Simple mask in the ϑ plane

We are interested in seeing how applying a mask to some data affects the recovered power spectrum. First, let us look at the theoretical power spectrum for a simple mask. We start by considering a very simple mask, where we only allow data through in a central region.

Figure 1: A simple mask in the ϑ plane.

Here, we are only allowing data through a region between $\vartheta = \pi/3$ and $\vartheta = 2\pi/3$, however these angles are arbitrary and can be changed to anything. The important thing to note is that our mask is independent of ϕ , as we are simply making two cuts in the ϑ plane.

Now that we have a rough mask, we can try to find what its power spectrum is. To do so, we first need to compute what its $a_{\ell m}$ values are. To do so, we first recall that for a spherical harmonic expansion of a general field $f(\vartheta,\phi)$ its $a_{\ell m}$ values are given by

$$a_{\ell m} = \int d\Omega \, Y_{\ell m}^*(\vartheta, \phi) \, f(\vartheta, \phi). \tag{1}$$

Here, our field f is simply the values of our mask. In this case, we find that

$$f(\vartheta, \phi) = f(\vartheta), \tag{2}$$

as we have previously identified that it is independent of ϕ .

Now that we have split the mask function, we can also decompose the spherical harmonics $Y_{\ell m}$ using

$$Y_{\ell m}(\vartheta,\phi) = \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell m}(\cos\vartheta) e^{im\phi}, \tag{3}$$

where $P_{\ell m}(x)$ are the associated Legendre polynomials. Using this, we find we can split the $a_{\ell m}$ integral into

$$a_{\ell m} = \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} \int_0^{\pi} d\vartheta \sin\vartheta f(\vartheta) P_{\ell m}(\cos\theta) \int_0^{2\pi} d\varphi \, e^{-im\varphi}. \tag{4}$$

Here, we note that the ϕ integral is zero when m is non-zero, and equal to 2π only when m=0, ie.

$$\int_0^{2\pi} d\phi \ e^{-im\phi} = 2\pi \delta_m. \tag{5}$$

Using this result, we find our $a_{\ell m}$ values as

$$a_{\ell m} = 2\pi \delta_m \sqrt{\frac{(2\ell+1)}{4\pi}} \frac{(\ell-m)!}{(\ell+m)!} \int_0^{\pi} d\vartheta \sin\vartheta f(\vartheta) P_{\ell m}(\cos\theta).$$
 (6)

Using this, we can simplify the prefactor and integrand, to give

$$a_{\ell m} = \delta_m \sqrt{\pi (2\ell + 1)} \int_0^{\pi} d\vartheta \sin \vartheta f(\vartheta) P_{\ell}(\cos \theta), \tag{7}$$

where now $P_{\ell}(x)$ is the regular Legendre polynomials. If we now use the fact that our mask is only non-zero within a certain range of ϑ values, which we will now generalise to a range [A, B] where it is one within this boundary, we find the ϑ integral becomes

$$a_{\ell m} = \delta_m \sqrt{\pi (2\ell + 1)} \int_A^B d\vartheta \sin\vartheta P_{\ell}(\cos\theta). \tag{8}$$

This ϑ integral is now a known integral of Legendre polynomials, which is

$$\int_{A}^{B} d\vartheta \sin \vartheta \, P_{\ell}(\cos \theta) = \frac{-P_{\ell-1}(\cos A) + P_{\ell+1}(\cos A) + P_{\ell-1}(\cos B) - P_{\ell+1}(\cos B)}{2\ell + 1}.$$
 (9)

Hence, the $a_{\ell m}$ values for our mask become

$$a_{\ell m} = \delta_m \sqrt{\frac{\pi}{2\ell + 1}} \left[-P_{\ell-1}(\cos A) + P_{\ell+1}(\cos A) + P_{\ell-1}(\cos B) - P_{\ell+1}(\cos B) \right]. \tag{10}$$

Now that we have the $a_{\ell m}$ values, we can transform these into C_{ℓ} values using

$$C_{\ell} = \frac{1}{2\ell + 1} \sum_{m} |a_{\ell m}|^2. \tag{11}$$

The Kronecker- δ in the $a_{\ell m}$'s enforcing m=0 makes this sum trivial, and so we find the C_{ℓ} values of our mask to be

$$C_{\ell} = \frac{\pi}{(2\ell+1)^2} \left[-P_{\ell-1}(\cos A) + P_{\ell+1}(\cos A) + P_{\ell-1}(\cos B) - P_{\ell+1}(\cos B) \right]^2. \tag{12}$$

We can now compare our simple analytic formula with the C_{ℓ} values that were numerically derived from the mask in Figure 1 using **HealPy**, which gave us the following plot

Figure 2: Comparison of the theoretical and numerical C_{ℓ} values for our simple mask in the ϑ plane.

