# Mole Concept

## **DPP-5 Solutions**



**Ashish Bibyan**B.Tech (IIT Delhi)

**Referral Code: ABSIRLIVE** 

#### 1. 1:2

**Sol.** 
$$H_2SO_4 + 2NaOH \rightarrow Na_2 SO_4 + 2H_2O$$
  
 $H_3PO_4 + NaOH \rightarrow NaH_2PO_4 + H_2O$   
Ratio of weights of  $H_2SO_4$  to  $H_3PO_4$   
eqt mass of  $H_2SO_4 = 98/2 = 49$   
eqt mass of  $H_3PO_4 = 98/1 = 98$   
Ratio = 1 : 2

#### **2**. 32

**Sol.** Cl has an equivalent weight of 35.5 Equivalent weight of S in SCl<sub>2</sub>

$$= \frac{\text{Atomic mass of S}}{\text{valency factor}} = \frac{32}{2} = 16$$

Equivalent wt. of S in  $S_2Cl_2 = \frac{32}{1} = 32$ 

#### 3. CuC

**Sol.** Equivalent wt. of copper chloride = Eq. wt. of Cl + Eq. wt. of Cu  $\Rightarrow 99.5 = 35.5 + \frac{63.5}{x}$ 

$$\Rightarrow x = 1$$

⇒ Compound is CuCl.

#### 4. 56, 3.36 Litres

**Sol.** Equivalents of sulphuric acid = Equivalents of metal = Equivalents of Hydrogen

$$\Rightarrow \frac{14.7}{49} = \frac{16.8}{M} \Rightarrow M = 56$$

 $\Rightarrow$  Equivalents of hydrogen =  $\frac{\text{volume}}{\text{Eq. volume}}$ 

$$\therefore \frac{14.7}{49} = \frac{V}{11.2}$$

$$\Rightarrow$$
 V = 3.36L

#### 5. (a) 13.7 mL, (b) 28.0L

**Sol.** Let volume of solution = 'V' L

(a) Normality =  $\frac{\text{equivalents of solute}}{\text{volume of solution (L)}}$ 

$$0.232 = \frac{3.17 \times 10^{-3}}{V}$$

$$\Rightarrow$$
 V<sub>solution</sub> = 13.7 mL

(b) 
$$0.232 = \frac{6.5}{V}$$

$$V = 28.0L$$

#### 6. (a) 2, (b) 0.5, (c) 0.1

**Sol.** (a) No. of equivalents =  $1 \times 2 = 2$  eqts

(b) No. of equivalents =  $1 \times 0.5 = 0.5$  eqts

(c) No. of equivalents =  $0.5 \times 0.2 = 0.1$  eqts

#### 7. (a) 12.5mL (b) 3.07g

Sol. (a) Let volume of  $H_2SO_4 = Vl$  eqts of  $H_2SO_4 =$  eqts of NaOH.

$$\Rightarrow 5 \times V = \frac{2.5}{40}$$

$$\Rightarrow$$
 V = 12.5 m $l$ 

(b) Mass of pure H<sub>2</sub>SO<sub>4</sub>

= 
$$12.5 \times 10^{-3} \times 5 = \frac{\text{wt.}}{49}$$
  
 $\Rightarrow \text{ wt.} = 3.07\text{g}$ 

**Sol.** moles of  $H_2SO_4 = \frac{93.2}{98}$ 

$$V_{\text{solution}} = \frac{100}{1.835} \,\text{mL}$$

Molarity = 
$$\frac{93.2 \times 1.835 \times 1000}{98 \times 100}$$

$$= 17.45 M$$

Normality =  $17.45 \times 2 = 34.9N$ 

$$N_1 V_1 = N_2 V_2$$

$$34.9V = 3 \times 0.5$$

$$V = 43 \text{ mL}$$

#### . 29 mL

**Sol.** Moles of HCl =  $\frac{38}{36.5}$ 

$$V_{\text{solution}} = \frac{100}{1.19} \text{mL}$$

Molarity = 
$$\frac{38 \times 1.19 \times 1000}{36.5 \times 100}$$

Normality = Molarity (Z = 1)

$$\mathbf{N}_1 \mathbf{V}_1 = \mathbf{N}_2 \mathbf{V}_2$$

$$12.389V = 18 \times \frac{1}{50}$$

$$V = 29 \text{ mL}.$$

### 10. 0.0556N, 2.22 mg/mL

Sol. Applying normality Eqn.

$$\mathbf{N}_1 \mathbf{V}_1 = \mathbf{N}_2 \mathbf{V}_2$$

$$\Rightarrow 50 \times N = 27.8 \times 0.1$$

$$\Rightarrow$$
 N = 0.0556

1 mL has = 
$$\frac{0.0556}{1000}$$
 eqts  
=  $5.56 \times 10^{-5}$  eqts

$$\frac{w}{40} = 5.56 \times 10^{-5}$$

$$w = 2.22 \times 10^{-3} g = 2.22 \text{ mg/mL}$$

#### 11. 203.8 g/eq

**Sol.** Let equivalent wt. of acid = E g

No. of equivalents of acid =  $\frac{1.243}{E}$ 

$$\Rightarrow \frac{1.243}{E} = \frac{31.72}{1000} \times 0.1923$$

 $\Rightarrow$  x = 203.8 g/eq.

**Sol.** 18 g =  $N_A$ 36 g =  $2N_A$ 

13. (b

**Sol.** 3/2 moles of  $O_2$  combines with = 2 moles g Al

 $\Rightarrow$  net = 2 × 27 = 54 g

14. (c)

**Sol.** 2 moles of Al react with 3/2 moles of O to give 1 mol of Al oxide.

15. (a

**Sol.** 18 mL =  $6.02 \times 10^{23}$  molecules 0.0018 mL =  $6.02 \times 10^{19}$ 

16. (d

**Sol.** 3 BaCl<sub>2</sub> + 2Na<sub>3</sub>PO<sub>4</sub>  $\rightarrow$  Ba<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> + 6 NaCl 0.5 mol 0.2 mol

 $3 \text{ mol } BaCl_2 = 2 \text{ mol } Na_3PO_4$ 

0.5 mol BaCl<sub>2</sub> =  $\frac{2}{3} \times 0.5 = 0.33$  mol Na<sub>3</sub>PO<sub>4</sub>

 $\Rightarrow$  Na<sub>3</sub>PO<sub>4</sub> = LR

 $2 \text{ mol } \text{Na}_3\text{PO}_4 \equiv 1 \text{ mol } \text{Ba}_3(\text{PO}_4)_2$ 

 $0.2 \text{ mol } \text{Na}_3\text{PO}_4 \equiv 0.1 \text{ mol } \text{Ba}_3(\text{PO}_4)_2$ 

17. (b)

**Sol.** (b)  $5 \times 28 = 140 \text{ g}$ 

(c)  $0.1 \times 108 = 10.8 \text{ g}$ 

(d) 6 g

18. (c)

**Sol.** 18 g =  $6.02 \times 10^{23}$  atoms  $\Rightarrow 10 \times 6.02 \times 10^{23}$  ions

19. (d)

**Sol.** 18 mL  $\equiv$  N<sub>A</sub> molecules

 $1 L \equiv \frac{N_A}{18} \times 1000 = 55.55 N_A$