1 To solve f(x)=0 for x Lecture 6 1.31.2019 31-1 Bisection f (a) f (h) <0

1 f 6 c (a1h) - linear convergence 31-2 Newton's method Start with No $\gamma_{j+1} = \gamma_j - \frac{f(x_i)}{f(x_j)}$ quadratic convergence ejti = 12 e; 2 (ej=1xj-x1)
(iocally convergence)

Example: (Application)

Given
$$a \neq 0$$
we want to calculate $x = \frac{1}{a}$
by using only $+, -, *$

one try:

Newton:
$$\chi_{j+1} = \chi_j - \frac{f(\chi_j)}{f'(\chi_j)}$$

$$= x_j - \frac{ax_j - a}{a}$$

Another try: f(x)= a- 1

$$f'(x) = \frac{1}{x^2}$$

Newton's:
$$\chi_{j+1} = \chi_j - \frac{f(x_j)}{f'(x_j)}$$

=
$$x_j - (a - \frac{1}{x_j}) x_j = \frac{f'(x_j)}{x_j(2-ax_j)}$$

A question from some student How to compute ej=175,-71?

- For general examples, x is

 not available, ej cannot

 be calculated
- To verify your code, one can use examples that have exact solutions, namely \$\overline{x}\$ is known.
 - e_j can be approximated. $e_j \approx |x_j - \bar{x}_{ref}|$ $\bar{x}_{ref} = x_J$ J >> j

Newton:
$$x_j$$

 $x_{j+1}=x_j-\frac{f(x_j)}{f(x_j)}$

There are applications where

f' is expensive or non-trivial

to compute. Instead, we use

f'(xj) \(\times \frac{f(xj) - f(xj)}{xj} \)

Se can+ method

$$\gamma_{j+1} = \gamma_j - \frac{f(x_j)(x_j - \gamma_{j-1})}{f(x_j) - f(x_{j-1})}$$

with No. XI given

geometrically: tangent Newton (xj,fxj) (Krinften) secant method (Nj+1,0) To verify: f (xj) - f (xj-1) f (xj) - 0

- xj-1 xj-xj+1

L jives the secant methol upade

```
Red: with M. W,
                       is to take
Secant Method
Pick No, Ni, toloo, Imax 20
   (and possibly Xmax >0)
let err = 10x tol, j=0
loop: while lerr > tol) == f(x)(x-w)
       g: f(x;)(x;-x;-1)
               f 1xj) - f(xj-1)
       err = abs(2)=181;
       γ'j<sub>1</sub>; γ'<sub>j</sub> - 2 ... \ w= γ
- ... \ γ = ν'-3
        if jo Imax (or 129+11
                           > 7mar)
```

 $\mathcal{K}_{jH} = \mathcal{K}_{j} - \frac{f(ng)(ng - \mathcal{K}_{j-1})}{f(ng) - f(ng)}$

Theorem: Given $f \in C^2([a_14])$ with $f(\bar{x}) = 0$ for some $\bar{x} \in (a_14)$ and $f'(\bar{x}) \neq 0$. Start with x_0, x_1 that are sufficiently close to \bar{x} , then the secont method converges to \bar{x} , namely $\lim_{x \to \infty} x_1 = \bar{x}$

And the error $e_j = |x_j - \bar{x}|$ Satisfies $e_{j+1} = D_j e_j^x$ where $x = \sqrt{5+1} \approx 1.618$ and $\lim_{j \to \infty} D_j = |f''(\bar{x})|^{\delta-1}$

Secant method: superlinear

2.5 Secant Method

i	x_i	$ x_i - ar{x} $	γ
0	-0.333333333333333	4.38e-01	
1	-0.66666666666666	1.04e-01	
2	-0.800000000000000	2.91e-02	
3	-0.76904176904177	1.88e-03	1.7749
4	-0.77088382152809	3.32e-05	1.6426
5	-0.77091703510617	3.80e-08	1.6565
6	-0.77091699705848	7.71e-13	1.6325
7	-0.77091699705925	1.11e-16	1.3172
8	-0.77091699705925	1.11e-16	1.0000

Table 2.7 Solving $x^3 + 2x + 2 = 0$ using the secant method formula given in (2.25). Also given is the error $e_i = |x_i - \bar{x}|$, and the approximate order of convergence γ as determined from (2.15).

