್ರತಿst Available Copy

PAT-NO:

JP411265341A

DOCUMENT-IDENTIFIER: JP 11265341 A

TITLE:

INPUT/OUTPUT BUS BRIDGE DEVICE

PUBN-DATE:

September 28, 1999

INVENTOR-INFORMATION:

NAME

COUNTRY

HIRATA, AKIRA

N/A

ASSIGNEE-INFORMATION:

COUNTRY

MITSUBISHI ELECTRIC CORP

N/A

APPL-NO:

JP10065801

APPL-DATE: March 16, 1998

INT-CL (IPC): G06F013/36, G06F007/00, G06F012/04

ABSTRACT:

PROBLEM TO BE SOLVED: To provide an I/O bus bridge system having a simplified Endian transformation function capable of accelerating the whole circuit operation by integration and operable frequency extension based on reduction in the number of wires and the suppression of a circuit scale.

SOLUTION: Data of each byte unit from byte lanes 1 to 4/5 to 8 in I/O buses are stored in a group of registers 11 having I/O bus width constitution and Endian transformation based on shift operation between adjacent byte lanes out of the lanes 1 to 8 is executed in accordance with a control signal generated from a control circuit 12 for determining the control signal based on inputted transfer data information (width/direction).

COPYRIGHT: (C)1999,JPO

06/08/2004, EAST Version: 1.4.1

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-265341

(43)公開日 平成11年(1999)9月28日

(51) Int.Cl. ⁶		識別記号	FΙ		
G06F	13/36	3 2 0	G06F	13/36	3 2 0 A
	7/00			12/04	510G
	12/04	5 1 0		7/00	R

審査請求 未請求 請求項の数4 〇L (全 9 頁)

		不同点面	不明れ 明不久の数寸 〇L(土 5 貝)
(21)出願番号	特願平10-65801	(71)出顧人	000006013 三菱電機株式会社
(22)出顧日	平成10年(1998) 3月16日	(72)発明者	東京都千代田区丸の内二丁目2番3号 平田 明
			東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内
		(74)代理人	弁理士 宮田 金雄 (外2名)

(54) 【発明の名称】 入出力パスプリッジ装置

(57)【要約】

【課題】 配線量軽減と回路規模抑制による集積化と動 作可能周波数拡張による回路全体動作の高速化を図る単 純化エンディアン変換機能による入出力バスブリッジ方 式を実現する。

【解決手段】 入/出力バス幅構成のレジスタ群11で 入/出力バスのバイトレーン1~4/5~8の各バイト 単位データに対し、保持をするとともに、別途入力する 転送データ情報 (幅/方向) により決定し生成する制御 回路12による制御信号に従い、互いに隣合うバイトレ ーン1~8を保持する当該相互間でシフト操作によるエ ンディアン変換を施すように、駆動・転送をする。

10: 入出力パスブリッジ装置

5~8:(1~4)のバスと異なるデータエンディアンを持つパスのパイトレーン

11: 各データを保持またはドライブを行う 8Bit レジスタ 12: 制御回路

【特許請求の範囲】

【請求項1】 互いに異なるエンディアンの入出力バス 間転送データに対し保持をするとともに、制御回路によ る制御信号に従い駆動・転送をする入出力バス幅構成の レジスタ群と、別途入力する転送データ情報により前記 レジスタ群の動作を決定する前記制御信号を生成する制 御回路とを備える入出力バスブリッジ装置において、前 記制御回路で前記転送データに対し当該データ幅に従い エンディアン変換を施すように前記レジスタ群の動作を 決定することを特徴とする入出力バスブリッジ装置。

【請求項2】 制御回路で互いに異なるエンディアンか つデータ幅の入出力バス間転送データに対しエンディア ン変換を施すようにレジスタ群の動作を決定することを 特徴とする請求項1記載の入出力バスブリッジ装置。

【請求項3】 制御回路で入出力バス幅よりも大きい転 送データに対しエンディアン変換を施すように別途設け る入出力バス幅よりも多い構成のレジスタ群の動作を決 定することを特徴とする請求項1記載の入出力バスブリ ッジ装置。

