Optimización convexa

Semana 1.

Ejercicio 1.1. Sea V un espacio vectorial. Dada una función $f:V\to\mathbb{R}\cup\{\infty\}$, definimos su **epigrafo**

$$\operatorname{epi}(f) = \{(v, \alpha) \mid v \in \operatorname{dom}(f), \alpha \ge f(v)\} \subseteq V \times \mathbb{R}$$

Demuestre que f es convexa si y solo si epi(f) es un conjunto convexo.

Ejercicio 1.2. Supongamos que $x_1 \neq x_2$ son vectores de un espacio vectorial W. Los puntos de la forma

$$y = \theta x_1 + (1 - \theta)x_2$$

donde $\theta \in \mathbb{R}$, forman la linea recta que pasa por x_1 y x_2 . Sean U y V espacios vectoriales. $f: U \to V$ se dice lineal afin si existe una funcion lineal $l: U \to V$ y un vector $v_0 \in V$ tal que

$$f(u) = l(u) + v_0$$

Demuestre que $f:U\to V$ es lineal afín si y solo si para todo $x,y\in U$ y $\lambda\in\mathbb{R}$ se tiene que

$$f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y).$$

Ejercicio 1.3. Sea X un subconjunto de un espacio vectorial U. Demuestre que

$$Conv(X) = \{\theta_1 x_1 + ... + \theta_k x_k \mid x_i \in X, \ \theta_i > 0, i = 1, ..., k, \ \theta_1 + ... + \theta_k = 1\}$$

Semana 2.

Ejercicio 2.1. Recuerde que $\mathscr{C}(V)$ es el conjunto de todos los subconjuntos convexos de V. Demuestre el siguiente teorema:

Teorema 2.1. Operaciones que preservan conexidad

1. Intersection:

$$\{A_\alpha:\alpha\in I\}\subseteq\mathscr{C}(V)\ \implies\ \bigcap_{\alpha\in I}A_\alpha\in\mathscr{C}(V)$$

2. Suma de Minkowski:

Si A y B son subconjuntos de V se define

$$A + B := \{a + b : a \in A, b \in B\}$$

Pruebe que si

$$A, B \in \mathscr{C}(V) \implies A + B \in \mathscr{C}(V)$$

3. Producto cartesiano Sean V y W espacios vectoriales

$$A \in \mathscr{C}(V), B \in \mathscr{C}(V) \implies A \times B \in \mathscr{C}(V \times W)$$

4. Imagen directa e inversa bajo mapas afines:

Si $f: U \to V$ es afin entonces

$$A \in \mathscr{C}(U) \implies f(A) \in \mathscr{C}(V)$$

$$B \in \mathscr{C}(V) \implies f^{-1}(B) \in \mathscr{C}(U)$$

Ejercicio 2.2. Un poliedro en V es una intersección finita de semiespacios

Dado $m \in \mathbb{N}$ se define el orbite positivo

$$O_m := \{ \vec{x} \in \mathbb{R}^n \mid x_1 \ge 0, x_2 \ge 0, ..., x_m \ge 0 \}$$

Demuestre que $P \subseteq \mathbb{R}^n$ es un poliedro si y solo existe $m \in \mathbb{N}$ (que depende de P) y $f : \mathbb{R}^n \to \mathbb{R}^m$ afin tal que

$$P = f^{-1}(O_m)$$

Ejercicio 2.3. $||\cdot||_2$ denota la norma euclidiana usual. Sea $B_{||\cdot||_2}$ la bola unitaria bajo esta norma. Pruebe que $B_{||\cdot||_2}$ no es un poliedro.

Ejercicio 2.4. Demuestre que hay una correspondencia entre los siguientes conjuntos

$$\{||\cdot||:V\to\mathbb{R}, \text{norma de }V\}\rightleftarrows\{K\subseteq V\,|\,K\text{ compacto, convexo },K=-K,0\in\text{int}K\}$$

Ejercicio 2.5. Demuestre que todo poliedro es un convexo de segundo orden

Ejercicio 2.6. (a) Recordemos que

$$\mathbb{R}[x_1,...,x_n]_d=\{\text{Polinomios homogéneos de grado }d\text{ en variables }x_1,...,x_n\}$$

Demuestre que $\mathbb{R}[x_1,...,x_n]_d$ es un espacio vectorial con dimensión

$$\binom{n-1+d}{d}$$

(b) Definimos

$$P_d^n = \{ f \in \mathbb{R}[x_1, ..., x_m]_d : f(\alpha) \ge 0 \,\forall \alpha \in \mathbb{R}^n \}$$

Demuestre que \mathbb{P}_d^n es convexo y cerrado.

