Building a Real-Time Fraud Prevention Engine Using Open Source (Big Data) Software

Kees Jan de Vries Booking.com

Who am I?

About me

- Physics PhD Imperial College
- Data Scientist at Booking.com for 1.5 year
 - Security Department
- <u>linkedin.com/in/kees-jan-de-vries-93767240</u>

About Booking.com

- World leader in connecting travellers with the widest variety of great places to stay
- Part of The Priceline Group, the world's 3rd largest e-commerce company (by market capitalisation)
- Employing 14,000 people in 180 countries
- Each day, over 1,200,000 room nights are reserved on Booking.com

Contents.

- Motivation
- Running Example
 - Probability to Book
- Real Time Prediction Engine: Lessons Learnt
 - Aggregate Features
 - Models Training and Deployment
 - Interpretation of Individual Scores

Motivation.

Motivation.

Motivation for this Talk.

Train awesome Model

Serve in Real Time at Low Latency using aggregate features

Disclaimer: although the running example presented in these slides may seem realistic, it is only intended to highlight some lessons learnt about building a real time prediction engine.

Let's book a hotel for the Spark Summit East 2017 in Boston

OK. Let's click on the first hit.

Nice. Here's all the information I need. But maybe I'll browse a few more, to make the best choice.

Nice. Here's all the information I need. But maybe I'll browse a few more, to make the best choice.

Let's help the customer make the best choice for them!

Nice. Here's all the information I need.
But maybe I'll browse a few more, to make the best choice.

We'll calculate the probability of booking when the Customer clicks on an accommodation

Behind the Scenes.

Labels

Booked? Yes/No

Features

- Simple
 - Time of day
- Profile
 - User
 - Circumstantial

Behind the Scenes.

Labels

Booked? Yes/No

Features

- Simple
 - Time of day
 - **..**
- Profile
 - User
 - Circumstantial

- User
 - # (distinct) hotels viewed in last 30 minutes
 - # bookings so far
 - **...**
- Hotel Page
 - % booking per page view last 3 months
 - **..**

- User
 - # (distinct) hotels viewed in last 30 minutes
 - # bookings so far
 - **...**
- Hotel Page
 - % booking per page view last 3 months

- User
 - # (distinct) hotelsviewed in last 30minutes
 - # bookings so far
 - **>**
- Hotel Page
 - % booking per page view last 3 months
 - **>**


```
SELECT
COUNT(DISTINCT hotel_id)
FROM cliks.win:time(30 min)
GROUP BY user_id
```

In memory Complex Event Processing

- No lag: instant aggregation
- Scalability: see Esper website
- Not persistent

- User
 - # (distinct) hotels viewed in last 30 minutes
 - # bookings so far
 - **>**
- Hotel Page
 - % booking per page view last 3 months
 - ▶ ..


```
SELECT
COUNT(DISTINCT hotel_id)
FROM cliks.win:time(30 min)
GROUP BY user_id
```

Aggregate

- User
 - # (distinct) hotelsviewed in last 30minutes
 - # bookings so far
 - **>**
- Hotel Page
 - % booking per page view last 3 months

In memory Complex Event Processing

From http://espertech.com/esper/faq_esper.php#streamprocessing

"Complex Event Processing and Esper are standing queries and latency to the answer is usually below 10us with more than 99% predictability."

"The first component of scaling is the throughput that can be achieved running single-threaded. For Esper we think this number is very high and likely between 10k to 200k events per second."

- User
 - # (distinct) hotelsviewed in last 30minutes
 - # bookings so far
 - ▶ ...
- Hotel Page
 - % booking per page view last 3 months
 - **>**

High Cardinality Features with Cassandra

- Very scalable: reads & writes
- None-instant aggregations
 - Consistency fundamentally bound by gossip protocol
- Persistent

- User
 - # (distinct) hotelsviewed in last 30minutes
 - # bookings so far
 - **>**
- Hotel Page
 - % booking per page view last 3 months
 - **...**

High Cardinality Features with Cassandra

From http://cassandra.apache.org/

- Proven
- Fault Tolerant
- Performant
- Scalable
- Elastic
- ...

"Some of the largest production deployments include Apple's, with over 75,000 nodes storing over 10 PB of data, Netflix (2,500 nodes, 420 TB, over 1 trillion requests per day), ..."

- User
 - # (distinct) hotels viewed in last 30 minutes
 - # bookings so far
 - ▶
- Hotel Page
 - % booking per page view last 3 months
 - **>** ...

