Chapter12. 다중선형 회귀분석&로지스틱 회귀분석

목차

- 0. 소스분석문제
- I. 다중선형 회귀분석
- Ⅱ. 로지스틱 회귀분석
- Ⅲ, 응용

요약1. 회귀모델(예측)

요약2. 다중선형 회귀분석이란?

■ **다중선형 회귀분석(regression analysis)**: 독립변수 여러 개가 종속변수에 미치는 영향을 파악하여 예측값 도출 (w₁, w₂, w₃와 b값 도출)

요약3. lm()함수- 회귀식 만들기

회귀식을 구하는 함수-> Im()

요약3. lm()함수- 회귀식 만들기

요약4. 다중선형회귀식 (W₁, W₂ 값 추출)

y(income) = $(177.2) * x_1(education) + (141.4) * x_2(prestige) - 253.8$

> coef(mod1)[1]

(Intercept) -253.8497

> coef(mod1)[2]

education 177.199

> coef(mod1)[3]

prestige 141.4354 # 위 회귀식의 상수값 b 값 출력

 $y = W_1 x_1 + W_2 x_2 -253.8$

W, 값 출력

 $y = 177.2 x_1 + W_2 x_2 + b$

W, 값 출력

 $y = W_1 x_1 + 141.4 x_2 + b$

coef(mod1)[1] coef(mod1)[2] coef(mod1)[3]

Coefficients:

(Intercept) education prestige -253.8 177.2 141.4

y = W₁x₁ + W₂x₂+ b (W₁, W₂ ,b 는 상수)

mod1

 $y = 177.2x_1 + 141.4x_2 - 253.8$

요약5. 소득을 예측하는 다중선형 회귀모델

여러 독립변수를 이용하여 예측값 계산

```
> b <- coef(mod1)[1]
                                            #y = 177.2x_1 + 141.4x_2 - 253.8
                                                                                 b<-253.8
> W1 <- coef(mod1)[2]
                                            #y = 177.2x_1 + 141.4x_2 - 253.8
                                                                                 W1<-177.2
                                                                                 W2<-141.4
> W2 <- coef(mod1)[3]
                                            #y = 177.2x_1 + 141.4x_2 - 253.8,
                                            #교육정도
> education <- 12
                                            # 평판
> prestige <- 63
> income<- W1*education + W2*prestige + b
                                            #소득
> income
  3823.2
                                   ⇒ x₁ ->education(12), x₂->prestige(63)를 입력
                                    ⇒ y->income의 값을 예측
   교육연수 12, 평판도 63일
   경우, 소득은 3823.2가 될
                                               y = W<sub>1</sub>x<sub>1</sub> + W<sub>2</sub>x<sub>2</sub>+ b (W<sub>1</sub>, W<sub>2</sub>, b 는 상수)
         것이다.
                                               y = 177.2x_1 + 141.4x_2 - 253.8
                                               3823.2 <= 177.2 x(12)+141.4 x(63) -253.8
```

요약6. 로지스틱 회귀분석

• 회귀식에 의하여 펭귄이 행복한지 아닌가를 분류할 수 있음

요약7. glm()함수 - 로지스틱 회귀식

glm(종속변수~독립변수1+독립변수2+독립변수3+독립변수4, 데이터셋)->회귀식 도출

요약8. 예측을 위한 데이터 생성

* 로지스틱 회귀모델을 이용한 예측을 위한 새로운 데이터생성

```
# 예측 대상 데이터 생성(데이터프레임)
> unknown <- data.frame(rbind(c(5.1, 3.5, 1.4, 0.2))) #rbind(c(data1,data2...)): data1,data2...를 행으로 구성
> unknown
1 5.1 3.5 1.4 0.2
```


