Analyzing Parameter Sensitivity in a Mathematical Model of the Ovulatory Cycle

YU Sheng and Dr. Erica J. Graham

Department of Mathematics, Bryn Mawr College, Bryn Mawr, PA

BRYNMAWR

COLLEGE

ABSTRACT

Infertility in women is commonly caused by polycystic ovary syndrome (PCOS), which is characterized by some combination of elevated androgen levels, ovulatory dysfunction and a polycystic ovary morphology. Thus studying the factors causing PCOS would be helpful to solving the infertility problem. Although the mysteries behind PCOS are still completely unsolved, with the help of mathematical modeling, we can reduce the problem into smaller pieces and generate helpful information. Given an existing mathematical model of pituitary regulation and follicle dynamics within the ovulatory cycle, we examine further the accuracy and utility of the model through its associated variables and parameters. With more than 40 parameters, most of which are unknown, there is significant uncertainty in estimating model parameters to fit published data. Furthermore, a small deviation in one parameter may cause large difference in the final result. We seek to determine the sensitivity of the model to the unknown parameters using global sensitivity analysis. A combination of the Latin hypercube sampling (LHS) scheme and partial rank correlation coefficient (PRCC) analysis is applied to accomplish this. Results from this analysis can then be used to identify the biological implications of sensitive parameters and further refine the model.

METHODS: LHS AND PRCC

- Assign probability function to each parameter. In this project we use normal distribution, and the standard deviation of each parameter is 0.2 times its mean value.
- The actual item size used in the project is equal 100. But here for easier presentation, we assume item size is 5. Thus divide each interval into 5 subintervals. Using the example of δ_l and n.

▶ Calculate the *Y* values by each group of *X* values. Assume in this case $y_5 < y_3 < y_1 < y_4 < y_2$. Then rank the values from small to large.

▶ Calculate PRCC using X_r and Y_r :

$$r_{xj,y} = \frac{Cov(x_j, y)}{\sqrt{Var(x_j)Var(y)}} = \frac{\sum_{i=1}^{N} (x_{ij} - \hat{x})(y_i - \hat{y})}{\sqrt{\sum_{i=1}^{N} (x_{ij} - \hat{x})^2 \sum_{i=1}^{N} (x_i - \hat{y})^2}}$$

$$j = 1, 2, ..., K$$

▶ Bootstrap simulations to gather significant number of PRCC values. Test for significance test using a *t* test. Compare the PRCC for each parameter with that of dummy variable in 99 percent confidence level. Dummy variable, introduced by Marino et al. (2008), eliminates the effect of natural variance in the model.

ACKNOWLEDGEMENTS

YS acknowledges the support of the Frances Velay Women's Science Research Fellowship Program grant

