Metrics 101

Pavel Pronin

 $\mathsf{HSE} \to \mathsf{NES}$

July 5, 2022

Outline

- I Econometric Concepts: Expectation, Variance, Conditional Expectation
- Prediction Problem, Analogy Principle and OLS
- Better than OLS: Asymptotics of OLS and Gauss-Markov
- 4 Non-linear Mean Regression: NLLS
- MLE and QML
- **6** GMMs and Instrumental Variables

- This is essentially a *snapshot*. I omit many interesting topics: time series models, censored models, selection models, panel data and etc.
- However, if you decide to dive in it (hopefully) would be easier to grasp new models in all the trickery
- Recommended readings:
 - (Black) Wooldridge
 - 2 Hansen's Econometrics (for more in depth treatment)

Expectation, Variance, Covariance

■ Let $\xi \in \Omega$ be some random variable. Then mathematical expectation of ξ is

$$\mathbb{E}[\xi] = \int_{\Omega} \xi dP(\xi) = \begin{cases} \int_{-\infty}^{+\infty} \xi f(\xi) d\xi & \text{for continuous RV} \\ \sum_{i=1}^{|\Omega|} \xi_i P(\xi_i) & \text{for discrete RV} \end{cases}$$

- Properties of $\mathbb{E}[\xi]$
 - 1 $\mathbb{E}[\xi + \eta] = \mathbb{E}[\xi] + \mathbb{E}[\eta]$, where η is another RV.

 - $3 \eta = g(\xi) \implies \mathbb{E}[\eta] = \mathbb{E}[g(\xi)], \text{ where } g(\cdot) \text{ is some } measurable \text{ function.}$
- **Example:** suppose $\xi \sim U[a,b]$

$$f(\xi) = \begin{cases} \frac{1}{b-a} & \xi \in [a,b] \\ 0 & \xi \notin [a,b] \end{cases} \implies \mathbb{E}[\xi] = \frac{1}{b-a} \int_{a}^{b} \xi d\xi = \frac{1}{2} \frac{b^{2} - a^{2}}{b-a} = \frac{b+a}{2}$$
$$\mathbb{E}[\xi^{2}] = \frac{1}{b-a} \int_{a}^{b} \xi^{2} d\xi = \frac{1}{3} \frac{(b^{3} - a^{3})}{b-a} = \frac{b^{2} + ab + a^{2}}{3}$$

Expectation, Variance, Covariance

Variance is defined as

$$\mathbb{V}[\xi] = \mathbb{E}[(\xi - \mathbb{E}[\xi])(\xi - \mathbb{E}[\xi]) = \mathbb{E}[\xi^2] - \mathbb{E}[\xi]^2$$
$$\mathbb{C}[\xi, \eta] = \mathbb{E}[(\xi - \mathbb{E}[\xi])(\eta - \mathbb{E}[\eta])] = \mathbb{E}[\xi\eta] - \mathbb{E}[\xi]\mathbb{E}[\eta]$$

Properties are

$$\mathbb{I} \mathbb{V}[a\xi + b] = a^2 \mathbb{V}[\xi]$$

2

$$\mathbb{V}[\xi + \eta] = \mathbb{E}\left\{ \left[\left((\xi + \eta) - \mathbb{E}[\xi + \eta] \right)^2 \right\} = \mathbb{E}[(\xi + \eta)^2] - \mathbb{E}[\xi + \eta]^2 \right.$$

$$= \mathbb{E}[\xi^2] + \mathbb{E}[\eta^2] + 2\mathbb{E}[\eta\xi] - \mathbb{E}[\xi + \eta]^2$$

$$= \mathbb{E}[\xi^2] + \mathbb{E}[\eta^2] + 2\mathbb{E}[\eta\xi] - \mathbb{E}[\xi]^2 - \mathbb{E}[\eta]^2 - 2\mathbb{E}[\xi]\mathbb{E}[\eta]$$

$$= \underbrace{\mathbb{E}[\xi^2] - \mathbb{E}[\xi]^2}_{\mathbb{V}[\xi]} + \underbrace{\mathbb{E}[\eta^2] - \mathbb{E}[\eta]^2}_{\mathbb{V}[\eta]} + 2\underbrace{\left(\mathbb{E}[\xi\eta] - \mathbb{E}[\xi]\mathbb{E}[\eta]\right)}_{\mathbb{C}[\xi,\eta]}$$

Variance

lacksquare Back to our example, $\xi \sim \textit{U}[\textit{a},\textit{b}]$

$$f(\xi) = \begin{cases} \frac{1}{b-a} & \xi \in [a, b] \\ 0 & \xi \notin [a, b] \end{cases}$$

$$\mathbb{V}[\xi] = \mathbb{E}[\xi^2] - \mathbb{E}[\xi]^2$$

$$\mathbb{E}[\xi] = \frac{b+a}{2}, \mathbb{E}[\xi^2] = \frac{b^2 + ab + a^2}{3}$$

$$\implies \mathbb{V}[\xi] = \frac{b^2 + ab + a^2}{3} - \frac{b^2 + a^2 + 2ab}{4} = \frac{b^2 + a^2 - 2ab}{12} = \frac{(a-b)^2}{12}$$

For

Conditional Expectation

- Consider two RVs ξ, η with joint distribution $f_{\xi,\eta}(\xi,\eta)$.
- Recall Bayes Theorem

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \implies f_{\xi|\eta}(\xi|\eta) = \frac{f_{\xi,\eta}(\xi,\eta)}{f_{\eta}(\eta)}$$

Recall Law of Total Probability

$$P(B) = P(B|A)P(A) \implies f_{\eta}(\eta) = \int_{\mathbb{R}} f_{\xi,\eta}(\xi,\eta)d\xi$$

Conditional Expectation example

- Let (x, y) be a random pair of variables (e.g. height and weight)
- Suppose they have joint density function $f_{x,y}(x,y)$, e.g.

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{pmatrix} \right)$$

Conditional density can be found by

$$f_{x_1|x_2}(x_1|x_2) = \frac{f_{x_1,x_2}(x_1,x_2)}{f_{x_2}(x_2)} = \frac{f_{x_1,x_2}(x_1,x_2)}{\int_{-\infty}^{+\infty} f_{x_1,x_2}(x_1,x_2) dx_2}$$

$$f_{x_1}(x_1) = \frac{1}{\sqrt{2\pi\sigma_1^2}} \exp\left(-\frac{1}{2}\frac{(x_1-\mu_1)^2}{\sigma_1^2}\right)$$

$$f_{x_1,x_2}(x) = \frac{1}{\sqrt{\det(2\pi\Sigma)}} \exp\left(-\frac{1}{2}(\mathbf{x}-\mu)'\Sigma^{-1}(\mathbf{x}-\mu)\right)$$

Conditional Expectation

It can be shown (just integrate and factor out) that:

$$x_1|x_2 \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

$$\mu = \mu_1 + \frac{\sigma_{12}}{\sigma_2^2}(x_2 - \mu_2)$$

$$\sigma^2 = \sigma_1^2 - \left(\frac{\sigma_{12}}{\sigma_2}\right)^2$$

Therefore,

$$\mathbb{E}[x_1|x_2] = \mu_1 + \frac{\sigma_{12}}{\sigma_2^2}(x_2 - \mu_2)$$

■ Hmmm.... Actually, this is regression.

