데이터 전처리(1)

숙명여자대학교 경영학부 오중산

데이터 전처리의 정의와 함수 소개

- ?데이터 전처리란?
 - **?**분석에 적합하도록 원자료(raw data)를 가공하는 작업
 - ②실제 데이터 분석 과정에서 가장 많은 시간이 소요되기도 함
- **?**데이터 전처리에 자주 사용되는 dplyr 함수
 - **?**dplyr 함수들은 파이프연산자로 서로 연 결됨

dplyr 함수	기능						
rename()	변수 이름 바꾸기						
filter()	행 추출						
select()	열(변수) 추출						
arrange()	정렬						
mutate()	변수 추가						
summarise()	기초 통계량 계산						
group_by()	집단별로 나눔						
left_join()	열 데이터 합치기						
bind_rows()	행 데이터 합치기						

데이터 전처리: filter 함수

?filter 함수 소개

?조건에 부합하는 <mark>사례(들</mark>)를 추출할 때 사용

?계: gender 변수에서 남학생만 추출

?파이프연산자를 이용해서 filter 함수를 연속 사용 가능: filter() %>% filter()

?exam 데이터 프레임을 활용한 filter 함수 실습

?exam 데이터 프레임에서 1반 학생만 추출해서 exam_c1 데이터프레임 만들기

?exam_c1 <- exam %>% filter(class == 1)

?남학생들의 영어시험 평균 구하기

[?]1단계(데이터프레임 만들기): exam_male <- exam %>% filter(gender == "Male")

[?]2단계(평균 구하기): mean(exam_male\$english)

F) 내장 함수

[구의! exam %>% filter(gender == "Male") %>% mean(english)는 오류

?exam 데이터 프레임을 활용한 filter 함수 실습

(1.2.3) exam_123<- examy.>% filter(class %.in% c (1.2.3))

[]문제1: 1반, 2반, 3반 학생들의 수학시험 평균은 얼마인가? ② mean (exam_123 \$ math)

선지자 자리까지 구하고 싶다면 round (mean (exam_123 \$ math) digits = 3)

?문제2: 4반이 아닌 학생들 중에서 수학시험이 90점 이상이거나, 역사시험이 95점 이

상인 학생들을 추출하여 새로운 데이터 프레임(exam_n4)을 만드시오.

exam_n4c- exam 1.7% filter (class != 4) 1.7% filter (math >= 90 | history >= 95)

?문제3: 영어시험 성적이 상위 10%인 학생들만 추출하시오.

?배장함수 quantile 기본 명령문: quantile(df\$var, probs = c(비율))

quantile (exam \$ english, probs = c(0.9))

exam 1.7% filter (exam >= quantile (exam \$ english, probs = c(0.9)))

데이터 전처리: select 함수

- ?select 함수 소개
 - **?** 원하는 변수(들)만 추출할 때 사용(예: 반, 수학점수, 영어점수만 추출하기)
- ? exam 데이터 프레임을 활용한 select 함수 실습
 - 한, 수학점수, 영어점수만 추출하기
 - [?exam %>% select(class, math, english) : 여러 변수를 쉼표로 연결함
 - ? 주소를 제외한 다른 변수 추출하기
 - [?exam %>% select(-address) : -표시를 하면 해당 변수를 제외한다는 의미 ⇒ to see more rows : ',' >',' Print (n=Inf)
 - ?특정 단어가 포함된 변수 추출하기
 - ?기본명령문: df %>% select(contains("특정 단어"))
 - ?문제4: 1반 학생들만을 대상으로 성별과 수학점수를 추출 exam %>% filter(class == 1) %>% Select (gender, math)

데이터 전처리: arrange 함수

- **?**arrange 함수 소개
 - [?<mark>정량적 변수</mark>에 대해 오름차순 혹은 내림차순으로 정렬할 때 사용
 - ? 정렬기준이 여러 개인 경우, 우선 순위에 따라 쉼표로 구분하여 입력
- ?arrange 함수를 이용한 실습
 - ? 수학점수를 오름차순과 내림차순으로 정렬하기
 - ?exam %>% arrange(math)
 - (Pexam %>% arrange(-math) => NA는 가장 마시막에 출력
 - [한별로 수학 최고점수 확인하기 여러개 변수 (기도 연결 가능
 - ?exam %>% arrange(class, -math) //>// print (n=Inf)
 - 字콘솔창에서 출력이 끊기면 print(n = Inf)를 입력

