Fields and Galois Theory

Lectures by Uzi Vishne Summary by Ari Feiglin (ari.feiglin@gmail.com)

Contents

1 Field Extensions

1

1 Field Extensions

Suppose $F \subseteq K$ are fields, then K is certainly also an F-vector space and therefore has a dimension and we denote it $[K:F] := \dim_F K$.

1.0.1 Theorem

Suppose $F \subseteq K$ and V is a K-vector space, then V is also a vector space over F as well, and $\dim_F V =$ $[K:F]\dim_K V.$

Proof: Let $B_1 \subseteq V$ be a basis for V over K and $B_2 \subseteq K$ be a basis for K over F, then define B = V $\{\alpha v \mid \alpha \in B_2, v \in B_1\}$. This is a basis for V in F, it is linearly independent since if $\alpha_1 v_1, \ldots, \alpha_n v_n \in B$ and $\beta_1, \ldots, \beta_n \in F$ then $\sum_{i=1}^n \beta_i \alpha_i v_i = 0$ implies $\beta_i \alpha_i = 0$ for all i since B_1 is a basis, and this means that β_i or α_i is zero, but $\alpha_i v_i \in B$ so $\beta_i = 0$ as required. B spans V since for $v \in B$ there exist $v_1, \ldots, v_n \in B_1$ and $\alpha_1, \ldots, \alpha_n \in K$ such that $v = \sum_{i=1}^n \alpha_i v_i$ and α_i can be written as the linear combination of elements in B_2 by elements of F which gives a linear combination of elements in B of F. So B is indeed a basis for V over F. Finally $B \cong B_2 \times B_1$ since $(\alpha, v) \mapsto \alpha v$ is a bijection: it is obviously surjective and $\alpha_1 v_1 = \alpha_2 v_2$ implies $\alpha_1 = \alpha_2, v_1 = v_2$ since v_1, v_2 are independent. Thus we have

$$\dim_F V = |B| = |B_2 \times B_1| = [K : F] \dim_K V$$

In particular if $F \subseteq K \subseteq E$ are fields then $[E : F] = [E : K] \cdot [K : F]$. The following are methods of constructing fields:

- (1) If R is a commutative ring and $M \triangleleft R$ is a maximal ideal then R/M is a field. Specifically if R = F[x]and p is an irreducible polynomial, $\langle p \rangle$ is maximal and $F^{[x]}/\langle p \rangle$ is a field.
- If F is a field, then the set of rational functions is also a field:

$$F \subseteq F(x) := \left\{ \frac{f(x)}{g(x)} \mid f, g \in F[x] \right\}, g(x) \neq 0]$$

In general if R is an integral domain then its field of fractions/quotients $q(R) := \left\{ \frac{a}{b} \mid a, b \in R, b \neq 0 \right\}$ is a field. And F(x) is the quotient field of F[x].

If $F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots$ is a chain of fields then so is $\bigcup F_n$ (the theory of fields is inductive, this holds for arbitrary chains, not just inductive ones). So for example $F(\lambda_1, \lambda_2, ...)$ is a field since we can define $F_n = F(\lambda_1, \dots, \lambda_n)$ (the quotient field of $F[\lambda_1, \dots, \lambda_n]$) and the union of this chain is $F(\lambda_1, \lambda_2, \dots)$.

Let F be a field and $F \subseteq K$ a ring with $a \in K$, we define a homomorphism $F[\lambda] \xrightarrow{\psi_a} K$ defined by $\alpha \mapsto \alpha$ for $\alpha \in F$ and $\lambda \mapsto a$, meaning

$$\psi_a \left(\sum \alpha_i \lambda^i \right) = \sum \alpha_i a^i \qquad (\psi_a(f) = f(a))$$

In particular ψ_a is a linear transformation from F to K, and is called the evaluation homomorphism at a. The kernel of the homomorphism is

$$\ker \psi_a = \{ f \in F[\lambda] \mid f(a) = 0 \} \triangleleft F[\lambda]$$

1.0.2 Definition

 $a \in K$ is algebraic if $\ker \psi_a \neq 0$ and transcendental if the kernel is trivial.

If a is transcendental then $\ker \psi_a$ and so $\operatorname{Im} \psi_a = \{f(a) \mid f \in F[\lambda]\} = F[a] \cong F[\lambda]$. In fact we get

$$F \subseteq F[a] \subseteq F(a) \subseteq K$$

$$\cong \qquad \cong$$

$$F[x] \qquad F(x)$$

Now if a is algebraic, since F[x] is a euclidean domain and therefore a PID, the kernel has a generator ker $\psi_a =$ $\langle h \rangle = h \cdot F[\lambda]$. So h(a) = 0 and $f(a) = 0 \implies h|f$, and h is called the minimal polynomial of a. And so

$$F^{[\lambda]}/\langle h \rangle = F^{[\lambda]}/\ker \psi_a \cong \operatorname{Im} \psi_a = \{f(a) \mid f \in F[\lambda]\} = F[a] = \operatorname{span}\{1, a, \dots, a^{n-1}\} \subseteq K$$

where $n = \deg h$, since f(x) = q(x)h(x) + r(x) where $\deg r < \deg h = n$ and so f(a) = r(a). $\{1, \ldots, a^{n-1}\}$ is a basis due to h being minimal, a zeroing linear combination would give a zeroing polynomial of a of degree less than h. This means that the dimension of F[a] as an F-vector space is n, ie. [F[a]:F] = n.

