Partial differential equations II

Kamil Belan

May 31, 2025

Contents

1	Winter semester addendum	2
	1.1 Weak* convergence	2
	1.2 Regularity of parabolic problems	
	1.3 Uniqueness of solutions to hyperbolic problems	
2	· · · · · · · · · · · · · · · · · · ·	5
	2.1 Tools from functional analysis	5
	2.2 Density of smooth functions	6
	2.3 Extension of Sobolev functions	13
	2.4 Embedding theorems	17
	2.5 Trace theorems	21
	2.6 Composition of sobolev functions	21
	2.7 Difference quotients	21
3	Nonlinear elliptic equations as compact perturbations	21
	3.0.1 Problem protypes	22
4	Nonlinear elliptic equations - monotone operator theory	2 4
5	Calculus of variations	29
6	Semigroup theory	37
7	(Some) exercises	44
	7.1 4.3.2025	44
	7.2 8.4.2025	44

1 Winter semester addendum

1.1 Weak* convergence

Since $L_{\infty}(0,T); L_{2}(\Omega)$ is not reflexive, we cannot extract a (weakly) convergent subsequence; however, we know the predual of $L_{\infty}(0,T); L_{2}(\Omega)$ is reflexive, i.e.

$$L_{\infty}((0,T);L_2(\Omega)) \cong (L_1((0,T);L_2(\Omega)))^*,$$

which means that balls in $L_{\infty}((0,T);L_2(\Omega))$ are weakly* compact. Moreover, $L_1((0,T);L_2(\Omega))$ is separable, from which it follows $L_{\infty}((0,T);L_2(\Omega))$ with the weak* topology is metrizable and thus there exists s weakly * converging subsequence (from the balls).

Example (For people without Functional Analysis I). Let X be a linear normed space, $\{x_n\} \subset X$ a sequence in X. We say x_n converges weakly to $x \in X$ whenever

$$f(x_n) \to f(x), \forall f \in X^*.$$

Let X* be the topological dual to X, $\{x_n\} \subset X^*$ a sequence in X. We say f_n converges weakly* to $f \in X^*$ whenever

$$f_n(x) \to f(x), \forall x \in X^*, i.e. x(f_n) \to x(f),$$

where by $x(y), x \in X, y \in X.*$ we understand

$$\varepsilon_x: X^* \to \mathbb{K}, y \mapsto y(x).$$

Since $L_{\infty}((0,T);L_2(\Omega)) \cong (L_1((0,T);L_2(\Omega)))^*$, every point $x \in L_{\infty}((0,T);L_2(\Omega))$ can be interpreted as a linear functional on $L_1((0,T);L_2(\Omega))$, so given $\{x_n\} \subset L_{\infty}((0,T);L_2(\Omega))$, we can interpret is as a $\{x_n\} \subset (L_1((0,T);L_2(\Omega)))^*$, meaning given a weakly converging sequence in $L_{\infty}((0,T);L_2(\Omega))$, it is actually a weakly* converging sequence in $L_1((0,T);L_2(\Omega))$.

1.2 Regularity of parabolic problems

Theorem 1. Let the assumptions of the previous theorem hold and $\Omega \in C^{1,1}, \delta \in (0,1)$. Then $u \in L_2((\delta,T); W^{2,2}(\Omega))$.

Proof. Take the weak formulation in $t \in (\delta, T)$. WLOG further assume d = 0. Then

$$\int_{\Omega} \mathbb{A} \nabla u \cdot \nabla \varphi = \int_{\Omega} f \varphi - bu \varphi - \mathbf{c} \cdot \nabla u \varphi - \int_{\Omega} \partial_t u \varphi = \int_{\Omega} (f - bu - \mathbf{c} \cdot \nabla u - \partial_t u) \varphi,$$

and the integrand of the last integral is in $L_2(\Omega)$ for a.e. $t \in (\delta, T)$. We can thus use the elliptic regularity results and write:u

$$\|u\|_{\mathbf{W}^{2,2}(\Omega)}^2 \le C(\|f\|_{\mathbf{L}_2(\Omega)}^2 + \|u\|_{\mathbf{W}^{1,2}(\Omega)}^2 + \|\partial_t u\|_{\mathbf{L}_2(\Omega)}^2),$$

integrating both sides $\int_{\delta}^{T} dt$ yields

$$||u||_{\mathcal{L}_{2}((\delta,T);\mathcal{L}_{2}(\Omega))}^{2} \leq C(||f||_{\mathcal{L}_{2}(\Omega)}^{2} + ||u||_{\mathcal{L}_{2}((0,T);\mathcal{W}^{1,2}(\Omega))}^{2} + ||u||_{\mathcal{L}_{2}((\delta,T);\mathcal{L}_{2}(\Omega))}^{2})$$

Theorem 2. If data are smooth and satisfy the compatibility conditions, then the weak solutions to the parabolic equation are smooth.

$$Proof.$$
 no.

Remark (Compatibility condition). : Take the heat equation : $\partial_t u - \Delta u = f$ at time zero: $\Delta u(0) + f(0) = \partial_t u(0) \in W_0^{1,2}(\Omega)$, so we need that $f(0) + \Delta u(0)$ has zero trace \Rightarrow compatibility conditions.

1.3 Uniqueness of solutions to hyperbolic problems

Theorem 3 (Uniqueness of the solution to a hyperbolic equation). Let the assumptions on the data of the hyperbolic equations be standard (i.e. minimal). Further assume that $\mathbf{c} \in W^{1,\infty}(\Omega)$. Then the weak solution to the hyperbolic equation is unique.

Proof. It is enough that if $u_0 = 0, u_1 = 0 \Rightarrow u = 0 \in Q_T$. To do that, take the equation, multiply it by $\varphi \in V$ fixed and integrate over Ω for $t \in (0,T)$ fixed:

$$<\partial_{tt}u(t), \varphi>+\int_{\Omega}\mathbb{A}(t)\nabla u(t)\cdot\nabla\varphi\,\mathrm{d}x+\int_{\Omega}\big(bu(t)+\mathbf{c}\cdot\nabla u(t)\big)\varphi\,\mathrm{d}x-\int_{\Omega}u(t)\mathbf{d}(t)\cdot\nabla\varphi\,\mathrm{d}x=0.$$

Now, take a special test function

$$\psi(t) = \left(\int_t^s u(\tau) \, d\tau\right) \chi_{(0,s)}(t),$$

for some $s \in (0,T)$. Then $\partial_t \psi(t) = -u(t)$ on $t \in (0,s)$. Next, integrate the equation in time over (0,s).

$$\int_0^s \langle \partial_{tt} u(t), \psi \rangle dt + \int_0^s \int_{\Omega} \mathbb{A}(t) \nabla u(t) \cdot \nabla \psi dx dt + \int_0^s \int_{\Omega} (bu(t) + \mathbf{c} \cdot \nabla u(t)) \psi dx dt - \int_0^s \int_{\Omega} u(t) \mathbf{d}(t) \cdot \nabla \psi dx dt = 0,$$

Now use per partes on the first term (deploy Gelfand triple):

$$\int_0^s \langle \partial_{tt} u(t), \varphi \rangle dt = \langle \partial_t u(s), \psi(s) \rangle - \langle \partial_t u(0), \psi(0) \rangle - \int_0^s \langle \partial_t u(t), \partial_t \psi(t) \rangle dt,$$

and realize $\psi(s) = 0, \partial_t u(0) = 0$, so

$$-\int_0^s \langle \partial_t u(t), \partial_t \psi(t) \rangle dt + \int_0^s \int_{\Omega} \mathbb{A}(t) \nabla u(t) \cdot \nabla \psi dx dt + \int_0^s \int_{\Omega} (bu(t) + \mathbf{c} \cdot \nabla u(t)) \psi dx dt - \int_0^s \int_{\Omega} u(t) \mathbf{d}(t) \cdot \nabla \psi dx \dot{\mathbf{t}} = 0,$$

but since $\partial_t \psi(t) = -u(t)$, we can actually write (time dependencies are omitted for brevity)

$$\int_0^s \langle \partial_t u, u \rangle dt + \int_0^s \int_{\Omega} -\mathbb{A} \nabla \partial_t \psi \cdot \nabla \psi - b \psi \partial_t \psi - \psi \mathbf{c} \cdot \nabla \partial_t \psi + \partial_t \psi d \cdot \nabla \psi dx dt = 0,$$

rewriting the LHS as a time derivative of something, we obtain

$$\frac{1}{2} \int_{0}^{s} \frac{\mathrm{d}}{\mathrm{d}t} \left(\|u\|_{L_{2}(\Omega)}^{2} - \int_{\Omega} \mathbb{A} \nabla \psi \cdot \nabla \psi + b\psi^{2} + \psi \mathbf{c} \cdot \nabla \psi + \psi \mathbf{d} \cdot \nabla \psi \, \mathrm{d}x \right) \mathrm{d}t =$$

$$= \int_{0}^{s} \int_{\Omega} (\partial_{t} \mathbb{A}) \nabla \psi \cdot \nabla \psi + \partial_{t} b\psi^{2} + \psi \partial_{t} \mathbf{c} \cdot \nabla \psi + \underbrace{\partial_{t} \psi}_{=-u(t)} \mathbf{c} \cdot \nabla \psi - \psi \partial_{t} \mathbf{d} \cdot \nabla \psi - \psi \mathbf{d} \cdot \nabla \underbrace{\partial_{t} \psi}_{=-u(t)} \right) \mathrm{d}t \, \mathrm{d}x,$$

and upon integration (recall $\psi(s) = 0$, from the definition of ψ it follows $\nabla \psi(0) = 0$, and u(0) = 0,

$$\frac{1}{2} \left(\| u(s) \|_{\mathbf{L}_{2}(\Omega)}^{2} + \int_{\Omega} \mathbb{A}(0) \nabla \psi(0) \cdot \nabla \psi(0) + b(0) \psi(0)^{2} + \psi(0) \mathbf{c}(0) \cdot \nabla \psi(0) + \psi(0) \mathbf{d}(0) \nabla \psi(0) \, \mathrm{d}x \right) =$$

$$= \int_{0}^{s} \int_{\Omega} \partial_{t} \mathbb{A} \nabla \psi \cdot \nabla \psi + \partial_{t} b \psi^{2} - u \partial_{t} \mathbf{c} \cdot \nabla \psi - \psi \partial_{t} \mathbf{d} \cdot \nabla \psi + \psi \mathbf{d} \cdot \nabla u \, \mathrm{d}x \, \mathrm{d}t.$$

From this we obtain the following estimate:

$$\|u(s)\|_{L_{2}(\Omega)}^{2} + \|\psi(0)\|_{W^{1,2}(\Omega)}^{2} \le C \left(\int_{0}^{s} \|\psi\|_{W^{1,2}(\Omega)}^{2} + \|u\|_{L_{2}(\Omega)}^{2} \right) dt + \|\psi(0)\|_{L_{2}(\Omega)}^{2}.$$

where $C = C(\|\mathbb{A}\|_{\mathcal{L}_{\infty}(\Omega)}, \|\partial_t \mathbb{A}\|_{\mathcal{L}_{\infty}(\Omega)}, \|b\|_{\mathcal{L}_{\infty}(\Omega)}, \|\partial_t b\|_{\mathcal{L}_{\infty}(\Omega)}, \|\mathbf{c}\|_{\mathcal{L}_{\infty}(\Omega)}, \|\partial_t \mathbf{c}\|_{\mathcal{L}_{\infty}(\Omega)}, \|\mathbf{d}\|_{\mathcal{L}_{\infty}(\Omega)}, \|\partial_t \mathbf{d}\|_{\mathcal{L}_{\infty}(\Omega)}).$ Define now the test function $\chi(t) = \int_0^t u(\tau) d\tau$, and realize that in fact $\psi(t) = \chi(s) - \chi(t), \chi(0) = 0$. Plugging this in the above inequalty yields

$$\|u(s)\|_{\mathrm{L}_{2}(\Omega)}^{2} + \|\chi(s)\|_{\mathrm{L}_{2}(\Omega)}^{2} \leq C\left(\int_{0}^{s} \|\chi(s) - \chi(t)\|_{\mathrm{W}^{1,2}(\Omega)}^{2} + \|u\|_{\mathrm{L}_{2}(\Omega)}^{2}\right) + \|\chi(s)\|_{\mathrm{L}_{2}(\Omega)}^{2},$$

and using

$$\|\chi(s) - \chi(t)\|_{\mathbf{W}^{1,2}(\Omega)}^2 = \|\chi(t) - \chi(s)\|_{\mathbf{W}^{1,2}(\Omega)}^2 \le 2(\|\chi(t)\|_{\mathbf{W}^{1,2}(\Omega)}^2 + \|\chi(s)\|_{\mathbf{W}^{1,2}(\Omega)}^2),$$

and the definition of $\chi(t)$, from which it follows

$$\|\chi(s)\|_{L_2(\Omega)}^2 \le \int_0^s \|u\|_{L_2(\Omega)}^2 dt$$

we are allowed to write

$$\|u(s)\|_{\mathcal{L}_{2}(\Omega)}^{2} + \|\chi(s)\|_{\mathcal{L}_{2}(\Omega)}^{2} \le C \left(\int_{0}^{s} 2\|\chi(s)\|_{\mathcal{W}^{1,2}(\Omega)}^{2} + 2\|\chi(t)\|_{\mathcal{W}^{1,2}(\Omega)}^{2} + 2\|u\|_{\mathcal{L}_{2}(\Omega)}^{2} dt \right),$$

and so

$$\|u(s)\|_{L_2(\Omega)}^2 + (1 - 2sC)\|\chi(s)\|_{W^{1,2}(\Omega)}^2 \le C_1 \left(\int_0^s \|\chi(t)\|_{W^{1,2}(\Omega)}^2 + \|u(t)\|_{L_2(\Omega)}^2 dt\right).$$

If we now choose $T_1 \in (0,T]$ small enough s.t. 1-2sC > 0 for $s \in (0,T_1]$, we finally obtain

$$\|u(s)\|_{L_2(\Omega)}^2 + \|\chi(s)\|_{W^{1,2}(\Omega)}^2 \le C_2 \left(\int_0^s \|\chi(t)\|_{W^{1,2}(\Omega)}^2 + \|u(t)\|_{L_2(\Omega)}^2 dt \right), \forall s \in (0, T_1],$$

which implies u = 0 on $(0, T_1]$ by the Gronwall lemma: we have

$$\xi(t) \le \int_0^t \xi(s) \, \mathrm{d}s$$
, for $a.a.t \in (0,T) \Rightarrow \xi(t) = 0$ $a.e.$.

for $\xi \in L_1((0,T))$ nonnegative¹. If we now boostrap on $[T_1, 2T_1], [2T_1, 3T_1]$ etc., we obtain u = 0 on (0,T].

 $\mathbf{2}$ Sobolev spaces revisited

Let $\Omega \subset \mathbb{R}^d$ open, $p \in [1, +\infty], k \in \mathbb{N}$. We define

$$\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega) = \Big\{ f \in \mathbf{L}_{\mathbf{p}}(\Omega) \; ; D^{\alpha} f \in \mathbf{L}_{\mathbf{p}}(\Omega) \; , \forall |\alpha| \le k \Big\},$$

with the norm

$$\|f\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)}^p = \|f\|_{\mathbf{L}_{\mathbf{p}}(\Omega)}^p + \sum_{0<|\alpha|\leq k} \|D^\alpha f\|_{\mathbf{L}_{\mathbf{p}}(\Omega)}^p.$$

Recall that:

- $W^{k,p}(\Omega)$ is Banach $\forall p$ and Hilbert for p = 2.
- $W^{k,p}(\Omega)$ is separable if $p < \infty$ and reflexive if $p > 1, p < \infty$.

Our goal will be to prove embedding and trace theorems. We will use the density of smooth functions.

2.1 Tools from functional analysis

Definition 1 (Regularization kernel). The function η is called the regularization kernel supposed:

- $\eta \in \mathcal{D}(\mathbb{R}^d)$
- supp $\eta \in \mathrm{U}(0,1)$
- $\eta \ge 0$
- η is radially symmetric
- $\int_{\mathbb{R}^d} \eta(x) \, \mathrm{d}x = 1$

Definition 2 (Regularization of a function). Let η be a regularization kernel. Set²

$$\eta_{\varepsilon}(x) = \frac{1}{\varepsilon^d} \eta(x/\varepsilon), \varepsilon > 0.$$

We define the smoothing of $f \in L_1(\Omega)_{loc}$ by

$$f_{\varepsilon}(x) = (f \star \eta_{\varepsilon})(x).$$

Remark (Properties of regularization). The regularization has the following properties:

• $f \in L_p(\Omega) \Rightarrow f_{\varepsilon} \to f \operatorname{in} L_p(\Omega)$ and also a.e

¹In our case $\xi = \|u\|_{L_2(\Omega)}^2 + \|\chi\|_{W^{1,2}(\Omega)}^2$.

²Another common choice is $\eta_k = k^d \eta(kx), k \in \mathbb{N}$.

- $f \in L_{\infty}(\Omega) \Rightarrow f_{\varepsilon} \to f$ a.e and *-weak
- $f_{\varepsilon}(x) = \int_{\mathbb{R}^d} f(y) \eta_{\varepsilon}(x y) \, dy = \int_{\mathrm{U}(x,\varepsilon)} f(y) \eta_{\varepsilon}(x y) \, dy$
- supp $f_{\varepsilon} \subset \overline{U(\Omega, \varepsilon)}, f = 0 \text{ on } U(x, \varepsilon) \Rightarrow f_{\varepsilon}(x) = 0$

Definition 3 $(\Omega' \subset \Omega)$. $O \subset \Omega$ means \overline{O} is compact and $\overline{O} \subset \Omega$.

Definition 4 (Shift operator). For $u \in L_D(\Omega)$, $k \in \{1, ..., d\}$, h > 0, we introduce the shift operator

$$\tau_h u(x) = u(x + h\mathbf{e}_k)$$

Lemma 1 (Approximation property of the shift operator). For $u \in L_p(\Omega)$, it holds $\tau_h u \to u$ in $L_p(\Omega)$, $h \to 0^+$.

Lemma 2 (Partition of unity). Let $E \subset \mathbb{R}^d$, \mathcal{G} be an open covering of E (possibly uncountable.) Then there exists a countable system \mathcal{F} of nonnegative functions $\varphi \in \mathcal{D}(\mathbb{R}^d)$ such that $0 \le \varphi \le 1$ and

- 1. \mathcal{F} is subordinate to $\mathcal{G}: \forall \varphi \in \mathcal{F} \exists U \in \mathcal{G}: \operatorname{supp} \varphi \subset U$
- 2. \mathcal{F} is locally finite³: $\forall K \subset E$ compact, supp $\varphi \cap K \neq \emptyset$ for at most finitely many $\varphi \in \mathcal{F}$.
- 3. $\sum_{\varphi \in \mathcal{F}} \varphi(x) = 1, \forall x \in E$.

Proof. (Sketch) Step 1 (If E is compact):

 $E \text{ compact} \Rightarrow \exists m \in \mathbb{N}: \exists U_j \in \mathcal{G} \text{ s.t. } E \subset \bigcup_{j=1}^m U_j$. Moreover, $\exists K_j \subset U_j$ compact such that $E \subset \bigcup_{j=1}^m K_j$. That follows from the exhaustion argument: for $U \subset \mathbb{R}^d$ open, you can approximate it by a compact set:

$$K_m = \left\{ x \in U | \operatorname{dist}(x, \partial\Omega) \ge \frac{1}{m}, ||x|| \le m \right\}.$$

Then clearly $K_1 \subset K_2 \ldots$, and they "converge monotonously to U. Next, find $\phi_j \in C_c(U_j), \phi_j > 0$ on K_j , e.g. $\phi_j = \theta(\operatorname{dist}(x, \partial U_j))$. Then use convolution: $\psi_j = (\phi_j)_{\varepsilon}, \varepsilon > 0$ small and take finally

$$\varphi_j = \frac{\psi_j}{\sum_k \psi_k}.$$

Step 2 (If E is open):

Approximate E by $K \subset E$ compact by the exhaustion argument, then the covering will enlarge from finite \rightarrow countable (nontrivial reasoning).

2.2 Density of smooth functions

Lemma 3 (Local approximation by smooth functions (using regularization)). Assume $p \in [1, \infty), \Omega \subset \mathbb{R}^d$ open, $k \in \mathbb{N}, u \in W^{k,p}(\Omega), \Omega_{\varepsilon} = \{x \in \Omega | \operatorname{dist}(x, \partial\Omega) > \varepsilon\}$. Then it holds

- 1. $D^{\alpha}(u_{\varepsilon}) = (D^{\alpha}u)_{\varepsilon}$ a.e. in $\Omega_{\varepsilon}, \forall |\alpha| \leq k$
- 2. $u_{\varepsilon} \to u$ in $W^{k,p}(\Omega)_{loc}$, $\varepsilon \to 0^+$

³In other words, φ_K is nonzero for at most finitely many $\varphi \in \mathcal{F} \Leftrightarrow \text{points in } K$ can be represented by finitely many functions $\varphi \in \mathcal{F}$.

