Algorithms for Longest Common Extensions

Jesper Kristensen

DTU Informatics
Technical University of Denmark

August 31, 2011

Contents

Introduction

The LCE Problem

The DIRECTCOMP algorithm

Existing Results

The LCPRMQ Algorithm

Practical results

The FINGERPRINT_k Algorithm

Data Structure

Query

Preprocessing

1/0

Practical Results

LCE on trees

Compression

Constant Time String LCE on Heavy Paths

Summary

Input

- \triangleright s = abbababba
- (i,j) = (4,6)

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

Result

$$LCE_s(4,6) = 2$$

LCE problem

Efficiently perform multiple queries (i, j) on a static string s

Existing Algorithm: DIRECTCOMP

```
Preprocessing O(1)
Space O(1)
Query O(|LCE(i,j)|) = O(n)
Average query O(1)
Query I/O O\left(\frac{|LCE(i,j)|}{B}\right) = O\left(\frac{n}{B}\right)
```

For a string length n and alphabet size σ , the average LCE value over all n^{σ} strings and n^2 query pairs is O(1).

Existing Algorithm: LCPRMQ

```
LCP[2..n] suff<sub>SA[1..n]</sub>
         s = abbababba
                                                abbababba
  s[2..n] = bbababba
                                                bababba
  s[3..n] = bababba
LCE_s(2,3) = 1
     LCE(i, j) = LCP[RMQ_{LCP}(SA^{-1}[i] + 1, SA^{-1}[j])]
                 where SA^{-1}[i] < SA^{-1}[i]
                Preprocessing O(sort(n, \sigma))
                        Space O(n)
                        Query O(1)
               Average query O(1)
                   Query I/O O(1)
```

Existing Algorithms: Practical Results

Query times of DIRECTCOMP and LCPRMQ by string length

The FINGERPRINT_k Algorithm: Data Structure

- For a string s[1..n], the t-length fingerprints $F_t[1..n]$ are natural numbers, such that $F_t[i] = F_t[j]$ if and only if s[i..i+t-1] = s[j..j+t-1].
- ▶ k levels, $1 \le k \le \lceil \log n \rceil$
- ▶ For each level, $\ell = 0 ... k 1$:
 - $t_{\ell} = \Theta(n^{\ell/k}), t_0 = 1$
 - $\blacktriangleright H_{\ell} = F_{t_{\ell}}$

Space $O(k \cdot n)$

The FINGERPRINT_k Algorithm: Query

- 1. As long as $H_{\ell}[i+v] = H_{\ell}[j+v]$, increment v by t_{ℓ} , increment ℓ by one, and repeat this step unless and $\ell=k-1$.
- 2. As long as $H_{\ell}[i+v] = H_{\ell}[j+v]$, increment v by t_{ℓ} and repeat this step.
- 3. Stop and return v when $\ell=0$, otherwise decrement ℓ by one and go to step two.

$$LCE(3,12)=9$$

Query
$$O(k \cdot n^{1/k})$$

Average query $O(1)$

The FINGERPRINT_k Algorithm: Preprocessing

- ▶ For each level ℓ
 - ▶ For each t_ℓ -length substring in lexicographically sorted order
 - ▶ If the current substring $s[SA[i]...SA[i]+t_{\ell}-1]$ is equal to the previous substring, give it the same fingerprint as the previous substring, otherwise give it a new unused fingerprint. The two substrings are equal when $LCE[i] \ge t_{\ell}$.

$$s = \text{abbababba} \\ s = \text{abbababba} \\ \text{For } t_{\ell} = 3 : \\ H_{\ell} = \begin{bmatrix} 3, \ 8, \ 6, \ 2, \ 6, \ 3, \ 8, \ 5, \ 1 \end{bmatrix} \\ \begin{array}{c} \text{Subst. } H_{\ell} \end{bmatrix} \quad i \\ \text{a} \quad 1 \quad 9 \\ \text{abb} \quad 2 \quad 4 \\ \text{abb} \quad 3 \quad 6 \\ \text{abb} \quad 3 \quad 1 \\ \text{ba} \quad 5 \quad 8 \\ \text{bab} \quad 6 \quad 3 \\ \text{bab} \quad 6 \quad 5 \\ \text{bba} \quad 8 \quad 7 \\ \text{bba} \quad 8 \quad 2 \end{array}$$

Preprocessing $O(k \cdot n + sort(n, \sigma))$

The FINGERPRINT $_k$ Algorithm: I/O

- Original:
 - ▶ Data structure: $H_{\ell}[i] = F_{t_{\ell}}[i]$
 - ► Size: $|H_{\ell}| = n$ ► I/O: $O(k \cdot n^{1/k})$
- ► Cache optimized:
 - Data structure:

$$H_{\ell}[((i-1) \mod t_{\ell}) \cdot \lceil n/t_{\ell} \rceil + \lfloor (i-1)/t_{\ell} \rfloor + 1] = F_{t_{\ell}}[i]$$

- ▶ Size: $|H_{\ell}| = n + t_{\ell}$
- $I/O: O\left(k \cdot \left(\frac{n^{1/k}}{B} + 1\right)\right)$
 - ▶ Best when k is small $\implies n^{1/k}$ is large.

