SOLUTIONS: EXTENSION | TRIAL EXAM 2002

ロメロ

b)
$$\int e^{-2x} dx = \left[-\frac{1}{2} e^{-2x} + C \right]$$

a i) \(\frac{\chi}{4+\chi^2} d\alpha = \frac{1}{2} \frac{2\chi}{4+\chi^2} d\alpha = \frac{1}{2} \left| \frac{2\chi}{4+\chi^2} d\alpha = \frac{1}{2} \left| \frac{1}{6+\chi^2} d\alpha = \frac{1}{2} \left| \frac{1}{6+\chi^2}

ii) \(\frac{1}{8} \tam^2 2\times d\(\text{n} = \int_{\frac{1}{8}}^{\frac{1}{8}} \left(\sec^2 2\times - 1) d\(\text{n} \)

= [2 tam 2x - x] =

c)
$$\int_{0}^{4} \frac{dx}{\sqrt{x^{2}+4}} dx = \left[\log_{c}(x+\sqrt{x^{2}+4})\right]_{0}^{4}$$

= $\log_{c}(4+\sqrt{20}) - \log_{c}(0+a)$
= $\log_{c}(4+2\sqrt{6}) - \log_{c}2$
= $\log_{c}(3+\sqrt{6})$

= 25-2-11

= | 24 (1253 - 12 - 17)

五十二二二二十五

= 12 tan = - = - 2 tan = -

$$\begin{array}{c}
\uparrow f(x) \\
\downarrow 2\pi \\
3
\end{array}$$

E . W.S = 7

dom: - 1 = 2 - 1

 $f(x) = 4 \sin^{-1} \frac{x}{3}$ $f(x) = 4 \sin^{-1} \frac{x}{3}$

$$\frac{6}{10} = \frac{1}{1-r} \left(r + r^2 + r^3 + \dots + \right) - \frac{1}{1-r} \left(r + r^2 + r^3 + \dots + r^3 + \dots + \right) - \frac{1}{1-r} \left(r + r^2 + r^3 + \dots + r^$$

(i) LATB=90 (Linsem

let P(n) = 6"-1

- LEPB : TOPE is cyclic QED

(ext L = int opp L of gread).

(11) let LE=x

...LTRB = 90 - x (L'S OF DEPA)

...LETP = 90 - x (L in alt Seq.)

...LETP = x (L'S on Str Line)

...LETP = x (L'S on Str Line)

...LETP = X (Sides OPP = L'S)

 $\frac{7x}{5-x} = \frac{7}{7}$ $\frac{7x}{5-x} = \frac{7}{7}$ $\frac{7x}{5-x} = \frac{7}{7}$ $\frac{7x}{5-x} = \frac{7}{7}$ $\frac{7x}{7} = \frac{7}{7}$

8/n: 5-2-5

36) when n=1 6ⁿ-1=6-1 now 6 *+1 = 6 = 6 - 1 we want to show that P(K+1) is divis so by the process of mathematical induction, the statement P(n) is true for all $n \in \mathbb{Z}^+$ let we assume I k such that 1.e 6 k+1 -1 is divisible by 5. which is divisible by 5. 6x-1 = 5m for some m = 2 which is divisible by 5 = 6.5m + 6 6 x = 5m+1 (5m+1)6 -

 $dm = 3x^{2} dx$ $\therefore x^{2} dx = 5 dx$ $when x = 1 \ y = a$ $x = -1 \ y = 0$

 $\frac{6t}{1+t^{2}} + \frac{4(1-t^{2})}{1-t^{2}} = 5$ $6t + 4 + 4t^{2} = 5 + 5t^{2}$ $6t + 4 + 4t^{2} = 5 + 5t^{2}$ $4t^{2} - 6t + 1 = 0$ (3t - 1)(3t - 1) = 0 $5x + 180^{2}x = \frac{1}{3}$ $7x = 180^{2}x = \frac{1}{3}$ $7x = 180^{2}x = \frac{1}{3}$ $10x + 10x + 10x = \frac{1}{3}$ $10x + 10x + 10x = \frac{1}{3}$ $10x + 10x + 10x = \frac{1}{3}$ $10x + 10x = \frac{1}$ $10x + 10x = \frac{1}{3}$ $10x + 10x = \frac{1}{3}$ $10x + 10x = \frac{1}$

4 b) i) $f(x) = x^3 - 3x + 2$ f(1) = 1 - 3 + 2 = 050 (x - 1) is a factor $\frac{x^2 + x - 2}{x^3 - x^2}$ $\frac{x^2 - 3x}{x^2 - 3x} + 2$ - 2x + 2 - 2x + 2 50 f(x) = (x - 1)(x + 2)(x - 1)

 $3 \sin x + 4 \cos x = 5$ let $t = \tan 2x$

 $||| \psi - || \psi = || \psi - || \psi -$

MAN CAM DA - 7 SMA IRA

(i)
$$f(x) = x^3 - 8x + 8$$

 $f(-4) = (-3)^3 - 8(-3) + 8$
 $f(-4) = (-4)^3 - 8(-4) + 8$
 $f(-4) = -24$
 $f'(x)$
 $f'(x) = 3x^2 - 8$
 $f'(x) = 3x^2 - 8$

=-3.26 is an approx for f(x)=0.

