

cs4341 Digital Logic & Computer Design

Lecture Notes 4

Omar Hamdy

Assistant Professor

Department of Computer Science

Review: Truth Table

- ➤ Truth table is a tabular listing of the values of a function for <u>ALL</u> possible combinations of values on its arguments
- Truth table is a useful tool to study the behavior of any Boolean function

Review: Basic Logic Gates and Truth Table

Logic gates are simple digital circuit that implements the logical operators

Review: Example

 \triangleright Evaluate the following logic function: $F(X, Y, Z) = XY + \overline{Y}Z$

X	Υ	Z	XY	Y	Ζ Υ	$XY + Z\overline{Y}$
0	0	0	0	1	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	1	0	0
1	0	1	0	1	1	1
1	1	0	1	0	0	1
1	1	1	1	0	0	1

Waveform Behavior View

Logic Function Example

Analyze the operation of the following circuit using the truth table. Write the logic function relating L to A, B, and C

Solution Using Truth Table

A	В	С	L
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Solution Using Algebraic Function

- > The Light is on if:
- ➤ A AND C are closed, OR
- ➤ B AND C are closed, OR
- > A AND B AND C are closed

$$L = A.C + B.C + A.B.C$$

Later we will see that L = C.(A+B) (OPTIMIZED)

Combinational Circuits

- > Logic functions are implemented using digital logic circuits.
- > A digital circuit is composed of:
 - Items: An item is a circuit which implements some logical function
 - Nodes: A node is a connection (wire) that connects to external input, output or between inner items.
- > There are two classes of digital logic circuits:
 - Combinational circuits: the output depends only on the current values of the input (memoryless)
 - Sequential circuits: the output depends on both current and previous input value (has memory)

Combinational Circuits

- Combinational circuits must meet three conditions:
 - > Every circuit element is itself combinational.
 - Every node of the circuit is either designated as an input to the circuit or connects to exactly one output terminal of a circuit element
 - > The circuit contains no cyclic paths: every path through the circuit visits each circuit node at most once.

Example: Determine the combinational circuits in the following

Boolean Algebra

➤ In Binary Boolean Algebra:

- > We have a set of elements 0 and 1
- ➤ We have a set of operators that operate on those elements such as AND (.), OR (+), and negation (').
- \triangleright We have 1'= 0 and 0'=1
- Logic value TRUE has value 1
- Logic value FALSE has value 0

Operator Precedence

- ➤ Parenthesis ()
- ➤ NOT (Negation)
- > AND
- > OR
- \triangleright Example: Show the order of execution of NOT X + Y . Z
 - ➤ Answer: X' + (Y.Z)

Boolean Expression

- ➤ Boolean expressions are formed by applying the operators to Boolean variables
- ➤ Boolean expressions (functions) could be represented by:
 - > Equations
 - > Logic gate diagram
 - > Truth table

Duality of Boolean Expressions

- ➤ The <u>dual</u> of an algebraic expression is obtained by interchanging + and · and interchanging 0's and 1's.
- \triangleright Example: Assume: $F = (A + B) \cdot C$, find Dual(F)
 - \triangleright Dual(F) = A.B + C
- Dual of a function generates a totally new function
- > Dual of a function is not equal to the function
- > Dual of a function is not equal to its complement

Duality Importance

- ➤ Every Boolean expression that is proven as true has a dual expression that is also true.
- > Examples:

Expression Duality x + 0 = x x.1 = x x + x = x x.x = x

Postulates of Boolean Algebra

Expression

$$1 X + 0 = X$$

$$3 X + 1 = 1$$

$$5 X + X = X$$

$$7 X + X' = 1$$

9
$$X'' = X$$

10
$$X + Y = Y + X$$

12
$$(X + Y) + Z = X + (Y + Z)$$

14
$$X.(Y + Z) = (X.Y) + (X.Z)$$

16
$$(X + Y)' = X' \cdot Y'$$

Duality

$$2 X.1 = X$$

$$4 \quad X.0 = 0$$

$$6 \quad X \cdot X = X$$

8
$$X.X' = 0$$

11
$$X.Y = Y.X$$

13
$$(X.Y).Z = X.(Y.Z)$$

15
$$X + (Y . Z) = (X + Y) . (X + Z)$$

17
$$(X \cdot Y)' = X' + Y'$$

Postulate

Identity Element

Domination

Idempotence

Complement

Involution

Commutative

Associative

Distributive

DeMorgan's

Additional Rules

Expression

$$1 X + (X . Y) = X$$

$$3 \times X + (X'. Y) = X + Y$$

$$5 (X + Y) \cdot (X + Y') = X$$

Duality

$$2 X \cdot (X + Y) = X$$

4
$$X \cdot (X' + Y) = X \cdot Y$$

$$6 (X.Y) + (X.Y') = X$$

Postulate

Absorption

Logical Adjacency

Algebraic Manipulation

Example:
$$F = AB + AC + AB' + AC'$$

$$P = AB + AB' + AC + AC'$$

$$P = A(B + B') + A(C + C')$$

$$P = A + A$$

$$P = A$$
Example: $F = x(x' + y)$

$$P = xx' + xy$$

$$P = 0 + xy$$

$$P = xy$$

Function Complement

- Complement of F is F'
- \succ Complement of a function is obtained by interchange of 0's for 1's and 1's for 0's in the values of *F* in the truth table.
- \triangleright We can also use DeMorgan's theorem to get F'.
- > The following identities are very useful:

$$\triangleright$$
 (A + B)' = A' B' A'+B' = (AB)'
 \triangleright (A+B+C)' = A'B'C' A'+B'+C' = (ABC)'

Function Complement Example

- \triangleright Find the complement of F = AB + C
- > Answer:

$$\triangleright F' = (AB + C)'$$

> Applying DeMorgan's theorem:

$$\triangleright = (A' + B') \cdot C'$$

$$\triangleright = A'C' + B'C'$$

Function Complement From Dual

- > We can find the complement of a function by finding its dual then complementing each literal
- \triangleright Example: F = x'yz' + x'y'z
 - $F(dual) = (x' + y + z') \cdot (x' + y' + z)$
 - \triangleright F(complement) = F' = (x + y' + z)(x + y + z')

To Do List

- ➤ Review lecture notes
- ➤ Study 2.1 to 2.3.3