# Osnovi programiranja I kolokvijum

9.11.2018.

### I grupa

Na **Desktop**-u u direktorijumu **Rad** kreirati direktorijum **ImePrezime\_BrIndeksa** i unutar njega sačuvati programe koji sadrže rešenja datih zadataka. Rešenje 1. zadatka **mora** da se nalazi u fajlu **Zadatak1.c**, rešenje 2. zadatka **mora** da se nalazi u fajlu **Zadatak2.c**. Od dva ponuđena zadatka birate **jedan** koji ćete raditi.

Napisati C program koji:

**1.** U učitanom broju **n** nalazi se rešenje dugo tražene mape skrivenog blaga. Otkrivanje mape ima dva moguća načina. Ukoliko učitani broj ima jednu ili dve cifre brojčana vrednost koja otvara tajni sef u kome se nalazi mapa skrivenog blaga se dobija kao rezultat date sume:

$$f(n) = \sum_{i=1}^{n} (1 + 2 + \dots + i) \cdot \frac{|n^{i} - i^{i}|}{(2 + 4 + \dots + 2n)}$$

S druge strane, ukoliko učitani broj ima više od 2 cifre iza odgovarajuće cigle se nalazi mapa skrivenog blaga. Odabir cigle se vrši na sledeći način: ako učitani broj **n** ima neparan broj cifara, iza cigle na kojoj je broj cifara broja **n** nalazi se mapa skrivenog blaga. Ukoliko učitani broj ima paran broj cifara, onda se mapa skrivenog blaga nalazi iza cigle sa brojem koji predstavlja sumu prve i poslednje cifre broja **n** (n=1234 -> cigla broj 5; n=56781 -> cigla broj 5).

Ulaz sadrži samo jedan ceo broj **n**, izlaz sadrži samo jedan broj, ili realan broj koji otvara tajni sef u formatu **na deset mesta sa pet decimale**, ili predstavlja ceo broj na traženoj cigli i to u formatu **na 3 mesta**.

**NAPOMENA**: Funkcije **abs/fabs, pow, kao i svoje funkcije** ne smete koristiti ni kod uslova definisanosti, ni kod računanja vrednosti. Takođe, tekući član sume **OBAVEZNO** računati na osnovu prethodnog člana, ukoliko je to moguće. Zadatak se boduje i delimično, ukoliko se reši samo jedan način oktivanja mape skrivenog blaga.

| Ulaz  | Izlaz   |  |
|-------|---------|--|
| 1234  | 5       |  |
| 56781 | 5       |  |
| 1     | 0.00000 |  |
| 3     | 1.41667 |  |

- **2.** Klovn Logi ima **n** kutija koje treba redom spakovati jednu u drugu u potpunosti na najbolji mogući način, ako je to moguće. Kutija se može dodati u spakovane na dva načina:
  - Da se ubaci u poslednje spakovanu kutiju
  - Da se sve spakovane kutije ubace u nju.

Ako kutija ne može da se spakuje sa prethodno spakovanim, uklanja se. Pomozite klovnu Logiju da sazna koliko kutija neće uspeti da spakuje. Program učitava broj kutija **n**, i dimenzije (dužina, širina,visina) svih **n** kutija koje redom pokušava da spakuje (kutije mogu da se okreću i otvore na bilo koju stranu). Odštampati koliko kutija je ostalo nespakovano.

| Ulaz        | Izlaz |
|-------------|-------|
| 6           | 1     |
| 100 100 100 |       |
| 90 95 80    |       |
| 120 110 130 |       |
| 110 120 120 |       |
| 50 80 75    |       |
| 60 30 60    |       |

Broj poena: 1. zadatak – 13 poena, 2. zadatak – 16 poena

Vreme izrade: 75 minuta

## Osnovi programiranja I kolokvijum

9.11.2018.

