Trabalho Prático Nº2 D31 The Rise of the Ballz

Avram Gîncu - PL2 João André Gomes Marques - PL3 Rui Filipe da Silva Brandão - PL2

Faculdade de Ciências e Tecnologia, Universidade de Coimbra – Polo II, 3030.790 Coimbra, Portugal

> uc2017278688@student.uc.pt uc2017225818@student.uc.pt uc2017270806@student.uc.pt

Introdução à Inteligência Artificial - 2º Semestre

1. Introdução

Este relatório tem como objetivo descrever os testes efetuados e a analisar os resultados obtidos. Os ambientes utilizados nas experiências foram os fornecidos pelos professores. A implementação dos algoritmos foi baseada no pseudocódigo presente no enunciado e nas recomendações dadas pelos docentes da cadeira. Assim sendo, foram testadas várias combinações de parâmetros e funções fitness. A análise feita irá incidir sobre a forma como o agente evoluiu e a maneira como o seu comportamento foi afetado quando alterados certos parâmetros.

2. Implementação

Pretende-se treinar as capacidades do agente atacar e defender uma bola num jogo de futebol, através da utilização de redes neuronais e algoritmos genéticos. A rede neuronal é constituída por 3 neurónios, recebe 18 parâmetros e devolve 2 (a intensidade da força e o ângulo de aplicação dessa força).

O algoritmo genético é um método de pesquisa heurística inspirado na evolução e seleção natural das espécies.

Começou-se por fazer um conjunto de testes para perceber os potenciais melhores parâmetros de forma individual, experimentando vários valores para o parâmetro em estudo e deixando os outros estáticos e usando sempre a mesma função fitness. Depois de se identificarem esses possíveis melhores valores fizeram-se combinações de parâmetros e compararam-se os resultados. Os melhores resultados foram usados para evoluir o robô nos mapas.

2.1. Tournament Selection

Inicialmente, é gerada uma população formada por um conjunto aleatório de indivíduos que podem ser vistos como possíveis soluções do problema. Durante o processo evolutivo, esta população é

avaliada: para cada indivíduo é dada uma nota, ou índice, refletindo sua habilidade de adaptação a determinado ambiente. O *Tournament Selection* vai determinar o melhor dos escolhidos e esse vai para a próxima geração, passando por um processo de modificação.

2.2. Mutation

O operador de mutação é necessário para a introdução e manutenção da diversidade genética da população, alterando arbitrariamente um ou mais componentes de uma estrutura escolhida, fornecendo assim meios para introdução de novos elementos na população. Desta forma, a mutação assegura que a probabilidade de se chegar a qualquer ponto do espaço de busca nunca será zero.

2.3. Crossover

O *Crossover* é o operador responsável pela recombinação de características dos pais durante a reprodução, permitindo que as próximas gerações herdem essas características. É necessário que o operador preserve as características para que os indivíduos sejam válidos para as próximas gerações. O que acontece é que a função escolhe um ponto no genótipo de um indivíduo e troca com outro indivíduo até esse ponto.

3. Modelação de parâmetros

Após implementar todo o código que faltava para que o algoritmo de evolução funcionasse, foram feitos testes que descrevem quais os melhores parâmetros a usar. O grupo decidiu focar cada parâmetro e testar diferentes valores para cada um de forma a definir quais os melhores números para o algoritmo genético. Para todos estes testes, foi utilizada uma única função de fitness, de forma a poder ser possível sintetizar e analisar todos os resultados corretamente. Também na análise de resultados, foram testados o *PopAverage*, sendo a média de pontuação de cada geração, e o *BestOverall*, sendo o último prioridade na escolha dos melhores resultados em relação aos outros. Todos os testes foram feitos com 400 gerações e realizados 5 vezes, com *RandomSeed's* distintas.

float fitness = distanceTravelled + (distanceToBall.Average() * -1) + (distanceToAdversaryGoal.Average() * -1) + distancefromBallToMyGoal.Average() + (distancefromBallToAdversaryGoal.Average() * -1) + (hitTheBall*10) + (GoalsOnAdversaryGoal*100) + ballSpeed.Average();

3.1. Mutation

Para os testes de diferentes valores de probabilidade de *mutation*, foram testados percentagens de 0.1%, 0.15% e 0.2%.

