Practical example

Importing the relevant libraries

Loading the raw data

Out[3]:

	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	Year	Model
0	BMW	4200.0	sedan	277	2.0	Petrol	yes	1991	320
1	Mercedes- Benz	7900.0	van	427	2.9	Diesel	yes	1999	Sprinter 212
2	Mercedes- Benz	13300.0	sedan	358	5.0	Gas	yes	2003	S 500
3	Audi	23000.0	crossover	240	4.2	Petrol	yes	2007	Q7
4	Toyota	18300.0	crossover	120	2.0	Petrol	yes	2011	Rav 4

Preprocessing

Exploring the descriptive statistics of the variables

Out[4]:

	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	
count	4345	4173.000000	4345	4345.000000	4195.000000	4345	4345	4345.00
unique	7	NaN	6	NaN	NaN	4	2	
top	Volkswagen	NaN	sedan	NaN	NaN	Diesel	yes	
freq	936	NaN	1649	NaN	NaN	2019	3947	
mean	NaN	19418.746935	NaN	161.237284	2.790734	NaN	NaN	2006.55
std	NaN	25584.242620	NaN	105.705797	5.066437	NaN	NaN	6.71
min	NaN	600.000000	NaN	0.000000	0.600000	NaN	NaN	1969.00
25%	NaN	6999.000000	NaN	86.000000	1.800000	NaN	NaN	2003.00
50%	NaN	11500.000000	NaN	155.000000	2.200000	NaN	NaN	2008.00
75%	NaN	21700.000000	NaN	230.000000	3.000000	NaN	NaN	2012.00
max	NaN	300000.000000	NaN	980.000000	99.990000	NaN	NaN	2016.00
<								>

Determining the variables of interest

```
In [5]: 1 # For these several lessons, we will create the regression without 'Model'
2 # Certainly, when you work on the problem on your own, you could create a re
3 data = raw_data.drop(['Model'],axis=1)
4
5 # Let's check the descriptives without 'Model'
6 data.describe(include='all')
```

Out[5]:

	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	
count	4345	4173.000000	4345	4345.000000	4195.000000	4345	4345	4345.00
unique	7	NaN	6	NaN	NaN	4	2	
top	Volkswagen	NaN	sedan	NaN	NaN	Diesel	yes	
freq	936	NaN	1649	NaN	NaN	2019	3947	
mean	NaN	19418.746935	NaN	161.237284	2.790734	NaN	NaN	2006.55
std	NaN	25584.242620	NaN	105.705797	5.066437	NaN	NaN	6.71
min	NaN	600.000000	NaN	0.000000	0.600000	NaN	NaN	1969.00
25%	NaN	6999.000000	NaN	86.000000	1.800000	NaN	NaN	2003.00
50%	NaN	11500.000000	NaN	155.000000	2.200000	NaN	NaN	2008.00
75%	NaN	21700.000000	NaN	230.000000	3.000000	NaN	NaN	2012.00
max	NaN	300000.000000	NaN	980.000000	99.990000	NaN	NaN	2016.00
<								>

Dealing with missing values

```
In [6]:
          1 # data.isnull() # shows a df with the information whether a data point is nu
          2 # Since True = the data point is missing, while False = the data point is no
          3 # This will give us the total number of missing values feature-wise
          4 data.isnull().sum()
Out[6]: Brand
                          0
        Price
                        172
        Body
        Mileage
                          0
        EngineV
                        150
        Engine Type
                          0
        Registration
                          0
        Year
                          0
        dtype: int64
```

```
In [8]:
```

- 1 # Let's check the descriptives without the missing values
- 2 data no mv.describe(include='all')

Out[8]:

