Képletgyűjtemény

Fontosabb képletek a középiskolai matematikaanyagból. https://math.bme.hu/bevmat/kepletek.pdf Osszeállította: Nagy Ilona

Műveletek törtekkel

Összeadás:
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

Kivonás:
$$\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$$

Szorzás:
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

Osztás:
$$\frac{a}{b} : \frac{c}{d} = \frac{ad}{bc}$$

Nevezetes azonosságok

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a-b)(a+b) = a^2 - b^2$$

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

$$a^3 - b^3 = (a-b)(a^2 + ab + b^2)$$

A hatványozás és gyökvonás azonosságai

Egész kitevőjű hatványok $(n \in \mathbb{Z}^+)$:

• Ha
$$a \in \mathbb{R}$$
: $a^n = \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ tényező}}, \qquad a^1 = a$

• Ha
$$a \in \mathbb{R} \setminus \{0\}$$
: $a^{-1} = \frac{1}{a}$, $a^{-n} = \frac{1}{a^n} = \left(\frac{1}{a}\right)^n$, $a^0 = 1$

Racionális kitevőjű hatványok $(a, b \in \mathbb{R}_0^+; k, n \in \mathbb{Z}^+; k \geq 2)$:

•
$$\sqrt[k]{a} = b \iff a = b^k$$

•
$$a^{\frac{1}{k}} = \sqrt[k]{a}$$
, $a^{\frac{n}{k}} = \sqrt[k]{a^n}$, $a^{-\frac{n}{k}} = \frac{1}{\sqrt[k]{a^n}}$ $(a > 0)$

Megjegyzés: Ha k=2n+1 $(n\in\mathbb{Z}^+)$, akkor a<0 esetén is értelmezhető $\sqrt[k]{a}$.

A hatványozás azonosságai $(a, b \in \mathbb{R} \setminus \{0\}; x, y \in \mathbb{Z}; \text{ vagy } a, b \in \mathbb{R}^+; x, y \in \mathbb{Q} \text{ vagy } \mathbb{R})$:

1.
$$a^x \cdot a^y = a^{x+y}$$
 2. $\frac{a^x}{a^y} = a^{x-y}$ 3. $(a^x)^y = a^{x \cdot y}$

$$2. \ \frac{a^x}{a^y} = a^{x-y}$$

$$3. \ (a^x)^y = a^{x \cdot y}$$

4.
$$(a \cdot b)^x = a^x \cdot b^x$$
 5. $\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$

$$5. \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

A gyökvonás azonosságai $(a, b \in \mathbb{R}_0^+; k, m, n \in \mathbb{Z}^+; k, m \ge 2)$:

$$1. \sqrt[k]{a \cdot b} = \sqrt[k]{a} \cdot \sqrt[k]{b}$$

$$2. \ \sqrt[k]{\frac{a}{b}} = \frac{\sqrt[k]{a}}{\sqrt[k]{b}} \quad (b \neq 0)$$

3.
$$\sqrt[k]{\sqrt[m]{a}} = \sqrt[m]{\sqrt[k]{a}} = \sqrt[k-m]{a}$$
 4. $(\sqrt[k]{a})^n = \sqrt[k]{a^n} = a^{\frac{n}{k}}$

4.
$$(\sqrt[k]{a})^n = \sqrt[k]{a^n} = a$$

1

A logaritmus azonosságai

Definíció:
$$\log_a b = c \Longleftrightarrow a^c = b$$
 $(a, b \in \mathbb{R}^+, a \neq 1, c \in \mathbb{R})$

Következmény:

•
$$\log_a(a^c) = c$$
, $a^{\log_a b} = b$

•
$$\log_a 1 = 0$$
, $\log_a a = 1$, $\log_a \left(\frac{1}{a}\right) = \log_a (a^{-1}) = -1$

Azonosságok $(a, b, x, y \in \mathbb{R}^+, a \neq 1, b \neq 1, c \in \mathbb{R})$:

$$1. \log_a(xy) = \log_a x + \log_a y$$

1.
$$\log_a(xy) = \log_a x + \log_a y$$
 2. $\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$

$$3. \log_a(x^c) = c \cdot \log_a x$$

$$4. \log_b x = \frac{\log_a x}{\log_a b}$$

Néhány következmény:

$$\bullet \quad \log_a b = \frac{\log_b b}{\log_b a} = \frac{1}{\log_b a}$$

•
$$\log_{\frac{1}{a}} b = \frac{\log_a b}{\log_a \left(\frac{1}{a}\right)} = -\log_a b$$

