

Grelha de respostas certas

Versão A

Grupo	1				2				3			
	a)	b)	c)	d)	a)	b)	c)	d)	a)	b)i.	b)ii.	b)iii.
	С	A	В	В	С	A	A	С	В	A, C	В	В

<u>Versão B</u>

Grupo	1				2				3			
	a)	b)	c)	d)	a)	b)	c)	d)	a)	b)i.	b)ii.	b)iii.
	A	В	С	Α	В	С	С	A	С	B, D	A	D

Resolução abreviada do 2.º Teste

1. N(t)-n.º de clientes que chegam à loja em t minutos

 $\{N\left(t\right)\}_{t\in\mathbb{R}_{+}^{+}}$ é um Processo de Poisson de taxa $\beta=0.05$ clientes/minuto $N\left(t\right)\sim P\left(\beta t\right)\equiv P\left(0.05t\right)$

(a)
$$N(30) \sim P(0.05 \times 30) \equiv P(1.5)$$

 $P(N(30) \le 1) = P(N(30) = 0) + P(N(30) = 0) = e^{-1.5} \frac{1.5^0}{0!} + e^{-1.5} \frac{1.5^1}{1!} = 2.5 e^{-1.5}$

(b) Seja T-tempo, em minutos, entre entradas consecutivas de clientes na loja $T \sim E(0, 1/\beta) \equiv E(0, 20)$

$$P(T > 30 | T > 10) = P(T > 20) = 1 - P(T \le 20) = 1 - [1 - e^{-20/20}] = e^{-1}$$

(c) Considere as v.a.'s:

 T_1 -tempo, em minutos, entre a chegada do $10.^{\circ}$ e do $11.^{\circ}$ clientes $T_1 \sim E(0, 20)$ T_2 -tempo, em minutos, entre a chegada do $11.^{\circ}$ e do $12.^{\circ}$ clientes $T_2 \sim E(0, 20)$

$$E(T_1) = E(T_2) = 20$$
 e $E(T_1 + T_2) = E(T_1) + E(T_2) = 40$

(d) $N(180) \sim P(0.05 \times 180) \equiv P(9)$

Pelo T.L.C.,
$$\frac{N(180) - 9}{\sqrt{9}} \equiv \frac{N(180) - 9}{3} \stackrel{a}{\sim} N(0, 1)$$

 $P(N(180) > 12) = 1 - P\left(\frac{N(180) - 9}{3} \le \frac{12 - 9}{3}\right) \approx 1 - P(Z \le 1) = 1 - 0.8413 = 0.1587$

- 2. $X \sim N(\delta 1, \delta^2), \quad \delta \in \mathbb{R}^+$
 - (a) $P(X \le \delta) = 0.9772 \Leftrightarrow P\left(\frac{X (\delta 1)}{\delta} \le \frac{\delta (\delta 1)}{\delta}\right) = 0.9772 \Leftrightarrow \Phi\left(Z \le \frac{1}{\delta}\right) = 0.9772 \Leftrightarrow \frac{1}{\delta} = 2 \Leftrightarrow \delta = \frac{1}{2}$
 - (b) $X \sim N(0,1)$ independente de $Z \sim N(0,1)$

Seja $D=X-Z\sim N\left(0+0,1+1\right)\equiv N\left(0,2\right)$ porque X e Z são v.a.'s independentes e ambas com distribuição Normal

$$P(X > Z + \sqrt{2}) = P(X - Z > \sqrt{2}) = P(D > \sqrt{2}) = P\left(\frac{D}{\sqrt{2}} > \frac{\sqrt{2}}{\sqrt{2}}\right) = P(Z > 1) = 1 - P(Z < 1) = 1 - 0.8413 = 0.1587$$

(c) $Z \sim N(0,1)$ e $W \sim U(0,2)$ são v.a.'s independentes

$$P(Z \le 1.96) = 0.975 \text{ e } P(W \le 1) = \frac{1-0}{2-0} = \frac{1}{2}$$

 $P[(Z \le 1.96) \cap (W \le 1)] = P(Z \le 1.96) \times P(W \le 1) = 0.4875$

(d) Como $\overline{X} = \frac{1}{35} \sum_{i=1}^{35} X_i$ é uma combinação linear de v.a.'s independentes e todas com distribuição Normal, então \overline{X} tem distribuição Normal.

