

TARDEC

Technical Report

No. 13619

Recycling MIL-H-46170 Hydraulic Fluid to Extend Fluid Service Life

March 1995

By Ellen M. Purdy
Donna M. Rutkowski
Franklyn D. Sterling

19950405 018

Distribution unlimited; approved for public release.

U.S. GOVERNMENT PRINTING OFFICE: 1995 200-600-000-000

U.S. Army Tank-Automotive Command
Research, Development and Engineering Center
Warren, Michigan 48397-5000

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
	March 1995	Final 1 Oct 93 - 31 Aug 94	
4. TITLE AND SUBTITLE		5. FUNDING NUMBERS	
Recycling MIL-H-46170 Hydraulic Fluid to Extend Fluid Service Life			
6. AUTHOR(S)			
Ellen M. Purdy Sgt. Donna M. Rutkowski Franklyn D. Sterling			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
US Army Tank Automotive Command Mobility Technology Center - Belvoir ATTN AMSTA-RBF 10115 Gridley Rd, STE 128 Ft. Belvoir, VA 22060-5843		TARDEC-TR-13619	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER	
Defense General Supply Center Hazardous Materials Minimization Office ATTN DGSC Richmond, VA			
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION/AVAILABILITY STATEMENT		12b. DISTRIBUTION CODE	
Distribution unlimited; approved for public release.			
13. ABSTRACT (Maximum 200 words)			
<p>This report documents the laboratory efforts in proving that used hydraulic fluid could be recycled by removing contaminants and mixing with new fluid. Once the used fluid has been filtered to remove solid particulate contamination and de-humidified to bring the moisture content below 500 ppm water, it can be mixed with new fluid in a 75:25 ratio to bring the fluid mixture up to specification performance. The recycled used fluid by itself could not pass the foaming characteristic requirement thus requiring re-inhibition. Instead of adding more anti-foaming agent to the fluid, the decision was made to mix recycled fluid with new fluid to provide the re-inhibition effect. Mixing in new fluid results in an enhancement of all additive performance and eliminated any possible problems with adding too much or too little anti-foaming agent. These efforts set the standards for evaluating commercial recycling units that can recycle hydraulic fluid on a large scale and also establish doctrine for successfully extending the service life of used hydraulic fluid.</p>			
14. SUBJECT TERMS		15. NUMBER OF PAGES 22	
Hydraulic Fluid Recycling Extended Service Life Contamination Removal Waste Minimization		16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

No. 13619

Recycling MIL-H-46170 Hydraulic Fluid to Extend Fluid Service Life

March 1995

Accesion For	
NTIS	CRA&I
DTIC	TAB
Unannounced	
Justification _____	
By _____	
Distribution / _____	
Availability Codes	
Dist	Avail and / or Special
A-1	

By **Ellen M. Purdy**
Donna M. Rutkowski
Franklyn D. Sterling
USA Tank Automotive Command
Mobility Technology Center Belvoir
Fuels and Lubricants Division

Contents

	Page
Section 1 Introduction and Background	1
Section 2 Technical Approach	2
Section 3 Results	5
Section 4 Conclusions.....	8
References	9

Tables

1. MIL-H-46170 Fluid Performance Requirements	2
2. Fluid Performance — Used and Recycled	5
3. Performance of Recycled FRH Mixed with New FRH.....	6

Section 1 Introduction and Background

At the request of the Defense General Supply Center (DGSC), the Fuels and Lubricants Division of the Mobility Technology Center - Belvoir has investigated the possibility of recycling hydraulic fluid. In an effort to reduce the waste stream of POL products generated by military units, The DGSC Hazardous Materials Minimization Office provided funding from the Defense Environmental Restoration Account (DERA) to not only demonstrate that hydraulic fluid could be recycled, but to also evaluate commercial recycling technology. Most often, even though hydraulic fluid can contain significant water and particulate contamination, the additive package which provides the fluid's desired performance remains in tact. If hydraulic fluid can be recycled by removing contamination, and the clean fluid determined to retain sufficient performance capabilities, a reduction in the POL waste stream would result because the recycled fluid could be returned to service.¹ Recycling the fluid will not only reduce disposal costs, but also significantly reduce new fluid procurement costs.

