introduction to Data Analytics

July 17, 2021

1 Introduction Notebook

Estimated time needed: 10 minutes

1.1 Objectives

After completing this lab you will be able to:

- Acquire data in various ways
- Obtain insights from data with Pandas library

Table of Contents

Data Acquisition

Basic Insight of Dataset

Data Acquisition

There are various formats for a dataset: .csv, .json, .xlsx etc. The dataset can be stored in different places, on your local machine or sometimes online.

In this section, you will learn how to load a dataset into our Jupyter Notebook.

In our case, the Automobile Dataset is an online source, and it is in a CSV (comma separated value) format. Let's use this dataset as an example to practice data reading.

Data source: https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data

Data type: csv

The Pandas Library is a useful tool that enables us to read various datasets into a dataframe; our Jupyter notebook platforms have a built-in Pandas Library so that all we need to do is import Pandas without installing.

```
[1]: # import pandas library
import pandas as pd
import numpy as np
```

Read Data

We use pandas.read_csv() function to read the csv file. In the brackets, we put the file path along with a quotation mark so that pandas will read the file into a dataframe from that address. The file path can be either an URL or your local file address.

Because the data does not include headers, we can add an argument headers = None inside the read_csv() method so that pandas will not automatically set the first row as a header.

You can also assign the dataset to any variable you create.

This dataset was hosted on IBM Cloud object. Click HERE for free storage.

```
[2]: # Import pandas library
import pandas as pd

# Read the online file by the URL provides above, and assign it to variable "df"
other_path = "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/
→IBMDeveloperSkillsNetwork-DA0101EN-SkillsNetwork/labs/Data%20files/auto.csv"
df = pd.read_csv(other_path, header=None)
```

After reading the dataset, we can use the dataframe.head(n) method to check the top n rows of the dataframe, where n is an integer. Contrary to dataframe.head(n), dataframe.tail(n) will show you the bottom n rows of the dataframe.

```
[3]: # show the first 5 rows using dataframe.head() method print("The first 5 rows of the dataframe") df.head(5)
```

The first 5 rows of the dataframe

```
[3]:
        0
              1
                            2
                                  3
                                       4
                                             5
                                                            6
                                                                 7
                                                                         8
                                                                                9
         3
               ?
     0
                                                  convertible
                                                                rwd
                                                                      front
                                                                             88.6
                  alfa-romero
                                gas
                                      std
                                            two
               ?
     1
         3
                  alfa-romero
                                                                rwd
                                                                             88.6
                                gas
                                      std
                                            two
                                                  convertible
                                                                      front
     2
         1
               ?
                  alfa-romero
                                gas
                                      std
                                            two
                                                    hatchback rwd
                                                                      front
                                                                             94.5
     3
         2
                                                                      front
                                                                             99.8
            164
                          audi
                                gas
                                      std
                                           four
                                                         sedan
                                                               fwd
         2
            164
                          audi
                                gas
                                      std
                                           four
                                                         sedan
                                                               4wd
                                                                     front
                                                                             99.4
         16
                17
                                         21
                                                22
                                                    23
                                                        24
                                                                25
                      18
                             19
                                    20
             mpfi
                                             5000
     0
        130
                    3.47
                           2.68
                                   9.0
                                        111
                                                    21
                                                        27
                                                             13495
                                                    21
                                                        27
     1
        130
              mpfi
                    3.47
                           2.68
                                   9.0
                                        111
                                             5000
                                                             16500
     2
        152
              mpfi
                    2.68
                           3.47
                                   9.0
                                        154
                                             5000
                                                    19
                                                        26
                                                             16500
        109
              mpfi
                    3.19
                           3.40
                                  10.0
                                        102
                                             5500
                                                    24
                                                        30
                                                             13950
        136
              mpfi 3.19 3.40
                                   8.0
                                        115
                                             5500
                                                    18
                                                        22
                                                            17450
```

[5 rows x 26 columns]

Question #1:

