1. Introducción: presentación de la serie a analizar

Para el presente trabajo se analizará la serie "Afluencia turística nacional mensual al Parque Arqueológico de Machu Picchu, 2004-2021" tomada de la <u>página web</u> del Instituto Nacional de Estadística e Informática de Perú (INEI) y consta de 216 observaciones.

Originalmente, esta era la estructura de los datos:

Mes	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Ene	6 385	7 401	8 558	8 426	11 354	12 798	11 234	13 560	20 890	23 121	23 840	33 254	38 948	36 948	31 783	44 092	33 490	21 985
Feb	3 867	5 706	6 017	7 512	7 201	10 001	-	9 163	12 877	15 356	14 749	24 443	29 596	25 479	28 071	24 673	29 479	-
Mar	3 755	5 782	4 779	6 098	6 887	7 495	-	7 083	11 093	16 753	14 562	17 028	25 995	21 792	19 014	17 092	18 234	9 065
Abr	3 719	3 608	5 465	7 497	6 195	9 365	5 243	9 838	16 930	13 446	17 277	18 324	20 040	18 699	16 761	18 538	-	8 505
May	4 743	5 310	5 852	8 515	9 013	10 511	13 375	12 448	14 755	18 380	19 056	22 298	30 393	18 801	21 592	23 229	-	18 263
Jun	5 121	4 830	5 741	7 889	7 784	8 450	10 036	12 771	16 846	19 564	20 621	22 826	26 990	20 979	20 658	24 211	-	19 709
Jul	8 967	10 668	8 289	8 364	14 415	14 690	15 905	18 500	25 994	24 492	31 254	49 350	45 464	34 146	33 932	36 365	-	38 785
Ago	12 203	13 599	15 172	18 611	18 707	14 644	20 788	33 905	33 354	39 647	41 468	36 577	48 229	43 904	54 551	50 104	-	46 800
Set	6 394	9 773	10 985	14 294	15 478	13 250	16 007	21 030	26 190	26 819	26 291	36 232	36 724	28 950	31 715	32 961	-	37 829
Oct	23 102	23 204	23 432	31 567	25 940	21 117	31 064	37 456	38 775	40 794	35 264	51 502	51 626	38 905	37 365	38 630	-	45 619
Nov	18 933	23 026	19 999	32 452	30 096	25 264	29 295	31 118	34 411	37 967	32 291	32 259	44 752	30 083	31 246	35 701	9 499	33 344
Dic	17 863	15 688	18 549	22 772	10 190	13 237	11 191	16 374	19 184	18 597	21 420	7 151	23 773	23 130	21 373	22 612	13 409	24 938

Por lo que se procedió primero, a convertir los meses en números y los años que estaban en formato "chr" (2004, 2010, 2020 y 2021) se cambiaron a "numeric".

```
meses <- c("Ene", "Feb", "Mar", "Abr", "May", "Jun", "Jul", "Ago", "Se
t", "Oct", "Nov", "Dic")
datos <- datos %>%
  mutate(Mes = sprintf("%02d", match(Mes, meses)))
datos$Mes <- as.numeric(datos$Mes)</pre>
datos$`2004` <- replace_na(as.numeric(datos$`2004`), 0)</pre>
datos$`2010` <- replace_na(as.numeric(datos$`2010`), 0)</pre>
## Warning in replace_na(as.numeric(datos$`2010`), 0): NAs introducido
s por
## coerción
datos$`2020` <- replace na(as.numeric(datos$`2020`), 0)</pre>
## Warning in replace_na(as.numeric(datos$`2020`), 0): NAs introducido
s por
## coerción
datos$`2021` <- replace_na(as.numeric(datos$`2021`), 0)</pre>
## Warning in replace_na(as.numeric(datos$`2021`), 0): NAs introducido
s por
## coerción
```

Se observa que aparecen mensajes de warning debido a que en el conjunto de datos tenemos el símbolo" –"que denota que no hubo visitantes en ese mes.

2020	2021
33 490	21 985
29 479	-
18 234	9 065
-	8 505
-	18 263

Luego, usando la librería tidyverse, se crean las columnas "Fecha" en dónde colocaremos el año y mes y "Visitantes" la cantidad de visitantes para dicho año y mes. Eliminamos la columna "Mes", formateamos la columna "Fecha" y ordenamos de manera ascendente.

