MI KÉRDÉSEK ÉS VÁLASZOK

Mit nevezünk egy kereső rendszer globális munkaterületének? (lehet több is jó)

A kereső rendszer által használt memóriaterületet.

Azt a memóriaterületet, amelyen a keresés eltárolja a megszerzett, és megőrzésre hasznosnak ítélt ismereteket.

A kereső rendszer algoritmusának globális változóit.

A soron következő lépés kiválasztásánál használt memória területet.

Melyek a hiperút tulajdonságai? (lehet több is jó)

Egyetlen végcsúcsa van

Csúcsaiból legfeljebb egyetlen hiperél indul

Nem tartalmazhat irányított kört.

Kezdőcsúcsából bármelyik csúcsába vezet hiperútbeli irányított út.

Az alábbi algoritmusok közül melyek használnak módosítható stratégiát?

szélességi gráfkeresés

tabu keresés evolúciós algoritmus rezolúció

Az alábbi módszerek közül melyekbe épült be visszalépéses keresés? (lehet több is jó)

Mélységi gráfkeresésben.

Alfa-béta kiértékelő algoritmusban a kétszemélyes játékoknál.

A tabu keresésnél.

Szabályalapú következtetésnél.

Mit reprezentál egy kétszemélyes játéknak egy állapota?

Egy állást és a soron következő játékost.

Az aktuális állást az oda vezető lépésekkel együtt.

Az aktuális állást az arra alkalmazható lépésekkel együtt.

Az aktuális állást.

Hogyan szokták az egyeneseket kódolni?

Úgy, hogy a kód darabjai az egyed egy-egy tulajdonságát mutassa.

Úgy, hogy az egyed kódja egy kromoszóma legyen.

Úgy, hogy a kódolás és a dekódolás is hatékony legyen.

Úgy, hogy az egyed kódja egy kromoszóma legyen.

Hogyan nevezzük a gráfkeresések globális munkaterületén tárolt gráfot?

keresőgráf

cáfolati gráf reprezentációs gráf játékgráf

Mit nevezünk egy hiperút bejárásának?

Olyan sorozatot, amelynek elemei a hiperút csúcsaiból álló sorozatok.

A hiperút összes csúcsát egyszer tartalmazó meghatározott sorrendű sorozat.

A hiperút összes hiperélét egyszer tartalmazó eghatározás.

A hiperút összes csúcsából összeállított meghatározott sorrendű sorozatot.

Az alábbiak közül melyik NEM modellfüggő vezérlési stratégia?

A legjobb csúcsot válasszuk a szomszédos csúcsok közül.

A visszalépéses keresés részlegesen előre vizsgáló (FC) módszere.

A szabályalapú következtetéseknél a tényliterál illesztése előzze meg a szabályillesztést.

A rezolúciós lépés egyik klóza legyen mindig (egy literálból álló) egységklóz.

A félév során tanult módszerek közül melyik NEM tekinthető útkereső algoritmusnak?

rezolúció

szimultált hűtés

B algoritmus

k-legközelebbi szomszéd módszere

Hogyan lehet megtudni, hogy kinek van nem-vesztő stratégiája egy három esélyes (győzelem,vereség,döntetlen) kimenetelű kétszemélyes játékban?) (lehet több is jó)

Nem lehet véges lépésben megválaszolni ezt a kérdést.

A játékfa leveleit megcímkézzük annak a játékosnak a nevével (A vagy B), aki a levél csúccsal jelzett állásban nyerni fog, a döntetlen állásokhoz az X címkét írjuk. Szintről szintre felfelé haladva az Y játékos szintjén lévő csúcs, ha van Y cím gyereke akkor Y címkét kap, ha nincs, de van X címkéjű gyereke, akkor X címkét kap, különben a másik játékos nevét írjuk oda. A gyökér címkéje adja meg a választ.

Átalakítjuk a játékfát és/vagy fává és ebben keresünk olyan gyökérből induló hiperutat, amely vagy kizárólag az egyik, vagy kizárólag a másik játékos csupa győztes vagy döntetlen levélcsúcsába vezet.

A minimax algoritmussal ha a teljes játékfára alkalmazzuk úgy, hogy az első játékos győztes állásaihoz +1-et, a vesztes állásaihoz -1-et rendelünk a döntetlen állásokhoz 0-t. Ha a gyökérbe lefuttatott érték +1 akkor az első játékosnak győztes stratégiája van, ha 0 akkor mindkettőnek nemvesztő stratégiája, ha -1 akkor második játékosnak van győztes stratégiája.

Tekintsünk három eseményt (A, B, E), amelyiket egy valószínűség háló három különböző csúcsához írt valószínűségi változóinak segítségével fogalmazhatunk meg (E változók csúcsait röviden az A, B és E csúcsainak is hívhatjuk.) Mikor mondhatjuk, hogy az A és a B feltételesen független E-re nézve? (lehet több is jó)

Ha A csúcsából E csúcsába, E csúcsából B csúcsába vezet irányított él, de A és B csúcsai között nem.

Ha A csúcsából B csúcsába, B csúcsából E csúcsába vezet irányított él, de A és E csúcsai között nem.

Ha A és B csúcsaiba vezet irányított és sz E csúcsából, de A és B csúcsai között nem.

Ha A és B csúcsaiból vezet irányított és sz E csúcsába, de A és B csúcsai között nem.

Mi a feladata a vezérlési stratégiának a kereső rendszerekben? (itt csak egy mo van)

Kiválasztani a soron következő keresési szabályt.

Ellátni a kereső rendszert a megoldandó feladatból származó ismerettel.

Megváltoztatni a globális munkaterület tartalmát.

Ellenőrizni, hogy a globális munkaterület kielégíti-e a terminálási feltételt.

Melyik állítás NEM igaz a visszalépéses keresés második változatára az alábbiak közül? (csak egy mo van)

Körmentes δ-gráfokon mindig talál megoldást, ha van. // szerinted ez a jó, csak nem találtad a zöldet? ez csak tipp, kizárásos alapon Én hiszek ebben, maradjon ez

Véges körmentes δ -gráfokon mindig talál megoldást, ha van.

Véges körmentes gráfokban mindig terminál.

Véges körmentes gráfokban mindig talál megoldást, ha van.

1. MI fogalma

Határidő szept 18, 23:59 Pont 12 Kérdések 12

Elérhető szept 7, 00:00 - szept 18, 23:59 12 nap Időkorlát Nincs

Engedélyezett próbálkozások Korlátlan

Instrukciók

Az első előadásra támaszkodó ellenőrző kérdések.

Kvíz kitöltése újra

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény
MEGTARTOTT	6. próbálkozás	2 perc	12 az összesen elérhető 12 pontból
LEGUTOLSÓ	6. próbálkozás	2 perc	12 az összesen elérhető 12 pontból
	5. próbálkozás	2 perc	10 az összesen elérhető 12 pontból
	4. próbálkozás	4 perc	10.5 az összesen elérhető 12 pontból
	3. próbálkozás	3 perc	10 az összesen elérhető 12 pontból
	2. próbálkozás 8 perc 8 az	8 az összesen elérhető 12 pontból	
	1. próbálkozás	90 perc	8.17 az összesen elérhető 12 pontból

(!) A helyes válaszok el vannak rejtve.

Ezen próbálkozás eredménye: 12 az összesen elérhető 12 pontból

Beadva ekkor: szept 11, 17:28

Ez a próbálkozás ennyi időt vett igénybe: 2 perc

1. kérdés	1 / 1 pont
Az alábbiak közül melyik NEM utal a mesterséges intelligencegy szoftverben?	cia jelenlétére
 A szoftver optimális megoldást talál a kitűzött problémához. 	
A megoldandó feladatnak hatalmas a problématere.	
A szoftverbe különleges technológiák vannak beépítve.	

A szoftver viselkedése intelligens jegyeket mutat.

2. kérdés	1 / 1 pont
Mire utal egy algoritmussal kapcsolatban a kombinatorikus rofogalma?	obbanás
Az algoritmus NP-teljes.	
Az algoritmus végtelen ciklusba tud kerülni.	
Az algoritmus kezelhetetlenül nagy memóriát igényel és/vagy a f óriási.	futási ideje
Az ilyen algoritmus nagyságrendekkel több megoldást tud előállí időegység alatt.	ítani adott

3. kérdés Mit várunk el egy útkereső algoritmustól? Azt, hogy egy irányított gráfban egy adott csúcsból kiinduló megadott csúcsok valamelyikébe érkező optimális költségű irányított utat találjon meg. Azt, hogy megadja egy irányított gráfban egy adott csúcsból kiinduló összes többi csúcsba vezető optimális költségű utat. Azt, hogy megadja egy irányított gráfban egy adott csúcsból kiinduló összes többi csúcsba vezető valamelyik utat.

Azt, hogy egy irányított gráfban egy adott csúcsból kiinduló megadott csúcsok valamelyikébe érkező irányított utat találjon meg.

