Contents

1	Problem Types	;
	Derivations Concepts	5
	.1 Euler-Lagrange Eq.'s	9
	.2 Invariance of the Lagrangian	
	.3 Parallel Axis Theorem	
	.4 Hamilton-Jacobi Equation	
	.5 Hamilton's Eq.'s	

Problem Types

Derivations

Concepts

Equations

4.1 Euler-Lagrange Eq.'s

Euler-Lagrange Equations For one coordinate q

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}} - \frac{\partial \mathcal{L}}{\partial q} = 0$$

4.2 Invariance of the Lagrangian

For the two Lagrangians

$$\mathcal{L} = T - V$$

and

$$\mathcal{L}' = T - V + \frac{df(x,t)}{dt}$$

the dynamics are exactly the same for any function f(x,t).

4.3 Parallel Axis Theorem

4.4 Hamilton-Jacobi Equation

For the Hamiltonian \mathcal{H}

H

4.5 Hamilton's Eq.'s