

ST7529

32 Gray Scale Dot Matrix LCD Controller/Driver

1. INTRODUCTION

The ST7529 is a driver & controller LSI for 32 gray scale graphic dot-matrix liquid crystal display systems. It generates 255 Segment and 160 Common driver circuits. This chip is connected directly to a microprocessor, accepts Serial Peripheral Interface (SPI), 8-bit/16-bit parallel or IIC display data and stores in an on-chip display data RAM. It performs display data RAM read/write operation with no external operating clock to minimize power consumption. In addition, because it contains power supply circuits necessary to drive liquid crystal, it is possible to make a display system with the fewest components.

2. FEATURES

Driver Output Circuits

- -255 segment outputs / 160 common outputs
- -Maximum resolution is 255 x 160

Applicable Duty Ratios

- Various partial display
- Partial window moving & data scrolling

Microprocessor Interface

- 8/16-bit parallel bi-directional interface with 6800-series or 8080-series
- –4-line serial interface (write only)
- -9 bit 3-line serial interface (write only)

On-chip Display Data RAM

- Capacity: 160 x 255 x 5bit = 204000bits (Max)

On-chip Low Power Analog Circuit

- On-chip oscillator circuit
- Voltage converter (x2, x3, x4, x5, x6, x7, x8)
- Voltage regulator
- Voltage follower

(LCD bias: 1/5, 1/7, 1/9, 1/10, 1/11, 1/12, 1/13, 1/14)

Operating Voltage Range

- Supply voltage

(VDD, VDD1, VDD2, VDD3, VDD4, VDD5): 2.4 to 3.3V

- LCD driving voltage (VLCD = V0 - VSS): 3.76 to 18.0V

Temperature Gradient Coefficient

. - **-**0.130%/°C

LCD driving voltage (EEPROM)

- To store contrast adjustment value for better display

Package Type

- Application for COG and TCP

ST7529

6800, 8080, 4-Line, 3-Line interface

ST

3. Pad Arrangement

Chip Size:

16.550mm x 1.525mm

Pad pitch:

Com, Seg pad pitch: 43µm

IO pad pitch: 110µm

Test pin pad pitch: 75µm

Pad size:

Com, Seg pad size:

Pad No1~362: 25µm (X) x 96µm (Y)

Pad No363~390 : 96µm (X) x 25µm (Y)

Pad No544~571: 96µm (X) x 25µm (Y)

IO pad pad size: 90μm (X) x 40μm (Y)

Test pin pad size: 55µm (X) x 40µm (Y)

Bump Height: 17µm

Chip Thickness: 635µm

4. Pad Center Coordinates

4. Pad Center Coordinates				
PAD No.	PIN Name	Х	Υ	
1	COM[28]	7917	683	
2	COM[29]	7874	683	
3	COM[30]	7831	683	
4	COM[31]	7788	683	
5	COM[32]	7745	683	
6	COM[33]	7702	683	
7	COM[34]	7659	683	
8	COM[35]	7616	683	
9	COM[36]	7573	683	
10	COM[37]	7530	683	
11	COM[38]	7487	683	
12	COM[39]	7444	683	
13	COM[40]	7401	683	
14	COM[41]	7358	683	
15	COM[42]	7315	683	
16	COM[43]	7272	683	
17	COM[44]	7229	683	
18	COM[45]	7186	683	
19	COM[46]	7143	683	
20	COM[47]	7100	683	
21	COM[48]	7057	683	
22	COM[49]	7014	683	
23	COM[50]	6971	683	
24	COM[51]	6928	683	
25	COM[52]	6885	683	
26	COM[53]	6842	683	
27	COM[54]	6799	683	
28	COM[55]	6756	683	
29	COM[56]	6713	683	
30	COM[57]	6670	683	
31	COM[58]	6627	683	
32	COM[59]	6584	683	
33	COM[60]	6541	683	
34	COM[61]	6498	683	
35	COM[62]	6455	683	
36	COM[63]	6412	683	
37	COM[64]	6369	683	
38	COM[65]	6326	683	

PAD No.	PIN Name	Х	Y
39	COM[66]	6283	683
40	COM[67]	6240	683
41	COM[68]	6197	683
42	COM[69]	6154	683
43	COM[70]	6111	683
44	COM[71]	6068	683
45	COM[72]	6025	683
46	COM[73]	5982	683
47	COM[74]	5939	683
48	COM[75]	5896	683
49	COM[76]	5853	683
50	COM[77]	5810	683
51	COM[78]	5767	683
52	COM[79]	5724	683
53	(NC)	5526	683
54	(NC)	5482	683
55	(NC)	5440	683
56	SEG[254]	5396	683
57	SEG[253]	5354	683
58	SEG[252]	5310	683
59	SEG[251]	5268	683
60	SEG[250]	5224	683
61	SEG[249]	5182	683
62	SEG[248]	5138	683
63	SEG[247]	5096	683
64	SEG[246]	5052	683
65	SEG[245]	5010	683
66	SEG[244]	4966	683
67	SEG[243]	4924	683
68	SEG[242]	4880	683
69	SEG[241]	4838	683
70	SEG[240]	4794	683
71	SEG[239]	4752	683
72	SEG[238]	4708	683
73	SEG[237]	4666	683
74	SEG[236]	4622	683
75	SEG[235]	4580	683
76	SEG[234]	4536	683

PAD No.	PIN Name	Х	Υ	PAD No.	PIN Name
77	SEG[233]	4494	683	116	SEG[194]
78	SEG[232]	4450	683	117	SEG[193]
79	SEG[231]	4408	683	118	SEG[192]
80	SEG[230]	4364	683	119	SEG[191]
81	SEG[229]	4322	683	120	SEG[190]
82	SEG[228]	4278	683	121	SEG[189]
83	SEG[227]	4236	683	122	SEG[188]
84	SEG[226]	4192	683	123	SEG[187]
85	SEG[225]	4150	683	124	SEG[186]
86	SEG[224]	4106	683	125	SEG[185
87	SEG[223]	4064	683	126	SEG[184]
88	SEG[222]	4020	683	127	SEG[183]
89	SEG[221]	3978	683	128	SEG[182]
90	SEG[220]	3934	683	129	SEG[181]
91	SEG[219]	3892	683	130	SEG[180]
92	SEG[218]	3848	683	131	SEG[179]
93	SEG[217]	3806	683	132	SEG[178]
94	SEG[216]	3762	683	133	SEG[177]
95	SEG[215]	3720	683	134	SEG[176
96	SEG[214]	3676	683	135	SEG[175]
97	SEG[213]	3634	683	136	SEG[174]
98	SEG[212]	3590	683	137	SEG[173]
99	SEG[211]	3548	683	138	SEG[172]
100	SEG[210]	3504	683	139	SEG[171]
101	SEG[209]	3462	683	140	SEG[170]
102	SEG[208]	3418	683	141	SEG[169]
103	SEG[207]	3376	683	142	SEG[168]
104	SEG[206]	3332	683	143	SEG[167]
105	SEG[205]	3290	683	144	SEG[166]
106	SEG[204]	3246	683	145	SEG[165]
107	SEG[203]	3204	683	146	SEG[164]
108	SEG[202]	3160	683	147	SEG[163]
109	SEG[201]	3118	683	148	SEG[162]
110	SEG[200]	3074	683	149	SEG[161]
111	SEG[199]	3032	683	150	SEG[160]
112	SEG[198]	2988	683	151	SEG[159]
113	SEG[197]	2946	683	152	SEG[158]
114	SEG[196]	2902	683	153	SEG[157]
115	SEG[195]	2860	683	154	SEG[156]

PAD No.	PIN Name	Х	Υ
116	SEG[194]	2816	683
117	SEG[193]	2774	683
118	SEG[192]	2730	683
119	SEG[191]	2688	683
120	SEG[190]	2644	683
121	SEG[189]	2602	683
122	SEG[188]	2558	683
123	SEG[187]	2516	683
124	SEG[186]	2472	683
125	SEG[185]	2430	683
126	SEG[184]	2386	683
127	SEG[183]	2344	683
128	SEG[182]	2300	683
129	SEG[181]	2258	683
130	SEG[180]	2214	683
131	SEG[179]	2172	683
132	SEG[178]	2128	683
133	SEG[177]	2086	683
134	SEG[176]	2042	683
135	SEG[175]	2000	683
136	SEG[174]	1956	683
137	SEG[173]	1914	683
138	SEG[172]	1870	683
139	SEG[171]	1828	683
140	SEG[170]	1784	683
141	SEG[169]	1742	683
142	SEG[168]	1698	683
143	SEG[167]	1656	683
144	SEG[166]	1612	683
145	SEG[165]	1570	683
146	SEG[164]	1526	683
147	SEG[163]	1484	683
148	SEG[162]	1440	683
149	SEG[161]	1398	683
150	SEG[160]	1354	683
151	SEG[159]	1312	683
152	SEG[158]	1268	683
153	SEG[157]	1226	683
154	SEG[156]	1182	683

