Boolean Algebra

outline

- Boolean Algebra
 - Basic Boolean Equations
 - Multiple Level Logic Representation
 - Basic Identities
 - Algebraic Manipulation
 - Complements and Duals

Overview

- Gate Circuits and Boolean Equations
 - Binary Logic and Gates
 - Boolean Algebra
 - Standard Forms
- Additional Gates and Circuits
 - Other Gate Types
 - Exclusive-OR Operator and Gates
 - High-Impedance Outputs

Binary Logic and Gates

- Digital circuits are hardware components (based on transistors) that manipulate binary information
- We model the transistor-based electronic circuits as logic gates.

- Boolean algebra is a mathematical system for the manipulation of variables that can have one of two values.
 - In formal logic, these values are "true" and "false."
 - In digital systems, these values are "on" and "off," 1 and 0, or "high" and "low."
- Boolean expressions are created by performing operations on Boolean variables.
 - Common Boolean operators include AND, OR, and NOT.

Binary Logic

- Binary variables take on one of two values.
- Logical operators operate on binary values and binary variables.
- Basic logical operators are the logic functions AND, OR and NOT.
- Logic gates implement logic functions.
- <u>Boolean Algebra</u>: a useful mathematical system for specifying and transforming logic functions.

Boolean values

two discrete values 1 and 0, from which binary numbers

For simplicity, we often still write digits instead:

- 1 (high) is true
- 0 (low) is false
- We will use these values 1 and 0 as the elements of our Boolean System.

Binary Variables

- Recall that the two binary values have different names:
 - True/False
 - On/Off
 - Yes/No
 - 1/0
- We use 1 and 0 to denote the two values.

APPLICATION OF BOOLEAN ALGEBRA

- It is used to perform the logical operations in digital computer.
- In digital computer True represent by '1' (high volt) and False represent by '0' (low volt)
- Logical operations are performed by logical operators. The fundamental logical operators are:
 - 1. AND (conjunction)
 - 2. OR (disjunction)
 - 3. NOT (negation/complement)

Logical Operations

- The three basic logical operations are:
 - AND
 - OR
 - NOT
- AND is denoted by a dot (\cdot) .
- OR is denoted by a plus (+).
- NOT is denoted by an overbar (), a single quote mark (') after, or (~) before the variable.

Basic Identities of Boolean Algebra

• 1.
$$X + 0 = X$$

• 2.
$$X \cdot 1 = X$$

	A	1	RESULT
-	0	1	0
	1	1	1
			Į .

• 3.
$$X + 1 = 1$$

• 5.
$$X + X = X$$

• 4.
$$X \cdot 0 = 0$$

• 6.
$$X \cdot X = X$$

Basic Identities

• 7.
$$X + X' = 1$$

 X	X'	RES
0	1	1
1	0	1

• 9.
$$(X')' = X$$

• 8.
$$X \cdot X' = 0$$

X	X'	RES
0	1	0
1	0	0

Basic Properties

- Commutative
 - 10. X + Y = Y + X
- Associative
 - 12. X+(Y+Z)=(X+Y)+Z
- Distributive
 - 14. X(Y+Z) = XY + XZ
 - AND distributes over OR

- Commutative
 - 11. $X \cdot Y = Y \cdot X$
- Associative
 - 13. X(YZ) = (XY)Z
- Distributive
 - 15. X+YZ=(X+Y)(X+Z)
 - OR distributes over AND

Basic Properties

- DeMorgan's Theorem
- Very important in simplifying equations

• 16.
$$(X + Y)' = X' \cdot Y'$$

• 17.
$$(XY)' = X' + Y'$$

X	Y	X+Y	$\overline{X+Y}$		X	Y	X	Y	<u>X•</u> <u>Y</u>
0	0	0	1	•	0	0	1	1	1
0	1	1	0		0	1	1	0	0
1	0	1	0		1	0	0	1	0
1	1	1	0		1	1	0	0	0

