Задача 1. Приведите пример ненулевого многочлена с рациональным коэффициентами, корнем которого является **a)** $1 + \sqrt[3]{2}$; **б)** $\sqrt{2} + \sqrt{3}$; **в)*** $\sqrt[3]{2} + \sqrt{3}$; **г)*** $(1 + \sqrt[3]{2})\sqrt{3}$.

Определение 1. Действительное число называется *алгебраическим*, если оно является корнем ненулевого многочлена с рациональными коэффициентами, и *трансцендентным* в противном случае.

Задача 2*. а) Трансцендентные числа существуют.

б)* Приведите конкретный пример трансцендентного числа.

Задача 3*. Алгебраические числа образуют поле.

Определение 2. Минимальным многочленом алгебраического числа α называется неприводимый многочлен $m_{\alpha} \in \mathbb{Q}[x]$, такой что $m_{\alpha}(\alpha) = 0$. Степенью алгебраического числа называется степень его минимального многочлена.

Задача 4. а) Любое алгебраическое число степени 2 может быть представлено в виде $a \pm \sqrt{d}$, где числа a и d рациональные. (Верно ли аналогичное утверждение для алгебраических чисел степени 4?)

б) Если $\alpha = a + \sqrt{d}$ (числа a и d рациональные), то $m_{\alpha} = (x - \alpha)(x - \bar{\alpha})$, где $\bar{\alpha} = a - \sqrt{d}$.

Задача 5. a) $\{P \in \mathbb{Q}[x] : P(\alpha) = 0\} = (m_{\alpha}).$

б) Минимальный многочлен алгебраического числа α существует и единственен (с точностью до умножения на ненулевую константу).

Задача 6. Если α — алгебраическое действительное число, то внутри действительных чисел есть подполе $\mathbb{Q}(\alpha)$, изоморфное полю $\mathbb{Q}[x]/(m_{\alpha})$.

Определение 3. Пусть L поле, K его подполе (« L/K^1 — расширение полей»). Говорят, что элемент поля L алгебраичен над K, если он является корнем ненулевого многочлена с коэффициентами в K. (Таким образом, выше шла речь об алгебраических элементах в расширении \mathbb{R}/\mathbb{Q} .)

Расширение L/K называется *алгебраическим*, если любой его элемент алгебраичен.

Задача 7. Любое конечное поле характеристики p является алгебраическим расширением поля \mathbb{F}_p .

Задача 8. Любое расширение конечных полей получается последовательностью расширений вида $K \subset L \cong K[x]/(P)$.

Задача 9. Если конечное поле имеет характеристику p, то количество элементов в нем является степенью числа p.

Задача 10. Для любого поля K и любого многочлена P над этим полем найдется расширение, в котором многочлен P **a)** имеет корень; **б)** раскладывается на линейные множители.

Задача 11. а) Если L — поле из $q=p^n$ элементов, то любой его элемент является корнем многочлена x^q-x .

- **б)** Для любого q вида p^n существует поле из q элементов.
- **в)*** Единственно ли такое поле?

[]	l a	1 6	1 B	1 Г	2 a	2 6	3	4 a	4 6	5 a	5 6	6	7	8	9	10 a	10 6	11 a	11 б	11 B

 $^{^{1}}$ Читается «L над K », не путать с фактором.

Определение 1. Пусть L/K — расширение полей (т. е. K — подполе поля L). Тогда L можно рассматривать как векторное пространство над K. Размерность [L:K] этого пространства называется cmeneнью расширения. Расширение, имеющее конечную степень, называется k0 можно.

Задача 1. Чему равна **a)** степень $[\mathbb{C}:\mathbb{R}];$ **б)** степень $[\mathbb{F}_4:\mathbb{F}_2]?$

Задача 2. а) Если поле из p элементов вложено в поле из q элементов, то число q — степень числа p. **6)** Количество элементов конечного поля — степень простого числа.

Задача 3. а) Расширение $K(\sqrt{d})/K$ имеет степень 2.

б) Если P — неприводимый многочлен степени n, то [K[x]/(P):K]=n.

Задача 4. а) Если есть башня из трех полей $F \subset K \subset L$, то $[L:F] = [L:K] \cdot [K:F]$.

б) Если L/F — расширение полей степени n, то степень любого промежуточного расширения K/F делит число n.

Задача 5. Найдите **a)** $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{3})];$ **б)** $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}];$ **в)** $[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}].$

Определение 2. Пусть на плоскости введена система координат. Будем сопоставлять каждому набору $\mathcal K$ точек подполе K действительных чисел, порожденное всеми координатами этих точек.

Задача 6. Коэффициенты уравнения

- **a)** прямой, проходящей через пару точек из \mathcal{K} ;
- **б)** окружности с центром в точке из \mathcal{K} и проходящей через точку из \mathcal{K} лежат в K.

Задача 7. Пусть \mathcal{L} получается из \mathcal{K} добавлением точки пересечения

- а) двух прямых; б) прямой и окружности; в) двух окружностей с коэффициентами из K. Чему может равняться степень расширения L/K?
- **Задача 8.** Если число α можно получить из элементов поля $K \subset \mathbb{R}$ при помощи циркуля и линейки, то $[K(\alpha):K]$ степень двойки.
- **Задача 9.** Циркулем и линейкой нельзя построить отрезок в $\sqrt[3]{2}$ длиннее данного (то есть задача об удвоении куба не имеет решения).
- Задача 10. Найдите минимальный многочлен числа **a)** $\cos \frac{\pi}{9}$; **b)** $\cos \frac{\pi}{5}$; **в)*** $\cos \frac{\pi}{7}$. Указание. Используйте равенства вида $\cos n\varphi = \cos m\varphi$.

Задача 11. Задача о трисекции угла не имеет решения.

Задача 12. а) Конечное расширение алгебраично¹. (Верно ли обратное?)

б) Если расширение порождено (как поле) конечным набором алгебраических элементов, то оно конечно и его степень не превосходит произведения степеней этих элементов.

Задача 13. Если L/K — произвольное расширение, то множество его элементов, алгебраичных над K, образует поле (в частности, алгебраические числа образуют поле).

$\begin{bmatrix} 1 \\ a \end{bmatrix}$	1 6	2 a	2 6	3 a	3	4 a	4 6	5 a	5 6	5 B	6 a	6	7 a	7 б	7 B	8	9	10 a	10 б	10 B	11	12 a	12 6	13

 $^{^{1}}$ Определение можно найти в листке «Расширения полей I».