Normalisers in Quasipolynomial Time and the Category of Permutation Groups

Sergio Siccha

May 9, 2019

Lehr- und Forschungsgebiet Algebra, RWTH Aachen

• $log := log_2$.

- $log := log_2$.
- All groups and sets are finite!

- $log := log_2$.
- All groups and sets are finite!
- Ω, Δ denote sets, G, H, T denote groups.

- $\log := \log_2$.
- All groups and sets are finite!
- Ω, Δ denote sets, G, H, T denote groups.
 - *T always* denotes a finite non-abelian simple group.

- $\log := \log_2$.
- All groups and sets are finite!
- Ω , Δ denote sets, G, H, T denote groups.
 - T always denotes a finite non-abelian simple group.
 - If $T \leq \operatorname{Sym} \Delta$ it acts transitively and non-regularly on Δ .

- $\log := \log_2$.
- All groups and sets are finite!
- Ω , Δ denote sets, G, H, T denote groups.
 - T always denotes a finite non-abelian simple group.
 - If $T \leq \operatorname{Sym} \Delta$ it acts transitively and non-regularly on Δ .
- Functions act from the left f(x) but groups from the right: $\alpha^g = g(\alpha)$.

Introduction

Goal

Theorem

Let $G = \langle X \rangle \leq \operatorname{Sym} \Omega$ be a primitive group of PA type. The normaliser $N_{\operatorname{Sym} \Omega}(G)$ can be computed in quasipolynomial time $O(n^3 \cdot 2^{2 \log n \log \log n} \cdot |X|)$.

Goal

Theorem

Let $G = \langle X \rangle \leq \operatorname{Sym} \Omega$ be a primitive group of PA type. The normaliser $N_{\operatorname{Sym} \Omega}(G)$ can be computed in quasipolynomial time $O(n^3 \cdot 2^{2 \log n \log \log n} \cdot |X|)$.

Joint work with Prof. Colva Roney-Dougal.

Recursion for Normalisers

Complexity and Computational Group Theory

We use big ${\it O}$ notation.

We use big ${\it O}$ notation.

Polynomial Time:
$$f \in O(n^c)$$

We use big O notation.

Polynomial Time: $f \in O(n^c)$

Quasipolynomial Time: $f \in 2^{O((\log n)^c)}$

We use big O notation.

Polynomial Time: $f \in O(n^c)$

Quasipolynomial Time: $f \in 2^{O((\log n)^c)}$

Simply Exponential Time: $f \in 2^{O(n)}$

We use big O notation.

Polynomial Time: $f \in O(n^c)$

Quasipolynomial Time: $f \in 2^{O((\log n)^c)}$

Simply Exponential Time: $f \in 2^{O(n)}$

Exponential Time: $f \in 2^{O(n^c)}$

We use big O notation.

Polynomial Time: $f \in O(n^c)$

Quasipolynomial Time: $f \in 2^{O((\log n)^c)}$

Simply Exponential Time: $f \in 2^{O(n)}$

Exponential Time: $f \in 2^{O(n^c)}$

We say a problem A is polynomial time reducible to a problem B if there exists a polynomial time algorithm that transforms

We use big O notation.

Polynomial Time: $f \in O(n^c)$

Quasipolynomial Time: $f \in 2^{O((\log n)^c)}$

Simply Exponential Time: $f \in 2^{O(n)}$

Exponential Time: $f \in 2^{O(n^c)}$

We say a problem A is polynomial time reducible to a problem B if there exists a polynomial time algorithm that transforms

• instances of A into instances of B, and

We use big O notation.

Polynomial Time: $f \in O(n^c)$

Quasipolynomial Time: $f \in 2^{O((\log n)^c)}$

Simply Exponential Time: $f \in 2^{O(n)}$

Exponential Time: $f \in 2^{O(n^c)}$

We say a problem A is polynomial time reducible to a problem B if there exists a polynomial time algorithm that transforms

- instances of A into instances of B, and
- solutions of B into solutions of A.

