MA-106 Linear Algebra

M.K. Keshari

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 10th February, 2015 D1 - Lecture 16

Recall: determinant is a function $det: M_{n \times n}(\mathbb{R}) \to \mathbb{R}$ which is uniquely defined by its three basic properties.

- 1. det(I) = 1.
- 2. the sign of determinant is reversed by a row exchange,
- 3. det is linear in each row separately,

Some Properties of determinant.

If two rows of A are equal, then det(A) = 0.

If B is obtained from A by $R_i \mapsto R_i + aR_i$, then det(B) = det(A).

If $A = (a_{ij})$ is triangular, then $det(A) = a_{11} \dots a_{nn}$.

If A is singular, then det(A) = 0.

$$det(AB) = det(A) det(B)$$

$$det(A) = det(A^T)$$

If A is invertible, then $det A = \pm$ product of pivots.

Recall:

Formula for determinant of a 3×3 matrix $A = (a_{ij})$

where (α, β, γ) runs over all permutations of $\{1, 2, 3\}$, $\{e_1, e_2, e_3\}$ are standard basis of \mathbb{R}^3 and P runs over all permutation matrices

$$\begin{pmatrix} (e_{\alpha})^T \\ (e_{\beta})^T \\ (e_{\gamma})^T \end{pmatrix}$$

Formula for Determinant: $n \times n$ case

For $n \times n$ matrix $A = (a_{ij})$,

$$det(A) = \sum_{\text{all permutations } P} (a_{1i_1} \dots a_{ni_n}) det(P)$$

The sum is over n! permutations of numbers $(1, \ldots, n)$.

Here (i_1,i_2,\ldots,i_n) runs over all permutations of $\{1,2,\ldots,n\}$, $\{e_1,\ldots,e_n\}$ are standard basis of \mathbb{R}^n and P runs over all the

permutation matrix
$$\begin{pmatrix} (e_{i1})^T \\ \vdots \\ (e_{i_n})^T \end{pmatrix}$$
.

If P is a permutation matrix, then det(P)=+1, if the number of row exchages in P needed to get I is even and det(P)=-1 if it is odd.

- 1. 140020022 ARUNABH MISHRA
- 2. 140020035 POTTULWAR MAHESH SOPANRAO
- 3. 140020046 SHRIKANT MUNDRA ABSENT
- 4. 140020060 SHASHI KANT KUMAR
- 5. 140020064 RANVIJAY SINGH
- 6. 140020072 APOORV SINGHAL
- 7. 140020087 AMRITESH ARYAN
- 8. 140020101 RAHUL CHOUDHARY
- 9. 140020110 SLOKA AMBATI
- 10. 140050014 SHREY KUMAR
- 11. 140020121 GURJOT SINGH WALIA
- 12. 140050007 NEELADRISHEKHAR KANJILAL
- 13. 140050019 RISHABH AGARWAL
- 14. 140050021 YATHANSH KATHURIA
- 15. 140050037 LAKUMARAPU NIKHIL KUMAR
- 16. 140050049 BHAVANI VISHAL BABU
- 17. 140050082 RAVI TEJA

Cofactor, expansion of det along first row

Let C_{1j} be the coefficient of a_{1j} in the expansion

$$det(A) = \sum_{\text{all permutations } P} (a_{1i_1} \dots a_{ni_n}) det(P)$$

the matrix obtained from A by replacing its first row by $e_i^T = (0, \dots, 1, \dots, 0)$ (1 at j-th place).

Hence $C_{1j} = (-1)^{j-1} det(M_{1j})$, where M_{ij} is the matrix obtained from A by deleting its 1-st row and j-th column.

Example - 3×3 case.

Expansion of det(A) along its i-th row

If C_{ij} is the coefficient of a_{ij} in the formula of det(A), then

$$det(A) = a_{i1} C_{i1} + \ldots + a_{in} C_{in}.$$

By i-1 row exchange on A, get the matrix $B=\begin{pmatrix}A^i\\A^1\\\vdots\\A^{i-1}\\A^{i+1}\\\vdots\\A^n\end{pmatrix}$

Since
$$det(A) = (-1)^{i-1} det(B)$$
, we get
$$C_{ij}(A) = (-1)^{i-1} C_{1j}(B) = (-1)^{i-1} (-1)^{j-1} det(M)$$

where M is obtained from B by deleting 1-st row and j-th column. Hence M is obtained from A by deleting i-th row and j-th column.

