Fizika i

1. előadás

Pontrendszer:

m_1 X

Tömegközéppont:

$$\vec{r}_{tkp} = \frac{\sum_{i} m_{i} \vec{r}_{i}}{\sum_{i} m_{i}}$$

Tömegközéppont sebessége:

$$\vec{v}_{tkp} = \frac{d\vec{r}_{tkp}}{dt} = \frac{\sum_{i} m_{i} \dot{\vec{r}_{i}}}{\sum_{i} m_{i}} = \frac{\sum_{i} m_{i} \vec{v}_{i}}{\sum_{i} m_{i}}$$

Tömegközéppont gyorsulása:

$$\vec{a}_{tkp} = \frac{d\vec{v}_{tkp}}{dt} = \frac{\sum_{i} m_{i} \ddot{\vec{r}_{i}}}{\sum_{i} m_{i}} = \frac{\sum_{i} m_{i} \vec{a}_{i}}{\sum_{i} m_{i}}$$

Pontrendszer - dinamika:

külső erők: \vec{F}_1^k és \vec{F}_2^k

$$I. \vec{F}_1^k + \vec{F}_{12} = m_1 \vec{a}_1$$

$$II. \ \vec{F}_2^k + \vec{F}_{21} = m_2 \vec{a}_2$$

$$I. + II. \quad \underbrace{\vec{F}_{1}^{k} + \vec{F}_{2}^{k}}_{\vec{F}_{e}^{k}} + \underbrace{\vec{F}_{12} + \vec{F}_{21}}_{=0} = m_{1}\vec{a}_{1} + m_{2}\vec{a}_{2} \qquad \qquad \qquad \qquad \vec{F}_{e}^{k} = \sum_{i} m_{i}\vec{a}_{i}$$

$$\downarrow i$$

Láttuk:
$$\vec{a}_{tkp} = \frac{d\vec{v}_{tkp}}{dt} = \frac{\sum_{i} m_{i} \vec{r}_{i}}{\sum_{i} m_{i}} = \frac{\sum_{i} m_{i} \vec{a}_{i}}{\sum_{i} m_{i}}$$
 \longrightarrow $\vec{F}_{e}^{k} = \left(\sum_{i} m_{i}\right) \vec{a}_{tkp} = M \vec{a}_{tkp}$

$$\vec{F}_e^k = \left(\sum_i m_i\right) \vec{a}_{tkp} = M \vec{a}_{tkp}$$

Pontrendszer impulzusa:

Ha $\vec{F}_e^k = 0 \implies \vec{p} = const.$

Ez az impulzus-megmaradás törvénye.

Ütközések

Csoportosítása:

- egyenes-ferde (attól függően, hogy az ütköző testek sebességei a tkp-jaikat összeköt egyenesbe esnek-e)
- centrális-nem centrális (attól függően, hogy az ütköző testek érintkezési pontja rajta van-e a testek tkp-jait összeköt egyenesen);

Rugalmas ütközés (az impulzus és a mechanikai energia is megmarad) $m_1\vec{v}_1' + m_2\vec{v}_2' = m_1\vec{v}_1 + m_2\vec{v}_2$

$$\frac{1}{2}m_1\vec{v}_1^2 + \frac{1}{2}m_2\vec{v}_2^2 = \frac{1}{2}m_1\vec{v}_1^2 + \frac{1}{2}m_2\vec{v}_2^2$$

Rugalmatlan ütközés (impulzus megmarad, mechanikai energia nem)

$$(m_1 + m_2)\vec{v}' = m_1\vec{v}_1 + m_2\vec{v}_2$$

Anyagi pont impulzusmomentuma

Anyagi pont origóra vonatkozó impulzusmomentuma az $\mathbf{r}(t)$ helyvektorának és $\mathbf{p}(t)$ impulzusának vektoriális szorzata:

$$\vec{N} = \vec{r} \times \vec{p}$$

Az impulzusmomentum nagysága:

$$N = pr \sin \alpha$$

Mértékegység: Js

Forgatónyomaték

Egy anyagi pontra ható erőnek az origóravonatkozó forgatónyomatéka az anyagi pont $\mathbf{r}(t)$ helyvektorának és az $\mathbf{F}(t)$ erőnek a vektoriális szorzata: $\overrightarrow{M} = \overrightarrow{r} \times \overrightarrow{F}$

