Représentations des groupes symétriques

Gabriel Pallier

Séminaire des étudiants, Orsay - mars 2016

Soit d un entier naturel. D'après la théorie de Frobenius, le groupe symétrique \mathfrak{S}_d admet autant de représentations irréductibles que de classes de conjuguaison – à savoir p(d), le nombre de partitions de l'entier d – mais on ne dispose pas de bijection privilégiée entre ces deux ensembles. On donne ici une énumération combinatoire des représentations irréductibles de \mathfrak{S}_d : nous montrons qu'elles peuvent être indicées par les partitions de d, via les symétriseurs 1 de Young. Pour finir, on énonce une formule de Frobenius qui exprime les caractères de ces représentations.

Ces notes suivent d'assez près le chapitre 4 de [1].

Table des matières

1		ymétriseur de Young
	1.1	Premières définitions
	1.2	Représentations irréductibles de \mathfrak{S}_d : énoncé et formule des équerres
	1.3	Exemples
2	Prei	uve du théorème 1
	2.1	Un lemme combinatoire
	2.2	Caractérisation du symétriseur de Young
	2.3	Fin de la preuve
	2.4	Représentation $V_{\lambda'}$
3		nplément : Formule de Frobenius
	3.1	Enoncé
	3.2	Application : formule des équerres

^{1.} On rencontre aussi la terminologie "symétrisateur" dans la traduction française de [2], mais cet usage semble isolé.

1 Le symétriseur de Young

1.1 Premières définitions

Diagramme de Ferrers Par convention, une partition λ de l'entier d est écrite $(\lambda_1, \ldots \lambda_s)$ où $\lambda_1 + \cdots + \lambda_s = d$ avec $\lambda_1 \geqslant \cdots \geqslant \lambda_s$ (les derniers λ_i son éventuellement nuls) et représentée graphiquement par un diagramme de Ferrers, aligné dans le coin supérieur gauche dont la i-ème ligne comporte λ_i cases. Par exemple, les diagrammes de Ferrers des partitions de d=3 sont :

$$(3)$$
 : $(2,1)$: $(1,1,1)$:

A partir d'un diagramme de Ferrers, on peut en former un nouveau, où chaque ligne correspond à une colonne du précédent. Ce nouveau diagramme correspond à la partition conjuguée λ' .

$$\lambda = (4,2,1) : \qquad \longleftrightarrow \qquad \vdots \lambda' = (3,2,1,1)$$

Les partitions sont munies de l'ordre total lexigographique : $\lambda > \mu$ si le premier $\lambda_i - \mu_i$ non nul est strictement positif.

Tableaux de Young Ce sont des diagrammes de Ferrers numérotés, plus précisément :

Définition 1. Soit λ une partition de d. Un tableau de Young de λ est la donnée d'une indexation par $\{1 \dots d\}$ des cases de son diagramme de Ferrers. On note \mathcal{T}_{λ} l'ensemble des tableaux de Young de λ .

Par exemple, un tableau de Young de (4, 2, 1) est :

Observons que, l'action tautologique de \mathfrak{S}_d sur l'ensemble $\{1\dots d\}$ détermine une action $\mathfrak{S}_d \curvearrowright \mathcal{T}_{\lambda}$, où pour tout $T \in \mathcal{T}_{\lambda}$ et $g \in \mathfrak{S}_d$ le tableau g.T contient le nombre g(i) dans la case où T contenait i. Soit T un tableau de λ . On distingue deux sous-groupes particuliers associés à T dans \mathfrak{S}_d :

- Le sous-groupe P_{λ} des éléments qui préservent les lignes de T dans l'action précédente.
- Le sous-groupe Q_{λ} des éléments qui préservent les lignes de T dans l'action précédente.

Les groupes P_{λ} et Q_{λ} dépendent du tableau T choisi. Toutefois, remplacer T par g.T revient à les remplacer par les sous-groupes $gP_{\lambda}g^{-1}$ et $gQ_{\lambda}g^{-1}$ qui leur sont respectivement conjugués.

Remarque 1. $P_{\lambda} \cap Q_{\lambda} = \{id\}$. En effet, laisser chaque nombre dans sa ligne et dans sa colonne, c'est encore fixer le contenu de chaque case.

