

«Построение графиков функции y = sinx u y = cosx».

Цели: 1)Повторить правила преобразований функции:

$$y = f(x) + m$$

$$y = f(x + t)$$

$$y = af(x)$$

2) Научиться строить графики вида

$$y = f(x + t) + m$$

3)Закрепить умения, выполнив практические задания.

Построение графиков функций

$$y = sinx + m$$
 u $y = cosx + m$.

Преобразование: $y = \sin x + m$ Сдвиг $y = \sin x$ по оси у вверх, m > 0

Преобразование: $y = \cos x + m$ Сдвиг $y = \cos x$ по оси у вверх, m > 0

Преобразование: $y = \sin x + m$ Сдвиг $y = \sin x$ по оси у вниз, m < 0

Преобразование: $y = \cos x + m$ Сдвиг $y = \cos x$ по оси y вниз, m < 0

Параллельный перенос графика вдоль оси Оу

График функции y=f(x)+т получается параллельным переносом графика функции y=f(x), вверх на т единиц, если т>0, или вниз, если т<0.

Задание:

Постройте в одной координатной плоскости графики функций:

$$y_1 = \sin x;$$

$$y_2 = \sin x + 2$$
;

$$y_3 = \sin x - 2$$
.

Проверка: $y_1 = \sin x$; $y_2 = \sin x + 2$; $y_3 = \sin x - 2$.

Задание:

Постройте в одной координатной плоскости графики функций:

$$y_1 = \cos x;$$

$$y_2 = \cos x + 2;$$

$$y_3 = \cos x - 2$$
.

Проверка: $y_1 = \cos x$; $y_2 = \cos x + 2$; $y_3 = \cos x - 2$.

Построение графиков функций

y = sin(x+t) u y = cos(x+t).

Преобразование: y = sin(x + t) сдвиг y=f(x) по оси x влево, t>0

Преобразование: y = cos(x + t) сдвиг y=f(x) по оси x влево, t>0

Преобразование: y = sin(x + t) сдвиг y=f(x) по оси x вправо, t < 0

Преобразование: y = cos(x + t) сдвиг y=f(x) по оси x вправо, t < 0

Параллельный перенос графика вдоль оси Ох

График функции y = f(x + t) получается параллельным переносом графика функции y=f(x) по оси x на |t| единиц масштаба влево, если t > 0 и вправо, если t < 0.

Задание:

Постройте в одной координатной плоскости графики функций:

$$y_1 = \sin x;$$

$$y_2 = \sin(x + \frac{\pi}{2});$$

$$y_3 = \sin(x - \frac{3\pi}{2}).$$

Проверка:

$$y_1 = \sin x;$$
 $y_2 = \sin(x + \frac{\pi}{2});$ $y_3 = \sin(x - \frac{3\pi}{2}).$

Задание:

Постройте в одной координатной плоскости графики функций:

$$1)y_1 = \cos x;$$

2)
$$y_2 = \cos(x + \pi);$$

3)
$$y_3 = \cos(x - \frac{\pi}{3})$$
.

Προβερκα:
$$y_1 = \cos x$$
; $y_2 = \cos(x + \pi)$; $y_3 = \cos(x - \frac{\pi}{3})$.

Построение графиков функций $y = asinx u \ y = acosx, \ a > 1 \ u \ 0 < a < 1$

Преобразование: y = asinx, a > 1

Преобразование: y = acosx, a > 1

Преобразование: y = asinx, 0 < a < 1

Преобразование: y = acosx, 0 < a < 1

Построение графика функции y=af(x)

График функции **y=af(x)** получаем растяжением графика функции **y=f(x)** с коэффициентом **a** от оси Ох,если **a>1** и сжатием к оси Ох с коэффициентом 0< **a** <1.

Постройте в одной координатной плоскости графики функций:

$$y_1 = \sin x;$$

$$y_2 = 2\sin x$$

$$y_3 = \frac{1}{4} \sin x$$

Проверка: $y_1 = \sin x$; $y_2 = 2\sin x$; $y_3 = \frac{1}{4} \sin x$

Постройте в одной координатной плоскости графики функций:

$$y_1 = \cos x;$$

$$y_2 = 3\cos x$$

$$y_3 = \frac{1}{4} \cos x$$

Проверка: $y_1 = \cos x$; $y_2 = 3\cos x$; $y_3 = \frac{1}{4}\cos x$

Задание:

Постройте графики функций:

$$y_1 = \sin(x - \frac{\pi}{3}) + 2$$

$$y_2 = \cos(x + \pi) - 2$$

Проверка:
$$y_1 = \sin(x - \frac{\pi}{3}) + 2$$

Проверка:
$$y_2 = \cos(x + \frac{\pi}{3}) - 2$$

<u>Вывод:</u>

График функции y=f(x + t) + т может быть получен из графика функции y=f(x) с помощью двух последовательных сдвигов на t единиц вдоль оси Ох и на т единиц вдоль оси Оу.

Постройте самостоятельно графики функций:

Вариант 1.

1.
$$y = \cos(x - \frac{\pi}{4});$$

1.
$$y = sinx + 2,5$$
;

$$2. y = 3sinx$$

3.
$$y = \cos(x - \frac{\pi}{3}) + 2;$$

5.
$$y = \frac{1}{4}sin(x - \frac{\pi}{2}) + 2;$$

1.
$$y=\sin(x-\frac{\pi}{3});$$

2.
$$y = \cos x - 2.5$$
;

3.
$$y = \frac{1}{2} \cos x$$

4.
$$y=\sin(x-\frac{\pi}{4})+2;$$

5.
$$y=3\cos(x+\frac{\pi}{2})-1;$$

Вариант 1. Проверка.

$$y = \cos(x - \frac{\pi}{4});$$
 $y = \sin x + 2,5.$

Вариант 1. Проверка. y =3sinx.

Вариант 1. Проверка. $y = \cos(x - \frac{\pi}{3}) + 2$.

Вариант 1. Проверка. $y = \frac{1}{4}sin(x - \frac{\pi}{2}) + 2$

Вариант 2. Проверка.

$$y=\sin(x-\frac{\pi}{3}); y=\cos x-2,5.$$

Вариант 2. Проверка. $y = \frac{1}{2}\cos x$

Вариант 2. Проверка. $y=\sin(x-\frac{\pi}{4})+2;$

Вариант 1.Проверка. $y = 2,5\cos(x + \frac{\pi}{2})-1;$

