Contents

atroduction	1
Amenable Groups and Subgroups	1
Understanding Free Groups	3
Groups specified by Generating Sets	3
Free Groups	3
Free Groups, Free Products, and the Ping Pong Lemma	5
The Normed Space $\ell_{\infty}(G)$	10

Introduction

This is going to be a part of my Honors thesis independent study, focused on amenability and C*-algebras. This section of notes will be a deeper dive into group amenability. These notes will be taken from the notes my professor has prepared on group amenability, with supplementation from Volker Runde's *Lectures on Amenability* and Pierre de la Harpe's *Topics in Geometric Group Theory*.

I do not claim any of this work to be original.

Amenable Groups and Subgroups

Let G be a group, with P(G) denoting the power set.

Definition. An invariant mean on G is a set function $m : P(G) \to [0,1]$, which satisfies, for all $t \in G$ and $E, F \subseteq G$,

- (1) m(G) = 1;
- (2) $m(E \sqcup F) = M(E) + m(F);$
- (3) m(tE) = m(E).

We say G is amenable if it admits a mean.

We can also say that m is a translation-invariant probability measure on (G, P(G)).

Proposition (Amenability of Subgroups and Quotient Groups): Let G be amenable, with $H \leq G$.

- (1) H is amenable;
- (2) for $H \subseteq G$, G/H is amenable.

Proof.

(1) Let R be a right transversal for H (i.e., selecting one element of each right coset of H to make up R).

If m is a mean for G, we set

$$\lambda: \mathcal{P}(H) \rightarrow [0,1]$$

by $\lambda(E) = m(ER)$. We have

$$\lambda(H) = \mathfrak{m}(HR)$$
$$= \mathfrak{m}(G)$$

$$= 1.$$

We claim that if $E \cap F = \emptyset$, then $ER \cap FR = \emptyset$, since if we suppose toward contradiction that $ER \cap FR \neq \emptyset$, then $xr_1 = yr_2$ for some $x \in E$, $y \in F$ and $r_1, r_2 \in R$. Then, we must have $r_2r_1^{-1} = y^{-1}x \in H$, meaning $r_1 = r_2$ and x = y, which means $E \cap F \neq \emptyset$.

Thus, we have

$$\lambda (E \sqcup F) = \mathfrak{m} ((E \sqcup F) R)$$

$$= \mathfrak{m} (ER \sqcup FR)$$

$$= \mathfrak{m} (ER) + \mathfrak{m} (FR)$$

$$= \lambda(E) + \lambda(F),$$

and

$$\lambda(sE) = m(sER)$$
$$= m(ER)$$
$$= \lambda(E).$$

(2) For the canonical projection map $\pi: G \to G/H$ defined by $\pi(t) = tH$, we define

$$\lambda: P(G/H) \rightarrow [0,1]$$

by $\lambda(E) = m(\pi^{-1}(E))$. We have

$$\lambda(G/H) = m \left(\pi^{-1}(G/H)\right)$$
$$= m(G)$$
$$= 1,$$

and

$$\begin{split} \lambda\left(\mathsf{E} \sqcup \mathsf{F}\right) &= \mathfrak{m}\left(\pi^{-1}\left(\mathsf{E} \sqcup \mathsf{F}\right)\right) \\ &= \mathfrak{m}\left(\pi^{-1}\left(\mathsf{E}\right) \sqcup \pi^{-1}\left(\mathsf{F}\right)\right) \\ &= \mathfrak{m}\left(\pi^{-1}\left(\mathsf{E}\right)\right) + \mathfrak{m}\left(\pi^{-1}\left(\mathsf{F}\right)\right) \\ &= \lambda\left(\mathsf{E}\right) + \lambda\left(\mathsf{F}\right). \end{split}$$

To show translation-invariance, we let $sH = \pi(s) \in G/H$, and $E \subseteq G/H$. Note that

$$\pi^{-1}(\pi(s) E) = s\pi^{-1}(E)$$
,

since for $r \in s\pi^{-1}(E)$, we have r = st for $\pi(t) \in E$, so $\pi(r) = \pi(st) = \pi(s)\pi(t) \in \pi(s)E$.