•
$$\log_a\left(\frac{1}{b}\right) = \log_a\left(b^{-1}\right) = -\log_a b$$

•
$$\log_a\left(\frac{1}{b}\right) = \log_a\left(b^{-1}\right) = -\log_a b$$
 • $\log_{\frac{1}{a}}\left(\frac{1}{b}\right) = \frac{\log_a\left(\frac{1}{b}\right)}{\log_a\left(\frac{1}{a}\right)} = \frac{-\log_a b}{-1} = \log_a b$

Természetes alapú logaritmus: $\ln x = \log_e x$, ahol $e \approx 2.7182818...$ az Euler-féle szám. 10-es alapú logaritmus: $\lg x = \log_{10} x$.

Számtani sorozatok

Definíció:
$$a_n = a_{n-1} + d$$
 (d: differencia vagy különbség)

Az
$$n$$
-edik tag:
$$a_n = a_1 + (n-1)d$$

Az első
$$n$$
 tag összege:
$$S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$$

Számtaniközép-tulajdonság:
$$a_n = \frac{a_{n-k} + a_{n+k}}{2}$$
 $(n > k)$

Mértani sorozatok

Definíció:
$$a_n = a_{n-1} \cdot q$$
 (q: kvóciens vagy hányados)

Az
$$n$$
-edik tag: $a_n = a_1 \cdot q^{n-1}$

Az első
$$n$$
 tag összege: $S_n = n \cdot a_1$, ha $q = 1$; $S_n = a_1 \cdot \frac{q^n - 1}{q - 1}$, ha $q \neq 1$

Mértaniközép-tulajdonság:
$$|a_n| = \sqrt{a_{n-k} \cdot a_{n+k}}$$
 $(n > k)$

Másodfokú egyenlet

Kanonikus alak:
$$ax^2 + bx + c = 0$$
, ahol $a \neq 0$

Megoldóképlet:
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Diszkrimináns:
$$D = b^2 - 4ac$$

Gyöktényezős alak:
$$a(x-x_1)(x-x_2)=0$$

$$D>0 \implies$$
két különböző valós gyök

A gyökök száma:
$$D=0 \implies \mbox{egy}$$
 (kétszeres) valós gyök

$$D < 0 \implies \text{nincs valós gyök (két komplex gyök)}$$

Az $f(x) = ax^2 + bx + c (a \neq 0)$ függvény grafikonja az a főegyüttható és a D diszkrimináns előjelétől függően:

Gyökök és együtthatók közötti összefüggések:

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$$

$$a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right) = a\left(x^{2} - (x_{1} + x_{2})x + x_{1}x_{2}\right) \implies x_{1} + x_{2} = -\frac{b}{a}, \quad x_{1}x_{2} = \frac{c}{a}$$

Szélsőérték meghatározása teljes négyzetté alakítással:

$$f(x) = ax^2 + bx + c = a\left(x^2 + \frac{b}{a}x\right) + c = a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2}\right) + c = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a} + c$$

 $\implies f$ -nek szélsőértéke van az $x = -\frac{b}{2a} = \frac{x_1 + x_2}{2}$ helyen, ami a > 0 esetén minimum, a < 0 esetén maximum.

Abszolútérték-függvény

$$\sqrt{x^2} = |x| = \begin{cases} x, & \text{ha } x \ge 0\\ -x, & \text{ha } x < 0 \end{cases}$$

Hatványfüggvények

$$f(x) = x^n, n = 2, 4, 6, ...$$

 $D_f = \mathbb{R}, R_f = [0, \infty)$

$$f(x) = x^n, n = 1, 3, 5, ...$$

 $D_f = R_f = \mathbb{R}$

$$f(x) = x^{\frac{1}{n}}, n = 2, 4, 6, \dots$$

 $D_f = R_f = [0, \infty)$

$$f(x) = x^{\frac{1}{n}}, n = 3, 5, 7, \dots$$

 $D_f = R_f = \mathbb{R}$

$$f(x) = x^{-n}, n = 1, 3, 5, ...$$

 $D_f = R_f = \mathbb{R} \setminus \{0\}$

$$f(x) = x^{-n}, n = 2, 4, 6, ...$$

 $D_f = \mathbb{R} \setminus \{0\}, R_f = (0, \infty)$

Páros függvény pl. $x \mapsto x^2, x \mapsto x^4, x \mapsto \frac{1}{x^2}, x \mapsto \frac{1}{x^4}.$

