ELEC2104 – Week 7

BJT and circuits, other modes of operation

BJT small signal models

BJT Transconductance

- Transconductance, g_m is a small-signal measure of how well the transistor converts voltage to current.
- g_m is one of the most important parameters in circuit design.
- Remember, for large-signal analysis, conductance G = 1/R

For small changes:

$$g_{m} = \frac{dI_{C}}{dV_{BE}} = \frac{d}{dV_{BE}} \left(I_{S} \exp \frac{V_{BE}}{V_{T}} \right)$$

$$g_m = \frac{1}{V_T} \left(I_S \exp \frac{V_{BE}}{V_T} \right)$$

$$g_m = \frac{I_C}{V_T}$$

BJT Transconductance

- g_m can be visualized as the slope of I_C versus V_{BE} characteristics at a given collector current I_{CO} and base-emitter voltage V_{BEO}
- A large g_m will cause a large change in I_C for the same change in ΔV_{BE}

 $g_{m2} > g_{m1} \rightarrow \Delta I_{C2} > \Delta I_{c1}$

 $I_{C2} > I_{C1}$

BJT Transconductance

Question:

• If I_C remains constant, but β varies, does g_m change?

 Collector bias (or quiescent) current plays an important role in the design of BJT amplifiers

BJT Small-Signal Model

- A small-signal model can be derived from the large-signal model by applying a small change to the input rather than a DC signal
- We can then propagate the ΔV_{BE} term and analyze subsequent changes in current in the three terminals

- 1. Change in collector current: $\Delta I_C = g_m \Delta V_{BE}$
- 2. Change in base current: $\Delta I_B = \frac{g_m \Delta V_{BE}}{\beta}$

$$\frac{\Delta V_{BE}}{\Delta I_{B}} = \frac{\beta}{a_{m}} = r_{\pi}$$
 Small-signal resistance (differential resistance)

BJT Hybrid-Pi Model

• Small signal resistance r_{π} - placed between base and emitter

$$r_{\pi} = \frac{v_{be}}{i_b} = \frac{\beta}{g_m} = \frac{V_T}{I_B}$$

$$g_m = \frac{I_C}{V_T}$$

Only works at a certain Q-point For a different Q-point, g_m is different

BJT Hybrid-Pi Model

- What about ΔV_{CF} ?
- In forward-active operation, ΔV_{CE} has no effect on the collector current or base current
- ΔV_{CR} has no effect on the small signal model, either.

• ΔV_{CF} and ΔV_{CB} does not affect the model

Hybrid-Pi Model for PNP Transistor

 The small signal model for PNP transistor is exactly the same as that for an NPN transistor.

- Remember, ΔV_{BE} , i.e. v_{be} is not directional
- Small signal studies the changes in the circuit

Example: Small-Signal Analysis

- Consider the following circuit where v_1 is the signal generated by a microphone, $I_S = 3 \times 10^{-16} A$, $\beta = 100$, and $V_T = 26 \ mV$.
 - (a) Determine the small signal parameters of Q₁

Need to find g_m , r_π

Here, small signal parameters are calculated from DC operating point

1. Find the collector bias current when $v_1=0$

$$I_c = I_s \exp \frac{V_{BE}}{V_T}$$
$$= 6.92 \ mA$$

2. Calculate g_m and r_{π}

$$g_m = \frac{I_C}{V_T} = 0.267\Omega^{-1}$$
$$r_\pi = \frac{\beta}{g_m} = 375\Omega$$

Example: Small-Signal Analysis

- $I_C = 6.92 \ mA$, $g_m = 0.267 \Omega^{-1}$, and $r_\pi = 375 \ \Omega$.
 - (b) If microphone generates 1 mV signal, how much change is observed in the collector and base currents?

 $\Delta I_C = g_m v_1 = 0.267 mA$

 $\Delta I_B = \frac{v_1}{r_{\pi}} = 2.67 \mu A = \frac{\Delta I_C}{\beta}$

Example 2: Small-Signal Analysis

• $I_C = 6.92 \, mA$, $g_m = 0.267 \Omega^{-1}$, and $r_{\pi} = 375 \, \Omega$.

