9-12 клас

Задача	Отговор	Решение						
1	-4	С проверка, започвайки от -1 , -2 , -3 и -4 , достигаме до отговора -4 .						
2	4	$\sqrt{0}, \sqrt{1}, \sqrt{4}, \sqrt{9}$ са рационалните числа. Търсеният брой е 4.						
3	0	$\sqrt{(1-\sqrt{2})^2}: (1-\sqrt{2}) + 1 = 1-\sqrt{2} : (1-\sqrt{2}) = (\sqrt{2}-1): (1-\sqrt{2}) = 0$						
4	6	Нека търсеното число е $x \Rightarrow (16^{16})^x = 64^{64} \Rightarrow ((4^2)^{16})^x = (4^3)^{64} \Rightarrow$ $4^{32x} = 4^{3.64} \Rightarrow 32x = 3.64 \Rightarrow x = 6$						
5	24	Разполагаме точките две по две така, че да са краища на диаметър. Така се получават по 6 правоъгълни триъгълника с обща хипотенуза за всеки диаметър. Окончателно 4.6=24 правоъгълни триъгълника.						
6	6	П 2	A	В				
		Преди 3 години Преди 2 години Сега	x + 1 $x + 3$	$\frac{\frac{x}{3}}{\frac{x}{3}}$	1	Уравнение $x + 1 = 2(\frac{1}{2})$	etto e $\frac{x}{3} + 1) \Rightarrow x = 3 \Rightarrow 6$	
7	-1	OT $\frac{6n+1}{3n+2} = 2 - \frac{3}{3n+2} \implies 3n+2 = \pm 1; \pm 3 \implies n = -1.$						
8	3	$3+(3^2+3^3+3^4)+(3^5+3^6+3^7)+\cdots+(3^{2018}+3^{2019}+3^{2020})=$ $=3+3^2\times(1+3+3^2)+\cdots+3^{2018}\times(1+3+3^2)$ $=3+3\times13+\cdots+3^{2018}\times13$ Остатъкът при на $3+3^2+3^3+\cdots+3^{2019}+3^{2020}$ деление на 13 е 3.						
9	3	Нека броят на бутилките от 1 и от 3 литра са съответно x и y . Тогава бутилките от 5 литра са $10 - x - y$. От $1 \times x + 3 \times y + (10 - x - y) \times 5 = 26 \Rightarrow 2x + y = 12$. С помощта на $2x + y = 12$ попълваме таблица: 1π 3π 5π 6 бутилки 0 бутилки 4 бутилки 5 2 3 4 4 2						
		3	6	=	1			
		2	8		0			

		От таблицата се вижда, че търсеният брой е 3.	
10	1991	$25a^2 + 20a + 9b^2 + 30b + 2020 = (5a + 2)^2 + (3b + 5)^2 + 1991 \ge$	
		1991.	
		Тогава най- малката стойност на израза е 1991.	
	1		
11	3	$N\sqrt{2} - \sqrt{8} + M = 1 \Leftrightarrow (N-2)\sqrt{2} + M = 1$	
		Ако $N \neq 2 \Rightarrow (N-2)\sqrt{2} + M$ е ирационално число. Тогава $N=2$.	
		Вече не е трудно да получим, че M=1. Тогава M+N=3.	
12	25	Нека <i>ABCD</i> е трапеца, О е пресечна точка на диагоналите му,	
		AB > CD.	
		От равенството на лицата на триъгълниците ADO и BCO. Следва, че	
		възможните лица на четирите триъгълника са 4, 4, 6, 9; 4, 6, 6, 9; 4, 6,	
		9,9.	
		От $S_{ABO} > S_{DCO}$ и $\frac{AO}{OC} = \frac{S_{AOD}}{S_{COD}}$ и $\frac{AO}{OC} = \frac{S_{AOB}}{S_{COB}}$	
		Следва, че лицата на триъгълниците са 4, 6, 6 и 9.	
		Тогава лицето на трапеца е $6 + 6 + 9 + 4 = 25$.	
13	2	$ x^3 - x = 0 \Rightarrow$	
		$x^3 - x = 0$, ако $x \ge 0$. Корени са числата 0 и 1.	
		$x^3 + x = x(x^2 + 1) = 0$, ако $x < 0$. Това уравнение няма реални корени.	
14		Подреждаме по степените на х:	
	(z-y)	$(y-z)v^2 - (z^2 - y^2)v + yz(z-y) - (z-y)(v^2 - (z+y)v + yz)$	
	(x-z)	$(y-z)x^2 - (z^2 - y^2)x + yz(z-y) = (z-y)(x^2 - (z+y)x + yz)$ $= (z-y)(x-z)(x-y).$	
	(x-y)		
15	13	Тъждеството $x^2 + x + 1 = A.(x - 2)^2 + B.(x - 2) + C$	
		е изпълнено и за $x = 3$. Тогава	
		$3^2 + 3 + 1 = A \times (3 - 2)^2 + B \times (3 - 2) + C \Rightarrow A + B + C = 13.$	
16	17	Търсим естествено число, по-голямо от 14, което дели и	
		201 - 14 = 187 и $235 - 14 = 221$. Това е числото 17.	

17	2	$\frac{4}{1 + \sqrt{2} + \sqrt{3}} = A + \sqrt{2} - \sqrt{6}$			
		$\frac{4}{1+\sqrt{2}+\sqrt{3}} = \frac{4(1+\sqrt{2}-\sqrt{3})}{\left(1+\sqrt{2}+\sqrt{3}\right)(1+\sqrt{2}-\sqrt{3})} = \frac{4(1+\sqrt{2}-\sqrt{3})}{2\sqrt{2}} =$			
		$=2+\sqrt{2}-\sqrt{6}$			
18	65	Броят на диагоналите се определя от формулата			
		$\frac{N(N-3)}{2} = 2015$			
		The number of diagonals is determined by the following formula:			
		$\frac{N(N-3)}{2} = 2015$			
19	6	От $(10a+b)^2 = 100a^2 + 10ab + b^2$ следва, че предпоследната			
		цифра ще е нечетна, ако цифрата на десетиците на b^2 е нечетна. Това			
		е възможно ако $b=4$ или $b=6$. Цифрата на единиците е 6.			
20					
20	72	Нека АВС е триъгълник с медицентър М и медиани през върховете			
		А, В и С, съответно 9, 12 и 15. Нека ACBD е успоредник, а N е			
		медицентър на триъгълник ABD, тогава AM= BN=6, BM=8, MN=10.			
		Триъгълник BMN е правоъгълен триъгълник и лицето му е 1/3 от			
		лицето на триъгълник АВС. Тогава лицето на дадения е 72 кв. ст.			