Ejercicio 2.7. (a) Una matriz simetrica positiva A de $n \times n$ se dice positiva semidefinida PSD ssi

$$x^t A x \in P_2^n$$
 (*)

Donde (*) tambien se escribe $A \ge 0$.

Pruebe el siguiente teorema sobre matrices positivas semi-definidas

Teorema 2.2. Las siguientes son equivalentes para a simétrica de $n \times n$

- (I) $A \geqslant 0$
- (II) Los valores propios de A son reales no negativos
- (III) Existe $B \in \mathbb{R}^{n \times n}$ tal que $A = B^t B$ (descomposición de Cholesky)
- (b) Demuestre que una forma cuadrática es PSD ssi es una suma de cuadrados de formas lineales

Ejercicio 2.8. (a) Demuestre que si $w \in \mathbb{R}^n$ y $R \in \mathbb{R}_{\geq 0}$

$$\begin{pmatrix} R I_{n \times n} & w \\ w^t & R \end{pmatrix} \geqslant 0 \iff ||w||_2 \le R$$

(b) Todo convexo de segundo orden es un espectaedro

Ejercicio 2.9. Pruebe que $P \subseteq \mathbb{R}^n$ es un espectaedro si y solo existen $A_0, A_1, ..., A_n \in S^2(V_m)$ tales que

$$P = \{(x_1, ..., x_n) \in \mathbb{R}^n : A_0 + x_1 A_1 + \dots + x_n A_n \geqslant 0\}$$

Ejercicio 2.10. Demuestre que todo problema de optimización convexa es equivalente a uno de optimizar una función lineal sobre un conjunto convexo.

Semana 3.

Se actualizó el ejercicio 1.2 de la semana 1.

Semana 4.

Ejercicio 4.1. Sea $X\subseteq\mathbb{R}^n$ y $f:\mathbb{R}^n\longrightarrow\mathbb{R}$ una función lineal afín. Muestre que

$$\max_{x \in X} f(x) = \max_{x \in \text{Conv}(X)} f(x)$$

Ejercicio 4.2. Sea $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ dada por $f(x) = x^t V x$, donde $V \ge 0 \in \mathbb{R}^{n \times n}$. Muestre que f es convexa si y sólo si $V \ge 0$ (V es definida positiva).

Ejercicio 4.3. Sean $A_1, \ldots, A_m \in \mathbb{R}^{n_i \times n}$ y $v_1, \ldots, v_m \in \mathbb{R}^{n_i}$ y $P \subseteq \mathbb{R}^n$ un conjunto convexo de segundo orden. Muestre que

1.
$$\min \left\{ \sum_{i=1}^{m} \|A_i x + v_i\|_2 \mid x \in P \right\}$$

2. mín
$$\left\{ \max \left\{ \|A_i x + v_i\|_2 \mid i = 1, \dots n \right\} \mid x \in P \right\}$$

son problemas de segundo orden.

Ejercicio 4.4. (Harmonic means on a polytope)

1. Muestre que

$$\left\{(x,y,z)\in\mathbb{R}^3\Big|z^2\leq xy\ \text{y}\ 0\leq x,y\right\}=\left\{(x,y,z)\in\mathbb{R}^3\Big|\|(2z,x-y)\|_2\leq x+y\right\}$$

2. Muestre que el problema de minimización

$$\min_{x \in \mathbb{R}^n} \left\{ \sum_{i=1}^m \frac{1}{a_i^t x + b_i} \mid c_j^t x + d_j \ge 0 \quad \forall \quad j = 1, \dots, l \right\}$$

donde $b_i, d_j \in \mathbb{R}$ y $a_i, c_j \in \mathbb{R}^n$ son fijos para cada i = 1, ..., m y j = 1, ..., l. Es un problema SOCP, esto quiere decir que es un problema de la forma

Minimizar $a^t x$ sujeto a $||A_i x + b_i||_2 \le c_i^t x + d_i$ y Px = g con $i = 1, \dots, n$.

