

X-Class HiPerFET™ **Power MOSFET**

IXFT32N100XHV IXFH32N100X IXFK32N100X

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25$ °C to 150°C	1000	V	
V _{DGR}	$T_{_{\mathrm{J}}} = 25^{\circ}\mathrm{C}$ to $150^{\circ}\mathrm{C}$, $R_{_{\mathrm{GS}}} = 1\mathrm{M}\Omega$	1000	V	
V _{GSS}	Continuous	±30	V	
V _{GSM}	Transient	±40	V	
I _{D25}	T _C = 25°C	32	A	
I _{DM}	$T_{_{\rm C}}$ = 25°C, Pulse Width Limited by $T_{_{\rm JM}}$	64	Α	
I _A	T _C = 25°C	16	А	
E _{AS}	$T_{c} = 25^{\circ}C$	2	J	
dv/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150^{\circ}C$	50	V/ns	
P _D	T _C = 25°C	890	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
M _d	Mounting Torque (TO-247 & TO-264P)	1.13 / 10	Nm/lb.in	
Weight	TO-268HV	4	g	
	TO-247	6	g	
	TO-264P	10	g	

			cteristic Values Typ.		
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	1000			V
$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 4mA$	3.5		6.0	V
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			1	μA mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			220	mΩ

1000V 32A I_{D25} $220m\Omega$ R_{DS(on)}

Features

- International Standard Packages
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- · AC and DC Motor Drives
- Robotics and Servo Controls

Symbol Test Conditions (T _J = 25°C, Unless Otherwise Specified)		Characteristic Values Min. Typ. Max			
g_{fs}	$V_{ps} = 20V, I_p = 16A, \text{ Note 1}$	14	23	S	
R _{Gi}	Gate Input Resistance		0.6	Ω	
C _{iss}			4075	pF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		520	pF	
C _{rss}			10	pF	
	Effective Output Capacitance				
$C_{o(er)}$	Energy related $\begin{cases} V_{GS} = 0V \\ V_{DS} = 0.8 \cdot V_{DSS} \end{cases}$		140	pF	
$C_{o(tr)}$	Time related $\int V_{DS} = 0.8 \cdot V_{DSS}$		585	pF	
t _{d(on)}	Resistive Switching Times		29	ns	
t _r	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		12	ns	
t _{d(off)}			80	ns	
\mathbf{t}_{f}	$R_{\rm G} = 2\Omega$ (External)		12	ns	
Q _{g(on)}			130	nC	
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		27	nC	
\mathbf{Q}_{gd}			70	nC	
R _{thJC}				0.14 °C/W	
R _{thCS}	TO-247		0.21	°C/W	
	TO-264P		0.15	°C/W	

Source-Drain Diode

SymbolTest ConditionsCharacteristics $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.			cteristic Typ.	Values Max	
I _s	V _{GS} = 0V			32	Α
I _{sm}	Repetitive, pulse Width Limited by $T_{_{\rm JM}}$			128	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left\{ egin{array}{c} \mathbf{t}_{rr} \\ \mathbf{Q}_{RM} \\ \mathbf{I}_{RM} \end{array} \right\}$	$I_F = 16A$, $-di/dt = 100A/\mu s$ $V_R = 100V$		200 1.5 15		ns µC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 16A Value vs.

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 16A Value vs.

Fig. 6. Normalized Breakdown & Threshold Voltages vs. Junction Temperature

Fig. 7. Maximum Drain Current vs. Case Temperature

Fig. 8. Input Admittance

Fig. 9. Transconductance

Fig. 10. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Gate Charge

Fig. 12. Capacitance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

SYM	INCH	HES	MILLIMETER		
SIM	MIN	MAX	MIN	MAX	
Α	.193	.201	4.90	5.10	
A1	.106	.114	2.70	2.90	
A2	.001	.010	0.02	0.25	
b	.045	.057	1.15	1.45	
С	.016	.026	0.40	0.65	
C2	.057	.063	1.45	1.60	
D	.543	.551	13.80	14.00	
D1	.465	.476	11.80	12.10	
D2	.295	.307	7.50	7.80	
D3	.114	.126	2.90	3.20	
E	.624	.632	15.85	16.05	
E1	.524	.535	13.30	13.60	
e	.215	BSC	5.45 BSC		
(e2)	.374	.386	9.50	9.80	
Н	.736	.752	18.70	19.10	
L	.067	.079	1.70	2.00	
L2	.039	.045	1.00	1.15	
L3	.010 BSC		0.25	BSC	
L4	.150	.161	3.80	4.10	

- NOTE:

 1. This drawing meets all dimensions requirement of JEDEC outlines TO-268AA except L dimension.

 2. All metal surface are matte pure tin plated except trimed area.

 3. [3] is Gauge plane to measure L.

 4. These dimension do not include mold flash and they will not exceed 0.005[0.13] per side.

SYM INCHES		IES .	MILLIMETERS		
STM	MIN	MAX	MIN	MAX	
Α	.190	.205	4.83	5.21	
A1	.090	.100	2,29	2.54	
A2	.075	.085	1.91	2.16	
Ь	.045	.055	1.14	1.40	
b2	.075	.087	1.91	2.20	
b4	.115	.126	2.92	3.20	
С	.024	.031	0.61	0.80	
D	.819	.840	20.80	21.34	
D1	.650	.690	16.51	17.53	
D2	.035	.050	0.89	1.27	
E	.620	.635	15.75	16.13	
E1	.545	.565	13.84	14.35	
е	.215	BSC	5.45 BSC		
J		.010		0.25	
K		.025		0.64	
L	.780	.810	19.81	20.57	
L1	.150	.170	3.81	4.32	
ØΡ	.140	.144	3.55	3.65	
ØP1	.275	.290	6.99	7.37	
Q	.220	.244	5.59	6.20	
R	.170	.190	4.32	4.83	
S	.242BSC		6.15	BSC	

NOTE: This drawing will meet all dimensions requirement of JEDEC outlines TO-247 AD (R-PSIP-F3)

TO-264P Outline	
	E1 D1 D2
x2 @	1 - Gate
	2,4 - Drain
NOTE: Leads and back	3 - Source heatsink are Matte Pure Tin plated

SYM	INC	HES	MILLIM	ETERS	
SIM	MIN	MAX	MIN	MAX	
Α	.185	.209	4.70	5.30	
A1	.102	.118	2.60	3.00	
Ь	.035	.049	0.90	1.25	
b1	.091	.106	2.30	2.70	
b2	.110	.126	2.80	3.20	
С	.020	.033	0.50	0.85	
D	1.012	1.035	25.70	26.30	
D1	.783	.799	19.90	20.30	
D2	.185	.205	4.70	5.20	
Ε	.776	.799	19.70	20.30	
E1	.661	.677	16.80	17.20	
е	.215	BSC	5.46 BSC		
L	.768	.807	19.50	20.50	
L1	.091	.106	2.30	2.70	
Q	.228	.244	5.80	6.20	
Q1	.346	.362	8.80	9.20	
ØR	.150	.165	3.80	4.20	
øR1	.071	.087	1.80	2.20	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.