Дискретная математика

Модуль 1.

Математическая логика

Лекция 1.

Авдошин С.М. (email: <u>savdoshin@hse.ru</u>)

Основные понятия и законы математической логики

Логика — наука о том, как правильно рассуждать, делать правильные умозаключения и выводы, получать правильные высказывания.

- Высказывания
- Пропозициональные переменные
- Логические связки
- Силлогизмы
- Законы Аристотеля
- Закон Лейбница

Высказывания

- Высказывание предложение, выражающее суждение.
- Если суждение, составляющее содержание некоторого высказывания, истинно, то и о данном высказывании говорят, что оно истинно.
- Сходным образом ложным называют такое высказывание, которое является выражением ложного суждения.

Пропозициональные переменные

Примеры высказываний

Простые высказывания

$$1 + 1 = 2$$
. P: Джейн водит автомобиль

$$2 + 2 = 3$$
. Q: У Боба русые волосы

Р и Q – пропозициональные переменные, обозначающие простые высказывания

Сложное высказывание

Джейн водит автомобиль и у Боба русые волосы

Символическая запись сложного высказывания $-P \wedge Q$

Предикат

- C каждым высказыванием связано понятие предиката
- Предикат это функция, принимающая логические значения $P: X_1 \times X_2 \times \cdots \times X_n \to \{0, 1\}$ $P(x_1, x_2, \dots, x_n), x_1 \in X_1; \dots; x_n \in X_n$
- $X_1, X_2, ..., X_n$ области значений предметных переменных $x_1, x_2, ..., x_n$

Пример предиката, свойств и высказываний

- Вася купил мороженное
- Предикат = купил
- K(x,y) x купил y; x, y предметные переменные; X множество людей; Y множество вещей; Вася, мороженное предметные константы;
- Свойство вещей P(y) = K(Bacs, y)
- Свойство людей R(x) = K(x, мороженное)
- Высказывание A = R(Bacs) = P(мороженное) = K(Bacs, мороженное)

Свойство (одноместный предикат)

•
$$a = P_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases}$$

•
$$b = P_B(x)$$

объединение А 🗸 В

пересечение А 🗥 В

разность АВ

дополнение А

Логические (пропозициональные) связки

- Операция над высказываниями, позволяющая составлять новые высказывания путем соединения более простых.
- конъюнкция (\(\lambda \) или &),
- дизъюнкция (V),
- импликация (⇒)
- эквивалентность (⇔),
- отрицание (¬).

$$\mathcal{A}\&\mathcal{B},\ \mathcal{A}\vee\mathcal{B},\ \mathcal{A}\Rightarrow\mathcal{B},\ \mathcal{A}\Leftrightarrow\mathcal{B},\ \neg\mathcal{A},\ \neg\mathcal{B}.$$

Таблицы истинности

Используются для установления истинности сложных высказываний. Введены австрийским логиком Людвигом Витгенштейном.

	\mathcal{A}	B	A&B	$A \lor B$	$A \Rightarrow B$	$A \Leftrightarrow B$
	Т	Т	Т	Т	T	Т
ľ	Т	1	1	Т	1	
Ī	I	Т	1	Т	T	Т
	1	1	Т	Т	T	Т

\mathcal{A}	$\neg \mathcal{A}$
T	Т
Т	Т

Силлогизм

- **Силлогизм**: (от греч. sillogismos) категорический. Дедуктивное умозаключение
- Силогизм правило, позволяющее из истинных высказываний получать новые истинные высказывания
- Аристотель рассматривал два высказывания A и B, из которых следует C
- Если A и B истина, то C истина

Основные силлогизмы

- $\frac{A, A =>B}{B}$ (Modus Ponens)
- $\frac{A = >B, \overline{B}}{\overline{A}}$ (Modus Tollens)
- $\bullet \quad \frac{A,B}{A \& B}$
- $\bullet \quad \frac{A \& B}{A, B}$

Основные законы логики

- Законы Аристотеля
- Закон Лейбница

Закон тождества (Аристотель)

⊨ - истино, что (знак придуман американским логиком Стивином Коулом Клини в 1958 году)

$$\models (A \Leftrightarrow A)$$

(А⇔ В) означает

А равносильно В;

А эквивалентно В;

А тогда и только тогда, когда В;

А необходимое и достаточное условие для В

•
$$(A \Leftrightarrow B) = (A \Rightarrow B) & (A \Leftarrow B)$$

Закон непротиворечия (Аристотель)

$$\not\models (A \& \overline{A})$$

⊭ - означает ложно, что

Закон исключения третьего (Аристотель)

$$\models (A \lor \bar{A})$$

Закон достаточного основания (Лейбниц)

Никакое высказывание не может быть принято, если оно не является следованием, полученным в ходе применения силлогизмов из ранее полученных утверждений или строго установленных фактов, выраженных так же в форме высказывания

Логический парадокс Рассела

Дан объект $u = \{x | x \notin x\}$. Теорема. $\models (u \in u) \& (u \notin u)$.

> Данная теорема опровергает закон непротиворечия Аристотеля