Note del corso di Geometria 1

Gabriel Antonio Videtta

26 aprile 2023

Azioni di un gruppo e introduzione agli spazi affini

Nota. Nel corso delle lezioni si è impiegata la notazione g.x per indicare l'azione di un gruppo su un dato elemento $x \in X$. Tuttavia si è preferito utilizzare la notazione $g \cdot x$ nel corso del documento.

Inoltre, con G si indicherà un generico gruppo, e con X un generico insieme, sul quale G agisce, qualora non indicato diversamente.

Definizione (azione di un gruppo su un insieme). Sia G un gruppo e sia X un insieme. Un'azione sinistra, comunemente detta solo **azione**, di G su X è un'applicazione da $G \times X$ in X tale che $(g,x) \mapsto g \cdot x$ e che:

- (i) $e \cdot x = x \ \forall x \in X$,
- (ii) $q \cdot (h \cdot x) = (qh) \cdot x \ \forall x \in X, \ \forall q, h \in G.$

Osservazione.

- ▶ Data un'azione di G su X, si può definire un'applicazione $f_g: X \to X$ tale che, dato $g \in G$, $f_g(x) = g \cdot x$.
- Tale applicazione f_g è bigettiva, dal momento che $f_{g^{-1}}$ è una sua inversa, sia destra che sinistra. Infatti $(f_g \circ f_{g^{-1}})(x) = g \cdot (g^{-1} \cdot x) = (gg^{-1}) \cdot x = e \cdot x = x$, e così il viceversa.

Definizione. L'azione di un gruppo G su un insieme X si dice **fedele** se l'omomorfismo φ_G da G in S(X), ossia nel gruppo delle bigezioni su G, che associa g a f_g è iniettiva.

Osservazione. Si osserva che dire che un'azione di un gruppo è fedele è equivalente a dire che Ker $\varphi_G = \{e\}$, ossia che $f_g = \text{Id} \iff g = e$.

Esempio. Si possono fare alcuni esempi di azioni classiche su alcuni gruppi.

- (i) S(X) agisce su X in modo tale che $f \cdot x = f(x) \ \forall f \in S(X), x \in X$.
- (ii) G agisce su G stesso tramite l'operazione del gruppo, ossia $g \cdot g' = gg'$ $\forall g, g' \in G$.
- (iii) Data un'azione sinistra di G su X tale che $(g,x)\mapsto g\cdot x$, si può definire naturalmente un'azione destra da $X\times G$ in X in modo tale che $(x,g)\mapsto x\cdot g=g^{-1}\cdot x$. Infatti $x\cdot e=e^{-1}\cdot x=e\cdot x=x$, e $(x\cdot g)\cdot g'=(g^{-1}\cdot x)\cdot g'=g'^{-1}\cdot (g^{-1}\cdot x)=(g'^{-1}g^{-1})\cdot x=(gg')^{-1}\cdot x=x\cdot (gg')$.

Definizione (G-insieme). Se esiste un azione di G su X, si dice che X è un G-insieme.

Definizione (orbita di x). Sia \sim_G la relazione d'equivalenza tale che $x \sim_G y \stackrel{\text{def}}{\iff} \exists g \in G \mid g \cdot x = y$. Allora le classi di equivalenza si dicono **orbite**, ed in particolare si indica l'orbita a cui appartiene un dato $x \in X$ come $\text{Orb}_G(x) = O_x$ (o come Orb(x), quando G è noto), ed è detta *orbita di x*.

Esempio. Si possono individuare facilmente alcune orbite per alcune azioni classiche.