Conditional Expectation

■ LIE - Law of Iterated Expectations

$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]]$$

For our example, recall that $\mathbb{E}[x_1] = \mu_1$ and apply the formula

$$\mathbb{E}[x_1] = \mathbb{E}[\mathbb{E}[x_1|x_2]] = \mathbb{E}\left[\mu_1 + \frac{\sigma_{12}}{\sigma_2^2}(x_2 - \mu_2)\right] = \mu_1$$

Conditional Variance

Conditional Variance

$$\mathbb{V}[x_1|x_2] = \mathbb{E}[(x_1 - \mathbb{E}[x_1|x_2])^2 | x_2] = \mathbb{E}[x_1^2 | x_2] - \mathbb{E}[x_1|x_2]^2 = \sigma^2 = \sigma_1^2 - \left(\frac{\sigma_{12}}{\sigma_2}\right)^2$$

Law of total Variance

$$\mathbb{V}[X] = \mathbb{V}[\mathbb{E}[X|Y]] + \mathbb{E}[V[X|Y]]$$

$$\mathbb{V}[x_1] = \mathbb{V}[\mu_1 + \frac{\sigma_{12}}{\sigma_2^2}(x_2 - \mu_2)] + \sigma_1^2 - \left(\frac{\sigma_{12}}{\sigma_2}\right)^2 = \frac{\sigma_{12}^2}{\sigma_2^4}\sigma_2^2 + \sigma_1 - \frac{\sigma_{12}^2}{\sigma_2^2} = \sigma_1$$

Prediction Problem

■ MSPE – **M**ean **S**quared **P**rediction **E**rror.

$$\arg\min_{g(x)} \mathbb{E}\left[(y-g(x))^2\right]$$

- This *convex* optimization problem.
 - A function $f: \mathbb{R} \to \mathbb{R}$ is said to be *convex* if

(1)
$$\forall \alpha \in (0,1) : f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y)$$

or (2)* $f'(x)(y-x) \le f(y) - f(x)$
or (3)* $f''(x) \ge 0 \forall x$

In our case we have

$$(y - g(x))^2 \equiv f(z) = z^2, f''(z) = 2 \ge 0 \forall z \implies$$
 convex optimization

■ ⇒ global minimum exists.

Prediction Problem

$$\mathbb{E} [(y - g(x))^{2}] = \mathbb{E} [(y - \mathbb{E}[y|x] + \mathbb{E}[y|x] - g(x))^{2}]$$

$$= \mathbb{E} \left[(y - \mathbb{E}[y|x])^{2} + (\mathbb{E}[y|x] - g(x))^{2} + \underbrace{2(y - \mathbb{E}[y|x])(\mathbb{E}[y|x] - g(x))}_{2A} \right]$$

Consider A. And apply Jensen's Inequality: for RV x and convex function ϕ (recall that $f(z) = z^2$ is convex)

$$\phi(\mathbb{E}[x]) \le \mathbb{E}[\phi(x)]$$

Then

$$A = y\mathbb{E}[y|x] - \mathbb{E}[y|x]^2 - yg(x) + g(x)\mathbb{E}[y|x]$$

$$\mathbb{E}[A|x] = \mathbb{E}[y|x]^2 - \mathbb{E}[y|x]^2 - \mathbb{E}[y|x]g(x) + g(x)\mathbb{E}[y|x] = 0 \implies \mathbb{E}[A] = \mathbb{E}[\mathbb{E}[A|x]] = 0$$

Prediction Problem

Therefore, we shown that

$$\mathbb{E}[(y-g(x))^2] = \mathbb{E}\left[(y-\mathbb{E}[y|x])^2\right] + \underbrace{\mathbb{E}\left[\left(\mathbb{E}[y|x]-g(x)\right)^2\right]}_{>0}$$

Thus we proofed, that if we want to minimize MSPE, *optimal predictor* of y by x is conditional expectation $\mathbb{E}[y|x]$.

And optimal prediction error is just

$$e = y - \mathbb{E}[y|x]$$

we simply can not do better. Very important property: Apply LIE

$$\begin{split} \mathbb{E}[e|x] &= \mathbb{E}[y|x] - \mathbb{E}[y|x] = 0 \\ \mathbb{E}[e] &= \mathbb{E}[\mathbb{E}[e|x]] = 0 \end{split}$$

Moreover, consider any function h(x) and apply LIE

$$\mathbb{E}[eh(x)|x] = h(x)\mathbb{E}[e|x] = 0 \implies \mathbb{E}[eh(x)] = 0$$

Analogy Principle: Where do estimators come from?

- So far we were dealing with theoretical distributions, expectations, etc.
- Suppose parameter θ is some function of distribution F(z). We only have a limited sample and want to estimate this parameter.
- Analogy Principle: given random sample $\{z_i\}_{i=1}^n$ construct analog estimator $\hat{\theta}$ as same function of *empirical* distribution $F_n(z)$, where

$$F_n(z) = \frac{\# \text{elements in the sample} \le z}{n}$$

- **E**xample with mean. Suppose $\theta = \mathbb{E}[z]$
 - 1 True value

$$\theta = \mathbb{E}[z] = \int_{-\infty}^{+\infty} z dF(z)$$

2 Analogy Principle

$$\hat{\theta} = \int_{-\infty}^{+\infty} z dF_n(z) = \frac{1}{n} \sum_{n=0}^{n} z_n$$

Analogy Principle: Where do estimators come from?

Another example: Suppose that

$$\theta = \frac{cov(x, y)}{var(x)} = \frac{\mathbb{E}[xy] - \mathbb{E}[x]\mathbb{E}[y]}{\mathbb{E}[x^2] - \mathbb{E}[x]^2}$$

True value is

$$\theta = \frac{\int_{-\infty}^{+\infty} xydF(x,y) - \left(\int_{-\infty}^{+\infty} xdF(x)\right) \left(\int_{-\infty}^{+\infty} ydF(y)\right)}{\int_{-\infty}^{+\infty} x^2dF(x) - \left(\int_{-\infty}^{+\infty} xdF(x)\right)^2}$$

Sample analog is just

$$\hat{\theta} = \frac{\frac{1}{n} \sum_{i=1}^{n} x_i y_i - \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right) \left(\frac{1}{n} \sum_{i=1}^{n} y_i\right)}{\left(\frac{1}{n} \sum_{i=1}^{n} x_i^2\right) - \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right)^2}$$

Analogy Principle: Why exactly this works and how exactly we switched from Integral to Sum?

■ Recall that Riemann Integral is just

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} \Delta x \cdot f(x_{i})$$
$$\Delta x = \frac{b-a}{n}, x_{i} = a + \Delta x \cdot i$$

■ Riemann-Stieltjes Integral is (where $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$)

$$\int_{a}^{b} f(x)dg(x) = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(c_i) \left[g(x_{i+1}) - g(x_i) \right], c_i \in [x_i; x_{i+1}]$$

Just apply the definition to Analogy principle

$$\int_{-\infty}^{+\infty} z dF_n(z) = \lim_{n \to \infty} \sum_{i=0}^{n-1} z_i \left[F_n(z_{i+1}) - F_n(z_i) \right] = \lim_{n \to \infty} \sum_{i=1}^{n} z_i \frac{1}{n}$$

■ This proves by definition that $\hat{\theta}$ defined by Analogy Principle $\rightarrow \theta$ as $n \rightarrow \infty$

Back to our Optimization Problem

Suppose that

$$heta = rg \min_q \mathbb{E}[h(z,q)]$$

$$\implies \hat{\theta} = rg \min_q \frac{1}{n} \sum_{i=1}^n h(z_i,q)$$

Very Convenient!