Páratlan függvény pl. $x\mapsto x,\, x\mapsto x^3,\, x\mapsto x^5,$ $x\mapsto \sqrt[3]{x},\, x\mapsto \sqrt[5]{x},\, x\mapsto \frac{1}{x},\, x\mapsto \frac{1}{x^3}.$

Exponenciális és logaritmusfüggvények

$$f(x) = a^x \ (a > 1)$$

$$D_f = \mathbb{R}, \ R_f = \mathbb{R}^+$$

$$f(x) = a^x \ (0 < a < 1)$$

$$D_f = \mathbb{R}, \ R_f = \mathbb{R}^+$$

$$f(x) = e^x \text{ és } f^{-1}(x) = \ln x$$

$$f(x) = \log_a x \ (a > 1)$$

$$D_f = \mathbb{R}^+, R_f = \mathbb{R}$$

$$f(x) = \log_a x \ (0 < a < 1)$$

$$D_f = \mathbb{R}^+, R_f = \mathbb{R}$$

$$f(x) = \left(\frac{1}{2}\right)^x \text{ és } f^{-1}(x) = \log_{\frac{1}{2}} x$$

Exponenciális és logaritmusos egyenlőtlenségek

$$f(x) = a^x \ (a > 1)$$

$$f(x) = a^x \ (0 < a < 1)$$

Ha a > 1, akkor $f(x) = a^x$ szigorúan monoton növő, így $x < y \iff a^x < a^y$. Ha 0 < a < 1, akkor $f(x) = a^x$ szigorúan monoton csökkenő, így $x < y \iff a^x > a^y$.

$$f(x) = \log_a x \ (a > 1)$$

$$f(x) = \log_a x \ (0 < a < 1)$$

Ha a > 1, akkor $f(x) = \log_a x$ szig. mon. növő, így Ha 0 < a < 1, akkor $f(x) = \log_a x$ szig. mon. csökkenő, így $0 < x < y \iff \log_a x > \log_a y$.

 $0 < x < y \iff \log_a x < \log_a y.$

Trigonometrikus függvények és inverzeik

• Az $f(x) = \sin x$ függvény szigorúan monoton a $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ intervallumon \implies a leszűkítésének ezen az intervallumon létezik inverze

Az arkusz szinusz függvény: arcsin = $(\sin|_{\left[-\frac{\pi}{2},\frac{\pi}{2}\right]})^{-1}$; $D_{\text{arcsin}} = [-1,1], R_{\text{arcsin}} = \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

• Az $f(x) = \cos x$ függvény szigorúan monoton a $[0, \pi]$ intervallumon \implies a leszűkítésének ezen az intervallumon létezik inverze

Az arkusz koszinusz függvény: $\arccos = (\cos|_{[0,\pi]})^{-1}; D_{\arccos} = [-1,1], R_{\arccos} = [0,\pi]$

- $\sin x = \cos \left(x \frac{\pi}{2}\right)$
- $\cos x = \sin\left(x + \frac{\pi}{2}\right)$

• Az $f(x) = \operatorname{tg} x \left(x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right)$ függvény szigorúan monoton a $\left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$ intervallumon \Longrightarrow a leszűkítésének ezen az intervallumon létezik inverze

Az arkusz tangens függvény: $\operatorname{arctg} = (\operatorname{tg}|_{\left(-\frac{\pi}{2},\frac{\pi}{2}\right)})^{-1}; D_{\operatorname{arctg}} = \mathbb{R}, R_{\operatorname{arctg}} = \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

• Az $f(x) = \operatorname{ctg} x \ (x \neq k\pi, k \in \mathbb{Z})$ függvény szigorúan monoton a $(0, \pi)$ intervallumon \Longrightarrow a leszűkítésének ezen az intervallumon létezik inverze

Az arkusz kotangens függvény: $\operatorname{arcctg} = (\operatorname{ctg}|_{(0,\pi)})^{-1}; D_{\operatorname{arcctg}} = \mathbb{R}, R_{\operatorname{arcctg}} = (0,\pi)$

