Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчет по дисциплине «Вычислительные комплексы» по лабораторной работе №4 «Эмиссионная томография плазмы. Построение СЛАУ»

Выполнил студент группы 3630102/60201

Чепулис М.А.

Преподаватель: Баженов А.Н.

Санкт-Петербург 2019

Оглавление

Постановка задачи	3
Теория	3
Построение разбиения сетки	3
Информация о детекторе	3
Нахождение сечения плазмы плоскостью х = Н	5
Реализация	5
Результаты	5
Обсуждение	17
Литература	18
Приложение	18
Код программы на Matlab	18

Постановка задачи

Считать данные из д-файла

Построить разбиение («паутинку») расчётной области плазмы (сепаратрисы)

Построить геометрическую матрицу хорд

Поставить задачу о нахождении различных областей (переопределённая СЛАУ)

Более подробная постановка задачи изложена в [3]

Теория

Сепаратрисы - граница плазмы, последняя замкнутая поверхность магнитного потока

Магнитная ось - экстремум магнитного потока

Построение разбиения сетки

Алгоритм построения взять из [3]

- Делим область на 2 сектора (по экватору)
- В каждом секторе находим точку с максимальным радиусом кривизны
- Найдены 4 особые точки (2 на экваторе, 2 в точках с максимальным радиусом кривизны)
- Внутри каждого сектора проводим ещё N дополнительных отрезков. Итого получено 4N отрезка
- Находим у каждого из отрезков середину и соединяем их между собой
- В итоге получили разбиение пространства (сетку)

Информация о детекторе

Рисунок 1 график плоскости детектора

Информация о детекторе получена из [4] и [5]

Угол между направлением камеры-обскуры и направлением на центр (между 8 и 9 лучами):

$$ang = \arccos(\frac{708^2 + 720^2 - 31^2}{2 * 708 * 720})$$

Положение края детектора (1-го столбца) (в координатах ХҮ):

$$spd_start = (0, -0.708)$$

Положение 16-го столбца (в координатах ХҮ):

$$spd_end = (0.72 * sin(ang), 0.72 * (-cos ang) = (0.02886 - 0.7194)$$

Вектор направления камеры-обскуры в экваториальной плоскости (в координатах ХҮ)

$$spd_vect = \frac{(spd_{end} - spd_{start})}{\|spd_{end} - spd_{start}\|} = (0.9296, -0.3685)$$

Шаг между столбцами в плоскости детектора, 2 числа («малый» и «большой» шаги)

$$spd_xy_step = (2.3375 - 0.88, 3.81 - 2.3375 + 0.88) * 10^{-3} = (0.0015, 0.0024)$$

Центр детектора (в координатах XY)

$$pp = spd_{start} + spd_{vect} * \frac{\left(\left(spd_{xy_{step(1)}} + spd_{xy_{step(2)}}\right) * 8 + 0.52 * 1e - 03\right)}{2} = (0.0144, -0.7137);$$

Отступ Апертуры от центра детектора:

aperture_xy_offset =
$$0.0395$$

Координата апертуры (в плоскости ХҮ)

aperture_xy =
$$(pp(1) - spd_vect(2) * aperture_xy_offset, pp(2) + spd_vect(1) * aperture_xy_offset)$$

= $(0.0290, -0.6770)$

spd xz – устройство детектора в меридиональной плоскости

$$spd_z start = \frac{(27.52 - 0.49)}{2} * 1e - 03 = 0.0135$$

$$spd_zstep = -1.72 * 1e - 03 = -0.0017$$

$$spd_xy = spd_start + spd_vect * \left(\frac{spd_xy_step(2)}{2} + 0.26 * 1e - 03\right) = (0.0013, -0.7085)$$

Нахождение сечения плазмы плоскостью х = Н

Плазма представляется как фигура вращения

Роль образующей выполняет сетка разбиения сепаратрисы

Для каждого вертикального ряда пикселей детектора вычисляется прямая, проходящая через этот пиксель и апертуру детектора. После чего вычисляет H - расстояние от центра токамака до прямой

Сечение плазмы плоскость х = Н

Далее каждый элемента сетки представляется как фигура вращения, ось вращения совпадает с осью токамака, образующая – текущий элемент сетки. Для этой фигуры рассчитывается сечение плоскость x=H.