【請求項4】 互いに異なるエンディアンまたは互いに 20 異なるエンディアンかつデータ幅のメモリバスと入出力 バス間でダイレクトメモリ転送をするバスマスタ機能を もつ手段を別途設けることを特徴とする請求項1または 2記載の入出力バスブリッジ装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明はデータ処理/伝達 装置バスデータのエンディアン変換をする入出力バスブ リッジ装置に関する。

[0002]

【従来の技術】たとえば一般に示す従来の入出力バスブ リッジ装置10Cは図7のように、レジスタ11aは、 互いに異なるビッグエンディアン・データバスAとリト ルエンディアン・データバスBを分割し表現するバイト レーン1~4と5~8の各バイト単位データを保持・駆 動する。制御回路12Cは、転送データ情報(幅/方 向)を指定する別途入力をする制御信号に従いセレクタ 13の動作を決定する出力制御信号を生成する。セレク タ13は、制御回路12Cによる制御信号に従い、レジ スタ11経由バイトレーン1~4のデータに対し選択・ 分配をする。セレクタ13aは、制御回路12Cによる 出力制御信号に従い、セレクタ13による各出力に対し 選択・分配をし、レジスタ11経由バイトレーン5~8 のデータとして出力する。

【0003】上記従来の入出力バスブリッジ装置は、互 いに異なるエンディアン・データの入出力バス間で対象 データ幅に従いセレクタによるバイトレーン切替えをし エンディアン変換をする方式を採る。

【0004】上記図7に示す実施形態は図8のように、

ビッグエンディアン・データバスAとリトルエンディア ン・データバスBに対し図9(a)に示す互いに異なる エンディアンデータをもつデバイスAとBを接続し、図 9 (b) に示す4つのバイトレーンBL1とBL2とB L3とBL4に対しデータバスAとBの1~4と5~8 にそれぞれ対応するものとし、図9(c)と(d)に示 すデバイスAとBのメモリイメージで32ビットデータ OxFEDCBA98/16ビットデータOxABCD /16ビットデータO×1234/文字列データxyz 10 NULLに対しそれぞれアドレスOx000/Ox00 4/Ox006/Ox008に設定するものとすると、 データバスAとB間におけるアドレスOx000032 ビットデータOxFEDCBA98転送時(図8

2

(a))は、32ビット転送データ幅を指定する入力制 御信号に対し生成する制御回路12Cによる出力制御信 号に従い、データバスAのバイトレーンBL1とBL2 とBL3とBL4からデータバスBのバイトレーンBL 4とBL3とBL2とBL1にそれぞれデータOxFE とOxDCとOxBAとOx98を出力するように、各 セレクタ13間で転送する。アドレス〇×004と〇× 006の16ビットデータOxABCDとOx1234 転送時(図8(b))は、上記図8(a)と同じに制御 回路12Cによる出力制御信号に従い、データバスAの バイトレーンBL1とBL2とBL3とBL4からデー タバスBのバイトレーンBL2とBL1とBL4とBL 3にそれぞれデータOxABとOxCDとOx12とO x34を出力するように、各セレクタ13間で転送す る。アドレスOx008の8ピットデータxyzNUL L転送時(図8(c))は、上記図8(a)と同じに制 30 御回路12Cによる出力制御信号に従い、データバスA のバイトレーンBL1とBL2とBL3とBL4からデ ータバスBのバイトレーンBL1とBL2とBL3とB L4にそれぞれ文字列データxとyとzとNULLを出 力するように、各セレクタ間13間で転送する。

[0005]

【発明が解決しようとする課題】上記のような従来の入 出力バスブリッジ装置では、互いに異なるエンディアン ・データの入出力バス間で対象データ幅に従いセレクタ によるバイトレーン切替えをしエンディアン変換をする 方式を採るから、バイト単位データを保持するレジスタ 40 とセレクタ間の配線量が多くなり、また回路の複雑さ増 大に伴う入出力信号を保持するフリップフロップ間の遅 延時間が大きくなり、回路全体の動作を高速化できない 問題点があった。

