Lecture 3.1 & 3.2

- Dr. Anurag Sharma

Complexity Analysis of Algorithms – Big O order

CS214, semester 2, 2018

Time complexity

- In computer science, the time complexity is the computational complexity that describes the amount of time it takes to run an algorithm.
- Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform.

CS214, semester 2, 2018

Order

- Algorithms with time complexities such as n and 100n are called linear-time algorithms because their time complexities are linear in the input size n.
- Algorithms with time complexities such as n^2 and $0.01n^2$ are called quadratic-time algorithms because their time complexities are quadratic in the input size n.

An Intuitive Introduction to Order

- Functions such as $5n^2$ and $5n^2 + 100$ are called **pure quadratic functions** because they contain no linear term.
- Functions such as $0.1n^2 + n + 100$ is called a **complete quadratic function** because it contains a linear term.
- So what is the time complexity of these functions?

CS214, semester 2, 2018

3

CS214, semester 2, 2018

.

Cont.

- Throw away low-order terms when classifying complexity functions. Why?
- For example, $0.1n^3 + 10n^2 + 5n + 25 \cong n^3$, a pure cubic function.
- When an algorithm's time complexity is polynomial of order 2, it is called a quadratictime algorithm.
- Examples of complexity categories:
 - $\log(n), n, n \log(n), n^2, n^3, 2^n$ etc.

CS214, semester 2, 2018

5

Exercise:

Draw the following in Matlab and observe the behavior of the functions:

```
y1 = 0.1*n.^3+10*n.^2+ 5*n + 25;

y2 = n.^3;

y3 = n.^2;

y4 = n.^1;

y5 = n.^4;

■ n = 0:1000
```

CS214, semester 2, 2018

.

Big O Notation

- Big O notation, is used to describe upper bound of the time, and space usage of an algorithm.
 - In this notation n refers to the size of the input into the algorithm.
 - Order refers to the time or amount of time it takes the algorithm to finish executing n sized input.

Commonly used Big O order

CS214, semester 2, 2018

Big O Notation (cont.)

- big-O notation for a problem of size N:
 - a constant-time method is "order 1": O(1)
 - a linear-time method is "order N": O(N)
 - a quadratic-time method is "order N squared": O(N²)
- Note that the big-O expressions do not have constants or low-order terms.
 - This is because, when N gets large enough, constants and low-order terms don't matter

CS214, semester 2, 2018

9

Formal definition of Big O

- For a given complexity function f(n), it big order O(g(n)) means there are positive constants c and k, such that:
 - $0 \le f(n) \le cg(n)$ for all $n \ge k$

CS214, semester 2, 2018

10

Example

What is the big O order of the following function?

$$n^2 + 3n + 4$$

 $n^2 + 3n + 4 \le n^2 + 3n^2 + 4n^2 \text{ for } n > 0$
 $\Rightarrow n^2 + 3n + 4 \le 8n^2$

Here C = 8 and k = 1 [using a simple approach)

- Answer: $O(n^2)$
- It is also possible to have C = 2 and k = 10, however, the final answer will remain same.

Asymptotic behavior

- Big O describes the **asymptotic behavior** of a function because it is concerned only with eventual behavior. We say that big O puts an asymptotic upper bound on a function.
- Similar notation is used to describe the least amount of a resource that an algorithm needs for some class of input. The lower bound of an algorithm is denoted by the symbol Ω (omega). [this will not be covered ⑤]

CS214 semester 2 2018

11

CS214, semester 2, 2018

13

Realization of different orders

• Table 1.4 Execution times for algorithms with the given time complexities

n	$f(n) = \lg n$	f(n) = n	$f(n) = n \lg n$	$f(n) = n^2$	$f(n) = n^{3}$	$f(n) = 2^n$
10	$0.003 \mu s^*$	$0.01~\mu s$	0.033 μs	0.10 μs	1.0 μs	1 μs
20	$0.004~\mu { m s}$	$0.02~\mu \mathrm{s}$	$0.086~\mu s$	0.40 µs	8.0 μs	1 ms [†]
30	$0.005~\mu \mathrm{s}$	$0.03~\mu s$	$0.147~\mu s$	0.90 μs	27.0 μs	1 s
40	$0.005~\mu\mathrm{s}$	$0.04~\mu \mathrm{s}$	$0.213 \ \mu s$	$1.60~\mu s$	64.0 μs	18.3 min
50	$0.006~\mu \mathrm{s}$	$0.05~\mu s$	$0.282 \ \mu s$	2.50 µs	125.0 μs	13 days
10^{2}	$0.007~\mu s$	$0.10~\mu s$	$0.664~\mu s$	10.00 μs	1.0 ms	4×10^{13} years
10^{3}	$0.010~\mu s$	$1.00~\mu s$	$9.966~\mu s$	1.00 ms	1.0 s	
10^{4}	$0.013~\mu s$	$10.00 \ \mu s$	$130.000 \ \mu s$	100.00 ms	16.7 min	
10^{5}	$0.017~\mu s$	$0.10~\mathrm{ms}$	$1.670~\mathrm{ms}$	10.00 s	11.6 days	
10^{6}	$0.020~\mu s$	$1.00~\mathrm{ms}$	19.930 ms	16.70 min	31.7 years	
10^{7}	$0.023~\mu s$	0.01 s	2.660 s	1.16 days	31,709 years	
10 ⁸	$0.027~\mu s$	$0.10 \ s$	2.660 s	115.70 days	3.17×10^7 years	
10 ⁹	$0.030 \ \mu s$	1.00 s	29.900 s	31.70 years	7 2 7	

^{*1} μ s = 10⁻⁶ second.

CS214, semester 2, 2018

13

15

Writing efficient algorithm

- Good programming skills
- Use built-in algorithms which are well-tested and have known Big O order
- Good analytical ability and understanding of mathematics
- Knows strengths and weaknesses of data structures

CS214, semester 2, 2018

1.4

Insertion sort

An insertion sort algorithm is one that sorts by inserting records in an existing sorted array.

```
Insertion Sort Execution Example

4 3 2 10 12 1 5 6

4 3 2 10 12 1 5 6

3 4 2 10 12 1 5 6

2 3 4 10 12 1 5 6

2 3 4 10 12 1 5 6

1 2 3 4 10 12 1 5 6

1 2 3 4 5 6 10 12
```

Ref: https://www.geeksforgeeks.org/insertion-sort/

CS214, semester 2, 2018

Code

CS214, semester 2, 2018

16

 $^{^{\}dagger}1 \text{ ms} = 10^{-3} \text{ second}.$

Cont.

Figure 7.1: An example illustrating what Insertion Sort does when i=6 and j=2 (top). The array before inserting, and (bottom) the insertion gap.

Big O order?

■ Worst case:

$$1 + 2 + \dots + n - 1 = \frac{n(n-1)}{2}$$

- The Big O order for the worst case is $O(n^2)$
- What is the best case?
- When array is already sorted then the order is O(n)

CS214, semester 2, 2018

10

Choice of data structure

- Big O order for inserting an element?
- Using an array:
 - Worst case: O(n)
- Using a linked list:
 - Worst case: 0(1)
- Big O order for retrieving an element?

CS214, semester 2, 2018

9