NLA EXAM 1

Written by Misha Kilmer

Part I: Fill in the Blank

1. Let
$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 2 \\ 3 & 0 & -4 \\ -2 & 1 & 4 \end{bmatrix}$$

Then $\|\mathbf{A}\|_F =$ ______

and $\|\mathbf{A}\|_1 =$ ______

- 3. Suppose **P** is an orthonormal proctor onto a subspace of \mathbb{C}^m of dimension k < m. What is $\|P\|_F$ What is the dimension of the space onto which $(\mathbf{I} \mathbf{P})$ projects?
- 4. Give a (non-trivial) example of 2×2 matrices \mathbf{A}, \mathbf{B} such that $\|\mathbf{A} + \mathbf{B}\|_{\infty} = \|\mathbf{A}\|_{\infty} + \|\mathbf{B}\|_{\infty}$. Your \mathbf{A} and \mathbf{B} must have all nonzero entries.

- 5. Assume the largest two singular values of $\bf A$ are 10 and 3. Let $\bf x=-2v_1+3v_2$ where $\bf v_1, \bf v_2$ are the first two right singular vectors. What is $\|\bf Ax\|_2^2$ (Note the square on the norm term).
- 6. Let $\mathbf{A} = \mathbf{Q}\mathbf{R}$ be the full QR for $m \times n$ matrix \mathbf{A} , and $\mathbf{b} = \mathbf{A}\mathbf{x}$ for where $\|\mathbf{x}\|_2 = 5$. Suppose $\|\mathbf{R}\|_2 \le 10$. Give an upper bound on $\|\mathbf{b}\|_2 \mathbf{A}$.
- 7. True or False: If $\bf A$ is Hermitian, the eigenvalues of $\bf A$ are equal to the singular values of $\bf A$.
- 8. True or False: The full QR factorization of an $m \times n$ matrix **A** always exists, even if the matrix is rank deficient.
- 9. True or False: If the singular values of the matrix **A** are distinct and non-zero, then the SVD is unique.

Part II: Short Answer

1. Suppose $\operatorname{col}(A) = \operatorname{span} \left\{ \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} \right\}$

Find an orthonormal basis for the column space of **A**.

2. Let $W = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Does $\|\mathbf{x}\| := \sqrt{\mathbf{x}^T W^T W \mathbf{x}}$ define a norm on \mathbb{R}^2 ? If yes, prove it. If no, explain why not.

3. Give a formula for the inverse of $\mathbf{I} - \mathbf{u}\mathbf{e}_k^T$, where \mathbf{e}_k^T is the standard unit vector (i.e kth column of the identity matrix) and \mathbf{u} has non-zeros only on the rows k+1 to n. Here k < n. Verify your formula is indeed an inverse.

- 4. Let $\mathbf{q_1}, \mathbf{q_2}$, be an orthonormal basis for a subspace \mathcal{S} in \mathbb{C}^m . Let \mathbf{P} be the orthogonal projector onto \mathcal{S} , and let \mathbf{P}^{\perp} denotre the orthogonal projector onto the complementary space \mathcal{S}^{\perp} . Answer the following.
 - (a) Give a formula for \mathbf{P}
 - (b) Give a formula for an orthogonal projector (call it P_1) onto span $\{q_1\}$ and find a formula for an orthogonal projector onto span $\{q_2\}$ (call it P_2)
 - (c) Prove that $\mathbf{P}^{\perp} = (\mathbf{I} \mathbf{P_1})(\mathbf{I} \mathbf{P_2})$
- 5. Let **P** be an orthogonal projector. Show that $(\mathbf{I} 2\mathbf{P})$ is a unitary matrix.
- 6. Let **P** be an orthogonal projector. Show, using the definition of the 2-norm as an induced matrix norm, that $\|\mathbf{P}\|_2 = 1$

