Práctica Algoritmos de Trayectorias Metaheurísticas

Ignacio Aguilera Martos DNI: 77448262V e-mail: nacheteam@correo.ugr.es Grupo de prácticas 1 Lunes 17:30-19:30

Curso 2017-2018

Índice

1.	Introducción del problema	2
2.	Introducción de la práctica	2
3.	Descripción común a todos los algoritmos 3.1. Generación de soluciones aleatorias	3 3
4.	Enfriamiento Simulado	5
5.	Búsqueda Local Reiterada	7
6.	Evolución Diferencial	9
7.	Pseudocódigo Genético Estacionario	11
8.	Peseudocódigo Genético Generacional	12
9.	Pseudocódigo Meméticos	13
10	.Pseudocódigo KNN	15
11	.Pseudocódigo Relief	16
12	.Pseudocódigo Búsqueda Local	18
13	Procedimiento de desarrollo de la práctica	19
	Resultados	20

1. Introducción del problema

Para el problema de clasificación partimos de un conjunto de datos dado por una serie de tuplas que contienen los valores de atributos para cada instancia. Esto es una n-tupla de valores reales en nuestro caso.

El objetivo del problema es obtener un vector de pesos que asocia un valor en el intervalo [0, 1] indicativo de la relevancia de ese atributo. Esta relevancia va referida a lo importante que es en nuestro algoritmo clasificador ese atributo a la hora de computar la distancia entre elementos. Resumiendo lo que tenemos es un algoritmo clasificador que utiliza el vector de pesos calculado para predecir la clase a la que pertenece una instancia dada. Este algoritmo clasificador es el KNN con k=1. Lo que hace es calcular según la distancia euclídea (o cualquier otra) la tupla más cercana a la que queremos clasificar ponderando cada atributo con el correspondiente peso del vector, es decir, la distancia entre dos elementos sería:

$$d(e, f) = \sqrt{\sum_{i=0}^{n} w_i * (e_i - f_i)}$$

Donde e y f son instancias del conjunto de datos, w el vector de pesos y n la longitud de e y f que es la misma.

La calificación que se le asigna al vector w depende de dos cosas: la tasa de aciertos y la simplicidad.

La tasa de aciertos se mide contando el número de aciertos al emplear el clasificador descrito y la simplicidad se mide como el número de elementos del vector de pesos que son menores que 0.2, ya que estos pesos no son empleados por el clasificador, o lo que es lo mismo, son sustituidos por cero. Por lo tanto las calificaciones siguen las fórmulas:

$$Tasa_acierto = 100 \cdot \frac{n^{\circ}\ aciertos}{n^{\circ}\ datos}\ ,\ Tasa_simplicidad = 100 \cdot \frac{n^{\circ}\ valores\ de\ w\ <\ 0,2}{n^{\circ}\ de\ atributos}$$

$$Tasa_agregada = \frac{1}{2} \cdot Tasa_acierto + \frac{1}{2} \cdot Tasa_simplicidad$$

Cabe destacar que todas las tasas están expresadas en porcentajes, por lo tanto cuanto más cercano sea el valor a 100 mejor es la calificación.

De esta forma a través del algoritmo que obtiene el vector de pesos para el conjunto de datos dado y el clasificador obtenemos un programa que clasifica de forma automática las nuevas instancias de datos que se introduzcan.

2. Introducción de la práctica

En esta práctica se analizan los algoritmos Enfriamiento Simulado, ILS y Evolución diferencial. Al igual que en las prácticas anteriores se van a poner en contraposición al resto de algoritmos para comparar cómo mejoran o empeoran los resultados y sacar conclusiones sobre los mismos. Cabe destacar que no hay repetición de tuplas en los conjuntos de datos utilizados, ya que he realizado un preprocesamiento en la lectura para eliminar tuplas con los mismos valores.

Así mismo cabe destacar que he reutilizado la búsqueda local implementada en la primera práctica para el desarrollo del algoritmo ILS.

De igual modo he implementado Evolución Diferencial con dos operadores de mutación (Rand1 y Current to Best 1) tal y como se detallará en la correspondiente sección.

3. Descripción común a todos los algoritmos

Los algoritmos empleados han sido el KNN, el algoritmo greedy Relief, la metaheurística de búsqueda local, un algoritmo genético estacionario, un algoritmo genético generacional, un memético basado en el algoritmo genético generacional, enfriamiento simulado, ILS y evolución diferencial.

Estos algoritmos comparten ciertos métodos y operadores que pasaré a explicar en esta sección. Para empezar se debe destacar que la representación escogida para las soluciones es un vector de números reales, es decir, si n es el número de características:

$$w \in \mathbb{R}^n$$
 t.q. $\forall i \ con \ 0 \le i < n \ se \ tiene \ w_i \in [0,1]$

O lo que es lo mismo, un vector de tamaño n con todas las posiciones rellenas con números del intervalo [0,1].

A estos números me referiré como pesos asociados a las características, ya que lo que nos indican es el grado de importancia de dicha característica a la hora de clasificar los datos, siendo 1 el máximo de relevancia y 0 el mínimo.

Así mismo cabe destacar que nuestra intención en este problema es obtener una buena calificación de dicho vector de pesos. Esto lo medimos mediante las tasas de acierto y simplicidad que se definen como:

$$Tasa_acierto = 100 \cdot \frac{n^{\rm o}~aciertos}{n^{\rm o}~datos}~,~Tasa_simplicidad = 100 \cdot \frac{n^{\rm o}~valores~de~w~<~0,2}{n^{\rm o}~de~atributos}$$

$$Tasa_agregada = \frac{1}{2} \cdot Tasa_acierto + \frac{1}{2} \cdot Tasa_simplicidad$$

La tasa de aciertos lo que nos mide es en un porcentaje cuántas instancias hemos clasificado correctamente mediante el algoritmo KNN usando el vector de pesos w.

La tasa de simplicidad nos mide cuántos de los valores que tiene el vector de pesos son menores que 0.2. Esto se hace ya que, como imposición del problema, tenemos que si alguno de los pesos es menor que 0.2 no debemos usarlo, o lo que es lo mismo, debemos sustituirlo por un 0 en la función de la distancia que luego describiré. Midiendo esto obtenemos un dato de cuanto sobreajuste ha tenido nuestro algoritmo a la hora de obtener el vector de pesos. Cuantas menos características necesitemos para discernir la clase a la que pertenece una instancia de los datos, más simple será clasificar dicha instancia. Se expresa en porcentaje indicando 0 como ninguna simplicidad y 100 como la máxima simplicidad.

De esta forma combinando ambas tasas obtenemos la tasa agregada que nos hace la media entre ambas tasas, de forma que le asignamos la misma importancia a acertar en la clasificación de las instancias y a la simplicidad en la solución. Cabe destacar que es imposible obtener una tasa de un $100\,\%$ a no ser que los datos se compongan únicamente de un punto ya que ello implicaría que la simplicidad ha de ser un $100\,\%$ (todos las posiciones del vector menores que 0.2) y por tanto la distancia sería 0 en todos los casos. De esta forma aspiraremos a una calificación lo mas alta posible pero teniendo en cuenta las restricciones de la función objetivo construida.

