Prova scritta di Logica Matematica 26 gennaio 2015

Cognome Nome Matricola

Scrivete subito il vostro nome, cognome e numero di matricola, e tenete il tesserino universitario sul banco. Svolgete gli esercizi direttamente sul testo a penna. Dovete consegnare solo il foglio del testo: nessun foglio di brutta.

Per ogni esercizio è indicato il relativo punteggio. Nella prima parte se la riposta è corretta, il punteggio viene aggiunto al totale, mentre se la risposta è errata il punteggio viene sottratto (l'assenza di risposta non influisce sul punteggio totale). Per superare l'esame bisogna raggiungere 18 punti, di cui almeno 5 relativi alla prima parte.

Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta. 1. $\neg p \rightarrow (q \land p \rightarrow \neg r)$ è valida. 2. L'algoritmo di Fitting per la forma normale disgiuntiva ha la proprietà della terminazione forte. 3. Esiste un insieme di Hintikka che contiene le formule $p \rightarrow \neg (q \rightarrow r)$ e $\neg (\neg p \lor q)$. 4. $\triangleright (p \land q) \lor \neg (p \land q)$. 5. Sia I l'interpretazione con $D^I = \{0,1,2,3\}, \ f^I(0) = 3, \ f^I(1) = 2, \ f^I(2) = 0, \ f^I(3) = 2, \ p^I = \{2,3\}, \ r^I = \{(0,1),(1,2),(2,3),(3,1),(3,2)\}.$ Allora $I \models \forall x(p(f(x)) \rightarrow p(x) \lor \exists y r(x,y))$. 6. $\forall x \ p(x) \land \neg \exists y \ r(y,y) \equiv \forall x(p(x) \land \neg r(x,x))$. 7. Quante delle seguenti formule sono in forma prenessa? $\exists x(\forall z \exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z \exists y (r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists y \ r(x, f(z,y)) \rightarrow r(z,x)), \ \exists x \forall z (\exists x \ r(x, x) \rightarrow r(z,x)), \ \exists x (\exists x \ r(x, x) \rightarrow r(z,x)), \ \exists x (x, x) \rightarrow r(x, x) \rightarrow r($	PRIMA PARTE				
2. L'algoritmo di Fitting per la forma normale disgiuntiva ha la proprietà della terminazione forte.	Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.				
ha la proprietà della terminazione forte. 3. Esiste un insieme di Hintikka che contiene le formule $p \to \neg (q \to r)$ e $\neg (\neg p \lor q)$. 4. $\triangleright (p \land q) \lor \neg (p \land q)$. 5. Sia I l'interpretazione con $D^I = \{0, 1, 2, 3\}, f^I(0) = 3, f^I(1) = 2, f^I(2) = 0, f^I(3) = 2, p^I = \{2, 3\}, r^I = \{(0, 1), (1, 2), (2, 3), (3, 1), (3, 2)\}.$ Allora $I \models \forall x(p(f(x)) \to p(x) \lor \exists y r(x, y))$. 6. $\forall x p(x) \land \neg \exists y r(y, y) \equiv \forall x(p(x) \land \neg r(x, x))$. 7. Quante delle seguenti formule sono in forma prenessa? $\exists x(\forall z \exists y r(x, f(z, y)) \to r(z, x)), \exists x \forall z \exists y (r(x, f(z, y)) \to r(z, x)), \\\exists x \forall z (\exists y r(x, f(z, y)) \to r(z, x)), \exists x \forall z (r(x, z) \to r(z, x)).$ 8. Se esiste un omomorfismo forte di I in J e I $\models r(f(a), b) \to r(a, a)$ allora J $\models r(f(a), b) \to r(a, a)$. 9. Se F è una δ -formula e G una sua istanza, allora F $\models G$. V \models 1pt SECONDA PARTE 10. Sul retro del foglio dimostrate la soddisfacibilità dell'insieme di enunciati: 4pt $\{\forall x \exists y r(y, x), \forall x \forall y(\neg r(x, y) \lor \neg r(y, x)), \forall z \neg r(a, z)\}.$ 11. Sul retro del foglio dimostrate che	1. $\neg p \to (q \land p \to \neg r)$ è valida.	Ipt			
