

Project: MSS60 Module: LFR

Page 1 of 27

Project: MSS54

Module: Idle control in moment structure

	Department	Date	name	Filename
Editor ZS-M	-57 16.04.20	135		LFR.DOC

Project: MSS60 Module: LFR

Page 2 of 27

Changes:

version	Date	comment
r300	1.6.04	takeover of MSS54 project
r360	January 23, 2005	document revised
r360	21.08.05	rm: P-part of the LL controller changed to 4-quadrant operation

	Department	Date	name	Filename
Editor ZS-M	- I-57 16.04.20	135		LFR.DOC

Project: MSS60 Module: LFR

Page 3 of 27

Table of contents

1 OVERVIEW IDLE SPEED CONTROL	4
2 TARGET SPEED CALCULATION	6
3 IDLE CONTROL	8
3.1 PD COMPONENT OF THE IDLE SPEED CONTROLLER	8
3.2 I-PART OF THE IDLE SPEED CONTROLLER	11
3.3 IGNITION ANGLE STABILIZATION OF THE IDLE REGULATOR	15
4 ADAPTATION OF LOSS MOMENT	18
4.1 Adaptation conditions	18
4.2 States of demand adaptation	19
4.3 Calculation steps of demand adaptation	24
4.4 Data of demand adaptation	26
4.5 Non-volatile storage	27
4.0 Non voicine storage	Z1

	Department	Date	name	Filename
Editor ZS-M	57 16.04.201	35		LFR.DOC

Project: MSS60 Module: LFR

Page 4 of 27

FUNCTIONALITY

The module described here describes all functions related to idle control via torque manager.

1 OVERVIEW IDLE CONTROL

The entire idle control is shown schematically in Figure 1 - Overview of idle control - shown.

It consists of the submodules

- Target speed calculation
- idle control
- Adaptation loss torque
- ZWD control

Unless explicitly stated in the description of the sub-modules, the idle control is active in all operating states of the MSS54. The interpolation of the characteristic curves/characteristic maps with slowly changing input variables takes place in the background. Otherwise, the idle control is calculated synchronously in 20 ms intervals.

	Department	Date	name	Filename
Editor ZS-M	-57 16.04.20	135		LFR.DOC

Project: MSS60 Module: LFR

Page 5 of 27

Figure 1: Overview of idle control

	Department	Date	name	Filename
Editor ZS-M	I-57 16.04.20	135		LFR.DOC

Project: MSS60 Module: LFR

Page 6 of 27

2 TARGET SPEED CALCULATION

The target speed is the reference variable for the PID controller of the idle speed control. Figure 2 gives an overview of the target speed calculation.

Figure 2: Calculation of the target speed

Departm	nent Date	name	Filename
Editor ZS-M-57 16.04	4.20135		LFR.DOC

Project: MSS60 Module: LFR

Page 7 of 27

The target speed is the maximum of the stationary target speed "Ifr_nstat" and the tracked target speed "Ifr_nnachf".

The stationary target speed is calculated as follows:

In the operating state "Engine_standstill" or "Start"

Ifr_nstat =KL_LFR_NSOLL_START; Target speed during start = f(tmot)

In all other operating conditions

Ifr_nstat =Maximum from

KL_LFR_NSOLL_GRUND; Basic characteristic curve target speed = f(tmot)

K_LFR_NSOLL_AC The ; Target speed for air conditioning readiness

tracked target speed corresponds to the current engine speed weighted with the factor K_LFR_NNACHF_FAKTOR, whereby the factor can be between 0 and 0.997. The tracked target speed is limited to the value K_LFR_NNACHF_MAX.