(c) The circuit is now modified by connecting a resistor R_c to convert the collector current to a useful output voltage. Verify the transistor is still operating in the forward active

mode.

For active mode: $V_C > V_B > V_E$

$$V_C = V_{out}$$

$$= V_{CC} - I_C R_C$$

$$= 1.108 V > V_R > V_F = 0$$

∴ Device in active mode

(c) What is the output signal level for a 1 mV input signal from the microphone

$$\Delta I_C=0.267~mA$$
 Rc \uparrow , Gain \uparrow Upon flowing through R_C,
$$\Delta V_{out}=\Delta I_C R_C=26.7~mV \longrightarrow \begin{array}{c} \text{Amplifies the input} \\ \text{by a factor of 26.7} \end{array}$$
 BJT need to be in forward a

by a factor of 26.7

BJT need to be in forward active mode.

Early effect

BJT Non-Ideal Transistors: Early Effect

- Maximum gain in amplifiers can be limited by the nonideality in the device
- Assumption at question: collector current does depend on V_{CF}
- As V_{CE} increases, the depletion region between base and collector increases.
 - Higher reverse-bias across base-collector junction
- The *effective base width* decreases
 - Remember that base is itself thin
 - Narrower base means higher gain
- This is called the Early Effect.

BJT Non-Ideal Transistors: Early Effect

• Ideal model:

• More accurate transistor I-V characteristics:

BJT Non-Ideal Transistors: Early Effect

- When output characteristics are extrapolated back to point of $I_c = 0$, curves intersect (approximately) at a common point $V_{CE} = -V_A$
- This is called the Early Voltage
- Typically between 15 V and 150 V
- If not stated, assume it is infinite (no Early)

Rise in I_c can be expressed by a multiplicative factor

$$I_C = I_S \left(\exp \frac{V_{BE}}{V_T} \right) \left(1 + \frac{V_{CE}}{V_A} \right)$$

$$\beta_F = \beta_{F0} \left(1 + \frac{V_{CE}}{V_A} \right)$$

$$I_B = \frac{I_S}{\beta_{F0}} \left(\exp \frac{V_{BE}}{V_T} \right)$$
Note, $I_B = \frac{I_C}{\beta_F} \neq \frac{I_C}{\beta_{F0}}$

Modelling the Early Effect

- Early effect can be accounted for in large-signal models by simply applying a correction factor to the collector current.
- Base current does not change, independent of V_{CF}

$$G_{S} = \frac{I_{C}}{V_{BE}}$$

$$G_{S} = \frac{I_{C}}{V_{T}}$$

$$G_{S} = \frac{I_{C}}{V$$

Modelling the Early Effect

 In small-signal models, a resistor is added to the output to account for the slope of the collector current

$$I_C + \Delta I_C = \left(I_S \exp \frac{V_{BE}}{V_T}\right) \left(1 + \frac{V_{CE} + \Delta V_{CE}}{V_A}\right)$$

$$\Delta I_C = \left(I_S \exp \frac{V_{BE}}{V_T}\right) \left(\frac{\Delta V_{CE}}{V_A}\right)$$

$$r_o = \frac{\Delta V_{CE}}{\Delta I_C} = \frac{V_A}{I_S \exp \frac{V_{BE}}{V_T}} \approx \frac{V_A}{I_C}$$

output resistance r₀ represent the Early effect

 β_0 is the small-signal common-emitter current gain. $\beta_0 \approx \beta_F$.

$$eta_F = eta_{F0} \left(1 + rac{V_{CE}}{V_A}
ight) pprox eta_{F0}$$
 as usually $V_{CE} \ll V_A$

Why is r_o parallel to

the current source?

Hybrid-pi model with Early effected included

Other modes of operation

Reverse BJT

Forward active

What happens if we plug the terminals of the BJT upside down?

