

Agenda

- 1. Einführung
- 2. Wiederholung BB84
- 3. Qubits und Messbasen
- 4. Zusammengesetzte Systeme
- 5. Verschränkung
- 6. Anwendung von Verschränkung
- 7. Shared Randomness
- 8. Schmidt-Darstellung
- 9. Dichtematrizen
- 10. Partielle Spur

- 11. Verschränkungsmaß
- 12. Entropie und Monogamie
- 13. Entanglement Swapping
- 14. Entanglement Distillation
- 15. CHSH-Ungleichung (klassisch)
- 16. CHSH-Ungleichung (Quantenversion)
- 17. CHSH-Ungleichung (Simulation)
- 18. Ekert-Protokoll
- 19. Sicherheit und DIQKD
- 20. Zusammenfassung

Quantenkryptographie

Angeregtes Cäsium-Atom

Möglichkeit 1

Möglichkeit 2

Überlagerung beider Möglichkeiten:

$$|\Psi\rangle = \frac{1}{\sqrt{2}}(|\uparrow \leftrightarrow \rangle + |\leftrightarrow \uparrow \rangle)$$

Quantenkryptographie

Erzeugung von verschränkten Photonen

Parametric Down Conversion.

Ouantenkryptographie

Schaltkreis

Erzeugung der Bellzustände:

$$|00\rangle \rightarrow |\phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$|10\rangle \rightarrow |\phi^{-}\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$

$$|01\rangle \rightarrow |\Psi^{+}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$$

$$|11\rangle \rightarrow |\Psi^{-}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$

Quantenkryptographie

- Die vier Bell-Zustände $|\phi^+\rangle$, $|\phi^-\rangle$, $|\Psi^+\rangle$ und $|\Psi^-\rangle$ bilden eine Orthonormalbasis für ein Zwei-Qubit-System.
 - Zustandsvektoren stehen senkrecht aufeinander.
 - Es gilt $\langle \phi^+ | \phi^+ \rangle = \langle \phi^- | \phi^- \rangle = \langle \Psi^+ | \Psi^+ \rangle = \langle \Psi^- | \Psi^- \rangle = 1$
 - Und $\langle \phi^+ | \phi^- \rangle = 0$, $\langle \phi^+ | \Psi^+ \rangle = 0$, $\langle \phi^+ | \Psi^- \rangle = 0$, etc.
- Die in einem verschränkten Zustand enthaltene "Korrelation" ist unabhängig von der gewählten Basis.
- Die Bell-Zustände (auch ERP-Zustände genannt) sind maximal verschränkt.
 - Dazu später mehr.

Quantenkryptographie

Bellzustand in einer anderen Basis

- Darstellung von $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ in der $\{|\phi\rangle, |\phi^{\perp}\rangle\}$ -Basis:
 - $|\phi\rangle = \cos\phi |0\rangle + \sin\phi |1\rangle$
 - $|\phi^{\perp}\rangle = -\sin\phi |0\rangle + \cos\phi |1\rangle$

- Transformation
 - $|0\rangle = \cos\phi |\phi\rangle \sin\phi |\phi^{\perp}\rangle$
 - $|1\rangle = \sin \phi |\phi\rangle + \cos \phi |\phi^{\perp}\rangle$

