S
1916 - Analyse et Compression du Signal Audionumérique - Examen

Sébastien Boisgérault, Mines ParisTech, CC BY-NC-SA 4.0

14 mars 2019

Contents

dalités	1
estions	2
Compression sans perte	2
Quantification	2
Banc de filtres	3
oonses	4
Compression sans perte	4
Quantification	5
Banc de filtres	7

Modalités

- Durée: 1h30.
- Autorisés:
 - tous documents (sous forme papier ou électronique),
 - calculette, tablette, ordinateur portable, etc.
- Interdit:
 - toute forme de communication: échanges avec le voisin, utilisation d'Internet, du téléphone, etc.

Questions

Compression sans perte

Une source X produit un flux de caractères ASCII, appartenant à l'ensemble

$$\mathcal{A} = \{\mathtt{A},\mathtt{E},\mathtt{U},\mathtt{C},\mathtt{H},\mathtt{N},\mathtt{-}\}$$

Vous souhaitez concevoir un code binaire – de longueur fixe ou variable – pour enregistrer ce flux d'information sous la forme la plus compacte possible.

- Pourquoi est-il important de se restreindre à la recherche des codes autodélimitants?
- 2. Si l'on se limite à des codes de longueur fixe, combien de bits au minimum doit-on utiliser par symbole ?
- 3. Les symboles produits par le flux semblent apparaître de façon aléatoire et indépendamment les uns des autres. À ce stade, la probabilité p(a) = P(X = a), où $a \in \mathcal{A}$ est toutefois inconnue. Montrer néanmoins qu'il est possible de prouver que le code de la question précédente ne sera pas de longueur moyenne optimale (indice: montrer qu'il vérifie l'inégalité de Kraft strictement et exploiter cette marge de manoeuvre pour montrer l'existence d'un code dont la longueur moyenne sera assurément plus faible).
- 4. Les probabilités des symboles sont désormais connues; on a

$$p(\mathbf{C}) = 3/13$$

$$p(\mathbf{A}) = p(\mathbf{E}) = p(\mathbf{U}) = p(\mathbf{N}) = 2/13.$$

$$p(\mathbf{H}) = p(\mathbf{-}) = 1/13$$

Peut-on espérer trouver un code de longueur moyenne inférieure ou égale à 2.5 bits ?

5. Construire un code sans préfixe de longueur moyenne minimale, puis l'utiliser pour encoder le message: AUCUNE-CHANCE et mesurer la longueur moyenne du code par symbole sur ce message.

Quantification

On envisage de représenter les données numériques d'un CD audio en utilisant des nombres flottants à demi-précision, supportés par de nombreux processeurs graphiques et popularisés par les applications de machine learning.

Le flottant à demi-précision – noté $[x]_{1/2}$ – associé à un nombre réel x est défini comme le réel de la forme

$$s \times (1 + b_0 \times 2^{-1} + b_1 \times 2^{-2} + \dots + b_9 \times 2^{-10}) \times 2^e$$

le plus proche possible a, lorsque les paramètres vérifient $s \in \{-1, +1\}$, $b_i \in \{0, 1\}$ et $e \in \{-15, -14, \dots, 16\}$.

- 1. Les données audio sont représentées par des entiers signés sur 16 bits. Rappeler quelles sont les valeurs minimales et maximales des entiers associées à ce type standard.
- 2. Combien de bits sont nécessaires pour représenter des flottants à demiprécision ?
- 3. Donner une approximation linéaire en |x| du pas $\Delta(x)$ associé au quantificateur $[\cdot]_{1/2}$ (Indication: il y a plusieurs réponses raisonnables; on pourra par exemple s'intéresser aux nombres flottants à demi-précision de la forme 2^e et à leur successeur immédiat).
- 4. On décide d'associer à un entier signé sur 16 bits n le réel $x=n/2^{15}$, puis le flottant à demi-précision $y=[x]_{1/2}$, puis finalement l'entier sur 16 bits $[y]_*=2^{15}y$. On applique ce traitement à l'entier signé sur 16 bits dont la représentation binaire est 010101010101010 (en "big-endian"); quelle est la représentation binaire du résultat (en tant qu'entier signé sur 16 bits big-endian)?
- 5. On fait l'hypothèse que la valeur n est "totalement aléatoire". Produire une estimation du rapport signal sur bruit (en décibels) associé à la quantification $[\cdot]_*$ de n. Est-ce suffisant pour des applications audio ?

