Tres ideas en torno a la reproducibilidad de los procesamientos geodésicos.

Javier José Clavijo

jclavijo@fi.uba.ar https://github.com/jjclavijo/3ideas2022sirgas

Universidad de Buenos Aires - Facultad de Ingeniería

Tres ideas en torno a la reproducibilidad de los procesamientos geodésicos.

Motivación (origen)

- Posiciones, en un MR, \longleftrightarrow $\underset{x}{\operatorname{arg\,max}}P(X|\mathsf{datos})^{-1}$
- lacksquare Si resuelvo X por Pedazos (ej: órbitas $o X_0)$
- - ightarrow condicionar a los parámetros fijos es igual a la marginalizar.
 - $ightharpoonup X_1$ y X_0 son condicionalmente independientes a los datos.
 - No pasa si hay datos compartidos.
- \mapsto Necesito saber si $P(X_0, \mathsf{datos}) = P(X_0)P(\mathsf{datos}) \forall \mathsf{modelos}$
- Y necesito sistematizarlo.

¹ Marcos de referencia geodésicos: un enfoque Bayesiano; JJ Clavijo, JF Martínez, en «Seminario de vinculación y transferencia: año 3»ISBN 978-987-88-4967-6 https://cms.fi.uba.ar/uploads/Libro_SE_Vy_T_2021_VERSION_FINAL_add8815fd9.pdf

Al analizar trabajos publicados aparece

- Software específico. Nomenclatura especial.
- Múltiples Formas de leer y estructurar datos
- Términos y Métodos "heredados"

Puede dificultarse

- Aprender por asociación
- Reproducir experimentos
- ► Validar Resultados

Premisas

- ▶ Formatos estándar de Intercambio ∈ Geodesia
- Flujos de datos estandarizados ∉ Geodesia
- → ∃ W3C PROV Standard
- ▶ ∃ Metodos Bayesianos Redes Bayesianas, etc
- → ∃ Métodos de validación, Herramientas genéricas de procesamiento y transmisión de datos

Observando que

- Datos de Observacion → Tensor Ralo o Columnar Format (índice: t).
- Modelos paramétricos → Conjuntos de parámetros → Tensor Denso o Columnar Format (índice: t).
- Resultados $\mapsto \mu, \Sigma$ de una \mathcal{N} (hoy).

Lógica

Podemos plantear

- Segmentación en función del tiempo (con Herramientas Genéricas)
- Validación por bloques (Hash)
- Flujos de trabajo "funcionales" (PROV, Reproducibilidad)
- ▶ Identificación y descripción de paramétros y dependencia. (PROV, Redes Bayes)

Datos de entrada

- 1. $\uparrow \uparrow$ Datos (observaciones +)
- 2. ↑↑ Procesos
- 3. ↑↑ Modelos
 - 3.1 ↑↑ Parámetros

Provi

 $\begin{array}{c} \mathsf{Datos} \to \\ \mathsf{Optimizaci\acute{o}n} \to \\ \mathsf{Ajustados.} \end{array}$

Algoritmos de inferencia

Los métodos que usamos para hallar "resultados", que son valores para los parámetros de un modelo, a partir de "datos".

- 1. Tienen Hiperparámetros.
- 2. Pueden variar entre implementaciones (por tener variantes).
- 3. Pueden tener "imprecisiones" que se deciden en cada implementación.

Distribución de los datos

- 1. No es homogénea
- 2. Difícilmente permite validar con conjuntos independientes
- 3. Puede haber correlaciones ocultas a través de parámetros "dados por hecho".

Tres ideas introduciendo

los conceptos de

- 1. Funcionalidad
- 2. Replicabilidad.
- 3. Reproducibilidad.
- 4. Robustez.
- 5. Validación.
- 6. Rastreo de origen. (data provenance)

Idea 1 Aplicar el estándar PORV-O

Agente - Entidad - Acción

- \triangleright Esquema funcional (= entradas \mapsto = salidas)
- ▶ Red Bayesiana

Ejemplo: Analizar algoritmos de detección de discontinuidad Leer 150 papers para saber

- En qué MR trabajan? (como hiperparámetro al menos)
- ▶ ¿Qué tipo de modelo aplica? (Lineal?)
- ¿ Hasta qué distancia "detectan"?

Ej de provecho: Modelos lineales no dependen de cambios lineales del MR

Mapping of PROV core concepts to types and relations

PROV Concepts	PROV-DM types or relations	Name
Entity		Entity
Activity	PROV-DM Types	Activity
Agent		Agent
Generation		WasGeneratedBy
Usage		Used
Communication		WasInformedBy
Derivation	PROV-DM Relations	WasDerivedFrom
Attribution		WasAttributedTo
Association		WasAssociatedWith
Delegation		ActedOnBehalfOf

Entidad

$$X,YZ$$
 $X=atI(t>k)+bt$
 $Actividad$
 X,YZ
 $Y=atI(t>k)+bt$
 $Actividad$
 $Actividad$
 $Actividad$

$$X:Y,Z$$

MB:...

X = $\underline{f}(x,y)$

mo lineal

El Marco de Referencia puede ser una propiedad de la entidad.

Ser lineal/no lineal puede ser una propiedad de una actividad (como transformación)

ldea 2

Planteo

El formato RINEX es texto \mapsto

- No define tipo de dato estandarizado para cada variable.
- Depende de un parser que puede ser mas o menos tolerante.
- Espacios y ceros pueden "cambiar" el archivo sin cambiar el dato.

Datos transmitidos por NTRIP También son (otro) texto.

BINEX

Mejora todo esto, pero no es Columnar y los tipos de dato no son estándares de computadora (sigue habiendo algo de nicho)...

Planteo

La naturaleza del dato es Observaciones de una variedad de indicadores indexados por el tiempo

 Se puede estandarizar en columnas con tipo de dato determinado

Utilidades

- ➤ Al fijar el tipo de dato se puede comparar datos (no archivos) con hashes.
 - ► (BINEX podría permitirlo, aunque mezcla muchos indicadores "extra")
- Se podría partir y transmitir los datos eficientemente.
 - (aplicaciones RT) (y validarlos)
- Se puede usar entornos como spark, arrow-flight, etc.

Hashes

https://github.com/jjclavijo/sirgas2022hashes

Columnar Format: Flujos de trabajo

https://github.com/jjclavijo/sirgas2022arrow

Planteo

Es muy difícil garantizar la independencia real de procesamientos, aún si separáramos redes que no se conectan.

Observación

Los productos publicados no describen su propio origen.

Ejemplo: Los SINEX pueden ser subsets: condicionales

 $X_1=X|X_0$ o marginales $X_1\ni P(X_1)\times P(X_0)\ne 0$ Los sp3 dan parámetros (θ) de órbitas pero no describen $P(\theta,x_0)$

Si nuestros parámetros (X_2) son tales que $X_0 \cap X_2 \neq \emptyset$ estamos perdiendo información, porque no sabemos nada de $P(X_0)$.

Observación

- ► El SINEX de SIRGAS no describe su dependencia del SINEX de óbitas de IGS, de hecho lo ignora porque usa los sp3 para calcular.
- Rastreando el origen de datos podría rastrearse esa dependencia (desde el SINEX de IGS)
- Esto permitiría diseñar la combinación de forma distinta usando una red bayesiana y Beleaf propagation

Validación total (?)

Una idea intereseante:

- ► Tener conjuntos de órbitas independientes.
- ▶ Validar procesamientos con verdadera independencia modelos / datos.

