Response to Office Action of December 21, 2010

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Previously Presented) A method for compressing video information in a video sequence (I_t, I_{t+1}) comprising the steps of:

considering in said sequence a first video frame (B_t) containing image data; segmenting said first video frame (B_t) into segments $(S_{t,i})$; for each segment $(S_{t,i})$ of the first video frame (B_t) :

searching, in a second video frame (I_{t+1}) following the first video frame (B_t) in the video sequence, a corresponding predicted segment $(S_{t+1,i}^{p,forward})$ which matches with the segment $(S_{t,i})$ of the first video frame (B_t) according to a predetermined similarity measure;

calculating a raw set of motion parameters $(M_{t,i}^{\ p})$ describing the motion between the segment $(S_{t,i})$ of the first video frame (B_t) and the corresponding predicted segment $(S_{t+1,i}^{\ p,forward})$ of said second video frame (I_{t+1}) ; and

for each corresponding predicted segment $(S_{t+1,i}^{p,forward})$ of the second video frame (I_{t+1}) : searching, in the first video frame (B_t) , a corresponding segment $(S_{t+1,i}^{p,backward})$ that matches with the predicted segment $(S_{t+1,i}^{p,forward})$ of the second video frame (I_{t+1}) according to a predetermined similarity measure;

calculating a best set of motion parameters $(M_{t,i}^{\ p}+\Delta M_{t,i}^{\ p})$ describing the motion between the corresponding segment $(S_{t,i}^{\ p,backward})$ of the first video frame (B_t) and the predicted segment $(S_{t+1,i}^{\ p,forward})$ of the second video frame (I_{t+1}) , said best set of motion parameters consisting in the raw set of motion parameters $(M_{t,i}^{\ p})$ corrected by a motion parameters correction $(\Delta M_{t,i}^{\ p})$.

Response to Office Action of December 21, 2010

2. (Original) A method according to claim 1, characterized in that it includes a step of calculating a residual frame (R_{t+1}) for the second video frame (I_{t+1}) describing the structural differences between the first video frame (B_t) and the second video frame (I_{t+1}) .

- 3. (Previously Presented) A method according to claim 1, characterized in that it includes a step of calculating a set of overlapping parameters for each predicted segment $(S_{t+1,i}^{p,forward})$ resolving the intersections between said predicted segment $(S_{t+1,i}^{p,forward})$ and adjacent other predicted segments of the second video frame (I_{t+1}) .
- 4. (Previously Presented) A method according to claim 1, characterized in that it includes a step of calculating, for each video frame (B_{t+1}) , a set of overlapping parameters resolving the intersections between the predicted segments of the second video frame (I_{t+1}) .
- 5. (Previously Presented) A method according to claim 1, characterized in that the first video frame (B_t) is a decompressed video frame corresponding to a frame (I_t) of the video sequence processed by said compression method and the corresponding decompression method.
- 6. (Previously Presented) A method according to claim 1, characterized in that the best set of motion parameters $(M_{t,i}{}^p + \Delta M_{t,i}{}^p)$ is defined according to a multi-layer motion description in which a first layer contains the raw set of motion parameters $(M_{t,i}{}^p)$ and a second layer contains the motion parameters correction $(\Delta M_{t,i}{}^p)$, the information of the first and second layers being distinguished.
- 7. (Original) A method according to claim 6, characterized in that it includes a step of setting a flag to a first or a second predetermined value indicating whether the motion parameters correction ($\Delta M_{t,i}^{p}$) has to be used for the video information decompression.

Response to Office Action of December 21, 2010

8. (Previously Presented) A method according to claim 1, characterized in that it includes a step of determining a set of segmentation parameters defining the segmentation process implemented for segmenting the first video frame (B_t) into segments ($S_{t,i}$).

Claims 9-12: Cancelled.

- 13. (Previously Presented) A computer program product for a data processing unit, comprising a set of instructions, which, when loaded into said data processing unit, causes the data processing unit to carry out the method claimed in claim 1.
- 14. (Original) A device for compressing video information in a video sequence (I_t , I_{t+1}) comprising:

means for segmenting the first video frame (B_t) containing image data into segments $(S_{t,i})$;

means for searching, in a second video frame (I_{t+1}) following the first video frame (B_t) in the video sequence, a corresponding predicted segment $(S_{t+1,i}^{p,forward})$ which matches with the segment $(S_{t,i})$ of the first video frame (B_t) according to a predetermined similarity measure, for each segment $(S_{t,i})$ of the first video frame (B_t) ;

means for calculating a raw set of motion parameters $(M_{t,i}^{p})$ describing the motion between the segment $(S_{t,i})$ of the first video frame (B_{t}) and the corresponding predicted segment $(S_{t+1,i}^{p,forward})$ of the second video frame (I_{t+1}) , for each segment $(S_{t,i})$ of the first video frame (B_{t}) ;

means for searching, in the first video frame (B_t) , a corresponding segment $(S_{t,i}^{p,backward})$ that matches with the predicted segment $(S_{t+1,i}^{p,forward})$ of the second video frame (I_{t+1}) according to a predetermined similarity measure, for each corresponding predicted segment $(S_{t+1,i}^{p,forward})$ of the second video frame (I_{t+1}) ;

means for calculating a best set of motion parameters $(M_{t,i}{}^p + \Delta M_{t,i}{}^p)$ describing the motion between the corresponding segment $(S_{t,i}{}^p,backward)$ of the first video frame (B_t) and the predicted

Response to Office Action of December 21, 2010

segment $(S_{t+1,i}^{p,forward})$ of the second video frame (I_{t+1}) , said best set of motion parameters consisting in the raw set of motion parameters $(M_{t,i}^{p})$ corrected by a motion parameter correction $(\Delta M_{t,i}^{p})$, for each corresponding predicted segment $(S_{t+1,i}^{p,forward})$ of the second video frame (I_{t+1}) .

Claim 15: Cancelled.

16. (Previously Presented) Compressed data corresponding to a video sequence, characterized in that it has been obtained by a compression method according to claim 1 and applied on said video sequence.