- (i) Se $G = \operatorname{GL}(n, \mathbb{K})$ è il gruppo delle matrici invertibili su \mathbb{K} di taglia n rispetto all'operazione di moltiplicazione matriciale, G opera naturalmente su $M(n, \mathbb{K})$ tramite la similitudine, ossia G agisce in modo tale che $P \cdot M = PMP^{-1} \ \forall P \in \operatorname{GL}(n, \mathbb{K}), \ M \in M(n, \mathbb{K})$. In particolare, data $M \in M(n, \mathbb{K})$, $\operatorname{Orb}(M)$ coincide esattamente con la classe di similitudine di M.
- (ii) Se $G = \operatorname{GL}(n, \mathbb{K})$, G opera naturalmente anche su $\operatorname{Sym}(n, \mathbb{K})$ tramite la congruenza, ossia tramite la mappa $(P, A) \mapsto P^{\top}AP$. L'orbita $\operatorname{Orb}(A)$ è la classe di congruenza delle matrice simmetria $A \in \operatorname{Sym}(n, \mathbb{K})$. Analogamente si può costruire un'azione per le matrici hermitiane.
- (iii) Se $G = O_n$, il gruppo delle matrici ortogonali di taglia n su \mathbb{K} , G opera su \mathbb{R}^n tramite la mappa $O \cdot \underline{v} \mapsto O\underline{v}$. L'orbita $Orb(\underline{v})$ è in particolare la sfera n-dimensionale di raggio ||v||.

Definizione (stabilizzatore di x). Lo **stabilizzatore** di un punto $x \in X$ è l'insieme degli elementi di G che agiscono su x lasciandolo invariato, ossia lo stabilizzatore $\operatorname{Stab}_G(x)$ (scritto semplicemente come $\operatorname{Stab}(x)$ se G è noto) è il sottogruppo di G tale che:

$$Stab_G(X) = \{ g \in G \mid g \cdot x = x \}.$$

Esempio. Sia $H \subseteq G$ un sottogruppo di G e sia X = G/H. Allora X è un G-insieme tramite l'azione $g' \cdot (gH) = g'gH$. In particolare vale che $\operatorname{Stab}(gH) = gH$, e quindi che $\operatorname{Stab}(eH) = H$.

Teorema (di orbita-stabilizzatore). Sia X un G-insieme e sia $x \in X$. Allora esiste un'applicazione bigettiva da $G/\operatorname{Stab}(x)$ a $\operatorname{Orb}(x)$.

Dimostrazione. Sia τ l'applicazione da $G/\operatorname{Stab}(x)$ a $\operatorname{Orb}(x)$ tale che $\tau(g\operatorname{Stab}(x)) = g \cdot x$. Si dimostra innanzitutto che τ è ben definita. Sia infatti $g' = gs \in G$, con $g \in G$ e $s \in \operatorname{Stab}(x)$, allora $\tau(g'\operatorname{Stab}(x)) = g' \cdot x = g \cdot (s \cdot x) = g \cdot x = \tau(g\operatorname{Stab}(x))$, per cui τ è ben definita.

Chiaramente τ è surgettiva: sia infatti $y \in \text{Orb}(x)$, allora $\exists g \in G \mid g \cdot x = y \implies \tau(g \operatorname{Stab}(x)) = g \cdot x = y$. Siano ora $g, g' \in G$ tali che $\tau(g \operatorname{Stab}(x)) = \tau(g' \operatorname{Stab}(x))$, allora $g \cdot x = g' \cdot x \implies (g'g^{-1}) \cdot x = x \implies g'g^{-1} \in \operatorname{Stab}(x)$. Pertanto $g \operatorname{Stab}(x) = g' \operatorname{Stab}(x)$, e τ è allora iniettiva, da cui la tesi. \square

Osservazione.

