Algorithm Design, Analysis & Complexity

Lecture 3 - Dynamic Programming

Koushik Pal

University of Toronto

May 18, 2021

Fibonacci Series

Definition (Fibonacci Series)

$$F_0 = F_1 = 1$$

 $F_n = F_{n-1} + F_{n-2}$ for all $n \ge 2$.

Goal: Compute the n^{th} Fibonacci number F_n .

```
1: procedure Fibonacci(n)
2: if n == 0 or n == 1 then
3: return 1
4: else
5: return Fibonacci(n-1) + Fibonacci(n-2)
```

Complexity: ???

Exponential Explanation

Complexity: $\Theta(2^n)$.

This happens simply because we repeat our calculations! To make it efficient, we store all computed results.

Memoization

```
1: procedure FIBONACCIMEMOIZEDWRAPPER(n)
     M = \Pi
2:
  M[0] = M[1] = 1
3:
     return FibonacciMemoized(n, M)
4:
1: procedure FIBONACCIMEMOIZED(n, M)
     if M[n] is defined then
2:
        return M[n]
3:
     else
4.
        M[n-1] = \text{FIBONACCIMEMOIZED}(n-1, M)
5:
        M[n-2] = \text{FibonacciMemoized}(n-2, M)
6.
        M[n] = M[n-1] + M[n-2]
7:
        return M[n]
8:
```

Complexity: ???

Improved Complexity

Complexity: $\Theta(n)$ (each call to the recursive function computes and fills one value of M and there are only n values to fill).

Iterative Approach

Now turn this recursive top-down algorithm into an iterative bottom-up algorithm.

```
1: procedure FibonacciIterative(n)
2: M = []
3: M[o] = M[1] = 1
4: for k = 2 to n do
5: M[k] = M[k-1] + M[k-2]
6: return M[n]
```

Complexity: $\Theta(n)$.

Dynamic Programming

A dynamic programming algorithm for an optimization problem is basically a recursive solution that uses memoization to solve repeated calls to the same subproblems.

Indication that dynamic programming might apply to a problem:

Definition

A problem exhibits optimal substructure if an optimal solution to the problem contains within it optimal solutions to subproblems.

Definition

A problem is said to have overlapping subproblems if subproblems share subsubproblems, or equivalently, if the problem can be broken down into subproblems which are reused several times.

Problem (Weighted Interval Scheduling)

Given n requests $\{r_1, r_2, \ldots, r_n\}$, with each request specifying a start time s_i , a finish time t_i , and having a value or weight v_i , select a subset $S \subseteq \{r_1, r_2, \ldots, r_n\}$ of mutually compatible requests so as to maximize the sum of the values of the selected requests $\sum_{r_i \in S} v_i$.

Note

Interval scheduling is a special case of weighted interval scheduling with $v_i = 1$ for all $1 \le i \le n$.

Preprocessing: Assume the requests $\{r_1, r_2, \dots, r_n\}$ are sorted by their **finish times**, i.e., $t_1 \leq t_2 \leq \dots \leq t_n$.

Also, define P[j], for a request r_j , as follows:

$$P[j] = \begin{cases} i, & \text{where } i < j \text{ is largest s.t. } r_i \text{ is compatible with } r_j \\ 0, & \text{if no request } r_i \text{ is compatible with } r_j \text{ for } i < j. \end{cases}$$

 r_8

Example

P[1] = P[2] = P[3] = P[5] = 0,P[4] = 1, P[6] = 2, P[7] = 3, P[8] = 5.

Exercise. Compute P efficiently (in $\Theta(n \lg n)$ steps)!

Observation

Let \mathcal{O} be an optimal solution. Then there are two possibilities:

- 1. $r_n \in \mathcal{O}$: then the remaining requests in \mathcal{O} form a subset of $\{r_1, r_2, \dots, r_{P[n]}\}$.
- 2. $r_n \notin \mathcal{O}$: then the remaining requests in \mathcal{O} form a subset of $\{r_1, r_2, \dots, r_{n-1}\}$.

Definition

Let \mathcal{O}_j denote an optimal solution to the problem consisting of requests $\{r_1, \ldots, r_j\}$, and OPT_j denote the value of this solution.

Goal

To find \mathcal{O}_n and OPT_n .