A partir de ces deux sous-groupes, on construit deux éléments de l'algèbre de groupe $A = \mathbb{C}[\mathfrak{S}_d]$ par :

$$a_{\lambda} = \sum_{g \in P_{\lambda}} g$$
 $b_{\lambda} = \sum_{g \in Q_{\lambda}} \varepsilon(g)g$

Ces éléments engendrent des idéaux à gauche Aa_{λ} et Ab_{λ} de l'algèbre de groupe, auxquelles sont associées des représentations, induites sur \mathfrak{S}_d par des représentations de P_{λ} et Q_{λ} qui sont respectivement triviale et alternée, ainsi que l'exprime la proposition suivante :

Proposition 1. Pour tout $(p,q) \in P_{\lambda} \times Q_{\lambda}$ on a :

$$pa_{\lambda} = a_{\lambda}p = a_{\lambda} \tag{1}$$

$$\varepsilon(q)qb_{\lambda} = b_{\lambda}\varepsilon(q)q = b_{\lambda} \tag{2}$$

Preuve. C'est un calcul direct :

$$p\sum_{g\in P_{\lambda}}g=\sum_{g\in P_{\lambda}}pg=\sum_{h\in P_{\lambda}}h=a_{\lambda}$$

$$\varepsilon(q)q\sum_{g\in Q_{\lambda}}\varepsilon(g)g=\sum_{g\in Q_{\lambda}}\varepsilon(q)q\varepsilon(g)g=\sum_{h\in Q_{\lambda}}\varepsilon(q)\varepsilon(q^{-1}h)h=\sum_{h\in Q_{\lambda}}h=b_{\lambda}$$

Remarque 2. Il découle de la proposition précédente que : $a_{\lambda}^2 = |P_{\lambda}| a_{\lambda}$ et $b_{\lambda}^2 = |Q_{\lambda}| b_{\lambda}$.

Définition 2. Soit λ une partition, T un de ses tableaux de Young. Le symétriseur de Young associé à T est l'élément $c_{\lambda} = a_{\lambda}b_{\lambda}$. L'idéal à gauche de A engendré par c_{λ} est par définition :

$$V_{\lambda} := Ac_{\lambda}$$

1.2 Représentations irréductibles de \mathfrak{S}_d : énoncé et formule des équerres

Les représentations V_{λ} forment un système complet des représentations irréductibles de \mathfrak{S}_d . Plus précisément, nous avons le :

Théorème 1. Soit $d \ge 1$ un entier naturel. Pour tout λ partition de d, on définit un symmétriseur c_{λ} et une représentation V_{λ} de \mathfrak{S}_d comme dans la sous-section précédente. Alors

- 1. $c_{\lambda}^2 = n_{\lambda} c_{\lambda}$ pour un certain $n_{\lambda} \in \mathbb{N}$ non nul.
- 2. Les V_{λ} sont irréductibles
- 3. Si $\lambda \neq \mu$ alors V_{λ} et V_{μ} son non isomorphes

Remarque 3. 2. et 3. entraînent que toute représentation irréductible de \mathfrak{S}_d est de la forme V_λ . En effet, nous savons qu'il y a exactement autant de représentations irréductibles que de classes de conjuguaison, donc autant que de partitions de d.

Les nombres n_{λ} sont liées aux dimensions de V_{λ} par :

$$n_{\lambda} \dim V_{\lambda} = d! \tag{3}$$

Par ailleurs, ils admettent une interprétation combinatoire que voici. Une équerre dans un diagramme de Ferrers est la donnée de l'ensemble des cases situées soit en-dessous, soit à droite d'une case donnée. Ainsi par exemple les cases pointées du diagramme suivant forment une équerre.

Théorème 2 (Formule des équerres). n_{λ} est le produit des cardinaux des équerres du diagramme de λ .

1.3 Exemples

Exemple 1 (Représentation triviale). Soit $\lambda = (d)$ la partition à une seule part, dont un tableau est :

$$\boxed{1 \ | \ 2 \ | \ 3} \cdots \boxed{d - 1} \ d$$

On trouve $P_{\lambda} = \mathfrak{S}_d$ et $Q_{\lambda} = \{e\}$, donc $V_{(d)} = U_{(d)}$ est la représentation triviale. On peut vérifier la formule des équerres, avec $n_{\lambda} = 1 \cdot 2 \cdots d = d!$.

Exemple 2 (Représentation alternée). Soit $\lambda=(1,1,\dots 1)$ la partition en d parts. Dans ce cas $P_{\lambda}=\{e\}$ et $Q_{\lambda}=\mathfrak{S}_d$, donc $V_{(1,1,\dots 1)}=W_{(1,1,\dots 1)}$ est la représentation alternée.

