Mathematik und Simulation

Ebene und räumliche Kurven zur Modellierung von Objektgrenzen

2

Prof. Dr. Thomas Schneider

Stand: 25.04.2023

Inhalt

- 1 Motivation für die Befassung mit Kurven
- 2 Erinnerung an Funktionen und Ableitungen
- 3 Ebene Kurven
- 4 Freiform-Kurven
- 5 Bézier-Kurven
- 6 Bézier-Splines

Bemerkung zum Foliensatz

Bemerkung zum Foliensatz

Der Foliensatz zu diesem Kapitel wurde in Zusammenarbeit zwischen Prof. Dr. R. Lasowski und Prof. Dr. T. Schneider erstellt.

Kurven

Motivation – warum Kurven- (und Flächen-)Design?

Anwendungsfelder

- Produktdesign
- Autoindustrie
- Schriftdesign
- Pfadberechnung für Roboter
- Kamerapfad für Animationen
- Animationsfilme

Erinnerung an Funktionen und Ableitungen

Wir erinnern uns im Folgenden an einige Grundlagen aus der reellen Analysis und Differenzialrechnung.

Definition

Definition

- Eine **Abbildung** $f: D \to W$ weist **jedem** Element des Definitionsbereichs D **genau ein** Element des Wertebereichs W zu.
- Oft geschieht dies über eine sogenannte Abbildungsvorschrift

$$x \mapsto f(x)$$
.

Bemerkung

Wenn D und W Teilmengen der reellen Zahlen sind, dann nennt man eine Abbildung $f \colon D \to W$ auch (reellwertige) **Funktion**. Im Falle $D \subseteq \mathbb{R}$ und $W \subseteq \mathbb{R}^n$ heißt $f \colon D \to W$ auch **vektorwertige Funktion**.

Graph einer Funktion

Definition

Die Menge $\Gamma_f := \{(x,y) \in \mathbb{R}^2 \mid y = f(x)\} = \{(x,f(x)) \in \mathbb{R}^2\}$ heißt **Graph** von f.

Beispiel

Wir betrachten die Funktion $f: [-2,2] \to [0,4], x \mapsto x^2$ bzw. $f(x) = x^2$. Der Funktionsgraph Γ_f ist im folgenden Diagramm dargestellt:

Potenzfunktionen

Vereinbarung

Wir betrachten **Potenzfunktionen** mit der Abbildungsvorschrift $x \mapsto x^n$. Vorerst sei stets $n \in \mathbb{N}$. Für **alle** $x \in \mathbb{R}$ definiert man $x^0 = 1$.

Beispiele von Funktionsgraphen

Polynome und Polynomfunktionen

Polynome

Es seien a_0, a_1, \ldots, a_n reelle Zahlen. Ein Ausdruck der Form

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

heißt reelles **Polynom** (in der Unbestimmten x). Falls $a_n \neq 0$ gilt, ist n der **Grad** des Polynoms.

Beispiel

$$f(x) = 1 + 2x + 3x^2 + 7x^3$$
 und $g(x) = 3x^3 - 5x$ sind Polynome vom Grad 3.

Ausblick

In diesem Kapitel verwenden wir Funktionen $f: D \to W, x \mapsto f(x)$, bei denen f(x) jeweils ein Polynom ist. Solche Funktionen heißen **Polynomfunktionen**.

Motivation

In der Differenzialrechnung

- untersucht man die Graphen von Funktionen auf Glattheit bzw. auf Ecken,
- beschreibt man, wie Funktionen ansteigen bzw. abfallen,
- beschreibt man, wie stark Funktionsgraphen gekrümmt sind.

Bemerkung

Ende des 17. Jahrhunderts entwickelten Sir Isaac Newton und Gottfried W. Leibniz unabhängig voneinander den Differenzialkalkül. Newton erhielt die **Geschwindigkeit** als Ableitung der Bewegung nach der Zeit und die **Beschleunigung** als Ableitung der Geschwindigkeit nach der Zeit.

Grundidee

Abbildung: Sekantensteigung und Differenzenquotient

Sekantensteigung

Betrachten wir die Gerade (Sekante) durch die Punkte (x, f(x)) und $(x_0, f(x_0))$, so gibt der **Differenzenquotient** $\frac{f(x)-f(x_0)}{x-x_0}, x \neq x_0$ die Steigung dieser Geraden.

Definition von Differenzierbarkeit und Ableitung

Definition der Ableitung

- Sei $f: D \to W$ eine reellwertige Funktion (mit offenem Definitionsbereich) und sei $x_0 \in D$.
- Dann heißt f heißt **differenzierbar an der Stelle** x_0 , falls der Grenzwert:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert.

