Numerical Methods 1

Physics 129AL

Zihang Wang 10/18/2023

Numerical differentiation

The simplest method is to use finite difference,

$$f'(x) = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

$$f''(x)pprox rac{\delta_h^2[f](x)}{h^2} = rac{rac{f(x+h)-f(x)}{h} - rac{f(x)-f(x-h)}{h}}{h} = rac{f(x+h)-2f(x)+f(x-h)}{h^2}.$$

Numerical Integration

Numerical Integration (also called Quadrature)

$$I = \int_{a}^{b} f(x)dx$$

Special case of differential equation

$$\frac{dy}{dx} = f(x), \ y(a) = 0$$

Midpoint Rule

The midpoint rule M approximates the integral by the area of a rectangle whose base has length h and whose height is the value of f(x) at the midpoint (order of 1/N^2)

$$\int_{x_{j-1}}^{x_j} f(x) \, dx \approx f\left(\frac{x_{j-1} + x_j}{2}\right) \Delta x$$

https://math.libretexts.org/Bookshelves/Calculus/CLP-2_Integral_Calculus_%28 Feldman_Rechnitzer_and_Yeager%29/01%3A_Integration/1.11%3A_Numerical_Integration

Trapezoidal Rule

The trapezoidal rule approximates the integral by the area of a trapezoid with base h and sides equal to the values of f(x) at the two end points. (**order of 1/N^2**)

$$\int_{x_{i-1}}^{x_j} f(x) dx \approx \frac{1}{2} \left[f(x_{j-1}) + f(x_j) \right] \Delta x$$

Trapezoid:
$$\int_{x_1}^{x_N} f(x) dx = h \left[\frac{1}{2} f_1 + f_2 + f_3 + \cdots + f_{N-1} + \frac{1}{2} f_N \right]$$

https://math.libretexts.org/Bookshelves/Calculus/CLP-2_Integral_Calculus_%28 Feldman_Rechnitzer_and_Yeager%29/01%3A_Integration/1.11%3A_Numerical Integration

The midpoint rule and the trapezoidal rule are both exact for constant functions and linear functions. For higher order functions, which method is better? Let's consider an example:

$$M=1\left(\frac{1}{2}\right)^2=\frac{1}{4}.$$
 Midpoint rule Error: 1/12

$$\int_0^1 x^2 \, dx = \frac{1}{3}.$$

$$T=1\frac{0^2+1^2}{2}=\frac{1}{2}$$
. Trapezoidal rule Error: 1/6

Let the exact value of the integral be I

If the error in T were exactly -2 times the error in M,

$$I - T = -2(I - M)$$

We can use it to approximate higher order integration. Let' give it a different name S,

$$S = \frac{2}{3}M + \frac{1}{3}T.$$

This is called Simpson's rule.

Simpson's rule

Classically, Simpson's rule is derived by using a parabola to interpolate f(x) at the two endpoints, a and b, and the midpoint, (a+b)/2 and integrating the parabola exactly. (**order of N^4**)

$$\int_{x_{j-1}}^{x_{j+1}} f(x) dx \approx \frac{1}{3} \left[f(x_{j-1}) + 4f(x_j) + f(x_{j+1}) \right] \Delta x$$

Simpson:
$$\int_{x_1}^{x_N} f(x)dx = h \left[\frac{1}{3} f_1 + \frac{4}{3} f_2 + \frac{2}{3} f_3 + \frac{4}{3} f_4 + \cdots + \frac{2}{3} f_{N-2} + \frac{4}{3} f_{N-1} + \frac{1}{3} f_N \right]$$

https://math.libretexts.org/Bookshelves/Calculus/CLP-2_Integral_Calculus_%28Feldman_Rechnitzer_and_Yeager%29/01%3A_Integration/1.11%3A_Numerical_Integration

Richardson extrapolation

Can we in general combine lower accuracy terms to give higher accuracy terms by cancelling out the leading error? Let's take N to 2N and perform two simpson rule on two subintervals,

$$S_2 = \frac{h}{12}(f(a) + 4f(d) + 2f(c) + 4f(e) + f(b)).$$

Richardson extrapolation

Since Simpson's rule is **order 4**, we can take N to 2N, and the error is expected to reduce by 2⁴.

$$Q - S = 16(Q - S_2).$$

$$Q = S_2 + \frac{(S_2 - S)}{15}.$$

The result rule will be **order 6 in N**.

