Assignment-2 Report EE 705: VLSI Design Lab

Mrudul Jambhulkar Roll Number: 21d070044

 $January\ 24,\ 2025$

Contents

1	Qu€	estion 1: Dadda Multiplier
	1.1	Simulation results
	1.2	Resource utilization (dadda multiplier)
	1.3	Using * Operator
	1.4	Simulation results (* operator)
	1.5	Resource utitlization(* operator)
	1.6	Controller and bitstream generation
2	Que	estion 2: Log shifter
	2.1	Simulation results(barrel shifter)
	2.2	Resource utilization(barrel shifter)
	2.3	Using shift operator
	2.4	Resource utilization (shift operator)
	2.5	Controller and bitstream generation

Question 1: Dadda Multiplier 1

Simulation results 1.1

16x16 multiplier was implemented with 6 stages of depth - 2,3,4,6,9,13 . $(d_{k+1} = 1.5d_k)$. In the last stage 32 bit brent kung adder was used from the previous results . Successful simulation results are obtained as shown in 1.

Figure 1: Simulation waveforms (Dadda multiplier)

Resource utilization (dadda multiplier)

1. Slice Logic

Site Type	-+·	Used	+	Fixed	+	Available	+- 	Util%
Slice LUTs*		314		0		53200	 	0.59
LUT as Logic LUT as Memory	 	314 0		0	 	53200 17400	 	0.59 0.00
Slice Registers	1	0		0		106400		0.00
Register as Flip Flop		0		0		106400		0.00
Register as Latch		0		0		106400		0.00
F7 Muxes		0		0		26600		0.00
F8 Muxes		0		0		13300		0.00

^{*} Warning! The Final LUT count, after physical optimizations and full implementation,

1.1 Summary of Registers by Type

| Total | Clock Enable | Synchronous | Asynchronous | +----+ | 0

1 0	1	_	-	Set
1 0		_ 1	-	Reset
1 0		_ 1	Set	-
1 0		_ 1	Reset	-
1 0		Yes	- 1	-
1 0		Yes	-	Set
1 0		Yes	-	Reset
1 0		Yes	Set	-
1 0		Yes	Reset	-

2. Memory

	+-	Site Type	1	Used		Fixed	1	Available	İ	Util%
RAMB18 U U 280 U.00	 				:	•	į		İ	0.00

st Note: Each Block RAM Tile only has one FIFO logic available and therefore can accom

3. DSP

+		+-	 +-	 +-		+	 +
	V -				Available		
					220		Ċ
+		+-	 +-	 +-		+	 +

4. IO and GT Specific $\,$

	+		L	
Site Type	Used	Fixed	Available	
Bonded IOB	64	l 0	125	51.20
Bonded IPADs	0	0	2	0.00
Bonded IOPADs	0	0	130	0.00
PHY_CONTROL	0	0	4	0.00
PHASER_REF	0	0	4	0.00
OUT_FIFO	0	0	16	0.00
IN_FIFO	0	0	16	0.00

IDELAYCTRL	0	0	4	0.00
IBUFDS	0	0	121	0.00
PHASER_OUT/PHASER_OUT_PHY	0	0	16	0.00
PHASER_IN/PHASER_IN_PHY	0	0	16	0.00
IDELAYE2/IDELAYE2_FINEDELAY	0	0	200	0.00
ILOGIC	0	0	125	0.00
OLOGIC	0	0	125	0.00

5. Clocking

+		+-		+-		+-		+	+
	* -						Available		Util%
+	BUFGCTRL BUFIO MMCME2_ADV	+- 	0 0 0	+- 	0 0 0	+- 	32 16 4	+	0.00 0.00 0.00
	PLLE2_ADV	ĺ	0		0		4		0.00
	BUFMRCE		0		0		8		0.00
	BUFHCE		0		0		72		0.00
	BUFR	 -	0		0		16	 -	0.00

6. Specific Feature

Site Type	+-				Ť	Available	+- 	+ Util%
BSCANE2		0	 	0		4	 	0.00
CAPTUREE2		0		0		1		0.00
DNA_PORT		0		0		1		0.00
EFUSE_USR		0		0		1		0.00
FRAME_ECCE2		0		0		1		0.00
ICAPE2		0		0		2		0.00
STARTUPE2		0		0		1		0.00
XADC		0		0		1		0.00
+	+-		+-		+-		+-	+

7. Primitives

| Ref Name | Used | Functional Category |

+-		+	 	+-	+
	LUT6	I	199		LUT
	LUT5	١	68		LUT
	LUT3	١	63		LUT
-	LUT4		39		LUT
	OBUF	١	32		IO
-	IBUF		32		IO
-	CARRY4		8		CarryLogic
	LUT2	١	7		LUT
+-		4	 	-+-	+

1.3 Using * Operator

1.4 Simulation results (* operator)

Same results were obtained as dadda multiplier .

