Question Review

ΑII

If $(1+i\sqrt{3})^9=a+ib$ then b is equal to

- \bigcirc 1
- O 256
- **O** 0
- O 93

EXPLANATIONS

Report (

42 % were correct!

$$1+i\sqrt{3}=2\left(rac{1}{2}+irac{\sqrt{3}}{2}
ight)=2\left[\cosrac{\pi}{3}+i\sinrac{\pi}{3}
ight]=2e^{i\pi/3}$$

$$\therefore (1+i\sqrt{3})^9 = \left(2e^{i\pi/3}
ight)^9 = 2^9 \cdot e^{i(3\pi)} = 2^9(\cos 3\pi + i\sin 3\pi) = -2^9$$

$$\therefore a+ib=(1+i\sqrt{3})^9=-2^9; \therefore b=0$$

$\lim_{x\to 0}\frac{\sqrt{1+x}-\sqrt{1-x}}{\sin^{-1}x}=$

- O 2
- **O** 1
- _ -2

EXPLANATIONS

<u>Report</u> (

76 % were correct!

Using L-Hopital's Rule:

$$L = \lim_{x o 0} rac{\sqrt{1+x} - \sqrt{1-x}}{\sin^{-1} x} = \lim_{x o 0} \sqrt{1-x}.\, \sqrt{1+x} \left(rac{1}{2\sqrt{1+x}} + rac{1}{2\sqrt{1-x}}
ight)$$

On simplification,

$$L=rac{1}{2}\lim_{x o 0}\left(\sqrt{1+x}+\sqrt{1-x}
ight)=1$$

A parabola passing through the point (-4,-2) has its vertex at the origin and y-axis as its axis. The latus rectum of the parabola is :

- O 6
- 0 8
- O 10
- O 12

EXPLANATIONS Report !

77 % were correct!

Let the equation of parabola is $x^2=4ay$, but $a=\dfrac{16}{-2\times 4}=-2$. Then equation is $x^2=-8y$ and latus rectum =4a=8.

The curve $f(x)=rac{1}{x\sqrt{1-x^2}}$ has:

- a local maxima at $x = 1/\sqrt{2}$ and a local minima at $x = -1/\sqrt{2}$
- \bigcirc a local maxima at $x = -1/\sqrt{2}$ and a local minima at $x = 1/\sqrt{2}$
- oneither maxima nor minina because of discontinuity
- \bigcirc f(x) is not a function

EXPLANATIONS Report (!)

23 % were correct!

$$f(x) = \frac{1}{x\sqrt{1-x^2}}$$

$$f'(x) = rac{1}{x} imes -rac{1}{2}(1-x^2)^{-3/2} imes (-2x) + rac{1}{sqrt1-x^2} imes -rac{1}{x^2}$$

$$f'(x) = rac{1}{(\sqrt{1-x^2})^3} - rac{1}{x^2\sqrt{1-x^2}}$$

For extreme values, $f^{\prime}(x)=0$

$$\Rightarrow rac{1}{\sqrt{1-x^2}(1-x^2)} = rac{1}{x^2\sqrt{1-x^2}}$$

$$\Rightarrow x^2 = 1 - x^2$$

$$\Rightarrow x^2 = 1/2$$

$$\Rightarrow x = \pm 1/\sqrt{2}$$

Also, evaluating f(x) at these values of x give, $f(-1/\sqrt{2}) = -2$ $f(1/\sqrt{2}) = 2$.

If
$$f(x)=3x-5$$
, then $f^{-1}(x)$

- $\bigcirc is \frac{1}{3x-5}$
- O Does not exist because f is not one-one
- O Does not exist because f is not onto

EXPLANATIONS Report (!)

86 % were correct!

Let
$$f(x)=y\Rightarrow x=f^{-1}(y)$$

Hence
$$f(x)=y=3x-5\Rightarrow x=rac{y+5}{3}\Rightarrow f^{-1}(y)=x=rac{y+5}{3}$$

$$\therefore f^{-1}(x) = rac{x+5}{3}$$

Also f is one-one and onto, so f^{-1} exists and is given by $f^{-1}(x)=rac{x+5}{3}$

Consider an infinite G.P. with first term a and common ratio r, its sum is 4 and the second term is 3/4, then :

$$\alpha = \frac{7}{4}, r = \frac{3}{7}$$

$$\alpha = \frac{3}{2}, r = \frac{1}{2}$$

$$\alpha = 2, r = \frac{3}{8}$$

$$a = 3, r = \frac{1}{4}$$

EXPLANATIONS Report (!)

50 % were correct!

Here
$$\frac{a}{1-r}=4$$
 and $ar=\frac{3}{4}$.

Dividing these,

$$r(1-r)=\frac{3}{16}$$

Or,
$$16r^2-16r+3=0$$

Or,
$$(4r-3)(4r-1)=0$$

$$r = \frac{1}{4}, \frac{3}{4} \text{ and } a = 3, 1$$

so
$$(a,r)=\left(3,rac{1}{4}
ight)$$
 , $\left(1,rac{3}{4}
ight)$.

The length of common chord of the circles $x^2+y^2=12$ and $x^2+y^2-4x+3y-2=0$, is

- \bigcirc $4\sqrt{2}$
- \bigcirc 5 $\sqrt{2}$
- \bigcirc $2\sqrt{2}$
- \bigcirc 6 $\sqrt{2}$

EXPLANATIONS Report (!)