- ▶ Come conseguenza del teorema di orbita-stabilizzatore, si osserva che $|G/\operatorname{Stab}(x)| = |\operatorname{Orb}(x)|$, se $\operatorname{Orb}(x)$ è finito, e quindi si conclude, per il teorema di Lagrange, che $|G| = |\operatorname{Stab}(x)| |\operatorname{Orb}(x)|$.
- ▶ Il teorema di orbita-stabilizzatore implica il primo teorema di omomorfismo. Siano infatti G, H due gruppi e sia f un omomorfismo da G in H. Si può allora costruire un azione di G in H in modo tale che $g \cdot h = f(g)h \ \forall g \in G, \ h \in H$. Infatti $e_G \cdot h = f(e_G)h = e_H h = h$ e $g \cdot (g' \cdot h) = g \cdot (f(g')h) = f(g)f(g')h = f(gg')h = (gg') \cdot h, \ \forall g, g' \in G, h \in H$.

Si osserva che Stab (e_H) = Ker f: infatti Stab (e_H) = $\{g \in G \mid g \cdot e_H = f(g)e_H = f(g) = e_H\}$ = Ker f. Inoltre, Orb (e_H) = Im f, dal momento che Orb (e_H) = $\{h \in H \mid \exists g \in G \text{ t.c. } g \cdot h = f(g)h = e_H \iff f(g) = h^{-1}\}$ = $\{h \in H \mid \exists g \in G \text{ t.c. } f(g) = h\}$ = Im f, dove si è usato che $h^{-1} \in \text{Im } f \iff h \in \text{Im } f$.

Dal momento allora che $\operatorname{Stab}(e_H)$ è il kernel di f, vale che $\operatorname{Stab}(e_H) \leq G$, e quindi che $G/\operatorname{Stab}(e_H)$ è un gruppo. Si verifica allora che l'applicazione τ costruita nella dimostrazione del teorema di orbita-stabilizzatore è un omomorfismo. Siano infatti $g\operatorname{Stab}(e_H)$, $g'\operatorname{Stab}(e_H) \in G/\operatorname{Stab}(e_H)$, allora $\tau(g\operatorname{Stab}(e_H)g'\operatorname{Stab}(e_H)) = \tau((gg')\operatorname{Stab}(e_H)) = (gg') \cdot e_H = f(gg')e_H =$

$$f(g)e_H f(g')e_H = \tau(g\operatorname{Stab}(e_H))\tau(g'\operatorname{Stab}(e_H)).$$

Si conclude dunque, per il teorema di orbita-stabilizzatore, che τ è bigettiva, e dunque che $G/\operatorname{Ker} f = G/\operatorname{Stab}(e_H) \cong \operatorname{Orb}(e_H) = \operatorname{Im} f$, ossia si ottiene la tesi del primo teorema di omomorfismo.

Definizione. Si dice che G opera liberamente su X se, dato $x \in X$, l'applicazione da G in X tale che $g \mapsto g \cdot x$ è iniettiva, ossia se $\operatorname{Stab}(x) = \{e\}$.

Definizione. Si dice che G opera transitivamente su X se, dato $x \in X$, l'applicazione da G in X tale che $g \mapsto g \cdot x$ è surgettiva, ossia se $x \sim_G y \ \forall \ x, y \in X$, cioè se c'è un'unica orbita, che coincide con X. In tal caso si dice che X è un insieme omogeneo per l'azione di G (o semplicemente che è un G-insieme omogeneo).

Esempio. Si possono fare alcuni esempi classici di insiemi X omogenei per la propria azione.

(i) O_n opera sulla sfera n-dimensione di \mathbb{R}^n transitivamente. In particolare, si può trovare un'analogia per lo stabilizzatore di una coordinata di un vettore \underline{v} di \mathbb{R}^n . Per esempio, se si vuole fissare il vettore $\underline{e_n}$, $\forall O \in \operatorname{Stab}(\underline{e_n})$ deve valere che $O\underline{e_n} = \underline{e_n}$, ossia l'ultima colonna di O deve essere esattamente $\underline{e_n}$. Dal momento però che O è ortogonale, le sue colonne devono formare una base ortonormale di \mathbb{R}^n , e quindi tutta l'ultima riga di O, eccetto per il suo ultimo elemento, deve essere nulla. Allora O deve essere della seguente forma:

dove $A \in M(n-1,\mathbb{R})$. Affinché allora O sia ortogonale, anche A deve esserlo. Pertanto vi è una bigezione tra $\operatorname{Stab}(e_n)$ e O_{n-1} .

