What is claimed is:

1. A compound of the formula I:

$$R1$$
 OR_2
 OR_4
 OR_5
 $R6$
 $R7$
 $R8$
 (I)

or a salt thereof, wherein

n is 0, 1 or 2:

- R1 is H, X₁-(C₁₋₈) alkyl-, (C₁₋₁₂)alkylC(O)-, X₂-(C₂₋₄) alkenylene-, X₂-(C₂₋₄) alkynylene-, X₁-(C₃₋₉)cycloalkyl-, X₂-(C₃₋₉)cycloalkene-, X₁-aryl-, X₁-(C₃₋₇)cycloalkane-(C₁₋₈)alkylene-, X₂-(C₃₋₇)cycloalkene-(C₁₋₈)alkylene-, or X₁-aryl-(C₁₋₈)alkylene-;
- X₁ is H, (C₁₋₁₄)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₁₄)alkyl substituted by (C₃₋₇)cycloalkyl, -OR_a, -SR_a, -NO₂, halo or (C₁₋₈)alkylC(O)-; aryl, aryl-(C₁₋₁₂)alkyl-, -OR_a, -SR_a, -NO₂, halo, (C₁₋₁₂)alkyl-C(O)-, mono- or di-(C₁₋₄)alkylamino, amino(C₁₋₁₆)alkyl-, or mono- or di-(C₁₋₄)alkylamino(C₁₋₁₆)alkyl;
- X₂ is H, (C₁₋₁₄)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₁₄)alkyl substituted by (C₃₋₇)cycloalkyl, -OR_a -SR_a, -NO₂, halo or (C₁₋₆)alkyl-C(O)-; aryl, aryl-(C₁₋₁₂)alkyl-, amino(C₁₋₁₆)alkyl- or mono- or di-(C₁₋₄)alkylamino(C₁₋₁₆)alkyl;
- R_a is H, (C₁₋₁₈)alkyl, aryl, or (C₁₋₁₈)alkyl substituted by (C₃₋₇)cycloalkyl, aryl, -OH, -O-(C₁₋₈)alkyl or halo;
- R₂, R₃, R₄ and R₅ are independently hydrogen or (C₁₋₁₈)alkyl, R₅ is also phenyl or (C₁₋₁₆)alkyl which is substituted by phenyl, wherein there is no more than a total of 18 carbon atoms in the combined R₂, R₃, R₄ and R₅ alkyl substituents, or R₂ and R₄ together or R₃ and R₅ together form an acetal group;

R6 is hydrogen or (C₁₋₈) alkyl;

R7 is H, (C₁₋₁₈)alkyl, phenyl, pyridyl, (C₁₋₁₈)alkyl substituted by (C₃₋₇)cycloalkyl, –OR_x, N₃, halo, -N(R_x)₂, R_x, -O-(C₁₋₈)alkyl, -OC(O)-(C₁₋₁₆)alkyl or pyridyl; -Y-R_b or a substituent of formula IIa or IIIa

wherein

R9 is from 0 to 3 substituents selected from (C₁₋₈)alkyl, -OR_a, -SR_a, -NO₂, halo, -N₃, (C₁₋₁₂)alkylC(O)-, mono- or di-(C₁₋₄)alkylamino, amino(C₁₋₁₆)alkyl-, mono- or di-(C₁₋₄)alkylamino(C₁₋₁₆)alkyl, (CH₂)₀₋₂-C₅₋₇cycloalkyl, (CH₂)₀₋₂-heterocyclic, (CH₂)₀₋₂-C₅₋₇aryl, or (CH₂)₀₋₂-heteroaryl;

Y is a linking group selected from -(C_{1-10})alkyl-, -(C_{0-10})alkylene-CO-N(R_x)-(C_{0-10})alkylene-, -(C_{0-10})alkylene-CO-O-(C_{0-10})alkylene-, -(C_{1-10})alkylene-CO-O-(C_{0-10})alkylene-, -(C_{1-10})alkylene-CO-(C_{0-10})alkylene-, -(C_{0-10})alkylene-CO-(C_{0-10})alkylene-, -(C_{0-10})alkylene-O-CO-(C_{0-10})alkylene- or -(C_{0-10})alkylene-arylene-(C_{0-10})alkylene-;

R_x is H₁ (C₁₋₄)alkyl or phenyl;

 R_b is (C_{1-16}) alkyl or (C_{1-16}) alkyl which is substituted by (C_{3-7}) cycloalkyl, $-OR_x$, N_3 , halo, $-N(R_x)_2$, $-O-(C_{1-8})$ alkyl, $-OC(O)-(C_{1-16})$ alkyl or pyridyl;