In demonstrating the recyclability of hydraulic fluid, this investigation was limited to MIL-H-46170 hydraulic fluid (FRH).² The objective of the investigation was to characterize any loss of performance of the used fluid, identify effective means of recycling the fluid, and demonstrating satisfactory performance of the recycled fluid. Two issues were addressed in this effort. First, the fluid was evaluated in the laboratory to determine the viability of recycling hydraulic fluid. The data gained from this investigation provides the baseline for evaluating commercially available recycling technology. Not only must it be proven on a laboratory scale that the fluid can be recycled but also that large quantities generated by maintenance units and depots can be recycled using commercial technology. The effort in the laboratory sets the stage for evaluating the viability of recycling on a large scale.

Section 2 Technical Approach

In demonstrating that hydraulic fluid can be recycled and returned to service, three tasks were performed. First, used fluid was evaluated against specification requirements to identify any loss of fluid performance. Second, techniques were developed for removing the water and particulate contamination present in the used fluid. Finally, techniques were developed for returning the recycled fluid to specification performance. Table 1 provides a summary of the performance requirements as specified in MIL-H-46170. These requirements must be met by the recycled fluid before it can be successfully returned to service.

Table 1. MIL-H-46170 Fluid Performance Requirements

PERFORMANCE TEST	MIL-L-46170
Oxidation/Corrosion ASTM D4636, #3	168 hrs @ 135°C vis. chng < 10% acid # chng < + 0.30
Corrosion Inhibition ASTM D1748	100 hrs min
Galvanic Corrosion FTM 5322	10 days
Low Temp Stability FTM 3458	72 hrs @ -54°C
Pour Point ASTM D97	-60°C min
Viscosity @ 40°C ASTM D445	19.5 cSt max
Viscosity @ 100°C ASTM D445	3.4 cSt min
Viscosity @ -40°C ASTM D445	2600 cSt max
Viscosity @ -54°C ASTM D445	report
Solid particle Count MIL-H-46170	10,000 max @ 5-25 micrometers
Solid Particle Count MIL-H-46170	250 max @ 26-50 micrometers
Solid Particle Count MIL-H-46170	50 max @ 51-100 micrometers

Table 1. MIL-H-46170 Fluid Performance Requirements (continued)

PERFORMANCE TEST	MIL-L-46170
Solid Particle Count MIL-H-46170	10 max @ over 100 micrometers
Acid Number ASTM D664	0.2 gm KOH/gm max
Elastomer Swell FTM 3603	
Nitrile	0% - 3%
Fluorocarbon	0% - 1%
Fluorosilicone	0% - 2%
Polyacrylate	0% - 2%
Polyurethane	0% - 1%
Evaporation Loss ASTM D972	5% max
Steel on Steel Wear ASTM D4172	0.3 mm max @ 10 kg load
Steel on Steel Wear ASTM D4172	0.65 mm max @ 40 kg load
Foam Characteristics ASTM D892	65 ml max
Water Content ASTM D1744	500 ppm max
Flash Point ASTM D92	204°C min
Fire Point ASTM D92	246° min
Storage Stability FTM 3465	12 months

The task of recycling the hydraulic fluid is one of removing unwanted contaminants and treating the fluid to bring performance back to specification requirements. The effects of contamination in a hydraulic system can be disastrous. Solid particle contamination in the fluid can cause wear and jamming. Additionally, a domino effect can take place because wear of the surfaces exposes clean metal which is then subjected to corrosive attack if moisture is present in the system. It is vital in recycling hydraulic fluid that particulate and moisture contamination be removed otherwise the additives in the fluid will be hampered in their ability to provide protection.³

Removing the particulate contamination in the laboratory was relatively straight forward but time consuming. The fluid was first centrifuged to remove any large sediment contamination. The centrifuged fluid was then subjected to a series of successively smaller filters (5.0 microns, 0.8 microns, 0.45 microns) until the particle count fell below the maximum allowed by the specification.

