TRƯỜNG ĐẠI HỌC CÔNG NGHIỆP THÀNH PHỐ HỒ CHÍ MINH KHOA KHOA HOC CƠ BẢN

BÀI TẬP THƯỜNG KỲ

HÀM PHÚC VÀ PHÉP BIẾN ĐỔI LAPLACE

GVHD: ThS. Đoàn Vương Nguyên

Lớp học phần:.....Khoa: KHCB

Học kỳ:........Năm học: 2011 – 2012 Danh sách nhóm: (ghi theo thứ tư ABC)

1. Nguyễn Văn A 2. Lê Thị B

.....

HƯỚNG DẪN TRÌNH BÀY

- 1) Trang bìa như trên (đánh máy, không cần in màu, không cần lời nói đầu).
- 2) Trong phần làm bài tập, chép đề câu nào xong thì giải rõ ràng ngay câu đó.
- 3) Trang cuối cùng là Tài liệu tham khảo:
 - 1. Nguyễn Kim Đính *Hàm phức và ứng dụng* ĐH Kỹ thuật TP.HCM 1998
 - 2. Nguyễn Kim Đính *Phép biến đổi Laplace* NXB Khoa học và Kỹ thuật 1998
 - 3. Võ Đăng Thảo Hàm phức và Toán tử Laplace ĐH Kỹ thuật TP.HCM 2000
 - 4. Phan Bá Ngọc Hàm biến phức và phép biến đổi Laplace NXB Giáo dục 1996
 - 5. Trương Văn Thương Hàm số biến số phức NXB Giáo dục 2007
 - 6. Đậu Thế Cấp **Hàm biến phức và phép tính Toán tử** NXB ĐH Quốc gia 2006
 - 7. Nguyễn V<mark>ăn Khuê –</mark> Lê Mậu Hải **Hàm biến phức** NXB Đại học Quốc gia Hà Nội 2006
 - 8. Theodore. W. Gamelin Complex Analysis Department of Mathematics UCLA
 - 9. Trương Thuận Tài liệu Hàm phức và phép biến đổi Laplace ĐH Công nghiệp TP.HCM

Chú ý

- Phần làm bài *bắt buộc phải viết tay* (không chấp nhận đánh máy) trên 01 hoặc 02 mặt giấy A4 và đóng thành tập cùng với trang bìa.
- Thời hạn nộp bài: *Tiết học cuối cùng* (Sinh viên phải tự đọc trước bài học cuối để làm bài!).
- Nếu nộp trễ hoặc ghi sót tên của thành viên trong nhóm sẽ không được giải quyết và bị cấm thi.
- Mỗi nhóm chỉ từ 01 đến tối đa là 07 sinh viên. Sinh viên tự chọn nhóm và nhóm tự chọn bài tập.
- Phần làm bài tập, sinh viên phải giải bằng hình thức tư luận rõ ràng.
- * Nếu làm đạt yêu cầu mà chỉ chon toàn câu hỏi dễ thì điểm tối đa của nhóm là 8 điểm.

• Cách chọn bài tập như sau

- 1) Nhóm chỉ có 1 sinh viên thì chọn làm **32 câu hỏi nhỏ** (các câu hỏi nhỏ phải nằm trong các câu hỏi khác nhau) gồm:
 - Chương 1: chọn 7 trong 9 câu hỏi, trong mỗi câu đã chọn thì chọn làm 1 câu hỏi nhỏ.
 - Chương 2: mỗi câu hỏi chon làm 1 câu hỏi nhỏ.
 - Chương 3: chọn 6 trong 7 câu hỏi, trong mỗi câu đã chọn thì chọn làm 1 câu hỏi nhỏ.
 - Chương 4: chon 5 trong 8 câu hỏi, trong mỗi câu đã chon thì chon làm 1 câu hỏi nhỏ.
 - Chương 5: chon 10 trong 11 câu hỏi, trong mỗi câu đã chon thì chon làm 1 câu hỏi nhỏ.
- 2) Nhóm có từ 2 đến tối đa 7 sinh viên thì làm như nhóm có 1 sinh viên, đồng thời *mỗi sinh viên tăng thêm* phải chọn làm thêm **16 câu hỏi nhỏ khác** (*nằm trong các câu hỏi khác nhau*).

.....

ĐÊ BÀI TÂP

Chương 1. SỐ PHÚC

Câu 1. Thực hiện các phép tính sau dưới dạng đại sô

1)
$$\frac{\overline{3i} - (1+i)^3}{(2+i)^2 \cdot \overline{1+2i}}$$

2)
$$\frac{(1+i)(2-i)^3}{(2+i)^2 - (1+2i)}$$

3)
$$\frac{(1+i)^2 - 5i}{(1-i)^3 + (1+i)^2}$$

1)
$$\frac{\overline{3i} - (1+i)^3}{(2+i)^2.\overline{1+2i}}$$
 2) $\frac{(1+i)(2-i)^3}{\overline{(2+i)^2} - (1+2i)}$ 3) $\frac{(1+i)^2 - \overline{5i}}{(1-i)^3 + \overline{(1+i)^2}}$ 4) $\frac{(2+3i)^2 + (2-3i)^2}{(5+4i)^2.\overline{5+4i}}$

5)
$$\frac{\overline{3-i.(3+i)^2}}{(4-3i)^2}$$
 6) $\frac{(1+3i)^2-\overline{-2i}}{(3-i)(2+3i)}$ 7) $\frac{(-4i)^5+\overline{5i+i^3}}{(2-i)^2}$

