```
import numpy as np
import pandas as pd
df=pd.read_csv('/content/apple_quality.csv')
df
```

	A_id	Size	Weight	Sweetness	Crunchiness	Juiciness	Ripeness	
0	0.0	-3.970049	-2.512336	5.346330	-1.012009	1.844900	0.329840	
1	1.0	-1.195217	-2.839257	3.664059	1.588232	0.853286	0.867530	
2	2.0	-0.292024	-1.351282	-1.738429	-0.342616	2.838636	-0.038033	
3	3.0	-0.657196	-2.271627	1.324874	-0.097875	3.637970	-3.413761	
4	4.0	1.364217	-1.296612	-0.384658	-0.553006	3.030874	-1.303849	
3996	3996.0	-0.293118	1.949253	-0.204020	-0.640196	0.024523	-1.087900	
3997	3997.0	-2.634515	-2.138247	-2.440461	0.657223	2.199709	4.763859	
3998	3998.0	-4.008004	-1.779337	2.366397	-0.200329	2.161435	0.214488	
3999	3999.0	0.278540	-1.715505	0.121217	-1.154075	1.266677	-0.776571	
4000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Created
4001 ro	ws × 9 c	olumns				_		>

df.drop(['A_id'],axis=1,inplace=True)
df

	Size	Weight	Sweetness	Crunchiness	Juiciness	Ripeness			
0	-3.970049	-2.512336	5.346330	-1.012009	1.844900	0.329840			
1	-1.195217	-2.839257	3.664059	1.588232	0.853286	0.867530			
2	-0.292024	-1.351282	-1.738429	-0.342616	2.838636	-0.038033			
3	-0.657196	-2.271627	1.324874	-0.097875	3.637970	-3.413761			
4	1.364217	-1.296612	-0.384658	-0.553006	3.030874	-1.303849			
3996	-0.293118	1.949253	-0.204020	-0.640196	0.024523	-1.087900			
3997	-2.634515	-2.138247	-2.440461	0.657223	2.199709	4.763859			
3998	-4.008004	-1.779337	2.366397	-0.200329	2.161435	0.214488			
3999	0.278540	-1.715505	0.121217	-1.154075	1.266677	-0.776571			
4000	NaN	NaN	NaN	NaN	NaN	NaN	Created_by_Nidi		
4001 rows × 8 columns									
4							+		

df.tail()

	Size	Weight	Sweetness	Crunchiness	Juiciness	Ripeness	
3996	-0.293118	1.949253	-0.204020	-0.640196	0.024523	-1.087900	
3997	-2.634515	-2.138247	-2.440461	0.657223	2.199709	4.763859	
3998	-4.008004	-1.779337	2.366397	-0.200329	2.161435	0.214488	
3999	0.278540	-1.715505	0.121217	-1.154075	1.266677	-0.776571	
4000	NaN	NaN	NaN	NaN	NaN	NaN	Created_by_Nidi
4							+

df.head()

