MA602 Análise 2 - Exercícios P3

Adair Neto

26 de junho de 2023

Séries de potências

12.3.1

Questão: Seja r o raio de convergência da série de potências $\sum a_n(x-x_0)^n$. Prove que se $r \in \mathbb{R}^+$, então r=1/L, onde L é o maior valor de aderência da sequência limitada ($\sqrt[n]{|a_n|}$). Assim, temos

$$r = \frac{1}{(\limsup \sqrt[n]{|a_n|})}$$

Resolução:

- 1. Sejam $a \in b$ tais que a < 1/r < b. Como r < 1/a, temos que $1/a \in \mathbb{R}$, porque $r = \sup \mathbb{R} = \sup \{\rho > 0 : \sqrt[n]{|a_n|} < 1/\rho$, $\forall n$ sufficientemente grande $\}$. Como $\sqrt[n]{|a_n|} < 1/r$, existem infinitos $n \in \mathbb{N}$ tais que $\sqrt[n]{|a_n|} \ge a$.
- 2. Como 1/b < r, existe $\rho \in \mathbb{R}$ tal que $1/b < \rho < r$. Assim, dado n suficientemente grande, temos que $\sqrt[n]{|a_n|} < 1/\rho < b$. Ou seja, existem apenas finitos índices n tais que $\sqrt[n]{|a_n|} \ge b$.
- 3. Portanto, 1/r é valor de aderência de $(\sqrt[n]{|a_n|})$ e nenhum número maior do que 1/r satisfaz isso.

12.3.2

Questão: Se $\sqrt[n]{|a_n|} = L$, prove que as séries de potências

$$\sum_{n=0}^{\infty} a_n x^{2n} \quad e \quad \sum_{n=0}^{\infty} a_n x^{2n+1}$$

têm ambas raio de convergência igual a $1/\sqrt{L}$.

Resolução:

- 1. A ideia é reescrever a série para ter x^n .
- 2. Sejam $b_{2n} = a_n$ e $b_{2n-1} = 0$. Assim,

$$\sum a_n x^{2n} = \sum b_n x^n$$

3. Temos que os termos ímpares de b_n são nulos e

$$\lim \sqrt[n]{|b_n|} = \lim \sqrt[2n]{|b_{2n}|} = \lim \sqrt[2n]{|a_n|} = \lim \sqrt[n]{|a_n|} = \sqrt{\mathbf{L}}$$

- 4. Ou seja, temos dois valores de aderência: 0 e \sqrt{L} . Pelo exercício 1, temos que $r = 1/\sqrt{L}$.
- 5. Para a outra série, escrevemos $b_{2n} = 0$ e $b_{2n-1} = a_n$. Assim, os termos pares de b_n são nulos e, pelo mesmo argumento,

1

$$\lim \sqrt[n]{|b_n|} = \lim \sqrt[2n-1]{|b_{2n-1}|} = \lim \sqrt[2n-1]{|a_n|} = \sqrt{L}$$

12.3.3

Questão: Determine o raio de convergência de cada uma das séries seguintes:

- 1. $\sum a^{n^2}x^n$.
- 2. $\sum a^{\sqrt{n}}x^n$.

 $3. \sum n^{\frac{\ln n}{n}} x^n.$

Resolução:

1. $\sum a^{n^2}x^n$.

· Note que

$$\sqrt[n]{|a_n|} = \sqrt[n]{|a^{n^2}|} = |a^{n^2}|^{1/n} = |a|^n \xrightarrow{n \to \infty} \begin{cases} 0, & |a| < 1\\ 1, & |a| = 1\\ \infty, & |a| > 1 \end{cases}$$

• Assim, se |a| < 1, $r = \infty$; se |a| = 1, r = 1; se |a| > 1, então r = 0.

 $2. \sum a^{\sqrt{n}} x^n.$

• Note que

$$\sqrt[n]{|a^{\sqrt{n}}|} = |a|^{\frac{\sqrt{n}}{n}} = |a|^{1/\sqrt{n}}$$

• Como

$$\lim \ln \left(|a|^{1/\sqrt{n}} \right) = \lim \left(\frac{1}{\sqrt{n}} \ln |a| \right) = 0$$

• Temos que $\lim |a|^{1/\sqrt{n}} = 1$ (para $a \neq 0$).

