## 1 Приоритизация гипотез и анализ результатов А/В-теста

Заказчик: крупный интернет-магазин.

#### Цель исследования:

- составить отсортированный по убыванию приоритета список гипотез по увеличению выручки;
- провести анализ результатов А/В-теста;
- обосновать целесообразность продолжения/остановки А/В-теста.

#### Этапы исследования:

- приоритизации гипотез с применением фреймворка ICE;
- приоритизации гипотез с применением фреймворка RICE;
- анализ результатов А/В-теста.

Источники данных: отдел маркетинга интернет-магазина.

#### Данные:

- hypothesis.csv файл с гипотезами и параметрами приоритизации,
- orders.csv файл с данными о заказах,
- *visitors.csv* файл с данными о пользователях.

#### Структура файлов (названия столбцов):

#### Структура *hypothesis.csv*:

- **Hypothesis** краткое описание гипотезы;
- Reach охват пользователей по 10-балльной шкале;
- Impact влияние на пользователей по 10-балльной шкале;
- Confidence уверенность в гипотезе по 10-балльной шкале;
- Efforts затраты ресурсов на проверку гипотезы по 10-балльной шкале.

#### Структура orders.csv:

- visitorld идентификатор пользователя, совершившего заказ;
- date дата, когда был совершён заказ;
- revenue выручка заказа;
- group группа A/B-теста, в которую попал заказ.

#### Структура *visitors.csv*:

- date дата:
- group группа А/В-теста;
- visitors количество пользователей в указанную дату в указанной группе A/B-теста.

#### К выводам

#### Импорт библиотек

```
In [1]: import pandas as pd
import numpy as np
import datetime as dt
from matplotlib import pyplot as plt
import scipy.stats as stats
import seaborn as sns
```

## 1.1 Приоритизация гипотез.

#### 1.1.1 Загрузка данных и подготовка к анализу

#### 1.1.1.1 Загрузка файла

```
In [2]: data = pd.read_csv('/datasets/hypothesis.csv', sep=',')
```

#### 1.1.1.2 Проверка качества данных в датасете

```
In [3]: # функция для первичного знакомства с новым датасетом
def first_info(df):
    print('Вывод первых 5 строк датасета:', end='\n\n')
    print(df.head(), end='\n\n')
    print('Вывод общей информации по датасету:', end='\n\n')
    print(df.info(), end='\n\n')
    print('Проверка количественных данных:', end='\n\n')
    print(df.describe(), end='\n\n')
    print('Количество дубликатов по датасету:', df.duplicated().sum(), end='\n\n')
    return
```

In [4]: # первичное знакомство с датасетом data first\_info(data)

#### Вывод первых 5 строк датасета:

```
Hypothesis Reach Impact \
0 Добавить два новых канала привлечения трафика,...
                                                        3
                                                               10
1 Запустить собственную службу доставки, что сок...
                                                               5
2 Добавить блоки рекомендаций товаров на сайт ин...
3 Изменить структура категорий, что увеличит кон...
                                                               1
4 Изменить цвет фона главной страницы, чтобы уве...
   Confidence Efforts
           8
0
1
           4
                   10
2
           7
3
           3
           1
                    1
```

int64

#### Вывод общей информации по датасету:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9 entries, 0 to 8
Data columns (total 5 columns):
              Non-Null Count Dtype
# Column
--- -----
              -----
  Hypothesis 9 non-null
                            obiect
              9 non-null
 1 Reach
                            int64
2 Impact
          9 non-null
                           int64
 3 Confidence 9 non-null
                            int64
```

9 non-null

dtypes: int64(4), object(1)
memory usage: 488.0+ bytes

None

4 Efforts

#### Проверка количественных данных:

|       | Reach    | Impact   | Confidence | Efforts  |
|-------|----------|----------|------------|----------|
| count | 9.000000 | 9.000000 | 9.000000   | 9.000000 |
| mean  | 4.777778 | 4.777778 | 5.555556   | 4.888889 |
| std   | 3.153481 | 3.192874 | 3.045944   | 2.803767 |
| min   | 1.000000 | 1.000000 | 1.000000   | 1.000000 |
| 25%   | 3.000000 | 3.000000 | 3.000000   | 3.000000 |
| 50%   | 3.000000 | 3.000000 | 7.000000   | 5.000000 |

```
75% 8.000000 7.000000 8.000000 6.000000 max 10.000000 10.000000 9.000000 10.000000
```

Количество дубликатов по датасету: 0

#### Выводы:

- названия столбцов необходимо привести к стандартному виду;
- типы данных указаны верно;
- пропусков в датасете нет;
- полных дубликатов в датасете нет;
- всего 5 столбцов, 9 строк.

Таким образом,

нам предложено 9 гипотез по повышению выручки интернет-магазина и 4 параметра их приоритезации - Reach, Impact, Confidence, Efforts, рассчитанные по шкале от 0 до 10.

Приоритизацию гипотез можно провести и с помощью фреймворка ICE, и с помощью фреймворка RICE.

```
In [5]: # nepeumeнoβaнue cmoбцoβ
    data.columns = data.columns.str.lower()
    data.columns

Out[5]: Index(['hypothesis', 'reach', 'impact', 'confidence', 'efforts'], dtype='object')
```

#### 1.1.2 Приоритизация гипотез: фреймворк ICE

