

AD-A052 727

CANADIAN COMMERCIAL CORP OTTAWA (ONTARIO)
MANUFACTURING METHODS AND TECHNIQUES FOR MINIATURE HIGH VOLTAGE--ETC(U)
FEB 78 M KORWIN-PAWLOWSKI

F/G 9/5
DAAB07-76-C-0041

NL

UNCLASSIFIED

1 OF
ADA
052727

END

DATE

FILMED

5-78

DDC

ADA052727

SIXTH QUARTERLY PROGRESS REPORT

1 OCTOBER 1977 TO 31 DECEMBER 1977

CONTRACT DAAB07 - 76 - C - 0041

MANUFACTURING METHODS AND TECHNIQUES FOR MINIATURE
HIGH VOLTAGE HYBRID MULTIPLIER MODULES

PLACED BY:

PROCUREMENT & PRODUCTION DIRECTORATE
USAECOM FORT MONMOUTH, N.J. 07703

CONTRACTOR:

CANADIAN COMMERCIAL CORPORATION
70 LYON STREET
OTTAWA, ONTARIO, CANADA K1A 0S6

SUBCONTRACTOR:

ERIE TECHNOLOGICAL PRODUCTS OF CANADA LTD.
5 FRASER AVENUE
TRENTON, ONTARIO, CANADA K8V 5S1

DISTRIBUTION STATEMENT

"APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED"

DISCLAIMER STATEMENT

"The findings in this report are not to be construed as official Department of the Army position unless so designated by other authorized documents."

DISPOSITION INSTRUCTIONS

**"Destroy this report when it is no longer needed.
Do not return it to the originator."**

ACKNOWLEDGEMENT

**"This project has been accomplished as part of the
U.S. Army Manufacturing and Technology Program, which
has as its objective the timely establishment of manu-
facturing processes, techniques or equipment to ensure the
efficient production of current or future defense programs."**

INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

RESPONSIBILITY. The controlling DoD office will be responsible for completion of the Report Documentation Page, DD Form 1473, in all technical reports prepared by or for DoD organizations.

CLASSIFICATION. Since this Report Documentation Page, DD Form 1473, is used in preparing announcements, bibliographies, and data banks, it should be unclassified if possible. If a classification is required, identify the classified items on the page by the appropriate symbol.

COMPLETION GUIDE

General. Make Blocks 1, 4, 5, 6, 7, 11, 13, 15, and 16 agree with the corresponding information on the report cover. Leave Blocks 2 and 3 blank.

Block 1. Report Number. Enter the unique alphanumeric report number shown on the cover.

Block 2. Government Accession No. Leave Blank. This space is for use by the Defense Documentation Center.

Block 3. Recipient's Catalog Number. Leave blank. This space is for the use of the report recipient to assist in future retrieval of the document.

Block 4. Title and Subtitle. Enter the title in all capital letters exactly as it appears on the publication. Titles should be unclassified whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (see "Abstracting Scientific and Technical Reports of Defense-sponsored RDT/E," AD-667 000). If the report has a subtitle, this subtitle should follow the main title, be separated by a comma or semicolon if appropriate, and be initially capitalized. If a publication has a title in a foreign language, translate the title into English and follow the English translation with the title in the original language. Make every effort to simplify the title before publication.

Block 5. Type of Report and Period Covered. Indicate here whether report is interim, final, etc., and, if applicable, inclusive dates of period covered, such as the life of a contract covered in a final contractor report.

Block 6. Performing Organization Report Number. Only numbers other than the official report number shown in Block 1, such as series numbers for in-house reports or a contractor/grantee number assigned by him, will be placed in this space. If no such numbers are used, leave this space blank.

Block 7. Author(s). Include corresponding information from the report cover. Give the name(s) of the author(s) in conventional order (for example, John R. Doe or, if author prefers, J. Robert Doe). In addition, list the affiliation of an author if it differs from that of the performing organization.

Block 8. Contract or Grant Number(s). For a contractor or grantee report, enter the complete contract or grant number(s) under which the work reported was accomplished. Leave blank in in-house reports.

Block 9. Performing Organization Name and Address. For in-house reports enter the name and address, including office symbol, of the performing activity. For contractor or grantee reports enter the name and address of the contractor or grantee who prepared the report and identify the appropriate corporate division, school, laboratory, etc., of the author. List city, state, and ZIP Code.

Block 10. Program Element, Project, Task Area, and Work Unit Numbers. Enter here the number code from the applicable Department of Defense form, such as the DD Form 1498, "Research and Technology Work Unit Summary" or the DD Form 1634, "Research and Development Planning Summary," which identifies the program element, project, task area, and work unit or equivalent under which the work was authorized.

Block 11. Controlling Office Name and Address. Enter the full, official name and address, including office symbol, of the controlling office. (Equates to funding/sponsoring agency. For definition see DoD Directive 5200.20, "Distribution Statements on Technical Documents.")

Block 12. Report Date. Enter here the day, month, and year or month and year as shown on the cover.

Block 13. Number of Pages. Enter the total number of pages.

Block 14. Monitoring Agency Name and Address (if different from Controlling Office). For use when the controlling or funding office does not directly administer a project, contract, or grant, but delegates the administrative responsibility to another organization.

Blocks 15 & 15a. Security Classification of the Report: Declassification/Downgrading Schedule of the Report. Enter in 15 the highest classification of the report. If appropriate, enter in 15a the declassification/downgrading schedule of the report, using the abbreviations for declassification/downgrading schedules listed in paragraph 4-207 of DoD 5200.1-R.

Block 16. Distribution Statement of the Report. Insert here the applicable distribution statement of the report from DoD Directive 5200.20, "Distribution Statements on Technical Documents."

Block 17. Distribution Statement (of the abstract entered in Block 20, if different from the distribution statement of the report). Insert here the applicable distribution statement of the abstract from DoD Directive 5200.20, "Distribution Statements on Technical Documents."

Block 18. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with . . . Translation of (or by) . . . Presented at conference of . . . To be published in . . .

Block 19. Key Words. Select terms or short phrases that identify the principal subjects covered in the report, and are sufficiently specific and precise to be used as index entries for cataloging, conforming to standard terminology. The DoD "Thesaurus of Engineering and Scientific Terms" (TEST), AD-672 000, can be helpful.

Block 20. Abstract. The abstract should be a brief (not to exceed 200 words) factual summary of the most significant information contained in the report. If possible, the abstract of a classified report should be unclassified and the abstract to an unclassified report should consist of publicly-releasable information. If the report contains a significant bibliography or literature survey, mention it here. For information on preparing abstracts see "Abstracting Scientific and Technical Reports of Defense-Sponsored RDT&E," AD-667 000.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER SIXTH QUARTERLY REPORT	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) 6 Manufacturing Methods and Techniques for Miniature High Voltage Hybrid Multiplier modules.		5. TYPE OF REPORT & PERIOD COVERED 9 Quarterly REPT. NO. 6 1 Oct 77 - 31 Dec 77
7. AUTHOR(s) 10 Dr. Michael K. Orwin—Pawlowski		6. PERFORMING ORG. REPORT NUMBER 15 DAAB07-76-C-0041
9. PERFORMING ORGANIZATION NAME AND ADDRESS Erie Technological Products of Canada Limited 5 Fraser Avenue TRENTON, Ontario, Canada K8V 5S1		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Project No. 2769766
11. CONTROLLING OFFICE NAME AND ADDRESS Research, Development and Engineering Directorate U.S. Army Electronics Command Fort Monmouth, N.J. 07703		12. REPORT DATE February 7, 1978
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) 22 7 Feb 78 12 52P		13. NUMBER OF PAGES 49
16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Distribution Unlimited		15. SECURITY CLASS. (of this report) UNCLASSIFIED
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE <i>D D C REF ID: A71121 APR 12 1978 DISSESS F</i>
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) High Voltage Multipliers, High Voltage Power Supplies, Night Vision, Second Generation Image Intensifier Tubes, High Voltage Rectifiers, Ceramic Capacitor Banks, Miniature Modules.		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The results of testing of rectangular and curved multipliers to the Second Engineering Sample requirements are presented. Steps to improve the frequency performance of the multipliers and optimization of the rectifiers for these devices are discussed. Results of life testing of multipliers are presented.		

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SIXTH QUARTERLY PROGRESS REPORT

1 OCTOBER 1977 TO 31 DECEMBER 1977

MANUFACTURING METHODS AND TECHNIQUES FOR MINIATURE
HIGH VOLTAGE HYBRID MULTIPLIER MODULES

CONTRACT NO. DAAB07 - 76 - C - 0041

PREPARED BY: DR. MICHAEL KORWIN-PAWLOWSKI

DISTRIBUTION STATEMENT

"APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED"

ABSTRACT

The progress made during the sixth quarter of work on the Manufacturing and Technology Program for Miniature High Voltage Multiplier Modules is described in this report.

The results of testing of rectangular and curved multipliers to the Second Engineering Sample requirements are presented.

Steps to improve the frequency performance of the multipliers and optimization of the rectifiers for these devices are discussed. Results of life testing of multipliers are presented.

