# Résolution de systèmes linéaires

Enseignement spécialisé "éléments finis" - S6133/5

Christophe Bovet (christophe.bovet@onera.fr)

Onera - The French Aerospace Lab F-92322 Chatillon, France, christophe.bovet@onera.fr

Paris, le 24 novembre 2016

### Contexte



Comment résoudre efficacement un système linéaire de grande dimension (10<sup>4</sup> à 10<sup>9</sup>) dans un contexte EF ?

# Schéma synoptique



#### Introduction

Quelques rappels d'algèbre linéaire

# Objectifs et références

### Objectifs

- Avoir un aperçu des méthodes de résolutions existantes
- Identifier les cas d'applications et spécificités des  $\neq$  solutions
- Être sensibilisé aux problématiques du monde réel (complexité & besoin mémoire, stabilité & précision, parallélisme, ...)

### Architecture d'un ordinateur

- Unités de calculs : coeur / processeur / noeud
- ▶ Mémoire : cache L1/L2/L3, RAM, disque dur
- ► Communication : bus / réseau (gigabit, infiniband)



### Architecture d'un ordinateur

# Mémoire partagée (symmetric multiprocessing SMP)

Échange rapide (accès direct) Besoin de protéger les données (mutex/semaphore)

⇒ multithreading, protocole openmp

### Mémoire séparée

Données protégées Il faut s'occuper d'échanger les données.

⇒ Protocole MPI (message passing interface)



### Architectures actuelles

Architectures mixtes plusieurs noeuds en réseau avec plusieurs coeurs à mémoire partagée.

### Constat sur les architectures



### Présentation d'un Cluster

Le calculateur Curie du TGCC



# Présentation d'un Cluster

Le calculateur Curie du TGCC

| Fat nodes            | Thin nodes                |  |
|----------------------|---------------------------|--|
| 360 BullX-S6010      | 5040 BullX B500           |  |
| Intel NH EX 2,26 Ghz | Intel Sandy Bridge 2,7Ghz |  |
| 11 520 coeurs        | 80 640 coeurs             |  |
| 128 coeurs/noeud     | 16 coeurs/noeuds          |  |
| 512 Go/noeud         | 4 Go/coeurs               |  |
| 105 TFlops           | 1 740 TFlops              |  |



### Plan

- 1 Quelques rappels d'algèbre linéaire
  - Vocabulaire et notations
  - Élimination de Gauss
- Méthodes directes
  - Factorisations usuelles
  - Systèmes creux
- Méthodes itératives
  - Méthodes itératives stationnaires
  - Méthodes itératives de type Krylov
- Aperçu d'une méthode hybride (méthode de décomposition de domaine)
  - Méthodes de décomposition de domaine

### Plan

- 1 Quelques rappels d'algèbre linéaire
  - Vocabulaire et notations
  - Élimination de Gauss
- 2 Méthodes directes
- 3 Méthodes itératives
- Aperçu d'une méthode hybride (méthode de décomposition de domaine)

11 / 52

### Vocabulaire et notations

#### Cadre d'étude

Soit le système linéaire suivant :

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$
  
 $\vdots$   $\vdots$   $\Leftrightarrow$   $\mathbf{A}\mathbf{x} = \mathbf{b}$   
 $a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$ 

- ▶ **A** (taille  $n \times n$ ) et **b** (second membre, right hand side) sont donnés
- On suppose **A** réelle et inversible  $(\det(\mathbf{A}) \neq 0)$

#### Vocabulaire

- ▶ **A** est dite **dense** s'il y a peu de  $a_{ij}$  nuls  $\Rightarrow$  stockage de toutes les valeurs (alignées en mémoire)
- Sinon A est dite creuse, seules les nnz valeurs non nulles sont stockées (CSR, COO, ...)