```
In [6]: # настройка формата вывода таблицы pd.options.display.max_colwidth = 110
```

#### Out[7]:

|   | hypothesis                                                                                                   | ice       | rank_ice |
|---|--------------------------------------------------------------------------------------------------------------|-----------|----------|
| 8 | Запустить акцию, дающую скидку на товар в день рождения                                                      | 16.200000 | 1        |
| 0 | Добавить два новых канала привлечения трафика, что позволит привлекать на 30% больше пользователей           | 13.330000 | 2        |
| 7 | Добавить форму подписки на все основные страницы, чтобы собрать базу клиентов для email-рассылок             | 11.200000 | 3        |
| 6 | Показать на главной странице баннеры с актуальными акциями и распродажами, чтобы увеличить конверсию         | 8.000000  | 4        |
| 2 | Добавить блоки рекомендаций товаров на сайт интернет магазина, чтобы повысить конверсию и средний чек заказа | 7.000000  | 5        |
| 1 | Запустить собственную службу доставки, что сократит срок доставки заказов                                    | 2.000000  | 6        |
| 5 | Добавить страницу отзывов клиентов о магазине, что позволит увеличить количество заказов                     | 1.330000  | 7        |
| 3 | Изменить структура категорий, что увеличит конверсию, т.к. пользователи быстрее найдут нужный товар          | 1.120000  | 8        |
| 4 | Изменить цвет фона главной страницы, чтобы увеличить вовлеченность пользователей                             | 1.000000  | 9        |

## 1.1.3 Приоритизация гипотез: фреймворк RICE

hypothesis

rice rank rice

#### Out[8]:

|   | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                       |            |   |
|---|--------------------------------------------------------------------------------------------------------------|------------|---|
| 7 | Добавить форму подписки на все основные страницы, чтобы собрать базу клиентов для email-рассылок             | 112.000000 | 1 |
| 2 | Добавить блоки рекомендаций товаров на сайт интернет магазина, чтобы повысить конверсию и средний чек заказа | 56.000000  | 2 |
| 0 | Добавить два новых канала привлечения трафика, что позволит привлекать на 30% больше пользователей           | 40.000000  | 3 |
| 6 | Показать на главной странице баннеры с актуальными акциями и распродажами, чтобы увеличить конверсию         | 40.000000  | 4 |
| 8 | Запустить акцию, дающую скидку на товар в день рождения                                                      | 16.200000  | 5 |
| 3 | Изменить структура категорий, что увеличит конверсию, т.к. пользователи быстрее найдут нужный товар          | 9.000000   | 6 |
| 1 | Запустить собственную службу доставки, что сократит срок доставки заказов                                    | 4.000000   | 7 |
| 5 | Добавить страницу отзывов клиентов о магазине, что позволит увеличить количество заказов                     | 4.000000   | 8 |
| 4 | Изменить цвет фона главной страницы, чтобы увеличить вовлеченность пользователей                             | 3.000000   | 9 |

#### 1.1.4 Приоритизация гипотез: вывод

#### Out[9]:

|   | hypothesis                                                                                                      | reach | ice       | rank_ice | rice       | rank_rice |
|---|-----------------------------------------------------------------------------------------------------------------|-------|-----------|----------|------------|-----------|
| 7 | Добавить форму подписки на все основные страницы, чтобы собрать базу клиентов для email-<br>рассылок            | 10    | 11.200000 | 3        | 112.000000 | 1         |
| 2 | Добавить блоки рекомендаций товаров на сайт интернет магазина, чтобы повысить конверсию и<br>средний чек заказа | 8     | 7.000000  | 5        | 56.000000  | 2         |
| 0 | Добавить два новых канала привлечения трафика, что позволит привлекать на 30% больше пользователей              | 3     | 13.330000 | 2        | 40.000000  | 3         |
| 6 | Показать на главной странице баннеры с актуальными акциями и распродажами, чтобы увеличить конверсию            | 5     | 8.000000  | 4        | 40.000000  | 4         |
| 8 | Запустить акцию, дающую скидку на товар в день рождения                                                         | 1     | 16.200000 | 1        | 16.200000  | 5         |
| 3 | Изменить структура категорий, что увеличит конверсию, т.к. пользователи быстрее найдут нужный товар             | 8     | 1.120000  | 8        | 9.000000   | 6         |
| 1 | Запустить собственную службу доставки, что сократит срок доставки заказов                                       | 2     | 2.000000  | 6        | 4.000000   | 7         |
| 5 | Добавить страницу отзывов клиентов о магазине, что позволит увеличить количество заказов                        | 3     | 1.330000  | 7        | 4.000000   | 8         |
| 4 | Изменить цвет фона главной страницы, чтобы увеличить вовлеченность пользователей                                | 3     | 1.000000  | 9        | 3.000000   | 9         |

#### Вывод

- согласно фреймворку ІСЕ самые приоритетные гипотезы: 8, 0, 7;
- согласно фреймворку RICE самые приоритетные гипотезы: 7, 2, 0;
- фреймворк RICE учитывает показатель reach, оценивающий количество пользователей, которых затронет гипотеза, следовательно, оценку данного фреймворка можно считать более точной.

Таким образом, тройка самых приоритетных гипотез:

- 1. Добавить форму подписки на все основные страницы, чтобы собрать базу клиентов для email-рассылок(гипотеза №7);
- 2. Добавить блоки рекомендаций товаров на сайт интернет магазина, чтобы повысить конверсию и средний чек заказа (гипотеза №2);
- 3. Добавить два новых канала привлечения трафика, что позволит привлекать на 30% больше пользователей (гипотеза №0).

## 2 Анализ результатов А/В-теста.

## 2.1 Загрузка данных и подготовка к анализу

#### 2.1.1 файл с данными о заказах

```
In [10]: orders = pd.read_csv('/datasets/orders.csv', sep=',')
```

In [11]: # первичное знакомство с датасетом orders first\_info(orders)

#### Вывод первых 5 строк датасета:

|   | transactionId | visitorId  | date       | revenue | group |
|---|---------------|------------|------------|---------|-------|
| 0 | 3667963787    | 3312258926 | 2019-08-15 | 1650    | В     |
| 1 | 2804400009    | 3642806036 | 2019-08-15 | 730     | В     |
| 2 | 2961555356    | 4069496402 | 2019-08-15 | 400     | Α     |
| 3 | 3797467345    | 1196621759 | 2019-08-15 | 9759    | В     |
| 4 | 2282983706    | 2322279887 | 2019-08-15 | 2308    | В     |

#### Вывод общей информации по датасету:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1197 entries, 0 to 1196
Data columns (total 5 columns):

| # | Column        | Non-Null Count | Dtype  |
|---|---------------|----------------|--------|
|   |               |                |        |
| 0 | transactionId | 1197 non-null  | int64  |
| 1 | visitorId     | 1197 non-null  | int64  |
| 2 | date          | 1197 non-null  | object |
| 3 | revenue       | 1197 non-null  | int64  |
| 4 | group         | 1197 non-null  | object |

dtypes: int64(3), object(2)
memory usage: 46.9+ KB

None

#### Проверка количественных данных:

|       | transactionId | visitorId    | revenue      |
|-------|---------------|--------------|--------------|
| count | 1.197000e+03  | 1.197000e+03 | 1.197000e+03 |
| mean  | 2.155621e+09  | 2.165960e+09 | 8.348006e+03 |
| std   | 1.229085e+09  | 1.236014e+09 | 3.919113e+04 |
| min   | 1.062393e+06  | 5.114589e+06 | 5.000000e+01 |
| 25%   | 1.166776e+09  | 1.111826e+09 | 1.220000e+03 |
| 50%   | 2.145194e+09  | 2.217985e+09 | 2.978000e+03 |
| 75%   | 3.237740e+09  | 3.177606e+09 | 8.290000e+03 |
| max   | 4.293856e+09  | 4.283872e+09 | 1.294500e+06 |

Количество дубликатов по датасету: 0

#### Выводы:

- названия столбцов необходимо привести к стандартному виду;
- необходимо заменить тип данных в столбце date;
- пропусков в датасете нет;
- полных дубликатов в датасете нет;
- всего 5 столбцов, 1197 строк.

Полных дубликатов в датафрейме orders. Однако нам интересна следующая информация:

- количество групп, участвующих в А/В тесте;
- количество пользователей в каждой группе;
- наличие/отсутствие пользователей, задействованных в нескольких группах одновременно;
- дата начала/окончания тестового периода

```
In [14]: # вывод на экран уникальных групп, участвующих в А/В-тесте orders['group'].unique()

