$D\mathrm{-BIOL},\; D\mathrm{-CHAB}$

Prüfung zur Vorlesung Mathematik I/II

Bitte ausfüllen!

Name:	
Vorname:	
Legi-Nr.:	

Nicht ausfüllen!

Aufgabe	Punkte	Kontrolle
1		
2		
3		
4		
5		
6		
Total		

Vollständigkeit	
-----------------	--

Hinweise zur Prüfung

Prüfungsdauer: 3 Stunden.

Hilfsmittel: Aufzeichnungen im Umfang von 20 Seiten A4.

Bitte beachten Sie folgende Punkte:

- Tragen Sie **jetzt** Ihren Namen in das Deckblatt ein und geben Sie es **am Ende** der Prüfung als vorderstes Blatt Ihrer Arbeit ab.
- Legen Sie Ihre Legi offen auf den Tisch.
- Beginnen Sie jede Aufgabe auf einem neuen Blatt.
- Begründen Sie Ihre Lösungen. Dabei können bekannte Formeln aus der Vorlesung und den Übungen ohne Herleitung verwendet werden.
- Schreiben Sie nicht mit Bleistift, rotem oder grünem Kugelschreiber.
- Die Reihenfolge der Bearbeitung der Aufgaben ist Ihnen freigestellt.
- Wir erwarten nicht, dass Sie alle Aufgaben lösen. Tun Sie einfach Ihr Bestes! Verweilen Sie nicht zu lange bei einer Aufgabe, die Ihnen Schwierigkeiten bereitet.

Viel Erfolg!

Aufgaben

1. (10 Punkte)

Die Antworten in dieser Aufgabe müssen *nicht* begründet werden. Schreiben Sie die Antworten vollständig gekürzt und vereinfacht direkt auf das Aufgabenblatt.

a) Berechnen Sie

$$\lim_{x \to \infty} \frac{x^4 + 2x + 1}{2x^4 + x^3 + x^2} = \underline{\qquad}.$$

b) Berechnen Sie

$$\lim_{x \to 0} \frac{e^x - e^{-x}}{\sin(x)} = \underline{\qquad}.$$

c) Das Taylorpolynom erster Ordnung im Punkt $x_0 = 1$ der Funktion

$$f(x) = xe^{(x-1)^2},$$

ist gegeben durch ______.

d) Berechnen Sie die Stammfunktion

$$\int \frac{x+1}{x^2 - 4} dx = \underline{\qquad},$$

und das bestimmte Integral

$$\int_0^1 \frac{x+1}{x^2 - 4} dx = \underline{\qquad}.$$

e) Die Funktion $f: \mathbb{R} \to \mathbb{R}$ sei gegeben durch

$$f(x) = \begin{cases} x^2, & x \le 2, \\ cx + 2, & x > 2. \end{cases}$$

Wie muss man c wählen, damit f an der Stelle $x_0 = 2$ stetig ist?

f) Berechnen Sie die folgende Stammfunktion

$$\int \frac{1}{(x+1)^3} dx = \underline{\qquad}.$$

g) Berechnen Sie die Ableitung von $f(x) = 3^x$

$$f'(x) =$$
_____.

h) Geben Sie das grösstmögliche Intervall I an, auf dem die Funktion $f(x) = \frac{x^2}{e^x}$ monoton wachsend ist

$$I = \underline{\hspace{1cm}}$$
.

2. (10 Punkte)

Aufgaben **2. a)** – **f)** müssen nicht begründet werden. Schreiben Sie die Antworten $vollständig\ gekürzt$ und vereinfacht direkt auf das Aufgabenblatt.

- a) Gegeben sind die komplexen Zahlen z und w. Welche Aussage ist richtig?
 - $\Box |zw| = |z||w|$
 - $\Box z + \overline{z} = 2\operatorname{Im}(z)$
 - $\Box \ z \overline{z} = 2\operatorname{Im}(z)$
- **b)** Der Betrag von $z = 1 + \sqrt{3} (1 \sqrt{3})i$ ist:
 - $\Box |z| = 2\sqrt{3}$
 - $\Box |z| = 2\sqrt[4]{3}$
 - $\Box |z| = 2\sqrt{2}$
- c) Bestimmen Sie Real- und Imaginärteil von $w = e^{i}$.

$$Re(z) =$$
______, $Im(z) =$ _____.

d) Schreiben Sie die Zahl $z = \frac{5e^{i\pi} + 3i}{2 + 4i}$ in der Form a + ib:

$$z = \underline{\hspace{1cm}} + i \underline{\hspace{1cm}} .$$

e) Berechnen Sie die Potenz

$$z = \left(1 + \sqrt{3}i\right)^9 = \underline{\qquad}.$$

f) Bestimmen Sie die Lösungen von

$$z^3 = 2(i-1).$$

$$z_1 = \underline{\hspace{1cm}},$$

$$z_3 = \underline{\hspace{1cm}}.$$

3. (10 Punkte)

