Técnicas de Ensemble

Vinicius Teixeira de Melo

viniciusteix@alu.ufc.br

Agenda

- Ensemble
- 2 Combinando Classificadores
- Bagging
- 4 CIFAR 10

Introdução

- Combinar diferentes classificadores;
- Generalizar o melhor de cada classificador;
- 3 Formar um novo classificador.

Figura: Tipos de votação

Figura: Abordagem utilizando votação majoritária

Votação simples

$$y = mode\{C_1(x), C_2(x), ..., C_m(x)\}$$

Exemplo

Obs:
$$class1 = -1$$
 e $class2 = +1$

$$C(x) = sign \left[\sum_{i=1}^{m} C_j(x) \right] = \left\{ \begin{array}{c} 1 \text{ if } \sum_{i=1}^{m} C_j(x) \geq 0 \\ -1 \text{ otherwise} \end{array} \right.$$

Implementação de um classificador por votação simples

- Combinar diferentes classificadores associados a pesos individuais;
- Equilibrar as fraquezas dos classificadores individuais;
- Voto majoritário ponderado;

Voto majoritário ponderado

$$y = \operatorname{argmax}_{i} \sum_{j=1}^{m} w_{j} X_{A} (C_{j}(x) = i)$$

Equação simplificada (pesos iguais)

$$y = mode\{C_1(x), C_2(x), ..., C_m(x)\}$$

Exemplo

- Predizer a *label* de uma amostra x;
- $i \in \{0, 1\}$;
- $C_j(j \in \{1, 2, 3\});$
- $C_1(x) = 0$, $C_2(x) = 0$, $C_3(x) = 1$.

Voto majoritário ponderado

$$y = argmax_i \sum_{j=1}^{m} w_j X_A (C_j(x) = i)$$

$$= argmax_i [0.2i_0 + 0.2i_0 + 0.6i_1] = 1$$

Equação simplificada (pesos iguais)

$$y = mode\{0, 0, 1\} = 0$$

Classificador individual retorna uma probabilidade

$$y = \operatorname{argmax}_{i} \sum_{j=1}^{m} w_{j} p_{ij}$$

Exemplo

$$C_1(x) \rightarrow [0.9, 0.1], C_2(x) \rightarrow [0.8, 0.2], C_3(x) \rightarrow [0.4, 0.6]$$

$$p(i_0|x) = 0.2x0.9 + 0.2x0.8 + 0.6x0.4 = 0.58$$

$$p(i_1|x) = 0.2x0.1 + 0.2x0.2 + 0.6x0.6 = 0.42$$

$$y = argmax_i [p(i_0|x), p(i_1|x)] = 0$$

Notebook

https:

//github.com/viniciusteix/topics-3/blob/master/seminario

Figura: Separação das classes

Introdução

- Relacionada a técnica de Classificação por votação majoritária;
- Utilizada amostras aleatórias em cada classificador;
- Árvores de decisão são, tipicamente, utilizadas como classificadores base.

Figura: Abordagem utilizando Bagging

	Bagging round I		
1	2	7	
2	2	3	
3	1	2	
4	3	1	
5	7	1	
6	2	7	
7	4	7	
	<i>c</i> ,	C_2	C_m

Figura: Amostras aleatórias para o Bagging

Notebook

https:

//github.com/viniciusteix/topics-3/blob/master/seminario

CIFAR 10

CIFAR 10

Figura: Classes do CIFAR 10

CIFAR 10

Notebook

https:

//github.com/viniciusteix/topics-3/blob/master/seminario

Obrigado