MCLA Concise Review

John Yang

January 24, 2022

Contents

11	Parametric Equations and Polar Coordinates	
	11.1 Curves Defined by Parametric Equations	
	11.2 Calculus with Parametric Curves	;
	11.3 Polar Coordinates	
	11.4 Areas and Lengths in Polar Coordinates	
	11.5 Conic Sections	
	11.6 Conic Sections in Polar Coordinates	
19	Infinite Sequences and Series	,
12	12.1 Sequences	
	12.2 Series.	
	12.3 The Integral Test and Estimates of Sums	
	12.4 The Comparison Tests	
	12.5 Alternating Series	
	12.6 Absolute Convergence and the Ratio and Root Tests	
	12.7 Strategy for Testing Series	
	12.8 Power Series	
	12.9 Representations of Functions an Power Series	
	12.10Taylor and Maclaurin Series	
	12.11Applications of Taylor Polynomials	1.
13	Vectors and the Geometry of Space	11
	13.1 Three-Dimensional Coordinate Systems	11
	13.2 Vectors	11
	13.3 The Dot Product	12
	13.4 The Cross Product	13
	13.5 Equations of Lines and Planes	13
	13.6 Cylinders and Quadric Surfaces	14
14	Vector Functions	1.5
14	14.1 Vector Functions and Space Curves	
	14.2 Derivatives and Integrals of Vector Functions.	
	14.3 Arc Length and Curvature	
	14.4 Motion in Space: Velocity and Acceleration	
15	Partial Derivatives	17
19	Partial Derivatives	
	15.2 Limits and Continuity	
	15.3 Partial Derivatives	
	15.4 Tangent Planes and Linear Approximations	

	15.6 Directional Derivatives and the Gradient Vector	
	15.7 Maximum and Minimum Values	20
	15.8 Lagrange Multipliers	20
16	Multiple Integrals	20
	16.1 Double Integrals over Rectangles	20
	16.2 Double Integrals over General Regions	21
	16.3 Double Integrals in Polar Coordinates	22
	16.4 Applications of Double Integrals	22
	16.5 Surface Area	23
	16.6 Triple Integrals	
	16.7 Triple Integrals in Cylindrical Coordinates	25
	16.8 Triple Integrals in Spherical Coordinates	
	16.9 Change of Variables in Multiple Integrals	
17	Vector Calculus	26
	17.1 Vector Fields	26
	17.2 Line Integrals	27
	17.3 The Fundamental Theorem for Line Integrals	
	17.4 Green's Theorem	
	17.5 Curl and Divergence	
	17.6 Parametric Surfaces and Their Areas	
	17.7 Surface Integrals	
	17.8 Stokes' Theorem	
	17.9 The Divergence Theorem	
	17.10Summary of Chapter 17	
18	Second-Order Differential Equations	32
	18.1 Second-Order Linear Equations	
	18.2 Nonhomogeneous Linear Equations	
	18.3 Applications of Second-Order Differential Equations	
	18.4 Series Solutions	
Ot	her information	33
	Coordinate Systems	33

11 Parametric Equations and Polar Coordinates

11.1 Curves Defined by Parametric 11.3 Equations

• Parameter - 3rd variable that x and y are both a function of:

$$x = f(t)$$
 and $y = g(t)$

- Points along the curve (x, y) = (f(t), g(t))
- Graphing calculators can be used to produce parametric curves that you wouldn't be able to make by hand.
- Equation 1: parametric equations for a cycloid:

$$x = r(\theta - \sin \theta)$$
 $y = r(1 - \cos \theta)$ $\theta \in \mathbb{R}$

11.2 Calculus with Parametric Curves

• Equation 1: first derivative of a parametric equation:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \qquad \text{if} \quad \frac{dx}{dt} \neq 0$$

• Second derivative of a parametric equation:

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} \neq \frac{\frac{d^2}{dt^2}}{\frac{d^2x}{dt^2}}$$

• Equation 2: arc length of a curve:

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

• Equation 3/Theorem 5: arc length of a parametric curve:

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

• Equation 6: surface area of a rotated parametric curve about the *x* axis:

$$S = \int_{\alpha}^{\beta} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

1.3 Polar Coordinates

- polar coordinates (r, θ)
- Theta is always ccw
- Equations 1 and 2: polar coordinates:

$$x = r \cos \theta$$
 $y = r \sin \theta$
 $r^2 = x^2 + y^2$ $\tan \theta = \frac{y}{x}$

• Derivative of a polar curve:

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

11.4 Areas and Lengths in Polar Coordinates

- Equation 1: area of a sector of a circle: $A = \frac{1}{2}r^2\theta$
- Equations 3 and 4: polar area:

$$A = \int_a^b \frac{1}{2} [f(\theta)]^2 d\theta = \int_a^b \frac{1}{2} r^2 d\theta$$

• Equation 5: polar arc length:

$$L = \int_{a}^{b} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

11.5 Conic Sections

• Equation 1: vertical parabola with focus (0, p) and directrix y = -p:

$$x^2 = 4py$$

• Equation 2: horizontal parabola with focus (p,0) and directrix x=-p:

$$y^2 = 4px$$

• Equation 3: general form of an ellipse:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

• Equation 4: horizontal ellipse with foci $(\pm c, 0)$, verticies $(\pm a, 0)$, where $c^2 = a^2 - b^2$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad a \ge b > 0$$

• Equation 5: vertical ellipse with foci $(0, \pm c)$, verticies $(0, \pm a)$, where $c^2 = a^2 - b^2$

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \qquad a \ge b > 0$$

• Equation 6: general form of a hyperbola:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

• Equation 7: hyperbola with horizontal transverse axis, with foci $(\pm c, 0)$, verticies $(\pm a, 0)$, asymptotes $y = \pm \frac{b}{a}x$, where $c^2 = a^2 + b^2$:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

• Equation 8: hyperbola with vertical transverse axis, foci $(0, \pm c)$, verticies $(0, \pm a)$, asymptotes $y = \pm \frac{a}{b}x$, where $c^2 = a^2 + b^2$:

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

11.6 Conic Sections in Polar Coordinates

• Theorem 1: Let F be a fixed point (called the focus) and l be a fixed line (called the directrix) in a plane. Let e be a fixed positive number (called the eccentricity). The set of all points P in the plane such that

$$\frac{|PF|}{|Pl|} = e$$

is a conic section. (That is, the ratio of the distance from F to the distance from l is the constant e). The conic is:

12 Infinite Sequences and Series

12.1 Sequences

• sequence - a list of numbers written in a definite order:

$$a_1, a_2, a_3, a_4, \cdots, a_n, \cdots$$

- a_1 first term; a_2 second term; a_n nth term
- For infinite series, every term a_n has a successor a_{n+1}
- Notation the sequence $\{a_1, a_2, a_3, \dots\}$ can also be written as

$$\{a_n\}$$
 or $\{a_n\}_{n=1}^{\infty}$

- (a) an ellipse if e < 1
- a parabola if e = 1
- a hyperbola if e > 1
- Theorem 6: A polar equation of the form

$$r = \frac{ed}{1 \pm e \cos \theta}$$
 or $r = \frac{ed}{1 \pm e \sin \theta}$

represents a conic section with eccentricity e. The conic is an ellipse if e < 1, parabola if e = 1, or a hyperbola if e > 1

- -d is the distance from focus to directrix
- $e = \frac{c}{a}$ where $c^2 = a^2 + b^2$
- Kepler's laws:
 - -1 A planet revolves around the sun in an elliptical orbit with the sun at one focus.
 - -2 The line joining the sun to a planet sweeps out equal areas in equal times.
 - 3 The square of the period of revolution of a planet is proportional to the cube of the length of the major axis of its orbit.
- Equation 7: The polar equation of an ellpise with focus at the origin, semimajor axis a, eccentricity e, and directirx x=d can be written in the form:

$$r = \frac{a(1 - e^2)}{1 + e\cos\theta}$$

- Equation 8: The perihelion distance from a planet to the sun is a(1-e) and the aphelion distance is a(1+e)
- Definition 1: limits of sequences:

$$\lim_{n \to \infty} a_n = L$$

- This means: as n becomes very large, the terms of the sequence $\{a_n\}$ approach L.
- can also be written as

$$a_n \to L \text{ as } n \to \infty$$

• If the limit at infinity exists, the sequence is convergent/converges. Otherwise, it is divergent/diverges.

• Definition 2: A more precise definition of the limit of a sequence:

$$\lim_{n \to \infty} a_n = L$$

if for every $\varepsilon > 0$ there is a corresponding integer N such that

if
$$n > N$$
 then $|a_n - L| < \varepsilon$

• Theorem 3: If $\lim_{x\to\infty} f(x) = L$ and $f(n) = a_n$ when n is an integer, then $\lim_{n\to\infty} a_n = L$.

• Equation 4:

$$\lim_{n\to\infty} \frac{1}{n^r} = 0 \text{ if } r > 0$$

• Definition 5: $\lim_{n\to\infty} a_n = \infty$ means that for every positive number M there is an integer N such that

if
$$n > N$$
 then $a_n > M$

• Limit laws for sequences: If $\{a_n\}$ and $\{b_n\}$ are convergent sequences and c is a constant, then:

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n \lim_{n \to \infty} c = c$$

$$\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \text{ if } \lim_{n \to \infty} b_n \neq 0$$

$$\lim_{n \to \infty} a_n^p = \left[\lim_{n \to \infty} a_n\right]^p \text{ if } p > 0 \text{ and } a_n > 0$$

• Squeeze Theorem can be adapted for sequences:

If
$$a_n \leq b_n \leq c_n$$
 for $n \geq n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$

- Theorem 6: If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$
- Theorem 7: If $\lim_{n\to\infty} a_n = L$ and the function f is continuous at L, then

$$\lim_{n \to \infty} f(a_n) = f(L)$$

• Equation 8 (example 10):

$$a_n = \frac{n!}{n^n} = \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot \dots \cdot n}$$

(ex. 10)

• Equation 9 (example 11): The sequence $\{r^n\}$ is convergent if $-1 < r \le 1$ and divergent for all other values of r.

