256 is a commutative alg over I with also an inner product. $(a,b)^{herm} = \frac{1}{161} \sum_{g \in G} \overline{alg} b(g)$ There is a related complex bilinear, mon-des for in defined as follows: On characters $\chi(g) = \chi(g')$ since eigenvels are roots of unity. so excluser the bilinear form $(a,b)^{thom} = \frac{1}{161} \sum_{g} a(g') b(g)$ agrees with (,) here on chars so it is non-degenente (knt obviously, it is different from (,) here). Det'n A (symmetric, commutative) Frobenius alg over I is a commutative algebra A over I equipped with a symmetric, non-less pairing < , > satisfying (ab, c) = (a, bc). So RIGIOS & ZCGI is an example. Frebenius algebras have a heautiful interpretation

in terms of topology which is important in plugues

We will explain	Strobenius } <	1-1 S 1+1 diall? TOFTs
Categorical desc	riphin of Frobe	enius algebrās:
	e underlying S-	
algebora, we can	m regard the al	gebra structure as
defined by the	o Blancits map	•
m: A	8A - + A	(multiplication)
4, : 1		(unit)
satisfying various		
o multiplication and	d unit can be formy	lated in terms of maps:
Associations: ADI	ADA — AC)A
	, mold of 1	M
40	A m A	
Unit: A =>	ABE TABLA ABA	· m > A
and the same of th		LA.
etc		
The non-deg.	pairing gives an	iso morphism
$A \rightarrow A^*$	so duelizion "	so and 1. since

co-unit and co-multiplication M: A -> C A: A -> AOA example in 206 Mb) = (a,1) = 1/61 al Id) (a,b) = M(2) = M(& alg/blo') 33') = ial = alg-1) b(g) (Symmetric, commetative) Frobenius algebras have an entirely typological formulation which is easis to understand, even it you don't know much typology. First the abstract definition: Defin A (1+1) -dim't topological grandom field eavery (TQFT) is functor to symmetric, monoidal, tensor categories: Z: 266 - Vecto from the category of oriented adim cohordisms to the category of a -vector ques.

string theory:	Z(5') = A	in the	"Hillment spend &
Z(W) gives	evolution by		my a word sheet.
		strings h	itide and 12 mins
A + 1+3			
Marca, Des	172 (Ta		ajedin isorespondenzi
(over q	2773	1 29	monetrie, communities
pt. siven a	TRET	Z defino	a Frobenius algebra
s jollons.			
	: A®A	*	multiplication
	: C	A.	unit
2(5)	· AOA		raina.
and whoms	b Pob.	elgebra:	

. . .

: History 王(399)= 圣(33) Associativity: -Unit adimi A-> ADA >A Were hother hot (ab, c) = (a, bc) Pairing is non-day. (=) A DA is an isomorphism i.e. it has an inverse At -> A (>> a copairing 1 +> ADA 1481 - A web-that A > ABABA 301 In a hasis gij L has inverse ginn Eging gmk = 5ch Converse: a TRFT is determined by its values

on pair to parts, cap, take (morse theory, every

Riemann sort has a pair &

Goal: field a geometric interpretation of 251-1 the TQFT corresponding to ZCGI, use our theory of characters to deduce nice geometric results. 3 We have an obvinos basis for ZCG labelled lay conjugacy classes { ex} ex = zi g Country Given a basis for A we can express a liver map f. A or DA D Via temsor coefficients: F(ea, 8 ... o ear) = 5, ... fr. ... c, o ... of s we use summation convention: repeated indices, one up one down, are summed over f(ex. 0.00 ex.) = fris ex. 0.00 pc f is determined by transport coets for is - I e.g. f: A DA for matrix antries. Composition: ABA STO ABA STOPA Carebins tos charles in the gas & 1.e. (gof) = fas gos Kronicker 8 8 = \$1 a=\$ so fix the hos invege s => fogs = 85