요약9. 변수이름 배정

2.3 로지스틱 회귀모델을 이용한 예측을 위한 새로운 데이터생성

요약10. 회귀식에 의한 예측

```
# 새로운 데이터 품종 예측
                                                      # 품종 예측
     > pred <- predict(mod.iris, unknown)
                                                      #예측 결과 출력
      > pred
      0.9174506
                     Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                                                  회귀
                                                                                    식
unknown
                         5.1
                                      3.5
                                                 1.4
                                                             0.2
               1
mod.iris
            y(품종) = (-0.11191) * x<sub>1</sub> + (-0.04008) * x<sub>2</sub> + (0.22865) * x<sub>3</sub> + (0.60925) * x<sub>4</sub> + 1.1864
y(품종)=>pred <- (-0.11191) *5.1 + (-0.04008)* 3.5 + (0.22865)* 1.4 + (0.60925) * 0.2 + 1.1864
y(품종)=>pred <- 0.9174506
```

요약11. 예측값 배정

0. 소스분석문제

문제1. 다중선형 회귀분석이란?

문제1 ?~????를 채우시오

■ **다중선형 회귀분석**(regression analysis): 독립변수 여러 개가 종속변수에 미치는 영향을 파악하여 예측값 도출 (w₁, w₂, w₃와 b값 도출)

문제2. 다중선형회귀 분석 방법

```
# 회귀식(Im->회귀식을 만들어 주는 함수)
> mod1 <- lm(weight \sim (7), data=Mw n)
> mod1
Call:
Im(formula = weight ~ egg_weight + food, data = Mw_n)
Coefficients:
(Intercept)
              egg_weight
                                food
                               1.595
     3.664
                  1,745
   회귀식
    y(weight) = W_1 * x_1 + W_2 * x_2
   회귀식
    y(weight) = (나)
```

문제2 (가), (나)에 들어갈 코드를 쓰시오.

문제3. 다중선형회귀식

문제3 (가), (나),(다)의 결과를 쓰시오.(숫자만 씁니다)

```
y(weight) = W<sub>1</sub> * x<sub>1</sub> + W<sub>2</sub> * x<sub>2</sub> + b (W<sub>1</sub>, W<sub>2</sub>, b 는 상수)
```

 $y(weight) = 1.745 *x_1(egg_weight) + 1.595 *x_2(food) * +3.664$

```
>coef(MW_nmodel)[1] #
(가)
>coef(MW_nmodel)[2] #
(나)
>coef(MW_nmodel)[3]
(다)
```

```
# b 값 출력

y(weight) = W_1 * x_1 + W_2 * x_2 + b

y(weight) = W_1 * x_1 + W_2 * x_2 + 3.664

# W_1 값 출력

y(weight) = W_1 * x_1 + W_2 * x_2 + b

y(weight) = 1.745 * x_1 + W_2 * x_2 + b

# W_2 값 출력

y(weight) = W_1 * x_1 + W_2 * x_2 + b

y(weight) = W_1 * x_1 + W_2 * x_2 + b
```

문제4. 소득을 예측하는 다중선형 회귀모델

문제4. (가)의 결과를 쓰시오.

여러 독립변수를 이용하여 예측값 계산

```
> b <- coef(mod1)[1]
                                               #y = 177x_1 + 141x_2 - 200,
                                                                                     b<-200
> W1 <- coef(mod1)[2]
                                              #y = 177x_1 + 141x_2 - 200,
                                                                                     W1<-177
> W2 <- coef(mod1)[3]
                                              #y = 177x_1 + 141x_2 - 200,
                                                                                     W2<-141
                                              #교육정도
> education <- 10
                                               #평판
> prestige <- 10
> income<- W1*education + W2*prestige + b
                                               # 소득
> income
  (가)
                                     \Rightarrow x_1 ->education(10), x_{2-}prestige(10) 를 입력
                                     ⇒ y->income의 값을 예측
   교육연수 10, 평판도 10일
                                                 y = W<sub>1</sub>x<sub>1</sub> + W<sub>2</sub>x<sub>2</sub>+ b (W<sub>1</sub>, W<sub>2</sub>, b 는 상수)
    경우, 소득은 (가)가 될
          것이다.
                                                  y = 177x_1 + 141x_2 - 200
```

문제5. glm()함수 - 로지스틱 회귀식

문제5. (가)의 회귀식을 쓰시오.

