

Schletter, Inc.		15° Tilt w/ Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

1.20

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 26.53$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ TOP	=	1 (0,,,,,,,,)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1 (Pressure) 1.6	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.04 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T. =	0.04	$C_4 = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	<u>g</u>		
M4	Outer	M15	5		
M8	Inner	M16A	4		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type = F _{ty} =	1.5x0.25 6061-T6 35	kei
Φ =	0.90	KOI
S _y =	0.02	in ³
Ë =	10100	ksi
$I_y =$	33.25	in ⁴
A =	0.38	in ²
g =	0.45	lbs/ft
$M_y =$	0.005	k-ft
P _n =	0.215	k
M _{y allowable} =	0.046	k-ft
P _{n allowable} =	11.813	k
Utilization =	<u>13%</u>	

A cross brace kit is required every 15 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	<u>521.85</u>	<u>1553.96</u> k	
Compressive Load =	<u>1854.07</u>	<u>1348.97</u> k	
Lateral Load =	<u>33.46</u>	<u>578.22</u> k	
Moment (Weak Axis) =	0.05	0.00 k	

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 21907.9 in-lbs Resisting Force Required = 730.26 lbs A minimum 60in long x 22in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1217.11 lbs to resist overturning. Minimum Width = Weight Provided = 1993.75 lbs Sliding Force = 133.38 lbs Use a 60in long x 22in wide x 18in tall Friction = 0.4 Weight Required = 333.45 lbs ballast foundation to resist sliding. Resisting Weight = 1993.75 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 133.38 lbs Cohesion = 130 psf Use a 60in long x 22in wide x 18in tall 9.17 ft² Area = ballast foundation. Cohesion is OK. Resisting = 996.88 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width				
	22 in	23 in	24 in	<u>25 in</u>	
$P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.83 \text{ ft}) =$	1994 lbs	2084 lbs	2175 lbs	2266 lbs	

ASD LC		1.0D ·	+ 1.0S	1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W						
Width	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in
FA	653 lbs	653 lbs	653 lbs	653 lbs	592 lbs	592 lbs	592 lbs	592 lbs	889 lbs	889 lbs	889 lbs	889 lbs	-237 lbs	-237 lbs	-237 lbs	-237 lbs
FB	476 lbs	476 lbs	476 lbs	476 lbs	431 lbs	431 lbs	431 lbs	431 lbs	646 lbs	646 lbs	646 lbs	646 lbs	-715 lbs	-715 lbs	-715 lbs	-715 lbs
F_V	41 lbs	41 lbs	41 lbs	41 lbs	235 lbs	235 lbs	235 lbs	235 lbs	205 lbs	205 lbs	205 lbs	205 lbs	-267 lbs	-267 lbs	-267 lbs	-267 lbs
P _{total}	3123 lbs	3213 lbs	3304 lbs	3395 lbs	3017 lbs	3107 lbs	3198 lbs	3289 lbs	3529 lbs	3619 lbs	3710 lbs	3801 lbs	244 lbs	298 lbs	353 lbs	407 lbs
M	393 lbs-ft	393 lbs-ft	393 lbs-ft	393 lbs-ft	656 lbs-ft	656 lbs-ft	656 lbs-ft	656 lbs-ft	762 lbs-ft	762 lbs-ft	762 lbs-ft	762 lbs-ft	471 lbs-ft	471 lbs-ft	471 lbs-ft	471 lbs-ft
е	0.13 ft	0.12 ft	0.12 ft	0.12 ft	0.22 ft	0.21 ft	0.21 ft	0.20 ft	0.22 ft	0.21 ft	0.21 ft	0.20 ft	1.93 ft	1.58 ft	1.33 ft	1.16 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	289.2 psf	286.1 psf	283.2 psf	280.6 psf	243.3 psf	242.1 psf	241.1 psf	240.2 psf	285.2 psf	282.3 psf	279.6 psf	277.1 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	392.1 psf	384.5 psf	377.6 psf	371.2 psf	414.9 psf	406.4 psf	398.5 psf	391.3 psf	484.7 psf	473.1 psf	462.4 psf	452.6 psf	155.2 psf	112.4 psf	100.8 psf	96.9 psf

Maximum Bearing Pressure = 485 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 608.2 \text{ ft-lbs}$

Resisting Force Required = 663.45 lbs S.F. = 1.67

Weight Required = 1105.75 lbs Minimum Width = 22 in in Weight Provided = 1993.75 lbs A minimum 60in long x 22in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		22 in		22 in				22 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	121 lbs	144 lbs	71 lbs	334 lbs	876 lbs	296 lbs	70 lbs	6 lbs	23 lbs		
F _V	18 lbs	153 lbs	18 lbs	13 lbs	116 lbs	14 lbs	18 lbs	153 lbs	18 lbs		
P _{total}	2589 lbs	2612 lbs	2539 lbs	2684 lbs	3225 lbs	2645 lbs	791 lbs	727 lbs	744 lbs		
М	52 lbs-ft	258 lbs-ft	55 lbs-ft	37 lbs-ft	194 lbs-ft	42 lbs-ft	52 lbs-ft	258 lbs-ft	55 lbs-ft		
е	0.02 ft	0.10 ft	0.02 ft	0.01 ft	0.06 ft	0.02 ft	0.07 ft	0.35 ft	0.07 ft		
L/6	0.31 ft	1.64 ft	1.79 ft	1.81 ft	1.71 ft	1.80 ft	1.70 ft	1.12 ft	1.69 ft		
f _{min}	263.8 sqft	192.9 sqft	257.5 sqft	279.6 sqft	282.4 sqft	273.6 sqft	67.6 sqft	-12.6 sqft	61.7 sqft		
f _{max}	301.0 psf	377.0 psf	296.5 psf	305.9 psf	421.3 psf	303.6 psf	105.0 psf	171.3 psf	100.7 psf		

Maximum Bearing Pressure = 421 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 22in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	1.426 k	Maximum Axial Load =	1.194 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>25%</u>	Utilization =	<u>21%</u>
Diagonal Strut		Bracing	
Maximum Axial Load =	0.180 k	Maximum Axial Load =	0.215 k
M8 Bolt Shear Capacity =	E 000 I	M40 Dalt Oan a alter	0.004.1
ivio boil offeat Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
Strut Bearing Capacity =	5.692 k 7.952 k	M10 Bolt Capacity = Strut Bearing Capacity =	8.894 k 7.952 k
. ,		. ,	

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 28.39 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.568 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.086 \text{ in} \\ & 0.086 \leq 0.568, \text{OK.} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus XT**

Strong Axis:

3.4.14

$$L_b = 75.00 \text{ in}$$
 $J = 0.427$
 156.423

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.3 \text{ ksi}$$

3.4.16

$$b/t = 6.6$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

3.4.16.1 <u>Not Use</u>

 $\phi F_L = 33.3 \text{ ksi}$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_b = 75.00 \text{ in}$$

$$J = 0.427$$

$$169.977$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^* \sqrt{(LbSc)/(Cb^* \sqrt{(lyJ)/2})}]$$

29.1

3.4.16

 $\phi F_1 =$

$$b/t = 37.95$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 22.7 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 37.95$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 38.1$$

$$m = 0.63$$

$$C_0 = 40.784$$

$$Cc = 39.216$$

$$S2 = \frac{k_1Bbr}{k_1Bbr}$$

$$\begin{array}{lll} m = & 0.63 \\ C_0 = & 40.784 \\ Cc = & 39.216 \\ S2 = & \frac{k_1 Bbr}{mDbr} \\ S2 = & 79.7 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L St = & 29.3 \text{ ksi} \\ k = & 498305 \text{ mm}^4 \\ & 1.197 \text{ in}^4 \\ y = & 40.784 \text{ mm} \\ Sx = & 0.746 \text{ in}^3 \\ M_{\text{max}} St = & 1.821 \text{ k-ft} \\ \end{array}$$

3.4.18

$$h/t = 6.6$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20.5$$

$$Cc = 20.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 22.7 \text{ ksi}$$

$$ly = 148662 \text{ mm}^4$$

$$0.357 \text{ in}^4$$

$$x = 20.5 \text{ mm}$$

$$Sy = 0.443 \text{ in}^3$$

$$M_{max} Wk = 0.838 \text{ k-ft}$$

Compression

3.4.9

b/t =6.6 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi b/t =37.95 S1 = 12.21 S2 = 32.70 $\phi F_L = (\phi ck2*\sqrt{(BpE)})/(1.6b/t)$

3.4.10

 $\phi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.42 \text{ ksi}$

21.4 ksi

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.15 \\ & 22.8869 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi$$
F_L= ϕ b[Bc-Dc*Lb/(1.2*ry* $\sqrt{(Cb)}$)

3.4.15

N/A for Strong Direction

 $\phi F_L = 29.5 \text{ ksi}$

Weak Axis:

3.4.11

$$\begin{array}{lll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.15 \\ & 24.5845 \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ S1 = & 1.37733 \\ S2 = & 1.2C_c \\ S2 = & 79.2 \\ \phi F_L = & \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})] \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

 $\phi F_1 = 29.5 \text{ ksi}$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

3.4.16

N/A for Strong Direction

 $\phi F_L = 33.3 \text{ ksi}$

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

(R)
$$\frac{\theta_{Y}}{1.00}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$S2 = 1170 VECY$$

3.4.16.1

Rb/t = 0.0 N/A for Weak Direction
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.2

N/A for Strong Direction

3.4.16.2 b/t =24.46 2.6 t = 6.05 ds = rs = 3.49 S = 21.70 ρst = 0.22 $F_{UT} =$ 9.37 $F_{ST} =$ 28.24 $\phi F_L = Fut + (Fst - Fut)\rho st < Fst$ $\phi F_L =$ 13.5 ksi

3.4.18

$$h/t = 24.46$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.5 \text{ ksi}$$

$$lx = 364470 \text{ mm}^4$$

$$0.876 \text{ in}^4$$

$$y = 37.77 \text{ mm}$$

$$Sx = 0.589 \text{ in}^3$$

$$M_{max} St = 1.448 \text{ k-ft}$$

3.4.18

 $M_{max}Wk =$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi Y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L W k = 13.5 \text{ ksi}$$

0.513 k-ft

Compression

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc - Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\varphi F_L = \varphi \varphi F c y$$

 $\varphi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21

$\phi F_L =$ 28.2 ksi

32.70 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

3.4.9.1

S2 =

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{1}{\phi_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

$$P_{max} = 12.76 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S1 = \sqrt{\frac{1.6Dc}{1.6Dc}}$$

 $S1 = 0.51461$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}$ $\phi F_L = 31.2$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$φF_L = φyFcy$$
 $φF_I = 33.3 \text{ ksi}$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L St = 31.2 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$y = 15 \text{ mm}$$

$$Sx = 0.163 \text{ in}^3$$

 $M_{max}St = 0.423 \text{ k-ft}$

 $\phi F_1 = 43.2 \text{ ksi}$

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$C_0 = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

x =

Sy = $M_{max}Wk = 0.423 \text{ k-ft}$

15 mm

0.163 in³

7.75

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$
 0.50 in^2

$$P_{max} = 12.31 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_b = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$
 121.663

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$\phi F_L =$ 29.8

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$02 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 29.8 \text{ ksi}$$

$$x = 39958.2 \text{ mm}^4$$
 0.096 in^4
 $y = 15 \text{ mm}$
 $5x = 0.163 \text{ in}^3$

$$M_{max}St = 0.404 \text{ k-ft}$$

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

 $ly = 39958.2 \text{ mm}^4$

$$0.096 \text{ in}^4$$

x = 15 mm

$$x = 15 \text{ mr}$$

 $Sy = 0.163 \text{ in}^3$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$

$$S2^* = 1.23671$$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)$$
S1 = 6.87

$$S2 = 131.3$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 29.96 \text{ in}$$
 $J = 0.16$
 78.5957

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.5 \text{ ksi}$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

3.4.16.1 Not Used Rb/t = 0.0

 $\phi F_1 = 33.3 \text{ ksi}$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C$$

$$S2 = C_t$$

S2 = 141.0

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.5 \text{ ksi}$$
 $lx = 39958.2 \text{ mm}^4$
 0.096 in^4

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.413 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 29.96 \text{ in}$$
 $J = 0.16$
 78.5957

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_{L} = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.5$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_1 = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_{y}}{\theta_{b}} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_{0} = 15$$

$$Cc = 15$$

$$S2 = \frac{k_{1}Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_{L} = 1.3\varphi y Fcy$$

7.75

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$
 $x = 15 \text{ mm}$
 $Sy = 0.163 \text{ in}^3$

$$M_{\text{max}}Wk = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

$\begin{array}{lll} \textbf{3.4.7} \\ \lambda = & 1.28467 \\ \textbf{r} = & 0.437 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ \textbf{S1}^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ \textbf{S2}^* = & 1.23671 \\ & \phi \textbf{cc} = & 0.75985 \\ & \phi \textbf{F}_{L} = & (\phi \textbf{cc} \textbf{Fcy})/(\lambda^2) \\ & \phi \textbf{F}_{L} = & 16.1143 \text{ ksi} \end{array}$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 16.11 \text{ ksi}$
 $\phi F_L = 323.87 \text{ mm}^2$
0.50 in²
 $\phi F_L = 8.09 \text{ kips}$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	•			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL			.8			4		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4 45	-4 45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-63.248	-63.248	0	0
2	M16	Υ	-63.248	-63.248	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-73.997	-73.997	0	0
2	M16	V	-118.396	-118.396	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	150.955	150.955	0	0
2	M16	V	73 997	73 997	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M16	Ζ	6.693	6.693	0	0
3	M13	Ζ	0	0	0	0
4	M16	Z	0	0	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																

Model Name

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
	LATERAL - ASD 1.1785D + 0.65.				1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	107.933	2	297.861	1	.034	9	Ō	1	Ō	1	0	1
2		min	-141.248	3	-367.141	3	-2.133	5	0	5	0	1	0	1
3	N7	max	0	5	476.383	1	075	10	0	10	0	1	0	1
4		min	145	2	-115.864	3	-25.256	4	041	4	0	1	0	1
5	N15	max	0	15	1426.208	1_	.422	1	0	1	0	1	0	1
6		min	-1.368	1	-401.421	3	-25.74	5	041	4	0	1	0	1
7	N16	max	408.01	2	1037.668	1	0	10	0	1	0	1	0	1
8		min	-444.785	3	-1195.357	3	-202.79	4	0	5	0	1	0	1
9	N23	max	0	15	476.348	1_	1.732	1	.003	1	0	1	0	1
10		min	145	2	-115.5	3	-23.906	5	038	5	0	1	0	1
11	N24	max	108.133	2	302.14	1	36.176	3	.001	4	0	1	0	1
12		min	-141.373	3	-364.994	3	-3.212	5	0	3	0	1	0	1
13	Totals:	max	622.437	2	4016.609	1	0	2						
14		min	-727.773	3	-2560.278	3	-281.868	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M2	1	max	345.114	1_	.658	6	.931	4	0	10	0	4	0	1
2			min	-369.566	3	.153	15	084	3	0	4	0	2	0	1
3		2	max	345.211	1	.62	6	.843	4	0	10	0	4	0	15
4			min	-369.494	3	.144	15	084	3	0	4	0	10	0	6
5		3	max	345.307	1	.582	6	.756	4	0	10	0	4	0	15
6			min	-369.421	3	.135	15	084	3	0	4	0	3	0	6
7		4	max	345.403	1	.545	6	.669	4	0	10	0	4	0	15
8			min	-369.349	3	.127	15	084	3	0	4	0	3	0	6
9		5	max	345.5	1	.507	6	.581	4	0	10	0	4	0	15
10			min	-369.277	3	.118	15	084	3	0	4	0	3	0	6
11		6	max	345.596	1	.469	6	.507	1	0	10	0	4	0	15
12			min	-369.205	3	.109	15	084	3	0	4	0	3	0	6
13		7	max	345.693	1	.431	6	.507	1	0	10	0	4	0	15
14			min	-369.132	3	.1	15	084	3	0	4	0	3	0	6
15		8	max	345.789	1	.393	6	.507	1	0	10	0	4	0	15
16			min	-369.06	3	.091	15	084	3	0	4	0	3	0	6
17		9	max	345.885	1	.355	6	.507	1	0	10	0	4	0	15
18			min	-368.988	3	.082	15	084	3	0	4	0	3	0	6
19		10	max	345.982	1	.318	6	.507	1	0	10	0	4	0	15
20			min	-368.915	3	.073	15	084	3	0	4	0	3	0	6
21		11	max	346.078	1	.28	6	.507	1	0	10	0	4	0	15
22			min	-368.843	3	.064	15	084	3	0	4	0	3	0	6
23		12	max	346.174	1	.242	6	.507	1	0	10	0	1	0	15
24			min	-368.771	3	.055	15	141	5	0	4	0	3	0	6
25		13	max	346.271	1	.204	6	.507	1	0	10	0	1	0	15
26			min	-368.699	3	.047	15	228	5	0	4	0	3	0	6
27		14	max	346.367	1	.166	6	.507	1	0	10	0	1	0	15
28			min	-368.626	3	.038	15	315	5	0	4	0	3	0	6

Model Name

: Schletter, Inc. : HCV

. псv :

