Zadanie 3.7. Egzamin maj 2015 r. Arkusz I, poziom rozszerzony, zadanie 2. KOSZYK ZABAWEK

Wyobraź sobie, że w pewnym sklepie z zabawkami wygrałeś "koszyk zakupów", którego zawartość nie może łącznie ważyć więcej niż 10 kg. Oto artykuły, z których możesz wybierać:

lp.	nazwa artykułu	masa	cena	cena masa
1.	rowerek	8 kg	320 zł	40
2.	wózek dla lalek	4 kg	152 zł	38
3.	lalka	1 kg	37 zł	37
4.	duży miś	2 kg	70 zł	35
5.	klocki	3 kg	99 zł	33
6.	hulajnoga	5 kg	155 zł	31
7.	mały miś	1 kg	30 zł	30

Ponieważ wszystkie zabawki są dla Ciebie tak samo atrakcyjne, chcesz wybrać zabawki do koszyka tak, żeby ich łączna wartość była jak największa. Przy podejmowaniu decyzji o wyborze zabawek możesz skorzystać z jednej z trzech strategii:

- I. Wybierasz zabawki od najdroższej do najtańszej, kontrolując jednocześnie masę zabawek w koszyku, żeby nie przekroczyć ograniczenia na łączną masę jego zawartości. W przypadku takiej samej ceny wybierasz zabawkę lżejszą.
- II. Wybierasz zabawki od najlżejszej do najcięższej, kontrolując jednocześnie masę zabawk w koszyku. W przypadku takiej samej masy zabawk wybierasz zabawkę droższą.
- III. Wybierasz zabawki w kolejności od największego do najmniejszego ilorazu ceny do masy $\left(\frac{CENA[i]}{MASA[i]}\right)$, kontrolując jednocześnie masę zabawek w koszyku.

Jeżeli więcej niż jedna zabawka spełnia kryterium wyboru, to wybierasz dowolną z takich zabawek.

Zadanie 2.1.

Jaka będzie zawartość koszyka przy zastosowaniu każdej ze strategii: I, II, III, i przy założeniu, że te same zabawki możemy do koszyka wybierać **wielokrotnie**, o ile tylko nie przekroczymy dozwolonej, całkowitej masy zakupów? Uzupełnij tabelę: podaj nazwy wybranych zabawek, liczby ich egzemplarzy oraz sumaryczną wartość zabawek w koszyku.

	Strategia I	Strategia II	Strategia III
Zawartość koszyka	1 rowerek (320 zł, 8 kg) 1 duży miś (70 zł, 2 kg)	10 lalek (37 zł, 1 kg)	1 rowerek (320 zł, 8 kg) 2 lalki (37 zł, 1 kg)
Wartość koszyka w zł	390 zł (10 kg)	370 zł (10 kg)	394 zł (10 kg)

Zadanie 2.2.

Uzupełnij poniższy algorytm, który oblicza wartość koszyka przy wyborze zabawek zgodnym ze strategią III. Artykuły w koszyku **mogą się powtarzać**. W algorytmie wykorzystano strategię III uwzględniającą równocześnie masy artykułów i ich ceny.

Specyfikacja:

Dane:

mk — ograniczenie na łączną masę zawartości koszyka

n — liczba dostępnych artykułów

MASA[1..n] — tablica n-elementowa zawierająca masy dostępnych zabawek w kolejności nierosnących ilorazów ceny do masy $\left(\frac{CENA[i]}{MASA[i]} \ge \frac{CENA[i+1]}{MASA[i+1]}\right)$

CENA[1..n] — tablica n-elementowa zawierająca ceny dostępnych zabawek w kolejności nierosnących ilorazów ceny do masy $\left(\frac{CENA[i]}{MASA[i]} \ge \frac{CENA[i+1]}{MASA[i+1]}\right)$

 $mk,\,n$ oraz ceny i masy są dodatnimi liczbami całkowitymi.

Wynik:

K[1..n] — tablica n-elementowa, gdzie K[i] jest równe 1, gdy i-ta zabawka została dodana do koszyka, a 0 w przeciwnym wypadku.

w — łączna wartość zabawek w koszyku

krok 1: Dla i = 1 do n wykonaj $K[i] \in 0$

krok 2: $w \in 0$

krok 3: $i \in 1$

krok 4: Dopóki $i \le n$ oraz mk > 0

krok 5: $K[i] \leftarrow mk \ div \ MASA[i]$

krok 6: $mk \leftarrow mk \mod MASA[i]$

krok 7: w += K[i] * CENA[i]

krok 8: $i \leftarrow i + 1$

Uwaga:

Operatory mod i div oznaczają — odpowiednio — resztę z dzielenia i dzielenie całkowite.

Zadanie 2.3.

Jaka będzie zawartość koszyka przy zastosowaniu każdej ze strategii: I, II, III, i przy założeniu, że zabawki nie mogą się powtarzać? Uzupełnij tabelę: podaj nazwy wybranych zabawek i sumaryczną wartość koszyka.

	Strategia I	Strategia II	Strategia III
Zawartość koszyka	1 rowerek (320 zł, 8 kg) 1 duży miś (70 zł, 2 kg)	1 lalka (37 zł, 1 kg) 1 mały miś (30 zł, 1 kg) 1 duży miś (70 zł, 2 kg) 1 klocki (99 zł, 3 kg)	1 rowerek (320 zł, 8 kg) 1 lalka (37 zł, 1 kg) 1 mały miś (30 zł, 1 kg)
Wartość koszyka w zł	390 zł (10 kg)	236 zł (7 kg)	387 zł (10 kg)

Zadanie 2.4.

Zaprojektuj i zapisz (w postaci listy kroków, schematu blokowego lub kodu wybranego języka programowania) algorytm stosujący strategię III dobierania zabawek do koszyka tak, aby wybrane zabawki w koszyku nie mogły się powtarzać.

Specyfikacja:

Dane:

mk — ograniczenie na łączną masę zawartości koszyka

n — liczba dostępnych artykułów

MASA[1..n] — tablica n-elementowa zawierająca masy dostępnych zabawek w kolejności nierosnących ilorazów ceny do masy $\left(\frac{CENA[i]}{MASA[i]} \ge \frac{CENA[i+1]}{MASA[i+1]}\right)$

CENA[1..n] — tablica n-elementowa zawierająca ceny dostępnych zabawek w kolejności nierosnących ilorazów ceny do masy $\left(\frac{CENA[i]}{MASA[i]} \ge \frac{CENA[i+1]}{MASA[i+1]}\right)$

mk, n oraz ceny i masy są dodatnimi liczbami całkowitymi.

Wynik:

K[1..n] — tablica n-elementowa, gdzie K[i] jest równe 1, gdy i-ta zabawka została dodana do koszyka, a 0 w przeciwnym wypadku.

w — łączna wartość zabawek w koszyku

print("nr ", i + 1, " = ", K[i])

print("wartość zabawek = ", w)


```
zad_4(10, 7, [8, 4, 1, 2, 3, 5, 1], [320, 152, 37, 70, 99, 155, 30])
```