

Universidade do Minho

Escola de Ciericias

Departamento de Matemática e Aplicações

Cálculo

Exame :: 1 de fevereiro de 2019

Licenciatura em Ciências da Computação

Nom	ne Número		
N	Nos Grupos I, II e III cada resposta certa vale $+$ 0,5 valores e cada resposta errada -0,25 v	alores.	
	I		
[2 val	lores] Considere o conjunto $A=\left\{x\in\mathbb{Q}: x-1 \leq x+\sqrt{2} \right\}$. Indique se cada uma das	afirma	—— ações
segui	ntes é verdadeira ou falsa.		
		V	F
a)	A é um conjunto limitado.	\bigcirc	\bigcirc
b)	A é um conjunto aberto.	\bigcirc	\bigcirc
c)	$\inf A$ é um número irracional.	\bigcirc	\bigcirc
d)	$A\cap \mathbb{Q}$ é um intervalo.	\bigcirc	\bigcirc
	11		
[2 va	lores] Seja $(a_n)_n$ uma sucessão limitada estritamente crescente e seja $A=\{a_n:n\in\mathbb{N}\}$		lique
se ca	da uma das afirmações seguintes é verdadeira ou falsa.		
		V	F
a)	$(a_n)_n$ é convergente.	\bigcirc	\bigcirc
b)	$\bar{A} = A.$	\bigcirc	\bigcirc
c)	A^\prime é um conjunto singular.	\bigcirc	\bigcirc
d)	A série $\sum_{n\in\mathbb{N}}a_n$ é divergente.	\bigcirc	\bigcirc

[1,5 valores] Em cada uma das alíneas seguintes, identifique a afirmação verdadeira.

- a) O valor de $\arctan\left(\operatorname{tg}\frac{7\pi}{4}\right)$ é igual a:
 - $\bigcirc \qquad \frac{7\pi}{4};$

 \bigcirc $-\frac{\pi}{4}$;

 $\bigcirc \qquad \frac{\pi}{4};$

nenhuma das anteriores.

- b) O integral $\int \frac{8}{x^3 4x} dx$ é igual a:
 - $\bigcirc \int \frac{8}{x^3} dx \int \frac{2}{x^2} dx;$

- $\bigcirc \int \frac{1}{x+2} dx + \int \frac{1}{x-2} dx + \int \frac{1}{x} dx;$
- $\bigcap \int \frac{1}{x-2} dx + \int \frac{1}{(x-2)^2} dx \int \frac{2}{x} dx;$
- nenhuma das anteriores.
- c) Considere o integral $\int_1^2 \frac{1}{e^{2x}-e^x} \, dx$. A mudança de variável $x=\ln t$ permite escrever o integral como:
 - $\bigcirc \int_1^2 \frac{1}{t^2 t} \, dt;$

 $\bigcirc \int_1^2 \frac{1}{t^3 - t^2} dt;$

 $\bigcap \int^{e^2} \frac{1}{t^2 - t} dt;$

 $\bigcap \int_{e}^{e^2} \frac{1}{t^3 - t^2} dt.$

IV

[2 valores] Considere a função $f:\mathbb{R}\longrightarrow\mathbb{R}$ cujo gráfico se apresenta na figura anexa. Indique:

a) $f(\mathbb{R})$;

- b) $\{x \in \mathbb{R} : f \text{ \'e contínua mas n\~ao \'e deriv\'avel em } x\};$
- c) $\{x \in \mathbb{R} : x \text{ \'e ponto de mínimo local mas não \'e ponto de máximo local}\};$
- d) $a, b \in \mathbb{R}$, com a < 0 < b tais que $\int_a^b f(x) dx = 0$.

[3 valores] Em cada uma das alíneas seguintes apresente um exemplo (ou justifique porque não existe) de uma função $f:[-1,1]\to\mathbb{R}$ tal que:

- a) f seja contínua e sobrejetiva;
- c) f seja limitada mas não integrável;

- b) f seja injetiva e o seu contradomínio seja $[-1,1]\setminus\{0\}$;
- d) f não tenha zeros mas $\int_{-1}^{1} f(x) dx = 0$.

VI

Questão 1. [2 valores] Determine os números naturais k de modo a que a série $\sum_{n\in\mathbb{N}}\frac{k^nn!}{n^n}$ seja convergente.

Questão 2. [2 valores] Calcule $\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x-1} \right)$.

Questão 3. [3 valores] Calcule:

a)
$$\int \frac{4x \ln(x^2+1)}{x^2+1} dx$$
;

$$b) \int_0^1 \frac{x}{e^x} dx.$$

Questão 4. [2,5 valores] Considere a região do plano

$$R = \{(x, y) \in \mathbb{R}^2 : y \ge (x - 1)^2 \land y \le 4x + 1 \land y \le 19 - 5x\}.$$

- a) Apresente um esboço gráfico da região ${\cal R}.$
- b) Escreva uma expressão integral que permita calcular a área de R. (Não calcule o valor da área)