The aim of this overview is to outline notions that build up to the description of Calabi-Yau manifolds; with that, literature that generalizes this notion will be discussed. To start off, a differential geometric approach via holonomy will be taken and a specific kind of complex manifold will be introduced, a Kähler manifold, of which a Calabi-Yau manifold is a specific kind determined by holonomy. Therewith, the final aim of this paper is to discuss generalizing the idea of a Calabi-Yau manifold, as done in the work of Hitchin [Hit02][Hit10] and Gualtieri [Gua03], his recent PhD student.

1 Kählerian Preliminaries

1.1 Definition Let M be a real manifold, and let $X, Y \in \mathfrak{X}(M)$, the set of smooth vector fields on M.

An almost complex structure on M is a (1,1)-tensor J on the tangent bundle of M such that $J_a^b J_b^c = -\delta_a^c$. To each such structure there is an associated Nijenhuis tensor, a (1,2)-tensor, N(X,Y) = [X,Y] + J([JX,Y] + [X,JY]) - [JX,JY], where $[\cdot,\cdot]$ is the Lie bracket. A metric g on M is called Hermitian if g(X,Y) = g(JX,JY). Associated to this Hermitian metric is a Hermitian form ω defined as $\omega(X,Y) = g(JX,Y)$, so that it recovers the metric thusly $\omega(X,JY) = g(JX,JY) = g(X,Y)$.

If $N \equiv 0$ for a given J on an M, then (M, J) is called a *complex manifold*; the reasoning for this is that, when N vanishes for a given J, then J is called *integrable*, meaning it is possible to find complex biholomorphic coordinate charts for M. [GHJ03, \S I.4.1-2][MS95, \S 4]

1.2 Definition A complex manifold (M, g, J) is a called *Kähler* if g is a Hermitian metric and if any of the following equivalent² conditions hold: where ω is the Hermitian form associated to (M, g, J), as defined in definition (1.1),

 $d\omega = 0$, $\nabla J = 0$, $\nabla \omega = 0$,

where ∇ is the Levi-Civita connection associated to g. If such an M is of real dimension 2n, i.e. of complex dimension n, then M is called a *Kähler n-fold*. [GHJ03, 1.4.2][Joy00, 4.4]

Also, note that, if (M, J) is Kähler, then ω is closed by definition, is nondegenerate by the nondegeneracy of the metric g on M, and is anti-symmetric,

$$\omega(X, Y) = g(JX, Y) = g(JX, -J^2Y) = g(X, -JY) = g(JY, -X) = -\omega(Y, X);$$

this shows that ω is symplectic, making (M, ω) also a symplectic manifold.

1.5 Theorem Let T is a smooth section of $\bigotimes^r TM \otimes \bigotimes^s T^*M$, i.e. $T \in \Gamma \left(\bigotimes^r TM \otimes \bigotimes^s T^*M\right)$, and suppose T is such that it is constant, i.e. $\nabla T = 0$. Then, at every $p \in M$, $T|_p$ is stabilized by all elements of $\operatorname{Hol}_p(\nabla)$. Also, if some $\tau \in \bigotimes^r T_pM \otimes \bigotimes^s T_p^*M$ is stabilized by all of $\operatorname{Hol}_p(\nabla)$, then τ can be extended to a tensor $T \in \Gamma \left(\bigotimes^r TM \otimes \bigotimes^s T^*M\right)$ such that $\nabla T = 0$. [GHJ03, §I.2.3][Joy00, §2.5]

With this, on a Riemannian manifold (M,g) of dimension 2n with Levi-Civita connection ∇ , it follows that since $\nabla g = 0$, Hol g must stabilize g; in particular, this means that Hol (g) is isomorphic to a subgroup of $O_{2n}(\mathbb{R})$, i.e. $SO_{2n}(\mathbb{R})$ up to conjugation. Moreover, for a Kähler manifold (M,g,J) with Kähler form ω , it follows from definiton that Hol (g) must also preserve J and ω , forcing Hol $(g) \subset U_n(\mathbb{C})$.

