MOSEF Bank Churn Prediction Data mining

Author

Sharon Chemma Lina Benzemma

Introduction

- Challenge Kaggle
- Visualisation des données
- Preprocessing
- 4 Choix du modèle et optimisation

Challenge Kaggle

Introduction

Contexte:

- Les banques perdent des revenus lorsque des clients quittent leurs services.
- Identifier les clients à risque est crucial pour agir en amont.

Objectif du projet :

- Construire un modèle prédictif robuste pour détecter les clients susceptibles de quitter.
- Maximiser la performance en atteignant une **AUC optimale**.

Impact attendu : Anticiper les départs et optimiser les stratégies de fidélisation client.

Visualisation des données

Visualisation des données

Présentation des Datasets

Dimensions des Datasets:

- Train DATA SET: 15,000 lignes, 14 colonnes
- Test DATA SET: 10,000 lignes, 13 colonnes

Types de Variables:

- Catégoriques : Geography, Gender, Surname
- Numériques : CreditScore, Age, Tenure, Balance, NumOfProducts, etc.
- Variable cible: Exited (1 = Churn, 0 = Non-Churn)

Distributions des Variables Numériques

- Les distributions montrent une variabilité significative entre les variables.
- La variable Balance montre une concentration élevée autour de 0 avec quelques valeurs extrêmes.
- La variable cible Exited est déséquilibrée : les clients qui ne quittent pas la banque sont largement dominants.

Preprocessing

Préparation des Données

Étapes de Prétraitement :

- Suppression des colonnes inutiles :
 - Les colonnes id, CustomerId et Surname sont supprimées car elles n'apportent pas d'information pertinente pour la prédiction.
- Encodage des variables catégoriques :
 - Les colonnes Geography et Gender sont encodées avec la méthode One-Hot Encoding.
 - L'option drop_first=True a été utilisée pour éviter la colinéarité (suppression de la première modalité de chaque catégorie).
- Pas de valeurs manquantes.

Analyse des Outliers dans CreditScore

Étapes pour identifier les outliers :

- Calcul des bornes inférieure et supérieure en utilisant l'**IQR** (Interquartile Range).
- Identification des valeurs en dehors des bornes : 16
- Ajout d'une variable binaire pour capturer les outliers.

Proportions de churn:

- Pour les outliers et les non-outliers :
 - 62.5% contre 80.08% des clients n'ont pas churné.
 - 37.5% contre 19.91% des clients ont churné.

Analyse des Variables Numériques

Observations clés:

- Les clients churnants ont des caractéristiques distinctes pour certaines variables.
- Ces distributions offrent des pistes pour créer de nouvelles variables afin de mieux segmenter les clients.

Analyse des Variables Numériques

Explorations supplémentaires:

- Tenure NumOfProducts:
 - Les clients churnants ont souvent des combinaisons spécifiques d'ancienneté (Tenure) et de produits détenus.
- NumOfProducts IsActiveMember:
 - Les clients churnants ont généralement un engagement moindre (IsActiveMember) malgré un certain nombre de produits.

Transformations et Création de Variables

• Logarithmique Transformation:

• La variable Balance a été transformée en Log_Balance avec la fonction $\log(1+x)$.

• Création de Groupes d'Âge :

- La variable Age a été catégorisée en groupes :
 - Groupes définis par les intervalles : [0-25), [25-40), [40-60), [60-100).
 - Étiquettes associées : 1, 2, 3, 4.
- La variable Age a été supprimée après transformation.

Observations:

• Logarithmique Transformation (Log_Balance):

- La transformation de Balance en Log_Balance a amélioré l'AUC des modèles.
- Cette transformation a permis de réduire l'effet des valeurs extrêmes dans Balance.

• Binning de l'Âge (Age_Group) :

• La catégorisation de l'âge en groupes n'a pas eu d'impact significatif sur l'AUC.

06/01/2025

Création de Variables Personnalisées

Objectif:

- Capturer des comportements spécifiques ou atypiques des clients pour améliorer la performance des modèles.
- Identifier des groupes de clients susceptibles de churner.

Nouvelles Variables:

- Inactive_high_balance:
 - Identifie les clients inactifs (IsActiveMember = 0) avec un solde élevé (Balance > 100,000).
- Low_balance_high_products:
 - Identifie les clients ayant un solde faible (Balance < 5,000) mais utilisant de nombreux produits (NumOfProducts > 2).
- Senior_low_balance:
 - Identifie les clients seniors (Age > 60) ayant un solde faible (Balance < 20,000).
- High_salary_low_products:
 - Identifie les clients ayant un salaire élevé (EstimatedSalary > 150,000) mais utilisant peu de produits (NumOfProducts = 1).