 $R_{C} = +9 \text{ V}$ $A.3 \text{ k}\Omega$ I_{C} + $V_{EE} = -9 \text{ V}$

Inverted

Reverse active

 $V_{BE} > 0 \rightarrow$ Forward biased

 $V_{BC} < 0 \rightarrow \text{Reverse biased}$

 $V_{BE} < 0 \rightarrow \text{Reverse biased}$

 $V_{BC} > 0 \rightarrow$ Forward biased

NPN BJT Reverse Characteristics

- A BJT is not quite symmetrical, because the emitter is much more heavily doped than the collector
- The reverse-transport current enters the emitter, travels across the narrow base, and exits the collector terminal. Similar to forward-transport current:

$$i_R = -i_E = I_S \left[\exp\left(\frac{V_{BC}}{V_T}\right) - 1 \right]$$

- controlling voltage is now V_{BC}
- Emitter is acting as the collector
- Collector is acting as the emitter
 - Base-collector voltage establishes the collector current, i_C

NPN BJT Reverse Characteristics

• A fraction of current i_R must still be supplied as base current:

$$i_B = \frac{i_R}{\beta_R} = \frac{I_S}{\beta_R} \left[\exp\left(\frac{V_{BC}}{V_T}\right) - 1 \right]$$

> Reverse common-emitter current gain:

$$0 \le \beta_R \le 10$$

> NPN reverse collector current $-(i_B + i_R)$:

$$\frac{1}{\alpha_R} = -\frac{\beta_R + 1}{\beta_R} I_S \left[\exp\left(\frac{V_{BC}}{V_T}\right) - 1 \right]$$

> Reverse common-base current gain:

$$0 \le \alpha_R = \frac{\beta_R}{\beta_R + 1} \le 0.95 \qquad \beta_R = \frac{\alpha_R}{1 - \alpha_R}$$

Can we use reverse-active BJT as an amplifier?
Yes but poor performance

Reverse BJT Analysis

• Find the new Q-point for the transistor with collector and emitter terminals interchanged. Assume $\beta_R = 1$.

Observations:

- Base-emitter junction is reverse-biased by the +9 V source
- -9 V source will pull current out of the collector through the 8.2 $k\Omega$ resistor
- Base-collector junction is forward-biased
- Reverse active region of operation

Use simplified model and assume

Reverse BJT Analysis

• Find the new Q-point for the transistor with collector and emitter terminals interchanged.

Reverse active currents are very different from forward active currents

$$-I_{C} = \frac{-0.7 - (-9)}{8200} = 1.01 \, mA$$

$$-I_{C} = (\beta_{R} + 1)I_{B} \longrightarrow I_{B} = 0.505 \, mA$$

$$-I_{E} = \beta_{R}I_{B}$$

$$-I_{E} = \beta_{R}I_{B} = 0.505 \, mA$$

$$V_{E} = 9 - 0.505 \, mA(4.3k\Omega) = 6.83V$$

$$V_{CE} = V_{C} - V_{E} = -0.7V - 6.83V = -7.5V$$

The Q-point is (-1.01 mA, -7.5 V).

$$I_C$$
 V_{CE}

PNP Reverse Active Region

PNP reverse active operation

$$i_{R} = -i_{E} = I_{S} \left[\exp\left(\frac{V_{CB}}{V_{T}}\right) - 1 \right]$$

$$i_{B} = \frac{i_{R}}{\beta_{R}} = \frac{I_{S}}{\beta_{R}} \left[\exp\left(\frac{V_{CB}}{V_{T}}\right) - 1 \right]$$

$$i_{C} = -I_{S} \left(1 + \frac{1}{\beta_{R}} \right) \left[\exp\left(\frac{V_{CB}}{V_{T}}\right) - 1 \right]$$

$$i_{C} = i_{E} - i_{B}$$

Other Regions of Operation

• BJT cut-off region:

Both the base-collector and base-emitter junctions are reverse-biased

- Similar to turning off a switch
 - No carriers can go from emitter to collector
 - Say in a circuit you have C-E currents (npn). Now, apply a very negative V_B will kill this current.