31.4 Sensitivity of root-finding Pronoms

Demo: (matlab)

what is effectively. Solved on computer (or by matlas) is a perturbed problem.

 $\hat{f}(x) = f(x) + h(x) = 0$

(original: fax1=0)

due to finite - precision arithmetic

Consider solving
$$f(x)=0$$
,

the solution is \overline{X}

perturbed proble in:

 $f(x) = f(x) + \xi h(x)$
 $0 < \xi < 1$

its root is $\widehat{X} = \overline{X} + \rho X$
 $|0 \times 1| < 1$

Try to establish relation of ξ and

 $\widehat{f}(\widehat{X}) = 0$

(a) $\widehat{f}(\overline{X}) + 0 \times \widehat{f}'(\overline{X}) + 0 \times \widehat{X}^2$
 $+ \xi \left(h(\overline{X}) + 0 \times h'(\overline{X}) + 0 \times X^2 \right)$

$$(drop O(ox^{2}))$$

$$\Rightarrow ox (f'(\bar{x})+\varepsilon h'(\bar{x}))+\varepsilon h(\bar{x}) % o$$

$$\Rightarrow ox % -\frac{\varepsilon h(\bar{x})}{f'(\bar{x})+(\varepsilon)h'(\bar{x})}$$

$$\Leftrightarrow -2\frac{h(\bar{x})}{f'(\bar{x})}$$

$$f(\bar{x}) = 0$$

$$\hat{f}(x) = \frac{1}{2} \hat{x} = \bar{x} + 0x$$

$$\hat{f}(x) = f(x) + \varepsilon h(x)$$

$$\frac{1}{2} \hat{x} = \frac{1}{2} \hat{x} + 0x$$

$$\frac{1}{2}$$

Example: Revisit tle 2nd example

$$f(x) = (x-1)(x-2) \cdots (x-7)$$

$$= \prod (x-n)$$

$$h(x) = (x^7)$$

$$f(x) = f(x) + Eh(x)$$

$$To capture a root $\overline{x} = 6$ of $f(x)$

$$The root of fin $\overline{x} = 6$ of $f(x)$

$$From analysis: \Delta x \sim 2 \frac{h(\overline{x})}{f'(\overline{x})}$$

$$To calculate h(\overline{x}) = 67$$

$$f'(\overline{x}) = -5!$$

$$\frac{\partial x}{\partial x} \sim \frac{h(\overline{x})}{f'(\overline{x})} = -\frac{67}{-5!} = 2332.8$$$$$$

Some calculation: to get
$$f'(\bar{x})$$
 $f'(x) = (x-1)(x-1) \cdots (x-7)$
 $+ (x-1)(x-3)(x-4) \cdots (x-7)$
 $+ (x-1)(x-1)(x-1)(x-4) \cdots (x-7)$
 $+ (x-1)(x-1)(x-1)(x-4) \cdots (x-7)$
 $+ (x-1)(x-1)(x-1)(x-1) \cdots (x-6)$
 $= \frac{7}{2} \quad \frac{7}{11} \quad (x-n)$
 $= \frac{7}{11} \quad (x-n)$

In demo:

$$\Sigma = 10^{-6}$$
 $\frac{32}{2} \approx 2.33 LL \times 10^{3}$
 $\Sigma = 10^{-10}$
 $\frac{02}{2} \approx 2.3328 \times 10^{3}$

sensitive: illed - conditioned

1855 sensitive: well-conditioned