Le but de ce document est de donner une définition formelle des fonctions dont est composé le langage C2QL.

Définitions générales

Soit \mathcal{V} un ensemble, appelé ensemble des valeurs.

Définition 1 Ici, pour simplifier, on appelle chaîne de caractères tout mot sur l'alphabet

$$\Sigma = \{a, \dots, z\} \cup \{A, \dots, Z\} \cup \{0, \dots, 9\}$$

Définition 2 On appelle nom d'attribut toute chaîne de caractères.

Définition 3 On appelle schéma relationnel tout ensemble de noms d'attributs.

Définition 4 On appelle relation de schéma relationnel Δ un ensemble de fonctions de $\Delta \cup \{id\}$ dans V.

Chacune de ces fonctions (chacun des éléments de la relation) est appelé(e) ligne.

Pour chaque ligne l de la relation et chaque α de Δ , $l(\alpha)$ est appelé attribut de nom α pour la ligne l.

L'image de id est appelé identifiant de la ligne, et il est, au sein de chaque relation, unique pour chaque ligne.

Définition 5 On appelle S l'ensemble des schémas relationnels possibles. Autrement dit, on pose $S = \mathcal{P}(\Sigma^*)$.

On appelle R l'ensemble des relations possibles,

et on introduit la fonction sch de R dans S qui à une relation associe son schéma relationnel.

Projections et sélections

Définition 6 Pour tout ensemble δ de noms d'attributs, on appelle projection sur les attributs δ la fonction suivante :

$$\begin{array}{cccc} \pi_{\delta}: & \mathbf{R} & \to & \mathbf{R} \\ & r & \mapsto & \{l|_{(\delta \cap \mathrm{sch}(r)) \cup \{id\}}/l \in r\} \end{array}$$

Définition 7 On appelle L l'ensemble de toutes les lignes possibles.

On appelle prédicat toute fonction de L dans {true, false}.

On appelle domaine d'un prédicat p le plus petit ensemble D tel que :

$$\forall (l, l') \in L^2, (l|_D = l'|_D \Rightarrow p(l) = p(l'))$$

et on le note dom(p).

Définition 8 On appelle sélection de prédicat p, pour tout prédicat p, la fonction :

$$\begin{array}{cccc} \sigma_p: & \mathbf{R} & \to & \mathbf{R} \\ & r & \mapsto & r \cap p^{-1}(\{true\}) \end{array}$$

Jointure naturelle

Définition 9 On dit que deux relations r et r' sont joignables si on a:

$$\forall l \in r \quad \exists ! l' \in r' \quad \forall \alpha \in \operatorname{sch}(r) \cap \operatorname{sch}(r'), \quad l(\alpha) = l'(\alpha)$$

Si r et r' sont deux relations joignables et l est une ligne de r, on appelle correspondant de l dans r' la ligne l' de la propriété précédente (unique par définition). On note cette ligne $\operatorname{cor}_{r,r'}(l)$. On dit alors que l et l' sont deux lignes correspondantes.

Définition 10 Si l et l' sont deux lignes correspondantes, on appelle concaténation de l et de l', notée l.l' la fonction de $\mathrm{sch}(l) \cup \mathrm{sch}(l') \cup \{id\}$ définie par :

$$\begin{cases} l.l'(\alpha) = l(\alpha) & si \ \alpha \in \operatorname{sch}(r) \setminus \operatorname{sch}(r') \\ l.l'(\alpha) = l'(\alpha) & si \ \alpha \in \operatorname{sch}(r') \setminus \operatorname{sch}(r) \\ l.l'(\alpha) = l(\alpha) = l'(\alpha) & si \ \alpha \in \operatorname{sch}(r) \cap \operatorname{sch}(r') \\ l.l'(id) = l(id) \end{cases}$$

Définition 11 Pour r et r' deux relations joignables, on appelle jointure naturelle de r et r' la table

$$r \bowtie r' = \{l. \operatorname{cor}_{r,r'}(l)/l \in r\}$$

On utilisera aussi la notation préfixe. En effet, si on appelle Rj l'ensemble des paires de relations unifiables, on vient de définir la fonction

$$\bowtie: Rj \rightarrow R$$
 $(r,r') \mapsto r \bowtie r'$

Fragmentation et défragmentation

La défragmentation est un cas particulier de jointure naturelle, le seul attribut en commun pour les deux tables est l'identifiant des lignes.

Définition 12 Deux relations r et r' sont dites unifiables si:

$$\left\{ \begin{array}{l} \{l(id)/l \in r\} = \{l(id)/l \in r'\} \\ \operatorname{sch}(r) \cap \operatorname{sch}(r') = \emptyset \end{array} \right.$$

On remarquera que deux relations unifiables sont également joignables.

On note Ru l'ensemble des paires de relations unifiables, qui est donc un sous-ensemble de Ri, qui lui même est un sous-ensemble de R^2 .

Définition 13 Pour tout ensemble de noms d'attributs δ on appelle fragmentation de fragment gauche δ l'application suivante :

$$\begin{array}{ccc} \operatorname{frag}_{\delta} & \mathcal{R} & \to & \operatorname{Ru} \\ & r & \mapsto & \left(\{l|_{(\operatorname{sch}(r)\cap\delta)\cup\{id\}}/l \in r\}, \{l_{(\operatorname{sch}(r)\setminus\delta)\cup\{id\}}/l \in r\}\right) \end{array}$$

Définition 14 On appelle défragmentation la restriction de la jointure naturelle à Ru.

$$\begin{array}{cccc} \text{defrag} & \text{Ru} & \to & \text{R} \\ & (r,r') & \mapsto & r \bowtie r' \end{array}$$