If the stationary speed is greater than the tracked speed, it is filtered via a pt1 filter with the filter time constant lfr_znsoll, which is calculated from the characteristic curve KL_LFR_TAU_NSOLL. If the tracked speed is used as the target speed, this filter is bypassed.

cat heaters

The idle speed offset after starting is determined from the characteristic curve KL_LFR_N_OFFSET over the engine temperature at start. The offset remains constant for K_T_SEIT_START, after which it is ramped down to zero.

data of the target speed calculation

Description of the variables:

Name	Description	Type Resolution
lfr_n.n_stat	stationary target speed	uw 1 rpm
Ilr_ios_nsoll	Target speed via DS2	uw 1 rpm
lfr_n.n_soll	resulting, filtered target speed	uw 1 rpm
lfr_n.tau_nsoll	time constant for target speed filter	ub 1 rpm

Description of the application data:

name	type	Dim. x-ax	is	y-axis
KL_LFR_NSOLL_START	KL	3 x 1	tmot - cooling water temp.	
KL_LFR_NSOLL_GRUND	KL	4 x 1	tmot - cooling water temp.	
K_LFR_NSOLL_AC	K		-	
K_LFR_NSOLL_VANOS	K		-	
K_LFR_NNACHF_FAKTOR	K		-	
K_LFR_NNACHF_MAX	K			
KL_LFR_TAU_NSOLL	KL	11114x1	tmot - coolant temp.	

	Department	Date	name	Filename
Editor ZS-M-5	7 16.04.20135			LFR.DOC

Project: MSS60 Module: LFR

Page 8 of 27

3 IDLE CONTROLLER

The idle speed control is carried out via torque interventions, ie the output of the controller is a torque request and no longer a filling request.

The idle controller is a PID controller (proportional, integral, differential controller), whereby the PD component is contained in the new 4-quadrant map KF_LFR_PD.

The I-controller remains structurally the same as MSS50, with the addition of falling speed and $n < |fr_nsol| + K_LFR_DN_EINGEREGELT$ an I-component lead, which can increase the I-component of the controller once by $|fr_i| = f(dn)$. The input variable of the controller is the deviation of the actual speed from the target speed.

speed difference Ifr_dn = target speed - Ifr_nsoll actual speed = r n

A positive speed difference means that the engine speed is too low in relation to the target speed. A negative speed difference means that the engine speed is too high.

To support the control of the idle speed via the air supply, the LFR also intervenes in the ignition angle path using the PD component. In addition, ignition angle stabilization from the idle control can be taken into account.

3.1 PD COMPONENT OF THE IDLE CONTROLLER

The PD component is calculated from the KF_LFR_PD map and depends on the speed difference between the target and actual speed as well as the speed gradient "d_n" (1st derivative). It is calculated synchronously in 20 ms increments.

The previous D-controller as well as the associated characteristic curve KL_LFR_I_AUF and the old P-component via the characteristic curve KL_LFR_DQP_POS are no longer required!

The applicable constant K_LFR_CONTROL can be used to control the various controller components activated or deactivated:

symbolic constants:

PID-active PD-active

PID+Adapt.active PID+Adapt.+TZ I-active I+Adapt.active I+Adapt.+TZ active

	Department	Date	name	Filename
Editor ZS-M-57	16.04.20135			LFR.DOC

Project: MSS60 Module: LFR

Page 9 of 27

Application note P(D) controller:

The P component is calibrated after the I component is calibrated. At speeds lower than the idle target speed (lfr.dn>0), the torque is increased (if LFR_MDPD>0); at speeds higher than the idle target speed, the torque is reduced.

Figure 3: Overview of idle control

	Department	Date	name	Filename
Editor ZS-M	-57 16.04.20	135		LFR.DOC

Project: MSS60 Module: LFR

Page 10 of 27

I-Regler

	Department	Date	name	Filename
Editor ZS-M	-57 16.04.20	135		LFR.DOC

Project: MSS60 Module: LFR

Page 11 of 27

3.2 I-PART OF THE IDLE SPEED CONTROLLER

When calculating the I component, a distinction must be made between different operating states of the I controller. These are the states:

- I-controller stop: B_LFR_STOP

The I component is set to zero.

- Idle control: B_LFR

The I controller is active

Ifr_mdi t = Ifr_mdi t-1 + dmdi

additionally lfr_i_afr = lfr_i_afr-KL_DABR_AFR

throttled down to zero

- Starting control: B_AFR

The part from the start-up control:

lfr_i_afr = lfr_i_afr + KL_LFR_DI_AFR (d_nlfr)

The I-controller portion is for

n<lfr_nsoll frozen otherwise throttled down lfr_mdi = lfr_mdi - f(dn)

- Integrator control range 1: B_IA

The I component is set to zero via a pt1 filter with

the time constant K_LFR_TAU_IA1.

