Adopted Levels, Gammas

- $Q(\beta^{-})=14170 \ 40; \ S(n)=5297 \ 8; \ S(p)=15830.7 \ 89; \ Q(\alpha)=-14894.0 \ 78$ 2021Wa16
- S(p),Q(α): Deduced by the evaluator using mass excesses of 8318 5 for ³⁴Mg: a weighted average of 8323 7 (2019As04) and 8315 5 (2025Ly01), and 12245.3 26 for ³¹Na measured by 2025Ly01; -224 7 for ³⁵Al from 2021Wa16. Values from 2021Wa16: S(p)=15836 10, Q(α)=-14895 16.
- $S(2p)=38400.5~85,~Q(\varepsilon)=-15753~10,~from~mass~excesses~of~23598.8~43~for~^{33}Na~and~15529.5~71~for~^{35}Mg~measured~by~2025Ly01;~-224~7~for~^{35}Al~from~2021Wa16.~Values~from~2021Wa16:~S(2p)=38580~450,~Q(\varepsilon)=-15860~270.$

 $S(2n)=7869 \ 10, \ Q(\beta^-n)=11697 \ 7 \ (2021Wa16).$

Isotope discovery (2012Th10): C(⁴⁰Ar,X) projectile fragmentation at Berkeley (1979Sy01).

- 2017Ha23: ³⁵Al produced by ⁹Be(⁴⁰Ar,X) at HIRFL. Measured T_{1/2}.
- 2015Mo17: ³⁵Al produced by ⁹Be(⁴⁰Ar,X) at E(⁴⁰Ar)=95 MeV/nucleon at RIKEN. Measured time-of-flight, energy loss, angular distribution of fragments, analyzed transverse momentum distributions for fragments, and deduced formulation for the width of transverse momentum distribution.
- 2012No05: 33,34,35,36 Al produced by Be(48 Ca,X) fragmentation at E(48 Ca)=1 GeV/nucleon at GSI. Measured 1n removal cross sections and and longitudinal momentum distributions of the residues. $\sigma(^{35}$ Al-> 34 Al)=75 mb 4 and $\sigma(^{36}$ Al-> 35 Al)=95 mb 5.
- 2012Kw02: 35 Al produced by 9 Be, nat Ni, 181 Ta(40 Ar,X) at E(40 Ar)=140 MeV/nucleon at NSCL. Measured fission fragment spectra, average isobaric velocities, parallel momentum transfers, widths, fragment σ . Comparison with empirical formula EPAX, and predictions from internuclear cascade and deep inelastic models using Monte Carlo ISABEL-GEMINI and DIT-GEMINI codes.
- 2012Zh06: ³⁵Al produced by ⁹Be(⁴⁰Ar,X) at E(⁴⁰Ar)=57 MeV/nucleon at HIRFL. Measured particle spectra, energy loss, time of flight, fragment yields, momentum distributions, cross sections; deduced fragment excitation energies, mass yield ratios.
- 2010Ro23: 35 Al produced by 9 Be(40 Ar,X) fragmentation at E(40 Ar)=700 MeV/nucleon at GSI. Measured 1n knockout cross sections and longitudinal momentum distributions of the residues. σ (35 Al-> 34 Al)=65 mb 18 .
- 2007No13: ³⁵Al produced by ⁹Be(⁴⁰Ar,X) fragmentation at E(⁴⁰Ar)=100 MeV/nucleon at RIKEN. Measured fragment momentum distributions and production cross sections.
- 2006Kh08: ³⁵Al produced by ¹⁸¹Ta(⁴⁸Ca,X) fragmentation at E(⁴⁸Ca)=60.3 MeV/nucleon at GANIL. Measured energy-integrated reaction cross sections at 30-65 MeV/nucleon using a silicon telescope as both active target and detector. Deduced radii, isospin dependence, and possible halo structure or large deformation.
- 2006FuZX: 35 Al produced by Be,C(40 Ar,X) at E(40 Ar)=63 MeV/nucleon at RIKEN. He(35 Al,X) at E(35 Al)=40 MeV/nucleon. Measured E γ , I γ .
- 2005Ti11,2006AnZW: fragmentation of 36 S beam at 78 MeV/nucleon at GANIL. Measured β -delayed E γ , $T_{1/2}$ and delayed neutron emission probability. Deduced levels, J^{π} , log ft for 35 Si. (conference paper).
- 2001Nu01,2002Nu02: 35 Al produced at the ISOLDE facility at CERN in fragmentation with 1.0 GeV proton beam on a uranium carbide target. Measured E γ , E γ , $\gamma\gamma$, $\beta\gamma$ -coin, $T_{1/2}$ and delayed-neutron branches. Deduced levels, J^{π} , log ft for 35 Si.
- 1999YoZW: 35 Al produced by 9 Be(48 Ca,X) and 181 Ta(48 Ca,X) fragmentations at E(48 Ca)=70 MeV/nucleon at RIKEN. Measured $T_{1/2}$ and delayed neutron emission probabilities.
- 1989Le16,1989MuZU: 35 Al produced by 181 Ta(48 Ca,X) fragmentation at E(48 Ca)=55 MeV/nucleon at GANIL. Measured 181 Ta(48 Ca,X) and delayed neutron emission probabilities.
- 1988Mu08,1988MuZY,1988BaYZ: 35 Al produced by 181 Ta(86 Kr,X) fragmentation at E(86 Kr)=45 MeV/nucleon at GANIL. Measured $T_{1/2}$ and delayed neutron emission probabilities.

