Bell Lempert August 2018

Jelena Mojsilovic

June 2022

1 Problem 4

4. Show that a function $g \in \mathcal{O}(\mathbb{C})$ is $2\pi i$ -periodic (i.e., $g(z+2\pi i)=g(z)$) if and only if there is an $h \in \mathcal{O}(\mathbb{C} \setminus \{0\})$ such that $g(z)=h(e^z)$.

What was written on the board but needs some clarifying.

Proof. (\Longrightarrow) Suppose that g is $2\pi i$ -periodic. Consider $f(z)=e^z$. Now, $f'(z)\neq 0$ for any z and we may find an open subset $\Omega\subset\mathbb{C}$ such that f(z) is 1-to-1 on Ω . Pick $w\in\mathbb{C}\setminus\{0\}$ such that f(z)=w and define h(w)=g(z). Notice, $W=f(\Omega)$ is an open set by the open mapping theorem. By the Super Inverse Function theorem we may find $F:W\to\Omega$ defined by $F(f(z))=F(e^z)=z$ for $F\in\mathcal{O}(W)$. Fix $w'\in h(w')=(g\circ F)(w')\in\mathcal{O}(W)$ \Longrightarrow $h\in\mathbb{C}\setminus\{0\}$.

(\iff) Suppose $g(z) = h(e^z)$. Then we have that :

$$g(z+2\pi i) = h(e^{z+2\pi i}) = h(e^z e^{2\pi i}) = h(e^z) = g(z)$$