

# YWEAG

Bayesian data analysis with TensorFlow Probability

www.tweag.io

# Your hosts

### Simeon will give the presentation



- background in computational biology
- Data Scientist at Tweag since 2019

### Dorran will happily answer questions



- previous positions in geophysics
- Data Scientist at Tweag since 2019

# Tweag I/O

### **TODO**

Tweag I/O is a software innovation lab and consultancy based in Paris with employees all around the world.

We specialize in

- software engineering, with a focus on functional programming
- DevOps, with a focus on reproducible software systems and builds
- data science

# What you're in for

This tutorial consists of alternating blocks of

- theory / example slides
- ▶ practical examples on either external websites or Google Colab notebooks. Links are provided at https://github.com/tweag/tutorial-dsc-2020/

### Requirements:

- a Google account (for the practical exercises)
- elementary knowledge in probability theory and statistics

# Reminder: Probabilities

Probability distributions can be...

discrete: Ber(k; b) = 
$$b^{k}(1 - b)^{1-k}$$

continuous: 
$$\mathcal{N}(\mathbf{x};\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2\sigma^2}(\mathbf{x}-\mu)^2)$$



Important concepts:

Conditional probability

p(A|B): probability that A is true, given B is true

Joint probability

p(A, B): probability that both A and B are true

Conditional joint probability

p(A, B|C): probability that both A and B are true, given C is true

# Bayesian vs frequentist probabilities

Example: fair coin flip with  $p(head) = p(tail) = \frac{1}{2}$ 

### Frequentist probability

```
p(\text{"flip results in head"}|b=\tfrac{1}{2})=\tfrac{1}{2}\text{:}\\ \tfrac{\text{\# of heads}}{\text{\# total flips}} \text{ for } \infty \text{ many fair coin flips}
```

# **Bayesian probability**

$$p("flip results in head"|b = \frac{1}{2}) = \frac{1}{2}$$
:

measure of *belief* in the statement "flip results in head" given single fair coin flip

TODO: this slide looks complicated and is aesthetically offputting

# Prior beliefs

Assume: unknown bias b

# **Prior probability**

Encodes prior belief in b before flipping the coin

What is known about b?

- ▶ *b* is a probability:  $0 \le b \le 1$
- most coins are fair
- ightarrow choose prior distribution defined between 0 and 1, with maximum at and symmetric around  $b=rac{1}{2}$

Example:

$$b \sim \text{Beta}(\alpha = 2, \beta = 2)$$

with

Beta(
$$\mathbf{x}; \alpha, \beta$$
)  $\propto \mathbf{x}^{\alpha-1}(1-\mathbf{x})^{\beta-1}$ 

# Posterior belief

Now: flip coin one time, result: head

### **Posterior belief**

p(b|head): updated prior belief after obtaining new data



# Update rule

# Bayes' theorem

$$p(A|B) = \frac{p(B|A) \times p(A)}{p(B)}$$

(easily derived from rules for conditional probabilities)

In data analysis:

$$\underbrace{p(x|D,I)}_{\text{posterior}} = \underbrace{p(D|x,I)}_{\text{likelihood}} \times \underbrace{p(x|I)}_{\text{prior}} / \underbrace{p(D|I)}_{\text{evidence}}$$

x: model parameter

D: data

1: prior information (often not made explicit)

# Likelihood

p(D|x): probability of the data given fixed model parameters  $\rightarrow$  models data-generating process

In our case:

$$p(k|b) = b^k (1-b)^{k-1} = \mathsf{Ber}(k;b)$$

with

$$k = \begin{cases} 0: & \mathsf{tail} \\ 1: & \mathsf{head} \end{cases}$$



# Evidence

$$p(D) = \int dx \, p(D|x)p(x)$$
:  
normalization constant (long story...)

In our case:

$$\begin{split} p(\textit{k} = 1) &= \int_0^1 \mathrm{d}b \; L(\textit{k} = 1|\textit{b}) p(\textit{b}) \\ &= \int_0^1 \mathrm{d}b \; \; \mathrm{Ber}(\textit{k}; \textit{b}) \times \mathrm{Beta}(\textit{k}; \alpha = 2, \beta = 2)|_{\textit{k} = 1} \\ &= \int_0^1 \mathrm{d}b \; \; \textit{b}^{\textit{k}} (1 - \textit{b})^{\textit{k} - 1} \textit{b} (1 - \textit{b}) \Big|_{\textit{k} = 1} \\ &\vdots \\ &= \frac{1}{12} \end{split}$$

# Evidence

$$p(D) = \int dx \, p(D|x)p(x)$$
:  
normalization constant (long story...)

In our case:

$$\begin{split} p(k=1) &= \int_0^1 \mathrm{d}b \; L(k=1|b) p(b) \\ &= \int_0^1 \mathrm{d}b \; \left. \mathrm{Ber}(k;b) \right| \cdot \left. \mathrm{Peta}(\kappa;\alpha=2,\beta=2) \right|_{k=1} \\ &= \int_0^1 \mathrm{d}b \; \left. b^{(k)} (1-k) \right|_{k=1} \\ &\vdots \\ &= \frac{1}{12} \end{split}$$

# Update rule

In our coin flip example:

prior: 
$$\begin{aligned} \textit{p}(\textit{b}) &= \mathsf{Beta}(\textit{b}; \alpha = 2, \beta = 2) \\ &\propto \textit{b}(1-\textit{b}) \end{aligned}$$

likelihood: 
$$p(D|b) = Ber(k = 1; b)$$
  
=  $b$ 

posterior: 
$$p(b|D) \propto p(D|b) \times p(b)/p(D)$$
 
$$= \mathsf{Beta}(b; \alpha = 3, \beta = 2)$$
 
$$\propto b^2(1-b)$$







# no slides for interactive stuff –

# Real-world-ish application: regression

**Step 1:** postulate likelihood p(D|x) or: think about and look at the data



Standard distributions generate certain types of data:

