

Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

Was ist Big Data?

Der Begriff Big Data bezeichnet Daten, die so groß sind, dass die Größe der Daten zum algorithmischen Problem wird

Volume

Die zu verarbeitenden Datenmengen sind riesig

Variety

Die Daten haben keine feste Struktur

Velocity

Hohe Datenraten und/oder Datenströme

Large Hadron Collider

- Teilchen werden mit annähernd Lichtgeschwindigkeit aufeinander geschossen
- Die Bahnen der beim Zerfall entstehenden Teilchen können beobachtet werden
- PetaBytes von Daten (1,000,000 GigaByte)

Lucas Taylor - http://cdsweb.cern.ch/record/628469 creative common license

Soziale Netzwerke

- Können wir anhand des Facebookgraphen eines Landes erkennen, ob das Land eine Demokratie oder ein totalitärer Staat ist?
- GigaByte bis TeraByte (nur Graph)
- PetaByte zusätzlicher Informationen

Festplatten

- Daten werden auf rotierender Scheibe durch Magnetisierung gespeichert
- Freier Zugriff benötigt Positionierung eines Schreib-/Lesekopfs
- Dies ist relativ langsam, da mechanisch
- Das Lesen von Daten (nach der Positionierung) ist relativ schnell

Typische Funktionsweise

Schreib- und Lesezugriffe werden daher typischerweise in Datenblöcke (Seiten) von einige KByte organisiert

Externspeichermodell

Externspeichermodell

Zwei Flaschenhälse

- Laufzeit CPU
- Anzahl Zugriffe auf externen Speicher

Algorithmenanalyse im Externspeichermodell

- Eingabe ist auf Festplatte
- Disk-Read(x) liest Datum x von Festplatte
- Disk-Write(x) schreibt Datum x auf Festplatte
- Ist x bereits im Speicher, so zählen wir Disk-Read(x) nicht
- (Nur begrenzt viel schneller Speicher)

Qualitätsmaße

- Laufzeit CPU (wie immer)
- Anzahl Disk-Read und Disk-Write Operationen (neu)

B-Bäume

Ziel: Effiziente Suchbaumstruktur im Externspeichermodell

Nachteile von Binärbäumen

- Bei der Suche in Binärbäumen wird u.U. bei jedem neuen Knoten ein Disk-Read durchgeführt
- Es wird aber nur ein einziger
 Wert (der Schlüssel) benötigt

B-Bäume – Grundidee

- Neuer Suchbaumstruktur mit "größeren Knoten" und höherem Verzweigungsgrad
- Jeder Knoten enthält aufsteigend sortierte Folge von Schlüsseln
- k Schlüssel an einem Knoten partitionieren das Schlüsseluniversum in k+1 Intervalle
- für jedes solche Intervall gibt es einen Unterbaum, der alle Knoten des Intervalls enthält

B-Bäume – Struktur eines Knotens x

- Anzahl gespeicherter Schlüssel n[x]
- Die gespeicherten Schlüssel $key_1[x] \le key_2[x] \le \cdots \le key_{n[x]}[x]$ sind aufsteigend sortiert
- Jeder Knoten hat n[x] + 1 Zeiger $c_1[x], c_2[x], ..., c_{n[x]+1}[x]$ auf seine Kinder (**nil**, wenn nicht existent)
- Die Schlüssel und die Zeiger sind jeweils in einem Feld mit 2t 1 bzw. 2t Einträgen gespeichert (für Parameter t)

B-Bäume – Struktur des Baums

- Parameter $t \approx Größe$ eines Datenblocks
- Jeder Knoten hat höchstens 2t 1 Schlüssel (und 2t Kinder)
- Die Wurzel eines nichtleeren B-Baums hat mindestens 1 Schlüssel
- Jeder andere Knoten hat mindestens t − 1 Schlüssel
- Der Baum ist balanciert: jeder Blattknoten hat dieselbe Höhe

Lemma 38

Für einen B-Baum mit Parameter $t, n \ge 1$ Schlüsseln und Höhe h gilt $h \le \log_t ((n+1)/2)$.

Beweis

■ Die Wurzel hat mindestens einen Schlüssel und jeder andere Knoten mindestens t-1 Schlüssel

Lemma 38

Für einen B-Baum mit Parameter t, $n \ge 1$ Schlüsseln und Höhe h gilt $h \le \log_t((n+1)/2)$.