Additionally, if $r \in \pi^{-1}(\pi(s) E)$, then $\pi(r) \in \pi(s) E$, so $\pi(s^{-1}r) \in E$, and $s^{-1}r \in \pi^{-1}(E)$. Thus, we have

$$\lambda(\pi(s) E) = m \left(\pi^{-1}(\pi(s) E)\right)$$
$$= m \left(s\pi^{-1}(E)\right)$$
$$= m \left(\pi^{-1}(E)\right)$$
$$= \lambda(E).$$

Understanding Free Groups

In the Tarski's Theorem notes, we discussed a little bit the ramifications of the free group on two generators being paradoxical. In order to better understand free groups, we will draw information from Pierre de la Harpe's *Topics in Geometric Group Theory* and Clara Löh's *Geometric Group Theory: An Introduction*.

Groups specified by Generating Sets

Definition. Let G be a group and $S \subseteq G$ be a subset. The subgroup generated by S is the intersection of all subgroups of G that contain S. We write $\langle S \rangle_G$. We say S generates G if $\langle S \rangle_G = G$.

A group is called finitely generated if it contains a finite subset that contains the group in question.

Definition (Characterization of a Generated Subgroup). We can characterize a generated subgroup by S as follows:

$$\langle S \rangle_G = \left\{ s_1^{\varepsilon_1} s_2^{\varepsilon_2} \cdots s_n^{\varepsilon_n} \mid n \in \mathbb{N}, \ s_1, \dots, s_n \in S, \ \varepsilon_1, \dots, \varepsilon_n \in \{-1, 1\} \right\}.$$

Example (Generating Sets).

- If G is a group, then G is a generating set of G.
- The trivial group is generated by the empty set.
- The set $\{1\}$ generates \mathbb{Z} , as does $\{2,3\}$. However, $\{2\}$ and $\{3\}$ alone do not generate \mathbb{Z} .
- Let X be a set. The symmetric group S_X is finitely generated if and only if X is finite.

Free Groups

Definition. Let S be a set. A group F containing S is said to be freely generated if, for every group G and every map $\phi: S \to G$, there is a unique group homomorphism $\overline{\phi}: F \to G$ extending ϕ . The following diagram commutes:

A group is free if it contains a free generating set.

Example.

- The additive group \mathbb{Z} is freely generated by $\{1\}$. The additive group \mathbb{Z} is *not* freely generated by $\{2,3\}$, or $\{2\}$, or $\{3\}$. In particular, not every generating set of a group contains a free generating set.
- The trivial group is freely generated by the empty set.
- Not every group is free the additive groups $\mathbb{Z}/2\mathbb{Z}$ and $\mathbb{Z} \times \mathbb{Z}$ are not free.

We will use the universal property of free groups to show their uniqueness up to isomorphism.

Proposition: Let *S* be a set. Then, there is at most one group freely generated by *S* up to isomorphism.

Proof. Let F and F' be two groups freely generated by S, with inclusions of φ and φ' respectively. Because F is freely generated by S, there is a group homomorphism $\overline{\varphi}': F \to F'$ that extends φ — i.e., that $\overline{\varphi}' \circ \varphi = \varphi'$.

Similarly, there is a group homomorphism $\overline{\varphi}: F' \to F$ with $\overline{\varphi} \circ \varphi' = \varphi$.

We will show that $\overline{\varphi} \circ \overline{\varphi}' = \mathrm{id}_{F}$, and $\overline{\varphi}' \circ \overline{\varphi} = \mathrm{id}_{F'}$. The composition $\overline{\varphi} \circ \overline{\varphi}'$ is a group homomorphism that makes the following diagram commute.

$$\begin{array}{ccc}
S & \xrightarrow{\phi} F \\
\varphi \downarrow & & \\
\varphi \circ \overline{\varphi}'
\end{array}$$

Since id_F is a group homomorphism contained in this diagram, and F is freely generated by S, we must have $\overline{\varphi} \circ \overline{\varphi}' = \mathrm{id}_{F}$. Similarly, we must have $\overline{\varphi}' \circ \overline{\varphi} = \mathrm{id}_{F'}$.

Theorem (Existence of Free Groups): Let S be a set. There exists a group freely generated by S. This group is unique up to isomorphism.

Proof. We want to construct a group consisting of "words" made up of the elements of S and their "inverses," then modding out by the natural cancellation rules.

We consider the alphabet

$$A = S \cup \hat{S}$$
.

Here, $\hat{S} = \{\hat{s} \mid s \in S\}$ is a disjoint copy of S, such that \hat{s} will serve as the inverse of s in the group we will construct.

We define A^* to be the set of all finite sequences over the alphabet A, including the empty word ϵ . We define the operation $A^* \times A^* \to A^*$ by concatenation. This operation is associative with neutral element ϵ .