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

30	LC y Shear[lb] LC z Shear[lb] LC Torque[k-ft] LC y-y M	
31		0 10
32		
33		
34		
18 max 346.753 1 .03 10 .507 1 0 10 .001 1 0 1 36 37 3 .013 1 .665 5 0 4 0 3 0 37 19 max 346.849 1 .006 10 .507 1 0 10 .001 1 0 1 38 min .368.265 3 .042 1 .752 5 0 4 0 3 0 39 M3 1 max 38.695 10 1.81 6 .023 12 0 5 .001 1 0 1 0 40 min .80.584 1 .424 15 -1.426 4 0 1 0 12 0 1 1 0 1 1 0 1 1 0 1 1		
36		
19 max 346.849 1 .006 10 .507 1 0 10 .001 1 0 1 38 min -368.265 3 .042 1 752 5 0 4 0 3 0 3 0 3 9 M3 1 max 38.695 10 1.81 6 .023 12 0 5 .001 1 0 12 0 1 40 min -80.584 1 .424 15 -1.426 4 0 1 0 12 0 1 41 2 max 38.639 10 1.632 6 023 12 0 5 .001 1 0 12 0 1 42 min -80.651 1 .383 15 -1.292 4 0 1 0 12 0 1 43 3 max 38.583 10 1.454 6 023 12 0 5 0 1 0 12 0 1 44 min -80.718 1 .341 15 -1.159 4 0 1 0 12 0 1 45 4 max 38.527 10 1.276 6 023 12 0 5 0 1 0 12 0 1 46 min -80.785 1 .299 15 -1.025 4 0 1 0 5 0 1 0 1 48 min -80.853 1 .257 15 892 4 0 1 0 5 0 1 0 1 49 6 max 38.416 10 .92 6 023 12 0 5 0 1 0 5 0 5 0 1 0 1 5 0 5 0 1 0 1 5 0 5 0 1 0 1 5 0 5 0 1 0 1 5 0 5 0 1 0 1 5 0 5 0 1 0 1 5 0 1 0		
38		
M3		
40 min -80.584 1 .424 15 -1.426 4 0 1 0 12 0 41 41 2 max 38.639 10 1.632 6 023 12 0 5 .001 1 0 42 42 min -80.651 1 .383 15 -1.292 4 0 1 0 12 0 4 43 3 max 38.583 10 1.454 6 023 12 0 5 0 1 0 12 0 4 44 min -80.718 1 .341 15 -1.59 4 0 1 0 12 0 5 0 1 0 12 0 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 <td></td> <td></td>		
41 2 max 38.639 10 1.632 6 023 12 0 5 .001 1 0 42 min -80.651 1 .383 15 -1.292 4 0 1 0 12 0 1 43 3 max 38.583 10 1.454 6 023 12 0 5 0 1 0 44 min -80.718 1 .341 15 -1.159 4 0 1 0 12 0 1 0 12 0 1 0 12 0 1 0 12 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 <td></td> <td></td>		
42 min -80.651 1 .383 15 -1.292 4 0 1 0 12 0 1 43 3 max 38.583 10 1.454 6 023 12 0 5 0 1 0 1 44 min -80.718 1 .341 15 -1.159 4 0 1 0 12 0 1 45 4 max 38.527 10 1.276 6 023 12 0 5 0 1 0 1 46 min -80.785 1 .299 15 -1.025 4 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 1 0 5 0 1 0 5 0 1 0 1 0 1 0 1 0 1		
43 3 max 38.583 10 1.454 6 023 12 0 5 0 1 0 44 min -80.718 1 .341 15 -1.159 4 0 1 0 12 0 1 45 4 max 38.527 10 1.276 6 023 12 0 5 0 1 0 1 46 min -80.785 1 .299 15 -1.025 4 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 <t< td=""><td></td><td></td></t<>		
44 min -80.718 1 .341 15 -1.159 4 0 1 0 12 0 4 45 4 max 38.527 10 1.276 6 023 12 0 5 0 1 0 1 46 min -80.785 1 .299 15 -1.025 4 0 1 0 5 0 47 5 max 38.471 10 1.098 6 023 12 0 5 0 1 0 5 48 min -80.853 1 .257 15 892 4 0 1 0 5 0 1 0 5 49 6 max 38.416 10 .92 6 023 12 0 5 0 1 0 1 50 min -80.92 1 .215 15 758		
45 4 max 38.527 10 1.276 6 023 12 0 5 0 1 0 1 0 4 46 min -80.785 1 .299 15 -1.025 4 0 1 0 5 0 1 47 5 max 38.471 10 1.098 6 023 12 0 5 0 1 0 7 48 min -80.853 1 .257 15 892 4 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 1 0 5 0 1 0 1 0 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1		
46 min -80.785 1 .299 15 -1.025 4 0 1 0 5 0 1 0 4 0 1 0 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 1 0 5 0 1 0 5		
47 5 max 38.471 10 1.098 6 023 12 0 5 0 1 0 1 48 min -80.853 1 .257 15 892 4 0 1 0 5 0 49 6 max 38.416 10 .92 6 023 12 0 5 0 1 0 1 50 min -80.92 1 .215 15 758 4 0 1 0 5 0 1 0 <td></td> <td></td>		
48 min -80.853 1 .257 15 892 4 0 1 0 5 0 49 6 max 38.416 10 .92 6 023 12 0 5 0 1 0 1 50 min -80.92 1 .215 15 758 4 0 1 0 5 0 1 51 7 max 38.36 10 .742 6 023 12 0 5 0 1 0 5 52 min -80.987 1 .173 15 625 4 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 <td></td> <td></td>		
49 6 max 38.416 10 .92 6 023 12 0 5 0 1 0 1 50 min -80.92 1 .215 15 758 4 0 1 0 5 0 1 51 7 max 38.36 10 .742 6 023 12 0 5 0 1 0 1 52 min -80.987 1 .173 15 625 4 0 1 0 5 0 1 0 1 53 8 max 38.304 10 .564 6 023 12 0 5 0 1 0 1 54 min -81.054 1 .132 15 491 4 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 1 0 1 0 1 0 1 0 1 0<		
50 min -80.92 1 .215 15 758 4 0 1 0 5 0 51 7 max 38.36 10 .742 6 023 12 0 5 0 1 0 1 52 min -80.987 1 .173 15 625 4 0 1 0 5 0 53 8 max 38.304 10 .564 6 023 12 0 5 0 1 0 1 54 min -81.054 1 .132 15 491 4 0 1 0 5 0 1 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 1 0 5 0 1 0 1 0 5 0 1 0 1 0<		
51 7 max 38.36 10 .742 6 023 12 0 5 0 1 0 1 52 min -80.987 1 .173 15 625 4 0 1 0 5 0 1 53 8 max 38.304 10 .564 6 023 12 0 5 0 1 0 1 54 min -81.054 1 .132 15 491 4 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 5 0 1 0 1 0 1 0 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 <td></td> <td></td>		
52 min -80.987 1 .173 15 625 4 0 1 0 5 0 53 8 max 38.304 10 .564 6 023 12 0 5 0 1 0 1 54 min -81.054 1 .132 15 491 4 0 1 0 5 0 1 55 9 max 38.248 10 .386 6 023 12 0 5 0 1 0 1 56 min -81.121 1 .09 15 388 1 0 1 0 5 001 57 10 max 38.192 10 .208 6 023 12 0 5 0 1 0 1 58 min -81.188 1 .048 15 388 1 0 1 0 5 001 59 11 max 38.136 10		
53 8 max 38.304 10 .564 6 023 12 0 5 0 1 0 1 54 min -81.054 1 .132 15 491 4 0 1 0 5 0 1 55 9 max 38.248 10 .386 6 023 12 0 5 0 1 0 1 56 min -81.121 1 .09 15 388 1 0 1 0 5 001 57 10 max 38.192 10 .208 6 023 12 0 5 0 1 0 1 58 min -81.188 1 .048 15 388 1 0 1 0 5 001 59 11 max 38.136 10 .034 2 008 15 0 5 0 1 0 1		
54 min -81.054 1 .132 15 491 4 0 1 0 5 0 55 9 max 38.248 10 .386 6 023 12 0 5 0 1 0 1 56 min -81.121 1 .09 15 388 1 0 1 0 5 001 57 10 max 38.192 10 .208 6 023 12 0 5 0 1 0 1 58 min -81.188 1 .048 15 388 1 0 1 0 5 001 59 11 max 38.136 10 .034 2 008 15 0 5 0 1 0 1		
55 9 max 38.248 10 .386 6 023 12 0 5 0 1 0 1 56 min -81.121 1 .09 15 388 1 0 1 0 5 001 57 10 max 38.192 10 .208 6 023 12 0 5 0 1 0 1 58 min -81.188 1 .048 15 388 1 0 1 0 5 001 59 11 max 38.136 10 .034 2 008 15 0 5 0 1 0 1		
56 min -81.121 1 .09 15 388 1 0 1 0 5 001 57 10 max 38.192 10 .208 6 023 12 0 5 0 1 0 1 58 min -81.188 1 .048 15 388 1 0 1 0 5 001 59 11 max 38.136 10 .034 2 008 15 0 5 0 1 0 1		
58 min -81.188 1 .048 15 388 1 0 1 0 5 001 59 11 max 38.136 10 .034 2 008 15 0 5 0 1 0 1		
59 11 max 38.136 10 .034 2008 15 0 5 0 1 0 1	10 .208 6023 12 0 5	0 1 0 15
00 1 04 055 4 000 45 000 4 0 1 0 1 0		
		0 5001 4

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>. LC</u>
86			min	-116.544	3	0	1	-24.885	4	0	1	009	4	0	1
87		6	max	475.542	1	0	1	078	10	0	1	0	12	0	1
88			min	-116.495	3	0	1	-24.941	4	0	1	011	4	0	1
89		7	max		1	0	1	078	10	0	1	0	10	0	1
90			min	-116.447	3	0	1	-24.997	4	0	1	013	4	0	1
91		8	max		1	0	1	078	10	0	1	0	10	0	1
92			min	-116.398	3	0	1	-25.053	4	0	1	016	4	0	1
93		9		475.736	1	0	1	078	10	0	1	0	10	0	1
94		40	min	-116.35	3	0	1	-25.109	4	0	1	018	4	0	1
95		10	max	475.801	1	0	1	078	10	0	1	02	10	0	1
96 97		11	min	-116.301	3		1	-25.165	4	0	1		10	_	-
98		11	min	475.866 -116.253	3	0	1	078 -25.221	10 4	0	1	022	4	0	1 1
99		12		475.931	1	0	1	078	10	0	1	0	10	0	1
100		12	min	-116.204	3	0	1	-25.277	4	0	1	025	4	0	1
101		13		475.995	1	0	1	078	10	0	1	0	10	0	1
102		13	min	-116.156	3	0	1	-25.333	4	0	1	027	4	0	1
103		14	max		1	0	1	078	10	0	1	0	10	0	1
104		17		-116.107	3	0	1	-25.389	4	0	1	029	4	0	1
105		15	max	476.125	1	0	1	078	10	0	1	0	10	0	1
106		-10	min	-116.059	3	0	1	-25.445	4	0	1	031	4	0	1
107		16		476.189	1	0	1	078	10	0	1	0	10	0	1
108			min	-116.01	3	0	1	-25.501	4	0	1	034	4	0	1
109		17		476.254	1	0	1	078	10	0	1	0	10	0	1
110			min	-115.961	3	0	1	-25.557	4	0	1	036	4	0	1
111		18		476.319	1	0	1	078	10	0	1	0	10	0	1
112			min	-115.913	3	0	1	-25.614	4	0	1	038	4	0	1
113		19	max	476.383	1	0	1	078	10	0	1	0	10	0	1
114				-115.864	3	0	1	-25.67	4	0	1	041	4	0	1
115	<u>M6</u>	1		1116.218	1_	.64	6	.915	4	0	1	0	5	0	1
116			min	-1193.702	3	.149	15	171	3	0	5	0	9	0	1
117		2		1116.315	1	.603	6	.827	4	0	1	0	4	0	15
118			min	-1193.63	3	.14	15	171	3	0	5	0	9	0	6
119		3		1116.411	1	.565	6	.74	4	0	1	0	4	0	15
120		4	min	-1193.558	3	.131	15	171	3	0	5	0	10	0	6
121		4		1116.507	1	.527	6	.653	4	0	1	0	4	0	15
122		_	min	-1193.485	3	.122	15	171	3	0	5	0	3	0	6
123		5		1116.604	1	.489	6	.565	4	0	1	0	4	0	15
124		6	min	-1193.413	3	.113	15	171	3	0	5	0	3	0	6
125 126		6	max	1116.7 -1193.341	3	.451 .105	6 15	.478 171	3	0	5	0	3	0	15
127		7		1116.797	<u> </u>	.413	6	.391	4	0	1	0	4	0	15
128			min	-1193.268	3	.096	15	171	3	0	5	0	3	0	6
129		8		1116.893	1	.376	6	.303	4	0	1	0	4	0	15
130			min	-1193.196	3	.087	15	171	3	0	5	0	3	0	6
131		9		1116.989	1	.338	6	.216	4	0	1	0	4	0	15
132					3	.078	15	171	3	0	5	0	3	0	6
133		10		1117.086	1	.3	6	.215	1	0	1	0	4	0	15
134		ľ		-1193.052	3	.069	15	171	3	0	5	0	3	0	6
135		11		1117.182	1	.262	6	.215	1	0	1	0	4	0	15
136			min	-1192.979	3	.06	15	171	3	0	5	0	3	0	6
137		12		1117.278	1	.224	6	.215	1	0	1	0	4	0	15
138			min	-1192.907	3	.051	15	171	3	0	5	0	3	0	6
139		13	max	1117.375	1	.192	2	.215	1	0	1	0	4	0	15
140			min	-1192.835	3	.042	15	188	5	0	5	0	3	0	6
141		14	max	1117.471	1	.162	2	.215	1	0	1	0	4	0	15
142			min	-1192.763	3	.033	15	276	5	0	5	0	3	0	6

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

143	4.40	Member	Sec		Axial[lb]						Torque[k-ft]	LC	1 -		l -	
146	143		15			1_	.133	2	.215	1_	0	_1_	0	4	0	15
146			40													
147			16											_		
148			47								_		_			
149			1/											_		
150			40											_		
151			18											_		
152			40			_										
153			19											_		
1544		N 4-7						•		_	_			_		
155		<u> </u>	1									<u> </u>				_
156										•						
157			2					_								
158											_					
159			3											_		
161			_											_		
161			4											_		
162														_		
163			5											_		
166										•	_			_		
165			6							_				_		
166																
167			7											_		
168											_		_			
169			8													
170				min										_		
171			9							_1_	0		0	_		15
172				min									0	_	001	
173	171		10	max	178.964	2			.008	_1_	0	_1_	0	1	0	15
174	172			min			.054		272	4	0	5	0	5	001	
175			11	max		2				_1_	0	<u> </u>	0		_	
176				min						4	0	5	0	5	001	
177			12			2					0		0	1_		15
178	176			min		9				2	0	5	0	5	001	6
179			13			2	072	15	.129	5	0	_1_	0	1	0	15
180	178			min	-135.338	9			008	2	0	5	0	5	001	6
181 15 max 178.629 2 155 15 .396 5 0 1 0 1 0 15 0 15 182 min -135.45 9 679 6 008 2 0 5 0 5 0 6 0 6 183 16 max 178.562 2 197 15 .53 5 0 1 0 1 0 15 0 1 0 1 0 15 0 1 0 1 0 15 0 1 0 1 0 1 0 1 0 15 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 <td></td> <td></td> <td>14</td> <td>max</td> <td>178.696</td> <td>2</td> <td></td> <td>15</td> <td>.263</td> <td>5</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td></td> <td>15</td>			14	max	178.696	2		15	.263	5	0	1	0	1		15
182 min -135.45 9 679 6 008 2 0 5 0 5 0 6 183 16 max 178.562 2 197 15 .53 5 0 1 0 1 0 15 184 min -135.505 9 857 6 008 2 0 5 0 5 0 6 185 17 max 178.495 2 239 15 .664 5 0 1 0 1 0 15 186 min -135.561 9 -1.035 6 008 2 0 5 0 5 0 6 187 18 max 178.428 2 281 15 .797 5 0 1 0 1 0 15 188 min -135.617 9 -1.213 6 008	180			min	-135.394	9	501		008	2	0	5	0	5	001	6
183 16 max 178.562 2 197 15 .53 5 0 1 0 1 0 15 184 min -135.505 9 857 6 008 2 0 5 0 5 0 6 185 17 max 178.495 2 239 15 .664 5 0 1 0 1 0 15 186 min -135.561 9 -1.035 6 008 2 0 5 0 5 0 6 187 18 max 178.428 2 281 15 .797 5 0 1 0 1 0 15 188 min -135.617 9 -1.213 6 008 2 0 5 0 5 0 6 189 19 max 178.36 2 323 15			15	max	178.629	2	155	15	.396	5	0	_1_	0	1	0	15
184 min -135.505 9 857 6 008 2 0 5 0 5 0 6 185 17 max 178.495 2 239 15 .664 5 0 1 0 1 0 15 186 min -135.561 9 -1.035 6 008 2 0 5 0 5 0 6 187 18 max 178.428 2 281 15 .797 5 0 1 0 1 0 1 0 15 188 min -135.617 9 -1.213 6 008 2 0 5 0 5 0 6 189 19 max 178.36 2 323 15 .931 5 0 1 0 1 0 1 1 0 1 1 1 1 1	182			min	-135.45	9	679	6	008	2	0	5	0	5	0	6
185 17 max 178.495 2 239 15 .664 5 0 1 0 1 0 15 186 min -135.561 9 -1.035 6 008 2 0 5 0 5 0 6 187 18 max 178.428 2 281 15 .797 5 0 1 0 1 0 15 188 min -135.617 9 -1.213 6 008 2 0 5 0 5 0 6 189 19 max 178.36 2 323 15 .931 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0			16			2		15	.53	5_	0	_1_	0	1_	0	15
186 min -135.561 9 -1.035 6 008 2 0 5 0 5 0 6 187 18 max 178.428 2 281 15 .797 5 0 1 0 1 0 15 188 min -135.617 9 -1.213 6 008 2 0 5 0 5 0 6 189 19 max 178.36 2 323 15 .931 5 0 1						9						5		5		6
187 18 max 178.428 2 281 15 .797 5 0 1 0 1 0 1 0 15 188 min -135.617 9 -1.213 6 008 2 0 5 0 5 0 6 189 19 max 178.36 2 323 15 .931 5 0 1 0 1 0 1 190 min -135.673 9 -1.391 6 008 2 0 5 0 5 0 1 191 M8 1 max 1425.043 1 0 1 .55 1 0 1 0 1 192 min -402.295 3 0 1 -25.074 4 0 1 0 1 193 2 max 1425.108 1 0 1 .55 1			17			2										15
188 min -135.617 9 -1.213 6 008 2 0 5 0 5 0 6 189 19 max 178.36 2 323 15 .931 5 0 1 0 1 0 1 190 min -135.673 9 -1.391 6 008 2 0 5 0 5 0 1 191 M8 1 max 1425.043 1 0 1 .55 1 0 1 0 4 0 1 192 min -402.295 3 0 1 -25.074 4 0 1 0 1 0 1 193 2 max 1425.108 1 0 1 .55 1 0 1 0 1 194 min -402.246 3 0 1 -25.13 4 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>9</td> <td></td> <td>6</td> <td></td> <td></td> <td>0</td> <td>5</td> <td>0</td> <td>5</td> <td>0</td> <td></td>						9		6			0	5	0	5	0	
189 19 max 178.36 2 323 15 .931 5 0 1 0 1 0 1 190 min -135.673 9 -1.391 6 008 2 0 5 0 5 0 1 191 M8 1 max 1425.043 1 0 1 .55 1 0 1 0 4 0 1 192 min -402.295 3 0 1 -25.074 4 0 1 0 1 0 1 193 2 max 1425.108 1 0 1 .55 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 </td <td></td> <td></td> <td>18</td> <td></td> <td></td> <td>2</td> <td></td> <td>15</td> <td></td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td> <td>0</td> <td>15</td>			18			2		15			0		0		0	15
190 min -135.673 9 -1.391 6 008 2 0 5 0 5 0 1 191 M8 1 max 1425.043 1 0 1 .55 1 0 1 0 1 192 min -402.295 3 0 1 -25.074 4 0 1 0 1 193 2 max 1425.108 1 0 1 .55 1 0 1 0 1 194 min -402.246 3 0 1 -25.13 4 0 1 002 4 0 1 195 3 max 1425.172 1 0 1 .55 1 0 1 0 1 1 0 1 .002 4 0 1 1 0 1 .004 4 0 1 1 0 1						9					0	5	_	5	0	6
191 M8 1 max 1425.043 1 0 1 .55 1 0 1 0 4 0 1 192 min -402.295 3 0 1 -25.074 4 0 1 0 1 193 2 max 1425.108 1 0 1 .55 1 0 1 0 1 194 min -402.246 3 0 1 -25.13 4 0 1 002 4 0 1 195 3 max 1425.172 1 0 1 .55 1 0 1 0 1 196 min -402.198 3 0 1 -25.186 4 0 1 004 4 0 1 197 4 max 1425.237 1 0 1 .55 1 0 1 007 4			19			2		15	.931	5		1	0	1	0	1
192 min -402.295 3 0 1 -25.074 4 0 1 0 1 0 1 193 2 max 1425.108 1 0 1 .55 1 0 1 0 1 194 min -402.246 3 0 1 -25.13 4 0 1 002 4 0 1 195 3 max 1425.172 1 0 1 .55 1 0 1 0 1 196 min -402.198 3 0 1 -25.186 4 0 1 004 4 0 1 197 4 max 1425.237 1 0 1 .55 1 0 1 0 1 198 min -402.149 3 0 1 -25.242 4 0 1 007 4 0 1 <td>190</td> <td></td> <td></td> <td></td> <td></td> <td>9</td> <td>-1.391</td> <td>6</td> <td></td> <td>2</td> <td></td> <td>5</td> <td></td> <td>5</td> <td>0</td> <td>1</td>	190					9	-1.391	6		2		5		5	0	1
193 2 max 1425.108 1 0 1 .55 1 0 1 0 1 0 1 194 min -402.246 3 0 1 -25.13 4 0 1 002 4 0 1 195 3 max 1425.172 1 0 1 .55 1 0 1 0 1 196 min -402.198 3 0 1 -25.186 4 0 1 004 4 0 1 197 4 max 1425.237 1 0 1 .55 1 0 1 0 1 0 1 198 min -402.149 3 0 1 -25.242 4 0 1 007 4 0 1	191	M8	1	max	1425.043	1	0	1	.55	1	0	1	0	4	0	1
193 2 max 1425.108 1 0 1 .55 1 0 1 0 1 0 1 194 min -402.246 3 0 1 -25.13 4 0 1 002 4 0 1 195 3 max 1425.172 1 0 1 .55 1 0 1 0 1 196 min -402.198 3 0 1 -25.186 4 0 1 004 4 0 1 197 4 max 1425.237 1 0 1 .55 1 0 1 0 1 0 1 198 min -402.149 3 0 1 -25.242 4 0 1 007 4 0 1						3	0	1		4	0	1	0	1	0	1
194 min -402.246 3 0 1 -25.13 4 0 1 002 4 0 1 195 3 max 1425.172 1 0 1 .55 1 0 1 0 1 196 min -402.198 3 0 1 -25.186 4 0 1 004 4 0 1 197 4 max 1425.237 1 0 1 .55 1 0 1 0 1 .007 4 0 1 198 min -402.149 3 0 1 -25.242 4 0 1 007 4 0 1			2			-		1		1		1	0	1	0	1
195 3 max 1425.172 1 0 1 .55 1 0 1 0 1 0 1 196 min -402.198 3 0 1 -25.186 4 0 1 004 4 0 1 197 4 max 1425.237 1 0 1 .55 1 0 1 0 1 0 1 198 min -402.149 3 0 1 -25.242 4 0 1 007 4 0 1						3		1		4		1	002	4	0	1
196 min -402.198 3 0 1 -25.186 4 0 1 004 4 0 1 197 4 max 1425.237 1 0 1 .55 1 0 1 0 1 0 1 198 min -402.149 3 0 1 -25.242 4 0 1 007 4 0 1			3					1		1		1		1		1
197 4 max 1425.237 1 0 1 .55 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1								_				1				1
198 min -402.149 3 0 1 -25.242 4 0 1007 4 0 1			4					•				1		_		
																_
			5													

