. Perform the following operations using Python on the Air quality and Heart Diseases data sets

a. Data cleaning b. Data integration c. Data transformation d. Error correcting e. Data model building

```
In [5]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import random as rd
```

In [6]: ds=pd.read_csv("heart.csv")
ds

O	١u	ıtı	16	1:
_	_		L	л.

:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	ta
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	
	298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	
	299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	
	300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	
	301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	
	302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	

303 rows × 14 columns

4

In [7]: df=pd.read_csv("data.csv",encoding="ISO=8859-1")
df

C:\Users\Swanand\AppData\Local\Temp\ipykernel_22200\3203580699.py:1: Dtype Warning: Columns (0) have mixed types. Specify dtype option on import or s et low_memory=False.

df=pd.read_csv("data.csv",encoding="ISO=8859-1")

\sim			г —	
11		-	. /	
v	u			- 1
			_	_

]:		stn_code	sampling_date	state	location	agency	type	so2	no2
	0	150.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	4.8	17.4
	1	151.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	3.1	7.0
	2	152.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.2	28.5
	3	150.0	March - M031990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.3	14.7
	4	151.0	March - M031990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	4.7	7.5
	435737	SAMP	24-12-15	West Bengal	ULUBERIA	West Bengal State Pollution Control Board	RIRUO	22.0	50.0
	435738	SAMP	29-12-15	West Bengal	ULUBERIA	West Bengal State Pollution Control Board	RIRUO	20.0	46.0
	435739	NaN	NaN	andaman- and-nicobar- islands	NaN	NaN	NaN	NaN	NaN
	435740	NaN	NaN	Lakshadweep	NaN	NaN	NaN	NaN	NaN
	435741	NaN	NaN	Tripura	NaN	NaN	NaN	NaN	NaN

435742 rows × 13 columns

#Data Cleaning

ds.head() In [8]:

_			
α	44-1		
w	a t	ıo	Ι.

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	targ
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	
3	56	1	1	120	236	0	1	178	0	8.0	2	0	2	
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	
4														•

In [9]: df.head()

Out[9]:

	stn_code	sampling_date	state	location	agency	type	so2	no2	rspm	spm
0	150.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	4.8	17.4	NaN	NaN
1	151.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	3.1	7.0	NaN	NaN
2	152.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.2	28.5	NaN	NaN
3	150.0	March - M031990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.3	14.7	NaN	NaN
4	151.0	March - M031990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	4.7	7.5	NaN	NaN
4										•

In [10]: ds.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 303 entries, 0 to 302 Data columns (total 14 columns):

				, .
#	Column	Non-	-Null Count	Dtype
0	age	303	non-null	int64
1	sex	303	non-null	int64
2	ср	303	non-null	int64
3	trestbps	303	non-null	int64
4	chol	303	non-null	int64
5	fbs	303	non-null	int64
6	restecg	303	non-null	int64
7	thalach	303	non-null	int64
8	exang	303	non-null	int64
9	oldpeak	303	non-null	float64
10	slope	303	non-null	int64
11	ca	303	non-null	int64
12	thal	303	non-null	int64
13	target	303	non-null	int64
	67	. / . \	/ \	

dtypes: float64(1), int64(13)

