Product Assurance

Space System Design, MAE 342, Princeton University Robert Stengel

- Assembly, Integration, and Verification
- Dependability
- Reliability
- Task Planning
- Quality Assurance

Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html

Failure Analysis of Cygnus CRS Orb-3 Orbital Sciences Antares 130

- Possible causes
 - Manufacturing defect in turbopump Aerojet Rocketdyne AJ-130 motor
 - Refurbished Energomash NK-33 motor from stockpile
 - Built in 1970s
 - Design flaw in hydraulic balance assembly and thrust bearings

Assemble, Integrate, and Verify

- Assemble
- Integrate
- Build spacecraft
- Make it function
- Verify
- Demonstrate compliance with goals
 - · Qualification of design
 - · Acceptance of hardware
- Methods
- System Level
- Test
- Spacecraft
- Analysis
- Module or sub-system
- Inspection
- Unit
- Design Review
- Equipment or component

Fortescue, Ch. 17

3

Manage Risk

Classify Risk

http://www.riskbusinessamericas.com/Public.IndustryRiskProfiles.aspx

http://www.riskbusinessamericas.com/Public.IndustryRiskProfiles.aspx

Spacecraft Product Assurance

Origins

- Industrial Revolution
- Formal quality assurance during WWII

Evolution

- Standards and certification methods borrowed from USAF, ABMA
- See Lecture 24 Course Materials on Blackboard

Special problems

- Extremes of operating conditions
- Length of unattended operation
- Inaccessibility for maintenance

Fortescue, Ch. 19

7

Saturn V Second Stage

Integral serial tanks, with common bulkhead

S-II EXPLODED VIEW

9

Principles and Definitions for Product Assurance

- Quality
- Basis for quality assessment
- Proof of quality

Fortescue, Ch. 19

Objectives and Project Phases

Figure 19.1 PA objectives vs. project phases

Fortescue, Ch. 19

11

12

Overlapping Issues

Figure 19.2 Product Assurance in a project context

Fortescue, Ch. 19

Task Planning

Situation awareness Decomposition and identification of communities Development of strategy and tactics

		Phase	
		Process	Outcome
Objective	Tactical	Situation	Situation
	(short-term)	Assessment	Awareness
	Strategic	Comprehension	Understanding
	(long-term)		

13

Boyd's "OODA Loop" for Combat Operations

Derived from air-combat maneuvering strategy

General application to learning processes other than military

Important Dichotomies in Planning

Strength, Weakness, Opportunity, and Threat (SWOT) Analysis

"Knok-Knoks" and "Unk-Unks"

Known	Known				
Knowns	Unknowns				
Unknown	Unknown				
Knowns	Unknowns				

Program Management: Gantt Chart

Project schedule

Task breakdown and dependency

Start, interim, and finish elements

Time elapsed, time to go

17

Program Evaluation and Review Technique (PERT) Chart

Milestones
Path descriptors
Activities, precursors, and successors
Timing and coordination
Identification of critical path
Optimization and constraint

-ilities

- Dependability
 - Availability
 - Maintainability
 - Security
- Reliability
 - Qualitative
 - Quantitative
 - Design or predicted
 - Operational

10

Parts Procurement

- Vendors' track record
- Standardization
- Procurement systems
 - Organization
 - Documentation
- Substitution of less reliable equivalents
- Out-of-date/specification parts

Materials and Processes

Table 19.7 Material functional properties and constraints

Functional properties	Constraints				
	Common constraints				
Strength	Outgassing				
Adhesion	Radiation resistance				
Elastic moduli	Inertness				
Thermal stability	Reproducibility				
Ductile properties	Tolerance to processing				
Malleability	Matching coefficients of expansion				
Cuttable without shatter	Man-rated constraints				
Reflectivity	Low toxicity				
Absorptivity/transmittance	Low odour				
Energy content:	Non-flammable				
-propellant, electrolyte, springs	Low outgassing/offgassing				

Fortescue, Ch. 19

21

Materials to Avoid

Table 19.8 Prohibited materials and materials to be avoided

Material	Type of problem				
Flexible adhesives	Loses elasticity; fractures when solidified				
Polyvinyl chloride backing tapes	Unstable properties				
Cellulose, paper, fabrics, etc	Unstable properties				
Varnishes and coatings which rely on solvent evaporation for hardening	Properties change in vacuum and with temperature cycling				
Canada balsam; organic glasses in high precision equipment	Unstable				
Most oils and greases	Material migration				
Graphite	Abrasive in vacuum				
Cadmium, zinc and tin	Dendrite growth; risk of shorting				
Most paints	Outgassing unstable properties				
Polyvinyl chloride, cellulose and acetates, Plastic film	Unstable properties				
Potting	Fracture at temperature extremes				
Polyester laminates	Unstable properties				
Rubbers using poly-sulfides; plasticizers; chlorinated	Unstable properties				
Polyvinyl chloride (PVC) thermoplastic; polyvinyl acetate; butyrate; several polyamides	Unstable properties				