Ejercicio 4.5. (QCQP convexo)

Demuestre que el problema de minimización

$$\min_{x \in \mathbb{R}^n} \left\{ x^t P_0 x + 2q_0^t x + r_0 \ \middle| \ x^t P_i x + 2q_i^t x + r_i \le 0 \ \forall \ i = 1, \dots, n \right\}$$

donde $r_i \in \mathbb{R}, q_i \in \mathbb{R}^n$ y $P_i \ge 0 \in \mathbb{R}^{n \times n}$ son fijos para cada $i = 0, 1, \dots, m$. Es un problema SOCP.

Ejercicio 4.6. Sea $A \in \mathbb{R}^{n \times n}$ invertible. Entonces existe una matriz ortogonal $U \in \mathbb{R}^{n \times n}$ (sus vectores columna forman una base ortogonal de \mathbb{R}^n), tal que AU es definida positiva. Usando esto, pruebe que todo elipsoide full-dimensional $E \subseteq \mathbb{R}^n$ es tal que:

$$E = \{v_0 + Bx \in \mathbb{R}^n \mid ||x||_2 < 1\}$$

donde $v_0 \in \mathbb{R}^n$ y $B \ge 0 \in \mathbb{R}^{n \times n}$ son fijos.

Ejercicio 4.7. Demuestre que todo elipsoide full-dimensional $E \subseteq \mathbb{R}^n$ está dado por una desigualdad cuadrática. Esto es, existe $A \ge 0$ tal que

$$E = \left\{ x \in \mathbb{R}^n \mid x^t A x \le 1 \right\}$$

Ejercicio 4.8. Sea V un espacio vectorial normado $\|\cdot\|$ y defina

$$\|\cdot\|_*:V\longrightarrow\mathbb{R}\quad \mathrm{dada\ por}\quad \|v\|_*=\sup_{\|x\|=1}\langle v,x\rangle$$

- 1. Muestre que $\|\cdot\|_*$ es una norma en V.
- 2. Muestre que $(\|\cdot\|_*)_* = \|\cdot\|$.
- 3. Verifique en \mathbb{R}^n que si

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$$
 entonces $(||x||_{\infty})_* = \sum_{i=1}^n |x_i|$

4. Verifique en \mathbb{R}^n que si

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^p$$
 entonces $(||x||_p)_* = ||x||_q$

donde
$$\frac{1}{p} + \frac{1}{q} = 1$$
.

Semana 5.

Ejercicio 5.1. Un conjunto $Q \subseteq \mathbb{R}^n$ se dice semidefinidamente representable (SDr) o sombra espectraedrica si existe un espectraedro $P \subseteq \mathbb{R}^t$ para algún $t \in \mathbb{N}$ y un mapa $g : \mathbb{R}^t \to \mathbb{R}^n$ afín con g(P) = Q. Demuestre que para todo conjunto semidefinidamente representable $Q \subseteq \mathbb{R}^n$ existen $k, q \in \mathbb{N}$ con

$$Q = \{(x_1, ..., x_n) \in \mathbb{R}^n | \exists y_1, ..., y_t; A_0, A_1, ..., A_n, B_1, ..., B_k \in S^+(q) : A_0 + x_1 A_1 + \dots + x_n A_n + y_1 B_1 + \dots + y_t B_t \ge 0\}$$

Ejercicio 5.2. Sea $\Psi: \mathbb{R}^a \to \mathbb{R}^b$ afín, demuestre que

- (a) Si $Q \subseteq \mathbb{R}^b$ es SDr, entonces $\Psi^{-1}(Q)$ es SDr.
- (b) Si $Q \subseteq \mathbb{R}^a$ es SDr, entonces $\Psi(Q)$ es SDr.

Ejercicio 5.3. Demuestre que $A \in S^+(m)$ es semidefinida positiva si y solo si $\forall I \subseteq 1, ..., n \det(A_I) \ge 0$, donde A_I es la matriz formada al tomar las columnas y filas de A indexadas por I.

