Векторы

Линейная алгебра — раздел математики, который изучает векторы и матрицы.

Вектор — отрезок, у которого есть направление.

Векторная операция — математическое действие над векторными величинами: сложение, вычитание, деление или произведение.

Скалярное произведение — результат умножения длин двух векторов на косинус угла между ними.

Норма вектора, длина вектора, модуль вектора — расстояние между началом и концом направленного отрезка.

Косинусное расстояние d_{\cos} — разница между единицей и косинусом угла между векторами $\cos(\widehat{\vec{a}},\widehat{\vec{b}})$:

$$d_{\cos}(ec{a},ec{b}) = 1 - \cos(\widehat{ec{a},ec{b}})$$

Евклидово расстояние d — отрезок между концами двух векторов:

$$d(ec{a},ec{b}) = \sqrt{\sum_{i=1}^n (a_i - b_i)^2}$$

Линейная алгебра и библиотека numpy

Геометрическое представление вектора: сложение и вычитание

Векторы можно складывать с помощью графика или математического расчёта. Чтобы сложить два вектора первым способом, нужно сопоставить конец любого из них с началом другого. Получится третий вектор — это и есть результат сложения.

Чтобы вычесть из вектора \vec{a} векторы \vec{b} и \vec{c} с помощью графика, нужно построить векторы $-\vec{b}$ и $-\vec{c}$. То есть обратные по отношению к вычитаемым. А потом подставить их к \vec{a} так же, как при сложении. Результатом вычитания будет вектор-разность, который начинается там же, где \vec{a} , и заканчивается в конце \vec{c} .

Матрицы

Матрица — таблица из строк и столбцов с числами.

Обратная матрица — матрица, при умножении которой на исходную матрицу получается единичная матрица.

Транспонирование матрицы — операция, в результате которой строки превращаются в столбцы, а столбцы становятся строками.

Numpy

Большинство операций линейной алгебры можно осуществить на Python с помощью библиотеки numpy. У неё открытый исходный код. Изучить документацию можно тут.