Organization	Team	Team ID#
1. [5] Compute the sum of a	all integers n such that $n^2 - 3000$ is	a perfect square.
	the die repeatedly until his number	1, 2, and 3, each with probability $\frac{1}{3}$. Jerry is at least as large as Jerry's. Compute the
5. [5] Compute the number of even positive integers $n \leq 2024$ such that $1, 2, \ldots, n$ can be split into $\frac{n}{2}$ pairs and the sum of the numbers in each pair is a multiple of 3.		
4. [5] Equilateral triangles $\angle FEG$.	ABF and BCG are constructed out	side regular pentagon $ABCDE$. Compute
HMM ⁻	Γ February 2024, February 17, 202	4 — GUTS ROUND
Organization	Team	Team ID#
5. $[6]$ Let $a, b,$ and c be real	l numbers such that	
	a+b+c=100,	
	ab + bc + ca = 20, a	nd
	(a+b)(a+c) = 24.	

Compute all possible values of bc.

- 6. [6] In triangle ABC, points M and N are the midpoints of AB and AC, respectively, and points P and Q trisect BC. Given that A, M, N, P, and Q lie on a circle and BC = 1, compute the area of triangle ABC.
- 7. [6] Positive integers a, b, and c have the property that a^b , b^c , and c^a end in 4, 2, and 9, respectively. Compute the minimum possible value of a + b + c.
- 8. [6] Three points, A, B, and C, are selected independently and uniformly at random from the interior of a unit square. Compute the expected value of $\angle ABC$.

	HMMT I	February 2024, February 17, 202	4 — GUTS ROUND
Ο	rganization	Team	Team ID#
9.	[7] Compute the sum of all	positive integers n such that n^2 –	3000 is a perfect square.
10.	2 cards uniformly at rando the person who plays the n	m. On each player's turn, they redian of the three cards played. other, trying to prevent him from	numbered 1 through 6. Each player is dealt play one of their cards, and the winner is Charlie goes last, so Alice and Bob decide winning whenever possible. Compute the
l1.		-	= 24. Point P lies inside $ABCD$ such that Compute all possible areas of triangle PAB .
12.	[7] Compute the number of	quadruples (a, b, c, d) of positive i	integers satisfying
		12a + 21b + 28c + 84d =	2024.
•		 ebruary 2024, February 17, 202	4 — GUTS ROUND
О	rganization	Team	Team ID#
l3.	L 3		umber twice in a row, and all other outcomes akes for Mark to roll every number at least

- 14. [9] Compute the smallest positive integer such that, no matter how you rearrange its digits (in base ten),
- 15. [9] Let $a \star b = ab 2$. Compute the remainder when $(((579 \star 569) \star 559) \star \cdots \star 19) \star 9$ is divided by 100.

the resulting number is a multiple of 63.

16. [9] Let ABC be an acute isosceles triangle with orthocenter H. Let M and N be the midpoints of sides \overline{AB} and \overline{AC} , respectively. The circumcircle of triangle MHN intersects line BC at two points X and Y. Given XY = AB = AC = 2, compute BC^2 .

	НММТ	February 2024, February 17, 202	24 — GUTS ROUND
O	rganization	Team	Team ID#
17.		puts them back into the hat. Then	ws two numbers from the hat uniformly at , William draws two numbers from the hat
	Let N denote the number the probability N is even		one of $a \leq n \leq b$ and $c \leq n \leq d$. Compute
18.			cy if $gcd(a + b, ab + 1) = 1$. Compute the s chosen from $\{1, 2,, 2024!\}$ uniformly at
19.	[11] Let $A_1 A_2 \dots A_{19}$ be	a regular nonadecagon. Lines A_1A_5	and A_3A_4 meet at X. Compute $\angle A_7XA_5$.
20.	[11] Compute $\sqrt[4]{5508^3 + 1}$	$\overline{5625^3 + 5742^3}$, given that it is an in	teger.
 O:		February 2024, February 17, 202	24 — GUTS ROUND Team ID#
21.	walk to any of $(x, y + 1)$,	(x+1,y), or $(x+1,y+1)$, or he d jumping from (x,y) to $(x+1,y+1)$	e plane. If Kelvin is at (x, y) , either he can can jump to any of $(x, y + 2)$, $(x + 2, y)$ or 1) are considered distinct actions. Compute
22.	[12] Let $x < y$ be positive	e real numbers such that	
		$\sqrt{x} + \sqrt{y} = 4$ and $\sqrt{x+2} +$	$\sqrt{y+2} = 5.$

23. [12] Let ℓ and m be two non-coplanar lines in space, and let P_1 be a point on ℓ . Let P_2 be the point on m closest to P_1 , P_3 be the point on ℓ closest to P_2 , P_4 be the point on m closest to P_3 , and P_5 be the point on ℓ closest to P_4 . Given that $P_1P_2=5$, $P_2P_3=3$, and $P_3P_4=2$, compute P_4P_5 .

24. [12] A circle is tangent to both branches of the hyperbola $x^2 - 20y^2 = 24$ as well as the x-axis. Compute

Compute x.

the area of this circle.

