import pandas as pd
from openpyxl.workbook import Workbook

#reading excel file

In [2]:

#Top 5 rows of the Excel file
df.head()

Out[2]

t[2]:		Date	Ottawa	Toronto West/Ouest	Toronto East/Est	Windsor	London	Peterborough	St. Catharine's	Sudbury	Sault Saint Marie	Thunder Bay	N
	0	1990- 01-03	55.9	49.1	48.7	45.2	50.1	0.0	0.0	56.4	54.8	56.6	
	1	1990- 01-10	55.9	47.7	46.8	49.7	47.6	0.0	0.0	56.4	54.9	56.8	
	2	1990- 01-17	55.9	53.2	53.2	49.6	53.7	0.0	0.0	55.8	54.9	56.8	
	3	1990- 01-24	55.9	53.2	53.5	49.0	52.1	0.0	0.0	55.7	54.9	56.8	
	4	1990- 01-31	55.9	51.9	52.6	48.6	49.1	0.0	0.0	55.6	54.8	56.8	

In [3]:

 $\# Datatype \ and \ Null \ Information \ about \ the \ columns \ in \ the \ Excel \ file \ df.info()$

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9962 entries, 0 to 9961
Data columns (total 20 columns):

Data	columns (total 20 columns):		
#	Column	Non-Null Count	Dtype
0	Date	9962 non-null	datetime64[ns]
1	Ottawa	9962 non-null	float64
2	Toronto West/Ouest	9962 non-null	float64
3	Toronto East/Est	9962 non-null	float64
4	Windsor	9962 non-null	float64
5	London	9962 non-null	float64
6	Peterborough	9962 non-null	float64
7	St. Catharine's	9962 non-null	float64
8	Sudbury	9962 non-null	float64
9	Sault Saint Marie	9962 non-null	float64
10	Thunder Bay	9962 non-null	float64
11	North Bay	9962 non-null	float64
12	Timmins	9962 non-null	float64
13	Kenora	9962 non-null	float64
14	Parry Sound	9962 non-null	float64
15	Ontario Average/Moyenne provinciale	9962 non-null	float64
16	Southern Average/Moyenne du sud de l'Ontario	9962 non-null	float64
17	Northern Average/Moyenne du nord de l'Ontario	9962 non-null	float64

```
In [4]:
        #Creating a new dataframe
        df2 = pd.DataFrame()
In [5]:
        #Choosing rows from the original dataframe with Fuel Type "Diesel" and pasting it into new
        df2 = df.loc[df['Fuel Type']=='Diesel']
In [6]:
        #Datatype and Null Information about the columns in the new dataframe
        df2.info()
       <class 'pandas.core.frame.DataFrame'>
       Int64Index: 1675 entries, 1675 to 3349
       Data columns (total 20 columns):
          Column
                                                         Non-Null Count Dtype
       --- ----
                                                         _____
                                                         1675 non-null datetime64[ns]
           Date
        1
           Ottawa
                                                         1675 non-null float64
        2 Toronto West/Ouest
                                                         1675 non-null float64
        3 Toronto East/Est
                                                         1675 non-null float64
           Windsor
                                                         1675 non-null float64
        4
        5 London
                                                         1675 non-null float64
        6 Peterborough
                                                         1675 non-null float64
        7
                                                         1675 non-null float64
          St. Catharine's
        8
          Sudbury
                                                         1675 non-null float64
        9 Sault Saint Marie
                                                         1675 non-null float64
        10 Thunder Bay
                                                         1675 non-null float64
        11 North Bay
                                                         1675 non-null float64
        12 Timmins
                                                         1675 non-null float64
        13 Kenora
                                                         1675 non-null float64
        14 Parry Sound
                                                        1675 non-null float64
        15 Ontario Average/Moyenne provinciale
                                                        1675 non-null float64
        16 Southern Average/Moyenne du sud de l'Ontario 1675 non-null float64
        17 Northern Average/Moyenne du nord de l'Ontario 1675 non-null float64
                                                         1675 non-null object
        18 Fuel Type
        19 Type de carburant
                                                         1675 non-null object
       dtypes: datetime64[ns](1), float64(17), object(2)
       memory usage: 274.8+ KB
In [7]:
        df2.head()
Out[7]
```