• In diesem Fall nennen wir diesen Grenzwert **Ableitung von** f **an der Stelle** x_0 und bezeichnen ihn mit den Symbolen $f'(x_0)$ oder $\frac{df}{dx}(x_0)$.

Definition von Differenzierbarkeit und Ableitung

Bemerkung:

• Für $x \to x_0$ geht die **Sekantensteigung** in die **Tangentensteigung** im Punkt $(x_0, f(x_0))$ über:

$$f'(x) = \frac{dy}{dx}(x_0) = \frac{df}{dx}(x_0) = \lim_{x \to x_0} \frac{\Delta y}{\Delta x}$$

• Gleichung der Tangenten an den Graphen Γ_f der Funktion f im Punkte $(x_0, f(x_0))$:

$$y = f(x_0) + f'(x_0) \cdot (x - x_0)$$

Definition von Differenzierbarkeit und Ableitung

Beispiele:

• Sei f(x) = c und sei x_0 ein beliebiger Wert:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{c - c}{x - x_0} = \lim_{x \to x_0} 0 = 0$$

• Sei $f(x) = \frac{1}{2}x$ und sei x_0 ein beliebiger Wert:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{\frac{1}{2}x - \frac{1}{2}x_0}{x - x_0} = \lim_{x \to x_0} \frac{\frac{1}{2}(x - x_0)}{(x - x_0)} = \lim_{x \to x_0} \frac{1}{2} = \frac{1}{2}$$

Definition von Differenzierbarkeit und Ableitung

Beispiele:

• Sei $f(x) = x^2$ und sei x_0 ein beliebiger Wert:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{(x + x_0) \cdot (x - x_0)}{(x - x_0)}$$

$$= \lim_{x \to x_0} (x + x_0)$$

$$= 2 x_0$$

Potenzfunktionen

Wichtiges Resultat:

Sei $f(x) = x^n$ mit $n \in \mathbb{N}$. Dann ist f überall in \mathbb{R} differenzierbar und für jeden Punkt x_0 gilt

$$f'(x_0)=nx_0^{n-1}.$$

Ableitungsfunktion

Für $f(x) = x^n$ definieren wir die sogenannte **Ableitungsfunktion** über die Abbildungsvorschrift

$$f'(x) = n x^{n-1}.$$

Weitere Beispiele

Funktion $f(x)$	Ableitung $f'(x)$
$x^a, x > 0, a \in \mathbb{R}$	$a \cdot x^{a-1}$
e^{x}	e^{x}
$\sin x$	$\cos X$
$\cos X$	$-\sin x$
$\tan x, \ x \neq \pi/2 + k\pi, \ k \in \mathbb{N}$	$1/\cos^2 x$
$\ln x, \ x > 0$	1/ <i>x</i>

Um aus diesen Ableitungen die vieler weiterer Funktionen "zusammensetzen" zu können, benötigt man Ableitungsregeln.

Ableitungsregeln

Ableitungsregeln

Seien f und g Funktionen, die an der Stelle $x_0 \in \mathbb{R}$ differenzierbar sind. Dann sind für $k \in \mathbb{R}$ auch die Funktionen $k \cdot f$ und f + g sowie $f \cdot g$ differenzierbar und es gilt:

(a)
$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

(b)
$$(k \cdot f)'(x_0) = k \cdot f'(x_0)$$

(a)
$$(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$$
 (Produktregel)

Ableitungsregeln: Kettenregel

Kettenregel

- Zwei differenzierbaren Funktionen f und g (mit zueinander passenden Definitionsund Wertebereichen) können "verkettet" werden, indem die Funktion $f \circ g$ mit der Abbildungsvorschrift $x \mapsto f(g(x))$ gebildet wird.
- Deren Ableitung erhält man gemäß der sogenannten Kettenregel:

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x).$$

Kurzsprechweise: "äußere Ableitung mal innere Ableitung".

Ableitungsregeln

Ableitungsregeln: Beispiele

- Es sei $g(x) = x^7 + 25 x^4$. Bestimmen Sie g'(x).
- Bestimmen Sie die Ableitung der Funktion $x \mapsto (x^7 + 25x^4)^2$ mit der Kettenregel oder mit der Produktregel.

Höhere (n-te) Ableitungen

Höhere (n-te) Ableitungen

Sei f differenzierbar mit Ableitung f'. Ist f' wieder differenzierbar, dann kann man f'', die zweite Ableitung von f bilden. Analog definiert man höhere Ableitungen $f^{(n)}$.

Beispiel

$$f(x) = x^4 + 10 x^3 + 2$$

 $f'(x) = 4 x^3 + 30 x^2$
 $f''(x) = 12 x^2 + 60 x$
 $f'''(x) = 24 x + 60$
 $f^{(4)}(x) = 24$
 $f^{(5)}(x) = 0$
 $f^{(n)}(x) = 0$ für alle $n \ge 5$.