Quantenkryptographie

Rechnung

$$\begin{split} |\Psi\rangle &= \frac{1}{\sqrt{2}} \left(|0\rangle_A |0\rangle_B + |1\rangle_A |1\rangle_B \right) \\ &= \frac{1}{\sqrt{2}} \left(\left(\cos(\phi) |\phi\rangle_A - \sin(\phi) |\phi^\perp\rangle_A \right) \left(\cos(\phi) |\phi\rangle_B - \sin(\phi) |\phi^\perp\rangle_B \right) \\ &+ \left(\sin(\phi) |\phi\rangle_A + \cos(\phi) |\phi^\perp\rangle_A \right) \left(\sin(\phi) |\phi\rangle_B + \cos(\phi) |\phi^\perp\rangle_B \right) \\ &= \frac{1}{\sqrt{2}} \left(\cos^2(\phi) |\phi\rangle_A - \sin(\phi) |\phi^\perp\rangle_A \right) \left(\sin(\phi) |\phi\rangle_B + \cos(\phi) |\phi^\perp\rangle_B \right) \\ &= \frac{1}{\sqrt{2}} \left(\cos^2(\phi) |\phi\rangle_A |\phi\rangle_B - \sin(\phi) \cos(\phi) \left(|\phi^\perp\rangle_A |\phi\rangle_B + |\phi\rangle_A |\phi^\perp\rangle_B \right) + \sin^2(\phi) |\phi^\perp\rangle_A |\phi^\perp\rangle_B \\ &+ \sin^2(\phi) |\phi\rangle_A |\phi\rangle_B + \sin(\phi) \cos(\phi) \left(|\phi^\perp\rangle_A |\phi\rangle_B + |\phi\rangle_A |\phi^\perp\rangle_B \right) + \cos^2(\phi) |\phi^\perp\rangle_A |\phi^\perp\rangle_B \right) \\ &= \frac{1}{\sqrt{2}} \left(|\phi\rangle_A |\phi\rangle_B + \sin(\phi) \cos(\phi) \left(|\phi^\perp\rangle_A |\phi\rangle_B + |\phi\rangle_A |\phi^\perp\rangle_B \right) + \cos^2(\phi) |\phi^\perp\rangle_A |\phi^\perp\rangle_B \right) \\ &= \frac{1}{\sqrt{2}} \left(|\phi\rangle_A |\phi\rangle_B + |\phi^\perp\rangle_A |\phi^\perp\rangle_B \right) \end{split}$$

$$\begin{aligned} |0\rangle_A &= \cos(\phi) \, |\phi\rangle_A - \sin(\phi) \, |\phi^\perp\rangle_A \\ |1\rangle_A &= \sin(\phi) \, |\phi\rangle_A + \cos(\phi) \, |\phi^\perp\rangle_A \\ \\ |0\rangle_B &= \cos(\phi) \, |\phi\rangle_B - \sin(\phi) \, |\phi^\perp\rangle_B \end{aligned}$$

Ouantenkryptographie

Erzeugung des Bell-Zustands

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

und Messung in einer gedrehten Basis:

Quantenkryptographie

Analyse eines verschränkten Zustands

Bell-Messung

Analyse der Bell-Zustände:

$$|\phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \rightarrow 0.0$$

$$|\phi^{-}\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \rightarrow 1.0$$

$$|\Psi^{+}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) \rightarrow 0.1$$

$$|\Psi^{-}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \rightarrow 1.1$$

Quantenkryptographie

Verschränkung von drei Qubits

- Häufig vorkommende verschränkte Systemzustände mit 3 Qubits:
 - Zustände können auf noch mehr Qubits verallgemeinert werden.
 - GHZ-Zustand (Greenberger, Horne und Zeilinger)

$$|\Psi\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$$

W-Zustand (Werner)

$$|\Psi\rangle = \frac{1}{\sqrt{2}}(|001\rangle + |010\rangle + |100\rangle)$$

Quantenkryptographie

Verschränkung von drei Qubits (Simulation mit Qiskit)

- Schaltkreis zur Erzeugung der Zustände
 - □ GHZ-Zustand

□ W-Zustand ($\phi = 2 \arccos(\frac{1}{\sqrt{3}})$)

Quantenkryptographie

Zusammenfassung

- Verschränkte Systeme (Photonen) können physikalisch erzeugt werden.
- Bell-Zustände sind wichtige grundlegende Systeme.
 - Bilden eine Basis für Zwei-Qubit-Systeme.
 - □ Wir werden sehr oft mit $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ arbeiten.
- Die Verschränkung zeigt sich bei den Bellzuständen im jeder (gedrehten) Basis.

$$|00\rangle \rightarrow |\phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$|10\rangle \rightarrow |\phi^{-}\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$

$$|01\rangle \rightarrow |\Psi^{+}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$$

$$|11\rangle \rightarrow |\Psi^{-}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$

- Es können auch mehrere Qubits miteinander verschränkt sein.
 - GHZ- und W-Zustände sind wichtige Beispiele.

Quantenkryptographie

