Exploration of COVID-19 tracking data from multiple resources

Wei Sun

2020-04-25

Contents

Introduction	1
JHU time series data	
NY Times state level data	7 7
COVID Tracking	21
Session information	22

Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a new type of coronavirus: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The outbreak first started in Wuhan, China in December 2019. The first kown case of COVID-19 in the U.S. was confirmed on January 20, 2020, in a 35-year-old man who teturned to Washington State on January 15 after traveling to Wuhan. Starting around the end of Feburary, evidence emerge for community spread in the US.

We, as all of us, are indebted to the heros who fight COVID-19 across the whole world in different ways. For this data exploration, I am grateful to many data science groups who have collected detailed COVID-19 outbreak data, including the number of tests, confirmed cases, and deaths, across countries/regions, states/provnices (administrative division level 1, or admin1), and counties (admin2). Specifically, I used the data from these three resources:

- JHU (https://coronavirus.jhu.edu/)
 - The Center for Systems Science and Engineering (CSSE) at John Hopkins University.
 - World-wide counts of coronavirus cases, deaths, and recovered ones.
 - https://github.com/CSSEGISandData/COVID-19
- NY Times (https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html)
 - The New York Times
 - "cumulative counts of coronavirus cases in the United States, at the state and county level, over time"
 - https://github.com/nytimes/covid-19-data

- COVID Tracking (https://covidtracking.com/)
 - COVID Tracking Project
 - "collects information from 50 US states, the District of Columbia, and 5 other US territories to provide the most comprehensive testing data"
 - https://github.com/COVID19Tracking/covid-tracking-data

JHU

Assume you have cloned the JHU Github repository on your local machine at "../COVID-19".

time series data

The time series provide counts (e.g., confirmed cases, deaths) starting from Jan 22nd, 2020 for 253 locations. Currently there is no data of individual US state in these time series data files.

Here is the list of 10 records with the largest number of cases or deaths on the most recent date.

cumulative number of deaths on 4.25.20

Next, I check for each country/region, what is the number of new cases/deaths? This data is important to understand what is the trend under different situations, e.g., population density, social distance policies etc. Here I checked the top 10 countries/regions with the highest number of deaths.

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020 **Italy**

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020 France

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020 **United Kingdom**

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020 **Germany**

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020 **Netherlands**

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020

daily reports data

The raw data from Hopkins are in the format of daily reports with one file per day. More recent files (since March 22nd) inleude information from individual states of US or individual counties, as shown in the following figure. So I turn to NY Times data for informatoin of individual states or counties.

data source: https://github.com/CSSEGISandData/COVID-19, day 1 is 1/22/2020

NY Times

The data from NY Times are saved in two text files, one for state level information and the other one for county level information.

The currente date is

[1] "2020-04-24"

state level data

First check the 20 states with the largest number of deaths.

##	date		state	fips	cases	deaths
##	2908	2020-04-24	New York	36	271621	16162
##	2906	2020-04-24	New Jersey	34	102196	5617
##	2898	2020-04-24	Michigan	26	36627	3084
##	2897	2020-04-24	Massachusetts	25	50969	2556
##	2889	2020-04-24	Illinois	17	39658	1804
##	2915	2020-04-24	Pennsylvania	42	40298	1786
##	2881	2020-04-24	Connecticut	9	23921	1764
##	2879	2020-04-24	California	6	41368	1619
##	2894	2020-04-24	Louisiana	22	26140	1601
##	2884	2020-04-24	Florida	12	30525	1045
##	2885	2020-04-24	Georgia	13	21575	889
##	2890	2020-04-24	Indiana	18	13680	741
##	2926	2020-04-24	Washington	53	13120	731
##	2896	2020-04-24	Maryland	24	16618	723
##	2912	2020-04-24	Ohio	39	15169	690
##	2880	2020-04-24	Colorado	8	12255	672
##	2921	2020-04-24	Texas	48	23650	625
##	2925	2020-04-24	Virginia	51	11596	413
##	2909	2020-04-24	North Carolina	37	8052	270
##	2877	2020-04-24	Arizona	4	6045	268

For these 20 states, I check the number of new cases and the number of new deaths. Part of the reason for such checking is to identify whether there is any similarity on such patterns. For example, could you use the pattern seen from Italy to predict what happen in an individual state, and what are the similarities and differences across states.

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-01

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-04 Michigan

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-10
Massachusetts

data source: https://github.com/nytimes/covid-19-data, day 1 is 02-01

data source: https://github.com/nytimes/covid-19-data, day 1 is 01-24 Pennsylvania

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-06 Connecticut

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-08

data source: https://github.com/nytimes/covid-19-data, day 1 is 01-25 Louisiana

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-09 Florida

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-01

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-02 Indiana

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-06 Washington

data source: https://github.com/nytimes/covid-19-data, day 1 is 01-21

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-05
Ohio

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-09
Colorado

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-05

data source: https://github.com/nytimes/covid-19-data, day 1 is 02-12 Virginia

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-07 North Carolina

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-03

data source: https://github.com/nytimes/covid-19-data, day 1 is 01-26

Next I check the relation between the $\mathbf{cumulative}$ number of cases and deaths for these 10 states, starting on March

data source: https://github.com/nytimes/co

county level data

First check the 20 counties with the largest number of deaths.

