## PCA

Week 07 - Day 02

Principal Component Analysis

# Do you remember the kerne trick



Project features

in a higher dimensional space

### 2D -> 3D

 $(x1, x2) \rightarrow (x1^{**}2, x2^{**}2, x1^{*}x2)$ 

PCA is the opposite!

Project features

in a lower dimensional space

### 3D -> 2D

 $(x1, x2, x3) \rightarrow (2*x1 + x2 - x3, x1 - x2 + x3)$ 

### New features

Linear combinations of old features

# Why PCA?!

- 1. Visualization during EDA (!!!)
- 2. Reduce multicollinearity
- 3. Manage dataset where columns > rows



Color

Alcohol content

Year

Region

Density

Nutty aroma

etc.

```
1.5 * Color +
```

2.7 \* Alcohol content +

0.2 \* Year +

0.3 \* Region +

0.001 \* Density +

0.00001 \* Nutty aroma +



# Principal Components

### **Principal Components**

The new axis

### Simple case: 2D -> 2D







# Example 2D->1D









# how to choose the axis - Intuition -

We want to "preserve"

as more information as possible



Example 1

# What happens?



### Example 2





Which one preserves more information about the original representation?







#### More information

Explained Variance

## how to choose the axis - Algorithm -

#### Covariance Matrix

Variance in the diagonal,

Covariance everywhere else

| Feature 1 Feature 2 |       |       |       |       | Feature n |
|---------------------|-------|-------|-------|-------|-----------|
| Feature 1           | var   |       |       |       |           |
| Feature 2           | covar | var   |       |       |           |
|                     | covar | covar | var   |       |           |
|                     | covar | covar | covar | var   |           |
| Feature n           | covar | covar | covar | covar | var       |

What does a correlation matrix of

uncorrelated features/axis look like?

#### Goal

high numbers in the diagonal,

small numbers everywhere else

# Find Eigenvectors+Eigenvalues of the covariance matrix

Principal components = Eigenvectors associated with the largest eigenvalues

## Easy, isn't it?



#### 12 = 2x2x3

Matrix = (eigenvalue1, eigenvector1),

(eigenvalue2, eigenvector2)

Many mathematical objects can be understood better by breaking them into constituent parts, or finding some properties of them that are universal, not caused by the way we choose to represent them.

For example, integers can be decomposed into prime factors. The way we represent the number 12 will change depending on whether we write it in base ten or in binary, but it will always be true that  $12 = 2 \times 2 \times 3$ .

From this representation we can conclude useful properties, such as that 12 is not divisible by 5, or that any integer multiple of 12 will be divisible by 3.

Much as we can discover something about the true nature of an integer by decomposing it into prime factors, we can also decompose matrices in ways that show us information about their functional properties that is not obvious from the representation of the matrix as an array of elements.

One of the most widely used kinds of matrix decomposition is called eigen-decomposition, in which we decompose a matrix into a set of eigenvectors and eigenvalues.

#### https://stats.stackexchange.com/a/140579

https://deeplearning4j.org/eigenvector

# What to remember

#### **PCA**

=

plotting in lower dimensional space (usually 2d for visualization)

#### New features

linear combinations of old features

#### Best axis

Keep more information possible (highest "explained variance")

### PCA(n\_components=2).fit\_transform(X)

#### Useful for:

EDA,

removing multicollinearity,

manage strange datasets

It's hard (impossible?)

to interpret the new axis!