Linear Regression 3

Credit balance data

Predictor with two levels

Find the difference in credit card balance (y_i) between **male** and **female** (x_i) .

$$x_i = \begin{cases} 0 & \text{if } i \text{th person is male.} \\ 1 & \text{if } i \text{th person is female.} \end{cases}$$

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Predictor with two levels

Find the difference in credit card balance (y_i) between **male** and **female** (x_i) .

$$x_i = \begin{cases} 0 & \text{if } i \text{th person is male.} \\ 1 & \text{if } i \text{th person is female.} \end{cases}$$

$$y_i = \begin{cases} \beta_0 + \epsilon_i & \text{if } i \text{th person is male.} \\ \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{th person is female.} \end{cases}$$

Estimates of coefficients

	\hat{eta}_i	$SE(\hat{eta}_i)$	t-statistic	<i>p</i> -value
Intercept	509.80	33.13	15.389	< 0.0001
gender(Female)	19.73	46.05	0.429	0.6690

$$\hat{y}_i = 509.80 + 19.73x_i.$$

Main takeaway:

- 1. Male has credit card debt of 509.80 **on average**.
- 2. Female has credit card debt of 509.80+19.73 = 529.53 **on average**.
- 3. The difference in credit card debt is $\hat{\beta}_1 = 19.73$ on average.

Estimates of coefficients

	\hat{eta}_i	$SE(\hat{eta}_i)$	t-statistic	<i>p</i> -value
Intercept	509.80	33.13	15.389	< 0.0001
gender(Female)	19.73	46.05	0.429	0.6690

$$\hat{y}_i = 509.80 + 19.73x_i.$$

Main takeaway:

- 1. Male has credit card debt of 509.80 **on average**.
- 2. Female has credit card debt of 509.80+19.73 = 529.53 **on average**.
- 3. The difference in credit card debt is $\hat{\beta}_1 = 19.73$ on average.

Question: Can we conclude that females have more credit debt on average than males?

Predictor with more than two levels

Find the difference in credit card balance (y_i) between **Asian**, **Caucasian** and **African American**.

$$y_i = egin{cases} eta_0 + \epsilon_i & ext{if } i ext{th person is African American.} \ eta_0 + eta_1 + \epsilon_i & ext{if } i ext{th person is Asian.} \ eta_0 + eta_2 + \epsilon_i & ext{if } i ext{th person is Caucasian.} \end{cases}$$

E

Predictor with more than two levels

Create two **dummy variables** x_{i1} and x_{i2} :

$$x_{i1} = \begin{cases} 1 & \text{if } i \text{th person is Asian.} \\ 0 & \text{if } i \text{th person is not Asian.} \end{cases}$$
 $x_{i2} = \begin{cases} 1 & \text{if } i \text{th person is Caucasian.} \\ 0 & \text{if } i \text{th person is not Caucasian.} \end{cases}$

Using x_{i1} and x_{i2} , the regression can be written as

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$

Estimates of coefficients

	\hat{eta}_i	$SE(\hat{eta}_i)$	t-statistic	<i>p</i> -value
Intercept	531.00	46.32	11.464	<0.0001
ethnicity (Asian)	-18.69	65.02	-0.287	0.7740
ethnicity (Caucasian)	-12.50	56.68	-0.221	0.8260

Main takeaway: On average,

- 1. African American has credit debt of 531.00.
- 2. Asian has 18.69 less debt than the African American.
- 3. Caucasian has 12.50 less debt than the African American.
- 4. Asian has ______ less debt than Caucasian.

Estimates of coefficients

	\hat{eta}_i	$SE(\hat{eta}_i)$	t-statistic	<i>p</i> -value
Intercept	531.00	46.32	11.464	<0.0001
ethnicity (Asian)	-18.69	65.02	-0.287	0.7740
ethnicity (Caucasian)	-12.50	56.68	-0.221	0.8260

Main takeaway: On average,

- 1. African American has credit debt of 531.00.
- 2. Asian has 18.69 less debt than the African American.
- 3. Caucasian has 12.50 less debt than the African American.
- 4. Asian has _____ less debt than Caucasian.

