

Given two integers dividend and divisor, divide two integers **without** using multiplication, division, and mod operator.

The integer division should truncate toward zero, which means losing its fractional part. For example, 8.345 would be truncated to 8, and -2.7335 would be truncated to -2.

Return the **quotient** after dividing dividend by divisor.

Note: Assume we are dealing with an environment that could only store integers within the **32-bit** signed integer range: $[-2^{31}, 2^{31} - 1]$. For this problem, if the quotient is **strictly greater than** $2^{31} - 1$, then return $2^{31} - 1$, and if the quotient is **strictly less than** -2^{31} , then return -2^{31} .

Example 1:

```
Input: dividend = 10, divisor = 3
```

Output: 3

Explanation: 10/3 = 3.33333... which is truncated to 3.

Example 2:

```
Input: dividend = 7, divisor = -3
```

Output: -2

Explanation: 7/-3 = -2.33333... which is truncated to -2.

Constraints:

- $-2^{31} \leftarrow \text{dividend}$, divisor $\leftarrow 2^{31} 1$
- divisor != 0

