# Classification of Alcoholism

Group 124 (CS)

Nathan Bui, Ryan Bui

### **Introduction and Motivation**

- Our project attempts to classify alcoholics through machine learning, utilizing previously recorded EEG data.
- Our motivation is derived from the fact that alcoholism is a major problem within our society. Therefore, we wanted to determine how severely alcoholism affects one's mental states, and from this be able to identify those who are suffering from this disorder.

### **Related Work**

- In regards to class content, our project relates to topics discussed within the BCI Review. To be specific, our project is classification, so it was necessary for us to use feature selection methods to "maximize our performance". Specifically, we analyzed the importance of each sensor, or feature, in regards to our results.
- Outside of class, there is BCI-based <u>study</u> that is very similar to our own research.
   In this study, they recorded EEG signals and analyzed the differences between drunk and non-drunk subjects.

### Data Explanation

#### Data

- From a large study to examine EEG correlation from genetic predisposition to alcoholism
- Data was recorded with 64 electrodes on subjects scalp at standard sites for a period of 1 second
- Two different groups: alcoholic and control
- Subjects were given three different kinds of stimuli where they were shown either one picture, two identical pictures, or two different pictures
- During this study, there were 122 subjects and each subject complete 120 trials
- Because the data set was very large, we focused on the data where the subject was shown only one picture and limited the number of files used

#### • Citation:

- UCI Machine Learning Repository
- Link: <a href="https://archive.ics.uci.edu/ml/datasets/eeg+database">https://archive.ics.uci.edu/ml/datasets/eeg+database</a>
- Owner: Henri Begleiter, Neurodynamics Laboratory, State University of New York

### Methods

- Implementation
  - Used Anaconda as our main library and package manager
  - Jupyter Notebook was our coding platform
  - The main packages we used to develop our model was sklearn and pandas
  - For data analysis, we used numpy, seaborn, and matplotlib
- Github :

# Cleaned up dataset

Removed specific features of the original data and only used sensor position, subject identifier, and sensor value to create our models.

| 62 | Unnamed: 0 | trial number | sensor position | sample num | sensor value | subject identifier | matching condition | channel | name        | time     |
|----|------------|--------------|-----------------|------------|--------------|--------------------|--------------------|---------|-------------|----------|
| 0  | 5          | 30           | FP1             | 0          | -3.550       | а                  | S1 obj             | 0       | co2a0000364 | 0.000000 |
| 1  | 6          | 30           | FP1             | 1          | -5.015       | а                  | S1 obj             | 0       | co2a0000364 | 0.003906 |
| 2  | 7          | 30           | FP1             | 2          | -5.503       | а                  | S1 obj             | 0       | co2a0000364 | 0.007812 |

|   | FP1     | FP2     | F7      | F8      | AF1    | AF2    | FZ     | F4     | F3     | FC6     |     | PO7    | PO8     | FCZ    | POZ    | oz     | P2     | P1     | CPZ   | nd     |
|---|---------|---------|---------|---------|--------|--------|--------|--------|--------|---------|-----|--------|---------|--------|--------|--------|--------|--------|-------|--------|
| 0 | -5.91   | 3.194   | -5.534  | 12.278  | -6.907 | -6.917 | -7.314 | -2.553 | -2.004 | 2.594   | *** | 11.485 | 6.846   | -3.489 | 4.364  | 2.024  | 3.845  | 3.062  | 2.675 | -5.025 |
| 1 | -9.705  | -11.444 | -4.201  | -10.447 | -4.415 | -5.29  | -0.193 | -1.373 | -1.261 | -10.315 |     | 5.442  | -3.377  | 1.79   | -2.116 | -4.15  | -3.886 | -2.207 | -1.17 | -9.552 |
| 2 | -10.468 | -13.204 | -10.803 | -12.553 | -7.141 | -7.334 | -4.496 | -7.233 | -3.499 | -7.568  |     | 4.751  | -7.192  | -2.085 | -2.797 | -5.157 | -0.468 | -0.285 | 1.394 | -9.623 |
| 3 | 1.465   | 0.488   | 0.427   | -6.989  | -1.048 | -4.395 | -3.184 | -7.65  | -3.621 | -7.599  |     | -9.247 | -12.258 | -1.414 | -2.075 | -4.598 | -1.648 | 0.671  | 1.597 | 1.577  |
| 4 | 6.632   | 9.44    | 8.575   | -9.644  | 1.241  | -1.18  | -0.753 | -0.712 | 2.411  | -1.302  |     | 4.924  | 0.905   | -0.956 | 1.811  | 0.783  | 1.719  | 2.543  | 1.475 | 6.592  |
| - |         |         |         | 144     |        | 1442   | ***    | 144    |        |         |     |        |         | wi     |        |        |        | 144    |       |        |

## **Exploratory data analysis**

- After cleaning up the dataset, we dived into the data to develop a better understanding, as well as seeing if there was any interesting correlations.
- The main graph (shown below) we generated compared the average sensor values of each sensor, between the control group and the alcoholic group.



