Ou:

Project Name = CUSTOMER CHURN ANALYSIS

Author: - SHIV CHETAN KUMAWAT

IMPORT LIBRARIES

In [96]: import pandas as pd
 import numpy as np
 import seaborn as sns
 import matplotlib.pyplot as plt

IMPORT DATA

In [97]: df = pd.read_csv('Customer Churn.csv')
 df.head()

ut[97]:		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	Multipl
	0	7590- VHVEG	Female	0	Yes	No	1	No	No
	1	5575- GNVDE	Male	0	No	No	34	Yes	
	2	3668- QPYBK	Male	0	No	No	2	Yes	
	3	7795- CFOCW	Male	0	No	No	45	No	No
	4	9237- HQITU	Female	0	No	No	2	Yes	

5 rows × 21 columns

DATA CLEANING

In [98]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 21 columns):
                      Non-Null Count Dtype
    Column
---
    -----
                      -----
0
    customerID
                      7043 non-null
                                     object
1
    gender
                      7043 non-null
                                     object
 2
    SeniorCitizen
                      7043 non-null
                                      int64
 3
    Partner
                      7043 non-null
                                     object
 4
                      7043 non-null
    Dependents
                                     object
 5
    tenure
                      7043 non-null
                                     int64
 6
    PhoneService
                      7043 non-null
                                     object
                      7043 non-null
 7
    MultipleLines
                                     object
    InternetService
                      7043 non-null
                                     object
 9
                                      object
    OnlineSecurity
                      7043 non-null
 10 OnlineBackup
                      7043 non-null
                                      object
11 DeviceProtection 7043 non-null
                                      object
12 TechSupport
                      7043 non-null
                                      object
                      7043 non-null
                                     object
13 StreamingTV
14 StreamingMovies
                      7043 non-null
                                      object
                                     object
15 Contract
                      7043 non-null
16 PaperlessBilling 7043 non-null
                                      object
17 PaymentMethod
                      7043 non-null
                                      object
18 MonthlyCharges
                      7043 non-null
                                     float64
    TotalCharges
                      7043 non-null
                                      object
 19
 20 Churn
                      7043 non-null
                                      object
dtypes: float64(1), int64(2), object(18)
memory usage: 1.1+ MB
```

Replacing blanks with 0 as tenure is 0 and no total charges are recorded

```
In [99]: df['TotalCharges'] = df['TotalCharges'].replace(" ","0")
    df['TotalCharges'] = df['TotalCharges'].astype('float')
In [100... df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 21 columns):
```

#	Column	Non-Null Count	Dtype		
0	customerID	7043 non-null	object		
1	gender	7043 non-null	object		
2	SeniorCitizen	7043 non-null	int64		
3	Partner	7043 non-null	object		
4	Dependents	7043 non-null	object		
5	tenure	7043 non-null	int64		
6	PhoneService	7043 non-null	object		
7	MultipleLines	7043 non-null	object		
8	InternetService	7043 non-null	object		
9	OnlineSecurity	7043 non-null	object		
10	OnlineBackup	7043 non-null	object		
11	DeviceProtection	7043 non-null	object		
12	TechSupport	7043 non-null	object		
13	StreamingTV	7043 non-null	object		
14	StreamingMovies	7043 non-null	object		
15	Contract	7043 non-null	object		
16	PaperlessBilling	7043 non-null	object		
17	PaymentMethod	7043 non-null	object		
18	MonthlyCharges	7043 non-null	float64		
19	TotalCharges	7043 non-null	float64		
20	Churn	7043 non-null	object		
dtynes float64(2) int64(2) object(17)					

dtypes: float64(2), int64(2), object(17)

memory usage: 1.1+ MB

```
In [101... df.isnull().sum().sum()
```

Out[101... np.int64(0)

In [102... df.describe()

Out[102...

	SeniorCitizen	tenure	MonthlyCharges	Total Charges
count	7043.000000	7043.000000	7043.000000	7043.000000
mean	0.162147	32.371149	64.761692	2279.734304
std	0.368612	24.559481	30.090047	2266.794470
min	0.000000	0.000000	18.250000	0.000000
25%	0.000000	9.000000	35.500000	398.550000
50%	0.000000	29.000000	70.350000	1394.550000
75%	0.000000	55.000000	89.850000	3786.600000
max	1.000000	72.000000	118.750000	8684.800000

```
In [103... df['customerID'].duplicated().sum()
```

Out[103... np.int64(0)

```
In [104... def conv(value):
    if value == 1:
        return 'yes'
    else :
        return 'no'
```

Convert 0 and 1 values of senior citizen to yes/no to make it easier to understand

```
In [105... df['SeniorCitizen'] = df['SeniorCitizen'].apply(conv)
```

EXPLORATORY DATA ANALYSIS (EDA)

Count of Customer by Churn

```
In [106... ax = sns.countplot(data = df,x = 'Churn')

for bars in ax.containers:
    ax.bar_label(bars)
plt.title('Count of Cutomer by Churn')
plt.show()
```

Count of Cutomer by Churn

Percentage of Churned Customer

Out[107...

		Customicms
0	No	5174
1	Yes	1869

Churn customerID

```
In [108... plt.pie(count_churn['customerID'],labels = count_churn['Churn'],autopct = '%1.2f%%'
    plt.title("Percentage of Churned Customers",fontsize = 10)
    plt.show()
```

Percentage of Churned Customers

from the given pie chart we can conclude 26.54% of our customers have churned out. not let's explore the reason behind it.

Churn by Gender

