5. La Fórmula de Taylor¹

Un recurso para estudiar el comportamiento de una función en un entorno de un punto es aproximarla mediante alguna otra función fácil de evaluar, particularmente por un polinomio. Asociaremos, localmente, a cada función suficientemente regular un polinomio que la aproxima.

Sea f una función n veces derivable en el punto a. El polinomio de Taylor de grado n para f en a es el polinomio

$$P_n(f, a, x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n.$$

La diferencia $R_n(f, a, x) = f(x) - P_n(f, a, x)$ se denomina resto n-ésimo de Taylor de la función f en el punto a.

Para que exista la derivada n-ésima de f en a, la función $f^{(n-1)}$ debe existir en un entorno U de a. Por tanto, la condición de que exista $f^{(n)}(a)$ puede sustituirse por las condiciones de que f sea n-1 veces derivable en un entorno U de a y n veces derivable en a.

Notemos que $y = P_1(f, a, x)$ es la ecuación de la recta tangente a la gráfica de f en el punto (a, f(a)).

Se cumplen las dos propiedades siguientes.

■ El valor del polinomio $P_n(f, a, x)$ y el de todas sus derivadas hasta orden n en el punto a coinciden con los de la función f en este punto; es decir,

$$P_n^{(i)}(f, a, a) = f^{(i)}(a), \quad i = 0, \dots, n.$$

$$\blacksquare \lim_{x \to a} \frac{R_n(f, a, x)}{(x - a)^n} = 0.$$

El límite anterior puede interpretarse en el sentido de que la similitud entre f(x) y $P_n(f, a, x)$ es más acusada cuanto mayor es el grado y cuanto más cerca esté x de a.

La fórmula

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(f,a,x)$$

se conoce como desarrollo de Taylor de grado n de la función f en en el punto a.²

Describimos, a continuación, el comportamiento de los polinomios de Taylor respecto a las operaciones con funciones. Enunciamos los resultados en el punto 0. Los resultados correspondientes en un punto a se obtienen mediante el cambio de variable $x \mapsto t = x - a$.

¹Extracto del libro "Cálculo para Ingeniería informática", por José A. Lubary y Josep M. Brunat, Edicions UPC Temes Clau 08, 2008

 $^{^{2}}$ En el caso particular a=0, el desarrollo suele denominarse de MacLaurin, aunque nosotros no utilizaremos esta terminología.

Sean f y g dos funciones con derivadas n-ésimas en el punto 0 y sean $p = P_n(f, 0, x)$ y $q = P_n(g, 0, x)$ los correspondientes polinomios de Taylor de grado n. Entonces,

- Si α y β son números reales, el polinomio de Taylor de grado n de $\alpha f + \beta g$ en el punto 0 es $\alpha p + \beta q$.
- El polinomio de Taylor de grado n de $f \cdot g$ en el punto 0 es el polinomio obtenido de pq suprimiendo los términos de grado > n.
- Si $g(0) \neq 0$, el polinomio de Taylor de grado n de f/g en el punto 0 es el cociente de la división de p por q según potencias de x crecientes hasta el grado n incluido.
- Si f(0) = 0, el polinomio de Taylor de grado n de $g \circ f$ en el punto 0 es el polinomio obtenido de $g \circ p$ suprimiendo los términos de grado > n.

En el cálculo de límites de funciones en un punto a, suele ser útil la sustitución de funciones f(x) por sus expresiones de la forma $f(x) = P_n(f, a, x) + R_n(f, a, x)$.

El teorema de Taylor

En el caso de que f sea una función n+1 veces derivable en un entorno de a, se dispone de la siguiente expresión del resto.

Teorema de Taylor. Sea f una función n+1 veces derivable en un entorno U de a. Entonces, para cada $x \in U \setminus \{a\}$ existe un punto c entre x y a tal que

$$R_n(f, a, x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}.$$

La expresión anterior se denomina resto de Lagrange.

En las condiciones del teorema de Taylor, tenemos

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^n(a)}{n!}(x-a)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1},$$

expresión que se denomina fórmula de Taylor de grado n de la función f en el punto a, con resto de Lagrange.

A continuación se dan las fórmulas de Taylor de algunas funciones en el punto 0, con resto de Lagrange. El valor c es intermedio entre 0 y x.

