PHY3110 SP23 Notes

Haoran Sun (haoransun@link.cuhk.edu.cn)

Contents

0	Intr	roduction	2	
1	New	vtonian Mechanics	2	
	1.1	Newton's Laws	2	
	1.2	Constraints	3	
	1.3	Generalized coordinates	3	
2	Lagrange Formalism			
	2.1	D'Alembert's Principle	4	
	2.2	Hamilton's principle, variational principle	6	
	2.3	Constraint	7	
	2.4	Lagrangian for Lorentz force	9	
	2.5	Conservation & symmetry of the system	9	
3	The	e Central Force Problem	12	
	3.1	Reduction to the equivalent one-body problem	12	
	3.2	Virial theorem	14	
	3.3	Inverse-square force	15	
	3.4	Scattering	16	
4	Rigi	id Body	18	
	4.1	Coordinates of rigid body	18	
	4.2	Orthogonal transformations	18	
	4.3	Euler angles	18	
	4.4	Rate of change of a vector	19	
	4.5	The Coriolis effect	20	

0 Introduction

Grading: 30% homework, 30% midterm, 40% final.

Textbooks:

- H. Goldstein, C. Poole, J. Safko, Classical Mechanics, 3rd Edition, Pearson.
- J.R. Taylor, Classical Mechanics, University Science Books.
- T.W.B. Kibble, F.H. Berkshire, Classical Mechanics, 5th Edition, Imperial College Press.
- 梁昆淼, 力学 (下册) 理论力学, 4th Edition, 高等教育出版社.

Classical mechanics describe the motion of macroscopic objects, which are not extremely massive and not extremely fast.

1 Newtonian Mechanics

Vectorial quantities of motion: position \mathbf{r} , velocity \mathbf{v} , force \mathbf{F} , momentum $\mathbf{p} = m\mathbf{v}$, angular momentum $\mathbf{L} = \mathbf{r} \times \mathbf{p}$. Equations of motion are derived from those vector quantities.

Analytical mechanics uses scalar quantities of motion

- Kinetic energy $T = \frac{1}{2}m\mathbf{v}^2$
- Potential energy $V = V(\mathbf{r})$

Equations of motion are derived from those scalar quantities.

1.1 Newton's Laws

Theorem 1.1 (Newton's 2nd law).

$$\mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = m\mathbf{a} \tag{1}$$

The formula is valid in an inertial frame.

Angular momentum L and torque N are also related

$$\frac{d\mathbf{L}}{dt} = \frac{d}{dt}(\mathbf{r} \times \mathbf{p}) = \mathbf{r} \times \mathbf{F} = \mathbf{N}$$
 (2)

Work done by external forces (note that $d\mathbf{s} = \mathbf{v} dt$)

$$W_{12} = \int_{1}^{2} \mathbf{F} \, d\mathbf{s} = \int_{1}^{2} m \frac{d\mathbf{v}}{dt} \, d\mathbf{s} = \int_{1}^{2} m\mathbf{v} \, d\mathbf{v} = \left. \frac{1}{2} m\mathbf{v}^{2} \right|_{1}^{2}$$
(3)

Define a scalar function $V(\mathbf{r})$, then $\mathbf{F} = -\nabla V(\mathbf{r})$ is a conservative force.

$$\oint \mathbf{F} \, \mathrm{d}\mathbf{s} = 0 \tag{4}$$

Center of mass of the system

$$\mathbf{R} = \frac{\sum_{i} m_{i} \mathbf{r}_{i}}{\sum_{i} m_{i}} = \frac{\sum_{i} m_{i} \mathbf{r}_{i}}{M}$$
 (5)

Total momentum

$$\mathbf{P} = \sum_{i} m_{i} \mathbf{p}_{i} = M \dot{\mathbf{R}} \tag{6}$$

Hence **P** is conserved if external force $\mathbf{F}^{(e)}$ is zero.

Total angular momentum

$$\frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \sum_{i} \mathbf{r}_{i} \times \mathbf{p}_{i} = \sum_{i} \mathbf{r}_{i} \times \left(\mathbf{F}_{i}^{(e)} + \sum_{j} \mathbf{F}_{ij} \right) = \sum_{i} \mathbf{r}_{i} \times \mathbf{F}_{i}^{(e)} + \sum_{ij} \mathbf{r}_{i} \times \mathbf{F}_{ij}$$

Since \mathbf{r}_{ij} parallel to \mathbf{F}_{ij} , then

$$\sum_{ij} \mathbf{r}_i \mathbf{F}_{ij} = \frac{1}{2} \sum_{ij} \mathbf{r}_{ij} \times \mathbf{F}_{ji} = 0$$
 (7)

Therefore

$$\frac{\mathrm{d}\mathbf{L}}{\mathrm{d}t} = \mathbf{N}^{(e)} \tag{8}$$

Decomposition of the angular momentum

$$\mathbf{L} = \sum_{i} \mathbf{r}_{i} \times \mathbf{p}_{i} = \sum_{i} (\mathbf{R} + \mathbf{r}_{i}) \times m_{i} (\mathbf{V} + \mathbf{v}_{i}') = \sum_{i} \mathbf{R} \times m_{i} \mathbf{V} + \sum_{i} \mathbf{r}_{i}' \times m_{i} \mathbf{v}_{i}'$$
(9)

1.2 Constraints

Holonomic constraint

$$f(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N, t) = 0 \tag{10}$$

Example: rigid body

$$(\mathbf{r}_i - \mathbf{r}_j)^2 - c_{ij}^2 = 0 (11)$$

Example: non-sliding cylinder

$$\dot{x} - R\dot{\theta} = 0 \Rightarrow x - R\theta = \text{const}$$

A constraint of the form

$$\sum_{i} g_i(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) \, d\mathbf{x}_i = 0 \Rightarrow dG(\mathbf{x}_1, \dots) = 0 \Rightarrow G(\mathbf{x}_1, \dots) = \text{const}$$
(12)

Non-holonomic constraint: cannot be written in the form of holonomic constraint.

1.3 Generalized coordinates

Suppose we have a N-particle system, we will have 3N DOFs. With k constraints, we will have 3N-k DOFs. Define q_1, \ldots, q_{3N-k} generalized coordinates, we have

$$\mathbf{r}_i = \mathbf{r}_i(q_1, \dots, q_{3N-1}, t) \tag{13}$$

2 Lagrange Formalism

2.1 D'Alembert's Principle

Hint from the rigid body: internal forces of constraints do not work.