Linear Mean Regression

Suppose that

$$\mathbb{E}[y|x] = x'\beta,$$

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_k \end{bmatrix}, x' = \begin{bmatrix} x_1 \\ \vdots \\ x_k \end{bmatrix}, \beta = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}, x'\beta = \beta_1 x_1 + \dots + \beta_k x_k = \sum_{i=1}^k x_i \beta_i$$

Equivalently

$$\iff y = x'\beta + e, \mathbb{E}[e|x] = 0$$

If $\mathbb{E}[e|x]$ – this is not even regression!!!!

Why Linear?

I (Very implausible) Statistical Properties. Recall that if x_1, x_2 are joint normal than

$$\mathbb{E}[x_1|x_2] = \mu_1 + \frac{\sigma_{12}}{\sigma_2^2}(x_2 - \mu_2)$$

(Must be) It comes from **theory.** For example, if the production is Cobb-Douglas and error is multiplicative we have:

$$Y = AK^{\alpha}L^{1-\alpha}\exp(u), \mathbb{E}[u|K,L] = 0$$

$$\mathbb{E}[\ln Y|K,L] = \underbrace{\ln A}_{\beta_0} + \underbrace{\alpha}_{\beta_1} \ln K + \underbrace{(1-\alpha)}_{\beta_2} \ln L + u$$

Simple regression by hand

lf

$$y = \alpha + \beta x + e, \mathbb{E}[e|x] = 0 \implies \mathbb{E}[y|x] = \alpha + \beta x$$
$$\beta = \arg\min_{a,b} \mathbb{E}[(y - \mathbb{E}[y|x])^2] = \arg\min_{a,b} \mathbb{E}[(y - a - bx)^2]$$

This is unconstrained optimization problem \implies apply Lagrange Theorem and take FOCs.

Caveat: Interchanging expectation and differentiation.

Suppose

$$\mathbb{E}[f(x,\xi)] o \max_{x} \iff \int_{-\infty}^{+\infty} f(x,\xi)p(\xi)d\xi o \max_{x}$$

Leibniz Integral Rule

$$\frac{d}{dx}\left(\int_{a(x)}^{b(x)}f(x,t)dt\right)=f(x,b(x))\cdot\frac{d}{dx}b(x)-f(x,a(x))\frac{d}{dx}a(x)+\int_{a(x)}^{b(x)}\frac{\partial}{\partial x}f(x,t)dt$$

As Limits of integration are independent of x in our case we have that

$$\frac{d}{dx} \left(\int_{-\infty}^{+\infty} f(x,\xi) p(\xi) d\xi \right) = \int_{-\infty}^{+\infty} \frac{\partial}{\partial x} f(x,\xi) p(\xi) d\xi$$

$$\implies \frac{\partial}{\partial x} \mathbb{E} \left[f(x,\xi) \right] = \mathbb{E} \left[\frac{\partial}{\partial x} f(x,\xi) \right]$$

Back to our problem. Step 1: Solve the problem

$$\beta = \arg\min_{a,b} \mathbb{E}[(y - a - bx)^{2}]$$

$$V = \min_{a,b} \mathbb{E}[(y - a - bx)^{2}]$$

$$0 = \frac{\partial V}{\partial a} \implies -2\mathbb{E}[(y - a - bx)] = 0 \implies a = \mathbb{E}[y] - b\mathbb{E}[x]$$

$$0 = \frac{\partial V}{\partial b} \implies -2\mathbb{E}[x(y - a - bx)] = 0 \implies b = \frac{\mathbb{E}[xy] - a\mathbb{E}[x]}{\mathbb{E}[x^{2}]}$$

$$b = \frac{\mathbb{E}[xy] - \mathbb{E}[y]\mathbb{E}[x] + b\mathbb{E}[x]^{2}}{\mathbb{E}[x^{2}]}$$

$$\implies b = \frac{\mathbb{E}[xy] - \mathbb{E}[y]\mathbb{E}[x]}{\mathbb{E}[x^{2}] - \mathbb{E}[y]^{2}} = \frac{Cov(x, y)}{Var(x)}$$

Back to our problem. Step 2: Apply Analogy Principle

$$\beta = \frac{Cov(x,y)}{Var(x)} = \frac{\mathbb{E}[xy] - \mathbb{E}[y]\mathbb{E}[x]}{\mathbb{E}[x^2] - \mathbb{E}[x]^2}$$

$$\hat{\beta} = \frac{\left(\frac{1}{n}\sum_{i=1}^n x_i y_i\right) - \left(\frac{1}{n}\sum_{i=1}^n y_i\right) \left(\frac{1}{n}\sum_{i=1}^n x_i\right)}{\left(\frac{1}{n}\sum_{i=1}^n x_i^2\right) - \left(\frac{1}{n}\sum_{i=1}^n x_i\right)^2}$$

$$\alpha = \mathbb{E}[y] - \beta \mathbb{E}[x]$$

$$\hat{\alpha} = \left(\frac{1}{n}\sum_{i=1}^n y_i\right) - \hat{\beta}\left(\frac{1}{n}\sum_{i=1}^n x_i\right)$$

Multiple Regression

$$y = x'\beta + e, \mathbb{E}[e|x] = 0 \implies \mathbb{E}[y|x] = x'\beta$$

$$\beta = \arg\min_{b} \mathbb{E}[(y - \mathbb{E}[y|x])^{2}] = \arg\min_{b} \mathbb{E}[(y - x'b)^{2}]$$

$$\hat{\beta} = \arg\min_{b} \frac{1}{n} \sum_{i=1}^{n} (y_{i} - x'_{i}b)^{2} = \arg\min_{b} (Y - Xb)^{2}$$

$$Y = \begin{bmatrix} y_{1} \\ \vdots \\ y_{n} \end{bmatrix}_{1 \times n}, X = \begin{bmatrix} x'_{1} \\ \vdots \\ x'_{n} \end{bmatrix}_{n \times k}, b = \begin{bmatrix} b_{1} \\ \vdots \\ b_{k} \end{bmatrix}_{k \times 1}$$

$$0 = \frac{\partial V}{\partial b} \implies 2X'(Y - Xb) = X'Y - X'Xb = 0$$

$$\hat{\beta} = (X'X)^{-1}X'Y \iff \left(\sum_{i=1}^{n} x_{i}x'_{i}\right)^{-1} \left(\sum_{i=1}^{n} x_{i}y_{i}\right)$$

This is OLS.

