Hüpertasand

Hüpertasandi definitsioon

Definitsioon

Hüpertasandiks nimetatakse kõigi selliste punktide $P(x_1, x_2, ..., x_n)$ hulka, mille koordinaadid $x_1, x_2, ..., x_n$ rahuldavad lineaarset võrrandit $a_1x_1 + a_2x_2 + ... + a_nx_n + b = 0$,

kus
$$|a_1| + |a_2| + ... + |a_n| \neq 0$$
.

Vektorit $\vec{m} = (a_1; \dots a_n)$ nimetatakse hüpertasandi normaalvektoriks.

Hüpertasand on üheselt määratud, kui on teada tema mingi punkt $P(x_1^0, x_2^0, \dots, x_n^0)$ ning normaalvektor $\vec{m} = (a_1, \dots, a_n)$. Tasandi võrrand on sel juhul

$$a_1(x_1 - x_1^0) + a_2(x_2 - x_2^0) + \dots + a_n(x_n - x_n^0) = 0.$$

Tasandi vektorvõrrand

Fikseerides tasandil mingi punkti $A(x_1^0, x_2^0, \dots, x_n^0)$ ja tähistades suvalist tasandil asetsevat punkti $P(x_1, x_2, \dots, x_n)$, saame tasandil asetsevate vektorite üldavaldiseks:

$$\overrightarrow{AP} = (x_1 - x_1^0; x_2 - x_2^0; ...; x_n - x_n^0),$$

See vektor peab olema risti normaalvektoriga $\vec{m} = (a_1; ... a_n)$, seetõttu on nende vektorite skalaarkorrutis null:

$$\overrightarrow{AP} \cdot \overrightarrow{m} = 0$$

Viimane võrrand on tasandi vektorvõrrandiks.

Punkti kaugus punktihulgast

Tähistagu $\rho(A, P)$ punktide A ja P vahelist kaugust.

Definitsioon

Kui hulgas U leidub punkt Q, nii et $\rho(A,Q) \le \rho(A,P)$ iga $P \in U$ korral, siis kaugust $\rho(A,Q)$ nimetatakse punkti A kauguseks punktide hulgast U.

Punkti kaugus hüpertasandist

Teoreem

Punkti $A(z_1;...z_n)$ kaugus $\rho(A,\tau)$ hüpertasandist τ , mis on antud võrrandiga $a_1x_1 + a_2x_2 + ... + a_nx_n + b = 0$,

avaldub kujul

$$\rho(A,\tau) = \frac{|a_1 z_1 + a_2 z_2 + \dots + a_n z_n + b|}{\sqrt{a_1^2 + a_2^2 + \dots + a_n^2}}.$$