Non-degenerate from g: ABA DC given by Jas Non-leg means included map to to At is an iso. The inverse map A -DA corresponds to copyring I - DADA given by gat; the inverse complition is garages - 5% The form g (or metric g) gives us a way of mising and lumering indices: M: AOA -DA (=> AOAOA* -> C ten vin g: At - DA we get hadoA - DI various g(m(vav), u) in tensor language: m: AOA -DA is given my Mis ABABA - DO is sime by Mass: = masgrs so for example co-multiplication A 18/4 is given by magica mas good got It? Any Frohenius etg. is determined by Myg, he must, pairing, ca Unit. ABABA TO a ABA TO A A C Mass, Jas, Ma 圣(多) 圣(多) 圣(》

lx -	the case of	206 ₁	ENS con	ij. clastes	8 G	
٥, -	· Zg					}
recall	ME	a(g)g) -) alik)		3
1.2.	M = Ml	٤ (161 K=	(W)		
-3-(Z.alg) g,	2003) ;		. 169) 29	1)	
Ĵ.	: 9(c,			X E		conficience displays
let E	Z(w) = (= 2(x)	andralizar-		1		
	= g(m		3		and the second of the second	
		3.67) = 1				663
Mapo	: Lat	}	, heb, k	ed by shock		
	make som somsthi		urs gearn		My Shi	

Jan 319t. Defin A free Grapus is a topological space P on which G acts freely and continuously, i.e. for all geg #g: P → P continuous map. 7 such that \$qn(x) = \$pg(\$\psi_n(x)) , \$\psi_{id} = I_{dx}\$ (free x + \$\phi_a(A) unless g=id). e.g. Als sets freely on: poor similar action on wat free (2 fixed pts) each orbit is a copy of G. Let X = Ting he the orbit years: we identify x " to(1) It Pis a manifold than K=1/6 is a manifold B/, Strations

Ret'n A principal Gi-bundle over X is a free Go-gome ? such that X = TG. P = XxG1 is willed the trivial bunds. Questin : given a Rieman sorte (a 3. . 2) X from many Principal on Gundas over X are there? (Related to Galois theory: If P-1 X is a pricipal on bundle then the field of meromorphic free, on P is a Galois extension of the field of meromorphic for on X with galois gp G). webegin by studying Principal 61 bundles over 5. We use the fact that all principal or bundles over Eo, i] are trivial. 5'= Lo, is so we can get P-DS' ky gluing Gx Lo, I] to itself: we can make a principal bundle on 5 by glaing , po to gp; some 9 66 once this choice is made all other gluings are ditermined. s'proc we had chosen a different labelling of the fiber over 0, i.e. some other Po = hpo

Then 263 king = # 3 principal bundles & 1/2 (g)

having manageroung or about the

in mundary component. We count

each bundle by what? = 161 In partigular Eglg) = # princ. 6,-hundles on (3 ... 6. We sketch the proof. We show this forms a TQFT and we show it agrees with ZCE, on pants, tab, and Cap. Pick a base point to E Wr(g) and choose a point po E 17 (8). Then each loop 8: LO, I - DWr(4) with 8(0) = 8(1) = Xo determines an element of G by monodromy. Y,, ..., Tr are loops honotopic to the loop round boundary Compounts

This defines a homomorphism $\phi \in Hom(\Pi,(W-G),G)$ with that $\phi(S_i) \in \alpha_i$ this uniquely determines

The principal bundle. So $F_{ij}(W-G)_{ij,ij} = \frac{1}{12} \# \{\phi \in Hom(\Pi,(W-G),G): \phi(G) \in \alpha_i\}$

	$2(u) = l$ controlliparin) $l = \frac{l(a)}{l(a)}$
:= 2(3,) 2(85) 2g(Wgrs (8))	a, a, b, a, b
Prope The above defines a TOFT	, i.e. composition long
2.g. 3. 92 ? 3 (2) = 2 3 (3)	(0.00) Zo (5.00)
= 161 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	9
can glue bundles with apposite mon	eachony local number of ways
Since the principal mendle VQFT one from 2000 on cop, points, &	agrees with the two they agree in Juna.
Our original topological proble	ino:
(a) = + Princ. 5,-bundles one = \(\frac{1}{160} \) + Home (π, (ξ _θ), 0)	
= [] # { (a, b,, m, b,) = G	
looks like a very difficult combined	on grow that produce.