One technique for removing water contamination involves dilution of the hydraulic fluid with a water-immiscible solvent that will separate the water into an immiscible layer then co-distilling the off the water and solvent. This technique is recommended if large amounts of water are present. Used fluid that was obtained from Aberdeen Proving Ground was found to contain only 728 ppm water thus a different technique was employed, which although simpler, could prove to be time consuming.

The used fluid was simply heated to 109°C for a period of time. The amount of time required depended on the volume of fluid being de-humidified and degree of water contamination. One liter of fluid containing less than 0.1% water required only 2 hours of exposure at 109°C. Fluid containing greater than 0.5% water required 24 hours to dehumidify 1 liter. Heating the fluid to 109°C was sufficient enough to drive off any water yet not stress the fluid thermally. In most cases the water content was reduced to half of the maximum (500 ppm) allowed. While the techniques used in the laboratory proved effective, they are not the techniques of choice for recycling hydraulic fluid on the premises of maintenance units and depots. The technology required must allow for high volumes in a short amount of time. In most cases, this can only be accomplished through filtering technology that removes all types of contamination.

Section 3 Results

Table 2 below summarizes the results of all testing performed on the used and recycled fluids. Comparison of the results summarized in this table with the requirements identified in Table 1 indicate that the used fluid does not provide adequate performance in Low Temperature Stability, Water Content, Foaming Characteristics, Fire Point, Particle Count, and Evaporation Loss. The recycled fluid, however, demonstrated an immediate improvement in Low Temperature Stability, Water Content, Particle Count, and Evaporation Loss on simply removing the particulate and water contamination. The recycled fluid still did not exhibit satisfactory performance in Foaming Characteristics or Fire Point.

Table 2. Fluid Performance — Used and Recycled

TEST	USED FRH	RECYCLED FRH
5308 ACID NO.	0.22	0.36
5308 COUPON WT CHNG	PASS	PASS
5308 Δ VISCOSITY	9.6%	3.9%
HUMIDITY CABINET	PASS	PASS
GALVANIC CORROSION	PASS	PASS
LOW TEMP STABILITY	FAIL	PASS
VISCOSITY -40 °C	2506 cSt	2494 cSt
VISCOSITY 40 °C	15.7 cSt	16.4 cSt
VISCOSITY 100 °C	3.8 cSt	4.2 cSt
POUR PT	Below -60°C	Below -60°C
FLASH PT	211°C	208°C
FIRE PT	233°C	224°C
WATER CONTENT (PPM)	728	278
FOAMING	80/0, 30/0, 60/0	90/0, 30/0, 60/0
4-BALL WEAR	0.382 mm	0.355 mm
ACID NUMBER	0.25 mg KOH/mg	0.15 mg KOH/mg
PARTICLE COUNT (MICROMETERS)	127,347 (5-25) 32 (26-50) 2 (51-100) 0 (OVER 100)	1,257 (5-25) 19 (26-50) 1 (51-100) 0 (OVER 100)
EVAPORATION LOSS	5.95%	4.36%
ELASTOMER SWELL	—	—
NITRILE	1.78%	1.45%
FLUOROCARBON	0.46%	0.39%
FLUOROSILICONE	2.04%	2.4%
POLYACRYLATE	1.06%	1.44%
POLYURETHANE	0.37%	-0.26%

Given that the recycled fluid failed only the foaming characteristics, only minor treatment of the fluid would be required to bring the fluid within specifications. Instead of adding additional anti-foaming agent to solve the problem, new FRH from an unopened can was added to the recycled fluid. Two mixtures were created to identify the maximum and minimum fluid ratios. New FRH was mixed with recycled FRH in 25:75 and 50:50 ratios. These fluid mixtures were evaluated against the same performance criteria with results summarized in Table 3 below.