	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	
count	4025	4025.000000	4025	4025.000000	4025.000000	4025	4025	4025.00
unique	7	NaN	6	NaN	NaN	4	2	
top	Volkswagen	NaN	sedan	NaN	NaN	Diesel	yes	
freq	880	NaN	1534	NaN	NaN	1861	3654	
mean	NaN	19552.308065	NaN	163.572174	2.764586	NaN	NaN	2006.37
std	NaN	25815.734988	NaN	103.394703	4.935941	NaN	NaN	6.69
min	NaN	600.000000	NaN	0.000000	0.600000	NaN	NaN	1969.00
25%	NaN	6999.000000	NaN	90.000000	1.800000	NaN	NaN	2003.00
50%	NaN	11500.000000	NaN	158.000000	2.200000	NaN	NaN	2007.00
75%	NaN	21900.000000	NaN	230.000000	3.000000	NaN	NaN	2012.00
max	NaN	300000.000000	NaN	980.000000	99.990000	NaN	NaN	2016.00
<								>

Exploring the PDFs

In [9]:

- $oldsymbol{1}$ \mid # A great step in the data exploration is to display the probability distrib
- 2 # The PDF will show us how that variable is distributed
- 3 # This makes it very easy to spot anomalies, such as outliers
- 4 # The PDF is often the basis on which we decide whether we want to transform
- 5 sns.distplot(data_no_mv['Price'])

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x2b897ab4940>

Dealing with outliers

In [10]:

1 # Obviously there are some outliers present 2 3 # Without diving too deep into the topic, we can deal with the problem easil # Here, the outliers are situated around the higher prices (right side of th 4 5 # Logic should also be applied # This is a dataset about used cars, therefore one can imagine how \$300,000 7 8 # Outliers are a great issue for OLS, thus we must deal with them in some wa 9 # It may be a useful exercise to try training a model without removing the o 10 11 # Let's declare a variable that will be equal to the 99th percentile of the q = data_no_mv['Price'].quantile(0.99) 12 # Then we can create a new df, with the condition that all prices must be be data 1 = data no mv[data no mv['Price']<q]</pre> 14 # In this way we have essentially removed the top 1% of the data about 'Pric 15 data_1.describe(include='all')

Out[10]:

	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	
count	3984	3984.000000	3984	3984.000000	3984.000000	3984	3984	3984.00
unique	7	NaN	6	NaN	NaN	4	2	
top	Volkswagen	NaN	sedan	NaN	NaN	Diesel	yes	
freq	880	NaN	1528	NaN	NaN	1853	3613	
mean	NaN	17837.117460	NaN	165.116466	2.743770	NaN	NaN	2006.29
std	NaN	18976.268315	NaN	102.766126	4.956057	NaN	NaN	6.67
min	NaN	600.000000	NaN	0.000000	0.600000	NaN	NaN	1969.00
25%	NaN	6980.000000	NaN	93.000000	1.800000	NaN	NaN	2002.75
50%	NaN	11400.000000	NaN	160.000000	2.200000	NaN	NaN	2007.00
75%	NaN	21000.000000	NaN	230.000000	3.000000	NaN	NaN	2011.00
max	NaN	129222.000000	NaN	980.000000	99.990000	NaN	NaN	2016.00
<								>

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x2b897eacfd0>

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x2b897e36e80>

Out[14]: <matplotlib.axes. subplots.AxesSubplot at 0x2b8980359b0>

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x2b897f681d0>

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x2b8981a0b00>

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x2b89825e6a0>


```
In [20]: 1 # Here's the new result
2 sns.distplot(data_4['Year'])
```

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x2b898296d30>


```
In [22]: 1 # Let's see what's left
2 data_cleaned.describe(include='all')
```

Out[22]:

