



# Lecture 11: Filters-Introduction

### **Outlines**

- 1. Simple Filters
- 2. Ideal Filters
- 3. Linear Phase and FIR filter types

# 1. Simple Filters

- Filter = system for altering signal in some 'useful' way
- LSI systems:
  - are characterized by H(z) (or h[n])
  - have different gains (& phase shifts) at different frequencies
  - can be designed systematically for specific filtering tasks

#### FIR & IIR

- FIR = finite impulse response
   ⇔ no feedback in block diagram
  - ⇔ no poles (only zeros)
- IIR = infinite impulse response
   ⇔ feedback in block diagram
  - ⇔ poles (and often zeros)

# **Simple FIR Lowpass**

•  $h_L[n] = \{\frac{1}{2}, \frac{1}{2}\}$ (2 pt moving avg.)

$$\begin{array}{c|c}
h_L[n] \\
 & h_{2} \\
 & h_{2} \\
 & h_{3} \\
 & h_{4} \\
 & h_{2} \\
 & h_{3} \\
 & h_{4} \\
 & h_{3} \\
 & h_{4} \\
 & h_{5} \\
 & h_{6} \\
 & h_{7} \\
 &$$

$$H_L(z) = \frac{1}{2}(1+z^{-1}) = \frac{z+1}{2z}$$



$$\Rightarrow H_L(e^{j\omega}) = e^{-j\omega/2} \cos(\omega/2)$$

$$\Rightarrow H_L(e^{j\omega}) = e^{-j\omega/2} \cos(\omega/2)$$
1/2 sample delay



# Simple FIR Lowpass

• Filters are often characterized by their cutoff frequency  $\omega_c$ :



 Cutoff frequency is most often defined as the half-power point, i.e.

$$\left| H(e^{j\omega_c}) \right|^2 = \frac{1}{2} \max \left\{ \left| H(e^{j\omega}) \right|^2 \right\} \Rightarrow H = \frac{1}{\sqrt{2}} H_{\text{max}}$$

If 
$$\left|H(e^{j\omega})\right| = \cos(\omega/2)$$
  
then  $\omega_c = 2\cos^{-1}\frac{1}{\sqrt{2}} = \frac{\pi}{2}$ 

#### deciBels

- Filter magnitude responses are often described in deciBels (dB)
- dB is simply a scaled log value:

$$dB = 20\log_{10}(level) = 10\log_{10}(power) \quad power = level^2$$

Half-power also known as 3dB point:

$$\begin{aligned} |H|_{cutoff} &= \frac{1}{\sqrt{2}} |H|_{max} \\ dB\{|H|_{cutoff}\} &= dB\{|H|_{max}\} + 20\log_{10}\left(\frac{1}{\sqrt{2}}\right) \\ &= dB\{|H|_{max}\} - 3.01 \end{aligned}$$

#### deciBels

We usually plot magnitudes in dB:





A gain of 0 corresponds to -∞ dB

# Simple FIR Highpass

 $h_H[n] = \{1/_2 - 1/_2\}$ 

$$H_H(z) = \frac{1}{2} (1 - z^{-1}) = \frac{z - 1}{2z}$$



$$\Rightarrow H_H(e^{j\omega}) = je^{-j\omega/2}\sin(\omega/2)$$

• 3dB point  $\omega_c = \pi/2$  (again)



# FIR Lowpass and Highpass

Note:

$$h_L[n] = \{1/2, 1/2\}$$
  $h_H[n] = \{1/2, -1/2\}$ 

• i.e.  $h_H[n] = (-1)^n h_L[n]$  $\Rightarrow H_H(z) = H_L(-z)$ 



- i.e. 180° rotation of the z-plane,
- ⇒ π shift of frequency response



# Simple IIR Lowpass

# IIR $\rightarrow$ feedback, zeros and poles, conditional stability, h[n] less useful



# Simple IIR Lowpass

$$H_{LP}(z) = K \frac{1 + z^{-1}}{1 - \alpha z^{-1}}$$

$$max = 1$$

$$using K = (1-\alpha)/2$$

• Cutoff freq.  $\omega_c$  from  $\left|H_{LP}(e^{j\omega_c})\right|^2 = \frac{\max}{2}$ 

$$\Rightarrow \frac{(1-\alpha)^2}{4} \frac{\left(1+e^{-j\omega_c}\right)\left(1+e^{j\omega_c}\right)}{\left(1-\alpha e^{-j\omega_c}\right)\left(1-\alpha e^{j\omega_c}\right)} = \frac{1}{2}$$

$$\Rightarrow \cos \omega_c = \frac{2\alpha}{1 + \alpha^2} \Rightarrow \alpha = \frac{1 - \sin \omega_c}{\cos \omega_c}$$

**Design Equation** 

# Simple IIR Highpass





0.5

-0.5

# Design Equation:

$$\alpha = \frac{1 - \sin \omega_c}{\cos \omega_c}$$
(again)

