Human Computer Interaction

INTERACTION PRINCIPLES FOR DESIGN

By: Nguyễn Công Hoan

Reference

- DonaldNorman, The Design of Everyday
 Things, MITPress, 23 Dec 2013
- Tutorial Teaching of Prof. Dr. Keith Andrews,
 Graz University of Technology

Content

The nature of Human-Computer Interaction. Adapted from the ACM SIGCHI Curricula for Human-Computer Interaction [Hewett et al., 2002]

Agenda

- Interaction design
- Principles for Design
- Apply Norman's principle

Interaction design

People are trying to accomplish their tasks in life.
 (system independent)

Introduce a system,
 User Interface should maximize their ability

Interaction design

- Design interactive products to support people in their everyday and working lives.
- Extend the way people work, communicate & interact.
- Designer vs Engineer
 - Designer defines what something ought to be,
 - Engineer implements that

Interaction design

- → Focus on design of user interface of software (applications + websites)
- "What is software? From a technical perspective, a piece of software comprises forms for managing, collecting and transmitting data. But that is not what a user thinks. From the user's perspective software is a computer tool for performing tasks quickly, efficiently, accurately and with a minimum amount of cognitive demand. Aim for the second one, there's a big difference.

http://www.ssw.com.au/ssw/standards/Rules/RulesToBetterInterfa

"

Why Interaction Design?

- Market forces: user expectancy, competitive software...
- Good design earns money
- Bad design results in:
 - Physical and emotional injury
 - Equipment damage
 - Decreased productivity
 - Higher error rates
 - User's anger and frustration

Bad design loses money & even more...

Principles for Design

- 1. Visibility
- 2. Affordance
- 3. Constraint
- 4. Mapping
- 5. Feedback

Visibility

- The correct parts must be visible and they must convey the correct message
- By looking at the system, users should know:
- Possible actions
- Results of their actions
- State of the system

Affordance

- The affordances of an object determine, naturally, how it can be used
- Chair affords sitting; Button affords pushing
- Scrollbar affords moving up & down; Textbox affords texting
- By looking, users should know how to use the systems
- Actual affordance vs Perceptual affordance
- Affordances rely on learned conventions.

??

Affordance

Constraint

- Constraints limit the possible actions of an object.
- Constraints prevent users from making errors.
- Constraints can be
 - Physical
 - Logical
 - Cultural

Constraint

Constraint

Mapping

- Mappings are the relationships between controls and their effects on a system.
- Natural mappings take advantage of physical analogies and cultural standards.

Mapping

Mapping

- Feedback is sending back to the user information about what action has been done.
- Visibility of the effects of the operation tell whether if something worked correctly.
- Feedback to ensure users know what to do next.


```
usCallback(TRUE));
sction(strServerName, nPort);
CHttpConnection::HTTP_VERB_GET,
NULL, dwHttpR Microsoft Visual C++
aders);
                       No error occurred.
Ret);
pt the user fo
ED)
# (NULL, ERROR_INTERNET_INCORRECT_PASSWORD,
GENERATE_DATA | FLAGS_ERROR_UI_FLAGS_CHANGE_O
the dialog, bail out
```

Principles for Design

- Visibility
- Affordance
- Constraint
- Mapping
- Feedback

The relationships of these principles

 D:\Working\GoogleDrive\Working\UIT\Refere nce\Human-Computer Interaction\California State University Northridge\ GUldesign.pdf (page 9 - end)

How can we apply Norman's principles to Computer Interface Design?

Visual GUIs design

- Communication via Visual Language
- Functional > Aesthetic
- Simplicity > realism
- Geometry: scale, contrast & proportion
- Management: visual organization
- Grids: modular visual design
- Semiotics: icons & symbols as signs
- Style

Visual language

- Vocabulary by visual elements
- Syntax by usage rules for elements
- Literacy by experience of designer & user
- Style skill by w/ vocabulary & syntax

Elegance and Simplicity

- Reduce design elements to a minimum
 - functionality not photo-realism
 - reduce visual search (and cognitive) load
- Simple designs are more: approachable recognizable, remembered usable (immediately and thereafter)

Reduction

- Determine essential qualities(adjectives) --color, labels, controls
- Is each element needed? Would the design suffer if removed?
- Test element's necessity by removing it. If design is fine omit element.
- Omitted elements can be indirectly accessible via menus -- option
- buttons

Regulation

- Use regular shapes, simple contours, muted colors
- Make multiple similar forms visual properties identical (size, shape,
- alignment, spacing ...)
- Limit font variation to few sizes in two families
- Do not regularize critical elements -- make them stand out (novel)

Leverage Design Rules / Elements

- Find multiple elements doing similar functions
- Design a combined element for the functions
- Do not overload the modality of elements.
- Design trade off between simple interface and cognitive load (rules for use)

Leverage Design Rules / Elements

Geometry: Scale, Contrast & Proportion

- Scale is the element's relative size (area)
- Contrast is an element's distinctive dimension.
- How is it differentiated from others?
 - size, value (greyscale), hue (color),
 - position, orientation, texture, shape
- Proportion is the ratio of sizes
 - Computer displays 1.33 to 1
 - Golden (classical) rectangles 1.618 to 1)
 - Printed Paper A standard 1,414 to 1
- Scale and contrast are used to emphasize elements.
- Activity is how a design uses geometry to lead the visual search (view).
- Humans seek patterns, \ design should provide cues to group common, differentiate unique elements, and provide comparison (evaluation) information

https://blog.prototypr.io/golden-ratio-in-ui-design-8d11e66582c3

https://blog.prototypr.io/golden-ratio-in-ui-design-8d11e66582c3

https://blog.prototypr.io/golden-ratio-in-ui-design-8d11e66582c3

Geometry: Printed Paper A standard

Geometry: Printed Paper A standard

Geometry: Printed Paper A standard

Visual Variables

- Associative: independent of other variables. Most variables are associative.
 - size and value are dissociative they affects visibility of other variables.
 (e.g. line to thin to see color)
- Selective Perception: viewing isolates all group members into an image.
 - shape is not selective.
- Ordered Perception: viewing can determine ordering (ranking).
 - Ordering reduces need for legends (keys).
 - Position, size and value enable ordering
- Quantitative Perception: viewing can determine relative amount of difference not just ranking. Must be easily apparent.
 - size (area) and position are quantitative