НММТ	February 2024, February 17, 20	24 — GUTS ROUND
Organization	Team	Team ID#
25. [14] Point P is inside a s area of this square.	quare $ABCD$ such that $\angle APB = 1$.35°, $PC = 12$, and $PD = 15$. Compute the
26. [14] It can be shown that integers m and n ,	•	P in two variables such that for all positive
	$P(m,n) = \sum_{i=1}^{m} \sum_{j=1}^{n} (i + 1)^{j}$	$(-j)^7$.
Compute $P(3, -3)$.		
of them is discarded at ra	andom, and the other is inserted ba	bottom. The top two cards are drawn; one ack at the bottom of the deck. This process pute the expected value of the label of the
28. [14] Given that the 32-di	git integer	
	64312311692944269609355	5 712 372 657
is the product of 6 consec	cutive primes, compute the sum of t	these 6 primes.
нммт	February 2024, February 17, 20	24 — GUTS ROUND
Organization	Team	Team ID#
exist three integers $a, b, P(b)$, and $P(c)$, when wr	and c such that $0 \le a < b < c < b$	fficients is called p -good if and only if there $\frac{p}{3}$ and p divides all the numerators of $P(a)$, ne number of ordered pairs (r,s) of rational good for infinitely many primes p .
that A, E, F are collinear Suppose that there exists	(a, B, F, D) are collinear, (a, D, E) are a unique equilateral triangle (a, E)	Points D, E, F lie inside triangle ABC such the collinear, and triangle DEF is equilateral. If with X on side \overline{BC}, Y on side \overline{AB} , and X and X lies on side \overline{XY} . Compute AZ .
Then, the first monster of	f both lineups will fight, with fire be monster is then substituted with the	ineups of 15 fire, grass, and water monsters. eating grass, grass beating water, and water he next one from their team's lineup; if there

Gary completes his lineap randomly, with each monster being equally likely to be any of the three types. Without seeing Gary's lineup, Ash chooses a lineup that maximizes the probability p that his monsters are the last ones standing. Compute p.

32. [16] Over all pairs of complex numbers (x, y) satisfying the equations

$$x + 2y^2 = x^4$$
 and $y + 2x^2 = y^4$,

compute the minimum possible real part of x.

HMMT February 2024, February 17, 2024 — GUTS ROUND	

_ Team ___

- 33. [20] Let p denote the proportion of teams, out of all participating teams, who submitted a negative response to problem 5 of the Team round (e.g. "there are no such integers"). Estimate $P = \lfloor 10000p \rfloor$. An estimate of E earns $\max(0, |20 |P E|/20|)$ points.
 - If you have forgotten, problem 5 of the Team round was the following: "Determine, with proof, whether there exist positive integers x and y such that x + y, $x^2 + y^2$, and $x^3 + y^3$ are all perfect squares."

_____ Team ID# __

- 34. [20] Estimate the number of positive integers $n \le 10^6$ such that $n^2 + 1$ has a prime factor greater than n. Submit a positive integer E. If the correct answer is A, you will receive $\max\left(0, \left|20 \cdot \min\left(\frac{E}{A}, \frac{10^6 E}{10^6 A}\right)^5 + 0.5\right|\right)$ points.
- 35. [20] Barry picks infinitely many points inside a unit circle, each independently and uniformly at random, P_1, P_2, \ldots Compute the expected value of N, where N is the smallest integer such that P_{N+1} is inside the convex hull formed by the points P_1, P_2, \ldots, P_N .
 - Submit a positive real number E. If the correct answer is A, you will receive $|100 \cdot \max(0.2099 |E A|, 0)|$ points.
- 36. [20] Let ABC be a triangle. The following diagram contains points P_1, P_2, \ldots, P_7 , which are the following triangle centers of triangle ABC in some order:
 - the incenter *I*;

Organization _

- the circumcenter O:
- the orthocenter H;
- the symmedian point L, which is the intersections of the reflections of B-median and C-median across angle bisectors of $\angle ABC$ and $\angle ACB$, respectively;
- the Gergonne point G, which is the intersection of lines from B and C to the tangency points of the incircle with \overline{AC} and \overline{AB} , respectively;
- the Nagel point N, which is the intersection of line from B to the tangency point between B-excircle and \overline{AC} , and line from C to the tangency point between C-excircle and \overline{AB} ; and
- the Kosnita point K, which is the intersection of lines from B and C to the circumcenters of triangles AOC and AOB, respectively.

 P_7

Note that the triangle ABC is not shown. Compute which triangle centers $\{I, O, H, L, G, N, K\}$ corresponds to P_k for $k \in \{1, 2, 3, 4, 5, 6, 7\}$.

Your answer should be a seven-character string containing I, O, H, L, G, N, K, or X for blank. For instance, if you think $P_2 = H$ and $P_6 = L$, you would answer XHXXXLX. If you attempt to identify n > 0 points and get them **all** correct, then you will receive $\lceil (n-1)^{5/3} \rceil$ points. Otherwise, you will receive 0 points.