UNIVERSIDADE FEDERAL RURAL DO SEMIÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO

Introdução à Robótica Aula 04 - Sensores

Professora: Danielle Casillo

Na aula de anterior

- Manipulação
 - Efetuadores finais
 - Teleoperação
 - Exoesqueletos
 - Revisão Cinemática

 Prática: Montagem de um carro com duas rodas + roda de apoio

Na aula de hoje ...

Sensores

- Níveis de processamento
- o Como você detectaria pessoas em um ambiente?
- Como você mediria a distância de um objeto?
- Fusão Sensorial

Sensores simples

- Sensores passivos e ativos
- Interruptores (chaves)
- Sensores de luz
- Sensores de posição resistivos

Prática

Robô seguidor de linha

O que está acontecendo?

- Nesta aula vamos estudar como a capacidade de sentir do robô influencia diretamente a sua capacidade de reagir, atingir metas e atuar com inteligência.
- Um robô pode ter dois tipos de sensores com base na fonte de informação que ele sente:
 - Sensores proprioceptivos: propriocepção é o processo de sentir o estado de seu próprio corpo.
 - Sensores exteroceptivos: exterocepção é o processo de sentir o mundo ao redor do robô.

"são dispositivos físicos que medem quantidades físicas"

Maja J. Maratic, 2014

Propriedades físicas	Sensor
Contato	Sensor de colisão, interruptor
Distância	Ultrassom, radar, infravermelho
Nível de luz	Fotocélulas, câmeras
Nível de som	Microfones
Esforço	Extensômetros
Rotação	Codificadores e potenciômetros
Aceleração	Acelerômetro, giroscópios
Magnetismo	Bússolas
Cheiro	Sensores químicos
Temperatura	Termômetros, infravermelho
Inclinação	Inclinômetros, giroscópios
Pressão	Manômetros
Altitude	Altímetros

Sensor de colisão / interruptor

Ultrassom / radar / infravermelho

Fotocélulas / câmeras

Extensômetros

Potenciômetros

Acelerômetros / giroscópios

Termômetro/ infravermelho

Módulo Bússola

INCLINAÇÃO

GRAUS
GUSTES
Racing

Inclinômetro

Manômetro

Altímetro

- Um dos grandes desafios da robótica: incerteza
- Refere-se à incapacidade do robô de ter certeza, de saber com exatidão sobre seu próprio estado e seu ambiente, para tomar medidas em todos os momentos
- A incerteza vem de uma variedade de fontes:
 - Ruído e erro dos sensores;
 - Limitações dos sensores;
 - Ruído e erro dos atuadores e efetuadores;
 - Estado oculto e parcialmente observável;
 - Falta de conhecimento prévio sobre o ambiente ou um ambiente em constante mudança

- Ainda sobre a incerteza:
 - Os robôs devem sobreviver e trabalhar em um mundo real bagunçado, barulhento e desafiador.
 - Sensores são janelas para esse mundo, e na robótica essas janelas são, até agora, muito pequenas, sendo difícil ver através delas, metaforicamente falando.

Sensores não fornecem o estado. Eles fornecem as medidas brutas das quantidades, que normalmente têm de ser processadas para serem úteis a um robô.

- Quanto mais informações um sensor fornece, mais processamento é necessário.
- Existem duas maneiras pelas quais a informação sensorial pode ser tratada:
 - "Dada essa leitura sensorial, o que devo fazer?"
 - Dada essa leitura sensorial, como era o mundo quando a leitura foi realizada?

Se o interruptor do robô indicar que ele bateu em alguma coisa, isso é tudo o que o robô sabe; ele não pode deduzir mais nada, tal como forma, cor, tamanho ou qualquer outra informação sobre o objeto com o qual entrou em contato.

Eletrônica

 Suponhamos que o robô tenha um sensor do tipo interruptor para detectar a colisão com obstáculos.

 Para descobrir se o interruptor está aberto ou fechado, é preciso medir a tensão no circuito. Isso é feito usando a eletrônica

Processamento de sinais

- Suponhamos que esse robô tenha um microfone como sensor para o reconhecimento de voz.
- Além do processamento eletrônico, ele necessitará separar o sinal de qualquer ruído de fundo e, em seguida, compará-lo com uma ou mais vozes armazenadas em um grande banco de dados, a fim de executar o reconhecimento.

Computação

 Suponhamos que esse robô tenha uma câmera para encontrar a sua avó no quarto.

 Além do processamento eletrônico e de sinais, ele precisará encontrar objetos na sala, para então compará-los com um grande banco de dados, no intuito de tentar reconhecer a avó.

Níveis de processamento sensorial

- Dado que uma grande quantidade de processamento pode ser necessária para a percepção, já podemos ver que um robô precisa de algum tipo de cérebro:
 - Capacidade de processamento digital;
 - Fios para interligar todo o conjunto;
 - Eletrônica de suporte para o computador;
 - Baterias para fornecer energia a todo o conjunto

Como você detectaria pessoas em um ambiente?