4. kérdés	1 / 1 pont
Hogyan definiáljuk az optimális költség fogalmát?	
Egy csúcsból egy másik csúcsba vezető utak költségeinek infínu	ma.
Egy csúcsból csúcsok halmazába vezető utak költségeinek minir	numa.
Egy csúcsból csúcsok halmazába vezető utak költségeinek infínu	uma.
Egy csúcsból egy másik csúcsba vezető utak költségeinek minim	numa.

5. kérdés	1 / 1 pont
Mely állítások igazak az alábbiak közül?	
A Turing kritérium az MI szkeptikusok érveit erősíti	
 A Turing kritérium cáfolataként született meg a kínai szoba elmél 	let.
A Turing kritérium és a kínai szoba elmélet egyaránt az erős MI hívő erősítik.	ik érveit
A kínai szoba elmélet az MI szkeptikusok érveit erősíti.	

6. kérdés 1/1 pont

Mikor nevezhetünk egy feladatot útkeresési problémának?

	ha a feladat olyan állapottér modellel rendelkezik, amelyben a egy műveletsorozat írja le.
	ladat problématerének elemei ugyanazon csúcsból kiinduló ak.
Amikor a fel irányított uta	

7. kérdés Hogyan nyerhető ki egy útkeresési probléma megoldásakor kapott útból a feladat megoldása? Az út élei a feladat különböző megoldásait szimbolizálják. Sokszor az út élei mutatják a feladat megoldásához szükséges lépéseket. Néha az út végpontja szimbolizálja a feladat egy megoldását. Az út csúcsai a feladat különböző megoldásai.

8. kérdés	1 / 1 pont
Mely állítások igazak egy δ -gráfra?	
Csúcsaiból véges sok irányított él indul ki.	
✓ Végtelen sok csúcsa lehet.	
Éleinek költsége pozitív valós szám.	

Csúcsaiba véges sok irányított él fut be.

9. kérdés	1 / 1 pont
Egy útkeresési feladat gráfreprezentációjához meg kell adni a	
megoldási utakat	
✓ startcsúcsot	
✓ reprezentációs gráfot	
alkalmazandó heurisztikákat	

10. kérdés	1 / 1 pont
Az alábbiak közül melyek tartoznak a Turing kritériumok közé?	
megszerzett ismeret tárolása	
☑ természetes nyelvű kommunikáció	
automatikus következtetés	
optimális megoldás megtalálása	

Kvízeredmény: 12 az összesen elérhető 12 pontból

2. Modellezés

Határidő szept 25, 23:59 Pont 12 Kérdések 12

Elérhető szept 15, 00:00 - szept 25, 23:59 11 nap Időkorlát Nincs

Engedélyezett próbálkozások Korlátlan

Instrukciók

A 2. előadáshoz kapcsolódó kérdések.

Kvíz kitöltése újra

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény
LEGUTOLSÓ	1. próbálkozás	11 perc	12 az összesen elérhető 12 pontból

(!) A helyes válaszok el vannak rejtve.

Ezen próbálkozás eredménye: 12 az összesen elérhető 12 pontból

Beadva ekkor: szept 16, 11:59

Ez a próbálkozás ennyi időt vett igénybe: 11 perc

1. kérdés	1 / 1 pont
Hogyan NEM csökkenthető egy állapottér modell bonyolultsága?	
Növeljük az állapotok számát, de új műveleteket vezetünk be.	
Szigorítjuk az állapotok invariáns tulajdonságát.	
Szigorítjuk a műveletek értelmezési tartományát.	
Csökkentjük a célállapotok számát.	

2. kérdés	1 / 1 pont

Mitől NEM függ egy reprezentációs gráf bonyolultsága?

A csúcsai be-fokának számától.	
A köreinek gyakoriságától, és hosszuk sokféleségétől	l.
A csúcsainak és éleinek számától.	
A csúcsai ki-fokának számától.	
3. kérdés	1 / 1 pont

ont

Milyen egy dekompozíciós operátor?

Egy problémát megadott problémák egyikével helyettesít.

Egy problémát több problémának a halmazára képez le.

Egy probléma-sorozatot részsorozatokra bont fel.

Egy problémát több problémának a sorozatára képez le.

5. kérdés 1 / 1 pont

állapotgráf	
műveletek	
kezdő állapot vagy annak leírása	
leurisztika	
5. kérdés	1 / 1 pont
/lely állítások igazak az állapotgráfra az alábbiak kö	özül?
Csúcsai az állapotokat szimbolizálják.	
Startcsúcsa a kezdőállapotot szimbolizálja.	
Célcsúcsai a modellezett feladat megoldásai.	
Élei a műveletek végrehajtásait szimbolizálják.	
7. kérdés	1 / 1 pont
Az alábbi feladat-modellezések közül melyeknél NE problématér a reprezentációs gráf startcsúcsból kive	
☑ n-királynő probléma	
Hanoi-tornyai probléma	

Melyik ok-okozati összefüggések igazak az	z alábbiak közül?	
☑ Az állapotgráfbeli körök hossza és száma kil	hat a problématér bonyolultságára.	
✓		
Az állapotgráf csúcsainak száma kihat a meg	goldó algoritmus hatékonyságára.	
 Az optimális megoldások száma kihat az 	állapotgráf bonyolultságára.	
A megoldó algoritmus számítási bonyolultság bonyolultságára.	ga kihat a problématér	
9. kérdés Hogyan csökkenthető egy állapottér modell bonyolultsága?	1 / 1 p Iben a műveletek kiszámítási	ont
Szigorítjuk az állapotok invariáns állításá	t.	
Szigorítjuk az állapotok invariáns állításá Több heurisztikát építünk be a modellbe.		
Több heurisztikát építünk be a modellbe.		
Több heurisztikát építünk be a modellbe. Az állapotokat extra információval egészí		
 □ Több heurisztikát építünk be a modellbe. ☑ Az állapotokat extra információval egészí 		ont
Több heurisztikát építünk be a modellbe. Az állapotokat extra információval egészí Szigorítjuk a műveletek előfeltételét.	ítjük ki.	ont

állapot	csúcs	~
művelet	irányított él	~
dekompozíciós folyamat	hiperút	•

11. kérdés	1 / 1 pont
Melyek a feltételei a visszafelé haladó keresésnek?	
A reprezentációs gráf kétirányú éleket tartalmazzon és legyen ismert célállapot.	valamelyik
A reprezentációs gráf kétirányú éleket tartalmazzon és legyen ismert célállapot.	az összes
A reprezentációs gráf startcsúcsából az összes célcsúcsba vezető út élek legyenek.	on kétirányú
A reprezentációs gráf startcsúcsából valamelyik célcsúcsba vezető ú élek legyenek.	ton kétirányú

Egy problémát egyszerűbb problémákra vezet vissza.
Egy állapottér modell egy műveletének inverzze.
Az állapottér modell egy műveletére megadja, hogy a művelet segítségével mely állapotokból lehet eljutni adott állapotok egyikébe.

Kvízeredmény: **12** az összesen elérhető 12 pontból

3. Lokális keresések

Határidő okt 2, 23:59 Pont 12 Kérdések 12

Elérhető szept 22, 00:00 - okt 2, 23:59 11 nap Időkorlát Nincs

Engedélyezett próbálkozások Korlátlan

Kvíz kitöltése újra

Próbálkozások naplója

LEGUTOLSÓ 1. próbálkozás 24 perc 12 az összesen elérhető 12 pontból		Próbálkozás	ldő	Eredmény
	LEGUTOLSÓ	1. próbálkozás	24 perc	12 az összesen elérhető 12 pontból

(1) A helyes válaszok el vannak rejtve.

Ezen próbálkozás eredménye: 12 az összesen elérhető 12 pontból

Beadva ekkor: szept 25, 11:50

Ez a próbálkozás ennyi időt vett igénybe: 24 perc

1. kérdés	1 / 1 pont
Az alábbi módszerek közül melyiknél változhat futás közben a glob munkaterület mérete?	ális
Tabu keresésnél.	
Hegymászó módszernél.	
Véletlen újra indított hegymászó módszernél.	
Szimulált hűtésnél.	

2. kérdés	1 / 1 pont
Melyik állítás NEM igaz a lokális keresésekre az alábbiak közül?	
Az aktuális csúcs környezetéből választja az új aktuális csúcsot.	

