A Shot at Reproducible Data Analysis

Toni Verbeiren

13/3/2015

Contents

Introduction	2
Idea	2
Workflow	2
RMarkdown format	3
Markdown format	4
Pandoc	5
Some Examples	5
Simple example	5
Working with data	7
Scraping the web	8
Different languages	11
Python	11
Scala	11
Sweave	11
What to use it for?	12
How to use it?	12
RStudio	12
your favourite editor here	12

Introduction

In this talk/document/presentation I showcase some of the possibilities that a combination of *tools* provides:

- Markdown
- RMarkdown
- Knitr
- Pandoc
- Reveal.js
- Latex

In order to make sure things look good from the first start, you might check out some additional projects and files:

- Bootstrap template for Pandoc: https://github.com/tonyblundell/pandoc-bootstrap-template
- Alternative LaTeX templates: https://github.com/kjhealy/latex-custom-kjh
- Alternative Pandoc template: https://github.com/kjhealy/pandoc-templates
- Non-official KU Leuven templates: https://github.com/exporl/kuleuven-templates

Idea

Workflow

- 1. Write data generation, data manipulation and discussion in **one text file**.
 - Syntax for text is Markdown.
 - Code lines start with tab or delimited by "'
 - Call this file file.Rmd, even if it includes more than R code.
- 2. Call knitr on the .Rmd file in order to execute the code blocks and include the output of the code in one file. The output is a .md file.
- 3. Call Pandoc on the file, given suitable options (see below). Pandoc is responsible for translating the .md file to any format you want.

RMarkdown format

[36] "" [38] ""

[40] ""

[42] ""

[39] "## Markdown format"

The .Rmd source of this report looks like this (50 lines):

text <- readLines("RR.Rmd",encoding="UTF-8")</pre>

```
tail(head(text, 70),50)
 [1] " <https://github.com/tonyblundell/pandoc-bootstrap-template>"
 [2] "* Alternative LaTeX templates: "
 [3] " <https://github.com/kjhealy/latex-custom-kjh>"
 [4] "* Alternative Pandoc template: "
 [5] " <https://github.com/kjhealy/pandoc-templates>"
 [6] "* Non-official KU Leuven templates:"
 [7] " <https://github.com/exporl/kuleuven-templates>"
 [8] ""
[10] ""
[11] "# Idea"
[12] ""
[14] ""
[15] "## Workflow"
[16] ""
[17] "1. Write data generation, data manipulation and discussion in **one text file**."
[18] "
          * Syntax for text is Markdown."
          * Code lines start with `tab` or delimited by `` ``"
[19] "
[20] "
          * Call this file `file.Rmd`, even if it includes more than `R` code."
[21] ""
[22] "2. Call `knitr` on the `.Rmd` file in order to **execute** the code blocks and **incl
[23] ""
[24] "3. Call `Pandoc` on the file, given suitable options (see below). `Pandoc` is respons:
[25] ""
[27] ""
[28] "## RMarkdown format"
[29] ""
[30] "The `.Rmd` source of this report looks like this (50 lines):"
[31] ""
[32] "```{r, results=\"markup\", comment=\"\"}"
[33] "text <- readLines(\"RR.Rmd\",encoding=\"UTF-8\")"
[34] "tail(head(text, 70),50)"
[35] "```"
```

[41] "The `.md` source of this report looks like this (50 lines):"

```
[43] "```{r, results=\"markup\", comment=\"\"}"
[44] "text <- readLines(\"RR.md\",encoding=\"UTF-8\")"
[45] "tail(head(text, 70),50)"
[46] "``"
[47] ""
[48] "Conversion is done using `knitr`."</pre>
[49] ""
```

Markdown format

[32] ""

The .md source of this report looks like this (50 lines):

```
text <- readLines("RR.md",encoding="UTF-8")
tail(head(text, 70),50)</pre>
```

```
[1] " <https://github.com/tonyblundell/pandoc-bootstrap-template>"
[2] "* Alternative LaTeX templates: "
[3] " <https://github.com/kjhealy/latex-custom-kjh>"
[4] "* Alternative Pandoc template: "
[5] " <https://github.com/kjhealy/pandoc-templates>"
[6] "* Non-official KU Leuven templates:"
[7] " <https://github.com/exporl/kuleuven-templates>"
[8] ""
[10] ""
[11] "# Idea"
[12] ""
[14] ""
[15] "## Workflow"
[16] ""
[17] "1. Write data generation, data manipulation and discussion in **one text file**."
[18] "
         * Syntax for text is Markdown."
         * Code lines start with `tab` or delimited by `` ``"
[19] "
[20] "
         * Call this file `file.Rmd`, even if it includes more than `R` code."
[21] ""
[22] "2. Call `knitr` on the `.Rmd` file in order to **execute** the code blocks and **incl
[23] ""
[24] "3. Call `Pandoc` on the file, given suitable options (see below). `Pandoc` is respons:
[25] ""
[27] ""
[28] "## RMarkdown format"
[29] ""
[30] "The `.Rmd` source of this report looks like this (50 lines):"
[31] ""
```

```
[33] "```r"
[34] "text <- readLines(\"RR.Rmd\",encoding=\"UTF-8\")"
[35] "tail(head(text, 70),50)"
[36] "```"
[37] ""
[38] "```"
[39] " [1] \" <a href="https://github.com/tonyblundell/pandoc-bootstrap-template">https://github.com/tonyblundell/pandoc-bootstrap-template</a>
[40] " [2] \"* Alternative LaTeX templates: \"
[41] " [3] \" <https://github.com/kjhealy/latex-custom-kjh>\"
[42] " [4] \"* Alternative Pandoc template: \"
[43] " [5] \" <https://github.com/kjhealy/pandoc-templates>\"
[44] " [6] \"* Non-official KU Leuven templates:\"
[45] " [7] \" <https://github.com/exporl/kuleuven-templates>\"
[46] " [8] \"\"
[48] "[10] \"\"
[49] "[11] \"# Idea\"
[50] "[12] \"\"
```

