Case 1: AI enabled order forecasting and supply chain planning

Problem addressed

♦ Forecast fluctuation

- < 26 weeks forecast visibility
- Weekly rolling updates for after 3 weeks

◆ Challenges in material readiness for operation

- 95% offshore materials from 4 import paths
- 25000+ P/N, and 1200+ suppliers

♦ Multi-SKU

- Produced 58 SKUs, shipped to 8 countries
- >34 times line change over per week,

- ↑ OTIF 8.3pp (91.2% \rightarrow 99.5%)
- \downarrow DOS 52% (27D \rightarrow 13D)
- ↓ IDL (PMC) 21% (135P \rightarrow 107P)

Case 2: Flexible and rapid pick & place automation with vision-inertial positioning

Problem addressed

Low flexibility on production

· Original Line: Designed specifically for a single part and Mechanical positioning

 Models: 1->3 • SKUs: 12->32

Insufficient production speed on single robot basis

• Require higher equipment speed, larger floor space, and increasing investment costs to meet the **UPH** increase

Insufficient assembly accuracy

- Difficult to meet the assembly accuracy:
- positional: <0.05mm
- angular: <0.3 degree

Low efficiency rate of manual visual inspection

- CT=10s/pcs
- 0.5% escape

Implementation Scheme

- Dual robot arms are controlled by servo system can operate simultaneously, speed reach up 1500mm/s
- Multiple nozzle for placement
- Support 4 kinds of material part assembly at the same time
- Machine vision enables high speed image acquisition without blur picture issue.
- High performance image processing algorithms as Canny, Shape based matching, achieving 0.02mm assembly accuracy

- Dual 5 MPx cameras with high speed capture Coaxial lighting

enhancement

Canny Edge detection (50ms.frame)

based matching

Coordinate calculation Intelligent guidance High accuracy placement

High precision positioning for high accuracy placement

High flexibility

trigger technology

High

High

speed,

Precision

- Conveyor width can automatically adjust by a selected program
- Nozzle and feeder are standardized, easily replace
- Placement program integrating the vision-guide positioning is transited by a simple selection on machine UI

Al-deep learning algorithm enabled the precise visual inspection

High

high

speed,

precision, and high

flexibility

automatic

assembly

machine

Trained model

Inspection time: 8s/200 parts

 Accuracy: no escape, 0.1% NTF

Object detection by Yolo v8 for defect

- 182 machines interconnected through network chain
- Automatic collection of crucial, effective IoT data
- · Big data analysis, data modeling, and machine learning technique

Enhancement

Impact

Fungible automatic assembly line

Machine status real time monitor

Machine KPIs monitor AVI monitor system

↑ UPH 113% (498-> 1063 pcs)

↓ Defect rate 75% (0.2->0.05 %)

↓ Change over time 88% (4->0.5 h)

Case 3: Real-time shop floor compliance management with panoramic AI vision

Problem addressed

Increase efforts dedicated to routine safety surveillance inspections.

- 2 guards patrol 5+ ares with 10+ safety check items
- Safety risks were not detected and alerted to the management team in real-time.

Complex and cumbersome security loading to meet IP protection request

- Personal & material control
- Abnormal cases unable to report in real-time and lack tracability.

Manual manipulation lacks stability, leading to quality risks.

- Subjective judgments and visual fatigue
- OBA rejection rate = 0.5%

Implementation Scheme

Smart Patrol

- Virtual Reality Onsite Roamin
- Al Abnormality Detection and Alerting
- Dashboard Integration

Smart Security

- Abnormal Behavior Detection
- Virtual Security Guards
- Abnormality Tracing and Analysis

Behavior Auditing

- Personal Behavior Analysis
- Intelligent Decision Making: Go/No-Go
- Automated Abnormality Reporting

Data Collection

4K HD Live 360° camera

- Highly Concerned Area
- ① IT Room
- ② Battery Charging Room
- ③ Receiving & Shipping Dock
- 4 High valued material warehouse
- ⑤ Fire Exits
- Production Shop Floor

Impact

Global Safety Monitoring and Management System

- Develop standardized safety requirements for all facilities across different regions.
- **↓ IDL (Compliance Auditing) 67% (12->4 /Shop** Floor)
- ↓ MMAR (Million Man-hours Accident Rate)83% (2->0.35)
- **↓** OBA Rejection Rate 100% (0.5%->0%)
- **↓** Customer Complaints 100%

