MULTI - TP 1

Auguste WARME-JANVILLE, Anatole VERCELLONI, Méline TROCHON

February 16, 2023

Exercice C

 $input = SEL, READ, GO, DELAY, ADR_OK$ $output = ACK_EN, ACK_VALUE, MEM_CMD, DE_EN$ $A = SEL \cdot ADR_OK \cdot \underline{DELAY} \cdot \overline{READ}$ $B = SEL \cdot ADR_OK \cdot \overline{DELAY} \cdot \overline{READ}$ $C = SEL \cdot ADR_OK \cdot \overline{DELAY} \cdot READ$ $D = SEL \cdot \underline{ADR_OK} \cdot DELAY \cdot READ$
$$\begin{split} E &= \underbrace{SEL} \cdot \overline{ADR_OK} \\ F &= \overline{SEL} \cdot ADR_OK \end{split}$$
G=1 $R = \overline{ADR_OK} + \overline{READ}$ $S = SEL \cdot ADR_OK \cdot READ$ $T=\overline{SEL}$ U=GO $U' = \overline{GO}$ V = GO $V' = \overline{GO}$ $X = SEL \cdot ADR_OK \cdot \overline{READ}$ $Y = \overline{ADR_OK} + READ$ $Z=\overline{SEL}$

	ACK_EN	ACK_VALUE	DT_EN	MEM_CMD	
IDLE	0	X	0	NOP	
R_WAIT	1	WAIT	0	READ	
R_OK	1	READY	1	READ	
WWAIT	1	WAIT	0	WRITE	
W_OK	1	READY	0	WRITE	
ERROR	1	ERROR	0	NOP	

Exercice D

A = 1

 $B = GNT \\ B' = \overline{GNT}$

C = 1

D=LAST

 $D' = \overline{LAST}$

E = LAST $E' = \overline{LAST}$

F=LAST

 $F' = \overline{LAST}$

G = LAST

 $G' = \overline{LAST}$

H=GNT

 $H' = \overline{GNT}$

I = 1

 $J = \overline{READY}$

 $K = LAST \cdot READY$

 $L = READY \cdot \overline{LAST}$

M=GNT

 $M' = \overline{GNT}$

N = 1

 $O = \overline{READY}$

 $P = READY \cdot NUL$

 $Q = READY \cdot \overline{NUL}$

R = GNT

 $R' = \overline{GNT}$

$$\begin{split} S &= 1 \\ T &= READY \\ T' &= \overline{READY} \end{split}$$

	REQ	CMD_EN	ADR_VALUE	READ_VALUE	LOCK_VALUE	DT_EN
INIT	0	0	X	X	X	0
RAM_REQ	1	0	X	X	X	0
RAM_A0	0	1	RAM_BASE	1	1	0
RAM_A1_D0	0	1	RAM_BASE+4	1	1	0
RAM_A2_D1	0	1	RAM_BASE+8	1	1	0
RAM_A3_D2	0	1	RAM_BASE+12	1	0	0
RAM_D3	0	0	X	X	X	0
W_REQ	1	0	X	X	X	0
W_AD	0	1	TTY_BASE	0	0	0
W_DT	0	0	X	X	X	1
STS_REQ	1	0	X	X	X	0
STS_AD	0	1	TTY_BASE+4	1	0	0
STS_DT	0	0	X	X	X	0
BUF_REQ	1	0	X	X	X	0
BUF_AD	0	1	TTY_BASE+8	0	0	0
BUF_DT	0	0	X	X	X	1 1

Exercice E

X = REQ

 $X' = \overline{REQ}$

Y = LOCK

 $Y' = \overline{LOCK}$

 $Z = \overline{LOCK}$

Z' = LOCK

J=ACK==WAIT

 $K = (ACK! = WAIT) \cdot \overline{REQ}$

 $L = (ACK! = WAIT) \cdot REQ$

	GNT	SEL0	SEL1
IDLE	0	0	0
AD	1	$MSB(A) == SEG_RAM$	$MSB(A) == SEG_TTY$
DTAD	0	$MSB(A) == SEG_RAM$	$MSB(A) == SEG_TTY$
DT	0	$MSB(A) == SEG_RAM$	$MSB(A) == SEG_{-}TTY$

L'allocation (choix d'un maître) est réalisée dans l'état IDLE et l'état DT afin de ne pas perdre un cycle et d'éviter qu'un maître ne monopolise le bus.

Exercice G

- $\bullet\,$ La vitesse de simulation est de 1 250 000 cycles par secondes environ
- Il y a 0 cycles d'attente dans les états de l'automate du composant maître où celui-ci demande au BCU l'allocation du bus. En effet il n'y a qu'un maître.
- Il y a 1 cycle d'attente dans les états de l'automate du composant maître ou celui-ci attend la réponse de la RAM. En effet la latence de la RAM est définie à 1. Les cycles d'attente sont égaux à la latence de la RAM.
- Il faut 3 cycles à l'automate du composant maître pour afficher un caractère sur le composant PIBUS_MULTI_TTY.