Simple linear regression

STAT 401A - Statistical Methods for Research Workers

Jarad Niemi

Iowa State University

October 4, 2013

Simple Linear Regression

Recall the One-way ANOVA model:

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$$

where Y_{ij} is the observation for individual j in group i.

Simple Linear Regression

Recall the One-way ANOVA model:

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$$

where Y_{ij} is the observation for individual j in group i.

The simple linear regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$$

where Y_i and X_i are the response and explanatory variable, respectively, for individual i.

Simple Linear Regression

Recall the One-way ANOVA model:

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$$

where Y_{ij} is the observation for individual j in group i.

The simple linear regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$$

where Y_i and X_i are the response and explanatory variable, respectively, for individual i.

Terminology (all of these are equivalent):

response
outcome
dependent
endogenous

explanatory covariate independent exogenous

$$E[Y_i|X_i=x] = \beta_0 + \beta_1 x \qquad V[Y_i|X_i=x] = \sigma^2$$

$$E[Y_i|X_i=x] = \beta_0 + \beta_1 x \qquad V[Y_i|X_i=x] = \sigma^2$$

• If $X_i = 0$, then $E[Y_i | X_i = 0] = \beta_0$.

$$E[Y_i|X_i=x] = \beta_0 + \beta_1 x \qquad V[Y_i|X_i=x] = \sigma^2$$

• If $X_i = 0$, then $E[Y_i|X_i = 0] = \beta_0$. β_0 is the expected response when the explanatory variable is zero.

$$E[Y_i|X_i=x] = \beta_0 + \beta_1 x \qquad V[Y_i|X_i=x] = \sigma^2$$

- If $X_i = 0$, then $E[Y_i|X_i = 0] = \beta_0$. β_0 is the expected response when the explanatory variable is zero.
- If X_i increases from x to x + 1, then

$$E[Y_i|X_i = x+1] = \beta_0 + \beta_1 x + \beta_1$$

$$E[Y_i|X_i=x] = \beta_0 + \beta_1 x \qquad V[Y_i|X_i=x] = \sigma^2$$

- If $X_i = 0$, then $E[Y_i|X_i = 0] = \beta_0$. β_0 is the expected response when the explanatory variable is zero.
- If X_i increases from x to x + 1, then

$$E[Y_i|X_i = x + 1] = \beta_0 + \beta_1 x + \beta_1 E[Y_i|X_i = x] = \beta_0 + \beta_1 x$$

$$E[Y_i|X_i=x] = \beta_0 + \beta_1 x \qquad V[Y_i|X_i=x] = \sigma^2$$

- If $X_i = 0$, then $E[Y_i|X_i = 0] = \beta_0$. β_0 is the expected response when the explanatory variable is zero.
- If X_i increases from x to x + 1, then

$$E[Y_i|X_i = x + 1] = \beta_0 + \beta_1 x + \beta_1$$

$$-E[Y_i|X_i = x] = \beta_0 + \beta_1 x$$

$$= \beta_1$$

$$E[Y_i|X_i=x] = \beta_0 + \beta_1 x \qquad V[Y_i|X_i=x] = \sigma^2$$

- If $X_i = 0$, then $E[Y_i|X_i = 0] = \beta_0$. β_0 is the expected response when the explanatory variable is zero.
- If X_i increases from x to x + 1, then

$$E[Y_i|X_i = x + 1] = \beta_0 + \beta_1 x + \beta_1$$

$$-E[Y_i|X_i = x] = \beta_0 + \beta_1 x$$

$$= \beta_1$$

 β_1 is the expected increase in the response for each unit increase in the explanatory variable.

$$E[Y_i|X_i=x] = \beta_0 + \beta_1 x \qquad V[Y_i|X_i=x] = \sigma^2$$

- If $X_i = 0$, then $E[Y_i|X_i = 0] = \beta_0$. β_0 is the expected response when the explanatory variable is zero.
- If X_i increases from x to x + 1, then

$$E[Y_i|X_i = x + 1] = \beta_0 + \beta_1 x + \beta_1$$

$$-E[Y_i|X_i = x] = \beta_0 + \beta_1 x$$

$$= \beta_1$$

 β_1 is the expected increase in the response for each unit increase in the explanatory variable.

 \bullet σ is the standard deviation of the response for a fixed value of the explanatory variable.