memory usage: 33.3 KB

```
In [11]:
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 435742 entries, 0 to 435741
         Data columns (total 13 columns):
              Column
                                            Non-Null Count
                                                             Dtype
              ____
                                            -----
                                                             ----
              stn_code
          0
                                            291665 non-null object
          1
              sampling_date
                                            435739 non-null object
          2
                                            435742 non-null object
              state
          3
              location
                                            435739 non-null object
                                            286261 non-null object
          4
              agency
          5
                                            430349 non-null object
              type
          6
                                            401096 non-null float64
              so2
                                            419509 non-null float64
          7
              no2
                                            395520 non-null float64
          8
              rspm
          9
              spm
                                            198355 non-null float64
              location_monitoring_station 408251 non-null object
          10
          11
              pm2_5
                                            9314 non-null
                                                             float64
          12
              date
                                            435735 non-null object
         dtypes: float64(5), object(8)
         memory usage: 43.2+ MB
In [12]: ds.isnull().sum()
Out[12]: age
                     0
         sex
                     0
                     0
         ср
         trestbps
         chol
                     0
         fbs
                     0
                     0
         restecg
         thalach
                     0
                     0
         exang
         oldpeak
                     0
         slope
                     0
         ca
         thal
                     0
         target
         dtype: int64
In [13]: df.isnull().sum()
Out[13]: stn_code
                                         144077
         sampling_date
                                              3
                                              0
         state
                                              3
         location
                                         149481
         agency
                                           5393
         type
         so2
                                          34646
         no2
                                          16233
         rspm
                                          40222
                                         237387
         location_monitoring_station
                                          27491
         pm2_5
                                         426428
                                              7
         date
         dtype: int64
```

```
In [14]:
           ds.dropna()
Out[14]:
                 age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal ta
              0
                  63
                             3
                                          233
                                                          0
                                                                150
                                                                          0
                                                                                 2.3
                                                                                          0
                                                                                              0
                                                                                                    1
                         1
                                    145
                             2
                                                                                                   2
              1
                   37
                         1
                                    130
                                          250
                                                 0
                                                          1
                                                                187
                                                                          0
                                                                                 3.5
                                                                                          0
                                                                                              0
              2
                   41
                             1
                                    130
                                          204
                                                 0
                                                          0
                                                                172
                                                                          0
                                                                                  1.4
                                                                                          2
                                                                                              0
                                                                                                   2
                         0
              3
                                          236
                                                          1
                                                                178
                                                                          0
                                                                                 8.0
                                                                                          2
                                                                                                   2
                   56
                         1
                             1
                                    120
                                                 0
                                                                                              0
                                                                                          2
                                                                                                   2
                             0
                                                          1
                                                                163
              4
                   57
                         0
                                    120
                                          354
                                                 0
                                                                          1
                                                                                 0.6
                                                                                              0
                                      ...
                                                                  ...
                                                                         ...
                                                                                  ...
              ...
                                            ...
                                                                                          ...
                                                                                                   ...
                   ...
                        ...
            298
                                    140
                                          241
                                                          1
                                                                123
                                                                          1
                   57
                         0
                             0
                                                 0
                                                                                 0.2
                                                                                          1
                                                                                              0
                                                                                                   3
            299
                  45
                             3
                                    110
                                          264
                                                 0
                                                          1
                                                                132
                                                                          0
                                                                                  1.2
                                                                                          1
                                                                                              0
                                                                                                   3
                         1
            300
                  68
                             0
                                    144
                                          193
                                                          1
                                                                141
                                                                          0
                                                                                 3.4
                                                                                          1
                                                                                              2
                                                                                                   3
                         1
                                                 1
            301
                   57
                             0
                                    130
                                          131
                                                 0
                                                          1
                                                                 115
                                                                          1
                                                                                  1.2
                                                                                          1
                                                                                              1
                                                                                                   3
                         1
                                    130
                                          236
                                                          0
                                                                          0
                                                                                 0.0
                                                                                                   2
            302
                  57
                         0
                             1
                                                 0
                                                                174
                                                                                          1
                                                                                              1
           303 rows × 14 columns
In [15]:
           df.dropna()
Out[15]:
              stn_code sampling_date state location agency type so2 no2
                                                                                rspm spm
                                                                                             location mo
In [16]:
          #Data integration
           ds1=ds.iloc[[1,3,5,4,22,43,54,67,7,8,9,50,10,11]]
           ds2=df.loc[111:999,['state', 'location', 'so2', 'rspm']]
```

In [18]: ds1

Out[18]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	tar
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	
3	56	1	1	120	236	0	1	178	0	8.0	2	0	2	
5	57	1	0	140	192	0	1	148	0	0.4	1	0	1	
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	
22	42	1	0	140	226	0	1	178	0	0.0	2	0	2	
43	53	0	0	130	264	0	0	143	0	0.4	1	0	2	
54	63	0	2	135	252	0	0	172	0	0.0	2	0	2	
67	45	0	1	130	234	0	0	175	0	0.6	1	0	2	
7	44	1	1	120	263	0	1	173	0	0.0	2	0	3	
8	52	1	2	172	199	1	1	162	0	0.5	2	0	3	
9	57	1	2	150	168	0	1	174	0	1.6	2	0	2	
50	51	0	2	130	256	0	0	149	0	0.5	2	0	2	
10	54	1	0	140	239	0	1	160	0	1.2	2	0	2	
11	48	0	2	130	275	0	1	139	0	0.2	2	0	2	
4														•

