文档版本	
发布日期	

CH2201 数据手册

前言

概述

本文为 CH2201 的数据手册。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
CH2201 数据手册	V01

读者对象

本文档(本指南)主要适用于使用 CH2201 嵌入式开发。

修订记录

修订记录累积了每次文档更新的说明。

修订日期	修订版本	修订说明
	修订前:无	
	修订后:无	

目录

前言	2
1. Overview	1
1.1 Block Diagram	1
1.2 Functional Features	
2. Clock Domain	7
3. Reset Domain	8
4. Power Domain	8
5. Address Map	10
5.1 Address Overview	10
5.2 Peripheral Address Map	11
5.3 TCIP Address Map	14
6. Pin List	15
7. Electrical characteristics	20
7.1 Limiting values	20
7.2 General operating conditions	21
7.3 Embedded reset and power control block characterist	ics22
7.4 NRST pin characteristics	23
7.5 I/O port characteristics	23
7.6 Clock and PLL characteristics	25
7.7 Power consumption	27
7.8 Memory characteristics	31

	7.9 Thermal characteristics	31
	7.10 EMC characteristics	. 32
	7.11 ADC characteristics	33
	7.12 Analog comparator characteristics	.35
8 Pa	ackage information	. 36
9 St	orage	. 37

1. Overview

1.1 Block Diagram

CH2201 is a CK802T based platform typically for many kinds of ultra-low power applications. CK802T are C-SKY Company's independently developed 32-bits processors which C-SKY Company owns its intellectual property. CK802T provide high performance with lower power cost. The CH2201 architecture block diagram is shown in Figure 1- 1

Figure 1-1 CH2201 Block Diagram

CH2201 contains 256K EFLASH and 32+32K+16K internal SRAM. The 8K SRAM is security SRAM for TEE operating system. The 80K SRAM is retention SRAM for low power mode.

1.2 Functional Features

- ♦ CPU Part
 - 32-bit general purpose CPU CK802T
 - In-order issue, execution and retiring

- ◆ 32-bit Data Length and 32-bit/16-bits length Instructions
- ◆ Tightly coupled IP: System Timer (Core Timer), Vector interrupt (VIC) and Wakeup interrupt (WIC).
 - ◆ Support anti-Differential Power analysis
 - ◆ Performance: 0.9DMIPS/MHz

CoreTim

- ◆ The circulating decrement counter is 24-bit count width
- ◆ Two clock sources: CPU clock and external reference clock that connects to external high speed clock and external low speed clock

■ VIC

- Supports 32 Interrupts nesting
- Each interrupt has corresponding priority

■ WIC

Used for wake up system when enters low power mode

♦ Interconnection & Memory Part

Bus interconnection

- ◆ One 32-bit instruction AHB-Lite bus
- ◆ One 32-bit AHB bus for CPU operation, memory access and APB bus interconnection
- ◆ Two 32-bit APB bus for low speed peripheral connection

Memory

- 80KB on-chip SRAM
- ◆ 256KB on-chip flash
- ◆ 8K ROM for boot

Characteristics of Peripherals

■ DMAC (×2)

- ◆ 2 channels
- ◆ 16 handshake interfaces
- Handshaking interface supports single or burst DMA transactions

■ CRC

◆ 8-bit/16-bit fast verify functionality

AES

- ◆ supports three different length of key, which are called AES-128, AES-192, AES-256
- ◆ Supports both ECB (Electronic Code Book) mode and CBC (Cipher Block Chaining) mode

■ SHA1/256/512

Supports 1 hash algorithm: SHA-1

■ TRNG

Random number generator

■ RSA

◆ It supports 192, 256, 512, 1024, 2048 bits modular exponentiation operations

SIPC

- Connects to APB0
- ◆ Controls all peripherals' security attributes

■ ETB

- ◆ Connects to APB1
- ◆ Up to 5 trigger input sources and 1 software trigger source
 - ➤ 1 input source for CMP output

- ➤ 2 input source for external (PAD) input
- 1 input source for PWM event output
- ➤ 1 input source for TIM event output
- ➤ 1 input source for software trigger
- Up to 4 trigger output
 - ➤ 1 output channel for ADC
 - 3 output channel for three counters in PWM

■ RTC (×2)

- ◆ RTC 0 connects to APB0, RTC 1 connects to APB1
- ◆ 32-bit count width
- ◆ Incrementing counter and comparator for interrupt generation

■ PWM

- Connects to APB1
- ◆ 12 input/output channels
- ◆ 6 PWM generators, each with 1 16-bit counter, 2 PWM comparator, 1 PWM signal generator, 1 interrupt generator
 - ◆ Each PWM signal generator contains 2 channels
 - ◆ Prescaler divide-by 1, 2, 4, 8, 16, 32, 64 or 128
 - ◆ PWM output enable or disable of each PWM signal
 - Optional output inversion of each PWM signal (polarity control)
 - 6 16-bit counter and each has the following characteristics:
 - Up or Up/Down mode
 - Output frequency controlled by a 16-bit load value

- ◆ 16-bit input capture modes
 - Input edge count mode
 - Input edge time mode
- ◆ ADC event trigger
 - > Can trigger an ADC sample sequence

