

Introduction to Machine Learning

Knowing is not enough; we must apply. Willing is not enough; we must do.

Johann Wolfgang von Goethe

Acknowledgement: Eric Eaton, www.seas.upenn.edu/~cis519

What is Machine Learning?

"Learning is any process by which a system improves performance from experience."

- Herbert Simon

Definition by Tom Mitchell (1998):

Machine Learning is the study of algorithms that

- improve their performance P
- at some task T
- with experience E.

A well-defined learning task is given by $\langle P, T, E \rangle$.

Traditional Programming

Machine Learning

Slide credit: Pedro Domingos

When Do We Use Machine Learning?

ML is used when:

- Human expertise does not exist (navigating on Mars)
- Humans can't explain their expertise (speech recognition)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)

Learning isn't always useful:

There is no need to "learn" to calculate payroll

A classic example of a task that requires machine learning: It is very hard to say what makes a 2

Slide credit: Geoffrey Hinton

Another Example: Activity Recognition

Some more examples of tasks that are best solved by using a learning algorithm

- Recognizing patterns:
 - Facial identities or facial expressions
 - Handwritten or spoken words
 - Medical images
- Generating patterns:
 - Generating images or motion sequences
- Recognizing anomalies:
 - Unusual credit card transactions
 - Unusual patterns of sensor readings in a nuclear power plant
- Prediction:
 - Future stock prices or currency exchange rates

Slide credit: Geoffrey Hinton

Sample Applications

- Web search
- Computational biology
- Finance
- E-commerce
- Space exploration
- Robotics
- Information extraction
- Social networks
- Debugging software
- Many real-world problems that you are working on

Slide credit: Pedro Domingos

Samuel's Checkers-Player

"Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed." -Arthur Samuel (1959)

Autonomous Cars

- Nevada made it legal for autonomous cars to drive on roads in June 2011
- As of 2013, four states (Nevada, Florida, California, and Michigan) have legalized autonomous cars

Penn's Autonomous Car → (Ben Franklin Racing Team)

Speech Technology

Slide credit: Li Deng, MS Research

Defining the Learning Task

Improve on task T, with respect to performance metric P, based on experience E

- T: Playing checkers
- P: Percentage of games won against an arbitrary opponent
- E: Playing practice games against itself
- T: Recognizing hand-written words
- P: Percentage of words correctly classified
- E: Database of human-labeled images of handwritten words
- T: Driving on four-lane highways using vision sensors
- P: Average distance traveled before a human-judged error
- E: A sequence of images and steering commands recorded while observing a human driver.
- T: Categorize email messages as spam or legitimate.
- P: Percentage of email messages correctly classified.
- E: Database of emails, some with human-given labels

Slide credit: Ray Mooney

A Specific Example: Activity Recognition

Example: Mobile Activity Tracker

- Everyday exercise progress monitor and motivator
- Provide reliable feedback about how much they move. (People often overestimate!)
- Provide instant and constant feedback about activity levels.
- Gamify to encourage individuals to compete in getting fit and losing weight.

Inertial Sensors: Accelerometer

- All commodity smartphones have accelerometers.
- Measure linear acceleration (m/s²) in three different directions.

Signal Patterns

Solution 1: Heuristic

• If STDEV(y-axis samples) < C_{Threshold1}

• Else

Are We Good?

- How do we determine good features and good thresholds?
 - ✓ How do we know STDEV is better than MAX?
 - ✓ How do we know AVG is better than Median?
 - \checkmark How do we know the right values for $C_{threshold}$?
- What if a user puts her phone in her bag, not in her front pocket?
 - ✓ The Y-axis of the phone is not anymore the major axis of movement.
- How do we solve these problems? A better heuristic?

Solution 2: Decision Tree

- A simple but effective ML classifier.
- This tree can be built by the C4.5 algorithm.
- Given sufficient training data, the algorithm can automatically determine the important features and their thresholds.

≤stdV < 0.95

meanV < 58,465

Sitting

△stdV < 11.36

stdV < 22.395

How to Build a Decision Tree?

Pseudocode

- 1. For each feature *f*, find the normalized information gain (a metric to effectively split data into classes) from splitting on *f*
- 2. Let *f_best* be the attribute with the highest normalized information gain
- 3. Create a decision node that splits on *f_best*
- 4. Recurse on the sublists obtained by splitting on *f_best*, and add those nodes as children of node

 More to be covered in Section 7 (Tree-based Approach) of our textbook.

Other ML Techniques

- Naïve Bayes classifier
- Decision tree
- Random forest
- Support vector machine
- Linear regression
- Hidden Markov model
- Gaussian mixture model

•

ML Techniques Flow

ML Techniques: Limitations

- Expert knowledge required for feature extraction
- Not easy to improve accuracy after a certain point (even with a large volume of data)
- Not easy to model non-linear relations between an input and output.

ML Techniques: Limitations

- Linear regression?
 - ✓ Why is it linear?
- Bayesian?
 - ✓ What is the prior?
- SVM?
 - ✓ What are the features?
- Decision tree?
 - ✓ What are the nodes/variables?
- KNN?
 - ✓ Cluster on what features?

These methods do not suit well with very complex models.

Deep Learning

Machine Learning

Deep Learning

Deep Learning for Activity Recognition

Example of applying a convolutional neural network

Machine Learning vs. Deep Learning

Deep learning: the more data, the higher accuracy

Types of Learning

Types of Learning

- Supervised (inductive) learning
 - Given: training data + desired outputs (labels)
- Unsupervised learning
 - Given: training data (without desired outputs)
- Semi-supervised learning
 - Given: training data + a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

Supervised Learning: Regression

- Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Learn a function f(x) to predict y given x
 - -y is real-valued == regression

Supervised Learning: Classification

- Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Learn a function f(x) to predict y given x
 - -y is categorical == classification

Supervised Learning: Classification

- Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Learn a function f(x) to predict y given x
 - -y is categorical == classification

Tumor Size

Supervised Learning: Classification

- Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Learn a function f(x) to predict y given x
 - -y is categorical == classification

Supervised Learning

- x can be multi-dimensional
 - Each dimension corresponds to an attribute

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape

• •

Unsupervised Learning

- Given $x_1, x_2, ..., x_n$ (without labels)
- Output hidden structure behind the x's
 - E.g., clustering

Unsupervised Learning

Genomics application: group individuals by genetic similarity

Individuals

[Source: Daphne Koller]

Unsupervised Learning

Organize computing clusters

Market segmentation

Social network analysis

Astronomical data analysis

Slide credit: Andrew Ng

Unsupervised Learning

 Independent component analysis – separate a combined signal into its original sources

Unsupervised Learning

 Independent component analysis – separate a combined signal into its original sources

Reinforcement Learning

- Given a sequence of states and actions with (delayed) rewards, output a policy
 - Policy is a mapping from states actions that tells you what to do in a given state
- Examples:
 - Credit assignment problem
 - Game playing
 - Robot in a maze
 - Balance a pole on your hand

The Agent-Environment Interface

Agent and environment interact at discrete time steps : t = 0, 1, 2, K

Agent observes state at step t: $s_t \in S$

produces action at step t: $a_t \in A(s_t)$

gets resulting reward: $r_{t+1} \in \Re$

and resulting next state: S_{t+1}

$$S_{t} = \underbrace{a_{t}}^{r_{t+1}} \underbrace{s_{t+1}}^{r_{t+1}} \underbrace{s_{t+2}}^{r_{t+2}} \underbrace{s_{t+2}}^{r_{t+3}} \underbrace{s_{t+3}}^{r_{t+3}} \underbrace{a_{t+3}}^{r_{t+3}}$$

Slide credit: Sutton & Barto

Reinforcement Learning

https://www.youtube.com/watch?v=4cgWya-wjgY

Framing a Learning Problem

Designing a Learning System

- Choose the training experience
- Choose exactly what is to be learned
 - i.e. the target function
- Choose how to represent the target function
- Choose a learning algorithm to infer the target function from the experience