Check the bottom 10 rows of data frame "df".

```
[4]: # Write your code below and press Shift+Enter to execute
df.tail(10)
```

```
[4]:
                                                5
                                                             7
                                                                     8
           0
                1
                        2
                                 3
                                         4
                                                        6
                                                                             9
                                                                                        16
     195
           -1
                74
                     volvo
                                        std
                                             four
                                                    wagon
                                                            rwd
                                                                  front
                                                                          104.3
                                                                                       141
                                gas
     196
           -2
               103
                     volvo
                                                    sedan
                                                                 front
                                                                          104.3
                                                                                       141
                                gas
                                        std
                                             four
                                                            rwd
     197
           -1
                74
                     volvo
                                                                          104.3
                                                                                       141
                                        std
                                             four
                                                    wagon
                                                            rwd
                                                                  front
                                gas
     198
           -2
               103
                     volvo
                                             four
                                                    sedan
                                                            rwd
                                                                 front
                                                                          104.3
                                                                                       130
                                gas
                                      turbo
     199
           -1
                74
                    volvo
                                                                 front
                                                                         104.3
                                                                                       130
                                      turbo
                                             four
                                                    wagon
                                                            rwd
                                gas
     200
           -1
                95
                    volvo
                                gas
                                        std
                                             four
                                                    sedan
                                                            rwd
                                                                 front
                                                                         109.1
                                                                                       141
     201
           -1
                95 volvo
                                             four
                                                    sedan
                                                            rwd
                                                                 front
                                                                         109.1
                                                                                       141
                                gas
                                      turbo
     202
           -1
                95
                    volvo
                                gas
                                        std
                                             four
                                                    sedan
                                                            rwd
                                                                 front
                                                                          109.1
                                                                                       173
     203
           -1
                95
                    volvo
                            diesel
                                      turbo
                                             four
                                                    sedan
                                                            rwd
                                                                 front
                                                                         109.1
                                                                                       145
     204
          -1
                95
                     volvo
                                      turbo
                                             four
                                                    sedan
                                                           rwd
                                                                 front
                                                                         109.1
                                                                                       141
                                gas
                                       21
                                             22
                                                      24
             17
                    18
                           19
                                 20
                                                  23
                                                              25
     195
           mpfi
                 3.78
                        3.15
                                9.5
                                      114
                                           5400
                                                  23
                                                      28
                                                           13415
                 3.78
                                      114
                                           5400
     196
           mpfi
                        3.15
                                9.5
                                                  24
                                                      28
                                                           15985
     197
           mpfi
                 3.78
                        3.15
                                9.5
                                      114
                                           5400
                                                  24
                                                      28
                                                           16515
     198
           mpfi
                 3.62
                        3.15
                                      162
                                           5100
                                                      22
                                                           18420
                                7.5
                                                  17
     199
           mpfi
                 3.62
                        3.15
                                7.5
                                      162
                                           5100
                                                  17
                                                      22
                                                           18950
     200
           mpfi
                 3.78
                        3.15
                                9.5
                                      114
                                           5400
                                                  23
                                                      28
                                                           16845
                        3.15
                                           5300
     201
           mpfi
                 3.78
                                8.7
                                      160
                                                  19
                                                      25
                                                           19045
     202
           mpfi
                 3.58
                        2.87
                                8.8
                                      134
                                           5500
                                                  18
                                                      23
                                                           21485
     203
                 3.01
                        3.40
                               23.0
                                      106
                                           4800
                                                      27
                                                           22470
            idi
                                                  26
                 3.78 3.15
                                9.5
                                                      25
     204
          mpfi
                                      114
                                           5400
                                                  19
                                                           22625
```

[10 rows x 26 columns]

Click here for the solution

```
print("The last 10 rows of the dataframe\n")
df.tail(10)
```

Add Headers

Take a look at our dataset. Pandas automatically set the header with an integer starting from 0.

To better describe our data, we can introduce a header. This information is available at: https://archive.ics.uci.edu/ml/datasets/Automobile.

Thus, we have to add headers manually.