Conversion is done using knitr.

Pandoc

A simple and a more involved example of running Pandoc:

```
pandoc file.md -o file.docx

pandoc file.md -o file.html \
    -t html5 \
    --template template.html \
    --css template.css \
    --highlight-style=tango --mathjax \
    --toc --toc-depth 2
```

Dust off your Makefile skills!

Some Examples

Simple example

The first example is in R. Let's say I want to plot a function

$$f(x) = \frac{\log(x^2 + x + 1)}{2x}$$

We first define x and the function value y (in doing so we have used some inline equations as well):

```
x \leftarrow seq(from=-5, to=10, by=.01)

y \leftarrow (log(x*x + x + 1))/(2*x)
```

Then we can plot the function. We use the ggplot2 package.

```
library(ggplot2)
qplot(x,y,geom="line")
```


Figure 1: Plot of the very special function defined above.

See the figure for the result.

Working with data

Let us take a look at a dataset that comes with R, mtcars:

summary(mtcars)

```
##
                           cyl
                                             disp
                                                                hp
         mpg
##
                             :4.000
                                               : 71.1
                                                                 : 52.0
    Min.
           :10.40
                      Min.
                                       Min.
                                                         Min.
##
    1st Qu.:15.43
                      1st Qu.:4.000
                                        1st Qu.:120.8
                                                         1st Qu.: 96.5
##
    Median :19.20
                      Median :6.000
                                       Median :196.3
                                                         Median :123.0
##
    Mean
            :20.09
                      Mean
                              :6.188
                                       Mean
                                               :230.7
                                                         Mean
                                                                 :146.7
##
    3rd Qu.:22.80
                      3rd Qu.:8.000
                                        3rd Qu.:326.0
                                                         3rd Qu.:180.0
##
    Max.
            :33.90
                      Max.
                              :8.000
                                        Max.
                                               :472.0
                                                         Max.
                                                                 :335.0
##
          drat
                            wt
                                             qsec
                                                                VS
##
    Min.
            :2.760
                              :1.513
                                               :14.50
                                                         Min.
                                                                 :0.0000
                      Min.
                                       Min.
##
    1st Qu.:3.080
                      1st Qu.:2.581
                                        1st Qu.:16.89
                                                         1st Qu.:0.0000
##
    Median :3.695
                      Median :3.325
                                        Median :17.71
                                                         Median :0.0000
##
    Mean
            :3.597
                      Mean
                              :3.217
                                        Mean
                                               :17.85
                                                         Mean
                                                                 :0.4375
##
    3rd Qu.:3.920
                      3rd Qu.:3.610
                                        3rd Qu.:18.90
                                                         3rd Qu.:1.0000
            :4.930
                              :5.424
                                               :22.90
                                                                 :1.0000
##
    Max.
                      Max.
                                        Max.
                                                         Max.
##
           am
                            gear
                                              carb
##
    \mathtt{Min}.
            :0.0000
                       Min.
                               :3.000
                                        Min.
                                                 :1.000
    1st Qu.:0.0000
                       1st Qu.:3.000
                                        1st Qu.:2.000
    Median :0.0000
                                        Median :2.000
##
                       Median :4.000
##
    Mean
            :0.4062
                       Mean
                               :3.688
                                        Mean
                                                :2.812
##
    3rd Qu.:1.0000
                       3rd Qu.:4.000
                                        3rd Qu.:4.000
##
    Max.
            :1.0000
                               :5.000
                                                 :8.000
                       Max.
                                        Max.
```

