Register Map for the PCI-DIO24, PCI-DIO24H, and PCI-DIO24/LP

Document Revision 1.1, September, 2003 © Copyright 2003, Measurement Computing Corporation

Register Description

This document describes the register map for the PCI-DIO24, PCI-DIO24H and PCI-DIO24/LP digital I/O boards. Only experienced programmers should attempt register-level programming.

Overview

The system dynamically assigns base addresses of PCI boards. You can determine these addresses by examining the Bus Interface chip used by the board. The PCI-DIO24 and PCI-DIO24H boards use the PLX PCI 9052 PCI Bus Interface chip, and the PCI-DIO24/LP uses the PLX PCI 9030 PCI Bus Interface chip.

- For more information on the PLX PCI 9030, refer to the *PCI 9030 Data Book* (May, 2002). This document is available from PLX Technology[®] at www.plxtech.com/products/9030/default.htm.
- For more information on the PLX PCI 9052, refer to the *PCI 9052 Data Book* (September, 2001). This document is available from PLX Technology[®] at www.plxtech.com/products/9052/default.htm.

As an alternative to register level programming, the PCI-DIO24 series is fully supported by the optional Universal LibraryTM software, as well as most high-level data acquisition and control application packages (e.g. SoftWIRE[®], HP VeeTM or Labtech NotebookTM).

Table 1 lists the I/O register map of the PCI-DIO24, PCI-DIO24H & PCI-DIO24/LP boards.

Table 1. Board Registers

REGISTER	READ FUNCTION	WRITE FUNCTION
BADR1 + 4Ch	Interrupt Status	Interrupt Control
BADR2 + 0	Port A Data	Port A Output Data
BADR2 + 1	Port B Data	Port B Output Data
BADR2 + 2	Port C Data	Port C Output Data
BADR2 + 3	No readback	Configuration Register

Interrupt status and control

Interrupt Status & Control

BADR1 + 4Ch

READ/WRITE

	3	1:24			23:16				
X					X				
			1	ı	T				
15	14	13	12	11	10	9	8		
X	X	X	X	0	INTCLR	0	INTSEL		
7	6	5	4	3	2	1	0		
0	PCIINT	0	0	0	INT	INTPOL	INTE		

This register is 32-bits long. Don't change the value of the bits set to 0 (bit 3, 4, 5, 7, 9 and 11). X indicates "don't care", meaning that it does not matter what data is written to these bits. The remaining register bits have specific control functions. If you write to the Interrupt Status & Control register, be sure to read the current status. Only change the bits you want, and then write the new status word.

INTE Interrupt Enable:

0 = disabled

1 = enabled (default)

INTPOL Interrupt Polarity:

0 = active low (default)

1 = active high

INT Interrupt Status:

0 =interrupt is not active

1 = interrupt is active

PCIINT PCI Interrupt Enable:

0 = disabled

1 = enabled (default)

INTSEL Interrupt Edge/Level Select:

0 = level-sensitive (default)

1 = edge-sensitive

Note that this bit only has an effect when in high-polarity mode (INTPOL=1). The interrupt is always

level-sensitive when the INTPOL bit is set to low-polarity (INTPOL=0).

INTCLR Clears the INT selected interrupt status:

0 = no effect

1 =clear the INT interrupt

Digital data I/O registers

Port A data

BADR2 + 0

READ/WRITE

7	6	5	4	3	2	1	0
A7	A6	A5	A4	A3	A2	A1	A0

Port B data

BADR2 + 1

READ/WRITE

	-						
7	6	5	4	3	2	1	0
В7	В6	B5	B4	В3	B2	B1	В0

You can program channels A & B to be input or output. Each channel is written to and read from in bytes, although for control and monitoring purposes, individual bits are used.

Port C data

BADR2 + 2

READ/WRITE

7	6	5	4	3	2	1	0
C7	C6	C5	C4	C3	C2	C1	C0
CH3	CH2	CH1	СНО	CL3	CL2	CL1	CL0

You can use port C as one eight-bit port for either input or output, or you can split it into two, four-bit ports which can be independently input or output. The notation for the upper four-bit port is CH3-CH0. The notation for the lower four-bit port is CL3-CL0.

