Санкт-Петербургский государственный технический университет Институт прикладной математики и механики Кафедра "Телематика (при ЦНИИ РТК)"

ЛАБОРАТОРНАЯ РАБОТА

Дисциплина: Архитектура систем управления суперкомпьютерных баз данных Тема: Тройное экспоненциальное сглаживание временных рядов

Выполнила: Стриганова А.В.

Проверил: Попов С.Г.

1. СОДЕРЖАНИЕ

1. ЦЕЛЬ РАБОТЫ	3
2. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ	3
2.1 Построение прогнозов временных рядов	3
2.1.1 Интуитивные методы	3
2.1.2 Экспоненциальное сглаживание	4
2.1.3 Двойное экспоненциальное сглаживание	4
2.1.4 Тройное экспоненциальное сглаживание	5
2.2 Обзор Axibase Time Series Database (ATSD)	6
3. РЕЗУЛЬТАТЫ	8
ЗАКЛЮЧЕНИЕ	10
ПРИЛОЖЕНИЕ А. Листинг модуля hw.py	11
ПРИЛОЖЕНИЕ Б. Листинг модуля atsd.py	13

2. ЦЕЛЬ РАБОТЫ

В данной работе необходимо рассмотреть алгоритм тройного экспоненциального сглаживания и применить его к метрике, полученной из базы данных временных рядов ATSD. Параметры алгоритма должны быть получены путём минимизации функции ошибки.

3. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

2.1 Построение прогнозов временных рядов

Тройное экспоненциальное сглаживание, также называемое методом Холта-Винтерса, — это один из способов построения прогнозов временных рядов. Прежде чем приступить к подробному изучению схемы работы этого алгоритма, рассмотрим другие (более простые) методы прогнозирования.

2.1.1 Интуитивные методы

Введём следующие обозначения: у — исходное значение, \hat{y} — спрогнозированное значение. Для прогноза одного значения можно использовать методы:

1) арифметическое среднее

$$\hat{\mathbf{y}}_{i+1} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{y}_{i}$$

2) скользящее среднее

$$\hat{y}_{i+1} = \frac{1}{N} \sum_{i=N-k}^{N} y_i$$

3) взвешенное скользящее среднее

$$\hat{y}_{i+1} = \sum_{i=N-k}^{N} w_i * y_i$$

Взвешенное скользящее среднее кажется наиболее подходящим вари-

антом, но хотелось бы учитывать не только последние N элементов выборки, а все исторические значения ряда, при этом чем старше значение, тем ближе его вес должен быть к нулю. Экспоненциальное сглаживание - решение этой задачи.

2.1.2 Экспоненциальное сглаживание

$$\hat{y}_i = \alpha * y_i + (\alpha - 1) * \hat{y}_{i-1}$$

 α — сглаживающий коэффициент

$$\hat{y}_i = \alpha * y_i + (\alpha - 1) * \hat{y}_{i-1}
= \alpha * y_i + \alpha (1 - \alpha) * y_{i-1} + (1 - \alpha)^2 * y_{i-2}
= \alpha * [y_i + \alpha (1 - \alpha) * y_{i-1} + (1 - \alpha)^2 * y_{i-2} + (1 - \alpha)^3 * y_{i-3} + \dots + (1 - \alpha)^{i-1} * y_1] + (1 - \alpha)^i$$

Веса экспоненциально убывают с течением времени. Чем выше значение α, тем быстрее «забываются» исторические данные. Для каждого ряда нужно подбирать свой сглаживающий коэффициент, этот процесс называется fitting.

Проблема описанных ранее методов заключается в том, что они способны спрогнозировать только одно единственное значение.

2.1.3 Двойное экспоненциальное сглаживание

Введём следующие обозначения:

- l-level одно спрогнозированное значение
- b-trend разница между соседними элементами

$$b = y_i - y_{i-1}$$

Двойное экспоненциально сглаживание — это экспоненциальное сглаживание, применённое и к тренду, и к уровню:

$$l_{i} = \alpha * y_{i} + (1 - \alpha) * (l_{i-1} + b_{i-1})$$
 level
 $b_{i} = \beta * (l_{i} - l_{i-1}) + (1 - \beta) * b_{i-1}$ trend
 $\hat{y}_{i+1} = l_{i} + b_{i}$ forecast

 β — это тренд-фактор; так же, как и для простого экспоненциального сглаживания, α и β — отличаются для разных рядов. Данный метод позволяет спрогнозировать два значения.

2.1.4 Тройное экспоненциальное сглаживание

Тройное экспоненциальное сглаживание является одним из многих методов, которые могут быть использованы для прогнозирования точек данных в серии, при условии, что серия является "сезонной", т. е. повторяющейся в течение некоторого периода.

- L длина сезона (периода)
- $S-seasonal\ component-$ значение, повторяющееся на том же месте в сезонах

В дополнение к уровню и тренду сглаживание применяется так же и к сезонным компонентам:

$$l_{i} = \alpha * (y_{i} - s_{i-L}) + (1 - \alpha) * (l_{i-1} + b_{i-1})$$
 level
 $b_{i} = \beta * (l_{i} - l_{i-1}) + (1 - \beta) * b_{i-1}$ trend
 $s_{i} = \gamma * (y_{i} - l_{i}) + (1 - \gamma) * s_{i-L}$ seasonal
 $\hat{y}_{i+m} = l_{i} + mb_{i} + s_{i-L+1+(m-1)modL}$ forecast

Важно то, что сезонные компоненты сглаживаются по сезонам, т.е. 3-я компонента в данном сезоне, будет сглажена с 3-й компонентой в предыдущем сезоне и т.д. В формуле γ – это сглаживающий фактор для сезонной компоненты, m – произвольное целое число. Для реализации нужно знать формулу для подсчёта начального тренда:

$$b_0 = \frac{1}{L} \left(\frac{y_{L+1} - y_1}{L} + \frac{y_{L+2} - y_2}{L} + \dots + \frac{y_{L+L} - y_L}{L} \right)$$

Это среднее средних трендов по сезонам.

2.2 Обзор Axibase Time Series Database (ATSD)

ATSD — это не реляционная база данных, оптимизированная для сбора, хранения и анализа временных данных из ИТ-инфраструктуры, промышленного оборудования, интеллектуальных счетчиков и устройств Интернета вещей. На рисунке 2.2.1 изображена упрощённая архитектура ATSD:

Рис. 2.2.1 Архитектура ATSD.

ATSD состоит из следующих модулей:

- Rule Engine
- SQL Engine
- Portal Server
- Charts Library
- Search Service
- REST API Server
- Network API Server
- CSV Processor

REST API Server предоставляет возможность получения прогнозов, рассчитанных одним из следующих способов: Holt-Winters, ARIMA, SAS, пример запроса представлен на рисунке 2.2.2:

Request

Method	Path	Content-Type Header
POST	/api/v1/series/query	application/json

Series Query: Named Forecast

Request

Рис. 2.2.2 Пример forecast-запроса.

Charts Library позволяет визуализировать как исторические данные, так и спрогнозированные:

Рис. 2.2.3 Визуализация прогноза с помощью Charts.

4. РЕЗУЛЬТАТЫ

В ходе выполнения данной работы была реализована программа на языке Python 3.6, с использованием библиотек Matplotlib 3.0.0, NumPy 1.15.1, SciPy 1.1.0 и ATSD Python Client 3.0.2. Программа состоит из двух модулей:

- 1. построение прогноза, минимизация суммы квадратов разностей (функции ошибки) и поиск оптимальных параметров α , β , γ ;
- 2. соединение с ATSD, загрузка метрики, вызов метода прогнозирования из 1-го модуля, построение графиков.

В качестве модели используется сумма квадратов разностей:

```
1 # SSE - sum of squared residuals - сумма квадратов разностей
2 def SSE(coefficients, *arr):
     series = arr[0]
    season length = arr[1]
    n forecast = arr[2]
    alpha, beta, gamma = coefficients
     forecast = holt winters(series, season length,
7
                             alpha=alpha, beta=beta,
                             gamma=gamma, n forecast=n forecast)
10 sse = 0
11
    for i in range(0, len(series)):
12
         sse += (forecast[i] - series[i]) ** 2
     return sse1
```

Листинг 3.1 Функция SSE.

Для поиска оптимальных параметров используется минимизация суммы квадратов разностей с помощью алгоритма L-BFGS-B:

Листинг 3.2 Функция forecast.

В результате запуска программы получены следующие значения коэффициентов:

```
\alpha = 0.01366847

\beta = 0.9942451

\gamma = 1.0
```

На рисунке 3.1 представлены исторические и спрогнозированные с помощью реализованного алгоритма данные:

Рис. 3.1 Тестирование программы.

5. ЗАКЛЮЧЕНИЕ

В данной работе было изучено и реализовано тройное экспоненциальное сглаживание. Также были рассмотрены простое и двойное экспоненциальное сглаживание. В ходе тестирования полученной программы было выяснено, что метод Холта-Винтерса очень чувствителен к неравномерностям сезонов, а на непериодических данных выдаёт полностью некорректные результаты. Реализованная программа позволяет не задумываться о коэффициентах, т.к. они высчитываются автоматически, однако требуется вручную задавать размер сезона.