Simpson's rule

Composite Simpson's rule

Richardson extrapolation and Romberg Integration

Richardson extrapolation involves taking two or more approximations of a quantity using different step sizes, and then combine these approximations to obtain a more accurate estimate. Following the same idea, we can cancel out the higher order errors by double the number of grid points: N, 2N, 4N, 8N...

We will use Romberg integration to obtain a sixth-order accurate approximation to

$$\int_0^1 e^{-x^2} dx$$

an integral that cannot be computed using the Fundamental Theorem of Calculus.

with
$$n=1$$
 subintervals. Since $h=(b-a)/n=(1-0)/1=1$, we have

$$R_{1,1} = \frac{1}{2}[f(0) + f(1)] = 0.68393972058572,$$

which has an absolute error of 6.3×10^{-2} .

If we bisect the interval [0,1] into two subintervals of equal width, and approximate the area under e^{-x^2} using two trapezoids, then we are applying the Composite Trapezoidal Rule with n=2 and h=(1-0)/2=1/2, which yields

$$R_{2,1} = \frac{0.5}{2}[f(0) + 2f(0.5) + f(1)] = 0.73137025182856,$$

which has an absolute error of 1.5×10^{-2} . As expected, the error is reduced by a factor of 4 when the step size is halved, since the error in the Composite Trapezoidal Rule is of $O(h^2)$.

Now, we can use Richardson Extrapolation to obtain a more accurate approximation,

$$R_{2,2} = R_{2,1} + \frac{R_{2,1} - R_{1,1}}{3} = 0.74718042890951,$$

which has an absolute error of 3.6×10^{-4} .

We can obtain a second approximation of fourth-order accuracy by using the Composite Trapezoidal Rule with n = 4 to obtain a third approximation of second-order accuracy. We set h = (1-0)/4 = 1/4, and then compute

$$R_{3,1} = \frac{0.25}{2} \left[f(0) + 2 \left[f(0.25) + f(0.5) + f(0.75) \right] + f(1) \right] = 0.74298409780038,$$

which has an absolute error of 3.8×10^{-3} . Now, we can apply Richardson Extrapolation to $R_{2,1}$ and $R_{3,1}$ to obtain

$$R_{3,2} = R_{3,1} + \frac{R_{3,1} - R_{2,1}}{3} = 0.74685537979099,$$

which has an absolute error of 3.1×10^{-5} . This significant decrease in error from $R_{2,2}$ is to be expected, since both $R_{2,2}$ and $R_{3,2}$ have fourth-order accuracy, and $R_{3,2}$ is computed using half the step size of $R_{2,2}$.

Therefore, we can use Richardson Extrapolation with these two approximations to obtain a new approximation

$$R_{3,3} = R_{3,2} + \frac{R_{3,2} - R_{2,2}}{2^4 - 1} = 0.74683370984975,$$

which has an absolute error of 9.6×10^{-6} . Because $R_{3,3}$ is a linear combination of $R_{3,2}$ and $R_{2,2}$ in which the terms of order h^4 cancel, we can conclude that $R_{3,3}$ is of sixth-order accuracy. \square

- an definite integral of f(x) can be projected to a new basis set g(x) with a give weight function W(x).
 - Those are then approximated by a sum of function values at specified points x i multiplied by some weights w i
 - In the case of Gauss-Legendre quadrature, the weighting function W=1.

