Appunti di Fondamenti

Fondamenti dell'Informatica (prof. Peñaloza) - CdL Informatica Unimib - 23/24

Indice

1	Mate	ematica	discreta	4					
	1.1	Fasi de	ella matematica discreta	4					
	1.2	Logica		4					
		1.2.1	Algebra astratta	4					
2	Insi	iemi e Operazioni							
	2.1	Numer	i	5					
		2.1.1	Numeri naturali	5					
		2.1.2	Numeri interi	5					
		2.1.3	Numeri razionali	6					
		2.1.4	Numeri reali	7					
		2.1.5	Numeri complessi	7					
		2.1.6	Numeri booleani	8					
	2.2	Insiem	i	8					
		2.2.1	Notazione	9					
		2.2.2	Operazioni	11					
		2.2.3	Famiglie di insiemi	13					
		2.2.4	Partizioni	14					
	2.3	Relazio	oni	14					
		2.3.1	Ordinamenti negli insiemi	14					
		2.3.2	Relazioni	16					
		2.3.3	Relazioni tra oggetti	17					
		2.3.4	Rappresentazione tabulare	17					
		2.3.5	Rappresentazione matriciale	17					
		2.3.6	Elementi di una relazione	17					
		2.3.7	Relazioni n-arie	18					
		2.3.8	Operazioni su relazioni	18					
		2.3.9	Proprietà delle relazioni	18					
		2.3.10	Identità	19					
		2.3.11	Proprietà delle relazioni binarie	19					

2.4 Funzioni				19
		2.4.1	Funzione iniettiva	20
		2.4.2	Funzione suriettiva	20
		2.4.3	Funzione biiettiva	20
		2.4.4	Corrispondenza biunivoca	20
		2.4.5	Formalizzazione	21
		2.4.6	Punto fisso	22
		2.4.7	Operazioni	22
		2.4.8	Immagine inversa	22
		2.4.9	Funzione inversa	22
		2.4.10	Composizione di Funzioni	23
		2.4.11	Funzione caratteristica	23
		2.4.12	Multinsiemi	24
	2.5	Cardin	alità	24
		2.5.1	Cardinalità tramite funzioni	24
		2.5.2	Cardinalità finite	25
		2.5.3	Numerabili	25
		2.5.4	Il continuo	26
		2.5.5	Gerarchia transfinita	27
3	Stru	tture re	elazionali, Grafi e Ordinamenti	27
	3.1	Rappre	esentazioni	27
		3.1.1	Relazioni in un insieme	27
		3.1.2	Riflessività ed operazioni	28
		3.1.3	Simmetria ed operazioni	28
		3.1.4	Transitività ed operazioni	29
		3.1.5	Matrici booleane	29
		3.1.6	Operazioni su matrici booleane	30
		3.1.7	Prodotto booleano	30
	3.2	Compo	osizione di relazioni	31
	3.3	Relazio	oni di Equivalenza	31
		221	Partizioni e classi di equivalenza	32

3.4	Grafi .		33
	3.4.1	Gradi	33
	3.4.2	Cammino	34
	3.4.3	Semicammino	34
	3.4.4	Ciclo	34
	3.4.5	Distanza	34
	3.4.6	Trovare le distanze: Algoritmo	35
	3.4.7	Definizione formale di grafo	35
	3.4.8	Sottografo	35
	3.4.9	Grafo aciclico orientato (DAG)	36
	3.4.10	Grafi etichettati	36
	3.4.11	Matrice di adiacenza	36
	3.4.12	Grafo completo	36
	3.4.13	Connettività	36
	3.4.14	Isomorfismi tra grafi	37
3.5	Alberi		37
	3.5.1	Proprietà	37
	3.5.2	Rappresentazione gerarchica	38
	3.5.3	Cammini in un albero	38
	3.5.4	Profondità	38
	3.5.5	Alberi binari	38

1 Matematica discreta

Discreto: composto di elementi distinti, separati tra di loro.

Un sistema è:

- **Discreto** se è costituito da elementi isolati
- Continuo se non ci sono vuoti tra gli elementi

I sistemi informatici si basano su un sistema binario, perciò discreto.

Possiamo approssimare un sistema continuo dividendolo in piccole parti (*discretizzazione* o *digitalizzazione*).

1.1 Fasi della matematica discreta

- Classificazione: individuare le caratteristiche comuni di entità diverse (teoria degli insiemi)
- Enumerazione: assegnare ad ogni oggetto un numero naturale (contare)
- Combinazione: permutarne e combinarne gli elementi (grafi)

Queste fasi guidano un algoritmo.

1.2 Logica

In filosofia, la **logica** è lo studio del ragionamento, dell'argomentazione, e dei procedimenti **inferenziali** per distinguere quelli *validi* da quelli *non validi*.

La **logica matematica** vede questi procedimenti come calcoli formali, con una struttura algoritmica.

Infatti, è tutto basato sull'algebra di Boole.

1.2.1 Algebra astratta

L'algebra astratta studia le **strutture algebriche**, ovvero insiemi muniti di operazioni.

2 Insiemi e Operazioni

2.1 Numeri

2.1.1 Numeri naturali

I numeri **naturali** sono i primi che impariamo, e nascono dall'attività di contare.

Essi formano un **insieme**, chiamato insieme dei numeri naturali (**N**).

$$\mathbb{N} = \{0, 1, 2, 3, 4, \dots, n, n+1, \dots\}$$

Contare non è altro che assegnare ad ogni oggetto un numero naturale (in ordine).

 \mathbb{N} ha un *limite inferiore* (0), ma non ha un *limite superiore*, quindi \mathbb{N} è infinito.

2.1.1.1 Definizione semiformale

- I numeri naturali hanno l'elemento 0
- Ogni elemento *n* ha (**esattamente**) un successore *s*(*n*)
- 0 non è un successore di nessun elemento
- Due elementi diversi hanno successori diversi

Questa definizione è la base del processo di induzione.

Una proprietà è vera in tutto IN se e solo se:

- È vera in 0
- Se è vera in n allora è vera in s(n)

È possibile anche iniziare da un numero arbitrario.

2.1.2 Numeri interi

I numeri **interi** (relativi) è l'insieme dei numeri naturali preceduti da un segno "+" o "-". Questo insieme si denota con il simbolo \mathbb{Z} .

$$\mathbb{Z} = \{ \dots, -(n+1), -n, \dots, -2, -1, 0, 1, 2, \dots, n, n+1, \dots \}$$

Ogni intero ha un successore, ma anche un **predecessore** (non c'è un *minimo*).

I numeri interi positivi (più 0) formano IN.

$$\mathbb{N} \subset \mathbb{Z}$$

$$\mathbb{N}=\mathbb{Z}^+\cup\{\,0\,\}$$

2.1.2.1 Valore assoluto

Il valore assoluto di un numero intero è il numero privo di segno.

$$|-n|=n$$

$$|n|=n$$

L'opposto di un numero si ottiene cambiandogli il segno.