In [19]: ds2

Out[19]:

	state	location	so2	rspm
111	Andhra Pradesh	Hyderabad	4.9	NaN
112	Andhra Pradesh	Vishakhapatnam	NaN	NaN
113	Andhra Pradesh	Vishakhapatnam	11.2	NaN
114	Andhra Pradesh	Vishakhapatnam	4.5	NaN
115	Andhra Pradesh	Hyderabad	6.2	NaN
995	Andhra Pradesh	Hyderabad	2.8	NaN
996	Andhra Pradesh	Hyderabad	5.0	NaN
997	Andhra Pradesh	Hyderabad	5.5	NaN
998	Andhra Pradesh	Hyderabad	5.8	NaN
999	Andhra Pradesh	Hyderabad	5.9	NaN

889 rows × 4 columns

In [20]: ds_integration=pd.concat([ds2,ds1])
ds_integration

Out[20]:

	state	location	so2	rspm	age	sex	ср	trestbps	chol	fbs	restecg	t
111	Andhra Pradesh	Hyderabad	4.9	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
112	Andhra Pradesh	Vishakhapatnam	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
113	Andhra Pradesh	Vishakhapatnam	11.2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
114	Andhra Pradesh	Vishakhapatnam	4.5	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
115	Andhra Pradesh	Hyderabad	6.2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
8	NaN	NaN	NaN	NaN	52.0	1.0	2.0	172.0	199.0	1.0	1.0	
9	NaN	NaN	NaN	NaN	57.0	1.0	2.0	150.0	168.0	0.0	1.0	
50	NaN	NaN	NaN	NaN	51.0	0.0	2.0	130.0	256.0	0.0	0.0	
10	NaN	NaN	NaN	NaN	54.0	1.0	0.0	140.0	239.0	0.0	1.0	
11	NaN	NaN	NaN	NaN	48.0	0.0	2.0	130.0	275.0	0.0	1.0	
		_										

903 rows × 18 columns

→

#Data Transformation

In [21]: ds_integration.transpose()
 df.drop(columns = "so2")

Out[21]:

	stn_code	sampling_date	state	location	agency	type	no2	rspm
0	150.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	17.4	NaN
1	151.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	7.0	NaN
2	152.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	28.5	NaN
3	150.0	March - M031990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	14.7	NaN
4	151.0	March - M031990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	7.5	NaN
435737	SAMP	24-12-15	West Bengal	ULUBERIA	West Bengal State Pollution Control Board	RIRUO	50.0	143.0
435738	SAMP	29-12-15	West Bengal	ULUBERIA	West Bengal State Pollution Control Board	RIRUO	46.0	171.0
435739	NaN	NaN	andaman- and-nicobar- islands	NaN	NaN	NaN	NaN	NaN
435740	NaN	NaN	Lakshadweep	NaN	NaN	NaN	NaN	NaN
435741	NaN	NaN	Tripura	NaN	NaN	NaN	NaN	NaN
435742	rows × 12	columns						
400742		33.311110						>

Error correction

In [22]: df.melt()

Out[22]:

	variable	value
0	stn_code	150.0
1	stn_code	151.0
2	stn_code	152.0
3	stn_code	150.0
4	stn_code	151.0
5664641	date	2015-12-24
5664642	date	2015-12-29
5664643	date	NaN
5664644	date	NaN
5664645	date	NaN

5664646 rows × 2 columns

In [23]: df_merged=pd.concat([df,ds])
df_merged

Out[23]:

	stn_code	sampling_date	state	location	agency	type	so2	no2	rspm	sţ
0	150.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	4.8	17.4	NaN	N
1	151.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	3.1	7.0	NaN	N
2	152.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.2	28.5	NaN	N
3	150.0	March - M031990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.3	14.7	NaN	N
4	151.0	March - M031990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	4.7	7.5	NaN	N:
298	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
299	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
300	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
301	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
302	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N

