# Warm up

Write a formula for the general term of these sequences

1. 
$$\{a_n\}_{n=0}^{\infty} = \{1, 4, 9, 16, 25, \dots\}$$

2. 
$${b_n}_{n=1}^{\infty} = {1, -2, 4, -8, 16, -32, \dots}$$

3. 
$$\{c_n\}_{n=1}^{\infty} = \left\{\frac{2}{1!}, \frac{3}{2!}, \frac{4}{3!}, \frac{5}{4!}, \dots\right\}$$

4. 
$$\{d_n\}_{n=1}^{\infty} = \{1, 4, 7, 10, 13, \dots\}$$

## Sequences vs functions – convergence

For any function f with domain  $[0, \infty)$ , we define a sequence as  $a_n = f(n)$ . Let  $L \in \mathbb{R}$ . Which of these implications is true?

1. IF 
$$\lim_{x \to \infty} f(x) = L$$
, THEN  $\lim_{n \to \infty} a_n = L$ .

2. If 
$$\lim_{n\to\infty} a_n = L$$
, THEN  $\lim_{x\to\infty} f(x) = L$ .

3. IF 
$$\lim_{n\to\infty} a_n = L$$
, THEN  $\lim_{n\to\infty} a_{n+1} = L$ .

## Definition of limit of a sequence

Let  $\{a_n\}_{n=0}^{\infty}$  be a sequence. Let  $L \in \mathbb{R}$ .

Which statements are equivalent to " $\{a_n\}_{n=0}^{\infty} \longrightarrow L$ "?

- $1. \ \forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \quad \ n \geq n_0 \implies |L a_n| < \varepsilon.$
- $2. \ \forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \quad n > n_0 \implies |L a_n| < \varepsilon.$
- 3.  $\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{R}, \ \forall n \in \mathbb{N}, \quad n \geq n_0 \implies |L a_n| < \varepsilon.$
- 4.  $\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{R}, \quad n \geq n_0 \implies |L a_n| < \varepsilon.$
- 5.  $\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \quad n \geq n_0 \implies |L a_n| \leq \varepsilon.$
- 6.  $\forall \varepsilon \in (0,1), \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, \quad n \geq n_0 \implies |L-a_n| < \varepsilon.$
- 7.  $\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \quad n \geq n_0 \implies |L a_n| < \frac{1}{\varepsilon}.$
- 8.  $\forall \mathbf{k} \in \mathbb{Z}^+, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, \quad n \geq n_0 \implies |L a_n| < \mathbf{k}.$
- 9.  $\forall \mathbf{k} \in \mathbb{Z}^+, \ \exists \mathbf{n}_0 \in \mathbb{N}, \ \forall \mathbf{n} \in \mathbb{N}, \quad \mathbf{n} \geq \mathbf{n}_0 \implies |\mathbf{L} \mathbf{a}_n| < \frac{1}{\mathbf{k}}.$

# Definition of limit of a sequence (continued)

Let  $\{a_n\}_{n=0}^{\infty}$  be a sequence. Let  $L \in \mathbb{R}$ .

Which statements are equivalent to " $\{a_n\}_{n=0}^{\infty} \longrightarrow L$ "?

- 10.  $\forall \varepsilon > 0$ , the interval  $(L \varepsilon, L + \varepsilon)$  contains all the elements of the sequence, except the first few.
- 11.  $\forall \varepsilon > 0$ , the interval  $(L \varepsilon, L + \varepsilon)$  contains infinitely many of the elements of the sequence.
- 12.  $\forall \varepsilon > 0$ , the interval  $(L \varepsilon, L + \varepsilon)$  contains *almost all* the elements of the sequence.
- 13.  $\forall \varepsilon > 0$ , the interval  $[L \varepsilon, L + \varepsilon]$  contains *almost all* the elements of the sequence.
- 14. Every interval that contains *L* must contain *almost all* all the elements of the sequence.
- 15. Every open interval that contains *L* must contain *almost all* all the elements of the sequence.

*Notation:* "almost all" = "all, except finitely many"

# Convergence and divergence

Let  $\{a_n\}_{n=0}^{\infty}$  be a sequence.

Write the formal definition of the following concepts:

1.  $\{a_n\}_{n=0}^{\infty}$  is convergent.

2.  $\{a_n\}_{n=0}^{\infty}$  is divergent.

3.  $\{a_n\}_{n=0}^{\infty}$  is divergent to  $\infty$ .