■ WDT

- ◆ 1 watch dogs WDT in APB0
- ◆ Each WDT has 32 count width
- ◆ Counter counts down from a pre-set value to zero to indicate the occurrence of a timeout

■ GPIO (×2)

- Connects to APB0
- ◆ Gpio0 supports 28-bit width
- ◆ Gpio1 supports 4-bits width
- ◆ Each bit of GPIO supports interrupt generation
- Individually configurable pull-up or pull-down resistors
- ◆ GPIO0 is non-secure port, GPIO1 is secure port

■ 12S

- ◆ Connects to APBO
- ◆ Serial-Master or serial-slave operation
- ◆ FIFO-The depth of the transmitter and receiver FIFO is 32 while the width is

32-bit

◆ support 16-bit, 44.1/48 KHz sample rate

DMA request generation

ADC

- ◆ Connects to APB0
- ◆ 16 external input channels
- ◆ 12-bit resolution
- ◆ Up to 1M KSPS conversion rate
- Interrupt generation at the end of regular conversion
- Single and continuous conversion modes
- Supports external trigger input
- ◆ ADC input range: AGND ≤ Vin ≤ AVDD
- DMA request generation during regular channel conversion

■ CMP

- Connects to APB1
- ◆ 2 external input channels
- ◆ Interrupt generation capability
- Hysteresis function

■ TIM (×2)

- ◆ connects to APB1
- ◆ All of timers are 32-bit count width
- ◆ All of timers support for two operation modes: free-running and user-defined count

■ SPI (×2)

- ◆ 1 SPI in APB0 supports 1 slave selection when function as master, 1 SPI in APB1 supports 3 slaves selection when function as master
 - Each SPI module supports master and slave

- ◆ The depth of transmit/ receive FIFO buffers is 32 words deep
- ◆ DMA Controller Interface

■ I2C (×2)

- ◆ 1 I2C connects to APB0 and 1 I2C connects to APB1
- ◆ Both I2Cs support master or slave I2C operation
- ◆ Transmit and receive FIFO_DEPTH is 8 , data is 8 bits width
- ◆ DMA handshaking interface

■ UART (×3)

- ◆ 2 UARTs that UART 0 and UART 1 in APB0 and UART 2 in APB1
- ◆ Transmit and receive FIFO depths of 16
- ◆ Additional DMA interface signals

2. Clock Domain

CH2201 has five clock sources such as EHS, IHS, PLL, ELS, ILS. EHS is 8-24MHz. HIS is 8MHz. PLL is 20-48MHz. EHS, IHS, PLL are high speed clock source. ELS is 32.768 KHz and ILS is 10KHz for RTC and low power mode.

EHS and ELS are external clock sources. ILS, IHS, PLL are internal clock sources. When the chip powers up, the default clock source is IHS.

The max frequency of CK802T is 48M.

CPU, SRAM and EFLASH are in the same clock domain using CPU_CLK. Security Sub System is in DIV clock domain using SEU_CLK. All peripherals are in the same clock domain using APB_CLK. APB_CLK should be more than one if there are two or more APB bus.

In low power mode except the wait mode the main clock is low speed clock such as ELS or ILS selected by user.

The clock source dynamic switch is supported in CH2201 and the clock divider dynamic switch is also supported.

OSC_IN

EIIS OSC
S-24HZ

SWITCH

CONTROL

FILL
6-66MHZ

SWITCH

CONTROL

FMU_CLK

PMU_CLK

PM

Figure 2-1 CH2201 clock domain

3. Reset Domain

CH2201 has three function reset and one low power reset. If function reset is enable all chip will be reset. If low power reset is enable only the function logic will be reset, the wake-up logic will not be reset.

When stop mode and standby mode exited the low power reset will be enabled.

All reset in chip are asynchronous reset.

4. Power Domain

CH2201 has five power modes: run mode, wait mode, doze mode, stop mode and standby mode.

- > Run Mode: CPU is free run and most peripheral is active.
- ➤ Wait Mode: CPU is clock gated and peripherals' clock statuses are configurable by the program.

- Doze Mode: All clocks except the wake-up logic are gated.
- ➤ Stop Mode: Some critical register data stored in SRAM, so that system can restore quickly.
- > Standby Mode: Some critical register data and data in SRAM stored in Eflash, which results to restore system slowly.

CH2201 has three power domain: always on power domain, SMS power domain and power down power domain.

Always on power domain has wake up logic, RTC, and IO. The clock is very slowly such as 32.768 KHz. In standby mode only the always on power domain is active.

SMS power domain has retention SRAM.

Power down domain has other logic.

In run mode, wait mode, doze mode all power domains are power on. In stop mode power down domain is power off but the SMS power domain and always on power domain are power on. In standby mode only always on power domain is power on.

After wait mode, doze mode program will be executed from the instruction after wait or doze instruction or from the interrupt service routine.

Before stop mode the critical context will be store in the 80KB retention SRAM. After waked up the context will be restored from the retention SRAM for performance.

Before standby mode the critical context will be store in the FLASH. After waked up the context will be restored from the FLASH for low power.