- A resposta óbvia é a utilização de uma câmera, mas essa é a solução menos direta para o problema, uma vez que envolve uma grande quantidade de processamento.
- Outras formas de detectar pessoas em um ambiente:
 - Temperatura (corpo humano)
 - Movimento (há pessoas onde antes era estático)
 - Cor (cor da pele, roupas, uniforme)
 - Distâncias (faixa de distância que era aberta e torna-se bloqueada)

Como você mediria a distância de um objeto?

- Sensores de ultrassom (medições de distância diretamente)
- Sensores infravermelho (intensidade do sinal retornado)
- Duas câmeras (calcular a distância e a profundidade)
- Câmera (calcular a distância/profundidade usando perspectiva)
- Laser e câmera fixa (triangular a distância)

Fusão sensorial

Combinação de vários sensores para obter melhores informações sobre o mundo

- Devemos considerar o fato de que todo sensor tem algum ruído ou imprecisão.
- Combinar vários sensores resultam em mais ruídos, imprecisões e consequentemente mais incertezas sobre o mundo.
- Além de que sensores diferentes dão tipos diferentes de informações.

Sensores simples

Acenda a luz!

"Podemos considerar um sensor simples se ele não requer uma grande carga de processamento para produzir informações úteis ao robô"

Maja J. Maratic, 2014

Sensores Passivos x Ativos

- Os sensores passivos medem uma propriedade física do ambiente. Consistem em um detector, que recebe a propriedade a ser medida.
- Os sensores ativos fornecem seu próprio sinal/estímulo e usam a interação desse sinal com o ambiente como a propriedade a ser medida.

O que determina se um sensor é complexo ou não é a quantidade de processamento que seus dados requerem, enquanto o que determina se um sensor é ativo ou não é o seu modo de operação.

Interruptores (chaves)

 São os mais simples de todos. Fornecem informação no nível eletrônico, uma vez que se baseiam no princípio de um circuito que pode estar aberto ou fechado.

Interruptores (chaves)

- Sensores de contato: detectam quando o sensor entrou em contato com outro objeto
 - Ex: acionados quando um robô atinge um muro ou pega um objeto
- Sensores de fim de curso: detectam quando um mecanismo se moveu para o fim de seu curso
 - Ex: acionados quando uma pinça está totalmente aberta

Interruptores (chaves)

 Sensores codificadores de eixo (tacômetro): detectam quantas vezes o eixo do motor gira, pois recebem um clique do interruptor cada vez que o eixo gira.

Sensores de Luz

Além de ser capaz de detectar o contato com objetos, um robô deve ser capaz de detectar áreas escuras e iluminadas do ambiente.

- Medem a quantidade de luz que incide em uma fotocélula.
- Fotocélulas são sensíveis à luz e tal sensibilidade se reflete na resistência do circuito a que elas estão conectadas.

Sensores de Luz

- A resistência de uma fotocélula é baixa quando é iluminada, indicando uma luz brilhante, e é alta quando está escuro.
- Na verdade, um sensor de luz é um sensor de "escuro"
- A linha ondulada é a parte foto resistiva, que sente/responde à luz do ambiente

Sensores de Luz

- Os sensores de luz podem ser usados como sensores passivos ou ativos, além de medir as seguintes propriedades:
 - Intensidade da luz: claro ou escuro;
 - Intensidade diferencial: diferença entre fotocélulas;
 - Interrupção de continuidade: "interrupção de feixe".

Luz Polarizada

É a luz cujas ondas viajam apenas em uma direção particular

- Os sensores ativos usam a luz polarizada, uma vez que consistem não apenas em uma fotocélula (para detectar o nível de luz) em uma ou mais fontes luminosas (para emitir a luz) em um (ou mais) filtros para polarizar a luz.
- Essa filtragem acontece entre o emissor e o receptor.

Fotossensores reflexivos

- Operam com o princípio de reflexão de luz.
- São sensores ativos, pois consistem em um emissor e um detector.
- O emissor é geralmente feito com um diodo emissor de luz, e o detector é geralmente um fotodiodo/fototransistor.

Fotosensor de refletância emissor de feixe detector

Fotossensores reflexivos

Fotosensor de refletância

O emissor e o detector estão lado a lado, separados por uma barreira; a presença de um objeto é detectada quando a luz incide sobre ele e é refletida de volta para o detector.

Fotosensor de interrupção de feixe

O emissor e o detector ficam face a face. A presença de um objeto é detectada se o feixe de luz entre o emissor e o detector é interrompido.

Sensores de referência

 O mecanismo do sensor deve subtrair ou anular a luz ambiente da leitura do detector, de modo que possa medir com precisão apenas a luz proveniente do emissor.

Como é que o detector sabe a quantidade de luz ambiente?

- Primeiro o nível de luz ambiente é medido pelo detector do sensor com o seu emissor desligado.
- Em seguida é feita uma nova medição com o emissor ligado.
- Quando uma medida é subtraída da outra, a diferença representa a informação sensorial desejada. Esse é um exemplo de calibração do sensor.