• Assim, se a = 0, $r = \infty$, e se $a \neq 0$, temos r = 1.

 $3. \sum n^{\frac{\ln n}{n}} x^n.$

· Primeiro note que

$$\sqrt[n]{|n^{\frac{\ln n}{n}}|} = n^{\frac{\ln n}{n^2}}$$

• Como no item anterior,

$$\lim \ln \left(n^{\frac{\ln n}{n^2}}\right) = \lim \left(\frac{\ln n}{n^2} \ln n\right) = 0 \implies \lim n^{\frac{\ln n}{n^2}} = 1$$

12.3.4

Questão: Prove que a função $f:(-r,r) \longrightarrow \mathbb{R}$, dada por $f(x) = \sum_{n=0}^{\infty} a_n x^n$, onde r é o raio de convergência desta série, é uma função par (ímpar) sse. $a_n = 0$ para todo n ímpar (par).

Resolução:

1. Caso 1: par.

$$f(x) = f(-x) \iff \sum a_n x^n = \sum a_n (-x)^n = \sum (-1)^n a_n x^n$$

Assim, $a_n = (-1)^n a_n$. Ou seja, $a_n = 0$ para todo n ímpar.

2. Caso 2: ímpar.

$$f(-x) = -f(x) \iff \sum (-1)^n a_n x^n = -\sum a_n (-x)^n$$

Assim, $(-1)^n a_n = -a_n$. Ou seja, $a_n = 0$ para todo n para

3. Observe que todas as afirmações acima são "sse."

12.3.5

Questão: Seja $\sum_{n=0}^{\infty} a_n x^n$ uma série de potências cujos coeficientes são determinados pelas igualdades $a_0 = a_1 = 1$ e $a_{n+1} = a_n + a_{n-1}$. Mostre que o raio de convergência desta série é igual a $(-1 + \sqrt{5})/2$.

Resolução:

1. Seja $x_n = a_n/a_{n+1}$. Note que $x_{n+1} = \frac{1}{1+x_n}$. De fato,

$$\frac{1}{1+x_n} = \frac{1}{1+a_n/a_{n+1}} = \frac{1}{\frac{a_{n+1}+a_n}{a_{n+1}}} = \frac{a_{n+1}}{a_{n+1}+a_n} = \frac{a_{n+1}}{a_{n+2}} = x_{n+1}$$

2. Assim, (x_n) converge para a solução positiva de $x^2 + x - 1 = 0$, i.e.,

$$x_n \rightarrow \frac{-1+\sqrt{5}}{2}$$

3. Portanto, $(\lim \sqrt[n]{|a_n|})^{-1} = \lim x_n$ e o raio de convergência segue:

$$r = \lim x_n = \frac{-1 + \sqrt{5}}{2}$$

12.3.6

Questão: Prove que a função

$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(n!)^2} \left(\frac{x}{2}\right)^{2n}$$

está bem definida para todo $x \in \mathbb{R}$ e que

$$f'' + \frac{f'}{x} + f = 0$$

para todo $x \neq 0$.

Resolução:

1. Note que

$$\frac{1}{(n!)^2} \left(\frac{x^2}{4}\right)^n \le \frac{1}{n!} \left(\frac{x^2}{4}\right)^n$$

E como a série exponencial $\sum \frac{x^n}{n!}$ converge para todo $x \in \mathbb{R}$, temos que a série converge.

2. Derivando termo a termo,

$$f'(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{(n!)^2} \frac{(2n)}{4^n} x^{2n-1}, \quad f''(x) = \sum_{n=2}^{\infty} \frac{(-1)^n}{(n!)^2} \frac{(2n)(2n-1)}{4^n} x^{2n-2}$$

3. Assim, substituindo,

$$f''(x) + \frac{f'(x)}{x} + f(x) = \sum_{n=2}^{\infty} \frac{(-1)^n}{(n!)^2} \frac{(2n)(2n-1)}{4^n} x^{2n-2} + \sum_{n=1}^{\infty} \frac{(-1)^n}{(n!)^2} \frac{(2n)}{4^n} x^{2n-2} + \sum_{n=0}^{\infty} \frac{(-1)^n}{(n!)^2} \frac{x^{2n}}{4^n} = 0$$

Equicontinuidade

Teorema de Arzelà-Ascoli

Questão: Enuncie o Teorema de Arzelà-Ascoli.

