```
[1]: import os
     import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     from PIL import Image
     from sklearn.model_selection import train_test_split
     from sklearn.metrics import confusion_matrix, classification_report, f1_score
     import tensorflow as tf
     from tensorflow.keras.layers import (
         Conv2D,
         MaxPooling2D,
         Dropout,
         Flatten,
         Dense.
         AveragePooling2D.
         LeakyReLU,
         BatchNormalization,
     from tensorflow.keras.models import Sequential
     from tensorflow.keras.optimizers import Adam
     import time
     from tqdm.notebook import tqdm
     import matplotlib.pyplot as plt
     import random
[2]: # Set all random seeds
     np.random.seed(42)
     tf.random.set_seed(42)
     random.seed (42)
     os.environ["PYTHONHASHSEED"] = "42"
     # Your existing constant
     NUM_CLASSES = 5
```

1 Resize all images to 80x80 and ensure grayscale

```
[3]: def load and preprocess data(data dir="flowers", target size=(80, 80)):
         """Load and preprocess flower images"""
         images = []
         labels = []
         class_names = os.listdir(data_dir)
         # Set up plot for visualization
         num_classes = len(class_names)
         fig, axes = plt.subplots(num_classes, 2, figsize=(6, 2 * num_classes))
         plt.suptitle("Original vs Preprocessed Images")
         for idx, class_name in tqdm(enumerate(class_names), total=len(class_names)):
             class_dir = os.path.join(data_dir, class_name)
             first_image = True
             for img_name in os.listdir(class_dir):
                 img_path = os.path.join(class_dir, img_name)
                 try:
                     # Load and process image
                     img = Image.open(ing_path)
                     # Plot first image of each class
                     if first image:
                         # Original image
                         axes[idx, 0].inshow(img)
                         axes[idx, 0].axis("off")
                         axes[idx, 0].set_title(
                             f*Original - {class_name}\nLabel: {idx}, {img_size}"
                         # Process image
                         img_resized = img.resize(target_size)
                         img_gray = img_resized.convert("L")
                         # Preprocessed image
                         axes[idx, 1] inshow(img_gray, cmap="gray")
                         axes[idx, 1].axis("off")
                         axes[idx, 1].set_title(
                             f*Preprocessed - {class_name}\nLabel: {idx}, {img_gray.
      -size}"
                         first_image = False
                     # Process image for model
                     img = img.resize(target_size)
```

```
img = img.convert("L")
                     img_array = np.array(img) / 255.0
                     img_array = img_array.reshape(target_size + (1,))
                     images.append(img_array)
                     labels.append(idx)
                except Exception as e:
                    print(f"Error processing (img_path): {str(e)}")
        plt.tight_layout()
        plt.show()
        assert len(images) -- len(labels), "Number of images and labels must match"
         assert target_size and all(
            ing shape == target_size + (1,) for ing in images
         ), "Each image must be of target size and be of grayscale"
         return np.array(images), np.array(labels), class_names
[4]: X, y, class_names = load_and_preprocess_data()
      0%1
                  | 0/5 [00:00<?, ?it/s]
```

Original vs Preprocessed Images

Original - daisy Label: 0, (320, 263)

Original - dandelion Label: 1, (320, 213)

Original - rose Label: 2, (179, 240)

Original - sunflower Label: 3, (500, 330)

Original - tulip Label: 4, (320, 209)

Preprocessed - daisy Label: 0, (80, 80)

Preprocessed - dandelion Label: 1, (80, 80)

Preprocessed - rose Label: 2, (80, 80)

Preprocessed - sunflower Label: 3, (80, 80)

Preprocessed - tulip Label: 4, (80, 80)

2 Split the dataset

```
[5]: X_train, X_test, y_train, y_test = train_test_split(
          X, y, test_size=0.1, random_state=42
)
```

3 Training and Plotting Functions

```
[6]: def train and evaluate(
        model, X_train, y_train, X_test, y_test, epochs=30, batch_size=32
    ):
         """Train and evaluate the model"""
         # Compile model
        model.compile(
             optimizer="adam", loss="sparse_categorical_crossentropy", |
      -metrics=["accuracy"]
         )
         # Train model
         start_time = time.time()
         history = model.fit(
            X_train,
            y_train,
            validation_data=(I_test, y_test),
             epochs=epochs.
            batch_size=batch_size,
         training_time = time.time() - start_time
         return history, training time
```

```
[7]: def plot_training_history(history, title):
    """Plot training history"""
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))

# Plot accuracy
    ax1.plot(history.history["accuracy"], label="Training")
    ax1.plot(history.history["val_accuracy"], label="Validation")
    ax1.set_title(f"Model Accuracy - {title}")
    ax1.set_xlabel("Epoch")
    ax1.set_ylabel("Accuracy")
    ax1.legend()
```

```
# Plot loss
         ax2.plot(history history["loss"], label="Training")
         ax2.plot(history.history["val_loss"], label="Validation")
         ax2.set_title(f"Model Loss - {title}")
         ax2.set_xlabel("Epoch")
         ax2.set_ylabel("Loss")
         ax2.legend()
         plt.tight_layout()
         plt.show()
[8]: def plot_confusion_matrix(y_true, y_pred, class_names, title):
         """Plot confusion matrix"""
         cm = confusion_matrix(y_true, y_pred)
         plt.figure(figsize=(10, 8))
         sns.heatmap(
             cm.
             annot-True,
             fat="d",
             cmap-"Blues".
             xticklabels=class_names,
             yticklabels=class_names,
         1
         plt_title(f"Confusion Matrix - {title}")
         plt.xlabel("Predicted")
         plt.ylabel("True")
         plt.show()
[9]: def plot_prediction_samples(
         X test: np.ndarray,
         y_test: np.ndarray,
         y_pred: np.ndarray,
         class_names: list,
         n_samples: int = 4.
     ) -> None:
         AF 25- 18
         Plot samples of correct and incorrect predictions from a model.
         Args:
            X_test: Test image data
             y_test: True test labels
             y_pred: Predicted test labels
             class_names: List of class names
             n_samples: Number of samples to show for each case (default=4)
         correct_indices = np.where(y_pred == y_test)[0]
```

```
incorrect_indices = np.where(y_pred != y_test)[0]
  # Select random samples from both
  correct_samples = np.random.choice(correct_indices, n_samples,_
-replace-False)
  incorrect_samples = np.random.choice(incorrect_indices, n_samples,_
-replace=False)
  # Create a figure to display the results
  plt.figure(figsize=(8, 5))
  # Plot correct predictions
  for i, idx in enumerate(correct_samples):
      plt.subplot(2, n_samples, i + 1)
      plt.imshow(X_test[idx], cmap="gray")
      plt.axis("off")
      plt.title(
          f"True: {class_names[y_test[idx]]}\nPred:__
--{class_names[y_pred[idx]]}",
          color="green",
          fontsize=8,
      )
  # Plot incorrect predictions
  for i, idx in enumerate(incorrect samples):
      plt.subplot(2, n_samples, n_samples + i + 1)
      plt imshow(X_test[idx], cmap="gray")
      plt.axis("off")
      plt.title(
          f"True: {class names[v test[idx]]}\nPred:,,
-{class_names[y_pred[idx]]}",
          color="red",
          fontsize=8,
      )
  plt.suptitle("Correct (top) vs Incorrect (bottom) Predictions", fontsize=10)
  plt.tight_layout() # Add vertical and horizontal spacing between subplots
  plt.show()
```

```
[10]: results = []
```

```
[11]: model1 = Sequential(name="Model1")
      model1.add(
          Conv2D(
             filters=16,
              kernel_size=(3, 3),
              padding="same",
              activation="relu",
              input_shape=(80, 80, 1),
          )
      model1.add(MaxPooling2D(pool_size=(2, 2)))
      model1.add(Dropout(0.1))
      model1.add(Conv2D(filters=32, kernel_size=(3, 3), padding="same",_
       -activation="relu"))
      model1.add(MaxPooling2D(pool_size=(2, 2)))
      model1.add(Dropout(0.1))
      model1.add(Conv2D(filters=64, kernel_size=(3, 3), padding="same", ...
       -activation="relu"))
      model1.add(MaxPooling2D(pool_size=(2, 2)))
      model1.add(Dropout(0.1))
      model1.add(Flatten())
      model1.add(Dense(NUM_CLASSES, activation="softmax"))
      model1.compile(
          optimizer=Adam(), loss="sparse_categorical_crossentropy", ...
       -metrics=["accuracy"]
      model1.summary()
```

Model: "Model1"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 80, 80, 16)	160
max_pooling2d (MaxPooling2D)	(None, 40, 40, 16)	0
dropout (Dropout)	(None, 40, 40, 16)	0
conv2d_1 (Conv2D)	(None, 40, 40, 32)	4640

```
max_pooling2d_1 (MaxPooling (None, 20, 20, 32)
2D)
dropout_1 (Dropout)
                      (None, 20, 20, 32)
conv2d_2 (Conv2D)
                      (None, 20, 20, 64)
                                           18496
max_pooling2d_2 (MaxPooling (None, 10, 10, 64)
2D)
dropout_2 (Dropout)
                       (None, 10, 10, 64)
flatten (Flatten)
                       (None, 6400)
dense (Dense)
                       (None, 5)
                                            32005
```

Total params: 55,301 Trainable params: 55,301 Non-trainable params: 0

```
[12]: history, training_time = train_and_evaluate(
          model1, X_train, y_train, X_test, y_test, batch_size=128
      test_loss, test_acc = model1.evaluate(X_test, y_test)
      y_pred = np.argmax(model1.predict(I_test), axis=1)
      f1 = f1_score(y_test, y_pred, average="weighted")
      results.append(
          1
              "configuration": f"Model1",
              "test accuracy": test acc.
              "fi score": f1,
              "training_time": training_time,
              "parameters": model1.count_params(),
         7
      1
      plot_training_history(history, f"Model1")
      plot_confusion_matrix(y_test, y_pred, class_names, f"Model1")
      print("\nResults for Model1:")
      print(f"Configuration: {results[0]['configuration']}")
      print(f"Test Accuracy: {results[0]['test_accuracy']:.4f}")
      print(f"F1 Score: {results[0]['f1_score']:.4f}")
      print(f"Training Time: (results[0]['training_time']:.2f) seconds*)
```

```
print(f"Number of Parameters: (results[0]['parameters']:,)")
Epoch 1/30
31/31 [========================= ] - 4s 35ns/step - loss: 1.5604 - accuracy:
0.2808 - val_loss: 1.5358 - val_accuracy: 0.3056
Epoch 2/30
0.3436 - val_loss: 1.5009 - val_accuracy: 0.3449
0.3810 - val_loss: 1.4512 - val_accuracy: 0.3657
Epoch 4/30
31/31 [-----] - 1s 19ms/step - loss: 1.3952 - accuracy:
0.4214 - val_loss: 1.4136 - val_accuracy: 0.4074
Epoch 5/30
0.4324 - val_loss: 1.3811 - val_accuracy: 0.4236
Epoch 6/30
31/31 [-----] - 1s 19ms/step - loss: 1.3259 - accuracy:
0.4535 - val_loss: 1.3641 - val_accuracy: 0.4190
Epoch 7/30
31/31 [------] - 1s 19ms/step - loss: 1.2834 - accuracy:
0.4777 - val_loss: 1.3232 - val_accuracy: 0.4630
Epoch 8/30
0.5004 - val_loss: 1.2924 - val_accuracy: 0.4815
Epoch 9/30
0.5241 - val_loss: 1.2668 - val_accuracy: 0.4861
Epoch 10/30
31/31 [-----] - 1s 20ns/step - loss: 1.1555 - accuracy:
0.5429 - val_loss: 1.2856 - val_accuracy: 0.4676
Epoch 11/30
31/31 [-----] - 1s 19ms/step - loss: 1.1193 - accuracy:
0.5622 - val_loss: 1.3649 - val_accuracy: 0.4907
0.5876 - val_loss: 1.2584 - val_accuracy: 0.5139
Epoch 13/30
0.6080 - val_loss: 1.1867 - val_accuracy: 0.5255
Epoch 14/30
0.6054 - val_loss: 1.2214 - val_accuracy: 0.5208
Epoch 15/30
31/31 [-----] - 1s 19ms/step - loss: 0.9776 - accuracy:
```

0.6327 - val_loss: 1.1812 - val_accuracy: 0.5301

```
Epoch 16/30
0.6551 - val_loss: 1.1930 - val_accuracy: 0.5602
Epoch 17/30
0.6502 - val_loss: 1.2139 - val_accuracy: 0.5417
Epoch 18/30
0.6808 - val_loss: 1.1920 - val_accuracy: 0.5509
Epoch 19/30
31/31 [------] - 1s 19ms/step - loss: 0.8324 - accuracy:
0.6958 - val_loss: 1.1730 - val_accuracy: 0.5648
Epoch 20/30
0.7019 - val_loss: 1.2490 - val_accuracy: 0.5324
31/31 [-----] - 1s 20ns/step - loss: 0.8065 - accuracy:
0.7066 - val_loss: 1.2111 - val_accuracy: 0.5532
Epoch 22/30
31/31 [-----] - 1s 20ns/step - loss: 0.8051 - accuracy:
0.7060 - val_loss: 1.1974 - val_accuracy: 0.5509
Epoch 23/30
0.7264 - val_loss: 1.2402 - val_accuracy: 0.5532
Epoch 24/30
31/31 [------] - 1s 22ms/step - loss: 0.7434 - accuracy:
0.7272 - val_loss: 1.2004 - val_accuracy: 0.5463
Epoch 25/30
0.7436 - val_loss: 1.2795 - val_accuracy: 0.5417
Epoch 26/30
0.7514 - val_loss: 1.2020 - val_accuracy: 0.5694
Epoch 27/30
31/31 [========================== ] - 1s 20ms/step - loss: 0.6290 - accuracy:
0.7776 - val loss: 1.2380 - val accuracy: 0.5625
Epoch 28/30
31/31 [========================== ] - 1s 19ms/step - loss: 0.6271 - accuracy:
0.7727 - val_loss: 1.2389 - val_accuracy: 0.5625
Epoch 29/30
0.7876 - val_loss: 1.2523 - val_accuracy: 0.5486
Epoch 30/30
31/31 [-----] - 1s 19ms/step - loss: 0.5929 - accuracy:
0.7869 - val_loss: 1.2725 - val_accuracy: 0.5556
0.5556
14/14 [-----] - 0s 4ms/step
```


Results for Model1: Configuration: Model1 Test Accuracy: 0.5556 F1 Score: 0.5541

Training Time: 22.06 seconds Number of Parameters: 55,301

[13]: plot_prediction_samples(X_test, y_test, y_pred, class_names)

Model: "Model2"

Layer (type)	Output Shape	Param #
conv2d_3 (Conv2D)	(None, 80, 80, 16)	160
max_pooling2d_3 (MaxPooling 2D)	(None, 40, 40, 16)	0
dropout_3 (Dropout)	(None, 40, 40, 16)	0
conv2d_4 (Conv2D)	(None, 40, 40, 32)	4640
max_pooling2d_4 (MaxPooling 2D)	(None, 20, 20, 32)	0
dropout_4 (Dropout)	(None, 20, 20, 32)	0
conv2d_5 (Conv2D)	(None, 20, 20, 64)	51264
max_pooling2d_5 (MaxPooling 2D)	(None, 10, 10, 64)	0
dropout_5 (Dropout)	(None, 10, 10, 64)	0
flatten_1 (Flatten)	(None, 6400)	0
dense_1 (Dense)	(None, 5)	32005