### **Highpass and Lowpass**

Consider lowpass filter:

$$H_{LP}(e^{j\omega}) = \begin{cases} 1 & \omega \approx 0 \\ \sim 0 & \text{large } \omega \end{cases}$$

Then:

$$1 - H_{LP}(e^{j\omega}) = \begin{cases} 0 & \omega \approx 0 & \text{Highpass} \\ \sim 1 & \text{large } \omega & \text{c/w } (\text{-1})^n h[n] \end{cases}$$

just another z poly

• However,  $|1 - H_{LP}(z)| \neq 1 - |H_{LP}(z)|$ (unless  $H(e^{j\omega})$  is pure real - not for IIR)

# Simple IIR Bandpass

$$H_{BP}(z) = \frac{1 - \alpha}{2} \frac{1 - z^{-2}}{1 - \beta(1 + \alpha)z^{-1} + \alpha z^{-2}}$$

$$= K \frac{(1 + z^{-1})(1 - z^{-1})}{1 - 2r\cos\theta \cdot z^{-1} + r^2 z^{-2}}$$
where  $r = \sqrt{\alpha} \cos\theta = \frac{\beta(1 + \alpha)}{2\sqrt{\alpha}}$ 

Center freq 
$$\omega_c = \cos^{-1} \beta$$
  
3dB bandwidth  $B = \cos^{-1} \left( \frac{2\alpha}{1 + \alpha^2} \right)$ 



# Simple Filter Example

• Design a second-order IIR bandpass filter with  $\omega_{\rm c}=0.4\pi,$  3dB b/w of  $0.1\pi$ 

$$\omega_{c} = 0.4\pi \Rightarrow \beta = \cos \omega_{c} = 0.3090$$

$$B = 0.1\pi \Rightarrow \frac{2\alpha}{1 + \alpha^{2}} = \cos(0.1\pi) \Rightarrow \alpha = 0.7265$$

$$\Rightarrow H_{BP}(z) = \frac{1 - \alpha}{2} \frac{1 - z^{-2}}{1 - \beta(1 + \alpha)z^{-1} + \alpha z^{-2}}$$

$$= \frac{0.1367(1 - z^{-2})}{1 - 0.5335z^{-1} + 0.7265z^{-2}}$$
 sensitive...

# Simple IIR Bandstop

zeros at  $\omega_c$  (per 1 -  $2r\cos\theta$   $z^{-1}$  +  $r^2z^{-2}$ )

$$H_{BS}(z) = \frac{1+\alpha}{2} \frac{1-2\beta z^{-1}+z^{-2}}{1-\beta(1+\alpha)z^{-1}+\alpha z^{-2}}$$
same poles as  $H_{BP}$ 

Design eqns:

$$\omega_c = \cos^{-1} \beta \Rightarrow \beta = \cos \omega_c$$

$$B = \cos^{-1} \left( \frac{2\alpha}{1 + \alpha^2} \right)$$

$$\Rightarrow \alpha = \frac{1}{\cos R} - \sqrt{\frac{1}{\cos^2 R} - 1}$$







# **Cascading Filters**

Repeating a filter (cascade connection) makes its characteristics more abrupt:



Repeated roots in z-plane:

# **Cascading Filters**

Cascade systems are higher order e.g. longer (finite) impulse response:



 In general, cascade filters will not be optimal (...) for a given order

# **Cascading Filters**

Cascading filters improves rolloff slope:



■ But: 3dB cutoff frequency will change (gain at  $\omega_c \rightarrow 3N$  dB)

# **Interlude: The Big Picture**



#### 2. Ideal Filters

- Typical filter requirements:
  - gain = 1 for wanted parts (pass band)
  - gain = 0 for unwanted parts (stop band)
- "Ideal" characteristics would be like:
  - no phase distortion etc.
- What is this filter?
  - can calculate IR h[n] as IDTFT of ideal response...



# **Ideal Lowpass Filter**

• Given ideal  $H(e^{j\omega})$ : (assume  $\theta(\omega) = 0$ )

$$\Rightarrow h[n] = IDTFT \left\{ H(e^{j\omega}) \right\}$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega$$

$$\Rightarrow h[n] = \frac{\sin \omega_c n}{\pi n}$$
Ideal lowpass filter

## **Ideal Lowpass Filter**

$$h[n] = \frac{\sin \omega_c n}{\pi n} \quad (\sin c)_{0.05}^{0.15} \quad (\cos c)_{0.05}^{0.1$$

- Problems!
  - doubly infinite  $(n = -\infty..\infty)$
  - no rational polynomial → very long FIR
  - excellent frequency-domain characteristics

     → poor time-domain characteristics
     (blurring, ringing a general problem)

## **Practical Filter Specifications**



- lower-order realization (less computation)
- better time-domain properties (less ringing)
- easier to design...