(ii) Sia $Gr_k(\mathbb{R}^n) = \{W \subseteq \mathbb{R}^n \mid \dim W = k\}$, detto la Grassmanniana di \mathbb{R}^n di ordine k. O_n opera transitivamente su $Gr_k(\mathbb{R}^n)$.

Definizione. Si dice che G opera in maniera semplicemente transitiva su X se, dato $x \in X$, l'applicazione da G in X tale che $g \mapsto g \cdot x$ è una bigezione, ossia se G opera transitivamente e liberamente.

Definizione. Un insieme X che subisce un'azione del gruppo G che opera in maniera semplicemente transitiva è detto un G-insieme omogeneo principale.

Esempio. Se X=G e l'azione considerata è quella naturale dell'operazione di G, tale azione opera in maniera semplicemente transitiva. Dato $x\in X$, si consideri infatti l'applicazione τ da G in G tale che $g\mapsto g\cdot x=gx$. Si osserva che τ è surgettiva, dacché, dato $h\in G$, $h=hx^{-1}x=\tau(hx^{-1})$. Inoltre τ è iniettiva, dal momento che, dati g,g' tali che $\tau(g)=\tau(g')$, allora $gx=g'x\implies g=g'$. Pertanto τ è bigettiva, e l'azione opera allora in maniera semplicemente transitiva.

Osservazione.

- ▶ Se X è G-omogeneo principale, l'azione di G su X è fedele. Infatti, $f_g = \operatorname{Id} \implies g \cdot x = x \ \forall x \in X$. Dal momento però che X è G-omogeneo principale, G opera liberamente su X, e quindi $\operatorname{Stab}(x) = \{e\}$ $\forall x \in X \implies g = e$.
- ▶ Se X è G-omogeneo e G è abeliano, allora G agisce fedelmente su X \iff X è G-omogeneo principale.

Se G agisce fedelmente su X, dato $x \in X$, si può considerare infatti $g \in \operatorname{Stab}(x) \implies g \cdot x = x$. Si osserva allora che $f_g = \operatorname{Id}$. Dato infatti $y \in X$, dacché X è G-omogeneo, $\exists \, g' \in G \mid y = g' \cdot x$, da cui si ricava che $f_g(y) = g \cdot y = g \cdot (g' \cdot x) = (gg') \cdot x = (g'g) \cdot x = g' \cdot (g \cdot x) = g' \cdot x = y$, ossia proprio che $f_g = \operatorname{Id}$. Dal momento però che l'azione di G su X è fedele, $f_g = \operatorname{Id} \implies g = e$, ossia $\operatorname{Stab}(x) = \{e\} \ \forall \, x \in X$, per cui si conclude che l'azione di G opera in maniera semplicemente transitiva su X, e dunque che X è G-omogeneo principale.

Viceversa, se X è G-omogeneo principale, $\operatorname{Stab}(x) = \{e\} \ \forall x \in X$. Allora, se $f_g = \operatorname{Id}$, per ogni $x \in X$ deve valere che $g \in \operatorname{Stab}(x) = \{e\} \implies g = e$.

Definizione (spazio affine). Sia V uno spazio vettoriale su un campo \mathbb{K} qualsiasi. Allora uno spazio affine E associato a V è un qualunque V-insieme omogeneo principale¹. In particolare si indica l'azione di V su E

¹Per gruppo V si intende il gruppo abeliano (V, +).

 $(\underline{v}, P) \mapsto \underline{v} \cdot P$ come $P + \underline{v}$ (o analogamente come $\underline{v} + P$). Inoltre, gli elementi di E si diranno punti di E.

Osservazione. Dal momento che E è un V-insieme omogeneo principale, valgono le seguenti proprietà.