Ezek mohó stratégiájú algoritmusok.	
Memóriája az aktuális csúcs környezetének tárol	ására korlátozódik.
Csak egy lokálisan legjobb megoldást képes meg	gtalálni.
3. kérdés	1 / 1 pont
ekinthető-e a hegymászó módszer a tabu keresé	s speciális változatának?
Igen, amennyiben a hegymászó módszer tulajdonké halmazt használ, amely az előző aktuális csúcsot tár	
Nem, amennyiben a hegymászó módszer nem tárolj legjobb kiértékelő függvényértékű csúcsot.	a el az eddig megtalált
Nem, mert a tabu keresés véletlen módon válasz	rt új csúcsot.
Nem, mert a tabu keresés felismeri a köröket, a h	negymászó algoritmus nem.
l. kérdés	1 / 1 pont
lány helyen használ a szimulált hűtés algoritmusa	a véletlenített módszert?
O Nulla. Ez ugyan egy nem-determinisztikus módszer,	de nem használ véletlenítést.
 Kettő. A következő csúcs kiválasztásához, illetve 	annak elfogadásához.
Három. A következő aktuális csúcs kiválasztásához, hűtési ütemterv változtatásához.	annak elfogadásához, és a

Egy. A következő aktuális csúcs kiválasztásához.

	1 / 1 pon
Mely állítások igazak az alábbiak közül?	
A heurisztika garantálja, hogy az algoritmus hatékonysága jobb lesz.	
A heurisztika garantálja, hogy az algoritmus az optimális megoldást találja	a meg.
A heurisztika egyszerre csökkentheti az algoritmus memória igényét és a idejét.	futási
A heurisztikát a feladatot megoldó algoritmusba közvetlenül építjük be	Э.
6. kérdés	1 / 1 pon
Melyek az alábbiak közül a tabu keresés hátrányai?	
Kiesi a momória igónyo	
Kicsi a memória igénye.	
☐ Kicsi a memória igénye.☑ Zsákutcába érve a keresés megáll.	
Zsákutcába érve a keresés megáll.	
Zsákutcába érve a keresés megáll. A tabu halmaz méretét csak kísérletezéssel lehet beállítani. Képes felismerni, és elkerülni a kisebb köröket.	1 / 1 pon
 Zsákutcába érve a keresés megáll. A tabu halmaz méretét csak kísérletezéssel lehet beállítani. 	1 / 1 pon

4/4 ====
☑ Talál megoldást, ha van megoldás.
Kicsi memóriát használnak.
Körmentes gráfokban nem akad el.

8. kérdés	1 / 1 pont
Melyek az alábbiak közül a hegymászó módszer hátrányai?	
Nem garantál optimális megoldást.	
Zsákutcába érve a keresés megáll.	
Körök mentén végtelen működésbe kezdhet.	
☐ Kicsi a memória igénye.	

9. kérdés	1 / 1 pont
Hogyan hat a heurisztika információ tartalma egy kereső rendszer fi idejére?	utási
Nagyobb információ tartalom mellett a lépések száma csökkenhet.	
Minél nagyobb az információ tartalma, annál jobb lesz a hatékonyság	ga.
Minél kisebb az információ tartalma, annál gyorsabban tud új lépést vála	sztani.
Nagyobb információ tartalom mellett egy lépés futási ideje nő.	

10. kérdés 1 / 1 pont

Véletlen újraindított keresés (random restart search)	
☐ Tabu keresés	
Szimulált hűtés algoritmusa	
Lokális nyaláb keresés (local beam search)	
1. kérdés	1 / 1 pon
li a lokális keresések általános vezérlési stratégiája?	
Az aktuális csúcs szomszédjai közül válasszuk a legjol	bb csúcsot!
Az aktuális csúcs(ok) környezetéből válasszunk egy (vagy csúcsot!	v több) viszonylag jó
() ()	
csúcsot!	súcsot!
csúcsot! Az aktuális csúcs környezetéből válasszuk a legjobb c	súcsot!
csúcsot! Az aktuális csúcs környezetéből válasszuk a legjobb cs Az aktuális csúcs(ok) környezetéből válasszuk a legjob	súcsot! bb csúcsot (csúcsokat)! 1 / 1 pon el össze tudjuk

modell-lel rendelkeznek. Ez tehát egy modell-függő stratégia.

Nem, mert ilyen függvényt minden tabu keresés használ.	
A heurisztikának nincs köze a vezérlési stratégiához.	

Kvízeredmény: 12 az összesen elérhető 12 pontból

4. Visszalépéses keresés

Határidő okt 9, 23:59

Pont 12

Kérdések 12

Elérhető szept 29, 00:00 után

Időkorlát Nincs

Engedélyezett próbálkozások Korlátlan

Kvíz kitöltése újra

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény
LEGUTOLSÓ	1. próbálkozás	14 perc	12 az összesen elérhető 12 pontból

(!) A helyes válaszok el vannak rejtve.

Ezen próbálkozás eredménye: 12 az összesen elérhető 12 pontból

Beadva ekkor: okt 2, 19:42

Ez a próbálkozás ennyi időt vett igénybe: 14 perc

2. kérdés 1 / 1 pont

Mit tartalmaz a visszalépéses keresések globális munkaterülete?

Ez eddig bejárt startcsúcsból kiinduló utakat azok csi vizsgált élekkel együtt.	úcsaiból kivezető még nem
A reprezentációs gráfot és külön annak a startcsú	úcsból kiinduló egyik útját.
Ez eddig bejárt részgráfot és külön annak a startcsúd annak csúcsaiból kivezető még nem vizsgált élekkel	0, ,
 A startcsúcsból kiinduló egyik utat és annak csúcsaik 	pól kivezető még nem
vizsgált éleket.	
vizsgált éleket.	1 / 1 pont
	1 / 1 pont

Melyek a visszalépéses keresés keresési szabályai? A nyilvántartott úthoz egy újabb kivezető él hozzávétele, illetve az utolsó él elvétele. A nyilvántartott út kiterjesztése, illetve a visszalépés. A nyilvántartott út utolsó csúcsának kiterjesztése, illetve az utolsó él elvétele. A nyilvántartott út végcsúcsából kivezető egyik él hozzávétele az úthoz, illetve az út utolsó élének elvétele.

4. kérdés	1 / 1 pont
Mi a visszalépéses keresés általános vezérlési stratégiája?	
Zsákutcába jutva mindig a visszalépés szabályát kell választani.	

A továbblépést meghatározó sorrendi és a vágó szabályok.	
A visszalépés szabályát csak a legvégső esetben válasszuk.	
 A visszalépés szabálya mindig elsőbbséget élvez a többi keresési szabálly szemben. 	/al
5. kérdés	1 / 1 pont
Melyik állítás NEM igaz a visszalépéses keresés második változatára alábbiak közül?	
A körfigyelés elhagyása végtelen fák esetén mindenképpen gyorsítja a me megtalálását.	goldás
A körfigyelés elhagyása kicsi mélységi korlát mellett gyorsíthatja a futás	si időt.
A körfigyelés elhagyása növeli a memória igényét.	
A körfigyelés elhagyása mindenképpen gyorsítja a megoldás megtalálá	ását.

6. kérdés	1 / 1 pont
Melyek az alábbiak közül a visszalépéses keresés hátrányai?	
Ugyanazt a részgráfot többször is bejárja.	
Nehéz az implementációja.	
Nagy a memória igénye.	
Kezdetben hozott rossz döntést csak sok visszalépés árán korrigálja	

	1 / 1 pont
Képzelje maga elé a 4-királynő probléma 2. állapottér modelljén (Minden csúcsból négy él vezet ki.) Hány startcsúcsból kivezető meg ebben a visszalépéses keresés második változata, ha a me	utat vizsgál
○ 8	
<u> </u>	
○ 20	
21	
8. kérdés	1 / 1 pont
Mely állítások igazak a visszalépéses keresés második változata	مر ما ما ما ما
közül? Minden δ-gráfban terminál.	ara az aladdiak
közül?	ага аz агарріак
közül?	
közül? Minden δ -gráfban terminál. Minden δ -gráfban talál megoldást, ha van. Minden δ -gráfban talál megoldást, ha annak hossza rövidebb, mint a	
közül? Minden δ-gráfban terminál. Minden δ-gráfban talál megoldást, ha van. Minden δ-gráfban talál megoldást, ha annak hossza rövidebb, mint a korlát.	

A mélységi korlát figyelés önmagában is elég ahhoz, hogy garantáltan termináljon.
A körfigyelés önmagában is elég ahhoz, hogy garantáltan termináljon.
Képes megtalálni a legrövidebb megoldást, ha van.
Ha van megoldás a mélységi korláton belül, akkor talál megoldást.

10. kérdés	1 / 1 pont
Melyek az alábbiak közül a visszalépéses keresés előnyei?	
Ha van (mélységi korálton belül) megoldása, akkor talál egyet.	
Mindig terminál.	
\square Véges δ -gráfban optimális megoldást talál.	
Kicsi a memória igénye.	

11. kérdés	1 / 1 pont
Mely állítások NEM igazak az alábbiak közül?	
A sorrendi és a vágó szabály egyaránt épülhet heurisztikára.	
A sorrendi szabály egy heurisztikus vezérlési stratégia.	
A mélységi korlát felfogható egy speciális vágó szabálynak.	
Vágó szabály nem alkalmazható sorrendi szabályokkal együtt.	

