PRACTICE PROBLEMS Chapter 5

Section 5.1:

- **A1.** Given $\mathbf{v} = [1, -2, 0, 1]^T$ and $\mathbf{w} = [2, -3, 1, 2]^T$
 - (a) Find the vector projection, **p**, of **v** onto **w**.
 - (b) Verify that $\mathbf{v} \mathbf{p}$ is orthogonal to \mathbf{p} .
 - (c) Find the distance from the vector v to the line spanned by the vector w.
- **A2.** Find the projection of $\mathbf{v} = [1, 2, 1]^T$ on the line intersection of the two planes x + y + z = 0 and 2x y z = 0.
- **A3.** Find the point Q of the line spanned by $\mathbf{a} = [1, 1, -1]^T$ that is closest to $\mathbf{b} = [2, 3, 4]^T$
- **A4.** Find the distance from the point (2,1,1) to the plane 2x y + 2z = 0.

Section 5.2:

- **B1.** Determine a basis for each of the subspaces $R(\mathbf{A}^T)$, $N(\mathbf{A})$, $R(\mathbf{A})$, and $N(\mathbf{A}^T)$: $\mathbf{A} = \begin{bmatrix} 4 & -2 \\ 1 & 3 \\ 2 & 1 \\ 3 & 4 \end{bmatrix}$ **B2.** Find a basis for the orthogonal complement in \mathbb{R}^3 .
- **B2.** Find a basis for the orthogonal complement in \mathbb{R}^3 of the line spanned by the vector $[-1, 2, 1]^T$.
- **B3.** Let W = span($[1, 1, 2]^T$, $[2, 3, 1]^T$).
- (a) Give a geometrical description of W
- (b) Find a basis for the orthogonal complement W^{\perp}
- (c) Give a geometrical description of W^{\(\percap^{\psi}\)}.
- **B4:** Is it possible for a matrix to have the vector [3, 1, 2] in its row space and [2, 1, 1]^T in its nullspace? Explain.
- **B5:** Find a basis for the orthogonal complement of span($[1, 2, 0, 1]^T$, $[3, 4, -1, 1]^T$)

Section 5.3:

- C1. Let $S = \text{span}([0, 1, 0]^T, [1, 1, 1]^T)$.
 - (a) Find the projection matrix P that projects vectors in \mathbb{R}^3 onto S.
 - (b) Find the orthogonal projection of $\mathbf{v} = [5, -3, 4]^{\mathrm{T}}$ on S.
 - (c) Find the distance from v to S.
- C2. Consider the plane in \mathbb{R}^3 with equation x + y + z = 0.
 - (a) Find a basis for this plane.
 - (b) Find the orthogonal projection of $\mathbf{b} = [1, 2, 1]^T$ on to the plane.
- C3. (a) Find the least squares solution to the system Ax = b:

$$x_1 + x_2 = 3$$

$$2 x_1 - 3 x_2 = 1$$

$$0 x_1 + 0 x_2 = 2$$

- (b) Determine the projection \mathbf{p} of \mathbf{b} onto R(A).
- (c) Calculate the residual $r(\hat{\mathbf{x}})$.

- (d) Verify that $r(\hat{\mathbf{x}}) \in N(A^T)$.
- C4. Find the best least squares fit by a quadratic function to the data

\dot{x}	- 1	0	1	2
У	0	1	3	9

C5. Find the least squares fit by a function of the form $f(x) = c_0 + c_1 \sin(x) + c_2 \cos(x)$ to the data

Section 5.4:

- **D1.** Give an example of a nonzero vector $\mathbf{x} \in \mathbb{R}^2$ for which $\|\mathbf{x}\|_{\infty} = \|\mathbf{x}\|_{1} = \|\mathbf{x}\|_{1}$.
- **D2.** In C([0,1]) with inner product defined by $\int_0^1 f(x)g(x)dx$, determine the angle between f(x)=2 and $g(x)=9x^2-4$.