- (i) Poiché E è omogeneo, per ogni $P \in E$, $Q \in E$ esiste $\underline{v} \in V$ tale che $P + \underline{v} = Q$. Inoltre, dal momento che V opera liberamente su E, tale \underline{v} è unico, e si indica come Q P o come \overrightarrow{PQ} .
- (ii) Vale l'identità $P + \underline{0} = P$, dal momento che $\underline{0}$ è l'identità del gruppo (V, +) e l'applicazione $P + \underline{v}$ è un azione di V. Allo stesso modo, vale che $(P + \underline{v}) + \underline{w} = P + (\underline{v} + \underline{w}) = P + (\underline{w} + \underline{v}) = (P + \underline{w}) + \underline{v}$, pertanto si può scrivere, senza alcuna ambiguità, $P + \underline{v} + \underline{w}$.
- (iii) Fissato $O \in E$, l'applicazione da V in E tale che $\underline{v} \mapsto O + \underline{v}$ è una bigezione, dal momento che V opera su E in maniera semplicemente transitiva.
- (iv) Analogamente, fissato $O \in E$, l'applicazione τ da E in V tale che $P \mapsto P O = \overrightarrow{OP}$ è una bigezione. Infatti τ è surgettiva: $\forall \underline{v} \in V$, $\tau(O + \underline{v}) = (O + \underline{v}) O = \underline{v}$, coerentemente con le operazioni aritmetiche. Infine, τ è iniettiva: siano $P, Q \in E$ tali che $\tau(P) = \tau(Q)$, allora $P = O + (P O) = O + \tau(P) = O + \tau(Q) = O + (Q O) = Q$, per cui τ è bigettiva.
- (v) Dati $P, Q \in E$, vale l'identità P-Q=-(Q-P). Infatti P=Q+(P-Q)=P+(Q-P)+(P-Q)=P+((Q-P)+(P-Q)). Allora, essendo l'azione di V libera su E (ovvero, come osservato prima, essendo \overrightarrow{PP} unicamente zero), $(Q-P)+(P-Q)=\underline{0} \implies P-Q=-(Q-P)$.
- (vi) Dati $P_1, P_2, P_3 \in E$, vale l'identità $(P_3 P_2) + (P_2 P_1) = P_3 P_1$. Infatti $P_1 + (P_2 - P_1) + (P_3 - P_2) = P_2 + (P_3 - P_2) = P_3 \implies (P_2 - P_1) + (P_3 - P_2) = P_3 - P_1$.

Siano adesso P_1 , ..., P_n punti di E. Dati λ_1 , ..., $\lambda_n \in \mathbb{K}$ e $O \in E$ si può allora individuare il punto $P = O + \sum_{i=1}^n \lambda_i (P_1 - O) \in E$.

Proposizione. Dati $P_1, ..., P_n$ punti di $E \in \lambda_1, ..., \lambda_n \in \mathbb{K}$, il punto $P(O) = O + \sum_{i=1}^n \lambda_i (P_i - O)$ rappresenta lo stesso identico punto al variare del punto O se e solo se $\sum_{i=1}^n \lambda_i = 1$.

Dimostrazione. Siano O, O' due punti distinti di E. Allora $P(O) = P(O') \iff O + \sum_{i=1}^n \lambda_i (P_i - O) = O' + \sum_{i=1}^n \lambda_i (P_i - O') = O + (O' - O) + \sum_{i=1}^n \lambda_i (P_i - O') \iff \sum_{i=1}^n \lambda_i (P_i - O) = (O' - O) + \sum_{i=1}^n \lambda_i ((P_i - O) + (O - O'))$. Distribuendo la somma e utilizzando l'identità dell' Osservazione (v), si ottiene allora che $P(O) = P(O') \iff \sum_{i=1}^n \lambda_i = 1$.

