User guide of MSTD

MSTD is a generic and efficient method to identify multi-scale topological domains (MSTD) from symmetric Hi-C and other high resolution asymmetric promoter capture Hi-C datasets.

Program Download

Download page – Get the latest version of MSTD

Using MSTD

Installation:

- 1. It is recommended to install MSTD in python3.6 or above environment.
- 2. Installing requiring packages, including numpy, pandas, seaborn and colormap using pip or conda.
- 3. Extracting the downloaded installation package to the specified directory and run the command: python setup.py install

Getting started:

MSTD currently contains two versions of the detection of multi-scale topological domains. Version 1 is to detect domains whose boundaries may exist overlapping, while version 2 is to detect domain without overlapping. The version 2 is more generic for most analyses. Both versions of MSTD are included in the modules "MSTD_v1" and "MSTD_v2", respectively. Both versions contain the following functions.

Function 1:

MSTD(Matrix_file,Output_file,MDHD=5,symmetry=1,window=5,visualization=0)

Description: Identifying multi-scale topological domains from Hi-C maps or promoter capture Hi-C maps.

Parameters:

Matrix_file: Input file address, the format of the file is N*N matrix file without row and column names for Hi-C maps and the format of the file is N*M matrix file without row and column names for promoter capture Hi-C maps.

Output_file: Output file address, each line in the file is triple containing boundares and centers of detected domains.

MDHD: integer, the threshold for the minimum distance of the elements that have higher density than the element k.

symmetry: 1/0, 1 represents the detecting of TADs and 0 represents the detecting PADs

windows: The size of window used to compute the average contact frequency of one element. Defaults=5. According to the different resolution of the data, it can be adjusted between 5-10, which has little effect on the results.

visualization: if visulization=1, Visualization of results can be showed.

Function 2:

MSTD2(Matrix_file,Output_file,MDHD=5,symmetry=1,window=5,visualization=0)

Description: Identifying multi-scale topological domains from Hi-C maps or promoter capture Hi-C maps.

Parameters:

Matrix_file: Input file address, the format of the file is triple for promoter capture Hi-C maps, the format of the file is N*N matrix file without row and column names for Hi-C maps.

Output_file: Output file address, each line in the file is triple containing boundares and centers of detected domains.

MDHD: integer, the threshold for the minimum distance of the elements that have higher density than the element k.

symmetry: 1/0, 1 represents the detecting of TADs and 0 represents the detecting PADs

windows: The size of window used to compute the average contact frequency of one element. Defaults=5. According to the different resolution of the data, it can be adjusted between 5-10, which has little effect on the results.

visualization: if visulization=1, Visualization of results can be showed.

Function 3:

example(symmetry=1)

Description: showing the examples for Identifying multi-scale topological domains from Hi-C maps or promoter capture Hi-C maps, respectively.

Parameters:

symmetry: 1/0, 1 represents the detecting of TADs and 0 represents the detecting PADs

Examples:

import os import MSTDlib.MSTD_v2 as MSTD_v2 #Change the current working directory to the specified path # (Downloading location of the MSTD package) os.chdir(MSTD_dir)

#1. run the example in the program MSTD_v2.example(symmetry=1) # Visualizing the result 1

#2. run example using symmetric Hi-C dataset in the MSTD packages Dir='./src/MSTDlib'

Matrix_file=Dir+"\data\\cortex_chr6_2350-2500_HiC'

Output_file=Dir+'\\data\\cortex_chr6_output'

MSTD_v2.MSTD(Matrix_file,Output_file,MDHD=10,symmetry=1,window=10,visualization=1)

Visualizing the result 2

#3. run example using asymmetric promoter capture Hi-C dataset in the MSTD packages Dir='./src/MSTDlib'

Matrix_file=Dir+'\\data\\nB_chr19_480-700_CHiC'

Output_file=Dir+'\\data\\nB_chr19_480-700_CHiC_output'

MSTD_v2.MSTD(Matrix_file,Output_file,MDHD=100,symmetry=2,window=5,visualization=1)

Visualizing the result 3

Contact us:

ccyeyusen@sina.com