CÁLCULO DIFERENCIAL EM $\mathbb R$ **5**

- 5.1. Calcule, usando a definição, a função derivada das seguintes funções:
 - a) $f(x) = x^n, n \in \mathbb{R};$
- $b) \quad f(x) = \sqrt{x};$
- $c) \quad f(x) = e^x;$
- d) f(x) = senx; e) f(x) = cos x; f) f(x) = ln x.
- **5.2.** Seja $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = 4x^3 + 3x^2 6x 6$.
 - a) Determine os pontos do plano onde a tangente ao gráfico de f é horizontal;
 - b) Determine os pontos do plano onde a tangente ao gráfico de f tem declive 6;
 - c) Mostre que a recta y = 12x 17 é tangente ao gráfico de f e determine o ponto de tangência.
- **5.3.** Considere a função $g: \mathbb{R} \setminus \{-1\} \to \mathbb{R}$ definida por $g(x) = \frac{1}{x+1}$.
 - a) Calcule q'(2), aplicando a definição;
 - b) Escreva uma equação da recta tangente ao gráfico de g no ponto de abcissa 2.
- **5.4.** Calcule a inclinação da recta tangente ao gráfico da função $f(x) = x^3 x^2$ no ponto de abcissa 1.
- **5.5.** Seja $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^2 + ax + b$. Determine os valores de $a \in b$ tais que a recta y = 2x seja tangente à curva f no ponto (2,4).
- **5.6.** Determine os valores das constantes $a, b \in c$ para os quais os gráficos dos dois polinómios $p(x) = x^2 + ax + b$ e $q(x) = x^3 - c$ se intersectem no ponto (1,2) e admitam a mesma tangente naquele ponto.
- 5.7. Estude a diferenciabilidade de cada uma das seguintes funções nos pontos indicados:

a) f(x) = |x|, no ponto x = 0;

b)
$$f(x) = \begin{cases} x^2 - 2x & \text{se } x < 2, \\ 2x + 1 & \text{se } x \ge 2, \end{cases}$$
 no ponto $x = 2$.

c) $f(x) = \sqrt[3]{x-1}$, no ponto x = 1.

5.8. Determine as derivadas das seguintes funções indicando o domínio de derivação:

a)
$$f(x) = 3x^{\frac{2}{3}}$$
;

b)
$$f(x) = x^3 - x^2$$
;

c)
$$f(x) = 2x^{-1} + 6x^{\frac{1}{3}}$$
;

d)
$$f(x) = \frac{x^2 + 1}{x - 3}$$
;

d)
$$f(x) = \frac{x^2 + 1}{x - 3}$$
; $e) f(x) = (x - 4)^2 \left(\frac{x^3}{3} + \sqrt[5]{x}\right)$; $f) f(x) = \left(\frac{x - 1}{2 - 3x}\right)^{-3}$;

$$f) \ f(x) = \left(\frac{x-1}{2-3x}\right)^{-3};$$

g)
$$f(x) = \frac{x^2 + 3x - 1}{x + \sqrt{x}};$$
 h) $f(x) = \cos^3 x;$

$$h) \ f(x) = \cos^3 x;$$

$$i) f(x) = e^{x^2+1};$$

$$j) \ f(x) = \ln(3x);$$

$$k) f(x) = x (\ln x)^{\frac{1}{2}};$$

$$l) \ f(x) = \frac{1}{sen^2x};$$

m)
$$f(x) = \frac{1}{x}\ln(x^2+1);$$
 n) $f(x) = tg(e^x);$

$$n) f(x) = tq(e^x);$$

$$o) f(x) = e^{\ln 2x};$$

$$p) f(x) = tg(x^2 - 1)$$

$$p) \ f(x) = tg(x^2 - 1);$$
 $q) \ f(x) = \frac{\ln(2x)}{sen \ x};$

$$r) f(x) = xe^{\cos^2 x};$$

s)
$$f(x) = \frac{sen(3x+5)}{2x+1}$$

s)
$$f(x) = \frac{sen(3x+5)}{2x+1}$$
; $t) f(x) = \frac{e^{2x+1}}{\cos(2x+1)}$;

$$u) f(x) = \frac{e^{(x-1)^2}}{(x-1)};$$

$$v) f(x) = x^2 arctg x;$$

$$f(x) = \ln(\ln x);$$

$$z) f(x) = \cos(arcsen x).$$

5.9. Seja f uma função real definida em \mathbb{R} tal que:

i)
$$f(a+b) = f(a)f(b), \forall a, b \in \mathbb{R};$$

ii)
$$f(0) = 1$$
;

iii) f é diferenciável em x = 0.

Prove que f é diferenciável para todo o $x \in \mathbb{R}$ e tem-se f'(x) = f'(0).f(x).

5.10. Calcule $a \in b$ de modo que $f : \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} x^2 & \text{se } x < 2, \\ ax + b & \text{se } x \ge 2, \end{cases}$$

seja diferenciável e determine, para esses valores de a e b, a função derivada.

