Course Code	Applied Linear Algebra	Course	LT
MAT3002		Type	
		Credits	3

Course Objectives:

• Linear algebra is one of the most important subjects of pure mathematics and has many applications in electrical, communications and computer science. This course aims at introducing students to the fundamental concepts of linear algebra by starting with linear equations and culminating in abstract vector spaces and linear transformations.

Course Outcomes:

By the end of the course, the students will be able to

- solve systems of linear equations
- understand the concepts of vector spaces and subspaces, basis and dimensions, linear transformations and inner product spaces and their matrix representations
- use Gram-Schmidt process to obtain orthonormal basis,
- find the change of basis matrix with respect to two bases of a vector space.

Student Outcomes (SO): a,e,i,k

Module	Module Description	Hrs.	SO
No.			
1	Linear Equations and Matrices	8	a,e,j,k
	Introduction - Gaussian elimination and Gauss Jordan methods –		
	Block matrices - Elementary matrices- permutation matrix -		
	inverse matrices - LDU factorization – Applications to electrical networks and cryptography.		
2	Vector Spaces and Subspaces	9	a,e,j,k
	Vector spaces and subspaces – Linear Independence, Basis and Dimension – Row, Column and Null spaces – Rank and Nullity – Bases for subspaces – Invertibility – Application: Interpolation and Wronskian		
3	Linear Transformations	9	a,e,j,k
	Definition and Examples – properties - The Range and Kernel – Invertible linear transformations – Isomorphism – Application: Computer graphics - Matrices of linear transformations - Vector space of linear transformations – change of bases – similarity		
4	Inner Product Spaces	8	a,e,j,k

	Total	45	
6	Guest Lectures by experts on contemporary topics	2	
	QR factorization – Singular Value Decomposition - Projection - orthogonal projections – relations of fundamental subspaces – Least square solutions – Orthogonal projection matrices		
5	Applications of Inner Product Spaces	9	a,e,j,k
	Inner products – The lengths and angles of vectors – Matrix representations of inner products – Orthogonal projections - Gram-Schmidt orthogonalization		

Mode of Teaching and Learning:

Class room teaching

Use of mathematical softwares (such as MATLAB, MATHEMATICA, SAGE, ETC.) as teaching aid # Minimum of 2 hours lectures by experts on contemporary topics

Mode of Evaluation and assessment: Digital Assignments, Continuous Assessment Tests, Final Assessment Test and unannounced open book examinations, quizzes, student's portfolio generation and assessment, innovative assessment practices

Text Book(s):

- 1. Linear Algebra by Jin Ho Kwak and Sungpyo Hong, Second edition, Springer, 2004.
- 2. Linear Algebra with applications by Steven J. Leon, 8th Edition, Pearson, 2010.

Reference Book(s):

- 1. Elementary Linear Algebra by Stephen Andrilli and David Hecker, 4th edition, Academic Press, 2010.
- 2. Introduction to Linear Algebra by Gilbert Strang, 4th edition, Wellesley-Cambridge Press, 2011.
- 3. Introductory Linear Algebra An applied first course by Bernard Kolman and David R. Hill, 9th Edition, Pearson education, 2011.
- 4. Linear Algebra A Modern Introduction by David Poole, 2nd edition, Thomson Learning, 2006

Recommendation by the Board of Studies on	22-4-2017
Approval by Academic council on	07-09-2017
Compiled by	Dr.V.Prabhakar & Dr.C.Vijayalakshmi