Ejercicio 5.4. (a) Sean $g(x) \in R_{2k}$ y $W \subseteq R_k$ fijos y sea $\vec{m}(x) = (b_1(x), ..., b_N(x))$ con $\{b_1(x), ..., b_N(x)\}$ una base de W. Demuestre que el conjunto

$${A \in S^+(N) : A \ge 0 \land \vec{m}(x) A \vec{m}^t(x) = g(x)}$$

es un espectraedro. Llamaremos a este el esprectraedro de Gram.

- (b) ¿Qué relación hay entre los espectraedros de Gram de g(x) para diferentes bases?
- **Ejercicio 5.5.** (a) Sea $p(x) \in \mathbb{R}[x]$ un polinomio, no necesariamente homogéneo. Muestre que $p(x) \geq 0$ si y solo si $\exists h_1, ..., h_j \in \mathbb{R}[x] : p = h_1^2 + ... + h_j^2$.
 - (b) Minimice el polinomio $x^{8} + 6x^{5} 4x^{3} + x^{2} 11$.
- **Ejercicio 5.6.** (a) Demuestre que si L es un subespacio afín en $S^2(m)$, entonces $L \cap S^+$ es un espectraedro.
- (b) Demuestre que para todo espectraedro Q, existe una función lineal afín f y un subespacio afín L, tal que $Q = f^{-1}(L \cap S^+)$.

Semana 6.

- **Ejercicio 6.1.** (a) Demuestre que el interior de los polinomios no negaticos de grado 2k es $P_{2k}^{\circ} = \{F \in R_{2k} : F(x) > 0 \forall x \in S^{n-1}\}$
 - (b) Describa la frontera $\partial P_{2k} := P_{2k} \backslash P_{2k}^{\circ}$
- **Ejercicio 6.2.** (a) Demuestre que el Teorema de Polya implica el Teorema de Artin para $F \in P_{2k}^{\circ}$
- (b) ¿Se puede decir que el Teorema de Artin implica el Teorema de Polya?
- **Ejercicio 6.3.** Implemente en Julia un programa que dado un polinomio p(x, y, z) en tres variables calcule β_{2j} para j = 0, 1, 2.

Semana 7.

No hubo ejercicios nuevos dado que todas las sesiones fueron para resolver los que ya había.

Semana 8.

Ejercicio 8.1. Si $\varphi \in Hom(V, \mathbb{R})$, definamos

$$\|\varphi\|_* = \sup_{\|x\| \le 1} \varphi(x) \in [0, \infty]$$

Demuestre:

- (a) $\|\varphi\|_* < \infty \Leftrightarrow \varphi$ es continua
- (b) $dim(V) < \infty \Leftrightarrow V^* = Hom(V, \mathbb{R})$
- (c) Sea $V = \bigoplus_{n \in \mathbb{N}} \mathbb{R} = \{$ sucesiones con finitos términos no nulos $\}$ Para $\{a_i\}_{i \in \mathbb{N}} \in V$ defina las siguientes normas:

$$\|\{a_i\}_{i\in N}\|_{\infty} = \max a_i \tag{1}$$

$$\|\{a_i\}_{i\in N}\|_1 = \sum_{i\in\mathbb{N}} |a_i| \tag{2}$$

Sea $L:V\to\mathbb{R}$ definida por $L(\{a_i\}_{i\in\mathbb{N}})=\sum_{i\in\mathbb{N}}a_i$. Muestre que L es continua en $\|.\|_1$ pero no en $\|.\|_{\infty}$. Concluya que estas normas no son equivalentes.

Ejercicio 8.2. De un ejemplo de un cerrado C y $z \notin C$ tal que no pueden separarse mediante un hiperplano.

Ejercicio 8.3. Encuentre una correspondencia entre las caras de $B_{\|.\|_{\infty}}$ y $B_{\|.\|_{1}}$.

Ejercicio 8.4. Complete la demostración de extensión del teorema de Hahn-Banach para $\alpha < 0$.

Ejercicio 8.5. (Generalización de Hahn-Banach)

Una quasi-seminorma es una función $p:V\to\mathbb{R}$ que satisface:

- 1. p es convexa
- 2. $p(\alpha \vec{x}) = \alpha p(\vec{x})$ para $\alpha \ge 0$.

Si V es un espacio vectorial sobre \mathbb{R} , y p una quasi-seminorma en V. Sea $M \subset V$ y $f: M \to \mathbb{R}$ lineal y continua que satisface $f(m) \leq p(m)$ para todo $m \in M$. Demuestre que existe $F: V \to \mathbb{R}$ lineal y continua que extiende a f y que satisface $F(x) \leq p(x)$ para todo $x \in V$.