ACCESSION for	
NTIS	White Section <input checked="" type="checkbox"/>
DDC	B II Section <input type="checkbox"/>
UNANNOUNCED	<input type="checkbox"/>
JUSTIFICATION	
BY	
DISTRIBUTION/AVAILABILITY CODES	
Dist.	Sp. CIAL
A	

TABLE OF CONTENTS

	<u>PAGE</u>
ABSTRACT	i
LIST OF TABLES	iii
PURPOSE	iv
GLOSSARY OF SPECIAL TERMS	v
LIST OF SYMBOLS AND ABBREVIATIONS	vii
1. INTRODUCTION	1
2. FABRICATION AND EVALUATION OF MULTIPLIERS	3
3. CONCLUSIONS	13
4. PROGRAM FOR NEXT QUARTER	14
5. PUBLICATIONS AND REPORTS	15
6. IDENTIFICATION OF PERSONNEL	16
APPENDIX A : REPORT ON SECOND ENGINEERING SAMPLES	20

LIST OF TABLES

<u>TABLE</u>		<u>PAGE</u>
1.	Electrical Properties of Rectifiers	17
2.	Evaluation of Multipliers with Rectifiers of Various Types	18
3.	Output Voltage of Multipliers on Life-Test	19

PURPOSE

This Contract covers component designs, mounting and interconnection techniques, tooling and test methods and other manufacturing methods and techniques required for production of rectangular and curved miniature high voltage multiplier modules. These units are to be used in low cost power supplies for second generation image intensifier tubes. The full scope and details of the specification are given in SCS - 495, Appendix A to the First Quarterly Report.

Major milestones in this program consist of delivery of the following items:

- (1) First and second engineering samples and test data.
- (2) Production line layout and schedule.
- (3) Confirmatory samples and test data.
- (4) Production line set - up.
- (5) Pilot production run.
- (6) Production rate demonstration.
- (7) Preparation and publication of a final report.

The general approach is to design and set - up a cost - effective production capability, utilizing already established device technologies and materials, and to demonstrate the production line capability to fabricate at the rate of 125 acceptable units per 40 hour week.

GLOSSARY OF SPECIAL TERMS

Capacitor bank: - Ceramic wafer with metallizations which perform the function of a number of capacitors connected in parallel (parallel bank) or in series (series capacitor bank).

Cure: - To change the physical properties of a material by chemical reaction or by the action of heat and catalyst.

Flash test: - Test consisting of instantaneous application of voltage at its specified value to the part.

Hybrid: - Technology combining thick - films (capacitor banks) with discrete devices (rectifiers).

Multiplier Modules: - Device consisting of capacitor banks and rectifiers connected and packaged to perform voltage multiplication and rectification.

Pad: - The metallized area on the ceramic bank acting as a plate of a capacitor and used to make an electrical connection to it.

Rectifier: - Semiconductor device with one or more p - n junctions connected in series.

**Rectifier -
substrate
Assembly:**

- A substrate with rectifiers placed and secured within it.

Substrate:

- Part of a multiplier module consisting of a piece of insulating material machined to accommodate the rectifiers and support the capacitor banks.

LIST OF SYMBOLS AND ABBREVIATIONS

i_c	-	charging current (μA)
C_x	-	measured capacitance (pF)
D.F.	-	dissipation factor (%)
f	-	frequency (KHz)
C_i	-	input capacitance (pF)
I_L	-	load current (nA)
v_r	-	ripple voltage (V)
V_B	-	breakdown voltage (V)
V_i	-	input voltage ($V_p - p$)
V_o	-	output voltage (V d.c.)
η	-	efficiency (%)

1. INTRODUCTION

This report describes briefly the progress in the Manufacturing Methods and Techniques for Miniature High Voltage Hybrid Multiplier Modules Program, made during the latest calendar quarter.

In the First Quarterly Report the design and the manufacturing process for rectangular and curved multiplier modules were described. Prototype rectifier-substrate assemblies were fabricated and then redesigned to simplify the assembly operation. The specification covering the requirements for the multiplier modules forms Appendix A of the Report.

In the Second Quarterly Report results of the electrical evaluation of the first sample batch of rectangular capacitor banks TSK 25 - 250 and TSK 25 - 251 were given, the choice of the rectifier was made and electrical test results were presented on non-modular multipliers fabricated with TSK 25 - 250 and TSK 25 - 251 capacitor banks and standard HV20PD four-junction rectifiers, to evaluate these components.

In the Third Quarterly Report results of electrical tests on rectangular multiplier modules were presented. For an input voltage of 1 KV, efficiencies above 96% under no-load conditions and above 95% with 500 nA load currents were achieved for all multipliers assembled with TSK 25 - 250 and TSK 25 - 251 and three - chip rectifiers. Low ripple voltages, input capacitances and charging currents were also measured on these multipliers. Results of the mechanical and electrical evaluation

of TSK 25 - 249 curved capacitor banks were also presented in the Third Quarterly Report.

In the Fourth Quarterly Report work on impregnation and coating of the multipliers was discussed as well as some problems associated with the fabrication of the rectifier - substrate assemblies. The fabrication of rectangular and curved multipliers for the First Engineering Sample was discussed.

In the Fifth Quarterly Report were presented the results of electrical performance testing at the room, high (+52 °C) and low (-54°C) temperatures, as well as effects of thermal shock, and high and low temperature storage.

2. FABRICATION AND EVALUATION OF MULTIPLIERS

2.1 Second Engineering Sample Tests

Fourteen curved (TSK 313 - 000) and seventeen rectangular (TSK 312 - 000) multipliers were tested in accordance with the applicable paragraphs of "Electronics Command Technical Requirement SCS 495" to the Second Engineering Sample requirements. The curved multipliers were fabricated in September 1977, while of the rectangular multipliers 8 were previously supplied as part of the First Engineering Sample submission and 9 were retained from the same lot for testing to the Second Engineering Sample requirements.

The results of testing were presented in the Report on Second Engineering Samples (Erie Technical Report No. 0019), dated October 21, 1977, and forming Appendix A of this report.

The devices satisfactorily passed the efficiency testing, at no load and under full load, and the ripple voltage tests, at room, high (+50°C) and low (-54°C) temperatures.

The thermal shocking and high temperature storage did not affect the devices adversely.

Problems were encountered with the input capacitance and charging current of the devices. The specification requires the charging current to be below 150 μ A and the capacitance below 8 pF in the frequency range from 20 to 40 kHz.

Measured at the nominal frequency of 30 kHz, the average input capacitance was for the rectangular multipliers 7.91 pF and for the curved multipliers 9.30 pF. Five out of 17 rectangular, and all 14 curved multipliers were out of specification on this respect.

The input capacitance does not depend much on the signal frequency. The charging current, on the other hand, increases significantly with the frequency of the input voltage. Thus, typical charging current values at room temperature are:

140 μ A	@	20 kHz
260 μ A	@	30 kHz
500 μ A	@	40 kHz

Previous tests were conducted at 20 kHz, and the devices were within the specification at that frequency.

It should be noted that the efficiency of the multipliers was found to be practically independent of the input voltage frequency in the range from 25 to 40 kHz. (See Second Quarterly Report, Table 3).

2.2 Optimization Of Semiconductor Rectifiers

The charging current and the input capacitance for multipliers of a given construction and the same stray capacitance depend very much on the electrical properties of the rectifiers used in the circuit.

The high-voltage rectifiers manufactured by Erie Technological Products of Canada belong to one of several series, optimized for particular applications, and technologically different.

The rectifiers used in this project were 3-junction devices of the HV series with regular (ie. not reduced by a special process) switching speed - described in terms of reverse recovery time of 600 ns, typically, measured in the Tektronix "S" circuit with $i_F = i_R = 2$ mA. The diode capacitance at 1 kHz and -100 V, measured using a Boonton RF Admittance Bridge Mod 33A, averages 0.77 pF and ranges from .65 to .85 pF. The leakage currents of these devices were below 10 nA @ 1000 V at room temperature.

To improve the operation at higher frequencies the devices should have a low reverse recovery time, low turn-on time and a low capacitance. It is important to keep the leakage currents low, although we did not see any difference in performance between multipliers made using rectifiers with maximum leakage currents of 10 nA at 1000V and those with leakages of the order of 2 - 3 nA.

We decided to try 6 new types of rectifiers and compare them with the HV series devices used previously. For this purpose, we assembled 10 multipliers, 2 each of every type of rectifiers, using the TSK 25 - 250 and TSK 25 - 251 rectangular capacitor banks.

The rectifiers were 3-, and 2-junction devices from the following series:

HV	-	Regular switching speed
HX	-	low reverse recovery time
HXC	-	low reverse recovery time, low capacitance
HAC	-	low reverse recovery time, controlled avalanche, low capacitance
HSC	-	low reverse recovery time, fast turn-on, low capacitance
HFC	-	very low reverse recovery time, controlled avalanche, low capacitance

Table 1 summarizes the electrical properties of the rectifiers belonging to these series.

