Security of Counterfactual Explanations

based on

"The Privacy Issue of Counterfactual Explanations:

Explanation Linkage Attacks"

by S. Goethals, K. Sorensen and D. Martens

MI2.AI Seminar, Warsaw, 15th April 2024

What do the authors promise? (a.k.a. agenda)

- a description of a new explanation linkage attack that can be applied when counterfactual explanations are based on real instances from the training set,
- a solution in the form of k-anonymous counterfactual explanations,
- an evaluation of how anonymizing explanations decreases their quality,
- a discussion of the trade-off between transparency, fairness and privacy.

What kinds of counterfactuals are considered?

"counterfactual explanations [...] are defined as the smallest change to feature values of an instance that alters its prediction."

- Explanation linkage attacks are possible, when the counterfactual algorithm uses instance-based strategies to find the counterfactual explanations a.k.a.
 nearest unlike neighbor. (note: plausibility)
- Methods which produce vulnerable counterfactuals: NICE, WIT with NNCE,
 FACE, and certain settings of

How can explanatory variables be divided?

- identifiers e.g., name, phone need to be suppressed always, often not fed to the models as they don't have predictive power
- quasi identifiers cannot directly identify a person, but their combination might (e.g., zip code + year of birth)
- private attributes attributes that are not publicly known

Identifier	Quasi-identifiers			Private-attributes		Model pred.
Name	Age	Gender City		Salary	Relationship	Credit decision
Lisa	21	F	Brussels	\$50k	Single	Reject

Table: An example of a factual instance: Lisa.

What is the goal of an adversary?

An adversary tries to **get access to** a user's **private attributes**, for example by asking for counterfactual explanations.

We also assume that all quasi-identifiers are public knowledge

How can explanatory variables be divided?

Name	Age	Gender	City	Salary	Relationship	Credit decision
Lisa	21	F	Brussels	\$50k	Single	Reject
Alfred	25	M	Antwerp	\$40k	Separated	Reject
Derek	47	М	Brussels	\$100k	Married	Accept
Fiona	24	F	Antwerp	\$60k	Single	Accept
Gina	27	F	Antwerp	\$80k	Married	Accept

Table: Training set

If you were **3 years older**, lived in **Antwerp** and your income was **\$10k higher**, then you would have **received** the loan

What do we know now?

Lisa (or an adversary pretending to be her) now knows that **Fiona** earns **\$60k** and is **single**.

Based on her Lisa's own attributes and the counterfactual.

^{*} We assumed that knowing all quasi-identifiers can directly identify Fiona (e.g., by looking on social media, or voter's registration).

A counterfactual instance is considered to be **k-anonymous** if the combination of quasi-identifiers can belong to **at least** *k* **individuals** in the training set

2-anonymous example

Name	Age	Gender	City	Salary	Relationship	Credit decision
Lisa	21	F	Brussels	ssels \$50k Single		Reject
Alfred	25	M	Antwerp	\$40k	Separated	Reject
Derek	47	M	Brussels	\$100k	Married	Accept
Fiona	24	F	Antwerp	\$60k Single		Accept
Gina	27	F	Antwerp	\$80k	Married	Accept

Table: Training set

If you were **3-6 years older**, lived in **Antwerp** and your income was **\$10k higher**, then you would have **received** the loan

An example of a 2-anonymous explanation. The counterfactual does not distinguish between Fiona and Gina in terms of quasi-identifiers

Evaluation metrics

Degree of privacy:

k - number of observations, between which it is impossible to distinguish based on quasi-identifiers.

Counterfactual validity:

pureness - in what percentage of samples from our counterfactual range, the decision is actually counterfactual

Pureness example

Age	Gender	City	Salary	Relationship	Credit decision
24	F	Antwerp	\$60k	Single	Accept
25	F	Antwerp	\$60k	Single	Accept
26	F	Antwerp	\$60k	Single	Reject
27	F	Antwerp	\$60k	Single	Reject

Table: All possible values of attributes occurring in the data from the 2-anonymous explanation.

pureness = 2/4

*In practice, the authors do not estimate the exact pureness, by querying for all possible combinations, rather they sample only 100 points.

Evaluation metrics cont'd

Loss in information value:

Normalized Certainty Penalty

$$NCP_{A_{num}}(G) = \frac{\max_{A_{num}}^{G} - \min_{A_{num}}^{G}}{\max_{A_{num}} - \min_{A_{num}}^{G}}$$

$$NCP_{A_{num}}(G) = \frac{\max_{A_{num}}^{G} - \min_{A_{num}}^{G}}{\max_{A_{num}} - \min_{A_{num}}} \begin{cases} NCP_{A_{cat}}(G) = 0, & \text{if } |A^{G}| = 1\\ NCP_{A_{cat}}(G) = \frac{|A^{G}|}{|A|}, & \text{otherwise} \end{cases}$$

$$NCP(G) = \sum_{i=1}^{a} w_i NCP_{A_i}(G)$$

Methodology

- split the data 60-40
- fit random forest and NICE counterfactual algorithm on train
- predict and obtain counterfactuals on test
- use the CF-K algorithm to anonymize the explanations

Figure: Methodology diagram. Source: original paper.