Függvények néhány tulajdonsága

- Az f függvény $\begin{cases} \text{alulr\'ol korl\'atos,} \\ \text{fel\"ulr\'ol korl\'atos,} \end{cases}$ ha van olyan $K \in \mathbb{R}$, hogy $\begin{cases} f(x) \geq K, \\ f(x) \leq K, \end{cases}$ ha $x \in D_f$.
- Az f függvény **korlátos**, ha alulról és felülről is korlátos, azaz van olyan $K \in \mathbb{R}$, hogy $|f(x)| \leq K$, ha $x \in D_f$. Példa: $x \mapsto \sin x$, $x \mapsto \cos x$, $x \mapsto \arcsin x$, $x \mapsto \arccos x$, $x \mapsto \operatorname{arccis} x$.
- $\bullet \text{ Az } f \text{ függvény } \begin{cases} \textbf{monoton nő,} \\ \textbf{szigorúan monoton nő,} \\ \textbf{monoton csökken,} \\ \textbf{szigorúan monoton csökken,} \end{cases} \text{ ha } x < y \implies \begin{cases} f(x) \leq f(y) \\ f(x) < f(y) \\ f(x) \geq f(y) \\ f(x) > f(y) \end{cases}$

<u>Példa</u>: Szig. mon. növő: $x \mapsto x^3$, $x \mapsto \sqrt[3]{x}$, $x \mapsto \sqrt{x}$, $x \mapsto x^{\frac{3}{2}}$, $x \mapsto e^x$, $x \mapsto \log_2 x$, $x \mapsto \arcsin x$, $x \mapsto \arctan x$.

Szig. mon. csökkenő: $x \mapsto x^{-\frac{1}{2}} = \frac{1}{\sqrt{x}}, x \mapsto e^{-x}, x \mapsto \log_{\frac{1}{2}} x, x \mapsto \arccos x, x \mapsto \operatorname{arcctg} x.$

- Az f függvény **páros**, ha minden $x \in D_f$ esetén $-x \in D_f$ és f(x) = f(-x), azaz grafikonja tükrös az y tengelyre. Példa: $x \mapsto |x|, x \mapsto x^2, x \mapsto x^4, x \mapsto \frac{1}{x^2}, x \mapsto \frac{1}{x^4}, x \mapsto \cos x$.
- Az f függvény **páratlan**, ha minden $x \in D_f$ esetén $-x \in D_f$ és f(-x) = -f(x), azaz grafikonja tükrös az origóra. <u>Példa</u>: $x \mapsto x$, $x \mapsto x^3$, $x \mapsto \sqrt[3]{x}$, $x \mapsto \frac{1}{x}$, $x \mapsto \frac{1}{x^3}$, $x \mapsto \sin x$, $x \mapsto \operatorname{tg} x$, $x \mapsto \operatorname{ctg} x$, $x \mapsto \arcsin x$, $x \mapsto \operatorname{arcsin} x$.
- Az f függvény **periodikus** p > 0 periódussal, ha minden $x \in D_f$ esetén $x + p \in D_f$ és f(x + p) = f(x). Példa: $x \mapsto \sin x$, $x \mapsto \cos x$ periódusa 2π ; $x \mapsto \operatorname{tg} x$, $x \mapsto \operatorname{ctg} x$ periódusa π .

Trigonometria

Hegyesszögek szögfüggvényei

$$\sin \alpha = \frac{a}{c}$$

$$\cos \alpha = \frac{b}{c}$$

$$\tan \alpha = \frac{a}{b} = \frac{\sin \alpha}{\cos \alpha}$$

$$\cot \alpha = \frac{b}{a} = \frac{\cos \alpha}{\sin \alpha} = \frac{1}{\tan \alpha}$$

Nevezetes szögek szögfüggvényei

$$\sin 30^\circ = \cos 60^\circ = \frac{1}{2}$$

$$\sin 60^\circ = \cos 30^\circ = \frac{\sqrt{3}}{2}$$

$$\operatorname{tg} 30^\circ = \operatorname{ctg} 60^\circ = \frac{1}{\sqrt{3}}$$

$$\operatorname{tg} 60^\circ = \operatorname{ctg} 30^\circ = \sqrt{3}$$

$$\sin 45^{\circ} = \cos 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

$$tg 45^{\circ} = ctg 45^{\circ} = 1$$

Forgásszögek szögfüggvényei

$$\sin^2\alpha + \cos^2\alpha = 1$$

$$\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}, \text{ ha } \cos \alpha \neq 0; \quad \operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha}, \text{ ha } \sin \alpha \neq 0$$

Minden $k \in \mathbb{Z}$ esetén:

$$\sin \alpha = \sin(\alpha + k \cdot 2\pi),$$
 $\operatorname{tg} \alpha = \operatorname{tg}(\alpha + k \cdot \pi),$ $\operatorname{cos} \alpha = \cos(\alpha + k \cdot 2\pi),$ $\operatorname{ctg} \alpha = \operatorname{ctg}(\alpha + k \cdot \pi).$

