1 Převody do normálních forem

Příklad 1.1: Vyjádřete následující formule v DNF pomocí pravdivostní tabulky a pomocí převodu logických spojek.

Version: 15. února 2011

- a) $(A \Rightarrow B) \Rightarrow C$
- b) $(A \Leftrightarrow B) \vee \neg C$
- c) $(A \Leftrightarrow B) \Rightarrow (C \lor D)$

Formule je v disjunktivní normální formě (DNF), pokud má tvar $\alpha_1 \vee \ldots \vee \alpha_n$, kde $\alpha_i = A_{i1} \wedge \ldots \wedge A_{ij_i}$ a každé A_{ij} je výroková proměnná nebo její negace.

Řešení 1.1:

a) Pro formuli $(A \Rightarrow B) \Rightarrow C$ vytvoříme pravdivostní tabulku.

A	B	C	$A \Rightarrow B$	$(A \Rightarrow B) \Rightarrow C$
0	0	0	1	0
0	0	1	1	1
0	1	0	1	0
0	1	1	1	1
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1

Pro každou interpretaci, ve které je formule pravdivá, přidáme do vytvořené formule novou formuli, která bude obsahovat konjunkci všech výrokových symbolů z původní formule, následovně: Pokud je výrokovému symbolu v dáné interpretaci přiřazena pravdivostní hodnota 0, přidáme do formule negaci tohoto symbolu. V opačném případě do formule přidáme symbol samotný.

Výsledkem je pak formule v tzv. úplné disjunktivní normální formě:

$$(\neg A \land \neg B \land C) \lor (\neg A \land B \land C) \lor (A \land \neg B \land \neg C) \lor (A \land \neg B \land C) \lor (A \land B \land C)$$

Při přímem převodu postupujeme následovně: Ekvivalence a implikace nahrazujeme disjunkcemi, konjunkcemi a negacemi, pak uplatníme de Morganova pravidla a associativitu a distributivitu.

$$\begin{split} (A\Rightarrow B)\Rightarrow C &\Leftrightarrow (\neg A\vee B)\Rightarrow C\Leftrightarrow\\ &\Leftrightarrow \neg(\neg A\vee B)\vee C\Leftrightarrow\\ &\Leftrightarrow (A\wedge \neg B)\vee C \end{split}$$

b) Formuli $(A \Leftrightarrow B) \vee \neg C$ převedeme do DNF následovně:

$$\begin{split} (A \Leftrightarrow B) \vee \neg C &\Leftrightarrow & ((A \Rightarrow B) \wedge (B \Rightarrow A)) \vee \neg C \Leftrightarrow \\ &\Leftrightarrow & ((\neg A \vee B) \wedge (\neg B \vee A)) \vee \neg C \Leftrightarrow \\ &\Leftrightarrow & (\neg A \wedge \neg B) \vee (\neg A \wedge A) \vee (B \wedge \neg B) \vee (B \wedge A) \vee \neg C \\ &\Leftrightarrow & (\neg A \wedge \neg B) \vee (B \wedge A) \vee \neg C \end{split}$$

c) Přímým použitím převodních vztahů dostaneme:

$$\begin{split} (A \Leftrightarrow B) \Rightarrow (C \vee D) &\Leftrightarrow & ((A \Rightarrow B) \wedge (B \Rightarrow A)) \Rightarrow (C \vee D) \Leftrightarrow \\ &\Leftrightarrow & \neg ((A \Rightarrow B) \wedge (B \Rightarrow A)) \vee (C \vee D) \Leftrightarrow \\ &\Leftrightarrow & \neg ((\neg A \vee B) \wedge (\neg B \vee A)) \vee (C \vee D) \Leftrightarrow \\ &\Leftrightarrow & (A \wedge \neg B) \vee (B \wedge \neg A) \vee C \vee D \end{split}$$

Příklad 1.2: Vyjádřete následující formule v CNF, a to pomocí pravdivostní tabulky a pomocí převodu logických spojek.

a)
$$(A \Leftrightarrow B) \Rightarrow (\neg A \land C)$$

b)
$$(A \Rightarrow B) \Leftrightarrow (A \Rightarrow C)$$

Formule je v konjunktivní normální formě (CNF), pokud má tvar $\alpha_1 \wedge \ldots \wedge \alpha_n$, kde $\alpha_i = A_{i1} \vee \ldots \vee A_{ij_i}$ a A_{ij} je výroková proměnná nebo její negace.

