1 Определения и постановка задачи

Полиэдральным конусом, порождённым векторами $p_1...p_m$ в пространстве R^n называется множество $\sum_{i=1}^m \mathbb{R}_{\geq 0} p_i$. Полиэдральный конус называется острым, если не содержит в себе подпространства, большего, чем $\{0\}$ и рациональным, если конечно порождается элементами целочисленной решётки \mathbb{Z}^n . Все конусы в \mathbb{R}^n делятся на пары двойственных друг к другу: двойственный конус к σ есть конус $\sigma^\nu := \{x \in \mathbb{R}^n | (x,y) \geq 0 \ \forall y \in \sigma\}$. Гранью $\tau \prec \sigma$ конуса σ называется $\{x \in \sigma | (x,y) = 0\}$ для некоторого $y \in \sigma^\nu$. Одномерные грани называются лучами. Веером Σ называется конечный набор острых рациональных полиэдральных конусов в R^n , такой что

- 1) $\tau \prec \sigma \in \Sigma \Rightarrow \tau \in \Sigma$.
- 2) $\sigma_1 \in \Sigma$, $\sigma_2 \in \Sigma \Rightarrow \sigma_1 \cap \sigma_2 \prec \sigma_1$, $\sigma_1 \cap \sigma_2 \prec \sigma_2$.

Веер называется **полным**, если объединение его конусов есть всё \mathbb{R}^n и **билатеральным**, если существует базис целочисленной решётки, каждый вектор которого порождает некоторый луч этого веера, а остальные лучи этого веера лежат в отрицательном ортанте относительно этого базиса. В этом случае этот базис будет порождать один из конусов веера.

Пусть T — алгебраический тор размерности n с решёткой однопараметрический подгрупп $N\cong\mathbb{Z}^n$ и решёткой характеров $M=\operatorname{Hom}(N,\mathbb{Z})\cong\mathbb{Z}^n$. Тогда существует взаимно однозначное соответствие между торическими многообразиями и веерами в N. Более того, существует взаимно однозначное соответствие между полными торическими многообразиями и полными веерами над решёткой однопараметрических подгрупп тора T.

Каждый содержащий начало координат выпуклый многогранник P размерности d в \mathbb{R}^d с вершинами в узлах целочисленной решётки соответствует некоторому вееру FaceFan(P) в \mathbb{R}^d , радиус-векторы его вершин являются порождающими векторами лучей веера. Два многогранника P_1 , P_2 с вершинами в узлах решётки \mathbb{Z}^n называются изоморфными, если существует невырожденное линейное отображение $\varphi: \mathbb{R}^d \to \mathbb{R}^n$, такое что $\varphi(\mathbb{Z}^n) = \mathbb{Z}^n$ и $\varphi(P_1) = P_2$.

Гладкий d-многогранник Фано — выпуклый многогранник размерности d в R^d с вершинами в узлах целочисленной решётки, содержащий начало координат, такой что набор радиус-векторов вершин каждой его грани даёт базис целочисленной решётки. Веера, соответствующие гладким d-многогранникам Фано, соответствуют гладким торическим многообразиям Фано, причём классы изоморфности гладких торических многообразий Фано соответствуют классам изоморфности гладких d-многогранников Фано. Полное торическое многообразие X с действием тора T называется **лучистым**, если максимальная унипотентная подгруппа группы автоморфизмов многообразия X действует на X с открытой орбитой. Верна следующая теорема:

Теорема 1. Пусть X — полное торическое многообразие, тогда следующие утверждения эквивалентны:

- 1) Многообразие X является лучистым;
- 2) Веер Σ_X является билатеральным.

Исследуем лучезарность полных гладких торических многообразий Фано с помощью проверки, являются ли соответствующие веера билатеральными. Полезным будет понятие специального вложения многогранника.

Грань F гладкого d-многогранника Фано $P \subset R^d$ называется **специальной**, если

$$\sum_{v \in V(P)} v = \sum_{v \in V(F)} a_v v, a_v \ge 0$$

Пусть P, Q — изоморфные гладкие d-многогранники Фано, тогда Q называется **специальный вложением** для P, если $\operatorname{conv}(e_1,...,e_n)$ является специальной гранью для Q.

2 Связь билатеральности вееров и специальных граней соответствующих многогранников

У любого гладкого d-многогранника Фано есть специальное вложение, так как сумма радиус-векторов его вершин попадёт хотя бы в один конус над гранью этого многогранника, а любая его грань приводится изоморфизмом решётки к стандартному d-1-мерному симплексу.

