ADT List I

Domain of the ADT List:

 $\mathcal{L} = \{I | I \text{ is a list with elements of type TElem, each having a unique position in I of type TPosition} \}$

ADT List II

- init(I)
 - descr: creates a new, empty list
 - pre: true
 - **post:** $l \in \mathcal{L}$, l is an empty list

ADT List III

- first(I)
 - descr: returns the TPosition of the first element
 - pre: $I \in \mathcal{L}$
 - **post:** $first \leftarrow p \in TPosition$

$$p = egin{cases} ext{the position of the first element from I} & ext{if I}
eq \emptyset \ & ext{} & ext$$

ADT List IV

- last(l)
 - descr: returns the TPosition of the last element
 - pre: $l \in \mathcal{L}$
 - post: $last \leftarrow p \in TPosition$ $p = \begin{cases} \text{the position of the last element from I} & \text{if I} \neq \emptyset \\ \bot & \text{otherwise} \end{cases}$

ADT List V

- valid(I, p)
 - descr: checks whether a TPosition is valid in a list
 - pre: $l \in \mathcal{L}, p \in TPosition$
 - post: $valid \leftarrow \begin{cases} true & \text{if p is a valid position in I} \\ false & otherwise \end{cases}$

ADT List VI

- next(I, p)

 descr: goes to the next TPosition from a list

 pre: $I \in \mathcal{L}$, $p \in TPosition$, valid(I, p)• post: $next \leftarrow q \in TPosition$ $q = \begin{cases} \text{the position of the next element after p} & \text{if p is not the last position} \\ & & otherwise \end{cases}$
 - throws: exception if p is not valid

ADT List VII

- previous(I, p)
 - descr: goes to the previous TPosition from a list
 - pre: $l \in \mathcal{L}, p \in TPosition, valid(l, p)$
 - post:

$$previous \leftarrow q \in TPosition$$

$$q = \begin{cases} \text{the position of the element before p} & \text{if p is not the first position} \\ \bot & \textit{otherwise} \end{cases}$$

• throws: exception if p is not valid

ADT List VIII

- getElement(I, p)
 - descr: returns the element from a given TPosition
 - pre: $l \in \mathcal{L}, p \in TPosition, valid(l, p)$
 - post: getElement ← e, e ∈ TElem, e = the element from position p from I
 - throws: exception if p is not valid

ADT List IX

- position(I, e)
 - descr: returns the TPosition of an element
 - pre: $l \in \mathcal{L}, e \in TElem$
 - post:

$$position \leftarrow p \in TPosition$$

$$p = \begin{cases} \text{the first position of element e from I} & \text{if } e \in I \\ \bot & \textit{otherwise} \end{cases}$$

ADT List X

- setElement(I, p, e)
 - descr: replaces an element from a TPosition with another
 - **pre:** $l \in \mathcal{L}, p \in TPosition, e \in TElem, valid(l, p)$
 - post: I' ∈ L, the element from position p from I' is e, setElement ← el, el ∈ TElem, el is the element from position p from I (returns the previous value from the position)
 - throws: exception if p is not valid

ADT List XI

- addToBeginning(I, e)
 - descr: adds a new element to the beginning of a list
 - pre: $l \in \mathcal{L}, e \in TElem$
 - **post:** $l' \in \mathcal{L}$, l' is the result after the element e was added at the beginning of l

ADT List XII

- addToEnd(I, e)
 - descr:adds a new element to the end of a list
 - pre: $l \in \mathcal{L}, e \in TElem$
 - **post:** $I' \in \mathcal{L}$, I' is the result after the element e was added at the end of I

ADT List XIII

- addBeforePosition(I, p, e)
 - descr: inserts a new element before a given position
 - **pre:** $l \in \mathcal{L}, p \in TPosition, e \in TElem, valid(l, p)$
 - **post:** $l' \in \mathcal{L}$, l' is the result after the element e was added in l before the position p
 - throws: exception if p is not valid

ADT List XIV

- addAfterPosition(I, p, e)
 - descr: inserts a new element after a given position
 - pre: $l \in \mathcal{L}, p \in TPosition, e \in TElem, valid(l, p)$
 - **post:** $l' \in \mathcal{L}$, l' is the result after the element e was added in I after the position p
 - throws: exception if p is not valid

ADT List XV

- remove(I, p)
 - descr: removes an element from a given position from a list
 - pre: $l \in \mathcal{L}, p \in TPosition, valid(l, p)$
 - **post:** $remove \leftarrow e, e \in TElem, e$ is the element from position p from $I, I' \in \mathcal{L}, I' = I e$.
 - throws: exception if p is not valid

ADT List XVI

- remove(I, e)
 - descr: removes the first occurrence of a given element from a list
 - pre: $l \in \mathcal{L}, e \in TElem$
 - post:

$$remove \leftarrow \begin{cases} true & \text{if } e \in I \text{ and it was removed} \\ false & otherwise \end{cases}$$

ADT List XVII

- search(I, e)
 - descr: searches for an element in the list
 - pre: $l \in \mathcal{L}, e \in TElem$
 - post:

$$search \leftarrow \begin{cases} true & \text{if } e \in I \\ false & otherwise \end{cases}$$

ADT List XVIII

- isEmpty(I)
 - descr: checks if a list is empty
 - pre: $I \in \mathcal{L}$
 - post:

$$isEmpty \leftarrow \begin{cases} true & \text{if } I = \emptyset \\ false & otherwise \end{cases}$$

ADT List XIX

- size(I)
 - descr: returns the number of elements from a list
 - pre: $l \in \mathcal{L}$
 - **post:** *size* ← the number of elements from I

ADT List XX

- destroy(I)
 - descr: destroys a list
 - pre: $l \in \mathcal{L}$
 - post: I was destroyed

ADT List XXI

- iterator(I, it)
 - descr: returns an iterator for a list
 - pre: $l \in \mathcal{L}$
 - **post**: $it \in \mathcal{I}$, it is an iterator over l, the current element from it is the first element from l, or, if l is empty, it is invalid