Řešení 1.2:

a) Z pravdivostní tabulky pro formuli $(A \Leftrightarrow B) \Rightarrow (\neg A \land C)$ vytvoříme ekvivalentní formuli v CNF takto:

A	В	C	$A \Leftrightarrow B$	$\neg A \wedge C$	$(A \Leftrightarrow B) \Rightarrow (\neg A \land C)$
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	1
0	1	1	0	1	1
1	0	0	0	0	1
1	0	1	0	0	1
1	1	0	1	0	0
1	1	1	1	0	0

Pro každou interpretaci, ve které je formule nepravdivá, přidáme do vytvářené formule novou formuli, která bude obsahovat disjunkci všech výrokových symbolů z původní formule, následovně: Pokud je výrokovému symbolu v dáné interpretaci přiřazena pravdivostní hodnota 1, přidáme do formule negaci tohoto symbolu. V opačném případě do formule přidáme symbol samotný.

Výsledkem je tentokrát formule v tzv. úplné konjunktivní normální formě:

$$(A \lor B \lor C) \land (\neg A \lor \neg B \lor C) \land (\neg A \lor \neg B \lor \neg C)$$

Přímým užitím převodních vztahů pak dostaneme:

$$(A \Leftrightarrow B) \Rightarrow (\neg A \land C) \Leftrightarrow ((A \Rightarrow B) \land (B \Rightarrow A)) \Rightarrow (\neg A \land C) \Leftrightarrow \\ \Leftrightarrow ((\neg A \lor B) \land (\neg B \lor A)) \Rightarrow (\neg A \land C) \Leftrightarrow \\ \Leftrightarrow \neg ((\neg A \lor B) \land (\neg B \lor A)) \lor (\neg A \land C) \Leftrightarrow \\ \Leftrightarrow (\neg (\neg A \lor B) \lor \neg (\neg B \lor A)) \lor (\neg A \land C) \Leftrightarrow \\ \Leftrightarrow ((A \land \neg B) \lor (B \land \neg A)) \lor (\neg A \land C) \Leftrightarrow \\ \Leftrightarrow \dots$$

Version: 15. února 2011

Uplatněním distributivních zákonů dostaneme požadovaný tvar.

b) Přímým převodem dostaneme:

$$(A \Rightarrow B) \Leftrightarrow (A \Rightarrow C) \Leftrightarrow$$

$$\Leftrightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)) \land ((A \Rightarrow C) \Rightarrow (A \Rightarrow B)) \Leftrightarrow$$

$$\Leftrightarrow (\neg (A \Rightarrow B) \lor (A \Rightarrow C)) \land (\neg (A \Rightarrow C) \lor (A \Rightarrow B)) \Leftrightarrow$$

$$\Leftrightarrow ((A \land \neg B) \lor (\neg A \lor C)) \land ((A \land \neg C) \lor (\neg A \lor B)) \Leftrightarrow$$

$$\Leftrightarrow (((A \lor \neg A) \land (\neg B \lor \neg A)) \lor C) \land$$

$$\land (((A \lor \neg A) \land (\neg C \lor \neg A)) \lor B) \Leftrightarrow$$

$$\Leftrightarrow (\neg B \lor \neg A \lor C) \land (\neg C \lor \neg A \lor B)$$

Version: 15. února 2011

Poznámka: Některé formule jsou zároveň v disjunktivní i konjunktivní normální formě, například $A \vee B \vee \neg C$ nebo $\neg A \wedge B$ nebo třeba $\neg C$.

Poznámka: Každá formule má nějakou odpovídající DNF a CNF, tyto normální formy však nejsou určeny jednoznačně. Například CNF formule $(P \Rightarrow Q) \land (Q \Rightarrow R) \land (R \Rightarrow P)$ může být $(\neg P \lor Q) \land (\neg Q \lor R) \land (\neg R \lor P)$, ale stejně tak i $(\neg P \lor R) \land (\neg R \lor Q) \land (\neg Q \lor P)$.

