## PytHHOn3D library

David Siedel

20/08/2020

## 1 Introduction

PytHH0n3D provides a generic implementation of the HHO method for simple elliptic problems (i.e. linear elsaticity in the context of solid mechanics). The model problem that PytHH0n3D addresses reads : find u such that

$$\int_{\Omega} \nabla \boldsymbol{v} : \boldsymbol{A} : \nabla \boldsymbol{u} = \int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{f} + \int_{\partial_{N}\Omega} \boldsymbol{v} \cdot \boldsymbol{t} \quad \text{in } \Omega$$

$$\boldsymbol{u} = \boldsymbol{u}_{D} \qquad \qquad \text{on } \partial_{D}\Omega$$
(1)

The problem then depends on the tangent operator A, on the volumetric load f, on the Neumann boundary condition t on  $\partial_N \Omega$ , on the Dirichlet boundary condition  $u_D$  on  $\partial_D \Omega$ , that are the arguments passed to the method to define the problem to solve.

## 2 Illustration

Let the unit square  $\Omega=[0,1]\times[0,1],$   $\Gamma_0=\{(x,y)\in\Omega\ |\ x=0\}$  and  $\Gamma_1=\{(x,y)\in\Omega\ |\ x=1\}.$  Let the volumetric load  $\boldsymbol{f}:(x,y)\mapsto -10$ , the Dirichlet Boundary conditions  $\boldsymbol{u}_{\Gamma_0}:x\mapsto 0$  on  $\Gamma_0$  and  $\boldsymbol{u}_{\Gamma_1}:x\mapsto 1$  on  $\Gamma_1$ , and the tangent operator  $\boldsymbol{A}=\boldsymbol{1}.$  the problem reads : find  $\boldsymbol{u}$  such that

$$\int_{\Omega} \nabla \boldsymbol{v} : \boldsymbol{A} : \nabla \boldsymbol{u} = \int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{f} \quad \text{in } \Omega$$

$$\boldsymbol{u} = \boldsymbol{u}_{\Gamma_0} \qquad \qquad \text{on } \Gamma_0$$

$$\boldsymbol{u} = \boldsymbol{u}_{\Gamma_1} \qquad \qquad \text{on } \Gamma_1$$
(2)

The solution to (2) is:

$$\boldsymbol{u}:(x,y)\mapsto 6x-5x^2\tag{3}$$

Comparison between the exact solution and the computed one are illustrated in Figure 2 and in Figure 3:



Figure 1: The mesh



Figure 2: Analytical field



Figure 3: HHO field