6)
$$\frac{(1+3i)^2 - \overline{-2i}}{(3-i)(2+3i)}$$

7)
$$\frac{(-4i)^5 + 5i + i^3}{(2-i)^2}$$

8)
$$\frac{\overline{(1+4i)^2-(3-2i)}}{(-i)+\overline{(1+2i)^2}}$$

Câu 2. Tính modun của các số phức sau

1)
$$z = \frac{(4-3i)^{12}(5+7i)^3}{(2+i)^{24}}$$

1)
$$z = \frac{(4-3i)^{12}(5+7i)^3}{\left(\overline{2+i}\right)^{24}}$$
 2) $z = \frac{(5+12i)^{26}\left(\sqrt{3}+2i\sqrt{6}\right)^2}{\left(\overline{10-24i}\right)^{20}}$ 3) $z = \frac{\left(\overline{\sqrt{3}+i\sqrt{6}}\right)^{22}}{\overline{\sqrt{2}+i\sqrt{2}}\left(3+3i\sqrt{3}\right)^{20}}$

3)
$$z = \frac{\left(\sqrt{3} + i\sqrt{6}\right)^{22}}{\sqrt{2} + i\sqrt{2}\left(3 + 3i\sqrt{3}\right)^{20}}$$

4)
$$z = \frac{\left(\sqrt{3} - i\right)^{30} \left(-5 + 4i\right)^5}{\left(\sqrt{6} - i\sqrt{3}\right)^{32}}$$

4)
$$z = \frac{\left(\sqrt{3} - i\right)^{30} (-5 + 4i)^5}{\left(\overline{\sqrt{6} - i\sqrt{3}}\right)^{32}}$$
 5) $z = \frac{\left(3\sqrt{3} - 3i\right)^{12} \left(\overline{5 - 12i}\right)^5}{\left(\overline{-2 + 2i\sqrt{3}}\right)^{10}}$ 6) $z = \frac{\left(\overline{-\sqrt{6} + i\sqrt{3}}\right)^{32}}{\left(\overline{1 + i\sqrt{2}}\right)^7 \left(3 - i\right)^{28}}$

6)
$$z = \frac{\left(-\sqrt{6} + i\sqrt{3}\right)^{32}}{\left(1 + i\sqrt{2}\right)^7 \left(3 - i\right)^{28}}$$

Câu 3. Thực hiện các phép tính sau dưới dạng lượng giác và dạng mũ

1)
$$\frac{\left(1 - i\sqrt{3}\right)(5 + 5i)^3}{\left(\sqrt{3} + i\sqrt{6}\right)^2}$$

$$2) \frac{\left(3+3i\sqrt{3}\right)^2 \left(\sqrt{3}+i\sqrt{6}\right)^2}{\sqrt{2}+i\sqrt{2}}$$

3)
$$\frac{\left(\sqrt{3} + i\sqrt{6}\right)^2}{\sqrt{2} + i\sqrt{2}\left(3 + 3i\sqrt{3}\right)^2}$$

4)
$$\frac{\left(\sqrt{3}-i\right)(-4+4i)^3}{\left(\sqrt{6}+i\sqrt{3}\right)^2}$$

5)
$$\frac{\left(3\sqrt{3} - 3i\right)^2 \left(\sqrt{8} + i\sqrt{8}\right)^2}{-\sqrt{2} + i\sqrt{2}}$$

$$6) \frac{\left(-\sqrt{6} + i\sqrt{3}\right)^2}{-\sqrt{2} + i\sqrt{2}\left(3 - 3i\right)^2}$$

Câu 4. Xác định argument chính $\varphi \in (-\pi; \pi]$ của các số phức sau

1)
$$z = \frac{(1+i)^4 \left(\sqrt{3} - i\sqrt{6}\right)^3}{\sqrt{3} + i}$$
 2) $z = \frac{\left(\overline{1+i}\right)\left(\sqrt{3} + i\right)^3}{(-1-i)^4}$

2)
$$z = \frac{(1+i)(\sqrt{3}+i)^3}{(-1-i)^4}$$

3)
$$z = \frac{(1+i)^7}{(1-i)^5 \left(2\sqrt{6} - 2i\sqrt{3}\right)^4}$$

4)
$$z = \frac{(1+i)^4 \cdot \sqrt{3} + i}{\left(\sqrt{3} - i\sqrt{6}\right)^3}$$

5)
$$z = \frac{\left(\overline{1+i}\right)^4}{(-1-i)^4 \left(\sqrt{3}+i\right)^3}$$
 6) $z = \frac{(1+i)^7 (1-i)^5}{\left(2\sqrt{6}-2i\sqrt{3}\right)^4}$

6)
$$z = \frac{(1+i)^7 (1-i)^5}{\left(2\sqrt{6} - 2i\sqrt{3}\right)^4}$$

Câu 5*. Cho các số phức z sau có argument chính là $\varphi \in (-\pi; \pi]$. Hãy viết z dưới dạng đại số và dạng mũ, từ đó suy ra $\cos \varphi$ và $\sin \varphi$ (không dùng máy tính!)

1)
$$z = \frac{1 + i\sqrt{3}}{\sqrt{2} - i\sqrt{2}}$$

2)
$$z = \frac{\sqrt{2} - i\sqrt{2}}{1 + i\sqrt{3}}$$

3)
$$z = \frac{1 + i\sqrt{3}}{\sqrt{2} - i\sqrt{6}}$$

4)
$$z = \frac{\sqrt{2} - i\sqrt{6}}{1 + i\sqrt{3}}$$

5)
$$z = \frac{\sqrt{3} - i}{-\sqrt{2} + i\sqrt{2}}$$

6)
$$z = \frac{-\sqrt{2} - i\sqrt{2}}{1 + i\sqrt{3}}$$

7)
$$z = \frac{\sqrt{3} - i}{\sqrt{2} - i\sqrt{6}}$$

8)
$$z = \frac{\sqrt{2} - i\sqrt{6}}{\sqrt{3} + i}$$

Câu 6. Dùng công thức Moirve, hãy tìm căn bậc bốn của các số phức trong câu 5 ở trên.