Virtual displacement: $\delta \mathbf{r}_i$ is consistent with the constraints imposed on the system at a given time

$$\mathbf{r}_i \to \mathbf{r}_i + \delta \mathbf{r}_i$$
 (1)

Theorem 2.1 (D'Alembert's principle). Consider a system in equilibrium

$$\mathbf{F}_{i} = 0 \Rightarrow \sum_{i} \mathbf{F}_{i} \cdot \delta \mathbf{r}_{i} = 0 \tag{2}$$

Separate $\mathbf{F}_i = \mathbf{F}_i^{(a)} + \mathbf{f}_i$ where \mathbf{f}_i is the constraint force. Hence

$$\sum_{i} (\mathbf{F}_{i}^{(a)} + \mathbf{f}_{i}) \cdot \delta \mathbf{r}_{i} = 0 \Rightarrow \sum_{i} \mathbf{F}_{i}^{(a)} \cdot \delta \mathbf{r}_{i} = 0$$
(3)

For a system moving under external forces

$$\mathbf{F}_{i} - \dot{\mathbf{p}}_{i} = 0 \Rightarrow \sum_{i} (\mathbf{F}_{i} - \dot{\mathbf{p}}_{i}) \delta \mathbf{r}_{i} = 0 \Rightarrow \sum_{i} (\mathbf{F}_{i}^{(a)} - \dot{\mathbf{p}}_{i}) \delta \mathbf{r}_{i} = 0$$

$$(4)$$

For holonomic constraints

$$\mathbf{r}_{i} = \mathbf{r}_{i}(q_{1}, \dots, q_{n}, t), \quad \mathbf{v}_{i} = \frac{\mathrm{d}\mathbf{r}_{i}}{\mathrm{d}t} = \frac{\partial \mathbf{r}_{i}}{\partial t} + \sum_{i} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \dot{q}_{j}, \quad \delta \mathbf{r}_{i} = \sum_{i} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \delta q_{j}$$
 (5)

Define generalized force Q_i

$$\sum_{i} \mathbf{F}_{i} \delta \mathbf{r}_{i} = \sum_{ij} \mathbf{F}_{i} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \delta q_{j} = \sum_{j} Q_{j} \delta q_{j}$$
(6)

Then

$$\sum_{i} \dot{\mathbf{p}}_{i} \cdot \delta \mathbf{r}_{i} = \sum_{ij} m_{i} \ddot{\mathbf{r}}_{i} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \delta q_{j} = \sum_{ij} \left[\frac{\mathrm{d}}{\mathrm{d}t} \left(m_{i} \dot{\mathbf{r}}_{i} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \right) - m_{i} \dot{\mathbf{r}}_{i} \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \right] \delta q_{j}$$
(7)

$$= \sum_{j} \left[\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} \right] \delta q_{j} = \sum_{j} Q_{j} \delta q_{j} \tag{8}$$

(9)

where

$$\frac{\partial T}{\partial q_j} = \sum_{ik} \frac{\partial \dot{\mathbf{r}}_k}{\partial q_j} \frac{\partial}{\partial \dot{\mathbf{r}}_k} T = \sum_k m_k \dot{\mathbf{r}}_k \frac{\partial \dot{\mathbf{r}}_k}{\partial q_j} = \sum_k m_k \dot{\mathbf{r}}_k \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathbf{r}_k}{\partial q_j}$$
(10)

Hence $\forall j$ we have

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i} - Q_j = 0 \tag{11}$$

Let the potential energy $V = V(\mathbf{r}_i, ...) = V(q_i, ...)$, then we have

$$Q_{j} = \sum_{i} \mathbf{F}_{i} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} = \sum_{i} -\nabla_{i} V \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} = -\frac{\partial V}{\partial q_{j}}$$
(12)

Therefore

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial (T - V)}{\partial \dot{q}_j} \right) - \frac{\partial (T - V)}{\partial q_j} - Q_j = 0 \tag{13}$$

Theorem 2.2 (Langrange's equation). Define L = T - V, then

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_j} \right) - \frac{\partial L}{\partial q_j} = 0 \tag{14}$$

The choice of Lagrangian is not unique, L' where

$$L' = L + \frac{\mathrm{d}F(q,t)}{\mathrm{d}t} \tag{15}$$

will give the same equations of motion as L.

Example 2.1 (Lagrange's formalism).

1) For a single particle moving under force ${\bf F}$

$$L(\mathbf{x}, \dot{\mathbf{x}}, t) = \frac{1}{2}m\dot{\mathbf{x}}^2 + \mathbf{F} \cdot \mathbf{x}$$

2) Motion in a 2D plane using polar coordinates

$$L(r,\theta,\dot{r},\dot{\theta},t) = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) + F \cdot \mathbf{r}$$

Generalized forces

$$Q_r = \mathbf{F} \cdot \frac{\partial \mathbf{r}}{\partial r} = \mathbf{F} \cdot \mathbf{e}_r$$
$$Q_{\theta} = \mathbf{F} \cdot \frac{\partial \mathbf{r}}{\partial \theta} = \mathbf{F} \cdot r\mathbf{e}_{\theta}$$

where

$$\mathbf{e}_r = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \quad \mathbf{e}_\theta = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

Equations of motion

$$m\ddot{r} - mr\dot{\theta}^2 = \mathbf{F} \cdot \mathbf{e}_r$$
$$mr^2\ddot{\theta} + 2mr\dot{r}\dot{\theta} = r\mathbf{F}_{\theta}$$

3) Atwood's machine

$$L = \frac{1}{2}(M_1 + M_2)\dot{x}^2 + M_1gx + M_2g(l - x)$$

The equation of motion is

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} = 0$$

$$\Rightarrow (M_1 + M_2)\ddot{x} = (M_1 - M_2)g$$

Suppose we have a potential dependent on velocity (generalized potential) and the generalized force is defined as

$$U = U(q_j, \dot{q}_j), \quad Q_j = -\frac{\partial U}{\partial q_i} + \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial U}{\partial \dot{q}_i}$$
 (16)

Define L = T - U, then we still have

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = 0 \tag{17}$$

Example 2.2 (Lorentz force on a moving charge). The Lorentz force

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

Define the scalar and vector potentials

$$E = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t}, \quad \mathbf{B} = \nabla \times \mathbf{A}$$

Hence

$$\mathbf{F} = q \left[-\nabla \phi - \frac{\partial \mathbf{A}}{\partial t} + \mathbf{v} \times (\nabla \times \mathbf{A}) \right]$$

2.2 Hamilton's principle, variational principle

Configuration space: a space formed by the set of generalized coordinates.

$$(q_1, q_2, \dots, q_n)$$
 as function of t (18)

