1

2

3

What Is Claimed Is:

1	1. A method for automatically computing a derivative of a numerical		
2	expression within a digital computer system, comprising:		
3	receiving a representation of the numerical expression within the digital		
4	computer system, wherein the numerical expression includes one or more		
5	independent variables;		
6	forming an expression tree for the derivative of the numerical expression		
7	with respect to an independent variable, wherein the expression tree makes use of		
8	temporary variables to form results of sub-expressions for computing the		
9	derivative of the numerical expression; and		
10	wherein forming the expression tree involves seeking to introduce only		
11	temporary variables and associated sub-expressions as necessary to eliminate		
12	repeated common sub-expressions, thereby substantially minimizing the number		
13	of temporary variables; and		
14	using the expression tree to compute the derivative of the numerical		
15	expression during a computation.		
1	2. The method of claim 1, wherein for each temporary variable in the		

- 1 2. The method of claim 1, wherein for each temporary variable in the 2 expression tree, the method forms an expression for a partial derivative of the 3 temporary variable with respect to each independent variable.
 - 3. The method of claim 2, wherein forming the expression for a given partial derivative involves defining new temporary variables and corresponding sub-expressions and new partial derivatives.

1	4. The method of claim 1, wherein a given sub-expression can		
2	include a multinomial that contains more than one binary operation.		
1	5. The method of claim 1, further comprising pruning sub-		
2	expressions and associated temporary variables that are not used by the		
3	computation.		
1	6. The method of claim 5, wherein pruning sub-expressions involves:		
2	marking all temporary variables used in evaluating the expression tree; and		
3	deleting unmarked temporary variables and associated sub-expressions.		
1	7. The method of claim 1,		
2	wherein the method is performed within a compiler; and		
3	wherein the representation of the numerical expression is in the form of an		
4	Abstract Syntax Tree (AST).		
1	8. The method of claim 1,		
2	wherein the method is performed within a pre-compiler;		
3	wherein the expression tree is in the form of a source code list; and		
4	wherein each temporary variable and associated sub-expression in the		
5	expression tree is represented by computer code that sets the temporary variable		
6			
1	9. The method of claim 1, wherein the method is performed by code		
2	within a code library.		
_	•		

10.

1

The method of claim 1,

variable.

2

3

4

2	wherein the computation involves interval arithmetic; and		
3	wherein the one or more independent variables are interval variables.		
1	11. A computer-readable storage medium storing instructions that		
2	when executed by a computer cause the computer to perform a method for		
3	automatically computing a derivative of a numerical expression within a digital		
4	computer system, the method comprising:		
5	receiving a representation of the numerical expression within the digital		
6	computer system, wherein the numerical expression includes one or more		
7	independent variables;		
8	forming an expression tree for the derivative of the numerical expression		
9	with respect to an independent variable, wherein the expression tree makes use of		
10	temporary variables to form results of sub-expressions for computing the		
11	derivative of the numerical expression; and		
12	wherein forming the expression tree involves seeking to introduce only		
13	temporary variables and associated sub-expressions as necessary to eliminate		
14	repeated common sub-expressions, thereby substantially minimizing the number		
15	of temporary variables; and		
16	using the expression tree to compute the derivative of the numerical		
17	expression during a computation.		
1	12. The computer-readable storage medium of claim 11, wherein for		

each temporary variable in the expression tree, the method forms an expression

for a partial derivative of the temporary variable with respect to each independent

1	13.	The computer-readable storage medium of claim 12, wherein	
2	forming the expression for a given partial derivative involves defining new		
3	temporary variables and corresponding sub-expressions and new partial		
4	derivatives.		
1	14.	The computer-readable storage medium of claim 11, wherein a	
2	given sub-expression can include a multinomial that contains more than one		
3	binary operation.		
1	15.	The computer-readable storage medium of claim 11, wherein the	
2	method further comprises pruning sub-expressions and associated temporary		
3	variables that	are not used by the computation.	
1	16.	The computer-readable storage medium of claim 15, wherein	
2	pruning sub-expressions involves:		
3	marking all temporary variables used in evaluating the expression tree; and		
4	deleting unmarked temporary variables and associated sub-expressions.		
1	17.	The computer-readable storage medium of claim 11,	
2	wherein the method is performed within a compiler; and		
3	wherein the representation of the numerical expression is in the form of ar		
4	Abstract Synta	ax Tree (AST).	
1	18.	The computer-readable storage medium of claim 11,	
2	wherein the method is performed within a pre-compiler;		
3	wherein the expression tree is in the form of a source code list; and		

16

1	wherein each temporary variable and associated sub-expression in the		
2	expression tree is represented by computer code that sets the temporary variable		
3	equal to the associated sub-expression.		
1	19. The computer-readable storage medium of claim 11, wherein the		
2	method is performed by code within a code library.		
1	20. The computer-readable storage medium of claim 11,		
2	wherein the computation involves interval arithmetic; and		
3	wherein the one or more independent variables are interval variables.		
1	21. An apparatus for automatically computing a derivative of a		
2	numerical expression within a digital computer system, comprising:		
3	a receiving mechanism that is configured to receive a representation of the		
4	numerical expression within the digital computer system, wherein the numerical		
5	expression includes one or more independent variables;		
6	an expression tree forming mechanism that is configured to form an		
7	expression tree for the derivative of the numerical expression with respect to an		
8	independent variable, wherein the expression tree makes use of temporary		
9	variables to form results of sub-expressions for computing the derivative of the		
10	numerical expression; and		
11	wherein the expression tree forming mechanism seeks to introduce only		
12	temporary variables and associated sub-expressions as necessary to eliminate		
13	repeated common sub-expressions, thereby substantially minimizing the number		
14	of temporary variables; and		
15	an execution mechanism that is configured to use the expression tree to		

compute the derivative of the numerical expression during a computation.

2

3

4

Abstract Syntax Tree (AST).

1	22. The apparatus of claim 21, wherein for each temporary variable	in	
2	the expression tree, the expression tree forming mechanism is configured to form		
3	an expression for a partial derivative of the temporary variable with respect to		
4	each independent variable.		
1	23. The apparatus of claim 22, wherein in forming the expression f	or a	
2	given partial derivative, the expression tree forming mechanism is configured to		
3	define new temporary variables and corresponding sub-expressions and new		
4	partial derivatives.		
1	24. The apparatus of claim 21, wherein a given sub-expression car		
2	include a multinomial that contains more than one binary operation.		
1	25. The apparatus of claim 21, further comprising a pruning		
2	mechanism that is configured to prune sub-expressions and associated temporary		
3	variables that are not used by the computation.		
1	26. The apparatus of claim 25, wherein the pruning mechanism is		
2	configured to:		
3	mark all temporary variables used in evaluating the expression tree; and		
4	delete unmarked temporary variables and associated sub-expressions.		
1	27. The apparatus of claim 21,		

wherein the representation of the numerical expression is in the form of an

wherein the apparatus resides within a compiler; and

1	28. The apparatus of claim 21,
2	wherein the apparatus resides within a pre-compiler;
3	wherein the expression tree is in the form of a source code list; and
4	wherein each temporary variable and associated sub-expression in the
5	expression tree is represented by computer code that sets the temporary variable
6	equal to the associated sub-expression.

- 1 29. The apparatus of claim 21, wherein the apparatus includes code 2 within a code library.
- 1 30. The apparatus of claim 21,
- wherein the computation involves interval arithmetic; and
- 3 wherein the one or more independent variables are interval variables.