目 次

1	アル	レゴリズム	2
	1.1	全探索	2
		1.1.1 深さ優先探索	2
		1.1.2 幅優先探索	2
	1.2	動的計画法	2
		1.2.1 ナップサック	2
		1.2.2 桁 DP	2
	1.3	グラフ	2
2	数学	。 学的知識	2
	2.1	フェルマーの小定理	2
	2.2	組み合わせ	2
3	Ato	Coder Beginner Contest	3
	3.1	150	9
	3.2	151	3
	3.3	152	9
	3.4	153	3
		3.4.1 E	9
	3.5	154	9
		3.5.1 E	3
4	Ed	ucational DP Contest	4
5	注意		5
	5.1	計算量	Ę
	5.2	mod	F

1 アルゴリズム

1.1 全探索

1.1.1 深さ優先探索

ある状態からはじめ、遷移できなくなる状態まで遷移し、遷移できなくなったら1つ前の状態に戻ることを繰り返す。

性質上、再帰関数で書くことが可能。DFS よりも実装が楽。

1.1.2 幅優先探索

初めの状態から近い状態に遷移していく。 最短路を求める場合はこちらを採用。

1.2 動的計画法

1.2.1 ナップサック

dp[i][j] = 上から i 番目の荷物を使って、重さ j で価値が最大

となるように dp を更新していく

1.2.2 桁 DP

dp[i][j][k] = 上から i 桁目までで、条件 j を満し、N と同じか未満か (k = 0:同じ, k = 1:未満) となるように <math display="inline">dp を更新していく

1.3 グラフ

2 数学的知識

2.1 フェルマーの小定理

2.2 組み合わせ

- 組み合わせの公式 **-**

$$_{n}C_{k} = \frac{n!}{k! \cdot (n-k)!}$$

- 組み合わせの公式 -

$$\sum_{k=0}^{n} {}_{n}C_{k} = 2^{n} \qquad \sum_{k=0}^{n} k \cdot {}_{n}C_{k} = n2^{n-1}$$

3 AtCoder Beginner Contest

- 3.1 150
- 3.2 151
- 3.3 152
- 3.4 153
- 3.4.1 E

問題文

トキはモンスターと戦っています。モンスターの体力はHです。

トキは N 種類の魔法が使え、i 番目の魔法を使うと、モンスターの体力を A_i 減らすことができますが、トキの魔力を B_i 消耗します。

同じ魔法は何度でも使うことができます。魔法以外の方法でモンスターの体力を減らすことはできません。モンスターの体力を 0 以下にすればトキの勝ちです。

トキがモンスターに勝つまでに消耗する魔力の合計の最小値を求めてください。

制約

 $1 \le H \le 10^4$

 $1 \le N \le 10^3$

 $1 \le A_i \le 10^4$

 $1 \le B_i \le 10^4$

入力中のすべての値は整数である。

方針

DP を使用する。

dp[i][j] = i 番目までの魔法で、体力 j を減らすのに必要な最小魔力

となるように dp を更新していく。

3.5 154

3.5.1 E

問題文

1以上 N 以下の整数であって、10 進法で表したときに、0 でない数字がちょうど K 個あるようなものの個数を求めてください。

制約

 $1 \le N < 10^{100}$

 $1 \leq K \leq 3$

方針

桁 DP を使用する。

dp[i][j][k] = 上から i 桁目までで、0 でない数字が j 個あり、N と同じか未満か <math>(k = 0: 同じ, k = 1: 未満)

となるように dp を更新していく

4	Educational	\mathbf{DP}	Contest
---	-------------	---------------	---------

5 注意点

5.1 計算量

1 秒あたりにできる計算量は約 10^7 くらい。 これを踏まえると N あたりにできる最大計算量は以下の表の通り。

N	計算量
10^{6}	$O(N \log N), O(N)$
10^{5}	$O(N\log^2 N), O(N\log N)$
3000	$O(N^2)$
300	$O(N^3)$ (単純な処理)
100	$O(N^3)$
50	$O(N^4)$
10	$O(N*2^N), O(2^N)$

$5.2 \mod$

足し算・掛け算

演算をするごとに mod1e9+7をする。

引き算

最後に 1e9+7を足した上で mod 1e9+7する。