	Credit Card Fraud - Prevention through Data Science Brianne Bell, Michael Nguyen, and Dave Friesen ADS-505-02-FA22
In [1]:	author = 'Brianne Bell, Michael Nguyen, Dave Friesen'email = 'bbell@sandiego.edu, michaelnguyen@sandiego.edu, dfriesen@sandiego.edu'version = '1.0'date = 'October 2022'license = 'MIT'
In [2]:	<pre># Set working directory for 'custom' (profiler, model_process) .py find and data access import os, sys src_dir = '/Users/davidfriesen/Desktop/OneDrive/projects/cc-fraud-protection/src' data_dir = '/Users/davidfriesen/Desktop/OneDrive/projects/cc-fraud-protection/data/' sys.path.append(src_dir)</pre>
In [3]:	# Import basic libraries import numpy as np import pandas as pd # Import visualization libraries import matplotlib.pyplot as plt
	<pre># Import custom EDA library from profiler import profile, profile_cat # Import model and performance evaluation libraries from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression, Perceptron</pre>
	<pre>from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.svm import LinearSVC from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier</pre>
	<pre>from sklearn.neural_network import MLPClassifier # Import custom model library from model_process import ModelProcess # Import utility libraries import copy</pre>
	# Set basic np, pd, and plt output defaults (keeping this code 'clean') %run -i '{src_dir}/defaults.py' Set simple notebook style and auto-avoid scrollable output windows
In [5]:	<pre>%%html <style> h1, h2 {font-size: 0.9em; color: #0070c0;} h1, h2, h3 {line-height: 1.2em !important; margin-top: 2em !important;} h4, p {font-size: 1.2em !important; line-height: 1.2em !important;} </style></pre>
In [6]:	<pre>%%javascript IPython.OutputArea.prototypeshould_scroll = function(lines) { return false; }</pre>
In [7]:	Data Load and Validation fraud_fname = data_dir + 'c-Fraud_Data.csv' ip_fname = data_dir + 'c-IpAddress_to_Country.csv' # Get a file row count; this is defining a pattern for a simple control
	<pre># which confirms data load def ctrl_count(fname): f = open(fname) count = sum(1 for line in f) f.close() return count fraud_ctrl = ctrl_count(fraud_fname) ip_ctrl = ctrl_count(ip_fname) # Create and confirm dataframe(s)</pre>
	<pre>fraud_df = pd.read_csv(fraud_fname, on_bad_lines = 'skip', low_memory = False) ip_df = pd.read_csv(ip_fname, on_bad_lines = 'skip', low_memory = False) # Now confirm control count (delta of 1 related to expected header row) print('\nFraud: file=%0d, import=%0d, delta=%0d' %</pre>
	<pre>#fraud_df.info() #fraud_df.head(5) #ip_df.info() #ip_df.head(5) # Dataframe comparision e.g., if have sep training/test sets - n/a here #print('\nSame?', np.array_equal(fundr_df.columns, ffundr_df.columns))</pre> Fraud: file=151113, import=151112, delta=1
	IP: file=138847, import=138846, delta=1 Data Profiling
In [8]:	# Profile base dataframe(s) profile(fraud_df) profile(ip_df) Dtype count unique na na% mean std min max skew(>=3) <v0.01 vif(="">=10) user_id int64 151112 151112 200171.0 115369.3 2.0 400000.0</v0.01>
	signup_time object 151112 151112 purchase_time object 151112 150679 purchase_value int64 151112 122 36.9 18.3 9.0 154.0 device_id object 151112 137956 source object 151112 3 browser object 151112 5
	sex object 151112 3 age int64 151112 58 33.1 8.6 18.0 76.0 ip_address float64 151112 143512 2152145331.0 1248497030.1 52093.5 4294850499.7 class int64 151112 2 0.1 0.3 1.0 Dtype count unique na mean std min max skew(>=3) <v0.0< th=""></v0.0<>
	lower_bound_ip_address float64 138846 138846 2724531562.5 897521519.7 16777216.0 3758096128.0 upper_bound_ip_address int64 138846 138846 2724557062.2 897497915.5 16777471.0 3758096383.0 country object 138846 235 235
	Univariate Analysis and Data Preparation Attribute Names (confirm/update)
In [9]:	<pre># Rename columsn to simplify and/or avoid usage issues later - tbd # examples: #cols = {'homeowner dummy': 'homeowner', 'gender dummy': 'gender'} #fundr_df.rename(columns=cols, inplace=True)</pre>
