Hàm Sinh

Hàm Sinh

- Hàm sinh đối với một dãy a_0,a_1,\dots,a_k,\dots của các số thực là chuỗi vô hạn $G(x)=a_0+a_1x+a_2x^2+\dots+a_kx^k+\dots=\sum_{k=0}^\infty a_kx^k.$
- Ví dụ 1: Hàm sinh của các dãy $\{a_n\}$ với $a_k=3$, $a_k=k+1$ và $a_k=2^k$ lần lượt là $\sum_{k=0}^\infty 3x^k$, $\sum_{k=0}^\infty (k+1)x^k$ và $\sum_{k=0}^\infty 2^k x^k$
- Chúng ta cũng có thể định nghĩa hàm sinh của những dãy hữu hạn các số thực bằng cách mở rộng dãy hữu hạn a_0, a_1, \ldots, a_n thành dãy vô hạn bằng cách đặt $a_{n+1}=0, a_{n+2}=0, \ldots$ Hàm sinh G(x) của dãy này là một đa thức bậc n dạng $G(x)=a_0+a_1x+\ldots+a_nx^n$
- Ví dụ 2: Hàm sinh của dãy 1,1,1,1,1,1 là $G(x) = 1 + x + x^2 + x^3 + x^4 + x^5 = \frac{x^6 1}{x 1}$.

Ví dụ

- Ví dụ 3: Giả sử m là một số nguyên dương và $a_k = C(m,k)$ với $k = 0,1,2,\ldots,m$; hàm sinh của dãy a_0,a_1,\ldots,a_m là $G(x) = C(m,0) + C(m,1) + \ldots + C(m,m)x^m = (1+x)^m$.
- Ví dụ 4: Hàm $G(x) = \frac{1}{1-x}$ là hàm sinh của dãy 1,1,1, ... vì $\frac{1}{1-x} = 1 + x + x^2 + \cdots$
- Ví dụ 5: Hàm $G(x)=\frac{1}{1-\alpha x}$ là hàm sinh của dãy $1,\alpha,\alpha^2,\dots$ vì $\frac{1}{1-\alpha x}=1+\alpha x+\alpha^2 x^2+\dots$

Định lý 1

- Giả sử $f(x) = \sum_{k=0}^{\infty} a_k x^k$ và $g(x) = \sum_{k=0}^{\infty} b_k x^k$. Khi đó $f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$ và $f(x)g(x) = \sum_{k=0}^{\infty} (\sum_{j=0}^{k} a_j b_{k-j}) x^k$
- Ví dụ: Tìm các hệ số $a_0, a_1, a_2, a_3, \dots$ trong triển khai $f(x) = \sum_{k=0}^{\infty} a_k x^k$ với $f(x) = \frac{1}{(1-x)^2}$?
- Giải: Ta có $\frac{1}{1-x}=1+x+x^2+\cdots$, theo định lý trên ta có $\frac{1}{(1-x)^2}=\sum_{k=0}^{\infty}(\sum_{j=0}^k1)x^k=\sum_{k=0}^{\infty}(k+1)x^k$.

Các hàm sinh thường gặp (1)

a_k
C(n,k)
$C(n,k)a^k$
$C(n, k/r)$ if $r \mid k$; 0 otherwise
1 if $k \le n$; 0 otherwise
1
a^k
1 if $r \mid k$; 0 otherwise
k + 1

Các hàm sinh thường gặp (2)

$$\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)x^k$$

$$= 1+C(n,1)x+C(n+1,2)x^2+\cdots$$

$$\frac{1}{(1+x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)(-1)^k x^k$$

$$= 1-C(n,1)x+C(n+1,2)x^2-\cdots$$

$$\frac{1}{(1-ax)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)a^k x^k$$

$$= 1+C(n,1)ax+C(n+1,2)a^2 x^2+\cdots$$

$$C(n+k-1,k) = C(n+k-1,n-1)$$

$$C(n+k-1,k) = (-1)^k C(n+k-1,k)$$

$$C(n+k-1,k) = (-1)^k C(n+$$

Hàm Sinh và bài toán đếm

- Hàm sinh có thể được dùng để giải một lớp rộng lớn các bài toán đếm dạng đếm các nghiệm của phương trình $e_1+e_2+\cdots+e_n=C$ trong đó C là một hằng số và các e_i là những số nguyên không âm và chịu tác động bởi một số ràng buộc nào đó.
- Ví dụ 1: Tìm số nghiệm của phương trình $e_1+e_2+e_3=17$ trong đó e_1,e_2,e_3 là các số nguyên không âm và $2\leq e_1\leq 5, 3\leq e_2\leq 6$ và $4\leq e_3\leq 7$.
- Giải: Số nghiệm của phương trình và các ràng buộc trên chính là hệ số của e^{17} trong khai triển $(x^2+x^3+x^4+x^5)(x^3+x^4+x^5+x^6)(x^4+x^5+x^6)$. Thật vậy, chúng ta nhận được số hạng x^{17} bằng cách lấy số hạng x^{e_1} trong tổng thứ nhất và x^{e_2} trong tổng thứ 2 và x^{e_3} trong tổng thứ 3 và $e_1+e_2+e_3=17$. Dễ thấy hệ số của x^{17} bằng 3.