Az egységkörön lévő pontok 1. és 2. koordinátájának összehasonlításával néhány azonosság $(\alpha \in \mathbb{R})$:

$$\cos \alpha = \cos(-\alpha) \Longrightarrow$$
 a koszinuszfüggvény páros $\sin(-\alpha) = -\sin \alpha \Longrightarrow$ a szinuszfüggvény páratlan $\sin(\pi - \alpha) = \sin \alpha$ $\sin(\pi + \alpha) = \sin(-\alpha) = -\sin \alpha$ $\cos(\pi - \alpha) = \cos(\pi + \alpha) = -\cos \alpha$

Trigonometrikus egyenletek megoldása

1.
$$\sin x = a \implies x_1 = \arcsin a + k \cdot 2\pi, \qquad x_2 = \pi - \arcsin a + k \cdot 2\pi \ (k \in \mathbb{Z})$$

2.
$$\cos x = b \implies x_{1,2} = \pm \arccos b + k \cdot 2\pi \ (k \in \mathbb{Z})$$

3.
$$\operatorname{tg} x = c \implies x = \operatorname{arctg} c + k \cdot \pi \ (k \in \mathbb{Z})$$

4.
$$\operatorname{ctg} x = d \implies x = \operatorname{arcctg} d + k \cdot \pi \ (k \in \mathbb{Z})$$

Fontosabb trigonometrikus azonosságok

$$\sin(x+y) = \sin x \cos y + \cos x \sin y \implies \sin 2x = 2\sin x \cos x$$

$$\sin(x - y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y \implies \cos 2x = \cos^2 x - \sin^2 x$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y$$

$$\cos^{2} x + \sin^{2} x = 1
\cos^{2} x - \sin^{2} x = \cos 2x$$
 \implies $\cos^{2} x = \frac{1 + \cos 2x}{2}$, $\sin^{2} x = \frac{1 - \cos 2x}{2}$

$$1 + tg^2 x = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} \implies \cos^2 x = \frac{1}{1 + tg^2 x}$$

Koordinátageometria

Vektorok

Az
$$\underline{a} = (a_1, a_2)$$
 vektor hossza: $|\underline{a}| = \sqrt{a_1^2 + a_2^2}$

Vektorok összege, számszorosa:
$$\underline{a} + \underline{b} = (a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

$$c \cdot \underline{a} = c(a_1, a_2) = (ca_1, ca_2) \quad (c \in \mathbb{R})$$

Legyen $\underline{a} = (a_1, a_2), \underline{b} = (b_1, b_2),$ közbezárt szögük γ $(0^{\circ} \le \gamma \le 180^{\circ}).$

Skláris szorzatuk:
$$\underline{a} \cdot \underline{b} = |\underline{a}| \cdot |\underline{b}| \cdot \cos \gamma$$

Koordinátákkal:
$$\underline{a} \cdot \underline{b} = a_1b_1 + a_2b_2$$

A közbezárt szög koszinusza:
$$\cos \gamma = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}| \cdot |\underline{b}|} = \frac{a_1 b_1 + a_2 b_2}{\sqrt{a_1^2 + a_2^2} \cdot \sqrt{b_1^2 + b_2^2}}$$

Vektorok merőlegessége:
$$\underline{a} \perp \underline{b} \iff \underline{a} \cdot \underline{b} = 0$$

Vektorok párhuzamossága:
$$\underline{a} \parallel \underline{b} \iff \underline{a} = c \cdot \underline{b}$$
 valamely $c \in \mathbb{R}$ számra

Példák:
$$(a_1,a_2) \perp (-a_2,a_1), \quad (a_1,a_2) \perp (a_2,-a_1), \quad (4,-6) \perp (3,2), \quad (4,-6) \parallel (2,-3)$$

Az $A(a_1, a_2)$ és $B(b_1, b_2)$ pontok távolsága:

$$d(A,B) = |\overrightarrow{AB}| = |(b_1 - a_1, b_2 - a_2)| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2}$$

Az egyenes egyenletei

1. Az e egyenes normálvektoros egyenlete, ha adott egy $P_0(x_0, y_0)$ pontja és egy $\underline{n}_e = (A, B)$ normálvektora ($\underline{n}_e \neq \underline{0}$):

$$Ax + By = Ax_0 + By_0$$

Ugyanis:
$$P(x,y) \in e$$

 $\iff \overrightarrow{P_0P} \perp \underline{n_e} \iff \overrightarrow{P_0P} \cdot \underline{n_e} = 0$
 $\iff (x - x_0, y - y_0) \cdot (A, B) = 0$
 $\iff A(x - x_0) + B(y - y_0) = 0$
 $\iff Ax + By = Ax_0 + By_0$