Příklad 1.3: Převeďte na prenexovou normální formu formule:

a)
$$\forall y (\exists x P(x,y) \Rightarrow Q(y,z)) \land \exists y (\forall x R(x,y) \lor Q(x,y))$$

- b) $\exists x R(x, y) \Leftrightarrow \forall y P(x, y)$
- c) $(\forall x \exists y Q(x,y) \lor \exists x \forall y P(x,y)) \land \neg \exists x \exists y P(x,y)$
- d) $\neg(\forall x \exists y P(x, y) \Rightarrow \exists x \exists y R(x, y)) \land \forall x (\neg \exists y Q(x, y))$

Formule je v prenexové normání formě (PNF), pokud jsou všechny kvatifikátory na začátku formule, tj. formule má tvar $Q_1x_1Q_2x_2...Q_nx_n\varphi$, kde $Q_1,...,Q_n \in \{\forall,\exists\}$ a φ je formule bez kvantifikátorů (tzv. otevřená formule).

Řešení 1.3: Pro převod do prenexové formy používáme tato pravidla:

$$\overrightarrow{Qx} \neg \forall y\varphi \quad \Leftrightarrow \quad \overrightarrow{Qx} \; \exists y \neg \varphi \tag{1}$$

$$\overrightarrow{Qx} \neg \exists y\varphi \quad \Leftrightarrow \quad \overrightarrow{Qx} \ \forall y \neg \varphi \tag{2}$$

$$\overrightarrow{Qx} (\forall y \varphi \oplus \psi) \Leftrightarrow \overrightarrow{Qx} \forall z (\varphi(y/z) \oplus \psi)$$
 (3)

$$\overrightarrow{Qx} \left(\exists y \varphi \oplus \psi \right) \quad \Leftrightarrow \quad \overrightarrow{Qx} \ \exists z (\varphi(y/z) \oplus \psi) \tag{4}$$

Symbol Qx označuje vektor kvantifikátorů, které již splňují požadavky na PNF. Symbol \oplus v rovnicích (3) a (4) zastupuje logickou spojku \wedge nebo \vee . Výrazem (y/z) rozumíme substituci proměnné y za proměnnou z (proměnná y je ve formuli φ nahrazena proměnnou z), která se nevyskytuje nikde ve formuli.

a) užitím uvedených pravidel dostaneme z

$$\forall y (\exists x P(x, y) \Rightarrow Q(y, z)) \land \exists y (\forall x R(x, y) \lor Q(x, y))$$

formuli v PNF takto¹:

$$\forall y (\exists x P(x,y) \Rightarrow Q(y,z)) \land \exists y (\forall x R(x,y) \lor Q(x,y)) \Leftrightarrow$$

$$\Leftrightarrow \forall y (\neg (\exists x P(x,y)) \lor Q(y,z)) \land \exists y (\forall x R(x,y) \lor Q(x,y)) \Leftrightarrow$$

$$\Leftrightarrow \forall y (\forall x \neg P(x,y) \lor Q(y,z)) \land \exists y (\forall x R(x,y) \lor Q(x,y)) \Leftrightarrow$$

$$\Leftrightarrow \forall y_1 [(\forall x \neg P(x,y_1) \lor Q(y_1,z)) \land \exists y (\forall x R(x,y) \lor Q(x,y))] \Leftrightarrow$$

$$\Leftrightarrow \forall y_1 \forall x_1 [(\neg P(x_1,y_1) \lor Q(y_1,z)) \land \exists y (\forall x R(x,y) \lor Q(x,y))] \Leftrightarrow$$

$$\Leftrightarrow \forall y_1 \forall x_1 \exists y_2 [(\neg P(x_1,y_1) \lor Q(y_1,z)) \land (\forall x R(x,y_2) \lor Q(x,y_2))] \Leftrightarrow$$

$$\Leftrightarrow \forall y_1 \forall x_1 \exists y_2 [(\neg P(x_1,y_1) \lor Q(y_1,z)) \land \forall x_2 (R(x_2,y_2) \lor Q(x,y_2))] \Leftrightarrow$$

$$\Leftrightarrow \forall y_1 \forall x_1 \exists y_2 \forall x_2 [(\neg P(x_1,y_1) \lor Q(y_1,z)) \land (R(x_2,y_2) \lor Q(x,y_2))] \Leftrightarrow$$

