Sujet d'étude

Exercice 1 Anneau $\mathbb{Z}[\sqrt{n}]$ et équation de Pell-Fermat

Soit *n* un entier strictement positif tel que \sqrt{n} ne soit pas rationnel. On veut résoudre l'équation d'inconue $(a,b) \in \mathbb{N}^{*2}$,

$$a^2 - nb^2 = \pm 1. \tag{E}$$

Dans la suite, on note

$$\mathbb{Z}[\sqrt{n}] = \left\{ z \in \mathbb{R} \mid \exists (a,b) \in \mathbb{Z}^2, z = a + b\sqrt{n} \right\}.$$

Dans cet ensemble, les lois de composition interne sont l'addition et la multiplication des réels.

Partie A

- **A1.** Montrer que si a, a', b, b' sont des rationnels tels que $a + b\sqrt{n} = a' + b'\sqrt{n}$, alors a = a' et b = b'.
- **A2.** Montrer que $\mathbb{Z}[\sqrt{n}]$ est un anneau.
- **A3.** Pour tout élément $z = a + b\sqrt{n}$ de $\mathbb{Z}[\sqrt{n}]$, on définit

$$\bar{z} = a - b\sqrt{n}$$
 et $N(z) = z\bar{z}$.

Montrer que l'application qui à z associe \bar{z} est un automorphisme de l'anneau $\mathbb{Z}[\sqrt{n}]$.

Montrer que si z est dans $\mathbb{Z}[\sqrt{n}]$, alors N(z) est entier et que

$$\forall (z, z') \in \mathbb{Z}[\sqrt{n}]^2, N(zz') = N(z)N(z').$$

Partie B

Soit $G = U\left(\mathbb{Z}[\sqrt{n}]\right)$ l'ensemble des éléments de $\mathbb{Z}[\sqrt{n}]$ inversibles (pour la multiplication).

- **B1.** Montrer que G est un groupe (pour la multiplication).
- **B2.** Montrer qu'un élément z de $\mathbb{Z}[\sqrt{n}]$ est dans G si, et seulement si $N(z)=\pm 1$.
- **B3.** Soit $z = a + b\sqrt{n} \in G$. Montrer les implications suivantes.
 - (a) $a \ge 0$ et $b \ge 0 \implies z \ge 1$.
 - (b) $a \le 0$ et $b \le 0 \implies z \le -1$.
 - (c) $ab \le 0 \implies |z| \le 1$.
- **B4.** Soit $H = \{ z \in G \mid z > 1 \}$. On suppose *dans toute la suite de cette partie* que H est non vide (cela sera démontré dans la prochaine partie).

1

Montrer que si $z = a + b\sqrt{n}$ et $z' = a' + b'\sqrt{n}$ sont deux éléments de H, alors a < a' si, et seulement si b < b'.

En déduire que H admet un plus petit élément u_0 .

À titre d'exemple, calculer u_0 si n = 2.

B5. Montrer que pour tout élément u de H, il existe un entier naturel m tel que

$$u_0^m \le u < u_0^{m+1},$$

puis montrer que $u = u_0^m$. En déduire

$$H = \left\{ \left. u_0^m \mid m \in \mathbb{N}^\star \right. \right\}.$$

B6. En déduire toutes les solutions de l'équation (E) en fonction de u_0 . Si n = 2, déterminer toutes les solutions de (E) telles que $a \le 100$ et $b \le 100$.

Partie C

C1. Soit *m* un entier strictement positif.

(a) Montrer qu'il existe m+1 réels distincts $b\sqrt{n}-a$ de $\mathbb{Z}[\sqrt{n}]$ tels que

$$0 \le b \le m$$
 et $b\sqrt{n} - a \in [0, 1[$.

(b) En déduire l'éxistence d'un élément $a - b\sqrt{n}$ de $\mathbb{Z}[\sqrt{n}]$ vérifiant

$$\left| a - b\sqrt{n} \right| < \frac{1}{m}$$
 et $0 < b \le m$.

(c) Montrer que pour cet élément

$$|a^2 - nb^2| < 1 + 2\sqrt{n}.$$

C2. Montrer que l'équation $|a^2 - nb^2| < 1 + 2\sqrt{n}$ admet une infinité de solutions dans \mathbb{Z}^2 .

C3. (a) Montrer qu'il existe un entier k tel que l'équation $a^2 - nb^2 = k$ possède une infinité de solutions.

(b) En déduire l'existence d'entiers k, a, a', b, b' tels que k divise a-a' et b-b' et

$$a^2 - nb^2 = {a'}^2 - n{b'}^2 = k$$

(c) Pour les éléments précédents, montrer que

$$A = \frac{aa' - nbb'}{k}$$
 et $B = \frac{ab' - ba'}{k}$

sont des entiers vérifiant $A^2 - nB^2 = 1$.

C4. En déduire que H est toujours non vide et que l'équation (E) admet une infinité de solutions.

2