Training vs. Test Distribution

- We generally assume that the training and test examples are independently drawn from the same overall distribution of data
 - We call this "i.i.d" which stands for "independent and identically distributed"
- If examples are not independent, requires collective classification
- If test distribution is different, requires
 transfer learning

ML in a Nutshell

- Tens of thousands of machine learning algorithms
 - Hundreds new every year

- Every ML algorithm has three components:
 - Representation
 - Optimization
 - Evaluation

Various Function Representations

- Numerical functions
 - Linear regression
 - Neural networks
 - Support vector machines
- Symbolic functions
 - Decision trees
 - Rules in propositional logic
 - Rules in first-order predicate logic
- Instance-based functions
 - Nearest-neighbor
 - Case-based
- Probabilistic Graphical Models
 - Naïve Bayes
 - Bayesian networks
 - Hidden-Markov Models (HMMs)
 - Probabilistic Context Free Grammars (PCFGs)
 - Markov networks

Various Search/Optimization Algorithms

- Gradient descent
 - Perceptron
 - Backpropagation
- Dynamic Programming
 - HMM Learning
- Divide and Conquer
 - Decision tree induction
 - Rule learning
- Evolutionary Computation
 - Genetic Algorithms (GAs)
 - Genetic Programming (GP)
 - Neuro-evolution

Evaluation

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- K-L divergence
- etc.

ML in Practice

- Understand domain, prior knowledge, and goals
- Data integration, selection, cleaning, pre-processing, etc.
- Learn models
- Interpret results
- Consolidate and deploy discovered knowledge

Lessons Learned about Learning

- Learning can be viewed as using direct or indirect experience to approximate a chosen target function.
- Function approximation can be viewed as a search through a space of hypotheses (representations of functions) for one that best fits a set of training data.
- Different learning methods assume different hypothesis spaces (representation languages) and/or employ different search techniques.

What We'll Cover in this Course

Supervised learning

- Decision tree induction
- Linear regression
- Logistic regression
- Support vector machines& kernel methods
- Model ensembles
- Neural networks & deep learning

Unsupervised learning

- Clustering
- Dimensionality reduction
- Evaluation
- Applications

Our focus will be on applying machine learning to real applications

A Brief History of Machine Learning (Backup Slides)

History of Machine Learning

1950s

- Samuel's checker player
- Selfridge's Pandemonium

• 1960s:

- Neural networks: Perceptron
- Pattern recognition
- Learning in the limit theory
- Minsky and Papert prove limitations of Perceptron

• 1970s:

- Symbolic concept induction
- Winston's arch learner
- Expert systems and the knowledge acquisition bottleneck
- Quinlan's ID3
- Michalski's AQ and soybean diagnosis
- Scientific discovery with BACON
- Mathematical discovery with AM

History of Machine Learning (cont.)

• 1980s:

- Advanced decision tree and rule learning
- Explanation-based Learning (EBL)
- Learning and planning and problem solving
- Utility problem
- Analogy
- Cognitive architectures
- Resurgence of neural networks (connectionism, backpropagation)
- Valiant's PAC Learning Theory
- Focus on experimental methodology

• 1990s

- Data mining
- Adaptive software agents and web applications
- Text learning
- Reinforcement learning (RL)
- Inductive Logic Programming (ILP)
- Ensembles: Bagging, Boosting, and Stacking
- Bayes Net learning

History of Machine Learning (cont.)

2000s

- Support vector machines & kernel methods
- Graphical models
- Statistical relational learning
- Transfer learning
- Sequence labeling
- Collective classification and structured outputs
- Computer Systems Applications (Compilers, Debugging, Graphics, Security)
- E-mail management
- Personalized assistants that learn
- Learning in robotics and vision

• 2010s

- Deep learning systems
- Learning for big data
- Bayesian methods
- Multi-task & lifelong learning
- Applications to vision, speech, social networks, learning to read, etc.
- 333