12. kérdés 1 / 1 pont

setén. A s	naga elé a Hanoi tornyai probléma állapotgráfját három korong startcsúcsból kivezető utak közül hányat vizsgál meg a visszalépése ásodik változata, ha a mélységi korlát 3?
9	
0 8	
O 14	
15	

Kvízeredmény: 12 az összesen elérhető 12 pontból

5. Gráfkeresés

Határidő okt 16, 23:59

Pont 12

Kérdések 12

Időkorlát Nincs

Engedélyezett próbálkozások Korlátlan

Kvíz kitöltése újra

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény
LEGUTOLSÓ	1. próbálkozás	19 perc	12 az összesen elérhető 12 pontból

(!) A helyes válaszok el vannak rejtve.

Ezen próbálkozás eredménye: 12 az összesen elérhető 12 pontból

Beadva ekkor: okt 8, 14:30

Ez a próbálkozás ennyi időt vett igénybe: 19 perc

1. kérdés	1 / 1 pont
Mit tartalmaz a gráfkeresés globális munkaterülete?	
A startcsúcsból kiinduló eddig felfedezett összes utat a nyílt csúcsokkal	együtt.
A reprezentációs gráfot, de külön megcímkézve benne a már bejárt csúc	csokat.
A reprezentációs gráf egy tetszőleges részgráfját.	
Csak a nyílt csúcsok halmazát.	

2. kérdés	1 / 1 pont
Melyek a gráfkeresés keresési szabályai?	
A nyílt csúcsok kiterjesztései.	

 A továbblépés (újabb él felfedezése) és a visszalépés. 	
7 (tovassiopee (ajass of folloassee) ee a vilossaiopee.	
A továbblépés (egy csúcsból kivezető összes él felfedezés	se) és a visszalépés.
. kérdés	1 / 1 pont
i a gráfkeresés általános vezérlési stratégiája?	
Minden lépésben a legígéretesebb nyílt csúcsot válasz	rtja kiterjesztésre.
A legutoljára felfedezett nyílt csúcs kiterjesztése.	
A startcsúcsból legkisebb költségű úton elérhető nyílt d	csúcs kiterjesztése.
A startcsúcsból legkisebb költségű már felfedezett úton elekiterjesztése.	érhető nyílt csúcs
. kérdés	1 / 1 pont
ely csúcsokat nevezzük a gráfkereséseknél nyílt csúc	csoknak?
,	
•	
	n, vagy nem eléggé jól
 A keresőgráf azon csúcsait, amelyek gyermekeit még nem 	n, vagy nem eléggé jól
A keresőgráf azon csúcsait, amelyek gyermekeit még nem ismerjük, ennél fogva kiterjesztésre várnak.	
A keresőgráf azon csúcsait, amelyek gyermekeit még nem ismerjük, ennél fogva kiterjesztésre várnak.	ég nem fedeztük fel.

Egy újabb él hozzávétele a kereső gráf egyik csúcsához.

5. kérdés	1 / 1 pont
Mit mutat a gráfkereséseknél a szülőre visszamutató pointerfüggvé	eny (π)?
A keresőgráfbeli csúcsok egyik szülőjét.	
A reprezentációs gráfbeli csúcsok legjobb szülőjét.	
A keresőgráfbeli csúcsok legjobb szülőjét.	
A reprezentációs gráfbeli csúcsok egyik szülőjét.	

6. kérdés	1 / 1 pont
Mit mutat a gráfkereséseknél a költségfüggvény (g)?	
A startcsúcsból a keresőgráfbeli csúcsokhoz, a keresőgráfban vezető e költségét.	egyik út
A startcsúcsból a keresőgráfbeli csúcsokhoz vezető egyik út költség	gét.
A startcsúcsból a keresőgráfbeli csúcsokhoz, a keresőgráfban vezető lút költségét.	egolcsóbb
A startcsúcsból a keresőgráfbeli csúcsokhoz a szülőre visszamutató pointerfüggvény által kijelölt út költségét.	

7. kérdés 1 / 1 pont

Mikor nevezünk egy kiértékelő függvényt csökkenőnek?

Ha egy csúcs függvényértéke soha nem nő, viszont mindig cs olcsóbb odavezető utat találunk hozzá.	ökken valahányszor
Ha egy csúcs értéke csak akkor változik, de akkor csökken, ha odavezető utat találunk hozzá.	a egy olcsóbb
Ha egy startcsúcsból kiinduló már felfedezett út mentén a csúr függvényértékei monoton csökkennek.	csok
Ha az algoritmus által kiterjesztett csúcsok függvényértékei m	onoton csökkennek.
8. kérdés	1 / 1 pont

9. kérdés	1 / 1 pont
Mikor mondjuk a keresőgráf egyik csúcsára, hogy korrekt?	
Ha a szülőre visszamutató pointerek a keresőgráfra nézve optimális uta ki hozzá a startcsúcsból, és ennek az útnak a költségét mutatja a költségfüggvény.	ıt jelölnek
✓ Ha optimális és konzisztens.	
Ha a gráfkeresés már kiterjesztette a gyerekeit is.	
Ha a költségfüggvény értéke a visszamutató pointerfüggvény által kijelő csúcsánál mért költségfüggvény értékének, és a szülőtől hozzávezető é költségének összege.	

10. kérdés	1 / 1 pont
Mely állítások igazak az alábbiak közül a gráfkeresés általános algo	oritmusára?
$lacksquare$ Véges δ -gráfban mindig terminál.	
$ oldsymbol{ oldsymb$	áfok
$lacksquare$ Véges δ -gráfban talál megoldást, ha van.	
lacksquare Véges δ-gráfban optimális megoldást talál, ha van megoldás.	

11. kérdés 1 / 1 pont

Mely állítások NEM igazak az alábbiak közül a gráfkeresés általános algoritmusára?

$lacksquare$ δ -gráfban mindig terminál.
Csökkenő kiértékelő függvényt használva soha nem terjeszt ki inkorrekt csúcs
$lacksquare$ Véges δ -gráfban talál megoldást, ha van.

Kvízeredmény: 12 az összesen elérhető 12 pontból

6. A* algoritmus

Határidő Nincs megadva határidő

Pont 12

Kérdések 12

Időkorlát Nincs

Engedélyezett próbálkozások Korlátlan

Kvíz kitöltése újra

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény
MEGTARTOTT	2. próbálkozás	16 perc	12 az összesen elérhető 12 pontból
LEGUTOLSÓ	2. próbálkozás	16 perc	12 az összesen elérhető 12 pontból
	1. próbálkozás	18 perc	8.75 az összesen elérhető 12 pontból

(1) A helyes válaszok el vannak rejtve.

Ezen próbálkozás eredménye: 12 az összesen elérhető 12 pontból

Beadva ekkor: okt 12, 23:26

Ez a próbálkozás ennyi időt vett igénybe: 16 perc

1. kérdés	1 / 1 pont
Lehet-e sorrendi heurisztika egy nem-informált gráfkeresés másod vezérlési stratégiájában?	lagos
Igen.	
○ Nem.	
Csak akkor, ha már az elsődleges vezérlési stratégia is alkalmaz he	eurisztikát.
A másodlagos stratégiába nem lehet heurisztikát beépíteni.	

2. kérdés	1 / 1 pont
Mit jelent a gráfkereséseknél a megengedhetőség fogalma?	

	Olyan heurisztikus függvényt, amely alulról becsüli egy reprezentációs gr csúcsokból a célba vezető optimális út költségét.	áfban a
	Olyan gráfkereső algoritmust, amelyik optimális megoldást talál, ha va	ın.
	Olyan algoritmust, amely lépésről lépésre szűkíti a megoldások halmazát az már csak az optimális megoldásokat tartalmazza.	, amíg
	Olyan gráfkereséseket, amelyek kiértékelő függvényében megengedett a heurisztika használata.	
3. k	kérdés	1 / 1 pont

Melyik állítás NEM igaz az azonosan nulla függvényről? Nem válaszható kiértékelő függvénynek. Becsli a célba vezető optimális út költségét. Megengedhető és monoton megszorításos. Nem tartalmaz extra ismeretet, azaz heurisztikát.

Amelyik kiértékelő függvénye g+h alakú, ahol h mege optimális megoldást talál, ha van.	engedhető, és garantáltan
5. kérdés	1 / 1 pont
Mi az alábbiak közül az A algoritmus tulajdonsága′	?
$lacksquare$ δ -gráfban megengedhető heurisztikával optimális	megoldást talál, ha van.
Heurisztikus függvénye megengedhető.	
\bigcirc δ-gráfban egy csúcsot legfeljebb egyszer terjeszt	ki.
\bigcirc δ-gráfban optimális megoldást talál, ha van.	
6. kérdés	1 / 1 pont
Mely állítás NEM igaz a következetes (<i>A</i> º) algoritm	usra?
A kiterjesztéseinek száma akár a kiterjesztett csúcso kettő hatványa is lehet.	k száma mínusz egynek a
Egy csúcsot legfeljebb egyszer terjeszt ki.	
Amikor egy csúcsot kiterjeszt, már ismeri a start csúc utat.	esból odavezető optimális
Optimális megoldással terminál, ha van megoldás	S.

