2025 梦熊联盟暑期集训 C 班 模拟赛

	游走	涂色	膜拜	航班
英文题目名	walk	color	orz	flight
题目类型	传统型	传统型	传统型	传统型
输入文件	walk.in	color.in	orz.in	flight.in
输出文件	walk.out	color.out	orz.out	flight.out
提交源程序文件名	walk.cpp	color.cpp	orz.cpp	flight.cpp
时间限制	2s	$2\mathrm{s}$	$2\mathrm{s}$	$2\mathrm{s}$
空间限制	1024MB	1024MB	$1024 \mathrm{MB}$	$1024 \mathrm{MB}$

所有题目捆绑测试, 启用子任务依赖。

游走(walk)

题目描述

有一个 $n \times n$ 的网格,每个格子里有一个数字,第 i 行第 j 列的数字记为 $a_{i,j}$ 。

你需要从左上角的**网格顶点**走到右下角的**网格顶点**,每一步只能**沿网格线**向下或向右走,总共走 2n步,一个例子如图所示:

你的路径会将网格分成上下两部分,令 A 表示路径上方所有数字构成的集合, B 表示路径下方所有数字构成的集合,定义代价为 $\max_{x\in A}\max_{y\in B}|x-y|$ 。

特别的,若 A,B 其中之一为空集,则定义代价为 $+\infty$ 。

你需要找到一条路径,最小化代价。

输入格式

第一行一个整数 n。

接下来 n 行,每行 n 个整数,第 i 行第 j 列的数表示 $a_{i,j}$ 。

输出格式

输出一行一个整数表示答案。

样例

样例输入#1

4 17 4 7 87 6 1 3 5 8 11 15 64 2 44 55 66

样例输出#1

85

样例解释

如图所示。

数据范围与约定

对于所有数据,有:

- $2 \le n \le 500$
- $1 \le a_{i,j} \le 10^9$

子任务	特殊性质	分值
1	$a_{i,j} \leq 1$	20
2	$a_{i,j} \leq 2$	20
3	$n \leq 2$	20
4	$n \leq 10$	20
5	无	20

涂色(color)

题目描述

给定一个 $n \times n$ 的网格, 一些格子可以被涂色, 一些不可以。

你需要确定一个尽可能大的长度 l ,使得可以在网格上涂出两个**不相交的** $1 \times l$ 或 $l \times 1$ 长条型网格。

输入格式

第一行一个正整数n。

接下来 n 行,每行一个只包含 \times 和 . 的字符串,描述这个网格。

x 表示不能被涂色, 表示可以被涂色。

输出格式

输出 l 的最大可能值。

样例

样例输入#1

```
5
.X...
.XXXX
XX...
...
.X.X.
```

样例输出#1

```
3
```

样例解释#1

```
.X...
.XXXX
XX..2
111.2
.X.X2
```

样例输入#2

样例输出#2

5

数据范围与约定

对于所有数据,有:

• $1 \le N \le 1500$

子任务	特殊性质	分值
1	$N \leq 2$	20
2	$N \leq 10$	20
3	$N \leq 30$	20
4	$N \leq 300$	20
5	无	20

膜拜(orz)

题目描述

有 n 个 Oler,编号为 $1,2,\cdots,n$,他们进行了 m 场比赛。

第 k 场比赛的排行榜用一个序列 a_k 表示,第 i 个数表示排名为 i 的 Oler 编号。

定义 x 和 y 的"膜拜距离"为一个尽可能小的整数 l ,使得:

- 存在一个长度为 l+1 的序列 b。
- $b_1 = x, b_{l+1} = y$
- 对于所有 $j\in [1,l]$, b_j 至少在一场比赛中的排名比 b_{j+1} 高。

有q次询问,每次询问你需要回答某两个Oler的"膜拜距离"。

输入格式

第一行两个整数 n, m。

接下来 m 行,其中第 k 行包含 n 个整数 $a_{k,1},\cdots,a_{k,n}$,表示第 k 场比赛的排行榜。

接下来一行一个整数 q。

接下来 q 行,每行两个整数 x,y,你需要求出 x,y 的"膜拜距离"。

输出格式

输出 q 行,每行一个整数回答询问,如果无解输出-1。

样例

样例输入#1

```
6 2
1 3 2 5 4 6
2 1 4 3 6 5
4
1 4
5 3
6 1
5 2
```

样例输出#1

```
1
2
5
3
```

数据范围与约定

对于所有数据,有:

- $2 \le n \le 10^5$
- $1 \le m \le 5$
- 每场模拟赛的排行榜是一个排列。
- $1 \le q \le 10^5$
- $x \neq y$

子任务	特殊性质	分值
1	m=1	10
2	$n,q \leq 500$	15
3	$n,q \leq 2000$	15
4	a_k,x,y 在范围内随机生成	25
5	$n,q \leq 2 imes 10^4$	15
6	无	20

航班(flight)

题目描述

有 n 个城市,编号为 $0,1,\cdots,n-1$,它们被 n-1 条双向道路联通(形成一棵树),第 i 条道路连接城市 u_i,v_i ,长度为 w_i 。

任意两个不同的城市之间都有航班。

但是,从每个城市出发的航班,收费标准都不同。若你从第 j 个城市出发,飞行到城市 k,记二者在树上的距离为 dist(j,k),你将被收取 $a_j+dist(j,k)\times b_j$ 的费用。

求从城市 0 出发, 到每个城市的最小费用。

输入格式

第一行一个整数 n。

接下来一行 n 个整数,表示 a_0, a_1, \dots, a_{n-1} 。

接下来一行 n 个整数,表示 b_0, b_1, \dots, b_{n-1} 。

接下来 n-1 行,第 i 行有三个整数 u_i, v_i, w_i ,表示一条道路。

输出格式

输出 n-1 行,分别表示到 $1,2,\dots,n-1$ 的最小费用。

样例

样例输入#1

```
5
10 5 13 4 3
10 7 5 9 1
1 0 1
0 2 5
3 2 10
2 4 3
```

样例输出#1

```
20
60
104
88
```

数据范围与约定

对于所有数据,有:

• $2 \le n \le 10^5$

• $0 \le a_i \le 10^{12}$ • $0 \le b_i \le 10^6$

• $0 \leq u_i, v_i \leq n-1$

• $1 \le w_i \le 10^6$

子任务	特殊性质	分值
1	$n \leq 20$	10
2	$u_i=i,v_i=i+1$	15
3	$n \leq 2000$	15
4	$b_i \leq 30$	20
5	只有不超过 $2000 ext{ } \land b_i > 0$	20
6	无	20