Chapitre 5 : Convergence de Variables

aléatoires

MA 361 : Probabilités continues

 $\label{eq:pierre-Alain TOUPANCE} Pierre-alain.toupance@esisar.grenoble-inp.fr$

Grenoble INP - ESISAR $3^{\text{i\`eme}}$ année

14 janvier 2021

Inégalité de Bienaymé - Tchébychev

Soit X une variable aléatoire réelle admettant une espérance E(X) et une variance V(X).

On a

$$\forall \varepsilon > 0, \ \mathbb{P}(\mid X - \mathbb{E}(X) \mid \geqslant \varepsilon) \leqslant \frac{\mathbb{V}(X)}{\varepsilon^2}$$

Inégalité de Bienaymé - Tchébychev

Soit X une variable aléatoire réelle admettant une espérance E(X) et une variance V(X).

$$\forall \varepsilon > 0, \ \mathbb{P}(|X - \mathbb{E}(X)| \geqslant \varepsilon) \leqslant \frac{\mathbb{V}(X)}{\varepsilon^2}$$

Remarque:

On a

- Cette inégalité permet de majorer la probabilité que X soit éloigné d'au moins ε de $\mathbb{E}(X)$.
- ${\bf 2}$ Cette probabilité est d'autant plus faible que $\mathbb{V}(X)$ est petit.

Inégalité de Bienaymé - Tchébychev Loi faible des grands nombres Loi forte des grands nombres

Démonstration : 1er cas X VAR discrète

Démonstration : 1er cas X VAR discrète Soit $(x_i, p_i)_{i \in I}$ la loi de probabilité de X où $I = \{1, 2, ..., n\}$ ou \mathbb{N} Soit $J = \{i \in I, |x_i - \mathbb{E}(X_i)| \ge \varepsilon\}$

 $D\acute{e}monstration$: 1
er cas X VAR discrète Soit $(x_i,p_i)_{i\in I}$ la loi de probabilité de
 X où

$$I = \{1, 2, ..., n\}$$
 ou $\mathbb N$ Soit $J = \{i \in I, \mid x_i - \mathbb E(X_i) \mid \geqslant \varepsilon\}$ On a :

$$\mathbb{V}(X) = \sum_{i \in J} (x_i - \mathbb{E}(X))^2 p_i + \sum_{i \notin J} (x_i - \mathbb{E}(X))^2 p_i$$

Démonstration : 1er cas X VAR discrète

Soit $(x_i, p_i)_{i \in I}$ la loi de probabilité de X où

$$I = \{1, 2, ..., n\}$$
 ou $\mathbb N$ Soit $J = \{i \in I, \mid x_i - \mathbb E(X_i) \mid \geqslant \varepsilon\}$ On a :

$$\mathbb{V}(X) = \sum_{i \in J} (x_i - \mathbb{E}(X))^2 p_i + \sum_{i \notin J} (x_i - \mathbb{E}(X))^2 p_i$$

Ainsi

$$\mathbb{V}(X) \geqslant \sum_{i \in J} (x_i - \mathbb{E}(X))^2 p_i \geqslant \varepsilon^2 \sum_{i \in J} p_i$$

Démonstration : 1er cas X VAR discrète

Soit $(x_i, p_i)_{i \in I}$ la loi de probabilité de X où

$$I = \{1, 2, ..., n\}$$
 ou \mathbb{N} Soit $J = \{i \in I, |x_i - \mathbb{E}(X_i)| \ge \varepsilon\}$ On a:

$$\mathbb{V}(X) = \sum_{i \in J} (x_i - \mathbb{E}(X))^2 p_i + \sum_{i \notin J} (x_i - \mathbb{E}(X))^2 p_i$$

Ainsi

$$\mathbb{V}(X) \geqslant \sum_{i \in J} (x_i - \mathbb{E}(X))^2 p_i \geqslant \varepsilon^2 \sum_{i \in J} p_i$$

D'où

$$\mathbb{V}(X) \geqslant \varepsilon^2 P(\mid X - \mathbb{E}(X) \mid \geqslant \varepsilon)$$

 $D\acute{e}monstration$: 2
ième cas X VAR continue dont f est une densité.

