

What exactly are graphs?

- We've actually been working with graphs since day 1!
 - linked lists
 - all types of trees
- A graph is simply a group of connected nodes
- Unlike linked lists and trees, the graphs we are talking about come in all sorts of different shapes and can be represented in a number of ways.
 - For example, cyclic graphs
- Almost no restrictions

Ways to represent Graphs and Terminology

- You may hear people referring to nodes and pointers as vertices and edges respectively instead.
 These are pretty much synonymous.
- Graphs can be directed or undirected, referring to whether edges point one way or both ways
- Edges and vertices have a relationship that helps us better understand their Big O complexities:
 - \circ E \leq V², where E = edges and V = vertices
- Ways to represent graphs:
 - Matrix
 - Adjacency Matrix
 - Adjacency List

Matrices

- Graphs represented as a 2D array
- Typically an 4-directional undirected graph
- Coordinates represented with row and column indices
 - We can find values by using grid[row][col]
 - Some also use x and y, but I recommend against this because I've seen many people get confused during mock interviews.
- Commonly used for path representation

0 = free 1 = blocked

Adjacency Matrices

- The cells of a adjacency matrix are NOT nodes
- Instead, the indices represent vertices, and the values in the cells represent edges between vertices
- Always a square since both sides represent vertices
- Examples
 - o adjMatrix[1][2] == 1
 - An edge exists from vertex 1 to vertex 2
 - adjMatrix[2][1] == 1
 - An edge exists from vertex 2 to vertex 1
 - Order matters!!
 - o adjMatrix[0][1] == 0
 - No edge exists from vertex 0 to vertex 1
 - adjMatrix[1][1] == 1
 - There exists a self looping edge at vertex 1
- Rare because it is space inefficient. Complexity is $O(V^2)$

adjMatrix=[[0,	0,	0,	0],	
	[1,	1,	0,	0],	
	[0,	0,	0,	1]	
	[0,	1,	0,	0]]

	0	1	2	3
0	0	0	0	0
1	1	1	0	0
2	0	0	0	1
3	0	1	0	0

Adjacency Lists

- Very common way to represent a graph
- Uses nodes, similar to linked lists or trees
- Unlike linked lists or trees, there is no predefined number of connected neighbors
- We can represent neighbors in an array or set
- Much more space efficient than adjacency matrix since we only represent nodes that actually exist.
- Sometimes may have to build the adjacency list ourselves

```
class GraphNode :
    def __init__(val) :
        self.val = val
        self.neighbors = []
```

```
directed graph:

graph = {
    0: [],
    1: [0,1],
    2: [3],
    3: [1]
```

undirected graph: graph = { 0: [1], 1: [0,3], 2: [3], 3: [1,2]

Adjacency Matrix vs List

- Analogy: If you had to store 6oz of water, would you do so with a 5 gallon container, or an 8oz cup?
- If the majority of your matrix is empty, then why use it? Just list each value instead. However, if your list is really long, why not just use a matrix to condense it?
- The decision is arbitrary, but generally a Adjacency Matrix would have an advantage when the graph is dense with edges.

Questions?

