Outils pour l'Analyse de Séquençage

March 12, 2024

1 FastQC Contrôle qualité

1.1 Définition

FastQC est un outil utilisé pour évaluer la qualité des données de séquençage.

1.2 Explication d'utilisation

Vous pouvez exécuter FastQC sur vos fichiers de données de séquençage pour obtenir un rapport détaillé sur la qualité des données.

1.3 Exemple d'utilisation sur Python

```
import subprocess
```

```
fastq_file = "chemin/vers/votre/fichier.fastq"
fastqc_command = ["fastqc", fastq_file]
process = subprocess.Popen(fastqc_command, stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
stdout, stderr = process.communicate()

if process.returncode == 0:
    print("FastQC-termin -avec-succ s!")
else:
    print("Erreur-lors-de-l'ex cution-de-FastQC:", stderr.decode())
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
```

2 Trimmomatic Nettoyage des reads

2.1 Définition

Trimmomatic est un outil utilisé pour nettoyer les reads de séquençage.

2.2 Explication d'utilisation

Vous pouvez utiliser Trimmomatic pour éliminer les bases de faible qualité et les adaptateurs des données de séquençage.

2.3 Exemple d'utilisation sur Python

```
import subprocess
```

```
input_file = "chemin/vers/votre/fichier.fastq"
output_file = "chemin/vers/votre/fichier_nettoye.fastq"
trimmomatic_command = ["trimmomatic", "SE", "-phred33", input_file,
output_file,
"ILLUMINACLIP:adapters.fa:2:30:10", "LEADING:3", "TRAILING:3",
"SLIDINGWINDOW:4:15", "MINLEN:36"]

process = subprocess.Popen(trimmomatic_command, stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
stdout, stderr = process.communicate()

if process.returncode == 0:
    print("Trimmomatic-termin -avec-succ s!")
else:
    print("Erreur-lors-de-l'ex cution-de-Trimmomatic:", stderr.decode())
http://www.usadellab.org/cms/index.php?page=trimmomatic.
```

3 Bowtie2 Alignement des reads sur les génomes

3.1 Définition

Bowtie2 est un outil utilisé pour aligner les reads sur un génome de référence.

3.2 Explication d'utilisation

Vous pouvez utiliser Bowtie2 pour mapper les reads de séquençage sur un génome de référence.

3.3 Exemple d'utilisation sur Python

```
import subprocess
```

```
input_file = "chemin/vers/votre/fichier_reads.fastq"
genome_index = "chemin/vers/votre/genome_index"
output_file = "chemin/vers/votre/fichier_alignements.sam"
bowtie2_command = ["bowtie2", "-x", genome_index, "-U", input_file, "-S",
```

```
output_file]
process = subprocess.Popen(bowtie2_command, stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
stdout, stderr = process.communicate()

if process.returncode == 0:
    print("Bowtie2-termin -avec-succ s!")
else:
    print("Erreur-lors-de-l'ex cution-de-Bowtie2:", stderr.decode())
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml.
```

4 Matplotlib Production de visualisation codifiée

4.1 Définition

Matplotlib est une bibliothèque Python utilisée pour produire des visualisations de données.

4.2 Explication d'utilisation

Vous pouvez utiliser Matplotlib pour créer des graphiques personnalisés à partir de vos données de séquençage.

```
import matplotlib.pyplot as plt
https://matplotlib.org/.
```