#glm(종속변수~독립변수1+독립변수2+독립변수3+독립변수4,데이터셋)->회귀식도출

```
> mod약자 <- glm(cluster ~Hamburger+Pizza+Cat+Dog+Summer, data= FC약자) # 로지스틱 회귀모델 도출
                                                                                        #회귀모델의 상세 내용 확인
> mod약자
Call: glm(formula = cluster ~ ., data = FC약자)
Coefficients:
(Intercept)
                     Hamburger
                                            Pizza
                                                                                                Summer
                                                           0.08036
                                                                             0.13993
                                        -0.01183
                                                                                               0.17516
     0.18082
                      -0.04299
     y( \stackrel{\cdot}{\exists} = \stackrel{\cdot}{W_1} * x_1 + \stackrel{\cdot}{W_2} * x_2 + \stackrel{\cdot}{W_3} * x_3 + \stackrel{\cdot}{W_4} * x_4 + \stackrel{\cdot}{W_5} * x_5 + b
```

Mod약자

y(분류) = (가)

문제6. 로지스틱 회귀모델을 이용한 사용자 분류 문제6. (가)를 쓰시오.

```
#예측 대상 데이터 생성(데이터프레임)
> ksj <- data.frame(rbind( <mark>(가)</mark> ))) # 고수정 설문 결과
> ksj
  X1 X2 X3
1 10 10 10
```

>	head(FC약:	자)	
	Hamburger	Pizza	Cat
1	10	9	8
2	10	10	7
3	10	10	10
4	10	8	6
5	6	8	3
6	. 10	10	10
ksj	10	10	10

문제7. 로지스틱 회귀모델을 이용한 사용자 분류

문제7. (가),(나)를 쓰시오.

로지스틱 회귀모델을 이용한 새로운 데이터 군집 예측

```
# 새로운 데이터 군집 예측
> pred <- predict(mod약자, ksj) # 고수정 군집 예측
> pred (가)
> round(pred,0) (나)
```

ksj 1 10) 10	10	
		0 10	
Mod약자 y(분류) = (-0.01) * x	+ (0.07) * x ₂ + (0.06) * x ₃ -	+ 0.7
y(분류)=>pred <- (가)			

* 프로젝트 시작

I. 다중선형 회귀분석

1. 다중선형 회귀분석이란?

■ **다중선형 회귀분석**(regression analysis): 독립변수 여러 개가 종속변수에 미치는 영향을 파악하여 예측값 도출 (w₁, w₂, w₃와 b값 도출)

2.1 데이터 준비

코드

> w <- read.csv("ch5-1.csv", header = TRUE)

>w_n <- w[,2:5]

>head(w_n)

		weight	egg_weight	movement	food
	1	140	65	146	14
	2	128	62	153	12
9	3	140	65	118	13
	4	135	65	157	13
	5	1 45	69	157	13
	6	138	<u>6</u> 5	143	13

ch5-1.csv

chick_nm	veight	egg_weigl	movemer	food
a01	140	65	146	14
a02	128	62	153	12
a03	140	65	118	13
a04	135	65	157	13
a05	145	69	157	13
a06	138	65	143	13
a07	125	61	110	11

2.2 선형관계확인

■ 몸무게와 종란무게, 먹는양은 상관도가 높음->이동량(movement)는 제외

코드

```
>Mw_n<- w_n[, c(1,2,4)]
>head(Mw_n)
```


	weight	egg_weight	food
1	140	65	14
2	128	62	12
3	140	65	13
4	135	65	13
5	145	69	13
6	138	65	13

2.2 선형관계확인

■ 몸무게는 종란무게, 먹는 양과 상관도가 높음 - >movement는 제외

몸무게와 종란 무게, 먹는 양은 상관관계가 있음

코드

산점도를 통해 선형 관계 확인

>plot(Mw_n, col="red")

