Xg Blood Group System

Number of antigens

Polymorphic Xga High prevalence CD99

Terminology

ISBT symbol (number) XG (012)

The Xg system was established in 1962 when it was History

found that Xg^a antigen expression was controlled by

the X chromosome.

Expression

Other blood cells Xg^a: expression may be restricted to RBCs

CD99: lymphocytes (27,000 sites), platelets

 $(4,000 \text{ sites})^1$

Tissues CD99: fibroblasts, fetal liver, lymph nodes, spleen,

> thymus, pancreatic islet cells, ovarian granulosa cells, sertoli cells, fetal adrenal, adult bone marrow². Most abundant expression is in the most immature stages of the B cell, T cell, and granulocyte lineages

Gene

XG

Chromosome Xp22.33 Name $XG(PBDX)^2$

Organization 10 small exons distributed over approximately

> 60 kbp of gDNA. Exon 1 to exon 3 are present in the pseudoautosomal region of the X and Y chromosomes. Exon 4 to exon 10 are only on the X

chromosome²

Product Xg^a glycoprotein CD99

Chromosome Xp22.2 and Yp11.2 Name MIC2 (CD99)

Organization 10 exons distributed over 52 kbp of gDNA

Product CD99

Y chromosome

Database accession numbers

 XG
 CD99

 GenBank
 NM_175569, AF380356 (mRNA)
 M16279

 Entrez Gene ID
 7499
 4267

Molecular basis of Xg phenotype

Molecular basis of Xg(a-) and CD99- phenotypes have not been determined.

Xg^a amino acid sequence

MESWWGLPCL	AFLCFLMHAR	GQRDFDLADA	LDDPEPTKKP	NSDIYPKPKP	50
PYYPQPENPD	SGGNIYPRPK	PRPQPQPGNS	GNSGGYFNDV	DRDDGRYPPR	100
PRPRPPAGGG	GGGYSSYGNS	DNTHGGDHHS	TYGNPEGNMV	AK <u>IVSPIVSV</u>	150
VVVTLLGAAA	<u>SY</u> FKLNNRRN	CFRTHEPENV			180

XG encodes a putative leader sequence of 21 amino acids.

CD99 amino acid sequence

MARGAALALL	LFGLLGVLVA	APDGGFDLSD	ALPDNENKKP	TAIPKKPSAG	50
DDFDLGDAVV	DGENDDPRPP	NPPKPMPNPN	PNHPSSSGSF	SDADLADGVS	100
GGEGKGGSDG	GGSHRKEGEE	ADAPGVIPGI	VGAVVVAVAG	AISSFIAYQK	150
KKLCFKENAE	OGEVDMESHR	NANAEPAVOR	TLLEK		185

MIC2 encodes a signal peptide of 22 amino acids.

Carrier molecule

A single pass type 1 membrane glycoprotein.

	Xg ^a glycoprotein	CD99
$M_{\rm r}$ (SDS-PAGE)	22,000–29,000	32,500
CHO: N-glycan	No sites	No sites
CHO: O-glycan	11 potential sites ²	11 potential sites ³
Cysteine residues	3	1
Copies per RBC	9,000 (polyclonal anti-Xg ^a) 18–450 (monoclonal anti-Xg ^a)	200 to 2,000 ³

Function

CD99 is a cell surface glycoprotein involved in leukocyte migration, T-cell adhesion, and transmembrane protein transport, and also in T-cell death by a caspase-independent pathway. It may have the ability to rearrange the actin cytoskeleton, and may also act as an oncosuppressor in osteosarcoma. Cyclophilin A binds to CD99, and may act as a signaling regulator of CD99². In RBCs the function of CD99 is not known.

Disease association

XG is linked to genes responsible for ichthyosis (*STS*), ocular albinism (*OAI*), and retinoschisis (*RS*).

High levels of CD99 are found in Ewing's sarcoma, some neuroectodermal tumors, lymphoblastic lymphoma, and acute lymphoblastic leukemia².