Proof. First of all:

$$\forall x \in \Omega : D^{\alpha}(u_{\varepsilon}(x)) = D^{\alpha}\left(\int_{\mathbb{R}^d} u(y)\eta_{\varepsilon}(x-y) \, \mathrm{d}y\right) = \int_{\mathbb{R}^d} u(y)D_x^{\alpha}\eta_{\varepsilon}(x-y) \, \mathrm{d}y = \int_{\Omega} u(y)D_x^{\alpha}\eta_{\varepsilon}(x-y) \, \mathrm{d}y,$$

the integrable majorants are e.g. $\|\eta_{\varepsilon}\|_{\infty}|u|\chi_{\mathrm{U}(0,\varepsilon)}(x)\in\mathrm{L}_{1}(\Omega)$. Now picking $x\in\Omega_{\varepsilon}$ we realize $\forall y\in\mathbb{R}^{d}/\Omega: x-y\geq\mathrm{dist}(x,\partial\Omega)\geq\varepsilon$, and so $\eta_{\varepsilon}(x-y)=0$. Exchanging derivatives and using the definition of the weak derivative

$$\int_{\Omega} u(y) D_x^{\alpha} \eta_{\varepsilon}(x-y) \, \mathrm{d}y = (-1)^{|\alpha|} \int_{\Omega} u(y) D_y^{\alpha} \eta_{\varepsilon}(x-y) \, \mathrm{d}y = \int_{\Omega} D_y^{\alpha} u(y) \eta_{\varepsilon}(x-y) \, \mathrm{d}y = \int_{\mathbb{R}^d} D_y^{\alpha} u(y) \eta_{\varepsilon}(x-y) \, \mathrm{d}y = (D^{\alpha}u)_{\varepsilon}.$$

Take $V \subset \Omega$ open, then

$$\|u - u_{\varepsilon}\|_{W^{k,p}(V)} = \sum_{|\alpha| \le k} \|D^{\alpha}u - D^{\alpha}u_{\varepsilon}\|_{L_{p}(V)} \to 0,$$

because $D^{\alpha}u_{\varepsilon} = (D^{\alpha}u)_{\varepsilon} \to D^{\alpha}u$ in $L_{p}(V)$, from the properties of regularization.

Theorem 4 (Global approximation by smooth functions). Let $\Omega \subset \mathbb{R}^d$ be open, $k \in \mathbb{N}, p \in [1, \infty)$. Then $C = \{ f \in C^{\infty}(\Omega), \text{supp } f \text{ bounded} \} \cap W^{k,p}(\Omega) \text{ is dense in } W^{k,p}(\Omega), \text{ i.e.}$

$$\overline{C \cap W^{k,p}(\Omega)}^{\|\cdot\|_{W^{k,p}(\Omega)}} = W^{k,p}(\Omega).$$

If moreover Ω is bounded, it holds:

$$\overline{C^{\infty} \cap W^{k,p}(\Omega)}^{\|\cdot\|_{W^{k,p}(\Omega)}} = W^{k,p}(\Omega).$$

Proof. Let $u \in W^{k,p}(\Omega)$, $\varepsilon > 0$. I want to show $\exists v \in C^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ s.t. $||u - v||_{W^{k,p}(\Omega)} < \varepsilon$. For every $j \in \mathbb{N}$ define an open set

$$\Omega_j = \left\{ x \in \Omega, \operatorname{dist}(x, \partial \Omega) > \frac{1}{i} \right\}.$$

Clearly, $\Omega_j \subset \Omega_{j+1} \, \forall j \in \mathbb{N}, \bigcup_{j=1}^{\infty} \Omega_j = \Omega$. Next, set

$$U_j = \Omega_{j+1} / \overline{\Omega_{j-1}}, j = 1, 2, \dots,$$

where $\Omega_0 = \Omega_{-1} = \emptyset$. Since Ω_j are open, U_j are also open and $\Omega \subset \bigcup_{j \in \mathbb{N}} U_j \Rightarrow \exists \{\varphi_j\}_{j \in \mathbb{N}}$ partition of unity subordinate to $\{U_j\}_{j \in \mathbb{N}}$. We can write $u = \sum_{j \in \mathbb{N}} u\varphi_j$, where $u\varphi_j \in W^{k,p}(\Omega)$, supp $u\varphi_j \subset U_j \subset \Omega_{j+1} \subset \Omega$. This is ready for convolution with $\varepsilon_j > 0$: set $v_j = (u\varphi_j)_{\varepsilon_j}$ and fix an arbitrary $\delta > 0$. By the properties of regularization, we have

$$\|v_j - u\varphi_j\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} < \frac{\delta}{2j-1},$$

for $\varepsilon_j > 0$ sufficiently small, which we now fix so the above inequality holds. To have a nice inequality, we actually want:

$$\|v_j - u\varphi_j\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} < \frac{2^N}{2^{N+1} - 1} \frac{\delta}{2^{j-1}},$$

meaning of $N \in \mathbb{N}$ will be evident later.

Set

$$v = \sum_{j \in \mathbb{N}} v_j,$$

then $v \in C^{\infty}(\Omega)$, (not clearly in $W^{k,p}(\Omega)$ however) as $\forall x \in \Omega$ the sum contains at most finitely many terms $(\mathcal{F} \text{ is locally finite.})$

Take the $N \in \mathbb{N}$ and estimate the norm $\|u - v\|_{W^{k,p}(\Omega)}$. Observe (the sum again contains only finitely many terms)

$$u - v = \sum_{j=1}^{\infty} (u\varphi_j - v_j),$$

so taking $x \in \Omega_N$ i have

$$(u-v)(x) = \sum_{j=1}^{N+1} (u\varphi_j - v_j),$$

because for m > N+1, i.e., m-1 > N it holds $U_m = \Omega_{m+1}/\overline{\Omega_{m-1}}$, $\Omega_N \subset \Omega_{m-1}$ meaning $\forall j \geq m > N+1$: $U_m \cap \Omega_N = \varnothing \Rightarrow \operatorname{supp} u\varphi_j \cap \Omega_N = \operatorname{supp} v_j \cap \Omega_N = \varnothing$, since $\operatorname{supp} u\varphi_j \subset U_j$, $\operatorname{supp} v_j \subset \operatorname{supp} u\varphi_j \subset U_j$, $\forall j \geq m$. The norm of sum is

$$||u-v||_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega_N)} \leq \sum_{j=1}^{N+1} ||u\varphi_j-v_j||_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} < \delta \frac{2^N}{2^{N+1}-1} \sum_{j=1}^{N+1} \frac{1}{2^j} = \delta.$$

It only remains to let $N \to \infty$ and realize

$$||u-v||_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega_N)} \to ||u-v||_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)}$$

by Lévi's theorem:

$$\sup_{N\in\mathbb{N}}\int_{\Omega_N}|D^\alpha f|\,\mathrm{d}x=\sup_{N\in\mathbb{N}}\int_{\mathbb{R}^d}|D^\alpha f|\chi_{\Omega_N}(x)\,\mathrm{d}x=\int_{\mathbb{R}^d}\sup_{N\in\mathbb{N}}|D^\alpha f|\chi_{\Omega_N}\,\mathrm{d}x\int_{\mathbb{R}^d}|D^\alpha f|\chi_{\Omega}(x)\,\mathrm{d}x=\int_{\Omega}|D^\alpha f|\,\mathrm{d}x\,,$$

since $\Omega_{N-1} \subset \Omega_N \forall N \in \mathbb{N}$, and $|D^{\alpha}f|$ is nonnegative, so the sequence under the integral is nondecreasing. Alltogether,

$$||u-v||_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} \le \delta, \forall \delta > 0$$

from which it follows $v \in W^{k,p}(\Omega)$ (this was not totally evident) and thus $v \in W^{k,p}(\Omega) \cap C^{\infty}(\Omega)$ so indeed we have showed the desired density.

Remark. It is nice that we only require Ω to be open (no boundary regularity required), but on the other hand, we don't have any information about the function's behaviour near it.

Remark (C^{k,\lambda} domain). Recall we call $\Omega \subset \mathbb{R}^d$ to be of class C^{k,\lambda} if: Ω is open and bounded, $\exists m \in \mathbb{N}, k \in \mathbb{N}_0, \lambda \in [0,1], \alpha, \beta \in \mathbb{R}^+, \exists$ open sets $U_j \subset \mathbb{R}^d, \exists a_j : B(0,\alpha) \subset \mathbb{R}^{d-1} : \to \mathbb{R} \text{ s.t. } a_j \in C^{k,\lambda}\left(B(0,\alpha)\right), \exists \mathbb{A}_j \mathbb{R}^d \to \mathbb{R}^d$ affine orthogonal matrices such that

- 1. $\partial \Omega \subset \bigcup_{i=1}^m U_i$,
- 2. $\forall j \leq m : \emptyset \neq \partial \Omega \cap U_j = \mathbb{A}_j (\{(x', a_j(x') \in \mathbb{R}^d | x' \in U(0, \alpha) \subset \mathbb{R}^{d-1}\}),$
- 3. $\forall j \leq m : \mathbb{A}_j(\{(x', a_j(x') + b) | x' \in U(0, \alpha), b \in (0, \beta)\}) \subset \Omega$,
- 4. $\forall j \leq m : \mathbb{A}_j(\{(x', a_j(x') b) | x' \in \mathrm{U}(0, \alpha), b \in (0, \beta)\}) \subset \mathbb{R}^d/\overline{\Omega}$.

If $\lambda = 0$ we sometimes drop it and write $\Omega \in \mathbb{C}^{k,0} \Leftrightarrow \Omega \in \mathbb{C}^k$, if $k = 0, \lambda = 1$ we call $\Omega \in \mathbb{C}^{0,1}$ to be a Lipschitz domain. Remember that $\lambda(\Omega) < \infty$ is a part of the definition.

Theorem 5 (Global approximation by smooth functions up to the boundary). Let $\Omega \in C^{0,0}$, $k \in \mathbb{N}, p \in [1, \infty)$. Then $C^{\infty}_{\overline{\Omega}}(\mathbb{R}^d)$ is dense in $W^{k,p}(\Omega)$.

Proof. Let $u \in W^{k,p}(\Omega)$, and $\varepsilon > 0$, be given. We wish to find $v \in C^{\infty}(\overline{\Omega})$ s.t. $||u - v||_{W^{k,p}(\Omega)} < \varepsilon$. The sketch is simple:

- 1. covering of $\overline{\Omega}$,
- 2. partition of unity,
- 3. approximation of u on the covering sets,
- 4. glue it together.

Set $U_0 = \Omega$, and let $\{U_j\}_{j=1}^m$ be from the definition of $\mathbb{C}^{0,0}$ boundary. Then⁴

$$\overline{\Omega} \subset \bigcup_{j=0}^m U_j$$
,

Take $\{\varphi_j\}$ to be the partition of unity on $\overline{\Omega}$, subordinate to $\{U_j\}_{j=0}^m$. Since

$$u = \sum_{j=0}^{m} u \varphi_j$$
, on Ω

observe that $u_j := u\varphi_j \in W^{k,p}(\Omega)$, supp $u_j \subset \text{supp } \varphi_j \subset U_j$. Also, we define $u(x) = 0, \forall x \in \mathbb{R}^d/\Omega$. The proofs differs in the cases j = 0 and $j \in \{1, ..., m\}$.

Case j = 0. We have supp $u\varphi_0 \subset\subset U_0 = \Omega$. That means that after the extension of $u\varphi_0$ by zero outside of Ω , it holds $u\varphi_0 \in W^{k,p}(\mathbb{R}^d)$. Since $W^{k,p}(\mathbb{R}^d) = W_0^{k,p}(\mathbb{R}^d) = \overline{\mathcal{D}(\mathbb{R}^d)}^{\|\cdot\|_{W^{k,p}(\mathbb{R}^d)}}$, we can find $v_0 \in \mathcal{D}(\mathbb{R}^d)$ s.t.

$$||v_0 - u\varphi_0||_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} < \frac{\varepsilon}{m+1}.$$

Case $j \in \{1, ..., m\}$. We have a problem now: $\{U_j\}_{j=1}^m$ covers $\partial \Omega$, which is a closed set and we cannot simply use local approximation theorem. One could imagine if we were to mollify in the neighbourhood of $\partial \Omega$, the kernel would pick up values from outside of Ω , where u = 0 and the mollification would not be a good approximation. Instead, we approximate u_j on a larger open domain containing $\overline{\Omega}$ and then show this is also a good approximation of u_j on $\Omega \subset \overline{\Omega}$.

Set $w_i = u\varphi_i$, and denote

$$S_j = \mathbb{A}_j \left(\left\{ (x', x_d) | a_j(x') - \frac{\beta}{2} < x_d < a_j(x'), x' \in \mathrm{U}(0, \alpha) \right\} \right),$$

$$\Omega_j = \mathbb{R}^d / \overline{S_j},$$

i.e.,

"
$$\Omega_j = \Omega \cup \mathbb{A}_j \left(\left\{ (x', x_d) | x_d \le a_j(x') - \frac{\beta}{2} \right\} \right)$$
,"

⁴Our choice $U_0 = \Omega$ is important, as without it the definition of $\mathbb{C}^{0,0}$ boundary only means $\partial \Omega \subset \bigcup_{i=1}^m U_i$.

10

Figure 1: A cumbersome sketch of $\Omega_j, S_j, \Omega_j^\delta, S_j^\delta$

(although this is a bit inaccurate). Realize that since u = 0 outside of Ω , also u_j is zero there and in particular it is zero on that "lower strip". Clearly then $u_j \in W^{k,p}(\Omega_j)$. Now pick $\delta \in (0, \frac{\beta}{2})$, where β is from the definition of $C^{0,0}$ and set

$$S_j^{\delta} = \mathbb{A}_j \left(\left\{ (x', x_d) | a_j(x') - \frac{\beta}{2} - \delta < x_d < a_j(x') - \delta, x' \in \mathrm{U}(0, \alpha) \right\} \right),$$

$$\Omega_j^{\delta} = \mathbb{R}^d / \overline{S_j^{\delta}},$$

i.e.,

$$"\Omega_j^{\delta} = \Omega \cup \mathbb{A}_j(\{(x', x_d)|a_j(x') - \delta < x_d < a_j(x')\}) \cup \mathbb{A}_j\left(\left\{(x', x_d)|x_d < a_j(x') - \frac{\beta}{2} - \delta\right\}\right)."$$

The trick is to shift the (support of) function u_j "into" Ω_i^{δ}

$$\tau_{\delta}u_{i}(\mathbb{A}_{i}(x',a_{i}(x'))) = u_{i}(\mathbb{A}_{i}(x',a_{i}(x')+\delta)), x' \in \mathbb{U}(0,\alpha) \subset \mathbb{R}^{d-1}$$

Realize that in fact

$$\operatorname{supp}(\tau_{\delta}u_{j}) = \operatorname{supp}(u_{j}) - \delta,$$

from which it follows $\tau_{\delta}u_{j} \in W^{k,p}(\Omega_{j}^{\delta})$; we have only shifted the function u_{j} , but since we have also shifted S_{j} , qualitatively there is no difference. Since $\Omega \subset \Omega_{j}^{\delta} \subset \Omega_{j}^{\delta} \cap \Omega_{j}$, $\Omega \subset \Omega_{j} \subset \Omega_{j}^{\delta} \cap \Omega_{j}$, and the fact τ_{δ} is an isometry between Sobolev spaces, we also have $u_{j}, \tau_{\delta}u_{j} \in W^{k,p}(\Omega_{j} \cap \Omega_{j}^{\delta})$. Moreover, from the properties of the shift operator it follows $\exists \delta > 0$ s.t.

$$\|u_j - \tau_\delta u_j\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} \le \|u_j - \tau_\delta u_j\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega_j \cap \Omega_j^\delta)} < \frac{\varepsilon}{2(m+1)}.$$

We are on a good track. Since we know $\tau_{\delta}u_j$ is already close to u_j , we are done once we approximate $\tau_{\delta}u_j$ by a function from $C^{\infty}\left(\overline{\Omega}\right)$. Notice that if we show $\overline{\Omega} \subset \Omega_j^{\delta}$, then clearly $C^{\infty}\left(\Omega_j^{\delta}\right) \subset C^{\infty}\left(\overline{\Omega}\right)$.

Show $\Omega \subset \Omega_j^{\delta}$: We already know $\Omega \subset \Omega_j^{\delta}$, so it suffices to show $\partial \Omega \subset \Omega_j^{\delta}$. Our parametrization of the boundary yields

$$\partial\Omega = \bigcup_{k=1}^{m} \mathbb{A}_k(\{(x',x_d)|x_d = a_k(x'), x' \in \mathrm{U}(0,\alpha)\}),$$

and the set Ω_j^{δ} is given as $\Omega_j^{\delta} = \mathbb{R}^d / \overline{S_j}$, where

$$S_j = \mathbb{A}_j \left(\left\{ (x', x_d) | a_j(x') - \frac{\beta}{2} - \delta < x_d < a_j(x') - \delta, x' \in \mathrm{U}(0, \alpha) \right\} \right).$$

Realize it suffices to show $\partial \Omega \notin \overline{S_j}$, as then it wont be excluded from \mathbb{R}^d and thus will end up in Ω_j^{δ} . Thanks to continuity of a_j , we may write

$$\overline{S_j} = \mathbb{A}_j \left(\left\{ (x', x_d) | a_j(x') - \frac{\beta}{2} - \delta \le x_d \le a_j(x') - \delta, x' \in \mathrm{U}(0, \alpha) \right\} \right).$$

i.e., the "<" have changed to " \leq ". Since we are doing everything locally, it is enough to show

$$\mathbb{A}_{j}(\{(x',x_{d})|x_{d}=a_{j}(x'),x'\in \mathrm{U}(0,\alpha)\}')\neq \mathbb{A}_{j}(\{(x',x_{d})|a_{j}(x')-\frac{\beta}{2}-\delta\leq x_{d}\leq a_{j}(x')-\delta,x'\in \mathrm{U}(0,\alpha)\}),$$

which is equivalent to

$$\left((a_j \le a_j - \delta) \land (a_j < a_j - \frac{\beta}{2} - \delta) \right) \lor \left((a_j > a_j - \delta) \land (a_j \ge a_j - \frac{\beta}{2} - \delta) \right).$$

Our choice has been $\delta \in (0, \frac{\beta}{2})$, and $\beta > 0$ from the definition of $\Omega \in \mathbb{C}^{0,0}$, so the second statement is clearly true $\forall j \in 1, \ldots, m$. Consequently $\partial \Omega \notin \overline{S}_j$ which leads to $\partial \Omega \subset \Omega_j^{\delta}$, and since also $\Omega \subset \Omega_j^{\delta}$, we have $\overline{\Omega} \subset \Omega_j^{\delta}$.

Approximation of $\tau_{\delta}u_{j}$. Since Ω_{i}^{δ} is open there $\exists w_{j} \in \mathbb{C}^{\infty}\left(\Omega_{i}^{\delta}\right)$ such that

$$\|\tau_{\delta}u_j - w_j\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} \le \|\tau_{\delta}u_j - w_j\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega_j^{\delta})} < \frac{\varepsilon}{4(m+1)}.$$

What is more, since $\overline{\Omega} \subset \Omega_j^{\delta}$, we see $w_j \in C^{\infty}(\overline{\Omega})$ in fact. What is even more, we see $\sup w_j \subset \sup u_j \subset \sup u_j \subset \Omega$, and since w_j is defined on the whole \mathbb{R}^d , also $v_j \coloneqq \tau_{-\delta} w_j$ is defined on the whole \mathbb{R}^d . Alltogether, $v_j = \tau_{-\delta} w_j \in \mathcal{D}(\mathbb{R}^d)$, and from the properties of the shift operator, there $\exists \delta > 0$ s.t.

$$||v_j - w_j||_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} < \frac{\varepsilon}{4(m+1)}.$$

Approximation of u. Finally, let us set

$$v = \sum_{j=0}^{m} v_j.$$

Then $v \in \mathcal{D}(\mathbb{R}^d)$ and it holds

$$\|u - v\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} = \left\| \sum_{j=0}^{m} u_{j} - \sum_{j=0}^{m} v_{j} \right\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} = \left\| \sum_{j=0}^{m} u_{j} - v_{j} \right\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} \le \sum_{j=0}^{m} \|u_{j} - v_{j}\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} \le \sum_{j=0}^{m} \|u_{j} - v_{j}\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} \le \frac{\varepsilon}{m+1} + \sum_{j=1}^{m} \|v_{j} - u_{j}\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} + \sum_{j=1}^{m} \|w_{j} - \tau_{\delta}u_{j}\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} + \sum_{j=1}^{m} \|\tau_{\delta}u_{j} - u_{j}\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\Omega)} \le \frac{\varepsilon}{m+1} + 2\sum_{j=1}^{m} \frac{\varepsilon}{4(m+1)} + \sum_{j=1}^{m} \frac{\varepsilon}{2(m+1)} = \varepsilon$$

Finally,

$$\mathcal{D}\left(\mathbb{R}^{d}\right)\subset\mathrm{C}^{\infty}_{\overline{\Omega}}\left(\mathbb{R}^{d}\right)\subset\mathrm{C}^{\infty}\left(\overline{\Omega}\right).$$

Remark (What is $C^{\infty}_{\overline{\Omega}}(\mathbb{R}^d)$). Recall

$$C_{\overline{\Omega}}^{\infty}(\mathbb{R}^d) = \{u|_{\overline{\Omega}}, u \in C^{\infty}(\mathbb{R}^d)\}.$$

2.3 Extension of Sobolev functions

Problem of extension: For $u \in W^{k,p}(\Omega)$, does there exist

$$\overline{u} \in \mathrm{W}^{\mathrm{k},\mathrm{p}}\left(\mathbb{R}^{d}\right), \ s.t. \ \overline{u}|_{\Omega} = u, \ \|\overline{u}\|_{\mathrm{W}^{\mathrm{k},\mathrm{p}}\left(\mathbb{R}^{d}\right)} \leq C(\Omega) \|u\|_{\mathrm{W}^{\mathrm{k},\mathrm{p}}\left(\Omega\right)}$$

?

