Assignment -2

Data Visualization and Pre-processing

Assignment Date	•	27 September 2022
Student Name	•	R.SELVENDRAN
Student Roll Number	•	912419104028
Maximum Marks	•	2 Marks

Task 1:

Download the dataset: Dataset

- Assignment-2

1. Download the dataset: Dataset

Task 2:

Question-`1:

Loading the Churn_Modelling dataset

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

1.Loading the Churn_Modelling dataset

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

Solution:

```
from google.colab import drive
drive.mount('/content/drive')
```

Output:

```
In [2]: from google.colab import drive drive.mount('/content/drive')

Mounted at /content/drive
```

Solution:

```
data = pd.read_csv("/content/Churn_Modelling.csv")
```

Output:

```
In [3]: data = pd.read_csv("/content/Churn_Modelling.csv")
```

```
data.info()
```

```
In [4]: data.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 10000 entries, 0 to 9999
           Data columns (total 14 columns):
            # Column
                                       Non-Null Count Dtype
           --- -----
                                       -----
            0 RowNumber 10000 non-null int64
1 CustomerId 10000 non-null int64
2 Surname 10000 non-null object
3 CreditScore 10000 non-null int64
4 Geography 10000 non-null object
5 Gender 10000 non-null object
6 Age 10000 non-null int64
                                      10000 non-null int64
            6
                Age
            7 Tenure 10000 non-null int64
8 Balance 10000 non-null float64
            9 NumOfProducts 10000 non-null int64
10 HasCrCard 10000 non-null int64
            11 IsActiveMember 10000 non-null int64
            12 EstimatedSalary 10000 non-null float64
            13 Exited
                                       10000 non-null int64
           dtypes: float64(2), int64(9), object(3)
           memory usage: 1.1+ MB
```

Solution:

data. head()

5]:	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	া
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	C
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	11 <mark>3</mark> 931.57	1
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	C
4	. 5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	C

data. tail()

Output:

6]: d	data	.tail()													
6]:		RowNumber	Customerld	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
99	995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	96270.64	
99	996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	101699.77	1
99	997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	42085.58	
99	998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	92888.52	
99	999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0	38190.78	(

Solution:

data. shape

```
In [7]: data.shape
Out[7]: (10000, 14)
```

Task 3:

Question-2:

Visualization of Dataset

Univariate Analysis

• Distribution Plot

```
penguins = sns.load_dataset("penguins")
sns.displot(penguins, x="flipper_length_mm")
```

2. Vizualization of Dataset

Univariate Analysis

Distriution Plot

```
In [17]: penguins = sns.load_dataset("penguins")
    sns.displot(penguins, x="flipper_length_mm")
```

Out[17]: <seaborn.axisgrid.FacetGrid at 0x7f3961965990>


```
sns.displot(penguins, x="flipper_length_mm", hue="species",
kind="kde", multiple="stack")
```


• Histograms

Solution:

data['Geography'].value_counts()

```
In [12]: data['Geography'].value_counts()

Out[12]: France 5014
Germany 2509
Spain 2477
Name: Geography, dtype: int64
```

```
plt.hist(x=data.Geography, bins=6, color='blue')
plt.title("Geographic Distribution of Population with
CreditCard")
plt.xlabel("Geography")
plt.ylabel("Population")
plt.show()
```

Output:

```
plt.hist(x=data.Geography, bins=6, color='green')
plt.title("Geographic Distribution of Population with CreditCard")
plt.xlabel("Geography")
plt.ylabel("Population")
plt.show()
```



```
In [14]:
    fig,ax = plt.subplots(1,1)
    a = np.array([22,87,5,43,56,73,55,54,11,20,51,5,79,31,27,63,71,90,92,95,96,32,37,40])
    plt.hist(a)
    ax.set_ylabel('no of students')
    plt.show()
```

• Bar Plot

Solution:

data['Gender'].value_counts()

```
In [15]: data['Gender'].value_counts()

Out[15]: Male 5457
Female 4543
Name: Gender, dtype: int64
```

```
pd. crosstab(data['Gender'], data['Geography']).plot(kind='bar')
```

