Machine Learning by Stanford University

Study Sheet by Reah Miyara Mail@reah.me

Intro to Machine Learning –

- ML a computer program with increased performance P at some class of tasks T with experience E.
- Supervised given a ['ground truth'] data set, predict output given the input. Types of prediction:
 - 1. **Regression** continuous, numerical
 - 2. Classification discrete, categorical
- Unsupervised derive structure from data based on relationships among variables (with no prior knowledge as to what the results should look like)

- Linear Regression with One Variable -

• Learning Goal – given a training set, learn a function h: $X \rightarrow Y$ so h(x) is a good y predictor

- Hypothesis $h_{\theta}(x) = \theta_0 + \theta_1 x$
- Cost Function takes an average difference of all results of the hypothesis with inputs from the x values and the actual y values. Goal: minimize θ_0, θ_1

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$
 (1)

- (1) Squared Error function or Mean Squared Error function
- Gradient Descent Algorithm repeat until convergence

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \tag{2}$$

Multivariate Linear Regression -

$$h_{\theta}(x) = \begin{bmatrix} \theta_0 & \theta_1 & \dots & \theta_n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} = \theta^T x$$

• Gradient Descent Algorithm repeat until convergence

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)} - y^{(i)}) \cdot x_j^{(i)} ; j := 0...n$$
 (3)

- Feature Scaling divide the input values by the range (max – min). Input values in roughly the same range speed up the convergence of gradient descent.
- Mean Normalization subtract the mean for an input variable from the values for that input variable.

$$x_i := \frac{x_i - \mu_i}{s_i} \tag{4}$$

(4) μ_i is the mean & s_i is the range, (max - min), of all values for feature i

• Learning Rate – α too small \implies slow convergence; α too large \implies may not converge.

Normal Equation

• Normal Equation – non-iterative algorithm for minimizing $J(\theta)$; note: $O(n^3)$ to calculate X^TX $\theta = (X^T X)^{-1} X^T y$ (5)

 $m \text{ examples } (x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)}); n \text{ features}$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \mid \mathbf{X} = \begin{bmatrix} (x^{(1)})^T \\ (x^{(2)})^T \\ \vdots \\ (x^{(n)})^T \end{bmatrix} \mid \mathbf{y} = \begin{bmatrix} y^1 \\ y^2 \\ \vdots \\ y^m \end{bmatrix}$$

- If X^TX is noninvertible, common causes include:
 - 1. Redundant features, where two features are very closely related (i.e. they are linearly dependent)
 - 2. Too many features (e.g. $m \le n$). In this case, delete some features or use 'regularization'.

Classification Logistic Regression -

• Logistic Regression Model – want $0 \le h_{\theta}(x) \le 1$

$$g(z) = \frac{1}{1 + e^{-z}} \tag{6}$$

• Sigmoid/Logistic Function

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T(x)}}$$
 (7)

$$h_{\theta}(x) = P(y = 1|x; \theta) = 1 - P(y = 0|x; \theta)$$
 (8)

• Decision Boundary

1.
$$y = 1 \text{ if } \theta^T(x) \ge 0$$

2.
$$y = 0 \text{ if } \theta^T(x) < 0$$

• Cost Function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$
(9)

$$Cost(h_{\theta}(x), y) = -ylog(h_{\theta}(x)) - (1-y)log(1-h_{\theta}(x))$$
(10)

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$
 (11)

$$h = g(X\theta); \quad J(\theta) = \frac{1}{m} \cdot (-y^T \log(h) - (1-y)^T \log(1-h))$$

$$(12)$$

$$\theta_j := \theta_j - \frac{\alpha}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)}$$
 (13)

a vectorized implementation is:
$$\theta := \theta - \frac{\alpha}{m} X^T (g(X\theta) - \vec{y}) \tag{14}$$

Multiclass Classification -

$$y \in 0, 1, \dots n$$

$$h_{\theta}^{(0)}(x) = P(y=0|x;\theta)$$

$$h_{\theta}^{(1)}(x) = P(y=1|x;\theta)$$

$$\vdots$$

$$h_{\theta}^{(n)}(x) = P(y=n|x;\theta)$$
prediction = $\max_{i}(h_{\theta}^{(i)}(x))$

Under/Over -fitting -

- Underfitting hypothesis shows structure not captured by the model; does not fit the data well
- Overfitting hypothesis corresponds too closely to data : fail to predict future results reliably
- Addressing the problem of overfitting:
 - 1. Reduce the number of features manually/algorithmically select subset of features.
 - 2. **Regularization** keep all features, but reduce the magnitude of parameters θ_i by λ (regularization

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$
(15)

Gradient Descent regularized linear regression does not penalize $heta_0$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$
 (16)

$$\theta_j := \theta_j - \alpha \left[\left(\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)} \right) + \frac{\lambda}{m} \theta_j \right]$$

$$\tag{17}$$

$$\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)}$$
(18)