O Amelyik garantáltan optimális megoldást talál, ha van.

2 ^{k-1}	
○ <i>k</i>	
$\bigcirc k \log_2 k$	
. kérdés	1 / 1 pon
	gy másiknál?
likor mondunk egy A* algoritmust jobban informáltnak eg Ha a heurisztikus függvényének értéke a nem célcsúcsokbar	
likor mondunk egy A* algoritmust jobban informáltnak eg Ha a heurisztikus függvényének értéke a nem célcsúcsokbar másik algoritmus heurisztikus függvényének értéke.	
likor mondunk egy A* algoritmust jobban informáltnak eg Ha a heurisztikus függvényének értéke a nem célcsúcsokbar másik algoritmus heurisztikus függvényének értéke. Ha kevesebb csúcs kiterjesztése mellett terminál.	n kisebb, mint a

7. kérdés

1 / 1 pont

Ha bármelyik él költsége nagyobb-egyenlő, mint az a különsé hogy az él kezdőcsúcsának függvényértékéből levonjuk a vég függvényértékét.	• • • •
Ha a függvényt használó gráfkeresés működési grafikonja mo	noton növekedő.
Ha a függvény megengedhető és nem negatív.	
Ha a függvény alulról becsüli minden csúcsban a hátralevő op	otimális költséget.
0. kérdés	1 / 1 pon

10. kérdés	1 / 1 pont
Melyik állítás igaz az egyenletes gráfkeresésre?	
Optimális megoldást talál, ha van.	
Egy már kiterjesztett csúcshoz soha nem talál minden addiginál ol	csóbb utat.
Kiértékelő függvénye az élek élköltségeit egységnyinek tekinti.	
Dijkstra legrövidebb utak algoritmusának szinonimája.	

11. kérdés	1 / 1 pont
Az alábbiak közül melyek a megengedhető gráfkereső algoritmusok	ί?
A algoritmus	
☑ B algoritmus	
Egyenletes gráfkeresés	
A** algoritmus	

Kvízeredmény: 12 az összesen elérhető 12 pontból

7. Kétszemélyes játékok

Határidő nov 6, 23:59

Pont 12

Kérdések 12

Időkorlát Nincs

Engedélyezett próbálkozások Korlátlan

Kvíz kitöltése újra

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény
MEGTARTOTT	2. próbálkozás	6 perc	12 az összesen elérhető 12 pontból
LEGUTOLSÓ	2. próbálkozás	6 perc	12 az összesen elérhető 12 pontból
	1. próbálkozás	35 perc	11 az összesen elérhető 12 pontból

(1) A helyes válaszok el vannak rejtve.

Ezen próbálkozás eredménye: 12 az összesen elérhető 12 pontból

Beadva ekkor: okt 25, 21:07

Ez a próbálkozás ennyi időt vett igénybe: 6 perc

1. kérdés	1 / 1 pont
A kurzuson speciális kétszemélyes játékokkal foglalkoztunk. Az alá melyik tulajdonság NEM volt érvényes ezekre?	bbiak közül
egyik játékosnak biztos van győztes stratégiája	
○ zéró összegű	
O determinisztikus	
○ véges	

2. kérdés	1 / 1 pont
Hogyan modellezzük a kétszemélyes játékokat?	

- Nonati	ielégítéses modellel.	
○ ÉS/VA	GY fákkal.	
kérdés		1 / 1 pont
	ratégiája egy játékosnak egy kétsz	remélyes játékban?
•	tes végállásba vezető játszmáinak öss: et biztosan végig tudja játszani, ha nen	•
Győzte	s végállásba vezető játszmáinak össze	essége.
Győzte	s végállásainak összessége.	
O A győz	tes végállásba vezető egyik játszmája.	
kérdés		1 / 1 pont
elyik állítás	igaz az alábbiak közül egy játékos	s nyerő stratégiára?
O Az egy	ik játékos biztosan rendelkezik vele.	
Mindke	t játékos számára előállítható.	
-	ól készített ÉS/VAGY fában egy olyan h atékos számára nyerő végállásba vezet	

Állapottér modellel.

5. kérdés	1 / 1 pont
Hogyan lehet megtudni, hogy kinek van győztes stratégiája egy ké kétszemélyes játékban?	t kimenetelű
Nem lehet véges lépésben megválaszolni ezt a kérdést.	
Úgy, hogy a minimax algoritmust alkalmazzuk a teljes játékfára úgy, ho játékos győztes állásaihoz +1-et, a vesztes állásaihoz -1-et rendelünk. gyökérbe felfuttatott érték +1, akkor az első játékosnak van győztes stra egyébként a másodiknak.	На а
A játékfa leveleit megcímkézzük annak a játékosnak a nevével, aki a levélcsúccsal jelzett állásban nyerni fog. Szintről szintre felfelé haladva játékos szintjén levő csúcs, ha van Y címkéjű gyereke, akkor Y címkét különben a másik játékos nevét írjuk oda. A gyökér címkéje adja meg a	kap;
Átalakítjuk a játékfát ÉS/VAGY fává, és ebben keresünk olyan gyökérbe hiperutat, amely vagy kizárólag az egyik, vagy kizárólag a másik játéko győztes levélcsúcsába vezet.	
6. kérdés	1 / 1 pont
	•

6. kérdés	1 / 1 pont
Mikor következik be vágás az alfa-béta algoritmus működése so	orán?
Ha az aktuális csúcs alfa értéke nagyobb vagy egyenlő a csúcs béta	a értékénél.
Ha az aktuális út egy alfa értéke kisebb vagy egyenlő az út egy béta	ı értékénél.
Ha az aktuális csúcs alfa értéke nagyobb vagy egyenlő az alatta vag csúcs béta értékénél.	gy felette levő

٦	9

Ha az aktuális út egy alfa értéke nagyobb vagy egyenlő az út egy béta értékénél.

7. kérdés	1 / 1 pont
Mi az a nyugalmi teszt?	
Váltakozó mélységű keresésnél a részfa felépítéséhez használt feltét	el.
Egy szülőcsúcs és egy gyerekének kiértékelő függvényértékei különbség vizsgáló teszt.	jét
Az alfa-béta algoritmus vágási feltételét ellenőrző teszt.	
A heurisztikus kiértékelő függvény konstruálásához használt lehetséges	módszer.

8. kérdés	1 / 1 pont
Mely állítások igazak az alábbiak közül a játékfákra?	
Ágai a lehetséges játszmákat szimbolizálják.	
Levelei a győztes állásokat szimbolizálják.	
Csúcsai a játék állásait szimbolizálják.	
Szintjei a soron következő játékost szimbolizálják.	

9. kérdés	1 / 1 pont

Melyek az alábbiak közül a minimax algoritmusnak a lépései?

Felépítjük a játékfát.	
Megadjuk a legnagyobb értékű levélcsúcshoz vezető	ő ágat.
Kiértékeljük a felépített fa leveleit.	
A saját szintjeink csúcsaihoz a gyerekeik értékeinek	maximumát írjuk.
I0. kérdés	1 / 1 pont
Az alábbi részleges játékfa kiértékelő módszerek köz szal azonos eredményt?	ül melyik ad a minimax-
(n,m) átlagoló algoritmus	
negamax algoritmus	
szelektív algoritmus	
☑ alfa-béta algoritmus	
I1. kérdés	1 / 1 pont
⁄li a játékfa?	
A kétszemélyes játék modelljének állapotgráfjából ki	alakított irányított fa.
Az összes játszmát irányított útként megjelenítő irán	yított fa.
Olyan ÉS/VAGY fa, amelyik szintjeiről váltakozva vagy o indulnak ki, vagy csak VAGY kapcsolatú élek.	csak ÉS kapcsolatú élek

8. Evolúciós algoritmusok

Határidő nov 13, 23:59

Pont 12

Kérdések 12

Időkorlát Nincs

Engedélyezett próbálkozások Korlátlan

Kvíz kitöltése újra

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény
MEGTARTOTT	2. próbálkozás	5 perc	12 az összesen elérhető 12 pontból
LEGUTOLSÓ	2. próbálkozás	5 perc	12 az összesen elérhető 12 pontból
	1. próbálkozás	22 perc	9.17 az összesen elérhető 12 pontból

(1) A helyes válaszok el vannak rejtve.

Ezen próbálkozás eredménye: 12 az összesen elérhető 12 pontból

Beadva ekkor: nov 7, 14:31

Ez a próbálkozás ennyi időt vett igénybe: 5 perc

1. kérdés	1 / 1 pont
Milyen az általános vezérlési stratégiája az evolúviós algoritmusok	knak?
nem-módosítható	
gráfkereső	
○ visszalépéses	
mohó	

2. kérdés	1 / 1 pont
Mit tárol az evolúciós algoritmus a globális munkaterületén?	