### Proof from the definition of limit

Prove, directly from the definition of limit, that

$$\lim_{n\to\infty}\frac{n^2}{n^2+1}=1.$$

### Suggestion:

- 1. Write down the definition of what you want to show.
- 2. Use itto decide the structure of the proof.
- 3. Do some rough work if necessary.
- 4. Write down the formal proof.

# Sequences vs functions – monotonicity and boundness

For any function f with domain  $[0, \infty)$ , we define a sequence as  $a_n = f(n)$ . Which of these implications is true?

- 1. IF f is increasing, THEN  $\{a_n\}_{n=0}^{\infty}$  is increasing.
- 2. IF  $\{a_n\}_{n=0}^{\infty}$  is increasing, THEN f is increasing.
- 3. IF f is bounded, THEN  $\{a_n\}_{n=0}^{\infty}$  is bounded.
- 4. IF  $\{a_n\}_{n=0}^{\infty}$  is bounded, THEN f is bounded.

### Examples

Construct 8 examples of sequences. If any of them is impossible, cite a theorem to justify it.

|               |           | convergent | divergent |
|---------------|-----------|------------|-----------|
| monotonic     | bounded   |            |           |
|               | unbounded |            |           |
| not monotonic | bounded   |            |           |
|               | unbounded |            |           |

## A sequence defined by recurrence

Consider the sequence  $\{R_n\}_{n=0}^{\infty}$  defined by

$$egin{cases} R_0 = 1 \ orall n \in \mathbb{N}, \qquad R_{n+1} = rac{R_n + 2}{R_n + 3} \end{cases}$$

Compute  $R_1$ ,  $R_2$ ,  $R_3$ .

## Is this proof correct?

Let  $\{R_n\}_{n=0}^{\infty}$  be the sequence in the previous slide.

#### Claim:

$${R_n}_{n=0}^{\infty} \longrightarrow -1 + \sqrt{3}.$$

## Is this proof correct?

Let  $\{R_n\}_{n=0}^{\infty}$  be the sequence in the previous slide.

#### Claim:

$$\{R_n\}_{n=0}^{\infty} \longrightarrow -1 + \sqrt{3}.$$

#### Proof.

• Let 
$$L = \lim_{n \to \infty} R_n$$
.

$$R_{n+1} = \frac{R_n + 2}{R_n + 3}$$

$$\bullet \lim_{n\to\infty} R_{n+1} = \lim_{n\to\infty} \frac{R_n+2}{R_n+3}$$

$$L = \frac{L+2}{L+3}$$

• 
$$L(L+3) = L+2$$

• 
$$L^2 + 2L - 2 = 0$$

• 
$$L = -1 \pm \sqrt{3}$$

• 
$$L$$
 must be positive, so  $L = -1 + \sqrt{3}$ 



## Another sequence defined by recurrence

Consider the sequence  $\{a_n\}_{n=0}^{\infty}$  defined by

$$egin{cases} a_0 = 1 \ orall n \in \mathbb{N}, \qquad a_{n+1} = 1 - a_n \end{cases}$$

- Use the same method as in the previous slide to compute its limit.
- After you have computed the limit, calculate  $a_2$ ,  $a_3$ ,  $a_4$ , and  $a_5$ .
- What happened?

# The original sequence defined by recurrence – done right

Consider the sequence  $\{R_n\}_{n=0}^{\infty}$  defined by

$$\left\{ egin{aligned} &R_0=1\ orall n\in\mathbb{N}, &R_{n+1}=rac{R_n+2}{R_n+3} \end{aligned} 
ight.$$

- 1. Prove  $\{R_n\}_{n=0}^{\infty}$  is bounded below by 0.
- 2. Prove  $\{R_n\}_{n=0}^{\infty}$  is decreasing (use induction)
- 3. Prove  $\{R_n\}_{n=0}^{\infty}$  is convergent (use a theorem)
- 4. Now the calculation in the earlier slide is correct, and we can get the value of the limit.

#### True or False - convergence, monotonicity, and boundedness

- 1. If a sequence is convergent, then it is bounded above.
- 2. If a sequence is bounded, then it is convergent
- 3. If a sequence is convergent, then it is eventually monotonic.
- 4. If a sequence is positive and converges to 0, then it is eventually monotonic.
- 5. If a sequence diverges to  $\infty$ , then it is eventually monotonic.
- 6. If a sequence diverges, then it is unbounded.
- 7. If a sequence diverges and is unbounded above, then it diverges to  $\infty$ .
- 8. If a sequence is eventually monotonic, then it is either convergent, divergent to  $\infty$ , or divergent to  $-\infty$ .