Total params: 88,069 Trainable params: 88,069 Non-trainable params: 0

```
[15]: history, training time - train_and_evaluate(
         model2, X_train, y_train, X_test, y_test, batch_size=128
      test_loss, test_acc = model2.evaluate(X_test, y_test)
      y_pred = np.argmax(model2.predict(I_test), axis=1)
      f1 = f1_score(y_test, y_pred, average="weighted")
      results.append(
         1
              "configuration": f"Model2".
              "test accuracy": test acc.
              "fi_score": fi,
              "training time": training time,
              "parameters": model2.count_params(),
         }
      3
      plot_training_history(history, f"Model2")
      plot_confusion_matrix(y_test, y_pred, class_names, f"Model2")
      print("\nResults for Model2:")
      print(f"Configuration: {results[1]['configuration']}")
      print(f"Test Accuracy: {results[1]['test_accuracy']:.4f}")
      print(f"F1 Score: {results[1]['f1_score']:.4f}")
      print(f"Training Time: {results[1]['training_time']:.2f} seconds')
      print(f"Number of Parameters: {results[1]['parameters']:,}")
```

```
Epoch 1/30
31/31 [------ - 2s 30ns/step - loss: 1.5707 - accuracy:
0.2795 - val_loss: 1.5276 - val_accuracy: 0.3079
Epoch 2/30
0.3532 - val_loss: 1.4602 - val_accuracy: 0.3426
Epoch 3/30
0.3897 - val_loss: 1.4007 - val_accuracy: 0.4097
Epoch 4/30
31/31 [------] - 1s 21ns/step - loss: 1.3699 - accuracy:
0.4291 - val_loss: 1.3518 - val_accuracy: 0.4514
Epoch 5/30
0.4548 - val_loss: 1.2976 - val_accuracy: 0.4491
Epoch 6/30
31/31 [-----] - 1s 21ns/step - loss: 1.2666 - accuracy:
```

```
0.4891 - val_loss: 1.2826 - val_accuracy: 0.4722
Epoch 7/30
31/31 [-----] - 1s 22ms/step - loss: 1.2316 - accuracy:
0.5102 - val_loss: 1.2453 - val_accuracy: 0.4954
Epoch 8/30
0.5243 - val_loss: 1.2291 - val_accuracy: 0.4861
Epoch 9/30
31/31 [------] - 1s 20ms/step - loss: 1.1433 - accuracy:
0.5416 - val_loss: 1.2463 - val_accuracy: 0.4884
Epoch 10/30
0.5480 - val_loss: 1.2244 - val_accuracy: 0.5185
Epoch 11/30
0.5840 - val_loss: 1.2841 - val_accuracy: 0.5208
Epoch 12/30
0.6049 - val_loss: 1.2139 - val_accuracy: 0.5255
Epoch 13/30
0.6299 - val_loss: 1.1900 - val_accuracy: 0.5116
Epoch 14/30
0.6450 - val_loss: 1.1977 - val_accuracy: 0.5185
31/31 [-----] - 1s 21ns/step - loss: 0.9363 - accuracy:
0.6404 - val_loss: 1.2387 - val_accuracy: 0.4954
Epoch 16/30
0.6824 - val_loss: 1.2435 - val_accuracy: 0.5278
Epoch 17/30
0.6927 - val_loss: 1.2369 - val_accuracy: 0.5324
Epoch 18/30
31/31 [-----] - 1s 21ns/step - loss: 0.8016 - accuracy:
0.7024 - val_loss: 1.2864 - val_accuracy: 0.5162
Epoch 19/30
0.7308 - val_loss: 1.2776 - val_accuracy: 0.5185
Epoch 20/30
0.7331 - val_loss: 1.3179 - val_accuracy: 0.4977
Epoch 21/30
31/31 [------] - 1s 22ns/step - loss: 0.7328 - accuracy:
0.7375 - val_loss: 1.2383 - val_accuracy: 0.5417
Epoch 22/30
```

```
0.7714 - val_loss: 1.3144 - val_accuracy: 0.5093
Epoch 23/30
31/31 [-----] - 1s 20ms/step - loss: 0.6269 - accuracy:
0.7755 - val_loss: 1.4440 - val_accuracy: 0.5116
Epoch 24/30
0.7822 - val_loss: 1.3550 - val_accuracy: 0.5139
Epoch 25/30
31/31 [------] - 1s 21ns/step - loss: 0.5581 - accuracy:
0.8005 - val_loss: 1.4335 - val_accuracy: 0.5069
Epoch 26/30
0.8157 - val_loss: 1.3976 - val_accuracy: 0.5370
Epoch 27/30
0.8386 - val_loss: 1.4451 - val_accuracy: 0.5185
Epoch 28/30
0.8458 - val_loss: 1.4457 - val_accuracy: 0.5509
Epoch 29/30
0.8492 - val_loss: 1.4893 - val_accuracy: 0.5185
Epoch 30/30
0.8625 - val_loss: 1.5188 - val_accuracy: 0.5231
0.5231
14/14 [-----] - 0s 4ms/step
          Model Accuracy - Model2
                              Moder Loss - Mode/2
```


Results for Model2: Configuration: Model2 Test Accuracy: 0.5231 F1 Score: 0.5243

Training Time: 20.96 seconds Number of Parameters: 88,069

[16]: plot_prediction_samples(X_test, y_test, y_pred, class_names)

Correct (top) vs Incorrect (bottom) Predictions The turnover


```
[17]: model3 = Sequential(name="Model3")
      model3.add(
          Conv2D(
              filters=16,
              kernel_size=(3, 3),
              padding="same",
              activation="relu",
              input_shape=(80, 80, 1),
      model3.add(MaxPooling2D(pool_size=(2, 2)))
      model3.add(Dropout(0.1))
      model3.add(Conv2D(filters=32, kernel_size=(5, 5), padding="same", ...
       -activation="relu"))
      model3.add(MaxPooling2D(pool_size=(2, 2)))
      model3.add(Dropout(0.1))
      model3.add(Conv2D(filters=64, kernel_size=(5, 5), padding="same", u
       -activation="relu"))
      model3.add(MaxPooling2D(pool_size=(2, 2)))
```

Model: "Model3"

Layer (type)	Output Shape	Param #
conv2d_6 (Conv2D)	(None, 80, 80, 16)	160
max_pooling2d_6 (MaxPooli 2D)	ng (None, 40, 40, 16)	0
dropout_6 (Dropout)	(None, 40, 40, 16)	0
conv2d_7 (Conv2D)	(None, 40, 40, 32)	12832
max_pooling2d_7 (MaxPooli 2D)	ng (None, 20, 20, 32)	0
dropout_7 (Dropout)	(None, 20, 20, 32)	0
conv2d_8 (Conv2D)	(None, 20, 20, 64)	51264
max_pooling2d_8 (MaxPooli 2D)	ng (None, 10, 10, 64)	0
dropout_8 (Dropout)	(None, 10, 10, 64)	0
flatten_2 (Flatten)	(None, 6400)	0
dense_2 (Dense)	(None, 5)	32005

Total params: 96,261 Trainable params: 96,261 Non-trainable params: 0

```
[18]: history, training_time = train_and_evaluate(
         model3, X_train, y_train, X_test, y_test, batch_size=128
     test_loss, test_acc = model3.evaluate(X_test, y_test)
     y_pred = np.argnax(model3.predict(X_test), axis=1)
     f1 = f1_score(y_test, y_pred, average="weighted")
     results append(
        {
            "configuration": f"Model3".
            "test_accuracy": test_acc,
            "fi_score": fi,
            "training time": training time,
            "parameters": model3.count_params(),
        3
     plot_training_history(history, f"Model3")
     plot_confusion_matrix(y_test, y_pred, class_mames, f"Model3")
     print("\nResults for Model3:")
     print(f"Configuration: {results[2]['configuration']}")
     print(f"Test Accuracy: {results[2]['test_accuracy']:.4f}")
     print(f"F1 Score: (results[2]['f1 score']:.4f)")
     print(f"Training Time: {results[2]['training_time']:.2f} seconds*)
     print(f"Number of Parameters: {results[2]['parameters']:,}")
    Epoch 1/30
    0.2847 - val_loss: 1.5247 - val_accuracy: 0.3171
    Epoch 2/30
    31/31 [-----] - 1s 23ms/step - loss: 1.4922 - accuracy:
```

```
0.3457 - val_loss: 1.4837 - val_accuracy: 0.3264
Epoch 3/30
0.3781 - val_loss: 1.4513 - val_accuracy: 0.3657
Epoch 4/30
0.4172 - val_loss: 1.3803 - val_accuracy: 0.4028
Epoch 5/30
0.4551 - val_loss: 1.3659 - val_accuracy: 0.3981
Epoch 6/30
0.4821 - val_loss: 1.3484 - val_accuracy: 0.4444
Epoch 7/30
0.4952 - val_loss: 1.3231 - val_accuracy: 0.4421
```

```
Epoch 8/30
31/31 [-----] - 1s 23ns/step - loss: 1.2049 - accuracy:
0.5210 - val_loss: 1.2558 - val_accuracy: 0.4792
Epoch 9/30
0.5416 - val_loss: 1.2646 - val_accuracy: 0.4769
Epoch 10/30
0.5539 - val_loss: 1.2508 - val_accuracy: 0.4861
Epoch 11/30
31/31 [------] - 1s 23ns/step - loss: 1.0528 - accuracy:
0.5969 - val_loss: 1.3389 - val_accuracy: 0.4745
Epoch 12/30
31/31 [-----] - 1s 23ns/step - loss: 1.0161 - accuracy:
0.6108 - val_loss: 1.2077 - val_accuracy: 0.5208
31/31 [-----] - 1s 24ms/step - loss: 0.9528 - accuracy:
0.6358 - val_loss: 1.1602 - val_accuracy: 0.5532
Epoch 14/30
31/31 [-----] - 1s 23ns/step - loss: 0.9125 - accuracy:
0.6579 - val_loss: 1.1980 - val_accuracy: 0.5370
Epoch 15/30
0.6788 - val_loss: 1.1727 - val_accuracy: 0.5579
Epoch 16/30
31/31 [------] - 1s 23ns/step - loss: 0.8054 - accuracy:
0.7086 - val_loss: 1.2056 - val_accuracy: 0.5509
Epoch 17/30
0.7181 - val_loss: 1.2270 - val_accuracy: 0.5370
Epoch 18/30
0.7354 - val_loss: 1.2124 - val_accuracy: 0.5579
Epoch 19/30
31/31 [========================== ] - 1s 24ms/step - loss: 0.6728 - accuracy:
0.7627 - val loss: 1.2014 - val accuracy: 0.5810
Epoch 20/30
31/31 [========================== ] - 1s 24ns/step - loss: 0.6360 - accuracy:
0.7732 - val_loss: 1.2333 - val_accuracy: 0.5532
Epoch 21/30
0.7907 - val_loss: 1.2787 - val_accuracy: 0.5370
Epoch 22/30
0.7954 - val_loss: 1.2576 - val_accuracy: 0.5579
Epoch 23/30
0.8062 - val_loss: 1.3304 - val_accuracy: 0.5579
```

```
Epoch 24/30
31/31 [-----] - 1s 22ns/step - loss: 0.5204 - accuracy:
0.8232 - val_loss: 1.3140 - val_accuracy: 0.5625
Epoch 25/30
0.8263 - val_loss: 1.3980 - val_accuracy: 0.5417
Epoch 26/30
0.8520 - val_loss: 1.3941 - val_accuracy: 0.5486
Epoch 27/30
31/31 [------] - 1s 23ns/step - loss: 0.4080 - accuracy:
0.8597 - val_loss: 1.3804 - val_accuracy: 0.5764
Epoch 28/30
31/31 [------] - 1s 23ns/step - loss: 0.3778 - accuracy:
0.8700 - val_loss: 1.5187 - val_accuracy: 0.5417
Epoch 29/30
31/31 [-----] - 1s 23ns/step - loss: 0.3521 - accuracy:
0.8862 - val_loss: 1.4474 - val_accuracy: 0.5509
Epoch 30/30
31/31 [-----] - 1s 24ns/step - loss: 0.3341 - accuracy:
0.8906 - val_loss: 1.4233 - val_accuracy: 0.5671
0.5671
14/14 [=======] - Os 3ms/step
```


Results for Model3: Configuration: Model3 Test Accuracy: 0.5671 F1 Score: 0.5669

Training Time: 23.07 seconds Number of Parameters: 96,261

[19]: plot_prediction_samples(X_test, y_test, y_pred, class_names)

Correct (top) vs Incorrect (bottom) Predictions


```
[20]: model4 = Sequential(name="Model4")
      model4 add(
          Conv2D(
             filters=16,
              kernel_size=(5, 5),
              padding="same",
              activation="relu",
              input_shape=(80, 80, 1),
      model4.add(MaxPooling2D(pool_size=(2, 2)))
      model4.add(Dropout(0.1))
      model4.add(Conv2D(filters=32, kernel_size=(5, 5), padding="same", ...
       -activation="relu"))
      model4.add(MaxPooling2D(pool_size=(2, 2)))
      model4.add(Dropout(0.1))
      model4.add(Conv2D(filters=64, kernel_size=(5, 5), padding="same", u
       -activation="relu"))
      model4.add(MaxPooling2D(pool_size=(2, 2)))
```

```
model4.add(Dropout(0.1))
model4.add(Flatten())
model4.add(Dense(NUM_CLASSES, activation="softmax"))

model4.compile(
    optimizer=Adam(), loss="sparse_categorical_crossentropy",u
-metrics=["accuracy"]
)
model4.summary()
```

Model: "Model4"

Layer (type)	Output Shape	Param #
conv2d_9 (Conv2D)	(None, 80, 80, 16)	416
max_pooling2d_9 (MaxPooling 2D)	(None, 40, 40, 16)	0
dropout_9 (Dropout)	(None, 40, 40, 16)	0
conv2d_10 (Conv2D)	(None, 40, 40, 32)	12832
max_pooling2d_10 (MaxPoolin g2D)	(None, 20, 20, 32)	0
dropout_10 (Dropout)	(None, 20, 20, 32)	0
conv2d_11 (Conv2D)	(None, 20, 20, 64)	51264
max_pooling2d_11 (MaxPoolin g2D)	(None, 10, 10, 64)	0
dropout_11 (Dropout)	(None, 10, 10, 64)	0
flatten_3 (Flatten)	(None, 6400)	0
iense_3 (Dense)	(None, 5)	32005

Total params: 96,517 Trainable params: 96,517 Non-trainable params: 0

```
[21]: history, training_time = train_and_evaluate(
         model4, X_train, y_train, X_test, y_test, batch_size=128
     test_loss, test_acc = model4.evaluate(X_test, y_test)
     y_pred = np.argmax(model4.predict(X_test), axis=1)
     f1 = f1_score(y_test, y_pred, average="weighted")
     results append(
        {
            "configuration": f"Model4".
            "test_accuracy": test_acc,
            "fi score": fi,
            "training time": training time,
            "parameters": model4.count_params(),
        3
     plot_training_history(history, f"Model4")
     plot_confusion_matrix(y_test, y_pred, class_mames, f"Model4")
     print("\nResults for Model4:")
     print(f"Configuration: (results[3]['configuration'])")
     print(f"Test Accuracy: {results[3]['test_accuracy']:.4f}")
     print(f"F1 Score: (results[3]['f1 score']:.4f)")
     print(f"Training Time: {results[3]['training_time']:.2f} seconds*)
     print(f"Number of Parameters: {results[3]['parameters']:,}")
    Epoch 1/30
    0.2849 - val_loss: 1.5029 - val_accuracy: 0.3356
    Epoch 2/30
    31/31 [-----] - 1s 23ns/step - loss: 1.4863 - accuracy:
```

```
0.3526 - val_loss: 1.4809 - val_accuracy: 0.3426
Epoch 3/30
0.3835 - val_loss: 1.4183 - val_accuracy: 0.3935
Epoch 4/30
0.4067 - val_loss: 1.3799 - val_accuracy: 0.4213
Epoch 5/30
0.4499 - val_loss: 1.2987 - val_accuracy: 0.4722
Epoch 6/30
0.4855 - val_loss: 1.3316 - val_accuracy: 0.4282
Epoch 7/30
0.4808 - val_loss: 1.2791 - val_accuracy: 0.4815
```

```
Epoch 8/30
31/31 [-----] - 1s 23ns/step - loss: 1.2012 - accuracy:
0.5274 - val_loss: 1.2285 - val_accuracy: 0.4907
Epoch 9/30
0.5344 - val_loss: 1.2857 - val_accuracy: 0.4745
Epoch 10/30
0.5689 - val_loss: 1.2016 - val_accuracy: 0.5231
Epoch 11/30
31/31 [------] - 1s 23ns/step - loss: 1.0353 - accuracy:
0.6051 - val_loss: 1.3083 - val_accuracy: 0.4769
Epoch 12/30
31/31 [-----] - 1s 23ns/step - loss: 1.0126 - accuracy:
0.6095 - val_loss: 1.2165 - val_accuracy: 0.5394
31/31 [-----] - 1s 23ns/step - loss: 0.9349 - accuracy:
0.6445 - val_loss: 1.1831 - val_accuracy: 0.5347
Epoch 14/30
31/31 [-----] - 1s 23ns/step - loss: 0.9144 - accuracy:
0.6479 - val_loss: 1.2516 - val_accuracy: 0.5162
Epoch 15/30
0.6782 - val_loss: 1.2181 - val_accuracy: 0.5509
Epoch 16/30
0.7027 - val_loss: 1.2806 - val_accuracy: 0.5162
Epoch 17/30
0.7308 - val_loss: 1.2618 - val_accuracy: 0.5509
Epoch 18/30
0.7480 - val_loss: 1.2266 - val_accuracy: 0.5532
Epoch 19/30
0.7722 - val loss: 1.2845 - val accuracy: 0.5463
Epoch 20/30
31/31 [========================== ] - 1s 23ns/step - loss: 0.5772 - accuracy:
0.7990 - val_loss: 1.4460 - val_accuracy: 0.4907
Epoch 21/30
0.8072 - val_loss: 1.4236 - val_accuracy: 0.5301
Epoch 22/30
0.8113 - val_loss: 1.3379 - val_accuracy: 0.5278
Epoch 23/30
0.8386 - val_loss: 1.3903 - val_accuracy: 0.5440
```

```
Epoch 24/30
31/31 [-----] - 1s 23ns/step - loss: 0.4289 - accuracy:
0.8479 - val_loss: 1.3890 - val_accuracy: 0.5347
Epoch 25/30
0.8510 - val_loss: 1.4777 - val_accuracy: 0.5486
Epoch 26/30
0.8842 - val_loss: 1.5009 - val_accuracy: 0.5370
Epoch 27/30
31/31 [------] - 1s 23ns/step - loss: 0.3235 - accuracy:
0.8903 - val_loss: 1.5635 - val_accuracy: 0.5394
Epoch 28/30
0.9133 - val_loss: 1.6202 - val_accuracy: 0.5509
31/31 [-----] - 1s 23ns/step - loss: 0.2475 - accuracy:
0.9223 - val_loss: 1.7307 - val_accuracy: 0.5463
Epoch 30/30
31/31 [-----] - 1s 23ns/step - loss: 0.2540 - accuracy:
0.9174 - val_loss: 1.8310 - val_accuracy: 0.5185
0.5185
14/14 [======== ] - Os 3ms/step
```


