### Smart Energy Systems Winter 2020-2021

# Optimization Project Group **Final Presentation**

supervised by Ogün Yurdakul

Eric Rockstädt Theodor Schönfisch Isabell von Falkenhausen







## Agenda



- 1. Introduction
- 2. Problem description
- 3. Solution methodology
- 4. Results
- 5. Conclusion
- 6. Outlook

## Introduction | Motivation



- How can we optimally operate a microgrid under uncertainty?
- 2. How can we ensure efficiency of the operation in a two-staged problem?
- 3. How can we leverage variance reduction techniques in this modelling approach?

## Introduction | Unit commitment



- Short-term planning of a microgrid is determined by unit commitment (UC) and economic dispatch decisions
- Sets start-up and shut-down of thermal generation resources while minimizing costs
- Based on expected load, equipment limitations, and operational policies

## Problem description | Model set-up





## Problem description | Model set-up





# Problem description | Model set-up





## Problem description | Objective function



$$\min_{u_G,\, p_{FW},\, p_G,\, p_{RT}} \Biggl( \sum_{h \in H} c_G^u * u_G[h] + \lambda_{FW} * p_{FW}[h] + E ig[ c_G^p * p_G[h] + \lambda_{RT} * p_{RT}[h] ig] \Biggr)$$

| $c_G^u$        | Fixed costs of generator               | 0.0000212 \$/h | $\lambda_{RT}$ | Price of real time contract (RT)               | 0.3 \$/kWh   |
|----------------|----------------------------------------|----------------|----------------|------------------------------------------------|--------------|
| $u_G[h]$       | Unit commitment of generator in hour h | -              | $p_{RT}[h]$    | Power purchased from RT in hour h              | kW           |
| $\lambda_{FW}$ | Price of forward contract (FW)         | 0.25 \$/kWh    | $c_G^p$        | Linear costs of generator                      | 0.128 \$/kWh |
| $p_{FW}[h]$    | Power purchased from FW in hour h      | kW             | $p_G[h]$       | Power generation of generator in hour <i>h</i> | kW           |

## Problem description | Generator



### **Characteristics:**

 $\left[p_G
ight]^m$  Minimum power output 0 kW

 $\left[p_G
ight]^M$  Maximum power output 12 kW

 $T_C^{\uparrow}$  Minimum uptime 3 h

 $T_G^\downarrow$  Minimum downtime 4 h

 $R_G$  Ramping 5 kW

### **Assumptions:**

Start generation with 0 kW

#### **Constraints:**

$$u_G[h]*\left[p_G
ight]^m \leq p_G[h] \leq u_G[h]*\left[p_G
ight]^M$$

$$-R_G \le p_G[h] - p_G[h-1] \le R_G$$

$$u_G[h] - u_G[h-1] \leq u_G[
u], \, orall \, 
u \in N \, ext{such that}$$

$$h \leq 
u \leq \min \Bigl\{ h - 1 + T_G^{\uparrow}, \, H \Bigr\}$$

$$u_G[h-1]-u_G[h] \leq 1-u_G[
u], \ orall 
u \in N ext{ such that} \ h \leq 
u \leq \min \Bigl\{ h-1+T_G^\downarrow, \ H \Bigr\}$$

$$orall \, h \in H = \{0, \dots, 24\}$$

### Problem description | Energy storage resource (ESR)



### Characteristics:

| Minimum storage level | 0 kWh                 |
|-----------------------|-----------------------|
|                       | Minimum storage level |

$$E_{\sigma_S}^m$$
 Maximum storage level 5 kWh

$$p_{\sigma_S}^w$$
 Maximum withdrawal power 10 kW

$$p_{\sigma_s}^i$$
 Minimum charging power 10 kW

$$E_{\sigma_S}[h]$$
 Storage level in hour  $h$   $kWh$ 

#### **Constraints:**

$$E_{\sigma_S}^m \leq E_{\sigma_S}[h] \leq E_{\sigma_S}^M$$

$$E_{\sigma_S}[h] = E_{\sigma_S}[h-1] \,-\, P^{net}_{\sigma_S}[h] st 1h$$

$$-p_{\sigma_S}^i \leq P_{\sigma_S}^{net}[h] \leq p_{\sigma_S}^w$$

$$orall\, h \in H$$

### **Assumptions:**

- No losses, hence efficiency 100 %
- No costs
- Initialize an empty storage

### Problem description | Electrical vehicle (EV)



#### Characteristics:

| $E^M_{\sigma_S}$ | Minimum storage level | 0 kWh |
|------------------|-----------------------|-------|
|                  |                       |       |

$$E_{\sigma_S}^m$$
 Maximum storage level 38 kWh

$$p_{\sigma_S}^w$$
 Maximum withdrawal power 11 kW

$$p_{\sigma_S}^i$$
 Minimum charging power 11 kW

### **Assumptions:**

- Based on ESR
- Plugged in at 30 % at hour 7
- Plugged out at 60 % at hour 17
- State of charge between 20 % and 80 %