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } -1 < r < 1 \\ 1 & \text{if } r = 1 \end{cases}$$

• Definition 10: A sequence $\{a_n\}$ is called **increasing** if $a_n < a_{n+1}$ for all $n \ge 1$, that is, $a_1 < a_2 < a_3 < \cdots$. It is called **decreasing** if $a_n > a_{n+1}$ for all $n \ge 1$. A sequence is **monotonic** if it is either increasing or decreasing.

• Definition 11: A sequence $\{a_n\}$ is **bounded** above if there is a number M such that

$$a_n \leq M$$
 for all $n \geq 1$

It is bounded below if there is a number m such that

$$m \le a_n$$
 for all $n \ge 1$

If it is bounded above and below, then $\{a_n\}$ is a **bounded sequence**

- Theorem 12: Monotonic Sequence Theorem: Every bounded, monotonic sequence is convergent.
- Proof of theorem 12: Suppose $\{a_n\}$ is an increasing sequence. Since $\{a_n\}$ is bounded, the set $S = \{a_n | n \ge 1\}$ has an upper bound. By the Completeness Axiom it has a least upper bound L. Given $\varepsilon > 0$, $L \varepsilon$ is not an upper bound for S (since L is the least upper bound). Therefore

$$a_N > L - \varepsilon$$

For some integer N. But the sequence is increasing so $a_n \geq a_N$ for every n > N. Thus if n > N, we have

$$a_n > L - \varepsilon$$

so

$$0 \le L - a_n < \varepsilon$$

since $a_n \leq L$. Thus,

$$|L - a_n| < \varepsilon$$
 whenever $n > N$

so $\lim_{n\to\infty} a_n = L$. A similar proof can be applied if $\{a_n\}$ is decreasing.

12.2 Series

 Equation 1: infinite series/series can be written as:

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$

• Partial sums:

$$s_n = a_1 + a_2 + a_3 + \dots + a_n = \sum_{i=1}^n a_i$$

• Geometric series:

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}$$
 where $a \neq 0$

• Equation 3: sum of a geometric series

$$s_n = \frac{a\left(1 - r^n\right)}{1 - r}$$

• Equation 4 (example 2): The geometric series

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$

is convergent if |r| < 1 and its sum is

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r} \text{ where } |r| < 1$$

If $|r| \geq 1$, the geometric series is divergent.

• Equation 5 (example 7):

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

• Theorem 6: If the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n\to\infty} a_n = 0$

e.g.

$$s_1 = a_1$$

 $s_2 = a_1 + a_2$
 $s_3 = a_1 + a_2 + a_3$
 $s_4 = a_1 + a_2 + a_3 + a_4$

- Def 2: given a series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$, its *n*th partial sum is denoted as above.
 - If the sequence $\{s_n\}$ is convergent and $\lim_{n\to\infty} s_n = s$ exists as a real number, then the series $\sum a_n$ is called convergent and we write

$$a_1 + a_2 + \dots + a_n + \dots = s \text{ or } \sum_{n=1}^{\infty} a_n = s$$

- The number s is called the sum of the series. If the sequence $\{s_n\}$ is divergent, then the series is divergent.

- Note: The converse of this theorem is not always true!
- Equation 7: Nth term test: If $\lim_{n\to\infty} a_n$ does not exist or if $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- Theorem 8: If Σa_n and Σb_n are convergent series, then so are the series Σca_n (where c is a constant), $\Sigma (a_n + b_n)$, and $\Sigma (a_n b_n)$, and

$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

$$\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$

12.3 The Integral Test and Estimates of Sums

• The Integral Test: Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let

 $a_n = f(n)$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent IFF the proper integral $\int_{1}^{\infty} f(x) dx$ is

- CONDITIONS: continuous, positive, decreasing function
- The integral from 1 to ∞ of the function must be convergent for the series to be convergent.
- Equation 1: P-series test: The p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$
- Equation 2: Remainder Estimate for the Integral Test: Suppose $f(k) = a_k$, where f is a continuous, positive, decreasing function for $x \geq n$ and Σa_n is convergent. If $R_n = s - s_n$, then

$$\int_{n+1}^{\infty} f(x)dx \le R_n \le \int_{n}^{\infty} f(x)dx$$

• Equation 3 (example 5):

$$s_n + \int_{n+1}^{\infty} f(x)dx \le s \le s_n + \int_{n}^{\infty} f(x)dx$$

• Equation 4:

12.5

$$a_2 + a_3 + \dots + a_n \le \int_1^n f(x) dx$$

Alternating Series

• The alternating series test: If the alternating series

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \cdots \text{ where } b_n > 0$$

satisfies

(i)
$$b_{n+1} \le b_n$$
 for all n

(ii)
$$\lim_{n\to\infty} = 0$$

then the series is convergent.

• Alternating series Estimation Theorem: If s = $\Sigma(-1)^{n-1}b_n$, where $b_n>0$, is the sum of an alternating series that satisfies

$$b_{n+1} \le b_n$$
 and $\lim_{n \to \infty} = 0$

then

$$|R_n| = |s - s_n| \le b_{n+1}$$

• Equation 5:

$$\int_{1}^{n} f(x)dx \le a_1 + a_2 + \dots + a_{n-1}$$

- Both eqns 4 and 5 depend on the fact that f is decreasing and positive.

The Comparison Tests 12.4

- The comparison test: Suppose that Σa_n and Σb_n are series with positive terms.
 - If Σb_n is convergent and $a_n \leq b_n$ for all n, then Σa_n is also convergent.
 - If Σb_n is divergent and $a_n \geq b_n$ for all n, then $\sum a_n$ is also divergent.
- The Limit comparison test: Suppose that $\sum a_n$ and Σb_n are series with positive terms. If

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c$$

where c is a finite number and c > 0, then either both series converge or both series diverge.

- Definition 1: A series $\sum a_n$ is called absolutely convergent if the series of absolute values $\Sigma |a_n|$ is convergent.
- Definition 2: A series Σa_n is called conditionally convergent if it is convergent but not absolutely convergent.
- Theorem 3: If a series $\sum a_n$ is absolutely convergent, then it is convergent.

- The ratio test:
 - If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent (and therefore convergent).
 - If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
 - If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of Σa_n
- The Root Test:
 - If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent (and therefore convergent).
 - If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ or $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
 - if $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, the root test is inconclusive.

12.7 Strategy for Testing Series

- Classify series according to form in order to determine convergence or divergence.
- If the series is of the form $\Sigma 1/n^p$, it is a p-series, which we know to be convergent if p > 1 and divergent if $p \le 1$.
- Geometric series: $\sum ar^n$; converges if |r| < 1 and diverges if |r| > 1
- Series similar to geo or p-series: use a comparison test to determine.

- If the limit at infinity is immediately obvious not to be 0, use the nth term test.
- If the series contains $(-1)^n$, use the alternating series test.
- Series with factorials or other products: use the ratio test.
- If the series is in the form of $(b_n)^n$, use the root test.
- If $a_n = f(n)$ and $\int_1^\infty f(x)dx$ is easily evaluated, use the integral test as long as the function is continuous, positive, and decreasing.

12.8 Power Series

• (Equation 1) Power series is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

where x is the variable and the c_n s are the coefficients of the series.

• (Equation 2): Power series with all coefficients as 1.

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots$$

 \bullet Equation 3: power series centered about a

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \cdots$$

- Theorem 4: For a given power series $\sum_{n=0}^{\infty} c_n(x-a)^n$, there are only three possibilities:
 - The series converges only when x = a

- The series converges for all x
- There is a positive number R such that the series converges if |x-a| < R and diverges if |x-a| > R
- R is the radius of convergence of the power series. Interval of convergence is the interval that contains all x for which the series converges.
- Check endpoint convergence!

12.9 Representations of Functions an Power Series

• Equation 1: geometric series with a = 1 and r = x:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n \text{ for } |x| < 1$$

• Theorem 2: If the power series $\sum c_n(x-a)^n$ has radius of convergence R>0, then the function f defined by

$$f(x) = c_0 + C_1(x-a) + c_2(x-a)^2 + \dots = \sum_{n=0}^{\infty} c_n(x-a)^n$$

is differentiable (and therefore continuous) on the interval (a - R, a + R) and

(i)
$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + \dots = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$$

(ii)
$$\int f(x)dx = C + c_0(x-a) + c_1 \frac{(x-a)^2}{2} + c_2 \frac{(x-a)^3}{3} + \dots = C + \sum_{n=0}^{\infty} = c_n \frac{(x-a)^{n+1}}{n+1}$$

The radii of convergence of the power series in Equations (i) and (ii) are both R.

12.10 Taylor and Maclaurin Series

• Theorem 5: If f has a power series representation/expansion at a, that is if

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n \text{ for } |x-a| < R$$

then its coefficients are given by:

$$c_n = \frac{f^{(n)}(a)}{n!}$$

• Equation 6: Taylor series about a:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$$

• Equation 7: Maclaurin series, which is a taylor series about a = 0.

