N

BS170 / MMBF170

N-Channel Enhancement Mode Field Effect Transistor

General Description

These N-Channel enhancement mode field effect transistors are produced using Nationals proprietary, high cell density, DMOS technology. These products have been designed to minimize on-state resistance while provide rugged, reliable, and fast switching performance. They can be used in most applications requiring up to 500mA DC. These products are particularly suited for low voltage, low current applications such as small servo motor control, power MOSFET gate drivers, and other switching applications.

Features

- High density cell design for low R_{DS(ON)}.
- Voltage controlled small signal switch.
- Rugged and reliable.
- High saturation current capability.

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	BS170	MMBF170	Units
V _{DSS}	Drain-Source Voltage	60	V	
V_{DGR}	Drain-Gate Voltage ($R_{GS} \leq 1M\Omega$)	60	V	
V _{GSS}	Gate-Source Voltage	±2	V	
D	Drain Current - Continuous	500	500	mA
	- Pulsed	1200	800	
)	Maximum Power Dissipation	830	300	mW
	Derate Above 25°C	6.6	2.4	mW/°C
T_J , T_{STG}	Operating and Storage Temperature Range	-55 to	°C	
Γ	Maximum Lead Temperature for Soldering Purposes, 1/16" from Case for 10 Seconds	300	℃	
THERMA	L CHARACTERISTICS			
$R_{\theta JA}$	Thermal Resistacne, Junction-to-Ambient	150	417	°C/W

Symbol	Parameter	Conditions	Туре	Min	Тур	Max	Units
OFF CHA	RACTERISTICS		<u> </u>				•
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 100 \mu\text{A}$	All	60			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}$	All			0.5	μΑ
I _{GSSF}	Gate - Body Leakage, Forward	$V_{GS} = 15 \text{ V}, V_{DS} = 0 \text{ V}$	All			10	nA
ON CHAF	RACTERISTICS (Note 1)		•			•	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	All	0.8	2.1	3	V
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, I_{D} = 200 \text{ mA}$	All		1.2	5	Ω
g _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, I_{D} = 200 \text{ mA}$	BS170		320		mS
		$V_{DS} \ge 2 V_{DS(on)}, I_D = 200 \text{ mA}$	MMBF170		320		
DYNAMIC	CHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1.0 \text{ MHz}$	All		24	40	pF
C _{oss}	Output Capacitance		All		17	30	pF
C _{rss}	Reverse Transfer Capacitance		All		7	10	pF
SWITCHII	NG CHARACTERISTICS (Note 1)						
t _{on}	Turn-On Time	$V_{DD} = 25 \text{ V}, \ I_{D} = 200 \text{ m A}, \ V_{GS} = 10 \text{ V}, R_{GEN} = 25 \Omega$	BS170			10	ns
		$V_{DD} = 25 \text{ V}, \ I_{D} = 500 \text{ mA}, \ V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$	MMBF170			10	
t _{off}	Turn-Off Time	$V_{DD} = 25 \text{ V}, \ I_{D} = 200 \text{ m A}, \ V_{GS} = 10 \text{ V}, R_{GEN} = 25 \Omega$	BS170			10	ns
		$V_{DD} = 25 \text{ V}, \ I_{D} = 500 \text{ mA}, \ V_{GS} = 10 \text{ V}, \ R_{GEN} = 50 \ \Omega$	MMBF170			10	

Note:
1. Pulse Test: Pulse Width ≤ 300μs, Duty Cycle ≤ 2.0%.

Typical Electrical Characteristics

BS170 / MMBF170

Figure 1. On-Region Characteristics.

Figure 2. On-Resistance Variation with Gate Voltage and Drain Current.

Figure 3. On-Resistance Variation with Temperature.

Figure 4. On-Resistance Variation with Drain Current and Temperature.

Figure 5. Transfer Characteristics.

Figure 6. Gate Threshold Variation with Temperature.

Typical Electrical Characteristics (continued)

BS170 / MMBF170

Figure 7. Breakdown Voltage Variation with Temperature.

Figure 8. Body Diode Forward Voltage Variation with Current and Temperature.

Figure 9. Capacitance Characteristics.

Figure 10. Gate Charge Characteristics.

Figure 11. Switching Test Circuit.

Figure 12. Switching Waveforms.

Typical Electrical Characteristics (continued)

Figure 13. BS170 Maximum Safe Operating Area.

Figure 14. MMBF170 Maximum Safe Operating Area.

Figure 15. TO-92, BS170 Transient Thermal Response Curve.

Figure 16. SOT-23, MMBF170 Transient Thermal Response Curve.