Transformers

Abu Bakr Soliman

Sequence to Sequence (Seq2Seq)

Input	x1	x2	••	xn
Output	y1	y2		yn

Recurrent Neural Network (RNN)

RNN Problems

- Long Sequences = Slow Computations
- Vanishing and Exploding Gradients
- Vanished Memory

Attention is All You Need

Vectors

Patient ID

10200

3600

Vectors

Patient ID	Height (CM)	Weight (KG)	Systolic (mmHg)	Diastolic (mmHg)
10200	165	71	120	80
3600	180	92	110	85

Matrices Operations

Attention is All You Need

Tokenizer

Token	ID
Hello	1
Go	2
ed	3
red	32000

Input

I can go alone

Self-Attention

$$Attention(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

$d_k = d_{model}$	512
seq	4

	I	can	go	alone
ı	0.7	0.2	0.1	0.1
can	0.3	0.5	0.1	0.1
go	0.1	0.3	0.4	0.2
alone	0.05	0.05	0.1	0.8

4*4

Self-Attention

softmax
$$\left(\frac{QK^T}{\sqrt{d_k}}\right)$$

	I	can	go	alone
I	0.7	0.2	0.1	0.1
can	0.3	0.5	0.1	0.1
go	0.1	0.3	0.4	0.2
alone	0.05	0.05	0.1	0.8

V

4*512

Attention(Q, K, V)

4*512

4*4

Multi-Head Attention

WQ

К3

d _{model}	512
seq	4

d_{model}	512
seq	4
h	4
$d_k=d_v$	d _{model} / h

 $MultiHead(Q, K, V) = Concat(head_1 ... head_h)W^0$

 $MultiHead(Q, K, V) = Concat(head_1 ... head_h)W^0$

Query, Key & Value

Query, Key & Value

Masked Attention

	I	can	go	alone
-	0.7	0.2	0.1	0.1
can	0.3	0.5	0.1	0.1
go	0.1	0.3	0.4	0.2
alone	0.05	0.05	0.1	0.8

4*4

Masked Attention

softmax $\left(\frac{QK^T}{\sqrt{d_k}}\right)$

Causal Model: The model must not be able to see the future words

$$\left(\frac{QK^T}{\sqrt{d_k}}\right)$$

	I	can	go	alone
I	63.3	1.2	2.6	7.2
can	3.25	0.3	1.2	2.1
go	12.0	11.9	52.9	2.9
alone	1.6	63.1	14.2	101.3

		can	go	alone
I	63.3	-∞	-∞	-∞
can	3.25	96.1	-∞	-∞
go	12.0	11.9	52.9	-∞
alone	1.6	63.1	14.2	101.3

Training

Training

How to generate text: using different decoding methods for language generation with Transformers

Published March 1, 2020

Update on GitHub

Follow Me

Abu Bakr Soliman, MSc Developing REAL AI solutions and strategies. Follow me to know more.

https://www.linkedin.com/in/bakrianoo/