Normal Equation

$$\theta = (X^T X + \lambda \cdot L)^{-1} X^T y \tag{19}$$

where
$$L = \begin{bmatrix} 0 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}$$

Neural Networks

• Activation Function

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T(x)}}$$
 (20)

 $a_i^{(i)}$ - 'activation' of unit i in layer j

 $\Theta^{(j)}$ – matrix of weights controlling function mapping from layer i to layer i+1

$$\begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \rightarrow \begin{bmatrix} a_1^{(2)} \\ a_2^{(2)} \\ a_3^{(2)} \end{bmatrix} \rightarrow h_{\theta}(x)$$

$$h_{\theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)} a_0^{(2)} + \Theta_{11}^{(2)} a_1^{(2)} + \Theta_{12}^{(2)} a_2^{(2)} + \Theta_{13}^{(2)} a_3^{(2)})$$

Each layer gets its own matrix of weights, $\Theta^{(j)}$. If network has s_i units in layer j and s_{i+1} units in layer j+1, then $\Theta^{(j)}$ will be of dimension $s_{i+1}\times(s_i+1)$.

• Forward Propagation: vectorized implementation for layer j = 2 & node k, the variable z will be:

$$z_k^{(2)} = \Theta_{k,0}^{(1)} x_0 + \Theta_{k,1}^{(1)} x_1 + \Theta_{k,n}^{(1)} x_n$$

therefore it follows that:

$$a_1^{(2)} = g(z_1^{(2)}), \, a_2^{(2)} = g(z_2^{(2)}), \, a_3^{(2)} = g(z_2^{(3)})$$

a vectorized representation of x and $z^{(j)}$ is:

$$x = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} z^{(j)} = \begin{bmatrix} z_1^{j} \\ \vdots \\ z_n^{j} \\ \vdots \\ z_n^{j} \end{bmatrix}$$

setting $x = a^{(1)}$ we can write it as $z^{(j)} = \Theta^{(j-1)}a^{(j-1)}$ $a^{(j)} = a^{(j)}$ where g is applied element-wise to our vector $z^{(j)}$ We can then add a bias unit (equal to 1) to layer j after we have computed $a^{(j)}$. This will be $a_0^{(j)}$ and will be equal to 1. To compute our final hypothesis, the last theta matrix $\Theta_{(i)}$ will have only one row which is multiplied by one column $a^{(j)}$ so that our result is a single number. Final result: $h_{\Theta}(x) = a^{\left(j+1\right)} = g(z^{\left(j+1\right)})$

Neural Networks

• Cost Function & Backpropagation

$$J(\Theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} [y_k^{(i)} log((h_{\Theta}(x^{(i)}))_k) +$$

$$(1 - y_k^{(i)})log(1 - (h_{\Theta}(x^{(i)}))_k)] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_{j,i}^{(l)})^2$$

'Backpropagation' is neural-network term for minimizing our cost function Given a training set $\{(x^{(1)}, y^{(1)}) \cdots (x^{(m)}, y^{(m)})\}:$

 $\Delta_{i,j}^{(l)} := 0$ for all (l,i,j), (end up with a matrix full of zeros)

for training example t=1 to m:

2. Perform forward propagation to compute $a^{(l)}$ for l=2,3,...,L

3. Using $y^{(t)}$, compute $\delta^{(L)} = a^{(L)} - y^{(t)}$ L is the total number of layers & $a^{(L)}$ is the vector of outputs of the activation units for the last later. So our δ [error values], are the differences of the actual results in the last layer & the correct outputs in v. For the delta values of the layers before last, use the following equation that steps back from right to left:

4. $\delta^{(L-1)}, \delta^{(L-2)}, ..., \delta^{(2)} \le \delta^{(l)} = ((\Theta^{(l)})^T \delta^{(l+1)}) \cdot \star a^{(l)} \cdot \star (1-a^{(l)})$ delta values of layer I are calculated by multiplying the delta values in the next layer with the theta matrix of layer l. Next, perform element-wise multiplication with function g', the derivative of the activation function g evaluated with the input values given by $z^{\left(l\right)}$ $g'(z^{(l)}) = a^{(l)} \cdot \star (1 - a^{(l)})$

5. $\Delta_{i,j}^{(l)} := \Delta_{i,j}^{(l)} + a_j^{(l)} \delta_i^{(l+1)} \text{ vectorized as } \Delta^{(l)} := \Delta^{(l)} + \delta^{(l+1)} (a^{(l)})^T$ Hence we update our new Δ matrix: $\bullet D_{i,j}^{(l)} := \frac{1}{m} (\delta_{i,j}^{(l)} + \lambda \Theta_{i,j}^{(l)}) \text{ if } j \neq 0$

• $D_{i,j}^{(l)} := \frac{1}{m} (\delta_{i,j}^{(l)} \text{ if } j = 0$

The capital-delta matrix D is used as an 'accumulator' to add up our values as we go along & eventually compute our partial derivative .: