

NOISE RESISTANT LOW PHASE NOISE, FREQUENCY TRACKING OSCILLATORS
AND METHODS OF OPERATING THE SAME

Inventor(s) :

Darrell Lee Ash
1707 Cartwright Drive
Sachse
Dallas County
Texas 75048
United States Citizen

Assignee:

RF MONOLITHICS, INC.
4441 Sigma Road
Dallas, Texas 75244
United States of America

CERTIFICATE OF EXPRESS MAIL	
I hereby certify that this correspondence, including the attachments listed, is being mailed in an envelope addressed to Commissioner of Patents and Trademarks, Washington, DC 20231, using the Express Mail Post Office to Addressee service of the United States Postal Service on the date shown below.	
KATHY LONGENECKER Printed Name of Person Mailing	EL 749593334 US Express Mail Receipt No.
<i>Kathy Longenecker</i> Signature of Person Mailing	
MARCH 8, 2001 Date	

William A. Munck
Daniel E. Venglarik
NOVAKOV DAVIS & MUNCK, P.C.
900 Three Galleria Tower
13155 Noel Road
Dallas, Texas 75240
(214) 922-9221

NOISE RESISTANT LOW PHASE NOISE, FREQUENCY TRACKING OSCILLATORS
AND METHODS OF OPERATING THE SAME

RELATED APPLICATION

5

The present invention is related to the subject matter of commonly assigned, copending U.S. Patent Application No. 09/_____ (Attorney Docket No. RFMI01-00213), which is incorporated herein by reference.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415

output, limits the clock speed or pulse rate for clock recovery by contributing to the required pulse width or duration for accurate operation. Additionally, the local oscillator employed in such applications should be frequency-tunable, allowing the local oscillator to be set or adjusted to a specific frequency to, for example, track frequency variations in the received clock signal. However, maintaining low phase noise and providing significant tune range for a local oscillator have proven to be conflicting objectives.

The related application identified above discloses a two port surface acoustic wave (SAW) resonator for local oscillators which provides both low phase noise and wide tune range (as compared to prior art oscillators employing SAW resonators). However, a local oscillator of the type disclosed--when employed, for example, for clock recovery in SONET applications--is typically mounted on a printed circuit board in close proximity with a number of digital devices operating at clock speeds equal to or greater than 1 gigaHertz (GHz). Noise emanating from such digital devices can interfere with operation of the local oscillator regardless of how low the internal phase noise is within the local oscillator.

There is therefore a need in the art for low phase noise local oscillators tolerant of hostile environments.

SUMMARY OF THE INVENTION

To address the above-discussed deficiencies of the prior art, it is a primary object of the present invention to provide, for use 5 in a local oscillator-driven circuit such as a phase lock loop, a technique to secure the benefits of a low phase noise, wide tune range SAW oscillator in noisy environments by employing the tunable two port SAW resonator circuit within the oscillator in differential mode, connected to a differential amplifier circuit to create a differential oscillator. In the absence of any need for ground or power supply voltage level references, low phase noise/edge jitter is maintained, due to common mode rejection, even in hostile environments while providing sufficient tune range to track small frequency changes. The resulting differential mode SAW oscillator is thus well-suited for use, for instance, in clock recovery within SONET applications.

The foregoing has outlined rather broadly the features and technical advantages of the present invention so that those skilled in the art may better understand the detailed description of the 20 invention that follows. Additional features and advantages of the invention will be described hereinafter that form the subject of the claims of the invention. Those skilled in the art should

appreciate that they may readily use the conception and the specific embodiment disclosed as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the invention in its broadest form.

Before undertaking the DETAILED DESCRIPTION OF THE INVENTION below, it may be advantageous to set forth definitions of certain words and phrases used throughout this patent document: the terms "include" and "comprise," as well as derivatives thereof, mean inclusion without limitation; the term "or," is inclusive, meaning and/or; the phrases "associated with" and "associated therewith," as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like; and the term "controller" means any device, system or part thereof that controls at least one operation, such a device may be implemented in hardware, firmware or software, or some combination of at least two of the same. It should be noted that the functionality associated with any particular controller may be centralized or distributed, whether

locally or remotely. Definitions for certain words and phrases are provided throughout this patent document, those of ordinary skill in the art should understand that in many, if not most instances, such definitions apply to prior, as well as future uses of such defined words and phrases.