Differenzierbarkeitsklassen

Bezeichnungen

Ist f n-mal differenzierbar auf $\mathbb R$ und ist die n-te Ableitung $f^{(n)} = \frac{d^n}{dx^n} f$ stetig, so heißt f n-mal stetig differenzierbar. Man schreibt $f \in C^n(\mathbb R)$. Gilt dies für alle $n \in \mathbb N$, so schreibt man $f \in C^\infty(\mathbb R)$.

Differenzierbarkeitsklassen – Beispiel

Beispiel einer stückweise definierten Funktion:

- Für $x \le 0$ sei f(x) = 0, für x > 0 sei $f(x) = x^2$.
- Die Funktion ist stetig im Punkte x = 0.
- Die Funktion hat im Punkte x = 0 den **linksseitigen** Ableitungswert 0 und die **rechtsseitige** Ableitung 0.
- Also ist f an der Stelle x = 0 differenzierbar. Für die Ableitungsfunktion gilt f'(x) = 0 für $x \le 0$ und f'(x) = 2x für x > 0.
- Die Ableitung ist stetig. Insbesondere gilt für die Stelle x = 0 Folgendes:

$$\lim_{x\to 0^-} f'(x) \ = \ 0 \ = \ \lim_{x\to 0^+} 2\,x \ = \ \lim_{x\to 0^+} f'(x).$$

- Die Funktion gehört somit zur Klasse C¹.
- An der Stelle x = 0 ist der Wert der linksseitigen zweiten Ableitung gleich 0, rechts jedoch gleich 2.
- Die zweite Ableitung existiert somit nicht, die Funktion gehört **nicht** zur Klasse C^2 .

Mathematische Darstellungen von Kurven

Beschreibungen von Kurven in der Ebene

Ebene Kurven lassen sich auf verschiedene Weisen beschreiben:

- als Graph einer Funktion
- als Lösungsmenge einer Gleichung
- mit einer Parametrisierung

Mathematische Darstellungen von Kurven

Darstellungsarten

- Explizite Darstellung als Funktionsgraph: $\{(x,y) \in \mathbb{R}^2 \mid y = f(x), \ x \in D\}$
- Implizite Darstellung als Lösungsmenge einer Gleichung: $\left\{(x,y)\in\mathbb{R}^2\,\middle|\,\,F(x,y)=0\right\}$
- Parametrisierung:

$$\left\{ \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} \in \mathbb{R}^2 \,\middle|\, t \in I \right\}$$

Beispiele

- $\{(x, x^2) \mid x \in [-2, 2]\}$
- $F(x,y) = (x-2)^2 + (y-1)^2 4$ $\{(x,y) \in \mathbb{R}^2 \mid (x-2)^2 + (y-1)^2 = 4\}$
- $\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} 6 t 3 t^2 3 t^3 \\ 12 t 24 t^2 + 14 t^3 \end{pmatrix}, t \in [0, 1].$

Mathematische Darstellungen von Kurven

Bemerkung

Auch Parameterdarstellungen von Geraden oder Geradenstücken, wie wir sie aus dem ersten Semester kennen, sind Kurvenparametrisierungen im Sinne der Definition.

Beispiel

$$\rho(t) = \begin{pmatrix} 2+t \\ -3+2t \end{pmatrix} \\
= \begin{pmatrix} 2 \\ -3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \end{pmatrix}, t \in I,$$

wobei $I \subseteq \mathbb{R}$ ein beliebiges Intervall ist.

Mathematische Darstellungen von Kurven

Anschlussfragen:

- Es sei weiterhin $p(t) = \begin{pmatrix} 2 \\ -3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.
- Welche Punkte erhält man, wenn man p(0) bzw. p(1) berechnet?
- Welche "Kurve" ergibt sich mit der Parametrisierung

$$\rho(t) = \begin{pmatrix} 2 \\ -3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \end{pmatrix}, t \in [0, 1]$$

Mathematische Darstellungen von Kurven

Begriffe:

- Eine **Parametrisierung** gibt für jeden Wert t eines Definitionsintervalls den **Positionsvektor** $p(t) = {x(t) \choose v(t)}$ an.
- Durch Ableiten gewinnt man hieraus den Geschwindigkeitsvektor oder Tangentialvektor

$$\mathbf{v}(t) = \mathbf{p}'(t) = \begin{pmatrix} \mathbf{x}'(t) \\ \mathbf{y}'(t) \end{pmatrix}$$

