

Operátorok, potenciálosság

Matematika G3 – Vektoranalízis Utoljára frissítve: 2025. október 18.

2.1. Elméleti Áttekintő

Definíció 2.1 : Nabla-operátor

Az \mathbb{R}^n -beli Descartes-koordinátarendszerben, ahol $\mathbf{x} = (x_1; x_2; \dots; x_n)$ egy tetszőleges pont koordinátái, a standard bázis pedig $\{\hat{\mathbf{e}}_1; \hat{\mathbf{e}}_2; \dots; \hat{\mathbf{e}}_n\}$ a Nabla egy olyan formális differenciáloperátor, melynek koordinátái a parciális derivált operátorok, vagyis:

$$\nabla = \sum_{i=1}^{n} \hat{e}_{i} \frac{\partial}{\partial x_{i}} = \begin{pmatrix} \frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \dots & \frac{\partial}{\partial x_{n}} \end{pmatrix}^{\mathsf{T}},$$

Differenciáloperátorok:

Legyen $\mathbf{v}(\mathbf{r}): \mathbb{R}^3 \to \mathbb{R}^3$ vektormező, $\varphi(\mathbf{r}): \mathbb{R}^3 \to \mathbb{R}$ skalármező, ahol \mathbf{r} az \mathbb{R}^3 -beli Descartes koordináta-rendszerben $\mathbf{r} = (x; y; z)$.

Rotáció	Divergencia	Gradiens
$\operatorname{rot} oldsymbol{v}$	div v	$\operatorname{grad} arphi$
$ abla imes oldsymbol{v}$	$\langle \nabla; \boldsymbol{v} \rangle$	$ abla \cdot arphi$
$\begin{bmatrix} \partial_x \\ \partial_y \\ \partial_z \end{bmatrix} \times \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$	$\left\langle \begin{bmatrix} \partial_x \\ \partial_y \\ \partial_z \end{bmatrix}; \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} \right\rangle$	$egin{bmatrix} \partial_x \varphi \ \partial_y \varphi \ \partial_z arphi \end{bmatrix}$
$\mathcal{D}_{\boldsymbol{v}} = \mathbb{R}^3$	$\mathcal{D}_{\boldsymbol{v}} = \mathbb{R}^3$	$\mathcal{D}_{oldsymbol{arphi}}=\mathbb{R}^3$
$\mathcal{R}_{\boldsymbol{v}} = \mathbb{R}^3$	$\mathcal{R}_{\boldsymbol{v}} = \mathbb{R}^3$	$\mathcal{R}_{\varphi}=\mathbb{R}$
$\mathcal{R}_{\mathrm{rot}\boldsymbol{v}} = \mathbb{R}^3$	$\mathcal{R}_{\operatorname{div}oldsymbol{v}}=\mathbb{R}$	$\mathcal{R}_{\operatorname{grad} \varphi} = \mathbb{R}^3$

Speciális esetek:

- ha div $\mathbf{v} = 0$, akkor a vektromező forrásmentes,
- ha rot v = 0, akkor a vektromező örvénymentes.

Definíció 2.2 : Laplace-operátor

A Laplace-operátor egy másodrendű differenciáloperátor az n dimenziós térben. Megadja egy skalármező gradiensének divergenciáját, azaz:

$$\Delta \varphi = \langle \nabla; \nabla \rangle \varphi = \text{div grad } \varphi.$$

 $!Φ;Ψ: \mathbb{R}^3 \to \mathbb{R}$ skalármezők, $\boldsymbol{u}; \boldsymbol{v}; \boldsymbol{w}: \mathbb{R}^3 \to \mathbb{R}^3$ vektormezők, $\lambda; \mu \in \mathbb{R}$ pedig skalárok.

• Teljesül a linearitás:

$$\operatorname{grad}(\lambda \Phi + \mu \Psi) = \lambda \operatorname{grad} \Phi + \mu \operatorname{grad} \Psi$$
$$\operatorname{rot}(\lambda \boldsymbol{v} + \mu \boldsymbol{w}) = \lambda \operatorname{rot} \boldsymbol{v} + \mu \operatorname{rot} \boldsymbol{w}$$
$$\operatorname{div}(\lambda \boldsymbol{v} + \mu \boldsymbol{w}) = \lambda \operatorname{div} \boldsymbol{v} + \mu \operatorname{div} \boldsymbol{w}$$

• Zérusság:

$$\operatorname{rot} \operatorname{grad} \Phi \equiv \mathbf{0}$$
$$\operatorname{div} \operatorname{rot} \mathbf{v} \equiv 0$$

• Deriválási szabályokhoz hasonló:

grad
$$(\Phi \Psi) = \Phi \operatorname{grad} \Psi + \Psi \operatorname{grad} \Phi$$

div $(\Phi \mathbf{v}) = \Phi \operatorname{div} \mathbf{v} + \langle \mathbf{v}; \operatorname{grad} \Phi \rangle$
rot $(\Phi \mathbf{v}) = \Phi \operatorname{rot} \mathbf{v} - \mathbf{v} \times \operatorname{grad} \Phi$

