DESeq2

Yoann Pradat

Supervised by P.H Cournède, D. Gautheret November 4, 2020

MICS lab Meta Prism

Introduction

DESeq2 Methods

The model(s)

Size factors estimators

Dispersion estimators

LFC estimators

LFC testing

Questions

Introduction

1st paper: Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11:106. (~ 11k citations, DESeq R package)

 2^{nd} paper: Love, M.I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol* 2014, 15:550. (\sim 20k citations, DESeq2 R package)

Vignette: https://www.bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html

Affiliations:

- · Michael I. Love -> Dana Farber Institute, Boston.
- · Wolfgang Huber, Simon Anders -> EMBL, Heidelberg.

DESeq2 Methods	
The model(s)	

Counting data with Negative Binomial

<u>Notations</u>

- i = 1, ..., n denote count variables (genes).
- j = 1, ..., m denote individuals.
- K_{ij} count of var \emph{i} in indiv \emph{j} , $\emph{K} = \emph{K}_{1:\emph{n},1:\emph{m}}$ count matrix.
- X_j covariates of indiv j, $X = X_{1:m,1:p}$ design matrix.

Counting data with Negative Binomial

Notations

- i = 1, ..., n denote count variables (genes).
- j = 1, ..., m denote individuals.
- K_{ij} count of var i in indiv j, $K = K_{1:n,1:m}$ count matrix.
- X_j covariates of indiv j, $X = X_{1:m,1:p}$ design matrix.

The negative binomial NegBin(r, p) counts the number of failures before r successes of proba p.

$$p_{\text{NegBin}(r,p)}(k) = \frac{(k+r-1)!}{k!(n-1)!} p^r (1-p)^k$$
 (1)

Other formulation with mean and dispersion

$$p_{\text{NegBin}(\mu,\alpha)}(k) = \frac{\Gamma(k+\alpha^{-1})}{\Gamma(\alpha^{-1})k!} \left(\frac{1}{1+\alpha\mu}\right)^{\alpha^{-1}} \left(\frac{\mu}{\alpha^{-1}+\mu}\right)^k \tag{2}$$

The model(s)

 $\mbox{{\tt DESeq2}}$ models the counts K_{ij} distribution conditionally to X_j as

$$\mathbb{P}_{K_{ij}|X_j=x_j} = \text{NegBin}(\mu_{ij}, \alpha_i)$$
(3)

with a logarithmic link

$$\log(\mu_{ij}) = \mathbf{x}_i^{\top} \mathbf{\beta}_i$$

or rather, in order to account for indiv-specific size factors,

$$\log\left(\frac{\mu_{ij}}{\mathsf{s}_j}\right) = \mathsf{x}_j^{\mathsf{T}} \beta_i \tag{4}$$

The model(s)

 $\mbox{{\tt DESeq2}}$ models the counts K_{ij} distribution conditionally to X_j as

$$\mathbb{P}_{K_{ij}|X_j=x_j} = \text{NegBin}(\mu_{ij}, \alpha_i)$$
(3)

with a logarithmic link

$$\log(\mu_{ij}) = \mathbf{x}_j^{\top} \beta_i$$

or rather, in order to account for indiv-specific size factors,

$$\log\left(\frac{\mu_{ij}}{\mathsf{S}_j}\right) = \mathsf{X}_j^{\mathsf{T}} \beta_i \tag{4}$$

Model fitting: Find estimators

- 1. $\hat{s}_{1:m}$ (size factors)
- 2. $\hat{\alpha}_{1:n}$ (dispersions)
- 3. $\hat{\beta}_{1:n}$ (log fold changes)

DESeq2 Methods
Size factors estimators

Size factors estimators

Simple estimator Let

$$K_i^R = \left(\prod_{j=1}^m K_{ij}\right)^{\frac{1}{m}} \tag{5}$$

Then,

$$\hat{\mathbf{S}}_{j} = \underset{K_{i}^{R} \neq 0}{\mathsf{median}} \left\{ \frac{K_{ij}}{K_{i}^{R}} \right\} \tag{6}$$

Size factors estimators

Simple estimator Let

$$K_i^R = \left(\prod_{j=1}^m K_{ij}\right)^{\frac{1}{m}} \tag{5}$$

Then,

$$\hat{\mathbf{S}}_{j} = \underset{K_{i}^{R} \neq 0}{\mathsf{median}} \left\{ \frac{K_{ij}}{K_{i}^{R}} \right\} \tag{6}$$