### Vocabulaire et notations

### Rappels

- **A** est symétrique si  $\mathbf{A}^{\top} = \mathbf{A}$
- ▶ **A** est positive si  $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} \geq 0 \quad \forall \mathbf{x} \in \mathbb{R}^n$
- ▶ **A** est définie si pour  $\mathbf{x} \in \mathbb{R}^n$ ,  $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = 0 \Rightarrow \mathbf{x} = \mathbf{0}$
- ▶ Norme matricielle :

$$\|\mathbf{A}\| = \max_{\|\mathbf{x}\|=1} \|\mathbf{A}\mathbf{x}\| = \max_{\|\mathbf{x}\|\neq 0} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}$$

► Condition de **A** (inversible) (condition number) :

$$\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\| = \left(\max_{\|\mathbf{x}\|=1} \|\mathbf{A}\mathbf{x}\|\right) / \left(\min_{\|\mathbf{y}\|=1} \|\mathbf{A}\mathbf{y}\|\right)$$

On a toujours  $\kappa(\mathbf{A}) \geq 1$ 

# Élimination de Gauss

- ▶ Retour sur le système initial, on suppose  $a_{11} \neq 0$ .
- ▶ On pose  $\ell_{i1} = a_{i1}/a_{11}$ , on réalise ligne  $i \ell_{i1}$  ligne 1

$$\begin{array}{lll} a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1} & a_{11}^{(1)}x_{1} + a_{12}^{(1)}x_{2} + \cdots + a_{1n}^{(1)}x_{n} = b_{1}^{(1)} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2} & a_{11}^{(1)}x_{1} + a_{12}^{(1)}x_{2} + \cdots + a_{2n}^{(1)}x_{n} = b_{1}^{(1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1}x_{1} + a_{n2}x_{2} + \cdots + a_{nn}x_{n} = b_{n} & a_{n2}^{(1)}x_{2} + \cdots + a_{nn}^{(1)}x_{n} = b_{n}^{(1)} \end{array}$$

- ► On a  $a_{ij}^{(2)} = a_{ij}^{(1)} \frac{a_{i1}^{(1)} a_{1j}^{(1)}}{a_{11}^{(1)}}$   $a_{11}^{(1)}$  est appelé pivot
- Permutation de ligne si  $a_{22}^{(2)} = 0$
- ightharpoonup Succession de système lin.  $({m A}^{(k)},{m b}^{(k)})$  jusqu'à obtenir un syst. tri. sup.

$$\mathbf{A}^{(n-1)}\mathbf{x} = \mathbf{U}\mathbf{x} = \mathbf{b}^{(n-1)} \tag{1}$$

## Élimination de Gauss

#### **Theorem**

Soit A inversible, l'élimination de Gauss donne

$$PA = LU$$

où P est une matrice de permutation et

$$\boldsymbol{L} = \begin{pmatrix} 1 \\ \ell_{21} & 1 \\ \vdots & \ddots & \vdots \\ \ell_{n1} \dots & \ell_{nn-1} & 1 \end{pmatrix} \quad \text{et} \quad \boldsymbol{U} = \begin{pmatrix} u_{11} \dots & u_{1n} \\ u_{22} \dots & u_{2n} \\ & \ddots & \vdots \\ & & u_{nn} \end{pmatrix}$$

Matrice de permutation

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \mathbf{P} \begin{pmatrix} ligne1 \\ ligne2 \\ ligne3 \end{pmatrix} = \begin{pmatrix} ligne2 \\ ligne1 \\ ligne3 \end{pmatrix}$$

### Plan

- 1 Quelques rappels d'algèbre linéaire
- 2 Méthodes directes
  - Factorisations usuelles
  - Systèmes creux
- 3 Méthodes itératives
- Aperçu d'une méthode hybride (méthode de décomposition de domaine)

### Méthodes directes

#### Élimination de Gauss & factorisation **LU**

En pratique, on veut souvent résoudre plusieurs second membres. La substitution à la volée de  $\boldsymbol{b}$  n'est pas souhaitée

Calcul de la factorisation LU

$$LU = PA$$

Alors

$$LUx = PAx = Pb$$

Résolution d'un système tri. inf. à diagonale unitaire

3 Résolution d'un système tri. supérieur

$$Ux = y$$
 (remontée, backward substitution)

# Élimination de Gauss & factorisation LU

### Remarques

- Suivant les propriétés de A, on sait d'avance si aucune permutation n'est nécessaire
  - Matrices à diagonale dominante
  - Matrices SPD

### Theorem (Existence et unicité)

Soit la matrice  $\mathbf{A} \in \mathbb{R}^{n \times n}$ . La factorisation  $\mathbf{LU}$  existe et est unique ssi toutes les sous-matrices  $\mathbf{A}_i$  d'ordre  $i = 1, \dots, n-1$  sont inversibles.