Câu 7. Trong mặt phẳng phức, hãy xác định tập hợp các điểm z thỏa mãn điều kiện sau

1)
$$1 \le |z + i| < 3$$

2)
$$|z-1+i| \le 1$$

3)
$$\operatorname{Im}(\overline{z} - i) \leq 2$$

4)
$$Re(iz) > 1$$

5)
$$|2z - i| = 4$$

6)
$$|z-1| + |z+1| = 4$$
 7) $0 < \text{Re}(iz) \le 1$

7)
$$0 < \operatorname{Re}(iz) \le 1$$

8)
$$Im(z - i) \ge 3$$

Câu 8. Giải các phương trình sau trên trường số phức

$$1) z^4 - 5z^2 + 7 = 0$$

1)
$$z^4 - 5z^2 + 7 = 0$$
 2) $z^4 - 7z^2 + 25 = 0$

3)
$$z^4 - 3z^2 + 9 = 0$$
 4) $z^4 + 3z = 0$

4)
$$z^4 + 3z = 0$$

$$5) z^4 + 3z^2 + 7 = 0$$

5)
$$z^4 + 3z^2 + 7 = 0$$
 6) $z^4 + 4z^2 + 17 = 0$

7)
$$z^4 + 6z^2 + 17 = 0$$
 8) $z^4 - 8z = 0$

8)
$$z^4 - 8z = 0$$

Câu 9*. Giải các phương trình sau trên trường số phức

1)
$$z^3 + (3+2i)z^2 + (5+8i)z + 3 + 6i = 0$$

2)
$$z^3 + (1+2i)z^2 + (1+4i)z - 3 - 6i = 0$$

3)
$$z^3 + (4-3i)z^2 + (1-9i)z - 2 - 6i = 0$$

4)
$$z^3 + (2-3i)z^2 - (5+3i)z + 2 + 6i = 0$$

5)
$$z^3 + (2+4i)z^2 + (5+8i)z + 10 = 0$$

6)
$$z^3 - (2-4i)z^2 + (5-8i)z - 10 = 0$$

Chương 2. HÀM BIẾN PHÚC

Câu 1. Tính các giá trị $f(z_0)$ sau

1)
$$f(z) = i \operatorname{Re}(i.\overline{z} - 2z^3), \ z_0 = \sqrt{2}.e^{-i\frac{\pi}{6}}$$

2)
$$f(z) = \frac{z^2 - iz}{\overline{z}}, \ z_0 = \cos\frac{\pi}{6} - i\sin\frac{\pi}{6}$$

3)
$$f(z) = i \operatorname{Im}(\overline{z}^3 + iz), \ z_0 = \sqrt{2}.e^{-i\frac{2\pi}{3}}$$

4)
$$f(z) = \frac{z^2}{3z - i.\overline{z}}, \ z_0 = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}$$

5)
$$f(z) = \frac{i(\overline{z}^2 - 2iz^3)}{z}$$
, $z_0 = \sqrt{3} \cdot e^{i\frac{5\pi}{6}}$

6)
$$f(z) = \frac{\text{Re}(z^2 - iz)}{i.\overline{z}}, \ z_0 = 2e^{i\frac{3\pi}{4}}$$

7)
$$f(z) = (i.\overline{z}^2 + z^2)^4$$
, $z_0 = i\sqrt{3} - 1$

8)
$$f(z) = 2iz^3 + 4\overline{z}^2$$
, $z_0 = 3 - i\sqrt{2}$

Câu 2. Xác định phần thực và phần ảo của các hàm biến phức sau

1)
$$f(z) = i(i.\overline{z} - 2z^3)$$
 2) $f(z) = -i\frac{z-1}{\overline{z}}$

$$2) \ f(z) = -i\frac{z-1}{\overline{z}}$$

3)
$$f(z) = ie^{i.\overline{z}}$$

4)
$$f(z) = \frac{z}{z - i.\overline{z}}$$

5)
$$f(z) = \cos(iz) - i.\sin(iz)$$

5)
$$f(z) = \cos(iz) - i \cdot \sin(iz)$$
 6) $f(z) = \cos(i\overline{z}) - \sin(i\overline{z})$ 7) $f(z) = e^{i\overline{z}}$

$$f(z) = \overline{e^{i.\overline{z}}}$$

8)
$$f(z) = \frac{e^{\bar{z}^2}}{i}$$

Câu 3. Xét tính khả vi của hàm f(z) và tính đạo hàm (nếu có) tại điểm $z_0 = x_0 + iy_0$ thuộc miền khả vi

1)
$$f(z) = \overline{z}^2 \cdot \operatorname{Im}(iz)$$

2)
$$f(z) = e^{i.\overline{z}^2}$$

3)
$$f(z) = z \cdot \operatorname{Im}(i \cdot \overline{z}^2)$$

4)
$$f(z) = i.e^{\overline{z}}$$

5)
$$f(z) = z \operatorname{Re}(iz - |z|^2)$$
 6) $f(z) = e^{|z-1|^2}$

6)
$$f(z) = e^{|z-1|^2}$$

7)
$$f(z) = |z|.(iz)$$

8)
$$f(z) = e^{|\overline{z}^2 - i|}$$

Câu 4. Chứng tỏ các hàm sau là hàm điều hòa và tìm hàm giải tích f(z) = u + iv theo biến z, biết

1)
$$u(x,y) = x^2y - \frac{1}{3}y^3$$
 và $f(-i) = \frac{i}{2}$

2)
$$v(x,y) = x^2y - \frac{1}{3}y^3$$
 và $f(i) = \frac{2i}{3}$

3)
$$u(x,y) = x^3 - 3xy^2$$
 và $f(1-i) = 1$

4)
$$v(x,y) = x^3 - 3xy^2$$
 và $f(1+i) = -i$

$$5) \ u(x,y) = e^x \cos y - y$$

$$6) \ v(x,y) = e^y \cos x + 2x$$

7)
$$u(x,y) = e^x \sin y - y$$

8)
$$v(x,y) = e^y \sin x + 2x$$

.....

