

Free University of Bolzano

Candidate: Riccardo Busetti

Supervisor: Claus Pahl

SLIDE 3

Introduction

SLIDE 14

Methodology

SLIDE 22

Solution

SLIDE 27

Evaluation

SLIDE 32

Conclusions

Introduction

Context

The demand for cloud resources is quickly increasing and this creates the need to alleviate the work in the cloud.

A new paradigm called edge computing has emerged, with the goal of reducing the strain on the cloud infrastructure.

What is Edge Computing?

Edge computing focuses on moving the computations away from centralized servers to the edge of a network.

Edge computing open problems

Optimizing offloading strategies

Workload placement

Performance management

Load balancing

What is Particle Swarm Optimization?

PSO is a nature-inspired stochastic optimization algorithm motivated by the intelligent collective behavior of animals.

Is it feasible to run PSO at the edge?

PSO at the edge

- Lack of resources
- High chance of faults

- **★** Alleviate the cloud
- **★** Reduce latency

The idea

Better performance

Build a distributed PSO algorithm that can be executed on a cluster of edge nodes.

More fault tolerance

Flexible scalability

Pitch

Methodology

Existing research

- Shared-memory
- Not fault tolerant
- Mostly synchronous

Distributed programming

Building a distributed system is hard!

Our choice

Performance

Efficient in-memory distributed data structures

Fault tolerance

Resilient Distributed Datasets (RDDs) with lineage

Scalability

Horizontally scalable cluster with executor nodes

Solution

Proposed algorithms

Spark Distributed Synchronous PSO

Spark Distributed Asynchronous PSO

Spark Distributed Synchronous PSO with Local Update

Spark Distributed Synchronous PSO with Distributed Update

Spark Distributed Asynchronous PSO

Evaluation

Cluster setup

Performance evaluations

Particles increase

Performance evaluations

Iterations increase

Performance evaluations

Dimensionality increase

Conclusions

Conclusions

- **★** Sync and async algorithms proposed
- **★** 5x increase in performance
- **★** Flexible scalability
- **★** Tolerant to failures

Pitch

Future work

Tune Apache
Spark for better
performance

Explore other distributed computing platforms

https://github.com/iambriccardo/thesis-algorithms

Thank you for your attention

Appendix

PSO mathematical definition

New velocity

Cognitive component

PSO mathematical definition

$$x_{i,t+1}^d = x_{i,t}^d + v_{i,t+1}^d$$

New position New velocity

Spark Distributed Asynchronous PSO

