

DIGITAL ASSIGNMENT - I

1. Find the missing frequency for the following distribution if the mean is 12.9

	5 1 7	3			
Class Interval	0-5	5-10	10-15	15-20	20-25
Frequency	3	F	8	5	4

2. An analysis of monthly wages of workers of two factories A and B yielded the following results:

	Factories		
	Α	В	
No.of workers	50	60	
Average monthly wages	Rs.60	Rs.48	

Obtain the average monthly wages of all workers taken together.

3. Calculate the combined A.M of the following data:

	Class A	Class B
No.of students	150	250
Average marks	72	73

4. An analysis of the monthly wages paid to workers in two firms A and B belonging to the same industry, gives the following result:

	Firm A	Firm B
Number of wage earners	550	650
Average monthly wages	Rs. 1450	Rs.1400
Variance of the distribution of wages	Rs.10000	Rs.19600

- (A) Which firm, A or B pays out larger amount as weekly wages?
- (B) In which firm, A or B is there greater variability in individual wages?
- (C) Find the average weekly wages and standard deviation of individual wages of all

workers in the two firms taken together.

- 5. The average rainfall of a city from Monday to Saturday is 0.3 inch. Due to heavy rainfall on Sunday, the average rainfall for the week increased to 0.5 inch. Find out the rainfall on Sunday.
- 6. The mean marks of 100 students were found to be 40. Later on it was discovered that a score of 53 was misread as 83. Find the correct mean corresponding to the correct score.
- 7. The first four moments of a distribution about the value 4 of variable are $\,$ -1, 1.5, 17 , -30 and 108 . Find the central moments β_1 and β_2
- 8. A R.V X has the following probability function:

X;	0	1	2	3	4	5	6	7
P(X):	0	K	2K	2K	3K	K ²	2K ²	7K ² +K

- (i) Find K
- (ii) Evaluate P(X<6)
- (iii) If $P(X \le C) > \frac{1}{2}$ find the minimum value of C.
- (iv) Evaluate P(1.5 < X < 4.5 / X > 2)
- (V) Find P(X < 2), P(X > 3), P(1 < X < 5)
- 9. If the density function of a continuous random variable X is given by

$$f(x) = \begin{cases} ax, & 0 \le x \le 1 \\ a, & 1 \le x \le 2 \\ 3a - ax, & 2 \le x \le 3 \\ 0, & \text{otherwise} \end{cases}$$

- (i) Find the value of a.
- (ii) The cumulative distribution functions of X.
- 10. The distribution function of a r.v X is given by

 $F(x) = 1-(1+x) e^{-(-x)}, x \ge 0$. Find the density function, mean and variance of X.

11. The joint density function of the RVs X and Y is given by,

$$f(x,y) = \begin{cases} 8xy, \ 0 < x < 1: 0 < y < x \\ 0, \ \text{otherwise} \end{cases}$$

Find P
$$\left(Y < \frac{1}{8}/X < \frac{1}{2}\right)$$
. Also find the conditional density function $f\left(\frac{x}{y}\right)$

12. If the joint density function of the two RVs X and Y be $f(x,y) = \begin{cases} e^{-(x+y)}, & x \ge 0, y \ge 0 \\ 0, & \text{otherwise} \end{cases}$

Find (i)
$$P(X<1)$$
 and ii) $P(X+Y<1)$

- 13. Given the joint pdf of (X,Y) as $f(x,y) = \begin{cases} 8xy, 0 < x < y < 1 \\ 0, \text{ otherwise} \end{cases}$ Find the marginal and conditional pdfs of X and Y. Are X and Y are independent?
- 14. If the moment generating function of X is $M_X(t) = \frac{2}{5}e^r + \frac{1}{5}e^{2r} + \frac{2}{5}e^{3r}$, then find the mean and

variance of X?

15. The cumulative distribution function (cdf) of a random variable X is given by

$$F(x) = \begin{cases} 0 & x < 0 \\ x^2 & 0 \le x < \frac{1}{2} \\ 1 - \frac{3}{25} (3 - x)^2, \frac{1}{2} \le x < 3 \\ 1 & x \ge 3 \end{cases}$$
. Verify it is a proper cdf and find the pdf of X

and evaluate $P(|x| \le 1)$ Using both the pdf and cdf.

