1 and 0 are complements of each other
- High/Low voltage for True/False, 1/0

Agenda

- CALL Review
- Hardware Design Overview
- Switches and Transistors
- CMOS Networks
- Combinational Logic
 - Combinational Logic Gates
 - Truth Tables
 - Boolean Algebra
 - Circuit Simplification

Switches

- The basic element of physical implementations
- Convention: if input is a "1," the switch is asserted

Open switch if A is "0" (unasserted) and turn OFF light bulb (Z)

Close switch if A is "1" (asserted) and turn ON light bulb (Z)

In this example, $Z \equiv A$.

Switch Logic

- Can compose switches into more complex ones (Boolean functions)
 - Arrows show action upon assertion (1 = close)

Historical Note

- Early computer designers built ad hoc circuits from switches
- Began to notice common patterns in their work: ANDs, ORs,
- Master's thesis (by Claude Shannon, 1940) made link between work and 19th Century Mathematician George Boole
- Called it "Boolean" in his honor
- Could apply math to give theory to hardware design, minimization...

Computers need switches

To create an electric computer:

- We need the ability to control switches with electricity
- Switches controlling groups of other switches
 - So electricity should flow through the switch

Transistors are hardware switches!

- Modern digital systems designed in CMOS
 - MOS: Metal-Oxide on Semiconductor
 - C for complementary: normally-open and normally-closed switches
- MOS transistors act as voltage-controlled switches

Transistors and CS61C

- The internals of transistors are important, but won't be covered in this class
 - Physical limitations relating to speed and power consumption
 - Can take EE16A/B, EE105, and EE140
- We will proceed with the abstraction of Digital Logic (0/1)
- It's also important to understand hardware trends

$1947 \rightarrow Today$

Source: Mark Bohr, IDF14

Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org, There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser.

Agenda

- CALL Review
- Hardware Design Overview
- Switches and Transistors
- CMOS Networks
- Combinational Logic
 - Combinational Logic Gates
 - Truth Tables
 - Boolean Algebra
 - Circuit Simplification

Basics

N-channel

Source Drain $V_{GS} > V_{TH}$ Switch CLOSED $V_{GS} < V_{TH}$ Switch OPEN

P-channel

- Three terminals: Source, Gate, and Drain
- Switch action: if voltage on gate terminal is (some amount) higher/lower than source terminal then conducting path established between drain and source terminals
- $V_{GS} = V_{Gate} V_{Source}$; $V_{SG} = V_{Source} V_{Gate}$; $V_{TH} = V_{Threshold}$

MOS Networks

What is the relationship between X and Y?

Two Input Networks

Abstraction: Block Diagrams

- In reality, chips composed of just transistors and wires
 - Small groups of transistors form useful building blocks, which we show as blocks

- Can combine to build higher-level blocks
 - You can build AND, OR, and NOT out of NAND!

Agenda

- CALL Review
- Hardware Design Overview
- Switches and Transistors
- CMOS Networks
- Combinational Logic
 - Combinational Logic Gates
 - Truth Tables
 - Boolean Algebra
 - Circuit Simplification

Type of Circuits

- Digital Systems consist of two basic types of circuits:
 - Combinational Logic (CL)
 - Output is a function of the inputs only, not the history of its execution
 - e.g. circuits to add A, B (ALUs)
 - Sequential Logic (SL)
 - Circuits that "remember" or store information
 - a.k.a. "State Elements"
 - e.g. memory and registers (Registers)

Logic Gates (1/2)

• Special names and symbols:

07/07/2020

CS61C Su20 - Lecture 10

Logic Gates (2/2)

Inverted versions are easier to implement in CMOS

NAND	a bc
NOR	a bc
XOR	$a \rightarrow c$

а	b	U
0	0	1
0	1	1
1	0	1
1	1	0
0 0 1 1 a 0 0 1 1 a 0 1 1	b 0 1 0 1 b 0 1 0 1 0 1 0 1 0 1 0 0 1	1 1 0 0 0 0 0 1 1 0
0	0	1
0	1	0
1	0	0
1	1	0
а	b	С
0	0	0
0	1	1
1	0	1
1	1	0

