Semi-Global Matching 논문 리뷰

Heiko Hirschmuller, 2005, IEEE CVPR, Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information

유 용길

목차

Stereo Matching

2대의 카메라를 이용하여 Depth 정보를 알아내기 위해 양쪽의 영상을 정합하는 것.

Left Camera

Right Camera

Depth Information

Epipolar Line

Matching 후보 Pixel로 구성된 선분

Mutual Information과 Entropy 기반 Stereo Matching

Mutual Information(상호 정보량)
 두 사건 사이의 연관성

$$MI_{I_1,I_2} = H_{I_1} + H_{I_2} - H_{I_1,I_2}$$

Entropy

정보의 불확실성.

1948년 Shannon이 정보이론 영역에 도입

(C.E. Shannon. A mathematical theory of communication. Bell System Thechnical Journal, 27:379-423 and 623-656, July and October 1948)

Matching Cost 로 사용.

$$H_I = -\int_0^1 P_I(i) \log P_I(i) di$$

• 확률 밀도 함수

해당 Pixel이 어떤 Intensity 값을 가질 확률

$$P_I = \frac{1}{N} n_i$$

Mutual Information과 Entropy 기반 Stereo Matching

• Smooth Kernel을 이용한 H_{I_1,I_2} 추정 Parzen Window를 가우시안 밀도 함수로 사용

• 제안된 새로운 Entropy Function

$$h(i) = -\frac{1}{n}\log(P_I(i) \otimes g(i)) \otimes g(i)$$

최종 Matching cost

$$C_{MI}(p,d) = -mi_{I_b,f_d(I_m)}(I_{bp},I_m)$$

$$mi_{I_1,I_2}(i,k) = h_{I_1}(i) + h_{I_2}(i) - h_{I_1,I_2}(i,k)$$

NP-Complete와 Dynamic Programming

• Disparity 선정을 위한 Global Matching 각 픽셀의 Disparity 별로 Energy를 계산.

NP-Complete Problem

연산해야 하는 가짓수가 지수 함수적으로 늘어나는 문제. -> Dynamic Programming 사용.

ex) N개의 계단을 오르고자 할 때 계단은 한번에 1,2,3칸까지 올라갈 수 있다. 계단을 올라가는 방법의 수를 구하여라.

NP-Complete와 Dynamic Programming

Dynamic Programming(동적 계획법)

해결하고자 하는 큰 문제를 독립된 작은 문제로 나눈 다음 이 작은 문제들 사이의 반복되는 관계식을 찾아내어 재귀적으로 해결하는 알고리즘.

예제의 답. → A[N] = A[N-1]+A[N-2]+A[n-3] 단, A[1] = 1, A[2] = 2, A[3] = 4

2D인 Global Matching을 1D로 전환.

$$L_r(p,d) = C(p,d) + \min(L_r(p-r,d), L_r(p-r,d-1) + P_1, L_r(p-r,d+1) + P_1, \min_i L_r(p-r,i) + P_2)$$

Direction vector인 r을 이용하여 8~16방향에서 연산하여 특정 방향에서만 강인한 특성을 보완.

Semi-Global Matching

Cost 증가 문제를 해결하는 새로운 방법

$$\begin{split} L_r(p,d) &= C(p,d) + \min(L_r(p-r,d), L_r(p-r,d-1) + P_1, L_r(p-r,d+1) + P_1, \min_i L_r(p-r,i) + P_2) \\ &- \min_k L_r(p-r,k) \\ & \therefore L_{r_{max}} = C_{max} + P_2 \end{split}$$

• 최종 Cost 계산 $S(p,d) = \sum_r L_r(p,d)$ pixel p에서 S(p,d)가 작은 d를 Disparity로 선정

Q&A