- Die Wurzel hat mindestens einen Schlüssel und jeder andere Knoten mindestens t − 1 Schlüssel
- Es gibt also mind. 2 Knoten der Höhe 1 und mind. 2t Knoten der Höhe 2, 2t² Knoten der Höhe 3, usw.

Lemma 38

Für einen B-Baum mit Parameter t, $n \ge 1$ Schlüsseln und Höhe h gilt $h \le \log_t((n+1)/2)$.

- Die Wurzel hat mindestens einen Schlüssel und jeder andere Knoten mindestens t-1 Schlüssel
- Es gibt also mind. 2 Knoten der Höhe 1 und mind. 2t Knoten der Höhe 2, 2 t^2 Knoten der Höhe 3, usw.
- $n \ge 1 + (t-1) \cdot \sum_{i=1}^{h} 2t^{i-1} = 1 + 2 \cdot (t-1) \cdot \left(\frac{t^{h-1}}{t-1}\right) = 2t^{h} 1$

Lemma 38

Für einen B-Baum mit Parameter t, $n \ge 1$ Schlüsseln und Höhe h gilt $h \le \log_t((n+1)/2)$.

- Die Wurzel hat mindestens einen Schlüssel und jeder andere Knoten mindestens t-1 Schlüssel
- Es gibt also mind. 2 Knoten der Höhe 1 und mind. 2t Knoten der Höhe 2, 2 t^2 Knoten der Höhe 3, usw.
- $n \ge 1 + (t-1) \cdot \sum_{i=1}^{h} 2t^{i-1} = 1 + 2 \cdot (t-1) \cdot \left(\frac{t^{h-1}}{t-1}\right) = 2t^{h} 1$
- Es folgt $t^h \le (n+1)/2$ und somit $h \le \log_t((n+1)/2)$.

Lemma 38

Für einen B-Baum mit Parameter t, $n \ge 1$ Schlüsseln und Höhe h gilt $h \le \log_t((n+1)/2)$.

- Die Wurzel hat mindestens einen Schlüssel und jeder andere Knoten mindestens t-1 Schlüssel
- Es gibt also mind. 2 Knoten der Höhe 1 und mind. 2t Knoten der Höhe 2, 2t² Knoten der Höhe 3, usw.
- $n \ge 1 + (t-1) \cdot \sum_{i=1}^{h} 2t^{i-1} = 1 + 2 \cdot (t-1) \cdot \left(\frac{t^{h-1}}{t-1}\right) = 2t^{h} 1$
- Es folgt $t^h \le (n+1)/2$ und somit $h \le \log_t((n+1)/2)$.

B-BaumSuche(x, k)

- 1. $i \leftarrow 1$
- 2. while $i \le n[x]$ and $k > key_i[x]$ do
- 3. $i \leftarrow i + 1$
- 4. if $i \le n[x]$ and $k = key_i[x]$ then return (x, i)
- 5. **if** x is a leaf **then return nil**
- 6. else
- 7. Disk-Read($c_i[x]$)
- 8. **return** B-BaumSuche($c_i[x], k$)

Grundidee:

Big Data

B-BaumSuche(x, k)

- 1. $i \leftarrow 1$
- 2. while $i \le n[x]$ and $k > key_i[x]$ do
- 3. $i \leftarrow i + 1$
- 4. if $i \le n[x]$ and $k = key_i[x]$ then return (x, i)
- 5. **if** *x* is a leaf **then return nil**
- 6. else
- 7. Disk-Read($c_i[x]$)
- 8. **return** B-BaumSuche($c_i[x], k$)

Grundidee:

Big Data

B-BaumSuche(x, k)

- 1. $i \leftarrow 1$
- 2. while $i \le n[x]$ and $k > key_i[x]$ do
- 3. $i \leftarrow i + 1$
- 4. if $i \le n[x]$ and $k = key_i[x]$ then return (x, i)
- 5. **if** *x* is a leaf **then return nil**
- 6. else
- 7. Disk-Read($c_i[x]$)
- 8. **return** B-BaumSuche($c_i[x], k$)

Grundidee:

Big Data

B-BaumSuche(x, k)

- 1. $i \leftarrow 1$
- 2. while $i \le n[x]$ and $k > key_i[x]$ do
- 3. $i \leftarrow i + 1$
- 4. if $i \le n[x]$ and $k = key_i[x]$ then return (x, i)
- 5. **if** *x* is a leaf **then return nil**
- 6. else
- 7. Disk-Read($c_i[x]$)
- 8. **return** B-BaumSuche($c_i[x], k$)

