2023 - 2024 Spécialité Math $1^{\text{ère}}$

Chapitre 9 : produit scalaire

utilisation du produit scalaire

1 produit scalaire : le cours

1.1 définition - notation - propriété

rappel - notation

• soit $\vec{u} \begin{vmatrix} a \\ b \end{vmatrix}$ et $\vec{v} \begin{vmatrix} c \\ d \end{vmatrix}$

• norme (longueur) : $||\vec{u}|| = \sqrt{a^2 + b^2}$

- angle de 2 vecteurs : l'angle que forment les \vec{u} et \vec{v} est noté $(\widehat{\,\vec{u}\,;\,\vec{v}\,})$

• $\cos(\widehat{\vec{u}\,;\,\vec{v}\,}) = \cos(\widehat{\vec{v}\,;\,\vec{u}\,})$

définition du produit scalaire

• définition 1 : $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\widehat{\vec{u}\,;\,\vec{v}\,})$

• <u>définition 2</u> : $\vec{u} \cdot \vec{v} = \begin{vmatrix} a \\ b \end{vmatrix} \cdot \begin{vmatrix} c \\ d \end{vmatrix} = ac + bd$

- <u>définition 3</u> : \overrightarrow{AB} . $\overrightarrow{AC} = AB \times AH$ où H est le projeté orthogonal de C sur (AB)

Spécialité Math 1 ère 2023 - 2024

propriété

- $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- si \vec{u} et \vec{v} sont colinéaires alors :
 - $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}||$ si \vec{u} et \vec{v} sont de même sens
 - $\vec{u} \cdot \vec{v} = -||\vec{u}|| \times ||\vec{v}||$ si \vec{u} et \vec{v} sont de sens contraire
 - en effet, $\cos 0 = 1$ et $\cos \pi = -1$
- propriété importante :

 - $\vec{u} \perp \vec{v} \iff \vec{u} \cdot \vec{v} = 0$ en effet, $\cos \frac{\pi}{2} = 0$

application du produit scalaire à la droite

droite: vecteur directeur et vecteur normal

- (d) : $y = ax + b \Longrightarrow \text{vecteur directeur} \begin{vmatrix} 1 \\ a \end{vmatrix}$ et vecteur normal $\begin{vmatrix} -a \\ 1 \end{vmatrix}$
- (d) $ax + by + c = 0 \Longrightarrow$ vecteur directeur $\begin{vmatrix} -b \\ a \end{vmatrix}$ et vecteur normal $\begin{vmatrix} a \\ b \end{vmatrix}$

droite: parallélisme et orthogonalité

- (d): y = ax + b et (d'): y = a'x + b'
 - $(d) // (d') \iff a = a'$
 - $(d) \perp (d') \iff a \times a' = -1$
- (d): ax + by + c = 0 et (d'): a'x + b'y + c' = 0
 - (d) // (d') \iff $a \times b' = b \times a'$ (vecteurs normaux proportionnels)
 - (d) \perp (d') \iff $a \times a' + b \times b' = 0$ (vecteurs normaux normaux donc produit scalaire nul)

cercle et norme

équation d'un cercle

- (C) un cercle de centre A $\begin{vmatrix} x_A \\ y_A \end{vmatrix}$ et de rayon r
- M $\begin{vmatrix} x \\ y \end{vmatrix}$ un point de ce cercle (C)
- l'équation de (C) est :
 - $||\overrightarrow{AM}|| = r \iff ||\overrightarrow{AM}||^2 = r^2 \iff \boxed{(x x_A)^2 + (y y_A)^2 = r^2}$
 - penser à pythagore :

2 math 13 net 2023 - 2024 Spécialité Math 1 ère

propriété

•
$$||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2 + 2 \times \vec{u} \cdot \vec{v}$$

•
$$||\vec{u} - \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2 - 2 \times \vec{u} \cdot \vec{v}$$

•
$$||\vec{u}||^2 + ||\vec{v}||^2 = \frac{1}{2}(||\vec{u} + \vec{v}||^2 + ||\vec{u} - \vec{v}||^2)$$

•
$$\vec{u} \cdot \vec{v} = \frac{1}{2}(||\vec{u} + \vec{v}||^2 - ||\vec{u}||^2 - ||\vec{v}||^2)$$

•
$$\vec{u} \cdot \vec{v} = \frac{1}{2}(||\vec{u}||^2 + ||\vec{v}||^2 - ||\vec{u} - \vec{v}||^2)$$

•
$$\vec{u} \cdot \vec{v} = \frac{1}{4}(||\vec{u} + \vec{v}||^2 - ||\vec{u} - \vec{v}||^2)$$

2 produit scalaire : ensemble de points

2.1 lieu mystère 1

- trouver l'ensemble M des points qui vérifient : \overrightarrow{AM} . $\overrightarrow{AB}=12$

Spécialité Math 1 ère 2023 - 2024

2.2 lieu mystère 2

- trouver l'ensemble M des points qui vérifient : $\overrightarrow{MA}.\,\overrightarrow{MB}=0$

2.3 lieu mystère 3

- trouver l'ensemble M des points qui vérifient : $\overrightarrow{MA}.\overrightarrow{MB}=5$

2023 - 2024 Spécialité Math $1^{\,\mathrm{ère}}$

2.4 lieu mystère 4

• trouver l'ensemble M des points qui vérifient : $MA^2\,+\,MB^2=10$

2.5 lieu mystère 5

• trouver l'ensemble M des points qui vérifient : $MA^2 - MB^2 = -16$

Spécialité Math $1^{\text{ère}}$ 2023 - 2024

2.6 lieu mystère 6

• trouver l'ensemble M des points qui vérifient : \overrightarrow{AM} . $\overrightarrow{AM} = 64$

${f 3}$ produit scalaire : geogebra

3.1 retour sur les lieux de points

 $\bullet\,$ grâce à geogebra et la fonction trace, retrouver (ou découvrer) les lieux de points de 1 à 6 supra