$S = \iiint \left(h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \alpha_1 \partial_{\beta} h^{\chi}_{\nu} \partial^{\beta} h^{\alpha}_{\alpha} + \alpha_1 \left(-2 \partial_{\beta} h_{\alpha\chi} + \partial_{\chi} h_{\alpha\beta} \right) \partial^{\chi} h^{\alpha\beta} \right) [t, x, y, z] dz dy dx dt$ **Wave operator**

PSALTer results panel

Spin-parity form	Covariant form	Multiplicities
$1^{-}\mathcal{T}^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$	3
Total expected gauge generators: 3		

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue: $\left| \frac{p^2}{\alpha_1} > 0 \right|$

Polarisations: 3

Unitarity conditions

 $\alpha_{\cdot} > 0$