```
!pip install rasterio
```

```
from google.colab import drive
drive.mount('/content/drive')
```

import rasterio as rio import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from pandas import DataFrame import statsmodels.graphics.api as smg

raster = rio.open ('/content/drive/MyDrive/Materias/Cartografiá geotécnica /Documentos_CartografíaGeotécnica/DATOS/Pendiente pendiente=raster.read(1) pendiente=np.where(pendiente<0,np.nan,pendiente)</pre>

plt.imshow(pendiente)

plt.colorbar();

pendiente_vector=pendiente.ravel() # para pasarlo a un vector

pendiente_vector_MenM=pendiente_vector[~np.isnan(pendiente_vector)] # para eliminar del vector los datos NaN pendiente_vector_MenM.shape # otra forma de saber las dimensiones

type(pendiente)

numpy.ndarray

np.shape(pendiente)

(1699, 1195)

raster = rio.open('/content/drive/MyDrive/Materias/Cartografía geotécnica /Documentos_CartografíaGeotécnica/DATOS/Aspecto.ti aspecto=raster.read(1) aspecto=np.where(aspecto<-100,np.nan,aspecto)</pre>

aspecto_vector=aspecto.ravel()

aspecto_vector_MenM=aspecto_vector[~np.isnan(aspecto_vector)]

plt.imshow(aspecto)

plt.colorbar()

aspecto_vector_MenM.shape


```
np.shape(flujo)
```

```
raster = rio.open('/content/drive/MyDrive/Materias/Cartografiá geotécnica /Documentos_CartografíaGeotécnica/DATOS/Flow_Accu.
flujo=raster.read(1)
raster_mask = rio.open('/content/drive/MyDrive/Materias/Cartografiá geotécnica /Documentos_CartografíaGeotécnica/DATOS/Pendie
msk=raster_mask.read_masks(1)
msk=np.where(msk==255,1,np.nan)
flujo=msk*flujo
flujo_vector=flujo.ravel()
flujo_vector_MenM=flujo_vector[~np.isnan(flujo_vector)]
plt.imshow(flujo)
plt.colorbar()
```

(1073135,)

flujo_vector_MenM.shape

raster = rio.open('/content/drive/MyDrive/Materias/Cartografiá geotécnica /Documentos_CartografíaGeotécnica/DATOS/Geología.t: geologia=raster.read(1) raster_mask = rio.open('/content/drive/MyDrive/Materias/Cartografiá geotécnica /Documentos_CartografíaGeotécnica/DATOS/Pendi

msk=raster_mask.read_masks(1)

msk=np.where(msk==255,1,np.nan)

geologia=msk*geologia

geologia_vector=geologia.ravel()

geologia_vector_MenM=geologia_vector[~np.isnan(geologia_vector)]

plt.imshow(geologia)

plt.colorbar()

geologia_vector_MenM.shape

raster = rio.open('/content/drive/MyDrive/Materias/Cartografiá geotécnica /Documentos_CartografíaGeotécnica/DATOS/inventario inventario=raster.read(1)

raster_mask = rio.open('/content/drive/MyDrive/Materias/Cartografiá geotécnica /Documentos_CartografíaGeotécnica/DATOS/Pendi msk=raster_mask.read_masks(1)

msk=np.where(msk==255,1,np.nan)

inventario=msk*inventario

inventario_vector=inventario.ravel()

inventario_vector_MenM=inventario_vector[~np.isnan(inventario_vector)]

plt.imshow(inventario)

plt.colorbar()

inventario_vector_MenM.shape

```
(1073135,)

0

200

400

600

800

1000
```

d={'inventario':inventario_vector_MenM,'pendiente':pendiente_vector_MenM,'flujo_acum':flujo_vector_MenM,'aspecto':aspecto_vector_menM,'flujo_acum':flujo_vector_MenM,'aspecto':aspecto_vector_menM,'flujo_acum':flujo_vector_menM,'aspecto':aspecto_vector_menM,'flujo_acum':flujo_vector_menM,'aspecto':aspecto_vector_menM,'flujo_acum':flujo_vector_menM,'aspecto':aspecto_vector_menM,'flujo_acum':flujo_vector_menM,'aspecto':aspecto_vector_menM,'flujo_acum':flujo_vector_menM,'aspecto':aspecto_vector_menM,'aspecto_vector_menM,'aspecto_vector_menM,'aspector_menM,'aspector_menM,'aspector_menM,'aspector_menM

