Process Mining: Data Science in Action

Using Regions to Discover Concurrency

prof.dr.ir. Wil van der Aalst www.processmining.org

Where innovation starts

State-based regions

State-based regions correspond to places

It is all about discovering concurrency ...

What is a (state-based) region?

Starting point: A transition system

- We assume that there is only one initial state (otherwise preprocessing needed).
- It is convenient to also have just one final state that can always be reached (not strictly necessary)
- All states need to be reachable!

Definition

A region is a set of states, such that, if a transition *exits* the region, then all equally labeled transitions *exit* the region, and if a transition *enters* the region, then all equally labeled transitions *enter* the region. All events not entering or exiting the region *do not cross* the region.

- a enters
- b exits
- c does not cross
- d does not cross
- e does not cross

- a does not cross
- b enters
- c does not cross
- d does not cross
- e exits

- a exits
- b does not cross
- c does not cross
- d does not cross
- e does not cross

As will be shown later: places corresponding to regions containing the initial state are initially marked.

- a enters
- b does not cross
- c does not cross
- d exits
- e does not cross

Not a region

- a enters
- b does not cross and exits
- c does not cross and exits
- d does not cross and exits
- e does not cross

Not a region

- a does not cross
- b does not cross and exits
- c does not cross and exits
- d does not cross and exits
- e does not cross

Multiple regions

Selectively chosen regions

Question

How many regions does the reachability graph of this Petri net have?

Answer: 2(n+1) regions

Answer: 2(n+1) regions

- There are *n* ways to split the states in two groups based on the label selected to cross.
- Each situation splits the set of states in two regions.
- Also the empty set and all the set of all states are regions.

Answer: 2(n+1) regions.

Question

How many regions does the reachability graph of this Petri net have?

Answer

Every subset of states forms a region. Hence, there are $2^{(n+1)}$ regions.

For a sequence of 10 activities we have $2^{(10+1)} = 2048$ regions.

Selecting the "interesting regions" only ...

- We only include the non-trivial minimal regions!
- Non-trivial
 - The empty set and the set of all states are regions by definition.
 - These trivial regions carry no information and should not be included.

Minimal

- A region is minimal if it cannot be decomposed into smaller (non-trivial) ones.
- Non-minimal regions are implied by smaller ones and should not be included.

Trivial regions: All or nothing

Complement: If r is a region, then S\r is a region

"exits" and "enters" are swapped

If r_1 and r_2 are regions, and r_1 is a subset of r_2 , then $r_2 \setminus r_1$ is a region.

Not minimal yet ...

Running example: 8 minimal non-trivial regions

Basic algorithm to construct a Petri net

- 1. For each transition label in the transition system, a transition is added to the Petri net.
- 2. The minimal non-trivial regions are computed.
- 3. For each minimal non-trivial region in the transition system, a place is added to the Petri net.
- 4. The corresponding arcs are generated.
- 5. A token is added to each place that corresponds to a region containing the initial state.

The resulting Petri net is called the minimal saturated net.

Applying the algorithm yields the expected result

Rediscovery experiment with 10 parallel activities

past with multiset abstraction

Reachability graph (1+210+1 =1026 states)

Apply "Covert to Petri net using regions"

Example

(same result as Alpha algorithm)

$$L_6 = [\langle a, c, e, g \rangle^2, \langle a, e, c, g \rangle^3, \langle b, d, f, g \rangle^2, \langle b, f, d, g \rangle^4]$$

Example

(improved result compared to Alpha algorithm)

$$L_9 = [\langle a, c, d \rangle^{45}, \langle b, c, e \rangle^{42}]$$

Next: limitations of the approach

Part I: Preliminaries Part III: Beyond Process Discovery Chapter 2 Chapter 3 Chapter 7 Chapter 8 Chapter 1 Chapter 9 Process Modeling and Data Mining Introduction Conformance Mining Additional **Operational Support** Analysis Checking Perspectives Part II: From Event Logs to Process Models Part IV: Putting Process Mining to Work Chapter 10 Chapter 11 Chapter 4 Chapter 5 Chapter 6 Chapter 12 Getting the Data Process Discovery: An Advanced Proces **Tool Support** Analyzing "Lasagna Analyzing "Spaghetti Introduction Discovery Processes" Processes" art V: Reflection Chapter 14 Chapter 13 Cartography and **Epilogue Navigation** Wil M. P. van der Aalst Process Mining

2 Springer