16. If X and Y are random variables having density function $f(x,y) = \frac{1}{8}(6-x-y)$,

$$0 < x < 2, 2 < y < 4, Find P(X + Y < 3).$$

17. The following table gives the joint probability distribution of X and Y. Find (i) marginal density function of X. (ii) marginal density function of Y.

ΥX	1	2	3
1	0.1	0.1	0.2
2	0.2	0.3	0.1

18.If the joint pdf of (X,Y) is
$$f(x,y) = \begin{cases} \frac{1}{4}, 0 \le x < 2 \\ 0, \text{ otherwise} \end{cases}$$
.

Find
$$P(x+y \le 1)$$
 if $P(y=1) = 0.4$ and $P(Y = 2) = 0.6$

19. If X and Y have joint pdf
$$f(x,y) = \begin{cases} x + y, 0 < x < 1, 0 < y < 1 \\ 0, otherwise \end{cases}$$
, check whether X and Y are independent.

20. Find the marginal density functions of X and Y if

$$f(x,y) = \begin{cases} \frac{1}{4} (2x+5), 0 \le x \le 1, 0 \le y \le 1 \\ 0, otherwise \end{cases}$$

21. Find the marginal density functions of X and Y from the joint density function

$$f(x,y) = \begin{cases} \frac{2}{5} (2x + 3y), 0 \le x \le 1, 0 \le y \le 1 \\ 0, otherwise \end{cases}.$$

22. X and Y are two random variables having the joint density function

$$f(x,y) = \frac{1}{27}(x+2y)$$
, where x and y assumes the integer values 0,1 and 2. Find the marginal probability distribution of X.

- 23. Find the value of k if f(x,y) = k(1-x)(1-y) for 0 < x,y < 1 is to be a joint density function.
- 24. Find k if the joint probability density function of a bivariate random variable (X,Y) is given by f(x,y) = k(1-x)(1-y) if 0 < x < 4, 1 < y < 5 and 0 otherwise.
- 25. Find the marginal density functions of X and Y from the joint density function

$$f(x,y) = \begin{cases} \frac{2}{5} (2x + 3y), 0 \le x \le 1, 0 \le y \le 1\\ 0, otherwise \end{cases}$$

26. Find E(x) if joint pmf is given by

y x	-1	1	
0	1/8	3/8	
1	2/8	2/8	

- 27. Find k, if probability density function $f(x) = k(2x-x^2), 0 < x < 2$.
- 28. Find Marginal p.m.f. of X & Y for the following data.

x y	1	2	3
1	0.1	0.1	0.2
2	0.2	0.3	0.1

29. Is the function defined as follows a proper probability density function?

$$f(x) = \begin{cases} \frac{1}{18}(3+2x) & \text{for } 2 \le x \le 4\\ 0 & \text{, otherwise} \end{cases}$$

30. Given the joint distribution of X and Y.

Y/X	0	1	2
0	0.02	0.08	0.10
1	0.05	0.20	0.25
2	0.03	0.12	0.15

Obtain (i) marginal distribution and (ii) the conditional distribution of X given Y =0 (iii) $P(y \le 2)$, (iv) $P(x \le 1/y \le 2)$,

- 31. Given the joint density function f(x,y) = cx(x-y), 0 < x < 2, -x < y < x, Evaluate c. Find the marginal densities of X and Y. Find the conditional density of Y given X = x.
- 32. The joint pdf of two random variables X and Y is given by

 $f(x,y) = \frac{9(1+x+y)}{2(1+x)^4(1+y)^4}$, $0 \le x \le \infty$, $0 \le y \le \infty$. Find the marginal distribution of X and Y and the conditional distribution of Y for X = x.

33. X is a continuous random variable with pdf given by
$$f(x) = \begin{cases} kx, 0 \le x \le 2 \\ 2k, 2 \le x \le 4 \\ 6k - kx, 4 \le x \le 6 \\ 0, elsewhere \end{cases}$$

Find the value of k and also the cdf

34. If the joint pdf of a random variable (X,Y) is given by

 $f(x,y) = x^2 + \frac{xy}{3}$, $0 \le x \le 1$, $0 \le y \le 2$, find the conditional densities of X given Y and Y given X.