R8 is H, halo, -N₃, (C₁₋₁₆)alkyl, -Z-(C₁₋₁₆)alkyl, (C₁₋₁₆)alkyl substituted by (C₃₋₇)cycloalkyl, -N₃, -N(R_x)₂, -Z-het, -OR₈ or -SR₈, -Z-(C₁₋₁₆)alkyl substituted by (C₃₋₇)cycloalkyl, -N₃, -N(R_x)₂, -Z-het, -OR₈ or -SR₈, -O(C₁₋₁₆)alkylene-N₃, -O(C₁₋₁₆)alkylene-N(R_x)₂, -(C₀₋₆)alkylene-OC(O)-(C₁₋₁₆)alkyl, -(C₀₋₆)alkylene-OC(O)-(C₃₋₇)cycloalkyl, -(C₀₋₆)alkylene-OC(O)-(C₃₋₇)cycloalkyl, pyridyl, -OC(O)O(C₁₋₁₂)alkyl, -O-CO-X-R₂, or -O-CO-(CH₂)_m-O-(CH₂)_m-X-R_z wherein X is a direct bond, (C₁₋₁₂)alkylene, (C₁₋₁₂)alkenylene or (C₁₋₁₂)alkynylene and R_z is H, (C₃₋₉)cycloalkyl, phenyl, phenyl substituted by one or more of chloro, methoxy, (C₁₋₁₈)alkyl or (C₁₋₁₈)alkoxy, pyrrolyl, furanyl, thiofuranyl, indolyl, benzofuranyl, benzothiofuranyl or pyridyl and each m is independently a number from 0 to 13, -Z-het, -OR₈, -SR₈, mono- or di-(C₁₋₄)alkylamino, amino(C₁₋₁₆)alkyl-, mono- or di-(C₁₋₄)alkylamino(C₁₋₁₆)alkyl, -Z-Si((C₁₋₆)alkyl)₃ or a substituent selected from the following two formulae:

$$-z$$
 $R10$
 Rx
 Rx
 Rx

Z is a direct bond, $-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-O-, $-O-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-O-C(O)-, $-OC(O)-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-O-C(O)-, $-OC(O)-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-, -(

 $Z_1 \text{ is a direct bond, } -(C_{1-12}) \text{alkylene-, } -O-(C_{1-12}) \text{alkylene-, } -N(R_x)-(C_{1-12}) \text{alkylene-, } -N(R_x)-C(O)-(C_{1-12}) \text{alkylene-, } -(C_{1-8}) \text{alkylene-}, -(C_{1-8}) \text{alkylene-, } -CO-N(R_x)-(C_{1-12}) \text{alkylene-, } -C(O)-O-(C_{1-12}) \text{alkylene-, } -C(O)-O-(C_{1-8}) \text{alkylene-, } -C(O)-O-(C_{1-8}) \text{alkylene-, } -O-CO-N(R_x)-(C_{1-12}) \text{alkylene-, } -(C_{1-8}) \text{alkylene-} -(C_{1-8}) \text{alkylene-, } -O-CO-O-(C_{1-12}) \text{alkylene-} -(C_{1-8}) \text{alkylene-} -O-CO-O-(C_{1-8}) \text{alkylene-, } -O-CO-O-(C_{1-12}) \text{alkylene-} -O-CO-O-($

R10 is from 0 to 3 substituents selected from hydroxy, halo, -(C₁₋₁₇)alkyl, -O-(C₁₋₁₇)alkyl, -(CH₂)₁₋₆-C₃₋₇ -cycloalkyl, -(CH₂)₀₋₁₀-aryl or -(CH₂)₀₋₁₀ -het; het is a heterocyclic or heteroaromatic ring; p is 1-18;

with the proviso that when n is 2 and R₁ is (C₁₋₈)alkyl-CH=CH- or (C₃₋₆)cycloalkyl-CH=CH- then R₇ is not H or (C₁₋₈)alkyl or R₈ is not –O-CO-X-R₂ or –O-CO-(CH₂)_m-O-(CH₂)_m-X-R₂ where X is a direct bond, (C₁₋₁₂)alkylene, (C₁₋₁₂)alkenylene or (C₁₋₁₂)alkynylene and R₂ is H, (C₃₋₉)cycloalkyl, phenyl, phenyl substituted by one or more of chloro, methoxy, (C₁₋₁₈)alkyl or (C₁₋₁₈)alkoxy, pyrrolyl, furanyl, thiofuranyl, indolyl, benzofuranyl, benzothiofuranyl or pyridyl and each m is independently a number from 0 to 13, and

with the further proviso that R_8 is not –OH when n is 2, R_7 is H or methyl and R_1 is 3-methylbut-1-enviene.

2. A compound as claimed in claim 1, or a salt thereof, wherein:

n is 2:

R1 is X_1 -(C_{1-8}) alkyl-, X_2 -(C_{2-4}) alkenylene-, X_1 -(C_{3-7})cycloalkyl-, or X_1 -(C_{3-7})cycloalkane-(C_1 .