• Egyéb szabályok:

rot rot
$$\mathbf{v} = \operatorname{grad} \operatorname{div} \mathbf{v} - \Delta \mathbf{v}$$

rot $(\mathbf{u} \times \mathbf{v}) = \mathbf{u} \operatorname{div} \mathbf{v} - \mathbf{v} \operatorname{div} \mathbf{u} + (\mathbf{D}\mathbf{u})\mathbf{v} - (\mathbf{D}\mathbf{v})\mathbf{u}$
div $(\mathbf{u} \times \mathbf{v}) = \langle \mathbf{v}; \operatorname{rot} \mathbf{u} \rangle - \langle \mathbf{u}; \operatorname{rot} \mathbf{v} \rangle$
 $\operatorname{grad} (\langle \mathbf{u}; \mathbf{v} \rangle) = (\mathbf{D}\mathbf{u})\mathbf{v} + (\mathbf{D}\mathbf{v})\mathbf{u} + \mathbf{v} \times \operatorname{rot} \mathbf{u} + \mathbf{u} \times \operatorname{rot} \mathbf{v}$

Definíció 2.3 : Skalárpotenciálosság

Egy ${m v}:V\to V$ vektormező skalárpotenciálos, ha létezik olyan $\varphi:V\to\mathbb{R}$ skalármező, hogy ${m v}=\operatorname{grad}\varphi.$

Definíció 2.4 : Vektorpotenciálosság

Egy ${m v}:V \to V$ vektormező vektorpotenciálos, ha létezik olyan ${m u}:V \to V$ vektormező, hogy ${m v}={\rm rot}\,{m u}.$

Tétel 2.1 : Örvény- és forrásmentesség

Legyen ${m v}:V\to V$ mindenhol értelmezett, legalább egyszer differenciálható vektormező. Ekkor:

• v skalárpotenciálos \Leftrightarrow rot v = 0, hiszen rot grad $\varphi \equiv 0$, (örvénymentes)

• v vektorpotenciálos \Leftrightarrow div v = 0, hiszen div rot $u \equiv 0$. (forrásmentes)

Potenciálfüggvények számítása:

Legyen φ skalármező \pmb{v} vektormező skalárpotenciálja. Ebben az esetben tudjuk, hogy $\pmb{v}=\operatorname{grad}\varphi$, vagyis

$$\boldsymbol{v} = \left(\frac{\partial \varphi}{\partial x_1}; \frac{\partial \varphi}{\partial x_2}; \dots; \frac{\partial \varphi}{\partial x_n}\right)^{\mathsf{T}}.$$

Ilyen esetben a potenciálfüggvény az alábbi módon számítható:

$$V(\mathbf{r}) = \int_0^{x_1} v_1(\xi; x_2; \dots; x_n) \, \mathrm{d}\xi + \int_0^{x_2} v_2(0; \xi; \dots; x_n) \, \mathrm{d}\xi + \dots + \int_0^{x_n} v_n(0; 0; \dots; \xi) \, \mathrm{d}\xi.$$

Legyen u vektormező v vektormező vektorpotenciálja. A potenciál számtalan alakban előállhat, ezért keressük ezt az alábbi alakban:

$$\boldsymbol{u} = \left(u_{x}; u_{y}; 0\right)^{\mathsf{T}}$$

A potenciál komponensei az alábbi módon számíthatóak:

$$u_{x} = \int_{0}^{z} v_{y}(x; y; \zeta) \,d\zeta, \qquad u_{y} = \int_{0}^{x} v_{z}(\xi; y; 0) \,d\xi - \int_{0}^{z} v_{x}(x; y; \zeta) \,d\zeta.$$

Határozzuk meg a ${\pmb v}({\pmb r})=(yz)\,\hat{\pmb i}+(zx)\,\hat{\pmb j}+(xy)\,\hat{\pmb k}$ vektormező skalár- és vektorpotenciálját!

A vektormező rotáciája rot $\boldsymbol{v}=\boldsymbol{0}$, vagyis $\exists V(\boldsymbol{r}): \boldsymbol{v}=\operatorname{grad} V$, ahol V a vektormező skalárpotenciálja.

$$V(\mathbf{r}) = \int_0^x v_x(\xi; y; z) \, \mathrm{d}\xi + \int_0^y v_y(0; \xi; z) \, \mathrm{d}\xi + \int_0^z v_z(0; 0; \xi) \, \mathrm{d}\xi$$
$$= \int_0^x yz \, \mathrm{d}\xi + \int_0^y 0 \cdot z \, \mathrm{d}\xi + \int_0^z 0 \cdot 0 \, \mathrm{d}\xi = xyz.$$

A vektormező divergenciája div $\mathbf{v} = 0$, vagyis $\exists \mathbf{u}(\mathbf{r}) : \mathbf{v} = \text{rot } \mathbf{u}$, ahol \mathbf{u} a vektormező vektorpotenciálja.