Model Name

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]	LC		LC	z-z Mome	. LC
200			min	-402.101	3	0	1	-25.298	4	0	1	009	4	0	1
201		6	max	1425.367	_1_	0	1	.55	1	0	1	0	1	0	1
202			min	-402.052	3	0	1	-25.355	4	0	1	011	4	0	1
203		7	max	1425.431	1	0	1	.55	1	0	1	0	1	0	1
204			min	-402.004	3	0	1	-25.411	4	0	1	014	4	0	1
205		8	max	1425.496	1	0	1	.55	1	0	1	0	1	0	1
206			min	-401.955	3	0	1	-25.467	4	0	1	016	4	0	1
207		9	max	1425.561	1	0	1	.55	1	0	1	0	1	0	1
208			min		3	0	1	-25.523	4	0	1	018	4	0	1
209		10	max	1425.625	1	0	1	.55	1	0	1	0	1	0	1
210			min	-401.858	3	0	1	-25.579	4	0	1	02	4	0	1
211		11		1425.69	1	0	1	.55	1	0	1	0	1	0	1
212			min		3	0	1	-25.635	4	0	1	023	4	0	1
213		12		1425.755	1	0	1	.55	1	0	1	0	1	0	1
214		12	min		3	0	1	-25.691	4	0	1	025	4	0	1
215		13	max		1	0	1	.55	1	0	1	0	1	0	1
216		13	min	-401.713	3	0	1	-25.747	4	0	1	027	4	0	1
217		14		1425.884	1	0	1	.55	1	0	1	0	1	0	1
218		14	min		3	0	1	-25.803	4	0	1	03	4	0	1
		15		1425.949	<u>ა</u> 1		1		1	-	1		1		1
219		15		-401.615		0	1	.55 -25.859	4	0	1	032	4	0	1
220		4.0	min		3_		•			0			_		
221		16		1426.014	1	0	1	.55	1	0	1	0	1	0	1
222		4-		-401.567	3	0	1	-25.915	4	0	1	034	4	0	1
223		17		1426.078	_1_	0	1	.55	1	0	1	0	1	0	1
224		1.0	min		3	0	1	<u>-25.971</u>	4	0	1	037	4	0	1
225		18		1426.143	1	0	1	.55	1	0	1	0	1	0	1
226			min	-401.47	3	0	1	-26.028	4	0	1	039	4	0	1
227		19		1426.208	_1_	0	1	.55	1_	0	1	0	1	0	1
228			min	-401.421	3	0	1	-26.084	4	0	1	041	4	0	1
229	M10	1	max		_1_	.685	4	1.103	5	0	1	0	4	0	1
230			min	-353.9	3	.172	15	073	1	002	5	0	3	0	1
231		2	max		_1_	.648	4	1.015	5	0	1	0	4	0	15
232			min	-353.828	3	.163	15	073	1	002	5	0	3	0	4
233		3	max	347.824	_1_	.61	4	.928	5	0	1	0	4	0	15
234			min	-353.755	3	.154	15	073	1	002	5	0	3	0	4
235		4	max	347.92	1_	.572	4	.841	5	0	1	0	4	0	15
236			min	-353.683	3	.145	15	073	1	002	5	0	3	0	4
237		5	max	348.016	1_	.534	4	.753	5	0	1	0	4	0	15
238			min	-353.611	3	.136	15	073	1	002	5	0	3	0	4
239		6	max		1	.496	4	.666	5	0	1	0	4	0	15
240			min	-353.539	3	.127	15	073	1	002	5	0	3	0	4
241		7	max		1	.459	4	.579	5	0	1	0	4	0	15
242			min		3	.118	15	073	1	002	5	0	3	0	4
243		8		348.306	1	.421	4	.491	5	0	1	0	4	0	15
244			min		3	.11	15	073	1	002	5	0	3	0	4
245		9	max		1	.383	4	.404	5	0	1	0	4	0	15
246			min	-353.322	3	.101	15	073	1	002	5	0	3	0	4
247		10		348.498	1	.345	4	.317	5	0	1	.001	4	0	15
248			min		3	.092	15	073	1	002	5	0	3	0	4
249		11	max		1	.307	4	.229	5	0	1	.001	4	0	15
250			min	-353.177	3	.083	15	073	1	002	5	0	3	0	4
251		12		348.691	1	.269	4	.142	5	0	1	.001	4	0	15
252		14		-353.105	3	.074	15	073	1	002	5	0	3	0	4
253		13			_ <u></u>	.232	4	.055	5	0	1	.001	4	0	15
254		13	min		3	.065	15	073	1	002	5	0	3	0	4
255		14	max		<u> </u>	.194	4	073 021	10	0	1	.001	5	0	15
256		14	min		3	.056	15	021	1	002	5	0	3	0	4
200			1111111	-552.90	J	.000	IJ	073		002	J	U	J	U	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
257		15	max	348.98	1	.156	4	021	10	0	1	.001	5	0	15
258			min	-352.888	3	.037	9	121	4	002	5	0	3	0	4
259		16	max	349.076	1	.118	4	021	10	0	1	.001	5	0	15
260			min	-352.816	3	.013	9	209	4	002	5	0	3	0	4
261		17	max	349.173	1	.08	4	021	10	0	1	.001	5	0	15
262			min	-352.744	3	012	0	296	4	002	5	0	3	0	4
263		18	max	349.269	1	.057	3	021	10	0	1	0	5	0	15
264			min	-352.671	3	036	9	383	4	002	5	0	3	0	4
265		19	max	349.366	1	.035	3	021	10	0	1	0	5	0	15
266			min	-352.599	3	061	9	471	4	002	5	0	3	0	4
267	M11	1	max	38.212	10	1.809	6	.444	1	.001	4	.001	5	0	6
268			min	-80.46	1	.424	15	-1.195	5	0	10	001	1	0	15
269		2	max	38.156	10	1.631	6	.444	1	.001	4	.001	5	0	6
270			min	-80.527	1	.382	15	-1.061	5	0	10	001	1	0	15
271		3	max	38.1	10	1.453	6	.444	1	.001	4	0	5	0	2
272			min	-80.594	1	.34	15	927	5	0	10	0	1	0	3
273		4	max	38.045	10	1.275	6	.444	1	.001	4	0	5	0	15
274			min	-80.661	1	.298	15	794	5	0	10	0	1	0	1
275		5	max	37.989	10	1.097	6	.444	1	.001	4	0	5	0	15
276			min	-80.728	1	.256	15	66	5	0	10	0	1	0	4
277		6	max	37.933	10	.919	6	.444	1	.001	4	0	5	0	15
278			min	-80.795	1	.215	15	527	5	0	10	0	1	0	4
279		7	max	37.877	10	.741	6	.444	1	.001	4	0	5	0	15
280			min	-80.862	1	.173	15	393	5	0	10	0	1	0	4
281		8	max	37.821	10	.563	6	.444	1	.001	4	0	5	0	15
282			min	-80.929	1	.131	15	26	5	0	10	0	1	0	4
283		9	max	37.765	10	.385	6	.444	1	.001	4	0	3	0	15
284			min	-80.996	1	.089	15	126	5	0	10	0	1	001	4
285		10	max	37.709	10	.207	6	.444	1	.001	4	0	3	0	15
286			min	-81.063	1	.047	15	.004	15	0	10	0	1	001	4
287		11	max	37.653	10	.034	2	.444	1	.001	4	0	3	0	15
288			min	-81.131	1	.001	3	.004	12	0	10	0	1	001	4
289		12	max	37.597	10	036	15	.444	1	.001	4	0	5	0	15
290			min	-81.198	1	149	4	.004	12	0	10	0	1	001	4
291		13	max	37.541	10	078	15	.496	4	.001	4	0	4	0	15
292			min	-81.265	1	327	4	.004	12	0	10	0	10	001	4
293		14	max	37.485	10	12	15	.63	4	.001	4	0	4	0	15
294			min	-81.332	1	505	4	.004	12	0	10	0	10	001	4
295		15	max	37.429	10	162	15	.763	4	.001	4	0	4	0	15
296			min	-81.399	1	683	4	.004	12	0	10	0	10	0	4
297		16	max	37.374	10	204	15	.897	4	.001	4	0	4	0	15
298			min		1	861	4	.004	12	0	10	0	10	0	4
299		17	max	37.318	10	246	15	1.03	4	.001	4	0	4	0	15
300			min	-81.533	1	-1.039	4	.004	12	0	10	0	10	0	4
301		18	max	37.262	10	288	15	1.164	4	.001	4	.001	4	0	15
302			min	-81.6	1	-1.218	4	.004	12	0	10	0	10	0	4
303		19	max	37.206	10	329	15	1.297	4	.001	4	.001	4	0	1
304			min	-81.667	1	-1.396	4	.004	12	0	10	0	10	0	1
305	M12	1	max	475.184	1	0	1	1.879	1	0	1	0	4	0	1
306			min	-116.373	3	0	1	-22.933	5	0	1	0	3	0	1
307		2		475.248	1	0	1	1.879	1	0	1	0	1	0	1
308				-116.325	3	0	1	-22.989	5	0	1	002	5	0	1
309		3		475.313	1	0	1	1.879	1	0	1	0	1	0	1
310				-116.276	3	0	1	-23.045	5	0	1	004	5	0	1
311		4		475.378	1	0	1	1.879	1	0	1	0	1	0	1
312				-116.228	3	0	1	-23.101	5	0	1	006	5	0	1
313		5		475.442	1	0	1	1.879	1	0	1	0	1	0	1
	_					_				_					

: Schletter, Inc. : HCV

Job Number :
Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
314			min	-116.179	3	0	1	-23.157	5	0	1	008	5	0	1
315		6	max	475.507	1	0	1	1.879	1	0	1	0	1	0	1
316			min	-116.131	3	0	1	-23.214	5	0	1	01	5	0	1
317		7	max	475.572	1	0	1	1.879	1	0	1	.001	1	0	1
318			min	-116.082	3	0	1	-23.27	5	0	1	012	5	0	1
319		8	max	475.637	1	0	1	1.879	1	0	1	.001	1	0	1
320			min	-116.034	3	0	1	-23.326	5	0	1	014	5	0	1
321		9	max	475.701	1	0	1	1.879	1	0	1	.001	1	0	1
322			min	-115.985	3	0	1	-23.382	5	0	1	017	5	0	1
323		10	max	475.766	1	0	1	1.879	1	0	1	.002	1	0	1
324			min	-115.937	3	0	1	-23.438	5	0	1	019	5	0	1
325		11	max	475.831	1	0	1	1.879	1	0	1	.002	1	0	1
326			min	-115.888	3	0	1	-23.494	5	0	1	021	5	0	1
327		12	max	475.895	1	0	1	1.879	1	0	1	.002	1	0	1
328			min	-115.839	3	0	1	-23.55	5	0	1	023	5	0	1
329		13	max	475.96	1	0	1	1.879	1	0	1	.002	1	0	1
330			min	-115.791	3	0	1	-23.606	5	0	1	025	5	0	1
331		14	max	476.025	1	0	1	1.879	1	0	1	.002	1	0	1
332			min	-115.742	3	0	1	-23.662	5	0	1	027	5	0	1
333		15	max	476.09	1	0	1	1.879	1	0	1	.002	1	0	1
334			min	-115.694	3	0	1	-23.718	5	0	1	029	5	0	1
335		16	max	476.154	1	0	1	1.879	1	0	1	.003	1	0	1
336			min	-115.645	3	0	1	-23.774	5	0	1	031	5	0	1
337		17	max		1	0	1	1.879	1	0	1	.003	1	0	1
338			min	-115.597	3	0	1	-23.83	5	0	1	033	5	0	1
339		18	max		1	0	1	1.879	1	0	1	.003	1	0	1
340			min	-115.548	3	0	1	-23.886	5	0	1	036	5	0	1
341		19	max		1	0	1	1.879	1	0	1	.003	1	0	1
342			min	-115.5	3	0	1	-23.943	5	0	1	038	5	0	1
343	M1	1	max	85.254	1	346.255	3	-1.685	12	0	1	.072	1	.015	1
344			min	3.368	12	-346.449	1	-36.516	1	0	3	.004	12	013	3
345		2	max	85.326	1	346.052	3	-1.685	12	0	1	.064	1	.09	1
346			min	3.404	12	-346.719	1	-36.516	1	0	3	.004	12	088	3
347		3	max	97.925	1	5.615	9	-1.737	12	0	5	.055	1	.164	1
348			min	-7.324	3	-23.522	3	-36.199	1	0	1	.003	12	161	3
349		4	max	97.997	1	5.39	9	-1.737	12	0	5	.047	1	.165	1
350			min	-7.27	3	-23.725	3	-36.199	1	0	1	.003	12	156	3
351		5	max	98.069	1	5.165	9	-1.737	12	0	5	.039	1	.165	1
352			min	-7.216	3	-23.927	3	-36.199	1	0	1	.002	12	151	3
353		6	max	98.141	1	4.941	9	-1.737	12	0	5	.032	1	.166	1
354			min			-24.129		-36.199	1	0	1	.002	12		3
355		7	max		1	4.716	9	-1.737	12	0	5	.024	1	.166	1
356			min	-7.107	3	-24.332	3	-36.199	1	0	1	.002	10	141	3
357		8	max		1	4.491	9	-1.737	12	0	5	.016	1	.167	1
358			min	-7.053	3	-24.534	3	-36.199	1	0	1	.001	10	135	3
359		9	max	98.358	1	4.266	9	-1.737	12	0	5	.008	1	.167	1
360			min	-6.999	3	-24.736	3	-36.199	1	0	1	0	10	13	3
361		10	max	98.431	1	4.042	9	-1.737	12	0	5	.002	4	.168	1
362			min	-6.945	3	-24.939	3	-36.199	1	0	1	0	10	125	3
363		11	max	98.503	1	3.817	9	-1.737	12	0	5	0	3	.169	1
364			min	-6.891	3	-25.141	3	-36.199	1	0	1	008	1	119	3
365		12	max		1	3.592	9	-1.737	12	0	5	0	12	.17	1
366			min	-6.836	3	-25.343	3	-36.199	1	0	1	016	1	114	3
367		13		98.647	1	3.367	9	-1.737	12	0	5	0	12	.171	1
368			min	-6.782	3	-25.545	3	-36.199	1	0	1	023	1	108	3
369		14	max	98.72	1	3.143	9	-1.737	12	0	5	001	12	.172	1
370			min	-6.728	3	-25.748	3	-36.199	1	0	1	031	1	103	3
010			1111111	0.720	J	20.740	J	00.199		U		.001		. 100	L J