Soit
$$\forall x \in \mathbb{R}, \ h(x) = (x - \mathbb{E}(X))^2 f(x)$$
, on a

$$\mathbb{V}(X) =$$

 $D\acute{e}monstration$: 2
ième cas X VAR continue dont f est une densité.

Soit
$$\forall x \in \mathbb{R}, \ h(x) = (x - \mathbb{E}(X))^2 f(x)$$
, on a

$$\mathbb{V}(X) = \int_{-\infty}^{\mathbb{E}(X) - \varepsilon} h(x) dx + \int_{\mathbb{E}(X) - \varepsilon}^{\mathbb{E}(X) + \varepsilon} h(x) dx + \int_{\mathbb{E}(X) + \varepsilon}^{+\infty} h(x) dx$$

 $D\acute{e}monstration$: 2
ième cas X VAR continue dont f est une densité.

Soit $\forall x \in \mathbb{R}, \ h(x) = (x - \mathbb{E}(X))^2 f(x)$, on a

$$\mathbb{V}(X) = \int_{-\infty}^{\mathbb{E}(X) - \varepsilon} h(x) dx + \int_{\mathbb{E}(X) - \varepsilon}^{\mathbb{E}(X) + \varepsilon} h(x) dx + \int_{\mathbb{E}(X) + \varepsilon}^{+\infty} h(x) dx$$

Ainsi

$$\mathbb{V}(X) \geqslant \int_{-\infty}^{\mathbb{E}(X) - \varepsilon} h(x) dx + \int_{\mathbb{E}(X) + \varepsilon}^{+\infty} h(x) dx$$

 $D\acute{e}monstration$: 2ième cas X VAR continue dont f est une densité.

Soit $\forall x \in \mathbb{R}, \ h(x) = (x - \mathbb{E}(X))^2 f(x)$, on a

$$\mathbb{V}(X) = \int_{-\infty}^{\mathbb{E}(X)-\varepsilon} h(x) dx + \int_{\mathbb{E}(X)-\varepsilon}^{\mathbb{E}(X)+\varepsilon} h(x) dx + \int_{\mathbb{E}(X)+\varepsilon}^{+\infty} h(x) dx$$

Ainsi

$$\mathbb{V}(X) \geqslant \int_{-\infty}^{\mathbb{E}(X) - \varepsilon} h(x) dx + \int_{\mathbb{E}(X) + \varepsilon}^{+\infty} h(x) dx$$

D'où

$$\mathbb{V}(X) \geqslant \varepsilon^2 \left(\int_{-\infty}^{\mathbb{E}(X) - \varepsilon} f(x) dx + \int_{\mathbb{E}(X) + \varepsilon}^{+\infty} f(x) dx \right)$$

D'où

$$\mathbb{V}(X) \geqslant \varepsilon^2 \left(\int_{-\infty}^{\mathbb{E}(X) - \varepsilon} f(x) dx + \int_{\mathbb{E}(X) + \varepsilon}^{+\infty} f(x) dx \right)$$

D'où

$$\mathbb{V}(X) \geqslant \varepsilon^2 \left(\int_{-\infty}^{\mathbb{E}(X) - \varepsilon} f(x) dx + \int_{\mathbb{E}(X) + \varepsilon}^{+\infty} f(x) dx \right)$$

Or

$$P(\mid X - \mathbb{E}(X)\mid) > \varepsilon) = \mathbb{P}(X - \mathbb{E}(X) < -\varepsilon) + \mathbb{P}(X - \mathbb{E}(X) > \varepsilon)$$
$$= \int_{-\infty}^{\mathbb{E}(X) - \varepsilon} f(x) dx + \int_{\mathbb{R}(X) + \varepsilon}^{+\infty} f(x) dx$$

Définition: moyenne empirique

Soit $n \in \mathbb{N}^*$ et Soit $(X_i)_{i \in [\![0 ; n]\!]}$ une suite de variables aléatoires réelles de même loi indépendantes.

La moyenne empirique de $(X_i)_{i \in [\![1]\!] n}$ est la VA :

$$\tilde{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Définition: moyenne empirique

Soit $n \in \mathbb{N}^*$ et Soit $(X_i)_{i \in [0,n]}$ une suite de variables aléatoires réelles de même loi indépendantes.

