Principal component methods

Readings for today

• Chapter 6: Linear model selection and regularization. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with applications in R (Vol. 6). New York: Springer

Topics

1. Principal components analysis

2. Principal component regression

3. Partial least squares

Principal component analysis

Dimensionality

Dimensionality of a model: n x p

As n →p, dimensionality increases & model variance increases

$$\begin{pmatrix} x_{1,1} \\ \cdots \\ x_{n,1} \end{pmatrix} \rightarrow \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,15} \\ \cdots & & & \\ x_{n,1} & x_{n,2} & \cdots & x_{n,15} \end{pmatrix} \rightarrow \uparrow \text{ model flexibility}$$

How do you reduce the dimensionality of your model?

How to deal with high model dimensionality

So far we have covered:

- 1. Feature selection by comparing lower dimensional variants of your model.
 - Best subset selection
 - Forward/Backward stepwise selection
- 2. Apply a sparsity constraint to your model during fitting.
 - Ridge regression
 - LASSO
 - Elastic Net

Principal component analysis (PCA)

What if you reduce the dimension of X itself?

Low dimensional components

The first principal component (Z_1) explains the most variance about the relationship between X_1 and X_2 .

PCA algorithm

Step 1: Find the first component (Z_1) loading.

$$\phi_1 = \arg\max(\frac{\phi_1' X' X \phi_1}{\phi_1' \phi_1})$$

Step 2: Take the residuals after accounting for Z_1 .

$$\hat{X}_m = X - \sum_{s=1}^{m-1} X \phi_s \phi_s'$$

Step 3: Calculate the next component (Z_m) .

$$\phi_m = \arg\max(\frac{\phi'_m \hat{X}'_m \hat{X}_m \phi_m}{\phi'_m \phi_m})$$

Step 4: Repeat Steps 2-3 until m = p

PCA algorithm

Example: 10 dimensional X

PCA vs. Factor Analysis

PCA:
$$X = Z \phi^{-1}$$

$$n \times p \qquad n \times m \qquad m \times p$$

Analysis (FA):
$$X^T = L$$
 F

$$p \times n \quad p \times m \quad m \times n$$

Factor loading matrix with matrix with up front.

- PCA is better for exploratory analysis.
- FA is better for hypothesis testing.
- PCA explains all variance in X.
- FA <u>assumes</u> lower dimensionality in X.

Principal component regression

Principal component regression (PCR)

Goal: Reduce the dimensions of X using PCA and use the strongest components in Z as your predictor variables.

PCA + linear regression:

PCR algorithm

Step 1: Calculate $Z = \phi X$.

Step 2: Identify the k components that explain $1-\alpha$ (e.g., (1-0.05)=95%) of the variance in X.

Step 3: Fit your regression model with the k components identified in Step 2 (i.e., learn $\hat{Y} = \hat{f}(Z_{1-k})$)

Projecting back to X

Can determine the regression weights in X (i.e., $\hat{\beta}_j$) that best resolve the bias-variance tradeoff via the coefficients learned in Z (i.e., $\hat{\theta}_j$).

PCR to linear regression:

$$\hat{y}_i = \sum_{m=1}^k \hat{\theta}_m Z_{i,m} \qquad Z_m = \sum_{j=1}^p \phi_{j,m} X_j$$

$$= \sum_{m=1}^k \hat{\theta}_m \sum_{j=1}^p \phi_{j,m} X_j$$

$$= \sum_{j=1}^p \sum_{m=1}^k \hat{\theta}_m \phi_{j,m} X_j$$

Best regression model:

$$\hat{\beta}_j = \sum_{m=1}^k \hat{\theta}_m \phi_{j,m}$$

Even when n is close to p.

Partial least squares

Partial least squares (PLS)

Goal: Find the lower dimensions in X that maximize Cov[X, Y]

PLS vs. PCR

 PLS and PCR produce qualitatively different results depending on how the low dimensional components in X associate with Y.

Take home message

 Principal component methods offer an easy way of resolving the bias-variance tradeoff in high dimensionality (i.e., high variance) contexts by leveraging any correlational structure in your predictor variables.