Курсовая работа

РАСЧЁТ УСТАНОВИВШИХСЯ РЕЖИМОВ В ЛИНЕЙНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ПРИ ПЕРИОДИЧЕСКИХ ВОЗДЕЙСТВИЯХ

ЗАДАНИЕ

- 1. Определить потенциалы узлов и токи в ветвях схемы при включении постоянных составляющих источников J_0 и E_0 , используя метод узловых потенциалов.
- 2. Считая схему относительно $R_{\scriptscriptstyle H}$ активным двухполюсником, рассчитать параметры этого двухполюсника $(U_p,\ I_{\scriptscriptstyle K3},\ R_{\scriptscriptstyle BX})$ при включении J_0 и E_0 . Напряжение U_p определить методом суперпозиции.
- 3. Методом эквивалентного генератора рассчитать ток в сопротивлении $R_{\scriptscriptstyle H}$ и сравнить с п. 1.
- 4. Составить баланс активных мощностей по постоянному току.
- 5. Рассчитать ток в нагрузке $i_H^{(1)}(t)$ при включении синусоидального источника с основной частотой ω . Построить график первой гармоники тока $i_H^{(1)}(t)$ на графике п. 10.
- 6. Записать и проверить (численно) уравнения по закону Кирхгофа для узлов схемы.
- 7. Определить ток в нагрузке $i_{{\scriptscriptstyle H}}^{(k)}(t)$ при включении синусоидального источника с частотой 2ω или 3ω (в зависимости от номера группы). Построить график k-ой гармоники тока $i_{{\scriptscriptstyle H}}^{(k)}(t)$ на графике п. 10.
- 8. Представить распечатку расчета гармоник в DesingLab8. Из полученной таблицы записать комплексное действующее значение и мгновенное значение тока для каждой рассчитанной гармоники.
- 9. Проверить баланс мощностей для k-ой гармоники.
- 10. Записать выражение для мгновенного значения тока в нагрузке, при включении e(t) и J(t), используя принцип суперпозиции. На одном графике построить гармоники $i_{\rm H}^{(1)}(t)$, $i_{\rm H}^{(k)}(t)$, постоянную составляющую тока и результирующий ток в нагрузке $i_{\rm H}(t)$.
- 11. Рассчитать действующее значение тока в нагрузке.
- 12. Записать полную систему уравнений Кирхгофа для схемы с периодическими источниками e(t) и J(t) во временной и частотной (для k-ой гармоники) областях.

ВЫБОР СХЕМЫ И ЧИСЛОВЫХ ДАННЫХ

N - номер группы студента, n - № студента в учебном журнале.

- 1. Схема для расчета выдается преподавателем.
- 2. Числовые данные для элементов приведены на схеме.

Для групп A-7 , A-9, A-12 частота ω =**10**³ рад/с, для групп A-4 , A-6, A-8 частота ω =**2**·**10**³ рад/с.

3.Значения источников выбираются следующим образом:

Группа	Источник напряжения	Источник тока
A-4	$e(t) = E_0 + E_m \sin \omega t$	$J(t) = J_0 + J_m \sin 3\omega t$
A-6	$e(t) = E_0 + E_m \sin 2\omega t$	$J(t)=J_0+J_m \sin\omega t$
A-7	$e(t) = E_0 + E_m \sin 2\omega t$	$J(t)=J_0+J_m \sin \omega t$
A-8	$e(t) = E_0 + E_m \sin 3\omega t$	$J(t)=J_0+J_m \sin\omega t$
A-9	$e(t) = E_0 + E_m \sin 3\omega t$	$J(t)=J_0+J_m \sin \omega t$
A-12	$e(t) = E_0 + E_m \sin \omega t$	$J(t)=J_0+J_m\sin 2\omega t$

4. Числовые номиналы источников:

$$E_0 = \frac{n}{2}$$
, [B], $J_0 = \frac{n}{3}$, [MA], $E_m = \frac{N\sqrt{2}}{2}$, [B], $J_m = \frac{N\sqrt{2}}{2}$, [MA].