Banc de filtres

Considérons le filtre digital A_1 de fonction de transfert

$$A_1(z) = \frac{1 + z^{-1}}{2}$$

- 1. Quelle relation fonctionnelle existe entre le signal d'entrée $u(n\Delta t)$ et le signal de sortie $y(n\Delta t)$ de ce filtre ? Quelle est la réponse impulsionnelle de ce filtre ? A quelle catégorie (FIR, AR, etc.) appartient-t'il ?
- 2. Calculer la fonction de transfert $A_1(f)$ de ce filtre. Se comporte-t'il plutôt comme un filtre passe-haut ou passe-bas?
- 3. Si un signal $u(n\Delta t)$ subit successivement une opération de décimation d'un facteur 2, une expansion d'un facteur 2 et une amplification d'un facteur 2 pour donner le signal $y(n\Delta t)$, quelle relation existe-t'il entre y(f) et u(f)?
- 4. On note A_2 le filtre de fonction de transfert $1 A_1(z)$. On soumet un signal à deux opérations parallèles avant d'additionner les résultats:

 $^{^1}$ il peut y avoir deux valeurs admissibles aussi proches de x, mais le choix de l'une ou de l'autre – par exemple la plus petite en valeur absolue – n'a pas d'impact sur la suite de l'analyse.

- filtrage par A_1 , l'opération décrite en 3., puis filtrage par un filtre S_1 .
- filtrage par A_2 , l'opération décrite en 3., puis filtrage par un filtre S_2 .

Déterminer des filtres S_1 et S_2 tels que le signal en sortie des ces opérations soit identique au signal d'entrée (reconstruction parfaite). Indication: si les filtres A et B vérifient $B(z) = A(z^{-1})$, alors $B(f) = A(f + \Delta f/2)$.

Réponses

Compression sans perte

- 1. 1 pt. Un code qui n'est pas auto-délimitant est ambigu, à moins qu'il soit utilisé pour coder un unique symbole. Avec un code ambigu, il est impossible de garantir que l'on saura reconstruire le message original à partir du message encodé.
- 2. 1 pt. Il y a 7 symboles différents, donc en utilisant un code de longueur fixe égale à 3 bits, puisqu'il permet d'encoder jusqu'à 2³ = 8 symboles différents si nécessaire. C'est bien le minimum: 2 bits ne permettent d'encoder que 2² = 4 symboles différents.
- 3. 3 pts. La longueur moyenne associée à un code c est donnée par

$$\mathbb{E}|c(X)| = \sum_{a \in \mathcal{A}} p(a)|c(a)|.$$

Dans le code précédent, les symboles ont tous été encodés avec une longueur $l_a=|c(a)|=3$; le membre de gauche de l'inégalité de Kraft associée vaut donc

$$\sum_{a \in \mathcal{A}} 2^{-l_a} = 7 \times 2^{-3} = 7/8.$$

Si l'on prend un symbole a dont la probabilité p(a) est non nulle, et qu'au lieu de la coder sur 3 bits on lui donnait un budget de 2 bits, on respecterait toujours l'inégalité de Kraft puisque

$$6 \times 2^{-3} + 2^{-2} = 6/8 + 1/4 = 1.$$

Et par conséquent on pourrait toujours trouver un code sans préfixe respectant cette famille de longueur. En revenant à la formule donnant la longueur moyenne du code, on voit qu'elle a diminué de p(a)(3-2)=p(a) avec le changement de code. Le code initial – de longeur fixe – n'était donc pas optimal.

4. 2 pts. L'entropie associé à la source vaut

$$H(C) = -2 \times (1/13) \times \log_2(1/13)$$
$$-4 \times (2/13) \times \log_2(2/13)$$
$$-(3/13) \times \log_2(3/13)$$
$$\approx 2.719$$

La longueur moyenne du code optimal étant nécessairement supérieur à cette valeur, un code de longueur moyenne de 2.5 bits ou moins n'est pas possible.