Así tenemos:

```
datos_modificados <- datos %>%
    pivot_longer(cols = starts_with("20"), names_to = "fecha", values_to
= "visitante") %>%
    mutate(fecha = paste(fecha, Mes, sep = "-")) %>%
    select(-Mes) %>%
    mutate(fecha = as.Date(paste0(fecha, "-01"), format = "%Y-%m-%d")) %
>%
    mutate(fecha = format(fecha, "%Y-%m")) %>%
    arrange(fecha)
datos_modificados
```

Finalmente, nuestros datos cuentan con la siguiente estructura:

knitr::kable(head(datos_modificados, 10))

fecha	visitante
2004-01	6385
2004-02	3867
2004-03	3755
2004-04	3719
2004-05	4743
2004-06	5121
2004-07	8967
2004-08	12203
2004-09	6394
2004-10	23102

2. Representación gráfica y descomposición estacional (si tuviera comportamiento estacional)

Creamos un objeto time series "afluencia", reemplazamos los NAs generados para los años 2010, 2020 y 2021 por 0 y lo graficamos:

```
afluencia <- ts(datos_modificados[,-1], start=c(2004,1), frequency=12)
#Reemplazando NAs por 0
afluencia[is.na(afluencia)] <- 0
autoplot(afluencia)+ ggtitle("Numero de visitantes nacionales a Machu
Picchu ") + xlab("mes") + ylab("afluencia")
```

Numero de visitantes nacionales a Machu Picchu

Se observa que la serie presenta una tendencia ascendente no estacionaria (no presenta media constante) y es de comportamiento estacional: hay una disminución de visitantes para los meses de lluvias (enero - marzo) en Cuzco y un incremento para los meses de temporada seca (abril – octubre).

Descomposición estacional

Cálculo de coeficientes de estacionalidad

afluencia_comp <- decompose(afluencia, type=c("additive"))
knitr::kable(afluencia_comp\$figure, digits =2,caption = "Coef
Estacionalidad")</pre>

1	2	3	4	5	6	7	8	9	10	11	12
2359.13	-5525.75	-8132.94	-9031.12	-5823.98	-5987.58	2586.59	9303.01	924.77	12467.67	9402.16	-2541.97

Se observa que el mes que tiene un coeficiente mayor es octubre lo que quiere decir que en este mes es en dónde hay una cantidad mayor de turistas nacionales que visitan el sitio arqueológico de Machu Picchu. Esto puede deberse al buen clima y que en este mes se da el fin de la temporada seca por lo cual los turistas tendrían que esperar el fin de la temporada de lluvia (noviembre a marzo) para poder visitar Machu Picchu.

El mes que presenta un menor coeficiente es abril lo que indica que en este mes hay la menor afluencia de turistas nacionales a Machu Picchu. Si bien en este mes se celebra Semana Santa y se da el feriado largo en el país, los precios de los alojamientos y los pasajes aéreos nacionales se elevan por lo cual los turistas nacionales se decantan por viajar a otras provincias.

Gráfico de la serie, la componente estacional, la estimación de la tendencia y el error.

autoplot(afluencia_comp)

Se observa que la tendencia es al alza a partir del año 2007 esto podría deberse a que en junio de ese año Machu Picchu fue elegida como una de las "Siete Maravillas del Mundo Moderno" y por tanto el interés de los turistas nacionales aumentó. También, se visualiza que hubo un descenso en la afluencia en el año de la pandemia 2020.

Sobre la estacionalidad, se observa un patrón recurrente lo cual nos indica que existen meses del año en el que número de turistas nacionales aumenta o disminuye.

Gráfico de la serie original, la tendencia calculada con la descomposición y la serie ajustada estacionalmente.

Serie de afluencia


```
ggseasonplot(afluencia, year.labels=TRUE, year.labels.left=TRUE) +
  ylab("Numero") +
  ggtitle("Seasonal plot: afluencia")
```

Seasonal plot: afluencia

Se observan picos grandes de afluencia para los meses de julio, agosto y octubre. También, menor afluencia para los meses de febrero, marzo y abril.