The part from the start-up control is regulated:

 $Ifr_i_afr = Ifr_i_afr - K_LFR_DIAFR_ABR$

- Integrator control area 2: B_IA2

The I component is guided to the maximum of Ifr_uew and zero via a pt1 filter with the time constant K_LFR_TAU_IA2. The variable Ifr_reg.uew is the I component at the time of the state transition from

idle control to start-up control.

The time constant depends on S_KS:

set at S_KS (power connection)

 $K_LFR_TAU_IA2 = K_LFR_TAU_IA2_KS$

not set at S_KS (no frictional connection)
K_LFR_TAU_IA2 = K_LFR_TAU_IA2_KKS

The part from the start-up control is regulated:

Ifr_i_afr = Ifr_i_afr - K_LFR_DIAFR_ABR

	Department	Date	name	Filename
Editor ZS-M-	57 16.04.20135			LFR.DOC

Project: MSS60 Module: LFR

Page 12 of 27

Within the state B_LFR there are special cases:

- the idle speed is undercut by the value K_LFR_NDIFF_RESET and is too If the I component is negative at this point, it is immediately set to zero (B_LFR_RESET).
- the filling rf falls below the minimum filling threshold lfr_reg.rf_min, calculated from KL_LFR_RF_MIN = f(tmot), a further reduction of the I component is blocked (B_LFR_NEGSTOP).
- to prevent the speed from diving after the engine starts,
 If B_MD_NACHSTART is set, a reduction of the I component is also blocked.

	Department	Date	name	Filename
Editor ZS-M-	57 16.04.2013	35		LFR.DOC

Figure 4 shows the state diagram and the transition conditions for the idle controller.

Figure 4: Idle speed controller state diagram

	Department	Date	name	Filename
Editor ZS-M	-57 16.04.20	135		LFR.DOC

Project: MSS60 Module: LFR

Page 14 of 27

State transitions of the idle controller:

Transition idle control ÿ start-up control

 $B_LFR_AFR =$ (B_TL or B_VL

or (B_LL and S_GANG))

and !B_SA

Transition from start-up control to idle control

 $B_AFR_LFR = B_LL$

and !S_GANG) and !B_SA

Transition start-up control ÿ Integrator de-control area 1

B_AFR_IA1 = !B_ML

and $n > Ifr.n_soll + K_LFR_DN_HYS$

Transition start-up control ÿ Integrator de-control area 2

B_AFR_IA2 = !B_ML

and $n > Ifr.n_soll + K_LFR_DN_HYS$

Transition Integrator de-control area 1ÿ Start-up control

B_IA1_AFR = B_ML

and $n < Ifr.n_soll + K_LFR_DN_HYS$

Transition Integrator de-control area 2ÿ Start-up control

 $B_IA2_AFR = and$ B_ML

n < Ifr.n_soll + K_LFR_DN_HYS

Transition Integrator Control Area 2 ÿ Area 1

 $B_IA2_IA1 = B_ML$

and B_SA

Transition Integrator de-control area 2 ÿ Idle control

B_IA2_LFR = B_LL

and !S_GANG and !B_SA

Transition Integrator de-control Range 1 ÿ Idle control

 $B_IA1_LFR = B_LL$

and !S_GANG

and !B_SA

Transition idle control ÿ Integrator de-control area 1

B_LFR_IA1 = B_SA

The I component can be set to zero for test or application purposes using BIT_I_REGLER_ON (bit 1) in the constant K_LFR_CONTROL.

	Department	Date	name	Filename
Editor ZS-M-	57 16.04.2013	5		LFR.DOC

Project: MSS60 Module: LFR

Page 15 of 27

3.3 IGNITION ANGLE STABILIZATION OF THE IDLE REGULATOR

The TZ component is calculated from the characteristic curve KL_LFR_TZ_POS/NEG and depends on the amount of the speed difference between the target and actual speed. It is calculated synchronously in 20 ms. It provides a torque correction lfr.md_tz. proportional to the detected speed gradient.