In run mode the active power is less than 300uA/MHZ.

In wait mode the power is less than 1mA.

In doze mode the power is less than 70uA.

In stop mode the power is less than 20uA.

In standby mode the power is less than 3uA.

5. Address Map

5.1 Address Overview

For this chip, the memory address is divided into several parts: on-chip memory, off-chip memory, TCIP and peripherals. The detailed address map is shown as below.

Table 5-1 Memory Address Map

	,			
Address Range	Size	Usage		
0x0000_0000~0x0000_ 1FFF	8KB	ROM for boot		
0x1000_0000~0x1003_ F7FF	256KB	EFlash		
0x4003_F000~0x4003_ FFFF	2KB (OTP) + 2KB (REG)	EFIdSII		
0x4000_0000~0x5001_ FFFF	262272KB	Peripherals		
0x6000_0000~0x6001_ 3FFF	80KB	On-chip SRAM		
0xE000E000~0xE000E CFF		TCIP		
Others		Reserved		

5.2 Peripheral Address Map

The register blocks for all on-chip peripheral devices are located on 4KB boundaries. Those modules that may require additional address space are assigned additional 4KB blocks. Within a 4KB block, peripheral registers may be incompletely decoded. The description of each peripheral will define the result of accesses to unimplemented registers. For registers that do not implement all 32 bits, the unimplemented bits will return zero when read, and write to the unimplemented bits will have no effect. In general, unimplemented bits should return zero to ensure future compatibility.

Table 5- 2 Peripheral Address Map

Address Range	IP name	Master/Slave	Description	
I-AHB Lite				
CK802 M Core				
0x0000_0000~0x0000_ 1FFF	ROM	S0	ROM for boot	
0x1000_0000~0x1003_ F7FF	EFC	S1	256KB Flash	
	АН	В		
	CK802 M1 Core			
0x4000_0000~0x4000_ 0FFF	AHB Arb	SO	AHB Arbiter	
0x4000_1000~0x4000_ 1FFF	DMAC0	M2/S1	DMA Controller0	
0x4000_2000~0x4000_	CLKGEN	S2	CLK&RST&POW	

2FFF			M Management	
0x4000_3000~0x4000_ 3FFF	CRC	\$3	CRC Check	
0x4000_4000~0x4000_ 5000	DMAC1	M3/S4	DMA Controller1	
0x4003_F000~0x4003_ FFFF	2KB (OTP) + 2KB (REG)	S 5	Flash	
0x4000_6000~0x4000_ 6FFF	AES	S6	AES	
0x4000_7000~0x4000_ 7FFF	SRAM SASC	S 7	SRAM SASC	
0x4000_8000~0x4000_ 8FFF	SHA-1	M4/S8	SHA-1	
0x4000_9000~0x4000_ 9FFF	TRNG	S9	TRNG	
0x4000_A000~0x4000_ AFFF	RSA	S10	RSA	
0x5000_0000~0x5000_ FFFF	APB 0 Bridge	S11	APB 0 Bridge	
0x5001_0000~0x5001_ FFFF	APB 1 Bridge	S12	APB 1 Bridge	
0x6000_0000~0x6001_ 3FFF	SRAM	\$13	80KB on-chip SRAM	
APB 0				
0x5000_1000~0x5000_	WDT	P00	Watch Dog	

1FFF				
0x5000_2000~0x5000_ 2FFF	SPI 0	P01	SPI 0	
0x5000_3000~0x5000_ 3FFF	RTC 0	P02	Real Time Clock	
0x5000_4000~0x5000_ 4FFF	UART 0	P03	UART 0	
0x5000_5000~0x5000_ 5FFF	UART 1	P04	UART 1	
0x5000_6000~0x5000_ 6FFF	GPIO 0	P05	GPIO 0	
0x5000_7000~0x5000_ 7FFF	12C 0	P06	I2C 0	
0x5000_8000~0x5000_ 8FFF	128	P07	128	
0x5000_9000~0x5000_ 9FFF	GPIO 1	P08	GPIO 1	
0x5000_A000~0x5000_ AFFF	SIPC	P09	Secure IP Controller	
APB 1				
0x5001_1000~0x5001_ 1FFF	TIM 0	P10	Timer A	
0x5001_2000~0x5001_ 2FFF	SPI 1	P11	SPI 1	

0x5001_3000~0x5001_ 3FFF	I2C 1	P12	I2C 1
0x5001_4000~0x5001_ 4FFF	PWM	P13	PWM
0x5001_5000~0x5001_ 5FFF	UART 2	P14	UART 2
0x5001_6000~0x5001_ 6FFF	ADC CTL	P15	ADC Controller
0x5001_7000~0x5001_ 7FFF	CMP CTL	P16	CMP Controller
0x5001_8000~0x5001_ 8FFF	ETB	P17	Event Trigger Block
0x5001_9000~0x5001_ 9FFF	TIM 1	P18	Timer B
0x5001_A000~0x5001A FFF	RTC 1	P19	Real Time Clock

5.3 TCIP Address Map

There are some IPs integrated to CK802T closely, which are called TCIPs. The address map of these IPs is shown below.

