

Jump to result n

Site Contents

Search Patents

Use our search engine to find what you need

Syntax Reference Learn our powerful search syntax

F.A.Q.All about this site and our patent search

Matches 1 - 75 out of 688.

Patent Your Invention
"Patent Pending" in 3 Easy Steps
Fast & Affordable, from
LegalZoom

Patent Office
Article looks at US Patent law and how to protect your inventions.

Invention-World
Patents-Research-Database-Si
Free Patent Info-Searches-Coo

Would you like to be notified when new patents are published that match this query: use our FREE notification service.

our patent search engine	Match	Patent #	Patent Title (click for full text)	
			· · · · · · · · · · · · · · · · · · ·	
Crazy Patents Don't miss our selection of crazy patents	1	7033641	Gas separating unit and method for manufacturing the	
	2	7033452	Method for plugging a cell of a honeycomb structure manufacturing a honeycomb plugged structure	
	3	7029516	Filters and methods of making and using the same	
RSS Feeds Subscribe to our RSS	4	7025798	Tabletop-type air cleaner	
Feeds	5	7022164	Filters employing porous strongly acidic polymers	
Patent Blog	6	7022158	Adsorption element and methods	
Get the latest news	7	7018446	Metal gas separation membrane	
	8	7017757	Mechanically stable, porous shaped activated carbon	
	9	7014681	Flexible and porous membranes and adsorbents, and thereof	
	10	7014680	Method for preparing DDR type zeolite membrane, DI and composite DDR type zeolite membrane, and metl	
	11	7008461	Honeycomb structure, method for manufacturing hor exhaust gas purification system using honeycomb str	
	12	7005000	Air deodorization device having a detachable cartridg	
	13	7004995	Triboelectric charging of wovens and knitted fabrics	
	14	7001446	Dense, layered membranes for hydrogen separation	
	15	6989045	Apparatus and method for filtering particulate and re	
	16	6964697	Metal solution-diffusion membrane and method for p	
	17	6953493	Method for preparing DDR type zeolite membrane, DI and composite DDR type zeolite membrane, and metl	
	18	6949131	Ventilator or ventilating apparatus with thermal exch	
	19	6946015	Cross-linked polybenzimidazole membrane for gas se	
	20	6946013	Ceramic exhaust filter	

21	6942712	Honeycomb filter for exhaust gas purification
22	6942711	Hydroentangled filter media with improved static dec
23	6942708	Bifilar diesel exhaust filter construction using sintere
24	6936094	Adsorptive sheet and filter for clarifying air
25	6932859	Crosslinked and crosslinkable hollow fiber membrane
26	6929682	Sorbent capsule
27	6929681	Air scenting compositions and processes for use ther
28	6929672	Filter medium for air filter and process for producing
29	6926750	Filter element
30	6925819	System for trapping airborne water in cooling and fre
31	6923846	Method of preparing composite gas separation memb perfluoropolymers
32	6923841	Filter element of an air filter with far infrared energy
33	6913059	Ceramic fiber-based filter web and method
34	6911189	Filter for selective removal of a gaseous component
35	6884274	High flow, one piece automotive air filter
36	6872241	Anti-pathogenic air filtration media and air handling capabilities against infectious airborne mircoorganis
37	6866704	Microporous filter media with intrinsic safety feature
38	6866697	Porous gas permeable material for gas separation
39	6843819	Air filter
40	6843817	Ceramic filter and filter device
41	6841075	Permeable composite material, method for producing use of the same
42	6840976	Method of making wall-flow monolith filter
43	6837911	Ceramic-made filter and process for production there
44	6835234	Intake tube assembly with evaporative emission con-
45	6835232	Fluid separation assembly and fluid separation modu
46	6827764	Molded filter element that contains thermally bonded charged microfibers
47	6821321	Combined vapor and particulate filter
48	6820751	Light-transmittable linear photocatalytic filter materi material is applied, and process for production there
49	6818038	Polymer substrates for radiation-induced graft polym
50	6818037	Filter element
51	6814783	Filtration media of porous inorganic particles
52	6805727	Method for filtering pernicious non-gaseous contami