Out[14]: array(['B', 'A'], dtype=object)
```

```
In [15]: # количество уникальных id пользователей, оформивших заказ в тестовом периоде
         orders['visitor id'].nunique()
Out[15]: 1031
In [16]: # Количество дубликатов в столбце orders['visitor id']
         orders['visitor id'].duplicated().sum()
Out[16]: 166
In [17]: # Количество пользователей в А-группе
         orders.loc[orders['group']=='A', 'visitor id'].nunique()
Out[17]: 503
In [18]: # Количество пользователей в В-группе
         orders.loc[orders['group']=='B', 'visitor id'].nunique()
Out[18]: 586
In [19]: # Количество пользователей, задействованных одновременно в двух группах
         orders.groupby('visitor id').agg({'group':'nunique'}).value counts()
Out[19]: group
                  973
                   58
         dtype: int64
In [20]: # Дата начала теста
         orders['date'].min()
Out[20]: Timestamp('2019-08-01 00:00:00')
In [21]: # Последняя отчетная дата
         orders['date'].max()
Out[21]: Timestamp('2019-08-31 00:00:00')
```

#### Выводы:

- тестирование ведется в разрезе двух групп: А и В;
- дата начала теста 2019-08-01, последняя отчетная дата 2019-08-31;
- имеется 1031 уникальный пользователь (visitor id);
- в А-группе 503 уникальных пользователя оформили заказ;
- в В-группе 586 уникальных пользователей оформили заказ;
- 58 пользователей попали и в А, и в В группы (503+586-58=1031).

Таким образом,

тестирование ведется в течение месяца, в А-группе пользователй, совершивших покупку меньше, чем в В-группе ((586-503)/503) на 16.5%. По неизвестной причине 58 пользователей одновременно числятся в двух группах - это 11.5% от А-группы и 9.9% от В-группы или 5,6% от общего количества уникальных пользователей. **Думаю, этих пользователей нужно исключить из анализа результатов АВ-теста.** 

#### 2.1.2 файл с данными о пользователях

```
In [24]: visitors = pd.read_csv('/datasets/visitors.csv', sep=',')
```

```
In [25]: # первичное знакомство с датасетом visitors
        first info(visitors)
         Вывод первых 5 строк датасета:
                 date group visitors
         0 2019-08-01
                                  719
         1 2019-08-02
                                  619
         2 2019-08-03
                                  507
         3 2019-08-04
                                  717
         4 2019-08-05
                                  756
         Вывод общей информации по датасету:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 62 entries, 0 to 61
         Data columns (total 3 columns):
          # Column Non-Null Count Dtype
          0 date 62 non-null object
          1 group 62 non-null
                                      object
          2 visitors 62 non-null
                                      int64
         dtypes: int64(1), object(2)
         memory usage: 1.6+ KB
         None
         Проверка количественных данных:
                 visitors
                62.000000
         count
               607.290323
         mean
         std
               114.400560
         min
               361.000000
               534.000000
         25%
         50%
               624.500000
         75%
               710.500000
         max
               770.000000
```

Количество дубликатов по датасету: 0

#### К выводу

```
In [26]: # Среднее количество пользователей в день (A-группа)
    visitors_A_mean = visitors[visitors['group']=='A']['visitors'].mean().round()
    visitors_A_mean

Out[26]: 604.0

In [27]: # Среднее количество пользователей в день (B-группа)
    visitors_B_mean = visitors[visitors['group']=='B']['visitors'].mean().round()
    visitors_B_mean
Out[27]: 610.0
```

```
In [28]: # построим график дневного количества пользователей, посетивших интерне-магазин в тестовом периоде, в разрезе групп
         fig, ax = plt.subplots()
         plt.plot(visitors[visitors['group']=='A']['date'], visitors[visitors['group']=='A']['visitors'], label='A')
         plt.plot(visitors[visitors['group']=='B']['date'], visitors[visitors['group']=='B']['visitors'], label='B')
         fig.set figwidth(15)
         fig.set figheight(5)
         fig.autofmt xdate()
         #plt.grid(True, axis='x', alpha=0.8)
         plt.legend(bbox to anchor=(1, 1))
         plt.xlabel('Date')
         plt.vlabel('Visitors')
         plt.axhline(y=visitors['visitors'].min(), color='grey', linestyle='--', alpha=0.5)
         plt.axhline(y=visitors['visitors'].max(), color='grey', linestyle='--', alpha=0.5)
         plt.axhline(y=visitors['visitors'].mean(), color='red', linestyle='--', alpha=0.5)
         plt.title('Динамика дневного количества посетителей интернет-магазина в разрезе групп A/B-теста', size=16, color='blue
         plt.show();
```



```
In [29]: # Μυκυμαρωκα δαπα δ cmoρδμε visitors['date']
visitors['date'].min()

Out[29]: '2019-08-01'

In [30]: # Μακςυμαρωκα δ απα δ cmoρδμε visitors['date']
visitors['date'].max()
Out[30]: '2019-08-31'
```

#### Выводы:

- названия столбцов стандартные;
- необходимо заменить тип данных в столбце date:
- пропусков в датасете нет;
- полных дубликатов в датасете нет;
- в датасете представлены данные за период с 2019-08-01 по 2019-08-31 (что соответствует датасету orders);
- всего 3 столбца, 62 строки.

Разделение на группы прошло успешно, ежедневно количество пользователей в каждой группе примерно одинаковое и колеблится в диапазоне от 350 до 750 человек. Тенденции к росту или снижению количества пользователей нет.

К сожалению, нет возможности очистить датафрейм visitors от пользователей, попавших по неизвестной причине в обе группы теста.

## 2.2 Анализ кумулятивной выручки по группам

```
In [32]: #создадим массив уникальных пар: дата-группа
         date groups = orders[['date', 'group']].drop duplicates()
         #date groups.style.set caption('Массив уникальных пар: дата-группа')
         date groups.head()
Out[32]:
                   date group
           0 2019-08-15
           7 2019-08-15
          45 2019-08-16
          47 2019-08-16
          55 2019-08-01
                           Α
In [33]: #создадим датафрейм с агрегированными кумулятивными данными по заказам
         order_agg = (
             date groups.apply(lambda x: orders[np.logical and(orders['date']<=x['date'], orders['group']==x['group'])]</pre>
                                .agg({'date':'max', 'group':'max', 'transaction id':'nunique', 'visitor id':'nunique', 'revenue'
              .sort_values(by=['date', 'group'])
         order_agg.head(2)
```

#### Out[33]:

|    | date       | group | transaction_id | visitor_ia | revenue |
|----|------------|-------|----------------|------------|---------|
| 55 | 2019-08-01 | Α     | 23             | 19         | 142779  |
| 66 | 2019-08-01 | В     | 17             | 17         | 59758   |

#### Out[34]:

|    | date       | group | visitors |
|----|------------|-------|----------|
| 55 | 2019-08-01 | Α     | 719      |
| 66 | 2019-08-01 | В     | 713      |

```
In [35]: #объединим агрегированные данные по заказам и по пользователям в один датафрейм

cumulative_data = (
    order_agg.merge(visitor_agg, left_on=['date', 'group'], right_on=['date', 'group'])
)
cumulative_data.columns = ['date', 'group', 'orders', 'buyers', 'revenue', 'visitors']
cumulative_data.head(2)
```

#### Out[35]:

|   | date       | group | orders | buyers | revenue | visitors |
|---|------------|-------|--------|--------|---------|----------|
| 0 | 2019-08-01 | Α     | 23     | 19     | 142779  | 719      |
| 1 | 2019-08-01 | В     | 17     | 17     | 59758   | 713      |