Color Usage

- 3 interacting variables of color vision:
 - Hue color
 - Brightness intensity (bright dull)
 - Saturation %color in field
- Opponent process theory of color vision
 - These colors can't be seen in same patch of light (adjacent).
 - They produce shadows and edges.
 - Avoid use of opponent (opposite) colors.
- Blue is the hardest color to see small changes in hue
- Selection / Applicability
 - Color is very useful to have user selected items stand out in a display.
 - Color can also be used to indicate whether a menu option is valid in the current state or not ("greyed options")

Color Usage

- Alert / Attention: Change of color represents change in state or mode
 - (Traffic signals: green, yellow, red).
 - Use few colors that are easy to discriminate
 - Use warning colors sparingly.
 - Consistent system wide analysis of color use.
- **Element Discrimination**: Color provides contrast and improves discrimination. Need high contrast difference. Contrast a function of luminance or hue

Color Usage

- Category grouping & field definition: Color can help group display elements and facilitate visual search. Visual search is affected by:
 - number of items
 - color separation of categories
 - legibility of coded symbols
 - relationship between color coding and targets
- As screen density increases color effect increase.
 Color can define visual fields on display- weather maps

Size & Visual Acuity

- As number of colors increase size of text should also increase.
- Color can't be assumed! Redundantly code display.
- Designer's color perception != user's color perception
 - color & text codes (categorization)
 - color, size & text
 - color, size, text & icon ….
- Color Memory: 5 7 color memory for codes. Don't tax Working
- Memory use around 4 colors!

Grouping guidelines

- Group into a small number (7 ± 2)
- Rank the importance of the groups
- Show hierarchical relations with size
- Show non-hierarchical groups with hue
- Maximize differences between groups
 Minimize differences within groups.

Using Perceptual Distinction

- Determine range of variation (min .. max) for sizes, color dimensions.
- Use logarithmic > linear scaling for discrimination.
- At least double each level!

Balanced use of figure / ground

- Determine and equalize the visual weight of figure / ground.
- Use internal padding to surround the figure and separate it from borders.
- Spend valuable screen real estate for internal spacing!
- Position the figure w/in the ground.
- Centering is usually most appropriate.
- White (Negative) Space is not wasted
- White space is needed for figure / ground integration.
- White space helps spatial separation / organization.
- Increase white space around critical elements

Balanced use of figure / ground

Alignment and Visual Relationships

- Elements should be aligned with boundaries and margins.
- Alter size and proportion when needed to support alignment.
 - Extend elements beyond margin with respect to sharpness of adjacent angles.
 - Greater the acuteness of angle the greater the extension
 - Proportional fonts use optical adjustment.
- Items not aligned to anything on display should be proportional to display

Visual Perception Structure

Gestalt principles:

- 1. Principle of proximity
- 2. Principle of similarity
- 3. Principle of closure
- 4. Principle of continuation
- 5. Principle of enclosure
- 6. Figure-ground principle
- 7. Principle of symmetry
- 8. Principle of connection
- 9. Principle of common fate

Grids

- Modularity in visual structure GUI Design
- Regular visual structures are predictable, flexible, and efficient.
- Grids benefit design and provide "scalability" to a GUI application. As screens and dialogs increase in numbers a grid layout simplifies design and increases use.
- Canonical grid layout enables 6, 4, 3, and 2 division of elements on a display.
- Any remaining visible grid lines should be half intensity in final display

Grids

- GUI Windows are rectangular: grids are the first display layout considered.
- Determine vertical unit that allows any two controls to be adjacent
- When spacing of multi-line controls consider labels as controls (in layout)
- Horizontal unit 3 x as wide as vertical unit
- Use 5-7 column divisions of horizontal units

Semiotics -- GUIs as signs

- Iconic sign: representation resembles object
- Symbolic sign: viewer associates representation and object

Semiotics -- GUIs as signs

- Abstractness helps iconic generality
- Realistic icons represent instances
- Stylized (minimalistic) icons represent a class

Minimal Abstractness

Icon Selection

- Use iconic representation when communication goal is concrete & familiar.
- Can use symbolic representation for repetitive concepts (learned).
- Use text for abstract or complex (subtle) representations (processes).
- Avoid mixing textual, iconic and symbolic signs w/in image set

Icon Refinement

- Determine the level of abstraction.
- Try simplifying shapes into regular geometric forms.
- Try using negative space to determine contour

Coordinating Icons

- Use a similar perspective & point of view
- Use a similar style of representation -- don't combine icons with symbols.
- Use consistent size, orientation, layout, color, and visual proportion (weight / area) to each image. Grids help internal structure.
- Use the same elements when possible in your image set {lines, rules, textures} -- limit the visual vocabulary

Mastering Style

- Read style guides -- learn the conceptual model from the user's point of view.
- Respect the visual language of the style.
- Learn the usage and methods of user customization -- fonts, color and how they can possible degrade the style

Working across (with) many Styles

- Develop a translation table across the style set
- Extend the widget set to fill out gaps in the translation table.
- Use menu and control mechanisms of the style.
- Focus on high level orienting features -- keep similar structure when possible

Q&A