Intro to Algorithms, COMP-160, Homework #1

Benjamin Tanen, 02/02/2016

- 1. Compare each of the following pairs of functions asymptotically. To compare f(n) and g(n), you should prove that f(n) is O(g(n)) or $\Omega(g(n))$, or both.
 - (a) 2^{n+1} vs $2^n \to 2^{n+1} = \Theta(2^n)$ $c_1 \cdot 2^n \le 2^{n+1} = 2 \cdot 2^n \le c_2 \cdot 2^n$ $c_1 \le 2\frac{2^n}{2^n} \le c_2$ $c_1 \le 2 \le c_2$ and $n_0 \ge 1$ Therefore $\exists c_1, c_2$ such that $c_1 \cdot 2^n \le 2^{n+1} \le c_2 \cdot 2^n$, so $2^{n+1} = \Theta(2^n)$
 - (b) 2^{2n} vs $2^n \to 2^{2n} = \Omega(2^n)$ $c \cdot 2^n \le 2^{2n} = 4^n$ $c \le \frac{4^n}{2^n} = 2^n$ Since $n_0 \ge 1$, $c \le 2$ Therefore, $\exists c$ such that $c \cdot 2^n \le 2^{2n}$, so $2^{2n} = \Omega(2^n)$
 - (c) $4^n \text{ vs } 2^{2n} \to 4^n = \Theta(2^{2n})$ $c_1 \cdot 2^{2n} \le 4^n \le c_2 \cdot 2^{2n}$ $c_1 \cdot 4^n \le 4^n \le c_2 \cdot 4^n$ $c_1 \le \frac{4^n}{4^n} \le c_2$ $c_1 \le 1 \le c_2 \text{ and } n_0 \ge 0$ Therefore $\exists c_1, c_2 \text{ such that } c_1 \cdot 2^{2n} \le 4^n \le c_2 \cdot 2^{2n}, \text{ so } 4^n = \Theta(2^{2n})$
 - (d) 2^n vs $4^n \to 2^n = O(4^n)$ $2^n \le c \cdot 4^n$ $\frac{1}{2^n} \le c$ Since $n_0 \ge 1$, $c \ge \frac{1}{2}$ Therefore, $\exists c$ such that $2^n \le c \cdot 4^n$, so $2^n = O(4^n)$