DeMorgan's Theorem

•
$$(x + y)' = x'y'$$
 , $(xy)' = x' + y'$

• By means of truth table

x	y	<i>x</i> '	<i>y</i> '	<i>x</i> + <i>y</i>	(x+y)'	<i>x'y'</i>	xy	x'+y'	(xy) '
0	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	0	0	1	0	0

Proofing the theorems using axioms

• Idempotency: x + x = xProof: $x + x = (x + x) \cdot 1$ by identity $= (x + x) \cdot (x + x')$ by complement $= x + x \cdot x'$ by distributivity = x + 0 by complement = x by identity

• Idempotency: $x \bullet x = x$

Proof:

$$x \bullet x = (x \bullet x) + 0$$
 by identity
 $= (x \bullet x) + (x \bullet x')$ by complement
 $= x \bullet (x + x')$ by distributivity
 $= x \bullet 1$ by complement
 $= x$ by identity

Implementation

Boolean Algebra applied in computers electronic circuits.
 These circuits perform Boolean operations and these are called logic circuits or logic gates.

- Computers are implementations of Boolean logic.
- Boolean functions are completely described by truth tables.
- Logic gates are small circuits that implement Boolean operators.
- The basic gates are AND, OR, and NOT.
 - The XOR gate is very useful in parity checkers and adders.
- The "universal gates" are NOR, and NAND.
- The Special Gates XOR and XNOR

Logic Gate

Logic Gate

- A gate is an digital circuit which operates on one or more signals and produce single output.
- Gates are digital circuits because the input and output signals are denoted by either 1(high voltage) or 0(low voltage).
- A Boolean operator can be completely described using a truth table.

There are three basic gates:

1. AND gate

2. OR gate

3. NOT gate

Basic gates

AND gate

- The AND gate is an electronic circuit that gives a high output (1) only if all its inputs are high. It performs logical multiplication and denoted by (.) dot.
- AND gate takes two or more input signals and produce only one output signal. The AND operator is also known as a Boolean product.

Input	Input	Output
Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

OR gate

- The OR gate is an electronic circuit that gives a high output (1) if one or more of its inputs are high.
- OR gate also takes two or more input signals and produce only one output signal.
- It performs logical addition and denoted by (+) plus.
- The OR operator is the Boolean sum.

Input A	Input B	Output A+B
0	0	0
0	1	1
1	0	1
1	1	1

NOT gate

- The NOT gate is an electronic circuit that gives a high output (1) if its input is low.
- NOT gate takes only one input signal and produce only one output signal.
- The output of NOT gate is complement of its input.
- It is also called inverter.
- It performs logical negation and denoted by (-) bar. It operates on single variable.
- It is sometimes indicated by a prime mark (') or an "elbow" (\neg) .

Input A	Output \overline{A}
0	1
1	O

Universal gate

NAND Gate

Known as a "universal" gate because ANY digital circuit can be implemented with NAND gates alone.

NAND Gate

NAND

NAND Gate

NOR Gate

NOR

$$X$$
 $X+Y$ =Z

X	Y	Z
0	0	1
0	1	0
1	0	0
1	1	0

Special Gates

Exclusive-OR Gate

XOR

$$\mathbf{x}$$

X	Y	Z
0 0 1	0 1 0 1	0 1 1 0

Exclusive-NOR Gate

XNOR

$\mathbf{X}\mathbf{Y}$	Z
0.0	1
0 1	0
10	0
1 1	1

Truth Table

• Truth table is a table that contains all possible values of logical variables/statements in a Boolean expression.

No. of possible combination = 2^n ,

where n = number of variables used in a Boolean expression.

