- 1. Im Folgenden sei K ein Körper, es seien $n,m\in\mathbb{N}$ mit $n,m\geq 1,V$ und W seien K-Vektorräume und $f,g\colon V\to W$ seien K-linear.
 - \bigcirc Sind $T_1, T_2, T_3 \subseteq V$, so dass $T_i \cup T_j$ für alle $1 \leq i \neq j \leq 3$ linear unabhängig ist, so ist auch $T_1 \cup T_2 \cup T_3$ linear unabhängig.
 - \bigcirc Ist f ein Isomorphismus, so ist auch die duale Abbildung f^* ein Isomorphismus.
 - \bigcirc Ist $A \in GL_n(K)$, so sind die Potenzen $(A, A^2, A^3, \dots, A^{n^2})$ eine Basis von $Mat(n \times n, K)$.
 - \bigcirc Ist ker $f^* = \ker g^*$, so ist f = g.
 - \bigcirc Sind $U_1, U_2 \subseteq V$ Untervektorräume, so ist auch

$$U_1 + U_2 = \{u_1 + u_2 \mid u_1 \in U_1, u_2 \in U_2\}$$

ein Untervektorraum von V.

- \bigcirc Es gilt $(f g)^* = f^* g^*$.
- \bigcirc Ist $A \in \mathrm{GL}_n(K)$ symmetrisch (d.h. $A^T = A$), so ist auch A^{-1} symmetrisch.
- $\bigcirc \ \, \mathsf{Sind} \,\, A \in \mathsf{Mat}(n \times m, K) \,\, \mathsf{und} \,\, B \in \mathsf{Mat}(m \times n, K) \,\, \mathsf{mit} \,\, AB = \mathbbm{1}_n, \, \mathsf{so} \,\, \mathsf{ist} \,\, \mathsf{auch} \,\, BA = \mathbbm{1}_m.$
- \bigcirc Ist $\lambda \in K$ ein Eigenwert von $A \in \operatorname{Mat}(n \times n, K)$, so ist $\lambda^2 + 2$ ein Eigenwert von $A^2 + 2\mathbb{1}_n$.
- \bigcirc Ist $U \subseteq V$ ein Untervektorraum, so ist f(U) ein Untervektorraum von W mit $f^*(f(U)^{\perp}) \subseteq U^{\perp}$.
- 2. Im Folgenden sei K ein Körper, es sei $n \in \mathbb{N}$ mit $n \geq 1, V$ sei ein K-Vektorraum und $f \colon V \to V$ sei linear.
 - \bigcirc Ist $A \in \operatorname{Mat}(n \times n, \mathbb{R})$ und $\lambda > 0$ für jeden Eigenwert λ von A, so ist A invertierbar.
 - \bigcirc Ist $T\subseteq V$, so dass jede endliche Teilmenge von T linear unabhängig ist, so ist auch T linear unabhängig.
 - \bigcirc Es ist $\ker(f)^{\perp} = \ker(f^*)$.
 - \bigcirc Sind $A, B \in \operatorname{Mat}(n \times n, K)$, so dass es ein $S \in \operatorname{GL}_n(K)$ mit $B = SAS^{-1}$ gibt, so ist ker $A = \ker B$.
 - $\bigcirc \ \, \text{Ist} \, K = \mathbb{C} \, \, \text{und} \, \dim_{\mathbb{C}} V < \infty \text{, so ist } \dim_{\mathbb{R}} V > \dim_{\mathbb{C}} V.$
 - $\bigcirc \ \, \text{Ist } A \in \operatorname{Mat}(n \times n, \mathbb{R}) \text{ mit } \det(A) = 1 \text{ und } A_{ij} \in \mathbb{Z} \text{ für alle } 1 \leq i, j \leq n \text{, so ist } A \text{ invertierbar mit } (A^{-1})_{ij} \in \mathbb{Z} \text{ für alle } 1 \leq i, j \leq n.$
 - \bigcirc Sind $U_1, U_2 \subseteq V$ zwei Untervektorräume mit $U_1 \subseteq U_2$, so ist $U_1^{\perp} \subseteq U_2^{\perp}$.
 - \bigcirc Es seien $A, B \in \operatorname{Mat}(n \times n, K)$. Ist $\lambda \in K$ ein Eigenwert von A und $\mu \in K$ eine Eigenwert von B, so ist $\lambda + \mu$ ein Eigenwert von A + B.
 - \bigcirc Für jedes $v \in V \setminus \{0\}$ ist die Menge $\{f \in \mathcal{L}(V, V) \mid v \text{ ist ein Eigenvektor von } f\}$ ein Untervektorraum von $\mathcal{L}(V, V)$.
- 3. Es sei K ein Körper, $n \in \mathbb{N}$ mit $n \geq 1$, V ein endlichdimensionaler K-Vektorraum und $f \colon V \to V$ linear.
 - \bigcirc Es ist rang $(f) = \operatorname{rang}(f^*)$.
 - \bigcirc Ist $(U_n)_{n\in\mathbb{N}}$ eine Kollektion von Untervektorräumen $U_n\subseteq V$, so dass $U_n\subseteq U_{n+1}$ für alle $n\in\mathbb{N}$, so ist $\bigcup_{n\in\mathbb{N}}U_n$ ein Untervektorraum von V.
 - \bigcirc Sind $v_1, v_2 \in V$, so dass (v_1, v_2) linear unabhängig ist, so ist auch $(v_1 + v_2, v_1 v_2)$ linear unabhängig.
 - \bigcirc Es ist $\chi_f(T) = \chi_{f^*}(T)$.
 - \bigcirc Die Menge $\{v \in V \mid \text{es gibt } \lambda \in K \text{ mit } f(v) = \lambda v\}$ ist ein Untervektorraum von V.
 - \bigcirc Ist $A \in GL_n(K)$ mit $A^{-1} = A^T$, so ist det(A) = 1.
 - \bigcirc Die Determinante det: $\mathrm{Mat}(n \times n, K) \to K$ ist nicht linear.
 - \bigcirc Es seien $\mathcal{B}=(b_1,\ldots,b_n)$ und $\mathcal{C}=(c_1,\ldots,c_n)$ zwei Basen von V, und $\mathcal{B}^*=(b_1^*,\ldots,b_n^*)$ und $\mathcal{C}^*=(c_1^*,\ldots,c_n^*)$ die entsprechenden dualen Basen von V^* . Ist $\mathcal{B}^*=\mathcal{C}^*$, also $b_i^*=c_i^*$ für alle $1\leq i\leq n$, so ist $\mathcal{B}=\mathcal{C}$.
 - \bigcap Ist $A \in GL_n(\mathbb{C})$ mit $A \in Mat(n \times n, \mathbb{R})$, so ist auch $A^{-1} \in Mat(n \times n, \mathbb{R})$.