- **?**mutate 함수 소개
 - [?]기존변수를 활용하여 새로운 변수를 만들 때 사용하는 함수
- ?mutate 함수를 이용한 실습
 - ?exam에서 세 과목(수학/영어/역사) 점수 합계인 total 변수와 세 과목(수학/영어/역사) 점수 평균인 average 변수 만들기
 - 동시에 여러 개 변수를 만들 수 있음
 - ?exam <- exam %>% mutate(total = math + english + history, average = (math + english + history)/3)

?mutate 함수와 ifelse 함수 결합한 실습

?exam에서 test 변수 만들기

[水]otal 점수가 180점 이상이면 "pass", 그렇지 않으면 "fail"로 판정하는 파생변수 test 만들기

?exam <- exam %>% mutate(test = ifelse(total >= 180, "pass", "fail"))

?합격자/불합격자 빈도수 확인하기

() library (descr) (exam \$ test == "pass")

?mutate 함수와 ifelse 함수 결합한 실습

?exam에서 grade 변수 만들기

?average 점수가 60점 미만이면 "fail", 60점 이상 75점 미만이면 "middle", 75점 이상 90점 미만이면 "good", 90점 이상이면 "excellent"로 표기하는 파생변수 grade 만들기

[캠컴주가 n개로 구분되면 ifelse 함수를 (n-1)회 사용해야 함

?exam <- exam %>% mutate(grade = ifelse(average < 60, "fail", ifelse(average < 75, "middle",
ifelse(average < 90, "good", "excellent"))))</pre>

mutate 함수와 case_when 함수 결합한 실습

?exam에서 test 변수와 grade 변수 만들기

ase_when 함수는 dplyr에 있는 함수로 ifelse와 비슷하지만, 더 간단하게 코드를 만들 수 있음

[?]TRUE~는 해당 변수가 "그렇지 않으면" 이라는 의미 Pass. fail 나용 ⇒ total ≥ 180 ~ "Pass"

?exam <- exam %>% mutate(grade = case_when(average < 60~"fail", average <

75~"middle", average < 90~"good", TRUE~"excellent"))

AVERAGE 290 へ "EXCEILENE" AVERAGE 290 へ "EXCEILENE"

[?주의! 변수 측정값에 NA가 있다면(예: total/average) TRUE~ 조건은 쓰지 않아야 함

데이터 전처리: relocate 함수

?relocate 함수 실습

?변수 위치를 이동시킬 때 사용하는 함수

?기본명령문: df <- df %>% relocate(이동할 변수, .after(혹은 before) = 위치변수)

? otal을 test 앞으로 이동시키고, average는 test 뒤로 이동

?exam <- exam %>% relocate(total, .before = test)

?exam <- exam %>% relocate(average, .after = test)

?문자형 척도 변수를 맨 앞으로 이동하기

> 문자인 척도들을 맨 앞으로 이동시겨줘

?exam <- exam %>% relocate(where(is.character))

문자형 척도

[]범주형 척도 변수를 문자형 척도 변수 앞으로 이동하기

?exam <- exam %>% relocate(where(is.factor), .before = where(is.character))
খ্যান্ত ব্য

데이터 전처리: group_by 함수와 summarise 함수

- ? group_by 함수 소개 : ~를 기운으로 造띻한다.
 - ?사례를 어떤 변수값의 결과를 기준으로 몇 개 집단으로 구분
 - [?]이때변수의 척도는 문자형 혹은 범주형인 게 바람직함
 - **?**예: 반, 성별, 주소에 따른 사례 구분
- **?**summarise 함수 소개
 - ? 어떤 변수의 기술통계량에 대한 요약결과를 보여줄 때 사용
 - ?기술통계량과 함께 빈도수를 보여줄 수 있음
 - ?일반적으로 group_by 함수와 함께 사용됨
 - ?사례를 몇 개 집단으로 구분한 후, 구분된 집단별로 관심 있는 변수의 기술통계량 제시

데이터 전처리: group_by 함수와 summarise 함수

?group_by 함수와 summarise 함수 실습

? 반별로 학생수(빈도)와 수학점수의 평균& 표준편차 제시

?exam %>% group_by(class) %>% summarise(n(), mean(math, na.rm = T), sd(math, na.rm = T))

?summarise를 통해 보여주는 결과값에 대해 변수명 지정

[?] 반과 성별로 구분하여 학생수와 역사점수 평균을 요약하여 새로운 데이터 프레임 exam_new에 저장하시오.