A forgatónyomaték nagysága:

$$M = rF \sin \alpha$$

vagy:

$$M=Fd$$
 illetve $M=rF_t$
erőkar az erő tangenciális komponense

Impulzusmomentum-tétel $\vec{N} = \vec{r} \times \vec{p} = m\vec{r} \times \vec{v}$

$$\vec{N} = \vec{r} \times \vec{p} = m\vec{r} \times \vec{v}$$

$$\frac{d\vec{N}}{dt} = \frac{d(\vec{r} \times \vec{p})}{dt} = \frac{d\vec{r}}{dt} \times \vec{p} + \vec{r} \times \frac{d\vec{p}}{dt} = \vec{v} \times \vec{p} + \vec{r} \times \vec{F}$$

$$\vec{M} = \frac{d\vec{N}}{dt}$$

Ha az anyagi pontra ható erő forgatónyomatéka zérus, az anyagi pont impulzusmomentuma állandó.

$$\vec{M} = 0$$
 $\Rightarrow \frac{dN}{dt} = 0$ $\Rightarrow \vec{N} = \acute{a}lland\acute{o}$

Az impulzusmomentum megmaradásának tétele

Merev testek mechanikája

tömegpont modell

kiterjedt, de alakját nem változtató test

szabadsági fokok

Egy tömegpont mozgását egy helyvektorral, vagyis 3 skalár adattal jellemezhetjük

Egy merev test helyzetét akkor ismerjük, ha megadjuk három – nem egy egyenesbe eső – pontjának helyzetét.

A 9 adat közül csak 6 független

Pl: egy kerék egy felületen gurul, vagy a test egy pont körül vagy rögzített tengely körül forog

f=3

f=1

A merev test tetszőleges mozgása elemi transzlációk és rotációk egymásutánjaként fogható fel.

A merev test mint pontrendszer

tömegközéppont:

$$\vec{r}_{tkp} = \frac{\sum_{i} m_i \vec{r}_i}{\sum_{i} m_i}$$

súlypont: az a pont, ahol a G gravitációs erőhatást egyesítve képzeljük, azért, hogy a gravitációtól származó forgatónyomatékot kiszámíthassuk.

$$ec{r}_{sp} = rac{\sum_{i} G_{i} ec{r}_{i}}{\sum_{i} G_{i}}$$

2.5 2 1.5 1 0.5

-0.5

Egyensúly (statika)

Egyensúly feltétele:

- I. (transzlációs egyensúly):
- II. forgási egyensúly:

$$\sum F_{k\ddot{u}ls\ddot{o}} = 0$$

$$\sum M_{\it k\"{u}\it ls\~{o}} = 0_{\it b\'{a}\it rmely_tengelyre}$$

Merev test forgómozgása rögzített tengely körül

$$t_k \to t_1$$
 ; $t_v \to t_2$

α: szögelfordulás [rad]

átlagos szögsebesség [1/s]

$$\omega_{\text{átl.}} = \frac{\Delta \alpha}{\Delta t} = \frac{\alpha(t_2) - \alpha(t_1)}{t_2 - t_1}$$

Ha ω =const.

$$\omega = \frac{\alpha(t) - \alpha_o}{t}$$

Korong helyzete: $\alpha(t)$

Elfordulás szöge: $\alpha(t) - \alpha_o = \omega t$

Ha ω≠const.

pillanatnyi szögsebesség

$$\omega(t) = \lim_{\Delta t \to 0} \frac{\alpha(t + \Delta t) - \alpha(t)}{\Delta t} = \frac{d\alpha}{dt}$$

átlagos szöggyorsulás [1/s²]

Adott: $\beta(t)$, ω_o és α_o

$$\omega(t) = \omega_0 + \int_0^t \beta(\tau) d\tau$$

$$\alpha(t) = \alpha_0 + \int_0^t \omega(\tau) d\tau$$

v: kerületi sebesség

$$s = r\alpha$$

$$v = \frac{ds}{dt} = r\frac{d\alpha}{dt} = r\omega$$

$$a_t = \frac{dv}{dt} = r\frac{d\omega}{dt} = r\beta$$

$$a_c = \frac{v^2}{r} = r\omega^2$$

Ha β =const.

$$\omega(t) = \omega_o + \beta t$$

Szögelfordulás:

$$\alpha = \omega_o t + \frac{1}{2} \beta t^2$$

$$\alpha = \frac{1}{2}\beta t^2 = \frac{\omega t}{2} = \frac{\omega^2}{2\beta}$$

 $\omega(t)$

 $\omega_{\rm o}$

$$\beta \rightarrow |\beta|$$
 , $\omega \rightarrow \omega_c$

In a typical compact disc player, the constant speed of the surface at the point of the laser–lens system is 1.3 m/s.