PAD No. PIN Name X Y 155 SEG[155] 1140 683 194 SEG[116] 156 SEG[154] 1096 683 195 SEG[115] 157 SEG[152] 1010 683 196 SEG[113] 158 SEG[152] 1010 683 197 SEG[113] 159 SEG[151] 968 683 198 SEG[112] 160 SEG[150] 924 683 199 SEG[111] 161 SEG[149] 882 683 200 SEG[111] 161 SEG[149] 882 683 201 SEG[110] 162 SEG[146] 752 683 202 SEG[108] 163 SEG[145] 710 683 204 SEG[108] 164 SEG[146] 752 683 205 SEG[105] 165 SEG[144] 666 683 205 SEG[105] 168 SEG[142] 580<						
156 SEG[154] 1096 683 195 SEG[115] 157 SEG[153] 1054 683 196 SEG[114] 158 SEG[152] 1010 683 197 SEG[113] 159 SEG[150] 924 683 199 SEG[112] 160 SEG[149] 882 683 200 SEG[110] 161 SEG[148] 838 683 201 SEG[109] 162 SEG[148] 838 683 201 SEG[109] 163 SEG[146] 752 683 202 SEG[107] 164 SEG[145] 710 683 204 SEG[106] 165 SEG[144] 666 683 205 SEG[106] 166 SEG[142] 580 683 207 SEG[103] 167 SEG[141] 538 683 207 SEG[103] 168 SEG[141] 538 683 207 SEG[103] 170 </td <td>PAD No.</td> <td>PIN Name</td> <td>Х</td> <td>Υ</td> <td>PAD No.</td> <td>PIN Name</td>	PAD No.	PIN Name	Х	Υ	PAD No.	PIN Name
157 SEG[153] 1054 683 196 SEG[114] 158 SEG[152] 1010 683 197 SEG[113] 159 SEG[151] 968 683 198 SEG[112] 160 SEG[150] 924 683 199 SEG[110] 161 SEG[149] 882 683 200 SEG[110] 162 SEG[148] 838 683 201 SEG[109] 163 SEG[146] 752 683 202 SEG[108] 163 SEG[146] 752 683 203 SEG[107] 166 SEG[144] 666 683 204 SEG[106] 166 SEG[144] 666 683 205 SEG[106] 167 SEG[144] 580 683 207 SEG[106] 167 SEG[144] 580 683 207 SEG[106] 168 SEG[142] 580 683 207 SEG[106] 170 <td>155</td> <td>SEG[155]</td> <td>1140</td> <td>683</td> <td>194</td> <td>SEG[116]</td>	155	SEG[155]	1140	683	194	SEG[116]
158 SEG[152] 1010 683 197 SEG[113] 159 SEG[151] 968 683 198 SEG[112] 160 SEG[150] 924 683 199 SEG[111] 161 SEG[149] 882 683 200 SEG[110] 162 SEG[148] 838 683 201 SEG[109] 163 SEG[147] 796 683 202 SEG[108] 164 SEG[146] 752 683 203 SEG[107] 165 SEG[144] 666 683 204 SEG[106] 166 SEG[144] 666 683 205 SEG[106] 167 SEG[143] 624 683 206 SEG[106] 168 SEG[142] 580 683 207 SEG[103] 169 SEG[141] 538 683 208 SEG[102] 170 SEG[139] 452 683 211 SEG[102] 171 <td>156</td> <td>SEG[154]</td> <td>1096</td> <td>683</td> <td>195</td> <td>SEG[115]</td>	156	SEG[154]	1096	683	195	SEG[115]
159 SEG[151] 968 683 198 SEG[112] 160 SEG[150] 924 683 199 SEG[111] 161 SEG[149] 882 683 200 SEG[109] 162 SEG[148] 838 683 201 SEG[109] 163 SEG[146] 752 683 202 SEG[108] 164 SEG[146] 752 683 203 SEG[106] 165 SEG[144] 666 683 204 SEG[106] 166 SEG[144] 666 683 205 SEG[105] 167 SEG[143] 624 683 206 SEG[104] 168 SEG[142] 580 683 207 SEG[103] 169 SEG[144] 538 683 208 SEG[102] 170 SEG[149] 494 683 210 SEG[101] 171 SEG[138] 408 683 211 SEG[99] 172	157	SEG[153]	1054	683	196	SEG[114]
160 SEG[150] 924 683 199 SEG[111] 161 SEG[149] 882 683 200 SEG[110] 162 SEG[148] 838 683 201 SEG[109] 163 SEG[146] 752 683 202 SEG[108] 164 SEG[145] 710 683 204 SEG[106] 165 SEG[144] 666 683 205 SEG[106] 166 SEG[144] 666 683 205 SEG[105] 167 SEG[142] 580 683 207 SEG[103] 168 SEG[141] 538 683 207 SEG[103] 169 SEG[141] 538 683 208 SEG[102] 170 SEG[138] 494 683 209 SEG[103] 171 SEG[138] 408 683 211 SEG[99] 172 SEG[136] 322 683 211 SEG[99] 173	158	SEG[152]	1010	683	197	SEG[113]
161 SEG[149] 882 683 200 SEG[10] 162 SEG[148] 838 683 201 SEG[10] 163 SEG[147] 796 683 202 SEG[10] 164 SEG[146] 752 683 203 SEG[10] 165 SEG[144] 666 683 204 SEG[106] 166 SEG[144] 666 683 205 SEG[106] 167 SEG[143] 624 683 206 SEG[103] 168 SEG[142] 580 683 207 SEG[103] 169 SEG[140] 494 683 208 SEG[102] 170 SEG[139] 452 683 210 SEG[103] 171 SEG[139] 452 683 211 SEG[100] 172 SEG[138] 408 683 211 SEG[100] 173 SEG[137] 366 683 212 SEG[98] 174	159	SEG[151]	968	683	198	SEG[112]
162 SEG[148] 838 683 163 SEG[147] 796 683 164 SEG[146] 752 683 165 SEG[145] 710 683 204 SEG[106] 166 SEG[144] 666 683 205 SEG[106] 167 SEG[143] 624 683 206 SEG[104] 168 SEG[142] 580 683 207 SEG[103] 169 SEG[140] 494 683 209 SEG[102] 170 SEG[140] 494 683 209 SEG[101] 171 SEG[139] 452 683 211 SEG[100] 172 SEG[138] 408 683 211 SEG[99] 173 SEG[137] 366 683 212 SEG[98] 174 SEG[136] 322 683 214 SEG[99] 175 SEG[134] 236 683 215 SEG[99] <t< td=""><td>160</td><td>SEG[150]</td><td>924</td><td>683</td><td>199</td><td>SEG[111]</td></t<>	160	SEG[150]	924	683	199	SEG[111]
163 SEG[147] 796 683 202 SEG[108] 164 SEG[146] 752 683 203 SEG[107] 165 SEG[145] 710 683 204 SEG[106] 166 SEG[144] 666 683 205 SEG[105] 167 SEG[143] 624 683 206 SEG[104] 168 SEG[142] 580 683 207 SEG[103] 169 SEG[140] 494 683 208 SEG[102] 170 SEG[139] 452 683 210 SEG[100] 171 SEG[139] 452 683 211 SEG[100] 171 SEG[139] 452 683 211 SEG[100] 172 SEG[138] 408 683 211 SEG[199] 173 SEG[137] 366 683 212 SEG[99] 175 SEG[135] 280 683 213 SEG[99] 176	161	SEG[149]	882	683	200	SEG[110]
164 SEG[146] 752 683 203 SEG[107] 165 SEG[145] 710 683 204 SEG[106] 166 SEG[144] 666 683 205 SEG[105] 167 SEG[143] 624 683 206 SEG[103] 168 SEG[142] 580 683 207 SEG[103] 169 SEG[140] 494 683 208 SEG[102] 170 SEG[139] 452 683 210 SEG[100] 171 SEG[139] 452 683 211 SEG[190] 172 SEG[138] 408 683 211 SEG[199] 172 SEG[136] 322 683 212 SEG[100] 173 SEG[137] 366 683 211 SEG[99] 175 SEG[135] 280 683 213 SEG[97] 175 SEG[134] 236 683 214 SEG[99] 177	162	SEG[148]	838	683	201	SEG[109]
165 SEG[145] 710 683 204 SEG[106] 166 SEG[144] 666 683 205 SEG[105] 167 SEG[142] 580 683 206 SEG[103] 168 SEG[141] 538 683 208 SEG[102] 169 SEG[140] 494 683 209 SEG[102] 170 SEG[139] 452 683 210 SEG[100] 171 SEG[138] 408 683 211 SEG[99] 172 SEG[136] 322 683 212 SEG[98] 174 SEG[136] 322 683 213 SEG[99] 175 SEG[135] 280 683 214 SEG[96] 176 SEG[134] 236 683 215 SEG[96] 177 SEG[133] 194 683 215 SEG[96] 178 SEG[131] 108 683 217 SEG[93] 180	163	SEG[147]	796	683	202	SEG[108]
166 SEG[144] 666 683 205 SEG[105] 167 SEG[143] 624 683 206 SEG[104] 168 SEG[142] 580 683 207 SEG[103] 169 SEG[141] 538 683 208 SEG[102] 170 SEG[140] 494 683 209 SEG[102] 170 SEG[139] 452 683 210 SEG[100] 171 SEG[138] 408 683 211 SEG[100] 172 SEG[138] 408 683 211 SEG[199] 173 SEG[136] 322 683 212 SEG[98] 174 SEG[136] 322 683 213 SEG[97] 175 SEG[134] 236 683 214 SEG[96] 176 SEG[133] 194 683 215 SEG[95] 177 SEG[133] 194 683 216 SEG[93] 179	164	SEG[146]	752	683	203	SEG[107]
167 SEG[143] 624 683 206 SEG[104] 168 SEG[142] 580 683 207 SEG[103] 169 SEG[141] 538 683 208 SEG[102] 170 SEG[140] 494 683 209 SEG[101] 171 SEG[139] 452 683 210 SEG[100] 172 SEG[138] 408 683 211 SEG[99] 173 SEG[137] 366 683 212 SEG[98] 174 SEG[136] 322 683 213 SEG[97] 175 SEG[135] 280 683 214 SEG[96] 176 SEG[134] 236 683 215 SEG[95] 177 SEG[132] 150 683 217 SEG[99] 178 SEG[132] 150 683 217 SEG[99] 180 SEG[130] 64 683 218 SEG[92] 181	165	SEG[145]	710	683	204	SEG[106]
168 SEG[142] 580 683 207 SEG[103] 169 SEG[141] 538 683 208 SEG[102] 170 SEG[140] 494 683 209 SEG[101] 171 SEG[139] 452 683 210 SEG[100] 172 SEG[138] 408 683 211 SEG[99] 173 SEG[136] 322 683 212 SEG[98] 174 SEG[136] 322 683 213 SEG[97] 175 SEG[134] 236 683 214 SEG[96] 176 SEG[134] 236 683 215 SEG[95] 177 SEG[133] 194 683 216 SEG[95] 177 SEG[132] 150 683 217 SEG[93] 179 SEG[131] 108 683 218 SEG[92] 180 SEG[129] 22 683 219 SEG[91] 181 <	166	SEG[144]	666	683	205	SEG[105]
169 SEG[141] 538 683 208 SEG[102] 170 SEG[140] 494 683 209 SEG[102] 171 SEG[139] 452 683 210 SEG[100] 172 SEG[138] 408 683 211 SEG[99] 173 SEG[136] 322 683 212 SEG[98] 174 SEG[136] 322 683 213 SEG[97] 175 SEG[135] 280 683 214 SEG[96] 176 SEG[134] 236 683 215 SEG[96] 177 SEG[133] 194 683 216 SEG[95] 177 SEG[132] 150 683 217 SEG[93] 179 SEG[131] 108 683 218 SEG[92] 180 SEG[130] 64 683 219 SEG[91] 181 SEG[129] 22 683 221 SEG[89] 182 <td< td=""><td>167</td><td>SEG[143]</td><td>624</td><td>683</td><td>206</td><td>SEG[104]</td></td<>	167	SEG[143]	624	683	206	SEG[104]
170 SEG[140] 494 683 171 SEG[139] 452 683 172 SEG[138] 408 683 173 SEG[137] 366 683 174 SEG[136] 322 683 175 SEG[135] 280 683 176 SEG[134] 236 683 177 SEG[133] 194 683 178 SEG[132] 150 683 179 SEG[131] 108 683 180 SEG[130] 64 683 181 SEG[129] 22 683 182 SEG[128] -22 683 183 SEG[127] -64 683 184 SEG[126] -108 683 185 SEG[125] -150 683 186 SEG[124] -194 683 187 SEG[123] -236 683 188 SEG[122] -280 683	168	SEG[142]	580	683	207	SEG[103]
171 SEG[139] 452 683 172 SEG[138] 408 683 173 SEG[137] 366 683 174 SEG[136] 322 683 175 SEG[135] 280 683 176 SEG[134] 236 683 177 SEG[133] 194 683 178 SEG[132] 150 683 179 SEG[131] 108 683 180 SEG[130] 64 683 181 SEG[129] 22 683 182 SEG[128] -22 683 183 SEG[127] -64 683 184 SEG[126] -108 683 185 SEG[125] -150 683 186 SEG[124] -94 683 187 SEG[123] -236 683 188 SEG[122] -280 683 189 SEG[121] -322 683	169	SEG[141]	538	683	208	SEG[102]
172 SEG[138] 408 683 173 SEG[137] 366 683 174 SEG[136] 322 683 175 SEG[135] 280 683 176 SEG[134] 236 683 177 SEG[133] 194 683 178 SEG[132] 150 683 179 SEG[131] 108 683 180 SEG[130] 64 683 181 SEG[129] 22 683 182 SEG[128] -22 683 183 SEG[127] -64 683 184 SEG[126] -108 683 185 SEG[125] -150 683 186 SEG[124] -194 683 187 SEG[123] -236 683 188 SEG[122] -280 683 189 SEG[121] -322 683 190 SEG[120] -366 683 191 SEG[118] -452 683 231	170	SEG[140]	494	683	209	SEG[101]
173 SEG[137] 366 683 174 SEG[136] 322 683 175 SEG[135] 280 683 176 SEG[134] 236 683 177 SEG[133] 194 683 178 SEG[132] 150 683 179 SEG[131] 108 683 179 SEG[130] 64 683 180 SEG[130] 64 683 181 SEG[129] 22 683 182 SEG[128] -22 683 183 SEG[127] -64 683 184 SEG[126] -108 683 185 SEG[125] -150 683 186 SEG[124] -194 683 187 SEG[123] -236 683 188 SEG[122] -280 683 189 SEG[121] -322 683 189 SEG[120] -366 683 190 SEG[120] -366 683 191	171	SEG[139]	452	683	210	SEG[100]
174 SEG[136] 322 683 213 SEG[97] 175 SEG[135] 280 683 214 SEG[96] 176 SEG[134] 236 683 215 SEG[95] 177 SEG[133] 194 683 216 SEG[94] 178 SEG[132] 150 683 217 SEG[93] 179 SEG[131] 108 683 218 SEG[92] 180 SEG[130] 64 683 219 SEG[91] 181 SEG[129] 22 683 220 SEG[90] 182 SEG[128] -22 683 221 SEG[89] 183 SEG[127] -64 683 222 SEG[88] 184 SEG[126] -108 683 223 SEG[87] 185 SEG[125] -150 683 224 SEG[86] 186 SEG[124] -194 683 225 SEG[85] 187 SEG[123] -236 683 227 SEG[83] 188 SEG[12	172	SEG[138]	408	683	211	SEG[99]
175 SEG[135] 280 683 176 SEG[134] 236 683 177 SEG[133] 194 683 178 SEG[132] 150 683 179 SEG[131] 108 683 179 SEG[130] 64 683 180 SEG[130] 64 683 181 SEG[129] 22 683 182 SEG[128] -22 683 183 SEG[127] -64 683 184 SEG[126] -108 683 185 SEG[126] -108 683 186 SEG[124] -194 683 187 SEG[123] -236 683 188 SEG[122] -280 683 189 SEG[121] -322 683 190 SEG[120] -366 683 191 SEG[118] -408 683 229 SEG[80] 192 SEG[118] -452 683	173	SEG[137]	366	683	212	SEG[98]
176 SEG[134] 236 683 177 SEG[133] 194 683 178 SEG[132] 150 683 179 SEG[131] 108 683 180 SEG[130] 64 683 181 SEG[129] 22 683 182 SEG[128] -22 683 183 SEG[127] -64 683 184 SEG[126] -108 683 185 SEG[125] -150 683 186 SEG[124] -194 683 187 SEG[123] -236 683 188 SEG[122] -280 683 189 SEG[121] -322 683 190 SEG[120] -366 683 191 SEG[118] -408 683 229 SEG[80] 192 SEG[118] -452 683	174	SEG[136]	322	683	213	SEG[97]
177 SEG[133] 194 683 216 SEG[94] 178 SEG[132] 150 683 217 SEG[93] 179 SEG[131] 108 683 218 SEG[92] 180 SEG[130] 64 683 219 SEG[91] 181 SEG[129] 22 683 220 SEG[90] 182 SEG[128] -22 683 221 SEG[89] 183 SEG[127] -64 683 222 SEG[88] 184 SEG[126] -108 683 223 SEG[87] 185 SEG[125] -150 683 224 SEG[86] 186 SEG[124] -194 683 225 SEG[86] 187 SEG[123] -236 683 226 SEG[84] 188 SEG[122] -280 683 227 SEG[83] 189 SEG[120] -366 683 229 SEG[81] 191	175	SEG[135]	280	683	214	SEG[96]
178 SEG[132] 150 683 217 SEG[93] 179 SEG[131] 108 683 218 SEG[92] 180 SEG[130] 64 683 219 SEG[91] 181 SEG[129] 22 683 220 SEG[90] 182 SEG[128] -22 683 221 SEG[89] 183 SEG[127] -64 683 222 SEG[88] 184 SEG[126] -108 683 223 SEG[87] 185 SEG[125] -150 683 224 SEG[86] 186 SEG[124] -194 683 225 SEG[86] 187 SEG[123] -236 683 226 SEG[84] 188 SEG[122] -280 683 227 SEG[83] 189 SEG[120] -366 683 229 SEG[81] 190 SEG[119] -408 683 230 SEG[80] 192	176	SEG[134]	236	683	215	SEG[95]
179 SEG[131] 108 683 180 SEG[130] 64 683 181 SEG[129] 22 683 182 SEG[128] -22 683 183 SEG[127] -64 683 184 SEG[126] -108 683 185 SEG[125] -150 683 186 SEG[124] -194 683 187 SEG[123] -236 683 188 SEG[122] -280 683 189 SEG[121] -322 683 190 SEG[120] -366 683 191 SEG[119] -408 683 192 SEG[118] -452 683	177	SEG[133]	194	683	216	SEG[94]
180 SEG[130] 64 683 219 SEG[91] 181 SEG[129] 22 683 220 SEG[90] 182 SEG[128] -22 683 221 SEG[89] 183 SEG[127] -64 683 222 SEG[88] 184 SEG[126] -108 683 223 SEG[87] 185 SEG[125] -150 683 224 SEG[86] 186 SEG[124] -194 683 225 SEG[85] 187 SEG[123] -236 683 226 SEG[84] 188 SEG[122] -280 683 227 SEG[83] 189 SEG[121] -322 683 228 SEG[82] 190 SEG[120] -366 683 229 SEG[81] 191 SEG[118] -408 683 230 SEG[80] 192 SEG[118] -452 683 231 SEG[79]	178	SEG[132]	150	683	217	SEG[93]
181 SEG[129] 22 683 220 SEG[90] 182 SEG[128] -22 683 221 SEG[89] 183 SEG[127] -64 683 222 SEG[88] 184 SEG[126] -108 683 223 SEG[87] 185 SEG[125] -150 683 224 SEG[86] 186 SEG[124] -194 683 225 SEG[86] 187 SEG[123] -236 683 226 SEG[84] 188 SEG[122] -280 683 227 SEG[83] 189 SEG[121] -322 683 228 SEG[82] 190 SEG[120] -366 683 229 SEG[81] 191 SEG[119] -408 683 230 SEG[80] 192 SEG[118] -452 683 231 SEG[79]	179	SEG[131]	108	683	218	SEG[92]
182 SEG[128] -22 683 221 SEG[89] 183 SEG[127] -64 683 222 SEG[88] 184 SEG[126] -108 683 223 SEG[87] 185 SEG[125] -150 683 224 SEG[86] 186 SEG[124] -194 683 225 SEG[85] 187 SEG[123] -236 683 226 SEG[84] 188 SEG[122] -280 683 227 SEG[83] 189 SEG[121] -322 683 228 SEG[82] 190 SEG[120] -366 683 229 SEG[81] 191 SEG[119] -408 683 230 SEG[80] 192 SEG[118] -452 683 231 SEG[79]	180	SEG[130]	64	683	219	SEG[91]
183 SEG[127] -64 683 222 SEG[88] 184 SEG[126] -108 683 223 SEG[87] 185 SEG[125] -150 683 224 SEG[86] 186 SEG[124] -194 683 225 SEG[85] 187 SEG[123] -236 683 226 SEG[84] 188 SEG[122] -280 683 227 SEG[83] 189 SEG[121] -322 683 228 SEG[82] 190 SEG[120] -366 683 229 SEG[81] 191 SEG[119] -408 683 230 SEG[80] 192 SEG[118] -452 683 231 SEG[79]	181	SEG[129]	22	683	220	SEG[90]
184 SEG[126] -108 683 223 SEG[87] 185 SEG[125] -150 683 224 SEG[86] 186 SEG[124] -194 683 225 SEG[85] 187 SEG[123] -236 683 226 SEG[84] 188 SEG[122] -280 683 227 SEG[83] 189 SEG[121] -322 683 228 SEG[82] 190 SEG[120] -366 683 229 SEG[81] 191 SEG[119] -408 683 230 SEG[80] 192 SEG[118] -452 683 231 SEG[79]	182	SEG[128]	-22	683	221	SEG[89]
185 SEG[125] -150 683 224 SEG[86] 186 SEG[124] -194 683 225 SEG[85] 187 SEG[123] -236 683 226 SEG[84] 188 SEG[122] -280 683 227 SEG[83] 189 SEG[121] -322 683 228 SEG[82] 190 SEG[120] -366 683 229 SEG[81] 191 SEG[119] -408 683 230 SEG[80] 192 SEG[118] -452 683 231 SEG[79]	183	SEG[127]	-64	683	222	SEG[88]
186 SEG[124] -194 683 225 SEG[85] 187 SEG[123] -236 683 226 SEG[84] 188 SEG[122] -280 683 227 SEG[83] 189 SEG[121] -322 683 228 SEG[82] 190 SEG[120] -366 683 229 SEG[81] 191 SEG[119] -408 683 230 SEG[80] 192 SEG[118] -452 683 231 SEG[79]	184	SEG[126]	-108	683	223	SEG[87]
187 SEG[123] -236 683 226 SEG[84] 188 SEG[122] -280 683 227 SEG[83] 189 SEG[121] -322 683 228 SEG[82] 190 SEG[120] -366 683 229 SEG[81] 191 SEG[119] -408 683 230 SEG[80] 192 SEG[118] -452 683 231 SEG[79]	185	SEG[125]	-150	683	224	SEG[86]
188 SEG[122] -280 683 227 SEG[83] 189 SEG[121] -322 683 228 SEG[82] 190 SEG[120] -366 683 229 SEG[81] 191 SEG[119] -408 683 230 SEG[80] 192 SEG[118] -452 683 231 SEG[79]	186	SEG[124]	-194	683	225	SEG[85]
189 SEG[121] -322 683 228 SEG[82] 190 SEG[120] -366 683 229 SEG[81] 191 SEG[119] -408 683 230 SEG[80] 192 SEG[118] -452 683 231 SEG[79]	187	SEG[123]	-236	683	226	SEG[84]
190 SEG[120] -366 683 229 SEG[81] 191 SEG[119] -408 683 230 SEG[80] 192 SEG[118] -452 683 231 SEG[79]	188	SEG[122]	-280	683	227	SEG[83]
191 SEG[119] -408 683 230 SEG[80] 192 SEG[118] -452 683 231 SEG[79]	189	SEG[121]	-322	683	228	SEG[82]
192 SEG[118] -452 683 231 SEG[79]	190	SEG[120]	-366	683	229	SEG[81]
	191	SEG[119]	-408	683	230	SEG[80]
193 SEG[117] -494 683 232 SEG[78]	192	SEG[118]	-452	683	231	SEG[79]
	193	SEG[117]	-494	683	232	SEG[78]

	_		
195	SEG[115]	-580	683
196	SEG[114]	-624	683
197	SEG[113]	-666	683
198	SEG[112]	-710	683
199	SEG[111]	-752	683
200	SEG[110]	-796	683
201	SEG[109]	-838	683
202	SEG[108]	-882	683
203	SEG[107]	-924	683
204	SEG[106]	-968	683
205	SEG[105]	-1010	683
206	SEG[104]	-1054	683
207	SEG[103]	-1096	683
208	SEG[102]	-1140	683
209	SEG[101]	-1182	683
210	SEG[100]	-1226	683
211	SEG[99]	-1268	683
212	SEG[98]	-1312	683
213	SEG[97]	-1354	683
214	SEG[96]	-1398	683
215	SEG[95]	-1440	683
216	SEG[94]	-1484	683
217	SEG[93]	-1526	683
218	SEG[92]	-1570	683
219	SEG[91]	-1612	683
220	SEG[90]	-1656	683
221	SEG[89]	-1698	683
222	SEG[88]	-1742	683
223	SEG[87]	-1784	683
224	SEG[86]	-1828	683
225	SEG[85]	-1870	683
226	SEG[84]	-1914	683
227	SEG[83]	-1956	683
228	SEG[82]	-2000	683
229	SEG[81]	-2042	683
230	SEG[80]	-2086	683
231	SEG[79]	-2128	683
232	SEG[78]	-2172	683

Υ

683

Χ

-538

PAD No.	PIN Name	Х	Υ	PAD No.	PIN Name	Ī
233	SEG[77]	-2214	683	272	SEG[38]	İ
234	SEG[76]	-2258	683	273	SEG[37]	Ī
235	SEG[75]	-2300	683	274	SEG[36]	1
236	SEG[74]	-2344	683	275	SEG[35]	1
237	SEG[73]	-2386	683	276	SEG[34]	Ī
238	SEG[72]	-2430	683	277	SEG[33]	Ī
239	SEG[71]	-2472	683	278	SEG[32]	Ī
240	SEG[70]	-2516	683	279	SEG[31]	Ī
241	SEG[69]	-2558	683	280	SEG[30]	Ī
242	SEG[68]	-2602	683	281	SEG[29]	Ī
243	SEG[67]	-2644	683	282	SEG[28]	Ī
244	SEG[66]	-2688	683	283	SEG[27]	Ī
245	SEG[65]	-2730	683	284	SEG[26]	
246	SEG[64]	-2774	683	285	SEG[25]	Ī
247	SEG[63]	-2816	683	286	SEG[24]	Ī
248	SEG[62]	-2860	683	287	SEG[23]	Ī
249	SEG[61]	-2902	683	288	SEG[22]	Ī
250	SEG[60]	-2946	683	289	SEG[21]	Ī
251	SEG[59]	-2988	683	290	SEG[20]	Ī
252	SEG[58]	-3032	683	291	SEG[19]	Ī
253	SEG[57]	-3074	683	292	SEG[18]	Ī
254	SEG[56]	-3118	683	293	SEG[17]	Ī
255	SEG[55]	-3160	683	294	SEG[16]	Ī
256	SEG[54]	-3204	683	295	SEG[15]	Ī
257	SEG[53]	-3246	683	296	SEG[14]	Ī
258	SEG[52]	-3290	683	297	SEG[13]	Ī
259	SEG[51]	-3332	683	298	SEG[12]	Ī
260	SEG[50]	-3376	683	299	SEG[11]	
261	SEG[49]	-3418	683	300	SEG[10]	
262	SEG[48]	-3462	683	301	SEG[9]	
263	SEG[47]	-3504	683	302	SEG[8]	
264	SEG[46]	-3548	683	303	SEG[7]	Ī
265	SEG[45]	-3590	683	304	SEG[6]	J
266	SEG[44]	-3634	683	305	SEG[5]	J
267	SEG[43]	-3676	683	306	SEG[4]	Ī
268	SEG[42]	-3720	683	307	SEG[3]	J
269	SEG[41]	-3762	683	308	SEG[2]	J
270	SEG[40]	-3806	683	309	SEG[1]	Ī
271	SEG[39]	-3848	683	310	SEG[0]	J

Χ

-3892

-3934

-3978

-4020

-4064

-4106

-4150

-4192

-4236

-4278

-4322

-4364

-4408

-4450

-4494

-4536

-4580

-4622

-4666

-4708

-4752

-4794

-4838

-4880

-4924

-4966

-5010

-5052

-5096

-5138

-5182

-5224

-5268

-5310

-5354

-5396

-5440

-5482

-5526

Υ

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

683

PAD No.	PIN Name	×	Υ	PAD No.	PIN N
311	COM[80]	-5724	683	350	COM[
312	COM[81]	-5767	683	351	COM[
313	COM[82]	-5810	683	352	COM[
314	COM[83]	-5853	683	353	COM[
315	COM[84]	-5896	683	354	COM[
316	COM[85]	-5939	683	355	COM[
317	COM[86]	-5982	683	356	COM[
318	COM[87]	-6025	683	357	COM[
319	COM[88]	-6068	683	358	COM[
320	COM[89]	-6111	683	359	COM[
321	COM[90]	-6154	683	360	COM[
322	COM[91]	-6197	683	361	COM[
323	COM[92]	-6240	683	362	COM[
324	COM[93]	-6283	683	363	COM[
325	COM[94]	-6326	683	364	COM[
326	COM[95]	-6369	683	365	COM[
327	COM[96]	-6412	683	366	COM[
328	COM[97]	-6455	683	367	COM[
329	COM[98]	-6498	683	368	COM[
330	COM[99]	-6541	683	369	COM[
331	COM[100]	-6584	683	370	COM[
332	COM[101]	-6627	683	371	COM[
333	COM[102]	-6670	683	372	COM[
334	COM[103]	-6713	683	373	COM[
335	COM[104]	-6756	683	374	COM[
336	COM[105]	-6799	683	375	COM[
337	COM[106]	-6842	683	376	COM[
338	COM[107]	-6885	683	377	COM[
339	COM[108]	-6928	683	378	COM[
340	COM[109]	-6971	683	379	COM[
341	COM[110]	-7014	683	380	COM[
342	COM[111]	-7057	683	381	COM[
343	COM[112]	-7100	683	382	COM[
344	COM[113]	-7143	683	383	COM[
345	COM[114]	-7186	683	384	COM[
346	COM[115]	-7229	683	385	COM[
347	COM[116]	-7272	683	386	COM[
348	COM[117]	-7315	683	387	COM[
349	COM[118]	-7358	683	388	COM[