2.1.3 Numeri razionali

Razionale in questo caso si riferisce a **ratio** ossia **proporzione**. Indicano dunque una proporzione risultante da una divisione.

Si esprimono come rapporto di due numeri interi (frazioni).

 $\frac{m}{n}$

Si indicano con il simbolo Q.

2.1.3.1 Rappresentazioni e Relazioni

Ogni numero razionale può essere rappresentato da un numero decimale finito o periodico.

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$$

2.1.3.2 Densità

I numeri razionali sono densi: fra due razionali c'è sempre un altro numero.

Sono comunque discreti.

2.1.4 Numeri reali

I **numeri irrazionali** (\mathbb{I}) sono quelli che non si possono esprimere tramite frazioni: hanno un'espansione decimale infinita e non periodica.

L'insieme dei **numeri reali** (\mathbb{R}) contiene tutti i numeri che ammettono una rappresentazione decimale.

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}$$

$$\mathbb{R}=\mathbb{Q}\cup\mathbb{I}$$

2.1.4.1 La Retta reale

L'insieme dei numeri reali spesso viene rappresentato su una **retta** (ordine implicito).

A ogni punto della retta è associato un numero reale e viceversa (*corrispondenza biunivo-ca*).

2.1.5 Numeri complessi

I **numeri complessi** (\mathbb{C}) estendono i reali per eseguire operazioni che non sono ben definite altrimenti.

Nascono dalla necessità di estrarre radici a numeri negativi.

Definiscono l'**unità immaginaria** $i = \sqrt{-1}$. Un numero complesso è a + bi, con $a, b \in \mathbb{R}$

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

2.1.6 Numeri booleani

L'insieme dei numeri booleani è

$$\mathbb{B} = \{0, 1\}$$

2.2 Insiemi

Gli **insiemi**, le loro proprietà e le loro **operazioni** sono alla base della matematica moderna e dell'informatica.

Un sistema è **discreto** se costituito da elementi isolati e **continuo** se non vi sono spazi vuoti. In matematica, discreto si basa sul concetto di **cardinalità** (il "numero" di elementi che contiene).

Un insieme è discreto se (e solo se) i suoi elementi si possono numerare.

Un insieme è un raggruppamento di oggetti distinti e ben definiti.

Gli oggetti che formano l'insieme sono i suoi **elementi**. In un insieme, tutti gli elementi sono **distinti** e l'ordine non è rilevante.

Gli elementi di un insieme possono essere anch'essi insiemi.

Un tempo si pensava che la **teoria degli insiemi** poteva dare una base solida alla matematica. Esistono paradossi però che dicono il contrario.

Per esempio il paradosso del barbiere

In un villaggio vi è un solo barbiere, che rade tutti e soli gli uomini del villaggio che non si radono da soli. *Chi rade il barbiere?*

o il paradosso eterologico

```
Una parola è autologica se descrive se stessa ("polisillabica", "corta", "leggibile").
Una parola è eterologica se non è autologica ("polisillabica", "lunga", "illeggibile").
"Eterologica" è eterologica?
```

Il più famoso di essi è il paradosso degli insiemi (Bertrand Russel)

Considerate l'insieme N di tutti gli insiemi che non appartengono a se stessi. N appartiene a se stesso?

Per costruire questo tipo di paradossi è necessario usare un'autoreferenza e una negazione.

Questa idea torna in diversi contesti per dimostrare l'impossibilità o inesistenza di certe strutture.

2.2.1 Notazione

Gli insiemi generici saranno denotati da lettere latine maiuscole

$$A, B, C, \dots$$

e i loro elementi con lettere latine minuscole

$$a, b, c, \dots$$

L'insieme senza elementi si chiama **vuoto** e si denota con Ø.

L'uguaglianza fra oggetti (elementi, insiemi, entità, ecc.) si denota con "=". La disuguaglianza si denota con " \neq ".

L'uguaglianza ha tre importanti proprietà:

- Riflessività: A = A
- Simmetria: $A = B \iff B = A$
- Transitività: se A = B e B = C allora A = C

Un insieme può avere diverse rappresentazioni:

- Diagramma Eulero-Venn
- Rappresentazione estensionale: elenco di tutti gli elementi ($\{x, y, z\}$)
 - { rosso, giallo, arancio }: insieme con tre elementi

- { rosso, giallo, rosso }: insieme con due elementi
- $\{\emptyset\}$: insieme con un elemento
- $\{0, 1, 2, 3, \dots\}$: insieme dei numeri naturali
- $-\{\emptyset,1,2,\{3\}\}$
- Rappresentazione intensionale: consiste nel formulare una proprietà \mathscr{P} caratteristica che distingue precisamente gli elementi dell'insieme ($S = \{x \mid \mathscr{P}(x)\}$)
 - $\{x \mid x \in \mathbb{Z}, x > 0\}$: insieme dei numeri interi positivi
 - $\{x | x \in un \text{ colore dell'arcobaleno}\}$
 - $\{x \mid x \in \mathbb{Z}, x > 3, x \le 100\} = \{4, 5, \dots, 99, 100\}$
 - $\{x \mid x \text{ è un numero primo}\}$

Per ogni elemento x esiste l'insieme **singoletto** $\{x\}$.

Proprietà complesse si possono costruire combinando proprietà più semplici mediante operazioni **vero-funzionali**.

Un **sottoinsieme** di A è un insieme formato unicamente per (alcuni) elementi di A. Un sottoinsieme B di A è **proprio** se è diverso da A e da \emptyset .

L'insieme vuoto ammette esattamente un sottoinsieme: \emptyset (sottoinsieme non proprio). Un singoletto $\{a\}$ ammette due sottoinsiemi: \emptyset e $\{a\}$ (sottoinsiemi non propri).

Se A e B hanno gli stessi elementi, sono mutuamente sottoinsiemi

$$A = B$$
 se $A \subseteq B$, $B \subseteq A$

L'inclusione soddisfa le proprietà:

- Riflessività: $A \subseteq A$
- Antisimmetria: $A \subseteq B \land B \subseteq A \iff A = B$
- Transitività: $A \subseteq B \land B \subseteq C \iff A \subseteq C$

L'insieme potenza (o insieme delle parti) di un insieme S, scritto $\mathscr{P}(S)$ è l'insieme formato da tutti i sottoinsiemi di S.

$$\mathscr{P}(S) = \{ x | x \subseteq S \}$$

Esempi:

- $\mathscr{P}(\emptyset) = \{\emptyset\}$
- $\mathscr{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$
- $\mathscr{P}(\{x,y\}) = ?$

Se S ha n elementi ($n \ge 0$) allora $\mathcal{P}(S)$ ha 2^n elementi.