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \cdots$$

• Theorem 8: If $f(x) = T_n(x) + R_n(x)$, where T_n is the nth degree Taylor polynomial of f at a and

$$\lim_{n \to \infty} R_n(x) = 0$$

for |x-a| < R, then f is equal to the sum of its Taylor series on the interval |x-a| < R.

• Equation 9: Taylor's Inequality: If $|f^{(n+1)}(x)| \leq M$ for $|x-a| \leq d$, then the remainder $R_n(x)$ of the Taylor series satisfies the inequality

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1} \text{ for } |x-a| \le d$$

• Equation 10:

$$\lim_{n\to\infty}\frac{x^n}{n!}=0 \text{ for every real number } x$$

• Equation 11:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 for all x

• Equation 12: the number e is a sum of the infinite series:

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

• Equation 15: power series of $\sin x$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$
 for all x

• Equation 16: power series of $\cos x$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^2 n}{(2n)!} \text{ for all } x$$

• Equation 17: The binomial series: If k is any real number and |x| < 1, then

$$(1+x)^k = \sum_{n=0}^{\infty} {n \choose n} x^n = 1 + kx + \frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} x^3 + \cdots$$

• Table 1: Important Maclaurin series and their radii of convergence

Series	Radius
$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$	R = 1
$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$	$R = \infty$
$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$	$R = \infty$
$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$	$R = \infty$
$\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$	R = 1
$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$	R=1
$(1+x)^k = \sum_{n=0}^{\infty} {k \choose n} x^n = 1 + kx + \frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} x^3 + \cdots$	R=1

12.11 Applications of Taylor Polynomials

- Two main ways taylor polynomials are applied:
 - 1: Approximation computers often use taylor polynomials to approximate values of functions because it's a simpler algorithm and the error can be brought very small.
 - 2: Physics: Taylor polynomials can be used to simply visualize/predict how a complicated function will behave. Also helpful in optics and other applications of small angle approximation.

13 Vectors and the Geometry of Space

13.1 Three-Dimensional Coordinate Systems

- Coordinates (x, y, z)
- 3D space is split into octants
- Projections easiest way to visualize is that the object/shape/line/point is in a glass box. If you look at the box from the chosen plane or angle and trace a 2D outline of it, it is the projection.
- The Cartesian product $\mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x, y, z) | x, y, z \in \mathbb{R}\}$ is the set of all ordered triples of real numbers, denoted by \mathbb{R}^3
- Distance formula in three dimensions:

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - Z_1)^2}$$

- Sphere set of all points in 3D space a certain distance from the center.
 - Sphere with center C(h, k, l) and radius r is given by:

$$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$$

- Sphere at the origin is given by:

$$x^2 + y^2 + z^2 = r^2$$

13.2 Vectors

- Vectors values with magnitudes and directions
- vectors are expressed in boldface and/or with an arrow over the letter: \mathbf{a} , \vec{a} , $\vec{\mathbf{a}}$
- the magnitude of a vector is expressed: |a|
- Vector addition head to tail, take the magnitude of the resultant vector from the beginning of the first vector to the end of the second vector
- Definition of scalar multiplication: If c is a scalar and \mathbf{v} is a vector, then the scalar multiple $c\mathbf{v}$ is the vector whose length is |c| times the length of \mathbf{v} and whose direction is the same
- If $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$, then

as
$$\mathbf{v}$$
 if $c > 0$ and is opposite to \mathbf{v} if $c < 0$. If $c = 0$ or $\mathbf{v} = \mathbf{0}$, then $c\mathbf{v} = \mathbf{0}$.

• Components of a vector: Equation 1: Given the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$, the vector **a** with representation \overrightarrow{AB} is:

$$\mathbf{a} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

• The length of the two-dimensional vector $\mathbf{a} = \langle a_1, a_2 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2}$$

• The length of the three-dimensional vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

$$\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$$
 $\mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$

$$c\mathbf{a} = \langle ca_1, ca_2 \rangle$$

• For three dimensional vectors,

$$\langle a_1, a_2, a_3 \rangle + \langle b_1, b_2, b_3 \rangle = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$$
$$\langle a_1, a_2, a_3 \rangle - \langle b_1, b_2, b_3 \rangle = \langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle$$
$$c\langle a_1, a_2, a_3 \rangle = \langle ca_1, ca_2, ca_3 \rangle$$

- V₂ is the set of all 2-D vectors. V₃ is the set of all 3-D vectors. V_n is the set of all n-dimensional vectors.
- Properties of vectors. If \mathbf{a} , \mathbf{b} , and \mathbf{c} are vectors in V_n and c and d are scalars, then:

$$- \mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$$

$$- \mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$$

$$- \mathbf{a} + \mathbf{0} = \mathbf{a}$$

$$- \mathbf{a} + (-\mathbf{a}) = 0$$

$$- c(\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$$

$$- (c + d)\mathbf{a} = c\mathbf{a} + d\mathbf{a}$$

$$- (cd)\mathbf{a} = c(d\mathbf{a})$$

$$- 1\mathbf{a} = \mathbf{a}$$

- Unit vectors: $\mathbf{i}=\langle 1,0,0\rangle,\ \mathbf{j}=\langle 0,1,0\rangle,\ \mathbf{k}=\langle 0,0,1\rangle$
- Use unit vectors to express components: $\mathbf{a} = \langle a_1, a_2, a_3 \rangle = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$
- General unit vector expresses direction

$$\mathbf{u} = \frac{\mathbf{a}}{|\mathbf{a}|}$$

13.3 The Dot Product

• Definition 1: If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$, and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the dot product of \mathbf{a} and \mathbf{b} is the scalar $\mathbf{a} \cdot \mathbf{b}$ given by

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

• Direction angles are given by:

$$\cos \alpha = \frac{a_1}{|\mathbf{a}|}$$
 $\cos \beta = \frac{a_2}{|\mathbf{a}|}$ $\cos \gamma = \frac{a_3}{|\mathbf{a}|}$

and,

$$\frac{1}{|\mathbf{a}|}\mathbf{a} = \langle \cos \alpha, \cos \beta, \cos \gamma \rangle$$

- Projections: think of it like a shadow.
- Scalar projection of b onto a (aka component of b along a):

$$comp_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$$

$$\mathrm{proj}_{\mathbf{a}}\mathbf{b} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a}$$

• Vector projection of **b** onto **a**:

- Other names for dot product: scalar product, inner product
- Properties of the dot product: If **a**, **b**, **c** are vectors in V_3 and c is a scalar, then:

$$-\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^{2}$$

$$-\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

$$-\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

$$-(c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$$

$$-\mathbf{0} \cdot \mathbf{a} = 0$$

• Theorem 3: If θ is the angle between the vectors **a** and **b**, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

• Corollary 6: If θ is the angle between the nonzero vectors **a** and **b**, then

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

- Direction angles of a nonzero vector \mathbf{a} are the angles α , β , and γ that \mathbf{a} makes with the positive x-, y-, and z-axes respectively. The cosines of the direction angles are called direction cosines.

13.4 The Cross Product

• Definition of the cross product: If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$, and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the cross product of \mathbf{a} and \mathbf{b} is the vector

$$\mathbf{a} \times \mathbf{b} = \langle a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1 \rangle$$

- Cross product is also called vector product or external product.
- Cross product is only defined when both **a** and **b** are 3-D vectors.
- Determinant form of the cross product:

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

• Cross products of unit vectors:

• Theorem 8: The vector
$$\mathbf{a} \times \mathbf{b}$$
 is orthogonal to both \mathbf{a} and \mathbf{b} .

- Direction of the external product: use curling rhr fingers curl from **a** to **b**, thumb is the direction of the cross product.
- Theorem 9: magnitude of the cross product: If θ is the angle between **a** and **b** (so $0 \le \theta \le \pi$), then

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$$

 Corollary 10: Two nonzero vector a and b are parallel IFF

$$\mathbf{a} \times \mathbf{b} = \mathbf{0}$$

- The length of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b} .
- $\mathbf{i} \times \mathbf{j} = \mathbf{k}$ $\mathbf{j} \times \mathbf{k} = \mathbf{i}$ $\mathbf{k} \times \mathbf{i} = \mathbf{j}$ $\mathbf{j} \times \mathbf{i} = -\mathbf{k}$ $\mathbf{k} \times \mathbf{j} = -\mathbf{i}$ $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$
- Cross product is neither commutative nor associative.
- Properties of the cross product: If \mathbf{a} , \mathbf{b} , and \mathbf{c} are vectors and c is a scalar, then:

$$-\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

$$-(c\mathbf{a}) \times \mathbf{b} = c(\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (c\mathbf{b})$$

$$-\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$

$$-(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$$

$$-\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

$$-\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

• Scalar triple product of vectors **a**, **b**, and **c**:

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

 \bullet The scalar triple product is the volume of the parallelepiped determined by vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} and is given by:

$$V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$$

13.5 Equations of Lines and Planes

• Let the line L be any line in 3D space, which is determined when there is a point on L, $P_0(x_0, y_0, z_0)$, and we know the direction of L. Let P(x, y, z) be any point on L and let \mathbf{r}_0 and \mathbf{r} be the position vectors of P_0 and P. Let \mathbf{v} be a vector parallel to L. The vector equation of

$$L$$
 is given by

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$$

where t is a parameter.