The answer is **yes**, if Ω is nice enough. We will be using C¹ diffeomorphisms heavily, so we investigate some of their properties first.

Lemma 4 (Properties of C^1 diffeomorphisms). Let $U, V \subset \mathbb{R}^d$ be open, $\Phi: U \to V$ be a C^1 diffeomorphism and let $\tilde{U} \subset \mathbb{R}^d$ s.t. $\tilde{U} \subset U$. Then

- 1. $\Phi(\tilde{U}) \subset V$,
- 2. if moreover \tilde{U} is compact, then 5

$$\exists C>0: \forall u \in C^1(V): \|u\circ\Phi\|_{W^{1,p}\left(\tilde{U}\right)} \leq C\|u\|_{W^{1,p}\left(\Phi(\tilde{U})\right)}.$$

Proof. Ad 1.: No proof has been given.

Ad 2.:

$$\|u \circ \Phi\|_{\mathrm{L}_{p}(\tilde{U})}^{p} = \int_{\tilde{U}} (u \circ \Phi)^{p} |\det \nabla \Phi| \, \mathrm{d}x \le C_{0}^{-1} \int_{\tilde{U}} |u \circ \Phi|^{p} |\det \nabla \Phi| \, \mathrm{d}x \,,$$

where $\det \nabla \Phi > 0$ in U, so $\det \nabla \phi \geq C_0 > 0$ in \tilde{U} . Together

$$\|u \circ \Phi\|_{\mathrm{L}_{p}(\tilde{U})}^{p} = C_{0}^{-1} \int_{\Phi(\tilde{U})} |u|^{p} dx = C_{0}^{-1} \|u\|_{\mathrm{L}_{p}(\Phi(\tilde{U}))}.$$

Lemma 5 (Flat extension). Let $\alpha, \beta > 0, K \subset U(0, \alpha) \times [0, \beta)$ be compact. Then there $\exists C > 0$, a linear operator

$$E: C^1((B(0,\alpha) \times [0,\beta])) \to C^1((B(0,\alpha) \times [-\beta,\beta])),$$

and the set $\tilde{K} \subset\subset U(0,\alpha) \times [-\beta,\beta)$ such that $\forall u \in C^1(B(0,\alpha) \times [0,\beta]))$ it holds

- 1. Eu = u on $B(0, \alpha) \times [0, \beta]$,
- $2. \ \|Eu\|_{W^{1,p}(U(0,\alpha)\times(-\beta,\beta))} \le \|u\|_{W^{1,p}(U(0,\alpha)\times(0,\beta))}$
- 3. if supp $u \subset K$ then supp $Eu \subset \tilde{K}$

Proof. (The set $U(0,\alpha) \times [0,\beta)$ is a cylinder of radius α and height β)

The proof is constructive: for the assumed u we write $(x = (x', x_d), \text{ where } x' \in B(0, \alpha) \subset \mathbb{R}^{d-1}, x_d \in [0, \beta] \subset \mathbb{R})$

$$Eu(x', x_d) = \begin{cases} u(x', x_d), & x_d \ge 0\\ -3u(x', -x_d) + 4u(x', -\frac{x_d}{2}), & x_d < 0. \end{cases}$$

⁵For \tilde{U} compact: $\tilde{U} \subset V \Leftrightarrow \tilde{U} \subset V$.

Does Eu lie in $C^1(B(0,\alpha) \times [-\beta,\beta])$? Since $u \in C^1(B(0,\alpha) \times [0,\beta])$, it us continuous in the "lower cylinder", check only the transition through the origin plane: take some $a = (x',0) \in B(0,\alpha) \times \{0\}$. Then

$$\lim_{x \to a} Eu(x) = \begin{cases} u(a), & x_d \ge 0\\ -3u(a) + 4u(a) = u(a), & x_d < 0, \end{cases}$$

so Eu is continuous. The derivatives

$$\lim_{x \to a} \partial_d Eu(x', x_d) = \begin{cases} \partial_d u(x', 0), & x_d \ge 0 \\ \left(-3\partial_d u(x', -x_d)(-1) + 4\partial_d u(x', -\frac{x_d}{2})(-\frac{1}{2}) \right) \Big|_{x_d = 0} = \partial_d u(x', 0), & x_d < 0, \end{cases}$$

and also for any $i \in \{1, \ldots, d-1\}$

$$\lim_{x \to a} \partial_i Eu(x_1, \dots, x_d) = \begin{cases} = \partial_i u(x_1, \dots, 0), & x_d \ge 0 \\ = -3\partial_i u(x_1, \dots, 0) + 4\partial_i u(x_1, \dots, 0) = \partial_i u(x_1, \dots, 0) \end{cases}$$

so the the derivative is also continuous. Thus, we have

$$Eu \in C^1 \subset W^{1,p}(U(0,\alpha) \times (-\beta,\beta))$$
.

The first property is clear from the definition of Eu, the estimates of the norm: (all derivatives can in fact be assumed classical)

$$\begin{split} \|Eu\|_{\mathbf{W}^{1,p}(\mathbf{U}(0,\alpha)\times(-\beta,\beta))}^{p} &= \|Eu\|_{\mathbf{L}_{\mathbf{p}}(\mathbf{U}(0,\alpha)\times(-\beta,\beta))}^{p} + \sum_{|\alpha|=1} \|D^{\alpha}Eu\|_{\mathbf{L}_{\mathbf{p}}(\mathbf{U}(0,\alpha)\times(-\beta,\beta))}^{p} = \\ &= \|Eu\|_{\mathbf{L}_{\mathbf{p}}(\mathbf{U}(0,\alpha)\times(0,\beta))}^{p} + \|Eu\|_{\mathbf{L}_{\mathbf{p}}(\mathbf{U}(0,\alpha)\times(-\beta,0))}^{p} \\ &+ \sum_{|\alpha|=1} \|D^{\alpha}Eu\|_{\mathbf{L}_{\mathbf{p}}(\mathbf{U}(0,\alpha)\times(0,\beta))}^{p} + \sum_{|\alpha|=1} \|D^{\alpha}Eu\|_{\mathbf{L}_{\mathbf{p}}(\mathbf{U}(0,\alpha)\times(-\beta,0))}^{p} = \\ &= \|u\|_{\mathbf{L}_{\mathbf{p}}(\mathbf{U}(0,\alpha)\times(0,\beta))}^{p} + \|4u - 3u\|_{\mathbf{L}_{\mathbf{p}}(\mathbf{U}(0,\alpha)\times(-\beta,0))}^{p} + \\ &+ \sum_{|\alpha|=1} \|D^{\alpha}u\|_{\mathbf{L}_{\mathbf{p}}(\mathbf{U}(0,\alpha)\times(0,\beta))}^{p} + \sum_{|\alpha|=1} \|D^{\alpha}(4u - 3u)\|_{\mathbf{L}_{\mathbf{p}}(\mathbf{U}(0,\alpha)\times(-\beta,0))}^{p} \\ &= 2\|u\|_{\mathbf{L}_{\mathbf{p}}(\mathbf{U}(0,\alpha)\times(0,\beta))}^{p} + 2\sum_{|\alpha|=1} \|D^{\alpha}u\|_{\mathbf{L}_{\mathbf{p}}(\mathbf{U}(0,\alpha)\times(0,\beta))}^{p} = 2\|u\|_{\mathbf{W}^{\mathbf{k},\mathbf{p}}(\mathbf{U}(0,\alpha)\times(0,\beta))}^{p} \end{split}$$

and so

$$||Eu||_{\mathbf{W}^{1,p}(\mathbf{U}(0,\alpha)\times(-\beta,\beta))} = 2^{\frac{1}{p}}||u||_{\mathbf{W}^{1,p}(\mathbf{U}(0,\alpha)\times(0,\beta))}.$$

Where we have used the obvious fact

$$\int_{\mathrm{U}(0,\alpha)\times(0,\beta)} |f|^p \,\mathrm{d}x = \int_{\mathrm{U}(0,\alpha)\times(-\beta,0)} |f|^p \,\mathrm{d}x \,,$$

We will assume (although this is with a loss of generality), that

$$Eu(x', x_d) = 0 \Leftrightarrow (u(x', x_d) = 0 \lor 3u(x', -x_d) = 0 \lor 4u(x', -\frac{x_d}{2}) = 0),$$

i.e., that support lies in

$$\operatorname{supp} Eu \subset \{(x', x_d) \in \mathrm{U}(0, \alpha) \times [0, \beta] | u(x', x_d) = 0\} \cup \{(x', x_d) \in \mathrm{U}(0, \alpha) \times [-\beta, 0] | u(x', -x_d) \neq 0\} \cup \left\{(x', x_d) \in \mathrm{U}(0, \alpha) \times [-\beta, 0] | u(x', -\frac{x_d}{2}) \neq 0\right\}.$$

Denote $\Phi_1, \Phi_2 : \mathrm{U}(0,\alpha) \times (0,\beta) \to \mathrm{U}(0,\alpha) \times (-\beta,\beta)$ to be the mappings

$$\Phi_1(x', x_d) = (x', -x_d),$$

$$\Phi_2(x', x_d) = (x', -\frac{x_d}{2}),$$

then clearly Φ_1, Φ_2 are C¹ diffeomorphisms and

$$u(x', -x_d) = (u \circ \Phi_1)(x', x_d), u(x', -\frac{x_d}{2}) = (u \circ \Phi_2)(x', x_d),$$

i.e.,

$$u(x', x_d) = (u \circ \Phi_1^{-1})(x', -x_d) = (u \circ \Phi_2^{-1})(x', -\frac{x_d}{2}),$$

and so

$$\operatorname{supp} Eu \subset \operatorname{supp} u \cup \Phi_1^{-1}(\operatorname{supp} u) \cup \Phi_2^{-1}(\operatorname{supp} u) \subset K \cup \Phi_1^{-1}(K) \cup \Phi_2^{-1}(K),$$

as supp $u \subset\subset K$. Let us define

$$\tilde{K} \coloneqq \overline{K \cup \Phi_1^{-1}(K) \cup \Phi_2^{-1}(K)},$$

then \tilde{K} is a compact set: since Φ_1, Φ_2 are C^1 diffeomorphisms, also their inverses are, and the image of compact set K under a C^1 diffeomorphism is also a compact set. Union of compact sets is bounded, and closure of a bounded subset of $\mathbb{R}^d \times \mathbb{R}^d$ is compact. Also

$$\operatorname{supp} Eu \subset K \cup \Phi_1^{-1}(K) \cup \Phi_2^{-1}(K) \subset \overline{K \cup \Phi_1^{-1}(K) \cup \Phi_2^{-1}(K)} = \tilde{K}.$$

Finally, we have $K \subset \mathrm{U}(0,\alpha) \times [0,\beta) \Rightarrow K \subset \mathrm{U}(0,\alpha) \times (-\beta,\beta) \Rightarrow \Phi_1^{-1}(K), \Phi_2^{-1}(K) \subset \mathrm{U}(0,\alpha) \times (0,\beta)$, which really implies

$$\tilde{K} \subset \mathrm{U}(0,\alpha) \times [-\beta,\beta).$$

Lemma 6. Let $\alpha, \beta > 0, K \subset U(0, \alpha) \times [0, \beta), K$ compact. Then there is $C > 0, E : C^1(\overline{U(0, \alpha)} \times [0, \beta)) \to C^1(\overline{U(0, \alpha)} \times [-\beta, \beta]), \tilde{K} \subset U(0, \alpha) \times [-\beta, \beta)$ compact such that

• $||E||_{\mathcal{L}(W^{1,p}(U(0,\alpha)\times(0,\beta)),W^{1,p}(U(0,\alpha)\times(-\beta,\beta))} \le C$

• $u \in C^1(\overline{U(0,\alpha)} \times [0,\beta])$, supp $u \in K \Rightarrow \text{supp } Eu \subset \tilde{K}$

Proof. No proof.

Lemma 7. Let $U, V \subset \mathbb{R}^d$ open, $\Phi: U \to V, C^1$ diffeomorphism, $\tilde{U} \subset\subset U$ compact. Then $\Phi(\tilde{U}) \subset\subset V$ and

$$\exists C>0: \forall u \in C^1(V): \|u\circ\Phi\|_{W^{1,p}(\tilde{U})} \leq C\|u\|_{W^{1,p}(\Phi(\tilde{U}))}.$$

Proof. No proof. \Box

Theorem 6 (Extension of Sobolev functions). Let $\Omega \in C^{k-1,1}, k \in \mathbb{N}, p \in [1, \infty], V \subset \mathbb{R}^d$ open such that $\Omega \subset V$. Then there is $E: W^{k,p}(\Omega) \to W^{k,p}(\mathbb{R}^d)$ bounded linear operator such that

- 1. $\forall u \in W^{k,p}(\Omega) : Eu = u \ a.e. \ in \Omega,$
- 2. $\forall u \in W^{k,p}(\Omega) : \operatorname{supp} Eu \subset V$,
- 3. $||E|| \le C, C = C(p, \Omega, V)$.

Proof. Only for $k = 1, \Omega \in C^1, p < \infty$. We know $C^{\infty}_{\overline{\Omega}}(\mathbb{R}^d)$ is dense in $W^{1,p}(\Omega)$, we show existence of E for $u \in C^{\infty}_{\overline{\Omega}}(\mathbb{R}^d)$ with properties 1),2),3) and then extend E to $W^{1,p}(\Omega)$ by density. Covering of Ω :

$$\overline{\Omega} \subset \Omega \cup \bigcup_{j=1}^m U_j$$

with $U_j, a_j, \mathbb{A}_j, \alpha, \beta$ as in the definition of a C^1 domain. In particular, $a_j \in C^1(\mathrm{U}(0,\alpha))$. Construction of E: We denote $\{\varphi_j\}_{j=0}^m$ partition of unity subordinate to $\{U_j\}_{j=1}^m$. For $j \in \{1, \ldots, n\}$ we define $\phi_j : \mathrm{U}(0,\alpha) \times (-\beta,\beta) \to U_j$ by

$$\phi_i(y', y_d) = \mathbb{A}_i(y', a_i(y') + y_d), y' \in \mathbb{R}^{d-1}, y_d \in \mathbb{R}.$$

Trivially ϕ_j is C^1 diffemorphism. Let us denote by \tilde{E} the extension operator from the previous lemma. Then we have for $u \in C^{\infty}_{\overline{\Omega}}(\mathbb{R}^d)$: $u = \sum_{j=1}^m \varphi_j u$. We define

$$Eu = \varphi_0 u + \sum_{j=1}^m \left(\eta \tilde{E}((\varphi_j u) \circ \phi_j) \right) \circ \phi_j^{-1},$$

where η is a cut-off function $\eta = 1$ on $y_d \ge 0$, $\in (0,1)$ else, = 0 on $y_d \le -h$, for some parameter h > 0 which will be defined later. We also take $\eta \in C^{\infty}$. Due to our construction,

$$\phi_j^{-1}(\mathrm{U}(0,\alpha)\times[-2h,\beta))\subset\mathrm{U}(\Omega,\varepsilon)\subset\mathrm{U}(\Omega,2\varepsilon)\subset V,$$

for some $\varepsilon > 0$.

Properties of E: It is clear that

- \bullet E is linear from its definition
- 1) holds, as ϕ_j and ϕ_j^{-1} cancel somewhere
- 2) holds for $h < \frac{\beta}{2}$
- 3) we use the previous lemma:

$$\left\|\underbrace{\left(\eta\tilde{E}(\varphi_{j}u\circ\phi_{j})\right)}_{\text{supp}()\in\mathcal{U}(0,\alpha)\times(-\beta,\beta)}\circ\phi_{j}^{-1}\right\|_{\mathcal{W}^{1,p}(\mathbb{R}^{d})}\leq C\left\|\eta\tilde{E}(\varphi_{j}u\circ\phi_{j})\right\|_{\mathcal{W}^{1,p}(\mathcal{U}(0,\alpha)\times(-\beta,\beta))}$$

$$\leq C\left\|\varphi_{j}u\circ\phi_{j}\right\|_{\mathcal{W}^{1,p}(\mathcal{U}(0,\alpha)\times(0,\beta))}$$

$$\leq C\left\|\varphi_{j}u\circ\phi_{j}\right\|_{\mathcal{W}^{1,p}(\mathcal{U}(0,\alpha)\times(0,\beta))}$$
previous lemma
$$\leq C\left\|\varphi_{j}u\right\|_{\mathcal{W}^{1,p}(\mathcal{U}_{j}\cap\Omega)}\leq \left\|u\right\|_{\mathcal{W}^{1,p}(\Omega)}\Rightarrow \left\|E\right\|\leq C.$$
previous lemma

So all the properties hold for $u \in C^{\infty}_{\overline{\Omega}}(\mathbb{R}^d)$. We need to show them also for $u \in W^{1,p}(\Omega)$. Pick an arbitrary $u \in W^{1,p}(\Omega)$, find $\{u_k\} \subset C^{\infty}_{\overline{\Omega}}(\mathbb{R}^d) : u_k \to u \text{ in } W^{1,p}(\Omega)$.

Ad 1): Since E is continuous, then $Eu_k \to Eu$ in $W^{1,p}(\mathbb{R}^d)$. Since $\Omega \subset \mathbb{R}^d \Rightarrow Eu = u$ in $W^{1,p}(\Omega)$.

Ad 2):
$$\sup Eu_k \subset U(\Omega, \varepsilon) \Rightarrow \sup Eu \subset \overline{U(\Omega, \varepsilon)} \subset V$$
.

Remark ($\Omega \in C^{0,1}$ suffices). The theorem is still valid if we assume only $C^{0,1}$ and $p \in (1, \infty), k > 1$.

2.4 Embedding theorems

Example. Let $u \in \mathcal{D}(\mathbb{R}^2)$. Then

$$u(x_1, x_2) = \int_{-\infty}^{x_1} \partial_1 u(s, x_2) ds = \int_{-\infty}^{x_2} \partial_2 u(x_1, s) ds,$$

so

$$\int_{\mathbb{R}^2} \int_{\mathbb{R}^2} |u(x_1, x_2)|^2 dx_1 dx_2 \le \int_{\mathbb{R}} |\partial_1 u(s, x_2)| ds \int_{\mathbb{R}} |\partial_2 u(x_1, s)| ds dx_1 dx_2 \le \left(\int_{\mathbb{R}^2} |\nabla u|^2 d\lambda^2\right)^2,$$

SC

$$||u||_{L_2(\mathbb{R}^2)} \le ||\nabla u||_{L_1(\mathbb{R}^2)}.$$

Lemma 8. Let $d \ge 2$. Let $\hat{u}_i : \mathbb{R}^{d-1} \to \mathbb{R}$ be nonnegative and measurable for $j \in \{1, \dots, d\}$. We define

$$\hat{x}_j = (x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_d), \hat{dx}_j = dx_1 \dots dx_{j-1} dx_{j+1} \dots dx_d$$

Consider the functions $u_j : \mathbb{R}^d \to \mathbb{R}, u_j(x) = \hat{u_j}(\hat{x_j})$. Then

$$\int_{\mathbb{R}^d} \prod_{j=1}^d u_j(x) \, \mathrm{d}x \le \prod_{j=1}^d \left(\int_{\mathbb{R}^{d-1}} \left(\hat{u}_j(\hat{x}_j) \right)^{d-1} \, \hat{\mathrm{dx}}_{ij} \right)^{\frac{1}{d-1}}. \tag{1}$$

Proof. Induction by d.

1.
$$d = 2 : \int_{\mathbb{R}^d} u_1(x_1, x_2) u_2(x_1, x_2) dx_1 dx_2 = \int_{\mathbb{R}^2} \hat{u}_1(x_2) \hat{u}_2(x_1) dx_1 dx_2 = \int_{\text{Fubini}} \int_{\mathbb{R}} \hat{u}_1(x_2) dx_2 \int_{\mathbb{R}} \hat{u}_2 dx_1.$$

2.

$$d \rightarrow d+1: \int_{\mathbb{R}^{d+1}} \prod_{j=1}^{d+1} u_j(x) \, \mathrm{d}x = \int_{\mathbb{R}^d} \int_{\mathbb{R}} \prod_{j=1}^d u_j(x) \, \mathrm{d}x_{d+1} \, u_{d+1} \, \mathrm{d}x \, \mathrm{d}\hat{\mathbf{x}}_{d+1}$$

$$\overset{\leq}{\underset{\text{Holder}}{=}} \int_{\mathbb{R}^d} \left(\prod_{j=1}^d \int_{\mathbb{R}} \left(u_j(x) \right)^d \, \mathrm{d}x_{d+1} \right)^{\frac{1}{d}} u_{d+1}(x) \, \mathrm{d}\hat{\mathbf{x}}_{d+1}$$

$$\overset{\leq}{\underset{\text{Holder}}{=}} \left(\int_{\mathbb{R}^d} \left(\prod_{j=1}^d \int_{\mathbb{R}} u_j^d(x) \, \mathrm{d}x_{d-1} \right)^{\frac{1}{d-1}} \, \mathrm{d}x \, \hat{\mathbf{d}}_{d+1} \right)^{\frac{d-1}{d}} \left(\int_{\mathbb{R}^d} u_{d+1}^d \, \mathrm{d}x \, \hat{\mathbf{d}}_{d+1} \right)^{\frac{1}{d}}$$

$$\overset{\leq}{\underset{\text{induction step}}{=}} \left(\int_{\mathbb{R}^d} u_{d+1}^d \, \mathrm{d}\hat{x}_{d+1} \right)^{\frac{1}{d}} \left(\prod_{j=1}^d \int_{\mathbb{R}^{d-1}} \int_{\mathbb{R}} u_j^d(x) \, \mathrm{d}x_{d+1} \, \mathrm{d}\hat{x}_j \, \mathrm{d}\hat{x}_{d+1} \right)^{\frac{d-1}{d}}.$$

Theorem 7 (Gagliardo-Nirenberg). Let $p \in [1, d)$. Then $\forall u \in W^{1,p}(\mathbb{R}^d)$:

$$||u||_{L_{p^*}(\mathbb{R}^d)} \le \frac{p(d-1)}{d-p} ||\nabla u||_{L_p(\mathbb{R}^d)},$$

where $p^* = \frac{dp}{d-p}$.