M	W	n

	-		-
	weight	egg_weight	food
1	140	65	14
2	128	62	12
3	140	65	13
4	135	65	13
5	145	69	13
6	138	65	13

2.3 회귀모델 구하기

Im() 함수를 이용하여 쉽게 회귀식을 구할 수 있음

```
y(weight) = W_1 * x_1(egg\_weight)* + W_2 * x_2(food) + b
```

2.4 회귀식 구하기

```
y(weight) = W<sub>1</sub> * x<sub>1</sub> + W<sub>2</sub> * x<sub>2</sub> + b (W<sub>1</sub>, W<sub>2</sub>, b 는 상수)
```

 $y(weight) = 1.745 *x_1(egg_weight)* + 1.595 *x_2(food)* +3.664$

코드

>coef(MW_nmodel)[1]

(Intercept) 3.66385

>coef(MW_nmodel)[2]

egg_weight 1.745323

>coef(MW_nmodel)[3]

food 1.595467

```
# b 값 출력
y(weight) = W_1 * x_1 + W_2 * x_2 + b
y(weight) = W_1 * x_1 + W_2 * x_2 + 3.664
# W_1 값 출력
y(weight) = W_1 * x_1 + W_2 * x_2 + b
y(weight) = 1.745 * x_1 + W_2 * x_2 + b
# W_2 값 출력
y(weight) = W_1 * x_1 + W_2 * x_2 + b
y(weight) = W_1 * x_1 + W_2 * x_2 + b
y(weight) = W_1 * x_1 + W_2 * x_2 + b
```

2.5 닭의 몸무게 예측

• 회귀식에 의하여 종란 무게를 입력하면 닭의 무게를 예측할 수 있음

```
코드
b <- coef(MW nmodel)[1]
                                 # b=-3.664
W1 <- coef(MW nmodel)[2]
                                 #W<sub>1</sub>=1.745
W2 <- coef(MW_nmodel)[3]
                                 \#W_2=1.595
                                 # 종란무게(egg_weight)=71
egg_weight <- 71
                                 # 먹는양(food)=15
food <- 15
weight <- W1*egg weight+W2*food+ b
                                 # 닭의 몸무게
weight
 egg_weight
   151.5138
```

종란무게가 71,먹는양이 15이면 닭의 무게는 151.5138이 될 것이다.

```
y(weight) = W<sub>1</sub> * x<sub>1</sub> + W<sub>2</sub> * x<sub>2</sub> + b (W<sub>1</sub>, W<sub>2</sub>, b 는 상수)
```

 $y(weight) = 1.745 x_1 + 1.595 x_2 + 3.664$

Ⅱ. 로지스틱 회귀분석

1. 로지스틱 회귀분석의 개념

로지스틱 회귀(logistic regression)

종속변수의 값의 형태가 연속형 숫자가 아닌 <mark>범주형</mark> 값인 경우를 다루기 위해서 만들어진 통계적 방법

iris 데이터셋에서 4개의 측정값을 가지고 품종을 예측

R에서 로지스틱 회귀 모델은 glm() 함수 이용

2. 꽃의 품종을 예측하기 위한 로지스틱 회귀모델

2.1 데이터 준비

코드

>iris.new <- iris
>iris.new\$Species <- as.integer(iris.new\$Species)
>head(iris.new)

범주형 자료를 정수로 변환

iris

>	head(iris)				
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Widt	h Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa

iris.new

			3.116 44		근건
>	head(iris.new)			
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	1
2	4.9	3.0	1.4	0.2	1
3	4.7	3.2	1.3	0.2	1
4	4.6	3.1	1.5	0.2	1
5	5.0	3.6	1.4	0.2	1
6	5.4	3.9	1.7	0.4	1

as.integer(iris.new\$Species)

2. 꽃의 품종을 예측하기 위한 로지스틱 회귀모델

코드

2.2 회귀모델 도출

#로지스틱 회귀모델 도출

- > mod.iris <- glm(Species ~Sepal.Length+Sepal.Width+Petal.Length+Petal.Width, data= iris.new)
- > mod.iris

#회귀모델의 상세 내용 확인

```
Call: glm(formula = Species ~ ., data = iris.new)

Coefficients:
(Intercept) Sepal Length Sepal Width Petal Length Petal Width
1.18650 -0.11191 -0.04008 0.22865 0.60925

Degrees of Freedom: 149 Total (i.e. Null); 145 Residual
Null Deviance: 100
Residual Deviance: 6.961 A16: -22.87
```

Species ~.

