利率的期限结构 term structure of interest rate

孟生旺中国人民大学统计学院

• 本章主要内容:

- 到期收益率(yield to maturity)和收益率曲线
- 远期利率(forward rate)
- 即期利率(spot rate)
- 套利(arbitrage)

到期收益率和收益率曲线

• 到期收益率 (yield to maturity): 资产的内部报酬率,是使得该项资产未来现金流的现值与其价格相等的利率。

$$P = \sum_{t>0} \frac{C_t}{(1+\mathbf{y})^t}$$

表1 利率的期限结构(由10种不同到期日的债券组成)

期限	年息票率	债券的价格	到期收益率
1	2%	97.1429	5.0%
2	5%	99.0768	5.5%
3	6%	100.0000	6.0%
4	10%	113.1073	6.2%
5	4%	89.6108	6.5%
6	12%	124.9398	6.8%
7	0%	61.4662	7.2%
8	7%	98.2293	7.3%
9	4%	77.6739	7.5%
10	8%	102.7331	7.6%

注:假设所有债券的面值和偿还值都等于100

利率的期限结构(term structure of interest rate): 利率和与之相联系的到期日之间的关系。表现形式: 收益率曲线。

收益率曲线

即期利率

- 即期利率(spot rate): 从当前时点开始计算的未来一定 限期的利率水平。
- 用即期利率计算债券的价格:

$$P = \sum_{t>0} \frac{C_t}{(1+\frac{r_t}{r_t})^t}$$

例: 1年期的即期利率为5.2%, 2年期的即期利率为5.5%。 请计算一个年息票率为15%的两年期债券的价格, 假设债券的面值为100元。

解: 该债券的价格为

$$P = \sum \frac{C_t}{(1+r_t)^t} = \frac{15}{1+r_1} + \frac{115}{(1+r_2)^2} = \frac{15}{1.052} + \frac{115}{1.055^2} = 117.5802$$

• 如何求得即期利率?两种方法

1. 通过市场上零息债券的价格计算:

n年期的即期利率=n年期零息债券的收益率

- 2. 自助法 (bootstrapping):
 - 由一年期债券的价格计算1年期的即期利率
 - 利用这个信息及两年期债券的价格,计算2年期的即期利率
 - 依次类推

例:假设1年期和2年期的即期利率分别为5%和5.5126%。 3年期债券的价格为100,面值为100,息票率为6%。 求3年期的即期利率。

解: 3年期的即期利率满足下述方程:

$$100 = \frac{6}{1+r_1} + \frac{6}{(1+r_2)^2} + \frac{106}{(1+r_3)^3}$$

$$= \frac{6}{1.05} + \frac{6}{1.055126^2} + \frac{106}{(1+r_3)^3}$$

$$\Rightarrow r_3 = 6.0411\%$$

即期利率曲线

到期收益率可以看做是不同即期利率的一种加权平均。在 该例中,收益率曲线是递增的,因此即期利率也是递增的。

远期利率

• 远期利率(forward rate):未来两个时点之间的利率水平,由即期利率推出。

例: 如果1年期的即期利率是5%,2年期的即期利率是5.2%,求其隐含的第一年末到第二年末的远期利率f?

解:
$$(1+5\%)(1+f) = (1+5.2\%)^2$$
$$f = 5.4\%$$

远期利率曲线

在本例中,远期利率均大于相应的即期利率和到期收益率。但在现实市场中,远期利率小于即期利率和到期收益率的情况也是可能的。

例:求即期利率 r_3

$$(1+r_3)^3 = (1+f_0)(1+f_1)(1+f_2)$$

例: 求远期利率 f_2

$$(1+r_3)^3 = (1+r_2)^2(1+f_2)$$

套利

- 套利机会: 当资产的定价不一致时,就可能存在套利机会。
- 例:一个年息票率为5%的两年期债券的市场价格为101元,面值为100元。1年期的即期利率为4.5%,2年期的即期利率为5%。请确定是否存在套利机会。

解:按即期利率计算的债券价格为:

$$P = \frac{5}{1.045} + \frac{105}{1.05^2} = 100.0228$$

与市场价格101元不一致,故存在套利机会。

• 如何套利?

- 卖出一个两年期债券,获得101元。
- 购买一个在第1年末偿还5元的零息票债券,以及一个 在第2年末偿还105元的零息票债券。购买价格为

$$P = \frac{5}{1.045} + \frac{105}{1.05^2} = 100.0228$$

套利者在0时刻获得101-100.0228 = 0.9772的无风险收益,而未来的现金流正好可以对冲。

卖出债券的现金流	101	-5	-105
买入债券的现金流	100.02	5	105

小结

- 到期收益率为 y
- 即期利率为 r_t
- 远期利率为 f_t

$$P = \sum_{t>0} \frac{C_t}{(1+y)^t}$$

$$=\sum_{t>0}\frac{C_t}{(1+r_t)^t}$$

$$= \sum_{t>0} \frac{C_t}{(1+f_0)(1+f_1)...(1+f_{t-1})}$$

Exercise

Consider a yield curve defined by the following equation:

$$i_k = 0.09 + 0.002k - 0.001k^2$$

- Where i_k is the annual effective rate of return for zero coupon bonds with maturity of k years.
- Let j be the one year effective rate during year 5 that is implied by this yield curve.
- Calculate j.

4年期的即期利率为

$$r_4 = 0.09 + 0.002 \times 4 - 0.001 \times 4^2 = 0.082$$

5年期的即期利率为

$$r_5 = 0.09 + 0.002 \times 5 - 0.001 \times 5^2 = 0.075$$

$$(1+r_5)^5 = (1+r_4)^4 (1+j)$$

$$\Rightarrow$$
 $(1+0.075)^5 = (1+0.082)^4 (1+j)$

$$\Rightarrow$$
 $j = 0.047$

练习

 请根据下表的数据构造收益率曲线,即期利率曲线和远期 利率曲线。(注:所有债券的面值和偿还值都是100)

期限	年息票率	债券的价格
1	2%	95
2	5%	98
3	6%	100