## 计算机学院、网安学院 2020-2021 学年第一学期本科生编译系统原理期末考试试卷(A卷)

| 专业 | :                                              | 年级:                                                     |                                               | 学号:                        |               |                |      |
|----|------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|----------------------------|---------------|----------------|------|
| 姓名 | :                                              | 成绩:                                                     |                                               |                            |               |                |      |
| 得  | 分 一、 单环                                        | 页选择题(每空                                                 | <b>ヹ</b> 2分,≠                                 | <b>Ċ 24</b> 分)             |               |                |      |
| 1. | A. 词法分                                         | 厅常数的类型包<br>段,消除公共<br>析<br>析                             | 子表达式;<br>B.                                   | 是在 <u></u><br>语法分          | <b>D</b><br>沂 |                |      |
| 2. | GCC-ARM 将<br>台上模拟执行<br>应的 X86 机器<br>B,         | -                                                       | 为 ARM <sup>*</sup><br>程序是采<br>如此往复<br>D<br>B. | 机器码程<br>用读取一<br>的方式,<br>_。 | 序,模<br> 一条指ぐ  | <b>&gt;</b> —— | 转换为相 |
| 3. | 在词法分析和<br>A. 终结符<br>B. 非终结<br>C. 空符号<br>D. 空符号 |                                                         | 为D_                                           | °                          |               |                |      |
| 4. | 正则表达式间<br>述的是D_<br>A. 符号<br>C. 符号串             |                                                         | В.                                            | 这是因为<br>符号集命<br>符号串级       | 合             | <b></b>        | 本质上描 |
| 5. | B. 形如 <b>a<sup>n</sup></b><br>C. 正则表:          | : 的 0、1 串集台<br><b>b<sup>n</sup>c<sup>n</sup></b> (n≥1)的 | 含<br>串的集合                                     |                            | 可用            | CFG            | 识别的是 |

| 灰太狼"会被认为A。                                                      |
|-----------------------------------------------------------------|
| A. 是类型"羊"                                                       |
| B. 是类型"狼"                                                       |
| C. 是类型"灰太狼"                                                     |
| D. 可转换为类型"红太狼"                                                  |
| 8. L-属性定义的翻译更容易和A相结合。                                           |
| A. 预测分析 B. 算符优先分析                                               |
| C. SLR 分析 D. 规范 LR 分析                                           |
| 二二二二二、设计题(每题6分,共24分)                                            |
| 得 分 │ 1. 描述下面正则表达式接受什么符号串集合(注意: 转义符\表                           |
| 示后面的"应视为普通字符,其他符号均为正则表达式运算符)。                                   |
| \"([^\"])*\"                                                    |
| 答:接受双引号包围的字符串,字符串中不包含双引号。                                       |
|                                                                 |
|                                                                 |
| 2. 设计接受 IPv4 地址的正则表达式(可用正则定义)。                                  |
| 答 <b>:</b>                                                      |
| D→[0-9]                                                         |
| $T \rightarrow [1-9][0-9]$                                      |
| $H \rightarrow 1[0-9][0-9]$                                     |
| $B \rightarrow 2([0-4][0-9] \mid 5[0-5])$                       |
| $S \rightarrow D \mid T \mid H \mid B$                          |
| $IPAddr \rightarrow S \setminus S \setminus S$                  |
|                                                                 |
|                                                                 |
| 3. 设计接受语言 $\{a^ib^ja^kb^l \mid i+j=k+l, i,j,k,l>=0\}$ 的上下文无关文法。 |
| 答:                                                              |
| $S \rightarrow aSb \mid A \mid B \mid M$                        |
| A→aAa   M                                                       |
| $B \rightarrow bBb \mid M$                                      |
| M→bMa   ε                                                       |
|                                                                 |

6. 对下面 CFG, 说法**错误的**是\_\_\_\_D\_\_\_。

A. Z 是无用的

 $S \rightarrow 0X$   $X \rightarrow Y1$   $Y \rightarrow Y0 \mid 0$   $Z \rightarrow X1$ 

