GPTQ: ACCURATE POST-TRAINING QUANTIZATION FOR GENERATIVE PRE-TRAINED TRANSFORMERS

ICLR 2023

Shared by: Jiaqi Zhao

2023.11.21

Introduction:

大模型庞大的参数量在实际应用场景下对硬件 要求极高,如何在应用场景下降低模型大小、加快 推理速度并保持足够的精度是重要的研究方向。

模型量化:

一种有效的模型压缩方法,通过将网络的权值 (weights)、激活值(activations)等由浮点数 (如 Float32)转换为低比特数据(如 Int8、Int4) 进行计算实现网络瘦身和加速。

排名全球第二! 我国10亿参数规模以上大模型已发布近80个

实验

奔流新闻 2023-11-09 19:34

人工智能技术的突飞猛进发展,为我们的生活带来巨大改变和机遇。据中国信息通信研究院测算,2022年中国人工智能核心产业规模达5080亿元人民币。目前,10亿参数规模以上的大模型已发布近80个。

据科技部"新一代人工智能发展研究中心"近期发布的《中国人工智能大模型地图研究报告》显示,中国研发的大模型数量排名全球第二,仅次于美国,目前中国10亿参数规模以上的大模型已发布79个。

量化方法:

QAT (Quantization-Aware Training): 利用训练数据重新训练网络,不实用;

PTQ (Post-Training Quantization): 利用校准数据获得量化校准参数(或不需要),更常用。

创新点:

- 1. 提出一种新的PTQ量化算法GPTQ。该算法在最多几小时内完成千亿参数量大模型的量化,并不损失太多精度。
- 2. 在一些极端量化任务中(如2-bit 量化)表现出色;此外,首先实现了在一块A100或两块A6000上运行量化后的OPT-175B大模型。
 - 3. 第一个证明了千亿参数量的大模型可以被量化至3/4-bit。

OBS (Optimal Brain Surgeon):

一种模型剪枝方法,目的是找到并剪枝对模型损失函数影响最小的参数。

某参数位置发生参数变化带来的损失函数变化可表示为:

$$\Delta E = L(W + \Delta W) - L(W) = g^T \Delta W + rac{1}{2} \Delta W^T H \Delta W + O(||\Delta W||^3)$$

其中gT表示损失函数对当前位置参数的梯度,H为海森矩阵,即损失函数对参数的二阶导。假设在模型已经充分收敛的情况下进行剪枝,则参数的一阶导为0。再忽略高阶项,简化为: $\Delta E = \frac{1}{2} \Delta \mathbf{w}^{\mathrm{T}} \mathbf{H} \Delta \mathbf{w}$

假设对位置q的参数 \mathbf{w}_q 进行剪枝,则可以表示为在当前位置参数变化 $\Delta \mathbf{W}_q$ 为 $-\mathbf{w}_q$,进一步表示为等式约束条件:

$$\Delta W_q + w_q = 0$$

结合最初目的,找到合适参数使得剪枝该参数对损失函数的影响最小,可表示为最优化问题: $\min_{\mathbf{A}\mathbf{w},q} \frac{1}{2} \mathbf{\Delta}\mathbf{w}^{\mathbf{T}} \mathbf{H} \mathbf{\Delta}\mathbf{w} \quad s.t. \quad \mathbf{e}_{\mathbf{q}}^{\mathbf{T}} \cdot \mathbf{\Delta}\mathbf{w} + w_q = 0$

其中 e_q 为一个one-hot形式的向量,在第q维是1,其余位置为0。

求解该最优化问题, 利用拉格朗日乘子法:

$$L = \frac{1}{2} \mathbf{\Delta w^T H \Delta w} + \lambda (\mathbf{e_q^T} \cdot \mathbf{\Delta w} + w_q)$$

求得剩余权重的更新公式(左)及对剪枝该参数对损失函数的影响公式(右):

$$m{\delta_p} = -rac{w_q}{[\mathbf{H}^{-1}]_{qq}} \cdot \mathbf{H}^{-1}_{:,q}, \qquad \qquad L = rac{1}{2} rac{w_q^2}{[\mathbf{H}^{-1}]_{qq}}$$

其中, $[\mathbf{H}^{-1}]_{qq}$ 为海森矩阵逆矩阵在 \mathbf{qq} 对角线位置的元素值, $H^{-1}_{;q}$ 代表矩阵的第 \mathbf{q} 列。

最后,求取海森矩阵逆矩阵,算得每个参数的影响大小并获得剪枝顺序,剪枝一个参数后再更新剩余所有参数,弥补剪枝造成的损失。

OBQ (Optimal Brain Quantization):