• Die **Momentangeschwindigkeit** s(t), die am Tachometer angezeigt werden könnte, ist gegeben durch

$$s(t) = ||v(t)|| = \sqrt{(x'(t))^2 + (y'(t))^2}.$$

ullet Den **Beschleunigungsvektor** a(t) erhält man über

$$a(t) = \mathbf{v}'(t) = \mathbf{p}''(t) = \begin{pmatrix} x''(t) \\ y''(t) \end{pmatrix}.$$

Mathematische Darstellungen von Kurven

Hörsaalübung:

Wir stellen einen Teil der Normalparabel als parametrisierte Kurve dar:

$$p: [-2,2] \to \mathbb{R}^2, \ p(t) = \begin{pmatrix} t \\ t^2 \end{pmatrix}.$$

- Berechnen Sie v(t) = p'(t) und a(t) = v'(t).
- Berechnen Sie p(0), p(1), v(0) und v(1).
- Zeichnen Sie v(0) und v(1) an die entsprechenden Punkte der Kurve.

Mathematische Darstellungen von Kurven

Hörsaalübung - Lösung

Parametrisierte Kurve:

$$p: [-2,2] \to \mathbb{R}^2, \ p(t) = \begin{pmatrix} t \\ t^2 \end{pmatrix}.$$

- Es ist $v(t) = p'(t) = \begin{pmatrix} 1 \\ 2t \end{pmatrix}$ und $a(t) = v'(t) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$.
- Einsetzen der Werte t = 0
 bzw. t = 1 ergibt

$$p(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

$$p(1) = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

$$v(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

$$v(1) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

Anwendungen von Kurven

Anforderungen an das Design

Anwendungsfelder

- Es muss möglich sein, möglichst freie Formen zu zeichen zeichnen
- Kurven sollen gezielt veränderbar sein, das Editieren soll
 - intuitiv für Benutzer sein,
 - nur lokale Auswirkungen haben.
- Kurven sollen möglichst glatt sein (d.h. ohne Knicke) sein.

Anwendungen von Kurven

Modellierung einer glatten Kurve

Splines

- Modellierung einer glatten Kurve erfolgt durch sogenannte Splines
- Splines = biegsame Latten (Schiffbau)
 - siehe Link http://pages.cs.wisc.edu/ deboor/draftspline.html

Anwendungen von Kurven

Beschreibung komplizierter Formen

Divide et Impera (Teile und Herrsche)

 Kurve wird in einzelne Segmente unterteilt, und jedes Segment hat eine einfache Darstellung

Parametrische Standardform von Polynomkurven

Parametrische Standardform

•
$$\mathbf{f}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} a_{0x} + a_{1x} t + a_{2x} t^2 + \dots a_{nx} t^n \\ a_{0y} + a_{1y} t + a_{2y} t^2 + \dots a_{ny} t^n \end{pmatrix} = \sum_{i=0}^n \mathbf{a}_i t^i \in \mathbb{R}^2, \ t \in I$$

Beispiel

•
$$\mathbf{f}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} 6 \ t - 3 \ t^2 - 3 \ t^3 \\ 12 \ t - 24 \ t^2 + 14 \ t^3 \end{pmatrix} = \begin{pmatrix} 6 \\ 12 \end{pmatrix} \ t + \begin{pmatrix} -3 \\ -24 \end{pmatrix} \ t^2 + \begin{pmatrix} -3 \\ 14 \end{pmatrix} \ t^3, \ t \in [0, \ 1].$$

- Standardform nicht intuitiv (Veränderung eines Koeffizienten a; hat keine unmittelbar einsichtige geometrische Bedeutung)
- Demo Geogebra

Geometrische Koeffizienten

Kontrollpunkte als Koeffizienten

- Wünschenswert sind Kontrollpunkte, die manipuliert werden anstatt der Koeffizienten a_i
- \rightsquigarrow neue Kurvendarstellung, in die die Kontrollpunkte C_i eingehen:

$$\mathbf{f}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

$$= \sum_{i=0}^{n} C_{i} b_{i}(t)$$

$$= C_{0} b_{0}(t) + C_{1} b_{1}(t) + \ldots + C_{n} b_{n}(t)$$

$$= \begin{pmatrix} C_{0x} \\ C_{0y} \end{pmatrix} b_{0}(t) + \begin{pmatrix} C_{1x} \\ C_{1y} \end{pmatrix} b_{1}(t) + \ldots + \begin{pmatrix} C_{nx} \\ C_{ny} \end{pmatrix} b_{n}(t)$$

$$= \begin{pmatrix} C_{0x} b_{0}(t) + C_{1x} b_{1}(t) + \ldots + C_{nx} b_{n}(t) \\ C_{0y} b_{0}(t) + C_{1y} b_{1}(t) + \ldots + C_{ny} b_{n}(t) \end{pmatrix} \in \mathbb{R}^{2}, t \in I$$

• Hierin sind $b_i(t)$ Basisfunktionen (Computer Graphik: Blending Functions), die noch zu bestimmen sind.