Polynomial:

Quasipolynomial:

Graph-Iso

Polynomial:

Quasipolynomial:

String-Iso, Intersection, Centraliser

Graph-Iso

Polynomial:

Simply Exponential:

Normaliser

Quasipolynomial:

String-Iso, Intersection, Centraliser

Graph-Iso

Polynomial:

Normaliser and Subproblems

Simply Exponential

Normalisers of arbitrary groups

Normaliser and Subproblems

Simply Exponential

Normalisers of arbitrary groups

Polynomial

Normalisers of groups with restricted composition factors

Normalisers of simple groups

Normaliser and Subproblems

Simply Exponential

Normalisers of arbitrary groups

Polynomial

Normalisers of groups with restricted composition factors

Normalisers of simple groups

Quasipolynomial

Normalisers of primitive groups

PA Type Groups and How To Normalise Them

Fundamentals

Definition

Let $G \leq \operatorname{Sym} \Omega$ be transitive. G is called *imprimitive* if there exists a non-trivial G-invariant partition of Ω . Otherwise it is called *primitive*.

Fundamentals

Definition

Let $G \leq \operatorname{Sym} \Omega$ be transitive. G is called *imprimitive* if there exists a non-trivial G-invariant partition of Ω . Otherwise it is called *primitive*.

Definition

Let $G \leq \operatorname{Sym} \Omega$ and $H \leq \operatorname{Sym} \Delta$ be permutation groups. We call a pair (f,φ) with $f\colon \Omega \to \Delta$ and $\varphi\colon G \to H$ a permutation isomorphism if

7

Fundamentals

Definition

Let $G \leq \operatorname{Sym} \Omega$ be transitive. G is called *imprimitive* if there exists a non-trivial G-invariant partition of Ω . Otherwise it is called *primitive*.

Definition

Let $G \leq \operatorname{Sym} \Omega$ and $H \leq \operatorname{Sym} \Delta$ be permutation groups. We call a pair (f, φ) with $f \colon \Omega \to \Delta$ and $\varphi \colon G \to H$ a permutation isomorphism if for all $g \in G$ and $\alpha \in \Omega$ holds $f(\alpha^g) = f(\alpha)^{\varphi(g)}$.

7

Socles

Definition

Let G be a group. The *socle* of G, denoted soc G, is the group generated by all minimal normal subgroups of G.

Socles

Definition

Let G be a group. The *socle* of G, denoted soc G, is the group generated by all minimal normal subgroups of G.

Theorem

The socle of a primitive group is characteristically simple.

Socles

Definition

Let G be a group. The *socle* of G, denoted soc G, is the group generated by all minimal normal subgroups of G.

Theorem

The socle of a primitive group is characteristically simple.

Theorem (O'Nan-Scott)

Let $G \leq \operatorname{Sym} \Omega$ be primitive. All possible permutational isomorphism types of $\operatorname{soc} G$ and $\operatorname{N}_{\operatorname{Sym} \Omega}(\operatorname{soc} G)$ are known.

Wreath Products (1)

Definition

Let $H \leq \operatorname{Sym} \Delta$ and $K \leq S_{\ell}$. K acts on the components of H^{ℓ} .

9

Wreath Products (1)

Definition

Let $H \leq \operatorname{Sym} \Delta$ and $K \leq S_{\ell}$. K acts on the components of H^{ℓ} . The semidirect product $H \wr K = H^{\ell} \rtimes K$ is called the *wreath* product of H with K.

C

Definition

Let $H \leq \operatorname{Sym} \Delta$ and $K \leq S_{\ell}$. K acts on the components of H^{ℓ} . The semidirect product $H \wr K = H^{\ell} \rtimes K$ is called the *wreath* product of H with K. H^{ℓ} is called the *base group*.

Definition

Let $H \leq \operatorname{Sym} \Delta$ and $K \leq S_{\ell}$. K acts on the components of H^{ℓ} . The semidirect product $H \wr K = H^{\ell} \rtimes K$ is called the *wreath* product of H with K. H^{ℓ} is called the *base group*. K is called the *top group*.

C

Definition

Let $H \leq \operatorname{Sym} \Delta$ and $K \leq S_{\ell}$. K acts on the components of H^{ℓ} . The semidirect product $H \wr K = H^{\ell} \rtimes K$ is called the *wreath* product of H with K. H^{ℓ} is called the *base group*. K is called the *top group*.

Theorem

$$\operatorname{\mathsf{Aut}}(T^\ell)\cong\operatorname{\mathsf{Aut}}(T)\wr S_\ell$$

C

Definition

Let $H \leq \operatorname{Sym} \Delta$ and $K \leq S_{\ell}$. The base group H^{ℓ} acts component-wise on Δ^{ℓ} . The top group K acts on the components of Δ^{ℓ} .

