Homework Complexity 1

Jiaxin Wu

1 Exercise One

Sort the functions below according to their growth (so following $O(\cdot)$). You can give the answer as a sequence of numbers (for example: 1-5-9-8-7-4-2-3-6). Start with the slowest growing function.

1.
$$n$$
 4. n^2 7. $n!$
2. $n - n^3 + 7n^5$ 5. $n \ln(n)$ 8. e^n
3. 2^n 6. \sqrt{n} 9. $\ln(\ln(n))$

Conclusion: 9 - 6 - 1 - 5 - 4 - 2 - 3 - 8 - 7

2 Exercise Two

Suppose we have a computer which can perform 1 million (= 10^6) operations per second. The nine formulas below denote the running time of some algorithms (measured in number of operations) depending on the number of elements n we feed to the algorithm. Determine for each algorithm how many elements can be processed in 1 minute.

1. n	5. n ln(n)	9. n ¹⁰⁰
$N=6\times10^7$	3950157	1
2. n ²	6. n log(n)	10. 4 ⁿ
$\sqrt{60 \times 10^6} \approx 7746$	8309550	$\log_4(6\times10^7)~\approx~12$
3. n ³	7. 2 ⁿ	
$\sqrt[3]{60 \times 10^6} \approx 391$	$\log_2(6\times10^7)~\approx~25$	
4. n!	8. $n\sqrt{n}$	
11	$\sqrt[3]{36 \times 10^{14}} \approx 153261$	

3 Exercise Three

3.1 A

- 1. g(n) = O(f(n))
- 2. both
- 3. g(n) = O(f(n))
- 4. g(n) = O(f(n))
- 5. both
- 6. g(n) = O(f(n))
- 7. f(n) = O(g(n))

3.2 B

```
Both f(n)=O(g(n)) and g(n)=O(f(n)):

f(n)=\log(n^2)=2\log(n); g(n)=\log(n)

Take c=2, N=1 to see that \log(n) \le 2 \times 2\log(n) for all n>N;

Take c=3, N=1 to see that 2\log(n) \le 3 \times \log(n) for all n>N;

So, both f(n)=O(g(n)) and g(n)=O(f(n))
```

4 Exercise Four

Sum-of-reciprocals (n) =

$$i = 1$$
 $H = 0$
 $C_1 = 1$
 $C_2 = 1$
 $C_3 = n + 1$
 $C_4 = n$
 $C_6 = 1$

The sum-of-reciprocals (n) =

 $C_1 = 1$
 $C_2 = 1$
 $C_3 = n + 1$
 $C_4 = n$
 $C_6 = 1$

T = 1 + 1 + n + 1 + n + n + 1 = 3n + 4 = 0 (n)

5 Exercise Five

factorial (n) =
$$-$$
result = 1 $c1 = 1$
for i in rang (1, n+1) = $c2 = n+1$
result $+ = 1$ $c3 = n$
return result $c4 = 1$

$$T = 1 + n + 1 + n + 1 = 2n + 3 = 0$$
 (n)

6 Exercise Six

Algorithm 1: Bubble Sort Input: a list A for i = 1 to A.length - 1 do for j = A.length down to i + 1 do if A[j] < A[j - 1] then exchange A[j] with A[j - 1] $C = \sum_{j=2}^{n} (\forall j - 1)$ $C = \sum_{j=2}^{n} (\forall j - 1)$

$$T(n) = 1 + C_2 n + C_3 \sum_{j=2}^{n} t_j^2 + C_4 \sum_{j=2}^{n} (t_j^2 - t_j^2) + C_6 \sum_{j=2}^{n} t_j^2 - t_j^2$$
the best condition , $t_j^2 = 1$

$$T(n) = 1 + C_2 n + C_3 (n - t_j)$$

$$= (C_2 + C_3) n - C_3 + 1$$
the worst condition , $t_j^2 = 1$

$$T(n) = (\frac{C_3}{2} + \frac{C_4}{2} + \frac{C_5}{2}) n^2 + (C_2 + \frac{C_5}{2} - \frac{C_5}{2}) n - C_3 + 1$$

$$= O(n^2)$$

7 Exercise Seven

Algorithm 2:

Input: n
$$s = 0$$

$$i = 0$$

$$\mathbf{while} \ i < n \ \mathbf{do}$$

$$s = s + 1$$

$$i = i + 1$$

$$T = 1 + 1 + 1 + n + 1 + n + n + n$$

= $3n + 1$
= $0(n)$

Algorithm 3:

Input: n
$$s = 0$$

$$i = 0$$

$$| i = 0$$

$$| j = 0$$

$$| while i < n do$$

$$| j = 0$$

$$| while j < n do$$

$$| s = s + 1$$

$$| j = j + 1$$

$$| i = i + 1$$

$$| (n+1)^{2}$$

Algorithm 4:

[

Algorithm 4:

Input: n
$$s = 0$$

$$i = 0$$
while $i < n$ do
$$j = 0$$
while $j < n \times n$ do
$$s = s + 1$$

$$j = j + 1$$

$$i = i + 1$$

Algorithm 5:

$$T = 1+ 1+ 1+ n+1 + n+n+n-1+n$$

= $\pm n + 3$
= $O(n)$

Algorithm 6:

Input: n
$$s = 0$$

$$i = 0$$

$$\mathbf{while} \ i < n \ \mathbf{do}$$

$$\mathbf{while} \ j < i \ \mathbf{do}$$

$$\mathbf{while} \ j < i \ \mathbf{do}$$

$$\mathbf{while} \ k < j \ \mathbf{do}$$

$$\mathbf{x} = 0$$

$$\mathbf{while} \ k < j \ \mathbf{do}$$

$$\mathbf{x} = s + 1$$

$$\mathbf{x} = s + 1$$