SPATIALLY DISTRIBUTED DATASETS

ERT 474/574 Open-Source Hydro Data Analytics Oct 6th 2024

University at Buffalo The State University of New York

Announcement

- Midterm
 - Time: In class Oct 20th, 2024 (Monday)
 - Length: 50 minutes
 - Format: Open book coding (No communication is allowed)
 - Covered range: Everything until Wednesday's (Oct 8th) lecture

Thank you for all suggestions!

- Define the terminology in the slides.
- Bigger topics need to be explained in more detail and need more notes in the lecture slides.
- Post lecture slides before class.
- Include more examples.
- Labs, homework, and lectures to be more in sync
- How to draw some of the plots in high-impact papers
- Bayesian models
- Learn more about different types of tests
- Watershed and surface flow modeling

At the end of each lecture, I will leave 2-3 minutes for a minute paper – mention your confusions here!

Will do!

Next Wednesday -- Plot sharing!

Maybe consider taking a class in statistics?

That's what we are going to cover in the second half of this class!

Recap

Python 101

Numpy, Matplotlib, Pandas, Urllib

Basic Statistics

Hypothesis testing

Trend analysis

Before today, we studied point-scale data, e.g., time series data for one USGS site...

The streamflow data at one USGS site reflects a lumped information of hydrologic processes upstream of this point.

- Precipitation
- Snowmelt
- Evapotranspiration from vegetations
- ...

All these relevant hydrologic processes are spatially distributed!!

Spatially distributed datasets

- Location of site observations (Point)
- River networks (Lines)
- River basin delineation (Polygons)

- Location of site observations (Point)
- River networks (Lines)
- River basin delineation (Polygons)

- Location of site observations (Point)
- River networks (Lines)
- River basin delineation (Polygons)

- Location of site observations (Point)
- River networks (Lines)
- River basin delineation (Polygons)

- Location of site observations (Point)
- River networks (Lines)
- River basin delineation (Polygons)

- Location of site observations (Point)
- River networks (Lines)
- River basin delineation (Polygons)

Projection – What does the world look like using different projections?

Plate Carrée

Mercator

Projection – What does the world look like using different projections?

Plate Carrée

Mercator

Projection – Why do we need different projections?

• When it comes to regional maps, we usually choose a projection that is visually pleasing and not distorted too much.

Gridded dataset – What does it look like?

Gridded dataset – What does it look like?

Gridded dataset – What does it look like?

Dimensions

- Latitudes and Longitudes (Spatially)
- Time dimension
- Vertical dimension
 - Above ground: Atmospheric vertical layers
 - Below ground: Soil layers

Coordinates

- Corresponding values for each dimension that can be used to locate a value
- For latitude/longitude, its coordinates usually refer to the center of the grid.

Gridded dataset

The left map shows the total evaporation over a specific region. What are the dimensions for this dataset?

Given the coordinates for the most southeastern corner of this map is 60°N and 152°W, the grid size is 0.1° by 0.1°. How can we get the value of 61°N and 151°W

Gridded dataset

The left map shows the total evaporation over a specific region. What are the dimensions for this dataset?

Given the coordinates for the most southeastern corner of this map is 60°N and 152°W, the grid size is 0.1° by 0.1°. How can we get the value of 61°N and 151°W

Gridded dataset – what type of information is usually stored in gridded datasets?

Land surface characteristics

- Usually viewed as static, i.e., time-invariant in hydrologic models
- Examples: land cover information (percent of vegetated area, bare soil, etc.), soil properties...

Climate datasets

- Usually serves as meteorological forcings, i.e., time-variant variables)
- Examples: precipitation, air temperature...

Output from hydrologic models

- Examples: runoff, surface radiation...

Gridded dataset – what are common ways to "generate" gridded datasets?