Combining Multiple Logic Gates

(NOT(A AND B)) AND (A OR (NOT B AND C))

Agenda

- CALL Review
- Hardware Design Overview
- Switches and Transistors
- CMOS Networks
- Combinational Logic
 - Combinational Logic Gates
 - Truth Tables
 - Boolean Algebra
 - Circuit Simplification

Representations of Combinational Logic

- √ Text Description
- √ Circuit Diagram
 - Transistors and wires
 - Logic Gates
- ✓ Truth Table
- √ Boolean Expression
- √ All are equivalent

Truth Tables

- Table that relates the inputs to a combinational logic circuit to its output
 - Output only depends on current inputs
 - Use abstraction of 0/1 instead of high/low V
 - Shows output for *every* possible combination of inputs
- How big?
 - 0 or 1 for each of N inputs, so 2^N rows

General Form

	Υ	АВС
R Rows	1 1 1 1 1 1	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1
	0	1 1 0
	l 0	1 1 1

If N inputs, how many distinct functions F do we have?

Function maps each row to 0 or 1, so 2^R possible functions

Multiple Outputs

- For 3 outputs, just three indep. functions:
 X(A,B,C,D), Y(A,B,C,D), and Z(A,B,C,D)
 - Can show functions in separate columns without adding any rows!

Question: Convert the following statements into

a Truth Table for: (x XOR y) OR (NOT z)

X	Υ	Z	(A)	(B)	(C)	(D)
0	0	0	1	1	1	1
0	0	1	0	0	0	0
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	1	1	1	0	1
1	1	0	1	1	1	0
1	1	1	1	0	1	1

Question: Convert the following statements into

a Truth Table for: (x XOR y) OR (NOT z)

X	Υ	Z	(A)	(B)	(C)	(D)
0	0	0	1	1	1	1
0	0	1	0	0	0	0
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	1	1	1	0	1
1	1	0	1	1	1	0
1	1	1	1	0	1	1

More Complicated Truth Tables

3-Input Majority

a	b	С	у
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

2-bit Adder

Agenda

- CALL Review
- Hardware Design Overview
- Switches and Transistors
- CMOS Networks
- Combinational Logic
 - Combinational Logic Gates
 - Truth Tables
 - Boolean Algebra
 - Circuit Simplification

My Hand Hurts...

- Truth tables are huge
 - Write out EVERY combination of inputs and outputs (thorough, but inefficient)
 - Finding a particular combination of inputs involves scanning a large portion of the table
- There must be a shorter way to represent combinational logic
 - Boolean Algebra to the rescue!

a	b	С	
000	000	00	0
000	001	00	1
•	•		
•			
•	•	.	
•	•		
•	•	.	
111	111	11	1

Boolean Algebra

- Represent inputs and outputs as variables
 - Each variable can only take on the value 0 or 1
- Overbar or ¬ is NOT: "logical complement"
 - e.g. if A is 0, \overline{A} is 1. If A is 1, then $\neg A$ is 0
- Plus (+) is 2-input OR: "logical sum"

- For slides, will use ¬A
- Product (·) is 2-input AND: "logical product"
 - All other gates and logical expressions can be built from combinations of these
 - $\neg AB + A \neg B == (NOT(A AND B)) OR (A AND NOT B)$

Truth Table to Boolean Expression

- Read off of table
 - For 1, write variable name
 - For 0, write complement of variable
- Sum of Products (SoP)
 - Take rows with 1's in output column, sum products of inputs

_					
	c= ¬a	h		2	¬b
	с— ¬а	IJ	+	а	ער

- Product of Sums (PoS)
 - Take rows with 0's in output column, product the sum of the complements of the inputs

•
$$c = (a + b) \cdot (\neg a + \neg b)$$

We can show that these are equivalent!

