10 класс

1. Время мощности

В результате проведенного эксперимента получена зависимость мощности N постоянной горизонтальной силы от времени t ее действия на изначально покоящийся на гладком горизонтальном столе брусок массы m=2 кг. Некоторые измерения могли оказаться не очень точными.

- определите мощность силы в момент времени $\tau = 6$ с;
- найдите значение силы F.

<i>N</i> , Вт	1,4	2,8	4,5	5,0	6,0	10,4	14,7	16,6	18,3
t, c	1,0	1,5	2,0	2,5	3,2	5,0	7,2	8,4	9,0

2. В лунке

Стержень AB касается уступа K полусферической лунки радиуса R. Точка A движется равномерно со скоростью υ по поверхности лунки, начиная из нижней точки N, к точке M. Найти зависимость модуля скорости u конца стержня B от угла α , который стержень составляет с горизонтом. Длина стержня AB равна 2R.

3. Вода со льдом

В калориметре смешали некоторое количество воды и льда. Их точные массы и начальные температуры 20 неизвестны, но эти значения лежат в выделенных на 10 заштрихованных областях. максимальное количество теплоты, которое могло быть передано водой льду, если после установления теплового равновесия масса льда не изменилась. массу Определите возможную содержимого калориметра в этом случае. Удельная теплота плавления льда $\lambda = 340 \text{ кДж/кг}$, удельная теплоемкость

воды $c = 4200 \text{ Дж/(кг}^{.0}\text{C})$, удельная теплоемкость льда $c_1 = 2100 \text{ Дж/(кг}^{.0}\text{C})$. Массы воды и льда на диаграмме приведены в условных единицах, показывающих во сколько раз их массы меньше чем $m_0 = 1 \text{ кг}$. Теплоемкостью калориметра и потерями теплоты пренебречь.

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): $7 \, \text{класс} - 16.00$; $8 \, \text{класс} - 17.00$; $9 \, \text{класс} - 18.30$; $10 \, \text{класс} - 20.00$; $11 \, \text{класс} - 19.00$. Для участия в разборе необходимо зарегистрироваться на портале **online.mipt.ru**

4. Три в кубе

Куб собран из одинаковых резисторов сопротивлением R. Три резистора заменили на идеальные перемычки, как указано на рисунке.

- Найдите общее сопротивление получившейся системы между контактами *A* и *B*.
- Какие резисторы из оставшихся можно убрать так, что это не изменит общее сопротивление системы?

- Если известно, что сила тока, текущего через большинство резисторов электрической цепи, равна I = 2A, вычислите силу тока в проводе, подсоединенном к узлу A (или B)?
- Вычислите силу тока, текущего через идеальную перемычку АА'?

5. Транспортёр на боку

По шероховатому горизонтальному полу ленточный движется лежащий на боку транспортёр так. что плоскость ленты вертикальна. Скорость ленты транспортёра равна v. Транспортёр перемещается по полу с скоростью и перпендикулярно постоянной основным участкам его ленты. За некоторое

время транспортёр сместился на расстояние s. Его новое положение показано на рисунке. Транспортёр толкает по полу брусок, имеющий форму прямоугольного параллелепипеда. **На рисунке дан вид сверху на эту систему.**

Пренебрегая прогибом ленты и считая движение бруска установившимся, найдите смещение бруска за время s/u.

Определите работу по перемещению бруска, совершаемую транспортёром за это время. Коэффициент трения между бруском и полом равен μ_1 , а между бруском и лентой μ_2 .

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): $7 \, \kappa$ ласс -16.00; $8 \, \kappa$ ласс -17.00; $9 \, \kappa$ ласс -18.30; $10 \, \kappa$ ласс -20.00; $11 \, \kappa$ ласс -19.00. Для участия в разборе необходимо зарегистрироваться на портале **online.mipt.ru**