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
224100
224101
224102
224103
224104
224105
224106
224107
224108
224109
224110
224111
224112
224113
224114
224115
224116
224117
224118
224119
224120
224121
224122
224123
224124
224125
224126
224127
224128
224129
224130
224131
224132
224133
224134
224135
224136
224137
224138
224139
224140
224141
224142
224143
224144
224145
224146
224147
224148
224149
224150
224151
224152
224153
224154
224155
224156
224157
224158
224159
224160
224161
224162
224163
224164
224165
224166
224167
224168
224169
224170
224171
224172
224173
224174
224175
224176
224177
224178
224179
224180
224181
224182
224183
224184
224185
224186
224187
224188
224189
224190
224191
224192
224193
224194
224195
224196
224197
224198
224199
224200
224201
224202
224203
224204
224205
224206
224207
224208
224209
224210
224211
224212
224213
224214
224215
224216
224217
224218
224219
224220
224221
224222
224223
224224
224225
224226
224227
224228
224229
224230
224231
224232
224233
224234
224235
224236
224237
224238
224239
224240
224241
224242
224243
224244
224245
224246
224247
224248
224249
224250
224251
224252
224253
224254
224255
224256
224257
224258
224259
224260
224261
224262
224263
224264
224265
224266
224267
224268
224269
224270
224271
224272
224273
224274
224275
224276
224277
224278
224279
224280
224281
224282
224283
224284
224285
224286
224287
224288
224289
224290
224291
224292
224293
224294
224295
224296
224297
224298
224299
224300
224301
224302
224303
224304
224305
224306
224307
224308
224309
224310
224311
224312
224313
224314
224315
224316
224317
224318
224319
224320
224321
224322
224323
224324
224325
224326
224327
224328
224329
224330
224331
224332
224333
224334
224335
224336
224337
224338
224339
224340
224341
224342
224343
224344
224345
224346
224347
224348
224349
224350
224351
224352
224353
224354
224355
224356
224357
224358
224359
224360
224361
224362
224363
224364
224365
224366
224367
224368
224369
224370
224371
224372
224373
224374
224375
224376
224377
224378
224379
224380
224381
224382
224383
224384
224385
224386
224387
224388
224389
224390
224391
224392
224393
224394
224395
224396
224397
224398
224399
224400
224401
224402
224403
224404
224405
224406
224407
224408
224409
224410
224411
224412
224413
224414
224415
224416
224417
224418
224419
224420
224421
224422
224423
224424
224425
224426
224427
224428
224429
224430
224431
224432
224433
224434
224435
224436
224437
224438
224439
224440
224441
224442
224443
224444
224445
224446
224447
224448
224449
224450
224451
224452
224453
224454
224455
224456
224457
224458
224459
224460
224461
224462
224463
224464
224465
224466
224467
224468
224469
224470
224471
224472
224473
224474
224475
224476
224477
224478
224479
224480
224481
224482
224483
224484
224485
224486
224487
224488
224489
224490
224491
224492
224493
224494
224495
224496
224497
224498
224499
224500
224501
224502
224503
224504
224505
224506
224507
224508
224509
224510
224511
224512
224513
224514
224515
224516
224517
224518
224519
224520
224521
224522
224523
224524
224525
224526
224527
224528
224529
224530
224531
224532
224533
224534
224535
224536
224537
224538
224539
224540
224541
224542
224543
224544
224545
224546
224547
224548
224549
224550
224551
224552
224553
224554
224555
224556
224557
224558
224559
224560
224561
224562
224563
224564
224565
224566
224567
224568
224569
224570
224571
224572
224573
224574
224575
224576
224577
224578
224579
224580
224581
224582
224583
224584
224585
224586
224587
224588
224589
224590
224591
224592
224593
224594
224595
224596
224597
224598
224599
224600
224601
224602
224603
224604
224605
224606
224607
224608
224609
224610
224611
224612
224613
224614
224615
224616
224617
224618
224619
224620
224621
224622
224623
224624
224625
224626
224627
224628
224629
224630
224631
224632
224633
224634
224635
224636
224637
224638
224639
224640
224641
224642
224643
224644
224645
224646
224647
224648
224649
224650
224651
224652
224653
224654
224655
224656
224657
224658
224659
224660
224661
224662
224663
224664
224665
224666
224667
224668
224669
224670
224671
224672
224673
224674
224675
224676
224677
224678
224679
224680
224681
224682
224683
224684
224685
224686
224687
224688
224689
224690
224691
224692
224693
224694
224695
224696
224697
224698
224699
224700
224701
224702
224703
224704
224705
224706
224707
224708
224709
224710
224711
224712
224713
224714
224715
224716
224717
224718
224719
224720
224721
224722
224723
224724
224725
224726
224727
224728
224729
224730
224731
224732
224733
224734
224735
224736
224737
224738
224739
224740
224741
224742
224743
224744
224745
224746
224747
224748
224749
224750
224751
224752
224753
224754
224755
224756
224757
224758
224759
224760
224761
224762
224763
224764
224765
224766
224767
224768
224769
224770
224771
224772
224773
224774
224775
224776
224777
224778
224779
224780
224781
224782
224783
224784
224785
224786
224787
224788
224789
224790
224791
224792
224793
224794
224795
224796
224797
224798
224799
224800
224801
224802
224803
224804
224805
224806
224807
224808
224809
224810
224811
224812
224813
224814
224815
224816
224817
224818
224819
224820
224821
224822
224823
224824
224825
224826
224827
224828
224829
224830
224831
224832
224833
224834
224835
224836
224837
224838
224839
224840
224841
224842
224843
224844
224845
224846
224847
224848
224849
224850
224851
224852
224853
224854
224855
224856
224857
224858
224859
224860
224861
224862
224863
224864
224865
224866
224867
224868
224869
224870
224871
224872
224873
224874
224875
224876
224877
224878
224879
224880
224881
224882
224883
224884
224885
224886
224887
224888
224889
224890
224891
224892
224893
224894
224895
224896
224897
224898
224899
224900
224901
224902
224903
224904
224905
224906
224907
224908
224909
224910
224911
224912
224913
224914
224915
224916
224917
224918
224919
224920
224921
224922
224923
224924
224925
224926
224927
224928
224929
224930
224931
224932
224933
224934
224935
224936
224937
224938
224939
224940
224941
224942
224943
224944
224945
224946
224947
224948
224949
224950
224951
224952
224953
224954
224955
224956
224957
224958
224959
224960
224961
224962
224963
224964
224965
224966
224967
224968
224969
224970
224971
224972
224973
224974
224975
224976
224977
224978
224979
224980
224981
224982
224983
224984
224985
224986
224987
224988
224989
224990
224991
224992
224993
224994
224995
224996
224997
224998
224999
2249999
2250000