3. Para comprobar la eficacia de los métodos de predicción que vamos a hacer en los siguientes apartados reservamos los últimos datos observados (un periodo en las series estacionales o aproximadamente 10 observaciones) para comparar con las predicciones realizadas por cada uno de los métodos. Luego ajustamos los modelos sobre la serie sin esos últimos datos en los siguientes apartados.

Reservamos el último año para comparar las predicciones:

```
afluencia_train <- window(afluencia, end=c(2020,12))</pre>
```

4. Encontrar el modelo de suavizado exponencial más adecuado, mostrando una tabla con los estimadores de los parámetros del modelo elegido. Para dicho modelo, representar gráficamente la serie observada y la suavizada con las predicciones para un periodo que se considere adecuado. Mostrar una tabla con las predicciones.

En este caso usaremos el **modelo de suavizado Holt-Winters** ya que nuestra serie presenta comportamiento estacional.

afluencia_sh <- hw(afluencia_train, seasonal="additive", h=12, level =
c(80, 95))
autoplot(afluencia_sh)</pre>

Forecasts from Holt-Winters' additive method

Autoplot predicción del modelo para el año 2021 sobre la serie original

autoplot(afluencia) + autolayer(afluencia_sh, PI = FALSE)

Se observa que el modelo elegido no predice de manera precisa la afluencia de turistas para cada mes del año 2021. En esta serie existen 2 hechos anómalos en ciertos períodos: febrero y marzo 2010 tuvieron 0 turistas nacionales debido a que las lluvias torrenciales dañaron la vía férrea que llega hasta Aguas Calientes, el poblado que da acceso a Machu Picchu, por lo que se tuvieron que realizar reparaciones y prohibir la llegada de turistas.

De abril a octubre de 2020 Machu Picchu cierra sus puertas al turismo al declararse a nivel nacional el confinamiento ante la pandemia de COVID-19.

Estimadores de los parámetros del modelo elegido

knitr::kable(afluencia_sh\$model\$par, format = "pipe", digits = 4, capt
ion = "Estimadores de los parámetros")

	Х
alpha	0.4206
beta	0.0001
gamma	0.3364
1	9545.1412
b	151.7326
s0	-3311.5851
s1	9524.0717
s2	13305.0484
s3	1042.5266
s4	10045.0554
s5	3015.5178
s6	-6280.8342
s7	-6108.7231
s8	-9075.6200
s9	-8359.4245
s10	-5269.2392

Tabla de predicciones

knitr::kable(forecast(afluencia_sh,h=12), digits =4,caption = "Predicciones")

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Jan 2021	14409.8702	6741.8389	22077.9015	2682.628	26137.112
Feb 2021	4984.1626	-3334.6941	13303.0194	-7738.431	17706.756
Mar 2021	-3571.3268	-12493.9385	5351.2848	-17217.284	10074.630

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Apr 2021	-9288.1116	-18776.3974	200.1742	-23799.193	5222.969
May 2021	-3182.7662	-13205.0956	6839.5632	-18510.596	12145.064
Jun 2021	-285.5158	-10815.0721	10244.0406	-16389.083	15818.051
Jul 2021	10457.3805	-556.2919	21471.0528	-6386.578	27301.339
Aug 2021	20956.4808	9478.8785	32434.0831	3403.003	38509.959
Sep 2021	12256.8658	333.1631	24180.5684	-5978.864	30492.595
Oct 2021	17233.0604	4879.1553	29586.9654	-1660.607	36126.728
Nov 2021	18172.9378	5403.1213	30942.7542	-1356.811	37702.687
Dec 2021	9611.6409	-3561.1498	22784.4316	-10534.404	29757.686

5. Representar la serie y los correlogramas. Decidir qué modelo puede ser ajustado. Ajustar el modelo adecuado comprobando que sus residuales están incorrelados. (Sintaxis, tablas de los parámetros estimados y gráficos)

Autocorrelaciones simples hasta el retardo 48

ggAcf(afluencia_train, lag= 48)

Se observa que decrece de forma lenta, que los retardos 12, 24, 36 y 48 presentan una correlación más fuerte y también un patrón que se repite cada 12 meses. Además, se visualizan valores negativos en los retardos 41, 42, 43 y 44 lo cual podría deberse a que no hubo turistas en el período de COVID-19.

corr<-Acf(afluencia_train, lag=12)</pre>

```
print(corr)
##
## Autocorrelations of series 'afluencia_train', by lag
##
       0
             1
                   2
                          3
                                      5
##
                                            6
                                                                     10
11
      12
## 1.000 0.718 0.585 0.502 0.270 0.193 0.196 0.128 0.147 0.330 0.394 0
.484 0.692
```

La tabla muestra que el decrecimiento en los valores no es exponencial por lo cual se procederá con una diferenciación de orden 1.