	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	
count	3867	3867.000000	3867	3867.000000	3867.000000	3867	3867	3867.00
unique	7	NaN	6	NaN	NaN	4	2	
top	Volkswagen	NaN	sedan	NaN	NaN	Diesel	yes	
freq	848	NaN	1467	NaN	NaN	1807	3505	
mean	NaN	18194.455679	NaN	160.542539	2.450440	NaN	NaN	2006.70
std	NaN	19085.855165	NaN	95.633291	0.949366	NaN	NaN	6.10
min	NaN	800.000000	NaN	0.000000	0.600000	NaN	NaN	1988.00
25%	NaN	7200.000000	NaN	91.000000	1.800000	NaN	NaN	2003.00
50%	NaN	11700.000000	NaN	157.000000	2.200000	NaN	NaN	2008.00
75%	NaN	21700.000000	NaN	225.000000	3.000000	NaN	NaN	2012.00
max	NaN	129222.000000	NaN	435.000000	6.300000	NaN	NaN	2016.00
<								>

Checking the OLS assumptions

```
In [23]:
              # Here we decided to use some matplotlib code, without explaining it
              # You can simply use plt.scatter() for each of them (with your current knowl
           2
              # But since Price is the 'y' axis of all the plots, it made sense to plot th
           3
              f, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True, figsize =(15,3)) #share
           5
              ax1.scatter(data_cleaned['Year'],data_cleaned['Price'])
              ax1.set title('Price and Year')
              ax2.scatter(data_cleaned['EngineV'],data_cleaned['Price'])
           7
              ax2.set_title('Price and EngineV')
           8
           9
              ax3.scatter(data cleaned['Mileage'],data cleaned['Price'])
              ax3.set_title('Price and Mileage')
          10
          11
          12
          13
              plt.show()
```



```
In [24]: 1 # From the subplots and the PDF of price, we can easily determine that 'Pric
2 # A good transformation in that case is a log transformation
3 sns.distplot(data_cleaned['Price'])
```

Out[24]: <matplotlib.axes. subplots.AxesSubplot at 0x2b8994ccdd8>

Relaxing the assumptions

```
# Let's transform 'Price' with a log transformation
In [25]:
              log_price = np.log(data_cleaned['Price'])
           2
           3
              # Then we add it to our data frame
           4
              data_cleaned['log_price'] = log_price
           5
              data cleaned
```

Out[25]:

										- 10
	Brand	Price	Body	Mileage	EngineV	Engine Type	Registration	Year	log_price	
0	BMW	4200.0	sedan	277	2.00	Petrol	yes	1991	8.342840	
1	Mercedes- Benz	7900.0	van	427	2.90	Diesel	yes	1999	8.974618	
2	Mercedes- Benz	13300.0	sedan	358	5.00	Gas	yes	2003	9.495519	
3	Audi	23000.0	crossover	240	4.20	Petrol	yes	2007	10.043249	
4	Toyota	18300.0	crossover	120	2.00	Petrol	yes	2011	9.814656	
5	Audi	14200.0	vagon	200	2.70	Diesel	yes	2006	9.560997	
6	Renault	10799.0	vagon	193	1.50	Diesel	yes	2012	9.287209	
7	Volkswagen	1400.0	other	212	1.80	Gas	no	1999	7.244228	
8	Renault	11950.0	vagon	177	1.50	Diesel	yes	2011	9.388487	,
_									>	Ť

In [26]:

```
# Let's check the three scatters once again
   f, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=True, figsize =(15,3))
 2
   ax1.scatter(data_cleaned['Year'],data_cleaned['log_price'])
 3
   ax1.set_title('Log Price and Year')
 5
   ax2.scatter(data cleaned['EngineV'],data cleaned['log price'])
   ax2.set title('Log Price and EngineV')
    ax3.scatter(data_cleaned['Mileage'],data_cleaned['log_price'])
 7
 8
    ax3.set title('Log Price and Mileage')
 9
10
11
   plt.show()
12
   # The relationships show a clear linear relationship
13
   # This is some good linear regression material
14
15
   # Alternatively we could have transformed each of the independent variables
16
```


