数据库原理CH7作业

18340040 冯大纬

P357-7.30

7.30 Consider the following set F of functional dependencies on the relation schema (A, B, C, D, E, G):

$$A \to BCD$$

$$BC \to DE$$

$$B \to D$$

$$D \to A$$

- a. Compute B^+ .
- b. Prove (using Armstrong's axioms) that AG is a superkey.
- c. Compute a canonical cover for this set of functional dependencies F; give each step of your derivation with an explanation.
- d. Give a 3NF decomposition of the given schema based on a canonical cover.
- e. Give a BCNF decomposition of the given schema using the original set *F* of functional dependencies.

Answer:

a.

$$B
ightarrow BD(B
ightarrow D)$$
 (1)
 $BD
ightarrow ABD(D
ightarrow A)$
 $ABD
ightarrow ABCD(A
ightarrow BCD)$
 $ABCD
ightarrow ABCDE(BC
ightarrow DE)$
所以 $B^+ = ABCDE$

b.

$$A \rightarrow BCD$$
 (2)
 $A \rightarrow ABCD$
 $BC \rightarrow DE$
 $ABCD \rightarrow ABCDE$
 $A \rightarrow ABCDE$
 $AG \rightarrow ABCDEG$

c.

$$A o BCD$$
和 $BC o DE$ 说明 D 为第一个依赖的无关项,所以化简为 $A o BC$ $BC o DE$ $B o D$ $D o A$ 由 $BC o DE$ 和 $B o D$ 说明 D 是无关项,化简为 $A o BC$ $BC o E$ $B o D$ $D o A$ 因为 $B o D$ $D o A$ 因为 $B o D$ $D o A$ $D o B$ $O o B$

d.

由
$$c$$
题知函数的正则依赖为: $A o BC$ $B o DE$ $D o A$ 所以 $3NF$ 分解为 $\{ABC\}, \{BDE\}, \{DA\}, \{AG\}$

e.

由
$$A \to BCD$$
. 分解为 $\{ABCD\}, \{AEG\}$ (5) 因为前两个函数依赖能够推出 $A \to E$ 所以将 $\{AEG\}$ 分解为 $\{AE\}, \{AG\}$ 故 $BCNF$ 分解为 $\{ABCD\}, \{AE\}, \{AG\}$

P360-7.40

7.40 Given a relational schema r(A, B, C, D), does $A \rightarrow BC$ logically imply $A \rightarrow B$ and $A \rightarrow C$? If yes prove it, or else give a counter example.

Answer:

考虑下面这个表,符合A
ightarrow BC

А	В	С	D
a1	b1	c1	d2
a1	b2	c2	d1
a1	b1	c1	d1
a1	b2	c2	d2

很明显,为了满足 $A \to B$ 的条件 $t_1[B] = t_3[B]$,则只有如下四种可能的情况:

1.
$$t_1=r_1, t_3=r_3$$

那么 $t_3[CD]=c_1d_1$
当 $t_2=r_2$ 时, $t_2[CD]=c_2d_1$,不满足 $t_3[CD]=t_2[CD]$
当 $t_2=r_4$ 时, $t_2[CD]=c_2d_2$,不满足 $t_3[CD]=t_2[CD]$

$$2.\ t_1=r_3, t_3=r_1$$
那么 $t_3[CD]=c_1d_2$
当 $t_2=r_2$ 时, $t_2[CD]=c_2d_1$ 不满足 $t_3[CD]=t_2[CD]$
当 $t_2=r_4$ 时, $t_2[CD]=c_2d_2$ 不满足 $t_3[CD]=t_2[CD]$
3. $t_1=r_2, t_3=r_4$
那么 $t_3[CD]=c_2d_2$
当 $t_2=r_1$ 时, $t_2[CD]=c_1d_2$ 不满足 $t_3[CD]=t_2[CD]$
当 $t_2=r_3$ 时, $t_2[CD]=c_1d_1$ 不满足 $t_3[CD]=t_2[CD]$
4. $t_1=r_4, t_3=r_2$
那么 $t_3[CD]=c_2d_1$
当 $t_2=r_1$ 时, $t_2[CD]=c_1d_2$ 不满足 $t_3[CD]=t_2[CD]$
当 $t_2=r_1$ 时, $t_2[CD]=c_1d_2$ 不满足 $t_3[CD]=t_2[CD]$

所以 $A o \to B$ 不成立