C. 符合算符文法定义 D. 001 是其活前缀

7. 如果将物种视为类型,且对类型采用**名字等价**判定,则"披着羊皮的

B. 与 **00**<sup>+</sup>**1** 对应相同的语言

4. 设计接受 C++数组声明语句的上下文无关文法,其中数组元素类型限定为 int、char 及它们的指针,数组维数可以是任意维。答:

 $D \rightarrow T \text{ id } M$ :

得 分

T→int | char | T\*

 $M \rightarrow M [num] | [num]$ 

三、(22分)对下面的正则表达式。

(0 | 1)\*110(0 | 1)\*

1. 用 **Thompson 构造法**将其转换为 NFA,识别 0111010。(8 分)



识别 0111010 过程:

 $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 6 \rightarrow 1 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 14 \rightarrow 15 \rightarrow 16 \rightarrow 11$  $\rightarrow 12 \rightarrow 13 \rightarrow 16 \rightarrow 17$ 

2. 用**子集构造法**将得到的 NFA 转换为 DFA, 画出最终的状态转换图, 识别 0111010。(10 分)

 $\varepsilon$  closure( $\{0\}$ )= $\{0, 1, 2, 4, 7\}$ =A

 $\delta(A, 0) = \epsilon \operatorname{closure}(\delta(\{0, 1, 2, 4, 7\}, 0)) = \{1, 2, 3, 4, 6, 7\} = B$ 

 $\delta(A, 1) = \epsilon \operatorname{closure}(\delta(\{0, 1, 2, 4, 7\}, 1)) = \{1, 2, 4, 5, 6, 7, 8\} = C$ 

 $\delta(B, 0) = \epsilon \operatorname{closure}(\delta(\{1, 2, 3, 4, 6, 7\}, 0)) = \{1, 2, 3, 4, 6, 7\} = B$ 

 $\delta(B, 1) = \epsilon_{closure}(\delta(\{1, 2, 3, 4, 6, 7\}, 1)) = \{1, 2, 4, 5, 6, 7, 8\} = C$ 

 $\delta(C, 0) = \varepsilon \operatorname{closure}(\delta(\{1, 2, 4, 5, 6, 7, 8\}, 0)) = \{1, 2, 3, 4, 6, 7\} = B$ 

 $\delta(C, 1) = \epsilon \operatorname{closure}(\delta(\{1, 2, 4, 5, 6, 7, 8\}, 1)) = \{1, 2, 4, 5, 6, 7, 8, 9\} = D$ 

 $\delta(D, 0) = \varepsilon \operatorname{closure}(\delta(\{1, 2, 4, 5, 6, 7, 8, 9\}, 0)) = \{1, 2, 3, 4, 6, 7, 10, 11, 12, 14, 17\} = E$ 

 $\delta(D, 1) = \epsilon \operatorname{closure}(\delta(\{1, 2, 4, 5, 6, 7, 8, 9\}, 1)) = \{1, 2, 4, 5, 6, 7, 8, 9\} = D$ 

 $\delta(E, 0) = \varepsilon_{closure}(\delta(\{1, 2, 3, 4, 6, 7, 10, 11, 12, 14, 17\}, 0)) = \{1, 2, 3, 4, 6, 7, 11, 12, 13, 14, 16, 17\} = F$ 

 $\delta(E, 1) = \varepsilon_{\text{closure}}(\delta(\{1, 2, 3, 4, 6, 7, 10, 11, 12, 14, 17\}, 1)) = \{1, 2, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17\} = G$ 

 $\delta(F, 0) = \varepsilon \operatorname{closure}(\delta(\{1, 2, 3, 4, 6, 7, 11, 12, 13, 14, 16, 17\}, 0)) = F$ 

 $\delta(F, 1) = \varepsilon \operatorname{closure}(\delta(\{1, 2, 3, 4, 6, 7, 11, 12, 13, 14, 16, 17\}, 1)) = G$ 

 $\delta(G, 0) = \epsilon \operatorname{closure}(\delta(\{1, 2, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17\}, 0)) = F$ 

 $\delta(G, 1) = \varepsilon_{closure}(\delta(\{1, 2, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17\}, 1)) = \{1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17\} = H$ 

 $\delta(H, 0) = \varepsilon_{closure}(\delta(\{1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17\}, 0)) = \{1, 2, 3, 4, 6, 7, 10, 11, 12, 13, 14, 16, 17\} = I$ 