In [10]:	<pre>Target and Preliminary Feature Identification (preliminary) # Preliminarily identify attributes and types for best further processing id_nominal_cols = ['user_id', 'device_id', 'ip_address'] cat_nominal_cols = ['source', 'browser', 'sex'] cat_ordinal_cols = []</pre>
	<pre>cat_binary_cols = [] date_interval_cols = ['signup_time', 'purchase_time'] num_interval_cols = ['age'] num_ratio_cols = ['purchase_value'] # Set classification target target_cls_col = ['class']</pre>
	<pre># Set regression target (n/a for this excercise) target_reg_col = [] # Set preliminary feature reduction (removed below) reduce_X_cols = id_nominal_cols + date_interval_cols + target_cls_col + target_reg_col</pre>
In [11]:	<pre>Data Types (confirm/update) # Update column types where needed (helpful) - tbd # examples: #df[cat_nominal_cols] = df[cat_nominal_cols].astype('Int64') #df[date interval cols] = df[date interval cols].astype('datetime64')</pre>
In [12]:	Data Enrichment # tbd:
	# signup_time? purchase_time? # ip_address? Categorical Data Profiling
In [13]:	<pre># Better understand 'categorical' data, including balance profile_cat(fraud_df, cat_nominal_cols + cat_ordinal_cols + cat_binary_cols + target_cls_col) source - SEO 40.11 Ads 39.63 Direct 20.26</pre>
	browser - Chrome 40.65 IE 24.30 Safari 16.32 FireFox 16.29 Opera 2.43 sex - M 58.43 F 41.57
	Class - 0 90.64 1 9.36 Data Partitioning
In [14]: In [15]:	<pre># Create predictor and target dataframes fraud_X = fraud_df.loc[:, ~fraud_df.columns.isin(reduce_X_cols)].copy() fraud_y = fraud_df[target_cls_col] # Split data and confirm proportions</pre>
	<pre>train_ratio = 0.7; val_ratio = 0.20; test_ratio = 0.10 X_train, X_test, y_train, y_test = train_test_split(fraud_X, fraud_y, test_size=1-train_ratio, random_state=42, stratify=fraud_y) X_val, X_test, y_val, y_test = train_test_split(X_test, y_test, test_size=test_ratio/(test_ratio+val_ratio), random_state=42, stratify=y_test) trows = fraud X.shape[0]</pre>
	<pre>print('\nTrain/validation/test: ', X_train.shape[0], '/', X_val.shape[0], '/', X_test.shape[0]) profile_cat(y_train, target_cls_col) Train/validation/test: 105778 / 30222 / 15112 class - 0 90.64 1 9.36</pre>
In [16]:	<pre># Potentially create test set from independent source data - n/a here #X_test = ffundr_df.loc[:, ~ffundr_df.columns.isin(reduce_X_cols)].copy() #y_test = ffundr_df[target_cls_col]</pre>
	Additional Uni/Multivariate EDA and Feature Engineering/Selection Missing/null values (find/impute/drop) - not needed but handled in classification pipeline below Categorical features (encoding) - handled in classification pipeline Outliers (convert/drop) - code available below but not needed Centering/scaling (standardizing/normalizing) - handled in classification pipeline "Bad"/duplicate data (find/convert/drop) - not needed
In [17]:	Other multivariate (e.g., correlation, etc.) - ref. below Outliers (convert/drop) # Simple function to remove column-level outliers (note this needs expanding
	<pre># to row-level and/or conversion, for best results) def remove_outliers(df_col): q1 = df_col.quantile(0.1) q3 = df_col.quantile(0.9) iqr = q3 - q1 lbound = q1 - (1.5 * iqr) ubound = q3 + (1.5 * iqr) df_out = df_col[(df_col >= lbound) & (df_col <= ubound)] removed = len(df_col) - len(df_out)</pre>
	<pre>removed = len(df_col) - len(df_out) if removed > 0: print(df_col.name, 'outliers removed: ', removed) return df_out # Per note above, holding this out here but example: #for c in num_ratio_cols: # fraud_df[c] = remove_outliers(fraud_df[c])</pre>
In [18]:	<pre># Show ~relatively strong correlations to consider, using approach similar to # what is used in profile() function to highlight >= threshhold CORR_TH = 0.5 corr_df = pd.DataFrame(</pre>
Out[18]:	<pre>corr_df = pd.DataFrame(X_train[num_interval_cols + num_ratio_cols].corr())\ .apply(lambda x: abs(x*(x>=CORR_TH))) corr_df = round(corr_df, 1).astype(str) corr_df.replace(['0', '0.0', 'nan', 'False'], '', inplace=True) corr_df age purchase_value age 1.0</pre>