2. Az e egyenes irányvektoros egyenlete, ha adott egy $P_0(x_0,y_0)$ pontja és egy $\underline{v}_e=(v_1,v_2)$ irányvektora ($\underline{v}_e \neq \underline{0}$):

$$v_2x - v_1y = v_2x_0 - v_1y_0$$

Ugyanis:
$$\underline{v}_e = (v_1, v_2) \perp (v_2, -v_1) = \underline{n}_e$$

(vagy $\underline{v}_e = (v_1, v_2) \perp (-v_2, v_1) = \underline{n}_e$),
így visszavezethető az 1. esetre.

- 3. Ha az e egyenes átmegy az $A(a_1,a_2)$ és $B(b_1,b_2)$ ponton, akkor egy irányvektora $\underline{v}_e = \overrightarrow{AB} = (b_1 a_1, b_2 a_2)$, egy normálvektora $\underline{n}_e = (b_2 a_2, -(b_1 a_1))$, így egyenlete visszavezethető az 1. esetre.
- 4. Az e egyenes iránytényezős egyenlete, ha adott egy $P_0(x_0, y_0)$ pontja és az m meredeksége:

$$y - y_0 = m(x - x_0)$$

Ugyanis: ha az egyenes egy irányvektora $\underline{v}_e = (v_1, v_2)$, ahol $v_1 \neq 0$, akkor az egyenes meredeksége $m = \frac{v_2}{v_1}$, így visszavezethető a 2. esetre.

5. A fenti egyenletet átrendezve: y=mx+b, ahol $m=\operatorname{tg}\alpha$ (0° $\leq \alpha < 90$ °) az egyenes meredeksége, b az y-tengelymetszet. Ha az egyenes párhuzamos az y tengellyel ($\alpha=90$ °), akkor egyenlete x=a alakú.

A kör egyenlete

A K(u, v) középpontú, r sugarú kör egyenlete:

$$(x-u)^2 + (y-v)^2 = r^2$$

Pont és egyenes távolsága

Az Ax + By + C = 0 egyenletű e egyenes normálegyenlete (Hesse-féle normálalak):

$$\frac{Ax + By + C}{\sqrt{A^2 + B^2}} = 0$$

A $P(x_0, y_0)$ pont távolsága az Ax + By + C = 0 egyenletű e egyenestől:

$$d(P,e) = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

.

Kombinatorika

Faktoriális:
$$n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n \quad (n \in \mathbb{Z}^+), \qquad 0! = 1$$

Binomiális együtthatók:
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Ismétlés nélküli permutáció

- \bullet n különböző elemet sorba rendezünk
- \bullet a sorbarendezések száma: n!

Ismétléses permutáció

- n elem között s különböző fordul elő úgy, hogy ezekből rendre k_1, k_2, \ldots, k_s darab van, melyek egymás között megkülönböztethetetlenek $(k_1 + k_2 + \ldots + k_s = n)$
- a sorbarendezések száma: $\frac{n!}{k_1! \cdot k_2! \cdot \ldots \cdot k_s!}$

Ismétlés nélküli variáció

- \bullet n különböző elem közül <u>visszatevés nélkül</u> kiválasztunk k darabot ($k \leq n$), a sorrend számít (egy elem legfeljebb egyszer fordulhat elő)
- a kiválasztások száma: $n \cdot (n-1) \cdot \ldots \cdot (n-(k-1)) = \frac{n!}{(n-k)!}$

Ismétléses variáció

- $\bullet \ n$ különböző elem közül <u>visszatevéssel</u> kiválasztunk k darabot, a <u>sorrend számít</u> (egy elem többször is előfordulhat)
- \bullet a kiválasztások száma: n^k

Ismétlés nélküli kombináció

- n különböző elem közül <u>visszatevés nélkül</u> kiválasztunk k darabot $(k \le n)$, a <u>sorrend nem számít</u> (egy elem legfeljebb egyszer fordulhat elő)
- a kiválasztások száma: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

Ismétléses kombináció

• n különböző elem közül <u>visszatevéssel</u> kiválasztunk k darabot, a <u>sorrend nem számít</u> (egy elem többször is előfordulhat)

12

 \bullet a kiválasztások száma: $\binom{n+k-1}{k}$