Keressük a potenciált $\mathbf{u} = (u_x)\,\hat{\mathbf{i}} + (u_y)\,\hat{\mathbf{j}} + (0)\,\hat{\mathbf{k}}$ alakban! Ekkor:

$$\begin{split} u_x &= \int_0^z v_y(x;y;\zeta) \,\mathrm{d}\zeta = \int_0^z x\zeta \,\mathrm{d}\zeta = \frac{1}{2}xz^2, \\ u_y &= \int_0^x v_z(\xi;y;0) \,\mathrm{d}\xi - \int_0^z v_x(x;y;\zeta) \,\mathrm{d}\zeta = \int_0^x \xi y \,\mathrm{d}\xi - \int_0^z y\zeta \,\mathrm{d}\zeta = \frac{1}{2}x^2y - \frac{1}{2}yz^2. \end{split}$$

A potenciálok tehát:

$$V(\mathbf{r}) = xyz, \qquad \mathbf{u}(\mathbf{r}) = \frac{1}{2} \begin{bmatrix} xz^2 \\ x^2y - yz^2 \end{bmatrix}.$$

2.2. Feladatok

1. Számítsa ki az alábbi skalármezők gradiensét! Hattassa a függvényekre a Laplaceoperátort is!

a)
$$\varphi(\mathbf{r}) = 6x^y + \sin e^z$$

b)
$$\psi(r) = r^2/2$$

c)
$$\chi(\mathbf{r}) = xy + xz + yz$$

d)
$$\omega(\mathbf{r}) = 2x^2y + xz^2 + 6y$$

2. Számítsa ki az alábbi vektormezők divergenciáját és rotációját! Hol lesznek forrásmentesek, illetve örvénymentesek?

a)
$$v(r) = r$$

b)
$$\mathbf{w}(\mathbf{r}) = (3xy + z^2)\,\hat{\mathbf{i}} + (6e^z)\,\hat{\mathbf{j}} + (-5x^y)\,\hat{\mathbf{k}}$$

c)
$$u(r) = (\ln(xy/z))\hat{i} + (\ln(yz/x))\hat{j} + (\ln(zx/y))\hat{k}$$

d)
$$s(r) = a||r|| + ||a||r$$
 $(a \in \mathbb{R}^3)$

- 3. Bizonyítsa be a következő azonosságokat, amennyiben φ, ψ skalármezők, $\boldsymbol{v}, \boldsymbol{w}$ pedig vektormezők!
 - a) rot grad $\Phi \equiv \mathbf{0}$
 - b) div rot $\mathbf{v} \equiv 0$

c)
$$\operatorname{grad}(\Phi \Psi) = \Phi \operatorname{grad} \Psi + \Psi \operatorname{grad} \Phi$$

d)
$$\Delta(\Phi\Psi) = (\Delta\Phi)\Psi + 2\langle \operatorname{grad}\Phi; \operatorname{grad}\Psi\rangle + \Psi(\Delta\Phi)$$

e)
$$\operatorname{div}(\Phi \boldsymbol{v}) = \langle \operatorname{grad} \Phi; \boldsymbol{v} \rangle + \Phi \operatorname{div} \boldsymbol{v}$$

f)
$$\operatorname{div}(\boldsymbol{v} \times \boldsymbol{w}) = \langle \operatorname{rot} \boldsymbol{v}; \boldsymbol{w} \rangle - \langle \boldsymbol{v}; \operatorname{rot} \boldsymbol{w} \rangle$$

4. Vizsgálja meg, hogy az alábbi vektormezők skalár- illetve vektorpotenciálisak-e! Ha igen, adja meg a potenciálfüggvényeket! A valós konsztansokat legyenek zérusak, valamint a vektorpotenciált – amennyiben létezik – olyan módon adja meg, hogy a harmadik komponense zérus legyen.

a)
$$\mathbf{v}(\mathbf{r}) = (y+z)\,\hat{\mathbf{i}} + (x+z)\,\hat{\mathbf{j}} + (x+y)\,\hat{\mathbf{k}}$$

b)
$$\mathbf{w}(\mathbf{r}) = (e^{x+\sin y})\,\hat{\mathbf{i}} + (e^{x+\sin y}\cos y)\,\hat{\mathbf{j}} + (0)\,\hat{\mathbf{k}}$$

c)
$$\mathbf{u}(\mathbf{r}) = (2zx^3)\,\hat{\mathbf{i}} + (3z)\,\hat{\mathbf{j}} + (-3x^2z^2)\,\hat{\mathbf{k}}$$