2.2.2 Operazioni

2.2.2.1 Unione

L'unione di due insiemi A e B si denota

 $A \cup B$

ed è definita come

$$A \cup B = \{ x | x \in A \lor x \in B \}$$

Le proprietà dell'unione sono:

• Idempotenza: $A \cup A = A$

• Commutatività: $A \cup B = B \cup A$

• Associatività: $A \cup (B \cup C) = (A \cup B) \cup C$

• Esistenza del neutro: $A \cup \emptyset = A$

• Assorbimento: $A \cup B = B$ se $A \subseteq B$

• Monotonicità: $A \subseteq A \cup B$ e $B \subseteq B \cup A$

2.2.2.2 Intersezione

L'intersezione di due insiemi A e B si denota

 $A\cap B$

ed è definita come

$$A \cap B = \{ x | x \in A \land x \in B \}$$

Le proprietà dell'intersezione sono:

• Idempotenza: $A \cap A = A$

• Commutatività: $A \cap B = B \cap A$

• Associatività: $A \cap (B \cap C) = (A \cap B) \cap C$

• Annichilazione: $A \cap \emptyset = \emptyset$

• Assorbimento: $A \cap B = B$ se $A \subseteq B$

• Monotonicità: $A \cap B \subseteq A$ e $A \cap B \subseteq B$

L'unione e l'intersezione distribuiscono una sull'altra

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

2.2.2.3 Sottrazione

La **sottrazione** tra due insiemi *A* e *B* è definita come

$$A \setminus B = \{ x | x \in A \land x \notin B \}$$

Le proprietà della sottrazione sono:

- $A \setminus A = \emptyset$
- $A \setminus \emptyset = A$
- $\emptyset \setminus A = \emptyset$
- $A \setminus B = A \cap \overline{B}$
- $(A \setminus B) \setminus C = A \setminus (B \cup C) = (A \setminus C) \setminus B$
- $A \setminus B \neq B \setminus A$

2.2.2.4 Differenza simmetrica

La differenza simmetrica tra A e B è

$$A \triangle B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$$

Proprietà:

- $A \triangle A = \emptyset$
- $A \triangle \emptyset = A$
- $A \triangle B = B \triangle A$

2.2.2.5 Complementazione

Dato un insieme di riferimento U (chiamato **Universo**), il **complemento** assoluto di A è definito come:

$$\overline{A} = \{ x | x \in U, x \notin A \} = U \setminus A$$

Le proprietà della complementazione sono:

- $\overline{U} = \emptyset$
- $\overline{\emptyset} = U$
- $\overline{\overline{A}} = A$
- $A \cap \overline{A} = \emptyset$ (terzo escluso)
- $A \cup \overline{A} = U$
- $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$ (legge di De Morgan)
- $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$ (legge di De Morgan)
- $A \subseteq B \iff \overline{B} \subseteq \overline{A}$

2.2.3 Famiglie di insiemi

Un insieme i cui elementi sono tutti insiemi viene chiamato **famiglia di insiemi** (*F*).

Le operazioni su una famiglia di insiemi sono:

$$\cup \mathcal{F} = \{ x \mid x \in A \text{ per almeno un insieme } A \in \mathcal{F} \}$$

$$\cap \mathcal{F} = \{ x \mid x \in A \ \forall \ A \in \mathcal{F} \}$$

Dunque

$$\cup \mathscr{P}(A) = A \ \forall \, A$$

2.2.4 Partizioni

Una partizione di un insieme $A \neq \emptyset$ è una famiglia \mathcal{F} di sottoinsiemi di A tale che:

- $\forall c \in \mathcal{F}, c \neq \emptyset$ (non trivialità)
- $\cup \mathcal{F} = A$ (copertura)
- se $c \in \mathcal{F}$, $D \in \mathcal{F}$ e $C \neq D$, allora $C \cap D = \emptyset$ (disgiunzione)

2.3 Relazioni

2.3.1 Ordinamenti negli insiemi

Ricordate che gli insiemi non sono ordinati

$${x, y} = {y, x}$$

A volte è utile poter ordinare i loro elementi in modo chiaro.

2.3.1.1 Coppia ordinata

Una **coppia ordinata** è una collezione di due elementi, dove si può distinguere il **primo** e il **secondo** elemento

$$\langle x, y \rangle$$

Il primo elemento è x e il secondo è y. Notare che esiste la coppia ordinata $\langle x, x \rangle$.

2.3.1.1.1 Formulazione Insiemistica

La coppia ordinata $\langle x, y \rangle$ non è altro che l'insieme

$$\{\{x\},\{x,y\}\}$$

Sia $\mathscr{F} = \{\{x\}, \{x, y\}\}\}$. $x \in \mathbb{N}$ il **primo elemento** $\iff x \in \mathbb{N}$ (appartiene a tutti gli insiemi). $y \in \mathbb{N}$ il **secondo elemento** $\iff y \in \mathbb{N}$ (non appartiene a tutti gli insiemi) oppure $\{y\} = \mathbb{N}$ $\{y\}$.

Notare che $\langle x, x \rangle = \{\{x\}, \{x, x\}\}.$

2.3.1.1.2 Definizione giusta

Vogliamo vedere che questa definizione caratterizza le coppie ordinate. Cioè, che

$$\langle a, b \rangle = \langle x, y \rangle \iff \{\{a\}, \{a, b\}\} = \{\{x\}, \{x, y\}\}\$$

Le coppie ordinate sono ben definite.

2.3.1.1.3 Generalizzazione

Possiamo generalizzare le coppie ordinate a **tuple ordinate** di lunghezza $n \ge 2$ (n-tuple ordinate) definendo

$$\langle x_1, x_2, \dots, x_n, x_{n+1} \rangle = \langle \langle x_1, x_2, \dots, x_n \rangle, x_{n+1} \rangle$$

2.3.1.2 Prodotto cartesiano

Dati due insiemi A e B, definiamo il prodotto cartesiano come

$$A \times B = \{ \langle x, y \rangle \mid x \in A, y \in B \}$$

 $A \times B$ è l'insieme di tutte le coppie ordinate dove:

- il primo elemento appartiene ad A
- il secondo elemento appartiene a B

Notare che:

- $A \times B \neq B \times A$
- $A \times \emptyset = \emptyset = \emptyset \times A$

 $A \times A$ è a volte denotato con A^2 .

2.3.1.3 Sequenze

 S^n è l'insieme di tutte le n-tuple di elementi di S definito tramite prodotti cartesiani di S. Una **sequenza finita** di elementi di S è un elemento di S^n per qualche $n \in \mathbb{N}$.

In altre parole, una sequenza è una tupla ordinata

$$\langle s_1, \dots s_n \rangle$$

dove $n \in \mathbb{N}$ e ogni $s_i \in S$.

2.3.1.4 Segmento

Data una sequenza finita $\sigma = \langle s_1, \dots, s_n \rangle$, una sequenza $\sigma' = \langle s_k, s_{k+1}, \dots, s_\ell \rangle$ dove $1 \le k \le \ell \le n$ è chiamata un **segmento** di σ .

Il segmento è **iniziale** sse k = 1.

2.3.2 Relazioni

Una **relazione** tra gli elementi di due insiemi A e B non è altro che un sottoinsieme di $A \times B$.

Una relazione rappresenta un **collegamento** tra gli elementi di A e quelli di B.