Theorem 2.3 (Hamilton's principle). Define the action integral I, where L = T - V or L = T - U (U is the generalized potential)

$$I = \int_{t_1}^{t_2} L \, \mathrm{d}t \tag{19}$$

Then the variation of the action integral equals to zero

$$\delta I = \delta \int_{t_1}^{t_2} L(q_1, \dots, q_n, \dot{q}_1, \dots, \dot{q}_n) \, dt = 0$$
 (20)

Add small variation on the path

$$q_i(t,\alpha) = q_i(t) + \alpha \eta(t) \tag{21}$$

where $\eta(t_1) = \eta(t_2) = 0$. Then the action will be the function of α , $I = I(\alpha)$. Hence

$$\delta I = \int_{t_1}^{t_2} \left(\sum_i \frac{\partial L}{\partial q_i} \delta q_i + \frac{\partial L}{\partial \dot{q}_i} \delta \dot{q}_i \right) dt \tag{22}$$

Change the order of differentiation $\delta \dot{q}_i = d\delta q_i/dt$, then

$$\delta I(\alpha) = \int_{t_1}^{t_2} \sum_{i} \left[\frac{\partial L}{\partial q_i} \delta q_i - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) \delta q_i \right] \mathrm{d}t + \sum_{i} \frac{\partial L}{\partial \dot{q}_i} \delta q|_{t_1}^{t_2}$$
(23)

$$= \int_{t_1}^{t_2} \sum_{i} \left[\frac{\partial L}{\partial q_i} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) \right] \delta q_i \, \mathrm{d}t = 0$$
 (24)

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q_i} = 0 \tag{25}$$

Example 2.3 (Shortest path problem). y = y(x), $ds = \sqrt{dx^2 + dy^2}$, then the action integral (path) is

$$I = \int_{1}^{2} ds = \int_{1}^{2} \sqrt{1 + \dot{y}^{2}} dx \tag{26}$$

Apply the Lagrange's equation we get

$$\frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d}\sqrt{1+\dot{y}^2}}{\mathrm{d}\dot{y}} = 0 \Rightarrow \frac{\mathrm{d}\dot{y}}{\mathrm{d}x} = 0 \Rightarrow y = ax + b \tag{27}$$

Example 2.4 (Solid of revolution). Differential of area $2\pi x \, ds = 2\pi x \sqrt{1 + \dot{y}^2} \, dx$, then the total area is

$$\int_{1}^{2} 2\pi x \sqrt{1 + \dot{y}^2} \, \mathrm{d}x \tag{28}$$

Define the Lagrangian $L(x, y, \dot{y}) = 2\pi x \sqrt{1 + \dot{y}^2}$, by Lagrange's equation we can get

$$\frac{x\dot{y}}{\sqrt{1+\dot{y}^2}} = \text{const} \Rightarrow y = a\cosh^{-1}\frac{x}{a} + b \tag{29}$$

Example 2.5 (The curve of fastest descent). Question: along which trajectory from point 1 to point 2, the time is shortest? The total time is

$$T = \int_1^2 \frac{\mathrm{d}s}{v} = \int_1^2 \frac{\mathrm{d}s}{\sqrt{2gy}} \tag{30}$$

According to Newton's laws we have $y = gv^2$, then

$$T = \int_{1}^{2} \frac{\sqrt{1 + \dot{y}^{2}}}{\sqrt{2gy}} \, \mathrm{d}x \tag{31}$$

Then we have $L(x, y, \dot{y})$ and we get

$$2y\ddot{y} + 1 + \dot{y}^2 = 0 \tag{32}$$

$$\Rightarrow 2y\dot{y}\ddot{y} + \dot{y} + \dot{y}^{3} = \dot{y}(1 + \dot{y}^{2}) + y(2\dot{y}\ddot{y}) = \frac{\mathrm{d}}{\mathrm{d}t}\dot{y}(1 + \dot{y}^{2}) = 0 \tag{33}$$

$$\Rightarrow y(1+\dot{y}^2) = \text{const} \tag{34}$$

which means that $y(1 + \dot{y}^2) = \text{const.}$ The solution is $x = A(\theta - \sin \theta)$, $y = A(1 - \cos \theta)$.

2.3 Constraint

Holonomic constraints

$$f(q_1, \dots, q_n, t) = 0 \tag{35}$$

Non-holonomic constraints

$$f(q_1, \dots, q_n; \dot{q}_1, \dots, \dot{q}_n; t) = 0$$
 (36)

Sometimes we can convert $f(\dot{q}_i) = 0$ to $f'(q_i) = 0$.

Example 2.6 (Rolling cylinder). Rolling cylinder without sliding has the constraint

$$\dot{x} - R\dot{\theta} = 0 \Rightarrow x - R\theta = \text{const}$$
 (37)

A commonly encountered type of non-holonomic constraint is linear constraint equations

$$\sum_{k=1}^{n} a_{ik} \frac{\mathrm{d}q_k}{\mathrm{d}t} + a_i t = 0 \tag{38}$$

For the virtual displacement δq_i

$$\sum_{k=1}^{n} a_{ik} \delta q_k = 0 \tag{39}$$

Suppose q_i are not independent, then the Euler-Lagrange's equation could not hold.

$$\int_{t_1}^{t_2} \sum_{i} \left[\frac{\partial L}{\partial q_i} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) \right] \delta q_i \, \mathrm{d}t = 0 \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q_i} = 0$$

Include the constraint equation of q_i into the equation

$$\sum_{k=1}^{n} a_{ik} \delta q_k = 0 \Rightarrow \sum_{i=1}^{m} \lambda_i \sum_{k=1}^{n} a_{ik} \delta q_k = 0$$

$$\tag{40}$$

Hence

$$\int_{t_1}^{t_2} \sum_{k=1}^{n} \left[\frac{\partial L}{\partial q_k} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_k} \right) + \sum_{i=1}^{m} \lambda_i a_{ik} \right] \delta q_k \, \mathrm{d}t = 0$$

Let q_1, \dots, q_{n-m} be independent generalized coordinate, q_{n-m+1}, \dots, q_n dependent generalized coordinates (i.e., they can be expressed by q_1, \dots, q_{n-m}). Choose λ_i s.t.

$$\frac{\partial L}{\partial q_k} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_k} \right) + \sum_{i=1}^m \lambda_i a_{ik} = 0 \tag{41}$$

 $\forall k = n - m + 1, ..., n$. In conclusion, we have $q_1, ..., q_n, \lambda_1, ..., \lambda_m$ overall n + m unknowns, and n Lagrange's equations and m constraint equations overall n + m equations.

Remark.

