# CREDIT CARD FRAUD DETECTION



**Credit Card Fraud Detection** is a machine learning project focused on identifying fraudulent credit card transactions from a real-world financial dataset. It leverages supervised classification techniques and data balancing strategies to distinguish between legitimate and fraudulent activities effectively.

# PROBLEM STATEMENT AND REAL-WORLD RELEVANCE

Credit card fraud leads to billions in losses every year. The major challenge? **Class imbalance**—fraudulent cases are exceedingly rare. This project tackles that imbalance to accurately
detect fraudulent activity, helping prevent financial losses and improve customer trust.

# **© OBJECTIVE OF THE PROJECT**

- Analyze transactional data
- Address class imbalance
- Train and evaluate classification models
- Derive business insights

# **DATASET DESCRIPTION**



• <u>Kaggle - Credit Card Fraud Detection</u>

#### **DATA SUMMARY**

| Feature Name | Description                           |
|--------------|---------------------------------------|
| V1-V28       | PCA-transformed components            |
| Amount       | Transaction amount                    |
| Time         | Time since first transaction          |
| Class        | Target variable: 0 = Legit, 1 = Fraud |

#### **!** CLASS IMBALANCE

| Class Label | Description | Count   |
|-------------|-------------|---------|
| 0           | Legitimate  | 284,315 |
| 1           | Fraudulent  | 492     |

Only **0.17%** of transactions are fraudulent!

# **DATA PREPROCESSING**

#### MISSING VALUES

• No missing or null values detected.

#### **CLASS IMBALANCE HANDLING**

- **Undersampling** applied:
  - Random sample from Class = 0 to match fraud count.
  - o Created a **balanced** dataset for fair model training.

#### **SCALING / ENCODING**

- PCA components were pre-scaled.
- No categorical encoding required.

# **EXPLORATORY DATA ANALYSIS (EDA)**

#### INSIGHTS DISCOVERED

- Fraudulent transactions usually have lower amounts.
- Distribution was highly skewed toward legitimate transactions.
- Aggregated stats like mean and standard deviation compared for both classes.

#### **FEATURE ENGINEERING**

- No manual features added.
- All 28 PCA-transformed features retained.
- Amount included directly.

# **MODELING AND CLASSIFICATION**

# **ALGORITHM USED**

- **V** Logistic Regression
  - o Simple, interpretable, and effective for binary classification.

# **\* TRAINING DETAILS**

- Train/Test Split: 80/20
- Stratified sampling: Ensured class balance across splits
- Iterations: max\_iter = 5000 to ensure convergence
- Random State: Used for reproducibility

### **MODEL EVALUATION**

**III PERFORMANCE METRICS** 

| Metric    | Training Set | Test Set |
|-----------|--------------|----------|
| Accuracy  | ~95.5%       | ~93.9%   |
| Precision | High         | High     |
| Recall    | High         | High     |

<sup>₱</sup> Evaluation also included confusion matrix and predicted accuracy.

# **RESULTS AND BUSINESS INSIGHTS**

- The model detected fraud with high accuracy.
- Undersampling proved effective but may oversimplify real-world imbalance.
- Logistic Regression offers interpretability, ideal for finance-related decisions.

# LIMITATIONS AND HOW THEY WERE HANDLED

| Limitation               | Handling Strategy                 |
|--------------------------|-----------------------------------|
| Severe class imbalance   | Undersampling of majority class   |
| Lack of explainability   | Chose Logistic Regression         |
| No domain-based features | Preserved anonymized PCA features |

# **TOOLS, LIBRARIES, AND FRAMEWORKS USED**

| Category              | Tools Used                        |
|-----------------------|-----------------------------------|
| ■ Programming         | Python                            |
| ■ Notebook            | Jupyter Notebook                  |
| <b>%</b> ML Libraries | scikit-learn (LogisticRegression) |
| 📊 Data Handling       | pandas, numpy                     |
| ✓ Evaluation          | accuracy_score, confusion_matrix  |

### **CONCLUSION AND SUMMARY**

This project establishes a solid baseline for detecting credit card fraud using Logistic Regression. It navigates class imbalance and achieves high accuracy through simple yet effective preprocessing. The framework is easily extensible for more complex use cases.

### **ABOUT ME**

# Saran S

**Email:** saranselvaraj2401sgmail.com

**Github:** github.com/saran2007s

linkedin: linkedin.com/in/saranselvaraj2401