at (0,0)Constants child node at (-1,0)Fixed child node at (1,0)Arbitrary;

A rule associating a unique output to a given input.

Limit

Limit of variable

A constant a is said to be the limit of the variable x, if

where δ is a pre-assigned positive quantity as small as we please.

Limit of a Sequence

Sequence

A sequence is a function whose domain is N. Given a function $f: N \to R$, f(n) is the nth term on the list. The notation for sequences reinforces this familiar Unders

Each of the following are common ways to describe a sequence. [(i)] $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots)$ $(\frac{1+n}{n})_{n=1}^{\infty} = (\frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \cdots)$ (a_n) , where $a_n = 2^n$ for each $n \in N$ (x_n) , where $x_1 = 2$ and $x_{n+1} = \frac{x_n+1}{2}$ Convergence of a Sequence

A sequence (a_n) converges to a real number a if

To indicate that (a_n) converges to a, we write either $\lim a_n = a$ or $(a_n) \to a$. ϵ -neighbourhood and δ -neighbourhood

 ϵ -neighbourhood:

δ -neighbourhood:

Convergence of a Sequence: Topological Version

A sequence (a_n) converges to a if, given any ϵ -neighbourhood $U_{\epsilon}(a)$ of a, there exists a point in the sequence after

The natural number N in the original version of the definition is the point where the sequence (a_n) enters $U_{\epsilon}(a)$, no Prove that

Let's consider an arbitrary $\epsilon > 0$. Choose $N \in N$ with $N > \frac{1}{\epsilon}$. To verify that the choice of N is appropriate, let n ϵ

To prove the previous example, let's work in the backward direction. To prove the convergence, we have to make su

So, we have to find out when or where $n>\frac{1}{\epsilon}$ is true. If we choose $N>\frac{1}{\epsilon}$, our statement holds, and thus we prove the convergence of a sequence, that the following sequences converge to the proposed limit $[(\mathbf{a})]\lim\frac{1}{6n^2+1}=0\lim\frac{3n+1}{2n+5}=\frac{3}{2}\lim\frac{2}{\sqrt{n+3}}=0$ (a) Let's consider $\varepsilon>0$. Choose $N\in N$ with $N>\frac{1}{\sqrt{6\varepsilon}}$. For any $n\geq N$

which finally gives

- (b) For $\varepsilon > 0$, let's choose $N \in N$ such that $N > \frac{13}{4\epsilon}$. Now, let there be $n \in N$ and $n \ge N$. Hence, $n \downarrow 13 \frac{1}{4\varepsilon or, \varepsilon > \frac{13}{4\pi}}$.
- (c) For $\varepsilon > 0$, let's choose $N > \frac{4}{\varepsilon^2}$. Let there be $n \ge N$. Hence, n $\frac{1}{\varepsilon^2} \frac{4}{\varepsilon^2 \varepsilon^2 > \frac{4}{2} \varepsilon > \frac{2}{\sqrt{\kappa}}}$

Scratch works for solving previous examples

(a)
$$\left| \frac{1}{6n^2+1} - 0 \right| < \varepsilon$$

 $6n^2 + 1 > \frac{1}{\varepsilon}$
 $n^2 > \frac{1}{6\varepsilon} - \frac{1}{6}$
 $n > \frac{1}{\sqrt{6\varepsilon}}$

Bounded Sequence

A sequence (x_n) is bounded if