CS150A Database

Lu Sun

School of Information Science and Technology ShanghaiTech University

Dec. 20, 2022

Today:

- Analytics and ML in Data Systems:
 - Part 3
 - Linear Regression

Readings:

 Database Management Systems (DBMS), Chapters 23&24

K-Means Clustering

Compute Assignments

Update Centers

Statistical Query PatternCommon Machine Learning Pattern

- □ K-Means Query: for each old centers compute the sum of the nearest points
- □ **Response:** sums and counts of points

Res-A: weighted reservoir sampling

□ Goal: Sample k records from a stream where record i is included in the sample with probability proportional to w;

□ Algorithm:

• For each record *i* draw a uniform random number:

$$u_i \sim \mathbf{Unif}(0,1)$$

ullet Select the top-k records ordered by: u_i^{1/w_i}

□ Common ML Pattern?

- Query Function: [pow(rand(), 1 / record.w), record]
- Agg. Function: top-k heap

Illustrating Res-A Algorithm

Illustrating Res-A Algorithm

Aggregation

Sample

Aggregation

Simple Linear Regression

Linear Regression is Powerful

- ☐ One of the most widely used techniques
- ☐ Fundamental to many larger models
 - Logistic Regression
 - Collaborative filtering
- □ Easy to interpret
 - e.g., the weights tell us something about the features
 - Positive or negative relationships ...
- □ Efficient to solve
 - Fast numerical methods
 - Closed form solutions

The Linear Model

Data:

X ₁	X ₂	У
1.1	2.7	3.6
4.2	3.2	7.5
9.8	9.2	17
• • •	•••	•••

Vector of Parameters Vector of Parameters Vector of Features Observations
$$y=\theta^Tx+\epsilon$$
 Real Value Noise Linear Combination of Covariates $\sum_{i=1}^p \theta_i x_i$

$$\theta, x \in \mathbb{R}^p$$

X ₁	X ₂	У
1.1	2.7	3.6
4.2	3.2	7.5
9.8	9.2	17
•••	•••	•••

Data:

"Real" data doesn't typically consist of entirely **real** valued features.

Real Data and Vector Spaces

☐ What about data with more complex schemas?

X ₁	X ₂	Date	prod_id	comment	У
1.1	2.7	8/21/16	7	"the best glider"	3.6
4.2	3.2	8/14/16	3	"vacation for two"	7.5
9.8	9.2	9/20/16	4	"A special gift for"	17
•••	•••	•••	•••	•••	•••

- The math wants the features to be vectors ...
- ☐ How do we encode dates, categorical fields, and text?

Feature Engineering

- □ A key part of most machine learning applications
- □ Common tasks:
 - Transforming raw features into vector representations
 - Encoding **prior knowledge** (e.g., translating currencies)
 - Transformations that **increase the expressivity** of the model ... (more on this soon)
- ☐ Critical to model performance:
 - engineers compete to get the best features
- □ A few standard techniques (that we will cover):
 - one-hot encoding
 - bag-of-words

Encoding Categorical Data

- ☐ How do we represent fields like "Product Category"
- □ **Proposal 1:** *Enumerate categories*
 - Sports = 1, Furniture = 2, Clothing = 3, Shoes = 4, ...
 - Store field number as a feature
 - Implications:
 - **similarity:** sports is closer to Furniture than shoes
 - magnitude: larger values ?
 - Not typically used (unless there are two categories ...)

One-hot encoding

- ☐ How do we represent fields like "Product Category"
- □ **Proposal 1:** *Enumerate categories*
 - Not typically used (unless there are two categories ...)
- □ **Proposal 2:** *Encode as binary vectors:*
 - Very commonly used and built-in to many packages
 - Enumerate all possible product categories (m)
 - Add m additional features to the record:
 - Put a one in the feature corresponding to the product category and a zero everywhere else.

Working with Text Data

□ How do we convert text to vectors?

