ENSF 594 Lecture 01 Data Structure - Introduction

Dr. Sohaib Bajwa

Why study Data Structures?

- Manage the complexity of the problems
- To create better and more efficient problem solving process

- Example:
 - How to give result efficiently when you have millions of data?

Definitions

• Data Structure: the organization of elementary data types into a larger, structural aggregate

- User to store data for an application
- May be directly supported by a programming language
 - e.g. Arrays and structs in C
- Usually created by a programmer
 - Reusable code for a data structure may be kept in a library
 - E.g. Stack class in java.util

Definitions (cont'd)

- Algorithm: a well-defined set of instructions for solving a problem
- May be expressed:
 - Informally (e.g. in plain English)
 - Formally, using specially designed mathematical notations
- Is abstract
 - Is independent of its implementation (i.e. code written in a particular language)

Definitions (cont'd)

- Abstract Data Type (ADT): a data structure accompanied by a set of access functions
 - Can also be referred as mathematical model of a data
- The implementation details are concealed from client code
 - Uses information hiding
- The functions:
 - Create objects of the ADT
 - Access the contents of the data structure
- Classes in OO language are ADTs where the concealment is enforced by language syntax
- E.g. Stack ADT

Access functions: new, push, pop

Classification of Data Structures

- Linear Structures
- Items are ordered depending upon how they are added or removed.
 - Item stays in that position relative to the other elements that came before and came after it.

Classification of Data Structures

Hierarchical Structures (Trees)

- Difference between Tree in nature and in Computer Science?
- Create a simple Tree?
- Example of Tree application?

Classification of Data Structures

- Graph Structures
- A more generalized structure
 - Trees are specific form of a Graph

• Example of some common graph structures

Operations on Data Structures

- Most data structures are dynamic
 - i.e. they can grow larger and smaller over time

- Modifying operations change the size of the data structure
 - Insert: adds a record to the data structure
 - Delete: removes a record

Operations on Data Structures (cont'd)

- Querying operations return information from the data structure
 - Search: returns a pointer to a record that matches a key value, or nil if there is no match
 - Minimum: returns the record with the smallest key
 - Maximum: returns the record with the largest key

Operations on Data Structures (cont'd)

 Successor: given some records, returns the next larger record, or nil if the record is the maximum record

Predecessor: given some records, returns the next small record, or nil
if the record is the minimum record

Operations on Data Structures (cont'd)

- Other operations modify the contents of a record in the data structure
 - Replace: replaces an entire record with another
 - Could be done with a delete and insert
 - Update: overwrites one or more fields in a record