Chương 3. TÍCH PHÂN HÀM PHÚC

Câu 1. Viết phương trình tham số của các đoạn thẳng (hoặc đường parabol) C theo tham số t và tìm khoảng biến thiên của t dưới dạng $t: a \to b$ trong các trường hợp sau

- 1) C là đoạn thẳng nối từ điểm z = 3 2i đến điểm z = -1 + 3i.
- 2) C là đoạn thẳng nối từ điểm z=-5-2i đến điểm z=-7+3i.
- 3) C là đoạn thẳng nối từ điểm z = 3 + 2i đến điểm z = -1 3i.
- 4) C là đoạn thẳng nối từ điểm z=-1-4i đến điểm z=-4-i.
- 5) C là parabol $y = x^2 2x$ nổi từ điểm z = 1 i đến điểm z = -2 + 8i.
- 6) C là parabol $y=-x^2-3x$ nối từ điểm z=1-4i đến điểm z=-1+2i .
- 7) C là parabol $y=2x^2-x$ nối từ điểm z=1+i đến điểm z=-2+10i.
- 8) C là parabol $y = 2x^2 + x$ nối từ điểm z = 1 + 3i đến điểm z = -1 + i.

Câu 2. Viết phương trình tham số của các đường tròn (hoặc đường elip) C theo tham số t và tìm khoảng biến thiên của t dưới dạng $t:a\to b$ trong các trường hợp sau

- 1) C là đường tròn |z-1-i|=1 nối từ điểm z=2+i đến điểm z=1+2i theo chiều âm.
- 2) C là đường tròn |z-1-i|=1 nối từ điểm z=1 đến điểm z=i theo chiều dương.
- 3) C là đường tròn |z+2i|=1 nối từ điểm z=-3i đến điểm z=1-2i theo chiều âm.
- 4) C là đường tròn |z+1+2i|=1 nối từ điểm z=-2i đến điểm z=-2-2i theo chiều âm.
- 5) C là đường elip $\frac{x^2}{4} + y^2 = 1$ nối từ điểm z = 2 đến điểm z = -i theo chiều dương.
- 6) C là đường elip $x^2 + \frac{y^2}{4} = 1$ nối từ điểm z = 2i đến điểm z = -1 theo chiều âm.
- 7) C là đường elip $\frac{x^2}{4} + \frac{y^2}{9} = 1$ nối từ điểm z = -3i đến điểm z = -2 theo chiều âm.
- 8) C là đường elip $\frac{x^2}{9} + \frac{y^2}{4} = 1$ nối từ điểm z = -2i đến điểm z = 3 theo chiều dương.

Câu 3. Tính các tích phân sau

- 1) $I=\int\limits_C\overline{z}^2.\operatorname{Re}(iz)dz$, C là đoạn thẳng nối từ điểm z=-2i đến điểm z=-1+3i .
- 2) $I=\int_C \overline{z}^2 .\operatorname{Im}(iz)dz$, C là đoạn thẳng nối từ điểm z=i đến điểm z=-1-i .
- 3) $I=\int_C \overline{z}^2.(z^2-iz)dz$, C là đoạn thẳng nối từ điểm z=2i đến điểm z=-3i .

ThS. Đoàn Vương Nguyên

Bài tập thường kỳ Hàm phức & Phá 4)
$$I=\int\limits_C \overline{z}^2.(2z-iz^2)dz$$
, C là đoạn thẳng nối từ điểm $z=3$ đến điểm $z=-1$.

5)
$$I=\int\limits_{C}^{C}\overline{z}dz$$
 , C có phương trình $\begin{cases} x=2t^{2}-2t\\ y=t \end{cases}$ nối từ điểm $A(4;-1)$ đến điểm $B(4;2)$.

6)
$$I = \int_{C} \overline{z} dz$$
, C có phương trình
$$\begin{cases} x = 2\cos t \\ y = \sin t \end{cases}$$
 nối từ điểm $A(0;-1)$ đến điểm $B(-2;0)$ theo chiều âm.

7)
$$I=\int_C\overline{z}^2dz$$
, $C:|z-i|=1$ nối từ điểm $z=0$ đến điểm $z=1+i$ theo chiều âm.

8)
$$I = \int_C \frac{dz}{z^2}$$
, $C: |z| = \sqrt{2}$ nối từ điểm $z = -1 - i$ đến điểm $z = 1 + i$ theo chiều dương.

Câu 4. Áp dụng tích phân Cauchy, tính các tích phân sau

1)
$$I = \oint_{|z+2+i|=1} \frac{dz}{z^2 + 4z + 5}$$
 2) $I = \oint_{|z+3-i|=2} \frac{z-1}{z^2 + 4z} dz$
4) $I = \oint_{|z+2i|=1} \frac{dz}{z^4 + 5z^2 + 4}$ 5) $I = \oint_{|z+2i|=2} \frac{dz}{z^4 + 4z^2}$

2)
$$I = \oint_{|z+3-i|=2} \frac{z-1}{z^2+4z} dz$$

3)
$$I = \oint_{|z-4+i|=3} \frac{z+2}{z^2-3z} dz$$

4)
$$I = \oint_{|z+2j|=1} \frac{dz}{z^4 + 5z^2 + 4}$$

5)
$$I = \oint_{|z+2i|=2} \frac{dz}{z^4 + 4z^2}$$

6)
$$I = \oint_{|z-1|=1} \frac{dz}{z^3 - 1}$$

Câu 5. Áp dụng tích phân Cauchy, tính các tích phân sau

1)
$$I = \oint_{|z-1|=3} \frac{dz}{z^2 - 2z + 5}$$

1)
$$I = \oint_{|z-1|=3} \frac{dz}{z^2 - 2z + 5}$$
 2) $I = \oint_{|z-2|=2} \frac{dz}{z^2 - 4z + 5}$