(A) Find the angular speed of the disc in revolutions per minute when information is being read from the innermost first track (r = 23 mm) and the outermost final track (r = 58 mm).

Solution Using $v = r\omega$ can find the angular speed that will give us the required tangential speed at the position of the inner track,

$$\omega_i = \frac{v}{r_i} = \frac{1.3 \text{ m/s}}{2.3 \times 10^{-2} \text{ m}} = 57 \text{ rad/s}$$
$$= (57 \text{ rad/s}) \left(\frac{1 \text{ rev}}{2\pi \text{ rad}}\right) \left(\frac{60 \text{ s}}{1 \text{ min}}\right)$$
$$= 5.4 \times 10^2 \text{ rev/min}$$

For the outer track,

$$\omega_f = \frac{v}{r_f} = \frac{1.3 \text{ m/s}}{5.8 \times 10^{-2} \text{ m}} = 22 \text{ rad/s}$$

$$= \frac{2.1 \times 10^2 \text{ rev/min}}{10^{-2} \text{ m}} = 22 \text{ rad/s}$$

The player adjusts the angular speed ω of the disc within this range so that information moves past the objective lens at a constant rate.

(B) The maximum playing time of a standard music CD is 74 min and 33 s. How many revolutions does the disc make during that time?

$$\Delta \theta = \theta_f - \theta_i = \frac{1}{2}(\omega_i + \omega_f)t$$

= $\frac{1}{2}(57 \text{ rad/s} + 22 \text{ rad/s})(4 473 \text{ s})$
= $1.8 \times 10^5 \text{ rad}$

We convert this angular displacement to revolutions:

$$\Delta\theta = 1.8 \times 10^5 \,\mathrm{rad} \left(\frac{1 \,\mathrm{rev}}{2\pi \,\mathrm{rad}} \right) = 2.8 \times 10^4 \,\mathrm{rev}$$

(C) What total length of track moves past the objective lens during this time?

Solution Because we know the (constant) linear velocity and the time interval, this is a straightforward calculation:

$$x_f = v_i t = (1.3 \text{ m/s}) (4.473 \text{ s}) = 5.8 \times 10^3 \text{ m}$$

(D) What is the angular acceleration of the CD over the 4 473-s time interval? Assume that α is constant.

$$\alpha = \frac{\omega_f - \omega_i}{t} = \frac{22 \text{ rad/s} - 57 \text{ rad/s}}{4 \text{ 473 s}}$$
$$= -7.8 \times 10^{-3} \text{ rad/s}^2$$

Forgás - dinamika

merev test

Tehetetlenségi nyomaték

$$\Theta = \sum_{i} m_{i} r_{i}^{2}$$

$$\Theta_{cso} = mr^2$$

$$\Theta_{henger} = \frac{1}{2} mr^2$$

Steiner tétel: $\Theta_A = \Theta_{TK} + a^2 m$

Irány:

Mozgási energia:

$$E_k = \frac{1}{2}\Theta\omega^2$$

Munka: $W = M \cdot \varphi$

$$W = \int_{\varphi_1}^{\varphi_2} M(\varphi) d\varphi$$

Pillanatnyi teljesítmény: $P = M \cdot \omega$

Gördülő mozgás

$$E_k = \frac{1}{2}mv^2 + \frac{1}{2}\Theta\omega^2$$

$$\omega = \frac{v}{R}$$

$$E_k = \frac{1}{2}mv^2 + \frac{1}{2}\Theta\frac{v^2}{R^2} = \frac{1}{2}\left(m + \frac{\Theta}{R^2}\right)v^2$$

Példa: tiszta gördülés

I.
$$F + F_s = ma$$

$$(M = \Theta\beta)$$

II.
$$(F - F_s)R = \Theta\beta = \Theta \frac{a}{R}$$

Tömör korong:

$$\Theta = \frac{1}{2}mR^2$$

Súrlódási erő:

$$F_s \leq F_{s, \text{max}}$$
.