- 1) It is inconvenient to reduce all q_k s to independent coordinates
- 2) If we are interested in the constraint forces

$$\sum_{k=1}^{n} a_{ik} \, \mathrm{d}q_k + a_{it} \, \mathrm{d}t = 0$$

where

$$a_{ik} = \frac{\partial f_i}{\partial q_k}, \quad a_{it} = \frac{\partial f_i}{\partial t}$$

Then

$$\mathrm{d}f_i = \frac{\partial f_i}{\partial q_k} \, \mathrm{d}q_k + \frac{\partial f_i}{\partial t} \, \mathrm{d}t \Rightarrow \mathrm{d}f_i = 0, \ f_i = \mathrm{const}$$

Example 2.7 (Hoop rooling down an inclined plane).

The constraint equation writes

$$\dot{x} - r\dot{\theta} = 0 \Rightarrow x - r\theta = \text{const}$$

 $a_x = 1$, $a_\theta = -r$, $a_t = 0$. Energy terms are

$$T = T_{\text{COM}} + T_{\text{relative}} = \frac{1}{2}M\dot{x}^2 + \frac{1}{2}M(r\dot{\theta})^2$$

$$V = Mg(l-x)\sin\phi$$

$$\Rightarrow L = \frac{1}{2}M\dot{x}^2 + \frac{1}{2}M(r\dot{\theta})^2 - Mg(l-x)\sin\phi$$

Then we can write the Lagrange's equation with Lagrange's multipliers

$$\frac{\partial L}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{x}} + a_x \lambda = 0$$

$$\Rightarrow Mg \sin \phi - M\ddot{x} + \lambda = 0$$

$$-Mr^2 \ddot{\theta} - \lambda r = 0$$

$$\dot{x} = r\dot{\theta} \Rightarrow \ddot{x} = r\ddot{\theta}$$

we can get $M\ddot{x} = Mr\ddot{\theta} = -\lambda$ and $\ddot{x} = (g \sin \phi)/2$. Note that λ is the constraint force (in this case λ is the frictional force).

2.4 Lagrangian for Lorentz force

The Lorentz force is given by

$$\mathbf{F} = q[\mathbf{E} + \mathbf{v} \times \mathbf{B}] \tag{42}$$

Where

$$\mathbf{E} = -\nabla \phi - \frac{\partial A}{\partial t}, \quad \mathbf{B} = \nabla \times \mathbf{A}$$
 (43)

Hence, by defining the Lagrangian

$$L = \frac{1}{2}m\mathbf{v}^2 - q\phi + q\mathbf{A} \cdot \mathbf{v} \tag{44}$$

Applying the Lagrange's equation we can get the EOM (eq. 42). Take x as an example

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{x}} = \frac{\mathrm{d}}{\mathrm{d}t}(m\dot{x} + qA_x) = m\ddot{x} + q\frac{\partial A_x}{\partial t} + \mathbf{v} \cdot \nabla A_x \tag{45}$$

2.5 Conservation & symmetry of the system

Definition 2.1 (Cylic coordinate). The generalized coordinate q_i is cyclic (ignorable) if

$$\frac{\partial L}{\partial q_i} = 0 \tag{46}$$

It implies the generalized momentum p_i is conserved.

Rotational symmetry. Let q_i be one of the rotational angle of spacial coordinate \mathbf{r}_i . Hence

$$d\mathbf{r}_{i} = \mathbf{n}_{j} \times \mathbf{r}_{i} dq_{j} \Rightarrow \frac{\partial \mathbf{r}_{i}}{\partial q_{i}} = \mathbf{n}_{j} \times \mathbf{r}_{i} dq_{j}$$
(47)

where \mathbf{n}_i is the normal vector of the rotation axis of q_i . Hence the generalized force of q_i writes

$$Q_{q_j} = -\frac{\partial V}{\partial q_j} = -\sum_k \frac{\partial V}{\partial \mathbf{r}_k} \frac{\partial \mathbf{r}_k}{\partial q_j} = -\frac{\partial V}{\partial \mathbf{r}_i} \frac{\partial \mathbf{r}_i}{\partial q_j} = \mathbf{F}_i \cdot (\mathbf{n}_j \times \mathbf{r}_i) = \mathbf{n}_j \cdot (\mathbf{r}_i \times \mathbf{F}_i) = \mathbf{n}_j \cdot \mathbf{N}_i$$
(48)

where N_i stands for the torque on the i^{th} particle. The generalized momentum of q_i writes

$$p_{q_j} = \frac{\partial T}{\partial \dot{q}_j} = \sum_k \frac{\partial T}{\partial \dot{\mathbf{r}}_k} \frac{\partial \mathbf{r}_i}{\partial q_j} = \sum_k m_k \dot{\mathbf{r}}_k \cdot \frac{\partial \dot{\mathbf{r}}_k}{\partial \dot{q}_j} = m_i \dot{\mathbf{r}}_i \cdot (\mathbf{n}_j \times \mathbf{r}_i) = \mathbf{n}_j \times (\mathbf{r}_i \times m_i \dot{\mathbf{r}}_i) = \mathbf{r}_j \times \mathbf{L}_i$$
(49)

where L_i stands for the angular momentum of the i^{th} particle. Hence, the rotational invariance implies the conservation of angular momentum.

Time translation

$$\frac{\mathrm{d}}{\mathrm{d}t}L = \sum_{i} \frac{\partial L}{\partial q_{i}} \dot{q}_{i} + \frac{\partial L}{\partial \dot{q}_{i}} \ddot{q}_{i} + \frac{\partial L}{\partial t}$$
(50)

$$= \sum_{i} \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i} + \frac{\partial L}{\partial \dot{q}_{i}} \ddot{q}_{i} + \frac{\partial L}{\partial t}$$
(51)

$$= \frac{\mathrm{d}}{\mathrm{d}t} \sum_{i} \left(\frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i} \right) + \frac{\partial L}{\partial t}$$
 (52)

$$\Rightarrow \frac{\partial L}{\partial t} + \frac{\mathrm{d}}{\mathrm{d}t} \underbrace{\left(\sum \frac{\partial L}{\partial \dot{q}_i} q_i - L\right)}_{H} = 0 \tag{53}$$

Note that

$$\sum_{i} \frac{\partial L}{\partial \dot{q}_i} \dot{q}_i = 2T \tag{54}$$

Proof. Suppose r_i does not have explicit time dependence $(\partial r_i/\partial t = 0)$

$$T = \sum_{i} \frac{1}{2} m_{i} \dot{r}_{i}^{2} = \sum_{i} \frac{1}{2} m_{i} \left(\sum_{j} \frac{\partial r_{i}}{\partial q_{j}} \dot{q}_{j} + \frac{\partial r_{i}}{\partial t} \right)^{2}$$

$$= \sum_{ijk} \frac{1}{2} m_{i} \frac{\partial r_{i}}{\partial q_{j}} \frac{\partial r_{i}}{\partial q_{k}} \dot{q}_{j} \dot{q}_{k}$$

$$\Rightarrow \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i} = \sum_{i} \dot{q}_{i} \sum_{jk} m_{k} \frac{\partial r_{k}}{\partial q_{i}} \frac{\partial r_{k}}{\partial q_{j}} \dot{q}_{j} = \sum_{ijk} m_{k} \frac{\partial r_{k}}{\partial q_{i}} \frac{\partial r_{k}}{\partial q_{j}} \dot{q}_{i} \dot{q}_{j} = 2T$$

Hence we can define Hamiltonian H = T + V which stands for the total energy, and H conserved if L doesn't depend on time explicitly.

