COMP1210 Tutorial 5

- 1. Let $X = \{a, b, c\}$. Which of the following relations on X are reflexive, symmetric, transitive or an equivalence relation.
- a. $R_1 = \{(a, a), (a, b), (b, b), (b, a)\}$
- b. $R_2 = \{(a, a), (b, b), (c, c)\}$
- 2. Given that the relation R is defined on the set of natural numbers \mathbb{N} by xRy iff x is a multiple of y or y is a multiple of x.

 Determine whether R is an equivalence relation.
- 3. Prove that the relation xRy defined by $x \sim y \iff x y = 4k$, where $x, y, k \in \mathbb{Z}$, is an equivalence relation on \mathbb{Z} . Find the *equivalence classes* of x = 2 and x = 4.
- 4. Prove that the relation xRy defined by $x \equiv y \mod 5$ where $x, y \in \mathbb{Z}$, is an equivalence relation. Note that $x \equiv y \mod 5$ means that $5 \mid x y$. Find the equivalence classes of x = 2 and x = 4.
- 5. A relation R is defined on the set $S = \mathbb{Z} \times \mathbb{Z}$ by (a, b) R(c, d) if and only if a + d = b + c. Show that R is an equivalence relation on S. Determine the equivalence class of (x, y).
- 6. A relation R is defined on the set $S = \mathbb{N}$, the set of natural numbers, such that $(a,b) \in R$ iff $\exists m \in \mathbb{N}$ such that b = ma. Is R an equivalence relation? Please justify your answer.
- 7. Let R be a relation, defined on \mathbb{Z} , the set of integers, by xRy if and only if x-y is a multiple of p, where p is a fixed positive integer.
- (i) Show that R is an equivalence relation.
- (ii) Find the equivalence class of $x \in \mathbb{Z}$.

- 8. Let \mathbb{Z} be the set of integers, and let ∇ be the relation on \mathbb{Z} such that for all $m, n \in \mathbb{Z}$, $(m, n) \in \nabla$ iff m n = 2k, for some $k \in \mathbb{Z}$.
- (i) Show that ∇ is an equivalence relation.
- (ii) Identify the equivalence class of $x \in \mathbb{Z}$.
- (iii) Identify the distinct (two of them) equivalence classes of ∇ .