 X_1 is H, (C₁₋₁₂)alkyl, (C₃₋₇)cycloalkyl, -(C₁₋₁₂)alkyl substituted by (C₃₋₇)cycloalkyl, -OR_e; -SR_e, -NO₂, halo or (C₁₋₁₂)alkylC(O)-; aryl, aryl-(C₁₋₁₂)alkyl- or -OR_e;

 X_2 is H, (C₁₋₁₂)alkyl, (C₃₋₇)cycloalkyl, -(C₁₋₁₂)alkyl substituted by (C₃₋₇)cycloalkyl, -OR_a, -SR_a, -NO₂, halo or (C₁₋₁₂)alkylC(O)-, aryl, aryl-(C₁₋₁₂)alkyl-;

R_e is H, (C₁₋₁₈)alkyl, aryl-, or (C₁₋₁₈)alkyl substituted by (C₃₋₇)cycloalkyl or aryl;

R₂, R₃, R₄ and R₅ are independently hydrogen or (C₁₋₄)alkyl, wherein there is no more than a total of 8 carbon atoms, especially no more than 4 carbon atoms, in the combined R₂, R₃, R₄ and R₅ alkyl substituents;

R6 is hydrogen or (C₁₋₈) alkyl;

R7 is H, (C_{1-8}) alkyl, R_x , (C_{1-18}) alkyl substituted by (C_{3-7}) cycloalkyl, $-OR_x$, N_3 , halo, $-N(R_x)_2$, $-O-(C_{1-8})$ alkyl, -OC(O)- (C_{1-18}) alkyl or pyridyl; or a substituent of formula lia or lila

R9 is from 0 to 3 substituents selected from (C₁₋₈)alkyl, -OR₈, -SR₈, -NO₂, halo, or -N₃;

Y is a linking group selected from -C(O)N(R_x)-, -CO-O-, -(C₁₋₁₂)alkylene-CO-O-, -CO-O-(C₁₋₁₂)alkylene-, -(C₁₋₁₀)alkylene-, -(C₁₋₁₀)alkylene-O-C(O)-(C₁₋₁₀)alkylene-, -(C₁₋₁₀)alkylene-O-C(O)-(C₁₋₁₀)alkylene-, -(C₁₋₁₀)alkylene-, -(C₁₋₁₀)alkylene-CO-(C₁₋₁₀)alkylene-, -(C₁₋₁₂)alkylene-, -(C₁₋₁₂)alkylene-(R_x)N-CO-, -(C₁₋₁₀)alkylene-(R_x)N-CO-O-(C₁₋₁₀)alkylene-, or -(C₀₋₁₂)alkylene-arylene-(C₀₋₁₂)alkylene-;

 R_x is H, (C_{1-4}) alkyl or phenyl;

R8 is -N₃, (C₁₋₁₆)alkyl, -Z-(C₁₋₁₆)alkyl, (C₁₋₁₈)alkyl substituted by (C₃₋₇)cycloalkyl, -N₃, or -N(R_x)₂; -Z-(C₁₋₁₆)alkyl substituted in the alkyl portion by (C₃₋₇)cycloalkyl, -N₃, or -N(R_x)₂, -(C₀₋₆)alkylene-(O)C-O-(C₁₋₁₆)alkyl, or a substituent selected from the following two formulae:

$$-z$$
 $R10$
 Rx
 Rx
 Rx

Z is a direct bond, $-(C_{1-12})$ alkylene-, $-N(R_x)-C(O)-$, $-N(R_x)-C(O)-$ ($C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene- $-(C_{1-12$

 Z_1 is a direct bond, -(C_{1-12})aikylene- or -C(O)-;

R10 is from 0 to 3 substituents selected from hydroxy, halo, -(C_{1-17})alkyl, -O-(C_{1-17})alkyl, -(CH_2)₁₋₈- C_{3-7} -cycloalkyl, -(CH_2)₀₋₁₀-aryl or -(CH_2)₀₋₁₀ —het; and het is pyridyl.

