Roots of nonlinear equations

Consider solving a nonlinear equation in one variable x

$$f(x) = 0$$

Assume f(x) smoothly varying, continuous over the range [a, b].

A few typical examples of f(x) are,

$$f(x) = \cos x - x^3$$
, $3x + \sin x - e^x$, $xe^x - 2$, $x^3 + 3x - 5$ etc.

If x_0 in the interval $[a_0, b_0]$ satisfies equation $f(x_0) = 0$, then x_0 is a *root* or *zero* of the function and is **one** of the solutions in that interval.

Since f(x) is continuous and $[a_0, b_0]$ so chosen such that $f(a_0)$ and $f(b_0)$ are of opposite signs, then according to *intermediate value theorem*, f(x) has at least one root in the interval $[a_0, b_0]$.

Finding root numerically starts with guess $[a_0, b_0]$ – informed or trial-and-error – at which f(x) has opposite signs.

 $[a_0, b_0]$ are said to *bracket* the root.

Iterations proceed by producing a sequence of shrinking intervals $[a_0, b_0] \rightarrow [a_i, b_i]$ – shrunk intervals always contain one root of f(x).

For convergence, necessary to have a good initial guess – (i) plotting f(x) vs x or (ii) informed expectation.

Algorithms for finding roots of nonlinear equations :

- 1. Bisection method
- 2. False position (Regula falsi) method
- 3. Newton-Raphson method
- 4. Fixed-point method
- 5. Laguerre's method (for roots of polynomials)

As is evident, the first four methods are iterative and, therefore, call for user specific precision ϵ , typically 10^{-4} .

Bisection method

Simplest, relatively slower but guaranteed to converge provided the bracketing is done carefully: f(a) and f(b) have opposite signs at the interval boundary [a,b] and f(x) is continuous.

Things can go wrong -(i) when f(x) = 0 is an extrema *i.e.* both f(a), f(b) are always of same sign, or (ii) multiple roots in the interval.

Steps involve in achieving bracketing:

- 1. Choose [a, b], calculate f(a), f(b). If $f(a) \star f(b) < 0$, bracketing done.
- 2. If f(a) * f(b) > 0 i.e. same sign, check for $|f(a)| \le |f(b)|$.
 - 2.1 If |f(a)| < |f(b)|, shift a further left by $a' = a \beta(b-a)$
 - 2.2 If |f(a)| > |f(b)|, shift b further right by $b' = b + \beta(b-a)$

Steps involve in bisection method:

- 1. Choose bracket [a, b], where a < b and f(a) * f(b) < 0. If $|b a| < \epsilon$, done! Check also f(a) and/or $f(b) < \delta$.
- 2. Else bisect the interval c = (a + b)/2. Choose new interval

$$\star$$
 $[a,c] \equiv [a_1,b_1]$ if $f(c)\star f(a)<0$

$$\star [c,b] \equiv [a_1,b_1] \text{ if } f(c) \star f(b) < 0.$$

Check for $|b_1 - a_1| < \epsilon$ along with $f(a_1 \text{ or } b_1) < \delta$.

- 3. If not, keep on bisecting the interval and re-adjusting the interval till $|b_n a_n| < \epsilon$ along with $f(a_n \text{ or } b_n) < \delta$ are satisfied.
- 4. Bisecting n times, we have a possible solution in the interval length

$$\frac{|b_n - a_n|}{2} = \frac{|b - a|}{2^n} \le \epsilon$$

$$x_e = \frac{x_r + x_l}{2}$$

$$x_l \qquad x_e$$

$$x_r \qquad x_r$$

Regula falsi method

Interpolation to converge on a root faster than Bisection –

Find slope of the straight line joining $[a_0, b_0]$ that has bracketed the root. The point c_0 where this straight line crosses x - axis is the new a or b depending on sign of $f(c_0)$.

Unlike Bisection, new interval boundary a_n or b_n directly given by f(x). Always converges and has improved speed of convergence. Here too, as (a, b) get close, can lose significant digits.

Steps involve in Regula falsi:

- 1. Choose bracket $[a_0, b_0]$, where $a_0 < b_0$ and f(a) * f(b) < 0. If $|b_0 a_0| < \epsilon$, done! Check also $f(a_0)$ and/or $f(b_0) < \delta$.
- 2. Calculate slope of the line joining $f(a_0)$ and $f(b_0)$ and obtain c_0 where the line crosses abscissa $y(c_0) = 0$,

$$m = \frac{f(b_0) - f(a_0)}{b_0 - a_0} = \frac{f(b_0) - f(c_0)}{b_0 - c_0} \implies c_0 = b_0 - \frac{(b_0 - a_0) * f(b_0)}{f(b_0) - f(a_0)}$$