Version: 15. února 2011

b) formuli $\exists x R(x, y) \Leftrightarrow \forall y P(x, y)$ převedeme následovně:

$$\exists x R(x,y) \Leftrightarrow \forall y P(x,y) \Leftrightarrow \\ \Leftrightarrow (\exists x R(x,y) \Rightarrow \forall y P(x,y)) \land (\forall y P(x,y) \Rightarrow \exists x R(x,y)) \Leftrightarrow \\ \Leftrightarrow (\neg \exists x R(x,y) \lor \forall y P(x,y)) \land (\neg \forall y P(x,y) \lor \exists x R(x,y)) \Leftrightarrow \\ \Leftrightarrow (\forall x \neg R(x,y) \lor \forall y P(x,y)) \land (\exists y \neg P(x,y) \lor \exists x R(x,y)) \Leftrightarrow \\ \Leftrightarrow \forall x_1 [(\neg R(x_1,y) \lor \forall y P(x,y)) \land (\exists y \neg P(x,y) \lor \exists x R(x,y))] \Leftrightarrow \\ \Leftrightarrow \forall x_1 \forall y_1 [(\neg R(x_1,y) \lor P(x,y_1)) \land (\exists y \neg P(x,y) \lor \exists x R(x,y))] \Leftrightarrow \\ \Leftrightarrow \forall x_1 \forall y_1 \exists y_2 [(\neg R(x_1,y) \lor P(x,y_1)) \land (\neg P(x,y_2) \lor \exists x R(x,y))] \Leftrightarrow \\ \Leftrightarrow \forall x_1 \forall y_1 \exists y_2 [(\neg R(x_1,y) \lor P(x,y_1)) \land (\neg P(x,y_2) \lor R(x_2,y))] \Leftrightarrow \\ \Leftrightarrow \forall x_1 \forall y_1 \exists y_2 \exists x_2 [(\neg R(x_1,y) \lor P(x,y_1)) \land (\neg P(x,y_2) \lor R(x_2,y))] \Leftrightarrow \\ \Leftrightarrow \forall x_1 \forall y_1 \exists y_2 \exists x_2 [(\neg R(x_1,y) \lor P(x,y_1)) \land (\neg P(x,y_2) \lor R(x_2,y))] \end{cases}$$

2 Skolemizace a unifikace

Začneme připomenutím následujících definic.

- Formule bez volných proměnných se nazývá sentence.
- Nechť $\varphi(x_1,\ldots,x_n)$ je formule s volnými proměnnými x_1,\ldots,x_n , kde $n \ge 0$. Jejím univerzálním uzávěrem rozumíme formuli $\forall x_1 \ldots \forall x_n \varphi(x_1,\ldots,x_n)$.
- Formule $\varphi(x_1, \ldots, x_n)$ je pravdivá v interpretaci I právě tehdy, když je v této interpretaci pravdivý její univerzální uzávěr, tj. pokud $\varphi(x_1, \ldots, x_n)$ je pravdivá v interpretaci I pro všechny valuace.
- Podobně, formule $\varphi(x_1,\ldots,x_n)$ je splnitelná, je-li splnitelný její univerzální uzávěr, tj. pokud existuje interpretace I taková, že $\varphi(x_1,\ldots,x_n)$ je pravdivá pro všechny valuace.
- Formule φ, ψ jsou equisatisfiable (ekvivalentní vzhledem ke splnitelnosti), pokud jsou obě splnitelné nebo obě nesplnitelné.

¹Při převodu pro zjednodušení vynécháme krok, který vysune kvantifikátory v levé části formule mezi vnější (značíme symbolem "[") a vnitřní závorku.

• Nechť T je množina formulí. Formule φ je logickým důsledkem T (nebo φ logicky vyplývá z T, píšeme $T \models \varphi$,), pokud je φ pravdivá v každé interpretaci I, ve které jsou pravdivé všechny formule z T.

Version: 15. února 2011

Nyní si ukážeme, jak lze převést úlohu Dokažte, že φ je logickým důsledkem T do klauzulární formy (tj. konjunktivní normální formy), kde již může být dořešena rezoluční metodou.

