Classification of Stochastic Process

For a fixed time t=t1, the term

X(t1) is a simple of the probability of the state of the process

at time t1. For a fixed 21, the

probability of the event [X(t1)

gives the CDF of the r.v X(t1),

denoted by

 $F(x_1; t_1) = F(x_1) = P[X(t_1) \le x_1].$ $F(x_1; t_1)$ is known as the I-order distr. of the poocess $\{X(t) \mid t \ge 0\}$.

Given two time instants t_1 and t_2 , $X(t_1)$ and $X(t_2)$ are two r.vs an the same poob. Space. Their joint distr. is known as the II-order distr. of the poocess and is given by $F(x_1, x_2; t_1, t_2) = P[X(t_1) \le x_1, X(t_2) \le x_2]$

In general, We define the 11th-order distr. of the stochastic order process X(t), ter by

F(x;t)=P[x(t) = x1,.../ x(t) = 2n]

for all $x = (x_1, ..., x_n) \in \mathbb{R}^n$ and $t = (t_1, t_2, ..., t_n) \in \mathbb{T}^n$ such that $t_1 < t_2 < ... < t_n$. Such a complete description of a process is no small task.

for instance, the nth-order joint distribution for is often found to be invarient under shifts of the time origin. Such a process is said to be a strict-sence stationary stochastic process.

Defn: (Strictly Stochastic Process).

A Stochastic Process {X(t) | tet}
] is said to be stationary in the

Strict sense if for nol, its no order joint CDF satisfies the Condition:

F(n;t) = F(x; t+7)

for all vectors & ERM and ter

and all scalars 7 such that

t+7 => scalar y is added to all components of vector t.

t; + 7 € T.

We let $\mu(t) = E[x(t)]$ denote the time-dependent mean of the Stochastic process.

m(t) = ensemble average of the S.P.

Defn. (Independent process).

A S.P. $\{X(t) | t \in T\}$ is said to be an independent process provided its nth-order joint distr. satisfit the : Condition:

$$F(x;t) = \prod_{x=1}^{n} F(x;i)$$

$$= \prod_{x=1}^{n} P[x(t+i) \leq xi]$$

$$= \prod_{x=1}^{n} P[x(t+i) \leq xi]$$

Defn (Renewal Process)

A renewal process is defined as a discrete - time independent process of Xn/n=1,2,... 3. where X1, X2,... are i.i.d r.v.

Ex. Consider a system in which the repair after a failuse is performed, require negligible time. Now, the times blw successive failures might be i.i.d r.v f.xn n=1,2,...3 of a renewal process.

If we force to consider some dependence among These r-vs, their is Markov dependence.

Defn (Markov Process).

A s.p. $\{x(t) \mid t \in T_3^2 \text{ is called a Markov process if for any took } tetz < ... < tn < t, the conditional distr. of <math>x(t)$ for given values of x(to), x(ti), ..., x(ti) dependently on x(ti):

 $P[X(t) \leq x \mid X(tn) = 2n \mid X(tn-i) = 2n \mid X(tn-i)$

= P[XC+) < x | x(tn) = xn] -3

This defn. applies to Markov processes space With continuous state processes space Discrete-state Markov processes.

Stationary Random processes

Stationarity refers to time invariance of some or all of the statistics of a random process, such as mean autocorrelation, with order distr.

Scanned by CamScanner

Two types of stationarity:

Ostrict sense (sss) and 2 wide sense (WSS).

Auto Correlation (Serial Correlation)
is a correlation of a signal with a
delayed copy of itself as a fn of
delay. Informally, it is the similarity
blw observations as a fn. of the
time Lag 61% them. Used for
finding repeated patterns.

The autocorrelation of a SP is the pearson correlation by Values of the process at different times, as a fn. of the two times or of the time Lag. Let \$X\$\$ be a SP, and the be the point in time (discrete or continuous). Then Xt is the Value produced by a given run of the process at time t. Suppose that the process has mean fit and variance of at time t.

Then, the auto-correlation fr. 6/4 times to and to is: R(t1,t2) = E[Xt1 Xt2] W) bar = complex conjugation. Correlation: (or dependence) is any statictical relationship, whether casual or not, blw two r.V. Ex: Corr. 6/w physical Statures of parents and their Offsprings, Grr. DIW The price of a goods and the quantity of Consumers Willing to purchase, that can be deficted in a demandcurre. Correlation Coefficient Px, y blw two r-vs x and y with prand fly and tx and ty is $P_{X,Y} = G_{Y}(X,Y) = G_{Y}(X,Y)$ Ox Fy

$= E[(x - Mx)(y - \mu ey)]$

Covariance: measure of the joint
Variability of 2 rvs If the 2

rvs tend to show similar behavior,
the Covariance is +ve, else if they
tend to show opposite behavior, the
Covariance is -ve.

Cov(X,Y) = E[X-E[X])(Y-E[Y])

= E[XY] - E[X]E[Y]

A 5.p. \times (t) or \times is said to be SSS if all its first order distributions are time invariant, i.e, the joint CDFs of \times (t), \times (t2), ..., \times (tn) and \times (t1+ \times), \times (t2+ \times), ..., \times (tn+ \times) are at the same fold all \times all time ships \times .

So, for a SSS process, the I-order distris independent of t, and I I - order district of any two samples X(ti) and X(tz) - depends only on Y = t_1-t_1.

A measure of dependence among the random variables of a Sp is provided by its cuto correlation fn, R, defined by $R(t_1,t_2) = E[x(t_1).x(t_2)]$

 $CoV[X(t_1), X(t_2)] =$ $Q(t_1, t_2) - \mu(t_1) \cdot \mu(t_2)$.

Defn (Wide-Sense Stationary

parces se (n) X

A Sp is Compidered MSS if. 1. $\mu(t) = E[x(t)]$ is independent of t. 2. $\mu(t) = R(t) = R(t) = R(t)$ 3. $\mu(t) = E[x^2(t)] < \infty$. Ox, A &p X(t) is said to be
WSS if its mean and autocorrelation
are time invarient, i.e,

1. E[X(+)] = H

2. R(t1,t2) is a fn. only of The time difference t2-t1.

Since $R(t_1,t_2) = R(t_2,t_1)$, for any WSS papers X(t), $R_X(t_1,t_2)$ is a fu. only of $|t_2-t_1|$

Cleary, SSS => WSS, but convesty not necessarily true.

Ex: Let

X(=)= \ +sint \ milt poob=1/4

+ cost /

x = [x(t)] = 0 and $R_x(t_1, t_2) =$

1 Cos (t2-t1), Itus x(t) is Wss.

* But X(0) and $X(\frac{\pi}{4})$ do not have the Rame pmf (different sanger), so the I-order Dmg is not spationary

Scanned by CamScanner