Professor: Alexander Schmidt Tutor: Daniel Kliemann

Aufgabe 1

(a) **Behauptung:** B = ((1,1)) ist eine Basis von $S = \{(x_1, x_2) \in \mathbb{Q}^2 | x_1 - x_2 = 0\}$. **Z.Z.:** B ist linear unabhängig

$$\alpha \cdot (1,1) = (0,0) \implies \alpha \cdot 1 = 0 \implies \alpha = 0$$

Z.Z.: B ist ein Erzeugendensystem von S Sei $(x_1, x_2) \in S$. Dann ist $x_1 - x_2 = 0 \implies x_1 = x_2$

$$(x_1, x_2) = (x_1, x_1) = x_1 \cdot (1, 1)$$

(b) Wir bezeichnen mit e_i^n einen Vektor $(0, \dots, 0, 1, 0, \dots, 0)$ der aus n-1 Nullen und einer Eins besteht, wobei die Eins an *i*-ter Stelle steht.

Behauptung: $B = ((1, -2, 0, ..., 0), e_3^n, e_4^n, ..., e_n^n)$ ist eine Basis von $S = \{(x_1, x_2, ..., x_n) \in \mathbb{Q}^n | 2x_1 + x_2 = 0\}.$

 $\mathbf{Z.Z.:}$ B ist linear unabhängig

Beweis:

$$\alpha_1 \cdot (1, -2, 0, \dots, 0) + \sum_{i=2}^{n} \alpha_i \cdot e_{i+1}^n = (0, 0, \dots, 0)$$

Da die *i*-te Komponente des resultierenden Vektors mit Ausnahme von i = 1, 2 nur vom *i*-ten Vektor e_i^n und α_i abhängt, gilt:

$$\alpha_i \cdot 1 = 0 \forall i \in \{2, 3, \dots, n\} \implies \forall i \in \{2, 3, \dots, n\} : \alpha_i = 0$$

Aus der ersten Komponente des resultierenden Vektors folgt außerdem $\alpha_1 \cdot 1 = 0 \implies \alpha_1 = 0$. Insgesamt erhalten wir $\forall i \in \{1, 2, \dots, n\} : \alpha_i = 0$.

 $\mathbf{Z}.\mathbf{Z}.:$ B ist ein Erzeugendensystem von S

Beweis: Sei $(x_1, x_2, ..., x_n) \in \mathbb{Q}^n$. Mit $2x_1 + x_2 = 0$ folgt: $x_2 = -2x_1$.

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \xrightarrow{x_2 = -2x_1} \begin{pmatrix} x_1 \\ -2 \cdot x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 \cdot \begin{pmatrix} 1 \\ -2 \\ \vdots \\ 0 \end{pmatrix} + \sum_{i=3}^n x_i e_i^n$$

(c) Beachte: 0 teilt nur 0.

$$\ker \partial = \{f \in V | f(0) \in K \text{ beliebig}, f(i) = 0 \ \forall i \in \{1, \dots, n+1\} \text{ mit } \operatorname{char} K \not| i, f(i) \in K \text{ sonst} \}$$

Wir wählen unsere Basis $B=(f_0,f_1,f_2,\ldots,f_k)$, wobei $k=\lfloor\frac{n+1}{\operatorname{char} K}\rfloor$ für $\operatorname{char} K\neq 0$ und k=0 sonst. Dabei sei $\forall i\in\{0,1,\ldots k\}$

$$\begin{aligned} f_i: \{0,1,\ldots,n+1\} &\to K \\ i \cdot \operatorname{char} K &\mapsto 1 \\ j &\mapsto 0 \quad \forall j \in \{0,1,\ldots,n+1\} \text{ mit } j \neq i \cdot \operatorname{char} K \end{aligned}$$

$\mathbf{Z.Z.:}$ B ist linear unabhängig.