Table 5-3 TCIP Address Map

Address Range	TCIP Name
0xE000E010~0xE000E0FF	Core Timer
0xE000E100~0xE000ECFF	Vector Interrupt Controller(VIC)

6. Pin List

Table 6-1 Pin List

DEFAULT				
P 64	PIN NAME	FUNC	SEL	FUNCTION
1	DVSS	Digital Ground		
2	DVSS	Digital Ground		
17	DVDD	3.3V Power Supply		
18	DVSS	Digital Ground		
19	AVDD	3.3V Power Supply		
20	AVSS	Analog Ground		
23	AVDD	3.3V Power Supply		
26	AVSS	Analog Ground		
27	AVDD	3.3V Power Supply		
28	AVSS	Analog Ground		
37	DVSS	Digital Ground		
40	DVSS	Digital Ground		
43	DVSS	Digital Ground	round	
46	DVDD	3.3V Power Supply		
49	VCORECP	1.5V Coupling		
50	VCORECP	1.5V Coupling		
51	VCORECP	1.5V Coupling		
52	VCORECP	1.5V Coupling		
53	DVDD	3.3V Power Supply	ower Supply	
54	DVSS	Digital Ground		
59	VCORECP	1.5V Coupling		
60	VCORECP	1.5V Coupling		

31	PIN_EHS	EHS_I		osc input
32	POUT_EHS	EHS_O		osc output
21	PIN_ELS	ELS_I		osc input
22	POUT_ELS	ELS_O		osc output
25	ADC_VREFP	ADC Refernce Positive Input		power supply
24	ADC_VREFN	ADC Refernce Negative Input		power supply
30	MCURST	MCURST		external reset
29	TEST_MODE	DFT		test mode enable
		JTAG.TCK	0	ETB.TRIG0
33	PA0_TRIG0_ACMP1P_TCK	(GPIOA.0)	1	
			10	JTAG.TCK
		JTAG.TMS	0	ETB.TRIG1
34	PA1_TRIG1_ACMP1N_TMS	(GPIOA.1)	1	
			10	JTAG.TMS
			0	UART0.TX
39	PA2_TXD0_SPI0TXD	GPIOA.2	10	SPI0.TXD
			11	UARTO.SIROUT
			0	UARTO.RX
42	PA3_RXD0_SPI0RXD	GPIOA.3	10	SPI0.RXD
			11	UARTO_SIRIN
			0	UARTO.CTS
44	DAA CTCO DIAMAO CDIOCCI TRICO	CDIO A. A	1	PWM.CH0
41	PA4_CTS0_PWM0_SPI0SCK_TRIG0	GPIOA.4	10	SPI0.CLK
			11	ETB.TRIG0
38	PA5_RTS0_PWM1_SPI0SSN_TRIG1	GPIOA.5	0	UARTO.RTS

			1	PWM.CH1
			10	SPIO.CS
			11	ETB.TRIG1
			0	I2CO.SCL
64	PB0_SCL0_PWM2_I2SMCLK	GPIOB.0	1	PWM.CH2
			10	I2S.MCLK
			0	I2C0.SDA
63	PB1_SDA0_PWM3_I2SSCK	GPIOB.1	1	PWM.CH3
			10	I2S.SCLK
			0	SPI0.CLK
62	PB2_SPI0SCK_PWM4_I2SWS	GPIOB.2	1	PWM.CH4
			10	I2S.WSCLK
			0	SPI0.TXD
61	PB3_SPI0TXD_PWM5_I2SSD	GPIOB.3	1	PWM.CH5
			10	I2S.SDA
			0	SPI0.RXD
35	PA6_SPIORXD_PWM6_SCL0	GPIOA.6	1	PWM.CH6
			10	I2C0.SCL
			0	SPIO.CS
36	PA7_SPI0SSN_PWM7_SDA0	GPIOA.7	1	PWM.CH7
			10	I2C0.SDA
			0	SYS_WKUP
3	PA8_WKUP_ADC0_ACMP0P	PA8_WKUP_ADC0_ACMP0P GPIOA.8		ADC.A0
			10	ACMP.P0
4	BOOT			
5	PA10_ADC2_TXD0	GPIOA.10	1	ADC.A2
ວ 	LWIO_WDC5_IVD0	GFIOA.10	10	UARTO.TX

