Matrix Computations

Fall 2020

Lecture 4:

Lecturer: Prof. Yue Qiu & Prof Ziping Zhao

Scribe: Bing Jiang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1 Least Squares

problem: given $y \in \mathbb{R}^m, A \in \mathbb{R}^{m \times n}$, solve

$$\mathbf{x_{LS}} = \min_{\mathbf{x} \in \mathbb{R}^n} ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 \tag{1}$$

- called (linear) least squares (LS)
- find an x whose residual r=y-Ax is the smallest in the Euclidean sense solution: suppose that A has full-column rank $(m \ge n)$. The solution to (LS) is unique and is given by

$$\mathbf{X_{LS}} = (\mathbf{A^T A})^{-1} \mathbf{A^T y} \tag{2}$$

- complexity $O(mn^2 + n^3)$
- LS solutions to an overdetermined system of equations y=Ax (m>n)
- if A is semi-orthogonal, the solution is simplified to $X_{LS} = \mathbf{A^T} \mathbf{y}$
- if A is square, the solution is simplified to $X_{LS} = A^{-1}y$
- unless specified, in this lecture we will assume A to have full column rank without further mentioning

2 LS Solution

Theorem 1 A vector $\mathbf{X_{LS}}$ is an optimal solution to the LS problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 \tag{3}$$

if and only if it satisfies

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{X}_{\mathrm{LS}} = \mathbf{A}^{\mathrm{T}}\mathbf{y} \tag{4}$$

• the optimality condition in (4) is true for any A, not just full-column rank A

Lecture 4:

- suppose that A has full column rank
 - (4) is a symmetric PD linear system
 - the Gram metrix $A^T Aisnon singular$
 - the solution to (4) is uniquely given by $\mathbf{X_{LS}} = (\mathbf{A^TA})^{-1}\mathbf{A^Ty}$
- (4) is called the normal equations
- ullet the same result holds for the complex case, viz., ${f A^H A X_{LS}} = {f A^H y}$

3 Gradient Decent For LS

• consider a general unconstrained optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \tag{5}$$

where f is continuously differentiable

• Gradient Decent: given a starting point $x^{(0)}$, do

$$x^{(k)} = x^{(k-1)} - \mu \nabla f(x^{(k-1)}), k = 1, 2, \dots$$
(6)

where $\mu > 0$ is a step size

- take an optimization course to get more details! It is known that
 - for convex f and under some appropriate choice of μ , gradient decent converges to an optimal solution
 - for non-convex f and under some appropriate choice of μ , gradient decent converges to a stationary point
- gradient decent for LS:

$$\mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} - 2\mu(\mathbf{A}^{\mathbf{T}}\mathbf{A}\mathbf{x}^{(k-1)} - \mathbf{A}^{\mathbf{T}}\mathbf{y}), k = 0, 1, \dots$$
 (7)

- complexity for dense A
 - computing $\mathbf{A^TA}$ and $\mathbf{A^Ty}$: $\mathrm{O}(mn^2)$ and $\mathrm{O}(mn)$, resp. (same as before)
 - * $\mathbf{A^TA}$ and $\mathbf{A^Ty}$ are cached for subsequent use in gradient decent
 - complexity of each iteration: $O(n^2)$
- complexity for sparse A
 - computing $A^T y : \mathcal{O}(nnz(\mathbf{A}))$
 - complexity of each iteration: O(n+nnz(A))
 - * $\mathbf{A}^{T}\mathbf{A}$ is not necessarily sparse, so we do $\mathbf{A}\mathbf{x}^{(k-1)}$ and then $\mathbf{A}^{T}(\mathbf{A}\mathbf{x}^{(k-1)})$

Lecture 4:

4 Regularized LS

• Intuition: replace $\mathbf{X_{LS}} = \mathbf{A}^{\dagger}\mathbf{y} = (\mathbf{A^TA})^{-1}\mathbf{A^Ty}$ by

$$\mathbf{X_{RLS}} = (\mathbf{A^T A} + \lambda \mathbf{I})^{-1} \mathbf{A^T y}, \tag{8}$$

for some $\lambda > 0$, where the term λI is added to improve the system conditioning, thereby attempting to reduce noise sensitivity

- how may we make sense out of such a modification?
- L2 regularized LS: find an x that solves

$$\min_{\mathbf{x} \in \mathbb{R}^n} ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 + \lambda ||\mathbf{x}||_2^2 \tag{9}$$

for some pre-determined $\lambda > 0$.

- the solution is uniquely given by $\mathbf{X_{RLS}} = (\mathbf{A^TA} + \lambda \mathbf{I})^{-1} \mathbf{A^Ty}$
- the formulation says that we try to minimize both $||\mathbf{y} \mathbf{A}\mathbf{x}||_2^2$ and $||\mathbf{x}||_2^2$, and λ controls which one should be more emphasized in the minimization.
- L1 regularized LS: given $\lambda > 0$, solve

$$\min_{\mathbf{x} \in \mathbb{R}^n} ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 + \lambda ||\mathbf{x}||_1 \tag{10}$$

• now consider applying Majorization-Minimization to the L2-L1 minimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 + \lambda ||\mathbf{x}||_1 \tag{11}$$

 $\bullet\,$ The Majorization-Minimization method for solving problem updates ${\bf x}$ as

$$\mathbf{x^{(k+1)}} = \mathbf{soft}(\frac{1}{c}\mathbf{A^T}(\mathbf{y} - \mathbf{A}\mathbf{x^{(k)}}) + \mathbf{x^{(k)}}, \lambda/c),$$

where **soft** is called the soft-thresholding operator and is defined as follows: if $\mathbf{z} = \mathbf{soft}(\mathbf{x}, \sigma)$, then $z_i = sign(x_i) \max\{|x_i| - \sigma, 0\}$.