${\rm CS~240:~Lab~4}$ Logistic Regression and Naı̈ve Bayes Classifiers

TAs: Onkar Borade, Ramsundar

To view marks and test case outputs/errors see gradescope.

1 Logistic Regression

[55 marks]

Marks distribution as provided in the question.

- logistic 5 marks
- log_loss 10 marks
- costs 15 marks
- The grad_desc: weights 25 marks

Private test case file - "test.csv". Use the test split instead of training split part of the data when using gradient descent. Note, for your verification purpose, expected values of (history of weights and history of costs) is given in private_expected_output_q1_cost.txt and private_expected_output_q1_params.txt.

2 Implementation of the Softmax

[25 marks]

Marks distribution as provided in the question.

- predict 5 marks
- softmax 10 marks
- cross_entropy 10 marks

Private tests - use digits dataset i.e.,

X,y = datasets.load_digits(return_X_y=True, n_class=3)

instead of

X,y = datasets.load_iris(return_X_y=True)

in your code. For your verification purpose, expected values of final weights is given in private_expected_output_q2.txt.

3 Naïve Bayes Implementation

[20 marks]

Marks distribution as provided in the question.

- def _calc_class_prior(self) to calculate the prior: 5 marks
- def predict(self, X): 15 marks

Private test case file - "weather2.txt". Expected final output can be found in private_expected_output_q3(on STDOUT).txt. Note all need to be correct.