Results for Model4: Configuration: Model4 Test Accuracy: 0.5185 F1 Score: 0.5160

Training Time: 23.01 seconds Number of Parameters: 96,517

[22]: plot_prediction_samples(X_test, y_test, y_pred, class_names)

Correct (top) vs Incorrect (bottom) Predictions


```
[23]: from tabulate import tabulate
      # Format the data for tabulate
      headers = results[0].keys()
      rows = [
              f"{row['configuration']}",
             f"{row['test_accuracy']:.4f}".
              f"(row['f1_score']:.4f)",
             f"{row['training time']:.4f}",
              row["parameters"],
         for row in results
     1
      # Print formatted table
      print("\nModel Comparison Results:")
     print(tabulate(rows, headers=headers, tablefmt="pretty"))
      # Find best model based on test accuracy
      best_model = max(results, key=lambda x: x["test_accuracy"])
      print("\nBest Model Parameters:")
      print(f"Configuration: {best_nodel['configuration']}")
     print(f"Test Accuracy: {best_model['test_accuracy']:.4f}")
     print(f"F1 Score: {best_model['f1_score']:.4f}")
```

```
print(f"Training Time: {best_model['training_time']:.4f} seconds')
print(f"Number of Parameters: {best_model['parameters']}")
```

Model Comparison Results:

	configuration	1	test_accuracy	1	f1_score	1	training_time	1	parameters	!
i	Model1	ī	0.5556	ī	0.5541	1	22.0594	1	55301	1
ı	Mode12	1	0.5231	1	0.5243	1	20.9627	1	88069	1
Ü	Mode13	L	0.5671	1	0.5669	1	23.0679	1	96261	L
L	Model4	ı	0.5185	1	0.5160	1	23.0128	1	96517	1

Best Model Parameters: Configuration: Model3 Test Accuracy: 0.5671 F1 Score: 0.5669

Training Time: 23.0679 seconds Number of Parameters: 96261

Model 3 is the best performing model according to F1 Score and Test Accuracy

8 Using Best Model

8.0.1 (b) For the best set of parameters obtained above, using two and three fully connected layers (After Flatten)

2 layers after Flatten

```
[52]: model3_fc_2 = Sequential(name="Model3_fc_2")

model3_fc_2.add(
    Conv2D(
        filters=16,
            kernel_size=(3, 3),
            padding="same",
            activation="relu",
            input_shape=(80, 80, 1),
        }
)

model3_fc_2.add(MaxPooling2D(pool_size=(2, 2)))
model3_fc_2.add(Dropout(0.1))

model3_fc_2.add(
        Conv2D(filters=32, kernel_size=(5, 5), padding="same", activation="relu")
}
model3_fc_2.add(MaxPooling2D(pool_size=(2, 2)))
```

Model: "Model3_fc_2"

Layer (type)	Output Shape	Param #
conv2d_36 (Conv2D)	(None, 80, 80, 16)	160
max_pooling2d_36 (MaxPool g2D)	lin (None, 40, 40, 16)	0
dropout_36 (Dropout)	(None, 40, 40, 16)	0
conv2d_37 (Conv2D)	(None, 40, 40, 32)	12832
max_pooling2d_37 (MaxPool g2D)	lin (None, 20, 20, 32)	0
dropout_37 (Dropout)	(None, 20, 20, 32)	0
conv2d_38 (Conv2D)	(None, 20, 20, 64)	51264
max_pooling2d_38 (MaxPool g2D)	lin (None, 10, 10, 64)	0
dropout_38 (Dropout)	(None, 10, 10, 64)	0
flatten_12 (Flatten)	(None, 6400)	0
dense_25 (Dense)	(None, 128)	819328

Total params: 884,229 Trainable params: 884,229 Non-trainable params: 0

```
[53]: history, training_time = train_and_evaluate(
         model3_fc_2, X_train, y_train, X_test, y_test, batch_size=128, epochs=40
      test_loss, test_acc = model3_fc_2.evaluate(X_test, y_test)
      y_pred = np.argmax(model3_fc_2.predict(X_test), axis=1)
      f1 = f1_score(y_test, y_pred, average="weighted")
      results.append(
         1
              "configuration": f"Model3_fc_2",
              "test_accuracy": test_acc,
              "fl_score": f1,
              "training time": training time,
              "parameters": model3_fc_2.count_params(),
         1
      3
      plot_training_history(history, f"Model3_fc_2")
      plot_confusion_matrix(y_test, y_pred, class_names, f"Model3_fc_2")
      print("\nResults for Model3_fc_2:")
      print(f"Configuration: {results[4]['configuration']}")
      print(f"Test Accuracy: (results[4]['test_accuracy']:.4f)")
      print(f"F1 Score: (results[4]['f1_score']:.4f)")
      print(f"Training Time: {results[4]['training_time']:.2f) seconds")
      print(f"Number of Parameters: {results[4]['parameters']:,}")
```

```
0.4286 - val_loss: 1.3774 - val_accuracy: 0.3958
Epoch 6/40
31/31 [-----] - 1s 23ns/step - loss: 1.3134 - accuracy:
0.4607 - val_loss: 1.3519 - val_accuracy: 0.4259
Epoch 7/40
0.4615 - val_loss: 1.3321 - val_accuracy: 0.4329
Epoch 8/40
31/31 [------] - 1s 24ns/step - loss: 1.2597 - accuracy:
0.4870 - val_loss: 1.3005 - val_accuracy: 0.4468
Epoch 9/40
0.5212 - val_loss: 1.2824 - val_accuracy: 0.4745
Epoch 10/40
0.5403 - val_loss: 1.2669 - val_accuracy: 0.4745
Epoch 11/40
0.5699 - val_loss: 1.3269 - val_accuracy: 0.4606
Epoch 12/40
0.5982 - val_loss: 1.2401 - val_accuracy: 0.4838
Epoch 13/40
0.6265 - val_loss: 1.2618 - val_accuracy: 0.4931
0.6690 - val_loss: 1.2636 - val_accuracy: 0.5116
Epoch 15/40
0.6700 - val_loss: 1.3257 - val_accuracy: 0.4838
Epoch 16/40
0.7220 - val_loss: 1.3087 - val_accuracy: 0.4792
Epoch 17/40
31/31 [-----] - 1s 24ns/step - loss: 0.6619 - accuracy:
0.7655 - val_loss: 1.4296 - val_accuracy: 0.5093
Epoch 18/40
0.7923 - val_loss: 1.4985 - val_accuracy: 0.4838
Epoch 19/40
0.8113 - val_loss: 1.5468 - val_accuracy: 0.4884
Epoch 20/40
31/31 [------] - 1s 23ns/step - loss: 0.4727 - accuracy:
0.8296 - val_loss: 1.6324 - val_accuracy: 0.4769
Epoch 21/40
```

```
0.8638 - val_loss: 1.7483 - val_accuracy: 0.4815
Epoch 22/40
31/31 [-----] - 1s 23ns/step - loss: 0.3590 - accuracy:
0.8741 - val_loss: 1.7963 - val_accuracy: 0.4861
Epoch 23/40
0.9009 - val_loss: 2.0965 - val_accuracy: 0.4769
Epoch 24/40
31/31 [------] - 1s 23ms/step - loss: 0.2850 - accuracy:
0.9068 - val_loss: 1.9196 - val_accuracy: 0.4769
Epoch 25/40
0.9302 - val_loss: 1.9788 - val_accuracy: 0.5093
Epoch 26/40
0.9508 - val_loss: 2.1635 - val_accuracy: 0.4931
Epoch 27/40
0.9529 - val_loss: 2.2270 - val_accuracy: 0.5116
Epoch 28/40
0.9591 - val_loss: 2.5254 - val_accuracy: 0.4676
Epoch 29/40
0.9598 - val_loss: 2.6919 - val_accuracy: 0.4792
0.9604 - val_loss: 2.3292 - val_accuracy: 0.4884
Epoch 31/40
0.9758 - val_loss: 2.6233 - val_accuracy: 0.4861
Epoch 32/40
0.9743 - val_loss: 2.7287 - val_accuracy: 0.4907
Epoch 33/40
31/31 [-----] - 1s 24ns/step - loss: 0.0808 - accuracy:
0.9768 - val_loss: 2.7908 - val_accuracy: 0.4931
Epoch 34/40
0.9789 - val_loss: 2.9263 - val_accuracy: 0.4699
Epoch 35/40
0.9699 - val_loss: 2.7777 - val_accuracy: 0.5046
Epoch 36/40
31/31 [------] - 1s 23ns/step - loss: 0.0679 - accuracy:
0.9794 - val_loss: 2.7894 - val_accuracy: 0.4954
Epoch 37/40
```


Results for Model3_fc_2: Configuration: Model3_fc_2 Test Accuracy: 0.4931 F1 Score: 0.4886

Training Time: 30.37 seconds Number of Parameters: 884,229

3 layers after Flatten

```
[67]: model3_fc_3 = Sequential(name="Model3_fc_3")

model3_fc_3.add(
    Conv2D(
        filters=16,
        kernel_size=(3, 3),
        padding="same",
```

```
activation="relu",
        input_shape=(80, 80, 1),
model3_fc_3.add(MaxPooling2D(pool_size=(2, 2)))
model3_fc_3.add(Dropout(0.1))
model3_fc_3.add(
    Conv2D(filters=32, kernel_size=(5, 5), padding="same", activation="relu")
model3_fc_3.add(MaxPooling2D(pool_size=(2, 2)))
model3_fc_3.add(Dropout(0.1))
model3_fc_3.add(
    Conv2D(filters=64, kernel_size=(5, 5), padding="same", activation="relu")
model3_fc_3.add(MaxPooling2D(pool_size=(2, 2)))
model3_fc_3.add(Dropout(0.1))
model3_fc_3.add(Flatten())
model3_fc_3.add(Dense(256, activation="relu"))
model3_fc_3.add(Dense(128, activation="relu"))
model3_fc_3.add(Dense(NUM_CLASSES, activation="softmax"))
model3_fc_3.compile(
    optimizer=Adam(), loss="sparse_categorical_crossentropy",
 -metrics=["accuracy"]
model3_fc_3.summary()
```

Model: "Model3_fc_3"

Layer (type)	Output Shape	Param #
conv2d_45 (Conv2D)	(None, 80, 80, 16)	160
max_pooling2d_45 (MaxPool g2D)	olin (None, 40, 40, 16)	0
dropout_45 (Dropout)	(None, 40, 40, 16)	0
conv2d_46 (Conv2D)	(None, 40, 40, 32)	12832
max_pooling2d_46 (MaxPool g2D)	olin (None, 20, 20, 32)	0

```
dropout_46 (Dropout)
                        (None, 20, 20, 32)
conv2d_47 (Conv2D)
                    (None, 20, 20, 64) 51264
max_pooling2d_47 (MaxPoolin (None, 10, 10, 64)
g2D)
dropout 47 (Dropout)
                       (None, 10, 10, 64)
flatten_15 (Flatten)
                       (None, 6400)
                         (None, 256)
dense_33 (Dense)
                                                1638656
dense_34 (Dense)
                         (None, 128)
                                                 32896
dense_35 (Dense)
                         (None, 5)
                                                 645
```

Total params: 1,736,453 Trainable params: 1,736,453 Non-trainable params: 0

```
[68]: history, training_time = train_and_evaluate(
         model3_fc_3, X_train, y_train, X_test, y_test, batch_size=128, epochs=40
      test_loss, test_acc = model3_fc_3.evaluate(X_test, y_test)
      y_pred = np.argmax(model3_fc_3.predict(X_test), axis=1)
      f1 = f1_score(y_test, y_pred, average="weighted")
      results.append(
              "configuration": f"Model3_fc_3",
              "test_accuracy": test_acc.
              "fi score": f1,
              "training_time": training_time,
              "parameters": model3_fc_3.count_params(),
         }
      1
      plot_training_history(history, f"Model3_fc_3")
      plot_confusion_matrix(y_test, y_pred, class_names, f"Model3_fc_3")
      print("\nResults for Model3_fc_3:")
      print(f"Configuration: {results[5]['configuration']}")
      print(f"Test Accuracy: {results[5]['test_accuracy']:.4f}")
     print(f"F1 Score: (results[5]['f1_score']:.4f)")
```

```
print(f"Training Time: {results[5]['training_time']:.2f} seconds")
print(f"Number of Parameters: (results[5]['parameters']:,)")
```

```
Epoch 1/40
31/31 [------] - 2s 32ms/step - loss: 1.5909 - accuracy:
0.2795 - val_loss: 1.5211 - val_accuracy: 0.3009
Epoch 2/40
0.3480 - val_loss: 1.4590 - val_accuracy: 0.3565
Epoch 3/40
0.3755 - val_loss: 1.4491 - val_accuracy: 0.3704
Epoch 4/40
0.4165 - val_loss: 1.4620 - val_accuracy: 0.3750
Epoch 5/40
0.4420 - val_loss: 1.3278 - val_accuracy: 0.4491
0.4728 - val_loss: 1.2922 - val_accuracy: 0.4560
Epoch 7/40
31/31 [-----] - 1s 24ns/step - loss: 1.2426 - accuracy:
0.4947 - val_loss: 1.2916 - val_accuracy: 0.4630
Epoch 8/40
0.5248 - val_loss: 1.2598 - val_accuracy: 0.4792
Epoch 9/40
31/31 [-----] - 1s 23ns/step - loss: 1.1137 - accuracy:
0.5495 - val_loss: 1.2526 - val_accuracy: 0.4630
Epoch 10/40
0.5853 - val_loss: 1.2339 - val_accuracy: 0.5046
Epoch 11/40
31/31 [-----] - 1s 24ns/step - loss: 0.9479 - accuracy:
0.6322 - val_loss: 1.2730 - val_accuracy: 0.5046
Epoch 12/40
31/31 [================================ ] - 1s 24ns/step - loss: 0.8780 - accuracy:
0.6577 - val_loss: 1.2613 - val_accuracy: 0.5347
Epoch 13/40
0.6937 - val_loss: 1.2685 - val_accuracy: 0.5139
Epoch 14/40
0.7439 - val_loss: 1.2947 - val_accuracy: 0.5417
31/31 [----- - 1s 23ms/step - loss: 0.6056 - accuracy:
```

```
0.7799 - val_loss: 1.4121 - val_accuracy: 0.5486
Epoch 16/40
31/31 [-----] - 1s 23ns/step - loss: 0.5095 - accuracy:
0.8139 - val_loss: 1.5488 - val_accuracy: 0.5185
Epoch 17/40
0.8541 - val_loss: 1.5368 - val_accuracy: 0.5278
Epoch 18/40
31/31 [------] - 1s 25ms/step - loss: 0.3426 - accuracy:
0.8831 - val_loss: 1.7176 - val_accuracy: 0.5255
Epoch 19/40
0.9109 - val_loss: 1.8598 - val_accuracy: 0.5324
Epoch 20/40
0.9354 - val_loss: 2.0218 - val_accuracy: 0.5139
Epoch 21/40
0.9475 - val_loss: 2.0644 - val_accuracy: 0.5069
Epoch 22/40
0.9467 - val_loss: 2.1316 - val_accuracy: 0.5394
Epoch 23/40
0.9629 - val_loss: 2.1942 - val_accuracy: 0.5278
Epoch 24/40
31/31 [-----] - 1s 24ms/step - loss: 0.1169 - accuracy:
0.9632 - val_loss: 2.2662 - val_accuracy: 0.5255
Epoch 25/40
0.9655 - val_loss: 2.3538 - val_accuracy: 0.5301
Epoch 26/40
0.9753 - val_loss: 2.4732 - val_accuracy: 0.5116
Epoch 27/40
31/31 [-----] - 1s 24ns/step - loss: 0.0648 - accuracy:
0.9812 - val_loss: 2.5215 - val_accuracy: 0.5069
Epoch 28/40
0.9812 - val_loss: 2.6162 - val_accuracy: 0.5023
Epoch 29/40
0.9794 - val_loss: 2.8116 - val_accuracy: 0.5023
Epoch 30/40
31/31 [------] - 1s 24ns/step - loss: 0.0592 - accuracy:
0.9830 - val_loss: 2.6508 - val_accuracy: 0.5139
Epoch 31/40
```

```
0.9840 - val_loss: 2.8424 - val_accuracy: 0.5093
Epoch 32/40
31/31 [-----] - 1s 24ns/step - loss: 0.0455 - accuracy:
0.9871 - val_loss: 2.8919 - val_accuracy: 0.5185
Epoch 33/40
0.9907 - val_loss: 3.1975 - val_accuracy: 0.5231
Epoch 34/40
31/31 [------] - 1s 23ms/step - loss: 0.0540 - accuracy:
0.9822 - val_loss: 3.0109 - val_accuracy: 0.5185
Epoch 35/40
0.9817 - val_loss: 3.1630 - val_accuracy: 0.4977
Epoch 36/40
0.9874 - val_loss: 2.8894 - val_accuracy: 0.5278
Epoch 37/40
0.9936 - val_loss: 3.0295 - val_accuracy: 0.5185
Epoch 38/40
0.9941 - val_loss: 3.2194 - val_accuracy: 0.5069
Epoch 39/40
0.9961 - val_loss: 3.1946 - val_accuracy: 0.5069
Epoch 40/40
0.9933 - val_loss: 3.2028 - val_accuracy: 0.4977
0.4977
14/14 [-----] - Os 7ms/step
```