Table 3. Performance of Recycled FRH Mixed with New FRH

TEST	25:75 FRH MIX	50:50 FRH MIX
5308 ACID NO.	0.13 mg KOH/mg	0.21 mg KOH/mg
308 COUPON WT CHNG	PASS	PASS
5308 Δ VISCOSITY	-1.34%	-4.42%
HUMIDITY CABINET	PASS	PASS
GALVANIC CORROSION	PASS	PASS
LOW TEMP STABILITY	PASS	PASS
VISCOSITY -40 °C	2473 cSt	2183 cSt
VISCOSITY 40 °C	16.4 cSt	17.0 cSt
VISCOSITY 100 °C	3.9 cSt	3.8 cSt
POUR PT	Below -60°C	Below -60°C
FLASH PT	212°C	210°C
FIRE PT	230°C	236°C
WATER CONTENT (PPM)	324.5	342.1
FOAMING	55/0,30/0 50/0	55/0,30/0 50/0
4-BALL WEAR	0.34 mm	0.37 mm
ACID NUMBER	0.21 gm KOH/gm	0.15 gm KOH/gm
PARTICLE COUNT (MICROMETERS)	Not Necessary	Not Necessary
EVAPORATION LOSS	3.84%	3.30%
ELASTOMER SWELL	—	—
NITRILE	1.67%	2.24%
FLUOROCARBON	0.19%	0.81%
FLUOROSILICONE	1.62%	1.91%
POLYACRYLATE	0.71%	2.53%
POLYURETHANE	-0.50%	-0.11%

As can be seen, both fluid mixtures passed all performance requirements except the Fire Point. The foaming characteristics tested below the maximum allowed in the specification. Evaporation Loss, Flash Point, Fire Point, and corrosion/oxidation stability (5308 test) all improved with the addition of the new fluid. Neither fluid mixture, however, passed the Fire Point requirement. The 25% mixture exhibited a Fire

Point of 16°C below the minimum while the 50% mixture exhibited a Fire Point 10°C below the minimum. Although some improvement in Fire Point occurred, there seems to be no significant performance improvement of the 50% mixture over the 25% mixture.

Section 4 Conclusions

While recycled FRH does not meet all specification performance requirements, it can be treated with new FRH to improve fluid performance to specification standards.

Although adding new fluid to the recycled fluid did not bring the fire point completely up to the specification requirement, the fluid mixture did meet the flash point and all other requirements. A loss in Fire Point of 10-16°C does not imply a significant loss in fire resistance. Keeping the flash point up to specification standard indicates the fire resistance of the fluid remains predominantly in tact. In evaluating the merits of recycling hydraulic fluid, the negative aspects are simply the slight loss in fire point whereas the positive aspects are the reduction in waste stream and associated costs.

Costs of recycling will be limited to the recycling process itself, with no expenses going toward procurement of additives to extend the service life of the fluid. Treating the recycled fluid with new FRH precludes the difficulties that are inherent in trying to add new additives to a formulated fluid. There will be no danger of adding too much additive and causing instability or too little additive and not meeting performance requirements. Since hydraulic fluid cannot be recycled indefinitely, some procurement of new fluid will always take place, thus a ready source of new fluid to mix with the recycled fluid will always be available. Even though the recycled fluid must be mixed with new FRH, significant savings will result because the waste stream will be reduced thus lowering disposal costs and procurement volumes of new fluid will lessen.

The efforts discussed in this report were limited to proving on a laboratory scale that FRH could be recycled and returned to service. This is just the first step prior to implementing a hydraulic fluid recycling program throughout the military. The next phase of this investigation is to evaluate commercial recycling technology to verify that the fluid can be recycled to meet specification performance on a large scale. Once successful commercial units have been identified, a field test of the units themselves and the recycled fluid in actual vehicles will be conducted. In addition, efforts will also be aimed at performing oil analysis on the used and recycled fluids to better identify the types of solid particulate contamination found in the used fluid and removed in the recycling process.