2.3.3 Relazioni tra oggetti

Se la coppia ordinata $\langle x, y \rangle$ appartiene a una relazione $R \subseteq A \times B$, si dice che $x \in A$ ha come **corrispondente** $y \in B$ nella relazione R oppure che $x \in A$ in relazione con y.

2.3.4 Rappresentazione tabulare

Ogni relazione si può rappresentare graficamente tramite una tabella.

2.3.5 Rappresentazione matriciale

R si può anche rappresentare tramite una matrice booleana.

$$\begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

Ogni riga rappresenta un elemento dell'insieme A e ogni colonna rappresenta un elemento di B.

2.3.6 Elementi di una relazione

Sia $R \subseteq A \times B$ una relazione

• Il **dominio** di R (dom(R)) è l'insieme di tutti gli oggetti $x \in A$ tali che $\langle x, y \rangle \in R$ per qualche $y \in B$.

$$dom(R) = \{ x \in A \mid \exists y \in B, \langle x, y \rangle \in R \}.$$

• Il **codominio** è l'insieme di tutti gli oggetti $y \in B$ tali che $\langle x, y \rangle \in R$ per qualche $x \in A$.

$$codom(R) = \{ y \in B | \exists x \in A, \langle x, y \rangle \in R \}.$$

• Il **campo** o **estensione** di $R \ge dom(R) \cup codom(R)$.

2.3.7 Relazioni n-arie

Il concetto di relazione può estendersi a tuple ordinate con **più di due** elementi.

Se gli elementi delle tuple appartengono allo stesso insieme A, allora una relazione n-aria è un sottoinsieme di A^n .

Esempi:

- $\{\langle x, x \rangle | x \in A\}$ è una relazione binaria su A
- $\{\langle x,y\rangle \mid x,y\in\mathbb{N},x\leq y\}$ è la relazione d'ordine naturale su \mathbb{N}
- $\{\langle x, y, z \rangle | x, y, z \in \mathbb{R}, x^2 + y^2 = z^2\}$ è un'area geometrica

2.3.8 Operazioni su relazioni

Siano $R, S \subseteq A \times B$ due relazioni

- $R \cup S$ ha tutte le coppie che appartengono a R o a S
- $R \cap S$ ha tutte le coppie che appartengono ad entrambi $R \in S$
- $\overline{R} = \{ \langle x, y \rangle | \langle x, y \rangle \notin R \} \subseteq A \times B$ è il **complemento** di R
- $R^{-1} = \{ \langle y, x \rangle | \langle x, y \rangle \in R \} \subseteq A \times B$ è la relazione inversa di R

2.3.9 Proprietà delle relazioni

Siano $R, S \subseteq A \times B$ due relazioni

- Se $R \subseteq S$ allora $\overline{S} \subseteq \overline{R}$
- $\overline{(R \cap S)} = \overline{R} \cup \overline{S}$
- $\overline{(R \cup S)} = \overline{R} \cap \overline{S}$
- se $R \subseteq S$ allora $R^{-1} \subseteq S^{-1}$
- $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$
- $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$

2.3.9.1 Esempi

Siano
$$A = \{a, b\}, R = \{\langle a, b \rangle, \langle b, a \rangle\}, S = \{\langle a, b \rangle, \langle a, a \rangle\} (R \subseteq A^2; S \subseteq A^2).$$

- 1. $R \cap S = \{\langle a, b \rangle\}$
- 2. $\overline{R \cup S} = \{\langle b, b \rangle\}$
- 3. $R^{-1} = R$
- 4. $S^{-1} \neq S$

2.3.10 Identità

Dato un insieme A, la relazione

$$I_A = \{ \langle x, x \rangle \mid x \in A \}$$

dove ogni elemento è in relazione con se stesso è chiamata l'**identità** su A.

2.3.11 Proprietà delle relazioni binarie

Una relazione $R \subseteq A^2$ è

- Riflessiva se $\langle x, x \rangle \in R \ \forall \ x \in A \ (I_A \subseteq R)$
- Simmetrica se $\langle x, y \rangle \in R \implies \langle y, x \rangle \in R (R = R^{-1})$
- Antisimmetrica se $\langle x, y \rangle, \langle y, x \rangle \in R \implies x = y(R \cap R^{-1} \subseteq I_A)$
- Antisimmetrica (def alternativa) se $x \neq y \land \langle x, y \rangle \in R \implies \langle y, x \rangle \notin R (R \cap R^{-1} \subseteq I_A)$
- Transitiva se $\langle x, y \rangle, \langle y, z \rangle \in R \implies \langle x, z \rangle \in R$

2.4 Funzioni

Una classe di relazioni binarie di particolare importanza sono le **funzioni** (o **applicazioni**).

Una funzione è una relazione $R \subseteq A \times B$ tale che ad ogni $a \in A$ corrisponde **al più** un elemento $b \in B$.

Formalmente: se $\langle a, b \rangle$, $\langle a, c \rangle \in R$ allora b = c.

Notazione: $f: A \rightarrow B$

Se per ogni $a \in A$ esiste **esattamente un** $b \in B$ tale che $\langle a, b \rangle \in R$, allora fè una **funzione totale**.

Riformulazione: una relazione $f \subseteq A \times B$ è una funzione se per ogni $x \in \text{dom}(f)$ esiste un unico $y \in B$ tale che $\langle x, y \rangle \in f$. f(x) denota tale elemento y.

Se $x \in dom(f)$, allora si dice che fè **definita** in x. Se A = dom(f) allora fè una funzione **totale**.

2.4.1 Funzione iniettiva

Una funzione f è **iniettiva** se porta elementi distinti del dominio in elementi distinti del codominio (immagine).

```
f:A\to B è iniettiva sse per ogni x,y\in A, x\neq y\implies f(x)\neq f(y).
```

2.4.2 Funzione suriettiva

Una funzione fè **suriettiva** quando ogni elemento di Bè immagine di almeno un elemento di A ossia, quando $B = \operatorname{codom}(f)$.

```
f:A\to B è suriettiva sse per ogni y\in B esiste un x\in A tale che f(x)=y.
```

2.4.3 Funzione bijettiva

Una funzione $f: A \rightarrow B$ è **biettiva** sse è iniettiva e suriettiva.

Attenzione: *f* può non essere totale.

- Ad ogni $x \in dom(f)$ corrisponde esattamente un $y \in B$
- Ad ogni $y \in B$ corrisponde esattamente un $x \in dom(f)$

2.4.4 Corrispondenza biunivoca

Una **corrispondenza biunivoca** tra A e B è una relazione binaria $R \subseteq A \times B$ tale che ad ogni elemento di A corrisponde uno ed un solo elemento di B e viceversa, ad ogni elemento di B corrisponde uno ed un solo elemento di A.

Tale *R* deve essere una funzione *totale*, *iniettiva* e *suriettiva*.