Beweis:

$$\sum_{i=0}^{k} \alpha_i f_i = 0_v$$

Für alle $j \in \{0, 1, \dots, n+1\}$ muss also der Funktionswert der Nullabbildung 0 sein

$$\sum_{i=0}^{k} \alpha_i f_i(j) = 0 \qquad \forall j \in \{0, 1, \dots, n+1\}$$

Insbesondere muss der Funktionswert von $j \cdot \operatorname{char} K \quad \forall j \in \{0, 1, \dots, k\} \ 0$ sein.

$$\sum_{i=0}^{k} \alpha_i f_i(j \cdot \operatorname{char} K) = 0 \qquad \forall j \in \{0, 1, \dots, k\}$$

 $f_i(j \cdot \operatorname{char} K) = 0 \forall i \neq j \text{ und } f_i(j \cdot \operatorname{char} K) = 1 \text{ für } i = j.$

$$\alpha_i f_i(j \cdot \operatorname{char} K) = 0$$
 $\forall j \in \{0, 1, \dots, k\}$
 $\alpha_j = 0$ $\forall j \in \{0, 1, \dots, k\}$

Z.Z.: B ist ein Erzeugendensystem von ker ∂ .

Beweis: Sei $g \in \ker \partial$. Dann ist

$$\begin{split} g: \{0,1,\ldots,n+1\} &\to K \\ 0 \cdot \operatorname{char} K &\mapsto l_0 \in K \\ 1 \cdot \operatorname{char} K &\mapsto l_1 \in K \\ & \vdots \\ k \cdot \operatorname{char} K &\mapsto l_k \in K \\ i &\mapsto 0 \quad \forall i \in \{0,1,\ldots,n+1\} \text{ mit } \operatorname{char} K \not [i] \end{split}$$

Daher ist $g = \sum_{i=0}^{k} l_i f_i$.

Aufgabe 2

(a) Da V_2 ein Untervektorraum von $V_1 + V_2$ ist, wird nach Skript S.38 2.3 Abschnitt 3) $(V_1 + V_2)/V_2$ zum Vektorraum.

Seien $v_1, v_1' \in V_1$. Dann ist

$$\varphi(v_1 + v_1') = (v_1 + v_1') + V_2 = v_1 + V_2 + v_1' + V_2 = \varphi(v_1) + \varphi(v_1')$$

Sei nun außerdem $a \in K$ und $v_1 \in V_1$. Die Operation, die V_1/V_2 zum Vektorraum über K macht, ist gerade $a \cdot (v_1 + V_2) = (a \cdot v_1) + V_2$. Daher ist

$$\varphi(a \cdot v_1) = (a \cdot v_1) + V_2 = a \cdot (v_1 + V_2) = a \cdot \varphi(v_1)$$

- (b) Sei $v \in (V_1 + V_2)/V_2$. Dann $\exists v_1 \in V_1$ und $\exists v_2 \in V_2$ mit $v = v_1 + v_2 + V_2$. Nun ist $\varphi(v_1) = v_1 + V_2$. Da $v_2 \in V_2$, können wir das schreiben als $v_1 + v_2 + V_2$. Es existiert also $\varphi(v_1) = v_1 + V_2 = v$. Daher ist φ surjektiv.
- (c) $\ker \varphi = \{v_1 \in V_1 : v_1 + V_2 = 0_v + V_2\}$. Gemäß 2.3 Abschnitt 3 folgt aus $v_1 + V_2 = 0_v + V_2$ sofort $v_1 0_v \in V_2 \iff v_1 \in V_2$. Daher ist $\ker \varphi = \{v_1 \in V_1 : v_1 \in V_2\} = V_1 \cap V_2$.
- (d) $\varphi:V_1\to V_1/(V_1+V_2)$ ist eine lineare Abbildung. Nach Satz 2.28 gibt es einen natürlichen Vektorraumisomorphismus

$$F: V_1/\ker\varphi \xrightarrow{\sim} \operatorname{im}\varphi$$

Da φ surjektiv ist, gilt im $\varphi = (V_1 + V_2)/V_2$. Außerdem ist ker $\varphi = V_1 \cap V_2$. Eingesetzt erhalten wir also

$$F: V_1/(V_1 \cap V_2) \xrightarrow{\sim} (V_1 + V_2)/V_2$$

Daher gilt $V_1/(V_1 \cap V_2) \cong (V_1 + V_2)/V_2$.

Aufgabe 3

Bemerkung: $(v_i)_{i \in I}$ muss ein endliches Erzeugendensystem sein, damit sämtliche Summen im Beweis wohldefiniert sind.