"Learning about machine learning is fun."

| Vector | Vec

- □ Bag-of-words model
 - Transform emails into d-dimensional vectors
 - d is the number of unique words in the language (big!)
 - Each entry is number of occurrences of that word
 - Sparse: Most words don't occur in most emails
 - Remove Stop-Words: common words that provide little information (e.g., "is", "about")

If all you had was this vector could you tell what the passage is about?

The Linear Model

Data:

x ₁	X ₂	У
1.1	2.7	3.6
4.2	3.2	7.5
9.8	9.2	17
•••	•••	•••

	Vecto	or of	
	Parame	ters	Vector of
			Features
$f_{\theta}(x)$:=	θ^{I}	x

- □ Encode data is real valued vectors
- \square **Next:** find the optimal value for θ
 - How?

$$\theta, x \in \mathbb{R}^p$$

Finding the Best Parameters

Model:
$$f_{\theta}(x) := \theta^T x$$

Step 1: define a **Loss Function:** Average Prediction Error

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta^T x_i)^2$$

 \square Difference between **true (y)** and **predicted f** (x) values

The meaning of Squared Loss (Error)

The meaning of Squared Loss (Error)

The meaning of Squared Loss (Error)

Finding the Best Parameters

Model:
$$f_{\theta}(x) := \theta^T x$$

Step 1: define a **Loss Function:**

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f_{\theta}(x_i))^2$$

Step 2: Search for best model parameters θ

$$\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n (y_i - f_{\theta}(x_i))^2$$

Minimizing the Squared Error

$$\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n (y_i - \theta^T x_i)^2$$

$$\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n (y_i - \theta^T x_i)^2$$

Data

Squared Error

$$\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n (y_i - \theta^T x_i)^2$$

☐ Take the gradient and set it equal to zero

$$\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n (y_i - \theta^T x_i)^2$$

☐ Taking the gradient

$$\nabla_{\theta} \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta^T x_i)^2 = -2 \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta^T x_i) x_i$$

$$= -2\frac{1}{n} \sum_{i=1}^{n} y_i x_i + 2\frac{1}{n} \sum_{i=1}^{n} (\theta^T x_i) x_i$$

 \square Setting equal to zero and solving for θ (sys. Linear eq.)

$$\sum_{i=1}^n (\theta^T x_i) x_{ij} = \sum_{i=1}^n y_i x_{ij} \qquad \forall j \in \{1, \dots, d\}$$
 Easier in matrix form ...

Writing the data in Matrix form

 \square Represent data $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ as:

$$\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n (y_i - \theta^T x_i)^2$$

 \square Setting equal to zero and solving for θ :

$$\sum_{i=1}^{n} (\theta^T x_i) x_i = \sum_{i=1}^{n} y_i x_i \Rightarrow X^T X \theta = X^T y$$

□ Normal Equation:

$$\hat{\theta} = (X^T X)^{-1} X^T Y$$

□ Solved using any standard linear algebra library

Can we compute

$$\hat{\theta} = (X^T X)^{-1} X^T Y$$

using the statistical query pattern?

Break computation into two queries

□ Compute the row-wise some:

$$X^T X = \sum_{i=1}^n x_i x_i^T$$

X ₁	X ₂	У
1.1	2.7	3.6
4.2	3.2	7.5
9.8	9.2	17
•••	•••	•••

- MapFunction(x): computes p by p outer product: xx^T
- **ReduceFunction**: matrix sum:
- ☐ Pure SQL Expression:

```
SELECT
sum(x1*x1) AS c11, sum(x1*x2) AS c12,
sum(x2*x1) AS c21, sum(x2*x2) AS c22
FROM data
```


□ Compute the row-wise some:

$$X^T y = \sum_{i=1}^n x_i y$$

X ₁	X ₂	У
1.1	2.7	3.6
4.2	3.2	7.5
9.8	9.2	17
•••	•••	•••

- MapFunction(x): computes p by 1 vector: xy
- ReduceFunction: vector sum

```
□ Pure SQL Expression:
```

```
SELECT
  sum(x1*y) AS d1, sum(x2*y) AS d2
FROM data
```

Least Squares Regression using the **Statistical Query Pattern**

$$\hat{\theta} = (X^T X)^{-1} X^T Y$$

☐ In database compute sums:

$$\begin{array}{c|c} \mathbf{p} & \\ \hline & C = X^TX = \sum_{i=1}^n x_i x_i^T & O(np^2) \\ \hline & \mathbf{p} & d = X^Ty = \sum_{i=1}^n x_i y_i & O(np) \end{array}$$

☐ On client compute:

$$\hat{\theta} = C^{-1}d$$

$$O(p^3)$$

What if p is large?

