Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

16 de outubro de 2017

Plano de Aula

- Revisão
 - Revisão (cont.)

2 Linguagens Regulares

Sumário

- Revisão
 - Revisão (cont.)

2 Linguagens Regulares

Conceitos Básicos

Sequên<u>cia</u>

- Definição;
- Representação;
- k-upla;
- Produto cartesiano.

Conceitos Básicos

Funções e Relações

- Definição;
- Domínio;
- Contradomínio;
- Imagem;
- Aridade;
- Predicado;
- Propriedades de relações.

Conceitos Básicos

Grafos

- Definição;
- Nó (ou Vértice);
- Aresta;
- Representação;
- Grau de um nó;
- Grafo rotulado;
- Subgrafo;
- Caminhos, Circuitos e Árvores;
- Grafo direcionado.

Sumário

Revisão (cont.)

2 Linguagens Regulares

O que é um computador?

• A Teoria da Computação utiliza modelos computacionais;

O que é um computador?

- A Teoria da Computação utiliza modelos computacionais;
- Modelos computacionais são úteis para a construção de teorias matemáticas a respeito de computadores;

O que é um computador?

- A Teoria da Computação utiliza modelos computacionais;
- Modelos computacionais são úteis para a construção de teorias matemáticas a respeito de computadores;
- Autômato finito (ou máquina de estados finito) é um dos modelos mais simples;

O que é um computador?

- A Teoria da Computação utiliza modelos computacionais;
- Modelos computacionais são úteis para a construção de teorias matemáticas a respeito de computadores;
- Autômato finito (ou máquina de estados finito) é um dos modelos mais simples;
- Os autômatos finitos são bons modelos para computadores com uma quantidade extremamente limitada de memória.

Tapete Tapete Frontal Traseira **Porta**

sinal de entrada

		NENHUM	FRENTE	ATRÁS	AMBOS
estado	FECHADO	FECHADO	ABERTO	FECHADO	FECHADO
	ABERTO	FECHADO	ABERTO	ABERTO	ABERTO

FIGURA 1.3

Tabela de transição de estados para o controlador de porta automática

Estado Inicial

FECHADO.

Estado Inicial

FECHADO.

Seguência de sinais

(FRENTE, ATRÁS, NENHUM, FRENTE, AMBOS, NENHUM, ATRÁS, NENHUM)

Estado Inicial

FECHADO.

Seguência de sinais

(FRENTE, ATRÁS, NENHUM, FRENTE, AMBOS, NENHUM, ATRÁS, NENHUM)

Seguência de estados

(ABERTO, ABERTO, FECHADO, ABERTO, ABERTO, FECHADO, FECHADO)

Capacidade de memória

• 1 bit.

Capacidade de memória

• 1 bit.

Outros exemplos...

Controlador de um elevador.

Capacidade de memória

• 1 bit.

Outros exemplos...

Controlador de um elevador.

Mais detalhes...

Vamos conhecer os pormenores de um autômato finito!

FIGURA 1.4

Um autômato finito chamado M_1 que tem três estados

Notações

• Diagrama de estado: M_1 ;

- Diagrama de estado: M_1 ;
- Estados: q_1 , q_2 e q_3 ;

- Diagrama de estado: M₁;
- Estados: q_1 , q_2 e q_3 ;
- Estado inicial: q_1 ;

- Diagrama de estado: M_1 ;
- Estados: q_1 , q_2 e q_3 ;
- Estado inicial: q₁;
- Estados de aceitação: q₂;

- Diagrama de estado: M₁;
- Estados: q_1 , q_2 e q_3 ;
- Estado inicial: q₁;
- Estados de aceitação: q₂;
- Transições: são as setas saindo de um estado para outro.

<u>Fun</u>cionamento

Para uma dada cadeia de entrada ω , o autômato pode **aceitar** ou **rejeitar** a cadeia.

Exemplo: cadeia de entrada 1101

• Começa no estado q_1 ;

- Começa no estado q_1 ;
- 2 Lê 1, segue a transição de q_1 para q_2 ;

- Começa no estado q_1 ;
- 2 Lê 1, segue a transição de q_1 para q_2 ;
- 3 Lê 1, segue a transição de q_2 para q_2 ;

- Começa no estado q_1 ;
- 2 Lê 1, segue a transição de q_1 para q_2 ;
- **1** Lê 1, segue a transição de q_2 para q_2 ;
- 4 Lê 0, segue a transição de q_2 para q_3 ;

- Começa no estado q_1 ;
- 2 Lê 1, segue a transição de q_1 para q_2 ;
- 3 Lê 1, segue a transição de q_2 para q_2 ;
- 4 Lê 0, segue a transição de q_2 para q_3 ;
- **5** Lê 1, segue a transição de q_3 para q_2 ;

- Começa no estado q_1 ;
- 2 Lê 1, segue a transição de q_1 para q_2 ;
- 3 Lê 1, segue a transição de q_2 para q_2 ;
- **1** Lê 0, segue a transição de q_2 para q_3 ;
- **5** Lê 1, segue a transição de q_3 para q_2 ;
- **6** Aceita, porque M_1 está no estado de aceitação q_2 no final da entrada.

Exemplos

• M_1 aceita cadeias como: 1, 01, 11, 010101;

Exemplos

- M_1 aceita cadeias como: 1, 01, 11, 010101;
- M₁ aceita cadeias como: 100, 0100, 110000, 0101000000;

Exemplos

- M_1 aceita cadeias como: 1, 01, 11, 010101;
- M₁ aceita cadeias como: 100, 0100, 110000, 0101000000;
- M_1 rejeita cadeias como: 0, 010, 101000.

Exemplos

- M_1 aceita cadeias como: 1, 01, 11, 010101;
- M_1 aceita cadeias como: 100, 0100, 110000, 0101000000;
- \bullet M_1 rejeita cadeias como: 0, 010, 101000.

Pergunta

Qual é a linguagem constituída de todas as cadeias que ${\it M}_{
m 1}$ aceita?

Por que é importante?

• Uma definição formal é precisa:

Por que é importante?

- Uma definição formal é precisa:
 - Os autômatos finitos podem ou não ter 0 estados de aceitação?

Por que é importante?

- Uma definição formal é precisa:
 - Os autômatos finitos podem ou não ter 0 estados de aceitação?
 - Eles devem ter exatamente uma transição saindo de cada estado para cada símbolo de entrada possível?

Por que é importante?

- Uma definição formal é precisa:
 - Os autômatos finitos podem ou não ter 0 estados de aceitação?
 - Eles devem ter exatamente uma transição saindo de cada estado para cada símbolo de entrada possível?
- Uma definição formal provê notação.

Um autômato finito determinístico (AFD) é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, de forma que

- \bigcirc Q é um conjunto finito conhecido como os estados,
- \bigcirc Σ é um conjunto finito chamado o **alfabeto**,
- **3** $\delta: Q \times \Sigma \rightarrow Q$ é a função de transição,
- $q_0 \in Q$ é o estado inicial, e
- **5** $F \subseteq Q$ é o conjunto de estados de aceitação.

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

16 de outubro de 2017

