

Fig. 1. Experimental setup. Dashed lines denote the setup used for measurement of the EOE channel frequency response. LPF: Low-pass filter.

Fig. 2. Photograph of the commercial LED luminary (with spherical lens), as used in the measurements.

Fig. 3. EOE channel response of the data-transmission link in Fig. 1.

white LED module (OSTAR® LE CW E2B, see Fig. 2), devised for lighting applications. This module consists of four chips, providing a luminous flux of \sim 250 lm (at 700 mA dc). This module comes with a factory-designed spherical lens, converting the emission from the rectangular LED module into a divergent light beam with a 130° full opening angle at 50% maximum intensity.

All experiments were performed at a certain brightness level (illuminance) in front of the receiver. Illuminance values of around 1000 lx were chosen in agreement with the lighting standard for well-lit working environments [6] and realized by separating the Tx and Rx module by an appropriate distance. Brightness levels were checked by a light meter placed at the position of the receiver in the otherwise dark laboratory. Deployment of a single module resulted in a relatively short link length (~0.3 m for 1000 lx). Nevertheless, given that the used source is primarily devised for lighting purposes, we considered the illuminance at the receiver as the most relevant design parameter, [7]. In practical indoor scenarios with wireless distances of several meters the specified brightness levels needed for illumination can be achieved by using several LED modules and/or stronger collimation of the emitted light beam.

The ac-coupled analogue receiver (Rx in Fig. 1) consisted of the following components. An optical short-pass filter (customized design from Berliner Glas) with a cut-off wavelength of 500 nm was mounted in front of the photodiode to suppress the phosphorescent component of the LED radiation. A commercial large-area silicon APD (Electro Optics, C30872, 3 mm diameter) combined with an aspherical glass lens (New Focus 5728-A, 0.5 NA and 8 mm focal length) was used for detection. An amplifier (Pico-Amps pA4-00125-76) boosted the signal level up to the operation range of the storage oscilloscope (Agilent MSO71041, 4 GS/s sampling rate). Finally, the output amplitude was either directly monitored with the oscilloscope or stored for off-line demodulation.

The magnitude of the channel's frequency response was measured by varying the frequency of a small-signal sine wave provided by the function generator, and directly monitoring the receive amplitude at the oscilloscope. Fig. 3 presents the measured magnitude of the EOE channel frequency response. Since the receiver itself has a relatively large bandwidth (APD \sim 80 MHz, amplifier \sim 2.3 GHz), it can be concluded from the figure that the system bandwidth (\sim 35 MHz) is limited by the LED module.