CUSTOMER CHURN PREDICTION

Problem Statement:

Develop a machine learning model to predict customer churn for a U.S. bank using historical customer data. The dataset includes customer demographics, account details, and usage behavior. The goal is to identify potential churners and help the bank take proactive measures to retain customers.

Import libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

Import dataset

```
In [6]: df = pd.read_csv("Churn_Modelling.csv")
df.head()
```

[6]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsA
_	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	
	4												

Exploratery Data Analysis

```
In [8]: df.shape
Out[8]: (10000, 14)
In [9]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype					
0	RowNumber	10000 non-null	int64					
1	CustomerId	10000 non-null	int64					
2	Surname	10000 non-null	object					
3	CreditScore	10000 non-null	int64					
4	Geography	10000 non-null	object					
5	Gender	10000 non-null	object					
6	Age	10000 non-null	int64					
7	Tenure	10000 non-null	int64					
8	Balance	10000 non-null	float64					
9	NumOfProducts	10000 non-null	int64					
10	HasCrCard	10000 non-null	int64					
11	IsActiveMember	10000 non-null	int64					
12	EstimatedSalary	10000 non-null	float64					
13	Exited	10000 non-null	int64					
dtypes: float64(2), int64(9), object(3)								
memory usage: 1.1+ MB								

Summary statistics for numerical features

```
In [11]: df.describe()
```

Out[11]:		RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiv
	count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	1000
	mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	
	std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	
	min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	
	25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	
	50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	
	75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	
	max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	
	4									>

Check for missing values

```
In [13]: df.isna().sum()
Out[13]: RowNumber
                             0
          CustomerId
          Surname
                             0
          CreditScore
          Geography
                             0
                             0
          Gender
          Age
          Tenure
                             0
          Balance
         NumOfProducts
                            0
         HasCrCard
                             0
          IsActiveMember
                             0
          EstimatedSalary
                             0
         Exited
                             0
         dtype: int64
         Check for duplicate records
In [15]: df.duplicated().sum()
Out[15]: 0
```

In [16]: df.rename(columns={'Exited': 'Churn'}, inplace=True)

```
In [17]: df.columns
```

Gender & Churn Distribution

```
In [19]: plt.figure(figsize=(6,4))
    sns.countplot(data=df, x='Gender', hue='Churn')#, palette='viridis'
    plt.title("Gender vs Churn")
    plt.show()
```


Relationship Between Tenure & Churn

```
In [21]: plt.figure(figsize=(7,4))
    sns.kdeplot(df[df['Churn'] == 0]['Tenure'], label="Non-Churners", shade=True)
    sns.kdeplot(df[df['Churn'] == 1]['Tenure'], label="Churners", shade=True)
    plt.legend()
    plt.title("Account Age Distribution by Churn Status")
    plt.show()
```


Numerical Dataframe

```
In [23]: num_df = df.select_dtypes(exclude="object")
num_df.head(1)

Out[23]: RowNumber Customerld CreditScore Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Cl

O 1 15634602 619 42 2 0.0 1 1 1 1 1 101348.88
```

Check for outliers

Check for skewness

```
In [27]: for col in num_df:
    sns.histplot(num_df[col], kde=True)
    plt.title(col)
    plt.show()
```



```
In [28]: from scipy.stats import skew
    for col in num_df:
        print(f"{col} --> {num_df[col].skew()}")

RowNumber --> 0.0
CustomerId --> 0.001149145900554239
CreditScore --> -0.07160660820092675
Age --> 1.0113202630234552
Tenure --> 0.01099145797717904
Balance --> -0.14110871094154384
NumOfProducts --> 0.7455678882823168
HasCrCard --> -0.9018115952400578
IsActiveMember --> -0.06043662833499078
EstimatedSalary --> 0.0020853576615585162
Churn --> 1.4716106649378211
```

Categorical columns