Poisson distribution: counts per interval Exponential distribution: interarrival times

•

Often: measured data = idealized data + noise

We guess:

idealized data:  $\hat{\mathbf{f}}(\mathbf{x}; \vec{\beta}) = \beta_0 + \beta_1 \mathbf{x} + \beta_2 \mathbf{x}^2 + \beta_3 \mathbf{x}^3$ 

noise: normally distributed

# Real-world-ish application: regression

Step 2: find sensible prior distributions



Incorporate all available information:

- ▶ noise  $\sigma$  is positive quantity  $\rightarrow$  choose  $p(\sigma)$  with positive support
- eyeballing the data
- common sense
- **...**

Warning: avoid introducing strong bias! Principled methods are available to find good prior distributions.

In our case:

$$\sigma$$
: for example,  $\sigma \sim \mathsf{Lognormal}(\mu = 2, \sigma = \frac{1}{2})$ 

 $\vec{\beta}$ : broad, rather uninformative normal distributions, e.g.,  $\mathcal{N}(0,5)$ 

# Real-world-ish application: regression

**Step 3:** specfiy model in probabilistic programming library

- programmatic formulation of statistical model
- powerful inference algorithms
- "debugging" functionality

Popular and easy-to-use choices are PyMC3, Stan, or TensorFlow Probability.

**Step 4:** perform inference with appropriate algorithm

Most popular and powerful class: Markov chain Monte Carlo

Continuous parameters: Hamiltonian Monte Carlo (HMC) very efficient

Discrete parameters: e.g., Metropolis-Hastings

Combination of both: Gibbs sampling

Another popular option: variational inference (VI)

## Real-world issues

### In reality, probability distributions often

- of non-standard form
- are multidimensional
- have highly correlated random variables
- are known only up to a normalization constant

### Consequences:

- analytical evaluation of expectation values is impossible
- naïve sampling approaches are inefficient (curse of dimensionality)





# Approximation workhorse: Metropolis-Hastings

### Markov chain

Random process with

$$p(x_{i+1}|x_i,x_{i-1},\ldots,x_1)=p(x_{i+1}|x_i)$$

ightarrow a Markov chain has no "memory"

In some conditions: converges to a unique invariant distribution  $\pi(x)$ 

### **Metropolis-Hastings algorithm**

Construct Markov chain with invariant distribution  $\pi(x) = p(x)$ :

- 1. starting at state,  $x_i$ , propose a new state  $x_i^*$  from  $q(x_i^*|x_i)$
- 2. calculate acceptance probability  $p_{acc}$
- 3. draw  $u \sim \mathcal{U}(0,1)$
- 4. if  $u < p_{acc}$ :  $x_{i+1} = x_i^*$ , else  $x_{i+1} = x_i$

Initialize with any state  $x_0$ 



Sequence of states:  $(x_0)$ 

Initial state:  $x_0$ 

1. calculate a proposal state  $x_0^*$  by randomly perturbing  $x_0$ 



### Initial state: x<sub>0</sub>

- 1. calculate a proposal state  $x_0^*$  by randomly perturbing  $x_0$
- 2. calculate acceptance probability

$$p_{\text{acc}} = \min\left(1, \frac{p(x_0^*)}{p(x_0)}\right)$$



### Initial state: $x_0$

- 1. calculate a proposal state  $x_0^*$  by randomly perturbing  $x_0$
- 2. calculate acceptance probability

$$p_{\mathsf{acc}} = \min\left(1, \frac{p(\mathsf{X}_0^*)}{p(\mathsf{X}_0)}\right)$$

3. with probability  $p_{acc}$ , accept proposal state  $x_0^*$  as the next state  $x_1$ , else copy  $x_0$ 

Sequence of states:

$$(x_0, x_1)$$



Current state: x<sub>1</sub>

1. calculate a proposal state  $x_1^*$  by randomly perturbing  $x_1$ 



### Current state: x<sub>1</sub>

- 1. calculate a proposal state  $x_1^*$  by randomly perturbing  $x_1$
- 2. calculate acceptance probability

$$p_{\mathsf{acc}} = \mathsf{min}\left(1, \frac{p(\mathsf{x}_1^*)}{p(\mathsf{x}_1)}\right)$$



### Current state: x<sub>1</sub>

- 1. calculate a proposal state  $x_1^*$  by randomly perturbing  $x_1$
- 2. calculate acceptance probability

$$p_{\mathsf{acc}} = \min\left(1, \frac{p(x_1^*)}{p(x_1)}\right)$$

3. with probability  $p_{acc}$ , accept proposal state  $x_1^*$  as the next state  $x_2$ , else copy  $x_1$ 

Sequence of states:

$$(x_0, x_1, x_2)$$



### Current state: x<sub>1</sub>

- 1. calculate a proposal state  $x_1^*$  by randomly perturbing  $x_1$
- 2. calculate acceptance probability

$$p_{\mathsf{acc}} = \mathsf{min}\left(1, \frac{p(\mathsf{x}_1^*)}{p(\mathsf{x}_1)}\right)$$

3. with probability  $p_{acc}$ , accept proposal state  $x_1^*$  as the next state  $x_2$ , else copy  $x_1$ 

### Sequence of states:

$$(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$$