## True or False - Rapid fire

- 1. (convergent)  $\Longrightarrow$  (bounded)
- 2. (convergent)  $\Longrightarrow$  (monotonic)
- 3. (convergent)  $\implies$  (eventually monotonic)
- 4. (bounded)  $\Longrightarrow$  (convergent)
- 5. (monotonic)  $\implies$  (convergent)
- 6. (bounded + monotonic)  $\implies$  (convergent)
- 7. (divergent to  $\infty$ )  $\Longrightarrow$  (eventually monotonic)
- 8. (divergent to  $\infty$ )  $\Longrightarrow$  (unbounded above)
- 9. (unbounded above)  $\Longrightarrow$  (divergent to  $\infty$ )

#### Fill in the blanks

Let  $\{a_n\}$  be a decreasing, bounded sequence.

Assume  $a_1 = 1$  and  $a_n$  is never 0.

Let m be the greatest lower bound of  $\{a_n\}$ .

For each of the statements below, find **all** the values of m that make the statement true.

- 1. IF THEN  $\{1/a_n\}$  is bounded
- 2. IF THEN  $\{1/a_n\}$  is increasing
- 3. IF THEN  $\{\sin a_n\}$  is bounded
- 4. IF  $\square$  THEN  $\{\sin a_n\}$  is decreasing

#### Proof of Theorem 3

Write a proof for the following Theorem

#### Theorem 3

Let  $\{a_n\}_{n=0}^{\infty}$  be a sequence.

- IF  $\{a_n\}_{n=0}^{\infty}$  is increasing AND unbounded above,
- THEN  $\{a_n\}_{n=0}^{\infty}$  is divergent to  $\infty$

#### Proof of Theorem 3

Write a proof for the following Theorem

#### Theorem 3

Let  $\{a_n\}_{n=0}^{\infty}$  be a sequence.

- IF  $\{a_n\}_{n=0}^{\infty}$  is increasing AND unbounded above,
- THEN  $\{a_n\}_{n=0}^{\infty}$  is divergent to  $\infty$
- 1. Write the definitions of "increasing", "unbounded above", and "divergent to  $\infty$ "
- 2. Using the definition of what you want to prove, write down the structure of the formal proof.
- 3. Do some rough work if necessary.
- 4. Write a formal proof.

### Proof feedback

- 1. Does your proof have the correct structure?
- 2. Are all your variables fixed (not quantified)? In the right order? Do you know what depends on what?
- 3. Is the proof self-contained? Or do I need to read the rough work to understand it?
- 4. Does each statement follow logically from previous statements?
- 5. Did you explain what you were doing? Would your reader be able to follow your thought process without reading your mind?

# Critique this proof - #1

• 
$$\forall M \in \mathbb{R}, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \implies x_n > M$$

• M is not an upper bound:  $\exists n_0 \in \mathbb{N} \text{ s.t. } x_{n_0} > M$ 

$$\bullet \quad n \geq n_0 \implies x_n \geq x_{n_0} > M$$

# Critique this proof - #2

• WTS  $a_n \to \infty$ . This means:  $\forall M \in \mathbb{R}, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \quad n \geq n_0 \implies x_n > M$ 

• bounded above:  $\exists M \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ x_n \leq M$ 

• negation:  $\forall M \in \mathbb{R}, \ \exists n \in \mathbb{N}, \ x_n > M$ 

•  $\forall n \in \mathbb{N}$ , take  $n = n_0$ .

## Composition law

Write a proof for the following Theorem

#### Theorem

Let  $\{a_n\}_{n=0}^{\infty}$  be a sequence. Let  $L \in \mathbb{R}$ . Let f be a function.

- IF  $\begin{cases} \{a_n\}_{n=0}^{\infty} \longrightarrow L \\ f \text{ is continuous at } L \end{cases}$
- THEN  $\{f(a_n)\}_{n=0}^{\infty} \longrightarrow f(L)$ .

## Composition law

Write a proof for the following Theorem

#### Theorem

Let  $\{a_n\}_{n=0}^{\infty}$  be a sequence. Let  $L \in \mathbb{R}$ . Let f be a function.

- IF  $\begin{cases} \{a_n\}_{n=0}^{\infty} \longrightarrow L \\ f \text{ is continuous at } L \end{cases}$
- THEN  $\{f(a_n)\}_{n=0}^{\infty} \longrightarrow f(L)$ .
- 1. Write the definition of your hypotheses and your conclusion.
- 2. Using the definition of your conclusion, figure out the structure of the proof.
- 3. Do some rough work if necessary.
- 4. Write a formal proof.