2 Calabi-Yau Introduction

This section will, in particular, work to an equivalent definition (see remark (2.3)) of a Calabi-Yau manifold, which motivated the construction of a generalized Calabi-Yau manifold by Hitchin [Hit02].

- 2.1 Definition A Calabi-Yau manifold, or Calabi-Yau n-fold, is a compact Kähler manifold (M, g, J) of real dimension 2n with $\operatorname{Hol}(g) \subset \operatorname{SU}_n(\mathbb{C})$. $[\operatorname{nb}.^3]$
- 2.2 Proposition Let (M,g,J) be a compact Kähler n-fold such that $\operatorname{Hol}(g) \subset \operatorname{SU}_n(\mathbb{C})$. Then, M admits a non-zero constant holomorphic form $\Omega \in \Gamma(\Lambda^{n,0}M)$, which is unique up to multiplication by $e^{i\theta}$, for $\theta \in \mathbb{R}$, and is such that

$$\omega^n = \left(\frac{i}{2}\right)^n n! (-1)^{\frac{n(n-1)}{2}} \Omega \wedge \overline{\Omega};$$

this form Ω is called the *holomorphic volume form* on M. Calling $\Lambda^{n,0}M =: K_M$ the *canonical bundle*, the existence of Ω implies that a Calabi-Yau manifold has a *trivial* canonical bundle by the definition of being a trivial bundle. [GHJ03, §I.4.5][Joy00, §6.1]

Conversely, if the compact Kähler n-fold (M, g, J) has a trivial canonical bundle (i.e. there exists such an Ω), then it follows that $\operatorname{Hol}(g) \subset \operatorname{SU}_n(\mathbb{C})$.

2.3 Remark From this proposition, it follows that there is an equivalent definition of a Calabi-Yau *n*-fold (cf. definition (2.1)): a compact Kähler *n*-fold (*M*, *g*, *J*), which has a trivial canonical bundle.

3 Generalized Calabi-Yau

In this section, the idea of generalized geometry from Hitchin [Hit02][Hit10], and Gualtieri [Gua03], will be introduced. Specifically, the sights will be set on the notion of a generalized Calabi-Yau manifold as discussed in Hitchin [Hit02]. As mentioned, generalizing a Calabi-Yau manifold comes from using the equivalent definition in remark (2.3).

Baring contrast to previous considerations involving the tangent bundle, in generalized geometry, considerations are with respect to the bundle $(TM \oplus T^*M) \otimes \mathbb{C}$. With this, the metric is replaced with an indefinite metric, which extends over \mathbb{C} , from the natural action of sections of T^*M on sections of T^*M . Then, the use of the Lie bracket on sections of T^*M translates to the analogous use of the Courant bracket on $T^*M \oplus T^*M$.

¹[GHJ03, \$1.4.1][MS95, \$4.2] The vanishing is a necessary and sufficient condition by the Newlander-Nirenberg theorem. [Joy00, \$4.1] [Mor07, \$7.4 & \$8.1]

²[GHJ03, \$I.4.2][Mor07, \$11.2]

³This differs in from some of the referenced material, cf. [GHJ03, \$1.4.5][Joy00, \$6.1][Mor07, \$21.2], where $Hol(g) \cong SU_n(\mathbb{C})$. The reason for this is as was suggested in the introduction to this section: this definition is equivalent to one which motivated Hitchin [Hit02]. As should be seen, this is done without affect to the results which were gleaned from those referenced works.

