Package 'FlowRegEnvCost'

September 29, 2017

Type Package
Title The Environmental Costs of Flow Regulation
Version 0.1.0
Author Silvestre García de Jalón; Javier Martínez- López; Marta González del Tánago; Carlos Alonso; Diego García de Jalón
Maintainer Javier Martínez-López <javier.martinez@bc3research.org></javier.martinez@bc3research.org>
Description An application to calculate the daily environmental costs of river flow regulation by dams
Depends R (>= 2.10)
<pre>URL https://github.com/garciadejalon/FlowRegEnvCost</pre>
BugReports https://github.com/garciadejalon/FlowRegEnvCost/issues License MIT + file LICENSE Encoding UTF-8 LazyData true RoxygenNote 6.0.1 Imports zoo NeedsCompilation no
R topics documented:
adm_range 2 adm_range_plot 2 col_per_year 3 daily_cost 4 daily_cost_plot 5 flowdata 6 impact_reg 6 impact_reg_multi0 7 impact_reg_multi_plot 8 impact_reg_plot 9 structure_date 9

2 adm_range_plot

Index 11

adm_range Calculates the admissible range of flow variability

Description

Calculates the admissible range of flow variability

Usage

```
adm_range(First_year, Last_year, Year_impact)
```

Arguments

First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)

Value

Calculates the admissible range of flow variability based on the flow data during the pre-impact period.

Examples

```
data(flowdata)
adm_range(First_year=1964, Last_year=2011, Year_impact=1988)
```

adm_range_plot	Plots the admissible range of flow variability

Description

Plots the admissible range of flow variability

Usage

```
adm_range_plot(River_name, First_year, Last_year, Year_impact)
```

col_per_year 3

Arguments

River_name	Name of the river as character (e.g.: River_name = "Esla")
First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)

Value

Plots the admissible range of flow variability based on the flow data during the pre-impact period.

Examples

```
data(flowdata)
adm_range_plot(River_name = "Esla", First_year=1964, Last_year=2011, Year_impact=1988)
```

col_per_year	Sorts the flow data per years - Each year is a column	

Description

Sorts the flow data per years - Each year is a column

Usage

```
col_per_year(First_year, Last_year)
```

Arguments

First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	Last year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)

Value

The transformed dataframe per year is ready for calculations

```
data(flowdata)
col_per_year(First_year=1964,Last_year=2011)
```

4 daily_cost

daily_cost Calculates the daily environmental costs of flow regulation	
--	--

Description

Calculates the daily environmental costs of flow regulation

Usage

```
daily_cost(First_year, Last_year, Year_evaluated, Year_impact, a_low, a_high,
   b_low, b_high)
```

Arguments

First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)	
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)	
Year_evaluated	Year when the environmental impact is evaluated (e.g.: Year_evaluated = 2010)	
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_imp = 1988)	
a_low	Coefficient a of Low-flow impact of function ku (e.g.: a_low = 0.05)	
a_high	Coefficient a of High-flow impact of function ku (e.g.: a_high = 0.01)	
b_low	Coefficient b of Low-flow impact of function ku (e.g.: b_low = 2)	
b_high	Coefficient b of High-flow impact of function ku (e.g.: b_high = 2)	

Value

Calculates the daily environmental costs of flow regulation for a specific year evaluated.

```
data(flowdata)
daily_cost(First_year=1964, Last_year=2011, Year_evaluated=2010,
Year_impact=1988, a_low = 0.05, a_high = 0.01, b_low = 2, b_high = 2)
```

daily_cost_plot 5

daily_cost_plot	Plots the daily environmental costs of flow regulation	
-----------------	--	--

Description

Plots the daily environmental costs of flow regulation

Usage

```
daily_cost_plot(River_name, First_year, Last_year, Year_evaluated, Year_impact,
   a_low, a_high, b_low, b_high)
```

Arguments

River_name	Name of the river written as character (e.g.: River_name = "Esla")	
First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)	
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)	
Year_evaluated	Year when the environmental impact is evaluated (e.g.: Year_evaluated = 2010)	
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impa = 1988)	
a_low	Coefficient a of Low-flow impact of function ku (e.g.: a_low = 0.05)	
a_high	Coefficient a of High-flow impact of function ku (e.g.: a_high = 0.01)	
b_low	Coefficient b of Low-flow impact of function ku (e.g.: b_low = 2)	
b_high	Coefficient b of High-flow impact of function ku (e.g.: b_high = 2)	

Value

Plots the daily environmental costs of flow regulation for a specific year evaluated.

```
data(flowdata)
daily_cost_plot(River_name = "Esla", First_year=1964, Last_year=2011,
Year_evaluated=2010, Year_impact=1988, a_low = 0.05, a_high = 0.01,
b_low = 2, b_high = 2)
```

6 impact_reg

flowdata	River water flow data.

Description

A dataset containing daily river water flow data for the Esla river at the Ria \tilde{n} o dam (Northern Spain) from 01/10/1964 to 30/09/2011.