Output:

• Pie charts

```
fig=plt.figure()
ax=fig.add_axes([0,0,1,1])
courses=['machine learning','Web development','App
development']
students_enrolled=[50,37,42]
ax.pie(students_enrolled,labels=courses)
plt.show()
```

```
In [16]:
    fig=plt.figure()
    ax=fig.add_axes([0,0,1,1])
    courses=['machine learning','Web development','App development']
    students_enrolled=[50,37,42]
    ax.pie(students_enrolled,labels=courses)
    plt.show()
```


Box plot

Solution:

```
sns.boxplot(data['Age'], color=' blue' )
```

Output:

Box pLot

```
In []: sns.boxplot(data["Age"],color='blue')
Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f4178b5f650>
```


Bivariate Analysis

Solution:

```
sns.barplot(data[ 'Geographgy' ], data["Age"])
```

Output:

Bivariate Analysis


```
sns.barplot(data["NumOfProducts"], data["Age"])
```


Solution:

data['HasCrCard'].value_counts()

Output:

```
data['HasCrCard'].value_counts().head(20).plot.bar()
```


• Line Chart

Solution:

```
sns.lineplot(data['Age'], data['CreditScore'])
```

```
Line Chart

In []: sns.lineplot(data['Age'], data['CreditScore'])

Out[]: 

Matplotlib.axes._subplots.AxesSubplot at 0x7f41789a3290>

800

700

500

400

Age

Age

Age
```

Multi-Variate Analysis

• Scatter Plot

Solution:

```
data['IsActiveMember'].value_counts()
```

Output:

Multi-Variate Analysis

Scatter Plot

```
In [ ]: data['IsActiveMember'].value_counts()
Out[ ]: 1    5151
0    4849
Name: IsActiveMember, dtype: int64
```

Solution:

```
sns. scatterplot(data['Age'], data['Tenure'],
hue=data['IsActiveMember'])
```

```
Out[]: sns.scatterplot(data['Age'],data['Tenure'], hue=data['IsActiveMember'])

Out[]: 

out[]: sns.scatterplot(data['Age'],data['Tenure'], hue=data['IsActiveMember'])

out[]: sns.scatterplot(data['Age'],data['IsActiveMember'])

out[]: sns.scatterplot(data['Age'],data['Age'],data['Age'],data['Age'],data['Age'],data['Age'],data['Age'],data['Age'],data['Age'],data['
```

• Point Plot

Solution:

```
sns.pointplot(x=data['NumOfProducts'], y=data['Tenure'], color
='skyblue')
```

Output:

```
In []: sns.pointplot(x=data['NumOfProducts'],y=data['Tenure'],color='skyblue')

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f4178c806d0>

6.0

5.8

5.6

4.8

4.6

NumOfProducts

NumOfProducts
```

• HeatMap

Solution:

data.head()

Solution:

```
data_cor = data.iloc[:,3:].corr()
data_cor
```

Output:


```
plt.figure(figsize = (16,8))
sns.heatmap(data_cor, linecolor='white', linewidth=0.5,
annot=True)
```


• Pair Plot

Solution:

sns. pairplot (penguins)

Solution:

```
g = sns.PairGrid(penguins)
```

g. map_upper(sns. histplot)

g.map_lower(sns.kdeplot, fill=True)

g. map_diag(sns. histplot, kde=True)

Task 4:

Question-3:

Descriptive Statistic Analysis

- 1. Mean
- 2. Medium
- 3. Mode
- 4. Standard Deviation
- 5. Variance

data.describe().T

Output:

