Cosmic-ray detection efficiency in cell phone camera image sensors

Alex Pizzuto

PHYS736: Final Project

Outline

- Active Pixel Sensors & DECO
- Allpix² Simulations
- Observable Distributions
 - Photons
 - Leptons
- Systematics

Active Pixel Sensors and the Distributed Electronic Cosmic-ray Observatory (DECO)

- Junctions of p- and n-type silicon can form diodes
- Ionizing radiation that passes through the active (depletion) region create electron-hole pairs
- The field from the junction transports the charges to readout electronics
- Different ionizing radiation leaves different signatures
- DECO uses cell phone cameras to detect this ionizing radiation, and classifies the events using a deep neural network
- To date, DECO has been mostly data-driven, there is no simulation to verify detector capabilities

Active Pixel Sensors and the Distributed Electronic Cosmic-ray Observatory (DECO)

- Junctions of p- and n-type silicon can form diodes
- Ionizing radiation that passes through the active (depletion) region create electron-hole pairs
- The field from the junction transports the charges to readout electronics
- Different ionizing radiation leaves different signatures
- DECO uses cell phone cameras to detect this ionizing radiation, and classifies the events using a deep neural network
- To date, DECO has been mostly data-driven, there is no simulation to verify detector capabilities

^{*}from arXiv:1803.04493

Allpix² Simulations

- GEANT4 can simulate particle interactions in matter
- Allpix² is a modular framework written on top of GEANT4 for Silicon Pixel detectors
- We combined the detector geometry using GEANT4 objects with an Allpix² pixel array
- · We then simulate photons, electrons, and muons at different energies and incident angles and digitize the signal

Parameter	Value
Number of Pixels	$2592 \times 1944 \ (5,038,848)$
Pixel Size	$0.9 \mu \text{m} \times 0.9 \mu \text{m}$
Depletion Thickness	$26.3 \mu \mathrm{m}$
Chip Thickness	$10 \mu \mathrm{m}$
Phone size	$150 \mathrm{mm} \times 70 \mathrm{mm}$
Temperature	293K
Surrounding Material	Air

Muons

Electrons

Photons

Photons
1000keV 1060 1060 1060 100
820 - 100MeV 800 - (size) -140 -120 -100 -

Photons

- · Simulated 1,000 photons at each of 6 different incident angles at every half decade in energy from 10keV to 10GeV
- Lower energy photons dominated by photoelectric cross section (photoabsorb before reaching detector)
- Higher energy photons pair produce and then the leptons leave signatures

Photons

- · Simulated 1,000 photons at each of 6 different incident angles at every half decade in energy from 10keV to 10GeV
- Lower energy photons dominated by photoelectric cross section (photoabsorb before reaching detector)
- Higher energy photons pair produce and then the leptons leave signatures

Muons

10GeV -140 1020 -120 Deposited Charge Y (pixels) 980 -20 960 940 1300 X (pixels) 1280 1320 1340 1260 1000 100MeV -140980 -120Deposited Charge Y (pixels)960 -940 1140 1080 1100 1120 1060 X (pixels)

Electrons

Finding Observable Distributions

- · For each particle simulated, we record charge deposited on each pixel
- Different particles have different cross sections and energy losses in Silicon
- For minimum ionizing particles, to first order, expected signal:

$$\frac{dE}{dx} \approx \rho \left(\frac{2MeVcm^2}{g} \right) \frac{Z^2}{\beta^2}$$

$$\Rightarrow E_{deposit} = 4.66 \cdot \frac{H}{\cos \theta}$$

(E in MeV, H in cm)

$$\Rightarrow N_{\text{pair}} \leq \frac{3386}{\cos \theta}$$

Leptons

- · Electron and Muon energy losses described by Bethe-Bloch
- Observed distributions of energy losses agree well with analytical result

Dependence on Incident Angle

- Simulate muons at different incident angles
- Expect deposited charge to scale as trajectory length in depletion region
- Expect Track length to scale as projection onto pixel plane
- Observed distributions (blue and green) agree well with geometric assumptions (red)

Systematics: Depletion Thickness

- Investigated the effect of variable depletion thickness with fixed 45° incidence
 - This parameters in actual camera sensors is proprietary
- For small uncertainties in depletion thickness, we get uncertainty in incident angle:

$$\begin{split} \theta - \phi &= \arctan \frac{l}{H} - \arctan \frac{l}{H + \delta} \\ &= \arctan \left(\frac{\frac{\delta l}{H^2 + \delta H}}{1 - \frac{l^2}{H(\delta + H)}} \right) \end{split}$$

$$\Rightarrow \sigma_{\theta} \approx \frac{l}{H^2 - l^2} \times \sigma_H$$

Systematics: Trigger Threshold

- Simulated muon tracks look less continuous than actual DECO events
- Changed trigger threshold to see if I could recover continuous tracks

Conclusion

- Developed simulation framework for cell phone image sensors
- Deposited energy distributions agree well with known cross sections
- Particles have morphologies similar to what was expected
- Future work:
 - Fill in energy and angle parameter space
 - Model noise and imperfections

References

- [1] DECO, "The Distributed Electronic Cosmic-ray Observatory." https://wipac.wisc.edu/deco/home.
- [2] M. Winter, J. Bourbeau, S. Bravo, F. Campos, M. Meehan, J. Peacock, T. Ruggles, C. Schneider, A. L. Simons, and J. Vandenbroucke, Particle Identification In Camera Image Sensors Using Computer Vision, Astropart. Phys. 104 (2019) 42–53, [arXiv:1803.04493].
- [3] J. Vandenbroucke et al., Measurement of camera image sensor depletion thickness with cosmic rays, JINST 11 (2016), no. 04 P04019, [arXiv:1511.00660].
- K. Bechtol, "Optical Astronomy Lecture." PHYS736 Lecture Notes.
- S. Tavernier, Experimental Techniques in Nuclear and Particle Physics. Springer, 2010.
- [6] S. Spannagel, K. Wolters, D. Hynds, N. Alipour Tehrani, M. Benoit, D. Dannheim, N. Gauvin, A. N\(\tilde{A}\)ijrnberg, P. Sch\(\tilde{A}\)ijtze, and M. Vicente Barreto Pinto, Allpix²: A Modular Simulation Framework for Silicon Detectors, Nucl. Instrum. Meth. A901 (2018) 164-172, [arXiv:1806.05813].
- [7] K. Wolters et al., "Allpix Squared: Generic Pixel Detector Simulation Framework." https://project-allpix-squared.web.cern.ch/project-allpix-squared/.
- [8] GEANT4 Collaboration, S. Agostinelli et al., GEANT4: A Simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250–303.
- R. Brun, The development of the ROOT data analysis system, AIP Conf. Proc. 583 (2001), no. 1 297.
- [10] NIST, "PhysRefData." https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html.

Backup

Odd Electron Signatures

Is it just plotting formats?

