Фибоначчиева система счисления

Утверждение: Если делятся индексы, то делятся и числа.

<u>Определение:</u> Фибоначчиева система счисления: $a_n a_{n-1} \dots a_0 = \sum_{i=0}^n a_i F_{i+2}$, $a_i \in \{0, 1\}$.

В записе числа не могут стоять две единицы подряд.

Примеры:

$$7 = F_3 + F_5 = 1010_{\phi}$$
$$8 = F_6 = 10000_{\phi}$$

<u>Утверждение:</u> $b_n b_{n-1} ... b_0 \phi < b_{m+1} 00...0 \phi$

Теорема:

Любое $n \in N$ (включая 0) можно представить в Фибоначчиевой системе счисления, и это представление единственное.

Доказательство:

1) Дано число n.

Найдём: $F_k \le n \le F_{k+1}$

$$F_{k\text{-}1} = F_{k\text{+}1}$$
 - $F_k > n$ - $F_k \ge 0$

и т.к. n = 10, то нет двух единиц подряд

2) Единственность:

$$\begin{array}{l} n \, = \, \underbrace{a_n a_{n\text{-}1} \dots a_0}_{p} \ \, _{\phi} \\ n \, = \, \underbrace{b_n b_{n\text{-}1} \dots b_0}_{\phi} \ \, _{\phi} \, < \, \, \underbrace{b_{m\text{+}} 100 \dots 0}_{\phi} \, _{\phi} \, , \, \, m\text{+}1 \leq n \end{array}$$

→ m = n → из n можно убрать F_{n+2} : n - F_{n+2} — разложение единственно.

Арифметические действия над числами в Фибоначчиевой системе счисления

Наибольший общий делитель

Даны a, b ϵ Z

• Наибольший общий делитель — d: a:d и b:d

HOД а и b \leftrightarrow (a,b)

• Наименьшее общее кратное — m: m:a и m:b

$$HOK a и b \leftrightarrow [a, b]$$

Определение: 1) Общий делитель а и b — это d: a:d и b:d; 2) Общее кратное a и b — это m: m:a и m:b.

Пример:

$$(20, 30) = 10, [20, 30] = 60$$

Замечание:

1 — общий делитель для любых а и b. ab — общее кратное a, b.

Следствие к замечанию

$$(a, b) \ge 1, [a, b] \le ab$$

<u>Утверждение:</u> 1) Если d — общий делитель a и b, то (a, b) : d; 2) m — общее кратное a и b, то m : [a, b].

Доказательство:

2) Делим с остатком m на [a, b]:

$$m = [a, b]q + r$$

......

 \rightarrow r \vdots a (аналогично r \vdots b)

→ r — общее кратное а и b, но $0 \le r \le [a, b]$ → среди натуральных чисел [a, b] — min, которое делится нацело на а и b.

$$\rightarrow$$
 r = 0 \rightarrow m : [a, b].

Утверждение: ab = a, b.

В примере (20б 30)[20, 30] = 10*600 = 20*30

Доказательство:

[a,b]
$$\neq \frac{ab}{(a,b)}$$

$$\frac{ab}{(a.b)}$$
— целое число

$$\frac{ab}{(a,b)}$$
 : a, b $\rightarrow \frac{ab}{(a,b)}$ — общее кратное

$$ightarrow rac{ab}{(a,b)}$$
 $displanteq [a,b]
ightarrow rac{a}{(a,b)q} = rac{[a,b]}{a}$ и $rac{b}{(a,b)q} = rac{[a,b]}{a}$ $ightarrow (a,b)q$ — общий

делитель a и b \rightarrow (a, b) \geq (a, b)q

При
$$q = 1 \frac{ab}{(a,b)} = [a, b]$$

Утверждение: Пусть ab : с и (a, c) = 1 → b : с.

Пример:

$$14*30 : 5, (14, 5) = 1,$$

 $\rightarrow 30 : 5$

Доказательство:

$$\frac{ab}{c} = q$$

ab = cq, и т.к. (a, c) = 1, то b : c