	count	mean	std	min	25%	50%	75%	max
RowNumber	10000.0	5.000500e+03	2886.895680	1.00	2500.75	5.000500e+03	7.500250e+03	10000.00
CustomerId	10000.0	1.569094e+07	71936.186123	15565701.00	15628528.25	1.569074e+07	1.575323e+07	15815690.00
CreditScore	10000.0	6.505288e+02	96.653299	350.00	584.00	6.520000e+02	7.180000e+02	850.00
Age	10000.0	3.892180e+01	10.487806	18.00	32.00	3.700000e+01	4.400000e+01	92.00
Tenure	10000.0	5.012800e+00	2.892174	0.00	3.00	5.000000e+00	7.000000e+00	10.00
Balance	10000.0	7.648589e+04	62397.405202	0.00	0.00	9.719854e+04	1.276442e+05	250898.09
NumOfProducts	10000.0	1.530200e+00	0.581654	1.00	1.00	1.000000e+00	2.000000e+00	4.00
HasCrCard	10000.0	7.055000e-01	0.455840	0.00	0.00	1.000000e+00	1.000000e+00	1.00
IsActiveMember	10000.0	5.151000e-01	0.499797	0.00	0.00	1.000000e+00	1.000000e+00	1.00
EstimatedSalary	10000.0	1.000902e+05	57510.492818	11.58	51002.11	1.001939e+05	1.493882e+05	199992.48
Exited	10000.0	2.037000e-01	0.402769	0.00	0.00	0.000000e+00	0.000000e+00	1.00

Solution:

Output:

```
In [35]: data['Age'].mean()
Out[35]: 38.9218
```

```
data['Age'].median()
```

```
In [36]: data['Age'].median()
Out[36]: 37.0
```

Solution:

```
data['Age'].mode()
```

Output:

```
In [34]: data['Age'].mode()
Out[34]: 0 37
dtype: int64
```

Solution:

```
data['EstimatedSalary'].mean()
```

Output:

```
In [33]: data['EstimatedSalary'].mean()
Out[33]: 100090.239881
```

```
data['EstimatedSalary'].median(),)
```

```
In [32]: data['EstimatedSalary'].median()
Out[32]: 100193.915
```

Solution:

```
data['EstimatedSalary'].mode())
```

Output:

```
In [31]: data['EstimatedSalary'].mode()

Out[31]: 0 24924.92 dtype: float64
```

Solution:

```
data['Balance'].mean()
```

Output:

```
In [30]: data['Balance'].mean()
Out[30]: 76485.889288
```

```
data['CreditScore'].std()
```

```
In [29]: data['CreditScore'].std()
Out[29]: 96.65329873613035
```

Solution:

```
data['Tenure'].var()
```

Output:

```
In [28]: data['Tenure'].var()
Out[28]: 8.364672627262726
```

Task 5:

Question-4:

Handling Missing Values

```
data.isna().any()
```

4. Handling Missing Values

```
In [38]:
         data.isna().any()
        RowNumber
                        False
Out[38]:
        CustomerId
                        False
        Surname
                        False
        CreditScore
                       False
        Geography
                        False
                        False
        Gender
        Age
                        False
        Tenure
                       False
        Balance
                       False
        NumOfProducts
                       False
        HasCrCard
                        False
        IsActiveMember
                        False
        EstimatedSalary False
        Exited
                        False
        dtype: bool
```

Solution:

```
data.dropna(inplace = True)
data.isnull().sum()
```

```
data.isnull().sum()
```

Output:

Task 6:

Question-5:

Finding Outliers and Replacing Them

Solution:

```
outliers = data. quantile (q=(0.25, 0.75))
```

Output:

5. Finding Outliers and Replacing Them

```
In [43]: outliers = data.quantile(q=(0.25,0.75))
```

Outliers

Output:

n [44]:	out	liers										
ut[44]:		RowNumber	Customerld	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0.25	2500.75	15628528.25	584.0	32.0	3.0	0.00	1.0	0.0	0.0	51002.1100	0.0
	0.75	7500.25	15753233.75	718.0	44.0	7.0	127644.24	2.0	1.0	1.0	149388.2475	0.0

Solution:

```
iqr = outliers. loc[0.75]-outliers. loc[0.25]
```

Output:

```
In [47]:
iqr = outliers.loc[0.75]-outliers.loc[0.25]
```

Solution:

iqr[2:]

```
In [48]:
          iqr[2:]
Out[48]: CreditScore
                              134.0000
                              12.0000
         Age
         Tenure
                               4.0000
         Balance
                          127644.2400
         NumOfProducts
                                1.0000
         HasCrCard
                                1.0000
         IsActiveMember
                               1.0000
         EstimatedSalary
                           98386.1375
         Exited
                                0.0000
         dtype: float64
```

```
upper = outliers. loc[0.75] + 1.5 * iqr
```