Model fitting: Find estimators

- 1. ŝ₁:m (size factors) ✓
- 2. $\hat{\alpha}_{1:n}$ (dispersions)
- 3. $\hat{\beta}_{1:n}$ (log fold changes)

DESeq2 Methods
Dispersion estimators

Dispersion estimators via prior

Instead of estimating directly the dispersions α_i , they have their own distribution (prior) that is to be fitted to the data (posterior).

$$\mathbb{P}_{\alpha_i} = \mathcal{LN}\left(\alpha_{\rm tr}(\bar{\mu}_i), \sigma_d^2\right)$$
 with $\alpha_{\rm tr}(\bar{\mu}) = a_0 + \frac{a_1}{\bar{\mu}}, \bar{\mu}_i = \frac{1}{m} \sum_{j=1}^m \frac{\kappa_{ij}}{s_j}.$ (7)

Dispersion estimators via prior

Instead of estimating directly the dispersions α_i , they have their own distribution (prior) that is to be fitted to the data (posterior).

$$\mathbb{P}_{\alpha_i} = \mathcal{LN}\left(\alpha_{\text{tr}}(\bar{\mu}_i), \sigma_d^2\right) \tag{7}$$

with $\alpha_{\mathrm{tr}}(\bar{\mu})=a_0+rac{a_1}{\bar{\mu}}$, $\bar{\mu}_i=rac{1}{m}\sum_{j=1}^mrac{\kappa_{ij}}{s_j}$.

<u>However</u>, the dispersions are not observed. <u>To remedy to this</u>, authors derive initial values of dispersion $\alpha_i^{\rm gw}$ that are used to estimate $\alpha_{\rm tr}$ and σ_d^2 .

Dispersion fitting: Find estimators

- 1. $\alpha_i^{\rm gw}$ (gene wise initial estimates)
- 2. $\hat{\alpha}_{\rm tr}, \hat{\sigma}_d^2$ (prior dispersions)
- 3. α_i^{MAP} (MAP estimators)

Remark: All genes with 0 counts are excluded from further analyses.

The model matrix X

∆ X is the model matrix and it is obtained from the DESeq2DataSet object using the formula colData(dds) and design(dds).

Examples with colData(dds) = [condition(0,0,1) type(A, B, C)]

1. $design = \sim condition$,

$$X = \begin{bmatrix} \text{intercept} & \text{condition} \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 (8)

For this **X**, the model for $\hat{\mu}_i$ is linear (except if weights are used).

The model matrix X

⚠ X is the model matrix and it is obtained from the DESeq2DataSet object using the formula colData(dds) and design(dds).

Examples with colData(dds) = [condition(0,0,1) type(A,B,C)]

1. $design = \sim condition$,

$$X = \begin{bmatrix} \text{intercept} & \text{condition} \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 (8)

For this **X**, the model for $\hat{\mu}_i$ is linear (except if weights are used).

2. $design = \sim condition + type$,

$$X = \begin{bmatrix} \text{intercept} & \text{condition} & \text{type} \\ 1 & 0 & A \\ 1 & 0 & B \\ 1 & 1 & C \end{bmatrix}$$
 (9)

For this X, the model for $\hat{\mu}_i$ is the NegBin GLM.

Initial gene-wise dispersion estimators

Initial estimation of gene-wise dispersions as a minimum

$$\alpha_i^{\mathrm{init}} = \min(\alpha_i^{\mathrm{rough}}, \alpha_i^{\mathrm{moment}})$$
 (10)

with

$$\alpha_{i}^{\mathrm{rough}} = \frac{1}{m-p} \sum_{j=1}^{m} \frac{(\widetilde{K}_{i,j} - \widetilde{\mu}_{i,j})^{2} - \widetilde{\mu}_{i,j}^{2}}{\widetilde{\mu}_{i,j}^{2}}, \quad \begin{cases} \widetilde{\mu}_{i,1:m} = \mathbf{X} \hat{\widetilde{\beta}}_{i} \text{ (linear for all X)} \\ \hat{\widetilde{\beta}}_{i} = \operatorname{argmin}_{\beta} \|\widetilde{\mathbf{K}}_{i,1:m} - \mathbf{X}\beta\|_{2}^{2} \end{cases}$$
$$\alpha_{i}^{\mathrm{moment}} = \frac{\sigma^{2}(\widetilde{\mathbf{K}}_{i,1:m}) - \mu(\widetilde{\mathbf{K}}_{i,1:m})\mu(\widehat{\mathbf{S}}_{1:m}^{-1})}{\mu(\widetilde{\mathbf{K}}_{i,1:m})^{2}}$$

