PLSC 503 – Spring 2025 Maximum Likelihood: Theory and Optimization

March 24, 2025

A Toy Example

A Model:

Some data:

$$Y \sim N(\mu, \sigma^2)$$

$$Y = 64$$

$$63$$

$$E(Y) = \mu$$

$$Var(Y) = \sigma^2$$

$$68$$

Probabilities, Marginal

 $Y \sim N(\mu, \sigma^2)$ implies:

$$Pr(Y_i = y_i) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[-\frac{(Y_i - \mu)^2}{2\sigma^2}\right]$$

So:

$$Pr(Y_1 = 64) = \frac{1}{\sqrt{2\pi\sigma^2}} exp \left[-\frac{(64 - \mu)^2}{2\sigma^2} \right]$$

$$Pr(Y_2 = 63) = \frac{1}{\sqrt{2\pi\sigma^2}} exp \left[-\frac{(63 - \mu)^2}{2\sigma^2} \right]$$

. . .

Recall that:

$$Pr(A, B | A \perp B) = Pr(A) \times Pr(B)$$

So:

$$\Pr(Y_1 = 64, Y_2 = 63) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(64 - \mu)^2}{2\sigma^2}\right] \times \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(63 - \mu)^2}{2\sigma^2}\right]$$

More generally:

$$Pr(Y_i = y_i \,\forall \, i) \equiv L(Y|\mu, \sigma^2)$$

$$= \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[-\frac{(y_i - \mu)^2}{2\sigma^2}\right]$$

Likelihood

The likelihood is:

$$L(\hat{\mu}, \hat{\sigma}^2 | Y) \propto \Pr(Y | \hat{\mu}, \hat{\sigma}^2)$$

For $\hat{\mu}=68$ and $\hat{\sigma}=4$, that means:

$$L = \frac{1}{\sqrt{2\pi 16}} \exp\left[-\frac{(64-68)^2}{32}\right] \times \\ \frac{1}{\sqrt{2\pi 16}} \exp\left[-\frac{(63-68)^2}{32}\right] \times \\ \frac{1}{\sqrt{2\pi 16}} \exp\left[-\frac{(59-68)^2}{32}\right] \times ... \\ = 0.060 \times 0.046 \times 0.008 \times ... \\ = \text{some reeeeeally small number...}$$

What a Likelihood Looks Like

Log-Likelihood

$$\ln L(\hat{\mu}, \hat{\sigma}^2 | Y) = \ln \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(Y_i - \mu)^2}{2\sigma^2}\right]$$

$$= \sum_{i=1}^{N} \ln\left\{\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(Y_i - \mu)^2}{2\sigma^2}\right]\right\}$$

$$= -\frac{N}{2} \ln(2\pi) - \left[\sum_{i=1}^{N} \frac{1}{2} \ln \sigma^2 + \frac{1}{2\sigma^2} (Y_i - \mu)^2\right]$$

What a Log-Likelihood Looks Like

The "Maximum" Part

For
$$L = f(Y, \theta)$$
:

- Calculate $\frac{\partial \ln L}{\partial \theta}$,
- Set $\frac{\partial \ln L}{\partial \theta} = 0$, solve for $\hat{\theta}$,
- Calculate $\frac{\partial^2 \ln L}{\partial \theta^2}$,
- Verify $\frac{\partial^2 \ln L}{\partial \theta^2} < 0$.

Example: Normal Y

For a Normal distribution:

$$\ln L(\hat{\mu}, \hat{\sigma}^2 | Y) = -\frac{N}{2} \ln(2\pi) - \left[\sum_{i=1}^{N} \frac{1}{2} \ln \sigma^2 + \frac{1}{2\sigma^2} (Y_i - \mu)^2 \right]$$

This means:

$$\frac{\partial \ln L}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^{N} (Y_i - \mu)$$

$$\frac{\partial \ln L}{\partial \sigma^2} = \frac{-N}{2\sigma^2} + \frac{1}{2} \sigma^4 \sum_{i=1}^{N} (Y_i - \mu)^2$$

Example: Normal Y (continued)

Solving yields:

$$\hat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} Y_i$$

$$\hat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \bar{Y})^2$$

Compare with:

$$\hat{\sigma}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i - \bar{Y})^2$$

Example: Linear Regression

Model:

$$E(Y) \equiv \mu = \beta_0 + \beta_1 X_i$$

$$Var(Y) = \sigma^2$$

Likelihood:

$$L(eta_0,eta_1,\sigma^2|Y) = \prod_{i=1}^N rac{1}{\sqrt{2\pi\sigma^2}} exp\left[-rac{(Y_i-eta_0-eta_1X_i)^2}{2\sigma^2}
ight]$$