9962 non-null object

9962 non-null

18 Fuel Type

19 Type de carburant

memory usage: 1.5+ MB

dtypes: datetime64[ns](1), float64(17), object(2)

t[7]:		Date	Ottawa	Toronto West/Ouest	Toronto East/Est	Windsor	London	Peterborough	St. Catharine's	Sudbury	Sault Saint Marie	Thunder Bay
	1675	1990- 01-03	49.3	47.6	48.3	46.5	47.2	0.0	0.0	45.4	45.8	46.6
	1676	1990- 01-10	49.5	47.9	48.6	47.1	47.4	0.0	0.0	45.8	46.1	46.6
	1677	1990- 01-17	49.5	48.6	48.6	47.3	47.4	0.0	0.0	47.2	46.1	46.6
	1678	1990- 01-24	50.4	47.9	48.7	47.6	47.7	0.0	0.0	47.2	46.2	47.2

		Date	Ottawa	Toronto West/Ouest	Toronto East/Est	Windsor	London	Peterborough	St. Catharine's	Sudbury	Sault Saint Marie	Thunder Bay
	1679	1990- 01-31	50.4	47.7	48.7	47.6	47.7	0.0	0.0	47.2	46.5	47.3
In [8]:		eating = pd.D		dataframe me()								
In [9]:	df3.	insert	.(0, " Da	te",df2['D	oate'], T	rue)		Region only		ng it ir	nto new	datafi
In [10]:	df3.	head()										
Out[10]:		D	ate Sa	ult Saint Mari	e							
	1675	1990-01	l-03	45.8	8							
	1676	1990-01	l-10	46.	1							
	1677	1990-01	l - 17	46.	1							
	1678	1990-01	-24	46.2	2							
	1679	1990-01	-31	46.5	5							
In [11]:	#thi #dai df3.	is inco ily val set_in	nister ues. dex('D		ting th	e date c e)	column i	he week star nto daily va				
In [12]:		st 10 v tail(1		from the a	lataset							
Out[12]:			Date S	ault Saint Mar	ie							
	11707	2022-0)1-22	153	3.6							
	11708	2022-0)1-23	153	3.6							
	11709	2022-0)1-24	157	7.9							
	11710	2022-0)1-25	157	7.9							
	11711	2022-0)1-26	157	7.9							
	11712	2022-0)1-27	157	7.9							
	11713	2022-0)1-28	157	7.9							
	11714	2022-0)1-29	157	7.9							
	11715	2022-0)1-30	157	7.9							
	11716	2022-0)1-31	159	9.2							

```
df3.isnull().values.any()
         False
Out[13]:
In [14]:
          #Splitting the "Date" column into year, month and week to explore trends
          df3['Year']=df3['Date'].dt.year
          df3['Month'] = df3['Date'].dt.month
          df3['Week']=df3['Date'].dt.isocalendar().week
In [15]:
          df3.head(10)
                 Date Sault Saint Marie Year Month Week
Out[15]:
         0 1990-01-03
                                 45.8 1990
                                                     1
                                45.8 1990
         1 1990-01-04
                                                     1
         2 1990-01-05
                                45.8 1990
                                                     1
         3 1990-01-06
                                45.8 1990
                                               1
                                                     1
         4 1990-01-07
                                45.8 1990
                                               1
                                                     1
         5 1990-01-08
                                45.8 1990
                                               1
                                                     2
         6 1990-01-09
                                45.8 1990
                                               1
                                                     2
         7 1990-01-10
                                                     2
                                46.1 1990
                                               1
         8 1990-01-11
                                46.1 1990
                                               1
                                                     2
         9 1990-01-12
                                46.1 1990
                                               1
                                                     2
In [16]:
          #Splitting the dataset in Train and Test
          #Train from Year 1990 to Year 2019
          #Test from Year 2020
          train = df3[(df3['Date'] > '1990-01-01') & (df3['Date'] <= '2019-12-31')]
          test = df3[df3['Date'] >= '2020-01-01']
```

Yearly Price Visualization on Train and Test Dataset

#Checking for null values

In [13]:

```
In [17]:
    import matplotlib.pyplot as plt
    from matplotlib.pyplot import figure

    yearly_train_Price = train.groupby(['Year'])['Sault Saint Marie'].mean()
    yearly_test_Price = test.groupby(['Year'])['Sault Saint Marie'].mean()

    figure(figsize=(15, 4), dpi=80)
    plt.plot(yearly_train_Price, label='Train',c='blue')
    plt.plot(yearly_test_Price, label='Test',c='orange')
    plt.legend(loc='best')
    plt.legend(loc='best')
    plt.suptitle('Diesel Prices for Sault Saint Marie', fontsize=20)
    plt.xlabel('Year')
    plt.ylabel('Price (cents per litre)')
    plt.show()
```