Unterteilungs-Algorithmus (Subdivision)

Intuitive geometrische Konstruktion

• Prinzip: Wiederholend Ecken eines Kontrollpolygons abschneiden

Vom Polygon zu einer glatten Kurve

Intuitive geometrische Konstruktion ("Ecken abschneiden")

De-Casteljau-Algorithmus

- Kontrollpunkte (C_0, C_1, C_2, C_3) werden verbunden: Kontrollpolygon.
- Wählen Sie ein $t \in [0, 1]$.
- Lineare Interpolation zwischen den Kontrollpunkten entsprechend dem Parameterwert t ergibt auf jeder Polygonseite einen neuen Punkt.
- Die 3 neuen Punkte (C_0^1, C_1^1, C_2^1) werden zu einem neuen Polygon verbunden.
- Erneute lineare Interpolation ergibt 2 neue Punkte (C_0^2, C_1^2)
- Erneute lineare Interpolation ergibt 1 neuen Punkt (C_0^3), der auf einer kubischen glatten Kurve liegt (s.Bézier-Kurve)

Vom Polygon zu einer glatten Kurve

Intuitive geometrische Konstruktion ("Ecken abschneiden")

Unterteilung/Subdivision

- Das ursprüngliche Kontrollpolygon durch C₀, C₁, C₂, C₃ wurde ersetzt durch einen neuen Polygonzog, der sich in 2 Kontrollpolygone unterteilt:
 - C_0, C_0^1, C_0^2, C_0^3 . (rot)
 - C_0^3 , C_1^2 , C_2^1 , C_3 . (grün)
- Wiederholt man den Algorithmus für die jeweiligen 2 Kontrollpolygone, so unterteilt man weiter
- Die Kurve wird immer mehr angenähert

Abbildung: Unterteilung des Kontrollpolygons in 2 Kontrollpolygone: rot und grün.

De-Casteljau-Algorithmus: Schritt für Schritt

Vorbereitung: Lineare Interpolation

Verbindungstrecke zweier Punkte

Wenn Punkte A und B gegeben sind, so erhält man deren Verbindungsstrecke wie folgt:

- Stützvektor: A
- Richtungsvektor: B A
- Parametergleichung: $X(t) = A + t(B A), t \in ?$
- $t = 0 \rightsquigarrow X(0) = A$, $t = 1 \rightsquigarrow X(1) = A + B A = B$
- $\rightsquigarrow X(t) = A + t(B A), t \in [0, 1]$
- Umformung:

$$X(t) = A - tA + tB = (1 - t)A + tB.$$

De-Casteljau-Algorithmus: Schritt für Schritt

De-Casteljau-Algorithmus: Schritt für Schritt

Grafiken der vorigen Folie

Über den De-Casteljau-Algorithmus zur Bézier-Form

Rückwärts-Einsetzen:

$$C_0^3(t) = (1-t) C_0^2 + t C_1^2$$

$$= (1-t) \underbrace{\left[(1-t) C_0^1 + t C_1^1 \right]}_{C_0^2} + t \underbrace{\left[(1-t) C_1^1 + t C_2^1 \right]}_{C_1^2}$$

$$= (1-t) \underbrace{\left[(1-t) \underbrace{\left[(1-t) C_0^0 + t C_1^0 \right]}_{C_0^1} + t \underbrace{\left[(1-t) C_1^0 + t C_2^0 \right]}_{C_1^1} \right]}_{C_1^2} + t \underbrace{\left[(1-t) C_1^0 + t C_2^0 \right]}_{C_2^2} + t \underbrace{\left[(1-t) C_2^0 + t C_3^0 \right]}_{C_2^2$$

Allgemeine Form einer kubischen Bézier-Kurve

$$\mathbf{f}(t) = (1-t)^3 C_0 + 3(1-t)^2 t C_1 + 3(1-t)t^2 C_2 + t^3 C_3$$

= $B_0(t) C_0 + B_1(t) C_1 + B_2(t) C_2 + B_3(t) C_3$

Bézier-Basisfunktionen

•
$$B_0(t) = (1-t)^3$$

•
$$B_1(t) = 3t(1-t)^2$$

•
$$B_2(t) = 3t^2(1-t)$$

•
$$B_3(t) = t^3$$

Matrixform

Bézierkurven können unter Verwendung von Matrizen dargestellt werden. Im Folgenden ist die Parametrisierung einer kubischen Bézierform mit Matrixnotation angegeben:

$$\mathbf{f}(t) = \begin{pmatrix} 1 & t & t^2 & t^3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{pmatrix} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \end{pmatrix}$$

Bedeutung der 4 × 4 Matrix

- Spalten der Matrix: Koeffizienten der Bézier Basisfunktionen
- Bequeme Umformung zwischen Standard- und Bézier-Form und umgekehrt.