We define

$$F(S) = A^*/\sim$$

where \sim is the equivalence relation generated by, for all $x, y \in A^*$ and $s \in S$, $xssy \sim xy$ and $xssy \sim xy$.

We denote the equivalence classes with respect to \sim by $[\cdot]$.

Concatenation induces a well-defined operation $F(S) \times F(S) \to F(S)$ by

$$[x][y] = [xy]$$

for $x, y \in A^*$.

We claim that F(S) with the defined concatenation is a group. We can see that $[\epsilon]$ is a neutral element for the operation, and associativity of the operation is inherited from the associativity of the operation on A*.

To find inverses, we define $I: A^* \to A^*$ by $I(\epsilon) = \epsilon$, and

$$I(sx) = I(x)\hat{s}$$

$$I(\hat{s}x) = I(x)s$$

for all $x \in A^*$ and $s \in S$. Induction shows that I(I(x)) = x, and

$$[I(x)][x] = [I(x)x]$$

$$= [\epsilon]$$

for all $x \in A^*$. Thus, we must also have

$$[x][I(x)] = [I(I(x))][I(x)]$$
$$= [\epsilon].$$

Thus, we see that there are inverses in F(S).

To see that F(S) is freely generated by S, we let $\iota: S \to F(S)$ be the map given by sending a letter in $S \subseteq A^*$ to its equivalence class in F(S). By construction, F(S) is generated by the subset $\iota(S) \subseteq F(S)$.

We do not know yet that ι is injective, so we take a bit of a detour. We show that for every group G and every map $\varphi: S \to G$, there is a unique group homomorphism $\overline{\varphi}: F(S) \to G$ such that $\overline{\varphi} \circ \iota = \varphi$.

We construct a map $\phi^* : A^* \to G$ inductively by

$$\epsilon \mapsto e$$

 $sx \mapsto \varphi(s)\varphi^*(x)$
 $\hat{s}x \mapsto (\varphi(s))^{-1}\varphi^*(x)$

for all $s \in S$ and $x \in A^*$. We can see that, since the definition of ϕ^* is compatible with the generating set of \sim , it is compatible with the equivalence relation of \sim on A^* . Additionally, we can see that $\phi^*(xy) = \phi^*(x) \phi^*(y)$ for all $x, y \in A^*$. Thus,

$$\overline{\varphi}: F(S) \to G$$
 $[x] \mapsto [\varphi^*(x)],$

is, as constructed, a group homomorphism, with $\overline{\phi} \circ \iota = \phi$. Since $\iota(S)$ generates F(S), this group homomorphism is unique.

We must now show that ι is injective.

Let $s_1, s_2 \in S$. Consider the map $\varphi : S \to \mathbb{Z}$ given by $\varphi(s_1) = 1$ and $\varphi(s_2) = -1$. The corresponding homomorphism $\overline{\varphi} : F(S) \to G$ satisfies

$$\overline{\varphi}(\iota(s_1)) = \varphi(s_1)$$

$$= 1$$

$$\neq -1$$

$$= \varphi(s_2)$$

$$= \overline{\varphi}(\iota(s_2)),$$

meaning $\iota(s_1) \neq \iota(s_2)$. Thus, ι is injective.

Free Groups, Free Products, and the Ping Pong Lemma

We can now consider free groups in a more categorical context — specifically, as a special type of free object. Whereas the previous section drew information from Clara Löh's *Geometric Group Theory: An Introduction*, this section will draw information from Pierre de la Harpe's *Topics in Geometric Group Theory*. Specifically, we are focused on chapter 2, which discusses free products, free groups, and the ping pong lemma (which will provide a more general proof of the paradoxicality of SO(3)).

Definition (Free Monoid). A monoid is a set with multiplication that is associative and includes a neutral element.

Given a set A, the free monoid on A is the set W(A) of finite sequences of elements of A (also known as words). We write an element of W(A) as $w = a_1 a_2 \cdots a_n$, where each $a_j \in A$. We identify A with the subset of W(A) of words with length 1.

Definition (Free Product). Let $(\Gamma_i)_{i \in I}$ be a family of groups. Set

$$A = \coprod_{i \in I} \Gamma_i$$
$$= \{ (g_i, i) \mid g_i \in \Gamma_i, i \in I \}$$

to be the coproduct of this family.

