Entanglement in Featureless Mott Insulators

Brayden Ware ¹

Itamar Kimchi ² Siddarth Parameswaran ³ Bela Bauer ⁴

 1 UC Santa Barbara 2 UC Berkeley 3 UC Irvine 4 Microsoft Station Q

March 6th 2014

Outline

1 Motivation

2 Construction of Honeycomb FBI

3 Entanglement Edge of Honeycomb FBI

4 Symmetry Protection of Edge

Motivation

Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

- Unique ground state:
- $E_1 E_0 \ge const.$

Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

Fundamental Result

- Integer charge per unit cell
 - (Lieb, Schultz, Mattis)

Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

Unique ground state:

$$E_1 - E_0 \ge const.$$

Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

Fundamental Result

- Integer charge per unit cell
 - (Lieb, Schultz, Mattis)

Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

Fundamental Result

- Integer charge per unit cell
 - (Lieb, Schultz, Mattis)

Unique ground state:

$$E_1 - E_0 \ge const.$$

Gapless modes:

$$E_1 - E_0 \sim \frac{1}{L^z}$$

Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

- Unique ground state:
 - $E_1 E_0 \ge const.$
- Spontaneous symmetry breaking:

$$E_1 - E_0 = 0$$

Fundamental Result

- Integer charge per unit cell
 - (Lieb, Schultz, Mattis)

Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No topological order

Alternate Definition

- Unique ground state on any boundary-less system
- Possibly with 'features' localized to edge of system

- Unique ground state: $E_1 E_0 > const.$
- Topological order: $E_1 E_0 \sim e^{-L/\xi}$

with nontrivial topology

Fundamental Result

- Integer charge per unit cell
 - (Lieb, Schultz, Mattis)

Free Fermion Featureless Insulators

Classical Insulators

Free fermion band insulator

Atomic picture

Topological Insulators

Band insulator with chiral edge ¹

Atomic picture breaks down

a (~

Honeycomb Bosonic Mott Insulators

Does there exist a featureless bosonic insulator with charge 1 per unit cell on the honeycomb lattice?

Breaks rotational symmetry

'Classical cartoons and usual tricks' lead to symmetry breaking, as noticed by Parameswaran et al. (2013a)

Honeycomb Bosonic Mott Insulators

Does there exist a featureless bosonic insulator with charge 1 per unit cell on the honeycomb lattice?

Breaks translationally symmetry, unit cell is 3 times larger

'Classical cartoons and usual tricks' lead to symmetry breaking, as noticed by Parameswaran et al. (2013a)

Honeycomb Bosonic Mott Insulators

Does there exist a featureless bosonic insulator with charge 1 per unit cell on the honeycomb lattice?

Breaks rotational symmetry

Leaves honeycomb lattice

'Classical cartoons and usual tricks' lead to symmetry breaking, as noticed by Parameswaran et al. (2013a)

Construction of Honeycomb FBI

Construction of 1D Featureless Insulators

Classical Insulators

Topological Insulators

1D Trivial Chain

1D Topological Chain

$$\bigcirc\bigcirc$$
 = \bigcirc

$$\bigcirc \bullet = 1$$

$$\bigcirc \bullet = 2$$

Entangled pairs and projectors used in state construction

Construction of 1D Featureless Insulators

Classical Insulators

1D Trivial Chain

Product state with one boson per site

1D Topological Chain

Haldane Insulator Phase Pollmann et al. (2010)

- Unitarily related to AKLT
- No SU(2) symmetry
- Symmetry protected 2-fold edge degeneracy

Construction of 1D Featureless Insulators

Classical Insulators

Topological Insulators

1D Topological Chain

$$\begin{array}{ccc}
\bullet \bullet & = \circ & \bullet & \circ \\
\hline
\bullet \circ & = & -\sqrt{2} \\
\hline
\bullet \bullet & = & 0 \\
\hline
\bullet \bullet & = & +\sqrt{2}
\end{array}$$

Entangled pairs and projectors for SU(2) symmetric state

Construction of Honeycomb FBI

$$|\psi\rangle = \prod_{\mathcal{Q}} \left(\sum_{i \in \mathcal{Q}} b_i^{\dagger}\right) |\mathbf{0}\rangle$$

$$= 2\sqrt{2!}$$

$$\bigcirc = \bigcirc$$

Wavefunction proposed by Kimchi et al. (2013)

Known Results for Honeycomb FBI

Correlations

$$< b_i^{\dagger} b_j >$$

- Looks rotationally symmetric
- Decays exponentially
- Correlation length $\xi/a \sim 3.6$ $< n_i n_i >$
- Looks rotationally symmetric
- Decays exponentially
- Correlation length $\xi/a \sim 1.6$

Hamiltonian Construction

Try filling plaquette orbitals

$$b_{\bigcirc} = \sum_{i \in \bigcirc} \frac{1}{\sqrt{6}} b_i^{\dagger}$$

$$H = \sum_{\bigcirc} -\frac{t}{6} b_{\bigcirc}^{\dagger} b_{\bigcirc} + V n_{\bigcirc} n_{\bigcirc}$$

$$= \left(\sum_{\bigcirc} \sum_{i,j \in \bigcirc} -tb_i^{\dagger} b_j\right) - \frac{3t}{6} N + V \dots$$