#### Remarques

Si A est inversible, on peut toujours se ramener au cas ci-dessus grâce à des permutations.

# Élimination de Gauss & factorisation LU

### Complexité

- ▶ Passage de **A** à  $A^{(1)}$  : (n-1) divisions +  $(n-1)^2$  additions et multiplications.
- ► Coût du calcul de  $\boldsymbol{L}\boldsymbol{U} \simeq 2/3n^3 + 1/2n^2 + o(n^2)$
- ▶ Coût de résolution d'un système triangulaire  $\simeq n^2$
- Coût de stockage, en dense il suffit d'un vecteur supplémentaire pour P.

### Raisonnement simplifié

- ► On n'utilise pas les spécificités de A
- Algèbre linéaire dense
- Arithmétique exacte

# Élimination de Gauss et calculs à virgule flottante

#### Pivot partiel PA = LU

▶ Exemple  $(k \ll 1)$ 

$$\mathbf{A} = \begin{bmatrix} k & 1 \\ 1 & 1 \end{bmatrix} \quad \mathbf{L} = \begin{bmatrix} 1 & 0 \\ (1/k) & 1 \end{bmatrix} \quad \mathbf{U} = \begin{bmatrix} k & 1 \\ 0 & (1 - 1 \cdot (1/k)) \end{bmatrix}$$

Au lieu de se satisfaire de  $a_{kk}^{(k)} \neq 0$ , on permute la ligne i qui maximise  $|a_{ik}^{(k)}|, i \geq k$ 

$$\begin{pmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ & \times & \times & \times \\ & + & + & + \\ & \star & \star & \star \end{pmatrix} \Rightarrow \begin{pmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ & \star & \star & \star \\ & + & + & + \\ & \times & \times & \times \end{pmatrix} \Rightarrow \begin{pmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ & \star & \star & \star \\ & \times & \times & \times \\ & \times & \times & \times \end{pmatrix}$$

- N'affecte pas les lignes de *U* déjà factorisées
- Si ce n'est pas suffisant, il existe le pivotage complet  $\Rightarrow PAQ^{\top} = LU$ Résolution de systèmes linéaires

# Autres factorisations classiques

▶ Variante de la factorisation *LU* :

$$LDU^* = PA$$

Avec D diagonale et  $U^*$  tri. sup. à diagonale unitaire.

- Ces factorisations ne profite pas des propriétés de A.
- ► Si A est symétrique ⇒ factorisation de Crout (pivotage symétrique)

$$LDL^{\top} = PAP^{\top}$$

Coût du calcul  $\simeq 1/3n^3$ 

▶ Si **A** est SDP, tous les termes  $D_{ii} > 0$  ⇒ factorisation de Cholesky.

$$\boldsymbol{L}_{c}\boldsymbol{L}_{c}^{\top}=\boldsymbol{A}$$

Coût du calcul  $\simeq 1/3n^3$ , pas besoin de pivoter *a priori*.

# Quelques remarques

#### Remarque

Les méthodes solve utilisent une **LU** 

### Quelques références

- Langages interprétés :
  - Python Scipy: scipy.linalg
  - ▶ Octave / Matlab : lu
- Librairies :

http://en.wikipedia.org/wiki/Comparison\_of\_linear\_algebra\_libraries

- Eigen
- LAPACK
- GNU Scientific library

# Systèmes creux

► En dense, coût d'une facto *LU* et temps de calcul

|          | Flops de l'ordinateur |           |           |
|----------|-----------------------|-----------|-----------|
| n        | 10 <sup>9</sup>       | $10^{12}$ | $10^{15}$ |
| $10^{4}$ | 10 min                | 1 sec     | $1~\mu s$ |
| $10^{6}$ | 20 ans                | 7 mois    | 10 min    |
| 108      |                       |           | 20 ans    |

▶ Heureusement les systèmes sont souvent **creux** 





Source : Analyse des solides déformables par la méthode des éléments finis, Bonnet, Frangi