Interpolations from observations

Numerical models

Satellite Observations

Reanalysis datasets (Integration of methods mentioned above)

Gridded dataset – ASCII format

- Use a model input as an example
 - In this example, numbers are denoting the river flowing directions
 - ncols is the number of columns in the file.
 - nrows is the number of rows in the file.
- xllcorner is the longitude of the lower left corner of the grid,
- · yllcorner is the latitude of the lower left corner,
- · cellsize is the resolution of the grid, and
- NODATA_value is the value that represents missing or unused grid cells.

Flow from each grid cell is given by a by a number:

- 1.= north
- 2.= northeast
- 3.= east
- 4.= southeast
- 5.= south
- 6.= southwest
- 7.= west
- 8.= northwest

```
ncols
                 22
                 20
nrows
                 -97.000
xllcorner
yllcorner
                 38.000
cellsize
                 0.50
NODATA value
```

Gridded dataset – NetCDF format

Self-Describing. A netCDF file includes information about the data it contains.

Portable. A netCDF file can be accessed by computers with different ways of storing integers, characters, and floating-point numbers.

Scalable. Small subsets of large datasets in various formats may be accessed efficiently through netCDF interfaces, even from remote servers.

Appendable. Data may be appended to a properly structured netCDF file without copying the dataset or redefining its structure.

Sharable. One writer and multiple readers may simultaneously access the same netCDF file.

Archivable. Access to all earlier forms of netCDF data will be supported by current and future versions of the software.

#Import the packages

import xarray as xr

#read the dataset

ds = xr.open_dataset("path/filename")

#take a brief look of the dataset

ds

[29]: xarray.Dataset
▶ Dimensions: (lat: 662, lon: 782, time: 1)
▶ Coordinates: (3)
▶ Data variables: (2)
▶ Attributes: (38)

Coordinates

▼ Coordinates:				
time	(time) date	etime64[ns]	2064-04-01	
lon	(lon)	float32	184.2 184.3 184.3 225.7 225.8	
lat	(lat)	float32	50.01 50.04 50.07 69.86 69.89	

#We will be able to select the data directly #using its corresponding coordinates

ds.sel(time="2064-04-01",lon=184.2,lat=69.86)

Data Variables

```
▼ Data variables:
   FSNO
                     (time, lat, lon)
                                           float32 ...
                     fraction of ground covered by snow
  long_name:
                     unitless
  units:
  cell methods:
                     time: mean
  QFLX_EVAP_TOT (time, lat, lon)
                                           float32 ...
  long_name:
                     qflx_evap_soi + qflx_evap_can + qflx_tran_veg
  units:
                     kg m-2 s-1
  cell methods:
                     time: mean
```

```
#We will be able to select targeted variables ds["FSNO"].sel(time="2064-04-01",lon=184.2,lat=69.86)
```

Attributes

Self-Describing. A netCDF file includes information about the data it contains.

▼ Attributes:

title: CLM History file information

comment: NOTE: None of the variables are weighted by land fraction!

Conventions : CF-1.0

history: created on 07/29/23 03:27:24

source: Community Terrestrial Systems Model

hostname : cheyenne username : tcraig

version : rasm2_2_01_plus

revision_id: Id: histFileMod. F90429032012 - 12 - 2115: 32: 10Zmuszala

case_title : UNSET

case_id: NNA.4km.fPGWh.2033.004

 $Surface_dataset: surfdata_nna4a.spatial_distrib.all.fillland.220411.T14.cdf5.nc$

Initial_condition... PGW_high_init_hh_4km.clm2.r.2033-06-01-00000.nc

PFT_physiologi... clm50_params.c210507.nc

Itype_vegetate... 1
Itype_crop: 2
Itype_UNUSED: 3
Itype_landice_... 4
Itype_deep_lake: 5
Itype_wetland: 6
Itype_urban_tbd: 7

Itype_urban_hd: 8

Unstructured grids

Seamless zooming

• MPAS's hexagonal grid system allows the model to zoom in or out across different parts of the globe.

Smooth transitions

• MPAS's unstructured variable resolution meshes can be generated with smoothly varying mesh transitions.

Scalability

 MPAS's numerics scale efficiently across shared and distributed memory on massive parallel supercomputers.

