# A numerical study on electromagnetic reflection and transmission for an $\Omega$ slab

Brage Bøe Svendsen

June 3, 2022

#### 1 Validation

The task is to use the general theory of propagation in multilayered structures in order to reproduce the transmission and reflection coefficients of Figure 4 in [2]. This text will briefly explain the numerical procedure in order to achieve this using the theory described in [1].

An electromagnetic wave is incident from the vacuum half-space (z < 0) towards a slab of a socalled  $\Omega$ -material of thickness l. Beyond the slab (z > l) is again a half-space of vacuum. As described in [2], the  $\Omega$  medium has the following constitutive relations in a xyz cartesian coordinate system

$$\mathbf{D} = \bar{\bar{\varepsilon}}\mathbf{E} + \bar{\bar{\xi}}\mathbf{H} \tag{1}$$

$$\mathbf{B} = \bar{\mu}\mathbf{H} + \bar{\zeta}\mathbf{E} \tag{2}$$

with the material parameter tensors

$$\bar{\bar{\varepsilon}} = \begin{bmatrix} \varepsilon_1 & 0 & 0 \\ 0 & \varepsilon_2 & 0 \\ 0 & 0 & \varepsilon_3 \end{bmatrix}, \quad \bar{\bar{\mu}} = \begin{bmatrix} \mu_1 & 0 & 0 \\ 0 & \mu_2 & 0 \\ 0 & 0 & \mu_3 \end{bmatrix}$$
(3)

$$\bar{\bar{\xi}} = i \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & \Omega \\ 0 & 0 & 0 \end{bmatrix}, \quad \bar{\bar{\zeta}} = -i \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \Omega & 0 \end{bmatrix}$$

$$(4)$$

where the parameter values are normalized with respect to  $\sqrt{\varepsilon_0\mu_0}$ , so that  $\varepsilon_i$  and  $\mu_i$  (i=1,2,3) are assumed to be the dimensionless relative permittivities and permeabilities, respectively. The orientation of the  $\Omega$ -elements as described in (3)-(4) are such that the straight rods are directed in y while the loop normals are in z. Note that the time convention used here  $e^{-i\omega t}$  is different from [2] where  $e^{+j\omega t}$  is used, which results in opposite signs in (4) compared to the article.

#### 1.1 Method

The numerical calculations were performed in MATLAB. In preparation before the main algorithm, the parameter tensors (3)-(4) are decomposed according to

$$\bar{\bar{\varepsilon}} = \varepsilon_{\rm tt} + \varepsilon_{\rm t} \hat{\mathbf{z}} + \hat{\mathbf{z}} \varepsilon_z + \varepsilon_{zz} \hat{\mathbf{z}} \hat{\mathbf{z}}$$
 (5)

so that  $\varepsilon_{\rm tt}$  is the  $2\times 2$  upper left block diagonal matrix containing the transversal components,  $\varepsilon_{\rm t}$  and  $\varepsilon_z$  are both interpreted as  $2\times 1$  column vectors, and  $\varepsilon_{zz}$  is a scalar of the remaining element. Similar decomposition is done for  $\bar{\mu}, \bar{\xi}$  and  $\bar{\zeta}$ .

The following description of the algorithm is performed for each angle of incidence  $(\theta_0, \phi_0)$  and subsequently for each transversal wavevector  $k_t = k_0 \sin \theta_0 [\cos \phi_0, \sin \phi_0]$ . First, the eigenvectors of  $\mathbf{W}_0$  in vacuum are calculated from

$$\mathbf{w}_{\mathrm{TM}}^{\pm} = \begin{bmatrix} \cos \phi_0 \sqrt{\cos \theta_0} \\ \sin \phi_0 \sqrt{\cos \theta_0} \\ \mp \sin \phi_0 / \sqrt{\cos \theta_0} \\ \pm \sin \phi_0 / \sqrt{\cos \theta_0} \end{bmatrix}, \quad \mathbf{w}_{\mathrm{TE}}^{\pm} = \begin{bmatrix} -\sin \phi_0 / \sqrt{\cos \theta_0} \\ \cos \phi_0 / \sqrt{\cos \theta_0} \\ \mp \cos \phi_0 / \sqrt{\cos \theta_0} \\ \mp \sin \phi_0 / \cos \theta_0 \end{bmatrix}.$$
 (6)

Together, these four column vectors (6) are equivalent to the the  $4 \times 4$  matrix  $\mathbf{T_0}^{-1}$ , see equation (35a) in [1]. The decomposed matrix tensors (5) and  $\mathbf{k_t}$  are used to construct the  $\mathbf{W}$  matrix, whose elements can be found in detail in equations (11) in [1]. This matrix is a result of decomposing Maxwell's curl equations inside a layer of general bianisotropic medium into transversal and longitudinal projections, and using the constitutive relations (1)-(2) to eliminate the fields  $\mathbf{D}$  and  $\mathbf{B}$  from the Maxwell's equations. The longitudinal field components are finally eliminated so that one is left with the differential equation

$$\partial_z \begin{bmatrix} \mathbf{E}_{t} \\ \eta_0 \mathbf{H}_{t} \end{bmatrix} = ik_0 \mathbf{W} \begin{bmatrix} \mathbf{E}_{t} \\ \eta_0 \mathbf{H}_{t} \end{bmatrix}. \tag{7}$$

The eigenvectors and eigenvalues of W are then assembled into the square matrix  $T^{-1}$  and the diagonal matrix D, respectively. The latter is used for the exponential matrix

$$\mathbf{M} = \exp\{ik_0\mathbf{D}l\}\tag{8}$$

where l is the thickness of the  $\Omega$  slab. Equation (8) is further used to calculate the propagator matrix inside the layer

$$\mathbf{P} = \mathbf{T}^{-1}\mathbf{M}\mathbf{T}.\tag{9}$$

In this problem the multilayer system consist of one layer surrounded by vacuum, there is therefore only need for a single propagator matrix.

