Short course on dynamical systems and single neuron models

Johnatan (Yonatan) Aljadeff

aljadeff@ucsd.edu

September 22, 2020

Outline

Linear Dynamical Systems 1 dimension More than 1 dimension

Nonlinear Dynamical Systems 1 dimension More than 1 dimension

Dynamical models of single neurons Hodgkin Huxley The plan for the rest of today

$$\frac{\mathrm{d}x}{\mathrm{d}t} = ax, \quad x(T) = ?$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = ax, \qquad x(T) = ?$$

$$\frac{\mathrm{d}x}{x} = a\mathrm{d}t$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = ax, \quad x(T) = ?$$

$$\frac{\mathrm{d}x}{x} = a\mathrm{d}t$$

$$\int_{x(0)}^{x(T)} \frac{\mathrm{d}x}{x} = a \int_{0}^{T} \mathrm{d}t$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = ax, \qquad x(T) = ?$$

$$\frac{\mathrm{d}x}{x} = a\mathrm{d}t$$

$$\int_{x(0)}^{x(T)} \frac{\mathrm{d}x}{x} = a \int_{0}^{T} \mathrm{d}t$$

$$\log\left(\frac{x(T)}{x(0)}\right) = aT$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = ax, \qquad x(T) = ?$$

$$\frac{\mathrm{d}x}{x} = a\mathrm{d}t$$

$$\int_{x(0)}^{x(T)} \frac{\mathrm{d}x}{x} = a \int_{0}^{T} \mathrm{d}t$$

$$\log\left(\frac{x(T)}{x(0)}\right) = aT$$

$$x(T) = \exp(aT)x(0)$$

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -V$$

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -V$$

add input,

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -V + I$$

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -V$$

add input,

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -V + I$$

add reset,

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -V + I$$

$$V = V_r \text{ if } V > \theta$$

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -V$$

add input,

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -V + I$$

add reset.

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -V + I$$

$$V = V_r \text{ if } V > \theta$$

Recall Ashley Juavinett's lecture: This is a Leaky Integrate and

Fire (LIF) neuron.

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -V$$

add input,

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -V + I$$

add reset.

$$\frac{\mathrm{d}V}{\mathrm{d}t} = -V + I$$

$$V = V_r \text{ if } V > \theta$$

Recall Ashley Juavinett's lecture: This is a Leaky Integrate and Fire (LIF) neuron.

Tomorrow we'll investigate the LIF neuron when the input *I* is noisy.

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = A\mathbf{x}, \quad \mathbf{x}(T) = \begin{pmatrix} x_1(T) \\ x_2(T) \\ \vdots \\ x_N(T) \end{pmatrix} = ?$$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = A\mathbf{x}, \quad \mathbf{x}(T) = \begin{pmatrix} x_1(T) \\ x_2(T) \\ \vdots \\ x_N(T) \end{pmatrix} = ?$$

Recall Marcelo Mattar's lecture:

$$A = U\tilde{A}U^{-1}$$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = A\mathbf{x}, \quad \mathbf{x}(T) = \begin{pmatrix} x_1(T) \\ x_2(T) \\ \vdots \\ x_N(T) \end{pmatrix} = ?$$

Recall Marcelo Mattar's lecture:

$$A = U\tilde{A}U^{-1} = U \begin{pmatrix} a_1 & 0 & \dots & 0 \\ 0 & a_2 & & & \\ \vdots & & \ddots & & \\ 0 & & & a_N \end{pmatrix} U^{-1}$$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = A\mathbf{x}, \qquad A = U\tilde{A}U^{-1}, \qquad \tilde{\mathbf{x}} = U^{-1}\mathbf{x}$$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = A\mathbf{x}, \qquad A = U\tilde{A}U^{-1}, \qquad \tilde{x} = U^{-1}x$$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = U\tilde{A}U^{-1}\mathbf{x}$$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = A\mathbf{x}, \qquad A = U\tilde{A}U^{-1}, \qquad \tilde{\mathbf{x}} = U^{-1}\mathbf{x}$$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = U\tilde{A}U^{-1}\mathbf{x}$$

$$\frac{\mathrm{d}U^{-1}\mathbf{x}}{\mathrm{d}t} = U^{-1}U\tilde{A}U^{-1}\mathbf{x}$$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = A\mathbf{x}, \qquad A = U\tilde{A}U^{-1}, \qquad \tilde{\mathbf{x}} = U^{-1}\mathbf{x}$$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = U\tilde{A}U^{-1}\mathbf{x}$$

$$\frac{\mathrm{d}U^{-1}\mathbf{x}}{\mathrm{d}t} = U^{-1}U\tilde{A}U^{-1}\mathbf{x}$$

$$\frac{\mathrm{d}\tilde{\mathbf{x}}}{\mathrm{d}t} = \tilde{A}\tilde{\mathbf{x}}$$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = A\mathbf{x} \qquad \Longrightarrow \qquad \frac{\mathrm{d}\tilde{\mathbf{x}}}{\mathrm{d}t} = \tilde{A}\tilde{\mathbf{x}}$$

Was it worth the trouble?