Now the fun starts. Let's fit a model relates how many Miles/Gallon are consumed, given a weight.

```
model <- lm(mpg ~ wt, data=mtcars)
summary(model)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ wt, data = mtcars)
##
## Residuals:
##
       Min
                 1Q Median
                                  3Q
                                         Max
##
   -4.5432 -2.3647 -0.1252
                             1.4096
                                      6.8727
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
```

```
## (Intercept) 37.2851    1.8776   19.858 < 2e-16 ***
## wt         -5.3445    0.5591   -9.559   1.29e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.046 on 30 degrees of freedom
## Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
## F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10</pre>
```

This is verbatim output, we can use some R package magic to get proper tables as output as well using the pander package:

```
library(pander)
pander(model)
```

	Estimate	Std. Error	t value	Pr(> t)
\mathbf{wt}	-5.344	0.5591	-9.559	1.294e-10
(Intercept)	37.29	1.878	19.86	8.242e-19

Table 1: Fitting linear model: mpg \sim wt

We can also plot this information using the code below.

Scraping the web

This script parses the Wikipedia page with Belgian Beers in order to get the data out. It then does some cleaning up and converts the data to different formats. The result can be stored in a file, but just display the first 10 rows.

```
library(XML)
rawBeers <- readHTMLTable(doc="http://nl.wikipedia.org/wiki/Lijst_van_Belgische_bieren")
beers <- NULL

# The first table is not relevant, the rest is:
for (i in seq(2,28)) {
  beers <- rbind(beers,rawBeers[[i]])</pre>
```


Figure 2: A scatterplot of the fuel consumption versus the weight of the car, along with the results of a linear regression. See the text for more information.

```
# Remove the percentage sign and convert to numbers:
beers$Percentagealcohol <- gsub("%","",beers$Percentagealcohol)
beers$Percentagealcohol <- gsub(",",".",beers$Percentagealcohol)
beers$Percentagealcohol <-as.numeric(beers$Percentagealcohol)</pre>
```

Warning: NAs introduced by coercion

```
# A few entries do not have a percentage entry
nas <- length(beers[is.na(beers$Percentagealcohol),])</pre>
```

The number of entries without percentage entry is: 4.

We use pander again for displaying the top-10 of beers with the highest amount of alcohol:

	Merk	Percentagealcohol
196	Black Damnation V (Double Black)	26
412	Cuvée d'Erpigny	15
191	Black Albert	13
192	Black Damnation I	13
194	Black Damnation III (Black Mes)	13
195	Black Damnation IV (Coffée Club)	13
313	Bush de Noël Premium	13
314	Bush de Nuits	13
315	Bush Prestige	13
411	Cuvée Delphine	13

Different languages

Python

Scala

```
val collection = for {i <- 1 to 10} yield {i}
val mapped = collection map (x => x*x)
val reduced = mapped reduce (_ + _)
println(reduced)
```

385

Sweave

knitr can handle sweave documents as well.

```
library(knitr)
Sweave2knitr('dummy.Rnw')
knit('dummy-knitr.Rnw')
```

Or, just write in RMarkdown:

```
Rscript -e 'library(knitr); knit("rmarkdown-version.Rmd")
pandoc rmarkdown-version.md -o rmarkdown-version.pdf --toc
```

Text (and code) can be translated using Pandoc

Figure 3: Side-by-side view of the same text/code in RMarkdown and Sweave

What to use it for?

I use it for:

- Creating presentations (reveal.js)
- Writing reports (including code)
- Writing papers (just text)
- Making coffee

How to use it?

RStudio

your favourite editor here

Additional pointers

• Markdown to Reveal.js: http://tverbeiren.github.io/BigDataBe-Spark/ #/

```
Run 🕪 🖸 Chunks 🕶
 30 - # Idea
31
  32
  33
  34 - ## Workflow
  35
      1. Write data generation, data manipulation and discussion in **one text file**.
           * Syntax for text is Markdown.
* Code lines start with `tab` or delimited by ``````
* Call this file `file.Rmd`, even if it includes more than `R` code.
  37
  39
  40
  41 2. Call `knitr` on the `.Rmd` file in order to **execute** the code blocks and **include** the
       output of the code in one file. The output is a `.md` file.
 43 3. Call `Pandoc` on the file, given suitable options (see below). `Pandoc` is responsible for translating the `.md` file to **any format** you want.
  45
 47 + ## RMarkdown format
48 |
49 The `.Rmd` source of
     The `.Rmd` source of this report looks like this (50 lines):
  50
  51 - ```{r, results="markup", comment=""}
  52 text <- readLines("RR.Rmd",encoding="UTF-8")
53 tail(head(text, 70),50)
```

Figure 4: Screenshot of (part of) RStudio

- Markdown and Pandoc for writing a paper: http://homes.esat.kuleuven.be/~bioiuser/blog/?p=243
- Markdown and Pandoc for lecture notes: https://bitbucket.org/tverbeiren/i0u19a
- You can find everything I showed here at: http://github.io/tverbeiren/ReproducibleDataAnalysis/

Figure 5: Screenshot of Sublime Editor with Markdown mode