- a) Nejprve nahradíme všechny formule s volnými proměnnými v T jejich univerzálními uzávěry. Vzniklou množinu sentencí označíme T'. Má-li formule φ volné proměnné x_1, \ldots, x_n , nahradíme ji jejím univerzálním uzávěrem $\forall x_1 \ldots \forall x_n \varphi(x_1, \ldots, x_n)$. Z výše uvedených definic plyne, že $T \models \varphi$ právě tehdy, když $T' \models \forall x_1 \ldots \forall x_n \varphi(x_1, \ldots, x_n)$.
- b) $T' \models \forall x_1 \dots \forall x_n \varphi(x_1, \dots, x_n)$ právě tehdy, když je množina sentencí $T' \cup \{\neg \forall x_1 \dots \forall x_n \varphi(x_1, \dots, x_n)\} = T' \cup \{\exists x_1 \dots \exists x_n \neg \varphi(x_1, \dots, x_n)\}$ nesplnitelná.
- c) Všechny formule z množiny $T' \cup \{\exists x_1 \dots \exists x_n \neg \varphi(x_1, \dots, x_n)\}$ převedeme do prenexního normální formy (PNF) a skolemizujeme (skolemizace vytvoří formuli, která je equisatisfiable původní formuli). Získanou množinu sentencí v PNF a bez existenčních kvantifikátorů označíme T''.
- d) Nyní z každé formule z T'' odstraníme část s kvantifikátory (korektnost tohoto kroku opět vyplývá z výše uvedených definic) a zbylou část formule převedeme do konjunktivní normální formy. Konjunkci všech takto získaných formulí nazveme ψ . Platí $T \models \varphi$ právě tehdy, když ψ je nesplnitelná. Formuli ψ přepíšeme na množinu klauzulí a každou klauzuli nahradíme množinou jejích literálů. K důkazu nesplnitelnosti takto vytvořené množiny klauzulí můžeme použít rezoluční metodu.

Pořadí některých částí výše uvedeného postupu lze zaměnit, např. převod do konjunktivní normální formy lze provést zaráz s převodem do PNF.

Příklad 2.1: Proveď te skolemizaci následujících formulí v PNF:

- a) $\forall y_1 \forall x_1 \exists y_2 \forall x_2 [(\neg P(x_1, y_1) \lor Q(y_1, a)) \land (R(x_2, y_2) \lor Q(x_1, y_2))]$
- b) $\forall x_1 \forall y_1 \exists y_2 \exists x_2 [(\neg R(x_1, y_2) \lor P(b, y_1)) \land (\neg P(x_1, y_2) \lor R(x_2, b))]$
- c) $\exists x_1 \forall y_1 \exists x_2 (S(y_1) \lor R(x_1, x_2))$

Řešení 2.1: Každý výskyt proměnné x, která je ve formuli kvantifikovaná existenčně, nahradíme termem $f(y_1, \ldots, y_n)$, kde f je nový funkční symbol a y_1, \ldots, y_n jsou všechny univerzálně kvantifikované proměnné, které se vyskytují v sekvenci kvantifikátorů před proměnnou x. Pokud se před x žádné takové proměnné nevyskytují, nahradíme x nulárním funkčním symbolem, tj. konstantou.

Skolemizace se aplikuje na formule bez volných proměnných. Formuli s volnými proměnnými je tedy třeba před skolemizací nahradit jejím univerzálním uzávěrem (univerzální uzávěr i skolemizace zachovávají splnitelnost formule).

a) První formuli upravíme následovně:

$$\forall y_1 \forall x_1 \exists y_2 \forall x_2 \quad [(\neg P(x_1, y_1) \lor Q(y_1, a)) \land \\ \qquad \qquad \land (R(x_2, y_2) \lor Q(x_1, y_2))] \qquad - \\ \rightarrow \qquad \forall y_1 \forall x_1 \forall x_2 \quad [(\neg P(x_1, y_1) \lor Q(y_1, a)) \land \\ \qquad \qquad \land (R(x_2, f(y_1, x_1)) \lor Q(x_1, f(y_1, x_1)))]$$