The TZ component of the idle controller is active under the following conditions:

```
BIT\_TZ\_REGLER\_ON \, (BIT \, 4) \, set \, in \, K\_LFR\_CONTROL and Operating \, state = Motor\_running \, (B\_ML) and (S\_GANG = no \, power \, transmission or S\_GANG = power \, transmission \, and \, v <= K\_LFR\_V\_MAX \, )
```

When calculating the TZ share, two cases must be distinguished:

- Speed too low (Ifr_dn > 0)

```
Ifr.md_tz = f(KL_LFR_TZ_POS)
```

- Speed too high (lfr_dn < 0)

Engine state idling:

 $Ifr.md_tz = f(KL_LFR_TZ_NEG)$

otherwise Ifr.md_tz = 0

	Department	Date	name	Filename
Editor ZS-M-	57 16.04.2013	5		LFR.DOC

Project: MSS60 Module: LFR

Page 16 of 27

idle speed controller data

Description of the variables:

name	Description Speed	Type Resolution	
lfr_dn	difference P-component	sw 1 rpm	
lfr_mdp	I-	sw [1/10*8] Nm	
lfr_mdi		sw [1/10*16] Nm	
lfr_i_afr	component Component from the AFR	sw [1/10*16] Nm	
lfr_i_auf	control I-component derivative with rapidly falling	sw [1/10*16] Nm	
md_lfri	n I-component of the LL controller for torque m.	sw [1/10] Nm	
md_lfrp	PD component of the LL controller for torque m.	sw [1/10] Nm	
md_lfr_tz	ZWpart of the LL controller for torque m.	sw [1/10] Nm	
lfr_zustand	status information LFR	uc	
	Bit 0: B_LFR_STOP		
	1: B_LFR		
	2: B_ALFR	1 1	
	3: B_IA1	1 1	
	4: B_IA2		
lfr_flags	internal flags of the LFR	uc	
_	Bit 0: Flag for starting air mass (Qvs)	1 1	
	1: Time monitoring B_KO active	1 1	
	2: B KO was last active	1 1	
	4: B LFR NEGSTOP	1 1	
	5: B_LFR_HALT		
Ifr_uew	I-component at the end of the idle control	sw 1/256 kg/h	
lfr_tlmin	minimum load for negative stop	uw 1 µs/rev.	

	Department	Date	name	Filename
Editor ZS-M	-57 16.04.20	135		LFR.DOC

Project: MSS60 Module: LFR

Page 17 of 27

Description of the application data:

name	type	Dim. x-a	xis	y-axis
KL LFR DMDP POS	KL	16 x 1	Ifr.dn - speed deviation	
KL LFR DI AFR	KL	16 x 1 lfr.c	n - speed deviation. 16 x 1 Ifr.dn -	
KL LFR TZ POS	KL	speed dev	iation. 16 x 1 lfr.dn - speed	
KL LFR DABR AFR	KL	deviation.	15 x 8 PD component 16 x 1 lfr.dn	
KF_LFR_PD	KF	- speed de	viation. 15 x 8	
KL LFR TZ NEG	KL	lfr.dn - spe	ed deviation.	
KF_LFR_DMDI	KF			d_n40 speed gradient
K LFR MDREG MIN	K	1	Min. limit LFR-I share	
K LFR MDREG MAX	K		max. limit. LFR-I share	
K LFR MD REG MIN	K	11	min. limit. LFR-I +AFR portion	
K LFR MD REG MAX	K	3	Max.Limit LFR-I +AFR-Share	
K LFR MDAFR MAX	K		Max. limit AFR share	-
KL LFR RF MIN	KL	114x	tmot - cooling water temp.	
K LFR NDIFF RESET	K			
K LFR DIAFR ABR	K	111		
K LFR DN EINGEREGELT	K	1		
K LFR UEW MIN	K			
K LFR TAU IA1	K	11		
K LFR TAU IA2 KS	K	1		
K LFR TAU IA2 KKS	K	1		
K LFR V MAX	K	1		
KL LFR TZ NEG	KL	16x1	lfr.dn - speed deviation lfr.dn -	
KL LFR_TZ_POS	KL	16x1	speed deviation	

	Department	Date	name	Filename
Editor ZS-M	-57 16.04.20	135		LFR.DOC

Project: MSS60 Module: LFR

Page 18 of 27

4 adaptation loss moment

The demand adaptation learns the different friction losses of the engine + auxiliary units system. For the adaptation, only the air conditioning compressor is included in the auxiliary units. Since the engine is sometimes operated without the air conditioning compressor switched on, the adaptation must take the different load conditions into account.

