- 1. [40 + 5] Calibrating a new qubit! On the class website (on the page with Lecture 7) there is a file which has the experimental result of a Rabi spectroscopy experiment. Specifically, the qubit was initially prepared in |0⟩ and the probability of finding the qubit in |1⟩ measured. The Rabi pulse was applied for 500 ns. Like real data, this experimental result is noisy. By fitting the expected lineshape, extract values for:
 - a. [20] The qubit frequency ω_o and the Rabi frequency Ω
 - b. [20] What are the uncertainties on these extracted parameters?
 - c. [Bonus + 5] What is this qubit?

(Hint for problem 1: Be careful with the factors of 2π . Remember, in all our work we have been using H/\hbar , therefore ω_o and Ω are angular frequencies, but the data, as is typical in the lab, is in Hz.)

- 2. [50] Harmonic Oscillators are classic! In this problem, we'll develop intuition about classical harmonic oscillators, which will prepare us for tackling the quantum problem. Suppose we have a mass on a spring. As the mass is moved from its equilibrium position (x = 0) the spring provides a restoring force of $F_x = -kx$, where k is the spring constant.
 - a. [5] Show that the motion of the mass is given by a differential equation of the form $\frac{d^2x}{dt^2} = -\omega^2x \text{ and determine } \omega.$
 - b. [5] Solve the differential equation from part (a) and write it as a single sine or cosine with an amplitude and phase to be found from initial conditions.
 - c. [5] Use the solution from (b) to calculate the kinetic energy as a function of time.
 - d. [5] Use the solution from (b) to calculate the potential energy as a function of time.
 - e. [5] Use the solution from (b) to calculate the total energy as a function of time.
 - f. [10] For $\omega = 2\pi \times 1$ Hz and m = 2 kg, make a plot of the position x(t) and momentum p(t) as a function of time for the initial conditions:
 - i. x = 1, v = 0
 - ii. x = 0, v = 1
 - iii. x = 1, v = 1
 - g. [10] For the same three cases as part (f), make a phase space plot of the evolution. That is, make a parametric plot of (x(t),p(t)) over one cycle of the oscillation.
 - h. [5] Define a scaled position and momentum as:

$$\tilde{\chi}=\sqrt{rac{m\omega}{2}}\,\mathrm{x}$$
 and $\tilde{p}=rac{p}{\sqrt{2m\omega}}$

And remake the plots of part(g)

- i. [10] Construct a complex variable a as $a = \tilde{x} + \iota \tilde{p}$ and write it in phasor notation. Now make a plot where the real part of a is on the x axis and the imagine part of a is on the y axis.
- 3. [25] Quantum Harmonic Oscillators by hand. For the states $|n\rangle$:

- a. [10] Calculate $\langle \hat{x} \rangle$ and $\langle \hat{p} \rangle$
- b. [10] Calculate the uncertainties, $\sigma_{\hat{x}}$ and $\sigma_{\hat{p}}$.
- c. [5] Sketch these states on a phase space plot (x vs p) for several values of n.
- 4. [30] Calculate *Quantum Harmonic Oscillators by QuTip.* For QHO (just set $\hbar=m=1$ and $\omega=2\pi$), use QuTip to do the following:
 - a. [10] Show the result of $\hat{a}|0\rangle$ and $\hat{a}^{\dagger}|0\rangle$.
 - b. [10] Show the result of $\hat{a}|3\rangle$ and $\hat{a}^{\dagger}|4\rangle$.
 - c. [10] Calculate $\langle \hat{x} \rangle$ and $\langle \hat{p} \rangle$ for $| \psi \rangle = \frac{1}{\sqrt{2}} (| 0 \rangle + | 3 \rangle)$.
- 5. [40] A driven oscillator. Suppose a harmonic oscillator is driven by a force on resonance, i.e. $F_o \cos \omega t$. Pick your own parameters for the strength of the force and the harmonic oscillator. Use numerical integration to solve the following.
 - a. [20] Solve Newton's equation to find the evolution of the classical harmonic oscillator under this driving force. Plot x vs t, p vs t, and make a phase space plot of (x(t),p(t)). (If you prefer to do this one analytically, that's fine too. But still make the plots.)
 - b. [20] Solve Schrodinger's equation (e.g. use sesolve in QuTip) to find the evolution of the quantum harmonic oscillator under this driving force. Plot x vs t, p vs t, and make a phase space plot of (x(t),p(t))