			RM EXAMINATION cember, 2017)
	Subj	ect Code: BCS 201	Subject: Discrete Mathematics
	Time	: 3 Hours	Maximum Marke: 60
	Note	: Q1 is compulsory. Attempt one question	n each from the Units I, II, III & IV.
	Q1.		
	(a)	Prove or disprove the relation R on the	(2x10=20) set of all integers $y = x^2$ is reflexive or not. Where $(x,y) \in R$.
	(b	How many integers between 1 and 1000	1000 have the sum of their digits equal to 15?
	(c)	Define m-ary tree.	ood have the sum of their digits equal to 15?
		Prove by mathematical induction that n	c = 2º for n = N
	(e)	Prove that the number of edges in a bina	artite graph with n vertices is at most n ² /4.
	(f)	List the properties of lattices.	it title graph with h vertices is at most n-/4.
	(9)	Write down a truth table to show that ~	/- V - V
	(h)	How Dovetailing is used to find the dark	(p * q) is equivalent to (~p) ^(~q).
	(i)	How Dovetailing is used to find the dept Define Bipartite graph.	i or a treer
			· Proposition in the second se
	(1)	Prove or disprove that $(p \wedge \overline{q}) \vee (\overline{p \wedge \overline{q}})$ i	s tautology.
			UNIT-I
	Q2.		(5,5)
	(a)	Solve $y_{k+2} - 16y_k = 0$, if $y0 = 1$ and $y_1 = 2$.	
		On the set of all 2×2 real matrices, defin-	
		a ₁₁ a ₁₂ _¥ o ₁₁ o ₁₂	iff $a_{11}a_{12}a_{21}a_{22} = b_{11}b_{12}b_{21}b_{22}$.
		a ₂₁ a ₂₂ b ₂₁ b ₂₂	411412421422 - 611612621622.
		answer.	symmetric, anti-symmetric, and/or transitive. Justify you
	Q3.	dilawei.	
		Let P be an equivalence relation on set	(5,5
	(a)	{[a]: a ∈ X } is a partition of set X.	X, for each a \in X, let [a] = {x \in X: xRa}, then show that T
	(h)		where X is the set of all square matrices of order n and o
	(0)		vinere X is the set of all square matrices of order n and o
		the matrix multiplication operation.	
			UNIT-II
-	Q4.		(5,5
	(a)	How many strings of three distinct upper	ercase letters are there that have no two adjacent letter
		that are adjacent in the alphabet? (e.g.	BIG is correct, but HIT and RED are not.)
	(b)	Confirm or disprove that the prop	positional logic $[\{p \to (q \lor r)\} \land (\overline{q})] \to (p \to r)$ is
		contradiction.	(d) (1) (d) (b) (1) (e)
	Q5.	PERSON STATEMENT WHEN SHEET ENDE	ir.
		Identify extreme elements in the following	ng Posets
	(4)	i. The divisors of 60, ordered by div	
	(h)		the like the subsets of {0, 1, 2}
	(0)	the shape of the dia	the divisors of 59. Is this poset totally ordered? How doe
		the shape of the diagram relate to the pr	ime factorization of 59? Explain.
			HNIT III
	Q6.		UNIT-III (5.5
		Find a recurrence relation for the	(5,5
	(4)	white and blue chins such that	r of ways to make a pile of n chips using garnet, gold, red
		white and blue chips such that no two go	old chips are come together.

(b) Construct the disjunctive normal form of the proposition: $1-\Lambda(p \leftarrow q)$ Q7. (a) Suppose x is a real number. Consider the statement If $x^2 = 4$, then x=2(5,5) Construct the converse, the inverse, and the contrapositive. Determine the truth or falsity of the four statements: the original statement, the converse, the inverse, and the contrapositive. (b) What is Defuzzification? Explain the rules of defuzzification. UNIT-IV Q8. (a) Give an example of a connected graph which has neither Euler circuit and nor Hamiltonian circuit. Under what condition does complete graph K_n has (i) Euler circuit

(ii) Hamiltonian circuit

(b) If G is a connected planar graph with e edges, v vertices and r be the number of regions in a planar representation of G, then prove that r = e - v + 2. (a) Let δ and Δ denote the minimum and the maximum degrees of the vertices of a graph G=(V,E)with |V|=p and |E|=q. Show that $\delta \leq 2q/p \leq \Delta$ (b) Solve the following LPP using simplex algorithm. Max Z = $12x_1 + 6x_2 + 4x_3$ s. t. $4x_1 + 2x_2 + x_3 \le 25$ $2x_1 + 3x_2 + 3x_3 \le 50$ $x_1 + 3x_2 + x_3 \le 45$ $x_1, x_2, x_3 \ge 0$

Enrollment	No.