Las funciones y operadores de uso común los he agrupado en un fichero llamado auxiliar.py. Este fichero contiene las funciones de lectura de datos, distancias, una función que devuelve el elemento más común de una lista, la norma euclídea, una función para dividir los datos en el número de particiones que queramos manteniendo el porcentaje de elementos de cada clase que había en el conjunto de datos original y el operador de mutación básico.

3.1. Generación de soluciones aleatorias

En el algoritmo DE partimos de una población de soluciones aleatorias que generamos con una distribución uniforme, de forma que partimos en un inicio con una población de 50 individuos

con valores en los vectores de pesos entre 0 y 1 generados de forma aleatoria. Nótese que en nuestro caso TAM_POBLACION=50.

Algorithm 1 generaPoblacionInicial(longitud)

```
\begin{array}{l} poblacion \leftarrow [\ ] \\ \textbf{for} \ i=0 \ , \ldots \ , \ TAM\_POBLACION-1 \ \textbf{do} \\ cromosoma \leftarrow [\ ] \\ \textbf{for} \ j=0 \ , \ldots \ , \ longitud-1 \ \textbf{do} \\ cromosoma \leftarrow [cromosoma,uniforme(0,1)] \\ \textbf{end for} \\ poblacion \leftarrow [poblacion,cromosoma] \\ \textbf{end for} \\ \textbf{return} \ \ poblacion \end{array}
```

4. Enfriamiento Simulado

El algoritmo de enfriamiento simulado basa su comportamiento en varios factores numéricos entre los que podemos encontrar a la temperatura inicial, temperatura final y el esquema de enfriamiento que nos va a indicar cuanta exploración y explotación va a tener el algoritmo en función de la solución inicial conseguida.

En primer lugar la temperatura inicial la calculamos con las constantes μ y ϕ que vienen determinadas mediante el guión por el valor 0.3 ambas. Esto nos indica que tenemos probabilidad 0.3 de aceptar una solución un 30 % peor que la que estamos considerando actualmente.

A raíz de esto podemos definir la temperatura inicial como $T0 = \frac{\mu \cdot C(S_0)}{-\log(\phi)}$ donde $C(S_0)$ es el coste de la solución inicial.

Así mismo definimos la temperatura final como $TF = 10^{-3}$. Como podemos tener la casuística de que desde el inicio del algoritmo la temperatura inicial ya sea menor que la final he definido la temperatura final como $TF = 10^{-3}$ si esta constante es menor que la temperatura inicial o como $TF = T0 - 10^{-3}$ para tener así un margen de aplicación del algoritmo.

El esquema de enfriamiento propuesto ha sido el esquema de enfriamiento de Cauchy modificado que nos otorga una convergencia mayor al decrementar la temperatura de forma más rápida que una lineal. Estas dos formas serán comparadas posteriormente en el análisis de resultados. El esquema de enfriamiento de Cauchy viene dado por las fórmulas:

$$\beta = \frac{T_0 - T_f}{M \cdot T_0 \cdot T_f}$$

$$T_{k+1} = \frac{T_k}{1+\beta \cdot T_k}$$

Donde M es el número de enfriamientos a realizar.

A parte de estas constantes debemos tener en cuenta que el algoritmo está limitado a 15000 evaluaciones y el procedimiento de enfriamiento se aplica cuando hemos visitado $10 \cdot D$ vecinos donde D es la dimensión del problema o cuando se han aceptado $0,1 \cdot 10 \cdot D$ vecinos como soluciones por el procedimiento.

A continuación se describe el algoritmo en pseudocódigo:

Algorithm 2 EnfriamientoSimulado(data,k,MAX_EVALS)

```
ncar \leftarrow número de características
sol \leftarrow solución inicial aleatoria
valoración de la solución inicial
mejor\_sol \leftarrow sol
valoracion\_mejor\_sol \leftarrow valoracion
T_0 \leftarrow \frac{\mu \cdot C(S_0)}{-\log(\phi)}
if T0 < 10^{-3} then
  T_f \leftarrow 10^{-3}
else
   T_f \leftarrow \text{T0-10}^{-3}
end if
\max_{\text{vecinos}} \leftarrow 10^* \text{ncar}
M \leftarrow \frac{MAX\_EVALS}{}
M \leftarrow \frac{max\_vecinos}{max\_vecinos}
max_exitos \leftarrow 0.1*max\_vecinos
\beta \leftarrow \frac{T_0 - T_f}{M * T_0 * T_f}
t \leftarrow T_0
evaluaciones \leftarrow 1
while t>T_f and evaluaciones<MAX_EVALS do
   vecinos \leftarrow 0
   aceptados \leftarrow 0
   while aceptados<max_exitos and vecinos<max_vecinos do
      vecinos \leftarrow vecinos + 1
      evaluaciones \leftarrow evaluaciones + 1
      vecino ← Mutación de una posición aleatoria
      valoración_vecino ← Valoración del vecino
      delta \leftarrow valoracion - valoracion\_vecino
      if delta < 0 or valorAleatorio(0,1) < exp(-delta/(t*K)) then
         sol \leftarrow vecino
         valoracion \leftarrow valoracion\_vecino
         aceptados \leftarrow aceptados + 1
         if valoracion_mejor_sol<valoracion then
            mejor\_sol \leftarrow sol
            valoracion\_mejor\_sol \leftarrow valoracion
         end if
      end if
   end while
   t \leftarrow t/(1.0+\beta^*t)
   K \leftarrow K+1
end while
```

5. Búsqueda Local Reiterada

La búsqueda local reiterada es un algoritmo que se basa en realizar mutaciones a una solución e ir aplicando el algoritmo de búsqueda local a estas soluciones mutadas quedándote con la mejor de ellas en el proceso.

La intención de este algoritmo es realizar un reinicio controlado de las soluciones e ir aplicando la búsqueda local a estas soluciones pseudoaleatorias (no son aleatorias puras ya que son una mutación de una solución aleatoria mejorada con búsqueda local).

Estas mutaciones permiten al algoritmo simple de búsqueda local escaparse de los máximos locales ya que en el proceso de mutación podemos obtener una solución peor que la actual y luego mejorarla mediante el uso de la búsqueda local.

El procedimiento de mutación es similar al usado en los algoritmos genéticos y el usado durante todo el desarrollo de las tres prácticas.

