Математический анализ

19 сентября 2022

Условный экстремум функции

$$D \subset \mathbb{R}^{n+m}, \ f:D \to \mathbb{R}, \quad z \in D$$
 $\Phi:D \to \mathbb{R}^m$ условие $\Phi(z)=0$

Определение. точка $z_0 \in D$ называется условным экстремумом функции f при условии $\Phi = 0$, если $\Phi(z_0) = 0$ и $\exists U$ – окрестность z_0 , $U \subset \mathbb{R}^{n+m} \ \forall z \in D \cap U$: $\Phi(x) = 0$ выполняется условие $f(z) \geq f(z_0)$ (– условный min); $f(z) \leq f(z_0)$ (– условный max)

Пусть $D \subset \mathbb{R}^{n+m}$, открытое, $f \in C^1(D,\mathbb{R})$, $\Phi \in C^1(D,\mathbb{R}^m)$ z_0 — точка условного экстремума $\operatorname{rank} \Phi'(z_0) = m$ Перенумеруем координаты $\boxed{\Phi'_x \quad \Phi'_y} = \Phi'$ z = (x,y) так, чтобы было $\det \Phi'_y(z_0) \neq 0$ $z_0 = (x_0,y_0)$ По Th. о неявном отображении $\exists U$ — окрестность x_0 :

$$y = \varphi(x), \ x \in U, \ \Phi(x, \varphi(x)) = 0$$

Тогда $f(x, \varphi(x))$ имеет безусловный экстремум в точке x_0 (условие выполняется) $\Rightarrow^{(1)} \underbrace{f_x'(z)}_{1 \times n} + \underbrace{f_y'(z)}_{1 \times m} \cdot \underbrace{\varphi'(x)}_{m \times n} = 0 \ (\text{--это и есть необх. усл. экстремума})$ $\varphi'(x_0) = -\left(\Phi_y'(z_0)\right)^{-1} \cdot \Phi_x'(z_0)$ (1) HyO: $f_x'(z) - \underbrace{f_y'(z)}_{n \times n} \left(\Phi_y'(z)\right)^{-1} \Phi_x'(z) = 0$

Метод неопределенных множителей Лагранжа

$$\begin{cases} f_x'(z) + f_y'(z)\varphi'(x) = 0 & n \text{ уравнений} \\ \Phi(z) = 0 - \text{отсюда} + m \text{ уравнений, } n + m \text{ неизвестных} \end{cases}$$

$$\underbrace{f_y'(z)}_{1 \times m} = \underbrace{\lambda}_{1 \times m} \underbrace{\Phi_y'(z)}_{m \times n} \underbrace{\Phi_x'(z) + \Phi_y'(z)\varphi'(x)}_{m \times n} = 0$$

$$\underbrace{f_x'(z) + f_y'(z)\varphi'(x) - \lambda(\Phi_x'(z) + \Phi_y'(z)\varphi'(x))}_{T} = 0$$

$$\underbrace{f_x'(z) - \lambda\Phi_x'(z) = 0}_{T} = 0$$
 т. е. получаем

$$\begin{cases} f_x'(z) - \lambda \Phi_x'(z) = 0 & n+2m \text{ уравнений} \\ \Phi(z) = 0 & n+2m \text{ неизвестных} \\ f_y'(z) - \lambda \Phi_x'(z) = 0 & (\lambda \text{ в числе неизв.}) \end{cases}$$

⇒ т. е. система стала единообразной

$$\begin{cases} f'(z) - \lambda \Phi'(z) = 0 \\ \Phi(z) = 0 \end{cases}$$

Пусть
$$F(z, \lambda) = f(z) - \lambda \Phi(z)$$

 $F'_z(z, \lambda) = f'(z) - \lambda \Phi'(z)$
 $F'_\lambda(z, \lambda) = -\Phi'(x)$
 $\Rightarrow F' = 0$