The results of testing of the multipliers are given in Table 2. Measured were the output voltage, charging current and the input capacitance at different frequencies: 20 kHz, 30 kHz, and 40 kHz. One of the multipliers with HX 3 rectifiers was misassembled and taken out of the tests.

At 40 kHz distortions were observed in the input waveform which resulted in the output voltage readings exceeding in some cases 6000 V, yielding apparent efficiency values above 100%.

The problem is probably associated with the inadequate frequency response of the voltage amplifier providing the input signal to the multipliers and with the way of measuring this signal - on an r.m.s. meter with later conversion to peak-to-peak values.

The test circuit for the input capacitance and charging current is being examined to improve the accuracy and validity of measurements.

The following conclusions can be drawn from these tests:

1. Multipliers assembled with HV-type rectifiers show the highest input capacitance and charging currents which may exceed the specified 150 μ A even at 20 kHz.
2. A slight improvement can be achieved with the use of HX-type devices. The capacitance still is very close to the limit and the charging current goes out of specification at 30 kHz.
3. A significant improvement is observed in the case of all multipliers made with low-capacitance rectifiers - the input capacitance is reduced below 4 pF and the charging currents all drop below 70 μ A at 20 kHz and below 140 μ A at 30 kHz. They are still marginally out of specification at 40 kHz. Device #68 was an exception, having higher charging currents.
4. Among the low capacitance rectifiers the HFC are the fastest, with HAC, HSC and HXC close together. However, the forward voltage drop of the HFC rectifiers is much higher and less reproducible.

A batch of 868 HSC - 3-junction rectifiers was manufactured to be used in the hybrid module version of the multipliers.

Since the reduction of the capacitance of the rectifiers is achieved by reducing the junction area, the devices are much more fragile and a serious problem is the breakage losses, already quite high in the HV series, because the devices are tested uncoated with epoxy.

From assembly through testing the yields for HSC - 3 series are between 25 and 80%, with an average of 46%.

The glass-epoxy substrates ordered outside and received on October 19, 1977 were to be used with the HSC series rectifiers, and 2 lots of substrate assemblies were potted - one of 12 rectangular and another of 6 curved.

Seven rectangular substrates were lost due to unbonding of the silver leads off the semiconductor chips. This was caused by two factors:

1. The weakness of the bond which is made with a thin layer of soft solder on the semiconductor chips. This bond is especially weak in the case of HSC series rectifiers since their area is 50% smaller than for HV series devices.
2. The nailheads of the rectifiers' leads were sticking above the top surface of the glass-epoxy substrates. The thickness of the substrate was typically .057" (ranging from .055" to .060"), as compared with the typical thickness of .064" - .068" for the substrates made at our model ship which were used previously.

The manufacturer of the substrates, Lazer-Tech. Ltd., Scarborough, Ont. was contacted and advised us that tightening of the tolerance on the substrate thickness to .064" - .068" would double or perhaps triple their material costs and would have to be done either by means of selection of the laminate sheets, or by ordering custom-made material.

Another approach could be to reduce the length of the rectifier body by about .010" changing from 3-junction devices to 2-junction. This would have the negative effects of decreased yields, increased junction capacitance and increased operating voltage per junction from 330 V to 500 V.

The important benefit of using 2-junction devices would be keeping low the multiplier thickness with which we had difficulties in meeting the specification.

Two batches of 2-junction rectifiers, HXC 2 - fast reverse recovery and HSC 2 - fast reverse recovery and turn-on were fabricated and tested.

The basic characteristics of the devices are given in Table 1.

Yields obtained for the test batches of devices were low, mainly due to their fragility, 21% for HSC and 40% for HXC.

Multipliers were assembled using TSK 25 - 250 and TSK - 25 - 251 rectangular capacitor banks and discrete rectifiers. Two multipliers were started with each type of devices, however, only the devices with HSC 2

diodes were tested. Of the other pair, one was broken and the other misassembled. The results of electrical test of these multipliers are given in Table 2.

The main conclusions of this series of experiments are the following:

1. Small-area HXC 2-junction rectifiers have leakage currents and capacitances low enough to be acceptable in multipliers built to meet the requirements of this program at the operating frequency of 30 kHz.
2. The fast turn-on is an advantage for good high-frequency operation of HSC rectifiers. Due to higher manufacturing yields it seems, however, better to use HXC devices in future work.

Two production batches of 400 pcs. each of HXC 2 rectifiers were started and scrapped due to excessive breakage. The manufacturing process was adjusted to eliminate this problem and, in another 2 batches, 511 devices were manufactured with 64% yields. The capacitance of these devices was on average 0.28 pF at 1 MHz and -100 V.

Using HXC 2 devices and glass-epoxy substrates made by Lazer Tech. Ltd., 38 rectifier-substrate assemblies, 21 rectangular and 17 curved, were potted. Two curved assemblies were scrapped during later processing, one at lapping and one at lead-attaching.

2.3 Life - Testing Of Multipliers

Six multipliers, 2 rectangular and 4 curved, were put on life test under the following conditions:

- input voltage 1000 V p-p
- Load current 500 nA
- Temperature 50°C

The devices came from the lots fabricated in July and October 1977 for the Second Engineering Sample Submission.

The output voltages of the multipliers at the start of the test, after 24 hrs. and after 1000 hrs. of testing, are given in Table 3.

With the exception of device #8 all the others did not show any significant change of output voltage.

Device #8 was retained from the manufactured lot as suspected of sub-standard quality - since it was showing at tests high ripple voltage (52 V p-p, compared with the lot average of 17.4 V) and rather low efficiency of 90% (97.3% lot average).

The testing continues.

2.4 Production Jigs And Materials

The conditioning rings for the Lapmaster 12 machine were received on Oct. 7. With the lapping jigs fabricated in-house, we have the capability to lap at a time 72 rectangular or 45 curved rectifier-substrate assemblies.

On November 21, Dr. M. Korwin-Pawlowski visited the Erie Technological Products Inc. plant at Erie, Pa. and had a meeting with the engineering personnel involved in developing and manufacturing the capacitor banks used in this project. Problems relating to the increase of the breakdown voltage of the capacitors and the assurance of dimensions and pad layout were discussed. 300 curved capacitor banks TSK 25 - 260 were ordered to be delivered in January 1978.

2.5 Progress Review Meeting

On December 15-16, 1977 a Program Review Meeting was held at the Erie Technological Products of Canada plant in Trenton, Ontario.

Messrs. D. Biser, U.S. Army Electronics Command, H. Finkelstein and H. Kessler, Night Vision Laboratory, Ft. Belvoir were present from the U.S. Government side and Dr. M. Korwin-Pawlowski and Messrs.

G. Gordon, B. McCallum and D. Platt were representing Erie Technological Products of Canada.

The current state of the program was discussed in the meeting and the plans for future work.

Electronic Command Industrial Preparedness Requirements No. 15 require the contractor to submit an updated specification for the multipliers with the last set of Engineering Samples. The update of the specification was discussed and a draft of the updated specification SCS 495 will be submitted by February 15, 1978.

3. CONCLUSIONS

The testing of the multipliers to the Second Engineering Sample requirements shows that the devices perform satisfactorily in terms of efficiency at no load and under load, at room, high (+50°C) and low (-54°C) temperatures.

Problems with the input capacitance, and charging current at the higher end of the frequency range will likely be corrected by optimizing the characteristics of rectifiers.

The multipliers are performing satisfactorily at life-testing.

4. PROGRAM FOR NEXT QUARTER

- 4.1 Fabricate and test to the Second Engineering Sample requirements of SCS - 495 with modifications discussed at the Program Review Meeting held at Trenton on December 16 - 19, 1977, 6 each, rectangular and curved multipliers with HXC 2 rectifiers.**
- 4.2 Submit for evaluation and approval an updated specification SCS - 495.**

5. PUBLICATIONS AND REPORTS

No reports or publications were made on the work associated with this program
during the current quarter.

6. IDENTIFICATION OF PERSONNEL

Brief descriptions of the background of technical personnel involved were included in the preceding Quarterly Progress Reports.

During the Sixth quarter of the program the following persons worked in their area of responsibility:

<u>INDIVIDUAL</u>	<u>RESPONSIBILITY</u>	<u>HRS. SPE NT</u>
Dr. M. Korwin-Pawlowski	Program Manager	115
G. Gordon	Senior Electronic Engineer	24
D. Platt	Manager, Quality Assurance and Control, High Voltage Products	80
D. Archard	Senior Test Technician	100
V. Glenn	Q.C. Inspector	32
P. Maples	Senior Engineering Tech.	2
L. Macklin	Draftsman	30
	Manufacturing Personnel	59

ELECTRICAL PROPERTIES OF RECTIFIERS

Type	F.V.D. @ 10 mA (V)		i_R @ 1 kV (nA)		T_{RR} (ns)		C (pF)	
	Average	Max.	Average	Max.	Average	Max.	Average	Max.
HV3	2.12	2.4	7.86	10	570	660	0.77	.83
HX3	2.97	3.5	6.65	10	198	260	0.95	1.14
HAC3	3.65	4.0	1.63	2	174	180	0.22	.30
HSC3	3.32	4.0	0.94	2	128	140	0.17	.21
HFC3	10.86	12.0	0.78	2	62	70	0.20	.24
HXC2	2.53	2.85	0.90	2	185	200	0.19	.24
HSC2	1.90	2.35	0.61	2	165	190	0.23	.25

Notes:

1. All measurements at 25°C
2. T_{RR} - measured using Tektronix "S" circuit $i_F = i_R = 2$ mA
3. C - measured on Boonton RF Admittance Meter Model 33A at 1 MHz and -100 V.
4. Maximum F.V.D. and i_R tested on 100% of lot
5. Maximum T_{RR} and C in the tested sample of 20 pcs.