Luz infravermelha

Tem um comprimento de onda diferente da luz visível e não está no espectro visível, pois operam na faixa infravermelha do espectro de frequências.

- A luz é modulada ao ligar e desligar o emissor rapidamente, fazendo-o pulsar.
- Um exemplo é o controle remoto de TV que funcionam à base de luz modulada.

Codificador de eixo

Medem a rotação angular de um eixo

Exemplos:

- O velocímetro mede o quão rápido as rodas do carro estão girando
- O odômetro mede o número de rotações das rodas.
- Para detectar uma volta, é necessário marcar de alguma forma a coisa que está girando.
- Um emissor de luz é colocado de um lado do disco e um detector do outro lado em uma configuração de interrupção de feixe.

Codificador de eixo

 Há também o mecanismo do codificador de eixo por refletância que em vez de chanfrar o disco, uma alternativa é pintá-lo com setores de cores alternadas e contrastantes.

 O emissor e o detector são colocados no mesmo lado do disco, lado a lado, em uma configuração de reflexão.

Prática Usando o Sensor de Cor

- O sensor de cor detecta a cor ou a intensidade da luz que entra pela pequena janela no topo do sensor.
- Este sensor pode ser usado de três modos diferentes:
 - Modo de cor;
 - Modo de intensidade da luz refletida;
 - Modo de intensidade da luz ambiente.

Modo de cores

 O sensor de cor reconhece sete cores: preto, azul, verde, amarelo, vermelho, branco e marrom, sendo possível programá-lo para dizer o nome das mesmas.

Dados	Tipo	Alcance	Notas
Cor	Numérico	0 - 7	Usado no modo cor 0 = sem cor; 1 = preto; 2 = azul; 3 = verde; 4 = amarelo; 5 = vermelho; 6 = branco; 7 = marrom

Modo de cores

- Quando o sensor de cor estiver no modo colorido, as luzes de LED vermelha, verde e azul na frente do sensor acenderão.
- Um objeto que n\u00e3o seja de uma dessas cores pode ser detectado como "Sem cor" ou pode ser detectado como uma cor semelhante.
- O objeto ou superfície deve estar muito próximo do sensor (mas sem tocá-lo) para ser detectado com precisão.

- Modo da intensidade da luz refletida
 - O sensor de cor detecta a intensidade da luz refletida a partir de uma lâmpada vermelha emissora de luz.
 - O sensor utiliza uma escala que vai de 0 (muito escuro) até 100 (muita luz).
 - Como exemplo, o robô pode ser programado para seguir uma linha preta sobre uma superfície branca.

Modo da intensidade da luz refletida

Pode-se usar este modo para fazer o robô seguir uma linha preta em uma superfície branca. À medida que o sensor passa pela linha preta, a medição da luz diminui gradualmente. Isso pode ser usado para dizer o quão perto o robô está da linha.

- Modo da intensidade da luz ambiente
 - O sensor mede a força da luz que entra pela janela vinda do ambiente.
 - O sensor utiliza uma escala que vai de 0 (muito escuro) até 100 (muita luz).
 - Como exemplo, o robô pode ser programado para disparar um alarme quando o sol nasce, ou interromper uma ação quando as luzes se apagam.

Modo da intensidade da luz ambiente

Você pode usar este modo para detectar o brilho das luzes da sala ou quando outras fontes de luz incidem sobre o sensor. Você também pode usar isso para detectar quando as luzes de uma sala estão acesas ou quando uma lanterna é apontada para o seu robô.

INTERVALO 15 MIN.

Montagem

 Montando o módulo de sensor de cor no carro com duas rodas

Programação

Identifica cor


```
controller tarefa1 ▼
  repete para sempre
            Get Color Sensor P1 ▼
              Get Color Sensor P1 ▼
     senão,
                Get Color Sensor P1 ▼
       senão,
                  Get Color Sensor P1 ▼
```

Programação

Seguidor de linha

Próxima aula....

Sensores complexos

- Ultrassônicos
- Lasers
- o Visão

o Prática

Livrando-se de obstáculos

Próxima quarta ... prova da 1^a unidade

- Aula 01 Introdução, Histórico e Componentes
 de Sistemas Robóticos (Capítulos I, II e III)
- Aula 02 Locomoção (Capítulos IV e V)
- Aula 03 Manipulação (Capítulo VI)
- Aula 04 Sensores (Capítulos VII e VIII)
- Avaliação 1^a unidade
 - Prova escrita (estudar os slides e capítulos do livro) individual valendo 7,0 pontos (sala multimídia)
 - Prova prática movimentação de um robô com 2 rodas + roda de apoio, em um circuito pré-definido, poderemos usar o sensor de luz também (LAACOSTE)

Monitoria

- Arthur Felipe LAACOSTE
 - Segundas e quintas das 14h às 17h
- Github

https://github.com/artiefellype/EDO6-doc

