

MASTER OF SCIENCE IN ENGINEERING

Multimodal Processing, Recognition and Interaction

Final Challenge Description

Simon Ruffieux

Elena Mugellini, Jean Hennebert, Stefano Carrino

Summary

- Introduction
- Overview
- Objectives
- Planning
- Rules
- Database
- Data Formats
- Hints
- Practical Info

Introduction

- My thesis is about evaluation of multimodal gesture recognition systems
- The proposed dataset has been acquired in this context
 - Multimodal dataset for research
 - Multiple possible recognition tasks
- The OPEGRA platform has been developed in this context
 - Facilitate download of datasets
 - Facilitate evaluation and comparison of algorithms

Overview of challenge

- You receive a labeled dataset containing data of segmented gestures
- You must implement machine learning algorithms for the task of recognizing gestures
- You must optimize your algorithm

Objectives of the challenge

- Apply the theoretical concepts seen in class with real data
- Obtain the best recognition rate!
- This challenge represents 30% of your final grade!

Planning

- 04.05: Start of Challenge
 - Group composition
 - Access to platform & data
- 11.05 & 18.05: Development & optimization of algorithms
 - No theory, we are available via mail for questions
- 31.05: End of challenge
 - Your results must be on the platform before 23H55
 - Warning, evaluation might take some time
- 01.06: Presentations & Prices
 - Powerpoint presentations
 - Nomination of winner(s)
- 08.06: Submission of reports

Rules

- 9 Groups of 3 or 2 persons
 - Each group must implement
 - One Hidden Markov Model (HMM)
 - One Support Vector Machine (SVM)
 - One Neural Network (NN)
 - [Optional] Fusion method
- Language: C# or Matlab
 - A group may use different software/library/language

Haute Ecole Spécialisée de Suisse occidentale Fachhochschule Westschweiz University of Applied Sciences

Kinect upper-skeleton

4 Xsens inertial motion unit

Database (I)

- 9 subjects
- 11 right-arm gestures (=classes)
- ~1100 instances of gestures
 - ~100 instances per class
- Dataset provided as
 - .mat for Matlab
 - .dset for C# (a library is provided for loading/ reading)

Database (II)

- Gestures:
 - Performed while seating
 - Variable duration amongst
 - different classes
 - a same class
- Sensors
 - Not the same frequency
 - Partially redundant information

#	Name of gesture
0	Calibration*
1	Swipe left
2	Swipe right
3	Push to screen
4	Take from screen
5	Palm-up rotation
6	Palm-down rotation
7	Draw a circle I
8	Draw a circle II
9	Wave hello
10	Shake hand

*This class has fewer samples

Database (III)

- You receive the Training set (75%)
 - The data is labeled for supervised training
 - -> Split it as you wish to train & optimize your algorithm 2 sets, cross-validation, k-fold, etc.
- The Test set is kept on the platform (25%)
 - This data is not labeled, otherwise it has the same format as the training data

Data Format – INPUT (I)

Xsens data

17 features per sensor:

LinAccX LinAccY LinAccZ ...
AngVelX AngVelY AngVelZ ...
Yaw Pitch Roll ...
MagX MagY MagZ ...
Barometer ...
QuatX QuatY QuatZ QuatW

4 sensors attached to the user

-> A total of 68 features

4 IMU (xsens) located at the following positions on the right arm of subjects

Data Format – INPUT (II)

Kinect data

A total of 84 features:

TrackingState posX posY posZ ... Foreach BodyPart: [TrackingState posX posY posZ]*

Body parts:

HipCenter Spine ShoulderCenter Head ShoulderLeft ElbowLeft WristLeft HandLeft ShoulderRight ElbowRight WristRight HandRight HipLeft KneeLeft AnkleLeft FootLeft HipRight KneeRight AnkleRight FootRight

Data Format – OUTPUT

- Classification results (Evaluation set)
 - Output your results in 'results.txt' file in the working directory of your algorithm
 - One label per line

 See platform tutorial and provided sample algorithms for more details Label (integer: 0 to 10)

Detailed Task

- Load dataset and process it into features
- Implement a machine learning algorithm
- Split data (train/test, cross-validation, etc.)
- Optimize your performances
 - Search for optimal set of features
 - Search for best parameters
- At the end, upload your algorithm on the platform for the official evaluation
 - You may upload it several times (keep the same name)

Hints

- Think about features!
 - What features make more sense or provides more information?
 - More features != better
 - Processing features may take time!
 - How to represent temporal aspect of gestures?
 - Pay attention to algorithm used
 - HMM != SVM != NN

Practical Info - Final Handouts

- A Report and a Presentation per group
 - Introduction
 - For each algorithm
 - Implementation
 - Description of the features
 - An evaluation of obtained performances
 - Discussion
 - Comparison of the results
 - General discussion
 - Conclusion

Practical Info – Presentations

- The day of the presentations (01.06.2015)
 - Presentation (~2 hours)
 - 15 minutes / group
 - Every participant should present its part
 - Summary Challenge results (~15 minutes)
 - We will present the winners of the challenge

Practical Info – Grading

- Grading is also individual!
- Criteria
 - Algorithm performances (weighting = x2)
 - F1-Score (see provided pseudo-code)
 - Quality of presentation
 - Quality of report
 - Choices and justifications
 - Algorithms, features, etc.
 - Amount of work

Practical Info - Results Submission

- If you encounter problem during evaluation on the platform, do not hesitate to contact me by mail!
 - If you follow precisely the instructions, it should be fine
 - Labels in 'results.txt' (0-10)
 - Your algorithm must terminate at the end of the evaluation
 - An algorithm that does not terminate after 15 minutes is killed
 - Do not upload and evaluate your algorithm at the last minute!
 - An evaluation might take some time to finish

Practical Info - F1-Score

- $CM = Confusion\ Matrix$
- $Precision(i) = \frac{CM.GetDiagonal(i)}{CM.GetColumn(i).Sum()}$
- $Recall(i) = \frac{CM.GetDiagonal(i)}{CM.GetRow(i).Sum()}$
- MacroPrecision = Precision. Average()
- MacroRecall = Recall.Average()

$$F1 - Score = \frac{2 * MacroPrecision * MacroRecall}{MacroPrecision + MacroRecall}$$

Sokolova, M. and Lapalme, G.A systematic analysis of performance measures for classification tasks. *Information Processing & Management 45*, 4 (2009), 427–437.

Contacts

- Simon Ruffieux
 - simon.ruffieux@hefr.ch
- Stefano Carrino
 - stefano.carrino@hefr.ch