(a) • Z.Z.: $U+W\subset V$. Beweis: Sei $u\in U$ und $w\in W$. Dann existieren $\alpha_i\in K^{(J)}$ mit $i\in J$ und $\alpha_i\in K^{(I\setminus J)}$ mit $i\in I\setminus J$.

$$u+w=\sum_{i\in J}\alpha_iv_i+\sum_{i\in I\setminus J}\alpha_iv_i=\sum_{i\in I}\alpha_iv_i\in V$$

• Z.Z.: $V \subset U + W$. Beweis: Sei $v \in V$. Dann ist

$$v = \sum_{i \in I} \alpha_i v_i = \sum_{i \in I \setminus J} \alpha_i v_i + \sum_{i \in J} \alpha_i v_i$$

Es gilt $\sum_{i \in I \setminus J} \alpha_i v_i \in W$ und $\sum_{i \in J} \alpha_i v_i \in U$. Also ist v = u + w mit $u \in U$ und $w \in W$.

- (b) Z.Z.: $0 \in U$ Beweis: $\sum_{i \in J} \alpha_i v_i \in U$. Wähle nun $\alpha_i = 0 \forall i \in J$. Dann ist $\sum_{i \in J} \alpha_i v_i = \sum_{i \in J} 0 \cdot v_i = 0 \in U$.
 - Z.Z.: $0 \in W$ Beweis: $\sum_{i \in I \setminus J} \alpha_i v_i \in W$. Wähle nun $\alpha_i = 0 \forall i \in I \setminus J$. Dann ist $\sum_{i \in I \setminus J} \alpha_i v_i = \sum_{i \in I \setminus J} 0 \cdot v_i = 0 \in W$.
 - Sei $v \in V$ mit $v \in U \cap W$. Z.Z.: v = 0. Beweis: Dann ist $v = \sum_{i \in J} \alpha_i v_i$ und $v = \sum_{i \in I \setminus J} \alpha_i v_i$.

$$\sum_{i \in J} \alpha_i v_i - \sum_{i \in I \setminus J} \alpha_i v_i = 0$$

Wähle
$$\beta_i = \begin{cases} \alpha_i & |i \in J \\ -\alpha_i & |i \in I \setminus J \end{cases}$$
. Dann ist
$$\sum_{i \in J} \beta_i v_i - \sum_{i \in I \setminus J} -\beta_i v_i = 0$$

$$\implies \sum_{i \in I} \beta_i v_i = 0$$

Da $(v_i)_{i\in I}$ eine Basis ist, folgt daraus $\beta_i=0 \forall i\in I$. Nach unserer Definition von β_i folgt daraus $\alpha_i=0 \forall i\in I$.

(c) • **Z.Z.**: $(v_i + U)_{i \in I \setminus J}$ ist linear unabhängig.

$$\sum_{i \in I \setminus J} \alpha_i(v_i + U) = 0_{V/U}$$

$$\iff \sum_{i \in I \setminus J} (\alpha_i v_i + U) = 0_{V/U}$$

$$\iff \left(\sum_{i \in I \setminus J} \alpha_i v_i\right) + U = 0_{V/U}$$

Das neutrale Element von V/U ist einfach $0_v + U = U$

$$\iff \left(\sum_{i \in I \setminus J} \alpha_n v_n\right) + U = U$$

Diese Gleichung ist genau dann erfüllt, wenn $\left(\sum_{i\in I\setminus J}\alpha_iv_i\right)\in U$. Wir wissen: $\left(\sum_{i\in I\setminus J}\alpha_iv_i\right)\in W$. In Teilaufgabe (b) haben wir aber gezeigt, dass $W\cap U=\{0\}$. Daher muss $\sum_{i\in I\setminus J}\alpha_iv_i=0$ gelten. Da $(v_i)_{i\in I}$ eine Basis ist, folgt daraus sofort: $\alpha_i=0\quad \forall i\in I\setminus J$.

