Q4) For the given recurrence equation, derive its time complexity, by using the Recursion Tree Method. Make sure you show the pattern before solving it for the final equation.

$$T(n) = \int_{0}^{3T(n-4)} + 1$$
 , $n > 0$, $n = 0$

Base Cond:
$$n-4k=0 \Rightarrow k=\frac{\pi}{4}$$

Base Cond:
$$n-4k=0 \Rightarrow k-\frac{4}{4}$$

Sub'k' in series: $3+3+3^2+\cdots+3^{\frac{n}{4}-1}$
quantities geries $a=1, f=3, n=\frac{n}{4}-1$
 $2=1\left(\frac{1-3^{\frac{n}{4}-1}}{1-3}\right)=\frac{1-3^{\frac{n}{4}-1}}{2}=\frac{3^{\frac{n}{$