OBS算法需要计算全参数的海森矩阵及其逆矩阵, 计算量过大。

针对剪枝的OBC算法首先改写了损失函数:

$$||\mathbf{W}_{\ell}\mathbf{X}_{\ell} - \widehat{\mathbf{W}}_{\ell}\mathbf{X}_{\ell}||_{2}^{2} \longrightarrow \sum_{i=1}^{d_{\text{row}}} ||\mathbf{W}_{i,:}\mathbf{X} - \widehat{\mathbf{W}}_{i,:}\mathbf{X}||_{2}^{2}.$$

这种改写方式可看作将权重矩阵每行的方差求和,因此剪枝掉某个参数仅对当前行的目标函数产生影响,而各行之间相互独立。对改写后的损失函数对参数求海森矩阵,可得 $\mathbf{H} = 2\mathbf{X}\mathbf{X}^{\mathsf{T}}$ 。

另外,由于剪枝掉了一个参数,相应地会删除海森矩阵的行和列,因此根据高斯 消元法,可得到近似的剪枝后的海森矩阵逆矩阵的简单求法:

$$\mathbf{H}_{-p}^{-1} = \left(\mathbf{H}^{-1} - \frac{1}{[\mathbf{H}^{-1}]_{pp}} \mathbf{H}_{:,p}^{-1} \mathbf{H}_{p,:}^{-1}\right)_{-p}$$

OBQ算法认为,剪枝是量化的特殊情况。q位置的参数量化后的参数变化为:

$$\mathbf{e}_{\mathbf{q}}^{\mathbf{T}}\cdot\mathbf{\Delta}\mathbf{w}+w_{q}=quant(w_{q})$$

相应地,参数更新公式转换为:

$$\boldsymbol{\delta_p} = -\frac{w_p - \operatorname{quant}(w_p)}{[\mathbf{H}^{-1}]_{pp}} \cdot \mathbf{H}_{:,p}^{-1}.$$

设M为pruning mask, OBQ算法流程的伪代码为:

Algorithm 3 Quantize $k \le d_{\text{col}}$ weights from row w with inverse Hessian $\mathbf{H}^{-1} = (2\mathbf{X}\mathbf{X}^{\top})^{-1}$ according to OBS in $O(k \cdot d_{\text{col}}^2)$ time.

$$\begin{split} &M = \{1, \dots, d_{\operatorname{col}}\} \\ &\textbf{for } i = 1, \dots, k \textbf{ do} \\ &p \leftarrow \operatorname{argmin}_{p \in M} \frac{1}{[\mathbf{H}^{-1}]_{pp}} \cdot (q(w_p) - w_p)^2 \\ &\mathbf{w} \leftarrow \mathbf{w} - \mathbf{H}_{:,p}^{-1} \frac{1}{[\mathbf{H}^{-1}]_{pp}} \cdot (w_p - q(w_p)) \\ &\mathbf{H}^{-1} \leftarrow \mathbf{H}^{-1} - \frac{1}{[\mathbf{H}^{-1}]_{pp}} \mathbf{H}_{:,p}^{-1} \mathbf{H}_{p,:}^{-1} \\ &M \leftarrow M - \{p\} \\ &\mathbf{end for} \end{split}$$

GPTQ:

GPTQ算法是OBQ算法针对大模型量化的改进。

OBS

GPTQ算法认为OBQ选择最优参数的贪心算法过程对于大模型来说提升有限,但大大增加了计算量,因此采用对固定位置参数进行量化,提高效率。

GPTQ算法采用了Lazy Batch Updates策略。一次处理权重矩阵的128列(一个block),减小内存访问频率提升效率。

GPTQ算法采用了Cholesky分解处理海森矩阵逆矩阵,增强数值稳定性减小误差积累,同时无需再更新海森矩阵逆矩阵,提升效率。

$$\boldsymbol{\delta}_F = -\frac{w_q - \operatorname{quant}(w_q)}{[\mathbf{H}_F^{-1}]_{qq}} \cdot (\mathbf{H}_F^{-1})_{:,q}.$$