END TERM EXAMINATION (December, 2018)

Subject Code: BCS 201	Subject: Discrete Mathematic
Time: 3 Hours	Maximum Marks: 60
Note: Attempt all questions internal choice are gi	iven.
Q1.	
(a) What is Lagrange's theorem with respect to	algebraic system?
(b) Explain	algebraic system? (5x4=20)
(i) Equivalence class with example.	
(ii) Partition of a set with example.	
(b) What is "argument"? When it is valid? Expla	in with example.
(c) What is Ring? When it is called Ring with Zer	ro divisors?
Q2.	(10)
the Hasse diagram for m=64 and find out ==	set of divisors of m ordered by divisibility. Draw
the Hasse diagram for m=64 and find out mi	egers modulo m. Find out whether Z_m is group or
not under the operation addition & multiplic	regers modulo m. Find out whether Z _m is group or
OR	
Q3. Write short note on	(10)
(a) Graph Isomorphism & Homeomorphism	Ton Market Barton foor terration on
(b) Planner Graph & Bipartite Graph	
24.	
	ets closed under union and intersection. Find out
(C,U,Ω) is a lattice or not?	ets closed under union and intersection. Find out
	el it using graph coloring problem. What will be
the chromatic number for this problem?	to daming graphi coloring problem. What will be
OR	
Q5. What is fuzzy set? Explain with example, how to	find the addition, subtraction and cross product
of two fuzzy sets. Find out α -cut set of the given	In fuzzy set where α =0.4 and the set is \bar{N} ={0.7/x +
0.4/y + 0.2/z + 0.1/t + 0.9/u + 1/m + 0.35/w.	(10)
Q6. Explain the following	
(i) Integral Domain and Field	(10)
(ii) Normal Fuzzy set	
OR	
27. Define what are conditional, converse, inverse a	nd contrapositive logical statements? What are
quatifiers and how they can be used with resp	pect to propositional calculus? Explain all with
example.	(10)
Q8. Explain the following.	(10)
(i) Bounded Lattice And Compler	mented Lattice
(ii) Eularian Tour and Hamiltonian	tour
OR	
Q9. Explain the following.	
	(10)
(i) Poset Vs Toset with example	
(ii) Binary tree traversal tack :	

/Dlanes		
(Please write v	our Enrollment	Number

Enrollment	No		

Subj	ject Code:< BCS 203 >	Subject: < Discrete Structures >		
Time	e: 1 Hour 15 minutes	Maxin	num Marks: 30	
Note	e: Q. 1 is compulsory. Attempt any one qu	estion from the rest.		
			/F#2 4F	
Q1			(5*3=15	
	(a) Construct the truth table of the compound proposition $(p - > \sim q) \land (\sim p < > \sim q)$ (b) Write the preorder, post order and inorder of the tree given below.			
	root 1 (c) Let (Z, *) be an algebraic structure, w	15 15 16 17 10 11 13 14 here Z is the set of integers and the operat that (Z, *) is a semi group. Is (Z, *) a monoid		
	answer.			
22		not? Justify your answer using logical state	(7.5+7.5= 15	
		only if it is operating accurately.		
	ii. If the computer is operating accurately iii. The kernel is not functioning or the co iv. If the computer is not in working state v. The computer is not in an interrupt state	omputer is in an interrupt state. e, then it is in an interrupt state. ate.		
	ii. If the computer is operating accurately iii. The kernel is not functioning or the co iv. If the computer is not in working state v. The computer is not in an interrupt state	y, then the kernel is functioning. Imputer is in an interrupt state. It is	and cost of	
23	iii. If the computer is operating accurately iii. The kernel is not functioning or the coiv. If the computer is not in working state v. The computer is not in an interrupt sta (b)Draw all possible spanning trees of Gr graph G using Kruskal's algorithm. 4 (a) Determine whether the set (Z, +, *) v	y, then the kernel is functioning, omputer is in an interrupt state. e, then it is in an interrupt state. ate.	(7.5+7.5= 1.1	
23	ii. If the computer is operating accurately iii. The kernel is not functioning or the cc iv. If the computer is not in working state v. The computer is not in an interrupt sta (b)Draw all possible spanning trees of Gr graph G using Kruskal's algorithm. 4 (a) Determine whether the set (Z, +, *) v not.	y, then the kernel is functioning, omputer is in an interrupt state, e, then it is in an interrupt state. stee. aph G and find the minimal spanning tree is the stee of the s	7.5+7.5= 1: ation is a ring o	

DISCRETE STRUCTURES (END-TERM)

(a)

- (I) Find the inverse of the function f: $R \rightarrow R$, where f(x) = x+3
- (ii) Use pigeonhole principal to show that in any set of eleven integers, there are two integers whose difference in divisible by 10.
- (b) In a pollution study of 1500 rivers, the following data were reported: 520 rivers were polluted because of Sulphur compounds, 335 were polluted by phosphates, 425 were polluted by crude oil, 100 were polluted by Sulphur and phosphates, 150 polluted by both phosphates and crude oil and 28 were polluted by Sulphur compounds, phosphates and crude oil. Using Venn diagram find out how many rivers are not polluted.
- (c) For the tree below, write preorder, in-order and post-order traversal

(a)

- (i) Using Mathematical Induction prove that 5^{2n} 2^{5n} is divisible by 7.
- (ii) For the partial order represented by the Hasse diagram find out:

- 1. Find the maximal elements
- 2. Find the minimal elements
- 3. Is there a greatest element?
- 4. Is there a least element?
- 5. Find all upper bounds of {a, b, c}
- 6. Find all least upper bound of {a, b, c}. if it exists.
- 7. Find all lower bounds of {f, g, j}
- 8. Find the greatest lower bound of {f, g, h}. if it exists

(b) Find out whether the set F of all real numbers of the type a+ $\sqrt{2}b$ where a and b are rational is a Group under addition and multiplication or not.