3. Esiste un insieme di Hintikka che contiene le formule $p \to \neg (q \to r)$ e $\neg (\neg p \lor q)$.	2. L'algoritmo di Fitting per la forma normale disgiuntiva	_			
$p \rightarrow \neg (q \rightarrow r) \text{ e } \neg (\neg p \lor q). \qquad \qquad \boxed{\mathbf{V} \mid \mathbf{F}} \qquad \text{1pt}$ $4. \rhd (p \land q) \lor \neg (p \land q). \qquad \qquad \boxed{\mathbf{V} \mid \mathbf{F}} \qquad \text{1pt}$ $5. \text{ Sia } I \text{ l'interpretazione con } D^I = \{0, 1, 2, 3\}, \ f^I(0) = 3, \ f^I(1) = 2, \\ f^I(2) = 0, \ f^I(3) = 2, \ p^I = \{2, 3\}, \ r^I = \{(0, 1), (1, 2), (2, 3), (3, 1), (3, 2)\}. \\ \text{Allora } I \models \forall x (p(f(x)) \rightarrow p(x) \lor \exists y \ r(x, y)). \qquad \boxed{\mathbf{V} \mid \mathbf{F}} \qquad \text{1pt}$ $6. \ \forall x \ p(x) \land \neg \exists y \ r(y, y) \equiv \forall x (p(x) \land \neg r(x, x)). \qquad \boxed{\mathbf{V} \mid \mathbf{F}} \qquad \text{1pt}$ $7. \text{ Quante delle seguenti formule sono in forma prenessa?} \\ \exists x (\forall z \exists y \ r(x, f(z, y)) \rightarrow r(z, x)), \ \exists x \forall z \exists y (r(x, f(z, y)) \rightarrow r(z, x)), \\ \exists x \forall z (\exists y \ r(x, f(z, y)) \rightarrow r(z, x)), \ \exists x \forall z (r(x, z) \rightarrow r(z, x)). \qquad \boxed{0 \mid 1 \mid 2 \mid 3 \mid 4} \qquad \text{1pt}$ $8. \text{ Se esiste un omomorismo forte di } I \text{ in } J \in I \models r(f(a), b) \rightarrow r(a, a) \\ \text{allora } J \models r(f(a), b) \rightarrow r(a, a). \qquad \boxed{\mathbf{V} \mid \mathbf{F}} \qquad \text{1pt}$ $9. \text{ Se } F \text{ è una } \delta\text{-formula e } G \text{ una sua istanza, allora } F \models G. \qquad \boxed{\mathbf{V} \mid \mathbf{F}} \qquad \text{1pt}$ $\mathbf{SECONDA \ PARTE}$ $10. \text{ Sul retro del foglio dimostrate la soddisfacibilità dell'insieme di enunciati:} \qquad 4pt$ $\{\forall x \exists y \ r(y, x), \forall x \forall y (\neg r(x, y) \lor \neg r(y, x)), \forall z \neg r(a, z)\}.$ $11. \text{ Sul retro del foglio dimostrate che} \qquad 4pt$	ha la proprietà della terminazione forte. $oxed{\mathbf{V}} oxed{F}$	<u>'</u> 1pt			
4. $\triangleright(p \land q) \lor \neg(p \land q)$. 5. Sia I l'interpretazione con $D^I = \{0, 1, 2, 3\}, f^I(0) = 3, f^I(1) = 2, f^I(2) = 0, f^I(3) = 2, p^I = \{2, 3\}, r^I = \{(0, 1), (1, 2), (2, 3), (3, 1), (3, 2)\}.$ Allora $I \models \forall x (p(f(x)) \rightarrow p(x) \lor \exists y r(x, y))$. 6. $\forall x p(x) \land \neg \exists y r(y, y) \equiv \forall x (p(x) \land \neg r(x, x))$. 7. Quante delle seguenti formule sono in forma prenessa? $\exists x (\forall z \exists y r(x, f(z, y)) \rightarrow r(z, x)), \exists x \forall z \exists y (r(x, f(z, y)) \rightarrow r(z, x)), \\ \exists x \forall z (\exists y r(x, f(z, y)) \rightarrow r(z, x)), \exists x \forall z (r(x, z) \rightarrow r(z, x)).$ 8. Se esiste un omomorfismo forte di I in J e $I \models r(f(a), b) \rightarrow r(a, a)$ allora $J \models r(f(a), b) \rightarrow r(a, a)$. 9. Se F è una δ -formula e G una sua istanza, allora $F \models G$. V F 1pt SECONDA PARTE 10. Sul retro del foglio dimostrate la soddisfacibilità dell'insieme di enunciati: $\{\forall x \exists y r(y, x), \forall x \forall y (\neg r(x, y) \lor \neg r(y, x)), \forall z \neg r(a, z)\}$. 11. Sul retro del foglio dimostrate che		_			