Other Regions of Operation

• BJT saturation region:

Both the base-collector and base-emitter junctions are forward-biased

- Similar to turning on a switch
 - Increasing the base current will no longer increase the collector current

BJT Saturation and Cut-off

- Saturation and cut-off regions *not* generally used for BJTs
- BJTs are not good switches use a MOSFET if you want a switch
- Saturation usually occurs when base current has become so large that the collector current can no longer increase proportionately
 - BJT transport equations no longer applicable

BJT Operation Regions

Base-Emitter Junction	Base-Collector Junction	
	Reverse Bias	Forward Bias
Forward Bias	Forward Active Region Good amplifier	Saturation Region Closed switch
Reverse Bias	Cut-off Region Open switch	Reverse Active Region Poor Amplifier

BJT Operation Regions

1) Cutoff Region:

$$V_{BE} < V_{cut-in}, i_B = 0$$

2) Active / Linear Region:

$$V_{BE} = V_{cut-in}, i_B > 0$$

3) Saturation Region:

$$V_{BE} = V_{cut-in}, i_B > i_{C,max}$$

$$V_{cut-in}$$
 say 0.7V

 V_B not high enough

BJT Operation Region example

$$\beta = 100$$
 $V_{\text{supply 3V}}$
 I_{C}
 I_{C}

$$I_C = 100 \times 25\mu A = 2.5mA$$

 $V_{CE} = 3V - 2.5mA \times 1k\Omega = 0.5V$
 $V_B = 0.7V$
 $V_{BC} = 0.2V$

BC is forward biased, so, saturation. (Note, here can't use $I_C = \beta I_B$ to begin with, but the operation region is correct)

BJT I-V Characteristics

- For $I_B = 0$, transistor is in cutoff
 - If $I_B > 0$, I_C also increases.
- For $V_{CE} > V_{BE}$, npn transistor is in forward-active region, $I_C = \beta_F I_B$
 - I_B is independent of V_{CE}
- For $V_{CE} < V_{BE}$, transistor is in saturation
- For $V_{CE} < 0$, roles of collector and emitter reverse
- Q-point is represented by V_{CE} and I_C
 - Simply pinpoint it on the I-V chart

Biasing the BJT

Biasing a BJT

- The purpose of biasing a transistor is to establish Q-point
 - Establish operating region of the transistor
- Recall, BJTs operates as amplifiers if it is biased in the active mode
 - base-emitter: forward biased and base-collector: reverse biased

Then, small-signal operation will occur at the Q-point

Biasing a BJT

- Amplification properties ie. small-signal parameters such as $g_m = I_C/V_T$, $r_\pi = \beta/g_m$, and $r_o = V_A/I_C$ depend on the bias conditions.
- The bias point is a DC value

Small changes in voltages and currents around the bias values

Large Signal Vs Small Signal Analysis

- First, we need to determine the DC operating point in the absence of signals
- **DC Analysis**: perform large-signal analysis to determine the region of operation and small-signal parameters
- Second, we study the response of the circuit to small signals
- Small Signal Analysis: compute quantities such as voltage gain

Supply voltage sources establish bias points

Constant sources that do not vary with time are set to zero

Notation

- LARGE SIGNAL and small signal notations
 - Lowercase v_{in} indicates a small-signal input voltage
 - DC supplies shown as solid power supplies sometimes represented with a horizontal bar

Small Signal vs Large Signal

- Under what conditions can we represent devices with small signal models?
 - If signal perturbs bias point negligibly -> operates in small signal regime
 - g_m and r_π vary negligibly (considered constants) -> linear representation holds
 - Rule of thumb: 10% variation in the collector current

Small Signal Amplification: Bad Biasing

- The microphone provides a small-signal input
 - Connected to the amplifier to amplify the small output signal of the microphone
- This is an example of bad biasing:

WHY?