Resolução:

Seja $f_n:[a,b]\longrightarrow \mathbb{R}$ uma sequência equicontínua de funções e uniformemente limitada. Então f_n possui uma subsequência convergente.

DF 9.8.1

Questão: Usando identidades trigonométricas, mostre as relações de ortogonalidade para as funções seno e cosseno.

1.
$$\int_0^{2\pi} \sin(jx) \sin(kx) dx = \begin{cases} 0, & j \neq k \\ \pi, & j = k \end{cases}$$

2.
$$\int_0^{2\pi} \sin(jx) \cos(kx) dx = 0$$

3.
$$\int_0^{2\pi} \cos(jx) \cos(kx) dx = \begin{cases} 0, & j \neq k \\ \pi, & j = k \end{cases}$$

Resolução:

1.
$$\int_0^{2\pi} \sin(jx) \sin(kx) dx.$$

1. Se i = k, temos

$$\int_0^{2\pi} \sin^2(kx) \ dx = \int_0^{2\pi} (1 - \cos^2(kx)) \ dx$$

mas

$$\cos(2x) = \cos^2(x) - \sin^2(x) = \cos^2(x) - (1 - \cos^2(x)) = 2\cos^2(x) - 1$$

implica que

$$\cos^2(x) = \frac{\cos(2x)}{2} + \frac{1}{2}$$

Assim,

$$\int_0^{2\pi} (1 - \cos^2(kx)) \ dx = 2\pi - \int_0^{2\pi} \left(\frac{\cos(2kx)}{2} + \frac{1}{2} \right) \ dx = 2\pi - \left(\pi + \frac{\sin(2kx)}{2 \cdot 2k} \Big|_0^{2\pi} \right) = \pi$$

2. Se $j \neq k$, então como

$$\sin(jx)\sin(kx) = -\cos(jx)\cos(kx) + \cos(jx - kx)$$

e

$$\cos(jx)\cos(kx) = \cos(jx + kx) + \sin(jx)\sin(kx)$$

temos

$$\int_0^{2\pi} \sin(jx) \sin(kx) \ dx = -\frac{1}{2} \int_0^{2\pi} (\cos(jx + kx) - \cos(jx - kx)) \ dx$$

Calculando,

$$-\frac{1}{2} \int_0^{2\pi} (\cos(jx + kx) - \cos(jx - kx)) \ dx = -\frac{1}{2} \left[\left. \frac{\sin(jx + kx)}{j + k} \right|_0^{2\pi} - \frac{\sin(jx - kx)}{j - k} \right|_0^{2\pi} \right] = 0$$

- 2. $\int_0^{2\pi} \sin(jx) \cos(kx) dx = 0$: Observe que $2\sin(jx) \cos(kx) = \sin(jx + kx) + \sin(jx kx)$.
- 3. $\int_0^{2\pi} \cos(jx) \cos(kx) dx$: Análogo ao primeiro item.

DF 9.8.2

Questão: Considere a sequência de funções definidas em $[0, \infty)$:

$$f_n(x) = \sin\sqrt{x + 4n^2\pi^2}$$

Mostre que a sequência (f_n) é equicontínua. Isso mostra que o Teorema de Arzelà-Ascoli não tem um análogo para funções definidas em intervalos infinitos.

Resolução:

1. Queremos mostrar que para todo $\varepsilon > 0$, existe $\delta > 0$ tal que, para todo $x, y \in [0, \infty)$,

$$|x-y| < \delta \implies |f_n(x) - f_n(y)| < \varepsilon, \quad \forall f_n$$

2. Observe que

$$|f_n(x) - f_n(y)| = |\sin \sqrt{x + 4n^2\pi^2} - \sin \sqrt{y + 4n^2\pi^2}|$$

3. Pelo Teorema do Valor Médio, existe $\xi \in (0, \infty)$ tal que

$$|f_n(x) - f_n(y)| = |f'_n(\xi)| |x - y| \le |x - y| < \delta$$

pois
$$|f'_n(\xi)| \in [0,1]$$

- 4. Assim, tomando $\delta = \varepsilon$, temos que (f_n) é equicontínua.
- 5. Observação: $f_n \rightarrow 0$.