5. Sia I l'interpretazione con $D^I = \{0, 1, 2, 3\}$, $f^I(0) = 3$, $f^I(1) = 2$, $f^I(2) = 0$, $f^I(3) = 2$, $p^I = \{2, 3\}$, $r^I = \{(0, 1), (1, 2), (2, 3), (3, 1), (3, 2)\}$. Allora $I \models \forall x (p(f(x)) \rightarrow p(x) \lor \exists y r(x, y))$. $\boxed{\mathbf{V} \; \mathbf{F}}$ 1pt 6. $\forall x p(x) \land \neg \exists y r(y, y) \equiv \forall x (p(x) \land \neg r(x, x))$. $\boxed{\mathbf{V} \; \mathbf{F}}$ 1pt 7. Quante delle seguenti formule sono in forma prenessa? $\exists x (\forall z \exists y r(x, f(z, y)) \rightarrow r(z, x))$, $\exists x \forall z \exists y r(x, f(z, y)) \rightarrow r(z, x))$, $\exists x \forall z (\exists y r(x, f(z, y)) \rightarrow r(z, x))$, $\exists x \forall z (\exists y r(x, f(z, y)) \rightarrow r(z, x))$. $\boxed{\mathbf{O} \; \mathbf{I} \; 2 \; 3 \; 4}$ 1pt 8. Se esiste un omomorfismo forte di I in J e I $\models r(f(a), b) \rightarrow r(a, a)$ allora J $\models r(f(a), b) \rightarrow r(a, a)$. $\boxed{\mathbf{V} \; \mathbf{F}}$ 1pt 9. Se F è una δ -formula e G una sua istanza, allora F $\models G$. $\boxed{\mathbf{V} \; \mathbf{F}}$ 1pt SECONDA PARTE 10. Sul retro del foglio dimostrate la soddisfacibilità dell'insieme di enunciati: $\{\forall x \exists y r(y, x), \forall x \forall y (\neg r(x, y) \lor \neg r(y, x)), \forall z \neg r(a, z)\}$. 11. Sul retro del foglio dimostrate che		<u>'</u> 1pt			
$f^{I}(2) = 0, f^{I}(3) = 2, p^{I} = \{2,3\}, r^{I} = \{(0,1),(1,2),(2,3),(3,1),(3,2)\}.$ Allora $I \models \forall x (p(f(x)) \rightarrow p(x) \lor \exists y r(x,y)).$	\1 1/ \1 1/	<u>'</u> 1pt			
Allora $I \models \forall x (p(f(x)) \rightarrow p(x) \lor \exists y r(x,y))$.					
6. $\forall x p(x) \land \neg \exists y r(y,y) \equiv \forall x (p(x) \land \neg r(x,x))$. 7. Quante delle seguenti formule sono in forma prenessa? $\exists x (\forall z \exists y r(x, f(z,y)) \to r(z,x)), \ \exists x \forall z \exists y (r(x, f(z,y)) \to r(z,x)),$ $\exists x \forall z (\exists y r(x, f(z,y)) \to r(z,x)), \ \exists x \forall z (r(x,z) \to r(z,x)). \boxed{0 1 2 3 4} \text{1pt}$ 8. Se esiste un omomorfismo forte di I in J e $I \models r(f(a),b) \to r(a,a)$ allora $J \models r(f(a),b) \to r(a,a)$. 1. Sul retro del foglio dimostrate la soddisfacibilità dell'insieme di enunciati: $\{\forall x \exists y r(y,x), \forall x \forall y (\neg r(x,y) \lor \neg r(y,x)), \forall z \neg r(a,z)\}.$ 11. Sul retro del foglio dimostrate che		¬			
 7. Quante delle seguenti formule sono in forma prenessa? ∃x(∀z∃y r(x, f(z,y)) → r(z,x)), ∃x∀z∃y(r(x, f(z,y)) → r(z,x)), ∃x∀z(∃y r(x, f(z,y)) → r(z,x)), ∃x∀z(r(x,z) → r(z,x)).		<u>'</u> 1pt			
