ASSIGNMENT - 3

Assignment Date	05 October 2022
Student Name	Abinaya.M
Student Roll Number	820319104002
Maximum Marks	2 Marks

Building a Regression Model

1. Download the dataset: <u>Dataset</u>

data=pd.read_csv("abalone.csv")

2. Load the dataset into the tool.

data.head()

In [2]:	ď	data.head()													
Out[2]:		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings					
	0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15					
	1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7					
	2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9					
	3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10					
	4		0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7					

- 3. Perform Below Visualizations.
 - · Univariate Analysis

#univariate analysis

```
cols = 3
rows = 3
num_cols = data.select_dtypes(exclude='object').columns
fig = plt.figure( figsize=(cols*5, rows*5))
for i, col in enumerate(num_cols):
ax=fig.add_subplot(rows,cols,i+1)
sns.histplot(x = data[col], ax = ax)
fig.tight_layout()
plt.show()
```


Bi-Variate Analysis

#Bivariate analysis

import matplotlib.pyplot as plt
#create scatterplot of hours vs. score
plt.scatter(data.Height, data.Diameter)
plt.title('Height vs Diameter')
plt.xlabel('Height')
plt.ylabel

Multi-Variate Analysis

#multivariate analysis

sns.pairplot(d

4. Perform descriptive statistics on the dataset data.mean() data.median()

```
In [7]: data.mean()
             tr\Desc\Mi\ppotta\Local\remp\ippkarmel_16782\RESP2179.py:1: Futuresmeding: Dropping of mulsance columns in DataFrame reductions (with 'mumeric_only mone') is deprecated; in a future version this will raise Typetrum. Select only valid columns before calling the reduction.

data.mean()
             Length
Dismeter
Height
Whole weight
                                      0.533993
                                     0.467881
0.139516
0.828742
            Shucked weight
Viscere weight
Shell weight
Rings
dtype: float64
                                     0.359567
                                     0.188594
0.238831
9.933684
in [10]: data.median()
             C:\Users\til\pp@sta\local\Temp\ipp\ernol_i6792\3971556860.py:1: future\texting: Dropping of mulsance columns in DateFrame reductions (with 'numeric_onl y-blose') is deprecated; in a future version this will raise TypeError. Select only walld columns before calling the reduction.

data.median()

dryth 0.5459
            data mediani)
Length
Diameter
meight
whole weight
Wissera weight
Wissera weight
Shell weight
Aines
                                     0.5450
0.4250
0.1400
0.7995
0.3380
0.1750
0.2340
             Rings
             dtype: float64
In [11]:
                     norm_data = pd.DataFrame(np.random.normal(size=100000))
                     norm_data.plot(kind-"density",
                                                   figsize=(10,10));
                     plt.vlines(norm_data.mean(),
                                                                                       # Plot black line at mean
                                            ymin-0,
                                             ymax=0.4,
                                             linewidth=5.0);
                     plt.vlines(norm_data.median(), # Plot red line at median
                                            ymin-0,
                                            ymax=0.4,
                                            linewidth=2.0,
                                             color="red");
```


5. Check for Missing values and deal with them.

#identifying the missing value

df = pd.DataFrame(data)
df.isnull()

12]:	#identifying the missing value df = pd.DeteFrame(deta) df.ienall()											
[12]:		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings		
	0	Felse	Felse	Felse	False	Felse	false	false	Febr	Folse		
	1	False	False	False	False	false	false	False	False	False		
	2	False	False	False	Tabe	false	false	False	False	False		
	3	False	False	False	False	False	Falce	False	False	Talse		
	4	False	False	Falce	Falce	Falce	Falce	False	False	Raise		
	-	-	-		-	-	-	-	-	-		
	4172	False	False	False	False	False	False	False	False	Relse		
	4173	False	False	False	False	False	False	False	False	Relse		
	4174	False	False	False	False	False	False	False	False	Relse		
	4175	False	Felse	False	False	False	False	False	False	Felse		
	4176	Felse	Felse	False	False	False	False	False	False	Folse		
	4177 r	ows ×	9 colum	ns								

#filling the missing value with previous value
df.fillna(method ='pad')

			oring velo ='pad')		previous vei	NE			
	5ex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	-	0.330	0.255	0.090	0.2050	0.0895	0.0995	0.0550	7
	-				-				_
4172	F	0.565	0.450	0.165	0.8970	0.3700	0.2290	0.2490	- 11
4173	М	0.990	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

#filling null values in missing values

data[0:]

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
		-	-	-	-				-
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