CS61C Su20 - Lecture 10 39

Laws of Boolean Algebra

These laws allow us to perform simplification:

$$x \cdot \overline{x} = 0 \qquad x + \overline{x} = 1 \qquad \text{complementarity}$$

$$x \cdot 0 = 0 \qquad x + 1 = 1 \qquad \text{laws of 0's and 1's}$$

$$x \cdot 1 = x \qquad x + 0 = x \qquad \text{identities}$$

$$x \cdot x = x \qquad x + x = x \qquad \text{idempotent law}$$

$$x \cdot y = y \cdot x \qquad x + y = y + x \qquad \text{commutativity}$$

$$(xy)z = x(yz) \qquad (x + y) + z = x + (y + z) \qquad \text{associativity}$$

$$x(y + z) = xy + xz \qquad x + yz = (x + y)(x + z) \qquad \text{distribution}$$

$$xy + x = x \qquad (x + y)x = x \qquad \text{uniting theorem}$$

$$\overline{x}y + x = x + y \qquad (\overline{x} + y)x = xy \qquad \text{uniting theorem v.2}$$

$$\overline{x} \cdot y = \overline{x} + \overline{y} \qquad \overline{x} \cdot y = \overline{x} \cdot \overline{y} \qquad \text{DeMorgan's Law}$$

Agenda

- CALL Review
- Hardware Design Overview
- Switches and Transistors
- CMOS Networks
- Combinational Logic
 - Combinational Logic Gates
 - Truth Tables
 - Boolean Algebra
 - Circuit Simplification

Manipulating Boolean Algebra

- SoP and PoS expressions can still be long
 - We wanted to have shorter representation than a truth table!
- Boolean algebra follows a set of rules that allow for simplification
 - Goal will be to arrive at the simplest equivalent expression
 - Allows us to build simpler (and faster) hardware

Faster Hardware?

- Recall: Everything we are dealing with is just an abstraction of transistors and wires
 - Inputs propagating to the outputs are voltage signals passing through transistor networks
 - There is always some delay before a CL's output updates to reflect the inputs
- Simpler Boolean expressions
 → smaller transistor networks
 → smaller circuit delays
 → faster hardware

Boolean Algebraic Simplification Example

$$y = ab + a + c$$

Circuit Simplification

- 1) original circuit (Transistors and/or Gates)
- 2) equation derived from original circuit
- 3) algebraic simplification

4) simplified circuit

Circuit Simplification Example (1/4)

• Simplify the following circuit:

- Options:
 - 1) Test all combinations of the inputs and build the Truth Table, then use SoP or PoS
 - 2) Write out expressions for signals based on gates
 - Will show this method here

Circuit Simplification Example (2/4)

• Simplify the following circuit:

• Start from left, propagate signals to the right

Arrive at D =
$$\neg$$
(AB)(A + \neg BC)

Circuit Simplification Example (3/4)

• Simplify Expression:

$$D = \neg(AB)(A + \neg BC)$$

$$= (\neg A + \neg B)(A + \neg BC)$$

$$= \neg AA + \neg A \neg BC + \neg BA + \neg B \neg BC$$

$$= 0 + \neg A \neg BC + \neg BA + \neg B \neg BC$$

$$= \neg A \neg BC + \neg BA + \neg BC$$

$$= \neg A \neg BC + \neg BA + \neg BC$$

$$= (\neg A + 1) \neg BC + \neg BA$$

$$= \neg BC + \neg BC$$

$$= \neg BC + \neg BA$$

$$= \neg BC + \neg BC$$

$$= \neg$$

Circuit Simplification Example (4/4)

Draw out final circuit:

• D =
$$\neg$$
BC + \neg BA = \neg B(A + C) How many gates do we need for each?

• Simplified Circuit:

- Reduction from 6 gates to 3!
- Beore: ¬(AB)(A + ¬BC)

Summary

- Beginnings of hardware design and layered abstractions
- Transistors -> CMOS Networks -> Combinational Logic

- ✓ Text Description
- ✓ Circuit Diagram
 - Transistors and wires
 - Logic Gates
- ✓ Truth Table
- ✓ Boolean Expression

√ All are equivalent

Converting Combinational Logic

07/07/2020 CS61C Su20 - Lecture 10 51