$\exists x (\forall z \exists y r(x, f(z, y)) \to r(z, x)), \exists x \forall z \exists y (r(x, f(z, y)) \to r(z, x)), \\ \exists x \forall z (\exists y r(x, f(z, y)) \to r(z, x)), \exists x \forall z (r(x, z) \to r(z, x)). \boxed{0} \boxed{1} \boxed{2} \boxed{3} \boxed{4} \qquad 1pt \\ \textbf{8. Se esiste un omomorfismo forte di I in J e $I \models r(f(a), b) \to r(a, a) \\ \text{allora $J \models r(f(a), b) \to r(a, a).} \qquad \boxed{\mathbf{V} \mathbf{F}} \qquad 1pt \\ \textbf{9. Se F è una δ-formula e G una sua istanza, allora $F \models G$.} \qquad \boxed{\mathbf{V} \mathbf{F}} \qquad 1pt \\ \textbf{SECONDA PARTE} \\ \textbf{10. Sul retro del foglio dimostrate la soddisfacibilità dell'insieme di enunciati:}} \qquad 4pt \\ \{\forall x \exists y r(y, x), \forall x \forall y (\neg r(x, y) \vee \neg r(y, x)), \forall z \neg r(a, z)\}. \\ \textbf{11. Sul retro del foglio dimostrate che} \qquad 4pt \\ \end{cases}$		<u>'</u> 1pt			
$\exists x \forall z (\exists y r(x, f(z, y)) \to r(z, x)), \exists x \forall z (r(x, z) \to r(z, x)).$ [0] 1 2 3 4 1pt 8. Se esiste un omomorfismo forte di I in J e $I \models r(f(a), b) \to r(a, a)$ allora $J \models r(f(a), b) \to r(a, a).$ 1pt 9. Se F è una δ -formula e G una sua istanza, allora $F \models G$. [V] F 1pt SECONDA PARTE 10. Sul retro del foglio dimostrate la soddisfacibilità dell'insieme di enunciati: 4pt $\{\forall x \exists y r(y, x), \forall x \forall y (\neg r(x, y) \vee \neg r(y, x)), \forall z \neg r(a, z)\}.$ 11. Sul retro del foglio dimostrate che	•				
 8. Se esiste un omomorfismo forte di I in J e I = r(f(a), b) → r(a, a) allora J = r(f(a), b) → r(a, a). 9. Se F è una δ-formula e G una sua istanza, allora F = G. 1pt SECONDA PARTE 10. Sul retro del foglio dimostrate la soddisfacibilità dell'insieme di enunciati: 4pt {∀x ∃y r(y, x), ∀x ∀y(¬r(x, y) ∨ ¬r(y, x)), ∀z ¬r(a, z)}. 11. Sul retro del foglio dimostrate che 4pt 		□ .			
allora $J \models r(f(a), b) \rightarrow r(a, a)$.		<u> l</u> 1pt			
9. Se F è una δ -formula e G una sua istanza, allora $F \models G$. SECONDA PARTE 10. Sul retro del foglio dimostrate la soddisfacibilità dell'insieme di enunciati: 4pt $\{\forall x \exists y r(y, x), \forall x \forall y (\neg r(x, y) \vee \neg r(y, x)), \forall z \neg r(a, z)\}.$ 11. Sul retro del foglio dimostrate che 4pt					
SECONDA PARTE 10. Sul retro del foglio dimostrate la soddisfacibilità dell'insieme di enunciati: 4pt $\{\forall x\exists yr(y,x), \forall x\forall y(\neg r(x,y)\vee \neg r(y,x)), \forall z\neg r(a,z)\}.$ 11. Sul retro del foglio dimostrate che 4pt		╡ 1			
10. Sul retro del foglio dimostrate la soddisfacibilità dell'insieme di enunciati: 4pt $\{\forall x \exists y r(y,x), \forall x \forall y (\neg r(x,y) \vee \neg r(y,x)), \forall z \neg r(a,z)\}.$ 11. Sul retro del foglio dimostrate che 4pt	9. Se F è una δ -formula e G una sua istanza, allora $F \models G$.	<u>'</u>] 1pt			
$\{\forall x\exists yr(y,x), \forall x\forall y(\neg r(x,y)\vee \neg r(y,x)), \forall z\neg r(a,z)\}.$ 11. Sul retro del foglio dimostrate che 4pt	SECONDA PARTE				
11. Sul retro del foglio dimostrate che 4pt	10. Sul retro del foglio dimostrate la soddisfacibilità dell'insieme di enunciati	: 4pt			
-	$\{\forall x\exists yr(y,x),\forall x\forall y(\neg r(x,y)\vee \neg r(y,x)),\forall z\neg r(a,z)\}.$				
$\forall x \exists y x = g(y), \forall x p(g(x)) \models_{\underline{=}} \forall z p(z).$	11. Sul retro del foglio dimostrate che	4pt			
	$\forall x \exists y x = g(y), \forall x p(g(x)) \models_{\underline{=}} \forall z p(z).$				