First, we create a list "headers" that include all column names in order. Then, we use dataframe.columns = headers to replace the headers with the list we created.

```
[5]: # create headers list
headers = ["symboling", "normalized-losses", "make", "fuel-type", "aspiration", □

→"num-of-doors", "body-style",
```

```
"drive-wheels", "engine-location", "wheel-base", □

→"length", "width", "height", "curb-weight", "engine-type",

"num-of-cylinders", □

→"engine-size", "fuel-system", "bore", "stroke", "compression-ratio", "horsepower",

"peak-rpm", "city-mpg", "highway-mpg", "price"]

print("headers\n", headers)
```

headers

['symboling', 'normalized-losses', 'make', 'fuel-type', 'aspiration', 'num-of-doors', 'body-style', 'drive-wheels', 'engine-location', 'wheel-base', 'length', 'width', 'height', 'curb-weight', 'engine-type', 'num-of-cylinders', 'engine-size', 'fuel-system', 'bore', 'stroke', 'compression-ratio', 'horsepower', 'peak-rpm', 'city-mpg', 'highway-mpg', 'price']

We replace headers and recheck our dataframe:

```
[6]: df.columns = headers df.head(10)
```

[6]:	symboling no	ormalized-losses	s make	fuel-type	aspiration	num-of-doors	\
0	3		? alfa-romero	gas	std		•
1	3		alfa-romero	gas	std	two	
2	1			gas	std	two	
3	2	164		gas	std	four	
4	2	164		gas	std	four	
5	2			gas	std	two	
6	1	158		gas	std		
7	1			gas	std	four	
8	1	158		gas	turbo	four	
9	0	3	? audi	gas	turbo	two	
				Ö			
	body-style	drive-wheels er	ngine-location	wheel-bas	se eng	gine-size \	
0	convertible	rwd	front	88.	6	130	
1	convertible	rwd	front	88.	6	130	
2	hatchback	rwd	front	94.	5	152	
3	sedan	fwd	front	99.	8	109	
4	sedan	4wd	front	99.	4	136	
5	sedan	fwd	front	99.	8	136	
6	sedan	fwd	front	105.	8	136	
7	wagon	fwd	front	105.	8	136	
8	sedan	fwd	front	105.	8	131	
9	hatchback	4wd	front	99.	5	131	
	fuel-system	bore stroke o	compression-rat	tio horsepo	wer peak-	rpm city-mpg	\
0	mpfi	3.47 2.68	Ş	9.0	111 50	000 21	
1	mpfi	3.47 2.68	Ş	9.0	111 50	000 21	
2	mpfi	2.68 3.47	Ş	9.0	154 50	000 19	
3	mpfi	3.19 3.40	10	0.0	102 55	500 24	

```
4
          mpfi 3.19
                         3.40
                                             8.0
                                                                  5500
                                                                              18
                                                         115
5
          mpfi
                3.19
                         3.40
                                             8.5
                                                         110
                                                                  5500
                                                                              19
6
          mpfi
                3.19
                         3.40
                                             8.5
                                                                              19
                                                         110
                                                                  5500
7
                3.19
          mpfi
                         3.40
                                             8.5
                                                         110
                                                                  5500
                                                                              19
                                             8.3
8
          mpfi
                3.13
                         3.40
                                                         140
                                                                  5500
                                                                              17
9
          mpfi 3.13
                         3.40
                                             7.0
                                                         160
                                                                  5500
                                                                              16
 highway-mpg price
           27
               13495
0
1
           27
               16500
2
           26 16500
```

5 25 15250 6 25 17710 7 25 18920 8 20 23875 9 22 ?

30 13950

22 17450

3

4

[10 rows x 26 columns]

We need to replace the "?" symbol with NaN so the dropna() can remove the missing values:

```
[7]: df1=df.replace('?',np.NaN)
```

We can drop missing values along the column "price" as follows:

```
[8]: df=df1.dropna(subset=["price"], axis=0) df.head(20)
```

[8]:	symboling normal	ized-losses	make	fuel-type	aspiration	\
0	3	NaN	alfa-romero	gas	std	
1	3	NaN	alfa-romero	gas	std	
2	1	NaN	alfa-romero	gas	std	
3	2	164	audi	gas	std	
4	2	164	audi	gas	std	
5	2	NaN	audi	gas	std	
6	1	158	audi	gas	std	
7	1	NaN	audi	gas	std	
8	1	158	audi	gas	turbo	
10	2	192	bmw	gas	std	
11	0	192	bmw	gas	std	
12	0	188	bmw	gas	std	
13	0	188	bmw	gas	std	
14	1	NaN	bmw	gas	std	
15	0	NaN	bmw	gas	std	
16	0	NaN	bmw	gas	std	

