Patent claims

1. N-substituted pyrazolylcarboxanilides of the formula (I)

$$H_3C$$
 F
 H_3C
 R^3
 CH_3
 CH_3

5 in which

R¹ represents methyl, trifluoromethyl or difluoromethyl,

R² represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl,

a) R³ represents hydrogen,

 R^4

 R^4

represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms;

(C₃-C₈-cycloalkyl)carbonyl; (C₃-C₈-halocycloalkyl)carbonyl having 1 to 9 fluorine, chlorine and/or bromine atoms; or -C(=O)C(=O)R⁵, -CONR⁶R⁷ or -CH₂NR⁸R⁹,

b) R³ represents halogen, C₁-C₈-alkyl or C₁-C₈-haloalkyl,

represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms;

 $(C_1-C_8-alkyl)$ carbonyl, $(C_1-C_8-alkoxy)$ carbonyl, $(C_1-C_4-alkoxy-C_1-C_4-alkyl)$ carbonyl, $(C_3-C_8-cycloalkyl)$ carbonyl; $(C_1-C_6-haloalkyl)$ carbonyl, $(C_1-C_6-haloalkoxy)$ carbonyl, $(C_3-C_8-haloalkoxy)$ carbonyl, $(C_3-C_8-haloalkoxy)$

15

10

20

25

30

5

10

15

20

25

30

35

cycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or -C(=O)C(=O)R⁵, -CONR⁶R⁷ or -CH₂NR⁸R⁹, R⁵ represents hydrogen, C1-C8-alkyl, C1-C8-alkoxy, C1-C4-alkoxy-C1-C4-alkyl, C3-C8cycloalkyl; C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms, R⁶ and R⁷ independently of one another, each represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms. R^6 and R^7 furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle may contain 1 or 2 further nonadjacent heteroatoms from the group consisting of oxygen, sulphur and NR¹⁰, R⁸ and R⁹ independently of one another, represent hydrogen, C₁-C₈-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms, R8 and R9 furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle may contain 1 or 2 further nonadjacent heteroatoms from the group consisting of oxygen, sulphur and NR¹⁰, R^{10} represents hydrogen or C₁-C₆-alkyl. 2. N-substituted pyrazolylcarboxanilides of the formula (I) according to Claim 1 in which \mathbb{R}^1 represents methyl, trifluoromethyl or difluoromethyl, R^2 represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl, R^3 a) represents hydrogen, R^4 represents C₁-C₆-alkyl, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₁-C₃alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-

C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1

to 13 fluorine, chlorine and/or bromine atoms;

5

10

15

20

25

30

35

(C₃-C₆-cycloalkyl)carbonyl; (C₃-C₆-halocycloalkyl)carbonyl having 1 to 9 fluorine, chlorine and/or bromine atoms; or -C(=O)C(=O)R⁵, -CONR⁶R⁷ or -CH₂NR⁸R⁹, \mathbb{R}^3 b) represents fluorine, chlorine, bromine, iodine, C₁-C₆-alkyl or C₁-C₆-haloalkyl having 1 to 13 fluorine, chlorine and/or bromine atoms. R^4 represents C₁-C₆-alkyl, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₁-C₃alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms; $(C_1-C_6-alkyl)$ carbonyl, $(C_1-C_6-alkoxy)$ carbonyl, $(C_1-C_3-alkoxy-C_1-C_3-alkyl)$ carbonyl, (C₃-C₆-cycloalkyl)carbonyl; (C₁-C₄-haloalkyl)carbonyl, (C₁-C₄haloalkoxy)carbonyl, (halo-C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or -C(=O)C(=O)R⁵, -CONR⁶R⁷ or -CH₂NR⁸R⁹, R⁵ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₄-C₆cycloalkyl; C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms, R⁶ and R⁷ independently of one another, each represent hydrogen, C₁-C₆-alkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms, R⁶ and R⁷ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- to tetrasubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle may contain 1 or 2 further nonadjacent heteroatoms from the group consisting of oxygen, sulphur and NR¹⁰, R⁸ and R⁹ independently of one another, represent hydrogen, C₁-C₆-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms, R8 and R9 furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- to

tetrasubstituted by identical or different substituents from the group consisting of

halogen and C_1 - C_4 -alkyl, where the heterocycle may contain 1 or 2 further non-adjacent heteroatoms from the group consisting of oxygen, sulphur and NR^{10} ,

R¹⁰ represents hydrogen or C₁-C₄-alkyl.