Example 2.8 (Two blocks). Let M be the mass of the big block, m be the mass of the small block. Define two generalized coordinates: X stand for the position of COM of the big block, q stand for the position of COM of the small block (sloped).

Hence we can easily define the Lagrangian

$$L = \frac{1}{2}M\dot{X}^2 + \frac{1}{2}m[(\dot{X} + \dot{q}\cos\theta)^2 + \dot{q}^2\sin^2\theta] - mgq\sin\theta$$

There is no X dependence on the system, hence X is a cyclic coordinate.

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{X}} = \frac{\mathrm{d}}{\mathrm{d}t} M \dot{X} + m(\dot{X} + \dot{q}\cos\theta) = 0$$
$$\Rightarrow M \dot{X} m(\dot{X} + \dot{q}\cos\theta) = p_X = \text{const}$$

3 The Central Force Problem

3.1 Reduction to the equivalent one-body problem

For the two-body problem, we have two choices of generalized coordinate

- (a) \mathbf{r}_1 , \mathbf{r}_2 stand for spacial coordinates of two masses
- (b) **R** spacial coordinate of the COM, $\mathbf{r} = \mathbf{r}_1 \mathbf{r}_2$

Hence, we can rewrite the kinetic energy in terms of \mathbf{R} and \mathbf{r}

$$T = \frac{1}{2}m_1\dot{\mathbf{r}}_1^2 + \frac{1}{2}m_2\dot{\mathbf{r}}_2^2 \tag{1}$$

$$= \frac{1}{2}m_1 \left(\dot{\mathbf{R}} + \frac{m_2}{m_1 + m_2}\dot{\mathbf{r}}\right)^2 + \frac{1}{2}m_2 \left(\dot{\mathbf{R}} - \frac{m_1}{m_1 + m_2}\dot{\mathbf{r}}\right)^2 \tag{2}$$

$$= \frac{1}{2}(m_1 + m_2)\dot{\mathbf{R}}^2 + \frac{m_1 m_2}{m_1 + m_2}\dot{\mathbf{r}}^2 = \frac{1}{2}M\dot{\mathbf{R}}^2 + \frac{1}{2}\mu\dot{\mathbf{r}}^2$$
(3)

Hence we can write the Lagrangian

$$L = \frac{1}{2}M\dot{\mathbf{R}}^2 + \frac{1}{2}\mu\dot{\mathbf{r}}^2 - V\tag{4}$$

Suppose $V = V(\mathbf{r})$, then **R** is a cyclic coordinate, We have $\dot{\mathbf{R}} = \text{const}$, and we can drop $\dot{\mathbf{R}}$ terms in L. Moreover, if $V = V(\|\mathbf{r}\|)$, the total angular momentum is conserved.

Use r, θ as generalized coordinates, we have

$$L = \frac{1}{2}\mu(\dot{r}^2 + r^2\dot{\theta}^2) - V(r) \tag{5}$$

The Lagrange's equation wrt r writes

$$\mu \ddot{r} - \mu r \dot{\theta}^2 + \frac{\partial V}{\partial r} = 0 \tag{6}$$

Easy to find that θ is cyclic, hence

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{\theta}} = \frac{\mathrm{d}}{\mathrm{d}t}\mu r^2 \dot{\theta} = 0 \Rightarrow p_{\theta} = \mu r^2 \dot{\theta} = l = \text{const}$$
(7)

Theorem 3.1 (Kepler's 2nd law). Radius vector sweeps out equal areas in equal time.

Substitute $\mu r \dot{\theta}^2$ term by L, we have

$$\mu\ddot{r} - \frac{l^2}{\mu r^3} + \frac{\partial V}{\partial r} = 0 \tag{8}$$

$$\Rightarrow \mu \ddot{r} = -\frac{\partial}{\partial r} \left(V + \frac{l^2}{2\mu r^2} \right) \tag{9}$$

$$\mu \ddot{r} \dot{r} = -\frac{\partial}{\partial r} \dot{r} (V + \frac{l^2}{2\mu r^2}) \tag{10}$$

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} (\frac{1}{2}\mu \dot{r}^2 + V + \frac{l^2}{2\mu r^2}) = \frac{\mathrm{d}}{\mathrm{d}t}E = 0 \tag{11}$$

Hence we can get the expression of \dot{r} and a differential equation

$$\dot{r} = \sqrt{\frac{2}{\mu}(E - V - \frac{l^2}{2\mu r^2})} \tag{12}$$

Define the new effective force f'(r) with an effective potential $V' = V + l^2/2\mu r^2$, we have

$$\mu\ddot{r} = -\frac{\partial V}{\partial r} + \frac{l^2}{\mu r^3} = f'(r), \quad E = \frac{1}{2}\mu\dot{r}^2 + V' = \text{const}$$
(13)

Example 3.1 (Gravitational force). Suppose we have $f(r) = -kr^{-2}$ and $V = -kr^{-1}$, then

$$V' = -\frac{k}{r} + \frac{l^2}{2\mu r^2}$$

- 1) $E = E_1 \ge 0$, the motion has a lower bound, $r \ge r_1$.
- 2) $V_{\min} < E_2 < 0$, the motion has lower and upper bound, $r_1 \le r \le r_2$.
- 3) $E_3 = V_{\min}$, the motion will shrink to a single circle $r_1 = r_2 = \text{const}$, hence it is a circular motion. In this case, the gravitational force is equal to the centrifugal force

$$\mu\ddot{r} = f(r) + \frac{l^2}{\mu r^3} = f(r) + \mu r\dot{\theta}^2 = 0 \Rightarrow f(r) = -\mu r\dot{\theta}^2$$

Remark. Let the potential be $V = -kr^{-\alpha}$, then the motion cannot have periodic behavior if $\alpha > 2$.

