Project Report: Weather Station Interface in Java

Reda El Mansouri & Dekkan Mohammed

December 31, 2024

Contents

1	Introduction	2
2	Theme	2
3	Materials and Components Used	2
4	Project Architecture	7
5	UML Diagrams 5.1 Use Case Diagram	7 8 8 9
6	5.4 Activity Diagram	10 10
7	Conclusion	14

Abstract

This report describes the development of a weather station interface using Java and a MySQL database to display real-time weather information. The project also integrates the use of an Arduino microcontroller for climate data collection.

1 Introduction

In this project, we developed a weather station interface that combines modern technologies such as Java, MySQL, and Arduino to provide real-time weather data. This report presents the design details, components used, and tests conducted.

2 Theme

The growing need for accurate climate monitoring motivated this project. The objective was to create a system capable of collecting, storing, and displaying real-time climate data.

3 Materials and Components Used

The main hardware components used in this project are:

• Arduino Microcontroller (model: Arduino Uno)

Figure 1: Arduino Uno Microcontroller

• Humidity and temperature sensors

Figure 2: Humidity and Temperature Sensors

• Pressure sensors

Figure 3: Pressure Sensor

• Light sensors

Figure 4: Light Sensor

• Rain sensors

Figure 5: Rain Sensor

 $\bullet\,$ MySQL Database for data storage

Figure 6: MySQL Database

4 Project Architecture

The project architecture is divided into three main modules:

- Data Collection: An Arduino microcontroller connected to sensors measures climate parameters such as temperature, humidity, and pressure. The collected data is sent to the host computer via a serial connection.
- User Interface: A Java application displays real-time data in the form of graphs and tables. It also includes functionalities to view historical data.
- Database: Collected data is stored in a MySQL database for efficient management and future reference.

5 UML Diagrams

This section presents key UML diagrams for the project:

5.1 Use Case Diagram

Figure 7: Use Case Diagram

5.2 Class Diagram

Figure 8: Class Diagram

5.3 Sequence Diagram

Figure 9: Sequence Diagram

5.4 Activity Diagram

DIAGRAMME D'ACTIVITE:

Figure 10: Activity Diagram

6 Unit Test Documentation

Five unit tests were conducted to validate key application functions. Here is a summary of the tests:

ID	Fonction	Resultat attendu	Statut	
TU1	Lecture des données des capteurs	Affichage correct des données dans le moniteur série et l'écran LCD	À valider	
TU2	Détection de pluie	LED rouge clignotante lente	À valider	
TU3	Indication de beau temps	LED verte allumée	À valider	
TU4	Transmission TU4 des données		À valider	
TU5	Affichage	Données correctement récupérées et affichées	À valider	

Figure 11: Unit Test Documentation

1. Reading sensor data: Positive result

Figure 1: Reading sensor data

2. Rain detection: Positive result

Figure 2: Rain detection

3. Good weather indication: Positive result

Figure 3: Good weather indication

4. Real-time data update: Positive result

```
Data length: 5

data[0] = 66

data[1] = 19

data[2] = 1013

data[3] = 181

data[4] = 0

Data inserted successfully.
```

Figure 4: Real-time data update (Part 1)

←Τ	·→		▽	id	humidity	tempretuure	pression	lumniosite	pluie
	Edit	≩- Сору	Delete	76	72	17	1013	2	0
	Edit	≟ сору	Delete	77	72	17	1013	2	0
	Edit	≟ Сору	Delete	78	72	17	1013	2	0
	Edit	≩- Сору	Delete	79	72	17	1013	2	0
	Edit	≟ Copy	Delete	80	72	17	1013	2	0
	Edit	≩- Сору	Delete	81	72	17	1013	2	0
	Edit	∄- Сору	Delete	82	72	17	1013	2	0
		≟ сору	Delete	83	72	17	1013	2	0
	Edit	∄- Сору	Delete	84	72	17	1013	2	0
	Edit	≟ сору	Delete	85	72	17	1013	2	0
	Edit	≟ Сору	Delete	86	72	17	1013	1	0
		≟ сору	Delete	87	72	17	1013	2	0
	Edit	≟ Сору	Delete	88	72	17	1013	2	0
	Edit	≟ сору	Delete	89	72	17	1013	2	0
	Edit	∄- Сору	Delete	90	72	17	1013	2	0
	Edit	≟ Сору	Delete	91	72	17	1013	2	0
	🥒 Edit	∄ - Copy	Delete	92	72	17	1013	2	0
	Edit	≟ Copy	Delete	93	73	17	1013	12	25
	🥒 Edit	≟ Copy	Delete	94	73	17	1013	12	25
	Edit	≩≟ Сору	Delete	95	73	17	1013	12	25
	Edit	≟ Сору	Delete	96	74	17	1013	25	0
	Edit	∄ € Сору	Delete	97	74	17	1013	25	0
	Edit	⊒ сору	Delete	98	74	17	1013	44	0
	Edit	∄ € Сору	Delete	99	74	17	1013	45	0
	Edit	≟ Сору	Delete	100	74	17	1013	71	0

Figure 5: Real-time data update (Part 2)

5. Display: Positive result

Figure 6: Java GUI

7 Conclusion

This project successfully developed a functional and reliable weather station interface using Java for the main application, MySQL for data management, and Arduino for climate data collection. The tests conducted confirm the robustness and efficiency of the system.