Definition

Let $H \leq \operatorname{Sym} \Delta$ and $K \leq S_{\ell}$. The base group H^{ℓ} acts component-wise on Δ^{ℓ} . The top group K acts on the components of Δ^{ℓ} . This yields an action of $H \wr K$ on Δ^{ℓ} which we call the product action of $H \wr K$.

Definition

Let $H \leq \operatorname{Sym} \Delta$ and $K \leq S_{\ell}$. The base group H^{ℓ} acts component-wise on Δ^{ℓ} . The top group K acts on the components of Δ^{ℓ} . This yields an action of $H \wr K$ on Δ^{ℓ} which we call the product action of $H \wr K$.

We call the permutation group on Δ^{ℓ} induced by $H \wr K$ the *product* action wreath product of H wirh K and also denote it by $H \wr K$.

Definition

Let $H \leq \operatorname{Sym} \Delta$ and $K \leq S_{\ell}$. The base group H^{ℓ} acts component-wise on Δ^{ℓ} . The top group K acts on the components of Δ^{ℓ} . This yields an action of $H \wr K$ on Δ^{ℓ} which we call the product action of $H \wr K$.

We call the permutation group on Δ^{ℓ} induced by $H \wr K$ the *product* action wreath product of H wirh K and also denote it by $H \wr K$.

Theorem

Let $H \leq \operatorname{Sym} \Delta$ and $K \leq S_{\ell}$. $H \wr K$ in product action is primitive if and only if H is primitive and non-regular and K is transitive.

Definition

Let $G \leq \operatorname{Sym} \Omega$ be a primitive group.

We say G is a group of AS type if soc G = T is non-abelian simple and G is almost simple.

Definition

Let $G \leq \operatorname{Sym} \Omega$ be a primitive group.

We say G is a group of PA type if it is permutation isomorphic to a group $\widehat{G} \leq \operatorname{Sym} \Delta^{\ell}$ with:

Definition

Let $G \leq \operatorname{Sym} \Omega$ be a primitive group.

We say G is a group of PA type if it is permutation isomorphic to a group $\widehat{G} \leq \operatorname{Sym} \Delta^{\ell}$ with:

• $\operatorname{soc} \widehat{G} = T^{\ell}$,

Definition

Let $G \leq \operatorname{Sym} \Omega$ be a primitive group.

We say G is a group of PA type if it is permutation isomorphic to a group $\widehat{G} \leq \operatorname{Sym} \Delta^{\ell}$ with:

- $\operatorname{soc} \widehat{G} = T^{\ell}$,
- $\widehat{G} \leq N_{\operatorname{Sym}\Delta}(T) \wr S_{\ell}$.

Definition

Let $G \leq \operatorname{Sym} \Omega$ be a primitive group.

We say G is a group of PA type if it is permutation isomorphic to a group $\widehat{G} \leq \operatorname{Sym} \Delta^{\ell}$ with:

- $\operatorname{soc} \widehat{G} = T^{\ell}$,
- $\widehat{G} \leq N_{\operatorname{Sym}\Delta}(T) \wr S_{\ell}$.

Lemma

$$N_{\operatorname{\mathsf{Sym}}\Delta^{\ell}}(T^{\ell}) = N_{\operatorname{\mathsf{Sym}}\Delta}(T) \wr S_{\ell}.$$

The Key Idea ...

Construct $N_{\operatorname{Sym}\Omega}(\operatorname{soc} G)!$

... And Why It Works ...

Lemma

Let $G \leq \operatorname{Sym} \Omega$ be primitive of type PA. Then

$$[N_{\operatorname{\mathsf{Sym}}\Omega}(\operatorname{\mathsf{soc}} G):\operatorname{\mathsf{soc}} G] \leq \sqrt{n}\cdot 2^{\log n\log\log n}.$$

... And Why It Works ...

Lemma

Let $G \leq \operatorname{Sym} \Omega$ be primitive of type PA. Then

$$[N_{\operatorname{Sym}\Omega}(\operatorname{soc} G): \operatorname{soc} G] \leq \sqrt{n} \cdot 2^{\log n \log \log n}.$$

Lemma

Let $G = \langle X \rangle \leq \operatorname{Sym} \Omega$ be primitive of type PA. Furthermore let a generating set for $N_{\operatorname{Sym} \Omega}(\operatorname{soc} G)$ be known.