References

1. MIL-HDBK-118, *Military Handbook: Design Guide for Military Applications of Hydraulic Fluids*, 1993, p. 1-9.
2. MIL-H-46170, *Hydraulic Fluid, Rust Inhibited, Fire Resistant, Synthetic Hydrocarbon*.
3. MIL-HDBK-118, *Military Handbook: Design Guide for Military Applications of Hydraulic Fluids*, 1993, p. 7-6 - 7-8.
4. MIL-HDBK-118, *Military Handbook: Design Guide for Military Applications of Hydraulic Fluids*, 1993, p. 7-11.
5. Van Brocklin, Constance, *Determination of MIL-H-6083 Hydraulic Fluid In-Service Use Limits for Self Propelled Artillery*, USA-BRDEC-TR//2512, 1991, p. 5.

Distribution for TARDEC Technical Report 13619

DEPARTMENT OF THE ARMY

HQDA
1 ATTN DALO TSE
1 ATTN DALO SM
PENTAGON
WASHINGTON DC 20310-0103

CDR AMC
1 ATTN AMCRD S
1 ATTN AMCRD E
1 ATTN AMCRD IM
1 ATTN AMCRD IT
1 ATTN AMCRDA
1 ATTN AMCRD MS
1 ATTN AMCRD MT
1 ATTN AMCICP ISI
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

TARDEC
1 ATTN AMSTA CMA
1 ATTN AMSTA CMB
1 ATTN AMSTA CME
1 ATTN AMSTA N
1 ATTN AMSTA R
1 ATTN AMSTA RG
1 ATTN AMCPM ATP
1 ATTN AMSTA Q
1 ATTN AMSTA UE
1 ATTN AMSTA UG
CDR TACOM
WARREN MI 48397-5000

CDR ARMY TACOM
1 ATTN AMSTA FP
1 ATTN AMSTA KL
1 ATTN AMSTA MM
1 ATTN AMSTA MT
1 ATTN AMSTA MC
1 ATTN AMSTA GT
1 ATTN AMSTA FNG
1 ATTN AMSTA FR
1 ATTN USMC LNO
1 ATTN AMSPM LAV
1 ATTN AMSPM 113/M60
1 ATTN AMCPM CCE/SMHE
WARREN MI 48397-5000