Initial estimation of gene-wise dispersions as a minimum

$$\alpha_i^{\mathrm{init}} = \min(\alpha_i^{\mathrm{rough}}, \alpha_i^{\mathrm{moment}})$$
 (10)

with

$$\begin{split} \alpha_i^{\mathrm{rough}} &= \frac{1}{m-p} \sum_{j=1}^m \frac{(\widetilde{K}_{i,j} - \widetilde{\mu}_{i,j})^2 - \widetilde{\mu}_{i,j}^2}{\widetilde{\mu}_{i,j}^2}, \quad \begin{cases} \widetilde{\mu}_{i,1:m} = \mathbf{X} \widetilde{\widetilde{\beta}}_i \text{ (linear for all X)} \\ \widehat{\widetilde{\beta}}_i &= \operatorname{argmin}_{\beta} \|\widetilde{\mathbf{K}}_{i,1:m} - \mathbf{X}\beta\|_2^2 \end{cases} \\ \alpha_i^{\mathrm{moment}} &= \frac{\sigma^2(\widetilde{\mathbf{K}}_{i,1:m}) - \mu(\widetilde{\mathbf{K}}_{i,1:m})\mu(\widehat{\mathbf{S}}_{1:m}^{-1})}{\mu(\widetilde{\mathbf{K}}_{i,1:m})^2} \end{split}$$

DESeq2 restricts by default the dispersion estimates as follows

$$\alpha_i^{\mathrm{init}} = \min(\max(10^{-8}, \alpha_i^{\mathrm{init}}), \max(10, m)) \tag{11}$$

Iterative MLE gene-wise dispersion estimators

$$\begin{aligned} & \text{Result: } \alpha_i^{\text{gw}} = \alpha_i^{(7)} \\ & \text{initialization } \alpha_i^{(0)} = \alpha_i^{\text{init}}; \\ & \text{for } t = 1, \dots, 7 \text{ do} \\ & \hat{\mu}_{i,1:m}^{(t)} = \begin{cases} \mathbf{\hat{S}}_{1:m} \odot \tilde{\mu}_{i,1:m} & \text{if linear model} \\ & \underset{\mu_{1:m}}{\operatorname{argmax}} \prod_{j=1}^{m} p_{\operatorname{NegBin}(\mu_j, \widehat{\alpha}_i^{(t-1)})}(K_{i,j}) & \text{otherwise} \end{cases}; \\ & \hat{\alpha}_i^{(t)} = \begin{cases} \mathbf{argmax} \frac{1}{\sqrt{\det(\mathbf{X}^\top \mathbf{W} \mathbf{X})}} \prod_{j=1}^{m} p_{\underset{NegBin(\widehat{\mu}_{i,j}^{(t)}, \alpha)}{\widehat{\mu}_{i,j}^{(t)}}(K_{i,j}) & \text{if DESeq2 type} \\ & \text{overdispersion}(y = \mathbf{K}_{i,1:m}, \mu = \widehat{\mu}_{i,1:m}^{(t)}, \mathbf{X} = \mathbf{X}) & \text{if glmGamPoi type} \end{cases} \end{aligned}$$

if estimator $\alpha_i^{(T)}$ did not converge and $\alpha_i^{(T)} > 10^{-7}$, then

$$\alpha_i^{\mathrm{gw}} = \operatorname*{argmax}_{\alpha} \frac{1}{\sqrt{\det(\mathbf{X}^{\top}\mathbf{W}\mathbf{X})}} \prod_{j=1}^{m} p_{\mathrm{NegBin}(\widehat{\mu}_j^{(\mathrm{T})},\alpha)}(K_{i,j}) \quad \text{on a grid (fitDispGrid)}$$

Fit the dispersion prior mean

Dispersion fitting: Find estimators

- 1. α_i^{gw} (gene wise initial estimates) \checkmark
- 2. $\hat{\alpha}_{tr}, \hat{\sigma}_d^2$ (prior dispersions)
- 3. α_i^{MAP} (MAP estimators)

1. Trend

The prior model is

ne prior model is
$$\mathbb{P}_{\alpha} = \mathcal{LN}\left(a_0 + \frac{a_1}{\bar{\mu}}, \sigma_d^2\right) \quad \text{and} \quad \frac{1}{8} \quad \frac{1}{8}$$
 Eseq2 uses

DESeg2 uses

$$\begin{cases} \text{10 iterations of} \quad \mathbb{P}_{\alpha|\bar{\mu}=\bar{\mu}} = \Gamma\left(a_0 + \frac{a_1}{\bar{\mu}}, \phi\right) & \text{if type=parametric} \quad \text{with } a_0^{(0)} = 0.1, a_1^{(0)} = 1 \\ \text{locfit} & \text{if type=locfit or failed parametric} \\ \text{loc_median_fit} & \text{if type=glmGamPois} \end{cases}$$

Λ Γ regression ignores points with log residual outside [10⁻⁴, 15].