TABLE 1

EVALUATION OF MULTIPLIERS WITH RECTIFIERS OF VARIOUS TYPES

#	Rectifier Type	Condition "A" @ f = 20 kHz			Condition "B" @ f = 30 kHz			Condition "C" @ f = 40 kHz		
		V _o (kV) @ 1kV p - p	i _c (μA) @ 1kV p - p	C _i (pF) @ 500 Vp-p	V _o (kV) @ 1kV p - p	i _c (μA) @ 1kV p - p	C _i (pF) @ 500 Vp-p	V _o (kV) @ 1kV p - p	i _c (μA) @ 1kV p - p	C _i (pF) @ 500 Vp-p
59	HV3	5.77	240 200	9.12 @ 500 Vp-p	5.76 @ 1kV p - p	380 340	9.16 @ 1kV p - p	5.81 @ 500 Vp-p	600 560	9.36 9.36
60	HV3	5.74	120 120	9.39 @ 500 Vp-p	5.72 @ 1kV p - p	380 390	9.46 @ 1kV p - p	5.80 @ 500 Vp-p	660 680	9.63 9.63
61	HX3	5.81	140 150	7.69 @ 500 Vp-p	5.80 @ 1kV p - p	160 180	7.67 @ 1kV p - p	5.92 @ 500 Vp-p	510 460	7.77 7.77
62	HAC3	5.99	70 65	3.66 @ 500 Vp-p	5.99 @ 1kV p - p	120 140	3.72 @ 1kV p - p	6.05 @ 500 Vp-p	210 220	3.78 3.78
63	HAC3	6.00	66 66	3.56 @ 500 Vp-p	5.99 @ 1kV p - p	120 125	3.60 @ 1kV p - p	6.08 @ 500 Vp-p	220 200	3.64 3.64
64	HSC3	5.98	64 68	3.10 @ 500 Vp-p	5.98 @ 1kV p - p	110 115	3.10 @ 1kV p - p	6.02 @ 500 Vp-p	180 185	3.18 3.18
65	HSC3	5.99	62 72	3.19 @ 500 Vp-p	5.98 @ 1kV p - p	110 120	3.21 @ 1kV p - p	6.02 @ 500 Vp-p	175 195	3.29 3.29
66	HFC3	5.99	58 58	3.52 @ 500 Vp-p	5.98 @ 1kV p - p	95 100	3.55 @ 1kV p - p	6.01 @ 500 Vp-p	170 175	3.62 3.62
67	HFC3	5.99	52 135	3.45 @ 500 Vp-p	5.99 @ 1kV p - p	90 100	3.48 @ 1kV p - p	6.05 @ 500 Vp-p	160 170	3.55 3.55
68	HSC2	5.98	110 52	3.23 @ 500 Vp-p	5.97 @ 1kV p - p	140 170	3.24 @ 1kV p - p	6.02 @ 500 Vp-p	180 280	3.30 3.30
69	HSC2	5.99	54 54	3.53 @ 500 Vp-p	5.92 @ 1kV p - p	95 95	3.56 @ 1kV p - p	6.03 @ 500 Vp-p	170 170	3.66 3.66

OUTPUT VOLTAGE OF MULTIPLIERS ON LIFE-TEST

$V_i = 1000 \text{ Vp-p}$, $i_L = 500 \text{ nA}$, $T = 50^\circ \text{ C}$

Unit #	Type	Vo (kV)		
		0 hrs.	24 hrs.	1000 hrs.
57	Rectangular	5.70	5.70	5.70
65	"	5.70	5.70	5.70
7	Curved	5.75	5.75	5.75
8	"	5.35	4.40	4.30
9	"	5.75	5.75	5.75
18	"	5.75	5.75	5.75

Table 3

APPENDIX A
REPORT ON SECOND ENGINEERING SAMPLES

(20)

ERIE TECHNOLOGICAL PRODUCTS

OF CANADA, LIMITED

ETR 0019

Page 1

REPORT ON SECOND ENGINEERING SAMPLES

Erie Technical Report No. 0019

Performed by: Erie Tech. Prod. of Can. Ltd.

Authorized by: Procurement & Production Directorate
USAECOM Fort Monmouth, N.J.

Contract No.: DAAB07-76-C-0041

Ref.: High Voltage Hybrid Multiplier Modules

TEST AND DEMONSTRATION REPORT PERTAINING TO SECOND ENGINEERING SAMPLES

Item:	Name and Title:	Signature:	Date:
Test Initiated:	N/A	N/A	26 Sept/77
Test Completed:	N/A	N/A	20 Oct. /77
Prepared By:	Douglas A. Platt, Q.C./Q.A. Mgr., H. V. Products, Erie Tech.	<i>Platt</i> <small>QC Insp ERIE 20</small>	21 Oct. /77
Test Technician:	Dennis G. Archard, Q.C. Tech., H. V. Products, Erie Tech.	<i>D. Archard</i> <small>QC Insp ERIE 77</small>	21 Oct/77
Program Manager:	Dr. M. L. Korwin-Pawlowski, Eng. Mgr., Semiconductor Devices, Erie Tech.	<i>MPawlowski</i>	21/Oct/77
Final Release:	N/A	N/A	21 Oct. /77

Report Distribution:

2 c.c. to: Director, Night Vision Laboratory
Systems Development Technical Area
ATTN: DRSEL-NV-SD (Mr. H. Finkelstein)
Fort Belvoir, Va. 22060

1 c.c. to: Commander, U.S. Army Electronics Command
ATTN: DRSEL-PP-I-PI-1 (Mr. D. Biser)
Fort Monmouth, N.J. 07703

REPORT SUMMARY SHEET:		2. System: Night Vision	Action:	Day	Mo.	Yr.
1. Part Name: High Voltage Hybrid Mult. Modules	5. Report No.: ETR 0019	Test Compl. Report Compl.	20 21	Oct.	77 Oct.	77
4. Report Title: Erie Technical Report	6. Test Type:	Electrical Testing of the Second Engineering Samples				

7. This test (supersedes) (supplements) Report No.: No Previous Issue

8. Type:	8A. Part Description:	9. Vendor	10. Vendor Part No.:	11. Gov. No.:	12. Total Tested:
I	Rectangular Multiplier Module	Erie	TSK 312-000	N/A	17
II	Curved Multiplier Module	Erie	TSK 313-000	N/A	14

13.	Internal Specs. Etc.:	14. Mil. Spec. Reference
A.	Fort Monmouth Contract No. DAAB07-76-C-0041	D. Mil. -Std. -202
B.	USAECOM MM & T Requirement No. 15, December, 75	E. Mil. -Std. -831
C.	USAECOM Technical Requirement No. SCS-495, 19 Nov. 75	

15. Item:	Test or Environment:	Spec. SCS-495 Para.:	Test Details:	Mult. Type: I	Mult. Type: II		
				No. Test:	No. Rej.:	No. Test:	No. Rej.:
1.	O/P Voltage (no load)	3.2.1	Pre environmental (R.T.)	17	0	14	0
2.	Ripple Voltage	3.2.1.4	Pre environmental (R.T.)	17	0	14	1
3.	Charge Current	3.2.1.3	Pre environmental (R.T.)	17	*17	13	*13
4.	Input Capacitance	3.2.1.2	Pre environmental (R.T.)	17	* 5	13	*13
5.	O/P Voltage (full load)	3.2.1	Pre environmental (R.T.)	17	0	13	1
6.	Efficiency Cal.	3.2.1.1	Pre environmental (R.T.)	17	0	12	0
7.	O/P Voltage (no load)	3.2.4.1	High temp. (+50°C)	3	0	2	0
8.	Ripple Voltage	3.2.4.1.4	High temp. (+50°C)	3	0	2	0
9.	Charge Current	3.2.4.1.3	High temp. (+50°C)	3	* 2	2	* 2
10.	Input Capacitance	3.2.4.1.2	High temp. (+50°C)	3	* 2	2	* 2
11.	O/P Voltage (full load)	3.2.4.1.1	High temp. (+50°C)	17	0	12	0
12.	O/P Voltage (no load)	3.2.4.2	Low temp. (-54°C)	3	0	2	0
13.	Ripple Voltage	3.2.5.2.4	Low temp. (-54°C)	3	0	2	0
14.	Charge Current	3.2.4.2.3	Low temp. (-54°C)	3	* 3	2	* 2
15.	Input capacitance	3.2.4.2.2	Low temp. (-54°C)	3	* 1	2	* 1
16.	O/P Voltage (full load)	3.2.4.2.1	Low temp. (-54°C)	17	0	12	0
17.	Thermal Shock	3.2.4.3.1	25 cycles (-65 to +71°C)	17	N/A	12	N/A
18.	High Temp. Storage	3.2.4.3.2	8 hrs. @ +71°C	17	N/A	12	N/A
19.	O/P Voltage (no load)	3.2.1	Post environmental (R.T.)	17	0	12	0
20.	Ripple Voltage	3.2.1.4	Post environmental (R.T.)	17	0	12	0
21.	Charge Current	3.2.1.3	Post environmental (R.T.)	17	*17	12	*12
22.	Input Capacitance	3.2.1.2	Post environmental (R.T.)	17	* 3	12	*12
23.	O/P Voltage (full load)	3.2.1	Post environmental (R.T.)	17	0	12	0
24.	Efficiency Cal.	3.2.1.1	Post environmental (R.T.)	17	0	12	0