Let ~ be the equivalence relation generated by

$$we_iw' \sim ww'$$
 where $e_i \in \Gamma_i$ is the neutral element $wabw' \sim wcw'$ where $a, b, c \in \Gamma_i$, $c = ab$ for some $i \in I$

for all $w, w' \in W(A)$. The quotient $W(A)/\sim$ with the operation of concatenation is a group, which is known as the free product of the groups $\{\Gamma_i\}_{i\in I}$. We write it as

$$\bigstar_{i \in I} \Gamma_i$$

The inverse of the equivalence class for $w = a_1 a_2 \dots a_n$ is $w^{-1} = a_n^{-1} a_{n-1}^{-1} \dots a_1^{-1}$. The neutral element is ϵ , which is the empty word.

A word $w = a_1 a_2 \cdots a_n \in W(A)$ with $a_j \in \Gamma_{i_j}$ is said to be reduced if $i_{j+1} \neq i_j$ and a_j is not the neutral element of Γ_{i_j} .

Proposition (Existence of the Free Product): Let $\{\Gamma_i\}_{i\in I}$ be a family of groups, $A = \coprod_{i\in I} \Gamma_i$, and $\bigstar_{i\in I} \Gamma_i = W(A)/\sim$ be as above.

Then, any element in the free product $\bigstar_{i \in I} \Gamma_i$ is represented by a unique reduced word in W(A).

Proof.

EXISTENCE: Consider an integer $n \ge 0$ and a reduced word $w = a_1 a_2 \cdots a_n$ in W(A), an element $a \in A$, and the word $aw \in W(A)$. We set

$$\mathcal{R}(\alpha w) = \begin{cases} w & \alpha = e_i \\ \alpha a_1 a_2 \cdots a_n & \alpha \in \Gamma_i, \alpha \neq e_i, i \neq k \\ b a_2 \cdots a_n & \alpha \in \Gamma_k, \alpha a_1 = b \neq e_k \end{cases}$$

$$a_1 = a_1 = a_2 = a_1 = a_2 = a_1 = a_2 = a_2 = a_1 = a_2 = a_2$$

where k is the index for which $a_1 \in \Gamma_k$.

Then, \mathcal{R} (αw) is yet another reduced word, and \mathcal{R} (αw) ~ αw , meaning that any word $w \in W(A)$ is equivalent to some reduced word by inducting on the length of w.

Uniqueness: For each $\alpha \in A$, Let $T(\alpha) = \mathcal{R}(\alpha w)$ be a self-map on the set of reduced words.

For each $w = b_1b_2\cdots b_n$, we set $T(w) = T(b_1)T(b_2)\cdots T(b_n)$. For $a,b,c \in \Gamma_i$ with ab = c, we have T(a)T(b) = T(c), and $T(e_i) = \epsilon$ (the empty word) for all $i \in I$.

For each reduced word, notice that $T(w) \epsilon = w$.

Let w be some word in W(A) with w_1, w_2 reduced words equivalent to w. Since $w_1 \sim w_2$, we have $T(w_1) = T(w_2)$, and

$$w_1 = T(w_1) \epsilon$$

= $T(w_2) \epsilon$
= w_2 .

Corollary: Let $\{\Gamma_i\}_{i\in I}$ and $\Gamma = \bigstar_{i\in I}\Gamma_i$ as above. For each $i_0 \in I$, the canonical inclusion

$$\iota:\Gamma_{i_0}\to\Gamma$$

is injective.

Proof. For any $\alpha \in \Gamma_{i_0} \setminus \{e_{i_0}\}$, $\iota(\alpha)$ is represented by a unique one-letter reduced word not equivalent to the empty word.

Now that we have an understanding of free products, we can conceptualize the free group as a particular type of free product.

Definition (Free Groups). Let X be a set. The free group over X is the free product of a family of copies of \mathbb{Z} indexed by X, denoted F(X).

Equivalently, the free group over X is

$$F(X) = \bigstar_{\alpha \in X} \langle \alpha \rangle,$$

where $\langle a \rangle$ denotes the cyclic group generated by the element a.

We can also identify F(X) with the set of reduced words in $X \sqcup X^{-1}$ (as was done in the previous subsection).

The cardinality of X is called the rank of F(X).

If Γ is a group, then a free subset of Γ is a subset $X \subseteq \Gamma$ such that the inclusion $X \hookrightarrow F(X)$ extends to an isomorphism of $\langle X \rangle_{\Gamma}$ onto F(X).

We can now state and prove a universal property for free products (which naturally simplifies in the case of a free group.)

Theorem (Universal Property for Free Products): Let Γ be a group, and $\{\Gamma_i\}_{i\in I}$ be a family of groups. Let $\{h_i:\Gamma_i\to\Gamma\}_{i\in I}$ be a family of homomorphisms.

