Theorem: a version of Sarközy:

For any A N/ d(A)>0 there $\left\{n: \overline{J}\left(A \cap (A-n^2)\right)>0\right\}$ is syndetic. $x-y=n^2$ $x,y\in A$

A finitery version of sarkozy: $\forall \{70\ \text{JLENS.E. if}\ b-a>L\ then for any exercise prove equivalence <math display="block">A\subset [a_3a+1,...,b] \text{ with } \frac{|A|}{b-a}>\mathcal{E}, \ \exists n\in \mathbb{N}\ fx_iy\in A,$ to normal sarkozy st. $x-y=n^2$.

 $\exists n : A_n(A-n^2) \neq \emptyset \iff \overline{\partial}(A_n(A-n^2)) > 0$ (exercise)

A $Y(n) = \overline{J}(A_{N}(A-n))$, $n \in \mathbb{Z}$ or N, $A \subseteq \mathbb{Z}$ or N, $\overline{J}(A) > 0$.

Pef: A sequence $\gamma(n)$ is positive definite if $\psi(\xi_i) \in \mathbb{C}$ and any $n \in \mathbb{N}$, we has $\sum_{-N \leq n,m \leq N} \gamma(n-m) \xi_n \overline{\xi}_m \geqslant 0$

Matrix (ann) is called orthogonal if its rows and colomny we orthogonal as vectors in RN

Quadratic forms:

Inertia { (an bereduced to
$$\sum_{i=1}^{N} (-1)^{s_i} X_i^{s_i}$$
. Can it be reduced in different any (w) of $(-1)^{s_i} X_i^{s_i}$.

Can it reduce to
$$\chi_1^2 + \chi_2^2 + \cdots + \chi_n^2$$
?

exercise: check that $\gamma(n)$ as defined above is positive definite $\gamma(n) = \langle U^n V, u \rangle$ $\gamma(n) = \langle U^n V, u \rangle$

Herglotz theorem: Any positive definite sequence can be represented as a seq. of fourier coeffs of a mensure on T.

$$P(n) = \int e^{2\pi i \, n \, x} \, d\mu \quad \leftarrow \quad \text{exercise} : \text{this is p. D.}$$

$$f(n) = \partial(A \cap (A-n))$$
. $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} f(n^2) > 0 \implies Sorközy$

So,
$$V(N)$$
 P.d. \Rightarrow $V(N)$ V

$$= \int_{N} \frac{1}{N} \sum_{N=1}^{N} \frac{2\pi i \, h^{2k}}{N}$$

Suppose we replace 12 by Pn. Same result holds.

Physible": $2n^2-1: n\in\mathbb{Z}_3^2 \cap \alpha \mathbb{Z} \neq \emptyset$ $\forall \alpha \in \mathbb{N}$ (seq. how all divisors) $= \{(n+1)^2-1\} = \{n^2+2n\}$

exercise P-1 and P+1 are divisible sets.

exercise P±d is not divisible if d ≠ 1.

What if we replace N limits by N-M limits?

Still works (not for pr) Since 12 w.d.

exercise if J(A), J(B) >0 then (A-A) n(B-B) is syndetic

 $(X, X^2, X^3, ..., X^n)$ curve of moments in \mathbb{R}^n .

Hurwitz Theorem: if $w \notin \Omega$ than at least one among any 3 consecutive convergents to w satisfies $\left|\frac{P_u}{q_u} - w\right| < \frac{1}{\sqrt{6}q_u^2}$

 $\frac{\left|\frac{R}{4n} - w\right| < \frac{1}{2!^2}}{\left|\frac{1}{4n} - w\right| < \frac{1}{2!^2}}$ Assume than is not true for n = r - 1, $r_1 r + 1$. Then $\frac{1}{4r_1 q_r} = \left|\frac{P_{r-1}}{q_{r-1}} - \frac{P_r}{q_r}\right| = \left|w - \frac{P_{r-1}}{1_{r-1}}\right| + \left|w - \frac{P_r}{q_r}\right| > \frac{1}{\sqrt{15}} \left(\frac{1}{q_{r-1}^2} + \frac{1}{q_r^2}\right)$ of any 2

Page 3

So
$$\frac{1}{q_{ri}q_{r}} \geqslant \frac{1}{\sqrt{5}} \left(\frac{q_{ri}^{2} + q_{r}^{2}}{q_{ri}^{2}q_{r}^{2}} \right) \Rightarrow \left(\frac{q_{ri}}{q_{r}} \right)^{2} - \sqrt{5} \left(\frac{q_{r-1}}{q_{r}} \right) + 1 \leq 6$$

Also $\left(\frac{q_{r}}{q_{rii}} \right)^{2} - \sqrt{5} \left(\frac{q_{r}}{q_{rii}} \right) + 1 \leq 6$

$$\chi^2 - \sqrt{5} + 1 = 0$$
 kmg roots $\chi = \frac{\sqrt{5} \pm 2}{2}$

 $|v| = |a_{r}| + |q_{r-1}|$ $|q_{r}| = |q_{r+1}| - |q_{r}| = |q_{r+1}| + |q_{r-1}| + |q_{$

contradiction.

Exercise see what you get when avoiding ar = 1, replacing vs by vs.

exercise: find out what next number is (vs, vs, ...)

Reading: finish Ch 14 by monday.