Usage

flowdata

Format

An example data frame with 17166 rows and 2 variables:

Date Date

Flow Water flow, in m³/s

Source

```
https://doi.org/10.1007/s11269-017-1663-0
```

impact_reg Calculates the daily environmental impact of flow regulation (high and low-flow impact)	igh-
---	------

Description

Calculates the daily environmental impact of flow regulation (high- and low-flow impact)

Usage

```
impact_reg(First_year, Last_year, Year_evaluated, Year_impact)
```

Arguments

First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_evaluated	Year when the environmental impact is evaluated (e.g.: Year_evaluated = 2010)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)

impact_reg_multi0 7

Value

Calculates the daily environmental impact of flow regulation (high- and low-flow impact).

Examples

```
data(flowdata)
impact_reg(First_year=1964, Last_year=2011,Year_evaluated=2010,Year_impact=1988)
```

 ${\it impact_reg_multi0} \qquad {\it Plots the \ daily \ environmental \ impact \ of \ flow \ regulation \ for \ multiple \ years}$

Description

Plots the daily environmental impact of flow regulation for multiple years

Usage

```
impact_reg_multi0(River_name, First_year, Last_year, Year_evaluated,
   Year_impact, x_coef)
```

Arguments

River_name	Name of the river written as character (e.g.: River_name = "Esla")
First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_evaluated	Year when the environmental impact is evaluated (e.g.: Year_evaluated = 2010)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)
	- 1900 <i>)</i>

Value

Plots the daily environmental impact of flow regulation for multiple years.

 ${\tt impact_reg_multi_plot} \quad \textit{Plots the daily environmental impact of flow regulation for multiple} \\ \quad \textit{years} \\$

Description

Plots the daily environmental impact of flow regulation for multiple years

Usage

```
impact_reg_multi_plot(Row, Column, sp_years, River_name, First_year, Last_year,
    Year_impact)
```

Arguments

Row	Number of rows in the figure to compare multiple years in separated graphs (e.g.: Row = 2)
Column	Number of columns in the figure to compare multiple years in separated graphs (e.g.: Column = 5)
sp_years	A vector specifying the years to be plotted (e.g.: $sp_years = c(1965, 1966, 1967, 1968, 1969, 2006, 2007, 2008)$
River_name	Name of the river written as character (e.g.: River_name = "Esla")
First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact

Value

Plots the daily environmental impact of flow regulation for multiple years.

= 1988)

```
data(flowdata)
impact_reg_multi_plot(Row = 2,Column = 5,
sp_years = c(1965,1966,1967,1968,1969,2006,2007,2008,2009,2010),
River_name = "Esla", First_year=1964, Last_year=2011,
Year_impact=1988)
```

impact_reg_plot 9

|--|

Description

Plots the daily environmental impact of flow regulation (high- and low-flow impact)

Usage

```
impact_reg_plot(River_name, First_year, Last_year, Year_evaluated, Year_impact)
```

Arguments

River_name	Name of the river written as character (e.g.: River_name = "Esla")
First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_evaluated	Year when the environmental impact is evaluated (e.g.: Year_evaluated = 2010)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)

Value

Plots the daily environmental impact of flow regulation (high- and low-flow impact).

Examples

```
data(flowdata)
impact_reg_plot(River_name = "Esla", First_year=1964,
Last_year=2011, Year_evaluated=2010, Year_impact=1988)
```

structure_date

Transforms and reorders the flow data

Description

Transforms and reorders the flow data

Usage

```
structure_date(dafra = "flowdata", S_Day = 1, S_Month = 4, S_Year = 7)
```

10 summary_flow

Arguments

dafra	Data frame with river flow data (default value is empty)
S_Day	Position in Date string of the first digit of two-digits day (default value is 1)
S_Month	Position in Date string of the first digits of two-digits month (default value is 4)
S_Year	Position in Date string of the first digits of four-digits year (default value is 7)

Value

A transformed data frame on a daily basis ready for further calculations

Examples

```
data(flowdata)
structure_date(dafra='flowdata',S_Day=1,S_Month=4,S_Year=7)
```

summary_flow	Provides a summary of flow data a	during the pre-impact period
3 —	2 3 3	

Description

Provides a summary of flow data during the pre-impact period

Usage

```
summary_flow(First_year, Last_year, Year_impact)
```

Arguments

First_year	First year to consider in the analysis starting on October 1st (e.g.: First_year = 1964)
Last_year	First year to consider in the analysis finishing on September 30th (e.g.: Last_year = 2011)
Year_impact	Year when the human impact started (the construction of a dam) (e.g.: Year_impact = 1988)

Value

Provides a dataframe on a daily basis of mean, min, p10, p25, median, p75, p90 and max values during the pre-impact period.

```
data(flowdata)
summary_flow(First_year=1964, Last_year=2011, Year_impact=1988)
```

Index

```
*Topic datasets
flowdata, 6

adm_range, 2
adm_range_plot, 2

col_per_year, 3

daily_cost, 4
daily_cost_plot, 5

flowdata, 6

impact_reg, 6
impact_reg_multi0, 7
impact_reg_multi_plot, 8
impact_reg_plot, 9

structure_date, 9
summary_flow, 10
```