CS F364 Design & Analysis of Algorithms

ALGORITHM DESIGN TECHNIQUES

Dynamic Programming : String / Text Problems: Examples

- Parsing

PROBLEM: PARSING

• Given a context free grammar G in Chomsky Normal Form (CNF), and a string w, verify whether w is in L(G).

- O Note:
 - This is not an optimization problem.

CONTEXT FREE GRAMMARS

• Recall:

- A Context Free Grammar (CFG) G is a quadruple (V,T,P,S) where
 - V is a set of non-terminal symbols
 - o T is a set of terminal symbols
 - o P is a set of rules of the form
 - \circ A --> α
 - where A i a non-terminal i.e. A ∈ V
 - and α is a string of terminals and nonterminals i.e. $\alpha \in (V \cup T)^*$
 - $oS \in V$ is the start symbol

CFGs - CHOMSKY NORMAL FORM

• Recall:

- A Context Free Grammar (CFG) G = (V,T,P,S) is in Chomsky Normal Form (CNF)
- if every rule in P is in one of the following forms:
 - A --> BC for non-terminals A, B, and C.
 - o A --> a for non-terminal A, and terminal a.
 - o S --> ε where ε is the empty string.

PROBLEM - PARSING (FOR CNF GRAMMARS): ANALYSIS

- Note that the parsing problem:
 - Is w in L(G)?

is essentially asking

- can w be derived from S?
- O How do you divide this problem into sub-problems?
 - Note that grammar rules are implicitly defined using structural induction – e.g. in our case:
 - o A rule of the form A --> BC can be read as:
 - ullet a string α can be derived from A if
 - ullet a string eta can be derived from B and
 - \bullet a string γ can be derived from C and
 - $\alpha = \beta \cdot \gamma$
 - oRules of the other two forms are base cases of induction.

[2]

PROBLEM - PARSING (FOR CNF GRAMMARS): ANALYSIS

- Formulation of sub-problems:
 - Denote a string as w[i..j].
 - If there is a rule of the form A --> BC and if w[i..j] can be derived from A then there must be a k such that

```
oi <= k <= j and
```

- ow[i..k] can be derived from B and
- ow[k+1..j] can be derived from C
- Now formulate the parsing problem as:
 - can w[1..n] be derived from S?
 - o for G = (V,T,P,S)

Problem - Parsing: Recurrence Relation

Operation Define:

- Sym[i,j] for 1<= i <= j <= n, where n is |w|, as
 othe set of all symbols that can derive the string w[i..j]
 from the rules of the grammar.
- Recurrence relation:
 - Sym[i,j] =
 - o { A | A --> BC \in P, B \in Sym[i,k], and C \in Sym[k+1, j] for some k s.t. i <= k < j } if i < j
 - o $\{A \mid A \rightarrow a \in P \text{ and } Sym[i]=a \}$ if i=j
- Then the parsing problem can be decided by
 - Is $S \in Sym[i,j]$?

PROBLEM - PARSING: DYNAMIC PROGRAMMING

- The recurrence from the previous slide can be implemented as a DP algorithm:
 - Referred to as **Cocke-Younger-Kasami** algorithm (*see your text book for* **Theory of Computation**).

• Exercise:

Analyze the time and space complexity of CYK algorithm.