Mathematical Model of the Ovulatory Cycle

PARAMETERS

Parameter		Units	Mean	Standard Deviation	Par	ameter	Units	Mean	Standard Deviation
S	$C_{F,E}$	$(ng/L)^{-2}$	2.273×10^{-3}	4.546×10^{-5}		c_{T,F_2}	μg/L	123.8136	2.4763
	$C_{F,I}$	_	1.9488	3.898×10^{-2}	Fitted Parameters	δ_E	1/d	1.1	0.022
	$C_{F,P}$	$(\mu g/L)^{-1}$	60.428	1.209		δ_P	1/d	0.5	0.01
Fitted Parameters	$C_{L,E}$	$(ng/L)^{-1}$	1.0404×10^{-3}	2.0808×10^{-5}		δ_T	1/d	5.5	0.11
aran	$C_{L,P}$		9.9415×10^{-3}	1.9883×10^{-4}		e_0	$ng/L \cdot d$	44.512	0.8902
ed P	$C_{L,T}$	$(ng/L)^{-1}$	9.5942×10^{-3}	1.9188×10^{-4}		η		1.1087	2.2174×10^{-2}
Fitt	δ_F	1/d	8.21	0.1642		h_3	$\mu g/L$	17.796	0.3559
	δ_L	1/d	14	0.28		K_1	_	1.09	2.18×10^{-2}
	K_F	1/d	2.5412	5.0824×10^{-2}		K_2	$\mu g/L$	22.2865	0.4457
	$K_{F,I}$	μg	107.01	2.1402		K_3	$(\mu g/L)^2$	113.9188	0.3559
	$K_{iL,P}$	μg/L	0.3495	46.9904×10^{-3}		p	$1/L \cdot d$	0.3734	7.468×10^{-3}
	$K_{L,T}$	ng/L	420	8.4		t_0	ng/L	741.68	14.8336
	K_{mL}	μg/L	183.56	3.6712		t_1	ng/Lµgd	0.5709	1.1418×10^{-2}
	K_L	$\mu g/L$	0.3495	1.4913×10^{-2}		t_2	ng/Lµgd	1.3481	2.6962×10^{-2}
	n	_	8	0.16		$ au_1$	_	5.3989	0.1080
	V	1	2.5	0.05		$ au_2$	_	0	_
	v_{0L}	$\mu g/d$	1051.7	21.034		τ_3	μg	430.91	8.6182
	v_{1L}	μg/d	34838	696.76		t_{g1}	ng/Lµgd	6.6548	0.1331
	v_F	$\mu g/d$	3236.6	64.732		t_{g2}	1/d	186.27	3.7125
	$c_{/Phi,F}$	$(\mu g/L)^{-1}$	1.127×10^{-2}	2.254×10^{-4}		Ψ	μg	2004.3	20.086
	δ_s	1/d	0.74702	1.494×10^{-2}		FSH	$\mu g/L$	142.5	_
	f_0	$(\mu g/d)^{-1}$	2.5112×10^{-3}	5.0224×10^{-5}		LH	$\mu g/L$	25.34	_
	f_1	1/d	4.3764	8.7528×10^{-2}		FSH_{ρ}	μg	116.82	_
	f_2	1/d	27.812	0.5562		LH_{ρ}	μg	250.35	_
	h_1	$(\mu g/L)^{-1}$	590.32	11.8064		Φ	μg	0.5019	_
	h_2	$(\mu g/L)^{-1}$	1815.3	36.306		Ω	μg	9.7509	_
	h_P	$(\mu g/L)^{-1}$	20.764	0.4153		Λ	μg	4.102	_
	h_s	$(\mu g/L)^{-1}$	12.329	0.2466		S	_	0.050498	_
	1	1/ <i>d</i>	0.4902	9.8034×10^{-3}		T_y	ng/Lµg	0.003999	_
	m		4	0.08		T	ng/L	273.67	_
	\hat{s}	1/d	2.378	4.756×10^{-2}		E_2	ng/L	56.387	_
	w	1/d	0.2317	4.6346×10^{-3}		P_4	ng/mL	0.468	_

*Standard deviation value is calculated by 0.02 times mean value. Last twelve rows are initial conditions of variable used in the model, thus no standard deviation needed.

RESULTS: SENSITIVITY ANALYSIS

Figure: PRCC values of each parameter at t = 5. $\tau_2 = 0$ always and is omitted. PRCCs significantly different than those of dummy variable are indicated with a star.

RESULTS: TIME-DEPENDENT PRCC

Figure: Change in PRCC as a function of time for the three most sensitive parameters, V, $C_{\Phi,F}$, and w.

Summary

- ▶ Through global sensitivity analysis and *t* tests, we found three very sensitive parameters, which will largely influence model results when changed.
- ▶ The PRCC is time-sensitive, possibly altering the conclusions of the global sensitivity analysis.
- Further work will determine how time-sensitivity influences parameter sensitivity and identify whether a single time point exists that characterizes global sensitivity.

BIBLIOGRAPHY

- S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner *A methodology for performing global uncertainty and sensitivity analysis in systems biology*, 2008.
- Erica J. Graham, James F. Selgrade A model of ovulatory regulation examining the effects of insulin-mediated testosterone production on ovulatory function,2017