Обозначим $(e_1, ..., e_d)$ — стандартный базис R^d . Рассмотрим в общем виде гладкий d-многогранник Фано P, билатеральный относительно некоторой своей специальной грани. В этом разделе представлено доказательство того, что каждая грань многогранника P является его специальной гранью и что многогранник P билатерален относительно каждой своей грани.

Утверждение 1. Пусть A — изоморфизм решётки Z^d , Σ — веер в пространстве R^d . Обозначим его лучи ρ_1 , ..., ρ_n и их порождающие целочисленные векторы p_1 , ..., p_n соответственно. Пусть конус σ веера Σ порождается векторами p_1 , ..., p_d . Тогда веер Σ билатерален относительно конуса σ тогда и только тогда, когда веер $A\Sigma$ билатерален относительно конуса $A\sigma$.

Доказательство. Докажем утверждение слева направо, тогда в обратную сторону будет следовать автоматически применением прямого утверждения для изоморфизма A^{-1} , веера $A\Sigma$ с лучами $A\rho_1,...,A\rho_n$ и порождающими векторами $Ap_1,...,Ap_n$ и конусом $A\sigma = \langle Ap_1,...,Ap_d \rangle$.

Пусть веер Σ билатерален относительно конуса σ , тогда будем считать, что $(p_1, ..., p_d)$ есть базис решётки Z^d и $\forall i \in \{d+1, ..., n\}$ $\exists \alpha_1^i \geq 0, ..., \alpha_d^i \geq 0$ $p_i = \alpha_1^i p_1 + ... + \alpha_d^i p_d$. Тогда $(Ap_1, ..., Ap_d)$ есть базис решётки Z^d и $\forall i \in \{d+1, ..., n\}$ $Ap_i = \alpha_1^i (Ap_1) + ... + \alpha_d^i (Ap_d)$, значит веер веер $A\Sigma$ билатерален относительно конуса $A\sigma$.

Лемма 1. Пусть F — специальная грань гладкого d-многогранника Φ ано P. Обозначим $p_1, ..., p_n$ — радиус-векторы вершин многогранника P, причём концы векторов $p_1, ..., p_d$ — вершины грани F. Пусть веер FaceFan(P) билатерален относительно конуса $\sigma = \text{Cone}(p_1, ..., p_d)$. Тогда $\sum_{i=1}^n p_i = 0$.

Доказательство. Рассмотрим веер $\Sigma = \operatorname{FaceFan}(P)$ и обозначим его лучи $\rho_1 = \operatorname{conv}(p_1)$, ..., $\rho_n = \operatorname{conv}(p_n)$. Определим квадратную матрицу A, составленную из векторов-столбцов p_1, \ldots, p_d . Так как P — гладкий d-многогранник Фано, то A задаёт изоморфизм решётки Z^d , значит для него существует обратный изоморфизм целочисленной решётки A^{-1} . По доказанному утверждению веер $A^{-1}\Sigma$ билатерален относительно конуса $A^{-1}\sigma = \sum_{i=1}^d R_{\geq 0}(A^{-1}p_i) = \sum_{i=1}^d R_{\geq 0}e_i$. Тогда

$$\sum_{i=1}^{n} p_i = \sum_{i=1}^{d} a_i p_i, a_i \ge 0$$

$$\sum_{i=d+1}^{n} p_i = \sum_{i=1}^{d} (a_i - 1) p_i, a_i \ge 0$$

$$s := \sum_{i=d+1}^{n} A^{-1} p_i = \sum_{i=1}^{d} (a_i - 1) A^{-1} p_i = \sum_{i=1}^{d} (a_i - 1) e_i, a_i \ge 0$$
(1)

Из билатеральности имеем, что каждый вектор $A^{-1}p_i, i \in \{d+1,n\}$ лежит в отрицательном ортанте, тогда (1) даёт, что $s \in \{-1 \le x_1 \le 0\} \cap ... \cap \{-1 \le x_d \le 0\}$.

- 1) $\forall i \in \{1..d\}$ $s_i \neq 0$, потому что иначе для некоторого i $P \subset \{s_i \geq 0\}$ и какая-то грань обязана содержать начало координат, что противоречит тому, что радиус-векторы её вершин образуют базис решётки \mathbb{Z}^d .
- 2) A изоморфизм решётки \mathbb{Z}^d и координаты вершин многогранника P целочисленные, значит s есть целочисленный вектор.

Таким образом, мы получаем, что $s=(-1,...,-1)^T$, значит $\forall i\in\{1,...d\}$ $a_i=0$, то есть $\sum_{i=1}^n p_i=0$, другими словами, для многогранника P любая его грань является специальной.