Apesar das linhas do *PopAverage* serem semelhantes, a percentagem de *0.1%* foi a que mais se destacou, pois conseguiu melhor resultado no *BestOverall*.

3.2. Crossover

Para os testes de diferentes valores de probabilidade de *crossover*, foram testados percentagens de 0.7%, 0.8% e 0.9%.

Com estes resultados, é visível que a probabilidade de *crossover* a *0.7%* é melhor que as outras duas, alcançando melhores resultados e mais rapidamente.

3.3. Tournament Size

Na seleção de indivíduos de uma antiga geração para uma nova, foram definidos valores como 3, 4 e 5. Estes valores não podem ser muito altos, pois existe o problema de maximização do algoritmo evolucionário.

No tournament size, os melhores resultados foram obtidos com um valor de 5.

3.4. Population Size

Na definição do número de indivíduos que cada geração tinha, foram feitos testes com populações de 20, 30 e 40. Mais tarde, foi delineado testar com valores mais altos, pois com uma população maior, existe uma maior probabilidade de conseguir o comportamento desejado da função fitness. Foram então com 50, 60 e 70.

Apesar de à partida se esperar que a população com 70 fosse a melhor, a população de valor 50 destacou-se mais, sendo então a escolhida para a próxima fase.

3.5. Elitist

Para os testes de elitista, foram só feitos dois, um em que o melhor indivíduo da geração é automaticamente escolhido para a próxima geração, e outro com esse parâmetro desligado.

Apesar de, com o Elitista ativado, se chegar a melhores resultados mais cedo, com ele **desativado** consegue-se um melhor resultado, tendo também uma curva de evolução mais gradual.

3.6. Resultado final dos primeiros testes

Com os primeiros testes finalizados, foram definidos os melhores valores para cada parâmetro.

Mutation = 0.1%Crossover = 0.7%Tournament Size = 5Population Size = 50Elitist = 0FF

4. Combinação de parâmetros

Após se testar e analisar os resultados obtidos anteriormente, o grupo pensou que já se podia avançar para a próxima fase de evolução dos controladores, de forma a resolver todos os mapas. Devido ao feedback dos docentes da disciplina percebeu-se que era ainda necessário fazer várias combinações de parâmetros e perceber qual era a melhor. Foram então feitos mais testes, desta vez para conseguir determinar qual a melhor combinação de parâmetros para o algoritmo genético.

Como o tempo já era escasso para poder realizar todas as combinações pedidas, e como já tinham sido realizados testes, estes foram aproveitados para fundamentar os próximos. Consequentemente, foram criadas várias situações de combinação para o *Mutation*, *Crossover*, *Tournament Size* e não para o *Population Size* e o *Elitist*, pois esses já teriam sido testados nos outros parâmetros, não sendo necessário repetir esses testes.

As gerações foram reduzidas de 400 para 200 e o tempo de cada jogo de 25 para 10 segundos de forma a que os testes fossem mais rápidos, tendo simplesmente o objetivo de comparar médias entre diferentes valores.

Nestas novas iterações, foram avaliados os dados de *PopBest*, *PopAverage* e *BestOverall*, tornando assim, uma análise mais completa das tendências de cada combinação. Foi, também, utilizada a mesma função de fitness, que foi utilizada para os testes anteriores.

4.1. Mutation

O grupo percebeu que os valores testados anteriormente, no caso de *Mutation* e *Crossover*, eram muito altos. Portanto, nestes novos testes, os melhores resultados foram comparados com valores mais baixos. Na probabilidade de *Mutation*, 0.1% foi mantido no decorrer de todas as situações, mudando apenas os outros parâmetros. Após mudar os valores de *Crossover*, os dados foram comparados e definindo o melhor, modificando depois os valores de *Tournament Size*, *Population Size* e *Elitist*.

Com o gráfico é possível afirmar que a probabilidade de *Crossover* a **0** é melhor.

Nas situações 1, 2 e 3, a primeira foi quem se destacou mais, definindo que o melhor valor para o *Tournament Size* seja 5.

O teste com mais população, neste caso de 70, conseguiu melhores resultados.

Os melhores resultados aparecem quando o *Elitist* está **ativado**, tendo tendências mais estáveis e graduais.

