O Mercado de Carbono: A Posição do Brasil em Relação ao Mundo

Caio Lucas da Silva Chacon¹ Deivison Rodrigues Jordão¹ Luiz Fernando Costa dos Santos¹ Yhasmim de Souza Tigre¹

¹Departamento de Computação Científica - Bacharelado em Ciência de Dados e Inteligência Artificial

Universidade Federal da Paraíba Estudo de Caso de Visualização de Dados - ECVD 2 cdia.ci.ufpb.br

24 de maio de 2023

E ste Estudo de Caso de Visualização de Dados (ECVD) tem o objetivo de apresentar situações do mundo real sob o ponto de vista da visualização de dados, de modo a informar o público investidor iniciante sobre as características e oportunidades do mercado de carbono.

Escopo

O seguinte projeto se insere no domínio do mercado de créditos de carbono, com foco nas emissões e distribuições de carbono pelas empresas e entidades relacionadas.

Esse tema se configura importante uma vez que um dos objetivos da Organização das Nações Unidas (ONU) é tomar medidas para o combate às mudanças climáticas mundiais. Segundo eles, é necessário que cada país, instituição financeira e empresa adote planos para efetuar uma transição das emissões de Gases de Efeito Estufa (GEE) até chegar à liquidez zero, ou seja, o equilíbrio entre o que se consegue absorver e emitir de gases de efeito estufa, tornando o saldo de carbono da atmosfera neutro, visto que a poluição emitida gera malefícios à sociedade.

Segundo o Global Carbon Budget de 2021, para que a humanidade atinja a neutralidade de carbono até 2050, será necessário cortar as emissões em 1.4 bi de toneladas todo ano. Para tanto, surge o mercado de créditos de carbono. O mercado atua com uma moeda em comum: o crédito de carbono. Ele é um certificado emitido quando uma entidade prova a diminuição da sua carga de emissões, equivalentes a uma tonelada de dióxido de carbono (CO2).

O mercado é presente também no Brasil, e o artigo apresenta através das representações visuais informações sobre o posicionamento do país nesse universo financeiro.

Desafio

O projeto visa elaborar soluções de visualização de dados de forma que crie-se uma identidade sobre o assunto, facilitando o entendimento do público, usando técnicas e métodos aplicáveis.

Projeto de Visualização

O modelo referencial pode ser descrito pelas seguintes etapas:

Entradas

Na obtenção dos dados, foi feita uma pesquisa em diversos sites e bases para encontrar datasets que pudessem ser úteis na pesquisa. Os dados utilizados foram:

- * Carbon Offset Credits Issued by Carbon Registries Nesse dataset encontramos informações sobre os projetos de descarbonização por país e o quão bem sucedidos eles são. Encontrado em: 'https://www.kaggle.com/datasets/jsun13/carbon-offset-credits-issued-by-carbon-registries'.
- * IMF Climate Change Dashboard Essa iniciativa internacional relaciona dados climáticos com estatísticas globais. Encontrado em: 'https://climatedata.imf.org/pages/access-data'.

Pré-Processamento

Dados tratados em Python, através de Jupyter Notebooks, cujo parte do código será possível ver na próxima seção. A limpeza retirou valores nan, correção de tipos e selecionar entidades para análise.

Mapeamento

Com o auxilio da biblioteca Python Matplotlib, criação de arquivo mplstyle para que todos os gráficos seguissem um modelo de plot padrão.

Representações Visuais

Execução dos Plots, produto final do ECDV. Exploração de plots de linha e barra.

Mapeamento

Substrato Espacial

Definiu-se as dimensões do espaço com eixos cartesianos, utilizando valores temporais no eixo X para o primeiro conjunto de dados e países e objetivos para o segundo conjunto.

Elementos Gráficos

O conjunto 1 de dados aborda os dados temporais com gráficos de linha, e o conjunto 2 com barra, dessa forma, podemos evidenciar os atributos das séries temporais e as características dos projetos e países.

Propriedades Gráficas

Percebe-se que os países permanecem com cores constantes no primeiro conjunto de dados temporais, para a melhor identificação e leitura. O grid complementa a estrutura melhor localizando os dados no tempo.

No segundo conjunto, as cores foram escolhidas para acentuar o grau de importância dos dados. O primeiro plot precisou de ajuste de valor no eixo y (decimal para log) para a melhor visualização.