$$\int_{-1}^1 f(x) \, dx = \int_{-1}^1 W(x) g(x) \, dx$$

$$egin{aligned} egin{aligned} \int_{-1}^1 W(x)g(x)\,dx &pprox \sum_{i=1}^n w_i g(x_i) \ \\ egin{aligned} \int_{-1}^1 f(x)\,dx &pprox \sum_{i=1}^n w_i f(x_i) \end{aligned}$$

$$\int_{-1}^1 f(x)\,dx pprox \sum_{i=1}^n w_i f(x_i)\,.$$

This choice of quadrature weights wi and quadrature nodes xi is the unique choice that allows the quadrature rule to integrate degree 2n − 1 polynomials exactly. We solve the system of equations below for the case n=2,

$$\int_{-1}^{1} dx = 2 = w_1 + w_2$$

$$\int_{-1}^{1} x dx = 0 = w_1 x_1 + w_2 x_2$$

$$\int_{-1}^{1} x^2 dx = \frac{2}{3} = w_1 x_1^2 + w_2 x_2^2$$

$$\int_{-1}^{1} x^3 dx = 0 = w_1 x_1^3 + w_2 x_2^3$$

$$x_1 = -x_2 = \frac{1}{\sqrt{3}}$$

$$w_1 = w_2 = 1$$

 However, what if we want to have higher order, e.g. n=3? Solving the following system of equations is generally hard (since they are non-linear).

$$\int_{-1}^{1} dx = 2 = w_1 + w_2 + w_3$$

$$\int_{-1}^{1} x dx = 0 = w_1 x_1 + w_2 x_2 + w_3 x_3$$

$$\int_{-1}^{1} x^2 dx = \frac{2}{3} = w_1 x_1^2 + w_2 x_2^2 + w_3 x_3^2$$

$$\int_{-1}^{1} x^3 dx = 0 = w_1 x_1^3 + w_2 x_2^3 + w_3 x_3^3$$

$$\int_{-1}^{1} x^4 dx = \frac{2}{5} = w_1 x_1^4 + w_2 x_2^4 + w_3 x_3^4$$

$$\int_{-1}^{1} x^5 dx = 0 = w_1 x_1^5 + w_2 x_2^5 + w_3 x_3^5$$

What can we do?

• In fact, they are given exactly by the root of the **n-th Legendre polynomial!**

Legendre ODE
$$(1-x^2)P_n''(x)-2xP_n'(x)+n(n+1)P_n(x)=0.$$

n	$P_n(x)$
0	1
1	x
2	$rac{1}{2}\left(3x^2-1 ight)$
3	$rac{1}{2}\left(5x^3-3x ight)$
4	$rac{1}{8} \left(35 x^4 - 30 x^2 + 3 ight)$
5	$rac{1}{8} \left(63 x^5 - 70 x^3 + 15 x ight)$
6	$rac{1}{16} \left(231 x^6 - 315 x^4 + 105 x^2 - 5 ight)$
7	$rac{1}{16} \left(429 x^7 - 693 x^5 + 315 x^3 - 35 x ight)$
8	$rac{1}{128} \left(6435 x^8 - 12012 x^6 + 6930 x^4 - 1260 x^2 + 35 ight)$
9	$rac{1}{128} \left(12155 x^9 - 25740 x^7 + 18018 x^5 - 4620 x^3 + 315 x ight)$
10	$\left[rac{1}{256} \left(46189 x^{10}-109395 x^8+90090 x^6-30030 x^4+3465 x^2-63 ight) ight]$

 However, what if we want to have higher order, e.g. n=3? Solving the following system of equations is generally hard (since they are non-linear).