Here, we see that for odd values of ℓ , the theoretical values are *extremely* small, of the order $\mathcal{O}(10^{-30})$, which indicates that these are actually zero, and are just non-zero due to finite numerical precision. This makes sense as the parity of the Legendre polynomials gives that

$$P_{\ell}(-x) = (-1)^{\ell} P_{\ell}(x), \tag{13}$$

and so as our mask is symmetric around $\vartheta = \pi/2$, we expect the C_{ℓ} values to be zero for odd ℓ . Therefore, if we only include even ℓ values in the plot, we get a much cleaner plot, giving

Figure 3: Comparison of the theoretical and numerical C_{ℓ} values for even ℓ only, for our simple mask in the ϑ plane.

Here, we see very good agreement between the numerically derived values and our analytic results. We can quantify the agreement between the two sets of values by taking their ratio, giving

Figure 4: Ratio of the numerical to theoretical C_{ℓ} values for even ℓ only, for our simple mask in the ϑ plane.

Here, we see very good precision at low- ℓ , only loosing precision at ℓ 's greater than one thousand, or so. Do note that our "theoretical" values still involve numerically evaluating Legendre polynomials, and so are still susceptible to numerical noise at high ℓ values.

Simple mask in the ϕ plane

Above, we looked at masks which only vary in the ϑ plane, which limits us in extending our analysis to general masks. Here, we wish to repeat the same analysis (deriving analytic expressions and comparing to numerical results) but for a mask that only varies in the ϕ plane. For example, let us consider the following mask

Figure 5: A simple mask in the ϕ plane.

Here, we only let data through in a specific region, from $\phi = A$ to $\phi = B$

Now, our mask is only a function of ϕ , and so when comparing with Equation 1, we find that our mask function can be expressed as

$$f(\vartheta,\phi) = f(\phi). \tag{14}$$

Using this, we can jump straight into writing down the $a_{\ell m}$ values that such a mask would predict, which is

$$a_{\ell m} = \sqrt{\frac{2\ell + 1}{4\pi} \frac{(\ell - m)!}{(\ell + m)!}} \int_0^{\pi} d\vartheta \sin \vartheta P_{\ell m}(\cos \vartheta) \int_0^{2\pi} d\varphi \ f(\phi) e^{-im\phi}$$
(15)

Let us first consider the ϕ integral

$$I_{\phi} \equiv \int_{0}^{2\pi} d\phi \ f(\phi) e^{-im\phi} \tag{16}$$

As we are assuming that $f(\phi)$ is only non-zero between $\phi = A$ and $\phi = B$, where it is unity, we can re-write this integral as

$$I_{\phi} \equiv \int_{A}^{B} \mathrm{d}\phi \ e^{-im\phi} \tag{17}$$

We can evaluate this integral, to find

$$I_{\phi} = \frac{i}{m} \left[e^{-imB} - e^{-imA} \right] \tag{18}$$

Rewriting the complex exponentials in terms of trigonometric functions gives us

$$I_{\phi} = \frac{i}{m} \left[\cos(mB) - i\sin(mB) - \cos(mA) + i\sin(mA) \right], \tag{19}$$

where we have used $\cos(-x) = \cos(x)$ and $\sin(-x) = -\sin(x)$.

