CS 583: PROBABILISTIC GRAPHICAL MODELS

TOPIC: VARIABLE ELIMINATION

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

TASK

- \circ Given a graphical model over X (structure and parameters)
- Compute $P(Y \mid e)$, where $Y \subseteq X$ and $E \subseteq X$
- There are several approaches
 - Exact inference
 - Variable elimination
 - Belief propagation
 - Approximate inference
 - Sampling
- Today, we'll cover variable elimination

VARIABLE ELIMINATION

- $P(Y \mid e) = P(Y, e) / P(e)$
- \bullet W = X Y E
- $P(y, e) = \Sigma_w P(y, e, w)$
- $\bullet \ \mathrm{P}(\boldsymbol{e}) = \Sigma_{\boldsymbol{y},\boldsymbol{w}} \mathrm{P}(\boldsymbol{y},\,\boldsymbol{e},\,\boldsymbol{w})$
- Or, better yet: $P(e) = \sum_{v} P(v, e)$

$$P(Y, E) = \Sigma_W P(Y, E, W)$$

- P(Y, E, W) can be represented as
 - $\prod P(X_i \mid Pa(X_i))$
 - $1/Z \prod \phi(\boldsymbol{D}_i)$
- The problem with $P(y, e) = \Sigma_w P(y, e, w)$ is that the joint representation is exponential
 - The very first problem we were trying to avoid

COMPLEXITY

- \circ Unfortunately, exact inference is \mathcal{NP} -hard in worst case
 - Proof: pages 288 and 289. Reduction from 3-SAT
- \circ Approximate inference is also \mathcal{NP} -hard in worst case
 - Proof: pages 291 and 292.
- Good news:
 - In general, we care about the cases we encounter in practice, not the worst-case scenario

KEY IDEA

- Summation can be moved inside
- \circ If x has n and y has m possible values, how many operations are needed, if we use
 - $\circ \Sigma_x \Sigma_y x^* y$?
 - $\circ \Sigma_x x^*(\Sigma_y y)$?

OUTLINE

- First, focus on Bayesian networks
 - Simple linear chains
 - More complex structures
- Two cases
 - Marginal queries: $E = \emptyset$
 - Conditional queries: $\mathbf{E} \neq \emptyset$

VARIABLE ELIMINATION

- X: all variables, Y: query variables, E: evidence variables, W = X Y E: remaining variables
- 1. Write down the joint for P(X)
- 2. Set $X_i \in \mathbf{E}$ to their values
- 3. Pick an order for $X_i \in W$
- 4. Sum out each X_i from the joint
 - a) Multiply the factors $\phi(X_j, Z_1), ..., \phi(X_j, Z_k)$ to create $\psi(X_j, Z_1, ..., Z_k)$
 - b) Sum out X_j from $\psi(X_j, Z_1, ..., Z_k)$ to create $\tau(Z_1, ..., Z_k)$
- 5. What remains is $\tau(Y, e)$. Normalize it to get $P(Y \mid e)$.

Examples – Linear Chain Bns

- $\circ A \to B$
 - P(B) = ?
 - P(A) = ?
- \circ $X_1 \to X_2 \to \dots \to X_n$
 - $P(X_i)$ where $1 \le i \le n$
- o How many operations are needed if we compute the full joint distribution vs. if we use variable elimination?

STUDENT NETWORK EXAMPLE

10

P(Y|E) Examples

- \circ $A \rightarrow B$
 - $P(B \mid A=t)$
 - $P(A=t \mid B=t)$
- \circ $X_1 \to X_2 \to \dots \to X_n$
 - $P(X_i \mid X_j = x_j)$
 - $\bullet \quad \mathrm{P}(X_i \ | \ \textbf{\textit{X}}_j \!\!=\!\! \textbf{\textit{x}}_j)$

