Homework 9: The Quotient Topology

Assignments should be **stapled** and written clearly and legibly.

- 1. $\S 3.3, \# 3.23, 3.24, 3.27, 3.33(a)(b)(c)(h)(j)(k)$
- 2. Let X and S be sets, and let $g: X \to S$ be a surjective map. Define a relation \sim on X by $x \sim y$ if g(x) = g(y).
 - (a) Verify that \sim is an equivalence relation.
 - (b) What are the equivalence classes of \sim ?
 - (c) Prove that there exists a bijection $\overline{g}:(X/\sim)\to S$.
 - (d) The map \overline{g} appears as a dashed line in the following diagram:

(Here π is the standard projection.) Prove that this diagram commutes, i.e., prove that $g = \overline{g} \circ \pi$. We sometimes say that the map g factors through X/\sim .

3. Let X be a topological space, S a set, and $g: X \to S$ a surjective map. Give S the quotient topology. Let C be a subset of S. Prove that C is closed in S if and only if $g^{-1}(C)$ is closed in X.