

FEW-SHOT BIOACOUSTIC EVENT DETECTION: ENHANCED CLASSIFIERS FOR PROTOTYPICAL NETWORKS

Author(s):

Ren Li

Jinhua Liang

Huy Phan

centre for digital music

By Jinhua Liang Nov. 3, 2022

Introduction

Why use few-shot learning approach?

- Manual data labeling is time-consuming
- Collecting certain animal sounds is not always feasible in practice
- Few-shot learning can recognize new classes only with a few unseen samples (Morfi et al. 2021)

Fig. 1. Bird sounds detection from audio (So et al. 2020)

Our proposed methods: enhance the Prototypical network. ProtoNet by using ResNet and Autoencoder as the embedding networks.

Methodology

1. ResNet-based Prototypical Network

Residual blocks use skip connections to carry more information to a deeper layer.

Layers	Channels	Kernel Size	
Conv2D+ BatchNorm +ReLU	16	3 × 3	
Residual Block	64	3 × 3	
Residual Block	128	3 × 3	
Residual Block	64	3 × 3	
Adaptive AvgPooling +SoftMax	-	3 × 3	

Methodology

2. Combine Autoencoder and ProtoNet to learn the low-dimensional features

Conv Block		Conv Transpose Block			
Layers	Kernel Size	Layers	Kernel Size		
Conv2D	3 × 3	Conv2D Transpose	2×2 , stride 2		
BatchNorm	-	BatchNorm	-		
ReLU	-	Conv2D	3 × 3		
Max pool	2 × 2	ReLU	-		

Experiments

Model components		Validation set scores (%)			Subset F1-score (%)			
Exp No.	Classifer	Feature	F1-score	Precision	Recall	НВ	ME	PB
1	CNN (Baseline)	PCEN	29.59	36.34	24.96	/	/	/
2	ResNet	PCEN	45.64	48.34	43.22	50.00	57.14	26.18
3	Autoencoder	PCEN	37.94	38.95	36.97	44.53	52.05	25.68
4	CNN	PCEN+Augment	37.16	42.09	33.26	38.86	72.01	15.33
5	ResNet	PCEN+Augment	47.88	52.11	44.30	53.45	50.98	17.65
6	Autoencoder	PCEN+Augment	47.61	50.18	45.34	52.68	53.10	22.44

- Exps. 1 and 2: the ResNet model outperformed the baseline with an improvement of more than 15%
- Exps. 1, 2 and 3: the autoencoder produced about 8% improvement, which was slightly lower than the ResNet
- Exps. 4, 5 and 6: data augmentation helps models perform better than those without data augmentation

Takeaways...

- Using ResNet and Autoencoder (or construction loss) contributes to learn a more advanced embedding space and improve the performance of Prototypical Network.
- Our training framework has not changed, and it still relies too much on one-sided input, making it prone to overfitting.

Takeaways...

- Using ResNet and Autoencoder (or construction loss) contributes to learn a more advanced embedding space and improve the performance of Prototypical Network.
- Our training framework has not changed, and it still relies too much on one-sided input, making it prone to overfitting.

E-mail: jinhua.liang@qmul.ac.uk

ORCID: https://orcid.org/0000-0002-4570-0735

Homepage: https://jinhualiang.github.io/, or:

By Jinhua Liang

Nov. 3, 2022