A continuación se describe en pseudocódigo las funciones empleadas en la mutación:

Algorithm 3 mutacionILS(solucion,MU=0,SIGMA=0.4)

```
num_mutaciones ← 0.1*longitud(solucion)
sample ← num_mutaciones índices aleatorios sin repetición entre 0 y logitud(solucion)
for i en sample do
solucion ← mutacion(solucion,i,MU,SIGMA)
end for
return solucion
```

Algorithm 4 mutacion(w,pos,MU,SIGMA)

```
incremento \leftarrow gauss(MU,SIGMA)

w[pos] \leftarrow w[pos] + incremento

if w[pos] <0 then

w[pos] \leftarrow 0

else if w[pos]>1 then

w[pos] \leftarrow 1

end if

return w
```

A continuación describo el pseudocódigo de ILS:

Algorithm 5 ILS(data,k,MAX_EVALS)

```
ncar \leftarrow longitud(data[0])
mejor_solucion \leftarrow [0,0,...,0]
valoracion_mejor_solucion \leftarrow 0
evaluaciones \leftarrow 1
while evaluaciones < MAX_EVALS do
  solucion \leftarrow Solución aleatoria
  valoracion \leftarrow Valoracion(solucion)
  if valoracion>valoracion_mejor_solucion then
     mejor\_solucion \leftarrow solucion
     valoracion\_mejor\_solucion \leftarrow valoracion
  end if
  mejorada, ev \leftarrow busquedaLocal(data, k, 1000, solucion)
  evaluaciones \leftarrow evaluciones + ev
  valoracion\_mejorada \leftarrow Valoracion(mejorada)
  if valoracion_mejorada>valoracion_mejor_solucion then
     mejor\_solucion \leftarrow mejorada
     valoracion\_mejor\_solucion \leftarrow valoracion\_mejorada
  end if
  if valoracion > valoracion_mejorada then
     mejor\_local \leftarrow solucion
     valoracion\_mejor\_local \leftarrow valoracion
  else
     mejor\_local \leftarrow mejorada
     valoracion\_mejor\_local \leftarrow valoracion\_mejorada
  end if
  evaluaciones \leftarrow evaluaciones + 1
  if valoracion_mejor_local>valoracion_mejor_solucion then
     mejor\_solucion \leftarrow mejor\_local
     valoracion\_mejor\_solucion \leftarrow valoracion\_mejor\_local
  end if
  for i en [0,...,13] do
     mutada \leftarrow mutacionILS(mejor\_local)
     valoracion\_mutada \leftarrow Valoracion(mutada)
     mutada_mejorada,ev \leftarrow busquedaLocal(data,k,1000,mutada)
     valoracion\_mutada\_mejorada \leftarrow Valoracion(mutada\_mejorada)
     evaluaciones \leftarrow evaluaciones + 2 + ev
     if valoracion_mutada>valoracion_mutada_mejorada then
       mejor\_local \leftarrow mutada
       valoracion\_mejor\_local \leftarrow valoracion\_mutada
     else
       mejor\_local \leftarrow mutada\_mejorada
       valoracion\_mejor\_local \leftarrow valoracion\_mutada\_mejorada
     if valoracion_mejor_local>valoracion_mejor_solucion then
       mejor\_solucion \leftarrow mejor\_local
       valoracion\_mejor\_solucion \leftarrow valoracion\_mejor\_local
     end if
  end for
end while
return mejor_solucion
```

6. Evolución Diferencial

Este algoritmo es un algoritmo basado en la teoría de algoritmos genéticos haciendo un énfasis especial en la mutación y usando una recombinación diferente a posteriori.

Como podremos observar posteriormente en los resultados este es un algoritmo que arroja unos resultados muy buenos en el problema de selección de características.

He implementado para este algoritmo dos modelos de mutación: Rand1 y Current to Best 1. Rand1 toma tres individuos aleatorios de la población para cada individuo al que queremos aplicar la mutación y devolvemos la suma del primer individuo aleatorio mas un factor de escala por la resta de los dos otros individuos generados.

A continuación se describe el operador en pseudocódigo:

Algorithm 6 Rand1(individuo,poblacion,valoraciones)

sample \leftarrow [0,...,longitud(poblacion)] excluyendo al entero individuo Mezclamos de forma aleatoria la lista sample sample \leftarrow 3 primeros elementos de sample

return poblacion[sample[0]] + F*(poblacion[sample[1]]-poblacion[sample[2]])

Donde en nuestro caso F = 0.5 como se sugiere en las diapositivas de teoría.

El otro operador de mutación es Current to Best 1 que se basa en intentar dirigir la mutación del individuo hacia el mejor actual de la población con un cierto factor de aleatoriedad al crear el individuo mutado usando dos individuos aleatorios de la población.

A continuación se describe el pseudocódigo del operador:

Algorithm 7 CBT1(individuo, poblacion, valoraciones)

sample \leftarrow [0,...,longitud(poblacion)] excluyendo al entero individuo Mezclamos de forma aleatoria la lista sample

sample \leftarrow 2 primeros elementos de sample

 $mejor \leftarrow Índice del mejor elemento de la población$

 $\begin{array}{lll} \textbf{return} & \textbf{poblacion}[individuo] & + & F^*(\textbf{poblacion}[mejor] & - & \textbf{poblacion}[individuo]) & + \\ F^*(\textbf{poblacion}[sample[0]] & - & \textbf{poblacion}[sample[1]]) \\ \end{array}$

Donde en nuestro caso F = 0.5 como se sugiere en las diapositivas de teoría.

En el algoritmo la mutación sólo la aplicamos si al generar un valor aleatorio este es menor que la constante CR que viene dada como la constante $CR = \frac{0,1}{0,9}$ en las diapositivas de teoría.

Tras la mutación se hace la selección de los mejores para quedarnos con los de la generación anterior si no hemos mejorado o con los mutados si hemos obtenido mejora.

A continuación se describe el algoritmo en pseudocódigo:

```
Algorithm 8 DE(data,k,operador_mutacion,MAX_EVALS=15000,TAM_POBLACION=50)
  población ← Genera una población inicial aleatoria.
  valoraciones ← Valoraciones de la población
  evaluaciones \leftarrow TAM\_POBLACION
  \mathbf{while} \ \mathrm{evaluaciones} {<} \mathrm{MAX\_EVALS} \ \mathbf{do}
    offspring \leftarrow []
    for i en [0,...,TAM_POBLACION-1] do
       random \leftarrow Número aleatorio entre 0 y 1.
       if random<CR then
         offspring \leftarrow [offspring, operador_mutacion(i,poblacion,valoraciones)]
       else
         offspring \leftarrow [offspring,poblacion[i]]
       end if
    end for
    valoraciones_offspring ← Valoraciones de la población offspring
    evaluaciones \leftarrow evaluaciones + TAM_POBLACION
    for i en [0,...,TAM_POBLACION-1] do
       if valoraciones[i] < valoraciones_offspring[i] then
         poblacion[i] \leftarrow offspring[i]
         valoraciones[i] \leftarrow valoraciones\_offspring[i]
       end if
    end for
  end while
  return El mejor individuo de la población.
```

7. Pseudocódigo Genético Estacionario

Algorithm 9 GeneticoEstacionario(data,k,operador_cruce)

```
num\_padres \leftarrow 0
if operador_cruce == cruceAritmetico then
  num\_padres \leftarrow 4
else if operador_cruce == cruceBLX then
  num\_padres \leftarrow 2
else
  Error en el operador de cruce.
end if
poblacion \leftarrow generaPoblacionInicial(numero\_caracteristicas)
valoraciones ← tasa_agregada + tasa_reduccion de cada individuo de la poblacion
evaluaciones \leftarrow TAM\_POBLACION
while evaluaciones < MAX_EVALUACIONES do
  padres ← Padres escogidos por torneo binario según num_padres
  hijos ← Obtenemos los hijos según operador_cruce con los padres calculados.
  Muta cada gen de los hijos si uniforme(0,1) es menor que 0.001.
  poblacion \leftarrow [poblacion, hijos]
  valoraciones \leftarrow [valoraciones, valoraciones de los hijos]
  Obtener los índices que los 30 mejores individuos de la población y quedarse con ellos.
  Actualizar poblacion y valoraciones según los índices obtenidos.
  evaluaciones \leftarrow evaluaciones +2
end while
return Devolver al individuo con mayor valoración de la población.
```