A populációt.	
Az evolúciós operátorokat.	
A rekombinációra kiválasztott egyedek halmazát.	
Az egyedek alkotta problémateret.	
3. kérdés	1 / 1 pont
Melyik NEM evolúciós operátor az alábbiak közül?	
Véletlen cseréje a kód két elemének.	
Rulett kerék algoritmus.	
Kétpontos keresztezés.	
Egy egyed kódolása.	

4. kérdés	1 / 1 pont
Hogyan szokták az egyedeket kódolni?	
Úgy, hogy a kód darabjai az egyed egy-egy tulajdonságát mutassa.	
○ Úgy, hogy az egyed kódja egy kromoszóma legyen.	
Úgy, hogy a kódolás és a dekódolás is hatékony legyen.	
○ Úgy, hogy a dekódolás gyors legyen, mert a fittnesz függvényt az egyedre kiszámolni.	e lehet

5. kérdés 1 / 1 pont

Hol épülhet véletlenített módszer az evolúciós algoritmusba?	
Csak a populáció lecserélendő egyedeinek előállításában.	
 Csak a kezdeti populáció kialakításában és mind a négy evolúciós operáto 	orban.
Csak a kiválasztásban, a rekombinációban, és a mutációban.	
Csak a keresztezési pontok megadásában.	
6. kérdés	1 / 1 pont
Hol van szerepe a kiválasztásnak az evolúciós algoritmusban?	
A keresztezési pontok megadásában.	
Ez az első lépése az evolúciós ciklusnak.	
A populáció lecserélendő egyedeinek előállításában.	
A rekombinációhoz szükséges szülő egyedek előállításában és az új popukialakításában.	ıláció
7. kérdés	1 / 1 pont
Mi a lényege a jó kiválasztási módszernek az evolúciós algoritmusokl	ban?
A fittnesz függvény alapján rendezi sorba a populáció egyedeit.	
 Figyelembe veszi, hogy a kódban melyek az egyed tulajdonságait jelző szakaszok. 	

	ett egyedeket r rátermettek kiv			választja ki,	de ad esélyt a	
O Megk	eresi a populá	ció legjobb e	gyedét.			

8. kérdés	1 / 1 pont
Mi a kapcsolat a keresztezés és a rekombináció között?	
A rekombináció a szülő egyedeken, míg a keresztezés azok kódjával d	olgozik.
A rekombinációk speciális keresztezések.	
A keresztezés mindig megelőzi a rekombinációt.	
A keresztezések speciális rekombinációk.	

9. kérdés	1 / 1 pont
Melyek lehetnek a feltételei az evolúciós algoritmus leállásának?	
Nincsen a populációnak adott korlátnál nagyobb fittneszértékű egyed	le.
A populáció összesített fittneszértéke már egy ideje nem változik.	
A populáció minden egyedének fittneszértéke meghalad egy adott ko	orlátot.
Célegyed megjelenése a populációban.	

10. kérdés 1 / 1 pont

ely ke	eresztezési módszerek őrzik meg permutáció tulajdonságot?
✓	Parciálisan illesztett keresztezés.
	Egypontos keresztezés.
	Egyenletes keresztezés.
~	Ciklikus keresztezés.

11. kérdés	1 / 1 pont
Az alábbiak közül, melyek alkalmas módszerek a permutáció tulajd megőrző mutációra?	onságot
Kód első két elemének cseréje.	
Kód növekvő sorba rendezése.	
✓ Kód egy szakaszának átrendezése.	
Kód két véletlen választott elemének cseréje.	

9. Automatikus következtetés

Határidő nov 20, 23:59

Pont 12

Kérdések 12

Időkorlát Nincs

Engedélyezett próbálkozások Korlátlan

Kvíz kitöltése újra

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény
MEGTARTOTT	4. próbálkozás	2 perc	12 az összesen elérhető 12 pontból
LEGUTOLSÓ	4. próbálkozás	2 perc	12 az összesen elérhető 12 pontból
	3. próbálkozás	3 perc	11 az összesen elérhető 12 pontból
	2. próbálkozás	4 perc	10 az összesen elérhető 12 pontból
	1. próbálkozás	45 perc	8 az összesen elérhető 12 pontból

(!) A helyes válaszok el vannak rejtve.

Ezen próbálkozás eredménye: 12 az összesen elérhető 12 pontból

Beadva ekkor: nov 15, 19:43

Ez a próbálkozás ennyi időt vett igénybe: 2 perc

1. kérdés	1 / 1 pont
Mi az a rezolúciós gráf?	
Az üres klóz előállítását bemutató gráf.	
Az útkeresési feladatot leíró irányított gráf.	
Az összes klóz előállítását bemutató gráf.	
Logikai következtetést szimbolizáló ÉS/VAGY gráf.	

2. kérdés	1 / 1 pont

Melyek a $p \parallel q$ és a $!p \parallel !q$ rezolvensei?				
○ p q !q és q p !p				
<pre>p !p és q !q</pre>				
nem rezolválhatók				
○ üres klóz				
3. kérdés	1 / 1 pont			
Mi a globális munkaterülete a rezolúciónak?				
Az axiómákból és a célállítás negáltjából kialakított klózok halmaza.				
A kiinduló és az eddig előállított klózok halmaza.				
Az egyedek populációja.				
A formalizációban részt vevő predikátumok halmaza.				
A formalizációban részt vevő predikátumok halmaza.				

4. kérdés	1 / 1 pont
Mi a keresési szabálya a rezolúciónak?	
Az üres klóz levezetése.	
A Skolemizálás.	
Az üres klóz előállítása.	
A rezolvens képzés.	

Melyik az alábbiak közül a visszafelé haladó szabályalapú reprezentáció jellemzője?
A tényállítás egy univerzálisan kvantált ÉS/VAGY formula.
A célállítás egy L₁ || ... || Ln egzisztenciálisan kvantált formula, ahol Li literál.
A szabályok L→W alakúak, ahol W egy ÉS/VAGY formula, L egy literál, és minden változó univerzálisan kvantált.
A szabályok W→L alakúak, ahol W egy ÉS/VAGY formula, L egy literál, és minden változó univerzálisan kvantált.

6. kérdés 1/1 pont Melyik az alábbiak közül az előrefelé haladó szabályalapú reprezentáció jellemzője? A szabályok W→L alakúak, ahol W egy ÉS/VAGY formula, L egy literál, és minden változó univerzálisan kvantált. A célállítás egy egzisztenciálisan kvantált ÉS/VAGY formula. A tényállítás egy L₁ || ... || Ln univerzálisan kvantált formula, ahol Li literál. A szabályok L→W alakúak, ahol W egy ÉS/VAGY formula, L egy literál, és minden változó univerzálisan kvantált.

7. kérdés 1 / 1 pont

Hogyan kell a rezolúciót válaszadásra felhasználni?

A választ egy egzisz célállításban.	ztenciálisan kvantált változóval kell me	gjeleníteni a
A kérdésre adható v célállításban.	rálaszt egy külön predikátummal jelení	tjük meg a
A rezolúció csak	igen/nem jellegű választ képes adni.	
\bigcirc Az $A_1, \dots, A_n \Longrightarrow C$ vizsgáljuk.	kérdés helyett az A ₁ && && A _n && !	C kielégíthetetlenségét

8. kérdés	1 / 1 pont
Mi következik abból, hogy a rezolúció módszere helyes?	
Ha elakad (nem tud újabb klózt előállítani), akkor a kiinduló klózhalmaz kielégíthető.	
Kicsi a futási ideje.	
Ha üres klózzal terminál, akkor a kiinduló klózhalmaz kielégíthetetler	٦.
Mindig elő tudja állítani az üres klózt.	

9. kérdés	1 / 1 pont
Mi következik abból, hogy a rezolúció módszere teljes?	
☐ Ha a kiinduló klózhalmaz kielégíthetetlen, akkor véges lépésen b	elül terminál.
Ha a kiinduló klózhalmaz kielégíthető, akkor nem állítja elő az üre	es klózt.
Ha a kiinduló klózhalmaz kielégíthetetlen, akkor levezethető az ü	res klóz.

	kérdés	1 / 1 por
•	ek az alábbiak közül a rezolúció reprezentációs gráfjái donságai?	nak különös
	 Ha a stratcsúcsból vezet út célcsúcsba, akkor mindegyik starto csúcsból is vezet célcsúcsba út. 	súcsból elérhető
	✓ Nincs benne kör.	
	Bármelyik csúcsból bármelyik csúcsba el lehet jutni.	
	Nincs benne zsákutca.	
11.	kérdés	1 / 1 pon
Mely	ek lehetnek az alábbiak közül a rezolúció modellfüggő	vágó stratégiái?
	☑ Minden rezolúciós lépésben az egyik szülőklóz az utoljára előá	allított klóz legyen.
	Soroljuk be szintekre a rezolúciós gráf klózait. Nulladik szinten az i+1-dik szinten azok, amelyek egyik szülője az i-dik szinten az első i szint valamelyikén. Állítsuk elő szintenként a klózokat	van, másik szülője

legkevesebb.