Fortescue, Ch. 19

Material Problems in Orbit

Table 19.9 Examples of material problems that occurred in orbit

Space Shuttle thermal tiles	The Space Shuttle has over 24 000 tiles, each with a different shape—an extreme configuration management problem. Early launches lost tiles during ascent and re-entry. An extra layer of bonding was required. This added to weight and thus reduced payload capability.
Atomic gas	Cleaning fluid can leave traces of contaminant on surfaces. The space environment encourages the release of atomic hydrogen, which disrupts the molecular lattice. The effect shows as embrittlement in metals. This can lead to fracture, and can result in a catastrophic failure in springs.
Growth of dendrites	Cadmium, zinc and tin have all exhibited dendrite (whisker) growth at corner sites when in the presence of an impurity and/or an electric field. This can lead to short circuits.
GOES lamps	Specialist lamps of an exact light frequency were used on a series of GOES satellites. The first lamps were successful. Later lamps failed in orbit before end of duty life. Part way through the production cycle, the lamp manufacturer had changed the supplier of the filament material for the lamps. The newly supplied raw material was of a different composition and its life characteristics had not been checked for application in the space environment.

Fortescue, Ch. 19 23

Materials Problems within Parts

Table 19.10 Examples of materials problems within parts

Dendrite growth in digital integrated circuits	Temperature + electrical bias + moisture = dendrites. These needle-like growths (of molybdenum) occur at corner sites in metal/substrate interfaces. They can lead to cross-track shorts and capacity changes—important in some part types.
Galvanic corrosion	Dissimilar metals + moisture + warmth = voltage couple. The moisture passes through plating and forms an electrolyte. The sustained emf causes corrosion.
Stress corrosion	Mechanical stress opens tiny fissures in material. Fissures form sites where impurities can gather and leave material without its protective coating at these sites.
Constituents have unmatched coefficients of expansion	Large temperature excursions—in/out of eclipses—generate severe strains within the part that can lead either to fracture or unstable electrical behaviour.

Product Assurance in Manufacturing

- Controls and Records
- Training and certification
- Traceability
- Measurement and calibration
- Non-conformance control
- Alerts, handling, ... margins
- Audits

Fortescue, Ch. 19

25

Non-Conformance Control

Table 19.12 Non-conformance NCR processing scheme

Area	Classification (acronym)	Description	Re-test and check	Notify buyer	Buyer action
	(NCR)	Non-conformance found and Report issued with unique ID.			
Severity	(MRB)	Material Review Board con venes; assesses significance of NCR			Ye:
S	Minor	Disposition locally			
	Major	Serious. Involve customer at once		Yes	Yes
Concession	(RFW)	Request for Waiver of requirement that cannot be satisfied.		Yes	Yes
Сопсе	issued with unique ID. (MRB) Material Review Board assesses significance of Minor Disposition locally Major Serious. Involve custon (RFW) Request for Waiver of that cannot be satisfied. (RFD) Request for Deviation of specification of an in-w None Concession not needed Use-as-is Correction of no benefit value. No RFW and no Rework ^[2] Rework to full complia specification of the iten Rework beyond specific	Request for Deviation from specification of an in-work end-item		Yes	Yes
	None	Concession not needed			
	Use-as-is	Correction of no benefit and no value. No RFW and no RFD needed.			
osition	Rework ^[2]	Rework to full compliance with specification of the item.	Yes	Yes	
Disp	Rework ^[3]	Rework beyond specification for use subject to approved deviation	Yes	Yes	Yes
Disposition	Scrap	Must not be used. Segregate and send to materials reclamation.	Yes	Yes	

Only when "major" classification is declared.
 Will meet specification after rework/retest/inspection
 Will not meet specification after rework/retest/inspection.

