Project 2 - Conditional Probabilities California State University Long Beach

EE 381

Probability and Statistics

Christopher Masferrer

T/TH 5:30 - 6:20

Experiment 1: Probability of erroneous transmission

Intro: For this experiment I will be calculating the probability that a transmission error from a one bit message will occur. The results of the probability will be displayed in a chart.

Methodology: Using the nSidedDice function from a previous lab, I used it as a generator for a new function called transmissionError. I generated one number for S and based on the result from S generated a value for R. I then compared the values and recorded the result only if the transmission failed. This repeats 100,000 times and the results are displayed in the chart.

Probability of transmission error	
Ans.	p = 0.94814

```
Code:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
Created on Fri Sep 20 18:13:41 2019
@author: christophermasferrer
#Christopher Masferrer
#EE 381
#Lab 1
import numpy as np
p0 = 0.35
e0 = 0.04
e1 = 0.07
def nSidedDie(p):
  N = 1
  n = np.size(p)
  cs = np.cumsum(p)
  cp = np.append(0,cs)
  for j in range(0, N):
     r = np.random.rand()
     for k in range (0, n):
       if r > cp[k] and r \le cp[k+1]:
          d = k+1
     return d
def transmissionError():
  N = 100000
  count = 0
  for j in range(0, N):
     S = nSidedDie([p0, 1 - p0])
     if S == 1:
       R = nSidedDie([e1, 1 - e1])
     else:
       R = nSidedDie([1 - e0, e0])
     if S != R:
       count += 1
  prob = count / N
  print("Probability of an error: " + str(prob))
```

transmission Error()

Experiment 2: Conditional probability: P(R=1|S=1)

Intro: For this experiment, I will be finding out what the probability of getting a successful transmission is knowing that S = 1. I will be performing this 100,000 times and displaying the result on a chart.

Methodology: I used most of the code from the previous part with a few modifications made. I gave S a value of 1 and only generated a value for R. I only counted if the transmission was a success and printed out the results.

Conditional probability	P(R = 1 S = 1)	
	Ans.	p = 0.06841

Code:

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
Created on Sat Sep 21 08:42:59 2019
@author: christophermasferrer
#Christopher Masferrer
#EE 381
#Lab 1
import numpy as np
p0 = 0.35
e0 = 0.04
e1 = 0.07
def nSidedDie(p):
  N = 1
  n = np.size(p)
  cs = np.cumsum(p)
  cp = np.append(0,cs)
  for j in range(0, N):
    r = np.random.rand()
    for k in range (0, n):
       if r > cp[k] and r \le cp[k+1]:
         d = k+1
     return d
def probabilityRS():
  N = 100000
  count = 0
  for j in range(0, N):
    R = nSidedDie([e1, 1 - e1])
    if S == R:
       count += 1
  prob = count / N
  print("Conditional probability P(R=1|S=1): " + str(prob))
probabilityRS()
```

Experiment 3: Conditional probability: P(S=1|R=1)

Intro: For this experiment, I will be finding out what the probability of getting a successful transmission is knowing that R = 1. I will be performing this 100,000 times and displaying the result on a chart.

Methodology: I used most of the code from the previous part with a few modifications made. I gave R a value of 1 and only generated a value for S. I only counted if the transmission was a success and printed out the results.

Conditional probability	P(S = 1 R = 1)	
	Ans.	p = 0.35078

Code:

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
Created on Sun Sep 22 09:36:28 2019
@author: christophermasferrer
#Christopher Masferrer
#EE 381
#Lab 1
import numpy as np
p0 = 0.35
e0 = 0.04
e1 = 0.07
def nSidedDie(p):
  N = 1
  n = np.size(p)
  cs = np.cumsum(p)
  cp = np.append(0,cs)
  for j in range(0, N):
    r = np.random.rand()
    for k in range (0, n):
       if r > cp[k] and r \le cp[k+1]:
         d = k+1
     return d
def probabilitySR():
  N = 100000
  count = 0
  for j in range(0, N):
    S = nSidedDie([p0, 1 - p0])
    R = 1
    if S == R:
       count += 1
  prob = count / N
  print("Conditional probability P(S=1|R=1): " + str(prob))
probabilitySR()
```

Experiment 4: Enhanced transmission method

Intro: For this experiment I will be calculating the probability that a transmission error from a one bit message will occur if the signal S is sent 3 times. The results of the probability will be displayed in a chart.

Methodology: Using the nSidedDice function from a previous lab, I used it as a generator for a new function called eTransmission. I generated one number for S and based on the result from S generated a value for R1, R2, and R3. I then compared the values and verified what the majority was using the majority rule. I set a value for R depending on what the majority was and recorded the result only if the transmission failed. This repeats 100,000 times and the results are displayed in the chart.

Probability of error with enhanced transmission	
Ans.	p = 0.99992

Code:

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
Created on Thu Sep 26 10:25:18 2019
@author: christophermasferrer
#Christopher Masferrer
#EE 381
#Lab 1
import numpy as np
p0 = 0.35
e0 = 0.04
e1 = 0.07
def nSidedDie(p):
  N = 1
  n = np.size(p)
  cs = np.cumsum(p)
  cp = np.append(0,cs)
  for j in range(0, N):
    r = np.random.rand()
    for k in range (0, n):
       if r > cp[k] and r \le cp[k+1]:
         d = k+1
     return d
def eTransmission():
  N = 100000
  count = 0
  for j in range(0, N):
    S = nSidedDie([p0, 1 - p0])
    R = 0
    if S == 1:
       R1 = nSidedDie([e1, 1 - e1])
       R2 = nSidedDie([e1, 1 - e1])
       R3 = nSidedDie([e1, 1 - e1])
     else:
       R1 = nSidedDie([1 - e0, e0])
       R2 = nSidedDie([1 - e0, e0])
       R3 = nSidedDie([1 - e0, e0])
```

```
if R1 == 0 and R2 == 1 and R3 == 1:
    R = 1

if R1 == 1 and R2 == 0 and R3 == 1:
    R = 1

if R1 == 1 and R2 == 1 and R3 == 0:
    R = 1

if R1 == 1 and R2 == 1 and R3 == 1:
    R = 1

if S!=R:
    count += 1

prob = count / N

print("Probability of an error: " + str(prob))
```