【0006】この発明が解決しようとする課題は、入出 カバスブリッジ装置で上記問題点を解消するように、互 いに異なるエンディアン・データの入出力バス間で対象 データ幅に従い互いに隣合うバイトレーンを保持するレ ジスタによるデータシフト操作をしエンディアン変換を 入出力バスブリッジ装置10Cに接続する互いに異なる 50 する方式(単純化エンディアン変換機能による入出力バ 20

スブリッジ方式)を提供することにある。 [0007]

【課題を解決するための手段】この発明の入出力バスブ リッジ装置は、入出力バス幅構成のレジスタ群で互いに 異なるエンディアンの入出力バス間転送データに対し保 持をするとともに、別途入力する転送データ情報により レジスタ群の動作を決定し生成する制御回路による制御 信号に従い駆動・転送をするもので、上記課題を解決す るためつぎの手段を設け、単純化エンディアン変換機能 による入出力バスブリッジ方式を採ることを特徴とす

【0008】制御回路は、互いに異なるエンディアンの 入出力バス間転送データに対し、当該データ幅に従いエ ンディアン変換を施すようにレジスタ群の動作を決定す る。または互いに異なるエンディアンかつデータ幅の入 出力バス間転送データに対し、エンディアン変換を施す ようにレジスタ群の動作を決定する。または入出力バス 幅よりも大きい転送データに対し、エンディアン変換を 施すように別途設ける入出力バス幅よりも多い構成のレ ジスタ群の動作を決定する。

【0009】バスマスタ機能をもつ手段は、別途設け、 互いに異なるエンディアンまたは互いに異なるエンディ アンかつデータ幅のメモリバスと入出力バス間でダイレ クトメモリ転送をする。

[0010]

【発明の実施の形態】この発明の実施の一形態を示す入 出力バスブリッジ装置10は図1のように、制御回路1 2で対象データのバス幅を指定することにより、バイト 単位の転送データを保持するレジスタ11相互間のデー タシフト操作で動的にエンディアン変換(バイトの並び 順変換)をするとともに、入出力間でデータバス幅が異 なるときでも速度変換をするように構成する。レジスタ 11は、一般的なレジスタとセレクタでも構成できる が、2入力2出力構成とするのが望ましい。互いに異な るビッグエンディアン・データバスAとリトルエンディ アン・データバス Bを分割し表現するバイトレーン 1~ 4と5~8における各バイト単位データに対し、保持を するとともに、制御回路12による出力制御信号に従 い、互いに隣合うバイトレーン1~8を保持する当該相 し、駆動・転送をする。制御回路12は、転送データ情 報(幅/方向)を指定する別途入力する制御信号(読出 し/書込みストローブ信号、下位ビットアドレス信号、 ソフトウェア設定によるデータ幅を示すレジスタ出力信 号等)により、レジスタ11の動作を決定する出力制御 信号を生成する。従来のセレクタによるバイトレーン切 替えではなく、互いに隣合うバイトレーン間シフト操作 によるデータエンディアン変換をすることにより、配線 量軽減と回路規模抑制をし集積化でき、動作可能周波数 拡張をし回路全体の動作を高速化できる。

【0011】上記実施の形態の入出力バスブリッジ装置 は、互いに異なるエンディアン・データの入出力バス間 で対象データ幅に従い互いに隣合うバイトレーンを保持 するレジスタによるデータシフト操作をしエンディアン 変換をする方式(単純化エンディアン変換機能による入 出力バスブリッジ方式)を採る。