Proof. Estimate for $u \in \mathcal{D}(\mathbb{R}^d)$:

$$\forall j \in \{1, \dots, d\}, x \in \mathbb{R}^d : u(x) = \int_{-\infty}^{x_j} \partial_j u(x_1, \dots, x_{j-1}, s, x_{j+1}, \dots, x_d) \, ds$$

independet of x_j , so

$$|u(x)| \leq \int_{\mathbb{R}} |\nabla u|(\ldots, s, \ldots) ds.$$

Next, consider $p=1, p^*=\frac{d}{d-1}$ and estimate:

$$|u|^{\frac{d}{d-1}} \le \prod_{j=1}^{d} \underbrace{\left(\int_{\mathbb{R}} |\nabla u|(\ldots, s, \ldots) \, \mathrm{d}s\right)^{\frac{1}{d-1}}}_{u_j \text{ independent of } x_j},$$

so the integral

$$\int_{\mathbb{R}^d} |u|^{\frac{d}{d-1}} \, \mathrm{d}x \le \int_{\mathbb{R}^d} \prod_{j=1}^d u \big) j \, \mathrm{d}x \underset{\text{previous lemma}}{\underbrace{\leq}} \left(\prod_{j=1}^d \int_{\mathbb{R}^{d-1}} \int_{\mathbb{R}} |\nabla u|(x) \, \mathrm{d}x_j \, \mathrm{d}\hat{x}_j \right)^{\frac{1}{d-1}} = \left(\int_{\mathbb{R}^d} |\nabla u| \, \mathrm{d}x \right)^{\frac{d}{d-1}}.$$

If $p \in (1, d)$, compute

$$\|u\|_{\mathrm{L}_{\frac{qd}{d-1}}(\mathbb{R}^d)}^q = \||u|^q\|_{\mathrm{L}_{\frac{d}{d-1}}(\mathbb{R}^d)} \leq \|\nabla(|u|^q)\|_{\mathrm{L}_{1}(\mathbb{R}^d)} = \int_{\mathbb{R}^d} q|u|^{q-1} |\nabla u| \, \mathrm{d}x \underbrace{\leq}_{\mathrm{Holder}} \|\nabla u\|_{\mathrm{L}_{p}(\mathbb{R}^d)} \|u\|_{\mathrm{L}_{(q-1)p'}(\mathbb{R}^d)}^{q-1}.$$

We want $\frac{(q-1)p'}{p-1} = \frac{qd}{d-1}$, so

$$q\left(\frac{p}{p-1} - \frac{d}{d-1}\right) = \frac{p}{p-1}, \Leftrightarrow q\frac{pd-p-pd+d}{(p-1)(d-1)} = \frac{d-p}{(p-1)(d-1)} = \frac{p}{p-1} \Leftrightarrow q = \frac{d-1}{d-p}p.$$

Also

$$q\frac{d}{d-1}=p^*.$$

 \Rightarrow statement holds for $u \in \mathcal{D}(\mathbb{R}^d)$. To finish, use density of $\mathcal{D}(\mathbb{R}^d)$ in $W^{1,p}(\mathbb{R}^d)$.

Remark. • It is evident that nonzero constants are not in $W^{1,p}(\mathbb{R}^d)$ and that also the inequality does not hold for them.

• the set \mathbb{R}^d is of course unbounded, so we have no ordering of $L_p(\Omega)$ spaces.

• of course, we require no smoothness of the domain

Theorem 8. Let $\Omega \subset \mathbb{R}^d$ be open. Then $\forall u \in W_0^{1,p}(\Omega), \forall p \in [1,d)$ the statement of the previous theorem holds.

Proof. An immediate corollary of the previous theorem.

Remark. In the proof of theorem we showed that $\forall u \in W^{1,p}(\mathbb{R}^d)$ it holds

$$\|u\|_{\mathrm{L}_{\frac{qd}{d-1}}(\Omega)}^q \le q\|\nabla u\|_{\mathrm{L}_{\mathrm{p}}(\Omega)}\|u\|_{\mathrm{L}_{\frac{p(q-1)}{p-1}}(\Omega)}^{q-1},$$

for q such that $\frac{qd}{d-1} \leq p^*$.

Theorem 9 (Embedding theorem). Let $\Omega \subset C^{0,1}$, $p^* = \frac{dp}{1-p}$ If $p \in [1,d)$ then

$$W^{1,p}(\Omega) \subset L_q(\Omega) \ \forall q \in [1, p^*].$$

Moreover, if $q < p^*$, then

$$W^{1,p}(\Omega) \subset\subset L_q(\Omega)$$
.

If p = d, then

$$W^{1,p}(\Omega) \subset L_q(\Omega) \ \forall q < \infty, \ W^{1,p}(\Omega) \subset L_q(\Omega) \ \forall 1 \le q < \infty.$$

Proof. We would like to use the previous theorem + extension. Ad continuity for $p < d : E : W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^d)$ the extension is continuous. We also know

- identity $I_1: W^{1,p}(\mathbb{R}^d) \to L_{p^*}(\mathbb{R}^d)$ is continous,
- restriction $I_2: L_{n^*}(\mathbb{R}^d) \to L_{n^*}(\Omega)$ is continuous,
- identity $I_3: L_{p^*}(\Omega) \to L_q(\Omega)$ is continous.

Together, the mapping $id: W^{1,p}(\Omega): L_q(\Omega), id = I_3 \circ I_2 \circ I_1 \circ E$ identity is continuous. If p=d, then $W^{1,d}(\Omega) \subset W^{1,r}(\Omega) \ \forall r \in [1,d), \text{ and } r^* \to \infty \text{ as } r \to d-. \text{ For } q \in [1,\infty) \text{ find } r \in [1,d) \text{ s.t. } r^* > q. \text{ Then}$

$$W^{1,d}(\Omega) \subset W^{1,r}(\Omega) \subset L_{r^*}(\Omega) \subset L_a(\Omega)$$
,

using the previous results.

Ad compactness: We show $W^{1,p}(\Omega) \subset L_q(\Omega)$ using Arzela-Ascoli and then it will get technical: show compactness in smooth functions, then show compactness in $L_1(\Omega)$, then approximate the norm of $L_q(\Omega)$ using the obtained quantities.

Consider $B = U_{W^{1,p}(\Omega)}(0,1)$ and extend it to EB. Fix $\delta > 0$ and let η be a regularization kernel. Then $\exists R > 0 : \operatorname{supp}(EB)_{\delta} \subset \overline{\mathrm{U}(0,R)} \subset \mathbb{R}^d$ (i.e. all the functions from EB have the support contained in the ball). Moreover, $(EB)_{\delta} \subset C^1(\overline{\mathrm{U}(0,R)})$. Actually, it is bounded in $C^1(\overline{\mathrm{U}(0,R)})$. $\subset C(\overline{\mathrm{U}(0,R)})$ (uniform equicontinuity comes from uniform boundedness of the gradients, $\nabla(u*\eta_\delta) = u*\nabla\eta_\delta$.) Altogether $(EB)_\delta$ is relatively compact in

$$C(\overline{\mathrm{U}(0,R)}) \underset{\text{the space } C(\overline{\mathrm{U}(0,R)}) \text{ is complete}}{\Rightarrow} \text{bounded in } C(\overline{\mathrm{U}(0,R)}) \underset{\text{bounded domain}}{\Rightarrow} \text{bounded in } \mathrm{L}_1(\mathrm{U}(0,R)).$$

Next, take

$$u \in B : \|u - (Eu)_{\delta}\|_{L_{q}(\Omega)} \le \|Eu - (Eu)_{\delta}\|_{L_{q}(U(0,R))} = \int_{U(0,R)} |v - v_{\delta}| \, \mathrm{d}x = \int_{\mathbb{R}^{d}} |\int_{\mathbb{R}^{d}} v(x+y) - v(x)\eta_{\delta}(y) \, \mathrm{d}y \, \mathrm{d}x \le$$

$$\le \int_{\mathbb{R}^{d}} |\int_{\mathbb{R}^{d}} \frac{|v(x+y) - v(x)|}{|y|} |\eta_{\delta}(y)| |y| \, \mathrm{d}y \, \mathrm{d}x \underset{\mathrm{Eukini}}{\le} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{|v(x+y) - v(x)|}{|y|} \, \mathrm{d}x \, |y| \eta_{\delta}(y) \, \mathrm{d}y \, .$$

Estimate the inner integral: assume v is smooth and write

$$\int_{\mathbb{R}^d} \frac{1}{|y|} | \int_0^1 \underbrace{\frac{\mathrm{d}}{\mathrm{d}s} (v(x+sy))}_{\nabla v(x+sy) \cdot y} \, \mathrm{d}s \, | \, \mathrm{d}x \underbrace{\leq}_{\text{Cauchy Schwartz}} \int_{\mathbb{R}^d} \int_0^1 |\nabla v| (x+sy) \, \mathrm{d}s \, \mathrm{d}x \underbrace{\leq}_{\text{Holder}} C(R) \left(\int_{\mathbb{R}^d} |\nabla v|^p \, \mathrm{d}x \right)^{\frac{1}{p}}.$$

Now, take $v \in W_0^{1,p}(U(0,R))$, then $\exists \{v_k\} \subset \mathcal{D}(U(0,R)) : v_k \to v \text{ in } W^{1,p}(U(0,R))$. So

$$\forall y \in \mathbb{R}^d : \int_{\mathbb{R}^d} \frac{|v_k(x+y) - v_k(x)|}{|y|} \, \mathrm{d}x \le C(R) \left(\int_{\mathbb{R}^d} |\nabla v_k|^p \, \mathrm{d}x \right)^{\frac{1}{p}} \to C(R) \left(\int_{\mathbb{R}^d} |\nabla v|^p \, \mathrm{d}x \right)^{\frac{1}{p}}.$$

So finally

$$\|u - (Eu)_{\delta}\|_{\mathcal{L}_{q}(\Omega)} \leq \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{|v(x+y) - v(x)|}{|y|} \, \mathrm{d}x \, |y| \eta_{\delta}(y) \, \mathrm{d}y \underset{|y| \leq \delta}{\leq} C(R) \delta \int_{\mathbb{R}^{d}} \left(\int_{\mathbb{R}^{d}} |\nabla u|^{p} \, \mathrm{d}x \right)^{\frac{1}{p}} \, \mathrm{d}x \leq C_{1} \delta.$$

Fix $\varepsilon > 0$, find finite $\frac{\varepsilon}{2}$ -net in $(EB)_{\delta}$ in $L_1(\mathrm{U}(0,R))$ (that is possible since we have total boundedness in $L_1(\mathrm{U}(0,R))$.) Set $\delta > 0$ s.t. $C_1\delta \frac{\varepsilon}{4}$. 7. Denote the $\frac{\varepsilon}{2}$ -net as $\{Eu_k\}_{k=1}^m, m \in \mathbb{N}$. We show $\{u_k\}_{k=1}^m$ is a ε -net in B. Fix $u \in B$, find $j \in \{1,\ldots,m\} : \|(Eu)_{\delta} - (Eu_j)_{\delta}\|_{L_1(\mathrm{U}(0,R))}$. Compute

$$\|u - u_j\|_{L_1(\Omega)} \le \|u - (Eu)_{\delta}\|_{L_1(\Omega)} + \|(Eu)_{\delta} - (Eu_j)_{\delta}\|_{L_1(\Omega)} + \|(Eu_j)_{\delta} - u_j\|_{L_1(\Omega)} \le 2C_1\delta + \frac{\varepsilon}{2} \le \varepsilon.$$

Thus, we have shown

$$W^{1,p}(\Omega) \subset L_1(\Omega)$$
.

It remains to show the validity for a general q. Let $q \in [1, p^*) : \|v\|_{L_q(\Omega)} \le \|v\|_{L_1(\Omega)}^{\alpha} \|v\|_{L_{p^*}(\Omega)}^{1-\alpha}$, for $\frac{1}{q} = \alpha + \frac{1-\alpha}{p^*}$, $\alpha \in (0, 1]$. Is B totally bounded in $L_q(\Omega)$? Let us compute

$$\|u-u_j\|_{\mathrm{L}_q(\Omega)} \leq \|u-u_j\|_{\mathrm{L}_1(\Omega)}^{\alpha} \underbrace{\|u-u_j\|_{\mathrm{L}_{p^*}(\Omega)}^{1-\alpha}}_{\leq C,\mathrm{W}^{1,p}(\Omega) \subset \mathrm{L}_{p^*}(\Omega)} \leq C\varepsilon^{\alpha}.$$

⁷The order of the choices is not precise...

- 2.5 Trace theorems
- 2.6 Composition of sobolev functions
- 2.7 Difference quotients

3 Nonlinear elliptic equations as compact perturbations

Theorem 10 (Nemytskii). Let $f: \Omega \times \mathbb{R}^N \to \mathbb{R}, N \in N, \Omega \subset \mathbb{R}^d$ measurable, f Caratheodory. Then

- 1. if $u: \Omega \to \mathbb{R}^N$ is measurable then $f(\cdot, u)$ is also measurable
- 2. If there is $p_i \in [1, +\infty)$, $i \in \{1, \dots, N\}$, $q \in [1, \infty)$, $g \in L_q(\Omega)$, C > 0 such that for almost all

$$x \in \Omega, \forall y \in \mathbb{R}^N : |f(x,y)| \le g(x) + c \sum_{i=1}^N |y_i|^{p_i/q}$$

, then $u \mapsto f(\cdot, u)$ is continuous from $L_{p_i}(\Omega) \times \cdots \times L_{p_N}(\Omega)$ to $L_q(\Omega)$. Moreover, it maps bounded sets to bounded sets.

Proof. No proof \Box

Definition 5 (Compact operator — Drábek, Milota: Methods of Nonlinear Analysis, Def 5.2.2). Let X, Y be normed linear spaces, $M \subset X$. The mapping $F: M \to Y$ is called a compact operator on M into Y if F is continuous and $F(M \cap K)$ is relatively compact in Y for any bounded $K \subset X$.

Remark. We have no linearity of F! So continuity cannot follow from compactness (we have compactness \Rightarrow boundedness \neq continuity for nonlinear operators)

Theorem 11 (Brouwer fixed point theorem). Let $K \subset \mathbb{R}^N$, $N \in \mathbb{N}$ be a nonempty convex closed bounded. Assume that $F: K \to K$ is continuous. Then F has a fixed point in K, i.e.,

$$\exists x_0 \in K : F(x_0) = x_0.$$

Proof. No proof

Theorem 12 (Schauder fixed point theorem). Let $K \subset X$ be a nonempty convex closed bonded subset of a linear normed space X. Assume that F is compact on K into K and $F(K) \subset K$. Then there is fixed point of F in K.

Proof. No proof \Box

- for Brouwer, $K \subset \mathbb{R}^N$ so since it is closed and bouded, it is automatically compact, and since $F: K \to K$ is continuous, F is compact. For Schauder, we have to assume this extra.
- proof of Brouwer with N=1 is easy, based on Darboux property.

3.0.1 Problem protypes

In this chapter some nonlinear elliptic equations are discussed.

Example. Suppose the following problem:

$$\begin{cases} -\triangle u + g(u) = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where

$$g: \mathbb{R} \to \mathbb{R}, f \in (W_0^{1,2}(\Omega))^*$$
, continuous, $\exists \alpha \in [0,1): \forall s \in \mathbb{R}: |g(s)| \leq C(1+|s|^{\alpha})$.

Theorem 13 (Existence). Let $\Omega \in C^{1,1}$, $f \in (W_0^{1,2}(\Omega))^*$, g is as above. Then there is a weak solution to the above problem, i.e., it holds:

$$\forall \varphi \in W_0^{1,2}(\Omega): \int_{\Omega} \nabla u \cdot \nabla \varphi \, \mathrm{d}x = \langle f, \varphi \rangle_{(W_0^{1,2}(\Omega))^*}.$$

If $f \in L_2(\Omega)$, then the solution $u \in W^{2,2}(\Omega)$.

Proof. We define $S: L_2(\Omega) \to L_2(\Omega)$ such that

$$Sw = u \Leftrightarrow \forall \varphi \in W_0^{1,2}(\Omega) : \int_{\Omega} \nabla u \cdot \nabla \varphi \, \mathrm{d}x = \langle f, \varphi \rangle - \int_{\Omega} g(w) \varphi \, \mathrm{d}x.$$

S is well defined:

$$|RHS| \le ||f||_{(W_0^{1,2}(\Omega))^*} ||\varphi||_{W^{1,2}(\Omega)} + ||\varphi||_{L_2(\Omega)} ||g(w)||_{L_2(\Omega)},$$

and

$$\int_{\Omega} |g(w)|^2 dx \le \int_{\Omega} C(1+|w|^{\alpha})^2 dx \le \int_{\Omega} C(1+|w|^{2\alpha}) dx \le \int_{\Omega} C(1+|w|^2) dx \le \infty,$$

where we used the Young inequality and $\alpha \leq 1$. We have thus shown the mapping $w \mapsto g(w)$ is continuous from $L_2(\Omega)$ to $L_2(\Omega)$ by Nemytskii. Next, S is continuous:

- $w \mapsto g(w)$ is continuous from $L_2(\Omega)$ to $L_2(\Omega)$
- $w \mapsto (\varphi W_0^{1,2}(\Omega) \to \langle f, \varphi \rangle \int_{\Omega} g(w)\varphi \, dx)$ is continuous from $L_2(\Omega)$ to $(W_0^{1,2}(\Omega))^*$
- $F \rightarrow u$, where u is the weak solution of

$$\begin{cases} -\triangle u = F & in\Omega \\ u = 0 & on\partial\Omega, \end{cases}$$

, is linear and continuous from $(W_0^{1,2}(\Omega))^*$ to $W_0^{1,2}(\Omega)$.

In total, the composition is continuous and yields S. Next, we would like to show S is compact. We start with showing S maps bounded sets in $L_2(\Omega)$ to bounded sets in $W_0^{1,2}(\Omega)$; for that we need apriori estimates: test the weak formulation with u:

$$\|\nabla u\|_{\mathrm{L}_{2}(\Omega)}^{2} \leq \varepsilon \|u\|_{\mathrm{W}^{1,2}(\Omega)}^{2} + C\Big(\|f\|_{(\mathrm{W}^{1,2}(\Omega))^{*}}^{2} + \|g(w)\|_{\mathrm{L}_{2}(\Omega)}^{2}\Big) \underbrace{\leq}_{\text{Younge}} C\Big(\|f\|_{(\mathrm{W}_{0}^{1,2}(\Omega))^{*}}) + 1 + \|w\|_{\mathrm{L}_{2}(\Omega)}^{2}\Big),$$

from which follows S is compact from $L_2(\Omega)$ to $L_2(\Omega)$ by compact embedding. Now we need to show $S(U(0,R)) \subset U(0,R)$ for some R > 0. From the previous we know:

$$\frac{C}{2} \|u\|_{\mathbf{W}^{1,2}(\Omega)}^2 \le \tilde{C} \Big(\|f\|_{\left(\mathbf{W}_0^{1,2}(\Omega)\right)^*} + \|g\|_{\mathbf{L}_2(\Omega)}^2 \Big),$$

so since

$$\tilde{C} \int_{\Omega} |g(w)|^2 dx \le \int_{\Omega} C(1+|w|^{2\alpha}) dx \le \int_{\text{Younge}} \int_{\Omega} \left(C + \frac{c}{4}|w|^2\right) dx$$

we know

$$\frac{c}{2}\|u\|_{\mathrm{L}_2(\Omega)}^2 \leq \frac{c}{2}\|u\|_{\mathrm{W}^{1,2}(\Omega)}^2 \leq \tilde{C}\|f\|_{(\mathrm{W}_0^{1,2}(\Omega))^*}^2 + C\lambda(\Omega) + \frac{c}{4}\|w\|_{\mathrm{L}_2(\Omega)}^2,$$

and thus

$$\|u\|_{\mathrm{L}_{2}(\Omega)}^{2} \leq \underbrace{\frac{2\tilde{C}}{c} \|f\|_{(\mathrm{W}_{0}^{1,2}(\Omega))^{*}}^{2} + 2\frac{C}{c}}_{=\overline{C}} + \frac{1}{2} \|w\|_{\mathrm{L}_{2}(\Omega)}^{2}.$$

so if $\overline{C} + \frac{1}{2}R^2 < R^2$, we are done ⁸. But such an R of course exists (says doc. Kaplicky) \Rightarrow the image of a ball is in a ball for some $R \Rightarrow S$ is compact and using Schauder we get the solution exists.

