### Simulations

For the Mathematically Challenged

### Miki Tebeka



# If you can write a for-loop, you can do statistics.

Jake Vanderplas

#### import random







## All models are wrong, but some are useful. - George Box

#### HOW POPULAR IS YOUR BIRTHDAY?

Two decades of American birthdays, averaged by month and day.



The test of a disease presents a rate of 5% false positives. The disease strikes 1/1000 of the population. People are tested at random, regardless of whether they are suspected of having the disease. A patient's test is positive. What is the probability of the patient being stricken with the disease?

|         | Predicted<br>Sick | Predicted<br>Healthy |
|---------|-------------------|----------------------|
| Actual  | True              | False                |
| Sick    | Positive          | Negative             |
| Actual  | False             | True                 |
| Healthy | Positive          | Negative             |



### More?

#### **Statistics for Hackers**

- Jake Vanderplas

#### **Monte Carlo Simulation**

- Wikipedia

#### <u>SimPy</u>

- Discrete Simulation



\$ time python pi.py
... 99% cpu 1:02.23 total
\$ time pypy3 pi.py
... 98% cpu 4.838 total

# Thank You



#### PYTHON BRAIN TEASERS

EXERCISE YOUR MIND

```
1 class Player:
2  # Number of players in the Game
3    count = 0
4
5    def __init__(self, name):
6        self.name = name
7        self.count += 1
8
9
10 p1 = Player('Parzival')
11 print(Player.count)
```

WHAT WILL THIS CODE PRINT?

30 MIND BENDING TEASERS & SOLUTIONS

MIKI TEBEKA