MATH 86, WINTER 24, PROBLEM SET 2

This problem set is due on Thursday February 08 at the start of lecture.

- (1) Wilmott, Chapter 3, Problem 8
- (2) Wilmott, Chapter 7, Problems 1, 8, 9
- (3) Suppose W_t and Z_t are two independent Brownian motions. This means that each satisfies the 4 defining properties of Brownian motion, and the increments $Z_t Z_s$ and $W_t W_s$ are independent random variables for all $0 \le s < t$.

For a constant ρ with $-1 \le \rho \le 1$, consider the random process

$$X_t = \rho W_t + \sqrt{1 - \rho^2} Z_t$$

Is X_t a Brownian motion? Explain your answer.

(4) If W_t is the Wiener process, show that the limit

$$\lim_{\Delta t \to 0} \frac{(\Delta W)^2}{\Delta t} = \lim_{\Delta t \to 0} \frac{(W_{t+\Delta t} - W_t)^2}{\Delta t}$$

does not exist.

- (5) Use Ito's Lemma to derive a formula for $\int_0^T W^3 dW$.
- (6) For a stochastic price process $S_t : [0,T] \to \mathbb{R}$, define the approximate quadratic variation

$$Q_m = \sum_{j=1}^m (S_{t_j} - S_{t_{j-1}})^2$$
 $t_j = \frac{jT}{m}$ $j = 0, 1, 2, \dots, m$

partitioning [0, T] into intervals of equal size $\Delta t = \frac{T}{m}$.

- (a) Assume S_t is an Ito process with $dS = \alpha S dt + \sigma S dW$. Derive formulas for $\mathbb{E}(Q_m)$ and $\text{Var}(Q_m)$.
- (b) Explain why the distribution of Q_m is approximately normal.
- (c) Use your code from Problem Set 1, Problem (4) that generates a random stock price path for one year (with $\alpha=10\%, \sigma=30\%$). Modify your code to use N=2000 time steps, instead of N=252.

Then add a function that calculates Q_{50} and Q_{250} for the price data generated by the previous function (effectively using $\Delta t = 5$ day and $\Delta t = 1$ days respectively, assuming there are 250 trading days in the year).

- Generate 1000 random stock price paths, and calculate Q_{50} and Q_{250} for each path. Plot the two histograms for the distributions of the values of Q_{50} and Q_{250} for the 1000 sample paths.
- (d) What are the average and standard deviation for the empirical distributions of Q_{50} and Q_{250} respectively? Do the empirical results confirm your calculation in item (a)?

- (e) In practice, is Q_{50} or Q_{250} a better estimator of quadratic variation? Why?
- (7) (a) Modify your code from *Problem Set 1, Problem (5)*, so that in one loop through the binomial tree it calculates the price of a European put option as well as of an American put option.
 - (b) In a single graph, plot the price of a European and American put option with $S_0 = \$100, T = 1, \sigma = 45\%, r = 5\%$ as a function of strike K (take strikes at regular intervals \$5 apart).