- 7. Let **A** be a block diagonal matrix $\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2 \end{bmatrix}$ where \mathbf{A}_i are each $n \times n$ invertible. Assume $\mathbf{A} = \mathbf{U_i} \mathbf{S_i} \mathbf{V_i^*}, i = 1, 2$ be the SVD's of the $\mathbf{A_i}$. Find the SVD of \mathbf{A} .
- 8. Let $\mathbf{A} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & \frac{1}{2} \\ -\frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & -\frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ and use it to answer the following (show/verify)
 - (a) Verify that the given factorization for **A** is the SVD of **A**
 - (b) Find $\|\mathbf{A}\|_2$.
 - (c) Find $\|\mathbf{A}\|_F$.
 - (d) Find the **economy size** SVD of **A**.
 - (e) Find an orthogonal projection matrix \mathbf{P} , onto $col(\mathbf{A})$.
 - (f) Find an orthogonal projection matrix \mathbf{W} , onto $null(\mathbf{A})$.
 - (g) Find the best rank-1 matrix approximation, A_1 of A in the matrix 2-norm.
 - (h) Give the error $\|\mathbf{A} \mathbf{A_1}\|_2$
- 9. You have a square matrix \mathbf{A} , and are given $\mathbf{A} = \mathbf{Q}\mathbf{R}$, the QR factorization of \mathbf{A} . But you ned to solve $\mathbf{A}^*\mathbf{z} = \mathbf{c}$ for \mathbf{z} . Explain how to do this without explicitly computing the inverse of any matrices.

NLA EXAM 2

1. Suppose **A** is $m \times m$ invertible. Give the total number of floating point operations (big-Oh or asymptotic is fine) for computing the solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$, including the time to reduce **A** to upper triangular form using Householder reflectors. (Break down the cost per step).

- 2. On homework for the case m=2, we gained intuition on the Kahan-Gastinel theorem, which says for an $m \times m$ invertible matrix \mathbf{A} , $\frac{1}{\operatorname{cond}(\mathbf{A})}$ gives the distance from the set of all singular matrices; thus, the larger the condition number, the smaller the distance to singularity. (Here, $\operatorname{cond}(\mathbf{A})$ is with respect to any of the p-norms.) But we also know that if A is not invertible, $\det(\mathbf{A}) = 0$. So is it true that a small determinant gives information on the distance of \mathbf{A} from singularity? Let's check.
 - (a) Let **A** be any invertible matrix, and let c be a positive number. Show $cond(\mathbf{A}) = cond(c\mathbf{A})$.
 - (b) Give the relationship between $det(\mathbf{A})$ and $det(c\mathbf{A})$.
 - (c) What do you conclude about the use of the determinant to gauge the distance of a matrix from singularity, and why?

3. Give the formula for the relative condition number associated with evaluating the function $f(x) = e^x$ for x > 1. What is happening to the condition number as a function of x, and, knowing this measures relative sensitivity of output to small relative changes in input, why does this make sense, given the graph of the function?

4. A base-10, normalized floating point number system has 2 digits of precision, the exponent range is $-3 \le e \le 3$. Give the upper bound on the relative distance between any pair of adjacent (on the number line) floating point numbers (excluding 0).

5. Let $\mathbf{A} = \mathbf{U} \begin{bmatrix} 1 & 0 \\ 0 & 10^{-3} \end{bmatrix} \mathbf{V}^*$ with \mathbf{U}, \mathbf{V} orthogonal. The columns of \mathbf{U} are $\mathbf{u_1}, \mathbf{u_2}$. Consider the two systems $\mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{A}\tilde{\mathbf{x}} = \tilde{\mathbf{b}}$, where $\mathbf{b} = 5\mathbf{u_1}$, and $\delta \mathbf{b} := \mathbf{b} - \tilde{\mathbf{b}} = 10^{-2}\mathbf{u_2}$. Show that

$$\frac{\|\mathbf{x} - \tilde{\mathbf{x}}\|_2}{\|\mathbf{x}\|_2} = 2$$

6. Let c, x_1, x_2 be real numbers, assume none are 0 . Show that the algorithm to compute the scalar-vector product $c \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ on a computer using normalized floating point arithmetic and satisfying the Fundamental Theorem of Floating Point Arithmetic is backward stable.

7. Let $\mathbf{A} = \begin{bmatrix} 8 & 3 & 4 \\ 3 & 5 & -2 \\ 4 & -2 & -1 \end{bmatrix}$ (note \mathbf{A} is symmetric). Making use of Householder reflectors, find an orthogonal matrix Q so that $\mathbf{T} := \mathbf{Q}\mathbf{A}\mathbf{Q}^T$ is tridiagonal (i.e. $T_{3,1} = 0 = T_{1,3}$).

- 8. Let a < b be real numbers (but not necessarily positive). We can compute the midpoint of the interval [a, b] using either
 - (a) $\frac{a+b}{2}$ or
 - (b) $a + \frac{b-a}{2}$.

Give at least 2 scenarios in which, under floating point arithmetic, one formula might be preferred to the other.

