ECO 82800 Panel Econometrics

Homework 1 Chuxin Liu

Dataset: Baltagi and Griffin (1983), 18 OECD countries over 19 years, 1960-1978. Variables:

- (1) CO = Country.
- (2) YR = Year.
- (3) LN(Gas/Car): The logarithm of motor gasoline consumption per auto.
- (4) LN(Y/N): The logarithm of real per-capita income.
- (5) LN(Pmg/Pgdp): The logarithm of real motor gasoline price.
- (6) LN(Car/N): The logarithm of the stock of cars per-capita.

Question 1: Replicate Table 2.5 on Baltagi's book

	$oldsymbol{eta}_1$	$oldsymbol{eta}_2$	β_3	ρ	σ_{μ}	$\sigma_{\scriptscriptstyle \mathcal{V}}$
OLS	0.890	-0.892	-0.763			
	$(0.036)^*$	(0.030)*	$(0.019)^*$			
Between	0.968	-0.964	-0.795			
	(0.156)	(0.133)	(0.082)			
Within	0.662	-0.322	-0.640			
	(0.073)	(0.044)	(0.030)			
WALHUS	0.545	-0.447	-0.605	0.75	0.197	0.113
	(0.066)	(0.046)	(0.029)			
AMEMIYA	0.602	-0.366	-0.621	0.93	0.344	0.092
	(0.066)	(0.042)	(0.027)			
SWAR	0.555	-0.402	-0.607	0.82	0.196	0.092
	(0.059)	(0.042)	(0.026)			
IMLE	0.588	-0.378	-0.616	0.91	0.292	0.092
	(0.066)	(0.046)	(0.029)			

^{*} These are biased standard errors when the true model has error component disturbances (see Moulton, 1986).

Source: Baltagi and Griffin (1983). Reproduced by permission of Elsevier Science Publishers B.V. (North-Holland).

Replicating	Table 2.5						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	OLS	Between	Within	WALHUS	AMEMIYA	SWAR	IMLE
LINCOMEP	0.890***	0.968***	0.662***	0.543***	0.583***	0.759***	0.588
	(0.0358)	(0.156)	(0.0734)	(0.0558)	(0.0499)	(0.0423)	(0.694)
LRPMG	-0.892***	-0.964***	-0.322***	-0.471***	-0.567***	-0.767***	-0.378
	(0.0303)	(0.133)	(0.0441)	(0.0400)	(0.0386)	(0.0351)	(0.445)
LCARPCAP	-0.763***	-0.795***	-0.640***	-0.606***	-0.628***	-0.708***	-0.616*
	(0.0186)	(0.0825)	(0.0297)	(0.0249)	(0.0235)	(0.0213)	(0.291)
Standard er	rors in parer	theses					
="* p<0.05	** p<0.01	*** p<0.001					

Question 2

(b) Negative correlation between fixed effect and average per capita income.

(c) Yes.