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC_	z-z Mome	LC_
371		15	max	98.792	1	2.918	9	-1.737	12	0	5	001	12	.175	2
372			min	-6.674	3	-25.95	3	-36.199	1	0	1	039	1	097	3
373		16	max	69.283	2	11.47	10	-1.761	12	0	1	002	12	.179	2
374			min	-34.524	3	-59.37	1	-36.55	1	0	5	047	1	091	3
375		17	max	69.355	2	11.245	10	-1.761	12	0	1	002	12	.187	1
376		1	min	-34.469	3	-59.64	1	-36.55	1	0	5	055	1	08	3
377		18	max		12	398.517	1	-1.865	12	0	5	003	12	.103	1
378			min	-85.297	1	-164.473	3	-41.596	4	0	1	063	1	045	3
379		19	max	-2.763	12	398.247	1	-1.865	12	0	5	003	12	.016	1
380		13	min	-85.225	1	-164.675	3	-41.354	4	0	1	072	1	009	3
381	M5	1			1		3	0	10	0	1	.041	4	.026	3
	<u> </u>		max	194.15		1133.653									
382			min	2.235	<u>15</u>			-32.345	3	0	5	0	10	03	1
383		2	max	194.222	_1_	1133.451	3	0	10	0	1	.036	4	.215	1
384		_	min	2.257	15	-1132.959	1	-32.345	3	0	5	003	3	22	3
385		3	max	233.764	_1_	8.422	9	3.605	3	0	3	.03	4	.457	1
386			min	-35.744	3	-75.645	3	-22.65	4	0	4	009	3	461	3
387		4	max		<u>1</u>	8.197	9	3.605	3	0	3	.025	4	.46	1
388			min	-35.689	3	-75.848	3	-22.408	4	0	4	009	3	445	3
389		5	max	233.908	1	7.972	9	3.605	3	0	3	.02	4	.464	1
390			min	-35.635	3	-76.05	3	-22.166	4	0	4	008	3	428	3
391		6	max	233.98	1	7.748	9	3.605	3	0	3	.016	4	.468	1
392			min	-35.581	3	-76.252	3	-21.924	4	0	4	007	3	412	3
393		7	max		1	7.523	9	3.605	3	0	3	.011	4	.472	1
394		<u> </u>	min	-35.527	3	-76.454	3	-21.682	4	0	4	006	3	395	3
395		8	max	234.125	1	7.298	9	3.605	3	0	3	.006	4	.476	1
396		-	min	-35.473	3	-76.657	3	-21.44	4	0	4	006	3	378	3
397		9	max			7.073	9	3.605	3	0	3	.001	4	.48	1
		9											3		
398		40	min	-35.418	3_	-76.859	3	-21.198	4	0	4	005		362	3
399		10	max		1_	6.849	9	3.605	3	0	3	0	10	.484	1
400		4.4	min	-35.364	3	-77.061	3	-20.956	4	0	4	004	3	345	3
401		11	max		_1_	6.624	9	3.605	3	0	3	0	10	.488	1
402			min	-35.31	3	-77.264	3	-20.714	4	0	4	008	4	328	3
403		12	max		_1_	6.399	9	3.605	3	0	3	0	10	.492	1
404			min	-35.256	3	-77.466	3	-20.472	4	0	4	012	4	312	3
405		13	max	234.486	_1_	6.174	9	3.605	3	0	3	0	10	.497	1
406			min	-35.202	3	-77.668	3	-20.23	4	0	4	016	4	295	3
407		14	max	234.559	1	5.95	9	3.605	3	0	3	0	10	.501	1
408			min	-35.147	3	-77.871	3	-19.988	4	0	4	021	4	278	3
409		15	max	234.631	1	5.725	9	3.605	3	0	3	0	10	.505	1
410			min	-35.093	3	-78.073	3	-19.746	4	0	4	025	4	261	3
411		16		242.403	2	61.293	2	3.582	3	0	1	0	3	.515	2
412				-111.62	3	-144.624		-18.581	4	0	4	03	4	243	3
413		17	max		2	61.023	2	3.582	3	0	1	.001	3	.526	1
414		1	min	-111.566	3	-144.827	3	-18.339	4	0	4	034	4	212	3
415		12	max		12	1300.002	1	3.293	3	0	4	.002	3	.249	1
416		10	min		1	-534.421	3	-42.376	5	0	1	043	4	098	3
		10					-				•		_		
417		19	max		12	1299.732	1	3.293	3	0	4	.003	3	.018	3
418	MO	4	min		1_	-534.623		-42.134	5	0	1	052	4	033	1
419	M9	1	max	84.95	1_	346.235	3	172.749	4	0	3	0	5	.015	1
420			min	.638	<u> 15</u>	-346.447	1	2.336	10	0	1	071	1	<u>013</u>	3
421		2	max		_1_	346.033	3	172.991	4	0	3	.036	5	.09	1
422			min	.66	15	-346.716	1	2.336	10	0	1	062	1	088	3
423		3	max		_1_	5.593	9	35.229	1	0	1_	.07	5	.164	1
424			min	-7.118	3	-23.462	3	-29.96	5	0	10	054	1	161	3
425		4	max		1	5.368	9	35.229	1	0	1	.063	5	.164	1
426			min	-7.064	3	-23.665	3	-29.718	5	0	10	046	1	156	3
427		5	max		1	5.143	9	35.229	1	0	1	.057	5	.165	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]				Torque[k-ft]	LC \	/-y Mome	LC	z-z Mome	LC_
428			min	-7.01	3	-23.867	3	-29.476	5	0	10	038	1	151	3
429		6	max	98.342	1	4.918	9	35.229	1	0	1	.05	5	.165	1
430			min	-6.955	3	-24.069	3	-29.234	5	0	10	031	1	146	3
431		7	max	98.414	1	4.694	9	35.229	1	0	1	.044	5	.166	1
432			min	-6.901	3	-24.272	3	-28.992	5	0	10	023	1	141	3
433		8	max	98.486	1	4.469	9	35.229	1	0	1	.038	5	.167	1
434			min	-6.847	3	-24.474	3	-28.75	5	0	10	015	1	135	3
435		9	max	98.559	1	4.244	9	35.229	1	0	1	.032	5	.167	1
436			min	-6.793	3	-24.676	3	-28.508	5	0	10	008	1	13	3
437		10	max	98.631	1	4.019	9	35.229	1	0	1	.026	4	.168	1
438			min	-6.739	3	-24.878	3	-28.266	5	0	10	0	1	125	3
439		11	max	98.703	1	3.794	9	35.229	1	0	1	.021	4	.169	1
440			min	-6.684	3	-25.081	3	-28.024	5	0	10	0	10	119	3
441		12	max	98.775	1	3.57	တ	35.229	1	0	1	.016	4	.17	1
442			min	-6.63	3	-25.283	3	-27.782	5	0	10	0	10	114	3
443		13	max	98.848	1	3.345	9	35.229	1	0	1	.023	1	.171	1
444			min	-6.576	3	-25.485	3	-27.54	5	0	10	.001	10	108	3
445		14	max	98.92	1	3.12	9	35.229	1	0	1	.03	1	.172	1
446			min	-6.522	3	-25.688	3	-27.298	5	0	10	0	15	103	3
447		15	max	98.992	1	2.895	9	35.229	1	0	1	.038	1	.175	2
448			min	-6.468	3	-25.89	3	-27.056	5	0	10	004	5	097	3
449		16	max	69.425	2	11.178	10	35.647	1	0	10	.047	1	.179	2
450			min	-34.764	3	-59.335	1	-25.61	5	0	4	009	5	091	3
451		17	max	69.497	2	10.953	10	35.647	1	0	10	.054	1	.187	1
452			min	-34.71	3	-59.605	1	-25.368	5	0	4	014	5	08	3
453		18	max	6.564	5	398.519	1	37.471	1	0	1	.062	1	.103	1
454			min	-84.994	1	-164.471	3	-48.016	5	0	3	024	5	045	3
										_		074			
455		19	max	6.598	5	398.249	1	37.471	1	0	1	.071	1	.016	1
455 456		19	max min	6.598 -84.921	1	398.249 -164.673		37.471 -47.774		0				.016 009	
456	M13	19	min	-84.921	_	-164.673	1 3 1	-47.774	5	0	3	035	5	009	3
456 457	M13		min max	-84.921 172.75	1	-164.673 346.08	3	-47.774 638			3		5		3
456 457 458	M13		min max min	-84.921 172.75 2.336	1 4	-164.673 346.08 -346.236	3	-47.774 638 -84.945	5 15 1	0 .015 013	3 1 3	035 .071 0	5	009 0 0	3 1 3
456 457 458 459	M13	1	min max	-84.921 172.75 2.336 165.874	1 4 10	-164.673 346.08 -346.236 244.843	3 1 3	-47.774 638 -84.945 018	5 15	.015	3	035 .071	5 1 5	009 0 0 .205	3
456 457 458 459 460	M13	1 2	min max min max min	-84.921 172.75 2.336 165.874 2.336	1 4 10 4	-164.673 346.08 -346.236 244.843 -244.789	3 1 3 1	-47.774 638 -84.945 018 -64.703	5 15 1 15	0 .015 013 .015 013	3 1 3 1	035 .071 0 .019	5 1 5 1 5	009 0 0 .205 205	3 1 3 3
456 457 458 459 460 461	M13	1	min max min max min max	-84.921 172.75 2.336 165.874 2.336 158.998	1 4 10 4 10	-164.673 346.08 -346.236 244.843 -244.789 143.605	3 1 3 1 3	-47.774 638 -84.945 018 -64.703 .816	5 15 1 15 1	0 .015 013 .015 013 .015	3 1 3 1 3 1	035 .071 0 .019 0 .003	5 1 5 1	009 0 0 .205	3 1 3 3
456 457 458 459 460 461 462	M13	1 2	min max min max min max min	-84.921 172.75 2.336 165.874 2.336 158.998 2.336	1 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343	3 1 3 1 3	-47.774 638 -84.945 018 -64.703 .816 -44.461	5 15 1 15 1 5	0 .015 013 .015 013 .015 013	3 1 3 1 3	035 .071 0 .019	5 1 5 1 5 3	009 0 0 .205 205 .34 34	3 1 3 3 1 3 1
456 457 458 459 460 461 462 463	M13	2	min max min max min max min max	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121	1 4 10 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368	3 1 3 1 3 1 3	-47.774 638 -84.945 018 -64.703 .816 -44.461 1.774	5 15 1 15 1 5	0 .015 013 .015 013 .015 013 .015	3 1 3 1 3 1 3	035 .071 0 .019 0 .003 019	5 1 5 1 5 3	009 0 0 .205 205 .34 34	3 1 3 3 1 3
456 457 458 459 460 461 462 463 464	M13	2	min max min max min max min max min	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336	1 4 10 4 10 4 10	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897	3 1 3 1 3 1 3	-47.774 638 -84.945 018 -64.703 .816 -44.461 1.774 -24.219	5 15 1 15 1 5 1 5	0 .015 013 .015 013 .015 013 .015 013	3 1 3 1 3 1 3	035 .071 0 .019 0 .003 019 .001	5 1 5 1 5 3 1 3	009 0 0 .205 205 .34 34 .404 405	3 1 3 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465	M13	3	min max min max min max min max min max	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336 145.245	1 4 10 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897 59.55	3 1 3 1 3 1 3 1	-47.774 638 -84.945 018 -64.703 .816 -44.461 1.774 -24.219 2.732	5 15 1 15 1 5 1 5	0 .015 013 .015 013 .015 013 .015 013	3 1 3 1 3 1 3 1 3	035 .071 0 .019 0 .003 019 .001 043	5 1 5 1 5 3 1 3	009 0 0 .205 205 .34 34 .404 405	3 1 3 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466	M13	1 2 3 4 5	min max min max min max min max min max	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336 145.245 2.336	1 4 10 4 10 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897 59.55 -58.869	3 1 3 1 3 1 3 1 3 1	-47.774 638 -84.945 018 -64.703 .816 -44.461 1.774 -24.219 2.732 -3.977	5 15 1 15 1 5 1 5	0 .015 013 .015 013 .015 013 .015 013 .015 013	3 1 3 1 3 1 3 1 3	035 .071 0 .019 0 .003 019 .001 043 .002	5 1 5 1 5 3 1 3 1 5	009 0 0 .205 205 .34 34 .404 405 .398 399	3 1 3 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467	M13	3	min max min max min max min max min max min max	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336 145.245 2.336 138.369	1 4 10 4 10 4 10 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897 59.55 -58.869 160.996	3 1 3 1 3 1 3 1 3 1 3 1 3	-47.774 638 -84.945 018 -64.703 .816 -44.461 1.774 -24.219 2.732 -3.977 16.264	5 15 1 15 1 5 1 5 1 1 5	0 .015 013 .015 013 .015 013 .015 013 .015 013	3 1 3 1 3 1 3 1 3 1 3 1 3	035 .071 0 .019 0 .003 019 .001 043 .002 053	5 1 5 1 5 3 1 3 1 5	009 0 0 .205 205 .34 34 .404 405 .398 399 .322	3 1 3 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466	M13	1 2 3 4 5	min max min max min max min max min max min max	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336 145.245 2.336 138.369 2.336	1 4 10 4 10 4 10 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897 59.55 -58.869 160.996 -160.107	3 1 3 1 3 1 3 1 3 1 3 1	-47.774 638 -84.945 018 -64.703 .816 -44.461 1.774 -24.219 2.732 -3.977 16.264 398	5 15 1 15 1 5 1 5 1	0 .015 013 .015 013 .015 013 .015 013 .015 013 .015	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	035 .071 0 .019 0 .003 019 .001 043 .002 053 .004	5 1 5 1 5 3 1 3 1 5	009 0 0 .205 205 .34 34 .404 405 .398 399 .322 323	3 1 3 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469	M13	1 2 3 4 5	min max min max min max min max min max min max	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336 145.245 2.336 138.369	1 4 10 4 10 4 10 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897 59.55 -58.869 160.996 -160.107 262.443	3 1 3 1 3 1 3 1 3 1 3 1 3	-47.774 638 -84.945 018 -64.703 .816 -44.461 1.774 -24.219 2.732 -3.977 16.264	5 15 1 15 1 5 1 5 1 5 1 1 5	0 .015 013 .015 013 .015 013 .015 013 .015 013	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	035 .071 0 .019 0 .003 019 .001 043 .002 053	5 1 5 1 5 3 1 3 1 5 1	009 0 0 .205 205 .34 34 .404 405 .398 399 .322	3 1 3 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470	M13	1 2 3 4 5 6	min max min max min max min max min max min max min max min max	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336 145.245 2.336 138.369 2.336 131.493 2.336	1 4 10 4 10 4 10 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897 59.55 -58.869 160.996 -160.107 262.443 -261.344	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	-47.774 638 -84.945 018 -64.703 .816 -44.461 1.774 -24.219 2.732 -3.977 16.264 398 36.506 .412	5 15 1 15 1 5 1 5 1 1 5 1 1 3	0 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	035 .071 0 .019 0 .003 019 .001 043 .002 053 .004 049	5 1 5 1 5 3 1 3 1 5 1 5	009 0 0 .205 205 .34 34 .404 405 .398 399 .322 323 .175 177	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471	M13	1 2 3 4 5	min max min max min max min max min max min max min max min max	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336 145.245 2.336 138.369 2.336 131.493 2.336 124.617	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897 59.55 -58.869 160.996 -160.107 262.443 -261.344 363.889	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	-47.774 638 -84.945 018 -64.703 .816 -44.461 1.774 -24.219 2.732 -3.977 16.264 398 36.506 .412 56.748	5 15 1 15 1 5 1 5 1 1 5 1 1 1 2 1	0 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	035 .071 0 .019 0 .003 019 .001 043 .002 053 .004 049	5 1 5 1 5 3 1 3 1 5 1 5 1 5	009 0 0 .205 205 .34 34 .404 405 .398 399 .322 323 .175 177	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 3 1 1
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472	M13	1 2 3 4 5 6	min max min max min max min max min max min max min max min max min max	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336 145.245 2.336 138.369 2.336 131.493 2.336 124.617 2.336	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897 59.55 -58.869 160.996 -160.107 262.443 -261.344 363.889 -362.581	3 1 3 1 3 1 3 1 3 3 1 3 1 3 1 3 1 3 1 1 3 1 1 3 1	-47.774 638 -84.945 018 -64.703 .816 -44.461 1.774 -24.219 2.732 -3.977 16.264 398 36.506 .412 56.748 1.017	5 15 1 15 1 5 1 5 1 1 3 1 12 1	0 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	035 .071 0 .019 0 .003 019 .001 043 .002 053 .004 049 .007 03	5 1 5 1 5 3 1 3 1 5 1 5 1 5	009 0 0 .205 205 .34 34 .404 405 .398 399 .322 323 .175 177 .04 043	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473	M13	1 2 3 4 5 6	min max min max min max min max min max min max min max min max min max min max	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336 145.245 2.336 131.493 2.336 124.617 2.336 117.741	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897 59.55 -58.869 160.996 -160.107 262.443 -261.344 363.889 -362.581 465.335	3 1 3 1 3 1 3 1 3 3 1 3 1 3 1 3 1 3 1 3	-47.774 638 -84.945 018 -64.703 .816 -44.461 1.774 -24.219 2.732 -3.977 16.264 398 36.506 .412 56.748 1.017 76.99	5 15 1 15 1 5 1 5 1 1 5 1 1 3 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	0 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	035 .071 0 .019 0 .003 019 .001 043 .002 053 .004 049 .007 03	5 1 5 3 1 3 1 5 1 5 1 5 1 5 1 4 12	009 0 0 .205 205 .34 34 .404 405 .398 399 .322 323 .175 177 .04 043 .327	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474	M13	1 2 3 4 5 6	min max min	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336 145.245 2.336 138.369 2.336 131.493 2.336 124.617 2.336 117.741 2.336	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897 59.55 -58.869 160.996 -160.107 262.443 -261.344 363.889 -362.581 465.335 -463.818	3 1 3 1 3 1 3 1 3 3 1 3 1 3 1 3 1 3 1 1 3 1 1 3 1	-47.774 638 -84.945 018 -64.703 .816 -44.461 1.774 -24.219 2.732 -3.977 16.264 398 36.506 .412 56.748 1.017 76.99 1.621	5 15 1 15 1 5 1 5 1 5 1 1 5 1 1 5 1 1 1 5 1	0 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	035 .071 0 .019 0 .003 019 .001 043 .002 053 .004 049 .007 03 .011 0	5 1 5 1 5 3 1 5 1 5 1 5 1 5 1 5 1 5	009 0 0 .205 205 .34 34 .404 405 .398 399 .322 323 .175 177 .04 043 .327 331	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475	M13	1 2 3 4 5 6 7 8	min max	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336 145.245 2.336 138.369 2.336 131.493 2.336 124.617 2.336 117.741 2.336 110.865	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897 59.55 -58.869 160.996 -160.107 262.443 -261.344 363.889 -362.581 465.335 -463.818 566.782	3 1 3 1 3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3	-47.774638 -84.945018 -64.703 .816 -44.461 1.774 -24.219 2.732 -3.977 16.264398 36.506 .412 56.748 1.017 76.99 1.621 97.232	5 15 1 15 1 5 1 5 1 1 5 1 1 3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	035 .071 0 .019 0 .003 019 .001 043 .002 053 .004 049 .007 03 .011 0 .048	5 1 5 1 5 3 1 5 1 5 1 5 1 5 1 4 12 1	009 0 0 .205 205 .34 34 .404 405 .398 399 .322 323 .175 177 .04 043 .327 331 .684	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476	M13	1 2 3 4 5 6 7 8	min max min	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336 145.245 2.336 131.493 2.336 124.617 2.336 117.741 2.336 110.865 2.336	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897 59.55 -58.869 160.996 -160.107 262.443 -261.344 363.889 -362.581 465.335 -463.818 566.782 -565.056	3 1 3 1 3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3	-47.774638 -84.945018 -64.703 .816 -44.461 1.774 -24.219 2.732 -3.977 16.264398 36.506 .412 56.748 1.017 76.99 1.621 97.232 2.226	5 15 1 15 1 5 1 5 1 5 1 1 3 1 12 1 12 1	0 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	035 .071 0 .019 0 .003 019 .001 043 .002 053 .004 049 .007 03 .011 0 .048 .001 .109 021	5 1 5 1 5 3 1 3 1 5 1 5 1 5 1 5 1 5 1 1 5 1 1 5 1	009 0 0 .205 205 .34 34 .404 405 .398 399 .322 323 .175 177 .04 043 .327 331 .684 689	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477	M13	1 2 3 4 5 6 7 8	min max	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336 145.245 2.336 131.493 2.336 124.617 2.336 117.741 2.336 110.865 2.336 78.367	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897 59.55 -58.869 160.996 -160.107 262.443 -261.344 363.889 -362.581 465.335 -463.818 566.782 -565.056 463.818	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	-47.774638 -84.945018 -64.703 .816 -44.461 1.774 -24.219 2.732 -3.977 16.264398 36.506 .412 56.748 1.017 76.99 1.621 97.232 2.226 4.801	5 15 1 15 1 5 1 5 1 1 5 1 1 3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	035 .071 0 .019 0 .003 019 .001 043 .002 053 .004 049 .007 03 .011 0 .048 .001 .109 021	5 1 5 1 5 3 1 5 1 5 1 5 1 4 12 1 1 1 2	009 0 0 .205 205 .34 34 .404 405 .398 399 .322 323 .175 177 .04 043 .327 331 .684 689 .327	3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478	M13	1 2 3 4 5 6 7 8 9	min max	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336 145.245 2.336 131.493 2.336 124.617 2.336 117.741 2.336 110.865 2.336 78.367	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897 59.55 -58.869 160.996 -160.107 262.443 -261.344 363.889 -362.581 465.335 -463.818 566.782 -565.056 463.818 -465.335	3 1 3 1 3 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3	-47.774638 -84.945018 -64.703 .816 -44.461 1.774 -24.219 2.732 -3.977 16.264398 36.506 .412 56.748 1.017 76.99 1.621 97.232 2.226 4.801 -76.686	5 15 1 15 1 5 1 5 1 1 5 1 1 1 3 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1	0 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	035 .071 0 .019 0 .003 019 .001 043 .002 053 .004 049 .007 03 .011 0 .048 .001 .109 021	5 1 5 1 5 3 1 5 1 5 1 5 1 4 12 1 1 5 1 5	009 0 0 .205 205 .34 34 .404 405 .398 399 .322 323 .175 177 .04 043 .327 331 .684 689 .327 331	3 1 3 3 1 3 1 3 1 3 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 3 1 3 1 3 1 1 3 1 1 3 1 3 1 3 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 3 1 3 1 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479	M13	1 2 3 4 5 6 7 8 9	min max	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336 145.245 2.336 131.493 2.336 124.617 2.336 117.741 2.336 110.865 2.336 78.367 1.685 71.491	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897 59.55 -58.869 160.996 -160.107 262.443 -261.344 363.889 -362.581 465.335 -463.818 -465.335 362.581	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	-47.774638 -84.945018 -64.703 .816 -44.461 1.774 -24.219 2.732 -3.977 16.264398 36.506 .412 56.748 1.017 76.99 1.621 97.232 2.226 4.801 -76.686 5.759	5 15 1 1 5 1 5 1 5 1 1 5 1 1 1 1 1 1 1	0 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	035 .071 0 .019 0 .003 019 .001 043 .002 053 .004 049 .007 03 .011 0 .048 .001 .109 021	5 1 5 1 5 3 1 5 1 5 1 5 1 4 12 1 1 5 1 5 2	009 0 0 .205 205 .34 34 .404 405 .398 399 .322 323 .175 177 .04 043 .327 331 .684 689 .327 331 .04	3 1 3 3 1 3 1 3 1 3 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 1 1 3 1
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480	M13	1 2 3 4 5 6 7 8 9	min max	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336 145.245 2.336 131.493 2.336 124.617 2.336 117.741 2.336 110.865 2.336 78.367 1.685 71.491	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897 59.55 -58.869 160.996 -160.107 262.443 -261.344 363.889 -362.581 465.335 -463.818 -465.335 362.581 -363.889	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	-47.774638 -84.945018 -64.703 .816 -44.461 1.774 -24.219 2.732 -3.977 16.264398 36.506 .412 56.748 1.017 76.99 1.621 97.232 2.226 4.801 -76.686 5.759 -56.445	5 15 1 1 5 1 5 1 5 1 1 5 1 1 1 1 2 1 1 1 1	0 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	035 .071 0 .019 0 .003 019 .001 043 .002 053 .004 049 .007 03 .011 0 .048 .001 .109 021 .048 018	5 1 5 3 1 3 1 5 1 5 1 5 1 1 5 1 1 5 1 1 5 1 1 1 1	009 0 0 .205 205 .34 34 .404 405 .398 399 .322 323 .175 177 .04 043 .327 331 .684 689 .327 331 .04 043	3 1 3 3 1 3 1 3 1 3 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 3 1 3 1 1 3 1 1 3 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 3 1 1 3 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 3 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 3 1 3 1 1 3 1 1 3 1 1 1 3 1 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481	M13	1 2 3 4 5 6 7 8 9	min max	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336 145.245 2.336 131.493 2.336 124.617 2.336 117.741 2.336 110.865 2.336 78.367 1.685 71.491 1.685 64.615	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897 59.55 -58.869 160.996 -160.107 262.443 -261.344 363.889 -362.581 465.335 -463.818 -465.335 362.581 -363.889 261.344	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	-47.774638 -84.945018 -64.703 .816 -44.461 1.774 -24.219 2.732 -3.977 16.264398 36.506 .412 56.748 1.017 76.99 1.621 97.232 2.226 4.801 -76.686 5.759 -56.445 6.717	5 15 1 1 5 1 5 1 5 1 1 5 1 1 1 1 1 1 1	0 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	035 .071 0 .019 0 .003 019 .001 043 .002 053 .004 049 .007 03 .011 0 .048 .001 .109 021 .048 018	5 1 5 1 5 3 1 5 1 5 1 5 1 4 12 1 1 5 1 5 2	009 0 0 .205 205 .34 34 .404 405 .398 399 .322 323 .175 177 .04 043 .327 331 .684 689 .327 331 .04 043 .175	3 1 3 3 1 3 1 3 1 3 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 1 1 3 1
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482	M13	1 2 3 4 5 6 7 8 9 10 11	min max	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336 145.245 2.336 131.493 2.336 124.617 2.336 117.741 2.336 110.865 2.336 78.367 1.685 71.491 1.685 64.615	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897 59.55 -58.869 160.996 -160.107 262.443 -261.344 363.889 -362.581 465.335 -463.818 -465.335 362.581 -363.889 261.344 -262.443	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	-47.774638 -84.945018 -64.703 .816 -44.461 1.774 -24.219 2.732 -3.977 16.264398 36.506 .412 56.748 1.017 76.99 1.621 97.232 2.226 4.801 -76.686 5.759 -56.445 6.717 -36.203	5 15 1 15 1 5 1 5 1 1 5 1 1 1 1 2 1 1 1 2 1 1 1 1	0 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	035 .071 0 .019 0 .003 019 .001 043 .002 053 .004 049 .007 03 .011 0 .048 .001 .109 021 .048 018	5 1 5 1 5 3 1 5 1 5 1 5 1 4 12 1 1 5 1 5 1 1 5 1 1 1 1 1 1 1 1 1 1	009 0 0 .205 205 .34 34 .404 405 .398 399 .322 323 .175 177 .04 043 .327 331 .684 689 .327 331 .04 043 .175 177	3 1 3 3 1 3 1 3 1 3 1 3 1 1 3 1 3 1 1 3 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481	M13	1 2 3 4 5 6 7 8 9 10 11	min max	-84.921 172.75 2.336 165.874 2.336 158.998 2.336 152.121 2.336 145.245 2.336 131.493 2.336 124.617 2.336 117.741 2.336 110.865 2.336 78.367 1.685 71.491 1.685 64.615	1 4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	-164.673 346.08 -346.236 244.843 -244.789 143.605 -143.343 42.368 -41.897 59.55 -58.869 160.996 -160.107 262.443 -261.344 363.889 -362.581 465.335 -463.818 -465.335 362.581 -363.889 261.344	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	-47.774638 -84.945018 -64.703 .816 -44.461 1.774 -24.219 2.732 -3.977 16.264398 36.506 .412 56.748 1.017 76.99 1.621 97.232 2.226 4.801 -76.686 5.759 -56.445 6.717	5 15 1 1 5 1 5 1 5 1 1 5 1 1 1 1 1 1 1	0 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013 .015 013	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	035 .071 0 .019 0 .003 019 .001 043 .002 053 .004 049 .007 03 .011 0 .048 .001 .109 021 .048 018	5 1 5 1 5 3 1 3 1 5 1 5 1 5 1 4 12 1 1 5 1 5 1 1 5 1 1 1 1 1 1 1 1 1 1	009 0 0 .205 205 .34 34 .404 405 .398 399 .322 323 .175 177 .04 043 .327 331 .684 689 .327 331 .04 043 .175	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	
485		15	max	50.862	4	58.869	1	9.656	4	.013	3	0	5	.398	3
486			min	1.685	12	-59.55	3	134	10	015	1	053	1	399	1
487		16	max	43.986	4	41.897	3	24.523	1	.013	3	.007	5	.404	3
488			min	1.685	12	-42.368	1	1.555	12	015	1	043	1	405	1
489		17	max	37.11	4	143.343	3	44.765	1	.013	3	.014	5	.34	3
490			min	1.685	12	-143.605	1	2.159	12	015	1	019	1	34	1
491		18	max	36.589	1	244.789	3	65.007	1	.013	3	.026	4	.205	3
492			min	1.685	12	-244.843	1	2.764	12	015	1	0	10	205	1
493		19	max	36.589	1	346.236	3	85.249	1	.013	3	.072	1	0	1
494			min	1.685	12	-346.08	1	3.368	12	015	1	.004	12	0	3
495	M16	1	max	47.759	5	398.635	1	6.598	5	.009	3	.071	1	0	1
496			min	-37.394	1	-164.687	3	-84.927	1	016	1	035	5	0	3
497		2	max	40.883	5	281.981	1	7.556	5	.009	3	.019	1	.098	3
498			min	-37.394	1	-116.683	3	-64.685	1	016	1	03	5	236	1
499		3	max	34.007	5	165.327	1	8.514	5	.009	3	0	12	.162	3
500			min	-37.394	1	-68.68	3	-44.443	1	016	1	028	4	392	1
501		4	max	27.131	5	48.674	1	9.473	5	.009	3	002	12	.193	3
502			min	-37.394	1	-20.677	3	-24.201	1	016	1	043	1	466	1
503		5	max	20.255	5	27.327	3	10.431	5	.009	3	002	12	.191	3
504			min	-37.394	1	-67.98	1	-3.96	1	016	1	053	1	459	1
505		6	max	13.379	5	75.33	3	16.282	1	.009	3	002	12	.155	3
506			min	-37.394	1	-184.633	1	.02	3	016	1	049	1	372	1
507		7	max	6.503	5	123.333	3	36.524	1	.009	3	.005	5	.086	3
508			min	-37.394	1	-301.287	1	.663	12	016	1	03	1	203	1
509		8	max	.377	3	171.337	3	56.766	1	.009	3	.014	4	.047	1
510			min	-37.394	1	-417.941	1	1.268	12	016	1	002	3	016	3
511		9	max	.377	3	219.34	3	77.008	1	.009	3	.049	1	.378	1
512			min	-37.394	1	-534.594	1	1.872	12	016	1	0	3	152	3
513		10	max	28.021	5	-12.898	15	97.25	1	.006	14	.109	1	.789	1
514			min	-37.394	1	-651.248	1	-3.982	3	016	1	.003	12	321	3
515		11	max	21.145	5	534.594	1	4.474	5	.016	1	.048	1	.378	1
516			min	-37.257	1	-219.34	3	-76.704	1	009	3	015	5	152	3
517		12	max	14.269	5	417.941	1	5.432	5	.016	1	.002	2	.047	1
518			min	-37.257	1	-171.337	3	-56.463	1	009	3	012	5	016	3
519		13	max	7.393	5	301.287	1	6.39	5	.016	1	0	12	.086	3
520			min	-37.257	1	-123.333	3	-36.221	1	009	3	031	1	203	1
521		14	max	.516	5	184.633	1	7.349	5	.016	1	001	12	.155	3
522			min	-37.257	1	-75.33	3	-15.979	1	009	3	049	1	372	1
523		15	max	-1.864	12	67.98	1	9.301	4	.016	1	.003	5	.191	3
524			min	-37.257	1	-27.327	3	137	10	009	3	053	1	459	1
525		16		-1.864	12		3	24.505	1	.016	1	.009	5	.193	3
526			min	-37.257	1	-48.674	1	.95	12	009	3	043	1	466	1
527		17	max	-1.864	12	68.68	3	44.747	1	.016	1	.015	5	.162	3
528			min	-37.257	1	-165.327	1	1.554	12	009	3	019	1	392	1
529		18	max	-1.864	12	116.683	3	64.989	1	.016	1	.027	4	.098	3
530			min	-37.257	1	-281.981	1	2.159	12	009	3	0	10	236	1
531		19	max		12	164.687	3	85.231	1	.016	1	.072	1	0	1
532			min	-41.392	4	-398.635	1	2.763	12	009	3	.003	12	0	5
533	M15	1	max	0	1	1.416	9	.046	3	0	9	0	9	0	1
534			min	-38.544	3	0	1	024	9	0	3	0	3	0	1
535		2	max	0	1	1.259	9	.046	3	0	9	0	9	0	1
536			min	-38.598	3	0	1	024	9	0	3	0	3	0	9
537		3	max	0	1	1.101	9	.046	3	0	9	0	9	0	1
538			min	-38.652	3	0	1	024	9	0	3	0	3	0	9
539		4	max	0	1	.944	9	.046	3	0	9	0	9	0	1
540			min	-38.706	3	0	1	024	9	0	3	0	3	001	9
541		5	max	0	1	.787	9	.046	3	0	9	0	9	0	1
UTI			παλ	<u> </u>			<u> </u>	.070							