Section 5.5

- **E1.** Consider the vector space C[- π , π] with inner product $\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x) dx$
 - (a) Show that $\{\cos x, \sin x\}$ form an orthonormal set.
 - (b) Determine the distance between $\cos x$ and $\sin x$.
 - (c) If $f(x)=5\cos x-2\sin x$ and $g(x)=-\cos x+3\sin x$
 - (i) Use Corollary 5.5.3 to determine the value of $\langle f, g \rangle$
 - (ii) Use Parseval's Formula to determine ||f|| and ||g||
- **E2.** Consider the inner product space C[0,1] with inner product defined by $\langle f, g \rangle = \int_0^1 f(x) g(x) dx$ Let S be the subspace spanned by the vectors 1 and 2x-1.
 - (a) Show that 1 and 2x-1 are orthogonal.
 - (b) Determine || 1 || and || 2 x 1 ||.
 - (c) Find the least squares approximation to \sqrt{x} by a function from the subspace S.
- **E3.** Let S= span(\mathbf{v}_1 , \mathbf{v}_2) where $\mathbf{v}_1 = [6, -2, 2]^T$ and $\mathbf{v}_2 = [-4, 6, 18]^T$.
 - (a) Find an orthonormal basis for S.
 - (b) Find the orthogonal projection of $\mathbf{b} = [10, -12, -20]^{T}$ onto S.
 - (c) Find the distance from **b** to S.
- **E4.** Let $\{ \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \}$ be an orthonormal basis for a three dimensional subspace S of an inner product space V and let $\mathbf{x} = 2 \mathbf{u}_1 2 \mathbf{u}_2 + \mathbf{u}_3$ and $\mathbf{y} = 3 \mathbf{u}_1 + \mathbf{u}_2 4 \mathbf{u}_3$
 - (a) Determine the value of $\langle x, y \rangle$.
 - (b) Determine the value of $|| \mathbf{x} ||$.
- **E5.** Let $\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \}$ be an orthogonal basis for a three dimensional subspace S of an inner product space V. Let \mathbf{w} be a vector in S and let $\langle \mathbf{v}_1, \mathbf{v}_1 \rangle = 7$, $\langle \mathbf{v}_2, \mathbf{v}_2 \rangle = 5$, $\langle \mathbf{v}_3, \mathbf{v}_3 \rangle = -1$, $\langle \mathbf{v}_1, \mathbf{w} \rangle = 2$, $\langle \mathbf{v}_2, \mathbf{w} \rangle = 1$, $\langle \mathbf{v}_3, \mathbf{w} \rangle = 9$. Express \mathbf{w} as a linear combination of $\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \}$

Section 5.6

- **F1.** a) Find a basis for the plane 2x y + z = 0 in \mathbb{R}^3
 - b) Convert the basis you found into an orthonormal basis by using the Gram Schmidt algorithm.
- **F2.** Assume A = QR is the QR factorization of the matrix A. Prove that the normal equations for the least squares problem reduce to $R\mathbf{x} = Q^{\mathsf{T}}\mathbf{b}$.

F3. Let
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 12 \\ 6 \\ 18 \end{bmatrix}$

- (a) Factor A into a product QR, where Q has an orthonormal set of column vectors and R is upper triangular.
- (b) Use the *QR* factorization to solve the least squares problem $A\mathbf{x} = \mathbf{b}$.
- **F4:** Use the Gram-Schmidt process to find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by $\mathbf{x}_1 = [4, 2, 2, 1]^T$, $\mathbf{x}_2 = [2, 0, 0, 2]^T$, and $\mathbf{x}_3 = [1, 1, -1, 1]^T$.
- **F5:** Given $A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & -3 \\ 0 & -2 & 3 \end{bmatrix}$, if the Gram-Schmidt process is applied to determine the QR

factorization of A, then after the first two orthonormal vectors \mathbf{q}_1 and \mathbf{q}_2 are computed, we have

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & - \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & - \\ 0 & -\frac{2}{\sqrt{6}} & - \end{bmatrix} \qquad R = \begin{bmatrix} \sqrt{2} & \sqrt{2} & - \\ 0 & \sqrt{6} & - \\ 0 & 0 & - \end{bmatrix}$$

Finish the process: determine \mathbf{q}_3 and fill in the third columns of Q and R.