... And Why It Works ...

Lemma

Let $G \leq \operatorname{Sym} \Omega$ be primitive of type PA. Then

$$[N_{\operatorname{Sym}\Omega}(\operatorname{soc} G):\operatorname{soc} G] \leq \sqrt{n}\cdot 2^{\log n\log\log n}.$$

Lemma

Let $G = \langle X \rangle \leq \operatorname{Sym} \Omega$ be primitive of type PA. Furthermore let a generating set for $N_{\operatorname{Sym} \Omega}(\operatorname{soc} G)$ be known.

Then $N_{\operatorname{Sym}\Omega}(G)$ can be computed in time

$$O(n^3 \cdot 2^{2\log n \log \log n} \cdot |X|).$$

Compute:

$$\mathsf{soc}\: G \circlearrowleft \Omega \xrightarrow{\sim} \mathcal{T}^\ell \circlearrowleft \Delta^\ell$$

Compute:

$$\operatorname{\mathsf{soc}} G \circlearrowleft \Omega \xrightarrow{\sim} T^\ell \circlearrowleft \Delta^\ell$$

Then:

$$G \longrightarrow N_{\operatorname{\mathsf{Sym}}\Delta^{\ell}}(T^{\ell})$$

Compute:

$$\mathsf{soc}\: G \circlearrowleft \Omega \xrightarrow{\sim} T^\ell \circlearrowleft \Delta^\ell$$

Then:

$$G \qquad \hookrightarrow \quad N_{\operatorname{\mathsf{Sym}} \Delta^{\ell}}(T^{\ell}) = N_{\operatorname{\mathsf{Sym}} \Delta}(T) \wr S_{\ell}$$

Compute:

$$\mathsf{soc}\: G \circlearrowleft \Omega \xrightarrow{\sim} T^\ell \circlearrowleft \Delta^\ell$$

Then:

$$G \qquad \hookrightarrow \qquad N_{\operatorname{\mathsf{Sym}}\,\Delta^{\ell}}(T^{\ell}) = N_{\operatorname{\mathsf{Sym}}\,\Delta}(T) \wr S_{\ell}$$

$$N_{\operatorname{\mathsf{Sym}}\,\Omega}(\operatorname{\mathsf{soc}}\,G) \quad \stackrel{\sim}{\longleftarrow} \quad N_{\operatorname{\mathsf{Sym}}\,\Delta^{\ell}}(T^{\ell})$$

The Category of Permutation

Groups

Definition

Let $G \leq \operatorname{Sym} \Omega$ and $H \leq \operatorname{Sym} \Delta$ be permutation groups.

Definition

Let $G \leq \operatorname{Sym} \Omega$ and $H \leq \operatorname{Sym} \Delta$ be permutation groups. Let $f \colon \Omega \to \Delta$ be a map and $\varphi \colon G \to H$ be a group hom..

Definition

Let $G \leq \operatorname{Sym} \Omega$ and $H \leq \operatorname{Sym} \Delta$ be permutation groups. Let $f \colon \Omega \to \Delta$ be a map and $\varphi \colon G \to H$ be a group hom.. The pair (f,φ) is called a *permutation hom. from* (G,Ω) *to* (H,Δ) if for all $g \in G$ holds:

Definition

Let $G \leq \operatorname{Sym} \Omega$ and $H \leq \operatorname{Sym} \Delta$ be permutation groups. Let $f \colon \Omega \to \Delta$ be a map and $\varphi \colon G \to H$ be a group hom.. The pair (f,φ) is called a *permutation hom. from* (G,Ω) *to* (H,Δ) if for all $g \in G$ holds:

$$\Omega \xrightarrow{g} \Omega
\downarrow_f \qquad \downarrow_f
\Delta \xrightarrow{\varphi(g)} \Delta$$

$$\begin{array}{ccc} \Omega & \stackrel{g}{\longrightarrow} & \Omega \\ \downarrow^f & & \downarrow^f \\ \Delta & \stackrel{\varphi(g)}{\longrightarrow} & \Delta \end{array}$$

Remark

Let $G \leq \operatorname{Sym} \Omega$ and $H \leq \operatorname{Sym} \Delta$. The map $f : \Omega \twoheadrightarrow \Delta$ uniquely determines, if it exists, a permutation homomorphism (f, φ) .

