

I. Rappels

Notion de continuité :

Graphiquement, on peut reconnaître une fonction continue sur un intervalle I par le fait que le tracé de la courbe représentative de f pour $x \in I$ peut se faire sans lever le crayon de la feuille.

Exemple:

$f(x) = x^2$	$g(x) = -x \text{ si } x \le 1$ et $g(x) = 2x-3 \text{ si } x > 1$	$h(x) = x \operatorname{si} x < -2$ $\operatorname{et} h(x) = \frac{1}{2} x \operatorname{si} x \ge -2$
f est continue sur IR	g est continue sur <i>IR</i>	h est continue sur]-∞, 2- [h est continue sur [-2, +∞[Mais h n'est pas continue en -2

Propriété:

Les fonctions polynômes, les fonctions rationnelles, la fonction racine carrée sont continues sur tout intervalle sur lequel sont définies.

Exemples:

$$f(x) = x^7 + 3x^3 - 2x + 4$$
 est une fonction polynôme continue sur IR
 $f(x) = \frac{x+4}{x^2-1}$ est une fonction rationnelle continue sur IR\{-1,1}
 $f(x) = \sqrt{x^2 - 3x + 2}$ est une fonction continue sur]-\infty,1]\cup [2,+\infty]

Opérations sur les limites :

Limite d'une somme

Si f a pour limite	ł	ł	ł	+8	+∞	+∞
Si g a pour limite	£ '	+∞	_∞	+8	- 80	
Alors $f + g$ a pour limite	l+l'	+∞	_∞	+8	-∞	Forme indéterminée

Limite d'un produit

Si f a pour limite	ł	ℓ ≠ 0	+∞ Off -∞	0
Si g a pour limite	£'	+∞ Off -∞	+∞ Of -∞	+∞ ou -∞
Alors $f \times g$ a pour limite	l x l∙ '	+∞ ou -∞ Suivant les signes	+∞ ou -∞ Suivant les signes	Forme indéterminée

Limite d'un inverse

Si g a pour limite	ℓ ' ≠ 0	0 Par valeurs supérieures	0 Par valeurs inférieures	+∞ ou -∞
Alors $\frac{1}{g}$ a pour limite	<u>1</u>	+∞	-8	0

Limite d'un quotient

<u>Limite d un quotient</u>							
Si f a pour limite	ł	Ł	ℓ ≠ 0	0	+∞ ou -∞	+∞ ou -∞	+∞ Off -∞
Si g a pour limite	ℓ ' ≠ 0	+∞ ou _∞	0 par valeurs supérieure s ou 0 par valeurs inférieures	0	0 par valeurs supérieures ou 0 par valeurs inférieures	ℓ ' ≠ 0	+∞ ou -∞
Alors $\frac{f}{g}$ a pour limite	<u>ℓ</u>	0	+∞ ou -∞ Suivant les signes	Forme indéterminée	+∞ ou -∞ Suivant les signes	+∞ ou -∞ Suivant les signes	Forme indéterminée

Règles opératoires :

La limite en $+\infty$ ou en $-\infty$ d'une fonction polynôme est égale à la limite de son terme de plus haut degré. La limite en $+\infty$ ou en $-\infty$ d'une fonction rationnelle est égale à la limite du quotient de ses termes de plus haut degré.

Exemples:

$$\lim_{x \to -\infty} x^{7} + 3x^{3} - 2x + 4 = -\infty$$

$$\lim_{x \to -\infty} \frac{x+4}{x^{2}-1} = 0$$

$$f(x) = x^{2} + 1 + \cos(x - 1) \text{ si } x \le 1$$

$$f(x) = \frac{3}{\sqrt{2x-1}} \quad \text{si } x > 1$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$$

donc f est continue à droite et à gauche en 1.

II. Continuité et limite d'une fonction composée

Définition:

Soit f une fonction définie sur un ensemble I et g une fonction définie sur ensemble J tel que f $(I) \subset J$.

La fonction notée g o f, définie sur I par g o f(x) = g[f(x)], est appelée fonction composée de f et g.

Exemple:

$$f(x) = 3x + 7$$

$$g(x) = x^{2}$$

$$gof = (3x + 7)^{2}$$

$$fog = 3x^{2} + 7$$

Théorème:

Soit f une fonction définie sur un intervalle ouvert I contenant un réel a et g une fonction définie sur un intervalle ouvert J contenant le réel f(a). Si f est continue en a et g est continue en f(a), alors g o f est continue en a.

Conséquence:

La composée de deux fonctions continue est continue.

Théorème:

Soit f et g deux fonctions. Soit a,b et c finis ou infinis. Si $\lim_{x \to a} f(x) = b$ et $\lim_{x \to b} g(x) = c$ alors $\lim_{x \to a} g \circ f(x) = c$

$$f(x) = \frac{\sqrt{2x^2 - x + 1}}{x}$$

$$g(x) = -x^{2}$$

$$\lim_{x \to 1} f(x) = \sqrt{2}$$

$$\lim_{x \to \sqrt{2}} g(x) = -2$$

$$g \circ f = -(f(x))^{2} = -(\frac{\sqrt{2x^{2} - x + 1}}{x})^{2}$$

$$\lim_{x \to 1} g \circ f = -2$$

III. Limites et ordre

Théorème :

Soit f, g et h trois fonctions définies sur un intervalle I sauf peut être en un réel a de I. Soit deux réels ℓ et ℓ '.

Si
$$f(x) \le g(x)$$
 pour tout $x \in I'$ et si $\lim_{x \to a} f = \ell$ et $\lim_{x \to a} g = \ell'$, alors $\ell \le \ell'$.