Exemple 3 (Représentation standard). Déterminons la représentation de \mathfrak{S}_3 associée à la partition (2,1): On se donne le tableau

$$\begin{array}{|c|c|c|}\hline 1 & 2 \\\hline 3 & \end{array}$$

On a : $P_{\lambda}=\{e,(12)\}$ et $Q_{\lambda}=\{e,(13)\}$, puis $a_{\lambda}=e+(12)$ et $b_{\lambda}=e-(13)$; enfin

$$c_{\lambda} = e + (12) - (13) - (132)$$

Calculons Ac_{λ} : pour cela remarquons que :

$$(12)c_{\lambda} = (a_{\lambda} - e)c_{\lambda} = (|P_{\lambda}| - 1)c_{\lambda} = c_{\lambda}$$

$$(123)c_{\lambda} = (13)(12)c_{\lambda} = (13)c_{\lambda}$$

$$(13)c_{\lambda} + (23)c_{\lambda} = (13) + (123) - 1 - (23) + (23) + (132) - (123) - (12) = -c_{\lambda}$$

$$(132)c_{\lambda} = (13)(23)c_{\lambda} = (13)((13)c_{\lambda} + c_{\lambda}) = c_{\lambda} + (13)c_{\lambda}$$

Il en ressort que $V_{\lambda} = \mathbb{C}c_{\lambda} + \mathbb{C}(13)c_{\lambda}$ et que V_{λ} est la représentation standard de \mathfrak{S}_3 .

Notons qu'avec ces trois exemples, nous avons collecté toutes les représentations irréductibles de \mathfrak{S}_3 , et ainsi vérifié le théorème pour d=3: si 1 désigne sa représentation triviale et Δ sa représentation standard, on a la correspondance :

$$oldsymbol{1}: oxedsymbol{oxedsymbol{eta}} oldsymbol{\Delta}: oxedsymbol{oxedsymbol{eta}} oldsymbol{arepsilon} oldsymbol{arepsilon}: oxedsymbol{oxedsymbol{eta}}$$

On vérifie aussi la formule des équerres : dans $V_{(d)}$ et dans $V_{(1,1,\ldots 1)}$ il y a une équerre de taille k pour tout k allant de 1 à d, donc $n_{\lambda}=d!$ et $\dim V_{\lambda}=1$. Pour (2,1), on calcule : $n_{\lambda}=1\cdot 1\cdot 3$ et $\dim V_{\lambda}=6/3=2$.

Remarque 4. C'est un fait plus général (nous le démontrerons plus loin) que la représentation $V_{\lambda'}$ s'obtient en tensorisant V_{λ} par la représentation alternée ε .

2 Preuve du théorème 1

2.1 Un lemme combinatoire

L'énoncé suivant constitue l'ingrédient combinatoire de la preuve du théorème 1.

Lemme 1. Soient λ et μ deux partitions de l'entier d, T_{λ} et T_{μ} deux tableaux de Young. On suppose que :

- $-\lambda \geqslant \mu$
- Aucune paire de nombres $\{i,k\} \subset \{1,\ldots d\}$ n'apparaît à la fois dans la même colonne de T_{μ} et dans la même ligne de T_{λ}

Alors $\lambda = \mu$, et il existe $p \in P_{\lambda}$, $q \in Q_{\lambda}$ tels que

$$T_{\lambda} = pq.T_{\mu}$$

Remarque 5. De tels p et q sont nécessairement uniques, car on a vu plus haut que $P_{\lambda} \cap Q_{\lambda}$ est triviale, et d'autre part $\mathfrak{S}_d \curvearrowright \mathcal{T}_{\lambda}$ est libre.

Démonstration. La preuve est algorithmique : on va construire p et q graduellement. $\lambda \geqslant \mu$ entraîne en particulier $\lambda_1 \geqslant \mu_1$. La première ligne de T_λ comporte λ_1 nombre ; d'après la seconde hypothèse ceux-ci doivent se situer dans des colonnes distinctes de T_μ . Donc $\mu_1 \geqslant \lambda_1$. De plus, il existe $q_1' \in Q_\mu$ tel que les contenu des premières lignes de $q_1'.T\mu$ et T_λ sont exactement les mêmes (mêmes nombres, mais pas à la même place). Le même raisonnement permet d'établir que $\lambda_2 = \mu_2$ et qu'il existe $q_2' \in Q_\mu$ tel que $q_2'q_1'.T_\mu$ possède les mêmes nombres que T_λ dans ses première et deuxième ligne. Finalement, si s est le nombre de parts de λ , on trouve $q_1' \dots q_s'$ telles que $q_s'q_{s-1}' \dots q_1'.T_\mu$ a les mêmes contenus de lignes que T_λ (avec un ordre éventuellement différent à chaque fois). Finalement, il existe $p \in P_\lambda$ tel que $T_\lambda = pq.T_\mu$.