350 COM[119] -7401 683 351 COM[120] -7444 683 352 COM[121] -7487 683 353 COM[122] -7530 683 354 COM[123] -7573 683 355 COM[124] -7616 683 356 COM[125] -7659 683 357 COM[126] -7702 683 358 COM[127] -7745 683 359 COM[128] -7788 683 360 COM[129] -7831 683 361 COM[130] -7874 683 362 COM[131] -7917 683 363 COM[132] -8196 661 364 COM[133] -8196 661 364 COM[133] -8196 575 366 COM[134] -8196 575 366 COM[135] -8196 360 367 COM[136] -8196 446 369 COM[137] -8196 446 369 COM[138] -8196 446 369 COM[139] -8196 360 371 COM[140] -8196 317 372 COM[141] -8196 274 373 COM[142] -8196 231 374 COM[143] -8196 188 375 COM[144] -8196 145 376 COM[145] -8196 102 377 COM[146] -8196 102 377 COM[147] -8196 16 379 COM[147] -8196 16 379 COM[148] -8196 59 378 COM[147] -8196 16 379 COM[148] -8196 59 378 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[151] -8196 -156 381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[155] -8196 -199 385 COM[156] -8196 -328 387 COM[156] -8196 -328 387 COM[157] -8196 -328 387 COM[157] -8196 -328	PAD No.	PIN Name	Х	Υ
352 COM[121] -7487 683 353 COM[122] -7530 683 354 COM[123] -7573 683 355 COM[124] -7616 683 355 COM[125] -7659 683 357 COM[126] -7702 683 358 COM[127] -7745 683 359 COM[128] -7831 683 360 COM[129] -7831 683 361 COM[130] -7874 683 362 COM[131] -7917 683 363 COM[132] -8196 661 364 COM[133] -8196 618 365 COM[134] -8196 575 366 COM[135] -8196 489 368 COM[137] -8196 446 369 COM[138] -8196 403 370 COM[138] -8196 317 372 COM[140] -8196 317 372 COM[141] -8196 274 373 COM[142] -8196 188 375 COM[142] -8196 188 376 COM[144] -8196 193 377 COM[144] -8196 102 377 COM[146] -8196 102 377 COM[146] -8196 102 377 COM[146] -8196 16 379 COM[147] -8196 16 379 COM[148] -8196 16 379 COM[149] -8196 -70 381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[155] -8196 -242 385 COM[155] -8196 -242 386 COM[155] -8196 -328 387 COM[156] -8196 -328	350	COM[119]	-7401	683
353 COM[122] -7530 683 354 COM[123] -7573 683 355 COM[124] -7616 683 356 COM[125] -7659 683 357 COM[126] -7702 683 358 COM[127] -7745 683 359 COM[128] -7831 683 360 COM[129] -7831 683 361 COM[130] -7874 683 362 COM[131] -7917 683 363 COM[132] -8196 661 364 COM[133] -8196 618 365 COM[134] -8196 575 366 COM[135] -8196 532 367 COM[136] -8196 489 368 COM[137] -8196 446 369 COM[138] -8196 403 370 COM[138] -8196 360 371 COM[140] -8196 317 372 COM[141] -8196 274 373 COM[142] -8196 231 374 COM[143] -8196 188 375 COM[144] -8196 102 377 COM[146] -8196 102 377 COM[146] -8196 102 377 COM[147] -8196 16 379 COM[147] -8196 16 379 COM[148] -8196 59 378 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[149] -8196 -156 381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[155] -8196 -285 385 COM[155] -8196 -285 386 COM[155] -8196 -285	351	COM[120]	-7444	683
354 COM[123] -7573 683 355 COM[124] -7616 683 356 COM[125] -7659 683 357 COM[126] -7702 683 358 COM[127] -7745 683 359 COM[128] -7788 683 360 COM[129] -7831 683 361 COM[130] -7874 683 362 COM[131] -7917 683 363 COM[132] -8196 661 364 COM[133] -8196 618 365 COM[134] -8196 575 366 COM[135] -8196 489 368 COM[137] -8196 489 368 COM[137] -8196 446 369 COM[138] -8196 403 370 COM[139] -8196 360 371 COM[140] -8196 317 372 COM[140] -8196 317 372 COM[141] -8196 274 373 COM[142] -8196 188 375 COM[144] -8196 165 376 COM[145] -8196 102 377 COM[146] -8196 102 377 COM[146] -8196 103 379 COM[147] -8196 16 379 COM[147] -8196 16 379 COM[148] -8196 59 378 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[149] -8196 -156 381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[155] -8196 -285 385 COM[155] -8196 -285	352	COM[121]	-7487	683
355 COM[124] -7616 683 356 COM[125] -7659 683 357 COM[126] -7702 683 358 COM[127] -7745 683 359 COM[128] -7788 683 360 COM[129] -7831 683 361 COM[130] -7874 683 362 COM[131] -7917 683 363 COM[132] -8196 661 364 COM[133] -8196 618 365 COM[134] -8196 575 366 COM[135] -8196 532 367 COM[136] -8196 489 368 COM[137] -8196 446 369 COM[138] -8196 403 370 COM[139] -8196 317 372 COM[140] -8196 317 372 COM[140] -8196 317 374 COM[142] -8196 231 375 COM[143] -8196 188 375 COM[144] -8196 193 376 COM[145] -8196 102 377 COM[146] -8196 59 378 COM[147] -8196 59 378 COM[147] -8196 59 378 COM[147] -8196 59 378 COM[147] -8196 -70 381 COM[149] -8196 -70 381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -113 384 COM[153] -8196 -156 385 COM[154] -8196 -285 386 COM[155] -8196 -285 386 COM[155] -8196 -285	353	COM[122]	-7530	683
356 COM[125] -7659 683 357 COM[126] -7702 683 358 COM[127] -7745 683 359 COM[128] -7788 683 360 COM[129] -7831 683 361 COM[130] -7874 683 362 COM[131] -7917 683 363 COM[132] -8196 661 364 COM[133] -8196 618 365 COM[134] -8196 575 366 COM[135] -8196 489 368 COM[137] -8196 489 369 COM[138] -8196 403 370 COM[139] -8196 317 370 COM[140] -8196 317 372 COM[140] -8196 317 372 COM[141] -8196 274 373 COM[142] -8196 231 374 COM[143] -8196 188 375 COM[144] -8196 145 376 COM[145] -8196 102 377 COM[146] -8196 102 377 COM[146] -8196 59 378 COM[147] -8196 102 377 COM[148] -8196 59 378 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[149] -8196 -70 381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -285 385 COM[154] -8196 -285 386 COM[155] -8196 -285	354	COM[123]	-7573	683
357 COM[126] -7702 683 358 COM[127] -7745 683 359 COM[128] -7788 683 360 COM[129] -7831 683 361 COM[130] -7874 683 362 COM[131] -7917 683 363 COM[132] -8196 661 364 COM[133] -8196 618 365 COM[134] -8196 575 366 COM[135] -8196 489 368 COM[137] -8196 446 369 COM[138] -8196 440 370 COM[138] -8196 300 371 COM[140] -8196 317 372 COM[141] -8196 274 373 COM[142] -8196 231 374 COM[143] -8196 188 375 COM[144] -8196 193 376 COM[144] -8196 102 377 COM[146] -8196 102 377 COM[146] -8196 102 377 COM[146] -8196 102 377 COM[147] -8196 102 377 COM[146] -8196 59 378 COM[147] -8196 102 377 COM[148] -8196 -27 380 COM[149] -8196 -113 382 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -199 385 COM[154] -8196 -285 386 COM[155] -8196 -285	355	COM[124]	-7616	683
358	356	COM[125]	-7659	683
359 COM[128] -7788 683 360 COM[129] -7831 683 361 COM[130] -7874 683 362 COM[131] -7917 683 363 COM[132] -8196 661 364 COM[133] -8196 618 365 COM[134] -8196 575 366 COM[135] -8196 489 368 COM[137] -8196 446 369 COM[138] -8196 403 370 COM[139] -8196 317 371 COM[140] -8196 317 372 COM[141] -8196 274 373 COM[142] -8196 231 374 COM[143] -8196 188 375 COM[144] -8196 188 375 COM[144] -8196 102 377 COM[146] -8196 59 378 COM[147] -8196 102 379 COM[147] -8196 102 377 COM[146] -8196 59 378 COM[147] -8196 102 379 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[149] -8196 -156 381 COM[150] -8196 -113 382 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -285 386 COM[155] -8196 -285	357	COM[126]	-7702	683
360 COM[129] -7831 683 361 COM[130] -7874 683 362 COM[131] -7917 683 363 COM[132] -8196 661 364 COM[133] -8196 618 365 COM[134] -8196 575 366 COM[135] -8196 489 367 COM[136] -8196 489 368 COM[137] -8196 403 370 COM[138] -8196 360 371 COM[140] -8196 360 371 COM[140] -8196 361 372 COM[140] -8196 274 373 COM[141] -8196 231 374 COM[142] -8196 188 375 COM[144] -8196 192 377 COM[146] -8196 59 378 COM[147] -8196 -59 380 COM[148] <	358	COM[127]	-7745	683
361 COM[130] -7874 683 362 COM[131] -7917 683 363 COM[132] -8196 661 364 COM[133] -8196 618 365 COM[134] -8196 575 366 COM[135] -8196 489 368 COM[136] -8196 493 369 COM[138] -8196 403 370 COM[139] -8196 360 371 COM[140] -8196 317 372 COM[141] -8196 274 373 COM[142] -8196 231 374 COM[142] -8196 188 375 COM[144] -8196 102 377 COM[144] -8196 102 377 COM[146] -8196 59 378 COM[147] -8196 -70 381 COM[150] -8196 -113 382 COM[151]	359	COM[128]	-7788	683
362 COM[131] -7917 683 363 COM[132] -8196 661 364 COM[133] -8196 618 365 COM[134] -8196 575 366 COM[135] -8196 532 367 COM[136] -8196 489 368 COM[137] -8196 446 369 COM[138] -8196 403 370 COM[138] -8196 360 371 COM[140] -8196 317 372 COM[140] -8196 274 373 COM[142] -8196 231 374 COM[143] -8196 188 375 COM[144] -8196 145 376 COM[145] -8196 102 377 COM[146] -8196 59 378 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[149] -8196 -70 381 COM[149] -8196 -113 382 COM[150] -8196 -113 383 COM[150] -8196 -156 383 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -242 385 COM[154] -8196 -285 386 COM[155] -8196 -328	360	COM[129]	-7831	683
363 COM[132] -8196 661 364 COM[133] -8196 618 365 COM[134] -8196 575 366 COM[135] -8196 532 367 COM[136] -8196 489 368 COM[137] -8196 446 369 COM[138] -8196 403 370 COM[139] -8196 360 371 COM[140] -8196 317 372 COM[141] -8196 274 373 COM[142] -8196 231 374 COM[143] -8196 188 375 COM[144] -8196 145 376 COM[145] -8196 102 377 COM[146] -8196 59 378 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[149] -8196 -113 382 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -242 385 COM[154] -8196 -285 386 COM[155] -8196 -328 387 COM[156] -8196 -328	361	COM[130]	-7874	683
364 COM[133] -8196 618 365 COM[134] -8196 575 366 COM[135] -8196 532 367 COM[136] -8196 489 368 COM[137] -8196 446 369 COM[138] -8196 403 370 COM[139] -8196 360 371 COM[140] -8196 317 372 COM[141] -8196 274 373 COM[142] -8196 231 374 COM[143] -8196 188 375 COM[144] -8196 145 376 COM[145] -8196 59 377 COM[146] -8196 59 378 COM[147] -8196 59 378 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[149] -8196 -113 382 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -242 385 COM[154] -8196 -285 386 COM[155] -8196 -328	362	COM[131]	-7917	683
365 COM[134] -8196 575 366 COM[135] -8196 489 367 COM[136] -8196 489 368 COM[137] -8196 446 369 COM[138] -8196 403 370 COM[139] -8196 360 371 COM[140] -8196 317 372 COM[141] -8196 274 373 COM[142] -8196 231 374 COM[143] -8196 188 375 COM[144] -8196 145 376 COM[144] -8196 59 378 COM[146] -8196 59 378 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[150] -8196 -113 382 COM[150] -8196 -156 383 COM[151] -8196 -199 384 COM[154]	363	COM[132]	-8196	661
366 COM[135] -8196 532 367 COM[136] -8196 489 368 COM[137] -8196 446 369 COM[138] -8196 403 370 COM[140] -8196 360 371 COM[140] -8196 317 372 COM[141] -8196 274 373 COM[142] -8196 231 374 COM[143] -8196 188 375 COM[144] -8196 145 376 COM[144] -8196 102 377 COM[145] -8196 59 378 COM[147] -8196 16 379 COM[147] -8196 -27 380 COM[149] -8196 -70 381 COM[150] -8196 -113 382 COM[151] -8196 -199 384 COM[152] -8196 -199 384 COM[154] -8196 -285 386 COM[156] -8196 -371	364	COM[133]	-8196	618
367 COM[136] -8196 489 368 COM[137] -8196 446 369 COM[138] -8196 360 370 COM[139] -8196 360 371 COM[140] -8196 317 372 COM[141] -8196 274 373 COM[142] -8196 231 374 COM[143] -8196 188 375 COM[144] -8196 145 376 COM[144] -8196 102 377 COM[146] -8196 59 378 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[149] -8196 -70 381 COM[150] -8196 -113 382 COM[151] -8196 -199 384 COM[152] -8196 -242 385 COM[154] -8196 -285 386 COM[156]	365	COM[134]	-8196	575
368 COM[137] -8196 446 369 COM[138] -8196 403 370 COM[139] -8196 360 371 COM[140] -8196 317 372 COM[141] -8196 274 373 COM[142] -8196 231 374 COM[143] -8196 188 375 COM[144] -8196 145 376 COM[145] -8196 102 377 COM[146] -8196 59 378 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[149] -8196 -70 381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -242 385 COM[154] -8196 -328 386 COM[156]	366	COM[135]	-8196	532
369 COM[138] -8196 403 370 COM[139] -8196 360 371 COM[140] -8196 317 372 COM[141] -8196 274 373 COM[142] -8196 231 374 COM[143] -8196 188 375 COM[144] -8196 145 376 COM[145] -8196 102 377 COM[146] -8196 59 378 COM[146] -8196 59 379 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[149] -8196 -70 381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[152] -8196 -242 385 COM[154] -8196 -328 386 COM[156] -8196 -371	367	COM[136]	-8196	489
370 COM[139] -8196 360 371 COM[140] -8196 317 372 COM[141] -8196 274 373 COM[142] -8196 231 374 COM[143] -8196 188 375 COM[144] -8196 145 376 COM[145] -8196 102 377 COM[146] -8196 59 378 COM[147] -8196 16 379 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[149] -8196 -70 381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -242 385 COM[154] -8196 -285 386 COM[155] -8196 -328 387 COM[156] -8196 -371	368	COM[137]	-8196	446
371 COM[140] -8196 317 372 COM[141] -8196 274 373 COM[142] -8196 231 374 COM[143] -8196 188 375 COM[144] -8196 145 376 COM[144] -8196 102 377 COM[146] -8196 59 378 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[149] -8196 -70 381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -242 385 COM[154] -8196 -285 386 COM[155] -8196 -328 387 COM[156] -8196 -371	369	COM[138]	-8196	403
372 COM[141] -8196 274 373 COM[142] -8196 231 374 COM[143] -8196 188 375 COM[144] -8196 145 376 COM[145] -8196 102 377 COM[146] -8196 59 378 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[149] -8196 -70 381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -242 385 COM[154] -8196 -285 386 COM[155] -8196 -328 387 COM[156] -8196 -371	370	COM[139]	-8196	360
373 COM[142] -8196 231 374 COM[143] -8196 188 375 COM[144] -8196 145 376 COM[145] -8196 102 377 COM[146] -8196 59 378 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[148] -8196 -70 381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -242 385 COM[154] -8196 -285 386 COM[155] -8196 -328 387 COM[156] -8196 -371	371	COM[140]	-8196	317
374 COM[143] -8196 188 375 COM[144] -8196 145 376 COM[145] -8196 102 377 COM[146] -8196 59 378 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[149] -8196 -70 381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -242 385 COM[154] -8196 -285 386 COM[155] -8196 -328 387 COM[156] -8196 -371	372	COM[141]	-8196	274
375 COM[144] -8196 145 376 COM[145] -8196 102 377 COM[146] -8196 59 378 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[149] -8196 -70 381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -242 385 COM[154] -8196 -285 386 COM[155] -8196 -328 387 COM[156] -8196 -371	373	COM[142]	-8196	231
376 COM[145] -8196 102 377 COM[146] -8196 59 378 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[149] -8196 -70 381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -242 385 COM[154] -8196 -285 386 COM[155] -8196 -328 387 COM[156] -8196 -371	374	COM[143]	-8196	188
377 COM[146] -8196 59 378 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[149] -8196 -70 381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -242 385 COM[154] -8196 -285 386 COM[155] -8196 -328 387 COM[156] -8196 -371	375	COM[144]	-8196	145
378 COM[147] -8196 16 379 COM[148] -8196 -27 380 COM[149] -8196 -70 381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -242 385 COM[154] -8196 -285 386 COM[155] -8196 -328 387 COM[156] -8196 -371	376	COM[145]	-8196	102
379 COM[148] -8196 -27 380 COM[149] -8196 -70 381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -242 385 COM[154] -8196 -285 386 COM[155] -8196 -328 387 COM[156] -8196 -371	377	COM[146]	-8196	59
380 COM[149] -8196 -70 381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -242 385 COM[154] -8196 -285 386 COM[155] -8196 -328 387 COM[156] -8196 -371	378	COM[147]	-8196	16
381 COM[150] -8196 -113 382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -242 385 COM[154] -8196 -285 386 COM[155] -8196 -328 387 COM[156] -8196 -371	379	COM[148]	-8196	-27
382 COM[151] -8196 -156 383 COM[152] -8196 -199 384 COM[153] -8196 -242 385 COM[154] -8196 -285 386 COM[155] -8196 -328 387 COM[156] -8196 -371	380	COM[149]	-8196	-70
383 COM[152] -8196 -199 384 COM[153] -8196 -242 385 COM[154] -8196 -285 386 COM[155] -8196 -328 387 COM[156] -8196 -371	381	COM[150]	-8196	-113
384 COM[153] -8196 -242 385 COM[154] -8196 -285 386 COM[155] -8196 -328 387 COM[156] -8196 -371	382	COM[151]	-8196	-156
385 COM[154] -8196 -285 386 COM[155] -8196 -328 387 COM[156] -8196 -371	383	COM[152]	-8196	-199
386 COM[155] -8196 -328 387 COM[156] -8196 -371	384	COM[153]	-8196	-242
387 COM[156] -8196 -371	385	COM[154]	-8196	-285
	386	COM[155]	-8196	-328
388 COM[157] -8196 -414	387	COM[156]	-8196	-371
	388	COM[157]	-8196	-414

