

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Уральский федеральный университет имени первого Президента России Б. Н. Ельцина»

МЕТОДЫ ПРОГНОЗИРОВАНИЯ ДАННЫХ

ИТОГОВОЕ ЗАДАНИЕ

Екатеринбург

Содержание

Теречень заданий по вариантам	3
Итоговое задание	4

Перечень заданий по вариантам

Студенты выбирают задание для самостоятельной работы в соответствии со своим вариантом, который определяется по последним двум цифрам студенческого билета. В случае если последние две цифры превышают 20, то следует использовать номер варианта в виде целого остатка от деления последних цифр студенческого билета по модулю 20.

К заданию прилагается архив с **20** *txt*-файлами, внутри которых содержатся в один столбец различные значения реальных данных совершенно разных объемов, с абсолютно разными характеристиками. Студенты могут либо напрямую копировать значения из txt-файлов в свою рабочую «тетрадь», либо загружать значения из файлов с помощью различных функций (самый правильный вариант). В целях упрощения временная сетка исходных данных не предоставляется, и студенты могут создать ее сами (если того требуют вычислительные методы).

В описании далее могут использоваться следующие сокращения:

BP – временной ряд, НЧ – низкочастотный, ВЧ – высокочастотный, СЧ – средняя частота, ЛЧМ – линейно частотно модулированный, ЧМ – частотная модуляция.

Все работы выполняются в соответствии с инструментами и методами, использованными в ходе выполнения лабораторных работ по курсу «Методы прогнозирования данных».

Итоговое задание

Результатом выполнения индивидуального задания является оформленный отчет в виде *Jupyter*-тетради, в котором должны быть представлены и отражены все нижеперечисленные пункты для собственного варианта временного ряда:

- 1) Оцените мат. ожидание, дисперсию данных.
- 2) Постройте <u>периодограмму</u> и <u>спектрограмму</u> выбранного ряда. Если в данных заметен четкий период найдите и укажите его численно.
- 3) Постройте наиболее подходящий тренд для данных.
- 4) Постройте прогноз этого тренда с помощью методов <u>регрессии</u>. Не забывайте строить доверительные интервалы!
- 5) Постройте **прогноз** данных с помощью <u>ARIMA</u> модели. **Внимание!** Данные у всех разные у кого-то получится сразу хороший результат, у кого-то в итоге прогноз выйдет плохим (не подходит модель), у кого-то вообще ничего не посчитает. В любом случае все полученные результаты следует аргументировать (если ARIMAмодель не подошла то почему, почему выбран именно такой порядок модели, и т.д.)
- 6) Если в ряде <u>присутствуют</u> явные периодические составляющие выделите их с помощью методов вейвлет-анализа и SSA. Вид базового вейвлета можно брать **любой**.
- 7) Если в ряде <u>отсутствуют</u> явные периодические составляющие постройте тренд с помощью методов вейвлет-анализа и SSA. Вид базового вейвлета можно брать **любой**.
- 8) Постройте **прогноз** ряда с помощью рекурсивного метода Сингулярного Спектрального Анализа **SSA-R**.
- 9) Постройте **прогноз** данных с помощью нейронной сети **LSTM**.

В любом случае — не забывайте, что задание <u>творческое</u>, а **реальные** данные у всех — абсолютно <u>разные</u>. Для одних лучше подойдут одни методы и параметры, а для других вариантов — другие. Это означает, что вполне будут зачтены даже те случаи, где прогноз не удался, или компоненты не построились, или ARIMA-модель вообще не получается (самый частый случай у студентов, по опыту). Но любой такой факт следует четко аргументировать, если аргументация достаточно убедительна — задание все равно будет зачтено.

Успехов Вам в выполнении этого задания!