Results for Model3_fc_3: Configuration: Model3_fc_3 Test Accuracy: 0.5772 F1 Score: 0.5796

Training Time: 31.02 seconds Number of Parameters: 1,736,453

```
for row in results

# Print formatted table
print("\nMedel Comparison Results:")
print(tabulate(rows, headers=headers, tablefmt="pretty"))

# Find best model based on test accuracy
best_model = max(results, key=lambda x: x["test_accuracy"])
print("\nBest Model Parameters:")
print(f"Configuration: {best_model['configuration']}")
print(f"Test Accuracy: {best_model['test_accuracy']:.4f}")
print(f"F1 Score: {best_model['f1_score']:.4f}")
print(f"Training Time: {best_model['training_time']:.4f} seconds')
print(f"Number of Parameters: {best_model['parameters']}")
```

Model Comparison Results:

1	configuration	1	test_accuracy	1	f1_score	1	training_time	1	parameters	1
i	Model1	i	0.5556	1	0.5541	1	22.0594	1	55301	i
1	Model2	1	0.5231	1	0.5243	1	20.9627	1	88069	1
I.	Model3	1	0.5671	T	0.5669	1	23.0679	L	96261	ï
i.	Model4	1	0.5185	1	0.5160	1	23.0128	1	96517	1
L	Model3_fc_2	1	0.4931	1	0.4886	1	30.3716	1	884229	1
Ĺ	Model3 fc 3	1	0.5772	1	0.5796	1	31.0176	1	1736453	1

Best Model Parameters: Configuration: Model3_fc_3 Test Accuracy: 0.5772 F1 Score: 0.5796

Training Time: 31.0176 seconds

Number of Parameters: 1736453

Model3_fc_3 (3 fully connected layers after Flatten is the best)

8.0.2 (c) For the best set of parameters obtained above, using average pooling instead of Max Pooling

```
[70]: model3_fc_3_avg_pool = Sequential(name="Model3_fc_8_avg_pool")

model3_fc_3_avg_pool.add(
    Conv2D(
    filters=16,
    kernel_size=(3, 3),
```

```
padding="same",
        activation="relu",
       input_shape=(80, 80, 1),
   1
model3_fc_3_avg_pool.add(AveragePooling2D(pool_size=(2, 2)))
model3_fc_3_avg_pool.add(Dropout(0.1))
model3_fc_3_avg_pool.add(
    Conv2D(filters=32, kernel_size=(3, 3), padding="same", activation="relu")
model3_fc_3_avg_pool.add(AveragePooling2D(pool_size=(2, 2)))
model3_fc_3_avg_pool.add(Dropout(0.1))
model3_fc_3_avg_pool.add(
    Conv2D(filters=54, kernel_size=(5, 5), padding="same", activation="relu")
model3_fc_3_avg_pool.add(AveragePooling2D(pool_size=(2, 2)))
model3_fc_3_avg_pool.add(Dropout(0.1))
model3_fc_3_avg_pool.add(Flatten())
model3_fc_3_avg_pool.add(Dense(256, activation="relu"))
model3_fc_3_avg_pool_add(Dense(128, activation="relu"))
model3_fc_3_avg_pool add(Dense(NUM_CLASSES, activation="softmax"))
model3_fc_3_avg_pool.compile(
    optimizer=Adam(), loss="sparse_categorical_crossentropy",
 -metrics-["accuracy"]
model3_fc_3_avg_pool.summary()
```

Model: "Model3_fc_3_avg_pool"

Layer (type)	Output Shape	Param #
conv2d_48 (Conv2D)	(None, 80, 80, 16)	160
average_pooling2d (AveragePooling2D)	(None, 40, 40, 16)	0
dropout_48 (Dropout)	(None, 40, 40, 16)	0
conv2d_49 (Conv2D)	(None, 40, 40, 32)	4640
average_pooling2d_1 (Averag ePooling2D)	(None, 20, 20, 32)	0

```
dropout_49 (Dropout)
                       (None, 20, 20, 32)
conv2d_50 (Conv2D)
                        (None, 20, 20, 64)
                                                  51264
average_pooling2d_2 (Averag (None, 10, 10, 64)
ePooling2D)
dropout_50 (Dropout)
                         (None, 10, 10, 64)
flatten_16 (Flatten)
                         (None, 6400)
dense 36 (Dense)
                         (None, 256)
                                                  1638656
dense_37 (Dense)
                          (None, 128)
                                                  32896
dense_38 (Dense)
                          (None, 5)
                                                   645
```

Total params: 1,728,261 Trainable params: 1,728,261 Non-trainable params: 0

```
[71]: history, training_time = train_and_evaluate(
         model3_fc_3_avg_pool, X_train, y_train, X_test, y_test, batch_size=128
      test_loss, test_acc = model3_fc_3_avg_pool.evaluate(X_test, y_test)
      y_pred = np.argmax(model3_fc_3_avg_pool.predict(X_test), axis=1)
      f1 = f1_score(y_test, y_pred, average="weighted")
      results.append(
          {
              "configuration": f"Model1_fc_3_avg_pool",
             "test accuracy": test acc,
              "fl_score": fl,
              "training_time": training_time,
              "parameters": model3 fc 3 avg pool.count params(),
         7
      plot_training_history(history, f"Model1_fc_3_avg_pool")
      plot_confusion_matrix(y_test, y_pred, class_names, f"Model1_fc_3_avg_pool")
      print("\nResults for Model1_fc_3_avg_pool:")
      print(f"Configuration: {results[6]['configuration']}")
      print(f"Test Accuracy: {results[6]['test_accuracy']:.4f}")
      print(f"F1 Score: (results[6]['f1_score']:.4f)")
```

```
print(f"Training Time: {results[6]['training_time']:.2f} seconds")
print(f"Number of Parameters: (results[6]['parameters']:,}")
```

```
Epoch 1/30
31/31 [------] - 2s 32ms/step - loss: 1.5593 - accuracy:
0.2798 - val_loss: 1.5214 - val_accuracy: 0.3426
Epoch 2/30
0.3372 - val_loss: 1.4783 - val_accuracy: 0.3333
Epoch 3/30
0.3732 - val_loss: 1.4571 - val_accuracy: 0.3519
Epoch 4/30
0.4039 - val_loss: 1.4158 - val_accuracy: 0.3704
Epoch 5/30
0.4335 - val_loss: 1.3667 - val_accuracy: 0.3912
0.4602 - val_loss: 1.3682 - val_accuracy: 0.4282
Epoch 7/30
0.4754 - val_loss: 1.3387 - val_accuracy: 0.4236
Epoch 8/30
0.4999 - val_loss: 1.3809 - val_accuracy: 0.4282
Epoch 9/30
31/31 [-----] - 1s 21ns/step - loss: 1.1537 - accuracy:
0.5372 - val_loss: 1.3609 - val_accuracy: 0.4491
Epoch 10/30
0.5580 - val_loss: 1.4230 - val_accuracy: 0.4676
Epoch 11/30
0.6154 - val_loss: 1.3805 - val_accuracy: 0.4560
Epoch 12/30
31/31 [========================== ] - 1s 21ns/step - loss: 0.9069 - accuracy:
0.6499 - val_loss: 1.4372 - val_accuracy: 0.4491
Epoch 13/30
0.6914 - val_loss: 1.5660 - val_accuracy: 0.4236
Epoch 14/30
0.7346 - val_loss: 1.5985 - val_accuracy: 0.4398
31/31 [-----] - 1s 21ms/step - loss: 0.6165 - accuracy:
```

```
0.7694 - val_loss: 1.7581 - val_accuracy: 0.4236
Epoch 16/30
31/31 [-----] - 1s 21ns/step - loss: 0.4935 - accuracy:
0.8172 - val_loss: 2.0833 - val_accuracy: 0.4259
Epoch 17/30
0.8461 - val_loss: 2.0097 - val_accuracy: 0.4444
Epoch 18/30
31/31 [------] - 1s 21ns/step - loss: 0.3450 - accuracy:
0.8770 - val_loss: 2.3679 - val_accuracy: 0.4352
Epoch 19/30
0.9107 - val_loss: 2.6097 - val_accuracy: 0.4514
Epoch 20/30
0.9256 - val_loss: 2.7792 - val_accuracy: 0.4375
Epoch 21/30
0.9429 - val_loss: 3.0776 - val_accuracy: 0.4306
Epoch 22/30
0.9215 - val_loss: 2.6986 - val_accuracy: 0.4236
Epoch 23/30
0.9622 - val_loss: 3.3911 - val_accuracy: 0.4213
Epoch 24/30
31/31 [-----] - 1s 21ms/step - loss: 0.1322 - accuracy:
0.9593 - val_loss: 3.2312 - val_accuracy: 0.4329
Epoch 25/30
0.9686 - val_loss: 3.1737 - val_accuracy: 0.4306
Epoch 26/30
0.9717 - val_loss: 3.6954 - val_accuracy: 0.4259
Epoch 27/30
31/31 [-----] - 1s 22ns/step - loss: 0.0656 - accuracy:
0.9817 - val_loss: 3.6802 - val_accuracy: 0.4537
Epoch 28/30
0.9786 - val_loss: 3.7941 - val_accuracy: 0.4282
Epoch 29/30
0.9866 - val_loss: 4.0355 - val_accuracy: 0.4421
Epoch 30/30
31/31 [------] - 1s 21ms/step - loss: 0.0400 - accuracy:
0.9912 - val_loss: 4.2751 - val_accuracy: 0.4444
0.4444
```

14/14 [========] - 0s 4ms/step

Results for Model1_fc_3_avg_pool: Configuration: Model1_fc_3_avg_pool

Test Accuracy: 0.4444 F1 Score: 0.4447

Training Time: 21.23 seconds Number of Parameters: 1,728,261

```
[72]: headers = results[0] keys()
      rows = [
         E
             f"{row['configuration']}".
             f"{row['test_accuracy']:.4f}".
             f"(row['f1_score']:.4f)",
              f" [row['training_time']: .4f]",
             row["parameters"],
         for row in results
      # Print formatted table
      print("\nModel Comparison Results: ")
      print(tabulate(rows, headers-headers, tablefnt="pretty"))
      # Find best model based on test accuracy
      best_model = max(results, key=lambda x: x["test_accuracy"])
      print("\nBest Model Parameters:")
      print(f"Configuration: {best_model['configuration']}")
      print(f"Test Accuracy: {best_nodel['test_accuracy']:.4f}")
      print(f"F1 Score: {best_model['f1_score']:.4f}")
      print(f"Training Time: (best_model['training_time']:.4f) seconds*)
      print(f"Number of Parameters: {best_model['parameters']}")
```

Model Comparison Results:

1	configuration	1	test_accuracy	1	f1_score	1	training_time	1	parameters	F
i	Model1	ı	0.5556	ı	0.5541	i	22.0594	1	55301	ī
1	Model2	1	0.5231	1	0.5243	1	20.9627	1	88069	1
1	Model3	1	0,5671	1	0.5669	1	23.0679	1	96261	1
1	Model4	1	0.5185	1	0.5160	1	23.0128	1	96517	1
1	Model3_fc_2	1	0.4931	1	0.4886	1	30.3716	1	884229	1
Ю.	Model3_fc_3	1	0.5772	1	0.5796	1	31.0176		1736453	1
1 1	fodel1_fc_3_avg_pool	1	0.4444	1	0.4447	1	21.2291	1	1728261	1

Best Model Parameters: Configuration: Model3_fc_3 Test Accuracy: 0.5772 F1 Score: 0.5796 Training Time: 31.0176 seconds Number of Parameters: 1736453

Average pooling is not better. Continuing with the max pooling version and 3 fully connected layers, experimenting with different activations

8.0.3 (d) For the best set of parameters obtained above, using Sigmoid and Leaky ReLU

ReLU was already tested previously

Sigmoid

```
[73]: model3_fc_3_signoid = Sequential(name="Model3_fc_3_signoid")
      model3_fc_3_sigmoid.add(
          Conv2D(
             filters=16,
             kernel_size=(3, 3),
              padding="same",
              activation="sigmoid",
              input_shape=(80, 80, 1),
          )
      model3_fc_3_sigmoid.add(MaxPooling2D(pool_size=(2, 2)))
      model3_fc_3_signoid.add(Dropout(0.1))
      model3_fc_3_sigmoid.add(
          Conv2D(filters=32, kernel_size=(3, 3), padding="same", activation="sigmoid")
      model3 fc 3 signoid add(MaxPooling2D(pool size=(2, 2)))
      model3_fc_3_sigmoid.add(Dropout(0.1))
      model3_fc_3_sigmoid.add(
          Conv2D(filters=64, kernel_size=(5, 5), padding="same", activation="sigmoid")
      model3_fc_3_sigmoid.add(MaxPooling2D(pool_size=(2, 2)))
      model3_fc_3_sigmoid.add(Dropout(0.1))
      model3_fc_3_signoid.add(Flatten())
      model3_fc_3_sigmoid.add(Dense(256, activation="sigmoid"))
      model3_fc_3_signoid.add(Dense(128, activation="signoid"))
      model3 fc 3 sigmoid.add(Dense(NUM CLASSES, activation="softmax"))
      model3_fc_3_sigmoid.compile(
```

```
optimizer=Adam(), loss="sparse_categorical_crossentropy", | metrics=["accuracy"]
)
model3_fc_3_signoid.summary()
```

Model: "Model3_fc_3_sigmoid"

Layer (type)	Output Shape	Param #
conv2d_51 (Conv2D)	(None, 80, 80, 16)	160
max_pooling2d_48 (MaxPoolin g2D)	(None, 40, 40, 16)	0
dropout_51 (Dropout)	(None, 40, 40, 16)	0
conv2d_52 (Conv2D)	(None, 40, 40, 32)	4640
max_pooling2d_49 (MaxPoolin g2D)	(None, 20, 20, 32)	0
dropout_52 (Dropout)	(None, 20, 20, 32)	0
conv2d_53 (Conv2D)	(None, 20, 20, 64)	51264
max_pooling2d_50 (MaxPoolin g2D)	(None, 10, 10, 64)	0
dropout_53 (Dropout)	(None, 10, 10, 64)	D
flatten_17 (Flatten)	(None, 6400)	0
dense_39 (Dense)	(None, 256)	1638656
dense_40 (Dense)	(None, 128)	32896
dense_41 (Dense)	(None, 5)	645

Total params: 1,728,261 Trainable params: 1,728,261 Non-trainable params: 0

```
test_loss, test_acc = model3_fc_3_sigmoid_evaluate(X_test, y_test)
y_pred = np.argnax(model3_fc_3_signoid.predict(X_test), axis=1)
f1 = f1_score(y_test, y_pred, average="weighted")
results.append(
   1
      "configuration": f"Model3_fc_3_sigmoid",
      "test_accuracy": test_acc,
      "f1_score": f1,
      "training time": training time.
      "parameters": model3_fc_3_sigmoid.count_params(),
  }
>
plot_training_history(history, f"Model3_fc_3_signoid")
plot_confusion_matrix(y_test, y_pred, class_names, f"Model3_fc_3_sigmoid")
print("\nResults for Model3_fc_3_sigmoid:")
print(f"Configuration: {results[7]['configuration']}")
print(f"Test Accuracy: {results[7]['test_accuracy']:.4f}")
print(f"F1 Score: (results[7]['f1_score']:.4f)")
print(f"Training Time: {results[7]['training time']:.2f) seconds')
print(f"Number of Parameters: {results[7]['parameters']:,}")
Epoch 1/30
0.2214 - val_loss: 1.6038 - val_accuracy: 0.2106
Epoch 2/30
0.2358 - val_loss: 1.5896 - val_accuracy: 0.2708
Epoch 3/30.
0.2306 - val_loss: 1.6113 - val_accuracy: 0.2106
Epoch 4/30
0.2396 - val_loss: 1.6003 - val_accuracy: 0.2708
0.2301 - val_loss: 1.5913 - val_accuracy: 0.2708
Epoch 6/30
31/31 [------] - 1s 25ns/step - loss: 1.6079 - accuracy:
0.2314 - val loss: 1.6048 - val accuracy: 0.2106
Epoch 7/30
0.2417 - val_loss: 1.5990 - val_accuracy: 0.2708
Epoch 8/30
31/31 [-----] - 1s 24ms/step - loss: 1.6050 - accuracy:
```