Then, there exists a unique homomorphism $h: \bigstar_{i \in I} \Gamma_i \to \Gamma$ such that the following diagram commutes for each $i_0 \in I$.

In particular, if Γ is a group, X is a set, and $\phi: X \to \Gamma$ is a set map, there exists a unique homomorphism $\Phi: F(X) \to \Gamma$ such that $\Phi(x) = \phi(x)$ for each $x \in X$.

Proof. For a reduced word $w = a_1 a_2 \cdots a_n \in \bigstar_{i \in I} \Gamma_i$ with $a_j \in \Gamma_{i_j} \setminus \{e_{i_j}\}$, and $i_{j+1} \neq i_j$ for each $j \in \{1, \ldots, n-1\}$, we set

$$h(w) = h_{i_1}(a_1) h_{i_2}(a_2) \cdots h_{i_n}(a_n)$$

which defines h uniquely in terms of hi.

Note that for any two sets X, Y, the universal property provides that any map $X \to Y$ extends canonically to a group homomorphism, $F(X) \to F(Y)$.

$$\begin{array}{ccc}
X & \longrightarrow Y \\
\downarrow & & \downarrow \\
F(X) & \longrightarrow F(Y)
\end{array}$$

We can now prove an important lemma that will be useful in understanding paradoxical groups.

Theorem (Ping Pong Lemma): Let G be a group acting on a set X, and let Γ_1 , Γ_2 be subgroups of G. Let $\Gamma = \langle \Gamma_1, \Gamma_2 \rangle$. Assume Γ_1 contains at least 3 elements and Γ_2 contains at least two elements.

Suppose there exist nonempty subsets $X_1, X_2 \subseteq X$ with $X_1 \triangle X_2 \neq \emptyset$, such that for all $\gamma_1 \in \Gamma_1$ with $\gamma_1 \neq e_G$, and for all $\gamma_2 \in \Gamma_2$ with $\gamma_2 \neq e_G$,

$$\gamma(X_2) \subseteq X_1$$

 $\gamma(X_1) \subseteq X_2$.

Then, Γ is isomorphic to the free product $\Gamma_1 \star \Gamma_2$.

Proof. Let w be a nonempty reduced word spelled with letters from the disjoint union of $\Gamma_1 \setminus \{e_G\}$ and $\Gamma_2 \setminus \{e_G\}$. We must show that the element of Γ defined by w is not the identity.

If
$$w = a_1b_1a_2b_2\cdots a_k$$
 with $a_1,\ldots,a_k\in \Gamma_1\setminus\{e_G\}$ and $b_1,\ldots,b_{k-1}\in \Gamma_2\setminus\{e_G\}$. Then,
$$w(X_2) = a_1b_1\cdots a_{k-1}b_{k-1}a_k(X_2)$$

$$\subseteq a_1b_1\cdots a_{k-1}b_{k-1}(X_1)$$

$$\subseteq a_1b_1\cdots a_{k-1}(X_2)$$

$$\vdots$$

$$\subseteq a_1(X_2)$$

$$\subseteq X_1.$$

Since $X_2 \nsubseteq X_1$, this implies $w \neq e_G$.

If $w = b_1 a_2 b_2 a_2 \cdots b_k$, we select $a \in \Gamma_1 \setminus \{e_G\}$, and apply the previous argument to awa^{-1} . Since $awa^{-1} \neq e_G$, neither is w.

Similarly, if $w = a_1b_1 \cdots a_kb_k$, we select $a \in \Gamma_1 \setminus \{e_G, a_1^{-1}\}$, and apply the argument to awa^{-1} , and if $w = b_1a_2b_2 \cdots a_k$, we select $a \in \Gamma_1 \setminus \{e_G, a_k\}$, and apply the argument to awa^{-1} .

Example. We can use the Ping Pong Lemma to see that

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
$$B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

generate a subgroup of $SL(2, \mathbb{Z})$ which is free of rank 2.

Corollary: The special orthogonal group SO(3) contains a subgroup isomorphic to the free group on two generators.

To prove this, we state a different version of the Ping Pong Lemma that we will apply to a particular space.

Theorem (Ping Pong Lemma for Cyclic Groups): Let G act on a set X, and suppose there exist disjoint subsets A_+ , A_- , B_+ , $B_- \subseteq X$ whose union is not all of X. If there exist elements a and b in G such that

$$a \cdot (X \setminus A_{-}) \subseteq A_{+}$$

$$a^{-1} \cdot (X \setminus A_{+}) \subseteq A_{-}$$

$$b \cdot (X \setminus B_{-}) \subseteq B_{+}$$

$$b \cdot (X \setminus B_{+}) \subseteq B_{-}$$

then it is the case that the group generated by a and b is free of rank 2.

