Prova in Itinere di Comunicazioni Numeriche - FILA A

May 29, 2017

Es. 1 - Nel sistema di comunicazione numerico in banda passante rappresentato in Fig.1, il segnale trasmesso è $s(t) = \sum_k x[k] \, p \, (t-kT) \cdot \cos \left(2\pi f_0 t\right)$, dove i simboli $x[k] \in A_s = \{-1,2\}$ sono indipendenti e con probabilità' a priori $P\left(x=-1\right) = 3/5$ e $P\left(x=2\right) = 2/5$. L'impulso sagomatore è $p(t) = 2Bsinc\left(2Bt\right) + Bsinc\left(2B\left(t-\frac{1}{2B}\right)\right) + Bsinc\left(2B\left(t+\frac{1}{2B}\right)\right)$, $f_0 \gg B$, $T = \frac{1}{B}$. Il canale di propagazione è ideale, quindi $c(t) = \delta(t)$ e la DSP del rumore in ingresso al ricevitore è $S_n(f) = \frac{N_0}{2} \left[rect\left(\frac{f-f_0}{2B}\right) + rect\left(\frac{f+f_0}{2B}\right)\right]$. Il filtro in ricezione $h_R(t)$ è un filtro passa basso ideale di banda B. La soglia di decisione è $\lambda = 0$. Calcolare: 1) L'energia media per intervallo di segnalazione del segnale trasmesso, E_s , 2) Calcolare la potenza di rumore in uscita al filtro in ricezione, P_{n_u} , 3) Dire se il campione y[k] ha il massimo SNR possible e giustificare la risposta e 4) Calcolare la probabilità di errore sul bit, $P_E(b)$.

Fig.1

Es. 2 - Un processo di rumore bianco in banda B, con potenza pari a N_0B , è applicato come ingresso ad un sistema LTI con risposta impulsiva pari a $h(t) = \exp(-t)u(t)$. 1) Si calcolino il valor medio del processo Y(t) all'uscita del sistema e la sua densità spettrale di potenza. 2) Si calcoli la potenza del processo Y(t).

Es. 3 -In un sistema di comunicazione numerico in banda passante il segnale trasmesso è $s(t) = \sum_k x_c [k] p(t-kT) \cos(2\pi f_0 t) - \sum_k x_s [k] p(t-kT) \sin(2\pi f_0 t)$, con $f_0 \gg \frac{1}{T}$, dove i simboli $x_c [k]$ ed $x_s [k]$ sono indipendenti, equiprobabili e appartengono all'alfabeto $A_c = \{-1, +2\}$ e $A_s = \{-3, +1\}$. L'impulso sagomatore e' definito tramite la $P(f) = \begin{cases} \sqrt{|fT|} & |fT| \leq 1 \\ 0 & altrove \end{cases}$. La risposta impulsiva del canale è ideale. Il canale introduce rumore w(t) Gaussiano

additivo bianco in banda la cui densità spettrale di potenza è $S_W(f) = \frac{N_0}{2} \left[\operatorname{rect} \left(\frac{f-f_0}{2/T} \right) + \operatorname{rect} \left(\frac{f+f_0}{2/T} \right) \right]$. Il segnale ricevuto r(t) è in ingresso al ricevitore in Figura 1. La risposta impulsiva del filtro in ricezione è $h_R(t) = p(t)$. Il segnale in uscita al filtro in ricezione è campionato con passo di campionamento T e i campioni costituiscono l'ingresso del decisore che ha soglia di decisione pari a $\lambda=0$ sia sul ramo in fase che su quello in quadratura. Determinare: 1) L'energia media per simbolo trasmesso, 2) Verificare se è soddisfatta la condizione di Nyquist, 3) Calcolare la potenza di rumore in uscita al filtro di ricezione, 4) Definire il valore di ϑ per cui c'e' assenza di cross-talk, 5) Dire se i campioni estratti hanno il massimo SNR possibile (giustificare la risposta) e 6) Calcolare la probabilità di errore sul simbolo, $P_E(M)$.

Fig. 2

Es. 4 - Scrivere l'espressione analitica di un segnale modulato QAM. Inoltre disegnare lo schema a blocchi di un modulatore QAM.

Es. 5 - Si enuncino le proprietà della funzione di correlazione di un processo stazionario in senso lato reale.