

- Ting-Hsuan Chen
- Yipeng Guo
- Yihan Jia
- Kexi Pi
- Weijia Suo (leader)
- Zheming Xu

Table of Contents

- Project Description and Data Exploration
- Business Problems Regarding Major Airlines
- Business Problems Regarding Major Airports
- Summary and Inference Based on Analysis

The project is aimed to identify the most popular airlines and the busiest airports in the United States with their performance evaluation.

Project Dimensions: Airlines + Airports

Data Description: Three main tables

Flights Table: Store time-distinguished data for each flight around the U.S.

from 2009 to 2018

Airports Table: Store all airport information in the United States

Airlines Table: Store all airline information for flight datasets

- **Step 1**: Renaming and casting each flights table after uploading the original dataset.
- Step 2: Combine all flights data and save to table flights_all

	flights_2009	:	Field name	Туре	Mode
	flights_2010	:	FLIGHT_DATE	DATE	NULLABLE
	AND EDACTO DOSSESSES	į.	IATA_CODE	STRING	NULLABLE
	flights_2011		FLIGHT_NUMBER	INTEGER	NULLABLE
	flights_2012	1	ORIGIN	STRING	NULLABLE
	flights_2013	:	DESTINATION	STRING	NULLABLE
1	flights_2014	:	SCHEDULED_DEPARTURE	INTEGER	NULLABLE
GUIDE			DEPARTURE_TIME	INTEGER	NULLABLE
GUIDE TRAVEL	flights_2015	•	DEPARTURE_DELAY	INTEGER	NULLABLE
=	flights_2016	1	TAXI_OUT	INTEGER	NULLABLE
800 KM	flights_2017		WHEELS_OFF	INTEGER	NULLABLE
	flights_2018		WHEELS_ON	INTEGER	NULLABLE
WAPS	ing.no_zoro	3 - 1 -	TAXI_IN	INTEGER	NULLABLE
	*		SCHEDULED_ARRIVAL	INTEGER	NULLABLE
L' DON'T					DON'T

 Step 3: Find all company name via IATA_CODE and store them in airlines table

L,	IAI	A_CODE
	0	00
	1	F9
	2	ОН
	3	WN
	4	YV
	5	NW
	6	XE
	7	G4
	8	СО
	9	vx

airlines Table

IATA_CODE	STRING	NULLABLE
AIRLINE	STRING	NULLABLE

Data Reference: <u>airlinecodes.info</u>

Step 4: Add time slot and year period attribute

Time slot: We divided the 24 hours into 12 groups. For example, 00;00 to 02:00 as group 1, 02:00 to 04:00 as group 2 etc.

Time Range: Year 2009-2018

Important Schema:

Raw Data Source: Kaggle

airlinecodes.info

TAXI_IN DIVERTED AIR_TIME DISTANCE

L'NUU ,

וסוע

Data Preview

Time Range: Year 2009-2018

Important Schema:

airlines Table

IATA_CODE	STRING	NULLABLE
AIRLINE	STRING	NULLABLE

airports Table

IATA_CODE	STRING	NULLABLE	Location Identifier
AIRPORT	STRING	NULLABLE	Airport's Name
CITY	STRING	NULLABLE	
STATE	STRING	NULLABLE	
COUNTRY	STRING	NULLABLE	Country Name of the Airport
LATITUDE	FLOAT	NULLABLE	Latitude of the Airport
LONGITUDE	FLOAT	NULLABLE	Longitude of the Airport

Raw Data Source: Kaggle

airlinecodes.info

2.1 Top 5 US Airlines With The Most Flights In Past 10 Years

	IATA CODE	AIRLINE NAME	FLIGHT COUNT
			M.
1	WN	Southwest Airlines Co.	12,096,540
2	DL	Delta Air Lines Inc.	7,841,880
3	AA	American Airlines Inc.	6,682,161
4	00	Skywest Airlines Inc.	6,263,052
5	UA	United Air Lines Inc.	4,826,658

2.2 The Cancellation Rate In Different Time Slots

(2 years Per Slot)

וסוע

וטוט

3.1 Top 5 Airports with the Most Flights: Last 10 years

3.1.1 Geographical Distribution of Airports

300 KM

3.2 Average Departure Delay Rate & Number of flight

300 KM

3.3.4 The Average Delay Time (Overall)

3.4.1 The Delay Rate Per Quarter

DUN'T

וטוט

3.4.2 The Average Delay Time (Per Quarter) For The Five Airports

3.4.4 The Average Delay Time (Overall)

Airlines: Delta Airlines(DL), American Airlines(AA), United Airlines(UA),
Skywest Airlines(OO) and Southwest Airlines(WN).

Airports: Atlanta(ATL), Chicago(ORD), Dallas-Fort Worth(DFW),
Denver(DEN) and Los Angeles(LAX).

Analysis Towards the Airline Section

 Excluding objective factors such as weather, the main reason for flight delays is that the number of flights is overloaded, and the overall arrangement cannot be well arranged.

airlines. Operation issue here.

From the perspective of different time slots of a single day, slot_9, which is 8 to 10 p.m. experiences the highest possibility of delay and cancel. Passengers may avoid:)

Analysis Towards the Airports Section

- From a quarterly point of view, the delay rate of **Denver Airport** and the delay time of **Los Angeles Airport** are relatively average throughout the four seasons. We can infer that it still has a relatively high delay rate in the off-season that this airport is in.
- Therefore, these two airports have low seasons' operational issues.

 On the whole, Quarter 2 has the highest delay rate, which may be related to people's travel preferences.

300 KM

וסוע

Question & Answer

Thank You!