【0012】上記図1に示す実施形態は図2のように、 データバスAからBへの32ビットデータOxFEDC BA98転送時は、32ビット転送データ幅を指定する 入力制御信号に対し生成する制御回路12による出力制 御信号に従い、各バイトレーン1~4対応レジスタ11 の各設定データOxFEとOxDCとOxBAとOx9 8に対し、データの流れ101に沿って4回のシフト操 作によるエンディアン変換を施し、最終的に各バイトレ ーン5~6対応レジスタ11の各設定データOx98と OxBAとOxDCとOxFEとして転送する。各バイ トレーン4~1と5~8対応レジスタ11の各データ は、別途入力クロック信号Aに対しデータの流れ101 に沿ってB→C→D→E→F→G→H→Iの時系列動作 をする。 図3のように、データバスAからBへの16ビ ットデータOxABCD/Ox1234転送時は、上記 図2と同じに制御回路12による制御信号に従い、各バ イトレーン1~4対応レジスタ11の各設定データOx ABとOxCD/Ox12とOx34に対し、データの 流れ102に沿って2系統2回のシフト操作によるエン ディアン変換を施し、最終的に各バイトレーン5~6対 応レジスタ11の各設定データOxCDとOxABとO x34と0x12として転送する。各バイトレーン4/ 3と7/8対応レジスタ11の各データおよび各バイト 30 レーン2/1と5/6対応レジスタ11の各データは、 別途入力クロック信号Aに対しデータの流れ102に沿 ってB'→C'→D'→E'およびF'→G'→H'→ I'の時系列動作をする。図4のように、データバスA からBへの8ビット文字列データxyzNULL転送時 は、上記図2と同じに制御回路12による制御信号に従 い、各バイトレーン1~4対応レジスタ11の各設定文 字データxとyとzとNULLに対し、データの流れ1 03に沿ってデータバスAとBの同一バイトレーン対応 レジスタ11間のシフト操作によるエンディアン変換を 互間でシフト操作によるエンディアン変換を施すように 40 施し、最終的に各バイトレーン5~8対応レジスタ11 の各設定文字データxとyとzとNULLとして転送す る。各パイトレーン4~1と8~5対応レジスタ11の 各データは、別途入力クロック信号Aに対しデータの流 れ103に沿ってB"→C"とD"→E"とF"→G" とH" → I" の時系列動作をする。

> 【0013】なお上記図1に示す発明の実施の形態で図 5のように、たとえばバイトレーン7と8対応レジスタ 11を削除してもよい。互いに異なるデータバス幅のた とえば32ビットビッグエンディアン・データバスAと 50 16ビットリトルエンディアン・データバス B間データ

転送時に、上記と同じに互いに異なるバス幅の入出力デ ータに対しエンディアン変換ができる。上記図5に示す 実施形態は、16ビットデータ転送時でバイトレーン1 と2または3と4に有効データが存在するときは、制御 回路12aによる出力制御信号(下位2ピットアドレス 信号とデータ幅16ビットを示す信号) に従い、バイト レーン1と2または3と4対応レジスタ11の設定デー タに対し、バイトレーン $2\rightarrow 1\rightarrow 5\rightarrow 6$ または $4\rightarrow 3\rightarrow$ 2→1→5→6対応レジスタ11の順にシフト操作によ るエンディアン変換を施し転送する。8ビットデータ転 10 送時は、制御回路12aによる出力制御信号(下位2ビ ットアドレス信号)に従い有効な各バイトレーン1~6 対応レジスタ11のシフト操作によるエンディアン変換 を施し転送する。

【0014】また上記図1に示す発明の実施の形態で図 6 (a) のように、バイトレーン1~8対応レジスタ1 1に対しデータバス幅よりも多い構成たとえば4個のレ ジスタ11を追加してもよい。データバスAからBへの 64ビット(データバス幅よりも2倍大きい)データ転 送時に、上記と同じにバス幅よりも大きい入出力データ に対しエンディアン変換ができる。上記図6 (a) に示 す実施形態は、64ビットデータ転送時は、制御回路1 2 b による出力制御信号に従い、まずバイトレーン1~ 4対応レジスタ11に保持する1回目の32ビットデー タ(01,02,03,04)に対しシフト操作による エンディアン変換を施し、保持データ(04,03,0 2,01)としてバイトレーン5~8対応レジスタ11 に移動する。つぎに上記と同じに2回目の32ビットデ ータ(05,06,07,08)に対しエンディアン変 換を施し保持データ(08,07,06,05)として 30 アン変換ができる。 バイトレーン5~8対応レジスタ11に移動すると同時 に、1回目の保持データ(04,03,02,01)を 4個の追加レジスタ11に移動する。さらにエンディア ン変換された64ビットデータ(08,07,06,0 5,04,03,02,01)に対し、バイトレーン5 ~8対応レジスタ11の保持データ(08,07,0 6,05)出力に続き、4個の追加レジスタ11の保持 データ(04,03,02,01)をバイトレーン5~ 8対応レジスタ11に移動後出力をする。たとえば図6 (b) のように、64ビットデータOx0102030 40 405060708の転送時、バスAでは1回目と2回 目で32ビットデータOx01020304とOx05 060708を転送し、バスBでは1回目と2回目で3 2ビットデータOx05060708とOx01020 304を出力する。

