Algebra 2B, Lista 1

Niech K będzie ciałem, R pierścieniem i $n \in \mathbb{N}$.

1. Niech $f \in K[X] \setminus K$ i $n = \deg(f)$. Udowodnić, że

$$\dim_K(K[X]/(f)) = n.$$

- 2. Udowodnić, że istnieje jedyny homomorfizm $\varphi_R : \mathbb{Z} \to R$ oraz że dla każdego $m \in \mathbb{Z}$ mamy $\varphi_R(m) = m \cdot 1$.
- 3. Niech $f \in R[X] \setminus \{0\}$. Udowodnić, że jeśli R jest dziedziną, to mamy $|Z(f)| \leq \deg(f)$.
- 4. Znaleźć wielomiany nierozkładalne stopni 2 i 3 w $\mathbb{Z}_2[X]$ i $\mathbb{Z}_3[X]$.
- 5. Podać przykłady ciał mocy 4, 8, 9 i 27.
- 6. Załóżmy, że ($\{a,b,0,1\},+,\cdot$) jest ciałem. Napisać tabelki + i ·. Ile istnieje takich par działań ($+,\cdot$)?
- 7. Niech char(K) = n. Udowodnić, że istnieje jedyne podciało $K_0 \subseteq K$ takie, że:
 - K_0 jest najmniejszym podciałem K,
 - jeśli n jest liczbą pierwszą, to $K_0 \cong \mathbb{Z}_n$,
 - jeśli n=0, to $K_0\cong \mathbb{Q}$.

 K_0 nazywamy podciałem prostym K.

- 8. Udowodnić, że zbiór liczb algebraicznych jest przeliczalny.
- 9. Niech $z \in \mathbb{C}$. Udowodnić, że z jest liczbą algebraiczną wtedy i tylko wtedy, gdy \bar{z} (liczba sprzężona) jest liczbą algebraiczną.
- 10. Załóżmy, że n nie jest kwadratem liczby naturalnej i niech

$$T := \{ \begin{bmatrix} a & b \\ nb & a \end{bmatrix} \in M_2(\mathbb{Q}) \mid a, b \in \mathbb{Q} \}.$$

Udowodnić, że:

- T jest podpierścieniem $M_2(\mathbb{Q})$ (wyjątkowo tutaj rozważamy pierścień nieprzemienny $M_2(\mathbb{Q})$),
- $T \cong \mathbb{Q}(\sqrt{n})$, czyli w szczególności T jest ciałem.