		gases
53	6802891	Biostatic filter
54	6802315	Vapor deposition treated electret filter media
55	6800107	Exhaust gas purifying filter
56	6797206	Process of producing a microporous hydrophobic inol
57	6793866	Process for producing bonded activated carbon struc
58	6793703	Air-filter apparatus
59	6787216	Method for manufacturing multiple channel membrar membranes and the use thereof in separation method
60	6780466	Cross-flow filter membrane and method of manufacti
61	6780226	Charge stabilized electret filter media
62	6776814	Dual section exhaust aftertreatment filter and metho
63	6773479	Particulate filter for diesel engines
64	6761755	Composite membrane and production method therefo
65	6755016	Diesel engine particle filter
66	6752847	High temperature polymer filtration medium
67	6749656	Heating, ventilating and/or air conditioning device of diffusing element in a motor vehicle passenger comp
68	6746504	Filter for use in medical procedures
69	6743271	Air filter for gasoline and diesel engines
70	6740143	Mixed matrix nanoporous carbon membranes
71	6740136	Interconnected filter frame and filter framing methor
72	6736871	Integrated filter screen and hydrocarbon adsorber
73	6733575	Hot gas filtration system
74	6730145	Treating gas separation membrane with aqueous rea
75	6730144	Air purifying filter using modified enzymes

« search again

Copyright 2004-2005 FreePatentsOnline.com. All rights reserved. Contact Us. Privacy

Joponese version is <u>bere</u>

```
Morikazu Mishiyama
                                                                                                                                                      (Ir.
                                                                                                                                                                                           ロf
                                                                                                                                                                                                                  Enc. )
    Associate Professor
   Division of Chemical Encineering
Graduate School of Encineering Science
Usaka University
1-3 Machikaneyama, Toyonaka, Osaka S60
Japan
Phone/FAX +81-6-6850-6256
E-mail : nisiyamatcheng.es.osaka-u.ac.
                                                                                                                                                                                                                                Osoko 560-8531,
                                                                        +81-6-6950-6256
nisiyamatchenc.es.osaka-u.ac.jp
    Profile
         AGA. 4 Born in Kochi. Jopan
AGA. 4 Born in Kochi. Jopan
AGA. 3 Ms. Dsoko Dniversita
AGA. 1 Neseorch Associate. Dsoko Universita
AGA. B. 1999. B. Deltt Dniversita of Technoloca.
AGA. B. 1999. B. Deltt Dniversita of Technoloca.
AGA. B. 1999. B. Deltt Dniversita
  Aeseorch Areos: Moterin
Seporch Areos: Moterin
Moteroporous corbon, Dtl
Ceromics !Membrones, F:
Porticles!
Applications: Membrone
Cotolusis, Electronic !
                                                                                                                                                     Moteriol Encineering,
ion Encineering
te, Mesoporous silico
lon, Diner porous
Ines, Films, Nono-
                                                                                                                                                                                                                                                                                               Silico.
                                                                                                                                                                                                      e Separation.
devices
    Research projects and selected papers
l. Ordered mesoporotion memorones for period by e peri
l. 2. Hadrophilic silico memorones

We hove developed hadrophilic (woter-selective)

Mesoporous silico MCM-48 memorones for

nonofiltrotion, ond ultrofiltrotion, However,

silico moteriols dissolve in woter ond

silico e solutions, which user we have

possibilita of procticol user we have

possibilita of procticol user mesoporous

introduced airconium to ordered mesoporous

silico MCM-41 ond MCM-48 memorones in order to

silico MCM-41 ond MCM-48 memorones in order to
```

```
These moterials are promising material for long-term use in and ultrafiltration.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      as a membrane
nanofiltration
     A Mesoporous silico thin films os o lough thin films os o lough thin femous silico the silico thin femous silico the silico thin femous silico the silico thin method silico the silico thin method silico the silico thin method silico thin for the silico thin silico the silico thin silico thin silico the silico the silico thin silico 
 (1) Enhancement of structural erepaids a spiral mesopence of thin spiral erepaids a 
2.2. Vopeor enose santhesis on there erosis is obte motor the preparation of the resolution of the properties of the pro
(1) Vapor phase sunthesis of mesoporous thin films. He wishidama. S. Tanaka. Y. Ecashira de Mater Films. He was the mesoporous silica thin films. He was the mesoporous silica Thin films. He was the mensionally connected cace-Like mesoporous silica Thin films. He was the mesoporous silica thin films. He said the size of the was the mesoporous silica and K. De his hidama. Y. Oku. Y. Ecashira and K. De J. Am. Chem. Soc.. 126. Yesy-Yese (2004)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              mesoporous silico
Tanaka, un
Chem. Mater., 15,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        l Ms With
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Uëšomo,
3. Zeolite membrones

3.1. Zeolite membrones for seporations

Zeolites ore recocnized as attractive materials

to prepare inorcanic membrones for realizing

seporation processes at molecular levels
```