?exam_new <- exam %>% group_by(class, gender) %>% summarise(count = n(), mean_history = mean(history))

** Sum 함수

exam_new %>% mutate (per(= (ount / sum ((ount))

```
class gender count mean_history perc
   <fct> <fct> <int>
1 Female 3
                                         => 3 =0.1 아닌 이유
        Female
                            94
                                   0.5
                                   0.5
                                          Sum 전체마 아니고 1반 6명 다 3대 글 =0.5
                            91.7
        Male
                            80.2
                                   0.5
        Female
                            84.5
                                   0.5
        Male
                                   0.5
        Female
                            98
                                            与반변 Sum 함
                            78.3
                                   0.5
        Male
        Female
                                   0.4
                            90.7
                                          선체 sum 하려면?
        Male
                                   0.6
9 5
10 5
        Female
                            67.3
                                   0.6
                                           exam_new %>% mutate (per( = (ount / sum (exam_new $ (ount ))
        Male
                                   0.2
11 5
                            83
```

데이터 전처리(2)

숙명여자대학교 경영학부 오중산

? 변수명을 소문자로 바꾸기

[?] 변수명을 다루기 편하게 하기 위해 대문자를 소문자로 변경

<-> toupper

?names(movie) <- tolower(names(movie))</pre>

Unames (df) = df 안에 있는 변수

[?]문제1: 2018년부터 2020년까지 출시된 영화의 runtime 평균 구하기

(2) movie 1 (- movie 1/7/ filter (year 1/.in/. c(2018:2020))

? 유효숫자는 소수 둘째자리

3 round (mean (movie1 & runtime), ligits = 2))

<mark>?문제2</mark>: A등급이면서 동시에 genre에서 Drama가 포함된 영화 중에서 imdb_rating이

가장 높은 영화는 무엇인가? Movie 2 <- movie % >% filter ((ertificate == "A") % >% filter (Str_detect (Jenre, "Drama")) % >% arrange (-imbd_tating)

[?]힌트1: Drama가 포함된 genre이므로 어떤 영화의 genre가 Drama, History and Comedy여도 해당됨

? 힌트2: stringr 패키지에 있는 str_detect 함수를 사용해야 함

?기본명령문: str_detect(V1, "AAA")

?V1 변수에서 AAA가 포함된 사례를 파악함

[기문제3: genre에서 Drama가 포함되고, overview에서 crime이 포함된 영화는 몇 편인

117 O movie 3 <- movie 1.7% filter (Str-detect (genre, "Drama") & Str-detect (overview, "(rime"))

[?]문제4: 문제3에서 확인된 영화 중에서 meta_score가 상위 10%에 해당되는 영화는 무엇인가?

() movie 1/5% filter (meta_score >= quantile (movie3\$ meta_score, probs = c(0.9), na.rm = T)) 1/5% select (title)

?문제5: star 혹은 dir 단어를 포함한 변수만 추출해서 새로운 데이터프레임을 만드시오.

[한트: 논리연산자와 내장함수 contains 함께 사용

movie 5 <- movie 1.7% select (contains ("star") | contains ("dir"))

[?]문제6: 문제5에서 만든 데이터프레임의 star1 변수에서 빈도수가 가장 높은 배우 세 명은

누구인가? movie6<- freq(movies \$ starl)

movie - movie 1.7% mutate (Score = 10 * im16 - rating + meta_score)

?문제7: 새로운 변수 score(= 10×imdb_rating + meta_score)를 만드시오.

?문제8: 다음과 같은 기준으로 새로운 변수 class를 만드시오.

[]주의! case_when에서 TRUE~ 조건은 NA가 있을 경우 사용하지 말아야 함

	기준	class 변수값
	score ≤ 120 (00	D
100	1 20 < score ≤ 130	С
	130 < score ≤ 160	В
	160 < score ≤ 180	Α
	180 < score ≤ 200	S

- [문제10: class별로 빈도수와 gross 평균을 구하시오. Movie ※ > ※ group_b) (class) ※ > ※ Summarise
- [?문제11: 감독 중에서 빈도수가 가장 많은 10명은 누구인가?

