Kahoot! DL Lecture Quiz 4 (2021)

0 favorites	2 plays	61 players
--------------------	----------------	-------------------

A public kahoot

Questions (7)

They have the same global minima We usually do not have access to the true risk They have the same local minima It gives a better performance 2 - Quiz How does # local optima relate to # global optima? # global ≥ # local # global > # local		
 We usually do not have access to the true risk They have the same local minima It gives a better performance 2 - Quiz How does # local optima relate to # global optima? # global ≥ # local # global > # local # global > # local 		30 sec
They have the same local minima It gives a better performance 2 - Quiz How does # local optima relate to # global optima? 20 sec # global ≥ # local # global > # local	They have the same global minima	×
It gives a better performance 2 - Quiz How does # local optima relate to # global optima? 20 sec ↓ # global ≥ # local ★ # global > # local ★ # global > # local	We usually do not have access to the true risk	✓
2 - Quiz How does # local optima relate to # global optima? # global > # local # global > # local X	They have the same local minima	×
How does # local optima relate to # global optima? # global ≥ # local # global > # local	It gives a better performance	×
# global > # local		20 sec
	$\#$ global \geq # local	×
# global < # local	# global > # local	×
	# global < # local	×
# global ≤ # local	# global \leq # local	~

3 - Quiz The Jacobian is zero in	20 sec	
Saddle points	✓	
Global optima	✓	
Local optima	✓	
Zero crossing points	×	
4 - Quiz	20 sec	
Both are equivalent	X	
We are minimizing $oldsymbol{f}$	✓	
$\alpha < 0$	×	
$rac{df}{dx} < 0$	×	
5 - Quiz Why are first rather than second-order optimization methods are used in practical deep learning?		
Deep networks have many saddle points	✓	
The Jacobian is expensive to compute and store.	X	
Deep networks have many local optima	X	
The Hessian is expensive to compute and store.	✓	

6 - Quiz When halving the mini-batch size in SGD, the error on the gradient estimate will in expectation	20 sec
double	×
more than double	×
remain the same	×
less than double	✓
7 - Quiz With adaptive gradient algorithms, the base learning rate:	20 sec
Does not matter	×
Has to change at every step	×
Doesn't need to be scheduled	×
May need to be scheduled	✓