Output:

```
In [49]: upper = outliers.loc[0.75] + 1.5 * iqr
```

Solution:

upper[2:]

Output:

```
In [51]:
          upper[2:]
Out[51]: CreditScore
Age
                              919.00000
                             62.00000
         Tenure
                              13.00000
         Balance
                          319110.60000
         NumOfProducts
                               3.50000
         HasCrCard
                               2.50000
         IsActiveMember
                               2.50000
         EstimatedSalary
                         296967.45375
         Exited
                               0.00000
         dtype: float64
```

Solution:

```
lower = outliers. loc[0.25] - 1.5 * iqr
```

```
In [50]: lower = outliers.loc[0.25] - 1.5 * iqr
```

lower[2:]

Output:

```
In [52]:
          lower[2:]
         CreditScore
                               383.00000
Out[52]:
         Age
                               14.00000
         Tenure
                               -3.00000
                          -191466.36000
         Balance
         NumOfProducts
                               -0.50000
         HasCrCard
                                -1.50000
         IsActiveMember
                               -1.50000
         EstimatedSalary
                           -96577.09625
         Exited
                                0.00000
         dtype: float64
```

Solution:

```
sns.boxplot(data['Age'], color= 'Coral',)
```

```
upper['Age']
```

Output:

```
In [54]: upper['Age']
Out[54]: 62.0
```

Solution:

```
data['Age'].mode()
```

Output:

```
In [55]: data['Age'].mode()
Out[55]: 0 37
dtype: int64
```

```
sns.boxplot(data['Tenure'], color= 'cyan',)
```


Solution:

Output:


```
sns.boxplot(data['Estimatedsalary'], color= 'cyan',)
```

```
In [58]: sns.boxplot(data['EstimatedSalary'], color= 'cyan',)
Out[58]: <matplotlib.axes._subplots.AxesSubplot at 0x7f395bf14350>

0 25000 50000 75000 100000 125000 150000 175000 200000

EstimatedSalary
```

Solution:

Output:


```
data['CreditScore'].mode()
```

```
In [60]: data['CreditScore'].mode()

Out[60]: 0 850
dtype: int64
```

Solution:

lower['CreditScore']

Output:

```
In [61]: lower['CreditScore']
Out[61]: 383.0
```

Solution:

```
data["CreditScore"] =
np. where(data["CreditScore"] < 390, 850, data["CreditScore"])</pre>
```

Output:

```
In [ ]: data["CreditScore"] = np.where(data["CreditScore"]<390,850,data["CreditScore"])</pre>
```

```
sns.boxplot(data['CreditScore'], color= 'blue',)
```


Task 7:

Question-6:

Checking for categorical columns and perform encoding

Solution:

data.info()

6. Checking for categorical columns and perform encoding

```
In [63]: data.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 10000 entries, 0 to 9999
          Data columns (total 14 columns):
                          Non-Null Count Dtype
          # Column
                                 _____
              RowNumber 10000 non-null int64
CustomerId 10000 non-null int64
Surname 10000 non-null object
           0 RowNumber
           2 Surname
              CreditScore 10000 non-null int64
Geography 10000 non-null object
              Geography
              Gender
                                 10000 non-null object
                                10000 non-null int64
              Age
                               10000 non-null int64
10000 non-null float64
               Tenure
           8 Balance
              NumOfProducts 10000 non-null int64
HasCrCard 10000 non-null int64
          10 HasCrCard
           11 IsActiveMember 10000 non-null
                                                   int64
          12 EstimatedSalary 10000 non-null float64
                                 10000 non-null int64
           13 Exited
          dtypes: float64(2), int64(9), object(3)
          memory usage: 1.1+ MB
```