			11	UARTO.SIROUT
			0	ACMP.N0
C	DA44 ACMADONI ADCO DVDO	CDIO A 11	1	ADC.A3
6	PA11_ACMP0N_ADC3_RXD0	GPIOA.11	10	UARTO.RX
			11	UARTO.SIRIN
			0	PWM.CH8
7	PA12_PWM8_TCK_ADC4	GPIOA.12	1	JTAG.TCK
			10	ADC.A4
			0	PWM.CH9
8	PA13_PWM9_TMS_ADC5	GPIOA.13	1	JTAG.TMS
			10	ADC.A5
9	PA14_PWM10_ADC6	GPIOA.14	0	PWM.CH10
9	PA14_PWWIIU_ADC0	GF10A.14	1	ADC.A6
10	PA15_PWM11_ADC7	GPIOA.15	0	PWM.CH11
10	TAI3_I WWIII_ADCI	OI IOA.13	1	ADC.A7
			0	UART1.RX
48	PA16_RXD1_ADC8	GPIOA.16	1	ADC.A8
			11	UART1.SIRIN
			0	UART1.TX
47	PA17_TXD1_ADC9	GPIOA.17	1	ADC.A9
			11	UART1.SIROUT
<u> </u>	PA18_SPI1SSN0_ACMP0O	GDIOA 10	0	SPI1.CS0
56	LVTO-2LIT221A0-VCIAILAO	O GPIOA.18		ACMP.O0
	PA19_SPI1SSN1_ACMP1O	GPIOA.19	0	SPI1.CS1
57	LVT3-2LIT22IAT-WOIMLTO	GPIOA.19	1	
56	DA20 SDI1SSN2 TDICO DVD1	GDIOA 20	0	SPI1.CS2
50	56 PA20_SPI1SSN2_TRIG0_RXD1 GPIOA.20		1	ETB.TRIG0

			10	UART1.RX
			11	UART1.SIRIN
			0	SPI1.SCK
	DA04 001400V T0104 TVD4	CDIO A 21	1	ETB.TRIG1
55	PA21_SPI1SCK_TRIG1_TXD1	GPIOA.21	10	UART1.TX
			11	UART1.SIROUT
			0	SPI1.RXD
11	PA22_SPI1RXD_PWM0_ADC10	GPIOA.22	1	PWM.CH0
			10	ADC.A10
			0	SPI1.TXD
12	PA23_SPI1TXD_PWM1_ADC11	GPIOA.23	1	PWM.CH1
			10	ADC.A11
			0	UART2.TX
45	DIA24 TVD2 I26MCI V CDI16CNIO	GPIOA.24	1	I2S.MCLK
45	PA24_TXD2_I2SMCLK_SPI1SSN0	GPIOA.24	10	SPI1.CS0
			11	UART2.SIROUT
			0	UART2.RX
4.4	DAGE DVDG 1900CW CD140CN14	CDIO A 2F	1	I2S.SCLK
44	PA25_RXD2_I2SSCK_SPI1SSN1	GPIOA.25	10	SPI1.CS1
			11	UART2.SIRIN
			0	UART2.CTS
13	PA26_CTS2_I2SWS_ADC12	GPIOA.26	1	I2S.WSCLK
			10	ADC.A12
			0	UART2.RTS
14	PA27_RTS2_I2SSD_ADC13	GPIOA.27	1	I2S.SDA
			10	ADC.A13
15	SCL1_CTS1_PWM10_ADC14	I2C1.SCL	0	I2C1.SCL

			1	UART1.CTS
			10	PWM.CH10
			11	ADC.A14
			0	I2C1.SDA
1.0	CD 41 DTC1 DV4/A411 A DC1F	1004.05.4	1	UART1.RTS
10	16 SDA1_RTS1_PWM11_ADC15	I2C1.SDA	10	PWM.CH11
			11	ADC.A15

ATTENTION:

- 1. the function of each pin is selected individually
- 2. the base address of the reuse registers that control each pin multiplexing function is GPIO0_BADDR+0x100, the first and second reuse 32-bit registers control GPIOA.0~GPIOA.27, GPIOB.0~GPIOB.3 multiplexing function, the third reuse 4-bit register controls PC0_SCL1_CTS1_PWM10 and PC1_SDA1_RTS1_PWM11
 - 3. VCORECP must be connect with 1uF capacitor to Ground
 - 4. Boot I/O is suggest connect to ground with 1Ku resistor and 1uF capacitor
 - 5. PIN_ELS and PIN_EHS is suggest connect to ground if no oscillator is placed
 - 6. POUT_ELS an PIUT_EHS is suggest leave floating if no oscillator is placed

7. Electrical characteristics

Unless otherwise specified, typical data are based on TA = $25 \, ^{\circ}$ C, VDD = $3.3 \, \text{V}$.

7.1 Limiting values

1							ı
	Symbol	Parameter	Conditions	Min	Ma	Un	

				X	it
VDD-VSS	External main supply voltage		-0.3	4	V
VIN	Input voltage ⁽¹⁾	VDD=3.3V	VSS-0.5	4	V
ΔVDDx	Variations between different VDD power pins		-	100	
ΔVSSx	Variations between all the different ground pins		-	100	-mV
IVDD	Total current into VDD/VDDA power lines (source)		-	200	
Ivss	Total current out of VSS ground lines (sink)		-	200	mA
IINJ(PIN)	Injected current ⁽²⁾	Floating input	-5	5	
Σ[INJ(PIN)	Total injected current (sum of all I/O and control pins)		-25	25	
VESD(HBM)		HUMAN BODY MODE	2000		
VESD(MM)	Electrostatic discharge valtage	MACHINE MODE	200		V
VESD(CDM)		CHARGE DEVICE MODE	500		v
TSTG	Storage temperature range		-65	150	°C
Tı	Maximum junction temperature	instantaneous values	-	150	°C

- (1) Refer to the maximum allowed injected current values.
- (2) IINJ(PIN) must never be exceeded. Refer to the maximum allowed input voltage values.