2.4.5 Formalizzazione

$$f \subseteq A \times B$$

$$dom(f) = \{ x \in A \mid \exists y \in B. \langle x, y \rangle \in f \}$$
$$codom(f) = \{ y \in A \mid \exists x \in B. \langle x, y \rangle \in f \}$$

Funzione (parziale)

$$\forall a \in A. \forall x, y \in B. (\langle a, x \rangle \in f \land \langle a, y \rangle \in f) \implies x = y$$

Funzione totale

$$\forall a \in A.\exists! \ x \in B.\langle a, x \rangle \in f$$

Funzione iniettiva

$$\forall a \in A. \forall x, y \in B. (\langle a, x \rangle \in f \land \langle a, y \rangle \in f) \implies x = y \land$$

$$\forall a, b \in A. \forall x \in B. (\langle a, x \rangle \in f \land \langle b, x \rangle \in f) \implies a = b$$

Funzione suriettiva

$$\forall a \in A. \forall x, y \in B. (\langle a, x \rangle \in f \land \langle a, y \rangle \in f) \implies x = y \land$$

$$\forall x \in B. \exists a \in A. \langle a, x \rangle \in f$$

Funzione biiettiva

$$\forall a \in A. \forall x, y \in B. (\langle a, x \rangle \in f \land \langle a, y \rangle \in f) \implies x = y \land$$

$$\forall a, b \in A. \forall x \in B. (\langle a, x \rangle \in f \land \langle b, x \rangle \in f) \implies a = b \land$$

$$\forall x \in B. \exists a \in A. \langle a, x \rangle \in f$$

2.4.6 Punto fisso

Sia A un insieme e $f: A \rightarrow A$ una funzione.

Un **punto fisso** di fè un elemento di A che coincide con la sua immagine

$$x = f(x)$$

2.4.7 Operazioni

Sia *A* un insieme.

Un'**operazione** (*n*-aria) su A è una funzione $A^n \to A$.

L'operazione è totale sse la funzione è totale.

2.4.8 Immagine inversa

Sia $f: A \to B$ una funzione e $y \in B$ l'**immagine inversa** di f in y è

$$f^{-1}: B \to \mathcal{P}(A)$$
$$f^{-1}(y) = \{ x \in A \mid f(x) = y \}$$

Nota: fè iniettiva sse per ogni $y \in B$, $f^{-1}(y)$ ha al più un elemento.

2.4.9 Funzione inversa

Una funzione $f:A\to B$ è **invertibile** se esiste una funzione $g:B\to A$ tale che per ogni $x\in A$ e ogni $y\in B$ o

$$g(f(x)) = x$$

$$f(g(y)) = y$$

In questo caso, $g \in l'$ **inverso** di fe si rappresenta come f^{-1} .

Una funzione f è invertibile sse è iniettiva. f_{-1} è totale sse f è suriettiva.

2.4.10 Composizione di Funzioni

La **composizione** di due funzioni si riferisce all'applicazione di una funzione al risultato di un'altra.

Siano $f:A\to B$ e $g:B\to C$ due funzioni. La funzione composta $g\circ f:A\to C$ è definita per ogni $x\in A$ da

$$(g \circ f)(x) = g(f(x))$$

 $(g \circ f)(x)$ è definita sse f(x) e g(f(x)) sono definite.

Se $f: A \to B \in g: C \to D$ sono due funzioni, allora la composizione $g \circ f \grave{e}$ solo definibile se $\operatorname{codom}(f) \subseteq C$.

Le proprietà della composizione:

- Associativa: $f \circ (g \circ h) = (f \circ g) \circ h$
- Se $f \in g$ sono entrambe iniettive, allora $f \circ g$ è **iniettiva**
- Se $f \in g$ sono entrambe suriettive, allora $f \circ g$ è suriettiva
- Se fe g sono entrambe invertibili, allora $f \circ g$ è **invertibile** $((g \circ f)^{-1} = f^{-1} \circ g^{-1})$

2.4.11 Funzione caratteristica

I sottoinsiemi di un insieme A si possono anche rappresentare tramite una funzione detta caratteristica.

La funzione caratteristica di un insieme $S \subseteq A$ è la funzione $f_S : A \to \{0,1\}$ dove

$$f_S(x) = \begin{cases} 0 & x \notin S \\ 1 & x \in S \end{cases}$$

Per ogni $x \in A$

- $f_{S \cap T}(x) = f_S(x) \cdot f_T(x)$
- $f_{S \cup T}(x) = f_S(x) + f_T(x) f_S(x) \cdot f_T(x)$
- $f_{S \wedge T}(x) = f_S(x) + f_T(x) 2 \cdot f_S(x) \cdot f_T(x)$

2.4.12 Multinsiemi

Un multinsieme è una variante di un insieme dove gli elementi si possono ripetere

$$\{a, a, b, c, c, c\} \neq \{a, b, c\}$$

Formalmente un multinsieme è una funzione da un insieme a IN

$$f: A \to \mathbb{N}$$

che esprime quante volte si ripete ogni elemento nel multinsieme $(A = \{a, b, c, d\})$

$$\{\langle a, 2 \rangle, \langle b, 1 \rangle, \langle c, 3 \rangle, \langle d, 0 \rangle\}$$

2.5 Cardinalità

I **numeri cardinali** si utilizzano per misurare gli insiemi (indicare la loro *grandezza*). Se un insieme è **finito**, la sua cardinalità è un numero naturale (il numero di elementi). Con i numeri cardinali, possiamo anche misurare e classificare insiemi **infiniti**.

2.5.1 Cardinalità tramite funzioni

Georg Cantor utilizzò le proprietà delle funzioni per paragonare la cardinalità degli insiemi.

Sia f una funzione $f: A \rightarrow B$

- Se f è suriettiva allora B non è "più grande" di A
- Se fè totale e iniettiva allora A non è "più grande" di B

Due insiemi sono **equipotenti** (hanno la stessa cardinalità) sse esiste una funzione **biuni**voca fra di loro.

$$A \sim B$$

2.5.2 Cardinalità finite

Se A ha n elementi, allora $A \sim \{1, ..., n\}$. In questo caso si dice che A è **finito** e ha **cardinalità** (o potenza) n.

Utilizziamo la notazione

$$|A| = n$$

I numeri naturali si utilizzano come cardinali finiti.

$$Se|A| = n \text{ allora } |\mathscr{P}(A)| = 2^n.$$

2.5.3 Numerabili

Basati su questa definizione, chiamiamo **numerabili** tutti gli insiemi che hanno la cardinalità di **N**. I suoi elementi possono essere posti in corrispondenza biunivoca con i naturali.

$$A \sim \mathbb{N} \sim \mathbb{N}^+$$

La cardinalità di \mathbb{N} è chiamata \aleph_0 .

$$|\mathbb{N}| = \aleph_0$$

 κ_0 è il più piccolo dei numeri cardinali **transfiniti** (i cardinali per misurare insiemi infiniti). Ovviamente κ_0 non è un numero naturale.