pecouse of their moleculor sievine properties.

thermol resistonce, chemicol into occount that recording the format resistance into occount that reports the format resistance into occount that reports the format recording the format recording to (1) Gos termention through septiment of the distriction of the distric The process of the respection of the control of the (1) 2eplite membrone on cotolast porticles for selective formation of providence in hispiagma, M pisspiagma, M pis H. Microporous corbon membrones
We hove developed a new santhesis method for
surfactont-thermosetting polymer. Logens
strateca of this method is to composite and
two orcanic compounds are the polymer
corporate surfactont decomposed at
membrones have been santhesized using this
method.

地球環境問題

Advances in Ceramic and Nano-Composite Membranes

Chair:

Vadim V Guliants University of Cincinnati Department of Chemical Engineering Cincinnati, OH 45221-0171

Telephone Number: 513-556-0203

Fax Number: 513-556-3473

Email: Vadim.Guliants@UC.EDU

Vice Chair: Eva Marand

Virginia Polytechnic Institute & State University

Department of Chemical Engineering

Blacksburg, VA 24061

Telephone Number: 540-231-8231

Fax Number: 540-231-5022 Email: emarand@vt.edu

Surface Engineering of Grafted Polymers on Inorganic Oxide Substrates for Membrane Pervaporation

Author Information:

Yoram Cohen University of California-Los Angeles Department of Chemical Engineering 5531 Boelter Hall Los Angeles, CA 90095 Phone: (310) 825-8766

Fax: (310) 206-4107 Email: yoram@ucla.edu

Wayne H Yoshida (speaker) University of California-Los Angeles 5531 Boelter Hall Los Angeles, CA 90095-1592 Phone: 310-206-1297

Fax: 310-206-4107

Email:

Abstract:

Recent years have been marked by a growing interest in surface modification of pervaporation membranes by covalent end-attachment of polymer chains. The modification of inorganic membranes for pervaporation applications has been of special interest since the polymer chains alter the surface chemistry of the substrate (i.e., providing selectivity) while the mechanical strength of the membrane is retained. Covalently bonded polymers can be used in good solvent environments since dissolution of the polymer is prevented by its attachment to the substrate. In order to tune the performance of the

membrane one has to consider both the chemical and topological properties of the modifying polymer layer.

Past studies have been devoted to the macroscopic properties of the resulting hybrid organic/inorganic materials. However, interest is growing in the nanoscale features which result from the modification process. Since polymers are becoming an important tools in applications such as self-assembled monolayers and micromechanical devices, it is increasingly important to understand and quantify the characteristics of surface-bonded polymers so that surfaces can be engineered for specific applications. Poly(vinyl acetate) was chosen as a model polymer in order to analyze the surface properties resulting from surface modification by a two-step free-radical graft polymerization method. A variety of tools such as atomic force microscopy, thermogravimetric analysis, and scanning electron microscopy were used to examine the dependence of surface features on polymerization reaction conditions such as temperature and monomer concentration. Typical Flory radius of the polymers grafted in the study were found to be 110-170Å, while starting pore sizes of the inorganic membrane substrates used were 50-500Å. It was determined that polymer brush layer of 399Å was able to form on the membrane surface for the specific size and graft density (2.0-3.5 mg/m2 surface) of the polymers produced by the present free radical graft polymerization.