• De fato, seja

$$\theta = \arctan\left(\frac{2\pi n}{\sqrt{x}}\right), \quad \sin(\theta) = \frac{2\pi n}{\sqrt{x + 4n^2\pi^2}}$$

• Então,

$$\sqrt{x + 4n^2\pi^2} = \frac{2\pi n}{\sin\theta} = \frac{2\pi n}{\sin\left(\arctan\left(\frac{2\pi n}{\sqrt{x}}\right)\right)} =: \alpha$$

Mas

$$\lim_{n\to\infty} \sin\left(\arctan\left(\frac{2\pi n}{\sqrt{x}}\right)\right) = 1$$

• Com isso, como $\sin \sqrt{x + 4n^2\pi^2} = \sin \alpha$, tomando $n \to \infty$, temos que $\sin \alpha$ converge para $\sin(2\pi n) = 0$.

DF 9.8.3

Questão: Seja (f_n) uma sequência de funções contínuas definidas em [0,1] tais que

- 1. $f_n(0) = a$ para todo n.
- 2. Existe k > 0 tal que, para todo $x, y \in [0, 1]$,

$$|f_n(x) - f_n(y)| \le k|x - y|, \quad \forall n$$

Mostre que (f_n) contém uma subsequência convergindo uniformemente.

Resolução:

- 1. Utilizaremos o Teorema de Arzelà-Ascoli. Para isso, precisamos verificar que (f_n) é equicontínua e uniformemente limitada.
- 2. Equicontinuidade.
 - Seja K = max k. Dado $\varepsilon > 0$, tome $\delta = \varepsilon / K$. Então, para todo $x, y \in [0, 1]$,

$$|x-y| < \delta \implies |f_n(x) - f_n(y)| \le K|x-y| < K\frac{\varepsilon}{K} = \varepsilon, \quad \forall f_n$$

- Logo, (f_n) é equicontínua.
- 3. Limitação uniforme.
 - Note que

$$|f_n(x)| \le |f_n(0)| + K = |a| + K$$

• Portanto, (f_n) é uniformemente limitada. Por Arzelà-Ascoli, temos que (f_n) possui subsequência uniformemente convergente.

DF 9.8.4

Questão: Mostre que no exercício anterior, a hipótese 2, que é de que as funções sejam uniformemente lipschitzianas, pode ser substituída pela hipótese das f_n serem uniformemente Hölder contínuas, i.e., que existe k > 0 e $0 < \lambda \le 1$ tal que $|f(x) - f(y)| \le k|x-y|^{\lambda}$, para todo $x,y \in [0,1]$.

Resolução:

Tome $\delta = (\varepsilon/K)^{1/\lambda}$ na demonstração anterior.

DF 9.8.5

Questão: A sequência $(\sin(nx))$ é equicontínua em [0,1]?

Resolução:

Suponhamos que a sequência seja equicontínua. Como ela é limitada em [0,1], pelo Teorema de Arzelà-Ascoli, temos que admite subsequência uniformemente convergente. Porém, $\sin(nx)$ não possui subsequência convergente.

DF 9.8.6

Questão: Considere a sequência $\left(\frac{\sin(nx)}{x}\right)$ em [0,1]. Tente aplicar o teorema de Arzelà-Ascoli a essa sequência.

Resolução:

1. Observe que para x = 0, temos $\frac{\sin(nx)}{x} \xrightarrow{x \to 0} n$. De fato, tomando $\theta = nx$,

$$\frac{\sin(nx)}{x} = n \frac{\sin(nx)}{nx} = n \frac{\sin \theta}{\theta} \xrightarrow{\theta \to 0} n$$

2. Assim, a sequência não é uniformemente limitada, pois para x = 0,

$$\left|\frac{\sin(nx)}{x}\right| \stackrel{n\to\infty}{\longrightarrow} \infty$$

DF 9.8.7

Questão: Uma família \mathfrak{F} de funções definidas em um intervalo limitado [a,b] é equicontínua em um ponto $x_0 \in [a,b]$ se, dado $\varepsilon > 0$, existir $\delta > 0$ (dependendo de x_0 e ε) tal que

$$|x-x_0| < \delta \implies |f(x)-f(x_0)| < \varepsilon, \quad \forall f \in \mathfrak{F}$$

Mostre que se uma família é equicontínua em todos os pontos de [a,b], então ela é equicontínua na definição dada.