- User
 - # (distinct) hotels viewed in last 30 minutes
 - # bookings so far
 - **>** ...
- Hotel Page
 - % booking per page view last 3 months
 - **>** ...


```
SELECT
    page_id
    , COUNT(*) AS res_count
FROM reservations
GROUP BY page_id
```

Low to Medium Cardinality

- No need to go "fancy"
- Batch processing

- User
 - # (distinct) hotels viewed in last 30 minutes
 - # bookings so far
 - **>**
- Hotel Page
 - % booking per page view last 3 months
 - ▶ ...

- User
 - # (distinct) hotels viewed in last 30 minutes
 - # bookings so far
 - **...**
- Hotel Page
 - % booking per page view last 3 months

- User
 - # (distinct) hotelsviewed in last 30minutes
 - # bookings so far
- Hotel Page
 - % booking per page view last 3 months
 - **...**


```
SELECT
    request.request_id
    , COUNT DISTINCT event.page_id
FROM request
JOIN event ON
    request.user_id = event.user_id
WHERE event.epoch BETWEEN
    request.epoch
    AND request.epoch + 30*60
GROUP BY request.request_id
```

- User
 - # (distinct) hotels viewed in last 30 minutes
 - # bookings so far
 - **>** ...
- Hotel Page
 - % booking per page view last 3 months
 - ▶ ...


```
SELECT
    request.request_id
    , COUNT DISTINCT event.page_id
FROM request
JOIN event ON
    request.user_id = event.user_id
WHERE event.epoch BETWEEN
    request.epoch
    AND request.epoch + 30*60
GROUP BY request.request_id
```

Warning: stragglers ahead! Distribute wisely!

- User
 - # (distinct) hotelsviewed in last 30minutes
 - # bookings so far
 - **>** ...
- Hotel Page
 - % booking per page view last 3 months
 - ▶ ...


```
SELECT
    request.request_id
    , COUNT DISTINCT event.page_id
FROM request
JOIN event ON
    request.user_id = event.user_id
WHERE event.epoch BETWEEN
    request.epoch
    AND request.epoch + 30*60
GROUP BY request.request_id
```

Scalable Technologies

- Simple SQL
 - Hive

- Facing stragglers
 - Spark

Model Training & Iteration

Evaluate

	Predict YES	Predict NO
Actual YES	TP	FN
Actual NO	FP	TN

Sorry: H2O?

H2O Billion Row Machine Learning Benchmark

GLM Logistic Regression

Compute Hardware: AWS EC2 c3.2xlarge - 8 cores and 15 GB per node, 1 GbE interconnect

Airline Dataset 1987-2013, 42 GB CSV, 1 billion rows, 12 input columns, 1 outcome column 9 numerical features, 3 categorical features with cardinalities 30, 376 and 380

http://h2o-release.s3.amazonaws.com/h2o/rel-lambert/5/docs-website/resources/h2odatasheet.html More benchmarks:

https://github.com/szilard/benchm-ml

Time to Deploy

Time to Deploy.

AWESOME!!!

POJO: Plain Old Java Object. Model export in plain Java code for real- time scoring on the JVM. Very fast!

Score Interpretation.

Logistic Regression

$$\beta x = -5.12 x$$
 feature 1 + 13.9 x feature 2 + ...

Decision Trees

Contribution Feature i: $\beta_i \mathbf{x_i}$

Contribution Feature i:

p_{node}- p_{parent node}

Example:

$$p_3 = p_0 + (p_1-p_0) + (p_3-p_1)$$

 p_0 : bias
 (p_1-p_0) : feature 15 contr.
 (p_3-p_1) : feature 2 contr.

Score Interpretation.

Logistic Regression

$$\beta x = -5.12 x$$
 feature 1 + 13.9 x feature 2 + ...

Decision Trees

Contribution Feature i: $\beta_i x_i$

Contribution Feature i:

p_{node}- p_{parent node}

We hacked this interpretation into Spark ML during a Hackathon at Booking:) H2O does not offer it (yet?).

Probability to Book.

The probability of booking is high; largest contribution from #distinct property pages. Let's show a summary!

Probability to Book.

Awesome! This app really helps me book!

The probability of booking is high; largest contribution from #distinct property pages. Let's show a summary!

Summary.

- How to make Aggregate Features available?
 - Long/short time windows
 - High and Low cardinality dimensions
- Model Training and Deployment
 - H2O POJO for fast Real-Time scoring
- Interpretation
 - Contributions per Feature per Score

Thank You.

Questions?

We're hiring! Kees Jan de Vries from Booking.com <u>linkedin.com/in/kees-jan-de-vries-93767240</u>