- 12. Sia $\{a,b,d,m,c\}$ un linguaggio dove a,b e d sono simboli di costante, m è un simbolo di funzione unario, c è un simbolo di relazione binario. Interpretando a come "Andrea", b come "Barbara", d come "Daniela", m(x) come "la madre di x", c(x,y) come "x conosce y", traducete le seguenti frasi, utilizzando lo spazio sotto ognuna di esse:
 - (i) Daniela conosce le madri di Barbara e Andrea;

3pt

(ii) Barbara conosce qualcuno che conosce tutti quelli che conoscono Andrea oppure Daniela.

3pt

13. Mostrate che

$$(F \land \neg G) \lor \neg H, K \land F \to G, K \to H \rhd \neg K.$$

Usate solo le regole della deduzione naturale proposizionale, comprese le quattro regole derivate. (Utilizzate il retro del foglio)

14. Usando il metodo dei tableaux stabilite sul retro del foglio che 5pt

$$\forall x (r(x,x) \to p(x)), \exists z (\neg p(z) \lor \exists w \, r(w,z)), \forall x (\exists y \, r(x,y) \to \neg r(x,x)) \models \exists y \, \neg r(y,y).$$

(Utilizzate il retro del foglio)

15. Usando l'algoritmo di Fitting e utilizzando lo spazio qui sotto, mettete in forma normale congiuntiva la formula

$$(t \to v \land p) \lor \neg(s \to q \land (r \lor \neg u)).$$

Soluzioni

- 1. V come si verifica per esempio con le tavole di verità.
- 2. V l'affermazione è contenuta nel lemma 3.29 delle dispense.
- **3. F** se T è un insieme di Hintikka contenente la seconda formula (che è α) allora $p \in T$ e $\neg q \in T$; perciò nessuno dei ridotti della prima formula (che è β) può appartenere a T.
- 4. V come testimoniato dalla deduzione naturale che consiste di una singola applicazione della regola derivata (TE).
- **5.** V per ogni $d \in D^I$ si verifica che $I, \sigma[x/d] \models p(f(x)) \rightarrow p(x) \vee \exists y \, r(x, y)$.
- 6. V come si mostra ad esempio utilizzando i lemmi 7.47 e 7.78 delle dispense.
- 7. 2 la seconda e la quarta formula sono le uniche in forma prenessa.
- 8. V dato che l'enunciato è privo di quantificatori si può usare il lemma 9.8 delle dispense.
- **9.** F per esempio $\exists x \, p(x) \nvDash p(a)$.
- 10. Dobbiamo definire un'interpretazione che soddisfi i tre enunciati. Forniamo due esempi di interpretazioni con queste caratteristiche:

$$\begin{split} D^I &= \{0,1,2,3\}, \qquad a^I = 0, \qquad r^I = \{(1,0),(2,1),(3,2),(1,3)\}; \\ D^J &= \mathbb{N}, \qquad a^J = 0, \qquad r^J = \{\,(n,m)\,:\, n > m\,\}\,. \end{split}$$

11. Dobbiamo dimostrare che $F,G \models_{\underline{=}} H$. Fissiamo un'interpretazione normale (dato che lavoriamo nella logica con uguaglianza) I e supponiamo che $I \models F, G$ con l'obiettivo di mostrare che $I \models H$. Sia $d \in D^I$ qualunque: vogliamo ottenere $I, \sigma[z/d] \models p(z)$, ovvero $d \in p^I$.

Dato che $I \models F$ si ha in particolare che $I, \sigma[x/d] \models \exists y \, x = g(y)$. Perciò esiste $d_0 \in D^I$ tale che $I, \sigma[x/d, y/d_0] \models x = g(y)$. Siccome I è normale questo significa che $d = g^I(d_0)$.

Dato che $I \models G$ si ha in particolare $I, \sigma[x/d_0] \models p(g(x))$, cioé $g^I(d_0) \in p^I$. Siccome $g^I(d_0) = d$ questo significa che $d \in p^I$, come volevamo.

- **12.** (i) $c(d, m(b)) \wedge c(d, m(a));$
 - (ii) $\exists x (c(b, x) \land \forall y (c(y, a) \lor c(y, d) \rightarrow c(x, y))).$
- 13. Ecco una deduzione naturale che mostra quanto richiesto:

$$\underbrace{\frac{[F \land \neg G]^2}{F}}_{ \underbrace{K \land F} } \underbrace{\frac{[F \land \neg G]^2}{\neg G}}_{ \underbrace{\frac{G}{\neg K}^1}} \underbrace{\frac{[F \land \neg G]^2}{\neg G}}_{ \underbrace{K \rightarrow H} \underbrace{[\neg H]^2}_{\neg K}}_{2}$$

Si noti l'uso di (MT) nel passaggio in cui $\neg H$ è un'ipotesi.