When idling without the air conditioning compressor, an adaptation is carried out which only learns the change in the load torque of the engine (base load change of the engine corresponds to a change in the internal friction of the engine due to, for example, wear or different oil viscosity).

If the air conditioning compressor is switched on, the base load change remains the same; new load changes are mainly caused by the air conditioning compressor. Therefore, a further factor is now adapted in addition to the base load change.

This adaptation will usually be significantly faster than the base load adaptation, since the compressor load in controlled compressors (depending on the quality of the load feedback of the compressor) changes more quickly than the engine base load (determined by mechanical friction and oil viscosity).

4.1 adaptation conditions

To activate demand adaptation, the following conditions must be met:

B_LFRA = B_LFR ; Idle control active state (see LFR state machine)

(See Li IX State Machine)

and tmot > K_LFR_TMOT_ADAPT; engine temperature greater than threshold

and !B_TMOT_FEHLER and ! ; error-free tmot recording B_LFR_IBEGR ; Integrator is not in a

limitation

In the following documentation, these conditions are summarized in the condition B_LFRA (LFR demand adaptation).

During the development and test phase, the complete demand adaptation (B_LFRA_ENABLED) can be switched off via bit 2 in the control byte K_LFR_CONTROL. All adaptation values are then equal to zero.

B_LFRA_ENABLE = 1 demand adaptation released B_LFRA_ENABLE = 0 demand adaptation switched off

	Department	Date	name	Filename
Editor ZS-M	-57 16.04.201	35		LFR.DOC

Module: Idle control

Page 19 of 27

4.2 States of demand adaptation

The control of demand adaptation can be described as a state machine with seven states.

Project: MSS60

Figure 5: State machine of demand adaptation

	Department	Date	name	Filename
editor	EE-26	April 16, 2013	Frank	LFR.DOC

Project: MSS60 Module: Idle control

Page 20 of 27

adaptation inactive

Condition: B_LFRA not fulfilled

Mark: Ila_flags = 0 (inactive)

Ila_kflags = 0 (inactive)

Adaptation values: Ila_mdadapt (t) = Ila_mdadapt (t - 20 ms)

lla_kmdadapt (t) = lla_kmdadapt (t - 20 ms)

Lock time monitoring for LFRA without K0 active

Condition: B_LFRA fulfilled

and !B_KO and Ila_timer !=0

(Lockout period not yet expired

Mark: Ila_flags = 1 (lock time)

Ila_ko_flags = 0 (inactive)

Adaptation values: Ifra_mdadapt (t) = Ila_mdadapt (t - 20 ms)

Ila_kmdadapt (t) = Ila_kmdadapt (t - 20 ms)

Adaptation running (without K0)

Condition: B_LFRA

and !B K0

and Ila_timer == 0 (lock time expired)

and | Ila_mdadapt - Ila_mdstart | ÿ K_LFR_DMDADAPT_MAX

(adaptation path not limited)

Mark: Ila_flags = 3 (adapted)

Ila_kflags = 0 (inactive)

Adaptation values: lla_mdadapt (t) = lla_mdadapt (t - 20 ms) + (lfr_mdi(t - 20 ms) +

K_LFR_MDADAPT_OFFSET) * K_LFR_TAU_ADAPT

(without taking into account any limitation) lla_kmdadapt (t) = lla_kmdadapt (t - 20 ms)