Convergence

lacksquare Convergence of sequence. Suppose that S_n is some sequence than

$$S = \lim_{n \to \infty} S_n \iff \forall e > 0 : \exists N : |S_n - S| < e$$

- Convergence of sequence of RV $Z_n \stackrel{as}{\to} Z$ and/or $Z_n \stackrel{ms}{\to} Z \implies Z_n \stackrel{p}{\to} Z$
 - 1 Almost surely $Z_n \stackrel{as}{\to} Z \iff P\{\lim_{n\to\infty} Z_n = Z\} = 1$
 - 2 In Probability $Z_n \stackrel{P}{\to} Z \iff \forall e \lim_{n \to \infty} P\{||Z_n Z|| > e\} = 0$
 - In Mean Square $Z_n \stackrel{ms}{\to} Z \iff \lim_{n\to\infty} ||Z_n Z||^2 = 0$
 - 4 In distribution $Z_n \stackrel{d}{\to} Z \iff P\{Z_n \le z\} = P\{Z \le z\}$
- Result

$$Z_n \stackrel{as}{\to} Z$$
 and/or $Z_n \stackrel{ms}{\to} Z \implies Z_n \stackrel{p}{\to} Z$

Asymptotics

- Consistency: $\hat{\theta} \stackrel{p}{\rightarrow} \theta$
- Asymptotic Normality: $\sqrt{n}(\hat{\theta} \theta) \stackrel{d}{\rightarrow} N(0, V_{\theta})$
- Law of Large Numbers (Kolmogorov, IID):

$$\frac{1}{n}\sum_{i=1}^{n}Z_{i}\overset{as}{\to}\mathbb{E}[Z_{i}] \text{ as } n\to\infty$$

Central Limit Theorem

$$\sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} Z_i - \mu \right) \stackrel{d}{\to} N(0, \sigma^2)$$
$$\mu = \mathbb{E}[Z_i], \sigma^2 = \mathbb{V}[Z_i]$$

Mann-Wald Theorem and Slutsky Theorem

■ Mann-Wald Theorem Suppose that g(z) is continuous $R \to \mathbb{R}$ function. Then

$$Z_n \stackrel{*}{\to} Z \implies g(Z_n) \stackrel{*}{\to} g(Z),$$

where $* \in \{as, p, d, ms\}$ for $ms \ g(z)$ should be linear. Moreover, if Z is constant, than continuity only at Z suffices.

Slutsky Theorem

$$\begin{cases} U_n \stackrel{p}{\rightarrow} U = const \\ V_n \stackrel{d}{\rightarrow} V \end{cases} \implies \begin{cases} U_n + V_n \stackrel{d}{\rightarrow} U + V \\ U_n V_n \stackrel{d}{\rightarrow} U V, V_n U_n \stackrel{d}{\rightarrow} V U \\ V_n / U_n \stackrel{d}{\rightarrow} V / U \end{cases}$$

Asymptotics of OLS: Unbiasedness and Variance

Recall that

$$Y = X\beta + e$$

$$\hat{\beta} = (X'X)^{-1}X'Y = (X'X)^{-1}X'(X\beta + e) = \beta + (X'X)^{-1}X'e$$

$$\mathbb{E}[\hat{\beta}|X] = \beta + (X'X)^{-1}X'\mathbb{E}[e|X] = \beta \implies \mathbb{E}[\hat{\beta}] = \beta$$

Therefore, coefficients are unbiased

$$\mathbb{V}[\hat{\beta}|X] = (X'X)^{-1}X'\underbrace{\mathbb{V}[e|X]}_{\Omega}X(X'X)^{-1}$$

Asymptotics of OLS: Consistency

Consistency

$$\hat{\beta} = \beta + (X'X)^{-1}X'e = \beta + \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}x_{i}'\right)^{-1}\frac{1}{n}\sum_{i=1}^{n}x_{i}e_{i}$$

Recall LLN

$$\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}' \stackrel{as}{\to} \mathbb{E}[x_{i} x_{i}'] = \mathbb{E}[x x']$$

$$\frac{1}{n} \sum_{i=1}^{n} x_{i} e_{i} \stackrel{as}{\to} \mathbb{E}[x_{i} e_{i}] = \mathbb{E}[x e]$$

$$\implies \hat{\beta} \stackrel{p}{\to} \beta + \mathbb{E}[x x']^{-1} \mathbb{E}[x e]$$

$$\mathbb{E}[x e] = \mathbb{E}[x \mathbb{E}[e|x]] = 0 \implies \hat{\beta} \stackrel{p}{\to} \beta$$

Asymptotics of OLS: Asymptotic Normality

Asymptotic Normality

$$\sqrt{n}(\hat{\beta} - \beta) = \left(\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}'\right)^{-1} \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} x_{i} e_{i}\right)$$

$$LLN : \frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}' \stackrel{P}{\to} \mathbb{E}[xx'] = Q_{xx}$$

$$CLT : \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} x_{i} e_{i}\right) \stackrel{d}{\to} N(0, \sigma^{2})$$

$$\text{Tot. Var. } : \mathbb{V}[x_{i} e_{i}] = \mathbb{E}[x_{i} x_{i}' \mathbb{V}[e_{i} | x]]$$

$$\mathbb{V}[e_{i} | x] = \mathbb{E}[(e_{i} - \mathbb{E}[e_{i} | x])(e_{i} - \mathbb{E}[e_{i} | x])'] = \mathbb{E}[e_{i}^{2}]$$

$$\implies \sigma^{2} = \mathbb{E}[x_{i} x_{i}' e_{i}^{2}] = V_{xe}$$

$$\text{Slutsky: } \begin{cases} U_{n} \stackrel{P}{\to} U = const \\ V_{n} \stackrel{d}{\to} V \end{cases} \implies U_{n} V_{n} \stackrel{d}{\to} UV$$

Asymptotics of OLS: Asymptotic Normality

Asymptotic Normality

Slutsky:
$$\begin{cases} U_n \overset{P}{\rightarrow} U = const \\ V_n \overset{d}{\rightarrow} V \end{cases} \implies U_n V_n \overset{d}{\rightarrow} UV$$

$$U = Q_{xx}^{-1}, V = N(0, V_{xe})$$

$$\sqrt{n}(\hat{\beta} - \beta) \overset{d}{\rightarrow} Q_{xx}^{-1} N(0, V_{xe})$$

$$\sqrt{n}(\hat{\beta} - \beta) \overset{d}{\rightarrow} N(0, V_{\beta})$$

$$V_{\beta} = Q_{xx}^{-1} V_{xe} Q_{xx}^{-1}$$

Asymptotics of OLS: Pivotization

■ Apply Analogy Principle to V_{β} to get \hat{V}_{β} :

$$V_{\beta} = Q_{xx}^{-1} V_{xe} Q_{xx}^{-1}$$

$$\hat{Q}_{xx}^{-1} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i' \stackrel{p}{\rightarrow} Q_{xx}$$

$$\hat{V}_{xe} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i' \hat{e}_i^2 \stackrel{p}{\rightarrow} V_{xe}$$

$$\hat{e}_i^2 = (y_i - x_i' \hat{\beta})^2$$

$$\implies \hat{V}_{\beta} = \hat{Q}_{xx}^{-1} \hat{V}_{xe} \hat{Q}_{xx}^{-1} \stackrel{p}{\rightarrow} V_{\beta}$$

Asymptotics of OLS: T and CI

Now we can formulate

$$egin{align} se(\hat{eta}) &= \sqrt{rac{1}{n} \left[\hat{V}_{eta}
ight]_{jj}} \ t &= rac{\hat{eta}_j - eta_j}{se(\hat{eta}_j)} \stackrel{d}{
ightarrow} extstyle extstyle N(0,1) \ CI_{lpha}(\mu) &= \left[\hat{eta}_j \mp se(\hat{eta}_j) q_{1-rac{lpha}{2}}^{ extstyle N(0,1)}
ight] \end{aligned}$$

Can we be more efficient: Gauss-Markov Theorem

Consider

$$Y = X\beta + e, \mathbb{E}[e|X] = 0, \Omega = diag\{\sigma^2(x_i)\}_{i=1}^n$$

- **Theorem:** Class of unbiased linear estimators of β contains estimators $\mathcal{A}Y$, where \mathcal{A} is $k \times n$ matrix depending only on X and having property that $\mathcal{A}X = I_k$.