8. Peseudocódigo Genético Generacional

```
Algorithm 10 GeneticoGeneracional(data,k,operador_cruce)
  poblacion \leftarrow generaPoblacionInicial(num\_caracteristicas)
  mutaciones \leftarrow PROB\_MUTACION*TAM\_POBLACION*num\_caracteristicas
  num\_parejas \leftarrow TAM\_POBLACION*PROB\_CRUCE
  valoraciones ← valoraciones de la población
  mejor_solución \leftarrow Mejor solución de la población.
  while evaluaciones < MAX_EVALUACIONES do
    hijos \leftarrow []
    for i=0, ..., num_parejas-1 do
       if operador_cruce==cruceAritmetico then
         padres ← genera 4 padres con torneoBinario
         hijos \leftarrow [hijos, operador\_cruce(padres[0], padres[1])]
         hijos \leftarrow [hijos, operador\_cruce(padres[2], padres[3])]
         hijos \leftarrow [hijos, operador\_cruce(padres[0], padres[2])]
         hijos \leftarrow [hijos, operador\_cruce(padres[1], padres[2])]
       else
         padres ← genera 2 padres con torneoBinario
         hijos \leftarrow [hijos, operador\_cruce(padres[0], padres[1])]
         hijos \leftarrow [hijos, operador\_cruce(padres[0], padres[1])]
       end if
    end for
    Muta la nueva población de hijos con probabilidad 0.001 con una distribución qauss(\mu =
    0, \sigma = 0.3
    Rellena la población de hijos con padres haciendo torneos binarios.
    poblacion \leftarrow hijos
    Actualiza las valoraciones de los individuos.
    Si el peor de la nueva población es peor que el mejor de la anterior lo sustituimos.
    Actualiza el mejor de la población.
  end while
  return Mejor de la población.
```

9. Pseudocódigo Meméticos

Donde prob_bl es el porcentaje de la población al que queremos aplicar la búsqueda local.

```
Algorithm 11 Memetico(data,k,operador_cruce,nGeneraciones,prob_bl,mejores=False)
  poblacion \leftarrow generaPoblacionInicial(num\_caracteristicas)
  mutaciones \leftarrow PROB\_MUTACION*TAM\_POBLACION*num\_caracteristicas
  num\_parejas \leftarrow TAM\_POBLACION*PROB\_CRUCE
  valoraciones ← valoraciones de la población
  mejor_solución ← Mejor solución de la población.
  contador_generaciones \leftarrow 1
  while evaluaciones < MAX_EVALUACIONES do
    if contador_generaciones%nGeneraciones==0 then
       n_elem_bl \leftarrow prob_bl*TAM_POBLACION
       individuos \leftarrow []
       if not mejores then
         individuos \leftarrow Tomar n_elem_bl de forma aleatoria desde 0,...,TAM_POBLACION-1
       else
         individuos ← Toma los 0.1*TAM_POBLACION mejores de la poblacion
       end if
       for ind en individuos do
         Aplica la búsqueda local a poblacion[ind]
         Actualiza el número de evaluaciones.
       end for
       Actualiza las valoraciones
       Actualiza las evaluaciones.
    end if
    hijos \leftarrow []
    for i=0, ..., num_parejas-1 do
       if operador_cruce==cruceAritmetico then
         padres ← genera 4 padres con torneoBinario
         hijos \leftarrow [hijos, operador\_cruce(padres[0], padres[1])]
         hijos \leftarrow [hijos, operador\_cruce(padres[2], padres[3])]
         hijos \leftarrow [hijos, operador\_cruce(padres[0], padres[2])]
         hijos \leftarrow [hijos, operador\_cruce(padres[1], padres[2])]
       else
         padres ← genera 2 padres con torneoBinario
         hijos \leftarrow [hijos, operador\_cruce(padres[0], padres[1])]
         hijos \leftarrow [hijos, operador\_cruce(padres[0], padres[1])]
       end if
    end for
    Muta la nueva población de hijos con probabilidad 0.001 con una distribución qauss(\mu =
    0, \sigma = 0.3
    Rellena la población de hijos con padres haciendo torneos binarios.
    poblacion \leftarrow hijos
    Actualiza las valoraciones de los individuos.
    Si el peor de la nueva población es peor que el mejor de la anterior lo sustituimos.
    Actualiza el mejor de la población.
    contador\_generaciones \leftarrow contador\_generaciones + 1
  end while
  return Mejor de la población.
```

10. Pseudocódigo KNN

Algorithm 12 KNN(w,datos_test,datos_entrenamiento, etiquetas_entrenamiento, etiquetas_test, k, mismos_conjuntos)

```
tam\_datos\_entrenamiento \leftarrow longitud(datos\_entrenamiento)
clases \leftarrow []
for i=0,...,longitud(datos_test) do
  p \leftarrow datos\_test[i]
  w_m \leftarrow Repetir el vector w tantas veces como datos haya en datos_entrenamiento.
  p_m ← Repetir el vector p tantas veces como datos haya en datos_entrenamiento.
  dist \leftarrow w_-m \cdot (p_-m - datos\_entrenamiento)^2
  if mismos_conjuntos then
     dist[i] \leftarrow \infty
  end if
  \min s \leftarrow \text{Los } k \text{ indices correspondientes a las distancias más pequeñas.}
  clases \leftarrow [clases, masComun(etiquetas\_entrenamiento[mins])]
end for
          \underline{\textit{Numero de elementos de clases que han acertado con respecto a etiquetas\_test}
return
                                     longitud(etiquetas\_test)
```

Cabe notar que el número que devolvemos está entre 0 y 1, por lo que en los algoritmos de valoración debemos tener esto en cuenta para multiplicarlo por 100 y convertirlo en un porcentaje.

11. Pseudocódigo Relief

Algorithm 13 elementoMinimaDistancia(e,lista)

```
distancias ← []

for l en lista do

if l!=e then

distancias ← [distancias, distancia(e,l,[1..1])]

else

distancias ← [distancias, max(distancias)]

end if

end for

indice_menor_distancia ← índice del elemento de menor valor del vector distancias.

return lista[indice_menor_distancia]
```

Algorithm 14 Relief(data)

```
w \leftarrow vector de pesos a 0
for elemento en data do
  clase \leftarrow clase de elemento
  amigos \leftarrow []
  enemigos \leftarrow []
  for e en data do
     if e!=elemento AND e[longitud(e)-1]==clase then
        amigos \leftarrow [amigos, e]
        enemigos \leftarrow [enemigos, e]
     end if
  end for
  amigo\_cercano \leftarrow elementoMinimaDistancia(elemento, amigos)
  enemigo_cercano \leftarrow elementoMinimaDistancia(elemento, enemigos)
  resta\_enemigo \leftarrow element-enemigo\_cercano
  resta\_amigo \leftarrow element-amigo\_cercano
  w \leftarrow w + resta\_enemigo - resta\_amigo
  w_{max} \leftarrow \text{máximo de w}
end for
{f for} \ i \ en \ [0..longitud(w)-1] \ {f do}
  if w[i] < 0 then
     w[i] \leftarrow 0
     \mathbf{w[i]} \leftarrow \frac{w[i]}{w_{max}}
  end if
end for
return w
```