5. 4 pts. L'algorithme de Huffman peut fournir un code optimal. Compte tenu de la distribution des probabilités, la 1ere étape est imposée: "fusionner" H et – pour une probabilité totale de 2/13. Il faut ensuite fusionner n'importe quelle paire de probabilité 2/13, par exemple N et H-, puis à nouveau une paire de ce type, par exemple U et E. Les probabilités de ces nouveaux noeuds sont de 4/13. Il faut alors fusionner C et A, puis UE et NH-, ce qui termine l'algorithme. Un code conforme à l'arbe qui en résulte est:

Symbole	Code
С	00
A	01
U	100
E	101
N	110
H	1110
-	1111

Le message AUCUNE-CHANCE est alors encodé sous la forme:

0110000100110101111110011100111000101

La longueur moyenne par symbole est de $36/13 \approx 2.769$.

Quantification

- 1. 1 pt. Les entiers sur 16 bits signés permettent de représenter des valeurs comprises entre -2^{15} et $2^{15}-1$.
- 2. **1 pt.** Le facteur de signe s nécessite 1 bit. L'exposant e peut prendre 32 valeurs différentes et donc nécessite 5 bits. Finalement chaque coefficient b_0, \ldots, b_9 demande 1 bits, c'est donc au total 1+5+10=16 bits qui sont nécessaires pour décrire un flottant à demi-précision.

- 3. **2 pts.** Quand e est compris entre -15 et 16, $x=2^e$ est une valeur qui peut être représentée exactement comme un flottant à demi-précision. La valeur qui suit immédiatemment s'obtient en conservant e et en choisissant $b_0 = \cdots = b_8 = 0$ et $b_9 = 1$, ce qui donne au final $2^e(1 + 2^{-10})$. La différence entre ces deux valeurs successives est donc $2^{-10} \times 2^e = 2^{-10}x$. La situation est similaire pour les nombres négatifs. Au final, cette analyse suggère l'approximation $\Delta(x) \approx 2^{-10}|x|$.
- 4. **3 pts.** La séquence binaire 0101010101010101 correspond à l'entier signé big-end sur 16 bits $n=2^{14}+2^{12}+2^{10}+2^8+2^6+2^4+2^2+2^0$ donc $n/2^{15}$ vaut

$$\frac{n}{2^{15}} = (1 + 2^{-2} + 2^{-4} + 2^{-6} + 2^{-8} + 2^{-10} + 2^{-12} + 2^{-14})2^{-1}.$$

Le nombre flottant à demi-précision le plus proche est donc

$$(1+2^{-2}+2^{-4}+2^{-6}+2^{-8}+2^{-10})2^{-1}$$
.

Une fois multiplié par 2^{15} , sa représentation binaire comme entier signé sur 16 bits (big-endian) est donnée par 01010101010000.

5. **4 pts.** Si n est "totalement aléatoire" (toutes les valeurs admissibles de l'entier n sont équiprobables), alors en première approximation, la densité de probabilité p(x) associée à $x=n/2^{15}$ est uniforme sur [-1,+1] (donc égale à 1/2) et l'on peut faire le calcul de rapport signal sur bruit associé à la variable x. Comme le pas $\Delta(x)$ associé à $[\cdot]_{1/2}$ est approximativement $2^{-10}|x|$, la puissance du bruit de quantification $b=[x]_{1/2}-x$ vérifie

$$\mathbb{E} B^2 \approx \frac{1}{12} \mathbb{E} \Delta(X)^2$$

$$\approx \frac{1}{12} \int_{-1}^1 2^{-20} x^2 \frac{dx}{2}$$

$$= \frac{1}{12} 2^{-21} \left[\frac{x^3}{3} \right]_{-1}^{+1}$$

$$= \frac{2^{-22}}{3^2}$$

Par ailleurs,

$$\mathbb{E} X^2 = \int_{-1}^1 x^2 \frac{dx}{2} = \frac{1}{3},$$

donc

$$10 \log_{10} \frac{\mathbb{E} X^2}{\mathbb{E} B^2} = 10 \log_{10} 3 \times 10^{22} \approx 71 \,\mathrm{dB}.$$

C'est a priori faible pour des applications audio, où la transparence nécessite des rapports signaux sur bruit autour de $100\,\mathrm{dB}$.