$$\mathbf{H}_{-q}^{-1} = \left(\mathbf{H}^{-1} - \frac{1}{[\mathbf{H}^{-1}]_{qq}} \mathbf{H}_{:,q}^{-1} \mathbf{H}_{q,:}^{-1}\right)_{-p}.$$

```
Algorithm 1 Quantize W given inverse Hessian \mathbf{H}^{-1} = (2\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I})^{-1} and blocksize B.
```

```
\mathbf{Q} \leftarrow \mathbf{0}_{d_{\mathrm{row}} \times d_{\mathrm{col}}}
                                                                                  // quantized output
\mathbf{E} \leftarrow \mathbf{0}_{d_{\mathrm{row}} \times B}
                                                                                  // block quantization errors
\mathbf{H}^{-1} \leftarrow \text{Cholesky}(\mathbf{H}^{-1})^{\top}
                                                                                  // Hessian inverse information
\mathbf{for}\ i = 0, B, 2B, \dots do 将H逆分成多个block
   for j = i, ..., i + B - 1 do 在block内进行下列计算
        \mathbf{Q}_{:,i} \leftarrow \mathsf{quant}(\mathbf{W}_{:,i})
                                                                                  // quantize column 量化j列的权重
       \mathbf{E}_{:,j-i} \leftarrow (\mathbf{W}_{:,j} - \mathbf{Q}_{:,j}) / [\mathbf{H}^{-1}]_{ii}
                                                                                  // quantization error 计算量化误差,E矩阵的列数与block数相同
        \mathbf{W}_{:,j:(i+B)} \leftarrow \mathbf{W}_{:,j:(i+B)} - \mathbf{E}_{:,j-i} \cdot \mathbf{H}_{i,i:(i+B)}^{-1}
                                                                                  // update weights in block 计算完一列的量化误差后,更新block内的全部参数
   end for
                                                                                  // update all remaining weights 当block内所有列全部更新完后,更新H逆剩余所有参数
   \mathbf{W}_{:,(i+B):} \leftarrow \mathbf{W}_{:,(i+B):} - \mathbf{E} \cdot \mathbf{H}_{i:(i+B),(i+B):}^{-1}
end for
```

OBS

小模型的量化实验:

Method	RN18 -	69.76 %	RN50 - 76.13%		
Method	4bit	3bit	4bit	3bit	
AdaRound	69.34	68.37	75.84	75.14	
AdaQuant	68.12	59.21	74.68	64.98	
BRECQ	69.37	68.47	75.88	75.32	
OBQ	69.56	68.69	75.72	75.24	
GPTQ	69.37	67.88	75.71	74.87	

Table 1: Comparison with state-of-the-art post-training methods for vision models.

大模型的量化时间实验:

OPT	13B	30B	66B	175B
Runtime	20.9m	44.9m	1.6h	4.2h
BLOOM	1.7B	3B	7.1B	176B
Runtime	2.9m	5.2m	10.0m	3.8h

軍化速度 实验。 ZeroQuan t-LKD量 化1.3B参花 数模型 费3h。

Table 2: GPTQ runtime for full quantization of the 4 largest OPT and BLOOM models.

在两类大模型上的困惑度对比实验:

OPT	Bits	125M	350M	1.3B	2.7B	6.7B	13B	30B	66B	175B
full	16	27.65	22.00	14.63	12.47	10.86	10.13	9.56	9.34	8.34
RTN	4 4	37.28	25.94	48.17	16.92	12.10	11.32	10.98	110	10.54
GPTQ		31.12	24.24	15.47	12.87	11.39	10.31	9.63	9.55	8.37
RTN	3 3	1.3e3	64.57	1.3e4	1.6e4	5.8e3	3.4e3	1.6e3	6.1e3	7.3e3
GPTQ		53.85	33.79	20.97	16.88	14.86	11.61	10.27	14.16	8.68

Table 3: OPT perplexity results on WikiText2.

BLOOM	Bits	560M	1.1B	1.7B	3B	7.1B	176B
full	16	22.42	17.69	15.39	13.48	11.37	8.11
RTN	4 4	25.90	22.00	16.97	14.76	12.10	8.37
GPTQ		24.03	19.05	16.48	14.20	11.73	8.21
RTN	3 3	57.08	50.19	63.59	39.36	17.38	571
GPTQ		32.31	25.08	21.11	17.40	13.47	8.64

Table 4: BLOOM perplexity results for WikiText2.

超大模型实验:

Method	Bits		OP	Г-175В			BLO	OM-176E	3
Wichiod	Dits	Wiki2	PTB	C4	LAMB.↑	Wiki2	PTB	C4	LAMB.↑
Baseline	16	8.34	12.01	10.13	75.59	8.11	14.59	11.71	67.40
RTN	4	10.54	14.22	11.61	71.34	8.37	15.00	12.04	66.70
GPTQ	4	8.37	12.26	10.28	76.80	8.21	14.75	11.81	67.71
RTN	3	7.3e3	8.0e3	4.6e3	0	571.	107.	598.	0.17
GPTQ	3	8.68	12.68	10.67	76.19	8.64	15.57	12.27	65.10
GPTQ	3/g1024	8.45	12.48	10.47	77.39	8.35	15.01	11.98	67.47
GPTQ	3/g128	8.45	12.37	10.36	76.42	8.26	14.89	11.85	67.86

Table 5: Results summary for OPT-175B and BLOOM-176B. "g1024" and "g128" denote results with groupings of size 1024 and 128, respectively.

实际加速实验(OPT-175B):

GPU	FP16	3bit	Speedup	GPU reduction
A6000 – 48GB A100 – 80GB		I .		$\begin{array}{c} 8 \rightarrow 2 \\ 5 \rightarrow 1 \end{array}$

Zero-Shot实验:

Figure 3: The accuracy of OPT and BLOOM models post-GPTQ, measured on LAMBADA.

THANKS FOR LISTENING