NATIONAL UNIVERSITY OF SINGAPORE

CS3211 - PARALLEL AND CONCURRENT PROGRAMMING

(Semester 2: AY2016/2017)

Time allowed: 2 hours

INSTRUCTIONS TO STUDENTS This assessment paper contains FIVE (5) sections totalling FORTY (40) marks, and comprises TWELVE (12) printed pages including this one.

This is an **OPEN BOOK** assessment, and you are to answer **ALL** questions. You may cite any result in the lecture notes or tutorials. Answer **ALL** questions within the space provided in this booklet (write on the backs of pages if you need more room).

STUDENT NO:
,

This portion is for examiners use only.

Question		Marks	Remark
General topics, short answers	Q1 (12)		
Speedup and analysis	Q2 (6)		
Accuracy and architecture	Q3 (6)		
Programming	Q4 (10)		
Models	Q5 (6)		
Total:	Q1-5 (40)		

Q1 (Short Answer Questions)	(12 marks)
In the following short questions, each answer is worth 2 (TWO) marks.	
1.1 Using Flynn's taxonomy (SISD, SIMD, MISD, MIMD), classify the following sexplain the reasoning for your choice: <i>The situation you are in right now, proctest in parallel with other students.</i>	
Answer:	
1.2 Using Flynn's taxonomy (SISD, SIMD, MISD, MIMD), classify the following sexplain the reasoning for your choice: <i>The light-detector array in a digital came</i>	
Answer:	
1.3 Using Flynn's taxonomy (SISD, SIMD, MISD, MIMD), classify the following sexplain the reasoning for your choice: <i>Singapore's ASPIRE-1 supercomputer</i> .	ystem and
Answer:	

Q1 (Short Answer Questions)	(Continued)
1.4 Using Flynn's taxonomy (SISD, SIMD, MISD, MIMD), classify the follow explain the reasoning for your choice: <i>An IBM mainframe computer from t</i>	ing system and the 1960s.
Answer:	
1.5 In a message-passing system, messages arrive at a processor at an avera bytes per second. The dynamic buffer that holds the arriving data average size. What is the average latency for processing the arriving messages, in second	ges 10 ⁶ bytes in
Answer:	
1.6 Spectral methods are a particular kind of parallel programming architecture. Briefly explain the most important communication characteristic of Spectrating an example.	cture/paradigm. al methods, giv-
Answer:	

Q2 (Speedup and analysis)

(6 marks)

A program that solves N linear equations with Gaussian elimination has been ported to run in parallel on P processors. The execution time is closely matched by the following formula:

$$T(N,P) = 10^{-9}N^2 + 10^{-7}\frac{N^2}{\sqrt{P}} + 10^{-11}\frac{N^3}{P}$$
 seconds

2.1 Find the sequential execution time for a system of 10^5 equations. (1 mark)

Answer:

2.2 Find the Amdahl (fixed-size) speedup for a 4096-processor systems compared to a single processor. Show your working. (2 marks)

Answer:

Q2 (Speedup and analysis) (Continue					
2.3 By numerical methods (not algebra), find a value for N such that the execution time close to that of the sequential execution time for 10 ⁵ equations. (2 marks)					
Answer:					
2.4 How much time would a single processor need to run a problem of the size N found (2.3)? (1 ma	l in ark)				
Answer:					

(6 marks)

3.1	number with 64	experienced programmer has a serial program that generates 100000 random real rs between 0 and 1, and sums them. The programmer ports it to a parallel system 4 processors, but the parallel system produces a different answer. Give three likely s for the difference. (3 marks)
A	nswer:	

Q3 (Accuracy and architecture)

(Continued)

3.2	operation	ne switching		is to shift the ne why such	
A	nswer:				

Q3 (Accuracy and architecture)

Q4 (Programming) (10 marks)

A parallel system with 32 processors performs a series of Fast Fourier Transforms (FFTs) where the computation alternates with an all-to-all communication exchange that must complete before the computation can proceed. The computation takes 5 seconds and the communication takes 1 second. Four passes of the series are shown below, but it continues with the same pattern:

4.1 Assuming a fixed problem size (Amdahl model) and that a serial processor would compute at the same speed but not have to do the communication exchanges, what is the predicted speedup of the 32 processors compared to a single processor? (2 marks)

Q4 (Programming) (Continued)

(Q4 continued) However, in practice the operating system must execute a daemon task to manage memory every 27 seconds. Each processor does this from an independent start time, resulting in a random pattern. The daemon takes each processor 3 seconds to finish, during which time it cannot do anything else. This stalls the entire communication exchange by 3 seconds, since at least one processor is always running the daemon task:

4.2 What is the actual speedup of 32 processors compared to a single processor, given the above pattern and assuming that a single processor must also run the daemon every 27 seconds? (2 marks)

Q4 (Programming)	(Continued)
4.3	Suggest a strategy to reduce the inefficiency caused by the system daemon.	(3 marks)
4.4	What is the speedup, using the strategy you created in (4.3)?	(3 marks)

Q5 (Models) (6 marks)

The following LTS describes the allowable events for a drinks dispenser, which dispenses a latte if given a quarter (25 cents), or coffee if given 20 cents.

5.1 Specify the drinks dispenser Dispenser() using a single process in CSP: (2 marks)

Note that you cannot use parallel composition. Your single process could be constructed from multiple interlocking process definitions for clarity however:

Q5 (Mode	(Continued)
Show	tudent, modelled as the following CSP process, interacts with the drinks dispenser. v/Draw the LTS for the parallel composition System() of Student() and Dispenser(). v your LTS in the box below. (2 marks)
	<pre>lent() = hangout -> fiveCents -> twentyCents -> latte -> Student() sem() = Student() Dispenser();</pre>
Answe	r:
	fly explain how you could model, in CSP, MPI calls like MPI_Send and MPI_Isend. t differentiates them and how could you model them as processes? Give the CSP els. (2 marks)
Answe	:
	=== END OF PAPER ===