Пример 1. Наименьшее и наибольшее значения квадратичной формы на единичной сфере

$$A = A^{T} \in \text{Mat}^{d}, \ (Az, z) = \sum_{i,k=1}^{d} A_{ik} z_{i} z_{k} \quad z \in \mathbb{R}^{d}$$

$$S^{d-1} = \{x : \|z\| = 1\}$$

$$f(z) = (Az, z)$$

$$\Phi(z) = \|z\|^{2} - 1 = \sum_{i=1}^{d} z_{i}^{2} - 1, \quad m = 1, n = d - 1$$

$$f'(z) = 2(Az)^{T} \quad \Phi'(z) = 2z^{T}$$

$$\forall l \ \frac{\partial f}{\partial z_{l}} = \frac{\partial}{\partial z_{l}} \left(\sum_{k=1}^{d} A_{lk} z_{k} + \sum_{i=1}^{d} A_{il} z \right) i = 2(Az)_{l} \right)$$

$$\begin{cases} f'(z) - \lambda \Phi'(z) \\ \Phi(z) = 0 \end{cases} \Rightarrow \begin{cases} 2(Az - \lambda z) = 0 \\ \Phi(z) = 0 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} Az = \lambda z \\ \|z\| = 1 \end{cases}$$
— задача на собственные знач. и векторы

Замечание. Условные экстремумы в точках является нормированным собственными векторами матрицы

$$f(z) = (Az, z) = (\lambda z, z) = \lambda ||z||^2 = \lambda$$

 \Rightarrow наибольшее значение квадратичной формы $= \max\{\lambda\}$ наименьшее $= \min\{\lambda + \text{ c. ч } A\}$

$$B\in \mathrm{Mat}^{m,n}\quad \|B\|^2=\sup_{z\in S^{n-1}}\|Bz\|^2=\sup_{z\in S^{n-1}}(Bz,Bz)=$$
 $=\sup_{z\in S^{n-1}}(B^TB,z)=\max\lambda(B^TB)=\max S(B),\quad$ где $S(B)$ – сингулярные числа на $B\in \mathrm{Mat}^{m,n}$ $A:\mathbb{R}^n\to\mathbb{R}^m$

$$(Ax,y) = \sum_{k=1}^{n} \sum_{i=1}^{m} A_{ik} x_k y_i = \sum_{k=1}^{n} x_k (A^T y)_k = (x, A^t y)$$

$$(A^T y)_k = \sum_{l=1}^m (A^T)_{kl} y_l = \sum_{l=1}^m A_{lk} y_l$$

Интеграл Римана в \mathbb{R}^n

 Π – координатный параллелепипед в \mathbb{R}^n ,

$$\Pi = [a_1, b_1] \times \cdots \times [a_n, b_n] = \prod_{i=1}^n [a_i, b_i]$$
 $v(\Pi) = (b_1 - a_1) \cdot \cdots \cdot (b_n - a_n) = \prod_{i=1}^n (b_i - a_i)$ – объем

 $f:\Pi \to \mathbb{R}$, ограниченное $(\exists c>0:|f(x)|< c\ \forall x\in\Pi)$ $p_i=\{[t_{k-1},t_k],\ k=1,\ldots,N_i\}$ — разбиение $[a_i,b_i]$, если $a_i=t_0\leq t_1\leq\cdots\leq t_{N_i}=b_i$ $p=\{\pi=\pi_1\times\cdots\times\pi_n,\ \pi_i\in p_i\}$ — разбиение Π

$$d(p) = \max_{\pi \in p} \operatorname{diam} \pi, \qquad \operatorname{diam} \pi = \sup_{x,y \in \pi} \|x - y\|$$

$$L(f,p) = \sum_{\pi \in p} \inf_{\pi} f \cdot v(\pi)$$
 — нижняя сумма Дарбу
$$U(f,p) = \sum_{\pi \in p} \sup_{\pi} f \cdot v(\pi)$$
 — верхняя сумма Дарбу
$$L(f,p) \leq U(f,p)$$

Лемма 1. Для \forall разбиений p_1, p_2 $L(f, p_1) \leq U(f, p_2)$

Доказательство.

- 1. p_2 расширение p_1 ($\forall \pi \in p_1 : \pi = \bigcup_{i=1}^N \pi_i, \ \pi_i \in p_2$) $v(\pi) = \sum_{i=1}^N v(\pi_i)$ $\inf_{\pi} f \leq \inf_{\pi_i} f, \ \forall i$ $\sum_{i=1}^N \inf_{\pi_i} f \cdot v(\pi_i) \geq \inf_{\pi} f \cdot v(\pi)$ $\Rightarrow L(f, p_2) \geq L(f, p_1)$ Аналогично для $U(f, p_2) \leq U(f, p_1)$
- 2. Пусть p_1 и p_2 два произвольных разбиения Рассмотрим $p_3=\{\pi_1\cap\pi_2,\ \pi_1\in p_1,\ \pi_2\in p_2\}$ $L(f,p_1)\leq L(f,p_3)\leq U(g,p_3)\leq U(f,p_2)$