Question: How can we decide if there is any difference in credit card balance between the ethnicities?

Linear model diagnosis

1. Non-linearity of the data

 Maybe the relationship between the predictors and the response is non-linear.

Residual plot

• Plot between the **fitted values** \hat{y}_i and the **residuals** $y_i - \hat{y}_i$.

Non-linear regression

Try a polynomial function of the horsepower:

$$mpg = \beta_0 + \beta_1 \times horsepower + \beta_2 \times horsepower^2 + \epsilon$$
.

Estimates of coefficients

	\hat{eta}_i	$SE(\hat{eta}_i)$	t-statistic	<i>p</i> -value
Intercept	56.9001	1.8004	31.6	< 0.0001
horsepower	-0.4662	0.0311	-15.0	< 0.0001
horsepower ²	-0.0012	0.0001	10.1	< 0.0001

Two things indicate that the quadratic fit is better:

- The p-value of **horsepower**² is significant.
- The R^2 of this model is 0.688 compared to 0.606 of the linear model.

Residual plot of non-linear regression

We assumed that the error terms

$$\epsilon_1, \epsilon_2, \ldots, \epsilon_n$$

are independent to each other. This is an important assumption!

What happens if this is not the case?

Example: Suppose we accidentally doubled the data

$$(x_1, y_1), (x_1, y_1), (x_2, y_2), (x_2, y_2), \dots$$

and train the simple linear model

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \epsilon_i.$$

Recall that the standard error of a coefficient is

Model 1:
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
 (*n* points)

compared to

Model 2:
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^{2n} (x_i - \bar{x})^2}$$
 (2*n* points)

Recall that the standard error of a coefficient is

Model 1:
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
 (*n* points)

compared to

Model 2:
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^{2n} (x_i - \bar{x})^2} \quad (2n \text{ points})$$

• The standard error of Model 2 is smaller than that of Model 1.

Recall that the standard error of a coefficient is

Model 1:
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
 (*n* points)

compared to

Model 2:
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^{2n} (x_i - \bar{x})^2} \quad (2n \text{ points})$$

• The standard error of Model 2 is smaller than that of Model 1.

The confidence interval

$$[\hat{\beta}_1 - 2 \cdot \mathsf{SE}(\hat{\beta}_1), \hat{\beta}_1 + 2 \cdot \mathsf{SE}(\hat{\beta}_1)]$$

is narrower.

• From previous example, we learn that **correlated errors** cause the confidence interval to be narrower.

- As a result, we could mistakenly conclude that the coefficients are significant.
- time series is an example of data with correlated errors.

Time vs residual plot

Durbin-Watson test

used to test if there is any correlation in the error terms

 H_0 : There is no correlation among the residuals H_1 : The residuals are autocorrelated

The test statistic is

$$d = \sum_{i=2}^{n} (e_i - e_{i-1})^2 / \sum_{i=1}^{n} e_i^2$$

Procedure: Choose a significance level α , then look up the value of d_L and d_U

- Reject H_0 if $d < d_L$
- Do not reject H_0 if $d > d_U$

• Test inconclusive if $d_L < d < d_U$

3. Non-constant variance of error terms

- We also assumed that the variance of $Var(\epsilon_i) = \sigma^2$ for all i.
- The formula for standard error, hypothesis test and confidence interval are all derived **under this assumption**.

3. Non-constant variance of error terms

- We also assumed that the variance of $Var(\epsilon_i) = \sigma^2$ for all i.
- The formula for standard error, hypothesis test and confidence interval are all derived **under this assumption**.
- For example, the formula

$$\mathsf{Cov}\hat{\boldsymbol{\beta}} = \sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}$$

holds because we assumed that ϵ_i 's share the same variance σ^2 .