- Not biased to operate in forwardactive region
- There is no DC bias current running through the transistor to set the transconductance
- This is a bad design

DC Biasing of BJTs

- Four-resistor biasing
- Two-resistor biasing with collector-to-base feedback resistor

- Use the existing V_{CC} to bias the base (natural thinking)
 - Base is tied to V_{CC} through a relatively large resistor R_B , as we expect I_B to be small
- Assuming a constant value for V_{BE} , solve for both I_B and I_C and determine the terminal voltages of the transistor
- Forward-active operation still not guaranteed

$$I_B = rac{V_{CC} - V_{BE}}{R_B}$$
 $I_C = eta I_B \qquad \qquad {
m Assume} {
m forward\ active}$
 $V_{CE} = V_{CC} - I_C R_C$

V_{CE} determines whether device in active mode or not

 V_{CE} must be larger than V_{BE}

• Example: Determine the collector bias current for the circuit shown below. Assume $\beta = 100$ and $I_S = 10^{-17}$.

- Base-Emitter Loop
- From Kirchhoff voltage law (KVL):

$$+V_{CC}-I_BR_B-V_{BE}=0$$

Solving for base current:

$$I_B = \frac{V_{CC} - V_{BE}}{R_B} = 18\mu A$$

- Collector-Emitter Loop
- Find collector current from base current
 - Assuming forward active

$$I_C = \beta I_B = 1.8 mA$$

Solving for collector-emitter voltage:

$$V_{CE} = V_{CC} - I_C R_C = 0.7V$$

$$V_{BC}$$
 close to 0

• Saturation: when the transistor is operating in saturation, current through the transistor is not controlled by ${\cal V}_{BE}$

$$I_{C,\text{sat}} = \frac{V_{CC}}{R_C}$$

 V_{CE} small

- Load-line Analysis (consider V_{CC} , R_C , BJT, ground):
 - The end points of the load line are:

Saturation:

$$I_{C,\text{sat}} = \frac{V_{CC}}{R_C}$$
$$V_{CE} = 0V$$

Cut-off:

$$I_C = 0 mA$$

$$V_{CE, \text{cutoff}} = V_{CC}$$

- The Q-point is the operating point
 - where the value of R_B sets the value of I_B
 - The corresponding fixed I_B curve intersects with load-line,
 - setting the values of V_{CE} and I_C

- Load-line Analysis: $V_{CE} = V_{CC} I_C R_C$
 - Changing V_{CC}:

- Load-line Analysis: $V_{CE} = V_{CC} I_C R_C$
 - Changing R_C changes the load-line

- β might vary due to thermal stability issues
 - temperature changes
 - different transistors used
- Since I_B is fixed, I_C depends on β , which changes and shifts the Q-point
- Poor stability

Improved base resistor fixed biasing

- Instead of fixed I_B , now fix V_{BE}
- To reduce dependence of I_C on β , I_C must be set by applying a well-designed constant V_{BE} : $I_C = I_S \exp(V_{BE}/V_T)$
- The resistor divider sets V_{BE}
 - Forward-active operation can be controlled
- I_C is independent of β if base current is small

$$V_{x} = \frac{R_2}{R_1 + R_2} V_{CC}$$

$$I_C = I_S \exp\left(\frac{R_2}{R_1 + R_2} \frac{V_{CC}}{V_T}\right)$$
 — independent of β

This assumes the base current is negligible

Base current issues

- What if I_B is not negligible?
- What is V_x if $I_B > 0$?

$$V_{thev} = \frac{R_2}{R_1 + R_2} V_{CC}$$

$$R_{thev} = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-1}$$

Exponential dependence of I_C on voltage generated by resistive divider We want I_C to not change much against variations in the circuit.

Base current issues

• Example: If R₂ is 1% higher than its nominal value, what will be the error in the collector current?

$$V_x = V_{thev} - I_B R_{thev} = \frac{R_2}{R_1 + R_2} V_{CC} - I_B \frac{R_1 R_2}{R_1 + R_2}$$

$$I_C = I_S \exp\left(\frac{V_x}{V_T}\right)$$

Multiplying the collector current by

$$\exp\left(\frac{0.01V_{BE}}{V_T}\right) \approx 1.36 \text{ (for V}_{BE} = 800 \text{ mV)}$$

A 1% error in one resistor value introduces a 36% error in I_c

Four-resistor bias network

- We don't want I_C to be affected too much by the bias resistors
- Adding R_E

Why is this better?