Reference point can as well be $f(a_0)$. If f(x) is convex or concave, then one of the points a, b is fixed and the other varies with iterations. After n-th step,

$$c_n = b_n - \frac{(b_n - a_n) * f(b_n)}{f(b_n) - f(a_n)}$$

- 3. If $f(a_n) * f(c_n) < 0$, then root lies to left of $c_n \Rightarrow b_{n+1} = c_n$ and $a_{n+1} = a_n$. If $|c_{n-1} c_n| < \epsilon$ then c_n is the root $f(c_n) \approx 0$.
- 4. If $f(b_n) * f(c_n) < 0$, then root lies to right of $c_n \Rightarrow a_{n+1} = c_n$ and $b_{n+1} = b_n$. If $|c_{n-1} c_n| < \epsilon$ then c_n is the root $f(c_n) \approx 0$.

Fixed Point method

Finding root of f(x) amounts to finding x_0 where $f(x_0) = 0$.

* Fixed point of a function g(x) is x = g(x).

In fixed point method, f(x) = 0 is replaced by x = g(x).

* If x_n is a fixed point of g(x), then x_n is a root of f(x).

The iteration scheme is, starting from initial guess x_1 , then x_2, x_3, \ldots

$$x_{n+1} = g(x_n) \Rightarrow x_{n+1} \approx g(x_n)$$
 i.e. $|x_{n+1} - x_n| < \epsilon$

For a given f(x) = 0, there can be many equivalent fixed point problems with different choices for g(x). For example,

$$f(x) = x^2 - x - 2 = 0 \implies x = g(x) = x^2 - 2, \sqrt{x+2}, 1 + \frac{2}{x}, \frac{x^2 + 2}{2x - 1}, \dots$$

Not all choices converge equally! Choices may introduce unwanted singularities!! Solution is not guaranteed!!!

Newton-Raphson method

Involves both f(x) and f'(x) but does not require bracketing. Method is based on Taylor's expansion.

Works for multivariate functions. Converges quadratically \Rightarrow near root the number of significant digits approximately doubles with each step.

To solve f(x) = 0, Taylor expand f(x) around initial guess x_0 ,

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{1}{2!}(x - x_0)^2 f''(x_0) + \cdots$$

If closer to root $(x - x_0)^2 \approx 0$, we stop at f'(x) term,

$$f(x) = f(x_0) + (x - x_0)f'(x_0) = 0 \implies x = x_0 - \frac{f(x_0)}{f'(x_0)}$$

then x is better approximation of root than x_0 but involves taking derivative. Useful if derivative is cheaper to evaluate and hence to code.

Approximation to the root can be improved iteratively to move from the x_0 towards the root,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 1, 2, ...$$

Alternatively, use finite difference to approximate derivative – a variant of Newton's method called Secant method,

$$f'(x) \approx \frac{1}{2h} \left[f(x+h) - f(x-h) \right] + \mathcal{O}(h^3)$$

Finite difference requires two initial guesses x_0, x_1 corresponding to $x \pm h$.

The steps of Newton-Raphson method are

- 1. Make a good guess of x_0 .
- 2. Evaluate f(x) and f'(x) at $x = x_0$.
- 3. Use iterative updating $x_n \to x_{n+1}$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 1, 2, ...$$

4. Continue to improve the estimate of the root until $|x_{n+1} - x_n| < \epsilon$ and/or $f(x_n) \approx \delta$.

Multivariable system

Both Fixed point and Newton-Raphson can be employed for solving multivariable nonlinear system of equations.

$$f(\mathbf{x}) = \begin{pmatrix} f_1(x_1, x_2, \dots, x_n) \\ f_2(x_1, x_2, \dots, x_n) \\ \vdots \\ f_n(x_1, x_2, \dots, x_n) \end{pmatrix} = 0 \quad \text{where} \quad \mathbf{x}^T = (x_1, x_2, \dots, x_n)$$

No concept of bracketing in higher dimension \Rightarrow guaranteed converging methods like Bisection does not exist!

The fixed point functions g(x) can be written as

The stopping criteria would be,

$$\frac{||x_{k+1} - x_k||}{||x_{k+1}||} < \epsilon \quad \text{where,} \quad ||x_k||^2 = (x_1)_k^2 + (x_2)_k^2 + \cdots + (x_n)_k^2$$

For example, try solving the following

$$x_1^2 + x_1 x_2 = 10$$
 and $x_2 + 3x_1 x_2^2 = 57$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{g}(\mathbf{x}) = \begin{pmatrix} g_1(x_1, x_2) \\ g_2(x_1, x_2) \end{pmatrix} = \begin{pmatrix} \frac{10 - x_1^2}{x_2} \\ 57 - 3x_1 x_2^2 \end{pmatrix}$$

