Two-phase AGN clumpy torus model and SED library

Torus structure: clump+disk+envelope

Dust properties: fluffy grains

SED library: 5 parameters

Examples: low starburst contribution

"pure" AGN

Homogenous <-> clumpy AGN tours models

Homogenous disks because of challenges in RT Pier & Krolik 1992, Efstathiou & Rowan-Robinson 1993, ...

Elitzur et al. 2001, Nenkova et al. 2008, Hönig & Kishimoto 2010,

Caveats on clumpy AGN tours models

Challenges in RT:

- Statistical arguments
- Energy balance ~5%
- No clump heating from disk
- Shadowing effects
- 9-11 free parameters

Hyrdo-dynamical simulation of AGN torus structure

(Wada 2012)

MIR view of the AGN torus

(Schartmann et al. 2014)

Dust in polar region of AGN tours

VLTI: Burtscher et al. 2013, Hönig et al. 2013, Tristram et al. 2014, Review by Netzer 2015

Phenomenological AGN torus structure

↑ • Source emits "photon packages" of equal energy 1. Geometry Source

absorption / scattering / no interaction

$$\tau = -\ln(\zeta)$$

- 1. Geometry
- 2. Source
- 3. Inter-action
- 4. Dust temperature

Vectorised 3D Monte Carlo

Multiple photons at a time -> faster!

Challenges:

- Cell locked when hit by photon
- Parallel random number generator
 (Mersene Twister)
- Graphical Processing Units (CUDA)

Dust density distribution

ISM dust ←→ fluffy grains

Draine 2011, Feltre et al 2012, Jones et al. 2014, Siebenmorgen et al. 2014

ISM dust ←→ fluffy grains

Draine 2011, Feltre et al 2012, Jones et al. 2014, Siebenmorgen et al. 2014

Krügel & Siebenmorgen 1994

AGN dust

 $n \sim 10^{2...6} atom/cm^3$

ISM dust ←→ fluffy grains

Caveat on extinction measurements

Scattering in or out-of-the beam

$$\tau_{\text{eff}} = - \ln \frac{F_{\text{obs}}}{F_{\text{nd}}}$$

AGN torus extinction \inverse viewing angle

-> No 1:1 link to dust properties!

AGN imaging polar dust

SED library of AGN

Minumum set of 5 free parameters

- 1) Viewing angle
- 2) Inner radius
- 3) Cloud filling factor
- 4) Optical depth of clouds
- 5) Optical depth of disk midplane

Library includes ~3600 SEDs

Impact of AGN parameters on SED

Ralf Siebenmorgen et al.: Self-consistent clumpy AGN torus models: SED library for observers

Impact of AGN parameters on SED

NIR flux enhanced by disk

Strength of the 10µm silicate band

Levenson et al. 2008 Schartmann et al. 2008 Sirocky et al. 2008

Thompson et al. 2009

Hatziminaoglou et al. 2015

$$\tau_{Si} = -\ln\left(\frac{F_{\text{peak}}}{F_{\text{cont}}}\right)$$

Siebenmorgen et al. (2015)

Center wavelength of the 10µm feature

Intrinsic AGN luminosity LAGN

$$\epsilon = \frac{F(\theta)}{F_{\text{nd}}} = \frac{L_{\text{obs}}(\theta)}{L_{\text{AGN}}/9}$$

Assuming isotropic AGN emission (Stalevski et al. 2012)

SED Library - IRAC colors of AGN

SED Library - IRAC colors of AGN

edge-on, high extinction AGN

Seyferts

Ground based MIR:

Alonso Herrero et al 2011 Gonzales- Martin et al 2013 Esquej et al. 2014 Ruschel-Dutra et al 2014 Ichikawa et al 2015, ...

Herschel+Spitzer sample of 3C (z<1)

- 87 detection(Westhues '16)
- Silicate absorbtion

Herschel+Spitzer sample of 3C (z<1)

- 87 detection(Westhues '16)
- 2 with PAH emission

Herschel+Spitzer sample of 3C (z<1)

- 87 detection(Westhues '16)
- 2 with PAH emission

Type I

Type II

Hyper-luminous galaxy

SED fitting methods: MCMC ~ χ^2

Two-phase AGN tours model

SED library:

- 5 parameters
- Fluffy grains
- Estimate intrinsic L_{AGN}
- 10µm silicate band
- NIR: disk <-> no disk

- Seyferts ~> AGN + host
- Type I+II ~> pure AGN (SB <10%)

www.eso.org/~rsiebenm/agn_models/