```
In [36]: # построим график кумулятивной выручки по дням и группам А/В-теста

cum_revenue_a = cumulative_data[cumulative_data['group']=='A'][['date', 'revenue', 'orders']]

cum_revenue_b = cumulative_data[cumulative_data['group']=='B'][['date', 'revenue', 'orders']]

fig, ax = plt.subplots()

plt.plot(cum_revenue_a['date'], cum_revenue_a['revenue'], label='A')

plt.plot(cum_revenue_b['date'], cum_revenue_b['revenue'], label='B')

fig.set_figwidth(15)

fig.set_figheight(5)

plt.grid(True, axis='x', alpha=0.8)

plt.legend(bbox_to_anchor=(1, 1))

plt.xlabel('Date')

plt.ylabel('Cumulative revenue')

plt.title('A/B-тест: график кумулятивной выручки по дням и группам', size=16, color='blue')

plt.show;
```



#### Вывод:

- кумулятивная выручка растет в течение всего теста в обеих группах;
- В-группа приносит больше выручки, чем А-группа;
- темп роста выручки в В-группе выше, чем в А-группе;
- на графике выручки В-группы 18-19 августа наблюдается резкий рост. Это может сигнализировать либо о всплеске числа заказов, либо о появлении очень дорогих заказов в выборке. Позже проанализируем выбросы.

## 2.3 Анализ кумулятивного среднего чека по группам

```
In [37]: # построим график кумулятивного среднего чека по группам

fig, ax = plt.subplots()

plt.plot(cum_revenue_a['date'], cum_revenue_a['revenue']/cum_revenue_a['orders'], label='A')
plt.plot(cum_revenue_b['date'], cum_revenue_b['revenue']/cum_revenue_b['orders'], label='B')

plt.grid(True, axis='x', alpha=0.8)
plt.legend(bbox_to_anchor=(1, 1))
plt.xlabel('Date')
plt.ylabel('Cumulative average order')
plt.title('A/B-тест: график кумулятивного среднего чека по группам', size=16, color='blue')
fig.set_figwidth(15)
fig.set_figheight(5)
plt.show;
```



- средний чек А-группы стабилизировался с середины августа;
- средний чек В-группы резко вырос 18-19 августа, затем пошел на спад. Скорее всего причиной стал крупный заказ/заказы, для того чтобы средний чек по В-группе пришел к реальному среднему и установился на его уровне нужно больше данных.
- наличие выброса в В-группе на данном этапе затрудняет сравнительный анализ кумулятивного среднего чека по группам.

```
In [38]: # Удалим заказ с максимальной стоимостью из таблицы orders и пересчитаем все промежуточные таблицы
         orders0 = orders[orders['revenue']!=orders['revenue'].max()]
         date groups0 = orders0[['date', 'group']].drop duplicates()
         order agg0 = (
             date groups0.apply(lambda x: orders0[np.logical and(orders0['date']<=x['date'], orders0['group']==x['group'])]</pre>
                                .agg({'date':'max', 'group':'max', 'transaction id':'nunique', 'visitor id':'nunique', 'revenue'
             .sort values(by=['date', 'group'])
         visitor agg0 = (
             date groups0.apply(lambda x: visitors[np.logical and(visitors['date']<=x['date'], visitors['group']==x['group'])]</pre>
                                .agg({'date':'max', 'group':'max', 'visitors':'sum'}), axis=1)
             .sort values(by=['date', 'group'])
         cumulative data0 = (
             order agg0.merge(visitor agg0, left on=['date', 'group'], right on=['date', 'group'])
         cumulative data0.columns = ['date', 'group', 'orders', 'buyers', 'revenue', 'visitors']
         cum revenue a0 = cumulative data0[cumulative data0['group']=='A'][['date', 'revenue', 'orders']]
         cum revenue b0 = cumulative data0[cumulative data0['group']=='B'][['date', 'revenue', 'orders']]
```

```
In [39]: # построим график кумулятивной выручки по дням и группам A/B-теста без учета заказа с максимальной стоимостью fig, ax = plt.subplots()

plt.plot(cum_revenue_a0['date'], cum_revenue_a0['revenue'], label='A')
plt.plot(cum_revenue_b0['date'], cum_revenue_b0['revenue'], label='B')

fig.set_figwidth(15)
fig.set_figheight(5)
plt.grid(True, axis='x', alpha=0.8)
plt.legend(bbox_to_anchor=(1, 1))
plt.xlabel('Date')
plt.ylabel('Cumulative revenue')
plt.ylabel('Cumulative revenue')
plt.title('A/B-тест: график кумулятивной выручки по дням и группам', size=16, color='blue')
plt.show;
```



```
In [40]: # построим график кумулятивного среднего чека по группам без учета заказа с максимальной стоимостью fig, ax = plt.subplots()

plt.plot(cum_revenue_a0['date'], cum_revenue_a0['revenue']/cum_revenue_a0['orders'], label='A')

plt.plot(cum_revenue_b0['date'], cum_revenue_b0['revenue']/cum_revenue_b0['orders'], label='B')

plt.grid(True, axis='x', alpha=0.8)

plt.legend(bbox_to_anchor=(1, 1))

plt.xlabel('Date')

plt.ylabel('Cumulative average order')

plt.title('A/B-тест: график кумулятивного среднего чека по группам', size=16, color='blue')

fig.set_figwidth(15)

fig.set_figheight(5)

plt.show;
```



Картина поменялась, кумулятивная выручка в В-группе больше, чем в А-группе. А вот средний чек в группах почти одинаковый, в последние дни тестового периода средний чек А-группы выше, чем в В-группе. Таким образом, повышенная выручка в В-группе связана не со средним чеком, а с количеством заказов.

# 2.4 Анализ относительного изменения кумулятивного среднего чека группы В к группе А

```
In [41]: # соберем агрегированные данные о выручке по двум группам в один датасее

cum_revenue_all = (
    cum_revenue_a.merge(cum_revenue_b, left_on='date', right_on='date', how='left', suffixes=['_a', '_b'])
)
cum_revenue_all.head(2)
```

#### Out[41]:

|   | date       | revenue_a | orders_a | revenue_b | orders_b |
|---|------------|-----------|----------|-----------|----------|
| 0 | 2019-08-01 | 142779    | 23       | 59758     | 17       |
| 1 | 2019-08-02 | 234381    | 42       | 221801    | 40       |

Вернуться к выводу

```
In [42]: # построим график относительного изменения кумулятивного среднего чека группы В к группе A fig, ax = plt.subplots()

plt.plot(cum_revenue_all['date'], (cum_revenue_all['revenue_b']/cum_revenue_all['orders_b'])/(cum_revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['revenue_all['r
```



#### Вывод:

- большую часть времени в течение теста кумулятивный средний чек В-группы выше, чем кумулятивный средний чек А-группы;
- в нескольких точках график резко «скачет», что еще раз подтверждает наличие крупных заказов/выбросов в В-группе.

# 2.5 Анализ кумулятивного среднего количества заказов на посетителя по группам

```
In [43]: # создадим для каждой группы датафрейм с кумулятивными агрегированными данными о количестве заказов и количестве nocem cum_orders_a = cumulative_data[cumulative_data['group']=='A'][['date', 'orders', 'visitors']] cum_orders_b = cumulative_data[cumulative_data['group']=='B'][['date', 'orders', 'visitors']]
```