Using an initial guess of $x_1 = 1.5$, $x_2 = 3.5$ yields divergence!

$$x_1 = \frac{10 - (1.5)^2}{3.5} = 2.21429, \ x_2 = 57 - 3(2.21429)(3.5)^2 = -24.37516$$

$$x_1 = \frac{10 - (2.21429)^2}{-24.37516} = -0.20910, \ x_2 = 57 - 3(-0.20910)(-24.37516)^2 = 429.709$$

Continuing the iteration shows it is diverging in x_2 . A different choice of g(x) works rather well,

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \sqrt{(10 - x_1 x_2)} \\ \sqrt{(57 - x_2)/3x_1} \end{pmatrix}$$

<i>X</i> ₁	<i>X</i> 2	x_1'	x_2'	ϵ
1.5000	3.5000	2.1794	2.8605	0.259459
2.1794	2.8605	1.9405	3.0496	0.084286
1.9405	3.0496	2.0205	2.9834	0.028792
1.9999	3.0001	2.0000	3.0000	0.000046

Taylor expansion in Newton-Raphson for multivariable function, say $f_1(x_1, x_2, ..., x_n)$ of f(x) in terms of solutions after *i*-th iteration

$$f_{1}\left(x_{1}^{(i+1)}, x_{2}^{(i+1)}, \dots, x_{n}^{(i+1)}\right) \approx f_{1}\left(x_{1}^{(i)}, x_{2}^{(i)}, \dots, x_{n}^{(i)}\right) + \frac{\partial f_{1}}{\partial x_{1}}\Big|_{x^{(i)}}\left(x_{1}^{(i+1)} - x_{1}^{(i)}\right) + \frac{\partial f_{1}}{\partial x_{2}}\Big|_{x^{(i)}}\left(x_{2}^{(i+1)} - x_{2}^{(i)}\right) + \dots + \frac{\partial f_{1}}{\partial x_{n}}\Big|_{x^{(i)}}\left(x_{n}^{(i+1)} - x_{n}^{(i)}\right)$$

Similar Taylor expansion for f_2, f_3, \ldots, f_n yields,

$$f(x^{(i+1)}) = f(x^{(i)}) + J(x^{(i)}) \left(x^{(i+1)} - x^{(i)}\right) = 0 \ \Rightarrow \ x^{(i+1)} = x^{(i)} - J^{-1}(x^{(i)})f(x^{(i)})$$

where $J(x^{(i)})$ is the Jacobian matrix

$$\left[J(x^{(i)})\right]_{pq} = \frac{\partial f_p(x)}{\partial x_q}\Big|_{x^{(i)}} = \begin{bmatrix} \frac{\partial f_1(x^{(i)})}{\partial x_1} & \frac{\partial f_1(x^{(i)})}{\partial x_2} & \dots & \frac{f_1(x^{(i)})}{\partial x_n} \\ & & \vdots & \\ \frac{\partial f_n(x^{(i)})}{\partial x_1} & \frac{\partial f_n(x^{(i)})}{\partial x_2} & \dots & \frac{f_n(x^{(i)})}{\partial x_n} \end{bmatrix}$$

Compare multivariable and single-variable Newton-Raphson,

$$x^{(i+1)} = x^{(i)} - (f'(x^{(i)}))^{-1} f(x^{(i)}) \text{ and } x^{(i+1)} = x^{(i)} - J^{-1}(x^{(i)}) f(x^{(i)})$$

Consider the previous example

$$\begin{array}{ccc} x_1^2 + x_1 x_2 - 10 & = & 0 \\ x_2 + 3x_1 x_2^2 - 57 & = & 0 \end{array} \right\} \quad \boldsymbol{J} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_1 + x_2 & x_1 \\ 3x_2^2 & 1 + 6x_1 x_2 \end{bmatrix}$$

For initial guess, say $x_1^{(0)} = 1$, $x_2^{(0)} = 1$,

$$f(x^{(0)}) = \begin{pmatrix} f_1(x_1^{(0)}, x_2^{(0)}) \\ f_2(x_1^{(0)}, x_2^{(0)}) \end{pmatrix} = \begin{pmatrix} -8 \\ -53 \end{pmatrix} \implies J = \begin{bmatrix} 3 & 1 \\ 3 & 7 \end{bmatrix} \implies J^{-1} = \frac{1}{18} \begin{bmatrix} 7 & -1 \\ -3 & 3 \end{bmatrix}$$

Hence the solution after first iteration is.

$$\begin{pmatrix} x_1^{(1)} \\ x_2^{(1)} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \frac{1}{18} \begin{bmatrix} 7 & -1 \\ -3 & 3 \end{bmatrix} \begin{pmatrix} -8 \\ -53 \end{pmatrix} = \begin{pmatrix} 1.1667 \\ 8.5000 \end{pmatrix}$$

$$\frac{n \quad x_1 \quad x_2}{1 \quad 1.1667 \quad 8.5000}$$

$$2 \quad 1.5670 \quad 3.6878$$

$$3 \quad 2.0108 \quad 2.8824$$

$$4 \quad 1.9992 \quad 3.0023$$

Converges quadratically but cost of computing Jacobian is N^2 for function evaluations and N^3 for solving linear equations.