Theorem Page): The some simple Defn A TOFT/From by a semi-simple it the ay is simi-simple: 1.2. = a mois 1/2 s.1. VaoVp = Sas Va. Exercise, Suppose A is a semi-simple Frob. alg with idemportant lasis 2, ..., in (20 Pice: - Jose;) let the = M(e). Show that Mito and letting A: = Mi, show that Hint: compute des principals Theorem, 2006 is semi-simple with identificant rasis 10 = dim R = 2 (1/213) 3 P.F. For any repr. W and any irreducible ? Consider pe: N = W \$ (w) = dian = 3 (x6) g.w

to is in-linear: DR (hw) = dink 2 / / / (h f')ghov g'= h'gh = dimR = TR(0) how = horal (w) By School's hamma of R: R' + R' is equal to I Ide of it R' b irr. and in this case tr(fr) = A dim R' = dim R'ig 2 Rp(g) 7 pl(g) = Sppidim R so $\lambda = S_{RR}'$ thus ϕ_R is projection onto R summands RW. Let W = Ring = Ilái] then pp: Ilai + Ilai is jost multiplication by VR and since PROPRI = SRRIPR WE GOT VROVRI = SRRIVR in I Las since by are central and your 2018, the from johns. M(QVR) = M (dink in & Tria) + = dink in the Trial = din'R

1012 SO AR = (din R) Exercise > 36(g) = { (lat)4-2-

verify formula for
$$g=0$$
 and $g=1$ by hand?

$$\begin{array}{l}
\downarrow (Q) = \frac{1}{164} \# \text{Hom} (\pi_1(s^2), G_1) = \frac{1}{164} (\text{the only broadle}) \\
\downarrow (G) = \frac{1}{164} \# \text{Hom} (\pi_1(s^2), G_2) = \frac{1}{164} (\text{the only broadle}) \\
\downarrow (G) = \frac{1}{164} \# \text{Hom} (\pi_1(\text{torus}), G_2)) \\
= \frac{1}{164} \# \text{Hom} (\pi_1(\text{torus}), G_2) \\
= \frac{1}{164} \# \text{Hom} (\pi_1(\text{torus}), G_2)) \\
= \frac{1}{164} \# \text{Hom} (\pi_1(\text{torus}), G_2)) \\
= \frac{1}{164} \# \text{Hom} (\pi_1(\text{torus}), G_2) \\
= \frac{1}{164} \# \text{$$

given a principal Sa-bundle P DX we can make a legree & cover X - X leg X = (Px?1:,d)/51 conversely, given a degree d cover X-XX Affine P = { +: 45/14 21,..., 23 -> × 5.1. 11-4 maps to} a point, i.e. labellings of the fikers X >x we must give P a topology so that the labellings vary continuously. If acts on P by acting on ?15", ds. Contract of the second # deg d covering spaces = $\frac{5!}{2!}$ $\left(\frac{d!}{dinR}\right)^{2g}$ in particular # grovers of T = pld) = # of partitions very fun to see this directly from covering space theory: # of connected covering = 1 # index of subgres of Zrd. exercise: show RHS is = otal) = # 3 hisors Ad.

Let $Nd = \# \mathcal{R}$ rossibly disconvers = p(d)

Let $nd = \# \mathcal{R}$ connected covers = $\frac{1}{2}$ ord)

Let $F(\delta) = \sum_{i=1}^{2} n_i \mathcal{R}^d$ Let $F(\delta) = \sum_{i=1}^{2} n_i \mathcal{R}^d$ Let $F(\delta) = \sum_{i=1}^{2} n_i \mathcal{R}^d$ Show $F(\delta) = \sum_{i=1}^{2} (1-\delta^n)^{-1} - \log_{\delta} \exp(F(\delta))$ $F(\delta) = \sum_{i=1}^{2} (1-\delta^n)^{-1} - \log_{\delta} \exp(F(\delta))$

Handle operator H: Z- (25): 4-64 Let ?X; S be a hasts for A H: John mit J. & K. . work mix on Let {83} he the dual hours, i.e. (8:38) = 8: 80=gukg Tar rayi eA multiplication by BI: S: 1- (X:084) . S: = 7; gir 8 68; · git 8; mixi 8e -gik mki mje Yn = gik gramen miz 8n = mis mie on