Truth Tables

- *Truth table* a tabular listing of the values of a function **for all possible** combinations of values on its arguments
- Example: Truth tables for the basic logic operations:

AND				
$\mathbf{X} \mathbf{Y} \mathbf{Z} = \mathbf{X} \cdot \mathbf{Y}$				
0	0	0		
0	1	0		
1	0	0		
1	1	1		

OR				
X	Y	Z = X+Y		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

NOT	
X	$Z = \overline{X}$
0	1
1	0

Truth Table

The truth table for XY + Z is as follows:

Dec	X	Y	Z	XY	XY+Z
0	0	0	0	0	0
1	0	0	1	0	1
2	0	1	0	0	0
3	0	1	1	0	1
4	1	0	0	0	0
5	1	0	1	0	1
6	1	1	0	1	1
7	1	1	1	1	1

- DeMorgan's law can be extended to any number of variables.
- Replace each variable by its complement and change all ANDs to ORs and all ORs to ANDs.
- The complement of:

$$F(X,Y,Z) = (XY) + (\overline{X}Z) + (Y\overline{Z})$$

is:

$$\overline{F}(X,Y,Z) = \overline{(XY) + (\overline{XZ}) + (Y\overline{Z})}$$

$$= \overline{(XY)}(\overline{XZ})(\overline{YZ})$$

$$= (\overline{X} + \overline{Y})(X + \overline{Z})(\overline{Y} + Z)$$

Tautology & Fallacy

Tautology & Fallacy

• If the output of Boolean expression is always True or 1 is called Tautology.

• If the output of Boolean expression is always False or 0 is called Fallacy.

- A Boolean function has:
 - At least one Boolean variable,
 - At least one Boolean operator, and
 - At least one input from the set $\{0,1\}$.
- It produces an output that is also a member of the set $\{0,1\}$.

• The truth table for the Boolean function:

$$F(x,y,z) = x\overline{z} + y$$

is shown at the right.

• To make evaluation of the Boolean function easier, the truth table contains extra (shaded) columns to hold evaluations of subparts of the function.

	F (:	х,у	,z)	$= x\overline{z}$	+y
x	У	z	z	χΞ	x z +y
0	0	0	1	0	0
0	0	1	0	0	0
0	1	0	1	0	1
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	0	0	1

Exercise

1. Evaluate the following Boolean expression using Truth Table.

(c)
$$XY'(Z+YZ')+Z'$$

- 2. Verify that P+(PQ)' is a Tautology.
- 3. Verify that (X+Y)'=X'Y'

Boolean Functions

- Computers take inputs and produce outputs, just like functions in math!
- Mathematical functions can be expressed in two ways:
- We can represent logical functions in two analogous ways too:
 - A finite, but non-unique Boolean expression.
 - A truth table, which will turn out to be unique and finite.

An expression is

finite but not unique

$$f(x,y) = 2x + y$$

= $x + x + y$
= $2(x + y/2)$
= ...

A function table is unique but infinite

×	У	f(x,y)
0	0	0
 2	 2	 6
 23	 41	 87
•••		•••

Boolean expressions

• We can use these basic operations to form more complex expressions:

$$f(x,y,z) = (x + y')z + x'$$

- Some terminology and notation:
 - f is the name of the function.
 - (x,y,z) are the input variables, each representing 1 or 0. Listing the inputs is optional, but sometimes helpful.
 - A literal is any occurrence of an input variable or its complement. The function above has four literals: x, y', z, and x'.

Precedence is important, but not too difficult.

NOT has the highest precedence, followed by AND, and then OR.

Fully parenthesized,

$$f(x,y,z) = (((x + (y'))z) + x')$$

- As with common arithmetic, Boolean operations have rules of precedence.
- The NOT operator has highest priority, followed by AND and then OR.
- This is how we chose the (shaded) function subparts in our table.

	F (:	х,у	,z)	$= x\overline{z}$	+y
x	У	z	z	χΞ	x z +y
0	0	0	1	0	0
0	0	1	0	0	0
0	1	0	1	0	1
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	0	0	1

Truth tables

- A truth table shows all possible inputs and outputs of a function.
- Remember that each input variable represents either 1 or 0.
 - Because there are only a finite number of values (1 and 0), truth tables themselves are finite.
 - A function with n variables has 2ⁿ possible combinations of inputs.
- Inputs are listed in binary order—in this example, from 000 to 111.