['inventario', 'pendiente', 'flujo_acum', 'aspecto', 'geologia']

df.head()

	inventario	pendiente	flujo_acum	aspecto	geologia
0	0.0	0.746838	2.0	162.738892	3.0
1	0.0	0.707836	3.0	195.004776	3.0
2	0.0	0.493800	1.0	199.883652	3.0
3	0.0	0.864414	1.0	144.305893	3.0
4	0.0	0.870724	4.0	157.589264	3.0

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1073135 entries, 0 to 1073134

Data columns (total 5 columns):

_ 0. 0 0.	00-0		•		
#	Column	Non-Null Cour	nt Dtype		
0	inventario	1073135 non-r	null floate	54	
1	pendiente	1073135 non-r	null float3	32	
2	flujo_acum	1073135 non-r	null floate	54	
3	aspecto	1073135 non-r	null float3	32	
4	geologia	1073135 non-r	null floate	54	
dtypos, float22/2) float64/2)					

dtypes: float32(2), float64(3)

memory usage: 32.7 MB

df1=df[(df["inventario"]==1) | (df["inventario"]==0).sample(frac=.1)]
df1.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 107337 entries, 0 to 1073130

Data columns (total 5 columns):

Column Non-Null Count Dtype

--- 0 inventario 107337 non-null float64

1 pendiente 107337 non-null float32

2 flujo_acum 107337 non-null float64

3 aspecto 107337 non-null float32

4 geologia 107337 non-null float64

dtypes: float32(2), float64(3)

memory usage: 4.1 MB

resumen=df1.describe().T print(resumen)

	count	mean	std	min	25%	50%	\
inventario	107337.0	0.000224	0.014951	0.0	0.000000	0.000000	
pendiente	107337.0	22.647333	10.638272	0.0	14.440104	23.205252	
flujo_acum	107337.0	1115.124822	23020.459752	1.0	3.000000	6.000000	
aspecto	107337.0	188.683899	124.304214	-1.0	58.194107	220.642776	
geologia	107337.0	8.341290	1.830089	1.0	9.000000	9.000000	

	75%	max
inventario	0.000000	1.000000e+00
pendiente	30.857691	6.255898e+01
flujo_acum	13.000000	1.076870e+06
aspecto	306.488983	3.599980e+02
geologia	9.000000	1.000000e+01

matriz=df.drop(['inventario'],axis=1) # función para eliminar una columna (axis=1)
matriz.head()

	pendiente	flujo_acum	aspecto	geologia
0	0.746838	2.0	162.738892	3.0
1	0.707836	3.0	195.004776	3.0
2	0.493800	1.0	199.883652	3.0
3	0.864414	1.0	144.305893	3.0
4	0.870724	4.0	157.589264	3.0

matriz_cont=matriz.drop(['geologia'],axis=1)
matriz_cont.head()

	pendiente	flujo_acum	aspecto	7
0	0.746838	2.0	162.738892	
1	0.707836	3.0	195.004776	
2	0.493800	1.0	199.883652	
3	0.864414	1.0	144.305893	
4	0.870724	4.0	157.589264	

Análisis de todas las variables

pd.plotting.scatter_matrix(matriz_cont, alpha = 0.3, figsize = (14,10), diagonal='kde');

sns.pairplot(df1, hue='inventario');

MatCorre=DataFrame(df.corr()) smg.plot_corr(MatCorre, xnames=list(MatCorre.columns));

