随机微分万程测试题 本文桥

- 一, 则对一个可测空间(A2, P, F₆), 停时是一个随机时到下满足: 〈Tét〉6 f₆, ∀too. 停时是一种具有无后效性的随机时刻,直观上可以理解为,判断是否在某一时刻 + 停下来,只需要到 + 时刻为止所拥有的信息即可.
- (2) 定义在某概率空间上取值于可测空间(E, E)中的随机过程(X₄)如为马氏过程 苦对 0 < t, < t, < · · · < t, < U, A, G E, P(X, G A, | X₄, ... X₄)= P(X, G A, | X₄).
- 马氏过程的特点是"无记忆性",即未来的状态仅依赖于当前的状态,与历史状态无关 (3) 设状态空间 E=1200,过程 X 初始时停留在 0处,停留时间服从指数分布, 之后以单位速度向右移动,容易验证 X 海足引尔可夫性 (利用指数分布的无记忆性)。设停留时间为下,则下为停时,且 X_T=0, X_{T+4}=t, 不满足强引尔可夫性.
- 二、小(Wt)如是一个一维证-布朗运动,若以适应于证,正为1次值值机过程,且:
- ① W₀=0, a.s. ② (W_e)_{t20} N乎所有择本轨道连续 ③ (W_e)_{t30}是独之增量过程,即 ∀o≤t, <ti<···<ti>t, 增量 W_{t2}-**W**(t₁,···) W_{t2}-**W**(t₁) 相互独立

 [®] ∀o≤s<t, W_e-W_e ~ N(0, t-s).
- $G(W_t) = F(W_t)^{\frac{1}{2}} = F$
- 出(We)ton的强化马氏性, (Bt)ton的增量做于E=G, 且彼此独立. 从而 Bt为Gt-布朗 正动,且与G。独立.

(4)由于 $<x_4>=1$,故容易知道下 $<\infty$ a.s. 由可选停时定理, $E(M_{\pi})=E(M_0)$ 引其中 $M_t:=e^{\lambda x_4-\frac{1}{2}(x_{12})}$ 为指数鞅.因此、 $I=E(M_{\pi})=E(e^{\lambda-\frac{1}{2}(x_{12})}) > E(e^{\lambda-\frac{1}{2}(x_{12})})$ 因为 $\chi_{\pi}=1$ 、 $\chi_{\pi}<\{+1$. 进而 不会 1

(5) 第四间应该可以,跟维数关系不大.

四、由Girsana定理,Q相对于P的R-N导数为部=exp(-5° hedwe-=5° hedde)
Xt是Q下的布朗运动,dWe=dXe-hedt,则:

$$\begin{aligned} |+(Q|P) &= E_{Q}(\ln \frac{dQ}{dP}) = E_{Q}(-\int_{0}^{\infty} h_{t}dW_{t} - \frac{1}{2}\int_{0}^{\infty} h_{t}^{2}dt) \\ &= E_{Q}(-\int_{0}^{\infty} h_{t}df_{t}X_{t} - h_{t}dt) - \frac{1}{2}\int_{0}^{\infty} h_{t}^{2}dt) \\ &= E_{Q}(\frac{1}{2}\int_{0}^{\infty} h_{t}^{2}dt - \int_{0}^{\infty} h_{t}dX_{t}) \\ &= \frac{1}{2}\int_{0}^{\infty} h_{t}^{2}dt \end{aligned}$$

从不的求的相对熵为专用叫点

<u>`</u>,

七、假设 $A=\{a_0\}$,则此时 $u(t,x)=E_{t,x}(g(X_7))$. 由 ito 公式: $du(t,x_0)=(\partial_t u+\frac{1}{2}\sigma^2(\partial_0)\partial_x u)dt+\sigma(\partial_0)\partial_x udw_t$

由U(t,x)最优性,E(du)=0,即: $Au+\pm\sigma$ Au=0 . U(T)=g显然成立 . A有有限介元素的情形是类似的。