Liquid separation membranes created using the above graft polymerization methods were found to efficiently separate organic mixtures of methanol and methyl-tert-butyl-ether with separation factors up to 100, and aqueous mixtures of TCE and water with separation factors of up to 370. Separation could be increased by increasing the polymer graft yield. Modified membranes displayed remarkably different behavior depending whether the polymer chain size was smaller or larger than the membrane pore size, suggesting that graft polymer size is as important a consideration as polymer chemistry in the modification of porous membrane materials.

Templating Strategies for Inorganic Molecular Sieve Silica Membranes

Author Information:

George K Xomeritakis (speaker) University of New Mexico 1001 University Blvd. SE Suite 100 Albuquerque, NM 87106 Phone: (505) 272-7628 Fax: (505) 272-7336

Email: xomerita@unm.edu

Suiit Naik University of New Mexico 1001 University Blvd. SE Suite 100 Albuquerque, NM 87106 Phone: (505) 272-7132

Fax: Email: Chung-Yi Tsai United Technologies 411 Silver Lane M/S 129-90 East Hartford, CT 06108 Phone: (860) 610-7387

Fax:

Email: tsaica@utrc.utc.com

Yunfeng Lu Tulane University New Orleans, LA 70118 Phone: (504) 865-5827

Fax:

Email: ylu@tulane.edu

Carola M Braunbarth Sustech Gmbtt Petersenstr. 20 Darmstadt, 64287 Germany

Phone: 49 6151 167085

Fax:

Email: carola.braunbarth@sustech.de

C. Jeffrey Brinker Sandia National Laboratories 1001 University Blvd. SE Suite 100 Albuquerque, NM 87106 Phone: (505) 272-7627

Fax: (505) 272-7336

Email: cjbrink@sandia.gov

Abstract:

Inorganic molecular sieve membranes (IMSM) are higly desirable for a variety of gas and vapor separations at elevated temperatures. Currently the most common IMSMs are amorphous carbon, polycrystalline zeolite and sol-gel silica membranes. Carbon membranes made by pyrolysis of polymeric precursors deposited on porous supports have potential for gas/vapor separations including CO2/CH4 and H2/hydrocarbon separations.

On the other hand, polycrystalline zeolite membranes made by hydrothermal synthesis offer unique separation opportunities for a variety of permanent gas/isomer separations based on adsorption/diffusional differences of mixture components in zeolite pores. However, both classes of these IMSMs suffer from several problems such as poor processibility, low permeation rates (due to thickness over 1 micron) and compromised selectivities due to susceptibility to cracking or undesirable intercrystalline porosity.

Sol-gel derived molecular sieve silica membranes on the other hand appear particularly attractive since they combine several advantages such as good processibility, high permeation rates due to low thickness (e.g. below 100 nm)and tunable pore microstructure as regards pore size and chemical functionality. In this presentation we will demonstrate different templating strategies in order to obtain molecular sieve silica membranes with different pore sizes, useful for a variety of separations.

First, solvent templating (e.g. H2O or ethanol) is useful for creating pores in the range 3-4 A, suitable

for a variety of permanent gas separations such as H2/N2 or CO2/CH4. Second, molecular templating (e.g. TPABr) is useful for creating pores in the range 5-6 A, useful for isomer separation such as n-butane/isobutane or p-xylene/o-xylene. We refer to these membranes as 'zeolite-like' membranes since they mimic the pore size of polycrystalline zeolite membranes (MFI) while obviating the disadvantages of their counterparts, e.g. large thicknesses or cracking and intercrystalline porosity. Finally, surfactant templating (e.g. CTAB, Brij56) is useful for creating ordered pores in the range 15-25 A, leading to rapid formation of mesoporous silica membranes that can be used as intermediate support for the overlying solvent or molecular templated membranes described above. Microstructural characterization results (e.g. SEM, TEM, adsorption porosimetry) as well as permeation measurements with different permeanent gases (H2, CO2, N2, CH4, SF6) or hydrocarbon isomers (n-butane, isobutane, p-xylene, o-xylene)will be presented in order to demonstrate the new separation opportunities offered by these novel sol-gel derived molecular sieve silica membranes.