436045 rows × 27 columns

In [24]: df['stn_code'].unique()

```
Out[24]: array([150.0, 151.0, 152.0, 95.0, 202.0, 203.0, 232.0, 233.0, 234.0,
                 241.0, 365.0, 393.0, 394.0, 371.0, 387.0, 388.0, nan, 582.0, 583.0,
                 581.0, 466.0, 577.0, 580.0, 468.0, 465.0, 389.0, 462.0, 469.0,
                 467.0, 585.0, 579.0, 470.0, 578.0, 748.0, 742.0, 750.0, 745.0,
                 749.0, 755.0, 743.0, 740.0, 746.0, 753.0, 757.0, 758.0, 756.0,
                 751.0, 739.0, 584.0, 752.0, 741.0, 787.0, 788.0, 193.0, 194.0,
                 195.0, 218.0, 217.0, 242.0, 520.0, 542.0, 566.0, 538.0, 539.0,
                 603.0, 602.0, 519.0, 596.0, 541.0, 587.0, 595.0, 597.0, 604.0,
                 607.0, 567.0, 536.0, 594.0, 586.0, 605.0, 537.0, 46.0, 45.0, 44.0,
                 104.0, 171.0, 172.0, 173.0, 174.0, 210.0, 211.0, 284.0, 106.0,
                 107.0, 108.0, 263.0, 264.0, 463.0, 464.0, 249.0, 364.0, 407.0,
                 65.0, 67.0, 245.0, 368.0, 223.0, 447.0, 669.0, 235.0, 558.0, 115.0,
                 116.0, 114.0, 560.0, '560', '60', '59', '58', '57', '56', '55',
                 '144', '145', '146', '531', '345', '36', '37', '246', '327', '435',
                 '633', '634', '632', '630', '628', '631', '629', '780', '775', '774', '776', '777', '778', '781', '49', '47', '50', '48', '51'
                  '23', '22', '21', '100', '101', '102', '103', '97', '99', '153',
                  '154', '155', '189', '190', '220', '221', '252', '253', '256',
                 '257', '247', '248', '319', '367', '347', '374', '333', '334', '813', '814', '815', 'SAMP', '42', '43', '196', '275', '330', '331', '390', '414', '34', '35', '117', '118', '132', '119', '268',
                        '339', '449', '564', '563', '461', '530', '565'
                                                                            '670'
                         '665', '667', '668', '666', '794', '795', '184', '482',
                  '671',
                 '507', '44', '46', '332', '402', '351', '382', 615.0, 351.0, 382.0,
                 332.0, 612.0, 611.0, 402.0, 614.0, 41.0, 39.0, 40.0, 77.0, 78.0,
                 79.0, 80.0, 81.0, 404.0, 405.0, 406.0, 457.0, 598.0, 460.0, 674.0,
                 673.0, 432.0, 459.0, 458.0, 431.0, 488.0, 328.0, 684.0, 672.0,
                 679.0, 675.0, 683.0, 676.0, 677.0, 680.0, 685.0, 678.0, 29.0, 30.0,
                 31.0, 32.0, 33.0, 105.0, 147.0, 148.0, 149.0, 187.0, 188.0, 185.0,
                 186.0, 181.0, 179.0, 180.0, 182.0, 311.0, 618.0, 617.0, 338.0,
                 562.0, 346.0, 621.0, 620.0, 361.0, 360.0, 359.0, 623.0, 419.0,
                 357.0, 358.0, 619.0, 624.0, 622.0, 546.0, 82.0, 83.0, 84.0, 66.0,
                 91.0, 130.0, 129.0, 131.0, 126.0, 128.0, 127.0, 125.0, 123.0,
                 124.0, 122.0, 198.0, 199.0, 200.0, 201.0, 222.0, 248.0, 247.0,
                 525.0, 524.0, 523.0, 479.0, 478.0, 246.0, 532.0, 343.0, 342.0,
                 515.0, 514.0, 516.0, 527.0, 526.0, 528.0, 529.0, 796.0, 797.0,
                 798.0, 799.0, 800.0, 801.0, 802.0, 803.0, 804.0, 53.0, 52.0, 54.0,
                 170.0, 167.0, 166.0, 165.0, 133.0, 137.0, 136.0, 135.0, 134.0,
                 94.0, 138.0, 169.0, 168.0, 175.0, 213.0, 214.0, 230.0, 254.0,
                 255.0, 267.0, 269.0, 270.0, 259.0, 282.0, 266.0, 281.0, 283.0,
                 265.0, 287.0, 288.0, 289.0, 290.0, 280.0, 299.0, 300.0, 304.0,
                 305.0, 303.0, 312.0, 313.0, 314.0, 381.0, 379.0, 349.0, 547.0,
                 548.0, 549.0, 511.0, 512.0, 513.0, 649.0, 396.0, 640.0, 638.0,
                 639.0, 644.0, 645.0, 508.0, 509.0, 510.0, 641.0, 642.0, 643.0,
                 489.0, 490.0, 569.0, 570.0, 571.0, 491.0, 492.0, 493.0, 494.0,
                 495.0, 496.0, 572.0, 573.0, 576.0, 647.0, 648.0, 700.0, 701.0,
                 646.0, 707.0, 706.0, 703.0, 705.0, 704.0, 710.0, 708.0, 574.0,
                 575.0, 702.0, 445.0, 711.0, 120.0, 121.0, 340.0, 568.0, 588.0,
                 608.0, 699.0, 698.0, 782.0, 450.0, 451.0, 452.0, 738.0, 737.0,
                 731.0, 732.0, 734.0, 733.0, 735.0, 736.0, 317.0, 318.0, 448.0,
                 610.0, 609.0, 70.0, 68.0, 69.0, 226.0, 227.0, 231.0, 229.0, 228.0,