Multicollinearity

```
In [28]:
              # Let's quickly see the columns of our data frame
              data_cleaned.columns.values
Out[28]: array(['Brand', 'Body', 'Mileage', 'EngineV', 'Engine Type',
                 'Registration', 'Year', 'log_price'], dtype=object)
In [29]:
              # sklearn does not have a built-in way to check for multicollinearity
              # one of the main reasons is that this is an issue well covered in statistic
           3
              # surely it is an issue nonetheless, thus we will try to deal with it
           5
              # Here's the relevant module
              # full documentation: http://www.statsmodels.org/dev/ modules/statsmodels/st
              from statsmodels.stats.outliers influence import variance inflation factor
           7
           8
           9
              # To make this as easy as possible to use, we declare a variable where we pu
          10
              # all features where we want to check for multicollinearity
              # since our categorical data is not yet preprocessed, we will only take the
              variables = data cleaned[['Mileage', 'Year', 'EngineV']]
          12
          13
          14
              # we create a new data frame which will include all the VIFs
          15
              # note that each variable has its own variance inflation factor as this meas
             vif = pd.DataFrame()
          16
          17
             # here we make use of the variance inflation factor, which will basically ou
          18
              vif["VIF"] = [variance inflation factor(variables.values, i) for i in range(
          19
          20 | # Finally, I like to include names so it is easier to explore the result
             vif["Features"] = variables.columns
In [30]:
              # Let's explore the result
           1
              vif
           2
Out[30]:
                  VIF Features
             3.791584
                       Mileage
            10.354854
                         Year
             7.662068
                      EngineV
In [31]:
           1
             # Since Year has the highest VIF, I will remove it from the model
           2 # This will drive the VIF of other variables down!!!
           3 | # So even if EngineV seems with a high VIF, too, once 'Year' is gone that wi
              data_no_multicollinearity = data_cleaned.drop(['Year'],axis=1)
```

Create dummy variables

```
In [32]: 1 # To include the categorical data in the regression, let's create dummies
2 # There is a very convenient method called: 'get_dummies' which does that se
3 # It is extremely important that we drop one of the dummies, alternatively w
4 data_with_dummies = pd.get_dummies(data_no_multicollinearity, drop_first=Tru
```

Out[33]:

	Mileage	EngineV	log_price	Brand_BMW	Brand_Mercedes- Benz	Brand_Mitsubishi	Brand_Renault
0	277	2.0	8.342840	1	0	0	0
1	427	2.9	8.974618	0	1	0	0
2	358	5.0	9.495519	0	1	0	0
3	240	4.2	10.043249	0	0	0	0
4	120	2.0	9.814656	0	0	0	0
<							>

Rearrange a bit

```
1 # To make our data frame more organized, we prefer to place the dependent va
In [34]:
           2 # Since each problem is different, that must be done manually
           3 | # We can display all possible features and then choose the desired order
           4 data with dummies.columns.values
Out[34]: array(['Mileage', 'EngineV', 'log_price', 'Brand_BMW',
                 'Brand_Mercedes-Benz', 'Brand_Mitsubishi', 'Brand Renault',
                 'Brand Toyota', 'Brand Volkswagen', 'Body hatch', 'Body other',
                 'Body_sedan', 'Body_vagon', 'Body_van', 'Engine Type_Gas',
                 'Engine Type_Other', 'Engine Type_Petrol', 'Registration_yes'],
               dtype=object)
In [35]:
              # To make the code a bit more parametrized, let's declare a new variable tha
              # If you want a different order, just specify it here
              # Conventionally, the most intuitive order is: dependent variable, indepeden
              cols = ['log price', 'Mileage', 'EngineV', 'Brand BMW',
                     'Brand_Mercedes-Benz', 'Brand_Mitsubishi', 'Brand_Renault',
           5
                     'Brand_Toyota', 'Brand_Volkswagen', 'Body_hatch', 'Body_other',
           6
                     'Body sedan', 'Body vagon', 'Body van', 'Engine Type Gas',
           7
                     'Engine Type_Other', 'Engine Type_Petrol', 'Registration_yes']
```