- Fails, gapless modes
- Parent Hamiltonian not known

Q (~

Known Results for Honeycomb FBI

Correlations

$$< b_i^{\dagger} b_j >$$

- Looks rotationally symmetric
- Decays exponentially
- Correlation length $\xi/a \sim 3.6$

$$< n_i n_j >$$

- Looks rotationally symmetric
- Decays exponentially
- Correlation length $\xi/a \sim 1.6$

Hamiltonian Construction

To get a parent Hamiltonian:

- Need symmetric, exponentially localized, orthogonal orbitals
- Such as the Wannier orbitals of a classical band insulator
- Parameswaran et al. (2013a) Other lattices:
- Need a fixed point of all lattice symmetries
- Fails on nonsymmorphic lattices
- Extension of LSM theorem
- Parameswaran et al. (2013b)

Entanglement Edge of Honeycomb FBI

Edge Geometry

Generic honeycomb lattice PEPS on zig-zag cylinder with L=3

In cylindrical geometry:

- Treat state as 1D
- Use MPS techniques
- On-site translational symmetry parallel to cut
- \blacksquare Physical site dimension 4^{2L}

Edge Geometry

Honeycomb lattice PEPS on zig-zag cylinder with L=3, acheived by factoring W-state of plaquette bosons

In cylindrical geometry:

- Treat state as 1D
- Use MPS techniques
- On-site translational symmetry parallel to cut
- Physical site dimension 4^{2L}
- MPS bond dimension = Rank of $\rho_r = 2^L$
- Entanglement spectrum $\{\epsilon_i\}$ defined from eigenvalues $\{\rho_i\}$ of ρ_r via $\epsilon_i = e^{-\rho_i}$
- Charge and Translation represented linearly on edge

Entanglement Spectrum

Entanglement Spectrum

Finite Size Analysis

Finite Size Analysis

Identification of Edge CFT

Conformal Charge

Identification of Edge CFT

Conformal Weights

We can match the rescaled entanglement energies to the conformal weights of a free bosonic CFT.

$$\mathbf{P} = \frac{2\pi}{L}(\mathbf{L_0} - \bar{\mathbf{L}_0}) = \frac{2\pi}{L}(em + n - \bar{n})$$

$$\mathbf{H} = \frac{2\pi}{L}(\mathbf{L_0} + \bar{\mathbf{L}_0}) = \frac{2\pi}{L}(\frac{\kappa e^2}{2} + \frac{m^2}{2\kappa} + \frac{n + \bar{n}}{2})$$

$$\mathbf{H} \propto e^2 + \frac{m^2}{\kappa^2} + \frac{1}{\kappa} (n + \bar{n})$$

Identification of Edge CFT

Conformal primary identification in entanglement spectra

Symmetry Protection of Edge

Symmetry Protection of Degenerate Edge

1D Symmetry Protection

On-site symmetries g come with projective representation V_q

- V_g acts on sets of degenerate Schmidt states
- Charge and translation represented linearly on edge

Symmetry Protection of Degenerate Edge

1D Symmetry Protection

Time reversal symmetry au represented by antiunitary $V_{ au}K$ on the edge

 $au^2 = +1$ on this edge

Symmetry Protection of Degenerate Edge

1D Symmetry Protection

Inversion \mathcal{I}

- ${\cal I}$ in combination with swapping Schmidt states represented by antiunitary operation $V_{\cal I}K$ on the edge
- $\mathcal{I}^2 = V_{\mathcal{I}}V_{\mathcal{I}}^* = 1$ Inversion \mathcal{I} combined with $\pi = e^{i\pi N}$
- \blacksquare $\pi \mathcal{I}$ represented antiunitarily on the edge by $V_{\pi \mathcal{I}} K$
- $(\pi \mathcal{I})^2 = 1 \text{ but } V_{\pi \mathcal{I}} V_{\pi \mathcal{I}}^* = -1$

Future Work

Entanglement properties with different geometries

- Armchair cylinder edge
- Finite size clusters
- Explain results for arbitrary geometries with tensor network properties, e.g. 'MPO injectivity'

Find a 2D local Hamiltonian and confirm with numerics

$$H_{EBH} = \left(\sum_{i,j\in\mathcal{O}} \sum_{i,j\in\mathcal{O}} -tb_i^{\dagger}b_j + Vn_i n_j\right) + \mu N?$$

Physical properties of the phase

Can we constructan SU(2) symmetric FI?

Resources

- Hasan, M. Z. and Kane, C. L. (2010). *Colloquium*: Topological insulators. *Reviews of modern physics*, 82(4):3045–3067.
- Kimchi, I., Parameswaran, S. A., Turner, A. M., Wang, F., and Vishwanath, A. (2013). Featureless and nonfractionalized mott insulators on the honeycomb lattice at 1/2 site filling. *Proceedings of the National Academy of Sciences*, 110(41):16378–16383.
- Parameswaran, S. A., Kimchi, I., Turner, A. M., Stamper-Kurn, D. M., and Vishwanath, A. (2013a). Wannier permanent wave functions for featureless bosonic mott insulators on the 1/3-filled kagome lattice. *Phys. Rev. Lett.*, 110:125301.
- Parameswaran, S. A., Turner, A. M., Arovas, D. P., and Vishwanath, A. (2013b). Topological order and absence of band insulators at integer filling in non-symmorphic crystals. *Nature Physics*, 9(5):–303?
- Pollmann, F., Turner, A. M., Berg, E., and Oshikawa, M. (2010). Entanglement spectrum of a topological phase in one

Questions?

Brayden Ware brayden@physics.ucsb.edu

Bonus slides