Report 2 – Operations Research

Willian de Souza Soares – 2014.1.08.034March 9, 2020

Abstract

A simple presentation of the solutions and thoughts about Container's problem, using CPLEX and Java.

1 Finding the optimal values

The majority of the instances were easy and fast to find it's optimal value. On the instances $\theta\theta$ and θ 1, the optimal value were found both in Integer and Real models. In contrast, only the Real optimal value was found on the θ 2 instance.

1.1 The problem with Instance 02

One of the problems with the instance 02 it's the size. Whensoever the instances $\theta\theta$ and $\theta 1$ has, respectively, 10 and 50 items, the instance $\theta 2$ has 500 items, with mixed profit, weight and volume.

Although the size contribute to increase the complexity of the items, the major factor it's the b value, which indicates the maximum number of times that same item can be put in a container. This increase the complexity by many magnitudes, slowing down the algorithm, specially on the Integer solution, which the CPLEX solver couldn't find the optimal solution in a reasonable time.

1.2 The solution

The simplest solution was taken: A time limit to find the optimal solution was set. An arbitrary value of 600 seconds (10 minutes) was set. Since the gap of the optimal solution was under 1%, it was an acceptable value, given the nature of the problem.

Table 1: Results for a Integer model

Instance	Profit	Gap	Optimal	Time Limit
00	42.92491516324943	0%	Yes	N/A
01	91.3135124472273	0%	Yes	N/A
02	508.26966170662337	0.61%	No	600s

Table 2: Results for a Real model						
Instance	Profit	Gap	Optimal	Time Limit		
00	49.571868896306285	0%	Yes	N/A		
01	95.89502739170803	0%	Yes	N/A		
02	511.45921634552246	0%	Yes	N/A		

2 Conclusions

The problem that once was rather hard to find a solution, now it's simple with the mathematical modeling of *CPLEX*. Given the circumstances, the difference between an sub-optimal value that is found in minutes is better than a optimal one.