3)
$$I = \oint_{|z-1|=4} \frac{dz}{z^2 - 2z + 10}$$

4)
$$I = \oint_{|z-2i|=2} \frac{dz}{z^4 + 5z^2 + 4}$$
 5) $I = \oint_{|z-1-i|=2} \frac{dz}{z^4 - 1}$

5)
$$I = \oint_{|z-1-i|=2} \frac{dz}{z^4 - 1}$$

6)
$$I = \oint_{|z-1|=2} \frac{dz}{z^3 - 3z}$$

Câu 6. Áp dụng tích phân Cauchy, tính các tích phân sau

1)
$$I = \oint_{|z+3|=2} \frac{z+3}{(z^2+4z)^2} dz$$

2)
$$I = \oint_{|z-i|=2} \frac{z-1}{(z^2+4)^2} dz$$

3)
$$I = \oint_{|z-4+i|=3} \frac{z-1}{(z^2-3z)^2} dz$$

4)
$$I = \oint_{|z+i|=1} \frac{dz}{z^2 (z-i)^3}$$

5)
$$I = \oint_{|z|=1} \frac{dz}{z^2(z-2)^3}$$

6)
$$I = \oint_{|z|=1} \frac{dz}{z^3(z-1)}$$

Câu 7*. Áp dụng tích phân Cauchy, tính các tích phân sau

1)
$$I = \int_C \frac{dz}{z^2 + 1}$$
, C là cung tròn $\left(x - \frac{1}{2} \right)^2 + (y + 3)^2 = \frac{45}{4}$ nối $z = 2$ với $z = -1$ theo chiều âm.

2)
$$I=\int_C \frac{dz}{z^2+1}$$
, C là cung tròn $\left(x-\frac{1}{2}\right)^2+y^2=\frac{9}{4}$ nối $z=-1$ với $z=2$ theo chiều dương.

3)
$$I = \int_C \frac{dz}{z^2 + 4}$$
, C là cung tròn $(x - 1)^2 + (y + 2)^2 = 8$ nối $z = 3$ với $z = -1$ theo chiều âm.

4)
$$I = \int_C \frac{dz}{z^2 + 4}$$
, C là cung tròn $(x - 1)^2 + (y - 2)^2 = 8$ nối $z = -1$ với $z = 3$ theo chiều dương.

5)
$$I = \int_C \frac{dz}{z^2 + 9}$$
, C là cung tròn $(x - 1)^2 + (y + 3)^2 = 13$ nối $z = 3$ với $z = -1$ theo chiều âm.

6)
$$I = \int_C \frac{dz}{z^2 + 4}$$
, C là cung tròn $(x - 1)^2 + (y - 3)^2 = 13$ nối $z = -1$ với $z = 3$ theo chiều dương.

Chương 4. CHUỖI VÀ THẶNG DƯ

Câu 1*. Tìm hình tròn hội tụ của các chuỗi

$$1) \sum_{n=1}^{\infty} \frac{(z-i)^n}{n^2}$$

$$2) \sum_{n=1}^{\infty} \left(\frac{z+n}{2nz} \right)^n$$

3)
$$\sum_{n=1}^{\infty} \frac{z^{n^2}}{n!}$$

4)
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2} (z-1)^n$$

Câu 1*. Thin mini tron họi cụ 1.

1) $\sum_{n=1}^{\infty} \frac{(z-i)^n}{n^2}$ 2) $\sum_{n=1}^{\infty} \left(\frac{z+n}{2nz}\right)^n$ 3) $\sum_{n=1}^{\infty} \frac{z^{n^2}}{n!}$ Câu 2*.

2 1 Khai triển Taylor các hàm số sau tại điểm z=a

1)
$$f(z) = \frac{1}{z}, \ a = i$$

1)
$$f(z) = \frac{1}{z}$$
, $a = i$ 2) $f(z) = \frac{z-1}{z+1}$, $a = 0$

3)
$$f(z) = \frac{1}{z^2 + 3z + 2}$$
, $a = 0$

2.2. Khai triển Laurent của hàm số $f(z) = \frac{1}{(z+1)(z+2)}$ trong các trường hợp sau

- 1) trong miền |z| < 1
- 2) trong miền |z| > 2
- 3) trong miền 0 < |z+1| < 1

Câu 3*. Khai triển Laurent các hàm số sau trong lân cận điểm bất thường cô lập đã chỉ ra và gọi tên các điểm bất thường cô lập đó

1)
$$f(z) = \frac{e^{2z}}{(z-1)^2}$$
, tại $z = 1$

1)
$$f(z) = \frac{e^{2z}}{(z-1)^2}$$
, tại $z = 1$ 2) $f(z) = \frac{1}{z(z+1)^2}$, tại $z = -1$

3)
$$f(z) = \frac{1}{z^2 + 3z + 2}$$
, tại $z = -2$ 4) $f(z) = z^2 e^{\frac{1}{z}}$, tại $z = 0$

4)
$$f(z) = z^2 e^{\frac{1}{z}}$$
, tại $z = 0$

5)
$$f(z) = (z-1)\cos\frac{1}{z-1}$$
, tại $z=1$ 6) $f(z) = \frac{1}{(z^2+1)^2}$, tại $z=i$

6)
$$f(z) = \frac{1}{(z^2 + 1)^2}$$
, tai $z = i$

Câu 4. Tìm, phân loại các điểm bất thường cô lập hữu hạn và tính thặng dư của các hàm số tại các điểm đó