Nanocomposite Membranes Derived from Zeolite 4A and Polyfurfuryl Alcohol

Author Information:

Huanting Wang (speaker) University of California 900 University Avenue Riverside, CA 92521 Phone: 909-787-2956

Fax:

Email: hwang@engr.ucr.edu

Limin Huang University of California 900 University Avenue Riverside, CA 92521 Phone: 909-787-2956

Fax: Email:

Yushan Yan University of California-Riverside Chemical and Environmental Engineering 900 University Avenue Riverside, CA 92521

Phone: 909-787-2068 Fax: 909-787-5696

Email: yushan.yan@ucr.edu

Abstract:

Nanocomposite Membranes Derived from Zeolite 4A and Polyfurfuryl Alcohol

Huanting Wang, Brett A. Holmberg, Limin Huang, Yushan Yan*

Department of Chemical and Environmental Engineering, University of California, Riverside, California

92521, USA

E-mail: yushan.yan@ucr.edu

Previous studies have predicted that zeolite 4A is potentially a good candidate for air separation. As a result, the development of defect-free zeolite 4A membranes has attracted much attention. Several preparation techniques have been developed and these include conventional hydrothermal synthesis, microwave heating, dry-gel conversion, and secondary growth. However, the O2/N2 selectivity so far has been limited to about 2.0 due to presence of inter-crystal defects.

Here we report a new strategy for fabrication of highly selective nanocomposite air separation membranes. We start with a hierarchical porous zeolite 4A film on a macroporous alumina tube by dipcoating of zeolite A nanoparticles. This film has well-defined bi-modal porosity at micro- and mesopore range [1-3]. Within this film, zeolite nanocrytals tightly contact one another, and thus zeolite channels remain well connected. The inter-particle mesoporosity can be eliminated by using a gas-impermeable phase as a filler. This strategy could be general for fabrication of other gas separation membranes.

In this presentation, we focus on polyfururyl alcohol (PFA) as inter-particle filler since crosslinked PFA has very low gas permeability [4] and can be easily deposited from its monomer – furfuryl alcohol through vapor phase polymerization [5].

SEM, elemental analysis, XRD and nitrogen adsorption-desorption measurements are used to characterize zeolite nanocrystals and nanocomposite membranes. Gas separation measurements show that the nanocomposite membranes have a good selectivity (e.g., O2/N2 = 8).

References:

- 1. Huang, L. M.; Wang, Z. B.; Sun, J. Y; Miao, L.; Li, Q. Z.; Yan Y. S.; Zhao, D. Y.; Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals, J. Am. Chem. Soc. 2000, 122, 3530-3531.
- 2. Wang, Z. B.; Wang, H. T.; Mitra, A.; Huang, L. M.; Yan, Y. S. Pure silica zeolite low k thin films, Adv. Mater. 2001, 13, 746-749.
- 3. Wang, H. T.; Huang, L. M.; Wang, Z. B.; Mitra, A.; Yan, Y. S. Hierarchical zeolite structures with designed shapes by gelcasting of colloidal nanocrystal suspensions, Chem. Commun. 2001, 1364-1365.
- 4. Shiflett, M. B.; Foley, H. C. Ultrasonic deposition of high-selectivity nanoporous carbon membranes, Science, 1999, 285, 1902-1905.
- 5. Wang, H. T.; Zhang, L. X.; Gavalas, G. R. Preparation of supported carbon membranes from furfuryl alcohol by vapor deposition polymerization, J. Membr. Sci. 2000, 177, 25-31.

Modification of the Surface Characteristics of Anodic Alumina Membranes Using Sol-Gel Chemistry

Author Information:

Ruth E Baltus (speaker) Clarkson University Dept of Chemical Engineering Box 5705 Potsdam, NY 13699-5705 Phone: 315-268-2368 Fax: 315-268-6654

Email: baltus@clarkson.edu

Ben H Winkler Clarkson University Dept of Chemical Engineering Potsdam, NY 13699-5705 Phone: 315-268-2368

Fax:

Email: winklebh@clarkson.edu

Abstract:

The objective of the work to be reported was to characterize the surface properties of anodic alumina membranes using streaming potential measurements and to modify those properties using sol-gel reactions to deposit titania or silica on the surface of the membranes. The motivation for this study arose from a desire to develop a better understanding of the relationship between the surface characteristics of an ultrafiltration membrane and its separation performance.