5 3. N-substituted pyrazolylcarboxanilides of the formula (Ib)

$$H_3C$$
 H_3C
 H_3C

in which

10

15

20

25

represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms; (C₃-C₈-cycloalkyl)carbonyl; (C₃-C₈-halocycloalkyl)carbonyl having 1 to 9 fluorine, chlorine and/or bromine atoms; or -C(=O)C(=O)R⁵, -CONR⁶R⁷ or -CH₂NR⁸R⁹,

and R¹, R², R⁵, R⁶, R⁷, R⁸ and R⁹ are as defined in Claim 1.

4. N-substituted pyrazolylcarboxanilides of the formula (Ic)

$$\begin{array}{c|c}
R^1 & O \\
N & I \\
R^{4B} & I \\
R^{3B} & C \\
H_3C & CH_3
\end{array}$$
(Ic)

in which

R^{3B} represents halogen, C₁-C₈-alkyl or C₁-C₈-haloalkyl,

R^{4B} represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkoxy)carbonyl-C₁-

 C_3 -alkyl; halo-(C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, halo-(C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms; (C_1 - C_8 -alkyl)carbonyl, (C_1 - C_8 -alkoxy)carbonyl, (C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, (C_3 - C_8 -cycloalkyl)carbonyl; (C_1 - C_6 -haloalkyl)carbonyl, (C_1 - C_6 -haloalkoxy)carbonyl, (halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, (C_3 - C_8 -halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or -C(=O)C(=O) R^5 , - $CONR^6R^7$ or - $CH_2NR^8R^9$,

and R¹, R², R⁵, R⁶, R⁷, R⁸ and R⁹ are as defined in Claim 1.

- N-substituted pyrazolylcarboxanilides of the formula (I) according to Claim 1 in which R⁴ represents formyl.
 - 6. N-substituted pyrazolylcarboxanilides of the formula (I) according to Claim 1 in which R⁴ represents -C(=O)C(=O)R⁵ and R⁵ is as defined in Claim 1.
 - 7. Process for preparing compounds of the formula (I) according to Claim 1, characterized in that
 - a) carboxylic acid derivatives of the formula (II)

20

15

5

in which

R¹ is as defined above and

X¹ represents halogen or hydroxyl are reacted with an aniline derivative of the formula (III)

$$R^2$$
 H_3C
 R^3
 CH_3
(III)

25

in which R², R³ and R⁴ are as defined above,

if appropriate in the presence of a catalyst, if appropriate in the presence of a condensing agent, if appropriate in the presence of an acid binder and if appropriate in the presence of a diluent, b) pyrazolylcarboxanilides of the formula (IV)

$$H_3C$$
 F
 H_3C
 R^3
 CH_3
 CH_3

in which R¹, R², R³ and R⁴ are as defined above are hydrogenated, if appropriate in the presence of a diluent and if appropriate in the presence of a catalyst,

or

c) pyrazolylcarboxanilides of the formula (Ia)

$$H_3C$$
 F
 H_3C
 R^3
 H_3C
 CH_3
(Ia)

in which R^1 , R^2 and R^3 are as defined above are reacted with halides of the formula (V)

 R^4-X^2

(V)

in which

 R^4

is as defined above and

 X^2

represents chlorine, bromine or iodine

15

10

5.

in the presence of a base and in the presence of a diluent.

8. Compositions for controlling unwanted microorganisms, characterized in that they comprise at least one N-substituted pyrazolylcarboxanilide of the formula (I) according to Claim 1, in addition to extenders and/or surfactants.

20

- 9. Use of N-substituted pyrazolylcarboxanilides of the formula (I) according to Claim 1 for controlling unwanted microorganisms.
- 10. Method for controlling unwanted microorganisms, characterized in that N-substituted pyrazolylcarboxanilides of the formula (I) according to Claim 1 are applied to the microorganisms and/or their habitat.

- 11. Process for preparing compositions for controlling unwanted microorganisms, characterized in that N-substituted pyrazolylcarboxanilides of the formula (I) according to Claim 1 are mixed with extenders and/or surfactants.
- 5 12. Aniline derivatives of the formula (III)

$$H_3$$
C R^3 H_3 C CH_3 (III)

in which R², R³ and R⁴ are as defined in Claim 1.

13. Pyrazolylcarboxanilides of the formula (IV)

$$H_3C$$
 F
 H_3C
 R^3
 CH_3
 CH_3

in which R¹, R², R³ and R⁴ are as defined in Claim 1.

10