* Qualitative & Quantitative Risk Assessment:-Pisk Assessment broadly categorized into 1) Qualitative Risk Assessment: 2 parts: revaluated sisks based on subjective judgement, expert swopiwon of categorical scales (ex. ligh, medium, low) Hadoesn't involve numerical analysis. it focuses on prioritizing risks based on their severity & likelihood. - uses descriptive sculer (Low, medium, high) involve expert judgement, broinstorming - Usertools Hike Risk Propability & Impart Matrix. Quick& cost-effective * Common Techniques :ix Risk Probability & Impact Matrix 8-- A visual tool that ranks risks based on their probability of occurring & their impact - Helps in identifying which risks need immediate on the project. attention. Risks gregrouped based on their nature such as: · Technical Risks: software failures, slow bugs, how issues. · Financial Risks: Budget oversuns, cost escalar, inflat · Operational Risks: Resource Shortages, process failures · Strategic Risks: Market competition, regulatory changes.

	(1.3) OATE
• • • •	-: Deserve Assessment:
	potermines how soon a risk might occurs
	Helps in prioritizing risks that require
	immediate action.
2	Juantitative Risk Assels ment:
_	It assigns humexical,
	It helps en making data-driven decisions.
מג	Pan 6
^	Key features,
_	uses mathematical models to analyze risks. Helps in estimating contains
_	(0330)
	Provider a more objective + precise evaluat
	Often used for high-budget or complex projects
4	Common Techniques:
- 11	Monte Carlo Simulation:
-	it is a computer-bound technique that rung
ſ	nultiple simulation to predict the probability
- e	of diff outcomes. x. simulating 1,000 possible scenarios to predict projection tind cost
) E	expected Montary Value (EMV) Analysis:-
	is used to calculate the potential financial
Pro	part of risk.
	Formula = EMV= PXI
where,	
	P >> probability of risk occurring

I > impart or cost of the risk if it occurs

(a) / moe m/ ex. If a project delay has a 20% chance of occurring to the cost of the delay is \$50,000 then EMV is: EMV= 0.2x50,000 = 10,000 et means. risk should be budgeted as a \$10,000. iii) sensitivity Analysis;-- determined which risk factors have the most impart on the project. ex. Edentitying whether labor cost fluctuations or material price change contribute most to budget oversuns. iv Decision-Tree Analysis: -- helps in evaluating diff risk response strategies. ex. A company choosing ber. two suppliess where one has a ligher cost but lower risk and the other has a lower cost but higher rist