Сравнение моделей CNN и RNN для прогнозирования результатов ЭКГ

В данной презентации рассматривается сравнение двух популярных архитектур глубокого обучения — сверточных нейронных сетей (CNN) и рекуррентных нейронных сетей (RNN) — в задаче прогнозирования заболеваний по данным электрокардиограммы (ЭКГ). Мы подробно проанализируем архитектуры моделей, методологию обучения и сравним их эффективность с использованием ключевых метрик оценки.

Цель — выявить наиболее точную и стабильную модель для практического применения в диагностике заболеваний сердца на основе ЭКГ-спектрограмм.

Используемые модели

CNN (Сверточная нейронная сеть)

Используется двухмерная свертка с 2D Conv слоями, за которыми следуют полносвязные слои для классификации. Сеть способна эффективно извлекать локальные признаки из спектрограмм ЭКГ.

RNN (Рекуррентная нейронная сеть)

Базируется на двухслойном bidirectional GRU, что позволяет учитывать временную зависимость и направление сигналов в последовательности. Подходит для работы с последовательными данными.

Архитектура моделей

CNN

Слои Conv1D \rightarrow BatchNorm \rightarrow ReLU \rightarrow Pooling обеспечивают эффективный отбор и усиление признаков.

Dense → ReLU → Dropout → Dense → Softmax служат для окончательной классификации

RNN

Двухслойный bidirectional GRU c hidden size 128 агрегирует временные зависимости. Полносвязная классификационная секвенция с Dropout позволяет противостоять переобучению

Datest Split:

- 1 = Data split
- 2 = Fatture 1.00 x gge
- 4 ⇒ Fecess 1.00 x goe
- 5 = Testing 1.00 x gge
- 5. = Testing 1.00 x goe

Методология

1 Подготовка данных

2

Разбиение данных

Выделены 50 наиболее частых заболеваний, каждое представлены через МГСС-спектрограммы, извлечённые из .mat файлов. Метки закодированы с помощью One-Hot encoding.

Обучающий, валидационный и тестовый наборы распределены как 70%, 15% и 15% соответственно для сбалансированной оценки моделей.

3 Обучение моделей

ECGCNN обучалась 300 эпох с learning rate 1e-4, а ECGRNN — 25 эпох с тем же Ir для оптимального баланса времени и качества обучения.

Сравнение метрик на тестовом наборе

Модель	Loss	Accuracy	ROC-AUC	Precision	Recall	F1-Score
ECGCNN	0.2735	0.8482	0.8767	0.4182	0.7412	0.5252
ECGRNN	0.1051	0.8885	0.6963	0.0553	0.0525	0.0539

Модель ECGCNN демонстрирует лучшие показатели в терминах точности и полноты оценки, в то время как ECGRNN показывает меньше точности классификации конкретных заболеваний.

Выводы

Преимущества ECGCNN

- Выше точность (Accuracy) и F1-Score на тестовых данных
- ROC-AUC лучше на 10%, что свидетельствует о надежности модели

Причина превосходства

Сверточная сеть лучше выявляет локальные паттерны на MFCCспектрограммах, что критично для эффективной диагностики заболеваний сердца по ЭКГ.

Сравнение лучших ML и DL моделей

Модель	Precision	Recall	F1-Score
ECGCNN	0.418	0.741	0.525
LGBMClassifier	0.950	0.995	0.944

МL показывает значительно более высокие значения Precision, Recall и F1-Score DL-модель уступает по всем трём метрикам, что говорит о необходимости дальнейшей оптимизации архитектуры и гиперпараметров для работы с ЭКГ-

сигналами.

