Simulation with algorithm 2

Sayani Gupta

Simulation setup

Three circular granularities g1, g2 and g3 are considered with levels 2, 3 and 4 respectively. Many time series are created using the four designs below, each of which is iterated five times. We anticipate to have four clusters, each with five time series conforming to the same design, once we execute the clustering.

Algorithm Compute wpd for each granularity. The distance matrix is then computed with 20 time series and wpd for three granularities as the variable. Euclidean distances are computed and then hierarchical clustering is applied on them. (It is expected that wpd will be close to zero if there is no change in distribution across categories)

design	g1	g2	g3
design-1	no	no	no
$\operatorname{design-2}$	yes	no	yes
design-3	no	yes	no
design-4	yes	no	yes
${\it design-5}$	yes	yes	yes

Raw plots

Designs (Distribution of simulated data across different granularities)

Five iterations of each design (changing seeds)

Table of wpd across designs and wpd

data_id	g3	g2	g1
design-1-1	15.471	11.095	3.450
design-1-2	13.994	7.241	4.058
design-1-3	16.196	18.318	5.966
design-1-4	16.795	13.256	3.692
design-1-5	18.907	10.351	1.525
design-2-1	107.613	12.214	101.916
design-2-2	110.182	15.639	102.042
design-2-3	118.215	7.807	104.875
design-2-4	115.995	13.435	99.841
design-2-5	128.711	10.970	114.123
design-3-1	14.546	114.497	3.924
design-3-2	13.623	114.872	0.062
design-3-3	17.866	112.808	3.554
design-3-4	16.243	119.741	3.665
design-3-5	12.196	111.521	-0.051
design-4-1	118.368	9.938	71.425
$\operatorname{design-4-2}$	115.595	9.859	60.551

data_id	g3	g2	g1
design-4-3	113.580	16.643	68.790
design-4-4	136.751	9.612	69.808
design-4-5	118.999	9.516	71.511
design-5-1	64.519	106.959	52.402
design-5-2	64.154	103.724	57.853
design-5-3	64.341	97.969	49.319
design-5-4	62.766	85.010	44.611
$\operatorname{design-5-5}$	65.525	94.433	50.724

Clustering of designs

group	data_id
1	design-1-1
1	design-1-2
1	design-1-3
1	design-1-4
1	design-1-5
2	design-2-1
2	design-2-2
2	design-2-3
2	design-2-4
2	design-2-5
3	design-3-1
3	design-3-2
3	design-3-3
3	design-3-4
3	design-3-5
4	design-4-1
4	design-4-2
4	design-4-3
4	design-4-4
4	design-4-5
5	design-5-1
5	design-5-2
5	design-5-3
5	design-5-4
5	design-5-5

First try Euclidean distance Second try Mahanttan and see if cluster separation is better Try PCA before clustering