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$
 $e_i \stackrel{iid}{\sim} N(0, \sigma^2)$

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$
 $e_i \stackrel{iid}{\sim} N(0, \sigma^2)$

So

$$e_i = Y_i - (\beta_0 + \beta_1 X_i)$$

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$
 $e_i \stackrel{iid}{\sim} N(0, \sigma^2)$

So

$$e_i = Y_i - (\beta_0 + \beta_1 X_i)$$

which we approximate by the residual

$$r_i = \hat{\mathbf{e}}_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i)$$

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$
 $e_i \stackrel{iid}{\sim} N(0, \sigma^2)$

So

$$e_i = Y_i - (\beta_0 + \beta_1 X_i)$$

which we approximate by the residual

$$r_i = \hat{\mathbf{e}}_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i)$$

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$
 $e_i \stackrel{iid}{\sim} N(0, \sigma^2)$

So

$$e_i = Y_i - (\beta_0 + \beta_1 X_i)$$

which we approximate by the residual

$$r_i = \hat{\mathbf{e}}_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i)$$

$$\begin{array}{ll} \hat{\beta}_1 &= SXY/SXX \\ \hat{\beta}_0 &= \overline{Y} - \hat{\beta}_1 \overline{X} \\ \hat{\sigma}^2 &= SSE/(n-2) \end{array} \quad \text{d.f.} = n-2 \end{array}$$

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$
 $e_i \stackrel{iid}{\sim} N(0, \sigma^2)$

So

$$e_i = Y_i - (\beta_0 + \beta_1 X_i)$$

which we approximate by the residual

$$r_i = \hat{\mathbf{e}}_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i)$$

$$\begin{array}{ll} \hat{\beta}_1 &= SXY/SXX \\ \hat{\beta}_0 &= \overline{Y} - \hat{\beta}_1 \overline{X} \\ \hat{\sigma}^2 &= SSE/(n-2) \end{array} \quad \text{d.f.} = n-2 \end{array}$$

$$\begin{array}{ll} SXY &= \sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y}) \\ SXX &= \sum_{i=1}^n (X_i - \overline{X})(X_i - \overline{X}) = \sum_{i=1}^n (X_i - \overline{X})^2 \\ SSE &= \sum_{i=1}^n r_i^2 \end{array}$$

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$
 $e_i \stackrel{iid}{\sim} N(0, \sigma^2)$

So

$$e_i = Y_i - (\beta_0 + \beta_1 X_i)$$

which we approximate by the residual

$$r_i = \hat{\mathbf{e}}_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i)$$

$$\begin{array}{ll} \hat{\beta}_1 &= SXY/SXX \\ \hat{\beta}_0 &= \overline{Y} - \hat{\beta}_1 \overline{X} \\ \hat{\sigma}^2 &= SSE/(n-2) \end{array} \quad \text{d.f.} = n-2 \end{array}$$

$$SXY = \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})$$

$$SXX = \sum_{i=1}^{n} (X_i - \overline{X})(X_i - \overline{X}) = \sum_{i=1}^{n} (X_i - \overline{X})^2$$

$$SSE = \sum_{i=1}^{n} r_i^2$$

$$\frac{\overline{X}}{\overline{Y}} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
$$= \frac{1}{n} \sum_{i=1}^{n} Y_i$$

$$SE(\beta_0) = \hat{\sigma}\sqrt{\frac{1}{n} + \frac{\overline{X}^2}{(n-1)s_X^2}}$$

$$d.f.=n-2$$

$$SE(\beta_0) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{(n-1)s_X^2}} \qquad d.f. = n-2$$

$$SE(\beta_1) = \hat{\sigma} \sqrt{\frac{1}{(n-1)s_X^2}} \qquad d.f. = n-2$$

$$SE(\beta_0) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{(n-1)s_X^2}}$$

$$SE(\beta_1) = \hat{\sigma} \sqrt{\frac{1}{(n-1)s_X^2}}$$

$$s_X^2 = SXX/(n-1)$$

$$d.f. = n - 2$$

$$d.f.=n-2$$

$$SE(\beta_0) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{(n-1)s_X^2}}$$