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]		y-y Mome		z-z Mome	LC
542			min	-38.76	3	0	1	024	9	0	3	0	3	002	9
543		6	max	0	_1_	.629	9	.046	3	0	9	0	9	0	1
544			min	-38.814	3	0	1	024	9	0	3	0	3	002	9
545		7	max	0	_1_	.472	9	.046	3	0	9	0	3	0	1
546			min	-38.868	3	0	1	024	9	0	3	0	9	002	9
547		8	max	0	_1_	.315	9	.046	3	0	9	0	3	0	1
548			min	-38.922	3	0	1	024	9	0	3	0	9	002	9
549		9	max	0	<u>1</u>	.157	9	.046	3	0	9	0	3	0	1
550			min	-38.976	3	0	1	024	9	0	3	0	9	002	9
551		10	max	0	_1_	0	1	.046	3	0	9	0	3	0	1
552			min	-39.03	3	0	1	024	9	0	3	0	9	002	9
553		11	max	0	_1_	0	1	.046	3	0	9	0	3	0	1
554			min	-39.084	3	157	9	024	9	0	3	0	9	002	9
555		12	max	0	_1_	0	1	.046	3	0	9	0	3	0	1
556			min	-39.138	3	315	9	024	9	0	3	0	9	002	9
557		13	max	0	1	0	1	.046	3	0	9	0	3	0	1
558			min	-39.192	3	472	9	024	9	0	3	0	9	002	9
559		14	max	0	1	0	1	.046	3	0	9	0	3	0	1
560			min	-39.246	3	629	0	024	9	0	3	0	9	002	9
561		15	max	0	1	0	1	.046	3	0	9	0	3	0	1
562			min	-39.3	3	787	9	024	9	0	3	0	9	002	9
563		16	max	0	1	0	1	.046	3	0	9	0	3	0	1
564			min	-39.354	3	944	9	024	9	0	3	0	9	001	9
565		17	max	0	1	0	1	.046	3	0	9	0	3	0	1
566			min	-39.408	3	-1.101	9	024	9	0	3	0	9	0	9
567		18	max	0	1	0	1	.046	3	0	9	0	3	0	1
568			min	-39.462	3	-1.259	9	024	9	0	3	0	9	0	9
569		19	max	0	1	0	1	.046	3	0	9	0	3	0	1
570			min	-39.516	3	-1.416	9	024	9	0	3	0	9	0	1
571	M16A	1	max	0	10	2.738	4	.217	4	0	3	0	3	0	1
572	WITOT		min		4	0	10	02	3	0	1	0	4	0	1
573		2	max	0	10	2.434	4	.197	4	0	3	0	3	0	10
574				-213.968	4	0	10	02	3	0	1	0	4	0	4
575		3	max	0	10	2.13	4	.176	4	0	3	0	3	0	10
576		Ŭ	min	-214.038	4	0	10	02	3	0	1	0	4	002	4
577		4	max	0	10	1.825	4	.156	4	0	3	0	3	0	10
578			min	-214.108	4	0	10	02	3	0	1	0	1	003	4
579		5	max	0	10	1.521	4	.135	4	0	3	0	3	0	10
580		Ť	min	-214.178	4	0	10	02	3	0	1	0	1	003	4
581		6	max	0	10	1.217	4	.115	4	0	3	0	3	0	10
582				-214.248		0	10	02	3	0	1	0	1	004	4
583		7	max	0	10	.913	4	.095	4	0	3	0	5	0	10
584				-214.318	4	0	10	02	3	0	1	0	1	004	4
585		8	max	0	10	.608	4	.074	4	0	3	0	5	0	10
586			min	-214.389	4	0	10	02	3	0	1	0	1	004	4
587		9	max	0	10	.304	4	.054	4	0	3	0	5	0	10
588			min	-214.459	4	0	10	02	3	0	1	0	1	005	4
589		10	max	0	10	0	1	.033	4	0	3	0	5	0	10
590		10		-214.529	4	0	1	02	3	0	1	0	1	005	4
		11					•		1	_	-	_			_
591 592		11	max	0 -214.599	<u>10</u> 4	304	10	.028 02	3	0	<u>3</u>	0	<u>5</u>	005	10
		12					10							005 0	
593		12	max	0	10	0		.028	1	0	3	0	5	_	10
594		40		-214.669	4	608	4	02	3	0	1	0	1	004	4
595		13	max	0	10	0	10	.028	1	0	3	0	5	0	10
596		4.4	min	-214.739	4	913	4	032	5	0	1	0	9	004	4
597		14	max	0	10	0	10	.028	1	0	3	0	4	0	10
598			min	-214.81	4	-1.217	4	052	5	0	1	0	3	004	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
599		15	max	0	10	0	10	.028	1	0	3	0	4	0	10
600			min	-214.88	4	-1.521	4	073	5	0	1	0	3	003	4
601		16	max	0	10	0	10	.028	1	0	3	0	4	0	10
602			min	-214.95	4	-1.825	4	093	5	0	1	0	3	003	4
603		17	max	.02	2	0	10	.028	1	0	3	0	1	0	10
604			min	-215.02	4	-2.13	4	114	5	0	1	0	3	002	4
605		18	max	.092	2	0	10	.028	1	0	3	0	1	0	10
606			min	-215.09	4	-2.434	4	134	5	0	1	0	3	0	4
607		19	max	.164	2	0	10	.028	1	0	3	0	1	0	1
608			min	-215.16	4	-2.738	4	154	5	0	1	0	5	0	1