7.2 General operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fHCLK	Internal AHB clock frequency	-			48	MHz

fPCLK1	Internal APB1 clock frequency	-			48	
fPCLK2	Internal APB2 clock frequency	-			48	
Performance	CoreMark score	CoreMark 1.0 : 57.315874 / GCC6.3.0 / STACK		2.39		(Iterations/s) / MHz
	Dhrystone score	Dhrystone Benchmark, Version 2.1 (Language: C, 1000000 runs)		1.32		DMIPS/MHz
	ULPMark score	ULPMark-Core Profile ⁽¹⁾				
	OLPWark score	ULPMark-Periphera				
VDD	Standard operating voltage	-	2.1	3.3	3.6	
VDDA	Analog operating voltage	-	2.1	3.3	3.6	V
VBAT	Backup operating voltage	-		N/A		V

- (1) Refer to "ULPMark(tm) Core Profile User Guide 1.1.x" for more infomation.
- (2) Refer to "ULPMark(tm) Peripheral Profile User Guide 2.5.x" for more information.

7.3 Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
tVDDr	VDD rise time rate ⁽¹⁾⁽³⁾		20	-	∞	μs/
tVDDf	VDD fall time rate ⁽²⁾⁽³⁾		20	-	∞	V
VPOR	Power on reset threshold ⁽¹⁾⁽³⁾		N/A	-	-	V
VPDR	Power down reset threshold (2) (3)		-	-	N/A	V

(1) VDD rise must be quick enough to meet internal reset and LDO timming sequence.

- (2) BOD reset circute is not included, power capacity must be ensured for heavy load.
- (3) External reset IC is recommended for reliable reset of system.

7.4 NRST pin characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VIL(NRST)	NRST Input low level voltage		-0.5		1.4	V
VIH(NRST)	NRST Input high level voltage		2		VDD+0.5	V
Vhys(NRST)	NRST Schmitt trigger voltage hysteresis			500		mV
VF(NRST)	NRST Input filtered pulse	_	_	_	_	nS
Rpu	internal weak pull-up equivalent resistor	_	_	_	_	kΩ
TRSTTEMPO	Reset temporization	_	_	_	_	ms

7.5 I/O port characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VIL	Standard IO input low level				1.45	
VIL	voltage				1.43	
VIH	Standard IO input high level		1.93			V
VIII	voltage	-	1.93			v
Vhys	Standard IO Schmitt trigger			0.5		
Vilys	voltage hysteresis	_		0.3		
IIL	input leakage current	VSS ≤VIN ≤VDD			1	nA
RPU	Weak pull-up equivalent resistor	shorted toVSS		46		kΩ

RPD	Weak pull-down equivalent resistor	shorted toVDD		54		
CIO	I/O pin capacitance	-		5		pF
Vou		Iон =0 mA	VDD-0.001			V
VOH	Output high level voltage	Iон =−6 mA		VDD-0.3		V
		IOL =0mA			0.001	V
VOL	Output low level voltage	Iol =+6mA			0.21	V
Іон	HIGH-level output current	VOH = VDD - 0.4 V		8		
IOL	LOW-level output current	VOL = 0.4 V		10		
IOHS	drive HIGH; connected to ground;			34		mA
IOLS	drive LOW; connected to VDD			48		
tf(IO)out	Output high to low level fall time	push-pull		4.6		nS
tr(IO)out	Output low to high level rise time	push-pull		5.4		nS
Fmax(IO)out	Maximum frequency ⁽¹⁾	CL=50 pF, IO confirged as PP out	24			MHz

(1) Maximum frequency is achived if (tr+tf)<2/3T, $D=(45\sim55)\%$.

Fig. 2 typical injected current curve

7.6 Clock and PLL characteristics

7.6.1 PLL characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fPLL_IN	PLL input clock ⁽¹⁾		6	8	60	MHz
	PLL input clock duty cycle		45	50	55	%
fPLL_OUT	PLL multiplier output clock		8		60	MHz
tLOCK	PLL lock time				200	uS
Jitter	period jitter time				200	pS

⁽¹⁾ Guaranteed by design.

7.6.2 IHS oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fIHS	Frequency of 8M RC		7.5			MHz
ACCIHS	accuracy of the IHS oscillator					%

7.6.3 ILS oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fILS	Frequency of 10K RC		6.7			KHz
ACCILS	curacy of the ILS oscillator					%

7.6.4 EHS user clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
OEHG 4	User External clock source			0		MII-
fEHS_ext	frequency			8		MHz

VEHSH	OSC_IN input pin high level voltage	,	N/A	V	
VEHSL	OSC_IN input pin low level voltage		N/A	v	
I L	OSC_IN Input leakage current	VSS ≪VIN ≪VDD	N/A	μΑ	

7.6.5 EHS oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fOSC_IN	EHS Oscillator frequency			8		MHz
tSU(EHS)	Startup time	VDD is stabilized		1.5		ms
С	Recommended load capacitance versus equivalent serial resistance of the crystal	$ESR = 30\Omega$		10		pF
IEHS	EHS driving current			N/A		mA
RF	Feedback resistor					kΩ
gm	Oscillator transconductance	Startup				mA/V

