Sets	V:1n	Set of villages that EG is not already working in in Khandwa, Khargone, and Shivpuri
	C:1k	Set of clusters where k is the number of clusters
Parameters	$s_i, i \in V$	Predicted number of OOSC in village i
	$l_i, i \in V$	Latitude, longitude tuple of village i
	$\mu_k, k \in C$	Center of cluster k as a latitude and longitude tuple
	max_vill	Maximum number of villages allowed in cluster
	min_OOSC	Minimum number of OOSC in cluster k if cluster k has fewer than min_vill villages
	min_vill	Minimum number of villages a cluster must have if it has fewer than min_OOSC children
	goal	Number of villages EG wants to expand into
	dist_cap	Max distance that a village can be from its cluster center
	$\boxed{\text{num_villages}_k}$	Number of villages EG wants to expand into
Decision variables	$x_{ik}, i \in V, k \in C$	Binary variable that is 1 if village i is chosen for cluster k and 0 otherwise
	$z_k, k \in C$	Number of villages in cluster k

Table 1: Sets, Parameters, and Decision Variables of IP

Objective function	$\sum_{i \in V, k \in C \setminus 0} x_{ik} (s_i4 * dist(l_i, \mu_k))0001 \sum_{k \in K \setminus 0} z_k$	Maximize total OOSC reached while minimizing the village-center distances. Also, force the z_k to zero when number of villages in a cluster is greater than min_vill (Not counting things in fake cluster)
	$\sum_{k \in C} x_{ik} = 1 \forall i \in V$	Each village must be assigned to exactly one cluster
Constraints	$\sum_{i \in V, k \in C \setminus 0} x_{ik} \le \text{goal}$	Total number of villages assigned to real cluster doesn't exceed EG's expansion goal Other villages will automatically be assigned to fake cluster 0 since all villages must be assigned somewhere
	$\sum_{i \in V} x_{ik} \le \text{max_vill} \forall k \in C$	Number of villages in each cluster doesn't exceed EG's cap (Not counting things in fake cluster)
	$\sum_{k \in C} x_{ik} * dist(l_i, \mu_k) \le \text{dist_cap} \forall i \in V$	Distance of each village from its cluster center is less than EG's cap (Not counting things in fake cluster)
	$\frac{\text{(min_num+1)-num_villages}_k}{\text{min_num+1}} \le z_k \forall k \in C$	Make z_k 1 if cluster k has less than min_num villages and 0 otherwise
	$z_k * \min_OOSC \le \text{num_OOSC}_k \forall k \in C$	If cluster k has less than min_num of villages then make sure it has more than min_OOSC

Table 2: Objective Function and Constraints of IP