Grundidee:

B-BaumSuche(x, k)

- 1. $i \leftarrow 1$
- 2. while $i \le n[x]$ and $k > key_i[x]$ do
- $i \leftarrow i + 1$
- 4. **if** $i \le n[x]$ and $k = key_i[x]$ **then return** (x, i)
- 5. **if** *x* is a leaf **then return nil**
- 6. else
- 7. Disk-Read($c_i[x]$)
- 8. **return** B-BaumSuche($c_i[x], k$)

Grundidee:

B-BaumSuche(x, k)

- 1. $i \leftarrow 1$
- 2. while $i \le n[x]$ and $k > key_i[x]$ do
- 3. $i \leftarrow i + 1$
- 4. if $i \le n[x]$ and $k = key_i[x]$ then return (x, i)
- 5. **if** *x* is a leaf **then return nil**
- 6. else
- 7. Disk-Read($c_i[x]$)
- 8. **return** B-BaumSuche($c_i[x], k$)

Grundidee:

Big Data

B-BaumSuche(x, k)

- 1. $i \leftarrow 1$
- 2. while $i \le n[x]$ and $k > key_i[x]$ do
- 3. $i \leftarrow i + 1$
- 4. if $i \le n[x]$ and $k = key_i[x]$ then return (x, i)
- 5. **if** *x* is a leaf **then return nil**
- 6. else
- 7. Disk-Read($c_i[x]$)
- 8. **return** B-BaumSuche($c_i[x], k$)

Grundidee:

Big Data

B-BaumSuche(x, k)

- 1. $i \leftarrow 1$
- 2. while $i \le n[x]$ and $k > key_i[x]$ do
- 3. $i \leftarrow i + 1$
- 4. if $i \le n[x]$ and $k = key_i[x]$ then return (x, i)
- 5. **if** *x* is a leaf **then return nil**
- 6. else
- 7. Disk-Read($c_i[x]$)
- 8. **return** B-BaumSuche($c_i[x], k$)

Grundidee:

Big Data

B-BaumSuche(x, k)

- 1. $i \leftarrow 1$
- 2. while $i \le n[x]$ and $k > key_i[x]$ do
- 3. $i \leftarrow i + 1$
- 4. if $i \le n[x]$ and $k = key_i[x]$ then return (x, i)
- 5. **if** *x* is a leaf **then return nil**
- 6. else
- 7. Disk-Read($c_i[x]$)
- 8. **return** B-BaumSuche($c_i[x], k$)

Grundidee:

Big Data

B-BaumSuche(x, k)

- 1. $i \leftarrow 1$
- 2. while $i \le n[x]$ and $k > key_i[x]$ do
- 3. $i \leftarrow i + 1$
- 4. if $i \le n[x]$ and $k = key_i[x]$ then return (x, i)
- 5. **if** *x* is a leaf **then return nil**
- 6. else
- 7. Disk-Read($c_i[x]$)
- 8. **return** B-BaumSuche($c_i[x], k$)

Grundidee:

Big Data

B-BaumSuche(x, k)

- 1. $i \leftarrow 1$
- 2. while $i \le n[x]$ and $k > key_i[x]$ do
- 3. $i \leftarrow i + 1$
- 4. if $i \le n[x]$ and $k = key_i[x]$ then return (x, i)
- 5. **if** *x* is a leaf **then return nil**
- 6. else
- 7. Disk-Read($c_i[x]$)
- 8. **return** B-BaumSuche($c_i[x], k$)

Grundidee:

Big Data

B-BaumSuche(x, k)

- 1. $i \leftarrow 1$
- 2. while $i \le n[x]$ and $k > key_i[x]$ do
- 3. $i \leftarrow i + 1$
- 4. **if** $i \le n[x]$ and $k = key_i[x]$ **then return** (x, i)
- 5. **if** *x* is a leaf **then return nil**
- 6. else
- 7. Disk-Read($c_i[x]$)
- 8. **return** B-BaumSuche($c_i[x], k$)

Grundidee:

B-BaumSuche(x, k)