0.2347 - val_loss: 1.5973 - val_accuracy: 0.2708

```
Epoch 9/30
31/31 [------ - 1s 26ns/step - loss: 1.6063 - accuracy:
0.2337 - val_loss: 1.5943 - val_accuracy: 0.2708
Epoch 10/30
0.2476 - val_loss: 1.6014 - val_accuracy: 0.2708
Epoch 11/30
0.2257 - val_loss: 1.6029 - val_accuracy: 0.2106
Epoch 12/30
31/31 [------] - 1s 25ms/step - loss: 1.6053 - accuracy:
0.2273 - val_loss: 1.6029 - val_accuracy: 0.2708
Epoch 13/30
0.2270 - val_loss: 1.5915 - val_accuracy: 0.2708
31/31 [-----] - 1s 24ns/step - loss: 1.6056 - accuracy:
0.2324 - val_loss: 1.5967 - val_accuracy: 0.2106
Epoch 15/30
31/31 [-----] - 1s 25ms/step - loss: 1.6055 - accuracy:
0.2335 - val_loss: 1.5995 - val_accuracy: 0.2708
Epoch 16/30
0.2384 - val_loss: 1.5948 - val_accuracy: 0.2708
Epoch 17/30
31/31 [------] - 1s 24ms/step - loss: 1.6051 - accuracy:
0.2296 - val_loss: 1.5966 - val_accuracy: 0.2106
Epoch 18/30
0.2384 - val_loss: 1.5899 - val_accuracy: 0.2708
Epoch 19/30
0.2399 - val_loss: 1.6021 - val_accuracy: 0.2708
Epoch 20/30
0.2347 - val loss: 1.5955 - val accuracy: 0.2708
Epoch 21/30
0.2239 - val_loss: 1.6075 - val_accuracy: 0.2106
Epoch 22/30
0.2250 - val_loss: 1.5954 - val_accuracy: 0.2106
Epoch 23/30
0.2360 - val_loss: 1.5950 - val_accuracy: 0.2708
Epoch 24/30
0.2381 - val_loss: 1.5928 - val_accuracy: 0.2106
```

```
Epoch 25/30
31/31 [-----] - 1s 24ns/step - loss: 1.6027 - accuracy:
0.2347 - val_loss: 1.6081 - val_accuracy: 0.2106
Epoch 26/30
0.2371 - val_loss: 1.5927 - val_accuracy: 0.2106
Epoch 27/30
0.2353 - val_loss: 1.5993 - val_accuracy: 0.2106
Epoch 28/30
31/31 [------] - 1s 24ms/step - loss: 1.6039 - accuracy:
0.2373 - val_loss: 1.6117 - val_accuracy: 0.2106
Epoch 29/30
31/31 [-----] - 1s 24ns/step - loss: 1.6029 - accuracy:
0.2278 - val_loss: 1.6027 - val_accuracy: 0.2708
Epoch 30/30
0.2322 - val_loss: 1.5956 - val_accuracy: 0.2708
14/14 [------ - 1.5956 - accuracy:
0.2708
14/14 [======= ] - 0s 4ms/step
```


Results for Model3_fc_3_sigmoid: Configuration: Model3_fc_3_sigmoid

Test Accuracy: 0.2708

F1 Score: 0.1154

Training Time: 24.52 seconds Number of Parameters: 1,728,261

Leaky ReLU

```
model3_fc_3_leaky_relu.add(MaxPooling2D(pool_size=(2, 2)))
model3_fc_3_leaky_relu.add(Dropout(0.1))
model3_fc_3_leaky_relu.add(Conv2D(filters=32, kernel_size=(3, 3),
 -padding-"same"))
model3_fc_3_leaky_relu.add(LeakyReLU(alpha=0.01))
model3_fc_3_leaky_relu_add(MaxPooling2D(pool_size=(2, 2)))
model3_fc_3_leaky_relu.add(Dropout(0.1))
model3_fc_3_leaky_relu.add(Conv2D(filters=64, kernel_size=(5, 5),
 -padding="same"))
model3_fc_3_leaky_relu.add(LeakyReLU(alpha=0.01))
model3_fc_3_leaky_relu.add(MaxPooling2D(pool_size=(2, 2)))
model3_fc_3_leaky_relu.add(Dropout(0.1))
model3_fc_3_leaky_relu.add(Flatten())
model3_fc_3_leaky_relu.add(Dense(256))
model3_fc_3_leaky_relu.add(LeakyReLU(alpha=0.01))
model3 fc 3 leaky relu.add(Dense(128))
model3_fc_3_leaky_relu.add(LeakyReLU(alpha=0.01))
model3_fc_3_leaky_relu.add(Dense(NUM_CLASSES, activation="softmax"))
model3_fc_3_leaky_relu.compile(
    optimizer=Adam(), loss="sparse_categorical_crossentropy", ...
 .metrics=["accuracy"]
model3_fc_3_leaky_relu.summary()
```

Model: "Model3_fc_3_leaky_relu"

Layer (type)	Output Shape	Param #
conv2d_54 (Conv2D)	(None, 80, 80, 16)	160
leaky_re_lu (LeakyReLU)	(None, 80, 80, 16)	0
max_pooling2d_51 (MaxPooling2D)	(None, 40, 40, 16)	0
dropout_54 (Dropout)	(None, 40, 40, 16)	0
conv2d_55 (Conv2D)	(None, 40, 40, 32)	4640
leaky_re_lu_1 (LeakyReLU)	(None, 40, 40, 32)	0
max_pooling2d_52 (MaxPoolin	(None, 20, 20, 32)	0

```
g2D)
     dropout_55 (Dropout) (None, 20, 20, 32) 0
     conv2d_56 (Conv2D)
                             (None, 20, 20, 64)
                                                     51264
     leaky_re_lu_2 (LeakyReLU) (None, 20, 20, 64)
                                                      0
     max_pooling2d_53 (MaxPoolin (None, 10, 10, 64)
     g2D)
     dropout_56 (Dropout)
                              (None, 10, 10, 64)
     flatten_18 (Flatten)
                             (None, 6400)
     dense_42 (Dense)
                             (None, 256)
                                                     1638656
     leaky_re_lu_3 (LeakyReLU) (None, 256)
     dense_43 (Dense)
                         (None, 128)
                                                     32896
     leaky_re_lu_4 (LeakyReLU) (None, 128)
     dense_44 (Dense)
                              (None, 5)
                                                      645
    ______
    Total params: 1,728,261
    Trainable params: 1,728,261
    Non-trainable params: 0
[76]: history, training_time = train_and_evaluate(
        model3_fc_3_leaky_relu, X_train, y_train, X_test, y_test, batch_size=128
     test_loss, test_acc = model3_fc_3_leaky_relu_evaluate(X_test, y_test)
     y_pred = np.argmax(model3_fc_3_leaky_relu.predict(X_test), axis=1)
     f1 = f1_score(y_test, y_pred, average="weighted")
     results.append(
        1
            "configuration": f"Model3_fc_3_leaky_relu",
            "test_accuracy": test_acc,
            "f1_score": f1,
            "training_time": training_time,
            "parameters": model3_fc_3_leaky_relu.count_params(),
        }
```

```
plot_training_history(history, f"Model3_fc_3_leaky_relu")
plot_confusion_matrix(y_test, y_pred, class_names, f"Model3_fc_3_leaky_relu")
print("\nResults for Model3_fc_3_leaky_relu:")
print(f"Configuration: {results[8]['configuration'])")
print(f"Test Accuracy: {results[8]['test_accuracy']:.4f)")
print(f"F1 Score: {results[8]['f1_score']:.4f}")
print(f"Training Time: {results[8]['training_time']:.2f} seconds')
print(f"Number of Parameters: (results[8]['parameters']:,)")
Epoch 1/30
31/31 [----- - 2s 33ns/step - loss: 1.5635 - accuracy:
0.2829 - val_loss: 1.5145 - val_accuracy: 0.3079
Epoch 2/30
31/31 [-----] - is 24ms/step - loss: 1.4882 - accuracy:
0.3498 - val_loss: 1.4556 - val_accuracy: 0.3727
Epoch 3/30
31/31 [------ - 1s 24ns/step - loss: 1.4318 - accuracy:
0.3833 - val_loss: 1.4252 - val_accuracy: 0.3889
Epoch 4/30
0.4399 - val_loss: 1.4720 - val_accuracy: 0.3773
Epoch 5/30
0.4757 - val_loss: 1.2824 - val_accuracy: 0.4815
Epoch 6/30
0.5261 - val_loss: 1.2293 - val_accuracy: 0.4838
Epoch 7/30
31/31 [-----] - 1s 25ms/step - loss: 1.1216 - accuracy:
0.5632 - val_loss: 1.2311 - val_accuracy: 0.4792
Epoch 8/30
0.5956 - val_loss: 1.2585 - val_accuracy: 0.4977
Epoch 9/30
31/31 [----- - loss: 0.9554 - accuracy:
0.6340 - val_loss: 1.2111 - val_accuracy: 0.5069
Epoch 10/30
31/31 [-----] - 1s 26ms/step - loss: 0.8432 - accuracy:
0.6834 - val_loss: 1.2819 - val_accuracy: 0.5046
Epoch 11/30
0.7284 - val_loss: 1.3438 - val_accuracy: 0.4977
Epoch 12/30
0.7812 - val_loss: 1.3353 - val_accuracy: 0.5116
```

Epoch 13/30

```
0.8273 - val_loss: 1.4499 - val_accuracy: 0.5046
Epoch 14/30
0.8638 - val_loss: 1.6162 - val_accuracy: 0.5417
Epoch 15/30
0.9009 - val loss: 1.8274 - val accuracy: 0.5255
Epoch 16/30
0.9279 - val_loss: 1.8146 - val_accuracy: 0.5069
Epoch 17/30
0.9416 - val_loss: 1.9713 - val_accuracy: 0.5208
Epoch 18/30
31/31 [-----] - 1s 25ns/step - loss: 0.1326 - accuracy:
0.9624 - val_loss: 2.0016 - val_accuracy: 0.5023
Epoch 19/30
31/31 [-----] - 1s 24ns/step - loss: 0.1060 - accuracy:
0.9699 - val_loss: 2.1808 - val_accuracy: 0.5139
Epoch 20/30
0.9773 - val_loss: 2.2903 - val_accuracy: 0.5023
Epoch 21/30
0.9817 - val_loss: 2.5198 - val_accuracy: 0.4931
Epoch 22/30
31/31 [----- 1s 26ms/step - loss: 0.0975 - accuracy:
0.9709 - val_loss: 2.4102 - val_accuracy: 0.5023
Epoch 23/30
0.9840 - val_loss: 2.6160 - val_accuracy: 0.5046
Epoch 24/30
31/31 [-----] - 1s 24ms/step - loss: 0.0477 - accuracy:
0.9889 - val_loss: 2.6234 - val_accuracy: 0.5255
Epoch 25/30
31/31 [-----] - 1s 25ms/step - loss: 0.0253 - accuracy:
0.9946 - val_loss: 2.7769 - val_accuracy: 0.4954
Epoch 26/30
0.9943 - val_loss: 2.8342 - val_accuracy: 0.5185
Epoch 27/30
0.9943 - val_loss: 2.9119 - val_accuracy: 0.5417
Epoch 28/30
0.9959 - val_loss: 2.7910 - val_accuracy: 0.5394
Epoch 29/30
```


Results for Model3_fc_3_leaky_relu: Configuration: Model3_fc_3_leaky_relu

Test Accuracy: 0.4907 F1 Score: 0.4910

Training Time: 24.46 seconds Number of Parameters: 1,728,261

```
for row in results

# Print formatted table
print("\nMedel Comparison Results:")
print(tabulate(rows, headers=headers, tablefmt="pretty"))

# Find best model based on test accuracy
best_model = max(results, key=lambda x: x["test_accuracy"])
print("\nBest Model Parameters:")
print(f"Configuration: {best_model['configuration']}")
print(f"Test Accuracy: {best_model['test_accuracy']:.4f}")
print(f"F1 Score: {best_model['f1_score']:.4f}")
print(f"Training Time: {best_model['training_time']:.4f} seconds')
print(f"Number of Parameters: {best_model['parameters']}")
```

Model Comparison Results:

1	configuration	1	test_accuracy	1	f1_score	1	training_time	1	parameters
+		+		+		+		+	
	Model1	1	0.5556	1	0.5541	1	22.0594	1	55301
	Model2	I	0.5231	Ĭ	0.5243	I	20.9627	I	88069
	Model3	1	0.5671	1	0.5669	1	23.0679	ı	96261
	Model4	I	0.5185	I	0.5160	1	23,0128	1	96517
	Model3_fc_2	I	0.4931	I	0.4886	1	30.3716	1	884229
	Model3_fc_3	1	0.5772	1	0.5796	1	31,0176	1	1736453
1	Model1_fc_3_avg_pool	1	0.4444	1	0.4447	1	21.2291	1	1728261
1	Model3_fc_3_sigmoid	I	0.2708	1	0.1154	1	24.5248	1	1728261
М	odel3_fc_3_leaky_relu	1	0.4907	1	0.4910	I	24.4649	ı	1728261

Best Model Parameters:

Configuration: Model3_fc_3 Test Accuracy: 0.5772 F1 Score: 0.5796 Training Time: 31.0176 seconds Number of Parameters: 1736453

ReLU seems to be the better activation function

8.0.4 (e) For the best set of parameters obtained above, varying regularization param

Dropout = 0.25

```
[78]: model3_fc_3_dropout = Sequential(name="Model3_fc_3_dropout")
      model3_fc_3_dropout.add(
         Conv2D(
             filters=16,
              kernel_size=(3, 3),
              padding="same",
             input_shape=(80, 80, 1),
             activation="relu",
      model3_fc_3_dropout.add(MaxPooling2D(pool_size=(2, 2)))
      model3_fc_3_dropout.add(Dropout(0.25))
      model3_fc_3_dropout.add(
          Conv2D(filters=32, kernel_size=(3, 3), padding="same", activation="relu")
      model3_fc_3_dropout.add(MaxPooling2D(pool_size=(2, 2)))
      model3_fc_3_dropout.add(Dropout(0.25))
      model3_fc_3_dropout.add(
          Conv2D(filters=64, kernel_size=(5, 5), padding="same", activation="relu")
      model3_fc_3_dropout.add(MaxPooling2D(pool_size=(2, 2)))
      model3_fc_3_dropout.add(Dropout(0.25))
      model3 fc 3 dropout.add(Flatten())
      model3_fc_3_dropout.add(Dense(256, activation="relu"))
      model3_fc_3_dropout.add(Dense(128, activation="relu"))
      model3_fc_3_dropout.add(Dense(NUM_CLASSES, activation="softmax"))
      model3_fc_3_dropout.compile(
          optimizer=Adam(), loss="sparse_categorical_crossentropy", ...
       -metrics=["accuracy"]
```

model3_fc_3_dropout.summary()

Model: "Model3 fc_3_dropout"

Layer (type)	Output Shape	Param #
conv2d_57 (Conv2D)	(None, 80, 80, 16)	160
max_pooling2d_54 (MaxPoolin g2D)	(None, 40, 40, 16)	0
dropout_57 (Dropout)	(None, 40, 40, 16)	0
conv2d_58 (Conv2D)	(None, 40, 40, 32)	4640
max_pooling2d_55 (MaxPoolin g2D)	(None, 20, 20, 32)	0
dropout_58 (Dropout)	(None, 20, 20, 32)	0
conv2d_59 (Conv2D)	(None, 20, 20, 64)	51264
max_pooling2d_56 (MaxPoolin g2D)	(None, 10, 10, 64)	0
dropout_59 (Dropout)	(None, 10, 10, 64)	0
flatten_19 (Flatten)	(None, 6400)	0
dense_45 (Dense)	(None, 256)	1638656
dense_46 (Dense)	(None, 128)	32896
dense_47 (Dense)	(None, 5)	645

Total params: 1,728,261 Trainable params: 1,728,261 Non-trainable params: 0

```
results.append(
   1
      "configuration": f"Model3_fc_3_dropout",
      "test_accuracy": test_acc,
      "fi score": fi,
      "training time": training time.
      "parameters": model3_fc_3_dropout.count_params(),
   )
1
plot_training_history(history, f"Model3_fc_3_dropout")
plot_confusion_matrix(y_test, y_pred, class_names, f"Model3_fc_3_dropout")
print("\nResults for Model3_fc_3_dropout:")
print(f"Configuration: {results[9]['configuration']}")
print(f"Test Accuracy: (results[9]['test_accuracy']:.4f}")
print(f"F1 Score: {results[9]['f1_score']:.4f}")
print(f"Training Time: {results[9]['training time']:.2f} seconds')
print(f"Number of Parameters: (results[9]['parameters']:,)")
Epoch 1/30
31/31 [------] - 2s 31ns/step - loss: 1.5639 - accuracy:
0.2885 - val_loss: 1.5248 - val_accuracy: 0.3634
Epoch 2/30
0.3681 - val_loss: 1.4909 - val_accuracy: 0.3588
Epoch 3/30
0.4185 - val_loss: 1.3475 - val_accuracy: 0.4421
Epoch 4/30
0.4577 - val_loss: 1.3629 - val_accuracy: 0.4097
Epoch 5/30
0.4940 - val_loss: 1.3189 - val_accuracy: 0.4861
0.5364 - val_loss: 1.2271 - val_accuracy: 0.4907
Epoch 7/30
31/31 [-----] - 1s 21ns/step - loss: 1.1521 - accuracy:
0.5413 - val_loss: 1.1862 - val_accuracy: 0.5162
Epoch 8/30
0.5758 - val_loss: 1.2377 - val_accuracy: 0.5046
Epoch 9/30
```