Trechos de código

Trecho de código representando um exemplo de pré-processamento feito.

```
years_range = range(1995, 2019)

relevant_cols = {
    "Country",
    "Indicator",
    "Industry",
    "Unit",
}

relevant_cols.extend([f"F{i}" for i in years_range])

df_rel = df[relevant_cols]

# Agrupamento por pais e unidade

df_gr = df_rel.groupby(["Country", "Unit"]).sum([f"F{i}" for i in years_range]).reset_index()

# Agrupamento por pais, unidade e industria

df_gr_ind = df_rel.groupby(["Country", "Unit", "Industry"]).sum([f"F{i}" for i in range(1995, 2019)]).reset_index()
```

Trecho de código representando um exemplo de plot feito.

```
to_plot_carbon = df_gr.loc[
    (df_gr["Unit"] == "Millions of Metric tons of CO2")
]

fig, ax = plt.subplots()
fig.suptitle("$CO_2$ Emission", fontsize=16)

ax.set_title("Comparison between Brazil and other countries")
ax.set_ylabel("Millions of Metric tons of $CO_2$")

for col, country in zip(colors, countries):
    to_plot = to_plot_carbon.query(f"Country == '{country}'").T.iloc[3:, 0]
    x = pd.to_datetime(to_plot.index.str[1:])
    y = to_plot.values
    ax.plot(x, y, "-", label=country, linewidth=2.0, color=col)
    ax.legend()
```

Representações visuais

Comparison between Brazil and other countries Brazil Argentina United States China, P.R.: Mainland Russian Federation India 2000 1996 2000 2004 2008 2012 2016

Figura 1: Emissões de CO₂

Carbon stocks in forests

Figura 4: Estoques de carbono nas florestas

Figura 2: Emissões de CO_2 por 1 milhão de dólares de produção

Figura 5: Porcentagem da área ocupada por florestas

Figura 3: Numero de Projetos por Países

Figura 6: Porcentagem de toneladas de carbono por área

Top 5 industries emitting CO_2 in Brazil during the years

Figura 7: Principais indústrias emissores de CO_2 no Brasil ao longo dos anos

Figura 8: Numero de Projetos por Objetivos

Análise de dados

No gráfico " CO_2 Emissions", é apresentada a quantidade de carbono emitido por países ao longo dos anos, revelando uma série temporal. As cores foram cuidadosamente selecionadas para enfatizar a diferença entre os países a importância das questões ambientais. Destaca-se o notável crescimento das emissões de carbono pela China, tornando-se o país líder nessa categoria, o que demanda uma atenção especial para a necessidade de reduzir essas emissões. Mesmo sendo um dos membros do Brics tal qual o Brasil, a China teve um enorme crescimento econômico nos últimos anos, o que pode explicar essa quantidade de emissões.

No gráfico " CO_2 Emission per 1 million USD of output"é possível visualizar a quantidade de carbono emitida para cada milhão de dólares gerado, refletindo uma melhora nos processos de produção em termos de sustentabilidade ao longo do tempo. O gráfico de linhas, evidencia essa tendência positiva. Novamente, a China está no topo do ranking dos países que vai emitem carbono por milhão de dólares gerado, ao lado de países como Estados Unidos e Índia.

No gráfico "Number of projects by country", é apresentado o número de projetos de compensação de carbono por país, podendo ser visualizado com eficiência por meio de gráfico de barras. As cores foram escolhidas com a intenção de dar ênfase a disparidades dos valores. Ao analisar o gráfico, podemos notar a os Estados Unidos dominante quanto ao número de projeto de compensação de carbono.

O gráfico "Carbon stocks in forests" apresenta a quantidade de carbono armazenada nas florestas de diferentes países, destacando o Brasil como a nação com a maior reserva de carbono em sua área florestal. Essa constatação abre possibilidades

para o Brasil se tornar uma potência no emergente mercado de carbono e possível parceiro comercial dos países que mais emitem carbono, como China e EUA.

No gráfico "Percentage of Forest Area", é possível observar a proporção de área florestal em relação ao território dos países. Essa informação pode ser comparada com o gráfico anterior, permitindo compreender a relação entre o tamanho da área florestal de um país e sua influência na produção de carbono.

O gráfico "Percentage of Carbon Tonnes per Area" revela a relação entre a quantidade de carbono nas florestas e a área territorial do país, e confirma mais uma vez a importância dos últimos dois gráficos. Essa série temporal nos permite inferir novamente a posição de destaque do Brasil nesse mercado em crescimento. Nota-se uma distância significativa entre o percentual do Brasil e grandes potências industriais, como os Estados Unidos e a China, sugerindo que o país latino pode se tornar um fornecedor de carbono para essas nações mais industrializadas.

E uma vez que o Brasil se mostrou uma das maiores potencias nas reservas de carbono, o gráfico 6 "Top 5 industries emitting CO_2 in Brazil during the years"traz quais indústrias mais emitem CO_2 na atmosfera. Nessa série temporal, é possível identificar as empresas que mais emitem gás carbônico no país ao longo do tempo. É notável a predominância da indústria de metais básicos, que se destaca como a maior emissora de carbono praticamente durante todo o período analisado. Para isso, foram elencados as 5 industrias que mais emitiam CO_2 no Brasil.

