pair = la. lb. (lf. fab) int x bool = \forall S. (int > bool = \forall) - \forall pair =/\a./\b.\a.\a.\a.\a.\a.\b.\B. No. If: a>B>0. fab : "PAIR OF & AND B" pair [int] [bool] 5 true : Pair int bool Pair = la type. lB: type. $AA. (A \rightarrow B \rightarrow A) \rightarrow A$ λ_{ω} ~ := b | ~, → ~ 2 | d | $\chi_{\alpha}: \chi_{\alpha}: \chi_{\alpha} \setminus \chi_{\alpha}$

 $\frac{\Delta \vdash \tau : \mathsf{type}}{\Delta; \Gamma, x : \tau \vdash x : \tau}$

D+2: K

 $\frac{\Delta \vdash \tau_1 : \mathsf{type} \qquad \Delta; \Gamma, x : \tau_1 \vdash e : \tau_2}{\Delta; \Gamma \vdash \lambda x : \tau_1.e : \tau_1 \rightarrow \tau_2}$

 $\frac{\Delta; \Gamma \vdash e_1 : \tau_1 \to \tau_2 \qquad \Delta; \Gamma \vdash e_2 : \tau_1}{\Delta; \Gamma \vdash e_1 \ e_2 : \tau_2}$

Pair int bool = YT. (int +bod) +d

$$\Delta$$
; Γ + e: τ $\tau = \tau'$ Δ + τ' : type

D; [Le: ~

TYBES \uparrow KINDS \downarrow Δ , α : κ , + κ : κ λ $\Delta + \lambda \alpha$: κ $\Delta + \lambda \alpha$: κ

D+b: type D+2: type D+2: type

D+2: type

 $\frac{\tau_1 \equiv \tau_2}{\tau \equiv \tau} \qquad \frac{\tau_2 \equiv \tau_1}{\tau_2 \equiv \tau_1}$

 $\tau_1 \equiv \tau_3$

K, =7K2

 $\frac{\tau_1 \equiv \tau_1' \qquad \tau_2 \equiv \tau_2'}{\tau_1 \rightarrow \tau_2 \equiv \tau_1' \rightarrow \tau_2'} \qquad \frac{\tau \equiv \tau'}{\lambda x : \kappa. \tau \equiv \lambda x : \kappa. \tau'} \qquad \frac{\tau_1 \equiv \tau_1' \qquad \tau_2 \equiv \tau_2'}{\tau_1 \ \tau_2 \equiv \tau_1' \ \tau_2'}$

 $(\lambda \alpha : \kappa. \tau_1) \ \tau_2 \equiv \tau_1 \{ \tau_2 / \alpha \}$

List < Integer?

List < 27 := Array List < 27

TERMS TYPES