Por sua vez:
$$E(\overline{X}) = \frac{1}{35} \sum_{i=1}^{35} E(X_i) = \frac{1}{35} \sum_{i=1}^{35} (\delta - 1) = \delta - 1$$
 e $V(\overline{X}) = \frac{1}{35^2} \sum_{i=1}^{35} V(X_i) = \frac{1}{35^2} \sum_{i=1}^{35} \delta^2 = \frac{\delta^2}{35}$ Assim $\frac{\overline{X} - (\delta - 1)}{\sqrt{\delta^2/35^2}} \equiv \frac{\overline{X} - \delta + 1}{\delta/\sqrt{35}} \sim N(0, 1)$

3. (a)
$$\begin{cases} E(X) = \overline{X} \\ V(X) = M_2 \end{cases} \Leftrightarrow \begin{cases} \frac{\theta}{2} = \overline{X} \\ \frac{\theta^2}{4(2\beta + 1)} = M_2 \end{cases} \Leftrightarrow \begin{cases} \theta = 2\overline{X} \\ \frac{4\overline{X}^2}{4(2\beta + 1)} = M_2 \end{cases} \Leftrightarrow \begin{cases} \theta = 2\overline{X} \\ \beta = \frac{1}{2} \left(\frac{\overline{X}^2}{M_2} - 1\right) \end{cases}$$

$$\theta^* = 2\overline{X}$$
 e $\beta^* = \frac{1}{2} \left(\frac{\overline{X}^2}{M_2} - 1 \right)$

(b)
$$\beta = 1$$

i.
$$E\left(2\overline{X}\right) = 2E\left(\overline{X}\right) = 2E\left(X\right) = 2\frac{\theta}{2} = \theta$$
 $2\overline{X}$ é estatística centrada para o parâmetro θ
$$E\left(\frac{n+1}{n}N_n\right) = \frac{n+1}{n}E\left(N_n\right) = \frac{n+1}{n}\frac{n}{n+1}\theta = \theta$$
 $\frac{n+1}{n}N_n$ é estatística centrada para o parâmetro θ

ii.
$$V(\hat{\theta}) = V(2\overline{X}) = 2^2V(\overline{X}) = 4\frac{V(X)}{n} = 4\frac{\theta^2}{12n} = \frac{\theta^2}{3n}$$

$$V(\tilde{\theta}) = V(\frac{n+1}{n}N_n) = (\frac{n+1}{n})^2V(N_n) = \theta^2\frac{(n+1)^2}{n^2}\frac{n}{(n+1)^2(n+2)} = \frac{\theta^2}{n(n+2)}$$

Como os dois estimadores são centrados, o mais eficiente é o que tiver menor variância. Para $n \ge 2, n+2 > 3$. Assim $\tilde{\theta}$ é o estimador mais eficiente

iii.
$$E(\hat{\theta}) = \theta$$
, $V(\hat{\theta}) = \frac{\theta^2}{3n}$
Pelo T.L.C., para $\theta = -1$ e $n = 1200$
$$\frac{\hat{\theta} - E(\hat{\theta})}{\sqrt{V(\hat{\theta})}} \equiv 60(\hat{\theta} + 1) \stackrel{a}{\sim} N(0, 1)$$

$$P(|\hat{\theta} + 1| > 0.02) = P(|60(\hat{\theta} + 1)| > 60 \times 0.02) \approx P(|Z| > 1.2) = 2P(Z > 1.2) = 2[1 - P(Z < 1.2)] = 2(1 - 0.8849) = 0.2302$$