Fine-Tuned, Low-Power and RAG(ged)

Sustainable, privacy-preserving AI language models for libraries using minimal hardware and Retrieval Augmented Generation (RAG)

David Meincke, Johnson & Wales University

The Challenge Students expect conversational interfaces, not traditional FAOs Critical assistance needed when librarians aren't available · Traditional FAQ searching can be awkward and ineffective Library Impact: Users often abandon traditional FAQ searches without finding answers, leading to increased staff workload and user frustration. Our Solution: Working RAG-Enhanced Local Model **Project Timeline:** Nov 2024 Feb 2025 Summer 2025 Public Launch Project Start **Backend Complete** Testing Surprising Discovery!

specific responses while requiring less training resources.

Built with real library knowledge: • 500+ Q&A pairs from public FAQs and to answer common themes that occurred in chat

RAG significantly outperformed fine-tuning for library FAQs, providing more accurate,

- · Library-specific content (databases, services, resources)
- · Easily maintainable by non-coding librarians via spreadsheets

Technologies:

Python LlamaIndex ChromaDB Raspberry P

Running on minimal hardware: Raspberry Pi 5 (8GB)

Key Benefits:

Complete privacy control

80% less energy than cloud

The Farm Metaphor

Implementing AI in libraries presents a choice:

- · Lower but sufficient yield
- · Environmentally friendly
- · Self-sufficient & locally controlled

Farm Cloud AI: Industrial Factory

- Higher output
- · Resource-intensive
- External dependencies & control

Core Values for Library AI

80% less energy than cloud models Library control over AI decisions

ARL Principle: "Libraries believe 'no human, no Al.' This principle underscores the importance of human involvement in critical decision-making junctures."

Association of Research Libraries, April 2024

AI Implementation Options for Libraries Balance privacy, quality, and sustainability based on your needs Medium Cloud-Large Cloud API **Small Local Models Hosted Models** Models + RAG · Complete privacy & control Minimal energy use · Best overall balance · Highest base quality · Still improves with RAG Very slow (15-60+ sec) · Good privacy & response quality • Fast responses (0.8-1.5 sec) · SmolLM2, TinyLlama · Moderate energy use · RAG significantly improves quality • Moderate speed (1-3 sec) · Higher ecological impact GPT-4o, Claude, Mistral Large · Highest quality with RAG Cost: \$50-150 one-time, then just Cost: \$0.10-10/month based on Cost: \$0.10-10/month based on electricity usage usage Medium Setup Medium Setup Easy Setup Privacy & Control > Sustainability Response Quality 4 Response Speed *Soudani et al. "Fine Tuning vs. Retrieval Augmented Generation for Less Popular Knowledge." ACM SIGIR Conference 2024. *Ben Allal et al. "SmolLM – Blazingly Fast and Remarkably Powerful." HuggingFace Blog, 2024. *Alibaba Cloud. "Optimizing Energy Efficiency in Al Models." 2024. *OpenAl. "GPT-4

See GitHub repository for full implementation guide

Key Concepts

Base Model

Pre-trained AI system that understands and generates human language General knowledge before specialization. SmolLM-2 (small)

Local vs Cloud Models

Where AI processing happens: on-site or on remote servers

Local: like on-premise systems. Cloud: like subscription services

RAG

Retrieval-Augmented Generation: enhances AI responses with your specific documents Like checking reference materials before answering auestions

Parameters

Measure of Al model's knowledge capacity and SmolLM-2 (320M): compact collection vs. GPT-4 (1T+):

massive archive

Next Steps: Sustainable AI for Your Library

1. Explore

Scan QR code for links to tools like Ollama and other frameworks for exploring local LLMs on your own computer

2. Prepare

Access our scripts and methods for organizing your library's knowledge base into retrieval-ready format

3. Implement

Use our shared code and implementation guide to build your own sustainable AI system

All resources freely available - take a handout!

github.com/drmein/acrl2025_llm_poster

²Experimental findings, Meincke. 2025.

³Alibaba Cloud. "Optimizing Energy Efficiency in Al Models." 2024. ⁴ITSFOSS.COM. "Running 9 Popular LLMs on Raspberry Pi 5." 2023.

¹LIBRARYASSESSMENT.ORG. "University Library FAQ Usage Analysis." 2023.