I seguenti insiemi sono numerabili:

- · L'insieme dei numeri pari
- · L'insieme dei numeri primi
- L'insieme dei numeri interi $\ensuremath{\mathbb{Z}}$

$$f: \mathbb{N} \to \mathbb{Z}$$

$$f(x) = \begin{cases} -\frac{x}{2} & \text{se } x \text{ pari} \\ \lceil \frac{x}{2} \rceil & \text{se } x \text{ dispari} \end{cases}$$

- Il prodotto cartesiano $\mathbb{N} \times \mathbb{N}$
- I numeri razionali $\mathbb{Q} (\subset \mathbb{N} \times \mathbb{N})$

2.5.4 Il continuo

$$[0,1] = \{ x \in \mathbb{R} \mid 0 \le x \le 1 \} \sim \mathscr{P}(\mathbb{N})$$

Denotiamo per convenzione $|\mathscr{P}(\mathbb{N})| = 2^{\aleph_0}$. Allora $|\mathbb{R}| \geq 2^{\aleph_0}$.

Cantor dimostro che $\aleph_0 < 2^{\aleph_0}$ (in realtà che $|A| < |\mathscr{P}(A)|$). Dunque \mathbb{R} non è numerabile.

2.5.4.1 Teorema di Cantor

$$\aleph_0 < 2^{\aleph_0}$$

Dobbiamo dimostrare che *non esiste* una funzione biunivoca $f: \mathbb{N} \to \mathscr{P}(\mathbb{N})$.

Supponiamo che esiste una tale funzione f. Definiamo

$$Z = \{ z \in \mathbb{N} \mid n \notin f(n) \} \subseteq \mathbb{N}$$

Siccome fè biunivoca (quindi suriettiva), esiste $k \in \mathbb{N}$ tale che f(k) = Z.

Domanda: $k \in \mathbb{Z}$?

Se $k \in \mathbb{Z}$, allora per definizione $k \notin f(k) = \mathbb{Z}$. Se $k \notin \mathbb{Z}$, allora $k \notin f(x)$ e quindi per definizione $k \in \mathbb{Z}$.

Conclusione: la funzione f non può esistere.

2.5.5 Gerarchia transfinita

Cantor definì la gerarchia dei numeri transfiniti

$$\aleph_0 < \aleph_1 < \aleph_2 < \dots$$

L'**ipotesi del continuo** dice che $\aleph_1=2^{\aleph_0}$. Non ci sono insiemi di cardinalità intermedia fra \mathbb{N} e \mathbb{R} .

3 Strutture relazionali, Grafi e Ordinamenti

3.1 Rappresentazioni

Le relazioni possono essere rappresentate da diverse forme:

- Rappresentazione per elencazione: descrivere l'insieme di coppie ordinate $(R = \{\langle 1, 2 \rangle, \langle 2, 4 \rangle, \langle 3, 6 \rangle\})$
- Rappresentazione sagittale: collegare con delle frecce gli elementi che verificano la relazione
- Rappresentazione tramite diagramma cartesiano: se S e T sono sottoinsiemi di \mathbb{R} , rappresentare le coppie come coordinate sul piano cartesiano
- Rappresentazione tramite tabella: una matrice booleana con per colonne gli elementi dell'insieme di arrivo e per righe l'insieme di partenza.

3.1.1 Relazioni in un insieme

Una relazione $R \subseteq S \times S$ è detta **relazione in** S. In una relazione in S, la rappresentazione sagittale collassa in un **grafo**. Usiamo lo stesso insieme per l'origine e la destinazione di ogni freccia. Formalmente un grafo è costituito da **nodi** collegati fra loro da frecce (o **spigoli**). Se $\langle x, y \rangle \in \mathbb{R}$, disegnamo uno spigolo da x a y.

Le proprietà di una relazione sono (again):

• **Riflessiva** se: $\langle x, x \rangle \in R \ \forall x \in S$ (ogni nodo ha un cappio)

- Irriflessiva se: $\langle x, x \rangle \notin R \ \forall \ x \in S$ (nessun nodo ha un cappio)
- **Simmetrica** se: $\langle x, y \rangle \in R \implies \langle y, x \rangle \in R$ (ogni spigolo ha il suo inverso)
- **Asimmetrica** se: $\langle x, y \rangle \in R \implies \langle y, x \rangle \notin R$ (nessuno spigolo ha il suo inverso e nessun nodo ha un cappio)
- Antisimmetrica se: $\langle x, y \rangle \in R \land \langle y, x \rangle \in R \implies x = y$ (nessuno spigolo ha il suo inverso (escluso il cappio))
- Transitiva se: $\langle x, y \rangle \in R \land \langle y, z \rangle \in R \implies \langle x, z \rangle \in R$

Una relazione $R \subseteq S \times S$ in S è

- Connessa se ogni due elementi sono collegati. $\forall x, y \in Sx \text{ se } x \neq y \text{ allora } \langle x, y \rangle \in R$ oppure $\langle y, x \rangle \in R$
- Relazione di equivalenza se è riflessiva, transitiva e simmetrica

La relazione vuota $\emptyset \subseteq S \times S$ è irriflessiva, simmetrica, asimmetrica, antisimmetrica e transitiva. L'identità I_S è riflessiva, simmetrica e transitiva (è una relazione di equivalenza).

3.1.2 Riflessività ed operazioni

Siano R ed R' due relazioni su S

- 1. Se R è riflessiva, R^{-1} è riflessiva (stesso per irriflessibilità)
- 2. R è riflessiva sse \overline{R} è irriflessiva
- 3. Se R ed R' sono riflessive, allora anche $R \cup R'$ e $R \cap R'$ sono riflessive (stesso per irriflessibilità)

3.1.3 Simmetria ed operazioni

Siano R ed R' due relazioni su S

- 1. R è simmetrica sse $R = R^{-1}$
- 2. Se R è simmetrica, allora R^{-1} e \overline{R} sono simmetriche
- 3. R è antisimmetrica sse $R \cap R^{-1} \subseteq I_S$
- 4. R è asimmetrica sse $R \cap R^{-1} = \emptyset$
- 5. Se R ed R' sono simmetriche, allora anche $R \cup R'$ e $R \cap R'$ sono simmetriche

3.1.4 Transitività ed operazioni

Se R ed R' sono transitive allora $R \cap R'$ è transitiva. $R \cup R'$ non è necessariamente transitiva.

3.1.5 Matrici booleane

Una matrice booleana è una matrice a valori $\{0,1\}$. La matrice booleana associata a $R \subseteq S \times T$ si denota M_R . Se |S| = n e |T| = m, M_R ha n righe e m colonne.

La riga i corrisponde all'elemento $s_i \in S$, la colonna j corrisponde all'elemento $t_j \in T$ ed è tale che

$$m_{ij} = egin{cases} 1 & \langle s_i, t_j \rangle \in R \ 0 & ext{altrimenti} \end{cases}$$

3.1.5.1 Proprietà di una matrice booleana

Se R è una relazione su S, M_R ha le stesse proprietà della visualizzazione tabulare.

