Errata of Topics on Continua

- **Page 16**, line 11: change " \mathcal{G} y G" to " \mathcal{G} and G".
- Page 23, 1.3.5 Theorem: change "M" to "X".
- Page 24, line 13: change "two closed subsets" to "two disjoint closed subsets".
- Page 34, line 8: change "*" to ".".
- **Page 35**, line 14: change " $\xi_j \in \mathbb{R}^n$ " to ' $\xi_j \in \mathbb{R}$ ".
- **Page 46**, line 15: change "X is a continuum" to " X/\mathcal{G} is a continuum".
- Page 66, Reference [1]: change "Homotopical View" to "Homotopical Viewpoint".
- Page 70, line 9: change "then inverse limit" to "then the inverse limit".
- **Page 89**, line -6: change " $x, y \in X_i$, then" to " $x, y \in X_i$ such that $d(f_n^j(x), f_n^j(y)) > \delta$, then".
- **Page 91**, line -12: change "by given" to "be given".
- **Page 100**, line 1: change " $\zeta(v,c) = v$ " to " $\zeta((v,c)) = v$ ".
- **Page 109**, line -3: change "for every j < k" to "for any j < k".
- **Page 117**, line -4: change " $i, j \in \{1, n\}$ " to " $i, j \in \{0, n\}$ ".
- Page 134, 2.6.24 Corollary: change "Let X be a separable metric space" to "Let X be a compactum".
- Page 162, line -2: remove "closed".
- **Page 185**, line -6: change " $\mathcal{T}(L) = \mathcal{T}(W)$ " to " $\mathcal{T}(L) = W$ ".
- **Page 205**, line 10: change " ψ_{g_0} y φ_{g_0} " to " ψ_{g_0} and φ_{g_0} ".
- Page 209, line 5: change "properties of action of" to "properties of an action of".
- **Page 209**, line -3: change "If G is topological" to "If G is a topological".
- **Page 212**, line 8: change " $V \cdot V^{-1}$ " to " $V^{-1} \cdot V$ ".
- Page 221, line 11: change " \mathcal{T} is idempotent on homogeneous continua." to " \mathcal{T} is idempotent, restricted to closed sets, on homogeneous continua."
- **Page 221**, change lines 14 and 15: to "**Proof.** Let A be a closed subset of X. If $A = \emptyset$, then $\mathcal{T}^2(A) = \mathcal{T}(A)$ by Corollary 3.1.14. Suppose $A \neq \emptyset$. Note that, by Remark 3.1.5, $\mathcal{T}(A) \subset \mathcal{T}^2(A)$."
- Page 222, line 3: change " \mathcal{T} is idempotent." to " \mathcal{T} is idempotent restricted to closed sets."
- Page 226, line −13: change "idempotent" to "idempotent on closed sets".
- Page 235, lines 15, 17 and 19: change " $\mathcal{V}^d_{\frac{1}{n}}(x)$ " to " $\mathcal{V}^d_{\frac{1}{n}}(B)$ ". Page 237, lines 6, 11, and -7: change " \mathcal{T}_X is idempotent" to " \mathcal{T}_X is idempotent" on closed sets".
- Page 252, lines 17 and -9: change "Let X be a continuum" to "Let X be a homogeneous continuum".
- **Page 269**, line 5: change " $(f^n)^{-1}(\mathbb{M})$ " to " $(f^{n-1})^{-1}(\mathbb{M})$ ".
- **Page 276**, line -16: change "point \tilde{z} of point of" to "point \tilde{z} of".
- Page 281, line 6: change " \mathcal{M} " to " \mathbb{M} ".
- Page 290, line 5: change "Let $\eta = \min$ " to "Let $\eta = \frac{1}{2}\min$ ".

Page 305, line 1: change "The proof of" to "The proofs of".

Page 308, change the statement of 6.5.12 Theorem.: to "Let n be an integer greater than one, and let X be an indecomposable continuum. If A is an arc component of $\mathcal{C}_n(X) \setminus \{X\}$, which is not of the form $\mathcal{C}_n(\kappa)$, where κ is a composant of X, then there exist finitely many composants $\kappa_1, \ldots, \kappa_\ell$ of X and there exists a one-to-one map from

$$\mathcal{R} = \bigcup \left\{ \prod_{j=1}^{\ell} \mathcal{C}_{r_j}(\kappa_j) \; \middle| \; \{r_1, \ldots, r_\ell\} \in \mathcal{N}
ight\} \subset \prod_{j=1}^{\ell} \mathcal{C}_{n-\ell+1}(\kappa_j)$$

(with the "max" metric ρ_1) onto \mathcal{A} , where

$$\mathcal{N} = \left\{ \left\{ r_1, \dots, r_\ell \right\} \mid 1 \leq r_1, \dots, r_\ell \leq n - \ell + 1 \text{ and } \sum_{j=1}^\ell r_j = n \right\}.$$

Page 309, remove lines 9 and 10.

Page 309, line 11: remove "Let us obseve that $\sum_{i=1}^{\infty} m_j = n$."

Page 309, lines 11, -2: change " $\prod_{j=1}^{\ell} C_{m_j}(\kappa_j)$ " to " \mathcal{R} ".

Page 309, line 16: change "belong to $C_{m_j}(\kappa_j)$. Since $C_{m_j}(\kappa_j)$ is" to "belong to $C_{r_j}(\kappa_j)$, where $\{r_1, \ldots, r_\ell\} \in \mathcal{N}$. Since $C_{r_j}(\kappa_j)$ is".

Page 309, line 17: change " $\mathcal{C}_{m_j}(\kappa_j)$ " to " $\mathcal{C}_{r_j}(\kappa_j)$ ". Page 309, change lines -6, -5, -4: to "Let $A \in \mathcal{A}$. For each $j \in \{1, \ldots, \ell-1\}$

let r_j be the number of components of A contained in κ_j . Let $r_\ell = n - \sum_{j=1}^{n} r_j$.

Then $\sum_{j=1}^{\ell} r_j = n$. Hence, $\{r_1, \dots, r_{\ell}\} \in \mathcal{N}$, $(A \cap \kappa_1, \dots, A \cap \kappa_{\ell}) \in \prod_{j=1}^{\ell} \mathcal{C}_{r_j}(\kappa_j)$ and $f(A \cap \kappa_1, \dots, A \cap \kappa_{\ell}) = A$. Therefore, f is surjective."

Page 310, line 2: change " $\prod_{j=1}^{n} C_{m_j}(\kappa_j)$ " to " \mathcal{R} ".