Version: 15. února 2011

b) Stejným způsobem upravíme formuli:

$$\forall x_1 \forall y_1 \exists y_2 \exists x_2 \quad [(\neg R(x_1, y_2) \lor P(b, y_1)) \land \\ \qquad \land (\neg P(x_1, y_2) \lor R(x_2, b))] \qquad \rightarrow \\ \forall x_1 \forall y_1 \exists x_2 \quad [(\neg R(x_1, f(x_1, y_1)) \lor P(b, y_1)) \land \\ \qquad \land (\neg P(x_1, f(x_1, y_1)) \lor R(x_2, b))] \qquad \rightarrow \\ \forall x_1 \forall y_1 \quad [(\neg R(x_1, f(x_1, y_1)) \lor P(b, y_1)) \land \\ \qquad \land (\neg P(x_1, f(x_1, y_1)) \lor R(g(x_1, y_1, b))]$$

c) Skolemizace třetí formule ukazuje náhradu proměnné novou konstantou:

Příklad 2.2: Najděte nejobecnější unifikátory (angl. most general unifiers, mgu) následujících množin literálů:

a)
$$S = \{P(x, f(y), z), P(g(a), f(w), u), P(v, f(b), c)\}$$

b)
$$T = \{Q(h(x,y), w), Q(h(g(v), a), f(v)), Q(h(g(v), a), f(b))\}$$

 $\bf \check{R}e\bf\check{s}en\acute{t}$ 2.2: Při hledání mguhledáme rozdíly mezi výrazy a substituujeme volné proměnné tak dlouho, dokud vstupní množina neobsahuje právě jeden výraz. 2

Rozdíl D(S) mezi výrazy z množiny S definujeme jako množinu podvýrazů všech $E \in S$ začínajících na první (nejlevější) pozici, na které mají výrazy E různou hodnotu.

a) Nejobecnější unifikátor pro množinu

$$S = \{P(x, f(y), z), P(g(a), f(w), u), P(v, f(b), c)\}\$$

zkonstruujeme následovně.

1. $S_0 = S$, $|S_0| \neq 1$ a je tedy co unifikovat. $D(S) = \{x, g(a), v\}$. Máme čtyři možnosti jak substituovat ([x/g(a)], [x/v], [v/g(a)] a [v/x]). Zvolíme první možnost, tedy $\phi_1 = [x/g(a)]$ a aplikujeme ϕ_1 na S_0 , čímž obdržíme množinu S_1 :

$$S_1 = S_0 \phi_1 = \{ P(g(a), f(y), z), P(g(a), f(w), u), P(v, f(b), c) \}$$

 $^{^2{\}rm Viz}$ materiály k předmětu IB101 Úvod do logiky a logického programování (šestá přednáška).

2.
$$D(S_1) = \{g(a), v\}, \ \phi_2 = [v/g(a)].$$

 $S_2 = S_1\phi_2 = \{P(g(a), f(y), z), P(g(a), f(w), u), P(g(a), f(b), c)\}$

Version: 15. února 2011

3.
$$D(S_2) = \{y, w, b\}, \ \phi_3 = [y/w].$$

 $S_3 = S_2 \phi_2 = \{P(g(a), f(w), z), P(g(a), f(w), u), P(g(a), f(b), c)\}$

4.
$$D(S_3) = \{w, b\}, \ \phi_3 = [w/b].$$

 $S_4 = S_3 \phi_3 = \{P(g(a), f(b), z), P(g(a), f(b), u), P(g(a), f(b), c)\}$

5.
$$D(S_4) = \{z, u, c\}, \phi_3 = [z/u].$$

 $S_5 = S_4\phi_4 = \{P(g(a), f(b), u), P(g(a), f(b), u), P(g(a), f(b), c)\}$

6.
$$D(S_5) = \{u, c\}, \ \phi_3 = [u/c].$$

 $S_6 = S_5 \phi_5 = \{P(g(a), f(b), c)\}$

7. $|S_6| = 1$, takže algoritmus pro nalezení unifikátoru ukončí výpočet. Nejobecnějším unifikátorem je posloupnost substitucí:

$$mgu(S) = \phi_1\phi_2\phi_3\phi_4\phi_5 =$$

= $[x/g(a)][v/g(a)][y/w][w/b][z/u][u/c]$

b) Aplikací popsaného postupu dostaneme pro množinu T tento nejobecnější unifikátor:

$$\mathit{mgu}(T) = [x/g(v)][y/a][w/f(v)][v/b]$$

Příklad 2.3: Najděte všechny rezolventy následujících dvojic klauzulí:

a)
$$C_1 = \{P(x,y), P(y,z)\}, C_2 = \{\neg P(u,f(u))\}\$$

b)
$$C_1 = \{P(x, x), \neg R(x, f(x))\}, C_2 = \{R(x, y), Q(y, z)\}$$

c)
$$C_1 = \{P(x,y), \neg P(x,x), Q(x,f(x),z)\}, C_2 = \{\neg Q(f(x),x,z), P(x,z)\}$$