Example 3.2 (Harmonic oscillator). $V = kr^2/2$, we have

$$V' = \frac{1}{2}kr^2 + \frac{l^2}{2\mu r^2}$$

Theorem 3.2 (Conditions for closed orbitals, Bertrand's theorem). Stable orbitals require

$$\frac{\partial^2 V'}{\partial r^2}\bigg|_{r=r_0} = -\frac{\partial f}{\partial r} + \frac{3l^2}{mr^4}\bigg|_{r=r_0} > 0 \Rightarrow \frac{\partial f}{\partial r}\bigg|_{r=r_0} < -\frac{3f(r_0)}{r_0}$$
(14)

Let $f = -kr^n$, then we have

$$-knr^{n-1} < 3kr^{n-1} \Rightarrow n > -3 \tag{15}$$

For a small perturbation from the minimum, we can write the effective potential as Taylor expansion

$$V'(r) = V'(r_0) + \frac{\partial V'}{\partial r}\Big|_{r=r_0} (r - r_0) + \frac{1}{2} \frac{\partial^2 V'}{\partial r^2}\Big|_{r=r_0} (r - r_0)^2 + \cdots$$
 (16)

$$=V'(r_0) + \frac{1}{2} \left. \frac{\partial^2 V'}{\partial r^2} \right|_{r=r_0} (r-r_0)^2 + O(|r-r_0|^3)$$
 (17)

Hence the EOM becomes

$$m\ddot{r} = -\frac{\partial V'}{\partial r} = -\frac{\partial^2 V'}{\partial r^2} \bigg|_{r=r_0} (r - r_0)$$
(18)

$$\dot{\theta} = \frac{l}{mr^2} \tag{19}$$

The solution taks the form

$$u = u_0 + a\cos\beta\theta, \ u = \frac{1}{r}, \ \beta^2 = \frac{r}{f}\frac{\partial f}{\partial r} + 3\bigg|_{r=r_0}$$
 (20)

For finite perturbation, the orbit can be a closed only if $\beta^2 = 1$ or 4. Then there are only two types of central-force scalar problem with the property that all bound orbitals are closed orbitals.

$$\frac{r}{f} \frac{\partial f}{\partial r}\Big|_{r=r_0} = \pm 2 \Rightarrow f = -kr^{-2} \text{ or } -kr$$
 (21)

check the theorem on other books

3.2 Virial theorem

Consider a multi-particle system $1 \le i \le N$.

$$\dot{\mathbf{p}}_i = \mathbf{F}_i \tag{22}$$

Define new function

$$G = \sum_{i} \mathbf{p}_{i} \cdot \mathbf{r}_{i} \tag{23}$$

Then the time derivative of *G* writes

$$\frac{\mathrm{d}}{\mathrm{d}t}G = \sum_{i} m_{i}\dot{\mathbf{r}}_{i}^{2} + \sum_{i} \mathbf{F}_{i} \cdot \mathbf{r}_{i} \tag{24}$$

Hence the time average of dG/dt is

$$\frac{1}{\tau} \int_0^{\tau} \frac{\mathrm{d}}{\mathrm{d}t} G \, \mathrm{d}t = 2\overline{T} + \overline{\sum_i \mathbf{F}_i \cdot \mathbf{r}_i} = \frac{1}{\tau} [G(\tau) - G(0)]$$
 (25)

The time average equals to 0 if τ is the period of the periodic motion; even for non-periodic motion, if $\tau \to \infty$, the average will approach 0. Hence

$$2\overline{T} + \overline{\sum_{i} \mathbf{F}_{i} \cdot \mathbf{r}_{i}} = 0 \Rightarrow \overline{T} = -\frac{1}{2} \overline{\sum_{i} \mathbf{F}_{i} \cdot \mathbf{r}_{i}}$$
virial of Clausius

Example 3.3 (Ideal gas). Temperature $T \propto T_i$ kinetic energy of i^{th} particle.

$$T_i = \frac{3}{2}k_B T \tag{27}$$

Hence the time average of total kinetic energy is

$$\overline{\sum_{i} T_{i}} = \frac{3}{2} N k_{B} T \tag{28}$$

The virial could be written as

$$\overline{\sum_{i} \mathbf{F}_{i} \cdot \mathbf{r}_{i}} = \int d\mathbf{F} \cdot \mathbf{r}$$
 (29)

Note that

$$d\mathbf{F} = -p \, dA\mathbf{n}$$

Applying Gauss's law we have

$$\overline{\sum_{i} \mathbf{F}_{i} \cdot \mathbf{r}_{i}} = -\int p \, dA \, \mathbf{n} \cdot \mathbf{r} = -\int p \, dV \, (\nabla \mathbf{r}) = -3pV$$
(30)

Hence by the equation we get $pV = nk_BT$.

Example 3.4 (Gravational force). Since $\mathbf{F}_i = -\nabla_i V$, given $V_i = ar_i^{n+1}$, we have

$$\overline{T} = \frac{1}{2} \overline{\sum_{i}} \nabla_{i} V \cdot \mathbf{r}_{i} = \frac{n+1}{2} \overline{\sum_{i}} a r_{i}^{n+1} = \frac{n+1}{2} \overline{V}$$
(31)

This theorem is particularly important when the potential energy is a homogeneous function of the coordinates, i.e.

$$U(\alpha \mathbf{r}_1, \dots, \alpha \mathbf{r}_n) = \alpha^k U(\mathbf{r}_1, \dots, \mathbf{r}_n)$$
(32)

Note that

$$\frac{\mathrm{d}U}{\mathrm{d}\alpha} = \sum_{a} \frac{\partial \alpha \mathbf{r}_{a}}{\partial \alpha} \cdot \frac{\partial U}{\partial \alpha \mathbf{r}_{a}} = \sum_{a} \frac{\mathbf{r}_{a}}{\alpha} \cdot \frac{\partial U}{\partial \mathbf{r}_{a}} = k\alpha^{k-1}U \tag{33}$$

Then the equation 26 becomes

$$2\overline{T} = k\overline{U} \tag{34}$$

Equivalently

$$\overline{U} = \frac{2E}{k+2}, \ \overline{T} = \frac{kE}{k+2} \tag{35}$$

3.3 Inverse-square force

Consider $f = -k/r^2$, V = -k/r, then we have EOM

$$\dot{r} = \left[\frac{2}{m} \left(E + \frac{k}{r} - \frac{l^2}{2mr^2} \right) \right]^{1/2} \Rightarrow \theta = \theta_0 + \int_{r_0}^{r_1} \frac{\mathrm{d}r}{r^2 \left(\frac{2mE}{l^2} - \frac{2mV}{l^2} - \frac{1}{r^2} \right)^{1/2}}$$
(36)

Define u = 1/r, let $\theta_0 = 0$, then

$$\theta = \theta_0 - \int_{u_0}^{u_1} \frac{\mathrm{d}u}{\left(\frac{2mE}{l^2} + \frac{2mku}{l^2} - u^2\right)^{1/2}}$$
(37)

$$\Rightarrow \theta = -\arccos\frac{\frac{l^2 u}{mk} - 1}{\sqrt{1 + \frac{2El^2}{mk^2}}}, \ r = \frac{\frac{l^2}{mk}}{1 + \sqrt{1 + \frac{2El^2}{mk^2}}\cos\theta} = \frac{r_0}{1 + \epsilon\cos\theta}$$
(38)

 ϵ is called the eccentricity.