# Stockage creux

#### Largeur de bande

La matrice  $\boldsymbol{A}$  a une largeur de bande b si

$$\begin{cases} \forall i, a_{ij} = 0 & \text{si} \quad i > j + b \\ \forall j, a_{ij} = 0 & \text{si} \quad j > i + b \end{cases}$$







# Stockage creux

nnz = 5

- ▶ Plusieurs stockages possibles (COO, CSR, Skyline, ...)
- Exemple du stockage COO (i,j,aij)  $i = [ 1 1 2 3 4] \\
  j = [ 1 2 2 3 2] \\
  aij = [ 11 6 45 22 3] \\
  n = 4 \\
  m = 4$   $A = \begin{bmatrix} 1145 0 0 \\ 0 6 0 0 \\ 0 0 22 0 \\ 0 3 0 0 \end{bmatrix}$ 
  - nnz nombre de valeurs non nulles

# Factorisation et stockage creux

- ▶ On considère la factorisation LU de la matrice **A** creuse
- ▶ Les matrices **L** et **U** sont en générale creuses également
- ▶ Elles sont par contre (beaucoup) plus remplies

$$nnz(\boldsymbol{A}) \ll nnz(\boldsymbol{L})$$
 et  $nnz(\boldsymbol{A}) \ll nnz(\boldsymbol{U})$ 

- ▶ Le remplissage ou fill-in est la différence de nnz entre A et L ou U
- Le fill-in augmente la mémoire nécessaire et le coût de la factorisation
- Comment minimiser ce remplissage?

### Source du fill-in

Retour sur l'élimination de Gauss

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - \frac{a_{ik}^{(k)} a_{kj}^{(k)}}{a_{kk}^{(k)}}$$



- $\ \, \grave{\mathsf{A}} \, \, \mathsf{l'\acute{e}tape} \, \, k+1, \, \, a_{ij}^{(k+1)} \neq 0 \, \, \mathsf{si} \, \, \left\{ \begin{array}{l} a_{ij}^{(k)} \neq 0 \\ a_{ik}^{(k)} \neq 0 \, \, \mathsf{et} \, \, a_{kj}^{(k)} \neq 0 \, \, \mathsf{(structural fill-in)} \end{array} \right.$
- Exemple

$$\begin{pmatrix} x \times x \times x \\ x \times x \\ x \times x \end{pmatrix} \Rightarrow \begin{pmatrix} \star \star \star \star \\ \star \star \star \star \\ \star \star \star \star \end{pmatrix} \quad \text{mais} \quad \begin{pmatrix} x & x \\ x \times x \\ x \times x \\ x \times x \times \end{pmatrix} \Rightarrow \begin{pmatrix} \star & \star \\ \star \star \\ \star \star \star \end{pmatrix}$$

# Factorisation et stockage creux

- ▶ Les permutations de lignes et colonnes de **A** permettent de réduire significativement le remplissage.
- ► Cela fait appel à de notions complexes de théorie des graphes.
- Les permutations ont donc un rôle double
  - ▶ Garantir la stabilité et limiter la propagation des erreurs d'arrondis
  - ► Limiter le remplissage
- Pivots candidats (threshold pivot): au lieu de choisir

$$p = \operatorname{argmax}(|a_{ik}^{(k)}|)$$

on choisit le pivot qui minimise le *fill-in* parmi les pivots candidats vérifiant :

$$|a_{ik}^{(k)}| \geq \tau |\max a_{pk}^{(k)}|$$



# Synthèse

#### Les solveurs directs sont

- des variantes de l'élimination de Gauss
- ▶ ils fonctionnent en 3 phases

Fact. symbolique  $\Rightarrow$  Fact. numérique  $\Rightarrow$  descente-remontée

- robustes : ils fournissent la solution exacte (arithmétique exacte) en un nombre fini d'opération (qui peut être grand)
- coûteux en mémoire (les ressources croissent fortement avec la taille du problème)
- le conditionnement de A influe uniquement sur la qualité de la solution (remède : pivot, scaling)