# 3. Linear-phase Filters

- $|H(e^{j\omega})|$  alone can hide phase distortion
  - differing delays for adjacent frequencies can mangle the signal
- Prefer filters with a flat phase response e.g.  $\theta(\omega) = 0$  "zero phase filter"
- A filter with constant delay  $\tau_p$  = D at all freqs has  $\theta(\omega) = -D\omega$  "linear phase"

$$\Rightarrow H(e^{j\omega}) = e^{-jD\omega} \tilde{H}(\omega)$$
 pure-real (zero-phase) portion

Linear phase can 'shift' to zero phase

# Time reversal filtering

$$x[n] \xrightarrow{V[n]} u[n] = v[-n] \quad w[n]$$

$$x[n] \xrightarrow{Time} H(z) \xrightarrow{Time} y[n]$$

$$v[n] = x[n] \circledast h[n] \rightarrow V(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$$

$$u[n] = v[-n] \rightarrow U(e^{j\omega}) = V(e^{-j\omega}) = V^*(e^{j\omega}) \quad \text{if } v \text{ real}$$

$$w[n] = u[n] \circledast h[n] \rightarrow W(e^{j\omega}) = H(e^{j\omega})U(e^{j\omega})$$

$$v[n] = w[-n] \rightarrow Y(e^{j\omega}) = W^*(e^{j\omega})$$

- Achieves zero-phase result
- Not causal! Need whole signal first

#### **Linear Phase FIR Filters**

- (Anti)Symmetric FIR filters are almost the only way to get zero/linear phase
- 4 types:

Odd length

Even length

Symmetric

Antisymmetric



- Length L odd  $\rightarrow$  order N = L 1 even
- Symmetric → h[n] = h[N n](h[N/2] unique)
- $H(e^{j\omega}) = \sum_{n=0}^{N} h[n]e^{-j\omega n}$

$$= e^{-j\omega\frac{N}{2}} \left( h\left[\frac{N}{2}\right] + 2\sum_{n=1}^{N/2} h\left[\frac{N}{2} - n\right] \cos \omega n \right)$$

linear phase

$$D = -\theta(\omega)/\omega = N/2$$

pure-real  $\widetilde{H}(\omega)$  from cosine basis:





Where are the N zeros?

$$h[n] = h[N-n] \Rightarrow H(z) = z^{-N}H(\frac{1}{z})$$
 Conjugate reciprocal thus for a zero  $\zeta$ 

$$H(\zeta) = 0 \Rightarrow H(\frac{1}{\zeta}) = 0$$
Reciprocal zeros
(as well as cpx conj)

No reciprocal on u.circle



- Length L even  $\rightarrow$  order N = L 1 odd
- Symmetric → h[n] = h[N n](no unique point)

$$H(e^{j\omega}) = e^{-j\omega\frac{N}{2}} \sum_{n=1}^{(N+1)/2} h\left[\frac{N+1}{2} - n\right] \cos\omega(n - \frac{1}{2})$$

Non-integer delay of N/2 samples

 $\widetilde{H}(\omega)$  from **double-length** cosine basis





■ Zeros: 
$$H(z) = z^{-N}H(\frac{1}{z})$$

LPF-like

at  $z = -1$ ,  $H(-1) = (-1)^{N}_{\uparrow}H(-1) \Rightarrow H(e^{j\pi}) = 0$ 

# **↑**↑↑

# Linear Phase FIR: Type 3

- Length L odd  $\rightarrow$  order N = L 1 even
- Antisymmetric  $\rightarrow h[n] = -h[N n]$  $\Rightarrow h[N/2] = -h[N/2] = 0$

$$H(e^{j\omega}) = \sum_{n=1}^{N/2} h\left[\frac{N}{2} - n\right] \left(e^{-j\omega(\frac{N}{2} - n)} - e^{-j\omega(\frac{N}{2} + n)}\right)$$

$$= je^{-j\omega\frac{N}{2}} \left(2\sum_{n=1}^{N/2} h\left[\frac{N}{2} - n\right] \sin \omega n\right)$$

 $\theta(\omega) = \pi/2 - \omega \cdot N/2$ Antisymmetric  $\Rightarrow$   $\pi/2$  phase shift in addition to linear phase





• Zeros: 
$$H(z) = -z^{-N}H(\frac{1}{z})$$

$$\Rightarrow H(1) = -H(1) = 0$$
;  $H(-1) = -H(-1) = 0$ 

- Length L even  $\rightarrow$  order N = L 1 odd
- Antisymmetric  $\rightarrow h[n] = -h[N n]$ (no center point)
- $H(e^{j\omega}) = je^{-j\omega\frac{N}{2}} 2\sum_{n=1}^{N/2} h\left[\frac{N+1}{2} n\right] \sin\omega\left(n \frac{1}{2}\right)$

 $\pi/2$  offset

offset sine basis

fractional-sample delay





• Zeros: H(1) = -H(1) = 0(H(-1) OK because N is odd)

### Odd length

Even length

Symmetric





**Antisymmetric** 