```
Surname
        Smith
                   32
                   29
        Scott
        Martin
                   29
        Walker
                   28
        Brown
                   26
        Izmailov
                    1
        Bold
                    1
        Bonham
                    1
        Poninski
                    1
        Burbidge
        Name: count, Length: 2932, dtype: int64
        Geography
        France
                  5014
       Germany
                  2509
        Spain
                  2477
        Name: count, dtype: int64
        _____
        Gender
        Male
                 5457
        Female 4543
        Name: count, dtype: int64
        _____
In [32]: from sklearn.preprocessing import LabelEncoder
In [33]: lb = LabelEncoder()
In [34]: #Label Encoding
         obj_df['Geography'] = lb.fit_transform(obj_df['Geography'])
         obj df['Gender'] = lb.fit transform(obj df['Gender'])
In [35]: obj df.head()
           Surname Geography Gender
         0 Hargrave
         1
                Hill
                           2
                                   0
         2
                           0
                                   0
               Onio
         3
                           0
                                   0
               Boni
         4
             Mitchell
                           2
                                   0
         Scaling numerical columns
In [36]: from sklearn.preprocessing import MinMaxScaler
In [37]: Scaler = MinMaxScaler()
In [38]: columns = ['CreditScore', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'EstimatedSalary']
In [39]: for col in columns:
            num df[col] = Scaler.fit transform(num df[[col]])
In [40]: num df.head(2)
Out[40]:
           RowNumber Customerld CreditScore
                                               Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalar
         0
                    1
                        15634602
                                      0.538 0.324324
                                                       0.2 0.000000
                                                                              0.0
                                                                                                       1
                                                                                                               0.50673
         1
                        15647311
                                      0.516 0.310811
                                                       0.1 0.334031
                                                                              0.0
                                                                                                               0.56270
```

In [41]: #Concat numerical and categorical dataframes
data = pd.concat([obj_df, num_df], axis=1)

data

	Surname	Geography	Gender	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrC
0	Hargrave	0	0	1	15634602	0.538	0.324324	0.2	0.000000	0.000000	
1	Hill	2	0	2	15647311	0.516	0.310811	0.1	0.334031	0.000000	
2	Onio	0	0	3	15619304	0.304	0.324324	0.8	0.636357	0.666667	
3	Boni	0	0	4	15701354	0.698	0.283784	0.1	0.000000	0.333333	
4	Mitchell	2	0	5	15737888	1.000	0.337838	0.2	0.500246	0.000000	
9995	Obijiaku	0	1	9996	15606229	0.842	0.283784	0.5	0.000000	0.333333	
9996	Johnstone	0	1	9997	15569892	0.332	0.229730	1.0	0.228657	0.000000	
9997	Liu	0	0	9998	15584532	0.718	0.243243	0.7	0.000000	0.000000	
9998	Sabbatini	1	1	9999	15682355	0.844	0.324324	0.3	0.299226	0.333333	
9999	Walker	0	0	10000	15628319	0.884	0.135135	0.4	0.518708	0.000000	

10000 rows × 14 columns

In [42]: #drop columns
data.drop(columns=['Surname', 'RowNumber', 'CustomerId'],axis=1,inplace=True)

These columns (Surname, RowNumber, Customerld) contain unique or irrelevant values that do not contribute to patterns in churn prediction. Keeping them may introduce noise, so dropping them helps the model focus on meaningful features and improve performance.

In [44]: data.head()

Out[41]:

:		Geography	Gender	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	CI
	0	0	0	0.538	0.324324	0.2	0.000000	0.000000	1	1	0.506735	
	1	2	0	0.516	0.310811	0.1	0.334031	0.000000	0	1	0.562709	
	2	0	0	0.304	0.324324	0.8	0.636357	0.666667	1	0	0.569654	
	3	0	0	0.698	0.283784	0.1	0.000000	0.333333	0	0	0.469120	
	4	2	0	1.000	0.337838	0.2	0.500246	0.000000	1	1	0.395400	
												_

Churn Distribution

```
In [46]: plt.figure(figsize=(6,4))
    sns.countplot(data=data, x='Churn', palette=['#FF6347', '#4682B4']) # Customize colors
    plt.title("Churn Distribution")
    plt.show()
```



```
In [47]: # Percentage of churners
    churn_rate = data["Churn"].value_counts(normalize=True) * 100
    print("Churn Rate:\n", churn_rate)
```

Churn Rate: Churn 0 79.63 1 20.37

Name: proportion, dtype: float64

```
In [48]: plt.figure(figsize=(9,6))
    sns.heatmap(data.corr(), fmt=".2f", annot=True)
    plt.title("Feature Correlation Heatmap")
    plt.show()
```


Handling imbalanced data

```
In [50]: from imblearn.over_sampling import SMOTE
    x = data.drop('Churn', axis=1)
    y = data['Churn']

    smt = SMOTE(random_state = 10)
    x_sample, y_sample = smt.fit_resample(x,y)

    x = x_sample
    y = y_sample

In [51]: sns.countplot(x=y)
    plt.xlabel('Churn')
    plt.ylabel('Churn')
    plt.ylabel('Count')
    plt.show()
```