Рассмотрим многогранник $\operatorname{conv}(q_1, ..., q_n)$, где $q_i = A^{-1}p_i$. $\forall i \in \{1, ..., d\}$ $q_i = e_i$, а $\forall i \in \{d+1, ..., n\}$ q_i имеет неположительные целые координаты и $\sum_{i=d+1}^n q_i = (-1, ..., -1)^T$. Итак, этот многогранник обладает следующими свойствами:

- $\forall i \in \{1, ..., d\} \ q_i = e_i$
- $\forall i \in \{d+1, \, ..., \, n\} \; \forall j \in \{1, \, ..., \, d\} \; j$ -ая координата вектора q_i равна 0 или -1.
- $\forall i \in \{d+1, ..., n\} \; \exists j \in \{1, ..., d\} \; j$ -ая координата вектора q_i равна -1.
- $\forall j \in \{1, ..., d\}$ $\exists ! i \in \{d+1, ..., n\}$ j-ая координата вектора q_i равна -1.

Пусть теперь произвольный многогранник Q с вершинами $(q_1, ..., q_n)$ обладает перечисленными свойствами. Очевидно, что веер, лучи которого соответствуют вершинам этого многогранника, является билатеральным относительно конуса $\operatorname{Cone}(q_1, ..., q_d)$. Теперь мы будем доказывать, что Q является гладким d-многогранником Фано. Для начала заметим, что эти свойства гарантируют выпуклость: каждая вершина многогранника

лежит в некоторой гиперплоскости, относительно которой все остальные вершины лежат по одну сторону. Далее, из третьего и четвёртого свойств следует, что количество его вершин n не превосходит 2d, а из первого и четвёртого свойств следует, что сумма всех вершин равна нулевому вектору, откуда следует, что начало координат лежит внутри многогранника Q. Опишем его d-1-мерные грани. Пусть вектор w задаёт грань F многогранника Q. Определим число m — количество таких вершин q многогранника Q, что

$$\langle q, w \rangle = \max_{i} \langle q_i, w \rangle.$$

и множество

$$Q_w := \{i_1 < ... < i_m | \forall k \in \{1, ..., m\} (i_k \in \{1, ..., n\} \land \langle q_{i_k}, w \rangle = \max_i \langle q_i, w \rangle)\},\$$

тогда $F = \text{conv}(\{q_i | i \in Q_w\})$. Пусть грань F(d-1)-мерна, тогда $m \geq d$. Теперь рассмотрим матрицу A, зависящую от w, размера $d \times m$, в j-ом столбце которой записан вектор q_{i_j} .

Утверждение 2. В кажедом столбце, в котором нет элементов 1 матрицы A есть элемент -1, такой что в его строке нет элементов 1.

Доказательство. Предположим противное. Пусть утверждение не выполняется для j_0 -ого столбца, тогда обозначим индексами j_1 , ..., j_l номера тех столбцов, в которых есть 1 в той же строчке, что и для некоторого элемента -1 j_0 -ого столбца. Заметим, что так как в столбцах с номерами j_1 , ..., j_l записаны векторы стандартного базиса, то других единиц в этих столбцах нет. Составим равную нулю линейную комбинацию вершин q_{i_1} , ..., q_{i_m} с неотрицательными коэффициентами, равными в сумме 1, что даст противоречие с фактом, что начало координат лежит внутри многогранника (а значит не лежит на грани). При каждом векторе вида $q_{i_{j_k}}$, $k \in \{0, ..., l\}$ будет коэффициент $\frac{1}{l+1}$, а при остальных векторах будет коэффициент 0.

Следствие. В матрице А столбцов не больше, чем строк.

Таким образом, m=d и каждая грань многогранника Q является выпуклой оболочкой ровно d вершин многогранника. Заметим также ещё одно

Следствие. Для каждого столбца без элементов 1 такой выбор элемента -1 единственнен. Другими словами, все остальные элементы -1 каждого столбца, кроме существующего по предыдущему утверждению, имеют в своих строках элемент 1.