회귀모델에서 종속변수가 Species이고, 나머지 변수들은 모두 독립변수이다.

data=iris.new

회귀모델 도출에 사용할 데이터셋이 iris.new이다.

$$y(\Xi^{\circ}) = W_1 * x_1 + W_2 * x_2 + W_3 * x_3 + W_4 * x_4 + b$$

y(품종) = (-0.11191) * x₁ + (-0.04008) * x₂ + (0.22865) * x₃ + (0.60925) * x₄ + 1.1864

2. 꽃의 품종을 예측하기 위한 로지스틱 회귀모델

2.3 로지스틱 회귀모델을 이용한 예측을 위한 새로운 데이터생성

unknown

5.1 3.5 1.4 0.2

>	head(iris.new	v)			
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	1
2	4.9	3.0	1.4	0.2	1
3	4.7	3.2	1.3	0.2	1
4	4.6	3.1	1.5	0.2	1
5	5.0	3.6	1.4	0.2	1
6	5.4	3.9	1.7	0.4	1

1	5.1	3.5	1.4	0.2	?

2.3 로지스틱 회귀모델을 이용한 예측을 위한 새로운 데이터생성

2.4 로지스틱 회귀모델을 이용한 새로운 데이터 품종 예측

```
코드 # 새로운 데이터 품종 예측
                                                     # 품종 예측
       > pred <- predict(mod.iris, unknown)
                                                       #예측 결과 출력
       > pred
       0.9174506
                       Sepal.Length Sepal.Width Petal.Length Petal.Width
                          5.1
                                       3.5
                                                  1.4
                                                              0.2
 unknown
                1
 mod.iris
             y(품종) = (-0.11191) * x<sub>1</sub> + (-0.04008) * x<sub>2</sub> + (0.22865) * x<sub>3</sub> + (0.60925) * x<sub>4</sub> + 1.1864
  y(품종)=>pred <- (-0.11191) *5.1 + (-0.04008)* 3.5 + (0.22865)* 1.4 + (0.60925) * 0.2 + 1.1864
 y(품종)=>pred <- 0.9174506
```

2.4 로지스틱 회귀모델을 이용한 새로운 데이터 품종 예측

```
# 예측 결과 출력(소수 첫째 자리에서 반올림)
       > round(pred,0)
        > round(pred.0)
                                                   #0.9174506을 반올림하면 1
                     Sepal.Length Sepal.Width Petal.Length Petal.Width
unknown
                         5.1
                                     3.5
                                                1.4
                                                            0.2
               1
mod.iris
            y(품종) = (-0.11191) * x<sub>1</sub> + (-0.04008) * x<sub>2</sub> + (0.22865) * x<sub>3</sub> + (0.60925) * x<sub>4</sub> + 1.1864
y(품종)=>pred <- (-0.11191) *5.1 + (-0.04008)* 3.5 + (0.22865)* 1.4 + (0.60925) * 0.2 + 1.1864
 y(품종)=>pred <- 0.9174506
round(pred,0) <-
                                            0.9174506
                                             반올림한
                                               결과
```

2.4 로지스틱 회귀모델을 이용한 새로운 데이터 품종 예측

Ⅲ. 응용

1.1 데이터 준비

코드

>install.packages("car")

>library(car)

>head(Prestige)

>newdata <- Prestige[,c(1:4)]

>head(newdata)

