Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 18: Esercizi di ricapitolazione su raggiungibilità, controllabilità e retroazione dallo stato

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2020-2021

In questa lezione

▶ Esercizio 1: raggiungibilità e controllabilità

▶ Esercizio 2: forma di Kalman e ingressi di controllo

▶ Esercizio 3: controllo in retroazione dallo stato

Esercizio 1 [riadattato da Es. 2 tema d'esame 28 Gennaio 2010]

$$x(t+1) = Fx(t) + Gu(t), \qquad F = egin{bmatrix} 1 & 0 & 0 \ -1 & 1 & 1 \ 0 & lpha & lpha \end{bmatrix}, \ G = egin{bmatrix} 1 & 1 \ 0 & 1 \ 0 & 0 \end{bmatrix}, \ lpha \in \mathbb{R}$$

1. Raggiungibilità e controllabilità al variare di $\alpha \in \mathbb{R}$?

2. Spazio raggiungibile $X_R(t)$ e controllabile $X_C(t)$ al variare di $t \geq 1$ e $\alpha \in \mathbb{R}$?

Esercizio 1: soluzione

1. Sistema raggiungibile solo se $\alpha \neq 0$. Sistema controllabile per ogni $\alpha \in \mathbb{R}$.

$$2. \ X_{R}(1) = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}, \quad X_{R}(t) = \left\{ \begin{aligned} \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\} & \alpha \neq 0, \\ \alpha = 0, \end{aligned} \right.$$

$$X_{C}(1) = \left\{ \begin{aligned} \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \right\} & \alpha \neq 0, \\ \mathbb{R}^{3} & \alpha = 0, \end{aligned} \right.$$

$$X_{C}(t) = \mathbb{R}^{3}, \quad t \geq 2.$$

$$\alpha = 0,$$

Esercizio 2

$$x(t+1) = Fx(t) + Gu(t), \quad F = \begin{bmatrix} 2 & 4 & 0 \\ 0 & -1 & 0 \\ 1 & 2 & 3 \end{bmatrix}, \quad G = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

- 1. Forma di Kalman di raggiungibilità?
- 2. Ingresso che porta nel minor numero possibile di passi lo stato

$$da \quad x(0) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad a \quad x^* = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad ?$$

Esercizio 2: soluzione

$$x(t+1) = Fx(t) + Gu(t), \quad F = \begin{bmatrix} 2 & 4 & 0 \\ 0 & -1 & 0 \\ 1 & 2 & 3 \end{bmatrix}, \quad G = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

1. Prendendo
$$T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
: $F_K = \begin{bmatrix} 2 & 0 & 4 \\ 1 & 3 & 2 \\ \hline 0 & 0 & -1 \end{bmatrix}$, $G_K = \begin{bmatrix} 1 \\ 0 \\ \hline 0 \end{bmatrix}$

2. L'ingresso u(0) = 1, u(1) = -2 porta lo stato da x(0) a x^* in 2 passi.

Esercizio 3

[riadattato da Es. 2 tema d'esame 7 Febbraio 2019]

$$x(t+1) = Fx(t) + Gu(t), \quad F = \begin{bmatrix} 0 & 0 & 1 \\ 1 & \alpha & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad G = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \alpha \in \mathbb{R}$$

- 1. Controllore dead-beat per il sistema al variare di $\alpha \in \mathbb{R}$?
- 2. Per $\alpha=1$ controllore dead-beat che porta a zero lo stato nel minor numero possibile di passi?

Esercizio 3: soluzione

1. $\alpha = -1$: controllore dead-beat non esiste.

$$\alpha \neq -1$$
: $K = \begin{bmatrix} -\frac{\alpha}{\alpha+1} & -\frac{\alpha^2}{\alpha+1} & \beta \end{bmatrix}$, $\alpha, \beta \in \mathbb{R}$.

2.
$$K = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$
.