```
In [54]: #Train-Test-Split
  from sklearn.model_selection import train_test_split
  x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=11)
```

Logistic Regression Model

```
In [75]: from sklearn.metrics import accuracy_score, classification_report
```

```
In [77]: y_pred_lr = lr_model.predict(x_test)
    lr_accuracy_testing = accuracy_score(y_test, y_pred_lr)*100
    print("Accuracy score testing:",lr_accuracy_testing)
```

Accuracy score testing: 69.36597614563716

```
In [79]: y_pred_lrt = lr_model.predict(x_train)
lr_accuracy_training = accuracy_score(y_train, y_pred_lrt)*100
print("Accuracy score traning:",lr_accuracy_training)
```

Accuracy score traning: 70.25902668759811

```
In [81]: report_lr = classification_report(y_test,y_pred_lr)
print(report_lr)
```

	precision	recall	fl-score	support
0	0.70	0.70	0.70	1628
1	0.69	0.69	0.69	1558
accuracy			0.69	3186
macro avg	0.69	0.69	0.69	3186
weighted avg	0.69	0.69	0.69	3186

Random Forest Model

```
In [84]: from sklearn.ensemble import RandomForestClassifier
In [86]: rf_model = RandomForestClassifier(n_estimators=100,max_depth=10,min_samples_split=10,min_samples_leaf=5,max_fearrf_model.fit(x_train,y_train)
```

```
RandomForestClassifier
             RandomForestClassifier(max_depth=10, min_samples_leaf=5, min_samples_split=10,
                                      random state=42)
   In [87]: y_pred_rf = rf_model.predict(x_test)
             rf_accuracy_testing = accuracy_score(y_test,y_pred_rf)*100
             print("Accuracy score testing:",rf_accuracy_testing)
           Accuracy score testing: 84.02385436283741
   In [90]: y_pred_rft = rf_model.predict(x_train)
             rf\_accuracy\_training = accuracy\_score(y\_train,y\_pred\_rft)*100
             print("Accuracy score traning:",rf_accuracy_training)
           Accuracy score traning: 88.30455259026687
   In [92]: report rf = classification_report(y_test, y_pred_rf)
             print(report_rf)
                                       recall f1-score
                          precision
                                                          support
                       0
                                         0.84
                                                    0.84
                               0.85
                                                              1628
                       1
                               0.83
                                         0.84
                                                    0.84
                                                              1558
               accuracy
                                                    0.84
                                                              3186
              macro avg
                               0.84
                                         0.84
                                                    0.84
                                                              3186
                                         0.84
                                                    0.84
                                                              3186
           weighted avg
                               0.84
             GdBoost Model
   In [95]: from sklearn.ensemble import GradientBoostingClassifier
             gdb\_classify = Gradient Boosting Classifier (n\_estimators = 200, learning\_rate = 0.05, max\_depth = 4)
             gdb_classify.fit(x_sample,y_sample)
                                        GradientBoostingClassifier
             GradientBoostingClassifier(learning rate=0.05, max depth=4, n estimators=200)
   In [96]: y_pred_gdbt = gdb_classify.predict(x_train)
             gdb accuracy training = accuracy score(y train, y pred gdbt)*100
             print("Accuracy score traning:",gdb_accuracy_training)
           Accuracy score traning: 90.02354788069073
   In [99]: y_pred_gdb = gdb_classify.predict(x_test)
             gdb accuracy testing = accuracy score(y test, y pred gdb)*100
             print("Accuracy score testing:",gdb accuracy testing)
           Accuracy score testing: 88.54362837413686
   In [101... report_gdb = classification_report(y_test, y_pred_gdb)
             print(report_gdb)
                          precision
                                     recall f1-score
                                                           support
                       0
                               0.88
                                         0.90
                                                    0.89
                                                              1628
                               0.89
                                         0.87
                                                    0.88
                                                              1558
                       1
                                                    0.89
                                                              3186
               accuracy
                                         0.89
              macro avg
                               0.89
                                                    0.89
                                                              3186
           weighted avg
                               0.89
                                         0.89
                                                    0.89
                                                              3186
   In [103... Dict={'Model':['Logistic_Regression', 'Random_Forest', 'Gradient_Boosting'],
                   'Accuracy':[lr_accuracy_testing, rf_accuracy_testing, gdb_accuracy_testing]}
   In [105...
            Data=pd.DataFrame(Dict,columns=['Model','Accuracy'])
                          Model Accuracy
             0 Logistic Regression 69.365976
             1
                   Random_Forest 84.023854
             2
                 Gradient_Boosting 88.543628
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

Out[86]: