<u>Report</u>

Topic: Operator Precedence Parsing (3rd Sep)

- Shashank Rajput (11CS10042)

Precedence Relations

Bottom-up parsers for a large class of context-free grammars can be easily developed using *operator grammars*.

Operator Grammars have the property that **no production right side is empty or has two adjacent non-terminals**.

Consider:

Not an operator grammar but:

$$E -> E + E | E * E | id$$

This parser relies on the following three precedence relations:

Relation	Meaning		
a < b	a yields precedence to b		
a = b	<i>a</i> has the same precedence as <i>b</i>		
$a \cdot > b$	a takes precedence over b		

	id	+	*	\$
id		•>	•>	•>
+	<•	•>	<•	•>
*	<٠	•>	•>	•>
\$	<٠	<•	<•	•>

Precedence Table

Example: The input string:

$$id_1 + id_2 * id_3$$

After inserting precedence relations becomes:

\$ <-
$$id_1$$
 -> + <- id_2 -> * <- id_3 -> \$

Basic Principle

Having precedence relations allows identifying handles as follows:

- 1. Scan the string from left until seeing ·> and put a pointer.
- 2. Scan backwards the string from right to left until seeing <-
- 3. Everything between the two relations < ⋅ and ⋅> forms the handle
- 4. Replace handle with the head of the production.

Operator Precedence Parsing Algorithm

Making Operator Precedence Relations

The operator precedence parsers usually do not store the precedence table with the relations; rather they are implemented in a special way.

Operator precedence parsers use **precedence functions** that map terminal symbols to integers, and so the precedence relations between the symbols are implemented by numerical comparison.

Algorithm for Constructing Precedence Functions

- 1. Create functions f_a for each grammar terminal a and for the end of string symbol.
- 2. Partition the symbols in groups so that f_a and g_b are in the same group if a = b (there can be symbols in the same group even if they are not connected by this relation).
- 3. Create a directed graph whose nodes are in the groups, next for each symbols a and b do: place an edge from the group of g_b to the group of f_a if a < b, otherwise if a > b place an edge from the group of f_a to that of g_b .
- 4. If the constructed graph has a cycle then no precedence functions exist. When there are no cycles collect the length of the longest paths from the groups of f_a and g_b respectively.

Example: consider the following table

	id	+	*	\$
id		•>	•>	•>
+	<•	•>	<٠	•>
*	<.	•>	•>	•>
\$	<•	<•	<•	•>

Using the algorithm leads to the following graph:

From which we extract the following precedence functions:

	id	+	*	\$
f	4	2	4	0
g	5	1	3	0