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following 5 descriptions taken in conjunction with the accompanying drawings, wherein like numbers designate like objects, and in which:

FIGURE 1 depicts a circuit diagram for an exemplary differential mode oscillator including a two port tunable SAW resonator circuit according to one embodiment of the present invention;

FIGURE 2A illustrates in greater detail a two port SAW resonator employed within the exemplary differential mode oscillator according to one embodiment of the present invention; and

FIGURE 2B illustrates in greater detail an equivalent circuit for a two port SAW resonator employed within the exemplary differential mode oscillator according to one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIGURES 1 through 2A and 2B, discussed below, and the various embodiments used to describe the principles of the present invention in this patent document are by way of illustration only and should not be construed in any way to limit the scope of the invention. Those skilled in the art will understand that the principles of the present invention may be implemented in any suitably arranged device.

FIGURE 1 depicts a circuit diagram for an exemplary differential mode oscillator including a two port tunable SAW resonator circuit according to one embodiment of the present invention. Differential mode oscillator 100 includes a two port SAW resonator 101 having a high input I_H and a low input I_L as well as a high output O_H and a low output O_L .

FIGURE 2A illustrates in greater detail the structure of a two port SAW resonator employed within the exemplary differential mode oscillator according to one embodiment of the present invention. Two port SAW resonator 101, constructed in accordance with the known art, includes: an input transducer 200 providing a first input terminal 201 for high input I_H and a second input terminal 202 for low input I_L ; an output transducer 210 providing a first

input terminal 211 for high output O_H and a second input terminal 212 for low output O_L ; and reflectors 220.