On déduit de ce lemme une première conséquence :

Proposition 2. Soient λ et μ deux partitions de d, a_{λ} et b_{μ} associés à des tableaux de Young de λ et μ . Alors si $\lambda > \mu$, on a:

$$a_{\lambda}Ab_{\mu}=(0)$$

Démonstration. On se ramène à montrer l'identité suivante : pour tout $g \in \mathfrak{S}_d$

$$a_{\lambda}gb_{\mu}g^{-1} = 0 \tag{4}$$

En effet, si $a = \sum \alpha_g g$ est un élément quelconque de A, alors on aura

$$a_{\lambda}ab_{\mu} = a_{\lambda} \sum_{g \in \mathfrak{S}_d} \alpha_g gb_{\mu} = a_{\lambda} \sum_{g \in \mathfrak{S}_d} gb_{\mu}g^{-1}\alpha_g g \stackrel{(4)}{=} 0$$

En fait, pour atteindre (4) pour tout g il suffit de montrer $a_{\lambda}b_{\mu}=0$, car alors changer le tableau de Young T_mu en $g.T_{\mu}$ donne l'identité pour g quelconque. Par hypothèse $\lambda>\mu$, donc d'après la contraposée du lemme combinatoire, il existe i et $k,i\neq k$ situés dans une même ligne de $T\lambda$ et une même colonne de $T\mu$. Soit t la transposition qui les échange : t=(i,k). Alors $t\in P_{\lambda}\cap Q_{\mu}$, d'où (proposition 1) :

$$a_{\lambda} = a_{\lambda}t$$

$$b_{\mu} = \varepsilon(t)tb_{\mu} = -tb_{\mu}$$

Donc $a_{\lambda}b_{\mu}=a_{\lambda}t(-tb_{\mu})=-a_{\lambda}b_{\mu}$, puisque $t^2=e$. On a ainsi $a_{\lambda}b_{\mu}=0$ comme souhaité, ce qui conclut la preuve.

2.2 Caractérisation du symétriseur de Young

Il découle de la proposition 1 que c_{λ} vérifie, pour tout $(p,q) \in P_{\lambda} \times Q_{\lambda}$, $pc_{\lambda}\varepsilon(q)q = c_{\lambda}$. En fait, lui et ses multiples scalaires sont les seuls à vérifier cette identité :

Lemme 2. Soit $c \in A$. Alors $c \in \mathbb{C}c_{\lambda}$ si et seulement si pour tout $(p,q) \in P_{\lambda} \times Q_{\lambda}$, on a

$$pc\varepsilon(q)q = c \tag{5}$$

Démonstration. Le sens direct a déjà été démontré. Réciproquement soit $c \in A$ qui vérifie (5) pour tout $(p,q) \in P_{\lambda} \times Q_{\lambda}$. Décomposons c sous la forme $\sum \gamma_{q} g$ dans A. Alors

$$\sum_{g \in \mathfrak{S}_d} \varepsilon(q) \gamma_g pgq = \sum_{g \in G} \gamma_g g \tag{6}$$

Comme $P_{\lambda} \cap Q_{\lambda} = \{e\}$, l'application $P_{\lambda} \times Q_{\lambda}$ qui à (p,q) associe pq est injective. L'équation précédente entraı̂ne donc