Envelope Member Section Deflections

				<u> </u>				F* 1		D		/) I / D ::		/) I / D //	
4	Member	Sec	I	x [in]	LC 1	y [in]	LC	z [in]	1	x Rotate [r					
1	M2	1	max	.003	1	.006	2	.007	1	1.378e-3	5_	NC 4040-04	3	NC 40.40.740	2
2			min	003	3	005	3	014	5	-5.003e-4	1_	4848.01	2	4043.719	
3		2	max	.002	1	.006	2	.007	1	1.401e-3	5_	NC	3_	NC 1005.050	2
4			min	003	3	005	3	013	5	-4.812e-4	1_	5248.787	2	4385.058	
5		3	max	.002	1	.005	2	.006	1	1.425e-3	5_	NC	3	NC 4700.04	2
6			min	002	3	00 <u>5</u>	3	012	5	-4.622e-4	_1_	5718.431	2	4786.91	1
7		4	max	.002	1	.005	2	.006	1	1.448e-3	5	NC	3	NC	2
8		_	min	002	3	004	3	012	5	-4.431e-4	1_	6272.479	2	5264.088	1
9		5	max	.002	1	.004	2	.005	1	1.472e-3	5	NC	3	NC	2
10			min	002	3	004	3	011	5	-4.241e-4	<u>1</u>	6931.345	2	5836.381	1
11		6	max	.002	1	.004	2	.005	1	1.495e-3	5	NC	_1_	NC	2
12			min	002	3	004	3	011	5	-4.05e-4	1_	7722.276	2	6530.712	1_
13		7	max	.002	1	.003	2	.004	1	1.519e-3	5_	NC	_1_	NC	2
14			min	002	3	004	3	01	5	-3.859e-4	1_	8682.33	2	7384.488	
15		8	max	.002	1	.003	2	.004	1	1.542e-3	5	NC	_1_	NC	2
16			min	002	3	004	3	009	5	-3.669e-4	1_	9863.017	2	8450.955	
17		9	max	.001	1	.003	2	.003	1	1.566e-3	5	NC	_1_	NC	2
18			min	002	3	003	3	008	5	-3.478e-4	1	NC	1_	9808.073	1
19		10	max	.001	1	.002	2	.003	1	1.589e-3	5_	NC	_1_	NC	1_
20			min	001	3	003	3	008	5	-3.287e-4	1_	NC	1_	NC	1
21		11	max	.001	1	.002	2	.002	1	1.613e-3	5_	NC	_1_	NC	1
22			min	001	3	003	3	007	5	-3.097e-4	1	NC	1	NC	1
23		12	max	0	1	.002	2	.002	1	1.636e-3	5_	NC	_1_	NC	1_
24			min	001	3	003	3	006	5	-2.906e-4	1_	NC	1	NC	1
25		13	max	0	1	.001	2	.001	1	1.66e-3	5_	NC	<u>1</u>	NC	1_
26			min	0	3	002	3	005	5	-2.715e-4	1	NC	1	NC	1
27		14	max	0	1	0	2	.001	1	1.683e-3	5_	NC	_1_	NC	1_
28			min	0	3	002	3	004	5	-2.525e-4	1	NC	1	NC	1
29		15	max	0	1	0	2	0	1	1.706e-3	5_	NC	<u>1</u>	NC	1_
30			min	0	3	002	3	004	5	-2.334e-4	1	NC	1	NC	1
31		16	max	0	1	0	2	0	1	1.73e-3	5	NC	1	NC	1
32			min	0	3	001	3	003	5	-2.143e-4	1	NC	1	NC	1
33		17	max	0	1	0	2	0	1	1.753e-3	5	NC	1_	NC	1
34			min	0	3	0	3	002	5	-1.953e-4	1	NC	1	NC	1
35		18	max	0	1	0	2	0	1	1.777e-3	5	NC	1_	NC	1
36			min	0	3	0	3	0	5	-1.762e-4	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	1.8e-3	5	NC	1	NC	1
38			min	0	1	0	1	0	1	-1.571e-4	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	7.134e-5	1	NC	1	NC	1
40			min	0	1	0	1	0	1	-8.196e-4	5	NC	1	NC	1
41		2	max	0	1	0	2	.004	5	8.983e-5	1	NC	1	NC	1
42			min	0	10	0	3	0	1	-8.236e-4	5	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC	· ·	LC
43		3	max	0	1	0	2	.009	5	1.083e-4	_1_	NC	_1_	NC	1
44			min	0	10	001	3	0	1	-8.276e-4	5	NC	1_	NC	1
45		4	max	0	1	0	2	.013	5	1.268e-4	1_	NC	1_	NC	1
46			min	0	10	002	3	0	1	-8.315e-4	5	NC	1	NC	1
47		5	max	0	1	0	2	.018	4	1.453e-4	1	NC	1	NC	1
48			min	0	10	003	3	0	1	-8.355e-4	5	NC	1	NC	1
49		6	max	0	1	0	2	.022	4	1.638e-4	1	NC	1	NC	1
50			min	0	10	003	3	0	1	-8.395e-4	5	NC	1	NC	1
51		7	max	0	1	0	2	.026	4	1.823e-4	1	NC	1	NC	1
52			min	0	10	004	3	0	1	-8.435e-4	5	NC	1	NC	1
53		8	max	0	1	.001	2	.031	4	2.007e-4	1	NC	1	NC	1
54			min	0	10	005	3	0	1	-8.474e-4	5	NC	1	NC	1
55		9	max	0	1	.002	2	.035	4	2.192e-4	1	NC	1	NC	1
56			min	0	10	005	3	0	1	-8.514e-4	5	NC	1	NC	1
57		10	max	0	1	.002	2	.039	4	2.377e-4	1	NC	1	NC	1
58		10	min	0	10	006	3	0	10	-8.554e-4	5	NC	1	NC	1
59		11	max	0	1	.002	2	.044	4	2.562e-4	1	NC	1	NC	1
					10								1		1
60		40	min	0		006	3	0	10	-8.594e-4	5_	NC NC		NC NC	
61		12	max	0	1	.003	2	.048	4	2.747e-4	1_	NC NC	1_	NC NC	1
62		40	min	0	10	006	3	0	10	-8.633e-4	5	NC	1_	NC	1
63		13	max	0	1	.004	2	.052	4	2.932e-4		NC	1_	NC	1
64			min	0	10	007	3	0	10	-8.673e-4	5	NC	1_	NC	1
65		14	max	0	1	.005	2	.056	4	3.116e-4	_1_	NC	_1_	NC	1
66			min	0	10	007	3	0	10	-8.713e-4	5	NC	1_	NC	1
67		15	max	0	1	.005	2	.06	4	3.301e-4	1_	NC	3	NC	1_
68			min	0	10	007	3	0	10	-8.753e-4	5	8516.468	2	NC	1
69		16	max	0	1	.006	2	.063	4	3.486e-4	1	NC	3	NC	1
70			min	0	10	007	3	0	10	-8.793e-4	5	7270.682	2	NC	1
71		17	max	0	1	.007	2	.067	4	3.671e-4	1	NC	3	NC	1
72			min	0	10	007	3	0	10	-8.832e-4	5	6294.299	2	NC	1
73		18	max	0	1	.008	2	.071	4	3.856e-4	1	NC	3	NC	1
74			min	0	10	007	3	0	10	-8.872e-4	5	5522.322	2	NC	1
75		19	max	0	1	.009	2	.075	4	4.041e-4	1	NC	3	NC	1
76			min	0	10	007	3	0	10	-8.912e-4	5	4907.747	2	NC	1
77	M4	1	max	.002	1	.007	2	0	10	3.219e-3	5	NC	1	NC	2
78	IVIT		min	0	3	005	3	079	4	-4.66e-4	1	NC	1	244.566	4
79		2	max	.002	1	.007	2	0	10	3.219e-3	5	NC	1	NC	2
80			min	0	3	005	3	072	4	-4.66e-4	1	NC	1	266.604	4
81		3		.002	1	.006	2	072 0	10	3.219e-3	5	NC	1	NC	2
		3	max										1		_
82		4	min	0	3	005	2	066	4	-4.66e-4	<u>1</u> 5	NC NC	1	292.834	1
83		4	max	.002		.006		0		3.219e-3	-	NC NC		NC 224.26	-
84		-	min	0	3	<u>004</u>	3	06	4	-4.66e-4	1_	NC NC	1_	324.36	4
85		5	max	.002	1	.006	2	0	10	3.219e-3	5_	NC NC	1_	NC 200 cor	1
86		_	min	0	3	004	3	053	4	-4.66e-4	1_	NC NC	1_	362.685	4
87		6	max	.002	1	.005	2	0	10	3.219e-3	5	NC	1_	NC	1
88		_	min	0	3	004	3	047	4	-4.66e-4	_1_	NC	1_	409.901	4
89		7	max	.002	1	.005	2	0	10	3.219e-3	_5_	NC	_1_	NC	1
90			min	0	3	004	3	041	4	-4.66e-4	1	NC	1_	468.987	4
91		8	max	.001	1	.004	2	0	10	3.219e-3	5	NC	1_	NC	1
92			min	0	3	003	3	036	4	-4.66e-4	1	NC	1	544.305	4
93		9	max	.001	1	.004	2	0	10	3.219e-3	5	NC	1_	NC	1
94			min	0	3	003	3	03	4	-4.66e-4	1	NC	1	642.451	4
95		10	max	.001	1	.004	2	0	10	3.219e-3	5	NC	1	NC	1
96			min	0	3	003	3	025	4	-4.66e-4	1	NC	1	773.796	4
97		11	max	.001	1	.003	2	0	10	3.219e-3	5	NC	1	NC	1
98			min	0	3	002	3	02	4	-4.66e-4	1	NC	1	955.419	4
99		12	max	0	1	.002	2	0	10		5	NC	1	NC	1
		114	πιαλ			.000			110	U.2 100-0	<u> </u>	110		110	

Schletter, Inc.HCV

Job Number : Standard F

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC		LC	(n) L/z Ratio	
100			min	0	3	002	3	016	4	-4.66e-4	1_	NC	1_	1217.11	4
101		13	max	0	1	.002	2	0	10	3.219e-3	5_	NC	_1_	NC	1
102			min	0	3	002	3	012	4	-4.66e-4	1	NC	1	1614.751	4
103		14	max	0	1	.002	2	0	10	3.219e-3	5	NC	1_	NC	1
104			min	0	3	001	3	009	4	-4.66e-4	1	NC	1	2263.603	4
105		15	max	0	1	.002	2	0	10	3.219e-3	5	NC	1_	NC	1
106			min	0	3	001	3	006	4	-4.66e-4	1	NC	1	3434.457	4
107		16	max	0	1	.001	2	0	10	3.219e-3	5	NC	1	NC	1
108			min	0	3	0	3	003	4	-4.66e-4	1	NC	1	5897.099	4
109		17	max	0	1	0	2	0	10	3.219e-3	5	NC	1_	NC	1
110			min	0	3	0	3	002	4	-4.66e-4	1	NC	1	NC	1
111		18	max	0	1	0	2	0	10	3.219e-3	5	NC	1	NC	1
112			min	0	3	0	3	0	4	-4.66e-4	1	NC	1	NC	1
113		19	max	0	1	0	1	0	1	3.219e-3	5	NC	1	NC	1
114			min	0	1	0	1	0	1	-4.66e-4	1	NC	1	NC	1
115	M6	1	max	.008	1	.018	2	.003	1	1.495e-3	4	NC	3	NC	2
116			min	009	3	013	3	014	5	-6.478e-8	10	1642.072	2	9515.421	1
117		2	max	.008	1	.017	2	.003	1	1.517e-3	4	NC	3	NC	1
118			min	008	3	012	3	013	5	-6.137e-8	10	1752.238	2	NC	1
119		3	max	.007	1	.016	2	.003	1	1.538e-3	4	NC	3	NC	1
120			min	008	3	012	3	012	5	-5.796e-8	10	1877.877	2	NC	1
121		4	max	.007	1	.015	2	.002	1	1.56e-3	4	NC	3	NC	1
122			min	007	3	011	3	012	5	-5.455e-8	10	2022.078	2	NC	1
123		5	max	.006	1	.014	2	.002	1	1.582e-3	4	NC	3	NC	1
124			min	007	3	011	3	011	5	-8.973e-8	2	2188.824	2	NC	1
125		6	max	.006	1	.013	2	.002	1	1.604e-3	4	NC	3	NC	1
126			min	006	3	01	3	011	5	-1.925e-6	2	2383.324	2	NC	1
127		7	max	.006	1	.012	2	.002	1	1.625e-3	4	NC	3	NC	1
128			min	006	3	009	3	01	5	-3.76e-6	2	2612.53	2	NC	1
129		8	max	.005	1	.01	2	.002	1	1.647e-3	4	NC	3	NC	1
130			min	005	3	009	3	009	5	-6.335e-6	1	2885.925	2	NC	1
131		9	max	.005	1	.009	2	.001	1	1.669e-3	4	NC	3	NC	1
132			min	005	3	008	3	009	5	-1.216e-5	1	3216.792	2	NC	1
133		10	max	.004	1	.008	2	.001	1	1.69e-3	4	NC	3	NC	1
134			min	004	3	007	3	008	5	-1.799e-5	1	3624.317	2	NC	1
135		11	max	.004	1	.007	2	0	1	1.712e-3	4	NC	3	NC	1
136			min	004	3	006	3	007	5	-2.382e-5	1	4137.283	2	NC	1
137		12	max	.003	1	.006	2	0	1	1.734e-3	4	NC	3	NC	1
138		' <u>-</u>	min	003	3	006	3	006	5	-2.964e-5	1	4800.921	2	NC	1
139		13	max	.003	1	.005	2	0	1	1.755e-3	4	NC	3	NC	1
140		10	min	003	3	005	3	005	5	-3.547e-5		5690.615	2	NC	1
141		14		.002	1	.004	2	0	1	1.777e-3	4	NC	3	NC	1
142			min	002	3	004	3	005	5	-4.13e-5	1	6942.053	2	NC	1
143		15	max	.002	1	.003	2	0	1	1.799e-3	4	NC	1	NC	1
144		10	min	002	3	003	3	004	5	-4.712e-5	1	8826.601	2	NC	1
145		16	max	.001	1	.003	2	<u>.004</u>	1	1.82e-3	4	NC	1	NC	1
146		10	min	001	3	003	3	003	5	-5.295e-5	1	NC	1	NC	1
147		17	max	0	1	.002	2	<u>.005</u>	1	1.842e-3	4	NC	1	NC	1
148			min	0	3	002	3	002	5	-5.877e-5		NC	1	NC	1
149		18	max	0	1	0	2	<u>002</u> 0	1	1.864e-3	4	NC	1	NC	1
150		10	min	0	3	0	3	0	5	-6.46e-5	1	NC	1	NC	1
151		19	max	0	1	0	1	0	1	1.885e-3	4	NC	1	NC	1
152		13	min	0	1	0	1	0	1	-7.043e-5		NC NC	1	NC NC	1
	M7	1		0	1	0	1	0	1		-	NC NC	1	NC NC	1
153 154	IVI /		max	-	1	0	1	0	1	3.166e-5 -8.582e-4	1_1	NC NC	1	NC NC	1
155		2	min	0		.001	2		4		4	NC NC			_
			max	0	9			.005		2.685e-5	1_1		1	NC NC	1
156			min	0	2	001	3	0	1	-8.449e-4	4	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
157		3	max	0	9	.002	2	.009	4	2.205e-5	1	NC	_1_	NC	1
158			min	0	2	003	3	0	1	-8.315e-4	4	NC	1_	NC	1
159		4	max	0	9	.003	2	.014	4	1.724e-5	1_	NC	_1_	NC	1
160			min	0	2	004	3	0	1	-8.182e-4	4	NC	1_	NC	1
161		5_	max	0	9	.005	2	.018	4	1.244e-5	1	NC	1_	NC	1
162			min	0	2	006	3	0	1	-8.048e-4	4	NC NC	1_	NC NC	1
163		6	max	0	9	.006	2	.023	4	7.637e-6	1_	NC	3_	NC NC	1
164		-	min	0	2	007	3	0	1_1	-7.915e-4	4_	8119.38	2	NC NC	1
165		7	max	0	9	.007	2	.028	4	1.808e-5	3	NC C704 2C0	3	NC NC	1
166		0	min	0	9	008	2	.032	4	-7.781e-4	4	6721.369 NC	2	NC NC	1
167 168		8	max	0	2	.008	3	001	1	2.973e-5	3	5693.969	3	NC NC	1
169		9	min	<u> </u>	9	009 .009	2	001 .037	4	-7.648e-4 4.139e-5	3	NC	3	NC NC	1
170		9	max	0	2	011	3	001	1	-7.514e-4	4	4903.087	2	NC NC	1
171		10	max	0	9	.011	2	.041	4	5.304e-5	3	NC	3	NC	1
172		10	min	001	2	012	3	001	1	-7.381e-4	4	4274.315	2	NC	1
173		11	max	0	9	.012	2	.045	4	6.47e-5	3	NC	3	NC	1
174			min	001	2	013	3	001	1	-7.247e-4	4	3762.836	2	NC	1
175		12	max	0	9	.014	2	.05	4	7.635e-5	3	NC	3	NC	1
176		'-	min	001	2	014	3	001	1	-7.114e-4	4	3339.82	2	NC	1
177		13	max	.001	9	.015	2	.054	4	8.8e-5	3	NC	3	NC	1
178			min	001	2	015	3	002	1	-6.98e-4	4	2985.685	2	NC	1
179		14	max	.001	9	.017	2	.058	4	9.966e-5	3	NC	3	NC	1
180			min	001	2	016	3	002	1	-6.847e-4	4	2686.515	2	NC	1
181		15	max	.001	9	.019	2	.062	4	1.113e-4	3	NC	3	NC	1
182			min	002	2	017	3	002	1	-6.713e-4	4	2432.052	2	NC	1
183		16	max	.001	9	.021	2	.065	4	1.23e-4	3	NC	3	NC	1
184			min	002	2	017	3	002	1	-6.58e-4	4	2214.499	2	NC	1
185		17	max	.001	9	.023	2	.069	4	1.346e-4	3	NC	3	NC	1
186			min	002	2	018	3	002	1	-6.446e-4	4	2027.8	2	NC	1
187		18	max	.001	9	.025	2	.073	4	1.463e-4	3	NC	3	NC	1
188			min	002	2	019	3	002	1	-6.313e-4	4	1867.16	2	NC	1
189		19	max	.002	9	.027	2	.076	4	1.579e-4	3	NC	3_	NC	1
190			min	002	2	019	3	002	1	-6.179e-4	4	1728.74	2	NC	1
191	<u>M8</u>	1	max	.007	1	.021	2	.002	1	2.98e-3	4_	NC	1_	NC	1
192			min	002	3	015	3	08	4	-1.257e-4	3	NC	1_	240.608	4
193		2	max	.006	1	.02	2	.002	1	2.98e-3	4	NC	1_	NC	1
194			min	002	3	<u>014</u>	3	074	4	-1.257e-4	3	NC	1_	262.289	4
195		3	max	.006	1	.019	2	.001	1	2.98e-3	4_	NC	1_	NC	1
196		4	min	002	3	013	3	067	4	-1.257e-4	3	NC NC	1_	288.095	4
197		4	max	.006	1	.018	2	.001	1	2.98e-3	4	NC NC	1_	NC 240.44	1
198		-	min	002	3	012	3	061	4	-1.257e-4	3	NC NC	1_	319.11	4
199		5	max	.005	1	.017	3	.001	1	2.98e-3	4	NC NC	<u>1</u> 1	NC 256 946	1
200		6	min	001	3	011 .015	2	054 .001	1	-1.257e-4 2.98e-3	<u>3</u> 4	NC NC	1	356.816 NC	1
202		6	max	.005 001	3	015	3	048	4	-1.257e-4	3	NC NC	1	403.269	4
203		7	max	.005	1	.014	2	<u>048</u> 0	1	2.98e-3	4	NC	1	NC	1
204			min	001	3	014	3	042	4	-1.257e-4	3	NC NC	1	461.4	4
205		8	max	.004	1	.013	2	<u>042</u> 0	1	2.98e-3	4	NC	1	NC	1
206		0	min	001	3	009	3	036	4	-1.257e-4	3	NC	1	535.5	4
207		9	max	.004	1	.012	2	030 0	1	2.98e-3	4	NC	1	NC	1
208		1	min	001	3	008	3	031	4	-1.257e-4	3	NC	1	632.061	4
209		10	max	.003	1	.011	2	<u>031</u> 0	1	2.98e-3	4	NC	1	NC	1
210		10	min	0	3	007	3	025	4	-1.257e-4	3	NC	1	761.284	4
211		11	max	.003	1	.009	2	<u>025</u> 0	1	2.98e-3	4	NC	1	NC	1
212			min	0	3	006	3	021	4	-1.257e-4	3	NC	1	939.973	4
213		12	max	.003	1	.008	2	0	1	2.98e-3	4	NC	1	NC	1
210		14	παλ	.000		.000		<u> </u>		2.006-0	7	140		110	