3.1 Definition Let $X + \alpha$, $Y + \beta \in \Gamma(TM \oplus T^*M)$, smooth sections of $TM \oplus T^*M$. Then, the Courant bracket of $X + \alpha$, $Y + \beta$ is

$$[\![X+\alpha,Y+\beta]\!] := [X,Y] + \mathfrak{L}_X \beta - \mathfrak{L}_Y \alpha - \frac{1}{2} d(\iota_X \beta - \iota_Y \alpha),$$

where $[\cdot,\cdot]$, and \mathfrak{L} , are the usual Lie bracket, and derivative, respectively, and ι is the usual interior product.

On the bundle $TM \oplus T^*M$, the natrual indefinite metric is given as follows, for $X + \alpha$, $Y + \beta \in \Gamma(TM \oplus T^*M)$,

$$\langle X + \alpha, Y + \beta \rangle := \frac{1}{2} (\beta(X) + \alpha(Y)) = \frac{1}{2} (\iota_X \beta + \iota_Y \alpha)$$

[Hit02, §3.1][Gua03, §3.2 & §2.2][Hit10, §§1.1-2]

- 3.2 Proposition Define the action of $X + \alpha \in \Gamma(TM \oplus T^*M)$ on $\varphi \in \Gamma(\Lambda^{\bullet}T^*M)$ to be $(X + \alpha) \cdot \varphi = \iota_X \varphi + \alpha \wedge \varphi \in \Gamma(\Lambda^{\bullet}T^*M)$. Then, with this action and with the relation $(X + \alpha)^2 = \langle X + \alpha, X + \alpha \rangle$, $TM \oplus T^*M$ has a Clifford algebra represention $C\ell(TM \oplus T^*M)$ on $\Lambda^{\bullet}T^*M$. [Hit02, §3.2][Gua03, §2.3][Hit10, §2.1]
- 3.3 Remark Therewith, it can be shown that the natural choice⁴ of *spinors* for $C\ell(TM \oplus T^*M)$ is the exterior algebra $\Lambda^{\bullet}T^*M$. For dim_R TM = m = 2n, this corresponds to the spin respresentation

$$S = \Lambda^{\bullet} T^* M \otimes (\Lambda^n T^* M)^{-\frac{1}{2}}.$$

Letting $\Lambda^+ T^*M$, $\Lambda^- T^*M$ be, respectively, the even- and odd-form parts of $\Lambda^{\bullet} T^*M$, this representation also has a(n) (invariant⁵) bilinear form: for $\varphi, \psi \in \Gamma(\Lambda^{\bullet} T^*M)$,

$$(\varphi,\psi) := \sum_{j=0}^{n} (-1)^{j} \left(\varphi_{2j} \wedge \psi_{m-2j} + \varphi_{2j+1} \wedge \psi_{m-2j-1} \right) \in \Gamma(\Lambda^{n} T^{*} M),$$

where a subscript k denotes taking the part of φ , ψ , which is a form of real degree k. Note that, in this construction, the degrees summed over is doubled when the bundle is complexfied, i.e. summed to $\dim_{\mathbb{R}}(TM\otimes\mathbb{C})=2\dim_{\mathbb{R}}TM=2m$, as to account for the new vector space dimension.

3.4 Definition Let φ be a spinor, and let its annihilator be $E_{\varphi} := \{X + \alpha \in \Gamma(TM \oplus T^*M) | (X + \alpha) \cdot \varphi = 0\}$. Note that, via the multiplication rule⁶ for Clifford algebras,

$$2\langle X+\alpha,Y+\beta\rangle\cdot\varphi = ((X+\alpha)(Y+\beta)+(Y+\beta)(X+\alpha))\cdot\varphi = 0,$$

for any $X + \alpha$, $Y + \beta \in E_{\varphi}$. Since φ is non-trivial, this implies that $\langle X + \alpha, Y + \beta \rangle = 0$ for any such $X + \alpha, Y + \beta$, which makes, by definition, E_{φ} isotropic with respect to $\langle \cdot, \cdot \rangle$.