31/31 [-----] - 1s 21ns/step - loss: 1.0393 - accuracy:

0.5918 - val_loss: 1.1529 - val_accuracy: 0.5370

```
Epoch 10/30
31/31 [----- - 1s 21ns/step - loss: 0.9681 - accuracy:
0.6327 - val_loss: 1.2407 - val_accuracy: 0.5162
Epoch 11/30
0.6638 - val_loss: 1.3270 - val_accuracy: 0.5093
Epoch 12/30
0.6798 - val_loss: 1.1328 - val_accuracy: 0.5579
Epoch 13/30
31/31 [------] - 1s 21ms/step - loss: 0.7610 - accuracy:
0.7189 - val_loss: 1.2942 - val_accuracy: 0.5116
Epoch 14/30
0.7323 - val_loss: 1.1774 - val_accuracy: 0.5625
31/31 [-----] - 1s 22ns/step - loss: 0.6319 - accuracy:
0.7699 - val_loss: 1.1913 - val_accuracy: 0.5509
Epoch 16/30
31/31 [-----] - 1s 21ns/step - loss: 0.5780 - accuracy:
0.7931 - val_loss: 1.1686 - val_accuracy: 0.5602
Epoch 17/30
0.8190 - val_loss: 1.4023 - val_accuracy: 0.5185
Epoch 18/30
31/31 [------] - 1s 22ms/step - loss: 0.4635 - accuracy:
0.8229 - val_loss: 1.2438 - val_accuracy: 0.5440
Epoch 19/30
0.8674 - val_loss: 1.4005 - val_accuracy: 0.5718
Epoch 20/30
0.8692 - val_loss: 1.5576 - val_accuracy: 0.5394
Epoch 21/30
31/31 [========================== ] - 1s 22ms/step - loss: 0.3191 - accuracy:
0.8870 - val loss: 1.5190 - val accuracy: 0.5602
Epoch 22/30
31/31 [=========================== ] - 1s 22ns/step - loss: 0.2874 - accuracy:
0.8999 - val_loss: 1.6464 - val_accuracy: 0.5370
Epoch 23/30
0.9091 - val_loss: 1.5169 - val_accuracy: 0.5694
Epoch 24/30
0.9364 - val_loss: 1.7920 - val_accuracy: 0.5417
Epoch 25/30
0.9362 - val_loss: 1.7533 - val_accuracy: 0.5509
```

```
Epoch 26/30
31/31 [-----] - 1s 22ns/step - loss: 0.1379 - accuracy:
0.9555 - val_loss: 1.9712 - val_accuracy: 0.5625
Epoch 27/30
0.9521 - val_loss: 1.7662 - val_accuracy: 0.5579
Epoch 28/30
0.9645 - val_loss: 2.1082 - val_accuracy: 0.5208
Epoch 29/30
31/31 [------] - 1s 23ns/step - loss: 0.1573 - accuracy:
0.9454 - val_loss: 1.9006 - val_accuracy: 0.5579
Epoch 30/30
31/31 [------] - 1s 21ns/step - loss: 0.1029 - accuracy:
0.9691 - val_loss: 2.0693 - val_accuracy: 0.5579
0.5579
14/14 [======= ] - 0s 7ms/step
```


Results for Model3_fc_3_dropout: Configuration: Model3_fc_3_dropout

Test Accuracy: 0.5579 F1 Score: 0.5555

Training Time: 21.69 seconds Number of Parameters: 1,728,261

BatchNormalization after each layer except first

```
input_shape=(80, 80, 1),
        activation="relu",
model3_fc_3_batchnorm.add(MaxPooling2D(pool_size=(2, 2)))
model3_fc_3_batchnorm.add(
    Conv2D(filters=32, kernel_size=(3, 3), padding="same", activation="relu")
model3_fc_3_batchnorm.add(MaxPooling2D(pool_size=(2, 2)))
model3 fc 3 batchnorm.add(BatchNormalization())
model3_fc_3_batchnorm.add(
    Conv2D(filters=64, kernel_size=(5, 5), padding="same", activation="relu")
model3_fc_3_batchnorm.add(MaxPooling2D(pool_size=(2, 2)))
model3_fc_3_batchnorm.add(BatchNormalization())
model3_fc_3_batchnorm.add(Flatten())
model3_fc_3_batchnorm.add(Dense(256, activation="relu"))
model3_fc_3_batchnorm.add(Dense(128, activation="relu"))
model3 fc 3 batchnorm.add(Dense(NUM CLASSES, activation="softmax"))
model3_fc_3_batchnorm.compile(
    optimizer=Adam(), loss="sparse_categorical_crossentropy",
 -metrics=["accuracy"]
model3_fc_3_batchnorm.summary()
```

Model: "Model3_fc_3_batchnorm"

Layer (type)	Output Shape	Param #
conv2d_60 (Conv2D)	(None, 80, 80, 16)	160
max_pooling2d_57 (MaxPoolg2D)	lin (None, 40, 40, 16)	0
conv2d_61 (Conv2D)	(None, 40, 40, 32)	4640
max_pooling2d_58 (MaxPool g2D)	lin (None, 20, 20, 32)	0
batch_normalization (Batormalization)	chN (None, 20, 20, 32)	128

```
conv2d_62 (Conv2D)
                          (None, 20, 20, 64)
                                                    51264
max_pooling2d_59 (MaxPoolin (None, 10, 10, 64)
                                                     0
g2D)
                                                    256
batch_normalization_1 (Batc (None, 10, 10, 64)
hNormalization)
flatten_20 (Flatten)
                         (None, 6400)
dense_48 (Dense)
                           (None, 256)
                                                     1638656
dense_49 (Dense)
                           (None, 128)
                                                     32896
dense_50 (Dense)
                           (None, 5)
                                                     645
```

Total params: 1,728,645 Trainable params: 1,728,453 Non-trainable params: 192

```
[81]: history, training_time = train_and_evaluate(
          model3_fc_3_batchnorm, X_train, y_train, X_test, y_test, batch_size=128
      test_loss, test_acc = model3_fc_3_batchnorm.evaluate(X_test, y_test)
      y_pred = np.argmax(model3_fc_3_batchnorm.predict(X_test), axis=1)
      f1 = f1_score(y_test, y_pred, average="weighted")
      results.append(
          1
              "configuration": f"Model3_fc_3_batchnorm",
              "test_accuracy": test_acc,
              "fi score": f1,
              "training_time": training_time,
              "parameters": model3_fc_3_batchnorm.count_params(),
         7
      1
      plot_training_history(history, f"Model3_fc_3_batchnorm")
      plot_confusion_natrix(y_test, y_pred, class_names, f"Model3_fc_3_batchnorm")
      print("\nResults for Model3_fc_3_batchnorm:")
      print(f"Configuration: (results[10]['configuration'])")
      print(f"Test Accuracy: {results[10]['test_accuracy']:.4f}")
      print(f"F1 Score: {results[10]['f1_score']:.4f}")
      print(f"Training Time: (results[10]['training_time']:.2f) seconds")
```

```
print(f"Number of Parameters: (results[10]['parameters']:,)")
Epoch 1/30
0.3524 - val_loss: 1.5727 - val_accuracy: 0.2778
Epoch 2/30
0.4770 - val_loss: 1.8517 - val_accuracy: 0.2708
0.5967 - val_loss: 2.4507 - val_accuracy: 0.2708
Epoch 4/30
31/31 [-----] - 1s 20ms/step - loss: 0.7270 - accuracy:
0.7382 - val_loss: 3.1053 - val_accuracy: 0.2708
Epoch 5/30
0.8505 - val_loss: 4.2454 - val_accuracy: 0.2708
Epoch 6/30
0.9230 - val loss: 5.0217 - val accuracy: 0.2708
Epoch 7/30
31/31 [------] - 1s 20ns/step - loss: 0.1621 - accuracy:
0.9598 - val_loss: 4.9282 - val_accuracy: 0.2708
Epoch 8/30
0.9864 - val_loss: 6.6667 - val_accuracy: 0.2708
Epoch 9/30
0.9928 - val_loss: 6.6081 - val_accuracy: 0.2708
Epoch 10/30
31/31 [-----] - 1s 20ns/step - loss: 0.0258 - accuracy:
0.9954 - val_loss: 7.6644 - val_accuracy: 0.2708
Epoch 11/30
31/31 [-----] - 1s 21ns/step - loss: 0.0126 - accuracy:
0.9987 - val_loss: 7.3615 - val_accuracy: 0.2708
0.9985 - val_loss: 7.3724 - val_accuracy: 0.2731
Epoch 13/30
0.9990 - val loss: 7.0305 - val accuracy: 0.2778
Epoch 14/30
0.9990 - val_loss: 6.8818 - val_accuracy: 0.2940
Epoch 15/30
31/31 [-----] - 1s 20ns/step - loss: 0.0078 - accuracy:
```

0.9985 - val_loss: 5.8775 - val_accuracy: 0.3542

```
Epoch 16/30
31/31 [----- - 1s 20ns/step - loss: 0.0084 - accuracy:
0.9985 - val_loss: 5.9023 - val_accuracy: 0.3403
Epoch 17/30
0.9992 - val_loss: 4.3920 - val_accuracy: 0.3634
Epoch 18/30
0.9990 - val_loss: 4.2909 - val_accuracy: 0.3796
Epoch 19/30
31/31 [------] - 1s 21ms/step - loss: 0.0042 - accuracy:
0.9990 - val_loss: 3.8198 - val_accuracy: 0.3935
Epoch 20/30
31/31 [-----] - 1s 21ns/step - loss: 0.0056 - accuracy:
0.9987 - val_loss: 3.6123 - val_accuracy: 0.3912
31/31 [-----] - 1s 20ns/step - loss: 0.0032 - accuracy:
0.9990 - val_loss: 2.8745 - val_accuracy: 0.4630
Epoch 22/30
31/31 [-----] - 1s 22ms/step - loss: 0.0030 - accuracy:
0.9992 - val_loss: 2.7692 - val_accuracy: 0.4676
Epoch 23/30
0.9987 - val_loss: 2.4613 - val_accuracy: 0.5023
Epoch 24/30
31/31 [------] - 1s 21ms/step - loss: 0.0028 - accuracy:
0.9990 - val_loss: 2.3984 - val_accuracy: 0.5301
Epoch 25/30
0.9987 - val_loss: 2.3175 - val_accuracy: 0.5463
Epoch 26/30
0.9990 - val_loss: 2.3304 - val_accuracy: 0.5463
Epoch 27/30
31/31 [========================== ] - 1s 21ms/step - loss: 0.0027 - accuracy:
0.9987 - val loss: 2.2504 - val accuracy: 0.5417
Epoch 28/30
31/31 [========================== ] - 1s 20ns/step - loss: 0.0025 - accuracy:
0.9990 - val_loss: 2.2483 - val_accuracy: 0.5394
Epoch 29/30
0.9990 - val_loss: 2.2781 - val_accuracy: 0.5440
Epoch 30/30
31/31 [-----] - 1s 21ns/step - loss: 0.0024 - accuracy:
0.9990 - val_loss: 2.2841 - val_accuracy: 0.5231
0.5231
14/14 [-----] - Os 5ms/step
```


Results for Model3_fc_3_batchnorm: Configuration: Model3_fc_3_batchnorm Test Accuracy: 0.5231 F1 Score: 0.5241 Training Time: 20.86 seconds Number of Parameters: 1,728,645

Dropout of 0.1 after each layer and BatchNormalization after each layer except first

```
[82]: model1_fc_3_batchnorm_dropout = Sequential(name="Model1_fc_3_batchnorm_dropout")
      model1_fc_3_batchnorm_dropout.add(
         Conv2D(
              filters=16,
             kernel size-(3, 3),
              padding="same",
              input_shape=(80, 80, 1),
             activation="relu",
      model1_fc_3_batchnorn_dropout_add(MaxPooling2D(pool_size=(2, 2)))
      model1_fc_3_batchnorn_dropout.add(Dropout(0.1))
      model1_fc_3_batchnorm_dropout.add(
          Conv2D(filters=32, kernel_size=(3, 3), padding="same", activation="relu")
      model1 fc 3 batchnorm dropout add(MaxPooling2D(pool size=(2, 2)))
      model1_fc_3_batchnorm_dropout_add(BatchNormalization())
      model1_fc_3_batchnorm_dropout.add(Dropout(0.1))
      model1_fc_3_batchnorn_dropout.add(
          Conv2D(filters=64, kernel_size=(5, 5), padding="same", activation="relu")
      model1_fc_3_batchnorm_dropout.add(MaxPooling2D(pool_size=(2, 2)))
      model1_fc_3_batchnorm_dropout_add(BatchNormalization())
      model1_fc_3_batchnorm_dropout.add(Dropout(0.1))
      model1_fc_3_batchnorn_dropout.add(Flatten())
      model1_fc_3_batchnorn_dropout.add(Dense(256, activation="relu"))
      model1_fc_3_batchnorm_dropout.add(Dense(128, activation="relu"))
      model1_fc_3_batchnorm_dropout_add(Dense(NUM_CLASSES, activation="softmax"))
      model1 fc 3 batchnorm dropout compile(
          optimizer=Adam(), loss="sparse_categorical_crossentropy",u
       -metrics=["accuracy"]
      model1_fc_3_batchnorm_dropout.summary()
```

Model: "Model1_fc_3_batchnorm_dropout"

Layer (type)	Output Shape	Param #
	(None, 80, 80, 16)	160
max_pooling2d_60 (MaxPoolin g2D)	(None, 40, 40, 16)	0
dropout_60 (Dropout)	(None, 40, 40, 16)	0
conv2d_64 (Conv2D)	(None, 40, 40, 32)	4640
max_pooling2d_61 (MaxPoolin g2D)	(None, 20, 20, 32)	0
batch_normalization_2 (Batc hNormalization)	(None, 20, 20, 32)	128
dropout_61 (Dropout)	(None, 20, 20, 32)	0
conv2d_65 (Conv2D)	(None, 20, 20, 64)	51264
max_pooling2d_62 (MaxPoolin g2D)	(None, 10, 10, 64)	0
batch_normalization_3 (BatchNormalization)	(None, 10, 10, 64)	256
dropout_62 (Dropout)	(None, 10, 10, 64)	0
flatten_21 (Flatten)	(None, 6400)	0
dense_51 (Dense)	(None, 256)	1638656
dense_52 (Dense)	(None, 128)	32896
dense_53 (Dense)	(None, 5)	645