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
214			min	0	3	006	3	016	4	-1.257e-4	3	NC	1_	1197.438	
215		13	max	.002	1	.007	2	00	1	2.98e-3	4	NC	_1_	NC	1
216			min	0	3	005	3	012	4	-1.257e-4	3	NC	<u>1</u>	1588.658	4
217		14	max	.002	1	.006	2	0	1	2.98e-3	_4_	NC	1_	NC	1
218			min	0	3	004	3	009	4	-1.257e-4	3	NC	_1_	2227.035	4
219		15	max	.002	1	.005	2	0	1	2.98e-3	4	NC	1_	NC	1
220		ļ.,	min	0	3	003	3	006	4	-1.257e-4	3	NC	_1_	3378.986	
221		16	max	.001	1	.004	2	0	1	2.98e-3	<u>4</u>	NC	1_	NC	1
222			min	0	3	002	3	003	4	-1.257e-4	3	NC	1_	5801.878	
223		17	max	0	1	.002	2	0	1	2.98e-3	4_	NC	_1_	NC	1
224			min	0	3	002	3	002	4	-1.257e-4	3	NC	1_	NC	1
225		18	max	0	1	.001	2	0	1	2.98e-3	4	NC	1	NC	1
226		10	min	0	3	0	3	0	4	-1.257e-4	3	NC	1_	NC	1
227		19	max	0	1	0	1	0	1	2.98e-3	4_	NC	1_	NC NC	1
228	1440		min	0	1	0	1	0	1	-1.257e-4	3	NC	1_	NC NC	1
229	M10	1_	max	.003	1	.006	2	0	3	5.631e-4	1_	NC	3	NC NC	1
230			min	003	3	005	3	005	4	-2.429e-4	3	4857.58	2	NC NC	1
231		2	max	.002	1	.006	2	0	3	5.344e-4	1_	NC	3_	NC NC	1
232			min	002	3	005	3	005	4	-2.36e-4	3	5259.326	2	NC NC	1
233		3	max	.002	1	.005	2	0	3	5.056e-4	1	NC F700 404	3_	NC NC	1
234		1	min	002	3	005	3	005	4	-2.291e-4	3	5730.134	2	NC NC	1
235		4	max	.002	1	.005	2	0	3	4.85e-4	4	NC	3	NC NC	1
236		-	min	002	3	004	3	005	4	-2.222e-4	3	6285.595	2	NC NC	1
237		5	max	.002	1	.004	2	0	3	5.426e-4	4	NC COAC 407	3	NC	1
238			min	002	3	004	3	<u>005</u>	4	-2.153e-4	3	6946.187	2	NC NC	1
239		6	max	.002	1	.004	2	0	3	6.003e-4	4	NC	1	NC NC	1
240		7	min	002	3	004	3	005	4	-2.084e-4	3	7739.25	2	NC NC	1
241		7	max	.002	1	.003	2	0	3	6.579e-4	4	NC 0704.07	1	NC NC	1
242		0	min	002	3	004	3	005	4	-2.015e-4	3	8701.97	2	NC NC	1
243		8	max	.002 002	3	.003 004	3	0 005	3	7.156e-4 -1.947e-4	3	NC 9886.041	<u>1</u> 2	NC NC	1
245		9	min	.002	1	.003	2	005 0	3	7.732e-4	4	NC	1	NC NC	1
246		9	max	001	3	003	3	005	4	-1.878e-4	3	NC NC	1	NC NC	1
247		10	min max	.001	1	.003	2	<u>005</u> 0	3	8.309e-4	4	NC NC	1	NC NC	1
248		10	min	001	3	003	3	004	4	-1.809e-4	3	NC NC	1	NC	1
249		11	max	.001	1	.002	2	<u>004</u> 0	3	8.885e-4	4	NC	1	NC	1
250			min	001	3	003	3	004	4	-1.74e-4	3	NC	1	NC	1
251		12	max	.001	1	.002	2	004	3	9.462e-4	4	NC	1	NC	1
252		12	min	001	3	003	3	004	4	-1.671e-4	3	NC	1	NC	1
253		13	max	0	1	.003	2	004	3	1.004e-3	4	NC	1	NC	1
254		13	min	0	3	002	3	003	4	-1.602e-4		NC	1	NC	1
255		14	max	0	1	0	2	0	3	1.061e-3	4	NC	1	NC	1
256			min	0	3	002	3	003	4	-1.533e-4	3	NC	1	NC	1
257		15	max	0	1	0	2	0	3	1.119e-3	4	NC	1	NC	1
258		10	min	0	3	002	3	002	4	-1.464e-4	3	NC	1	NC	1
259		16	max	0	1	0	2	0	3	1.177e-3	4	NC	1	NC	1
260		· · ·	min	0	3	001	3	002	4	-1.395e-4	3	NC	1	NC	1
261		17	max	0	1	0	2	0	3	1.234e-3	4	NC	1	NC	1
262			min	0	3	0	3	001	4	-1.326e-4	3	NC	1	NC	1
263		18	max	0	1	0	2	0	3	1.292e-3	4	NC	1	NC	1
264			min	0	3	0	3	0	4	-1.257e-4	3	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.35e-3	4	NC	1	NC	1
266			min	0	1	0	1	0	1	-1.188e-4	3	NC	1	NC	1
267	M11	1	max	0	1	0	1	0	1	5.422e-5	3	NC	1	NC	1
268			min	0	1	0	1	0	1	-6.153e-4	4	NC	1	NC	1
269		2	max	0	1	0	2	.003	4	4.204e-5	3	NC	1	NC	1
270			min	0	10	0	3	0	3	-6.872e-4	4	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		
271		3	max	0	1	0	2	.007	4	2.985e-5	3	NC	_1_	NC	1
272			min	0	10	001	3	0	3	-7.59e-4	4_	NC	<u>1</u>	6878.66	4
273		4	max	0	1	0	2	.01	4	1.767e-5	3_	NC	_1_	NC	1
274			min	0	10	002	3	0	3	-8.309e-4	4	NC	1_	4532.724	4
275		5	max	0	1	0	2	.014	4	5.486e-6	3	NC	1_	NC	1
276			min	0	10	003	3	0	3	-9.027e-4	4	NC	1	3366.374	4
277		6	max	0	1	0	2	.017	4	-4.589e-6	12	NC	1	NC	1
278			min	0	10	004	3	001	3	-9.746e-4	4	NC	1	2671.012	4
279		7	max	0	1	0	2	.021	5	-1.199e-5	12	NC	1	NC	1
280			min	0	10	004	3	001	3	-1.046e-3	4	NC	1	2209.851	5
281		8	max	0	1	.001	2	.024	5	-1.365e-5	10	NC	1	NC	1
282			min	0	10	005	3	001	1	-1.118e-3	4	NC	1	1879.565	5
283		9	max	0	1	.002	2	.028	5	-1.515e-5	10	NC	1	NC	1
284			min	0	10	005	3	002	1	-1.19e-3	4	NC	1	1633.692	5
285		10	max	0	1	.002	2	.032	5	-1.665e-5	10	NC	1	NC	1
286		1.0	min	0	10	006	3	002	1	-1.262e-3	4	NC	1	1443.74	5
287		11	max	0	1	.002	2	.036	5	-1.815e-5	10	NC	1	NC	1
288			min	0	10	006	3	003	1	-1.334e-3	4	NC	1	1292.632	5
289		12	max	0	1	.003	2	.039	5	-1.965e-5	10	NC	1	NC	1
290		14	min	0	10	007	3	004	1	-1.406e-3	4	NC NC	1	1169.516	5
291		13	max	0	1	.004	2	.043	5	-2.115e-5	10	NC	1	NC	1
292		13	min	0	10	007	3	004	1	-1.478e-3	4	NC	1	1067.166	
293		14	max	0	1	.005	2	.047	5	-2.264e-5	10	NC	1	NC	2
294		14	min	0	10	007	3	005	1	-1.549e-3	4	NC NC	1	980.589	5
295		15			1		2	.051		-1.549e-5		NC NC		NC	
		15	max	0	10	.005	3		5		10		2	906.225	2
296		4.0	min			007	_	005		-1.621e-3	4	8529.698			5
297		16	max	0	1	.006	2	.055	5	-2.564e-5	<u>10</u>	NC 7000 040	3	NC 044 400	2
298		47	min	0	10	007	3	006	1	-1.693e-3	4	7280.819	2	841.469	5
299		17	max	0	1	.007	2	.059	5	-2.714e-5	10	NC	3	NC 704.074	2
300		40	min	0	10	007	3	006	1	-1.765e-3	4	6302.26	2	784.374	5
301		18	max	0	1	.008	2	.063	5	-2.864e-5	10	NC	3_	NC 700.40	2
302		40	min	0	10	007	3	007	1	-1.837e-3	4	5528.726	2	733.46	5
303		19	max	0	1	.009	2	.067	5	-3.014e-5	10	NC 4040,000	3	NC 007.504	2
304	1440		min	0	10	007	3	007	1	-1.909e-3	4	4913.022	2	687.584	5
305	M12	1	max	.002	1	.007	2	.006	1	4.079e-3	4	NC	1_	NC 200.745	2
306			min	0	3	00 <u>5</u>	3	074	5	2.921e-5	10	NC	1_	262.745	5
307		2	max	.002	1	.007	2	.005	1	4.079e-3	4	NC	1	NC	2
308			min	0	3	005	3	067	5	2.921e-5	10	NC	1_	286.416	5
309		3	max	.002	1	.006	2	.005	1	4.079e-3	4_	NC	1_	NC	2
310			min	0	3	005	3	061	5	2.921e-5	10	NC	1_	314.589	5
311		4	max	.002	1	.006	2	.005	1	4.079e-3	4	NC	1	NC NC	2
312			min	0	3	005	3	055	5	2.921e-5	<u>10</u>	NC	1_	348.449	5
313		5	max	.002	1	.006	2	.004	1	4.079e-3	4_	NC	1_	NC	2
314			min	0	3	004	3	05	5	2.921e-5	10	NC	1_	389.613	5
315		6	max	.002	1	.005	2	.004	1	4.079e-3	4_	NC	1_	NC	2
316			min	0	3	004	3	044	5	2.921e-5	10	NC	1_	440.325	5
317		7	max	.002	1	.005	2	.003	1	4.079e-3	4	NC	1	NC	2
318			min	0	3	004	3	038	5	2.921e-5	10	NC	1_	503.785	5
319		8	max	.001	1	.004	2	.003	1	4.079e-3	4	NC	1_	NC	2
320			min	0	3	003	3	033	5	2.921e-5	10	NC	1	584.677	5
321		9	max	.001	1	.004	2	.002	1	4.079e-3	4	NC	_1_	NC	2
322			min	0	3	003	3	028	5	2.921e-5	10	NC	1	690.086	5
323		10	max	.001	1	.004	2	.002	1	4.079e-3	4	NC	1_	NC	1
324			min	0	3	003	3	023	5	2.921e-5	10	NC	1	831.149	5
325		11	max	.001	1	.003	2	.002	1	4.079e-3	4	NC	1	NC	1
326			min	0	3	002	3	019	5	2.921e-5	10	NC	1	1026.206	5
327		12	max	0	1	.003	2	.001	1	4.079e-3	4	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
328			min	0	3	002	3	015	5	2.921e-5	10	NC	1_	1307.252	
329		13	max	0	1	.002	2	0	1	4.079e-3	4_	NC	1_	NC	1
330			min	0	3	002	3	011	5	2.921e-5	10	NC	1_	1734.295	5
331		14	max	0	1	.002	2	0	1_	4.079e-3	4_	NC	1_	NC	1
332		4.5	min	0	3	002	3	008	5	2.921e-5	10	NC	1_	2431.115	
333		15	max	0	1	.002	2	0	1	4.079e-3	4	NC	1	NC	1
334		40	min	0	3	001	3	005	5	2.921e-5	10	NC NC	1_	3688.508	
335		16	max	0	1	.001	2	0	1	4.079e-3	4	NC	1	NC	1
336		47	min	0	3	0	3	003	5	2.921e-5	<u>10</u>	NC NC	1_	6333.128	
337		17	max	0	1	0	2	0	1	4.079e-3	4	NC NC	1	NC NC	1
338		40	min	0	3	0	3	001	5	2.921e-5	<u>10</u>	NC NC	1_	NC NC	1
339		18	max	0	1	0	2	0	1	4.079e-3	4	NC NC	1_	NC NC	1
340		40	min	0	3	0	3	0	5	2.921e-5	<u>10</u>	NC NC	1_	NC NC	1
341		19	max	0	1	0	1	0	1	4.079e-3	4	NC	1	NC	1
342	N / 4	1	min	0	1	0	1	0	1	2.921e-5	<u>10</u>	NC NC	1_	NC NC	1
343	<u>M1</u>	1	max	.005	3	.023	3	.007	5	9.831e-3	1	NC NC	1	NC NC	1
344		2	min	006	2	026	1	003	1	-9.72e-3	3	NC NC	1_	NC NC	1
345		2	max	.005	3	.012	3	.01	5	4.704e-3	1_	NC	4	NC NC	1
346		2	min	006	2	<u>014</u>	1	006	1	-4.794e-3	3	3740.392	1_4	NC NC	1
347 348		3	max	.005	3	.002	3	.014	5	3.189e-4 -3.276e-4	<u>5</u> 1	NC 1934.801	<u>4</u> 1	NC 7222.929	5
349		4	min	006 .005	3	002 .008	1	007 .018		3.141e-4	5	NC	5	NC	2
350		4	max	005 006	2	006	3	008	5	-2.729e-4	1	1368.019	1	4554.989	
		-					1	008 .022		3.092e-4					
351		5	max	.005	3	.016	3		5	-2.182e-4	_ <u>5_</u> 1	NC 1095.479	5	NC 3257.005	2
352 353		6	min	006 .005	3	012 .023	1	009 .026		3.044e-4	5	NC	5	NC	2
354		0	max	006	2	023 018	3	008	5	-1.636e-4	1	941.359	1	2500.574	
		7	min	006 .005	3	.028	1	.006 .031	5	2.995e-4	5	NC	<u> </u>	NC	1
355 356			max	006	2	020	3	007	1	-1.089e-4	<u> </u>	847.978	1	2011.412	
357		8		.005	3	.032	1	.035	5	2.947e-4	5	NC	5	NC	1
358		0	max	005 006	2	024	3	006	1	-5.427e-5	1	791.341	1	1672.766	
359		9	max	.005	3	.034	1	.04	5	2.906e-4	4	NC	5	NC	1
360		9	min	006	2	026	3	004	1	3.927e-7	1	760.242	1	1420.252	
361		10	max	.005	3	.035	1	.045	5	2.971e-4	4	NC	5	NC	1
362		10	min	006	2	026	3	003	1	1.031e-5	10	749.502	1	1224.006	•
363		11	max	.005	3	.034	1	.05	4	3.036e-4	4	NC	5	NC	1
364			min	006	2	025	3	0	1	1.336e-5	10	757.533	1	1074.764	-
365		12	max	.005	3	.032	1	.056	4	3.101e-4	4	NC	5	NC	1
366		14	min	006	2	023	3	0	10	1.641e-5	10	785.683	1	958.768	4
367		13	max	.005	3	.028	1	.061	4	3.166e-4	4	NC	5	NC	1
368		10	min	006	2	02	3	0		1.947e-5		838 816	1	867.097	4
369		14	max	.005	3	.022	1	.066	4	3.231e-4	4	NC	5	NC	2
370		m	min	006	2	016	3	0	10	2.252e-5	10	927.62	1	793.755	4
371		15	max	.005	3	.015	1	.07	4	3.296e-4	4	NC	5	NC	2
372			min	006	2	011	3	0	10	2.514e-5	12	1075.04	1	734.59	4
373		16	max	.005	3	.007	1	.075	4	5.772e-4	4	NC	5	NC	2
374			min	006	2	005	3	0	10	2.496e-5	12	1335.881	1	686.66	4
375		17	max	.005	3	.002	3	.079	4	6.564e-3	4	NC	4	NC	1
376			min	006	2	003	1	0	10	1.33e-5	10	1875.52	1	647.881	4
377		18	max	.005	3	.009	3	.083	4	5.625e-3	1	NC	4	NC	1
378			min	006	2	016	1	0	10	-2.361e-3	3	3613.522	1	616.636	4
379		19	max	.005	3	.017	3	.086	4	1.129e-2	1	NC	1	NC	1
380			min	006	2	029	1	002	1	-4.798e-3	3	NC	1	592.45	4
381	M5	1	max	.013	3	.065	3	.007	5	5.542e-6	4	NC	1	NC	1
382			min	018	2	075	1	003	1	3.995e-8	2	NC	1	NC	1
383		2	max	.013	3	.035	3	.01	5	1.493e-4	5	NC	5	NC	1
384			min	019	2	04	1	003	1	-7.4e-5	1	1325.898	1	NC	1
															_