$$\varepsilon(q)\gamma_e = \gamma_{pq}$$

pour tout $(p,q) \in P_\lambda \times Q_\lambda$. Ceci est aussi vérifié par c_λ ; on en déduit que c coı̈ncide avec un multiple de c_λ sur l'ensemble $P_\lambda Q_\lambda = \{h \in \mathfrak{S}_d : h = pq, (p,q) \in P_\lambda \times Q_\lambda\}$. Puisque c_λ est supporté sur $P_\lambda Q_\lambda$, il reste à montrer que $\gamma_{g_0} = 0$ quand $g_0 \in \mathfrak{S}_d \setminus P_\lambda Q_\lambda$. Soit donc un tel g_0 . D'après le lemme combinatoire, il existe j et $k, j \neq k$, dans une même ligne de T_λ et une même colonne de $g_0 T_\lambda$. Soit t la transposition qui les échange : t = (j,k). Alors $t \in P_\lambda \cap (g_0 Q_\lambda q_0^{-1})$. Posons p = t et $q = g_0^{-1} t g_0$, et évaluons (6) avec p et q: cela donne $pg_0q = tg_0g_0^{-1}tg_0 = g_0$, mais alors $\varepsilon(q)\gamma_{g_0} = \gamma_{g_0}$, or $\varepsilon(q) = \varepsilon(t) = -1$, donc γ_{g_0} est bien nul.

Proposition 3. Pour tout $x \in A$, $c_{\lambda}xc_{\lambda} \in \mathbb{C}c_{\lambda}$. En particulier, $c_{\lambda}^2 = n_{\lambda}c_{\lambda}$ pour un certain $n_{\lambda} \in \mathbb{C}$.

Démonstration. Pour tout $x \in A$, $c = c_{\lambda}xc_{\lambda}$ vérifie l'équation (5). D'après le lemme 2, c'est un multiple scalaire de c_{λ} . En particulier, avec x = e on obtient que $c_{\lambda}^2 \in \mathbb{C}c_{\lambda}$.

2.3 Fin de la preuve

- (a) V_{λ} est irréductible : Donnons-nous $W \subseteq V_{\lambda}$ une sous-représentation, soit un idéal à gauche de A contenu dans V_{λ} . D'après la dernière proposition, on a que $c_{\lambda}W \subseteq c_{\lambda}V_{\lambda} = \mathbb{C}c_{\lambda}$. De deux choses l'une :
 - Ou bien $c_{\lambda}W = \mathbb{C}c_{\lambda}$; mais alors vu que W est un idéal à gauche, $V_{\lambda} = Ac_{\lambda} \subseteq W$, et $W = V_{\lambda}$.
 - Ou bien $c_{\lambda}W=0$. En particulier $W^2\subseteq V_{\lambda}W=Ac_{\lambda}W=0$. D'après le lemme de complète réductibilité de Maschke, il existe un projecteur \mathfrak{S}_d -équivariant de A sur W, qui est représenté dans $\operatorname{End}_A(A)$ comme la multiplication à droite par un idempotent $\pi\in A$. L'annulation $W^2=0$ entraîne alors $0=\pi^2=\pi$, d'où W=0.

En particulier, le dernier argument appliqué à $W = V_{\lambda}$ indique que $c_{\lambda}V_{\lambda} = \mathbb{C}c_{\lambda}$.

(b) Quand $\lambda > \mu$, V_{λ} et V_{μ} sont non isomorphes: D'une part $c_{\lambda}V_{\lambda} = \mathbb{C}c_{\lambda}$ d'après ce qui précède, d'autre part $c_{\lambda}V_{\mu} = c_{\lambda}Ac_{\mu} \subseteq a_{\lambda}Ab_{\mu} = (0)$ d'après la proposition 2. Donc V_{λ} et V_{μ} ne peuvent pas être isomorphes.

(c) $c_{\lambda}^2 = n_{\lambda} c_{\lambda}$ avec $n_{\lambda} \dim V = d!$: On a déjà établi l'existence d'un tel $n_{\lambda} \in C$. Soit γ la multiplication à droite par c_{λ} , vue comme endomorphisme de A. Alors quitte à compléter une base de V_{λ} par une base de

$$\text{Tr}\gamma = d! = n_{\lambda} \dim V_{\lambda}$$

2.4 Représentation $V_{\lambda'}$

Nous sommes à présent en mesure de démontrer une affirmation faite à la fin de 1.3 :

Proposition 4 ([1], exercice 4.4). *Soit* λ *une partition de d. Alors*

$$V_{\lambda'} = V_{\lambda} \otimes \varepsilon \tag{7}$$

Pour démontrer ceci, commençons par établir un

Lemme 3. Les représentations $V_{\lambda} = Aa_{\lambda}b_{\lambda}$ et $Ab_{\lambda}a_{\lambda}$ sont isomorphes.

