Algebraic Geometry 1 Week 3 Exercise Sheet Solutions

So Murata

2024/2025 Winter Semester - Uni Bonn

Exercise 15

Let us consider a short exact sequence

$$0 \to \underline{Z} \stackrel{2\pi}{\to} \mathscr{O}_{S^1} \stackrel{\exp}{\to} \mathscr{O}_{S^1}^* \to 1.$$

Since each $s: S^1 \to \mathbb{Z}$ is continuous, $\bigcup_n \in \mathbb{Z} s^{-1}(n)$ is an open cover of S^1 and each of them are disjoint. By the connectedness of S^1 we conclude that s is constant on S^1 . In general, $s \in \underline{Z}(U)$ is constant on each connected component in U. From the last exercise of the first week exercise sheet we know that Coker $f_* \exp = 0$, therefore by the definition of the exact sequence we conclude that $R^1 f_* \underline{Z} = 0$.

For any connected open set U in S^1 , $f^{-1}(U) = (\frac{1}{2}U) \cup (\frac{1}{2}U + \pi)$. Thus it consists of two disjoint connected components. When taking direct limits, we can restrict the indexing open sets to be connected. Similarly from the 6th exercise, we conclude that

$$(f_*\underline{Z})_x = (2\pi i \mathbb{Z})^{\pi_0((\frac{1}{2}U)\cup(\frac{1}{2}U+\pi))} \cong \mathbb{Z} \oplus \mathbb{Z}.$$

We conclude that $f_*\underline{Z}$ is isomorphic to $\underline{\mathbb{Z}}\oplus\underline{\mathbb{Z}}$. Let $s\in\underline{\mathbb{Z}}\oplus\underline{\mathbb{Z}}(U)$ then we conclude that there is connected component V in U such that $s(V)=\{(n,m)\}$, We assign $s\to f_*s$ such that

$$s(\frac{1}{2}V) = \{n\}, \quad s(\frac{1}{2}V + \pi) = \{m\}.$$

This is clearly a group homomorphism which is bijective by $s \to t$, $t(V) = \{(n,m)\}, s(\frac{1}{2}V) = \{n\}, \quad s(\frac{1}{2}V+\pi) = \{m\}.$

Exercise 16

We know that $Sh(\lbrace x\rbrace) = (\mathbf{Ab})$. And for such inclusion $i:\lbrace x\rbrace \to X$,

$$i_{x*}(G)(U) = \begin{cases} G & (x \in U), \\ \emptyset & (x \notin U). \end{cases}$$

Given an exact sequence of groups

$$0 \to G \to H \to J \stackrel{\pi}{\to} 0.$$

We know that i_{x*} is left-exact. Therefore, we will examine if i_{x*} sends $\pi:H\to J$ to an epimorphism. Indeed

$$i_{x*}(\pi)(U) = \begin{cases} \pi & (x \in U), \\ * & (x \notin U). \end{cases}$$

Therefore, for each $U \subset X$ we have $\operatorname{Coker}(i_{x*}(\pi)(U)) = 0$. Thus i_{x*} is exact.