•
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + e^c \frac{x^{n+1}}{(n+1)!}$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + (-1)^n \frac{x^{n+1}}{(n+1)(1+c)^{n+1}}.$$

$$\bullet \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + (-1)^{n+1} \frac{x^{2n+2}}{(2n+2)!} \cos c.$$

$$\bullet (1+x)^{\alpha} = {\alpha \choose 0} + {\alpha \choose 1}x + {\alpha \choose 2}x^2 + \dots + {\alpha \choose n}x^n + {\alpha \choose n+1}\frac{x^{n+1}}{(1+c)^{n+1-\alpha}},$$

donde α es un número real y, para todo entero $k \geq 0$,

$$\binom{\alpha}{k} = \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!}.$$

•
$$\operatorname{senh} x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots + \frac{x^{2n-1}}{(2n-1)!} + \frac{x^{2n+1}}{(2n+1)!} \operatorname{senh} c.$$

$$\bullet \cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots + \frac{x^{2n}}{(2n)!} + \frac{x^{2n+2}}{(2n+2)!} \cosh c.$$

Cota del error

La siguiente terminología será de utilidad. Sean I un intervalo (de cualquier tipo) y $n \geq 0$ un entero. La clase $C^n(I)$ está formada por todas las funciones f cuyo dominio contiene I y tales que, en todo $x \in I$, existe la derivada n-ésima $f^{(n)}$ y esta derivada es continua. En particular, la clase $C^0(I) = C(I)$ está formada por todas las funciones continuas en I. Es claro, además, que si n > m, entonces $C^n(I) \subset C^m(I)$. La clase $C^\infty(I)$ está formada por las funciones que tienen derivadas de todos los órdenes en I (equivalentemente, que pertenecen a $C^n(I)$ para todo $n \geq 0$). Análogamente, si $a \in \mathbb{R}$, las clases $C^n(a)$ y $C^\infty(a)$ están formadas por las funciones que tienen derivada n-ésima continua en a y por las funciones que tienen derivadas de todos los órdenes en el punto a, respectivamente.

Sea f una función n+1 veces derivable en un entorno U de a, y supongamos que la función $f^{(n+1)}$ está acotada por una constante K en el intervalo abierto de extremos a y $x \in U$. Entonces,

$$|f(x) - P_n(f, a, x)| = |R_n(f, x, a)| = \left| \frac{f^{(n+1)}(c)}{(n+1)!} (x - a)^{n+1} \right| \le \frac{K}{(n+1)!} (x - a)^{n+1}.$$

Ello permite aproximar f(x) por $P_n(f, a, x)$ en un entorno de a y acotar el error cometido con la aproximación. En particular, si I es el intervalo cerrado de extremos a y x (es decir, [a, x] o [x, a]) y $f \in \mathcal{C}^{n+1}(I)$, entonces la función $f^{(n+1)}$ es continua en el intervalo cerrado I y, por tanto, tiene máximo absoluto en I, por lo que puede tomarse como K dicho máximo.

Estudio local de funciones

El polinomio de Taylor permite generalizar las condiciones suficientes para monotonía, extremos relativos y convexidad vistos anteriormente.

Respecto a la monotonía y los extremos relativos, tenemos las siguientes condiciones suficientes.

Sea f una función de clase $C^n(a)$ tal que

$$f'(a) = f''(a) = \dots = f^{(n-1)}(a) = 0, \quad f^{(n)}(a) \neq 0.$$

Entonces, se tiene que

- n par y $f^{(n)}(a) > 0 \implies f$ tiene un mínimo relativo en a;
- n par y $f^{(n)}(a) < 0 \implies f$ tiene un máximo relativo en a;
- n impar y $f^{(n)}(a) > 0 \implies f$ es estrictamente creciente en un entorno de a.
- lacksquare n impar y $f^{(n)}(a) < 0 \implies f$ es estrictamente decreciente en un entorno a.

Respecto a la convexidad, tenemos las siguientes condiciones suficientes.

Sea f una función de clase $C^n(a)$ tal que

$$f''(a) = \dots = f^{(n-1)}(a) = 0, \quad f^{(n)}(a) \neq 0.$$

Entonces, se tiene que

- n par y $f^{(n)}(a) > 0 \implies f$ es convexa en un entorno de a.
- n par y $f^{(n)}(a) < 0 \implies f$ es cóncava en un entorno de a.
- n impar $\Rightarrow f$ tiene un punto de inflexión en a.