5.11. Seja
$$f: \mathbb{R} \to \mathbb{R}$$
 definida por $f(x) = \begin{cases} x^2 sen\left(\frac{1}{x}\right) & \text{se } x \neq 0, \\ 0 & \text{se } x = 0. \end{cases}$

Calcule a derivada de f em cada $x \in \mathbb{R}$.

5.12. Sejam
$$f, g : \mathbb{R} \to \mathbb{R}$$
 duas funções definidas por $g(x) = |x|$ e $f(x) = \begin{cases} x^2 & \text{se } x \ge 0, \\ -1 & \text{se } x < 0. \end{cases}$

Mostre que f e g não são diferenciáveis no ponto zero, mas que a função composta $f \circ g$ é.

5.13. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função diferenciável com derivada f'. Determine a derivada de:

a) f(-x);

b) $f(e^x)$

c) $f(\ln(x^2+1))$;

d) f[f(x)].

5.14. Como se sabe, a restrição da função f(x) = tgx ao intervalo $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ é uma bijecção diferenciável deste intervalo sobre \mathbb{R} . Utilizando o teorema da derivação da função inversa, mostre que a função inversa de f, $arctg\ x$, é diferenciável em \mathbb{R} e se tem $(arctg\ x)' = \frac{1}{1+x^2}$.

Demonstre resultados análogos para as restantes funções trigonométricas.

- **5.15.** Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ uma função diferenciável. Calcule [arctg(f(x)) + f(arctg(x))]'.
- 5.16. Mostre que as seguintes funções têm um máximo ou um mínimo local nos pontos indicados, não sendo todavia diferenciáveis nesses pontos:

a)
$$f: \mathbb{R} \to \mathbb{R}$$
 definidas por $f(x) = \begin{cases} 3x & \text{se } x > 0, \\ -x & \text{se } x \leq 0. \end{cases}$ no ponto $x = 0$;

b)
$$f: \mathbb{R} \to \mathbb{R}$$
 definidas por $f(x) = \sqrt[3]{(x-3)^2}$ no ponto $x=3$.

5.17. Seja $f: \mathbb{R} \to \mathbb{R}$ a função definida por $f(x) = 2x^3 + 4x - 1$. Mostre que f tem um único zero em \mathbb{R} .

Sug.: a) Prove primeiro, utilizando o Teorema de Bolzano, que f tem pelo menos um zero em \mathbb{R} ; b) Prove em seguida, utilizando o Teorema de Rolle, que f não pode ter mais do que um zero em \mathbb{R} .

5.18. Mostre que a função $f(x) = 1 - x^2$ satisfaz as condições do Teorema de Rolle no intervalo [-1,1]. Determine um ponto c onde f'(c) = 0.

5.19. Seja $f(x) = e^x - x - 1$. Mostre, utilizando o Teorema de Rolle, que f não tem outra raíz para além de x = 0.

5.20. Seja $f:[a,b]\to\mathbb{R}$ três vezes diferenciável com f(a)=f'(a)=f(b)=f'(b)=0. Prove que f'''(c)=0, para algum $c\in(a,b)$.

5.21. Mostre, utilizando o Teorema de Lagrange, que:

a)
$$\frac{x}{1+x} < \ln(1+x) < x$$
, para $x > 0$;

b)
$$-x \le sen \ x \le x$$
, para $x > 0$.

c) $|sen \ b - sen \ a| \le |b - a|$, para quaisquer $a, b \in \mathbb{R}$.

5.22. Aplique o Teorema de Lagrange para determinar um valor aproximado de $\sqrt{105}$.

5.23. Determine, sempre que existam, os seguintes limites:

$$a) \lim_{x \to 0} \frac{sen x}{x};$$

b)
$$\lim_{x\to 1} \frac{x^2 + 2x - 3}{x - 1}$$
;

c)
$$\lim_{x \to 4} \frac{\sqrt{5+x}-3}{\log(5-x)};$$

$$d) \ \lim_{x \to 0} \frac{e^{4x} - 1}{3x};$$

$$e) \lim_{x \to \frac{\pi}{3}} \frac{sen(3x)}{1 - 2\cos x};$$

$$f) \lim_{x\to 2} \frac{sen^2(x-2)}{e^{x^2-4}-1};$$

$$g) \quad \lim_{x \to +\infty} \frac{\ln x}{2x+1};$$

h)
$$\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}}$$
, com $\alpha > 0$; i) $\lim_{x \to 0} \frac{e^x - x - 1}{xe^x - x}$;

i)
$$\lim_{x\to 0} \frac{e^x - x - 1}{xe^x - x}$$

$$j) \lim_{x \to +\infty} \frac{\ln{(1+2x)}}{\ln{(1+5x)}};$$

$$k) \lim_{x\to 0^+} x^x;$$

$$l) \quad \lim_{x \to 0^+} x \ln(3x);$$

m)
$$\lim_{x \to +\infty} \ln\left(1 + \frac{1}{x}\right)^x$$
; n) $\lim_{x \to 0} \frac{sen(3x+5)}{2x+1}$;

$$n) \lim_{x \to 0} \frac{sen(3x+5)}{2x+1};$$

o)
$$\lim_{x \to 0} \frac{e^x - x - 1}{xe^x - x};$$

$$p) \lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{sen \ x}\right);$$

$$q$$
) $\lim_{x \to +\infty} (1+x)^{\frac{1}{x^2}};$

$$r$$
) $\lim_{x \to +\infty} \frac{e^x}{x^3}$.