- 1. $i \leftarrow 1$
- 2. while $i \le n[x]$ and $k > key_i[x]$ do
- 3. $i \leftarrow i + 1$
- 4. if $i \le n[x]$ and $k = key_i[x]$ then return (x, i)
- 5. **if** x is a leaf **then return nil**
- 6. else
- 7. Disk-Read($c_i[x]$)
- 8. **return** B-BaumSuche($c_i[x], k$)

Laufzeiten

- $\mathbf{O}(th) = \mathbf{O}(t \log_t(n))$ (CPU-)Laufzeit
- $\mathbf{O}(h) = \mathbf{O}(\log_t(n))$ Externspeicherzugriffe

Einfügen in B-Bäumen - Überblick

- Suche nach einzufügendem Schlüssel
- Während der Suche: Wenn ein Knoten auf dem Suchpfad bereits voll ist (2t-1 Schlüssel), dann teile diesen Knoten "in der Mitte" und füge den Medianknoten (den t größten Knoten) in den Vaterknoten ein
- Füge den Knoten in das gefundene Blatt ein

Einfügen in B-Bäumen – der einfache Fall (t=2; kein Knoten voll) Einfügen von Schlüssel 14

Einfügen in B-Bäumen – der einfache Fall (t=2; kein Knoten voll) Einfügen von Schlüssel 14

Aufteilen eines vollen Knotens x

- Teile Schlüsselmenge von x in die (t-1) kleinsten Schlüssel, den Medianschlüssel (den t-kleinsten) und die (t-1) größten Schlüssel auf
- Erzeuge neuen Knoten z und speichere die (t-1) größten Schlüssel von x in z
- Speichere den Medianschlüssel im Vaterknoten
- Lösche die t größten Schlüssel aus x

Aufteilen des Wurzelknotens

Ist der Wurzelknoten voll, so erzeuge einen neuen Wurzelknoten und speichere dort den Medianschlüssel

Aufteilen eines vollen Knotens (t = 2)

Aufteilen eines vollen Knotens (t = 2)

Aufteilen eines vollen Knotens (t = 2)

Split(x, i, y)

- 1. $z \leftarrow Allocate-Node()$
- 2. $n[z] \leftarrow t 1$
- 3. Kopiere $\ker_{t+1}[y]$, ..., $\ker_{2t-1}[y]$ nach z
- **4**. Kopiere $c_{t+1}[y], ..., c_{2t}[y]$ nach z
- 5. $n[y] \leftarrow t-1$
- 6. **for** $j \leftarrow n[x] + 1$ **downto** i + 1 **do** $c_{j+1}[x] \leftarrow c_j[x]$
- 7. $c_{i+1}[x] \leftarrow z$
- 8. **for** $j \leftarrow n[x]$ **downto** i **do** $\text{key}_{j+1}[x] \leftarrow \text{key}_j[x]$
- 9. $\ker_i[x] \leftarrow \ker_t[y]$
- 10. $n[x] \leftarrow n[x] + 1$
- 11. Disk-Write(y); Disk-Write(z)

Split(x, i, y)

- 1. $z \leftarrow Allocate-Node()$
- 2. $n[z] \leftarrow t-1$
- 3. Kopiere $\ker_{t+1}[y]$, ..., $\ker_{2t-1}[y]$ nach z
- 4. Kopiere $c_{t+1}[y], \ldots, c_{2t}[y]$ nach z
- 5. $n[y] \leftarrow t 1$
- 6. **for** $j \leftarrow n[x] + 1$ **downto** i + 1 **do** $c_{j+1}[x] \leftarrow c_j[x]$
- 7. $c_{i+1}[x] \leftarrow z$
- 8. **for** $j \leftarrow n[x]$ **downto** i **do** $\text{key}_{j+1}[x] \leftarrow \text{key}_j[x]$
- 9. $\ker_i[x] \leftarrow \ker_t[y]$
- 10. $n[x] \leftarrow n[x] + 1$
- 11. Disk-Write(y); Disk-Write(z)

Split(x, i, y)

- 1. $z \leftarrow Allocate-Node()$
- 2. $n[z] \leftarrow t-1$
- 3. Kopiere $\ker_{t+1}[y]$, ..., $\ker_{2t-1}[y]$ nach z
- 4. Kopiere $c_{t+1}[y], ..., c_{2t}[y]$ nach z
- 5. $n[y] \leftarrow t-1$
- 6. **for** $j \leftarrow n[x] + 1$ **downto** i + 1 **do** $c_{j+1}[x] \leftarrow c_j[x]$
- 7. $c_{i+1}[x] \leftarrow z$
- 8. **for** $j \leftarrow n[x]$ **downto** i **do** $\text{key}_{j+1}[x] \leftarrow \text{key}_j[x]$
- 9. $\ker_i[x] \leftarrow \ker_t[y]$
- 10. $n[x] \leftarrow n[x] + 1$
- 11. Disk-Write(y); Disk-Write(z)

Split(x, i, y)

- 1. $z \leftarrow Allocate-Node()$
- 2. $n[z] \leftarrow t 1$
- 3. Kopiere $\ker_{t+1}[y]$, ..., $\ker_{2t-1}[y]$ nach z
- 4. Kopiere $c_{t+1}[y], \ldots, c_{2t}[y]$ nach z
- 5. $n[y] \leftarrow t 1$
- 6. **for** $j \leftarrow n[x] + 1$ **downto** i + 1 **do** $c_{j+1}[x] \leftarrow c_j[x]$
- 7. $c_{i+1}[x] \leftarrow z$
- 8. **for** $j \leftarrow n[x]$ **downto** i **do** $\text{key}_{j+1}[x] \leftarrow \text{key}_j[x]$
- 9. $\ker_i[x] \leftarrow \ker_t[y]$
- 10. $n[x] \leftarrow n[x] + 1$
- 11. Disk-Write(y); Disk-Write(z)

Split(x, i, y)

- 1. $z \leftarrow Allocate-Node()$
- 2. $n[z] \leftarrow t-1$
- 3. Kopiere $\ker_{t+1}[y]$, ..., $\ker_{2t-1}[y]$ nach z
- 4. Kopiere $c_{t+1}[y], \dots, c_{2t}[y]$ nach z
- 5. $n[y] \leftarrow t 1$
- 6. **for** $j \leftarrow n[x] + 1$ **downto** i + 1 **do** $c_{j+1}[x] \leftarrow c_j[x]$
- 7. $c_{i+1}[x] \leftarrow z$
- 8. **for** $j \leftarrow n[x]$ **downto** i **do** $\text{key}_{j+1}[x] \leftarrow \text{key}_j[x]$
- 9. $| \ker_i[x] \leftarrow \ker_t[y]$
- 10. $n[x] \leftarrow n[x] + 1$
- 11. Disk-Write(y); Disk-Write(z)

Einfügen mit Knotenaufteilung

Einfügen mit Knotenaufteilung

- Einfügen von Schlüssel 30
- Knotensplit

Einfügen mit Knotenaufteilung

- Einfügen von Schlüssel 30
- Knotensplit

Einfügen mit Knotenaufteilung

- Einfügen von Schlüssel 30
- Knotensplit

12.

```
Einfügen(x, k)
                                                        \triangleright Invariante: x ist nicht voll
    if x ist ein Blatt then
       Füge k in die sortierte Schlüsselfolge ein
3.
     n[x] \leftarrow n[x] + 1
4. else
5. i \leftarrow n[x]
6. while i \ge 1 and k < \text{key}_i[x] do i \leftarrow i - 1
7. i \leftarrow i + 1
8. Disk-Read(c_i[x])
       if n[c_i[x]] = 2t - 1 then
9.
10.
           Split(x, i, c_i[x])
          if k > key_i[x] then i \leftarrow i + 1
11.
        Einfügen(c_i[x], k)
```

```
Einfügen(x, k)
                                                        \triangleright Invariante: x ist nicht voll
    if x ist ein Blatt then
        Füge k in die sortierte Schlüsselfolge ein
        n[x] \leftarrow n[x] + 1
3.
    else
5.
     i \leftarrow n[x]
6. while i \ge 1 and k < \text{key}_i[x] do i \leftarrow i - 1
7. i \leftarrow i + 1
8. Disk-Read(c_i[x])
       if n[c_i[x]] = 2t - 1 then
9.
10.
           Split(x, i, c_i[x])
          if k > key_i[x] then i \leftarrow i + 1
11.
12.
        Einfügen(c_i[x], k)
```

```
Einfügen(x, k)
                                                          \triangleright Invariante: x ist nicht voll
    if x ist ein Blatt then
        Füge k in die sortierte Schlüsselfolge ein
3.
       n[x] \leftarrow n[x] + 1
    else
      i \leftarrow n[x]
5.
      while i \ge 1 and k < \text{key}_i[x] do i \leftarrow i - 1
6.
7.
    i \leftarrow i + 1
       Disk-Read(c_i[x])
8.
       if n[c_i[x]] = 2t - 1 then
9.
10.
           Split(x, i, c_i[x])
           if k > key_i[x] then i \leftarrow i + 1
11.
12.
        Einfügen(c_i[x], k)
```

```
Einfügen(x, k)
                                                        \triangleright Invariante: x ist nicht voll
    if x ist ein Blatt then
       Füge k in die sortierte Schlüsselfolge ein
3.
       n[x] \leftarrow n[x] + 1
4. else
5.
   i \leftarrow n[x]
6. while i \ge 1 and k < \text{key}_i[x] do i \leftarrow i - 1
7.
    i \leftarrow i + 1
      Disk-Read(c_i[x])
8.
       if n[c_i[x]] = 2t - 1 then
9.
10.
           Split(x, i, c_i[x])
          if k > key_i[x] then i \leftarrow i + 1
11.
12.
        Einfügen(c_i[x], k)
```

Einfügen(x, k)

➤ Invariante: *x* ist nicht voll

- 1. **if** x ist ein Blatt **then**
- 2. Füge *k* in die sortierte Schlüsselfolge ein
- 3. $n[x] \leftarrow n[x] + 1$
- 4. else
- 5. $i \leftarrow n[x]$
- 6. **while** $i \ge 1$ and $k < \text{key}_i[x]$ **do** $i \leftarrow i 1$
- 7. $i \leftarrow i + 1$
- 8. Disk-Read($c_i[x]$)
- 9. **if** $n[c_i[x]] = 2t 1$ **then**
- 10. Split(x, i, $c_i[x]$)
- 11. if $k > key_i[x]$ then $i \leftarrow i + 1$
- 12. Einfügen $(c_i[x], k)$

```
Einfügen(x, k)
                                                        \triangleright Invariante: x ist nicht voll
    if x ist ein Blatt then
        Füge k in die sortierte Schlüsselfolge ein
3.
       n[x] \leftarrow n[x] + 1
4. else
5. i \leftarrow n[x]
6. while i \ge 1 and k < \text{key}_i[x] do i \leftarrow i - 1
7. i \leftarrow i + 1
8. Disk-Read(c_i[x])
       if n[c_i[x]] = 2t - 1 then
9.
10.
           Split(x, i, c_i[x])
           if k > key_i[x] then i \leftarrow i + 1
11.
        Einfügen(c_i[x], k)
12.
```

Einfügen mit Wurzelaufteilung

Einfügen mit Wurzelaufteilung

Einfügen mit Wurzelaufteilung

- 1. $r \leftarrow \text{root}[T]$
- 2. **if** n[r] = 2t 1 **then**
- 3. $s \leftarrow AllocateNode()$
- 4. $root[T] \leftarrow s$
- 5. $n[s] \leftarrow 0$
- 6. $c_1[s] \leftarrow r$
- 7. Split(s, 1, r)
- 8. Einfügen(s, k)
- 9. **else** Einfügen(r, k)

- 1. $r \leftarrow \text{root}[T]$
- 2. **if** n[r] = 2t 1 **then**
- 3. $s \leftarrow AllocateNode()$
- 4. $root[T] \leftarrow s$
- 5. $n[s] \leftarrow 0$
- 6. $c_1[s] \leftarrow r$
- 7. Split(s, 1, r)
- 8. Einfügen(s, k)
- 9. **else** Einfügen(r, k)

```
1. r \leftarrow \operatorname{root}[T]

2. if n[r] = 2t - 1 then

3. s \leftarrow \operatorname{AllocateNode}()

4. \operatorname{root}[T] \leftarrow s

5. n[s] \leftarrow 0

6. c_1[s] \leftarrow r

7. \operatorname{Split}(s, 1, r)

8. Einfügen(s, k)

9. else Einfügen(r, k)
```

- 1. $r \leftarrow \text{root}[T]$
- 2. **if** n[r] = 2t 1 **then**
- 3. $s \leftarrow AllocateNode()$
- 4. $root[T] \leftarrow s$
- 5. $n[s] \leftarrow 0$
- 6. $c_1[s] \leftarrow r$
- 7. Split(s, 1, r)
- 8. Einfügen(s, k)
- 9. **else** Einfügen(r, k)