Création de Variables Personnalisées

1. Balance / EstimatedSalary :

- Représente le rapport entre le solde bancaire et le salaire estimé d'un client.
- Permet de détecter des comportements financiers atypiques :
 - Un ratio élevé (> 1) indique une richesse relative importante par rapport aux revenus.
 - Un ratio faible peut indiquer une faible accumulation par rapport au salaire.

2. Balance_per_Product_Age :

- Normalise le solde en tenant compte de la diversification (NumOfProducts) et de l'âge.
- Met en évidence des comportements spécifiques :
 - Un ratio faible peut indiquer des clients engagés sur plusieurs produits.
 - Un ratio élevé peut refléter une faible diversification financière.

Choix du modèle et optimisation

Choix du modèle et optimisation

Optimisation des Hyperparamètres : Partie 1

Objectif : Ajuster les hyperparamètres pour améliorer la performance du modèle en capturant efficacement les comportements des clients à risque.

Hyperparamètres clés:

- Nombre d'itérations (iterations) :
 - Définit le nombre total d'arbres générés par le modèle.
 - Augmenté à 1000 pour permettre un entraînement plus approfondi et capturer des interactions complexes.
- Taux d'apprentissage (learning_rate) :
 - Contrôle la vitesse à laquelle le modèle ajuste les poids à chaque itération.
 - Réduit à **0.03** pour stabiliser la convergence et éviter les oscillations.
- Profondeur des arbres (depth):
 - Détermine la profondeur maximale des arbres (c'est-à-dire le nombre de niveaux).
 - Fixée à 6 pour trouver un équilibre entre la capacité d'apprentissage et le risque de surapprentissage.

Comparaison des Modèles

Méthodologie:

- Validation croisée stratifiée (StratifiedKFold) avec 5 plis pour assurer une répartition équilibrée de la variable cible dans les jeux d'entraînement et de validation.
- Comparaison basée sur la courbe ROC moyenne et l'AUC moyenne.

Modèles testés:

- Régression Logistique
- Random Forest
- XGBoost
- LightGBM
- CatBoost

Résultats des Modèles

Courbes ROC Moyennes:

• Chaque modèle a été évalué pour sa capacité à distinguer les classes (churn/non-churn).

Moyenne des AUC par Modèle

Scores AUC moyens:

• Les AUC ont été calculés pour chaque pli, puis moyennés.

Modèle	AUC Moyenne
Régression Logistique	0.7819
Random Forest	0.9325
XGBoost	0.9249
LightGBM	0.9325
CatBoost	0.9307

Observations:

- RandomForest et LightGBM sont légèrement meilleur, mais les différences avec CatBoost et XGBoost sont marginales.
- Ces modèles seront optimisés davantage pour maximiser leurs performances.

Optimisation des Hyperparamètres : Partie 2

Objectif : Améliorer la robustesse et l'équilibre du modèle grâce à des réglages précis.

Hyperparamètres avancés:

- Régularisation L2 (12_leaf_reg):
 - Ajoute une pénalité pour les arbres trop complexes afin de prévenir le surapprentissage.
 - Fixée à 3 pour équilibrer la complexité du modèle.
- Poids des classes (class weights):
 - Compense le déséquilibre des classes en accordant plus d'importance à la classe minoritaire.
 - Configuré à [1, 2.5] pour renforcer l'apprentissage des clients churnants (Exited = 1).
- Fonction de coût (loss_function):
 - Utilise Logloss pour maximiser la séparation entre les classes.
 - Essentielle pour les tâches de classification binaire.
- Métrique d'évaluation (eval_metric) :
 - Optimise directement l'AUC, une métrique clé pour les problèmes de classification déséquilibrés.

Impact

Impact:

- Un modèle plus robuste, capable de mieux gérer le déséquilibre des classes.
- Une réduction du surapprentissage grâce à un réglage plus précis des hyperparamètres.

Stacking: Combinaison de Modèles

Objectif : Améliorer les performances en combinant plusieurs modèles de base via un méta-modèle.

Modèles impliqués:

- Modèles de base :
 - CatBoost : Performant sur les données catégoriques.
 - XGBoost : Modèle robuste et bien adapté aux grandes données.
 - LightGBM : Rapide et efficace sur les grandes bases déséquilibrées.
- Méta-modèle :
 - XGBoost avec des hyperparamètres optimisés (taux d'apprentissage à 0.05, profondeur 3).

Stacking : Combinaison de Modèles

Résultats:

 AUC moyenne obtenue : 0.9332, légèrement inférieure aux modèles individuels optimisés.

Impact:

- Le stacking n'a pas amélioré les performances globales.
- Les modèles individuels, comme CatBoost, restent plus performants dans ce contexte.