1)
$$f(z) = \frac{z+2}{z(z-1)^3}$$

1)
$$f(z) = \frac{z+2}{z(z-1)^3}$$
 2) $f(z) = \frac{1-\cos z}{z^3(z^2-4)}$

3)
$$f(z) = \frac{z}{(z^2 + 1)^2}$$

4)
$$f(z) = \frac{1}{(z^2 - 2z + 2)^2}$$
 5) $f(z) = \frac{z^4}{(z+1)^3}$

5)
$$f(z) = \frac{z^4}{(z+1)^3}$$

6)
$$f(z) = \frac{e^z}{z^3 - 1}$$

7)
$$f(z) = \frac{z}{z^4 + 5z^2 + 4}$$
 8) $f(z) = \frac{z - 2i}{(z^2 + 4)^2}$

8)
$$f(z) = \frac{z - 2i}{(z^2 + 4)^2}$$

9)
$$f(z) = \frac{1}{z^4 + i}$$

Câu 5. Tính thặng dư tại ∞ của các hàm số sau

1)
$$f(z) = \frac{z^2}{z^4 - 2}$$

2)
$$f(z) = \frac{1}{z^7 - z}$$

3)
$$f(z) = \frac{z^2}{z^9 + 2}$$

4)
$$f(z) = \frac{1}{z^2(z^3 - 1)}$$
 5) $f(z) = \frac{z^3}{2 - z^7}$

5)
$$f(z) = \frac{z^3}{2 - z^7}$$

6)
$$f(z) = \frac{z}{z^{10} - 3}$$

7)
$$f(z) = \frac{1}{z^4(3-z^2)}$$
 8) $f(z) = \frac{z^2}{1-3z^7}$

8)
$$f(z) = \frac{z^2}{1 - 3z^7}$$

9)
$$f(z) = \frac{1}{2z^6 + 1}$$

Câu 6. Áp dụng thặng dư tính các tích phân phức sau

1)
$$I = \oint \frac{\sin \frac{\pi z}{4}}{z^2 - 1} dz$$
, $C : x^2 + y^2 = 2x$.

2)
$$I = \oint_C \frac{\cos z}{z^2 - 1} dz$$
, C là chu vi tam giác có các đỉnh là $z = 0$, $z = 2 - 2i$ và $z = 2 + 2i$.

3)
$$I=\oint_C \frac{z^2dz}{z^2+4},~C~$$
 là biên của hình vuông có các đỉnh là $z=\pm 2,~z=\pm 2+4i$.

4)
$$I = \oint_C \frac{e^{iz}dz}{4z^2 - \pi^2}, C: |z - i| = 2$$

4)
$$I = \oint_C \frac{e^{iz}dz}{4z^2 - \pi^2}$$
, $C : |z - i| = 2$.

5) $I = \oint_C \frac{dz}{z^3 + 1}$, C là elip $2x^2 + y^2 = \frac{3}{2}$.

6) $I = \oint_{|z| = 2} \frac{dz}{z^3(z^{10} - 2)}$.

6. Áp dụng thặng dư tính các tích phân thực dạng lượng giác sau

6)
$$I = \oint_{|z|=2} \frac{dz}{z^3 (z^{10} - 2)}$$
.

Câu 7. Áp dụng thặng dư tính các tích phân thực dạng lượng giác sau

1)
$$I = \int_{0}^{2\pi} \frac{dt}{5 - 3\sin t}$$

2)
$$I = \int_{0}^{\pi} \frac{dt}{5 + 4\cos t}$$

1)
$$I = \int_{0}^{2\pi} \frac{dt}{5 - 3\sin t}$$

3) $I = \int_{0}^{2\pi} \frac{dt}{3 + \sin t}$

4*)
$$I = \int_{0}^{\pi} \frac{\sin^2 t dt}{5 - 3\cos t}$$
.

5)
$$I = \int_{0}^{2\pi} \frac{dt}{4 - 3\cos t}$$

6)
$$I = \int_{0}^{\pi} \frac{dt}{3 - 2\cos t}$$

$$7) I = \int_{0}^{2\pi} \frac{dt}{2 + \cos t}$$

$$8*) I = \int_{0}^{\pi} \frac{\sin^2 t dt}{3 - 2\cos t}.$$

Câu 8. Áp dụng thặng dư tính các tích phân thực suy rộng sau

1)
$$I = \int_{-\infty}^{+\infty} \frac{dx}{x^2 + 16}$$

2)
$$I = \int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 2}$$

3)
$$I = \int_{-\infty}^{+\infty} \frac{dx}{(x^2 - 2x + 5)^2}$$

4)
$$I = \int_{-\infty}^{+\infty} \frac{dx}{x^4 + 5x^2 + 4}$$

5)
$$I = \int_{0}^{+\infty} \frac{dx}{(x^2 + 9)^2}$$

6)
$$I = \int_{0}^{+\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$$

7*)
$$I = \int_{0}^{+\infty} \frac{\cos 3x}{x^2 + 1} dx$$

8*)
$$I = \int_{0}^{+\infty} \frac{x \sin x}{(x^2 + 4)^2} dx$$

Chương 5. PHẾP BIỂN ĐỚI LAPLACE

Câu 1. Tìm biến đổi Laplace của các hàm gốc sau

1)
$$f(t) = e^t \cos 3t - 3e^{-2t} \sin 4t + \frac{t^3}{e^{5t}}$$

2)
$$f(t) = e^{-t} \sin 2t - 3e^{2t} \cos \frac{t}{2} + t^4 e^{-3t}$$

3)
$$f(t) = (t^5 - 2t^2 + 4)e^{-3t} + \frac{2\cos 3t}{e^{2t}}$$

4)
$$f(t) = (t^5 + t^2 - 3t)e^{2t} + \frac{\sin 3t}{e^{-t}}$$

5)
$$f(t) = 3te^{2t}u(t-2)$$

6)
$$f(t) = (t-1)e^{-t}u(t-3)$$

7)
$$f(t) = 3t^2 \sin 2t - t \cos 3t$$

8)
$$f(t) = 2t^2 \cos 3t + (t-1)\sin 2t$$

Câu 2. Tìm biến đổi Laplace của các hàm gốc sau

1)
$$f(t) = \begin{cases} 0, & t < 3 \\ t^2 - 2t, & 3 \le t < 4 \\ 1 - 3t, & t \ge 4 \end{cases}$$