Autocorrelaciones parciales hasta el retardo 48

```
ggPacf(afluencia_train, lag=48)
```


corrp<-Pacf(afluencia_train, lag=12)</pre>

```
print(corrp)
##
## Partial autocorrelations of series 'afluencia_train', by lag
##
##
       1
              2
                     3
                                          6
                                                 7
                                                        8
                                                                     10
11
## 0.718 0.142 0.085 -0.312 0.065 0.166 0.008 0.033 0.391 0.165
0.121
##
       12
## 0.375
```

Serie diferenciada

```
autoplot(diff(afluencia_train))+ ggtitle("Afluencia de turistas a Mach
u Picchu") +
   xlab("mes") + ylab("turistas")
```

Afluencia de turistas a Machu Picchu

Series: diff(afluencia_train)

ggPacf(diff(afluencia_train), lag=48)

Series: diff(afluencia_train)

Se observa que las correlaciones han disminuido pero los retardos 12, 24, 36 y 48 siguen presentando una correlación fuerte. Así procederemos a realizar una diferenciación de orden 12 (estacional).

Diferenciación estacional

```
autoplot(diff(diff(afluencia_train),12))+ ggtitle("Afluencia de turist
as a Machu Picchu") +
  xlab("mes") + ylab("turistas")
```

Afluencia de turistas a Machu Picchu

Series: diff(diff(afluencia_train), 12)

ggPacf(diff(diff(afluencia_train),12), lag=48)

Series: diff(diff(afluencia_train), 12)

Se observa que en los correlogramas diferenciados sobresalen significativamente de las barras de confianza los retardos del orden 1 y 12 por lo cual el modelo ARIMA a ajustar sería:

fitafluencia1 <- Arima((afluencia_train),c(0,1,1),seasonal=c(0,1,1))
checkresiduals(fitafluencia1)</pre>


```
##
   Ljung-Box test
##
## data: Residuals from ARIMA(0,1,1)(0,1,1)[12]
## Q^* = 21.94, df = 22, p-value = 0.4635
##
## Model df: 2.
                  Total lags used: 24
print(fitafluencia1)
## Series: (afluencia_train)
## ARIMA(0,1,1)(0,1,1)[12]
##
## Coefficients:
##
             ma1
                     sma1
##
         -0.4658
                 -0.5087
## s.e. 0.0779
                   0.0757
##
## sigma^2 = 31861782: log likelihood = -1921.88
## AIC=3849.75 AICc=3849.88 BIC=3859.51
```

Auto ARIMA

fitafluencia2 <- auto.arima(afluencia_train)
checkresiduals(fitafluencia2)</pre>


```
##
   Ljung-Box test
## data: Residuals from ARIMA(0,1,1)(0,1,1)[12]
## Q^* = 21.94, df = 22, p-value = 0.4635
## Model df: 2.
                Total lags used: 24
print(fitafluencia2)
## Series: afluencia_train
## ARIMA(0,1,1)(0,1,1)[12]
##
## Coefficients:
           ma1
                   sma1
##
        -0.4658 -0.5087
## s.e. 0.0779 0.0757
##
## sigma^2 = 31861782: log likelihood = -1921.88
## AIC=3849.75 AICc=3849.88 BIC=3859.51
```

La función auto.arima seleccionó como mejor modelo el mismo que señalamos en el ajuste manual:

$$ARIMA(0,1,1)(0,1,1)_{12}$$

6. Escribir la expresión algebraica del modelo ajustado con los parámetros estimados.

```
(1 - B)(1 - B^{12})(1 - B)(X_t) = (1 + 0.4658B)(1 + 0.5087B)(Z_t)
(X_t - X_{t-1})(1 - B^{12}) = (Z_t + 0.4658Z_{t-1})(1 + 0.5087B)
X_t - X_{t-1} - X_{t-13} + X_{t-14} = Z_t + 0.4658Z_{t-1} + 0.5087Z_{t-1} + 0.4658Z_{t-13} + 0.5087Z_{t-13}
X_t = X_{t-1} + X_{t-13} - X_{t-14} + Z_t + 0.4658Z_{t-1} + 0.5087Z_{t-1} + 0.4658Z_{t-13} + 0.5087Z_{t-13}
```