- R è **riflessiva** sse M_R ha tutti 1 sulla diagonale principale
- R è **irriflessiva** sse M_R ha tutti 0 sulla diagonale principale
- R è **simmetrica** sse M_R è simmetrica
- R è asimmetrica sse per ogni i, j, se $m_{ij} = 1$, allora $m_{ji} = 0$
- R è antisimmetrica sse per ogni $i \neq j$, se $m_{ij} = 1$, allora $m_{ji} = 0$
- $M_{R^{-1}}$ è la trasposta di M_R
- $M_{\overline{R}}$ si ottiene scambiando 0 e 1 in M_R

$$R = \{\langle 0, 0 \rangle, \langle 1, 2 \rangle\}$$

$$M_{R} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \longrightarrow M_{R^{-1}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

3.1.6 Operazioni su matrici booleane

Se M e N sono due matrici booleane di dimensioni $n \times m$, $M \sqcup N$ (il **join** di M e N) è la matrice booleana L didimensionee $n \times m$ i cui elementi sono

$$\ell_{ij} = egin{cases} 1 & m_{ij} = 1 \lor n_{ij} = 1 \ 0 & ext{altrimenti} \end{cases}$$

 $M \sqcap N$ (il **meet** di $M \in N$) è la matrice booleana L di dimensione $n \times m$ i cui elementi sono

$$\ell_{ij} = egin{cases} 1 & m_{ij} = 1 \wedge n_{ij} = 1 \ 0 & ext{altrimenti} \end{cases}$$

 \sqcup e \sqcap sono commutative, associative e distributive fra di loro.

3.1.7 Prodotto booleano

Siano M e N matrici booleane di dimensioni $n \times m$ e $m \times p$ rispettivamente. Il loro **prodotto booleano** è la matrice $L = M \odot N$ di dimensioni $n \times p$ dove

$$\ell_{ij} = egin{cases} 1 & \exists \, k, \, 1 \leq k \leq m \, \text{t.c.} \, m_{ik} = 1 \land n_{kj} = 1 \\ 0 & \text{altrimenti} \end{cases}$$

Esempio:

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \odot \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Questa operazione è associativa ma non commutativa.

YT Link con spiegazione¹.

¹https://youtu.be/BjTeDlpj-ts?si=snvhzdZvQByBGinl

3.2 Composizione di relazioni

Dati $R_1 \subseteq S \times T$, $R_2 \subseteq T \times Q$:

$$R_2 \circ R_1 = \{ \langle x, y \rangle \in S \times Q \mid \exists \in T. \langle x, z \rangle \in R_1, \langle z, y \rangle \in R_2 \}$$

 $R_2 \circ R_1$ è la **composizione** di R_1 e R_2 .

La composizione si può calcolare tramite il prodotto di matrici booleane.

$$M_{R_2 \circ R_1} = M_{R_1} \odot M_{R_2}$$

3.3 Relazioni di Equivalenza

Una **relazione di equivalenza** ci aiuta a creare blocchi di elementi che hanno *qualcosa* in comune. Sono relazioni che si comportano "come l'uguaglianza" tra oggetti. Dal punto di vista di una proprietà data, **non** esistono differenze tra due elementi in una relazione di equivalenza.

Def: una relazione riflessiva, simmetrica e transitiva è detta **relazione di equivalenza**.

Esempio:

- Appartenere alla stessa classe
- Essere nati nello stesso anno
- · Essere parallele nell'insieme delle rette

• ...

Se $f: A \rightarrow B$ è una funzione totale, allora la relazione

$$R := \{ \langle x, y \rangle \in A \times A \mid f(x) = f(y) \}$$

è una relazione di equivalenza.

La rappresentazione sagittale di una relazione di equivalenza consiste di diversi grafi totalmente collegati.

3.3.1 Partizioni e classi di equivalenza

Dividendo *S* in gruppi i cui elementi sono "uguali", possiamo studiare insiemi grandi osservando soltanto pochi elementi. Questi gruppi sono chiamati **classi di equivalenza**.

Sia S un insieme. Una partizione di S è una famiglia di insiemi $\mathscr{P} = \{T_1, \dots, T_n\}, T_i \subseteq S, 1 \le i \le n$ tali che:

- $T_i \neq \emptyset$ per ogni $i, 1 \leq i \leq n$
- $T_i \cap T_j \neq \emptyset$ per ogni $i, j, 1 \le i \le j \le n$
- $\cup \mathscr{P} = S$

Se R è una **relazione di equivalenza** su S allora $T \neq \emptyset \subseteq S$ è una classe di equivalenza se per ogni $x \in S$:

$$x \in T \iff \{y \in S \mid \langle x, y \rangle \in R\} = T$$

Cioè, x è in relazione con tutti e soltanto quegli elementi di T.

Sia S un insieme e R una relazione di equivalenza su S. Ogni elemento $x \in S$ definisce una classe di equivalenza

$$[x]_R = \{ y \in S \mid \langle x, y \rangle \in R \}$$

La famiglia di insiemi $\{[x]_R \mid x \in S\}$ (gli elementi sono le classi di equivalenza di S) è chiamato l'**insieme quoziente** di S rispetto a R (indicato con S/R). L'insieme quoziente è una partizione di S.

Esempio: Sia $n \in \mathbb{N}$. La relazione $\simeq_n \subseteq \mathbb{N} \times \mathbb{N}$ definita come

$$x \simeq_n y \iff x \equiv y \mod n \leftrightarrow (\operatorname{ossia}(x \mod n) = (y \mod n))$$

è una relazione di equivalenza.

Per n = 4, \simeq_4 definisce 4 classi di equivalenza.

$$[x] = \{x + 4k \mid k \in \mathbb{N}\}$$

$$[0] = \{0, 4, 8, 12, \dots\}$$

$$[1] = \{1, 5, 9, 13, \dots\}$$

$$[2] = \{2, 6, 10, 14, \dots\}$$

$$[3] = \{3, 7, 11, 15, \dots\}$$

L'insieme quoziente $\mathbb{N}/\simeq_4=\{[0],[1],[2],[3]\}$ è spesso indicato con \mathbb{N}_4 .

3.4 Grafi

Un grafo è definito da

- Un insieme di **nodi** (chiamati anche *vertici*)
- Collegamenti tra vertici che possono essere:
 - Orientati (archi)
 - Non orientati (spigoli)
- (eventualmente) Dati associati ai nodi e collegamenti (etichette)

I grafi possono rappresentare relazioni binarie.

3.4.1 Gradi

Un arco che va da va wè **uscente** da ved entrante in w. Il numero di archi uscenti dal nodo vè il **grado di uscita** di v. Il numero di archi entranti in vè il **grado in ingresso** di v.

Un nodo è chiamato:

- Sorgente se non ha archi entranti (grado di entrata 0)
- Pozzo se non ha archi uscenti (grado di uscita 0)
- Isolato se non ha archi né uscenti né entranti

I nodi $v \in w$ sono **adiacenti** se c'è un arco tra $v \in w$ (in qualunque direzione). Questo arco è **incidente** su $v \in w$. Il grado di v è il numero di nodi adiacenti a v.