La moyenne empirique de $(X_i)_{i \in [\![1], n]\![\!]}$ est la VA :

$$\tilde{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Remarques : Si les VA X_i admettent des moments d'ordre 2 alors

Définition: moyenne empirique

Soit $n \in \mathbb{N}^*$ et Soit $(X_i)_{i \in [\![0]; n]\!]}$ une suite de variables aléatoires réelles de même loi indépendantes.

La moyenne empirique de $(X_i)_{i \in [\![1], n]\![\!]}$ est la VA :

$$\tilde{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$$

Remarques : Si les VA X_i admettent des moments d'ordre 2 alors

$$\bullet \ \mathbb{E}(\tilde{X_n}) = m$$

$$\mathbb{V}(\tilde{X_n}) = \frac{\sigma^2}{n}$$

où
$$m = \mathbb{E}(X_i)$$
 et $\sigma^2 = \mathbb{V}(X_i)$

Définition : convergence presque surement

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de VA sur Ω , on dit que (X_n) converge presque surement vers une VAR X lorsque :

$$\mathbb{P}(\{\omega \in \Omega, \lim X_n(\omega) = X(\omega)\}) = 1$$

Remarque : La partie de Ω où X_n ne converge par vers X est de probabilité nulle.

Soit $n \in \mathbb{N}^*$ et Soit $(X_i)_{i \in \mathbb{N}^*}$ une suite de variables aléatoires réelles indépendantes de même loi admettant des moments d'ordre 2.

Soit m l'espérance de ces variables aléatoires.

On a:

$$\forall \varepsilon > 0, \lim \mathbb{P}(||\tilde{X}_n - m||) \geqslant \varepsilon) = 0$$

Soit $n \in \mathbb{N}^*$ et Soit $(X_i)_{i \in \mathbb{N}^*}$ une suite de variables aléatoires réelles indépendantes de même loi admettant des moments d'ordre 2.

Soit m l'espérance de ces variables aléatoires.

On a:

$$\forall \varepsilon > 0, \lim \mathbb{P}(|\tilde{X}_n - m|) \geqslant \varepsilon) = 0$$

Démonstration : D'après l'inégalité de Bienaymé-Tchébychev, on a :

$$\mathbb{P}(\mid \tilde{X_n} - m \mid \geqslant \varepsilon) = \mathbb{P}(\mid \tilde{X_n} - E(\tilde{X_n}) \mid \geqslant \varepsilon) \leqslant \frac{\mathbb{V}(\tilde{X_n})}{\varepsilon^2}$$

Soit $n \in \mathbb{N}^*$ et Soit $(X_i)_{i \in \mathbb{N}^*}$ une suite de variables aléatoires réelles indépendantes de même loi admettant des moments d'ordre 2.

Soit m l'espérance de ces variables aléatoires.

On a:

$$\forall \varepsilon > 0, \lim \mathbb{P}(|\tilde{X}_n - m|) \geqslant \varepsilon) = 0$$

Démonstration : D'après l'inégalité de Bienaymé-Tchébychev, on a :

$$\mathbb{P}(\mid \tilde{X_n} - m \mid \geqslant \varepsilon) = \mathbb{P}(\mid \tilde{X_n} - E(\tilde{X_n}) \mid \geqslant \varepsilon) \leqslant \frac{\mathbb{V}(\tilde{X_n})}{\varepsilon^2}$$

$$\mathbb{P}(\mid \tilde{X_n} - m \mid \geqslant \varepsilon) \leqslant \frac{\sigma^2}{n\varepsilon^2}$$

Soit $n \in \mathbb{N}^*$ et Soit $(X_i)_{i \in \mathbb{N}^*}$ une suite de variables aléatoires réelles indépendantes de même loi admettant des moments d'ordre 2.

Soit m l'espérance de ces variables aléatoires.

