Siddharth Mishra-Sharma (MIT/IAIFI) | IAIFI Summer School

Simulators

 $x \sim p(x)$

Simulators are ubiquitous: they prescribe a way to sample from the data distribution

Collider data

particles $\sim p(\text{particles})$

Cosmology data particles $\sim p(\text{particles})$

Molecular dynamics

configurations $\sim p(\text{configurations})$

[C. Cesarotti with ATLAS]

[Aquarius simulation]

[E. Cances et al]

Simulators

 $x \sim p(x)$

Simulators are ubiquitous: they prescribe a way to sample from the data distribution

Collider data

particles $\sim p(\text{particles})$

Cosmology data

particles $\sim p(\text{particles})$

Molecular dynamics

configurations $\sim p(\text{configurations})$

[C. Cesarotti with ATLAS]

[Aquarius simulation]

[E. Cances et al]

Conditional simulators

Conditional simulations sample from the likelihood $p(x \mid \theta)$

Cosmology data

particles ~ $p(\text{particles} \mid \{\Omega_m, \sigma_8\})$

$$x \sim p(x, \mathcal{M})$$
Model

or

$$x \sim p(x \mid \theta)$$

Model parameters