14. Per stabilire la conseguenza logica utilizziamo l'algoritmo 10.48 delle dispense e costruiamo un tableau chiuso con la radice etichettata dagli enunciati a sinistra del simbolo di conseguenza logica e dalla negazione di quello a destra. Indichiamo con F, G, H e K le γ -formule $\forall x (r(x,x) \rightarrow p(x))$, $\forall x(\exists y \, r(x,y) \to \neg r(x,x)), \, \neg \exists y \, \neg r(y,y) \in \neg \exists y \, r(b,y).$ Utilizziamo la convenzione 10.22 delle dispense e in ogni passaggio sottolineiamo la formula su cui agiamo.

15.

$$\langle [(t \rightarrow v \land p) \lor \neg (s \rightarrow q \land (r \lor \neg u))] \rangle$$

$$\langle [t \rightarrow v \land p, \neg (s \rightarrow q \land (r \lor \neg u))] \rangle$$

$$\langle [\neg t, v \land p, \neg (s \rightarrow q \land (r \lor \neg u))] \rangle$$

$$\langle [\neg t, v, \neg (s \rightarrow q \land (r \lor \neg u))], [\neg t, p, \neg (s \rightarrow q \land (r \lor \neg u))] \rangle$$

$$\langle [\neg t, v, s], [\neg t, v, \neg (q \land (r \lor \neg u))], [\neg t, p, s], [\neg t, p, \neg (q \land (r \lor \neg u))] \rangle$$

$$\langle [\neg t, v, s], [\neg t, v, \neg q, \neg (r \lor \neg u)], [\neg t, p, s], [\neg t, p, \neg q, \neg (r \lor \neg u)] \rangle$$

$$\langle [\neg t, v, s], [\neg t, v, \neg q, \neg r], [\neg t, v, \neg q, u], [\neg t, p, s], [\neg t, p, \neg q, \neg r], [\neg t, p, \neg q, u] \rangle$$

La formula in forma normale congiuntiva ottenuta è

$$(\neg t \lor v \lor s) \land (\neg t \lor v \lor \neg q \lor \neg r) \land (\neg t \lor v \lor \neg q \lor u) \land (\neg t \lor p \lor s) \land (\neg t \lor p \lor \neg q \lor \neg r) \land (\neg t \lor p \lor \neg q \lor u).$$

Prova scritta di Logica Matematica 26 gennaio 2015

Cognome Nome Matricola

Scrivete subito il vostro nome, cognome e numero di matricola, e tenete il tesserino universitario sul banco. Svolgete gli esercizi direttamente sul testo a penna. Dovete consegnare solo il foglio del testo: nessun foglio di brutta.

Per ogni esercizio è indicato il relativo punteggio. Nella prima parte se la riposta è corretta, il punteggio viene aggiunto al totale, mentre se la risposta è errata il punteggio viene sottratto (l'assenza di risposta non influisce sul punteggio totale). Per superare l'esame bisogna raggiungere 18 punti, di cui almeno 5 relativi alla prima parte.

