

Cálculo Avanzado - Funciones continuas 2

Primer cuatrimestre de 2020

Daniel Carando

Dto. de Matemática - FCEN - UBA

Varios resultados de esta clase están en la Sección 6.2 del apunte.

Una función $\underline{f}: E \to E'$ es continua en un punto \underline{x} si, dado $\varepsilon >$ 0 existe un $\delta >$ 0 tal que $f(B(x,\delta)) \subset B(f(x),\varepsilon)$.

Una función $f: E \to E'$ es continua en un punto x si, dado $\varepsilon >$ 0 existe un $\delta >$ 0 tal que $f(B(x,\delta)) \subset B(f(x),\varepsilon)$.

Decimos simplemente que <u>es continua</u> si es continua en cada $x \in E$.

Una función $f: E \to E'$ es continua en un punto x si, dado $\varepsilon >$ 0 existe un $\delta >$ 0 tal que $f(B(x,\delta)) \subset B(f(x),\varepsilon)$.

Decimos simplemente que es continua si es continua en cada $x \in E$.

Una función $f: E \to E'$ se dice <u>uniformemente continua</u> si dado $\varepsilon >$ o existe $\delta >$ o tal que

$$f(B(x,\delta)\subset B(f(x),\varepsilon)$$

para todo $x \in E$.

s que depende de € (8 suive V×).

Una función $f: E \to E'$ se dice uniformemente continua si dado $\varepsilon > 0$ existe $\delta > 0$ tal que

$$f(B(x,\delta)\subset B(f(x),\varepsilon)$$

para todo $x \in E$.

Definición equivalente

Una función $f: E \to E'$ se dice uniformemente continua si para todo $\varepsilon > 0$ existe δ tal que si $d(x,y) < \delta$ entonces $d'(f(x), \overline{f(y)}) < \varepsilon$.

f NO 95 mil write:

3 8 70 Never el and NO hay
migni 8 pouble.

Una función $f: E \to E'$ se dice uniformemente continua si dado $\varepsilon >$ 0 existe $\delta >$ 0 tal que

$$f(B(x,\delta)\subset B(f(x),\varepsilon)$$

para todo $x \in E$.

Definición equivalente

Una función $f: E \to E'$ se dice uniformemente continua si para todo $\varepsilon >$ o existe δ tal que si $d(x,y) < \delta$ entonces $d'(f(x),f(y)) < \varepsilon$.

Ejercicio

Sea $f: E \to E'$. Entonces, f NO es uniformemente continua si y sólo si existen sucesiones $(x_n)_n$ y $(y_n)_n$ tales que

$$d(x_n,y_n) \rightarrow 0$$
 pero $d(x_n,y_n)$

Ejemplo TALZGR:
$$f: (a_1b_1) \rightarrow 1/2$$
 wout \Rightarrow

or must count.

 $f: 1/2 \rightarrow 1/2$
 $p_1 x_1 = x^2$. $p_2 x_2 = x^2$.

 $p_3 x_4 = x_4$
 $p_4 x_5 = x_4$
 $p_4 x_5 = x_5$
 $p_5 x_6 = x_6$
 $p_5 x_6 = x_6$
 $p_6 = x_6$

Sea $f: E \rightarrow E'$. Si existe C > o tal que

$$d'(f(x),f(y)) \leq Cd(x,y),$$

entonces f es uniformemente continua.

DEM: dado
$$\varepsilon$$
 20, que en 8/
 n : $d(n_1)/28 \Longrightarrow d'(f(n), f(n))/28$

$$d'(f(x),f(x)) \leq cd(x,y) \leq c.5$$

A(N1)168

tomando
$$\xi = \frac{\varepsilon}{c}$$

a. $d(x_1) = c$
 $d(R(x), f(y)) = c$
 $d(R(x), f(y)) = c$

Consideremos en C([0,1]) la distancia d_{∞} .

Sea $F: C([0,1]) \to \mathbb{R}$ la función dada por

$$F(x) = \int_0^1 x(t)dt.$$

$$= \left| \int_0^1 (x(n) - y(t)) dt \right| \leq \int_0^1 |x(n) - y(t)| dt$$

$$\leq \int_{0}^{\infty} d_{\infty}(x,y) dx - d_{\infty}(x,y) \cdot \hat{1} = d_{\infty}(x,y)$$

x TEO, F & VNIF. CONT.

Ejemplo
Consideremos en
$$C([0,1])$$
 la distancia d_{∞} .

Sea $F: C([0,1]) \to \mathbb{R}^3$ la función dada por

$$F(x) = (x(0), x(1/2), x(1)).$$

$$d_2(F(x), F(y)) = d_2((x(0), x(1/2), x(1)), [y(0), y(1/2), y(1)))$$

$$= (x(0), y(1/2), x(1)).$$

$$= (x(0), x(1/2), x(1/2), x(1/2).$$

$$= (x(0), x(1$$

Sea (E, d) un espacio métrico. Un subconjunto $\overline{D} \subset E$ se dice denso (en E) si $\overline{D} = E$.

Sea (E, d) un espacio métrico. Un subconjunto $D \subset E$ se dice denso (en E) si $\overline{D} = E$.

- Una función $f: E \to E'$ se llama homeomorfismo si es biyectiva, continua y su inversa f^{-1} es continua.
- Dos espacios métricos (E, d) y (E', d') se dicen homeomorfos si existe un homeomorfismo f : E → E'.

- Una función $f: E \to E'$ se llama homeomorfismo si es biyectiva, continua y su inversa f^{-1} es continua.
- Dos espacios métricos (E, d) y (E', d') se dicen homeomorfos si existe un homeomorfismo f : E → E'.

Observación

Si E y E' son espacios métricos homeomorfos, entonces hay una correspondencia entre los abiertos de E y E':

Si
$$f: E \cap E'$$
 homomofism.

A ab $n \in f(A) = (f^{-1})^{-1}(A)$ ab $n \in E'$

Si $f(A)$ es ab $n \in f(A)$ as ab $n \in E'$

A ab $n \in f(A)$ as ab $n \in E'$

Observación

Dada f biyectiva, ¿es posible que f sea continua pero que su

inversa no lo sea?

Y4,265

Definición

Si $f: E \to E'$ es biyectiva y d(x,y) = d'(f(x),f(y)), diremos que f es una isometría.

Si $f: E \to E'$ es biyectiva y d(x,y) = d'(f(x),f(y)), diremos que f es una isometría.

Observación

Si $f: E \to E'$ es una isometría, entonces tanto f como K son En part.

uniformemente continuas.

$$d(x,y) = d'(p(x),p(y)) \forall x,y \in E'$$

$$d'(w,z) = d'(p(p'(w)), f(p''(z))) = d'(p'(y), p''(z))$$

Cálculo Avanzado

Daniel Carando