                 322.0, 370.0, 428.0, 429.0, 424.0, 423.0, 426.0, 425.0, 427.0,
                 471.0, 688.0, 687.0, 686.0, 689.0, 690.0, 697.0, 696.0, 695.0,
                 694.0, 691.0, 692.0, 693.0, 552.0, 816.0, 817.0, 818.0, 819.0,
                 64.0, 93.0, 92.0, 337.0, 784.0, 785.0, 786.0, 63.0, 62.0, 61.0,
                 76.0, 176.0, 177.0, 178.0, 244.0, 301.0, 302.0, 335.0, 487.0,
                 486.0, 506.0, 504.0, 505.0, 483.0, 353.0, 485.0, 484.0, 422.0,
                 420.0, 421.0, 590.0, 600.0, 599.0, 392.0, 355.0, 789.0, 790.0,
                 791.0, 792.0, 16.0, 17.0, 20.0, 18.0, 19.0, 158.0, 157.0, 156.0,
                 219.0, 243.0, 250.0, 273.0, 279.0, 291.0, 296.0, 297.0, 298.0,
                 272.0, 274.0, 293.0, 294.0, 295.0, 325.0, 326.0, 372.0, 373.0,
```

```
376.0, 408.0, 410.0, 409.0, 413.0, 411.0, 412.0, 320.0, 321.0,
38.0, 71.0, 72.0, 73.0, 74.0, 75.0, 161.0, 160.0, 159.0, 205.0,
206.0, 207.0, 10001.0, 10002.0, 10003.0, 20001.0, 20005.0, 20006.0,
30001.0, 30003.0, 30004.0, 239.0, 240.0, 237.0, 238.0, 260.0,
261.0, 306.0, 307.0, 308.0, 309.0, 375.0, 366.0, 769.0, 770.0,
771.0, 772.0, 773.0, 764.0, 765.0, 766.0, 767.0, 762.0, 763.0,
760.0, 761.0, 759.0, 768.0, 744.0, 754.0, 1.0, 7.0, 2.0, 3.0, 4.0,
6.0, 5.0, 90.0, 109.0, 110.0, 89.0, 113.0, 112.0, 85.0, 141.0,
142.0, 143.0, 111.0, 140.0, 139.0, 98.0, 87.0, 86.0, 192.0, 191.0,
209.0, 208.0, 212.0, 215.0, 224.0, 225.0, 258.0, 216.0, 278.0,
276.0, 277.0, 391.0, 395.0, 362.0, 323.0, 324.0, 369.0, 378.0,
399.0, 400.0, 401.0, 403.0, 377.0, 397.0, 398.0, 554.0, 555.0,
517.0, 518.0, 534.0, 535.0, 550.0, 551.0, 553.0, 415.0, 416.0,
417.0, 714.0, 715.0, 729.0, 728.0, 730.0, 721.0, 722.0, 723.0,
439.0, '534', '535', '109', '113', '377', '397', '398', '724',
'725', '550', '551', '712', '713', '403', '378', '718', '719', '720', '716', '717', '727', '726', '362', '553', '555', '554',
'6', '714', '715', '139', '140', '258', '369', '730', '729', '728'
'212', '98', '86', '391', '395', '723', '722', '721', '1', '417',
'416', '415', '323', '324', '399', '400', '401', '141', '517', '518', '805', '806', '807', '89', '90', '637', '625', '635', '627',
'636', '626', '13', '14', '15', '8', '9', '10', '11', '164', '163', '162', '383', '384', '385', '386', '593', '592', '655', '653', '654', '591', '663', '664', '474', '473', '475', '472', '476', '477', '463', '4663', '4661', '4671', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4663', '4665'
'477', '662', '660', '661', '657', '659', '656', '658', '652',
'650', '651', '348'], dtype=object)
```

```
In [25]: df.stn_code.value_counts()
Out[25]: 193.0
                   1428
         519.0
                   1280
         708.0
                   1273
         541.0
                   1270
         710.0
                   1269
         560.0
                      2
         224.0
                      1
         209.0
                      1
         207.0
                      1
         275
         Name: stn_code, Length: 803, dtype: int64
In [27]: | from sklearn import linear_model ,metrics
         X=ds[["age"]]
         Y=ds[["thal"]]
In [28]: from sklearn.model selection import train test split
         X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.2,random_s
In [29]: len(X_train)
Out[29]: 242
In [30]: len(X_test)
Out[30]: 61
```

```
In [31]:
         ds.shape
Out[31]: (303, 14)
In [32]:
         reg=linear_model.LinearRegression()
In [33]: print(X_train)
               age
         62
                52
         127
               67
         111
               57
         287
               57
         108
               50
               . . .
         203
               68
         255
               45
         72
               29
         235
                51
         37
               54
         [242 rows x 1 columns]
In [34]: |model=reg.fit(X_train,Y_train)
         r_sq=reg.score(X_train,Y_train)
In [35]: print("determination coefficient :",r_sq)
         determination coefficient: 0.005160903314535115
In [36]: print("intercept:",model.intercept_)
         intercept: [2.0284109]
In [37]: print("slope:", model.coef_)
         slope: [[0.00478833]]
In [38]: Y_pred=model.predict(X_test)
```