• MLE · prior mean

mean of normalized counts

Fit the dispersion prior mean

Dispersion fitting: Find estimators

- 1. $\alpha_i^{\rm gw}$ (gene wise initial estimates) \checkmark
- 2. $\hat{\alpha}_{tr}, \hat{\sigma}_d^2$ (prior dispersions)
- 3. α_i^{MAP} (MAP estimators)

1. Trend

The prior model is

$$\mathbb{P}_{lpha} = \mathcal{LN}\left(a_0 + rac{a_1}{ar{\mu}}, \sigma_d^2
ight)$$
 DESeq2 uses

$$\begin{cases} 10 \text{ iterations of} \quad \mathbb{P}_{\alpha|\bar{\mu}=\bar{\mu}} = \Gamma\left(a_0 + \frac{a_1}{\bar{\mu}}, \phi\right) & \text{if type=parametric} \quad \text{with } a_0^{(0)} = 0.1, a_1^{(0)} = 1 \\ \\ \text{locfit} & \text{if type=locfit or failed parametric} \\ \\ \text{loc_median_fit} & \text{if type=glmGamPois} \end{cases}$$

Γ regression ignores points with log residual outside [10⁻⁴, 15].

2. Variance

$$\widehat{\sigma_d^2} = \max\{S_{lr}^2 - \psi_1(\frac{m-p}{2}), 0.25\}$$

with slr a robust estimator

$$s_{lr}^2 = mad\{log(\alpha_i^{gw}) - log \alpha_{tr}(\bar{\mu}_i)\}$$

MAP dispersion estimators

Dispersion fitting: Find estimators

- 1. $\alpha_i^{\rm gw}$ (gene wise initial estimates) \checkmark
- 2. $\hat{lpha}_{
 m tr},\hat{\sigma}_d^2$ (prior dispersions) \checkmark
- 3. α_i^{MAP} (MAP estimators)

MAP dispersion estimators

Dispersion fitting: Find estimators

- 1. $\alpha_i^{\rm gw}$ (gene wise initial estimates) \checkmark
- 2. $\hat{\alpha}_{\rm tr}, \hat{\sigma}_d^2$ (prior dispersions) \checkmark
- 3. α_i^{MAP} (MAP estimators)
- 1. α_i^{gw} is an **outlier** if $\log(\alpha_i^{\mathrm{gw}}) \log \hat{\alpha}_{\mathrm{tr}}(\bar{\mu_i}) > 2 S_{\mathrm{lr}}^{\mathrm{gw}}$ Then, $\alpha_i^{\mathrm{final}} = \alpha_i^{\mathrm{gw}}$.

$$\alpha_{i}^{\text{final}} = \underset{\alpha}{\operatorname{argmax}} p_{\alpha_{i} \mid \mathbf{K}_{i,1:m} = \mathbf{k}_{i,1:m}}(\alpha) \propto \prod_{i=1}^{m} p_{\mathbf{K}_{i,j} \mid \alpha_{i} = \alpha}(h_{ij}) p_{\alpha_{i}}(\alpha)$$
(12)

Model fitting: Find estimators

- 1. ŝ₁:m (size factors) ✓
- 2. $\hat{\alpha}_{1:n}$ (dispersions) \checkmark
- 3. $\hat{\beta}_{1:n}$ (log fold changes)

DESeq2 Methods	
LFC estimators	

LFC model and estimation

Reminder:

$$\mathbb{P}_{\mathbf{K}_{ij}|\mathbf{X}_{j}=\mathbf{x}_{j}} = \text{NegBin}(\mathbf{s}_{j}e^{\mathbf{x}_{j}^{\mathsf{T}}\boldsymbol{\beta}_{i}}, \alpha_{i})$$
(13)

As for dispersions, author set a prior on each $\beta_{i,r}$,

$$\mathbb{P}_{\beta_{i,r}} = \mathcal{N}\left(0, \sigma_r^2\right) \tag{14}$$

LFC fitting: Find estimators

- 1. β_i^{MLE} (initial estimates)
- 2. $\hat{\sigma}_r^2$ (prior fitting)
- 3. β_i^{MAP} (MAP estimators)