【0015】また上記図1または図5に示す発明の実施 の形態で別途設けるDMA (direct memor y access) コントローラと組合せてバスマスタ 機能を付加し、制御回路12または12aの入力制御信 号として予めソフトウェア設定をするDMAコントロー 50 構成ブロック図。

ラ等によるレジスタ等デバイス出力信号を用いてもよ い。互いに異なるエンディアンまたは互いに異なるエン ディアンかつデータ幅のメモリバスと入出力バス間でダ イレクトメモリ転送ができる。

6

【0016】また上記図1に示す発明の実施の形態で別 途設ける8ビットまたは16ビットデータインタフェー スデバイスをバイトレーン5~8のいずれかのバスBに 接続することにより、バスAにおけるバイトレーン1~ 4の4つの1バイトデータを順次シフト操作でまたは2 つのバイトデータを2回ずつのシフト操作で、バスBの たとえば接続バイトレーン5または接続バイトレーン5 と6に1バイトずつまたは2バイトずつ出力してもよ い。バスAに接続する32ビットデータインタフェース デバイスとバスBに接続する8ビットまたは16ビット データインタフェースデバイス間のDMA転送時に有効 である。

[0017]

【発明の効果】上記のようなこの発明の入出力バスブリ ッジ装置では、互いに異なるエンディアン・データの入 出力バス間で対象データ幅に従い互いに隣合うバイトレ ーンを保持するレジスタによるデータシフト操作をしエ ンディアン変換をする方式を採るから、従来のように対 象データ幅に従いセレクタによるバイトレーン切替えを する方式に比べ、配線量軽減と回路規模抑制による集積 化ができ、動作可能周波数拡張による回路全体動作の高 速化ができるほか発明ごとにつぎの効果がある。

- (1) 互いに異なるバス幅の入出力データに対しエンデ ィアン変換ができる。
- (2) バス幅よりも大きい入出力データに対しエンディ
- (3) 互いに異なるエンディアンまたは互いに異なるエ ンディアンかつデータ幅のメモリバスと入出力バス間で ダイレクトメモリ転送ができる。

【図面の簡単な説明】

【図1】 この発明の実施の一形態を示す入出力バスブ リッジ装置の構成ブロック図。

【図2】 図1に示す入出力バスブリッジ装置の32ビ ットデータ転送時動作を説明する系統図とタイミング 図。

【図3】 図1に示す入出力バスブリッジ装置の16ビ ットデータ転送時動作を説明する系統図とタイミング

【図4】 図1に示す入出力バスブリッジ装置の8ビッ トデータ転送時動作を説明する系統図とタイミング図。

【図5】 この発明の実施の他の一形態を示す構成ブロ ック図。

【図6】 この発明の実施の他の一形態を示す構成プロ ック図とメモリイメージ図。

【図7】 従来の技術を示す入出力バスブリッジ装置の

【図8】 図7に示す入出力バスブリッジ装置の32/ 16/8ビットデータ転送時動作を説明する図。

【図9】 図8に示す入出力バスブリッジ装置の接続デ バイスとバイトレーンとを説明する図および互いに異な るエンディアンデータの配置とバイトレーン関係を示す メモリイメージ図。

【符号の説明】

1~4 データバスAのバイトレーン、5~8 データ バスBのバイトレーン、10、10a、10b 入出力 バスブリッジ装置、11 レジスタ、12、12a、1 2b 制御回路。

8

なお図中、同一符号は同一または相当部分を示す。

5~8:(1~4) のバスと異なるデータエンディアンを持つパスのバイトレーン

|||: 各データを保持またはドライブを行う 8Bit レジスタ ||||2: 制御回路

【図2】

D X BA X 98 X DC BA 98 X

> シフト操作 F (FE) DC (BA) 98 G (FE) DC (BA H X FR X DC i X FR

【図5】

【図7】

06/08/2004, EAST Version: 1.4.1

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.