Log-likelihood:

$$\ln L(\beta_0, \beta_1, \sigma^2 | Y) = -\frac{N}{2} \ln(2\pi) - \sum_{i=1}^{N} \left[\frac{1}{2} \ln \sigma^2 + \frac{1}{2\sigma^2} (Y_i - \beta_0 - \beta_1 X_i)^2 \right]$$

"Kernel":

$$-\sum_{i=1}^{N} \left[\frac{1}{2} \ln \sigma^2 + \frac{1}{2\sigma^2} (Y_i - \beta_0 - \beta_1 X_i)^2 \right]$$

MLE in General

Probability density:

$$Pr(Y) = f(\mathbf{X}, \theta)$$

Likelihood:

$$L = \prod_{i=1}^{N} f(Y_i | \mathbf{X}_i, \theta)$$

Log-likelihood:

$$\ln L = \sum_{i=1}^{N} \ln f(Y_i | \mathbf{X}_i, \theta)$$

MLE is:

$$\ln L(\hat{\theta}|Y,\mathbf{X}) = \max_{\theta} \left\{ \ln L(\theta|Y,\mathbf{X}) \right\}$$

Digression: Taylor Series Approximation

For a k + 1-times differentiable function f(x), we can approximate the function at a with a *Taylor series approximation*:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$$

Special cases: First-order / linear:

$$f(x) \approx f(a) + \frac{f'(a)}{11}(x-a)$$

Second-order / quadratic:

$$f(x) \approx f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2$$

Taylor Series, Illustrated

The Gradient

The gradient is:

$$\mathbf{g}(\hat{\theta}) = \frac{\partial \ln L(\hat{\theta})}{\partial \hat{\theta}}$$

First-order Taylor series approximation at θ :

$$\frac{\partial \ln L}{\partial \hat{\theta}} \approx \frac{\partial \ln L}{\partial \theta} + \frac{\partial^2 \ln L}{\partial \theta^2} (\hat{\theta} - \theta)$$

Yields:

$$\hat{\theta} - \theta = \left(-\frac{\partial^2 \ln L}{\partial \theta^2} \right)^{-1} \frac{\partial \ln L}{\partial \theta}$$
$$= -\mathbf{H}(\theta)^{-1} \mathbf{g}(\theta)$$

Consistency

Need

$$\mathsf{plim}(\hat{\theta} - \theta) = 0$$

So:

- Assume $\mathbf{H}(\theta) \stackrel{\mathsf{a}}{\to} \mathbf{A} < \infty$
- Show $E[g(\theta)] \to \mathbf{0}$ as $N \to \infty$

Yields:

$$\begin{split} \mathsf{E}[\mathbf{g}(\theta)] &= \frac{1}{N} \, \mathsf{E}\left(\frac{\partial \ln L_1}{\partial \theta} + \frac{\partial \ln L_2}{\partial \theta} + \ldots + \frac{\partial \ln L_N}{\partial \theta}\right) \\ &= \frac{1}{N} \, \left[\mathsf{E}\left(\frac{\partial \ln L_1}{\partial \theta}\right) + \mathsf{E}\left(\frac{\partial \ln L_2}{\partial \theta}\right) + \ldots\right] \\ &\stackrel{\text{\tiny d}}{=} \quad \mathbf{0} \end{split}$$

Cramer-Rao lower bound:

$$\mathsf{Var}(\hat{ heta}) \geq \left[-\mathsf{E}\left(rac{\partial^2 \mathsf{ln}\, L(heta)}{\partial heta^2}
ight)
ight]^{-1}$$

For the MLE $\hat{\theta}$:

$$\begin{aligned} \mathsf{Var}(\hat{\theta}) &=& \mathsf{E}[(\hat{\theta} - \theta)(\hat{\theta} - \theta)'] \\ &=& \mathsf{E}\left[\left(-\frac{\partial^2 \ln L}{\partial \theta^2}\right)^{-1} \frac{\partial \ln L}{\partial \theta} \frac{\partial \ln L'}{\partial \theta} \left(-\frac{\partial^2 \ln L}{\partial \theta^2}\right)^{-1}\right] \end{aligned}$$

Under some easy regularity conditions:

$$\mathsf{E}\left[\frac{\partial \mathsf{\ln} L}{\partial \theta} \frac{\partial \mathsf{\ln} L'}{\partial \theta}\right] \quad = \quad \mathsf{E}\left[\frac{\partial^2 \mathsf{\ln} L}{\partial \theta^2}\right]$$

So,

$$Var(\hat{\theta}) = \left[-E\left(\frac{\partial^2 \ln L}{\partial \theta^2}\right) \right]^{-1}$$
$$= [I(\theta)]^{-1}$$

Normality

By the Law of Large Numbers:

$$rac{\hat{ heta} - heta}{\sqrt{ extsf{I}(heta)^{-1}}} \sim extsf{N}(extsf{0}, extsf{1})$$

Or, equivalently:

$$\hat{ heta} \sim \textit{N}(heta, \textbf{I}(heta)^{-1})$$

Invariance: Parameters

For

$$\gamma = h(\theta)$$

$$\hat{\gamma}_{ML} = h(\hat{\theta}_{ML})$$

Suppose

$$\phi^2 = 1/\sigma^2$$

so that

$$Y \sim N(\mu, \phi^2)$$
.

Invariance: Example

Then:

$$\ln L(\hat{\mu},\hat{\phi}^2) = -\left[\sum_{i=1}^N rac{1}{2} \ln \, \phi^2 - rac{1}{2\phi^2} (Y_i - \mu)^2
ight]$$

and:

$$\frac{\partial \ln L}{\partial \phi^2} = \frac{-N}{2\phi^2} + \frac{1}{2}\phi^4 \sum_{i=1}^{N} (Y_i - \mu)^2$$

and:

$$\hat{\phi}^2 = \frac{N}{\sum_{i=1}^{N} (Y_i - \bar{Y})^2}$$
$$= \frac{1}{\hat{\sigma}^2}$$

Summary

MLEs:

- Maximize $L(\theta|Y, \mathbf{X})$
- Are consistent in N
- Are asymptotically efficient
- Are asymptotically Normal
- Are invariant to (injective) transformations and varying sampling methods

Optimization

Optimization: Things We Won't Cover

- Grid search / "hill climbing"
- Genetic algorithms
- Simulated annealing methods
- Local search methods (tabu, etc.)
- many others...

The Basic Problem

Find

$$\max_{\hat{oldsymbol{eta}} \in \mathbb{R}^k} \ln L(\hat{oldsymbol{eta}}|Y,\mathbf{X})$$

Unconstrained optimization problem...

Intuition:

- Start with $\hat{\beta}_0$
- Adjust:

$$\boldsymbol{\hat{\beta}_1} = \boldsymbol{\hat{\beta}_0} + \boldsymbol{\mathsf{A_0}}$$

• Repeat.

More Specifically...

At each iteration:

$$oldsymbol{\hat{eta}}_\ell = oldsymbol{\hat{eta}}_{\ell-1} + oldsymbol{\mathsf{A}}_{\ell-1}$$

Convergence:

$$\hat{oldsymbol{eta}} = \hat{oldsymbol{eta}}_\ell
ightarrow \hat{oldsymbol{eta}}_\ell - \hat{oldsymbol{eta}}_{\ell-1} (\equiv oldsymbol{\mathsf{A}}_\ell) < au$$

Key Question: What's A?

One alternative:

$$\mathbf{A} = f[\mathbf{g}(\hat{\boldsymbol{\beta}})]$$

Here, $\mathbf{g}(\hat{oldsymbol{eta}})=$ "directionality" of change

- $\mathbf{g}(\hat{\beta}_k) < 0 \rightarrow A_k < 0$
- $\mathbf{g}(\hat{\beta}_k) > 0 \rightarrow A_k > 0$

"Method of Steepest Ascent"

Adjust by the gradient:

$$\mathbf{A}_{\ell} = \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell}}$$

At each iteration:

$$\hat{\boldsymbol{\beta}}_{\ell} = \hat{\boldsymbol{\beta}}_{\ell-1} + \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}}$$

A Challenge

"Step Size"

Generalize:

$$\hat{\boldsymbol{\beta}}_{\ell} = \hat{\boldsymbol{\beta}}_{\ell-1} + \lambda_{\ell-1} \boldsymbol{\Delta}_{\ell-1}$$

- $\Delta \rightarrow direction$
- $\lambda \rightarrow amount$ ("step size")

Key: Hessian

$$\mathbf{H}(\hat{\boldsymbol{\beta}}) = \frac{\partial^2 \ln L}{\partial \hat{\boldsymbol{\beta}}^2}$$

How?