• Parametric equations for a line L through the point (x_0, y_0, z_0) and parallel to the direction vector $\langle a, b, c \rangle$ are:

$$x = x_0 + at \qquad y = y_0 + bt \qquad z = z_0 + ct$$

• Symmetric equations of L:

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

• The line segment from $\mathbf{r_0}$ to $\mathbf{r_1}$ is given by the vector equation

$$\mathbf{r}(t) = (1 - t)\mathbf{r_0} + t\mathbf{r_1} \quad 0 \le t \le 1$$

A plane is determined by a point P₀(x₀, y₀, z₀) in the plane and an orthogonal normal vector
 n. The vector equation of the plane is given by

action of the plane is given by

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r_0}) = 0$$

or

$$\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0$$

• Scalar equation of the plane through point $P_0(x_0, y_0, z_0)$ with normal vector $\mathbf{n} = \langle a, b, c \rangle$

is

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$

• The distance D from any point $P_1(x_1, y_1, z_1)$ to a plane ax + by + cz + d = 0 is given by

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

13.6 Cylinders and Quadric Surfaces

• A cylinder is a surface that consists of all lines (called rulings) that are parallel to a given line and pass through a given plane curve.

• A quadric surface is the graph of a second-degree equation in three variables x, y, and z. The most general form of a quadric surface is:

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0$$

14

• It can also take one of two standard forms:

$$Ax^2 + By^2 + Cz^2 + J = 0$$

or $Ax^2 + By^2 + Iz = 0$

Common quadric surfaces (see page 877 for images):

• Ellipsoid - all traces are ellipses. Equation is given by:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

If a = b = c, then the ellipsoid is a sphere.

• Elliptic paraboloid: horizontal traces are ellipses and vertical traces are parabolas. The variable raised to the first power indicates the axis of the paraboloid.

$$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

• Hyperbolic paraboloid: Horizontal traces are hyperbolas and vertical traces are parabolas.

$$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

• Cone: Horizontal traces are ellipses. Vertical traces in the planes x = k and y = k are hyperbolas if $k \neq 0$ but are pairs of lines if k = 0.

$$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

 Hyperboloid of one sheet: Horizontal traces are ellipses and vertical traces are hyperbolas. The axis of symmetry corresponds to the variable whose coefficient is negative.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

• Hyperboloid of two sheets: Horizontal traces in z = k are ellipses if k > c or k < -c. Vertical traces are hyperbolas. The two minus signs indicate the two sheets.

$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

14 Vector Functions

14.1 Vector Functions and Space Curves

• vector-valued functions/vector functions - a function whose domain is a set of real numbers and whose range is a set of vectors. Written in terms of its components as a parametric equation:

$$\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$$

• Limits of a vector function: If $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$, then

$$\lim_{t \to a} \mathbf{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle$$

provided the limits of the component functions exist.

• Space curves: suppose that f, g, and h are continuous real-valued functions on an interval I. Then the space curve is the set C of all points (x, y, z) in space, where

$$x = f(t)$$
 $y = g(t)$ $z = h(t)$

and t varies throughout the interval I.

14.2 Derivatives and Integrals of Vector Functions

• derivative of a vector-valued function:

$$\frac{d\mathbf{r}}{dt} = \mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$$

if the limit exists.

• Theorem 2: If $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, where f, g, and h are differentiable functions, then

$$\mathbf{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle = f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k}$$

• Theorem 3: Suppose \mathbf{u} and \mathbf{v} are differentiable vector functions, c is a scalar, and f is a real valued function. Then:

$$\frac{d}{dt}[\mathbf{u}(t) + \mathbf{v}(t)] = \mathbf{u}'(t) + \mathbf{v}'(t)$$

$$\frac{d}{dt}[c\mathbf{u}(t)] = c\mathbf{u}'(t)$$

$$\frac{d}{dt}[f(t)\mathbf{u}(t)] = f'(t)\mathbf{u}(t) + f(t)\mathbf{u}'(t)$$

$$\frac{d}{dt}[\mathbf{u}(t) \cdot \mathbf{v}(t)] = \mathbf{u}'(t) \cdot \mathbf{v}(t) + \mathbf{u}(t) \cdot \mathbf{v}'(t)$$

$$\frac{d}{dt}[\mathbf{u}(t) \times \mathbf{v}(t)] = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$$

$$\frac{d}{dt}[\mathbf{u}(t) \times \mathbf{v}(t)] = \mathbf{t}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$$
(chain rule)

• Integral of a vector function:

$$\int_{a}^{b} \mathbf{r}(t)dt = \left(\int_{a}^{b} f(t)dt\right)\mathbf{i} + \left(\int_{a}^{b} g(t)dt\right)\mathbf{j}\left(\int_{a}^{b} h(t)dt\right)\mathbf{k}$$

14.3 Arc Length and Curvature

• Length of a curve in 3D space:

$$L = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2} + [h'(t)]^{2}} dt = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dx}{dt}\right)^{2}} dt = \int_{a}^{b} |\mathbf{r}'(t)| dt$$

• curvature of a curve is defined as:

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right|$$

where T is the unit tangent vector.

•

$$\kappa(t) = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|}$$

• Theorem 10: The curvature of the curve given by the vector function ${\bf r}$ is

$$\kappa(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$

• Equations for unit tangent, unit normal and binormal vectors, and curvature:

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \qquad \mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|} \qquad \mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$$

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$

14.4 Motion in Space: Velocity and 15 Partial Derivatives Acceleration

• Velocity:

$$\mathbf{v}(t) = \mathbf{r}'(t)$$

- speed is the magnitude of velocity.
- Parametric equations of trajectory:

$$x = (v_0 \cos \alpha)t$$
 $y = (v_0 \sin \alpha)t - \frac{1}{2}gt^2$

• Tangential and normal components of acceleration:

$$\mathbf{a} = v'(\mathbf{T}) + \kappa v^2 \mathbf{N}$$

- Kepler's laws:
 - A planet revolves around the sun in an elliptical orbit with the sun at one focus.
 - The line joining the sun to a planet sweeps out equal areas in equal times.
 - The square of the period of revolution of a planet is proportional to the cube of the length of the major axis of orbit.

15.1 Functions of Several Variables

- A function f of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by f(x, y). The set D is the domain of f and its range is the set of values that f takes on, that is $f(x, y)|(x, y) \in D$
- If f is a function of two variables with domain D, then the graph of f is the set of all points (x, y, z) in \mathbb{R}^3 such that z = f(x, y) and (x, y) is in D.
- The level curves of a function f of two variables are the curves with equations f(x, y) = k, where k is a constant (in the range of f).
 - A level curve is the set of all points in the domain of f at which f takes on a given value k. (Think of countour maps, equipotential lines)

15.2 Limits and Continuity

• Let f be a function of two variables whose domain D includes points arbitrarily close to (a, b). Then we say that the limit of f(x, y) as x, y approaches (a, b) is L and we write

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

if for every number $\varepsilon > 0$ there is a corresponding number $\delta > 0$ such that

if
$$(x,y) \in D$$
 and $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$ then $|f(x,y) - L| < \varepsilon$

- If $f(x,y) \to L_1$ as $(x,y) \to (a,b)$ along a path C_1 and $f(x,y) \to L_2$ as $(x,y) \to (a,b)$ along a path C_2 , where $L_1 \neq L_2$, then $\lim_{(x,y)\to(a,b)} f(x,y)$ does not exist.
- A function f of two variables is called continuous at (a, b) if

$$\lim_{(x,y)\to(a,b)f(x,y)=f(a,b)}$$

We say f is continuous on D if f is continuous at every point (a, b) in D.

• If f is defined on a subset D of \mathbb{R}^n , then $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = L$ means that for every number $\varepsilon > 0$ there is a corresponding number $\delta > 0$ such that

if
$$x \in D$$
 and $0 < |\mathbf{x} - \mathbf{a}| < \delta$ then $|f(\mathbf{x}) - L| < \varepsilon$

15.3 Partial Derivatives

• If f is a function of two variables, its partial derivatives are the functions f_x and f_y defined by

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

$$f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

• If z = f(x, y), we write

$$f_x(x,y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x,y) = \frac{\partial z}{\partial x} = f_1 = D_1 f = D_x f$$

$$f_y(x,y) = f_y = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} f(x,y) = \frac{\partial z}{\partial y} = f_2 = D_2 f = D_y f$$

- Finding partial derivatives of z = f(x, y):
 - To find f_x , regard y as a constant and differentiate f(x,y) with respect to x.
 - To find f_y , regard x as a constant and differentiate f(x,y) with respect to y.
- Clairaut's Theorem: suppose f is defined on a disk D that contains the point (a,b). If the functions f_{xy} and f_{yx} are both continuous on D, then

$$f_{xy}(a,b) = f_{yx}(a,b)$$

• 3D Laplace Equation:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

15.4 Tangent Planes and Linear Approximations

• Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface z = f(x, y) at the point $P(x_0, y_0, z_0)$ is

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

• If z = f(x, y), then f is differentiable at (a, b) if Δz can be expressed in the form

$$\Delta z = f_x(a,b)\Delta x + f_y(a,b)\Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y$$

where ε_1 and $\varepsilon_2 \to 0$ as $(\Delta x, \Delta y) \to (0, 0)$.