Since K is an integral domain and therefore so too is F[a] and this means that $\langle h \rangle$ is a prime ideal (since ${}^R/_I$ is an integral domain if and only if I is prime), this means that h is a prime (irreducible) polynomial. And since F[a] is a PID, prime and maximal ideals are one and the same, so $\langle h \rangle$ is maximal and therefore ${}^{F[\lambda]}/_{\langle h \rangle} \cong F[a]$ is a field. Let us summarize this:

1.0.3 Proposition

Let $F \subseteq K$ where K is an integral domain and $a \in K$ is algebraic in F, let h_a be its minimal polynomial. Then (1) h_a is irreducible, (2) F[a] is a field, (3) $[F[a]:F] = \deg h_a$.

So for example let $a \in K \setminus F$ be algebraic then $F \subseteq F[a] \subseteq K$ and suppose [K:F] = p is prime. Then $p = [K:F] = [K:F[a]] \cdot [F[a]:F]$, and since $a \in F[a] \setminus F$ this means [F[a]:F] > 1 so [F[a]:F] = p and [K:F[a]] = 1 since p is prime so F[a] = K.

1.0.4 Corollary

Suppose F is a field and $F \subseteq K$ is an integral domain with finite dimension. Then every element of K is algebraic and K is a field.

Proof: Let $a \in K$ then $[K : F] = [K : F[a]] \cdot [F[a] : F]$ so [F[a] : F] is finite. If a were transcendental then $F[a] \cong F[x]$ and F[x] has infinite dimension over F. K is a field since every $a \in K$ must have a multiplicative inverse, since F[a] is a field.

Notice that $[F[a,b]:F[a]] \leq [F[b]:F]$ since if h_b is b's minimal polynomial in F then it is also a zeroing polynomial in F[a]. This means that

$$[F[a,b]:F] = [F[a,b]:F[a]] \cdot [F[a]:F] \le [F[b]:F] \cdot [F[a]:F]$$

1.0.5 Corollary

Let F be a field and K a field extension, define

$$Alg_F(K) := \{a \in K \mid a \text{ is algebraic over } F\}.$$

This is a field. Furthermore $F \subseteq \operatorname{Alg}_F(K)$ is an algebraic extension (all elements of $\operatorname{Alg}_F(K)$ are algebraic in F), and $\operatorname{Alg}_F(K) \subseteq K$ is a purely transcendental extension (all elements in $K \setminus \operatorname{Alg}_F(K)$ are transcendental in $\operatorname{Alg}_F(K)$).

Proof: Notice that $F[a \cdot b]$, $F[a + b] \subseteq F[a, b]$ and so $[F[a, b] : F] \le [F[b] : F] \cdot [F[a] : F] < \infty$, so $\operatorname{Alg}_F(K)$ is closed under addition and multiplication (and obviously additive inverses). For a algebraic, F[a] is a field so $a^{-1} \in F[a]$ and so $F[a^{-1}] \subseteq F[a]$ and therefore $[F[a^{-1}] : F] < \infty$ so a^{-1} is algebraic as well (and so by symmetry $F[a] = F[a^{-1}]$). So $\operatorname{Alg}_F(K)$ is indeed a field.

To show that $Alg_F(K) \subseteq K$ is a pure transcendental extension, notice that if $F_1 \subseteq F_2 \subseteq F_3$ where $F_1 \subseteq F_2$ is algebraic, if $a \in F_3$ is algebraic in F_2 it is also algebraic in F_1 . Indeed if $f \in F_2[x]$ such that f(a) = 0, let its coefficients be b_i then a is algebraic in $F_1[b_0, \ldots, b_n]$ and so

$$[F_1[b_0,\ldots,b_n,a]:F_1[b_0,\ldots,b_n]]=[F_1[b_0,\ldots,b_n,a]:F_1[b_0,\ldots,b_n]]\cdot [F_1[b_0,\ldots,b_n]:F_1[b_0,\ldots,b_n]$$

and this is finite since b_0, \ldots, b_n are algebraic in F_1 as they are in F_2 , so both terms are finite. So if K had any algebraic numbers not in $\mathrm{Alg}_F(K)$, they would be algebraic in F and thus in $\mathrm{Alg}_F(K)$ in contradiction.