Total params: 1,728,645 Trainable params: 1,728,453 Non-trainable params: 192

```
test_loss, test_acc = model1_fc_3_batchnorm_dropout.evaluate(X_test, y_test)
y_pred = np.argnax(model1_fc_3_batchnorm_dropout.predict(X_test), axis=1)
f1 = f1_score(y_test, y_pred, average="weighted")
results.append(
   €
        "configuration": f"Model1_fc_3_batchnorm_dropout",
        "test_accuracy": test_acc,
        "f1 score": f1.
        "training time": training time,
        "parameters": model1 fc 3 batchnorm dropout count params(),
   }
plot_training_history(history, f"Model1_fc_3_batchnorm_dropout")
plot_confusion_matrix(y_test, y_pred, class_mames,_
-f"Model1_fc_3_batchnorm_dropout")
print("\nResults for Model1_fc_3_batchnorm_dropout:")
print(f"Configuration: (results[11]['configuration'])")
print(f"Test Accuracy: {results[11]['test_accuracy']:.4f}")
print(f"F1 Score: {results[11]['f1 score']:.4f}")
print(f"Training Time: {results[i1]['training time']:.2f} seconds")
print(f"Number of Parameters: (results[11]['parameters']:,)")
```

```
Epoch 1/30
0.3346 - val_loss: 1.8075 - val_accuracy: 0.2199
Epoch 2/30
31/31 [------] - 1s 22ms/step - loss: 1.3233 - accuracy:
0.4690 - val_loss: 2.1702 - val_accuracy: 0.2106
Epoch 3/30
31/31 [-----] - 1s 22ms/step - loss: 1.0926 - accuracy:
0.5773 - val_loss: 3.0314 - val_accuracy: 0.2106
Epoch 4/30
0.6749 - val_loss: 3.1754 - val_accuracy: 0.2106
Epoch 5/30
0.7882 - val loss: 3.9454 - val accuracy: 0.2106
Epoch 6/30
0.8543 - val_loss: 4.0347 - val_accuracy: 0.2130
Epoch 7/30
0.9179 - val_loss: 4.8202 - val_accuracy: 0.1366
Epoch 8/30
```

```
0.9532 - val_loss: 6.2193 - val_accuracy: 0.1366
Epoch 9/30
0.9647 - val_loss: 5.6638 - val_accuracy: 0.1713
Epoch 10/30
0.9773 - val loss: 6.6504 - val accuracy: 0.1389
Epoch 11/30
0.9897 - val_loss: 5.6453 - val_accuracy: 0.3565
Epoch 12/30
0.9956 - val_loss: 4.7257 - val_accuracy: 0.2963
Epoch 13/30
0.9972 - val_loss: 4.7069 - val_accuracy: 0.3171
Epoch 14/30
31/31 [-----] - 1s 23ns/step - loss: 0.0154 - accuracy:
0.9985 - val_loss: 5.0723 - val_accuracy: 0.3056
Epoch 15/30
0.9956 - val_loss: 3.9918 - val_accuracy: 0.4051
Epoch 16/30
0.9951 - val_loss: 4.7448 - val_accuracy: 0.3380
Epoch 17/30
31/31 [------ - 1s 22ns/step - loss: 0.0143 - accuracy:
0.9972 - val_loss: 3.9449 - val_accuracy: 0.4074
Epoch 18/30
0.9990 - val_loss: 3.5216 - val_accuracy: 0.4144
Epoch 19/30
31/31 [-----] - 1s 23ns/step - loss: 0.0072 - accuracy:
0.9990 - val_loss: 3.5095 - val_accuracy: 0.4306
Epoch 20/30
31/31 [-----] - 1s 22ms/step - loss: 0.0096 - accuracy:
0.9987 - val_loss: 3.3118 - val_accuracy: 0.4583
Epoch 21/30
0.9990 - val_loss: 3.1616 - val_accuracy: 0.4815
Epoch 22/30
0.9992 - val_loss: 2.9975 - val_accuracy: 0.4861
Epoch 23/30
0.9987 - val_loss: 2.7896 - val_accuracy: 0.5046
Epoch 24/30
```

```
0.9990 - val_loss: 2.6926 - val_accuracy: 0.5162
Epoch 25/30
0.9990 - val_loss: 2.7151 - val_accuracy: 0.5069
Epoch 26/30
0.9990 - val loss: 2.6837 - val accuracy: 0.5000
Epoch 27/30
31/31 [-----] - 1s 23ms/step - loss: 0.0056 - accuracy:
0.9987 - val_loss: 2.6891 - val_accuracy: 0.5162
Epoch 28/30
0.9990 - val_loss: 2.6806 - val_accuracy: 0.5139
Epoch 29/30
0.9990 - val_loss: 2.6136 - val_accuracy: 0.5116
Epoch 30/30
0.9982 - val_loss: 2.5911 - val_accuracy: 0.5231
0.5231
```


Results for Model1_fc_3_batchnorm_dropout: Configuration: Model1_fc_3_batchnorm_dropout

Test Accuracy: 0.5231 F1 Score: 0.5188

Training Time: 22.76 seconds Number of Parameters: 1,728,645

```
for row in results

// Print formatted table
print("\nMedel Comparison Results:")
print(tabulate(rows, headers headers, tablefmt pretty"))

# Find best model based on test accuracy
best_model = max(results, key=lambda x: x["test_accuracy"])
print("\nBest Model Parameters:")
print(f"Configuration: {best_model['configuration']}")
print(f"Test Accuracy: {best_model['test_accuracy']:.4f}")
print(f"F1 Score: {best_model['f1_score']:.4f}")
print(f"Training Time: {best_model['training_time']:.4f} seconds')
print(f"Number of Parameters: {best_model['parameters']}")
```

Model Comparison Results:

I	configuration	13	test_accuracy	1	f1_score	1	training_time	1
parameters					5			
+	+	+-		+		+		+-
1	Model1	1	0.5556	1	0.5541	1	22.0594	1
55301	1							
1	Model2	- 1	0.5231	1	0.5243		20.9627	I
88069	1							
F.	Model3	1	0.5671	1	0.5669	1	23.0679	1
96261	I.					23		GY
I	Model4	1	0.5185	1	0.5160	ı	23.0128	1
96517	l.	101				32		33
2000000	Model3_fc_2	1	0.4931	1	0.4886	1	30.3716	1
884229	I							
	Model3_fc_3	- 1	0.5772	1	0.5796	1	31.0176	1
1736453		20	0127/02/2012/02	521	000000000000000000000000000000000000000	r	1211/12221	9
	del1_fc_3_avg_pool	1	0.4444	1	0.4447	Į,	21.2291	1
1728261		7	0.0200	W		ø	04 5040	7
1728261	odel3_fc_3_sigmoid	1	0.2708	1	0.1154	į.	24.5248	Į.
	19 5 9 1 - 1 - 1 - 1		0.4007		0.4010	ı.	24.4649	
	el3_fc_3_leaky_relu		0.4907	1	0.4910	ı	24.4049	1
1728261	odel3_fc_3_dropout	T	0.5579	Ŷ.	0.5555	ï	21.6860	r
1728261	oders_rc_s_dropout	1	0.5579	1	0.0005	1	21.0000	1
	del2 fo 2 hetches	7	0 5001	1	0.5241	ï	20.8621	,
1728645	del3_fc_3_batchnorm	1	0.5231	1	0.0241	Į.	20.0021	1

8.0.5 (f) For the best set of parameters obtained above, adding 1, 2, 3 conv layers

```
[85]: models = []
      for num_conv_layers in range(1, 4):
         model = Sequential(name=f"Model3_fc_3_conv{num_conv_layers}")
          # First conv layer
          model.add(
             Conv2D(
                  filters=16,
                  kernel_size=(3, 3),
                  padding-"same",
                  activation="relu",
                  input_shape=(80, 80, 1),
             )
         )
         model.add(MaxPooling2D(pool_size=(2, 2)))
          model.add(Dropout(0.1))
          # Add additional conv layers based on loop counter
          for i in range(num_conv_layers - 1):
             filters = 32 * (2**i) # Double filters each layer: 32, 64
             model add(
                  Conv2D(
                     filters=filters, kernel_size=(5, 5), padding="same", i
       -activation="relu"
                  )
              )
              model.add(MaxPooling2D(pool_size=(2, 2)))
              model.add(Dropout(0.1))
          model.add(Flatten())
          # Dense layers
```

```
model add(Dense(256, activation="relu"))
   model.add(Dense(128, activation="relu"))
   model.add(Dense(NUM_CLASSES, activation="softmax"))
   model.compile(
        optimizer=Adam(), loss="sparse_categorical_crossentropy",
 -metrics=["accuracy"]
   model.summary()
   models.append(model)
model3_fc_3_conv1, model3_fc_3_conv2, model3_fc_3_conv3 = models
for model in models:
   history, training_time = train_and_evaluate(model, X_train, y_train, u
 "X_test, y_test, batch_size=128)
   test_loss, test_acc = model.evaluate(X_test, y_test)
   y_pred = np.argmax(model.predict(X_test), axis=1)
   f1 = f1_score(y_test, y_pred, average='weighted')
   results.append({
        'configuration': model name,
        'test_accuracy': test_acc,
        'fi score': fi,
        'training time': training time,
        'parameters': model.count_params()
   1)
    plot training history(history, model name)
    plot_confusion_matrix(y_test, y_pred, class_names, model.name)
   print(f"\nResults for {model.name}:")
   print(f"Configuration: {results[-1]['configuration']}")
   print(f"Test Accuracy: {results[-1]['test_accuracy']:.4f}")
   print(f"F1 Score: {results[-1]['f1_score']:.4f}")
    print(f"Training Time: {results[-1]['training_time']:.2f} seconds")
    print(f"Number of Parameters: (results[-1]['parameters']:,)")
```

Model: "Model3 fc 3 conv1"

Layer (type)	Output Shape	Param #
conv2d_66 (Conv2D)	(None, 80, 80, 16)	160
max_pooling2d_63 (MaxPoolin g2D)	(None, 40, 40, 16)	0

dropout_63 (Dropout)	(None, 40, 40, 16)	0
flatten_22 (Flatten)	(None, 25600)	0
dense_54 (Dense)	(None, 256)	6553856
dense_55 (Dense)	(None, 128)	32896
dense_56 (Dense)	(None, 5)	645

Total params: 6,587,557 Trainable params: 6,587,557 Non-trainable params: 0

Model: "Model3_fc_3_conv2"

Layer (type)	Output Shape	Param #
conv2d_67 (Conv2D)	(None, 80, 80, 16)	160
max_pooling2d_64 (MaxPoolin g2D)	(None, 40, 40, 16)	0
dropout_64 (Dropout)	(None, 40, 40, 16)	0
conv2d_68 (Conv2D)	(None, 40, 40, 32)	12832
max_pooling2d_65 (MaxPoolin g2D)	(None, 20, 20, 32)	0
dropout_65 (Dropout)	(None, 20, 20, 32)	0
flatten_23 (Flatten)	(None, 12800)	0
dense_57 (Dense)	(None, 256)	3277056
dense_58 (Dense)	(None, 128)	32896
dense_59 (Dense)	(None, 5)	645

Total params: 3,323,589 Trainable params: 3,323,589 Non-trainable params: 0

Model: "Model3_fc_3_conv3"

Layer (type)	Output Shape	Param #
conv2d_69 (Conv2D)	(None, 80, 80, 16)	160
max_pooling2d_66 (MaxPoolin g2D)	(None, 40, 40, 16)	0
dropout_66 (Dropout)	(None, 40, 40, 16)	0
conv2d_70 (Conv2D)	(None, 40, 40, 32)	12832
max_pooling2d_67 (MaxPoolin g2D)	(None, 20, 20, 32)	0
dropout_67 (Dropout)	(None, 20, 20, 32)	0
conv2d_71 (Conv2D)	(None, 20, 20, 64)	51264
max_pooling2d_68 (MaxPoolin g2D)	(None, 10, 10, 64)	0
dropout_68 (Dropout)	(None, 10, 10, 64)	0
flatten_24 (Flatten)	(None, 6400)	0
dense_60 (Dense)	(None, 256)	1638656
dense_61 (Dense)	(None, 128)	32896
dense_62 (Dense)	(None, 5)	645
Total params: 1,736,453 Frainable params: 1,736,453 Won-trainable params: 0		
Epoch 1/30 31/31 [====================================	val_accuracy: 0.3403	- loss: 1.6072 - accuracy:
0.3951 - val_loss: 1.4228 - 1 Epoch 3/30 31/31 [====================================	val_accuracy: 0.3912	
31/31 [============		- lame: 1 1610 - seminario

```
Epoch 5/30
31/31 [----- - 1s 16ns/step - loss: 0.9858 - accuracy:
0.6440 - val_loss: 1.3427 - val_accuracy: 0.4468
Epoch 6/30
0.7377 - val_loss: 1.4014 - val_accuracy: 0.4514
Epoch 7/30
0.8077 - val_loss: 1.4725 - val_accuracy: 0.4653
Epoch 8/30
31/31 [------] - 0s 16ms/step - loss: 0.4701 - accuracy:
0.8561 - val_loss: 1.5641 - val_accuracy: 0.4468
Epoch 9/30
31/31 [-----] - Os 16ns/step - loss: 0.3431 - accuracy:
0.9125 - val_loss: 1.6025 - val_accuracy: 0.4699
31/31 [-----] - 0s 15ms/step - loss: 0.2308 - accuracy:
0.9485 - val_loss: 1.7896 - val_accuracy: 0.4630
Epoch 11/30
31/31 [-----] - 0s 15ms/step - loss: 0.1713 - accuracy:
0.9699 - val_loss: 1.9193 - val_accuracy: 0.4676
Epoch 12/30
0.9804 - val_loss: 2.0984 - val_accuracy: 0.4514
Epoch 13/30
31/31 [------] - 0s 16ms/step - loss: 0.1048 - accuracy:
0.9815 - val_loss: 2.1487 - val_accuracy: 0.4560
Epoch 14/30
31/31 [========================= ] - Os 15ms/step - loss: 0.0710 - accuracy:
0.9915 - val_loss: 2.2030 - val_accuracy: 0.4537
Epoch 15/30
0.9946 - val_loss: 2.3611 - val_accuracy: 0.4653
Epoch 16/30
31/31 [========================= ] - 0s 15ms/step - loss: 0.0408 - accuracy:
0.9961 - val loss: 2.6803 - val accuracy: 0.4421
Epoch 17/30
31/31 [========================== ] - 0s 16ns/step - loss: 0.0474 - accuracy:
0.9941 - val_loss: 2.6141 - val_accuracy: 0.4421
Epoch 18/30
0.9951 - val_loss: 2.4899 - val_accuracy: 0.4653
Epoch 19/30
0.9982 - val_loss: 2.6281 - val_accuracy: 0.4398
Epoch 20/30
0.9979 - val_loss: 2.7010 - val_accuracy: 0.4583
```

```
Epoch 21/30
31/31 [-----] - 0s 15ms/step - loss: 0.0175 - accuracy:
0.9985 - val_loss: 2.7712 - val_accuracy: 0.4514
Epoch 22/30
0.9987 - val_loss: 2.7905 - val_accuracy: 0.4792
Epoch 23/30
0.9987 - val_loss: 3.0273 - val_accuracy: 0.4444
Epoch 24/30
31/31 [------] - 0s 16ms/step - loss: 0.0163 - accuracy:
0.9985 - val_loss: 3.0711 - val_accuracy: 0.4491
Epoch 25/30
31/31 [-----] - 0s 15ns/step - loss: 0.0153 - accuracy:
0.9985 - val_loss: 2.8950 - val_accuracy: 0.4630
31/31 [----- - 0s 16ns/step - loss: 0.0119 - accuracy:
0.9990 - val_loss: 2.9587 - val_accuracy: 0.4630
Epoch 27/30
31/31 [-----] - 0s 16ns/step - loss: 0.0143 - accuracy:
0.9982 - val_loss: 3.0551 - val_accuracy: 0.4537
Epoch 28/30
0.9959 - val_loss: 2.9552 - val_accuracy: 0.4838
Epoch 29/30
0.9990 - val_loss: 3.0943 - val_accuracy: 0.4699
Epoch 30/30
31/31 [========================== ] - Os 15ms/step - loss: 0.0119 - accuracy:
0.9987 - val_loss: 3.1488 - val_accuracy: 0.4792
0.4792
14/14 [-----] - 0s 3ms/step
                                    WodetLoss - Model3_F_3_com/1
           Model Accuracy - Health Jr., 3 com/1
   3.0
```


Results for Model3_fc_3_conv1: Configuration: Model3_fc_3_conv1

Test Accuracy: 0.4792 F1 Score: 0.4767

Training Time: 16.17 seconds Number of Parameters: 6,587,557

Epoch 1/30

0.2880 - val_loss: 1.5853 - val_accuracy: 0.3032

Epoch 2/30

0.3112 - val_loss: 1.5138 - val_accuracy: 0.3102

Epoch 3/30

31/31 [-----] - 1s 20ms/step - loss: 1.4772 - accuracy:

0.3555 - val_loss: 1.4747 - val_accuracy: 0.3704

```
Epoch 4/30
31/31 [-----] - 1s 21ns/step - loss: 1.4265 - accuracy:
0.3969 - val_loss: 1.4353 - val_accuracy: 0.4005
Epoch 5/30
0.4479 - val_loss: 1.3965 - val_accuracy: 0.4144
Epoch 6/30
0.5012 - val_loss: 1.4058 - val_accuracy: 0.4074
Epoch 7/30
31/31 [------] - 1s 22ms/step - loss: 1.1629 - accuracy:
0.5454 - val_loss: 1.4050 - val_accuracy: 0.4282
Epoch 8/30
31/31 [-----] - 1s 20ms/step - loss: 1.0353 - accuracy:
0.6075 - val_loss: 1.4225 - val_accuracy: 0.4144
31/31 [-----] - 1s 21ns/step - loss: 0.9017 - accuracy:
0.6538 - val_loss: 1.5186 - val_accuracy: 0.4329
Epoch 10/30
31/31 [-----] - 1s 21ns/step - loss: 0.7750 - accuracy:
0.7140 - val_loss: 1.5991 - val_accuracy: 0.4190
Epoch 11/30
0.7815 - val_loss: 1.6793 - val_accuracy: 0.4259
Epoch 12/30
31/31 [------] - 1s 20ms/step - loss: 0.5011 - accuracy:
0.8219 - val_loss: 1.7878 - val_accuracy: 0.4375
Epoch 13/30
0.8641 - val_loss: 2.0178 - val_accuracy: 0.4144
Epoch 14/30
0.8996 - val_loss: 2.2816 - val_accuracy: 0.3981
Epoch 15/30
0.9284 - val loss: 2.4153 - val accuracy: 0.4491
Epoch 16/30
31/31 [========================== ] - 1s 23ns/step - loss: 0.1977 - accuracy:
0.9382 - val_loss: 2.9004 - val_accuracy: 0.4352
Epoch 17/30
0.9537 - val_loss: 2.7982 - val_accuracy: 0.4282
Epoch 18/30
0.9542 - val_loss: 2.9403 - val_accuracy: 0.4028
Epoch 19/30
0.9622 - val_loss: 3.1075 - val_accuracy: 0.4167
```

```
Epoch 20/30
31/31 [------ - 1s 22ns/step - loss: 0.0934 - accuracy:
0.9722 - val_loss: 3.3786 - val_accuracy: 0.4213
Epoch 21/30
0.9825 - val_loss: 3.2799 - val_accuracy: 0.4306
Epoch 22/30
0.9825 - val_loss: 3.4496 - val_accuracy: 0.4236
Epoch 23/30
31/31 [------] - 1s 21ms/step - loss: 0.0571 - accuracy:
0.9846 - val_loss: 3.4393 - val_accuracy: 0.4352
Epoch 24/30
0.9874 - val_loss: 3.5200 - val_accuracy: 0.4560
31/31 [-----] - 1s 20ns/step - loss: 0.0416 - accuracy:
0.9897 - val_loss: 3.6214 - val_accuracy: 0.4421
Epoch 26/30
31/31 [-----] - 1s 21ns/step - loss: 0.0360 - accuracy:
0.9912 - val_loss: 3.8942 - val_accuracy: 0.4259
Epoch 27/30
0.9853 - val_loss: 3.8001 - val_accuracy: 0.4236
Epoch 28/30
0.9884 - val_loss: 3.7852 - val_accuracy: 0.4444
Epoch 29/30
0.9900 - val_loss: 3.8563 - val_accuracy: 0.4213
Epoch 30/30
0.9907 - val_loss: 4.0303 - val_accuracy: 0.4306
0.4306
14/14 [-----] - 0s 7ms/step
                              ModelLess - Medel 5 (t. 3 cores)
                       0.5
```