### Plan

- Quelques rappels d'algèbre linéaire
- Méthodes directes
- 3 Méthodes itératives
  - Méthodes itératives stationnaires
  - Méthodes itératives de type Krylov
- Aperçu d'une méthode hybride (méthode de décomposition de domaine)

31 / 52

# Pourquoi utiliser des méthodes itératives?

- Les solveurs directs sont robustes mais très gourmand en mémoire
- ▶ La parallélisation est possible mais pas évidente (échange de complément de Schur)
- ▶ Pour les très gros problèmes il faut penser aux méthodes itératives ou hybride
- ▶ En dense, un produit MV en  $O(n^2)$  ⇒ uniquement utile pour le creux
- ▶ Solveurs itératifs presque embarrassingly parallel

$$\mathbf{A}\mathbf{x} \Rightarrow \begin{bmatrix} \mathbf{A}_{11} \ \mathbf{A}_{12} \\ \mathbf{A}_{21} \ \mathbf{A}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$

### Méthodes itératives stationnaires

#### Principe

- ightharpoonup On souhaite résoudre Ax = b avec A très grande
- ▶ Construire une suite de vecteurs tels que  $\lim_{k \to +\infty} \mathbf{x}_k = \mathbf{A}^{-1}\mathbf{b} = \mathbf{x}^*$
- $\triangleright$  Soit  $x_k$  l'approximation au pas k

$$\mathbf{x}^{\star} = \mathbf{x}_k + \mathbf{e}_k$$
 (erreur)

$$Ae_k = Ax^* - Ax_k := r_k$$
 (résidu)

On a donc

$$\mathbf{x}^{\star} = \mathbf{x}_k + \mathbf{A}^{-1} \mathbf{r}_k$$

 L'idée est de remplacer A par une matrice proche mais facilement inversible

### Méthodes itératives stationnaires

### Principe

- Soit M une matrice inversible qui
  - est une bonne approximation de A
  - soit facile à calculer
  - ightharpoonup permette de résoudre facilement le système Mz = r
- M est appelé préconditionneur
- Au lieu de résoudre  $\mathbf{x}^* = \mathbf{x}_k + \mathbf{A}^{-1}\mathbf{r}_k$ , on itère :

$$egin{aligned} oldsymbol{r}_k &= oldsymbol{b} - oldsymbol{A} oldsymbol{x}_k \ oldsymbol{x}_{k+1} &= oldsymbol{x}_k + oldsymbol{M}^{-1} oldsymbol{r}_k \end{aligned}$$

► Trois étapes : calcul de résidu ⇒ résolution du pb préconditionné ⇒ maj solution

### Préconditionnement

#### Comment construire un préconditionneur

- ▶ Décomposer la matrice  $\mathbf{A} = \mathbf{M} \mathbf{N}$  où  $\mathbf{M}$  est (facilement) inversible
- ► On a l'équivalence

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{M}^{-1}\mathbf{r}_k \Leftrightarrow \mathbf{M}\mathbf{x}_{k+1} = \mathbf{N}\mathbf{x}_k + \mathbf{b}$$

 Quelques manipulations algébriques mènent à la formulation sous forme de point fixe

$$\mathbf{x}_{k+1} = \mathbf{B}\mathbf{x}_k + \mathbf{c}$$
 avec  $\mathbf{B} = \mathbf{M}^{-1}\mathbf{N}$  et  $\mathbf{c} = \mathbf{M}^{-1}\mathbf{b}$ 

**B** est la matrice d'itération  $e_{k+1} = Be_k$ 

### Méthodes itératives stationnaires

#### Définition

- ▶ Une méthode itérative est convergente ssi la suite  $(\mathbf{x}_n)_n \to \mathbf{A}^{-1}\mathbf{f} \ \forall$  init.  $\mathbf{x}_0$
- Dans notre cas, la méthode converge uniquement si le rayon spectral de la matrice d'itération

$$ho(oldsymbol{B}) = 
ho(oldsymbol{M}^{-1}oldsymbol{N}) < 1$$

- Suivant le choix de M on obtient les méthodes Jacobi, Gauss-Seidel, de relaxation ...
- ... et des propriétés de convergence différentes.