9. Let $\hat{\mathbf{x}}$ be the solution to the linear least squares problem (i.e. $\hat{\mathbf{x}}$ minimizes $\|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2$ over all vectors in \mathbb{R}^2) where

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$$

Let the residual vector be $\mathbf{r} = \mathbf{b} - \mathbf{A}\hat{\mathbf{x}}$. Without computing $\hat{\mathbf{x}}$, which of the following three vectors is a possible value for the residual vector, and why?

(a)
$$\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
, (b)
$$\begin{bmatrix} -1\\1\\1\\-1 \end{bmatrix}$$
, (c)
$$\begin{bmatrix} -1\\-1\\1\\1 \end{bmatrix}$$

previous problem.

10. Let
$$\mathbf{q}_1 = \begin{bmatrix} .5 \\ .5 \\ 0 \\ .5 \\ .5 \\ 0 \end{bmatrix}$$
, $\mathbf{q}_2 = \begin{bmatrix} .5 \\ -.5 \\ .5 \\ 0 \\ 0 \\ .5 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}$. Compute the orthogonal projection, $\hat{\mathbf{b}}$, of \mathbf{b} onto span $\{\mathbf{q}_1, \mathbf{q}_2\}$. Then, compute vector \mathbf{w} so that $\mathbf{b} = \hat{\mathbf{b}} + \mathbf{w}$ and verify \mathbf{w} is orthogonal to $\hat{\mathbf{b}}$.

11. Let $\mathbf{Q}_1 = [\mathbf{q}_1, \mathbf{q}_2]$ be the 6×2 matrix formed from the $\mathbf{q}_1, \mathbf{q}_2$ in the previous problem. Define $\mathbf{R}_1 = \begin{bmatrix} -4 & 2 \\ 0 & 1 \end{bmatrix}$. Define $\mathbf{A} = \mathbf{Q}_1 \mathbf{R}_1$, so that $\mathbf{Q}_1 \mathbf{R}_1$ is the economy QR factorization of \mathbf{A} . Use this fact to find the least squares solution $\hat{\mathbf{x}}$ that minimizes $\|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2$, where \mathbf{b} is as defined in the

- 12. Now suppose \mathbf{q}_3 has unit length and is orthogonal to $\mathbf{q}_1, \mathbf{q}_2$, so that $\mathbf{Q}_1 = [\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3]$ let $\mathbf{R}_1 = \begin{bmatrix} -4 & -2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. Define $\mathbf{A} = \mathbf{Q}_1 \mathbf{R}_1$, so \mathbf{A} is now 6×3 but \mathbf{R}_1 is rank deficient.
 - (a) Give the dimension of Null(A) and give a basis for Null(A).
 - (b) Express the (set of) least squares solution(s) to $\min_{\mathbf{x}} \|\mathbf{b} \mathbf{A}\mathbf{x}\|_2^2$ using the information given above.
 - (c) Give the unique minimum norm least squares solution.

NLA FINAL

Part I: Short Answer

- 1. Suppose LU decomposition with partial pivoting is used to factor \mathbf{A} as $\mathbf{PA} = \mathbf{LU}$. Give the steps needed (Not the details of the factorization algorithm!) to compute the solution to $\mathbf{Ax} = \mathbf{b}$. Give the (big-Oh) flop count for each step. (Your answer should not be more than about 4 lines)
- 2. What does it mean for an eigenvalue λ , of an $m \times m$ matrix **A** to be defective?
- 3. If partial piviting is used to factor $\mathbf{PA} = \mathbf{LU}$ for $m \times m$ matrix \mathbf{A} , we know the $|L_{ij}| \leq \underline{\hspace{1cm}}$
- 4. Let \mathbb{F} be a normalized floating point number system using base 10, 4 digits of precision. Then the machine unit roundoff, $\epsilon_{mach} = \underline{\hspace{1cm}}$. This means that if $0 < \epsilon < \epsilon_{mach}$, $fl(1 + \epsilon) = \underline{\hspace{1cm}}$
- 5. Let A be $m \times m$ invertible matrix. The p-norm condition number of **A** is defined as (do not assume p =2): _____
- 6. We wise to solve $\mathbf{A}\mathbf{x} = \mathbf{b}$ for invertible \mathbf{A} . We have an algorithm that returns $\hat{\mathbf{x}}$, with residual $\mathbf{R} = \mathbf{b} \mathbf{A}\hat{\mathbf{x}}$. Then $\frac{\|\mathbf{x} \hat{\mathbf{x}}\|_p}{\|\mathbf{x}\|_p} \leq \underline{\hspace{1cm}}$
- 7. Suppose we compute a least-squares solution \hat{x} to $\min_{x} \|\mathbf{A}\mathbf{x} \mathbf{b}\|_{2}$ for $m \times n$ full rank matrix \mathbf{A} . Then the residual $\mathbf{r} = \mathbf{b} \mathbf{A}\hat{\mathbf{x}}$ lives in what subspace of \mathbb{C}^{m}
- 8. Let $m \times m$ matrix **B** be defined as $\mathbf{B} := \mathbf{I} \mathbf{u}\mathbf{v}^*$. Explain how to compute the product $\mathbf{B}\mathbf{x}$ in $\mathcal{O}(m)$ flops.
- 9. Give the steps in the shifted QR iteration for computing eigenvalues. Then, show that 2 successive iterations are similar matrices.
- 10. Suppose you have computed 3 eigenvectors v_1, v_2, v_3 for an $m \times m$ symmetric matrix **A**. Explain how to compute a starting guess x_0 for the Rayleigh Quotient iteration so that the iteration will converge to one of the eigenpairs you haven't already found.