Matrixform

Matrixform einer kubischen Bézierkurve:

$$\mathbf{f}(t) = \begin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{pmatrix} \cdot \begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \end{pmatrix}$$

Multiplikation des links stehenden Zeilenvektors und der Matrix ergibt ...

$$\mathbf{f}(t) = \begin{bmatrix} (1 - 3t + 3t^2 - t^3) & (3t - 6t^2 + 3t^3) & (3t^2 - 3t^3) & t^3 \end{bmatrix} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \end{pmatrix}$$
$$= (1 - 3t + 3t^2 - t^3) C_0 + (3t - 6t^2 + 3t^3) C_1 + (3t^2 - 3t^3) C_2 + t^3 C_3$$

... die Bézierform.

Multiplikation der Matrix und des rechts stehenden Spaltenvektors ergibt ...

$$\mathbf{f}(t) = \begin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix} \begin{pmatrix} 1 \cdot C_0 \\ -3 C_0 + 3 C_1 \\ 3 C_0 - 6 C_1 + 3 C_2 \\ -1 C_0 - 3 C_1 + 3 C_1 - 1 C_3 \end{pmatrix}$$

$$= C_0 + (-3 C_0 + 3 C_1) t + (3 C_0 - 6 C_1 + 3 C_2) t^2 + (-C_0 - 3 C_1 + 3 C_1 - 1 C_3) t^3.$$

... die Standardform.

Matrixform

Berechnung von Kontrollpunkten aus Koeffizienten der Standarform:

Wir setzen $\mathcal{B} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{pmatrix}$ und betrachten die Parametrisierung einer kubischen Kurve in Standardform $\mathbf{f}(t) \ = \ \begin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix} \cdot \begin{pmatrix} A_0 \\ A_1 \\ A_2 \\ A_2 \end{pmatrix}.$

$$\mathbf{f}(t) = \begin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix} \cdot \begin{pmatrix} A_0 \\ A_1 \\ A_2 \\ A_3 \end{pmatrix}.$$

Durch Vergleich mit der Bézierform

$$\mathbf{f}(t) = \begin{pmatrix} 1 & t & t^2 & t^3 \end{pmatrix} \cdot \mathcal{B} \cdot \begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \end{pmatrix}$$

erhalten wir die Gleichung

$$\mathcal{B} \cdot \begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \end{pmatrix} = \begin{pmatrix} A_0 \\ A_1 \\ A_2 \\ A_3 \end{pmatrix}.$$

Daraus folgt

$$\begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{pmatrix} \; = \; \mathcal{B}^{-1} \cdot \begin{pmatrix} A_0 \\ A_1 \\ A_2 \\ A_3 \end{pmatrix}.$$

Fazit:

Wir können die Bézierkontrollpunkte C_k durch Anwendung der Matrix $\mathcal{B}^{-1} = \begin{pmatrix} 1 & \frac{1}{3} & 0 & 0 \\ 1 & \frac{2}{3} & \frac{1}{3} & 0 \end{pmatrix}$ auf die Standardkontrollpunkte A_k erhalten.

Matrixform

Beispiel zur Berechnung von Kontrollpunkten:

Wir wenden den Ausdruck

$$\begin{pmatrix}
C_{0} \\
C_{1} \\
C_{2} \\
C_{3}
\end{pmatrix} = \mathcal{B}^{-1} \cdot \begin{pmatrix}
A_{0} \\
A_{1} \\
A_{2} \\
A_{3}
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
1 & \frac{1}{3} & 0 & 0 \\
1 & \frac{2}{3} & \frac{1}{3} & 0 \\
1 & 1 & 1 & 1
\end{pmatrix} \cdot \begin{pmatrix}
A_{0} \\
A_{1} \\
A_{2} \\
A_{3}
\end{pmatrix}$$

$$= \begin{pmatrix}
A_{0} \\
A_{0} + \frac{1}{3} & A_{1} \\
A_{0} + \frac{2}{3} & A_{1} + \frac{1}{3} & A_{2} \\
A_{0} + A_{1} + A_{2} + A_{3}
\end{pmatrix}$$

auf das Beispiel von Folie 32 mit

$$\mathbf{f}(t) = \begin{pmatrix} 6t - 3t^2 - 3t^3 \\ 12t - 24t^2 + 14t^3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} 1 + \begin{pmatrix} 6 \\ 12 \end{pmatrix} t + \begin{pmatrix} -3 \\ -24 \end{pmatrix} t^2 + \begin{pmatrix} -3 \\ 14 \end{pmatrix} t^3$$

und somit $A_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $A_1 = \begin{pmatrix} 6 \\ 12 \end{pmatrix}$, $A_2 = \begin{pmatrix} -3 \\ -24 \end{pmatrix}$ und $A_3 = \begin{pmatrix} -3 \\ 14 \end{pmatrix}$ an:

$$C_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, C_1 = \begin{pmatrix} 2 \\ 4 \end{pmatrix}, C_2 = \begin{pmatrix} 3 \\ 0 \end{pmatrix}, C_3 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}.$$

