

CLAIM AMENDMENTS

1. (cancelled).
2. (cancelled).
3. (cancelled).
4. (cancelled).
5. (cancelled).
6. (cancelled).
7. (cancelled).

1 8. (previously presented) The system defined in claim 9
2 wherein said output sides are connected to said pipe through a
3 valve enabling draining of said pipe following a test.

1 9. (previously presented) A system for controlled
2 application of fluid pressure to a load in the form of a pipe
3 closed at its ends to pressure test the pipe, said system,
4 comprising:
5 at least two pressure converters each having an output
6 side connectable through respective check valves with a source of a
7 pressurizing fluid and with said load, a drive side pressurizable

8 in opposite directions to draw said fluid into and discharge said
9 fluid from a respective output side, and a connection between each
10 pressure side and the respective output side whereby each pressure
11 converter has a member displaceable by pressurization of the
12 respective drive side;

13 a respective displacement measuring device cooperating
14 with each of said members for measuring the displacement of each of
15 said members;

16 a common control unit for controlling the pressurization
17 of each of said drive sides so as to reduce an output pressure of a
18 respective output side of one of said pressure converters as the
19 respective member approaches a limiting position in a pressure
20 stroke of said one of said pressure converters, and simultaneously
21 increasing an output pressure of a respective output side of
22 another of said pressure converters and effecting a displacement of
23 the respective member of said other pressure converter by
24 initiating a pressure stroke of said other pressure converters,
25 the pressurization of said drive sides being controlled through
26 respective valves and a common controller for said valves forming
27 said control unit and receiving inputs from respective displacement
28 measuring devices responding to the positions of said members, the

29 pressure strokes being repeated until a certain pressure is reached
30 at said load; and

31 proportional/integral regulator between said output sides
32 and said pipe for delivering a signal to said common controller.

1 10. (previously presented) The system defined in claim
2 9 wherein each of said pressure converters has at said drive side a
3 respective double-acting cylinder and a piston, each of said output
4 sides has a respective cylinder and piston and the respective
5 member of each of said pressure converters connects the pistons to
6 the cylinders thereof.

1 11. (previously presented) A system for controlled
2 application of fluid pressure to a load in the form of a pipe
3 closed at its ends to pressure test the pipe, said system,
4 comprising:

5 at least two pressure converters each having an output
6 side connectable through respective check valves with a source of a
7 pressurizing fluid and with said load, a drive side pressurizable
8 in opposite directions to draw said fluid into and discharge said
9 fluid from a respective output side, and a connection between each

10 pressure side and the respective output side whereby each pressure
11 converter has a member displaceable by pressurization of the
12 respective drive side;

13 a respective displacement measuring device cooperating
14 with each of said members for measuring the displacement of each of
15 said members;

16 a common control unit for controlling the pressurization
17 of each of said drive sides so as to reduce an output pressure of a
18 respective output side of one of said pressure converters as the
19 respective member approaches a limiting position in a pressure
20 stroke of said one of said pressure converters, and simultaneously
21 increasing an output pressure of a respective output side of
22 another of said pressure converters and effecting a displacement of
23 the respective member of said other pressure converter by
24 initiating a pressure stroke of said other pressure converters,
25 the pressurization of said drive sides being controlled through
26 respective valves and a common controller for said valves forming
27 said control unit and receiving inputs from respective displacement
28 measuring devices responding to the positions of said members, the
29 pressure strokes being repeated until a certain pressure is reached
30 at said load; and

31 each of said pressure converters has at said drive side a
32 respective double-acting cylinder and a piston, each of said output
33 sides has a respective cylinder and piston and the respective
34 member of each of said pressure converters connects the pistons to
35 the cylinders thereof, each of said members being a rack and said
36 displacement measuring devices including pinions engageable with
37 said racks.

1 12. (original) The system defined in claim 11 wherein
2 each of said double-acting cylinders is connected to two ports of a
3 four-port, three position valve having two further ports connected
4 to a hydraulic pressure source and drain respectively, each of said
5 four-port, three-position valves having an electrical actuator
6 operated by said common controller.