

Project 4: Machine Learning

Team #7: Michael Herold, Ralph Samer

Recap

Task

 Automatic tagging of unseen posts using both supervised & unsupervised approach

Data set

- StackExchange Data Dump from March, '16
- Subgroup: <u>programmers.stackexchange.com</u>
- <u>Training set:</u> 34,500 posts (~90%)
- <u>Test set:</u> 3,800 posts (~10%)

Stack	kExch a	ange

Total num	ber of
Posts	38,315
Tags	1,614

Tags per post		
Min	1	
Max	5	
Average	2.68	

Preprocessing

Posts Tokonized content

■ Tokenized content ■ Accepted answer (if not negative score)

Body

Title

Ignored posts

- Score < threshold and no accepted answer
- No answers and negative score
- Removed HTML, code, URLs, emoticons, numbers, single letters
- Removed stop words
- Stemming (nltk.stem.porter.PorterStemmer)
- Merge synonym words

Tags

- Merge similar tags
- Remove less frequent tags

Features & Transformation

Feature Selection:

- word occurences as features
 - remove words having little impact on performance of our models
- Try additional features that improve performance (e.g. whether tag appears in title or body of a document/post or not)

Challenges:

- highly depends on preprocessing (stop-word removal, merge synonyms, ...)
- crucial for performance (of models)
- when words are features:
 - important words should appear frequently
 - but not in every single document/post

Goal:

get best prediction accuracy

Transformation:

• e.g. TF-IDF, less frequent words occurring more often in one post are more important for that post than others $TF \times IDF_{ij} = TF_{ij} \log(\frac{N}{DF_i})$

Supervised (I)

Start to train a Multinomial Naive Bayes classifier (MultinomialNB from sklearn)

Two Naive Bayes approaches:

- First approach:
 - Train multiple binary classifiers (1 classifier/tag)
 - classes = {true, false}
 - Apply classifier on test set => suggest k most probable tags
- Second approach:
 - Train a single classifier <u>for all</u> n tags
 - #classes = n
 - Apply classifier on test set => suggest k most probable tags

Reasons for choosing classification over (linear) regression:

- We have *n* Tags: *n* is a discrete/natural number
- Also: predicting if a post contains a specific tag is discrete/binary problem
- Predicting tags is a typical classification problem
 - tags act as classes (= output of classifiers)

Supervised (II)

First tests with Naïve Bayes (full data set):

sufficient results, but still enough space left for improvements (e.g. improve preprocessing, feature selection, weight important features, ...)

Compare performance of Naïve Bayes with other supervised models:

k-Nearest Neighbors:

- suggest h most probable tags
- probability depends on:
 - number of neighbors that contain these suggested tags
 - distance to these neighboring documents/posts

Linear SVM:

Use only a few features that represent the entire post

Unsupervised

Approach:

- Cluster similar posts according to the TFxIDF matrix
- Assign n most frequent tags of cluster to new samples of cluster

k-Means clustering:

- Number of clusters (k): #tags
- Initialization: k-means++
- Distance: Euclidean

Hierarchical Agglomerative Clustering:

- Linkage: Ward criterion (minimum variance)
- Distance: Euclidean
- Stop criterion: number of clusters (#tags)

Evaluation

$$Precision = \frac{true_positives}{true_positives + false_positives}$$

 $\blacksquare \quad \text{Re } call = \frac{true_positives}{true_positives + false_negatives}$

Both should be high → F1 measure

- True positives: if tag found in prediction set and original set
- False positives: if tag found in prediction set but not in original set
- False negatives: if tag found in original set but not in prediction set

First results

Model	Precision	Recall
MultinomialNB	0.332	0.285
k-Means 1)	0.298	0.262
HAC ²⁾	0.281	0.255

All results are based on two predicted tags (average tag assignment = 2.68)

¹⁾ Number of clusters = #tags

²⁾ Stop criterion = #clusters \rightarrow #tags

Problems

Preprocessing:

- High dimensionality → sparse matrix
- POS-tagging and lemmatization not working good enough
- Merge synonyms and similar tags

Learning:

- Choosing proper number of clusters $(k) \rightarrow$ dendrogram from HAC
- Finding best fitting model and #tags to predict

Runtime & memory:

- Too many features for forward/backward selection
- HAC very intensive to compute

Expected results & Outlook

Expected results:

- F1 not ideal but tags are reasonable
- Precision decreases by the number of suggested tags
- Recall increases by the number of suggested tags

Outlook:

- Improve preprocessing
- Use different (more independent) features for Naïves Bayes
- Evaluation

Thank you for your attention.

References:

- Knowledge Discovery and Data Mining 1 by Denis Helic and Roman Kern (2015)
- Segaran, T. 2007. *Programming Collective Intelligence: Building Smart Web 2.0 Applications. Sebastopol:* O'Really