Out[36]:

	log_price	Mileage	EngineV	Brand_BMW	Brand_Mercedes- Benz	Brand_Mitsubishi	Brand_Renault
0	8.342840	277	2.0	1	0	0	0
1	8.974618	427	2.9	0	1	0	0
2	9.495519	358	5.0	0	1	0	0
3	10.043249	240	4.2	0	0	0	0
4	9.814656	120	2.0	0	0	0	0
<							>

Linear regression model

Declare the inputs and the targets

Scale the data

Train Test Split

Create the regression

Out[44]: Text(0.5,1,'Residuals PDF')

Out[45]: 0.744996578792662

Finding the weights and bias

Out[46]: 9.415239458021299

```
In [47]:
            1
              # Obtain the weights (coefficients) of the regression
            2
               reg.coef
            3
              # Note that they are barely interpretable if at all
Out[47]: array([-0.44871341,
                                0.20903483, 0.0142496, 0.01288174, -0.14055166,
                 -0.17990912, -0.06054988, -0.08992433, -0.1454692 , -0.10144383,
                 -0.20062984, -0.12988747, -0.16859669, -0.12149035, -0.03336798,
                 -0.14690868, 0.32047333])
In [48]:
               # Create a regression summary where we can compare them with one-another
              reg summary = pd.DataFrame(inputs.columns.values, columns=['Features'])
              reg summary['Weights'] = reg.coef
              reg summary
Out[48]:
                         Features
                                  Weights
            0
                          Mileage
                                 -0.448713
            1
                         EngineV
                                  0.209035
            2
                      Brand BMW
                                  0.014250
              Brand Mercedes-Benz
                                  0.012882
            4
                   Brand Mitsubishi -0.140552
            5
                    Brand_Renault -0.179909
            6
                     Brand Toyota -0.060550
            7
                 Brand Volkswagen -0.089924
            8
                       Body hatch -0.145469
            9
                       Body other
                                 -0.101444
           10
                      Body sedan -0.200630
           11
                      Body vagon -0.129887
                        Body van -0.168597
           12
           13
                  Engine Type Gas -0.121490
           14
                 Engine Type Other -0.033368
                 Engine Type Petrol -0.146909
           15
                   Registration_yes
           16
                                 0.320473
In [49]:
               # Check the different categories in the 'Brand' variable
            2
               data cleaned['Brand'].unique()
              # In this way we can see which 'Brand' is actually the benchmark
Out[49]: array(['BMW', 'Mercedes-Benz', 'Audi', 'Toyota', 'Renault', 'Volkswagen',
```

Testing

'Mitsubishi'], dtype=object)

```
In [50]: 1 # Once we have trained and fine-tuned our model, we can proceed to testing i
2 # Testing is done on a dataset that the algorithm has never seen
3 # Luckily we have prepared such a dataset
4 # Our test inputs are 'x_test', while the outputs: 'y_test'
5 # We SHOULD NOT TRAIN THE MODEL ON THEM, we just feed them and find the pred
6 # If the predictions are far off, we will know that our model overfitted
7 y_hat_test = reg.predict(x_test)
```


Out[52]:

Prediction

- **1** 10685.501696
- **1** 3499.255242
- **2** 7553.285218
- **3** 7463.963017
- 4 11353.490075

```
In [53]:
              # We can also include the test targets in that data frame (so we can manuall
              df pf['Target'] = np.exp(y test)
           3
              df pf
           4
              # Note that we have a lot of missing values
           5
              # There is no reason to have ANY missing values, though
              # This suggests that something is wrong with the data frame / indexing
Out[53]:
                 Prediction
                            Target
            0 10685.501696
                              NaN
                3499.255242
                            7900.0
               7553.285218
                              NaN
               7463.963017
                              NaN
              11353.490075
                              NaN
            5 21289.799394 14200.0
            6 20159.189144
                              NaN
            7 20349.617702
                              NaN
            8 11581.537864 11950.0
            9 33614.617349
                              NaN
               7241.068243
                              NaN
           10
           11
                5175.769541 10500.0
In [54]:
              # After displaying y test, we find what the issue is
              # The old indexes are preserved (recall earlier in that code we made a note
           2
              # The code was: data_cleaned = data_4.reset_index(drop=True)
           3
              # Therefore, to get a proper result, we must reset the index and drop the ol
           5
              y_test = y_test.reset_index(drop=True)
           7
              # Check the result
              y_test.head()
Out[54]: 0
               7.740664
               7.937375
         1
               7.824046
         2
         3
               8.764053
               9.121509
```

