Контрольная работа по математической логике

Вариант 1

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Добавить 2 к исходному слову.
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^n(x_1, x_2, \dots, x_n) = k,$$
 где $k \in \mathbb{N}$.

Вариант 2

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Добавить 3 к исходному слову.
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^2(x,y) = x(y+1).$$

Вариант 3

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$ Добавить 4 к исходному слову.
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^2(x,y) = x^y.$$

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{a, b, c\}$. Перенести первый символ непустого слова в его конец.
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^2(x,y) = x^y.$$

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{a,b,c\}$. Если первый и последний символы (непустого) слова одинаковы, тогда это слово не менять, а иначе заменить его на пустое слово.
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^1(x) = \dot{x-1} = \begin{cases} 0, & \text{если } x = 0, \\ x - 1, & \text{если } x > 0. \end{cases}$$

Вариант 6

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{a, b\}$. Удалить из слова его второй символ, если такой есть.
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^n(x_1, x_2, \dots, x_n) = k,$$
 где $k \in \mathbb{N}$.

Вариант 7

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{a, b, c\}$. Если первый и последний символы (непустого) слова одинаковы, тогда это слово не менять, а иначе заменить его на пустое слово.
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^{1}(x) = \dot{x-1} = \begin{cases} 0, & \text{если } x = 0, \\ x - 1, & \text{если } x > 0. \end{cases}$$

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{a, b, c\}$. Перенести первый символ непустого слова в его конец.
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^2(x,y) = x^y.$$

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{a, b\}$. Удалить из слова его второй символ, если такой есть.
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^2(x,y) = x(y+1).$$

Вариант 10

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{a, b\}$. Удалить из слова его второй символ, если такой есть.
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^1(x) = \dot{x-1} = \begin{cases} 0, & \text{если } x = 0, \\ x - 1, & \text{если } x > 0. \end{cases}$$

Вариант 11

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{a, b, c\}$. Оставить в слове только первый символ (пустое слово не менять).
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^n(x_1, x_2, \dots, x_n) = k,$$
 где $k \in \mathbb{N}$.

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{a, b\}$. Удалить из слова его второй символ, если такой есть.
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^1(x) = \dot{x-1} = \begin{cases} 0, & \text{если } x = 0, \\ x - 1, & \text{если } x > 0. \end{cases}$$

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{a, b, c\}$. Перенести первый символ непустого слова в его конец.
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^2(x,y) = x(y+1).$$

Вариант 14

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Добавить 5 к исходному слову.
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^2(x,y) = x^y.$$

Вариант 15

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{a, b, c\}$. Перенести второй символ непустого слова в его конец.
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^1(x) = \dot{x-1} = \begin{cases} 0, & \text{если } x = 0, \\ x - 1, & \text{если } x > 0. \end{cases}$$

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Добавить 5 к исходному слову.
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^n(x_1, x_2, \dots, x_n) = k,$$
 где $k \in \mathbb{N}$.

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{a, b, c\}$. Перенести первый символ непустого слова в его конец.
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^1(x) = \dot{x-1} = \begin{cases} 0, & \text{если } x = 0, \\ x - 1, & \text{если } x > 0. \end{cases}$$

Вариант 18

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{a, b, c\}$. Перенести второй символ непустого слова в его конец.
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^2(x,y) = x(y+1).$$

Вариант 19

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{a, b, c\}$. Оставить в слове только первый символ (пустое слово не менять).
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^1(x) = x!! = \begin{cases} x(x-2) \cdot \dots \cdot 2, & \text{если } x > 0 \text{ четное,} \\ x(x-2) \cdot \dots \cdot 1, & \text{если } x \text{ нечетное.} \end{cases}$$

- 1. Составить программу для машины Тьюринга.
 - $\Sigma = \{a, b, c\}$. Если первый и последний символы (непустого) слова одинаковы, тогда это слово не менять, а иначе заменить его на пустое слово.
- 2. Доказать, что данная функция является примитивно рекурсивной функцией:

$$f^2(x,y) = x^y.$$