EinfügenVollständig(T, k)

- 1. $r \leftarrow \text{root}[T]$
- 2. **if** n[r] = 2t 1 **then**
- 3. $s \leftarrow AllocateNode()$
- 4. $root[T] \leftarrow s$
- 5. $n[s] \leftarrow 0$
- 6. $c_1[s] \leftarrow r$
- 7. Split(s, 1, r)
- 8. Einfügen(s, k)
- 9. **else** Einfügen(r, k)

Laufzeiten (Einfügen)

 $\mathbf{O}(th) = \mathbf{O}(t \log_t(n))$ (CPU-)Laufzeit und $\mathbf{O}(\log_t(n))$ Externspeicherzugriffe

EinfügenVollständig(T, k)

- 1. $r \leftarrow \text{root}[T]$
- 2. **if** n[r] = 2t 1 **then**
- 3. $s \leftarrow AllocateNode()$
- 4. $root[T] \leftarrow s$
- 5. $n[s] \leftarrow 0$
- 6. $c_1[s] \leftarrow r$
- 7. Split(s, 1, r)
- 8. Einfügen(s, k)
- 9. **else** Einfügen(r, k)

Beobachtung

Einfügen wird nur für nicht volle Knoten aufgerufen (Invariante)

Löschen in B-Bäumen - Überblick

- Suche nach zu löschendem Schlüssel
- Während der Suche: stelle sicher, dass kein innerer Knoten zu kleinen Grad hat
- Lösche den Schlüssel im gefundenen inneren Knoten oder Blatt

Löschen in B-Bäumen

- Ähnlich wie beim Einfügen: Invariante ≥ t Schlüssel an Knoten (ausser Wurzel)
- Wurzel von Grad 1 wird durch ihr Kind ersetzt

Skizze von Löschen(x, k)

- Fall 1: x ist Blatt
- Fall 2: x ist innerer Knoten und enthält k
- Fall 2: x ist innerer Knoten und enthält k nicht

Löschen in B-Bäumen

- Ähnlich wie beim Einfügen: Invariante ≥ t Schlüssel an Knoten
- Wurzel von Grad 1 wird durch ihr Kind ersetzt

Skizze von Löschen(x,k)

- Fall 1: x ist Blatt entferne k falls vorhanden
- Fall 2: x ist innerer Knoten und enthält k
- Fall 3: x ist innerer Knoten und enthält k nicht

Löschen in B-Bäumen

- Ähnlich wie beim Einfügen: Invariante ≥ t Schlüssel an Knoten
- Wurzel von Grad 1 wird durch ihr Kind ersetzt

Skizze von Löschen(x,k)

- Fall 1: x ist Blatt
- Fall 2: x ist innerer Knoten und enthält k sei y das Kind vor und z das Kind nach k falls y ≥ t Schlüssel: ersetze k durch Vorgänger in y sonst falls y ≥ t Schlüssel: ersetze k durch Nachfolger in y sonst lege k, z nach y; lösche k, z in x; lösche rekursiv k in y
- Fall 3: x ist innerer Knoten und enthält k nicht

Löschen in B-Bäumen

- Ähnlich wie beim Einfügen: Invariante ≥ t Schlüssel an Knoten
- Wurzel von Grad 1 wird durch ihr Kind ersetzt

Skizze von Löschen(x,k)

- Fall 1: x ist Blatt
- Fall 2: x ist innerer Knoten und enthält k
- Fall 3: x ist innerer Knoten und enthält k nicht sei y das Kind vor, dass k enthalten würde stelle sicher, dass y ≥ t Schlüssel (durch Umhängen oder Zusammenlegen) lösche rekursiv k in y

Zusammenfassung

Big Data

- Sehr große Datenmengen, die nicht in Hauptspeicher passen
- Externspeicherzugriff erfolgt blockweise
- Laufzeit wird in CPU Laufzeit und Externspeicherzugriffen gemessen

B-Bäume

- Benötigen spezielle Externspeicherdatenstrukturen
- Idee: Knoten sollten einen Block ausnutzen → viele Schlüssel pro Knoten
- Deutlich geringere Anzahl an Externspeicherzugriffen als "einfache" Binärbäume
- Laufzeit (Suche, Einfügen, Löschen) $\mathbf{0}(t \log_t(n))$ und $\mathbf{0}(\log_t(n))$ Externspeicherzugriffe