1) i)
$$x = a \cos(2t + \beta)$$

 $x = -2a \sin(2t + \beta)$
 $x = -4a \cos(2t + \beta)$
 $x = -4x \text{ and satisfies eq}^n$

iii) when t=0, $\chi=5$ when t=0, V=0, $\chi=5$ a cos $\beta-\square$ $| :: \lambda=-20, \chi=0$ squaing and adding: -1=0; sin β $| :: \lambda=-20, \chi=0$ $| :: \lambda=-20, \chi=0$ | ::

at x=0, t=0 $0=1+c_2$ $c_1=-1$ $e^{x/2}=t+1$ |oq(t+1)=x $|\sqrt{x}=2|oqc(t+1)|$ 8) act $-\infty$, $x\to\infty$ | so but diphacement

 $\frac{1}{12} \sqrt{2} = 3e^{-x} + \frac{1}{2}c,$ $\frac{1}{12} \sqrt{2} = 4e^{-x} + c,$ $\frac{1}{12} \sqrt{2} = 4e^{-x$

β) 1e-x >0 for all x

so v² does not change sign

since v=2 at x=0, it

remans positive.

 $\frac{dt}{dx} = \frac{e^{x_{12}}}{2}$ $\frac{dt}{dx} = \frac{e^{x_{12}}}{2}$ $\frac{dt}{dx} = \frac{e^{x_{12}}}{2}$

6 a) dut = -3 m/s
we want dix when x=2

also, when x = 2, y=16-4

Sw $\frac{dx}{dt} = \frac{dx}{dy} \times \frac{dy}{dt}$ $= \frac{716-y^2}{716-12} \times -3$ $= 3\sqrt{3}$ $= 3\sqrt{3}$

of 3/3 m/s #

Grad of tang = p(x-2ax)

). Grad of tang = p $y - ap^{2} = p(x - 2ap)$ $y - ap^{2} = px - 2ap^{2}$ $y - ap^{2} = px - 2ap^{2}$ When x = 0, $y = -ap^{2}$ $y = (0, -ap^{2})^{2}$ dist $y = (0, -ap^{2})^{2}$ $y = (0, -ap^{2})^{2}$ $y = (0, -ap^{2})^{2}$

) $dist^{2}Sp = (a + ap^{2})^{2}$ $dist^{2}Sp = (2ap)^{2} + (ap^{2} - a)^{2}$ $= 24a^{2}p^{2} + a^{2}p^{2} + a^{2}p^{2} + a^{2}p^{2} + a^{2}p^{2}$ $= a^{2} + 2a^{2}p^{2} + a^{2}p^{2}$ $= (a + ap^{2})^{2}$

SP = SQ QED.

: LPSQ + 2 LSQD = 180° (7 sum of ΔPSQ)

(6 c)i) sub $A = A_0 e^{kt}$ into de = kAUts = $de (A_0 e^{kt})$ = $A_0 \cdot ke^{kt}$

ii) when t = 3, $A = 2A_0$ $2A_0 = A_0 e^{3k}$ $e^{3k} = 2$ $k = \pm \log e^2$

ii) $A = A_0 e^{kt}$ where $k = \frac{1}{5} \ln 2$ when $A_0 = 3$, A = 70,000 $\therefore 20,000 = 3 e^{kt}$ 20000 $t = \frac{1}{5} \log_2 \frac{20000}{3}$

= 38, 108249... weeks t = 39 it will take 39 complete weeks in $\triangle \varphi \circ C$ $q \circ C = r^{2} + 4r^{2} - 2r \cdot 2r \cdot \omega \circ \theta$ $4x^{2} = 5r^{2} + 4r^{2} \cdot \omega \circ \theta$ $x^{2} = 5r^{2} + 4r^{2} \cdot \omega \circ \theta$ $x^{2} = 5r^{2} + r^{2} + r^{2} \cdot \omega \circ \theta$ $2 - 7 \cdot \omega \circ \theta = \frac{5}{4} + \iota \omega \circ \theta$ $3 \cdot \iota \omega \circ \theta = \frac{5}{4} + \iota \omega \circ \theta$ $4 \cdot \iota \omega \circ \theta = \frac{7}{4}$ $4 \cdot \iota \omega$

wax occurs when dx =0

10250-15x²

15x²=20250 x²= 1350 x= 15√6

किरि

= 15x2 + 20150 - 30x2

 $(\chi^2 + 1350)^2 + (15\chi)^2$

 $tam(\theta + \phi) = \frac{70}{12}$ $tam(\theta + \phi) = \frac{15}{2}$ $tam(\theta + \phi) = \frac{1}{2}$ $(x^2 + 1350) tam(\theta + \phi) = \frac{1}{2}$ $tam(\theta + \phi) = \frac{1}{2}$ $(x^2 + 1350) tam(\theta + \phi) = \frac{1}{2}$ $tam(\theta + \phi) = \frac{1}{2}$ $tam(\theta + \phi) = \frac{1}{2}$ $(x^2 + 1350) = \frac{1}{2}$ $tam(\theta + \phi) = \frac{1}{2}$ $tam(\theta + \phi$

1) in \(\Delta \text{ Apo} \)
\(\chi^2 = 2r^2 - 2r^2 \text{ WS & \quad \text{ II}} \)

let AQ=x