离散余弦变换

(DCT)

计算机科学的及膝裙陆

大学博士

浙江大学

图像表示

PRIORI依据自然图像

DCT

- 对于自然图像的先验的基础上(不是数据驱动)
- DCT基函数的定义为:

哪里
$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / k / 2 \tilde{n}$$

$$\sqrt{\frac{A}{k}} N t / 2 (\cos 2 \frac{1}{k}) / 2 (\cos 2 \frac{1}{$$

8点DCT实施例

- 假设我们有一个8点信号,那就是 *N =* 0, 1, ...
 - 7,然后将8点DCT变换矩阵将是:

- T中的每一列 \dot{r} 计算具有固定" \dot{k} ",例如1 st 列由计算 K=0,最后一列是由计算 K=7。
- 你可以考虑的T每列 * 作为一个基本矢量。

在8点DCT的8个基矢

该DCT的矩阵向量形式

• 实施例:8点(N=8) DCT

• XX(XX)XXXX0.354 0.354 0.354			0.354 0.354 0.354 0.354 0.354				• • X[O]XXX	
•	(1)	0.49 0.416 0.278 0	0.098 0.09	8 0.278 0.416 0.	.49 •	•	•	[1]
•	(2)•	• 0.462 0.191	• 0.191	• 0.462 0.4•	62 0. 1 91 0	.191 0.462		•• [2] •
•	(3)	. 0.416 0.0 9 8	• 0.49	• 0.278 0.27	8 0.49 0.098	0.416	•	[3]
•	(4)	• 0.354 0.354 0.354	•	0.354 0.354 (0.354	.35 4		•• [4] •
•	(5)•(6	• 0.49 0.0	098 0.416	0.416 0.098 • 0.2	78 0.49 •		•	[5] .
•	•	0.191 0.462 0.462		• 0.191 0.1 9 1	0.462 0.462	0.191		[6]
•	•	• 0.098 0.2 7 8 0.416		• 0.49 0.49 0	0.416•0.278 0	.098	•	[7]

2-d DCT变换

• 正向DCT

$$^{\circ}$$
F紫外绪 • $\frac{2}{\tilde{n}}$ $\varsigma\ddot{u}$ (O V ($)$) • $^{\circ}$ $^{\circ}$

• 逆DCT

$$FXY, \quad \bullet \quad \frac{2}{\bullet} \bullet \quad \bullet \quad CUCVFVV\tilde{N} \cos \qquad \frac{(2X1\bullet) \quad \ddot{u} \bullet}{2 \tilde{n}} \cos \frac{(2\ddot{y}1\bullet) \quad v \bullet}{2 \tilde{n}} \bullet$$

```
    0.5000 0.6533 0.5000 0.2706

                                                                 4 • 4 DCT变换
     0.5000 0.2706
                             0.5000 0.6533

    0.5000 0.2706 0.5000 0.6533

    . 0.5000 0.6533 0.5000
                                         • 0.2706 .
    • 0.5000
                        • 0.6533
                                             • 0 ° 5000

    0.2706

                          0.2706
     0.5000
                                              • 0.5000
                                                                    • 0.6533
                                              • 0.5000
                         • 0.2706
                                                                    0.6533
    • 0.5000
                        • 0.6533
                                                                  • 0.2706
    • 0.5000
                                               0.5000
       • 0.25 0.25 0.25 0.25
                                                   0.3266 0.1383 0.1383 • 0.3266
         0.25 0.25 0.25 0.25
                                                    0.32660.
                                                                 1383 0.1883 0.3266 •
        0.25 0.25 0.25 0.25
                                                   0.3266 0.1383 0.1383 • 0.3266
        . 0.25 0.25 0.25 0.25
                                                   . 0.3266 0.1383 0.1383 0.3266
                                                      • 0.1353 0.3266 0.3266 0。
        • 0.25 0.25 0.25 0.25
                                                                                              1353 •
         0.25 0.25 0.25 0.25
                                                        0.1353 0.3266 0.3266 0.1353
FF_3

    0.25 0.25 0.25 0.25

    0.1353
    0.3266
    0.3266
    0.1353

        . 0.25 0.25 0.25 0.25
                                                      . 0.1353 0.3266 0.3266 0.1353

    0.1768 0.1768

        • 0.0732
                                               0.0732
          • 0.1768 0.4268
                                  • 0.4268 0.1768
F_{4}F_{4}
                      • 0.4268 0.4268
          0.1768
                                               • 0.1768
          0.0732 0.1768
                                  • 0.1768 0
                                                 。0732
```

An Example of 4-by-4 DCT

a 4-by-4 block

4 Filters

2) Column Filtering

16个4基本图像 • 4 DCT

实验结果

"芭芭拉"

256 • 256 DCT变换 整个图像的

空间和频率本地化测不准原理

MATLAB代码

```
IM = imread ( 'barbara.bmp' , 'BMP' );
   [H,W,暗淡]=尺寸(IM);
   如果暗淡~= 1
       IM = rgb2gray ( IM ) ;
   结束
   N = 4:
               =双(IM)-127;%中心围绕零输入图像
   IM
   im_blocks = im2col ( 1M , [NN] , '不同' );
   num_blocks =尺寸 (im_blocks, 2);
   对于 I = 1: num blocks
     DCT_coef (:,1) = DCT (im_blocks (:,i)中, N*N);
   结束
   im_DCT = col2im ( DCT_coef , [NN] , [HW] , '不同' );
   子带= col2im ( DCT_coef " , [H / NW / N] , [HW] , '不同' );
•
```

谢谢!

锡群Lu博士

xqlu@zju.edu.cn