```
In [44]: # построим график кумулятивного среднего количества заказов на посетителя по группам

fig, ax = plt.subplots()

plt.plot(cum_orders_a['date'], cum_orders_a['orders']/cum_orders_a['visitors'], label='A')

plt.plot(cum_orders_b['date'], cum_orders_b['orders']/cum_orders_b['visitors'], label='B')

plt.grid(True, axis='x', alpha=0.8)

plt.legend(bbox_to_anchor=(1, 1))

plt.xlabel('Date')

plt.ylabel('Cumulative average number of orders')

plt.title('A/B-тест: график кумулятивного среднего количества заказов на посетителя по группам', size=16, color='blue'

fig.set_figwidth(15)

fig.set_figheight(5)

plt.show;
```



```
In [45]: # посчитаем кумулятивное среднее количество заказов на одного посетителя
    cumulative_data['conversion'] = cumulative_data['orders']/cumulative_data['visitors']
    cumulative_data.head(2)
```

#### Out[45]:

|   | date       | group | oraers | buyers | revenue | visitors | conversion |
|---|------------|-------|--------|--------|---------|----------|------------|
| 0 | 2019-08-01 | Α     | 23     | 19     | 142779  | 719      | 0.031989   |
| 1 | 2019-08-01 | В     | 17     | 17     | 59758   | 713      | 0.023843   |

# In [46]: # разделим данные по группам cumulative\_data\_a = cumulative\_data[cumulative\_data['group']=='A'] cumulative data b = cumulative data[cumulative data['group']=='B']

```
In [47]: # построим график кумулятивного среднего количества заказов на посетителя по группам

fig, ax = plt.subplots()

plt.plot(cumulative_data_a['date'], cumulative_data_a['conversion'], label='A')

plt.plot(cumulative_data_b['date'], cumulative_data_b['conversion'], label='B')

plt.grid(True, axis='x', alpha=0.8)

plt.legend(bbox_to_anchor=(1, 1))

plt.xlabel('Date')

plt.ylabel('Cumulative average number of orders')

plt.title('A/B-тест: график кумулятивного среднего количества заказов на посетителя по группам', size=16, color='blue'

fig.set_figwidth(15)

fig.set_figheight(5)

plt.ylim(0.01, 0.05)

#fig.autofmt_xdate()

#plt.axis(["2019-08-01", "2019-08-31", 0.01, 0.05])

plt.show;
```



График ПОЧТИ симметричный, колебания идут вокруг одного значения. Однако 6 августа произошла смена лидера: кумулятивное среднее количество заказов на одного посетителя в В-группе превысило одноименный показатель А-группы, эта ситуация сохранилась до конца тестового периода.

## 2.6 Анализ относительного изменения кумулятивного среднего количества заказов на посетителя группы В к группе А

#### Out[48]:

|   | date       | conversion_a | conversion_b |
|---|------------|--------------|--------------|
| 0 | 2019-08-01 | 0.031989     | 0.023843     |
| 1 | 2019-08-02 | 0.031390     | 0.030912     |

<u>Вернуться к выводу</u>

```
In [49]: # построим график относительного изменения кумулятивного среднего количества заказов на посетителя группы В к группе А fig, ax = plt.subplots()

plt.plot(cum_conversion['date'], cum_conversion['conversion_b']/cum_conversion['conversion_a']-1)

plt.grid(True, axis='x', alpha=0.8)

plt.xlabel('bate')

plt.ylabel('Relative cumulative average number of orders')

plt.title('A/B-тест: график относительного изменения кумулятивного среднего количества заказов на посетителя группы В fig.set_figwidth(15)

fig.set_figheight(5)

plt.axhline(y=0, color='red', linestyle='--')

plt.show;
```





#### Вывод:

В начале теста В-группа проигрывала А-группе, но с 06 августа вырвалась вперёд. Достигнув пика 14-15 августа кумулятивное среднее количество заказов на посетителя В-группы по отношению к А-группе начало коррекцию вниз, с 29 августа опять наметилась тенденция к его росту.

Без анализа аномалий выводы по тесту нельзя, так как результаты могут измениться.

## 2.7 Анализ точечного графика количества заказов по пользователям

Для анализа количества заказов на одного пользователя мне придется рассмотреть два датасета orders: старый - до удаления пользователей, попавших одновременно в обе группы А/В теста, и новая - очищенная от вышеупомянутых пользователей.

```
In [50]: # создадим вспомогательный датафрейм: количество заказов на одного пользователя (до удаления парных клиентов в n. 2.1.
         orders by user old = orders old.groupby('visitor id', as index=False).agg({'transaction id':'nunique'})
         orders by user old.columns = ['visitor id', 'orders count']
         orders by user old.sort values(by='orders count', ascending=False).head()
Out[50]:
                 visitor_id orders_count
          1023 4256040402
                                   11
           591 2458001652
                                  11
           569 2378935119
           487 2038680547
                                   5
                199603092
In [51]: # посмотрим какое количество пользователей совершили только один заказ за период теста, два заказа и тд...
         orders by user old['orders count'].value counts()
Out[51]: 1
                937
                 64
                 17
                  6
                  3
                  2
          11
         Name: orders_count, dtype: int64
```

```
In [52]: # построим точечного график количество заказов на одного пользователя (до удаления парных клиентов)

fig, ax = plt.subplots()

x_values = pd.Series(range(0,len(orders_by_user_old)))
plt.scatter(x_values, orders_by_user_old['orders_count'])
plt.xlabel('Users')
plt.ylabel('Orders')
plt.title('Количество заказов на одного пользователя (до удаления парных клиентов)', size=16, color='blue')
fig.set_figwidth(10)
fig.set_figheight(5)
plt.grid(True, axis='y', alpha=0.8)
plt.show;
```

#### Количество заказов на одного пользователя (до удаления парных клиентов)



```
In [53]: # создадим вспомогательный датафрейм: количество заказов на одного пользователя (после удаления парных клиентов в n. 2 orders_by_user = orders.groupby('visitor_id', as_index=False).agg({'transaction_id':'nunique'}) orders_by_user.columns = ['visitor_id', 'orders_count'] orders_by_user.sort_values(by='orders_count', ascending=False).head(2)
```

#### Out[53]:

|     | visitor_id | orders_count |
|-----|------------|--------------|
| 908 | 3967698036 | 3            |
| 55  | 249864742  | 3            |

```
In [54]: # построим точечного график количество заказов на одного пользователя (после удаления парных клиентов)

fig, ax = plt.subplots()

x_values = pd.Series(range(0,len(orders_by_user)))
plt.scatter(x_values, orders_by_user['orders_count'])
plt.xlabel('Users')
plt.ylabel('Orders')
plt.ylabel('Orders')
plt.title('Количество заказов на одного пользователя (после удаления парных клиентов)', size=16, color='blue')
fig.set_figwidth(10)
fig.set_figheight(5)
plt.grid(True, axis='y', alpha=0.8)
#plt.ylim([0, 4])
plt.yticks(np.arange(0,5,1))
plt.xlim([0, 937])
plt.show;
```

#### Количество заказов на одного пользователя (после удаления парных клиентов)



#### Вывод:

Основная масса пользователей оформляют 1 заказ.

Странная ситуация с пользователями, которых учитывали и в А-группе и в В-группе. Эти же пользователи совершали аномально большое количество заказов (до 11 заказов в течение тестового периода). Однако, после удаления этих пользователей в п.2.1.1. аномальных выбросов в количестве заказов на одного пользователя не стало. Максимальное количество заказов на одного пользователя в очищенной выборке равно 3.

## 2.8 Расчет границы для определения аномальных пользователей

Вариантов количества заказов на одного пользователя в тестовом периоде не много, всего 3. Поэтому удобно использовать не только np.percentile, но и value counts()

```
In [57]: # посмотрим какое количество пользователей совершили только один заказ за период теста, два заказа и тд... orders_by_user['orders_count'].value_counts()

Out[57]: 1 937
2 29
3 7
Name: orders_count, dtype: int64
```

#### Ссылка код, удалящий выбросы

```
In [58]: # Посчитаем выборочные перцентили количества заказов на одного пользователя:
    percentile_orders_count = np.percentile(orders_by_user['orders_count'], [90, 96, 97, 99])
    percentile_orders_count

Out[58]: array([1., 1., 2., 2.])