3. A compound as claimed in claim 1, or a salt thereof, wherein:

R1 is (C₁₋₆ alkyl)-ethenylene-;

R₂, R₃ and R₄, independently are hydrogen or (C₁₋₄) alkyl, wherein there is no more than a total of 4 carbon atoms in the combined R₂, R₃, R₄ and R₅ alkyl substituents;

 R_5 is (C_{1-4}) alkyl;

R6 is hydrogen or methyl;

R7 is H or (C₁₋₆)alkyl;

R8 is H, -N₃, (C₁₋₁₆)alkyl, -Z-(C₁₋₁₆)alkyl, (C₁₋₁₆)alkyl substituted by (C₃₋₇)cycloalkyl, -N₃, or -N(R_x)₂; or -Z-(C₁₋₁₆)alkyl substituted in the alkyl portion by (C₃₋₇)cycloalkyl, -N₃, or -N(R_x)₂;

R9 Is $(CH_2)_{0-2}$ - C_{5-7} cycloalkyl, $(CH_2)_{0-2}$ - C_{5-7} hetero-cyclic, $(CH_2)_{0-2}$ - C_{5-7} aryl, or $(CH_2)_{0-2}$ - C_{5-7} hetero-aryl;

X is (C_{1-12}) alkylene or (C_{2-12}) alkenylene;

R10 is from 0 to 3 substituents selected from hydroxy, halo, $-(C_{1-8})$ alkyl, $-(C_{1-8})$ alkyl, $-(CH_2)_{1-6}$ - $-(CH_2)_{1-6}$ - $-(CH_2)_{0-10}$ -aryl or $-(CH_2)_{0-10}$ —het;

het is pyridyl;

n is 2.

4. A compound as claimed in claim 1, or a salt thereof, wherein:

R1 is -CH=CH-*i*-propyl or -CH=CH-*t*-butyl;

X₂ is H:

R₂, R₃, R₄, and R₅ independently are hydrogen or methyl;

R6 is hydrogen;

R7 is H or (C₁₋₃) alkyl; and

n is 2.

5. A compound as claimed in claim 1, or a salt thereof, wherein:

 R_1 is X_1 -(C_{3-7})cycloalkane-(C_{1-8})alkylene- or X_2 -(C_{3-9})cycloalkene-;

X₁ is hydrogen;

X₂ is hydrogen;

R₂, R₃, R₄, and R₅ independently are hydrogen or methyl;

R₆ is hydrogen;

-. R₇ is H or (C₁₋₃) alkyl;

R₈ is hydrogen; and

n is 2.

- 6. A pharmaceutical composition comprising a compound of formula I according to any one of claims 1-5, or a pharmaceutically acceptable salt thereof.
- 7. The pharmaceutical composition of claim 6 comprising a pharmaceutically acceptable carrier or diluent.
- 8. Use of a compound of formula I according to any on of claims 1-5, or a pharmaceutically acceptable salt thereof, for the treatment of cancer.
- 9. Use of a compound of formula I according to any on of claims 1-5, or a pharmaceutically acceptable salt thereof for the preparation of a pharmaceutical composition for the treatment of cancer.
- 10. A process to prepare the compound of the formula I:

$$R1$$
 OR_2
 OR_4
 OR_5
 $R6$
 $R7$
 $R8$
 (I)

or a salt thereof, wherein

n is 0, 1 or 2;

- R1 is H, X_1 -(C_{1-8}) alkyl-, (C_{1-12})alkylC(O)-, X_2 -(C_{2-4}) alkenylene-, X_2 -(C_{2-4}) alkynylene-, X_1 -(C_{3-8})cycloalkyl-, X_2 -(C_{3-8})cycloalkene-, X_1 -aryl-, X_1 -(X_1 -(X_1 -(X_2 -(X_1 -aryl-)cycloalkene-(X_1 -aryl-)cycloalkene-(X_1 -aryl-(X_1 -aryl-(X_1 -aryl-(X_1 -aryl-)cycloalkene-;
- X₁ is H, (C₁₋₁₄)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₁₄)alkyl substituted by (C₃₋₇)cycloalkyl, -OR_a, -SR_a, -NO₂, halo or (C₁₋₆)alkylC(O)-; aryl, aryl-(C₁₋₁₂)alkyl-, -OR_a, -SR_a, -NO₂, halo, (C₁₋₁₂)alkyl-C(O)-, mono- or di-(C₁₋₄)alkylamino, amino(C₁₋₁₆)alkyl-, or mono- or di-(C₁₋₄)alkylamino(C₁₋₁₆)alkyl;
- X_2 is H, (C_{1-14}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-14}) alkyl substituted by (C_{3-7}) cycloalkyl, $-OR_a$ -SR_a, -NO₂, halo or (C_{1-8}) alkyl-C(O)-; aryl, aryl- (C_{1-12}) alkyl-, amino (C_{1-16}) alkyl- or mono- or di- (C_{1-4}) alkylamino (C_{1-16}) alkyl;
- R_a is H, (C₁₋₁₈)alkyl, aryl, or (C₁₋₁₈)alkyl substituted by (C₃₋₇)cycloalkyl, aryl, -OH, -O-(C₁₋₈)alkyl or halo;
- R₂, R₃, R₄ and R₅ are independently hydrogen or (C₁₋₁₈)alkyl, R₅ is also phenyl or (C₁₋₁₆)alkyl which is substituted by phenyl, wherein there is no more than a total of 18 carbon atoms in the combined R₂, R₃, R₄ and R₅ alkyl substituents, or R₂ and R₄ together or R₃ and R₅ together form an acetal group;