- a) Die Antworten in dieser Teilaufgabe müssen *nicht* begründet werden. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind und kreuzen Sie die entsprechende Antwort direkt *auf dem Aufgabenblatt* an.
 - ullet Wenn x Eigenvektor der Matrix A ist, dann ist x auch Eigenvektor von A^{-1} .
 - □ richtig
 - \square falsch
 - $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$ ist Eigenvektor der Matrix $\begin{pmatrix} 2 & 5 \\ 0 & -2 \end{pmatrix}$.
 - □ richtig
 - \square falsch
 - Die Matrix $A = \begin{pmatrix} 2 & 0 & 2 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ ist invertierbar.
 - □ richtig
 - \square falsch
 - Das Gleichungssystem $\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} x = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$ besitzt genau eine Lösung.
 - □ richtig
 - \square falsch
- b) Seien

$$A = \begin{pmatrix} 2 & 1 & -1 \\ -3 & -1 & 2 \\ 1 & 1 & -1 \end{pmatrix}$$
 sowie
$$B = \begin{pmatrix} x_1 & 0 & -1 \\ 1 & 1 & 1 \\ 2 & 1 & x_2 \end{pmatrix}$$

Berechnen Sie x_1 und x_2 sodass $B = A^{-1}$ gilt.

(Man könnte auch schreiben: Es gibt reelle Zahlen x_1 und x_2 , sodass $B = A^{-1}$ gilt (nicht zu beweisen). Berechnen Sie x_1 und x_2 .)

c) Lösen Sie das Gleichungssystem

$$\begin{pmatrix} 1 & -2 & 0 \\ 4 & 1 & 1 \\ 0 & 1 & 3 \end{pmatrix} x = \begin{pmatrix} -3 \\ 9 \\ 11 \end{pmatrix}$$

durch Benützung der Cramerschen Regel.

d) Zeigen Sie, dass 5 Eigenwert der Matrix

$$A = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 5 & 0 \\ 2 & 0 & 4 \end{pmatrix}$$

ist und berechnen Sie die dazugehörigen Eigenvektoren.

- **4.** (10 Punkte)
 - a) Lösen Sie durch Trennung der Variablen folgendes Anfangswertproblem

$$y' = \frac{x}{\cos y} \quad \text{mit} \quad y(0) = -\frac{\pi}{2},$$

und bestimmen Sie den Definitionsbereich von y.

b) Bestimmen Sie die allgemeine Lösung $y_H(x)$ von

$$y'' + 4y' + 5y = 0.$$

Wie verhält sich y für $x \to \infty$?

c) Man betrachte nun die inhomogene Differentialgleichung

$$y'' + 4y' + 5y = 5. (1)$$

Finden Sie eine partikuläre Lösung von (1).

d) Lösen Sie das Anfangswertproblem für (1) unter der Anfangsbedingung y(0) = 1 und y'(0) = -1.

Falls Sie Teil b) und/oder c) nicht lösen können, nehmen Sie an, dass

$$y_H(x) = c_1 e^{-x} \cos x + c_2 e^{-x} \sin x$$
 und $y_{part}(x) = 2$

Lösungen von b) und c) seien.

5. (7 *Punkte*)

a) Bestimmen Sie die kritischen Punkte der Funktion

$$f(x,y) = (x^2 + xy + 2)e^y$$

und geben Sie jeweils an, ob es sich um ein lokales Minimum, lokales Maximum oder um einen Sattelpunkt handelt.

b) Bestimmen Sie die Extrema der Funktion

$$f(x,y) = 3x + y^2$$

unter der Nebenbedingung $x^3 + y^2 = 1$.

6. (10 Punkte)

In der Ebene \mathbb{R}^2 seien die durch

$$\gamma_1(t) = (t,0) & \text{für } 0 \le t \le 1, \\
\gamma_2(t) = (1,t) & \text{für } 0 \le t \le 1, \\
\gamma_3(t) = (1-t,1-t) & \text{für } 0 \le t \le 1,$$

parametrisierten Wege $\gamma_1, \gamma_2, \gamma_3$ gegeben. Der Weg γ durchläuft die Wege $\gamma_1, \gamma_2, \gamma_3$.

- a) Stellen Sie die Wege $\gamma_1, \gamma_2, \gamma_3$ graphisch dar, indem Sie diese in ein Koordinatensystem einzeichnen. Geben Sie auch die Richtung an.
- b) Berechnen Sie die folgenden Linienintegrale:

$$I_{1} = \int_{\gamma_{1}} xy^{2} dx - yx dy,$$

$$I_{2} = \int_{\gamma_{2}} xy^{2} dx - yx dy,$$

$$I_{3} = \int_{\gamma_{3}} xy^{2} dx - yx dy.$$

c) Bestimmen Sie mit Hilfe von Aufgabe b) das Linienintegral

$$I = \int_{\gamma} xy^2 \, dx - yx \, dy.$$

d) Berechnen Sie das Linienintegral I mit Hilfe des Satzes von Green.