Melhor Situação: Mutation = 0.1 Crossover = 0 TS = 5 Population = 70 Elitist = ON

4.2. Crossover

Situação 0: Mutation = 0.1 Crossover = 0.7 TS = 5 Population = 50 Elitist = OFF Situação 1: Mutation = 0.05 Crossover = 0.7 TS = 5 Population = 50 Elitist = OFF Situação 2: Mutation = 0 Crossover = 0.7 TS = 5 Population = 50 Elitist = OFF

O gráfico mostra que a probabilidade de *Mutation* a **0.05%** é a melhor. Também é notável que o *PopAverage* da *Mutation* a 0% estagnou desde muito cedo.

O *Tournament Size* a **5** mostra ser melhor, apesar de conseguir o melhor resultado de *BestOverall* só nas gerações mais finais, tendo um pico muito mais cedo que os outros.

Como foi concluído nos testes de *Mutation*, o mesmo se passa nesta iteração, sendo a população com **70** a que tem melhores resultados.

Com este gráfico é possível determinar que com o Elitist ativado aparece melhores resultados.

Melhor situação: Mutation = 0.05 Crossover = 0.7 TS = 5 Population = 70 Elitist = ON

4.3. Tournament Size

Situação 0: Mutation = 0.1 Crossover = 0.7 TS = 5 Population = 50 Elitist = OFF Situação 1: Mutation = 0.05 Crossover = 0.7 TS = 5 Population = 50 Elitist = OFF

Situação 2: Mutation = 0 Crossover = 0.7 TS = 5 Population = 50 Elitist = OFF

O gráfico mostra que a probabilidade de *Mutation* a **0.05%** é a melhor.

Com estes dados é possível determinar que a probabilidade de *Crossover* a **0.7%** é melhor.

Situação 1: Mutation = 0.05 Crossover = 0.7 TS = 5 Population = 50 Elitist = OFF

Situação 4: Mutation = 0.05 Crossover = 0.7 TS = 5 Population = 60 Elitist = OFF

Situação 5: Mutation = 0.05 Crossover = 0.7 TS = 5 Population = 70 Elitist = OFF

Após a análise dos resultados obtidos, a população com **70** indivíduos é a combinação que se destacou mais.

Apesar de, tendo o *Elitist* desativado, se chegar a um resultado melhor, com ele **ativado** atinge melhores resultados mais cedo, sendo essa a prioridade.

Melhor situação: Mutation = 0.05 Crossover = 0.7 TS = 5 Population = 70 Elitist = ON

4.4. Melhores Resultados

Tendo os melhores resultados de cada um dos parâmetros, vai-se agora comparar os 3, havendo também alguns testes onde se variou os resultados que deram diferentes.

Melhor de Mutation:

 $Mutation = 0.1 \ Crossover = 0 \ TS = 5 \ Population = 70 \ Elitist = ON$

Melhor de Crossover:

 $Mutation = 0.05 \ Crossover = 0.7 \ TS = 5 \ Population = 70 \ Elitist = ON$

Melhor de Tournament:

 $Mutation = 0.05 \ Crossover = 0.7 \ TS = 5 \ Population = 70 \ Elitist = ON$

Primeira variação:

 $Mutation = 0.05 \ Crossover = 0 \ TS = 5 \ Population = 70 \ Elitist = ON$

Segunda variação:

 $Mutation = 0.1 \ Crossover = 0.7 \ TS = 5 \ Population = 70 \ Elitist = ON$

O objetivo é comparar as 4 situações, sendo que a situação de *Tournament Size* é igual à de *Crossover*.

Primeira variação = situação 0 Segunda variação = situação 1 Melhor de Mutation = situação 2 Melhor de Crossover e Tournament Size = situação 3

Com o gráfico é possível determinar que a melhor situação é a **0**. Apesar de possuir uma probabilidade de *Crossover* a 0, esta combinação consegue ser melhor que as outras.

Melhor situação: Mutation = 0.05 Crossover = 0 TS = 5 Population = 70 Elitist = ON

Estes parâmetros vão ser utilizados para a evolução dos agentes.

4.5. Mutation Random

Com a melhor combinação de parâmetros, foi testado novamente só que com a *Mutation* a *Random*, e não *Gaussian*.