Prior fitting

1. Initial estimation of gene-wise LFC as a minimum

$$\beta_{i}^{\text{MLE}} = \underset{\beta}{\operatorname{argmax}} \prod_{j=1}^{m} p_{\text{NegBin}(\hat{s}_{j} e^{\beta T_{x_{j}}}, \hat{\alpha}_{i}^{\text{final}})}(K_{i,j})$$
 (15)

2. Variance estimator robust against LFC outliers

$$\hat{\sigma}_r = \frac{Q_{|\beta_r^{\text{MLE}}|}(1-p)}{Q_N(1-p/2)}$$

p is set to 0.05 by default

LFC fitting: Find estimators

- 1. β_i^{MLE} (initial estimates) \checkmark
- 2. $\hat{\sigma}_r^2$ (prior fitting) \checkmark
- 3. β_i^{MAP} (MAP estimators)

Posterior fitting

1. LFC final estimator

$$\begin{split} \beta_{i,1:p}^{\text{final}} &= \underset{\beta}{\operatorname{argmax}} \, \frac{1}{\sqrt{\det(\mathbf{X}^{\top}\mathbf{W}\mathbf{X})}} p_{\beta_{i}|\mathbf{K}_{i,1:m} = \mathbf{k}_{i,1:m}}(\beta) \\ &\propto \frac{1}{\sqrt{\det(\mathbf{X}^{\top}\mathbf{W}\mathbf{X})}} \prod_{j=1}^{m} p_{\mathbf{K}_{i,j}|\beta_{i} = \beta}(k_{ij}) p_{\beta_{i}}(\beta) \end{split}$$

i.e

$$\beta_{i,1:p}^{\text{final}} = \underset{\beta}{\operatorname{argmax}} \sum_{j=1}^{m} \log p_{\operatorname{NegBin}(\mu_{j}(\beta), \hat{\boldsymbol{\alpha}}_{i})}(K_{i,j}) - \frac{1}{2} \log \det(\boldsymbol{\mathsf{X}}^{\top}\boldsymbol{\mathsf{WX}}) - \sum_{r=1}^{p} \frac{\beta_{r}^{2}}{2\sigma_{r}^{2}}$$

2. Estimator of covariance LFC estimator Also estimate the covariance matrix $\Sigma_i = \widehat{\mathrm{Cov}}\left(\beta_i^{\mathrm{final}}\right)$ for the tests.

Other LFCs priors

Authors observed "normal prior can sometimes produce too strong of a shrinkage". From v1.18, additional priors may be used

1. apeglm adaptive t prior from the apeglm package (Zhu, Ibrahim and street Love, Bioinformatics 2018). The prior is street

adaptive t prior from the package (Zhu, Ibrahim and
$$\frac{2}{8}$$
 poinformatics 2018). The prior is $\frac{2}{8}$ $\frac{2}{8}$

2. ashr from ashr package (Stephens, Biostatistics 2016). New approach to bridge the gap between FDR and estimation using "local false sign rate". Assuming there are effect and SE estimates, $\hat{\beta}_{i,1:p}$ and $\hat{S}_{i,1:p}$, ashr computes

$$p_{\beta_i|\hat{\beta}_i,\hat{S}_i}(\beta) \propto p_{\hat{\beta}_i|\beta_i,\hat{S}_i}(\hat{\beta}_i) p_{\beta_i|\hat{S}_i}(\beta)$$

with

$$p_{\hat{\beta}_i|\beta_i,\hat{S}_i}(\beta) = \prod_{r=1}^{p} \mathcal{N}(\beta_r|\beta_{i,r},\hat{S}_{i,r}^2) \quad, \mathbb{P}_{\beta_i|\hat{S}_i} = \pi_{0,i}\delta_0 + \sum_{k=1}^{K} \pi_{k,i}\mathcal{N}(0,\sigma_{i,k}^2).$$

Ι	DESeq2 Methods	
	LFC testing	

Wald testing

 Using the LFC estimator and the estimation of the covariance of this LFC estimator, one may form Wald statistics

$$\frac{\beta_{i,r}^{\text{final}}}{\sqrt{\Sigma_{i,rr}}} \tag{17}$$

 Only the p-values for the genes that individually pass the independent filtering step are adjusted using BH procedure.
 Independent filtering: threshold on

$$\bar{K}_i = \frac{1}{m} \sum_{j=1}^m \tilde{K}_{ij}$$

<u>Ref</u>: Wolfgang Huber: Independent filtering increases detection power for high-throughput experiments. PNAS (2010),

http://dx.doi.org/10.1073/pnas.0914005107

