CS 3.307

Performance Modeling for Computer Systems

Tejas Bodas

Assistant Professor, IIIT Hyderabad

Logistics

- ► Feel free to contact me anytime at tejas.bodas@iiit.ac.in.
- Office @ A5304.
- ▶ Book- Performance modeling and design of computer systems (Cambridge press) by Mor Harchol-Balter (Professor, CMU)
- Other books: 1) Stochastic processes by Sheldon Ross 2) Probabilistic modeling by Isi Mitrani.
- Assignment 1: 15%. Midsem exam: 30%. Assignment 2: 15% Endsem 40 %.

Course Outline

- ► Module 1 (2 lectures)
 - Motivation, Probability refresher, Introduction to Stochastic Processes
- Module 2 (4 lectures)Poisson Process & Markov Chains
- ▶ Module 3 (2 lectures) Elementary Queues
- Module 4 Renewal theorems and Busy period analysis (3 lectures)
- ▶ Module 5 (3 lectures) Advanced Queues

Performance modeling for Computer systems

- How do you measure the performance of your computer?
- Speed with which it runs programs. RAM, clock speed, GPU, Cores.
- Storage space ? SSD or not ?
- What is the key word here? LATENCY!
- Performance metrics?
 - response time (run time, lag, delay, jitter)
 - blocking probability (screen freeze, no disk space, packet loss, buffer full)

Modeling?

- Design for performance: How many cores or GPU's? which core to use? how to schedule instructions in a core?
- Routing (which core) and scheduling (which program/ instruction to execute)
- How do you know which is a good design? via experimentation?(costly!)
- Performance analysis! via stochastic modeling

Applications Beyond Computers

- Computer systems
 - server farms, cloud computing, distributed storage systems
 - Communication systems, Wifi, Sensor networks.
- Heathcare
 - ► How many OT? How many Specialists or nurses?
 - Scheduling operations, stocking of medicines, scheduling tests.
- Hospitality industry
 - Designing hotel lobbies for faster checkin
 - Restaurant seating! (How many tables of size 2,4,8?)
- ► Transportation systems
 - Airline or Railway scheduling
 - Priority scheduling, class differentiation
- Operation Research!
- ▶ Henceforth use the term Queueing system!

A single server queue

- ▶ One server, one FIFO queue for jobs to wait.
- $\blacktriangleright \mu$ denotes service rate, λ denotes the arrival rate.
- Service requirements S_n and inter-arrival times A_n are typically assumed to be i.i.d.
- ▶ In its simplest form, we will assume $S_n \sim Exp(\mu)$ and $A_n \sim Exp(\lambda)$.
- Jobs face queueing delay due to waiting for other jobs.
- ▶ This is the most basic M/M/1 queue. Modeling this as a Markov chain and solving its stationary distribution gives us mean response time (mean of service time + waiting time).
- $ightharpoonup E[T] = \frac{1}{\mu \lambda}.$

A single server queue

- $ightharpoonup E[T] = \frac{1}{\mu \lambda}.$
- ▶ Let N is the number of jobs in the system (Queue + server). Then what is E[N]?
- We will see Little's law that says that $E[N] = \lambda E[T]$.
- Mean number of jobs $E[N] = \frac{\lambda}{\mu \lambda}$.
- This course is about Markov chain analysis to derive such formulas.

Example 1: Doubling the arrival rate

- $\blacktriangleright E[T] = \frac{1}{\mu \lambda}.$
- ▶ What would happen to E[T] if $\lambda \to 2\lambda$?
- ▶ It could blow up if $\mu < 2\lambda$.
- If you want to maintain the same level of response time then do you need to double μ?
- This course is about making such design choices!

Example 2: A fast server versus many slow servers

- Which system will have lower E[T]?
- ▶ Is a fast server $(K\mu)$ better that K normal servers (μ) ?
- ▶ Does job variability impact this decision? Suppose job sizes were XS, S, M, L, XL.
- ▶ In the first model, an S, or M job has to possibly wait behind XL. This is avoided in the second scenario.