Lemma

Let $G \leq \operatorname{Sym} \Omega$ and $f : \Omega \to \Delta$. There exists a permutation hom. (f, φ) if and only if

Lemma

Let $G \leq \operatorname{Sym} \Omega$ and $f : \Omega \to \Delta$. There exists a permutation hom. (f, φ) if and only if

$$\left\{ f^{-1}(\left\{ x\right\}) \mid x \in \operatorname{Im} f \right\}$$

is G-invariant.

PermGrp

Definition

The category of permutation groups, denoted **PermGrp**, consists of all pairs (G,Ω) with $G \leq \operatorname{Sym} \Omega$ as objects with permutation homomorphisms as morphisms.

Product in PermGrp

Lemma

Let $G \leq \operatorname{Sym} \Omega$ and $H \leq \operatorname{Sym} \Delta$ be permutation groups. Then $(G \times H, \Omega \times \Delta)$ with (p_1, π_1) and (p_2, π_2) is a product in **PermGrp**.

Cartesian Decompositions

Definition

Let $\mathcal C$ be a category and X an object of $\mathcal C$. A family of morphisms $(f_i)_{i\in I}$ with $f_i\colon X\to X_i$ is called a *cartesian decomposition of* X if

Cartesian Decompositions

Definition

Let C be a category and X an object of C. A family of morphisms $(f_i)_{i\in I}$ with $f_i\colon X\to X_i$ is called a *cartesian decomposition of* X if

$$\prod_{i\in I}f_i\colon X\to\prod_{i\in I}X_i$$

is an isomorphism.

Cartesian Decompositions

Definition

Let C be a category and X an object of C. A family of morphisms $(f_i)_{i \in I}$ with $f_i \colon X \to X_i$ is called a *cartesian decomposition of* X if

$$\prod_{i\in I}f_i\colon X\to\prod_{i\in I}X_i$$

is an isomorphism.

Lemma

A family $(f_i)_{i \in I}$ is a cartesian decomposition of X if and only if X with $(f_i)_{i \in I}$ forms a product in C.

Homogeneous Cartesian Decompositions

Definition

Let $(f_i)_{i \in I}$ be a cartesian decomposition of X. We call $(f_i)_{i \in I}$ a homogeneous cartesian decomposition of X if

Homogeneous Cartesian Decompositions

Definition

Let $(f_i)_{i\in I}$ be a cartesian decomposition of X. We call $(f_i)_{i\in I}$ a homogeneous cartesian decomposition of X if for all $i, j \in I$ we have $f_i(X) \cong f_j(X)$.

Homogeneous Cartesian Decompositions

Definition

Let $(f_i)_{i\in I}$ be a cartesian decomposition of X. We call $(f_i)_{i\in I}$ a homogeneous cartesian decomposition of X if for all $i,j\in I$ we have $f_i(X)\cong f_j(X)$.

Definition

Let $(f_i)_{i \in I}$ be a cartesian decomposition of X. We call $(f_i)_{i \in I}$ a strongly homogeneous cartesian decomposition of X if

Homogeneous Cartesian Decompositions

Definition

Let $(f_i)_{i \in I}$ be a cartesian decomposition of X. We call $(f_i)_{i \in I}$ a homogeneous cartesian decomposition of X if for all $i, j \in I$ we have $f_i(X) \cong f_j(X)$.

Definition

Let $(f_i)_{i\in I}$ be a cartesian decomposition of X. We call $(f_i)_{i\in I}$ a strongly homogeneous cartesian decomposition of X if for all $i,j\in I$ we have $f_i(X)=f_j(X)$.

Homogeneous Cartesian Decompositions

Definition

Let $(f_i)_{i \in I}$ be a cartesian decomposition of X. We call $(f_i)_{i \in I}$ a homogeneous cartesian decomposition of X if for all $i, j \in I$ we have $f_i(X) \cong f_j(X)$.

Definition

Let $(f_i)_{i \in I}$ be a cartesian decomposition of X. We call $(f_i)_{i \in I}$ a strongly homogeneous cartesian decomposition of X if for all $i, j \in I$ we have $f_i(X) = f_j(X)$.

 \sim Compute a strongly homogeneous cartesian decomposition of the permutation group soc G!