Démonstration. On a deux applications obtenues par multiplication à droite :

$$r_{a_{\lambda}}: V_{\lambda} \to Ab_{\lambda}a_{\lambda}$$

 $r_{b_{\lambda}}: Ab_{\lambda}a_{\lambda} \to V_{\lambda}$

qui sont des homomorphismes de A-module. De plus, d'après le théorème 1, pour tout $x=yc_\lambda\in V$ on a

$$r_{b_{\lambda}}r_{a_{\lambda}}x = yc_{\lambda}c_{\lambda} = n_{\lambda}yc_{\lambda} = n_{\lambda}x$$

avec $n_{\lambda} \neq 0$. Montrons de même que $d_{\lambda} = b_{\lambda}a_{\lambda}$ est multiple scalaire d'un idempotent : en reprenant la preuve du lemme 2, on obtient que si d vérifie $\varepsilon(q)qdp=d$ pour tout $(p,q)\in P_{\lambda}\times Q_{\lambda}$ alors $d\in\mathbb{C}d_{\lambda}$. En particulier $d_{\lambda}^2=m_{\lambda}c_{\lambda}$ avec $m_{\lambda}\in\mathbb{C}$. Maintenant, si l'on pose $V_{\lambda}'=Ad_{\lambda}$ alors $d_{\lambda}V_{\lambda}'$ ne peut pas être nul, sinon on aurait $V_{\lambda}'^2=0$ puis $V_{\lambda}'=0$ par l'argument à la fin de 2.3(b). Donc d_{λ}/m_{λ} est un idempotent ; il s'ensuit que $r_{a_{\lambda}}r_{b_{\lambda}}$ et $r_{b_{\lambda}}r_{a_{\lambda}}$ sont des isomorphismes, donc finalement $V_{\lambda}\simeq V'$.

Finalement, si l'on choisit pour λ' le tableau de Young symétrique de celui utilisé pour λ , alors $P_{\lambda'} = Q_{\lambda}$ et $Q_{\lambda'} = P_{\lambda}$, donc :

$$b_{\lambda}a_{\lambda} = \left(\sum_{q \in Q_{\lambda}} \varepsilon(q)q\right) \left(\sum_{p \in P_{\lambda}} p\right)$$
$$= \sum_{(p,q) \in P_{\lambda} \times Q_{\lambda}} \varepsilon(q)qp$$
$$= \sum_{(q',p') \in Q_{\lambda'} \times P_{\lambda'}} \varepsilon(p')p'q'$$

Tandis que pour comparaison, en faisant porter les sommes sur $P_{\lambda'} \times Q_{\lambda'}$:

$$c_{\lambda'} = a_{\lambda'}b_{\lambda'} = \sum_{(p,q)} \varepsilon(q)pq = \sum_{(p,q)} \varepsilon(p)\varepsilon(pq)pq$$

Finalement, soient $\rho: A \to \operatorname{End}(Ab_{\lambda}a_{\lambda})$ et $\rho': A \to \operatorname{End}(V_{\lambda'})$ les morphismes structurels. D'après le calcul précédent il y a une bijection linéaire

$$\psi: Ab_{\lambda}a_{\lambda} \to V_{\lambda'}$$

$$\sum_{g \in \mathfrak{S}_d} \alpha_g g \mapsto \sum_{g \in \mathfrak{S}_d} \varepsilon(g)\alpha_g g$$

Pour tout $g \in \mathfrak{S}_d$ on a alors :

$$\rho'(g)\left(\psi\sum_{h\in\mathfrak{S}_d}\alpha_h h\right) = g\sum_{h\in\mathfrak{S}_d}\alpha_h h = \varepsilon(g)\sum_{h\in\mathfrak{S}_d}\varepsilon(gh)\alpha_h gh = \varepsilon(g)\psi\left(\rho(g)\sum_{h\in\mathfrak{S}_d}\alpha_h h\right)$$

Autrement dit, $\psi^{-1}\rho'(g)\psi=\varepsilon\rho(g)$, d'où $V_{\lambda'}\simeq V_{\lambda}\otimes\varepsilon$.

3 Complément : Formule de Frobenius

3.1 Enoncé

On décrit ici une formule exprimant le caractère χ_{λ} de la représentation V_{λ} .

