Discrete Mathematics

Dinesh Naik Manjunath K Vanahalli

Department of Information Technology, National Institute of Technology Karnataka, India

November 17, 2020

Mathematical induction, is a technique for proving results or establishing statements for natural numbers. This part illustrates the method through a variety of examples.

Definition

Mathematical Induction is a mathematical technique which is used to prove a statement, a formula or a theorem is true for every natural number.

The technique involves two steps to prove a statement, as stated below -

Step 1(Base step) - It proves that a statement is true for the initial value.

Step 2(Inductive step) – It proves that if the statement is true for the n^{th} iteration (or number n), then it is also true for $(n+1)^{th}$ iteration (or number n+1).

How to Do It

Step 1 - Consider an initial value for which the statement is true. It is to be shown that the statement is true for n = initial value.

Step 2 – Assume the statement is true for any value of n = k. Then prove the statement is true for n = k+1. We actually break n = k+1 into two parts, one part is n = k (which is already proved) and try to prove the other part.

Problem 1

 $3^n - 1$ is a multiple of 2 for n = 1, 2, ...

Solution

Step 1 – For
$$n=1,3^1-1=3-1=2$$
 which is a multiple of 2

Step 2 - Let us assume 3^n-1 is true for n=k , Hence, 3^k-1 is true (It is an assumption)

We have to prove that $3^{k+1}-1$ is also a multiple of 2

$$3^{k+1}-1=3\times 3^k-1=(2\times 3^k)+(3^k-1)$$

The first part $(2 \times 3k)$ is certain to be a multiple of 2 and the second part (3k-1) is also true as our previous assumption.

Hence, $3^{k+1}-1$ is a multiple of 2.

So, it is proved that 3^n-1 is a multiple of 2.

Problem 2

$$1+3+5+\ldots+(2n-1)=n^2$$
 for $n=1,2,\ldots$

Solution

Step 1 - For $n=1, 1=1^2$, Hence, step 1 is satisfied.

Step 2 – Let us assume the statement is true for n=k .

Hence, $1+3+5+\cdots+(2k-1)=k^2$ is true (It is an assumption)

We have to prove that $1+3+5+\ldots+(2(k+1)-1)=(k+1)^2$ also holds

$$1+3+5+\cdots+(2(k+1)-1)$$

$$=1+3+5+\cdots+(2k+2-1)$$

$$=1+3+5+\cdots+(2k+1)$$

$$=1+3+5+\cdots+(2k-1)+(2k+1)$$

$$=k^2+(2k+1)$$

$$=(k+1)^2$$

So, $1+3+5+\cdots+(2(k+1)-1)=(k+1)^2$ hold which satisfies the step 2.

Hence, $1+3+5+\cdots+(2n-1)=n^2$ is proved.

Problem 3

Prove that $(ab)^n = a^n b^n$ is true for every natural number n

Solution

Step 1 – For
$$n=1, (ab)^1=a^1b^1=ab$$
 , Hence, step 1 is satisfied.

Step 2 – Let us assume the statement is true for n=k , Hence, $(ab)^k=a^kb^k$ is true (It is an assumption).

We have to prove that $\ (ab)^{k+1}=a^{k+1}b^{k+1}$ also hold

Given,
$$(ab)^k = a^k b^k$$

Given,
$$(ab)^k = a^k b^k$$

Or,
$$(ab)^k(ab)=(a^kb^k)(ab)$$
 [Multiplying both side by 'ab']

Or,
$$(ab)^{k+1}=(aa^k)(bb^k)$$

Or,
$$(ab)^{k+1} = (a^{k+1}b^{k+1})$$

Hence, step 2 is proved.

So, $(ab)^n = a^n b^n$ is true for every natural number n.

Strong Induction

Strong Induction is another form of mathematical induction. Through this induction technique, we can prove that a propositional function, P(n) is true for all positive integers, n, using the following steps –

- Step 1(Base step) It proves that the initial proposition $\ P(1)$ true.
- Step 2(Inductive step) It proves that the conditional statement $[P(1) \land P(2) \land P(3) \land \cdots \land P(k)] \rightarrow P(k+1)$ is true for positive integers k.