جلسه سوم: سیستم استنتاج طبیعی

Natural Deduction System

قواعد اصلي

$$\begin{array}{cccc}
 & \varphi & & & \\
 & \vdots & & \\
 & \psi \wedge \sim \psi & \\
 & \vdots \sim \varphi & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

$$\frac{\psi}{\div \psi \wedge \varphi, \div \varphi \wedge \psi} (\wedge_{\mathcal{F}}) \qquad \frac{\psi \wedge \varphi}{\div \psi, \div \varphi} (\wedge_{\mathcal{F}})$$

$$\begin{array}{cccc}
 & \varphi & & & & \\
 & \vdots & & & & \\
 & \psi & & & & \\
 & \vdots & & & \varphi & & & \varphi & \psi \\
 & \vdots & & & \varphi & & & \varphi & \psi \\
 & \varphi & (\equiv_{e}) & & & & & & & & \\
 & \vdots & & & & \varphi & & & & & & & \\
 & \varphi & (\equiv_{e}) & & & & & & & & & \\
 & \vdots & & & & & & & & & & & \\
 & \varphi & (\equiv_{e}) & & & & & & & & & \\
 & \vdots & & & & & & & & & & & \\
 & \varphi & (\equiv_{e}) & & & & & & & & & \\
 & \vdots & & & & & & & & & & & \\
 & \varphi & (\equiv_{e}) & & & & & & & & & \\
 & \vdots & & & & & & & & & & & \\
 & \vdots & & & & & & & & & & \\
 & \vdots & & & & & & & & & & \\
 & \vdots & & & & & & & & & & \\
 & \vdots & & & & & & & & & & \\
 & \vdots & & & & & & & & & & \\
 & \vdots & & & & & & & & & & \\
 & \vdots & & & & & & & & & & \\
 & \vdots & & & & & & & & & & \\
 & \vdots & & & & & & & & & & \\
 & \vdots & & & & & & & & & \\
 & \vdots & & & & & & & & & \\
 & \vdots & & & & & & & & & \\
 & \vdots & & & & & & & & & \\
 & \vdots & & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & & \\
 & \vdots & & & & & & \\
 & \vdots & & & & & & \\
 & \vdots & & & & & & \\
 & \vdots & & & & &$$

 \equiv

سیستم استنتاج طبیعی S_N :

Axioms=Ø

Rule(s)
$$\left\{ (\lor_{\nearrow}),(\lor_{\nearrow}),()_{\nearrow}($$

سیستم استنتاج طبیعی S_N :

برهان (Proof):

Wff به عنوان مقدمات زیرمجموعه ای از Wff باشد، آنگاه دنباله (یا رشته) متناهی از اعضای Wff را برهان می نامیم آگر هر فرمول از رشته: Wff مقدمه باشد، یعنی عضو Σ باشد.

۲-یا به وسیله قواعد استنتاج (Rules) از فرمول های قبل بدست آمده باشد.

اگر ϕ اُخرین فرمول از دنباله باشد، اُنگاه می نویسیم : یعنی « ϕ از Σ اثبات پذیر است»

 $\Sigma \vdash \varphi$

اگر Σ تهی باشد برهان متناظر با آن یک قضیه است.

 $\vdash \varphi$

کاربرد برهانک (subproof):

$$P \supset P$$
 آيا

$P \supset R , \sim R \rightarrow P$ آيا

$$1 P \supset R$$

مقدمه

مقدمه

3 *P*

ن

4 *R*

(¹) (°)(⊃_て)

 $5R \wedge \sim R$

(م)(۲)(۸۶)

6 *∼P*

(م،٣)(مم)

تعريف

نمونه جانشین: اگر به جای متغییر (جمله نشانه) های اتمی یک فرمول، یک فرمول از Wff جایگزین کنیم، آنگاه فرمول بدست آمده را نمونه جانشین فرمول قبل مینامیم.

 $: P \lor P$ چند نمونه جانشین

 $(P \supset R) \lor (P \supset R)$ $R \lor R$ $(R \lor R) \lor (R \lor R)$

نکته:

نمونه جانشین یک قضیه نیز یک قصیه است.

قواعد فرعي

φνψ -~φ -: ψ قياس انفصالي	φ ⊃ ψ ~ ψ ∴ ~φ رفع تالی	$egin{array}{c} arphi \supset \psi \ \psi \supset heta \ & arphi \supset heta \ & arphi \supset heta \ & arphi & arphi & arphi \end{array}$ قياس شرطى	$arphi \sim arphi \lor \psi$ $arphi \sim arphi \lor \psi$ استلزام	$arphi$ $(\varphi \wedge \psi) \supset heta$ $arphi \qquad \qquad$
$\therefore \sim (\varphi \wedge \psi)$ $\therefore \sim \varphi \vee \sim \psi$ دمورگان	$\therefore \sim (\varphi \lor \psi)$ $\therefore \sim \varphi \land \sim \psi$ دمورگان	arphi $arphi$	$egin{array}{c} arphi & eta \wedge (\psi \wedge heta) \\ arphi & (\varphi \wedge \psi) \wedge heta \\ ext{muc} \\ ext{muc} \end{array}$	$\therefore (\varphi \equiv \psi)$ $\therefore (\varphi \land \psi) \lor (\sim \varphi \land \sim \psi)$ تعادل
$\therefore \varphi \land (\psi \lor \theta)$ \vdots	$\therefore \varphi \lor (\psi \land \theta)$ \vdots	∴ ψ ∨ φ ∴ φ ∨ ψ جابجایی	∴ψ ∧ φ ∴ φ ∧ ψ جابجایی	$\therefore \varphi \supset \psi$ $\therefore \varphi \supset (\varphi \supset \psi)$ \Rightarrow
$\therefore \varphi \supset \psi$ $\therefore \sim \psi \supset \sim \varphi$ عکس	$(arphi\supset\psi) \wedge (heta\supset\Delta)$ $\qquad \qquad \qquad$	$(\varphi \supset \psi) \land (\theta \supset \Delta)$ $\sim \psi \lor \sim \Delta$ $\sim \varphi \lor \sim \theta$ $\sim \varphi \lor \varphi \lor \varphi$ $\sim \varphi \lor \varphi \lor \varphi$ $\sim \varphi \lor \varphi \lor \varphi \lor \varphi$	φ ∴ ~~φ نقض مضاعف	