Constructing the Normaliser of the

Socle

The Algorithm - Input

Let
$$G = \langle X \rangle \leq \operatorname{Sym} \Omega$$
 be a primitive group of PA type.

The Algorithm - Input

Let $G = \langle X \rangle \leq \operatorname{Sym} \Omega$ be a primitive group of PA type.

Note that T^{ℓ} has exactly ℓ minimal normal subgroups.

Algorithm

• soc *G*

Algorithm

• soc $G (= T_1 \times \ldots \times T_\ell)$.

- soc $G (= T_1 \times \ldots \times T_\ell)$.
- minimal normal subgroups T_i of soc G.

- soc $G (= T_1 \times \ldots \times T_\ell)$.
- minimal normal subgroups T_i of soc G.
- complements C_i of the T_i ,

- soc $G (= T_1 \times \ldots \times T_\ell)$.
- minimal normal subgroups T_i of soc G.
- complements C_i of the T_i , partitions $\Delta_i = \{ orbits \ of \ C_i \}$.

- soc $G (= T_1 \times \ldots \times T_\ell)$.
- minimal normal subgroups T_i of soc G.
- complements C_i of the T_i , partitions $\Delta_i = \{ \text{orbits of } C_i \}$.
- $Q_i: \Omega \to \Delta_i, \ \alpha \mapsto \alpha^{C_i}$

- soc $G (= T_1 \times \ldots \times T_\ell)$.
- minimal normal subgroups T_i of soc G.
- complements C_i of the T_i , partitions $\Delta_i = \{ \text{orbits of } C_i \}$.
- $Q_i: \Omega \to \Delta_i, \ \alpha \mapsto \alpha^{C_i} \quad \Rightarrow \quad \psi_i: G \to T_i.$

- soc $G (= T_1 \times \ldots \times T_\ell)$.
- minimal normal subgroups T_i of soc G.
- complements C_i of the T_i , partitions $\Delta_i = \{ orbits \ of \ C_i \}$.
- $Q_i: \Omega \to \Delta_i, \ \alpha \mapsto \alpha^{C_i} \quad \Rightarrow \quad \psi_i: G \to T_i.$
- $g_1, \ldots, g_\ell \in G$ such that $T_i^{g_i} = T_1$.

- soc $G (= T_1 \times \ldots \times T_\ell)$.
- minimal normal subgroups T_i of soc G.
- complements C_i of the T_i , partitions $\Delta_i = \{ \text{orbits of } C_i \}$.
- $Q_i: \Omega \to \Delta_i, \ \alpha \mapsto \alpha^{C_i} \quad \Rightarrow \quad \psi_i: G \to T_i.$
- $g_1, \ldots, g_\ell \in G$ such that $T_i^{g_i} = T_1$.
- $R_i: \Delta_i \to \Delta_1, \ \delta \mapsto \delta^{g_i}$

- soc $G (= T_1 \times \ldots \times T_\ell)$.
- minimal normal subgroups T_i of soc G.
- complements C_i of the T_i , partitions $\Delta_i = \{ \text{orbits of } C_i \}$.
- $Q_i: \Omega \to \Delta_i, \ \alpha \mapsto \alpha^{C_i} \quad \Rightarrow \quad \psi_i: G \to T_i.$
- $g_1, \ldots, g_\ell \in G$ such that $T_i^{g_i} = T_1$.
- $R_i: \Delta_i \to \Delta_1, \ \delta \mapsto \delta^{g_i} \quad \Rightarrow \quad \rho_i: T_i \to T_1.$

- soc $G (= T_1 \times \ldots \times T_\ell)$.
- minimal normal subgroups T_i of soc G.
- complements C_i of the T_i , partitions $\Delta_i = \{ \text{orbits of } C_i \}$.
- $Q_i: \Omega \to \Delta_i, \ \alpha \mapsto \alpha^{C_i} \quad \Rightarrow \quad \psi_i: G \to T_i.$
- $g_1, \ldots, g_\ell \in G$ such that $T_i^{g_i} = T_1$.
- $R_i: \Delta_i \to \Delta_1, \ \delta \mapsto \delta^{g_i} \quad \Rightarrow \quad \rho_i: T_i \to T_1.$
- $P_i := R_i \circ Q_i : \Omega \to \Delta_1$