- 1. Say we have chosen R_1 , R_2 , R_C , R_E such that the BJT is in forward active mode.
- 2. Now, when we set up the circuit in the lab, it turns out R_2 is larger than designed value
- 3. This raises V_x
- 4. In turn, this would increase V_{BE}
- 5. Now I_C would increase, so would I_E
- 6. Hence $V_E = I_E R_E$ also increases, reducing V_{BE} . "counter acting" feedback
- 7. You can repeat this analysis for the other resistors.
- 8. In reality, we will see that in the four-resistor Bias, V_{CE} and I_{C} won't have exponential dependence on resistors.

Four-resistor bias network

• What is I_B now?

$$V_{thev} = I_B R_{thev} + V_{BE} + I_E R_E$$
$$I_E = (\beta_F + 1)I_B$$

$$I_B = \frac{V_{thev} - V_{BE}}{R_{thev} + (\beta_F + 1)R_E}$$

(V_{BE} not known yet, but is roughly at 0.7V)

Four-resistor bias network

• What is I_C now?

$$I_E = rac{V_{thev} - V_{BE} - I_B R_{thev}}{R_E} \cong rac{V_{thev} - V_{BE}}{R_E}$$

(V_{BE} not known yet but is roughly at 0.7V)

 $I_C \approx I_E$ Dependance on resistors is not exponential anymore

Four-resistor bias network example

- Find the Q-point of this transistor. Let $\beta_F = 75$.
 - First, find the Thévenin equivalent of the base input network:

Four-resistor bias network example

- Find the Q-point of this transistor. Let $\beta_F = 75$.
 - Second, solve for all terminal currents:

$$V_{thev} = I_B R_{thev} + V_{BE} + I_E R_E$$

$$4 = 12000 I_B + 0.7 + 16000 (\beta_F + 1) I_B \qquad ^{ ext{Assuming forward}}_{ ext{active}}$$

$$I_B = 2.68 \ \mu A$$

$$I_C = \beta_F I_B = 201 \ \mu A$$

$$I_E = (\beta_F + 1) I_B = 204 \ \mu A$$

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E = 4.32 \text{V}$$
 $V_{CE} > V_{BE} \text{ hence it is forward active}$

Four-resistor bias network: load line analysis

- We can plot a load line against the I-V curves to verify our analysis.
- Load-line equation:

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E$$

$$V_{CE} = V_{CC} - \left(R_C + \frac{R_E}{\alpha_F}\right) I_C$$

$$V_{CE} = 12 - 38200I_C$$

Four-resistor bias network: load line analysis

 I_B = 2.7 μ A, intersection of corresponding characteristic with load line gives Q-point

$$I_C = 201 \, \mu A$$

$$V_{CE} = 4.32V$$

Design principles of four-resistor bias network

- Transistor needs to work in forward-active mode by setting V_{BE}
- Design I_C to provide the small signal parameters, g_m , r_{be} , etc.
- Choose Thévenin equivalent base voltage

$$\frac{V_{CC}}{4} \le V_{Thev} \le \frac{V_{CC}}{2}$$

• Select R_1 to set $I_1 = 10I_B$

$$R_1 = \frac{V_{CC} - V_{thev}}{10I_B}$$

• Select R_2 to set $I_2 = 9I_B$

$$R_2 = \frac{V_{thev}}{9I_B}$$

These aren't fixed values, but they are a good starting point for design.

Design of four-resistor bias network

R_E is determined by V_{Thev} and desired I_C

$$R_E \cong \frac{V_{thev} - V_{BE}}{I_C}$$

R_C is determined by desired V_{CE}

$$R_C \cong \frac{V_{CC} - V_{CE}}{I_C} - R_E$$

You can also set R_c and R_E first, then figure out what R_1 and R_2 is needed.

