EECT 7325

PROJECT #2: 4*4 Bit Multiplier

Name: YI CHIEN CHIANG

UTD ID: 2021477769

Table of Contents

I.	Introduction 3
II.	2 Bit Full Adder 3
III.	4 Bit Full Adder5
IV.	4*4 Bit Multiplier7
V.	Simulation and Testing Table 10
VI.	Tradeoffs
VII.	Conclusion
VIII.	Reference

I. Introduction

The project 2 indicates to design the layout manually by using the cells we designed in the project 1 and do any type of design. Moreover, the size of the layout is probably about 100 cells. After the design, the correct simulation result is necessary and LVS and DRC result of the final layout should show no error. I chose a 4*4 bit multiplier for my topic and it was composed of 2 bits full adder and 4 bits full adder. The total layout are about 140 cells.

II. 2 Bit Full Adder

0.081um(3 Fins)	0.081um(3 Fins)	0.288um	3.078um	0.89um²					
Total Cells									
8 (2 XOR+ 2 NAND + 1NOR +3 Inverter)									

Fig 1-2. 2 Bit Full Adder Schematic

Fig 1-3. 2 Bit Full Adder Simulation

Testing Table							
	TEST 1	TEST 2	TEST 3	TEST 4			
Input	A:0	A:0	A:1	A:1			
Прис	B:1	B:0	B:0	B:1			
Value	1	0	1	2			
Output	Sum:1 Cout:0	Sum:0 Cout:0	Sum:1 Cout:0	Sum:0 Cout:1			

III. 4 Bit Full Adder

IV. 4*4 Bit Multiplier

Fig 3-4. Part 3 of Multiplier – Third 4Bits Full adder

Fig 3-5. Part 4 of Multiplier – And Gate

Template Table								
PMOS Width	NMOS Width	Cell Height	Cell Width	Cell Area				
0.081um(3 Fins)	0.081um(3 Fins)	0.529um	54.648um	30um²				

Total Cells

140 (3 4Bits Full Adder + 16 NAND +16 Inverter)

V. Simulation and Testing Table

VI. Tradeoffs

The 4*4 multiplier can give product of 8-bit size by using the input number of 4-bit size. The maximum of the number is 15*15 =225. This multiplier is Combinational Multiplier. It performs multiplication of two unsigned binary numbers and the advantage is that it can generate intermediate products easily. The disadvantage is that it needs more layout area.

VII. Conclusion

The final project needs to design a larger and complicated layout system than before. I learned how to place the metal wiring in less space to decrease the layout area. After completing the layout design, LVS match was big challenge because the layout was large. I must check the total layout many times to reduce the mismatch to the schematic. I am glad that I can learn much more simulation skills and use the knowledge what I learn in this class when I do this project.

VIII. Reference

- Class Note
- Asap7_tutorial word file