Erste Ableitung

$$\mathbf{f}(t) = (1 - 3t + 3t^2 - t^3)C_0 + (3t - 6t^2 + 3t^3)C_1 + (3t^2 - 3t^3)C_2 + t^3C_3$$

$$\mathbf{f}'(t) = (-3 + 6t - 3t^2)C_0 + (3 - 12t + 9t^2)C_1 + (6t - 9t^2)C_2 + 3t^2C_3$$

Hörsaalübung

- Berechnen Sie f'(0) (d.h. die erste Ableitung am Anfang der Kurve)
- Berechnen Sie f'(1) (d.h. die erste Ableitung am Ende der Kurve)
- Was bedeutet das Ergebnis?

Erste Ableitung

Zusammenfassung:

- Die erste Ableitung ist ein Vektor.
- Dieser Vektor ist tangential zur Kurve.
- Interpretation als Geschwindigkeitsvektor, vgl. Folie 26.
- Die Länge des Ableitungsvektors ist umso größer je schneller die Bewegung entlang der Kurve ist.
- $\mathbf{f}'(0) = 3(C_1 C_0) = 3\overrightarrow{C_0C_1}$ und $\mathbf{f}'(1) = 3(C_3 C_2) = \overrightarrow{C_2C_3}$ bedeuten, dass die Kurve in ihren Endpunkten tangential zum Kontrollpolygon verläuft.

Zweite Ableitung

$$\mathbf{f}(t) = (1 - 3t + 3t^2 - t^3)C_0 + (3t - 6t^2 + 3t^3)C_1 + (3t^2 - 3t^3)C_2 + t^3C_3$$

$$\mathbf{f}'(t) = (-3 + 6t - 3t^2)C_0 + (3 - 12t + 9t^2)C_1 + (6t - 9t^2)C_2 + 3t^2C_3$$

$$\mathbf{f}''(t) = (6 - 6t)C_0 + (-12 + 18t)C_1 + (6 - 18t)C_2 + 6tC_3$$

Hörsaalübung

- Berechnen Sie f''(0) (d.h. die zweite Ableitung am Anfang der Kurve)
- Berechnen Sie f''(1) (d.h. die zweite Ableitung am Ende der Kurve)
- Was bedeutet das Ergebnis?

Zweite Ableitung

Zusammenfassung

- Die zweite Ableitung kann man als Beschleunigung beim Durchlauf der Kurve interpretieren, vgl. Folie 26.
- $\mathbf{f}''(0) = 6 (C_0 2C_1 + C_2)$: zweite Ableitung am Anfang ist bestimmt durch die ersten 3 Kontrollpunkte
- $\mathbf{f}''(1) = 6 (C_3 2C_2 + C_1)$: zweite Ableitung am Ende ist bestimmt durch die letzten 3 Kontrollpunkte
- Die zweite Ableitung ist auch ein **Vektor**: $\mathbf{f}''(0) = 6\left(C_0 C_1 C_1 + C_2\right) = 6\left(C_0 C_1 + C_2 C_1\right) = 6\left(\overrightarrow{C_1C_0} + \overrightarrow{C_1C_2}\right)$
- Sie spielt bei der Krümmung der Kurve eine Rolle:
 - Die zweite Ableitung repräsentiert die Änderungsrate der Geschwindigkeitsvektoren
 - Ist eine Kurve stark gekrümmt so weichen die aufeinanderfolgende Tangentenvektoren stark voneinander ab.

Stetigkeitsbedingungen

Beschreibung realer Formen

- Eine einzige Bézier-Kurve reicht für die Beschreibung komlexer Formen nicht aus.
- Bezierkurven werden aneinandergehängt, so daß ein glatter Übergang entsteht.
- Mathematisch wird die Glattheit über die Stetigkeit (engl.: continuity) definiert:
 - C⁰-Stetigkeit bzgl. des Ortes
 - C¹-Stetigkeit bzgl. der ersten Ableitung (Geschwindigkeitsvektoren sind gleich)
 - C²-Stetigkeit bzgl. der zweiten Ableitung (Beschleunigungsvektoren sind gleich)
- Besonders wenn die Kurve eine Bewegung darstellen soll, ist C^1 und C^2 -Stetigkeit wichtig.