- soc $G (= T_1 \times \ldots \times T_\ell)$.
- minimal normal subgroups T_i of soc G.
- complements C_i of the T_i , partitions $\Delta_i = \{ \text{orbits of } C_i \}$.
- $Q_i: \Omega \to \Delta_i, \ \alpha \mapsto \alpha^{C_i} \quad \Rightarrow \quad \psi_i: G \to T_i.$
- $g_1, \ldots, g_\ell \in G$ such that $T_i^{g_i} = T_1$.
- $R_i: \Delta_i \to \Delta_1, \ \delta \mapsto \delta^{g_i} \quad \Rightarrow \quad \rho_i: T_i \to T_1.$
- $P_i := R_i \circ Q_i : \Omega \to \Delta_1 \Rightarrow \varphi_i : G \to T_1.$

Algorithm

- soc $G (= T_1 \times \ldots \times T_\ell)$.
- minimal normal subgroups T_i of soc G.
- complements C_i of the T_i , partitions $\Delta_i = \{ \text{orbits of } C_i \}$.
- $Q_i: \Omega \to \Delta_i, \ \alpha \mapsto \alpha^{C_i} \quad \Rightarrow \quad \psi_i: G \to T_i.$
- $g_1, \ldots, g_\ell \in G$ such that $T_i^{g_i} = T_1$.
- $R_i: \Delta_i \to \Delta_1, \ \delta \mapsto \delta^{g_i} \quad \Rightarrow \quad \rho_i: T_i \to T_1.$
- $P_i := R_i \circ Q_i : \Omega \to \Delta_1 \Rightarrow \varphi_i : G \to T_1.$

 $((P_i, \varphi_i))_{i < \ell}$ is strongly homogeneous cartesian decomposition.

• $((P_i, \varphi_i))_{i \le \ell}$ is a strongly homogeneous cartesian decomposition of soc G.

- $((P_i, \varphi_i))_{i \leq \ell}$ is a strongly homogeneous cartesian decomposition of soc G.
- This yields soc $G \circlearrowleft \Omega \xrightarrow{\sim} T^{\ell} \circlearrowleft \Delta^{\ell}$.

- $((P_i, \varphi_i))_{i \leq \ell}$ is a strongly homogeneous cartesian decomposition of soc G.
- This yields soc $G \circlearrowleft \Omega \xrightarrow{\sim} T^{\ell} \circlearrowleft \Delta^{\ell}$.
- Compute $N_{\text{Sym }\Delta}(T)$.

- $((P_i, \varphi_i))_{i \leq \ell}$ is a strongly homogeneous cartesian decomposition of soc G.
- This yields soc $G \circlearrowleft \Omega \xrightarrow{\sim} T^{\ell} \circlearrowleft \Delta^{\ell}$.
- Compute $N_{\text{Sym }\Delta}(T)$.
- Construct $N_{\operatorname{Sym}\Delta}(T) \wr S_{\ell} \leq \operatorname{Sym}\Delta^{\ell}$.

- $((P_i, \varphi_i))_{i \leq \ell}$ is a strongly homogeneous cartesian decomposition of soc G.
- This yields soc $G \circlearrowleft \Omega \xrightarrow{\sim} T^{\ell} \circlearrowleft \Delta^{\ell}$.
- Compute $N_{\text{Sym }\Delta}(T)$.
- Construct $N_{\operatorname{Sym}\Delta}(T) \wr S_{\ell} \leq \operatorname{Sym}\Delta^{\ell}$.
- Map back into Sym Ω .

- $((P_i, \varphi_i))_{i \leq \ell}$ is a strongly homogeneous cartesian decomposition of soc G.
- This yields soc $G \circlearrowleft \Omega \xrightarrow{\sim} T^{\ell} \circlearrowleft \Delta^{\ell}$.
- Compute $N_{\text{Sym }\Delta}(T)$.
- Construct $N_{\operatorname{Sym}\Delta}(T) \wr S_{\ell} \leq \operatorname{Sym}\Delta^{\ell}$.
- Map back into Sym Ω .
- $\rightsquigarrow N_{\operatorname{Sym}\Omega}(\operatorname{soc} G).$

Outlook and Summary

Food for Thought

- $G \hookrightarrow H \wr K \leq N_{\operatorname{Sym} \Delta}(T) \wr S_{\ell}$.
 - $\rightsquigarrow \mathsf{Normalisers} \mathsf{ in polynomial time?}$

Food for Thought

- $G \hookrightarrow H \wr K \leq N_{\operatorname{Sym} \Delta}(T) \wr S_{\ell}$.
 - → Normalisers in polynomial time?
- G leaves a combinatorial cartesian decomposition invariant if and only if it can be embedded into a product action wreath product $S_m \wr S_\ell$.
 - → Universal property?