TARDEC
20 ATTN AMSTA-RBF
CDR TACOM
10101 GRIDLEY RD STE 128
FT BELVOIR, VA 22060-5843

PROG EXEC OFFICER
ARMORED SYS MODERNIZATION

1 ATTN SFAE ASM S
1 ATTN SFAE ASM BV
1 ATTN SFAE ASM CV
1 ATTN SFAE ASM AG
CDR TACOM
WARREN MI 48397-5000

PROG EXEC OFFICER
ARMORED SYS MODERNIZATION
1 ATTN SFAE ASM FR
1 ATTN SFAE ASM AF
PICATINNY ARSENAL
NJ 07806-5000

PROG EXEC OFFICER
COMBAT SUPPORT
1 ATTN SFAE CS TVL
1 ATTN SFAE CS TVM
1 ATTN SFAE CS TVH
CDR TACOM
WARREN MI 48397-5000

PROG EXEC OFFICER
ARMAMENTS
1 ATTN SFAE AR HIP
1 ATTN SFAE AR TMA
1 PICATINNY ARSENAL
NJ 07806-5000

PROJ MGR
UNMANNED GROUND VEH
1 ATTN AMCPM UG
REDSTONE ARSENAL
AL 35898-8060

DIR
ARMY RSCH LAB
1 ATTN AMSRL CP PW
2800 POWDER MILL RD
ADELPHIA MD 20783-1145

VEHICLE PROPULSION DIR
1 ATTN AMSRL VP (MS 77 12)
NASA LEWIS RSCH CTR
21000 BROOKPARK RD
CLEVELAND OH 44135

CDR AMSAA
1 ATTN AMXSY CM
1 ATTN AMXSY L
APG MD 21005-5071

CDR ARO	1 PETROL TEST FAC WEST
1 ATTN AMXRO:EN (D MANN)	BLDG 247 TRACEY LOC
RSCH TRIANGLE PK	DDRW
NC 27709-2211	P O BOX 96001
DIR	STOCKTON CA 95296-960
AMC PKG STO CONT CTR	
1 ATTN SDSTO TE S	CDR ARMY LEA
TOBYHANNA PA 18466-5097	1 ATTN LOEA PL
CDR AEC	NEW CUMBERLAND
1 ATTN SFIM AEC ECC (T ECCLES)	PA 17070-5007
APG MD 21010-5401	CDR ARMY TECOM
CDR ARMY ATCOM	1 ATTN AMSTE TA R
1 ATTN AMSAT I ME (L HEPLER)	1 ATTN AMSTE TC D
1 ATTN AMSAT I LA (V SALISBURY)	1 ATTN AMSTE EQ
1 ATTN AMSAT R EP (V EDWARD)	APG MD 21005-5006
4300 GOODFELLOW BLVD	PROJ MGR PETROL WATER LOG
ST LOUIS MO 63120-1798	1 ATTN AMCPM PWL
CDR AVIA APPL TECH DIR	4300 GOODFELLOW BLVD
1 ATTN AMSAT R TP (H MORROW)	ST LOUIS MO 63120-1798
FT EUSTIS VA 23604-5577	PROJ MGM MOBILE ELEC PWR
CDR ARMY NRDEC	1 ATTN AMCPM MEP
1 ATTN SATNC US (SIEGEL)	7798 CISSNA RD STE 200
1 ATTN SATNC UE	SPRINGFIELD VA 22150-3199
NATICK MA 01760-5018	CDR
CDR ARMY ARDEC	ARMY COLD REGION TEST CTR
1 ATTN SMCAR CC	1 ATTN STECR TM
1 ATTN SMCAR ESC S	1 ATTN STECR LG
PICATINNY ARSENAL	APO AP 96508-7850
NJ 07808-5000	CDR
CDR ARMY CRDEC	ARMY BIOMED RSCH DEV LAB
1 ATTN SMCCR RS	1 ATTN SG RD UBZ A
APG MD 21010-5423	FT DETRICK MD 21702-5010
CDR ARMY DESCOM	CDR FORSCOM
1 ATTN AMSDS MN	1 ATTN AFLG TRS
1 ATTN AMSDS EN	FT MCPHERSON GA 30330-6000
CHAMBERSBURG PA 17201-4170	CDR TRADOC
CDR ARMY AMCCOM	1 ATTN ATCD SL 5
1 ATTN AMSMC MA	INGALLS RD BLDG 163
ROCK ISLAND IL 61299-6000	FT MONROE VA 23651-5194
CDR ARMY WATERVLIET ARSN	CDR ARMY ARMOR CTR
1 ATTN SARWY RDD	1 ATTN ATSB CD ML
WATERVLIET NY 12189	1 ATTN ATSB TSM T
DIR AMC LOG SPT ACT	FT KNOX KY 40121-5000
1 ATTN AMXLS LA	CDR ARMY QM SCHOOL
REDSTONE ARSENAL	1 ATTN ATSM CD
AL 35890-7466	1 ATTN ATSM PWD
CDR APC	FT LEE VA 23001-5000
1 ATTN SATPC Q	CDR
1 ATTN SATPC QE (BLDG 85 3)	ARMY COMBINED ARMS SPT CMD
NEW CUMBERLAND	1 ATTN ATCL CD
PA 17070-5005	1 ATTN ATCL MS
	FT LEE VA 23801-6000

