

TASK 1:

SCAN YOUR LOCAL NETWORK FOR OPEN PORTS

MAY 26, 2025
PRADEEP U S
Pradeep.ustd@gmail.com

Task 1: Scan Your Local Network for Open Ports

I am using Kali Linux, Since Kali Linux includes Nmap by default, no separate installation was necessary.

Step 1:

I used my Metasploitable IP for a Port Scan.

I used (ip a) to find my IP(10.0.2.4)

```
File Machine View Input Devices Help

msfadmin@metasploitable: $ ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue
link/loopback 00:00:00:00:00 brd 00:00:00:00:00
inet 127.0.0.1/8 scope host
valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast qlen 1000
link/ether 08:00:27:4b:6a:5e brd ff:ff:ff:ff:ff
inet 10.0.2.4/24 brd 10.0.2.255 scope global eth0
inet6 fe80::a00:27ff:fe4b:6a5e/64 scope link
valid_lft forever preferred_lft forever

msfadmin@metasploitable: $

| Image: April | Image: Apri
```

Step 2:

I run the following Nmap command to perform a stealthy TCP SYN scan across the local network:{nmap -sS 10.0.2.4}

This scan sends SYN packets to ports on target hosts and listens for SYN-ACK responses, which indicate open ports.

Open ports

As I used my Metasploitable for an open port scan, most of the ports would be open, Here the details of my ports and their services

Port	Service Name	Common Usage	Discription
21	FTP	File Transfer Protocol	Transmits credentials in plaintext – use SFTP or FTPS instead.
22	SSH	Secure Shell (remote login/commands)	(remote login/commands).
23	Telnet	Remote terminal	like SSH, but unencrypted
25	SMTP	Server mail transfer protocol	Can be used in spam relaying if not properly secured.
53	DNS (TCP)	Domain Name System	TCP used for zone transfers
80	HTTP	Hipper Text Transfer Protocol	Use HTTPS (port 443) to secure communication.
111	RPCbind	Maps RPC services on Unix systems	Often abused in DDoS amplification attacks.
139	NetBIOS- SSN	Windows file/printer sharing	Legacy; can expose sensitive shares.
445	Microsoft- DS (SMB)	File sharing and domain services (Windows)	Target of ransomware (e.g., WannaCry).
512	ехес	Remote command	Unencrypted & insecure – should be disabled.

		execution (rsh)	
513	login	Remote login service	Insecure (rlogin); avoid and disable.
514	shell	Remote shell (rsh shell)	Also insecure, avoid using.
1099	RMI Registry	Java RMI (Remote Method Invocation)	May allow remote code execution if misconfigured.
1524	ingreslock	Backdoor port (legacy) or Ingres DB	Often left open by malware or for testing – risky.
2049	NFS	Network File System (Unix file sharing)	Can expose internal file shares – needs proper config.
2121	ccproxy-ftp	FTP service used by CCProxy	Same risks as normal FTP.
3306	MySQL	MySQL database	Needs proper access control – default configs can leak data.
5432	PostgreSQL	PostgreSQL database	Watch for unauthenticated access.
5900	VNC	Virtual Network Computing (remote desktop)	Must be password protected; easily brute-forced.
6000	X11	X Window System display	Dangerous if exposed over the network – should be disabled or firewalled.
6667	IRC	Internet Relay Chat server	Rarely used now; can be a botnet command channel.
8009	AJP13	Apache JServ Protocol (Tomcat backend)	Was exploited in Ghostcat vulnerability (CVE-2020-1938).
8180	Unknown	Could be HTTP	Needs manual investigation via browser or banner

(often	(custom web	grabbing.
web)	app), Jenkins,	
	etc.	

Analyzing the packets with Wireshark

I used Wireshark to capture network traffic during the scan

Syn packets are filtered by using{tcp.flag.syn==1}

Security Risks

514/tcp open shell

FTP[21]: Sends credentials in plaintext. **Telnet[23]:** Unencrypted remote access, highly insecure. SMB [Port 44]): Known attack vector for ransomware and worms. I saved the Scan using {nmap -sS 10.0.2.4 -oA scan.txt} Scan.txt # Nmap 7.95 scan initiated Mon May 26 13:23:39 2025 as: /usr/lib/nmap/nmap --privileged -sS -oA scan.txt 10.0.2.4 Nmap scan report for 10.0.2.4 Host is up (0.024s latency). Not shown: 977 closed tcp ports (reset) PORT STATE SERVICE 21/tcp open ftp 22/tcp open ssh 23/tcp open telnet 25/tcp open smtp 53/tcp open domain 80/tcp open http 111/tcp open rpcbind 139/tcp open netbios-ssn 445/tcp open microsoft-ds 512/tcp open exec 513/tcp open login

```
1099/tcp open rmiregistry
1524/tcp open
              ingreslock
2049/tcp open nfs
2121/tcp open ccproxy-ftp
3306/tcp open mysql
5432/tcp open
              postgresql
5900/tcp open
              vnc
6000/tcp open
              X11
6667/tcp open irc
8009/tcp open ajp13
8180/tcp open unknown
MAC Address: 08:00:27:4B:6A:5E (PCS Systemtechnik/Oracle
VirtualBox virtual NIC)
# Nmap done at Mon May 26 13:23:40 2025 -- 1 IP address (1 host
up) scanned in 0.76 seconds
}
```

Conclusion

I used Nmap to scan my local network.

I found which devices were active and which ports were open.

Some open ports had risky services like Telnet and FTP.

I used Wireshark to see how the scan worked by checking network packets.

I applied simple filters to see SYN packets and packets on specific ports.

I saved the scan results for documentation.

I learned how to find security issues by checking open ports and services.