We now have the main matrices needed to calculate the scattering matrices. The product  $\mathbf{T}_0 \mathbf{P} \mathbf{T}_0^{-1}$  is decomposed into

$$\mathbf{T}_0 \mathbf{P} \mathbf{T}_0^{-1} = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \tag{10}$$

such that  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\delta$  are  $2 \times 2$  matrices. The scattering matrices are then finally calculated from

$$\mathbf{S}_{11} = -\delta^{-1}\gamma\tag{11}$$

$$\mathbf{S}_{12} = \delta^{-1} \tag{12}$$

$$\mathbf{S}_{21} = \alpha - \beta \delta^{-1} \gamma \tag{13}$$

$$\mathbf{S}_{22} = \beta \delta^{-1}.\tag{14}$$

These scattering matrices provide us with the transmission and reflection coefficients for both copolarization and cross-polarization via the relations

$$r_{MM} = \mathbf{S}_{11}^{(11)} \tag{15}$$

$$r_{EE} = \mathbf{S}_{11}^{(22)} \tag{16}$$

$$r_{EM} = \mathbf{S}_{11}^{(21)} \tag{17}$$

$$r_{ME} = \mathbf{S}_{11}^{(12)} \tag{18}$$

$$t_{MM} = \mathbf{S}_{21}^{(11)} \tag{19}$$

$$t_{EE} = \mathbf{S}_{21}^{(22)} \tag{20}$$

$$t_{EM} = \mathbf{S}_{21}^{(21)} \tag{21}$$

$$t_{ME} = \mathbf{S}_{21}^{(12)} \tag{22}$$

where e.g.  $\mathbf{S}_{11}^{(ij)}$  is the (ij)-element of matrix  $\mathbf{S}_{11}$ . This procedure is iterated over all angles of incidence. The relations (15)-(22) can be seen from the system equation for the scattering matrices

$$\begin{bmatrix} \mathbf{a}^{-}(0^{-}) \\ \mathbf{a}^{+}(l^{+}) \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{S}_{21} & \mathbf{S}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{a}^{+}(0^{-}) \\ \mathbf{a}^{-}(l^{+}) \end{bmatrix}$$
(23)

where the incoming modes are  $\mathbf{a}^+(0^-)$  and  $\mathbf{a}^-(l^+)=0$ , and the scattered modes are  $\mathbf{a}^-(0^-)$  and  $\mathbf{a}^+(l^+)$ , for the mode coefficients  $\mathbf{a}^\pm(z)=[a_{\mathrm{TM}}^\pm(z)\quad a_{\mathrm{TE}}^\pm(z)]^{\mathrm{T}}$ .



Figure 1: Task A, transmission co-polarization.



Figure 2: Task A, cross-polarization.

#### 1.2 Results

The numerical results are calculated for a slab thickness of  $l=5.2\lambda/\sqrt{\varepsilon_1\mu_1}$ . The material parameters of the metamaterial were chosen to be the same as in [2], with  $\Omega=0.9$ , relative permeabilities  $\mu_1=\mu_2=1$ ,  $\mu_3=1.12$ , and relative permittivities  $\varepsilon_1=\varepsilon_3=3$ ,  $\varepsilon_2=10$ . The co-polarized transmission coefficients can be found in Figure 1, and the cross-polarized transmission and reflection coefficients can be found in Figure 2. It is noted that in [2] the figure for  $|t_{ME}|=|t_{EM}|$  is incorrectly labeled and is actually the plot for  $|r_{ME}|=|r_{EM}|$ , and vice versa.

## 2 Varying the orientation of the $\Omega$ -elements

In this section, the analysis is repeated after re-orienting the principal axes of the  $\Omega$ -elements. Here, the straight rods are directed in the y-direction and the loop normal is directed in x. As such, the cross-coupling tensors  $\bar{\xi}$  and  $\bar{\zeta}$  must be modified with respect to this new orientation. When the unit cells are oriented like this, the y-component of an applied electric field is oriented parallel to the straight rods and will induce a magnetic field, due to the circular  $\Omega$  shape, in a direction normal to the loop, i.e. in  $\pm \hat{x}$ . By inspecting the constitutive relation (2) one finds that the following tensor will satisfy

this behaviour

$$\bar{\bar{\zeta}} = -i \begin{bmatrix} 0 & \Omega & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} . \tag{24}$$

Similarly, an applied magnetic field will have its x-component couple with the loop and induce an electric field directed along the rods in  $\pm \hat{y}$ . This is satisfied by

$$\bar{\bar{\xi}} = i \begin{bmatrix} 0 & 0 & 0 \\ \Omega & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 (25)

as found by inspection of (1).

#### 2.1 Results

The same parameter values as described in section 1.2 were used to calculate the response for the  $\Omega$  slab with the new orientation of the elements. The transmission and reflection coefficients can be found in Figures 3 and 4.



Figure 3: Task B, co-polarization.



Figure 4: task B, cross-polarization.

### References

- [1] Norgren M. Ei3302 propagation and scattering in multilayered structures. Lecture notes for the KTH course EI3302 Electromagnetic Waves in Complex Media, 2022.
- [2] Norgren M. and He S. Electromagnetic reflection and transmission for a dielectric- $\omega$  interface and an  $\omega$  slab. International Journal of Infrared and Millimeter Waves, 15(9):1537–1554, 1994.