第15次作业

- 1. 假定变量 Y (响应变量)与 X (预测变量)之间的关系可用如下的线性模型刻画: $Y = \beta_0 + \beta_1 X + \varepsilon$,其中 β_0 是常数项, β_1 称为模型的回归系数,皆为常数, ε 为随机误差项,均值为 0 ,方差为 σ^2 . 假设有 (X,Y) 的独立观测: (x_i,y_i) ($i=1,\cdots,n$).参数 β_0,β_1 的最小二乘估计分别表示为 $\hat{\beta}_0,\hat{\beta}_1$.
 - (1) 验证:最小二乘法拟合的直线经过点 (\bar{x}, \bar{y}) .
 - (2) 计算 $Cov(\hat{\beta}_0, \hat{\beta}_1)$. 什么时候 $\hat{\beta}_0, \hat{\beta}_1$ 不相关?
 - (3) 假设 $x_i \in [-1,1]$ ($i=1,\cdots,n$),为最小化 $\mathrm{Var}(\hat{\pmb{\beta}}_1)$,应该如何选择 x_i ($i=1,\cdots,n$)?
 - (4) 如果模型可以事先假设 $\beta_0 = 0$,则请在此情况下给出 β_1 的最小二乘估计.
- 2. 进一步假设随机误差 $\varepsilon \sim N(0, \sigma^2)$.
 - (1) 给出参数 σ^2 的极大似然估计.
 - (2) 证明: $\frac{\text{SSE}}{n-2}$ 是 σ^2 的无偏估计.
 - (3) 已知模型可以事先假设 $eta_0=0$,请给出 σ^2 的无偏估计,并给出 $X=x_0$ 时响应变量 Y 取值的 $(1-\alpha)$ 置信的区间估计.