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = A\mathbf{x} \qquad \Longrightarrow \qquad \frac{\mathrm{d}\tilde{\mathbf{x}}}{\mathrm{d}t} = \tilde{A}\tilde{\mathbf{x}}$$

Was it worth the trouble? Yes!

$$\begin{pmatrix} \frac{\mathrm{d}\tilde{x}_1}{\mathrm{d}t} \\ \vdots \\ \frac{\mathrm{d}\tilde{x}_N}{\mathrm{d}t} \end{pmatrix} = \begin{pmatrix} a_1\tilde{x}_1 \\ \vdots \\ a_N\tilde{x}_N \end{pmatrix}$$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = A\mathbf{x} \qquad \Longrightarrow \qquad \frac{\mathrm{d}\tilde{\mathbf{x}}}{\mathrm{d}t} = \tilde{A}\tilde{\mathbf{x}}$$

Was it worth the trouble? Yes!

$$\begin{pmatrix} \frac{\mathrm{d}\tilde{x}_1}{\mathrm{d}t} \\ \vdots \\ \frac{\mathrm{d}\tilde{x}_N}{\mathrm{d}t} \end{pmatrix} = \begin{pmatrix} a_1\tilde{x}_1 \\ \vdots \\ a_N\tilde{x}_N \end{pmatrix}, \quad \mathbf{x}(T) = \exp(AT)\mathbf{x}(0)$$

$$a = \begin{pmatrix} 0.5 & 2 \\ 0.8 & 0.1 \end{pmatrix}$$

Bondanelli, Ostojic , 2020

Different initial conditions lead to different transients (before the decay to 0).

It has been suggested that the initial condition is the preparatory neuronal activity before movement.

Linear vs. Nonlinear dynamical systems

In nonlinear dynamical systems, changing the coordinate \boldsymbol{x} can lead to qualitative change in the behavior.

Linear vs. Nonlinear dynamical systems

In nonlinear dynamical systems, changing the coordinate \boldsymbol{x} can lead to qualitative change in the behavior.

Linear vs. Nonlinear dynamical systems

In nonlinear dynamical systems, changing the coordinate \boldsymbol{x} can lead to qualitative change in the behavior.

Hodgkin, Huxley, 1952

Neurons (and networks of neurons) behave nonlinearly!

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x), \qquad x(T) = ?$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x), \qquad x(T) = ?$$

We can define a function which is the negative integral of f:

$$U(x) = -\int_0^x f(y) \mathrm{d}y$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x), \qquad x(T) = ?$$

We can define a function which is the negative integral of f:

$$U(x) = -\int_0^x f(y) \mathrm{d}y$$

U(x) is sometimes referred to as the "energy landscape"

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{\mathrm{d}}{\mathrm{d}x}U(x)$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x), \qquad x(T) = ?$$

We can define a function which is the negative integral of f:

$$U(x) = -\int_0^x f(y) \mathrm{d}y$$

U(x) is sometimes referred to as the "energy landscape"

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{\mathrm{d}}{\mathrm{d}x}U(x)$$

"x is gradually descending to the lowest point of U"

Nonlinear dynamical systems, 1 dimensional example

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{8}(x - \sin(5x) - 2.5)$$

Nonlinear dynamical systems, 1 dimensional example

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{8}(x - \sin(5x) - 2.5)$$

Nonlinear dynamical systems, 1 dimensional example

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{8}(x - \sin(5x) - 2.5)$$

Nonlinear dynamical systems, 1 dimensional example

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{8}(x - \sin(5x) - 2.5)$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x)$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x)$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x), \quad x(T) = ?$$

Now the repertoire of dynamical behaviors is much broader: oscillations, chaos, etc.

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x)$$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}(\mathbf{x}), \quad \mathbf{x}(T) = ?$$

Lorenz system

Now the repertoire of dynamical behaviors is much broader: oscillations, chaos, etc.