Part II: Short Answer

- 1. Let $A = \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}$
 - (a) What are the Gershgorian disks for the matrix.
 - (b) Perform 1 iteration of the (unshifted) QR iteration on the matrix
- 2. For the matrix in the previous problem, the eigenvalues are $\lambda_1 = 5$ and $\lambda_2 = -1$.
 - (a) To which of the eigenvalues will the inverse iteration with shift of $\mu = 1$ converge (explain)?
 - (b) How fast will it converge?
- 3. Suppose \mathbf{A} is $m \times m$ full rank matrix but is not symmetric. We want to solve $\mathbf{A}\mathbf{x} = \mathbf{b}$ and clearly there is a unique solution for which we could use pivoted LU or QR to solve. However, if we multiply both sides by \mathbf{A}^* , the solution to $\mathbf{A}^*\mathbf{A}\mathbf{x} = \mathbf{A}^*\mathbf{b}$ is the same as the original but now we have an HPD matrix for which we can compute a Cholesky decomposition instead and use it to solve the second system.
 - (a) In big-Oh, compare the flops required of the three approaches (The three approaches being using $\mathbf{P}\mathbf{A} = \mathbf{L}\mathbf{U}$ on $\mathbf{A}\mathbf{x} = \mathbf{b}$, using $\mathbf{A} = \mathbf{Q}\mathbf{R}$ on $\mathbf{A}\mathbf{x} = \mathbf{b}$, or using Cholesky on $\mathbf{A}^*\mathbf{A}\mathbf{x} = \mathbf{b}$)
 - (b) Which approach(es) would be preferred in practice, and why?
- 4. Let **A** be a (fixed) symmetric positive definite matrix in $\mathbb{R}^{m \times m}$. Use the *eigendecomposition* of **A** to prove that $||v||_{\mathbf{A}} := \sqrt{\mathbf{v}^{\mathbf{T}} \mathbf{A} \mathbf{v}}$ defines a valid norm on \mathbb{C}^m

- 5. Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ be (fixed)symmetric and positive definite matrix. Two vectors $\mathbf{w}, \mathbf{v} \in \mathbb{R}^m$ are called A-conjugate (or A-orthogonal) if $\mathbf{w}^T \mathbf{A} \mathbf{v} = 0$. Because $\mathbf{A} = \mathbf{R}^T \mathbf{R}$ for non-singular \mathbf{R} , we can show that $\mathbf{w}^T \mathbf{A} \mathbf{v} = \mathbf{w}^T \mathbf{R}^T \mathbf{R} \mathbf{v}$ defines a valid inner product on \mathbb{R}^m (a fact you do not need to prove). Let $\mathcal{S} = \operatorname{span}\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$, with $\mathbf{x}_i \in \mathbb{R}^m$ and $\dim(\mathcal{S}) = 3$. Give a Gram-Schmidt-like algorithm to compute an A-conjugate basis for \mathcal{S}) = 3 (they only have to be A-conjugate, there's no 'normalization' necessary)
- 6. An invariant subspace of a matrix $\mathbf{A} \in \mathbb{C}^{m \times m}$ is a subspace of \mathcal{S} such that $\mathbf{A}\mathbf{x} \in \mathcal{S}$ for every $\mathbf{x} \in \mathcal{S}$.
 - (a) Let $\mathbf{A} = \mathbf{Q}\mathbf{T}\mathbf{Q}^*$ be the Schur decomposition of \mathbf{A} , which implies $\mathbf{A}\mathbf{Q} = \mathbf{Q}\mathbf{T}$. Suppose that the first 3 diagonal elements of \mathbf{T} are non-zero. Partition \mathbf{Q}, \mathbf{T} so that:

$$\mathbf{A} \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} = \end{bmatrix}$$