Beispiel: *C*⁰-Stetigkeit

Abbildung: Die zwei Bézier-Kurven f_1 (blau) und f_2 (rot) sind C^0 -stetig: der letzte Kontrollpunkt C_3 (lila = rot + blau) von f_1 ist zugleich erster Kontrollpunkt von f_2 , der Übergang weist aber einen Knick auf. Das heißt, das keine C_1 -Stetigkeit vorliegt.

Beispiel: *C*¹-Stetigkeit

Abbildung: Die zwei Bézier-Kurven f_1 (blau) und f_2 (rot) sind C^1 -stetig: Tangentenvektor am Ende von f_1 ist im Betrag und Richtung gleich dem Tangentenvektor am Anfang von f_2 : $\overrightarrow{C_2C_3} = \overrightarrow{C_3C_4}$. (C^2 -Stetigkeit besteht nicht, s. nächste Folie)

Beispiel: C¹-Stetigkeit mit eingezeichneten Beschleunigungsvektoren

Abbildung: Die zwei Bézier-Kurven f_1 (blau) und f_2 (rot) sind C^1 -stetig: Tangentenvektor am Ende von f_1 ist im Betrag und Richtung gleich dem Tangentenvektor am Anfang von f_2 : $\overrightarrow{C_2C_3} = \overrightarrow{C_3C_4}$.

Dagegen besteht keine C^2 -Stetigkeit , da die Beschleunigungsvektoren an der Nahtstelle nicht übereinstimmen: $f_1''(1) \neq f_2''(0)$.

Beispiel: C²-Stetigkeit mit eingezeichneten Beschleunigungsvektoren

Abbildung: Die zwei Bézier-Kurven f_1 (blau) und f_2 (rot) sind C^1 -stetig: Tangentenvektor am Ende von f_1 ist im Betrag und Richtung gleich dem Tangentenvektor am Anfang von f_2 : $C_2C_3 = C_3C_4$.

 C^2 -Stetigkeit besteht ebenfalls, da die Beschleunigungsvektoren an der Nahtstelle übereinstimmen.

Beispiel: C²-Stetigkeit mit eingezeichneten Beschleunigungsvektoren

Abbildung: Um C^2 -Stetigkeit zu erreichen, müssen die Spiegelpunkte übereinstimmen: $SC_1 = SC_5$:

 SC_1 entsteht durch Spiegelung von C_1 am Punkt C_2 . SC_5 ist der Spiegelpunkt von C_5 bzgl. C_4 . (Beweis siehe Folie 57).

Demo: BezierSplinesStetigkeitAnimation.ggb

Beispiel: Geometrische Stetigkeit erster Ordnung: G¹-Stetigkeit

Abbildung: Die zwei Bézier-Kurven f_1 (blau) und f_2 (rot) sind G^1 -stetig aber nicht C^1 -stetig: Tangentenvektor am Ende von f_1 ist nur in der Richtung gleich dem Tangentenvektor am Anfang von f_2 : $C_2C_3 = k C_3C_4$. Diese Form der Stetigkeit reicht vollkommen aus, wenn die Kurve **geometrisch** glatt sein soll und nicht gefordert wird, dass eine glatte Bewegung zugrundeliegen soll.

Kriterium für Übereinstimmung der Beschleunigungsvektoren an der Anschluss-Stelle

Beweis

Wenn C_2 -Stetigkeit vorliegt, so gilt $f_1''(1) = f_2''(1)$, d.h.

6
$$(C_3 - 2 C_2 + C_1) = 6 (C_3 - 2 C_4 + C_5)$$
.

Nach Vereinfachung ergibt sich $-2 C_2 + C_1 = -2 C_4 + C_5$ und nach Multiplikation mit -1 haben wir

$$2 C_2 - C_1 = 2 C_4 - C_5$$

 $\sim C_2 - (C_1 - C_2) = C_4 - (C_5 - C_4)$.

Es ist nun aber $C_2-(C_1-C_2)$ der Punkt, der sich ergibt, wenn C_1 am Punkt C_2 gespiegelt wird. Andererseits ist $C_4-(C_5-C_4)$ der Punkt, der sich durch Spiegelung von C_5 am Punkt C_4 ergibt.

Abbildung: $SC_1 = SC_5$. SC_1 entsteht durch Spiegelung von C_1 am Punkt C_2 . SC_5 ist der Spiegelpunkt von C_5 bzgl. C_4 .

Kriterium für Übereinstimmung der Beschleunigungsvektoren an der Anschluss-Stelle

Bemerkung

Der Beweis zeigt, dass die Bedingung für Übereinstimmung der Beschleunigungsvektoren unabhängig von der Bedingung für die Übereinstimmung der Geschwindigkeitsvektoren ist.