ϵ	Energy	Orbit
$\epsilon = 1$ $0 < \epsilon < 1$	E > 0 $E = 0$ $E < 0$ $E < 0$	Hyperbola Parabola Ellipse Circle

The major semi-axis a and minor semi-axis b are given by

$$a = \frac{r_0}{1 - \epsilon^2} = -\frac{k}{2E}, \ b = a\sqrt{1 - \epsilon^2} = \frac{k}{\sqrt{-2mE}}$$
 (39)

Since $mr^2\dot{\theta} = l$, then

$$\int_{0}^{T} dA = \frac{1}{2} \int_{0}^{T} r^{2} \dot{\theta} dt = \frac{1}{2} \int_{0}^{T} \frac{l}{m} \theta dt = \frac{l}{2m} T = \pi ab \Rightarrow T = 2\pi a^{3/2} \sqrt{\frac{m}{k}}$$
(40)

Alternatively

$$\int dt = \int \frac{dr}{\sqrt{\frac{2}{m} \left(E - V - \frac{l^2}{2mr^2} \right)}} = \sqrt{\frac{ma}{k}} \int_{r_0}^{r_1} \frac{r \, dr}{\sqrt{-r^2 + 2ar - b^2}} = \sqrt{\frac{ma}{k}} \int_{r_0}^{r_1} \frac{r \, dr}{\sqrt{-(r-a)^2 + a^2 \epsilon^2}}$$
(41)

Let $r - a = -a\epsilon \cos \zeta$, hence

$$t = \sqrt{\frac{ma}{k}} \int \frac{(a - a\epsilon \cos \zeta)a\epsilon \sin \zeta \, d\zeta}{\sqrt{a\epsilon^2 (1 - \cos^2 \zeta)}} = \sqrt{\frac{ma}{k}} \int (a - a\epsilon \cos \zeta) \, d\zeta = \sqrt{\frac{ma^3}{k}} (\zeta - \epsilon \sin \zeta) + C$$
 (42)

3.4 Scattering

Question: how many particles will be scattered in the given solid angle region (scattering cross section). Let $V \sim 1/r$, $f \sim 1/r^2$. Define the intensity of incident beam I

I = # of particles crossing a unit area perpendicular to the beam in unit time

The the number of particles scattered into $d\Omega$ could be expressed as

$$dN = \sigma I \, d\Omega, \ \sigma = \frac{dN}{I \, d\Omega} \tag{43}$$

where σ is called differential cross section, which has the unit of area.

Particles in [S, S + dS] would be scattered into $[\Omega, \Omega + d\Omega]$, since $d\Omega = 2\pi \sin \theta d\theta$

$$2\pi IS|\,dS| = \sigma I\,d\Omega = 2\pi\sigma I\sin\theta|\,d\theta| \Rightarrow \sigma = \frac{S|\,dS|}{\sin\theta|\,d\theta|} \tag{44}$$

The angular momentum of the incoming particles (wrt. to force center) is

$$l = mv_0 S = S\sqrt{2mE} \tag{45}$$

From the equation derived from central force problem

$$\alpha = \int \frac{dr}{r^2 \sqrt{\frac{2mE}{l^2} - \frac{rmV}{l^2} - \frac{1}{r^2}}}$$
 (46)

$$= \pi + \int_{-\infty}^{r_m} \frac{\mathrm{d}r}{r^2 \sqrt{\frac{2mE}{l^2} - \frac{rmV}{l^2} - \frac{1}{r^2}}}$$
 (47)

Let $r_m \equiv r_{\min}$ is the closest distance. Define ψ where

$$\alpha = \pi + \int_{-\infty}^{r_m} \frac{\mathrm{d}r}{r^2 \sqrt{\frac{2mE}{l^2} - \frac{rmV}{l^2} - \frac{1}{r^2}}} = \pi - \psi \tag{48}$$

Hence $\theta = \pi - 2\psi$. Change the variable u = 1/r, then

$$\psi = \int_0^{u_m = 1/r_m} \frac{S \, \mathrm{d}u}{\sqrt{1 - \frac{V}{E} - S^2 u^2}} \tag{49}$$

Also note that

$$\sin\frac{\theta}{2} = \sin\frac{\pi - 2\psi}{2} = \cos\psi = \frac{1}{\epsilon} \tag{50}$$

Example 3.5 (Coulomb interaction). Let

$$f = \frac{ZZ'e^2}{r^2}, \ V = \frac{ZZ'e^2}{r}, \ r = \frac{r_0}{1 + \epsilon \cos(\alpha - \alpha')}$$
 (51)

choose $\alpha' = \pi$. One can derive that

$$\epsilon = \sqrt{1 + \frac{2El^2}{m(ZZ'e^2)^2}} = \sqrt{1 + \left(\frac{2ES}{ZZ'e^2}\right)^2}$$
 (52)

Using the trigonometric relationship between θ and ϵ , we have

$$S = \frac{ZZ'e^2}{2E}\cot\frac{\theta}{2}, \ \left|\frac{\mathrm{d}S}{\mathrm{d}\theta}\right| = \frac{ZZ'e^2}{4E}\frac{1}{\sin^2\frac{\theta}{2}}$$
 (53)

$$\Rightarrow \epsilon(\theta) = \left(\frac{ZZ'e^2}{4E}\right)^2 \frac{1}{\sin^4 \frac{\theta}{2}} \tag{54}$$

check if $\alpha' = \pi$ or $\alpha' = \alpha_m$

4 Rigid Body

4.1 Coordinates of rigid body

A rigid body is a system of point masses satisfying the constraint that distance between any two points is a constant (r_{ij} = const for all i, j). Let \mathbf{r}_i , \mathbf{r}_j , and \mathbf{r}_k be three points in the rigid body. Let \mathbf{r}_i has 3 DOFs, since $r_i j$ is a constant, \mathbf{r}_j has two DOFs. Hence, \mathbf{r}_k only have 1 DOFs. The system has 3 + 2 + 1 = 6 DOFs.

Or, alternatively, a rigid body has 3 coordinates for the origin of the coordinate system fixed on the rigid body, and 3 angular variables to specify the orientation of the rotated coordinate system.