In [39]: print('predicted response :',Y_pred,sep='\n')

predicted response :

- [[2.3252874]
 - [2.29655741]
 - [2.25825077]
 - [2.31571074]

 - [2.26782743]
 - [2.33007573]
 - [2.29655741]
 - [2.24867411]
 - [2.31571074]

 - [2.21515579]
 - [2.34444072]
 - [2.35880571]
 - [2.30613407]
 - [2.33486406]
 - [2.2630391]
 - [2.30134574]
 - [2.19121414]
 - [2.33007573]
 - [2.23430912]
 - [2.31092241]
 - [2.25825077]
 - [2.35401738]

 - [2.28698075]
 - [2.23909745]
 - [2.22473245]
 - [2.21036746]
 - [2.30613407]

 - [2.22473245]
 - [2.27261576]
 - [2.28698075]
 - [2.19600247]
 - [2.2630391]
 - [2.28219242]
 - [2.30134574]
 - [2.26782743]
 - [2.27261576]
 - [2.34444072]
 - [2.34922905]
 - [2.22473245]
 - [2.28219242]
 - [2.33007573]
 - [2.30134574]
 - [2.30134574] [2.29655741]

 - [2.33007573] [2.32049907]
 - [2.29176908]
 - [2.30134574]

 - [2.21994412]
 - [2.33486406]
 - [2.27740409]
 - [2.26782743]
 - [2.24388578]
 - [2.30613407]
 - [2.30613407]
 - [2.28698075]
 - [2.33007573]
 - [2.30134574]
 - [2.21036746]

[2.30134574]
[2.33486406]]

In []: