Institut für Informatik

Priv.-Doz. Dr. W. Kössler

Aufgaben zur

"Stochastik für Informatiker"

Aufg. 10)

15 Urnen von 3 unterschiedlichen Typen (z.B. Zylinder, Prisma, Kugel) sind mit schwarzen und weißen Kugeln gefüllt, wie in der folgenden Tabelle angegeben:

Typ	Anzahl	schwarze Kugeln	weiße Kugeln
I	2	10	15
II	6	8	2
III	7	10	6

- a) (2 P) Eine der Urnen wird zufällig, gleichverteilt gewählt. Daraus wird eine Kugel zufällig, gleichverteilt, gezogen. Sie ist schwarz. Wie groß ist die Wahrscheinlichkeit, daß sie aus einer Urne vom Typ I stammt?
- **b)** (2 P) Es ist die Wahrscheinlichkeit zu bestimmen, daß bei 2 Ziehungen, jeweils aus zufällig und unabhängig gewählten Urnen, beide Male eine weiße Kugel gezogen wird, wenn man die zuerst gezogene Kugel vor dem zweiten Zug zurücklegt.

Aufg. 11) (Expertensystem)

Aus medizinischen Untersuchungen sei bekannt, daß die Symptome S_1 und S_2 bei (genau) drei Krankheiten K_1, K_2 und K_3 auftreten können, und zwar mit (bedingten) Wahrscheinlichkeiten $a_{ij} = P(S_j|K_i)$, i=1,2,3,j=1,2, die in Matrixform wie folgt gegeben sind:

$$A = (a_{ij}) = \begin{pmatrix} 0.8 & 0.3 \\ 0.2 & 0.9 \\ 0.4 & 0.6 \end{pmatrix}$$

Die a-priori-Wahrscheinlichkeiten für die Krankheiten K_1 , K_2 und K_3 seien durch den Vektor $\overrightarrow{k}=(0.3,0.6,0.1)$ gegeben. Wir nehmen an, die drei Krankheiten schließen sich einander aus.

- a) (3 P) Bestimmen Sie die bedingten Wahrscheinlichkeiten $P(K_i|S_j)$, j=1,2,i=1,2,3!
- **b)** (3 P) Seien die bedingten Wahrscheinlichkeiten $P(S_1 \cap S_2 | K_i)$, i = 1, 2, 3 gegeben durch den Vektor $\overrightarrow{c} = (0.2, 0.1, 0.3)$.

Nehmen wir an, ein Patient weist Symptom S_1 , nicht aber S_2 auf. Wie groß ist die Wahrscheinlichkeit, daß er unter K_1, K_2 bzw. K_3 leidet?

Hinweis:
$$P(S_1 \cap \overline{S}_2) = P(S_1) - P(S_1 \cap S_2)$$