$$a = \frac{4}{3} \frac{F}{m}$$

$$F_s = \frac{1}{3}F$$

Lejtőn legördülő henger (gömb)

haladó mozgás:

$$F_{ex} = G_T - F_T = ma_x$$

$$F_{ey} = F_N - G_N = ma_y$$

$$G_T - F_T = G \sin \alpha - F_T = ma_x$$

$$mg \sin \alpha - F_T = ma_x$$

forgó mozgás:

$$M_z = -F_T R$$
$$-F_T R = \Theta_z \beta_z$$

a test gördül:
$$a_x = -R\beta_z$$

$$a_x = \frac{mg\sin\alpha}{m + \frac{\Theta_z}{\Omega}}$$

$$a_{x} = \frac{mg \sin \alpha}{m + \frac{\Theta_{z}}{R^{2}}} \qquad \beta_{z} = -\frac{mg \sin \alpha}{R\left(m + \frac{\Theta_{z}}{R^{2}}\right)} \qquad a_{x}^{cs\delta} = \frac{1}{2}g \sin \alpha$$

$$a_{x}^{cs\delta} = \frac{1}{2}g \sin \alpha$$

$$a_{x}^{cs\delta} = \frac{1}{2}g \sin \alpha$$

$$a_x^{henger} = \frac{2}{3}g \sin \alpha$$

$$a_x^{cs\delta} = \frac{1}{2}g \sin \alpha$$

$$a_x^g = \frac{5}{7}g \sin \alpha$$

Láttuk: impulzusmomentum v. perdület

$$\vec{N} = \vec{r} \times \vec{p}$$

$$N_{i} = m_{i}v_{i}r_{i} = m_{i}r_{i}^{2}\omega \qquad (v_{i} = \omega r_{i})$$

$$\vec{V}_{i}$$

$$N = \sum_{i} m_{i}v_{i}r_{i} = \sum_{i} m_{i}r_{i}^{2}\omega = \Theta\omega \qquad \Rightarrow E_{k} = \frac{N^{2}}{2\Theta}$$

Impulzusmomentum megmaradás

$$M = \Theta \beta$$

$$M = \Theta\beta = \Theta \frac{\Delta\omega}{\Delta t} = \Theta \frac{\omega_2 - \omega_1}{t_2 - t_1} = \frac{\Theta\omega_2 - \Theta\omega_1}{\Delta t} = \frac{N_2 - N_1}{\Delta t}$$

$$M = \frac{\Delta N}{\Delta t} \quad \rightarrow \quad M = \frac{dN}{dt} \quad \Longrightarrow$$

Perdület megmaradás:

$$Ha \ \vec{M}_e = 0 \implies \vec{N} = const.$$

Szabad tengelyek

$$N_x = \Theta_{xx}\omega_x + \Theta_{xy}\omega_y + \Theta_{xz}\omega_z$$

$$N_{y} = \Theta_{yx} \omega_{x} + \Theta_{yy} \omega_{y} + \Theta_{yz} \omega_{z}$$

$$N_z = \Theta_{zx}\omega_x + \Theta_{zy}\omega_y + \Theta_{zz}\omega_z.$$

$$N_x = \Theta_{xx} \omega_x$$

$$N_y = \Theta_{yy} \omega_y$$

$$N_z = \Theta_{zz} \omega_z$$
.

főtehetetlenségi tengelyek

- ◆ csak főtehetetlenségi tengely lehet,
- ◆ csak tömegközépponton átmenő tengely lehet,
- ◆ stabilis forgás csak a legnagyobb- és a legkisebb tehetetlenségi nyomatékú főtehetetlenségi tengely körül jön létre (előbbi a stabilabb)

Pörgettyűk

Pörgettyűnek nevezünk egy tetszőleges alakú és tömegeloszlású merev testet, ha egy rögzített, vagy rögzítettnek képzelhet pont körül foroghat.

Erőmentes

 $\mathbf{M} = 0 \mathbf{N} = \text{áll}.$

A súlypont körül forog.

- a) a szimm. tengely helyzete nem változik
- b) a szimm. tengely egy körkúpon mozog a térben állandó impulzustengely körül. (nutáció)

Súlyos

M <> 0

A szimm. tengely függőleges tengelyű körkúp palástja mentén mozog. (precesszió)

KÍSÉRLET:

Súlypontjában (O) alátámasztott pörgettyűt ferdén álló szimmetriatengelye (C) körül gyorsan megforgatjuk (baloldali ábra). Ekkor a pörgettyű a tengelye irányát megtartva forog. A szimmetriatengelyt kissé kibillentve (a jobboldali ábrán a függőlegeshez közelítve), a tengely egy kúp mentén körbeforog. A jelenség neve: mutáció.

Precesszió 1.

$$dN_C = Mdt \quad d\vartheta = \frac{dN_C}{N_C \sin \varphi}$$

$$\Omega_p = \frac{M}{N_C \sin \varphi}$$

Precesszió 2.