В этом сечении для каждого пикселя в вертикальном ряду вычисляется прямая, проходящая через центр пикселя и апертуру детектора.

Далее для ищутся пересечения прямой и элементов сетки, и по точкам пересечений вычисляются длины хорд.

Реализация

Все задания были выполнены на языке программирования Matlab в среде разработки MATLAB R2017b [1]

Данные из фала считаны функцией «gfile_extractor_1t» [2] Радиус кривизны вычислялся по 3 точкам (как радиус окружности, описанной вокруг треугольника)

R(i) вычисляется по трём точкам: A = p(i-1), B = p(i), C = p(i+1), где p- точки сепаратрисы

Для крайних точек сепаратрисы учитывается её замкнутость

Данные о расположении и параметрах детектора взяты пособия к лабораторной работе

[4]

Результаты

Рисунок 2 график сепаратрисы и магнитной оси

Рисунок 3 разбиение сепаратрисы

Рисунок 4 график положения сечений

Рисунок 5 график положения лучей для 16 столбца детектора

Далее приведены сечения для всех 16 столбцов

Где:

Рисунок 6 Сечение 1

Рисунок 7 Сечение 2

Рисунок 8 Сечение 3

Рисунок 9 Сечение 4

Рисунок 10 Сечение 5

Рисунок 11 Сечение 6

Рисунок 12 Сечение 7

Рисунок 13 Сечение 8

Рисунок 14 Сечение 9

Рисунок 15 Сечение 10

Рисунок 16 Сечение 11

Рисунок 17 Сечение 12

Рисунок 18 Сечение 13

Рисунок 19 Сечение 14

Рисунок 20 Сечение 15

Рисунок 21 Сечение 16

Обсуждение

На сечениях 14, 15, 16 плоскость сечения Н меньше самой левой точки сепаратрисы, следовательно, область получается двусвязной.

В случае двусвязной области считаем, что луч упирается в центральную ось токамака, и учитываем только левую (ближайшую к детектору) область.

СЛАУ представляет собой матрицу 256xN, где N – это количество элементов разбиения.

Каждая строка матрицы отвечает за свой луч, притом коэффициенты для каждого элемента разбиения – сумма длин хорд.

Литература

- [1] Документация по Матлаб [Электронный ресурс] Режим доступа: https://www.mathworks.com/help/ (дата обращения ноябрь 2019)
- [2] Код функции g_file_extractor_1t [электронный ресурс, облачное хранилище] Режим доступа: https://cloud.mail.ru/public/5o3T/4G4dD71hL (дата обращения ноябрь2019)
- [3] Пособие к Лабораторным работам [электронный ресурс, облачное хранилище] Режим доступа: https://cloud.mail.ru/public/4ra6/5wwqBzMBC/LabPractics.pdf (дата обращения ноябрь 2019)
- [4] Пособие к Лабораторным работам «Построение матриц СЛАУ» [электронный ресурс, облачное хранилище]

Режим доступа:

- https://vk.com/doc38035266_528474113?hash=8c9ddc720dfadef7b6&dl=48b180ef19a7dc0f33_(дата обращения ноябрь 2019)
- [5] Выпуская квалификационная работа бакалавра «Исследование разрешимости обратных задач с помощью распознающего функционала» [электронный ресурс, облачное хранилище] Режим доступа:
 - https://cloud.mail.ru/public/4ra6/5wwqBzMBC/2019%20%D0%97%D0%B0%D1%82%D1%8B%D0%BD%D0%BB%D0%BD%D0%BB%D0%BD%D0%BB%D0%BB%D0%BB%D0%BD%D0%BB%D0%BD%D0%BB%D0%BB%D0%BD%D0%BB%D0%BB%D0%BD%D0%BB%D0%BD%D0%BD%D0%BD%D0%BD%D0%BD%D0%BD%D0%BD%D0%BD%D

Приложение

Код программы на Matlab:

[Электронный ресурс, репозиторий GitHub]

Режим доступа: https://github.com/MChepulis/computing-complex/tree/develop (дата обращения декабрь 2019)