- Theorem: If the partial derivatives f_x and f_y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).
- The total differential dz is defined by:

$$dz = f_x(x, y)dx + f_y(x, y)dy = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$

15.5 The Chain Rule

• Case 1: suppose that z = f(x, y) is a differentiable function of x and y, where x = g(t) and y = h(t) are both differentiable functions of t. Then z is a differentiable function of t and

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

or

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

• Case 2: Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(s, t) and y = h(s, t) are differentiable functions of s and t. Then

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \qquad \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

• General Version: Suppose that u is a differentiable function of the n variables x_1, x_2, \dots, x_n and each x_j is a differentiable function of the m variables t_1, t_2, \dots, t_m . Then u is a function of t_1, t_2, \dots, t_m and

$$\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

for each $i = 1, 2, \dots, m$

• Implicit diffentiation:

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{F_x}{F_y}$$

where y = f(x) and F(x, f(x)) = 0

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial x}} \qquad \frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial x}}$$

15.6 Directional Derivatives and the Gradient Vector

• The directional derivative of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists.

• Theorem: If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_{\mathbf{u}}f(x,y) = f_x(x,y)a + f_y(x,y)b$$

- If the unit vector **u** makes an angle θ with the positive x-axis, then we can write $\mathbf{u} = \langle \cos \theta, \sin \theta \rangle$ and the previous eqn becomes:

$$D_{\mathbf{u}}f(x,y) = f_x(x,y)\cos\theta + f_y(x,y)\sin\theta$$

• If f is a function of two variables x and y, then the gradient of f is the vector function ∇f defined by

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$

• The equation of the directional derivative of a differentiable function can thus be written as:

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}$$

• The directional derivative of f at (x_0, y_0, z_0) in the direction of a unit vector $\mathbf{u} = \langle a, b, c \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0, z_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb, z_0 + hc) - f(x_0, y_0, z_0)}{h}$$

if this limit exists.

• Using vector notation:

$$D_{\mathbf{u}}f(\mathbf{x}_0) = \lim_{h \to 0} \frac{f(\mathbf{x}_0 + h\mathbf{u}) - f(\mathbf{x}_0)}{h}$$

• For a function of three variables, the gradient vector:

$$\nabla f = \langle f_x, f_y, f_z \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

• The directional derivative of a function of three variables:

$$D_{\mathbf{u}} f(x_0, y_0, z_0) = \nabla f(x, y, z) \cdot \mathbf{u}$$

- Theorem: Suppose f is a differentiable function of two or three variables. The maximum value of the directional derivative $D_{\mathbf{u}}f(\mathbf{x})$ is $|\nabla f(\mathbf{x})|$ and it occurs when \mathbf{u} has the same direction as the gradient vector $\nabla f(\mathbf{x})$.
- The tangent plane to a level surface F(x, y, z) = k at $P(x_0, y_0, z_0)$ is the plane that passes through P and has normal vector $\nabla F(x_0, y_0, z_0)$. The equation of the tangent plane is thus:

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

• The normal line to the surface S at P is the line passing through P and perpendicular to the tangent plane. The direction of the normal line is therefore given by the gradient vector $\nabla F(x_0, y_0, z_0)$; its symmetric equations are given by:

$$\frac{x - x_0}{F_x(x_0, y_0, z_0)} = \frac{y - y_0}{F_y(x_0, y_0, z_0)} = \frac{z - z_0}{F_z(x_0, y_0, z_0)}$$

15.7 Maximum and Minimum Values

- A function of two variables has a local maximum at (a,b) if $f(x,y) \leq f(a,b)$ when (x,y) is near (a,b). [This means that $F(x,y) \leq f(a,b)$ for all points (x,y) in some disk with center (a,b).] The number f(a,b) is called a local maximum value. If $f(x,y) \geq f(a,b)$ when (x,y) is near (a,b), then f has a local minimum at (a,b) and f(a,b) is a local minimum value.
- Theorem: If f has a local maximum or minimum at (a, b) and the first order partial derivatives of f exist there, then $f_x(a, b) = 0$ and $f_y(a, b) = 0$.
- Second derivatives test: Suppose the second partial derivatives of f are continuous on a disk with center (a, b), and suppose that $f_x(a, b) = 0$ and $f_y(a, b) = 0$ [that is, (a, b) is a critical point of f]. Let

$$D = D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}$$

- If D > 0 and $f_{xx}(a,b) > 0$, then f(a,b) is a local minimum.
- If D > 0 and $f_{xx}(a, b) < 0$, then f(a, b) is a local maximum.
- If D < 0, the f(a,b) is not a local maximum or minimum.
- Extreme value theorem for functions of two variables: If f is continuous on a closed, bounded set D in \mathbb{R}^2 , then f attains an absolute maximum value $f(x_1, y_1)$ and an absolute

- minimum value $f(x_2, y_2)$ at some points (x_1, y_1) and (x_2, y_2) in D.
- To find the absolute maximum and minimum values of a continuous function f on a closed, bounded set D:
- Find the values of f at the critical points of f in D.
- 2. Find the extreme values of f on the boundary of D.
- 3. The largest of the values from steps one and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

15.8 Lagrange Multipliers

- Method of Lagrange Multipliers: To find the maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k [assuming that these extreme values exist and $\nabla g \neq \mathbf{0}$ on the surface g(x, y, z) = k]:
 - 1. Find all values of x, y, z, and λ such that

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$$

and

$$q(x, y, z) = k$$

- 2. Evaluate f at all the points (x, y, z) that result from step 1. The largest of these values is the maximum value of f; the smallest is the minimum value of f.
- With two constraints, g(x, y, z) = k and h(x, y, z) = c, there exist Lagrange Multipliers, constants λ and μ such that

$$\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0) + \mu \nabla h(x_0, y_0, z_0)$$

16 Multiple Integrals

16.1 Double Integrals over Rectangles

 \bullet The double integral of f over the rectangle R is

$$\iint_{R} f(x,y)dA = \lim_{m,n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$$

if this limit exists.

• If $f(x,y) \ge 0$, then the volume V of the solid that lies above the rectangle R and below the surface z = f(x,y) is

$$V = \iint\limits_R f(x, y) dA$$

• Midpoint rule for double integrals:

$$\iint\limits_R f(x,y)dA \approx \sum_{i=1}^m \sum_{j=1}^n f(\bar{x}_i, \bar{y}_j) \Delta A$$

where \bar{x}_i is the midpoint of $[x_{i-1}, x_i]$ and \bar{y}_j is the midpoint of $[y_{j-1}, y_j]$.

• Fubini's Theorem: If f is continuous on the rectangle $R = \{(x,y) \mid a \le x \le b, c \le y \le d\}$, then

$$\iint\limits_{\mathcal{D}} f(x,y)dA = \int_a^b \int_c^d f(x,y)dydx = \int_c^d \int_a^b f(x,y)dxdy$$

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

 $\iint\limits_R g(x)h(y)dA = \int_a^b g(x)dx \int_c^d h(y)dy \qquad \text{where } R = [a,b] \times [c,d]$

16.2 Double Integrals over General Regions

• If F is integrable over R, then we define the double integral of f over D by

$$\iint\limits_{D} f(x,y)dA = \iint\limits_{B} F(x,y)dA \qquad \text{where } F \text{ is given by Equation 1}$$

• If f is continuous on a type I region D such that

$$D = \{(x, y) \mid a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

then

$$\iint\limits_{D} f(x,y)dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x,y)dydx$$

• Type II plane regions:

$$D = \{(x, y) \mid c \le y \le d, h_1(y) \le x \le h_2(y)\}\$$

• If D is a type II region,

$$\iint\limits_D f(x,y)dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y)dxdy$$

• Properties of double integrals

$$\iint\limits_{D} [f(x,y) + g(x,y)]dA = \iint\limits_{D} f(x,y)dA + \iint\limits_{D} g(x,y)dA$$

$$\iint\limits_{\mathbf{R}}cf(x,y)dA=c\iint\limits_{\mathbf{R}}f(x,y)dA$$

where c is a constant

- If $f(x,y) \ge g(x,y)$ for all (x,y) in D, then

$$\iint\limits_{D} f(x,y)dA \ge \iint\limits_{D} g(x,y)dA$$

• If $D = D_1 \cup D_2$, where D_1 and D_2 don't overlap except perhaps on their boundaries, then

$$\iint\limits_{D} f(x,y)dA = \iint\limits_{D_{1}} f(x,y)dA + \iint\limits_{D_{2}} f(x,y)dA$$

•

$$\iint\limits_{D} 1dA = A(D)$$

• If $m \le f(x,y) \le M$ for all (x,y) in D, then

$$mA(D) \le \iint\limits_D f(x,y)dA \le MA(D)$$

16.3 Double Integrals in Polar Coordinates

• Recall:

$$r^2 = x^2 + y^2 x = r\cos\theta y = r\sin\theta$$

• Change to polar coordinates in a double integral: If f is continuous on a polar rectangle R given by $0 \le a \le r \le b, \alpha \le \theta \le \beta$, where $0 \le \beta - \alpha \le 2\pi$, then

$$\iint\limits_{R} f(x,y)dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta) r dr d\theta$$

• If f is continuous on a polar region of the form

$$D = \{(r, \theta) \mid \alpha < \theta < \beta, h_1(\theta) < r < h_2(\theta)\}\$$

then

$$\iint\limits_{D} f(x,y)dA = \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r\cos\theta, r\sin\theta) r dr d\theta$$

16.4 Applications of Double Integrals

• mass of a lamina:

$$m = \lim_{k,l \to \infty} \sum_{i=1}^k \sum_{j=1}^l \rho(x_{ij}^*, y_{ij}^*) \Delta A = \iint\limits_D \rho(x, y) dA$$

