	3.11	_ '	Walsh	n fun	ctions	5																
l	lenni	3.2	7 - fo	rall n	eN,	in E	ique n	1/ Mz	n _k e II	s.t.	0 ≤ n	<n2< th=""><th>. ባ_k</th><th>ond</th><th>n=2"</th><th>' + 2ⁿ</th><th>·+ +</th><th>2^{nk}</th><th></th><th></th><th></th><th></th></n2<>	. ባ _k	ond	n=2"	' + 2 ⁿ	·+ +	2 ^{nk}				
				חכ ליטח						1						ld itt						
				۲ _{n2}																		
3	.12	- Non	nal Nu	mbez	& Ran	domnes	5															
	Norm	al Nu	nbens T	heoren:	any	bihany s	segverce	. of 1	ength V	w71	0((w 1	in the	poportio	12-r	,							
		- can	predi	zt occi	werces	but no	t exac	f pos17	Jans													
		A ne	asure — a	zero sub	set of	Zh	as the	followi	his bud	erty:												
			lm 1 n-760 r	1/2/5	ren,	ዓ ^(x) =	۰ ۵	امر = د	2 - dr+s	· (x) =	c _s } = 7	(2 ^s										
		į,	e. the	proportio	n of p	laces r	where	the s	eq vence	d _r (x), d _{ri} ,((x), (1 _{r+s-1} (K) Nic	tches	د _{ا ،} دی	, C _s					
				eges to																		
3,	13 -	no fo	ns of	"Pab	abi1i7y	" and	"ronde	oM ቢዲና	4													
	ı) k	olmogo	~V \3	Axionat	ni Ap	proach	(c lass	iz pnob	ubility)													
		pabali	ity of	an eve	ut is	assiyn	ed in	ad vand	e, off	en Me	aswe -	based										
		_	ex. pa	obabi717y	z of sele	echny u	(numbe	r from	9 Sul	set of	[0]] B t	he leng	n of -	the su	ubset.						
	2)	Von M	ises Fr	equency	. App	roach	(empiri	zal px	bability	,)												
		Probabí	77y sho	uld be	denve	d from	obsen	red d	ata Na	ther	than a	rssmed	•									
		u Colle	ctive" -	- infini	7e seg	verce	of ob	sevatio	ns who	ve po	babiliti	es ane	conput	ed as	. rela	hve fo	equenci	es,				
			ex.p~	bab,777y	of a	seque	nce -	for a si	ubset /	· =												
			r(A)) = Jum n-74	. {	15jen,	, cj & A	3)														
(Borel	's the	evem si	s ami	x of	Kolmogor	or &	M ral	Bes													
				sed (n						-												
5	one s	egvence	s appe	ear von	dom bi	ut anen	.મ. <i>હ</i>						level	(Z frequ	very st	Os onc	l ls) bu	.t only	, ol ,	ø 10		
		_				artial ondomnes					not ra											
N	IWT	= 0u	tside	0{ Som	ne Me	aswe	2210	set,	binary	} &xp	oans DO	of	[0, 1]) ha	s Nove	bm b	ehavio	n at	all	levels	of.	
																		1	" ref	inevert'		

3.14 -	- leading	signifizan	t digi7	phenomenon		R potent	ial talk	. topic							
Leadin	ng digits o	f naturall	y occurin	numerical	dates a	ine 100	T uniform	ly dist	ributed	_					
follows	, a logonth	miz putte	rn, Benfo	nd's Law.											
ρ(,	d) = log,	(1 + \frac{1}{a})	·												
Initial	ly observed	by Simor	n Newcom	b in 1881											
_	numbers ap	pearing in	1 Norture	often appea	r as rati	ibs of a	other num	ibers.							
Wey I's	theorem h	elped for	nalize this	, - Fraction	ral parts	of logar	ithms leads	to a	wifom	distrib	utions				
- ;	if data is	generated	through 1	mu ltiplization,	davisim,	on expor	nential gr	owth, i	16m +	natwall	y Conve	ge to	Berford	's distrib	ntion,
Applizati	ions - frauc	l detection	, assessil	ng whether d	(atasets	are ortif	izial or no	(.							
The ex	kistence &	persisteru	e of Ben	ford's Law	suggests	some de	eper unde	-lying m	n a-them	iatizal 1	orinci ple	2			
3.15	- Leadir	ly digit	s in Ge	ometric Seq	verces										
	8, 10,														
	y=2,4		,6,1	2,5											
				sequence	begin w	ith eac	h digit	7							
	nd's Theo				V										
-	for the g	eonetiz	segverce	$(2^n)_{1}$	the prop)ontron	of runs	es v	17h	leading	y dizi7	d	follow	s the	
	_			S Law.											
Proof -	-faking logo	rithms of	num bers												
Х	= b ⁿ⁻¹ (c ₁	(צי			contre	st with	n Borel's	- 5 br	obabiTi7) of (nd 05				
	ading digit		int (blue	31 (x1)											
	xtends to a														
3.16 -	Distributions	of multi	ple digi7	3 (non-lead	ing ones)									
Probabi	ing that a	number st	orts with	a sequence,	not just	single o	digi7s?								
				Berford's law				retinic seq	juences						
ρ	(c, c, c,)	= los, (1 + 1	-											
Digits	are not ind	ependent.	Appearace	. of a socio	J dizit	depends	on the fi	3t, M	a ge	one tric	Sequence	2.			
								•	V						