2)
$$f(t) = \begin{cases} 0, & t < 2 \\ t^2 + 5t, & 2 \le t < 5 \\ 4 - 3t, & t \ge 5 \end{cases}$$

1)
$$f(t) = \begin{cases} 0, & t < 3 \\ t^2 - 2t, & 3 \le t < 4 \\ 1 - 3t, & t \ge 4 \end{cases}$$
2) $f(t) = \begin{cases} 0, & t < 2 \\ t^2 + 5t, & 2 \le t < 5 \\ 4 - 3t, & t \ge 5 \end{cases}$
3) $f(t) = \begin{cases} 0, & t < 3 \\ -2t^2, & 3 \le t < 4 \\ t^2 - 2t, & t \ge 4 \end{cases}$
4) $f(t) = \begin{cases} 0, & t < 2 \\ -4t^2, & 2 \le t < 5 \\ t^2 + 5t, & t \ge 5 \end{cases}$

4)
$$f(t) = \begin{cases} 0, & t < 2 \\ -4t^2, & 2 \le t < 5 \\ t^2 + 5t, & t \ge 5 \end{cases}$$

5)
$$f(t) = \begin{cases} 0, & t < \pi \\ \sin 2t, & \pi \le t < \frac{3\pi}{2} \\ 0, & t \ge \frac{3\pi}{2} \end{cases}$$

6)
$$f(t) = \begin{cases} 0, & t < \pi \\ \cos 2t, & \pi \le t < \frac{3\pi}{2} \\ 0, & t \ge \frac{3\pi}{2} \end{cases}$$

Câu 3. Tìm biến đối Laplace của các hàm gốc tuần hoàn sau

1)
$$f(t) = \begin{cases} 2t, & 0 \le t < 3 \\ t^2 - 2t, & 3 \le t \le 4 \end{cases}$$
, $T = 4$

2)
$$f(t) = \begin{cases} 3t, & 0 \le t < 2 \\ t^2 + 5t, & 2 \le t \le 5 \end{cases}$$
, $T = 5$

1)
$$f(t) = \begin{cases} 2t, & 0 \le t < 3 \\ t^2 - 2t, & 3 \le t \le 4 \end{cases}$$
, $T = 4$

2) $f(t) = \begin{cases} 3t, & 0 \le t < 2 \\ t^2 + 5t, & 2 \le t \le 5 \end{cases}$, $T = 5$

3) $f(t) = \begin{cases} t^2 - 2t, & 0 \le t < 1 \\ -2t^2, & 1 \le t \le 3 \end{cases}$, $T = 3$

4) $f(t) = \begin{cases} 2 - t^2, & 0 \le t < 2 \\ 2t^2 + t, & 2 \le t \le 3 \end{cases}$, $T = 3$

5) $f(t) = \begin{cases} t, & 0 \le t < \pi \\ \sin 2t, & \pi \le t \le 2\pi \end{cases}$, $T = 2\pi$

6) $f(t) = \begin{cases} t, & 0 \le t < \pi \\ \cos 2t, & \pi \le t \le 2\pi \end{cases}$, $T = 2\pi$

4)
$$f(t) = \begin{cases} 2 - t^2, & 0 \le t < 2\\ 2t^2 + t, & 2 \le t \le 3 \end{cases}$$
, $T = 3$

5)
$$f(t) = \begin{cases} t, & 0 \le t < \pi \\ \sin 2t, & \pi \le t \le 2\pi \end{cases}$$
, $T = 2\pi$

6)
$$f(t) = \begin{cases} t, & 0 \le t < \pi \\ \cos 2t, & \pi \le t \le 2\pi \end{cases}, T = 2\pi$$

Câu 4. Tìm biến đối Laplace ngược của các hàm ảnh sau

1)
$$F(s) = \frac{s-5}{s^2+8s+25} + \frac{s}{s^2+8s+16}$$

2)
$$F(s) = \frac{3-s}{s^2 - 8s + 25} + \frac{s}{s^2 - 8s + 16}$$

3)
$$F(s) = \frac{s}{s^2 + 10s + 29} + \frac{4 - s}{s^2 + 10s + 25}$$
 4) $F(s) = \frac{s}{s^2 - 10s + 29} + \frac{4 - s}{s^2 - 10s + 25}$

4)
$$F(s) = \frac{s}{s^2 - 10s + 29} + \frac{4 - s}{s^2 - 10s + 25}$$

5)
$$F(s) = \frac{e^{-s}}{s^2 + 4} + \frac{e^{-3s}}{s^2 + 10s + 25}$$

6)
$$F(s) = \frac{se^{-5s}}{s^2 + 9} + \frac{e^{-s}}{s^2 - 10s + 25}$$

7)
$$F(s) = \frac{e^{-3s}}{s^2 + 2s + 5}$$

8)
$$F(s) = \frac{e^{-2s}}{s^2 - 6s + 18}$$

Câu 5. Bằng cách phân tích thành phân thức tối giản, tìm biến đổi Laplace ngược của các hàm ảnh sau