In [59]: limit_orders_count = percentile_orders_count[2]
    limit_orders_count

Out[59]: 2.0
```

#### Вывод:

Более 96% посетителей нашего онлайн-магазина оформили за анализируемый период один заказ. Не более 4% оформляли 2-3 заказа. Я не считаю 2-3 заказа аномальным количеством заказов на одного пользователя, но для чистоты эксперемента (проекта) можно принять 2 заказа за верхнюю границу числа заказов и далее отсеять по ней "аномальных" пользователй.

## 2.9 Анализ точечного графика стоимостей заказов

```
In [60]: # построим точечный график стоимостей заказов

fig, ax = plt.subplots()

x_values_2 = pd.Series(range(0,len(orders['revenue'])))
plt.scatter(x_values_2, orders['revenue'])

plt.xlabel('Orders')
plt.ylabel('Revenue')
plt.title('Точечный график стоимости заказов', size=16, color='blue')
fig.set_figwidth(12)
fig.set_figheight(5)
plt.grid(True, axis='y', alpha=0.8)
plt.show;
```



# In [61]: # построим точечный график стоимостей заказов без первого выброса fig, ax = plt.subplots() x\_values\_2 = pd.Series(range(0,len(orders0['revenue']))) plt.scatter(x\_values\_2, orders0['revenue']) plt.xlabel('Orders') plt.ylabel('Revenue') plt.title('Toчечный график стоимости заказов без первого выброса', size=16, color='blue') fig.set\_figwidth(12) fig.set\_figheight(5) plt.grid(True, axis='y', alpha=0.8) plt.show;

### Точечный график стоимости заказов без первого выброса



```
In [62]: # построим точечный график стоимостей заказов без авух основных выбросов
orders00 = orders0[orders0['revenue']!=orders0['revenue'].max()]

fig, ax = plt.subplots()

x_values_2 = pd.Series(range(0,len(orders00['revenue'])))
plt.scatter(x_values_2, orders00['revenue'])

plt.xlabel('Orders')
plt.ylabel('Revenue')
plt.title('Toчечный график стоимости заказов без двух основных выбросов', size=16, color='blue')
fig.set_figwidth(12)
fig.set_figheight(5)
plt.grid(True, axis='y', alpha=0.8)
plt.show;
```





```
In [63]: # построим точечный график стоимостей заказов без выбросов orders000 = orders0[orders0['revenue']<27000]

#увы, на данном этапе прищлось проставить 27000 руками. Но я помню, что это плохой тон.

fig, ax = plt.subplots()

x_values_2 = pd.Series(range(0,len(orders000['revenue'])))
plt.scatter(x_values_2, orders000['revenue'])

plt.xlabel('Orders')
plt.ylabel('Revenue')
plt.title('Toчечный график стоимости заказов без выбросов', size=16, color='blue')

fig.set_figwidth(12)
fig.set_figheight(5)
plt.grid(True, axis='y', alpha=0.8)
plt.show;
```





```
In [64]: # Расчет среднего чека в А-группе после удаления заказов с аномальной стоимостью в В-группе
         orders000[orders000['group']=='A']['revenue'].mean().round()
Out[64]: 5200.0
In [65]: # Расчет среднего чека в В-группе после удаления заказов с аномальной стоимостью в В-группе
         orders000[orders000['group']=='B']['revenue'].mean().round()
Out[65]: 4894.0
In [66]: orders000['revenue'].describe()
Out[66]: count
                    965.000000
                   5035.363731
         mean
         std
                   5644,507129
         min
                     50.000000
         25%
                   1130.000000
         50%
                   2670.000000
         75%
                   6645.000000
                  26550.000000
         max
         Name: revenue, dtype: float64
In [67]: # Изучим заказ с аномально высокой стоимостью
         orders.loc[orders['revenue']==orders['revenue'].max()]
Out[67]:
              transaction_id
                            visitor_id
                                          date revenue group
```

В

590470918 1920142716 2019-08-19 1294500

425

```
In [68]: # Изучим пятерку самых дорогих заказов
orders.sort_values(by = 'revenue', ascending=False).head()
```

#### Out[68]:

|      | transaction_id | visitor_id | date       | revenue | group |
|------|----------------|------------|------------|---------|-------|
| 425  | 590470918      | 1920142716 | 2019-08-19 | 1294500 | В     |
| 1196 | 3936777065     | 2108080724 | 2019-08-15 | 202740  | В     |
| 1136 | 666610489      | 1307669133 | 2019-08-13 | 92550   | Α     |
| 744  | 3668308183     | 888512513  | 2019-08-27 | 86620   | В     |
| 743  | 3603576309     | 4133034833 | 2019-08-09 | 67990   | Α     |

#### Выводы:

Вот мы и нашли разгадку резкого скочка 19 августа на графике среднего кумулятивного чека в В-группе - это аномально крупный заказ от 19.08.2019 г на сумму 1 294 500 у.е., оформленный пользователем из В-группы. Еще один аномально крупный заказ был сделан 15.08.2019 г. и тоже в В-группе.

За исключением двух вышеуказанных заказов, стоимость других заказов не превышала 100 000 у.е.

Точную границу аномальной стоимости заказа определим далее.

## 2.10 Расчет границы для определения аномальных заказов

```
In [69]: # Изучим столбец orders['revenue'] с помощью ф-ции describe()
         orders['revenue'].describe()
Out[69]: count
                  1.016000e+03
         mean
                  8.300815e+03
         std
                  4.212199e+04
         min
                  5.000000e+01
         25%
                  1.190000e+03
         50%
                  2.955000e+03
         75%
                  8.134250e+03
                  1.294500e+06
         max
         Name: revenue, dtype: float64
```

#### Ссылка код, удалящий выбросы

```
In [70]: # Определим 90, 95 и 99 перцентили среднего чека в выборке:
    percentile_revenue = np.percentile(orders['revenue'], [90, 95, 99])
    percentile_revenue

Out[70]: array([17990., 26785., 53904.])