5.24. Estude a monotonia e o sentido da concavidade da função $f(x) = x^4 - 2x^3 - 3$.

5.25. Determine a derivada de ordem n das seguintes funções:

$$a)$$
 $f(x) = sen x;$

$$b) \quad f(x) = \cos(2x);$$

a)
$$f(x) = sen x;$$
 b) $f(x) = cos(2x);$ c) $f(x) = \frac{1}{1+x};$

$$d) \quad f(x) = \ln(1+x);$$

$$e) \quad f(x) = xe^{-x};$$

d)
$$f(x) = \ln(1+x)$$
; e) $f(x) = xe^{-x}$; f) $f(x) = x^3 + 5x^2 + 4x - 9$.

5.26. Seja $f:\mathbb{R}\longrightarrow\mathbb{R}$ a função definida por $f(x)=sen\ x.$ Determine o polinómio de Taylor de ordem 6 no ponto $x = \frac{\pi}{2}$.

5.27. Determine o polinómio de Taylor de ordem n (polinómio de MacLaurin de ordem n), no ponto x = 0, das seguintes funções:

40

$$a) \quad f(x) = x^3 - 1$$

$$b) \quad f(x) = e^x$$

a)
$$f(x) = x^3 - 1;$$
 b) $f(x) = e^x;$ c) $f(x) = \frac{1}{1+x};$

d)
$$f(x) = \ln(1+x);$$
 e) $f(x) = e^{5x-1};$

e)
$$f(x) = e^{5x-1}$$
;

$$f) \quad f(x) = sen(2x+3).$$

5.28. Determine o polinómio de Taylor de ordem n, nos pontos indicados, das seguintes funções:

a)
$$f(x) = \frac{1}{x}$$
, em $x = 2$; b) $g(x) = \sqrt{x}$, em $x = 1$.

b)
$$g(x) = \sqrt{x}$$
, em $x = 1$.

5.29. Determine os máximo e os mínimos das seguintes funções:

- a) $f(x) = x^2 + 4x + 6;$ b) $f(x) = x^3 3x^2 + 3x + 2;$
- c) $f(x) = x^2(x-12)^2;$ d) $f(x) = x \ln x;$

5.30. Determine um polinómio de $2.^{\circ}$ grau que tem como uma das suas raízes x=-1, que toma para x = 0 o valor 1 e tal que é máximo para x = 0.

5.31. De entre todos os rectângulos que se podem inscrever numa circunferência de raio r, determine aquele cuja área é máxima.

5.32. Estude e represente graficamente as seguintes funções reais de variável real:

a)
$$f(x) = \frac{3x^3}{x^2 - 4}$$
; b) $g(x) = (e^x - 1)^2$; c) $h(x) = \frac{\ln|x|}{x}$; d) $j(x) = x \ln|x|$.

b)
$$g(x) = (e^x - 1)^2$$
;

$$c) \ h(x) = \frac{\ln|x|}{r};$$

$$d) \quad j(x) = x \ln|x| \, .$$

5.33. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ a função definida por

$$f(x) = \begin{cases} arctg\left(\frac{1+x}{x}\right) & \text{se } x \neq 0, \\ \frac{\pi}{2} & \text{se } x = 0. \end{cases}$$

a) Estude f quanto à continuidade e à existência de limites quando $x \to +\infty$ e quando $x \to -\infty$.

b) Estude a função f quanto à monotonia e extremos.

c) Determine o sentido da concavidade e as inflexões do gráfico de f.

- d) Esboce o gráfico de f.
- **5.34.** Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ a função definida por

$$f(x) = \begin{cases} xe^{-x} & \text{se } x \ge 0, \\ arctg(ax) & \text{se } x < 0. \end{cases}.$$

- a) Determine a.
- b) Calcule $\lim_{x \to +\infty} f(x)$ e $\lim_{x \to -\infty} f(x)$.
- c) Estude f quanto à diferenciabilidade e determine a sua função derivada.
- d) Determine, caso existam, os intervalos de monotonia e os extremos locais de f.
- **5.35.** Seja $f:]0,1[\longrightarrow \mathbb{R}$ uma função diferenciável tal que:

$$f\left(\frac{1}{n+1}\right) = 0, \forall n \in \mathbb{N}.$$

Diga, justificando, se cada uma das seguintes proposições é verdadeira ou falsa:

- $a) \ \ \text{Para qualquer} \ n \geq 2, \ \text{a função} \ f \ \text{tem necessariamente máximo no intervalo} \ \left[\frac{1}{n+1}, \frac{1}{n}\right].$
- b) A função f é necessariamente limitada.
- c) A função f' tem necessariamente infinitos zeros.