 $\delta(H, 1) = \epsilon_{\text{closure}}(\delta(\{1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17\}, 1)) = H$   $\delta(I, 0) = \epsilon_{\text{closure}}(\delta(\{1, 2, 3, 4, 6, 7, 10, 11, 12, 13, 14, 16, 17\}, 0)) = G$  $\delta(I, 1) = \epsilon_{\text{closure}}(\delta(\{1, 2, 3, 4, 6, 7, 10, 11, 12, 13, 14, 16, 17\}, 0)) = G$ 



识别 0111010 过程: A→B→C→D→D→E→G→F

3. 将 DFA 最小化, 画出最终的状态转换图。(4 分) 初始化{A, B, C, D}, {E, F, G, H, I}, 后者不可再分 0 将前者分裂为{A, B, C}和{D}, 1 将前者分裂为{A, B}和{C}, 至此不可再分



得 分

四、(15分)对下面文法:

S→Ac | Bc A→Aa | ε

B→Bb | ε

1. 指出其终结符集合、非终结符集合、开始符号(3分)

答:

终结符集合: a、b、c

非终结符集合: S、A、B

开始符号: S

2. 消除文法左递归(4分)

 $S \rightarrow Ac \mid Bc$ 

A→aA | ε

B→bB | ε

3. 构造预测分析表,对句子 aac 进行分析(8分)。

答:

$$\begin{split} FIRST(S) &= \{a, b, c\} \\ FIRST(A) &= \{a, \epsilon\} \\ FIRST(B) &= \{b, \epsilon\} \end{split} \qquad \begin{aligned} FOLLOW(S) &= \{\$\} \\ FOLLOW(A) &= \{c\} \\ FOLLOW(B) &= \{c\} \end{aligned}$$

预测分析表:

|   | a    | Ъ    | С   | \$ |
|---|------|------|-----|----|
| S | S→Ac | S→Bc |     |    |
| A | A→aA |      | A→ε |    |
| В |      | B→bB | В→ε |    |

## 分析过程:

| 栈     | 输入缓冲  | 动作     |
|-------|-------|--------|
| \$S   | aac\$ | S→Ac   |
| \$cA  | aac\$ | A→aA   |
| \$cAa | aac\$ |        |
| \$cA  | ac\$  | A→aA   |
| \$cAa | ac\$  |        |
| \$cA  | c\$   | A→ε    |
| \$c   | c\$   |        |
| \$    | \$    | accept |

得 分

五、 (5分)对下面流图,指出所有回边及每条回边对应的循环包含哪些顶点。

答:

回边 2→2,对应循环包括 2

回边 3→3,对应循环包括 3

回边 5→2,对应循环包括 2、3、4、5

## 得 分

六、(10分)下面文法描述了类型表达式,设计语法制导定义实现构造类型表达式对应的表达式树。使用属性 p 保存每个语法符号对应的表达式树的根节点指针, 假设已有辅助函数 mkleaf(basic\_type)(及 mkleaf(num, val))和 mknode(op, child1, child2)分别为基本类型(及立即数)和构造类型创建叶节点和内部节点,直接使用即可。

```
T \rightarrow integer | char | real | void | array(num, T) | T '\times' T | pointer(T) | T '\rightarrow' T 答:

T \rightarrow integer { T.p = mkleaf(integer); }
T \rightarrow char { T.p = mkleaf(char); }
T \rightarrow real { T.p = mkleaf(real); }
T \rightarrow void { T.p = mkleaf(void); }
T \rightarrow array(num, T<sub>1</sub>) { T.p = mknode(array, mkleaf(num, num.val), T<sub>1</sub>.p); }
T \rightarrow T<sub>1</sub>'\times' T<sub>2</sub> { T.p = mknode(prod, T<sub>1</sub>.p, T<sub>2</sub>.p); }
T \rightarrow pointer(T<sub>1</sub>) { T.p = mknode(pointer, T<sub>1</sub>.p, NULL); }
T \rightarrow T<sub>1</sub>'\rightarrow' T<sub>2</sub>{ T.p = mknode(func, T<sub>1</sub>.p, T<sub>2</sub>.p); }
```