

- Solving a linear equation
- Gauss elimination and SVD
- HowTo
- Some tricks for SVD

Jochen Schieck MPI Munich

Problems in Linear Equations

- generally in solving Ax=b two error contributions possible:
 - intrinsic errors in A and b
 - numerical errors due to rounding
- Mathematical description and handling available

General Error Analysis

Matrix Norm necessary

• e.g. $||A||_2 = \max\{|\lambda|^{1/2}, \lambda \text{ Eigenwert von } \bar{A}^T A\}$

How does the final result (and its error) depend on the input value $\tilde{A} = A + \delta A$ and $\tilde{b} = b + \delta b$?

$$\frac{\|\delta x\|}{\|x\|} \, \leq \, \frac{\mathrm{cond}(A)}{1 - \mathrm{cond}(A) \|\delta A\| / \|A\|} \, \left\{ \frac{\|\delta b\|}{\|b\|} + \frac{\|\delta A\|}{\|A\|} \right\}$$

with

$$\operatorname{cond}_2(A) := ||A||_2 ||A^{-1}||_2 = \frac{|\lambda_{\max}|}{|\lambda_{\min}|}$$

Eigenvalues of matrix

Example for Condition of Matrix

$$\begin{bmatrix} 1.2969 & 0.8648 \\ 0.2161 & 0.1441 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0.8642 \\ 0.1440 \end{bmatrix}$$

Exact solution: (2,-2)^T

 $cond(A) = 1.513x10^8$

Change input values:

 $0.8642 \rightarrow 0.86419999$

 $0.1440 \rightarrow 0.14400001$

approximate solution: (0.9911,-0.4870)^T

NOT ACCEPTABLE!

Gauss Elimination

Error due to rounding:

$$n=m=30 \to 10^{13}$$

$$\frac{\|\delta x\|_{\infty}}{\|x\|_{\infty}} \leq \frac{\operatorname{cond}(A)}{1 - \operatorname{cond}(A)\|\delta A\|_{\infty}/\|A\|_{\infty}} \left\{ 1.01 \cdot 2^{n-1} (n^3 + 2n^2) \operatorname{eps} \right\}$$

with eps = machine accuracy (double: $\sim 10^{-16}$)

However, this is the worst case scenario!

Singular Value Decomposition

- here for (nxn) case, valid also for (nxm)
- Solution of linear equations numerically difficult for matrices with bad condition:
 - regular matrices in numeric approximation can be singular
 - SVD helps finding and dealing with the sigular values

How does SVD work

Definition of singular value decomposition:

$$U^TAV = \Sigma = diag(\sigma_1, \ldots, \sigma_p)$$

with *U* and *V* orthogonal matrices

Solution

Solution of the Equation:

$$\bar{x} = \sum_{i=1}^{r} \frac{u_i^T b}{\sigma_i} v_i$$

numeric behaviour of SVD can be determined:

$$||\delta A||_2 \le \operatorname{eps}||A||_2$$

SVD after Golub and Reisch

Householder Matrix P,Q=1-ww^T (numerically OK)

P,Q unitary

SVD after Golub and Reisch

after a couple of iterations:

J₀ Bidiagonal form:

$$J_{0} = \begin{bmatrix} q_{1} & e_{2} & 0 & 0 \\ 0 & q_{2} & e_{3} & * \\ 0 & 0 & q_{3} & e_{n} \\ 0 & 0 & 0 & q_{n} \end{bmatrix} \qquad J_{0} = P_{n}...P_{1}AQ_{1}...Q_{n-2}$$
 Q and P Householder matirce

with:

$$J_0 = P_n ... P_1 A Q_1 ... Q_{n-2}$$

Q and P Householder matirces

 \triangleright A and J_0 have the same singular values

SVD after Golub and Reisch

use iterative procedure to transform bidiagonal J₀ matrix to diagonal form

apply 'Givens reflections' to bidiagonal Matrix:

$$\bar{J}_0 = S_{n-1,n}...S_{23}S_{12}J_0T_{12}T_{23}...T_{n-1,n}$$

'Givens Reflection':

~cubic convergence expected

Arithmetic Expenses

- Gauss (normal) solution
 - $\frac{1}{2}$ mn²+1/6n³
- SVD Golub-Reinsch
 - $-2mn^2+4n^3$
- > m=n:

SVD is 9 times more expensive!

How to deal with Singularities

- singularities are determined with the SVD
- $1/\sigma_i$ is used for solution of linear equation
- relate $1/\sigma_i$ to machine accuracy and resolution τ
 - usage of values s_i < t corrupts complet result!
 - careful handling necessary!
- simple approach:
 - negelect all values in matrix with $\sigma_i < \tau$

Smooth cutoff

- Regularisation of the singularities
- Replace the singular values with a function:

$$\frac{1}{s^2} \rightarrow \frac{s^2}{\left(s^2 + t^2\right)^2}$$

 $\tau = 0.05$

Example

Number-ofevents response matrix

- d_i ~ b_i/∆b_i
 d_i < 1 →
 statistically insignificant
- Problem for alignment: determination of τ

Conclusion

- Numeric Solution of a regular linear equation can be distorted by singular behaviour
- SVD returns singular values
- Singular values can be handeld with smooth cut off
- Mathemaical well described procedure