

MOTIVATION

MEDICAL BENEFITS

- **Guides Treatment Decisions:** Prognosis helps determine how aggressive the treatment should be
- Early prediction based on historical data for timely intervention
- Avoids over treatment and under treatment
- Personalized Medicine

MOTIVATION

MEDICAL BENEFITS

- **Guides Treatment Decisions:** Prognosis helps determine how aggressive the treatment should be
- Early prediction based on historical data for timely intervention
- Avoids over treatment and under treatment
- Personalized Medicine

CURRENT FLAWS

- Limited Generalization
- Static Predictions
- Data Integration Challenges
- Lack of Interpretability
- Bias and Overfitting
- Poor Incorporation of Treatment Response

MOTIVATION

MEDICAL BENEFITS

- Guides Treatment Decisions: Prognosis helps determine how aggressive the treatment should be
- Early prediction based on historical data for timely intervention
- Avoids over treatment and under treatment
- Personalized Medicine

CURRENT FLAWS

- Limited Generalization
- Static Predictions
- Data Integration Challenges
- Lack of Interpretability
- Bias and Overfitting
- Poor Incorporation of Treatment Response

we deal with

INFERENCE PIPELINE

DATASET USED

MSLSC

- 1. 82 scans from 19 subjects... across ~yearly time points.
- 2. Features preprocessed T1-w, T2-w, PD-w, and FLAIR images with manual lesion delineations by two experts.
- 3. Five subjects with mean of 4.4 time points and test data of fourteen subjects with a mean of 4.4 time points.

91 x 109 x 91: 47.168

LUMIERE

- 1.91 glioma patients with 638 MRI time points over pre- and post-operative
- 2. Multiparametric MRI: Includes T1W, T1CE, T2W and FLAIR (only 599 have all 4, though)
- 3. Longitudinal multiparametric MRIs co-registered, skull-stripped, segmented; organized per patient/week with NIfTI volumes.

IMAGE PREPROCESSING

PART 1: IMAGE ENHANCEMENT

STEP 1: Registration


```
FOR each patient:
   SET baseline_visit = visits[0]
   FOR each visit IN visits:
       CREATE brain mask from all modality scans (non-zero voxels)
       SAVE brain mask as NIfTI
       IF visit == baseline_visit:
           COPY modality images and segmentation to registered folders
           ref_image = baseline T1 scan
           mov_image = visit T1 scan
           # Compute affine transforms using two cost metrics
           T_corr = FLIRT(mov_image, ref_image, cost="corratio")
           T_mut = FLIRT(mov_image, ref_image, cost="mutualinfo")
           # Apply both transforms to brain mask
           mask_corr = ApplyTransform(mask, T_corr)
           mask_mut = ApplyTransform(mask, T_mut)
           # Evaluate both using Dice coefficient
           dice_corr = Dice(mask_corr, baseline_mask)
           dice_mut = Dice(mask_mut, baseline_mask)
           # Select best transform
           T_best = T_corr if dice_corr > dice_mut else T_mut
           mask_best = corresponding best mask
           # Apply selected transform to:
           segmentation - using nearest neighbor
           each modality image - using spline
           → then mask using mask_best
           SAVE registered images and segmentation
```

STEP 2: Masking

1. Normalize input slice:

$$S_{ ext{norm}} = \left\lfloor rac{S - \min(S)}{\max(S) - \min(S)} imes 255
ight
floor$$

Convert $S_{
m norm}$ to 8-bit unsigned integers.

2. Apply Otsu's thresholding:

$$T = \operatorname{OtsuThreshold}(S_{\operatorname{norm}})$$

$$M_{ ext{binary}}(i,j) = egin{cases} 1 & ext{if } S_{ ext{norm}}(i,j) \geq T \ 0 & ext{otherwise} \end{cases}$$

3. Morphological closing (to fill small gaps):

$$M_{\mathrm{closed}} = \mathrm{MorphClose}(M_{\mathrm{binary}}, \mathrm{kernel} = 5 \times 5 \mathrm{\ ones})$$

4. Hole filling:

$$M_{
m filled} = {
m FillHoles}(M_{
m closed})$$

- 5. Extract the largest connected component:
 - Label all connected components in M_{filled} :

Labels = ConnectedComponents(
$$M_{\rm filled}$$
)

• Let L^* be the label with the maximum area (excluding background).

$$M(i,j) = egin{cases} 1 & ext{if Labels}(i,j) = L^* \ 0 & ext{otherwise} \end{cases}$$

STEP 3(a): CLAHE

Contrast Limited Adaptive Histogram Equalization

1. Divide the image into tiles (local regions): Split S into a grid of non-overlapping tiles:

$$S = igcup_{i=1}^m igcup_{j=1}^n T_{i,j}$$

where $T_{i,j}$ is the tile at row i, column j.