Streaming potential measurements involve the measurement of the voltage difference across a charged porous membrane resulting when electrolyte flows through the pores in the membrane. Streaming potential can be used to calculate the zeta potential, which is related to the charge of the membrane surface. By measuring the zeta potential in electrolytes of different pH, the isoelectric point of the membrane can be determined. The isoelectric point of unmodified anodic alumina membranes was found to be at pH \sim 8.

The surface properties of the alumina membranes were modified by depositing titania and silica on the pore surface within the membrane. The sol-gel reaction was carried out with hexane as solvent. With several exceptions, the only water provided for the reaction was that adsorbed to the alumina and that found in air. Modified membranes showed zeta potentials in neutral or basic electrolyte that were lower than those observed for unmodified membranes, indicating the isoelectric point to be at pH \sim 6.5. However, the zeta potential of these membranes was essentially the same as that observed for the unmodified membranes when measured with acidic electrolyte solutions. It was also observed that the zeta potential in neutral or basic electrolyte was the same as observed with the unmodified membranes after the modified membrane was exposed to an acidic solution. Similar observations were found when the sol-gel reaction was carried out in the presence of small amounts of added water or HCl.

A likely explanation for these observations is that the sol-gel reaction under the conditions used for these experiments results in the formation of nano-sized particles which are only weakly attached to the alumina surface. Exposure to an acidic environment results in the removal of these weakly bound particles, returning the membrane to it's unmodified state. Experiments are currently underway whereby the sol-gel reaction is carried out in a basic environment. It is hoped that this change will result in the formation of a more networked metal oxide deposit that should be less susceptible to detachment in an acidic environment.

Visualization of Three-Dimensional Pore Structure within Porous Films

Author Information:

David L Green (speaker)
University of Minnesota
151 Amundson Hall / 421 Washington Avenue SE

Minneapolis, MN 55455 Phone: 612.626.8656 Fax: 612.626.7246

Email: dgreen@cems.umn.edu

Alon V McCormick University of Minnesota Dept of Chemical Engineering and Materials Science 421 Washington Ave SE Minneapolis, MN 55455 Phone: 612-625-1822

Fax: 612-626-7246

Email: mccormic@umn.edu

Abstract:

Abstract not available.

Sol-Gel Synthesis of Mesoporous Ceria and Zirconia Membranes-A Comparison Study

Author Information:

Neelesh J Rane (speaker) University of Cincinnati 2920 Scioto Street, Apt 704 Cincinnati, OH 45219 Phone: 513 556 8444

Fax:

Email: raneneelesh@hotmail.com

Jinsoo Kim University of Cincinnati P.O. Box 221171 Cincinnati, OH 45221 Phone: 5135562769

Fax: Email:

Genoveva Buelna Sandia National Laboratories P.O. Box 5800 MS 0755 Albuquerque, NM 87175-0755

Phone: (505) 845-0357

Fax: (505) 844-0968

Email: gqbueln@sandia.gov

Jerry Y S Lin University of Cincinnati PO Box221171 Cincinnati, OH 45221

Phone: 5135562769 Fax: 5135563473

Email: jlin@alpha.che.uc.edu

Abstract:

CeO2 and ZrO2 find applications in various fields such as electrolytes, membranes and catalysis. Mesoporous CeO2 and ZrO2 films supported on porous ceramics can be used as membranes for filtration applications and as substrates for oxygen sensors and fuel cells. However, sol-gel preparation of these two oxide membranes, especially of CeO2, has been found difficult compared with to other oxides such as alumina. In this paper we will report sol-gel synthesis and properties of these two mesoporous ceramic membranes.

CeO2 and ZrO2 sols were used for coatings on alumina supports to reduce the pore size of the composite membranes. PVA (Polyvinyl alcohol) was used as a binder, which controls the porosity of the support without affecting the other microstructural properties. These coated membrane disks were dried under controlled humidity and temperature and then calcined. The pore size distribution of the sol gel derived unsupported membranes was determined by Adsorption Porosimetry. The phase structures of the supported membranes were identified by X-ray diffractometer and the average pore size of the composite membrane was determined by a home made gas permeation system.

XRD data show that the CeO2 and ZrO2 membranes have face centered cubic (FCC) structure and the average pore size of the membrane was found to be narrow than the support indicating that the membranes were pin-hole and crack free.

