Operating Systems: Introduction

Neerja Mhaskar

Department of Computing and Software, McMaster University, Canada

Acknowledgements: Material based on the textbook Operating Systems Concepts (Chapter 1)

What is an Operating System?

- An Operating system is a program that
 - Manages a computer's hardware
 - Provides a basis for application programs
 - Acts as an intermediary between a user of a computer and the computer hardware.

Operating system goals:

- Efficient use: Ensure efficient use of a computer's resources.
- User convenience: Provide convenient methods of using a computer system.
- Non interference: Prevent interference in the activities of its users

Computer System Structure

- Computer system can be divided into four component :
 - Hardware provides basic computing resources
 - CPU, memory, I/O devices
 - Operating system
 - Controls and coordinates use of hardware among various applications and users
 - ➤ Application programs define the ways in which the system resources are used to solve the computing problems of the users
 - Word processors, compilers, web browsers, database systems, etc.
 - Users
 - People, machines, other computers

Abstract view of the components of a computer system

What Operating Systems Do? - System's view

- OS is a resource allocator
 - Manages all resources (such as memory, CPU time,I/O devices)
 - Decides between conflicting requests for efficient and fair resource use
- OS is a control program
 - Controls execution of programs to prevent errors and improper use of the computer

What is an OS?

- Primarily an OS consists of the Kernel.
 - ➤ Kernel is the part that stays in main memory (and is the one program always running on the computer)
 - Controls the execution of all other programs
 - Other programs (system or user) interact with it through system calls (are routines mostly written in a high-level language (C or C++). However, lowerlevel task written in assembly.)

Computer System Organization

- One or more CPUs, device controllers connect through common bus providing access to shared memory
- Concurrent execution of CPUs and devices competing for memory.

Computer System Operation - Interrupts

- An operating system is event driven and events occur by interrupts.
 Therefore, OS is interrupt driven.
- Interrupt requires the operating system to stop and figure out what to do next.
- Interrupt: A mechanism that enables a device/software to notify the CPU that it needs attention.
- An interrupt is caused by a
 - signal to CPU from a device attached to a computer via system bus (hardware), or
 - from an executing program within the computer through system calls.
- A trap or exception is a software-generated interrupt caused either by an error or a user request.

Computer System Operation: Interrupt Handling

- When an interrupt occurs:
 - > CPU stops executing current task
 - The operating system preserves the state of the CPU by storing registers and the program counter
 - Transfers execution to a fixed location, which has the starting address of Interrupt Service Routine (ISR)
 - ➤ ISR handles the interrupt, after which the interrupted process resumes its execution.
- Note: Separate segments of code determine what action should be taken for each type of interrupt

Computer System Operation: Interrupt Handling Implementation

- Implementing ISR as a routine is slow and therefore inefficient.
- Since only predefined interrupts exist, a table of pointers to the various interrupt routines is used instead
- This table of pointers (addresses of the various interrupt routines) is stored in low memory.
- This table or the array of addresses is called the Interrupt vector.
- Windows and Linux dispatch interrupts in this manner.

Computer System Operation: I/O Structure

- A general-purpose computer system consists of CPUs and multiple device controllers that are connected through a common bus.
- Device Controller: The I/O managing processor within a device.

Computer System Operation: I/O Structure

Device driver: An operating system component that provides uniform access to various devices and manages I/O to those devices.

In an operating System there is a *device driver* for each device

controller.

Computer System Operation: I/O Structure

Data movement between devices and the computer happens through the interaction between the device drivers and device controllers.

Computer System Operation: Storage Structure

- CPU can access only main memory (RAM Random access memory).
 - For programs to run, they must be stored in main memory.
 - Main memory is volatile (lose data with loss of power)
 - Need secondary storage (e.g., Hard disk drives, CDs, magnetic tapes etc.) to store data permanently and in large quantities.
- All forms of memory provide an array of bytes, and each byte as its own address.

Computer System Operation: Storage-Device Hierarchy

Storage Definitions and Notation Review

The basic unit of computer storage is the **bit**. A bit can contain one of two values, 0 and 1. All other storage in a computer is based on collections of bits. Given enough bits, it is amazing how many things a computer can represent: numbers, letters, images, movies, sounds, documents, and programs, to name a few. A **byte** is 8 bits, and on most computers, it is the smallest convenient chunk of storage. For example, most computers don't have an instruction to move a bit but do have one to move a byte. A less common term is **word**, which is a given computer architecture's native unit of data. A word is made up of one or more bytes. For example, a computer that has 64-bit registers and 64-bit memory addressing typically has 64-bit (8-byte) words. A computer executes many operations in its native word size rather than a byte at a time.

Computer storage, along with most computer throughput, is generally measured and manipulated in bytes and collections of bytes.

A **kilobyte**, or **KB**, is 1,024 bytes

- a **megabyte**, or **MB**, is 1,024² bytes
- a **gigabyte**, or **GB**, is 1,024³ bytes
- a **terabyte**, or **TB**, is 1,024⁴ bytes
- a **petabyte**, or **PB**, is 1,024⁵ bytes

Computer manufacturers often round off these numbers and say that a megabyte is 1 million bytes, and a gigabyte is 1 billion bytes. Networking measurements are an exception to this general rule; they are given in bits (because networks move data a bit at a time).