R6 is hydrogen or (C₁₋₆) alkyl;

R7 is H, (C₁₋₁₈)alkyl, phenyl, pyridyl, (C₁₋₁₈)alkyl substituted by (C₃₋₇)cycloalkyl, –OR_x, N₃, halo, -N(R_x)₂, R_x, -O-(C₁₋₈)alkyl, -OC(O)-(C₁₋₁₆)alkyl or pyridyl; -Y-R_b or a substituent of formula IIa or IIIa

wherein

R9 is from 0 to 3 substituents selected from (C₁₋₈)alkyl, -OR_a, -SR_a, -NO₂, halo, -N₃, (C₁.

1₂)alkylC(O)-, mono- or di-(C₁₋₄)alkylamino, amino(C₁₋₁₆)alkyl-, mono- or di-(C₁.

4)alkylamino(C₁₋₁₆)alkyl, (CH₂)₀₋₂-C₅₋₇cycloalkyl, (CH₂)₀₋₂-heterocyclic, (CH₂)₀₋₂-C₅₋₇aryl, or (CH₂)₀₋₂-heteroaryl;

Y is a linking group selected from -(C_{1-10})alkyl-, -(C_{0-10})alkylene-CO-N(R_x)-(C_{0-10})alkylene-, -(C_{0-10})alkylene-CO-O-(C_{0-10})alkylene-, -(C_{1-10})alkylene-CO-O-(C_{0-10})alkylene-, -(C_{1-10})alkylene-CO-(C_{0-10})alkylene-, -(C_{0-10})alkylene-CO-(C_{0-10})alkylene-, -(C_{0-10})alkylene-O-CO-(C_{0-10})alkylene- or -(C_{0-10})alkylene-arylene-(C_{0-10})alkylene-;

R_x is H, (C₁₋₄)alkyl or phenyl;

 R_b is (C_{1-16}) alkyl or (C_{1-16}) alkyl which is substituted by (C_{3-7}) cycloalkyl, $-OR_x$, N_3 , halo, $-N(R_x)_2$, $-O-(C_{1-8})$ alkyl, $-OC(O)-(C_{1-16})$ alkyl or pyridyl;

R8 is H, halo, -N₃, (C₁₋₁₆)alkyl, -Z-(C₁₋₁₆)alkyl, (C₁₋₁₆)alkyl substituted by (C₃₋₇)cycloalkyl, -N₃, -N(R_x)₂, -Z-het, -OR_a or -SR_a, -Z-(C₁₋₁₆)alkyl substituted by (C₃₋₇)cycloalkyl, -N₃, -N(R_x)₂, -Z-het, -OR_a or -SR_a, -O(C₁₋₁₆)alkylene-N₃, -O(C₁₋₁₆)alkylene-N(R_x)₂, -(C₀₋₆)alkylene-OC(O)-(C₁₋₁₆)alkyl, -(C₀₋₆)alkylene-OC(O)-(C₃₋₇)cycloalkyl, -(C₀₋₆)alkylene-OC(O)-(C₃₋₇)cycloalkyl, pyridyl, -OC(O)O(C₁₋₁₂)alkyl, -O-CO-X-R_z, or -O-CO-(CH₂)_m-O-(CH₂)_m-X-R_z wherein X is a direct bond, (C₁₋₁₂)alkylene, (C₁₋₁₂)alkenylene or (C₁₋₁₂)alkynylene and R_z is H, (C₃₋₉)cycloalkyl, phenyl, phenyl substituted by one or more of chloro, methoxy, (C₁₋₁₈)alkyl or (C₁₋₁₈)alkoxy, pyrrolyl, furanyl, thiofuranyl, indolyl, benzofuranyl, benzothiofuranyl or pyridyl and each m is independently a number from 0 to 13, -Z-het, -OR_a, -SR_a, mono- or di-(C₁₋₁₆)alkyl, -Z-Si((C₁₋₁₆)alkyl)₃ or a substituent selected from the following two formulae:

Z is a direct bond, $-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-O-, $-O-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-, $-N(R_x)-C(O)-$, $-N(R_x)-C(O)-$ ($-N(R_x)-C(O)-$) alkylene-, $-(C_{1-12})$ alkylene- $-N(R_x)-C(O)-$, $-(C_{1-12})$ alkylene- $-N(R_x)-C(O)-$ ($-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-

Z₁ is a direct bond, $-(C_{1-12})$ alkylene-, $-O-(C_{1-12})$ alkylene-, $-N(R_x)-(C_{1-12})$ alkylene-, $-N(R_x)-(C_{1-12})$ alkylene-, $-(C_{1-8})$ alkylene-,

