קורס: 20416 "הסתברות לתלמידי מדעי המחשב"

(84 / 2 מועד א 2012 - מועד א 5.7.2012 מועד א 6 אריך הבחינה:

חומר העזר המותר: מחשבון מדעי וספר הקורס בלבד.

מדריך הלמידה או כל חומר כתוב אחר – אסורים לשימוש!

עליכם לענות על ארבע מתוך חמש השאלות הבאות.

כל השאלות זהות במשקלן.

בכל תשובותיכם חשבו את התוצאה הסופית (כמובן, במידת האפשר).

לבחינה מצורפת: טבלת ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית

שאלה 1 (25 נקודות)

התפלגות הגובה (בסיימ) של צמח מזן מסוים היא נורמלית עם תוחלת 30;

וידוע, שהגובה של צמח מקרי מהזן הזה הוא בין 19.15 סיימ ל-40.85 סיימ בהסתברות 0.97.

- (ז נקי) א. מהי סטיית-התקן של ההתפלגות!
 - (6 נקי) ב. בוחרים 10 צמחים באופן מקרי.

מהי ההסתברות שהגובה הממוצע שלהם עולה על 33.89 סיימ!

(6 נקי) ג. בוחרים 101 צמחים באופן מקרי.

 X_{101} , ..., X_{2} , X_{1} -בחרו שנבחרו של הצמחים של הגבהים של

$$.\,S^2=rac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2$$
 -ו $\overline{X}=rac{1}{n}\sum_{i=1}^nX_i$ כאשר השב קירוב ל- $P\{S^2>26\,|\,\overline{X}<30.1\}$

(6 נקי) ד. כמות המים (בסמייק), שצמח כזה צורך בשבוע, היא פי3 מגובהו (בסיימ). נסמן ב-Yאת צריכת המים השבועית של צמח מקרי מהזן הזה.

Y מצא את הפונקציה יוצרת המומנטים של

שאלה 2 (25 נקודות)

בגדר בעלת 3 קטעים מותקנים 4 גלאי-פריצה בלתי-תלויים, כמתואר באיור שלהלן:

כל אחד מארבעת הגלאים תקין (ופועל) בהסתברות 0.8.

את הגדר אפשר לפרוץ רק בקטעים, הנמצאים בין שני גלאי-פריצה סמוכים ומקולקלים.

(6 נקי) א. פורץ מגיע לגדר, ומנסה לפרוץ אותה. מהי ההסתברות שיצליח?

.(ו- n-1 קטעים). כעת, נניח שנתונה גדר דומה במבנה שלה, אך בעלת n גלאים בלתי-תלויים

- (6) נקי) ב. אם ידוע שבדיוק 2 גלאים (מתוך ה-n) מקולקלים, מהי ההסתברות שאפשר לפרוץ את הגדר?
 - . יהי X המשתנה המקרי המוגדר על-ידי מספר הקטעים בגדר שאפשר לפרוץ דרכם.
 - .E[X] חשב את .1 (6 נקי)
 - . Var(X) חשב את .2 (7 נקי)

שאלה 3 (25 נקודות)

כביש מסוים נבדק ונמצא שיש בו ליקויים הדורשים תיקון.

מספר הליקויים שנמצאו בכביש הוא משתנה מקרי פואסוני עם הפרמטר 20.

בחברה, המטפלת באחזקת הכביש, החליטו לערוך תיקונים בליקויים שנמצאו בכביש.

 $\frac{2}{3}$ הוחלט שכל ליקוי (ללא תלות באחרים) יתוקו בהסתברות

- (6 נקי) א. חשב את ההסתברות שהחברה תתקן בדיוק 15 ליקויים בכביש.
 - (7 נקי) ב. אם ידוע שהחברה תיקנה בדיוק 15 ליקויים בכביש, מהי ההסתברות שנמצאו בכביש בדיוק 25 ליקויים!
 - ג. חשב את מקדם המתאם בין מספר הליקויים שנמצאו בכביש (12 נקי) ג. לבין מספר הליקויים שלא יתוקנו בו.

שאלה 4 (25 נקודות)

- (13) א. יהי X משתנה מקרי רציף, שהתפלגותו אחידה על הקטע X משתנה מקרי רציף, שהתפלגותו אחידה על הקטע X=x ויהי X בהינתן בהינתן X=x משתנה מקרי רציף, שהתפלגותו אחידה על הקטע X=x מצא את פונקציית הצפיפות השולית של
- (12) ב. הנקודה A נבחרת באקראי מתוך הקטע קוף, באופן בלתי-תלוי בבחירת הנקודה B נבחרת הנקודה B נבחרת באקראי מתוך הקטע B

$$P\left(\int_{\sqrt{B}}^{A}xdx>\frac{3}{2}\right)$$
 חשב את

שאלה 5 (25 נקודות)

. מבצעים 10 ניסויים בלתי-תלויים עם הסתברות p < 1 (0) מבצעים בלתי-תלויים בלתי-תלויים עם הסתברות

. הניסויים ב-10 המקרי המשתנה המקרי מספר הרצלחות שמתקבלות ב-10 הניסויים X

; את המאורע שהתקבלה הצלחה בניסוי הראשון A -ב כמו כן, נסמן

וב-B את המאורע שהתקבלה לפחות הצלחה אחת ב-10 הניסויים.

$$P\{X=1 \mid A\}$$
 א. חשב את א. (6 נקי)

$$P\{X=1 \mid B\}$$
 ב. חשב את ב. (6 נקי)

$$E[X|A]$$
 ג. חשב את ג. (7 נקי)

$$E[X|B]$$
 ד. חשב את ד. (6 נקי)

בהצלחה!

 $\Phi(z)$ ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית,

$$\Phi(z) = P\{Z \le z\} = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \qquad ; \qquad \Phi(-z) = 1 - \Phi(z) \qquad ; \qquad Z \sim N(0,1)$$

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

$\Phi(z)$	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
Z	0.0	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282
$\Phi(z)$	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
Z	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326