Année scolaire :2017 - 2018

 $\frac{\textbf{Classe}}{\textbf{Dur\'ee}}: \mathbf{\textit{20 min}}$

EVALUATION SOMMATIVE DU 08/10/17.

Épreuve : Math'ematiques

Dans un plan (\mathcal{P}) , on considère un triangle ABC rectangle en A tels que AC = 2AB = 2d (d est un réel strictement positif).

- 1. (a) Construis le barycentre I des points pondérés (A, 1), (B, 2) et (C, 1).
 - (b) Construis le barycentre J des points pondérés (A,2),(B,1) et (C,-1).
 - (c) Calcule la distance IJ en fonction de d.
- 2. On pose $\Gamma_k = \{M \in (\mathscr{P})/MA^2 + 2MB^2 + MC^2 = k\}$. Détermine suivant les valeurs du paramètre réel k la nature Γ_k

Renforcement

Année scolaire :2017 - 2018

 $\frac{\textbf{Classe}}{\textbf{Dur\'ee}}: T^{le} \ \textbf{\textit{C}}$

EVALUATION SOMMATIVE .

$\acute{\mathbf{E}}$ preuve : $Math\acute{e}matiques$

Dans le plan (\mathscr{P}) , on considère un triangle ABC et on désigne par le point G son centre de gravité. Soit l'application $g:(\mathscr{P})\to\mathbb{R}$

 $\stackrel{\cdot}{M}\mapsto \overrightarrow{MA}\cdot \overrightarrow{MB}+\overrightarrow{MB}\cdot \overrightarrow{MC}+\overrightarrow{MC}\cdot \overrightarrow{MA}$

et f la fonction scalaire de Leibniz associée aux points pondérés $(A;1),\ (B;1)$ et (C;1)

- 1. Démontre que pour tout point M de (\mathscr{P}) , $g(M) = 3MG^2 + g(G)$
- 2. En utilisant la relation de la question 1., Calcule g(A),g(B) et g(C) et déduis-en que $g(G)=-\frac{1}{2}f(G)$
- 3. Calcule f(G) en fonction de AB, AC et BC
- 4. Dans le cas ABC est un triangle équilatéral de côté 2 cm, détermine l'ensmble des points M de (\mathcal{P}) tels que g(M)=5

Année scolaire :2017 - 2018

 $\frac{\textbf{Classe}}{\textbf{Dur\'ee}}: \mathbf{\textit{20 min}}$

EVALUATION SOMMATIVE .

$\acute{\mathbf{E}}$ preuve : $Math\acute{e}matiques$

Soit ABCD un los ange de centre O tel que OB=2OA comme l'indique la figure suivante :

- 1. Démontre que le barycentre I des points pondérés (B;2),(C;-1) et (D;1) est le milieu du segment [AB].
- 2. Soit $k \in \mathbb{R}$
 - (a) Détermine l'ensemble (E_1) des barycentres G_k des points pondérés (D; -2k+1), (C; -1+k), (A; k) et (B; 2).
 - (b) Démontre que $\mathscr{R}=(0;\overrightarrow{OD},\overrightarrow{OC})$ est un repère du plan (\mathscr{P}) .
 - (c) Détermine les coordonnées de G_k dans le repère $\mathscr R$
 - (d) Déduis-en les valeurs de k pour laquelle $G_k \in (AC)$
- 3. Détermine l'ensemble des points M du plan tels les vecteurs $\overrightarrow{MA} + \overrightarrow{MC} 2\overrightarrow{MD}$ et $2\overrightarrow{MB} \overrightarrow{MC} + \overrightarrow{MD}$ ont la même norme

