Lab 1B: Stability

Weichien Liao 2018/9/19

Review

Stability

 A stable algorithm gives nearly the right answer to nearly the right question.

Stability

An algorithm $ilde{f}$ for a problem f is **stable** if for each $x \in X$,

$$\frac{||\tilde{f}(x) - f(\tilde{x})||}{||f(\tilde{x})||} = \mathcal{O}(\epsilon_{\text{machine}})$$

for some $ilde{x}$ with

$$rac{|| ilde{x} - x||}{||x||} = \mathcal{O}(\epsilon_{ ext{machine}})$$

Backward Stability

 A backward stable algorithm gives exactly the right answer to nearly the right question.

 If an algorithm always produces small backward errors, then it is stable.

Backward Stability

An algorithm \tilde{f} for a problem f is **backward stable** if for each $x \in X$,

$$\tilde{f}(x) = f(\tilde{x})$$

for some $ilde{x}$ with

$$\frac{||\tilde{x} - x||}{||x||} = \mathcal{O}(\epsilon_{\mathrm{machine}})$$

Hands on

Lab 1B

Consider the function,

$$f(x) = \frac{e^x - 1}{x}$$

Question: How to compute f?

Lab 1B

Compare two ways to compute f:

Using the following sequence (direct calculation)

$$y_1 = e^x$$
, $y_2 = y_1 - 1$, $y_3 = y_2/x$

Using the following expansion (truncated series)

$$f(x) = 1 + \frac{1}{2!}x + \frac{1}{3!}x^2 + \cdots$$

Lab 1B Direct Calculation Error

Lab 1B Truncated Series Error

