Tablica Fourierovih transformacija inačica 6.0

	CTFS Continuous Time Fourier Series	CTFT Continuous Time Fourier Transform	DTFT Discrete Time Fourier Transform	DTFS Discrete Time Fourier Series
Transformacija:	$X(k) = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt$	$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$	$X\left(e^{j\omega}\right) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$	$X(k) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-jk\omega n}$
Inverzna transformacija:	$x(t) = \sum_{k=-\infty}^{\infty} X(k) e^{jk\omega_0 t}$	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$	$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$	$x(n) = \sum_{n=0}^{N-1} X(k) e^{jk\omega n}$
Parsevalova relacija:	$E = \infty$ $P_{x} = \frac{1}{T_{0}} \int_{T_{0}} x(t) ^{2} dt = \sum_{k=-\infty}^{\infty} X(k) ^{2}$	$E = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) ^2 d\omega$	$E = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left X\left(e^{j\omega}\right) \right ^{2} d\omega$	$E = \infty$ $P_{x} = \frac{1}{N} \sum_{k=0}^{N-1} x(n) ^{2} = \sum_{k=0}^{N-1} X(k) ^{2}$
	KontPeriod → DiskSignal	KontSignal → KontSignal	DiskSignal → KontPeriod	DiskPeriod → DiskPeriod
Vremensko područje: Frekvensijsko područje:	Kontinuiran Diskretan	Kontinuiran Kontinuiran	Diskretan Kontinuiran	Diskretan Diskretan

Vremensko	Frekvencijsko
područje	područje
Periodičan	Diskretan
Aperiodičan	Kontinuirani
Diskretan	Periodičan
Kontinuirani	Aperiodičan

CTFS

$$\operatorname{sinc}(x) = \frac{\sin x}{x}$$
$$\operatorname{sinc}(0) = 1$$

Pravokutan periodičan signal kojemu je osnovna komponenta simetrična s obzirom na ishodište:

$$X_k = X(k) = A \cdot \frac{\tau}{T} \operatorname{sinc}\left(k\pi \cdot \frac{\tau}{T}\right)$$

$$X_0 = \mathbf{A} \cdot \frac{\tau}{T}$$

Svojstva transfomacija

	СТЕТ	DTFT
Linearnost	$\alpha x(t) + \beta y(t) \xrightarrow{F} \alpha X(j\omega) + \beta Y(j\omega)$	$\alpha x(n) + \beta y(n) \xrightarrow{F} \alpha X(e^{j\omega}) + \beta Y(e^{j\omega})$
Vremenski pomak	$x(t-t_0) \xrightarrow{F} X(j\omega)e^{-j\omega t_0}$	$ x(n-n_0) \xrightarrow{F} X(e^{j\omega})e^{-j\omega n_0} $
Frekvencijski pomak	$x(t)e^{+j\omega_0 t} \xrightarrow{F} X(\omega - \omega_0)$	$ x(n)e^{+j\omega_0 n} \xrightarrow{F} X(e^{j(\omega-\omega_0)}) $
Vremensko skaliranje	$x(at) \xrightarrow{F} \frac{1}{ a } X \left(j \frac{\omega}{a} \right)$	
Frekvencijsko skaliranje	$\frac{1}{ a } \mathbf{x} \left(\frac{t}{a} \right) \xrightarrow{F} \mathbf{X} (ja\omega)$	
Konjugiranost	$x^*(t) \xrightarrow{F} X^*(-j\omega)$	$X^*(n) \xrightarrow{F} X^*(e^{-j\omega})$
Vremenska inverzija	$X(-t) \xrightarrow{F} X(-j\omega)$	$X(-n) \xrightarrow{F} X(e^{-j\omega})$
Dualnost	$X(jt) \xrightarrow{F} 2\pi x(-\omega)$ $X(-jt) \xrightarrow{F} 2\pi x(\omega)$	
Konvolucija	$(x*y)(t) \xrightarrow{F} X(j\omega)Y(j\omega)$	$(x*y)(n) \xrightarrow{F} X(e^{j\omega})Y(e^{j\omega})$
Množenje	$x(t)y(t) \xrightarrow{F} \frac{1}{2\pi}X(j\omega)*Y(j\omega)$	$x(n)y(n) \xrightarrow{F} \frac{1}{2\pi}X(e^{j\omega}) *Y(e^{j\omega})$
Parseval	$\int_{-\infty}^{\infty} \mathbf{x}(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{X}(j\omega) ^2 d\omega$	$\sum_{n=-\infty}^{\infty} \left \mathbf{x}(n) \right ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left \mathbf{X}(e^{j\omega}) \right ^2 d\omega$
Derivacija	$\frac{d^k}{dt^k} (\mathbf{x}(t)) \xrightarrow{F} (j\omega)^k \mathbf{X}(j\omega)$	$nx(n) \xrightarrow{F} \left(j \frac{dX(e^{j\omega})}{d\omega} \right)$
Modulacija	$x(t)\cos(\omega_0 t) \xrightarrow{F} \frac{1}{2} \left[X(j(\omega - \omega_0)) + X(j(\omega + \omega_0)) \right]$	$\left[x(n)\cos(\omega_0 n) \xrightarrow{F} \frac{1}{2} \left[X(e^{j(\omega-\omega_0)}) + X(e^{j(\omega+\omega_0)}) \right] \right]$
Integracija	$\int_{-\infty}^{t} \mathbf{x}(\lambda) d\lambda \xrightarrow{F} \frac{\mathbf{X}(j\omega)}{j\omega} + \pi \mathbf{X}(0) \delta(\omega)$	