Aufgabe 1

Beantworten Sie die nachfolgenden Fragen.

- (a) Wie bestimmen Sie die Nullstelle einer linearen Funktion?
- (b) Welche Möglichkeiten gibt es, die Nullstellen einer quadratischen Funktion zu bestimmen?
- (c) Gegeben ist eine Funktion dritten Grades. Wie gehen Sie vor, um die Nullstellen dieser Funktion zu bestimmen?
- (d) Um die Nullstellen einer Funktion vom Grad 4 zu berechnen, gehen Sie wie vor?

(a) on the removement and remove the remove

Aufgabe 2

Aufgabe 2.1

Gegeben sind die folgenden Funktionen. Bestimmen Sie die Nullstellen.

(a)
$$f(x) = 5x + 10$$

(b)
$$f(x) = x^2 - 15x$$

(c)
$$f(x) = \frac{1}{4}x^2 - 25$$

(d)
$$f(x) = 4x^2 + 12x$$

(e)
$$f(x) = -3x^2 + 15x - 18$$

$$(f) f(x) = -x^3 + 2x^2 - \frac{1}{2}$$

$$(g) \ f(x) = -0.8x^4 - 2x^3 + 5x^2$$

(h)
$$f(x) = x^4 - 4x^2 + 3$$

(i)
$$f(x) = x^3 - 4x^2 + 3x$$

$$(j) \ f(x) = -5x^3 + 25x^2 - 20$$

Aufgabe 2.2

Geben Sie jeweils das Verfahren an, welches Sie verwendet haben und begründen Sie, ob dieses das sinnvollste ist.

Aufgabe 3

Geben Sie die erste (f'(x)) und zweite (f''(x)) Ableitung der Funktionen aus Aufgabenteil 2.1 an.

Aufgabe 4

Markieren Sie die markanten Stellen in den nachfolgenden Funktionsgraphen. Beschriften Sie die Stellen entsprechend $(N, HOP, TIP, WP_{LR}, WP_{RL})$.

Aufgabe 5

Aufgabe 5.1 Erläutern Sie, wie die ...

- (a) Extremstelle x_E
- (b) Wendestelle x_W

einer Funktion bestimmt werden kann.

Aufgabe 5.2

Erläutern Sie, wie Sie entscheiden können, ob es sich bei x_E um einen Hoch- (HOP) oder Tiefpunkt (TIP) handelt.

Aufgabe 5.3

Beschreiben Sie, woran Sie erkennen können, ob es sich bei x_W um...

- (a) einen fallenden Wendepunkt (RL)
- (b) einen steigenden Wendepunkt (LR)

handelt.

Aufgabe 6

Gegeben sind die folgenden Funktionen

(a)
$$f(x) = 3x^6 - 18x^4 + 27x^2$$

(b)
$$f(x) = -5x^3 + 15x^2 - 5$$

(c)
$$f(x) = -\frac{1}{2}x^5 + 16x$$

(d)
$$f(x) = -5x^2 + 20x - 6$$

(e)
$$f(x) = 7x^4 - 14x^2 + 9$$

$$(f) \ f(x) = 10x^3 - 14x^2 + 3x$$

Aufgabe 6.1

Berechnen Sie, wann die Funktion ein Extremwert erreicht.

Geben Sie ebenfalls das zugehörige relative Maximum bzw. relative Minimum an.

Aufgabe 6.2

Bestimmen Sie, um was für eine Extremstelle es sich handelt.

Aufgabe 6.3

Geben Sie jeweils die Stelle mit der kleinsten bzw. größten Steigung an.

Bestimmen Sie den dazugehörigen Punkt.

Aufgabe 6.4

Stellen Sie fest, um welche Art von Wendestelle es sich handelt.

Aufgabe 7

Gegeben sind die folgenden Funktionen mit den entsprechenden markanten Stellen.

	Funktion	x_N	x_E	x_W
(a)	$f(x) = 6x^2 + 9$		$x_{TIP} = 0$	
(b)	$f(x) = 2x^2 - x + 4$		$x_{TIP} = 0, 25$	
(c)	$f(x) = 2x^5 + 3x^4 - x^3 - 9x^2 - 15x$	$x_{N_1} = -1,73$	$x_{HOP} = -1, 11$	$x_{W_{RL}} = 0,6$
		$x_{N_2} = 0$	$x_{TIP} = 1,19$	
		$x_{N_3} = 1,73$		
(d)	$f(x) = -x^3 + x^2 + 8x$	$x_{N_1} = -2,37$	$x_{TIP} = -1,33$	$x_{W_{LR}} = 0,33$
		$x_{N_2} = 0$	$x_{HOP} = 2$	
		$x_{N_3} = 3,37$		
(e)	$f(x) = -20x^4 + 24x^2$	$x_{N_1} = -1, 1$	$x_{HOP_1} = -0,77$	$x_{W_{RL}} = -0,45$
		$x_{N_2} = 0$	$x_{TIP} = 0$	$x_{W_{LR}=0.45}$
		$x_{N_3} = 1, 1$	$x_{HOP_2} = 0,77$	
(f)	$f(x) = x^3 - 12x - 16$	$x_{N_1} = -2$	$x_{HOP} = -2$	$x_{W_{RL}} = 0$
		$x_{N_2} = 4$	$x_{TIP} = 2$	
(g)	$f(x) = x^3 - 4,5x^2 + 6,75x - 3,38$	$x_{N_1} = 1, 5$		$x_{W_{RL}} = 1, 5$

Aufgabe 7.1

Bestimmen Sie die Koordinaten für die Nullstellen.

Aufgabe 7.2

Bestimmen Sie jeweils das relative Maximum und das relative Minimum .

Aufgabe 7.3

Berechnen Sie den Punkt, an dem sich das Krümmungsverhalten des Funktionsgraphen ändert.

Aufgabe 8

Übertragen Sie die angegebenen Punkte in ein entsprechend skaliertes Koordinatensystem.

(a) Die Funktion $f(x)=3x^6-18x^4+27x^2$ erreicht bei x=-1 und x=1 den relativ gesehenen größten Wert y=12. Bei x=-1,12, x=0 und x=1,12 den relativ kleinsten Wert y=0.

Bei P(-1,45|4,96) und Q(0,53|6,28) wechselt der Graph von einer Linkskr"ummung zu einer Rechtskr"ummung. Im gegensatz ändert sich die Kr \ddot{u} mmung von rechts zu links bei R(-0,53|6,28) und S(1,45|4,96).

(b) Das Krümmungsverhalten der Funktion $f(x)=-5x^3+15x^2-5$ wechselt für W(1|5) von linksgekrümmt zu rechtsgekrümmt.

Ein relatives Maximum hat f(x) bei H(2|15). Das relative Minimum hingegen liegt in T(0|-5).