#### II grupa

Na **Desktop**-u u direktorijumu **Rad** kreirati direktorijum **ImePrezime\_BrIndeksa** i unutar njega sačuvati programe koji sadrže rešenja datih zadataka. Rešenje 1. zadatka **mora** da se nalazi u fajlu **Zadatak1.c**, rešenje 2. zadatka **mora** da se nalazi u fajlu **Zadatak2.c**. Od dva ponuđena zadatka birate **jedan** koji ćete raditi.
Napisati C program koji:

3. Rimljanima su formacije za napad predstavljali brojevima sastavljeni samo od cifara 0 i 1. Kada su slali formaciju za napad na bojno polje, šifrovali su je u obliku jednog celog broja n. Poslat broj n se tumači na sledeći način: na mestima u broju gde su parne cifre, smatra se da je 1, a gde su neparne da je 0, tako da dešifrovanjem dobiju ceo broj m(n=1524 -> m=11; n=32281 -> m=1110). Međutim oni ne znaju šta da rade ako dobiju da je m nula, u toj situaciji crtež sa formacijom napada se nalazi u kutiji koja se otvara brojem koji se dobija kao rezultat sume:

$$f(n) = \sum_{i=1}^{n} (3+6+\dots+3i) \cdot \frac{(-1)^{i} \cdot i^{i} + n!}{(5+5^{2}+\dots+5^{i})}$$

Ulaz sadrži samo jedanceo broj **n**, izlaz sadrži **samo jedan** ceo broj **m** koji predstavlja nov broj i to u formatu **na deset mesta** (ukoliko je dobijen broj m različit od nule) ili realan broj koji otvara kutiju u formatu **na deset mesta sa pet decimale**.

NAPOMENA: Funkcije abs/fabs, pow, kao i svoje funkcije ne smete koristiti ni kod uslova definisanosti, ni kod računanja vrednosti. Takođe, tekući član sume **OBAVEZNO** računati na osnovu prethodnog člana, ukoliko je to moguće. Zadatak se boduje i delimično, ukoliko se reši samo jedan način oktivanja formacije.

| Ulaz  | Izlaz   |  |
|-------|---------|--|
| 1524  | 11      |  |
| 32281 | 1110    |  |
| 1     | 0.00000 |  |
| 3     | 3.56130 |  |

- **4.** Mika i Žika igraju igru pokrivanja. Svaki od njih ima po n poteza u kojima biraju karte sa po tri broja. Igru započinje računar tako što izabere tri karte sa brojevima a u svakom potezu igru prvi igra Mika. Pokrivanje karata se može izvršiti na dva načina:
  - Izabrani brojevi na kartama su veći od brojeva na vrhu gomila sa kartama (svaka od izabranih karata je veća od karte na vrhu gomile na koju se spušta i tom prilikom se vodi računa o idealnom rasporedu karata na gomile)
  - Izabrani brojevi na kartama su manji od brojeva na dnu gomila sa kartama (svaka od izabranih karata
    je manja od karte na dnu gomile ispod koje se stavlja i tom prilikom se vodi računa o idealnom
    rasporedu karata na gomile)

Ukoliko pokrivanje ne može da se izvrši smatra se da je potez propuštenih. Odredite pobednika u igri a pobednik je onaj igrač koji ima manje propalih poteza i štampati broj tih poteza. Program učitava broj poteza **n** po igraču, vrednosti na kartama x, y i z koje postavlja računar i svih n poteza i za Miku i za Žiku (u svakom potezu, za svakog od njih po tri broja). Odštampati ko je pobedio i sa koliko propuštenih poteza. Ako imaju isto propalih poteza štampa se NERESENO i broj propuštenih poteza.

### Primer:

| Ulaz     | Izlaz |
|----------|-------|
| 4        | Mika  |
| 5 4 9    | 1     |
| 3 4 5    |       |
| 512      |       |
| 11 6 10  |       |
| 8 16 9   |       |
| 12 11 8  |       |
| 3 2 4    |       |
| 234      |       |
| 20 12 15 |       |

| 3  | 2  | 4  |
|----|----|----|
| 4  | 3  | 5  |
| 5  | 4  | 9  |
| 10 | 6  | 11 |
| 11 | 8  | 12 |
| 15 | 12 | 20 |
|    |    |    |

Broj poena: 1. zadatak – 13 poena, 2. zadatak – 16 poena

Vreme izrade: 75 minuta