

PRUEBA - Operatoria de números complejos

NOMBRE PUNTAJE NOTA

Objetivo

- Describir números complejos en su binomial o como par ordenado.
- Resolver y reducir expresiones que involucran operatoria básica entre números complejos.
- Calcular el módulo de un número complejo.
- Ubicar un número complejo en el plano de Argand.

Instrucciones generales

Tiene 1 hora y 30 minutos para responder la evaluación. Esta es individual y debe usar solo sus materiales personales para trabajar durante este periodo, no los solicite a un compañero durante la evaluación.

I. Opciones múltiples

Instrucciones

Lea atentamente cada enunciado y escoja la alternativa correcta en cada caso.

Criterios de evaluación

En la corrección de esta sección, se asignará 2 puntos al marcar la alternativa correcta. Las alternativas corregidas serán consideradas incorrectas, es decir, marque solo una alternativa por enunciado.

- 1 La suma de la parte real e imaginaria del número 3 2*i* es:
 - *a*) 5
 - *b*) 1
 - *c*) −1
 - d) 3 2i
 - *e*) i
- Para x > 2, la representación del número $\sqrt{x-2}$ como par ordenado es:
 - a) (2, x)
 - b) $\left(\sqrt{x-2},0\right)$
 - c) $\left(0, \sqrt{x-2}\right)$
 - d) $\left(-\sqrt{x-2},0\right)$
 - e) $\left(\sqrt{x-2}, \sqrt{x-2}\right)$

Respecto del número complejo que aparece en la imagen, es correcto afirmar que:

- I. Solo tiene parte real.
- II. Su parte real es positiva.
- III. Su parte imaginaria es positiva.
- a) Solo I.
- b) Solo II.
- c) Solo III.
- d) Solo I y II.
- e) I, II y III.
- El valor de i^{2019} es:
 - *a*) 1
 - *b*) 3
 - *c*) −*i*
 - *d*) i
 - *e*) –1
- Para x < 3, la representación del número $\sqrt{x-3}$ en el plano de Argand es:

a)

b)

c)

d)

e)

- La representación en el plano de Argand de un número complejo se encuentra en el tercer cuadrante. Entonces, es correcto afirmar que:
 - I. Su parte imaginaria es positiva.
 - II. Su parte real es negativa.
 - III. El resultado de la multiplicación entre su parte real y su parte imaginaria es positiva.
 - a) Solo I.
 - b) Solo II.
 - c) Solo III.
 - d) Solo II y III.
 - e) I, II y III.
- Si z = 1 + i y w = 3i 2, ¿cuáles de las siguientes afirmaciones es correcta?
 - I. $|z| = \sqrt{2}$
 - II. $|z + w| \le |z| + |w|$
 - III. $|z \cdot w| = |z| \cdot |w|$
 - a) Solo I.
 - b) Solo II.
 - c) Solo III.
 - d) Solo II y III.
 - e) I, II y III.
- Si el módulo de un número complejo es tal que |z| = 5 y su parte real es 4, se puede decir sobre su parte imaginaria que:
 - I. Im(z) = 3
 - II. Im(z) = -3
 - III. $Im(z) = \pm 3i$
 - a) Solo I.
 - b) Solo II.
 - c) Solo III.
 - d) Solo I y II.
 - e) Solo I y III.

- \bigcirc ¿Cuáles de los siguientes números es (son) solución(es) de la ecuación cuadrática $x^2 + x + 1 = 0$?
 - I. $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$
 - II. $-\frac{1}{2} \frac{\sqrt{3}}{2}i$
 - III. $\frac{1}{2} + \frac{\sqrt{3}}{2}i$
 - a) Solo I.
 - b) Solo II.
 - c) Solo III.
 - d) Solo I y II.
 - e) Solo II y III.
- 10 Si z = 3i 5, la expresión 2z + 3iz z 4iz es:
 - *a*) *z*
 - *b*) −*iz*
 - c) 4i
 - d) 8i 2
 - e) 3i + 6
- El número $(i^{36} i^{54})^2$ es equivalente a:
 - *a*) 0
 - *b*) 2*i*
 - *c*) 4
 - *d*) −2*i*
 - *e*) 2
- La expresión $(2i)^{28}$ es:
 - a) 2^{28}
 - b) i^{28}
 - *c*) 4²⁸
 - d) -2^{28}
 - *e*) $(-i)^{28}$