Diesel Prices for Sault Saint Marie

DataPrep for Time Series

```
In [18]:
    train.index = pd.DatetimeIndex(train['Date'])
    #Changing the frequency of the index to Daily
    train.index = train.asfreq('d').index

test.index = pd.DatetimeIndex(test['Date'])
#Changing the frequency of the index to Daily
    test.index = test.asfreq('d').index
```

Train and Time Series Dataset

```
In [19]:
    train_time_series = pd.DataFrame()
    train_time_series.index = train.index
    train_time_series.insert(0, "Sault Saint Marie Diesel Price Train", train['Sault Saint Marie

    test_time_series = pd.DataFrame()
    test_time_series.index = test.index
    test_time_series.insert(0, "Sault Saint Marie Diesel Price Test", test['Sault Saint Marie'],

    print(train_time_series.tail())
    print(test_time_series.tail())
```

```
Sault Saint Marie Diesel Price Train
Date
2019-12-27
                                             130.1
2019-12-28
                                              130.1
2019-12-29
                                             130.1
2019-12-30
                                              130.4
2019-12-31
                                              130.4
            Sault Saint Marie Diesel Price Test
Date
2022-01-27
                                             157.9
2022-01-28
                                             157.9
2022-01-29
                                            157.9
2022-01-30
                                             157.9
2022-01-31
                                             159.2
```

ARIMA Model

To predict time series with ARIMA, we need to set the values of three parameters (p,d,q):

p: The order of the auto-regressive (AR) model (i.e., the number of lag observations)

d: The degree of differencing.

q: The order of the moving average (MA) model.

Checking if data is stationary - We can see that it is not based on the P-value - Augmented Dickey Fuller Test

```
In [20]: from statsmodels.tsa.stattools import adfuller
    results = adfuller(train_time_series['Sault Saint Marie Diesel Price Train'])
    print('ADF Statistic: ',results[0])
    print('p-value: ',results[1])
    print('Critical Values', results[4])

ADF Statistic: -1.1988559620322612
    p-value: 0.6740876544518888
    Critical Values {'1%': -3.430948265436406, '5%': -2.861804400219783, '10%': -2.56691073510
    73417}
```

Taking First difference - P value is < 0.05. We can stop at the First Difference; d = 1

```
In [21]:
    train_time_series_stationary1 = train_time_series.diff().dropna()
    results1 = adfuller(train_time_series_stationary1['Sault Saint Marie Diesel Price Train'])
    print('ADF Statistic: ',results1[0])
    print('p-value: ',results1[1])
    print('Critical Values', results1[4])

ADF Statistic: -17.49312083730378
    p-value: 4.42596714779426e-30
    Critical Values {'1%': -3.430948265436406, '5%': -2.861804400219783, '10%': -2.56691073510
    73417}
```

The Order of Autoregressive Term p; p = 0

```
In [22]:
    plt.rcParams.update({'figure.figsize':(12,3), 'figure.dpi':120})
    from statsmodels.graphics.tsaplots import plot_pacf
    plot_pacf(train_time_series_stationary1, lags=10, title="Partial Autocorrelation 1st Orde
    plt.xlabel('Lag')
    plt.ylabel('PACF')
    plt.show()
```


The order of the Moving Average term q; q = 0

In [23]:

```
plt.rcParams.update({'figure.figsize':(12,3), 'figure.dpi':120})
from statsmodels.graphics.tsaplots import plot_acf
plot_acf(train_time_series_stationary1, lags=20, title="Autocorrelation 1st Order Differe plt.xlabel('Lag')
plt.ylabel('ACF')
plt.show()
```


Check the above p,d,q parameters with Auto Arima - Best Model ARIMA (0,1,0)

```
In [24]:
         import pmdarima as pm
         from pmdarima.model selection import train test split
         import numpy as np
         model1 = pm.auto arima(train time series, trace=True, error action='ignore', suppress warr
         model1.fit(train time series)
         forecast1 = model1.predict(n periods=len(test time series))
         forecast1 = pd.DataFrame(forecast1, index = test time series.index, columns=['Prediction'])
        Performing stepwise search to minimize aic
         ARIMA(2,1,2)(0,0,0)[0] intercept : AIC=14799.580, Time=2.23 sec
         ARIMA(0,1,0)(0,0,0)[0] intercept : AIC=14791.581, Time=1.23 sec
         ARIMA(1,1,0)(0,0,0)[0] intercept : AIC=14793.581, Time=0.80 sec
         ARIMA(0,1,1)(0,0,0)[0] intercept : AIC=14793.581, Time=1.08 sec
                                            : AIC=14792.474, Time=0.16 sec
         ARIMA(0,1,0)(0,0,0)[0]
                                           : AIC=14795.581, Time=1.34 sec
         ARIMA(1,1,1)(0,0,0)[0] intercept
        Best model: ARIMA(0,1,0)(0,0,0)[0] intercept
        Total fit time: 6.871 seconds
```

Model Summary

```
import statsmodels.api as sm
  model = sm.tsa.arima.ARIMA(train_time_series, order=(0,1,0))
  model_result = model.fit()
  print(model_result.summary())
```

SARIMAX Results

```
Dep. Variable: Sault Saint Marie Diesel Price Train No. Observations:
10955
Model: ARIMA(0, 1, 0) Log Likelihood -73
95.237
Date: Sun, 06 Mar 2022 AIC 147
```

92.474
Time: 09:37:43 BIC 147
99.775
Sample: 01-03-1990 HQIC 147
94.934
- 12-31-2019

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
sigma2	0.2259	0.001	427.611	0.000	0.225	0.227
Ljung-Box (L1 Prob(Q): Heteroskedast Prob(H) (two-	icity (H):			Jarque-Bera Prob(JB): Skew: Kurtosis:	(JB):	1915999.12 0.00 1.87 67.68

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Model Prediction

```
import warnings
warnings.filterwarnings('ignore')
ARIMA_Predict = model_result.predict(start='1/1/2020', end='1/31/2022')
ARIMA_Predict_df = pd.DataFrame(ARIMA_Predict)
```

In [27]: ARIMA_Predict_df.tail()

Out[27]: predicted_mean 2022-01-27 130.4 2022-01-28 130.4 2022-01-29 130.4

2022-01-31

2022-01-30 130.4

130.4

```
In [28]:
    figure(figsize=(15, 4), dpi=80)
    plt.plot(ARIMA_Predict_df, label='Predicted Prices',c='blue')
    plt.plot(test_time_series, label='Original Prices',c='orange')
    plt.legend(loc='best')
    plt.suptitle('ARIMA Model Diesel Prices Forecast Sault Saint Marie', fontsize=20)
    plt.xlabel('Year')
    plt.ylabel('Price (cents per litre)')
    plt.show()
```

ARIMA Model Diesel Prices Forecast Sault Saint Marie

Evaluation of the Model

Mean Absolute Error (MAE) ARIMA

```
In [29]:
    from sklearn.metrics import mean_absolute_error
    maeARIMA=mean_absolute_error(test_time_series['Sault Saint Marie Diesel Price Test'], ARIMA
    print('Mean Absolute Error ARIMA = {}'.format(round(maeARIMA, 2)))

Mean Absolute Error ARIMA = 15.38
```

Mean squared error (MSE) ARIMA

```
In [30]:
    from sklearn.metrics import mean_squared_error
    mseARIMA=mean_squared_error(test_time_series['Sault Saint Marie Diesel Price Test'], ARIMA
    print('The Mean Squared Error ARIMA = {}'.format(round(mseARIMA, 2)))
```

Root mean squared error (RMSE) ARIMA

The Mean Squared Error ARIMA = 357.26

```
from numpy import sqrt
rmseARIMA = sqrt(mseARIMA)
print('The Root Mean Squared Error ARIMA = {}'.format(round(rmseARIMA, 2)))
```

The Root Mean Squared Error ARIMA = 18.9

Prophet Model

forecast = forecast[(forecast['ds'] \Rightarrow '2020-01-01') & (forecast['ds'] \Leftarrow '2022-01-31')]

```
In [34]: fig, ax = plt.subplots()
    ax.plot(forecast['ds'], forecast['yhat'], label='Predicted Prices')
    ax.plot(test['Date'], test['Sault Saint Marie'], label='Original Prices')
    plt.ylim([0,200])
    legend = ax.legend(loc='upper center', shadow=True)
    plt.title('Prophet Model Disel Prices Forecast Sault Saint Marie')
    plt.xlabel('Month')
    plt.ylabel('Price')
    plt.show()
```


Mean Absolute Error (MAE) Prophet

```
In [35]: maeProphet=mean_absolute_error(test['Sault Saint Marie'], forecast['yhat'])
    print('Mean Absolute Error Prophet = {}'.format(round(maeProphet, 2)))
```

Mean Absolute Error Prophet = 15.17

Mean squared error (MSE) Prophet

The Mean Squared Error Prophet = 300.08

Root mean squared error (RMSE) Prophet

```
In [37]:
    rmseProphet = sqrt(mseProphet)
    print('The Root Mean Squared Error Prophet = {}'.format(round(rmseProphet, 2)))
```

The Root Mean Squared Error Prophet = 17.32