16. Summary of Report: See "Test Report Summation" Page 10

17. Tested Beyond Spec. <input type="checkbox"/> Yes	18. Vendor Informed: Letter Rep't Oral <input type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>	19. Signed:	20. Contractor: Subcontractor:
---	---	-------------	--------------------------------

REPRODUCTION OR DISPLAY OF THIS MATERIAL FOR SALES
OR PUBLICITY PURPOSES IS PROHIBITED

*NOTE: Refer to the applicable "Test Evaluation and Results" Paragraph contained in the body of this report.

3.0) Table of Contents:

<u>Item:</u>	<u>Description:</u>	<u>Page:</u>
1.0) Title and Cover Page		1
2.0) Report Summary Sheet		2
3.0) Table of Contents		3
4.0) Report Description		4
5.0) Test Sample Description		4
5.1) Disposition of Test Specimens		4
6.0) Test Evaluation and Results		4
6.1) Pre Environmental Electrical Testing		4
6.2) High Temperature Electrical Testing		6
6.3) Low Temperature Electrical Testing		7
6.4) Thermal Shock Evaluation		8
6.5) High Temperature Storage Evaluation		8
6.6) Post Environmental Electrical Testing		8
7.0) Test Report Summation		10
8.0) List of Illustrations		
8.1) Fig. 1 "Test Circuit for (No Load) Output Voltage"		11
8.2) Fig. 2 "Test Circuit for (Full Load) Output Voltage"		12
8.3) Fig. 3 "Test Circuit for Output Ripple Voltage"		13
8.4) Fig. 4 "Test Circuit for Input Capacitance & Charge Current"		14
8.5) Fig. 5 "Test Equipment Listing"		15
9.0) Appendix I "Recorded Data Sheets for Type I (TSK 312-000) Mult. Testing"		16
10.0) Appendix II "Recorded Data Sheets for Type II (TSK 313-000) Mult. Testing"		19

4.0) Report Description:

This test and demonstration report (data item B002) pertains to the electrical and environmental evaluation of two "Six Stage High Voltage Multiplier Module" types, supplied as Second Engineering Samples against "Manufacturing Methods and Technology Contract DAAB07-76-C-0041."

The test specimens were tested in accordance with the applicable paragraphs of "Electronics Command Technical Requirement SCS-495, dated 19 Nov./75." The requirements contained in the forementioned document are considered as design goals and subject to change prior to the next submission of Confirmatory Samples. Devices that are marginal failures have not been removed from the sample and their test results are contained in this report.

5.0) Test Sample Description:

The test samples are individually identified by means of an identification no. (label) which is attached to the multiplier ground leads.

Multiplier "hook-up" lead identification:

- a) The "ground lead" (ribbon type) is jointly terminated with the cylindrical "D₁" lead
- b) The "A.C. input" is the remaining ribbon lead
- c) The "D.C. output" is the remaining cylindrical lead.

NOTE: All operational test were conducted with the test specimen totally immersed in Fluorinert "FC-43" (mfg. by 3M Co.).

5.1) Disposition of Test Specimens:

5.1.1) Sixteen (16) type I Rectangular Multiplier Modules (TSK 312-000, ident. no's.: 32, 34, 35, 36, 39, 41, 42, 43, 44, 46, 48, 49, 51, 52, 56, 58) are being submitted as Second Engineering Samples (item no. 0001AA) against MM & T contract.

5.1.2) Eight (8) type II Curved Multiplier Modules (TSK 313-000, ident. no's.: 5, 6, 10, 11, 12, 13, 14, 16) are being submitted as Second Engineering Samples (item no. 0001AA) against MM & T contract.

5.1.3) The remaining multipliers are being held by Erie for additional evaluation.

6.0) Test and Evaluation Results:

6.1) Pre Environmental Electrical Testing (Room Temp.)

6.1.1) Output Voltage (No Load)

Ref.: Appendix I & II, Sheet 1, Cond. A
Test Circuit Fig. 1, Fig. 5
Method: With 1000 Vp/p @ 30 KHz applied, record the output voltage
Results: The 31 multipliers successfully conform to the expected output voltage level.

6.1.2) Ripple Voltage

Ref.: Appendix I & II, Sheet 1, Cond. B
Test Circuit Fig. 3, Fig. 5
Method: With 1000 Vp/p @ 30 KHz applied, record the output ripple voltage using a "Jennings Type" scope probe
Results: 1 unit (# 15) was rejected and removed from the sample for exhibiting excessive ripple (260 Vp/p). The remaining 30 multipliers successfully conform to the <3% requirement of SCS-495, Para 3.2.1.4.

6.1.3) Charge Current

Ref.: Appendix I & II, Sheet 1, Cond. C
Test Circuit Fig. 4, Fig. 5
Method: With 1000 Vp/p @ 30 KHz applied, record the charging current
Results: All 30 multipliers failed to conform to the < 150 μ A requirement of SCS-495, Para 3.2.1.3

6.1.4) Input Capacitance

Ref.: Appendix I & II, Sheet 1, Cond. D
Test Circuit Fig. 4, Fig. 5
Method: With 500 Vp/p @ 30 KHz applied, record the input capacitance reading on the variable capacitor
Results: 18 multipliers failed to conform to the < 8 pF requirement of SCS-495, Para 3.2.1.2.

6.1.5) Output Voltage (Full Load)

Ref.: Appendix I & II, Sheet 1, Cond. E
Test Circuit Fig. 2, Fig. 5
Method: With 1000 Vp/p @ 30 KHz applied, record the output voltage
Results: 1 unit (# 17) was removed from the sample for exhibiting a lower than normal output voltage. The remaining 29 multipliers successfully conform to the expected output voltage level.

6.1.6) Efficiency Calculation

Ref.: Appendix I & II, Sheet 1, Cond. F
Test Circuit Fig. 1, Fig. 2, Fig. 5

Method: Using the formula provided in Para 6.3.1 of SCS-495 the calculated multiplier efficiencies, with the output at full load (worse case), exceed the 85% requirement of SCS-495, Para 3.2.1.1.

6.2) High Temperature Electrical Testing

NOTE: Twenty-nine (29) multipliers were tested for output voltage (full load) at high temperature but because of test limitations only five (5) were examined for output voltage (no load), ripple voltage, charge current, and input capacitance.

6.2.1) Output Voltage (No Load)

Ref.: Appendix I & II, Sheet 2, Column 1
Test Circuit Fig. 1, Fig. 5

Method: With the five multipliers mounted in a temperature chamber at + 50°C with an input voltage of 1000 Vp/p @ 30 KHz applied, record the output voltage.

Results: The 5 multipliers successfully conform to the expected output voltage level.

6.2.2) Ripple Voltage

Ref.: Appendix I & II, Sheet 2, Column 2
Test Circuit Fig. 3, Fig. 5

Method: With the five multipliers mounted in a temperature chamber at + 50°C with an input voltage of 1000 Vp/p @ 30 KHz. applied, record the output ripple voltage

Results: The 5 multipliers successfully conform to the < 3% requirement of SCS-495, Para 3.2.4.1.4.

6.2.3) Charge Current

Ref.: Appendix I & II, Sheet 2, Column 3
Test Circuit Fig. 4, Fig. 5

Method: With the five multipliers mounted in a temperature chamber at + 50°C with an input voltage of 1000 Vp/p @ 30 KHz applied, record the charge current

Results: Four of the five units failed to conform to the < 300 µA requirement of SCS-495, Para 3.2.4.1.3

6.2.4) Input Capacitance

Ref.: Appendix I & II, Sheet 2, Column 4
Test Circuit Fig. 4, Fig. 5

Method: With the five multipliers mounted in a temperature chamber at + 50°C with an input voltage of 500 Vp/p @ 30 KHz applied, record the input capacitance.
Results: Four of the five units failed to conform to the <8 pF requirement of SCS-495, Para 3.2.4.1.2.