12. Pseudocódigo Búsqueda Local

Algorithm 15 primerVector(n) $w \leftarrow []$ for i en [0..n-1] do $w \leftarrow [w, random.uniforme(0,1)]$ end for return w

Algorithm 16 busquedaLocal(data,k)

```
MAX\_EVALUACIONES \leftarrow 15000
MAX\_VECINOS \leftarrow 20 \cdot longitud(data[0])
vecinos \leftarrow 0
evaluaciones \leftarrow 0
posicion_mutacion \leftarrow 0
w \leftarrow primerVector(longitud(data[0]))
valoracion\_actual \leftarrow Valoracion(data,data,k,w)
while evaluaciones<MAX_EVALUACIONES AND vecinos<MAX_VECINOS do
  evaluaciones \leftarrow evaluaciones+1
  vecinos \leftarrow vecinos+1
  vecino, posicion_mutacion \leftarrow mutacion(w,posicion_mutacion)
  valoracion\_vecino \leftarrow Valoracion(data,data,k,vecino)
  if valoracion_vecino>valoracion_actual then
     vecinos \leftarrow 0
     w \leftarrow vecino
     valoracion\_actual \leftarrow valoracion\_vecino
     posicion_mutacion \leftarrow 0
  else if posicion_mutacion==longitud(w) then
     posicion_mutacion \leftarrow 0
  end if
end while
return w
```

13. Procedimiento de desarrollo de la práctica

La práctica ha sido desarrollada en Python3.5 utilizando la librería NumPy para agilizar los cálculos y que la computación fuera mucho más rápida.

Los algoritmos están distribuidos en ficheros con extensión py con el mismo nombre que los algoritmos, de esta forma ILS estaría en el fichero ils.py por ejemplo.

Si se quiere cambiar la semilla aleatoria esta se encuentra en la cabecera de los ficheros que albergan los algoritmos.

Si queremos obtener los resultados de todos los algoritmos implementados hasta ahora podemos ejecutar el fichero resultados.py de la siguiente forma:

python3.5 resultados.py

La ejecución de este fichero puede resultar excesivamente larga para comprobar un sólo algoritmo por lo que para ello he programado un fichero main.py que permite escoger el algoritmo que queremos ejecutar, el fichero de datos, la constante k de KNN y el número de particiones de los datos así como el algoritmo.

Durante el transcurso de la práctica intenté utilizar el framework Sklearn pero lo encontré menos eficiente que las implementaciones que he realizado con NumPy por lo que descarté finalmente su uso.

Por último cabe destacar que todo lo que es común a todos los algoritmos viene implementado en el fichero auxiliar.py donde podemos encontrar el algoritmo básico de mutación o la función de lectura de datos por ejemplo.

14. Resultados

		Oz	one			Park	insons			Specti	f-Heart	
	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)
Partición 1	71.8750	0.0000	35.9375	0.0111	76.3158	0.0000	38.1579	0.0032	70.5882	0.0000	35.2941	0.0072
Partición 2	84.3750	0.0000	42.1875	0.0097	81.5789	0.0000	40.7895	0.0046	77.9412	0.0000	38.9706	0.0092
Partición 3	71.8750	0.0000	35.9375	0.0095	94.7368	0.0000	47.3684	0.0031	67.6471	0.0000	33.8235	0.0083
Partición 4	81.2500	0.0000	40.6250	0.0088	73.6842	0.0000	36.8421	0.0029	60.2941	0.0000	30.1471	0.0072
Partición 5	85.9375	0.0000	42.9688	0.0089	76.7442	0.0000	38.3721	0.0032	66.2338	0.0000	33.1169	0.0071
Media	79.0625	0.0000	39.5313	0.0096	80.6120	0.0000	40.3060	0.0034	68.5409	0.0000	34.2704	0.0078

Cuadro 1: Resultados 1NN

		Oz	one			Park	insons			Spect	f-Heart	
	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)
Partición 1	64.0625	0.0000	32.0313	2.3071	76.3158	0.0000	38.1579	0.2821	26.4706	0.0000	13.2353	1.0612
Partición 2	85.9375	0.0000	42.9688	1.6189	60.5263	0.0000	30.2632	0.2874	73.5294	0.0000	36.7647	1.0387
Partición 3	75.0000	0.0000	37.5000	1.7513	76.3158	0.0000	38.1579	0.2792	73.5294	0.0000	36.7647	1.1519
Partición 4	73.4375	0.0000	36.7188	1.7399	78.9474	0.0000	39.4737	0.2807	73.5294	0.0000	36.7647	1.0449
Partición 5	81.2500	0.0000	40.6250	1.6257	72.0930	0.0000	36.0465	0.2769	29.8701	0.0000	14.9351	0.6444
Media	75.9375	0.0000	37.9688	1.8086	72.8397	0.0000	36.4198	0.2812	55.3858	0.0000	27.6929	0.9882

Cuadro 2: Resultados Relief con K=1

		Oz	zone			Parki	nsons			Spectf	-Heart	
	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)
Partición 1	76.5625	25.0000	50.7813	89.7886	78.9474	18.1818	48.5646	7.7242	72.0588	29.5454	50.8021	24.4655
Partición 2	79.6875	15.2778	47.4826	75.9767	86.8421	36.3636	61.6029	7.4996	73.5294	20.4545	46.9920	44.5414
Partición 3	68.7500	34.7222	51.7361	85.7498	94.7368	22.7273	58.7321	5.4946	75.0000	25.0000	50.0000	32.4179
Partición 4	81.2500	27.7778	54.5139	93.7621	76.3158	13.6364	44.9761	6.5065	58.8235	29.5454	44.1845	59.5462
Partición 5	78.1250	23.6111	50.8681	105.6183	76.7442	13.6364	45.1903	5.4971	62.3377	25.0000	43.6688	22.3619
Media	76.875	25.2778	51.0764	90.1781	82.7173	20.9091	51.8132	6.5444	68.3499	25.9091	47.1295	36.6666

Cuadro 3: Resultados Búsqueda Local con K=1

		Oz	one			Parkinso	ns			Spect	f-Heart	
	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)
Partición 1	76.5625	52.7778	64.6701	534.7600	73.6842	72.7273	73.2057	144.2443	73.5294	59.0909	66.3102	268.5947
Partición 2	87.5000	51.3889	69.4444	482.7369	71.0526	68.1818	69.6172	145.8859	70.5882	54.5454	62.5668	343.7157
Partición 3	76.5625	50.0000	63.2813	452.4577	97.3684	68.1818	82.7751	189.4074	72.0588	63.6364	67.8476	376.4886
Partición 4	82.8125	55.5556	69.1840	481.0927	60.5263	68.1818	64.3541	192.2663	61.7647	61.3636	61.5642	353.3151
Partición 5	79.6875	52.7778	66.2326	476.6389	74.4186	72.7273	73.5729	185.5641	75.3247	61.3636	68.3442	241.8399
Media	80.6250	52.5000	66.5625	485.5372	75.4100	70.0000 72.7050	171.4736	70.6532	60.0000	65.3266	316.7908	