Resolução:

Usar compacidade e tomar menor dos deltas. Ver Teorema 19 do Elon (p. 285).

Lista 2, Exercício 1

Questão: Dê exemplo de uma sequência de funções contínuas que converge para uma função contínua, mas em que a convergência não seja uniforme.

Resolução: Considere $f_n(x) = x/n$ definida em toda reta. Então, dado $x_0 \in \mathbb{R}$ temos que

$$f_n(x_0) = \frac{x_0}{n} \xrightarrow{n \to \infty} 0$$

Assim, temos convergência pontual, mas não uniforme. De fato, dados $\varepsilon > 0$ e $k \in \mathbb{N}$, temos

$$|x| > \varepsilon k \implies |f_k(x)| = \left|\frac{x}{k}\right| > \varepsilon$$

Outro exemplo: A sequência de funções $f_n(x) = x^n(1-x^n)$ converge pontualmente para a função nula no intervalo [0,1], mas essa convergência não é uniforme. De fato, para todo $n \in \mathbb{N}$, podemos achar um ponto $x = \sqrt[n]{1/2}$ tal que $f_n(x) = 1/4$.

Lista 2, Exercício 2

Questão: Dê exemplo de uma sequência de funções contínuas que converge para uma função contínua, mas em que a convergência seja uniforme.

Resolução: Temos que $f_n(x) = x^n$ converge uniformemente para $f \equiv 0$ em $[0, 1 - \delta], 0 < \delta < 1$. De fato, $f_n(x) = x^n \le (1 - \delta)^n$. E como $0 < 1 - \delta < 1$,

$$|f_n(x) - f(x)| = x^n \le (1 - \delta)^n \stackrel{n \to \infty}{\longrightarrow} 0$$

Lista 2, Exercícios 3 e 4

Questão: Dê exemplo de uma sequência de funções descontínuas que converge para uma função contínua, mas em que a convergência seja uniforme. E dê um exemplo, se possível, em que as funções da sequência possuem um número infinito de descontinuidades.

Resolução:

• Considere $f_n(x) : [0,1] \longrightarrow \mathbb{R}$ dada por

$$f_n(x) = \begin{cases} \frac{1}{n}, & x = 0\\ 0, & x \neq 0 \end{cases}$$

• Afirmamos que $f_n(x) \rightarrow f \equiv 0$ uniformemente.

• Dado $\varepsilon > 0$, tome $N \in \mathbb{N}$ tal que $N > 1/\varepsilon$. Então

$$n > N \implies |f_n(x)| \le \frac{1}{n} < \frac{1}{N} < \varepsilon, \quad \forall x \in [0, 1]$$

2. · Basta considerar

$$f_n(x) = \begin{cases} \frac{1}{n}, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

• E aplicar o mesmo argumento acima.

Lista 2, Exercício 5

Questão: Considere as sequências

1. x^n/n ,

2. $x^n/(1+x^n)$, 3. $x^n/(n+x^n)$.

Verifique se convergem pontual ou uniformemente em $[0, \infty)$ e [0, 1] quando $n \to \infty$.

Resolução:

1. x^n/n : vimos (exercício 2.1) que converge pontualmente, mas não uniformemente.

2. $x^n/(1+x^n)$: ver Capítulo 12, Seção 1, Exercício 1.

