Full Design of Arduino System

The following outlines the full design of the EMG-Data Acquisition System

Hardware Components

- MyoWare EMG Sensor
- Arduino R3
- DC Motors
- Current Sensors
- 5V Battery

Public Methods

- void setup()
 - Function:
 - Called at runtime, setting initial Serial port and attaching Servos to their specified ports
- void loop()
 - Function:
 - Looped indefinitely
 - Has complete algorithm
- int ReadInput(int pinNumber)
 - Function:
 - Calls the private _TryReadInput method
 - Only returns a value if _TryReadInput was successful
 - Arguments:
 - pinNumber (int): the specific input pin that is read from
 - Returns:
 - int: digital value from pin
- float Filter(int data)
 - Function:
 - Public method for filtering the digital data. Calls the private filtering method.
 - Ensures that the data is properly filtered, even if errors occur.
 - · Arguments:
 - data (int): the digital data passed which needs to be filtered
 - Returns:

- float value of filtered data
- void ControlMotors(float filteredSignal, int sensorReadings[])
 - Function:
 - Full control algorithm for motors
 - Arguments:
 - filteredSignal (float): Filtered EMG data
 - sensorReadings (ints): Current sensor readings

Private Methods

- Pair _TryFilter(int data)
 - Function:
 - Attempts to filter the given data using a specific voltage threshold.
 - Arguments:
 - data (int): The raw EMG data
 - Returns:
 - Returns a boolean indicating if filtering was successful, and the filtered value.
- Pair TryReadInput(int pinNumber)
 - Function:
 - Reads the analog input value at a specified pin
 - Arguments:
 - pinNumber(int): the specific pin that is read from
 - Returns:
 - bool: whether or not the read was sucessful
 - float: the value read from the pin as a float

Design Components

- Digital Filter
- Control Algorithm

Algorithm

```
const int EMG_PIN = A0;
struct Pair {
    bool success;
    float data;
    Pair(bool s, float d) : success(s), data(d) {}
};
void setup() {
}
void loop() {
    float rawSignal = ReadInput(EMG_PIN);
    /* Filter signal */
    /* Control Algorithm */
    delay (100); // 100 ms delay
}
float ReadInput(int pinNumber) {
   /*
    - Function:
        - Calls the private ***_TryReadInput*** method
```

```
- Only returns a value if ***_TryReadInput*** was successful
    - Arguments:
        - pinNumber (int): the specific input pin that is read from
    - Returns:
        - int: digital value from pin
    */
    Pair input = _TryReadInput(pinNumber);
    if (!input.success) {
        Serial.println("Error reading input from pin" + String(pinNumber));
        return 0.0;
    }
    return int(input.data);
}
Pair _TryReadInput(int pinNumber) {
    /*
    - Function:
        - Reads the analog input value at a specified pin
    - Arguments:
        - pinNumber(int): the specific pin that is read from
    - Returns:
        - bool: whether or not the read was sucessful
        - float: the value read from the pin as a float
    */
    Pair input(false, 0.0); // Instantiate bad input value in case an error occurs
    float value = (analogRead(pinNumber) / 1023.0) * 5.0; // Input value in Volts
    input.success = true;
    input.data = value;
    return input;
}
```