Cuadro 4: Resultados AGE-BLX con K=1

		Oz	one			Park	insons			Spect	f-Heart	
	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)
Partición 1	78.1250	76.3889	77.2569	471.0574	68.4211	68.1818	68.3014	193.6963	76.4706	68.1818	72.3262	268.5880
Partición 2	84.3750	76.3889	80.3819	476.7666	73.6842	63.6364	68.6603	190.7289	70.5882	86.3636	78.4759	342.4545
Partición 3	81.2500	65.2778	73.2639	467.5143	78.9474	86.3636	82.6555	194.1895	70.5882	79.5455	75.0668	391.2035
Partición 4	82.8125	66.6667	74.7396	476.7075	65.7895	77.2727	71.5311	194.0040	69.1176	70.4545	69.7861	357.9221
Partición 5	76.5625	63.8889	70.2257	476.0006	76.7442	63.6364	70.1903	189.8313	74.0259	72.7273	73.3766	247.7655
Media	80.6250	69.7222	75.1736	473.6093	72.7173	71.8182	72.2677	192.4899	72.1581	75.4545	73.8063	321.5867

Cuadro 5: Resultados AGE-CA con K=1

		Oz	one			Park	insons			Spect	f-Heart	
	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)
Partición 1	71.8750	45.8333	58.8542	649.8476	76.3158	45.4545	60.8852	269.7200	67.6471	47.7273	57.6872	387.5749
Partición 2	78.1250	45.8333	61.9792	656.0903	86.8421	50.0000	68.4211	273.4718	70.5882	50.0000	60.2941	491.5933
Partición 3	71.8750	44.4444	58.1597	645.3196	86.8421	50.0000	68.4211	271.0081	70.5882	50.0000	60.2941	533.1007
Partición 4	81.2500	38.8889	60.0694	657.0321	78.9474	45.4545	62.2010	270.4252	67.6471	50.0000	58.8235	518.8346
Partición 5	79.6875	38.8889	59.2882	657.8484	65.1163	54.5455	59.8309	261.5370	64.9351	45.4545	55.1948	376.8476
Media	76.5625	42.7778	59.6701	653.2276	78.8127	49.0909	63.9518	269.2324	68.2811	48.6364	58.4587	461.5902

Cuadro 6: Resultados AGG-BLX con K=1

		Ozone)			Parl	insons			Spec	tf-Heart	
	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)
Partición 1	78.1250	44.4444	61.2847	1295.8234	86.8421	31.8182	59.3301	549.0934	69.1176	54.5455	61.8316	839.1870
Partición 2	84.3750	50.0000	67.1875	1308.7905	84.2105	40.9091	62.5598	554.3215	70.5882	45.4545	58.0214	1027.5440
Partición 3	79.6875	54.1667	66.9271	1287.9295	86.8421	31.8182	59.3301	459.0695	67.6471	56.8182	62.2326	1115.2930
Partición 4	76.5625	41.6667	59.1146	1307.3627	81.5789	40.9091	61.2440	430.1995	72.0588	54.5454	63.3021	1053.8761
Partición 5	81.2500 6 41.6667	61.4583	1307.9415	79.0698	36.3636	57.7167	405.0435	70.1299	45.4545	57.7922	662.3548	
Media	80.0000	46.3889	63.1944	1301.5695	83.7087	36.3636	60.0362	479.5455	69.9083	51.3636	60.6360	939.6510

Cuadro 7: Resultados AGG-CA con K=1

		Oz	zone			Park	insons			Spect	f-Heart	
	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)
Partición 1	76.5625	30.5556	53.5590	483.3842	84.2105	45.4545	64.8325	158.4467	75.0000	34.0909	54.5455	282.0805
Partición 2	87.5000	34.7222	61.1111	491.0853	81.5789	40.9091	61.2440	155.5619	82.3529	34.0909	58.2219	358.5910
Partición 3	75.0000	30.5556	52.7778	480.3444	89.4737	31.8182	60.6459	158.6902	82.3529	40.9091	61.6310	390.2710
Partición 4	85.9375	34.7222	60.3299	492.3788	71.0526	31.8182	51.4354	165.8306	60.2941	34.0909	47.1925	362.2775
Partición 5	85.9375	31.9444	58.9410	491.1975	72.0930	36.3636	54.2283	155.3547	68.8312	31.8182	50.3247	255.1079
Media	82.1875	32.5000	57.3438	487.6780	79.6818	37.2727	58.4772	158.7768	73.7662	35.0000	54.3831	329.6656

Cuadro 8: Resultados AM(10,1.0) BLX con K=1

		Oz	zone			Park	insons			Spect	f-Heart	
	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)
Partición 1	71.8750	40.2778	56.0764	465.8056	71.0526	40.9091	55.9809	156.7125	72.0588	38.6364	55.3476	266.8972
Partición 2	78.1250	34.7223	56.4236	472.3412	73.6842	40.9091	57.2967	150.1130	76.4706	38.6364	57.5535	340.3339
Partición 3	75.0000	36.1111	55.5556	463.0502	94.7368	50.0000	72.3684	141.9956	70.5882	38.6364	54.6123	414.4833
Partición 4	79.6875	31.9444	55.8160	472.0138	65.7895	50.0000	57.8947	155.8208	75.0000	38.6364	56.8182	379.9297
Partición 5	81.2500	33.3333	57.2917	471.9598	74.4186	50.0000	62.2093	141.4247	67.5325	40.9091	54.2208	266.9989
Media	77.1875	35.2778	56.2326	469.0341	75.9364	46.3636	61.1499	149.2133	72.3300	39.0909	55.7105	333.7286

Cuadro 9: Resultados AM(10,0.1) BLX con K=1

		Ozone				Park	insons			Spect	f-Heart	
	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	%_clas	$%_{-}\mathrm{red}$	Agr.	T (seg)
Partición 1	73.4375	33.3333	53.3854	465.9320	73.6842	45.4545	59.5694	148.1477	72.0588	38.6364	55.3476	295.3414
Partición 2	82.8125	34.7222	58.7674	472.6991	78.9474	45.4545	62.2010	154.1124	76.4706	38.6364	57.5535	370.5857
Partición 3	68.7500	36.1111	52.4306	463.2197	86.8421	40.9091	63.8756	143.0956	69.1176	36.3636	52.7406	398.8947
Partición 4	79.6875	33.3333	56.5104	472.5732	71.0526	45.4545	58.2536	142.6770	73.5294	38.6364	56.0829	342.1724
Partición 5	82.8125	34.7222	58.7674	472.2727	72.0930	40.9091	56.5011	145.4911	71.4286	38.6364	55.0325	240.2233
Media	77.5000	34.4444	55.9722	469.3393	76.5239	43.6364	60.0801	146.7048	72.5210	38.1818	55.3514	329.4435

