Đề thi môn Trí tuệ nhân tạo (IT4040)

ĐỀ LỂ

Thời gian 90' – Không sử dụng tài liệu – (2 trang)

Ngày thi: 16/01/2019

Câu 1: (2 điểm)

Xét bài toán thiết kế một Tác tử **lái xe ô tô tự động**:

- 1. (1 điểm) Mô tả 4 yếu tố PEAS (Performance measure Environment Actuators Sensors) môi trường hoạt động của tác tử đó.
- 2. (1 điểm) Giải thích các yếu tố (các đặc điểm) của kiểu môi trường hoạt động tác tử đó.

Câu 2: (3 điểm)

Cho một cây trò chơi đối kháng như bên dưới:

- Lượt tiếp theo là của người chơi Max.
- Giá trị lượng giá tại nút lá được cho sẵn.

Sử dụng thuật toán alpha-beta cắt tỉa để duyệt cây.

- 1. (1 điểm) Điều kiện xảy ra cắt 1 nhánh tìm kiếm khi nào?
- 2. (2 điểm) Áp dụng thuật toán alpha-beta cắt tỉa chỉ ra giá trị ước lượng của mỗi đỉnh, và cạnh nào được cắt nhánh (*chú ý*: Chỉ cần ghi giá trị vào ô vuông, và cắt các cạnh trong hình, **không cần giải thích**)?

Câu 3: (3 điểm)

Một cửa hàng bị một tên trộm lấy trộm đồ và công an tình nghi 5 người. Sau khi thẩm vấn mỗi người, công an thu được các câu trả lời như sau:

Arnold: Edward không lấy trộm. Brian lấy trộm.
Charlie: Edward lấy trộm. Arnold không lấy trộm.
Edward: Derek lấy trộm. Arnold không lấy trộm.
Derek:

Brian: Charlie không lấy trộm. Edward không lấy trộm.

Bô môn

Derek: Charlie lấy trộm. Brian lấy trộm.

Biết rằng trong 2 câu trả lời của mỗi người thì có 1 câu đúng và 1 câu sai, và chỉ có 1 trong 5 người là tên trộm.

 (1 điểm) Biểu diễn các phát biểu trên theo logic định đề với các ký hiệu định đề như sau:

A= Arnold lấy trộm. **B**= Brian lấy trộm. **C**= Charlie lấy trộm. **D**= Derek lấy trộm. **E**= Edward lấy trộm

Gọi ý:

- "Edward không lấy trộm. Brian lấy trộm" được biểu diễn là: (E∧B) ∨ (¬E∧¬B)
- "Trong 5 người thì chỉ 1 người lấy trộm" được biểu diễn là: $(A \Rightarrow \neg B \land \neg C \land \neg D \land \neg E) \land (D \Rightarrow \neg A \land \neg B \land \neg C \land \neg E) \land (B \Rightarrow \neg A \land \neg C \land \neg D \land \neg E) \land (E \Rightarrow \neg A \land \neg B \land \neg C \land \neg D) \land (C \Rightarrow \neg A \land \neg B \land \neg D \land \neg E)$
 - 2. (1 điểm) Chuyển các biểu thức logic định đề về dạng chuẩn CNF.
 - 3. (1 điểm) Chứng minh "Charlie lấy trộm" bằng phương pháp hợp giải.

Câu 4: (2 điểm)

Cho tập dữ liệu thống kê về các trường hợp trộm xe như sau:

Example No.	Color	Type	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

Trong đó, mỗi hàng là một ví dụ (example) được biểu diễn bởi các thuộc tính **Color, Type, Origin**, và thuộc tính phân loại **Stolen**.

Áp dụng giải thuật phân loại Naïve Bayes, hãy diễn giải chi tiết quá trình phân loại (xác định nhãn lớp) của ví dụ đầu vào (**Color** = Red, **Type** = SUV, **Origin** = Domestic).

Người ra đề

Đáp án

Câu 2:

Câu 3:

Arnold: Edward không lấy trộm. Brian lấy trộm.
Charlie: Edward lấy trộm. Arnold không lấy trộm.
Edward: Derek lây trôm Arnold không lấy trôm

Brian: Charlie không lấy trộm. Edward không lấy trộm. **Derek:** Charlie lấy trộm. Brian lấy trộm.

7. (5 pts total, -1 pt for each error, but not negative) Resolution Theorem Proving: Cake Theft.

(http://www.brainbashers.com) Chief Inspector Parker interviewed five local burglars to identify who stole Mrs. Archer's cake. See Section 7.5.2

It was well known that each suspect told exactly one lie:

Arnold: It was not Edward. It was Brian.

Brian: It was not Charlie. It was not Edward.

Charlie: It was Edward. It was not Arnold. Derek: It was Charlie. It was Brian.

Edward: It was Derek. It was not Arnold.

Use these propositional variables:

A=It was Arnold. B=It was Brian. C=It was Charlie. D=It was Derek. E=It was Edward. You translate the evidence into propositional logic (recall that each suspect told exactly one lie):

Arnold:
$$(E \land B) \lor (\neg E \land \neg B)$$

Brian:
$$(C \land \neg E) \lor (\neg C \land E)$$

Charlie:
$$(\neg E \land \neg A) \lor (E \land A)$$

Derek:
$$(\neg C \land B) \lor (C \land \neg B)$$

$$\textit{Edward:} (\neg D \wedge \neg A) \vee (\ D \wedge A)$$

At most one burglar stole the cake:

$$\begin{array}{lll} (A \Rightarrow \neg B \wedge \neg C \wedge \neg D \wedge \neg E) & (B \Rightarrow \neg A \wedge \neg C \wedge \neg D \wedge \neg E) & (C \Rightarrow \neg A \wedge \neg B \wedge \neg D \wedge \neg E) \\ (D \Rightarrow \neg A \wedge \neg B \wedge \neg C \wedge \neg E) & (E \Rightarrow \neg A \wedge \neg B \wedge \neg C \wedge \neg D) \end{array}$$

After converting to Conjunctive Normal Form, your Knowledge Base (KB) consists of:

$$(E \lor \neg B)$$
 $(\neg E \lor B)$ $(C \lor E)$ $(\neg C \lor \neg E)$ $(\neg E \lor A)$ $(E \lor \neg A)$

From Brian, it was Charlie or Edward. From Derek, it was Charlie or Brian. Thus, it was Charlie.

You will be asked to prove, "It was Charlie." The goal is (C). You adjoin the negated goal to your KB: (¬C)

Câu 4:

$$P(Red|Yes) = \frac{3+3*.5}{5+3} = .56 \qquad P(Red|No) = \frac{2+3*.5}{5+3} = .43$$

$$P(SUV|Yes) = \frac{1+3*.5}{5+3} = .31 \qquad P(SUV|No) = \frac{3+3*.5}{5+3} = .56$$

$$P(Domestic|Yes) = \frac{2+3*.5}{5+3} = .43 \qquad P(Domestic|No) = \frac{3+3*.5}{5+3} = .56$$

We have P(Yes) = .5 and P(No) = .5, so we can apply equation (2). For v = Yes, we have

and for v = No, we have

Since 0.069 > 0.037, our example gets classified as 'NO'