Bài 8. PHƯƠNG TRÌNH VI PHÂN TUYẾN TÍNH CẤP 1

Giảng viên: Nguyễn Lê Thi Bộ Môn Toán – Khoa Khoa học ứng dụng

MỤC TIÊU BÀI HỌC

- Xác định được nghiệm của phương trình vi phân tuyến tính
- Úng dụng phương trình vi phân tuyến tính để giải một số bài toán thực tế

NỘI DUNG CHÍNH

8.1 Giới thiệu phương trình vi phân

8.2 Úng dụng ptvp trong thực tế

1. GIỚI THIỆU PHƯƠNG TRÌNH VI PHÂN

1. Phương trình vi phân tuyến tính cấp 1

> Dạng tổng quát

$$\left| \frac{dy}{dx} + P(x)y = Q(x) \right|$$

Trong đó P(x),Q(x) là các biểu thức theo x.

2. Nghiệm phương trình vi phân tuyến tính cấp 1

> Nghiệm tổng quát

$$y = \frac{1}{\varphi(x)} \left[\int \varphi(x) Q(x) dx + C \right]$$

$$\varphi(x) = e^{\int P(x)dx}$$
 — thừa số tích phân, C: hằng số.

> Nghiệm cụ thể (nghiệm riêng)

là nghiệm tổng quát của phương trình vi phân tương ứng với một giá trị cụ thể của hằng số *C*.

3. Giải phương trình vi phân

Việc giải phương trình vi phân (ptvp) tuyến tính cấp 1 là tìm nghiệm tổng quát của phương trình vi phân đó.

Các bước giải:

- 1. Tìm dạng tổng quát của ptvp, xác định P(x),Q(x)
- 2. Tính thừa số tích phân $\varphi(x) = e^{\int P(x)dx}$
- 3. Xác định $\int \varphi(x)Q(x)dx$
- 4. Kết luận nghiệm tổng quát

Giải phương trình vi phân

$$\frac{dy}{dx} + 2xy = 3x \quad (1)$$

Giải phương trình vi phân

$$\left(x^2 + 1\right)\frac{dy}{dx} + 4xy = 3 \quad (2)$$

Giải phương trình vi phân

$$x\frac{dy}{dx} = x^2 \ln x, \quad (3)$$
$$y(1) = 0.$$

1. ỨNG DỤNG CỦA PHƯƠNG TRÌNH VI PHÂN

1. Một số ứng dụng của phương trình vi phân tuyến tính cấp 1

- > Mô hình tăng trưởng và suy giảm
- Mô hình hòa tan
- Mô hình mạch điện

2. Mô hình tăng trưởng và suy giảm không bị chặn

Phương trình vi phân

$$\frac{dQ}{dt} = k.Q$$

Có nghiệm

k > 0: tăng trưởng \rightarrow

✓ Lãi kép liên tục

$$k < 0$$
: suy giảm \rightarrow

- ✓ Phân rã chất phóng xạ
- ✓ Cạn kiệt tài nguyên

www.hcmute.e

2. Mô hình tăng trưởng logistic và mô hình tăng trưởng bị giới hạn

Mô hình tăng trưởng logistic

Phương trình $\frac{dQ}{dt} = kQ(B-Q), k > 0$ $\downarrow \downarrow$ Nghiệm $Q(t) = \frac{B}{1 + Ae^{-Bkt}}$

- ✓ Tăng trưởng dân số dài hạn
- ✓ Tăng trưởng của doanh nghiệp

Mô hình tăng trưởng bị giới hạn

Phương trình
$$\frac{dQ}{dt} = k(B-Q), k > 0$$

$$\downarrow \qquad \qquad \downarrow$$
Nghiệm $Q(t) = B - Ae^{-kt}$

- ✓ Sự lan truyền của tin tức
- ✓ Sự truyền thuốc vào tĩnh mạch
- ✓ Định luật làm lạnh của Newton
- ✓ Sự tăng giá của sản phẩm mới

Giả sử một chất phóng xạ phân rã với tốc độ

$$\frac{dQ}{dt} = -0.25Q$$
(đơn vị/năm)

Hỏi sau 5 năm lượng phóng xạ còn lại bao nhiều nếu sau 1 năm nó còn 100 đơn vị.

(đơn vị tính: 10

triệu người) của

một quốc gia sau t

năm kể từ năm 2013

tăng trưởng với tốc

$$\hat{\mathbf{d}}\hat{\mathbf{o}} \frac{dp}{dt} = 0.25 p (1-p),$$
$$p(0) = 0.9$$

Ước tính dân số vào năm 2019.

3. Mô hình hòa tan

Một bể chứa 20 kg muối hòa tan trong 5000 lít nước. Nước biển có chứa 0.03 kg muối trong 1 lít nước được bơm vào bể với tốc độ 25 lít/phút. Dung dịch được khuấy đều và bơm ra ngoài với tốc độ tương tự. Hỏi sau nửa giờ trong bể còn bao nhiêu muối?

Bài giải

Tốc độ thay đổi của muối = tốc độ muối chảy vào - tốc độ muối chảy ra.

4. Mô hình mạch điện

Mô hình mạch điện

Theo định luật Kirchhoffs

$$L\frac{dI}{dt} + RI = E$$

Cường độ dòng điện trong mạch:

$$I(t) = \frac{E}{R} \left(1 - e^{-\frac{R}{L}t} \right) \rightarrow \frac{E}{R} \text{ khi } t \rightarrow \infty$$

$$= \frac{E}{R} + \left(-\frac{E}{R} e^{-\frac{R}{L}t} \right)$$

Dòng điện tức thời

Cho mạch điện có điện trở là 12Ω và điện cảm là 4H. Nếu nguồn điện cố định là 60V và chuyển mạch là đóng khi

t = 0 thì sau 1 giây dòng điện trong mạch là bao nhiều? Sau một khoảng thời gian dài thì dòng điện trong mạch như thế nào?

KÉT BÀI

Sinh viên cần lưu ý:

- Tìm được nghiệm của phương trình vi phân tuyến tính cấp 1
- Nhận dạng và xây dựng được mô hình toán học từ bài toán thực tế
- Vận dụng được phương trình vi phân vào giải bài toán thực tế

THANKS FOR WATCHING!