Name: CHAN King Yeung SID: 1155119394

CSCI3170 Assignment 2

Part 1

- 1. $\prod_{name} (\sigma_{cid='c1'}(Price) \bowtie Customer)$
- 2. $\prod_{sid}(\sigma_{title='milk'}(Commodity) \bowtie Price)$
- 3. It cannot be expressed as standard algebra since we do not have 'count' operator
- 4. $\prod_{sid}(\sigma_{title='milk'}(Commodity)\bowtie Price) \cap \prod_{sid}(\sigma_{title='bread'}(Commodity)\bowtie Price)$
- 5. $\prod_{sid} (\sigma_{(title='milk')\lor(title='hamburger')}(Commodity)\bowtie Price)$
- 6. $\prod_{sid,name}(Customer) \prod_{sid,name}(Customer) \bowtie \prod_{sid}(\sigma_{title='milk'}(commodity) \bowtie Price)$

Part 2

- 1. It cannot be expressed as standard algebra since we do not have 'sum' operator
- 2. $\rho\left(A(predator \rightarrow food), \prod_{predator} \left(\sigma_{food='frog'}(FoodChain)\right)\right)$ $\prod_{predator}(FoodChain\bowtie A)$
- 3. $\rho\left(A(predator \rightarrow food), \prod_{predator} \left(\sigma_{food='bird}(FoodChain)\right)\right)$ $\prod_{predator,food}(FoodChain)/A$
- 4. $\rho(A, FoodChain)$ $\rho(B, FoodChain)$ $\rho(C, FoodChain)$ $\rho(C, FoodChain)$ $\rho(D, FoodChain)$ $\rho(D, FoodChain)$ $\rho(E, \sigma_{A.food=B.food=C.food\land A.predator \neq B.predator \neq C.predator}(A \times B \times C))$ $\rho(F, \sigma_{(A.food=B.food=C.food=D.food)\land (A.predator \neq B.predator \neq C.predator \neq D.predator)}(A \times B \times C \times D))$ $\prod_{A.food} E \prod_{A.food} F$
- 5. $\rho(A(name \rightarrow predator), \prod_{name}(Creature))$ $\rho(B(name \rightarrow food), \prod_{name}(Creature))$ $\rho\left(C, \sigma_{predator=food}(A \times B)\right)$ $\rho\left(D, \left(C \cup \prod_{predator, food}(FoodChain)\right)/B\right)$ $D \prod_{predator}\left(\sigma_{predator=food}(FoodChain)\right)$