1)
$$F(s) = \frac{s^2 - 5s}{s^3 + 2s^2 - 11s - 12}$$

2)
$$F(s) = \frac{s^2 - 5s + 3}{s^3 - 13s + 12}$$

3)
$$F(s) = \frac{s}{s^3 + 3s^2 - 10s - 24}$$

4)
$$F(s) = \frac{s}{s^3 - s^2 - 14s + 24}$$

5)
$$F(s) = \frac{s-1}{(s^2+1)(s-4)}$$

6)
$$F(s) = \frac{s+2}{(s^2+4)(s+9)}$$

7)
$$F(s) = \frac{s-3}{s(s-1)^2}$$

8)
$$F(s) = \frac{s+1}{s(s+2)^2}$$

Câu 6. Sử dụng thặng dư, tìm biến đổi Laplace ngược của các hàm ảnh sau

1)
$$F(s) = \frac{s}{(s-1)^2(s+2)^2}$$

2)
$$F(s) = \frac{s}{(s-1)^3(s+2)}$$

3)
$$F(s) = \frac{s-2}{(s-3)^2(s+2)^2}$$

4)
$$F(s) = \frac{s-1}{(s-2)(s+1)^3}$$

5)
$$F(s) = \frac{s}{(s-i)(s^2+1)}$$

6)
$$F(s) = \frac{s}{(s-2i)(s^2+4)}$$

7)
$$F(s) = \frac{1}{(s-i)(s^2 + 2is + 3)}$$

8)
$$F(s) = \frac{1}{(s+3i)(s^2+2is+3)}$$

Câu 7*. Sử dụng tích chập, tìm biến đổi Laplace ngược của các hàm ảnh sau

1)
$$F(s) = \frac{s}{(s^2 + 1)(s^2 + 2)}$$

2)
$$F(s) = \frac{s}{(s^2 + 4)(s^2 + 3)}$$

3)
$$F(s) = \frac{3}{(s^2 + 1)s^3}$$

4)
$$F(s) = \frac{1}{s^3(s^2+4)}$$

5)
$$F(s) = \frac{s}{(s+1)^2(s^2+1)}$$

6)
$$F(s) = \frac{s}{(s-2)^2(s^2+4)}$$

7)
$$F(s) = \frac{2-s}{(s^2+4)^2}$$

8)
$$F(s) = \frac{3-s}{(s^2+9)^2}$$

Câu 8. Dùng biến đổi Laplace giải các phương trình vi phân cấp một sau

1)
$$y' + 2y = 3e^{-2t}$$
; $y(0) = 1$

2)
$$y' - 2y = 3e^{2t}$$
; $y(0) = -1$

3)
$$y' + 5y = 3e^{-5t}$$
; $y(0) = -2$

4)
$$y' - 6y = -e^{6t}$$
; $y(0) = 3$

5)
$$y' + 4y = -2e^{-t}$$

6)
$$y' - 7y = -e^t$$

7)
$$y' + 2y = t$$
; $y(0) = 1$

8)
$$y' - 2y = t$$
; $y(0) = -2$

Câu 9. Dùng biến đổi Laplace giải các phương trình vi phân cấp hai sau

1)
$$y'' - 3y' + 2y = e^{3t}$$
; $y(0) = 1$, $y'(0) = -1$ 2) $y'' + 4y' + 3y = e^{-2t}$; $y(0) = 1$, $y'(0) = 2$

2)
$$y'' + 4y' + 3y = e^{-2t}$$
; $y(0) = 1$, $y'(0) = 2$

3)
$$y'' - 3y' + 2y = e^t$$
; $y(0) = 0$, $y'(0) = -$

3)
$$y'' - 3y' + 2y = e^t$$
; $y(0) = 0$, $y'(0) = -1$ 4) $y'' + 4y' + 3y = e^{-3t}$; $y(0) = 0$, $y'(0) = 2$

5)
$$y'' - 4y' + 4y = e^t$$
; $y(0) = 0$, $y'(0) = -$

5)
$$y'' - 4y' + 4y = e^t$$
; $y(0) = 0$, $y'(0) = -1$ 6) $y'' + 4y' + 4y = e^{-3t}$; $y(0) = 0$, $y'(0) = 2$

7)
$$y'' - 3y' + 2y = t$$
; $y(0) = 0$, $y'(0) = 0$

7)
$$y'' - 3y' + 2y = t$$
; $y(0) = 0$, $y'(0) = 0$
8) $y'' + 4y' + 3y = t$; $y(0) = 0$, $y'(0) = 0$

Câu 10*. Dùng biến đổi Laplace giải các phương trình vi phân cấp hai sau

1)
$$y'' - 2y' + 5y = 3$$
; $y(0) = 0$, $y'(0) = 0$

2)
$$y'' + 4y' + 8y = -1$$
; $y(0) = 0$, $y'(0) = 0$

3)
$$y'' + 4y = te^t$$
; $y(0) = 0$, $y'(0) = 0$

4)
$$y'' + 9y = te^{-3t}$$
; $y(0) = 0$, $y'(0) = 0$

5)
$$y'' - 4y' + 4y = t$$
; $y(0) = 0$, $y'(0) = 0$

5)
$$y'' - 4y' + 4y = t$$
; $y(0) = 0$, $y'(0) = 0$ 6) $y'' + 6y' + 9y = 2t$; $y(0) = 0$, $y'(0) = 0$

7)
$$y'' - 2y' + 5y = 3t$$
; $y(0) = 0$, $y'(0) = 0$

7)
$$y'' - 2y' + 5y = 3t$$
; $y(0) = 0$, $y'(0) = 0$ 8) $y'' + 4y' + 8y = -t$; $y(0) = 0$, $y'(0) = 0$

Câu 11. Dùng biến đổi Laplace giải các hệ phương trình vi phân cấp một sau

1)
$$\begin{cases} x' = 2x - 3y \\ y' = y - 2x \end{cases}; \ x(0) = 8, \ y(0) = 3$$

2)
$$\begin{cases} x' + 4x + 4y = 0 \\ y' + 2x + 6y = 0 \end{cases}$$
; $x(0) = 3$, $y(0) = 15$

3)
$$\begin{cases} x' + 3x - 4y = 9e^{2t} \\ y' + 2x - 3y = 3e^{2t} \end{cases}; \ x(0) = 2, \ y(0) = 0$$
 4)
$$\begin{cases} x' - 2x - 4y = \cos t \\ y' + x + 2y = \sin t \end{cases}; \ x(0) = y(0) = 0$$

4)
$$\begin{cases} x' - 2x - 4y = \cos t \\ y' + x + 2y = \sin t \end{cases}; \ x(0) = y(0) = 0$$

.....Hết