• Total charge in a given area:

$$Q = \iint\limits_{D} \sigma(x, y) dA$$

• Moment of a lamina about the x axis:

$$M_x = \lim_{m,n\to\infty} \sum_{i=1}^m \sum_{j=1}^n y_{ij}^* \rho(x_{ij}^*, y_{ij}^*) \Delta A = \iint_D \rho(x, y) dA$$

• About the y axis:

$$M_y = \lim_{m,n\to\infty} \sum_{i=1}^m \sum_{j=1}^n x_{ij}^* \rho(x_{ij}^*, y_{ij}^*) \Delta A = \iint_D x \rho(x, y) dA$$

• The coordinates (\bar{x}, \bar{y}) of the center of mass of a lamina occupying the region D and having density function $\rho(x, y)$ are

$$\bar{x} = \frac{M_y}{m} = \frac{1}{m} \iint\limits_D x \rho(x, y) dA$$
 $\bar{y} = \frac{M_x}{m} = \frac{1}{m} \iint\limits_D y \rho(x, y) dA$

where the mass m is given by

$$m = \iint\limits_{D} \rho(x, y) dA$$

• Moment of intertia about x axis:

$$I_x = \lim_{m,n \to \infty} \sum_{i=1}^m \sum_{j=1}^n (y_{ij}^*)^2 \rho(x_{ij}^*, y_{ij}^*) \Delta A = \iint_{\mathcal{D}} y^2 \rho(x, y) dA$$

• About the y axis:

$$I_{y} = \lim_{m,n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij}^{*})^{2} \rho(x_{ij}^{*}, y_{ij}^{*}) \Delta A = \iint_{D} x^{2} \rho(x, y) dA$$

• Moment of inertia about the origin, or polar moment of intertia:

$$I_0 = \lim_{m,n \to \infty} \sum_{i=1}^m \sum_{j=1}^n \left[(x_{ij}^*)^2 + (y_{ij}^*)^2 \right] \rho(x_{ij}^*, y_{ij}^*) \Delta A = \iint_D (x^2 + y^2) \rho(x, y) dA$$

where $I_0 = I_x + I_y$

• Radius of gyration of a lamina about an axis is the number R such that

$$mR^2 = I$$

• Radius of gyration $\overline{\overline{y}}$ with respect to x axis and radius of gyration $\overline{\overline{x}}$ with respect to the y axis are given by

$$m\overline{\overline{y}}^2 = I_x \qquad m\overline{\overline{x}}^2 = I_y$$

• Expected values: if X and Y are random variables with joint density function f, we defined the X-mean and Y-mean, or expected values of X and Y as

$$\mu_1 = \iint\limits_{\mathbb{R}^2} x f(x, y) dA$$
 $\mu_2 = \iint\limits_{\mathbb{R}^2} y f(x, y) dA$

• A single random variable is normally distributed if its probability density function is of the form

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}$$

where μ is the mean and σ is the standard deviation.

16.5 Surface Area

 \bullet The surface area of a surface S is

$$A(S) = \lim_{m,n\to\infty} \sum_{i=1}^{m} \sum_{j=1}^{n} \Delta T_{ij}$$

• The area of the surface with equation $z = f(x, y), (x, y) \in D$, where f_x and f_y are continuous, is

$$A(S) = \iint\limits_{D} \sqrt{[f_{x}(x,y)]^{2} + [f_{y}(x,y)]^{2} + 1} dA$$

which is also

$$A(S) = \iint\limits_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dA$$

16.6 Triple Integrals

• The triple integral of f over the box B is

$$\iiint\limits_{B} f(x, y, z)dV = \lim_{l, m, n \to \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*})dV$$

if this limit exists.

• If we choose the sample point to be (x_i, y_j, z_k) , we get

$$\iiint\limits_{R} f(x, y, z)dV = \lim_{l, m, n \to \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_i, y_j, z_k) \Delta V$$

• Fubini's theorem for triple integrals: If f is continuous on the rectangular box $B = [a, b] \times [c, d] \times [r, s]$, then

$$\iiint\limits_{R} f(x,y,z)dV = \int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x,y,z)dxdydz$$

• A solid region E is said to be of type 1 if it lies between the graphs of two continuous functions of x and y, that is,

$$E = \{(x, y, z) \mid (x, y) \in D, u_1(x, y) \le z \le u_2(x, y)\}\$$

• If E is a type 1 region:

$$\iiint\limits_E f(x,y,z)dV = \iint\limits_D \left[\int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z)dz \right] dA$$

• If the projection of D of E onto the xy plane is a type I plane region, then

$$E = \{(x, y, z) \mid a \le x \le b, g_1(x) \le y \le g_2(x), u_1(x, y) \le z \le u_2(x, y)\}$$

, and

$$\iiint\limits_{E} f(x,y,z) dV = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \int_{u_{1}(x,y)}^{u_{2}(x,y)} f(x,y,z) dz dy dx$$

• If D is a type II plane region, then

$$E = \{(x, y, z) \mid c \le y \le d, h_1(y) \le x \le h_2(y), u_1(x, y) \le z \le u_2(x, y)\}$$

, and

$$\iiint\limits_{E} f(x,y,z)dV = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} \int_{u_{1}(x,y)}^{u_{2}(x,y)} f(x,y,z)dzdxdy$$

• A solid region E is of type 2 if:

$$E = \{(x, y, z) \mid (y, z) \in D, u_1(y, z) \le x \le u_2(y, z)\}\$$

where D is the projection of E onto the yz plane. The back surface is $x = u_1(y, z)$ and the front surface is $x = u_2(y, z)$, and

$$\iiint\limits_E f(x,y,z)dV = \iint\limits_D \left[\int_{u_1(y,z)}^{u_2(y,z)} f(x,y,z)dx \right] dA$$

• A type 3 region is of the form:

$$E = \{(x, y, z) \mid (x, z) \in D, u_1(x, z) \le y \le u_2(x, z)\}\$$

where D is the projection of E onto the xz plane, $y = u_1(x, z)$ is the left surface, and $y = u_2(x, z)$ is the right surface. Thus,

$$\iiint\limits_E f(x,y,z)dV = \iint\limits_D \left[\int_{u_1(x,z)}^{u_2(x,z)} f(x,y,z)dy \right] dA$$

• If f(x, y, z) = 1 for all points in E, then:

$$V(E) = \iiint_E dV$$

16.7 Triple Integrals in Cylindrical Coordinates

• Recall:

$$r^2 = x^2 + y^2$$
 $x = r \cos \theta$ $y = r \sin \theta$ $z = z$ $\tan \theta = \frac{y}{x}$

• Triple integration in cylindrical coordinates:

$$\iiint\limits_{E} f(x,y,z)dV = \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} \int_{u_{1}(r\cos\theta,r\sin\theta)}^{u_{2}(r\cos\theta,r\sin\theta)} f(r\cos\theta,r\sin\theta,z) r dz dr d\theta$$

16.8 Triple Integrals in Spherical Coordinates

• Recall:

$$x = \rho \sin \phi \cos \theta$$
 $y = \rho \sin \phi \sin \theta$ $z = \rho \cos \phi$ $\rho^2 = x^2 + y^2 + z^2$

• Triple integral in spherical coordinates:

$$\iiint\limits_E f(x,y,z)dV = \int_c^d \int_\alpha^\beta \int_a^b f(\rho\sin\phi\cos\theta,\rho\sin\phi\sin\theta,\rho\cos\phi)\rho^2\sin\phi d\rho d\theta d\phi$$

where E is a spherical wedge given by

$$E = \{(\rho, \theta, \phi) \mid a \le \rho \le b, \alpha \le \theta \le \beta, c \le \phi \le d\}$$

16.9 Change of Variables in Multiple Integrals

• We can write the substitution rule as:

$$\int_{a}^{b} f(x)dx = \int_{c}^{d} f(g(u))g'(u)du$$

where x = g(u) and a = g(c), b = g(d) which is also

$$\int_{a}^{b} f(x)dx = \int_{c}^{d} f(x(u)) \frac{dx}{du} du$$

• The Jacobian of the transformation T given by x = g(u, v) and y = h(u, v) is

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

• Approximation to the area ΔA of R:

$$\Delta A \approx \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \Delta u \Delta v$$

where the Jacobian is evaluated at (u_0, v_0)

• Change of variables in a double integral: Suppose that T is a C^1 transformation whole Jacobian is nonzero and that T maps a region S in the uv plane onto a region R in the xy plane. Suppose that f is continuous on R and that R and S are type I or type II plane regions. Suppose also that T is one-to-one, except perhaps on the boundary of S. Then:

$$\iint\limits_{\mathbb{R}} f(x,y) dA = \iint\limits_{\mathbb{R}} f(x(u,v)y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$$

• If:

$$x = g(u, v, w)$$
 $y = h(u, v, w)$ $z = k(u, v, w)$

then the Jacobian of T is given by:

$$\frac{\partial(x, y, z)}{\partial u, v, w} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

• Change of variables for triple integrals:

$$\iiint\limits_R f(x,y,z)dV = \iiint\limits_S f(x(u,v,w),y(u,v,w),z(u,v,w)) \left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right| du dv dw$$

17 Vector Calculus

17.1 Vector Fields

• Def: Let D be a set in \mathbb{R}^2 (a plane region). A vector field on \mathbb{R}^2 is a function \mathbf{F} that assigns to

each point (x, y) in D a two-dimensional vector $\mathbf{F}(x, y)$

• Def: Let E be a subset of \mathbb{R}^3 . A vector field

on \mathbb{R}^3 is a function \mathbf{F} that assigns to each point (x,y,z) in E a three-dimensional vector $\mathbf{F}(x,y,z)$

• Recall that the gradient of a scalar function f of two variables ∇f is defined by

$$\nabla f(x,y) = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$$

Therefore ∇f is really a vector field on \mathbb{R}^2 and is called a gradient vector field. Likewise, if f is a scalar function of 3 variables, its gradient is a vector field on \mathbb{R}^3 given by

$$\nabla f(x,y,z) = f_x(x,y,z)\mathbf{i} + f_y(x,y,z)\mathbf{j} + f_z(x,y,z)\mathbf{k}$$

17.2 Line Integrals

• Def: if f is defined on a smooth curve C given by

$$x = x(t)$$
 $y = y(t)$ $a \le t \le b$

then the line integral of f along C is

$$\int_C f(x,y)ds = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*, y_i^*) \Delta s_i$$

if this limit exists.