	CDR ARMY FIELD ARTY SCH	CDR
1	ATTN ATSF CD FT SILL OK 73503	RED RIVER ARMY DEPOT
	CDR ARMY TRANS SCHOOL	1 ATTN SDSRR M
1	ATTN ATSP CD MS FT EUSTIS VA 23604-5000	1 ATTN SDSRR Q
	CDR ARMY INF SCHOOL	TEXARKANA TX 75501-5000
1	ATTN ATSH CD	PS MAGAZINE DIV
1	ATTN ATSH AT FT BENNING GA 31905-5000	1 ATTN AMXLS PS
	CDR ARMY AVIA CTR	DIR LOGSA
1	ATTN ATZQ DOL M	REDSTONE ARSENAL
1	ATTN ATZQ DI FT RUCKER AL 36362-5115	AL 35898-7466
	CDR ARMY CACDA	CDR 6TH ID (L)
1	ATTN ATZL CD FT LEAVENWORTH KA 66027-5300	1 ATTN APUR LG M
	CDR ARMY ENGR SCHOOL	1060 GAFFNEY RD
1	ATTN ATSE CD FT LEONARD WOOD	FT WAINWRIGHT
	MO 65473-5000	AK 99703
	CDR ARMY ORDN CTR	DEPARTMENT OF THE NAVY
1	ATTN ATSL CD CS APG MD 21005	OFC OF NAVAL RSCH
	CDR ARMY SAFETY CTR	1 ATTN ONR 464
1	ATTN CSSC PMG	800 N QUINCY ST
1	ATTN CSSD SPS FT RUCKER AL 36362-5363	ARLINGTON VA 22217-5660
	CDR ARMY CSTA	CDR
1	ATTN STECS EN	NAVAL SEA SYSTEMS CMD
1	ATTN STECS LI	1 ATTN SEA 03M3
1	ATTN STECS AE	2531 JEFFERSON DAVIS HWY
1	ATTN STECS AA APG MD 21005-5059	ARLINGTON VA 22242-5160
	CDR ARMY YPG	CDR
1	ATTN STEYP MT TL M YUMA AZ 85365-9130	NAVAL SURFACE WARFARE CTR
	CDR ARMY CERL	1 ATTN CODE 632
1	ATTN CECER EN P O BOX 9005 CHAMPAIGN IL 61826-9005	1 ATTN CODE 859
	DIR	3A LEGGETT CIRCLE
1	AMC FAST PROGRAM 10101 GRIDLEY RD STE 104 FT BELVOIR VA 22060-5818	ANNAPOLIS MD 21401-5067
	CDR I CORPS AND FT LEWIS	CDR
1	ATTN AFZH CSS FT LEWIS WA 98433-5000	NAVAL RSCH LABORATORY
		1 ATTN CODE 6181
		WASHINGTON DC 20375-5342
		CDR
		NAVAL AIR WARFARE CTR
		1 ATTN CODE PE33 AJD
		P O BOX 7176
		TRENTON NJ 08628-0176
		1 CDR
		NAVAL PETROLEUM OFFICE
		CAMERON STA T 40
		5010 DUKE STREET
		ALEXANDRIA VA 22304-6180
		1 OFC ASST SEC NAVY (17 E)
		CRYSTAL PLAZA 5
		2211 JEFFERSON DAVIS HWY
		ARLINGTON VA 22244-5110