Ejercicio 8.6. Demuestre que si p es positivo homogeneo, entonces p es convexa $\Leftrightarrow p(x+y) \leq p(x) + p(y)$.

Semana 9.

Ejercicio 9.1. Sea $K \subset V$ convexo, muestre que si y no está en la clausura de K y $\vec{0} \in int(K)$, entonces existe $\varphi : V \to \mathbb{R}$ lineal y continua con $\varphi(y) > \sup_{x \in K} \varphi(x)$

Ejercicio 9.2. Sean K_1 y K_2 convexos en V que cumplen $int(K_1)$ no es vacío y $int(K_1) \cap K_2 = \emptyset$. Demuestre que existe $\varphi \in V^*$ con $\sup_{x \in K_1} \varphi(x) \leq \inf_{x \in K_2} \varphi(x)$. (Hint: considerar $K_1 - K_2$)

Ejercicio 9.3. Sea K convexo con $int(K) \neq \emptyset$ y $x \notin int(K)$, muestre que existe un hiperplano H con $x \in H$ y $K \subset H_{\leq 0}$.

Ejercicio 9.4. Muestre que si $\varphi: V \to \mathbb{R}$ es lineal, entonces:

 φ es continua $\Leftrightarrow \varphi^{-1}(a)$ es cerrado para todo $a \in \mathbb{R}$.

Ejercicio 9.5. Si Y es un espacio afín demuestre que:

- 1. Para todo $p \in Y$, Y p es un subespacio vectorial de \mathbb{R}^n
- 2. $p_1, p_2 \in Y \Rightarrow Y p_1 = Y p_2$

Ejercicio 9.6. Sean S, T subconjuntos de \mathbb{R}^n convexos no vacíos con $S \cap T \neq \emptyset$, entonces existe $\lambda \in \mathbb{R}^n$ tal que:

$$\sup_{y \in S} \lambda^t y \le \inf_{u \in T} \lambda^t u$$

Ejercicio 9.7. Sea C el cubo de Hilbert, muestre:

- 1. C es secuencialmente compacto.
- 2. El interior de C es vacío.
- 3. La sucesión que siempre es 0 está en C y Aff(C) = span(C) es denso.

Semana 10.

Ejercicio 10.1. Demostrar que si $f: \mathbb{R}^n \to \mathbb{R}$ es convexa entonces f es continua en el interior de su dominio

Ejercicio 10.2. Demuestre que si $C \subseteq \mathbb{R}^n$ es cono cerrado y puntudo entonces C^* tiene interior no vacío

Ejercicio 10.3. Sea K convexo con $0 \in \text{Int } K$ y C el cono generado por $K \times \{1\}$. Demuestre que $\{\varphi \in C^* : \varphi(0,1) = 1\} \sim K^{\nu}$. Demuestre también que $(K^{\nu})^{\nu} = \bar{K}$ si y solo si $(C^*)^* = \bar{C}$.

Ejercicio 10.4. Demostrar que el orden \succcurlyeq_K definido por un cono admisible K, es reflexivo, antisimétrico, transitivo, aditivo y homogéneo.

Semana 11.

Ejercicio 11.1. Dados V y W espacios vectoriales y $A:V\to W$ lineal, se define $A^*:W^*\to V^*$ por $\varphi\mapsto\varphi\circ A$.

- 1. Si en la anterior definición se fijan bases de V y W y veo A en esas bases y A^* en las correspondientes bases duales, entonces obtengo una matriz y su traspuesta.
- 2. Mostrar que $\langle A^*\varphi, x \rangle = \langle \varphi, Ax \rangle$.

Ejercicio 11.2. Para cada uno de los siguientes conos C demuestre que son admisibles y calcule C^*

- 1. $C = \mathbb{R}^n_+ \subseteq \mathbb{R}^n$.
- 2. $C=\{(x,\alpha)\in\mathbb{R}^n\times\mathbb{R}: \ \|x\|\leq\alpha\}$ donde $\|\cdot\|$ es una norma cualquiera.
- 3. $C = \{A \in S^2(W) : A \geq 0\}$