BEST AVAILABLE COPY

AUK Patent Application..., GB ..., 2043501 A

- (21) Application No 7907165
- (22) Date of filing 28 Feb 1979
- (43) Application published 8 Oct 1980
- (51) INT CL3 B24D 11/00
- (52) Domestic classification 23D 2G2 2G3E
- (55) Documents cited GB 1511346
 - GB 1466054
 - GB 1237483
 - **GB 1327653**
 - GB 1327051
 - GB 1232269
 - GB 1098542
 - GB 1063615
 - GB 1013419
 - G3 902716
 - GB 858071
 - GB 790003
 - G3 456985
- (58) Field of search
 - 790
 - intorisco Dovelopments
 - _'mit::
 - Dagg Loris
 - Erwhartot.
 - . Эпавож
- (72) Inventor John Cempbell Francis
 - Danielas
- (74) Angets -
 - Mafford & Hardman Grown

- (54) Abrading member
- (57) An abrading member particularly suited to grinding and smoothing lenses is in the form of a flexible pad.

The pad may be a slotted disc which is flat on one side for attachment to a tool. The other side may be formed with spaced, upstanding projections, the ends of which act as operative abrading surfaces, or perforations may be made in the member. Abrasive particles are incorporated into the pad which is formed of plastics material.

The pad is made by injection moulding a mixture of plastics material and abrasive particles in a mould of the required shape.

BEST AVAILABLE COPY

SPECIFICATION

Tirkding momber

This invention relates to abrading members and in particular to abrading tools for grinding, smoothing and performing other operations on glass and other materials. For example, the invention should find application in grinding lenses.

In lens grinding a tool having the desired curvature of the lens is often used and an abrasive slurry is passed over the surface of the tool in contact with the lens blank while the blank is moved relative to the tool. The resulting abrasive action grinds the blank to the desired curvature corresponding to that of the tool. In this arrangement the tool is subject to wear and has to be brought back to its criginal form from time to time.

Alternatives to the described lens grinding tool have been proposed by way of applying a replaceable pad between the tool and the lens but hitherto such pads have had a short working life and it has been difficult to obtain an accurately shaped surface for the pad.

further alternative has been to apply a plurality of small abrading members or ballets to the surface of a tool but it is difficult to adhere the members to the surface and to position them accurately.

in G.B. Patant 1,273.371 it has also been proposed to provide an abrading member in which spaped areas of a mesh sheet carry 35 abrasive particles.

An object of the present invention is to provide an ebrading member which is flexible, has a long life and a parable of being accurately located on a tool.

According to one espect of the invention an charding member comprises flexible plastics material in which is dispersed abrasive particles, the member having one face with an operative surface at which abrasive particles are located, and the plastics material being homogeneous.

Freferably the pourtility surface constitutes only a pert of the area of said one face. In one offeragement said operative surface is constituted by the outer ands of a physolity of projections upstanding from said one face. In another arrangement the operative surface is constituted by said one face which is a plain surface in which there are formed a plurelity of perforations. Conveniently the area of the operative surface is in the range 30–50% of the total area of said one face.

According to another aspect of the invention in a process for forming an abrading 30 member, plestics moulding material and abrasive particles are intermixed, the mixture is placed in a mould and the mould is heated to injection mould the material to the desired shapp with the particles dispersed in the

According to a further aspect of the invention an abrading member comprises flexible material in which is dispersed abrasive particles, the flexible material being formed with

70 one faue of the material having a plurality of upstanding projections, the outer ends of which act as an operative surface of the member and abrasive particles being located at said operative surface. Preferably the pro-

75 jections are each of circular section and have a flat outer end constituting an operative surface.

According to a still further aspect of theinvention an abrading member comprises flex30 ible material in which is dispersed abrasive
particles, the flexible material having one face
defining an operative surface of the member
in which perforations or depressions are
formed, abrasive particles being located at
85 said operative surface.

For lens grinding the abrading member may be of overall disc-like form with part-segmental portions radiating from a central portion, each portion or only the segmental portions being formed with said upstanding projections or perforations.

In use the abrading member is bonded or otherwise located on a tool of the desired form, the flexibility of the member causing it to conform in shape to the tool and the operative surface facing away from the tool.

Further features of the invention appear from the following description of two embodiments of the invention, suitable for lens grinding, give by way of example and with reference to the drawings in which:

Figure 1 is a perspective view of one form of abrading member having projections, and Figure 2 is a perspective view of another

105 form of abrading member having perforations.
Referring to the drawings, two forms of abrading member are shown, each formed of synthetic flexible plastics material, such as nylon, polypropylene, polyurethane or styrene-

110 acrylonitrile, incorporating abrasive material such as diamond, cubic-boronitride, carborundum or man-made abrasives. The plastics material is coloured according to the grade of abrasive used.

The members are each pads of generally disc-like form having a central circular portion 10 from which extend integral, radially-directed part-segmental portions 11, the number and extent of which are variable. In Fig. 1

120 one face of each of the portions 10 and 11 is formed integrally with upstanding circular projections 12 spaced from one another over the member and having flat outer ends 13. In Fig. 2 the projections 12 are replaced by

125 circular perforations 14 extending through the pad from one side to the other, or only part way through the pad in which case they may be termed depressions.

The size, shape and length of the radially 130 directed slots between the portions 14 par in

reried to give the desired degree of flexibility of the member.

化氯化氯化 化二氯化甲基酚二基化氯

Although in the drawings the projections 12 and perforations 14 are shown in sylimetrical pertorn, they may be in a random at engament and this gives adventages in some applications. Moreover, the projections 12 or perforations 14 in the central circular portion 10 can be omitted, and the projections or perfora-10 tions may be of a shape other than circular, for example, square or hexagonal.