- 2. Apply histogram equalization to each tile:
 - ullet Compute histogram $H_{i,j}(k)$ of intensities $k\in [0,255]$ in tile $T_{i,j}$
 - Clip the histogram at a predefined limit L:

$$H_{i,j}^{ ext{clip}}(k) = \min(H_{i,j}(k), L)$$

Redistribute excess counts equally across bins.

- Compute cumulative distribution function (CDF) and remap pixel values accordingly within tile.
- 3. Interpolate between neighboring tiles to reduce artifacts:

For a pixel p located near borders of multiple tiles, interpolate its value using bilinear interpolation of equalized values from surrounding tiles.

· Unlike global histogram equalization:

$$S_{
m equalized}(i,j) = {
m CDF}_{
m global}(S(i,j))$$

CLAHE uses:

$$S_{
m clahe}(i,j) = {
m InterpolatedCDF}_{
m local}(S(i,j))$$

over local neighborhoods, and clips histograms to preserve local contrast without over-amplifying noise.

STEP 3(b): MSRCR

Multi-scale retinex with color restoration

1. Apply Multi-Scale Retinex (MSR) on each color channel:

For each channel $c \in \{R,G,B\}$:

• Compute the log ratio of the image to its blurred versions across multiple Gaussian scales $\{\sigma_1, \sigma_2, \dots, \sigma_n\}$:

$$R_c(x,y) = \sum_{i=1}^n w_i \left[\log I_c(x,y) - \log (I_c * G_{\sigma_i})(x,y)
ight]$$

Where:

- ullet I_c is the image channel
- ullet G_{σ_i} is a Gaussian kernel with standard deviation σ_i
- * denotes convolution
- ullet w_i are weights summing to 1 (typically equal)
- 2. Apply Color Restoration Function (CRF):

This compensates for unnatural color shifts due to Retinex:

$$C_c(x,y) = eta \cdot \log \left(lpha \cdot rac{I_c(x,y)}{\sum_{k \in \{R,G,B\}} I_k(x,y)} + 1
ight)$$

- lpha,eta are gain parameters controlling the strength of color correction

STEP 3(b): MSRCR

Multi-scale retinex with color restoration

3. Combine MSR and CRF:

$$I_c^{ ext{MSRCR}}(x,y) = C_c(x,y) \cdot R_c(x,y)$$

- 4. Normalize the output:
- ullet Rescale $I^{
 m MSRCR}$ to 0–255 range using linear normalization
- · Clip values and convert to 8-bit format for display

STEP 3(c): MSRCR + CLAHE

1. Weighted Averaging (Simple Fusion)

Le

- ullet $I_{
 m CLAHE}$: image enhanced by CLAHE (grayscale or color)
- ullet $I_{
 m MSRCR}$: image enhanced by MSRCR (usually color)
- ullet Choose blending weight $\lambda \in [0,1]$

Then:

$$I_{ ext{fused}} = \lambda \cdot I_{ ext{CLAHE}} + (1 - \lambda) \cdot I_{ ext{MSRCR}}$$

Chosen λ: 0.6

STEP 4: Fourier Analysis

STEP 5: Visual Inspection

IMAGE PREPROCESSING

PART 2: SEGMENTATION MASK (TURBOPREP)

BRAIN LATENT PROGRESSION (BRLP)

AUXILIARY MODEL

The brain typically shrinks to some degree in healthy aging, but surprisingly does not lose neurons in large numbers. In alzheimer's disease typically show approximately 7% lower overall brain volumes compared to healthy elderly individuals [3].