Now, we are free to rewrite the A and B angular positions in terms of a new parameter a, which is defined through

$$A = \pi - a \tag{20a}$$

$$B = \pi + a \tag{20b}$$

Using this parametrisation, we find that our mask is centred on $\phi = \pi$, and has an angular width of 2a. Using these expressions for A and B, we find the ϕ integral becomes

$$I_{\phi} = -\frac{i}{m} \left[\cos(m\pi - ma) - \cos(m\pi + ma) + i\sin(m\pi + ma) - i\sin(m\pi - ma) \right], \tag{21}$$

where we have re-ordered terms to hint at the use of some trigonometric two-angle formulas. If we apply the use of them here, then we find that we can write this as

$$I_{\phi} = -\frac{i}{m} \left[2\sin(m\pi)\sin(ma) + 2i\cos(m\pi)\sin(ma) \right]. \tag{22}$$

We note that $\sin(m\pi) = 0$ for all m, and so this simplifies down to

$$I_{\phi} = \frac{2}{m}\cos(m\pi)\sin(ma). \tag{23}$$

This is now a nice and simple formula for the ϕ integral expressed as a function of the mask's width. Importantly, we note that this is non-zero for $m \neq 0$, which is *not* what we found for the ϑ mask.

We now switch our focus to the ϑ integral, which is

$$I_{\vartheta} \equiv \int_{0}^{\pi} d\vartheta \sin \vartheta \, P_{\ell m}(\cos \vartheta). \tag{24}$$

Previously, we had a simplifying condition that m=0 for an $a_{\ell m}$ to be non-zero, however we have no such condition here. Hence, we must do this for general ℓ and m.

First, let us define a new variable x, given by

$$x = \cos \vartheta. \tag{25}$$

Hence,

$$\mathrm{d}x = -\sin\theta\,\mathrm{d}\theta$$

This gives our integral as

$$I_{\vartheta} = \int_{-1}^{+1} \mathrm{d}x \, P_{\ell m}(x). \tag{26}$$

Fortunately, this is a known integral which can be expressed in terms of the Γ function as

$$I_{\vartheta} = \frac{\left[(-1)^{\ell} + (-1)^{m} \right] 2^{m-2} m \Gamma\left(\frac{\ell}{2}\right) \Gamma\left(\frac{\ell+m+1}{2}\right)}{\Gamma\left(\frac{\ell+3}{2}\right) \left(\frac{\ell-m}{2}\right)!},\tag{27}$$

which is valid for all ℓ and m values that we are considering.

Now that we have both the ϕ and ϑ integrals known in terms of simple functions, we can evaluate the power spectrum coefficients using Equation 11, to find

$$C_{\ell} = \frac{1}{2\ell+1} \sum_{m} \frac{2\ell+1}{4\pi} \frac{(\ell-m)!}{(\ell+m)!} \times I_{\phi}^{2} \times I_{\vartheta}^{2}.$$
 (28)

Substituting our ϕ and ϑ integrals gives us

$$C_{\ell} = \sum_{m} \frac{1}{4\pi} \frac{(\ell - m)!}{(\ell + m)!} \frac{4}{m^2} \cos^2(m\pi) \sin^2(ma) \frac{\left[2 + 2(-1)^{\ell + m}\right] 2^{2m - 4} m^2 \Gamma^2\left(\frac{\ell}{2}\right) \Gamma^2\left(\frac{\ell + m + 1}{2}\right)}{\Gamma^2\left(\frac{\ell + 3}{2}\right) \left[\left(\frac{\ell - m}{2}\right)!\right]^2}.$$
 (29)

Here, we note that $\cos^2(m\pi)$ is always unity, and further simplifications occur, thus giving us a final result of

$$C_{\ell} = \frac{1}{\pi} \sum_{m} \frac{(\ell - m)!}{(\ell + m)!} \sin^{2}(ma) \frac{\left[2 + 2(-1)^{\ell + m}\right] 2^{2m - 4} \Gamma^{2}\left(\frac{\ell}{2}\right) \Gamma^{2}\left(\frac{\ell + m + 1}{2}\right)}{\Gamma^{2}\left(\frac{\ell + 3}{2}\right) \left[\left(\frac{\ell - m}{2}\right)!\right]^{2}}.$$
 (30)

This now a simple expression given in terms of analytic functions which we can implement numerically to compare the analytic C_{ℓ} values with the numerical values obtained from the mask given in Figure 5. Here, we note that when m = 0, $|a_{\ell m}|^2 = 0$, which is in stark contrast to our ϑ map in which only the m = 0 modes contributed.

Figure 6: Comparison of the theoretical and numerical C_{ℓ} values for our simple mask in the ϕ plane.