FIGURE 2B illustrates in greater detail an equivalent circuit for a two port SAW resonator 101 employed within the exemplary differential mode oscillator according to one embodiment of the present invention. Within the frequency range of interest, the equivalent circuit of two port SAW resonator 101 includes a series resonator comprising a motional inductance L_M , a motional capacitance C_M and a motional resistance R_M all connected in series. The series resonator is coupled to the inputs I_H and I_L and the outputs O_H and O_L by one-to-one, non-phase shifting transformers T_1 and T_2 . "Stray" capacitances C_{o1} and C_{o2} , each formed by the internal parasitic and package capacitance (and any other unintentional capacitance) of the SAW resonator 101 as seen from one of the pairs of inputs I_H and I_L or outputs O_H and O_L , are each connected across the respective inputs I_H and I_L and outputs O_H and O_L in parallel with transformers T_1 and T_2 , respectively.

As disclosed in the related application, SAW resonator 101 is made tunable by connecting at least one inductance $L1$ across at least one of the pairs of inputs I_H and I_L or outputs O_H and O_L (across inputs I_H and I_L in the exemplary embodiment). The inductance-a center-tap inductor with a DC return for varactors D1

and D2 in the example shown--is thus connected in parallel with the stray capacitances C_{o1} , and is sized to effectively tune out (i.e., resonate with) stray capacitance C_{o1} at the desired operational frequency. An additional inductance may optionally be connected 5 across the outputs O_H and O_L , sized to effectively tune out stray capacitances C_{o2} . An inductance may be serially-connected within one or both of the differential signal lines to an input I_H or I_L , an output O_H and O_L , or both, and sized to effectively tune out stray capacitance(s) C_{o1} and/or C_{o2} .

10 By tuning out stray capacitance(s) C_{o1} and/or C_{o2} , access is gained to the series resonator formed by motional inductance L_M , motional capacitance C_M and motional resistance R_M , permitting direct tuning of the frequency at which the series resonator resonates. Variable capacitances D1 and D2, which are varactor 15 diodes in the exemplary embodiment, are each connected to one of inputs I_H and I_L for this purpose. With stray capacitance C_{o1} tuned out, capacitances D1 and D2 alter the resonant frequency of the series resonator circuit formed by the series resonator within the equivalent circuit for the SAW resonator 101 and variable 20 capacitances D1 and D2. Accordingly, as the capacitance of tuning capacitances D1 and D2 decreases, the center frequency for the passband of the differential resonator circuit employing two port

SAW resonator 101 increases. The desired tune range is thereby achieved with--because a high Q SAW device is employed--inherent low phase noise. If an inductance is employed coupled to the outputs O_H and O_L of SAW resonator 101, additional variable tuning 5 capacitances (not shown) may be coupled to the outputs O_H and O_L .

To produce a high Q SAW device, the motional capacitance C_M should provide a high capacitive reactance, and therefore should be a very small capacitance on the order of femtoFarads (fF). For 10 SONET clock recovery applications, some of which require a resonant frequency of 622 megaHertz (MHz), a motional inductance L_M on the order of milliHenrys (mH) is required. The stray capacitances C_{o1} and C_{o2} are (both) typically on the order of 1-2 picoFarads (pF). Accordingly, unless the stray capacitances C_{o1} and C_{o2} are tuned out by parallel inductance L_1 as described above, efforts to form a 15 directly tunable series resonator circuit with the series resonator within the equivalent circuit of the SAW resonator 101 by altering one or more capacitances connected in series with the SAW resonator 20 101 (such as variable tuning capacitances D_1 and D_2) will have no effect on the motional capacitance C_M of the series resonator due to the difference in magnitudes of the stray capacitances C_{o1} and C_{o2} and the motional capacitance C_M .

