MA2000: OTML

Nachiketa Mishra

Indian Institute of Information Technology, Design & Manufacturing, Kancheepuram

Particle Swarm Optimization (PSO)

PSO was formulated by R Eberhart and J Kennedy in 1995 Inspired by the social behavior of bird flocking and fish schooling.

Swarm: A large or dense group of flying insects

- Suppose a group of birds is searching for food in an area
- ► Only one piece of food is available
- Birds do not have any knowledge about the location of the food
- But they know how far the food is from their present location
- ► So what is the best strategy to locate the food?
- The best strategy is to follow the bird nearest to the food

- ► Each solution is considered as a bird called particle
- ▶ All the particles have a fitness value. The fitness values can be calculated using an objective function
- ▶ All the particles preserve their individual best performance
- ▶ They also know the best performance of their group
- ► They adjust their velocity considering their best performance and also considering the best performance of the best particle

Algorithm

- Each particle moves about the cost surface with a velocity.
- ► The particles update their velocities(vⁱ) and positions (xⁱ) based on the local and global best solutions:
 - $ightharpoonup \omega := \mathsf{Inertia} \; \mathsf{weight}$
 - $ightharpoonup c_i := Learning factor$
 - $r_i :=$ Independent uniform random numbers in (0, 1)
 - ightharpoonup pbestⁱ(t) := Best local solution
 - ► G := Best global solution

Velocity:
$$v^{i}(t+1) = \underbrace{\omega v^{i}(t)}_{\text{Inertia Eff.}} + \underbrace{c_{1}r_{1}\Big(pbest^{i}(t) - x^{i}(t)\Big)}_{\text{Particle memory}} + \underbrace{c_{2}r_{2}\Big(G - x^{i}(t)\Big)}_{\text{Social component}}$$

Position:
$$x^{i}(t+1) = x^{i}(t) + v^{i}(t+1)$$

- $ightharpoonup \omega v^i(t) \Leftarrow \text{original velocity or current motion of that particle}$
- ▶ $c_1r_1(pbst^i(t) x^i(t))$ \Leftarrow position of the previous best position of that particle; to adjust the velocity towards the best position visited by that particle
- ▶ $c_2r_2(G-x^i(t))$ ← position of the best fitness value; to adjust the velocity toward the global best position in all particles

Remember:

- ▶ High values of the updated velocity make the particles very fast, which may prevent the particles from converging to the optimal solution; thus, the velocity of the particles could be limited to a range $[-V_{max}, V_{max}]$
- ▶ This is much similar to the learning rate in the learning algorithms
- ightharpoonup A large value of V_{max} expands the search area; thus, the particles may move away from the best solution and it cannot converge correctly to the optimal solution.
- ightharpoonup On the other hand, a small value of V_{max} causes the particles to search within a small area, but it may lead to slow convergence.

Movement of two particles using PSO algorithm in one-dimensional space

Algorithm

```
Initialize the particles' positions (x^i), velocity (v^i), previous best posi-
tions (p^i), and the number of particles N.
while (t <maximum number of iterations (T)) do
for all Particles (i) do
Calculate the fitness function for the current position xi of the ith particle
(F(x^i)).
if (F(x^i) < F(p^i)) then
p^i = x^i \text{ end if}
if (F(x^i) < F(G)) then
G = x^i
end if
Adjust the velocity and positions of all particles according to Equations (1
and 2.
end for
Stop the algorithm if a sufficiently good fitness function is met.
14: end while
```

Numerical Examples

- ▶ Consider a fitness function: $F(x, y) = x^2 + y^2$ with $-1 \le x, y \le 1$.
- ► Goal to minimize the fitness function

Initial settings:

Assume the PSO algorithm has five particles $p^i, i = 1, 2, \dots, 5$

Table 1. Initial positions, velocity, and best positions of all particles

Particle No.	Initial Positions		Velocity		Best Solution	Best Position		Fitness
	\boldsymbol{x}	y	\boldsymbol{x}	y		\boldsymbol{x}	\boldsymbol{y}	Value
P1	1	1	0	0	1000	-	-	2
P2	-1	1	0	0	1000	-	-	2
Р3	0.5	-0.5	0	0	1000	-	-	0.5
P4	1	-1	0	0	1000	-	-	2
P5	0.25	0.25	0	0	1000	-	-	0.125

- Assume $\omega = 0.3$, $c_1 = c_2 = 2$, $r_1 = 0.5$ and $r_2 = 0.5$
- ▶ Velocity of all the particles is 0 i.e., $v^i(t) = (0,0)$ for all i
- ightharpoonup Calculate G = (0.25, 0.25)

1st Iteration:

▶ The position and the velocity of the first particle were calculated as follows

$$v^{1}(t+1) = \omega v^{1}(t) + c_{1}r_{1}(p^{1}(t) - x^{1}(t)) + c_{2}r_{2}(G - x^{1}(t))$$

$$= 0.3 \times (0,0) + (0,0) + 2 \times 0.5 \times ((0.25 - 1), (0.25 - 1)) = (-0.75, -0.75)$$

$$x^{1}(t+1) = x^{1}(t) + v^{1}(t+1) = (1,1) + (-0.75, -0.75) = (0.25, 0.25)$$

Particle No	Initial Pos.		Velocity		Best	Best Pos. (pbest)		Fitness
1 article 140	×	у	V _x	v_y	Solution	×	у	value
ρ^1	1	1	-0.75	-0.75	0.125	0.25	0.25	2
ρ^2	-1	1	1.25	-0.75	0.125	0.25	0.25	2
ρ^3	0.5	-0.5	-0.25	0.75	0.125	0.25	0.25	0.5
ρ^4	1	-1	-0.75	1.25	0.125	0.25	0.25	2
ρ^5	0.25	0.25	0	0	0.125	0.25	0.25	0.125

2nd Iteration:

Particle No	Initial Pos.		Velocity		Best	Best Pos. (pbest)		Fitness
Tarticle 140	×	у	V_X	v_y	Solution	×	у	value
$ ho^1$	0.25	0.25	-0.225	-0.225	0.00125	0.025	0.025	0.125
p^2	0.25	0.25	0.375	-0.225	0.125	0.25	0.25	0.125
ρ^3	0.25	0.25	-0.075	0.225	0.125	0.25	0.25	0.125
p^4	0.25	0.25	-0.225	0.375	0.125	0.25	0.25	0.125
ρ^5	0.25	0.25	0	0	0.125	0.25	0.25	0.125

Figure: Initial Figure: 1st Iteration

Figure: 2nd Iteration

Rastrigin function: has several local minima but global minima at x = 0.

$$F(x,y) = 10d + \sum_{i=1}^d \left(x_i^2 - 10\cos(2\pi x_i)\right), \text{ where } x = (x_1, x_2, \dots, x_d) \in \mathbb{R}^d$$

- ► Python code: https://machinelearningmastery.com/ a-gentle-introduction-to-particle-swarm-optimization/
- ► Matlab code: https://www.researchgate.net/publication/296636431_Codes_ in_MATLAB_for_Particle_Swarm_Optimization
- ► More detailed about PSO: https://web2.qatar.cmu.edu/~gdicaro/15382/additional/CompIntelligence-Engelbrecht-ch16.pdf