#회귀식 작성을 위한 데이터 준비

소득은 교육연수(education), 여성비율(women), 평판도(prestige) 등의 값을 통하여 예측가능하다

newdata

1.2 산점도

코드

> plot(newdata, col="blue")

산점도를 통해 변수 간 관계 확인

코드 3 다중선형회귀 분석

#회귀식

- > mod1 <- Im(income ~ education + prestige + women, data=newdata)
- > mod1

Call: Im(formula = income ~ education + prestige + women, data = newdata) Coefficients: (Intercept) education prestige women -253.8 177.2 141.4 -50.9

- income ~ education + prestige + women
 - 회귀모델에서 무엇이 독립변수이고 무엇이 종속변수인지 지정하는 것으로, ~ 앞에 있는 것이 종속변수, ~ 뒤쪽에 있는 것이 독립변수이다. 독립변수가 여러 개이면 +로 연결한다.
- data=newdata

회귀모델 도출에 사용할 데이터셋을 지정한다. 변수명 income, education, prestige, women 은 newdata에 속한 열의 이름이다.

y(income) =
$$W_1$$
 * x_1 (education)*+ W_2 * x_2 (prestige) + W_3 * x_3 (women)+ b

y(income) = $(177.2) * x_1(education)* + (141.4) * x_2(prestige) + (-50.9) * x_3(women) - 253.8$

1.4 다중선형회귀식 구하기

코드 > coef(mod1)[1]
(Intercept)
-253.8497

> coef(mod1)[2]
education
177.199

> coef(mod1)[3]
prestige
141.4354

> coef(mod1)[4]

women
-50.8957

b 값 출력 $y = W_1x_1 + W_2x_2 + W_3x_3 - 253.8$ # W_1 값 출력 $y = 177.2x_1 + W_2x_2 + W_3x_3 + b$ # W_2 값 출력 $y = W_1x_1 + 141.4x_2 + W_3x_3 + b$ # W_3 값 출력 $y = W_1x_1 + W_2x_2 + -50.9x_3 + b$

Coefficients:
(Intercept) education prestige women
-253.8 177.2 141.4 -50.9

y = W₁x₁ + W₂x₂+ W₃x₃ + b (W₁, W₂, W₃, b 는 상수) y = 177.2x₁+141.4x₂-50.9x₃-253.8

응용1. income의 예측값이 얼마인지 화면을 캡처하시오.

1.5 소득 예측

```
코드
       > b <- coef(mod1)[1]
                                                   #y = 177.2x_1 + 141.4x_2 - 50.9x_3 - 253.8
       > W1 <- coef(mod1)[2]
                                                   #y = 177.2x_1 + 141.4x_2 - 50.9x_3 - 253.8
       > W2 <- coef(mod1)[3]
                                                   #y = 177.2x_1 + 141.4x_2 - 50.9x_3 - 253.8
        > W3 <- coef(mod1)[4]
                                                   #y = 177.2x_1 + 141.4x_2 - 50.9x_3 - 253.8
                                                  #교육정도
        > education <- 12
                                                  # 평판
        > Prestige <- 63
                                                  #여성 비율
        > women <- 12
        > income<- W1*education + W2*prestige + W3*women + b # y = 177.2X12 + 141.4X63 - 50.9X12 - 253.8
                                                   # 소득
        > income
```

교육연수 12, 평판도 63, 여성비율 12일 경우소득은 ?이 될 것이다. =>회귀식에 의하여 education, prestige, women를 입력하면 income을 예측할 수 있음

$$y = W_1x_1 + W_2x_2 + W_3x_3 + b (W_1, W_2, W_3, b 는 상수)$$

 $y = 177.2x_1 + 141.4x_2 - 50.9x_3 - 253.8$

2.1 데이터 준비

favoriteC.csv

No	ClassNum	Hamburge Piz	zza	Cat	Dog	Summer	cluster	7
1	201608045	10	9	8	7	6		3
2	201612010	10	10	7	6	3		1
3	201612038	10	10	10	10	0		2
4	201712010	10	8	6	2	5		1
5	201712039	6	8	3	9	7		3