Example 3: Central queue or individual

- At Airport immigration, Hotel check-ins you often see central queues.
- But at movie theatres, metro/train ticket counters, you see the second model.
- ▶ Which setting has a lower E[T]?
- This course will help you answer such performance modeling questions.

Example 4: Supermarket queue and load balancing

- Load balancing concerns the questions which queue to join/assign?
- Popular policy is Join shortest Queue (JSQ).
- What should be ideally done is Join smallest work (JSW).
- \triangleright N is typically large and the overhead in obtaining queue length information is huge (2N).

Example 4: Supermarket queue and load balancing

- In that case, sample d servers randomly and join appropriate queue using JSQ(d) or JSW(d).
- ▶ Problem with JSW or JSW(d) is that the workload information is typically unknown. How to implement it then?
- ► How about replicating jobs on *d* servers and cancelling copies when one copy starts service ?
- This is redundancy-d with cancel on start.
- ▶ We do this at super-markets all the time!

Probability Refresher

Random experiments and Sample space

- ▶ Random experiment : Experiment involving randomness
 - Coin toss
 - Roll a dice
 - ▶ Pick a number at random from [0, 1].
- Sample space Ω : set of all possible outcomes of the random experiment. It could be a finite or infinite set.

 - $\Omega_d = \{1, 2, \dots, 6\}$

Events

- ▶ A subset $A \subseteq \Omega$ is called an **event**.
- Examples of events
 - Events in the coin experiment: $C_1 = \{T\}$.
 - Events in the dice experiment: $D_1 = 6, D_2 = \{1, 3, 5\}$
 - Events in U[0,1] experiment: $U_1 = \{0.5\}, U_2 = [.25, .75].$
- ▶ Probability of event A is denoted by $\mathbb{P}(A)$.

Probability theory

{Random experiment, Sample space, Events} are the key ingredients in probability theory.

In probability theory, we are interested in **measuring** the probability of subsets of Ω (events).

Probability measure \mathbb{P} is a **set function**, i.e. it acts on sets and measures the probability of such sets.

sigma-algebra as domain for \mathbb{P}

ightharpoonup Event space or $sigma-algebra \ \mathcal{F}$ is a collection of measurable sets that satisfy

•
$$\emptyset \in \mathcal{F}$$
 • $A \in \mathcal{F} \implies A^c \in \mathcal{F}$
• $A_1, A_2, \dots A_n, \dots \in \Omega \implies \bigcup_{n=1}^{\infty} A_n \in \Omega$

- The σ-algebra is said to be closed under formation of compliments and countable unions.
- Is it also closed under the formation of countable intersections?

When Ω is countable and finite, we will consider power-set $\mathcal{P}(\Omega)$ as the domain.

Formal definition of Probability measure \mathbb{P}

Definition

A probability measure $\mathbb P$ on the *measurable space* $(\Omega,\mathcal F)$ is a function $\mathbb P:\mathcal F\to [0,1]$ s.t.

- 1. $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- 2. For a disjoint collection of event sets A_1, A_2, \ldots from $\mathcal F$ we have

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

(countable additivity)

▶ The trio $(\Omega, \mathcal{F}, \mathbb{P})$ is called as a probability space.

Conditional probability

- ▶ Given/If dice rolls odd, what is the probability that the outcome is 1?
- ▶ Given/If $\bar{\omega} \in [0, 0.5]$ what is the probability that $\bar{\omega} \in [0, 0.25]$?
- ▶ The conditional probability of event B given event A is defined as $\mathbb{P}(B/A) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$ when $\mathbb{P}(A) > 0$.
- ▶ Bayes rule: $P(B/A) = \frac{P(A/B)P(B)}{P(A)}$.

