ZILFIMIAN

Regularization/R (Q7L8)

30% (6/20)

1. In Poisson regression...

- (A) The asymptotic distribution of the maximum likelihood estimates is multivariate normal.
- (B) The distribution of the maximum likelihood estimates is multivariate normal.
- The asymptotic distribution of the maximum likelihood estimates is multivariate Poisson distribution.
- D I do not know

✓ 2. In the case of intercept-only model

- A The mean of the dependent variable equals the exponential value of intercept
- B The mean of the dependent variable equals the intercept
- (c) The mean of the dependent variable equals 0
- D I do not know

3. In(lambda) = 0.6 - 0.2* female [lamda = the average number of articles] Note: e^(-0.2)=0.78

- A One unit increase in female brings a 0.2 decrease in ln(lambda).
- (B) Being female decreases the average number of articles by 0.78 percent
- (c) Being female decreases the average number of articles by 22%
- D I do not know

× 4. In the multiple linear regression, we assume that...

- (A) The number of observations is much larger than the number of variables (n>>p)
- (B) The number of observations is slightly larger than the number of variables (n>p)
- (C) The number of observations equals than the number of variables (n=p)
- (n<p) The number of observations is lees than the number of variables (n<p)
- E It is not important
- (F) I do not know

Elena Chilingaryan Page 1 of 5

×	5.	The way of solving the problem of a large number of variables is Subset Selection & Shrinkage (Regularization)
	(B)	Shrinkage (Regularization) & Maximum Likelihood estimation
	\overline{C}	Dimension Reduction & OLS estimation
		I do not know
	E	The absence of the right answer
×	6. (A)	The bias of an estimator (e.g. z^{-}) equalsHint: the OLS coefficients are unbias :) $E(z^{-}) - z$
	B	$E(z^2) - [E(z)]^2$
	(C)	$[E(z^2) - E(z)]^2$
	D	E(z^2)
	E	I do not know
×		The main idea of regularization is
	A	To introduce a small amount of bias in order to have less variance.
	(B)	To introduce a small amount of variance in order to have less bias.
	(c)	To introduce a small amount of variance and bias in order to have less bias.
	(D)	I do not know
×	8.	With which function we can show regularization in R
	(A)	glmnet()
	(B)	regular()
	C	lm()
	D	glm()
	E	I do not know
×	9.	How the tune of any parametr can be made
	(A)	using Cross validation
	B	It is impossible
	\bigcirc	I do not now
	D	using larger sample
	E	only having population

Elena Chilingaryan Page 2 of 5

the combination of L1 and L2 regularization the combination of L2 and L3 regularization is independent from other types of refularization I do not know not a type of regularization **X** 11. Regularization is used only for Poisson Regression Linear Regression Logistic Regression any regression I do not know Regularization can solve the problem of 12. heteroscedasticity multicollinearity autocorrelation I do not know As a result of regularization we will have smaller slope than in case of OLS larger slope than in case of OLS the slope remains the same I do not know **X** 14. The ridge coefficient estimates shrink towards zero when lambda increases when lambda decreases when lambda = 0 I do not know

X 10.

Elastic Net is

Elena Chilingaryan Page 3 of 5

/		Which one can shrink the slope all the way to 0?
		Lasso
	\sim	Ridge
	\sim	Regression
	(D)	I do not know
/	16.	When lambda = 0, we have
	(A)	Ridge
	B	Lasso
	C	EL
	D	Regression
	E	I do not know
×	17	When alpha = 0, we have
•		Ridge
	\simeq	Lasso
	\bigcirc	EL .
		Regression
	\sim	I do not know
×	18. knov	variables need to be incorporated in the model according to domain wledge
	This	statement is true for
	(A)	Ridge
	B	Lasso
	C	EL
	D	Regression
	E	I do not know
/	19.	Which function can help to perform cross-validation for regularization in R?
	A	cv.glmnet()
	B	cros_val()
	(c)	glmnet(method = "cv)
		I do not know

Elena Chilingaryan Page 4 of 5

20. Why we use set.seed() in R?

To have universal result

(B) To perform better result

C To have random models

I do not know

Elena Chilingaryan Page 5 of 5