

PerF≝T[™]Power Transistor

FEATURES

- Excellent FOM
- Reliability meets AEC-Q101 requirements
- Wettable flank leads for enhanced AOI
- 100% UIS and Rg tested
- 175°C operating junction temperature
- RoHS Compliant
- Halogen-free

KEY PERFORMANCE PARAMETERS				
PARAMETER		VALUE	UNIT	
V _{DS}		100	V	
	V _{GS} = 10V	17	0	
R _{DS(on)} (max)	V _{GS} = 7V	20.4	mΩ	
Q_g	V _{GS} = 10V	11	nC	

APPLICATIONS

- Solenoid and motor drivers
- DC-DC converters
- Load Switch
- SMPS

Note: MSL 1 (Moisture Sensitivity Level) per J-STD-020

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise noted)					
PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-Source Voltage		V_{DS}	100	V	
Gate-Source Voltage		V _G S	±20	V	
Continuous Drain Current	$T_C = 25^{\circ}C$		50		
	Tc = 100°C	ID	36	Α	
	$T_A = 25^{\circ}C$		9		
Pulsed Drain Current (Note 1)		I _{DM}	200	Α	
Single Pulse Avalanche Current (Note 2)		las	11.3	Α	
Single Pulse Avalanche Energy (Note 2)		Eas	19	mJ	
Total Power Dissipation	T _C = 25°C	0	97	W	
	T _C = 125°C	P _D	32		
Operating Junction and Storage Temperature Range		T _J , T _{STG}	- 55 to +175	°C	

THERMAL PERFORMANCE				
PARAMETER	SYMBOL	LIMIT	UNIT	
Junction to Case Thermal Resistance	Rejc	1.54	°C/W	
Junction to Ambient Thermal Resistance (Note 3)	R _{ÐJA}	50	°C/W	

1

Notes:

- 1. Pulse Width ≤ 100µs.
- 2. L = 0.3mH, V_{GS} = 10V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}$ C.
- 3. Device on a PCB FR4 with 1 in² (single layer, 2 oz thickness) copper area for drain connection.

PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNIT
Static						
Drain-Source Breakdown Voltage	$V_{GS} = 0V$, $I_D = 1mA$	BV _{DSS}	100			V
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	V _{GS(TH)}	2.4	3	3.6	V
Gate Body Leakage	$V_{GS} = \pm 20V, V_{DS} = 0V$	I _{GSS}			±100	nA
	V _{GS} = 0V, V _{DS} = 100V	I _{DSS}			1	μA
Drain-Source Leakage Current	V _{GS} = 0V, V _{DS} = 100V T _J = 125°C				100	
Drain-Source On-State Resistance	V _{GS} = 10V, I _D = 25A	_		13	17	mΩ
(Note 4)	V _{GS} = 7V, I _D = 25A	R _{DS(on)}		16	20.4	
Forward Transconductance (Note 4)	$V_{DS} = 10V, I_D = 6.3A$	G fs		26		S
Dynamic (Note 5)						•
Total Gate Charge	$V_{DS} = 50V, I_{D} = 9A,$ $V_{GS} = 7V$	Q_g		8.4		nC
Total Gate Charge		Qg		11		
Gate-Source Charge	$V_{DS} = 50V, I_{D} = 9A,$ $V_{GS} = 10V$	Q _{gs}		3.6		nC
Gate-Drain Charge		Q _{gd}		2.5		
Input Capacitance		Ciss		725		
Output Capacitance	$V_{DS} = 60V$, $V_{GS} = 0V$,	Coss		148		pF
Reverse Transfer Capacitance	f = 1.0MHz	Crss		20		
Gate Resistance	f = 1.0MHz	Rg		1.7		Ω
Switching (Note 6)						
Turn-On Delay Time		t _{d(on)}		7.9		
Turn-On Rise Time	$V_{DD} = 50V, R_G = 6\Omega,$ $I_D = 9A, V_{GS} = 10V$	t _r		19		
Turn-Off Delay Time		t _{d(off)}		13		ns
Turn-Off Fall Time		t _f		21		
Source-Drain Diode						
Forward Voltage (Note 4)	I _S = 25A, V _{GS} = 0V	VsD			1.1	V
Reverse Recovery Time	Is = 9A,	t _{rr}		50		ns
Reverse Recovery Charge	di/dt = 100A/µs	Qrr	-	64		nC

Notes:

- 4. Pulse test: Pulse Width $\leq 300 \mu s$, duty cycle $\leq 2\%$.
- 5. Defined by design. Not subject to production test.
- 6. Switching time is essentially independent of operating temperature.

ORDERING INFORMATION

ORDERING CODE	PACKAGE	PACKING
TSM170NH10CR RLG	PDFN56U	2,500pcs / 13" Reel

CHARACTERISTICS CURVES

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

T_J, Junction Temperature (°C)

3

CHARACTERISTICS CURVES

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

0

Normalized Effective Transient

Thermal Impedance, Zeuc

1000 Ciss Ciss Coss Coss Crss Crss Crss The state of the

BV_{DSS} vs. Junction Temperature

Maximum Safe Operating Area, Junction-to-Case

V_{DS}, Drain to Source Voltage (V)

100

Source-Drain Diode Forward Current vs. Voltage

Normalized Thermal Transient Impedance, Junction-to-Case

Reverse Drain Current (A)

<u>,</u>

t, Square Wave Pulse Duration (sec)

CHARACTERISTICS CURVES

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

I_D-Drain Current (A)

5

Normalized gate threshold voltage vs Temperature

PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

PDFN56U

SUGGESTED PAD LAYOUT

(REFERENCE ONLY)

DETAIL A (SCALE 2:1)

NOTES: UNLESS OTHERWISE SPECIFIED

6

1. ALL DIMENSIONS ARE IN MILLIMETERS.

- 170NH10 = Device marking
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- Y = Year code WW = Week code (01~52)

MARKING DIAGRAM

3. PACKAGE OUTLINE REFERENCE: JEITA ED-7500B, EIAJ SC-111BB.

L = Lot code $(1\sim9,A\sim Z)$ F = Factory code

MOLDED PLASTIC BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

5. DWG NO. REF: HQ2SD07-PDFN56U-023 REV B.

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.