Modelos machine learning

Javier Saavedra

Introduccion

Datos

Los datos están relacionados con campañas de marketing directo de una entidad bancaria portuguesa. Las campañas de marketing se basaron en llamadas telefónicas. A menudo, se requería más de un contacto con el mismo cliente, para poder acceder a si el producto (depósito a plazo bancario) estaría (o no) suscrito.

variables

La data corresponde a una serie de variables categoricas y numericas de tal forma que la variable de respuesta es de tipo binaria lo cual nos permite usar el machine learning para modelos de clasificación

Analisis exploratorio

Correlation Heatmap

AxesSubplot(0.125,0.125;0.775x0.755)

AxesSubplot(0.125,0.125;0.775x0.755)

AxesSubplot(0.125,0.125;0.775x0.755)

AxesSubplot(0.125,0.125;0.775x0.755)

AxesSubplot(0.125,0.125;0.775x0.755)

AxesSubplot(0.125,0.125;0.775x0.755)

AxesSubplot(0.125,0.125;0.775x0.755)

SVM

modelo base

El accuracy de test es: 88.50574712643679%

matriz de confusion

```
Confusion matrix, without normalization [[1001 0] [ 130 0]]
```

```
Normalized confusion matrix
[[1. 0.]
[1. 0.]]

Confusion matrix, without norm
```


modelo optimizado

El accuracy de test es: 90.36251105216623%

matriz de confusion

```
Confusion matrix, without normalization [[987 14] [ 95 35]]
Normalized confusion matrix [[0.99 0.01] [0.73 0.27]]
```


Random forest

El error (rmse) de test es: 0.28743483527642705

optimizacion del modelo

Valor óptimo de n estimators: 146

Evolución del out-of-bag-error vs número árboles 0.8 0.6 0.4 0.2 0.0 train scores out-of-bag scores max score -0.220 40 80 100 120 140 n_estimators

Valor óptimo de n_estimators: 146

Valor óptimo de max_features: 7

Valor óptimo de max_features: 10


```
{'max depth': None, 'max features': 11, 'n estimators': 146}
```

El nuevo error (rmse) de test es: 0.27922656563195436 versus el modelo estandar aplicado anteriormente: 0.28743483527642705

Se ah conseguido reducir el error en 0.008208269644472688

Redes neuronales

modelo base

Model: "sequential 1"

Layer (type)	Output	Shape	Param #
dense_5 (Dense)	(None,	50)	2150
dense_6 (Dense)	(None,	40)	2040
dense_7 (Dense)	(None,	40)	1640
dense_8 (Dense)	(None,	40)	1640
dense_9 (Dense)	(None,	1)	41

Total params: 7,511 Trainable params: 7,511 Non-trainable params: 0

comportamiento del modelo

```
36/36 [=============] - 0s 2ms/step
106/106 [==============] - 0s 2ms/step - loss: 0.2014 - accuracy: 0.9136
[0.20141176879405975, 0.9135693311691284]
```

conclusion

los modelos ML no ibtuvieron los mejores resultados en esta clasificacion por lo cual seria interesentante comparar los resultados con modelos clasicos como un modelo lineal generalizado ej: modelo logit.			