Again, we see very good agreement between the theoretically derived and numerical results for our ϕ mask. Again, we can quantify this agreement by taking the ratio of the two values, to give

Figure 7: Ratio of the numerical to theoretical C_{ℓ} values for our simple mask in the ϕ plane.

Here, we see the same trend as before: very good agreement at low ℓ , with the difference gradually growing at high ℓ . Do note though that at large ℓ , there will be growing numerical inaccuracies in evaluating the theoretical values, especially as when $\ell \sim 2000$, we have to evaluate $(2000!)^2 \sim \mathcal{O}(10^{11\,000})$, and so numerical precision becomes a limiting factor.

Extension to a separable mask

Above, we have dealt with the cases where we can express our mask as either a function of ϑ or ϕ exclusively. However, general masks will not have this easy separability, and be a function of both variables. However, if the mask can be separated into a product of two function, i.e.,

$$f(\vartheta, \phi) = g(\vartheta) h(\phi),$$

then the above methods can be combined to predict the C_{ℓ} values for such a mask.

Legendre polynomials in the limit of large ℓ

In Equation 12, the C_{ℓ} values for our simple mask in the ϑ direction was found to be

$$C_{\ell} = \frac{\pi}{(2\ell+1)^2} \left[-P_{\ell-1}(\cos A) + P_{\ell+1}(\cos A) + P_{\ell-1}(\cos B) - P_{\ell+1}(\cos B) \right]^2. \tag{31}$$

When we recovered the C_{ℓ} values for our masks that have both galactic and ecliptic cuts (and the Euclid-prototype mask), we found that the $\ell(\ell+1)C_{\ell}$ values generally had a relationship of $\sim 1/\ell$. Since this is an interesting relationship, we would like to see if this can be derived analytically starting from Equation 31.

Since we are only interested in the large- ℓ behaviour of the C_{ℓ} values, we can use the symtopic limit of the Legendre polynomials of

$$P_{\ell}(\cos \vartheta) \simeq \frac{2}{\sqrt{2\pi\ell\sin\vartheta}}\cos\left[\left(\ell + \frac{1}{2}\right) - \frac{\pi}{4}\right],$$
 (32)

up to order $\mathcal{O}(\ell^{-3/2})$ corrections. This can now be applied to Equation 31, where we note that if our mask is symmetric around $\vartheta = \pi/2$, then $\sin A = \sin B$, we can write this as

$$C_{\ell} = \frac{\pi}{(2\ell+1)^2} \left[\frac{2}{\sqrt{\sqrt{3}\pi(\ell-1)}} \left(\cos\left[\left\{\ell - \frac{1}{2}\right\}B - \frac{\pi}{4}\right] - \cos\left[\left\{\ell - \frac{1}{2}\right\}A - \frac{\pi}{4}\right] \right) + \frac{2}{\sqrt{\sqrt{3}\pi(\ell+1)}} \left(\cos\left[\left\{\ell + \frac{3}{2}\right\}A - \frac{\pi}{4}\right] - \cos\left[\left\{\ell + \frac{3}{2}\right\}B - \frac{\pi}{4}\right] \right) \right]^2$$
(33)

The cosine terms will now cause some oscillations in the C_{ℓ} values that depend on the ℓ values, however as they are bounded between [-2, +2], we can simply label their values as α and β , as they will only contribute to $\mathcal{O}(1)$ corrections, and no impact the ℓ scaling of the C_{ℓ} values. Therefore, this gives us

$$C_{\ell} = \frac{\pi}{(2\ell+1)^2} \left[\frac{2}{\sqrt{\sqrt{3}\pi(\ell-1)}} \alpha + \frac{2}{\sqrt{\sqrt{3}\pi(\ell+1)}} \beta \right]^2$$
 (34)

If we now take $\ell \gg 1$, we find the C_{ℓ} values as approximately

$$C_{\ell} \simeq \frac{\pi}{4\ell^2} \left[\frac{2}{\sqrt{\sqrt{3}\pi\ell}} (\alpha + \beta) \right]^2,$$
 (35)

and so we find

$$C_{\ell} \simeq \frac{1}{\sqrt{3}\ell^3} (\alpha + \beta)^2,$$
 (36)

which is the desired scaling ratio, as then $\ell(\ell+1)C_{\ell}$ will scale like $1/\ell$, just as we found numerically.