Newton-Raphson

$$\hat{\beta}_{\ell} = \hat{\beta}_{\ell-1} - \left(\frac{\partial^{2} \ln L}{\partial \hat{\beta}_{\ell-1}^{2}}\right)^{-1} \frac{\partial \ln L}{\partial \hat{\beta}_{\ell-1}}$$

$$= \hat{\beta}_{\ell-1} - [\mathbf{H}(\hat{\beta}_{\ell-1})^{-1} \mathbf{g}(\hat{\beta}_{\ell-1})]$$

Newton-Raphson vs. Steepest Ascent

(Source)

Sidebar: Newton-Raphson, re-revealed

Taylor series, anyone?

$$f(X) \approx f(a) + f'(a)(x - a)$$

Here,

$$\frac{\partial \ln L}{\partial \hat{\beta}_{\ell}} \approx \frac{\partial \ln L}{\partial \hat{\beta}_{\ell-1}} + \frac{\partial^2 \ln L}{\partial \hat{\beta}_{\ell-1}^2} (\hat{\beta}_{\ell} - \hat{\beta}_{\ell-1})$$

Punch Line

But we really want:

$$\frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell}} = \mathbf{0}$$

So:

$$oldsymbol{0} \hspace{0.2cm} pprox \hspace{0.2cm} rac{\partial \ln L}{\partial \hat{oldsymbol{eta}}_{\ell-1}} + rac{\partial^2 \ln L}{\partial \hat{oldsymbol{eta}}_{\ell-1}^2} (\hat{eta}_{\ell} - \hat{oldsymbol{eta}}_{\ell-1})$$

$$\hat{oldsymbol{eta}}_{\ell} pprox \hat{oldsymbol{eta}}_{\ell-1} - \left(rac{\partial^2 \ln L}{\partial \hat{oldsymbol{eta}}_{\ell-1}^2}
ight)^{-1} rac{\partial \ln L}{\partial \hat{oldsymbol{eta}}_{\ell-1}} \ pprox \hat{oldsymbol{eta}}_{\ell-1} - \mathbf{H}(\hat{oldsymbol{eta}}_{\ell-1})^{-1} \mathbf{g}(\hat{oldsymbol{eta}}_{\ell-1})$$

Newton-Raphson

The downside:

- Uses $\mathbf{H}(\hat{oldsymbol{eta}})^{-1}$ so
- Calculates $\mathbf{H}(\hat{\boldsymbol{\beta}})^{-1}$ at every iteration...

Alternatives

"Modified Marquardt":

- Used when $\mathbf{H}(\hat{\boldsymbol{\beta}})$ isn't invertable
- Adds a constant **C** to diag[$\mathbf{H}(\hat{\beta})$]
- Variants: Add C(h_k)

Fisher's "Method of Scoring":

$$\hat{\boldsymbol{\beta}}_{\ell} = \hat{\boldsymbol{\beta}}_{\ell-1} - \left[\mathsf{E} \left(\frac{\partial^2 \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}^2} \right)^{-1} \right] \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}}$$
$$= \hat{\boldsymbol{\beta}}_{\ell-1} - \{ \mathsf{E} [\mathbf{H} (\hat{\boldsymbol{\beta}}_{\ell-1})] \}^{-1} \mathbf{g} (\hat{\boldsymbol{\beta}}_{\ell-1})$$

Advantages:

- ullet pprox Newton-Raphson
- Can be faster/simpler

More Alternatives

Berndt, Hall², and Hausman ("BHHH"):

$$\hat{\beta}_{\ell} = \hat{\beta}_{\ell-1} - \left(\sum_{i=1}^{N} \frac{\partial \ln L}{\partial \hat{\beta}_{\ell-1}} \frac{\partial \ln L}{\partial \hat{\beta}_{\ell-1}}\right)^{-1} \frac{\partial \ln L}{\partial \hat{\beta}_{\ell-1}}$$

Advantages:

- (Relatively) very easy to compute
- Reasonably accurate...

Other "Newton Jr.s":

- Davidson-Fletcher-Powell ("DFP")
- Broyden et al. ("BFGS")
- They are:
 - Very fast/efficient
 - Pretty bad at getting $-\left(\mathbf{H}(\hat{oldsymbol{eta}})\right)^{-1}$

Calculating $\widehat{\mathsf{Var}(\hat{\theta})}$

Step Functions and Variances:

Method	"Step size" (∂^2) matrix	Variance-Covariance Estimate
Newton	Inverse of the observed	Inverse of the negative
	second derivative (Hessian)	Hessian
Method of Scoring	Inverse of the expected	Inverse of the negative
	value of the Hessian	information matrix
	(information matrix)	
ВННН	Outer product approximation	Inverse of the outer
	of the information matrix	product approximation