12. kérdés	1 / 1 pont
Melyek az alábbiak közül a rezolúció modellfüggő sorrendi stratégia	ái?
Mindig azt a klózpárt rezolváljuk, amelyekben a literálok száma a legkev	vesebb.
Minden rezolúciós lépésben az egyik szülőklóz egyetlen literálból áll	ljon.
Soroljuk be szintekre a rezolúciós gráf klózait. Nulladik szinten a kiindule az i+1-dik szinten azok, amelyek egyik szülője az i-dik szinten van, a ma az első i szint valamelyikén. Állítsuk elő szintenként a klózokat.	
Minden rezolúciós lépésben az egyik szülőklóz az utoljára előállított klóz	z legyen.

10. Bizonytalanság kezelése

Határidő nov 27, 23:59

Pont 12

Kérdések 12

Időkorlát Nincs

Engedélyezett próbálkozások Korlátlan

Kvíz kitöltése újra

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény
LEGUTOLSÓ	1. próbálkozás	24 perc	12 az összesen elérhető 12 pontból

(!) A helyes válaszok el vannak rejtve.

Ezen próbálkozás eredménye: 12 az összesen elérhető 12 pontból

Beadva ekkor: nov 23, 19:49

Ez a próbálkozás ennyi időt vett igénybe: 24 perc

1. kérdés Hogyan számoljuk az A esemény valószínűségét feltéve, hogy B esemény – amely valószínűsége nagyobb, mint nulla – bekövetkezik? P(A|B) = P(B|A)P(B) / P(A) P(A|B) = P(A)P(B) / P(B) P(A|B) = P(A,B) / P(B)

2. kérdés 1/1 pont

Mikor mondjuk, hogy A és B események feltételesen függetlenek E eseményre nézve?

 \bigcirc P(AB|E) = P(A|E) P(B|E)

3. kérdés	1 / 1 pont
P(AB E) = P(A E) P(B E) / P(E)	
P(AB E) = P(B E)	
P(AB E) = P(A E)	

3. kérdés	1 / 1 pont
Az alábbiak közül melyik egy Bayes tétel?	
P(A B) = P(B A) P(B) / P(A)	
\bigcirc P(B A,E) = P(A,B E) P(A E) / P(B E)	
$\bigcirc P(B A,E) = P(A B,E) P(A E) / P(B E)$	
P(A B) = P(B A) P(A) / P(B)	

4. kérdés	1 / 1 pont
Az alábbiak közül melyik NEM igényel bizonytalanság kezelést?	
Elmosódott jelentésű állítások alapján történő következtetés.	
Axiómákból kiinduló logikai következtetés.	
Ellentmondó adatokra épülő következtetés.	
Hiányzó adatok alapján történő következtetés.	

5. kérdés	1 / 1 pont
Milyen gráf a valószínűségi háló?	

○ Véges fa.
\circ δ -gráf.
○ Véges fa-gráf.
1/1 nont
6. kérdés 1/1 pont
Mit mutat meg a valószínűségi háló feltételes valószínűségi táblája?
Azt, hogy egy csúcs valószínűségi változója milyen valószínűséggel vesz fel egy adott értéket feltéve, hogy a gyerek csúcsok valószínűségi változói adott értékűek.
Azt, hogy egy él valószínűségi változója milyen valószínűséggel vesz fel egy adott értéket feltéve, hogy az él végcsúcsából kifutó élek valószínűségi változói adott értékűek.
Azt, hogy egy csúcs valószínűségi változója milyen valószínűséggel vesz fel egy adott értéket feltéve, hogy a szülő csúcsok valószínűségi változói adott értékűek.
Azt, hogy egy él valószínűségi változója milyen valószínűséggel vesz fel egy adott értéket feltéve, hogy az él kezdőcsúcsába futó élek valószínűségi változói adott értékűek.
7. kérdés 1/1 pont

Véges körmentes irányított gráf.

Mit jelent a normalizálás technikája?

Adott kifejezések olyan együtthatóval történő szorzását, hogy ezáltal az ö 1 legyen.	sszegük
A kettes norma alkalmazását.	
Bayes hálók fa-gráfokká történő átalakítását.	
Adott összegű kifejezések közös együtthatójának kiszámolását.	
3. kérdés	1 / 1 pont
Mit jelent az, hogy egy valószínűsági háló egyszeresen kötött?	
Azt, hogy a háló körmentes.	
Azt, hogy a háló egy fa-gráf.	
Azt, hogy a háló egy irányított fa.	
Azt, hogy a háló éleinek irányításait megfordítva irányított fát kapunk.	
9. kérdés	1 / 1 pont
Az alábbiak közül melyek igazak a valószínűségi hálókra?	
Az éleiről elhagyva az irányítást a hálóból egy irányítatlan fát kapunk.	
☑ Irányított élei a válószínűségi változók közötti közvetlen ok-okozati összefüggéseket mutatják.	
Csúcsai egy adott tárgykör valószínűségi változóit reprezentálják.	
Egyetlen célcsúcsa van.	

10. kérdés	1 / 1 pont
Hogyan javítható a valószínűségi hálóban való számítás hatékonys háló nem fa-gráf?	ága, ha a
Csúcsok összevonásával fa-gráffá alakítjuk a valószínűségi hálót.	
Csúcsok elhagyásával több fa-gráfokra bontjuk a valószínűségi hálót	
A valószínűségi hálót példák generálására használjuk, amelyekből relatí gyakoriságot számolunk.	V
Nem javítható.	
11. kérdés	1 / 1 pont
Milyen heurisztikus bizonytalanságkezelő technikákról hallott?	

Kvízeredmény: 12 az összesen elérhető 12 pontból

11. Gépi tanulás

Határidő dec 4, 23:59

Pont 12

Kérdések 12

Időkorlát Nincs

Engedélyezett próbálkozások Korlátlan

Kvíz kitöltése újra

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény
LEGUTOLSÓ	1. próbálkozás	11 perc	12 az összesen elérhető 12 pontból

(!) A helyes válaszok el vannak rejtve.

Ezen próbálkozás eredménye: 12 az összesen elérhető 12 pontból

Beadva ekkor: dec 2, 21:51

Ez a próbálkozás ennyi időt vett igénybe: 11 perc

1. kérdés	1 / 1 pont
Mit jelent az, hogy egy tanulás felügyelt?	
A tanító minták elvárt kimenetét is felhasználja a tanulási folyamat.	
A tanulás folyamata nem teljesen automatikus.	
A tanulás folyamatát módosítani kell, ha az elvárt kimenet eltér a szál	mítottól.
A tanulási folyamatnak ki kell számolni a tanító minták elvárt kimenete	ét is.

2. kérdés	1 / 1 pont
Mit jelent az, hogy egy tanulás felügyelet nélküli?	

A tanulas folyamata teljesen automatikus.	
A tanító minták elvárt kimenetét automatikusan számolja a tanu	ulás módszere.
A tanulásnak nincs szüksége a tanító minták elvárt kimenetére	
A tanító mintákra kiszámolt kimenet eltérhet az elvárt kimenettő	51.
s. kérdés	1 / 1 pont
lit jelent a zaj a tanító minták esetén?	
Amikor két vagy több eltérő attribútumokkal rendelkező minta elvál megegyeznek.	rt kimenetei
Amikor a tanítóminták elvárt kimenetének jelentése elmosódott	
Amikor azonos attribútumokkal rendelkező minták eltérő elvárt kim rendelkeznek.	enetekkel
Amikor a tanítóminták elvárt kimenete hasonló.	
. kérdés	1 / 1 pont
ülönböző tanító minták halmazának mikor a legkisebb az info artalma a döntési fáknál?	ormáció (entrópia)
Ha a kimeneteik értékei mind különböznek.	
Ha a minták inputjai közötti legnagyobb távolság (valamilyen távols	ság metrika

mellett) kisebb a legnagyobb input értéknél (ugyanazon metrika szerint).

Ha mind azonos kimeneti értékkel rendelkezik.	
5. kérdés	1 / 1 pont
Hogyan értékelünk ki a döntési fa építése során egy levélcsúcsot tartoznak hozzá tanító minták?	akkor, ha nem
A szülőcsúcsához tartozó attribútumok alapján.	
A csúcshoz tartozó attribútumok alapján, ha vannak ilyenek, különben értéket kap.	véletlenszerű
A szülőcsúcsához tartozó tanítóminták alapján.	
O llyen eset nem fordulhat elő.	
6. kérdés	1 / 1 pont
A döntési fa építése során az alábbiak közül milyen csúcsok fordu fában ?	ılhatnak elő a
✓ Kiértékeletlen levélcsúcsok.	
Kiértékelt levélcsúcsok.	
Attribútummal címkézett belső csúcsok.	