For the regularity part of the assertion, realize that u_0 solves $\begin{cases} - \triangle u_0 = f - g(u_0) \in L_2(\Omega) \\ u_0 = 0 \end{cases}$ from the regularity theory f = 0.

So from the regularity theory for elliptic equations we get

$$u \in W^{2,2}(\Omega)$$
.

Theorem 14 (Uniqueness). Let $u_1, u_2 \in W_0^{1,2}(\Omega)$ be weak solutions to the above problem. Let $f \in (W_0^{1,2}(\Omega))^*, g$ be continuous. Let either

1. q is nondecreasing

2. $g \in C^1(\mathbb{R}), \|g'\|_{\infty}$ small.

Then $u_1 = u_2$.

Proof. We subtract the equations for u_1, u_2 and test with $u_1 - u_2$.:

$$\int_{\Omega} |\nabla (u_1 - u_2)|^2 + (g(u_1) - g(u_2))(u_1 - u_2) dx = 0.$$

In the first case, the second term is nonnegative and so

$$0 = \|\nabla(u_1 - u_2)\|_{L_2(\Omega)} \ge C\|u_1 - u_2\|_{W^{1,2}(\Omega)}^2 \Rightarrow u_1 - u_2 = 0.$$

$$|\int_{\Omega} (g(u_1) - g(u_2)(u_1 - u_2)) \, \mathrm{d}x| \le \int_{\Omega} \|g'\|_{\infty} |u_1 - u_2|^2 \, \mathrm{d}x \le \|g'\|_{\infty} C_P \|\nabla(u_1 - u_2)\|_{\mathrm{L}_2(\Omega)}^2 = 0 \Rightarrow u_1 = u_2,$$
 whenever $C \|g'\|_{\infty} < 1$.

⁸The constants are most probably messed up.

Example. Suppose the following problem

$$\begin{cases} -\triangle u + b(\nabla u) = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

where $f \in (W_0^{1,2}(\Omega))^*, b$ is continuous and bounded. The weak formulation is

$$u \in W_0^{1,2}(\Omega) \land \forall \varphi \in W_0^{1,2}(\Omega) : \int_{\Omega} \nabla u \cdot \nabla \varphi + b(\nabla u) \varphi \, dx = \langle f, \varphi \rangle,$$

and the first apriori estimates (test with u)

$$\|\nabla u\|_{\mathrm{L}_2(\Omega)} \leq \|f\|_{(\mathrm{W}_0^{1,2}(\Omega))^*} \|u\|_{\mathrm{W}_0^{1,2}(\Omega)} + \int_{\Omega} |u| \, \mathrm{d}x \, \|b\|_{\mathrm{L}_\infty(\Omega)}.$$

Theorem 15. Let $f \in (W_0^{1,2}(\Omega))^*$, $\Omega \in C^{0,1}$, $b : \mathbb{R}^d \to \mathbb{R}$ continuous and bounded. Then there is a weak solution to the above problem.

Proof. $S: W_0^{1,2}(\Omega) \to W_0^{1,2}(\Omega)$, Sw = u iff u solves

$$\begin{cases} -\triangle u = f - b(\nabla w) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$
, i.e.

it holds

$$\forall \varphi \in W_0^{1,2}(\Omega): \int_{\Omega} \nabla u \cdot \nabla \varphi \, \mathrm{d}x = \langle f, \varphi \rangle - \int_{\Omega} b(\nabla w) \varphi \, \mathrm{d}x.$$

Clearly, S is well defined and

$$||Sw||_{W_0^{1,2}(\Omega)} \le \underbrace{C(||f||_{(W_0^{1,2}(\Omega))^*} + ||b||_{L_{\infty}(\Omega)})}_{:-R},$$

meaning $S(\overline{\mathrm{U}(0,R)}) \subset \overline{\mathrm{U}(0,R)}$. Moreover, S]s continuous, as S is the composiiton of a Nemytskii operator and the solution operator of the Laplace equation. It remains to show S is compact: we already have continuity, consider $\{w_k\}_{k\in\mathbb{N}}\subset \mathrm{W}_0^{1,2}(\Omega)$ bounded. Then $\exists \{u_k\}\subset \mathrm{W}_0^{1,2}(\Omega)$ bounded: $u_k\to u$ in $\mathrm{L}_1(\Omega)$ by embedding up to a subsequence. Next, uss the following trick: substitue equation for u_k from equation for u_l and test with u_l-u_k

$$C\|u_{l}-u_{k}\|_{W_{0}^{1,2}(\Omega)}^{2} \leq \|\nabla(u_{l}-u_{k})\|_{L_{2}(\Omega)}^{2} \leq \int_{\Omega} |b(\nabla u_{l})-b(\nabla u_{k})| \|u_{l}-u_{k}\|_{dx} \leq 2\|b\|_{L_{\infty}(\Omega)} \|u_{l}-u_{k}\|_{L_{1}(\Omega)}.$$

All in all, S has a fixed point by Schauder, which is of course the weak solution.

But this says $\{u_k\}$ is Cauchy in $W_0^{1,2}(\Omega)$.

4 Nonlinear elliptic equations - monotone operator theory

Lemma 9. Let $g: B(0,R) \subset \mathbb{R}^n \to \mathbb{R}^N$ be continuous, $N \in \mathbb{N}, R > 0$, and $\forall c \in S(0,R) : g(c) \cdot c \ge 0$. Then, there is $c_0 \in B(0,R) : g(c_0) = 0$.

Proof. By contradiction. Let $g \neq 0$ in U(0,R). Let us define

$$h(x) = -R \frac{g(x)}{|g(x)|}.$$

Then $h \in C(B(0,R)), h(B(0,R)) \subset S(0,R)$, so by Brouwer there $\exists x_0 \in B(0,R) : h(x_0 = x_0 \Rightarrow -R \frac{g(x_0)}{|g(x_0)|} = x_0$. Take the dot product with x_0 and write

$$\underbrace{-R\frac{g(x_0)\cdot x_0}{|g(x_0)|}}_{\leq 0} = \underbrace{|x_0|^2}_{=R^2} \land x_0 \in S(0,R),$$

so that is a contradiction.

Consider the following problem:

$$\begin{cases} -\sum_{i=1}^{d} \partial_i (a_i(x, u(x), \nabla u(x)) + a_0(x, u(x), \nabla u(x))) = f(x) & \text{in } \Omega \\ u = u_0 & \text{on } \partial \Omega \end{cases}$$

The date are

- $\Omega \in C^{0,1}$
- $a_i: \Omega \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}, i \in \{1, \dots, d\}$ are Caratheodory in x and $(u, \nabla u)$.
- $f \in (W_0^{1,r}(\Omega))^*$,

and the unknown is $u: \Omega \to \mathbb{R}$.

Remark. The function $(u, p) \mapsto a_i(\cdot, u, p)$ is continuous from $(L_r(\Omega))^{d+1}$ to $L_{r'}(\Omega)$. by Nemystkii theorem.

Definition 6 (Coercivity). We say that $\{a_i\}_{i=0}^d$ are coercive if $\exists C_1 > 0, C_2 \in L_1(\Omega)$: a.e. $x \in \Omega, \forall (z,p) \in \mathbb{R}^{d+1}$:

$$\sum_{i=1}^{d} a_i(x,z,p) p_i + a_0(x,z,p) \ge C_1 |p|^r - C_2(x), \text{ i.e. } a(x,z,p) \cdot p \ge C_1 |p|^r - C_2(x)$$

Definition 7 (Monotonicity). We say that $\{a_i\}_{i=0}^d = a$ is monotone if for almost all

$$x \in \Omega, \forall (z_1, p_1), (z_2, p_2) \in \mathbb{R}^{d+1} : (a(x, z_1, p_1) - a(x, z_2, p_2)) \cdot (p_1 - p_2) + (a_0(x, z_1, p_1) - a_0(x, z_2, p_2)) \cdot (z_1 - z_2) \ge 0.$$

Very similarly we define strict monotonicity.

Definition 8 (Weak solution). We say that $u \in W^{1,r}(\Omega)$ is a weak solution to the above problem if

• $u = u_0$ in the sense of traces on $\partial \Omega$,

$$\int_{\Omega} a(\cdot, u, \nabla u) \cdot \nabla \varphi + a_0(\cdot, u, \nabla u) \varphi \, \mathrm{d}x = \langle f, \varphi \rangle, \forall \varphi \in W_0^{1,r}(\Omega).$$

Theorem 16 (Existence and uniqueness). Let $\Omega \in C^{0,1}$, $u_0 \in W^{1,r}(\Omega)$, $r \in (1, \infty)$, $\{a_i\}_{i=1}^d$ be Caratheodory, coercive and made and let them also satisfy the growth conditions. Finally, let $f \in (W^{1,r}(\Omega))^*$. Then, there is a weak solution to the problem. If, moreover, $\{a_i\}_{i=1}^d$ is strictly monotone, then the weak solution is unique.

Proof. The strategy is the following:

- 1. Galerkin Approximation
- 2. uniform estimates
- 3. limit passage
- 4. identification of limits

One of the issues we will face is that nonlinearities may destroy weak convergence, see the below example.

Galerkin: Since $W_0^{1,r}(\Omega)$ is separable $\Rightarrow \exists \{w_i\}_{i=1}^{\infty}$ that is a dense⁹ linearly independent subset of $W_0^{1,r}(\Omega)$. We search for $n \in \mathbb{N}$ such that

$$u^{n}(x) \coloneqq u_{0}(x) + \sum_{j=1}^{n} \alpha_{j}^{n} w_{j}(x),$$

where $\alpha_i \in \mathbb{R}$ and u^n satisfy

$$\forall j \in \{1, \dots, n\} : \int_{\Omega} a(\cdot, u^n, \nabla u^n) \cdot \nabla w_j + a_0(\cdot, u^n, \nabla u^n) w_j \, \mathrm{d}x = \langle f, w_j \rangle.$$

We claim such $\{\alpha_j\}_{j=1}^n \subset \mathbb{R}^n$ exist $\forall n \in \mathbb{N}$ by the previous lemma. We define a vector function

$$F(\alpha^n) := \{ \int_{\Omega} a \cdot \nabla w_j + a_0 w_j \, dx - \langle f, w_j \rangle \}_{j=1}^n,$$

from Nemystkii $F: \mathbb{R}^n \to \mathbb{R}^n$, F is continuous on \mathbb{R}^n . Moreover, it holds

$$F(\alpha^{n}) \cdot \alpha^{n} \geq \int_{\Omega} a(\cdot, u^{n}, \nabla u^{n}) \nabla (u^{n} - u_{0}) + a_{0}(u^{n} - u_{0}) \, dx - \langle f, u^{n} - u_{0} \rangle$$

$$\geq \int_{\Omega} C_{1} |\nabla u^{n}|^{r} - (C_{2}(\cdot) + |a| |\nabla u_{0}| + |a_{0}| |u_{0}|) \, dx - ||u^{n}||_{W^{1,r}(\Omega)} ||f||_{(W^{1,r}_{0}(\Omega)^{*})} - ||u_{0}||_{W^{1,r}(\Omega)} ||f||_{(W^{1,r}_{0}(\Omega)^{*})},$$
coercivity

together with the fact

$$\|\nabla u^n\|_{\mathbf{L}_r(\Omega)}^r \ge \left(\|\nabla (u-u_0)\|_{\mathbf{L}_r(\Omega)} - \|\nabla u_0\|_{\mathbf{L}_r(\Omega)}\right)^r \ge \|\nabla (u^n-u_0)\|_{\mathbf{L}_q(\Omega)}^r - \|\nabla u_0\|_{\mathbf{L}_r(\Omega)}^r \ge C\|u^n-u_0\|_{\mathbf{W}^{1,r}(\Omega)}^r - \|\nabla u_0\|_{\mathbf{L}_r(\Omega)}^r,$$

Next, realize that $\alpha^n \in \mathbb{R}^n \mapsto \|u^n - u_0\|_{\mathrm{W}^{1,r}(\Omega)}$ is a norm equivalent to $|\alpha^n|$ (Euclidian norm). So that means $\exists K_1(n) > 0 : \forall \alpha \in \mathbb{R}^n : K_1(n)|\alpha^n| \leq \|u^n - u_0\|_{\mathrm{W}^{1,r}(\Omega)}$. For $|\alpha^n| = R, R > 0$ determined later estimate $F(\alpha^n) \cdot \alpha^n \geq c \|u^n - u_0\|_{\mathrm{W}^{1,r}(\Omega)} - \tilde{c} \Big(\|\nabla u_0\|_{\mathrm{L}_r(\Omega)}^r + 1 + \|u_0\|_{\mathrm{L}_r(\Omega)}^r + \|f\|_{\mathrm{W}_0^{1,r}(\Omega))^*}^{r'} \Big)$ (which is not a trivial computation). And so $\exists R > 0, \forall \alpha^n \in \mathrm{S}(0,R) \subset \mathbb{R}^n : F(\alpha^n) \cdot \alpha^n > 0$, so from the

 $^{^{9}\}mathrm{It}$ can be chosen such that it is itself dense, not only its span

previous lemma $\exists \alpha^n \in S(0,R) : F(\alpha^n) = 0$, and we fix these α^n . Uniform estimates They follow from the previous manipulation:

$$\|u^n - u_0\|_{\mathbf{W}^{1,r}(\Omega)}^r \le C \Big(1 + \|u_0\|_{\mathbf{W}^{1,r}(\Omega)}^r + \|f\|_{(\mathbf{W}^{1,r}(\Omega))^*} \Big).$$

and

$$||u^{n}||_{\mathbf{W}^{1,r}(\Omega)} \leq C\Big(1 + ||u_{0}||_{\mathbf{W}^{1,r}(\Omega)}^{r} + ||f||_{(\mathbf{W}^{1,r}(\Omega))^{*}}\Big),$$

$$\forall j \in \{0,\ldots,d\} : ||a_{j}(\cdot,u^{n},\nabla u^{n})||_{\mathbf{L}_{r}'(\Omega)}^{r'} \leq C\Big(1 + ||u_{0}||_{\mathbf{W}^{1,r}(\Omega)}^{r} + ||f||_{(\mathbf{W}^{1,r}(\Omega))^{*}}\Big),$$

Limit passage From the separability of the spaces, we can extract sequences (not renamed):

$$u^n \to u \text{ in W}^{1,r}(\Omega), a_i \to \alpha_i \text{ in L}_{r'}(\Omega).$$

We pass to the limit in the estimates and are able to write:

$$\forall j \in \mathbb{N} : \int_{\Omega} \alpha \cdot \nabla w_j + \alpha_0 w_j \, \mathrm{d}x = \langle f, w_j \rangle,$$

and from density of $\{w_j\}_{j\in\mathbb{N}}$ in $W^{1,r}(\Omega)$ we have

$$\forall \varphi \in W_0^{1,r}(\Omega) : \int_{\Omega} \alpha \cdot \nabla \varphi + \alpha_0 \varphi \, \mathrm{d}x = \langle f.\varphi \rangle.$$

Identification of α 's We want to show $\alpha_j = a_j(\cdot, u, \nabla u), j \in \{0, \dots, d\}$. For that, we use the *Minty trick*:

$$0 \leq \int_{\Omega} \left(a(\cdot, u^{n}, \nabla u^{n}) - a(\cdot, v, V) \right) \cdot (\nabla u^{n} - V) + \left(a_{0}(\cdot, u^{n}, \nabla u^{n}) - a_{0}(\cdot, v, V) \right) \cdot (u^{n} - v)$$

$$\leq \int_{\Omega} a(\cdot, u^{n}, \nabla u^{n}) \cdot \nabla u^{n} + a_{0}(\cdot, u^{n}, \nabla u^{n}) \cdot u^{n} \, dx +$$

$$- \int_{\Omega} \left(a(\cdot, u^{n}, \nabla u^{n}) V + a_{0}(\cdot, u^{n}, \nabla u^{n}) v - a(\cdot, v, V) + a_{0}(\cdot, v, V) \cdot (u^{n} - v) \right) \, dx \, .$$

Denote

$$I^{n} = \int_{\Omega} a(\cdot, u^{n}, \nabla u^{n}) \cdot \nabla (u^{n} - u_{0}) + a_{0}(\cdot, u^{n}, \nabla u^{n}) \cdot (u^{n} - u_{0}) dx + \int_{\Omega} a(\cdot, u^{n}, \nabla u^{n}) \cdot u_{0} + a_{0}(\cdot, u^{n}, \nabla u^{n}) u_{0} dx,$$

by using the equation we obtain

$$I^n = \langle f, u^n - u_0 \rangle + \int_{\Omega} a(\boldsymbol{\cdot}, u^n, \nabla u^n) \boldsymbol{\cdot} u_0 + a_0(\boldsymbol{\cdot}, u^n, \nabla u^n) u_0 \, \mathrm{d}x \rightarrow \langle f, u - u_0 \rangle + \int_{\Omega} \alpha \nabla u_0 + \alpha_0 u_0 \, \mathrm{d}x = \int_{\Omega} \alpha \nabla u + \alpha_0 u \, \mathrm{d}x \, dx + \alpha_0 u \, \mathrm{d}x + \alpha_0$$

as the rest has subtracted. In total, we have

$$0 \le \int_{\Omega} (\alpha - a(\cdot, v, V)) \cdot (\nabla u - V) + (\alpha_0 - a_0(\cdot, v, V))(u - v) dx.$$

So far, v, V have been arbitrary. If we take

$$V = \nabla u - \lambda \psi, \psi \in L_r(\Omega), v = u,$$

then $0 \le \int_{\Omega} (\alpha - a(\cdot, \nabla u + \lambda \psi)) \lambda \psi \, dx$, so if we take $\lambda > 0$ and pass to the limit $\lambda \to 0_+$ (using Nemytskii theorem) we can write

$$0 \le \int_{\Omega} (\alpha - a(\cdot, u, \nabla u)) \psi \, \mathrm{d}x.$$

Since ψ was arbitrary, we could have taken $\psi \to -\psi$, which in total means

$$0 = \int_{\Omega} (\alpha - a(\cdot, u, \nabla u)) \psi \, \mathrm{d}x$$

Finally, from the previous results, we obtain

$$\forall \varphi \in W_0^{1,r}(\Omega) : \int_{\Omega} a(\cdot, u, \nabla u) \nabla \varphi + a_0(\cdot, u, \nabla u) \varphi \, dx = \langle f, \varphi \rangle,$$

and we are almost done. It only remains to show the traces are correct, bt since $u^n \rightharpoonup u$ in $W^{1,r}(\Omega)$ and from the continuity of the traces, we obtain

$$\operatorname{tr} u = \operatorname{tr} u_0$$

Uniqueness: Let u_1, u_2 be two solutions. Use strict monotonicity, subtract the weak formulation and test with $u_2 - u_1$:

$$\int_{\Omega} \underbrace{\left(a(\cdot, u_2, \nabla u_2) - a(\cdot, u_1, \nabla u_1)\right) \cdot \nabla(u_2 - u_1) + \left(a_0(\cdot, u_2, \nabla u_2) - a_0(\cdot, u_1, \nabla u_1)\right) (u_2 - u_1)}_{:=T} dx = 0,$$

where $T \ge 0$, so from strict monotonicity we obtain T = 0 a.e. in Ω but that means $u_1(x) = u_2(x) \land \nabla u_1(x) = \nabla u_2(x)$, a.e. in $\Omega \Rightarrow u_1 = u_2$ in $W^{1,r}(\Omega)$.

Example (Nonlinearities vs weak convergence). Let $g_n(x) = \sin(nx)$, then $g \to 0$ in $L_2((0,4))$ (Riemann-Lebesgue lemma). However,

$$\int_0^4 \sin^2(nx)\varphi \, \mathrm{d}x \ge \int_2^4 \sin^2(nx) \, \mathrm{d}x \to \frac{1}{2} \ne 0, \forall \varphi \in \mathrm{L}_2((0,4)),$$

so $\{u_n^2\} = \{\sin^2(nx)\}$ does not converge weakly to $0 = 0^2$.

Remark. The method of the presented proof is very important.