# Critère d'arrêt et exemple

#### Critères d'arrêt

- Norme du résidu  $\|\mathbf{r}_k\| \le \epsilon \|\mathbf{r}_0\|$
- ▶ Stagnation de la solution  $\|\mathbf{x}_{k+1} \mathbf{x}_k\| \le \epsilon \|\mathbf{x}_k\|$

#### Un petit comparatif

$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 300 \end{pmatrix}$$
  $\mathbf{b} = (1,0)$   $\mathbf{x}_0 = (1.,1.5)$ 

# Méthodes itératives de type Krylov

Avec les méthodes précédentes

$$\mathbf{x}_{k} = \mathbf{x}_{k-1} + \mathbf{M}^{-1}\mathbf{r}_{k-1} = \mathbf{x}_{k-1} + \mathbf{z}_{k-1}$$

- ▶ On construit successivement  $\mathbf{z}_k = Q_k(\mathbf{M}^{-1}\mathbf{A})\mathbf{z}_0$  où  $Q_k$  est un polynôme de degré k.
- ▶ Déf : Espace de Krylov :

$$\mathcal{K}_m(\boldsymbol{A}, \boldsymbol{r}_0) = \mathsf{Vect}(\boldsymbol{r}_0, \boldsymbol{A}\boldsymbol{r}_0, \dots, \boldsymbol{A}^{m-1}\boldsymbol{r}_0)$$

Les méthodes de projection ajoutent une contrainte sur  $r_m$  tel que

$$\begin{cases} x_m \in x_0 + \mathcal{K}_m(\mathbf{K}, \mathbf{r}_0) \\ \mathbf{r}_m \perp_? \mathcal{K}_m(\mathbf{K}, \mathbf{r}_0) \end{cases}$$

▶ Dans le cas précédent  $K \leftarrow M^{-1}A$  et  $r_0 \leftarrow z_0$ 

## Méthodes itératives de type Krylov

Les méthodes de projection ajoutent une contrainte sur  $r_m$  tel que

$$\begin{cases} x_m \in x_0 + \mathcal{K}_m(\mathbf{K}, \mathbf{r}_0) \\ \mathbf{r}_m \perp_? \mathcal{K}_m(\mathbf{K}, \mathbf{r}_0) \end{cases}$$

- ▶ Dans le cas précédent  $\mathbf{K} \leftarrow \mathbf{M}^{-1}\mathbf{A}$  et  $\mathbf{r}_0 \leftarrow \mathbf{z}_0$
- Suivant les propriétés de K, le choix du type l'orthogonalité permet de définir plusieurs approches (CG, GMRes, OrthoDir, etc.)
- Construction d'une base de l'espace de Krylov (procédé d'Arnoldi)
- Si A est symétrique définie positive le gradient conjugué est la meilleure solution

$$\begin{cases} \mathbf{x}_m \in \mathbf{x}_0 + \mathcal{K}_m(\mathbf{K}, \mathbf{r}_0) \\ \mathbf{r}_m \perp \mathcal{K}_m(\mathbf{K}, \mathbf{r}_0) \end{cases}$$

## Méthode du gradient conjugué

### Construction d'une base de $\mathcal{K}_m(\mathbf{A}, \mathbf{r}_0)$ .

- La base naturelle  $(\mathbf{r}_0, \mathbf{A}\mathbf{r}_0, \dots, \mathbf{A}^{m-1}\mathbf{r}_0)$  est peu adaptée
- ▶ On suppose **A** SPD, soit  $(\lambda_p, \mathbf{v}_p)$  les éléments propres de **A**

Si 
$$\mathbf{r}_0 = \sum_{p} \alpha_p \mathbf{v}_p \quad \Rightarrow \quad \mathbf{Ar}_0 = \sum_{p} (\alpha_p \cdot \lambda_p) \mathbf{v}_p$$

#### Algorithme 1 : Procédé d'Arnoldi, création d'une base A-orthogonale

## Méthode du gradient conjugué

► Si **A** est symétrique la matrice d'Hessemberg  $(h_{ij})$  est tridiagonale  $\Rightarrow$ récurrence courte

