Data Mining

Lecture Notes for Chapter 4

Artificial Neural Networks

Introduction to Data Mining , 2nd Edition by

Tan, Steinbach, Karpatne, Kumar

X ₁	X_2	X_3	Υ
1	0	0	-1
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	-1
0	1	0	-1
0	1	1	1
0	0	0	-1

Output Y is 1 if at least two of the three inputs are equal to 1.

X ₁	X ₂	X ₃	Υ
1	0	0	-1
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	-1
0	1	0	-1
0	1	1	1
0	0	0	-1

$$Y \square sign(0.3X_1 \square 0.3X_2 \square 0.3X_3 - 0.4)$$
where $sign(x) \square \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x \square 0 \end{cases}$

- Model is an assembly of inter-connected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links
- Compare output node against some threshold t

Perceptron Model

$$Y \square sign(\sum_{i\square 1}^{d} w_i X_i - t)$$

$$\square sign(\sum_{i\square 0}^{d} w_i X_i)$$

General Structure of ANN

- Various types of neural network topology
 - single-layered network (perceptron) versus multi-layered network
 - Feed-forward versus recurrent network

 Various types of activation functions (f)

$$Y \square f(\sum_i w_i X_i)$$

Perceptron

- Single layer network
 - Contains only input and output nodes
- Activation function: f = sign(w□x)
- Applying model is straightforward

$$Y \square sign(0.3X_1 \square 0.3X_2 \square 0.3X_3 - 0.4)$$
where $sign(x) \square \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x \square 0 \end{cases}$

$$-X_1 = 1, X_2 = 0, X_3 = 1 = y = sign(0.2) = 1$$

Perceptron Learning Rule

- Initialize the weights (w₀, w₁, ..., w_d)
- Repeat
 - For each training example (x_i, y_i)
 - Compute f(w, x_i)
 - Update the weights:

$$w^{(k\square 1)} \square w^{(k)} \square \lambda \mathcal{Y}_i - f(w^{(k)}, x_i) \mathcal{X}_i$$

Until stopping condition is met

Perceptron Learning Rule

• Weight update formula:

$$w^{(k \square 1)} \square w^{(k)} \square \lambda \mathcal{Y}_i - f(w^{(k)}, x_i) \mathcal{X}_i$$
; λ : learning rate

Intuition:

- Update weight based on error: $e \square y_i f(w^{(k)}, x_i)$
- If y=f(x,w), e=0: no update needed
- If y>f(x,w), e=2: weight must be increased so that f(x,w) will increase
- If y<f(x,w), e=-2: weight must be decreased so that f(x,w) will decrease

Example of Perceptron Learning

$$w^{(k\square 1)} \square w^{(k)} \square \lambda \mathcal{Y}_i - f(w^{(k)}, x_i) \mathcal{X}_i$$

$$Y \square sign(\sum_{i = 0}^{d} w_i X_i)$$

$$\lambda \square 0.1$$

X ₁	X_2	X_3	Υ
1	0	0	-1
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	-1
0	1	0	-1
0	1	1	1
0	0	0	-1

	\mathbf{W}_0	W ₁	W ₂	W ₃
0	0	0	0	0
1	-0.2	-0.2	0	0
2	0	0	0	0.2
3	0	0	0	0.2
4	0	0	0	0.2
5	-0.2	0	0	0
6	-0.2	0	0	0
7	0	0	0.2	0.2
8	-0.2	0	0.2	0.2

Epoch	W_0	W_1	W_2	W_3
0	0	0	0	0
1	-0.2	0	0.2	0.2
2	-0.2	0	0.4	0.2
3	-0.4	0	0.4	0.2
4	-0.4	0.2	0.4	0.4
5	-0.6	0.2	0.4	0.2
6	-0.6	0.4	0.4	0.2

Perceptron Learning Rule

 Since f(w,x) is a linear combination of input variables, decision boundary is linear

 For nonlinearly separable problems, perceptron learning algorithm will fail because no linear hyperplane can separate the data perfectly

Nonlinearly Separable Data

$y \square x_1 \oplus x_2$

X ₁	X ₂	у
0	0	-1
1	0	1
0	1	1
1	1	-1

XOR Data

Multilayer Neural Network

- Hidden layers
 - intermediary layers between input & output layers

More general activation functions (sigmoid, linear, etc)

Multi-layer Neural Network

 Multi-layer neural network can solve any type of classification task involving nonlinear decision surfaces

0.5

XOR Data

-0.5 - -0.5

1.5

Learning Multi-layer Neural Network

- Can we apply perceptron learning rule to each node, including hidden nodes?
 - Perceptron learning rule computes error term
 e = y-f(w,x) and updates weights accordingly
 - Problem: how to determine the true value of y for hidden nodes?
 - Approximate error in hidden nodes by error in the output nodes
 - Problem:
 - Not clear how adjustment in the hidden nodes affect overall error
 - No guarantee of convergence to optimal solution

Gradient Descent for Multilayer NN

- Weight update: $w_j^{(k\square 1)} \square w_j^{(k)} \lambda \frac{\partial E}{\partial w_j}$ Error function: $E \square \frac{1}{2} \sum_{i\square 1}^{N} \left(t_i f(\sum_i w_j x_{ij}) \right)$
- Activation function f must be differentiable
- For sigmoid function:

$$w_j^{(k\square 1)} \square w_j^{(k)} \square \lambda \sum_i (t_i - o_i) o_i (1 - o_i) x_{ij}$$

 Stochastic gradient descent (update the weight immediately)

Gradient Descent for MultiLayer NN

 For output neurons, weight update formula is the same as before (gradient descent for perceptron)

For hidden neurons:

$$w_{pi}^{(k\square 1)} \square w_{pi}^{(k)} \square \lambda o_i (1-o_i) \sum_{j \in \Phi_i} \delta_j w_{ij} x_{pi}$$

Output neurons :
$$\delta_j \square o_j (1 - o_j)(t_j - o_j)$$

Hidden neurons :
$$\delta_j \square o_j (1 - o_j) \sum_{k \in \Phi_j} \delta_k w_{jk}$$

Design Issues in ANN

- Number of nodes in input layer
 - One input node per binary/continuous attribute
 - k or log₂ k nodes for each categorical attribute with k values
- Number of nodes in output layer
 - One output for binary class problem
 - k or log₂ k nodes for k-class problem
- Number of nodes in hidden layer
- Initial weights and biases

Characteristics of ANN

- Multilayer ANN are universal approximators but could suffer from overfitting if the network is too large
- Gradient descent may converge to local minimum
- Model building can be very time consuming, but testing can be very fast
- Can handle redundant attributes because weights are automatically learnt
- Sensitive to noise in training data
- Difficult to handle missing attributes

Recent Noteworthy Developments in ANN

- Use in deep learning and unsupervised feature learning
 - Seek to automatically learn a good representation of the input from unlabeled data
- Google Brain project
 - Learned the concept of a 'cat' by looking at unlabeled pictures from YouTube
 - One billion connection network