 Movie'.'가 group_by (director) 가가 Summorise (number = n()) 가가 arrange (-number)가 kead (10)

 [?힌트: group_by, summarise, arrange, head 함수를 순차적으로 사용
- ?참고: n_distinct 함수를 이용한 변수 측정값 개수 확인하기
 - ?어떤 변수에 대한 중복된 측정값을 제외한 고유의 값의 개수 확인

N_distinct (movie \$ director) => 변수의 첫도간 상관없이 다 쓸 수 % :서로 다른 감독 몇명이냐

데이터 전처리(3)

숙명여자대학교 경영학부 오중산

데이터 전처리: 세 가지 join 함수

#10 #10(x) #10 #12

r> 두개의 삶을 통합할 때 기군이 되는 변수

[?]공통변수 기준으로 df1에 df2를 통합하되, df1\$공통변수 측정값이 df2\$공통변수 측정값에 없는 case의 경우 통합 후 새로운 변수 측정값은 NA로 처리됨 V₂.V₃ NA 처리 ⇒ 사 1에 있는 (※만 살아남음

?inner_join 함수기본 명령문: df1 <- inner_join(df1, df2, by = "공통변수")

[?full_join 함수 기본 명령문: df1 <- full_join(df1, df2, by = "공통변수")

[?]공통변수 기준으로 df1과 df2를 통합하되, df1과 df2의 모든 case를 포괄하고 공통변수 측정값이 df1과 df2에 모두 존재하지 않으면 새로운 변수 측정값은 NA로 처리됨 ⇒ 둘 중 하나라도 있으면 생아님은

=> ४टा भाग हिमा हिमा अप अंगान हिमा सिंह NAS भाग

데이터 전처리: 세 가지 join 함수

?세 가지 join 함수 예시

 ID
 X1
 ID
 X2

 1
 a1
 2
 b1

 2
 a2
 3
 b2

ex) day 데이터 달라도 날짜 동일 ㅋ 갓다 붙일수 있음

ex)IJ , TJ => 변수명은 다르지만 내용상 동일

기준이 되는 변수가 거의 비슷한 상황에서 기관의 케이스에 대해

새로운 변수 측정 값 갖다 붙임

데이터 전처리: left_join 함수

① 변수 배열 ② 척도

?exam 데이터프레임 정비

?10개의 변수 배열 순서 정리

exam <- exam'.>1. relocate (test, after = total)

corf

[게elocate 함수를 이용해서 address, gender, class, math, history, english, total, test,

average, grade 순서로 배열 두 수

exam <- exam 1.>1/2 mutate (id = ((1:30)) 1/2 relocate (id)

- ?exam 데이터프레임에 새로운 변수 id 추가
 - ? ~30까지 값을 부여한 id 변수를 새로 만들어 exam 데이터프레임 제일 앞에 배열

?exam <- exam %>% mutate(id = c(1:30)) %>% relocate(id)

데이터 전처리: left_join 함수

?eft_join 함수 실습

?exam_science.csv 파일 불러와서 같은 이름의 데이터프레임 생성

?exam과 exam_science 합치기

?exam <- left_join(exam, exam_science, by = "id")</pre>

? 공통변수의 변수명이 일치하지 않을 경우에도 통합 가능

?exam <- left_join(exam, exam_science, by = c("ID" = "id"))

?D는 exam, id는 exma_science에 속한 내용상 동일한 변수이며, 입력 순서 주의

데이터 전처리: bind_rows 함수

?bind_rows 함수 소개

[] 두 개 데이터프레임을 통합하되, 새로운 사례를 추가할 때 사용하는 함수

나 행을 붙이다

[] 두 개 데이터프레임의 변수가 모두 일치할 필요는 없음

[?]통합시 한쪽 데이터프레임에만 존재하는 변수의 경우, 해당 변수가 존재하지 않은 데이터프레임 사례에 대해서는 NA로

처리됨

? 두 개 데이터프레임에 모두 존재하는 내용상 동일한 변수의 경우 변수명이 일치해야 하고, 변수의 척도

도 동일해야 함 〇 (ID , 记) 텔레야함

米대원자 원

glimpse, stv

나 변경 첫도 #1과 맛취기

[?]내용상 동일한 변수지만 변수명이 다르면 다른 변수로 인식

[면수명이 일치하더라도 변수 척도가 다르면 오류 발생

데이터 전처리: bind_rows 함수

?pind_rows 함수 실습

```
exam_add <- read_csv ("exam_add.csv"), locale = locale ('ko', encoding = "euc-kr"))
```

agrade

?exam_add.csv를 불러와서 동일한 명칭의 데이터 프레임을 만든 후, exam과 동일한

변수의 경우 척도를 일치시킴

() glimpse () => 학도 확인

a exam - add \$ gender <- as factor (exam - add \$ gender)

?exam과 exam_add 간의 통합

?exam <- bind_rows(exam, exam_add)</pre>

* examely NA 변경하기

?exam에서 science를 english 다음으로 이동

① average exam \$ average <- ifelse (is.na(exam \$average), exam \$total/3, exam \$ average)

exam <- exam 1.7% relocate (science, after = english)

exam <- exam %>% mutate (grade = (ase _when (average < 60 ~ "fail",

average < 95 \sim " mille" , average < 90 \sim "Jool",

average >= 90 ~ "excellent"))