 - 2 $A = (X'WX)^{-1}X'W \implies \text{WLS}$, where W is some $n \times n$ symmetric, positive definite matrix.
 - 3 $A = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1} \implies$ GLS. **Gauss-Markov Theorem** GLS is the efficient estimator in the class of unbiased linear estimators.
- So

$$\beta^{OLS} = (X'X)^{-1}X'Y, \beta^{WLS} = (X'WX)^{-1}X'WY, \beta^{GLS} = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}Y$$

Asymptotics of GLS

Apply Analogy Principle!

$$\hat{\beta} = \left(\frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} x_{i}'}{\sigma^{2}(x_{i})}\right)^{-1} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} y_{i}}{\sigma^{2}(x_{i})} = \beta + \left(\frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} x_{i}'}{\sigma^{2}(x_{i})}\right)^{-1} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} e_{i}}{\sigma^{2}(x_{i})}$$

$$LLN : \begin{cases} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} x_{i}'}{\sigma^{2}(x_{i})} \stackrel{\text{as}}{\to} \mathbb{E} \left[\frac{x x'}{\sigma^{2}}\right] = Q_{xx/\sigma^{2}} \\ \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} e_{i}}{\sigma^{2}(x_{i})} \stackrel{\text{p}}{\to} \mathbb{E} \left[\frac{x e}{\sigma^{2}}\right] = 0 \end{cases} \implies \hat{\beta} \stackrel{p}{\to} \beta$$

$$\mathbb{V} \left[\frac{x e}{\sigma^{2}(x)}\right] = \mathbb{E} \left[\left(\frac{x e}{\sigma^{2}(x)}\right) \left(\frac{x e}{\sigma^{2}(x)}\right)'\right] = \mathbb{E} \left[\frac{x x' \mathbb{E}[e^{2}|X]}{\sigma^{4}(x)}\right]$$

$$\mathbb{E}[e^{2}|X] \equiv \sigma^{2}(x) \implies \mathbb{V} \left[\frac{x e}{\sigma^{2}(x)}\right] = Q_{xx/\sigma^{2}}$$

$$CLT : \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} \frac{x_{i} e_{i}}{\sigma^{2}(x_{i})}\right) \stackrel{d}{\to} N(0, Q_{xx/\sigma^{2}})$$

Obtaining FGLS

■ Finally, Apply Slutsky's theorem

$$\implies \sqrt{n}(\hat{\beta} - \beta) \stackrel{d}{\rightarrow} Q_{xx/\sigma^2} N(0, Q_{xx/\sigma^2}) = N(0, Q_{xx/\sigma^2}^{-1})$$

And here is FGLS.

$$\mathcal{A} = (X'\hat{\Omega}^{-1}X)^{-1}X'\hat{\Omega}^{-1},$$

where $\hat{\Omega} = diag\{\hat{\sigma}^2(x_i)\}_{i=1}^n$. And we just shown that

$$\hat{eta}^{GLS} \sim N\left(eta, rac{1}{n}Q_{\mathrm{xx}/\sigma^2}^{-1}
ight), \hat{Q}_{\mathrm{xx}/\sigma^2}^{-1} = X'\hat{\Omega}^{-1}X$$

Non Linear Least Squares

Consider the following models

$$\mathbb{E}[y|x] = g(x,\beta), \sigma^2(x) = \mathbb{V}(y|x)$$

- 1 Power regression $g(x, \beta) = \beta_1 + \beta_2 x^{\beta_3}$
- **2** Exponential regression $g(x, \beta) = \beta_1 + \beta_2 \exp(\beta_3 x)$
- 3 Probit regression $g(x, \beta) = \Phi(x'\beta)$
- In Threshold regression $g(x,\beta) = (\beta_1 + \beta_2 x_1) \mathbb{I}[x_2 \leq \beta_5] + (\beta_3 + \beta_4 x_1) \mathbb{I}[x_2 > \beta_5]$
- 5 Smooth threshold regression $g(x,\beta) = (\beta_1 + \beta_2 x_1) \Phi\left(\frac{x_2 \beta_5}{\beta_6}\right) + (\beta_3 + \beta_4 x_1) \left[1 \Phi\left(\frac{x_2 \beta_5}{\beta_6}\right)\right]$

Quasi-Regressors

Quasi-regressor Assume that g(x,b) is differentiable in b. Let $g_{\beta}(x,b) = \frac{\partial g(x,b)}{\partial b}$. True quasi-regressors is $g_{\beta}(x,\beta)$. Examples:

- I Linear regression $g_{\beta}(x, b) = x$
- 2 Power Regression

$$g_{\beta}(x,b) = \begin{pmatrix} 1 \\ x^{b_3} \\ b_2 x^{b_3} \ln x \end{pmatrix}$$

3 Probit regression

$$g_{\beta}(x,b) = \phi(x'b)x$$

Optimization Problem

$$\beta \in \arg\min_b \mathbb{E}[(y - g(x, b))^2]$$

What can go wrong?

- Does solution exists? Yes, it's convex minimization!
- Is solution unique? Not necessarily!
 - **1** Global ID condition: $Pr\{g(x,b_1) \neq g(x,b_2)\} > 0$ for any $\forall b_1 \neq b_2$
 - **2** Local ID condition: Q_{gg} is non-singular (or positive definite/invertible/full rank)

$$Q_{gg} = \mathbb{E}[g_{\beta}(x,\beta)g_{\beta}(x,\beta)']$$

Obtaining NLLS

Suppose ID holds and take FOCs

$$V = \min_{b} \mathbb{E}[(y - g(x, b))^{2}]$$
$$0 = \frac{\partial V}{\partial b} \implies \mathbb{E}[(y - g(x, b))g_{\beta}(x, b)] = 0$$

Apply Analogy principle

$$0 = \frac{\partial V}{\partial b} \implies \frac{1}{n} \sum_{i=1}^{n} (y_i - g(x_i, \hat{\beta})) g_{\beta}(x_i, \hat{\beta}) = 0$$

No Analytical Solution in general! Use scipy.optimize.minimize or smth.

Some Properties of NLLS

- NLLS is biased $\mathbb{E}[\hat{\beta}|X] \neq \beta$ (but actually this is not important)
- NLLS is consistent $\hat{\beta} \stackrel{P}{\to} \beta$ (can be shown by apply Taylor expansion up to 2nd order around true β)
- NLLS is asymptotically normal!

$$egin{aligned} \sqrt{n}(\hat{eta}-eta) &\sim \textit{N}(0,\textit{V}_{eta}) \ V_{eta} &\equiv \textit{Q}_{gg}^{-1} \textit{V}_{ge} \textit{Q}_{gg}^{-1} \ Q_{gg} &= \mathbb{E}[g_{eta}(x,eta)g_{eta}(x,eta)'] \implies \hat{\textit{Q}}_{gg} = rac{1}{n} \sum_{i=1}^{n} g_{eta}(x_{i},\hat{eta})g_{eta}(x_{i},\hat{eta})' \ V_{ge} &= \mathbb{E}[g_{eta}(x,eta)g_{eta}(x,eta)'e^{2}] \implies \hat{\textit{V}}_{ge} = rac{1}{n} \sum_{i=1}^{n} g_{eta}(x_{i},\hat{eta})g_{eta}(x_{i},\hat{eta})'\hat{e}_{i}^{2} \ \hat{e}_{i} &= y_{i} - g(x_{i},\hat{eta}) \end{aligned}$$

Can we do better than NLLS?