Proof of Corollary. We let

$$a = \begin{pmatrix} 3/5 & 4/5 & 0 \\ -4/5 & 3/5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$a^{-1} = \begin{pmatrix} 3/5 & -4/5 & 0 \\ 4/5 & 3/5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3/5 & -4/5 \\ 0 & 4/5 & 3/5 \end{pmatrix}$$

$$b^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3/5 & 4/5 \\ 0 & -4/5 & 3/5 \end{pmatrix}.$$

We specify

$$X = A_+ \sqcup A_- \sqcup B_+ \sqcup B_- \sqcup \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},$$

where

$$A_{+} = \left\{ \frac{1}{5^{k}} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| k \in \mathbb{Z}, x \equiv 3y \text{ modulo } 5, z \equiv 0 \text{ modulo } 5 \right\}$$

$$A_{-} = \left\{ \frac{1}{5^{k}} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| k \in \mathbb{Z}, x \equiv -3y \text{ modulo } 5, z \equiv 0 \text{ modulo } 5 \right\}$$

$$B_{+} = \left\{ \frac{1}{5^{k}} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| k \in \mathbb{Z}, z \equiv 3y \text{ modulo } 5, x \equiv 0 \text{ modulo } 5 \right\}$$

$$B_{-} = \left\{ \frac{1}{5^{k}} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| k \in \mathbb{Z}, z \equiv -3y \text{ modulo } 5, x \equiv 0 \text{ modulo } 5 \right\}.$$

To verify that the conditions of the Ping Pong Lemma hold, we calculate

$$\begin{pmatrix} 3/5 & 4/5 & 0 \\ -4/5 & 3/5 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{5^k} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{pmatrix} = \frac{1}{5^{k+1}} \begin{pmatrix} 3x + 4y \\ -4x + 3y \\ 5z \end{pmatrix}$$
 (1)

$$\begin{pmatrix} 3/5 & -4/5 & 0 \\ 4/5 & 3/5 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{5^k} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{pmatrix} = \frac{1}{5^{k+1}} \begin{pmatrix} 3x - 4y \\ 4x + 3y \\ 5z \end{pmatrix}$$
 (2)

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 3/5 & -4/5 \\ 0 & 4/5 & 3/5 \end{pmatrix} \begin{pmatrix} \frac{1}{5^k} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{pmatrix} = \frac{1}{5^{k+1}} \begin{pmatrix} 5x \\ 3y - 4z \\ 4y + 3z \end{pmatrix}$$
(3)

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 3/5 & 4/5 \\ 0 & -4/5 & 3/5 \end{pmatrix} \begin{pmatrix} \frac{1}{5^k} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{pmatrix} = \frac{1}{5^{k+1}} \begin{pmatrix} 5x \\ 3y + 4z \\ -4y + 3z \end{pmatrix}. \tag{4}$$

We verify that the conditions for the Ping Pong Lemma hold for each of these four conditions.

(1) For any vector

$$\frac{1}{5^{k}} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \notin A_{-},$$

we see that $k + 1 \in \mathbb{Z}$, $x' = 3x + 4y \equiv 3(-4x + 3y)$ modulo 5, and that $z' = 5z \equiv 0$ modulo 5.

(2) For any vector

$$\frac{1}{5^k} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \notin A_+,$$

we see that $k + 1 \in \mathbb{Z}$, $x' = 3x - 4y \equiv -3(4x + 3y)$ modulo 5, and $z' = 5z \equiv 0$ modulo 5.

(3) For any vector

$$\frac{1}{5^{k}} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \notin B_{-},$$

we see that $k + 1 \in \mathbb{Z}$, $z' = 4y + 3z \equiv 3(3y - 4z)$ modulo 5, and $x' = 5x \equiv 0$ modulo 5.

(4) For any vector

$$\frac{1}{5^k} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \notin B_+,$$

we see that $k + 1 \in \mathbb{Z}$, $z' = -4y + 3z \equiv -3(3y + 4z)$ modulo 5, and $x' = 5x \equiv 0$ modulo 5.

Since we have verified that the conditions for the Ping Pong Lemma hold for each of the conditions, we have that $\{a,b\} \subseteq SO(3)$ generate a group isomorphic to the free group on two generators.

The Normed Space $\ell_{\infty}(G)$