Definizione (combinazione affine di punti). Un punto $P \in E$ è **combinazione affine** dei punti $P_1, ..., P_n$ se $\exists \lambda_1, ..., \lambda_n \in \mathbb{K}, O \in E$ tali che $P = O + \sum_{i=1}^n \lambda_i (P_i - O)$ e che $\sum_{i=1}^n \lambda_i = 1$. Dal momento che per la precedente proposizione P è invariante al variare di $O \in E$, si scriverà, senza alcuna ambiguità, che $P = \sum_{i=1}^n \lambda_i P_i$.

Definizione (sottospazio affine). Un sottoinsieme $D \subseteq E$ si dice **sottospazio affine** di E se ogni combinazione affine di finiti termini di D appartiene a D.

Definizione (sottospazio affine generato un insieme S). Dati $S \subseteq E$, si dice sottospazio affine generato da S l'insieme delle combinazioni affini di finiti termini dei punti di S, denotato con Aff(S).

Osservazione.

- ▶ Come avviene per Span nel caso degli spazi vettoriali, dati $P_1, ..., P_n \in E$, si usa scrivere Aff $(P_1, ..., P_n)$ per indicare Aff $(\{P_1, ..., P_n\})$.
- ▶ Si osserva che in effetti, dato $S \subseteq E$, $\mathrm{Aff}(S)$ è un sottospazio affine, ossia è chiuso per combinazioni affini dei propri punti. Siano infatti P_1, \ldots, P_n punti di $\mathrm{Aff}(S)$ e siano $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ tali che $\sum_{i=1}^n \lambda_i = 1$. Si deve mostrare dunque che $\sum_{i=1}^n \lambda_i P_i \in \mathrm{Aff}(S)$. Dal momento che $P_i \in \mathrm{Aff}(S)$ esiste $k_i \in \mathbb{N}^+$ tale per cui esistano $S_{i,1}, \ldots, S_{i,k_i} \in S$ e $\lambda_{i,1}, \ldots, \lambda_{i,k_i} \in \mathbb{K}$ tali per cui $P_i = \sum_{j=1}^{k_i} \lambda_{i,j} S_{i,j}$ e $\sum_{j=1}^{k_i} \lambda_{i,j} = 1$. Allora $\sum_{i=1}^n \lambda_i P_i = \sum_{i=1}^n \lambda_i (\sum_{j=1}^{k_i} \lambda_{i,j} S_{i,j}) = \sum_{i=1}^n \sum_{j=1}^{k_i} \lambda_i \lambda_{i,j} S_{i,j}$. Inoltre $\sum_{i=1}^n \sum_{j=1}^{k_i} \lambda_i \lambda_{i,j} = \sum_{i=1}^n \lambda_i (\sum_{j=1}^{k_i} \lambda_{i,j}) = \sum_{i=1}^n \lambda_i = 1$. Pertanto $\sum_{i=1}^n \lambda_i P_i$ è combinazione affine di elementi di S, e quindi $\sum_{i=1}^n \lambda_i P_i \in \mathrm{Aff}(S)$.
- ▶ Siano $P_1, P_2 \in E$. Allora il sottospazio affine Aff $(P_1, P_2) = \{\lambda_1 P_1 + \lambda_2 P_2 \mid \lambda_1 + \lambda_2 = 1, \lambda_1, \lambda_2 \in \mathbb{K}\} = \{(1 \lambda)P_1 + \lambda P_2 \mid \lambda \in \mathbb{K}\} = \{P_1 + \lambda(P_2 P_1) \mid \lambda \in \mathbb{K}\}$ è detto retta affine passante per P_1 e P_2 . Analogamente il sottospazio affine generato da tre elementi è detto piano affine.
- ightharpoonup Dato un insieme di punti $S \subseteq E$, Aff(S) è il più piccolo sottospazio affine, per inclusione, contenente S. Infatti, se T è un sottospazio affine

contenente S, per definizione T deve contenere tutte le combinazioni affini di S,e quindi $\mathrm{Aff}(S).$