Although you can split port C, every read and write to this port carries eight bits of data. To remove unwanted information, perform an AND on data reads, and perform an OR operation on data writes with the current status of the other nibble.

Input ports

In 82C55 mode 0 configuration, ports configured for input read the state of the input lines at the moment the read is executed; transitions are not latched.

Output ports

In 82C55 mode 0 configuration, ports configured for output hold the output data written to them. This output byte can be read back by reading the port.

Configuration register

Digital I/O configuration

BADR2 + 3

WRITE Only

7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0

You can program the 82C55 chip to operate in input/output mode (mode 0), Strobed Input/Output mode (mode 1), or bidirectional bus mode (mode 2). For more information on 82C55 modes 1 and 2, refer to the 82C55 data sheet on our web site at www.mccdaq.com/PDFmanuals/82C55A.pdf.

Mode 0 configuration codes for the PCI-DIO24 and PCI-DIO24/LP are listed in <u>Table 2</u>. Mode 0 configuration codes for the PCI-DIO24H are listed in <u>Table 3</u>.

Note: Since the 82C55 chip is emulated, the PCI-DIO24H only supports mode 0.

When the PC is powered-up or RESET, all 24 lines are reset to Input mode. No further programming is needed to use the 24 lines as TTL inputs. Each port A, B, CH and CL can be independently configured to be inputs or outputs.

Table 2. I/O Configuration Codes for PCI-DIO24 and PC-DIO24/LP - Mode 0

Α	СН	В	CL	D4	D3	D1	D0	HEX	DEC
OUT	OUT	OUT	OUT	0	0	0	0	80	128
OUT	OUT	OUT	IN	0	0	0	1	81	129
OUT	OUT	IN	OUT	0	0	1	0	82	130
OUT	OUT	IN	IN	0	0	1	1	83	131
OUT	IN	OUT	OUT	0	1	0	0	88	136
OUT	IN	OUT	IN	0	1	0	1	89	137
OUT	IN	IN	OUT	0	1	1	0	8A	138
OUT	IN	IN	IN	0	1	1	1	8B	139
IN	OUT	OUT	OUT	1	0	0	0	90	144
IN	OUT	OUT	IN	1	0	0	1	91	145
IN	OUT	IN	OUT	1	0	1	0	92	146
IN	OUT	IN	IN	1	0	1	1	93	147
IN	IN	OUT	OUT	1	1	0	0	98	152
IN	IN	OUT	IN	1	1	0	1	99	153
IN	IN	IN	OUT	1	1	1	0	9A	154
IN	IN	IN	IN	1	1	1	1	9B	155

Note: For mode 0, D7 is always 1; D6, D5 and D2 are always 0.

Table 3. I/O Configuration Codes for PCI-DIO24H - Mode 0 only

Α	СН	В	CL	D4	D3	D1	D0	HEX	DEC
OUT	OUT	OUT	OUT	0	0	0	0	0	0
OUT	OUT	OUT	IN	0	0	0	1	1	1
OUT	OUT	IN	OUT	0	0	1	0	2	2
OUT	OUT	IN	IN	0	0	1	1	3	3
OUT	IN	OUT	OUT	0	1	0	0	8	8
OUT	IN	OUT	IN	0	1	0	1	9	9
OUT	IN	IN	OUT	0	1	1	0	A	10
OUT	IN	IN	IN	0	1	1	1	В	11
IN	OUT	OUT	OUT	1	0	0	0	10	16
IN	OUT	OUT	IN	1	0	0	1	11	17
IN	OUT	IN	OUT	1	0	1	0	12	18
IN	OUT	IN	IN	1	0	1	1	13	19
IN	IN	OUT	OUT	1	1	0	0	18	24
IN	IN	OUT	IN	1	1	0	1	19	25
IN	IN	IN	OUT	1	1	1	0	1A	26
IN	IN	IN	IN	1	1	1	1	1B	27

Note: Writes to bits D7, D6, D5 and D2 are "don't care," meaning that it does not matter what data is written to these bits.

Measurement Computing Corporation 16 Commerce Boulevard,

Middleboro, Massachusetts 02346

(508) 946-5100

Fax: (508) 946-9500

E-mail: info@mccdaq.com www.mccdaq.com