# Classifying Big Tech Employee Reviews

Grace Miles '19, Amy Liu '19, Madeleine Cheyette '19

### Motivation & Related Work













What do Glassdoor reviews about popular big tech companies reveal?

Will reviews and ratings alone be sufficient to identify the company in question?

Scholar Research: Employee Satisfaction Correlations with Company Success & Financial Risk (Luo et al. [2016] Ji et al. [2017])

Kaggle users: numeric plots, word clouds, sentiment analysis

### Data

- Current and former employee reviews on Glassdoor from Amazon, Apple, Facebook, Google, Microsoft and Netflix.
- 67,529 reviews with 17 features

|           | Total Reviews | Overall-Rating | Percent Current Employee |
|-----------|---------------|----------------|--------------------------|
| Amazon    | 26,430        | 3.58           | 66%                      |
| Apple     | 12,950        | 3.96           | 56%                      |
| Facebook  | 1,590         | 4.51           | 80%                      |
| Google    | 7,819         | 4.34           | 60%                      |
| Microsoft | 17,930        | 3.82           | 63%                      |
| Netflix   | 810           | 3.41           | 50%                      |

Top 10 most common company words across the text review columns by company

| Amazon  | Apple   | Facebook | Google  | Microsoft | Netflix |
|---------|---------|----------|---------|-----------|---------|
| work    | work    | work     | work    | work      | work    |
| manag   | great   | peopl    | great   | compani   | peopl   |
| good    | compani | compani  | compani | good      | manag   |
| compani | peopl   | great    | peopl   | great     | compani |
| peopl   | manag   | cultur   | good    | peopl     | great   |
| great   | benefit | manag    | manag   | manag     | get     |
| get     | good    | place    | place   | benefit   | cultur  |
| time    | get     | lot      | get     | lot       | good    |
| lot     | retail  | get      | lot     | get       | time    |
| hour    | time    | good     | benefit | team      | job     |

### Methods

- Preparing the data:
  - Bag of Words
  - o TFIDF
- Attempted dimension reduction
  - SelectKBest (chi2)
  - o PCA
- Models
  - o Baseline: MNB
  - KNN with PCA
  - Logistic Regression
  - LinearSVC

### Results

- LinearSVC performed the best once the ratings data was taken into account.
- The separated vocabulary for the three text columns (summary/pros/cons) and Bag of Words representation performed the best.

|                        | Full | Current | Former | Vocabs |
|------------------------|------|---------|--------|--------|
| MNB                    | 0.68 | 0.68    | 0.68   | 0.70   |
| Logistic<br>Regression | 0.71 | 0.72    | 0.71   | 0.72   |
| LinearSVC              | 0.69 | 0.70    | 0.69   | 0.71   |

## LinearSVC Deep Dive

|           | Precision | Recall | F1-Score | Support |
|-----------|-----------|--------|----------|---------|
| Amazon    | 0.75      | 0.83   | 0.79     | 6,522   |
| Apple     | 0.72      | 0.67   | 0.69     | 3,237   |
| Facebook  | 0.49      | 0.34   | 0.40     | 390     |
| Google    | 0.56      | 0.48   | 0.52     | 2,003   |
| Microsoft | 0.70      | 0.71   | 0.71     | 4,502   |
| Netflix   | 0.73      | 0.40   | 0.52     | 229     |



### Discussion

Table 4: Most Important Features by Company (prefixes indicate words found in review subcategories: summary, pros, and cons)

| Amazon          | Apple          | Facebook          | Google            | Microsoft      | Netflix       |
|-----------------|----------------|-------------------|-------------------|----------------|---------------|
| cons_shred      | sum_detect     | sum_concentrix    | cons_philanthropi | cons_redmond   | cons_overdr   |
| cons_truck      | sum_mould      | cons_vamp         | pros_mtv          | cons_nokia     | cons_dvd      |
| sum_epitom      | sum_deed       | cons_detect       | cons_correspond   | cons_intrigu   | pros_reed     |
| pros_commerc    | sum_marcom     | cons_idiosyncrasi | cons_mastermind   | pros_strip     | cons_gato     |
| sum_wick        | cons_cupertino | cons_php          | sum_adword        | cons_fanat     | sum_nazi      |
| pros_wiki       | pros_sap       | pros_fb           | sum_gsx           | cons_blatantli | pros_utah     |
| cons_frugal     | cons_represent | cons_symptomat    | sum_quirki        | cons_plethora  | cons_reed     |
| cons_pager      | pros_laser     | pros_coo          | pros_mk           | sum_bing       | sum_tsr       |
| cons_bezo       | sum_nearbi     | cons_meme         | pros_larri        | pros_inquisit  | sum_vacat     |
| pros_dfw        | pros_irrat     | sum_fb            | cons_65k          | pros_premera   | cons_readili  |
| cons_24x7x365   | pros_cupertino | cons_murder       | sum_pod           | sum_365        | pros_agent    |
| pros_department | cons_tim       | sum_obviou        | sum_evalu         | cons_lion      | pros_deck     |
| cons_fabric     | cons_cio       | pros_intersect    | pros_spare        | sum_suprem     | sum_websit    |
| cons_nanni      | sum_patent     | pros_hustl        | cons_unsupport    | cons_scorecard | sum_protect   |
| pros_downturn   | pros_propag    | cons_mpk          | cons_funni        | sum_gtsc       | sum_amsterdam |

### Discussion

- Classification exploits latent identifiers like CEO names, company buzzwords, and industry references
- High frequency of generic and dispassionate language poses challenge for multiclass classification problem
- Popular company reputations do seem to have basis in employee experience

#### **Future Work**

- More extensive deidentification of reviews
- Filtering based on position within company
- Alternative methods for combination of text and numerical ratings data

### Conclusion

- Glassdoor reviews provide pertinent and novel insight into big tech company culture that can be evaluated with machine learning
- In implementing classification, we use BOW to represent data, attempt feature reduction through PCA/SelectKBest, and find that the best classification model was surprisingly Logistic Regression
- Through classification, we see the way company buzzwords and reputation influence employee experience, but broadly reviews were similar across all big tech companies
- Suggests that the corporate world may not be as divided as we would otherwise think!