R10 is from 0 to 3 substituents selected from hydroxy, halo, -(C₁₋₁₇)alkyl, -O-(C₁₋₁₇)alkyl, -(CH₂)₁₋₈-C₃₋₇ -cycloalkyl, -(CH₂)₀₋₁₀-aryl or -(CH₂)₀₋₁₀ -het; het is a heterocyclic or heteroaromatic ring; p is 1-18;

with the proviso that when n is 2 and R₁ is (C₁₋₈)alkyl-CH=CH- or (C₃₋₈)cycloalkyl-CH=CH- then R₇ is not H or (C₁₋₈)alkyl or R₈ is not –O-CO-X-R_Z or –O-CO-(CH₂)_m-O-(CH₂)_m-X-R_Z where X is a direct bond, (C₁₋₁₂)alkylene, (C₁₋₁₂)alkenylene or (C₁₋₁₂)alkynylene and R_z is H, (C₃₋₉)cycloalkyl, phenyl, phenyl substituted by one or more of chloro, methoxy, (C₁₋₁₈)alkyl or (C₁₋₁₈)alkoxy, pyrrolyl, furanyl, thiofuranyl, indolyl, benzofuranyl, benzothiofuranyl or pyridyl and each m is independently a number from 0 to 13, and with the further proviso that R₈ is not –OH when n is 2, R₇ is H or methyl and R₁ is 3-methylbut-1-enylene;

comprising the following steps:

(a) reacting the compound of formula VI or an acid addition salt thereof

wherein R₇ and R₈ are defined above, with the compound of formula VII

wherein R₁ and R₅ are defined above, to form a compound of formula VIII

- (b) hydrolyzing the compound of formula Viil.
- 11. The process as claimed in claim 10, wherein step (a) is conducted in a polar organic solvent or in the presence of a weak base and a polar organic solvent.
- 12. The process as claimed in claim 10, wherein the compound of VIII is prepared by reacting the compound of XI

wherein R_1 , R_5 and R_7 are defined in claim 10, with an acid chloride in the presence of a base and a solvent.

13. The process as claimed in claim 12, wherein the acid chloride is of the formula $R_{12}COCl$, wherein R_{12} is an appropriate substituent based on the definition of R_8 ; the base is triethylanime and the solvent is dichloromethane.

14. The process as claimed in claim 10, wherein the compound of VIII is prepared by reacting the compound of XI

wherein R_1 , R_5 and R_7 are defined in claim 11, with a carboxylic acid in the presence of a carboxylic acid coupling agent and an activating agent.

- 15. The process as claimed in claim 14, wherein the carboxylic acid is of the formula R_{12} COOH wherein R_{12} is an appropriate substituent based on the definition of R_{8} ; the carboxylic acid coupling reagent is 1-(3-dimethylaminopropyl)-3-ethylcarbodlimide hydrochloride and the activating agent is 4-dimethylaminopyridine.
- 16. The process as claimed in claim 10 wherein the compound of formula VII is prepared by cleaving the compound of formula XXXIII

wherein R₅ is defined in claim 10, to obtain the compound XXXIV

reacting the compound of XXXIV with an organometallic compound in the presence of a solvent mixture.

17. The process as claimed in claim 16, wherein cleaving the compound of formula XXXIII is carried out in the presence of a periodate salt in a solvent.

- 18. The process as claimed in claim 17, wherein the periodate salt is sodium periodate and the solvent is methanol.
- 19. The process as claimed in claim 16, wherein the organometallic compound is an organochromium compound, and the solvent mixture comprises of a polar organic solvent and an inert organic solvent.
- 20. The process as claimed in claim 19, wherein the polar organic solvent is N,N-dimethylformamide and the inert organic solvent is tetrahydrofuran.
- 21. A process to prepare the compound of the formula I:

$$R1$$
 OR_2
 OR_4
 OR_5
 $R6$
 $R7$
 $R8$
 (I)

or a salt thereof, wherein

n is 0, 1 or 2;