... could be expensive ...

$$\hat{\theta} = C^{-1}d$$

$$O(p^3)$$

☐ Rather than directly solving:

$$\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n L(y_i, \theta^T x_i)$$

☐ Instead we compute the gradient of the loss:

$$G(\theta; X, y) = \nabla_{\theta} \frac{1}{n} \sum_{i=1}^{n} L(y_i, \theta^T x_i) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} L(y_i, \theta^T x_i)$$

$$=rac{1}{n}\sum_{i=1}^{n}(y- heta^{T}x_{i})x_{i}$$

□ **Big Idea:** Negative gradient points in the direction of steepest descent

Gradient Descent Algorithm

```
t ← 0

\theta^{(0)} ← Vec(0)

while (not converged):

\theta^{(t+1)} ← \theta^{(t)} - \eta * G(\theta; X, Y)

t ← t + 1
```


Gradient Descent Algorithm

t ← 0

$$\theta^{(0)}$$
 ← Vec(0)
while (not converged):
 $\theta^{(t+1)}$ ← $\theta^{(t)}$ - η * $G(\theta; X,y)$
t ← t + 1

- □ Does this fit the statistical query pattern
 - Yes! Only dependence on data is:

- Can we go even faster?
 - Stochastic Gradient Descent (SGD): Approximate the gradient by sampling data (typically several hundred records per query).

Fitting Non-linear Data

☐ What if Y has a non-linear response?

□ Can we still use a linear model?

Fitting Non-linear Data

☐ What if Y has a non-linear response?

□ Can we still use a linear model?

Finding the Best Parameters

Finding the Best Parameters

Feature Engineering

 \square By applying non-linear transformation ϕ :

$$\phi: \mathbb{R}^p \to \mathbb{R}^k$$

• Example:

$$\phi(x) = \{1, x, x^2, \dots, x^k\}$$

X ₁	x ₂	У
1.1	2.7	3.6
4.2	3.2	7.5
9.8	9.2	17

X ₁	X ₂	$x_1^*x_1$	x ₂ *x ₂	$x_1^*x_2$	y
1.1	2.7	1.21	7.29	2.97	3.6
4.2	3.2	17.64	10.24	13.44	7.5
9.8	9.2	90.04	84.64	90.16	17

Over-fitting!

- ☐ Errors on training data are small
- ☐ But errors on new points are likely to be large

Really Over-fitting!

- ☐ Errors on training data are small
- ☐ But errors on new points are likely to be large

What if I train on different data?

Simple Model → Low Variability

Complex Model → High Variability

Bias-Variance Tradeoff

- ☐ So far we have minimized the **training error**: the error on the training data.
 - low training error does not guarantee good expected performance (due to over-fitting)
- □ We would like to reason about the **test error**

Theorem:

Test Error = Noise + Bias² + Variance

Noisy data has inherent error (measurement error)

Error due to models **inability to fit** the data. **(Under Fitting)**

Error due to inability to estimate model parameters. (Over-fitting)

Bias Variance Plot

Regularization to Reduce Over-fitting

- ☐ High dimensional models tend to over-fit
 - How could we "favor" lower dimensional models?

