BPS: Bug Positioning System

DAC 2011

Andrew DeOrio, Daya Khudia and Valeria Bertacco (University of Michigan)

Post-silicon debugging

- The most challenging post-silicon bugs are intermittent:
 - A same test does not expose the bug in every run

Post-silicon debugging with BPS

- Locate failures in time and space
 - 1. Online hardware logging
 - 2. Offline software post-analysis
- Environment: noisy, non-deterministic

Statistical approach

- Characterize signal activity statistically
- Multiple executions of a same tests are divided into two groups: passing and failing runs

Signature collection during testing

- Summarize signal value over time
- Statistical separation between noise and bug

SW post-analysis: bug band model ■ Failing band Passing band Signature 0 bug occurrence bug detected Time behavior of 1 signal from the MEM

Experimental Setup

Test Platform

- OpenSPARC T2 processor
- Monitored 41,744 control signals
- Non-determinism
 - Variable memory delay, crossbar random traffic
- **10** bugs
 - e.g., functional bug in PCX, electrical error in Xbar
- - 10 testcases
 - e.g., constrained random, floating point

Signal Localization blimp rand fp_addsub 1.b. f.p. $\sqrt{\frac{2}{c}}$ / $\sqrt{\frac{1}{c}}$ / $\sqrt{\frac{1}{c}$ fp muldiv n.b. <mark>f.n. v 👸 b. V+ V+ V+ V+</mark> n.b. isa2_basic isa3_asr_pr isa3 window ldst_sync mpgen_smc .b. f.n. v ≌n. v+ v+ v+ v+ n.k n2_lsu_asi tlu_rand

Conclusion

- BPS automatically localizes bugs in time and space
- Effective for functional, electrical and manufacturing bugs
- Compact signatures minimize off-chip data transfer
- Submitted to ICCAD'11