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x)$$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}(\mathbf{x}), \quad \mathbf{x}(T) = ?$$

Lorenz system

In general it is difficult to analyze the system.

In most cases there is no energy function $U(\mathbf{x})$ that is minimized.

Dynamical model of single neurons, Hodgkin Huxley

$$C\frac{\mathrm{d}V}{\mathrm{d}t} = -\bar{g}_{\mathrm{K}} n^{4} (V - V_{\mathrm{K}}) - \bar{g}_{\mathrm{Na}} m^{3} h (V - V_{\mathrm{Na}}) - \bar{g}_{\mathrm{l}} (V - V_{\mathrm{l}}) + I$$

$$(\text{membrane potential})$$

$$\frac{\mathrm{d}n}{\mathrm{d}t} = \alpha_{n}(V)(1 - n) + \beta_{n}(V)n$$

$$(\text{potassium activation})$$

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \alpha_{m}(V)(1 - m) + \beta_{m}(V)m$$

$$(\text{sodium activation})$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \alpha_{h}(V)(1 - h) + \beta_{h}(V)h$$

$$(\text{sodium inactivation})$$

Dynamical model of single neurons, Hodgkin Huxley

$$C\frac{\mathrm{d}V}{\mathrm{d}t} = -\bar{g}_{\mathrm{K}} n^{4} (V - V_{\mathrm{K}}) - \bar{g}_{\mathrm{Na}} m^{3} h (V - V_{\mathrm{Na}}) - \bar{g}_{\mathrm{l}} (V - V_{\mathrm{l}}) + I$$

$$(\text{membrane potential})$$

$$\frac{\mathrm{d}n}{\mathrm{d}t} = \alpha_{n}(V)(1 - n) + \beta_{n}(V)n$$

$$(\text{potassium activation})$$

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \alpha_{m}(V)(1 - m) + \beta_{m}(V)m$$

$$(\text{sodium activation})$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \alpha_{h}(V)(1 - h) + \beta_{h}(V)h$$

$$(\text{sodium inactivation})$$

This is written in the familiar form

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}(\mathbf{x})$$

... but where does all this come from ? oac

Dynamical model of single neurons, Hodgkin Huxley Brief walk-through components of HH equations

Total current across the membrane = Capacitance \times Change in membrane potential

$$C\frac{\mathrm{d}V}{\mathrm{d}t}$$
 = ionic, leak and input currents

Dynamical model of single neurons, Hodgkin Huxley Brief walk-through components of HH equations

Total current across the membrane = Capacitance \times Change in membrane potential

$$C\frac{\mathrm{d}V}{\mathrm{d}t}$$
 = ionic, leak and input currents

 $\begin{array}{l} \mbox{lonic} \ / \ \mbox{Leak current} = \\ \mbox{conductance} \ \times \ \mbox{membrane potential relative to reversal potential} \end{array}$

$$I_{K} = -\bar{g}_{K} n^{4} (V - V_{K})$$
 $I_{Na} = -\bar{g}_{Na} m^{3} h (V - V_{Na})$
 $I_{1} = -\bar{g}_{1} (V - V_{1})$

Dynamical model of single neurons, Hodgkin Huxley Brief walk-through components of HH equations

Voltage dependence of ion channel activation/inactivation-

$$\frac{dn}{dt} = \alpha_n(V)(1-n) + \beta_n(V)n$$

$$\alpha_n(V) = \frac{1-V/10}{e^{1-V/10}-1}$$

$$\beta_n(V) = 0.125e^{-V/80}$$

... and similarly (with different parameters) for m and h.

The plan for the rest of today:

Investigate the equations,

$$C\frac{\mathrm{d}V}{\mathrm{d}t} = -\bar{g}_{\mathrm{K}}n^{4}(V - V_{\mathrm{K}}) - \bar{g}_{\mathrm{Na}}m^{3}h(V - V_{\mathrm{Na}}) - \bar{g}_{\mathrm{I}}(V - V_{\mathrm{I}}) + I$$

$$\frac{\mathrm{d}n}{\mathrm{d}t} = \alpha_{n}(V)(1 - n) + \beta_{n}(V)n$$

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \alpha_{m}(V)(1 - m) + \beta_{m}(V)m$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \alpha_{h}(V)(1 - h) + \beta_{h}(V)h$$

We'll develop some understanding when these details are necessary, and when we can get away with simplifications.