7.6.6 ELS user clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fELS_ext	User External clock source frequency			32.768		KHz
VELSH	OSC32_IN input pin high level voltage			N/A		
VELSL	OSC32_IN input pin low level voltage			N/A		V

IL OSC32_IN Input leakage current	VSS ≪VIN ≪VDD	N/A	μА	
-----------------------------------	---------------	-----	----	--

7.6.7 ELS oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f32_IN	ELS Oscillator frequency			32.768		KHz
С	Recommended load capacitance			N/A		pF
IELS	ELS driving current			N/A		mA
tSU(ELS)	Startup time	VDD is stabilized		N/A		ms

7.7 Power consumption

7.7.1 Current consumption in run mode

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Supply current in Run mode, all	8 MHZ ⁽⁴⁾		6.1		
		16 MHZ		11.6		
		24 MHZ		17.0		
	Supply current in Run mode, all peripherals clock enabled ⁽¹⁾⁽²⁾	32 MHZ		22.5		
	peripherals clock enabled (**/-5)	40 MHZ		27.9		
IDD		48 MHZ		33.4		mA
		56 MHZ ⁽⁵⁾		38.7		
		8 MHZ ⁽⁴⁾		2.3		
	Supply current in Run mode, all	16 MHZ		3.7		
	unused peripherals clock gated(1)(3)	24 MHZ		5.0		
		32 MHZ		6.4		

	40 MHZ	7.8	
	48 MHZ	9.2	
	56 MHZ ⁽⁵⁾	10.4	
	(1)(2)	681	
Power consumption per MHz		17	uA/MHz
	(1)(3)	6	

- (1) IHS 8M RC and PLL is always used. Code run from Flash. CoreTimer,UART0,GPIO0/1 and APB0/1 is used/enabled in the basic test program.
- (2) The IP clock register CGCR,SCGCR remains default value after reset.
- (3) Clock of unused peripherals in the test program is gated, all SCGCR clock is gated.
- (4) PLL is used with multiplier of 1 at 8 MHz..
- (5) Maximum MCLK is limited to 48MHz, 56MHz data just for test use.

Fig. 3 Current consumption at different MCLK frequency

7.7.2 Current consumption in low power mode

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
IDD	Supply current in wait mode(1)	24MHz		13.7		mA

Supply current in doze mode ⁽²⁾	-	63	
Supply current in stop mode ⁽²⁾	-	16	11.Δ
Supply current in standby		2.	uA
mode ⁽²⁾	-	7	

- (1) The IP clock register CGCR,SCGCR remaines default value after reset.
- (2) ILS clock is selected, external wakeup, RTC power down.

7.7.3 Peripheral current consumption

Tab. 5 Peripherals clock controled by CGCR

Symbol	Parameter	Conditions(1)	Min	Тур	Max	Unit
	ALL_ON	4E3FFFFF		4.040		
	SMS	4000000		0.143		
	APB0	08000000		0.030		
	APB1	04000000		0.033		
	SASC	02000000		0.107		
	TRC1	00400000		0.094		
	TIM1	00200000		0.033		
Idd	NONSEU DMAC	00100000		0.429		A
100	CoreTimer	00080000		0.015		mA
	CRC	00040000		0.017		
	SEU DMAC	00020000		0.437		
	GPIO1	00010000		0.015		
	ЕТВ	0008000		0.008		
	CMPCTRL	00004000		0.013		
	SPIM	00002000		0.211		
	ADCCTRL	00001000		0.090		

_			
I	2S_APB/I2S_SRC	00000800	0.369
Т	TIM	00000400	0.028
U	JART2	00000200	0.141
U	JART1	00000100	0.140
I	2C1	08000000	0.354
I	2C0	00000040	0.371
U	JART0	00000020	0.140
P	PWM	00000010	0.422
R	RTC	00000008	0.089
v	VDT	0000004	0.017
S	PPIS	00000002	0.246
C	GPIO0	0000001	0.157

⁽¹⁾ MCLK=24MHz, in debug mode. CGCR resigter is configured to disable some peripheral's clock.

Tab. 6 Peripherals clock controled by SCGCR

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
	ALL_ON	1F		7.771		
	SIPC	10		0.010		
7.11	RSA	08		0.115		m
Idd	AES	04		7.132		A
	TRNG	02		0.029		
	SHA1	01		0.494		

⁽¹⁾ MCLK=24MHz, in debug mode. SCGCR resigter is configured to disable some peripheral's clock.

7.8 Memory characteristics

7.8.1 Flash memory characteristics

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
tprog	word programming time (2)	TA = 25 °C, 48MHz		83		us
tERASE	sector erase time ⁽²⁾	TA = 25 °C, 48MHz		0.85		ms
tME	Mass erase time	$TA = -40 \text{ to } +105 ^{\circ}\text{C}$				ms
	Read current	24MHz			3	mA
Idd	Program current				5	mA
	Sector erase current				2	mA
Vprog	Programming voltage	inner power supply	1.35		1.65	V

(1) EFlash is configured for maximum MCLK frequency.