Separation of Hydrogen using a Carbon Membrane

Author Information:

Mark B Shiflett (speaker)
DuPont Company
Route 141
Wilmington, DE 19880-0304

Phone: 302-695-2572 Fax: 302-695-4414

Email: mark.b.shiflett@usa.dupont.com

Abstract:

The use of hydrogen as an alternative fuel supply promises to dramatically change many industries, especially the transportation industry. Every major vehicle manufacturer has under development alternative power cars based upon hydrogen powered fuel cells. Hydrogen has many characteristics that qualify it as a nearly perfect fuel for transportation. The most important is the potential to efficiently deliver energy without harmful emissions. The hydrogen fuel cell produces only water; however, emissions from the technology to produce the hydrogen must be carefully considered. Today, hydrogen is mostly produced from fossil fuels. Steam reforming of hydrocarbons such as natural gas to produce syngas, a mixture of hydrogen and carbon monoxide, is one example. Hydrogen can also be produced by partial oxidation of hydrocarbons, heating coal in the absence of oxygen, by partial burning of coal in the presence of steam, or by electrolysis. The reactions with coal make a mixture of H2 with CO, CO2 and other gases. The cheapest sources of new hydrogen are refinery fuel gas streams, PSA tail gas, FCCU gas, and hydrocracker/hydrotreater off-gas. These gas streams contain 30-80% hydrogen mixed with light hydrocarbons (C1-C5).

New membrane materials will be important for separation of hydrogen from each of the gases mentioned. Carbon molecular sieve membranes offer the advantage of achieving above Knudsen separation factors, operating at high temperatures and pressures, and may be less likely to foul or be affected by condensation of hydrocarbon vapors. High flux carbon membrane synthesis and results of small molecule separation from hydrogen above the Knudsen limit will described.

Amine-Modified Silica Membranes for Separation of Carbon Dioxide Under Ambient Conditions

Author Information:

Sangil Kim (speaker)
University of Cincinnati
Chemical Engineering Department, ML#171 ,University of Cincinnati
Cincinnati, OH 45220-0171
Phone: 413-556-3929

Fax:

Email: kimsl@email.uc.edu

Cornelius Gauer Technische Universitat Bergakademie Freiberg Freiberg Freiberg, BRD 09596 Germany Phone: 513-556-3929

Fax: Email:

Vadim V Guliants
University of Cincinnati
Department of Chemical Engineering
Cincinnati, OH 45221-0171

Phone: 513-556-0203 Fax: 513-556-3473

Email: Vadim.Guliants@UC.EDU

Jerry Y S Lin

University of Cincinnati PO Box221171 Cincinnati, OH 45221

Phone: 5135562769 Fax: 5135563473

Email: jlin@alpha.che.uc.edu

Abstract:

S.Kim*, C.Gauer#, V.V.Guliants** and Y.S.Lin*

*Department of Chemical Engineering, University of Cincinnati, Cincinnati, OH 45221-0171 #Fakultat fur Maschinenbau, Verfahrens- und Energietechnik, Technische Universitat Bergakademie Freiberg, 09596 Freiberg, BRD

Reducing CO2 emissions for addressing climate change concerns is becoming increasingly important as the CO2 concentration in the atmosphere has increased rapidly since the industrial revolution. Most of currently investigated mitigation processes require CO2 in a concentrated form. However, CO2 is emitted from large sources, such as coal-fired power plants, at ~15% concentration. Therefore, capturing CO2 from dilute streams is an important step for many mitigation methods. Membrane separation methods are particularly promising due to potentially high CO2 selectivities and fluxes. By a proper choice of the pore size and surface properties, the CO2 transport across a membrane can be facilitated with respect to those of N2 and O2 leading to an efficient CO2 separation process. However, current membranes suffer from a poor control over the pore size on the 2-4 nm scale and surface properties required for CO2 separation.

We describe here novel mesoporous silica membranes with surface-attached amino groups promising for CO2 separation from dilute streams. Defect-free 1-5 um thick MCM-48 membranes displaying tunable 2-4 nm pores were fabricated on disk-shaped porous Al2O3 and SS supports by solution growth and evaporation methods in the presence of cationic surfactants.