3. $x^{n}/(n+x^{n})$

Escrevemos

$$\frac{x^n}{n+x^n} = \frac{1}{nx^{-n}+1}$$

Analisar

$$\lim_{n\to\infty}\frac{n}{x^n}=\lim_{n\to\infty}\frac{1}{x^n\ln(x)}$$

Lista 2, Exercício 6

Questão: Seja $f(x) = x^2$ no intervalo [0,1]. Calcule n_0 tal que $|f(x) - B_n(x)| < 1/1000$ para todo $x \in [0,1]$ e $n > n_0$. Resolução:

1. Polinômio de Bernstein:

· Temos que

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} \left(\frac{k}{n}\right)^2$$

Como

$$\sum_{k=0}^{n} \binom{n}{k} x^{k} (1-x)^{n-k} = 1$$

· Temos que

$$\sum_{k=0}^{n} \binom{n-1}{k-1} x^{k-1} (1-x)^{n-1-(k-1)} = 1$$

• Multiplicando ambos os lados por nx e usando

$$\binom{n-1}{k-1} = \left(\frac{k}{n}\right) \binom{n}{k}$$

temos que

$$\sum_{k=0}^{n} \binom{n}{k} k x^k (1-x)^{n-k} = nx$$

• Assim, usando n-1 em vez de n,

$$\sum_{k=0}^{n} {n-1 \choose k-1} (k-1)x^{k-1} (1-x)^{n-1-(k-1)} = (n-1)x$$

• Novamente multiplicando por nx e usando a mesma identidade,

$$\sum_{k=0}^{n} \binom{n}{k} k(k-1)x^{k} (1-x)^{n-k} = n(n-1)x^{2}$$

· Portanto,

$$n(n-1)x^{2} + nx = \sum_{k=0}^{n} \binom{n}{k} k(k-1)x^{k} (1-x)^{n-k} + \sum_{k=0}^{n} \binom{n}{k} kx^{k} (1-x)^{n-k}$$
$$= \sum_{k=0}^{n} \binom{n}{k} k^{2} x^{k} (1-x)^{n-k}$$

• Dividindo por n^2 , temos o desejado:

$$\left(\frac{n-1}{n}\right)x^2 + \frac{1}{n}x = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} \left(\frac{k}{n}\right)^2 = B_n(x)$$

- 2. Calcular diferença:
 - · Note que

$$|f(x) - B_n(x)| = \left| x^2 - \left(\frac{n-1}{n} \right) x^2 + \frac{1}{n} x \right| = \left| x^2 \left(1 - \left(\frac{n-1}{n} \right) \right) + \frac{1}{n} x \right|$$
$$= \left| \frac{1}{n} x^2 + \frac{1}{n} x \right| = \left| \frac{1}{n} (x^2 + x) \right| = \frac{1}{n} (x^2 + x) \le \frac{2}{n}$$

- Pois $x^2 + x \le 2$ para todo $x \in [0, 1]$.
- Assim,

$$\frac{2}{n} < \frac{1}{1000} \iff n > 2000$$

Lista 2, Exercício 7

Questão: Calcule o n-ésimo polinômio de Bernstein para $f(x) = x^3$ no intervalo [0,1]. Escreva por extenso o polinômio de Bernstein de grau 3 para $f(x) = x^3$ no intervalo [0,1].

Resolução: Repetir o argumento acima.

Lista 2, Exercício 8

Questão: Mostre que e^x não pode ser aproximada uniformemente em todo \mathbb{R} por polinômios. O teorema de Bernstein-Weierstrass é falho em intervalos infinitos.

Resolução:

1. Suponha que exista um polinômio p(x) tal que $|p(x) - e^x| < 1$ para todo x real. Então existe M > 0 tal que

$$|x| > M \Longrightarrow \left| 1 - \frac{e^x}{p(x)} \right| < \frac{1}{|p(x)|}$$

2. Assim,

$$\lim_{x \to +\infty} \frac{1}{|p(x)|} = 0 \implies \lim_{x \to +\infty} \frac{e^x}{p(x)} = 1$$

o que é absurdo.

Lista 2, Exercício 9

Questão: Mostre que $\log x$ não pode ser aproximada uniformemente em $(0, \infty]$ por polinômios. O teorema de Bernstein-Weierstrass é falho em intervalos infinitos.

Resolução:

1. Suponha que exista um polinômio p(x) tal que $|\ln(x) - p(x)| < 1$ para todo $x \in (0, 1]$. Então temos que

$$\left| \frac{\ln(x)}{p(x)} - 1 \right| < \frac{1}{|\ln(x)|} \to 0$$
 quando $x \to 0^+$

2. Mas isso é absurdo, pois

$$\lim_{x \to 0^+} \frac{|p(x)|}{|\ln(x)|} = 0$$

Lista 2, Exercício 10

Questão: Estude o problema dos momentos.