#### Algorithme 2 : Gradient conjugué avec récurrence courte

Initialisation 
$$\mathbf{r}_0 = \mathbf{A}\mathbf{x}_0 - \mathbf{b}$$
,  $\mathbf{w}_0 = \mathbf{r}_0$ ,  $j = 0$ 

while  $\sqrt{\mathbf{r}_j^T \mathbf{r}_j}$  do

$$\mathbf{q}_j = \mathbf{A}\mathbf{w}_j$$

$$\alpha_j = (\mathbf{r}_j^T \mathbf{r}_j)/(\mathbf{q}_j^T \mathbf{w}_j)$$

$$\mathbf{x}_{j+1} = \mathbf{x}_j + \alpha_j \mathbf{w}_j$$

$$\mathbf{r}_{j+1} = \mathbf{r}_j - \alpha_j \mathbf{q}_j$$

$$\beta_j = (\mathbf{r}_{j+1}^T \mathbf{r}_{j+1})/(\mathbf{r}_j^T \mathbf{r}_j)$$

$$\mathbf{w}_{j+1} = \mathbf{r}_{j+1} + \beta_j \mathbf{w}_j$$

$$j \leftarrow j + 1$$

## Remarques

#### Propriétés

- Le gradient conjugué converge en au plus *n* itérations.
- ightharpoonup À chaque itération,  $x_k$  minimise la **A**-norme de l'erreur sur l'espace de Krylov.

#### Un petit comparatif

$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 300 \end{pmatrix}$$
  $\mathbf{b} = (1, 0)$   $\mathbf{x}_0 = (1., 1.5)$ 

### Solveurs itératifs sensibles au conditionnement

▶ Plaque lamifiée élastique linéaire  $n \simeq 21\,000$ , CG & Chol.





## Synthèse

- Les méthodes itératives nécessitent très peu de mémoire
- ▶ Elles peuvent donc résoudre de très gros problèmes
- Choisir un bon préconditionneur n'est pas toujours évident
- La vitesse de convergence dépend du conditionnement de l'opérateur à résoudre
- Les méthodes de Krylov convergent généralement plus rapidement
- ► Elles sont cependant moins *embarrassingly parallel*

### Plan

- 1 Quelques rappels d'algèbre linéaire
- 2 Méthodes directes
- 3 Méthodes itératives
- 4 Aperçu d'une méthode hybride (méthode de décomposition de domaine)
  - Méthodes de décomposition de domaine

# Méthodes hybrides

#### Idée de base : combiner les avantages des méthodes directes et itératives

- Méthodes itératives par blocs (solveurs directes sur les sous-blocs)
- Méthodes multi-grilles
- Méthode de type décomposition de domaine, solveurs directs pour les problèmes locaux et solveurs de Krylov pour équilibrer l'interface

## Méthodes hybrides

#### Idée de base : combiner les avantages des méthodes directes et itératives

- Méthodes itératives par blocs (solveurs directes sur les sous-blocs)
- Méthodes multi-grilles
- Méthode de type décomposition de domaine, solveurs directs pour les problèmes locaux et solveurs de Krylov pour équilibrer l'interface

#### Origines des méthodes de décomposition de domaine Méthodes de Schur

#### Système global

$$Ku = f$$
 avec  $K SDP$ 

#### Décomposition sans recouvrement

$$\mathbf{K}^{(s)}\mathbf{u}^{(s)} = \mathbf{f}^{(s)} + \mathbf{t}^{(s)}^{T} \lambda_{b}^{(s)}$$

$$\sum extbf{ extit{A}}^{(s)} extbf{ extit{t}}^{(s)} \lambda^{(s)} = \sum extbf{ extit{A}}^{(s)} \lambda^{(s)}_b = extbf{0}$$

$$\sum_{s} \mathbf{A}^{(s)} \mathbf{t}^{(s)} \lambda^{(s)} = \sum_{s} \mathbf{A}^{(s)} \lambda_b^{(s)} = \mathbf{0}$$
$$\sum_{s} \mathbf{B}^{(s)} \mathbf{t}^{(s)} \mathbf{u}^{(s)} = \sum_{s} \mathbf{B}^{(s)} \mathbf{u}_b^{(s)} = \mathbf{0}$$