```
In [109...
ax = sns.countplot(data = df , x= 'gender', hue = 'Churn')
for bars in ax.containers:
    ax.bar_label(bars)
plt.title('Churn by Gender')
plt.show()
```


Count of customer by Senior citizen

```
In [110... ax = sns.countplot(data = df, x ='SeniorCitizen',hue = 'Churn')
for bars in ax.containers:
        ax.bar_label(bars)
plt.title('Count of Customers by Senior Citizen')
plt.show()
```


Percentaege of Senior Citizen by Churn (Stack Bar Chart)

```
In [111...
          total_counts = df.groupby('SeniorCitizen')['Churn'].value_counts(normalize=True).un
          # Plot
          fig, ax = plt.subplots(figsize=(8, 6)) # Adjust figsize for better visualization
          # Plot the bars
          total_counts.plot(kind='bar', stacked=True, ax=ax, color=['#1f77b4', '#ff7f0e']) #
          # Add percentage labels on the bars
          for p in ax.patches:
              width, height = p.get_width(), p.get_height()
              x, y = p.get_xy()
              ax.text(x + width / 2, y + height / 2, f'{height:.1f}%', ha='center', va='center'
          plt.title('Churn by Senior Citizen (Stacked Bar Chart)')
          plt.xlabel('SeniorCitizen')
          plt.ylabel('Percentage (%)')
          plt.xticks(rotation=0)
          plt.legend(title='Churn', bbox_to_anchor = (0.9,0.9)) # Customize Legend Location
          plt.show()
```


Count of Customer by Tenure

-people who have used our services for a long time have stayed and people who have used our services

1 or 2 months have churned.

Count of Customer by Contract

```
In [113... ax = sns.countplot(data = df ,x = 'Contract',hue = 'Churn')
    for bars in ax.containers:
        ax.bar_label(bars)
    plt.title('Count of Customer by Contract')
    plt.show()
```


-people who have month to month contract are likely to churn then from those who have 1 or 2 years or contract.

Count Plot for Phone Service

Count plot for Multiple Lines

```
In [116... ax =sns.countplot(data = df,x = 'MultipleLines' , hue = 'Churn')
    for bars in ax.containers:
        ax.bar_label(bars)
    plt.title('Count plot for Multiple Lines')
    plt.show()
```


Count plot for Online Security

```
In [117... ax =sns.countplot(data = df,x = 'OnlineSecurity' , hue = 'Churn')
for bars in ax.containers:
          ax.bar_label(bars)
plt.title('Count plot for Online Security')
plt.show()
```

Count plot for Online Security

Count plot for Internet Service

```
In [118... ax =sns.countplot(data = df,x = 'InternetService' , hue = 'Churn')
    for bars in ax.containers:
        ax.bar_label(bars)
    plt.title('Count plot for Internet Service')
    plt.show()
```


Count plot for Online Backup

```
In [119... ax =sns.countplot(data = df,x = 'OnlineBackup' , hue = 'Churn')
    for bars in ax.containers:
        ax.bar_label(bars)
    plt.title('Count plot for Online Backup')
    plt.show()
```


Count plot for Device Protection

Count plot for Tech Support

```
In [121... ax =sns.countplot(data = df,x = 'TechSupport' , hue = 'Churn')
    for bars in ax.containers:
        ax.bar_label(bars)
    plt.title('Count plot for Tech Support')
    plt.show()
```

Count plot for Tech Support

Count plot for Streaming TV

```
In [122... ax =sns.countplot(data = df,x = 'StreamingTV' , hue = 'Churn')
    for bars in ax.containers:
        ax.bar_label(bars)
    plt.title('Count plot for Streaming TV')
    plt.show()
```


Count plot for Streaming Movies

```
In [123... ax =sns.countplot(data = df,x = 'StreamingMovies' , hue = 'Churn')
    for bars in ax.containers:
        ax.bar_label(bars)
    plt.title('Count plot for Streaming Movies')
    plt.show()
```


ALL SERVICES COUNTPLOT

```
In [124...
          columns = ['PhoneService', 'MultipleLines', 'InternetService', 'OnlineSecurity',
                      'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'Strea
          # Number of columns for the subplot grid (you can change this)
          n cols = 3
          n_rows = (len(columns) + n_cols - 1) // n_cols # Calculate number of rows needed
          # Create subplots
          fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, n_rows * 4)) # Adjust figsiz
          # Flatten the axes array for easy iteration (handles both 1D and 2D arrays)
          axes = axes.flatten()
          # Iterate over columns and plot count plots
          for i, col in enumerate(columns):
              sns.countplot(x=col, data=df, ax=axes[i], hue = df["Churn"])
              axes[i].set_title(f'Count Plot of {col}')
              axes[i].set xlabel(col)
              axes[i].set ylabel('Count')
          # Remove empty subplots (if any)
          for j in range(i + 1, len(axes)):
              fig.delaxes(axes[j])
```


The majority of customers who do not churn tend to have services like PhoneService, InternetService (particularly DSL), and OnlineSecurity enabled. For services like OnlineBackup, TechSupport, and StreamingTV, churn rates are noticeably higher when these services are not used or are unavailable.

Count plot for Payment Method

```
In [125...
plt.figure(figsize = (10,5))
    ax =sns.countplot(data = df,x = 'PaymentMethod' , hue = 'Churn')
    for bars in ax.containers:
        ax.bar_label(bars)
    plt.title('Count plot for Payment Method')
    plt.show()
```


customer is likely to churn when he is using electronic check as a payment method.

In []: