Le raisonnement par récurrence.

Notons P_n la proposition $(1^3+2^3+...+n^3)=\frac{n^2(n+1)^2}{4}$ » pour $n \ge 1$.

- 1. Vérifier que P_1 est vraie.
- 2. Vérifier que P_2 est vraie.
- 3. Vérifier que P_3 est vraie.
- 4. Puisque P_1 , P_2 et P_3 sont vraies, peut-on dire que P_n est vraie quelque soit n?

 Peut-on le justifier?
- 5. Pour démontrer que P_n est vraie quelque soit n, nous allons utiliser un raisonnement par récurrence.

Pour démontrer par récurrence qu'une proposition P_n est vraie pour tout entier naturel n, on procède en deux étapes:

- Première étape: initialisation: on vérifie que la propriété P_1 est vraie.
- **Deuxième étape:** hérédité: on suppose que pour un entier naturel k quelconque, la proposition P_k est vraie et on démontre alors que la proposition P_{k+1} est vraie.

Conclusion: lorsque les deux étapes sont franchies, on conclut que la proposition P_n est vraie.

Le raisonnement par récurrence « est un instrument qui permet de passer du fini à l'infini » (Henri Poincaré).

Démontrer l'étape hérédité du raisonnement par récurrence, puis conclure.

Le raisonnement par récurrence.

Notons P_n la proposition $(n-1)^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$ » pour $n \ge 1$.

- 1. Vérifier que P_1 est vraie.
- 2. Vérifier que P_2 est vraie.
- 3. Vérifier que P_3 est vraie.
- 4. Puisque P_1 , P_2 et P_3 sont vraies, peut-on dire que P_n est vraie quelque soit n?
 Peut-on le justifier?
- 5. Pour démontrer que P_n est vraie quelque soit n, nous allons utiliser un raisonnement par récurrence.

Pour démontrer par récurrence qu'une proposition P_n est vraie pour tout entier naturel n, on procède en deux étapes:

- Première étape: initialisation: on vérifie que la propriété P_1 est vraie.
- **Deuxième étape:** hérédité: on suppose que pour un entier naturel k quelconque, la proposition P_k est vraie et on démontre alors que la proposition P_{k+1} est vraie.

Conclusion: lorsque les deux étapes sont franchies, on conclut que la proposition P_n est vraie.

Le raisonnement par récurrence « est un instrument qui permet de passer du fini à l'infini » (Henri Poincaré).

Démontrer l'étape hérédité du raisonnement par récurrence, puis conclure.