PRIMA PARTE

В	arrate la risposta che ritenete corretta. Non dovete giustificare la ris	sposta.	
1.	L'algoritmo di Fitting per la forma normale congiuntiva		
	non ha la proprietà della terminazione forte.	$\mathbf{V} \mathbf{F}$	1pt
2 .	$\neg (p \to (q \land \neg p \to r))$ è soddisfacibile.	$\mathbf{V} \mathbf{F}$	1pt
3.	$\triangleright (p \to q) \lor \neg (p \to q).$	$\mathbf{V} \mathbf{F} $	1pt
4.	Esiste un insieme di Hintikka che contiene le formule		
	$\neg p \to \neg (q \to r) \in \neg (p \lor q).$	$\mathbf{V} \mathbf{F} $	1pt
5 .	Quante delle seguenti formule sono in forma prenessa?		
	$\forall x \exists z (\forall y r(x, f(z, y)) \to r(z, x)), \forall x \exists z \forall y (r(x, f(z, y)) \to r(z, x)),$		
	$\forall x (\exists z \forall y r(x, f(z, y)) \to r(z, x)), \forall x \exists z (r(x, z) \to r(z, x)). \boxed{0 \boxed{1}}$	2 3 4	1pt
	$\neg \forall x p(x) \vee \exists y r(y,y) \equiv \exists x (\neg p(x) \vee r(x,x)).$	$\mathbf{V} \mathbf{F}$	1pt
7.	Sia I l'interpretazione con $D^I = \{0, 1, 2, 3\}, f^I(0) = 0, f^I(1) = 2,$		
	$f^{I}(2) = 0, f^{I}(3) = 1, p^{I} = \{0, 1\}, r^{I} = \{(0, 1), (1, 2), (2, 3), (3, 1), (3, 2),$	(2).	
	Allora $I \models \forall x (p(f(x)) \to p(x) \lor \exists y r(y, x)).$	$\mathbf{V} \mathbf{F} $	1pt
8.	Se esiste un omomorfismo forte di I in J e $I \models \neg r(f(a), b)$		
	allora $J \models \neg r(f(a), b)$.	$\mathbf{V} \mathbf{F}$	1pt
9.	Se F è una γ -formula e G una sua istanza, allora $G \models F$.	$\mathbf{V} \mathbf{F} $	1pt
SECONDA PARTE			
10.	Sul retro del foglio dimostrate che		4pt
	$\forall r \exists u r = f(u) \ \forall r \neg n(f(r)) \models \forall r \neg n(z)$		

$$\forall x \,\exists y \, x = f(y), \forall x \, \neg p(f(x)) \models_{\underline{=}} \forall z \, \neg p(z).$$

11. Sul retro del foglio dimostrate la soddisfacibilità dell'insieme di enunciati: 4pt

$$\{ \forall x \, \exists y \, r(x,y), \forall z \, \neg r(z,c), \forall x \, \forall y (\neg r(x,y) \vee \neg r(y,x)) \}.$$

- 12. Sia $\{a,b,d,m,c\}$ un linguaggio dove a,b e d sono simboli di costante, m è un simbolo di funzione unario, c è un simbolo di relazione binario. Interpretando a come "Andrea", b come "Barbara", d come "Daniela", m(x) come "la madre di x", c(x,y) come "x conosce y", traducete le seguenti frasi, utilizzando lo spazio sotto ognuna di esse:
 - (i) Barbara conosce almeno una delle madri di Andrea e Daniela;

3pt

(ii) Andrea conosce qualcuno che conosce tutti quelli che conoscono sia Barbara che Daniela.

3pt

13. Mostrate che

$$F \wedge G \rightarrow H, F \rightarrow K, (G \wedge \neg H) \vee \neg K \rhd \neg F.$$

Usate solo le regole della deduzione naturale proposizionale, comprese le quattro regole derivate. (Utilizzate il retro del foglio)

14. Usando il metodo dei tableaux stabilite sul retro del foglio che 5pt

$$\forall x (r(x,x) \to \neg p(x)), \exists z (p(z) \lor \exists w \, r(z,w)), \forall x (\exists y \, r(y,x) \to \neg r(x,x)) \models \exists y \, \neg r(y,y).$$

(Utilizzate il retro del foglio)

15. Usando l'algoritmo di Fitting e utilizzando lo spazio qui sotto, mettete in forma normale congiuntiva la formula

$$(p \to q \land r) \lor \neg (s \to t \land (u \lor \neg v)).$$

Soluzioni

- 1. F l'affermazione contraddice il lemma 3.29 delle dispense.
- 2. F come si verifica per esempio con le tavole di verità.
- **3.** V come testimoniato dalla deduzione naturale che consiste di una singola applicazione della regola derivata (TE).
- **4. F** se T è un insieme di Hintikka contenente la seconda formula (che è α) allora $\neg p \in T$ e $\neg q \in T$; perciò nessuno dei ridotti della prima formula (che è β) può appartenere a T.
- **5.** 2 la seconda e la quarta formula sono le uniche in forma prenessa.
- 6. V come si mostra ad esempio utilizzando i lemmi 7.47 e 7.78 delle dispense.
- 7. V per ogni $d \in D^I$ si verifica che $I, \sigma[x/d] \models p(f(x)) \to p(x) \vee \exists y \, r(y, x)$.
- ${f 8.~V}$ dato che l'enunciato è privo di quantificatori si può usare il lemma ${f 9.8}$ delle dispense.
- **9.** F per esempio $p(a) \nvDash \forall x \, p(x)$.
- 10. Dobbiamo dimostrare che $F,G \models_{\underline{=}} H$. Fissiamo un'interpretazione normale (dato che lavoriamo nella logica con uguaglianza) I e supponiamo che $I \models F, G$ con l'obiettivo di mostrare che $I \models H$. Sia $d \in D^I$ qualunque: vogliamo ottenere $I, \sigma[z/d] \models \neg p(z)$, ovvero $d \notin p^I$.