Theorem 17. Let $\Omega \in C^{0,1}$. Let $X = W_0^{1,r}(\Omega)$, $r \in (1, \infty)$ with equivalent norm $|||u||| = ||\nabla u|||_{W_0^{1,r}(\Omega)}$. Then

$$\forall \in X^* \exists \mathbf{F} \in L_{r'}(\Omega) \ s.t. : \forall \varphi \in W_0^{1,r}(\Omega) : \Phi(\varphi) = \int_{\Omega} \mathbf{F} \cdot \nabla \varphi \, \mathrm{d}x, \|\Phi\|_{X^*} = \|\mathbf{F}\|_{L_{r'}(\Omega)}.$$

Proof. We solve the problem

$$\begin{cases} -\nabla \cdot (|\nabla u|^{r-2} \nabla u) = \Phi, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega \end{cases}$$
 (2)

Such $u \in W_0^{1,r}(\Omega)$ exists and is unique by the above theorem. In this case: $a(x,z,p) = |p|^{r-2}p$, $a_0() = 0$. Coercivity is clear, monotonicity will be shown in the tutorials¹⁰. Write the weak formulation of the above problem:

$$\forall \varphi \in \mathrm{W}^{1,r}_0(\Omega): \int_{\Omega} |\nabla u|^{r-2} \nabla u \cdot \nabla \varphi \, \mathrm{d}x = \Phi(\varphi).$$

Set $\mathbf{F} = |\nabla u|^{r-2} \nabla u$, and test the weak formulation with u itself:

$$\|\nabla u\|_{\mathbf{L}_r(\Omega)}^r = \Phi(u) \le \|\Phi\|_{X^*} \|\nabla u\|_{\mathbf{L}_r(\Omega)}.$$

If now $\|\nabla u\|_{\mathrm{L}_{r}(\Omega)}=0$, then $\Phi=0$ and we are finished, if it is nonzero, then

$$\|\nabla u\|_{\mathcal{L}_r(\Omega)}^{r-1} \le \|\Phi\|_{X^*}.$$

Realize now

$$\left\|\nabla u\right\|_{\mathrm{L}_{r}(\Omega)}^{r-1}=\left\|\left|\nabla u\right|^{r-1}\right\|_{\mathrm{L}_{\frac{r}{r-1}}(\Omega)}=\left\|\mathbf{F}\right\|_{\mathrm{L}_{r'}(\Omega)}\Rightarrow\left\|\mathbf{F}\right\|_{\mathrm{L}_{r'}(\Omega)}\leq\left\|\Phi\right\|_{X^{*}}.$$

On the other hand:

$$\|\Phi\|_{X^*} = \sup_{\mathcal{B}_X(0,1)} |\Phi(\varphi)| = \sup_{\mathcal{B}_X(0,1)} \left| \int_{\Omega} \mathbf{F} \cdot \nabla \varphi \right| dx \le \sup_{\mathcal{B}_X(0,1)} \|\mathbf{F}\|_{\mathcal{L}_{r'}(\Omega)} \|\nabla \varphi\|_{\mathcal{L}_r(\Omega)} = \|\mathbf{F}\|_{\mathcal{L}_{r'}(\Omega)},$$

so
$$\|\Phi\|_{X^*} = \|\mathbf{F}\|_{\mathbf{L}_{d}(\Omega)}$$
.

5 Calculus of variations

Our motivation is the following: search for a point of minimum for a mapping

$$I: X \subset W^{1,r}(\Omega) \to \mathbb{R}, u \mapsto \int_{\Omega} F(\cdot, u, \nabla u) dx,$$

with the basic assumptions $\Omega \in C^{0,1}$, $r \in (1, \infty)$, $X = u_0 + W_0^{1,r}(\Omega)$, $u_0 \in W^{1,r}(\Omega)$, $F : \Omega \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ Caratheodory. Moreover,

$$\exists C_1 > 0, c_2 \in L_1(\Omega)$$
, a.e. $x \in \Omega, \forall z \in \mathbb{R}, \forall p \in \mathbb{R}^d : F(x, z, p) \ge C_1 |p|^r - c_2(x)$.

Remark. From the assumptions it follows $\int_{\Omega} F(\cdot, u, \nabla u) dx$ is defined $\forall u \in W^{1,r}(\Omega)$.

Hold on, we are interested in PDE's. Why should we care about calculus of variations...?

Lemma 10. Let $\Omega \in C^{0,1}$, $r \in (1, \infty)$, $X = u_0 + W_0^{1,r}(\Omega)$, $u_0 \in W^{1,r}(\Omega)$, F Caratheodory. Moreover, let the following condition hold

$$\exists C > 0, h \in L_1(\Omega) : \forall \ a.ax \in \Omega, \forall z \in \mathbb{R}, \forall p \in \mathbb{R}^d : |\nabla_p F(x,z,p)| + |\partial_z F(x,z,p)| \leq C(|z|^r + |p|^r) + |h(x)|, F(x,\cdot,\cdot) \in C^1(\mathbb{R}^{d+1}).$$

Let now $u \in u_0 + W_0^{1,r}(\Omega)$ be a local minimizer of I over X, i.e.,

$$\exists \rho > 0: \forall v \in \mathcal{D}(\Omega), \|v\|_{W^{1,r}(\Omega)} < \rho: \int_{\Omega} F(\cdot, u, \nabla u) \, \mathrm{d}x \leq \int_{\Omega} F(\cdot, u + v, \nabla(u + v)) \, \mathrm{d}x, F(\cdot, u, \nabla u) \in L_1(\Omega).$$

 $^{^{10}}$ This was a lie

Then u is the weak solution to the **Euler-Lagrange equations**:

$$\begin{cases} -\nabla \cdot (\nabla_p F(\cdot, u, \nabla u) + \partial_z F(\cdot, u, \nabla u)) = 0, & in \Omega \\ u = u_0, & on \partial \Omega \end{cases}$$

i.e.,

$$\forall \varphi \in \mathcal{D}(\Omega): \int_{\Omega} \nabla_p F(\cdot, u, \nabla u) \cdot \nabla \varphi + \partial_z F(\cdot, u, \nabla u) \varphi \, \mathrm{d}x = 0, \text{tr} \, u = \text{tr} \, u_0 \, on \, \partial \Omega.$$

Proof. First $\operatorname{tr} u = \operatorname{tr} u_0$ holds, so we are fine. Now fix $\varphi \in \mathcal{D}(\Omega)$ and define

$$\iota: \mathbb{R} \to \mathbb{R}^*, \iota(\tau) = \int_{\Omega} \underbrace{F(\cdot, u + \tau\varphi, \nabla(u + \tau\varphi))}_{:=\iota(\tau, \cdot)} dx.$$

Now ι has a local minimum in 0. We show that $\iota'(0)$ exists and is equal to the of Euler-Lagrange equations.

- $l(\tau, \cdot)$ is measurable for τ from some neighbourhood of 0.
- $l(\tau, \cdot)$ is differentiable

Moreover

$$\partial_{\tau}l(\tau, \cdot) = \partial_{z}F(\cdot, u + \tau\varphi, \nabla(u + \tau\varphi))\varphi + \nabla_{p}F(\cdot, u + \tau\varphi, \nabla(u + \tau\varphi)) \cdot \nabla\varphi =$$

$$= \partial_{z}F(\cdot, u + \tau\varphi, \nabla(u + \tau\varphi))\varphi + \nabla_{p}F(\cdot, u + \tau\varphi, \nabla(u + \tau\varphi)) \cdot \nabla\varphi.$$

Also

$$i(0) = \int_{\Omega} F(\cdot, u, \nabla u) \, \mathrm{d}x < \infty$$

and

$$|\partial_{\tau}l(\tau,\cdot)| \leq (C(|u|^r + |\varphi|^r + |\nabla u|^r + |\nabla \varphi|^r) + |h(x)|)(|\varphi| + |\nabla \varphi|) \in L_1(\Omega).$$

Altogether, $\iota(\tau)$ is finite on $(-1,1), \iota'(\tau)$ exists and

$$\iota'(0) = \int_{\Omega} \partial_z F(\cdot, u, \nabla u) \varphi + \nabla_p F(\cdot, u, \nabla u) \cdot \nabla \varphi \, \mathrm{d}x.$$

Example. Let

 $F(x,z,p) = \frac{1}{r}(1) + |p|^2)^{\frac{r}{2}} - gz - Gp,$

then

$$-\nabla_p F(x,z,p) = \left(\frac{r}{2} \frac{1}{r} 2(1+|p|^2)^{\frac{r-2}{2}}\right) p - G = \left(1+|p|^2\right)^{\frac{r-2}{2}} p - G, \partial_z F(x,z,p) = -g.$$

We have

$$|\left(1+|p|^{2\frac{r-2}{2}}\right)p| \leq \left(1+|p|^{2}\right)^{\frac{r-2}{2}}\left(1+|p|^{2}\right)^{\frac{1}{2}} = \left(1+|p|^{2}\right)^{\frac{r-1}{2}} \leq C(1+|p|^{r}).$$

So the estimates are met (somehow with some fantasy). The Euler-Lagrange equations are

$$\begin{cases} -\nabla \cdot \left(\left(1 + |\nabla u|^2 \right)^{\frac{r-2}{2}} \nabla u \right) = -\nabla \cdot G + g, & \text{in } \Omega \\ u = u_0, & \text{on } \partial \Omega. \end{cases},$$

whereas their weak form:

$$\forall \varphi \in \mathcal{D}(\Omega) : \int_{\Omega} \left(1 + |\nabla u|^2 \right)^{\frac{r-2}{2}} \nabla u \cdot \nabla \varphi \, \mathrm{d}x = \int_{\Omega} \left(G \cdot \nabla \varphi + g \varphi \right) \, \mathrm{d}x.$$

Remark. We have $\{u_n\} \subset X$ s.t. $\lim_{n\to\infty} I(u_n) = \inf_X I$. Then use

- compactness: $u_n \to u$ in some sonse (weak convergence)
- weak lower semicontinuity $I(u) \leq \liminf_{n \to \infty} I(u_n)$

Lemma 11. Let $F: \mathbb{R}^N \to \mathbb{R}, F \in C^1(\mathbb{R}^N), N \in \mathbb{N}$. Then

- 1. F is (strictly) convex $\Leftrightarrow \nabla F$ is (strictly) monotone
- 2. If F is (strictly) convex, then

$$\forall \xi_1, \xi_2 \in \mathbb{R}^N, \xi_1 \neq \xi_2 : F(\xi_1) - F(\xi_2) \ge \nabla F(\xi_2) \cdot (\xi_1 - \xi_2).$$

Proof. Fix $\xi_1, \xi_2, \xi_1 \neq \xi_2$, define $\varphi(t) = F(\xi_2 + t(\xi_1 - \xi_2))$. Then $\varphi \in C^1(\mathbb{R})$ and

$$\varphi'(t) = \nabla F(\xi_2 + t(\xi_1 - \xi_2)) \cdot (\xi_1 - \xi_2).$$

So

"
$$\Rightarrow$$
 " : $(\nabla F(\xi_1) - \nabla F(\xi_2)) \cdot (\xi_1 - \xi_2) = \varphi'(1) - \varphi'(0)$ \geq φ convex or strictly convex

And " \Leftarrow ": Fix $t_1 > t_2$ and compute

$$\varphi'(t_1) - \varphi'(t_2) = (\nabla F(\xi_2 + t_1(\xi_1 - \xi_2)) - \nabla F(\xi_2 + t_2(\xi_1 - \xi_2))) \cdot (\xi_1 - \xi_2)(t_1 - t_2),$$

define

$$\eta_1 - \eta_2 = (\xi_1 - \xi_2)(t_1 - t_2)$$

and we obtain

$$\varphi'(t_1) - \varphi'(t_2) = (\nabla F(\eta_1) - \nabla F(\eta_2)) \cdot (\eta_1 - \eta_2)$$

and we are in the same situation as before. For 2) we already know F (strictly) convex $\Rightarrow \varphi$ (strictly) convex

$$\Rightarrow \forall t \in (0, \frac{1}{2}) : \frac{\varphi(1) - \varphi(0)}{1} \ge \frac{\varphi(t) - \varphi(0)}{t} \to \varphi'(0),$$

as $t \to 0_+$. And so

$$F(\xi_1) - F(\xi_2) \ge \nabla F(\xi_2) \cdot (\xi_1 - \xi_2).$$

Theorem 18. Let $M, N \in \mathbb{N}, \Omega$ open, $F : \Omega \times \mathbb{R}^{N+M} \to \mathbb{R}$ Caratheodory, F convex in $p \in \mathbb{R}^n$, i.e. \forall a.e. $x \in \Omega$, $\forall z \in \mathbb{R}^M : F(x, z, \cdot)$ is convex and $\exists c_2 \in L_1(\Omega), \forall$ a.e. $x \in \Omega, \forall z \in \mathbb{R}^M, \forall p \in \mathbb{R}^N : F(x, z, p) \ge c_2(x)$. Let $u_n \to u$ in $L_1(\Omega), U_n \to U$ in $L_1(\Omega)$. Then

$$\int_{\Omega} F(\cdot, u, U) \, \mathrm{d}x \le \liminf_{n \to \infty} \int_{\Omega} F(\cdot, u_n, U_n) \, \mathrm{d}x.$$

Proof. The proof will be given only if moreover $\forall a.e. x \in \Omega, \forall z \in \mathbb{R}^M : F(x, z, \cdot) \in C^1(\mathbb{R}^N)$. Idea: by the previous lemma:

$$\int_{\Omega} F(\cdot, u_n, U_n) dx \ge \int_{\Omega} \left(F(\cdot, u_n, U) + \nabla_p F(\cdot, u_n, U) \cdot (U_n - U) \right) dx,$$

and we have uniform convergence in the first term and second term and weak convergence in $L_1(\Omega)$ in the last term. If Ω is bounded, we can find $K_k \subset K_{k+1} \subset \Omega$ s.t. $\lambda(\Omega \cup_{k \in \mathbb{N}} K_k) = 0$, and moreover $\forall k \in \mathbb{N} : K_k \subset \overline{K_k} \subset \Omega$, $\overline{K_k}$ are compact, $u_n \to u$ on K_k , $\|u\|_{L_{\infty}(K_k)} + \|U\|_{L_{\infty}(K_k)} \le k$ up to a subsequence. We can now extract a subsequence $u_n \to u$ a.e. and apply the Egorov theorem

$$\forall k \in \mathbb{N}, \exists \tilde{E_k} \ s.t. \ u_n \to u \ \text{on} \ \tilde{E_k} \land \lambda \left(\Omega \ \tilde{E_k}\right) < \frac{1}{k}.$$

Now define

$$\hat{E_k} = \bigcup_{j=1}^k \tilde{E_j}, E_k = \hat{E_k} \cap \{x \in \Omega, \text{dist}(x, \partial\Omega) > \frac{1}{k}\},\$$

and E_k satisfy ¹¹

$$\lambda \bigg(\Omega \bigcup_{k} E_{k} \bigg) = 0.$$

Finally, set

$$F_k = \{x \in \Omega, |u(x)| \le k \land |U(x)| \le k\}$$

and we also have $\lambda(\Omega \cup_k F_k) = 0$. FINALLY, set

$$K_k = E_k \cap F_k \Rightarrow \lambda \left(\Omega \bigcup_k K_k \right) = 0.$$

Remark. • if $U_n \to U$ strongly $\Rightarrow u_n \to u, U_n \to U$ a.e. (up to a subsequence) and the claim follows from the Fatou lemma. 12

• norm is weakly lower semicontinuous:

$$\nabla u_n \rightharpoonup \nabla u \operatorname{in} \mathcal{L}_{\mathbf{p}}(\Omega) \Rightarrow \int_{\Omega} |\nabla u|^p \, \mathrm{d}x \leq \liminf_{n \to \infty} \int_{\Omega} |\nabla u_n|^p \, \mathrm{d}x.$$

Lemma 12 (Arzela-Ascoli). Let X, Y be Banach spaces, $X \subset Y$. Then

$$C^1([0,T];X) \subset C([0,T];Y).$$

Lemma 13 (Ehrling). Let V_1, V_2, V_3 be Banach spaces s.t. $V_1 \subset V_2 \subset V_3$. Then

$$\forall \varepsilon>0 \exists C>0: \forall u \in V_1: \|u\|_{V_2} \leq \varepsilon \|u\|_{V_1} + C\|u\|_{V_3}.$$

¹¹"This is homework", says doc. Kaplicky

¹² For Fatou, we need nonnegativity of the integrand, but that can be met from the assumptions $F - c_2 \ge 0, F - c_2 \in L_1(\Omega)$

Proof. By contradicition, assume

$$\exists \varepsilon > 0 \ s.t. \ \forall n \in N \\ \exists u_n \in V_1 : \|u_n\|_{V_2} > \varepsilon \|u_n\|_{V_1} + n \|u_n\|_{V_2}.$$

WLOG we can assume $\{u_n\} \subset S_{V_2}(0,1)$: truly, the inequality is 1-homogenous and holds if $u_n = 0$. In particular we see $\|u_n\|_{V_3} < \frac{1}{n}$, so $u_n \to 0$ in V_3 . Moreover, $\{u_n\}$ is bounded in V_1 and since $V_1 \subset V_2$ there exists $\{u_{n_k}\} \subset \{u_n\}$ s.t.: $u_{n_k} \to u$ in V_2 strongly. Since $\{u_n\} \subset S_{V_2}(0,1)$, also $\|u\|_{V_2} = 1$. Finally, taking the limit passage yields $0 \ge \|u\|_{V_3}$ and so u = 0 in V_3 and also in V_2 . But that is a contradiction with the fact $\{u_n\} \subset S_{V_2}(0,1)$.

Theorem 19 (Aubin-Lions). Let V_1, V_2, V_3 be Banach spaces s.t. $V_1 \subset V_2 \subset V_3, p \in [1, \infty)$. Then the space

$$\mathcal{U} = \{ u \in L_p((0,T); V_1), \partial_t u \in L_1((0,T); V_3) \},$$

with the norm

$$|||u||| = ||u||_{L_p((0,T);V_1)} + ||\partial_t u||_{L_1((0,T);V_3)},$$

satisfies

$$\mathcal{U} \subset L_p((0,T);V_2).$$

Proof. Strategy: I want to fix $M \subset \mathcal{U}$ bounded and show that it is precompact in $L_p((0,T); V_2)$. That will be done in the following way:

- 1. Mollify M by convolution
- 2. use Arzela-Ascoli
- 3. show compactness in $L_p((0,T); V_3)$
- 4. apply Ehrling lemma and show compactness in $L_p((0,T); V_2)$.

Fix $M \subset \mathcal{U}$ bounded. Then $\exists C^* > 0 : \forall u \in M : |||u||| \ge C^*$. Next, take

$$\varphi : \mathbb{R} \to [0, \infty), \varphi \in C^{\infty}(\mathbb{R}), \operatorname{supp} \varphi \subset (-1, 0), \int_{\mathbb{R}} \varphi \, \mathrm{d}x = 1,$$

a regularization kernel, then $\forall \delta > 0$ define $\varphi_{\delta}(t) := \frac{1}{\delta} \varphi(\frac{t}{\delta})$.

Now, extend functions from M to (0,2T) in the following way:

$$\forall u \in M : \tilde{u}(t) \coloneqq \begin{cases} u(t), & t \in (0,T) \\ u(2T-t), & t \in (T,2T) \end{cases}.$$

Now mollify: for $\delta > 0, \delta < T$ fixed define

$$M_{\delta} = \{ (\tilde{u} \star \varphi_{\delta}) \bigg|_{(0,T)} | u \in M \}.$$

From the properties of regularization it follows $M_{\delta} \subset C^1([0,T];V_1) \subset C([0,T];V_2) \subset L_p((0,T);V_2)$.

Now estimate the distance of M and M_{δ} in $L_p((0,T); V_3)$: for

$$u \in M, t \in (0,T): \tilde{u}(t) - \tilde{u}_{\delta}(t) = \tilde{u}(t) - \int_{-\delta}^{0} \tilde{u}(t-s)\varphi_{\delta}(s) \, \mathrm{d}s = \int_{-\delta}^{0} (\tilde{u}(t) - \tilde{u}(t-s))\varphi_{\delta}(s) \, \mathrm{d}s = \int_{-\delta}^{0} (\tilde{u}(t) - \tilde{u}(t-s)) \frac{\mathrm{d}}{\mathrm{d}s} \int_{-\delta}^{s-\delta} \mathrm{d}s \, \mathrm{d}s$$
and this is equal to

$$(\tilde{u}(t) - \tilde{u}(t-s)) \int_{-\delta}^{s} \varphi_{\delta}(\sigma) d\sigma \Big|_{s=-\delta}^{0} - \int_{-\delta}^{0} \frac{d}{ds} (\tilde{u}(t) - \tilde{u}(t-s)) \int_{-\delta}^{s} \varphi_{\delta}(\sigma) d\sigma ds,$$

since the first bracket is 0 and by denoting the first term in the second integrand by $\tilde{u}'(t-s)$ this becomes (using Fubini)

$$= -\int_{-\delta}^{0} \int_{\sigma}^{0} \tilde{u}'(t-s) \,\mathrm{d}s \,\varphi_{\sigma}(\sigma) \,\mathrm{d}\sigma,$$

and we see

$$\|\tilde{u}(t) - \tilde{u}_{\delta}(t)\|_{V_3} \le \int_{-\delta}^0 \int_{\sigma}^0 \|\tilde{u}'(t-s)\|_{V_2} ds \, \varphi_{\sigma}(\sigma) d\sigma.$$

 $L_1((0,T);V_3)$ estimate:

$$\int_{0}^{T} \|u(t) - u_{\delta}(t)\|_{V_{3}} dt \leq \int_{0}^{T} \int_{-\delta}^{0} \int_{\sigma}^{0} \|u'(\tilde{t} - s)\|_{V_{3}} ds \,\varphi_{\delta}(\sigma) d\sigma dt \leq 2\delta \|u'\|_{L_{1}((0,T);V_{3})} \leq 2\delta C^{*}$$

 $L_{\infty}((0,T);V_3)$ estimate:

$$||u - u_{\delta}||_{\mathcal{L}_{\infty}((O,T);V_3)} \le 2||u'||_{\mathcal{L}_{1}((0,T);V_3)} \le 2C^*$$

It remains to show $M_{\delta} \subset L_p((0,T); V_2)$:

$$\|u - u_{\delta}\|_{\mathrm{L}_{\mathrm{p}}((0,T);V_{3})} \leq \|u - u_{\delta}\|_{\mathrm{L}_{1}((0,T);V_{3})}^{1/p} \|u - u_{\delta}\|_{\mathrm{L}_{\infty}((0,T);V_{3})}^{1-1/p} \leq 2C^{*}\delta^{1/p}.$$

Finally, from Ehrling we have

$$\forall \mu > 0 \exists C_{\mu} > 0 : \forall u \in \mathcal{U} : \|u - u_{\delta}\|_{\mathbf{L}_{\mathbf{p}}((0,T);V_{2})} \leq \mu \|u - u_{\delta}\|_{\mathbf{L}_{\mathbf{p}}((0,T);V_{1})} + C_{\mu} \|u - u_{\delta}\|_{\mathbf{L}_{\mathbf{p}}((0,T);V_{3})}.$$

This means

$$\forall u \in M : ||u - u_{\delta}||_{L_{\mathbf{p}}((0,T);V_2)} \le C^* + C\mu 2C^* \delta^{1/p}.$$

Now fix $\varepsilon > 0$ and find

$$\mu > 0: \mu C^* < \frac{\varepsilon}{2}, \delta > 0, C_{\mu} 2C^* \delta^{1/p} < \frac{\varepsilon}{2} \Rightarrow \forall u \in M: \|u - u_{\delta}\|_{\mathcal{L}_{p}((0,T);V_2)} < \varepsilon.$$

This means $\exists \{w_k\}_{k=1}^N \subset M : \{(w_k)_{\delta}\}_{k=1}^n \text{ is } \varepsilon\text{-net in } M \text{ in } L_p((0,T); V_2).$ If we now fix $u \in M$, then

$$\exists K \in \{1,\ldots,N\}: \left\|u_{\delta-(w_K)_\delta}\right\|_{\mathrm{L_p}((0,T);V_2)} < \varepsilon.$$

Remark. The pair $(\mathcal{U}, |||\cdot|||)$ is a Banach space.