The abrasive material is dispersed through the plastics material so that abrasive is located at the ends 13 of the projections 12 to form 15 an operative abrasive surface which retains its abrasive properties as the projections are worn down. Similar abrasive particles are located at the surface 15 between the perforations of the Fig. 2 embodiment to form the operative

20 abrasive surface.

The other side of the member to the operative surface is flat and in use this surface is handed to or otherwise located on a shaped tool (not shown) which holds the abrading 25 member in position. The too is shaped according to the desired shape which is to be formed by the abrading member. For exampla, when grinding leases the tool can have a concave or convex shape and when the mem-30 Ber is bonded to the tool it conforms to the shape of the tool due to its flexibility.

The abresive surface defined by the operathre surfaces 13 and 15 should consist of an area which gotels in the range 30 to 50% of 35 the total area of the meterial. The sizes of the individual projections or perforations may be 🖟 to 10 mm in diameter with a depth of 🖟 to 3 mm according to the echlication and the fasired working life of the member. The soac-40 ling of the projections of perforations affects. the flow of coolent over the surface which in turn affects the ability of the coolant to remove the glass particles from the lens as amin'the as possible to increase the speed of 13 long-retion and prevent soretching of the surfens being ground by foreign material.

Vilhars the abracing member takes the form charring in Fig. 2 it is particularly suited to oir our materiage in which the member needs to Fig. 35 thin, for example having an overall thicktare of the order of 0.4 mm. In this case the mamber may be perforated as shown, the perforations being circular or of any other convenient form and occupying up to 50% of 53 the fotal area of the member. The size of the perforations can vary but it has been found that perforations of 4 mm diameter are suitable. Such a member finds particular application when a high surface finish is required.

The abrading member is conveniently formed by injection moulding in which case an injecting moulding machine incorporates a simple mould in which the desired shape is mechined.

The string amountains a neutrine and foreign fight

than 300 mesh in size, is mixed with abrasive particles and the mixture is lightly milled to ensure a good dispersion. The size of the abrasive particles will vary according to the 70 application but, for example, for smoothing glass lenses the abrasivo can have a size of 400 mesh.

Using a bench type of moulding machine, with a heating range of up to 200°C, the 75 heating chamber is charged with the mixture of moulding powder and abrasive particles. After pro-heating the mould an injection moulding process is carried out to provide the illustrated abrading member of homogeneous 80 plastics material in which is dispersed the abrasive particles.

In one method of securing the abrading member to a tool an adhesive is applied over the flat face of the member and a grinding or 85 other tool is pressed against the adhesively coated face so that the member adopts the shape of the tool, which may be convex or concave for lens grinding, and is adhered to the too! and the abrading surface is of the 90 desired curvature. The tool is machined to allow for the thickness of the member so that the member is at the required curvature.

Alternatively a double-sided adhesive tape may be used to secure the member, or a thin 95 pad of wet and dry abrasive is fixed to the tool with adhesive and the abrading member is lain on the abrasive pad and no further adhesive is required. The latter arrangement enables the abrading member to be more 100 readily removed from the tool.

Although lens grinding and smoothing has so far been referred to it will be appreciated that the invention will find application for other abrading operations. Injection moulding 105 is suitable for forming relatively small members but when large surfaces are required the material may be made by rolling the plastics material in sheet form using rollers in which the desired shape and spacings of upstanding 110 projections or perforations are formed. Such

sheet material can be used to produce abrading members for use in large or small flat lapping machines, linishing bands, grinding cylinders or a wide range of tooling materials 11.5 which could use a flexible plastics material containing dispersed abrasive particles. The

word, "Linisher" is a registered Trade Mark.

CLAIMS

- 1. An abrading member comprising flexible plastics material in which is dispersed abrasive particles, the member having one face with an operative surface at which abrasive particles are located, and the plastics 125 material being homogeneous.
 - An abrading member according to claim 1 wherein the operative surface constitutes only a part of the area of said one face.

A member according to claim 2 130 wherein said operative surface is constituted by the outer ends of a plantal tylof projections upstanding from said one labe.

- 4. A member apporting to ofeim 2
 whorsin the operative surface is constituted by
 5 said one face which is a plain succeed in which there are formed a plurality of perforations.
- 5. A member according to claim 2, 3 or 4 wherein the area of the operative surface is in10 the range 30–50% of the total area of said one face.
- An abrading member comprising flexible material in which is dispersed abrasive particles, the flexible material being formed
 with one face of the material having a plurality of upstanding projections, the outer ends of which act as an operative surface of the member and abrasive particles being located at said operative surface.
- 20 7. An abrading member comprising flexible material in which is dispersed abrasive particles, the flexible material having one face defining an operative surface of the member in which perforations or depressions are 25 formed, abrasive perforas heigh located at

said operative surface.

S. An abrading member eccording to claim 3 or claim 8 wherein the upstanding

projections each have a flat outer end.

30 9. An abrading member according to sicing 8 wherein the projections are of circular solution.

10. It mainter specifing to only one of the properties are the first form with perties grantal portions are in a first a central portion.

11. A member according to any one of the preceding claims wherein abrasive particles its "ush with said operative surface.

- 40 18. A process for forming an abrading mamber wherein pleatics moulding material and character particles are intermixed, the mixtura is placed in a mould and the mould is bacterial to injection mould the material to the distance characterial.
 - 13. An obrading member substantially as described with reference to Fig. 1 of the drawings.
 - 1.4. An abrading member substantially as described with reference to Fig. 2 of the drawings.

Printed for Nor Norstv's Stationery Office by Curpers & See (Abingden) Ltd — 1930 Published at The Patent Office | 25 Southampton Buildings, Conden | MICS 1997 | from which sopies may be obtained THIS PAGE BLANK (USPTO)