Dato che $I \models F$ si ha in particolare che $I, \sigma[x/d] \models \exists y \, x = f(y)$. Perciò esiste $d_0 \in D^I$ tale che $I, \sigma[x/d, y/d_0] \models x = f(y)$. Siccome I è normale questo significa che $d = f^I(d_0)$.

Dato che $I \models G$ si ha in particolare $I, \sigma[x/d_0] \models \neg p(f(x))$, cioé $f^I(d_0) \notin p^I$. Siccome $f^I(d_0) = d$ questo significa che $d \notin p^I$, come volevamo.

11. Dobbiamo definire un'interpretazione che soddisfi i tre enunciati. Forniamo due esempi di interpretazioni con queste caratteristiche:

$$\begin{split} D^I &= \{0,1,2,3\}, \qquad c^I = 0, \qquad r^I = \{(0,1),(1,2),(2,3),(3,1)\}; \\ D^J &= \mathbb{N}, \qquad c^J = 0, \qquad r^J = \{\,(n,m)\,:\, n < m\,\}\,. \end{split}$$

- **12.** (i) $c(b, m(a)) \vee c(b, m(d))$;
 - (ii) $\exists x (c(a, x) \land \forall y (c(y, b) \land c(y, d) \rightarrow c(x, y))).$
- 13. Ecco una deduzione naturale che mostra quanto richiesto:

$$\begin{array}{c|c} & \underline{[G \land \neg H]^2} \\ & \underline{F \land G} \\ \hline & F \land G \\ \hline & \underline{F \land G} \\ \hline & \underline{H} \\ \hline & \underline{-H} \\ \hline & \underline{-F} \\ \hline & \underline{-F} \\ \end{array} \qquad \begin{array}{c|c} \underline{[G \land \neg H]^2} \\ \hline & F \rightarrow K \\ \hline & \underline{-F} \\ \hline \end{array}$$

Si noti l'uso di (MT) nel passaggio in cui $\neg K$ è un'ipotesi.

14. Per stabilire la conseguenza logica utilizziamo l'algoritmo 10.48 delle dispense e costruiamo un tableau chiuso con la radice etichettata dagli enunciati a sinistra del simbolo di conseguenza logica e dalla negazione di quello a destra. Indichiamo con F, G, H e K le γ -formule $\forall x (r(x,x) \rightarrow \neg p(x))$, $\forall x(\exists y \, r(y,x) \to \neg r(x,x)), \, \neg \exists y \, \neg r(y,y) \in \neg \exists y \, r(y,b).$ Utilizziamo la convenzione 10.22 delle dispense e in ogni passaggio sottolineiamo la formula su cui agiamo.

15.

$$\langle [(p \rightarrow q \land r) \lor \neg (s \rightarrow t \land (u \lor \neg v))] \rangle$$

$$\langle [p \rightarrow q \land r, \neg (s \rightarrow t \land (u \lor \neg v))] \rangle$$

$$\langle [\neg p, q \land r, \neg (s \rightarrow t \land (u \lor \neg v))] \rangle$$

$$\langle [\neg p, q, \neg (s \rightarrow t \land (u \lor \neg v))], [\neg p, r, \neg (s \rightarrow t \land (u \lor \neg v))] \rangle$$

$$\langle [\neg p, q, s], [\neg p, q, \neg (t \land (u \lor \neg v))], [\neg p, r, s], [\neg p, r, \neg (t \land (u \lor \neg v))] \rangle$$

$$\langle [\neg p, q, s], [\neg p, q, \neg t, \neg (u \lor \neg v)], [\neg p, r, s], [\neg p, r, \neg t, \neg (u \lor \neg v)] \rangle$$

$$\langle [\neg p, q, s], [\neg p, q, \neg t, \neg u], [\neg p, q, \neg t, v], [\neg p, r, s], [\neg p, r, \neg t, \neg u], [\neg p, r, \neg t, v] \rangle$$

La formula in forma normale congiuntiva ottenuta è

$$(\neg p \lor q \lor s) \land (\neg p \lor q \lor \neg t \lor \neg u) \land (\neg p \lor q \lor \neg t \lor v) \land (\neg p \lor r \lor s) \land (\neg p \lor r \lor \neg t \lor \neg u) \land (\neg p \lor r \lor \neg t \lor v).$$