Elliptic Curve Cryptography

David Wolever @wolever

what is a cryptography

that's easy

1334984719824

1334984719824 ① hello, world!

1334984719824 hello, world! blaiiaieuaoaf

otp: one true ciPher

otp: one time pad

problem

numbers are hard

numbers are hard

sharing numbers is hard

enter: public key cryptography

pick a secret number

while you're listening

dh: Diffie-Hellman

 $Ab\% p = g^{ab}$

We agree on: p: a prime modulus (ex: 23) g: a primitive root base (ex, 5)

You (Alice) and I (bob)
Pick secret numbers:

a: Alice's number (ex, 32)
b: Bob's number (ex, 16)

We each calculate:

$$A = g^{a} \% p$$
 $A = 5^{32} \% 23$

$$B = g^b \% p$$

 $B = 5^{16} \% 23$

We share A and B (that's right, you can hear them)

We each calculate:

$$S = A^b \% p$$

$$S = B^a \% p$$

and because math

We get the same number:

$$S = A^b \% p$$

= $(g^a \% p)^b \% p$
= $g^{ab} \% p$
= $(g^b \% p)^a \% p$
= $B^a \% p$

magic

enter: elliptic curves

300 bit ec key ≈ 3000 bit dh key

1. pick a curve

$$y^2 = x^3 + 7$$

(not actually $y^2 = x^3 + 7$)

2. pick a base point

3. we each pick a secret, random number (a and b)

3. multiply the base point by that number

$$A = G \times a$$

$$B = G \times b$$

... multiply a point?

3. multiply the base point by that number

 $A = G \times a$ $B = G \times b$

4. share those points

5. multiply the points by our secret numbers

$$s = A \times b$$

$$s = B x a$$

really not that hard!

but...

DO MOT DO THIS YOURSELF

libsodium cryptography

```
>>> from cryptography.fernet import Fernet
>>> # Put this somewhere safe!
>>> key = Fernet.generate_key()
>>> f = Fernet(key)
>>> token = f.encrypt(b"A really secret message. Not for
prying eyes.")
>>> token
'...'
>>> f.decrypt(token)
'A really secret message. Not for prying eyes.'
```


Grading that gives you actionable data. Instantly.

Grade multiple choice assessments using regular paper and any scanner!

Work with me: wolever@akindi.com https://akindi.com/pages/jobs