Řešení 2.3: Před rezolucí je třeba přejmenovat proměnné v klauzulích tak, aby obě klauzule používaly různé proměnné. Rezoluce v predikátové logice probíhá obdobně jako v logice propoziční. Rezoluční pravidlo je definováno následovně:³ Mějme klauzule C_1 a C_2 bez společných proměnných ve tvaru:

$$C_1 = C'_1 \cup \{P(\vec{x_1}), \dots, P(\vec{x_n})\}$$

$$C_2 = C'_2 \cup \{\neg P(\vec{y_1}), \dots, \neg P(\vec{y_m})\}.$$

Je-li substituce ϕ nejobecnějším unifikátorem množiny

$$\{P(\vec{x_1}), \dots, P(\vec{x_n}), P(\vec{y_1}), \dots, P(\vec{y_m})\},\$$

pak rezolventou C_1 a C_2 je $C_1' \phi \cup C_2' \phi$.

Poznámka:

 $[\]overline{}^3$ Viz materiály k předmětu IB101 Úvod do logiky a logického programování (sedmá přednáška).

- Přejmenování proměnných je nutné: $\{\{P(x)\}, \{\neg P(f(x))\}\}\$ je nesplnitelná množina klauzulí, ovšem literály P(x) a P(f(x)) nejsou unifikovatelné.
- Rezolvování na více literálech je nutné: {{¬P(x), ¬P(y)}, {P(x), P(y)}}
 je nesplnitelná množina klauzulí, ovšem rezolvováním na jednom literálu
 bychom se nikdy nedostali k prázdné klauzuli.

Na zadané klauzule aplikujeme rezoluční pravidlo a pokusíme se nálézt všechny rezolventy, které lze odvodit.

- a) Přejmenování proměnných není v tomto případě nutné, protože klauzule neobsahují společné proměnné.
 - 1. nejdříve zkusíme odvodit prázdnou klauzuli \square . Protože však nelze unifikovat množinu $\{P(x,y), P(y,z), P(u,f(u))\}$, není \square rezolventou C_1 a C_2 .
 - 2. zkusíme tedy unifikovat množinu $\{P(x,y), P(u,f(u))\}$. Zjistíme, že mgu této množiny je posloupnost substitucí $\phi = [x/u][y/f(u)]$ a můžeme tedy odvodit rezolventu

$$C'_{1}\phi \cup C'_{2}\phi =$$

$$= (C_{1} \setminus \{P(x,y)\})\phi \cup (C_{2} \setminus \{\neg P(u,f(u))\})\phi =$$

$$= \{P(y,z)\}\phi \cup \emptyset =$$

$$= \{P(f(u),z)\}.$$

3. nakonec můžeme unifikovat množinu $\{P(y,z), P(u,f(u))\}$ pomocí $mgu \ \phi = [y/u][z/f(u)]$. Rezolventou je poté klauzule $\{P(x,u)\}$.

Version: 15. února 2011

3 Rezoluce

Příklad 3.1: Dokažte, že platí následující vyplývání:

- a) $\{\forall x P(x,x), \forall x \forall y \forall z ((P(x,y) \land P(y,z)) \Rightarrow P(z,x))\} \models \forall x \forall y (P(x,y) \Rightarrow P(y,x))$
- b) $\{\forall x \forall y \forall z ((P(x,y) \land P(y,z)) \Rightarrow P(x,z)), \forall x \forall y (P(x,y) \Rightarrow P(y,x))\} \models \forall x \forall y \forall z ((P(x,y) \land P(z,y)) \Rightarrow P(x,z))$

Řešení 3.1: Stejně jako ve výrokové logice provedeme důkaz sporem pomocí rezoluční metody. Protože jsou všechny formule v zadání tohoto příkladu uzavřené, stačí nalézt vyvrácení množiny $S \cup \{\neg \varphi\}$, kde S je množina formulí z předpokladů a φ je formule ze závěru logického vyplývání.