Figure 2: Simulation waveforms (multiplier operator)

1.5 Resource utilization(* operator)

1. Slice Logic

| Used | Fixed | Available | Util% | Site Type | Slice LUTs* 0 | 0 | 53200 | 0.00 0 | LUT as Logic 0 | 53200 | 0.00 0 | LUT as Memory 0 | 17400 0.00

	Slice Registers		0	0	106400	0.00
	Register as Flip Flop		0	0	106400	0.00
	Register as Latch		0	0	106400	0.00
-	F7 Muxes		0	0	26600 l	0.00
	F8 Muxes		0	0	13300	0.00
+-		-+-	+		+-	+

st Warning! The Final LUT count, after physical optimizations and full implementation,

${\tt 1.1 \; Summary \; of \; Registers \; by \; Type}$

+	+	+	+
Total	Clock Enable	Synchronous	Asynchronous
0	 _	 	-
0	_	-	Set
0	_	-	Reset
0	l _	Set	-
0	_	Reset	-
0	Yes	-	-
0	Yes	-	Set
0	Yes	-	Reset
0	Yes	Set	-
0	Yes	Reset	-
+	+	+	

2. Memory

•	Used	Fixed	+	Util%
Block RAM Tile RAMB36/FIFO* RAMB18	0	0 0	140 140	0.00

^{*} Note: Each Block RAM Tile only has one FIFO logic available and therefore can accom

3. DSP

+	-+-		+-		+-		+-		+
Site Type									
+	•		•		•	 220	•		•
ן שמרט		1	-	U	1	220	-	0.43	- 1

DSP48E1	only	1	ı	l	
+	+		+		+

4. IO and GT Specific

+	+	+	+	++
Site Type	Used	Fixed	Available	Util%
Bonded IOB	l 64	l 0	l 125	51.20
Bonded IPADs	1 0	1 0	1 2	0.00
Bonded IOPADs	0	0	130	0.00
PHY_CONTROL	0	0	4	0.00
PHASER_REF	0	0	4	0.00
OUT_FIFO	0	0	16	0.00
IN_FIFO	0	0	16	0.00
IDELAYCTRL	0	0	4	0.00
IBUFDS	0	0	121	0.00
PHASER_OUT/PHASER_OUT_PHY	1 0	0	16	0.00
PHASER_IN/PHASER_IN_PHY	1 0	0	16	0.00
IDELAYE2/IDELAYE2_FINEDELAY	1 0	0	200	0.00
ILOGIC	1 0	0	125	0.00
OLOGIC	1 0	0	125	0.00
+	+	+	+	++

5. Clocking

+		+-		+-		₽.		-	+
İ	Site Type						Available		
	BUFGCTRL		0		0		32		0.00
	BUFIO		0		0		16		0.00
	MMCME2_ADV		0		0		4		0.00
-	PLLE2_ADV		0		0		4		0.00
	BUFMRCE		0		0		8		0.00
	BUFHCE		0		0		72		0.00
	BUFR		0		0		16		0.00
+		+-		+-		۴.		+	+

6. Specific Feature

+----+
| Site Type | Used | Fixed | Available | Util% |

+		+-		+-		+-		+-	+
	BSCANE2	1	0		0		4		0.00
-	CAPTUREE2		0		0		1		0.00
-	DNA_PORT		0		0		1		0.00
	EFUSE_USR		0		0		1		0.00
-	FRAME_ECCE2		0		0		1		0.00
	ICAPE2	1	0		0		2		0.00
-	STARTUPE2		0		0		1		0.00
	XADC	1	0		0		1		0.00
+		+-		+-		+-		+ -	+

7. Primitives

			++
Ref Name	Ì	Used	Functional Category
T			TT
OBUF		32	
IBUF	- 1	32	I OT
,	٠.	~-	1
DSP48E1		1	Block Arithmetic
			<u> </u>