The spinor φ is called *pure* if $\dim_{\mathbb{R}} E_{\varphi} = \dim_{\mathbb{R}} M$. [Hit02, §3.3][Gua03, §2.5]

- 3.5 Definition Let M be a smooth manifold of dimension 2n, with the indefinite metric $\langle \cdot, \cdot \rangle$, as defined in definition (3.1), on its bundle $TM \oplus T^*M$. Then, a generalized complex structure on M is a subbundle $E \subset (TM \oplus T^*M) \otimes \mathbb{C}$ such that: (1.) $E \oplus \overline{E} = (TM \oplus T^*M) \otimes \mathbb{C}$, i.e. dim E = 2n, (2.) $\Gamma(E)$ is closed under the Courant bracket $[\cdot, \cdot]$, (3.) E is isotropic with respect to $\langle \cdot, \cdot \rangle$. [Hit02, §4.1] [Gua03, §4.2] [nb.7]
- 3.6 Definition A generalized Calabi-Yau manifold is a smooth manifold M of real dimension 2n with a closed form φ in $\Gamma(\Lambda^+T^*M)$ or $\Gamma(\Lambda^-T^*M)$, which is a (complex) pure spinor for $C\ell(TM \oplus T^*M)$ such that the bilinear form $(\varphi, \overline{\varphi}) \neq 0$. [Hit02, §4.1]
- 3.7 Proposition Let M with φ be a generalized Calabi-Yau manifold of real dimension 2n. Then, the annihilator subbundle $E_{\varphi} \subset (TM \oplus T^*M) \otimes \mathbb{C}$ is a generalized complex structure on M. [Hit02, §4.1]
- PROOF First, note that, since φ is pure, E_{φ} is isotropic, satisfying condition (3.) of being a generalized complex structure. Furthermore, since $(\varphi, \overline{\varphi}) \neq 0$, it follows that, by the definition of the form (\cdot, \cdot) , that $E_{\varphi} \cap E_{\overline{\varphi}} = 0$, which, from the definition of an annihilator subbundle, makes $E_{\varphi} \cap \overline{E_{\varphi}} = E_{\varphi} \cap E_{\overline{\varphi}} = 0$. This with the fact that $\dim_{\mathbb{R}} E_{\varphi} = 2n = \dim_{\mathbb{R}} M$, since φ is pure, makes $E_{\varphi} \oplus \overline{E_{\varphi}} = (TM \oplus T^*M) \otimes \mathbb{C}$, satisfying condition (1.) of being a generalized complex structure.

Lastly, it is needed to show that E_{φ} satisfies condition (2.). Let $X + \alpha$, $Y + \beta \in E_{\varphi}$, and consider the identity

$$\iota_{[X,Y]}\varphi = \mathfrak{L}_X(\iota_Y\varphi) - \iota_Y\mathfrak{L}_X\varphi = -\mathfrak{L}_X\beta \wedge \varphi + (\iota_Y\mathrm{d}\alpha) \wedge \varphi.$$

Using antisymmetry of the Lie bracket $[\cdot,\cdot]$ and what was just shown, it follows

$$\iota_{[X,Y]}\varphi = \frac{1}{2}\left(\iota_{[X,Y]}\varphi - \iota_{[Y,X]}\varphi\right) = \left(\mathfrak{L}_{Y}\alpha - \mathfrak{L}_{X}\beta - \frac{1}{2}\left(\mathrm{d}\iota_{Y}\alpha - \mathrm{d}\iota_{X}\beta\right)\right) \wedge \varphi \iff \llbracket X + \alpha, Y + \beta \rrbracket \cdot \varphi = 0,$$

showing that $[X + \alpha, Y + \beta] \in E_{\varphi}$ by definition, which makes sections of E_{φ} closed under the Courant bracket; thus, condition (2.) is satisfied.

Therefore, E_{φ} is a generalized complex structure on M for such a φ .