On a:

$$\forall \varepsilon > 0, \lim \mathbb{P}(|\tilde{X}_n - m|) \geqslant \varepsilon) = 0$$

Démonstration : D'après l'inégalité de Bienaymé-Tchébychev, on a :

$$\mathbb{P}(||\tilde{X_n} - m|| \geqslant \varepsilon)) = \mathbb{P}(||\tilde{X_n} - E(\tilde{X_n})|| \geqslant \varepsilon)) \leqslant \frac{\mathbb{V}(\tilde{X_n})}{\varepsilon^2}$$

$$\mathbb{P}(\mid \tilde{X_n} - m \mid \geqslant \varepsilon) \leqslant \frac{\sigma^2}{n\varepsilon^2}$$
Ainsi $\lim \mathbb{P}(\mid \tilde{X_n} - m \mid) \geqslant \varepsilon) = 0$

Convergence presque sûr

On dit qu'une suite de VA (X_n) converge presque surement vers la VA X lorsque :

$$\mathbb{P}[\{\omega, \lim X_n(\omega) = X(w)\} = 1$$

Loi forte des grands nombres (théorème de Kolmogorov)

On considère n variables aléatoires $X_1, X_2, ..., X_n$ de même loi d'espérance m.

Soit
$$\tilde{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

On a

$$\tilde{X}_n \to m \times 1_{\Omega}$$
 presque surement

Convergence presque sûr

On dit qu'une suite de VA (X_n) converge presque surement vers la VA X lorsque :

$$\mathbb{P}[\{\omega, \lim X_n(\omega) = X(w)\} = 1$$

Loi forte des grands nombres (théorème de Kolmogorov)

On considère n variables aléatoires $X_1, X_2, ..., X_n$ de même loi d'espérance m.

Soit
$$\tilde{X_n} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

On a

$$\tilde{X_n} \to m \times 1_{\Omega}$$
 presque surement

Lorsque que l'on répète n fois de façon indépendante une même expérience, la moyenne obtenue par l'expérience tend vers la moyenne théorique quand n tend vers ∞ .

Méthode de Monte Carlo appliquée au calcul d'intégrale

Application de la loi forte des grands nombres

Soit f une fonction continue et positive sur un intervalle [a;b], et soit A un réel tel que $A > \sup_{x \in [a;b]} (f(x))$.

On utilise la loi forte des grands nombres pour calculer $\int_a^b f(t)dt$:

Méthode de Monte Carlo appliquée au calcul d'intégrale

Application de la loi forte des grands nombres

Soit f une fonction continue et positive sur un intervalle [a;b], et soit A un réel tel que $A > \sup_{x \in [a;b]} (f(x))$.

On utilise la loi forte des grands nombres pour calculer $\int_a^b f(t)dt$:

Si on prend un point au hasard dans le rectangle délimité par les droites d'équation x=a, x=b, y=0 et y=A, la probabilité qu'il soit sous la courbe de f est :

Méthode de Monte Carlo appliquée au calcul d'intégrale

Application de la loi forte des grands nombres

Soit f une fonction continue et positive sur un intervalle [a;b], et soit A un réel tel que $A > \sup_{x \in [a;b]} (f(x))$.

On utilise la loi forte des grands nombres pour calculer $\int_a^b f(t)dt$:

Si on prend un point au hasard dans le rectangle délimité par les droites d'équation $x=a,\,x=b,\,y=0$ et y=A, la probabilité qu'il soit sous la courbe de f est :

$$p = \frac{\int_{a}^{b} f(t)dt}{A(b-a)}$$

Méthode de Monte-Carlo

On choisit au hasard n points soit X_i la VA telle que

$$X_i = \begin{cases} 1 & \text{si la ième point est sous } \mathcal{C}_f \\ 0 & \text{sinon} \end{cases}$$

On a
$$\frac{1}{n} \sum_{i=1}^{n} X_i \to p1_{\Omega}$$

Chapitre 5 : Convergence de V.A.

Définition : convergence en loi

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de VAR et X une VAR définies sur le même espace probabilisé (Ω, \mathcal{A}, P) .

Soient $(F_{X_n})_{n\in\mathbb{N}}$ et F_X leur fonction de répartition.

On dit que X_n tend en loi vers X si et seulement si :

$$\forall t \in \mathbb{R}, \ \lim F_{X_n}(t) = F_X(t)$$

Remarque: Dans le cas discret, cette convergence en loi se traduit par la convergence des probabilités $\mathbb{P}(X_n = k)$.

Approximation d'un loi Binomiale par un loi de Poisson

Théorème

13/22

Soit $\lambda \in [0,1]$ et $n \in \mathbb{N}^*$.