1.6 Controller and bitstream generation

Figure 3: Block design

A .coe file was used to initialize the BRAM with the test vectors provided . The controller begins its execution when start_stop signal is set to 1 . It traverses over all memory locations by incrementing an internal counter of 3 bit(for 5 memory locations) to increment addra . The counter resets to 0 after it crosses all the locations . The data in BRAM consists of 32 bits where first 16 bits comprise of a and next 16 bits of b. It extracts the first 16 bits for a and next 16 bits for b. It has two additional output signals : en (always set to 1 for read enabled for BRAM) and wea (always set to 0 to disable write in BRAM) . The design wrapper was created from the figure shown in 3 . ILA (Integrated Logic Analyzer) and VIO (Virtual Input/Output) are debugging tools in Xilinx Vivado used for FPGA designs. ILA is an in-chip logic debugging tool that allows users to capture

and analyze internal FPGA signals in real-time. It is commonly used to verify signal behavior and debug designs without external probes. VIO provides interactive control and monitoring of FPGA signals, enabling users to dynamically drive inputs and observe outputs during runtime. It is particularly useful for prototyping and testing designs. Block design was generated using ILA and VIO and bitstream file was generated.

The simulation results on the development board obtained correctly matched the computations.

2 Question 2: Log shifter

2.1 Simulation results(barrel shifter)

Left-right shifter was implemented using combinational logic . To control the direction of shift - lr bit was used when set to 1 shifts to right by given amount else shift by 0. If lr set to 0 bit reversal done at input and output .

Figure 4: Barrel shifter results

2.2 Resource utilization(barrel shifter)

1.1 Summary of Registers by Type

+		+	·
Total	Clock Enable	Synchronous	Asynchronous
+	·	+	++
0	_	-	-
0	_	-	Set
0	_	-	Reset
0		Set	-
0		Reset	-
0	Yes	-	-
0	Yes	-	Set
0	Yes	-	Reset
0	Yes	Set	-
0	Yes	Reset	-
+		+	

2. Memory

Site Type	1	Used	İ	Fixed	İ	Available	İ	Util%
Block RAM Tile RAMB36/FIFO* RAMB18	İ		İ	0 0 0	 -		 	0.00 0.00 0.00

st Note: Each Block RAM Tile only has one FIFO logic available and therefore can accom

3. DSP

+	+		+-		+-		+		+
	<i>J</i> 1					Available			
DSPs	ĺ	0	İ	0	1	220	1	0.00	1

$4.\ \mbox{IO}$ and \mbox{GT} Specific

+-	 Site Type	+- 	 Used	+- 	 Fixed	+ Available	+- 	+ Util%
+-		+-		+-		+	+-	+
	Bonded IOB		20		0	125		16.00
	Bonded IPADs		0		0	1 2		0.00
	Bonded IOPADs		0		0	130		0.00
	PHY_CONTROL		0		0	4		0.00
	PHASER_REF		0		0	4		0.00
	OUT_FIFO		0		0	l 16		0.00
	IN_FIFO		0		0	l 16		0.00
	IDELAYCTRL		0		0	4		0.00
	IBUFDS		0		0	121		0.00
	PHASER_OUT/PHASER_OUT_PHY		0		0	l 16		0.00
	PHASER_IN/PHASER_IN_PHY		0		0	l 16		0.00
	IDELAYE2/IDELAYE2_FINEDELAY	1	0		0	l 200		0.00
	ILOGIC		0		0	125		0.00
	OLOGIC		0		0	125		0.00
+-		+-		+-		+	+-	+

5. Clocking

_		- -		_ -		۲.		- 4		_
į	Site Type	 	Used		Fixed		Available		Util%	
+	BUFGCTRL BUFIO MMCME2_ADV PLLE2_ADV BUFMRCE BUFHCE BUFHCE BUFR	+	0 0 0 0 0	+-	0 0 0 0 0	+	32 16 4 4 8 72	-+	0.00 0.00 0.00 0.00 0.00	+
+		 +-		 +-		 +-	16 	ا 4-	0.00	 +

6. Specific Feature

+	+	+	+	+
Site Type	Used	Fixed	Available	Util%
BSCANE2	0	l 0	4	0.00
CAPTUREE2	0	0	1	0.00
DNA_PORT	0	0	1	0.00
EFUSE_USR	0	l 0	1	0.00
FRAME_ECCE2	0	0	1	0.00
ICAPE2	0	l 0	1 2	0.00
STARTUPE2	0	0	1	0.00
XADC	0	0	1	0.00
+	+	+	+	

7. Primitives

+		++
Ref Name	Used	Functional Category +
LUT5	12	
IBUF	12	IO
OBUF	8	IO
LUT6	8	LUT
LUT4	4	LUT
LUT3	2	LUT
+		++

2.3 Using shift operator

Similar analysis was done using operator .