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio		(n) L/z Ratio	LC
385		3	max	.013	3	.008	3	.014	5	2.908e-4	5	NC	5	NC	1
386			min	019	2	007	1	003	1	-1.466e-4	1	682.256	1_	NC	1
387		4	max	.013	3	.021	1	.018	5	3.042e-4	5	NC	5	NC	1
388			min	019	2	015	3	003	1	-1.389e-4	1	481.383	1	NC	1
389		5	max	.013	3	.045	1	.022	5	3.177e-4	5	NC	5	NC	1
390			min	019	2	034	3	003	1	-1.312e-4	1	384.812	1	NC	1
391		6	max	.013	3	.065	1	.027	5	3.311e-4	5	NC	5	NC	1
392			min	019	2	048	3	003	1	-1.235e-4	1	330.161	1	NC	1
393		7	max	.013	3	.08	1	.032	5	3.445e-4	5	NC	15	NC	1
394			min	019	2	059	3	003	1	-1.158e-4	1	296.983	1	NC	1
395		8		.013	3	.091	1	.037	5	3.58e-4	5	NC	15	NC	1
		-	max		2										
396			min	019		067	3	003	1	-1.081e-4	1_	276.779	1_	NC NC	1
397		9	max	.013	3	.098	1	.042	5	3.714e-4	5_	NC	15	NC NC	1
398		1.0	min	019	2	071	3	003	1_	-1.004e-4	1_	265.573	1_	NC	1
399		10	max	.013	3	1	1	.048	5	3.849e-4	5_	NC	<u>15</u>	NC	1
400			min	019	2	071	3	002	1	-9.275e-5	1_	261.523	<u>1</u>	NC	1
401		11	max	.013	3	.098	1	.053	4	3.983e-4	5	NC	15	NC	1
402			min	019	2	068	3	002	1	-8.506e-5	1_	264.052	1_	NC	1
403		12	max	.013	3	.091	1	.058	4	4.117e-4	5	NC	15	NC	1
404			min	019	2	063	3	002	1	-7.738e-5	1	273.616	1	NC	1
405		13	max	.013	3	.08	1	.063	4	4.252e-4	5	NC	15	NC	1
406			min	019	2	054	3	002	1	-6.969e-5	1	291.902	1	NC	1
407		14	max	.013	3	.064	1	.068	4	4.386e-4	5	NC	5	NC	1
408			min	019	2	043	3	002	1	-6.2e-5	1	322.639	1	NC	1
409		15	max	.013	3	.044	1	.073	4	4.52e-4	5	NC	5	NC	1
410		10	min	019	2	029	3	002	1	-5.432e-5	1	373.859	1	NC	1
411		16	max	.014	3	.019	1	.077	4	7.018e-4	5	NC	5	NC	1
412		10	min	019	2	013	3	002	1	-5.016e-4	1	464.836	1	NC	1
		17			3							NC	•	NC NC	-
413		17	max	.014		.005	3	.08	4	6.615e-3	4		5_		1
414		40	min	019	2	011	1	002	1	-1.3e-4	1_	654.46	1_	NC NC	1
415		18	max	.014	3	.026	3	.083	4	3.395e-3	4	NC 1000 010	5_	NC	1
416			min	019	2	<u>046</u>	1	002	1_	-6.635e-5	<u>1</u>	1268.013	1_	NC	1
417		19	max	.014	3	.047	3	.086	4	2.244e-6	_5_	NC	1_	NC	1
418			min	019	2	083	1	002	1	-1.437e-7	3	NC	1_	NC	1
419	M9	1_	max	.005	3	.023	3	.006	5	9.722e-3	3	NC	_1_	NC	1
420			min	006	2	026	1	004	1	-9.831e-3	1_	NC	1_	NC	1
421		2	max	.005	3	.012	3	.005	5	4.827e-3	3	NC	4	NC	1
422			min	006	2	014	1	0	1	-4.857e-3	1	3741.736	1	NC	1
423		3	max	.005	3	.002	3	.005	4	2.532e-5	2	NC	4	NC	1
424			min	006	2	002	1	0	3	-5.384e-6	5	1935.521	1	NC	1
425		4	max	.005	3	.008	1	.007	4	1.337e-5	3	NC	5	NC	1
426			min	006	2	006	3	0	3	-3.154e-5		1368.536	1	NC	1
427		5	max	.005	3	.016	1	.009	4	5.088e-6	10	NC	5	NC	1
428		Ť	min	006	2	012	3	001	3	-5.943e-5	4	1095.884	1	NC	1
429		6	max	.005	3	.023	1	.012	4	2.029e-6	10	NC	5	NC	1
430			min	006	2	018	3	002	3	-9.856e-5	1	941.695	1	7109.072	
431		7		.005	3	.028				-1.029e-6	•	NC	5	NC	
		+	max				1	.015	4		<u>10</u>				1
432			min	006	2	022	3	002	3	-1.395e-4	1_	848.267	1_	4604.127	
433		8	max	.005	3	.032	1	.02	4	-4.088e-6		NC	_5_	NC	1
434			min	006	2	024	3	002	3	-1.804e-4	1_	791.598	1_	3259.162	
435		9	max	.005	3	.034	1	.024	4		<u>10</u>	NC	5	NC	1
436			min	006	2	026	3	002	3	-2.214e-4	1_	760.475	<u>1</u>	2451.097	4
437		10	max	.005	3	.035	1	.03	5	-1.021e-5	10	NC	5	NC	1
438			min	006	2	026	3	002	3	-2.623e-4	1	749.718	1_	1926.427	4
439		11	max	.005	3	.034	1	.035	5	-1.326e-5	10	NC	5	NC	1
440			min	006	2	025	3	004	1	-3.033e-4	1	757.737	1	1565.853	4
441		12	max	.005	3	.032	1	.042	5	-1.632e-5	10	NC	5	NC	1
		_		_		_						_		_	

Model Name

Schletter, Inc.HCV

1101

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	_LC	x Rotate [r	LC		LC		
442			min	006	2	023	3	005	1	-3.442e-4	1_	785.88	1_	1307.093	4
443		13	max	.005	3	.028	1	.048	5	-1.938e-5	10	NC	5_	NC	2
444			min	006	2	02	3	006	1	-3.851e-4	1_	839.011	1_	1114.992	4
445		14	max	.005	3	.022	1	.054	5	-2.244e-5	10	NC	5	NC	2
446			min	006	2	016	3	007	1	-4.261e-4	1	927.818	1	967.578	5
447		15	max	.005	3	.015	1	.061	5	-2.55e-5	10	NC	5	NC	2
448			min	006	2	011	3	007	1	-4.67e-4	1	1075.25	1	853.575	5
449		16	max	.005	3	.007	1	.067	5	-6.416e-6	15	NC	5	NC	2
450			min	006	2	005	3	007	1	-4.995e-4	1	1336.121	1	763.487	4
451		17	max	.005	3	.002	3	.073	5	6.356e-3	5	NC	4	NC	1
452			min	006	2	003	1	006	1	-3.308e-4	1	1875.834	1	690.271	4
453		18	max	.005	3	.009	3	.079	5	3.095e-3	5	NC	4	NC	1
454			min	006	2	016	1	004	1	-5.76e-3	1	3614.101	1	630.29	4
455		19	max	.005	3	.017	3	.086	4	4.797e-3	3	NC	1	NC	1
456			min	006	2	029	1	001	1	-1.129e-2	1	NC	1	581.261	4
457	M13	1	max	.004	1	.023	3	.005	3	4.023e-3	3	NC	1	NC	1
458			min	006	5	026	1	006	2	-4.724e-3	1	NC	1_	NC	1
459		2	max	.004	1	.101	3	.012	1	4.813e-3	3	NC	4	NC	2
460			min	006	5	105	1	002	10	-5.661e-3	1	1895.879	1	8914.348	1
461		3	max	.004	1	.165	3	.034	1	5.603e-3	3	NC	5	NC	2
462			min	006	5	171	1	004	5	-6.597e-3	1	1037.817	1	3924.323	1
463		4	max	.003	1	.207	3	.051	1	6.393e-3	3	NC	5	NC	3
464			min	006	5	213	1	007	5	-7.534e-3	1_	802.26	1_	2706.176	1
465		5	max	.003	1	.221	3	.058	1	7.183e-3	3	NC	5	NC	3
466			min	006	5	228	1	009	5	-8.471e-3	1	742.605	1	2383.521	1
467		6	max	.003	1	.208	3	.054	1	7.974e-3	3	NC	5	NC	3
468			min	006	5	216	1	011	5	-9.407e-3	1	789.522	1	2565.398	1
469		7	max	.003	1	.174	3	.038	1	8.764e-3	3	NC	5	NC	2
470			min	007	5	182	1	011	5	-1.034e-2	1	960.375	1	3485.955	1
471		8	max	.003	1	.127	3	.016	1	9.554e-3	3	NC	5	NC	2
472			min	007	5	137	1	011	5	-1.128e-2	1	1355.556	1	7195.988	1
473		9	max	.003	1	.085	3	.012	3	1.034e-2	3	NC	4	NC	1
474			min	007	5	094	1	014	2	-1.222e-2	1	2196.713	1	NC	1
475		10	max	.003	1	.065	3	.013	3	1.113e-2	3	NC	4	NC	1
476			min	007	5	075	1	018	2	-1.315e-2	1	3073.594	1	NC	1
477		11	max	.003	1	.085	3	.015	3	1.034e-2	3	NC	4	NC	1
478			min	007	5	094	1	014	2	-1.222e-2	1	2196.714	1	NC	1
479		12	max	.003	1	.128	3	.017	1	9.555e-3	3	NC	5	NC	2
480			min	007	5	137	1	007	10	-1.128e-2	1	1355.556	1	7098.359	1
481		13	max	.003	1	.174	3	.039	1	8.765e-3	3	NC	5	NC	2
482			min		5	182	1	004	10	-1.034e-2	1	960.375		3468.035	
483		14	max	.003	1	.208	3	.054	1	7.975e-3	3	NC	5	NC	3
484			min	007	5	216	1	002	10	-9.408e-3	1	789.523	1	2561.694	
485		15	max	.003	1	.221	3	.058	1	7.186e-3	3	NC	5	NC	3
486			min	007	5	228	1	0	10	-8.471e-3	1	742.605	1	2386.478	
487		16	max	.003	1	.207	3	.051	1	6.396e-3	3	NC	5	NC	3
488			min	007	5	213	1	004	5	-7.535e-3	1	802.261	1	2716.785	
489		17	max	.003	1	.165	3	.033	1	5.606e-3	3	NC	5	NC	2
490			min	007	5	171	1	006	5	-6.598e-3	1	1037.818	1	3953.501	1
491		18	max	.003	1	.101	3	.012	1	4.817e-3	3	NC	4	NC	2
492		1.0	min	007	5	105	1	005	5	-5.662e-3	1	1895.88	1	9035.819	
493		19	max	.003	1	.023	3	.005	3	4.027e-3	3	NC	1	NC	1
494			min	007	5	026	1	006	2	-4.725e-3	1	NC	1	NC	1
495	M16	1	max	.001	1	.020	3	.005	3	4.998e-3	1	NC	1	NC	1
496	10110		min	086	4	029	1	006	2	-3.044e-3	3	NC	1	NC	1
497		2	max	.001	1	.056	3	.016	4	6.009e-3	1	NC	4	NC	2
498			min	086	4	12	1	002	10	-3.608e-3	3	1650.421	1	8933.309	
T30			1111111	.000	7	. 14		.002	10	0.0006-0	J	1000.421		0000.008	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
499		3	max	.001	1	.088	3	.033	1	7.02e-3	1_	NC	5_	NC	2
500			min	086	4	195	1	001	10	-4.172e-3	3	903.679	<u>1</u>	3935.255	
501		4	max	.001	1	.109	3	.05	1	8.031e-3	1	NC	5_	NC 0744.500	3
502		-	min	086	4	243	1	0	10	-4.736e-3	3	698.885	1_	2714.569	
503		5	max	.001	1	.117	3	.058	1	9.042e-3	1	NC	5	NC	3
504		6	min	086	4	<u>26</u> .112	1	0.53	10	-5.3e-3	3	647.402 NC	1_	2392.676	3
505 506		6	max	.002 086	1	246	3	.053 002	10	1.005e-2 -5.864e-3	<u>1</u> 3	689.173	<u>5</u> 1	NC 2579.141	1
507		7	min	.002	1	.097	3	.038	1	1.106e-2	<u> </u>	NC	<u> </u>	NC	2
508			max min	086	4	207	1	004	10	-6.428e-3	3	840.198	1	3517.079	1
509		8	max	.002	1	.076	3	.016	3	1.207e-2	<u>3</u> 1	NC	5	NC	2
510		10	min	086	4	155	1	007	10	-6.992e-3	3	1191.165	1	7353.176	
511		9	max	.002	1	.056	3	.015	3	1.309e-2	1	NC	4	NC	1
512		-	min	086	4	106	1	015	2	-7.556e-3	3	1947.631	1	NC	1
513		10	max	.002	1	.047	3	.014	3	1.41e-2	1	NC	4	NC	1
514		10	min	086	4	083	1	019	2	-8.12e-3	3	2750.349	1	NC	1
515		11	max	.002	1	.056	3	.013	3	1.309e-2	1	NC	4	NC	1
516			min	086	4	106	1	015	2	-7.555e-3	3	1947.631	1	NC	1
517		12	max	.002	1	.076	3	.016	1	1.208e-2	1	NC	5	NC	2
518			min	086	4	155	1	007	10	-6.991e-3	3	1191.165	1	7296.515	1
519		13	max	.002	1	.097	3	.038	1	1.106e-2	1	NC	5	NC	2
520			min	086	4	207	1	004	10	-6.427e-3	3	840.198	1	3512.349	1
521		14	max	.002	1	.112	3	.053	1	1.005e-2	1	NC	5	NC	3
522			min	086	4	246	1	002	10	-5.862e-3	3	689.173	1	2583.524	1
523		15	max	.002	1	.117	3	.058	1	9.042e-3	1	NC	5	NC	3
524			min	086	4	26	1	004	5	-5.298e-3	3	647.402	1	2402.684	
525		16	max	.002	1	.109	3	.05	1	8.032e-3	1_	NC	5	NC	3
526			min	086	4	243	1	008	5	-4.734e-3	3	698.885	1_	2733.429	1
527		17	max	.002	1	.088	3	.033	1	7.021e-3	1	NC	5_	NC	2
528			min	086	4	195	1	009	5	-4.169e-3	3	903.68	_1_	3978.074	1
529		18	max	.002	1	.056	3	.012	1	6.01e-3	1	NC	4	NC	2
530		10	min	086	4	12	1	007	5	-3.605e-3	3	1650.422	1_	9102.346	
531		19	max	.002	1	.017	3	.005	3	4.999e-3	1	NC		NC NC	1
532	N445		min	086	4	029	1	006	2	-3.041e-3	3	NC NC	1_	NC NC	1
533	M15	1_	max	0	1	0	1	0	1	2.998e-4	3	NC NC	1	NC NC	1
534		2	min	0		0	1	0	1	-4.403e-4	5	NC NC	1_	NC NC	1
535		2	max	0	3 5	0 007	15	.007	3	7.746e-4	3	NC NC	1	NC NC	1
536		3	min	0			15	0	4	-6.496e-4	1	NC NC	<u> </u>	NC NC	1
537 538		3	max min	0 001	3 5	0 015	1	.014 003	3	1.249e-3 -1.249e-3	<u>3</u>	5661.417	2	5720.136	
539		4	max	<u>001</u> 0	3	013 001	15	.021	1	1.724e-3		NC	5	NC	9
540			min	002	5	021	1	006	3	-1.848e-3	1	3884.063	2	3775.317	
541		5	max	0	3	001	15	.028	4	2.199e-3	3	NC	5	NC	9
542			min	003	5	027	1	009	3	-2.447e-3	1	3030.774	2	2885.54	4
543		6	max	0	3	002	15	.033	4	2.674e-3	3	NC	5	9234.679	
544			min	004	5	033	1	014	3	-3.047e-3	1	2550.716	2	2415.138	
545		7	max	0	3	002	15	.037	4	3.149e-3	3	NC	5	7243.185	
546			min	004	5	037	1	018	3	-3.646e-3	1	2262.025	2	2159.699	
547		8	max	0	3	002	15	.039	4	3.623e-3	3	NC	5	5987.387	
548			min	005	5	04	1	022	3	-4.245e-3	1	2088.767	2	2038.434	
549		9	max	0	3	002	15	.04	4	4.098e-3	3	NC	5	5163.983	
550			min	006	5	042	1	026	3	-4.844e-3	1	1995.509	2	2019.227	
551		10	max	0	3	002	15	.038	4	4.573e-3	3	NC	5	4620.108	
552			min	006	5	043	1	029	3	-5.444e-3	1	1966.007	2	1917.321	
553		11	max	0	3	002	15	.036	1	5.048e-3	3	NC	5	4275.386	
554			min	007	5	043	1	031	3	-6.043e-3	1	1995.509	2	1767.631	
555		12	max	0	3	001	15	.038	1	5.523e-3	3	NC	5	5028.736	15

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
556			min	008	5	041	1	032	3	-6.642e-3	1	2088.767	2	1685.706	1
557		13	max	0	3	0	15	.037	1	5.997e-3	3	NC	5	6664.423	
558			min	008	5	038	1	032	3	-7.241e-3	1	2262.025	2	1665.977	1
559		14	max	0	3	0	15	.035	1	6.472e-3	3	NC	5	NC	15
560			min	009	5	034	1	03	3	-7.841e-3	1	2550.716	2	1715.24	1
561		15	max	0	3	0	15	.03	1	6.947e-3	3	NC	5	NC	5
562			min	01	5	03	1	026	3	-8.44e-3	1	3030.774	2	1859.741	1
563		16	max	0	3	0	5	.023	1	7.422e-3	3	NC	5	NC	4
564			min	011	5	024	1	02	3	-9.039e-3	1	3884.063	2	2171.297	1
565		17	max	0	3	.002	5	.013	1	7.897e-3	3	NC	5	NC	4
566			min	011	5	018	1	011	3	-9.638e-3	1	5661.417	2	2875.647	1
567		18	max	0	3	.003	5	.002	9	8.371e-3	3	NC	1	NC	4
568			min	012	5	011	1	005	2	-1.024e-2	1	NC	1	5115.22	1
569		19	max	0	3	.005	3	.015	3	8.846e-3	3	NC	1	NC	1
570			min	013	5	004	1	019	2	-1.084e-2	1	NC	1	NC	1
571	M16A	1	max	0	10	0	3	.005	3	3.077e-3	3	NC	1	NC	1
572			min	005	4	003	4	007	2	-3.592e-3	1	NC	1	NC	1
573		2	max	0	10	003	12	.003	1	2.936e-3	3	NC	1	NC	1
574			min	004	4	014	4	002	5	-3.415e-3	1	6904.214	4	NC	1
575		3	max	0	10	007	12	.009	1	2.794e-3	3	NC	12	NC	4
576			min	004	4	025	4	006	5	-3.237e-3	1	3513.319	4	6011.334	1
577		4	max	0	10	01	12	.013	1	2.653e-3	3	7768.126	12	NC	6
578			min	004	4	036	4	012	5	-3.06e-3	1	2410.342	4	4561.138	1
579		5	max	0	10	013	12	.017	1	2.512e-3	3	6061.547	12	NC	10
580			min	004	4	045	4	019	5	-2.882e-3	1	1880.814	4	3928.408	1
581		6	max	0	10	015	12	.018	1	2.371e-3	3	5101.433	12	NC	10
582			min	003	4	053	4	027	5	-2.704e-3	1	1582.904	4	3068.454	
583		7	max	0	10	018	12	.019	1	2.229e-3	3	4524.05	12	NC	10
584			min	003	4	059	4	034	5	-2.527e-3	1	1403.75	4	2401.871	5
585		8	max	0	10	019	12	.019	1	2.088e-3	3	4177.534	12	NC	10
586			min	003	4	064	4	041	5	-2.349e-3	1_	1296.231	4	2019.585	
587		9	max	00	10	02	12	.018	1	1.947e-3	3	3991.019	12	NC	10
588			min	003	4	067	4	046	5	-2.171e-3	_1_	1238.358	4	1796.54	5
589		10	max	0	10	02	12	.016	1	1.806e-3	3	3932.014	12	NC	10
590			min	002	4	068	4	049	5	-1.994e-3	_1_	1220.05	4	1676.404	
591		11	max	0	10	02	12	.014	1	1.664e-3	3	3991.019	12	NC	10
592			min	002	4	066	4	05	5	-1.816e-3	1_	1238.358	4	1633.941	5
593		12	max	0	10	019	12	.012	1	1.523e-3	3	4177.534	12	NC	9
594			min	002	4	063	4	049	5	-1.639e-3	1_	1296.231	4	1661.736	
595		13	max	0	10	018	12	.01	1	1.382e-3	3	4524.05	12	NC	2
596			min	002	4	058	4	046			1			1767.097	
597		14		0	10	016	12	.007	1	1.24e-3	3_	5101.433	12	NC	2
598		4.5	min	001	4	052	4	041	5	-1.283e-3	1_	1582.904	4	1976.596	
599		15	max	0	10	013	12	.005	1	1.099e-3	3_	6061.547	12	NC	1
600		10	min	001	4	044	4	035	5	-1.106e-3	1_	1880.814	4_	2353.857	
601		16	max	0	10	01	12	.003	1	9.579e-4	3	7768.126	<u>12</u>	NC 2057.04	1
602		47	min	0	4	034	4	027	5	-9.28e-4	1_	2410.342	4	3057.31	5
603		17	max	0	10	007	12	.001	1	8.166e-4	3	NC 2542.240	12	NC 4575,000	1
604		40	min	0	4	023	4	018	5	-7.622e-4	2	3513.319	4_	4575.368	5
605		18	max	0	10	004	12	0	9	7.169e-4	4_	NC COOA CAA	1_	NC	1
606		40	min	0	4	012	4	009	5	-6.056e-4	2	6904.214	4	9380.508	
607		19	max	0	1	0	1	0	1	7.9e-4	4	NC	1_	NC NC	1
608			min	0	1	0	1	0	1	-4.49e-4	2	NC	1_	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

I _e (in)	da (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4 /						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\mathscr{\Psi}_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.