1) Given: D= 6,750 paper sliers/year C6=\$150 / production run

Q=1,633 paper slices/butch

d= 30 paper sticers/year Ch=\$1/paper slicers/year p=125 paper slicers/day

t= 13 days / production

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Discount	Unit Price	Order Quantity	E0@	Adjusted a	Material Lost	Ordening Cast
$\frac{2(5\%)}{10\%(380)}$ $\frac{300}{10\%(380)}$ $\frac{1}{1000(380)}$ $\frac{1}{1000(380)}$ $\frac{1}{1000(380)}$ $\frac{1}{1000(380)}$ $\frac{1}{1000(380)}$ $\frac{1}{1000(380)}$	ATTS)	¥ 400		= 30 metal		=\$1795=1400(400)	= 1400 (25) 200 (25)
detectors/order = 3	2 (5%)	31380	300	= \(\frac{2(1400)(25)}{20%(380)}\) 2 31 metal		= 1400 (380) = \$532,000	1400 (St) = \$116:67

Holding Cost	Total Cost		
· 200 (0.20×400)	=550000 +175+8,000		
238,000	=\$1568,175		
3 300 (0.20) (380)	= 532,000+116.67+11,400		
= 11,400	=\$1543,516.67		

a borsey should take the discount number 2, with a unit price of \$380 and an Order quantity of 300 metal detectors. Since discount number 2 has the lowest total cost of them all/two