Shows	a general mathe	natical princip	ile even when	extended	10 multiple	leading a	lîgíts.					
3,17.	- Dynamital	Systems, c	honges of s	scale								
e.g.	river long ths	in miles V	rs, km shov	nd both f	illow Be	enford's Lan	Ν,					
	ng Numbers - 1											
	Analyze scaling	- 0		•		$=\frac{\lambda}{b^{\alpha}}$	is chosen 50	that $\frac{x}{b^n}$ E	[1,6).			
						* mont (x).			,			
	Mantissa corcies	signifizant a	digits, discon	ols Magnitu	de.							
		59 =) 3.1415										
Map	from (0,00) to	o [1,6) usi	hs montisso.									
_	$x) = mont(\alpha x)$,										
- 6	d's Law remalh		n a transfor	mation.								
_	Invariance of 1				s forma tion	to all numb	8B ih a 5001	rence of do	B nasanes	Bertan's	law.	
الماح الماح		J-1111.01. 7 Col	~ " <i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	a scarc (io	.5(*****, **		37 (1) (1) 327	, sac 01 049	117 110000	20.100.7		
3,18.	Equivalence	e of Krone	ocker R. B	enford S	tems							
	, , ,		action as a	31 (23)	7,10.5							
Ch	l- devel	(1	ahahaa l) ,	2 . 1 .	s and a						
CVI.	1 - 2180611	oping pri	o o o o i i ing	ιΛ <i>Ο</i> 1 (1	mal.	seise						
ν ·	theoren-	_										
				[- ya	. 3	أ ما						
	bounded inter			4/	J		101 - 1 - 10	. ^.				
-	basiz (finite un			preimage	for when fire not injection	an interval,		- preserving,				
	ne] Z, u(>	not injecti	ive		$\mu(f^{-1}(I))$	1 / /			
	e 5-Z, F	nel s.t.	,					2x mod	V + + 7 + +	2		
	() e ()	Δ	_				MIT (4,	3 y) = M ((18, 1	8) ∪ (B, B)/			
Defin	e 9 _v : S -		∞}									
	Return time	map	b f m f m (v) c	11	7							
	(x) =	× 11 F- mi	se if a nerv	u goes back	+ U}							

The problem of $A \in A$ and $A \cap A$ and A	
$M-$ subset of X Wort to return a "size" (nonnegative IR) Certain sets- voys weind, techniques to pick out subsets of IR where you con't measure them. Properties of measure, M : if $A=B$, $M(A) \leq M(B)$ if $A \cap B = \emptyset$, $M(A \cup B) = M(A) + M(B)$ in M ,	
M-subset of X Went to return a "size" (nonnegative IR) Certain sets- voy weind, techniques to pick out subsets of IR where you com't measure them. Properties of measure, μ : if $A = B$, μ (A) $\leq \mu$ (B) if $A \cap B = \emptyset$, μ (A) $\leq \mu$ (B) in μ (B) μ (A) μ (B) μ (B) in μ (B) μ (B) μ (Certain sets- voy weind, techniques to pick out subsets of IR where you com't measure them.	
Wont to return a "size" (nonnegative IR) Certain sets—very weind, techniques to pick out subsets of IR where you con't measure them. Properties of measure, μ : if $A = B$, μ (A) $\leq \mu$ (B) if $A \cap B = \beta$, μ (A) $\leq \mu$ (B) in μ (B) in μ (A) μ (B) = μ (B) in μ (B)	
Certain sets-very weird, techniques to pick out subsets of \mathbb{R} where you con't measure them. Properties of measure, M : if $A \subseteq B$, $M(A) \subseteq M(B)$ if $A \cap B = P$, $M(A \cup B) = M(A) + M(B)$ in \mathbb{R} , $M(X + A) = M(X) - \text{trons lation}$	
properties of measure, μ : if $A = B$, $\mu(A) \leq \mu(B)$ if $A \cap B = \mathcal{D}$, $\mu(A \cup B) = \mu(A) + \mu(B)$ in $\mu(A) = \mu(A) - \mu(A) - \mu(A) + \mu(B)$	
if $A = B$, $M(A) \le M(B)$ if $A \cap B = \emptyset$, $M(A \cup B) = M(A) + M(B)$ in $M(X + A) = M(X) - \text{trans lation}$	
if $A \cap B = \emptyset$, $M(A \cup B) = M(A) + M(B)$ in $\bigcap_{\text{conly}} M(X + A) = M(X) - \text{trans lation}$	
in R, m(x+A) = m(x) - translation	
in \mathbb{R} , $M(X + A) = M(X) - translation$	