- R1 is H, X_1 -(C_{1-6}) alkyi-, (C_{1-12})alkyiC(O)-, X_2 -(C_{2-4}) alkenylene-, X_2 -(C_{2-4}) alkynylene-, X_1 -(C_{3-9})cycloalkyi-, X_2 -(C_{3-9})cycloalkene-, X_1 -aryi-, X_1 -(X_1 -(X_1 -(X_1 -(X_2 -(X_1 -(X_1 -(X_1 -(X_2 -(X_2 -(X_1 -(X_1 -(X_1 -(X_2 -(X_2 -(X_2 -(X_1 -(X_1 -(X_1 -(X_2 -(X_2 -(X_2 -(X_1 -(X_1 -(X_2 -(X_2 -(X_2 -(X_1 -(X_1 -(X_2 -(X_2 -(X_2 -(X_1 -(X_1 -(X_2 -(X_2 -(X_2 -(X_2 -(X_2 -(X_1 -(X_2 -(X_2 -(X_2 -(X_1 -(X_1 -(X_2 -(X_2 -(X_2 -(X_1 -(X_1 -(X_2 -(X_2 -(X_2 -(X_1 -(X_1 -(X_2 -(X_2 -(X_1 -(X_1 -(X_1 -(X_1 -(X_2 -(X_2 -(X_1 -(X
- X₁ is H, (C₁₋₁₄)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₁₄)alkyl substituted by (C₃₋₇)cycloalkyl, -OR_a, -SR_a, -NO₂, halo or (C₁₋₈)alkylC(O)-; aryl, aryl-(C₁₋₁₂)alkyl-, -OR_a, -SR_a, -NO₂, halo, (C₁₋₁₂)alkyl-C(O)-, mono- or di-(C₁₋₄)alkylamino, amino(C₁₋₁₆)alkyl-, or mono- or di-(C₁.

 4)alkylamino(C₁₋₁₆)alkyl;
- X_2 is H, (C_{1-14}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-14}) alkyl substituted by (C_{3-7}) cycloalkyl, $-OR_a$ -SR_a, -NO₂, halo or (C_{1-6}) alkyl-C(O)-; aryl, aryl- (C_{1-12}) alkyl-, amino (C_{1-16}) alkyl- or mono- or di- (C_{1-4}) alkylamino (C_{1-16}) alkyl;
- R_a is H, (C₁₋₁₈)alkyl, aryl, or (C₁₋₁₈)alkyl substituted by (C₃₋₇)cycloalkyl, aryl, -OH, -O-(C₁₋₆)alkyl or halo;

R₂, R₃, R₄ and R₅ are independently hydrogen or (C₁₋₁₈)alkyl, R₅ is also phenyl or (C₁₋₁₆)alkyl which is substituted by phenyl, wherein there is no more than a total of 18 carbon atoms in the combined R₂, R₃, R₄ and R₅ alkyl substituents, or R₂ and R₄ together or R₃ and R₅ together form an acetal group;

R6 is hydrogen or (C₁₋₆) alkyl;

R7 is H, (C₁₋₁₈)alkyl, phenyl, pyridyl, (C₁₋₁₈)alkyl substituted by (C₃₋₇)cycloalkyl, –OR_x, N₃, halo, -N(R_x)₂, R_x, -O-(C₁₋₈)alkyl, -OC(O)-(C₁₋₁₆)alkyl or pyridyl; -Y-R_b or a substituent of formula IIa or IIIa

wherein

R9 is from 0 to 3 substituents selected from (C_{1-6})alkyl, - OR_a , - SR_a , - NO_2 , halo, - N_3 , (C_1 . $_{12}$)alkylC(O)-, mono- or di-(C_{1-4})alkylamino, amino(C_{1-16})alkyl-, mono- or di-(C_1 . $_4$)alkylamino(C_{1-16})alkyl, (CH_2)₀₋₂- C_{5-7} cycloalkyl, (CH_2)₀₋₂-heterocyclic, (CH_2)₀₋₂- C_{5-7} aryl, or (CH_2)₀₋₂-heteroaryl;

Y is a linking group selected from -(C_{1-10})alkyl-, -(C_{0-10})alkylene-CO-N(R_x)-(C_{0-10})alkylene-, -(C_{0-10})alkylene-CO-O-(C_{0-10})alkylene-, -(C_{1-10})alkylene-CO-O-(C_{0-10})alkylene-, -(C_{1-10})alkylene-CO-(C_{0-10})alkylene-, -(C_{0-10})alkylene-, -(C_{0-10})alkylene-(C_{0-10})alkylene-o-CO-(C_{0-10})alkylene-or -(C_{0-10})alkylene-arylene-(C_{0-10})alkylene-;

 R_x is H, (C_{1-4}) alkyl or phenyl;

 R_b is (C_{1-16}) alkyl or (C_{1-16}) alkyl which is substituted by (C_{3-7}) cycloalkyl, $-OR_x$, N_3 , halo, $-N(R_x)_2$, $-O-(C_{1-8})$ alkyl, $-OC(O)-(C_{1-16})$ alkyl or pyridyl;