Podemos assim determinar que a Mutation Gaussian tem melhores resultados.

5. Resolução dos mapas

5.1. Evolving - ControlTheBallToAdversaryGoal

Para a resolução deste primeiro ambiente evolucionário, o grupo decidiu criar 3 funções de fitness diferentes, testá-las no HillClimber com 200 gerações para perceber que comportamentos o agente iria ter e compará-las posteriormente.

Primeira função:

float fitness = float fitness = distanceTravelled + (distanceToBall.Average() * -1) + (distanceToAdversaryGoal.Average() * -1) + distancefromBallToMyGoal.Average() + (distancefromBallToAdversaryGoal.Average() * -1) + (hitTheBall*10) + (GoalsOnAdversaryGoal*100) + ballSpeed.Average() + ((GoalsOnMyGoal*-1)*200) + ((hitTheWall*-1)*10);

Segunda função:

float fitness = 1000* Goals On Adversary Goal + distance from Ball To My Goal. Average () + distance To Ball. Average () + 100* hit The Ball;

Terceira função:

float fitness = distanceTravelled + (distanceToBall.Average() * -1 * 100) + (distanceToAdversaryGoal.Average() * -1 * 500) + distancefromBallToMyGoal.Average() + (distancefromBallToAdversaryGoal.Average() * -1 * 100) + (hitTheBall * 100) + (GoalsOnAdversaryGoal * 1000) + ((GoalsOnMyGoal * -1) * 500) + (hitTheWall * -1 * 100) + ballSpeed.Average();

Após analisar as 3 funções no primeiro cenário, foi escolhida a função 1.

Durante os testes foi-se alterando certos parâmetros da equação, que após algumas modificações acabou por ficar assim:

Observações: O agente começa a marcar golos com frequência, mas há certas instâncias em que leva a bola até a baliza inimiga e para, ou a deixa ali e segue sozinho. Optou-s por alterar o peso de alguns parâmetros na equação.

Função Final:

 $float\ fitness = distance Travelled + (distance ToBall. Average()*-1) + (distance ToAdversary Goal. Average()*-1) + (distance ToAdversary Goal. Average()*-1)*10) + (distance from Ball ToAdversary Goal. Average()*-1)*10) + (distance from Ball ToAdversary Goal. Average()*-1)*10) + (distance ToAdversary Goal. Average($

Observações: Com esta função o agente já marcava golos na baliza inimiga com frequência por volta das 1000 gerações. A partir da geração 1000, não há mudança no comportamento do agente, por isso optou-se por não evoluir mais pois já marcava golos.

5.2. Evolving - ControlTheBallToAdversaryGoalRandom

Para resolver este mapa optou-se por usar a mesma função de ataque anterior, e depois adaptá-la consoante os resultados dos testes.

Função para o mapa random:

 $\label{eq:float_fitness} \begin{subarray}{l} \textbf{float_fitness} = \textbf{float_fitness} = \textbf{distanceTravelled} + (\textbf{distanceToBall.Average()*-1}) + (\textbf{distanceToAdversaryGoal.Average()*-1}) + (\textbf{distancefromBallToAdversaryGoal.Average()*-1}) + (\textbf{hitTheBall*10}) + (\textbf{GoalsOnAdversaryGoal*100}) + \textbf{ballSpeed.Average()} + ((\textbf{GoalsOnMyGoal*-1})*200) + ((\textbf{hitTheWall*-1})*10); \end{subarray}$

Observações: Após 1000 gerações da primeira equação, o agente marca de vez em quando autogolo, e leva a bola muito perto da baliza dele. Ele dribla a bola muito bem pelo campo, mas poucas são as situações em que marca golo.

Função Final:

 $float\ fitness = ((distanceToBall.Average()*-1)*200) + (distancefromBallToMyGoal.Average()*100) + ((distancefromBallToAdversaryGoal.Average()*-1)*500) + (hitTheBall*100) + (GoalsOnAdversaryGoal*1000) + ((GoalsOnMyGoal*-1)*500);$

Observações: Após 1000 gerações o agente marca golo algumas vezes, outras ele vai contra a bola mas não chega a levá-la para a baliza, e certas vezes marca auto golo.