17	0	1	NaN	br	nw gas	std	
18	2	1	121	chevrole	•	std	
19	1		98	chevrole	et gas	std	
20	0		81	chevrole	et gas	std	
	num-of-doors	hody-style	drive-	wheels a	engine-location	wheel-ba	ıse \
0	two	convertible	arro	rwd	front		3.6
1	two	convertible		rwd	front		3.6
2	two	hatchback		rwd	front		1.5
3	four	sedan		fwd	front		9.8
4	four	sedan		4wd	front		9.4
5	two	sedan		fwd	front		9.8
6	four	sedan		fwd	front		
7	four	wagon		fwd	front		
8	four	sedan		fwd	front		
10	two	sedan		rwd	front		
11	four	sedan		rwd	front		
12	two	sedan		rwd	front		
13	four	sedan		rwd	front		
14	four	sedan		rwd	front		
15	four	sedan		rwd	front		
16	two	sedan		rwd	front		
17	four	sedan		rwd	front		
18	two	hatchback		fwd	front		3.4
19	two	hatchback		fwd	front		l.5
20	four	sedan		fwd	front		1.5
20	1041	boaun		Iwa	110110	0.	
	engine-size	fuel-system	bore		compression-ra	tio horsep	oower \
0	130	mpfi	3.47	2.68		9.0	111
1	130	mpfi	3.47	2.68		9.0	111
2	152	mpfi	2.68	3.47		9.0	154
3	109	mpfi	3.19	3.40	1	0.0	102
4	136	mpfi	3.19	3.40		8.0	115
5	136	mpfi	3.19	3.40		8.5	110
6	136	mpfi	3.19	3.40		8.5	110
7	136	mpfi	3.19	3.40		8.5	110
8	131	mpfi	3.13	3.40		8.3	140
10	108	mpfi	3.50	2.80		8.8	101
11	108	mpfi	3.50	2.80		8.8	101
12	164	mpfi	3.31	3.19		9.0	121
13	164	mpfi	3.31	3.19		9.0	121
14	164	mpfi	3.31	3.19		9.0	121
15	209	mpfi	3.62	3.39		8.0	182
16	209	mpfi	3.62	3.39		8.0	182
17	209	mpfi	3.62	3.39		8.0	182
18	61	2bb1	2.91	3.03		9.5	48
19	90	2bbl	3.03	3.11		9.6	70

20		90	2001	3.03	3.11
	peak-rpm	city-mpg	highway	-mpg	price
0	5000	21		27	13495
1	5000	21		27	16500
2	5000	19		26	16500
3	5500	24		30	13950
4	5500	18		22	17450
5	5500	19		25	15250
6	5500	19		25	17710
7	5500	19		25	18920
8	5500	17		20	23875
10	5800	23		29	16430
11	5800	23		29	16925
12	4250	21		28	20970
13	4250	21		28	21105
14	4250	20		25	24565
15	5400	16		22	30760
16	5400	16		22	41315
17	5400	15		20	36880
18	5100	47		53	5151
19	5400	38		43	6295
20	5400	38		43	6575

2hhl 3 03

3 11

9.6

70

[20 rows x 26 columns]

Now, we have successfully read the raw dataset and added the correct headers into the dataframe.

Question #2:

20

90

Find the name of the columns of the dataframe.

```
[9]: # Write your code below and press Shift+Enter to execute print(df.columns)
```

Click here for the solution

print(df.columns)

Save Dataset

Correspondingly, Pandas enables us to save the dataset to csv. By using the dataframe.to_csv() method, you can add the file path and name along with quotation marks in the brackets.