So that T_{11} is 3×3 . This relationship shows that span $\{q_1, q_2, q_3\}$ is an invariant subspace of A. Why?

- (b) Since **T** was triangular, $\mathbf{T_{11}}$ is triangular. And $\mathbf{Q_1}$ has orthonormal columns. Use these facts to find the least squares solution \mathbf{y} , to the problem $\min_{\mathbf{y} \in \mathbb{C}^m} \|(\mathbf{AQ_1})\mathbf{y} \mathbf{b}\|_2^2$
- 7. The so-called "generalized eigenvalue problem" $\mathbf{A}\mathbf{x} = \lambda \mathbf{M}\mathbf{x}$ occurs in applications involving mass-spring systems, where \mathbf{A} is called the stiffness matrix, \mathbf{M} is called the mass matrix. If \mathbf{M} is SPD, then \mathbf{M} is invertible, so this can (in theory!) be converted into an eigenvalue problem $\mathbf{M}^{-1}\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$. However, if \mathbf{A} is also symmetric, this unfortunately doesn't preserve symmetry as the matrix $\mathbf{M}^{-1}\mathbf{A}$ is now not symmetric. Fortunately, \mathbf{M} is SPD and can be factored with a Cholesky factorization $\mathbf{M} = \mathbf{R}^{T}\mathbf{R}$.
 - (a) Use this factorization to convert $(\mathbf{M}^{-}\mathbf{1}\mathbf{A})\mathbf{x} = \lambda\mathbf{x}$ into an eigenvalue/eigenvector problem¹, $\mathbf{R}^{-\mathbf{T}}\mathbf{A}\mathbf{R}^{-\mathbf{1}}\mathbf{y} = \lambda\mathbf{y}$ with the same eigenvalues. What is the relationship between the eigenvectors \mathbf{x} and \mathbf{y} of each of the systems?
 - (b) If A is symmetric positive definite, show that $R^{-T}AR^{-1}$ is also symmetric positive definite.
 - (c) Suppose we want to apply power iteration to find a dominant eigenpair of $\mathbf{R^{-T}AR^{-1}}$ (assuming one exists). Explain how, in practice, you can compute the necessary matrix vector product $\mathbf{z^{(k+1)}} = \mathbf{R^{-T}AR^{-1}y^{(k)}}$ without computing the inverse of the Cholesky factor!

The notation $\mathbf{R}^{-\mathbf{T}}$ is equivalent to $(\mathbf{R}^{-1})^T = (\mathbf{R}^{\mathbf{T}})^{-1}$.

Matrix Analysis

Final Exam

- 1. Let **A** and **B** be $n \times n$ Hermitian matrices. Assume that **B** has rank at most r. Prove that $\lambda_{k+r}(\mathbf{A}) \geq \lambda_k(\mathbf{A} + \mathbf{B})$ for k = 1, 2, ..., n 2r.
- 2. Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$. Let I denote the $n \times n$ identity matrix.
 - (a) Show that $(\mathbf{I} \bigotimes \mathbf{A})^k = \mathbf{I} \bigotimes \mathbf{A}^k$ and $(\mathbf{B} \bigotimes \mathbf{I})^k = \mathbf{B}^k \bigotimes \mathbf{I}$ for all integers k.
 - (b) show that $e^{\mathbf{I} \otimes \mathbf{A}} = \mathbf{I} \otimes e^{\mathbf{A}}$ and $e^{\mathbf{B} \otimes \mathbf{I}} = e^{\mathbf{B}} \otimes \mathbf{I}$
 - (c) Show that the matrices $I \otimes A$ and $B \otimes I$ commute.
 - (d) show that $e^{\mathbf{B} \otimes \mathbf{B}} = e^{(\mathbf{I} \otimes \mathbf{A}) + (\mathbf{B} \otimes \mathbf{I})} = e^{\mathbf{B}} \otimes e^{\mathbf{A}}$
- 3. Consider the matrix