□ Solution Intuition:

Too many features over-fitting

$$f(x) = \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \ldots + \theta_d x_d$$

• Force many of the $\theta_i \approx 0$ (e.g., i > 2) ("effectively fewer features")

$$f(x) = \theta_1 x_1 + \theta_2 x_2 + 0x_3 + \dots + 0x_d$$

= $\theta_1 x_1 + \theta_2 x_2$

Keeping weights close to zero reduces variance

Regularization to Reduce Over-fitting

☐ We can add a regularization term:

$$\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^p} \quad \frac{1}{n} \sum_{i=1}^n (y_i - \theta^T x_i)^2 + \lambda R(\theta)$$
Regularization
Regularization
Function
Regularization
Parameter

□ Common of Regularization Functions:

$$\begin{array}{ll} \textbf{Ridge (L2-Reg)} \\ \textbf{Regression} \end{array} R_{\text{Ridge}}(\theta) = \sum_{i=1}^{d} \theta_i^2 \quad \begin{array}{ll} \textbf{Lasso} \\ \textbf{(L1-Reg)} \end{array} R_{\text{Lasso}}(\theta) = \sum_{i=1}^{d} |\theta_i| \end{array}$$

- Encourage small parameter values
- \Box The parameter λ determines amount of reg.
 - Larger→more reg.→lower variance→higher bias

Regularization

Regularization and Norm Balls

Regularization to Reduce Over-fitting

☐ We can add a regularization term:

Regularization
$$\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n (y_i - \theta^T x_i)^2 + \lambda R(\theta)$$
Regularization Regularization Regularization Regularization Parameter

- □ Solving the regularized problem:
 - Closed form solution for Ridge regression (L2):

$$\hat{\theta}_{\text{Ridge}} = (X^T X + \lambda I)^{-1} X^T Y$$

- Iterative methods for Lasso (L1):
 - Stochastic gradient ...
- \square How do we choose λ ?

Regularization

Picking The Regularization Parameter λ

□ **Proposal:** Minimize **training** error

$$\arg\min_{\theta\in\mathbb{R}^p, \lambda\geq 0} \quad \frac{1}{n} \sum_{i=1}^n (y_i - \theta^T x_i)^2 + \lambda R(\theta)$$

- Trivial solution $\rightarrow \lambda = 0$
- □ Intuition we want to minimize **test** error
 - Test error: error on unseen data
- □ **2**nd **Proposal:** Split training data into training and evaluation sets
 - For a range of λ values compute optimal θ_λ using only the reduced training set
 - Evaluate θ_{λ} on the separate evaluation set and select the λ with the lowest error

Bias Variance Plot

72

K-Fold Cross Validation

- ☐ Split training data into K-equally sized parts
 - In practice K is relatively small (e.g., 5)
- ☐ For each part train on the other k-1 parts and compute the error on that part:

- □ Compute the average test error over held out parts
- □ Select reg. param. that minimizes average test error

Regularization to Reduce Over-fitting

- ☐ High dimensional models tend to over-fit
 - How could we "favor" lower dimensional models?

□ Solution Intuition:

Too many features over-fitting

$$f(x) = \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \ldots + \theta_d x_d$$

• Force many of the $\theta_i \approx 0$ (e.g., i > 2) ("effectively fewer features")

$$f(x) = \theta_1 x_1 + \theta_2 x_2 + 0x_3 + \dots + 0x_d$$

= $\theta_1 x_1 + \theta_2 x_2$

Keeping weights close to zero reduces variance

Regularization to Reduce Over-fitting

☐ We can add a regularization term:

$$\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^p} \quad \frac{1}{n} \sum_{i=1}^n (y_i - \theta^T x_i)^2 + \lambda R(\theta)$$
 Regularization Regularization Regularization Regularization Regularization Parameter

□ Common of Regularization Functions:

$$\begin{array}{ll} \textbf{Ridge (L2-Reg)} \\ \textbf{Regression} \end{array} R_{\text{Ridge}}(\theta) = \sum_{i=1}^d \theta_i^2 \quad \begin{array}{ll} \textbf{Lasso} \\ \textbf{(L1-Reg)} \end{array} R_{\text{Lasso}}(\theta) = \sum_{i=1}^d |\theta_i| \end{array}$$

- Encourage small parameter values
- \Box The parameter λ determines amount of reg.
 - Larger→more reg.→lower variance→higher bias

Regularization

Summary of Regression

Electronics

Clustering