R8 is H, halo, -N₃, (C₁₋₁₆)alkyl, -Z-(C₁₋₁₆)alkyl, (C₁₋₁₆)alkyl substituted by (C₃₋₇)cycloalkyl, -N₃, -N(R_x)₂, -Z-het, -OR_a or -SR_a, -Z-(C₁₋₁₆)alkyl substituted by (C₃₋₇)cycloalkyl, -N₃, -N(R_x)₂, -Z-het, -OR_a or -SR_a, -O(C₁₋₁₆)alkylene-N₃, -O(C₁₋₁₆)alkylene-N(R_x)₂, -(C₀₋₆)alkylene-OC(O)-(C₁₋₁₆)alkyl, -(C₀₋₆)alkylene-OC(O)-(C₃₋₇)cycloalkyl, -(C₀₋₆)alkylene-OC(O)-(C₃₋₇)cycloalkyl, pyridyl, -OC(O)O(C₁₋₁₂)alkyl, -O-CO-X-R_z, or -O-CO-(CH₂)_m-O-(CH₂)_m-X-R_z wherein X is a direct bond, (C₁₋₁₂)alkylene, (C₁₋₁₂)alkenylene or (C₁₋₁₂)alkynylene and R_z is H, (C₃₋₉)cycloalkyl, phenyl, phenyl

substituted by one or more of chloro, methoxy, (C_{1-18}) alkyl or (C_{1-18}) alkoxy, pyrrolyi, furanyi, thiofuranyi, indolyi, benzofuranyi, benzothiofuranyi or pyridyi and each m is independently a number from 0 to 13, -Z-het, -OR_a, -SR_a, mono- or di- (C_{1-16}) alkyl-, mono- or di- (C_{1-4}) alkylamino, amino (C_{1-16}) alkyl-, mono- or di- (C_{1-4}) alkylamino (C_{1-16}) alkyl, -Z-Si((C_{1-6}) alkyl)₃ or a substituent selected from the following two formulae:

$$-z$$
R10
 $-z$
 Rx
 Rx

Z is a direct bond, $-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-O-, $-O-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-, $N(R_x)$ -, $-N(R_x)$ -, $-N(R_x)$ -, $-N(R_x)$ - (C_{1-12}) alkylene-, $-N(R_x)$ -, $-N(R_x)$ -,

Z₁ is a direct bond, $-(C_{1-12})$ alkylene-, $-O-(C_{1-12})$ alkylene-, $-N(R_x)-(C_{1-12})$ alkylene-, $-N(R_x)-(C_{1-12})$ alkylene-, $-(C_{1-8})$ alkylene-, $-(C_{1-12})$ alkylene-,

R10 is from 0 to 3 substituents selected from hydroxy, halo, -(C_{1-17})alkyl, -O-(C_{1-17})alkyl, -(CH_2)₁₋₆- C_{3-7} -cycloalkyl, -(CH_2)₀₋₁₀-aryl or -(CH_2)₀₋₁₀ -het;

het is a heterocyclic or heteroaromatic ring;

p is 1-18;

with the proviso that when n is 2 and R₁ is (C_{1-6}) alkyl-CH=CH- or (C_{3-6}) cycloalkyl-CH=CHthen R₇ is not H or (C_{1-8}) alkyl or R₈ is not -O-CO-X-R_z or -O-CO- $(CH_2)_m$ -O- $(CH_2)_m$ -X- R_Z where X is a direct bond, (C_{1-12}) alkylene, (C_{1-12}) alkenylene or (C_{1-12}) alkynylene and R_Z is H, $(C_{3-\theta})$ cycloalkyl, phenyl, phenyl substituted by one or more of chloro, methoxy, $(C_{1-1\theta})$ alkyl or $(C_{1-1\theta})$ alkoxy, pyrrolyl, furanyl, thiofuranyl, indolyl, benzofuranyl, benzothiofuranyl or pyridyl and each m is independently a number from 0 to 13, and with the further proviso that R_θ is not $-\dot{O}H$ when n is 2, R_7 is H or methyl and R_1 is 3-methylbut-1-enylene;

comprising the following steps:

(a) reacting a compound of formula XLI

wherein R_1 and R_5 are defined above, P_2 and P_4 are protective groups, and R''' is a (C_{1-6}) alkyl, with the compound of formula VI

wherein R₇ and R₈ are defined above, to form the compound of formula XLII

- (b) deprotecting the compound of formula XLII.
- 22. The process as claimed in claim 21, wherein R" is ethyl, P_2 is *tert*-butyldimethylsilyl, and P_4 is selected from benzyl or naphthlmethyl ethers.

23. The process as claimed in claim 21, wherein the compound of formula XLI is prepared by reacting the compound of formula XL

wherein R₁, P₂ and P₄ are defined in claim 21 with a compound having the following formula

wherein R_{5} and $R^{\prime\prime\prime}$ are defined in claim 21 and P_{3} is a protective group.

- 24. The process as claimed in claim 23, wherein the reaction is conducted in the presence of a Lewis acid and a solvent.
- 25. The process as claimed in claim 24, wherein the Lewis acid is SnCl₄ and the solvent is a mixture of CH₂Cl₂ and heptane.