#### **Topologie**

- $oldsymbol{t}^{(s)}$  op. de trace  $(oldsymbol{u}_{h}^{(s)} = oldsymbol{t}^{(s)} oldsymbol{u}^{(s)})$  $B^{(s)}$  op. d'assemblage dual

 $u_b^{(1)}$ 

Problème init





 $u_{h}^{(2)}$ 





$$u_b^{(1)}=u_b^{(2)}$$

Algorithme et propriétés

#### Algorithme 3 : FETI-I

$$\begin{split} & \boldsymbol{r}_0 = \boldsymbol{P}^T (\boldsymbol{d} - \boldsymbol{F} \boldsymbol{\lambda}_0); \ \boldsymbol{z}_0 = \boldsymbol{\tilde{S}r_0} \\ & \boldsymbol{w}_0 = \boldsymbol{P} \boldsymbol{z}_0; \ \boldsymbol{\tilde{\lambda}}_0 = 0; \ i = 0 \\ & \boldsymbol{while} \ \sqrt{\boldsymbol{r}_i^T \boldsymbol{z}_i} \ \boldsymbol{do} \\ & \boldsymbol{q}_i = \boldsymbol{F} \boldsymbol{w}_i \\ & \delta_i = \boldsymbol{q}_i^T \boldsymbol{w}_i \\ & \gamma_i = \boldsymbol{z}_i^T \boldsymbol{r}_i \\ & \alpha_i = \gamma_i / \delta_i \\ & \boldsymbol{\tilde{\lambda}}_{i+1} = \boldsymbol{\tilde{\lambda}}_i + \boldsymbol{w}_i \alpha_i \\ & \boldsymbol{r}_{i+1} = \boldsymbol{r}_i - \boldsymbol{P}^T \boldsymbol{q}_i \alpha_i \\ & \boldsymbol{z}_{i+1} = \boldsymbol{\tilde{S}r_{i+1}} \\ & \boldsymbol{w}_{i+1} = \boldsymbol{P} \boldsymbol{z}_{i+1} \\ & \boldsymbol{for} \ 0 \leq j \leq i \ \boldsymbol{do} \\ & \boldsymbol{\Phi}_{i,j} = \boldsymbol{q}_j^T \boldsymbol{w}_{i+1} \\ & \boldsymbol{w}_{i+1} \leftarrow \boldsymbol{w}_{i+1} - (\boldsymbol{\Phi}_{i,j} / \delta_j) \boldsymbol{w}_j \\ & \boldsymbol{i} \leftarrow \boldsymbol{i} + 1 \end{split}$$



- Les méthodes DD classiques restent sensibles au conditionnement du problème
- Cas pathologiques (hétérogénéité, quasi incompressibilité, ...)
- Des solutions existent!



- Les méthodes DD classiques restent sensibles au conditionnement du problème
- Cas pathologiques (hétérogénéité, quasi incompressibilité, ...)
- Des solutions existent!





Heterogeneous plate

- Les méthodes DD classiques restent sensibles au conditionnement du problème
- Cas pathologiques (hétérogénéité, quasi incompressibilité, ...)
- Des solutions existent!





Heterogeneous plate

- Les méthodes DD classiques restent sensibles au conditionnement du problème
- Cas pathologiques (hétérogénéité, quasi incompressibilité, ...)
- Des solutions existent!



# Schéma synoptique



### Références

- Méthodes numériques en général
  - Quarteroni, A. M., Sacco, R., & Saleri, F. (2008). Méthodes numériques : algorithmes, analyse et applications. Springer Science & Business Media.
- Algèbre linéaire dense
  - ▶ Golub & van Loan : Matrix Computations, 3rd ed., Johns Hopkins, 1996.
- Solveurs directs creux
  - I. Duff, A. Erisman, J. Reid: Direct Methods for Sparse Matrices, Oxford University Press, 1986.
  - ▶ T. Davis: Direct Methods for Sparse Linear Systems, SIAM,2006.
- Solveurs de Krylov
  - Y. Saad: Iterative Methods for Sparse Linear Systems, 2nd ed., pp. 103–128. SIAM. 2003.
  - Van der Vorst, H. A. (2003). Iterative Krylov methods for large linear systems (Vol. 13). Cambridge University Press.