데이터 전처리: bind_rows 함수

?중복된 id가 존재하는지 확인

exam 1.>1. group_by (id) 1.>1. Summarise (count = n(1) 1.>1. arrange (-count)

?group_by, summarise, arrange 함수 이용하여 중복 id 확인

字등복 id가 존재할 경우 동일한 학생인지, id 측정값에 오류가 있는지 검토

?만약 전자의 경우라면 하나의 사례만 남기고 나머지 사례는 삭제

? 중복된 id에 대해 하나만 남기고 나머지 사례를 삭제하는 방법

PLIAN MAIL ITE Xn_distinct(): 과社 张智

?exam <- exam %>% distinct(id, .keep_all = T)

나 지를 기원으로 놓일한 케이스 있다면 제거해워 하기 그 나머니 나레트 레기를 다니는 이미 * n_distinct (exam\$id)

?d 변수의 측정값이 동일할 경우, 하나만 남기고 나머지 사례는 제거하라는 의미

=> 35 : 制 强 % 计

[주의! .keep_all = T 조건이 있어야 나머지 변수가 지워지지 않음

데이터 전처리: 이상치(outlier) 처리

?이상치의 정의와 처리 방법

? 어떤 변수 측정값이 예상 범주를 벗어나면 이상치로 판정함

[**?**범주를 벗어난 측정값은 입력 오류에 기인한 경우가 많음

[?]이럴 경우 측정값을 이상치로 판정하고, 이상치를 NA로 대체함

字통합된 exam에서 네 개 과목에 대해 100점 초과 사례 파악

?통합된 exam에서 id = 33의 science 점수(122점)는 이론적 최대값인 100점보다 크게 측정되었으므로 이상치로 판정하고, 이를 NA로 대체해야 함

그라목별로 뭐가 이상치인지 확인

1.이상치 유무확인 ① table (exam [5:8] > 100) ② table (exam \$ math > 100) ···

2 있으면 NA 대체 exam\$ science < - ifelse (exam\$ science > 100, NA, exam\$ science)

데이터 전처리: 이상치(outlier) 처리

?이상치의 정의와 처리 방법

? 어떤 변수의 측정값이 예상 범주 안에 있더라도 지나치게 크거나, 지나치게 작은 경우 이

상치로 판정할 수 있음

アルゼ7倍

상한 하찬 0~100 사이 아닐수도 %음

?이럴 경우에는 기준(상한과 하한값)을 설정하여 이상치로 판정해야 함

r> 나올 확률 1%

?(기준 예시) 변수 측정치가 정규분포를 띤다는 가정하에, 상·하위 0.5%에 속하는 측정값을 이상치로 판정: '표본평

약에 사전에 설정된 기준을 넘어간 경우라도, 측정값에 대한 논리적 설명이 가능하다면 이상치로

판정하는 것에 신중해야 함

library(psych)

1) descr <- descr (exam [+:8])

Mo 2=2,5058

- ② 상한 : descr\$mean X2.57583X 표한 라 > 상한. 站한 라이
- ③ 상한은 최대. 하한은 최한만 비교하면 됨 (각 의목별)

* mutate로 새 변수 만들기

descre- descrition/ mutate (low=mean - 259583 * sd, upper= mean + 2.59583 * sd)

> # 상한 # > descr\$mean + 2.57583 *descr\$sd [1] 116.8855 117.1112 122.2779 108.4332 > # 하한 # > descr\$mean - 2.57583 *descr\$sd [1] 5.526270 52.088792 9.264955 52.272690

⇒ 우리가 정한 기원보다 크니나 객을 수도 있음

*	vars	‡	n ‡	mean ‡	sd ‡	median ‡	trimmed ‡	mad ‡	min ÷	max ÷	range ‡	skew ‡	kurtosis ‡	se ‡	low ‡	upper ‡
math				61.20588	21.61618		61.78571	20.7564		98		-0.07347185	-0.91239636	3.707145	5.526270	116.8855
history				84.60000	12.62164		85.86207	14.8260		98		-0.70838201	-0.53335668	2.133447	52.088792	
english				65.77143	21.93719			19.2738		98		-0.68896287	-0.05021166	3.708062	9.264955	122.2779
science			34	80.35294	10.90144	80	80.75000	14.0847	59	98		-0.25272081	-1.02414908	1.869581	52.272690	108.4332

min. max 가 안에 있으면 야