6.2.3) Output Voltage (Full Load)

Ref.: Appendix I & II, Sheet 2, Column 5
Test Circuit Fig. 2, Fig. 5
Method: With all 29 multipliers mounted in a temperature chamber at + 50°C with an input voltage of 1000 Vp/p @ 30 KHz applied, record the output voltage and calculate the efficiency.
Results: The multipliers exceed the 80% efficiency requirement of SCS-495, Para 3.2.4.1.1.

6.3) Low Temperature Electrical Testing

NOTE: Twenty-nine (29) multipliers were tested for output voltage (full load) at low temperature but because of test limitations only five (5) were examined for output voltage (no load), ripple voltage, charge current, and input capacitance.

6.3.1) Output Voltage (No Load)

Ref.: Appendix I & II, Sheet 2, Column 6
Test Circuit Fig. 1, Fig. 5
Method: With the five multipliers mounted in a temperature chamber at - 54°C with an input voltage of 1000 Vp/p @ 30 KHz applied, record the output voltage.
Results: The 5 multipliers successfully conform to the expected output voltage level.

6.3.2) Ripple Voltage

Ref.: Appendix I & II, Sheet 2, Column 7
Test Circuit Fig. 3, Fig. 5
Method: With the five multipliers mounted in a temperature chamber at - 54°C with an input voltage of 1000 Vp/p @ 30 KHz applied, record the output ripple voltage.
Results: The 5 multipliers successfully conform to the the < 3% requirement of SCS-495, Para 3.2.5.2.4.

6.3.3) Charge Current

Ref.: Appendix I & II, Sheet 2, Column 8
Test Circuit Fig. 4, Fig. 5

Method: With all five multipliers mounted in a temperature chamber at - 54°C with an input voltage of 1000 Vp/p @ 30 KHz applied, record the charge current.
Results: All five units failed to conform to the < 150 μ A requirement of SCS-495, Para 3.2.4.2.3.

6.3.4) Input Capacitance

Ref.: Appendix I & II, Sheet 2, Column 9
Test Circuit Fig. 4, Fig. 5
Method: With the five multipliers mounted in a temperature chamber at - 54°C with an input voltage of 500 Vp/p @ 30 KHz applied, record the input capacitance.
Results: Two of the five units failed to conform to the < 8 pF requirement of SCS-495, Para 3.2.4.2.2.

6.3.5) Output Voltage (Full Load)

Ref.: Appendix I & II, Sheet 2, Column 10
Test Circuit Fig. 2, Fig. 5
Method: With all 29 multipliers mounted in a temperature chamber at - 54°C with an input voltage of 1000 Vp/p @ 30 KHz applied, record the output voltage and calculate the efficiency.
Results: The multipliers exceed the 80% efficiency requirement of SCS-495, Para 3.2.4.2.1.

6.4) Thermal Shock Evaluation (Non-Operational)

Ref.: Appendix I & II, Sheet 2, Column 11
Method: The twenty-nine (29) multipliers were tested in accordance with test cond. B-1, Method 107D, of Mil. Std. 202, only the high temperature extreme was reduced to +71°C, per Para 3.2.4.3.1 of SCS-495.
Results: See Post Environmental Electrical Test Results.

6.5) High Temperature Storage (Non-Operational)

Ref.: Appendix I & II, Sheet 2, Column 12
Method: The twenty-nine (29) multipliers were subjected to 8 hours storage at + 71°C per Para 3.2.4.3.2 of SCS-495.
Results: See Post Environmental Electrical Test Results.

6.6) Post Environmental Electrical Testing (Room Temp.)

6.6.1) Output Voltage (No Load)

Ref.: Appendix I & II, Sheet 3, Cond. A

Test Circuit Fig. 1, Fig. 5
Method: With 1000 V p/p @ 30 KHz applied, record the output voltage
Results: The 29 multipliers successfully conform to the expected output voltage level.

6.6.2) Ripple Voltage

Ref.: Appendix I & II, Sheet 3, Cond. B
Test Circuit Fig. 3, Fig. 5
Method: With 1000 V p/p @ 30 KHz applied, record the output ripple voltage by using a "Jennings Type" scope probe.
Results: The 29 multipliers successfully conform to the < 3% requirement of SCS-495 Para 3.2.1.4.

6.6.3) Charge Current

Ref.: Appendix I & II, Sheet 3, Cond. C
Test Circuit Fig. 4, Fig. 5
Method: With 1000 Vp/p @ 30 KHz applied, record the charging current
Results: All 29 multipliers failed to conform to the < 150 μ A requirement of SCS-495, Para 3.2.1.3.

6.6.4) Input Capacitance

Ref.: Appendix I & II, Sheet 3, Cond. D
Test Circuit Fig. 4, Fig. 5
Method: With 500 Vp/p @ 30 KHz applied, record the input capacitance reading on the variable capacitor.
Results: 15 multipliers failed to conform to the < 8 pF requirement of SCS-495, Para 3.2.1.2.

6.6.5) Output Voltage

Ref.: Appendix I & II, Sheet 3, Cond. E
Test Circuit Fig. 2, Fig. 5
Method: With 1000 Vp/p @ 30 KHz applied, record the output voltage
Results: The 29 multipliers successfully conform to the expected output voltage level.

6.6.6) Efficiency Calculation

Ref.: Appendix I & II, Sheet 3, Cond F
Test Circuit Fig. 1, Fig. 2, Fig. 5

Method: Using the formula provided in Para 6.3.1 of SCS-495 the calculated multiplier efficiencies, with the output at full load (worse case), exceed the 85% requirement of SCS-495, Para 3.2.1.1.

7.0) Report Summation:

In this report we evaluated thirty-one (31) Second Engineering Multiplier Samples per MM & T contract DAAB07-76-C-0041. The results indicated by the various test paragraphs conclude that none of the multipliers examined conform to "all" the electrical requirements as specified in the applicable paragraphs of SCS-495.

- 7.1) Two (2) Type II multipliers (# 15, 17) exhibited an electrical flaw during initial testing and are to be considered manufacturing defects.
- 7.2) The high "charge current" readings are related to the increase in the input voltage frequency to 30 KHz. (NOTE: Previous tests were conducted at 20 KHz.) The present multiplier design is greatly effected by a test frequency change -
Example @ 20 KHz typical chg. current at R.T. = 140 μ A
@ 30 KHz typical chg. current at R.T. = 260 μ A
@ 40 KHz typical chg. current at R.T. = 500 μ A

To conform to the total input frequency range of 20 to 40 KHz will require additional evaluation of other multiplier designs. Further information covering this subject will be included in the next quarterly report.

- 7.3) The high "input capacitance" readings are, in the writer's opinion, related to test circuit inadequacies. Due to the low level of capacitance (7 to 10 pF) it is extremely difficult to obtain accurate and stable test results. Erie requests that Fort Belvoir perform similar capacitance test to check both correlation and repeatability of results.

Figure 2

ACCEPTANCE OF MATERIAL SUBJECT TO APPROVAL OF PRODUCTION SAMPLES BY ENGINEERING DEPARTMENT
DIMENSIONS IN INCHES DO NOT SCALE THIS DWG

TOLERANCES UNLESS OTHERWISE SPECIFIED			
FRACTIONS	DECIMAL	ANGLES	
+/-	+/-	+/-	

REV NO 5 EDITIONS

PAGE 12

BEST AVAILABLE COPY

Figure 3

ACCEPTANCE OF MATERIAL SUBJECT TO APPROVAL OF PRODUCTION SAMPLES BY ENGINEERING DEPARTMENT
DIMENSIONS IN INCHES - DO NOT SCALE THIS DWG.

TOLERANCES	
UNLESS OTHERWISE SPECIFIED	
FRACTIONS	+/-
DECIMAL	+/-
ANGLES	+/-

REV NO _____

BEST AVAILABLE COPY

TEST CIRCUIT	
for	
OUTLINE RIPPLE VOLTAIC EVALUATION	
DRAWN BY	LARRY MARLIN
CHECKED BY	██████████
DATE	11/OCT/77
EINE TECHNICAL PRODUCTS OF CANADA LTD	
TRENTON, ONTARIO	

Figure 4

ACCEPTANCE OF MATERIAL SUBJECT TO APPROVAL OF PRODUCTION SAMPLES BY ENGINEERING DEPARTMENT
DIMENSIONS IN INCHES - DO NOT SCALE THIS DWG.

TOLERANCES UNLESS OTHERWISE SPECIFIED			
FRACTIONS		DECIMAL	ANGLES
+	-	+	-

REVISIONS REV NO

TEST CIRCUIT		FOR	
INPUT CAPACITANCE AND CHARGE CURRENT EVALUATION			
DRAWN BY	LARRY MACKLIN	MATERIAL	
CHECKED BY	<i>[Signature]</i>	FINISH	
DATE	11/OCT/77		
ONE TECHNICAL SPECIAL PRODUCTS OF CANADA LTD			
TRENTON, ONTARIO			
FIGURE 4			

Page 14 BEST AVAILABLE COPY

Figure 5

ACCEPTANCE OF MATERIAL SUBJECT TO APPROVAL OF PRODUCTION SAMPLES BY ENGINEERING DEPARTMENT
DIMENSIONS IN INCHES - DO NOT SCALE THIS DWG.