5.3. Evolving - Defense

Para a resolução do terceiro ambiente evolucionário, o grupo decidiu criar 3 funções de fitness diferentes, testá-las no HillClimber com 200 gerações para perceber que comportamentos o agente iria ter e compará-las posteriormente.

Primeira função:

float fitness = ((distanceToBall.Average() * -1)*50) + (distancefromBallToMyGoal.Average() * 100) + (hitTheBall * 100) + ((GoalsOnMyGoal * -1) * 500) + agentSpeed.Average()*10;

Segunda função:

float fitness = -1000*GoalsOnMyGoal + 100*distancefromBallToMyGoal.Average() - 10*distanceToBall.Average() + distanceTravelled + 100*hitTheBall;

Terceira função:

float fitness = distanceTravelled + (distanceToBall.Average() * -1 * 100) + (distanceToAdversaryGoal.Average() * -1 * 500) + distancefromBallToMyGoal.Average() + (distancefromBallToAdversaryGoal.Average() * -1 * 100) + (hitTheBall * 100) + (GoalsOnAdversaryGoal * 1000) + ((GoalsOnMyGoal * -1) * 500) + (hitTheWall * -1 * 100) + ballSpeed.Average();

Após analisar as 3 funções no primeiro cenário, foi escolhida a função 2.

Observações: Nas primeiras 500 gerações, os agentes ainda sofrem golos com bastante frequência. Da geração 500 à 1000, os agentes já começam a aprender melhor como defender a e há uma evolução notória no seu comportamento de defesa. Na geração 1000 a 1500 o comportamento dos agentes não é muito distinto e não há uma evolução muito significativa, de notar que os agentes começam a levar a bola para um dos cantos e mantêm-se lá. Na geração 1500 a 2000 o comportamento de defesa da e de levar a bola para um dos cantos é mais notório a o agente evolui mais nesse sentido.

5.4. Evolving - DefenseRandom

A função usada para este cenário foi a melhor função encontrada no cenário anterior (função 2).

Observações: Os agentes tiveram uma evolução visível a partir da geração 300 e o seu comportamento não alterou muito daí em diante. Isto pode-se explicar devido à natureza do mapa e da posição da bola e também devido à probabilidade usada no crossover. Para contornar este problema foi mudada a taxa do crossover para 0.7 e foram feitas mais 1000 gerações.

5.5. Evolving - OnevsOne

Para a evolução do cenário co-evolucionário, o grupo decidiu experimentar 3 situações distintas, em que a primeira utilizaria a função de ataque que serviu de solução para o primeiro mapa. A segunda situação seria utilizar a função de defesa contra a mesma. Numa terceira situação iria estar a função de defesa contra a de ataque de forma a perceber qual seria melhor. Mais tarde o grupo decidiu experimentar do 0 a função de defesa contra de ataque, só que desta vez os agentes iriam ter posições random e a bola também.

Primeira Situação: Ataque vs Ataque

 $\label{eq:float_fitness} \begin{subarray}{l}{l} \textbf{float fitness} = \textbf{distanceTravelled} + (\textbf{distanceToBall.Average}() * -1) + (\textbf{distanceToAdversaryGoal.Average}() * -1) + (\textbf{hitTheBall*10}) + \\ \textbf{distancefromBallToMyGoal.Average}() + (\textbf{distancefromBallToAdversaryGoal.Average}() * -1) + (\textbf{hitTheBall*10}) + \\ \textbf{(GoalsOnAdversaryGoal*100)} + \textbf{ballSpeed.Average}() + ((\textbf{GoalsOnMyGoal*-1})*200) + ((\textbf{hitTheWall*-1})*10); \\ \end{subarray}$

Observações: Os agentes vão um contra o outro e normalmente quem consegue ficar atrás da bola consegue marcar golo. Existem algumas iterações em que os indivíduos se esquecem da bola e estão os dois perdidos no mapa. A partir da geração 100 nota-se que ambos os agentes se estabilizaram, mas a partir da geração 700 existe uma alternância entre os dois, sendo que no mapa os dois disputam a bola muito arduamente.

Observações: Ao fim de 3000 gerações chega-se à conclusão que tendo a mesma função de fitness para ambos os indivíduos (o azul e o vermelho) não conseguem criar uma história para um jogo, isto é, vão os dois à bola e estão parados a fazer força um contra o outro, fazendo com que a bola nem saia do meio campo.