Solution:

```
data.dtypes.value counts()
```

Output:

```
In [64]: data.dtypes.value_counts()

Out[64]: int64    9
    object    3
    float64    2
    dtype: int64
```

```
# Encoding Categorical variables into numerical variables'
# Label Encoding

from sklearn.preprocessing import LabelEncode
label = LabelEncoder()
```

```
In [65]: # Encoding Categorical variables into numerical variables
# Label Encoding

from sklearn.preprocessing import LabelEncoder
label = LabelEncoder()
```

Solution:

```
data['Gender'] = label.fit_transform(data['Gender'])
data['Geography'] = label.fit_transform(data['Geography'])
```

Output:

```
In [66]:
    data['Gender'] = label.fit_transform(data['Gender'])
    data['Geography'] = label.fit_transform(data['Geography'])
```

Solution:

data. head (8)

	RowNumber	Customerld	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	619	0	0	42	2	0.00	î.	1	1	101348.88	1
1	2	15647311	Hill	608	2	0	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	Onio	502	0	0	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	Boni	699	0	0	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	Mitchell	850	2	0	43	2	125510.82	1	1	1	79084.10	0
5	6	15574012	Chu	645	2	1	44	8	113755.78	2	1	0	149756.71	1
6	7	15592531	Bartlett	822	0	1	50	7	0.00	2	1	1	10062.80	0
7	8	15656148	Obinna	376	1	0	29	4	115046.74	4	1	0	119346.88	1

Task 8:

Question-7:

Split the data into dependent and independent variables

Solution:

```
data_new = data.drop(['CustomerId', 'Surname', 'RowNumber'],
axis = 1)
data new.info()
```

Output:

7. Split the data into dependent and independent variables

```
In [72]: data_new = data.drop(['CustomerId', 'Surname', 'RowNumber'], axis = 1)
              data_new.info()
             <class 'pandas.core.frame.DataFrame'>
             Data columns (total 11 columns):
                                            Non-Null Count Dtype
              # Column

        0
        CreditScore
        10000 non-null int64

        1
        Geography
        10000 non-null int64

        2
        Gender
        10000 non-null int64

              3 Age
4 Tenure
                                           10000 non-null int64
                                            10000 non-null int64
                                            10000 non-null float64
               6 NumOfProducts 10000 non-null int64
              7 HasCrCard 10000 non-null int64
8 IsActiveMember 10000 non-null int64
                   EstimatedSalary 10000 non-null float64
Exited 10000 non-null int64
               10 Exited
             dtypes: float64(2), int64(9) memory usage: 937.5 KB
```

Solution:

```
data new. shape
```

```
In [73]: data_new.shape
Out[73]: (10000, 11)
```

```
x = data_new.iloc[:,0:10]
y = data_new.iloc[:,10

print(x.shape)
print(y.shape)

print(x.columns)
```

Output:

Solution:

x. head (8)

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
)	619	0	0	42	2	0.00	1	1	1	101348.88
1	608	2	0	41	1	83807.86	1	0	1	112542.58
2	502	0	0	42	8	159660.80	3	1	0	113931.57
3	699	0	0	39	1	0.00	2	0	0	93826.63
4	850	2	0	43	2	125510.82	1	1	1	79084.10
5	645	2	1	44	8	113755.78	2	1	0	149756.71
6	822	0	1	50	7	0.00	2	1	1	10062.80
7	376	1	0	29	4	115046.74	4	1	0	119346.88

Task 9:

Question-8:

Split the data into training and testing

Solution:

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y,
test_size = 0.20, random_state = 0)

print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
```

Output:

8. Split the data into training and testing

```
In [76]:
    from sklearn.model_selection import train_test_split
        x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.20, random_state = 0)

    print(x_train.shape)
    print(y_train.shape)
    print(x_test.shape)

    print(y_test.shape)

(8000, 10)
(8000,)
(2000, 10)
(2000,)
```

Task 10:

Question-9:

Scale the independent variables

Solution:

```
from sklearn.preprocessing import StandardScaler
ss = StandardScaler
```

Output:

9. Scale the independent variables

```
In [77]: from sklearn.preprocessing import StandardScaler
    ss = StandardScaler
```

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.fit_transform(x_test)

x_train = pd.DataFrame(x_train)
x train.head()
```