Množinu formulí $S \cup \{\neg \varphi\}$ tedy převedeme na množinu klauzulí⁴ a pomocí rezolučního pravidla pro predikátovou logiku se pokusíme odvodit prázdnou klauzuli.

 $^{^4{\}rm Podrobný}$ obecný postup transformace zadání na množinu klauzulí je popsán v materiálech ke druhému cvičení.

a) Znegováním závěru získáme formuli $\neg \varphi = \exists x \exists y \neg (P(x,y) \Rightarrow P(y,x))$. Převodem této formule a množiny předpokladů do PNF, odstraněním kvantifikací a převodem do CNF obdržíme množinu klauzulí

$$\{\{P(x,x)\}, \{\neg P(x,y), \neg P(y,z), P(z,x)\}, \{P(a,b)\}, \{\neg P(b,a)\}\}.$$

Version: 15. února 2011

Z ní můžeme vytvořit např. tento strom rezolučního vyvrácení:

b) Obdobně jako v předchozím případě vyvrátíme množinu klauzulí:

$$\begin{aligned} & \{ \{ \neg P(x,y), \neg P(y,z), P(x,z) \}, \{ \neg P(x,y), P(y,x) \}, \\ & \{ P(a,b) \}, \{ P(c,b) \}, \{ \neg P(a,c) \} \}. \end{aligned}$$

V obou případech se nám podařilo odvodit z množiny $S \cup \{\neg \varphi\}$ prazdnou klauzuli a tím jsme dokázali platnost logického vyplývání $S \models \varphi$.

Příklad 3.2: Převeď te následující tvrzení v přirozeném jazyce na formule predikátové logiky a dokažte jejich platnost.

- a) Předpokládejte, že platí následující tři tvrzení:
 - Existuje drak (označme D/1).

- Draci spí (S/1) nebo loví (L/1).
- \bullet Když jsou draci hladoví (H/1), tak nespí.

Důsledek: Když jsou draci hladoví, tak loví.

- b) Předpokládejte, že platí následující dvě tvrzení:
 - \bullet Všichni holiči (B/1) holí (S/2) každého, kdo se neholí sám.

Version: 15. února 2011

• Žádný holič neholí někoho, kdo se holí sám.

Důsledek: Holiči neexistují.

Řešení 3.2: Převedeme věty přirozeného jazyka na formule predikátové logiky a rezolučním principem dokážeme platnost tvrzení.

a) Přepisem obdržíme následující množinu formulí:

$$S = \{\exists x D(x), \\ \forall x (D(x) \Rightarrow (S(x) \lor L(x))), \\ \forall x ((D(x) \land H(x)) \Rightarrow \neg S(x))\}$$

$$\varphi = \forall x ((D(x) \land H(x)) \Rightarrow L(x))$$

Všechny předpoklady z S a negaci závěru φ převedeme na klauzulární tvar a dokazujeme nesplnitelnost takto vzniklé množiny klauzulí:

$$S' = \{\{D(a)\}, \{\neg D(x), S(x), L(x)\}, \{\neg D(x), \neg H(x), \neg S(x)\}, \{D(b)\}, \{H(b)\}, \{\neg L(b)\}\}$$

V dalším textu budeme při zápisu rezoluce obvykle používat ρ pro označení přejmenování proměnných v klauzulích a σ pro označení mgu substituce.

b) Přepisem obdržíme:

$$\begin{array}{lcl} S & = & \{ \forall x \forall y ((B(x) \land \neg S(y,y)) \Rightarrow S(x,y)), \\ & & \forall y (S(y,y) \Rightarrow \neg \exists x (B(x) \land S(x,y))) \} \\ \varphi & = & \neg \exists x B(x) \end{array}$$

Množinu formulí $S \cup \{ \neg \varphi \}$ převedeme na množinu klauzulí S', ke které pak zkonstruujeme rezoluční vyvrácení.

$$S' = \{ \{ \neg B(x), S(y,y), S(x,y) \}, \{ \neg S(y,y), \neg B(x), \neg S(x,y) \}, \{ B(a) \} \}$$

Version: 15. února 2011