Cuadro 10: Resultados AM(10,0.1,mejores) BLX con K=1

		Oz	one			Park	insons			Spect	f-Heart	
	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)
Partición 1	76.5625	30.5556	53.5590	544.5574	86.8421	31.8182	59.3301	208.2288	83.8235	31.8182	57.8209	336.4153
Partición 2	82.8125	33.3333	58.0729	552.3451	76.3158	36.3636	56.3397	216.6982	76.4706	31.8182	54.1444	426.7882
Partición 3	71.8750	25.0000	48.4375	540.2087	92.1053	40.9091	66.5072	233.5908	76.4706	25.0000	50.7353	468.6593
Partición 4	81.2500	30.5556	55.9028	552.1704	76.3158	40.9091	58.6124	257.1846	69.1176	31.8182	50.4679	464.2057
Partición 5	79.6875	41.6667	60.6771	551.9782	67.4419	31.8182	49.6300	249.0803	71.4286	27.2727	49.3506	338.4131
Media	78.4375	32.2222	55.3299	548.2520	79.8042	36.3636	58.0839	232.9565	75.4622	29.5454	52.5038	406.8963

Cuadro 11: Resultados AM(10,1.0) CA con K=1

		Oz	zone			Park	insons		Spectf-Heart				
	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	
Partición 1	76.5625	33.3333	54.9479	830.5894	65.7895	45.4545	55.6220	419.5533	73.5294	45.4545	59.4920	579.7760	
Partición 2	87.5000	38.8889	63.1944	838.5973	89.4737	45.4545	67.4641	420.6409	76.4706	40.9091	58.6898	694.4176	
Partición 3	79.6875	38.8889	59.2882	822.3652	78.9474	50.0000	64.4737	407.4625	76.4706	38.6364	57.5535	815.4603	
Partición 4	81.2500	40.2778	60.7639	838.2995	68.4211	40.9091	54.6651	416.2755	63.2353	36.3636	49.7995	763.9080	
Partición 5	78.1250	33.3333	55.7292	839.6178	76.7442	50.0000	63.3721	393.3524	71.4286	40.9091	56.1688	541.2438	
Media	80.6250	36.9444	58.7847	833.8938	75.8752	46.3636	61.1194	411.4569	72.2269	40.4545	56.3407	678.9612	

Cuadro 12: Resultados AM(10,0.1) CA con K=1

		Oz	one			Parki	nsons		Spectf-Heart				
	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	
Partición 1	71.8750	36.1111	53.9931	834.7623	86.8421	40.9091	63.8756	416.4395	73.5294	27.2727	50.4011	555.4199	
Partición 2	84.3750	38.8889	61.6319	837.4081	73.6842	31.8182	52.7512	407.1841	77.9412	29.5455	53.7433	689.7598	
Partición 3	75.0000	33.3333	54.1667	822.9041	100.0000	27.2727	63.6364	379.1863	66.1765	38.6364	52.4064	744.1559	
Partición 4	82.8125	33.3333	58.0729	837.5973	81.5789	40.9091	61.2440	348.5440	63.2353	34.0909	48.6631	697.9048	
Partición 5	81.2500	25.0000	53.1250	816.5085	76.7442	45.4545	61.0994	316.2853	70.1299	34.0909	52.1104	487.3722	
Media	79.0625	33.3333	56.1979	829.8361	83.7699	37.2727	60.5213	373.5279	70.2024	32.7273	51.4649	634.9225	

Cuadro 13: Resultados AM(10,0.1,mejores) CA con K=1

		Oze	one			Parki	nsons		Spectf-Heart				
	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	
Partición 1	68.7500	43.0556	55.9028	39.2839	81.5789	36.3636	58.9713	17.2005	67.6471	25.0000	46.3235	32.7732	
Partición 2	73.4375	34.7222	54.0799	40.1740	81.5789	36.3636	58.9713	17.3490	79.4118	34.0909	56.7513	43.1174	
Partición 3	73.4375	27.7778	50.6076	38.9988	89.4737	27.2727	58.3732	17.6672	72.0588	36.3636	54.2112	47.1787	
Partición 4	79.6875	37.5000	58.5938	40.0877	81.5789	31.8182	56.6986	17.4884	67.6471	34.0909	50.8690	43.4464	
Partición 5	84.3750	40.2778	62.3264	40.0877	74.4186	18.1818	46.3002	17.9143	66.2338	36.3636	51.2987	30.7745	
Media	75.9375	36.6667	56.3021	39.7264	81.7258	30.0000	55.8629	17.5239	70.5997	33.1818	51.8908	39.4581	

Cuadro 14: Resultados ES

		Oz	zone			Park	insons		Spectf-Heart				
	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	
Partición 1	73.4375	40.2778	56.8576	406.5580	73.6842	50.0000	61.8421	216.7155	67.6471	38.6364	53.1417	641.9555	
Partición 2	84.3750	45.8333	65.1042	486.8962	73.6842	54.5454	64.1148	238.0018	77.9412	43.1818	60.5615	806.9203	
Partición 3	73.4375	50.0000	61.7188	420.2492	76.3158	54.5454	65.4306	235.8520	63.2353	43.1818	53.2086	876.8338	
Partición 4	82.8125	43.0556	62.9340	421.8965	76.3158	54.5454	65.4306	235.8520	69.1176	38.6363	53.8770	845.1175	
Partición 5	82.8125	34.7222	58.7674	404.3778	62.7907	45.4545	54.1226	227.6423	68.8312	45.4545	57.1429	580.4707	
Media	79.3750	42.7778	61.0764	427.9955	75.1897	50.0000	62.5949	228.1301	69.3545	41.8182	55.5863	750.2596	

Cuadro 15: Resultados ILS

		Oz	zone			Park	insons		Spectf-Heart				
	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	
Partición 1	67.1875	95.8333	81.5104	420.9797	76.3158	90.9090	83.6124	172.4020	63.2353	93.1818	78.2086	317.0327	
Partición 2	68.7500	90.2778	79.5139	421.4804	81.5789	95.4545	88.5167	172.8287	70.5882	93.1818	81.8850	368.5609	
Partición 3	68.7500	90.2778	79.5139	417.3022	78.9474	90.9090	84.9282	173.4119	73.5294	93.1818	83.3556	356.7845	
Partición 4	78.1250	90.2778	84.2014	409.6182	65.7895	90.9090	78.3493	169.2288	61.7647	93.1818	77.4733	337.1541	
Partición 5	81.2500	93.0556	87.1528	404.9512	69.7674	90.9090	80.3383	170.5954	71.4286	93.1818	82.3052	230.887	
Media	72.8125	91.9444	82.3784	414.8663	74.4798	91.8181	83.1490	171.6933	68.1092	93.1818	80.6455	322.0722	