We will be dealing with the following problem:

$$\begin{cases} \partial_t u - \nabla \cdot a(\cdot, u, \nabla u) + a_0(\cdot, u, \nabla u) = f & \text{in } (0, T) \times \Omega, \\ u = u_0, & \text{on } \{0\} \times \Omega, \\ u = 0, & \text{on } (0, T) \times \partial \Omega \end{cases}$$

The unknown is the function $u:(0,T)\times\Omega\to\mathbb{R}$, and we are given $\Omega\in C^{0,1},T>0, Q_T=(0,T)\times\Omega,f:Q\to\mathbb{R}$ or $f:(0,T)\to X$ a Banach space, $u_0:\Omega\to\mathbb{R}$, $a:\Omega\times\mathbb{R}^d\to\mathbb{R}^d$, $a_0:\Omega\times\mathbb{R}\times\mathbb{R}^d\to\mathbb{R}$ are Caratheodory (the last 2). Moreover, the functions satisfy the following growth conditions: $\exists r>1,\exists C>0:\ a.e.x\in\Omega,\forall(z,p)\in\mathbb{R}^{d+1}:|a_0(x,z,p)|+|a(x,z,p)|\leq C(1+|z|^{r-1}+|p|^{r-1})$ and $\exists C_1,C_2>0,q\in(1,\max(2,r))$ $a.e.x\in\Omega,\forall(z,p)\in\mathbb{R}^{d+1}:a(x,z,p)p+a_0(\ldots)z\geq C_1|p|^r-C_2(1+|z|q)$.

Theorem 20. Let $\Omega \in C^{0,1}$, a, a_0 satisfy growth conditions and coercivity, let $\{a_i\}_{i=0}^d$ be monotone. $Denote\ V = W_0^{1,r}(\Omega) \cap L_2(\Omega)$. Then $\forall f \in L_{r'}((0,T);V^*), u_0 \in L_2(\Omega) \ \exists u \in L_r((0,T);V) \ s.t. \ \partial_t u \in L_{r'}((0,T);V^*), u \in C([0,T];L_2(\Omega)), u(0) = u_0 \ and \ moreover$

$$a.e.\ t \in (0,T), \forall \varphi \in V :< \partial_t u, \varphi > + \int_{\Omega} a(\cdot,u,\nabla u) \nabla \varphi + a_0(\cdot,u,\nabla u) \varphi \, \mathrm{d}x = < f, \varphi > .$$

Finally, the solution is unique.

Proof. The strategy is the following

- 1. approximate: either using Galerkin or using the Rothe method
- 2. a-priori estimates
- 3. convergences
- 4. limit passage
- 5. identification of the limits

Rothe method: Fix $h \in \{\frac{T}{n}, n \in \mathbb{N}\}$ and approximate the derivative with

$$\partial_t u(t,x) \approx \frac{1}{h} (u(t,x) - u(t-h,x)).$$

Define $u_0 = u_0, u_{k+1} \in V$ as a solution of

$$\frac{1}{h}(u_{k+1} - u_k) - \nabla \cdot a(\cdot, u_{k+1}, \nabla u_{k+1}) + a_0(\cdot, u_{k+1}, \nabla u_{k+1}) = f_{k+1} \text{ in } \Omega, u_{k+1} = 0 \text{ on } \partial \Omega.$$

Define

$$f_{k+1} \coloneqq \int_{kh}^{(k+1)h} f \, \mathrm{d}t,$$

then the weak formulation becomes

$$\int_{\Omega} \frac{u_{k+1} - u_k}{h} \varphi + a(\cdot, u_{k+1}, \nabla u_{k+1}) \cdot \nabla \varphi a_0(\cdot, u_{k+1}, \nabla u_{k+1}) \varphi \, \mathrm{d}x = \langle f_{k+1}, \varphi \rangle.$$

We claim without a proof that the solutions $\{u_k\}_{k=0}^n \subset V$ exist. To obtain a-priori estimates, tes the equation with u_{k+1} . This yields:

$$\int_{\Omega} |u_{k+1}|^2 - u_k u_{k+1} \, \mathrm{d}x = \int_{\Omega} \frac{1}{2} |u_{k+1}|^2 + \frac{1}{2} (u_{k+1} - u_k) - \frac{|u_k|^2}{2} \, \mathrm{d}x \Rightarrow \sum_{k=0}^{j-1} \int_{\Omega} |u_{k+1}|^2 - u_{k+1} u_k \, \mathrm{d}x = \frac{1}{2} \|u_j\|_{\mathrm{L}_2(\Omega)}^2 - \frac{1}{2} \|u_0\|_{\mathrm{L}_2(\Omega)}^2 + \sum_{k=0}^{j-1} (u_{k+1} - u_k) - \frac{|u_k|^2}{2} \, \mathrm{d}x = \sum_{k=0}^{j-1} \int_{\Omega} |u_{k+1}|^2 - u_{k+1} u_k \, \mathrm{d}x = \frac{1}{2} \|u_j\|_{\mathrm{L}_2(\Omega)}^2 - \frac{1}{2} \|u_0\|_{\mathrm{L}_2(\Omega)}^2 + \sum_{k=0}^{j-1} (u_{k+1} - u_k) - \frac{|u_k|^2}{2} \, \mathrm{d}x = \sum_{k=0}^{j-1} \int_{\Omega} |u_{k+1}|^2 - u_{k+1} u_k \, \mathrm{d}x = \frac{1}{2} \|u_j\|_{\mathrm{L}_2(\Omega)}^2 - \frac{1}{2} \|u_0\|_{\mathrm{L}_2(\Omega)}^2 + \sum_{k=0}^{j-1} (u_{k+1} - u_k) - \frac{|u_k|^2}{2} \, \mathrm{d}x = \sum_{k=0}^{j-1} \int_{\Omega} |u_{k+1}|^2 - u_{k+1} u_k \, \mathrm{d}x = \frac{1}{2} \|u_j\|_{\mathrm{L}_2(\Omega)}^2 + \sum_{k=0}^{j-1} (u_{k+1} - u_k) - \frac{|u_k|^2}{2} \, \mathrm{d}x = \sum_{k=0}^{j-1} \int_{\Omega} |u_{k+1}|^2 - u_{k+1} u_k \, \mathrm{d}x = \frac{1}{2} \|u_j\|_{\mathrm{L}_2(\Omega)}^2 + \sum_{k=0}^{j-1} (u_{k+1} - u_k) - \frac{|u_k|^2}{2} \, \mathrm{d}x = \sum_{k=0}^{j-1} \int_{\Omega} |u_{k+1}|^2 - u_{k+1} u_k \, \mathrm{d}x = \frac{1}{2} \|u_j\|_{\mathrm{L}_2(\Omega)}^2 + \sum_{k=0}^{j-1} (u_k - u_k) - \frac{|u_k|^2}{2} \, \mathrm{d}x = \frac{1}{2} \|u_j\|_{\mathrm{L}_2(\Omega)}^2 + \sum_{k=0}^{j-1} (u_k - u_k) - \frac{|u_k|^2}{2} \, \mathrm{d}x = \frac{1}{2} \|u_j\|_{\mathrm{L}_2(\Omega)}^2 + \sum_{k=0}^{j-1} (u_k - u_k) - \frac{|u_k|^2}{2} \, \mathrm{d}x = \frac{1}{2} \|u_j\|_{\mathrm{L}_2(\Omega)}^2 + \sum_{k=0}^{j-1} (u_k - u_k) - \frac{|u_k|^2}{2} \, \mathrm{d}x = \frac{1}{2} \|u_j\|_{\mathrm{L}_2(\Omega)}^2 + \sum_{k=0}^{j-1} (u_k - u_k) - \frac{|u_k|^2}{2} \, \mathrm{d}x = \frac{1}{2} \|u_j\|_{\mathrm{L}_2(\Omega)}^2 + \sum_{k=0}^{j-1} (u_k - u_k) - \frac{|u_k|^2}{2} \, \mathrm{d}x = \frac{1}{2} \|u_j\|_{\mathrm{L}_2(\Omega)}^2 + \sum_{k=0}^{j-1} (u_k - u_k) - \frac{|u_k|^2}{2} \, \mathrm{d}x = \frac{1}{2} \|u_j\|_{\mathrm{L}_2(\Omega)}^2 + \frac{1}{2} \|u_j\|_$$

$$\int_{\Omega} a(\dots) \nabla \cdot u_{k+1} + a_0(\dots) u_{k+1} \, \mathrm{d}x \ge C_1 \int_{\Omega} |\nabla u_{k+1}|^r \, \mathrm{d}x - C_2 \int_{\Omega} (1 + |u_{k+1}|^q) \, \mathrm{d}x,$$

$$< f_{k+1}, u_{k+1} > \le \|f_{k+1}\|_{V^*} \Big(\|u_{k+1}\|_{\mathbf{W}_0^{1,r}(\Omega)} + \|u_{k+1}\|_{\mathbf{L}_2(\Omega)} \Big) \le \varepsilon \Big(\|u_{k+1}\|_{\mathbf{W}_0^{1,r}(\Omega)}^r + \|u_{k+1}\|_{\mathbf{L}_2(\Omega)}^2 \Big) + C \Big(\|f_{k+1}\|_{V^*}^{r'} + \|f_{k+1}\|_{V^*}^2 \Big).$$

So together
$$\|u_j\|_{\mathrm{L}_2(\Omega)}^2 + \sum_{k=0}^{j-1} \left[(u_{k+1} - u_k)^2 + h \|u_{k+1}\|_{\mathrm{W}_0^{1,r}(\Omega)}^r \right] \le C \left(\|u_0\|_{\mathrm{L}_2(\Omega)}^2 + \sum_{k=0}^{j-1} h \|u_{k+1}\|_{\mathrm{L}_2(\Omega)}^2 + \sum_{k=0}^{j-1} h \left(\|f\|_{V^*}^{r'} \|f\|_{V^*}^2 \right) \right)$$

Let us now define $u^n(t) = u_k$ for $t \in (h(k-1), hk)$, then

$$\|u^n\|_{\mathcal{L}_{\infty}((O,T);\mathcal{L}_{2}(\Omega))}^{2} + \|u^n\|_{\mathcal{L}_{2}((O,T);\mathcal{W}_{0}^{1,r}(Omega))}^{2} < C(\operatorname{data}).$$

Now set $\tilde{u}^n(t) = u_{k-1} + \frac{t - t_{k-1}}{h}(u_k - u_{k-1})$ for $t \in (t_{k-1}, t_k)$ and

$$k \in \{1, \ldots, n\}.$$

It holds

$$\partial_t \tilde{u}^n(t) = \frac{u_k - u_{k-1}}{h}, t \in (t_{k-1}, t_k).$$

Using these quantities, we rewrite the quation to the form

$$\int_{\Omega} \partial_t \tilde{u}^n \varphi + a(\cdot, u^n, \nabla u^n) \cdot \nabla \varphi + a_0(\cdot, u^n, \nabla u^n) \varphi \, \mathrm{d}x = \langle f^n, \varphi \rangle,$$

where $f^n(t) := f_k$ in in

$$(t_{k-1},t_k), k \in \{1,\ldots,\}.$$

We are now ready to use growth and apriori estimates:

$$||a(\cdot,u^n,\nabla u^n)||_{\mathcal{L}_{r'}(Q_T)} + ||a_0(\cdot,u^n,\nabla u^n)||_{\mathcal{L}_{r'}(Q_T)} \le C(\operatorname{data}).$$

For the norm of the time derivative:

$$\sup_{\varphi \in \mathcal{S}_{\mathcal{V}}(0,1)} <\partial_t \tilde{u}^n(t), \varphi > = \sup_{\varphi \in \mathcal{S}_{\mathcal{V}}(0,1)} < f^n, \varphi > -\int_{\Omega} \left(a(\boldsymbol{\cdot}, u^n, \nabla u^n) \boldsymbol{\cdot} \nabla f + a_0(\boldsymbol{\cdot}, u^n, \nabla u^n) \varphi\right) \mathrm{d}x\,,$$

at any $t \in (0,T)$. So using Holder:

$$\|\partial_t \tilde{u}^n(t)\|_{V^*} \le \|f^n\|_{V^*} + \|a(\cdot, u^n, \nabla u^n)\|_{\mathbf{L}_{r}(\Omega)}(t) + \|a_0(\cdot, u^n, \nabla u^n)\|_{\mathbf{L}_{r}(\Omega)},$$

and integrating

$$\int_{0}^{T} \|\partial_{t}\tilde{u}^{n}(t)\|_{V^{*}}^{r'} dt \leq C \left(\int_{0}^{T} \|f^{n}\|_{V^{*}}^{r'} + \|a(\cdot, u^{n}, \nabla u^{n})\|_{\mathcal{L}_{r'}(\Omega)}(t) + \|a_{0}(\cdot, u^{n}, \nabla u^{n})\|_{\mathcal{L}_{r'}(\Omega)}, dt\right) \leq TC(\operatorname{data})$$

6 Semigroup theory

We consider the equation

$$u' = Au, A$$
 is linear $u(0) = u_0,$

where $u:[0,\infty)\to\mathbb{R}$. We know that for example if $Au=au,a\in\mathbb{R}$ then

$$u(t) = u_0 e^{at}.$$

If $\mathbf{u}:[0,\infty)\to\mathbb{R}^d$, $A\mathbf{u}=\mathbb{A}\mathbf{u}$, $\mathbb{A}\in\mathbb{R}^{d\times d}$, then

$$\mathbf{u}(t) = \exp(t\mathbb{A})\mathbf{u}_0, \exp(t\mathbb{A}) = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbb{A}^k t^k.$$

This can be extended to $u:[0,\infty)\to X,X$ a banach space, $A\in\mathcal{L}(X)$, then

$$u(t) = \exp(tA)u_0,$$

where the operator exponential is the same. This works well for unbounded operators, but suppose now

$$X = L_2(\Omega)$$
, $Au = \Delta u$.

We guess the solution should be

$$u(t) = \exp(\triangle t)u_0$$

but what is

$$\exp(\Delta t)$$
?

Definition 9 (Linear operator and its domain). Let X be a Banach space over \mathbb{K} . Linear operator on X is a couple $(A, \mathcal{D}(A))$, where $\mathcal{D}(A)$ is a subspace of X and $A : \mathcal{D}(A) \to X$ is linear.

Definition 10. A family $\{S(T)\}_{t\geq 0} \subset \mathcal{L}(X)$ is called a semigroup if

- 1. S(0) = id
- 2. $\forall s, t \ge 0 : S(t)S(s) = S(t+s)$.

If moreover $\forall x \in X : S(t)x \to x$, as $t \to 0_+$, we call $\{S(t)\}$ a c_0 - semigroup (strongly continuous).

Remark. $\{s(t)\}_{t\in\mathbb{R}}$ with the two conditions is an Abelian group $(\{S(t)\}_{t\in\mathbb{R}}, \circ)$ with

$$(S(t))^{-1} = S(-t).$$
 (3)

Remark (X = Banach). In the following, X is always a Banach space.

Lemma 14. Let $\{S(t)\}_{t\geq 0}$ be a c_0 -semigroup in X. Then

- 1. $\exists M \ge 1, \omega \in \mathbb{R}, \forall t \ge 0 : ||S(t)||_{\mathcal{L}(X)} \le Me^{\omega t},$
- 2. $\forall x \in X, t \mapsto S(t)x \in C([0, \infty); X)$.

Proof. $1 \Rightarrow 2$. Fix $t > 0, x \in X$ compute

$$\lim_{h \to 0_+} \|S(t+h)x - S(t)x\|_X = \lim_{h \to 0_+} \|S(t)(S(h)x - x)\|_X \le \lim_{h \to 0_+} \|S(t)\|_{\mathcal{L}(X)} \|S(h)x - x\|_X \to 0.$$

now compute $\lim_{h\to 0_+} \|S(t-h)x - S(t)x\|_X = \lim_{h\to 0_+} \|S(t-h)(x-S(h)x)\|_X \le \|S(t-h)\|_{\mathcal{L}(X)} \|x - S(h)x\|_X \to 0.$

Definition 11 (Infinitesimal generator). A linear operator $(A, \mathcal{D}(A))$ is called a infinitesimal generator of the semigroup $\{S(t)\}_{t>0}$, if

$$\forall x \in \mathcal{D}(A) : Ax = \lim_{h \to 0_+} \frac{S(h)x - x}{h},$$

where

$$\mathcal{D}(A) = \left\{ x \in X \middle| \lim_{h \to 0_+} \frac{S(h)x - x}{x} \text{ exists in } X \right\},\,$$

Theorem 21. Let $(A, \mathcal{D}(A))$ be the infinitesimal generator of a c_0 -semigroup $\{S(t)\}_{t\geq 0}$ in X. Then

1.
$$x \in \mathcal{D}(A) \Rightarrow \forall t \geq 0 : S(t)x \in \mathcal{D}(A) \land AS(t)x = S(t)Ax = \frac{d}{dt}(S(t)x),$$

2.
$$x \in X \land t \ge 0 \Rightarrow x_t = \int_0^t S(s)x \, ds \in \mathcal{D}(A) \land A(x_t) = S(t)x - x$$
.

Proof. Fix $x \in \mathcal{D}(A)$, $t \geq 0$. Calculate

$$\lim_{h \to 0_{+}} \frac{S(h)S(t)x - S(t)x}{h} = {}^{13}\lim_{h \to 0_{+}} S(t)\frac{S(h)x - x}{h} = S(t)Ax,$$

(convergence is in the norm of the Banach space X). This means $S(t)x \in \mathcal{D}(A) \wedge AS(t)x = S(t)Ax$, moreover, if t > 0:

$$\lim_{h \to 0_+} \frac{S(t-h)x - S(t)x}{-h} - S(t)Ax = \lim_{h \to 0_+} S(t-h) \left(\frac{x - S(h)x}{-h} - S(h)Ax \right),$$

estimate,

$$\left\| \lim_{h \to 0_+} \frac{S(t-h)x - S(t)x}{-h} - S(t)Ax = \lim_{h \to 0_+} S(t-h) \left(\frac{x - S(h)x}{-h} - S(h)Ax \right) \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(t)x}{-h} - S(t)Ax = \lim_{h \to 0_+} S(t-h) \left(\frac{x - S(h)x}{-h} - S(h)Ax \right) \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(t)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\| \frac{S(t-h)x - S(h)x}{-h} - S(h)Ax \right\| = \lim_{h \to 0_+} \left\|$$

as S(t) is continuous and $S(0) = \mathrm{id}$. Clearly, $t \mapsto S(t)x$ is $C^1([0, \infty))$ and

$$\frac{\mathrm{d}}{\mathrm{d}t}(S(t)x) = S(t)S'(0)x = S(t)Ax.$$

To show the second part, compute

$$\lim_{h \to 0_+} \frac{1}{h} (S(h)x_t - x_t) = \lim_{h \to 0_+} \frac{1}{h} \left(\int_h^{t+h} S(s)x \, \mathrm{d}s - \int_0^t S(s)x \, \mathrm{d}s \right),$$

 $^{^{13}}S(h)S(t) = S(h+t) = S(t+h) = S(t)S(h)$

realize that

$$S(h)x_t = \int_0^t S(s+h)x \, \mathrm{d}s = \int_h^{t+h} S(s)x \, \mathrm{d}s,$$

so the previous computation continues as follows

$$= \lim_{h \to 0_+} \frac{1}{h} \left(\int_t^{t+h} S(s) x \, \mathrm{d}s - \int_0^h S(s) x \, \mathrm{d}s \right) = S(t) x - x \wedge x_t \in \mathcal{D}(A).$$

Definition 12 (Closed operator). We say that a linear operator $(A, \mathcal{D}(A))$ is closed if $\forall \{u_n\} \subset \mathcal{D}(A) : u_n \to u \land Au_n \to v$, for some $u, v \in X$, then it most hold

$$u \in \mathcal{D}(A) \wedge Au = v$$
.

This also means that $\{(x, Ax)|x \in \mathcal{D}(A)\}\subset X\times X$ is closed in $(X\times X, \|\cdot\|_1)$.