In [71]: limit_revenue = int((percentile_revenue[1]/1000).round())*1000
    limit_revenue

Out[71]: 27000
```

Не более 5% заказов дороже 26785 у.е. и не более 1% дороже 53904 у.е. С помощью персентилей выберем 26000 - 27000 у.е. за верхнюю границу стоимости заказа, аномальных пользователей отсеем по ней в следующем подразделе.

# 2.11 Расчет статистической значимости различий в среднем количестве заказов на посетителя между группами по «сырым» данным

#### Задача:

посчитать статистическую значимость различий в среднем числе заказов на пользователя между группами по «сырым» данным (без удаления аномальных пользователей), использовав критерий Манна-Уитни.

#### Сформулируем гипотезы:

- Но: различий в среднем количестве заказов между группами нет;
- Н1: различия в среднем между группами есть.

#### 2.11.1 Подготовка данных

создадим сводный датафрейм df1

```
In [72]: # Создадим промежуточную таблицу visitorsADaily для A-группы: дата - кол-во пользователей visitorsADaily = visitors['group'] == 'A'][['date', 'visitors']] visitorsADaily.columns = ['date', 'visitorsPerDateA'] visitorsADaily.head(2)
```

#### Out[72]:

#### date visitorsPerDateA

| 0 | 2019-08-01 | 719 |
|---|------------|-----|
| 1 | 2019-08-02 | 619 |

```
In [73]: # Создадим промежуточную таблицу visitorsBDaily для B-группы: дата - кол-во пользователей visitorsBDaily = visitors['group'] == 'B'][['date', 'visitors']] visitorsBDaily.columns = ['date', 'visitorsPerDateB'] visitorsBDaily.head(2)
```

#### Out[73]:

#### date visitorsPerDateB

| 31 | 2019-08-01 | 713 |
|----|------------|-----|
| 32 | 2019-08-02 | 581 |

# 2.11.2 Посчитаем статистическую значимость различия в среднем количестве заказов на посетителя между группами

```
In [74]: # Создадим промежуточную таблицу ordersByUsersA для A-группы: userId - количество заказов
         ordersByUsersA = (
             orders[orders['group'] == 'A']
             .groupby('visitor id', as index=False)
             .agg({'transaction id': pd.Series.nunique})
         ordersByUsersA.columns = ['userId', 'orders']
         ordersByUsersA.head(2)
Out[74]:
               userld orders
          0 11685486
                         1
          1 54447517
In [75]: # Создадим промежуточную таблицу ordersByUsersB для B-группы: userId - количество заказов
         ordersByUsersB = (
             orders[orders['group'] == 'B']
             .groupby('visitor id', as index=False)
             .agg({'transaction id': pd.Series.nunique})
         ordersByUsersB.columns = ['userId', 'orders']
         ordersByUsersB.head(2)
Out[75]:
              userld orders
          0 5114589
```

Объявим переменные sampleA и sampleB, в которых пользователям из разных групп будет соответствовать количество заказов. Тем, кто ничего не заказал, будут соответствовать нули. Это нужно, чтобы подготовить выборки к проверке критерием Манна-Уитни.

**1** 6958315

```
In [76]: # Создадим переменную sampleA
         sampleA = pd.concat(
                 ordersByUsersA['orders'],
                 pd.Series(
                     0,
                     index=np.arange(
                         visitorsADaily['visitorsPerDateA'].sum() - len(ordersByUsersA['orders'])
                     ),
                     name='orders',
                 ),
             axis=0,
         sampleA.head(2)
Out[76]: 0
              1
              1
         Name: orders, dtype: int64
In [77]: # Создадим переменную sampleВ
         sampleB = pd.concat(
                 ordersByUsersB['orders'],
                 pd.Series(
                     0,
                     index=np.arange(
                         visitorsBDaily['visitorsPerDateB'].sum() - len(ordersByUsersB['orders'])
                     ),
                     name='orders',
                 ),
             ],
             axis=0,
         sampleB.head(2)
Out[77]: 0
              1
         Name: orders, dtype: int64
```

```
In [78]: # Проверим гипотезу НО с помощью критерия Манна-Уитни
alpha = 0.05
res = stats.mannwhitneyu(sampleA, sampleB)
print(f"p-значение для сравнения групп A и B: {res[1]:.3f}")
if res.pvalue<alpha:
    print('Отвергаем нулевую гипотезу для сравнения групп A и B')
else:
    print('Не получилось отвергнуть НО для сравнения групп A и B')

p-значение для сравнения групп A и B: 0.011
Отвергаем нулевую гипотезу для сравнения групп A и B

In [79]: # Выведем относительный прирост среднего числа заказов группы В
    "{0:.3f}".format(sampleB.mean() / sampleA.mean() - 1)
```

#### Вывод:

p-value = 0.011, т.е. меньше уровня статистической значимости 0.05. Значит, нулевую гипотезу о том, что статистически значимых различий в среднем числе заказов между группами А и В нет, отвергаем. По «сырым» данным есть статистически значимые различия в среднем числе заказов групп А и В.

Относительная развница в среднем числе заказов на пользователя около 16% (прирост группы В)

# 2.12 Расчет статистической значимости различий в среднем чеке заказа между группами по «сырым» данным

#### Задача:

посчитать статистическую значимость различий в среднем чеке заказа между группами по «сырым» данным (без удаления аномальных пользователей), использовав критерий Манна-Уитни.

#### Сформулируем гипотезы:

• Н0: различий в среднем чеке между группами нет;

• Н1: различия в среднем чеке между группами есть.

```
In [80]: # Проберим гипотезу НО с помощью критерия Манна-Уитни
alpha = 0.05
res = stats.mannwhitneyu(orders[orders['group']=='A']['revenue'], orders[orders['group']=='B']['revenue'])
print(f"p-значение для сравнения групп A и B: {res[1]:.3f}")
if res.pvalue<alpha:
    print('Отвергаем нулевую гипотезу для сравнения групп A и B')
else:
    print('Не получилось отвергнуть НО для сравнения групп A и B')

p-значение для сравнения групп A и B: 0.829
Не получилось отвергнуть НО для сравнения групп A и B

In [81]: # Выбедем относительный прирост среднего чека группы В
print('{0:.3f}'.format(orders[orders['group']=='B']['revenue'].mean()/orders[orders['group']=='A']['revenue'].mean()-1
0.287
```

#### Вывод:

P-value 0.829 значительно больше 0.05. Значит, причин отвергать нулевую гипотезу и считать, что в среднем чеке есть различия, нет. Средний чек В-группы значительно выше среднего чека А-группы - на 28.7%, что связано с выявленными ранее аномально крупными заказами.

# 2.13 Расчет статистической значимости различий в среднем количестве заказов на посетителя между группами по «очищенным» данным

Примем за аномальных пользователей тех, кто совершил более 2 заказов (п.2.8) или совершил заказ дороже 27 000 у.е. (п. 2.10).

Так мы уберём 5% пользователей с наибольшим числом заказов и от 1% до 5% пользователей с дорогими заказами.

Ссылка на расчет границы аномального числа заказов

```
In [82]: # Сделаем срезы пользователей с числом заказов больше 2
         usersWithManyOrders = pd.concat(
                 ordersByUsersA[ordersByUsersA['orders'] > limit orders count]['userId'],
                 ordersByUsersB[ordersByUsersB['orders'] > limit orders count]['userId'],
             ],
             axis=0,
         usersWithManyOrders.head(2)
Out[82]: 58
                 611059232
         211
                2108163459
         Name: userId, dtype: int64
         Ссылка на расчет границы аномальной стоимости заказа
In [83]: # Сделаем срезы пользователей, совершивших заказы дороже 27 000 у.е.
         usersWithExpensiveOrders = orders[orders['revenue'] > limit revenue ]['visitor id']
         usersWithExpensiveOrders.head(2)
Out[83]: 73
               2947100995
         77
                787824685
         Name: visitor id, dtype: int64
In [84]: # Объединим usersWithExpensiveOrders и usersWithManyOrders в таблице abnormalUsers
         abnormalUsers = (
             pd.concat([usersWithManyOrders, usersWithExpensiveOrders], axis=∅)
             .drop duplicates()
             .sort values()
         abnormalUsers.head(2)
Out[84]: 568
                 113298937
         1099
                 148427295
         dtype: int64
```

```
In [85]: # Узнаем, сколько всего аномальных пользователей abnormalUsers.shape[0]
```

Out[85]: 58

Всего 58 аномальных пользователей.

Узнаем, как их действия повлияли на результаты теста. Посчитаем статистическую значимость различий в среднем количестве заказов между группами теста по очищенным данным.