Mass measurements: 2017Ga20, 2007Ju03, 1991Or01, 1991Zh24, 1987Gi05.

Theoretical calculations (binding energies, deformation, quadrupole moments, radii, levels, J, π , mass, $T_{1/2}$, etc): 2016Sa46, 2014Ca21, 2013Li39, 2013Sh05, 2011Ki12, 2009Yo05, 2004Kh16, 1994Po05.

³⁵Al Levels

Cross Reference (XREF) Flags

- A 36 Mg β^{-} n decay (6.9 ms)
- B ${}^{9}\text{Be}({}^{36}\text{Si}, {}^{35}\text{Al}\gamma)$
- C Pb(35 Al, 34 Aln γ)
- D Coulomb excitation

Adopted Levels, Gammas (continued)

³⁵Al Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0	(5/2)+	38.3 ms <i>4</i>	ABCD	$\%\beta^-=100; \%\beta^-=38\ 2\ (2015Bi05); \%\beta^-=2n=0\ (2001Nu01)$ $\%\beta^-$ n: From 2015Bi05 evaluation; weighted average of 38 2 (2005Ti11, 38 3 in 2006AnZW) and 41 13 (2001Nu01,2002Nu02). Others: 26 4 (1995ReZZ,2008ReZZ); 40 10 (1989Le16); 87 +37-25 (1988Mu08). J ^π : From shell-model calculations and L(36 Si, 35 Al)=2 from 0 ⁺ . Major configurations deduced by 2017Ch36 from Coulomb breakup of 35 Al on Pb target: for $J^{\pi}(^{35}$ Al g.s.)=5/2 ⁺ , (g.s.,4 ⁻ in 34 Al) $\otimes vp_{3/2}$ + (46 keV,1 ⁺ in 34 Al) $\otimes vd_{3/2}$. For $J^{\pi}=1/2^+$ or $3/2^+$ of 35 Al g.s.: (g.s.,4 ⁻ in 34 Al) $\otimes vf_{7/2}$ + (46 keV,1 ⁺ in 34 Al) $\otimes vs_{1/2}$. Other configurations for $J^{\pi}=1/2^+$,3/2 ⁺ of 35 Al g.s.: (46 keV,1 ⁺ in 34 Al) $\otimes vs_{1/2}$, (46 keV,1 ⁺ in 34 Al) $\otimes vs_{1/2}$, (46 keV,1 ⁺ in 34 Al) $\otimes vd_{5/2}$. T _{1/2} : weighted average (normalized-residual method) of 38.4 ms 3 (2017Ha23, implant-β correlated decay curve); 36.8 ms 5 (2005Ti11, implant-β correlated decay curve, 36.4 ms 5 in 2006AnZW); 38.6 ms 4 (weighted average by 2001Nu01 from four independent measurements, three β-decays and one γ-decay). Others: 30 ms 4 (1995ReZZ,2008ReZZ, β-decay); 170 ms +90-50 (1989Le16, β-decay); 30 ms 10 (1988DuZT,1987DuZU); 130 ms +100-50 (1988Mu08, β-decay). Value is 37.6 ms 14 in 2015Bi05 evaluation, which did include the 2017Ha23 result. Reduced strong absorption radius=1.188 fm² 14 from 2006Kh08.
802 <i>3</i>			AB	
1007 4			B D	XREF: D(1020)
1866 <i>4</i>			В	
1975 <i>4</i>			В	
2734 7			В	
3245 5			В	
4275? 9			В	XREF: B(4275?)

 $^{^{\}dagger}$ From a least-squares fit to γ -ray energies.

$\gamma(^{35}Al)$

$E_i(level)$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	J_f^π	Comments
802	802 4	100	0	$(5/2)^+$	
1007	1006 6	100	0	(5/2)+	B(E2)=0.0142 52 (1999Ib01). B(E1) \leq 0.00020 9, B(E2) \leq 0.0125 56, B(M1) \leq 0.0024 11, and 5/2+->3/2+/- σ =30 mb 14 (2000PrZX). The multipolarities are assumed.
					E_{γ} : weighted average of 1003 4 from ($^{36}Si,^{35}Al\gamma$) and 1020 9 from Coulomb excitation.
1866	859 <i>4</i>	100 8	1007		
	1064 4	22 6	802		
1975	968 <i>4</i>	59 <i>4</i>	1007		
	1174 5	37 4	802		
	1972 6	100 7	0	$(5/2)^+$	
2734	1932 6	100	802		
3245	2237 6	100 8	1007		
	2440 7	18.0 26	802		
	3250 8	42 5	0	$(5/2)^+$	
4275?	4275 9	100	0	$(5/2)^+$	

 $^{^{\}dagger}$ From $^{9} Be (^{36} Si,^{35} Al \gamma),$ unless otherwise noted.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

