Automatic Control

Hak-Tae Lee

Frequency Response

Bode Plot 2

1st Order System

•
$$G(s) = \frac{1}{\tau s + 1}$$

Magnitude

$$- |G(j\omega)| = \frac{1}{\sqrt{(\tau\omega)^2 + 1}}$$

Phase

$$- \angle G(j\omega) = -\angle \tan^{-1} \tau \omega$$

Corner frequency

$$- \tau \omega = 1 \rightarrow \omega = \frac{1}{\tau}$$

$$- \text{ Magnitude } \rightarrow \frac{1}{\sqrt{2}}$$

$$- \text{ Phase } \rightarrow -45^{\circ}$$

Magnitude Plot in Detail

 $\log_{10}|G(j\omega)| = -\log_{10}\omega - \log_{10}\tau$

Phase Plot in Detail

What about Zeros?

- $G(s) = \tau s + 1$
 - Magnitude recall the characteristics of log
 - $\log_{10} |G(j\omega)| = \log_{10} |j\tau\omega + 1| = \log_{10} |j\tau\omega + 1|$
 - For small ω : $\log_{10} |G(j\omega)| \to 0$
 - For large ω : $\log_{10} |G(j\omega)| \rightarrow (+1) \log_{10} \omega + \log_{10} \tau$
 - Phase
 - $\angle G(j\omega) = \tan^{-1} \tau \omega$
 - For small $\omega \rightarrow \angle G(j\omega) \rightarrow 0$
 - For large $\omega \rightarrow \angle G(j\omega) \rightarrow 90^{\circ}$
- In general $G(s) = (\tau s + 1)^n$
 - Magnitude \rightarrow slope of n
 - Phase \rightarrow from 0 to $n \cdot 90^{\circ}$

Exact Opposite of $\frac{1}{\tau s+1}$

Frequency Response of sⁿ

Magnitude

- $-|G(j\omega)| = |(j\omega)^n| = |\omega^n|$
 - $|G(j\omega)| = 1$ when $\omega = 1$
- $-\log_{10}|G(j\omega)| = \log_{10}|(j\omega)^n| = n\log_{10}|\omega|$

Phase

- $\angle G(j\omega) = \angle (j\omega)^n = n \angle j = 90^{\circ}n$ (constant)
 - $n = \pm 1 \rightarrow \pm 90^{\circ}$
 - $n = \pm 2 \rightarrow \pm 180^{\circ}$
 - $n = \pm 3 \Rightarrow \pm 270^{\circ}$
 - $n = \pm 4 \rightarrow \pm 360^{\circ}$

Example 1

$$G(s) = \frac{1}{(s+1)(s+10)(s+100)}$$

- Step 1
 - Rewrite to a standard form

•
$$G(s) = \frac{\frac{1}{10} \cdot \frac{1}{100}}{(s+1)(\frac{s}{10}+1)(\frac{s}{100}+1)}$$

- Magnitude at 0 frequency: 10^{-3}
- Step 2
 - Identify corner frequencies
 - 1
- Magnitude slope: -1 → -1
- Phase: -90° → -90°
- 10
 - Magnitude slope: -1 → -2
 - Phase: $-90^{\circ} \rightarrow -180^{\circ}$
- 100
 - Magnitude slope: -1 → -3
 - Phase: -90° → -270°

Phase

Phase - Actual

Example 2

$$G(s) = \frac{(s+10)}{(s+1)(s+100)}$$

- Step 1
 - Rewrite to a standard form

•
$$G(s) = \frac{\left(\frac{s}{10}+1\right) \cdot \frac{1}{100}}{(s+1)\frac{1}{10}\left(\frac{s}{100}+1\right)} = \frac{1}{10} \frac{\left(\frac{s}{10}+1\right)}{(s+1)\left(\frac{s}{100}+1\right)}$$

- Magnitude at 0 frequency: 10^{-1}
- Step 2
 - Identify corner frequencies
 - 1
- Magnitude slope: -1 → -1
- Phase: $-90^{\circ} \rightarrow -90^{\circ}$
- 10
 - Magnitude slope: +1 → 0
 - Phase: $+90^{\circ} \rightarrow 0^{\circ}$
- 100
 - Magnitude: -1 → -1
 - Phase: $-90^{\circ} \rightarrow -90^{\circ}$

Phase

Bode Plot Using Matlab

dB Scale

Definition

$$- dB = 10 \log_{10} \left(\frac{P_{out}}{P_{in}} \right)$$

- Scale for power or energy ratio
- -10 dB means output is $\frac{1}{10}$ of input

For Bode plots

$$-dB = 20 \log_{10} \left(\frac{y}{u}\right) = 20 \log_{10} |G(j\omega)|$$

- In most cases, input and output are 'signals' that is in 'voltage'
- $P \propto V^2$ → So 20 is used for ratios that represent square root of power

Example 3

$$G(s) = \frac{1}{s(s/100+1)}$$

- Step 1
 - Already in standard form
- Step 2
 - Corner frequencies
 - 0??
 - $-|G(j\omega)|=1$ when $\omega=1$
 - Slope \rightarrow -1
 - Phase \rightarrow -90°
 - 100
 - Magnitude slope: -1 → -2
 - Phase: -90° → -180°

Phase

Verification

Log Scale

2nd Order System

•
$$G(s) = \frac{1}{\left(\frac{s}{\omega_n}\right)^2 + 2\zeta\left(\frac{s}{\omega_n}\right) + 1}$$

Magnitude

$$-|G(j\omega)| = \frac{1}{\sqrt{(1-\lambda^2)^2 + (2\zeta\lambda)^2}}$$
 where $\lambda = \frac{\omega}{\omega_n}$

Phase

$$- \angle G(j\omega) = -\tan^{-1}\frac{2\zeta\lambda}{1-\lambda^2}$$

Corner frequency (break point)

$$-\lambda = 1 \rightarrow \omega = \omega_n$$

- Magnitude $\rightarrow \frac{1}{2\zeta}$
- Phase \rightarrow -90°

Magnitude Plot in Detail

Corner frequency (break point)

$$|G(j\omega)| = \frac{1}{\sqrt{(1-\lambda^2)^2 + (2\zeta\lambda)^2}}$$

$$\log_{10}|G(j\omega)| \approx -2\log_{10}\omega + 2\log_{10}\omega_n$$

Phase Plot in Detail

Effects of the Damping Ratio, ζ

Example

•
$$G(s) = \frac{90}{s^2 + 2s + 9}$$

- Step 1
 - Rewrite to a standard form

•
$$G(s) = 10 \frac{9}{s^2 + 2s + 9} = 10 \frac{1}{\left(\frac{s}{3}\right)^2 + 2\left(\frac{1}{3}\right)\left(\frac{s}{3}\right) + 1}$$

- Magnitude at 0 frequency: 10¹
- Step 2
 - Identify corner frequencies (break points)
 - $\omega_n = 3$
 - Identify damping ratio
 - $\zeta = 0.33 \Rightarrow \frac{1}{2\zeta} = 1.5$
 - Magnitude at $\omega_n \rightarrow 10 \times 1.5 = 15$
 - Phase
 - $0 \to -90 \to -180$

Magnitude Plot

Phase Plot

ω	3/10	3/2	3	3×2	3 × 10
φ	-3.9	-24	-90	-156	-176.1

Verification with Matlab

$$dB = 20 \log_{10} |G(j\omega)|$$