### **Generalized Category Discovery in Semantic Segmentation**

Zhengyuan Peng. Qijian Tian. Jianqing Xu. Yizhang Jin. Xuequan Lu. Xin Tan. Yuan Xie. Lizhuang Ma.

- Problem/Objective
  - Segment unlabeled images
- Contribution/Key Idea
  - o GCDSS

### NCDSS (Novel Class Discovery in Semantic Segmentation)

-Goal. discover novel classes based on prior knowledge from base classes.

-Problem. each unlabeled image in the unlabeled set must contain at least one novel class.



## GCDSS (General Category Discovery in Semantic Segmentation)

-Goal.

discover novel classes by leveraging labeled data of base classes and unlabeled data.

- -Feature.
- 1. There is no prerequisite for prior knowledge mandating the existence of at least one novel class in each unlabeled image.
- 2. GCDSS broadens the segmentation scope beyond foreground objects.



#### • GCDSS

1. Mask generation.



2. Feature extraction.

3. Clustering.

### Mask generation

-Input image. I

-Non-overlapping Masks. 
$$M = \{m_1, m_2, ..., m_n\}$$
 ,  $m_i \cap m_j = \emptyset$  for all  $i \neq j$ 



#### **Feature extraction**

- -Input image. I
- -Non-overlapping Masks.  $M=\{m_1,m_2,...,m_n\}$  ,  $m_i\cap m_j=\emptyset$  for all  $i\neq j$

$$M = \{m_1, m_2, ..., m_n\}$$

$$f(\cdot)$$

-Features. 
$$F = \{f_1, f_2, ..., f_n\}$$



### Clustering

- -Input image. 1
- -Non-overlapping Masks.

$$M = \{m_1, m_2, ..., m_n\}$$

• 
$$m_i \cap m_j = \emptyset$$
 for all  $i \neq j$ 

-Features. 
$$F = \{f_1, f_2, ..., f_n\}$$

-Labels.

$$L = \{l_1, l_2, ..., l_n\}$$

 $\therefore$  Final segmentation map =  $\sum_{i=1}^{n} m_i \times l_i$ 



#### Problem

Hard to classify small masks that lack distinct features.

#### Solution

Neighborhood Relations-Guided Mask Clustering Algorithm (NeRG-MaskCA).



# NeRG-MaskCA



#### Init status



#### Algorithm 1 NeRG-MaskCA

- 1: **Input:**  $M_u$ ,  $M_l$ , F,W, $L(M_l)$ , where  $M_u \cup M_l = M$
- 2: Output:  $L(M_u)$
- 3:  $p(m_u) \leftarrow 0$  for  $m_u \in M_u$ ,  $p(m_l) \leftarrow 1$  for  $m_l \in M_l \triangleright \mathbf{Init}$
- 4: for  $x_u \sim M_u$  do
- 5: for  $m' \in M_u \cup M_l$  do
- 6:  $\operatorname{dis}(m_u, m') \leftarrow ||F(m_u) F(m')||_2$
- 7: end for
- 8: find and save top-k nearest mask of  $x_u$
- 9: end for

전유진

#### Label propagation



$$l = \begin{cases} \underset{c}{\operatorname{argmax}} \left( \sum_{i=1}^{k} p_i \cdot \mathbb{1}_{\{label_i = c\}} \right) \\ , \text{if } \max \left( \sum_{i=1}^{k} p_i \cdot \mathbb{1}_{\{label_i = c\}} \right) > \theta \\ unlabel, \text{ otherwise}, \end{cases}$$

$$p = \begin{cases} \left(\sum_{i=1}^{k} p_i \cdot \mathbb{1}_{\{label_i = c\}}\right) \\ , \text{if } \max\left(\sum_{i=1}^{k} p_i \cdot \mathbb{1}_{\{label_i = c\}}\right) > \theta \\ 0, \text{otherwise.} \end{cases}$$

전유진

## • Structural Completion



-elimination formula. 
$$l = unlabel, \text{ if } \left(\sum_{i=1}^{k} \mathscr{W}_{\{label_i = unlabel\}}\right) > \theta$$

# • Clustering Divison



# Experiment

Labeled set  $D_l$  contains only the base classes.

Unlabeled set  $D_u$  includes both the base classes and novel classes.

| Comb. | Novel Classes             | Num / Pixel Area<br>in Unlabel Set |  |  |
|-------|---------------------------|------------------------------------|--|--|
| 1     | Rider, Truck, Bus, Train  | 1816 / 1.31%                       |  |  |
| 2     | Rider, Bus, Train, Motor. | 1805 / 1.05%                       |  |  |
| 3     | Wall, Truck, Bus, Train   | 1767 / 2.08%                       |  |  |
| 4     | Wall, Bus, Train, Motor.  | 1876 / 1.82%                       |  |  |
| 5     | Fence, Truck, Bus, Train  | 1986 / 2.38%                       |  |  |

Table 1. **Cityscapes-GCD.** Our dataset includes five combinations, each with a labeled set (1390 images) and an unlabeled set (2085 images). It features 15 base classes and 4 novel classes. We also provide detailed information on the novel classes in the unlabeled set, including image number (Num) and pixel area proportion (Pixel Area).

| Combination  | Baseline          |                    |           | NeRG-MaskCA |             |           |
|--------------|-------------------|--------------------|-----------|-------------|-------------|-----------|
|              | <b>Base Class</b> | <b>Novel Class</b> | Avg Class | Base Class  | Novel Class | Avg Class |
| Comb. 1      | 31.99             | 3.38               | 25.97     | 46.12       | 30.61       | 42.86     |
| Comb. 2      | 28.38             | 2.36               | 22.9      | 46.62       | 28.94       | 42.90     |
| Comb. 3      | 31.01             | 2.10               | 24.92     | 46.42       | 30.74       | 43.12     |
| Comb. 4      | 32.3              | 3.86               | 26.31     | 46.84       | 28.03       | 42.88     |
| Comb. 5      | 28.91             | 5.88               | 24.06     | 45.65       | 33.18       | 43.02     |
| Average mIoU | 30.52             | 3.52               | 24.83     | 46.33       | 30.30       | 42.96     |

Table 2. Comparison of the baseline and NeRG-MaskCA across five class combinations. NeRG-MaskCA outperforms the baseline compared to the five class combinations.

# Ablation study

| Clustering   | Label        | Struct       | mIoU (%)              |
|--------------|--------------|--------------|-----------------------|
| Div.         | Prop.        | Comp.        | (Base / Novel / Avg)  |
| ✓            |              | <b>=</b>     | 30.52 / 3.52 / 24.83  |
| $\checkmark$ | $\checkmark$ | _            | 46.31 / 23.92 / 41.60 |
| ✓            | ✓            | $\checkmark$ | 46.33 / 30.30 / 42.96 |

Table 3. Comparison of components.



Figure 5. Parameter analysis of k and  $\theta$ . The nearest mask number k varies among 5, 10, and 15. The lower bound confidence  $\theta$  for pseudo-label changes among 0.05, 0.10, and 0.15. The performance of our approach is relatively stable.