By the previous observation,

- 1. if $r_j \in \mathcal{O}_j$, then $OPT_j = v_j + OPT_{P[j]}$
- 2. if $r_j \notin \mathcal{O}_j$, then $OPT_j = OPT_{j-1}$

Consequently, $OPT_j = \max\{v_j + OPT_{P[j]}, OPT_{j-1}\}.$

Moreover, request r_j belongs to an optimal solution if and only if

$$v_j + OPT_{P[j]} \ge OPT_{j-1}$$
.

Non-DP Solution

- 1: **procedure** Compute-Opt-Wrapper(n)
- 2: **return** Compute-Opt(n)

```
1: procedure Compute-Opt(j)
2: if j == 0 then
3: return 0
4: else
5: return \max\{v_j + \text{Compute-Opt}(P[j]), \text{Compute-Opt}(j-1)\}
```

Proof of Correctness

Proof.

Proof by mathematical induction.

Base Case: $OPT_0 = 0 = Compute-Opt(0)$ (no requests, no value).

Ind. Hyp.: Assume Compute-Opt(k) = OPT_k for $1 \le k < j$.

Ind. Step: Show the result holds for j. *Proof.*

$$OPT_{j} = \max\{v_{j} + OPT_{P[j]}, OPT_{j-1}\}\$$
 $= \max\{v_{j} + \text{Compute-Opt}(P[j]),$
 $COMPUTE-OPT(j-1)\}$ (by Ind. Hyp.)
 $= \text{Compute-Opt}(j)$

Complexity

Complexity: T(n) = T(n-1) + T(P[n]).

If P[j] = j-1 for all j, then T(n) = 2T(n-1), which yields $T(n) = 2^n$.

It is exponential because we are repeating our calculations.

Solution: Memoization!

DP Solution

```
1: procedure M-Compute-Opt-Wrapper(n)
     M = []
2:
     M[o] = o
3:
     return M-Compute-Opt(n, M)
4:
1: procedure M-Compute-Opt(j, M)
     if M[j] is defined then
2:
         return M[j]
3:
4.
     else
         M[P[j]] = M\text{-Compute-Opt}(P[j], M)
5:
        M[j-1] = M-Compute-Opt(j-1, M)
6:
        M[j] = \max\{v_j + M[P[j]], M[j-1]\}
7:
         return M[j]
8:
```

Complexity: $\Theta(n)$ (each function call computes and fills one value of M, and M has only n values to fill).

Iterative Approach

Now turn this recursive top-down algorithm into an iterative bottom-up algorithm.

```
1: procedure M-BOTTOM-UP-COMPUTE-OPT(n)

2: Let M[0, \ldots, n] be initialized to -\infty

3: M[0] = 0

4: for j = 1 to n do

5: M[j] = \max\{v_j + M[P[j]], M[j-1]\}

6: return M[n]
```

Complexity: $\Theta(n)$.

Overall Complexity: Since sorting of the requests by their finish times takes $\Theta(n \lg n)$ and computing the array P takes $\Theta(n \lg n)$ time, the overall complexity of the whole algorithm is $\Theta(n \lg n)$.

Optimal Solution

Finally, use M to compute an optimal solution, i.e., a subset of compatible requests that has the maximum sum of values.

- 1: **procedure** FIND-SOLUTION-WRAPPER(n, M)
- 2: S = []
- 3: **return** FIND-SOLUTION(n, M, S)
- 1: procedure FIND-SOLUTION(j, M, S)
- 2: **if** j == 0 **then**
- 3: return S
- 4: else if $v_j + M[P[j]] > M[j-1]$ then
- 5: $S = S.\mathsf{append}(r_j)$
- 6: return FIND-SOLUTION(P[j], M, S)
- 7: **else**
- 8: return FIND-SOLUTION(j-1, M, S)

Complexity: $\Theta(n)$.

Five steps of Dynamic Programming

- 1. Defining the optimal substructure / recursive structure
- 2. Array definition for memoization
- 3. Defining the recurrence relation in terms of the array
- 4. Bottom-up iterative algorithm
- 5. Find one optimum solution using the array values.

Brute Force vs. Greedy vs. DP

Brute force algorithm explores every possible solution from the solution space.

Dynamic Programming algorithm first finds optimal solutions to subproblems and then makes an informed choice. It's important to make sure that there are only a polynomial number of subproblems.

Greedy algorithm first makes a "greedy" choice — the choice that looks best at the time — and then solves a resulting subproblem, without bothering to solve all possible related smaller subproblems.