$$SE(\beta_1) = \hat{\sigma} \sqrt{\frac{1}{(n-1)s_X^2}}$$

$$d.f. = n-2$$

$$d.f. = n-2$$

$$s_X^2 = \frac{SXX}{(n-1)}$$

$$s_Y^2 = \frac{SYY}{(n-1)}$$

$$SE(\beta_0) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{(n-1)s_X^2}} \qquad d.f. = n-2$$

$$SE(\beta_1) = \hat{\sigma} \sqrt{\frac{1}{(n-1)s_X^2}} \qquad d.f. = n-2$$

$$s_X^2 = \frac{SXX}{(n-1)} \qquad d.f. = n-2$$

$$s_Y^2 = \frac{SYY}{(n-1)} \qquad SYY = \sum_{i=1}^n (Y_i - \overline{Y})^2$$

$$SE(\beta_0) = \hat{\sigma}\sqrt{\frac{1}{n} + \frac{\overline{X}^2}{(n-1)s_X^2}}$$

$$SE(\beta_1) = \hat{\sigma}\sqrt{\frac{1}{(n-1)s_X^2}}$$

$$d.f. = n-2$$

$$SE(\beta_1) = \hat{\sigma}\sqrt{\frac{1}{(n-1)s_X^2}}$$

$$d.f. = n-2$$

$$S_X^2 = \frac{SXX}{(n-1)}$$

$$S_Y^2 = \frac{SYY}{(n-1)}$$

$$SYY = \sum_{i=1}^n (Y_i - \overline{Y})^2$$

$$r_{XY} = \frac{\frac{SXY}{(n-1)}}{\frac{s_X s_Y}{(n-1)}}$$

We quantify this uncertainty using their standard errors:

$$SE(\beta_0) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{(n-1)s_X^2}}$$

$$SE(\beta_1) = \hat{\sigma} \sqrt{\frac{1}{(n-1)s_X^2}}$$

$$d.f. = n-2$$

$$SE(\beta_1) = \hat{\sigma} \sqrt{\frac{1}{(n-1)s_X^2}}$$

$$d.f. = n-2$$

$$s_X^2 = \frac{SXX}{(n-1)}$$

$$s_Y^2 = \frac{SXY}{(n-1)}$$

$$SYY = \sum_{i=1}^n (Y_i - \overline{Y})^2$$

$$r_{XY} = \frac{SXY/(n-1)}{SYSY}$$

correlation coefficient

We quantify this uncertainty using their standard errors:

$$SE(\beta_{0}) = \hat{\sigma}\sqrt{\frac{1}{n} + \frac{\overline{X}^{2}}{(n-1)s_{X}^{2}}}$$

$$SE(\beta_{1}) = \hat{\sigma}\sqrt{\frac{1}{(n-1)s_{X}^{2}}}$$

$$d.f. = n-2$$

$$SE(\beta_{1}) = \hat{\sigma}\sqrt{\frac{1}{(n-1)s_{X}^{2}}}$$

$$d.f. = n-2$$

$$s_{X}^{2} = SXX/(n-1)$$

$$s_{Y}^{2} = SYY/(n-1)$$

$$SYY = \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}$$

$$r_{XY} = \frac{SXY/(n-1)}{s_{X}}$$

$$R^{2} = r_{XY}^{2}$$

correlation coefficient

We quantify this uncertainty using their standard errors:

$$SE(\beta_0) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{(n-1)s_X^2}}$$

$$SE(\beta_1) = \hat{\sigma} \sqrt{\frac{1}{(n-1)s_X^2}}$$

$$d.f. = n-2$$

$$d.f. = n-2$$

$$s_X^2 = \frac{SXX}{(n-1)}$$

$$s_Y^2 = \frac{SYY}{(n-1)}$$

$$SYY = \sum_{i=1}^n (Y_i - \overline{Y})^2$$

$$SXY/(n-1)$$

 $r_{XY} = \frac{5XY/(n-1)}{s_X s_Y}$ $R^2 = r_{XY}^2 = \frac{SST - SSE}{s_{ST}}$

correlation coefficient

$$SE(\beta_0) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{(n-1)s_X^2}}$$