Complement of a function

- The complement of a function always outputs 0 where the original function outputted 1, and 1 where the original produced 0.
- In a truth table, we can just exchange 0s and 1s in the output column(s)

$$f(x,y,z) = x (y'z' + yz)$$

X	У	Z	f(x,y,z)	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

×	У	Z	f'(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Complementing a function algebraically

• You can use DeMorgan's law to keep "pushing" the complements inwards

$$f'(x,y,z) = x (y'z' + yz)$$

$$f''(x,y,z) = (x(y'z' + yz))' \quad [complement both sides]$$

$$= x' + (y'z' + yz)' \quad [because (xy)' = x' + y']$$

$$= x' + (y'z')' (yz)' \quad [because (x + y)' = x' y']$$

$$= x' + (y + z)(y' + z') \quad [because (xy)' = x' + y', twice]$$

- You can also take the dual of the function, and then complement each literal
 - If f(x,y,z) = x(y'z' + yz)...
 - ...the dual of f is x + (y' + z')(y + z)...
 - ...then complementing each literal gives x' + (y + z)(y' + z')...
 - ...so f'(x,y,z) = x' + (y+z)(y'+z')

- There are two canonical forms for Boolean expressions: sum-of-products and product-of-sums.
 - Recall the Boolean product is the AND operation and the Boolean sum is the OR operation.
- In the sum-of-products form, ANDed variables are ORed together.
 - For example: F(x,y,z) = xy + xz + yz
- In the product-of-sums form, ORed variables are ANDed together:
 - For example:

$$F(x,y,z) = (x+y)(x+z)(y+z)$$

- It is easy to convert a function to sum-ofproducts form using its truth table.
- We are interested in the values of the variables that make the function true (=1).
- Using the truth table, we list the values of the variables that result in a true function value.
- Each group of variables is then ORed together.

]	F(x	· , y	,z)	$= x\bar{z}+y$
	x	У	z	xz+y
	0	0	0	0
ı	0	0	1	0
	0	1	0	1
ı	0	1	1	1
	1	0	0	1
	1	0	1	0
ı	1	1	0	1
	1	1	1	1

• The sum-of-products form for our function is:

$$F(x,y,z) = \overline{x}y\overline{z} + \overline{x}yz + x\overline{y}\overline{z} + xy\overline{z} + xyz$$

We note that this function is not in simplest terms. Our aim is only to rewrite our function in canonical sum-of-products form.

 $F(x,y,z) = x\overline{z} + y$

x	У	z	xz+y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- Boolean functions are implemented in digital computer circuits called gates.
- A gate is an electronic device that produces a result based on two or more input values.
 - In reality, gates consist of one to six transistors, but digital designers think of them as a single unit.
 - Integrated circuits contain collections of gates suited to a particular purpose.

Basic Boolean Equations

- For the basic gates/functions
- AND

$$\cdot Z = A B$$

•
$$X = CDE$$

•
$$Y = F G H K$$

3 input gate

4 input gate

- OR
 - $\bullet Z = A + B$
 - $\bullet Y = F + G + H + K$

4 input gate

- NOT
 - Z = A
 - $Y = (\overline{F G H K})$

actually 2 level logic

- Consider the following logic equation
 - Z(A,B,C,D) = AB + CD
 - The Z (A,B,C,D) means that the output is a function of the four variables within the ().
 - The AB and CD are terms of the expression.
 - This form of representing the function is an algebraic expression.
 - For this function to be True, either both A AND B are True OR both C AND D are True.

Truth table expression

• the truth tables for the basic functions, we can also construct truth tables for any function.

A	В	C	D	Z	AB	CD
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	1	0	1
0	1	0	0	0	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	1	1	1	0	1
1	0	0	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	0	0	0
1	0	1	1	1	0	1
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	0
1	1	1	1	1	1	1

Examples of Boolean Equations

- Some examples
 - F = AB + CD + BD'
 - Y = CD + A'B'
 - quations can be very complex
 - Usually desire a minimal expression

Simplify

- Digital computers contain circuits that implement Boolean functions.
- The simpler that we can make a Boolean function, the smaller the circuit that will result.
 - Simpler circuits are cheaper to build, consume less power, and run faster than complex circuits.
- With this in mind, we always want to reduce our Boolean functions to their simplest form.
- There are a number of Boolean identities that help us to do this.