Technology Readiness Levels

Technology readiness level	Description					
TRL I	Basic principles observed and reported					
TRL 2	Technology concept and/or application formulated					
TRL 3	Analytical and experimental critical function and/or characteristic proof-of-concept					
TRL 4	Component and/or breadboard validation in laboratory environment					
TRL 5	Component and/or breadboard validation in relevant environment					
TRL 6	System/subsystem model or prototype demonstration in a relevant environmen (ground or space)					
TRL 7	System prototype demonstration in a space environment					
TRL 8	Actual system completed and 'flight qualified' through test and demonstration (ground or space)					
TRL 9	Actual system 'flight proven' through successful mission operations					

Table 19.15 Technology development stages

Development stage	TRL1	TRL2	TRL3	TRL4	TRL5	TRL6	TRL7	TRL8	TRL9
Basic technology research.							1		
Research to prove feasibility			(191)	12%					
Technology development.									
Technology demonstration.									
System/subsystem dev't.									
System test, launch and ops.		- 1							

Fortescue, Ch. 19

Product Assurance and Safety in Operations

Reliability of a Component

If failure rate is constant,

$$R = e^{-\lambda t}$$

where failure rate is estimated as

$$\lambda = \begin{cases} 1/MTBF & \text{(repairable system)} \\ 1/MTTF & \text{(non-repairable system)} \end{cases}$$

MTBF: Mean time between failures

MTTF: Mean time to failure

Also see Lecture 17 slides for reliability assessment

29

Failure Rate, A

Expected number of failures per unit time

Reliability Enhancement

- Use of redundancy
- Design diversity
- Limitation of failure effects
- De-rating of parts
- Radiation screening
- Handling/assembly controls
- Inspection/testing

Fortescue, Ch. 19

31

Reliability Analysis Techniques

- Failure state probabilities
- Worst-case analysis
 - <u>https://en.wikipedia.org/wiki/Worst-case_circuit_analysis</u>
- Failure modes and effects analysis
 - https://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis
- · Fault tree analysis
 - <u>https://en.wikipedia.org/wiki/Fault_tree_analysis</u>
- Contingency analysis
 - What to do when failure occurs

Fortescue, Ch. 19

Probability Distributions

33

Relative Frequency of Discrete, Mutually Exclusive Events

$$\Pr(x_i) = \frac{n_i}{N} \quad \text{in } [0,1]; \quad i = 1 \text{ to } I$$

- N = total number of events
- n_i = number of events with value x_i
- I = number of different values
- x_i = ordered set of hypotheses or values

$$\sum_{i=1}^{I} \Pr(x_i) = \frac{1}{N} \sum_{i=1}^{I} n_i = 1$$

Cumulative Probability, Pr(x ≥ ≤ a), and Discrete Measurements of a Continuous Variable

Suppose **x** represents a continuum of colors

 x_i is the center of a band in x

$$\Pr(x_i \pm \Delta x / 2) = n_i / N$$

$$\sum_{i=1}^{l} \Pr(x_i \pm \Delta x / 2) = 1$$

Probability Density Function, pr(x)Cumulative Distribution Function, Pr(x < X)

Probability density function

$$\operatorname{pr}(x_{i}) = \frac{\operatorname{Pr}(x_{i} \pm \Delta x / 2)}{\Delta x}$$

$$\sum_{i=1}^{I} \operatorname{Pr}(x_{i} \pm \Delta x / 2) = \sum_{i=1}^{I} \operatorname{pr}(x_{i}) \Delta x \xrightarrow{\Delta x \to 0} \int_{-\infty}^{\infty} \operatorname{pr}(x) dx = 1$$

Cumulative distribution function

$$\Pr(x < X) = \int_{-\infty}^{X} \Pr(x) dx$$

Probability Density Function, pr(x)Cumulative Distribution Function, Pr(x < X)

37

Properties of Random Variables

- Mode
 - Value of x for which pr(x) is maximum
- Median
 - Value of x corresponding to 50th percentile
 - Pr(x < median) = Pr(x ≥ median) = 0.5
- Mean
 - Value of x corresponding to statistical average
- First moment of x = Expected value of x

$$\overline{x} = E(x) = \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx$$
"Moment arm"

Expected Values

Mean Value is the first moment of x

$$\overline{x} = E(x) = \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx$$

- Second central moment of x = Variance
 - Variance from the mean value rather than from zero
 - Smaller value indicates less uncertainty in the value of x

$$\sigma_x^2 = E \left[(x - \overline{x})^2 \right] = \int_{-\infty}^{\infty} (x - \overline{x})^2 \operatorname{pr}(x) dx$$

39

Mean Value and Variance of a Uniform Distribution

$$pr(x) = \begin{cases} 0 & x < x_{\min} \\ \frac{1}{x_{\max} - x_{\min}} & ; & x_{\min} < x < x_{\max} \\ 0 & x > x_{\max} \end{cases}$$

Mean

$$\overline{x} = \int_{x_{\min}}^{x_{\max}} \frac{x}{\left(x_{\max} - x_{\min}\right)} dx = \frac{1}{2} \left(x_{\max} + x_{\min}\right)$$

