CS3383, Winter 2019 Assignment # 8

Rasoul Shahsavarifar

Faculty of Computer Science, UNB	Due time: Monday, April/8/2019, 13:30
Student's full name:	Student ID:

Note:

- No submission after the due time will be accepted.
- The full credit will be given only for correct solutions that are described clearly.

Question 1 Matrices Multiplication:

- (a) (5 marks) Given two square matrices $A_{n\times n}$ and $B_{n\times n}$, design a multithreded algorithm (in pseducode) that computes $A\times B$ with work $\Theta(n^3)$ but span only $\Theta(\log n)$.
- (b) (6 marks) Using your algorithm in (a) as a base, design a multithreaded algorithm that compute $A \times B$ where $A_{p \times q}$ and $B_{q \times r}$ are two given matrices.
- (c) (6 marks) Analyze both of your algorithms in (a) and (b).

Note: in part (b), your algorithm should be highly parallel even if any of p, q, and r are 1.

Question 2 (a) (5 marks) Given a square matrix $A_{n\times n}$, design an efficient multithreaded algorithm that compute A^T (A-transpose) in place by using a divide-and-conquer approach (i.e. dividing the matrix recursively into four $(n/2 \times n/2)$ submatrices C, D, E, and F.)

$$A = \begin{bmatrix} C & D \\ E & F \end{bmatrix}_{n \times n},$$

where the dimensions of all C, D, E, and F are $(\frac{n}{2} \times \frac{n}{2})$

(b) (3 marks) Analyze your algorithm in (a).