Osciladores Acoplados

Bitácora de laboratorio

Sebastian Rodriguez Laura Torres

Julian Avila

Índice general

Miércoles 23, Abril 2025	5
Miércoles 24, Abril 2025	7

Miércoles 23, Abril 2025

Miércoles 24, Abril 2025

El día de hoy se realizó el desarrollo teórico del problema de los tres péndulos físicos acoplados por resortes, donde el sistema es el siguiente:

Figura 1: Sistema de tres péndulos físicos acoplados por resortes.

Donde el resultado de la sumatoria de torques para cada péndulo genera el siguiente sistema de ecuaciones:

$$\begin{split} \ddot{\theta}_{1} &= \theta_{1} \left(\frac{(cl)^{2} - x_{cm1} m_{1} g}{I_{1}} \right) + \theta_{2} \left(-\frac{k_{1}(cl)^{2}}{I_{1}} \right) \\ \ddot{\theta}_{2} &= \theta_{1} \left(\frac{k_{1}(cl)^{2}}{I_{2}} \right) + \theta_{2} \left(-\frac{k_{1}(cl)^{2}}{I_{2}} + \frac{k_{2}(dl)^{2}}{I_{2}} + \frac{x_{cm2} m_{2} g}{I_{2}} \right) + \theta_{3} \left(\frac{k_{2}(dl)^{2}}{I_{2}} \right) \\ \ddot{\theta}_{3} &= \theta_{2} \left(\frac{k_{2}(dl)^{2}}{I_{3}} \right) + \theta_{3} \left(-\frac{k_{2}(dl)^{2}}{I_{3}} - \frac{x_{cm3} m_{3} g}{I_{3}} \right) \end{split}$$

$$(1)$$

El día de hoy se realizó el desarrollo teórico del problema de los tres péndulos físicos acoplados por resortes, donde el sistema es el siguiente:

Donde el resultado de la sumatoria de torques para cada péndulo genera el siguiente sistema de ecuaciones:

Figura 2: Sistema de tres péndulos físicos acoplados por resortes.

$$\ddot{\theta}_{1} = \theta_{1} \left(\frac{(cl)^{2} - x_{cm1} m_{1} g}{I_{1}} \right) + \theta_{2} \left(-\frac{k_{1}(cl)^{2}}{I_{1}} \right)$$

$$\ddot{\theta}_{2} = \theta_{1} \left(\frac{k_{1}(cl)^{2}}{I_{2}} \right) + \theta_{2} \left(-\frac{k_{1}(cl)^{2}}{I_{2}} + \frac{k_{2}(dl)^{2}}{I_{2}} + \frac{x_{cm2} m_{2} g}{I_{2}} \right) + \theta_{3} \left(\frac{k_{2}(dl)^{2}}{I_{2}} \right)$$

$$\ddot{\theta}_{3} = \theta_{2} \left(\frac{k_{2}(dl)^{2}}{I_{3}} \right) + \theta_{3} \left(-\frac{k_{2}(dl)^{2}}{I_{3}} - \frac{x_{cm3} m_{3} g}{I_{3}} \right)$$
(2)