OSI Model Compared to TCP/IP

IP Address: Representation in Dotted Decimal Notation

IP Address: Two Levels of Hierarchy

IP Address : Classes ??

	First byte	Second byte	Third byte	Fourth byte
Class A	0			
Class B	10			
Class C	110			
Class D	1110			
Class E	1111			

IP Address: Subnet and Subnet Mask

Class	Default Subnet	Subnet Mask
Class A	/8	255.0.0.0
Class B	/16	255.255.0.0
Class C	/24	255.255.255.0

IP Address: Private IP Address Space

Range	Total Hosts
10.0.0.0 - 10.255.255.255	2 ²⁴
172.16.0.0 - 172.31.255.255	2 ²⁰
192.168.0.0 - 192.168.255.255	216

NAT: Network Address Translation

Site using private addresses

MTU: Maximum Transmission Unit

Frame

IPV4 Frame Format

IPV4 Frame Format: Description

- □ VER => Defines the Version of IP.
- □ HLEN => Header Length
- DS => Differentiated Service. Defines the Class of Packet for QoS.
- Total Length => Length of Data = Total Length-Header Length.
- Identification
 - When datagram is Fragmented => Identification copied to all.
 - All Fragments have the same Identification.
 - Helps in Reassembling the datagram.

Flags

- 3 Bits => Reserved, MF and DF
- DF => Don't Fragment.
- □ MF => More Fragment.

IPV4 Frame Format: Description

- Fragmentation Offset => Offset value of Fragment.
- TTL => Time To Live. If TTL =0 Then Packet is discarded.
- Protocol
 - Defines Higher Layer Protocols.
 - Higher Layer Protocols => TCP, UDP.
- Checksum => Computes Checksum
- Source IP Address => IP Address of Source Machine.
- Destination IP Address => IP Address of Destination Machine.
- Option => Optional Field Used for Network Testing and debugging.

Header Checksum Calculation

Question ??

- The Asia Pacific Network Information Center (APNIC) has to provide service to 8 Local ISPs from the network pool of 17.10.0.0/20. From the available pool each Local ISP has to provide service to their Six (6) dedicated clients.
- Design the complete IP Address Plan which includes IP Pool,
 Usable IP Pool and Subnet Mask for each network.

IPV6: Internet Protocol Version 6

- It is Known as Internetworking Protocol Next Generation (IPng).
- It is suitable for Fast growing Internet.
- It is also suitable for Next Generation Networks (NGN).
- Features
 - Larger Address Space (128 Bit Address Space).
 - Supports Resource Allocation via Flow Control Field.
 - Supports More Security.
 - Better Header Format (Base Header and Extension Header)

IPV6: 128 Bit Addressing Scheme

Unabbreviated FDEC BA98 0074 3210 000F BBFF 0000 FFFF FDEC BA98 74 3210 F BBFF 0 FFFF Abbreviated

IPV6: Abbreviated Address

IPV6: Header Format (Base Header + Extension Header)

1							
	VER	PRI	Flow label				
		Payload	l length	Next header	Hop limit		
	Source address						
	Destination address Payload extension headers						
		Γ	+ Data packet from	the upper layer	,		

IPV6: Header Format Description

- □ VER (4 Bits) => Specifies the Version of IPV6.
- Priority (4 Bits) => Defines the Priority of Packet.
- Flow Label (24 Bits) => Used for Resource Reservation.
- Payload Length (16 Bits)
 Total Length of IP Datagram Excluding Base Header.
- Next Header (8 Bits)
 Provides Information about Extension Header.
- Hop Limit (8 Bits) => Same as TTL in IPV4.
- Source Address => 128 Bit Source IPV6 Address
- Destination Address => 128 Bit Destination IPV6 Address

IPV6 Transition strategies

- Tunneling
- Dual Stack
- Header Translation

IPV6 Transition: Tunneling

IPV6 Transition: Dual Stack

IPV6 Transition: Header Translation

Thank You