Skład grupy:	
Patryk Hubicki	145253
Jakub Kaczmarek	145291
Marcin Kasznia	145379
Anna Prałat	145395

Temat: Tempomat - regulacja prędkości zadanej za pomocą regulatora PID

Schemat blokowy

Opis

Celem projektu jest zaprojektowanie układu automatycznej regulacji kontrolującego prędkość pojazdu w formie aplikacji internetowej. Pod uwagę brane są siły silnika, spychające pojazd z nachylonej drogi oraz oporu powietrza.

Opis matematyczny

Parametry wejściowe:

- prędkośc zadana $v^*\left[rac{m}{s}
 ight]$
- ullet kąt nachylenia podłoża $lpha \ [rad]$
- ullet współczynnik oporu aerodynamicznego pojazdu C_a

- ullet pole przekroju poprzecznego pojazdu $A\ [m^2]$
- ullet masa całkowita pojazdu $m\ [kg]$
- ullet ograniczenie siły ciągu $F_{dmax}\left[N
 ight]$
- ullet ograniczenie wielkości sterującej u_{min} i $u_{max}\left[V
 ight]$

Wzór na wartość uchybu regulacji: $e(n) = v^{st}(n) - v(n)$

Wzór na wartość wielkości sterującej: $u(n)=k_p\left[e(n)+rac{T_p}{T_i}\sum_{k=0}^n e(k)+rac{T_d}{T_p}\Delta e(n)
ight]$

Wzór na siłę wypadkową: $F_w = F_d - F_p - F_s$

• $F_d=x\cdot F_{dmax}$ - siła ciągu silnika (wprost proporcjonalna do wartości sterującej), ograniczona przez F_{dmax}

$$\circ \ x(n) = rac{X_{max}}{u_{max}} \cdot u(n)$$

- ullet $F_s=mg\sin(lpha)$ składowa równoległa (do podłoża) siły grawitacji (siła spychająca)
- $F_p=rac{1}{2}
 ho AC_a(v)^2$ siła oporu aerodynamicznego
 - $\circ \ C_a$ współczynnik oporu aerodynamicznego pojazdu
 - $\circ \ A$ powierzchnia przekroju poprzecznego pojazdu $[m^2]$
 - $\circ~
 ho$ gęstość powietrza $\left[rac{kg}{m^3}
 ight]$

Wzór na wartość prędkości pojazdu:

$$F_w = F_d - F_p - F_s$$

$$m \cdot rac{dv(t)}{dt} = x(t) \cdot F_{dmax} - rac{1}{2}
ho A C_d v(t)^2 - mg \sin lpha$$

Równanie różniczkowe:

$$rac{dv(t)}{dt} = rac{1}{m}igg(x(t)\cdot F_{dmax} - rac{1}{2}
ho AC_dv(t)^2 - mg\sinlphaigg)$$

Równanie różnicowe:

$$rac{\Delta v(n)}{T_p} = rac{1}{m}igg(x(n)\cdot F_{dmax} - rac{1}{2}
ho AC_d v(n)^2 - mg\sinlphaigg)$$

Rozwiązanie równania różnicowego - rekurencja:

$$egin{cases} v(0) = v_0 \ v(n+1) = rac{T_p}{m}ig(x(n)\cdot F_{dmax} - rac{1}{2}
ho A C_a v(n)^2 - mg\sinlphaig) + v(n) \end{cases}$$

Opis implementacji

Strona internetowa: tempomat-pa-pp.herokuapp.com (https://tempomat-pa-pp.herokuapp.com)

Aplikacje internetową wykonano przy pomocy framework'a Flask w jezyku Python. Wykresy przygotowywane są przez bibliotekę Bokeh. Parametry symulacji wprowadzane są przez użytkownika do formularza na udostępnionej stronie internetowej. Wyniki symulacji (wykres oraz wskaźniki jakości) pobierane są przy pomocy skryptów w JavaScript z wystawionego api.

Użytkownik jest informowany o wskaźnikach jakości regulacji, a w przypadku podania niewłaściwych warotści parametrów, o ich ograniczeniach.

Tworzenie aplikacji zostało wsparte systemem kontroli wersji Github. Aplikacja uruchamiana jest automatycznie przez platformę Heroku.

Interfejs użytkownika

Prędkość startowa Prędkość zadana Nachylenie	0 km/ _h 110 km/ _h 5 °	Powierzchnia przekroju poprzecznego pojazdu Współczynnik oporu aerodynamicznego Masa samochodu	7 m ² 0.24 1000 kg
Wzmocnienie regulatora	0.0007	Maksymalna siła silnika	10000 N
Czas wyprzedzenia	0.009		GENERUJ WYKRES RESET
Czas zdwojenia	0.4		

Wyniki - zestaw I

Wskaźniki jakości:

Przeregulowanie: 4.61%; Czas regulacji: 82.4s; Dokładność regulacji: 1763.14; Koszt regulacji: 1262.65

Wartość prędkości pojazdu oraz prędkości zadanej w czasie:

Wartość wielkosci sterującej podawanej przez regulator (u_pierwotne) i z ograniczeniami (u) w czasie:

Wartości sił działajacych na samochód w czasie:

Pozycja samochodu w zależności od czasu:

Wyniki - zestaw II

Przy ujemnym nachyleniu - samochód zjeżdża z górki. Widok całej strony:

Wyniki - zestaw III

Przy ujemnej prędkości samochód porusza się w przeciwnym kierunku.