TRC = 0x01, TNVS = 0x13e, TPGS = 0x88, TPROG = 0x141, TRCV(erase) = 0xa56.

(2) More data refer to "EFlash sector earse/word programming time" curve.

7.8.2 Flash memory endurance and data retention

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
NEND	Endurance	$TA = -40 \text{ to } +85 ^{\circ}\text{C}$		20		kCycles
		TA = 85 °C		25		Years
tRET	Data retention	1 kcycle at TA = 85 °C				
		10 kcycles at TA = 55 °C				

(1) Guaranteed by characterization results.

7.9 Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PD	Power dissipation	QFN64, at TA = 85 °C				mW
TA	Ambient temperature	Maximum power	-40		105	°C

		dissipation			
TJ	Junction temperature range		-40	125	
Θja	thermal resistance from junction to ambient				CAN
Θјс	thermal resistance from junction to case				C/W

7.10 EMC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VFESD	Functional Electrostatic discharge	IEC 61000-4-2		N/A		Level
VEFTB	Fast transient voltage burst	IEC 61000-4-4		N/A		/Class
		ANSI/ESDA/JEDEC	2000			V
VESD(HBM)	Electrostatic discharge	JS-001-2017 Zap 1				
VESD(HBM)	voltage (human body model)	pulse(s), Interval: 0.3		2		Class
		Sec.				
		JEDEC	200			V
VECDANA	Electrostatic discharge voltage	EIA/JESD22-A115C				
VESD(MM)	(machine model)	Zap 1 pulse(s), Interval:		2		Class
		0.5 Sec.				
VECD/CDM)	Electrostatic discharge voltage	JEDEC	500			V
VESD(CDM)	(charge device model)	EIA/JESD22-C101F		C2		Class
11 4 1	1/01 / 1 / 2 / 4	-(0.5VDD) < VI <		200		
Ilatch	I/O latch-up current	(1.5VDD);Tj < 125 °C		200		mA
		JEDEC STANDARD				
LU	Static latch-up class	NO.78E, NOVEMBER		I		Class
		2016				

7.11 ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VDDA	Power supply		2.1	3.3	3.6	V
V_{REF^+}	Positive reference voltage				VDDA	17
V _{REF} -	Negative reference voltage		0			V
$f_{ m ADC}$	ADC clock frequency				16	MHz
fs	convertion rate				1000	KSPS
V _{AIN}	Conversion voltage range		0		V_{REF^+}	V
R _{AIN}	External input impedance			N/A		kΩ
t _{CONV}	Total conversion time(including sampling time)	MCLK = 24 MHz		1.5		μs
ET	Total unadjusted error		0	3	5	
ЕО	Offset error		-	3.3	-	
EG	Gain error		-	2.9	-	LSB
ED	Differential linearity error		-	±1	2	
EL	Integral linearity error		-	2	3	
ENOB	Effective number of bits					bits
SINAD	Signal-to noise and distortion ratio					
SNR	Signal-to noise ratio					dB
THD	Total harmonic distortion					
INL	Integral Non-Linearity			±2		LSB
DNL	Differential Non-Linearity			± 1		

Fig. 5 ADC accuracy characteristics

- 1. Example of an actual transfer curve.
- 2. Ideal transfer curve.
- 3. End point correlation line.
- 4. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.

 $\mbox{EO = Offset Error: deviation between the} \\$ first actual transition and the first ideal one.

EG = Gain Error: deviation between the last ideal transition and the last actual one.

ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.

EL = Integral Linearity Error: maximum deviation between any actual transition and the best straight-line.

Fig. 6 ADC transfer curve and offset error

Fig. 7 ADC transfer curve and gain error

7.12 Analog comparator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vdda	Analog supply voltage		2.1	3.3	3.6	V
VIN	Comparator input voltage range		0.3		VDDA-0.3	V
Voffset	Comparator offset error		-10		10	mV
Vhys	Comparator hysteresis	High-speed, VN=VDD/2		124		mV
4D	Duna satism dalam	High-speed mode		15		ns
tD	Propagation delay	Low-speed mode		31		ns

8 Package information

QFN Package outline dimensions

SYMBOL	MILLIMETER		
	MIN	NOM	MAX
А	0.9	1.00	1.10
A1		0.02	0.05
b	0.15	0.20	0.25
С	0.18	0.20	0.25
D	7.90	8.00	8.10
D2	6.50	6.60	6.70
е	0.40BSC		
Ne	6.00BSC		
Nd	6.00BSC		
Е	7.90	8.00	8.10
E2	6.50	6.60	6.70
L	0.35	0.40	0.45
h	0.25	0.30	0.35

9 Storage

Chip is stored in a vacuum-sealed bag. After the vacuum-sealed bag is opened, Mounted within 168 hours at the factory environment of $\leq 30^{\circ}$ C/60% RH.

Devices require baking before mounting, if any circumstance below occurs:

- (1) When the ambient temperature is $23^{\circ}\text{C}\pm5^{\circ}\text{C}$ and the humidity indication card shows the humidity is >10% before opening the vacuum-sealed bag.
- (2) Device mounting cannot be finished within 72 hours at factory conditions of $\leq 30^{\circ}\text{C}/60\%$