PAD No.	PIN Name	Х	Υ
389	COM[158]	-8196	-457
390	COM[159]	-8196	-500
391	T[10]	-8197	-712
392	T[9]	-8122	-712
393	T[8]	-8047	-712
394	T[7]	-7972	-712
395	T[6]	-7897	-712
396	T[5]	-7822	-712
397	T[4]	-7747	-712
398	T[3]	-7672	-712
399	T[2]	-7597	-712
400	T[1]	-7522	-712
401	T[0]	-7447	-712
402	VSS	-7355	-712
403	VSS	-7245	-712
404	VSS	-7135	-712
405	VSS	-7025	-712
406	VSS4	-6915	-712
407	VSS4	-6805	-712
408	VSS1	-6695	-712
409	VSS1	-6585	-712
410	VDD1	-6475	-712
411	VDD1	-6365	-712
412	VDD	-6255	-712
413	VDD	-6145	-712
414	VDD	-6035	-712
415	VDD	-5925	-712
416	VDD	-5815	-712
417	VDD	-5705	-712
418	CL	-5595	-712
419	CLS	-5485	-712
420	VSS	-5375	-712
421	VDD	-5265	-712
422	A0	-5155	-712
423	RW_WR	-5045	-712
424	VSS	-4935	-712
425	VDD	-4825	-712
426	D0	-4715	-712
427	D1	-4605	-712

PAD No.	PIN Name	Х	Υ
428	D2	-4495	-712
429	D3	-4385	-712
430	D4	-4275	-712
431	D5	-4165	-712
432	D6	-4055	-712
433	D7	-3945	-712
434	VSS	-3835	-712
435	VDD	-3725	-712
436	D8	-3615	-712
437	D9	-3505	-712
438	D10	-3395	-712
439	D11	-3285	-712
440	D12	-3175	-712
441	D13	-3065	-712
442	D14	-2955	-712
443	D15	-2845	-712
444	VSS	-2735	-712
445	VDD	-2625	-712
446	E_RD	-2515	-712
447	RST	-2405	-712
448	VSS	-2295	-712
449	VDD	-2185	-712
450	MO	-2075	-712
451	M1	-1965	-712
452	IF1	-1855	-712
453	IF2	-1745	-712
454	IF3	-1635	-712
455	VSS	-1525	-712
456	VDD	-1415	-712
457	SI	-1305	-712
458	SCL	-1195	-712
459	XCS	-1085	-712
460	VDD	-975	-712
461	VDD	-865	-712
462	VDD	-755	-712
463	VDD	-645	-712
464	VDD	-535	-712
465	VDD	-425	-712
466	VDD1	-315	-712

PAD No.	PIN Name	х	Υ	PAD No.
467	VDD1	-205	-712	506
468	VSS1	-95	-712	507
469	VSS1	15	-712	508
470	VSS	125	-712	509
471	VSS	235	-712	510
472	VSS	345	-712	511
473	VSS	455	-712	512
474	VSS	565	-712	513
475	VSS	675	-712	514
476	VSS2	785	-712	515
477	VSS2	895	-712	516
478	VSS2	1005	-712	517
479	VSS2	1115	-712	518
480	VSS2	1225	-712	519
481	VSS2	1335	-712	520
482	VSS2	1445	-712	521
483	VSS2	1555	-712	522
484	VSS2	1665	-712	523
485	VSS2	1775	-712	524
486	VSS2	1885	-712	525
487	VSS4	1995	-712	526
488	VSS4	2105	-712	527
489	VDD4	2215	-712	528
490	VDD4	2325	-712	529
491	VDD3	2435	-712	530
492	VDD3	2545	-712	531
493	VDD2	2655	-712	532
494	VDD2	2765	-712	533
495	VDD2	2875	-712	534
496	VDD2	2985	-712	535
497	VDD2	3095	-712	536
498	VDD2	3205	-712	537
499	VDD2	3315	-712	538
500	VDD2	3425	-712	539
501	VDD2	3535	-712	540
502	VDD2	3645	-712	541
503	VDD5	3755	-712	542
504	VDD5	3865	-712	543
505	VDD5	3975	-712	544

PAD No.	PIN Name	Х	Y	
506	VDD5	4085	-712	
507	TCAP	4195	-712	
508	C7P	4305	-712	
509	C1N	4415	-712	
510	C5P	4525	-712	
511	C3P	4635	-712	
512	C1N	4745	-712	
513	C1P	4855	-712	
514	C2P	4965	-712	
515	C2N	5075	-712	
516	C4P	5185	-712	
517	C2N	5295	-712	
518	C6P	5405	-712	
519	VLCDIN	5515	-712	
520	VLCDIN	5625	-712	
521	VLCDIN	5735	-712	
522	VLCDIN	5845	-712	
523	VLCDIN	5955	-712	
524	VLCDIN	6065	-712	
525	VLCDOUT	6175	-712	
526	VLCDOUT	6285	-712	
527	VLCDOUT	6395	-712	
528	VLCDOUT	6505	-712	
529	VLCDOUT	6615	-712	
530	VLCDOUT	6725	-712	
531	VREF	6835	-712	
532	V4	6945	-712	
533	V3	7055	-712	
534	V2	7165	-712	
535	V1	7275	-712	
536	V0OUT	7385	-712	
537	V0OUT	7495	-712	
538	V0OUT	7605	-712	
539	V0OUT	7715	-712	
540	VOIN	7825	-712	
541	V0IN	7935	-712	
542	VOIN	8045	-712	
543	VOIN	8155	-712	
544	COM[0]	8196	-500	

PAD No.	PIN Name	Х	Y
545	COM[1]	8196	-457
546	COM[2]	8196	-414
547	COM[3]	8196	-371
548	COM[4]	8196	-328
549	COM[5]	8196	-285
550	COM[6]	8196	-242
551	COM[7]	8196	-199
552	COM[8]	8196	-156
553	COM[9]	8196	-113
554	COM[10]	8196	-70
555	COM[11]	8196	-27
556	COM[12]	8196	16
557	COM[13]	8196	59
558	COM[14]	8196	102
559	COM[15]	8196	145
560	COM[16]	8196	188
561	COM[17]	8196	231
562	COM[18]	8196	274
563	COM[19]	8196	317
564	COM[20]	8196	360
565	COM[21]	8196	403
566	COM[22]	8196	446
567	COM[23]	8196	489
568	COM[24]	8196	532
569	COM[25]	8196	575
570	COM[26]	8196	618
571	COM[27]	8196	661

5. BLOCK DIAGRAM

6. PIN DESCRIPTION

6.1 POWER SUPPLY

Name	I/O			Description								
VDD		Power supply for log	gic circuit									
VDD1		Power supply for OSC circuit										
VDD2	Supply	Power supply for Bo	Power supply for Booster Circuit									
VDD3 VDD4 VDD5	Supply	Power supply for LCD										
VSS VSS1 VSS4	Supply	Ground. Ground sys	Ground. Ground system should be connected together.									
V _{LCDOUT}	Supply	If the internal voltag	•		UT must be connecte	ed together.						
V _{LCDIN}	Supply	An external LCD su left open, and the in					be					
V0In V0out V1 V2 V3 V4	Supply	V0In & V0out should V0Itages should have V0 ≥ V1 ≥ V2 ≥ V3 ≥ When the internal p to the state of LCD LCD bias	LCD driver supply voltages V0In & V0out should be connected together in FPC area. Voltages should have the following relationship: $V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge VSS$ When the internal power circuit is active, these voltages are generated as the following table according to the state of LCD bias. LCD bias									
		1/N bias	(N-1) / N x V0	(N-2) / N x V0	(2/N) x V0	(1/N) x V0]					
CAP6P	0	NOTE: N = 5 to 14 DC/DC voltage con	verter. Connect a ca	apacitor between thi	s terminal and the C	CAP2N terminal.						
CAP2N	0	DC/DC voltage con	Connect a ca	apacitor between this spacitor between this spacitor between this	s terminal and the C	CAP4P terminal.						
CAP4P	0	DC/DC voltage con	verter. Connect a ca	apacitor between thi	s terminal and the C	CAP2N terminal.						
CAP2P	0	DC/DC voltage con	verter. Connect a ca	apacitor between this	s terminal and the C	CAP2N terminal.						
CAP1P	0	DC/DC voltage con	verter. Connect a ca	apacitor between thi	s terminal and the C	CAP1N terminal.						
CAP1N	0	OC/DC voltage converter. Connect a capacitor between this terminal and the CAP1P terminal. Connect a capacitor between this terminal and the CAP3P terminal. Connect a capacitor between this terminal and the CAP5P terminal. Connect a capacitor between this terminal and the CAP7P terminal.										
CAP3P	0	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.										
CAP5P	0	DC/DC voltage con	verter. Connect a ca	apacitor between this	s terminal and the C	CAP1N terminal.						
CAP7P	0	DC/DC voltage con	verter. Connect a ca	apacitor between thi	s terminal and the C	CAP1N terminal.						

6.2 LCD DRIVER SUPPLY

Name	I/O	Description								
VREF	0	Reference voltage output for monitor only. Leave it open.								
CLS	When using internal clock oscillator, connect CLS to VDD. When using external clock oscillator, connect CLS to VSS.									
CL	When using internal clock oscillator, it is the output of oscillator									

6.3 SYSTEM CONTROL

Name	I/O	Description
TCAP	0	Test pin. Leave it open.
T[0]~T[10]		Test pin. Leave it open.

6.4 MICROPROCESSOR INTERFACE

Name	I/O					De	scription					
		M0,M1 n	nust be fixed t	to VSS.	. This pir	is rese	erved for internal setting.					
M0, M1	I											
рот		Reset in	put pin									
RST	I	When R	ST is "L", initia	alizatior	n is exec	uted.						
		Chip sele	ect input pins									
XCS	I				-	hen XC	S is "L". When chip select is r	non-active, D	B0 to			
			ay be high im									
		Parallel /	/ Serial data ir	•			BADUL'S CONTRACTOR	1				
			-	IF1	IF2	IF3	MPU interface type					
				<u>H</u>	Н	<u>H</u>	80 series 16-bit parallel					
				<u>H</u>	Н	<u>L</u>	80 series 8-bit parallel					
IF[3:1]	I		_	<u>H</u>	L	L	68 series 16-bit parallel					
			_	<u>L</u>	Н	<u>H</u>	68 series 8-bit parallel					
			_	L L	L	<u>H</u> L	9-bit serial (3 line) 8-bit serial (4 line)					
				<u> </u>	L	<u> </u>	o-bit Serial (4 line)]				
		<u> </u>										
4.0		_	Register select input pin									
A0	I		- A0 = "H": DB0 to DB15 or SI are display data									
			- A0 = "L": DB0 to DB15 or SI are control data									
		Read / V	Read / Write execution control pin MPU type RW WR Description									
			MPU type	· K	VV_VVI	Description Read / Write control input pin						
			6800-series		RW		= "H" : read					
RW_WR	1				IXVV		= 11 . read = "L" : write					
							e enable clock input pin					
			8080-series	s	/WR		data on DB0 to DB15 are latch	ned at the				
					,		g edge of the /WR signal.					
		D I / \	V-it		-1 1				J			
			Vrite execution				Description					
		<u>"</u>	MPU Type	E_R		and / \\/	Description					
							rite control input pin H": When E is "H", DB0 to DB [,]	15 ara in an				
F DD		6	800-series	E		itput sta		is ale ili ali				
E_RD	ı		000 001100	_		•	_": The data on DB0 to DB15 a	are latched a	at			
							edge of the E signal.					
				/D/	R		ble clock input pin					
		8	080-series	/RI) W	hen /R[D is "L", DB0 to DB15 are in a	n output stat	us.			
		Thoy cor	anact to the st	tandara	l Q bit or	16 hit N	MPU bus via the 8/16 –bit bi-di	iroctional bu				
		_					the XCS pin is high, the follow					
			ce, which sho				· · · · · · · · · · · · · · · · · · ·	ing pino boo	onio mgn			
D15 to D0	I/O						high impedance					
			-				of high impedance					
							•					
SI	1	This pin	ic used to inn	ut corio	ıl data	han tha	carial interface is calcuted 12	line and 4 !	ino)			
	<u> </u>	-					serial interface is selected. (3	mie anu 4 li	e)			
SCL	I	-	This pin is used to input serial clock when the serial interface is selected.									
		Title data	the data is latched at the rising edge. (3 line and 4 line)									

NOTE:

Microprocessor interface pins should not be floating in any operation mode.

6.5 LCD DRIVER OUTPUTS

Name	I/O			D	escription					
		LCD segment driver outputs								
		The	display data and the	M signal control the	e output voltage of segm	ent driver.				
0500			Display data	M (Internal)	Segment drive	r output voltage				
SEG0			Display data	w (memai)	Normal display	Reverse display				
to CECOE4	0		Н	Н	V0	V2				
SEG254			Н	L	VSS	V3				
			L	Н	V2	V0				
			L	L	V3	VSS				
			Power sav	e mode	VSS	VSS				
		LCD common driver outputs								
		The	The internal scanning data and M signal control the output voltage of common driver.							
COM0			Scan data	M (Internal)	Common driv	er output voltage				
to			Н	Н	,	VSS				
COM159	0		Н	L		V0				
			L	Н		V1				
			L	L		V4				
			Powers	save mode	,	VSS				

7. FUNCTIONAL DESCRIPTION

7.1 MICROPROCESSOR INTERFACE

Chip Select Input

The XCS pin is for chip selection. The ST7529 can function with an MPU when XCS is "L". In case of serial interface, the internal shift register and the counter are reset.

7.1.1 Selecting Parallel / Serial Interface

ST7529 has seven types of interface with an MPU, which are four parallel and three serial interfaces. This parallel or serial interface is determined by IF pin as shown in table 7.1.1.

Table 7.1.1 Parallel / Serial Interface Mode

IF1	IF2	IF3	Interface type	XCS	A0	/RD(E)	/WR(R/W)	D15 to D8	D7 to D0	SI	SCL	ACK
Н	Η	Η	80 serial 16-bit parallel	XCS	A0	/RD	WR	D15 to D8	D7 to D0			
Н	Н	Г	80 serial 8-bit parallel	XCS	A0	/RD	WR		D7 to D0			-
Н	L	Г	68 serial 16-bit parallel	XCS	A0	Е	R/W	D15 to D8	D7 to D0			
L	Н	Н	68 serial 8-bit parallel	XCS	A0	Е	R/W		D7 to D0			
L	L	Н	9-bit SPI mode (3 line)	XCS						SI	SCL	
L	L	Г	8-bit SPI mode (4 line)	XCS	A0					SI	SCL	-

Note: "--" means "disabled" in pins A0, E_RD, and RW_WR, and "high impedance" in pins DB0 to DB15.

7.1.2 8- or 16-bit Parallel Interface

The ST7529 identifies the type of the data bus signals according to the combination of A0, /RD (E) and /WR (W/R) as shown in table 7.1.2.

Table 7.1.2 Parallel Data Transfer

Common	6800)-series	80	080-series	Description
Α0	R/W	E	/RD	/WR	Description
Н	Н	Н	L	Н	Display data read out
Н	L	Н	Н	L	Display data write
L	Н	Н	L	Н	Register status read
L	L	Н	Н	L	Writes to internal register (instruction)

Relation between Data Bus and Gradation Data

ST7529 offers the 2bytes 3pixels(2B3P), 3bytes 3pixels(3B3P) mode to display 32 gray scale data.

(1) 2B3P 32 Gray Scale Display

1. 8-bit mode

D7	D6	D5	D4	D3	D2	D1	D0	
P0	P0	P0	P0	P0	P1	P1	P1	1st write
P1	P1	Χ	P2	P2	P2	P2	P2	2nd write

A single pixel of data is read after the second write operation as shown, and it is written in the display RAM.

2. 16-bit mode

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
P0	P0	P0	P0	P0	P1	P1	P1	P1	P1	Χ	P2	P2	P2	P2	P2

Data is acquired through the operation of writing signal, and then written to the display RAM.

[&]quot;X" are dummy bits, which are ignored for display.

[&]quot;X" are dummy bits, which are ignored for display.

(2) 3B3P 32 Gray Scale Display

1. 8-bit mode

D7	D6	D5	D4	D3	D2	D1	D0	
P0	P0	P0	P0	P0	Χ	Х	Х	1st write
P1	P1	Ρ1	Ρ1	P1	Χ	Х	Χ	2nd write
P2	P2	P2	P2	P2	Χ	Х	Χ	3rd write

A single pixel of data is read after the third write operation as shown, and it is written in the display RAM.

2. 16 bit mode

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
P0	P0	P0	P0	P0	Х	Х	Х	P1	P1	P1	P1	P1	Χ	Χ	Х	1st write
P2	P2	P2	P2	P2	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	2nd write

A single pixel of data is read after the second write operation as shown, and it is written in the display RAM.

7.1.3 8-bit (4 line) and 9-bit (3 line) Serial Interface

The 8-bit serial interface uses four pins XCS, SI, SCL, and A0 to enter commands and data. Meanwhile, the 9-bit serial interface uses three pins XCS, SI and SCL for the same purpose.

Data read is not available in the serial interface. The entered data must be 8 bits. Refer to the following chart for entering commands, parameters or gray-scale data.

The relation between gray-scale data and data bus in the serial input is the same as that in the 8-bit parallel interface mode at every gradation.

[&]quot;X" are dummy bits, which are ignored for display.

[&]quot;X" are dummy bits, which are ignored for display.

(1) 8-bit serial interface (4 line)

When entering data (parameters): A0= HIGH at the rising edge of the 8th SCL.

When entering command: A0= LOW at the rising edge of the 8th SCL

(2) 9-bit serial interface (3 line)

When entering data (parameters): SI= HIGH at the rising edge of the 1st SCL.

When entering command: SI= LOW at the rising edge of the 1st SCL.

ST7529

- If XCS is set to HIGH while the 8 bits from D7 to D0 are entered, the data concerned is invalid. Before entering succeeding sets of data, you must correctly input the data concerned again.
- In order to avoid data transfer error due to incoming noise, it is recommended to set XCS at HIGH on byte basis to initialize the serial-to-parallel conversion counter and the register.
- When executing the command RAMWR, set XCS to HIGH after writing the last address (after starting the 9th pulse in case of 9-bit serial input or after starting the 8th pulse in case of 8-bit serial input).

7.2 ACCESS TO DDRAM AND INTERNAL REGISTERS

Since ST7529 access from MPU by pipeline processing via the bus holder attached to the internal that requires only the cycle time but no waiting time, it can achieves high-speed data transfer.

For example, when MPU writes data to the DDRAM, the data is once held by the bus holder and then written to the DDRAM before the succeeding write cycle start. When MPU reads data from the DDRAM, the first read cycle is dummy and the data read in the dummy cycle is held by the bus holder, and then it read from the bus holder to the system bus in the succeeding read cycle. Fig. 7.2.1 illustrates these relations.

7.3 DISPLAY DATA RAM (DDRAM)

7.3.1 **DDRAM**

It is 160 X 255 X 5 bits capacity RAM prepared for storing dot data. You can access a desired bit by specifying the LINE address and column address. Since the display data from MCU D7 to D0 and D15 to D8 correspond to one or two pixels, data transfer related restrictions are reduced, and the display would be flexible.

