

Practical Data Science

Bauke Brenninkmeijer

Goal

Show some tips, tricks, and common pitfalls.

whois: Bauke Brenninkmeijer

- MSc in CS and Data Science @Nijmegen
- Data Scientist @ABNAMRO since 2019
 - 1.5 years in Data Management
 - ~1 years in Global Markets
- You might now me from the Data Science Triangle,
 Python Triangle or some of the other ABN communities.

Now you know me

Who the f### are you

Years of experience with data science?

- 1.1-2
- 2.3-5
- 3.5-10
- 4.10 +

What departments are you from?

- 1. DFC
- 2. RBB/Mortages
- 3. Wealth Banking
- 4. Commerical banking
- 5. CISO
- 6. CADM
- 7. HR
- 8. Other

Do you know...

- 1. K-nearest neighbors
- 2. F1-score
- 3. Softmax
- 4. self-attention

Outline

- 1. Business tips
- 2. Short tip on models
- 3. Ordinal/Nominal data encodings
- 4. Feature Importance with Trees
- 5. Class Imbalance
- 6. Order of pre-processing

Business tips

- Understand what they do.
 It is essential that a data scientist understands the business case well.
- Read a book about banking (see slides repository).
 I didn't initially had to, but it helps so much.
- To know how to handle edge-cases or what to prioritize: ask the stakeholder.
 - "Korte lijntjes" are essential

Regarding models

Most examples are with Random Forest or Decision Trees.

- Often one of the strongest models (RF)
- Easily implementable with Scikit-learn
- Easily accessible explainability features
- Requires little data preprocessing, like scaling or OHE.

General tip: start with Random Forest

Feature engineering

Often harder than it looks

Ordinal/Nominal variables

Let's discuss categorical encoding vs. one-hot encoding (dummy)

When does it matter?

Categorical vs OHE for models

- Depends on how they optimize.
 - If they use distance metrics on the data, this encoding matters (e.g., K-means, LinReg, NN, SVM).
 - For example: S and M are closer than S and L.
- If other measures are used, such as information gain, sometimes they can be considered equivalent.
 - E.g., with **trees** with unlimited depth, both encodings are essentially equivalent.

Tree Splitting Example

Tree Splitting Example

Decision Tree

- OHE worse on train than on test
- When
 parameters
 are reduced,
 the added
 value of
 ordered
 ordinal data
 becomes
 clear.

KNN

- Ordinal and Nominal are identical here
- Both outperform OHE

SVM

- With SVM,
 OHE is better.
- Ordered
 Categorical is actually the lowest
- Can be caused by an incidental increase in linear separability with random ordering.

What have we learned?

- Ordered categorical representations can help models in constrained situations, such as when reducing overfitting.
- When values of a variable have different importances, we see OHE becomes more powerfull.
- When models have unlimited expressive power (i.e. are able to overfit).

Feature Importance with tree-based models

Trees have the awesome attribute.

• feature_importance_

But

Tree-based models have a strong tendency to overestimate the importance of continuous numerical or high cardinality categorical features.

Let's see this in practice

- Binary classification on whether employees will leave the company (attrition)
- Data is mix of discrete and continuous.
- Explanation can be used by senior management to mitigate.

Feature importance

Most important:

- MonthlyIncome
- Age
- WorkingYears

Feature Importance • Practical Data Science • Bauke Brenninkmeijer

Let's mess with shit

We'll add a single random continuous variable in the range [100, 200].

New feature importances

- 7th highest is random...????
- What does this mean for variables below random? No value?

Feature Importance • Practical Data Science • Bauke Brenninkmeijer

Can go further

Let's also add a discrete random variable

Much less important than the continuous variable.

Feature Importance • Practical Data Science • Bauke Brenninkmeijer

Why?

- Impurity Based Importance (Gini, Entropy or MSE)
- This is biased towards high cardinality features, cause it can split more.
- Can give high importance to unpredictive variables due to overfitting.
- Feature importance is calculated purely on the training data. Does not reflect performance on unseen data.

The solution: Permutation Importance

- Model agnostig way to determine importance of features for trained model.
- Can be applied on unseen data.
- Calculates impact of variable based on how much the model performance decreases

Algo

- 1. Calculate baseline score (score or custom metric)
- 2. Shuffles a feature and recomputes score
- 3. ↓ performance == ↑ importance

What happens with correlated columns?

Class Imbalance

Techniques typically used:

- Oversampling
- Undersampling
- Smote

These methods increase complexity with often limited results.

But there is another intuitive way!

SMOTE

- Synthetic MinorityOversamplingTechnique
- Creates synthetic
 points to increase the
 number of
 observations in
 minority class

Class Imbalance • Practical Data Science • Bauke Brenninkmeijer

Oversampling

- Fix class imbalance by looking more at the minority class
- I.e., duplicate minority data points

Undersampling

- Only look at the same number of data points in the majority class, as there are in the minority class.
- I.e., drop part of the data

Class Weights

- Default part of sklearn
- Allows one to penalise minority errors more
- Assign weights to classes such that the weighted sums is equal.

$$n_{minority} imes w_{minority} = n_{majority} imes w_{majority}$$

We'll look at a dataset of employees interested in switching jobs

Target is imbalanced:

We train a classifier on SMOTE, undersampling, oversampling and class weights and compare the results.

What happens if we make the data more imbalanced?

Take away

- Class weights are a useful addition to the imbalanced learning toolbox.
- Very similar to oversampling in performance
- Try several imbalanced learning solutions and see what works!

Order of pre-processing

Order of pre-processing

- Never do distribution based transformations before splitting train/test
- Splitting should (almost) always be the first step, to prevent information leakage

```
# includes metrics from future test set
df = StandardScaler().fit_transform(df)
x_train, x_test, y_train, y_test = train_test_split(
    df.drop('target', axis=1),
    df.target,
```

What we should do:

Goes for

- Standardscaler
- Min-max scaler
- Quantile scaler
- MaxAbsScaler
- etc.

Thank you for listening.

Questions?