Brain of a 75 year old person

Brain of a person suffering from alzheimer's disease

AUXILIARY MODEL

BrLP [2] uses an Auxilary model to model this shrinkage over time.

It uses a rather restrictive model that uses Logistic Regression

AUXILIARY MODEL

This is a reaction diffusion model that we use to better model the growth of tumor using a differential equation framework that incorporates both cell migration (diffusion) and population growth (reaction). They are Described through these 3 equations

$$\frac{\partial c(x,t)}{\partial t} = \nabla \left(D(x) \nabla c(x,t) \right) + \rho c(x,t) (1 - c(x,t)) \qquad \forall x \in \Omega, \ \forall t > 0$$

$$c(x,0) = c_0(x) \qquad \forall x \in \Omega$$

$$D(x) \nabla c(x,t) \cdot n_{\partial\Omega}(x) = 0 \qquad \forall x \in \partial\Omega$$

The terms that are our parameters in the following equations are the D(x) which represents diffusion rate and pc(x,t) representing the reaction term

$$d_{ ext{white}} = rac{\lambda}{2} rac{v}{2} \
ho = rac{v}{2 \lambda}$$

DIFFERENCE WEIGHTING BLOCK

THE AUTHOR'S APPROACH [1]

M. Rokuss, Y. Kirchhoff et al. Difference **Current Image Current Segmentation** Weighting Block **Weighted Features** DW DW Norm **Current Image Features** Θ Prior Image Features **Shared Weights Difference Weighting Block** Prior **Features** Prior Image

Incorporate explicit architectural bias to fully leverage the benefits of longitudinal information

We extend this idea in the BrLP[2] pipeline to include variable number of past scans (not limited to just 1)

DIFFERENCE WEIGHTING BLOCK

```
noise pred = diffusion(
        x=z.float(),
        timesteps=timestep,
        context=context.float(),
       down_block_additional_residuals=down_h,
       mid_block_additional_residual=mid_h
    if(j == 0):
        prev_noise_step = noise_pred
    else:
        updated_curr_tensor = noise_pred.clone()
       updated_curr_tensor_norm = updated_curr_tensor.view(-1).norm()
        temp_latent = torch.abs(noise_pred - prev_noise_step)
        temp_latent = temp_latent / (temp_latent.view(-1).norm() + 1e-8)
        updated_curr_tensor += (((temp_latent * noise_pred) /
                                 ((starting_a_all[j] - starting_a_all[j-1])*1.0)
                                 *(j/(j+1))
        updated_curr_tensor = (updated_curr_tensor /
                               (updated_curr_tensor.view(-1).norm() +
                                1e-8)) * updated_curr_tensor_norm
       prev_noise_step = updated_curr_tensor
noise_pred = prev_noise_step
# the scheduler applies the formula to get the
# denoised step z_{t-1} from z_t and the predicted noise
z, _ = scheduler.step(noise_pred, t, z)
```


Age 65

Sample Sequence of inputs

Target Image

Target Image

MS OUTPUTS

average inference time original: 5 sec

for each extra past scan 4-5 sec increase in inference time

MSE

original: 8.34077868e+02

ours: 8.09714383e+02

no. of params same as the original model (mathematical block)

OTHER THINGS WETESTED AND FAILURES

- Could not find enough open source data available to fine-tune the model thus shifted our focus to brain tumors instead.
- We implemented and modified the base BrLP code for training using our methods
- However, the fine-tuning did not yield fruitful results due to :
 - a. The resolution of data being too low compared to whats expected by model thus causing significant distortion and blurring
 - b. The brain tumor sequences were not able to register well thus causing undesirable effects and tranformations.

FUTURE SCOPE

- Fixing the resolution and image sequence registration issues in the data set
- Build upon the temporal difference idea and implement Eligibility trace based and monte carlo based methods (from reinforcement learning) to improve the model
- Explore other approached under the history weighting category apart from TD learning as done in RL

REFERENCES

[1] https://arxiv.org/pdf/2409.13416

[2] https://papers.miccai.org/miccai-2024/paper/0511_paper.pdf

[3] https://pubs.rsna.org/doi/10.1148/radiology.178.1.1984290

[4]https://github.com/MIC-

DKFZ/BraTPRO/blob/master/dataset_download/download_and_convert_dataset.py

