Introdução à Teoria de Grupos

Gabriel C. Magalhães*

2025

Abstract

Essas notas foram escritas como material de apoio para um minicurso ministrado na XXIX Semana da Física UEL e são baseadas principalmente em [?].

Contents

1	Introdução	2
	1.1 Simetrias	2
	1.2 Definição de grupo	2
2	Rotações em duas dimensões 2.1 Números complexos	2
3	Rotações em três dimensões 3.1 Quaternions	2
4	Álgebra de Lie 4.1 Geradores	2
5	Teoria de Representação 5.1 Representações do grupo SU(2)	2
6	Grupo de Lorentz	2

^{*}gabriel.capelini@uel.br

1 Introdução

1.1 Simetrias

1.2 Definição de grupo

Um grupo é um conjunto G com um mapa cdot que satisfaz as seguintes propriedades:

- Fechamento: Para todo $g, g' \in G, g \cdot g' \in G$.
- Identidade: Existe um elemento $e \in G$ tal que para todo $g \in G$, $g \cdot e = e \cdot g = g$. Chamamos esse elemento de identidade.
- Elemento inverso: Para todo $g \in G$, existe $g' \in G$ tal que $g \cdot g' = g' \cdot g = e$. Chamamos esse elemento de elemento inverso e o denotamos por $g' \equiv g^{-1}$.
- Associatividade: Para todo $g_1, g_2, g_3 \in G, (g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3).$

2 Rotações em duas dimensões

- 2.1 Números complexos
- 3 Rotações em três dimensões
- 3.1 Quaternions
- 4 Álgebra de Lie
- 4.1 Geradores
- 4.1.1 Geradores do grupo SO(3)
- 4.1.2 Geradores do grupo SU(2)
- 5 Teoria de Representação
- 5.1 Representações do grupo SU(2)
- 6 Grupo de Lorentz

References