Lms에서 favoriteC.csv파일을 다운로드하고 약자_chapter12로 이동 숫자

2.1 데이터 준비

코드 > F약자 <- read.csv("favoriteC.csv", header = TRUE) # CSV파일을 [F약자]의 이름으로 저장

> head(F약자)

	No	ClassNum	Hamburger	Pizza	Cat	Dog	Summer	cluster
1	1	201608045	10	9	8	7	6	3
2	2	201612010	10	10	7	6	3	1
3	3	201612038	10	10	10	10	0	2
4	4	201712010	10	8	6	2	5	1
5	5	201712039	6	8	3	9	7	3
6	6	201809065	10	10	10	10	5	3

> FC약자 <- F약자[. 3:8]

amburger	Pizza	Cat	Dog	Summer	cluster
10	9	8	7	6	3
10	10	7	6	3	1
10	10	10	10	0	2
10	8	6	2	5	1
6	8	3	9	7	3
10	10	10	10	5	3
	10 10 10 10	10 9 10 10 10 10 10 8 6 8	10 9 8 10 10 7 10 10 10 10 8 6 6 8 3	10 9 8 7 10 10 7 6 10 10 10 10 10 8 6 2 6 8 3 9	10 10 7 6 3 10 10 10 10 0 10 8 6 2 5 6 8 3 9 7

#3열에서 8열까지 선택하여 [FC약자]이름으로 저장

2.2 회귀모델 도출

> mod약자 <- glm(cluster ~Hamburger+Pizza+Cat+Dog+Summer, data= FC약자) # 로지스틱 회귀모델 도출 # 회귀모델의 상세 내용 확인 > mod약자 Call: glm(formula = cluster ~ ., data = FC약자) Coefficients: (Intercept) Hamburger Pizza Cat Summer -0.04299 -0.01183 0.08036 0.13993 0.17516 0.18082 Degrees of Freedom 58 Total (i.e. Null); 53 Residual Null Deviance: 37.39 A16: 75.26 Residual Deviance: 9.756

Mod약자

 $y(분류) = (-0.04299) * x_1 + (-0.01183) * x_2 + (0.08036) * x_3 + (0.13993) * x_4 + (0.17516) * x_5 + 0.18082$

2.3 로지스틱 회귀모델을 이용한 예측을 위한 새로운 사용자 생성

```
코드 # 예측 대상 데이터 생성(데이터프레임)
> ksj <- data.frame(rbind(c(7, 6, 5, 10, 8))) # 고수정 설문 결과
> ksj

X1 X2 X3 X4 X5
1 7 6 5 10 8
```

2.3 로지스틱 회귀모델을 이용한 예측을 위한 새로운 사용자 생성

>	head(FC약)					•
	Hamburger	Pizza	Cat	Dog	Summer	cluster
1	10	9	-8-	7		3
2	10	10	7	6	3	1
3	10	10	10	10	0	2
4	10	8	6	2	5	1
5	6	8	3	9	7	3
6	. 10	10	10	10	5	3

	ksj						
	Hamburger	Pizza	Cat	Dog	Summer		
1	7	6	5	10	8	?	

2.4 로지스틱 회귀모델을 이용한 새로운 데이터 군집 예측


```
Mod약자 y(분류) = (-0.04299) * x_1 + (-0.01183) * x_2 + (0.08036) * x_3 + (0.13993) * x_4 + (0.17516) * x_5 + 0.18082
y(분류) = > pred <- (-0.04299) * x_1 + (-0.01183) * x_2 + (0.08036) * x_3 + (0.13993) * x_4 + (0.17516) * x_5 + 0.18082
y(분류) = > pred <- 3.011273
```

2. 로지스틱 회귀모델을 이용한 사용자 분류 응용2. ksj의 cluster는 어떤 값으로 예측되는지 결과를 캡처하시오.

2.4 로지스틱 회귀모델을 이용한 새로운 데이터 군집 예측

오늘도잘했어요