Phys 2920, Spring 2013 Problem Set #6

1. Find a set of formulae which transforms cylindrical coordinates (ρ, ϕ, z) to spherical coordinates, (r, θ, ϕ) .

2. Express the following (spherical) entities in terms of the Cartesian unit vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$:

- a) $\hat{\mathbf{e}}_r$, $\hat{\mathbf{e}}_\theta$ and $\hat{\mathbf{e}}_\phi$ for $r=1, \theta=\frac{\pi}{2}, \phi=0$
- **b)** $\hat{\mathbf{e}}_r$, $\hat{\mathbf{e}}_\theta$ and $\hat{\mathbf{e}}_\phi$ for $r=1, \theta=\frac{\pi}{2}, \phi=\frac{\pi}{2}$
- c) $\hat{\mathbf{e}}_r$ for $\theta = \pi$. (Do $\hat{\mathbf{e}}_\theta$ and $\hat{\mathbf{e}}_\phi$ have any meaning for this case?)

3. (VA 7.38) Express each of the following loci in spherical coordinates (be careful that you've handled the angles θ and ϕ correctly):

- a) the sphere $x^2 + y^2 + z^2 = 9$
- **b)** the cone $z^2 = 3(x^2 + y^2)$
- c) the paraboloid $z = x^2 + y^2$
- d) the plane z=0
- e) the plane y = x

4. (VA 7.43) Represent the vector $\mathbf{a} = 2y \,\hat{\mathbf{i}} - z \,\hat{\mathbf{j}} + 3x \,\hat{\mathbf{k}}$ in spherical coordinates and determine a_r , a_θ and a_ϕ .

5. If

$$\mathbf{A} = \frac{p_0 \omega^2}{4\pi\epsilon_0 c^2} \left(\frac{\cos \theta}{r}\right) \cos[\omega(t - r/c)] \hat{\mathbf{e}}_r$$

find $\nabla \times \mathbf{A}$. (Note, even though there's at in there, which does stand for time, the derivatives of the curl treat it as any other constant.)

Here, p_0 , ω are constants. The formula for **A** is the vector potential far from an electric dipole which has magnitude p_0 and oscillates with angular frequency ω . The curl of **A** gives the magnetic field **B**.

6. If

$$V = \frac{\alpha}{r} + \frac{\beta}{r^2} \cos \theta$$

where α and β are constants, show that $\nabla^2 V = 0$.

7. Prove that for a function Φ given in cylindrical coordinates by

$$\Phi(\rho,\phi) = \ln\left(\frac{\rho}{a}\right) + \left(A\rho^n + \frac{B}{\rho^n}\right) \left(C\sin n\phi + D\cos n\phi\right) ,$$

where A, B, C, D are all constants and n is an integer, we have $\nabla^2 \Phi = 0$.