- Yes. WNLLS is more efficient read in spare time if interested.
- Also: Probit, Logit and etc. are all NLLS. I do not know why I put it here...

GMM

Idea of GMM: It's all about moments

- Suppose we have some distribution with some CDF $F(z; \theta_1, ..., \theta_k)$
- We have a sample $\{z_i\}_{i=1}^n$ and we want to estimate $\theta_1, \ldots, \theta_k$
- We can compute moments

$$\mathbb{E}[z] = \mu_1(\theta_1, \dots, \theta_k) = \int_{-\infty}^{+\infty} z f(z; \theta_1, \dots, \theta_k) dz$$
$$\mathbb{E}[z^k] = \mu_k(\theta_1, \dots, \theta_k) = \int_{-\infty}^{+\infty} z^k f(z; \theta_1, \dots, \theta_k) dz$$

Apply Analogy Principle

$$m_k = \hat{\mu}_k(\theta_1, \dots, \theta_k) = \frac{1}{n} \sum_{i=1}^n z^k$$

and solve the system of equations

Example: Normal distribution

- Suppose that $z_i \sim \text{i.i.d.} N(\mu, \sigma^2)$. And we want to estimate $\theta_1 = \mu$ and $\theta_2 = \sigma^2$.
- Moments are

$$\mu_1(\theta_1, \theta_2) = \theta_1$$

$$\mu_2(\theta_1, \theta_2) = \theta_2 + \theta_1^2$$

$$\Longrightarrow \begin{cases} \theta_1 = \mu_1 \\ \theta_2 = \mu_2 - \mu_1^2 \end{cases}$$

Apply Analogy Principle

$$\hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^n z_i$$

$$\hat{\theta}_2 = \frac{1}{n} \sum_{i=1}^n z_i^2 - \left(\frac{1}{n} \sum_{i=1}^n z_i\right)^2 = \frac{1}{n} \sum_{i=1}^n (z_i^2 - \overline{z})$$

More general formulation

Moment conditions

$$\mathbb{E}[m(z,\theta)]=0,$$

where θ is $k \times 1$ and $m(z, \theta)$ is $l \times 1$

- If I = k we have Just Identification
- If l > k we have Overidentification

Just Identitication: CMM

Apply Analogy Principle

$$\frac{1}{n}\sum_{i=1}^n m(z_i,\hat{\theta})=0$$

this produces a sysmem with I equations and I = k unknowns \implies unique solution.

Overidentification: Transformed GMM

Again we have

$$\frac{1}{n}\sum_{i=1}^n m(z_i,\hat{\theta})=0,$$

but know we have I equations and I > k unknowns \implies no solution. But we can transform the problem as

$$\theta = \arg\min_{q \in \Theta} \underbrace{\mathbb{E}[m(z,q)]'}_{1 \times I} \underbrace{\mathcal{W}}_{I \times I} \underbrace{\mathbb{E}[m(z,q)]}_{I \times 1},$$

where W is some $I \times I$ weight matrix (what?). Know we can apply analogy principle and solve

$$\hat{\theta} = \arg\min_{q \in \Theta} \left(\frac{1}{n} \sum_{i=1}^{n} m(z_i, q) \right)' W_n \left(\frac{1}{n} \sum_{i=1}^{n} m(z_i, q) \right), W_n \stackrel{p}{\to} W$$

GMM: Identification Conditions

- Global Identification condition $\mathbb{E}[m(z,q)] = 0 \iff q = \theta$
- Local Identification condition $l \times k$ matrix of expected derivatives and $l \times l$ moment variance matrix have full ranks k and l

$$Q_{\partial m} = \mathbb{E}\left[\frac{\partial m(z,\theta)}{\partial q'}\right]$$

$$V_m = \mathbb{E}\left[m(z,\theta)m(z,\theta)'\right]$$

Asymptotics of GMM

Under ID conditions

- **II** GMM is consistent: $\hat{\beta} \stackrel{p}{\rightarrow} \beta$
- **2** GMM is Asymptotically Normal:

$$\sqrt{n}(\hat{\theta}-\theta)\stackrel{d}{\to} N(0,V_{\theta}),$$

where

$$V_{\theta} = (Q_{\partial m}'WQ_{\partial m})^{-1}Q_{\partial m}'WV_{m}WQ_{\partial m}(Q_{\partial m}'WQ_{\partial m})^{-1}$$

with exact identification it collapses to

$$V_{\theta}^{exact} = Q_{\partial m}^{-1} V_m Q_{\partial m}^{\prime -1}$$

Efficient GMM

- Can we select W such that V_{θ} is minimized?
- Yes! It turns out that

$$W^{opt} = V_m^{-1} \ V_{ heta}^{opt} = \left(Q_{\partial m}' V_m^{-1} Q_{\partial m}
ight)^{-1}$$

■ But! GMM estimator that uses $W^{opt} = V_m^{-1}$ is efficient GMM estimator, but V_m^{-1} is unknown :(But we can use the estimated weight matrix W_n , sample analog of V_m^{-1} such that

$$W_n \stackrel{p}{\rightarrow} V_m^{-1}$$

This leads to 2-step GMM

- Compute preliminary consistent estimate of $\hat{\theta}_0$ of θ (inefficient GMM with weight matrix I_n). Using it, construct consistent estimate \hat{V}_m
- 2 Compute feasible efficient GMM estimate using weight matrix $W_n = \hat{V}_m^{-1}$

$$\hat{\theta} = \arg\min_{q \in \Theta} \left(\frac{1}{n} \sum_{i=1}^{n} m(z_i, q) \right)' \hat{V}_m^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} m(z_i, q) \right)$$

and compute estimate of asymptotic variance

$$\hat{V}_{ heta} = \left(\hat{Q}_{\partial m}'\hat{V}_{m}^{-1}\hat{Q}_{\partial m}
ight)^{-1}$$

Example of GMM

Problem: z is non-skewed and we want to estimate mean of z. True parameter $\theta = \mathbb{E}[z]$. How to apply GMM?

Step 1: Formulat Moment Restrictions

- 1 z is non-skewed $\implies \mathbb{E}[(z-\theta)^3] = 0$
- **2** True parameter is $\theta = \mathbb{E}[z] \implies \mathbb{E}[z \theta] = 0$

This leads to

$$\mathbb{E}[m(z,q)] = \begin{bmatrix} z-q \\ (z-q)^3 \end{bmatrix} = 0$$

Therefore, we have l=2 conditions and k=1 parameters (q) $\implies l>k \implies$ overidentification!

Step (?): Estimate CMM

Just for fun ignore 2nd condition and apply CMM

$$m(z,q) = z - q$$

$$\frac{1}{n} \sum_{i=1}^{n} m(z_i, \hat{\theta}) = 0 \implies \hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^{n} z_i$$

Just for fun ignore 1st condition and apply CMM

$$m(z,q) = (z-q)^3 \implies \frac{1}{n} \sum_{i=1}^n (z_i - \hat{\theta}_1)^3 = 0$$

⇒ two estimates!!! Can we do better?

Step 2: Formulate GMM optimization problem

If we apply GMM

$$\mathbb{E}\begin{bmatrix} z-q\\ (z-q)^3 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

$$\hat{\theta} = \arg\min_{q} \begin{bmatrix} \frac{1}{n} \sum_{i=1}^{n} z_i - q & \frac{1}{n} \sum_{i=1}^{n} (z_i - q)^3 \end{bmatrix} W_n \begin{bmatrix} \frac{1}{n} \sum_{i=1}^{n} z_i - q \\ \frac{1}{n} \sum_{i=1}^{n} (z_i - q)^3 \end{bmatrix}$$

What is W_n ???