Resolução:

Seja $f:[0,1] \longrightarrow \mathbb{R}$ uma função contínua. Os **momentos** de f são definidos por

$$M_n = \int_0^1 x^n f(x) \ dx, \quad n \in \mathbb{N}_0$$

Dados números $M_0, M_1, ...$, é possível determinar uma função contínua f cujos momentos são esses números? A unicidade segue pelo Teorema de Aproximação de Weierstrass (ver exercício 13 da lista 2).

Lista 2, Exercício 11

Questão: Existência subsequência convergente de $f_n(x) = \sin(nx)$, $x \in [0, 2\pi]$?

Resolução:

Suponha que exista uma subsequência $(f_{n_k}) = (\sin n_k x)$ que convirja pontualmente para todo $x \in [0, 2\pi]$.

Assim, a sequência $g_k(x) = (\sin n_k x - \sin n_{k+1} x)^2$ converge simplesmente para zero.

Como $|g_k(x)| \le 4$ para qualquer $x \in [0, 2\pi]$, temos que

$$\lim_{k\to\infty} \int_0^{2\pi} (\sin n_k x - \sin n_{k+1} x)^2 dx = 0$$

Por outro lado,

$$\int_0^{2\pi} \sin(jx) \sin(kx) dx = \begin{cases} 0, & j \neq k \\ \pi, & j = k \end{cases}$$

implica que

$$\int_0^{2\pi} (\sin n_k x - \sin n_{k+1} x)^2 dx = 2\pi$$

o que é uma contradição.

Logo, (sin nx) não contém subsequência convergente.

Lista 2, Exercício 12

Questão: Determine para quais valores de x em \mathbb{R} a série

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$$

é convergente.

Resolução:

1. Calcular $\sqrt[n]{|a_n|}$.

$$\sqrt[n]{|a_n|} = \left| \frac{(-1)^{n+1}}{n} \right|^{1/n} = \left(\frac{1}{n} \right)^{1/n} \xrightarrow{n \to \infty} 1$$

Assim, temos que o raio de convergência é $r = 1/\lim \sqrt[n]{|a_n|} = 1$.

2. Avaliar os extremos.

- Para x = 1, como $1 \ge 1/2 \ge 1/3 \ge \cdots \ge 0$ e $\lim 1/n = 0$, pelo teste das séries alternadas, temos que a série converge.
 - Teste da das séries alternadas: Se $x_1 \ge x_2 \ge ... \ge 0$ e $\lim x_k = 0$, então, $\sum_{k=1}^{\infty} (-1)^{k+1} x_k$ converge.

• Para x = -1, temos

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (-1)^n = \sum_{n=1}^{\infty} \frac{(-1)^{2n+1}}{n}$$

3. Conclusão: converge (para ln(x+1)) para |x| < 1 ou x = 1.

Lista 2, Exercício 13

Questão: Seja $f:[0,1] \longrightarrow \mathbb{R}$ uma função contínua tal que

$$\int_0^1 x^n f(x) \ dx = 0$$

para todo $n \in \mathbb{N}_0$. Mostre que f(x) = 0 para todo $x \in [0, 1]$.

Resolução:

Temos que

$$\int_0^1 P(x)f(x) \ dx = 0$$

para qualquer polinômio P(x).

Pelo Teorema de Aproximação de Weierstrass, existe uma sequência de polinômios (P_n) tal que P_n converge uniformemente para f. Assim, podemos "passar o limite para dentro da integral",

$$\lim_{n \to \infty} \int_0^1 P_n(x) f(x) \ dx = \int_0^1 f^2(x) \ dx = 0$$

O que implica que $f \equiv 0$.

Teorema de Bernstein

Questão: Enuncie o Teorema de Bernstein.

Resolução: Seja $f:[0,1] \longrightarrow \mathbb{R}$ uma função contínua. Definamos a sequência $B_n:[0,1] \longrightarrow \mathbb{R}$ dada por

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right)$$

Então B_n converge uniformemente para f no intervalo [0, 1].

Obs: O Teorema de Aproximação de Weierstrass generaliza esse resultado para qualquer intervalo [a,b].