Phenotypes (% occurrence)

Male	Female
	remale
65.6	88.7
34.4	11.3

Phenotypic relationship of Xga and CD99 antigens

	Xg ^a type	CD99 level
Male	Xg(a+)	High
	Xg(a-)	High or low
Female	Xg(a+)	High
	Xg(a+W)	High
	Xg(a-)	Low

Comments

First blood group system to be assigned to the X chromosome. Family studies with anti-Xg^a helped to define the mechanism responsible for various sexchromosome aneuploides.

Xg^a and CD99 escape X chromosome inactivation.

XG transcripts were detected in thymus, bone marrow, and fetal liver, and in several non-erythroid tissues: heart, placenta, skeletal muscle, prostate, thyroid, spinal cord, trachea⁴.

References

- ¹ Latron, F., et al., 1987. Immunochemical characterization of the human blood cell membrane glycoprotein recognized by the monoclonal antibody 12E7. Biochem J 247, 757–764.
- ² Tippett, P., Ellis, N.A., 1998. The Xg blood group system: a review. Transfus Med Rev 12, 233–257.
- ³ Fouchet, C., et al., 2000a. Quantitative analysis of XG blood group and CD99 antigens on human red cells. Immunogenetics 51, 688–694.
- ⁴ Fouchet, C., et al., 2000b. A study of the coregulation and tissue specificity of *XG* and *MIC2* gene expression in eukaryotic cells. Blood 95, 1819–1826.

Xg^a Antigen

Terminology

ISBT symbol (number) XG1 (012001 or 12.1)

History Discovered in 1962 when serum from multiply-

transfused Mr. And detected an antigen with a higher prevalence in females than in males; encoded by a locus on the X chromosome. Named after the X chromosome and "g" from "Grand Rapids," where

the patient was treated.

Occurrence

Females 89% Males 66%

Expression

Cord RBCs Weak

Altered Weak expression on RBCs from adult females

heterozygous for Xg^a . Weak expression on RBCs

from adult males is rare.

Effect of enzymes and chemicals on Xga antigen on intact RBCs

In vitro characteristics of alloanti-Xga

Immunoglobulin class IgG more common than IgM

Optimal technique RT; IAT; capillary

Complement binding Some

Clinical significance of alloanti-Xga

Transfusion reaction No HDFN No

Autoanti-Xga

One example has been reported.

Comments

An uncommon antibody; occurs mostly in monospecific rather than multispecific sera. Some anti-Xg^a are naturally-occurring. Xg^a is a poor immunogen.

For the phenotypic relationship between Xg^a and CD99, see System pages. Xg^a escapes X chromosome inactivation.

CD99 Antigen

Terminology

ISBT symbol (number) XG2 (012002 or 12.2)

Obsolete names 12E7; MIC2; E2; HuLy-m6; FMC29; HEC

History Became part of the Xg blood group system in 2000

because *MIC2* and *XG* are adjacent, homologous genes, and two CD99-negative people were found

with the alloantibody.

Occurrence

The only two CD99-negative probands that have been described are Japanese¹.

Expression

Cord RBCs Weak

Effect of enzymes and chemicals on CD99 antigen on intact RBCs

 $\begin{array}{lll} Ficin/Papain & Sensitive \\ Trypsin & Sensitive \\ \alpha\text{-Chymotrypsin} & Sensitive \\ DTT~200\,\text{mM} & Resistant \end{array}$

In vitro characteristics of alloanti-CD99

Immunoglobulin class IgG Optimal technique IAT

Clinical significance of alloanti-CD99

There are no data because the antibody is rare.

Comments

CD99 escapes X chromosome inactivation.

CD99 has a phenotypic relationship to Xg^a; see System pages.

Reference

¹ Uchikawa, M., et al., 1995. An alloantibody to 12E7 antigen detected in 2 healthy donors [abstract]. Transfusion 35 (Suppl.), 23S.