Module-4 Case Study

Problem Statement: You work for XYZ Corporation and based on the expansion requirements of your corporation you have been asked to create and set up a distinct Amazon VPC for production and development team. You are expected to perform the following tasks for the respective VPCs:

Production Network:

- 1. Design and build a 4 tier architecture
- 2. Create 5 subnets out of which 4 should be private with names app1, app2, dbcache and db and one should be public named web.
- 3. Launch instances in all subnets and name them as per the subnet that they have been launched in.
- 4. Allow dbcache instance and app1 subnet to send internet requests
- 5. Manage security groups and NACLs

Development Network:

- 1. Design and build 2 tier architecture with two subnets named web and db and launch instances in both subnets and name them as per the subnet names.
- 2. Make sure only web subnet can send internet requests
- 3. Create peering connection between production network and development network
- 4. Setup connection between db subnets of both production network and development network respectively.

Create a VPC named Production network.

Create 5 subnets as named in the problem statement.

app1 subnet

app2 subnet

dbcache subnet

db subnet

web subnet

Launch 5 instances with same name as it's subnets name.

app1 instance with app1 subnet name.

app2 instance

dbcache instance

db instance

web instance

5 instances with respective subnets in production vpc are created.

Create a NAT gateway.

Create route table and assign NAT gateway to dbcache and app1 subnet so that they can gain internet from NAT gateway.

Create Developer VPC.

Create subnets.

First web subnet.

Second db subnet.

Subnets created.

Launch instance for respective subnets as did earlier.

web instance.

db instance.

Create peering connection.

Choose any one of VPC that we created.

Now choose another VPC with which we want to peer.

Accept the peering request.

Accepted.

Create route table to let web subnet connect with internet.

Name it and select developer VPC.

Create internet gateway.

Attach it to developer VPC.

Edit routes in Subnet and add Internet gateway route,

Add subnet association and choose Web Subnet.

Web instance can ping and hence connected to internet.

To setup connection between subnet, choose sharing in subnet.

choose db subnet from another VPC.

Sharing is done.

