Causal Structure Discovery between Clusters of Nodes Induced by Latent Factors

Chandler Squires*1 Annie Yun*1 Eshaan Nichani1 Raj Agrawal1 Caroline Uhler1

*Equal Contribution

¹ MIT

Causal Structure Learning in Genomics

Challenges

Identifiability

High dimensionality

Latent variables

Latent Variables in Causal Discovery

Marginal Graphical Models

Not always **parsimonious**, and may be less scientifically useful.

Latent Recovery

Measurement models

Pervasive confounding

Both require latent variables to be **exogenous** (no observed variables as parents).

Goal: Recover non-exogenous latent variables and their causal relations to observed variables.

(1) Unique Cluster Assumption:

Each observed variable has 1 latent parent.

(1) Unique Cluster Assumption:

Each observed variable has 1 latent parent.

(2) **Bipartite Assumption**:

No (observed \rightarrow observed) or (latent \rightarrow latent).

(1) Unique Cluster Assumption:

Each observed variable has 1 latent parent.

(2) **Bipartite Assumption**:

No (observed \rightarrow observed) or (latent \rightarrow latent).

(3) Triple child assumption:

Each latent variable has ≥ 3 children.

(1) Unique Cluster Assumption:

Each observed variable has 1 latent parent.

(2) **Bipartite Assumption**:

No (observed \rightarrow observed) or (latent \rightarrow latent).

(3) Triple child assumption:

Each latent variable has ≥ 3 children.

(4) Double parent assumption:

Latent variable are "linked" by at least two observed variables.

Linear DAG model

We assume each variable is a linear function of its parents plus independent noise*.

$$X_j = \sum_{i \in pa(j)} \beta_{ij} X_i + \varepsilon_i$$

Background: Trek separation in DAGs

Treks

A **trek** from a node i to a node j is a tuple of directed paths (P_1, P_2) such that:

- i is the sink of P_1 ,
- j is the sink of P_2 , and
- P_1 and P_2 have the same source

Trek separation

Two sets A and B are **t-separated** by the tuple of sets (C_A, C_B) if for every trek (P_1, P_2) between A and B, either P_1 contains a node in C_A , or P_2 contains a node in C_B .

 $A = \{i, j\}$ and $B = \{u, v\}$ are t-separated by $(\{L\}, \emptyset)$.

Trek separation lemma

 $rank(\Sigma_{AB}) \leq \min\{|C_A| + |C_B| : (C_A, C_B) \text{ t-separates } A \text{ and } B \text{ in } \mathcal{G} \}$

Equality holds generically for Σ consistent with G.

Tetrads

For i, j, u, v distinct, define $t_{ij,uv} = \det(\Sigma_{[ij],[uv]})$.

We call $t_{ij,uv}$ a **tetrad**.

If $A = \{i, j\}$ and $B = \{u, v\}$ are t-separated by a single node, we have $t_{ij,uv} = 0$.

Vanishing Tetrad Tests

Let $H_{vt}(A,B)$ denote the null hypothesis that all tetrads of the matrix $\Sigma_{A,B}$ vanish, i.e., $\Sigma_{A,B}$ is rank one plus diagonal.

We use the **Wishart test** to compute p-values for each tetrad, dividing the sample tetrads $\hat{t}_{ij,uv}$ by their standard errors (using a formula for the sampling variance from [1]).

We aggregate the p-values using Sidak adjustment.

Method for Estimating Latent Factor Causal Models

Method: EstimateLFCM

Phase 1:

Order Clusters

Phase 2:

Merge Clusters

Phase 3:

Learn DAG

 \mathcal{G}^*

Add a temporary edge between pairs i, j such that $H_{vt}(\{i, j\}, \mathcal{V} \setminus \{i, j\})$ passes.

 \mathcal{G}^*

Add a temporary edge between pairs i, j such that $H_{vt}(\{i, j\}, \mathcal{V} \setminus \{i, j\})$ passes.

 $\{X_4, X_5\}$ isn't t-separated from $\{X_6, X_1\}$ by a single node. The triple child assumption guarantees that only sink nodes can be clustered.

Add a temporary edge between pairs i, j such that $H_{vt}(\{i, j\}, \mathcal{V} \setminus \{i, j\})$ passes.

 \mathcal{G}^*

Prepend cliques to an ordered list π and remove them.

$$\pi = [\{1, 2, 3\}, \{7, 8, 9\}]$$

 \mathcal{G}^*

$$\pi = [\{4,5,6\}, \{1,2,3\}, \{7,8,9\}]$$

 \mathcal{G}^*

Phase 2: Merge Clusters

If two clusters C_1 and C_2 satisfy $H_{vt}(C_1 \cup C_2, C_1 \cup C_2)$, move nodes from C_2 to C_1 .

Phase 3: Learn DAG

$$X_1$$
 X_2 X_3

 \mathcal{G}^*

Phase 3: Learn DAG

Add a latent parent for each cluster.

 \mathcal{G}^*

Phase 3: Learn DAG

Use conditional independence testing to recover edges from earlier cluster to later clusters.

Challenges

Identifiability

Under relevant faithfulness assumptions, our algorithm consistently recovers the true graph if it is a linear LFCM.

High dimensionality

 $\mathcal{O}(p^5 + p^2 \cdot M^4)$ for M the largest cluster. Compare to $\mathcal{O}(p^{d+2})$ for algorithms in the fully observed setting, with maximum indegree d.

Latent variables

Allowed for nonexogenous latent variables.

Future Directions

- Nonlinear/non-parametric models
- Relaxing assumptions:
 - Unique cluster assumption: use higher rank testing.
 - Bipartite assumption: allow for sparse connections.
 - Triple-child / double-parent: modifications to the method?

Thanks!

Squires, Chandler, et al. "Causal Structure Discovery between Clusters of Nodes Induced by Latent Factors." *First Conference* on Causal Learning and Reasoning. 2021.