For example, if you would save the dataframe df as automobile.csv you your local machine, the syntax below, where index = False may use $df.to_csv("automobile.csv", index$ means the row names will not be written. $False) We can also read and save other file formats. We can use similar functions like \verb|pd.read_csv()| and \verb|df.to_csv()| for other file formats. We can use similar functions like \verb|pd.read_csv()| and \verb|df.to_csv()| for other file formats. We can use similar functions like \verb|pd.read_csv()| and \verb|df.to_csv()| for other file formats. We can use similar functions like \verb|pd.read_csv()| and \verb|df.to_csv()| for other file formats. We can use similar functions like \verb|pd.read_csv()| and \verb|df.to_csv()| for other file formats. We can use similar functions like \verb|pd.read_csv()| and \verb|df.to_csv()| for other file for mathematical functions like \verb|pd.read_csv()| and \verb|df.to_csv()| for other file for mathematical functions like \verb|pd.read_csv()| and \verb|df.to_csv()| for other file for mathematical functions like \verb|pd.read_csv()| and \verb|df.to_csv()| for other file for mathematical functions like \verb|pd.read_csv()| and \verb|df.to_csv()| for other file for mathematical functions like \verb|pd.read_csv()| for other file for mathematical functions like functions like functions like functions like fun$

Read/Save Other Data Formats

Data Formate	Read	Save
csv	pd.read_csv()	df.to_csv()
json	<pre>pd.read_json()</pre>	<pre>df.to_json()</pre>
excel	<pre>pd.read_excel()</pre>	<pre>df.to_excel()</pre>
hdf	<pre>pd.read_hdf()</pre>	<pre>df.to_hdf()</pre>
sql	<pre>pd.read_sql()</pre>	<pre>df.to_sql()</pre>
•••	•••	•••

Basic Insight of Dataset

After reading data into Pandas dataframe, it is time for us to explore the dataset.

There are several ways to obtain essential insights of the data to help us better understand our dataset.

Data Types

Data has a variety of types.

The main types stored in Pandas dataframes are object, float, int, bool and datetime64. In order to better learn about each attribute, it is always good for us to know the data type of each column. In Pandas:

[10]: df.dtypes

[10]:	symboling	int64
	normalized-losses	object
	make	object
	fuel-type	object
	aspiration	object
	num-of-doors	object
	body-style	object
	drive-wheels	object
	engine-location	object
	wheel-base	float64
	length	float64
	width	float64
	height	float64
	curb-weight	int64
	engine-type	object
	num-of-cylinders	object
	engine-size	int64
	fuel-system	object

```
object
bore
                      object
stroke
                     float64
compression-ratio
horsepower
                      object
peak-rpm
                      object
                       int64
city-mpg
                       int64
highway-mpg
price
                      object
dtype: object
```

A series with the data type of each column is returned.

[11]: # check the data type of data frame "df" by .dtypes print(df.dtypes)

symboling	int64
normalized-losses	object
make	object
fuel-type	object
aspiration	object
num-of-doors	object
body-style	object
drive-wheels	object
engine-location	object
wheel-base	float64
length	float64
width	float64
height	float64
curb-weight	int64
engine-type	object
num-of-cylinders	object
engine-size	int64
fuel-system	object
bore	object
stroke	object
compression-ratio	float64
horsepower	object
peak-rpm	object
city-mpg	int64
highway-mpg	int64
price	object
dtype: object	

As shown above, it is clear to see that the data type of "symboling" and "curb-weight" are int64, "normalized-losses" is object, and "wheel-base" is float64, etc.

These data types can be changed; we will learn how to accomplish this in a later module.

Describe

If we would like to get a statistical summary of each column e.g. count, column mean value, column standard deviation, etc., we use the describe method: dataframe.describe() This method will provide various summary statistics, excluding NaN (Not a Number) values.

2]: df.des	scribe()					
2]:	symboling	wheel-base	length	wid	th heig	;ht \
count	201.000000	201.000000	201.000000	201.0000	00 201.0000	00
mean	0.840796	98.797015	174.200995	65.8890	55 53.7666	67
std	1.254802	6.066366	12.322175	2.1014	71 2.4478	322
min	-2.000000	86.600000	141.100000	60.3000	00 47.8000	000
25%	0.000000	94.500000	166.800000	64.1000	00 52.0000	00
50%	1.000000	97.000000	173.200000	65.5000	00 54.1000	000
75%	2.000000	102.400000	183.500000	66.6000	00 55.5000	000
max	3.000000	120.900000	208.100000	72.0000	00 59.8000	000
	curb-weight	engine-size	compressi	on-ratio	city-mpg	highway-mpg
count	201.000000	201.000000	20	1.000000	201.000000	201.000000
mean	2555.666667	126.875622	1	.0.164279	25.179104	30.686567
std	517.296727	41.546834		4.004965	6.423220	6.815150
min	1488.000000	61.000000		7.000000	13.000000	16.000000
25%	2169.000000	98.000000		8.600000	19.000000	25.000000
50%	2414.000000	120.000000		9.000000	24.000000	30.000000
75%	2926.000000	141.000000		9.400000	30.000000	34.000000
max	4066.000000	326.000000	2	23.000000	49.000000	54.000000