• Most Boolean identities have an AND (product) form as well as an OR (sum) form. We give our identities using both forms. Our first group is rather intuitive:

Identity	AND	OR
Name	Form	Form
Identity Law Null Law Idempotent Law Inverse Law	$1x = x$ $0x = 0$ $xx = x$ $x\overline{x} = 0$	$0 + x = x$ $1 + x = 1$ $x + x = x$ $x + \overline{x} = 1$

• Second group of Boolean identities should be familiar to you from your study of algebra:

Identity	AND	OR
Name	Form	Form
Commutative Law Associative Law Distributive Law	xy = yx $(xy) z = x (yz)$ $x+yz = (x+y) (x+z)$	x+y = y+x $(x+y)+z = x + (y+z)$ $x (y+z) = xy+xz$

• Last group of Boolean identities are perhaps the most useful.

Identity Name	AND Form	OR Form
Absorption Law	x(x+y) = x	x + xy = x
DeMorgan's Law	$(\overline{xy}) = \overline{x} + \overline{y}$	$\overline{(x+y)} = \overline{x}\overline{y}$
Double Complement Law	$(\overline{\overline{x}})$	= x

• We can use Boolean identities to simplify the function:

$$F(X,Y,Z) = (X + Y) (X + \overline{Y}) (X\overline{Z})$$

as follows:

$\begin{array}{c cccc} ((X+Y\overline{Y})+X(Y+\overline{Y}))(\overline{X}+Z) & \text{Commutation} \\ ((X+0)+X(1))(\overline{X}+Z) & \text{Inverse Lating} \\ X(\overline{X}+Z) & \text{Idempotend} \\ X\overline{X}+XZ & \text{Distribut} \\ 0+XZ & \text{Inverse Lating} \end{array}$
--

Simplify

- These properties (Laws and Theorems) can be used to simplify equations to their simplest form.
 - Simplify F=X'YZ+X'YZ'+XZ

$$\mathbf{F} = \overline{\mathbf{X}}\mathbf{Y}\mathbf{Z} + \overline{\mathbf{X}}\mathbf{Y}\overline{\mathbf{Z}} + \mathbf{X}\mathbf{Z}$$

=
$$\overline{X}Y(Z + \overline{Z}) + XZ$$
 by identity 14

$$= \overline{X}Y \cdot 1 + XZ$$
 by identity 7

$$= \overline{X}Y + XZ$$
 by identity 2

Affect on implementation

• F = X'YZ + X'YZ' + XZ

• Reduces to F = X'Y + XZ

Other examples

• 1.
$$X + XY = X \cdot 1 + XY = X(1+Y) = X \cdot 1 = X$$

• 2.
$$XY+XY' = X(Y+Y') = X \cdot 1 = X$$

• 3.
$$X+X'Y = (X+X')(X+Y) = 1 \cdot (X+Y) = X+Y$$

• 4.
$$X \cdot (X+Y) = X \cdot X + X \cdot Y = X + XY = X(1+Y) = X \cdot 1 = X$$

• 6.
$$X(X'+Y) = XX'+XY = 0 + XY = XY$$

• The Theorem gives us the relationship

•
$$XY + X'Z + YZ = XY + X'Z$$

•
$$XY + X'Z + 1 \cdot YZ = XY + X'Z + (X+X')YZ$$

$$= XY + X'Z + XYZ + X'YZ$$

$$= xy(1+z)+ X'Z(1+y)$$

$$= XY + X'Z$$

Application of Consensus Theorem

•
$$(A+B)(A'+C) = AA' + AC + A'B + BC$$

= $AC + A'B + BC$
= $AC + A'B$

Complement of a function

- In real implementation sometimes the complement of a function is needed.
 - Have F=X'YZ'+X'Y'Z