Although necessarily small to achieve the desired resonant

frequency and a high Q, the motional capacitance C_M employed for a single pole, two port SAW resonator 101 of the type disclosed should be as large as possible to allow tuning capacitances D1 and D2 to significantly impact the series resonator and provide
5 acceptable tune range. With a high impedance SAW resonator providing insertion loss on the order of 10 decibels (dB), the required motional capacitance is too small to be tuned. However, by utilizing an optimized, low impedance SAW resonator, the same Q may be achieved using a larger motional capacitance C_M . A suitable
10 value for the motional capacitance C_M is approximately 0.6 fF for a 622 MHz center frequency. A motional capacitance C_M of approximately half that value would significantly reduce the tune range. For a motional capacitance C_M of approximately 0.6 fF, a center tap inductor L1 having a total inductance of 56 nanoHenrys
15 (nH) and tuning capacitances D1 and D2 having tuning ranges of approximately 2.0-0.4 pF may be employed.

In the exemplary embodiment, resistor R1 provides a direct current (DC) return through the center-tap of inductor L1 for biasing the varactors D1 and D2 while V_{TUNE} , through series resistors
20 R2 and R3, biases (and sets the capacitance values for) varactor diodes D1 and D2.

A tunable SAW resonator circuit 102 is thus formed by SAW

resonator 101, inductor L1, varactor diodes D1 and D2, and resistors R1, R2 and R3. In the exemplary embodiment, resistors R1, R2 and R3 each have a resistance of approximately 10 kiloOhms (k Ω). Capacitors C1, C2, C6 and C7, which are direct current (DC) blocking capacitors, each have a capacitance of about 100 picoFarads (pF). As noted above, however, additional inductances and variable tuning capacitances may be coupled to the outputs O_H and O_L of SAW resonator 101. Moreover, an inductance may be connected in series (with one of tuning capacitances D1 or D2) to one of the inputs I_H or I_L (or in series with one of the outputs O_H or O_L) and, if appropriately sized, approximately tune out the stray capacitance(s). A combination of series-connected and shunt inductances may also be employed to tune out the stray capacitance(s).

In order to tolerate hostile and/or noisy environments, the two port SAW resonator 101 in the present invention is employed in a differential mode. SAW resonator 101 is balanced, with no requirement that either input or output be either grounded or connected to a power supply voltage. Accordingly, a commercially-available differential amplifier circuit 110, designed for Pierce oscillators and including three differential amplifiers 111, 112 and 113 in the example shown, may be connected to the tunable SAW

resonator circuit to create differential oscillator 100. Differential mode oscillator 100 provides common mode rejection, with the level of common mode rejection--typically on the order of 30 decibels (dB)--being determined by the degree of balance within 5 the oscillator loop. This common mode rejection provides substantial noise immunity in hostile environments. Differential mode oscillator 100 preferably employs positive emitter coupled logic (PECL) signal levels.

For SONET applications, both clock and inverse clock signals 10 are usually desired. With a differential oscillator 100 in accordance with the present invention, generating both signals is simplified. Additionally, both output ports 102a and 102b may be employed separately as single-ended signals driving separate loads at power levels of +2 decibels with respect to a milliWatt (dBm).

The differential mode oscillator 100 of the present invention 15 does not have any critical tuning elements. Variances, such as manufacturing variances, in the sizes of inductance L1, the stray capacitances C_{01} and C_{02} , and tuning capacitances D1 and D2 may be tolerated without significant performance degradation. For example, the tuning capacitances D1 and D2 within the exemplary 20 embodiment need only have a capacitance of between 4 picoFarads (pF) and 2 picoFarads for low voltages, and less than approximately

0.4 pF for high voltages. The performance of oscillator 100 is almost entirely dependent on the SAW resonator characteristics, with no other critical requirements other than greater than unity gain, which is easily provided by a high gain amplifier.

5 The differential mode SAW oscillator 100 of the present invention, which is a voltage controlled SAW oscillator (VCSO), may be advantageously employed within the phase lock loop (PLL) of a clock recovery circuit, particularly for SONET applications. SAW oscillator 100 exhibits very low phase noise and edge jitter while providing sufficient tune range to track slight changes (error) in frequency during operation, allowing for manufacturing variances, and accommodating temperature variations.

10 Although the present invention has been described in detail, those skilled in the art should understand that they can make various changes, substitutions and alterations herein without departing from the spirit and scope of the invention in its broadest form.