The CF-K Algorithm

• **Phase 1:** (construct a greedy randomized solution)

Check if the current solution is at least **k-anonymous**. If it is, move to the next step. If not, **generate** a list of α closest counterfactual **neighbors**, and randomly select one of them. Then **generalize** the current solution with this new observation.

Loop until the found solution is k-anonymous

The CF-K Algorithm

• **Phase 2:** (perform a local search)

Try to change the current solution by **slightly altering** the **quasi-identifier** values.

Terminate when the solution is no longer k-anonymous or when the quality of the solution is worse.

Influence of the parameters on the algorithm

- with the increase of k, the level of privacy goes up but other metrics go down
- **execution time** also **increases** with higher k values

Figure: Influence of the k parameter on different metrics of the solution. Source: original paper.

Influence of the parameters on the algorithm

- with the increase of k, the level of privacy goes up but other metrics go down
- **execution time** also **increases** with higher k values
- ullet increasing $oldsymbol{lpha}$ increases NCP but lowers the pureness
- **execution time decreases** with higher α values

Influence of the parameters on the algorithm

- with the increase of k, the level of privacy goes up but other metrics go down
- execution time also increases with higher k values
- ullet increasing $oldsymbol{lpha}$ increases NCP but lowers the pureness
- **execution time decreases** with higher α values

 increasing the number of iterations improves all metrics but increases execution time

Evaluation

Table 5. Description of Used Datasets with Dataset Properties

Dataset	et Adult ⁷ CMC ⁸ German ⁹		German ⁹	Heart ¹⁰	Hospital ¹¹	Informs ¹²
# instances	48,842	1,473	1,000	303	8,160	5,000
# attributes	11	8	19	12	20	13
QID	Age, Sex, Race, Relationship, Marital status	WifeAge, ChildrenBorn	Age, Foreign Personal status, Residence time, Employment, Job, Property, Housing	Age, Sex	Age Group, Race, Gender, Ethnicity, Zip Code	Dobmm, Dobyy, Sex, Marry, Educyear
Sensitive attribute	Sex	WifeReligion	Personal status	Sex	Gender	Race
Target attribute	Income	Contraceptive method	Credit decision	Heart disease	Costs	Income
Uniquely identifiable (in %)	3.17	4.41	83.7	4.62	6.32	76.18
EQ < 10 (in %)	15.39	53.78	100	79.54	37.08	100

Explanation of the IEQI < 10 row: "We measure the percentage of instances that are not protected by k-anonymity (with k = 10). This thus means that we measure the percentage of people that belong to an equivalence class with a size smaller than 10." **- quote from the source article**

Making the whole dataset k-anonymous

k-anonymity is an existing property when considering whole datasets.

 Making a whole dataset k-anonymous means, that if any observation is released, it should be indistinguishable between k-1 other observations.

This is a much stronger property than counterfactual k-anonymity

Table 6. Results of CF-K Over All the Datasets (k = 10)

Dataset	Adult	CMC	German	Heart	Hospital	Informs
NCP (mean)	0.55%	3.84%	21.41%	2.81%	3.42%	9.97%
Pureness (mean)	99.81%	93.15%	98.52%	100%	91.39%	85.33%
Execution time (mean)	24.78s	16.20s	13.31s	3.93s	17.76s	32.20s
C_{DM}	87,181	5,366	1,010	790	17,115	9,023
$\frac{C_{DM}}{\#explanations}$	110.78	13.2	16.83	14.11	22.94	13.65
CM	0.82	0.28	0.03	0.32	0.77	0.12

Table 7. Results of the Mondrian Algorithm (k = 10)

Dataset	Adult	CMC	German	Heart	Hospital	Informs
NCP (mean)	15.97%	7.05%	59.55%	53.01%	26.03%	36.31%
Pureness (mean)	90.30%	69.15%	90.50%	100%	63.77%	72.40%
Execution time (mean)	7.11s	0.87s	0.38s	0.23s	1.19s	1.11s
C_{DM} (mean)	120,227	6,318	963	1,044	16,534	9,177
$\frac{C_{DM}}{\text{\#explanations}}$	152.77	15.56	16.05	18.64	22.16	13.88
CM (mean)	0.83	0.24	0.17	0.41	0.80	0.40

Table 8. Plausibility Results for Various Settings of the NICE Algorithm and CF-K, Lower Values are Better (Closer to the Data Manifold)

	NICE (none)	NICE (sparse)	NICE (prox)	NICE (plaus)	CF-K (k = 5)	CF-K (k = 10)	CF-K (k = 20)
1NN	0	2.77	2.94	2.48	0.84	1.22	1.32
5NN	2.64	3.73	3.81	3.54	2.72	2.80	2.83

Figure: Comparison of the NCP metric in the minority and majority group. Source: original paper.

Thanks for the attention!

Questions and discussion

Mikołaj Spytek

MI2.AI Seminar, Warsaw, 15th April 2024