Independence and Mutually exclusive

- Two events A, B are independent iff P(A/B) = P(A) and P(B/A) = P(B).
- ► Two events A, B are independent iff $P(A \cap B) = P(A)P(B)$.
- ▶ If A and B are independent, then so are A^c and B^c .
- ▶ What about A and B^c ? Are they independent?
- ► Two events A and B are mutually exclusive if occurrence of one implies that the other event cannot occur. Are they independent?
- ▶ If A and B are mutually exclusive, then they are not independent (and vice versa).

Random variable

- ▶ Given a random experiment with associated $(\Omega, \mathcal{F}, \mathbb{P})$, it is sometimes difficult to deal directly with $\omega \in \Omega$. eg. rolling a dice ten times.
- Notice that each sample point $\omega \in \Omega$ is not a number but a sequence of numbers.
- Also, we may be interested in functions of these sample points rather than samples themselves. eg: Number of times 6 appears in the 10 rolls.
- ► In either case, it is often convenient to work in a new simpler probability space rather than the original space.
- Random variable is a device which precisely helps us make this mapping from $(\Omega, \mathcal{F}, \mathbb{P})$ to a 'simpler' $(\Omega', \mathcal{F}', P_X)$.
- $ightharpoonup P_X$ is called as an induced probability measure on Ω' .

Random variable

- If Ω' is countable, then the random variable is called a discrete random variable.
- ▶ In this case it is convenient to use \mathcal{F}' as power-set.
- ▶ If $\Omega' \subseteq \mathbb{R}$ or uncountable, then the random variable is a continuous random variable.
- ▶ In this case, $\mathcal{F}' = \mathcal{B}(\mathbb{R})$.
- Notation: Random variables denoted by capital letters like X, Y, Z etc. anf their realizations by small letters x, y, z..

PMF and CDF of a Discrete r.v.

- Let $X: \Omega \to \Omega'$ be a discrete r.v.
- Let $p_X(x)$ for $x \in \Omega'$ denote the probability that X takes the value x.
- $ightharpoonup p_X(x)$ is called as a probability mass function.
- The cumulative distribution function (CDF) $F_X(\cdot)$ is defined as $F_X(x_1) := \sum_{x \leq x_1} p_X(x) = \mathbb{P}\{\omega \in \Omega : X(\omega) \leq x_1\}.$

Expectation, Moments, Variance

- ▶ The mean or expectation of a random variable X is denoted by E[X] and is given by $E[X] = \sum_{x \in \Omega'} x p_X(x)$.
- ► The n^{th} moment of a random variable X is denoted by $E[X^n]$ and is given by $E[X^n] = \sum_{x \in \Omega'} x^n p_X(x)$.
- Functions of random variables are random variables.
- ► For a function $g(\cdot)$ of a random variable X, its expectation is given by $E[g(X)] := \sum_{x \in \Omega'} g(x) p_X(x)$
- $ightharpoonup Var(X) := E[(X E[X])^2]$
- ► HW: Prove that $E[(X E[X])^2] = E[X^2] E[X]^2$
- For Y = aX + b, what is E[Y]? E[Y] = aE[X] + b. (Linearity of expectation)

Bernoulli random variable

- Bernoulli random variable $X = \begin{cases} 1, & \text{with probability } p \\ 0, & \text{otherwise.} \end{cases}$
- Basic models of Multi-arm bandit problem assume Bernoulli Bandits.
- ► $E[X] = p, E[X^n] = p.$

Binomial B(n, p) random variable.

- Consider a biased coin (head with probability p) and toss it n times.
- ▶ Denote head by 1 and tail by 0.
- ▶ Let random variable N denote the number of heads in n tosses.
- ▶ PMF of *N*?. $P_N(k) = \binom{n}{k} p^k (1-p)^{n-k}$.
- \blacktriangleright HW: What is $E[N], E[N^2], Var(X)$?