Cuadro 16: Resultados DE Rand1

		Oz	one			Park	insons		Spectf-Heart				
	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	%_clas	$%_{-}\mathrm{red}$	Agr.	T (seg)	
Partición 1	60.9375	75.0000	67.9688	404.1410	76.3458	90.9090	83.6124	173.3224	72.0588	77.2727	74.6658	258.8468	
Partición 2	78.1250	79.1667	78.6458	450.7683	76.3158	86.3636	81.3397	173.7791	76.4706	72.7273	74.5989	328.3923	
Partición 3	71.8750	59.7222	65.7986	489.5991	73.6842	77.2727	75.4785	174.7107	72.0588	93.1818	82.6203	358.4060	
Partición 4	75.0000	69.4444	72.2222	501.6515	57.8947	77.2727	67.5837	174.8229	66.1765	72.7273	69.4519	332.1300	
Partición 5	79.6875	65.2778	72.4826	505.8841	72.0930	86.3636	79.2283	170.0617	68.8312	59.0909	63.9610	232.8160	
Media	73.1250	69.7222	71.4236	470.4088	71.2607	83.6363	77.4485	173.3394	71.1192	75.0000	73.0596	302.1182	

Cuadro 17: Resultados DE Current to Best 1

		0	zone			Park	insons			Spect	f-Heart	
	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)	%_clas	%_red	Agr.	T (seg)
1-NN	79.0625	0.0000	39.5313	0.0096	80.6120	0.0000	40.3060	0.0034	68.5409	0.0000	34.2704	0.0078
Relief	75.9375	0.0000	37.9688	1.8086	72.8397	0.0000	36.4198	0.2812	55.3858	0.0000	27.6929	0.9882
BL	76.875	25.2778	51.0764	90.1781	82.7173	20.9091	51.8132	6.5444	68.3499	25.9091	47.1295	36.6666
AGE-BLX	80.6250	52.5000	66.5625	485.5372	75.4100	70.0000	72.7050	171.4736	70.6532	60.0000	65.3266	316.7908
AGE-CA	80.6250	69.7222	75.1736	473.6093	72.7173	71.8182	72.2677	192.4899	72.1581	75.4545	73.8063	321.5867
AGG-BLX	76.5625	42.7778	59.6701	653.2276	78.8127	49.0909	63.9518	269.2324	68.2811	48.6364	58.4587	461.5902
AGG-CA	80.0000	46.3889	63.1944	1301.5695	83.7087	36.3636	60.0362	479.5455	69.9083	51.3636	60.6360	939.6510
AM(10,1) BLX	82.1875	32.5000	57.3438	487.6780	79.6818	37.2727	58.4772	158.7768	73.7662	35.0000	54.3831	329.6656
AM(10,0.1) BLX	77.1875	35.2778	56.2326	469.0341	75.9364	46.3636	61.1499	149.2133	72.3300	39.0909	55.7105	333.7286
AM(10,0.1,mejores) BLX	77.5000	34.4444	55.9722	469.3393	76.5239	43.6364	60.0801	146.7048	72.5210	38.1818	55.3514	329.4435
AM(10,1) CA	78.4375	32.2222	55.3299	548.2520	79.8042	36.3636	58.0839	232.9565	75.4622	29.5454	52.5038	406.8963
AM(10,0.1) CA	80.6250	36.9444	58.7847	833.8938	75.8752	46.3636	61.1194	411.4569	72.2269	40.4545	56.3407	678.9612
AM(10,0.1,mejores) CA	79.0625	33.3333	56.1979	829.8361	83.7699	37.2727	60.5213	373.5279	70.2024	32.7273	51.4649	634.9225
ES	75.9375	36.6667	56.3021	39.7264	81.7258	30.0000	55.8629	17.5239	70.5997	33.1818	51.8908	39.4581
ILS	79.3750	42.7778	61.0764	427.9955	75.1897	50.0000	62.5949	228.1301	69.3545	41.8182	55.5863	750.2596
DE Rand1	72.8125	91.9444	82.3784	414.8663	74.4798	91.8181	83.1490	171.6933	68.1092	93.1818	80.6455	322.0722
DE CTB1	73.1250	69.7222	71.4236	470.4088	71.2607	83.6363	77.4485	173.3394	71.1192	75.0000	73.0596	302.1182

Cuadro 18: Resultados globales con K=1

14.1. Análisis de los datos

Comparados con los anteriores algoritmos sólo ILS y DE han marcado una diferencia substancial. Podemos comprobar que ES está en un nivel parecido a los meméticos de la práctica anterior y un poco por encima de la búsqueda local simple.

La única ventaja que podemos citar de dicho algoritmo es que comparativamente en tiempo es mucho más rápido que todos los que obtienen puntuaciones parecidas, por lo que puede resultar interesante en este caso por ejemplo para mezclarlo con la ILS en el sentido de dejar de usar la búsqueda local en dicho algoritmo y probar con ES.

Cuando pasamos a ILS podemos observar que su nivel de puntuación está al nivel de los algoritmos genéticos con mejores puntuaciones de la práctica anterior lo que lo sitúa en un buen lugar aunque sus valoraciones no pasan del $65\,\%$.

Si pasamos a analizar DE vemos que es el claro ganador en general de todos los algoritmos implementados en el transcurso de las prácticas arrojándonos puntuaciones de más de un $80\,\%$ en todos los casos y tasas de reducción de más de un $90\,\%$ lo cual está muy por encima de todos los algoritmos hasta el momento.

Hemos de recordar que esta valoración nos indica cuántas de las características han sido poco útiles para la clasificación de las tuplas. Es decir, en el caso que estamos hablando DE ha sido capaz de clasificar de media entorno a un $70\,\%$ de las tuplas de forma correcta con tan sólo usar menos de un $10\,\%$ de las características.

Cabe destacar también que estos resultados han sido obtenidos con el operador de mutación Rand1 mientras que el otro nos arroja unos resultados comparables con el mejor de los algoritmos genéticos pero siempre unos 10 puntos por debajo de Rand1.

En cuanto al tiempo los algoritmos de esta práctica más costosos en tiempo han sido ILS y las dos variantes de DE que han consumido un poco menos de tiempo que los algoritmos genéticos de la práctica anterior.

Todos estos datos se pueden percibir de forma más clara con las siguientes gráficas por ficheros:

Resultados parkinsons

Resultados spectf-heart

Donde podemos percibir claramente que en resultados de la tasa media DE con el operador de mutación Rand1 es el algoritmo que está por encima y en tiempos ILS y las dos variantes de DE obtienen tiempos parecidos mientras que el que menos tiempo consume es claramente ES. Si comparamos los algoritmos de esta práctica con los algoritmos de comparación iniciales que son la búsqueda local como primera metaheurística, relief como algoritmo greedy y 1NN como algoritmo de control podemos comprobar que en el caso de ES ha conseguido mejores resultados que 1NN y que relief al tener estos dos tasa de simplicidad igual a 0 y en el caso de la búsqueda local la ha superado aunque no por una cantidad muy notable.

En el caso de ILS vemos que supera a la búsqueda local por al menos un $5\,\%$ llegando hasta casi un $10\,\%$ por lo que aquí si percibimos una variación un más notable.

En el caso de las dos variantes de DE tenemos que superan con creces a los tres algoritmos iniciales doblando incluso los resultados que obtienen Relief y 1NN.

Resultados comparativa ozone

Resultados comparativa parkinsons

Resultados comparativa spectf-heart

Por lo tanto como conclusión podemos establecer que con la progresión de las prácticas hemos obtenido algoritmos mucho más eficientes en tiempo y resultados que los que veníamos conociendo hasta ahora como los greedy o algoritmos de fuerza bruta.