Advanced Engineering Mathematics Partial Differential Equations by Dennis G. Zill Problems

Chris Doble

November 2023

Contents

12	Ort	hogonal	F	u	n	c	ti	Ol	ns	8	an	\mathbf{d}	I	o'	u	rie	er	5	Зe	ri	es	3							
	12.1	Orthogo	n	al	I	7u	ın	ct	io	ns	S																		
		12.1.7																											
		12.1.9																											
		12.1.21																											
		12.1.23																											
		19 1 95																											

12 Orthogonal Functions and Fourier Series

12.1 Orthogonal Functions

12.1.7

$$\int_0^{\pi/2} \sin mx \sin nx \, dx = \frac{1}{2} \int_0^{\pi/2} \left[\cos(m-n)x - \cos(m+n)x \right] dx$$

$$= \frac{1}{2} \left[\frac{\sin(m-n)x}{m-n} - \frac{\sin(m+n)x}{m+n} \right]_0^{\pi/2}$$

$$= \frac{1}{2} \left(\frac{\sin(m-n)\pi/2}{m-n} - \frac{\sin(m+n)\pi/2}{m+n} \right)$$

$$= 0$$

$$||\sin nx||^2 = (\sin nx, \sin nx)$$

$$= \int_0^{\pi/2} \sin^2 nx \, dx$$

$$= \frac{1}{2} \int_0^{\pi/2} (1 - \cos 2nx) \, dx$$

$$= \frac{1}{2} \left[x - \frac{1}{2n} \sin 2nx \right]_0^{\pi/2}$$

$$= \frac{\pi}{4}$$

$$||\sin nx|| = \frac{\sqrt{\pi}}{2}$$

12.1.9

$$\int_{0}^{\pi} \sin mx \sin nx \, dx = \frac{1}{2} \int_{0}^{\pi} \left[\cos(m-n)x - \cos(m+n)x \right] dx$$

$$= \frac{1}{2} \left[\frac{\sin(m-n)x}{m-n} - \frac{\sin(m+n)x}{m+n} \right]_{0}^{\pi}$$

$$= 0$$

$$||\sin nx||^{2} = (\sin nx, \sin nx)$$

$$= \int_{0}^{\pi} \sin^{2} nx \, dx$$

$$= \frac{1}{2} \int_{0}^{\pi} (1 - \cos 2nx) \, dx$$

$$= \frac{1}{2} \left[x - \frac{1}{2n} \sin 2nx \right]_{0}^{\pi}$$

$$= \frac{\pi}{2}$$

$$||\sin nx|| = \sqrt{\frac{\pi}{2}}$$

12.1.21

$$T = 1$$

12.1.23

$$T=2\pi$$

12.1.25

$$T=2\pi$$