Hàm Sinh và bài toán đếm (2)

- Ví dụ 2: Có bao nhiều cách để phân phối 8 chiếc bánh giống hệt nhau cho 3 đứa bé khác sau, nếu mỗi đứa bé chỉ được nhật ít nhất 2 và nhiều nhất 4 chiếc bánh.
- Giải: Vì mỗi đứa bé nhận được ít nhất 2 và nhiều nhất 4 chiếc bánh, nên đối với mỗi đứa bé có một thừa số bằng $(x^2 + x^3 + x^4)$. Trong hàm sinh của dãy $\{c_n\}$ với c_n là số cách phân phối n chiếc bánh. Vì có 3 đứa trẻ nên hàm sinh này là $(x^2 + x^3 + x^4)^3$. Việc còn lại là chúng ta cần tìm hệ số của x^8 trong tích này. Dễ dàng tính được hệ số này là 6.

Hàm Sinh và bài toán đếm (3)

- Ví dụ 3: Dùng hàm sinh để tính tổ hợp chập k của tập n phần tử. Giả sử định lý nhị thức đã biết.
- Giải: Mỗi phần tử thuộc tập n phần tử sẽ đóng góp số hạng (1+x) vào hàm sinh $f(x)=\sum_{k=0}^n a_k x^k$ của dãy $\{a_n\}$, với a_k thể hiện số tổ hợp chập k của tập n phần tử. Do đó, $f(x)=(1+x)^n$. Theo định lý nhị thức, ta có $f(x)=\sum_{k=0}^n C(m,k) x^k$ với $C(m,k)=\frac{n!}{k!(n-k)!}$. Từ đó suy ra tổ hợp chập k của n phần tử là $C(m,k)=\frac{n!}{k!(n-k)!}$.

Dùng hàm sinh để giải hệ thức truy hồi

- Ví dụ 1: Giải hệ thức truy hồi $a_k=3a_{k-1}$, với $k=1,2,\dots$ và điều kiện đầu $a_0=2$.
- Giải: Giả sử G(x) là hàm sinh đối với dãy $\{a_n\}$ tức là $G(x) = \sum_{k=0}^{\infty} a_k x^k$. Ta có, $xG(x) = \sum_{k=0}^{\infty} a_k x^{k+1} = \sum_{k=0}^{\infty} a_{k-1} x^k$. Từ hệ thức truy hồi ta có $G(x) 3xG(x) = \sum_{k=0}^{\infty} a_k x^k 3\sum_{k=0}^{\infty} a_{k-1} x^k = a_0 + \sum_{k=1}^{\infty} (a_k 3a_{k-1}) = 2$.

Vì $a_0 = 2$ và $a_k = 3a_{k-1}$, do đó G(x) - 3xG(x) = (1 - 3x)G(x) = 2. Suy ra, $G(x) = \frac{2}{1-3x}$. Dùng hằng đẳng thức $\frac{1}{1-ax} = \sum_{k=0}^{\infty} a^k x^k$, ta có $G(x) = 2\sum_{k=0}^{\infty} 3^k x^k = \sum_{k=0}^{\infty} 2.3^k x^k$. Suy ra $a_k = 2.3^k$.

Dùng hàm sinh để chứng minh hằng đẳng thức

- Ví dụ 1: Dùng hàm sinh chứng minh rằng $\sum_{k=0}^n C(n,k)^2 = C(2n,n)$ với mọi n nguyên dương.
- Giải: Ta có C(2n,n) là hệ số của x^n trong khai triển $(1+x)^{2n}$. Tuy nhiên, chúng ta cũng có $(1+x)^{2n}=[(1+x)^n]^2=[C(n,0)+C(n,1)x+C(n,2)x^2+\cdots+C(n,n)x^n]^2$. Hệ số của x^n trong biểu thức trên bằng $C(n,0)C(n,n)+C(n,1)C(n,n-1)+\cdots+C(n,n)C(0,0)$. Biểu thức này bằng $\sum_{k=0}^n C(n,k)^2$ vì C(n,n-k)=C(n,k). Vì C(2n,n) đều biểu diễn hệ số của x^n trong khai triển của $(1+x)^{2n}$ nên chúng bằng nhau.

Bài tập

- Bài tập 1: Tìm hàm sinh cho các dãy hữu hạn
 - 2,2,2,2,2
 - 1, 4, 16, 64, 256
- Bài tập 2: Tìm hàm sinh cho dãy sau
 - 0,2,2,2,2,0,0,...
 - 0,0,0,1,1,1,1,1,0,0,0...
 - 0,1,0,0,1,0,0,1,0,0,1,...
 - 2,4,8,32,64,....
- Bài tập 3: Có bao nhiều cách phát 25 chiếc bánh rán giống nhau cho 4 em bé sao cho mỗi người nhận ít nhất 3 và nhiều nhất 7.

Bài tập

• Bài tập 4: Dùng các hàm sinh để giải hệ thức truy hồi $a_k=3a_{k-1}+2$ với điều kiện đầu $a_0=5$.

• Bài tập 5: Dùng các hàm sinh để giải hệ thức truy hồi $a_k=5a_{k-1}-6a_{k-2}$ với điều kiện đầu $a_0=6$, $a_1=30$.

• Bài tập 6: Dùng hàm sinh để chứng minh hằng đẳng thức Vandermond $C(m+n,r) = \sum_{k=0}^{r} C(m,r-k)C(n,k)$