Soit X_n une suite de V.A.R. de loi binomiale $\mathcal{B}(n, \frac{\lambda}{n})$. X_n converge en loi vers une V.A.R. X de loi de Poisson de paramètre λ , c'est à dire :

$$\forall k \in \mathbb{N}, \ \lim_{n \to +\infty} \mathbb{P}(X_n = k) = \mathbb{P}(X = k)$$

En pratique Si X suit une loi binomiale de paramètre (n, p). Si $n \ge 30$, $p \le 0, 1$ et np < 15

alors on prendra comme approximation de X la V.A.R. Y qui suit un loi de Poisson de paramètre np ($Y \rightsquigarrow \mathcal{P}(np)$).

Convergence d'une loi binomiale vers une loi de F Théorème central limite Théorème de Moivre Laplace

Soit $k \in \mathbb{N}^*$, pour tout $n \ge k$, $\mathbb{P}(X_n = k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$

Soit
$$k \in \mathbb{N}^*$$
, pour tout $n \ge k$,

$$\mathbb{P}(X_n = k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{n(n-1)...(n-k+1)}{k!} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

Chapitre 5 : Convergence de V.A.

Soit $k \in \mathbb{N}^*$, pour tout $n \ge k$, $\mathbb{P}(X_n = k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$ $= \frac{n(n-1)...(n-k+1)}{k!} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$ $= \frac{n(n-1)...(n-k+1)}{n^k} \frac{\lambda^k}{k!} \left(1 - \frac{\lambda}{n}\right)^{n-k}$

Soit $k \in \mathbb{N}^*$, pour tout $n \ge k$, $\mathbb{P}(X_n = k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$ $= \frac{n(n-1)...(n-k+1)}{k!} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$ $= \frac{n(n-1)...(n-k+1)}{n^k} \frac{\lambda^k}{k!} \left(1 - \frac{\lambda}{n}\right)^{n-k}$ Or $\lim \frac{n(n-1)...(n-k+1)}{n^k} = 1$ et $\lim \left(1 - \frac{\lambda}{n}\right)^{n-k} = e^{-\lambda}$.

Soit $k \in \mathbb{N}^*$, pour tout $n \geqslant k$, $\mathbb{P}(X_n = k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$ $= \frac{n(n-1)...(n-k+1)}{k!} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$ $= \frac{n(n-1)...(n-k+1)}{n^k} \frac{\lambda^k}{k!} \left(1 - \frac{\lambda}{n}\right)^{n-k}$ Or $\lim \frac{n(n-1)...(n-k+1)}{n^k} = 1$ et $\lim \left(1 - \frac{\lambda}{n}\right)^{n-k} = e^{-\lambda}$. Ainsi $\lim \mathbb{P}(X_n = k) = e^{-\lambda} \frac{\lambda^k}{11}$

Théorème central limite

Soit (X_n) une suite de VAR indépendantes de même loi, d'espérance m et d'écart type σ .

$$S_n = \sum_{k=1}^n X_k$$

 $Z_n = \frac{S_n - nm}{\sigma \sqrt{n}}$ converge en loi vers une VAR $X^* \rightsquigarrow \mathcal{N}(0, 1)$, c'est à dire :

$$\forall (a,b) \in \mathbb{R}^2, \lim_{n \to +\infty} \mathbb{P}(a \leqslant Z_n \leqslant b) = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

Soit

Remarque : $\frac{\tilde{X}_n - m}{\sigma/\sqrt{n}}$ tend en loi vers une loi normale $\mathcal{N}(0,1)$.

Ainsi \tilde{X}_n tend en loi vers une VAR qui suit une loi normale $\mathcal{N}(m, \sigma/\sqrt{n})$.

Exemple : Théorème de Moivre Laplace

Soit (X_n) une suite de VAR indépendantes et de loi de Bernoulli de paramètre p.

$$S_n = \sum_{k=1}^n X_k \leadsto \mathcal{B}(n, p)$$

$$Z_n = \frac{S_n - np}{\sqrt{np(1-p)}}$$

converge en loi vers $X^* \rightsquigarrow \mathcal{N}(0,1)$.

