ATKINS

The treatment of the throttling effect in incompressible 1D flow solvers

Conor Fleming Atkins, UK

Gary Clark & Keith Meeks Atkins, UK

Thomas Wicht HBI Haerter, Switzerland

The throttling effect of a tunnel fire

- Fire increases the aerodynamic resistance of the tunnel
- Important for ventilation system design
- Various treatments in different software packages
- Limited literature available
- Objectives
 - identify mechanisms of throttling effect
 - understand how they are modelled

Outline

- Overview of throttling effect
- Consider some throttling mechanisms
 - Wall friction & local losses
 - Momentum change at fire
- Demonstration
 - User-defined fire pressure drop (IDA Tunnel 1.1)

Tunnel fire

Longitudinal ventilation system

- Self-rescue
- Fire-fighting

Ventilation system design

- Achieve critical velocity
- Overcome aerodynamic resistance, e.g:
 - buoyancy
 - vehicle drag
 - wall friction & local losses
 - momentum change
 - portal pressure difference
- Iterative numerical method

System resistance

Some losses are temperature-dependent

System resistance

Some losses are temperature-dependent

System resistance

Some losses are temperature-dependent

- buoyancy
- wall friction & local losses
- momentum change

Wall friction & local losses

Losses depend on dynamic pressure

$$\Delta p_{\text{friction}} = \frac{\lambda L}{D} \times \frac{1}{2} \rho u^2$$

$$\Delta p_{\text{exit}} = K_{\text{exit}} \times \frac{1}{2} \rho u^2$$

Dynamic pressure is proportional to temperature

$$\frac{1}{2}\rho u^2 \propto T$$

Flow is compressible!

Wall friction & local losses

Ideal Gas Law

$$\rho = \frac{p}{RT}$$

$$\rho_{h} = \rho_{c} \frac{T_{c}}{T_{h}}$$

Continuity

$$\dot{m} = \rho u A = \text{const.}$$

$$u_{\rm h}^2 = u_{\rm c}^2 \frac{T_{\rm h}^2}{T_{\rm c}^2}$$

Corrected dynamic pressure

$$\frac{1}{2}\rho_{\rm h}u_{\rm h}^2 = \frac{1}{2}\rho_{\rm c}u_{\rm c}^2 \times \frac{T_{\rm h}}{T_{\rm c}}$$

Wall friction & local losses

Pressure losses now expressed in terms of known variables,

$$\rho_{\rm c}, u_{\rm c}, T_{\rm h}$$

$$\Delta p_{\text{friction}} = \frac{\lambda L}{D} \times \frac{1}{2} \rho_{\text{c}} u_{\text{c}}^2 \frac{T_{\text{h}}}{T_{\text{c}}} \qquad \Delta p_{\text{exit}} = K_{\text{exit}} \times \frac{1}{2} \rho_{\text{c}} u_{\text{c}}^2 \frac{T_{\text{h}}}{T_{\text{c}}}$$

Pressure loss at fire

Momentum change

(Hwang & Chaiken, 1978)

$$\Sigma F_{\rm CV} = \dot{m}(u_{\rm c} - u_{\rm h})$$

$$u_{\rm h} = u_{\rm c} \frac{T_{\rm h}}{T_{\rm c}}$$

$$\Delta p_{\rm fire} = \rho_{\rm c} u_{\rm c}^2 \left(1 - \frac{T_{\rm h}}{T_{\rm c}} \right) \qquad \text{`HC78}$$

Pressure loss at fire

Empirical formula via 3D CFD (Dutrieue & Jacques, 2006)

$$\Delta p_{\rm fire} = \frac{Q_{\rm fire}^{0.8} u_{\rm c}^{1.5}}{D^{1.5}} C$$
 'DJ06

Implementation

Some flow solvers require user input

 e.g. IDA Tunnel – general fire pressure loss

$$C_{\text{fire}} = \frac{\Delta p_{\text{fire}}}{Q_{\text{fire}}}$$

Proposed use of IDA Tunnel

- 1. Calculate Δp_{fire} manually
 - $\Delta p = 0$
 - HC78 or DJ06

- Input to IDA Tunnel
- 3. IDA Tunnel simulation
 - Solve for u_c , T_h

Implementation

Some flow solvers require user input

 e.g. IDA Tunnel – general fire pressure loss

$$C_{\text{fire}} = \frac{\Delta p_{\text{fire}}}{Q_{\text{fire}}}$$

Some flow solvers do not require user input

 e.g. SES v4.1 solves HC78 momentum change

Proposed use of IDA Tunnel

- 1. Calculate Δp_{fire} manually
 - $\Delta p = 0$
 - HC78 or DJ06

- Input to IDA Tunnel
- 3. IDA Tunnel simulation
 - Solve for u_c , T_h

Trivial case

- Verify agreement of IDA Tunnel 1.1 and SES v4.1
 - verify jet fan
 - verify wall friction

Trivial case

- Verify agreement of IDA Tunnel 1.1 and SES v4.1
 - verify jet fan
 - verify wall friction

Results

Good agreement

Solver	u [m/s]	Δp_0 [Pa]
IDA Tunnel	3.702	19.704
SES v4.1	3.701	19.670

Fire pressure loss in IDA Tunnel

- Test models
 - $\Delta p_{\rm fire} = 0 \text{ Pa}$
 - $\Delta p_{\rm fire} = \text{DJ06 (empirical)}$
 - $\Delta p_{\rm fire} = HC78$ (momentum change)
- Vary fire size

Assumptions

(to isolate fire pressure drop)

- No wall heat transfer
- No entry/exit loss

Demonstration - pressure

Demonstration - velocity

Demonstration - temperature

Demonstration – vary fire size

Conclusions

Overview of throttling effect

- Focussed on
 - wall friction & local losses
 - momentum change

Suggested method for user-defined momentum change

Demonstrated method using IDA Tunnel

If you'd like to find out more visit: www.atkinsglobal.com

© Atkins Limited except where stated otherwise.

The Atkins logo, 'Carbon Critical Design' and the strapline 'Plan Design Enable' are trademarks of Atkins Limited.