##		date		county	S	state	fips	cases	deaths
##	85808	2020-04-24	New	York City	New	York	NA	150484	11157
##	85807	2020-04-24		Nassau	New	York	36059	32765	1867
##	85359	2020-04-24		Wayne	Mich	igan	26163	15407	1443

```
## 84712 2020-04-24
                                         Illinois 17031
                              Cook
                                                          27616
                                                                  1220
  85827 2020-04-24
                           Suffolk
                                         New York 36103
                                                          30606
                                                                  1035
                                         New York 36119
                                                                   989
  85835 2020-04-24
                       Westchester
                                                          26632
  85736 2020-04-24
                                       New Jersey 34013
                                                                   975
                             Essex
                                                          12110
  85731 2020-04-24
                            Bergen
                                       New Jersey 34003
                                                          14363
                                                                   934
  84329 2020-04-24
                       Los Angeles
                                       California 6037
                                                          18545
                                                                   850
## 84422 2020-04-24
                         Fairfield
                                      Connecticut
                                                   9001
                                                          10227
                                                                   662
## 85738 2020-04-24
                                                                   640
                            Hudson
                                       New Jersey 34017
                                                          13011
## 85274 2020-04-24
                         Middlesex Massachusetts 25017
                                                          11681
                                                                   585
## 85340 2020-04-24
                                         Michigan 26125
                                                                   585
                           Oakland
                                                           6804
## 85749 2020-04-24
                             Union
                                      New Jersey 34039
                                                          11208
                                                                   542
## 84423 2020-04-24
                          Hartford
                                      Connecticut 9003
                                                           4570
                                                                   511
## 85327 2020-04-24
                                                                   504
                            Macomb
                                         Michigan 26099
                                                           5022
## 86203 2020-04-24
                      Philadelphia
                                     Pennsylvania 42101
                                                          11877
                                                                   449
## 85741 2020-04-24
                         Middlesex
                                       New Jersey 34023
                                                           9789
                                                                   413
## 84426 2020-04-24
                         New Haven
                                      Connecticut 9009
                                                           6286
                                                                   396
## 86795 2020-04-24
                                       Washington 53033
                                                           5691
                                                                   393
                              King
```

For these 20 counties, I check the number of new cases and the number of new deaths.

New York City_New York

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-01
Nassau New York

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-05

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-10 Cook_Illinois

data source: https://github.com/nytimes/covid-19-data, day 1 is 01-24 Suffolk_New York

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-08

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-12
Bergen_New Jersey

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-04

data source: https://github.com/nytimes/covid-19-data, day 1 is 01-26 Fairfield_Connecticut

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-08
Hudson_New Jersey

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-09

log10(new.death + 1) 0.0 0.0 log10(new.case + 1) month month 03 03 04 04 0 20 30 30 40 Ö 10 40 10 20 day day

Union_New Jersey log10(new.death + 1) log10(new.case + 1) 1.5 month month 1.0 03 03 04 0.5 04 0.0 30 10 20 30 40 Ö 10 20 40 Ö day day

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-09

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-10

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-14 Macomb_Michigan

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-13 Philadelphia_Pennsylvania

data source: https://github.com/nytimes/covid-19-data, day 1 is 03-10

data source: https://github.com/nytimes/covid-19-data, day 1 is 02-28

COVID Tracking

The positive rates of testing can be an indicator on how much the COVID-19 has spread. However, they are more noisy data since the negative testing results are often not reported and the tests are almost surely taken on a non-representative random sample of the population. The COVID traking project proides a grade per state: "If you are calculating positive rates, it should only be with states that have an A grade. And be

careful going back in time because almost all the states have changed their level of reporting at different times." (https://covidtracking.com/about-tracker/). The data are also available for both counties and states, here I only look at state level data.

Since the daily postive rate can fluctuate a lot, here I only illustrate the cumulative positave rate across time, for four states with grade A data. Of course since this is an R markdown file, you can modify the source code and check for other states.

github.com/COVID19Tracking/, cumulative positive rate on 0425: 0.08(WA) 0.09(TX) 0.36(NY) 0.08(NC)

Session information

sessionInfo()

```
## R version 3.6.2 (2019-12-12)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Catalina 10.15.4
##
## Matrix products: default
           /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
##
## locale:
   [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
  [1] stats
                 graphics grDevices utils
##
                                                datasets methods
                                                                    base
##
## other attached packages:
  [1] httr_1.4.1
                     ggpubr_0.2.5 magrittr_1.5 ggplot2_3.2.1
##
## loaded via a namespace (and not attached):
   [1] Rcpp_1.0.3
                         pillar_1.4.3
                                           compiler_3.6.2
                                                            tools 3.6.2
##
   [5] digest_0.6.23
                         evaluate_0.14
                                           lifecycle_0.1.0
                                                            tibble_2.1.3
##
   [9] gtable_0.3.0
                         pkgconfig_2.0.3
                                          rlang_0.4.4
                                                            yaml_2.2.1
## [13] xfun_0.12
                         gridExtra_2.3
                                           withr_2.1.2
                                                            dplyr_0.8.4
  [17] stringr 1.4.0
                         knitr 1.28
                                           grid 3.6.2
                                                            tidyselect 1.0.0
  [21] cowplot 1.0.0
                         glue_1.3.1
                                                            rmarkdown 2.1
                                          R6_2.4.1
                         farver_2.0.3
## [25] purrr_0.3.3
                                           scales_1.1.0
                                                            htmltools_0.4.0
```

[29] assertthat_0.2.1 colorspace_1.4-1 ggsignif_0.6.0 labeling_0.3
[33] stringi_1.4.5 lazyeval_0.2.2 munsell_0.5.0 crayon_1.3.4