Several amino groups were attached to the membrane surface using silicon alkoxides, such as 3-aminopropyltriethoxysilane: (Si-OH)s + C2H5-O-Si-R-NH2 -> (Si-O-Si-R-NH2)s + C2H5OH.

The amino group content and basicity critical for the CO2 separation selectivity and flux were determined by TGA, elemental analysis, and an acid-base titration, respectively. CO2-N2 separation on amine-modified silica membranes was investigated at 20-70oC and delp = 0.2-1 atm as a function of the pore size (2-4 nm) and the nature of the amino group using a Wicke-Kalenbach permeability cell. The membrane performance was evaluated with respect to permeance and separation selectivity, determined by a GC analysis of the permeate.

** corresponding author, <u>Vadim.Guliants@UC.EDU</u>

Journal of Micromechanics and Microengineering Athens login IOP login: Password: Go Create account | Alerts | Contact us Journals Home | Journals List | EJs Extra | This Journal | Search | Authors | Referees | Librarians | User Options | Help Previous article | Next article | | This volume ≥ | This issue ▲ | Content finder ▼

Development of porous silicon-based miniature fuel cells

Tristan Pichonat *et al* 2005 *J. Micromech. Microeng.* **15** S179-S184 doi:10.1088/0960-1317/15/9/S02

PDF (415 KB) | References | Articles citing this article

<u>Tristan Pichonat</u> and <u>Bernard Gauthier-Manuel</u>
Laboratoire FEMTO-ST, Département LPMO, CNRS UMR 6174, 32 avenue de l'observatoire, 25044 Besançon Cedex, France
Present address: Silicon Microsystems Group, IEMN, avenue H Poincaré, BP

60069, F-59652 Villeneuve d'Ascq Cedex, France E-mail: tristan.pichonat@isen.iemn.univ-lille1.fr

Abstract. Nowadays the rise in portable electronics requires energy sources compatible with the environmental constraints. We demonstrate, in this paper, how microfabrication techniques allow the development of low-cost miniature fuel cells fully integrated on silicon. Contrary to usual proton-conducting membranes made of ionomers ensuring the proton conductivity of proton-exchange membrane fuel cells (PEMFCs), we present here another way to proceed. It consists in the chemical grafting of molecules bearing acid groups on the pore walls of a porous silicon membrane to mimic the structure of an ionomer, such as Nafion®. We obtain an inorganic, dimensionally stable, proton-conducting membrane with many optimizable parameters such as the pore size and the pore structure of the membrane or the nature of the grafted molecules. Moreover, the use of a silicon substrate offers advantages of serial and parallel integration, the possibility of encapsulation by wafer bonding and gas feed and electrical contacts may be included into the membrane etching process, thanks to simple KOH wet etching processes and metal sputtering.

Print publication: Issue 9 (September 2005) Received 22 February 2005, in final form 27 July 2005 Published 15 August 2005

PDF (415 KB) References Articles citing this article

Find related articles By author

Tristan Pichona

IOP

CrossRefSearch

Find articles

Search highlighted text (Help)

Article options

E-mail this abstract
Download citation
Add to Filing Cabinet
Create e-mail alerts
Recommend this
journal

Authors & Referees

Author services NEW
Submit an article
Track your article
Referee services
Submit referee
report

LIBRARIAN

Quarterly News for Librarians

nanotechweb.org

COMPOUNDSEMICONDUCTOR.NET

◆ Previous article | Next article ► | This volume ★ | This issue ★

CONTENT FINDER

Journal of Micromechanics and Microengineering

Full Search Help	Author:	Vol/Year:	Issue/Month:	Page/Article No:	Find
i icip					

Journals Home | Journals List | EJs Extra | This Journal | Search | Authors | Referees | Librarians | User Options | Help | Recommend this journal Setup information is available for Adobe Acrobat.

EndNote, ProCite @ and Reference Manager @ are registered trademarks of ISI Researchsoft.

Copyright © Institute of Physics and IOP Publishing Limited 2006.

Use of this service is subject to compliance with the terms and conditions of use. In particular, reselling and systematic downloading of files is prohibited.
Help: Cookies | Data Protection.