The RAM on ST7529 is separated to a block per 4 lines to allow the display system to process data on the block basis.

The reading and writing RAM operations of MPU are performed via the I/O buffer circuit. Reading of the RAM for the liquid crystal drive is controlled from another separate circuit.

Refer to the following memory map for the RAM configuration.

ST7529

7.3.1-1 32 Gray Scale Display

Memory Map (2B3P, 8-bit mode)

							Col	lumn					
LCD	CI = 0			0			1				84		
read	CI = 1	CI = 1		84			83			0			
direction	Pixel		P0	P1	P2	P3	P4	P5		P252	P253	P254	
	Data L	ine											
	 		D7' _{1,0} D6' _{1,0} D5' _{1,0} D4' _{1,0} D3' _{1,0}	D2' _{1,0} D1' _{1,0} D0' _{1,0} D7' _{2,0} D6' _{2,0}	D4' _{2,0} D3' _{2,0} D2' _{2,0} D1' _{2,0} D0' _{2,0}	D7' _{1,1} D6' _{1,1} D5' _{1,1} D4' _{1,1} D3' _{1,1}	D2' _{1,1} D1' _{1,1} D0' _{1,1} D7' _{2,1} D6' _{2,1}	D4' _{2,1} D3' _{2,1} D2' _{2,1} D1' _{2,1} D0' _{2,1}		D7' _{1,84} D6' _{1,84} D5' _{1,84} D4' _{1,84} D3' _{1,84}	D2' _{1,84} D1' _{1,84} D0' _{1,84} D7' _{2,84} D6' _{2,84}	D4' _{2,84} D3' _{2,84} D2' _{2,84} D1' _{2,84} D0' _{2,84}	
Block	LI = 0	LI = 1											
0	0	159							†				
	1	158									D3 1,84 D6 2,84		
	2	157							†				
	3	156							T				
1	4	155							1				
	5	154							T				
	6	153											
	7	152											
2	8	151							[
	9	150							[
i i		:				i i			:	-		i i	
38	152	7							[
	153	6							[
	154	5							T				
	155	4							I				
39	156	3											
	157	2											
	158	1							T				
	159	0											
SEGout			0	1	2	3	4	5		252	253	254	

Memory Map (2B3P, 16-bit mode)

							Colu	ımn				
LCD	CI = 0			0			1				84	
read	CI = 1			84			83			0		
direction	Pixel		P0	P1	P2	P3	P4	P5		P252	P253	P254
	Data Li	ne										
	 		D15' ₀ D14' ₀ D13' ₀ D12' ₀ D11' ₀	D10' ₀ D9' ₀ D8' ₀ D7' ₀ D6' ₀	D4' ₀ D3' ₀ D2' ₀ D1' ₀ D0' ₀	D15' ₁ D14' ₁ D13' ₁ D12' ₁ D11' ₁	D10' ₁ D9' ₁ D8' ₁ D7' ₁ D6' ₁	D4' ₁ D3' ₁ D2' ₁ D1' ₁ D0' ₁		D15'84 D14'84 D13'84 D12'84 D11'84	D10' ₈₄ D9' ₈₄ D8' ₈₄ D7' ₈₄ D6' ₈₄	D4' ₈₄ D3' ₈₄ D2' ₈₄ D1' ₈₄ D0' ₈₄
Block	LI = 0	LI = 1										
0	0	159										
	1	158										
	2	157										
	3	156										
1	4	155							1			
	5	154										
	6	153]			
	7	152										
2	8	151										
	9	150	ļ			ļ :			ļ	ļ	 	
38	152	7						<u> </u>	¦	i	<u> </u>	
	153	6]			
	154	5										
	155	4										
39	156	3							.			
	157	2]			
	158	1										
	159	0							<u> </u>			
SEGout		·	0	1	2	3	4	5		252	253	254

Memory Map (3B3P, 8-bit mode)

		-										
							C	olumn				
LCD .	CI = 0			0			1			84		
read	CI = 1			84		83				0		
direction	Pixel		P0	P1	P2	P3	P4	P5		P252	P253	P254
	Data Li	ne										
			D7' _{1,0}	D7' _{2,0}	D7' _{3,0}	D7' _{1,1}	D7' _{2,1}	D7' _{3,1}		D7' _{1,84}	D7' _{2,84}	D7' _{3,84}
			D6' _{1,0}	D6' _{2,0}	D6' _{3,0}	D6' _{1,1}	D6' _{2,1}	D6' _{3,1}		D6' _{1,84}	D6' _{2,84}	D6' _{3,84}
			D5' _{1,0}	D5' _{2,0}	D5' _{3,0}	D5' _{1,1}	D5' _{2,1}	D5' _{3,1}		D5' _{1,84}		
			D4' _{1,0}	D4' _{2,0}	D4' _{3,0}	D4' _{1,1}	D4' _{2,1}	D4' _{3,1}		D4' _{1,84}	D4' _{2,84}	D4' _{3,84}
			D3' _{1,0}	D3' _{2,0}	D3' _{3,0}	D3' _{1,1}	D3' _{2,1}	D3' _{3,1}		D3' _{1,84}	D3' _{2,84}	D3' _{3,84}
Block	LI = 0	LI = 1	1									
0	0	159										
	1	158										
	2	157									D7'2,84 D6'2,84 D5'2,84 D4'2,84	
	3	156										
1	4	155										
	5	154										
	6	153										
	7	152										
2	8	151										
	9	150		ļ	ļ			ļ	ļ	ļ	ļ	ļ
38	152	7	 	<u></u>		<u> </u>	¦	 	¦	¦	<u> </u>	¦
	153	6										
	154	5										
	155	4										
39	156	3										
-	157	2										
	158	1										
	159	0										
SEGout			0	1	2	3	4	5		252	253	254

Memory Map (3B3P, 16-bit mode)

							Colur	mn					
LCD	CI = 0			0			1				84		
read	CI = 1			84			83				0		
direction	Pixel		P0	P1	P2	P3	P4	P5		P252	0 2 P253 1,84 D7'1,84 1,84 D6'1,84	P254	
	Data I	_ine											
			D15' _{1,0}	D7' _{1,0}	D15' _{2,0}	D15' _{1,1}	D7' _{1,1}	D15' _{2,1}		D15' _{1,84}			
			D14' _{1,0}	D6' _{1,0}	D14' _{2,0}	D14' _{1,1}	D6' _{1,1}	D14' _{2,1}					
			D13' _{1,0}	D5' _{1,0}	D13' _{2,0}	D13' _{1,1}	D5' _{1,1}	D13' _{2,1}		D13' _{1,84}			
			D12' _{1,0}	D4' _{1,0}	D12' _{2,0}	D12' _{1,1}	D4' _{1,1}	D12' _{2,1}					
	,		D11' _{1,0}	D3' _{1,0}	D11' _{2,0}	D11' _{1,1}	D3' _{1,1}	D11' _{2,1}		D111 _{1,84}	D3 1,84	D11' _{2,84}	
Block	LI = 0	LI = 1											
0	0	159											
	1	158											
	2	157											
	3	156											
1	4	155											
	5	154											
	6	153											
	7	152											
2	8	151							l				
	9	150]]	<u> </u>]	<u> </u>			[]	
		: !	! !	<u> </u> 	!	<u> </u>	! ! !	<u> </u>	!	<u> </u>	! !	<u> </u>	
38	152	7							<u> </u>				
	153	6							<u> </u>				
	154	5							<u> </u>				
	155	4							l				
39	156	3							ļ				
	157	2							ļ				
	158	1							ļ				
	159	0							ļ				
SEGout			0	1	2	3	4	5		252	253	254	

7.3.2 Line Address Control Circuit

This circuit is to control the address in the line direction when MPU accesses the DDRAM or read the DDRAM to display image on the LCD.

You can specify a range of the line address with line address set command. When the line-direction scan is specified with DATACTRL command and the address are increased from the start up to the end line, the column address is increased by 1 and the line address returns to the start line.

The DDRAM supports up to 160 lines, and thus the total line becomes 160.

In the READ operation, as the end line is reached, the column address is automatically increased by 1 and the line address returns to the start line.

Users may inverse the correspondence between the DDRAM address and common output via the address normal/inverse parameter of DATACTRL command.

7.3.3 Column Address Control Circuit

This circuit is to control the address in the column direction when MPU accesses the DDRAM. You can specify a range of the column address with column address set command. When the column-direction scan is specified with DATACTRL command and the address are increased from the start up to the end line, the line address is increased by 1 and the column address returns to the start column.

In the READ operation, the column address is also automatically increased by 1 and returns to the start line as the end column is reached.

Just like the line address control circuit, users may inverse the correspondence between the DDRAM column address and segment output via the column address normal/inverse parameter of DATACTRL command. This arrangement makes the chip layout on the LCD module flexible.

7.3.4 I/O Buffer Circuit

It is the bi-directional buffer when MPU reads or writes the DDRAM. Since the READ or WRITE operation of MPU to DDRAM is performed independently from data output to the display data latch circuit, asynchronous access to the DDRAM while the LCD is turned on does not cause troubles such as flicking of the display images.

7.3.5 Block Address Circuit

The circuit associates lines on DDRAM with COM output. ST7529 processes signals for the liquid crystal display on 4-line basis. Thus, when specifying a specific area in the area of scroll display or partial display, you must designate it in block.

7.3.6 Display Data Latch Circuit

This circuit is used to temporarily hold display data to be output from the DDRAM to the SEG decoder circuit. Since display normal/inverse and display on/off commands are used to control data in the latch circuit alone, they do not modify data in the DDRAM.

7.4 Area Scroll Display

The user may scroll the display screen partially in any one of the following four scroll patterns via AREA SCROLL SET and SCROLL START SET commands.

7.5 Partial Display

The user may turn on the partial display (division by line) of the screen via PARTIAL IN command. This mode consumes less current than the whole screen display and is suitable for the equipment in the standby state.

If the partial display region is out of the maximum display range, it will be no operation.

Figure 7.5.1.Reference Example for Partial Display

Figure 7.5.2.Partial Display

Figure 7.5.3. Moving Display

7.6 Gray-Scale Display

ST7529 incorporates a 2 FRC & 31 PWM function circuit to display a 32 gray-scale display.

7.7 Oscillation Circuit

This is an on-chip oscillator without external resistor. When the internal oscillator is used, this pin must connect to VDD; when the external oscillator is used, this pin could be an input pin. This oscillator signal is used in the voltage converter and display timing generation circuit.

7.8 Display Timing Generator Circuit

This circuit generates some signals for displaying on LCD. The display clock, CL (internal), generated by oscillation clock, generates the clock for the line counter and the signal for the display data latch. The line address of on-chip RAM is generated in synchronization with the display clock and the display data latch circuit latches the 160-bit display data in synchronization with the display clock. The display data, which is read to the LCD driver, is completely independent of the access to the display data RAM from the MPU. The display clock generates an LCD AC signal (M) which enables the LCD driver to make an AC drive waveform. It also generates an internal common timing signal and start signal to the common driver. The frame signal or the line signal changes the M by setting internal instruction. Driving waveform and internal timing signal are shown in Figure 7.8.1.

Figure 7.8.1 2-frame AC Driving Waveform (Duty Ratio: 1/160)

7.9 Liquid Crystal drive Circuit

This driver circuit is configured by 160-channel common drivers and 255-channel segment drivers. This LCD panel driver voltage depends on the combination of display data and M signal.

7.10 Liquid Crystal Driver Power Circuit

The power supply circuit generates the voltage levels required to drive liquid crystal driver with low power consumption and the fewest components. There are voltage converter circuits, voltage regulator circuits, and voltage follower circuits. They are controlled by power control instruction. For details, refers to "Instruction Description". Table 7.10.1 shows the referenced combinations in using Power Supply circuits.

Table 7.10.1 Recommended Power Supply Combinations

User setup	Power control (VB VR VF)	V/B circuits	V/R circuits	V/F circuits	VLCD	VO	V1 to V4
Only the internal power supply circuits are used	111	ON	ON	ON	Open	Open	Open
Only the voltage regulator circuits and voltage follower circuits are used	011	OFF	ON	ON	External input	Open	Open
Only the voltage follower circuits are used	0 0 1	OFF	OFF	ON	Open	External input	Open
Only the external power supply circuits are used	000	OFF	OFF	OFF	Open	External input	External input

7.10.1 Voltage Converter Circuits

The Step-up Voltage Circuits

Note: The regulating capacitance on V0 ~ V4 should be between 1.0 to 2.2 μ F.

7.10.2 Voltage Regulator Circuits

SET VOP (SETVOP)

The set VoP function is to program the optimum LCD supply voltage Vo.

SETVOP

Reset state of VPR[8:0] is 257DEC = 13.88V.

The V₀ value is programmed via the VPR[8:0] register.

$V_0 = a + (VPR[8:6]VPR[5:0]) \times b$

Ex: VPR[5:0]=000001, VPR[8:6]=100

- → VPR[8:0]=100000001
- \rightarrow 3.6+257x0.04=13.88

where a is a fixed constant value 3.6, b is a fixed constant value 0.04, VPR[8:0] is the programmed V₀ value with programming range from 5 to 410 (19A_{HEX}), and VPR[5:0] is the set contrast value which can be set via the interface and is in two's complement format.(See command VOLUP & VOLDOWN)

The VPR[8:0] value must be in the V₀ programming range as given in Fig.7.10.2. Evaluating equation (1), values outside the programming range indicated in Fig.7.10.2 may result.

Fig. 7.10.2 V0 programming range

Although the programming range for the internally generated V_0 allows values above the maximum allowed V_0 , the customer has to ensure setting the V_{PR} register and selecting the temperature compensation under all condition and including all tolerances that the maximum allowed V_0 (20V) will never be exceeded.

Booster Efficiency

By BOOSTER STAGES (2X, 3X, 4X, 5X, 6X, 7X, 8X) and BOOSTER EFFICIENCY (Level1~4) commands, we could easily set the best booster performance with suitable current consumption. If the booster efficiency is set to higher level (level4 is higher than level1), the boost efficiency is better than lower level, and it only needs a little bit more power consumption current. It could be applied to each multiple voltage condition.

When the loading of LCD panel is heavier, the performance of booster will not be in a good working condition. The user may set the BE level to be higher and only a little bit more current needed. Never consider to change to higher booster stage at beginning stage unless it is necessary.

The BOOSTER EFFICIENCY command could be used together with BOOSTER STAGE command to choose one best boost output condition. The user could regard the BOOSTER STAGE command as a large scale operation, and the BOOSTER EFFICIENCY command as a small scale operation. These commands are very convenient for using.

Condition: VDD = 2.7V, Cap = 1.0uF, Booster = 6x, measured on chip

Condition: VDD = 2.7V, Cap = 1.0uF, Booster = 7x, measured on chip

RESET CIRCUIT When Power is Turned On Input power (VDD1~VDD5) Be sure to apply POWER-ON RESET (RST = LOW) <Display Setting> <<State after resetting>> Display control (DISCTRL) Setting clock dividing ratio: 2 dividing 1/4 Duty setting: Setting reverse rotation number of line: 11H reverse rotations Common scan direction (COMSCN) COM0 -> COM79, COM80-> COM159 Setting scan direction: Oscillation ON (OSCON) Oscillation OFF 1 Sleep-out (SLIPOUT) Sleep-in <Power Supply Setting> <<State after resetting>> Electronic volume control (VOLCTRL) Setting volume value: 0 Setting built-in resistance value: 0(3.95)Power control (PWRCTR) Setting operation of power supply circuit: All OFF <Display Setting 2> <<State after resetting>> Normal rotation of display (DISNOR)/Inversion of display (DISINV): Normal rotation of display Partial-in (PTLIN)/Partial-out (PTLOUT) Partial-out Setting fix area: Area scroll set (ASSET) Setting area scroll region: 0

Setting area scroll type: Full-screen scroll

Scroll start set (SCSTART)

Setting scroll start address: 0

 \downarrow

<Display Setting 3> <<State after resetting>>

Data control (DATCTRL)

Setting normal rotation/inversion of line address:

Normal rotation
Setting normal rotation/inversion of column address:

Normal rotation

ST7529

Setting direction of address scanner: Column direction

Setting gradation: 2B3P mode

 \downarrow

<RAM Setting> <<State after resetting>>

Line address set (LASET)

Setting start line address: 0
Setting end line address: 0

Column address set (CASET)

Setting start column address: 0
Setting end column address: 0

 \downarrow

<RAM Write> <<State after resetting>>

Memory write command (RAMWR)

Writing displayed data: Repeat as many as the number needed and exit by entering other command.

 \downarrow

<Waiting (approximately 100ms)>

Wait until the power supply voltage has stabilized.

Enter the command of power supply control first, and then wait at least 100ms before entering the display ON command when the built-in power supply circuit operates.

If you do not wait, an unexpected display may appear on the liquid crystal panel.

 \downarrow

DISPLAY ON (DISON):

DISPLAY OFF

*1: When the IC is in SLEEP IN state, the liquid crystal drive power supply, the boosting power output, and GND pin are connected together, therefore, the SLEEP OUT command must be entered to cancel the SLEEP state prior to turning on the built-in circuit.

(Note) If changes are unnecessary after resetting, command input is unnecessary.

8. COMMANDS

8.1 Command table

Ext=0 or Ext=1

Index	Command	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function	Hex	Parameter
1	Ext In	0	1	0	0	0	1	1	0	0	0	0	Ext=0 Set	30	None
2	Ext Out	0	1	0	0	0	1	1	0	0	0	1	Ext=1 Set	31	None

Ext=0

Index	Command	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function	Hex	Parameter
1	DISON	0	1	0	1	0	1	0	1	1	1	1	Display On	AF	None
2	DISOFF	0	1	0	1	0	1	0	1	1	1	0	Display Off	AE	None
3	DISNOR	0	1	0	1	0	1	0	0	1	1	0	Normal Display	A6	None
4	DISINV	0	1	0	1	0	1	0	0	1	1	1	Inverse Display	A7	None
5	COMSCN	0	1	0	1	0	1	1	1	0	1	1	COM Scan Direction	ВВ	1 byte
6	DISCTRL	0	1	0	1	1	0	0	1	0	1	0	Display Control	CA	3 bytes
7	SLPIN	0	1	0	1	0	0	1	0	1	0	1	Sleep In	95	None
8	SLPOUT	0	1	0	1	0	0	1	0	1	0	0	Sleep Out	94	None
9	LASET	0	1	0	0	1	1	1	0	1	0	1	Line Address Set	75	2 bytes
10	CASET	0	1	0	0	0	0	1	0	1	0	1	Column Address Set	15	2 bytes
11	DATSDR	0	1	0	1	0	1	1	1	1	0	0	Data Scan Direction	вс	3 bytes
12	RAMWR	0	1	0	0	1	0	1	1	1	0	0	Writing to Memory	5C	Data
13	RAMRD	0	1	0	0	1	0	1	1	1	0	1	Reading from Memory	5D	Data
14	PTLIN	0	1	0	1	0	1	0	1	0	0	0	Partial display in	A8	2 bytes
15	PTLOUT	0	1	0	1	0	1	0	1	0	0	1	Partial display out	A9	None
16	RMWIN	0	1	0	1	1	1	0	0	0	0	0	Read and Modify Write	E0	None
17	RMWOUT	0	1	0	1	1	1	0	1	1	1	0	RMW end	EE	None
18	ASCSET	0	1	0	1	0	1	0	1	0	1	0	Area Scroll Set	AA	4 bytes
19	SCSTART	0	1	0	1	0	1	0	1	0	1	1	Scroll Start Set	AB	1 byte
20	OSCON	0	1	0	1	1	0	1	0	0	0	1	Internal OSC on	D1	None
21	OSCOFF	0	1	0	1	1	0	1	0	0	1	0	Internal OSC off	D2	None
22	PWRCTRL	0	1	0	0	0	1	0	0	0	0	0	Power Control	20	1 byte
23	VOLCTRL	0	1	0	1	0	0	0	0	0	0	1	EC control	81	2 bytes
24	VOLUP	0	1	0	1	1	0	1	0	1	1	0	EC increase 1	D6	None
25	VOLDOWN	0	1	0	1	1	0	1	0	1	1	1	EC decrease 1	D7	None
26	RESERVED	0	1	0	1	0	0	0	0	0	1	0	Not Use	82	0

ST7529

27	EPSRRD1	0	1	0	0	1	1	1	1	1	0	0	READ Register1	7C	None
28	EPSRRD2	0	1	0	0	1	1	1	1	1	0	1	READ Register2	7D	None
29	NOP	0	1	0	0	0	1	0	0	1	0	1	NOP Instruction	25	None
30	STREAD	0	0	1	F			Read	Dat	а			Status Read		
31	EPINT	0	1	0	0	0	0	0	0	1	1	1	Initial code(1)	07	1 byte

Ext=1

Index	Command	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function	Hex	Parameter
1	Gray 1 Set	0	1	0	0	0	1	0	0	0	0	0	FRAME 1 Gray PWM Set	20	16 bytes
2	Gray 2 Set	0	1	0	0	0	1	0	0	0	0	1	FRAME 2 Gray PWM Set	21	16 bytes
3	ANASET	0	1	0	0	0	1	1	0	0	1	0	Analog Circuit Set	32	3 bytes
4	SWINT	0	1	0	0	0	1	1	0	1	0	0	Software Initial	34	None
5	EPCTIN	0	1	0	1	1	0	0	1	1	0	1	Control EEPROM	CD	1 byte
6	EPCOUT	0	1	0	1	1	0	0	1	1	0	0	Cancel EEPROM	СС	None
7	EPMWR	0	1	0	1	1	1	1	1	1	0	0	Write to EEPROM	FC	None
8	EPMRD	0	1	0	1	1	1	1	1	1	0	1	Read from EEPROM	FD	None

Note: The table above is for 8-bit interface. For the application of 16-bit interface, fill D15~8 with 0, and other bits are just the same with the table above.