This shows the statistical summary of all numeric-typed (int, float) columns.

For example, the attribute "symboling" has 205 counts, the mean value of this column is 0.83, the standard deviation is 1.25, the minimum value is -2, 25th percentile is 0, 50th percentile is 1, 75th percentile is 2, and the maximum value is 3.

However, what if we would also like to check all the columns including those that are of type object?

You can add an argument include = "all" inside the bracket. Let's try it again.

```
[13]: # describe all the columns in "df"

df.describe(include = "all")
```

[13]:		symboling	normalized-losses	make	fuel-type	aspiration	\
	count	201.000000	164	201	201	201	
	unique	NaN	51	22	2	2	
	top	NaN	161	toyota	gas	std	
	freq	NaN	11	32	181	165	
	mean	0.840796	NaN	NaN	NaN	NaN	
	std	1.254802	NaN	NaN	NaN	NaN	
	min	-2.000000	NaN	NaN	NaN	NaN	
	25%	0.000000	NaN	NaN	NaN	NaN	

50%	1.000000)	Na	aN	NaN	NaN	Nal	N		
75%	2.000000)	Na	aN	NaN	NaN	Na	N		
max	3.000000)	Na	aN	NaN	NaN	Na	N		
	num-of-door	cs body-styl	e driv	ve-whe	els eng	;ine-locatio	on whe	el-base		\
count	19	99 20	1		201	20	01 201	.000000		
unique		2	5		3		2	NaN		
top	for	ır seda	n		fwd	from	nt	NaN		
freq	1:	13 9	4		118	19	98	NaN		
mean	Na	aN Na	.N		NaN	Na	aN 98	.797015		
std	Na	aN Na	.N		NaN	Na	aN 6	.066366		
min	Na	aN Na	.N		NaN	Na	aN 86	.600000		
25%	Na	aN Na	.N		NaN	Na	aN 94	.500000		
50%	Na	aN Na	.N		NaN	Na	aN 97	.000000		
75%	Na	aN Na	.N		NaN	Na	aN 102	.400000		
max	Na	aN Na	.N		NaN	Na	aN 120	.900000		
	engine-siz	ze fuel-sys	tem h	oore	stroke	compression	n-ratio	horsepo	wer	\
count	201.00000	00	201	197	197	201	.000000		199	
unique	Na	aN	8	38	36		NaN		58	
top	Na	a.N m	pfi 3	3.62	3.40		NaN		68	
freq	Na	aN	92	23	19		NaN		19	
mean	126.87562	22	NaN	NaN	NaN	10	. 164279		NaN	
std	41.54683	34	NaN	NaN	NaN	4	.004965		NaN	
min	61.00000	00	NaN	NaN	NaN	7	.000000		NaN	
25%	98.00000	00	NaN	NaN	NaN	8	.600000		NaN	
50%	120.00000	00	NaN	NaN	NaN	9	.000000		NaN	
75%	141.00000	00	NaN	NaN	NaN	9	.400000		NaN	
max	326.00000	00	NaN	NaN	NaN	23	.000000		NaN	
	peak-rpm	city-mpg	highwa	ay-mpg	price					
count	199	201.000000	201.0	000000	201					
unique	22	NaN		NaN	186	;				
top	5500	NaN		NaN	16500	1				
freq	36	NaN		NaN	2	!				
mean	NaN	25.179104	30.6	686567	NaN	Ī				
std	NaN	6.423220	6.8	315150	NaN	Ī				
min	NaN	13.000000	16.0	000000	NaN	Ī				
25%	NaN	19.000000	25.0	000000	NaN	Ī				
50%	NaN	24.000000	30.0	000000	NaN	Ī				
75%	NaN	30.000000	34.0	000000	NaN	ſ				
max	NaN	49.000000	54.0	000000	NaN					

[11 rows x 26 columns]

Now it provides the statistical summary of all the columns, including object-typed attributes. We can now see how many unique values there, which one is the top value and the frequency of

top value in the object-typed columns.

