Computer Graphics: Line Drawing Algorithms

Scan Conversion Algorithms (Midpoint Line)

$$ax + by + c = 0$$

$$f(x,y) = ax + by + c$$

$$f(2,4) = (-)ve$$

$$f(2,2) = (+)ve$$

f(M)	Pixel chosen
f(M) > 0	upper (NE)
f(M) ≤ 0	lower (E)

$$f(M) = f(x_p + 1, y_p + 0.5)$$

= $a(x_p + 1) + b(y_p + 0.5) + c$
 $d = ax_p + by_p + c + a + 0.5b$

Suppose, $d \le 0$, so E is chosen $f(M_2) = f(x_p + 2, y_p + 0.5)$ $= a(x_p + 2) + b(y_p + 0.5) + c$ $d_{new} = ax_p + by_p + c + 2a + 0.5b$ $d_{new} - d = a$ $d_{new} = d + a$

Calculate d for 1st column.

Choose E/NE.

Update d_{new} acc. to E/NE.

Use d_{new} to choose E/NE again and repeat the loop until the end.

$$d_{init} = f(M_0)$$

$$= f(x_0 + 1, y_0 + 0.5)$$

$$= a(x_0 + 1) + b(y_0 + 0.5) + c$$

$$= ax_0 + a + by_0 + 0.5b + c$$

$$d_{init} = ax_0 + by_0 + c + a + 0.5b$$

ax + by + c = 0true for all (x, y) on the line

$$So, ax_0 + by_0 + c = 0$$

$$d_{init} = ax_0 + by_0 + c + a + 0.5b$$

= 0 + a + 0.5b
= a + 0.5b

$$y = mx + B$$

$$m = \frac{dy}{dx} \text{ where } dy = y_1 - y_0 \text{ and } dx = x_1 - x_0$$

$$y = \frac{dy}{dx} \cdot x + B$$

$$y \cdot dx = dy \cdot x + B \cdot dx$$

$$0 = dy \cdot x - y \cdot dx + B \cdot dx$$

$$dy \cdot x - dx \cdot y + B \cdot dx = 0$$

$$Comparing \text{ this with,}$$

$$ax + by + c = 0$$

$$We \text{ get,}$$

$$a = dy$$

$$b = -dx$$

$$c = B \cdot dx$$

$$y = mx + b$$

$$m = \frac{dy}{dx} \text{ where } dy = y_1 - y_0 \text{ and } dx = x_1 - x_0$$

$$y = \frac{dy}{dx} \cdot x + b$$

$$y \cdot dx = dy \cdot x + b \cdot dx$$

$$0 = dy \cdot x - y \cdot dx + b \cdot dx$$

$$dy \cdot x - dx \cdot y + b \cdot dx = 0$$

$$Comparing \text{ this with,}$$

$$ax + by + c = 0$$

$$We \text{ get,}$$

$$a = dy$$

$$b = -dx$$

$$c = b \cdot dx$$

2x + 3y + 1 = 04x + 6y + 2 = 0

$$y = mx + b$$

$$m = \frac{dy}{dx} \text{ where } dy = y_1 - y_0 \text{ and } dx = x_1 - x_0$$

$$y = \frac{dy}{dx} \cdot x + b$$

$$y \cdot dx = dy \cdot x + b \cdot dx$$

$$0 = dy \cdot x - y \cdot dx + b \cdot dx$$

$$2dy \cdot x - 2dx \cdot y + 2b \cdot dx = 0$$

$$Comparing \text{ this with,}$$

$$ax + by + c = 0$$

$$We \text{ get,}$$

$$a = 2dy$$

$$b = -2dx$$

c = 2b. dx


```
func MidpointLine(int x0, int y0, int x1, int y1, int value){
       int dx, dy, incrE, incrNE, d, x, y;
       dx = x1 - x0;
       dy = y1 - y0;
       d = 2 * dy - dx;
       incrE = 2 * dy;
       incrNE = 2 * (dy - dx);
       x = x0;
       y = y0;
       WritePixel (x, y, value);
       while (x < x1) {
              if (d \le 0) {
                     //choose E
                     d = d + incrE;
                     x = x + 1;
              else {
                     //choose NE
                     d = d + incrNE;
                     x = x + 1;
                     y = y + 1;
              WritePixel (x,y, value) //The selected pixel closest to the line
```


Find out the first 7 pixels of the line segment starting from (0, 2) to (70, 52) using midpoint line algorithm

х	У	d	NE(+1,+1)/E(+1 ,0)	d updating	Pixel
0	2	30	NE	30+2x50-2x70 = -10	(0, 2)
1	3				

$$\begin{aligned} d_{init} &= 2dy - dx = 2.50 - 70 = 30 \\ \Delta d_{NE} &= 2dy - 2dx = 2.50 - 2.70 = -40 \\ \Delta d_{E} &= 2dy = 2.50 = 100 \end{aligned}$$

х	У	d	NE(+1,+1)/ E(+1,0)	d updating	Pixel
0	2	30	NE	$30 + \Delta d_{NE} = -10$	(0, 2)
1	3	-10	Е	$-10+\Delta d_E = 90$	(1, 3)
2	3	90	NE	$90+\Delta d_{NE}=50$	(2, 3)
3	4	50	NE	$50+\Delta d_{NE}=10$	(3, 4)
4	5	10	NE	$10 + \Delta d_{NE} = -30$	(4, 5)
5	6	-30	Е	$-30 + \Delta d_E = 70$	(5, 6)
6	6	70	NE	$70 + \Delta d_{NE} = 30$	(6, 6)
7	7				