EXT= "0" or "1"

(1) Extension instruction disable (EXT IN) - Parameter Byte: None (30H)

Use the "EXT=0" command table

	Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	0	0	1	1	0	0	0	0

(2) Extension instruction enable (EXT OUT) - Parameter Byte: None (31H)

Use the extended command table EXT="1"

	Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	0	0	1	1	0	0	0	1

EXT= "0"

(1) Display ON (DISON) - Parameter Byte: None (AFH)

It is to turn the display on. When the display is turned on, segment and common outputs are generated at the level corresponding to the display data and display timing. As long as the sleep mode is selected, the display cannot be turned on. Thus, whenever using this command, the sleep mode must be cancelled first.

	Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	1	0	1	0	1	1	1	1

(2) Display OFF (DISOFF) - Parameter Byte: None (AEH)

It is to forcibly turn the display off. As long as the display is turned off, every segment and common outputs are forced to VSS level.

	Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	1	0	1	0	1	1	1	0

(3) Normal display (DISNOR) - Parameter Byte: None (A6H)

It is to normally highlight the display area without modifying contents of the display data RAM.

	Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	1	0	1	0	0	1	1	0

(4) Inverse display (DISINV) - Parameter Byte: None (A7)

It is to inversely highlight the display area without modifying contents of the display data RAM. This command does not invert non-display areas in case of using partial display.

	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	1	0	1	0	0	1	1	1

(5) Common scan (COMSCN) - Parameter Byte: 1 (BBH)

It is to specify the common output scan direction. This command is for the convenience of wiring on the LCD panel.

	Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
Command	0	1	0	1	0	1	1	1	0	1	1	_
Parameter Byte 1 (PB1)	1	1	0	*	*	*	*	*	CD2	CD1	CD0	Common Scan direction

When 1/160 is selected for the display duty, pins and common output are scanned in the order shown below.

CD2	CD1	CDO			Common sca	n direction		
CDZ	CDI	CDU	COM0 pin		COM79 pin	COM80 pin	C	OM159 pin
0	0	0	0	\rightarrow	79	80	\rightarrow	159
0	0	1	0	\rightarrow	79	159	\rightarrow	80
0	1	0	79	\rightarrow	0	80	\rightarrow	159
0	1	1	79	\rightarrow	0	159	\rightarrow	80

Original graphic:

 $CD[2-0] = [0,0,0] (0 \rightarrow 79, 80 \rightarrow 159)$

Com80→ Com79

 $CD[2-0] = [0,1,0] (79 \rightarrow 0, 80 \rightarrow 159)$

Com159 →

 $CD[2-0] = [0,0,1] (0 \rightarrow 79, 159 \rightarrow 80)$

$CD[2-0] = [0,1,1] (79 \rightarrow 0, 159 \rightarrow 80)$

Figure 8.1.1 Common scan direction configuration

(6) Display control (DISCTRL) - Parameter Byte: 3 (CAH)

This command and succeeding parameters are used to perform the display timing-related setups. This command must be selected before using SLPOUT. Do not change this command while the display is turned on.

	Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
Command	0	1	0	1	1	0	0	1	0	1	0	
Parameter Byte 1 (PB1)	1	1	0	*	*	*	0	0	CLD	0	. ()	CL dividing ratio, F1 and F2 drive pattern.
Parameter Byte 2 (PB2)	1	1	0	*	*	DT5	DT4	DT3	DT2	DT1	DT0	Drive duty
Parameter Byte 3 (PB3)	1	1	0	*	*	*	FI	LF3	LF2	LF1	LF0	FR inverse-set value

PB1 specifies the CL dividing ratio.

CLD: CL dividing ratio. They are used to change number of dividing stages of external or internal clock.

CLD=0: not divide, CLD=1: 2 divisions.

PB2 specifies the duty of the module on block basis. Initial: 00H

(Numbers of display lines)/4-1 = DT5 x 2^5 + DT4 x 2^4 + DT3 x 2^3 + DT2 x 2^2 + DT1 x 2^1 + DT0 x 2^0

For example, $1/128 \text{ duty} \rightarrow 128/4-1=31 \rightarrow (DT5, DT4, DT3, DT2, DT1, DT0) = (0, 1, 1, 1, 1, 1)$

PB3 specifies number of line cycles (range from 2 to 16) in a frame.

Number of line cycles-1 = LF3 x 2^3 + LF2 x 2^2 + LF1 x 2^1 + LF0 x 2^0

For example, 11 line cycles in a frame \rightarrow 11-1=10 \rightarrow (LF3, LF2, LF1, LF0) = (1, 0, 1, 0)

In the default, 11 line cycles in a frame is selected.

FI decides the inversion type of frame at the end of common scan cycle while the number of duty is not divisible by the number of line cycles per frame. For example, in the application of 1/m duty and n line cycles in a frame set, the difference of the choice in FI is shown as the following figure.

 $m = n \times k + r$, where m, n, k, and r are all whole numbers, and r is the remainder of m divided by n (r < n).

(7) Sleep in (SLPIN) - Parameter Byte: None (95H)

This command is to enter the SLEEP MODE.

	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	1	0	0	1	0	1	0	1

(8) Sleep out (SLPOUT) - Parameter Byte: None (94H)

This command is to exit the SLEEP MODE.

	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	1	0	0	1	0	1	0	0

(9) Line address set (LASET) - Parameter Byte: 2 (75H)

This command is to specify the line address area when MPU makes access to the display data RAM. As the addresses are increased from the start to the end line in the line-direction scan, the column address is increased by 1 and the line address return to the start line. Note that the start and end line must be a pair. Moreover, the relation "start line <end line" must be maintained.

	Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
Command	0	1	0	0	1	1	1	0	1	0	1	_
Parameter Byte 1 (PB1)	1	1	0	SL7	SL6	SL5	SL4	SL3	SL2	SL1	SL0	Start Line
Parameter Byte 2 (PB2)	1	1	0	EL7	EL6	EL5	EL4	EL3	EL2	EL1	EL0	End Line

Note: The range of line address is $0 \sim 159$.

(10) Column address set (CASET) - Parameter Byte: 2 (15H)

This command is to specify the column address area when MPU makes access to the display data RAM. As the addresses are increased from the start to the end column in the column-direction scan, the line address is incremented by 1 and the column address is returned to the start column. Note that the start and end line must be a pair. Moreover, the relation "start column <end column" must be maintained.

	Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
Command	0	1	0	0	0	0	1	0	1	0	1	_
Parameter Byte 1 (PB1)	1	1	0	SC7	SC6	SC5	SC4	SC3	SC2	SC1	SC0	Start Column
Parameter Byte 2 (PB2)	1	1	0	EC7	EC6	EC5	EC4	EC3	EC2	EC1	EC0	End Column

Note: The range of column address is 0 ~ 84.

(11) Data scan direction (DATSDR) - Parameter Byte: 3 (BCH)

This command is to setup various parameters in the operations of display data stored on the built-in RAM by MPU.

	Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
Command	0	1	0	1	0	1	1	1	1	0	0	_
Parameter Byte 1 (PB1)	1	1	0	*	*	*	*	*	C/L	CI		Normal/inverse display of address and address scan direction.
Parameter Byte 2 (PB2)	1	1	0	*	*	*	*	*	*	*	CLR	P1, P2, P3 arrangement
Parameter Byte 3 (PB3)	1	1	0	*	*	*	*	*	GS2	GS1	GS0	Gray-scale setup

PB1 is to specify the normal/inverse display of the line and column address and the address scanning direction.

LI: Normal/inverse direction of the line address. LI =0: Normal, LI =1: Inverse

CI: Normal/reverse direction of the column address. CI =0: Normal, CI =1: Reverse

C/L: Address-scan direction. C/L =0: In the column direction, C/L =1: In the line direction

(a) COMMAND #BCH, DATA #00H

(b) COMMAND #BCH, DATA #01H

(c) COMMAND #BCH, DATA #02H

(d) COMMAND #BCH, DATA #03H

Figure 8.1.2 Different RAM accessing setup under COMMAND #BBH, DATA #00H

- (a) COMMAND #BCH, DATA #00H
- (b) COMMAND #BCH, DATA #01H
- (c) COMMAND #BCH, DATA #02H
- (d) COMMAND #BCH, DATA #03H

(e) COMMAND #BCH, DATA #04H

(f) COMMAND #BCH, DATA #05H

(g) COMMAND #BCH, DATA #06H

(h) COMMAND #BCH, DATA #07H

Figure 8.1.2 Different RAM accessing setup under COMMAND #BBH, DATA #00H (continue)

- (e) COMMAND #BCH, DATA #04H
- (f) COMMAND #BCH, DATA #05H
- (g) COMMAND #BCH, DATA #06H
- (h) COMMAND #BCH, DATA #07H

PB2 is to change P1, P2, P3 arrangement of the segment output according to P1, P2, P3 arrangement on the LCD panel. This command will set the writing position of data (P1, P2, P3) on the display memory to be changed or not.

CLR	SEG0	SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	 SEG254
0	P1	P2	P3	P1	P2	P3	P1	P2	 P3
1	P3	P2	P1	P3	P2	P1	P3	P2	 P1

PB3 is to select desired gray scale display 2B3P mode or 3B3P mode.

GS2	GS1	GS0	Numbers of gray-scale
0	0	1	32 gray-scale 2Byte 3Pixel mode
0	1	0	32 gray-scale 3Byte 3Pixel mode

(12) Memory write (RAMWR) - Parameter Byte: Numbers of data written (5CH)

This command turns on the data entry mode when MPU writes data to the display memory. This command will always sets the line and column address at the start address while executed. The following parameter byte rewrites contents of the display data RAM and increases the line or column address automatically. The write mode is automatically cancelled if any other command is entered.

1. 8-bit bus

	A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0	Function
Command	0	1	0	0	1	0	1	1	1	0	0	
Parameter Byte 1 (PB1)	1	1	0	0 Data to be written Data to be v							Data to be written	

2. 16-bit bus

	A0	RD	RW	D15	D14	 D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Function
Command	0	1	0	*	*	 *	*	0	1	0	1	1	1	0	0	Memory write
Parameter Byte 1 (PB1)	1	1	0				D	ata t	be o	writte	n					Write date

(13) Memory read (RAMRD) - Parameter Byte: Numbers of data read (5DH)

This command turns on the data read mode when MPU read data from the display memory. This command will always sets the line and column address at the start address while executed. The contents of the display data RAM will be read in the following parameter byte and increases the line or column address automatically. The data read mode is automatically cancelled if any other command is entered.

1. 8-bit bus

	Α0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0	Function
Command	0	1	0	0	1	0	1	1	1	0	1	
Parameter Byte 1 (PB1)	1	0	1	Data to be read							Data to be read	

2. 16-bit bus

	A0	RD	RW	D15	D14		D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Function
Command	0	1	0	*	*	*	*	*	0	1	0	1	1	1	0	1	Memory read
Parameter Byte 1 (PB1)	1	0	1						Data	to be	reac	ł					Read data

(14) Partial in (PTLIN) - Parameter Byte: 2 (A8H)

This command is to specify the partial display area. It will turn on partial display of the screen (dividing screen by lines) to save power. Since ST7529 processes the liquid crystal display signal on 4-line basis (block basis), the display and no-display areas are also specified on 4-bit line (block basis).

	Α0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0	Function
Command	0	1	0	1	0	1	0	1	0	0	0	
Parameter Byte 1 (PB1)	1	1	0	*	*	PTS5	PTS4	PTS3	PTS2	PTS1	PTS0	Start block address
Parameter Byte 2 (PB2)	1	1	0	*	*	PTE5	PTE4	PTE3	PTE2	PTE1	PTE0	End block address

Only the address of the display block can be specified for the partial display. Do not specify an address not to be displayed when scrolled.

(15) Partial out (PTLOUT) - Parameter Byte: none (A9H)

This command is to exit the PARTIAL DISPLAY MODE.

	Α0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	1	0	1	0	1	0	0	1

(16) Read modify write in (RMWIN) - Parameter Byte: none (E0H)

This command is used along with the (9) line address set command (LASET), (10) column address set command (CASET), and (17) read modify write out command (RMWOUT). This function is for frequently modified data on a specific area, such as blinking cursor. First, set a specific display area using the column and line address commands. Then, execute this command to set the column and line addresses as the start address of the specific area. When this operation is complete, the column and line address will not be modified by the display data read command. It is increased only when the display data write command is executed. You can cancel this mode by entering the read modify write out or any other command.

	A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	1	1	1	0	0	0	0	0

(17) Read modify write out (RMWOUT) - Parameter Byte: none (EEH)

This command cancels the read modify write mode.

	A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	1	1	1	0	1	1	1	0

(18) Area scroll set (ASCSET) - Parameter Byte: 4 (AAH)

It is to scroll only the specified portion of the screen (dividing the screen by lines). This command specifies the scrolling type of area, fixed area and scrolled area.

	A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0	Function
Command	0	1	0	1	0	1	0	1	0	1	0	
Parameter Byte 1 (PB1)	1	1	0	*	*	TB5	TB4	TB3	TB2	TB1	TB0	Top block address
Parameter Byte 2 (PB2)	1	1	0	*	*	BB5	BB4	BB3	BB2	BB1	BB0	Bottom block address
Parameter Byte 3 (PB3)	1	1	0	*	*	NSB5	NSB4	NSB3	NSB2 NSB1 NSB0 Number of specific		Number of specified blocks	
Parameter Byte 4 (PB4)	1	1	0	*	*	*	*	*	*	SCM1	SCM0	Area scroll mode

PB4: It is used to specify the scrolling mode.

				Settings	
SCM1	SCM0	Scrolling Mode			Number of specified blocks
			Top block address (TB)	Bottom block address (BB)	(NSB)
0	0	Center mode	Top(fixed area) height = Top address	Bottom(fixed area) height = 39-Bottom address	Bottom start address = Specified number
0	1	Top mode	0	Bottom(fixed area) height = 39-Bottom address	Bottom start address = Specified number
1	0	Bottom mode	Top(fixed area) height = Top address	39	39
1	1	Whole mode	0	39	39

Since ST7529 processes the liquid crystal display signals on the four-line basis (block basis), fixed and scrolled areas are also specified on the four-line basis (block basis).

DDRAM address of the top fixed area is set in the block address increasing direction starting with the 0th block. DDRAM address of the bottom fixed area is set in the block address decreasing direction starting with 39st block. The DDRAM address of other blocks fixed areas are assigned to the scrolled + background areas.

PB1 is to specify the top block address of the scrolled +

background areas. Specify the 0th block for the top screen scroll or whole screen scroll.

PB2 specifies the bottom address of the scroll + background areas. Specify the 39th block for the bottom or whole screen scroll. The relation that top block address < bottom block address must be maintained.

PB3 specifies a specific number of blocks {Numbers of (Top fixed area +Scroll area) block-1}. In the case of the bottom scroll or whole screen scroll, the value is identical with PB2.

The user can turn on the area scroll function by executing the area scroll set command first and then specifying the display start block of the scroll area with the scroll start set command.

(19) Scroll start address set (SCSTART) - Parameter Byte: 1 (ABH)

This command is to specify which line address of DDRAM to be the start line content shown on screen. Note that you must execute this command after executing the area scroll set command. Scroll becomes available by dynamically changing the start block address.

	A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0	Function
Command	0	1	0	1	0	1	0	1	0	1	1	
Parameter Byte 1 (PB1)	1	1	0	*	*	SB5	SB4	SB3	SB2	SB1	SB0	Start block address

Note: Don't repeat "Area scroll set(AAH)" instruction when "Scroll start address set" is executed.

(20) Internal oscillation on (OSCON) - Parameter Byte: none (D1H)

This command turns on the internal oscillation circuit. It is valid only when the internal oscillation circuit CLS = HIGH.

	A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	1	1	0	1	0	0	0	1

(21) Internal oscillation off (OSCOFF) - Parameter Byte: none (D2H)

It turns off the internal oscillation circuit. The circuit is also turned off in the reset mode.

	A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	1	1	0	1	0	0	1	0

(22) Power control set (PWRCTRL) - Parameter Byte: 1 (20H)

This command is used to turn on or off the Booster circuit, voltage regulator circuit, and reference voltage.

	A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0	Function
Command	0	1	1	0	0	1	0	0	0	0	0	
Parameter Byte 1 (PB1)	1	1	0	*	*	*	0	VB	0	VF	VR	LCD drive power

VR turns on/off the reference voltage generation circuit. VR = "1": ON, VR =" 0": OFF

VF turns on/off the circuit voltage follower. VF = "1": ON, VF =" 0": OFF

VB: It turns on or off the Booster. VB = "1": ON, VB =" 0": OFF

(23) Electronic volume control (VOLCTRL) - Parameter Byte: 2 (81H)

The command is used to program the optimum LCD supply voltage Vo. Refer to 7.10.2.

	Α0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0	Function
Command	0	1	0	1	0	0	0	0	0	0	1	
Parameter Byte 1 (PB1)	1	1	0	*	*	VPR5	VPR4	VPR3	VPR2	VPR1	VPR0	VPR[5:0]
Parameter Byte 2 (PB2)	1	1	0	*	*	*	*	*	VPR8	VPR7	VPR6	VPR[8:6]

With the VOLUP and VOLDOWN command the Vo voltage and therewith the contrast of the LCD can be adjusted.