Si
$$h(x) \le f(x) \le g(x)$$
 pour tout $x \in I^*$ et si $\lim_{x \to a} h = \lim_{x \to a} g = \ell$, alors $\lim_{x \to a} f = \ell$.

Si
$$f(x) \ge g(x)$$
 pour tout $x \in I^{-}$ et si $\lim_{x \to a} g = +\infty$, alors $\lim_{x \to a} f = +\infty$.

Si
$$f(x) \ge g(x)$$
 pour tout $x \in I^*$ et si $\lim_{x \to a} g = -\infty$, alors $\lim_{x \to a} f = -\infty$.

Ces résultats restent aussi valables lorsqu'on remplace a par $-\infty$ ou par a^+ ou a^- .

IV. Branches infinies

Asymptote verticale:

Soit f une fonction définie sur un intervalle de la forme [a; +∞[où a est un réel et L un réel donné.

Si
$$\lim_{x \to +\infty} f(x) = L$$

alors la droite d'équation y = L est asymptote horizontale à la courbe Cf en $+\infty$.

<u>Asymptote verticale:</u>

Soit f une fonction.

Si « f (x) est aussi grand que l'on veut dès que x est assez proche de

 $a \gg$

alors on dit que f a pour limite $+\infty$ en a .

On note:

$$\lim_{x \to a} f(x) = +\infty$$

On définit de la même façon $\lim_{x \to a} f(x) = -\infty$

On dit que la droite d'équation x = a est **asymptote verticale** à la courbe Cf.

Asymptote oblique:

Soit a ($a \neq 0$) et b deux réels et C la courbe représentant

une fonction f dans un repère.

Dire que la droite d'équation y = a x + b est asymptote oblique

à C en + ∞ (respectivement en - ∞) revient à dire que :

$$\lim_{x \to +\infty} (f(x)-(ax+b)) = 0$$
(respectivement $\lim_{x \to +\infty} (f(x)-(ax+b)) = 0$)

Exercice demonstration branche parabolique:

Montrer que la courbe représentative de la fonction $f: x \mapsto \frac{x^2 + 2x - 2}{2x}$ admet en $\pm \infty$ une asymptote Δ . Étudier les positions de C_f et Δ .

Branches paraboliques:

Exemple:

$$f(x) = \frac{3x^2 - 2x - 1}{x - 2}$$

$$\lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{\frac{3x^2 - 2x - 1}{x - 2}}{x} = \lim_{x \to \infty} \frac{3x^2 - 2x - 1}{x^2 - 2x} = 3$$

$$y = ax + b \quad a = 3$$

$$b = \lim_{x \to \infty} \frac{3x^2 - 2x - 1}{x - 2} - 3x = \lim_{x \to \infty} \frac{3x^2 - 2x - 1 - 3x^2 + 6x}{x - 2} = 4$$

Asymptote oblique est y = 3x + 4

V. Image d'un intervalle par une fonction continue :

Théorème :

L'image d'un intervalle par une fonction continue est un intervalle.

Théorème des valeurs intermédiaires :

Soit *f* une fonction définie et continue sur un intervalle I.

Soient $a \in I$ et $b \in I$.

Pour tout réel k compris entre f(a) et f(b), il existe au moins un réel c compris entre a et b

tel que f(c) = k

On peut aussi l'exprimer sous la forme :

L'équation f(x) = k a au moins une solution c comprise entre a et b.

En particulier, si $f(a) \times f(b) < 0$ alors l'équation f(x) = 0 admet au moins une solution dans a, b.

Si de plus f est strictement monotone sur I, alors c est unique

Exemple:

soit la fonction , on veut montrer que f admet une solution unique $1 \le \alpha \le 2$ f(1) = -2

$$f(2) = 3$$

 $f(1) \times f(2) < 0$ d'après le TVI il existe $1 \le \alpha \le 2$ tel que $f(\alpha) = 0$

Conséquence :

Soit f une fonction continue sur un intervalle I.

Si f ne s'annule en aucun point de l alors elle garde un signe constant sur l.

Image d'un intervalle fermé borné par une fonction continue :

Théorème:

Si f est continue sur [a,b] alors f([a,b])=[m,M]

Où m est le minimum de f sur [a, b] et M est le maximum de f sur [a, b]. Cas des fonctions monotones :

Théorème:

- * Soit f une fonction définie sur un intervalle de type [a,b[(b fini ou infini). Si f est croissante et majorée alors f possède une limite finie en b. Si f est croissante et non majorée alors f tend vers $+\infty$ en b.
- * Soit f une fonction définie sur un intervalle de type]a,b] (a fini ou infini).

Si f est décroissante et minorée alors f possède une limite finie en a.

Si f est décroissante et non minorée alors f tend vers $-\infty$ en a.

Théorème :

L'image d'un intervalle I par une fonction continue et monotone sur I est un intervalle de même nature.

Exemples:

Intervalle I	f est croissante sur I	f est décroissante sur I
I = [a , b]	f(I) = [f(a), f(b)]	f(I) = [f(b), f(a)]
I = [a , b [$f(I) = [f(a), \lim_{x \to b^{-}} f[$	$f(I) = \left[\lim_{x \to b^{-}} f, f(a)\right]$
I = [a,+∞ [$f(I) = [f(a), \lim_{x \to +\infty} f[$	$f(I) = \lim_{x \to +\infty} f, f(a)$
I =] a , b [$f(\mathbf{I}) = \left[\lim_{x \to a^{+}} f, \lim_{x \to b^{-}} f\right]$	$f(\mathbf{I}) = \begin{bmatrix} \lim_{x \to b^{-}} f, \lim_{x \to a^{+}} f \end{bmatrix}$

Exemple