Example. Let $\Omega \in C^{1,1}$, $X = L_2(\Omega)$, $\mathcal{D}(A) = W^{2,2}(\Omega) \cap W_0^{1,2}(\Omega)$, $Au = \Delta u$. Then $(A, \mathcal{D}(A))$ is closed. Really, take $\{u_n\} \subset L_2(\Omega) : u_n \to u \text{ in } L_2(\Omega) \text{ for some } u \in L_2(\Omega)$. Suppose $Au_n \to v \text{ in } L_2(\Omega)$, $v \in L_2(\Omega)$. Suppose the following equation: find

$$u_n s.t. - \Delta u_n = Au_n, u_n \text{ on } \partial \Omega.$$

From the regularity theory for elliptic problems, we know that $||u_n||_{W^{2,2}(\Omega)} \leq C||Au_n||_{L_2(\Omega)} \leq C$, so we can extract $u_{n_k} \rightharpoonup u$ in $W^{2,2}(\Omega)$. Realize moreover

$$\int_{\Omega} \Delta u_n \varphi \, \mathrm{d}x = \int_{\Omega} u_n \, \Delta \varphi \, \mathrm{d}x, \forall \varphi \in \mathcal{D}(\Omega),$$

and the limit of this is

$$\int_{\Omega} v\varphi \, \mathrm{d}x = \int_{\Omega} u \, \Delta \, \varphi \, \mathrm{d}x = \int_{\Omega} \Delta \, u\varphi \, \mathrm{d}x \,,$$

which means $\triangle u = v \ a.e. \text{ in } \Omega$ and that $u \in \mathcal{D}(A), Au = v$.

Theorem 22. Let $(A, \mathcal{D}(A))$ be the infinitesimal generator of a c_0 -semigroup $\{S(t)\}_{t>0} \subset X$. Then

- 1. $\mathcal{D}(A)$ is dense in X,
- 2. $(A, \mathcal{D}(A) \text{ is closed.})$

Proof. Ad 1.:

$$\frac{1}{t}x_t = \frac{1}{t} \int_0^t S(s)x \, \mathrm{d}s \underbrace{\in \mathcal{D}(A)}_{\text{prev. thm}}, \frac{x_t}{t} \to x \text{ in } X,$$

Ad 2.: Take $\{x_n\} \subset \mathcal{D}(A): x_n \to x \text{ in } X, Ax \to v \text{ in } X$. Compute¹⁴

$$\frac{(S(h)-\mathrm{id})x_n}{h}=\frac{1}{h}\int_0^h\frac{\mathrm{d}}{\mathrm{d}s}(S(s)x_n)\,\mathrm{d}s=\frac{1}{h}\int_0^hAS(s)x_n\,\mathrm{d}s=\frac{1}{h}\int_0^hS(s)\underbrace{Ax_n},\text{ so taking the limit yields }\frac{(S(h)-\mathrm{id})x_n}{h}=\frac{1}{h}\int_0^hAS(s)x_n\,\mathrm{d}s=\frac{1}{h}\int_0^hS(s)\underbrace{Ax_n}_{s,s},$$

Altogether,
$$x \in \mathcal{D}(A)$$
, $Ax = v$.

 $^{^{14}}$ This "Newton-Leibniz formula" does not hold trivially, but doc. Kaplicky says it does; you have to realize that X is a Banach space and work with some functionals and Bochner integrals or whatever

Lemma 15. Let $(A, \mathcal{D}(A))$ be the infinitesimal generator of c_0 -semigroups $\{S(t)\}_{t\geq 0}, \{\tilde{S}(t)\}_{t\geq 0}$. Then

$$\{S(t)\}_{t\geq 0} = \{\tilde{S}(t)\}_{t>0}.$$

Proof. We want to show

$$\forall x \in X, \forall t \ge 0 : S(t)x = \tilde{S}(t)x.$$

Fix $x \in \mathcal{D}(A), t > 0$. Then $g(s) := S(s)\tilde{S}(t-x)x$ satisfies $g \in C^1([0,t];X), g'(s) = S'(s)\tilde{S}(t-s)x - S(s)\tilde{S}'(t-s)x = AS(s)\tilde{S}(t-s)x - S(s)A\tilde{S}(t-s)x = 0$, as A, S commute. This means g(0) = g(1) and from this it follows $S(t)x = \tilde{S}(t)x, \forall x \in \mathcal{D}(A)$. Since $\overline{\mathcal{D}(A)} = X, S$ continous $\Rightarrow S(t)x = \tilde{S}(t)x \forall x \in X$, and since $t \geq 0$ was arbitrary, we are done.

Definition 13 (Resolvent of a linear operator). Let $(A, \mathcal{D}(A))$ be a linear (possibly unbounded) operator on X. We define

1. resolvent set

$$\rho(A) = \left\{ \lambda \in \mathbb{K} | \lambda \operatorname{id} - A \operatorname{is invertible and} (\lambda \operatorname{id} - A)^{-1} \in \mathcal{L}(X) \right\},\,$$

2. resolvent operator $R(\lambda, A): X \to \mathcal{D}(A): R(\lambda, A) = (\lambda \mathrm{id} - A)^{-1}$, for $\lambda \in \rho(A)$.

Remark. If $(A, \mathcal{D}(A))$ is a closed linear operator: $\lambda \in \rho(A) \Leftrightarrow \lambda \mathrm{id} - A$ is a bijection of $\mathcal{D}(A)$ onto X.

Lemma 16. Let $(A, \mathcal{D}(A))$ be a linear operator on X. It holds

- 1. $\forall x \in X, \forall \lambda \in \rho(A) : AR(\lambda, A)x = \lambda R(\lambda, A)x x$
- 2. $\forall x \in \mathcal{D}(A), \forall \lambda \in \rho(A) : R(\lambda, A)Ax = \lambda R(\lambda, A)x x,$
- 3. $\forall \lambda, \eta \in \rho(A) : R(\lambda, A) R(\eta, A) = (\eta \lambda)R(\lambda, A)R(\eta, A), \text{ and } R(\lambda, A)R(\eta, A) = R(\eta, A)R(\lambda, A),$
- 4. If moreover $(A, \mathcal{D}(A))$ is the infinitesimal generator of a c_0 -semigroup $\{S(t)\}_{t\geq 0}$ s.t. $\forall t\geq 0: \|S(t)\|_{\mathcal{L}(X)} \leq Me^{\omega t}$, then

$$\forall \lambda > \omega : \lambda \in \rho(A) \land R(\lambda, A) = \int_0^\infty e^{-\lambda t} S(t) \, \mathrm{d}t \land \|R(\lambda, A)\|_{\mathcal{L}(X)} \ge \frac{M}{\lambda - \omega}.$$

Remark. The point 4 says that under some conditions, the resolvent operator is the Laplace transformation of the semigroup operator.

Proof. Ad 1.:

$$AR(\lambda, A)x = (A - \lambda id) \underbrace{R(\lambda, A)}_{=(\lambda id - A)^{-1}} x + \lambda R(\lambda, A)x = \lambda R(\lambda, A)x - x.$$

Ad 2.: The same as 1.

Ad 3.:

$$R(\lambda, A) - R(\eta, A) = R(\lambda, A)(\mathrm{id} - (\lambda \mathrm{id} - A))R(\eta, A) = R(\lambda, A)(\eta \mathrm{id} - A - \lambda \mathrm{id} + A)R(\eta, A) = (\eta - \lambda)R(\lambda, A)R(\eta, A)$$

For $\lambda \neq \eta$ we also have

$$R(\lambda, A)R(\eta A) = \frac{R(\lambda, A) - R(\eta, A)}{\eta - \lambda} = \frac{R(\eta, A) - R(\lambda, A)}{\lambda - \eta} = R(\eta, A)R(\lambda, A).$$

Ad 4.: WLOG asume $\omega=0$, meaning $\|S(t)\|_{\mathcal{L}(X)}\leq M\,\forall t\geq 0$. Denote $\tilde{S}(t)=e^{-\omega t}S(t)$. Define

$$\tilde{R}x = \int_0^\infty e^{-\lambda t} S(t) x \, \mathrm{d}t.$$

First of all, this is well defined as

$$\left\|\tilde{R}x\right\|_{X} \le \int_{0}^{\infty} e^{-\lambda t} M \|x\|_{X} \, \mathrm{d}T = \frac{M}{\lambda} \|x\|_{X},$$

and so $\|\tilde{R}\|_{\mathcal{L}(X)} \leq \frac{M}{\lambda}, \tilde{R} \in \mathcal{L}(X)$. Next, we want to show

$$\forall x \in X : \tilde{R}x \in \mathcal{D}(A) \land A\tilde{R}x = \lambda \tilde{R}x - x \Leftrightarrow \mathrm{id} = (\lambda \mathrm{id} - A)\tilde{R}.$$

For $x \in X, h > 0$ fixed compute

$$\begin{split} \frac{1}{h} \Big(S(h) \tilde{R} x - \tilde{R} x \Big) &= \frac{1}{h} \Big(\int_0^\infty e^{-\lambda t} S(t+h) x - e^{-\lambda t} S(t) x \, \mathrm{d}t \Big) = \\ &= \frac{1}{h} \Big(\int_h^\infty e^{-\lambda (t-h)} S(t) x \, \mathrm{d}t - \int_0^\infty e^{-\lambda t} S(t) x \, \mathrm{d}t \Big) = \\ &= \int_h^\infty \frac{e^{-\lambda (t-h)} - e^{-\lambda t}}{h} S(t) x \, \mathrm{d}t - \frac{1}{h} \int_0^h e^{-\lambda t} S(t) x \, \mathrm{d}t = \\ &= e^{-\lambda t} \frac{e^{\lambda h} - 1}{h} \to \lambda e^{-\lambda t}, \text{ as } h \to 0_+ \end{split}$$

This implies

$$\chi_{(h,\infty)}(t)e^{-\lambda t}\frac{e^{h\lambda}-1}{h}S(t)x \to \lambda e^{-\lambda t}S(t)x \text{ on } (0,\infty) \text{ as } h \to 0_+.$$

The norm of this can be estimated as $\|\lambda e^{-\lambda t} S(t) x\| \le C e^{-\lambda t} M \|x\|_X \in L_1((0, \infty))$. Altogether, we obtain $\tilde{R}x \in \mathcal{D}(A) \wedge A\tilde{R}x = \lambda \tilde{R}x - x \Rightarrow (\lambda \mathrm{id} - A)\tilde{R}x = x$.

To proceed further, we need the following theorem:

$$x \in \mathcal{D}(A), A \operatorname{closed} : A\tilde{R}x = A\left(\int_0^\infty e^{-\lambda t} S(t)x \, \mathrm{d}t\right) = \int_0^\infty e^{-\lambda t} \underbrace{AS(t)}_{=S(t)A} x \, \mathrm{d}t = \tilde{R}Ax,$$

which has been stated but not proved ¹⁵. Finally, we can write: $\forall x \in \mathcal{D}(A) : \tilde{R}(\lambda \mathrm{id} - A)x = x \Rightarrow \lambda \in \rho(A) \wedge \tilde{R} = R(\lambda, A)$. Moreover, we have also shown the mapping is a bijection.

Definition 14 (Contraction semigroup). We say that $\{S(t)\}_{t\geq 0}$ is a contraction semigroup if

$$\forall t \geq : \|S(t)\|_{\mathcal{L}(X)} \leq 1.$$

¹⁵It could be shown by first constructing a approximating sequence of the Bochner integral, like a Riemann sum, do the calculation on this level and then pass to the limit.

Theorem 23 (Hille-Yosida). Let $M \ge 1, \omega \in \mathbb{R}$. A linear $(A, \mathcal{D}(A))$ on a Banach space X generates a c_0 -semigroup (meaning it is its infinitesimal generator) satysfing $\forall t \ge 0 : \|S(t)\|_{\mathcal{L}(X)} \le Me^{\omega t}$ if and only if

- 1. $(A, \mathcal{D}(A))$ is closed,
- 2. $\mathcal{D}(A)$ is dense in X,
- 3. $\forall \lambda > \omega, n \in \mathbb{N} : \lambda \in \rho(A) \wedge \|R^n(\lambda, A)\|_{\mathcal{L}(X)} \leq \frac{M}{(\lambda \omega)^n}$.

Proof. If $M=1, \omega=0$, then $\|R(\lambda,A)\|_{\mathcal{L}(X)} \leq \frac{1}{\lambda} \Rightarrow \|R^n(\lambda,A)\|_{\mathcal{L}(X)} \leq \frac{1}{\lambda^n}$. " \Rightarrow " has been proven, now show the other direction. The plan is to

- 1. approximate A by $\{A_n\} \subset \mathcal{L}(X)$,
- 2. construct S_n for A_n as previously,
- 3. estimate and limit passage.

Approximation: See the analogy: $a \in \mathbb{R} : \frac{n}{n-a} \to 1$, we would like $nR(n,A) \to id$. Calculate the norm of $nAR(n,A) = n(nR(n,A) - id) \in \mathcal{L}(X) \forall n \in \mathbb{N}$, (This approx. is called the Yosida approximation.) For $x \in \mathcal{D}(A)$ fixed:

$$||nR(n,A)x - x||_X = ||R(n,A)Ax||_X \le ||R(n,A)||_{\mathcal{L}(X)} ||Ax||_X \le \frac{1}{n} ||Ax||_X \to 0 \text{ as } n \to \infty.$$

If

$$y \in X: \|nR(n,A)y - y\|_{X} \le \|nR(n,A)(y - x)\|_{X} + \|nR(n,A)x - x\|_{X} + \|x - y\|_{X} \le 2\|y - x\| + \underbrace{\|nR(n,a)x - x\|_{X}}_{\rightarrow 0},$$

but $||y - x||_X$ can be made arbitrarily small from density of $\mathcal{D}(A)$ in X, so in fact

$$nR(n, A)y \rightarrow y \text{ in } X, \forall y \in X.$$

And so nR(n, A) really approximates id.

Using this gives us

$$\forall x \mathcal{D}(A) : A_n x = nAR(n, A)x = n \underbrace{R(n, A)}_{=R(n, A)A} x \to Ax \text{ in } X$$

pointwisely. Define now

$$S_n(t) = \sum_{k=0}^{\infty} \frac{(A_n t)^k}{k!} \in \mathcal{L}(X) \, \forall t > 0,$$

which has a norm

$$||S_n(t)||_{\mathcal{L}(X)} \le \left\| \sum_{k=0}^{\infty} \frac{1}{k!} (tA_n)^k \right\|_{\mathcal{L}(X)} = \left\| \sum_{k=0}^{\infty} \frac{1}{k!} (-ntid + n^2 t R(n, A))^k \right\|_{\mathcal{L}(X)}$$

and we claim this is equal to

$$= \left\| \sum_{k=0}^{\infty} \frac{1}{k!} (-ntid)^k \sum_{k=0}^{\infty} \frac{\left(n^2 t R(n,A)\right)^k}{k!} \right\|_{\mathcal{L}(X)},$$

which follows from the Cauchy theorem on products of series. Estimating this gives $\leq e^{-nt}$ id $\sum_{k=0}^{\infty} \frac{(nt)^k}{k!} \|nR(n,A)\|_X^k \leq e^{-nt}e^nt = 1$, as $\|nR(n,A)\|^k \leq 1$. This means $\{S_n(t)\}_{\mathcal{L}(X)} \leq 1$.

Now show that this converges: fix $x \in \mathcal{D}(A)$, compute

$$\|S_n(t)x - S_m(t)x\|_X = \left\| \int_0^t \frac{\mathrm{d}}{\mathrm{d}s} (S_n(s)S(m)(t-s)x) \, \mathrm{d}s \right\|_X = \left\| \int_0^t S_n(s)(A_n - A_m)S_m(t-s)x \, \mathrm{d}s \right\|_X \underbrace{\leq}_{\|S_t\|_{\mathcal{L}(X)} \le 1} t \|(A_n - A_m)S_m(t-s)x \, \mathrm{d}s \right\|_X = \left\| \int_0^t \frac{\mathrm{d}}{\mathrm{d}s} (S_n(s)S(m)(t-s)x) \, \mathrm{d}s \right\|_X = \left\| \int_0^t \frac{\mathrm{d}s}{\mathrm{d}s} (S_n(s)S(m)(t-s)x) \, \mathrm{d}s \right\|_X = \left\| \int_0^t \frac{\mathrm{d}s}{\mathrm$$

and since X is Banach, it is convergent also. Finally, for $y \in X$, we have

$$||S_n(t)y - S_m(t)y||_X \le ||S_n(t)(y - x)||_X + ||S_n(t)x - S_m(t)x||_X + ||S_m(x - y)||_X \le 2||x - y||_X + t||(A_n - A_m)x||_X.$$

We claim that $\{S_n(t)y\}$ is Cauchy uniformly on $[0,T], T>0 \Rightarrow \exists S(t): S_n(t)y \to S(t)y \forall y \in X, t>0$. And using Banach-Steinhaus (princip stejnoměrné omezenosti) we obtain $\{S(t)\}_{t\geq 0}$ is a c_0 -semigroup.

It remains to answer this question. Is $(A, \mathcal{D}(A))$ the infinitesimal generator of $\{S(t)\}_{t\geq 0}$? Let $(\tilde{A}, \mathcal{D}(\tilde{A}))$ be the infinitesimal generator of $\{S(t)\}_{t\geq 0}$. Compute

$$S_n(t)x - x = \int_0^t \frac{\mathrm{d}}{\mathrm{d}s} S_n(s)x \, \mathrm{d}s = \int_0^t S_n(x) A_n x \, \mathrm{d}s,$$

realize that

$$||S_n(t)A_nx - S(s)Ax||_X \le ||S_n(s)(A_n - A)x||_X + ||S_n(s) - S(s)Ax||_X \to 0,$$

from the previously shown convergences, and so (we have taken the limit of the LHS also)

$$S(t)x - x = \int_0^t S(s)Ax \, ds.$$

This allows us to compute

$$\forall x \in \mathcal{D}(A) : \lim_{t \to 0_+} \frac{S(t)x - x}{t} = Ax \Rightarrow \mathcal{D}(A) \subset \mathcal{D}(\tilde{A} \land A = \tilde{A} \text{ on } \mathcal{D}(A).$$

The opposite inclusion is simple: fix $\lambda > 0$: $\lambda \in \rho(A) \cap \rho(\tilde{A})$, and so $\lambda \operatorname{id} - A : \mathcal{D}(A) \to X$ is onto, but also $\lambda \operatorname{id} - A = \lambda \operatorname{id} - \tilde{A}$ on $\mathcal{D}(A)$, and so $\lambda \operatorname{id} - \tilde{A} : \mathcal{D}(A) \to X$ is onto. From the previous theorem, we know $\lambda \operatorname{id} - \tilde{A}$ is one-to-one, so $\mathcal{D}(\tilde{A}) = \mathcal{D}(A)$. Altogether, $A = \tilde{A}, \mathcal{D}(A) = \mathcal{D}(\tilde{A})$.

7 (Some) exercises

$7.1 \quad 4.3.2025$

Example (Coefficients for smooth extension). Define

$$Eu(x', x_d) = u(x', x_d), x \ge 0, = \sum_{j=1}^{k+1} u(x', -\frac{x_d}{j})c_j, x_d < 0.$$

for $u \in \mathcal{D}(\mathbb{R}^d)$. Find $\{c_j\}_{j=1}^{k=1}$ in such a way that $Eu \in C^k(\mathbb{R}^d)$. Moreover, take d = 1.

Proof. For k = 0, j = 1 we take $c_1 = 1, c_j = 0, j \neq 1$. For k = 1, compute the derivative:

$$\partial_{d^n} Eu(x', x_d) = \partial_{d^n} u(x', x_d), x_d \ge 0, = \sum_{j=1}^{k-1} (-1)^n \frac{\partial_{d^n} u(x', \frac{x_d}{j})}{j^n} c_j, x_d < 0.$$

If we take $x_d = 0$ in particular:

$$\partial_{d^n} u(x',0) = \sum_{j=1}^{k+1} \partial_{d^n} u(x',0) \left(-\frac{1}{j}\right)^n c_j \Leftrightarrow 1 = \sum_{j=1}^{k+1} c_j \left(-\frac{1}{j}\right)^n, \forall n \in \{0,\ldots,k\}.$$

That is a linear system of k + 1 equations. Is it solvable?

7.2 8.4.2025

Example (Laplace). Let $a_0 = 0, a(\cdot, z, p) = p$. Then $|a(\dots)| \le |p|$, growth can be accomplished for $r = 2, a(\dots) \cdot p \ge |p|^2$. We can thus apply the theorem to our laplace equation

Example. Let $a_0 = 0$, $a(\cdot, z, p) = p \arctan(1 + |p|^2)$. Then it is clearly Caratheodory, it is bounded $|a(\dots)| \le |p| \frac{\pi}{2}$, so the growth conditions yield, it is coercive as $\arctan(1 + |p|^2) \ge \frac{\pi}{4} |p|^2$, and it is monotone

$$\left(\operatorname{atan}\left(1+|p_{1}|^{2}\right)p_{1}-\operatorname{atan}\left(1+|p_{2}|^{2}\right)p_{2}\right)\left(p_{1}-p_{2}\right)=\int_{0}^{1}\sum_{j=1}^{d}\frac{\mathrm{d}}{\mathrm{d}s}\operatorname{atan}\left(1+|p_{2}+s(p_{1}-p_{2})|^{2}\right)\left(p_{2}+s(p_{1}-p_{2})\right)\mathrm{d}s\left(p_{1}-p_{2}\right)_{j}$$