Отчет о выполнении лабораторной работы Определение теплоты испарения жидкости

Лепарский Роман

11 марта 2021 г.

1 Аннотация

Цель работы: 1) измерение давления насыщенного пара жидкости при разной температуре; 2) вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона–Клаузиуса.

2 Теоретические сведения

Испарением называется переход вещества из жидкого в газообразное состояние. Для выхода из жидкости молекулы должны преодолеть силы молекулярного сцепления. Кроме того, при испарении совершается работа против внешнего давления Р. Переход части молекул в пар приводит к обеднению жидкости быстрыми молекулами, т.е. к ее охлаждению. Количество теплоты, необходимое для изотермического испарения одного моля жидкости при внешнем давлении, равном упругости ее насыщенных паров, называется молярной теплотой испарения.

В настоящей работе для определения теплоты испарения применен косвенный метод, основанный на формуле Клапейрона–Клаузиуса:

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}\tag{1}$$

Найдя из опыта $\frac{dP}{dT}$, T, V_2 и V_1 , можно определить L путем расчета. Величины L, V_2 и V_1 в формуле (1) должны относиться к одному и тому же количеству вещества; мы будем относить их к одному молю.

Рассмотрим некоторые табличные значения:

	$T_{\text{кип}}$	V_1	V_2	b	a	a/V_2^2
Вещество		10^{-6}	10^{-3}	10^{-6}		
	K	$M^3/MOЛЬ$	$M^3/MOЛЬ$	$M^3/MOЛЬ$	$\Pi a \cdot M^3 / M O Л B$	кПа
Вода	373	18	31	26	0,4	0,42
CCl_4	350	97	29	126	1,95	2,3
Этиловый эфир	307	104	25	137	1,8	2,9
Этиловый спирт	351	58	29	84	1,2	1,4,

Из таблицы видно, что V_1 не превосходит 0.5% от V_2 . При нашей точности опытов величиной V_1 в уравнении (1) можно пренебречь. Обратимся теперь к V_2 , которое в дальнейшем будем обозначать просто V. Объем V связан с давлением и температурой уравнением Ван-дер-Ваальса:

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT
\tag{2}$$

Из таблицы видно, что поправки на давление и объем на несколько порядков меньше самих значений, поэтому положим

$$V = \frac{RT}{P} \tag{3}$$

Подставив (3) в (1), выразим L:

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)} \tag{4}$$

В нашем опыте температура жидкости измеряется термометром, давление пара определяется при помощи манометра, а производные dP/dT или $d(\ln P)/d(1/T)$ находятся графически как угловой коэффициент касательной к соответствующей кривой.

Экспериментальная установка

Рис. 1: Схема установки

Установка включает термостат А, экспериментальный прибор В и отсчетный микроскоп С.

В термостат погружен запаянный прибор 13 с исследуемой жидкостью. Над ней находится насыщенный пар (перед заполнением прибора воздух из него был откачан). Давление насыщенного пара определяется по ртутному манометру. Отсчет показаний манометра производится при помощи микроскопа.

Описываемый прибор обладает важным недостатком: термометр определяет температуру термостата, а не исследуемой жидкости (или ее пара). Эти температуры близки друг к другу лишь в том случае, если нагревание происходит достаточно медленно.

3 Приборы и материалы

В работе используются:

- Герметический сосуд, заполненный исследуемой жидкостью;
- Отсчетный микроскоп;
- Термостат.

4 Обработка результатов

В данном опыте нам нужно снять зависимость давления насыщенных паров воды от температуры. Погрешность термостата примем равной 0.5 K, а погрешность манометра 0,05 mm. Для метода линеаризации нам потребуются погрешности косвенных измерений:

$$\Delta_{1/T} = \frac{\Delta_T}{T^2} = 6$$
E-6 1/K

$$\Delta_{ln(P)} = \frac{\Delta_P}{P} = 3\text{E-3}$$

Метод конечных разностей заключается в следующем:

$$\frac{dy}{dx} \approx \frac{y_{i+1} - y_{i-1}}{x_{i+1} - x_{i-1}}$$

Занесем результаты экспериментов в таблицы, построим графики, найдем угловой коэффициент и погрешность.

Таблица 1: Зависимость давления от температуры при нагревании

T, K	1/T, 1/K	P, mmHg	$\ln P$
294	0.003401	19.1	2.949
295	0.003389	20.9	3.039
296	0.003378	21.8	3.081
297	0.003367	22.6	3.117
298	0.003355	24.2	3.186
299	0.003344	24.9	3.214
300	0.003333	26.9	3.292
301	0.003322	27.8	3.325
302	0.003311	29.6	3.387
303	0.003300	31	3.433
304	0.003289	33.2	3.502

T, K	1/T, 1/K	P, mmHg	$\ln P$
305	0.003278	34.5	3.540
306	0.003267	37.3	3.618
307	0.003257	38.5	3.650
308	0.003246	41	3.713
309	0.003236	43.5	3.772
310	0.003225	45.2	3.811
311	0.003215	47.8	3.867
312	0.003205	50.6	3.923
313	0.003194	53.6	3.981

Рис. 2: Измерения при нагревании. Расчет методом конечных разностей. L = $41\pm5\frac{\kappa \text{Дж}}{\text{моль}}$

Рис. 3: Измерения при нагревании. Расчет методом линеаризации. L = $40.7\pm0.4\frac{\text{кДж}}{\text{моль}}$

Таблица 2: Зависимость давления от температуры при охлаждении

T, K	1/T, $1/K$	P, mmHg	$\ln P$
294	0.003401	19.5	2.970
295	0.003389	20.3	3.010
296	0.003378	21.9	3.086
297	0.003367	244	5.497
298	0.003355	24.7	3.206
299	0.003344	25.8	3.250
300	0.003333	26.9	3.292
301	0.003322	28.9	3.363
302	0.003311	30.3	3.411
303	0.003300	32	3.465
304	0.003289	34.5	3.540
305	0.003278	36.3	3.591
306	0.003267	38.3	3.645
307	0.003257	39.3	3.671
308	0.003246	42.5	3.749

T, K	1/T, 1/K	P, mmHg	$\ln P$
309	0.003236	44.8	3.802
310	0.003225	47.2	3.854
311	0.003215	48.1	3.873
312	0.003205	51	3.931
313	0.003194	53.6	3.981

Рис. 4: Измерения при охлаждении. Расчет методом конечных разностей. $L=41\pm10\frac{\kappa \text{Дж}}{\text{моль}}$

Рис. 5: Измерения при охлаждении. Расчет методом линеаризации. L = $40.8 \pm 0.5 \frac{\text{кДж}}{\text{моль}}$

5 Вывод

После обработки результатов можно видеть, что полученное значение теплоты парообразования воды $40.7\pm0.4\frac{\kappa Дж}{моль}$ лежит очень близко к табличному ($40680\frac{Дж}{моль}$). Также, можно заметить, что метод линеаризации дает намного большую точность, чем метод конечных разностей (0.98% и 12.19% соответственно). Увеличение погрешности полученной при обработке измерений 2 эксперимента (в процессе охлаждения) может быть связано с менее равномерным изменением температуры жидкости.