Understanding the genetic architecture of gene expression

Heather E. Wheeler, PhD

The University of Chicago hwheeler@bsd.uchicago.edu

February 13, 2015

PrediXcan Step 1: Build and Test Predictors

PrediXcan Step 2: Build database of Best Predictors

Additive model of gene expression trait trained in reference transcriptome datasets

$$T = \sum_{k} w_k X_k + \epsilon$$

$$GReX$$

Weights stored in PredictDB

PrediXcan Step 3: Impute gene expression and test for association with phenotype

Explore the Genetic Architecture of Transcriptome Regulation

Optimizing predictors for PrediXcan also tells us about the underlying genetic architecture of gene expression.

We can ask what proportion of genes have:

- cis vs. trans effects
- sparse vs. polygenic effects
- cross-tissue vs. tissue-specific effects

Primary cohort: DGN

- Battle et al. "Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals." Genome Research 2014, 24(1):14-24
- Whole blood from Depression Genes and Networks study
- N=922
- RNA-seq: "normalized gene-level expression data used for trans-eQTL analysis. The data was normalized using HCP (Hidden Covariates with Prior) where the parameters were optimized for detecting 'trans' trends"
- 600K genotypes: I have imputed to 1000 Genomes, but some earlier analyses were genotyped data only.

cis vs. trans effects

Estimate the heritability of gene expression in a joint analysis: localGRM (SNPs w/in 1Mb) + globalGRM (all SNPs)

DGN-WB GCTA

Local (joint) sorted h² estimates with 95% CI from GCTA

https://github.com/hwheeler01/cross-tissue/blob/master/analysis/sources/heritab_analysis.html

Global (joint) sorted h² estimates with 95% CI from GCTA

https://github.com/hwheeler01/cross-tissue/blob/master/analysis/sources/heritab_analysis.html

100 permutations to determine expected distribution of h^2 estimates

100 permutations to determine expected distribution of h² estimates

Sort the h² from each permutation

Sort the h² from each permutation

Sort the h² from each permutation

Modeling cross-tissue expression

Linear mixed effect model

```
library(lme4)

fit <- lmer(expression ~ (1|SUBJID) + TISSUE
+ GENDER + PEERs)

#cross-tissue expression
fitranef <- ranef(fit)

#tissue-specific expression
fitresid <- resid(fit)</pre>
```