Some values in the table above show as "NaN". This is because those numbers are not available regarding a particular column type.

Question #3:

You can select the columns of a dataframe by indicating the name of each column. For example, you can select the three columns as follows:

```
dataframe[[' column 1 ',column 2', 'column 3']]
```

Where "column" is the name of the column, you can apply the method ".describe()" to get the statistics of those columns as follows:

dataframe[['column 1',column 2', 'column 3']].describe()

Apply the method to ".describe()" to the columns 'length' and 'compression-ratio'.

```
[14]: # Write your code below and press Shift+Enter to execute
      df[['length','compression-ratio']].describe()
```

```
[14]:
                 length compression-ratio
      count 201.000000
                                201.000000
             174.200995
                                 10.164279
      mean
      std
             12.322175
                                  4.004965
             141.100000
                                  7.000000
      min
      25%
             166.800000
                                  8.600000
      50%
             173.200000
                                  9.000000
      75%
             183.500000
                                  9.400000
             208.100000
                                 23.000000
      max
```

Click here for the solution

symboling

```
df[['length', 'compression-ratio']].describe()
```

Info

Another method you can use to check your dataset is: dataframe.info() It provides a concise summary of your DataFrame.

This method prints information about a DataFrame including the index dtype and columns, nonnull values and memory usage.

```
[15]: # look at the info of "df"
      df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 201 entries, 0 to 204
Data columns (total 26 columns):
 #
    Column
                      Non-Null Count Dtype
    -----
                      -----
 0
                      201 non-null
```

normalized-losses 164 non-null

int64

object

```
2
     make
                        201 non-null
                                         object
 3
     fuel-type
                                         object
                        201 non-null
 4
     aspiration
                        201 non-null
                                         object
 5
     num-of-doors
                                         object
                        199 non-null
 6
     body-style
                                         object
                        201 non-null
 7
     drive-wheels
                        201 non-null
                                         object
 8
     engine-location
                        201 non-null
                                         object
     wheel-base
                        201 non-null
                                         float64
 10 length
                        201 non-null
                                         float64
 11 width
                                         float64
                        201 non-null
 12 height
                                         float64
                        201 non-null
 13
    curb-weight
                        201 non-null
                                         int64
    engine-type
                        201 non-null
                                         object
    num-of-cylinders
                        201 non-null
                                         object
     engine-size
 16
                        201 non-null
                                         int64
     fuel-system
                        201 non-null
                                         object
 18
    bore
                        197 non-null
                                         object
 19
    stroke
                        197 non-null
                                         object
     compression-ratio 201 non-null
                                         float64
 21 horsepower
                        199 non-null
                                         object
    peak-rpm
                                         object
 22
                        199 non-null
 23
    city-mpg
                                         int64
                        201 non-null
    highway-mpg
                        201 non-null
                                         int64
 25
    price
                        201 non-null
                                         object
dtypes: float64(5), int64(5), object(16)
```

memory usage: 42.4+ KB

Excellent! You have just completed the Introduction Notebook!

1.1.1 Thank you for completing this lab!

1.2 Author

Joseph Santarcangelo

1.2.1 Other Contributors

Mahdi Noorian PhD

Bahare Talayian

Eric Xiao

Steven Dong

Parizad

Hima Vasudevan

Fiorella Wenver

Yi Yao.

1.3 Change Log

Date (YYYY-MM-DD)	Version	Changed By	Change Description
2020-10-30	2.3	Lakshmi	Changed URL of the csv
2020-09-22	2.2	Nayef	Added replace() method to remove '?'
2020-09-09	2.1	Lakshmi	Made changes in info method of dataframe
2020-08-27	2.0	Lavanya	Moved lab to course repo in GitLab

##

 $[\]hbox{@}$ IBM Corporation 2020. All rights reserved.