3.8 Example Let (M,g,J) be a Calabi-Yau n-fold, for m=2n, as defined in definition (2.1); it follows from proposition (2.2), that there is an associated holomorphic volume form $\Omega \in \Gamma(\Lambda^{n,0}M)$ on M, which is naturally closed. Looking at E_{Ω} , it contains elements $X+\alpha$ such that $X \in \Gamma(TM \otimes \mathbb{C})$ of type (0,1), since then $\iota_X \Omega = 0$, and $\alpha \in \Gamma(T^*M \otimes \mathbb{C})$ of type (1,0), since then $\alpha \wedge \varphi = 0$, whence $(X+\alpha) \cdot \varphi = 0$ by definition. This, of course, makes $\dim_{\mathbb{R}} E_{\Omega} = 2n = \dim_{\mathbb{R}} M$, and, thusly, Ω is a pure spinor. Lastly, looking the necessary bilinear form

$$(\Omega, \overline{\Omega}) = (-1)^n \Omega \wedge \overline{\Omega},$$

since Ω is a form of real degree 2n, so $\Omega_{2n} = \Omega$ and $\overline{\Omega}_{2n} = \overline{\Omega}$, and the real dimension of the complexified bundle is 4n, so $\overline{\Omega}_{4n-2n} = \overline{\Omega}$. Moreover, this product is nonzero by the construction of Ω : $(\Omega, \overline{\Omega}) \neq 0$. Therefore, it follows from proposition (3.7), that M with such a form $\Omega = \varphi$ has a generalized complex structure given by E_{Ω} , making M also a generalized Calabi-Yau manifold.

⁴For slightly-differing mentions of this, see [Hit02, §3.2] and [Hit10, §2.1]; this is discussed more so in [Gua03, §2.3 & §2.8]. The general references for spin are [Jos08, §1.11] and [LM89, §§1.1-8].

⁵[Hit02, §3.2][Gua03, §2.4]

⁶[Jos08, §1.11][Gua03, §2.5]

⁷From this definition, it follows that an endomorphism \mathcal{J} on $\Gamma(TM \oplus T^*M)$ can be defined, analogous to the one for a regular complex structure, cf. definition (1.1).

References

- [Bou07] Vincent Bouchard, Lectures on complex geometry, Calabi-Yau manifolds and toric geometry, arXiv:hep-th/0702063v1, 2007.
- [CdS01] Ana Cannas da Silva, Lectures on Symplectic Geometry, Lecture Notes in Mathematics, no. 1764, Springer-Verlag, 2001.
- [GH]03] Mark Gross, Daniel Huybrechts, and Dominic Joyce, Calabi-Yau Manifolds and Related Geometries, Universitext, Springer-Verlag, 2003.
- [Gua03] Marco Gualtieri, Generlized complex geometry, Ph.D. thesis, 2003, arxiv:math.DG/0401221v1.
- [Hit02] Nigel Hitchin, Generalized Calabi-Yau manifolds, arXiv:math/0209099v1, 2002.
- [Hit10] _____, Lectures on generalized geometry, arXiv:1008.0973v1, 2010.
- [II07] Vladimir G. Ivancevic and Tijana T. Ivancevic, Applied Differential Geometry: A Modern Introduction, World Scientific Publishing Co. Pte. Ltd., 2007.
- [Jos08] Jürgen Jost, Riemannian Geometry and Geometric Analysis, 5 ed., Universitext, Springer-Verlag, 2008.
- [Joy00] Dominic D. Joyce, Compact Manifolds with Special Holonomy, Oxford University Press, 2000.
- [LM89] H. B. Lawson and M.-L. Michelsohn, Spin Geometry, Princeton Mathematical Series, no. 38, Princeton University Press, 1989.
- [Mor07] Andrei Moroianu, Lectures on Kähler Geometry, London Mathematical Society Student Texts, no. 69, Cambridge University Press, 2007.
- [MS95] Dusa McDuff and Dietmar Salamon, Introduction to Symplectic Topology, Oxford Science Publications, Oxford University Press, 1995.

×