4.2 Orthogonal transformations

Consider an orthogonal transformation $\mathbf{x} \mapsto \mathbf{x}'$

$$x_1' = a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \tag{1}$$

$$x_2' = a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \tag{2}$$

$$x_3' = a_{31}x_1 + a_{32}x_2 + a_{33}x_3 \tag{3}$$

Let $\mathbf{x}^2 = \mathbf{x'}^2$, we have

$$\mathbf{x}^2 = x_i x_i = x_i' x_i' = a_{ij} x_j a_{ik} x_k = \delta_{jk} x_j x_k = x_j x_j \Rightarrow a_{ij} a_{ik} = \delta_{jk}$$

$$\tag{4}$$

This equation implies the orthogonal transformations have three DOFs.

Different views on rotational transformation

- 1. Passive view the coordinate system is transformed
- 2. Active view: the vector is transformed

Consider two rotational matrix A and B, let C = AB, then

$$C_{ij}C_{ik} = A_{im}B_{mj}A_{in}B_{nk} = A_{im}A_{in}B_{mk}B_{nk} = \delta_{nm}B_{mj}B_{nk} = B_{nj}B_{nk} = \delta_{jk}$$
(5)

Non-commutative $AB \neq BA$.

Define the inverse transformation

$$x_i = a'_{ij}x'_j = a'_{ij}a_{jk}x_k \Rightarrow a'_{ij}a_{jk} = \delta_{ik}$$

$$\tag{6}$$

Note that

$$\underbrace{a_{im}a_{ij}}_{i} a'_{jk} = \delta_{mk}a'_{jk} = a'_{mk}
a_{im}\underbrace{a_{ij}a'_{jk}}_{j} = a_{im}\delta_{ik} = a_{km}$$

$$\Rightarrow a_{km} = a'_{mk}$$
(7)

4.3 Euler angles

A convenient choice of angle variables: Euler angles. Steps:

- 1. Rotate around z axis by an angle ϕ , rotational matrix D
- 2. Rotate around ξ axis by an angle θ , rotational matrix C
- 3. Rotate around ξ' axis by an angle ψ , rotational matrix B

We can always write any rotational matrix A as A = BCD Note that all rotations are rotations of **coordinate system**, which means, A is a change-of-basis matrix.

$$A = \begin{bmatrix} \cos\psi & \sin\psi & 0 \\ -\sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\phi & \sin\phi & 0 \\ -\sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(8)

Theorem 4.1 (Euler's theorem). The general displacement of a rigid body with one point fixed is a rotation around some axis \mathbf{R} . Then

$$\mathbf{R'} = A\mathbf{R} = \mathbf{R} \Rightarrow (A - I)\mathbf{R} = 0, \ \det(A - I) = 0$$
(9)

Infinitesimal rotation transformation

$$\mathbf{x'} = A\mathbf{x} = (1 + \epsilon)\mathbf{x} \Rightarrow x_i' = x_i + \epsilon_{ij}x_j = (\delta_{ij} + \epsilon_{ij})x_j \tag{10}$$

Hence

$$(\delta_{ki} + \epsilon'_{ki})x'_i = (\delta_{ki} + \epsilon'_{ki})(\delta_{ij} + \epsilon_{ij})x_j = (\delta_{kj} + \epsilon'_{kj} + \epsilon_{kj} + \epsilon'_{ki}\epsilon_{ij})x_j = x_k$$

$$(11)$$

Ignoring $\epsilon'_{ki}\epsilon_{ij}$ term, we have $\epsilon'_{kj}=\epsilon^T_{jk}=-\epsilon_{kj}$, given that ϵ is an antisymmetric matrix. Let

$$\epsilon = \begin{bmatrix} 0 & -d\Omega_3 & d\Omega_2 \\ d\Omega_3 & 0 & -d\Omega_1 \\ -d\Omega_2 & d\Omega_1 & 0 \end{bmatrix}, \ \mathbf{\Omega} = \begin{bmatrix} \Omega_1 \\ \Omega_2 \\ \Omega_3 \end{bmatrix}$$
 (12)

Then

$$d\mathbf{x} = \epsilon \mathbf{x} = d\mathbf{\Omega} \times \mathbf{x} \tag{13}$$

4.4 Rate of change of a vector

Let R be one point inside the rigid body, then the motion can be decomposed into rotational motion of the body coordinate and the translational motion of the body

$$\left(\frac{\mathrm{d}\mathbf{R}}{\mathrm{d}t}\right)_{\mathrm{space}} = \left(\frac{\mathrm{d}\mathbf{R}}{\mathrm{d}t}\right)_{\mathrm{body}} + \frac{\mathrm{d}\mathbf{\Omega}}{\mathrm{d}t} \times \mathbf{R} \tag{14}$$

$$\Rightarrow \mathbf{V}_{\text{space}} = \mathbf{V}_{\text{body}} + \boldsymbol{\omega} \times \mathbf{R} \tag{15}$$

Decompose ω into unit vectors corresponds to Euler angles and the body coordinate

$$\boldsymbol{\omega} = \dot{\phi} \boldsymbol{e}_{\theta} + \dot{\theta} \boldsymbol{e}_{\theta} + \dot{\psi} \boldsymbol{e}_{\psi} = \omega_{x'} \mathbf{i}' + \omega_{y'} \mathbf{j}' + \omega_{z'} \mathbf{k}'$$
(16)

From the figure we can find that

$$e_{\phi} = \mathbf{k} = \sin \theta \sin \psi \mathbf{i'} + \sin \theta \cos \psi \mathbf{j'} + \cos \theta \mathbf{k'}$$
(17)

$$e_{\theta} = \cos \psi \mathbf{i'} - \sin \psi \mathbf{j'} \tag{18}$$

$$e_{\psi} = \mathbf{k'} \tag{19}$$

Hence

$$\omega_{\mathbf{r}'} = \dot{\phi} \sin \theta \sin \psi + \dot{\theta} \cos \psi \tag{20}$$

$$\omega_{\gamma'} = \dot{\phi} \sin \theta \cos \psi - \dot{\theta} \sin \psi \tag{21}$$

$$\omega_{z'} = \dot{\psi} + \dot{\phi}\cos\theta \tag{22}$$

4.5 The Coriolis effect

From equation 15 we have

$$\mathbf{a}_{\text{space}} = \mathbf{a}_{\text{body}} + \boldsymbol{\omega} \times \mathbf{V} \tag{23}$$

$$\Rightarrow m\mathbf{a}_{\text{body}} = \mathbf{F} - 2m\boldsymbol{\omega} \times \mathbf{V}_{\text{body}} - m\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{R})$$
 (24)

The term $-2m\omega \times \mathbf{V}_{\mathrm{body}}$ is the Coriolis force.