3. Non-constant variance of error terms

- We also assumed that the variance of $Var(\epsilon_i) = \sigma^2$ for all i.
- The formula for standard error, hypothesis test and confidence interval are all derived **under this assumption**.
- For example, the formula

$$\operatorname{Cov}\hat{\boldsymbol{\beta}} = \sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}$$

holds because we assumed that ϵ_i 's share the same variance σ^2 .

Detect non-constant variance using fitted value vs residual plot.

Fitted value vs residual plot

The survey is a second of the second of the

4. Outliers

A single point can heavily influence the RSE and \mathbb{R}^2 of the model.

5. High leverage points

- **High leverage point** is a point with an unusual value of x_i .
- Detect high leverage points using the leverage statistic.

- collinearity problem happens when two predictors are highly correlated to each other.
- Highly correlated variables cause problems when training the model.

 collinearity problem happens when two predictors are highly correlated to each other.

 Highly correlated variables cause problems when training the model.

Example: Suppose we have data with two predictors x and z.

$$(y_1, x_1, z_1), (y_2, x_2, z_2), \ldots$$

where $z_i = 2x_i$.

Suppose that we have a solution $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) = (0, 1, 1)$ $\hat{y}_i = x_i + z_i$

Suppose that we have a solution $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) = (0, 1, 1)$

$$\hat{y}_i = x_i + z_i$$

Since $z_i = 2x_i$

$$\hat{y}_i = x_i + 2x_i$$
$$= 3x_i$$

In other words, $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) = (0, 3, 0)$ is also a solution.

Suppose that we have a solution $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) = (0, 1, 1)$

$$\hat{y}_i = x_i + z_i$$

Since $z_i = 2x_i$

$$\hat{y}_i = x_i + 2x_i$$
$$= 3x_i$$

In other words, $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) = (0, 3, 0)$ is also a solution.

Any $\hat{y}_i = \hat{\beta}_1 x_i + \hat{\beta}_2 z_i$ where $\hat{\beta}_1 + 2\hat{\beta}_2 = 3$ is also a solution.

Suppose that we have a solution $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) = (0, 1, 1)$

$$\hat{y}_i = x_i + z_i$$

Since $z_i = 2x_i$

$$\hat{y}_i = x_i + 2x_i$$
$$= 3x_i$$

In other words, $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) = (0, 3, 0)$ is also a solution.

Any $\hat{y}_i = \hat{\beta}_1 x_i + \hat{\beta}_2 z_i$ where $\hat{\beta}_1 + 2\hat{\beta}_2 = 3$ is also a solution.

Detect collinearity using **correlation matrix**. Remove a variable if the correlation is close to -1 or 1.

Credit balance data

Multicollinearity

Multicollinearity happens when a predictor is a linear combination of other predictors.

Multicollinearity

Multicollinearity happens when a predictor is a linear combination of other predictors.

Example: Predictors x_i , z_i and w_i where $x_i = z_i + 2w_i$.

Multicollinearity

Multicollinearity happens when a predictor is a linear combination of other predictors.

Example: Predictors x_i , z_i and w_i where $x_i = z_i + 2w_i$.

Cannot be detected with correlation matrix. Instead, we use **variance inflation factor**

$$VIF(\hat{\beta}_i) = \frac{1}{1 - R_{X_i|X_{-i}}^2},$$

where $R_{X_i|X_{-i}}^2$ is the R^2 from a regression of X_i onto all other predictors.

Variance inflation factor

$$VIF(\hat{\beta}_i) = \frac{1}{1 - R_{X_i|X_{-i}}^2}.$$

[High multicol. in X_i] \to [$R^2_{X_i|X_{-i}}$ is close to 1] \to [high $VIF(\hat{\beta}_i)$]

Variance inflation factor

$$VIF(\hat{\beta}_i) = \frac{1}{1 - R_{X_i|X_{-i}}^2}.$$

[High multicol. in X_i] \to [$R^2_{X_i|X_{-i}}$ is close to 1] \to [high $VIF(\hat{\beta}_i)$]

General rule: There is multicollinearity if VIF is higher than 5 or 10

Solution: Drop the variable (in this case, X_i).

Acknowledgement

Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani