AMPLIFICADORES OPERACIONAIS REFORÇADOR DE CORRENTE

Relatório 08 de ELT 311

Wérikson F. O. Alves - 96708 Universidade Federal de Viçosa (UFV), Viçosa, Brasil e-mails: werikson.alves@ufv.br

Resumo

Este relatório abordará o tema de Amp-op's buscando analisar e entender o funcionamento de um reforçador de corrente push-pull. Em seguida, serão realizadas algumas simulações acerca dos modelos citados com uma comparação ao final entre os resultados teóricos e práticos obtidos.

Introdução

Os amp-op's possuem certas limitações no valor de corrente de saída, sendo seu valor tipico de 25 mA. Uma forma de evitar isto é utilizar transistores na saída do amp-op e fazendo uma realimentação neles, dessa forma o transistor pode reforçar a corrente em dispositivos com limitação de corrente. O amp-op conectado como amplificador inversor, e sendo a realimentação fechada na malha dos transistores, Figura 2, implica que automaticamente a realimentação ajusta o valor da tensão de baseemissor no transistor. Esta conexão é denominada de reforçador de corrente.

Figura 1: Circuito inicial.

Figura 2: Circuito com reforçador de corrente.

Objetivos

Portanto, o objetivo deste relatório é entender e verificar o funcionamento de um reforçador de corrente pushpull.

Materiais e Métodos

• Resistores; • BD 135;

• Amp-op 741; • BD 136;

A simulação foi realizada no *software* **QUCS** e **Multi-Sim**.

Parte teórica

O reforçador de corrente push-pull é um tipo de reforçador que utiliza a configuração de corrente bidirecional, além de possuir em sua montagem amp-op e transistores para fornecer uma corrente de saída maior em relação ao caso que se utiliza apenas amp-op. Conforme dito anteriormente a corrente de um Amp-op fica em torno de 25

a 40 mA. Tomando como base o Amp-op LM741, temos os seguintes parâmetros apresentados na Tabela 1:

Tabela 1:	Características	do amp-or	LM741.

	1 1			
	$V_{CC_{max}}$	$I_{out_{max}}$	$A_{VOL_{tip}}$	$CMRR_{min}$
	(V)	(mA)	(dB)	(dB)
LM675	pm18	2,8	90	70
	$P_{out_{tip}}$	$S_{r_{tip}}$	$ICMR_{tip}$	
	(W)	(V/us)	(V)	
LM675	50	0,5	pm15	

2 time: 0.000228 vs. Vt. 0.99 time: 0.00192 vo.Vt. 2.57 time: 0.00034 vs. Vt. -0.999 vs. Vt. -0.

Figura 5: Sinal de saída para 2 Vpp com R=100.

Parte Prática

Sem Reforçador

Inicialmente foi montado o circuito do amplificador inversor sem reforçador de corrente, Figura 3. Neste, foi aplicado um sinal de entrada de $0,5\ V_{pp}$ e frequência de $1\ \rm kHz$, obtendo a Figura 4. Em seguida, para o mesmo circuito, o valor da tensão foi elevado para $2\ V_{pp}$, obtendo as formas de ondas representada na Figura 5.

Figura 3: Circuito simulado: 1)

Figura 4: Sinal de saída para 0,5 Vpp com R=100.

Foi observado que o sinal que o sinal ficou saturado em $\pm 2,56$ V, sendo que estes valores estão muito abaixo do esperado devido a baixa resistência presente na saída, ou seja, quanto menor for a resistência menor a tensão de saída.

Agora, ao substituir o ultimo resistor, de $100\ Omega$ por um de $10\ kOmega$, obtemos o sinal apresentado na Figura 6. Portanto, foi observado que ao aumentar a resistência, o sinal de Saída V_o também aumentou, consequentemente, o ponto de saturação aumentou logo é possível visualizar a onda completa, sem cortes.

Figura 6: Sinal de saída para 2 Vpp com R= 10k.

Com Reforçador

Para esta parte, foi acrescentado o reforçador de corrente push-pull ao circuito anterior, Figura 7. Em seguida, foi aplicado um sinal senoidal de até 3 Vpp com frequência de 1kHz, dessa forma, foi obtido a Figura 8.

REFERÊNCIAS REFERÊNCIAS

Figura 7: Circuito com reforçador.

Figura 8: Tensão de entrada e tensão de saída.

Fazendo uma comparação geral percebe-se que para o circuito sem reforçador teve-se um V_{max} e I_{max} de 2,56 V e 25,6 mA, respectivamente. Já para o circuito com reforçador obteve-se um V_{max} e I_{max} de 7,06 V e 70,6 mA, respectivamente. Portanto, houve um aumento de 2,76 em V_{max} e um aumento de 2,76 em I_{max} .

Conclusão

Portanto, observa-se que o objetivo principal deste relatório foi concluído, o qual era analisar e entender o funcionamento de reforçador de corrente push-pull. Além disto, durante a pratica pôde-se perceber o efeito da carga na saída sobre o sinal ao atingir a saturação, além de perceber o efeito que os transistores causam na saída de ampop, aumentando a corrente na saída do circuito.

Referências

[1] R. L. Boylestad and L. Nashelsky, *Dispositivos ele-trônicos e teoria de circuitos*, vol. 6. Prentice-Hall do Brasil, 1984.

[2] "All datasheet-lm741 datasheet (pdf)-fairchild semiconductor https://www.alldatasheet.com/datasheetpdf/pdf/53589/fairchild/lm741.html."