		No.		
	Department	Date	name	Filename
editor	EE-26	April 16, 2013	Frank	LFR.DOC

Project: MSS60 Module: Idle control

Page 21 of 27

adaptation value (without K0) limited

Condition: B_LFRA

and !B_KO

and Ila_timer == 0

and | Ila_mdadapt - Ila_mdstart | > K_LFR_DMDADAPT_MAX

(adaptation path limited)

Mark: Ila_flags = 7 (limited)

Ila_kflags = 0 (inactive)

Adaptation values: Ila_mdadapt (t) = Ila_mdstart ÿ K_LFR_DMDADAPT_MAX

lla_kmdadapt (t) = lla_kmdadapt (t - 20 ms)

Note: If the difference between the calculated adaptation value and the starting value at the beginning of the

adaptation phase becomes smaller than the maximum adaptation path, the system switches back to the

"Adaptation in progress" state.

	Department	Date	name	Filename
editor	EE-26	April 16, 2013	Frank	LFR.DOC

Project: MSS60 Module: Idle control

Page 22 of 27

Lock time monitoring for LFRA with K0 active

Condition: B_LFRA fulfilled

and !B_KO and Ila_timer !=0

(Lockout period not yet expired

Mark: Ila_flags = 1 (lock time)

lla_kflags = 0 (inactive)

Adaptation values: Ila mdadapt (t) = Ila mdadapt (t - 20 ms)

lla_kmdadapt (t) = lla_kmdadapt (t - 20 ms)

Adaptation running (with K0)

Condition: B_LFRA

and <code>!B_K0</code>

and Ila timer == 0 (lock time expired)

and | Ila_mdadapt - Ila_mdstart | ÿ K_LFR_DMDADAPT_MAX

(adaptation path not limited)

Mark: Ila_flags = 3 (adapted)

Ila_kflags = 0 (inactive)

Adaptation values: Ila_ko_mdadapt (t) = Ila_kmdadapt (t - 20 ms) +

K_LFR_MDADAPT_OFFSET) * K_LFR_TAU_ADAPT

(without taking into account any limitation)

lla_mdadapt (t) = lla_mdadapt (t - 20 ms) + (lfr.mdi(t - 20 ms)

adaptation value (with K0) limited

Condition: B LFRA

and !B KO

and IIa_timer == 0

and | Ila_mdadapt - Ila_mdstart | > K_LFR_DMDADAPT_MAX

(adaptation path limited)

Mark: Ila_flags = 7 (limited)

Ila_kflags = 0 (inactive)

	Department	Date	name	Filename
editor	EE-26	April 16, 2013	Frank	LFR.DOC

Project: MSS60 Module: Idle control

Page 23 of 27

Adaptation values: Ila_kmdadapt (t) = Ila_kmdadapt (t - 20 ms)

lla_mdadapt (t) = lla_mdstart ÿ K_LFR_DMDADAPT_MAX

For all states applies

Initial value of demand adaptation:

Ifr_mdadaption (t) = Ifra_mdadapt(t) = , if !B_KO

lla_mdadapt(t)

+ Ila_kmdadapt (t) , if B_KO

Correction of the integrator component lfr.mdi of the idle control

when compressor activation is inactive

 $Ifr_mdi(t) = Ifr_mdi(t)$

- (lla_mdadapt (t) - lla_mdadapt (t - 20 ms))

when compressor activation is active

Ifr_mdi (t) = Ifr_mdi (t)

- (lla_kmdadapt (t) - lla_kmdadapt (t - 20 ms))

		No.	0	
	Department	Date	name	Filename
editor	EE-26	April 16, 2013	Frank	LFR.DOC

Project: MSS60 Module: Idle control

Page 24 of 27

4.3 Calculation steps of demand adaptation

Figure 6: Block diagram of the LFR adaptation

	Department	Date	name	Filename
editor	EE-26	April 16, 2013	Frank	LFR.DOC

Project: MSS60 Module: Idle control

Page 25 of 27

integrator

If the active condition for the adaptation integrator is fulfilled (B_LFRA fulfilled and blocking time expired), a new integration cut for the current adaptation mode (B_K0 or !B_K0) is calculated synchronously every 20 ms:

```
Imdadapt (t) = mdadapt (t-20 ms) 
+ ([fr_mdi (t - 20 ms) + K_LFR_MDADAPT_OFFSET) 
K_LFR_TAU_ADAPT
```

limiting the adaptation path

A maximum adaptation path of \ddot{y} K_LFR_DMDADAPT_MAX is possible per adaptation phase. An adaptation phase begins when the condition B_LFRA = fulfilled is recognized and ends as soon as this condition is no longer fulfilled. A change in the condition B_K0 or a retriggering of the blocking time does not lead to a new adaptation phase.