Attribútummal címkézett levél csúcsok.

Ha a minták kimeneti értékei közötti legnagyobb távolság (valamilyen távolság metrika mellett) kisebb a legnagyobb kimeneti értéknél (ugyanazon metrika szerint).

7. kérdés	1 / 1 pont
Mely állítások igazak a döntési fára?	
Ágai egy probléma lehetséges megoldását adják.	
Gyökércsúcsa a kiinduló problémát reprezentálja.	
Egy csúcsból kivezető élei a csúcs attribútumának lehetséges érté szimbolizálják.	keit
Belső csúcsai egy-egy attribútumot reprezentálnak.	
8. kérdés	1 / 1 pont
	1 / 1 pont
	1 / 1 pont
Mely állítások igazak a döntési fa módszerére?	1 / 1 pont
Mely állítások igazak a döntési fa módszerére? Optimális megoldást ad.	1 / 1 pont
A mintákat a válaszadásnál is ismerni kell.	1 / 1 pont

A megtanult paraméter a minták összessége.

A tanulási idő hosszú.

A válaszadási idő rövid.	
Egyszerű implementálni.	
10. kérdés	1 / 1 pont
Milyen felügyelt tanulási módszereket ismert meg a kurzu	son?
k-legközelebbi szomszéd módszere.	
k-közép módszer.	
Error backpropagation algoritmus.	
✓ Véletlen erdő módszere.	
1. kérdés	1 / 1 pont
lol jutott szerepe a véletlennek a véletlen erdő módszeré	eben?
Az erdő egy fájának felépítéséhez a minták attribútumai közü attribútumokat használ.	il véletlen választott
Az erdő egy fájának felépítéséhez a minták véletlen választo használja.	tt részhalmazát

Az erdő fáinak számát véletlen módon határozzák meg.

A fa egy csúcsához rendelt attribútumot véletlen módon választja ki.

12. Neurális hálók

Határidő dec 11, 23:59

Pont 12

Kérdések 12

Időkorlát Nincs

Engedélyezett próbálkozások Korlátlan

Kvíz kitöltése újra

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény
LEGUTOLSÓ	1. próbálkozás	141 perc	12 az összesen elérhető 12 pontból

(!) A helyes válaszok el vannak rejtve.

Ezen próbálkozás eredménye: 12 az összesen elérhető 12 pontból

Beadva ekkor: dec 8, 14:50

Ez a próbálkozás ennyi időt vett igénybe: 141 perc

1. kérdés	1 / 1 pont
Az alábbiak közül melyik jellemzik a homogén többrétegű előr	ecsatolt hálózatot?
Az i-dik réteg neuronjának kimenete csak az i+1-dik réteg neuronjó bemeneti értéke.	ának lehet
A különböző rétegek neuronjainak aktivációs (kimeneti) függvénye réteghez tartozó neuronok esetében nem.	e eltérhet, de egy
Az i-edik réteg egy neuronjának kimenete csak az i-1-dik réteg ne bemeneti értéke.	uronjának lehet
 Az azonos réteghez tartozó neuronok között nincs közvetlen ke 	apcsolat.

2. kérdés	1 / 1 pont
Mit jelent az input vektorizálása?	
A megoldandó probléma lineárisan szeparálható feladattá konvertálását	t.
Egy inputot a jellemzői (attribútumai) segítségével egy számsorozattal ábrá	zolunk.
Az inputok azonos hosszúságú számsorozatok.	
Az inputot egy síkvektorként fogjuk fel, amelynek kiinduló pontja az origi	ó.

1 / 1 pont 3. kérdés Jellemezze a szigmoid kimeneti függvényt! Folytonos, majdnem mindenhol deriválható, monoton növekedő,]0,1[intervallumba képző függvény. Egyetlen szakadási ponttal rendelkező, máshol deriválható, monoton növekedő, [0,1] intervallumba képző függvény. Folytonos, mindenhol deriválható, monoton növekedő, [0,1] intervallumba képző függvény. Folytonos, mindenhol deriválható, szigorúan monoton növekedő,]0,1[intervallumba képző függvény.

4. kérdés	1 / 1 pont
Az alábbiak közül melyik hálózatnak NEM lehet több rétegű topológiáj	a?
Hopfield neurális hálózat.	
Konvolúciós neurális hálózat.	
Backpropagation modell hálózata.	
Rekurrens neurális hálózat.	

5. kérdés 1 / 1 pont	
Mi a delta tanulási szabály?	
Egy súly megváltoztatása a súlyhoz tartozó bemeneti értéknek, és a súlyt tartalmazó neuron számított kimeneti értékének szorzatától függ.	
Egy súly megváltoztatása a súlyhoz tartozó bemeneti értéknek, és a súlyt tartalmazó neuron várt kimeneti értékének szorzatától függ.	
Egy súly megváltoztatása a súlyhoz tartozó bemeneti értéknek, és a súlyt tartalmazó neuron számított és várt kimeneti értékei különbségének szorzatától függ.	
Egy súly megváltoztatása a súlyhoz tartozó bemeneti értéknek, és a súlynak szorzatától függ.	

6. kérdés 1 / 1 pont

Mire alkalmazzák a lineárisan szeparálható kifejezést?	
Arra, hogy a mintapontokhoz a legkisebb négyzetek módszerével meghatározott egyenes elválasztja egymástól a mintapontokat.	
A Rosenblatt-féle perceptronokból épített neurális hálózatokra.	
Azokra a feladatokra, amelyek lehetséges bemeneti érték n-esei egy hipersíkkal elválaszthatók aszerint, hogy az ezekre elvárt válasz A vagy B.	
Arra, hogy a perceptronnal megoldható problémák két osztályba sorolhatóak be.	
7. kérdés 1 / 1 pont	
A mesterséges neuron hálózatokra felügyelt vagy felügyelet nélküli tanulási módszer alkalmazható?	

Hogyan lehet Rosenblatt-féle perceptronok felhasználásával koordinátapárokat

úgy osztályozni, hogy megmondjuk melyek esnek bele egy megadott

Egy rétegű három neuront tartalmazó hálózattal.

1 / 1 pont

Csak felügyelet nélkül.

háromszögbe, és melyek nem?

Csak felügyelt.

Egyik sem.

Mindkettő.

8. kérdés

Nem lehet, mert többrétegű Rosenblatt-féle perceptror ismerünk tanuló algoritmust.	nokból álló hálózathoz nem
Olyan kétrétegű előrecsatolt hálózattal, ahol az első ré rétegben egy neuron van.	tegben három, a második
Nem lehet, mert a Rosenblatt-féle neuronokkal csak lii problémákat lehet megoldani.	neárisan szeparálható
9. kérdés	1 / 1 pont
9. kérdés A mesterséges neuronhálózatot egy olyan paraméte amellyel a megoldandó problémát reprezentáló leké ebben a paraméterek?	eres függvénynek tekinthetjük,
A mesterséges neuronhálózatot egy olyan paraméte amellyel a megoldandó problémát reprezentáló leké	eres függvénynek tekinthetjük,
A mesterséges neuronhálózatot egy olyan paraméte amellyel a megoldandó problémát reprezentáló leké ebben a paraméterek?	eres függvénynek tekinthetjük,
A mesterséges neuronhálózatot egy olyan paraméte amellyel a megoldandó problémát reprezentáló leké ebben a paraméterek? A neuronok "bias" bemenete.	eres függvénynek tekinthetjük,

10. kérdés	1 / 1 pont
Mit értünk a hiba-visszaterjesztés (error-backpropagation) módszere a	alatt?
Azt a folyamatot, amellyel a Hopfield modell stabil konfigurációba jut.	

Azt, amikor egy többrétegű előrecsatolt hálózat kimeneti rétegének számított outputjai alapján határozzuk meg, hogy hogyan kell a hálóbeli neuronok súly változtatni.	
Azt, amikor egy többrétegű előrecsatolt hálózat kimeneti rétegének elvárt kim alapján határozzuk meg, hogy a hálóbeli neuronoknak milyen elvárt kimenete	
Olyan többrétegű hálózat építését, amelyben megengedjük a visszacsatolási szomszédos rétegek között.	t a
11. kérdés	1 / 1 pont

11. kérdés	1 / 1 pont
Mit értünk a Hopfield modell konfigurációs terén?	
A neuronok súlyainak összességét.	
A neuronok kimeneteinek összességét.	
A neuronok bemeneteinek összességét.	
A neuronok által felvett állapotok összességét.	

12. kérdés	1 / 1 pont
Az alábbiak közül mely állítások igazak a mesterséges neuronhálóza	tokra?
A tanulási idő hosszú.	
Optimális megoldást ad.	
A válaszadási idő rövid.	

A mintákat egyesével el kell tárolni.	