

L6136 - DEEP LEARNING ON GPUS: FROM LARGE SCALE TRAINING TO EMBEDDED DEPLOYMENT

Julie Bernauer, 4/5/2016

AGENDA

- Introduction
- 1. Connecting to the Amazon cloud
- Train an image classification model using Digits
- 3. Caffe on the TX1: the fp16 whitepaper
- 4. Deploy the image classification model on TX1
- 5. Fun with the webcam

INTRODUCTION

ACCELERATING INSIGHTS

"Now You Can Build Google's \$1M Artificial Brain on the Cheap"

MODERN AI

2012: GOOGLE BRAIN 2016: AlphaGO

WHAT IS DEEP LEARNING?

Input

Result

IMAGE CLASSIFICATION

Deep Learning Framework

NVIDIA DEEP LEARNING SDK

High Performance GPU-Acceleration for Deep Learning

TODAY

DEEP LEARNING ON GPUS: AN END-TO-END SOLUTION

TODAY'S LAB

EMBEDDED DEPLOYMENT

On Jetson TX1

Inference at 258 img/s
No need to change code

Simply compile Caffe and copy a trained .caffemodel to TX1

SET UP

USING THE TERMINAL

Linux Ubuntu 14.04

0- DOWNLOADING LAB DATA

From the TX1

- Install git on the tx1: sudo apt-get install git
- Data for the TX1 is on github, in the terminal, type:
 - git clone https://github.com/juliebernauer/tx1-lab2.git
- The instructions can also be seen on the github page:
 - https://github.com/juliebernauer/tx1-lab2

1- CONNECTING TO THE AMAZON CLOUD

From the TX1

- Connect to https://nvlabs.qwiklabs.com
- Pick the Digits and Jetson TX1 lab, click the Start button.
- Wait for the lab to launch
- Click on Connection -> Start your lab
- Click on the DIGITS link

GETTING STARTED WITH DEEP LEARNING DIGITS

2- TRAIN AN IMAGE CLASSIFICATION MODEL

Using digits on Amazon EC2

In the web browser, connect to your amazon instance DIGITS web server

CREATE YOUR USERNAME

CREATE YOUR DATASET

CREATE A DATASET

EVALUATE YOUR DATASET

EXPLORE YOUR DATASET

Pick the *food_data* dataset

TRAIN A NETWORK

Select Dataset Q	animals Done 10:20:27 PM		Data Transformations	
animals	Image Size		Crop Size ②	
	28x28 Image Type		none	
. ,	COLOR		Subtract Mean ②	
	DB backend Imdb		Image	•
	Create DB (train)			
Use client side file	9830 images Create DB (val)			
Python Layer File (server side) 🥝	3276 images			
	Standard Networks	Previous Networks Cust	tom Network	
Training epochs Q		Previous Networks Cust	tom Network	
Training epochs 30			tom Network Intended image size	
Training epochs 30 Snapshot interval (in epochs)	Caffe Torch	(experimental)		
Solver Options Training epochs 30 Snapshot interval (in epochs) 1	Caffe Torch Network *LeNet	(experimental) Details Original paper [1998]	Intended image size 28x28 (gray)	
Training epochs 30 Snapshot interval (in epochs)	Caffe Torch Network	(experimental) Details Original paper [1998] Original paper [2012]	Intended image size	
Training epochs 30 Snapshot interval (in epochs) 1	Caffe Torch Network *LeNet	(experimental) Details Original paper [1998]	Intended image size 28x28 (gray)	

REVIEW RESULTS

- What is your accuracy?
- How long did it take to train?

CLASSIFY AN IMAGE

CLASSIFY AN IMAGE

Explore Network Response

DEPLOYMENT ON TX1

Follow the instructions on the Github page

3- CAFFE

TX1

4- DEPLOY THE IMAGE CLASSIFICATION MODEL

TX1

Follow the instructions on the Github page

5- FUN WITH THE WEBCAM

TX1

Follow the instructions on the Github page

THANK YOU

JOIN THE CONVERSATION

#GTC16 **У** f **□**

JOIN THE NVIDIA DEVELOPER PROGRAM AT developer.nvidia.com/join