#### **Constraints:**

$$0.2*E^M_{\sigma_S} \leq E_{\sigma_S}[h] \leq 0.8*E^M_{\sigma_S} \, orall \, h \in \{7,\ldots,17\}$$

$$E_{\sigma_S}[7] = 0.3 * E_{\sigma_S}^M - P_{\sigma_S}^{net}[7]$$

$$E_{\sigma_S}[h] = E_{\sigma_S}[h-1] \,-\, P^{net}_{\sigma_S}[h] * 1h \,orall \, h \in \{8,\ldots,17\}$$

$$E_{\sigma_S}[17]=0.6*E_{\sigma_S}^M$$

$$-p_{\sigma_S}^i \leq P_{\sigma_S}^{net}[h] \leq p_{\sigma_S}^w \, orall \, h \in H$$

$$P^{net}_{\sigma_S}[h] \,=\, 0,\, E_{\sigma_S}[h] = 0 \,\,orall\, h \,\in H \,ackslash\, \{7,\ldots,17\}$$

## Problem description | Load



### Constraints:

$$p_G[h] + p_{FW}[h] + p_{RT}[h] + \sum_{\sigma_S \in ESR} P^{net}_{\sigma_S}[h] \geq L[h] \, orall h \in H$$
 Load value in hour  $h$  kW

### **Characteristics:**



### **Assumptions:**

- Hours independent, normally distributed
- Variance = ½ \* mean

# Problem description | DAI-Labors testbed





- Optimization methods
  - Represent DAI-Labors testbed
  - Applicable to real life example
  - Scalable

## Solution methodology | Characteristics



$$egin{aligned} \minig(c^Txig) \ s.\,t.\,\,Ax\, \leq b \ x>0 \end{aligned}$$



Solving for all samples simultaneously increases **computation time** 



Split problem into **two stages** and solve iteratively

## Solution methodology | L-shape method







23.02.2021

## The L-shaped Method



- decomposition into master and sub problem
- solve subproblem: complicating variables are treated as parameters to get a candidate solution
- insert optimality cut into the master problem
- optimality cut is a proxy for the 1st stage decision on 2nd stage costs
- master problem: lower bound (less constraints)
- sub problem: upper bound
- optimal solution when upper and lower bound are sufficiently close
- L-shaped method:
  - uncertainty
  - multiple subproblems



## Solution methodology | Sampling techniques



- Goal: Decrease variance to get more accurate estimator of the mean
- Better: improving Monte Carlo samples through variance reduction techniques



- Latin Hypercube Sampling
- **Antithetic Variates**

## Antithetic variates | Implementation



- Idea: exploit correlations by pairing negatively correlated random variables
- Create random samples with N = ½ sample size from a normal distribution (general case: from uniform distribution)
- Calculate antithetics: mean values (random samples mean values)
- 3. Join the random samples and its antithetics to create the full sample



Source: based on Homem-de-Mello & Bayraksan (2016)

## Latin hypercube | Implementation



- For each hour, divide distribution into N parts of equal probability (N = sample size)
- 2. Draw a random sample from each part
- 3. Shuffle hourly sets
- 4. Create random vector from hourly sets



Source: based on Homem-de-Mello & Bayraksan (2016)

## Variance reduction | Implementation



#### **Antithetic Variates**

- 1. Create random samples with  $N = \frac{1}{2}$  sample size from a normal distribution
- 2. Calculate antithetics: mean values (random samples mean values)
- 3. Join the random samples and its antithetics to create the full sample

#### **Latin Hypercube Sampling**

- 1. For each hour, divide distribution into N parts of equal probability (N = sample size)
- 2. Draw a random sample from each part
- 3. Shuffle hourly sets
- 4. Create random vector from hourly sets



- 1. compare deterministic with stochastic approach (relation forward / real time)
- 2. Mean, variance, objective value (MS2)
- Sample size & SD (MS3) → higher sample size decreases variance, computation time increases
- 4. MS 4: Variance reduction techniques & sample size
- 5. Final: Variance reduction techniques & sample size with new components
- 6. Computation time/ multiprocessing

7.

### Scrum board





# Results | Deterministic vs. stochastic







## Results | Sample size





## Results | Sampling techniques





### Results | Sampling techniques





Problematic: Equalities in constraints, negative recourse vector from second stage

### Results | Computation time





#### Measures to improve runtime

Remove unnecessary constraints

Execution via terminal

Enable multiprocessing

### Conclusion



- Stochastic approach yields better objective value
- Variance reduction techniques decrease the standard deviation in scenarios with no ESR
  - This effect does not yield with ESR: constraints violate the pre-conditions for Antithetic Variates and Latin Hypercube Sampling (no monotonicity)
- Structure of L-shaped method enables parallelization of tasks, facilitating multiprocessing to decrease processing time

### Outlook



- Economic mechanisms
- Distribution and variability of load throughout seasons
- Further application of variance reduction techniques in optimization problems
- Avoidance of overly conservative sample sizes while assuring quality of solution → sequential sampling

### References



Birge, J. R., and Louveaux, F., *Introduction to stochastic programming*. Springer Science & Business Media, 2011.

Conejo, A. J., Castillo, E., Minguez, R., and Garcia-Bertrand, R., *Decomposition techniques in mathematical programming: engineering and science applications*. Springer Science & Business Media, 2006.

Homem-de-Mello T. and Bayraksan, G., *Scenario Generation and Sampling Methods*, Lecture Slides, 2016. Accessible via <a href="https://www.youtube.com/watch?v=RkUdWL\_3KLA">https://www.youtube.com/watch?v=RkUdWL\_3KLA</a>

Yurdakul et al., Quantification of the Impact of GHG Emissions on Unit Commitment in Microgrids, in IEEE PES T&D-LA 2020.





## Thanks for your attention

Eric Rockstädt
Theodor Schönfisch
Isabell von Falkenhausen