7. Calcular las predicciones y los intervalos de confianza para las unidades de tiempo que se considere oportuno, dependiendo de la serie, siguientes al último valor observado. Representarlas gráficamente.

knitr::kable(forecast(fitafluencia1, h=12))

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Jan 2021	17260.7357	10026.8589	24494.6126	6197.476	28323.996
Feb 2021	8626.3075	425.1231	16827.4919	-3916.322	21168.937
Mar 2021	-428.2103	-9494.0734	8637.6529	-14293.252	13436.831
Apr 2021	-9657.4847	-19512.4492	197.4798	-24729.352	5414.383
May 2021	-7416.9584	-18002.3622	3168.4455	-23605.937	8772.020
Jun 2021	-7231.8595	-18500.4541	4036.7352	-24465.688	10001.969
Jul 2021	-458.3601	-12371.0288	11454.3085	-18677.215	17760.494
Aug 2021	6295.7829	-6227.8797	18819.4455	-12857.506	25449.072
Sep 2021	-2462.7640	-15568.9677	10643.4397	-22506.973	17581.445
Oct 2021	1259.9600	-12403.9716	14923.8915	-19637.220	22157.140
Nov 2021	3244.3184	-10955.4518	17444.0887	-18472.356	24960.993
Dec 2021	-1165.6781	-15881.7892	13550.4330	-23672.028	21340.672

autoplot(forecast(fitafluencia1, h=12))

8. Comparar las predicciones obtenidas con cada uno de los métodos (suavizado y ARIMA) con los valores observados que habíamos reservado antes. Conclusiones.

```
autoplot(afluencia) +
  autolayer(forecast(afluencia_sh,h=12), series="suavizado", PI=FALSE)
+
  autolayer(forecast(fitafluencia1,h=12), series="manual", PI=FALSE) +
  ggtitle("Prediciones por diferentes modelos ") + xlab("mes") +
  ylab("numero") +
  guides(colour=guide_legend(title="Forecast"))
```

Prediciones por diferentes modelos

En la gráfica se observa que el modelo Holt-Winters (suavizado) presenta predicciones más cercanas a los datos reales para los meses del 2021 a comparación del modelo ARIMA.

En el cuadro resumen podemos constatar lo que se visualiza en la gráfica usando los datos del intervalo de confianza al 95% obtenidos con la función forecast().

Asi tenemos:

PERIODO	HOLT-WINTERS	ARIMA	AFLUENCIA REAL
Jan 2021	26137	28324	21985
Feb 2021	17707	21169	0
Mar 2021	10075	13437	9065
Apr 2021	5223	5414	8505
May 2021	12145	8772	18263
Jun 2021	15818	10002	19709
Jul 2021	27301	17760	38785
Aug 2021	38510	25449	46800
Set 2021	30493	17581	37829
Oct 2021	36127	22157	45619
Nov 2021	37703	24961	33344
Dec 2021	29758	21341	24938

Sin embargo, comparando las medidas de ajuste para ambos modelos

Modelo Holt-Winters

knitr::kable(accuracy(afluencia_sh), digits = 4, caption = "Medidas de
ajuste")

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
Training set	-366.8506	5743.963	3869.794	NaN	Inf	0.7644	0.1534

Modelo ARIMA(0,1,1)(0,1,1)₁₂

knitr::kable(accuracy(fitafluencia1), digits = 4, caption = "Medidas d
e ajuste")

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
Training set	-193.943	5433.139	3510.316	NaN	Inf	0.6934	0.0324

El modelo ARIMA presenta un mejor desempeño respecto al modelo Holt-Winters.

Ahora bien, como se mencionó antes, la serie presenta 2 hechos anómalos por lo que esto puede influir en las predicciones realizadas por el modelo ARIMA como se observa en el cuadro resumen. Por lo tanto, **el modelo que mejor se adapta a nuestros datos** sería el **modelo Holt-Winters**.