Figure 5: Simulation results (shift operation)

2.4 Resource utilization (shift operator)

1.1 Summary of Registers by Type

+	+	+	·+
Total	Clock Enable	Synchronous	Asynchronous
+	+	+	+
1 0	_	-	-
0	_	-	Set
0	_	-	Reset
0	_	Set	-
0	_	Reset	-
0	Yes	-	-
0	Yes	-	Set
0	Yes	-	Reset
0	Yes	Set	-
0	Yes	Reset	-
+	+	+	++

2. Memory

Site Type	Used	Fixed		Util%
Block RAM Tile RAMB36/FIFO* RAMB18	0	0 0	140 140	0.00

* Note: Each Block RAM Tile only has one FIFO logic available and therefore can accom

3. DSP

+----+
| Site Type | Used | Fixed | Available | Util% |
+-----+

DSPs	-	0	0	220	0.00
+	-+	+	+	+-	+

4. IO and GT Specific

+		+	-+-		+	+ -	+
	Site Type	Used	 	Fixed	Available	 -	Util%
Ī	Bonded IOB	20		0	125		16.00
	Bonded IPADs	0		0	1 2		0.00
-	Bonded IOPADs	0		0	l 130		0.00
-	PHY_CONTROL	0		0	l 4		0.00
-	PHASER_REF	0		0	l 4		0.00
	OUT_FIFO	0		0	l 16		0.00
-	IN_FIFO	0		0	l 16		0.00
	IDELAYCTRL	0		0	4		0.00
-	IBUFDS	0		0	121		0.00
	PHASER_OUT/PHASER_OUT_PHY	0		0	16		0.00
	PHASER_IN/PHASER_IN_PHY	0		0	l 16		0.00
	IDELAYE2/IDELAYE2_FINEDELAY	0		0	l 200		0.00
-	ILOGIC	0		0	125		0.00
-	OLOGIC	0		0	l 125		0.00
+		+	-+-		+	+-	+

5. Clocking

+		+-		+-		₽.		-	+
İ	Site Type						Available		
	BUFGCTRL		0		0		32		0.00
	BUFIO		0		0		16		0.00
	MMCME2_ADV		0		0		4		0.00
-	PLLE2_ADV		0		0		4		0.00
	BUFMRCE		0		0		8		0.00
	BUFHCE		0		0		72		0.00
	BUFR		0		0		16		0.00
+		+-		+-		۴.		+	+

6. Specific Feature

+----+
| Site Type | Used | Fixed | Available | Util% |

+		+-		+-		+-		⊦-	+
	BSCANE2		0		0		4		0.00
	CAPTUREE2		0		0		1		0.00
-	DNA_PORT		0		0		1		0.00
	EFUSE_USR		0		0		1		0.00
-	FRAME_ECCE2		0		0		1		0.00
	ICAPE2		0		0		2		0.00
	STARTUPE2		0		0		1		0.00
	XADC		0		0		1		0.00
+		+-		+-		+-		⊦-	+

7. Primitives

			+
Ref Name		Used	Functional Category
+	т-		
IBUF		12	IO
LUT6		10	LUT
OBUF		8	IO
LUT5		6	LUT
LUT4		4	LUT
LUT3		4	LUT
+	4 -		

2.5 Controller and bitstream generation

Figure 6: Block design

A .coe file was used to initialize the BRAM with the test vectors provided . The controller begins its execution when start_stop signal is set to 1. It traverses over all memory locations by incrementing an internal counter of 3 bit(for 8 memory locations) to increment addra . The counter resets to 0 after it crosses all the locations . The data in BRAM consists of 11 bits where first 8 bits comprise of input X and last 3 bits of n (shift amount) . It extracts the first 8 bits for a and next 3 bits for n. It has two additional output signals : en (always set to 1 for read enabled for BRAM) and wea (always set to 0 to disable write in BRAM) . The design wrapper was created from the figure shown in 6 . ILA (Integrated Logic Analyzer) and VIO (Virtual Input/Output) are debugging tools

in Xilinx Vivado used for FPGA designs. ILA is an in-chip logic debugging tool that allows users to capture and analyze internal FPGA signals in real-time. It is commonly used to verify signal behavior and debug designs without external probes. VIO provides interactive control and monitoring of FPGA signals, enabling users to dynamically drive inputs and observe outputs during runtime. It is particularly useful for prototyping and testing designs. Block design was generated using ILA and VIO and bitstream file was generated .