Examples in Graduate Mathematics

Matthew McGonagle

August 2, 2018

1 Topology

1.1 Simple Example of Poincare's Torus Bundles

We will consider a simple example of a 3-manifold studied by Poincare; see Stillwell [1] for more information. Consider \mathbb{R}^3 under the following equivalencies:

$$\begin{cases} (x, y, z) \sim (x + 1, y, z), \\ (x, y, z) \sim (x, y + 1, z), \\ (x, y, z) \sim (x + y, y, z + 1). \end{cases}$$
 (1)

Our manifold $M = \mathbb{R}^3/\sim$, the quotient of \mathbb{R}^3 by these equivalencies. A fundamental domain is provided by the unit cube $\{0 \le x, y, z \le 1\}$ (ignoring issues of which sides to include if we are absolutely insistent as to uniqueness of representation of equivalence classes).

We see that every horizontal slice $\{z=c\}$ is a 2-dimensional torus. Furthermore, the slice $\{z=0\}$ and $\{z=1\}$ is given by a glide transformation where the transformation T(x,y)=(x+y,x).

We will compute the fundamental group $\pi_1(M)$ of this manifold by using two triangulations. The first will be a very improper triangulation, and the second will be much more proper although a little more complex.

An Improper Triangulation

First let's consider an improper triangulation/delta complex on M. Pictured below are slices for this triangulation on the unit cube for z=0, some 0 < z < 1, and z=1.

Why is this triangulation improper? It is due to the fact that the line segment d cuts across the face represented by blue in each slice. Now, this doesn't mean it is invalid. It is just not a proper delta-complex; it is more properly described as a CW-complex.

Let's compute $\pi_1(M)$ using this triangulation. First, we find the generators of the fundamental group that come from this triangulation. We need to find a minimal spanning tree inside the 1-complex of our triangulation. Let us root the tree at the vertex that is the corner of $\{z=\}$ of the fundamental domain; recall that all four corners are equivalent.

Next, we see that all of the 1-cells are attached to the root of the tree. Furthermore, every one cell takes the root back to itself. Therefore, our minimal spanning tree just conists of a single vertex, the root of the tree. Therefore, every 1-cell is a generator for $\pi_1(M)$. So we know that $\pi_1(M)$ is generated by a, b, c, d, and e.

Now let us find the relations between these generators that come from the faces (i.e. 2-cells) of our triangulation.

The horizontal 2-cells in the slice $\{z=0\}$ give

$$d \sim ab \sim ba.$$
 (2)

This is expected as every horizontal slice is just a 2-dimensional torus.

Next, let us investigate the relations due to the vertical faces. So we look at each color in the $\{0 < z < 1\}$ to see where the faces are. Note, that the blue color is a little misleading as e cuts across this face. So let us look at this face explictly.

The blue face gives us

$$e \sim ac \sim ca.$$
 (3)

Note that we also have that a commutes with c.

The red vertical face gives

$$beb^{-1}c^{-1} \sim 1.$$
 (4)

This allows us to solve for e in terms of b and c,

$$e \sim b^{-1}cb. (5)$$

Finally, the fuschia vertical face gives

$$ded^{-1}c^{-1} \sim 1. (6)$$

Given that $d \sim ab$, $e \sim b^{-1}cb$, and a commutes with both b and c, we get

$$1 \sim abb^{-1}cbb^{-1}a^{-1}c^{-1},\tag{7}$$

$$\sim aca^{-1}c^{-1},\tag{8}$$

$$\sim 1.$$
 (9)

Therefore, the fuschia face hasn't given us anything new.

Our relations are thus

$$\begin{cases} d \sim ab \sim ba, \\ e \sim b^{-1}cb, \\ e \sim ac \sim ca. \end{cases}$$
 (10)

So we see that the true generators are a, b, and c. Thus we see that our relations may be described more succinclty as

$$\begin{cases} ab \sim ba, \\ ac \sim ca, \\ cb \sim abc. \end{cases}$$
 (11)

The last relation tells us how to deal with changing the order of b and c; in the process, we pick up an a.

So let us see what happens when we take the product of powers of a, b, and c. We have

$$a^{p_1}b^{q_1}c^{r_1}a^{p_2}b^{q_2}c^{r_2} \sim a^{p_1+p_2}b^{q_1}c^{r_1}b^{q_2}c^{r_2}, \tag{12}$$

$$\sim a^{p_1 + p_2 + r_1 q_2} b^{q_1 + q_2} c^{r_1 + r_2}. (13)$$

So we see that we can represent $\pi_1(M)$ by a semi-direct product

$$\mathbb{Z}^2 \rtimes_{\phi} \mathbb{Z}, \tag{14}$$

where $\phi_r(p,q) = (p + rq, q) = T^r(p,q)$, a = (1,0,0), b = (0,1,0), and c = (0,0,1).

A More Proper Triangulation

Next, let us remark on a more proper triangulation that would also let us compute $\pi_1(M)$.

Now, instead of having a 1-cell e running across a face, we separate it by a region that resembles a triangular cylinder with pinched top and bottom. Using this triangulation will give us the same result for $\pi_1(M)$.

References

[1] John Stillwell. Poincare and the early history of 3-manifolds. Bulletin of the American Mathematical Society, 2012.