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 3 \end{pmatrix}$$

The eigenvalues of **A** are $\lambda_1 = 1, \lambda_2 = 1$ and $\lambda_3 = 2$

- (a) Show that $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ is a generalized eigenvector of order 2 corresponding to $\lambda=1$
- (b) Find an eigenvector corresponding to $\lambda = 2$
- (c) Express **A** in its Jordan canonical form i.e. $\mathbf{A} = \mathbf{Q}\mathbf{J}\mathbf{Q}^{-1}$. You only need to specify **Q** and **J**.
- 4. Let **A** be an $n \times n$ matrix. Recall the definition of the *i*-th Gershgorian radius:

$$R_i = \sum_{\substack{j=1\\j\neq i}}^n |A_{i,j}|$$

If $|A_{i,j}| > R_i$ for k different values i, prove that $k \leq rank(\mathbf{A})$

[Hint: Consider a certain principal submatrix A]

- 5. This problem concerns matrix functions and partial order.
 - (a) Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$. Consider the function $f(\mathbf{A} = trace(\mathbf{B^T A B}))$. Find the gradient of f with respect to \mathbf{A} i.e., $\nabla f_{\mathbf{A}}$, note that \mathbf{B} is a fixed matrix in the definition of $f(\mathbf{A})$.
 - (b) Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$. Assume that $\mathbf{A} \leq \mathbf{B}$. Prove that $\lambda_i(\mathbf{A}) \leq \lambda_i(\mathbf{B})$ for $1 \leq i \leq n$ i.e., prove that the i-th eigenvalue of \mathbf{A} is less than te i-th eigenvalue of \mathbf{B} .
- 6. Show that adding a row to a matrix cannot decrease its largest singular value.

Numerical Analysis

Midterm I

1. Consider the following function $g: \mathbb{R}^2 \to \mathbb{R}^2$ defined as:

$$g\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} \frac{1}{4}x^2 + \frac{1}{16}y + \frac{23}{32} \\ x + \frac{1}{2}y^2 - \frac{5}{8} \end{bmatrix}$$

(a) Show that $\begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}$ is fixed point of g.

(b) Determine whether the fixed point iteration defined by g is locally convergent to $\begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}$

2. Find a linear polynomial that is the best least square fit to the function $f(x) = e^x$ on the interval [0,1]. [Note: the underlying inner product is defined $\langle f,g\rangle = \int_0^1 f(x)g(x) dx$.]

3. (a) Compute the Lagrange interpolating polynomial that passes through the points (0,1),(2,3) and (3,0). [Note: you just have to write the polynomial. You do not have to simplify it.]

(b) Given $f(x) = e^x$, let P denote the Lagrange interpolating polynomial that interpolates f at the points -1, -.05, 0, 0.5, 1. Bound the error |f(1/4) - P(1/4)|. [Remark: it is not necessary to construct P]

(c) Given $f(x) = e^x$, let Q denote the degree 4 Chebyshev interpolating polynomial on [-1,1]. Bound the error |f(x) - Q(x)| for any $x \in [-1,1]$ i.e. provide the explicit worst-case error bound. [Remark: it is not necessary to construct Q]

4. Let $f \in C^2([a,b])$. We divide [a,b] into n sub-intervals and set $h = \frac{b-a}{n}$. Define the nodes $x_1, x_2, ..., x_{n+1}$ as follows:

$$x_1 = 0$$
 and $x_i = x_{i-1} + h$ for $i \in [2, n+1]$.

Given $(x_1, f(x_1)), (x_2, f(x_2)), ..., (x_{n+1}, f(x_{n+1}))$, let g(x) be the interpolating linear spline to f. Formally g(x) is continuous on $[x_1, x_{n+1}]$, is a straight line on each interval $[x_i, x_{i+1}]$ for i = 1, 2, ..., n and it interpolates f(x) at the nodes. Prove that

$$|f(x) - g(x)| \le \frac{1}{8}h^2 ||f''||_{\infty}$$
 for any $x \in [a, b]$

where $||f''||_{\infty} = \max_{a < x < b} |f''(x)|$

5. Let f(x) be a continuous function on [a,b]. prove that its minimax polynomial is unique. [Recall the minimax polynomial is the polynomial of degree at most n that is the closet to f in L^{∞} norm]. [Hint: Use the Chebyshev equioscillation theorem.]