TOLERANCES UNLESS OTHERWISE SPECIFIED	
FRACTIONS	±
DECIMAL	±
ANGLES	±

TEST EQUIPMENT LISTING

REF	CONTROL NO.	DESCRIPTION	MFG.	MODEL
Amp.	AM193	AC Amplifier (Power Source)	Hewlett Packard	2141
Osc.	FPD72	Oscillator (Function Generator)	Hewlett Packard	3319A
Der.	V1	Peak to Peak Detector	Erie	
	VM04J	Electrostatic Voltmeter (0 to 2000 Vdc)	Beckman	LVE
	VM03J	Electrostatic Kilovoltmeter (0 to 15 KVdc)	Beckman	KVE
	FM604	Electronic Counter	Hewlett Packard	5321A
	AM160	Dual Channel Oscilloscope	Tektronix	535(T)CA
	AM305	Oscilloscope	Tektronix	543(1)
O1	TFX 105-300	Capacitance Probe for Ripple Measurement	Erie	
O2	R1 & R2	Precision Resistors ($1\text{ K}\Omega \pm 0.01\%$)	General Radio	1440
CP	R3	Load Resistor ($10\text{ G}\Omega \pm 10\%$)	Resistance Prod.	EDV
R1	C1	Variable Capacitor	Corp.	1422C
R2			General Radio	
R3				
C1				
C2				
C3				
C4				
C5				
C6				
C7				
C8				
C9				
C10				
C11				
C12				
C13				
C14				
C15				
C16				
C17				
C18				
C19				
C20				
C21				
C22				
C23				
C24				
C25				
C26				
C27				
C28				
C29				
C30				
C31				
C32				
C33				
C34				
C35				
C36				
C37				
C38				
C39				
C40				
C41				
C42				
C43				
C44				
C45				
C46				
C47				
C48				
C49				
C50				
C51				
C52				
C53				
C54				
C55				
C56				
C57				
C58				
C59				
C60				
C61				
C62				
C63				
C64				
C65				
C66				
C67				
C68				
C69				
C70				
C71				
C72				
C73				
C74				
C75				
C76				
C77				
C78				
C79				
C80				
C81				
C82				
C83				
C84				
C85				
C86				
C87				
C88				
C89				
C90				
C91				
C92				
C93				
C94				
C95				
C96				
C97				
C98				
C99				
C100				
C101				
C102				
C103				
C104				
C105				
C106				
C107				
C108				
C109				
C110				
C111				
C112				
C113				
C114				
C115				
C116				
C117				
C118				
C119				
C120				
C121				
C122				
C123				
C124				
C125				
C126				
C127				
C128				
C129				
C130				
C131				
C132				
C133				
C134				
C135				
C136				
C137				
C138				
C139				
C140				
C141				
C142				
C143				
C144				
C145				
C146				
C147				
C148				
C149				
C150				
C151				
C152				
C153				
C154				
C155				
C156				
C157				
C158				
C159				
C160				
C161				
C162				
C163				
C164				
C165				
C166				
C167				
C168				
C169				
C170				
C171				
C172				
C173				
C174				
C175				
C176				
C177				
C178				
C179				
C180				
C181				
C182				
C183				
C184				
C185				
C186				
C187				
C188				
C189				
C190				
C191				
C192				
C193				
C194				
C195				
C196				
C197				
C198				
C199				
C200				
C201				
C202				
C203				
C204				
C205				
C206				
C207				
C208				
C209				
C210				
C211				
C212				
C213				
C214				
C215				
C216				
C217				
C218				
C219				
C220				
C221				
C222				
C223				
C224				
C225				
C226				
C227				
C228				
C229				
C230				
C231				
C232				
C233				
C234				
C235				
C236				
C237				
C238				
C239				
C240				
C241				
C242				
C243				
C244				
C245				
C246				
C247				
C248				
C249				
C250				
C251				
C252				
C253				
C254				
C255				
C256				
C257				
C258				
C259				
C260				
C261				
C262				
C263				
C264				
C265				
C266				
C267				
C268				
C269				
C270				
C271				
C272				
C273				
C274				
C275				
C276				
C277				
C278				
C279				
C280				
C281				
C282				
C283				
C284				
C285				
C286				
C287				
C288				
C289				
C290				
C291				
C292				
C293				
C294				
C295				
C296				
C297				
C298				
C299				
C300				
C301				
C302				
C303				
C304				
C305				
C306				
C307				
C308				
C309				
C310				
C311				
C312				
C313				
C314				
C315				
C316				
C317				
C318				
C319				
C320				
C321				
C322				
C323				
C324				
C325				
C326				
C327				
C328				
C329				
C330				
C331				
C332				
C333				
C334				
C335				
C336				
C337				
C338				
C339				
C340				
C341				
C342				
C343				
C344				
C345				
C346				
C347				
C348				
C349				
C350				
C351				
C352				
C353				
C354				
C355				
C356				
C357				
C358				
C359				
C360				
C361		</td		

Test #

ERIE TECHNOLOGICAL PRODUCTS
OF CANADA, LTD.

SHEET # **2** or **3**
NOTES # **APPENDIX I**
P.O. **17SRUA87549**
F.O. **2543101**
QTY. **17pcs.**

QUALITY CONTROL DEP'T. - RECORDED DATA SHEETFILE NO.**ETR009**

TEST Environmental Evaluation

PART TSK 312-000 (6 stage rectangular mult. module)

SPECIAL DETAILS Re.: Fort Monmouth Specification SCS-495

TEST DATE:	12 Oct. /77	13 Oct. /77	13 Oct. /77	19 Oct. /77
TEST COND.	HIGH TEMPERATURE PERFORMANCE @ +50°C	LOW TEMPERATURE PERFORMANCE @ -54°C		
INPUT VOLT.	1000Vp/p 1000Vp/p	1000Vp/p 1000Vp/p	1000Vp/p 1000Vp/p	500Vp/p 1000Vp/p
TEST FREQ.	30 KHz 30 KHz	30 KHz 30 KHz	30 KHz 30 KHz	30 KHz 30 KHz
LOAD CURRENT	< 2 nA < 2 nA	< 2 nA < 2 nA	< 2 nA < 2 nA	< 2 nA < 2 nA
PARAMETER	U/P Volt Rip Volt Chg Cur	Cap 0/P Volt Rip Volt Chg Cur	Cap 0/P Volt Rip Volt Chg Cur	Cap 0/P Volt Rip Volt Chg Cur
UNITS	Vdc Vd/p A	Vdc Vd/p A	Vdc Vd/p A	Vdc Vd/p A
REQUIREMENT	32414 < 300 uA < 8 PF 80% min.	32412 < 300 uA < 8 PF	32424 < 150 uA < 8 PF	32422 < 8 PF 30% min.
No. 32	5750	5750	5750	5800
34	5750	5750	5750	5800
35	5750	5750	5750	5800
36	5810 43	340 - 8.69 -	45.6 230 - 8.40 -	5800
39	5750	5750	5750	5800
41	5750	5750	5750	5800
42	5750	5750	5750	5800
43	5750	5750	5750	5800
44	5750	5750	5750	5800
46	5750	5750	5750	5800
48	5800 24.7	320 - 8.52 -	5750 28.7 240 - 7.87	5800
49	5750	5750	5750	5800
51	5750	5750	5750	5800
52	5750	5750	5750	5800
56	5800 22.1	300 - 7.45	5830 26.0 230 - 7.27	5800
57	5750	5750	5750	5800
58	5750	5750	5750	5800

IDENTIFICATION NUMBER:
BEST AVAILABLE COPY(EFFICIENCY = 95.8) **(EFFICIENCY = 96.7)**Note: ONLY THREE MULTIPLEXERS WERE CHECKED FOR ALL TEST
= CONDITIONS AT THE TEMPERATURE EXTREMES.

Test #

ERIE TECHNOLOGICAL PRODUCTS
OF CANADA, LTD.