6. Find the outliers and replace them outliers

#identifying the outliers

print(df['Shell weight'].skew())
df['Shell weight'].describe()

```
In [15]:
         #identifying the outliers
         print(df['Shell weight'].skew())
         df['Shell weight'].describe()
         0.6209268251392077
        count 4177.000000
Out[15]:
        mean 0.238831
std 0.139203
                  0.139203
        std
                  0.001500
         25%
                  0.130000
         50%
                  0.234000
         75%
                   0.329000
        max 1.005000
         Name: Shell weight, dtype: float64
```

#replacing the outliers

print(df['Shell weight'].quantile(0.50))
print(df['Shell weight'].quantile(0.95))
df['Shell weight'] = np.where(df['Shell weight'] > 325, 140, df['Shell weight']) df.describe()

In [16]:	<pre>areplacing the outliers print(df['Shell weight']-quantile(0.50)) print(df['Shell weight']-quantile(0.55)) df['Shell weight'] = np.where(df['Shell weight'] > 325, 140, df['Shell weight']) df.dssribe()</pre>											
	0.234											
Out[16]:		Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings			
	count	4177,000000	4177.000000	4177,000000	4177.000000	4177.000000	4177.000000	4177,000000	4177.000000			
	mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684			
	etd	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169			
	min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000			
	25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000			
	50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000			
	75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000			
	max	0.815000	0.650000	1.130000	2.825500	1.488000	0.780000	1.005000	29.000000			

7. Check for Categorical columns and perform encoding.

#perform encoding

from sklearn.compose import make_column_selector as selector
categorical_columns_selector = selector(dtype_include=object)
categorical_columns = categorical_columns_selector(data)
categorical_columns

```
In [17]: #perform encoding
from sklearn.compose import make_column_selector as selector

categorical_columns_selector = selector(dtype_include=object)
categorical_columns = categorical_columns_selector(data)
categorical_columns

Out[17]: ['Sex']
```

data_categorical = data[categorical_columns]
data_categorical.head()

8. Split the data into dependent and independent variables.

```
from sklearn import preprocessing
# label_encoder object knows how to understand word labels.
label_encoder = preprocessing.LabelEncoder()
# Encode labels in column 'species'.
df['Sex'] = label_encoder.fit_transform(df['Sex'])
df['Sex'].unique()
X= data.iloc[:,:-1].values
y= data.iloc[:, 4].values
print(X,y)
# import packages
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
# importing data
print(df.shape)
# head of the data
print('Head of the dataframe : ')
print(df.head())
print(df.columns)
X= df['Whole weight']
y=df['Shucked weight']
# using the train test split function
X_train, X_test, y_train, y_test = train_test_split(
```

X,y, random_state=104,test_size=0.25, shuffle=**True**)

```
# printing out train and test sets
print('X_train:')
print(X_train.head())
print(X_train.shape)
print(")
print('X_test:')
print(X_test.head())
print(X_test.shape)
print(")
print('y_train : ')
print(y_train.head())
print(y_train.shape)
print(")
print('y_test:')
print(y_test.head())
print(y_test.shape)
```


9. Scale the independent variables

#scaling

df_scaled = df.copy()

```
col_names = ['Shucked weight', 'Whole weight']
features = df_scaled[col_names]
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df_scaled[col_names] = scaler.fit_transform(features.values)
from sklearn.preproc
```


essing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(5, 10))
df_scaled[col_names] = scaler.fit_transform(features.values)
df_scaled

10. Split the data into training and testing

#testing and training

X = df.iloc[:,:-1] y = df.iloc[:,-1]

split the dataset

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.05, random_state=0)
print(X_train, X_test, y_train, y_test)

11. Build the Model

Evaluate the model on the test data

predictions = model.predict(X_test)
predictions

12. Train the Model

Select algorithm

from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
model = DecisionTreeClassifier()
Fit model to the data
model.fit(X_train, y_train)
Check model performance on training data
predictions = model.predict(X_train)

print(accuracy_score(y_train, predictions))

13. Test the Model

Evaluate the model on the test data

predictions = model.predict(X_test)
predictions

14. Measure the performance using Metrics.

import os

```
os.environ["PATH"] += os.pathsep + 'C:/Program Files
(x86)/Graphviz2.38/bin' from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import roc_auc_score
from sklearn.metrics import log_loss
X_{actual} = [1, 1, 0, 1, 0, 0, 1, 0, 0, 0]
Y_predic = [1, 0, 1, 1, 1, 0, 1, 1, 0, 0]
results = confusion_matrix(X_actual, Y_predic)
print ('Confusion Matrix :')
print(results)
print ('Accuracy Score is',accuracy_score(X_actual, Y_predic))
print ('Classification Report : ')
print (classification_report(X_actual, Y_predic))
print('AUC-ROC:',roc_auc_score(X_actual, Y_predic))
print('LOGLOSS Value is',log_loss(X_actual, Y_predic))
```