Step 3: Obtain W_n

We know that optimal

$$W^{opt} = V_m^{-1}$$

Denote $\mu_r = \mathbb{E}[(z-\theta)^r]$. Then

$$Q_{\partial m} = \mathbb{E}\left[\frac{\partial m(z,\theta)}{\partial q'}\right] = \mathbb{E}\begin{bmatrix}-1\\-3(z-q)^2\end{bmatrix}_{q=\theta} = -\begin{bmatrix}1\\3\mu_2\end{bmatrix}$$

$$V_m = \mathbb{E}\left[m(z,\theta)m(z,\theta)'\right] = \begin{bmatrix}(z-q)^2 & (z-q)^4\\(z-q)^4 & (z-q)^6\end{bmatrix}_{q=\theta} = \begin{bmatrix}\mu_2 & \mu_4\\\mu_4 & \mu_6\end{bmatrix}$$

And apply Analogy principle

$$W^{opt} = \hat{V}_m^{-1} = \begin{bmatrix} \hat{\mu}_2 & \hat{\mu}_4 \\ \hat{\mu}_4 & \hat{\mu}_6 \end{bmatrix}^{-1}$$

Step 4: Formulate efficient GMM optimization problem

$$\hat{\theta} = \arg\min_{q} \left[\frac{1}{n} \sum_{i=1}^{n} z_{i} - q \quad \frac{1}{n} \sum_{i=1}^{n} (z_{i} - q)^{3} \right] \begin{bmatrix} \hat{\mu}_{2} & \hat{\mu}_{4} \\ \hat{\mu}_{2} & \hat{\mu}_{6} \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{n} \sum_{i=1}^{n} z_{i} - q \\ \frac{1}{n} \sum_{i=1}^{n} (z_{i} - q)^{3} \end{bmatrix}$$

Solve to obtain $\hat{\theta}$. For variance recall the formula

$$V_{\theta} = \left(Q_{\partial m}^{\prime}V_{m}^{-1}Q_{\partial m}\right)^{-1} = \left(\begin{bmatrix}-1 - 3\mu_{2}\end{bmatrix}\begin{bmatrix}\mu_{2} & \mu_{4}\\\mu_{4} & \mu_{6}\end{bmatrix}^{-1}\begin{bmatrix}-1\\-3\mu_{2}\end{bmatrix}\right)^{-1}$$

This is much more efficient than CMM.

Instrumental Variables

Problem

Suppose we have

$$y = x'\beta + e$$

But $\mathbb{E}[e|x] \neq 0$ or $\mathbb{E}[y|x] \neq x'\beta \implies$ not regression! $\mathbb{E}[ex] \neq 0 \implies$ not even BLP!. x is endogenous in these cases.

- Simultaneity ⇒ endogeneity
- Unaccounted common factors ⇒ endogeneity
- Errors in variables ⇒ endogeneity

Example: Demand and Supply

Suppose we have

Demand:
$$P = \gamma_D Q + e_D$$

Supply: $P = \gamma_S Q + e_S$,

where e_D , e_S are independent and N(0,1). and we want to estimate OLS. What can go wrong? What will coefficients in OLS regression show us? Will they be consistent? Asymptotically normal?

Let's calculate regression by hand

$$\beta = \mathbb{E}[xx']^{-1}\mathbb{E}[xy] = \frac{\mathbb{E}[xy]}{\mathbb{E}[xx']}$$

Therefore, if we apply this to our 2 equations

$$\beta_P = \frac{\mathbb{E}[PQ]}{\mathbb{E}[P^2]}$$
$$\beta_Q = \frac{\mathbb{E}[PQ]}{\mathbb{E}[Q^2]}$$

Let's calculate regression by hand

Solve the system of equations to obtain

$$\gamma_D Q + e_D = \gamma_S Q + e_S$$

$$Q = \frac{e_S - e_D}{\gamma_D - \gamma_S}$$

$$P = \frac{e_S \gamma_D - \gamma_S e_D}{\gamma_D - \gamma_S}$$

Therefore,

$$PQ = \frac{(e_S - e_D)(e_S \gamma_D - \gamma_S e_D)}{(\gamma_D - \gamma_S)^2} = \frac{e_S^2 \gamma_D - e_D e_S \gamma_D - \gamma_S e_D e_S + \gamma_S e_D^2}{(\gamma_D - \gamma_S)^2}$$

Take expectation (recall that e_D , e_S are independent and N(0,1))

$$\mathbb{E}[PQ] = \frac{\gamma_D + \gamma_S}{(\gamma_D - \gamma_S)^2}$$

$$\mathbb{E}[Q^2] = \frac{2}{(\gamma_D + \gamma_S)^2}, \mathbb{E}[P^2] = \frac{\gamma_D^2 + \gamma_S^2}{(\gamma_D - \gamma_S)^2}$$

Let's calculate regression by hand

Thus, we have

$$\begin{cases} \beta_{P} = \frac{\mathbb{E}[PQ]}{\mathbb{E}[P^{2}]}, \beta_{Q} = \frac{\mathbb{E}[PQ]}{\mathbb{E}[Q^{2}]} \\ \mathbb{E}[Q^{2}] = \frac{2}{(\gamma_{D} + \gamma_{S})^{2}}, \mathbb{E}[P^{2}] = \frac{\gamma_{D}^{2} + \gamma_{S}^{2}}{(\gamma_{D} - \gamma_{S})^{2}} \\ \mathbb{E}[PQ] = \frac{\gamma_{D} + \gamma_{S}}{(\gamma_{D} - \gamma_{S})^{2}} \\ \implies \beta_{P} = \frac{\gamma_{D} + \gamma_{S}}{\gamma_{D}^{2} + \gamma_{S}^{2}} \\ \implies \beta_{Q} = \frac{\gamma_{D} + \gamma_{S}}{2} \end{cases}$$

Not quite the thing that we expected.... How to even enterpret it? Possible we can

$$\gamma_D = 2\beta_Q - \gamma_S$$

$$2\gamma_S^2 - 4\beta_Q\gamma_S = 2\frac{\beta_Q}{\beta_P} - 4\beta_Q^2$$

But there will be two roots

Instruments

$$y = x'\beta + e$$

We have $I \times 1$ instrument z. We need

■ Instrument *validity*

$$\mathbb{E}[e|z]=0$$

■ Instrument relevance

$$Q_{xz} = \mathbb{E}[xz']$$
 is full rank $k \implies l \ge k$

■ Instrument *non-collinearity*

$$Q_{zz} = \mathbb{E}[zz']$$
 is full rank I

IV: Exact Identification

I = k. Instrument validity implies moment condition

$$\mathbb{E}[z(y-x'\beta)]=0$$

Use CMM (yeaaaah) to yield instrumental variable estimator

$$\hat{\beta}_{IV} = \left(\sum_{i=1}^{n} z_i x_i'\right)^{-1} \sum_{i=1}^{n} z_i y_i$$