SHEET # **3** OF **3**NOTES # **APPENDIX I**P.O. **17SR70A87549**F.O. **2543101**QTY. **17 pcs.****QUALITY CONTROL DEPT. - RECORDED DATA SHEET**FILE NO. E.T.R.009TEST Electrical Evaluation (Post Environment)

PART TSK 312-000 (6 stage rectangular mult. module)

SPECIAL DETAILS Re.: Fort Monmouth Specification SCS-495

Start Date	20 Oct. 77
Finish Date	20 Oct. 77
Tested By	D.A.
Approved By	<u>QC Rep Milt 20</u>

TEST DATE	"A"	"B"	"C"	"D"	"E"	"A - E"
TEST COND.						
INPUT VOLT.	1000 V pk to pk	1000 V pk to pk	1000 V pk to pk	500 V pk to pk	1000 V pk to pk	1000 V pk to pk
TEST FREQ.	30 KHz	30 KHz	30 KHz	30 KHz	30 KHz	30 KHz
LOAD CURRENT	< 2 mA	< 2 mA	< 2 mA	< 2 mA	500 nA	to 500 nA
PARAMETER	OUTPUT VOLTAGE	RIPPLE VOLTAGE	CHARGE CURRENT	INPUT CAPACITANCE	OUTPUT VOLTAGE	CAL. EFFICIENCY
LIMITS	Vdc	Vdc	mA	nF	Vdc	%
REQUIREMENT	Para 3.2.1.4	Para 3.2.1.3	Para 3.2.1.2	Para 3.2.1.1	Para 3.2.1	Para 3.2.1.1
No.	32	36.4	250	7.77	5820	97.0
34	5870	31.2	250	7.69	5820	97.0
35	5860	28.6	260	7.85	5820	97.0
36	5850	31.2	265	7.82	5820	97.0
39	5820	33.8	260	7.75	5800	96.7
41	5840	35.1	255	7.92	5810	96.8
42	5860	31.2	250	7.64	5820	97.0
43	5880	31.2	255	8.09	5850	97.5
44	5860	32.5	245	7.66	5820	97.0
46	5850	37.7	250	8.00	5820	97.0
48	5820	26.0	255	8.04	5810	96.8
49	5840	29.9	255	7.82	5800	96.7
51	5810	35.1	255	7.98	5800	96.7
52	5850	32.5	250	7.74	5810	96.8
56	5810	32.5	255	8.00	5800	96.7
57	5810	30.0	260	8.06	5800	96.7
58	5840	32.5	255	7.96	5810	96.8

IDENTIFICATION NUMBER:

NOTE: THE FOLLOWING EIGHT (8) MULTIPLIERS WERE PREVIOUSLY SHIPPED AS 1ST ENG. SAMPLES -
IDENT. NO.'S: 36, 39, 41, 43, 44, 48, 49

NOTE: THE FOLLOWING SIXTEEN (16) MULTIPLIERS WERE SHIPPED AS 2nd ENG. SAMPLES -
IDENT. NO.'S: 32, 34, 35, 36*, 39*, 41*, 42, 43*, 44*, 46, 48*, 49*
51, 52*, 56, 58,

Test.

ERIE TECHNICAL LOGICAL PRODUCTS
OF CANADA, LTD.

SHEET # 1 or 3
NOTES # APPENDIX II
P.O. 17SR70A87549
P.O. 2543101
QTY. 14 pcs.

TEST DATE
TEST CUNU.
INPUT VOLT. 1000 V pk to pk
TEST FREQ. 30 KHz
LOAD CURRENT < 2 nA
PARAMETER OUTPUT VOLTAGE
UNITS Vdc
REQUIREMENT Para 3.2.1
< 3% D/p

IDENTIFICATION NUMBER:

QUALITY CONTROL DEPT. - RECORDED DATA SHEET
FILE NO. E.T.R. 0019
TEST Electrical Evaluation (PRE Environmental)
PART TSK 313-000 (6 stage curved multiplier module)
SPECIAL DETAILS Re.: Fort Monmouth Specification SCS-495

Start Date 26 Sept. /77
Finish Date 27 Sept. /77
Tested By D.A.
Approved By QC Inspect
DATE 26

TEST DATE	"A"	"B"	"C"	"D"	"E"	"F"
TEST CUNU.						
INPUT VOLT.	1000 V pk to pk	1000 V pk to pk	1000 V pk to pk	500 V pk to pk	1000 V pk to pk	1000 V pk to pk
TEST FREQ.	30 KHz	30 KHz	30 KHz	30 KHz	30 KHz	30 KHz
LOAD CURRENT	< 2 nA					
PARAMETER	OUTPUT VOLTAGE	CHARGE CURRENT	INPUT CAPACITANCE	OUTPUT VOLTAGE	CAL. EFFICIENCY	
UNITS	Vdc	uA	pF	Vdc	%	
REQUIREMENT	Para 3.2.1	Para 3.2.1	Para 3.2.1	Para 3.2.1	Para 3.2.1	Para 3.2.1
	< 150 uA	< 150 uA	< 8 pF			85% minimum
No.	5960	18.2	2.90	9.92	<	98.5
6	5950	18.2	2.80	9.46	<	98.3
7	5600	20.8	2.65	9.36	<	92.5
8	5540	53.0	2.50	8.64	<	90.0
9	5900	16.9	2.70	9.36	<	90.0
10	5960	16.9	2.80	9.67	<	98.3
11	5980	15.6	2.80	9.74	<	98.5
12	5920	15.6	2.80	9.37	<	98.6
13	5990	14.3	2.80	9.08	<	98.3
14	5960	18.2	2.75	9.36	<	98.5
15	4800	260.0	6.70	61.63	<	91.6
16	5980	16.9	2.65	9.10	<	99.5
17	5680	96.2	2.50	8.66	<	96.3
18	5970	19.5	2.75	9.28	<	98.5

PAGE 19

BEST AVAILABLE COPY

* Note: Unit No. 15 Retired for High Ripple Voltage, Removed from Lot

Unit No. 17 Removed From Lot for Low Output Voltage @ Full Load.

Balance QTR. of 1/2 pcs. Proceed to Environmental Testing.

Test 4

ERIE TECHNICAL PRODUCTS OF CANADA, LTD.

SHEET # 2 OR 3

NOTES * APPENDIX II

P.O. 17SR70A87549

2502101

תְּאַתָּה תִּשְׁלַח

QUALITY CONTROL DEP'T. - RECORDED DATA SHEET

FILE NO. F.T.R. 0019

TEST Environmental Evaluation

QUALITY CONTROL DEP'T. - RECORDED DATA SHEET

FILE NO. E.T.R. 0019

TEST Environmental Evaluation

TEST TEST INPUT TEST LOAD PARAMS REQUI IDENTIFICATION NUMBER:

PAGE 20

BEST AVAILABLE COPY

Note: ONLY TWO MULTIPLEXERS WERE CHECKED FOR ALL TEST
CONDITIONS AT THE TEMPERATURE EXTREMES.

$$(\text{EFFICIENCY} = 96.7)$$

(EFFICIENCY = 97.5)

HIGH TEMPERATURE STOMAGE: Inuit's subjected to an eight (8) hr. non-operational storage test @ 71°C

TERMINAL SHOCK: Per MIL STD. 202, 107U, B-1
25 cycles with each cycle being ½ hr.
at each extreme -65°C & +71°C

GERMAN SCHOOL PER MILI STS 1070 B+1

Start Date	<u>12 Oct.</u>	<u>17</u>
Finish Date	<u>19 Oct.</u>	<u>17</u>
Tested By	<u>D.B.</u>	<u>F.T.</u>
Approved By		

GC IMP
ERIE 20

Test.

**ERIE TECHNICAL LOGICAL PRODUCTS
OF CANADA, LTD.**

SHEET # **3** OF **3**
NOTES # **APPENDIX II**

P.O. **17SR70A87549**
F.O. **2543101**
QTY. **12 pcs.**

QUALITY CONTROL DEP'T. - RECORDED DATA SHEET
FILE NO. **ETR-0019**

TEST **Electrical Evaluation (Post Environmental)**
PART **TSK 313-000 (6 stage curved multiplier module)**
SPECIAL DETAILS Re.: Fort Monmouth Specification SCS-495

TEST DATE	TEST UNIT.	"A"	"B"	"C"	"D"	"E"	"F"
	INPUT VOLT.	1000 V pk to pk	1000 V pk to pk	500 V pk to pk	1000 V pk to pk	1000 V pk to pk	1000 V pk to pk
	TEST FREQ.	30 KHz	30 KHz	30 KHz	30 KHz	30 KHz	30 KHz
	LOAD CURRENT	< 2 nA	< 2 nA	500 nA	500 nA	500 nA	500 nA
	PARAMETER	OUTPUT VOLTAGE	RIPPLE VOLTAGE	CHARGE CURRENT	INPUT CAPACITANCE	OUTPUT VOLTAGE	CAL. EFFICIENCY
	UNITS	Vdc	Vdc	uA	pF	Vdc	%
	REQUIREMENT	Para 3.2.1.4 < 3% p/p	Para 3.2.1.4 < 150 uV	Para 3.2.1.3 < 0.1 uA	Para 3.2.1.2 < 0.1 pF	Para 3.2.1	Para 3.2.1.1 85% minimum
No.		5910	18.2	285	~	9.84	~
6		5910	16.9	275	~	9.50	~
7		5920	20.8	260	~	9.34	~
8		5400	63.7	250	~	8.54	~
9		5810	14.3	260	~	9.43	~
10		5910	15.6	275	~	9.68	~
11		5930	15.6	275	~	9.75	~
12		5920	14.3	275	~	9.30	~
13		5920	13.0	270	~	9.02	~
14		5920	16.9	270	~	9.38	~
15		5920	14.3	255	~	9.10	~
16		5920	18.2	265	~	9.21	~
17		5920	18.2	265	~	9.21	~
18		5920	18.2	265	~	9.21	~

IDENTIFICATION NUMBER:

Note: The following Eight (8) Multipliers were shipped as 2nd Dug samples -

IDent: No's.: 5, 6, 10, 11, 12, 13, 14, 16