(Workmanship Issues, 3/year->0)

Case 4: AR enabled remote guidance and personnel training

Problem addressed

Engineering technology transfer and inheritance are slow

- Due to the language barrier, the improvement of local engineers' technical skills is slow
- Insufficient experience and engineering capabilities, long cycle time of equipment troubleshooting

Working skills training requires long cycle

- Language barrier leads to long training cycle
- Training and examination lack of systematic traceability

Equipment and safety inspection rely on manual recording

- The abnormalities recorded manually, which is error-prone and inefficient.
- The reports are not generated & uploaded to the BBS system automatically

Implementation Scheme

AR remote collaboration - Equipment troubleshooting

- Real time communication
- Document sharing
- · Real time Interaction
- Language translation simultaneously
- · 4x digital zoom

AR skill training and examination (SMT-AOI/SMD/VI)

- Rapid courseware creation
- Auto score for test results
- Data-driven training guidance reinforcement

AR Equipment and safety inspection(Printer/Routing/ Safety Facilities)

- Equipment Inspection Guide (Automatic Identification & Display)
- Inspection reports are generated & uploaded automatically
- Inspection abnormal record are automatically pushed to the responsible person

Developed by Fii RD independently

AR Headset	
Display	1920x1080, Si-OLED + Freeform Light Guide
Optics	34° FOV; 6x5mm Eye Box@20mm Eye Relief
Camera	2MP RGB Camera
Audio	Mic x 2, Speaker x 2
I/O	USB 3.1 Type C with DP Sink
Sensor	6-axis IMU (Accelerometer, Gyro), Magnetometer, ALS
Dimensions	208.9 x 83.9 x 38.2 mm
Weight	248g

Impact

AR working guidance

Remote collaboration

Training and examination

Equipment maintenance and safety inspection

- **↓** MTTR 80% (2→0.4 hours)
- **↓** IDL (maintenance) 50% (40→20 persons)
- **↓** Training Cycle Time 67% (3→1 Day)
- **↓** Equipment Inspection Time 50% (2→1 Day)

Case 5: LLM enabled failure log analysis and anomaly handling

Problem addressed

Local engineers lack of maintenance experience lead to long handling time and capacity loss.

Increasing volume of automation equipment(100,000 logs/yr from 182 machines) results in rising of maintenance engineering cost.

Precious experience among experienced engineers not easy to consolidate and pass down to new coming workers.

More machines

How to maintain the machine more accurately, more simply and faster?

Implementation Scheme

Utilizing the LLM model and RAG

(Retrieval-Augmented Generation) technology:

- Able to retrieve historical record from the enormous knowledge base and filter out the most related information.
- Consolidate the related questions and generate the precise and accurate answers, supporting engineers to take real-time actions.
- Based on questions and answers, generate charts for display automatically.

Impact

Comprehensive digital employee assistant for maintenance

Auto-generate data/charts for display

- **↓** Unplanned downtime 90% (2->0.2 h/day)
- ↓ IDL (maintenance) 50% (40->20 persons)

Case 6. Al enabled quality improvement

Problem addressed

 Poor quality control for pressing process; press force varied among different press machine; no data, no traceability for the abnormal of press force applied to the product

- Lack of preventive measures: not able to detect the abnormality of press force in real time;
- Low yield: defect rate 0.9%
- Difficult in machine calibration and parameters adjustment

Implementation Scheme

- Developed and deployed SW tools to collect the pressure data in real time by installing pressure sensors & controllable compressed air sensors on more than 20 machines in the automation lines
- Utilizing logistic regression AI models to regulate pressing processes, which realize the precise control of the press force for each machine
- Automatic adjustment of input air pressure based on the AI recommendations

Interact with MES for real time quality control

Process Data

Impact

- Pressure data collecting and monitoring in real time
- Pressure adaptive control by logistic regression AI models
- Innovation of quality control for pressing process

- **↓** Assembly defect rate 89% (0.9% -> 0.1%)
- **↓** IDL (Maintenance) 50% (40 -> 20 persons)