# Training and Test Data

• 80/20 Split

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

• Data was shuffled before the split and the data was separated based on different time points

### Classifiers

#### 1. Random Forest Classifier

- a. Performs both regression and classification task
- b. Good predictions and handles large datasets
- c. Check Feature Importance

#### 2. SVC Classifier

- a. Memory efficient
- b. Effective in high dimensional spaces

#### Random Forest Classification

```
# Create model and check accuracy and precision of predictions for Random Forest Classification
rf_model = RandomForestClassifier(n_estimators = 1000)
rf_model.fit(X_train, y_train)
target_pred = rf_model.predict(X_test)
print("Random Forest Classifier Accuracy:", metrics.accuracy_score(y_test, target_pred))
print("Random Forest Classifier Precision:", metrics.precision_score(y_test, target_pred, pos_label = 'a'))
```

#### SVC Classification

```
# Create model and check accuracy and precision of predictions for SVC Classification
svm_model = svm.SVC(kernel = 'linear')
svm_model.fit(X_train, y_train)
y_pred = svm_model.predict(X_test)
print("SVC Accuracy:", metrics.accuracy_score(y_test, y_pred))
print("SVC Precision:", metrics.precision_score(y_test, y_pred, pos_label="a"))
```

#### 3. LDA Transform into Random Forest Classifier

a. Dimension reduction while keeping the original level of information

#### **LDA Transform to Random Forest Classification**

```
# Create model and check accuracy and precision of predictions for LDA Transform to Random Forest Classification
LDA_model = LinearDiscriminantAnalysis()
X_LDA_train = LDA_model.fit_transform(X_train, y_train)
X_LDA_test = LDA_model.transform(X_test)
rf_LDA_model = RandomForestClassifier(n_estimators = 1000)
rf_LDA_model.fit(X_LDA_train, y_train)
y_pred = rf_LDA_model.predict(X_LDA_test)
print("LDA_Accuracy:", metrics.accuracy_score(y_test, y_pred))
print("LDA_Precision:", metrics.precision_score(y_test, y_pred, pos_label="a"))
```

# **Results: Sensor as Features**

| Classifier    | Accuracy  | Precision |  |  |  |  |
|---------------|-----------|-----------|--|--|--|--|
| Random Forest | 0.9853515 | 0.9919517 |  |  |  |  |
| SVC           | 0.9082031 | 0.9133064 |  |  |  |  |
| LDA Transform | 0.8457031 | 0.8251879 |  |  |  |  |

# **Top Ten Significant Sensors**





# Results: Top Ten Sensor as Features

| Classifier    | Accuracy  | Precision |  |  |  |  |
|---------------|-----------|-----------|--|--|--|--|
| Random Forest | 0.9677734 | 0.9700598 |  |  |  |  |
| SVC           | 0.8291015 | 0.8097928 |  |  |  |  |
| LDA Transform | 0.7050781 | 0.6884328 |  |  |  |  |

# **Reorganized Data**

Features based on 256 different time point in the span of 1 second

|   | T0     | T1     | T2     | Т3     | T4     | T5     | Т6     | T7     | Т8    | <b>T</b> 9 | <br>T248    | T249   | T250   | T251   | T252   | T253   | T254   | T255   | Sens |
|---|--------|--------|--------|--------|--------|--------|--------|--------|-------|------------|-------------|--------|--------|--------|--------|--------|--------|--------|------|
| 0 | -2.218 | -1.241 | -1.241 | -1.729 | -2.706 | -2.218 | -1.729 | 0.224  | 2.177 | 3.642      | <br>-11.007 | -8.565 | -6.612 | -5.636 | -4.659 | -3.194 | -2.706 | -2.706 |      |
| 1 | 0.814  | -1.628 | -3.092 | -3.092 | -1.139 | 0.814  | 2.767  | 4.232  | 5.697 | 6.673      | <br>26.693  | 24.74  | 22.786 | 21.322 | 20.833 | 20.345 | 21.322 | 21.81  |      |
| 2 | -6.337 | -7.802 | -6.826 | -3.896 | -0.478 | 1.475  | 2.452  | 2.94   | 3.428 | 4.893      | <br>6.358   | 5.87   | 6.846  | 9.288  | 11.729 | 13.682 | 15.147 | 15.147 |      |
| 3 | -3.479 | -1.526 | 0.916  | 2.869  | 3.357  | 2.869  | 2.38   | 1.892  | 1.892 | 1.892      | <br>5.798   | 5.31   | 3.357  | 0.916  | -0.549 | 0.427  | 2.869  | 5.31   |      |
| 4 | 2.574  | -0.356 | -0.356 | 5.015  | 5.015  | 8.433  | -1.821 | 10.386 | 1.597 | 3.062      | <br>-2.309  | 3.062  | 2.085  | 0.621  | 5.992  | 2.085  | 1.597  | 5.015  |      |
|   | 2.37   | 22.    | 933    |        |        |        |        |        | 1     | 2.2        | <br>122     |        |        |        |        |        |        |        |      |

# **Results: Time Points as Features**

| Classifier    | Accuracy  | Precision |  |  |  |  |
|---------------|-----------|-----------|--|--|--|--|
| Random Forest | 0.90625   | 0.9083969 |  |  |  |  |
| SVC           | 0.8007812 | 0.8076923 |  |  |  |  |
| LDA Transform | 0.7890625 | 0.7984496 |  |  |  |  |

### **Results: Final**

- Sensor as Features produced the best models
- Random Forest Classifier showed the best accuracy and precision across all the models
- Correlation between alcoholic and EEG data
- What went wrong
  - Accuracy and Precision decreased as we attempted to manipulate the data
  - Trouble organizing the data to ensure that all factors were held accountable

### **Discussion**

- What we learned
  - How to analyze, filter, and clean EEG datasets
  - Based on the accuracy and precision values we obtained, it can be assumed that there is a difference between alcoholic and non-alcoholic individuals when focused on the electrical activity of one's scalp
- Some improvements
  - For our classifier, we only used the data for one stimulus within the dataset. For the future, it may
    improve the performance of the model if we included more data
  - We could have used more, different classification models to compare/improve performance
    - Further understanding the ways we can use algorithms to understand the data
  - The time period being 1 seconds seems too short and should possibly be extended to account for more variability