Embedded Systems and IoT Laboratory

Course Code	18CSL68	Credits	1.5
Course type	LAB	CIE Marks	25 marks
Hours/week: L-T-P	0-0-3	SEE Marks	25 marks
Total Hours:	36	SEE Duration	3 Hours for 50 marks

Sl No	Title of the Experiment	Connection Details		
1	Develop an 8051 'C' program to implement MOD-4 (UP/ DOWN) counter on LEDs connected to Port 2. Include 1second delay between each count. Generate delay using <i>for loop</i> .			
2	Develop an 8051 'C' program to implement MOD-4 (UP/ DOWN) counter on LEDs connected to Port 2. Include 0.5 second delay between each count. Generate delay using <i>for loop</i> .			
3	Develop an 8051 'C' program to implement MOD-4 counter on LEDs connected to Port 2 using Hardware delay. Use Timer1 in Mode 1 to generate a delay of ms.			
4	Develop an 8051 'C' program to implement MOD-4 counter on LEDs connected to Port 2 using Hardware delay. Use Timer1 in Mode 2 to generate a delay of ms.			
5	Develop an 8051 'C' program to generate the following waveforms using DAC 0800 interface i) Square ii) Triangular			
6	Develop an 8051 'C' program to generate the following waveforms using DAC 0800 interface i) Rectangular wave with 70% duty cycle. Assume T=100ms ii) Positive Ramp			
7	Develop an 8051 'C' program to generate the following waveforms using DAC interface i) Square ii) Negative Ramp			
8	Develop an 8051 'C' program to interface 2x16 LCD display and to display the following two strings. (Start displaying from 1st position on both lines) i) KLS GIT ii) ESIoT LAB			
9	Develop an 8051 'C' program to interface 2x16 LCD display and to display the following two strings. (Start displaying from 6 th position on both lines) iii) CSE iv) BRANCH			
10	Develop an Embedded 'C' program to blink the LEDs connected to Arduino SBC upon pressing the push buttons.	CN9 to CN4		
11	Develop an Embedded 'C' program to interface the sensor DHT11 to Arduino SBC and display the data acquired from sensors on serial monitor.	RM2 to RM19		
12	Develop an Embedded 'C' program to control the relay through Arduino UNO.	RM17 to RM9		
13	Develop an Embedded 'C' program to interface the sensor LDR to Arduino SBC and display the data acquired from sensor on serial monitor.	RM3 to RM20		
14	Develop a python program for Raspberry Pi to turn "ON" and "OFF" the buzzer.	RM9 to RM17		
15	Develop an Embedded 'C' program to interface the sensor DHT11 to Arduino SBC and display the data acquired from sensors on serial monitor. Turn ON the relay when temperature is greater than 22 degree centigrade.			