Problem Set 6 Graph Theory

Bennett Rennier barennier@gmail.com

October 4, 2017

Ex 2.1.10 Let u and v be vertices in a connected n-vertex simple graph. Prove that if d(u,x) > 2, then $d(u) + d(v) \le n + 1 - d(u,v)$. Construct an example to show that this can fail whenever $n \ge 3$ and $d(u,v) \le 2$.

Proof. As d(u, v) > 2, it must be that u and v have no common neighbors. This means that d(u) + d(v) is simply the number of neighbors of either u or v. Let $P = (x_i)_{i \in \{0, \dots, d(u, v)\}}$ be the shortest path from u to v. Since P is the shortest u, v-path, it cannot be that x_i is a neighbor of u or v for $i \neq 1, d(u, v) - 1$. Thus, there are at least d(u, v) - 1 vertices not in the neighbor of either u or v. This means that the number of vertices in either neighborhood is at most n - (d(u, v) - 1) = n + 1 - d(u, v). Thus, $d(u) + d(v) \leq n + 1 - d(u, v)$.

We see that for the following graph, d(u) + d(v) = 4 > 3 = n + 1 - d(u, v):

Ex 2.1.23 Let T be a tree in which every vertex has degree 1 or degree k. Determine the possible values of n(T).

Proof. Let m be the number of vertices with degree k. Using the degree-sum formula, we see then that

$$\sum_{v \in G} d(v) = mk + (n(T) - m) = 2e(G) = 2(n(T) - 1) = 2n - 2.$$

1

which means that n(T) = m(k-1) + 2. Since $m \ge 0$, we have that n(T) is two more than a multiple of k-1.

For any such $n, m, k \in \mathbb{N}$ where n = m(k-1) + 2, we have such a tree by creating a path of m+2 vertices and then adding k-2 leaves to each inner vertex. An illustration for when k=6 and m=5 is seen below:

Ex 2.1.26 For $n \geq 3$, let G be a n-vertex graph such that every graph obtained by deleting one vertex is a tree. Determine e(G), and use this to determine G itself.

Proof. Let $\{v_1, \ldots, v_n\}$ be the vertices of G and let $G_i = G - v_i$. Since G_i is a tree and has n-1 vertices, we have that $e(G_i) = n-2$. This means that $\sum_i e(G_i) = n(n-2)$. For each $e \in e(G)$, we have that $e \in G_i$ for n-2 such i's. Thus,

$$e(G) = \frac{\sum_{i=1}^{n} e(G_i)}{n-2} = \frac{n(n-2)}{n-2} = n.$$

Since G has n vertices and n edges, G contains a cycle. Since G_i is a tree for any $1 \le i \le n$, it must be that any cycle in G contains v_i for each i. Since G has a cycle and that cycle must contain all vertices and since e(G) = n(G) = n, it must be that $G = C_n$.

Ex 2.1.27 Let d_1, \ldots, d_n be possible integers, with $n \geq 2$. Prove that there exists a tree with vertex degrees d_1, \ldots, d_n if and only if $\sum_i d_i = 2n - 2$.

Proof. Let T be a n-vertex tree. This means that e(T) = n - 1. Thus, by the degree-sum formula, we have that $\sum_i d_i = 2e(T) = 2n - 2$.

We will prove the converse by induction. For n=2, the only such list is (1,1), which is the degree list of the tree P_2 . Now, assume that the induction hypothesis works for n and we will prove that it works for n+1. Let $d=(d_i)_{1\leq i\leq n}$ be a list of integers where $n\geq 2$ and $\sum_i d_i = 2n-2$. Since $\sum_i d_i < 2n$, there is a d_j such that $d_j \leq 1$. Additionally, since $\sum_i d_i > n$, there is a d_k such that $d_k > 1$. We let d' be the list where we remove d_j and replace d_k with $d_k - 1$. We see then that d' is a list of n elements and that the sum of the elements of d' is 2(n-1)-2=2(n-2). Thus, by the induction hypothesis, there is a tree on n-1 vertices with d' as its vertex degrees. If we add a vertex and an edge to the vertex whose degree we had previously substracted from, then we obtain a tree with our desired vertex degrees.

Ex 2.1.31 Prove that a simple connected graph having exactly two vertices that are not cut-vertices is a path.

Proof. Let $u, v \in V(G)$ be the only non-cut vertices in G. Let P be the shortest x, y-path. If $V(P) \neq V(G)$, then let w be the vertex the furthest distance from P. For any $w' \in G - P - w$, it must be that $d(P, w') \leq d(P, w)$. This, there is a path from P to w' that doesn't not go through w. Since this is true for every such w', it must be that w is a non-cut vertex. This is a contradiction, which means that V(P) = V(G). Since P was the shortest x, y-path and G is simple, there cannot be any other edges. Thus, G = P is a path.