Write
$$M$$
 as M_{ij} . Then

Write
$$M$$
 as M_{ij} . Then $C_{ij} = (-1)^{i+j} \det(M_{ij})$

Expansion of det(A) along j-th column of A

Note that
$$C_{ij}(A^T)=C_{ji}(A).$$
 Hence, if we write $A^T=(b_{ij})$, then
$$det(A)=det(A^T) = b_{j1}\,C_{j1}(A^T)+\ldots+b_{jn}\,C_{jn}(A^T) = a_{1j}\,C_{1j}(A)+\ldots+a_{nj}\,C_{nj}(A)$$

This is the expansion of det(A) along j-th column of A.

Example:

$$F_n = \begin{vmatrix} 1 & -1 \\ 1 & 1 & -1 \\ & 1 & 1 & -1 \\ & & \cdot & \cdot & \cdot \\ & & & 1 & 1 \end{vmatrix}$$

(1,1,-1) tri-diagonal $n \times n$ matrix. Expanding along row 1, we get

$$F_n = F_{n-1} + (-1)^{1+2}(-1) \begin{vmatrix} 1 & -1 & & & \\ & 1 & -1 & & \\ & 1 & 1 & -1 & \\ & & \ddots & \ddots & \\ & & & 1 & 1 \end{vmatrix}$$

 $=F_{n-1}+F_{n-2},$ by expanding along first column.

Since $F_1 = 1$, $F_2 = 2$, we get F_n 's as the sequence of integers $1, 2, 3, 5, 8, 13, \ldots$, known as Fibonacci sequence.

Applications of det: (1) Computing A^{-1}

If
$$C=(C_{ij})$$
 : cofactor matrix of A , then $A C^T=det(A) I$ i.e.

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} C_{11} & \dots & C_{n1} \\ \vdots & \ddots & \vdots \\ C_{1n} & \dots & C_{nn} \end{pmatrix} = \begin{pmatrix} \det(A) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \det(A) \end{pmatrix}$$

Proof. We have seen that $a_{i1}C_{i1} + \ldots + a_{in}C_{in} = det(A)$. Now

$$a_{11}C_{21} + a_{12}C_{22} + \ldots + a_{1n}C_{2n} = det \begin{pmatrix} a_{11} & \ldots & a_{1n} \\ a_{11} & \ldots & a_{1n} \\ a_{31} & \ldots & a_{3n} \\ \vdots & & \vdots \\ a_{n1} & \ldots & a_{nn} \end{pmatrix} = 0.$$

Similarly, if $i \neq j$, then $a_{i1}C_{j1} + a_{i2}C_{j2} + \ldots + a_{in}C_{jn} = 0$.

Remark. If
$$A$$
 is invertible, then $A^{-1} = \frac{1}{det(A)}C^T$.

For $n \ge 4$, this is Not a good formula to find A^{-1} . Use elimination to find A^{-1} . This formula is of theoretical importance.

Example

Find the inverse of
$$A=\begin{pmatrix}2&-1&0\\-1&2&-1\\0&-1&2\end{pmatrix}$$
.
$$det(A)=2\begin{vmatrix}2&-1\\-1&2\end{vmatrix}+(-1)^{1+2}(-1)\begin{vmatrix}-1&-1\\0&2\end{vmatrix}$$
$$=2(3)+(-2)=4$$
$$C_{11}=3,\ C_{12}=(-1)(-2)=2,\ C_{13}=1,$$
$$C_{21}=(-1)(-2)=2,\ C_{22}=4,C_{23}=(-1)(-2)=2,$$
$$C_{31}=1,\ C_{32}=(-1)(-2)=2,\ C_{33}=3.$$

Hence

$$A^{-1} = |A|^{-1} C^{T} = (1/4) \begin{pmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 3/4 & 1/2 & 1/4 \\ 1/2 & 1 & 1/2 \\ 1/4 & 1/2 & 3/4 \end{pmatrix}$$

Check. $AA^{-1} = I$.

