(6)

(3)

Exercice 1. Recopier et compléter cette définition du cours : « Soit f une fonction définie sur un intervalle I. Dire que f est décroissante sur I signifie que pour tous réels ..., si $x_1 \le x_2$, alors ... ».

Exercice 2. On considère la fonction
$$f$$
 définie sur \mathbb{R} par $f(x) = 2x^2 - \frac{1}{4}$. (3)

Calculer: f(1), f(-3) et $f(\frac{3}{2})$.

(On détaillera les calculs et on donnera les réponses sous forme simplifiée)

Exercice 3. Soit f la fonction définie sur \mathbb{R} par f(x) = 3x + 1. Déterminer les éventuels antécédents de 10 par f.

Exercice 4. Soit x un nombre réel. Recopier et compléter ces équivalences avec un ensemble : (4)

- 1. x > 0 et $x < 3 \Leftrightarrow x \in \dots$
- 2. x = 3 ou $x = 7 \Leftrightarrow x \in \dots$
- 3. x < -1 et $x \ge -3 \Leftrightarrow x \in \dots$
- 4. x > 0 et $x \ge 42 \Leftrightarrow x \in \dots$

Exercice 5. Soit f la fonction définie par la courbe représentative ci-dessous.

- 1. Lire graphiquement l'ensemble de définition de la fonction f.
- 2. Donner le tableau de variations de la fonction f.
- 3. La fonction f admet-elle des extremums? Les donner.
- 4. Lire graphiquement l'image de 3 par la fonction f.
- 5. Résoudre graphiquement l'équation f(x) = 1. En déduire les éventuels antécédents de 1 par f.
- 6. Résoudre graphiquement l'inéquation $f(x) \leq 0$.

Exercice 6. On considère à nouveau la fonction f de l'exercice 2.

- 1. Démontrer que pour tout nombre réel x, on a $x^2 \ge 0$.
- 2. Démontrer que f admet un minimum qu'on précisera.