HIGH DENSITY PHOTOTRANSISTOR OPTICALLY COUPLED ISOLATORS

APPROVALS

• UL recognised, File No. E91231

'X' SPECIFICATION APPROVALS

MCT6 -

VDE 0884 in 3 available lead form: -

- STD
- G form
- SMD approved to CECC 00802

MCT61, MCT62, MCT66 -

VDE 0884 approval pending

EN60950 approval pending

DESCRIPTION

The MCT6, MCT61, MCT62 & MCT66 series of optically coupled isolators consist of infrared light emitting diodes and NPN silicon photo transistors in space efficient dual in line plastic packages mounted two channels per unit.

FEATURES

• Options :-

10mm lead spread - add G after part no. Surface mount - add SM after part no. Tape&reel - add SMT&R after part no.

• High Isolation Voltage (5.3kV_{RMS},7.5kV_{PK})

APPLICATIONS

- Computer terminals
- Industrial systems controllers
- Measuring instruments
- Signal transmission between systems of different potentials and impedances

ABSOLUTE MAXIMUM RATINGS (25°C unless otherwise specified)

Storage Temperature _______-55°C to + 125°C Operating Temperature ______-55°C to + 100°C Lead Soldering Temperature (1/16 inch (1.6mm) from case for 10 secs) 260°C

INPUT DIODE

Forward Current	 50mA
Reverse Voltage	 6V
Power Dissipation _	70 mW

OUTPUT TRANSISTOR

Collector-emitter Voltage BV _{CEO}	30V
Emitter-collector Voltage BV _{ECO}	6V
Power Dissipation	150mW

POWER DISSIPATION

Total Power Dissipation	200mW
(derate linearly 2.67mW/°C above 25°	C)

ISOCOM COMPONENTS LTD

Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road Hartlepool, Cleveland, TS25 1YD Tel: (01429) 863609 Fax: (01429) 863581

ISOCOM INC

1024 S. Greenville Ave, Suite 240, Allen, TX 75002 USA Tel: (214) 495-0755 Fax: (214) 495-0901 e-mail info@isocom.com http://www.isocom.com

7/12/00 DB92012m-AAS/A1

ELECTRICAL CHARACTERISTICS ($\rm T_{_{A}}$ = 25°C Unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V_F) Reverse Voltage (V_R) Reverse Current (I_R)	3		1.50 10	V V μΑ	$I_{R} = 20\text{mA}$ $I_{R} = 10\mu\text{A}$ $V_{R} = 3V$
Output	$ \begin{array}{l} \text{Collector-emitter Breakdown (BV}_{\text{CEO}}) \\ \text{Emitter-collector Breakdown (BV}_{\text{ECO}}) \\ \text{Collector-emitter Dark Current (I}_{\text{CEO}}) \end{array} $	30 6		100	V V nA	$I_{C} = 1 \text{mA (note 2)}$ $I_{E} = 100 \mu \text{A}$ $V_{CE} = 10 \text{V}$
Coupled	Current Transfer Ratio (CTR) (Note 2) $ \begin{array}{c} MCT6 \\ MCT61 \\ MCT62 \\ MCT66 \\ \end{array} $ Collector-emitter Saturation Voltage V_{CESAT} $ MCT6,61,62 \\ MCT66 \\ \end{array} $ Input to Output Isolation Voltage V_{ISO} Input to Output Isolation Voltage V_{ISO} Input-output Isolation Resistance R_{ISO} Output Rise Time, Fall Time tr , tf $ \begin{array}{c} CUTR & CTR & CTR$	20 50 100 6 5300 7500 5x10 ¹⁰		0.4 0.4	% % % V V V P K M Ω μ S	$\begin{array}{c} 10 \text{mA I}_{_{\rm F}}, 10 \text{V V}_{_{\rm CE}} \\ 5 \text{mA I}_{_{\rm F}}, 5 \text{V V}_{_{\rm CE}} \\ 5 \text{mA I}_{_{\rm F}}, 5 \text{V V}_{_{\rm CE}} \\ 10 \text{mA I}_{_{\rm F}}, 10 \text{V V}_{_{\rm CE}} \\ \\ 16 \text{mA I}_{_{\rm F}}, 2 \text{mA I}_{_{\rm C}} \\ 40 \text{mA I}_{_{\rm F}}, 2 \text{mA I}_{_{\rm C}} \\ \text{See note 1} \\ \text{See note 1} \\ \text{See note 1} \\ \text{V}_{_{\rm IO}} = 500 \text{V (note 1)} \\ \text{I}_{_{\rm C}} = 2 \text{mA, V}_{_{\rm CC}} = 10 \text{V,} \\ \text{R}_{_{\rm L}} = 100 \Omega \text{ (Fig. 1)} \\ \text{I}_{_{\rm C}} = 2 \text{mA, V}_{_{\rm CC}} = 10 \text{V,} \\ \text{R}_{_{\rm L}} = 1 \text{k} \Omega \text{ (Fig. 2)} \\ \end{array}$

Note 1 Measured with input leads shorted together and output leads shorted together.

Note 2 Special Selections are available on request. Please consult the factory.

7/12/00 DB92012m-AAS/A1

Collector Power Dissipation vs. Ambient Temperature

Collector Current vs. Collector-emitter Voltage

Forward Current vs. Ambient Temperature

Relative Current Transfer Ratio vs. Ambient Temperature

Collector-emitter Saturation

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.