Application of det: (2) Solving Ax = b

Cramer's rule: If A is invertible, the Ax = b has a unique solution

$$x = A^{-1}b = |A|^{-1} C^T b = |A|^{-1} \begin{pmatrix} C_{11} & \dots & C_{n1} \\ \vdots & & \vdots \\ C_{1n} & \dots & C_{nn} \end{pmatrix} \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

Hence
$$x_j = |A|^{-1} (b_1 C_{1j} + b_2 C_{2j} + \ldots + b_n C_{nj}) = |A|^{-1} \det(B_j),$$

where $det(B_j)$ is expanded along j-th column of

$$B_{j} := \begin{pmatrix} a_{11} & a_{1,j-1} & b_{1} & a_{1,j+1} & a_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n,j-1} & b_{n} & a_{n,j+1} & a_{nn} \end{pmatrix}$$

Remark: Use elimination to solve Ax = b. Cramer's rule is of theoretical importance.

Application of det: (3) Volume of a box

Assume rows of A are orthogonal |. Then

$$AA^{T} = \begin{pmatrix} A^{1} \\ \vdots \\ A^{n} \end{pmatrix} \begin{pmatrix} A^{1} & \dots & A^{n} \end{pmatrix} = \begin{pmatrix} l_{1}^{2} & & 0 \\ & \ddots & \\ 0 & & l_{n}^{2} \end{pmatrix}$$

where $l_i = \sqrt{|A^i.A^i|}$ is the length of A^i . Since $det(A) = det(A^T)$,

we get
$$|det(A)| = l_1 \dots l_n$$
.

Since the edges of the box spanned by rows of ${\cal A}$ are at right angles, the volume of the box

- = the product of lengths of edges
- = |det(A)|.

Assume edges are Not at right angles. We will consider 2×2 case. The volume of the parallelogram spanned by rows A^1, A^2

$$= \mathsf{base} \;\; . \; \mathsf{height}$$

= length of ${\cal A}^1$. length of projection vector ${\cal A}^2-proj_{{\cal A}^1}{\cal A}^2$

$$= \det \binom{A^1}{A^2 - proj_{A^1}A^2}, \quad \text{(since two vectors are orthogonal)}$$

$$= \det(A)$$

Example. Let
$$A = \begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$.

=4

Extra reading: Application (4): Formula for Pivots

We can find when elimination is possible without row exchange.

Observation: If row exchange is not required in A, then first k pivots are determined by top-left $k \times k$ submatrix \widetilde{A}_k of A.

Example. If
$$A = (a_{ij})_{3\times 3}$$
, then $\widetilde{A}_1 = (a_{11})$, $\widetilde{A}_2 = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ and $\widetilde{A}_3 = A$.

- Assume pivots are d_1, \ldots, d_n . Then
- $det(\widetilde{A}_1) = a_{11} = d_1$
- $det(\widetilde{A}_2) = d_1 d_2 = det(A_1) d_2$
- $det(\widetilde{A}_3) = d_1 d_2 d_3 = det(A_2) d_3 \dots$
- If $det(\widetilde{A}_k) = 0$, then we need a row exchange in elimination.
- ullet Otherwise the k-th pivot is $d_k = \det(\widetilde{A}_k)/\det(\widetilde{A}_{k-1})$

Extra reading

Example. Find if row exchange is required in Gauss Elimination of \boldsymbol{A} and find pivots.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 4 & 4 \\ 1 & 4 & 9 \end{pmatrix}$$

Solution.
$$\widetilde{A}_1=(1), \ \widetilde{A}_2=\begin{pmatrix} 1 & 1 \\ 1 & 4 \end{pmatrix}, \ \widetilde{A}_3=A$$

$$det(\widetilde{A}_1) = 1, \quad det(\widetilde{A}_2) = 3$$

$$det(\widetilde{A}_3) = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 3 & 3 \\ 0 & 3 & 8 \end{vmatrix} = \begin{vmatrix} 3 & 3 \\ 3 & 8 \end{vmatrix} = 15$$

Therefore row exchange is not required in elimination and

the pivots are
$$d_1 = 1$$
, $d_2 = 3/1 = 3$, $d_3 = 15/3 = 5$.

