Grupo 10		Primer Control de Seguretat Informàtica			Q1: 11-10-2019
Nombre:		Apellidos:			
 Test. 3 puntos. Tiempo de resolución estimado: 20 minutos Las preguntas pueden ser Respuesta única (RU). Una respuesta RU correcta cuenta 0.3 puntos. Multirespuesta (MR). Una respuesta MR correcta cuenta 0.3 puntos, la mitad si hay un solo error, 0 en los otros casos. En las MR puede haber desde una hasta todas respuestas correctas. 					
 MR. Marca la o las afirmaciones correctas ☐ Generalmente el algoritmo de cifrado es secreto y el de descifrado es publico ☐ Los algoritmos de cifrado y descifrado son secretos en la criptografía simétrica, mientras que son públicos en la criptografía asimétrica ☐ La clave común entre los dos extremos es secreta en la criptografía simétrica ☐ En la criptografía asimétrica, se usa un algoritmo de cifrado publico y uno privado 3. MR. Una clave secreta en un cifrado simétrico se puede intercambiar entre los usuarios A y B 			2. RU. Según el criterio de Shannon, un cifrado debería garantizar □ Distribución y privacidad □ Confidencialidad e integridad □ Difusión y autenticidad □ Autenticidad y unicidad □ Privacidad e integridad □ Confusión y difusión □ Confidencialidad y autenticidad □ Distribución y confusión 4. RU. Si Alex quiere verificar que Bárbara ha firmado un documento digitalmente		
 □ cifrando la clave con la clave misma □ usando el algoritmo de Diffie-Helmann □ si A envía a B la clave secreta cifrada con la clave privada de A y B descifra con la clave pública de A □ usando el algoritmo de ElGamal 			 □ Alex debe conocer la función de Hash que ha usado Bárbara y la clave privada de Bárbara □ Alex solo necesita la clave pública de Bárbara □ Alex solo necesita la clave privada de Bárbara □ Alex debe conocer la función de Hash que ha usado Bárbara y la clave pública de Bárbara 		
5. MR. El algoritmo ElGamal ☐ Es usado para la firma digital ☐ Se puede usar para cifrar una clave privada en la criptografía hibrida ☐ Permite generar una clave publica y una privada en criptografía asimétrica ☐ Usa varias rondas de permutaciones y mezclas entre un texto y la clave privada			6. MR. El objetivo principal de la criptografía es proteger □ La confidencialidad, integridad y disponibilidad de los datos □ La reputación □ La unicidad y fiabilidad de los datos □ Los recursos □ La autenticidad, encriptación y certificación de los datos □ La repercusión		
7. MR. Marca la o las respuestas correctas ☐ OTP usa claves secretas aleatorias de un único uso ☐ AES es un algoritmo de cifrado simétrico en bloques ☐ RSA es un algoritmo de cifrado de flujo ☐ Diffie-Helmann es un algoritmo de cifrado asimétrico			□ Exor	ganizaciones apliquen po as personas suelen ser el o oy en día principalmen ganizado	nte está amenazada por el crimen ma casi del todo resuelto y ya se
9. MR. Indica cuales de siguientes modelos son de confianza en PKI Modelo plano Modelo puro Modelo distribuido Modelo de certificación cruzada jerárquica Modelo de lista de confianza jerárquica			Certi Co Co Pu cri Ce	ificate Authority (CA) rman digitalmente y por nfianza que asocia una en neden opcionalmente g iptografía simétrica ertifican la confianza de o	nen a disposición un certificado de ntidad con su clave pública generar la clave secreta en la otras CA npo en los documentos firmados con

Grupo 10	Primer Control de Seguretat Informàtica	Q1: 11-10-2019
Nombre:	Apellidos:	

Problemas. 7 puntos.

Tiempo de resolución estimado: 35 minutos.

1) Tiempo de resolución estimado: 10 minutos

Alex ha usado RSA para determinar su clave publica y su clave privada. En concreto, ha usado p = 37, q = 29 y e = 17. Calcula la clave pública y privada de Alex

2) Tiempo de resolución estimado: 10 minutos

Alex y Bárbara quieren usar una clave privada para crear un canal seguro usando criptografía AES. Eligen un grupo cíclico finito G de 31 y un generador $\alpha = 3$. Luego, Alex elige el número 8 y Bárbara elige el número 7. Describe que valores se intercambian y que clave privada usaran.

3) Tiempo de resolución estimado: 15 minutos

Alex quiere enviar el mensaje 99 a Bárbara cifrándolo usando ElGamal. Alex obtiene el certificado de Bárbara donde consta que su clave pública es (3, 149, 101) y elige el número aleatorio 14. Determina el mensaje cifrado de Alex a Bárbara.

Algoritmos

▶ A

- Elige un número a∈G
- Computa el valor α^a mod n
- ▶ Envía el resultado a B

▶ B

- ▶ Elige un número b∈G
- $\blacktriangleright \ \ \text{Computa el valor} \ \alpha^{\text{b}} \ \text{mod n}$
- Envía el resultado a A

▶ A

- Recibe α^b mod n
- ▶ Computa $(\alpha^b \mod n)^a \mod n = X$

▶ B

- Recibe α^a mod n
 - ► Computa $(\alpha^a \mod n)^b \mod n = X$

ightharpoonup Se computa $n=p\cdot q$, donde n será la base del grupo cíclico \mathbb{Z}_{n}

- Se computa la función de Euler $\Phi(n) = (p-1) \cdot (q-1)$
- $lackbox{ Se elige un entero e menor que $\varPhi(n)$ y que sea coprimo de $\varPhi(n)$}$
- Se determina $d = e^{-1} \mod \Phi(n)$
- ▶ El mensaje se cifra con

 $c = m^e \mod n$

Se descifra con

 $m = c^d \mod n$

Exponentiation by squaring (a,z,n) $x = a^z \mod n$

```
\begin{array}{c|c} \textbf{begin} \\ \hline & x=1; \\ z^1 = \text{binary representation of } z; \\ \text{// starting by the most significant bit} \\ \textbf{foreach } bit \ z_i^1 \in z^1 \ \textbf{do} \\ \hline & x=x^2 \ \text{mod } n; \\ \hline & \text{// multiply } x \ \text{by } a \ \text{if } z_i^1 \ \text{is equal to one} \\ \hline & \textbf{if } z_i^1 ==1 \ \textbf{then} \\ \hline & \bot \ x=x \cdot a \ \text{mod } n \\ \hline & \textbf{return } x \\ \hline \end{array}
```

- ▶ Se elige un grupo cíclico finito G de orden n
- ▶ Un elemento α de este grupo $\alpha \in G$
- Un usuario A
 - Elige un número aleatorio a
 - Calcula α^a mod n
 - La clave pública es (α, G, α^a)
- ▶ Si B quiere enviar un mensaje $m \in G$ a A, entonces debe
 - ightharpoonup Elegir un número aleatorio b y calcular $lpha^b$ mod n
 - Calcular el mensaje cifrado $c = m \cdot (\alpha^a)^b \mod n$
 - Enviar a A el mensaje (α^b, c)
- A recibe el mensaje cifrado

 - ▶ Calcula el mensaje en claro $m = c \cdot x^{-1} \mod n$