Приближенное построение наименьшей общей надстроки с помощью графа де Брёй-ля

Общая послановка задачи SCS: дан набор строк S и требуется найти самую короткую строку, которая содержит каждую строку из S. Сама задача NP-полна, но известны прибиженные алгоритмы, такие как $2, \frac{2}{3}$ приближение, которое строится следующим образом: Строим префиксграф (вершины - S, ребро из s_1 в s_2 имеет вес $prefix(s_1, s_2)$), на нем оптимальное покрытие циклами. Затем в оверлэп-графе (вершины - эти циклы, ребра весом в $overlap(C_1, C_2)$) находим $\frac{2}{3}$ приближение задачи о максимальном коммивояжере.

overlap(ABACBA, BABCA) = BA, prefix(ABACBA, BABCA) = ABAC.

Задача r-SCS — любая строка из $\mathcal S$ имеет длину r.

Граф де Брёйля для $\mathcal S$ определяется следующим образом: каждая строка s из $\mathcal S$ представляется как ребро $prefix(s) \to suffix(s)$, где prefix(s)-s без последней буквы, а суффикс — без первой.

2-SCS решается в графе де Брёйля за полиномиальное время.

Рис. (a)— Γ paф Брёйля \mathcal{S} 1: де для $\{BCDB,CDBC,DBCD,BCDE,CDEB\}.$ (b) — эйлеров путь в сильносвязном графе де Брёйля дает наименьшую надстроку для \mathcal{S} — BCDBCDEB

Рис. 2: (a) — граф де Брёйля для $S = \{CK, KL, DA, DB, DE, BD\}$. (b)— добавление ребер, чтобы каждая компонента имела эйлеров путь. (с) — путь по всем компонентам в любом порядке дает наименьшую надстроку для S-DBDEDACKL

Algorithm 1 $(r^2 + r - 4)/(4r - 6)$ -приближенный алгоритм для r-SCS

Вход: $\mathcal{S}=\{s_1,\ldots,s_n\}\subseteq \Sigma^r$ 1: $\pi-\frac{2}{3}$ -приближение максимального коммивояжера в overlap-графе

 $2: \mathcal{S}' = \{s_1', \dots, s_n'\} \subseteq \Sigma_1^r$ — множество 2-строк над алфавитом $\Sigma_1 = \{s_1', \dots, s_n'\}$ Σ^{r-1} . Где $s_i' = prefix(s_i)suffix(s_i)$

 $3:\pi_1-2 ext{-SCS}$ для \mathcal{S}'

return $min(\pi, \pi_1)$