• **Z.Z.:** $(v_i + U)_{i \in I \setminus J}$ ist ein Erzeugendensystem. **Beweis:** Sei $v + U \in V/U$. Dann ist $v = \sum_{i \in I} \alpha_i v_i = \sum_{i \in I \setminus J} \alpha_i v_i + \sum_{i \in J} \alpha_i v_i$. Da $\sum_{i \in J} \alpha_i v_i \in U$ ist, lässt sich $v + U = \sum_{i \in I \setminus J} \alpha_i v_i + \sum_{i \in J} \alpha_i v_i + U$ umformen zu $\sum_{i \in I \setminus J} \alpha_i v_i + U$. Das ist äquivalent zu

$$v + U = \sum_{i \in I \setminus I} (\alpha_i v_i + U).$$

Mit der im Vektorraum V/U definierte Multiplikation können wir dies umformen zu

$$\sum_{i \in I \setminus J} \alpha_i(v_i + U).$$

v+U lässt sich also darstellen als Linearkombination von $(v_i+U)_{i\in I\setminus J}$ und daher ist $(v_i+U)_{i\in I\setminus J}$ ein Erzeugendensystem.

 $(v_i + U)_{i \in I \setminus J}$ ist also ein linear unabhängiges Erzeugendensystem und daher eine Basis.

Aufgabe 4

(a) **Z.Z.:** $\forall i \in I : \exists v_i^* \text{ mit}$

$$\begin{aligned} v_i^*: V &\to K \\ v_j &\mapsto 1 \text{ falls } j = i \\ v_j &\mapsto 0 \text{ sonst} \end{aligned}$$

Beweis: Wir zeigen, dass die obenstehende Abbildung wohldefiniert ist. Sei dafür $v \in V$. Mithilfe der Basis lässt sich v schreiben als $v = \sum_{i \in I} \alpha_i v_i$. Nun ist

$$v_i^* \left(\sum_{i \in I} \alpha_i v_i \right)^{v_i^*} \stackrel{\text{linear}}{=} \sum_{i \in I} \alpha_i v_i^* (v_j) = \alpha_i$$

Jedem Element aus v wird also genau ein Element aus K zugeordnet. Daher ist v_i^* wohldefiniert und eindeutig.

(b) **Z.Z.**: $(v_i)_{i \in I}$ ist linear unabhängig. **Beweis:**

$$\sum_{i \in I} \alpha_i v_i^* = 0_v$$

Für alle $j \in I$ muss also der Funktionswert der Nullabbildung 0 sein

$$\left(\sum_{i \in I} \alpha_i v_i^*\right)(v_j) = 0 \qquad \forall j \in I$$

$$\sum_{i \in I} \alpha_i v_i^*(v_j) = 0 \qquad \forall j \in I$$

 $v_i^*(v_i)$ ist 0 für alle j, außer für i=j.

$$\alpha_j v_j^*(v_j) = 0 \qquad \forall j \in I$$

 $v_i^*(v_j) = 1.$

$$\alpha_j = 0$$
 $\forall j \in I$

(c) **Z.Z.:** Ist I nicht endlich, so ist $(v_i^*)_{i \in I}$ keine Basis von V^* . **Beweis:** Annahme: I ist nicht endlich und $(v_i^*)_{i \in I}$ eine Basis. Wir betrachten nun die Abbildung

$$f: V \to K$$
$$v_i \mapsto 1 \qquad \forall i \in I$$

Diese Abbildung ist linear und geht von V nach K. Daher ist $f \in V^*$. Da $(v_i^*)_{i \in I}$ eine Basis ist, muss sich f als Linearkombination darstellen lassen:

$$f = \sum_{i \in I} \alpha_i v_i \qquad \qquad \alpha_i \in K^{(I)}$$

Damit die Summe wohldefiniert ist, muss für fast alle $i \in I$ $\alpha_i = 0$ sein. Sei $i_0 \in I$ mit $\alpha_{i_0} = 0$. Dann ist

$$f(v_{i_0}) = \sum_{i \in I} \alpha_i v_i^*(v_{i_0})$$

 $v_i(v_j)$ ist stets 0, außer für i=j.

$$f(v_{i_0}) = \alpha_{i_0} \cdot v_{i_0}^*(v_{i_0})$$

$$\alpha_{i_0} = 0$$

$$f(v_{i_0}) = 0$$

Das steht allerdings im Widerspruch zur Definition von f. Daher ist die Annahme ad absurdum geführt und $(v_i^*)_{i\in I}$ kann keine Basis sein, wenn I nicht endlich ist.