《概率与统计》内容总结与习题:数字特征

课本例题、习题分类:

- 1. 数学期望、随机变量的函数的期望、方差、常见分布的期望与方差: §3.1例1-4, §3.2例1-4、例6 (解法二), §3.4例1-4、例7-8、例10; 习题三3.1-3.19
- 2. 矩: §3.6例1; 习题三3.20-3.22
- 3. 协方差与相关系数: §3.7例1-2、例4; 习题三3.23-3.27
- 4. 切比雪夫不等式与大数定律: §3.8定理2的证明, 自学例题; 习题三3.28-3.31

补充习题(本部分习题未涵盖本章的全部主要内容,仅为课本例题、习题的补充):

(1)	随机变量X的可能值为	为数列 $\{x_k\}_{k\geq 1}$,	对每个 k ,	$P\{X = x_k\}$	$= p_k \circ$	如
	果级数 $\sum_{k=1}^{\infty} x_k p_k$ 收敛,				(
	k=1					

(2) 若两个随机变量相互独立,则这两个随机变量的相关系数为零

(3) 若两个随机变量的相关系数为零,则这两个随机变量相互独立。 ()

(4) 两个随机变量X与Y不相关当且仅当D(X+Y)=DX+DY。

()

(

)

- (5) 两个随机变量X与Y不相关当且仅当 $E(XY) = EX \cdot EY$ 。 ()
- (6) 两个随机变量X与Y不相关当且仅当E(X+Y)=EX+EY。

()

2. 选择题

(1) 已知随机变量 {具有如下分布律

$$\begin{array}{c|cccc}
\hline
\xi & 1 & 2 & 3 \\
\hline
P & k & 0.1 & j
\end{array}$$

且 $E\xi^2 = 5.3$,则j =

- (A) 0; (B) 0.1;
- (C) 0.2;
- (D) 0.5.

(2) 设随机变量X的期望为 μ ,则对任意常数c,

- (A) $E[(X-c)^2] = E(X^2) c^2;$ (B) $E[(X-c)^2] = E[(X-\mu)^2];$
- (C) $E[(X-c)^2] < E[(X-\mu)^2];$ (D) $E[(X-c)^2] > E[(X-\mu)^2].$

(3) 对于随机变量X和Y,若D(X+Y)=DX+DY,则

- (A) X和Y一定独立:
- (B) X和Y一定不独立;
- (C) $D(XY) = DX \cdot DY$; (D) $E(XY) = EX \cdot EY$.

(4) 连续随机变量X的数学期望不存在, 若其概率密度为

$$(A) \ f(x) = \begin{cases} \frac{1}{2\sqrt{x}}, & 0 < x < 1, \\ 0, & \sharp \, \stackrel{\sim}{\mathcal{E}}; \end{cases} \qquad (B) \ f(x) = \begin{cases} \frac{2}{3\sqrt[3]{x}}, & 0 < x < 1, \\ 0, & \sharp \, \stackrel{\sim}{\mathcal{E}}; \end{cases}$$

$$(C) \ f(x) = \begin{cases} \frac{2}{\pi(1+x^2)}, & x > 0, \\ 0, & x < 0; \end{cases} \qquad (D) \ f(x) = \begin{cases} \frac{6x}{\pi^2(e^x - 1)}, & x > 0, \\ 0, & x < 0. \end{cases}$$

$$(C) \ f(x) = \begin{cases} \frac{2}{\pi(1+x^2)}, & x > 0, \\ 0, & x \le 0; \end{cases} \quad (D) \ f(x) = \begin{cases} \frac{6x}{\pi^2(e^x - 1)}, & x > 0, \\ 0, & x \le 0; \end{cases}$$

(5) 设随机变量X的概率分布为

$$P{X = n} = P{X = -n} = \frac{1}{2n(n+1)}, \quad n = 1, 2, \dots,$$

则EX =

- (A) 0; (B) 0.5; (C) 1; (D) 不存在.

(6)	设随机变量X和 方差为	rY相互独立,方	差分别为4和2,	则随机变量3X-2Y的		
	(A) 8;	(B) 16;	(C) 28;	(D) 44.		
(7)	设随机变量X服从参数为0.5的指数分布,Y服从参数为3的泊松分布则下列等式 <u>不成立</u> 的是					
	(A) E(X+Y) = 5;		(B) $E(Y^2) = 12;$			
	(C) D(X+Y)	=7;	$(D) E(X^2)$	= 8.		
(8)	对任意的随机变	$\mathbb{E} X = X + X + X + X + X + X + X + X + X +$	题"X和Y不相	关"不等价的是		
	(A) E(XY) = I	$EX \cdot EY;$	$(B) \operatorname{cov}(X,Y)$	=0;		
	(C) D(XY) = 1	$DX \cdot DY;$	(D) D(X+Y))=DX+DY.		
(9) 在 n 重伯努利试验中,事件 A 每次发生的概率为 p 。分别用示 n 次试验中事件 A 成功与失败的次数,则 X 和 Y 的相关系数						
(10)	设随机变量X服相关系数为	以及回[-1,1]上	_的均匀分布,贝			
	(A) -1;		(B) 0;			
	$(C) \ 0.5;$		(D) 1.			
(11)	设随机变量X和	·Y独立同分布,	则随机变量X+	- <i>Y和X – Y一</i> 定		
	(A) 独立;	(B) 相关;	(C) 不独立;	(D) 不相关.		
(12)	设随机变量X和	·Y的方差存在,	则 $D(X+Y)=$	DX + DY是 X 和 Y		
(A) 不相关的充分但不必要条件; (B) 不相关的充分必要条						
	(C) 独立的充分	但不必要条件;	(D) 独立的	勺充分必要条件.		

(13) 设随机变量X和Y的联合密度为

$$f(x,y) = \begin{cases} x+y, & 0 \le x, y \le 1, \\ 0, & \cancel{\sharp} ; \end{cases}$$

则

(A)
$$EX = EY = \frac{3}{2};$$
 (B) $D(X - Y) = \frac{11}{72};$

(B)
$$D(X - Y) = \frac{11}{72}$$
;

$$(C) EX = EY = \frac{7}{12}$$

(C)
$$EX = EY = \frac{7}{12}$$
; (D) $D(X + Y) = \frac{11}{72}$.

(14) 设D(X+Y) = D(X-Y), 则

(A) X和Y独立;

- (B) X和Y不相关:
- $(C) D(XY) = DX \cdot DY; \qquad (D) D(X Y) = 0.$
- 3. 证明:任意二维随机变量(X,Y)的协方差阵为半正定矩阵。
- 4. 简答题: 简述辛钦大数定律、伯努利大数定律的意义。
- 5. 利用切比雪夫不等式证明以下定理:
 - (a) 辛钦大数定律:设有独立同分布的随机变量序列 $\{X_n\}_{n\geq 1}$,其数学期 望及方差均存在:

$$EX_n = \mu$$
, $D(X_n) = \sigma^2$, $n = 1, 2, \cdots$.

则对任意正数 ε .

$$\lim_{n \to \infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right| < \varepsilon \right\} = 1.$$

(b) 伯努利大数定律: 在独立实验序列中, 记事件A的概率为p。以 $f_n(A)$ 表 示前n次试验中事件A发生的次数.则

$$\frac{f_n(A)}{n} \stackrel{P}{\longrightarrow} p,$$

即对任意正数 ε ,

$$\lim_{n \to \infty} P\left\{ \left| \frac{f_n(A)}{n} - p \right| < \varepsilon \right\} = 1.$$