#### Calculations

1. 
$$\lim_{n\to\infty}\frac{n!+2e^n}{3n!+4e^n}$$

2. 
$$\lim_{n \to \infty} \frac{2^n + (2n)^2}{2^{n+1} + n^2}$$

3. 
$$\lim_{n\to\infty} \frac{5n^5 + 5^n + 5n!}{n^n}$$

# True or False – The Big Theorem

Let  $\{a_n\}_{n=0}^{\infty}$  and  $\{b_n\}_{n=0}^{\infty}$  be positive sequences.

- 1. IF  $a_n \ll b_n$ , THEN  $\forall m \in \mathbb{N}, a_m \ll b_m$ .
- 2. IF  $a_n << b_n$ , THEN  $\exists m \in \mathbb{N} \text{ s.t. } a_m < b_m$ .
- 3. IF  $a_n << b_n$ , THEN  $\exists n_0 \in \mathbb{N}$  s.t.  $\forall m \in \mathbb{N}, m \geq n_0 \implies a_m < b_m$ .

## True or False – The Big Theorem

Let  $\{a_n\}_{n=0}^{\infty}$  and  $\{b_n\}_{n=0}^{\infty}$  be positive sequences.

- 1. IF  $a_n \ll b_n$ , THEN  $\forall m \in \mathbb{N}$ ,  $a_m \ll b_m$ .
- 2. IF  $a_n \ll b_n$ , THEN  $\exists m \in \mathbb{N} \text{ s.t. } a_m < b_m$ .
- 3. IF  $a_n << b_n$ , THEN  $\exists n_0 \in \mathbb{N}$  s.t.  $\forall m \in \mathbb{N}, m \geq n_0 \implies a_m < b_m$ .
- 4. IF  $\forall m \in \mathbb{N}, a_m < b_m$ , THEN  $a_n << b_n$ .
- 5. IF  $\exists m \in \mathbb{N}$  s.t.  $a_m < b_m$ , THEN  $a_n << b_n$ .
- 6. IF  $\exists n_0 \in \mathbb{N}$  s.t.  $\forall m \in \mathbb{N}, m \geq n_0 \implies a_m < b_m$ , THEN  $a_n << b_n$ .

# Refining the Big Theorem - 1

1. Construct a sequence  $\{u_n\}_n$  such that

$$\begin{cases} \forall a < 0, & n^a << u_n \\ \forall a \geq 0, & u_n << n^a \end{cases}$$

2. Construct a sequence  $\{v_n\}_n$  such that

$$\begin{cases} \forall a \leq 0, & n^a << v_n \\ \forall a > 0, & v_n << n^a \end{cases}$$

# Refining the Big Theorem - 2

1. Construct a sequence  $\{u_n\}_n$  such that

$$\begin{cases} \forall a < 2, & n^a << u_n \\ \forall a \geq 2, & u_n << n^a \end{cases}$$

2. Construct a sequence  $\{v_n\}_n$  such that

$$\begin{cases} \forall a \leq 2, & n^a << v_n \\ \forall a > 2, & v_n << n^a \end{cases}$$

#### True or False - Review

- 1. If  $\{a_n\}_{n=0}^{\infty}$  diverges and is increasing, then  $\exists n \in \mathbb{N}$  s.t.  $a_n > 100$ .
- 2. If  $\lim_{n\to\infty} a_n = L$ , then  $\forall n \in \mathbb{N}$ ,  $a_n < L+1$ .
- 3. If  $\lim_{n \to \infty} a_n = L$ , then  $\exists n \in \mathbb{N}$  s.t.  $a_n < L + 1$ .
- 4. If  $\lim_{n\to\infty} a_n = L$ , then  $\exists \varepsilon > 0$  s.t.  $\forall n \in \mathbb{N}$ ,  $a_n < L + \varepsilon$ .
- 5. If  $\{a_n\}_{n=0}^{\infty}$  is convergent and  $b_n = a_n$  for almost all  $n \in \mathbb{N}$ , then  $\{b_n\}_{n=0}^{\infty}$  is convergent.
- 6. If  $a_n << b_n$ , then  $\exists n \in \mathbb{N}$  s.t.  $a_n < b_n$ .
- 7. If  $a_n << b_n$ , then  $\forall \varepsilon > 0$ ,  $\exists n \in \mathbb{N}$  s.t.  $a_n < \varepsilon b_n$ .
- 8. If  $a_n << b_n$ , then  $\forall \varepsilon > 0$ ,  $\exists n_0 \in \mathbb{N}$  s.t.  $\forall n \in \mathbb{N}$ ,  $n \geq n_0 \implies a_n < \varepsilon b_n$ ,