Geometric random variable

- ► Consider a biased coin (head with probability *p*) and suppose you keep tossing it till head appears the first time.
- ► Let random variable *N* denote the number of tosses needed for head to appear first time.
- ▶ What is the PMF of N? $p_N(k) = (1-p)^{k-1}p$.
- ► HW: What is E[N], $E[N^2]$, Var(N)?

Poisson random variable

- A Poisson random variable X comes with a parameter λ and has $\Omega'=\mathbb{Z}_{\geq 0}$
- $\blacktriangleright \mathsf{PMF} : p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}$
- Intuitively its a limiting case of the Binomial distribution with n increasing and p decreasing such that np converges to λ .
- ▶ Mean of binomial is *np* so *p* should decrease while *n* increases.

Continuous random variables

- A random variable X is continuous if there exists a non-negative real valued probability density function (PDF) $f_X(\cdot)$ such that $F_X(x) = \int_{u=-\infty}^x f_X(u) du$.
- ▶ $P_X(a \le X \le b) = \int_a^b f_X(u) du$. (Area under the curve)

$$\frac{dF_X(x)}{dx} = f_X(x) \text{ or } P_X(x < X \le x + h) \simeq f_X(x)h.$$

Mean, Variance, Moments

- \triangleright $E[X] = \int_{-\infty}^{\infty} u f_X(u) du$
- $ightharpoonup E[X^n] = \int_{-\infty}^{\infty} u^n f_X(u) du$
- $ightharpoonup E[g(X)] = \int_{-\infty}^{\infty} g(u) f_X(u) du$
- ► Var[X] = E[g(X)] where $g(x) = (x E[X])^2$.
- ► For Y = aX + b, E[Y] = aE[X] + b.

Exponential random variable $(Exp(\lambda))$

- ▶ This is a non-negative r.v. with parameter λ .
- lts pdf $f_X(x) = \lambda e^{-\lambda x}$ for $x \ge 0$.
- ▶ Its CDF is given by $F_X(x) = 1 e^{-\lambda x}$ for $x \ge 0$.
- $ightharpoonup E[X] = \frac{1}{\lambda} \text{ and } Var(X) = \frac{1}{\lambda^2}$
- $\triangleright E[X^n] = \frac{n!}{\lambda^n}$

Summary: Multiple random variables

$$p_{XY}(x,y) := \mathbb{P}\{\omega \in \Omega : X(w) = x \text{ and } Y(\omega) = y\}.$$

$$F_{XY}(x,y) := \mathbb{P}\{\omega \in \Omega : X(w) \le x \text{ and } Y(\omega) \le y\}.$$

The marginal PMF's p_X and p_Y can be obtained from the joint PMF as follows:

$$p_X(x) = \sum_y p_{XY}(x, y)$$
 and $p_Y(y) = \sum_x p_{XY}(x, y)$.

Two random variables, X and Y are independent if the following is true:

$$p_{XY}(x,y) = p_X(x)p_Y(y), F_{XY}(x,y) = F_X(x)F_Y(y)$$
 and $E[XY] = E[X]E[Y].$

$$E[g(X,Y)] = \sum_{xy} g(xy) p_{XY}(xy)$$

The rules for continuous random variables are similar. Also revise conditioning of variables.

Sums of independent random variable

- ▶ Consider Z = X + Y. What is the pdf of Z when X and Y?
- ▶ What is $p_Z(z)$ or $f_Z(z)$?

- Since X and Y are independent $p_{X,Y}(x,y) = p_X(x)p_Y(y)$ and $f_{X,Y}(x,y) = f_X(x)f_Y(y)$. This gives us

Convolution formula

$$p_{Z}(z) = \sum_{x} p_{X}(x)p_{Y}(z-x)$$

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X}(x)f_{Y}(z-x)dx$$

HW: What if X and Y are not independent?