Это следует из того, что в одной строке не может быть более одного элемента -1. Если среди векторов множества $\{q_i|i\in Q_w\}$ ровно l векторов стандартного базиса, то строк без элементов 1 столько же, сколько оставшихся столбцов матрицы, то есть m-l. Таким образом среди векторов множества $\{q_i|i\in Q_w\}$ выполняется свойство: каждая координата либо принимает значение 1, либо принимает значение -1, причём в попарно разных векторах. Обозначим v^k для $k\in\{1,...,d\}$ вектор из $\{q_i|i\in Q_w\}$, "отвечающий за k-ую координату" в указаном смысле. Для того, чтобы Q был гладким d-многогранником

Фано, осталось показать, что векторы $\{q_i|i\in Q_w\}$ порождают \mathbb{Z}^d . Для этого зададим коэффициенты разложения произвольного вектора $a\in\mathbb{Z}^d$ в линейную комбинацию столбцов матрицы A. Если $v_k^k=-1$, положим коэффициент при векторе v^k равным $-a_k$. По последнему следствию уже имеющаяся линейная комбинация будет лежать в $a+\langle\{v^k|v_k^k=1\}\rangle_{\mathbb{Z}}$, а значит существуют коэффициенты для остальных векторов v^k , такие что получившаяся линейная комбинация всех векторов v_k равна a. Таким образом, доказана

Пемма 2. Пусть произвольный многогранник Q обладает перечисленными свойствами, тогда Q — гладкий d-многогранник Φ ано, билатеральный относительно своей специальной грани $\operatorname{conv}(q_1, ..., q_d)$.

Наконец, проверим билатеральность многогранника Q относительно его произвольной грани F. Пусть вершины грани F записаны в матрицу A, как было описано выше, а a — вершина многогранника Q, не лежащая в грани F. Предположим, a — это вектор e_k стандартного базиса. Тогда $v_k^k = -1$ и коэффициент при векторе v^k равен -1. По второму следствию из утверждения 2 все остальные ненулевые коэффициенты появляются при векторах, являющихся элементами стандартного базиса, причём все так же равны -1. Теперь предположим, что a не является вектором стандартного базиса. Так как он не появляется среди столбцов матрицы A, то по свойству a каждая отрицательная координата вектора a неотрицательна в каждом столбце матрицы a, а значит обязательно равна a ровно в одном столбце матрицы a. Так как все эти столбцы имеют ровно по одной ненулевой координате, их линейная комбинация со всеми коэффициентами равными -1, даёт вектор a. Итак, в обоих случаях вектор a выражается через столбцы матрицы a с неположительными коэффициентами, то есть все векторы a лежат в отрицательном ортанте относительно вершин грани a.

3 Классы изоморфности гладких d-многогранников Фано, билатеральных относительно своих специальных граней

Из леммы 2 можно сделать вывод, что классы изоморфности многогранников Фано, билатеральных относительно некоторой своей специальной грани, являются в точности классами изоморфности многогранников, обладающих свойствами 1-4.

Построим отображение φ из множества многогранников, удовлетворяющих свойствам 1-4 в множество целочисленных решений уравнения

$$a_1 + \dots + a_d = d, \tag{2}$$

таких что $d \geq a_1 \geq ... \geq a_d \geq 0$. Для каждого $i \in \{d+1, \, ..., \, n\}$ положим

$$n_i := |\{j \in \{1, ..., d\} : (q_i)_j = -1\}|,$$

тогда образом некоторого многогранника $Q := \operatorname{conv}(q_1, ..., q_n)$ под действием отображения φ будет набор чисел n_i для $i \in \{d+1, ..., n\}\}$, дополненный нужным количеством нулей и упорядоченный по невозрастанию.

Очевидно, что многогранники, переходящие под действием φ в одно и то же решение уравнения (2), изоморфны: изоморфизм представляет из себя перестановку координат. Кроме того, для любого упорядоченного по невозрастанию целочисленного решения уравнения (2) существует многогранник, переходящий в него под действием φ . Тогда отображение φ индуцирует биекцию между классами изоморфности многогранников со свойствами 1-4 и упорядоченными по невозрастанию целочисленными решениями уравнения (2), если верна следующая лемма.

Пемма 3. Если многогранники Q_1 и Q_2 обладают свойствами 1-4 и изоморфны, то $\varphi(Q_1)=\varphi(Q_2)$.