Name: log_price, dtype: float64

Out[55]:		Prediction	Target
•	0	10685.501696	2300.0
	1	3499.255242	2800.0
	2	7553.285218	2500.0
	3	7463.963017	6400.0
	4	11353.490075	9150.0
	5	21289.799394	20000.0
	6	20159.189144	38888.0
	7	20349.617702	16999.0
	8	11581.537864	12500.0
	9	33614.617349	41000.0
	10	7241.068243	12800.0
	11	5175.769541	5000.0

In [57]: 1 # Finally, it makes sense to see how far off we are from the result percenta
2 # Here, we take the absolute difference in %, so we can easily order the dat
3 df_pf['Difference%'] = np.absolute(df_pf['Residual']/df_pf['Target']*100)
4 df_pf

Out[57]:

	Prediction	Target	Residual	Difference%
0	10685.501696	2300.0	-8385.501696	364.587030
1	3499.255242	2800.0	-699.255242	24.973402
2	7553.285218	2500.0	-5053.285218	202.131409
3	7463.963017	6400.0	-1063.963017	16.624422
4	11353.490075	9150.0	-2203.490075	24.081859
5	21289.799394	20000.0	-1289.799394	6.448997
6	20159.189144	38888.0	18728.810856	48.160900
7	20349.617702	16999.0	-3350.617702	19.710675
8	11581.537864	12500.0	918.462136	7.347697
9	33614.617349	41000.0	7385.382651	18.013128
10	7241.068243	12800.0	5558.931757	43.429154
11	5175.769541	5000.0	-175.769541	3.515391

In [58]:

- 1 # Exploring the descriptives here gives us additional insights
- 2 df_pf.describe()

Out[58]:

	Prediction	Target	Residual	Difference%
count	774.000000	774.000000	774.000000	774.000000
mean	15946.760167	18165.817106	2219.056939	36.256693
std	13133.197604	19967.858908	10871.218143	55.066507
min	1320.562768	1200.000000	-29456.498331	0.062794
25%	7413.644234	6900.000000	-2044.191251	12.108022
50%	11568.168859	11600.000000	142.518577	23.467728
75%	20162.408805	20500.000000	3147.343497	39.563570
max	77403.055224	126000.000000	85106.162329	512.688080

```
In [59]: 1 # Sometimes it is useful to check these outputs manually
2 # To see all rows, we use the relevant pandas syntax
3 pd.options.display.max_rows = 999
4 # Moreover, to make the dataset clear, we can display the result with only 2
5 pd.set_option('display.float_format', lambda x: '%.2f' % x)
6 # Finally, we sort by difference in % and manually check the model
7 df_pf.sort_values(by=['Difference%'])
```

Out[59]:		Prediction	Target	Residual	Difference%
	698	30480.85	30500.00	19.15	0.06
	742	16960.31	16999.00	38.69	0.23
	60	12469.21	12500.00	30.79	0.25
	110	25614.14	25500.00	-114.14	0.45
	367	42703.68	42500.00	-203.68	0.48
	369	3084.69	3100.00	15.31	0.49
	769	29651.73	29500.00	-151.73	0.51
	272	9749.53	9800.00	50.47	0.52
	714	23118.07	22999.00	-119.07	0.52

8800.00

3500.00

21335.00

65.42

26.21

160.90

0.74

0.75

0.75

630

380

648

8734.58

3473.79

21174.10