Banc de filtres

1. 3 pts. La fonction de transfert

$$A_1(z) = \frac{1+z^{-1}}{2}$$

correspond au filtre tel que

$$y(n\Delta t) = \frac{1}{2}u(n\Delta t) + \frac{1}{2}u((n-1)\Delta t).$$

Il s'agit d'un filtre de réponse impulsionnelle finie (FIR). En effet, si l'on sélectionne un signal d'entrée $u(n\Delta t)$ égal à $1/\Delta t$ si n=0 et 0 sinon, on a

$$y(n\Delta t) = 0 \text{ si } n < 0, \ y(0) = \frac{1}{2\Delta t}, \ \ y(\Delta t) = \frac{1}{2\Delta t}, \ \ y(n\Delta t) = 0 \text{ si } n > 1.$$

2. **2 pts.** La réponse fréquentielle du filtre A_1 est déterminée par

$$A_1(f) = A_1(z = e^{i2\pi f\Delta t}) = \frac{1 + e^{-i2\pi f\Delta t}}{2}.$$

Comme $A_1(f) = e^{-i\pi f\Delta t}\cos(\pi f\Delta t)$, on a

$$|A_1(f)| = |\cos(\pi f \Delta t)|.$$

La bande de fréquence utile associée aux signaux de fréquence d'échantillonnage $\Delta f=1/\Delta t$ est $[0,\Delta f/2].$ A la fréquence minimale f=0, on a $|A_1(f=0)|=1$ et à fréquence maximale, on a $|A_1(f=\Delta f/2)|=0.$ Ces caractéristiques sont plutôt propres à un filtre passe-bas qu'à un filtre passe-haut.

3. **2 pts.** Après de décimation d'un facteur 2, la représentation de Fourier d'un signal u(f) est $u(f) + u(f + \Delta f/2)$. Après expansion d'un facteur 2, ce signal devient $1/2(u(f) + u(f + \Delta f/2))$, et donc $u(f) + u(f + \Delta f/2)$ après amplification d'un facteur 2. Au final,

$$y(f) = u(f) + u(f + \Delta f/2).$$

4. 5 pts. Le signal de sortie y(f) est relié au signal d'entrée par

$$y(f) = S_1(f)(A_1(f)u(f) + A_1(f + \Delta f/2)u(f + \Delta f/2)) + S_2(f)(A_2(f)u(f) + A_2(f + \Delta f/2)u(f + \Delta f/2)).$$

Pour garantir y(f) = u(f), il nous faut donc assurer

$$S_1(f)A_1(f) + S_2(f)A_2(f) = 1$$

 $S_1(f)A_1(f + \Delta f/2) + S_2(f)A_2(f + \Delta f/2) = 0$

En utilisant l'indication fournie dans l'énoncé, on voit qu'il suffit de chercher des solutions $S_1(z)$ et $S_2(z)$ à l'équation matricielle

$$\left[\begin{array}{cc} (1+z^{-1})/2 & (1-z^{-1})/2 \\ (1+z)/2 & (1-z)/2 \end{array}\right] \left[\begin{array}{c} S_1(z) \\ S_2(z) \end{array}\right] = \left[\begin{array}{c} 1 \\ 0 \end{array}\right],$$

système qui a pour solution

$$\left[\begin{array}{c} S_1(z) \\ S_2(z) \end{array}\right] = \left[\begin{array}{c} z/(z+1) \\ z/(z-1) \end{array}\right] = \left[\begin{array}{c} 1/(1+z^{-1}) \\ 1/(1-z^{-1}) \end{array}\right].$$

Les filtres S_1 et S_2 sont auto-régressifs et associent respectivement au signal d'entrée $u(n\Delta t)$ le signal de sortie $y(n\Delta t)$ déterminé par

$$y(n\Delta t) = -y((n-1)\Delta t) + u(n\Delta t)$$

et

$$y(n\Delta t) = y((n-1)\Delta t) + u(n\Delta t).$$