• If f is a continuous function, then the limit always exists and the line integral is given by:

$$\int_C f(x,y)ds = \int_a^b f(x(t),y(t)) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

The value of the line integral does not depend on the parameterization of the curve, provided that the curve is traversed exactly once as t increases from a to b.

• Line integrals of f along C with respect to x and y:

$$\int_C f(x,y)dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*, y_i^*) \Delta x_i = \int_a^b f(x(t), y(t)) x'(t) dt$$

$$\int_C f(x,y)dy = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*, y_i^*) \Delta y_i = \int_a^b f(x(t), y(t)) y'(t) dt$$

 \bullet Recall that the vector representation of the line segment that starts at \mathbf{r}_0 and ends at \mathbf{r}_1 is given by

$$\mathbf{r}(t) = (1-t)\mathbf{r}_0 + t\mathbf{r}_1 \qquad 0 \le t \le 1$$

 \bullet For line integrals in space, where C is a curve given by

$$x = x(t)$$
 $y = y(t)$ $z = z(t)$ $a \le t \le b$

or

$$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$

then the line integral of f along C is given by

$$\int_C f(x,y,z)ds = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*, y_i^*, z_i^*) \Delta s_i = \int_a^b f(x(t), y(t), z(t)) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt$$

• We evaluate integrals of the form

$$\int_C P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz$$

by expressing everything (x, y, z, dx, dy, dz) in terms of the parameter t.

• Def: Let **F** be a continuous vector field defined on a smooth curve C given by a vector function $\mathbf{r}(t), a < t < b$. Then the line integral of **F** along C is

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{C} \mathbf{F} \cdot \mathbf{T} ds$$

• We have:

Line Integrals

17.3

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} Pdx + Qdy + Rdz$$

The Fundamental Theorem for

• Theorem: Let C be a smooth curve given by the vector function $\mathbf{r}(t)$, $a \leq t \leq b$. Let f be a differentiable function of two or three variables whos gradient vector ∇f is continuous on C. Then

$$\int_{C} \mathbf{\nabla} f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

- Theorem: $\int_C \mathbf{F} \cdot d\mathbf{r}$ is an independent path in D IFF $\int_C \vec{\mathbf{F}} \cdot d\mathbf{r} = 0$ for every closed path C in
- Theorem: Suppose **F** is a vector field that is continuous on an open connected region D. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D, then **F** is

where
$$\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$$

a conservative vector field on D; that is, there exists a function f such that $\nabla f = \mathbf{F}$

• Theorem: If $\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$ is a conservative vector field, where P and Q have continuous first-order partial derivatives on a domain D, then throughout D we have

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

• Theorem: Let $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ be a vector field on an open simply-connected region D. Suppose that P and Q have continuous first-order partial derivatives and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
 throughout D

17.4Green's Theorem

- Green's Theorem gives the relationship b/w a line integral around a simple closed curve C and a double integral over the plane region D bounded by C.
- We use the convention that the positive orientation of C means traversing C once counterclockwise.
- Green's Theorem: Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C. If P and Q have continuous partial derivatives on an open region that contains D, then

$$\int_{C} Pdx + Qdy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

- Note: the notation $\oint_C Pdx + Qdy$ is sometimes used to show that it is a closed path integral.

• To find the area of D:

$$A = \oint_C x dy = -\oint_C y dx = \frac{1}{2} \oint_C x dy - y dx$$

17.5 Curl and Divergence

• If $\mathbf{F} - P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 and the partial derivatives of P, Q, and R all exist, then the curl of F is the vector field on \mathbb{R}^3 defined by

curl
$$\mathbf{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mathbf{k}$$

ullet

$$\operatorname{curl}\,\mathbf{F} = \boldsymbol{\nabla} \times \mathbf{F}$$

ullet Theorem: If f is a function of three variables that has continuous second-order partial derivatives, then

$$\operatorname{curl}(\mathbf{\nabla} f) = \mathbf{0}$$

- Theorem: If \mathbf{F} is a vector field defined on all of \mathbb{R}^3 whose component functions have continuous partial derivatives and curl $\mathbf{F} = \mathbf{0}$, then \mathbf{F} is a conservative vector field.
- Divergence: if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 and $\frac{\partial P}{\partial x}$, $\frac{\partial Q}{\partial y}$, and $\frac{\partial R}{\partial z}$ exist, then the divergence of \mathbf{F} is the function of three variables defined by

$$\operatorname{div} \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

It can also be written as

$$\operatorname{div} \mathbf{F} = \mathbf{\nabla} \cdot \mathbf{F}$$

• Theorem: If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 and P,Q, and R have continuous secondorder partial derivatives, then

div curl
$$\mathbf{F} = 0$$

• Vector form of Green's Theorem:

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_D (\text{curl } \mathbf{F}) \cdot \mathbf{k} dA$$

• Which is also

$$\oint_C \mathbf{F} \cdot \mathbf{n} ds = \iint_D \operatorname{div} \mathbf{F}(x, y) dA$$

17.6 Parametric Surfaces and Their Areas

• Given the vector function

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}$$

The set of all points (x, y, z) in \mathbb{R}^3 such that

$$x = x(u, v)$$
 $y = y(u, v)$ $z = z(u, v)$

and (u, v) varies throughout D is called a parametric surface S

• A surface of revolution can be represented parametrically with

$$x = x$$
 $y = f(x)\cos\theta$ $z = f(x)\sin\theta$

• Given a parametric surface S, if u is kept constant by $u = u_0$, then $\mathbf{r}(u_0, v)$ defines the grid curve C_1 on S. The tangent vector to C_1 at a point P_0 is given by

$$\mathbf{r}_v = \frac{\partial x}{\partial v}\mathbf{i} + \frac{\partial y}{\partial v}\mathbf{j} + \frac{\partial z}{\partial v}\mathbf{k}$$

If v is kept constant by $v = v_0$, the grid curve C_2 given by $\mathbf{r}(u, v_0)$ lies on S and its tangent vector at P_0 is given by

$$\mathbf{r}_{u} = \frac{\partial x}{\partial u}\mathbf{i} + \frac{\partial y}{\partial u}\mathbf{j} + \frac{\partial z}{\partial u}\mathbf{k}$$

If $\mathbf{r}_u \times \mathbf{r}_v \neq \mathbf{0}$ then the surface S is called smooth. For a smooth surface, $\mathbf{r}_u \times \mathbf{r}_v$ is a normal vector to the tangent plane.

 \bullet Def: If a smooth parametric surface S is given by the equation

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k} \qquad (u,v) \in D$$

and S is covered just once as (u, v) ranges throughout the parameter domain D, then the surface area of S is

$$A(S) = \iint_{D} |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA$$

where

$$\mathbf{r}_{u} = \frac{\partial x}{\partial u}\mathbf{i} + \frac{\partial y}{\partial u}\mathbf{j} + \frac{\partial z}{\partial u}\mathbf{k} \qquad \qquad r_{v} = \frac{\partial x}{\partial v}\mathbf{i} + \frac{\partial y}{\partial v}\mathbf{j} + \frac{\partial z}{\partial v}\mathbf{k}$$

• Special case, where z = f(x, y) where $(x, y) \in D$ and f has continuous partial derivatives, we have the parametric equations

$$x = x$$
 $y = y$ $z = f(x, y)$

so

$$\mathbf{r}_x = \mathbf{i} + \left(\frac{\partial f}{\partial x}\right)\mathbf{k}$$
 $\mathbf{r}_y = \mathbf{j} + \left(\frac{\partial f}{\partial y}\right)\mathbf{k}$

and

$$\mathbf{r}_x \times \mathbf{r}_y = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & \frac{\partial f}{\partial x} \\ 0 & 1 & \frac{\partial f}{\partial y} \end{vmatrix} = -\frac{\partial f}{\partial x} \mathbf{i} - \frac{\partial f}{\partial y} \mathbf{j} + \mathbf{k}$$

which gives

$$|\mathbf{r}_x \times \mathbf{r}_y| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 + 1} = \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2}$$

and the surface area is

$$A(S) = \iint\limits_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dA$$

17.7 Surface Integrals

• The surface integral of f over the surface S is given by

$$\iint\limits_{S} f(x, y, z)dS = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(P_{ij}^{*}) \Delta S_{ij} = \iint\limits_{D} f(\mathbf{r}(u, v)) |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA$$

• for a surface S with z = g(x, y) the surface integral becomes

$$\iint\limits_{S} f(x,y,z)dS = \iint\limits_{D} f(x,y,g(x,y)) \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} + 1} dA$$

• Def: If F is a continuous vector field defined on an oriented surface S with unit normal vector \mathbf{n} , then the surface integral of \mathbf{F} over S is given by

$$\iint\limits_{S} \mathbf{F} \cdot d\mathbf{S} = \iint\limits_{S} \mathbf{F} \cdot \mathbf{n} dS = \iint\limits_{D} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) dA = \iint\limits_{D} \left(-P \frac{\partial g}{\partial x} - Q \frac{\partial g}{\partial y} + R \right) dA$$

which is also called the flux of \mathbf{F} across S.