Software Issues: R

Lots of optimizers:

- maxLik package: options for Newton-Raphson, BHHH, BFGS, others
- optim (in stats) quasi-Newton, plus others
- nlm (in stats) nonlinear minimization "using a Newton-type
 algorithm"
- newton (in Bhat) Newton-Raphson solver
- solveLP (in linprog) linear programming optimizer

R: Using maxLik

Details:

- *Must* provide log-likelihood function
- Can provide $\mathbf{H}(\hat{\boldsymbol{\beta}})$, $\mathbf{g}(\hat{\boldsymbol{\beta}})$, both, or neither
- ullet Can choose *starting values* for $\hat{ heta}$
- Choose optimizer (Newton, BHHH, BFGS, etc.)
- Can also set the maximum number of iterations, convergence tolerance τ , etc.
- Returns an object of class maxLik

R: Examples

Rayleigh distribution:

$$\Pr(X) = \frac{x}{b^2} \exp\left[\frac{-x^2}{2b^2}\right]$$

with b > 0.

For a Rayleigh-distributed variable X,

$$\bar{X} = b\sqrt{\frac{\pi}{2}} \approx 1.253 \times b$$

$$\mathsf{Var}(X) = \left(\frac{4-\pi}{2}\right)b^2 \approx 0.429 \times b^2$$

$$mode(X) = b$$

Some Rayleighs

Rayleigh: Likelihood

Because for the Rayleigh:

$$\Pr(X) = \frac{x}{b^2} \exp\left[\frac{-x^2}{2b^2}\right]$$

the log likelihood is:

$$InL = In \prod_{i=1}^{N} \left\{ \frac{X_i}{b^2} \exp\left[\frac{-X_i^2}{2b^2}\right] \right\}$$
$$= \sum_{i=1}^{N} [In(X_i) - In(b^2)] + \left(\frac{-X_i^2}{2b^2}\right)$$

R: What We Like To See

R: What We Like To See

```
> x<-rayleigh
> hats <- maxLik(loglike, start=c(1))
> summary(hats)
Maximum Likelihood estimation
Newton-Raphson maximisation, 8 iterations
Return code 2: successive function values within tolerance limit
Log-Likelihood: -195.7921
1 free parameters
Estimates:
    Estimate Std. error t value Pr(> t)
[1.] 2.9168 0.1459 20 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

The Rayleigh: Comparing Optimizers

R: What We *Don't* Like To See

```
> set.seed(7222009)
> bad<-runif(100)
> bad<-0.000001*sqrt(-2*log(1-bad))
> x<-bad
> hatsBad <- maxLik(loglike, start=c(1))</pre>
> summary(hatsBad)
Maximum Likelihood estimation
Newton-Raphson maximisation, 8 iterations
Return code 3: Last step could not find a value above the current.
Boundary of parameter space?
Consider switching to a more robust optimisation method temporarily.
Log-Likelihood: 967.7
1 free parameters
Estimates:
      Estimate Std. error t value Pr(> t)
[1.] 0.0000082 NaN
                              NaN
Warning messages:
1: In sqrt(diag(vc)) : NaNs produced
2: In sqrt(diag(vc)) : NaNs produced
```

R : What We *Don't* Like To See (Part II)

```
> set.seed(7222009)
> alsobad<-runif(100)
> alsobad<-999999999*sqrt(-2*log(1-alsobad))</pre>
> x<-alsobad
> hatsBad2 <- maxLik(loglike, start=c(1))</pre>
> summary(hatsBad2)
Maximum Likelihood estimation
Newton-Raphson maximisation, 19 iterations
Return code 1: gradient close to zero (gradtol)
Log-Likelihood: -6706
  free parameters
Estimates:
                                  Std. error t value Pr(> t)
                 Estimate
[1,] 12003488289174087680
                                            Inf
```

Potential Problems

Enemy # 1: Noninvertable $\mathbf{H}(\hat{\beta})$

- "Non-concavity," "non-invertability," etc.
- (Some part of) the likelihood is "flat"
- Why? (Bob Dole...)

Poor / "Fragile" Identification

- Possible due to functional form alone...
- Manifestation: parameter instability

Poor Conditioning

- Numerical issues
- Potentially:
 - Collinearity
 - Other weirdnesses (nonlinearities)

Practical Optimization

Potential Causes of Problems:

- Bad specification!
- Missing data
- Variable scaling
- Typical Pr(Y)

Hints:

- T-h-i-n-k!
- Know thy data
- Keep an eye on your iteration logs...
- Don't overreach