Segunda Situação: Defesa vs Defesa

float fitness = -1000* Goals On My Goal + 100* distance from Ball To My Goal. Average () - 10* distance To Ball. Average () + distance Travelled + 100* hit The Ball;

Observações: Os dois indivíduos vão um contra o outro, mas o azul normalmente tem um comportamento mais agressivo, o vermelho consegue ter mais pontos, pois primeiro defende e

começa a atacar. Estes comportamentos vão mudando pois o vermelho consegue também ser mais agressivo e chega primeiro à bola.

Observações: Também aqui, ao fim de 3000 gerações, chega-se à conclusão que tendo a mesma função de fitness para ambos os indivíduos (o azul e o vermelho) eles vão os dois à bola e estão parados a fazer força um contra o outro.

Terceira Situação: Ataque vs Defesa

Para esta situação, foram selecionados os melhores das situações acima descritas, e então evoluí-los a partir das 3000 gerações. O azul utilizou a função de defesa e o vermelho a função de ataque.

Observações: A evolução desta situação foi um bocado precária, pois os agentes já iam contra a bola e ficavam um contra o outro nas outras situações. Nesta situação, o comportamento deles foi parecido mais para o final, levando a bola desta vez para um canto. No início, o agente com a função de defesa conseguiu marcar mais golos, sendo determinado que essa função era melhor.

Quarta Situação: Ataque vs Defesa // Bola Random // Posição Random

Nesta situação foi decidido começar do zero, com as mesmas funções de ataque e defesa, mas desta vez atribuiu-se posições random aos indivíduos e à bola. Com isto, o grupo procurou explorar mais os potenciais de cada função.

Observações: O peso do *distanceToBall* foi aumentado para que os indivíduos procurem a bola, para não andarem perdidos no mapa. A partir da geração 100, nota-se que o vermelho, com a função de defesa, têm mais facilidades em ir para a bola, mas marca muitos golos na própria baliza. O agente com a função de ataque continua muito perdido mesmo após 500 gerações.

Observações: No geral havia boas iterações. O vermelho percorria muito o mapa enquanto o azul era mais controlado e perspicaz. Muitas vezes o indivíduo vermelho marcava golos na própria, mas depois marcava golo na baliza adversária, outras vezes marcava dois golos na baliza do azul. Porém, o azul quase nunca marcava golos.

Para um último teste, o grupo decidiu aplicar o Crossover a 0.7%. Foi sentido que a falta de Crossover leva a que um agente com várias gerações não consiga aplicar no seu genótipo as várias situações que podem acontecer no cenário. Então a partir da geração 2888 foi introduzido o Crossover para ver se o agente ficava mais responsivo.

Observações: Neste teste é notável que o agente conseguiu ficar mais responsivo, mesmo apenas tendo feito 500 gerações, mas fica a sensação que para ficar mesmo bem otimizado teria que começar do 0, não havendo histórico de iterações até então.

6. Conclusão

Graças aos testes preliminares, conseguiu-se decidir qual os melhores parâmetros para evoluir o agente para cada mapa. Os testes foram inúmeros, pois se teve que testar cada parâmetro e combiná-los uns com os outros.

Durante os testes de evolução, descobriu-se que *distanceToBall, GoalsOnAdversaryGoal, distancefromBallToAdversaryGoal, hitTheBall e GoalsOnMyGoal,* foram parâmetros chave para construir uma boa base para ter uma equação sólida, motivo pelo qual se encontram em todas as equações feitas, e com pesos mais elevados.

Após os testes preliminares, o crossover 0 provou ser o melhor, mas ao evoluir nos mapas random (defesa/ataque), o agente não chegava a evoluir de forma a resolver o mapa como esperado, por isso optou-se por meter o crossover a 0.7, o que deu resultados mais positivos e dinâmicos.

7. Webgrafia

https://en.wikipedia.org/wiki/Genetic_algorithm

https://stackoverflow.com/questions/31933784/tournament-selection-in-genetic-algorithm

https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)

https://en.wikipedia.org/wiki/Mutation (genetic algorithm)

https://en.wikipedia.org/wiki/Chromosome (genetic algorithm)