Computer System Operation: Caching

- Cache is a faster storage system than main memory and is located very close to CPU or the CPU itself.
- When CPU needs a particular piece of information it first checks in cache, if it finds it, it is called a 'Hit'.
- If the information is not in the cache it called a 'Miss'
- CPU then gets information from Main memory and places a copy of it in the Cache.
- Careful selection of cache size and replacement policy greatly increases the system's performance.
- Other caches implemented into the hardware
 - ➤ Ex: Instruction Cache stores the instruction expected to be implemented next This saves many CPU cycles (otherwise, it needs to go fetch the instruction from main memory every time its needed.)

Computer System Operation - Computer Startup

- When a computer system is switched on or rebooted,
 - it automatically loads a program (bootstrap program) stored on a reserved part of an I/O device typically a disk (ROM or EEPROM, generally known as **firmware**), and starts executing the program.
- The bootstrap program then
 - Loads the Operating System kernel
 - and system programs (also known as system daemons)
- The kernel and system programs run all the time on the computer to provide services.
- After the system is fully booted it waits for an event to occur.

Computer-System Architecture:

- A single processor system has
 - One general purpose CPU
 - Possibly more than one special purpose CPUs (cannot process user request)
- Multiprocessors (parallel systems, multi-core systems)
 - More than one general purpose CPU's (sometimes share memory, bus and peripherals)
 - Advantages include: Increased throughput, Economy of scale, and Increased reliability

Computer-System Architecture

- Two types of Multi-processing:
 - Asymmetric Multiprocessing:
 - Boss processor controls system
 - Each processor is assigned a special task.
 - Boss process schedules/allocates processes
 - Symmetric Multiprocessing (SMP)
 - Each processor performs all tasks.
 - All Modern systems (Linux, Windows, MAC) provide support for SMP

Symmetric Multiprocessing Architecture

Multi-core Design

- Multiprocessor systems can be Multi-chip and/or multicore (More than one core on a single chip)
- Multicore systems are efficient as on chip communication is faster and consumes less power

Example of a dual core design:

Operating System Operation: Multiprogramming

- An operating system provides the environment within which programs are executed
- Multiprogramming: organizes jobs (code and data) so CPU always has one to execute
 - > A subset of total jobs in system is kept in memory
 - One job selected and run via job scheduling
 - ➤ When it has to wait (for I/O for example), OS switches to another job

Memory Layout for Multiprogrammed System

Operating System Structure

- Timesharing (multitasking) is logical extension of multiprogramming
 - CPU switches jobs so frequently that users can interact with each job while it is running, creating interactive computing
 - Response time should be < 1 second</p>
 - ➤ Each user has at least one program executing in memory ⇒process
 - ➤ If several jobs ready to run at the same time ⇒ CPU scheduling

Operating-System Operations

- Dual-mode operation allows OS to protect itself and other system components
 - User mode and kernel mode
 - Mode bit is CPU Status bit used to indicate the current mode
 - Provides ability to distinguish when CPU is running in user code or kernel code
 - Kernel mode bit = 0 and User mode bit = 1
 - Privileged instructions only executable in kernel mode
 - System call changes mode to kernel, return from call resets it to user (see next slide)

Transition from User to Kernel Mode - Illustration

Transition from User to Kernel Mode

Operating-System Operations - Timer

Timer: is a hardware component that can be set to interrupt the computer after a specified period.

- Timer helps to prevent infinite loop / process hogging resources
- To set the time period the operating system maintains a counter and sets its value (privileged instruction), which is decremented by the physical clock.
- When counter reaches zero an interrupt is generated

Key functionality of an OS as a resource Manager

- Process Management
- Memory Management
- Storage and File management
- Protection and Security

Process

- Process is a program in execution
- Program is *passive* entity stored on disk (executable file), process is *active*
 - Program becomes process when executable file loaded into memory

Process representation in Linux

- Processes in Linux are referred to as tasks.
- Represented by the C structure task_struct

```
pid t_pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */
struct task_struct *parent; /* this process's parent */
struct list_head children; /* this process's children */
struct files_struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process */
```

Kernel Data Structures

- Many similar to standard programming data structures
 - ➤ Linked lists (single, double and circular)
 - Binary search tree
 - Hash Tables
- Bitmap string of n binary digits representing the status of n items
- Linux data structures defined in include files linux/list.h>,

```
<linux/kfifo.h>, <linux/rbtree.h>
```

Computing Environments - Virtualization

- Virtualization is a technology that creates abstraction of the computer hardware, thereby creating an illusion that all its operating systems are running on it own private computer.
 - > VMM (virtual machine Manager) provides virtualization services
- Virtualization belongs to the *Emulation* class of software.
 - ➤ Emulation a methodology used when complied program's source CPU type different from target CPU type.
 - This same concept can be extended to allow an entire operating system written for one platform to run on another.
 - Disadvantage: Lot slower.

Computing Environments - Virtualization