3.4.2 Cammino

Un cammino è una sequenza finita di nodi

$$\langle v_1, v_2, \dots, v_n \rangle$$

tali che per ogni i, $1 \le i < n$, esiste un arco uscente da v_i ed entrante in v_{i+1} . Questo cammino va da v a w se $v_1 = v$ e $v_n = w$.

3.4.3 Semicammino

Un **semicammino** è una sequenza finita di nodi

$$\langle v_1, v_2, \dots, v_n \rangle$$

tali che per ogni i, $1 \le i < n$, esiste un arco che collega v_i e v_{i+1} in **direzione arbitraria**.

La **lunghezza** di un (semi)cammino è il numero di archi che lo compongono (n-1).

Un (semi)cammino è **semplice** se tutti i nodi nella sequenza sono diversi (anche se $v_1 = v_n$).

Un grafo è **connesso** se esiste sempre un semicammino tra due nodi qualsiasi.

3.4.4 Ciclo

Un **ciclo** intorno al nodo v è un cammino tra v e v. Un **semiciclo** intorno al nodo v è un semicammino tra v e v. Un **cappio** intorno a v è un ciclo di lunghezza 1.

3.4.5 Distanza

La distanza da va wè la lunghezza del cammino più corto tra ve w.

- La distanza da va vè sempre 0
- Se non c'è nessun cammino da va wallora la distanza è infinita (∞)

In un grafo ordinato, la distanza da va w non è sempre uguale alla distanza da wa v.

3.4.6 Trovare le distanze: Algoritmo

Ricerca in **ampiezza** delle distanze da *v* ad ogni nodo.

Inizializzazione:

- Segnare v come visitato con distanza d(v) = 0
- · Segnare altri nodi come non visitato

Ciclo:

- Trovare un nodo w visitato con distanza minima d(w) = n
- Segnare w come esplorato
- Per ogni nodo w' incidente da w: se w' è **non visitato**, segnare w' come **visitato** e d(w') = n + 1

Finalizzazione: ad ogni nodo w **non visitato** assegnare $d(w) = \infty$.

3.4.7 Definizione formale di grafo

Un **grafo orientato** è una coppia G = (V, E) dove

- Vè un insieme di **nodi**
- $E \subseteq V \times V$ è una relazione binaria in V (archi)

Un **grafo non orientato** è un grafo orientato dove E è una relazione **simmetrica**. In questo caso gli archi sono rappresentati come **coppie non ordinate** (v, w) ((v, w) = (w, v)). Graficamente togliamo le frecce (l'ordine) agli archi.

3.4.8 Sottografo

Il grafo $G_1=(V_1,E_1)$ è un **sottografo** di $G_2=(V_2,E_2)$ sse $V_1\subseteq V_2$ e $E_1\subseteq E_2$. Un sottografo si ottiene togliendo nodi e/o archi dal grafo.

Sia G = (V, E) un grafo. Il sottografo **indotto** da $V' \subseteq V$ è il grafo che ha soltanto archi adiacenti agli elementi di V'. Formalmente è il grafo G = (V', E') dove

$$E' = \{ \langle v, w \rangle \in E \mid v, w \in V' \}$$

3.4.9 Grafo aciclico orientato (DAG)

Un grafo orientato senza cicli si chiama grafo aciclico orientato.

In un DAG non esiste nessun cammino da un nodo a se stesso

3.4.10 Grafi etichettati

Un **grafo etichettato** è una tripla $G = (V, E, \ell)$ dove

- (*V*, *E*) è un grafo
- ℓ : E → L è una funzione totale che associa ad ogni arco e ∈ E un'etichetta da un insieme L

Diamo un'etichetta ad ogni arco del grafo.

Un grafo etichettato può rappresentare una relazione ternaria (e viceversa).

I nomi e le etichette sono spesso irrilevanti.

3.4.11 Matrice di adiacenza

La **matrice di adiacenza** di un grafo G = (V, E) è la matrice booleana della relazione E.

La matrice di adiacenza di grafi non orientati è sempre simmetrica.

3.4.12 Grafo completo

Un **grafo completo** collega ogni nodo con tutti gli altri nodi (ma non con se stesso).

La sua matrice di adiacenza ha 0 su tutta la diagonale ed 1 sulle altre posizioni.

3.4.13 Connettività

Ricordiamo che G = (V, E) è **connesso** se per ogni $v, w \in V$ esiste un **semicammino** da v a w. G è **fortemente connesso** se per ogni due nodi $v, w \in V$ esiste un **cammino** da v a w. In un grafo fortemente connesso:

- Esiste sempre un ciclo che visita ogni nodo (non necessariamente semplice)
- Non ci sono né sorgenti né pozzi

3.4.14 Isomorfismi tra grafi

Due grafi $G_1 = (V_1, E_1)$ e $G_2 = (V_2, E_2)$ sono **isomorfi** se esiste una funzione biunivoca $f: V_1 \to V_2$ tale che

$$\langle v, w \rangle \in E_1 \iff \langle f(v), f(w) \rangle \in E_2$$

L'isomorfismo f mantiene la struttura del grafo G_1 , ma sostituisce i nomi dei vertici con quelli di G_2 . Due grafi isomorfi sono in realtà lo **stesso grafo** con i nodi rinominati.

3.5 Alberi

Un'albero è un DAG connesso tale che

- Esiste esattamente un nodo sorgente (radice dell'albero)
- Ogni nodo diverso dalla radice ha un solo arco entrante

I nodi pozzo di un albero sono chiamati **foglie** o **nodi esterni**. Tutti gli altri nodi sono chiamati **interni**. Per analogia con gli **alberi genealogici**, le relazioni tra i nodi usano nomi come *padre*, *figlio*, *discendente*, ...

3.5.1 Proprietà

Il grado di ingresso di un nodo è:

- 1 se non è la radice
- 0 se è la radice

Il grado di uscita di un nodo non ha restrizioni.

Per ogni nodo v che non è la radice, esiste esattamente un cammino dalla radice a v.

Un albero non può essere mai vuoto (la radice esiste sempre).

Se un albero è finito, allora esiste *almeno* una foglia (che può essere anche la radice).

I nodi **intermedi** sono contemporaneamente padre e figlio.

3.5.2 Rappresentazione gerarchica

Gli alberi spesso rappresentano **strutture gerarchiche**. In questo caso, l'ordine è **implicito** (gli archi si disegnano **senza frecce**).

3.5.3 Cammini in un albero

In un albero c'è esattamente un **cammino** dalla radice a qualunque nodo v diverso dalla radice. Ogni nodo w in questo cammino è un **ascendente** di v (oppure avo) e v è un **discendente** di w (la radice è l'unico nodo senza discendenti). Se il cammino da w a v ha lunghezza 1, allora w è il padre di v e v è un figlio di w.

3.5.4 Profondità

La **profondità** di un nodo vè la lunghezza del cammino dalla radice a v.

L'altezza di un albero è la profondità massima dei suoi nodi.

3.5.5 Alberi binari

Un **albero binario** è un albero dove ogni nodo ha al massimo due figli. I figli di un nodo in un albero binario sono **ordinati** (*figlio sinistro* e *figlio destro*).