6. ПРИЛОЖЕНИЕ А. Листинг модуля hw.py

```
import matplotlib.pyplot as plt
  import numpy as np
  from scipy.optimize import fmin 1 bfgs b
5
6 def initial trend(series, L):
7
8
      Начальное значение для тренда.
9
10
      :param series: значения ряда
11
      :param L: длина сезона
12
       :return: начальное значение для тренда
      11 11 11
13
14
      sum = 0.0
15
       for i in range(L):
16
           sum += float(series[i + L] - series[i]) / L # среднее средних
трендов среди сезонов
17
      return sum / L
18
19
20 def initial seasonal components (series, L):
21
22
       Начальные значения для seasonal components - Sx
23
24
       :param series: исходные значения ряда
25
       :param L: длина сезона
26
       :return: начальные значения для сезонов
27
28
      seasonals = \{\}
29
       season averages = [] # средние знячения в сезоне
       n = int(len(series) / L) # количество сезонов
30
31
       for j in range(n):
32
           season averages.append(sum(series[L * j:L * j + L]) / float(L))
33
       # каждое значение в сезоне делится на среднее по сезону,
       # затем полученный результат суммируется с соответствующим значением
из следующего сезона,
35
       # полученная сумма делится на количество сезонов
36
       for i in range(L):
37
           sum of vals over avg = 0.0
           for j in range(n):
38
39
               sum of vals over avg += series[L * j + i] / season aver-
ages[j]
40
           seasonals[i] = sum of vals over avg / n
41
       return seasonals
42
43
44 def holt winters (series, L, alpha, beta, gamma, n forecast):
45
46
       Тройное экспоненциальное сглаживание.
47
48
       :param series: исходный ряд
49
       :param L: длина сезона
50
       :param alpha: параметр сглаживания для значения ряда
51
       :param beta: параметр сглаживания тренда
52
       :param gamma: сезонный параметр сглаживания
53
       :param n forecast: количество точек, которые нужно предсказать
54
       :return: начальные значения + спрогнозированные
55
56
      result = []
57
       for i in range(len(series) + n forecast):
58
           if i == 0: # начальные значения
59
60
               s = initial seasonal components(series, L)
```

```
61
               level = series[0]
62
               trend = initial_trend(series, L)
63
               result.append(series[0])
64
               continue
65
           if i >= len(series): # прогноз
66
              m = i - len(series) + 1 # смещение в прогнозе
67
           else: # HW на известных данных
68
               Yi = series[i]
69
               last level = level # baseline
70
               level = alpha * (Yi - s[i % L]) + (1 - alpha) * (level +
trend)
71
               trend = beta * (level - last level) + (1 - beta) * trend
               s[i % L] = gamma * (Yi - level) + (1 - gamma) * s[i % L]
72
73
           result.append(level + m * trend + s[i % L])
74
       return result
75
76
77 # SSE - sum of squared residuals - сумма квадратов разностей
78 def SSE (coefficients, *arr):
79
      series = arr[0]
80
       season length = arr[1]
81
       n forecast = arr[2]
82
       alpha, beta, gamma = coefficients
83
       forecast = holt winters(series, season length,
                               alpha=alpha, beta=beta,
84
85
                               gamma=gamma, n forecast=n forecast)
86
      sse = 0
87
      for i in range(0, len(series)):
88
          sse += (forecast[i] - series[i]) ** 2
89
       return sse
90
91
92 def forecast(series, season length, n forecast):
       Y = series[:]
93
94
       initial values = np.array([0.3, 0.1, 0.1])
95
      boundaries = [(0, 1), (0, 1), (0, 1)]
96
       \# минимизируем ошибку с помощью алгоритма L-BFGS-B
97
       parameters = fmin 1 bfgs b(SSE, x0=initial values,
98
                                  args=(Y, season length, n forecast),
99
                                  bounds=boundaries,
100
                                  approx grad=True)
101
       alpha, beta, gamma = parameters[0]
102
       print(parameters[0])
103
       return holt winters (series, season length, alpha, beta, gamma,
n forecast)
```

7. ПРИЛОЖЕНИЕ Б. Листинг модуля atsd.py

```
1 from atsd client import connect
2 from atsd client.models import *
3 from atsd client.services import SeriesService
4 import matplotlib.pyplot as plt
6 from TDB.hw import forecast
7
8 # В файле connection.properties нужно указать хост, имя и пароль от ATSD
9 connection = connect();
10 # Указываем интересующие нас метрику и сущность, для которых будет стро-
иться прогноз
11 sf = SeriesFilter(metric="direct.gueries")
12 ef = EntityFilter(entity="duckduckgo")
13 # Выбираем начальную дату для запроса
14 start date = "2018-11-03T02:59:00Z"
15 # Инициализируем временной фильтр, конечная дата = начальная дата + 3 ме-
сяца
16 df = DateFilter(interval={"count": 3, "unit": "MONTH"},
start date=start date)
17 # Формируем series-запрос
18 query data = SeriesQuery(series filter=sf, entity filter=ef, date fil-
ter=df)
19 svc = SeriesService(connection)
20 # Загружаем указанный ряд
21 series, = svc.query(query_data)
22 """
23 Визуализируем исторические и спрогнозированные данные.
24 """
25 print(series)
26 start = len(series.values())
27 \text{ end} = \text{start} + 25
28 plt.subplot(111)
29 plt.plot(series.values(), label="History", marker=".")
30 plt.plot(range(start, end), forecast(series.values(), 7, 25)[-25:], la-
bel="Forecast", marker=".")
31 plt.legend(bbox to anchor=(1, 0.14), loc=1, borderaxespad=0.1)
32 plt.grid(True)
33 plt.show()
```