Praca domowa nr 1

Dawid Karpiński, 8.03.2024 r.

1 Histogram N(x)

Poniżej zamieszczono histogram liczby konfliktów N(x), o liczbie ofiar w jednorodnych przedziałach wartości (binach).

Jako szerokość pojedynczego binu przyjęto $\Delta x = 1000.$

Można stwierdzić, że najbardziej czytelne są dane przedstawione na wykresie w skali log-log.

2 Prawdopodobieństwo P(x)

Następnie przygotowano wykres prawdopodobieństwa, licząc je jako:

$$P(x) = \frac{N(x)}{N\Delta x}.$$

Każdy punkt przedstawia prawdopodobieństwo wystąpienia konfliktu w danym przedziale ofiar. Dlatego należy podzielić przez szerokość binu.

3 Histogram logarytmiczny

Dane konfliktów i ofiar były bardzo rzadko rozmieszczone, dlatego sporządzono histogram logarytmiczny. Szerekość każdego kolejnego binu wzrasta potęgowo, w tym przypadku wybrano jako podstawę a=2.

Zatem, biny mają wartości: $(x_0, 2x_0), (2x_0, 2^2x_0), ...,$ gdzie x_0 to najmniejsza wartość ofiar spośród dostępnych danych.

W skali log-log, punkty układają się w linię prostą, co sugeruje rozkład potęgowy danych.

4 Skumulowany rozkład $P^c(x)$

Podobnie jak w przypadku histogramu logarytmicznego, rozkład skumulowany w skali log-log również wykazuje własności rozkładu potęgowego.

Ponadto, w skali log-log w granicach liczby ofiar 10^6-10^7 widać mało zmieniające się wartości, co pokazuje dużą różnicę i dotklilwość tych konfliktów, w porównaniu do reszty.