The FINGERPRINT_k Algorithm

Preprocessing

```
Space O(k \cdot n)
           Query O(k \cdot n^{1/k})
 Average query O(1)
     Query I/O O\left(k \cdot \left(\frac{n^{1/k}}{B} + 1\right)\right)
k = 1:
 Same as DIRECTCOMP
k = 2:
                                        k = \lceil \log n \rceil:
                     O(sort(n, \sigma))
  Preprocessing
                                          Preprocessing O(n \log n)
           Space
                    O(n)
                                                    Space
                                                              O(n \log n)
           Query O(\sqrt{n})
                                                              O(\log n)
                                                    Query
                   O(1)
 Average query
                                          Average query
                                                              O(1)
     Query I/O O\left(\frac{\sqrt{n}}{B}\right)
                                              Query I/O
                                                              O(\log n)
```

 $O(k \cdot n + sort(n, \sigma))$

Practical Results

Query times of DIRECTCOMP, FINGERPRINT₂ (cache opt.), FINGERPRINT₃ (not cache opt.), FINGERPRINT_{$\lceil \log n \rceil$} (not cache opt.) and LCPRMQ by string length

Practical Results

Query times of DIRECTCOMP, FINGERPRINT₂ (cache opt.), FINGERPRINT₃ (not cache opt.), FINGERPRINT_{$\lceil \log n \rceil$} (not cache opt.) and LCPRMQ by string length

Cache Optimization, Practical Results

Is I/O optimization good in practice?

- Pro: better cache efficiency
 - ▶ Best for small k, no change for $k = \lceil \log n \rceil$
- Con: Calculating memory addresses is more complicated
 - $((i-1) \mod t_\ell) \cdot \lceil n/t_\ell \rceil + \lfloor (i-1)/t_\ell \rfloor + 1 \text{ vs. } i$

The FINGERPRINT_k Algorithm: Practical Results, I/O

Query times of FINGERPRINT₂ without cache optimization and with cache optimization using shift operations vs. multiplication and division

The FINGERPRINT_k Algorithm: Practical Results, I/O

Query times of FINGERPRINT₃ without cache optimization and with cache optimization using shift operations vs. multiplication and division

The FINGERPRINT_k Algorithm: Practical Results, I/O

Query times of DIRECTCOMP, FINGERPRINT₂ (cache opt.), FINGERPRINT₃ (not cache opt.), FINGERPRINT_{$\lceil \log n \rceil$} (not cache opt.) and LCPRMQ by string length

LCE on Compressed Strings

Goal

- Allow LCE queries without decompressing the string
- Using Ziv-Lempel compression (LZ)

How

- ▶ LZ compression represents the string as a tree
- ➤ An LCE query on a LZ compressed string is a number of LCE queries on a tree

LCE on Trees

- ► Trees:
 - One character on each edge
 - ► LCE is the length of the longest common prefix of two strings along two paths
- $ightharpoonup p_i = bbc$ and $p_j = bbba$ gives $LCE(p_i, p_j) = 2$

Constant Time String LCE on Heavy Paths

Data structure:

- Construct a heavy tree decomposition
- ► For each heavy path, store characters as a substring
- Query:
 - Use constant time string LCE on each heavy path

Preprocessing $O(sort(n, \sigma))$ Space O(n)Query $O(\log n)$

Constant Time String LCE on Heavy Paths

- ► How to find the indexes (*i*, *j*) in the string:
 - Store an index at each node
- How to know then the heavy path splits from the queried path:
 - Store a pointer to the end of the heavy path at each node
 - ► Find NCA of the end of the heavy path and the end of the queried path
- ▶ How to find a node on the gueried path:
 - Use level ancestor

Summary

	Direct-	LcpRmq /	
	Comp	SuffixNca	$FINGERPRINT_k$
Preprocessing	O(1)	$O(\mathit{sort}(n,\sigma))$	$O(k \cdot n + sort(n, \sigma))$
Space	O(1)	O(n)	$O(k \cdot n)$
Query	O(n)	O(1)	$O(k \cdot n^{1/k})$
Average query	O(1)	O(1)	O(1)
Query I/O	$O(\frac{n}{B})$	O(1)	$O\left(k\cdot\left(\frac{n^{1/k}}{B}+1\right)\right)$

- ▶ In practice, the FINGERPRINT_k algorithm is...
 - \blacktriangleright ...almost as good as DIRECTCOMP and significantly better than LCPRMQ in average case
 - ...significantly better than DIRECTCOMP but worse than LCPRMQ in worst case
- ▶ Cache optimization of $FINGERPRINT_k$ improves query times at k = 2 and worsens query times at $k \ge 3$

Kommentarer til rapporten

- ▶ Hvordan jeg fandt frem til $r = 0.73n^{0.42}$
- ▶ Der står FINGERPRINT₃ nogle steder i cache-afsnittet hvor der skal stå FINGERPRINT₂