2.0000

3.0000

Laguerre's method

A polynomial of degree n has exactly n roots α_i (i = 1, 2, ..., n)

$$P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$$

Polynomials with real a_i , roots can be real or complex conjugate pair. We will restrict ourselves to only real roots.

A two step method -

(i) Laguerre's method followed by (ii) deflating the polynomial.

Using Laguerre's method determine the root α_1 of P(x), then obtain a reduced polynomial Q(x) of degree one less than P(x).

$$P(x) = (x - \alpha_1) Q(x)$$

 $Q(x) = (x - \alpha_2) R(x) \Rightarrow P(x) = (x - \alpha_1)(x - \alpha_2) R(x)$ etc.

where the roots of Q(x) are the remaining roots of P(x). In each of n steps, the Laguerre determines the roots α_i while deflation determines the remainder polynomial.

Method used for deflation is synthetic division method (learnt in class IX).

Laguerre algorithm proceeds as

- 1. Begin with an initial guess β_0 .
- 2. If β_0 is bang on one of the roots, i.e. $P(\beta_0) \approx 0$, go for deflation.
- 3. Else calculate the following

$$G = \frac{P'(\beta_k)}{P(\beta_k)}, \quad H = G^2 - \frac{P''(\beta_k)}{P(\beta_k)}$$

$$\Rightarrow \quad a = \frac{n}{G \pm \sqrt{(n-1)(nH - G^2)}}$$

Choose the sign in the denominator of *a* such as to give the denominator the larger absolute value.

- 4. Set $\beta_{k+1} = \beta_k a$ as new trial.
- 5. Iterate till $|\beta_{k+1} \beta_k| < \epsilon$ and set $\alpha_1 = \beta_k$. Check $P(\alpha_1) \approx 0$.
- 6. Go for deflation to reduce the degree of the polynomial and do the above iteration all over again to find α_2 and so on.

Next deflation : divide
$$P(x)$$
 by $(x - \alpha_1)$ to get $Q(x)$

$$\frac{P(x)}{x - \alpha_1} = Q(x)$$
, followed by $\frac{Q(x)}{x - \alpha_2} = R(x)$ etc.

Deflation by Synthetic division method:

 \star Arrange terms in P(x), the dividend, in descending order of power, 0 (zero) for missing power. Consider polynomial $-x^3 + 3x^2 - 4$

$$\frac{P(x)}{x - \alpha_1} = \frac{-x^3 + 3x^2 - 4}{x - 2} \implies \text{divisor} = 2, \text{ coeffs} = [-1, 3, 0, -4]$$

 \star Write the divisor and coefficients in the manner given below. Bring down the first or leading coefficient *i.e.* -1 below the horizontal line.

- \star Multiply the coefficient of leading power -1 with the divisor
- $2 \times -1 = -2$ and add it to the coefficient of the next lower power
- 3 + (-2) = 1 and bring it down below the horizontal line again.
- ★ Multiply it again with divisor and continue this process till the end.

 \star If $\alpha_1 = 2$ is a root then the last sum *i.e.* the last entry below the horizontal line, which gives the remainder, must be zero.

* The reduced lower degree polynomial Q(x) has the numbers below the horizontal line as its coefficients

$$\frac{P(x)}{x - \alpha_1} = \frac{-x^3 + 3x^2 - 4}{x - 2} = -x^2 + x + 2 = Q(x)$$

 \star Repeat the above process with Q(x) and keep doing for successive roots till you get the final monomial $(x - \alpha_n)$.

$$\begin{array}{c|ccccc} -1 & 1 & 2 \\ 2 & + & -2 & -2 \\ \hline & -1 & -1 & 0 \end{array} \Rightarrow R(x) = -x - 1$$

The polynomial in the example is thus factorized in terms of its roots as

$$P(x) = -x^3 + 3x^2 - 4 = (x - 2)(x - 2)(-x - 1)$$

Find all the roots of the following polynomial

$$P(x) = 6x^3 - 11x^2 - 26x + 15$$
 answer: $x = 3, -5/3, 1/2$
 $P(x) = x^4 - x^3 - 7x^2 + x + 6$ answer: $x = 1, -2, 3, -1$