Results for Model3_fc_3_conv2: Configuration: Model3_fc_3_conv2

Test Accuracy: 0.4306 F1 Score: 0.4270

Training Time: 20.68 seconds Number of Parameters: 3,323,589

Epoch 1/30

0.2862 - val_loss: 1.4950 - val_accuracy: 0.3241

Epoch 2/30

0.3640 - val_loss: 1.4503 - val_accuracy: 0.3727

Epoch 3/30

```
0.3954 - val_loss: 1.4053 - val_accuracy: 0.4120
Epoch 4/30
0.4337 - val_loss: 1.4105 - val_accuracy: 0.4005
Epoch 5/30
0.4880 - val loss: 1.3002 - val accuracy: 0.4491
31/31 [-----] - 1s 23ms/step - loss: 1.1625 - accuracy:
0.5302 - val_loss: 1.2706 - val_accuracy: 0.4838
Epoch 7/30
0.5691 - val_loss: 1.2767 - val_accuracy: 0.4931
Epoch 8/30
0.6237 - val_loss: 1.3031 - val_accuracy: 0.4884
Epoch 9/30
31/31 [-----] - 1s 23ns/step - loss: 0.8835 - accuracy:
0.6654 - val_loss: 1.2895 - val_accuracy: 0.5000
Epoch 10/30
0.7218 - val_loss: 1.3270 - val_accuracy: 0.5162
Epoch 11/30
0.7748 - val_loss: 1.4373 - val_accuracy: 0.5301
Epoch 12/30
31/31 [----- 1s 24ns/step - loss: 0.5129 - accuracy:
0.8180 - val_loss: 1.5567 - val_accuracy: 0.5231
Epoch 13/30
0.8479 - val_loss: 1.7819 - val_accuracy: 0.4722
Epoch 14/30
31/31 [-----] - 1s 24ns/step - loss: 0.3042 - accuracy:
0.8958 - val_loss: 1.8124 - val_accuracy: 0.5278
Epoch 15/30
31/31 [-----] - 1s 23ns/step - loss: 0.2204 - accuracy:
0.9284 - val_loss: 1.9456 - val_accuracy: 0.5463
Epoch 16/30
0.9472 - val_loss: 2.1069 - val_accuracy: 0.5208
Epoch 17/30
0.9550 - val_loss: 2.1753 - val_accuracy: 0.5139
Epoch 18/30
0.9671 - val_loss: 2.3452 - val_accuracy: 0.5347
Epoch 19/30
```

```
0.9776 - val_loss: 2.5715 - val_accuracy: 0.5370
Epoch 20/30
0.9735 - val_loss: 2.5364 - val_accuracy: 0.5000
Epoch 21/30
0.9771 - val loss: 2.6398 - val accuracy: 0.5185
Epoch 22/30
31/31 [-----] - 1s 24ns/step - loss: 0.0519 - accuracy:
0.9864 - val_loss: 2.6965 - val_accuracy: 0.5208
Epoch 23/30
0.9892 - val_loss: 2.8650 - val_accuracy: 0.5069
Epoch 24/30
0.9887 - val_loss: 2.9027 - val_accuracy: 0.5324
Epoch 25/30
31/31 [-----] - 1s 24ns/step - loss: 0.0528 - accuracy:
0.9838 - val_loss: 3.0484 - val_accuracy: 0.4931
Epoch 26/30
0.9876 - val_loss: 3.0349 - val_accuracy: 0.5116
Epoch 27/30
0.9866 - val_loss: 3.0793 - val_accuracy: 0.5069
Epoch 28/30
31/31 [----- 1s 24ns/step - loss: 0.0796 - accuracy:
0.9763 - val_loss: 2.7917 - val_accuracy: 0.5023
Epoch 29/30
0.9822 - val_loss: 2.9805 - val_accuracy: 0.4884
Epoch 30/30
31/31 [-----] - 1s 24ns/step - loss: 0.0538 - accuracy:
0.9848 - val_loss: 2.9558 - val_accuracy: 0.4815
0.4815
14/14 [======= ] - Os 6ms/step
```


Results for Model3_fc_3_conv3: Configuration: Model3_fc_3_conv3 Test Accuracy: 0.4815 F1 Score: 0.4834

Training Time: 23.43 seconds Number of Parameters: 1,736,453

```
[86]: # Create figure with 2 subplots side by side
      plt.figure(figsize=(15, 5))
      # Plot test accuracy
      plt.subplot(1, 2, 1)
      plt.bar([r['configuration'] for r in results], [r['test_accuracy'] for r in_
      plt.title('Test Accuracy by Model')
      plt.xlabel('Model')
      plt.ylabel('Test Accuracy')
      plt.xticks(rotation=45)
      # Plot F1 scores
      plt.subplot(1, 2, 2)
      plt.bar([r['configuration'] for r in results], [r['f1_score'] for r in results])
      plt.title('F1 Score by Model')
      plt.xlabel('Model')
      plt.ylabel('F1 Score')
      plt.xticks(rotation=45)
      plt.tight_layout()
      plt.show()
```



```
# Print formatted table
print("\nModel Comparison Results:")
print(tabulate(rows, headers=headers, tablefmt='pretty'))

# Find best model based on test accuracy
best_model = max(results, key=lambda x: x['test_accuracy'])
print("\nBest Model Parameters:")
print(f"Configuration: {best_model['configuration']}")
print(f"Test Accuracy: {best_model['test_accuracy']:.4f}")
print(f"Fi Score: {best_model['fi_score']:.4f}")
print(f"Training Time: {best_model['training_time']:.4f} seconds*)
print(f"Number of Parameters: {best_model['parameters']}")
```

Model Comparison Results:

+		-+-		-+		+
1	test_accuracy	1	f1_score	1	training_time	1
+		+		-+		+
1	0.5556	1	0.5541	1	22.0594	1
1	0.5231	1	0.5243	I	20.9627	1
1	0.5671	1	0.5669	1	23.0679	1
1	0.5185	1	0.5160	1	23.0128	10
1	0.4931	1	0.4886	L	30.3716	13
1	0.5772	1	0.5796	1	31.0176	1
1	0.4444	1	0.4447	1	21.2291	1
1	0.2708	1	0.1154	1	24.5248	1
1	0.4907	1	0.4910	1	24.4649	1
		100				200
1	0.5579	1	0.5555	١	21.6860	1
1	0.5231	1	0.5241	١	20.8621	1
t [0.5231	I	0.5188	I	22.7609	1
1	0.4792	1	0.4767	1	16.1726	1
		0.5556 0.5231 0.5671 0.5185 0.4931 0.5772 0.4444 0.2708 0.4907 0.5579 0.5231	0.5556	0.5556 0.5541 0.5231 0.5243 0.5671 0.5669 0.5185 0.5160 0.4931 0.4886 0.5772 0.5796 0.4444 0.4447 0.2708 0.1154 0.4907 0.4910 0.5579 0.5555 0.5231 0.5241	0.5556	0.5231

```
6587557
       Model3_fc_3_conv2
                            0.4306
                                            1 0.4270 |
                                                           20.6756
3323589
                                               0.4834
      Model3_fc_3_conv3
                                  0.4815
                                                           23.4291
1736453
Best Model Parameters:
Configuration: Model3_fc_3
Test Accuracy: 0.5772
F1 Score: 0.5796
Training Time: 31.0176 seconds
Number of Parameters: 1736453
```

8.1 For the best model on the MNIST dataset in Assignment 4, train a model with MNIST data using the best set of parameters obtained in Question . Compare the test accuracy and the self-created images.

```
[88]: from keras.datasets import mnist
[90]: # Load MNIST dataset
      (x_train, y_train), (x_test, y_test) = mnist.load_data()
      # Preprocess data
      x_train = x_train.reshape(-1, 28, 28, 1).astype('float32') / 255.0
      x_test = x_test reshape(-1, 28, 28, 1) astype('float32') / 255.0
      # Split training data into train and validation (80-20)
      x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.
      -2, random_state=42)
      # Create model with same architecture
      model3 fc 3 = Sequential(name='Model3 fc 3')
      model3 fc_3.add(Conv2D(filters = 16, kernel_size = (3, 3), padding = 'same', u
       -activation ='relu', input_shape = (28, 28, 1)))
      model3_fc_3.add(MaxPooling2D(pool_size=(2, 2)))
      model3_fc_3.add(Dropout(0.1))
      model3_fc_3.add(Conv2D(filters = 32, kernel_size = (5, 5), padding = 'same', __
       -activation ='relu'))
      model3_fc_3.add(MaxPooling2D(pool_size~(2, 2)))
      model3_fc_3.add(Dropout(0.1))
      model3_fc_3.add(Conv2D(filters = 64, kernel_size = (5, 5), padding = 'same', __
       -activation ='relu'))
```

```
model3_fc_3.add(MaxPooling2D(pool_size=(2, 2)))
model3_fc_3.add(Dropout(0.1))
model3_fc_3.add(Flatten())
model3_fc_3.add(Dense(256, activation = 'relu'))
model3_fc_3.add(Dense(128, activation = 'relu'))
model3_fc_3.add(Dense(10, activation = 'softmax')) # 10 classes for MNIST
model3_fc_3.compile(optimizer=Adam(), loss='sparse_categorical_crossentropy', ...
 -metrics=['accuracy'])
# Train the model
history = model3_fc_3.fit(x_train, y_train,
                  batch_size=256,
                  epochs=10,
                  validation_data=(x_val, y_val))
# Evaluate on test set
test_loss, test_accuracy = model3_fc_3.evaluate(x_test, y_test)
print(f"\nTest accuracy: {test_accuracy:.4f}")
Epoch 1/10
accuracy: 0.8741 - val_loss: 0.0936 - val_accuracy: 0.9718
Epoch 2/10
accuracy: 0.9706 - val_loss: 0.0545 - val_accuracy: 0.9833
accuracy: 0.9794 - val_loss: 0.0502 - val_accuracy: 0.9851
Epoch 4/10
188/188 [-----] - 2s 11ms/step - loss: 0.0480 -
accuracy: 0.9854 - val_loss: 0.0418 - val_accuracy: 0.9871
Epoch 5/10
accuracy: 0.9874 - val_loss: 0.0414 - val_accuracy: 0.9876
Epoch 6/10
accuracy: 0.9897 - val loss: 0.0329 - val accuracy: 0.9899
Epoch 7/10
accuracy: 0.9908 - val_loss: 0.0334 - val_accuracy: 0.9903
Epoch 8/10
accuracy: 0.9920 - val_loss: 0.0311 - val_accuracy: 0.9912
Epoch 9/10
```

```
accuracy: 0.9925 - val_loss: 0.0362 - val_accuracy: 0.9893
    Epoch 10/10
    accuracy: 0.9931 - val_loss: 0.0318 - val_accuracy: 0.9912
    accuracy: 0.9920
    Test accuracy: 0.9920
[94]: import numpy as np
     import matplotlib.pyplot as plt
     from PIL import Image, ImageOps
     def preprocess_image(image_path: str) -> np.ndarray:
         Preprocess an image to make it similar to MNIST dataset images by detecting,
      .. the digit,
         thresholding, cropping, centering, padding, and resizing to 28x28 pixels.
        Args:
            image_path (str): Path to the image file.
        Returns
            np.ndarray: Preprocessed image as a numpy array.
         # Load and convert to grayscale
        img = Image open(image_path).convert('L')
         # Invert the image: MNIST has white digits on a black background
        img = ImageOps.invert(img)
         # Apply binary threshold
        threshold = img.point(lambda p: 255 if p > 128 else 0)
         threshold = threshold.convert('1') # Convert to binary image
         # Convert to numpy array for processing
        np_threshold = np.array(threshold)
         # Find bounding box of the digit
        bbox = threshold.getbbox()
         if bbox:
            cropped_img = threshold.crop(bbox)
         else:
            # If no content is found, return a blank image
            cropped_img = Image.new('1', (28, 28), 0)
            return np.array(cropped_img).astype(np.float32) / 255.0
```

```
# Get dimensions of the cropped image
   cropped_width, cropped_height = cropped_ing.size
    # Determine the size of the new square image to add padding
   max_side = max(cropped_width, cropped_height)
    square img = Image new('1', (max side, max side), 0) # Black background
    paste_position = (
        (max_side - cropped_width) // 2,
        (max_side - cropped_height) // 2
    square_img.paste(cropped_img, paste_position)
    # Add padding to reach the desired size before resizing
    # MNIST digits are typically centered with some padding
   padding = 10 # Total padding to add on each side
    padded_size = max_side + 2 * padding
    padded_img = Image_new('I', (padded_size, padded_size), 0)
   padded_paste_position = (
        (padded_size - max_side) // 2,
        (padded_size - max_side) // 2
    padded_img.paste(square_ing, padded_paste_position)
    # Resize to 28x28 pixels using the appropriate resampling filter
   try:
        # For Pillow >= 10.0.0
       resized_img = padded_img.resize((28, 28), Image.Resampling.LANCZOS)
    except AttributeError:
       # For Pillow < 10.0.0
       resized_img = padded_img.resize((28, 28), Image.LANCZOS)
    # Convert to numpy array and normalise to [0, 1]
   final_img = np.array(resized_ing).astype(np.float32)
   print(f"np.nin(resized_img): {np.min(final_img)}, np.max(resized_img): {np.
 -max(final_img))*)
   # final_img = final_img.flatten()
   print(final_img.shape)
   return final img
# Image filenames (ensure these images are in your working directory)
image_filenames = [
   '1.png', '3.png',
   '5.png', '7.png', '8.png'
```

```
# Process each image
import os
# Create the 'preprocessed' directory if it doesn't exist
preprocessed_dir = 'preprocessed'
os makedirs(preprocessed_dir, exist_ok=True)
preprocessed_images = np.array([preprocess_image(filename) for filename in_
 -image_filenames])
# Save the preprocessed images in the 'preprocessed' directory
for img, filename in zip(preprocessed images, image filenames):
    img_reshaped = ing.reshape(28, 28)
    img_pil = Image.fromarray((img_reshaped + 255).astype(np.uint8), mode='L')
    img_pil.save(os.path.join(preprocessed_dir, filename))
# Plot the preprocessed images
fig, axes = plt subplots(1, len(preprocessed_images), figsize=(15, 3))
for ax, ing, filename in zip(axes, preprocessed_images, image_filenames):
     ax.imshow(ing.reshape(28, 28), cmap='gray')
    ax.set title(filename)
    ax.axis('off')
plt.tight_layout()
plt.show()
np.min(resized_ing): 0.0, np.max(resized_ing): 1.0
np.min(resized_ing): 0.0, np.max(resized_ing): 1.0
(28, 28)
np.min(resized_ing): 0.0, np.max(resized_ing): 1.0
(28, 28)
np.min(resized_ing): 0.0, np.max(resized_ing): 1.0
np.min(resized_ing): 0.0, np.max(resized_ing): 1.0
(28, 28)
```

```
[95]: predictions = model3_fc_3.predict(preprocessed_images)

# Plot the grid of images along with their corresponding predictions
fig, axes = plt.subplots(1, 5, figsize=(10, 2))
for ax, img, pred in zip(axes, preprocessed_images, predictions):
    ax.imshow(img.reshape(28, 28), cmap='gray')
    ax.axis('off')
    ax.set_title(f"Pred: {np.argmax(pred)}")

plt.suptitle('Testing with Handwritten Digits')
plt.tight_layout()
plt.show()
```

1/1 [-----] - Os 486ms/step

CNNs work better on patterns.