E, no ultimo gráfico, "Number of projects per Goal", é apresentado o número de projetos de compensação de carbono por Objetivo. Onde, ao analisar, é notável que as principais motivações dos projetos são as ações climáticas e industriais, inovação e infraestrutura.

Takeaways

Pode-se inferir pelas análises que:

- Dentre os destaques de maiores emissores, temos países do Brics, como a China, Índia e Rússia como maiores poluidores;
- O Brasil é líder em estoques de carbono;
- A maior motivação para a criação de projetos é o ganho financeiro associado a mudança climática.

Análise de Viabilidade

Utilizando-se dos dados apresentados, podemos revelar as possibilidades de produtos de visualização futuros:

- dashboard para análise de mercado, com comparação de instituições para o investidor escolher o melhor investimento baseado em emissões, projetos, moeda, etc.
- visualização 3D do globo com informações do mercado em formato de áreas de calor para comparação dos valores de venda/compra.

Referências

CHAVES, Paulo Jair Soares. Mercado de Carbono: Uma Nova Realidade. Ciências Econômicas, Universidade Regional Do Nordeste Do Estado do Rio Grande do Sul. 2015. Disponível em: ">https://bibliodigital.unijui.edu.br:8443/xmlui/bitstream/handle/123456789/3502/paulo%20chaves%20-%20monografia.pdf?sequence=1&isAllowed=y>">https://bibliodigital.unijui.edu.br:8443/xmlui/bitstream/handle/123456789/3502/paulo%20chaves%20-%20monografia.pdf?sequence=1&isAllowed=y>">https://bibliodigital.unijui.edu.br:8443/xmlui/bitstream/handle/123456789/3502/paulo%20chaves%20-%20monografia.pdf?sequence=1&isAllowed=y>">https://bibliodigital.unijui.edu.br:8443/xmlui/bitstream/handle/123456789/3502/paulo%20chaves%20-%20monografia.pdf?sequence=1&isAllowed=y>">https://bibliodigital.unijui.edu.br:8443/xmlui/bitstream/handle/123456789/3502/paulo%20chaves%20-%20monografia.pdf?sequence=1&isAllowed=y>">https://bibliodigital.unijui.edu.br:8443/xmlui/bitstream/handle/123456789/3502/paulo%20chaves%20-%20monografia.pdf?sequence=1&isAllowed=y>">https://bibliodigital.unijui.edu.br:8443/xmlui/bitstream/handle/123456789/3502/paulo%20chaves%20-%20monografia.pdf?sequence=1&isAllowed=y>">https://bibliodigital.unijui.edu.br:8443/xmlui/bitstream/handle/123456789/3502/paulo%20chaves%20-%20monografia.pdf?sequence=1&isAllowed=y>">https://bibliodigital.unijui.edu.br:8443/xmlui/bibliodigital.unijui.edu.br:8443/xmlui/bibliodigital.unijui.edu.br:8443/xmlui/bibliodigital.unijui.edu.br:8443/xmlui/bibliodigital.unijui.edu.br:8443/xmlui/bibliodigital.unijui.edu.br:8443/xmlui/bibliodigital.unijui.edu.br:8443/xmlui/bibliodigital.unijui.edu.br:8443/xmlui/bibliodigital.unijui.edu.br:8443/xmlui/bibliodigital.unijui.edu.br:8443/xmlui/bibliodigital.unijui.edu.br:8443/xmlui/bibliodigital.unijui.edu.br:8443/xmlui/bibliodigital.unijui.edu.br:8443/xmlui/bibliodigital.unijui.edu.br:8443/xmlui/bibliodigital.unijui.edu.br:8443/xmlui/bibliodig

Prolo, C.D., Penido, G., Santos, I.T., La Hoz Theuer, S. (2021). Explicando os mercados de carbono na era do Acordo de Paris. Rio de Janeiro: Instituto Clima e Sociedade. Disponível em: https://laclima.org/files/explicando-mercados-rev.pdf>. Acesso em: 26 abr. 2023.

International Monetary Fund. 2022.Climate Change Indicators Dashboard. Forest and Carbon and CO Emissions, Emissions Intensities, and Emissions Multipliers, Disponível em: https://climatedata.imf.org/pages/access-data. Acesso em 23 de maio de 2023

SUN, Joshua. Carbon Offset Credits Issued by Carbon Registries [Climate Action Reserve]. Kaggle. Disponível em: https://www.kaggle.com/datasets/jsun13/carbon-offset-credits-issued-by-carbon-registries. Acesso em 15 de maio de 2023.