At the beginning of the adaptation phase, the two adaptation values Ifra_mdadapt and Ila_kmdadapt are saved in the variables Ila_mdstart and Ila_kmdstart. During the adaptation phase, the current adaptation value is then set to the value ..._mdstart \ddot{y}

K_LFR_DMDADAPT_MAX limited.

limiting the adaptation values

The resulting adaptation value for inactive compressor activation is set to -

K_LFR_DMDADAPT_MAX, K_LFR_DMDADAPT_MIN which for active compressor switching is limited to the values K_LFR_MDADAPT_K0_MAX and K_LFR_MDADAPT_K0_MIN.

initial value of demand adaptation

The output value of the adaptation Ifr_mdadaption, which is added to the pre-control value of the idle control, is always calculated - regardless of the condition B_LFRA and is composed as follows:

Correction of the integration component of the idle controller

The LFR demand adaptation must not change the air specification of the idle control lfr_mdsoll, but only transfer a correction offset from the I component of the idle controller lfr_mdi to the adaptation value lfr_mdadaption. This means that with each change in the adaptation value, the I component lfr_mdi must be corrected by this amount.

	Department	Date	name	Filename
editor	EE-26 16.0	04.2013	.Frank	LFR.DOC

Project: MSS60 Module: Idle control

Page 26 of 27

4.4 Data of demand adaptation

Description of the variables:

name	Description	type	resolution
lla timer	remaining adaptation blocking time	uw	0.02 sec.
lla.mdadapt	Value of the adaptation integrator without compressor activation	sw	1/256 kg/h
lla.mdstart	Value of the adaptation integrator at the beginning of a new adaptation phase (without K0)	sw	1/256 kg/h
lla.flags	Flags for adaptation without compressor activation Value 0: Adaptation inactive Value 1: Lockout time running Value 3: adapted Value 7: Adaptation path limited	uc	
lla_kmdadapt	Value of the adaptation integrator with compressor activation	sw	1/256 kg/h
lla_kmdstart	Value of the adaptation integrator at the beginning of a new adaptation phase (with K0)	sw	1/256 kg/h
lla_kflags	Flags for adaptation with compressor activation Value 0: Adaptation inactive Value 1: Lockout time running Value 3: adapted Value 7: Adaptation path limited	uc	

Description of the application data:

name	type	Meaning
K_LFR_MDADAPT_OFFSET	FW	adaptation offset for integrator component
K_LFR_TAU_ADAPT	FW	time constant for demand adaptation
K LFR DMDADAPT MAX	FW	max. adaptation path per adaptation phase
K LFR T ADAPT	FW	adaptation blocking time
K_LFR_MDADAPT_MIN	FW	lower adaptation value limit (without K0)
K LFR MDADAPT MAX	FW	upper adaptation value limit (without K0)
K LFR MDADAPT KO MIN	FW	lower adaptation value limit (with K0)
K LFR MDADAPT KO MAX	FW	upper adaptation value limit (with K0)
K LFR TMOT ADAPT	FW	temperature threshold for demand adaptation

	Department	Date	name	Filename
editor	EE-26 16.0	4.2013	.Frank	LFR.DOC

Project: MSS60 Module: Idle control

Page 27 of 27

4.5 Non-volatile storage

and

In the control unit's run-on phase, the current values

lla_mdadapt lla_kmdadapt

the demand adaptation is stored non-volatilely in the E2PROM of the control unit

In the initialization phase, the current adaptation values are preset with the stored values. If data is lost from the E²PROM, the adaptation values are preset with the value zero.

	Department	Date	name	Filename
editor	EE-26 16 0	4.2013	.Frank	LFR.DOC