Доказательство леммы 3. При изоморфизме многогранников Q_1 и Q_2 , удовлетворяющих свойствам 1-4, вершины переходят в вершины, а грани в грани. Значит у многогранников совпадают количества вершин и граней, а также для каждой вершины сохраняется количество граней, в которых она лежит. Пусть $\varphi(Q_1)=(a_1\geq...\geq a_d)$, $\varphi(Q_2)=(b_1\geq...\geq b_d)$. Так как количества вершин многогранников равны, то совпадает и наибольший индекс ненулевого элемента среди $\varphi(Q_1)$ и $\varphi(Q_2)$, пусть он равен k. Из построения отображения φ следует, что существует следующее разбиение множества вершин многогранника Q_1 на k подмножеств: i-ое подмножество состоит из a_i+1 вершин многогранника Q_1 и содержит вершину (обозначим её q(i)) с a_i координатами, равными -1, а остальные a_i вершин являются вершинами стандартного симплекса, единица в которых находится в тех координатах, в которых находится -1 у вершины q(i). Количество граней многогранника Q_1 , как и количество граней многогранника Q_2 , равно

$$(a_1+1)\cdot\ldots\cdot(a_k+1)=(b_1+1)\cdot\ldots\cdot(b_k+1),$$
 (3)

так как в произвольной грани многогранника Q_1 лежит ровно a_i вершин из i-ого подмножества разбиения (аналогичное верно и для Q_2).

Будем обозначать V(Q) множество вершин многогранника Q. Для $q \in V(Q_i)$ $(i \in \{1, 2\})$ определим $F_i(q)$ как количество граней многогранника Q_i , содержащих q. Для $i \in \{1, 2\}$ определим мультимножество $M_i = \{F_i(q)|q \in V(Q_i)\}$, тогда $M_1 = M_2$. Если вершина $q \in V(Q_1)$ лежит в i-ом подмножестве разбиения, то

$$F_1(q) = f_1(i) := (a_1 + 1) \cdot \dots \cdot (a_{i-1} + 1) \cdot a_i \cdot (a_{i+1} + 1) \cdot \dots \cdot (a_k + 1).$$

Аналогично определяется и $f_2(i)$.

Таким образом, M_1 состоит из дизъюнктного объединения по $i \in \{1, ..., k\}$ мультимножеств из $a_i + 1$ одинаковых чисел $f_1(i)$. Аналогично, M_2 состоит из дизъюнктного объединения по $i \in \{1, ..., k\}$ мультимножеств из $b_i + 1$ одинаковых чисел $f_2(i)$. Теперь можно считать, что M_1 и M_2 можно задать, имея исключительно наборы чисел $(a_1 \ge ... \ge a_k)$ и $(b_1 \ge ... \ge b_k)$. Докажем следующее вспомогательное утверждение индукцией по k:

Пусть даны наборы чисел $a_1 \ge ... \ge a_k \ge 1$ и $b_1 \ge ... \ge b_k \ge 1$, для которых выполняется равенство (3) и $M_1 = M_2$, тогда $\forall i \in \{1, ..., k\}$ $a_i = b_i$.

База(k = 1): $a_1 + 1 = b_1 + 1 \Rightarrow a_1 = b_1$.

Переход(k > 1): $\forall i < j \ a_i \ge a_j$. Домножим неравенство на левую часть равенства (3), поделим на $(a_i + 1)(a_j + 1)$ и получим $f_1(i) \ge f_1(j)$. Аналогично, $\forall i < j \ f_2(i) \ge f_2(j)$. Значит, в множестве M_1 максимальный элемент равен $f_1(1)$, а в множестве M_2 максимальный элемент равен $f_2(1)$, следовательно $f_1(1) = f_2(1)$. Поделим на равенство (3) и получим

$$\frac{a_1}{a_1+1} = \frac{b_1}{b_1+1}$$

Значит, $a_1 = b_1$. Если убрать из M_1 $a_1 + 1$ максимальных элементов, получится мультимножество M'_1 , строящееся по набору $(a_2 \ge ... \ge a_k)$, а если убрать из M_2 $b_1 + 1$ максимальных элементов, получится мультимножество M'_2 , строящееся по набору $(b_2 \ge ... \ge b_k)$, они также будут совпадать. Кроме того, будет выполняться

$$(a_2+1)\cdot\ldots\cdot(a_k+1)=(b_2+1)\cdot\ldots\cdot(b_k+1),$$

значит, по предположению индукции $\forall i \in \{2, ..., k\}$ $a_i = b_i$, откуда следует переход индукции. Вспомогательное утверждение доказано.

По вспомогательному утверждению получаем, что $\forall i \in \{1, ..., k\}$ $a_i = b_i$, следовательно, $\varphi(Q_1) = \varphi(Q_2)$.

Таким образом, если P — гладкий d-многогранник Фано, билатеральный относительно некоторой своей специальной грани, то P принадлежит одному из T(d) классов изоморфности, где T(d) — количество неотрицательных целых решений уравнения $x_1 + \ldots + x_d = d$, таких что $d \geq x_1 \geq \ldots \geq x_d \geq 0$.