Question 1 (15 Marks)

Marks

Draw a neat sketch of xy = 8, **clearly** indicating on the sketch, the coordinates (a) of the foci, vertices, and the equations of the directrices.

4

A raindrop falls so that its velocity v m/s at time t seconds is given by (b)

$$\frac{dv}{dt} = \frac{1}{3} (3g - 2v)$$

where g is the acceleration due to gravity.

- Show that $v = \frac{3g}{2} \left(1 e^{-\frac{2}{3}t} \right)$. 3
- Find the limiting velocity of the raindrop in terms of *g*. 1
- (iii) Find the time when the velocity reaches $\frac{1}{2}g$ m/s. 2
- The rate of increase of the population, P(t), of a particular bird species at time (c) t years is given by the equation:

$$\frac{dP}{dt} = kP(Q - P)$$

where k and Q are positive constants and P(0) < Q.

- Verify that the expression $P(t) = \frac{QC}{C + e^{-kQt}}$, where *C* is a constant, 3 is a solution of the equation.
- Describe the behaviour of P as $t \rightarrow \infty$. (ii)
- 1 (iii) Describe what happens to the rate of increase of the population as $t \rightarrow \infty$. 1

Question 2 (15 Marks) (Start a new page)

- A particle of unit mass is projected vertically upwards form the ground with initial speed u m/s. If air resistance at any time t seconds is proportional to the velocity at that instant, and assuming air resistance is -kv,
 - (i) Prove that if the highest point is reached by the particle in time T seconds then 4

$$kT = \log\left(1 + \frac{ku}{g}\right)$$

where g is the acceleration due to gravity.

5 If the highest point reached is at a height h metres above the ground, prove that hk = u - gT.

Question 2 continues on the next page

- (b) The normal at a variable point $P\left(2p,\frac{2}{p}\right)$ on xy = 4, given by $y = p^2x 2p^3 + \frac{2}{p}$, meets the x axis at Q.
 - (i) Find the coordinates of Q.
 - (ii) Find the coordinates of the midpoint, M, of PQ.
 - (iii) Hence, find the locus of M.

Question 3 (15 Marks)

- (a) (i) Prove that the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab square units. 3
 - (ii) Hence, by the **method of cylindrical shells**, find the volume of the solid formed when the area is rotated through 1 complete revolution about the line y = b.
- (b) The area enclosed by the graph of the function $y = e^{2x}$, the y axis and the horizontal line $y = e^2$ is rotated about the y axis.
 - (i) Show that the volume is given by $\Delta V = \sum_{0}^{1} 2\pi x (e^2 e^{2x}) \Delta x$.
 - (ii) Hence, find the exact volume of the solid of revolution formed. 3
- (c) If the gradients of the tangents drawn to the curves $xy = c^2$ and $y^2 = 4ax$ at the point of intersection are m and M respectively. Prove that m = -2M.

Question 4 (15 Marks) (Start a new page)

Marks

- (c) A particle moves in a straight line so that it's acceleration is inversely proportional to the square of its distance from a point *O* in the line and is directed towards *O*. It starts from rest at a distance *a* units from *O*.
 - (i) What is its velocity when it first reaches a distance, $\frac{a}{2}$ units, from O?
 - (ii) Show that the time taken to first reach this distance in part (i) is given by 3

$$t = \frac{(\pi + 2)a^{\frac{3}{2}}}{4\sqrt{2k}}$$
, where *k* is a constant,

given that
$$\frac{d}{dx} \left[\sqrt{x(a-x)} + \frac{a}{2} \sin^{-1} \left(\frac{a-2x}{a} \right) \right] = -\sqrt{\frac{x}{a-x}}$$

Question 4 is on the next page.

Question 4 continued Marks

- (b) A is the area of the region R bounded by the upper branch of the hyperbola $\frac{y^2}{b^2} \frac{x^2}{a^2} = 1$, the x axis and the lines $x = \pm a$.
 - (i) Show that $A = \frac{Lb}{2} \left[\sqrt{2} + \ln(1 + \sqrt{2}) \right]$ square units, where L the length of the base of R is 2a units.
 - (ii) S is the solid whose base is the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Cross sections perpendicular to the base and to the minor axis, are plane figures similar to region R where the line of intersection of the planes is the base length of R. Find the volume of S.

~ END OF TEST ~