```
In [87]: # Подготовим выборки количества заказов по пользователям по группе В
         sampleBFiltered = pd.concat(
                 ordersByUsersB[
                     np.logical not(ordersByUsersB['userId'].isin(abnormalUsers))
                 l['orders'],
                 pd.Series(
                     0,
                     index=np.arange(
                         visitorsBDaily['visitorsPerDateB'].sum() - len(ordersByUsersB['orders'])
                     name='orders',
                 ),
             ],
             axis=0,
         sampleBFiltered.head(2)
Out[87]: 0
              1
              1
         Name: orders, dtype: int64
In [88]: # Применим статистический критерий Манна-Уитни к полученным выборкам:
         alpha = 0.05
         res = stats.mannwhitneyu(sampleAFiltered, sampleBFiltered)
         print(f"p-значение для сравнения групп A и B: {res[1]:.3f}")
         if res.pvalue<alpha:</pre>
             print('Отвергаем нулевую гипотезу для сравнения групп А и В')
         else:
             print('Не получилось отвергнуть НО для сравнения групп А и В')
         р-значение для сравнения групп А и В: 0.012
         Отвергаем нулевую гипотезу для сравнения групп А и В
In [89]: # Выведем относительный прирост среднего числа заказов группы В
         print('{0:.3f}'.format(sampleBFiltered.mean()/sampleAFiltered.mean()-1))
         0.182
```

#### Вывод:

Результаты по среднему количеству заказов практически не изменились. p-value = 0.012 (против 0.011 по "неочищенным" данным), т.е. меньше уровня статистической значимости 0.05. Значит, нулевую гипотезу о том, что статистически значимых различий в среднем числе заказов между группами A и B нет, отвергаем. По «очищенным» данным есть статистически значимые различия в среднем числе заказов групп A и B.

Относительная развница в среднем числе заказов на пользователя около 18% (против 16% по "неочищенным" данным) (прирост группы В)

# 2.14 Расчет статистической значимости различий в среднем чеке заказа между группами по «очищенным» данным

```
In [90]: # Проверим гипотезу НО с помощью критерия Манна-Уитни
          alpha = 0.05
         res = stats.mannwhitneyu(
              orders[
                          np.logical and(
                              orders['group'] == 'A',
                              np.logical not(orders['visitor id'].isin(abnormalUsers)),
                      ]['revenue'],
                      orders[
                          np.logical and(
                              orders['group'] == 'B',
                              np.logical not(orders['visitor id'].isin(abnormalUsers)),
                      ]['revenue'],
         print(f"p-значение для сравнения групп A и B: {res[1]:.3f}")
         if res.pvalue<alpha:</pre>
              print('Отвергаем нулевую гипотезу для сравнения групп А и В')
         else:
              print('Не получилось отвергнуть НО для сравнения групп А и В')
```

р-значение для сравнения групп A и B: 0.646 Не получилось отвергнуть H0 для сравнения групп A и B

-0.048

#### Вывод:

P-value снизился до 0.646 (против 0.829 по "неочищенным" данным), однако остался значительно больше 0.05. Значит, причин отвергать нулевую гипотезу и считать, что в среднем чеке есть различия, нет. По очищенным данным статистически значимых различий среднего чека между группами нет.

А вот показатель относительного прироста среднего чека группы В изменился существенно: был прирост 28.7%, стал проигрыш группы В - 4.8%. Этот пример хорошо показывает, как сильно аномалии могут влиять на результаты А/В-теста!

## 2.15 Выводы и решение по результатам теста

#### Выводы по результатам А/В теста:

• есть статистически значимое различие по среднему количеству заказов между группами как по «сырым», так и по очищенным от аномалий данным;

- нет статистически значимого различия по среднему чеку между группами ни по «сырым», ни по данным после фильтрации аномалий;
- график различия среднего количества заказов между группами сообщает, что результаты группы В лучше группы А, однако однозначной тенденции к дальнейшему улучшению нет ссылка;
- график различия среднего чека показывает резкие колебания, вызванные аномально дорогими заказами в В-группе, делать выводы по данному графику нельзя ссылка.

#### Решение:

Исходя из обнаруженных фактов, тест можно остановить, признав тестируемое изменение успешным.

#### Основание:

- наличие статистически значимого различия по по среднему количеству заказов на пользователя между группами, относительный прирост конверсии группы В около 18%;
- завершение А/В теста с признанием победы В-группы и принятие тестируемого изменения в экплуатацию позволят увеличить выручку. Рассчетный прирост выручки составит 987511 у.е. в месяц.

Расчет прироста месячной выручки, который может быть получен в результате внедрения тестируемого изменения:

- среднедневное количество пользователей в А-группе: 604 чел. к расчету показателя
- среднедневное количество пользователей в В-группе: 610 чел. к расчету показателя
- средний чек в А-группе: 5200 у.е. к расчету показателя
- средний чек в В-группе после удаления заказа с аномальной стоимостью: 4894 у.е.к расчету показателя
- среднее количество заказов на 1 пользователя А-группа: 1.0295 шт. к расчету показателя
- среднее количество заказов на 1 пользователя В-группа: 1.0304 шт. к расчету показателя
- среднее количество дней в месяце: 30
- ожидаемый прирост выручки = (610 \* 1.0304 604 \* 1.0295) \* 30 \* 4894=987511 у.е.

средний чек игнорируем в расчете, так как нет статистически значимого различия по среднему чеку между группами.

#### В начало

## 3 Чек-лист готовности проекта

- У открыты 3 файла;
- 🗹 файлы изучены (выведены первые строки, метод info(), метод describe());
- И названия столбцов приведины к стандартному виду;
- У пропуски, дубликаты, сомнительные данные не обнаружены;
- У тип данных в столбцах соответствует данным;
- У проведена приоритизация гипотез с помощью фреймворка ICE;
- ✓ проведена приоритизация гипотез с помощью фреймворка RICE;
- У проведен анализ кумулятивной выручки по группам;
- У проведен анализ кумулятивного среднего чека по группам;
- И проведен анализ относительного изменения кумулятивного среднего чека группы В к группе А;
- И проведен анализ кумулятивного среднего количества заказов на посетителя по группам;
- У проведен анализ относительного изменения кумулятивного среднего количества заказов на посетителя группы В к группе А;
- И проведен анализ точечного графика количества заказов по пользователям;
- 🗹 проведен расчет границы для определения аномальных пользователей;
- И проведен расчет границы для определения аномальных заказов:
- 🗹 проведен расчет статистической значимости различий в среднем чеке заказа между группами по «сырым» данным;
- У проведен расчет статистической значимости различий в среднем количестве заказов на посетителя между группами по «очищенным» данным;
- 🗹 проведен расчет статистической значимости различий в среднем чеке заказа между группами по «очищенным» данным;
- 🗸 обоснована целесообразность продолжения/остановки А/В-теста.