In [19]:	<pre>purchase_value 1.0 # To consider for categorical value correlation? def cramers_corrected_stat(confusion_matrix): """ calculate Cramers V statistic for categorical-categorical association. uses correction from Bergsma and Wicher,</pre>
	Journal of the Korean Statistical Society 42 (2013): 323-328 """ chi2 = ss.chi2_contingency(confusion_matrix)[0] n = confusion_matrix.sum().sum() phi2 = chi2/n r,k = confusion_matrix.shape phi2corr = max(0, phi2 - ((k-1)*(r-1))/(n-1)) rcorr = r - ((r-1)**2)/(n-1) kcorr = k - ((k-1)**2)/(n-1)
	<pre>return np.sqrt(phi2corr / min((kcorr-1), (rcorr-1))) #cols = bin_cols #corrM = np.zeros((len(cols),len(cols))) # there's probably a nice pandas way to do this #for col1, col2 in itertools.combinations(cols, 2): # idx1, idx2 = cols.index(col1), cols.index(col2) # corrM[idx1, idx2] = cramers_corrected_stat(pd.crosstab(building_df[col1], building_df[col2])) # corrM[idx2, idx1] = corrM[idx1, idx2]</pre>
	<pre>#corr = pd.DataFrame(corrM, index=cols, columns=cols) #fig, ax = plt.subplots(figsize=(7, 6)) #ax = sns.heatmap(corr, annot=True, ax=ax); ax.set_title("Cramer V Correlation between Variables");</pre> <pre>Data Mining (Ulneumorviced)</pre>
	Data Mining (Unsupervised) Including a placeholder in case we see an opportunity to apply e.g., clustering from coursework
	Modeling Model Setup (selection)
In [20]:	<pre># Set feature cols for appropriate pipeline preprocessing cat_cols = cat_nominal_cols + cat_ordinal_cols + cat_binary_cols # one-hot encoding, imputing (if necc) num_cols = num_interval_cols + num_ratio_cols # scaling, imputing (if necc) # Set model list mp_queue = ((LogisticRegression(), {'random_state': 42}), (Perceptron(), {'class_weight': 'balanced'}),</pre>
	<pre>(LinearDiscriminantAnalysis(), None), (LinearSVC(), {'max_iter': 500}), (KNeighborsClassifier(), {'n_neighbors': 3}), (KNeighborsClassifier(), {'n_neighbors': 5}), (KNeighborsClassifier(), {'n_neighbors': 7}), (DecisionTreeClassifier(), {'max_depth': 4, 'random_state': 42}), (DecisionTreeClassifier(), {'max_depth': 5, 'random_state': 42}),</pre>
	<pre>(RandomForestClassifier(), { 'max_depth': 4, 'random_state': 42}), (RandomForestClassifier(), { 'max_depth': 5, 'random_state': 42}), (AdaBoostClassifier(), { 'n_estimators': 10, 'random_state': 42}), (MLPClassifier(), { 'random_state': 42}),)</pre>
In [21]:	Model Run and Evaluation (Iteration n) ModelProcess.show_progress = True # Iterate models (note use of 'copy' is to preserve mutable elements
	<pre># Iterate models (note use of 'copy' is to preserve mutable elements # of model_queue tuple for possible later use) mp_df = pd.DataFrame(mp_queue, columns=['algorithm', 'params']) mp_df['mp'] = mp_df.apply(lambda mp: ModelProcess(copy.deepcopy(mp['algorithm']), None,</pre>
	<pre>cat_cols, num_cols).train_validate_test(), axis=1) # Compile, sort, and display results mp_df[['train_acc', 'train_f1', 'val_acc', 'val_f1', 'test_acc', 'test_f1']] =\</pre>
Out[21]:	algorithm params train_acc train_f1 val_acc val_f1 test_acc test_f1 4 KNeighborsClassifier() {'n_neighbors': 3} 0.93 0.77 0.92 0.73 0.92 0.73 5 KNeighborsClassifier() {'n_neighbors': 5} 0.93 0.76 0.92 0.74 0.92 0.74 6 KNeighborsClassifier() {'n_neighbors': 7} 0.93 0.76 0.92 0.74 0.92 0.74
	8 DecisionTreeClassifier() {'max_depth': 5, 'random_state': 42} 0.91 0.48 0.91 0.48 0.91 0.48 12 MLPClassifier() {'random_state': 42} 0.91 0.48 0.91 0.48 0.91 0.48 7 DecisionTreeClassifier() {'max_depth': 4, 'random_state': 42} 0.91 0.48 0.91 0.48 0.91 0.48 0 LogisticRegression() {'random_state': 42} 0.91 0.48 0.91 0.48 0.91 0.48 2 LinearDiscriminantAnalysis() None 0.91 0.48 0.91 0.48 0.91 0.48 3 LinearSVC() {'max_iter': 500} 0.91 0.48 0.91 0.48 0.91 0.48
In [22]:	9 RandomForestClassifier() {'max_depth': 4, 'random_state': 42} 0.91 0.48 0.91 0.48 0.91 0.48 10 RandomForestClassifier() {'max_depth': 5, 'random_state': 42} 0.91 0.48 0.91 0.48 0.91 0.48 11 AdaBoostClassifier() {'n_estimators': 10, 'random_state': 42} 0.91 0.48 0.91 0.48 0.91 0.48 1 Perceptron() {'class_weight': 'balanced'} 0.77 0.49 0.77 0.49 0.77 0.50
[22]:	<pre>#mp_df.loc[3]['mp'].confusion_matrix('val') #mp_df.loc[3]['mp'].summary('val')</pre>