STUDENT NETWORK EXAMPLE

P(L) – Order: I, S, D, G

Variable	All Factors	Participates	New Factor After *	#*s	New Factor After +	# +s	# Ops
I	P(I), P(D), P(S I), P(G D,I), P(L G)	P(I), P(S I), P(G D, I)	$\psi_1(G,D,S,I)$	2*3*2*2*2= 48	$\tau_1(G,D,S)$	1*3*2*2=12	60
S	$P(D), \\ P(L \mid G), \\ \tau_1(G,D,S)$	$\tau_1(G,D,S)$	$\psi_2(G,D,S)$	0	$\tau_2(G,D)$	1*3*2=6	6
D	$P(D),$ $P(L \mid G),$ $\tau_2(G,D)$	P(D), $\tau_2(G,D)$	ψ ₃ (G,D)	1*3*2=6	$\tau_3(G)$	1*3	9
G	$P(L \mid G),$ $\tau_3(G)$	$P(L \mid G), \tau_3(G)$	$\psi_4(L,G)$	1*2*3=6	$ au_4(ext{L})$	2*2=4	10
Normalize	$\tau_4(L)$					1	3 (2 divs)
Total							88

P(L) – Order: S, I, D, G

Variable	All Factors	Participates	New Factor After *	#*s	New Factor After +	#+s	# Ops
S	P(I), P(D), P(S I), P(G D,I), P(L G)	P(S I)	$\psi_1(I,S)$	0	$\tau_1(I)$	1*2=2	2
I	$P(I), P(D),$ $P(G \mid D, I),$ $P(L \mid G)$ $\tau_1(I)$	$\begin{aligned} &P(I),\\ &P(G\mid D,I),\\ &\tau_1(I) \end{aligned}$	$\psi_2(G,D,I)$	2*3*2*2=24	$\tau_2(G,D)$	1*3*2=6	30
D	$P(D),$ $P(L \mid G),$ $\tau_2(G,D)$	P(D), $\tau_2(G,D)$	ψ ₃ (G,D)	1*3*2=6	$\tau_3(G)$	1*3	9
G	$P(L \mid G),$ $\tau_3(G)$	$P(L \mid G), \tau_3(G)$	$\psi_4(L,G)$	1*2*3=6	$ au_4(ext{L})$	2*2=4	10
Normalize	$\tau_4(L)$					1	3 (2 divs)
Total							54

Markov network example

Α	В	φ(A,B)
Т	Т	5
Т	F	1
F	Т	1
F	F	3

С	φ(B,C)
Т	1
F	2
Т	6
F	1
	T F T

В	P(A,B)
Т	0.33
F	0.15
Т	0.07
F	0.46
	T F T

В	С	P(B,C)
Т	T	0.13
T	F	0.26
F	Т	0.52
F	F	0.09

В	С	P(B,C)
Т	T	0.13
T	F	0.26
F	Т	0.52
F	F	0.09

Α	P(A)
Т	0.48
F	0.52

В

F

C

 $\frac{\mathsf{F}}{\mathsf{Z}}$

 $\phi(A,B)*\phi(B,C)$ P(A,B,C)

5

10

46

0.11

0.22 0.13 0.02 0.02 0.04 0.39

0.07

1.00

ELIMINATION AS GRAPH TRANSFORMATION

- Eliminating *X*
 - Multiply all the factors X participates in
 - Sum out X
- Graph transformation (need to be moralized first)
 - Connect all of *X*'s neighbors
 - Remove X

REPRESENTATION

17

IF WE FIRST ELIMINATE I THEN S

IF WE FIRST ELIMINATE S THEN I

FINDING GOOD ELIMINATION ORDERINGS

- Finding the best order is NP-hard
 - Best = optimal time and space complexity
- Heuristics
 - Min-neighbors
 - Min-fill
 - Weighted versions of min-neighbors and min-fill

IRRELEVANT NODES IN BNS

- X: all variables, Y: query variables, E: evidence variables, W = X Y E: remaining variables
- A node $X_i \in W$ is irrelevant for the query P(Y | e) if it can be removed from the network without effecting the value of P(Y | e)
- Obvious:
 - If $Z \subseteq W$ is d-separated from Y given E, then Z is irrelevant
- Perhaps less obvious:
 - Let Z be ancestors of $Y \cup E$. Then $W \setminus Z$ is irrelevant