Формальные грамматики. HW#2

Typaeв Тимур, SPbAU, SE, 6Ø4 group

1. Постоить обыкновенную грамматику в нормальном виде Хомского для языка Дика $D = \{\varepsilon, ab, aabb, abab, aaabbb, \ldots\}$ над алфавитом $\{a,b\}$. Для этой грамматики и для входной строки $w = abaabba \notin D$, построить таблицу разбора $T_{i,j}$, как в алгоритме Кокка-Касами-Янгера.

Обыкновенная грамматика не в нормальной форме:

$$S \to aSb \mid SS \mid \varepsilon$$

Приведем эту грамматику к нормальной форме Хомского:

ullet Удалим длинное правило S o aSb

$$S \to Tb \mid SS \mid \varepsilon$$

$$T \to aS$$

• Удалим ε -правила:

$$S \to C \mid \varepsilon$$

$$C \to Tb \mid CC$$

$$T \to a \mid aC$$

• Удалим цепные правила:

$$S \to Tb \mid CC \mid \varepsilon$$

$$C \to Tb \mid CC$$

$$T \to a \mid aC$$

• Последний шаг: заменим терминалы на нетерминалы (бесполезных символов в грамматике нет):

$$\begin{split} S &\to TB \mid CC \mid \varepsilon \\ C &\to TB \mid CC \\ T &\to a \mid AC \\ A &\to a \\ B &\to b \end{split}$$

Таблица разбора в алгоритме Кокка-Касами-Янгера:

	a	b	a	a	b	b	a
a	$\{A, T\}$	$\{S, C\}$	Ø	Ø	Ø	$\{S, C\}$	Ø
b		$\{B\}$	Ø	Ø	Ø	Ø	Ø
a			$\{A, T\}$	Ø	$\{T\}$	$\{S, C\}$	Ø
a				$\{A, T\}$	$\{S, C\}$	Ø	Ø
b					$\{B\}$	Ø	Ø
b						$\{B\}$	Ø
a							$\{A, T\}$

По значению отсутствию нетерминала S в $T_{0,7}$ видно что да, данная строка не принадлежит языку.

- 2. Рассмотреть работу алгоритма Валианта для грамматики, построенной в прошлом упражнении. Среди всех действий, производимых алгоритмом, найти то произведение булевых матриц, после вычисления которого станет верным условие $S \in f(P_{0,6})$, где S начальный символ грамматики. Описать, когда и как именно вычисляется это произведение то есть, какая процедура, вызванная с какими значениями, и какой оператор в ней умножает какие две булевы матрицы какого размера, каков результат умножения, и какие элементы $P_{i,j}$ будут этим затронуты?
- 3. Замкнут ли класс LL языков относительно пересечения с регулярными языками? Если замкнут, привести построение, а если незамкнут, привести пример LL грамматики и регулярного языка с доказательством несуществования LL грамматики для их пересечения

Рассмотрим такой язык L_1 (он задает все строки четной длины, первая половина которых состоит только из букв a, а вторая – из любых сочетаний букв b и c):

$$L_1 = \{a^n (b|c)^n \mid n \geqslant 0\}$$

Это LL(1)-язык, для него можно построить такую грамматику:

$$S \to aSB \mid \varepsilon$$
$$B \to b \mid c$$

и следующую таблицу разбора:

Наряду с L_1 рассмотрим язык L_2 , задающий все слова, в котором сначала идет какое-то (возможно нулевое) число букв а, а затем какое-то (возможно нулевое) число букв b:

$$L_2 = \{a^n b^m + a^n c^m \mid n, m \ge 0\}$$

Это тоже LL(1)-язык, для него можно построить такую грамматику:

$$\begin{split} S &\to AE \\ A &\to aA \mid \varepsilon \\ E &\to bB \mid cC \mid \varepsilon \\ B &\to bB \mid \varepsilon \\ C &\to cC \mid \varepsilon \end{split}$$

и следующую таблицу разбора:

	a	b	\mathbf{c}	arepsilon
\overline{S}	$S \to AE$	$S \to AE$	$S \to AE$	$S \to AE$
\mathbf{E}	_	$\mathrm{E} o \mathrm{bB}$	$E \to cC$	$E \to \varepsilon$
В	_	$\mathrm{B} \to \mathrm{bB}$	_	$B \to \varepsilon$
\mathbf{C}	_	_	$\mathrm{C} \to \mathrm{c}\mathrm{C}$	$C \to \varepsilon$

Кроме того, этот язык, очевидно, является регулярным:

Пересечением этих языков является язык L_3 :

$$L_1 \cap L_2 = L_3 = \{a^n b^n + a^n c^n \mid n \geqslant 0\}$$

который, как мы знаем, не является LL(k) ни для какого k (см пример 8.4 конспекта 11 лекции). Отсюда делаем вывод, что класс LL языков не замкнут относительно пересечения с регулярными языками.