Variance

If
$$x_{\min} = -x_{\max} \triangleq a$$

$$\sigma_x^2 = \frac{1}{2a} \int_{-a}^a x^2 \, dx = \frac{x^3}{6a} \Big|_{-a}^a = \frac{a^2}{3}$$

Gaussian (Normal) Random Distribution

Unbounded, symmetric distribution

Defined entirely by its mean and standard deviation

Mean value; from symmetry

$$E(x) = \int_{-\infty}^{\infty} x \operatorname{pr}(x) dx = \overline{x}$$

Variance

$$E[(x-\overline{x})^2] = \int_{-\infty}^{\infty} (x-\overline{x})^2 \operatorname{pr}(x) dx = \sigma_x^2$$

Units of x and σ_x are the same

41

Probability of Being Close to the Mean

(Gaussian Distribution)

Probability of being within ±1σ_x

• Probability of being within $\pm 2\sigma_x$

$$\Pr\left[x < \left(\overline{x} + 2\sigma_x\right)\right] - \Pr\left[x < \left(\overline{x} - 2\sigma_x\right)\right] \approx 95\%$$

• Probability of being within ±30x

$$\Pr\left[x < \left(\overline{x} + 3\sigma_x\right)\right] - \Pr\left[x < \left(\overline{x} - 3\sigma_x\right)\right] \approx 99\%$$

Experimental Determination of Mean and Variance

Sample mean for N data points, $x_1, x_2, ..., x_N$

Sample variance for same data set

$$\sigma_x^2 = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{(N-1)}$$

Divisor is (N-1) rather than N to produce an unbiased estimate

43

Log-Normal Distribution

- Variation in large ensembles for which x > 0
- The logarithm of x is Gaussian
- Replace x by x_i in previous equations

$$x_{l} \triangleq \log x$$

$$\operatorname{pr}(x_{l}) = \frac{1}{\sigma_{l} \sqrt{2\pi}} e^{-\frac{(x_{l} - \overline{x}_{l})}{2\sigma_{l}^{2}}}$$

$$\operatorname{Pr}(x_{l}) = \frac{1}{2} \left(1 + \operatorname{erf} \frac{x_{l} - \overline{x}_{l}}{\sigma_{l} \sqrt{2}} \right)$$

$$\Pr(x_l) = \frac{1}{2} \left(1 + \operatorname{erf} \frac{x_l - \overline{x}_l}{\sigma_l \sqrt{2}} \right)$$

Weibull Distribution

- Variation in life characteristics of parts or components
- Variation in large ensembles for which x > 0

$$\operatorname{pr}(x) = \left\{ \left[\frac{b}{\theta - x_o} \right] \left[\frac{x - x_o}{\theta - x_o} \right]^{b-1} \right\} e^{-\frac{(x - x_o)^b}{(\theta - x_o)^b}}$$

$$\operatorname{Pr}(x) = 1 - e^{-\frac{(x - x_o)^b}{(\theta - x_o)^b}}$$

 x_o : expected minimum value b: shape or slope parameter (k in figure) θ : characteristic life or scale parameter (λ in figure)

Exponential Distribution

- Special case of Weibull distribution, with b = 1, x_o = 0, and x = t
- Time to failure of systems or parts
- Modeling of independent events that occur at a constant average rate

$$pr(t) = \frac{1}{\theta} e^{-t/\theta}$$

$$Pr(t) = 1 - e^{-t/\theta}$$

$$\lambda = \frac{1}{\theta} : \text{failure rate}$$

Poisson Distribution

- Occurrence of isolated, independent events whose average rate is known
 - Number of events can be observed
 - Number of non-events cannot be observed
- Examples:
 - Number of machine breakdowns in a plant
 - Number of errors in a drawing

$$pr(r = r_i) = \frac{e^{-\lambda} y^{r_i}}{r_i!}$$

 λ : average number of occurrences

Binomial Distribution

- The probability of r successful outcomes in n trials
- Examples: inspection of parts, probability that a system will operate correctly

$$\operatorname{pr}(r) = \binom{n}{r} p^r q^{n-r} = \binom{n}{r} p^r (1-p)^{n-r}$$

where

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

n = number of trials

p = probability of success

q = probability of failure

Confidence Level

 The probability that a probability estimate is correct, e.g.,

"The likelihood of failure is 90%, with a confidence level of 95%"

49

Trials Required to Estimate Probability Depend on Confidence Interval

Required number of trials depends on outcome probability and desired confidence interval

How Will You Estimate the Likelihood of Success for Project 2020 UA?