CDR
NAVAL AIR SYSTEMS CMD
1 ATTN AIR 53623C
1421 JEFFERSON DAVIS HWY
ARLINGTON VA 22243-5360

**DEPARTMENT OF THE NAVY
U.S. MARINE CORPS**

HQ USMC
1 ATTN LPP
WASHINGTON DC 20380-0001

1 PROG MGR COMBAT SER SPT
MARINE CORPS SYS CMD
2033 BARNETT AVE STE 315
QUANTICO VA 22134-5080

1 PROG MGR GROUND WEAPONS
MARINE CORPS SYS CMD
2033 BARNETT AVE
QUANTICO VA 22134-5080

1 PROG MGR ENGR SYS
MARINE CORPS SYS CMD
2033 BARNETT AVE
QUANTICO VA 22134-5080

CDR
MARINE CORPS SYS CMD
1 ATTN SSE
2033 BARNETT AVE STE 315
QUANTICO VA 22134-5010

CDR
BLOUNT ISLAND CMD
1 ATTN CODE 922/1
814 RADFORD BLVD
JACKSONVILLE
FLA 32226-3404

CDR
MARINE CORPS LOGISTICS BA
1 ATTN CODE 837
814 RADFORD BLVD
ALBANY GA 31704-1128

1 CDR
2ND MARINE DIV
PSC BOX 20090
CAMP LEJEUNNE
NC 28542-0090

1 CDR
1ST MARINE DIV
CAMP PENDLETON
CA 92055-5702

1 CDR
FMFPAC G4
BOX 64118
CAMP H M SMITH
HI 96861-4118

DEPARTMENT OF DEFENSE

ODUSD
1 ATTN (L) MRM
PETROLEUM STAFF ANALYST
PENTAGON
WASHINGTON DC 20301-8000

ODUSD
1 ATTN (ES) CI
400 ARMY NAVY DR
STE 206
ARLINGTON VA 22202

HQ USEUCOM
1 ATTN ECJU L1J
UNIT 30400 BOX 1000
APO AE 09128-4209

US CINCPAC
1 ATTN J422 BOX 64020
CAMP H M SMITH
HI 96861-4020

JOAP TSC
BLDG 780
NAVAL AIR STA
PENSACOLA FL 32408-5300

DIR DLA
1 ATTN DLA MMDI
ATTN DLA MMSB
CAMERON STA
ALEXANDRIA VA 22304-6100

CDR
DEFENSE FUEL SUPPLY CTR
1 ATTN DFSC Q BLDG 8
1 ATTN DFSC S BLDG 8
CAMERON STA
ALEXANDRIA VA 22304-6160

CDR
DEFENSE GEN SUPPLY CTR
1 ATTN DGSC SSA
1 ATTN DGSC STA
8000 JEFFERSON DAVIS HWY
RICHMOND VA 23297-5678

DIR ADV RSCH PROJ AGENCY
1 ATTN ARPA/ASTO
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

12 DEFENSE TECH INFO CTR
CAMERON STATION
ALEXANDRIA VA 22314

DEPARTMENT OF AIR FORCE

HQ USAF/LGSSF
1 ATTN FUELS POLICY
1030 AIR FORCE PENTAGON
WASHINGTON DC 20330-1030

HQ USAF/LGTV
1 ATTN VEH EQUIP/FACILITY
1030 AIR FORCE PENTAGON
WASHINGTON DC 20330-1030

AIR FORCE WRIGHT LAB
1 ATTN WL/POS
1 ATTN WL/POSF
1 ATTN WL/POS L
1790 LOOP RD N
WRIGHT PATTERSON AFB
OH 45433-7103

AIR FORCE WRIGHT LAB
1 ATTN WL/MLBT
2941 P ST STE 1
WRIGHT PATTERSON AFB
OH 45433-7750
AIR FORCE WRIGHT LAB
1 ATTN WL/MLSE
2179 12TH ST STE 1
WRIGHT PATTERSON AFB
OH 45433-7718
1 AIR FORCE MEEP MGMT OFC
615 SMSQ/LGTV MEEP
201 BISCAYNE DR STE 2
ENGLIN AFB FL 32542-5303

1 SA ALC/SFT
1014 ANDREWS RD STE 1
KELLY AFB TX 78241-5603
1 WR ALC/LVRS
225 OCMULGEE CT
ROBINS AFB
GA 31098-1647