Linearyzacja

13 czerwca 2017

1 Problem, warunki początkowe, przejście na układ autonomiczny

Rozważamy liniowe nieautonomiczne niejednorodne równanie pierwszego rzędu:

$$x'(t) = -x(t) * tg(t) + \frac{1}{cos(t)}$$
$$x(0) = 0$$

Łatwo policzyć, że rozwiązaniem analitycznym tego równania jest

$$x(t) = \sin(t) \tag{1}$$

Przechodzimy teraz na autonomiczny układ równań. Stosujemy podstawienie u=(x,t), czyli $u'=(x',1)=(-x(t)*tg(t)+\frac{1}{cos(t)},1)$. Przyjmując $u=(u_1,u_2)$ otrzymujemy u'=F(u), gdzie $F(u)=F(u_1,u_2)=(-u_1tg(u_2)+\frac{1}{cos(u_2)},1)$.

Rozwiązaniem tego układu jest

$$u_1(t) = \sin(t) \tag{2}$$

$$u_2(t) = t (3)$$

2 Algorytm, rozwiązanie przybliżone

Przybliżamy zmodyfikowanym algorytmem Eulera

$$y_{k+1} = y_k + h f(t_k + \frac{h}{2}, y_k + \frac{h}{2} f(t_k, y_k))$$
(4)

Przybliżamy z krokiem h = 0.01 na przedziale (0, 10).

Rysunek 1: Rozwiązanie dokładne i przybliżone zmodyfikowanym algorytmem Eulera u_1

Rysunek 2: Rozwiązanie dokładne i przybliżone zmodyfikowanym algorytmem Eulera \boldsymbol{u}_2

Rysunek 3: Portret fazowy rozwiązania dokładnego i przybliżonego zmodyfikowanym algorytmem Eulera

3 Linearyzacja układu autonomicznego

Aby zlinearyzować układ zastępujemy funkcję prawej strony F(u) poprzez jej rozwinięcie Taylora w punkcie (0,0) do pierwszego wyrazu pomijając składniki nieliniowe. $x_0 = (0,0)$, wtedy $F(x_0 + h) = F(x_0) + DF(a)h$, gdzie DF(a) jest macierzą Jakobiego, czyli macierzą pochodnych cząstkowych w punkcie x_0 , a $h = (u_1, u_2)$. Po linearyzacji nasz problem wygląda następująco:

$$u' = Jh$$

Gdzie J jest macierzą Jakobiego i ma postać

$$\left[\begin{array}{cc} 0 & -1 \\ 0 & 0 \end{array}\right]$$

Czyli $F(u) = (1 - u_2, 1)$. Dla tak zadanego problemu liczymy przybliżenie zmodyfikowanym algorytmem Eulera i otrzymujemy poniższe rozwiązania przybliżone na rysunku wraz z rozwiązaniami przybliżonymi.

Rysunek 4: Rozwiązanie dokładne i przybliżone zmodyfikowanym algorytmem Eulera po linearyzacji \boldsymbol{u}_1

Rysunek 5: Rozwiązanie dokładne i przybliżone zmodyfikowanym algorytmem Eulera po linearyzacji \boldsymbol{u}_2

Na rysunku 7 mamy tabelę porównawczą przybliżane rozwiązania z dokładnym dla kolejnych argumentów, co dobrze obrazuje w którym momencie przybliżenie linearyzacji oddala się od rozwiązania dokładnego. Na rysunku portretów fazowych wszystkich rozwiązań obserwujemy też małe przesunięcia przybliżonego rozwiązania problemu oryginalnego powstające przez kumulowanie się błędu.

Rysunek 6: Portety fazowe rozwiązania dokładnego, przybliżonego oraz przybliżonego zlinearyzowanego

Argument	Dokladne	Przyblizone	Linearyzowane
0.	0.	0.	0.
0.1	0.0998334	0.0998338	0.095
0.2	0.198669	0.19867	0.18
0.3	0.29552	0.295521	0.255
0.4	0.389418	0.38942	0.32
0.5	0.479426	0.479427	0.375
0.6	0.564642	0.564644	0.42
0.7	0.644218	0.644219	0.455
0.8	0.717356	0.717356	0.48
0.9	0.783327	0.783326	0.495
1.	0.841471	0.841469	0.5
1.1	0.891207	0.891205	0.495
1.2	0.932039	0.932035	0.48
1.3	0.963558	0.963552	0.455
1.4	0.98545	0.985441	0.42
1.5	0.997495	0.997484	0.375
1.6	0.999574	1.00052	0.32
1.7	0.991665	0.995868	0.255
1.8	0.973848	0.981268	0.18
1.9	0.9463	0.956864	0.095

Rysunek 7: Porównanie metod

4 Wnioski