(24) Increment electronic control (VOLUP) - Parameter Byte: none (D6H)

This command increments electronic control offset value of voltage regulator (V0) circuit by 1. Each step is 0.04V.

	A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	1	1	0	1	0	1	1	0

If you set the electronic control value to 111111, the control value is set to 000000 after this command has been executed.

(25) Decrement electronic control (VOLDOWN) - Parameter Byte: none (D7H)

This command decrements electronic control offset value of voltage regulator (V0) circuit by 1. Each step is 0.04V.

	A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	1	1	0	1	0	1	1	1

If you set the electronic control value to 000000, the control value is set to 111111 after this command has been executed.

(26) Reserved (82H)

Do not use this command.

		A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0
Γ	Command	0	1	0	1	0	0	0	0	0	1	0

(27) Read Register 1 (EPSRRD1) Command: 1 Parameter Byte: none (7CH)

Execute the EPSRRD1 and STREAD (Status Read) commands in succession to read the Electronic Control value.

	A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	0	1	1	1	1	1	0	0

Execute the Status Read command immediately after this command and execute the NOP command after the STREAD (Status Read) command.

(28) Read Register 2 (EPSRRD2) Command: 1 Parameter Byte: none (7DH)

Execute the EPSRRD2 and STREAD (Status Read) commands in succession to read the built-in resistance ratio.

	A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	0	1	1	1	1	1	0	1

Execute the Status Read command immediately after this command and execute the NOP(Reset) command after the STREAD (Status Read) command.

(29) Non-operating (NOP) - Parameter Byte: none (25H)

This command does not affect the operation but has the function of canceling the IC test mode. Thus, it is recommended to enter it periodically to prevent malfunctioning due to noise and so on.

	A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	0	0	1	0	0	1	0	1

(30) Status read (STREAD) - Parameter Byte: none

The command is to read the internal condition of the IC. One status can be displayed depending on the setting status after reset or after NOP operation.

	A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	0	1	Status	data						
D7: Area scroll mo	de		Refe	r to SCI	M1 (AS	CSET)					
D6: Area scroll mo	de		Refe	r to SCI	M0 (AS	CSET)					
D5: RMW on/off			0 : O	ut			1:	In			
D4: Scan direction			0 : C	olumn			1:	Line			
D3: Display ON/OF	FF		0 : O	FF			1 :	ON			
D2: EEPROM acco	ess		0: O	utAcces	S		1:	InAcce	ss		
D1: Display norma	l/invers	е	0 : In	verse			1 : Normal				
D0: Partial display			0 : O	FF			1 :	ON			

(31) Initial code (1) (EPINT) Command: 1; Parameter: 1 (07H)

	Α0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0	Function
Command	0	1	0	0	0	0	0	0	1	1	1	07H
Parameter(P1)	1	1	0	0	0	0	1	1	0	0	1	19H

This command is used for EEPROM internal ACK signal generating ,suggest using this command before EEPROM read/write operation . This command improve the EEPROM internal ACK signal under unstable power system.

EXT="1"

The ST7529 applies 16-gray level and 2 FRC to achieve 32-gray scale display. Every gray level is in the strength controlled by 31-PWM (5-bit). The following 2 commands are to set the gray scale value.

(1) Set Gray 1 value (Gray 1 set) - Parameter Byte: 16 (20H)

Command	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
Gray1 Set	0	1	0	0	0	1	0	0	0	0	0	ODD FRAME Gray PWM Set
Parameter Byte 1 (PB1)	1	1	0	*	*	*	G0F14	G0F13	G0F12	G0F11	G0F10	Set Gray level 0 at odd frames
Parameter Byte 2 (PB2)	1	1	0	*	*	*	G1F14	G1F13	G1F12	G1F11	G1F10	Set Gray level 1 at odd frames
! ! !			! ! ! !		! ! !				1 1 1 1	1 1 1 1		1 1 1
Parameter Byte 14 (PB14)	1	1	0	*	*	*	G13F14	G13F13	G13F12	G13F11	G13F10	Set Gray level 13 at odd frames
Parameter Byte 16 (PB16)	1	1	0	*	*	*	G15F14	G15F13	G15F12	G15F11	G15F10	Set Gray level 15 at odd frames

(2) Set Gray 2 value (Gray 2 set) - Parameter Byte: 16 (21H)

Command	Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
Gray1 Set	0	1	0	0	0	1	0	0	0	0	1	EVEN FRAME Gray PWM Set
Parameter Byte 1 (PB1)	1	1	0	*	*	*	G0F24	G0F23	G0F22	G0F21	G0F20	Set Gray level 0 at even frames
Parameter Byte 2 (PB2)	1	1	0	*	*	*	G1F24	G1F23	G1F22	G1F21	G1F20	Set Gray level 1 at even frames
 - -	! !											
Parameter Byte 14 (PB14)	1	1	0	*	*	*	G13F24	G13F23	G13F22	G13F21	G13F20	Set Gray level 13 at even frames
		! ! !										
Parameter Byte 16 (PB16)	1	1	0	*	*	*	G15F24	G15F23	G15F22	G15F21	G15F20	Set Gray level 15 at even frames

(3) Analog circuit set (ANASET) - Parameter Byte: 3 (32H)

	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
Command	0	1	0	0	0	1	1	0	0	1	0	_
Parameter Byte 1 (PB1)	1	1	0	*	*	*	*	*	OSF2	OSF1	OSF0	OSC frequency Adjustment
Parameter Byte 2 (PB2)	1	1	0	*	*	*	*	*	*	BE1	BE0	Booster Efficiency Set
Parameter Byte 3 (PB3)	1	1	0	*	*	*	*	*	BS2	BS1	BS0	Bias setting

PB1: Oscillator frequency adjustment

OSF2	OSF1	OSF0	Frequency (KHz)
0	0	0	12.7 (Default)
0	0	1	13.2
0	1	0	14.3
0	1	1	15.7
1	0	0	17.3
1	0	1	19.3
1	1	0	21.9
1	1	1	25.4

Condition : 1/160 duty, fCL(Hz) = Frame frequency x (duty + 1dummy)

PB2: Booster Efficiency set

BE1	BE0	Frequency on booster capacitors (Hz)
0	0	зК
0	1	6K (Default)
1	0	12K
1	1	24K

PB3: Select LCD bias ratio of the voltage required for driving the LCD.

BS2	BS1	BS0	LCD bias
0	0	0	1/14
0	0	1	1/13
0	1	0	1/12
0	1	1	1/11
1	0	0	1/10
1	0	1	1/9
1	1	0	1/7
1	1	1	1/5

(4) Software Initial (SWINT) - Parameter Byte: None (34H)

	A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	0	0	1	1	0	1	0	0

(5) Control EEPROM (EPCTIN) - Parameter Byte: 1 (CDH)

	A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	1	1	0	0	1	1	0	1
Parameter Byte 1 (PB1)	1	1	0	0	0	EEWR	0	0	0	0	0

When EEWR = "1", EEPROM will be Write Enable; when EEWR = "0", EEPROM will be Read Enable.

(6) Cancel EEPROM Command (EPCOUT) - Parameter Byte: None (CCH)

This command is to cancel the EEPROM Read/Write Enable.

	A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	1	1	0	0	1	1	0	0

(7) Write data to EEPROM (EPMWR) - Parameter Byte: None (FCH)

This command is to Write data to EEPROM.

	A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	1	1	1	1	1	1	0	0

(8) Read data from EEPROM (EPMRD) - Parameter Byte: None (FDH)

This command is to Read data from EEPROM.

	A0	RD	RW	D7	D6	D5	D4	D3	D2	D1	D0
Command	0	1	0	1	1	1	1	1	1	0	1

8.2 Referential Instruction Setup Flow

8.2.1 EEPROM Setting Flow

The ST7529 provide the Write and Read function to write the Electronic Control value into and read them from the built-in EEPROM. Using the Write and Read functions, you can store these values appropriate to each LCD panel. This function is very convenient for user in setting from some different panel's voltage. But using this function must attention the setting procedure. Please see the following diagram.

Note:1. When "Writing" value to EEPROM, the voltage of VOUT_{IN} must be more than 18V.

Figure 8.2.1.1 Flow of EC value adjustment and writing into EEPROM

Note: When "Reading" value from EEPROM, the voltage of VOUTIN must be more than 6V.

Figure 8.2.1.2 EEPROM Reading flow

Example: EEPROM Read Operation

```
void ReadEEPROM( void )
       Write( COMMAND, 0x0030 );
                                             // Ext = 0
                                             // Initial code (1)
       Write( COMMAND, 0x0007 );
       Write( DATA, 0x0019 );
       Write( COMMAND, 0x0031 );
                                             // Ext = 1
       Write( COMMAND, 0x00CD );
                                             // EEPROM ON
                                             // Entry "Read Mode"
       Write( DATA, 0x0000 );
                                             // Waite for EEPROM Operation (100ms)
       Delay( 100ms );
       Write( COMMAND, 0x00FD );
                                             // Start EEPROM Reading Operation
       Delay( 100ms );
                                             // Waite for EEPROM Operation (100ms)
       Write( COMMAND, 0x00CC );
                                             // Exist EEPORM Mode
       Write( COMMAND, 0x0030 );
                                             // Ext = 0
```

Example: EEPROM Write Operation

```
void WriteEEPROM( void )
       Write( COMMAND, 0x0030 );
                                              // Ext = 0
       Write( COMMAND, 0x00AE );
                                              // Display OFF
       Write( COMMAND, 0x0007 );
                                              // Initial code(1)
       Write( DATA, 0x0019 );
       Write( COMMAND, 0x0031 );
                                              // Ext = 1
       Write( COMMAND, 0x00CD );
                                              // EEPROM ON
       Write( DATA, 0x0020 );
                                              // Entry "Write Mode"
       Delay( 100ms );
                                              // Waite for EEPROM Operation ( 100ms )
       Write(COMMAND, 0x00FC);
                                              // Start EEPROM Writing Operation
       Delay( 100ms );
                                              // Waite for EEPROM Operation ( 100ms )
       Write( COMMAND, 0x00CC );
                                              // Exist EEPROM Mode
       Write( COMMAND, 0x0030 );
                                              // Ext = 0
       Write( COMMAND, 0x00AF );
                                              // Display ON
     }
```

8.2.2 Initializing with the Built-in Power Supply Circuits

Figure 8.2.2.1 Initializing with the Built-in Power Supply Circuits

When Power-ON (VDD/VDD2 goes from low to high), please follow the sequence shown below. If not, some unpredictable result may occur.

Example: Initial code for 255X160

void ST7529_Init(void)

{	
Write(COMMAND, 0x0030);	//Ext = 0
Write(COMMAND, 0x0094);	//Sleep Out
Write(COMMAND, 0x00D1);	//OSC On
	//Power Control Set
Write(COMMAND, 0x0020);	
Write(DATA, 0x0008);	//Booster Must Be On First
Delay(1ms);	//Davier Control Cat
Write(COMMAND, 0x0020);	//Power Control Set
Write(DATA, 0x000B);	//Booster, Regulator, Follower ON
Write(COMMAND, 0x0081);	//Electronic Control
Write(DATA, 0x0004);	//Vop=14.0V
Write(DATA, 0x0004);	
Write(COMMAND, 0x00CA);	//Display Control
Write(DATA, 0x0000);	//CL=X1
Write(DATA, 0x0027);	//Duty=160
Write(DATA, 0x0000);	//FR Inverse-Set Value
Write(COMMAND, 0x00A6);	// Normal Display
Write(COMMAND, 0x00BB);	//COM Scan Direction
Write(DATA, 0x0001);	// 0→79 159→80
Wit (OOMMAND 0.00DO)	//D + 0
Write(COMMAND, 0x00BC);	//Data Scan Direction
Write(DATA, 0x0000);	//Normal
Write(DATA, 0x0000);	//RGB Arrangement
Write(DATA, 0x0001);	//65K COLOR
Write(COMMAND, 0x0075);	//Line Address Set
Write(DATA, 0x0000);	//Start Line=0
Write(DATA, 0x009F);	//End Line =159
Write(COMMAND, 0x0015);	//Column Address Set
Write(DATA, 0x0000);	//Start Column=0
Write(DATA, 0x0054);	//End Column =84
VVIII.G(B/VI/X, 0X0004);	//Elia Goldmii =04
Write(COMMAND, 0x0031);	//Ext = 1
Write(COMMAND, 0x0032);	//Analog Circuit Set
Write(DATA, 0x0000);	//OSC Frequency =000 (Default)
Write(DATA, 0x0000);	//Booster Efficiency=01(Default)
Write(DATA, 0x00001);	//Bias=1/14
Write(COMMAND, 0x0034);	//Software Initial
ReadEEPROM();	//Read EEPROM Flow
Write(COMMAND, 0x0030);	//Ext = 0
Write(COMMAND, 0x00AF);	//Display On
}	11 - 13 pius 3 ii

NOTE:

Microprocessor interface pins should not be floating in any operation mode.

8.2.3 Data Displaying

Figure 8.2.3.1 Data Displaying

Example: Display for 255X160

```
void Display( char *pattern )
            unsigned char i, j;
            Write( COMMAND, 0x0030 );
                                                                      // Ext = 0
            Write( COMMAND, 0x0015 );
                                                                      // Column address set
            Write( DATA, 0x0000 );
                                                                      // From column0 to column254
            Write( DATA, 0x0054 );
            Write( COMMAND, 0x0075 );
                                                                      // Page address set
            Write( DATA, 0x0000 );
                                                                      // From line0 to line159
            Write( DATA, 0x009F);
            Write( COMMAND, 0x005C )
                                                                      // Entry Memory Write Mode
            for(j = 0; j < 160; j++)
               For(i = 0; i < 85; i++)
                  Write( DATA, pattern[j * 160 + i]);
                                                                      // Display Data Write
         }
```

8.2.4 Partial Display In/Out

Figure 8.2.4.1 Partial Display In/Out

Example: Partial Display In/Out Operation

```
extern unsigned char *display_pattern;
void main()
{

PartialIn( 11, 18 );  // entry partial display mode

Windowing( 0, 11*4, 84, 18*4 );  // set the page and column range
PartialDisplay( display_pattern );  // Fill the data into partial display area

...
PartialOut();  // Out of partial display mode

}
```

8.2.5 Scroll Display

Figure 8.2.5.1 Scroll Display

Example: Screen Scroll Operation

```
void CenterScreenScroll(void)
        Write( COMMAND, 0x0030 ):
                                                // Ext = 0
                                                // Partial Display In Function
        Write( COMMAND, 0x00AA);
        Write( DATA, 0x000A );
                                                // Top Block=10
        Write( DATA, 0x0014 );
                                                // Bottom Block=20
                                                // Number of Specified Blocks=Bottom_Block=20
        Write( DATA, 0x0014 );
        Write( DATA, 0x0000 );
                                                // Area Scroll Type=Center Screen Scroll
        ScrollUp() or ScrollDown();
                                                // Scroll Up or Scroll Down
     }
void TopScreenScroll(void)
        Write( COMMAND, 0x0030 );
                                                // Ext = 0
        Write( COMMAND, 0x00AA);
                                                // Partial Display In Function
        Write( DATA, 0x0000 );
                                                // Top_Block=0
        Write( DATA, 0x0014 );
                                                // Bottom_Block=20
                                                // Number of Specified Blocks=Bottom_Block=20
        Write( DATA, 0x0014 );
        Write( DATA, 0x0001 );
                                                // Area Scroll Type=Top Screen Scroll
        ScrollUp() or ScrollDown();
                                                // Scroll Up or Scroll Down
     }
void BottomScreenScroll( void )
        Write( COMMAND, 0x0030 );
                                                // Ext = 0
        Write( COMMAND, 0x00AA);
                                                // Partial Display In Function
                                                // Top Block=10
        Write( DATA, 0x000A );
        Write( DATA, 0x0019 );
                                                // Bottom_Block=25
        Write( DATA, 0x0019 );
                                                // Number of Specified Blocks=Bottom_Block=25
                                                // Area Scroll Type=Bottom Screen Scroll
        Write( DATA, 0x0002 );
        ScrollUp() or ScrollDown();
                                                // Scroll Up or Scroll Down
     }
void WholeScreenScroll(void)
        Write( COMMAND, 0x0030 );
                                                // Ext = 0
        Write( COMMAND, 0x00AA);
                                                // Partial Display In Function
        Write( DATA, 0x0000 );
                                                // Top Block=0
        Write( DATA, 0x0019 );
                                                // Bottom_Block=25
                                                // Number of Specified Blocks=Bottom_Block=25
        Write( DATA, 0x0019 );
        Write( DATA, 0x0003 );
                                                // Area Scroll Type=Whole Screen Scroll
        ScrollUp() or ScrollDown();
                                                // Scroll Up or Scroll Down
     }
```

```
void ScrollUp(void)
     {
        Write( COMMAND, 0x0030 );
                                                // Ext = 0
        Write( COMMAND, 0x00AB);
                                                // Scroll Start Set
        Write( DATA, Top_Block);
                                                // Start Block Address=Top_Block
        Delay();
                                                // Delay
        Write( COMMAND, 0x00AB);
                                                // Scroll Start Set
        Write( DATA, Top_Block +1 );
                                                // Start Block Address= Top_Block+1
        Delay();
                                                // Delay
        Write( COMMAND, 0x00AB);
                                                // Scroll Start Set
        Write( DATA, Top_Block +2 );
                                                // Start Block Address= Top_Block +2
        Delay();
                                                // Delay
        . . . . . .
        Write( COMMAND, 0x00AB);
                                                // Scroll Start Set
        Write( DATA, Bottom_Block );
                                                // Start Block Address= Bottom Block
        Delay();
                                                // Delay
     }
void ScrollDown( void )
        Write( COMMAND, 0x0030 );
                                                // Ext = 0
        Write( COMMAND, 0x00AB);
                                                // Scroll Start Set
        Write( DATA, Bottom_Block);
                                                // Start Block Address= Bottom_Block
                                                // Delay
        Delay();
        Write( COMMAND, 0x00AB);
                                                // Scroll Start Set
        Write( DATA, Bottom Block -1 );
                                                // Start Block Address= Bottom_Block -1
        Delay();
                                                // Delay
        Write( COMMAND, 0x00AB);
                                                // Scroll Start Set
                                                // Start Block Address= Bottom_Block -2
        Write( DATA, Bottom_Block -2 );
        Delay();
                                                // Delay
        Write( COMMAND, 0x00AB);
                                                // Scroll Start Set
        Write( DATA, Top _Block );
                                                // Start Block Address= Top_Block
        Delay();
                                                // Delay
     }
```

8.2.6 Read-Modify-Write Cycle

Figure 8.2.6.1 Read-Write-Modify Cycle

Example: Read-Write-Modify Cycle

```
extern unsigned char *display_pattern;
void main() (For 2B3P 32Gray Scale Display)
        unsigned pixel1, pixel2, i;
        Windowing(11, 31, 80, 50);
                                                 // set the page and column range
                                                 // entry the Read-Modify-Write mode
        ReadModifyWriteIn();
        for(i = 0; i < 1000; i++)
           Read( DATA );
                                                 // For dummy read
           Pixel1= Read( DATA );
                                                 // Pixel read
                                                 // Pixel read
           Pixel2= Read( DATA );
           Pixel1 = pixel1 & 0x07FF;
                                                 // Pixel modify
           Pixel2 = pixel2 & 0x07FF;
                                                 // Pixel modify
           Write( DATA, pixel1 );
           Write( DATA, pixel2 );
        ReadModifyWriteOut();
                                                 // Out of Read-Modify-Write mode
    }
void main() (For 3B3P 32Gray Scale Display)
    {
        unsigned pixel1,pixel2,pixel3, i;
        Windowing( 11, 31, 80, 50);
                                                 // set the page and column range
        ReadModifyWriteIn();
                                                 // entry the Read-Modify-Write mode
        for(i = 0; i < 1000; i++)
           Read( DATA );
                                                 // For dummy read
           Pixel1= Read( DATA );
                                                 // Pixel read
           Pixel2= Read( DATA );
                                                 // Pixel read
                                                 // Pixel read
           Pixel3= Read( DATA );
           Pixel1 = pixel1 & 0x07FF;
                                                 // Pixel modify
           Pixel2 = pixel2 & 0x07FF;
                                                 // Pixel modify
           Pixel3 = pixel3 & 0x07FF;
                                                 // Pixel modify
           Write( DATA, pixel1 );
           Write( DATA, pixel2 );
           Write( DATA, pixel3 );
                                                 // Out of Read-Modify-Write mode
        ReadModifyWriteOut();
    }
```

8.2.7 Display On / OFF

Figure 8.2.7.1 Display Off

Figure 8.2.7.2 Display On

Example: Display OFF Operation

```
void DisplayOff( void )
{
```

Write(COMMAND, 0x0030);	// Ext = 0
Write(COMMAND, 0x00AE);	// Display Off

}

Example: Display ON Operation

```
void DisplayOn( void ) {
```

Write(COMMAND, 0x0030);	// Ext = 0
Write(COMMAND, 0x00AF);	// Display On

}

8.2.8 Power OFF

Figure 8.2.8.1 Power off

Note: The sequence is that users must set the VDD to low after keeping the /RES=low time longer than 12ms.

