Pismeni ispit

19. veljače 2013.

Ime i Prezime:

Matični broj:

Napomena: Zadatke obavezno predati s rješenjima nakon završetka testa.

1. zadatak (12 bodova)

Istosmjerni nezavisno uzbuđeni stroj ima sljedeće podatke: $P_n=18,5$ kW, $I_n=90$ A, $U_n=220$ V, nazivna brzina vrtuje $n_n=1150$ min $^-1$ i otpor armature $R_a=0,1\Omega$. Stroj se napaja iz četverokvadrantnog čopera čiji je ulaz spojen na U=440 V i pokreće teret s momentnom karakteristikom koja se mijenja prema izrazu $M_t=0.4M_n\left(\frac{n}{n_n}\right)^2+0.1M_n$. Moment trenja i ventilacije motora je konstantan.

- a) (5 bodova) Kolika je struja stroja ako je stroj trajno priključen na nazivni napon?
- b) (2 boda) Koliko bi trebao iznositi napon armature, da se stroj vrti brzinom $n = 200 min^{-1}$?
- c) (3 boda) Skicirati čoper. Koliki je faktor vođenja u b) dijelu zadatka uz bipolarnu, a koliki uz unipolarnu modulaciju?
- d) (2 boda) Nacrtati karakteristiku tereta i momentne karakteristike stroja za slučajeve a) i b) te označiti radne točke.

2. zadatak (6 bodova)

Ulazni napon upravljačkog sustava se mijenja prema referentnom signalu e_1 prikazanom na slici. Vrijeme t_1 dovoljno je veliko da se uspostavi stacionarna brzina vrtnje stroja. Kvalitativno skicirati vremenske odzive struje armature $i_a(t)$, brzine vrtnje $\omega(t)$ i kuta zakreta $\phi(t)$ neopterećenog motora. Uzbuda motora je konstantna.

3. zadatak (12 bodova)

Asinkroni kavezni motor i istosmjerni nezavisno uzbuđeni motor spojeni su na istu osovinu. Asinkroni stroj je napajan iz frekvencijskog pretvarača i skalarno upravljan U/f = konst. metodom u otvorenoj petlji, dok se istosmjerni motor napaja iz četverokvadrantnog čopera čiji je ulaz spojen na U = 220 V. Nazivni podaci asinkronog stroja su: $P_n = 15$ kW, $f_n = 50$ Hz, $U_n = 380$ V, $\cos \phi = 0,76$, $n_n = 1460min^{-1}$, a nazivni podaci istosmjernog stroja: $P_n = 13,5$ kW, $I_n = 74$ A, $U_n = 220$ V, $n_n = 1450$ min⁻¹, $R_a = 0,2\Omega$. Moment trenja i ventilacije asinkronog stroja se zanemaruje, a moment trenja i ventilacije istosmjernog stroja je konstantan.

- a) (5 boda) Izračunati moment trenja i ventilacije istosmjernog motora te odrediti brzinu vrtnje pogona ako je istosmjerni stroj priključen na nazivni napon, a asinkroni stroj je isključen (nije priključen na pretvarač).
- b) (7 bodova) Odrediti brzinu vrtnje pogona ako je asinkronom stroju zadana referentna frekvencija f_1 = 30 Hz, a čoper napaja istosmjerni stroj naponom U = 130 V.

4. zadatak (15 bodova)

Kaskadna struktura upravljanja brzinom istosmjernog motora prikazana je na slici 1, pri čemu pojedini parametri iznose: $K_a=4\,A/V$, $T_a=0.025\,\mathrm{s}$, $K=1.33\,\mathrm{Vs/rad}$, $K_t=44$, $T_{mi}=1.66\,\mathrm{ms}$, $K_i=0.1\,\mathrm{V/A}$, $T_{fi}=2\,\mathrm{ms}$, $K_b=0.0318$, $T_{fb}=20\,\mathrm{ms}$, $J=2.4\,\mathrm{kg}$ m².

Slika 1: Blokovska shema kaskadnog upravljanja brzinom DC motora s nezavisnom uzbudom

- a) (5 bodova) Projektirati PI regulator struje armature $G_{R1}(s)$ prema tehničkom optimumu kao i prefiltar referentne vrijednosti struje armature $G_{pf1}(s)$.
- b) (5 bodova) Projektirati regulator brzine vrtnje motora $G_{R2}(s)$ prema simetričnom tako da fazno osiguranje iznosi $\gamma = 45^{\circ}$. Također je potrebno projektirati prefiltar u referentnoj grani brzine vrtnje $G_{pf1}(s)$.
- c) (5 bodova) Odrediti koliko bi iznosilo fazno osiguranje, kada bi kao poremećaj djelovalo viskozno trenje, odnosno $M_t = b \cdot \omega$, gdje je b = 1Nms/rad, uz podešenja regulatora iz b) dijela zadatka. Nacrtati bodeov dijagram uz djelovanje takvog poremećaja.

5. zadatak (15 bodova)

Struktura upravljanja brzinom vrtnje istosmjernog motora s nezavisnom i konstantnom uzbudom prikazana je blokovskom shemom na slici 2. Pritom su: $K_t=1.5V/V$, $K_a=5A/V$, $T_a=0.015s$, K=1.33 Vs/rad i $T_M=0.4s$.

Slika 2: Blokovska shema upravljanja brzinom DC motora s nezavisnom uzbudom

- a) (3 boda) Odrediti prijenosnu funkciju $G_{\omega}(s) = \frac{\omega(s)}{\omega_R(s)}$.
- b) (9 bodova) Odrediti parametre regulatora, K_{ω} , K_{i} , T_{I} , brzine vrtnje prema optimumu dvostrukog odnosa, tako da nadomjesna vremenska konstanta bude dva puta manja od T_{M} .
- c) (3 boda) Osigurava li regulator iz a) dijela zadatka eliminaciju regulacijskog odstupanja u ustaljenom stanju u slučaju referentne veličine oblika funkcije linearnog porasta (rampe). Obrazložiti odgovor. Ako ne osigurava koliko iznosi regulacijskog odstupanje u ustaljenom stanju?