17.8 Stokes' Theorem

• Stokes' Theorem: Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation. Let \mathbf{F} be a vector field whose components have continuous partial derivatives on an open region in \mathbb{R}^3 that contains S. Then

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \operatorname{curl} \, \mathbf{F} \cdot d\mathbf{S}$$

• Proof of Stokes' Theorem:

$$\iint (\mathbf{\nabla} \times \mathbf{F}) d\mathbf{S} = \oint \mathbf{F} \cdot d\mathbf{r}$$

$$\iint (\mathbf{\nabla} \times \mathbf{F}) d\mathbf{S} = \iint \left[\left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \mathbf{k} \cdot d\mathbf{S} + \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) \mathbf{j} \cdot d\mathbf{S} + \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) \mathbf{i} \cdot d\mathbf{S} \right] \\
= \iint \left[\left(\frac{\partial F_y}{\partial x} dx dy - \frac{\partial F_x}{\partial y} dx dy \right) + \left(\frac{\partial F_x}{\partial z} dz dx - \frac{\partial F_z}{\partial x} dz dx \right) + \left(\frac{\partial F_z}{\partial y} dy dz - \frac{\partial F_y}{\partial z} dy dz \right) \right] \\
= \iint \left[\left(\frac{\partial F_x}{\partial dz} dz + \frac{\partial F_x}{\partial y} dy \right) dx + \left(\frac{\partial F_y}{\partial x} dx + \frac{\partial F_y}{\partial z} dz \right) dy + \left(\frac{\partial F_z}{\partial x} dx + \frac{\partial F_y}{\partial y} dy \right) dz \right] \\
= \oint (F_x dx + F_y dy + F_z dz) = \oint \mathbf{F} \cdot d\mathbf{r}$$

17.9 The Divergence Theorem

• Divergence Theorem: Let E be a simple solid region and let S be the boundary surface of E, given with positive (outward) orientation. Let F be a vector field whose component functions have continuous partial derivatives on an open region that contains E. Then

$$\iint\limits_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint\limits_{E} \operatorname{div} \mathbf{F} dV$$

• Proof of the Divergence theorem:

$$\iint \mathbf{\nabla} \cdot \mathbf{F} dV = \iint \mathbf{F} \cdot d\mathbf{S}$$

$$\mathbf{\nabla} \cdot \mathbf{F} = \left(\mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z} \right) \cdot (\mathbf{i} F_x + \mathbf{j} F_y + \mathbf{k} F_z) = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

Since $i \cdot i = 1, i \cdot j = 0$ etc. Also, dV = dxdydz

$$\iiint \nabla \cdot \mathbf{F} dV = \iiint \left(\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} \right) dx dy dz = \iiint \left(\partial F_x dy dz - \partial F_y dx dz + \partial F_z dx dy \right)$$
$$= \oiint \left(F_x dS_x + F_y dS_y + F_z dS_z \right) = \oiint \mathbf{F} \cdot d\mathbf{S}$$

Note the negative sign in front of ∂F_y since dxdz = -dzdx because they are cross products.

17.10 Summary of Chapter 17

- All main results of Chapter 17 are higher-order versions of the Fundamental Theorem of calculus.
- Fundamental Theorem of Calculus:

$$\int_{a}^{b} F'(x)dx = F(b) - F(a)$$

• Fundamental Theorem for Line Integrals:

$$\int_{C} \mathbf{\nabla} f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

• Green's Theorem:

$$\iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \int_{C} P dx + Q dy$$

• Stokes' Theorem:

$$\iint\limits_{C} \operatorname{curl} \, \mathbf{F} \cdot d\mathbf{S} = \int_{C} \mathbf{F} \cdot d\mathbf{r}$$

• Divergence Theorem:

$$\iiint\limits_{E} \operatorname{div} \mathbf{F} dV = \iint\limits_{S} \mathbf{F} \cdot d\mathbf{S}$$

18 Second-Order Differential Equations

18.1 Second-Order Linear Equations

• A second-order linear differential equation has the form

$$P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x)y = G(x)$$

where P, Q, R, and G are continuous function.

• Homogeneous linear equations are where G(x) = 0:

$$P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x)y = 0$$

The equation is nonhomogeneous if $G(x) \neq 0$ for some x.

• Theorem: If $y_1(x)$ and $y_2(x)$ are both solutions of the linear homogeneous equation $P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x)y = 0$ and c_1 and c_2 are constants, then the function

$$y(x) = c_1 y_1(x) + c_2 y_2(x)$$

is also a solution of the equation.

• Theorem: if y_1 and y_2 are linearly independent solutions of a second-order linear homogeneous equation, and P(x) is never 0, then the general solution is given by

$$y(x) = c_1 y_1(x) + c_2 y_2(x)$$

where c_1 and c_2 are arbitrary constants.

- Two equations are linearly independent if neither is a constant multiple of the other.
- It is difficult to find solutions to most secondorder diff eqs, but it is always possible to do so when

$$ay'' + by' + cy = 0$$

• Consider the equation

$$ar^2 + br + c = 0$$

which is called the auxiliary equation or characteristic equation of the diff eq ay'' + by' + cy = 0. The roots can be found using the quadratic formula:

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

- Based on the discriminant $b^2 4ac$, there are three cases:
 - Case 1: $b^2-4ac > 0$. If the roots r_1 and r_2 of the auxiliary equation $ar^2 + br + c = 0$ are real and unequal, then the general solution of ay'' + by' + cy = 0 is

$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

- Case 2: $b^2 - 4ac = 0$. If the auxiliary equation $ar^2 + br + c = 0$ only has one real root r, then the general solution of ay'' + by' + cy = 0 is

$$y = c_1 e^{rx} + c_2 x e^{rx}$$

- Case 3: $b^2 - 4ac < 0$. If the roots of the auxiliary equation $ar^2 + br + c = 0$ are the complex numbers $r_1 = \alpha + i\beta$, $r_2 = \alpha - i\beta$, then the general solution of ay'' + by' + cy = 0 is

$$y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$$

18.2 Nonhomogeneous Linear Equations

• Nonhomogeneous equations take the form

$$ay'' + by' + cy = G(x)$$

where a, b, and c are constants and G is a continuous function. The equation

$$ay'' + by' + cy = 0$$

is called the complimentary equation.

• Theorem: The general solution of the nonhomogeneous diff eq ay'' + by' + cy = G(x) can be written as

$$y(x) = y_p(x) + y_c(x)$$

where y_p is a particular solution of the nonhomogeneous equation and y_c is the general solution of the complimentary equation.

- The method of undetermined coefficients:
 - If $G(x) = e^{kx}P(x)$ where P is a polynomial of degree n, then try $y_p(x) = e^{kx}Q(x)$, where Q(x) is an nth degree polynomial (whose coefficients are determined by substituting in the differential equation).

- If $G(x) = e^{kx}P(x)\cos mx$ or $G(x) = e^{kx}P(x)\sin mx$, where P is an nth degree ploynomial, then try

$$y_p(x) = e^{kx}Q(x)\cos mx + e^{kx}R(x)\sin mx$$

where Q and R are nth degree polynomials

- Modification: If any term of y_p is a solution of the complimentary equation, multiply y_p by x (or by x^2 if necessary).

18.3 Applications of Second-Order Differential Equations

• Vibrating springs and Hooke's law:

$$m\frac{d^2x}{dt^2} = -kx$$

The general solution is $x(t) = c_1 \cos \omega t + c_2 \cos \omega t = A \cos(\omega t + \delta)$ where

$$\omega = \sqrt{\frac{k}{m}} \qquad \text{(frequency)}$$

$$A = \sqrt{c_1^2 + c_2^2} \qquad \text{(amplitude)}$$

$$\cos \delta = \frac{c_1}{A}$$
 $\sin \delta = -\frac{c_2}{A}$ (phase angle)

• Damped vibrations:

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = 0$$

• Forced vibrations:

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = F(t)$$

where F(t) is an external force.

• LRC circuits:

$$L\frac{d^2Q}{dt^2} + R\frac{dQ}{dt} + \frac{1}{C}Q = V(t)$$

18.4 Series Solutions

• Many diff eqs can't be solved explicitly, but we can use the power series

$$y = f(x) = \sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

• Substitute this expression into the diff eq and determine the value of the coefficients.

Other information

Coordinate Systems

• Cartesian Coordinates: x, y, z

$$dA_x = dydz$$
 $dA_y = dzdx$ $dA_z = dxdy$ $dV = dxdydz$

• Cylindrical Coordinates: r, θ, z

$$dA_r = rd\theta dz$$
 $dA_\theta = dzdr$ $dA_z = rdrd\theta$ $dV = rdrd\theta dz$

• Spherical coordinates: ρ, θ, ϕ

$$dA_{\rho} = \rho^2 \sin \phi d\phi d\theta$$
 $dA_{\theta} = \rho d\rho d\phi$ $dA_{\phi} = \rho \sin \phi d\rho d\theta$
$$dV = \rho^2 \sin \phi d\phi d\theta d\rho$$