41 % were correct!

The equation of common chord $\equiv S_1-S_2=0$ or 4x-3y-10=0 and centre of first circle is (0, 0). Therefore perpendicular from it on line is $p_1=\frac{10}{5}=2$ and $R_1=\sqrt{12}$

Hence, $L=2\sqrt{\left(R_1^2-p_1^2
ight)}=2\sqrt{(12-4)}=4\sqrt{2}$

If $ec{a}=ec{u}+ec{v}$ and $ec{b}=ec{u}-ec{v}$ and $ec{u}$ are unit vectors, then $|ec{a} imesec{b}|$ is:

- $\bigcirc 2\sqrt{1+(\vec{u}.\vec{v})^2}$
- $\sqrt{1+(\vec{u}.\vec{v})^2}$
- $2\sqrt{1-(\vec{u}.\vec{v})^2}$
- $\sqrt{1-(\vec{u}\cdot\vec{v})^2}$

EXPLANATIONS Report (!)

55 % were correct!

$$ert ec{a} imes ec{b} ert = ert (ec{u} + ec{v}) imes (ec{u} - ec{v}) ert \ = 2 ert ec{u} imes ec{v} ert$$

(Because the cross product of a vector with itself is a null vector and $|ec{u} imesec{v}|=|ec{v} imesec{u}|$)

so,
$$ec{a} imesec{b}ert=2ertec{u}ertertertert\sin heta \ =2\sqrt{1-\cos^2 heta} \ =2\sqrt{1-(ec{u}.\,ec{v})^2}$$

(Because $ec{u}.\,ec{v}=|ec{u}||ec{v}|\cos heta$)

Which of the following is a conjugated acid-base pair ?	
○ HCI,NaOH	
O NH4CI,NH4OH	
O H2SO4HSO-4	
○ KCN,HCN	
EXPLANATIONS	Report !
$H_2SO_4 ightharpoonup H^+ + HSO_4^-$ Note: A conjugate acid contains one more H atom and one more + charge than the base that formed it. A conjugate base contains one less H atom and one more - charge than the acid that formed it.	
Which of the following pairs are not isomeric compounds?	
Ethyl ethanoate and methyl propanoate	
Butanone and butanal	
Ethoxy propane and propoxy ethane	
Methoxy methane and ethanol	
EXPLANATIONS	Report (
41 % were correct! Both are same compounds	
Oxidation state of oxygen in ${\cal F}_2 O$ is	
O +1	
+ 2	
○ -1	
○ -2	
EXPLANATIONS	Report (!)

58 % were correct!

Oxygen shows + 2 oxidation state in ${\cal F}_2{\cal O}$.

As F is most electronegative element, it always has an O. No. =-1

Cassiterite is concentrated by

- Levigation
- Electromagnetic separation
- Floatation
- Liquifaction

EXPLANATIONS Report (!)

48 % were correct!

Cassiterite SnO_2 or tinstone - an ore of tin being non-magnetic can be separated from magnetic impurities like Fe and Mn from this method.

0.2 molar solution of formic acid is ionized 3.2%. Its ionization constant is

- O 9.6*10⁻³
- \circ 2.1*10⁻⁴
- O 1.25*10⁻⁶

EXPLANATIONS Report (!)

61 % were correct!

$$K_a = C lpha^2 = 0.2 imes \left(rac{32}{100}
ight)^2 = 2.048 imes 10^{-4}$$

The volume of 0.6 $M\,NaOH$ required to neutralise 30 cm^3 of 0.4 $M\,HCl$ is

- \bigcirc 40 cm³
- 30 cm³
- 20 cm³

○ 10 cm³

EXPLANATIONS

Report !

81 % were correct!

Normality = molarity imes basicity or acidity (for HCl)

 $N_2 = 0.4 imes 1 = 0.4 N$ basicity =1 (for NaOH acidity =1)

$$N_1=0.6 imes 1=0.6N$$

$$V_1=?$$

$$V_2=30\ cm^3$$

From the equation,

$$N_1V_1=N_2V_2$$

$$0.6 imes V_1 = 0.4 imes 30$$

$$V_1 = rac{0.4 imes 30}{0.6} = 20 \; cm^3$$

IUPAC name of $CH_2 = CH - CH(CH_3)_2$ is

- 1, 1-dimethyl-2-propene
- 3-methyl-1-butene
- 2-vinyl propane
- 1-isopropyl ethylene

EXPLANATIONS

Report !

73 % were correct!

$$\overset{1}{C}H_{2} = \overset{2}{C}H - \overset{3}{C}H - \overset{4}{C}H_{3} \ | \ CH_{3}$$

3-methylbut-1-ene

Fluorine with dilute NaOH gives

- OF₂
- 03
- \bigcirc O₂
- \bigcirc HF and O₂

EXPLANATIONS

Report !

Don't push!	
a simple sentence	
a compound sentence	
a complex sentence	
a compound-complex sentence	
PLANATIONS	<u>Report</u>
78 % were correct! Don't push! (independent clause)	
A sentence having a single independent clause is a simple sentence.	
The word "pleased" takes the prefix	
) un-	
) down-	
over-	
d is-	
They saw the accident before them.	
happen	
happening	
happens	
to happen	

2022 \circledcirc **engineeringdote**, a product of Studydote Pvt. Ltd - Online study portal