$$\int_{-1}^{1} dx = 2 = w_1 + w_2 + w_3$$

$$\int_{-1}^{1} x dx = 0 = w_1 x_1 + w_2 x_2 + w_3 x_3$$

$$\int_{-1}^{1} x^2 dx = \frac{2}{3} = w_1 x_1^2 + w_2 x_2^2 + w_3 x_3^2$$

$$\int_{-1}^{1} x^3 dx = 0 = w_1 x_1^3 + w_2 x_2^3 + w_3 x_3^3$$

$$\int_{-1}^{1} x^4 dx = \frac{2}{5} = w_1 x_1^4 + w_2 x_2^4 + w_3 x_3^4$$

$$\int_{-1}^{1} x^5 dx = 0 = w_1 x_1^5 + w_2 x_2^5 + w_3 x_3^5$$

$$P_3(x) = \frac{1}{2}(5x^3 - 3x), \quad x_1 = -x_3 = \sqrt{\frac{3}{5}}, \quad x_2 = 0$$

And by plug in the roots into the system of equations, the weights are

$$w_i = rac{2}{\left(1-x_i^2
ight)\left[P_n'(x_i)
ight]^2}.$$

For interval other than -1 to 1, we can perform a change of variable,

$$\int_a^b f(x)\,dx pprox rac{b-a}{2} \sum_{i=1}^n w_i f\left(rac{b-a}{2} x_i + rac{a+b}{2}
ight).$$

The values are numerically calculated,

Number of points, n	nts, n Points, x_i		Weights, w_i	
1	0		2	
2	$\pm \frac{1}{\sqrt{3}}$ ±0.57738		1	
_	0		$\frac{8}{9}$	0.888889
3	$\pm\sqrt{rac{3}{5}}$	±0.774597	$\frac{5}{9}$	0.555556
4	$\pm\sqrt{\frac{3}{7}-\frac{2}{7}\sqrt{\frac{6}{5}}}$	±0.339981	$\frac{18+\sqrt{30}}{36}$	0.652145
4	$\pm\sqrt{\frac{3}{7}+\frac{2}{7}\sqrt{\frac{6}{5}}}$	±0.861136	$\frac{18-\sqrt{30}}{36}$	0.347855
	0		$\frac{128}{225}$	0.568889
5	$\boxed{\pm\frac{1}{3}\sqrt{5-2\sqrt{\frac{10}{7}}}}$	±0.538469	$\frac{322 + 13\sqrt{70}}{900}$	0.478629
	$\boxed{\pm\frac{1}{3}\sqrt{5+2\sqrt{\frac{10}{7}}}}$	±0.90618	$\frac{322 - 13\sqrt{70}}{900}$	0.236927

• Commonly used cases:

Rescale for other intervals W(x)=1 -1 < x < 1 $W(x)=(1-x^2)^{-1/2}$ -1 < x < 1 -1 < x <

Gauss-Jacobi:

$$W(x) = (1-x)^{\alpha}(1+x)^{\beta}$$
 $-1 < x < 1$

 $W(x) = e^{-x^2} \qquad -\infty < x < \infty$

Multidimensional Integrals

are HARD!

- Number of points scales as N^M, where M: # of dimensions
- Boundary can be complicated

Can dimension be reduced?

$$\int_0^x dt_n \int_0^{t_n} dt_{n-1} \cdots \int_0^{t_3} dt_2 \int_0^{t_2} f(t_1) dt_1$$
$$= \frac{1}{(n-1)!} \int_0^x (x-t)^{n-1} f(t) dt$$

Multidimensional Integrals

If complicated boundary, low res, not strongly peaked integrand → Monte Carlo Integration (to be discussed later)

If boundary is simple and function is smooth

 \rightarrow Repeated 1-D integrals

$$I = \int \int dx dy f(x,y)$$

$$H(x) = \int_{y_1}^{y_2} f(x, y) dy$$

$$I = \int_{x_1}^{x_2} H(x) dx$$

Best to use Gaussian Quadratures for high precision

Acknowledgement

The slides are partially developed or inspired by Professor Uros Seljak at UC Berkeley. For more information, please visit the github page.

A short story: When I was doing my undergraduate, I took his class (the exact same one, linked below).

https://phy151-ucb.github.io/seljak-phy151-fall-2018/#course-syllabus

Uros Seljak (Berkeley)