En pratique, la loi binomiale $\mathcal{B}(n,p)$ peut être approchée par un loi normale $\mathcal{N}(np,\sqrt{np(1-p)})$ lorsque :

- $2 np \geqslant 5$

Exercice

Un vol Lyon - Strasbourg est assuré par un airbus de 140 places. La réservation est obligatoire. L'expérience a montré que la probabilité qu'une personne confirme sa réservation et retire son billet est 0,8.

On note X la variable aléatoire représentant le nombre de personnes ayant confirmé leur réservation et retiré leur billet.

- La compagnie a accepté 160 réservations.
 - **Q** Quelle est la loi suivie par la variable aléatoire X? Pour $k \leq 160$, exprimer P(X=k) en fonction de k. Déterminer l'espérance mathématique et l'écart type de X.
 - 2 Justifier que X peut être approchée par une loi normale que l'on déterminera.
 - Calculer la probabilité que plus de 135 personnes confirment leur réservation et retirent leur billet.

Exercice

20/22

- La compagnie a accepté 160 réservations.
 - Quelle est la loi suivie par la variable aléatoire X? Pour k < 160, exprimer P(X = k) en fonction de k. Déterminer l'espérance mathématique et l'écart type de X.
 - 2 Justifier que X peut être approchée par une loi normale que l'on déterminera. Calculer la probabilité que plus de 135 personnes confirment leur réservation et retirent leur billet.
- 2 La compagnie accepte n réservations $(n \ge 140)$. Soit X_n le nombre de personnes qui ont confirmé et retiré leur billet.
 - Déterminer la loi de probabilité de X_n et la loi normale qui approche X_n .
 - 2 Déterminer le nombre maximum de réservation que la compagnie peut accepter sachant qu'elle s'accorde un risque de 5% de ne pouvoir satisfaire toutes les personnes ayant reservé.

Convergence d'une loi binomiale vers une loi de I Théorème central limite Théorème de Moivre Laplace

- On a $X \backsim \mathcal{B}(160; 0, 8)$. Ainsi $\forall \in [0; 160], \ \mathbb{P}(X = k) = \binom{160}{k} 0, 8^k \times 0, 2^{160-k}$
- **9** Comme n = 160 > 30 et $np = 160 \times 0, 8 = 128 > 5$, X peut être approchée par $Y \backsim \mathcal{N}(128; \sqrt{25,6})$. On a : $\mathbb{P}(X > 135) \simeq \mathbb{P}(Y > 135)$, or

$$\mathbb{P}(Y > 135) = \mathbb{P}(Y^* > \frac{135 - 128}{\sqrt{25, 6}}))$$

$$= \mathbb{P}(Y^* > 1, 38)$$

$$= 1 - 0,9162$$

$$= 0,0838$$

1 On a $X_n \backsim \mathcal{B}(n; 0, 8)$. Or $n \geqslant 140 > 30$ et $np \geqslant 112 > 5$, on peut ainsi approche

$$Y_n \backsim \mathcal{N}(0,8n;0,4\sqrt{n})$$

- On a $X \sim \mathcal{B}(160; 0, 8)$. Ainsi $\forall \in [0; 160]$, $\mathbb{P}(X = k) = \binom{160}{k} \cdot 0.8^k \times 0.2^{160-k}$
- ② Comme n = 160 > 30 et $np = 160 \times 0, 8 = 128 > 5, X$ peut être approchée par $Y \sim \mathcal{N}(128; \sqrt{25, 6})$. On a : $\mathbb{P}(X > 135) \simeq \mathbb{P}(Y > 135)$, or

$$\begin{split} \mathbb{P}(Y > 135) &= \mathbb{P}\big(Y^* > \frac{135 - 128}{\sqrt{25,6}}\big)\big) \\ &= \mathbb{P}(Y^* > 1,38) \\ &= 1 - 0,9162 \\ &= 0,0838 \end{split}$$

$$Y_n \backsim \mathcal{N}(0, 8n; 0, 4\sqrt{n})$$

21/22

- On a $X \backsim \mathcal{B}(160; 0, 8)$. Ainsi $\forall \in [0; 160], \ \mathbb{P}(X = k) = \binom{160}{k} 0, 8^k \times 0, 2^{160-k}$
- ② Comme n = 160 > 30 et $np = 160 \times 0, 8 = 128 > 5$, X peut être approchée par $Y \backsim \mathcal{N}(128; \sqrt{25, 6})$. On a : $\mathbb{P}(X > 135) \simeq \mathbb{P}(Y > 135)$, or