Les classes de conjuguaisons de \mathfrak{S}_d sont indicées par les d-uples $\mathbf{i}=(i_1,\ldots,i_d)$ d'entiers naturels tel que $\sum_{\alpha} \alpha i_{\alpha} = d$; on note $C_{\mathbf{i}}$ la classe de conjuguaison de \mathfrak{S}_d correspondante, formée par les permutations possédant i_{α} cycles de longueur α . On cherche à exprimer les $\chi_{\lambda}(C_{\mathbf{i}})$.

Soit $k \geqslant \lambda_1'$ (c'est-à-dire plus grand que le nombre de parts de λ). On considère les polynômes de $\mathbb{C}[x_1, \dots x_k]$ suivants :

$$P_j(x_1, \dots x_k) = x_1^j + \dots + x_k^j$$
$$\Delta(x_1, \dots x_k) = \prod_{i < j} (x_i - x_j)$$

Enfin, soit $(\ell_i)_{1\leqslant i\leqslant k}$ définie à partir de λ par :

$$\ell_i := \lambda_i + k - i$$

La suite (λ_i) étant décroissante, la suite (ℓ_i) l'est strictement. La correspondance $(\lambda_i) \leftrightarrow (\ell_i)$ est bijective. Pour tout $P \in \mathbb{C}[x_1, \dots x_k]$ on note $P_{(j_1, \dots j_k)}$ le coefficient du monôme $x_1^{j_1} \cdots x_k^{j_k}$ dans P.

Théorème 3 (Formule de Frobenius). Avec les notations précédentes, le caractère de χ_{λ} vérifie :

$$\chi_{\lambda}(C_{\mathbf{i}}) = \left[\Delta(x_1, \dots x_k) \prod_{j=1}^d P_j(x_1, \dots x_k)^{i_j}\right]_{(\ell_1, \dots \ell_k)}$$
(8)

3.2 Application : formule des équerres

Les dimensions des représentations irréductibles se lisent dans la première colonne des tables de caractère : l'évaluation sur la classe $\{e\}$. La formule de Frobenius permet d'exprimer $\dim V_{\lambda} = \chi_{\lambda}(C_{(d)})$ (le neutre de \mathfrak{S}_d , c'est d 1-cycles). Ainsi

$$\dim V_{\lambda} = \left[\Delta(x_1, \dots x_k)(x_1 + \dots + x_k)^d \right]_{(\ell_1, \dots, \ell_k)}$$

Développons Δ : cela donne

$$\Delta(x_1, \dots x_k) = \begin{vmatrix} 1 & x_k & \dots & x_k^{k-1} \\ \vdots & \vdots & & \vdots \\ 1 & x_1 & \dots & x_1^{k-1} \end{vmatrix} = \sum_{\sigma \in \mathfrak{S}_k} \varepsilon(\sigma) x_k^{\sigma(1)-1} \cdots x_1^{\sigma(k)-1}$$

La raison pour laquelle nous développons le déterminant de Vandermonde dans le sens allant de x_k à x_1 apparaîtra plus clairement dans la suite.

D'autre part

$$P_1^d = \sum_{r_i \ge 0, r_1 + \dots + r_k = d} \frac{d!}{r_1!, \dots, r_k!} x_1^{r_1} \cdots x_k^{r_k}$$

Finalement

$$\begin{split} \left[\Delta(x_1, \dots x_k) (x_1 + \dots + x_k)^d \right]_{(\ell_1, \dots \ell_k)} &= \sum_{r_i, s_i \geqslant 0, \, r_i + s_i = \ell_i} \left[\Delta(x_1, \dots x_k) \right]_{(s_1, \dots s_k)} \left[P_1^d \right]_{(r_1, \dots r_k)} \\ &= \sum_{\sigma \in S} \frac{\varepsilon(\sigma) d!}{(\ell_1 - \sigma(k) + 1)! \cdots (\ell_k - \sigma(1) + 1)!} \end{split}$$

où S est l'ensemble des $\sigma \in \mathfrak{S}_k$ telles que tous les termes $\ell_{k-i+1} - \sigma(i) + 1$ apparaissant aux dénominateurs dans la somme précédente sont $\geqslant 0$.

Références

- [1] W. Fulton, J. Harris, *Representation theory, A First Course*, Readings in Mathematics, GTM **129**, Springer Verlag, 1991.
- [2] M.A. Najmark, A.I. Stern (trad. du russe par E. Hewitt et A. Hewitt), *Theory of Group Representations*, Grundlehren der math. Wissenschaften **246**, Springer Verlag, 1982.
- [3] J.P. Serre, Représentations linéaires des groupes finis, Hermann, 1998.