$$F = \overline{X}Y\overline{Z} + \overline{X}\overline{Y}Z$$

$$\mathbf{F} = \overline{\mathbf{X}} \mathbf{Y} \overline{\mathbf{Z}} + \overline{\mathbf{X}} \overline{\mathbf{Y}} \overline{\mathbf{Z}}$$

$$=(\overline{X}\overline{Y}\overline{Z})\cdot(\overline{X}\overline{Y}Z)$$

$$= (X+\overline{Y}+Z)\bullet (X+Y+\overline{Z})$$

Duals

- What is meant by the dual of a function?
 - The *dual* of a function is obtained by interchanging OR and AND operations and replacing 1s and 0s with 0s and 1s.
- Shortcut to getting function complement
 - Starting with the equation on the previous slide
 - Generate the dual F=(X'+Y+Z')(X'+Y'+Z)
 - Complement each literal to get:
 - F'=(X+Y'+Z)(X+Y+Z')

Duality principle

- The left and right columns of axioms are duals
 - exchange all ANDs with ORs, and 0s with 1s

1. x + y ∈ B	x • y ∈ B	Closure
2. $x + 0 = x$	× • 1 = ×	Identity
3. $x + y = y + x$	xy = yx	Commutativity
4. $x(y + z) = xy + xz$	x + yz = (x + y)(x + z)	Distributivity
5. $x + x' = 1$	× • ×′ = 0	Complement
6. At least 2 elements: $x,y \in B$ such that $x \neq y$		Cardinality

• So are the theorems:

1. x + x = x	x • x = x	Idempotency
2. $x + 1 = 1$	x • 0 = 0	
3. $yx + x = x$	$(y + x) \bullet x = x$	Absorption
4. $(x')' = x$		Involution
5. $x + (y + z) = (x + y) + z$	x(yz) = (xy)z	Associative
6. (x + y)' = x'y'	(xy)' = x' + y'	DeMorgan's

Algebraic manipulation

• We can now start doing some simplifications

$$x'y' + xyz + x'y$$

$$= x'(y' + y) + xyz \qquad [Distributive; x'y' + x'y = x'(y' + y)]$$

$$= x' \cdot 1 + xyz \qquad [Axiom 5; y' + y = 1]$$

$$= x' + xyz \qquad [Axiom 2; x' \cdot 1 = x']$$

$$= (x' + x)(x' + yz) \qquad [Distributive]$$

$$= 1 \cdot (x' + yz) \qquad [Axiom 5; x' + x = 1]$$

$$= x' + yz \qquad [Axiom 2; x' \cdot 1 = x']$$

Function Minimization using Boolean Algebra

• Examples:

(a)
$$a + ab = a(1+b) = a$$

(b)
$$a(a + b) = a.a + ab = a + ab = a(1+b) = a.$$

(c)
$$a + a'b = (a + a')(a + b) = 1(a + b) = a + b$$

(d)
$$a(a' + b) = a$$
. $a' + ab = 0 + ab = ab$

Try

• F = abc + abc' + a'c

The other type of question

Show that;

1-
$$ab + ab' = a$$

2- $(a + b)(a + b') = a$

$$1-ab + ab' = a(b+b') = a.1=a$$

$$2-(a + b)(a + b') = a.a + a.b' + a.b + b.b'$$

$$= a + a.b' + a.b + 0$$

$$= a + a.(b' + b) + 0$$

$$= a + a.1 + 0$$

$$= a + a = a$$

More Examples

• Show that;

(a)
$$ab + ab'c = ab + ac$$

(b)
$$(a + b)(a + b' + c) = a + bc$$

(a)
$$ab + ab'c = a(b + b'c)$$

= $a((b+b').(b+c))=a(b+c)=ab+ac$

(b)
$$(a + b)(a + b' + c)$$

= $(a.a + a.b' + a.c + ab + b.b' + bc)$
= ...