Correlation Table				
	mu_i	lincomep	Irpmg	Icarpcap
mu_i	1			
lincomep	-0.2882	1		
Irpmg	-0.8133	0.4636	1	
Icarpcap	0.2706	0.4801	-0.4039	1

```
1
    ** Panel Econometrics
 2
    ** Assignment 1
 3
    ** Author: Chuxin Liu
    ** Last Updated: 03/06/2019 **
 4
 5
 6
    clear
7
    set more off
8
    capture: log close
9
    cd "C:\Users\cliu\Documents\GitHub\PanelEconometrics\HW1"
10
    use "gasoline.dta", clear
11
     ************************
12
13
     * Question 1
14
    encode country, generate(ncountry)
15
    * a) Gasoline Demand Data. One-way Error Component Results
16
    tsset ncountry year /* declare panel data*/
17
    matrix results = J(14,3,.)
18
19
    eststo clear
20
    * OLS
21
    eststo OLS: reg lgaspcar lincomep lrpmg lcarpcap
22
    * Between
23
    eststo Between: xtreg lgaspcar lincomep lrpmg lcarpcap, be
24
    * Within
25
    eststo Within: xtreq lqaspcar lincomep lrpmq lcarpcap, fe
26
     * WALHUS
27
     /* ssc install spregxt */
28
    /* check if spregxt is installed */
29
    /* nc(#): Number of Cross Sections Units */
30
    /* model(ols): Linear Panel Models (Non Spatial) */
31
    /* run(xtwh): [NEW] Wallace-Hussain Random-Effects Panel Regression */
32
    eststo Walhus: spregxt lgaspcar lincomep lrpmg lcarpcap, nc(18) model(ols) run(xtwh)
33
     * AMEMIYA
34
    /* run(xtam): [NEW] Amemiya Random-Effects Panel Regression */
35
    eststo Amemiya: spregxt lgaspcar lincomep lrpmg lcarpcap, nc(18) model(ols) run(xtam)
36
     * SWAR (Swamy-Arora)
37
    /* run(xtsa): [NEW] Swamy-Arora Random-Effects Panel Regression */
38
    eststo Swar: spregxt lgaspcar lincomep lrpmg lcarpcap, nc(18) model(ols) run(xtsa)
39
40
    /* run(xtmlem): [NEW] Trevor Breusch MLE Random-Effects Panel Regression */
41
    eststo IMLE: spregxt lgaspcar lincomep lrpmg lcarpcap, nc(18) model(ols) run(xtmlem)
42
    esttab using Table1.csv, label se noobs nocons title(Replicating Table 2.5) //
43
44
        mtitles ("OLS" "Between" "Within" "WALHUS" "AMEMIYA" "SWAR" "IMLE") replace
45
46
     * Question 2
47
    tsset ncountry year
48
    xtreg lgaspcar lincomep lrpmg lcarpcap, fe
49
     collapse lgaspcar lincomep lrpmg lcarpcap, by(ncountry)
50
51
    gen mu i = lgaspcar- b[lincomep]*lincomep- b[lrpmg]*lrpmg- b[lcarpcap]*lcarpcap- b[ cons]
52
     * (b)
53
    twoway (lfit mu i lincomep) (scatter mu i lincomep, mlabel(ncountry) mlabsize(vsmall) //
54
        mlabposition(5)), ytitle(Fixed Effect) xtitle(Average Per Capita Income) //
55
         title (Figure 1: Fixed Effect and Average Per Capita Income) legend (off)
56
57
     graph export Figure1.png, replace
58
59
     corr mu i lincomep lrpmg lcarpcap
```

60 61

Question 5: Answer question 2.1
Prove that B given (2.7): $B = (X'QX)^{-1}X'QY$ can be obtained from OLS on (2.5): $Y = XUNT + XB + Z_NU + V = ZS + Z_NU + V$, using results on partitioned inverse. This can easily be obtained using the Frisch - Waugh - Lovell theorem of Davidson and Mackimon.
Hint: This theorem states that the OLS estimate of β from (2.5) will be identical to the OLS estimate of β from (2.6): $Qy = QX\beta + QV$, Also, the least squares residuals will be the same.
• Define $Q = I - P$
$Oy = y$, $Qx = x$, the transformed error component model $Qy = Qx\beta + Qv$ con be written as: $Y_{\bar{i}} = X_{\bar{i}}\beta + y_{\bar{i}}$
The FE estimator is therefore an OLS estimator of $\hat{Y} = \hat{X}\beta + \hat{\eta}$ $\hat{\beta}_{FE} = (\hat{X}'\hat{X})^{-1}\hat{X}\hat{Y} = (\hat{X}'Q\hat{X})^{-1}\hat{X}'Q\hat{y} = \hat{\beta}$
LSDV, within estimator
$Y_i = X_i'\beta + \alpha_i I_T + \eta_i$, stack $\Rightarrow Y = X\beta + D\alpha + \eta = X\beta + (I_n \otimes I_T)\alpha + \eta$
B=(X'QoX)-1X'Qoy where Qo=I-Pp, Pp=D(D'D)-1D', D=In&1T
To obtain Qo; Qo = I-Po
$= I - D(D'D)^{-1}D'$
$= I - (I_{I} \otimes I_{T}) ((I_{I} \otimes I_{T})' (I_{I} \otimes I_{T})' (I_{I} \otimes I_{T})'$
= <u>1</u> - In®PT
$=I_n\otimes Q_T$
BLSDV = (X'QOX) - X'QDY = [X'(In&QT)X] - X'(In&QT)Y
$= (X'QX)^{-1} X'QY$