

EXERCICE

ELECTROMAGNETISME

-EXERCICE 27.2-

• ENONCE :

« Champ créé par un segment »

Calculer le champ magnétique sur la médiatrice d'un fil rectiligne de longueur finie a, parcouru par un courant permanent I.

EXERCICE

ELECTROMAGNETISME

CORRIGE : « Champ créé par un segment »

- ♦ La résolution « efficace » de cet exercice basique est d'une grande importance, car le segment de longueur finie est une partie constitutive d'un grand nombre de distributions : spire rectangulaire, polygone régulier à n côtés etc...
 - ♦ On peut donner les conseils suivants :
 - faire un schéma « propre »
 - travailler en coordonnées cylindriques
 - intégrer par rapport à la variable **angulaire**, comptée à partir de **l'axe de symétrie** du segment.
 - Prenons donc les notations suivantes :

La longueur du segment CD est a

La distance OH vaut h

♦ Le plan (C,D,O) est plan de symétrie du courant $\Rightarrow \vec{B}$ est porté par \vec{e}_z ; mais pour « enlacer » du courant, il faut sortir de ce plan et les lignes du champ ne sont plus connues \Rightarrow on ne peut trouver de contour d'Ampère simple \Rightarrow on applique la formule de Biot et Savart; donc :

$$\vec{B}(o) = \frac{\mu_0 I}{4\pi} \int_{C}^{D} d\vec{l} \wedge \frac{(-\vec{e}_r)}{r^2} = \frac{\mu_0 I}{4\pi} \int_{C}^{D} (dr \vec{e}_r + r d\theta \vec{e}_\theta) \wedge \frac{(-\vec{e}_r)}{r^2} = \frac{\mu_0 I}{4\pi} \int_{C}^{D} \frac{r d\theta}{r^2} \vec{e}_z$$

or:
$$r = h/\cos\alpha \Rightarrow \vec{B}(O) = \frac{\mu_0 I}{4\pi} \int_C^D \frac{\cos\theta}{h} d\theta = \frac{\mu_0 I}{2\pi h} \sin(\alpha_{\max})$$
 avec:
$$\sin(\alpha_{\max}) = \frac{a/2}{\sqrt{a^2/4 + h^2}}$$

Rq1: bien entendu, un courant permanent ne peut exister sur un segment de longueur finie, il faut le voir comme appartenant à une « structure » fermée plus complexe.

Rq2 : j'insiste sur le fait que, même si les données de l'énoncé portent sur des distances, les calculs sont plus simples avec la variable angulaire comptée à partir de l'axe de symétrie de la distribution.

Rq3: pour s'entraîner, on peut calculer le champ magnétique au centre O d'un polygone régulier à n côtés, inscrit dans un cercle de rayon R; on trouve :

 $\vec{B}(O) = \frac{n\mu_0 I}{2\pi R} \tan(\pi/n) \vec{e}_z \; ; \quad \text{lorsque n} \to \infty : \; \vec{B} \to \frac{\mu_0 I}{2R} \vec{e}_z \; , \; \text{qui est bien le champ au centre d'une spire circulaire}.$