IV: Asymptotics

- IV estimator is consistent $\hat{\beta}_{IV} \stackrel{p}{\rightarrow} \beta$
- IV estimator is asymptotically normal

$$\sqrt{n}(\hat{\beta}_{IV}-\beta)\stackrel{d}{\rightarrow}N(0,V_{\beta})$$

■ IV asymptotic variance is

$$V_{eta} = (Q'_{xz})^{-1} V_{ze} Q_{zx}^{-1} \ Q_{xz} = \mathbb{E}[xz'], V_{ze} = \mathbb{E}[zz'e^2]$$

IV: Overidentification – 2SLS

l > k. Instrument validity implies moment condition

$$\mathbb{E}[z(y - x'\beta)] = 0$$

$$\implies m(x, y, z, \beta) = z(y - x'\beta)$$

$$\implies Q_{\partial m} = -Q'_{xz}$$

$$\implies V_m = \mathbb{E}[zz'(y - x'\beta)^2] = \mathbb{E}[zz'e^2] = V_{ze}$$

Let's use symmetric positive definite but non-optimal weight matrix

$$W_n^{2sls} = \left(\frac{1}{n}\sum_{i=1}^n z_i z_i'\right)^{-1} \stackrel{p}{\to} Q_{zz}^{-1} \times V_m^{-1}$$

GMM yields 2SLS

$$\hat{\beta}_{2SLS} = \arg\min_{b} \left(\frac{1}{n} \sum_{i=1}^{n} z_{i} (y_{i} - x_{i}'b) \right)' \left(\frac{1}{n} \sum_{i=1}^{n} z_{i} z_{i}' \right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} z_{i} (y_{i} - x_{i}'b) \right)$$

$$= \left(\sum_{i=1}^{n} x_{i} z_{i}' \left(\sum_{i=1}^{n} z_{i} z_{i}' \right)^{-1} \sum_{i=1}^{n} z_{i} x_{i}' \right)^{-1} \sum_{i=1}^{n} x_{i} z_{i}' \left(\sum_{i=1}^{n} z_{i} z_{i}' \right)^{-1} \sum_{i=1}^{n} z_{i} y_{i}$$

$$= (X'Z(Z'Z)^{-1}Z'X)^{-1} X'Z(Z'Z)^{-1} Z'Y$$

Why 2???? SLS

Observe that

$$\hat{\beta}_{2SLS} = (X'Z(Z'Z)^{-1}Z'X)^{-1}X'Z(Z'Z)^{-1}Z'Y$$

$$= (\hat{X}'X)^{-1}\hat{X}'Y$$

$$\hat{X} = Z(Z'Z)^{-1}Z'X = \mathcal{BLP}(X|Z)$$

Therefore, we have 2 stages

- 1 Project x on z and obtain fitted values \hat{x}
- 2 Use IV estimation with \hat{x} as exactly identifying instrument

But 2SLS is inefficient GMM

Efficient GMM

$$W_n = \hat{V}_m^{-1} = \left(\frac{1}{n} \sum_{i=1}^n z_i z_i' \hat{e}_{i,2sls}^2\right)^{-1}$$

 \hat{e}_i are consistent (for example, 2SLS) residuals

$$\hat{\beta}_{GMM} = \arg\min_{b} \left(\frac{1}{n} \sum_{i=1}^{n} z_{i} (y_{i} - x_{i}'b) \right)' \left(\frac{1}{n} \sum_{i=1}^{n} z_{i} z_{i}' \hat{e}_{i}^{2} \right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} z_{i} (y_{i} - x_{i}'b) \right)$$

$$= \left(\sum_{i=1}^{n} x_{i} z_{i}' \left(\sum_{i=1}^{n} z_{i} z_{i}' \hat{e}_{i}^{2} \right)^{-1} \sum_{i=1}^{n} z_{i} x_{i}' \right)^{-1} \sum_{i=1}^{n} x_{i} z_{i}' \left(\sum_{i=1}^{n} z_{i} z_{i}' \hat{e}_{i}^{2} \right)^{-1} \sum_{i=1}^{n} z_{i} y_{i}$$

$$= (X' Z((Z \cdot \hat{e})'(Z \cdot \hat{e}))^{-1} Z' X)^{-1} X' Z((Z \cdot \hat{e})'(Z \cdot \hat{e}))^{-1} Z' Y$$

Asymptotics of GMM

- GMM is consistent $\hat{\beta}_{GMM} \stackrel{p}{\rightarrow} \beta$
- GMM is asymptotically normal

$$\sqrt{n}(\hat{\beta}_{GMM}-\beta)\stackrel{d}{\rightarrow} N(0,V_{\beta})$$

Asymptotic variance is

$$V_{eta} = (Q_{xz} V_{ze}^{-1} Q_{xz}')^{-1} \ Q_{xz} = \mathbb{E}[xz'], V_{ze} = \mathbb{E}[zz'e^2]$$

What if we have Underidentification?

Instrument is relevant if

$$Q_{k imes I_{XZ}} = \mathbb{E}[xz']$$
 is ful rank k

If no relevance. Example l=k=1 and $\mathbb{E}[xz]=0$, that is Q_{zk} has rank 0. By CLT

$$\frac{1}{n} \sum_{i=1}^{n} z_{i} \begin{bmatrix} e_{i} \\ x_{i} \end{bmatrix} \stackrel{d}{\to} \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} V_{ze} & C_{zxe} \\ C_{zxe} & V_{zx} \end{bmatrix} \right)$$

Then for IV estimator

$$\hat{\beta}_{IV} = \frac{\sum z_i y_i}{\sum z_i x_i} = \beta + \frac{\frac{1}{\sqrt{n}} \sum_i z_i e_i}{\frac{1}{\sqrt{n}} \sum_i z_i x_i} \stackrel{d}{\to} \beta + \mathcal{D} \stackrel{d}{\neq} \beta$$

Therefore, pre-test for instrument irrelevance $\mathbb{E}[xz] = 0$ and run IV only if rejected.

The most fun part

GMM goes brrrrrrr

$$m(z,\theta) = \frac{x(y-x'\beta)}{\sigma^2(x)} \implies \mathsf{GLS}$$

$$\mathbf{4} \ m(z,\theta) = \frac{g_{\beta}(x,\beta)(y-g(x,\beta)}{\sigma^2(x)} \implies \text{WNLLS}$$

5
$$m(z,\theta) = \frac{\partial \ln f(y|x,\theta)}{\partial q} \implies \text{MLE, QMLE}$$

6
$$m(z,\theta) = z(y - x'\beta) \implies V$$

⇒ All parametric estimators are GMM estimators! Just specify the moment function correctly and obtain efficient weight matrix.

What you actually can do now

Suppose we have the following model

$$Y = AK^{\alpha}L^{\gamma} + e, \mathbb{E}[e|K, L] = 0$$
$$K|L \sim Exp(\lambda), \lambda = \gamma L^{\eta}$$

- **1** Estimate α, γ, η and derive their asymptotic properties
- **2** Suppose know that K is not observed can we still estimate α, γ, η ?
- 3 Suppose we made mistake and K|L is not exponentially distributed. What goes wrong?

Hints: My approach

- I Step 1. Formulate Conditional MLE estimator for γ, η from $K|L \sim \textit{Exp}(\gamma L^{\eta})$
- 2 Step 2. Formulate NLLS estimator for $\mathbb{E}[Y|K,L] = AK^{\alpha}L^{\gamma}$
- 3 Step 3. Recall that both NLLS and MLE are examples of GMM and formulate the system of moment conditions. Hint: you will have $l=4, k=3 \implies$ overidentification
- 4 Step 4. Estimate efficient GMM. How would you obtain Wopt?