9. LIMITING VALUES

In accordance with the Absolute Maximum Rating System; see notes 1 and 2.

Parameter	Symbol	Conditions	Unit
Power Supply Voltage	VDD, VDD1	− 0.5 ~ + 4.0	V
Power supply voltage	VDD2, VDD3, VDD4, VDD5	-0.5 ~ +4.0	V
Power supply voltage (VDD standard)	VLCDIN, VLCDOUT	− 0.5 ~ + 20	V
Power supply voltage (VDD standard)	V0,V1, V2, V3, V4	0.3 to VLCDIN	V
Input voltage	VIN	-0.5 to VDD+0.5	V
Output voltage	VO	-0.5 to VDD+0.5	V
Operating temperature(Die)	TOPR	-30 to +85	C
Storage temperature(Die)	TSTR	-40 to +125	${\mathfrak C}$

Notes

- 1. Stresses above those listed under Limiting Values may cause permanent damage to the device.
- 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted.
- 3. Insure that the voltage levels of V1, V2, V3, and V4 are always such that

VLCDIN
$$\geq$$
 V0 \geq V1 \geq V2 \geq V3 \geq V4 \geq Vss

10. HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see "Handling MOS devices").

11. DC CHARACTERISTICS

 $T_a = -30^{\circ}C$ to $+85^{\circ}C$

	lto-m	Curahal	Condition		Rating		Llaita	Applicable
	Item	Symbol	Condition	Min.	Тур.	Max.	Units	Pin
Operating Voltage (1)		VDD VDD1	-	2.4	-	3.3	V	VDD*1 VDD1
Operating Voltage (2)		VDD2 VDD3 VDD4 VDD5	(Relative to VSS)	2.4	-	3.3	V	VDD2 VDD3 VDD4 VDD5
High-level Ir	nput Voltage	VIH	-	0.7 VDD	-	VDD	V	*2
Low-level Input Voltage		VIL	-	VSS	-	0.3 VDD	V	*2
High-level C	High-level Output Current		VDD=2.7V VOH =2.2V	0.5	-	-	mA	*3
Low-level O	Low-level Output Current		VDD=2.7V VOL = 0.5V	-	-	-0.5	mA	*3
Input leakag	ge current	ILI	VIN = VDD or VSS	-1.0	-	1.0	μΑ	*4
Liquid Cryst Resistance	Liquid Crystal Driver ON Resistance		Ta = 25℃ (Relative To VSS) V0 = 14.0V VDD = 2.7V	-	1.4	2.0	ΚΩ	SEGn COMn *5
	Internal Oscillator	fOSC	1/160 duty	-	12.4	26	kHz	CL*6
Oscillator	External Input	fCL	Ta = 25℃	-	12.4	26	kHz	CL
Frequency Frame frequency ff		fFRAME	VDD = 2.7V CLD = 0	-	78	160	Hz	SEGn

	Item	Symbol	Condition		Rating		Units	Applicable Pin	
	пеш	Symbol	Condition	Min.	Тур.	Тур. Мах.		Applicable I III	
	Input voltage	VDD	(Relative To VSS)	2.4	•	3.3	V	VDD	
ver	Supply Step-up output	VLCDOUT	(Relative To VSS)	_	_	18	V	VLCDOUT	
Power	voltage Circuit	VLCDOOT	(Relative 10 V33)	-	,	10	V	VLCDOOT	
Internal	Voltage regulator								
luţ	Circuit Operating	VLCDIN	(Relative To VSS)	-	-	18	V	VLCDIN	
	Voltage								

^{*} Recommended LCD V_{OP} voltage is 12V~14V .

Dynamic Consumption Current: During Display, with the Internal Power Supply ON.

Test pattern	Symbol	Condition		Rating		Units	Notes	
rest pattern	Symbol	Condition	Min.	Тур.	Max.	Ullis	Notes	
Display Pattern (checkerboard)	ISS	VDD = 2.8 V, V0 - VSS = 16.0 V Booster = 6x Bias = 1/12 Duty = 1/160 Bare chip Cap = 1.0uF	-	460	600	μА	*7	
Power Down	ISS	Ta = 25℃	-	-	10	μΑ	-	

Notes to the DC characteristics

- 1. The maximum possible V_{LCD} voltage that may be generated is dependent on voltage, temperature and (display) load, and internal clock
- 2. Power-down mode. During power down all static currents are switched off.
- 3. If external V_{LCD} , the display load current is not transmitted to I_{DD} .
- 4. V_{LCD} external voltage applied to VLCDIN pin; VLCDIN disconnected from VLCDOUT

References for items marked with *

- *1. While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden fluctuations to the voltage while the MPU is being accessed.
- *2. The A0, D0 to D5, D6 (SI), D7 (SCL), D8 to D15 /RD(E), /WR(R/W), XCS, CL, RST.
- *3. The D0 to D7, D8 to D15 and CL.
- *4. The A0,/RD (E), MR(RM), XCS, CLS, CL, RST , IF1 to IF3, M0, M1.
- *5. These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or COMn and the various power supply terminals (V1, V2, V3, and V4). These are specified for the operating voltage range.

 RON = 0.1 V /ΔI (Where ΔI is the current that flows when 0.1 V is applied while the power supply is ON.)
- *6. The relationship between the oscillator frequency and the frame rate frequency.
- *7. It indicates the current consumed on ICs alone when the internal oscillator circuit and display are turned on.

ST7529 I/O PIN ITO Resister Limitation

PIN Name	ITO Resister
IF1~IF3, M0, M1, CLS	No Limitation
VREF, T0~T10, TCAP, CL	Floating
VDD,VDD1~5,VSS,VSS1,VSS2,VSS4, V _{LCDIN} , V _{LCDOUT} , CxP, CxN	<100Ω
V0IN, V0OUT, V1, V2, V3, V4	<500Ω
A0, RW_WR, E_RD, XCS, D0D15, SCL, SI	<1kΩ
RST	<10kΩ

12. AC CHARACTERISTICS

System Bus Read/Write Characteristics 1 (For the 8080 Series MPU)

Figure 39.

(VDD = 3.3V , Ta = −30 to 85°C, Die)

Item	Signal	Symbol	Condition	Rating		l luita
			Condition	Min.	Max.	Units
Address hold time	A0	tAH8	-	20	-	
Address setup time		tAW8	-	20	-	
System cycle time		tCYC8	-	200	-	
Enable L pulse width (WRITE)	WR	tCCLW	-	100	-	
Enable H pulse width (WRITE)		tCCHW	-	100	-	
Enable L pulse width (READ)	RD	tCCLR	-	100	-	ns
Enable H pulse width (READ)		tCCHR	-	100	-	
WRITE Data setup time	- D0 to D7	tDS8	-	150	-	
WRITE Address hold time		tDH8	-	20	-	
READ access time		tACC8	CL = 100 pF	-	40	1
READ Output disable time		tOH8	CL = 100 pF	-	30	

(VDD = 2.7 V , Ta = -30 to 85°C ,Die)

Item	Signal	Symbol	O a waliti a w	Rating		l linita
			Condition	Min.	Max.	Units
Address hold time	A0	tAH8	-	20	-	
Address setup time		tAW8	-	30	-	
System cycle time		tCYC8	-	250	-	
Enable L pulse width (WRITE)	WR	tCCLW	-	150	-	
Enable H pulse width (WRITE)		tCCHW	-	100	-	
Enable L pulse width (READ)	RD	tCCLR	-	150	-	ns
Enable H pulse width (READ)		tCCHR	-	100	-	
WRITE Data setup time	- D0 to D7	tDS8	-	200	-	
WRITE Address hold time		tDH8	-	20	-	
READ access time		tACC8	CL = 100 pF	-	40	
READ Output disable time		tOH8	CL = 100 pF	-	30	

^{*1} The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≤ (tCYC8 - tCCLW - tCCHW) for (tr + tf) ≤ (tCYC8 - tCCLR - tCCHR) are specified.

^{*2} All timing is specified using 20% and 80% of VDD as the reference.

^{*3} tCCLW and tCCLR are specified as the overlap between XCS being "L" and WR and RD being at the "L" level.

System Bus Read/Write Characteristics 1 (For the 6800 Series MPU)

Figure 40.

(VDD = 3.3 V , Ta = $-30 \text{ to } 85 ^{\circ}\text{C}$,Die)

Item	Signal	Symbol	Condition	Rating		Heita
			Condition	Min.	Max.	Units
Address hold time	- A0	tAH6	-	20	-	
Address setup time		tAW6	-	20	-	
System cycle time	E	tCYC6	-	200	-	
Enable L pulse width (WRITE)		tEWLW	-	100	-	
Enable H pulse width (WRITE)		tEWHW	-	100	-	
Enable L pulse width (READ)	RD	tEWLR	-	100	-	ns
Enable H pulse width (READ)		tEWHR	-	100	-	
WRITE Data setup time	- D0 to D7	tDS6	-	150	-	
WRITE Address hold time		tDH6	-	20	-	
READ access time		tACC6	CL = 100 pF	-	40	
READ Output disable time		tOH6	CL = 100 pF	-	30	

(VDD = 2.7V , Ta =-30 to 85℃, Die)

Item	Signal	Symbol	O a waliti a w	Rating		11
			Condition	Min.	Max.	Units
Address hold time	A0	tAH6	-	20	-	
Address setup time		tAW6	-	30	-	
System cycle time	E	tCYC6	-	0.50	-	
				250		
Enable L pulse width (WRITE)		tEWLW	-	150	-	
Enable H pulse width (WRITE)		tEWHW	-	100	-	ns
Enable L pulse width (READ)	RD	tEWLR	-	150	-	115
Enable H pulse width (READ)		tEWHR	-	100	-	
WRITE Data setup time	D0 to D7	tDS6	-	200	-	
WRITE Address hold time		tDH6	-	20	-	
READ access time		tACC6	CL = 100 pF	-	40	
READ Output disable time		tOH6	CL = 100 pF	-	30	

^{*1} The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≤ (tCYC6 − tEWLW − tEWHW) for (tr + tf) ≤ (tCYC6 − tEWLR − tEWHR) are specified.

^{*2} All timing is specified using 20% and 80% of VDD as the reference.

^{*3} tEWLW and tEWLR are specified as the overlap between XCS being "L" and E.

SERIAL INTERFACE (4-Line Interface)

Fig 41.

(V_{DD}=3.3V,Ta= -30 to 85°C,Die)

Itom	Cianal	Symbol	Condition	Rati	Units	
Item	Signal	Symbol	Condition	Min.	Max.	Units
Serial Clock Period		tSCYC	-	100	-	
SCL "H" pulse width	SCL	tSHW	-	50	-	
SCL "L" pulse width		tSLW	-	50	-	
Address setup time	Α0	tSAS	-	40	-	
Address hold time		tSAH	-	30	-	ns
Data setup time	SI	tSDS	-	30	-	
Data hold time		tSDH	-	30	-	
CS-SCL time	XCS	tCSS	-	20	-	
CS-SCL time	703	tCSH	-	50	-	

(V_{DD} =2.7V,Ta= -30 to 85 $^{\circ}$ C,Die)

Item	Signal	Symbol	Condition	Rati	Units	
item	Signal	Syllibol	Condition	Min.	Max.	Units
Serial Clock Period		tSCYC	-	110	-	ns
SCL "H" pulse width	SCL	tSHW	-	60	-	
SCL "L" pulse width		tSLW	-	50	-	
Address setup time	A0	tSAS	-	50	-	
Address hold time	AU	tSAH	-	40	-	
Data setup time	SI	tSDS	-	40	-	
Data hold time	31	tSDH	-	40	-	
CS-SCL time	xcs	tCSS	-	30	-	

CS-SCL time	tCSH	60	-	

^{*1} The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

^{*2} All timing is specified using 20% and 80% of VDD as the standard.

SERIAL INTERFACE (3-Line Interface)

Fig 42.

 $(V_{DD}=3.3V,Ta=-30 \text{ to } 85^{\circ}C,Die)$

Item	Signal	Cumbal	Condition	Rati	ng	Units		
item	Signal	Symbol	Condition	Min.	Min. Max.			
Serial Clock Period		tSCYC	-	100	-			
SCL "H" pulse width	SCL	tSHW	-	50	-			
SCL "L" pulse width		tSLW	-	50	-			
Data setup time	SI	tSDS	-	30	-	ns		
Data hold time		tSDH	-	30	-			
CS-SCL time	V00	tCSS	-	20	-			
CS-SCL time	XCS	tCSH	-	50	-			

 $(V_{DD}=2.7V,Ta=-30 \text{ to } 85^{\circ}C,Die)$

Item	Signal	Symbol	Condition	Rati	Units	
item	Signal	Symbol	Condition	Min.	Max.	Units
Serial Clock Period		tSCYC	-	110	-	
SCL "H" pulse width	SCL	tSHW	-	60	-	
SCL "L" pulse width		tSLW	-	50	-	
Data setup time	SI	tSDS	-	40	-	ns
Data hold time		tSDH	-	40	-	
CS-SCL time	XCS -	tCSS	-	30	-	
CS-SCL time		tCSH	-	60	-	1

^{*1} The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

^{*2} All timing is specified using 20% and 80% of VDD as the standard.

13. RESET TIMING

Fig 43.

(VDD =3.3V , Ta = -30 to 85°C,Die)

Item	Signal Symbol Condition		Condition		Units		
item	Signal	Symbol	Condition	Min.	Тур.	Max.	UiillS
Reset time		tR	-	-	-	1	us
Reset "L" pulse width	RST	tRW	-	1	-	-	us

(VDD = 2.7V, Ta = -30 to 85°C,Die)

Item	Signal	Symbol	Condition		Rating	Units	
item	Signal	Symbol	Condition	Min.	Тур.	Max.	Ullits
Reset time		tR	-	-	-	1.5	us
Reset "L" pulse width	RST	tRW	-	1.5	-	-	us

14. THE MPU INTERFACE (REFERENCE EXAMPLES)

The ST7529 Series can be connected to either 8080 Series MPUs or to 6800 Series MPUs. Moreover, using the serial interface it is possible to operate the ST7529 series chips with fewer signal lines.

The display area can be enlarged by using multiple ST7529 Series chips. When this is done, the chip select signal can be used to select the individual lcs to access.

(1) 6800 Series MPUs(8 bit)

(2) 6800 Series MPUs(16 bit)

(3) 8080 Series MPUs(8 bit)

(4) 8080 Series MPUs(16 bit)

(5) Using the Serial Interface (4-line interface)

(3) Using the Serial Interface (3-line interface)

15. Application circuit

ST7529 / 68serial - 8bit

Ver 1.9 80/86 2010/8/4

ST7529 / 80serial - 8bit

ST7529 / 80serial - 16bit

ST7529 / Serial - 3 Line

ST7529 / Serial - 4 Line

16. Power Application Note

16.1 Booster Efficiency

For COG Applications

Please take care about the ITO resistance, especially for the "Booster Capacitors" (CxP & CxN). The ITO trace will let the booster efficiency decrease a little bit when the loading-current flow through it. As the loading-current become larger, the efficiency will drop more. If the booster power source (VDD2) is lower, the ITO resistance control is more important. Therefore, if the loading is heavy or the VDD2 is lower, the ITO resistance should be kept much lower than the recommended value in this datasheet.

For TCP Applications

The TCP package will not have problem that the booster efficiency is reduced by the trace resistance. But the voltage endurance should be take care. The booster efficiency is better than COG type product. Please consider using the following suggestions to protect ST7529.

- (1) Make sure the voltage endurance is in range when Display OFF.
- (2) Add a resistor (about 200 Ohm) between VLCD and capacitor.
 Please note that the resistor value is different from LCD modules. Actual value should be checked according module display quality.

16.2 VLCD Discharge

ST7529 has built-in discharge path on VLCD. The discharge path will discharge the VLCD power when power off. The discharge speed is different under different VLCD voltage. In some application, the discharge speed is not enough. To improve this speed, a discharge resistor is needed. Recommend solution is to add the discharge resistor (about 1M Ohm) between VLCD and VDD2. Please note that the resistor value is different from LCD modules. Actual value should be checked according module display quality.

As the result, the recommended application circuit should introduce the circuit listed below on system (TCP applications) or FPC (COG applications).

	ST7529 Sei	ries Specification Revision History
Version	Date	Description
0.1	2005/03/01	Preliminary version
0.2	2005/04/13	Remove IIC interface Add some example code and flow chart Add EPINT command
1.0	2005/04/29	Release version Change initial code(Booster must be on first)
1.1	2005/06/03	Modify write EEPROM sequence Remove SEG255 pin
1.2	2005/08/09	Add Temperature Gradient Coefficient Add Figure 8.1.1, Figure 8.1.2
1.3	2005/09/15	Modify bump height, chip thickness, limiting value
1.4	2006/01/18	Modify application circuit voltage from 3.6V to 3.3V
1.5	2006/6/9	 a. Add Power Application Note. b. Modify Application circuit. c. Modify Voltage Converter Circuits. d. Remove Dither Command. e. Remove Weight Set Command. f. Modify Analog circuit set (Oscillator frequency adjustment). g. Modify Initial code flowchart. h. Add Power ON Sequence Note. i. Recommended LCD Vop Voltage.
1.6	2006/9/18	 a. Modify Dynamic Consumption Current Note. b. Add microprocessor notice item. c. Modify Pad Arrangement. d. Modify Example(Read-Write-Modify Cycle).
1.7	2006/10/09	a. Modify PIN Description(Cap1N \ Cap1Petc). b. Modify Application Circuit.
1.8	2007-10-19	a. Modify the symbol name of 6800 Series MPU timing figure (tEWHR,tEWHWLW,tEWLR.tEWLW) b. Modify the singal name of 6800 Series MPU timing table(E)
1.8a	2009/12/15	Modify the symbol name of 6800 series MPU timing figure
1.9	2010/08/04	Modify the oscillator frequency adjustment table