Food for Thought

- $G \hookrightarrow H \wr K \leq N_{\operatorname{Sym} \Delta}(T) \wr S_{\ell}$.
 - → Normalisers in polynomial time?
- G leaves a combinatorial cartesian decomposition invariant if and only if it can be embedded into a product action wreath product $S_m \wr S_\ell$.
 - → Universal property?
- Define a tree data structure via permutation homomorphisms to do many normaliser computations "at once".

• Category Theory makes (some) algorithms nicer.

- Category Theory makes (some) algorithms nicer.
- ullet Let G be a primitive group of PA type. We can

- Category Theory makes (some) algorithms nicer.
- Let G be a primitive group of PA type. We can
 - construct the normaliser of the socle in polynomial time,

- Category Theory makes (some) algorithms nicer.
- Let G be a primitive group of PA type. We can
 - construct the normaliser of the socle in polynomial time,
 - compute the normaliser in quasipolynomial time.

- Category Theory makes (some) algorithms nicer.
- Let G be a primitive group of PA type. We can
 - construct the normaliser of the socle in polynomial time,
 - compute the normaliser in quasipolynomial time.
 (maybe even in polynomial time?)

Thank you!

Universal Property of Wreath Products

Let $H \leq \operatorname{Sym} \Delta$, $K \leq \operatorname{Sym} \Gamma$.

$$H^{\Gamma} \longrightarrow G \longleftarrow K$$

$$\Delta^{\Gamma} \, \longrightarrow \, \Delta^{\Gamma} \, \longleftarrow \, \Gamma$$

Universal Property of Wreath Products

Let $H \leq \operatorname{Sym} \Delta$, $K \leq \operatorname{Sym} \Gamma$.

$$H^{\Gamma} \longrightarrow G \longleftarrow K$$

$$\Delta^{\Gamma} \longrightarrow \Delta^{\Gamma} \longleftarrow \Gamma$$

$$H^{\Gamma} \longrightarrow G \xrightarrow{K} K$$

$$\Delta \times \Gamma \longrightarrow \Delta \times \Gamma \longrightarrow \Gamma$$

Combinatorial Cartesian Decompositions (1)

Definition

Let Ω be a set. For each $\gamma \in \Gamma$ let Δ_{γ} be a partition of Ω with $|\Delta_{\gamma}| \geq 2$. We say that $\{\Delta_{\gamma}\}_{\gamma \in \Gamma}$ is a *(combinatorial) cartesian decomposition of* Ω if

Combinatorial Cartesian Decompositions (1)

Definition

Let Ω be a set. For each $\gamma \in \Gamma$ let Δ_{γ} be a partition of Ω with $|\Delta_{\gamma}| \geq 2$. We say that $\{\Delta_{\gamma}\}_{\gamma \in \Gamma}$ is a *(combinatorial) cartesian decomposition of* Ω if for any choice of $\delta_{\gamma} \in \Delta_{\gamma}$ we have that

$$\bigcap_{\gamma \in \Gamma} \delta_{\gamma}$$

is a singleton set.

Combinatorial Cartesian Decompositions (1)

Definition

Let Ω be a set. For each $\gamma \in \Gamma$ let Δ_{γ} be a partition of Ω with $|\Delta_{\gamma}| \geq 2$. We say that $\{\Delta_{\gamma}\}_{\gamma \in \Gamma}$ is a *(combinatorial) cartesian decomposition of* Ω if for any choice of $\delta_{\gamma} \in \Delta_{\gamma}$ we have that

$$\bigcap_{\gamma \in \Gamma} \delta_{\gamma}$$

is a singleton set.

Lemma

There is a one-to-one correspondence between unordered cartesian decompositions and combinatorial cartesian decompositions.

Combinatorial Cartesian Decompositions (2)

Theorem (Praeger, Schneider)

A group $G \leq \operatorname{Sym} \Omega$ leaves a homogeneous combinatorial cartesian decomposition invariant if and only if G embeds into a product action wreath product $\operatorname{Sym} \Delta \wr \operatorname{Sym} \Gamma$.