$$SE(\beta_1) = \hat{\sigma} \sqrt{\frac{1}{(n-1)s_X^2}}$$

$$d.f. = n-2$$

$$d.f. = n-2$$

$$s_X^2 = SXX/(n-1)$$

$$s_Y^2 = SYY/(n-1)$$

$$SYY = \sum_{i=1}^n (Y_i - \overline{Y})^2$$

$$r_{XY} = \frac{SXY/(n-1)}{s_X s_Y}$$

$$R^2 = r_{XY}^2$$

$$r_{XY} = \frac{SXY/(n-1)}{s_X s_Y}$$

$$SE(\beta_0) = \hat{\sigma}\sqrt{\frac{1}{n} + \frac{\overline{X}^2}{(n-1)s_X^2}} \qquad d.f. = n-2$$

$$SE(\beta_1) = \hat{\sigma}\sqrt{\frac{1}{(n-1)s_X^2}} \qquad d.f. = n-2$$

$$s_X^2 = SXX/(n-1)$$

$$s_Y^2 = SYY/(n-1)$$

$$SYY = \sum_{i=1}^n (Y_i - \overline{Y})^2$$

$$r_{XY} = \frac{SXY/(n-1)}{s_X s_Y}$$

$$R^2 = r_{XY}^2$$

$$SST = SYY = \sum_{i=1}^n (Y_i - \overline{Y})^2$$

$$correlation coefficient coefficient coefficient of determination coefficient coefficient$$

We quantify this uncertainty using their standard errors:

$$\begin{split} SE(\beta_0) &= \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{(n-1)s_X^2}} & d.f. = n-2 \\ SE(\beta_1) &= \hat{\sigma} \sqrt{\frac{1}{(n-1)s_X^2}} & d.f. = n-2 \\ s_X^2 &= SXX/(n-1) \\ s_Y^2 &= SYY/(n-1) \\ SYY &= \sum_{i=1}^n (Y_i - \overline{Y})^2 \\ r_{XY} &= \frac{SXY/(n-1)}{s_X s_Y} \\ R^2 &= r_{XY}^2 \\ SST &= SYY = \sum_{i=1}^n (Y_i - \overline{Y})^2 \\ \end{split}$$

The coefficient of determination is the percentage of the total response variation explained by the explanatory variable(s).

Pvalues and confidence interval

We can compute two-sided pvalues via

$$2P\left(t_{n-2} > \left| \frac{\hat{\beta_0}}{SE(\beta_0)} \right| \right)$$
 and $2P\left(t_{n-2} > \left| \frac{\hat{\beta_1}}{SE(\beta_1)} \right| \right)$

Pvalues and confidence interval

We can compute two-sided pvalues via

$$2P\left(t_{n-2} > \left| \frac{\hat{\beta_0}}{SE(\beta_0)} \right| \right) \quad \text{and} \quad 2P\left(t_{n-2} > \left| \frac{\hat{\beta_1}}{SE(\beta_1)} \right| \right)$$

These test the null hypothesis that the corresponding parameter is zero.

Pvalues and confidence interval

We can compute two-sided pvalues via

$$2P\left(t_{n-2} > \left| \frac{\hat{\beta_0}}{SE(\beta_0)} \right| \right) \qquad \text{and} \qquad 2P\left(t_{n-2} > \left| \frac{\hat{\beta_1}}{SE(\beta_1)} \right| \right)$$

These test the null hypothesis that the corresponding parameter is zero.

We can construct $100(1-\alpha)\%$ confidence intervals via

$$\hat{\beta}_0 \pm t_{n-2}(1-\alpha/2)SE(\beta_0)$$
 and $\hat{\beta}_1 \pm t_{n-2}(1-\alpha/2)SE(\beta_1)$

These provide ranges of the parameter consistent with the data.


```
DATA t:
```

INFILE 'telomeres.csv' DSD FIRSTOBS=2; INPUT years length;

PROC REG DATA=t;

MODEL length = years;

RUN:

The REG Procedure Model: MODEL1 Dependent Variable: length

Number of Observations Read 39 Number of Observations Used 39

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	0.22777	0.22777	8.42	0.0062
Error	37	1.00033	0.02704		
Corrected Total	38	1.22810			
Root M	ISE	0.16443	R-Square	0.1855	
Dependent Mean		1.22026	Adj R-Sq	0.1634	
Coeff	Var	13.47473			

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	95% Confiden	ce Limits
Intercept	1	1.36768	0.05721	23.91	<.0001	1.25176	1.48360
vears	1	-0.02637	0.00909	-2.90	0.0062	-0.04479	-0.00796