environment. 29. a. Illustrate the platform FPGA components in detail. (OR) b. Explain with an example to illustrate the different ways components can be combined to form large modules.			2,4 ,1 2,3 ,1
environment. 29. a. Illustrate the platform FPGA components in detail. (OR) b. Explain with an example to illustrate the different ways components can be combined to form large modules.			,-
(OR) b. Explain with an example to illustrate the different ways components can be combined to form large modules.	2	4	2,3 ,1
b. Explain with an example to illustrate the different ways components can be combined to form large modules.			
combined to form large modules.			
10	3	4	3,2 ,1
30. a. Interpret the different levels of parallelism in detail.	2	5	2,3 ,1
(OR)			
b. Define profiling and explain the practical issues faced during profiling.	2	5	1,4 ,1

* * * * *

Page 4 of 4 28NF6&7-18ECE205J

Reg. No.				S				

B.Tech. DEGREE EXAMINATION, NOVEMBER 2022

Sixth and Seventh Semester

18ECE205J – FPGA-BASED EMBEDDED SYSTEM DESIGN

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

Note: (i)	Par	t - A should be answered in OM	Sheet v	vithin first 40 minutes and OMR shee	et shou	ld be	han	ded
(1)		r to hall invigilator at the end of 40	_		onou	14 00	11011	aoa
(ii)		t - B should be answered in answe						
Time: 2	½ Ho	urs			Max	. Ma	rks:	75
		PART – A (25 ×	1 = 25 I	Marks)	Marks	BL	со	PO
		Answer ALL						
1.	Whi	ich design allows the reuse of s	oftware	and the hardware components?	1	2	1	4
	(A)	Memory design	(B)	Input design				
	(C)	Platform based design	(D)	Peripheral design				
2.		configuration has memory.	s only c	one "zero" location for both data	1	1	1	1
		Von Neumann memory	(B)	Harvard memory				
		Memory	(D)	CPU				
3.	The	maximum size of the external	data me	emory space isbytes.	1	1	1	1
	(A)		(B)					
	(C)		(D)					
4.		ich design can be used to nedded system?	educe	the energy consumption of the	1	1	1	1
		Simulator	(B)	Compiler				
	(C)	Emulator	(D)	Debugger				
5.		technique where by the DMA tessor to operate is called	control	ler steals the access cycles of the	1	1	1	1
	(A)	Fast conning	(B)	Memory con				
	(C)	Cycle stealing	(D)	Memory stealing				
6.	FPG	GA device aretypes			1	1	2	2
	(A)	PLD	(B)	EPROM .				
	(C)	SROM	(D)	SLD				
7.		w many logic gates can be igrammable logic devices?	mpleme	ented in the circuit by complex	1	2	2	2
	(A)	-	(B)	100				
		1000	(D)	10000				
	` /		. ,					

Page 1 of 4 28NF6&7-18ECE205J

8.	Which among the following are use inputs?(A) Input buffers(C) Or matrix	ed in PAL for reducing the loading on (B) Output buffers (D) And matrix	1	1	2	2		19.	a (A	hich type of simulation mode is used to check the timing performance of lesign? (B) Switch level (D) Gate level	1	2	5	2
9.	In DMA transfers, the required signal (A) Processor (C) DMA controllers	gnals and addresses are given by the (B) Device drivers (D) The program itself	1	1	2	1	v	·20.	lea	hich type of digital system exhibit the necessity for the existence of at st one feedback path from output to input? (B) Sequential system (D) Drive attribute	1	2	5	
10.	Which interrupt is unmaskable? (A) RST 5.5 (C) TRAP	(B) RST 7.5 (D) Both RST 5.5 and 7.5	1	1	2	2		21.	(A	e coprocessor model is also known as (B) Multithread model (Network onchip model (D) Single thread model	1	2	6	2
11.	Identify the variant in XILINX 5 virgorocessing applications (A) SX (C) TX	tex IDE that is mainly for digital signal (B) LX (D) FX	1	2	3	1		22.	ca (A	process network is a design abstraction in which functional components led processes communicate through data items called	1	2	5	
12.	An embedded system has(A) Response time constraints (C) Turn around time	(B) Strict deadlines(D) Response time constraints and strict deadlines	1	2	3	2		23.	an	Sequential (B) Combinational	1	2	6	:
	Configurable logic blocks in FPGA a (A) Look up tables (C) Carry look ahead logic	(B) Programmable interconnect(D) Logic cell	1	2	3	1		24.	dit (A	e function based ESL design method uses model to compose ferent functional components into a complete system. (B) Computational (C) Communication (D) Sequential	1	2	5	2
14.	In FPGA, provides interfa (A) Input output blocks (C) Simulator	ce between package pins and CLBs. (B) Functional blocks (D) Synthesis	1	2	3	2		25.	Ho tri	Id time is defined as the time required for the data toafter the gering edge of clock. (B) Decrease	1	2	5	-
15.	array is called(A) PLD	ray and array and a programmable OR (B) PROM	1	2	3	1			(C	Hold (D) Remain stable	= 2.			
16.		(D) PLA separately compiled modules of a	1	2	4	2				$PART - B (5 \times 10 = 50 Marks)$ Answer ALL Questions	Marks	BL	со	P
	program into a form suitable for exect (A) Assembler (C) Cross compiler	cution is called (B) Linking loader (D) Debugger					ā	26. a.		monstrate and explain various types of mechanisms in interrupt service adling process and the need of DMA in embedded systems.	10	2	1	2,
17.	In VLSI design, which process deal capacitance of interconnections?	s with determination of resistance and	1	2	4	2		b.	Illı	(OR) strate the sensor and its different types with real time examples.	10	2	1	2,
	(A) Floor planning(C) Testing	(B) Placement and routing(D) Extraction						27. a.	Illı	astrate the $PSOC_3$ architecture with a neat block diagram.	10	3	2	1,
18.	Which attribute in synthesis process the quantity of current it can source? (A) Load attribute (C) Combinational attribute	s specify the resistance by controlling (B) Drive attribute (D) Sequential attribute	1	2	4			b.	Ex	(OR) plain in detail about power management and internal regulators.	10	3	2	2,

Page 2 of 4

28NF6&7-18ECE205J

Page 3 of 4