$$\mathbb{P}(Y > 135) = \mathbb{P}(Y^* > \frac{135 - 128}{\sqrt{25, 6}}))$$

$$= \mathbb{P}(Y^* > 1, 38)$$

$$= 1 - 0,9162$$

$$= 0,0838$$

$$Y_n \backsim \mathcal{N}(0, 8n; 0, 4\sqrt{n})$$

9 On souhaite déterminer n tel que $\mathbb{P}(X_n \leq 160) \geq 0, 95$.

$$Y_n \backsim \mathcal{N}(0, 8n; 0, 4\sqrt{n})$$

$$\mathbb{P}(Y_n \leqslant 140) \geqslant 0,95 \Leftrightarrow \mathbb{P}\left(Y_n^* \leqslant \frac{140 - 0,8n}{0,4\sqrt{n}}\right) \geqslant 0,95$$

$$\Leftrightarrow \frac{140 - 0,8n}{0,4\sqrt{n}} \geqslant 1,65$$

$$\Leftrightarrow 0,8n + 1,65 \times 0,4\sqrt{n} - 140 \leqslant 0$$

$$\Leftrightarrow \sqrt{n} \leqslant 12,82$$

$$Y_n \backsim \mathcal{N}(0, 8n; 0, 4\sqrt{n})$$

$$\mathbb{P}(Y_n \leqslant 140) \geqslant 0,95 \Leftrightarrow \mathbb{P}\left(Y_n^* \leqslant \frac{140 - 0,8n}{0,4\sqrt{n}}\right) \geqslant 0,95$$

$$\Leftrightarrow \frac{140 - 0,8n}{0,4\sqrt{n}} \geqslant 1,65$$

$$\Leftrightarrow 0,8n + 1,65 \times 0,4\sqrt{n} - 140 \leqslant 0$$

$$\Leftrightarrow \sqrt{n} \leqslant 12,82$$

$$Y_n \backsim \mathcal{N}(0, 8n; 0, 4\sqrt{n})$$

$$\mathbb{P}(Y_n \leqslant 140) \geqslant 0,95 \Leftrightarrow \mathbb{P}(Y_n^* \leqslant \frac{140 - 0,8n}{0,4\sqrt{n}}) \geqslant 0,95$$

$$\Leftrightarrow \frac{140 - 0,8n}{0,4\sqrt{n}} \geqslant 1,65$$

$$\Leftrightarrow 0,8n + 1,65 \times 0,4\sqrt{n} - 140 \leqslant 0$$

$$\Leftrightarrow \sqrt{n} \leqslant 12,82$$

$$\Leftrightarrow n \leqslant 164$$

$$Y_n \backsim \mathcal{N}(0, 8n; 0, 4\sqrt{n})$$

$$\mathbb{P}(Y_n \leqslant 140) \geqslant 0,95 \Leftrightarrow \mathbb{P}(Y_n^* \leqslant \frac{140 - 0,8n}{0,4\sqrt{n}}) \geqslant 0,95$$

$$\Leftrightarrow \frac{140 - 0,8n}{0,4\sqrt{n}} \geqslant 1,65$$

$$\Leftrightarrow 0,8n + 1,65 \times 0,4\sqrt{n} - 140 \leqslant 0$$

$$\Leftrightarrow \sqrt{n} \leqslant 12,82$$

$$\Leftrightarrow n \leqslant 164$$

$$Y_n \backsim \mathcal{N}(0, 8n; 0, 4\sqrt{n})$$

$$\mathbb{P}(Y_n \leqslant 140) \geqslant 0,95 \Leftrightarrow \mathbb{P}\left(Y_n^* \leqslant \frac{140 - 0,8n}{0,4\sqrt{n}}\right) \geqslant 0,95$$

$$\Leftrightarrow \frac{140 - 0,8n}{0,4\sqrt{n}} \geqslant 1,65$$

$$\Leftrightarrow 0,8n + 1,65 \times 0,4\sqrt{n} - 140 \leqslant 0$$

$$\Leftrightarrow \sqrt{n} \leqslant 12,82$$

$$\Leftrightarrow n \leqslant 164$$