MGF of Sums of independent random variable

- ▶ Consider Z = X + Y. What is the pdf of Z when X and Y?
- Let $M_X(t)$ and $M_Y(t)$ be their MGF's. What is $M_Z(t)$?
- $M_Z(t) = E[e^{Zt}] = E[e^{(X+Y)t}].$
- $M_Z(t) = E[e^{Xt}.e^{Yt}].$
- If X and Y are independent, E[XY] = E[X]E[Y] and E[g(X)h(Y)] = E[g(X)]E[h(Y)].
- $M_Z(t) = E[e^{Xt}].E[e^{Yt}].$

$$M_Z(t) = M_X(t)M_Y(t).$$

MGF of Sums of independent random variable

▶ Consider Z = X + Y. What is the MGF of Z when X and Y?

$$M_Z(t) = M_X(t)M_Y(t).$$

- ▶ What about $M_Z(t)$ when $Z = X_1 + X_2 + ... X_n$ and X_i are iid.?
- $M_Z(t) = (M_X(t))^n.$
- ▶ What about $M_Z(t)$ when $Z = X_1 + X_2 + ... X_N$ where N is a positive discrete random variable? section 4.5

Convergence of Random Variables

Summary

Pointwise
$$\lim_{n \to \infty} X_n(\omega) = X(\omega)$$
 for every ω

Almost sure $\lim_{n \to \infty} X_n(\omega) = X(\omega)$ almost surely

Convergence $\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$ for any $\epsilon > 0$

Mean-square $\lim_{n \to \infty} E[(X_n - X)^2] = 0$

Convergence $\lim_{n \to \infty} F_n(x) = F(x)$ for any continuity point x

¹Image from probabilitycourse.com

Relation between modes of convergence (no proofs)

https://en.wikipedia.org/wiki/Proofs_of_convergence_ of random variables

- ▶ Stochastic process $\{X(t), t \in T\}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a collection of random variables defined such that for every $t \in T$ we have $X(t) : \Omega \to \mathcal{S}$.
- ▶ T is the parameter space (often resembles time) and S is the state space.
- ▶ Random variable X(t) is often denoted by $X(\omega, t)$.
- When t is fixed and ω is the only variable, we have a random variable $X(\cdot,t)$. When ω is fixed and t is the variable, we have a $X(\omega,\cdot)$ as a function of time. This is also called as a realization or sampe path of a stochastic process.

- ▶ When *T* is countable, we have a discrete time process.
- ► If T is a subset of real line, we have a continuous time process.
- State space could be integers or real numbers
- State space could be \mathbb{R}^n or \mathbb{Z}^n valued

Elementary Examples

- ▶ The process of rolling a dice 6 times.
- You bank balance over a week.
- Temperature fluctuations in a 1hr window.
- Number of customers in IKEA every day.

A c.t.s.p. is called an *independent increment process* if for any choice of parameters $t_0 < t_1 < \ldots < t_n$, the *n* increment random variables $X(t_1) - X(t_0), X(t_2) - X(t_1), \ldots, X(t_n) - X(t_{n-1})$ are independent.

The c.t.m.p. is said to have stationary and independent increments if in addition $X(t_2+s)-X(t_1+s)$ has the same distribution as $X(t_2)-X(t_1)$ for all $t_1,t_2\in T$ and any s>0.

Examples

- Sequence of i.i.d random variables.
- ▶ General random walk: If $X_1, X_2, ...$ is a sequence i.i.d of random variables, then $S_n = \sum_{i=1}^n X_i$ is a random walk.
- ▶ Weiner process: $\{X(t), t \ge 0\}$ is a Weiner process if
 - 1. X(0) = 0
 - 2. $\{X(t), t \ge 0\}$ has stationary and independent increments
 - 3. for every t > 0, X(t) is normally distributed with mean 0 and variance t.
- ▶ $\{X(t), t \ge 0\}$ is a Markov process if for $t_1 < t_2 < \dots t_n < t$ we have

$$P(X(t) \le x | X(t_1) = x_1, \dots, X(t_n) = x_n) = P(X(t) \le x | X(t_n) = x_n)$$

Random walk and Weiner process are examples of Markov processes.