	Size	Weight	Sweetness	Crunchiness	Juiciness	Ripeness	Acidity	Qua:
0	-3.970049	-2.512336	5.346330	-1.012009	1.844900	0.329840	-0.491590483	Ç
1	-1.195217	-2.839257	3.664059	1.588232	0.853286	0.867530	-0.722809367	Ç
2	-0.292024	-1.351282	-1.738429	-0.342616	2.838636	-0.038033	2.621636473	
3	-0.657196	-2.271627	1.324874	-0.097875	3.637970	-3.413761	0.790723217	Ę
4	1.364217	-1.296612	-0.384658	-0.553006	3.030874	-1.303849	0.501984036	Ç
4								•

```
df.isna().sum()
     Size
                      1
      Weight
                      1
      Sweetness
      Crunchiness
      Juiciness
                      1
      Ripeness
      Acidity
                      0
      Quality
                      1
     dtype: int64
df['Size']=df['Size'].fillna(df['Size'].mean())
df['Weight']=df['Weight'].fillna(df['Weight'].mean())
df['Sweetness']=df['Sweetness'].fillna(df['Sweetness'].mean())
df['Crunchiness']=df['Crunchiness'].fillna(df['Crunchiness'].mean())
df['Juiciness']=df['Juiciness'].fillna(df['Juiciness'].mean())
df['Ripeness']=df['Ripeness'].fillna(df['Ripeness'].mean())
df['Quality']=df['Quality'].fillna(df['Quality'].mode()[0])
df.isna().sum()
     Size
      Weight
                      0
      Sweetness
                      0
      Crunchiness
                      0
      Juiciness
                      0
      Ripeness
                      a
     Acidity
                      0
      Quality
                      0
      dtype: int64
df.dtypes
     Size
                      float64
                       float64
     Weight
                       float64
      Sweetness
                       float64
      Crunchiness
      Juiciness
                       float64
      Ripeness
                       float64
      Acidity
                       object
     Quality
                       object
      dtype: object
from sklearn.preprocessing import LabelEncoder
encode=LabelEncoder()
df['Quality']=encode.fit_transform(df['Quality'])
df['Acidity']=encode.fit_transform(df['Acidity'])
df.dtypes
                       float64
      Size
                       float64
      Weight
                       float64
      Sweetness
     Crunchiness
                       float64
      Juiciness
                       float64
      Ripeness
                       float64
      Acidity
                        int64
                         int64
      Quality
     dtype: object
x=df.iloc[:,:-1].values
      array([[-3.97004852e+00, -2.51233638e+00, 5.34632961e+00, ...,
                1.84490036e+00, 3.29839797e-01, 3.97000000e+02],
             [-1.19521719e+00, -2.83925653e+00, 3.66405876e+00, ..., 8.53285795e-01, 8.67530082e-01, 5.50000000e+02], [-2.92023862e-01, -1.35128199e+00, -1.73842916e+00, ..., 2.83863551e+00, -3.80333280e-02, 3.54300000e+03],
             [-4.00800374e+00, -1.77933711e+00, 2.36639697e+00, ...,
             2.16143512e+00, 2.14488384e-01, 1.42800000e+03], [ 2.78539650e-01, -1.71550503e+00, 1.21217251e-01, ...,
                1.26667740e+00, -7.76571470e-01, 3.04100000e+03],
             [-5.03014630e-01, -9.89546545e-01, -4.70478520e-01,
                5.12117968e-01, 4.98277428e-01, 4.00000000e+03]])
y=df.iloc[:,-1].values
```

0.8834304746044963

```
\mathsf{array}([1,\ 1,\ 0,\ \dots,\ 1,\ 1,\ 1])
from \ sklearn.model\_selection \ import \ train\_test\_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=1)
x_train
       array([[-1.54241097e+00, -9.42480815e-01, -5.08999257e-01, ...,
                  -8.19818136e-01, 8.48231585e-01, 2.64800000e+03],
                2.94586351e-01, -3.53755252e-01, -5.40281839e-01, ...,
6.71989996e-01, 1.29183819e+00, 2.63100000e+03],
[-5.14301592e-01, -2.78214336e+00, 3.14528232e+00, ...,
9.31536359e-01, 1.03334310e+00, 3.61000000e+02],
                [-2.49258269e+00, -2.06591657e+00, 1.08117994e+00, ..., -1.60072238e+00, -2.83194749e+00, 2.43300000e+03],
                [-4.98846599e+00, -1.90696332e-01, 3.45144007e+00, ..., 1.72614427e+00, -8.59105780e-02, 1.24900000e+03],
                [-6.09625194e-01, -1.74773411e+00, 9.44680078e-01, ..., -3.97477816e-01, 1.17733095e+00, 3.17200000e+03]])
from sklearn.preprocessing import StandardScaler
scale=StandardScaler()
scale.fit(x_train)
x_train=scale.transform(x_train)
x\_test = scale.transform(x\_test)
from sklearn.svm import SVC
model=SVC()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
y_pred
       array([0, 1, 1, ..., 1, 0, 0])
from sklearn.metrics import confusion_matrix,accuracy_score
cm=confusion_matrix(y_test,y_pred)
print(cm)
       [[534 76]
        [ 64 527]]
score=accuracy_score(y_test,y_pred)
score
```