Soc 360 Statistics for Sociologists I

Chapter 15, Part I
Sampling Distributions
July 10, 2018

Overview – Chapter 15, Part 1 [15.1 – 15.3]

- Parameters vs. statistics
- Law of Large Numbers
- Introduction to sampling distributions
- Sampling exercise

Statistical Inference

 We can use information from a sample to infer something about a broader population

 Every possible sample is different, but if done right, they have a specific pattern

 We want to essentially know how often our results would be accurate out of the many, many possible samples

Parameters and Statistics

 Parameters are reserved for numbers that describe a population they are almost always not known

Statistics are those numbers that are computed from a sample

 The distinction between parameters and statistics did not matter for describing data, but <u>does</u> matter for inference

Parameters and Statistics

- Notation for parameters and statistics are different so we can tell them apart
- We have already been introduced to a couple of parameters and their corresponding statistics

Population Mean: μ

Sample Mean: \bar{x}

Population Standard Deviation: σ

Sample Standard Deviation: *s*

Estimation

 Sample statistics are meant to be estimates of population parameters

 However, each different sample is going to produce a slightly different sample statistic

• As our sample size increases, though, our sample statistic is going to get closer and closer to the population parameter

Example: Law of Large Numbers

 As our sample size increases our sample statistic gets closer and closer to the population parameter

- Say I'm interested in the mean height of students in this room
 - What is my population?

 The Law of Large Numbers tells us that the mean for any given sample will be closer to the population mean as the sample size increases

• Sampling distributions allow us to think about what would happen if we took many samples of a given size from a population

 The distribution of the sample statistic from each of those samples makes up a sampling distribution

- Multiple different distributions to keep straight
 - Population distribution: the distribution of values of a given variable among <u>all the individuals in a population</u>
 - Sample distribution: the distribution of values of a given variable among the individuals in a given sample
 - Sampling distribution of a statistic: the distribution of values taken by the <u>statistic</u> in <u>all possible samples of the same size</u> from the same population

 The sampling distribution is a theoretical construct that represents what would happen if we took <u>all possible samples</u> of a given size from a population

 Sampling distributions are just like any other distribution—they can be defined by shape, center, and variability

 We can construct a sampling distribution of any statistic from a sample

Practice: Sampling Distributions

- Each bag contains the same 200 slips of paper with one number on each piece (heights of a population, in inches)
- Within each pair, draw four samples
 - 2 samples of 10
 - 2 samples of 25
 - Record the numbers from each sample and calculate the sample mean for each

Practice: Sampling Distributions

```
<u>n=10</u>
64
65
      0
65
66
      233
66
      669
67
      2334
67
      788889
68
      022233
68
      55667778
69
      34
69
70
70
      68
71
```

Practice: Sampling Distributions

	<u>n=10</u>		<u>n=25</u>
64		64	
65	0	65	
65	5	65	
66	233	66	
66	669	66	56679
67	2334	67	002234
67	788889	67	6667788889
68	022233	68	001233334444
68	55667778	68	5667
69	34	69	0
69	5	69	6
70	4	70	
70	68	70	
71		71	

Summary – Chapter 15, Part 1

- Parameters vs. statistics
- The Law of Large Numbers
- Sampling distributions