Hybrid Discriminative Models

Zhenwen Dai

Amazon

2019-04-08

Discriminative model

• The aim is to learn a functional relationship:

$$y = f(x) + \epsilon$$

- There are multiple ways to parametrize a functional relationship.
- For example, a basis function model:

$$f(x) = \sum_{k} w_k \phi_k(x), \quad w_k \sim \mathcal{N}(0, 1)$$

where $\{\phi_k(x)\}_k$ denotes the set of basis functions.

Gaussian process

• Gaussian process has *infinite* number of basis functions.

$$p(\mathbf{y}|\mathbf{X}) = \mathcal{N}(\mathbf{y}|0, \mathbf{K})$$

where the covariance matrix is computed from the set of inputs X using the kernel function $k(\cdot, \cdot)$.

A hybrid discriminative model

• A discriminative model with a latent input

$$p(\mathbf{y}|\mathbf{X}, \mathbf{H})p(\mathbf{H})$$

- Missing information
 - Missing information in individual data points: flexible uncertainty
 - Missing information shared across multiple data points: multi-output, multi-task, meta-model

2019-04-08

Missing information in individual data points

• One latent variable per data point:

$$\mathbf{y} = (y_1, \dots, y_N), \quad \mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N), \quad \mathbf{H} = (\mathbf{h}_1, \dots, \mathbf{h}_N).$$

$$y_n = f(\mathbf{x}_n, \mathbf{h}_n) + \epsilon$$

Figure 1: Multi-modal regression (taken from the slides of Hugh Salimbeni)

This idea has been applied to BNN (Depeweg et al. 2018) and DGP.

Zhenwen Dai (Amazon)

Missing information shared across multiple data points

- Clustering of GP: (Hensman, Rattray, and Lawrence 2015), (Lawrence, Ek, and Campbell 2018)
- Multi-output GP with latent space: (Dai, Álvarez, and Lawrence 2017)

A Toy Problem: The Braking Distance of a Car

- To model the braking distance of a car in a *completely data-driven* way.
 - ▶ Input: the speed when starting to brake
 - Output: the distance that the car moves before fully stopped
 - ▶ We know that the braking distance depends on the friction coefficient.
 - ▶ We can conduct experiments with a set of different tyre and road conditions

Figure 2: car brakding distance

A non-parametric regression

• GP is the natural choice for such a non-parametric regression problem.

Figure 3: A GP fit

One shot learning

- What if we drive on a different road or changing the tyres?
- Do we need to completely redo the fitting?

Figure 4: Ignore the difference in condition

Assume a latent variable in the model

• Assume a latent variable representing the road/car condition.

$$y_{n,c} = f(\mathbf{x}_{n,c}, \mathbf{h}_c) + \epsilon, \quad f \sim GP, \quad \mathbf{h}_c \sim \mathcal{N}(0, \mathbf{I})$$

A meta-model

- Modeling beyond a single task has been the focus.
- A generative model for tasks
- A combination of discriminative and generative model
- A generative model with a fansy likelihood (a discriminative model)

Applications

- Meta-model for multi-task Bayesian optimization
- Meta-model for reinforcement learning

2019-04-08

References I

Dai, Zhenwen, Mauricio A Álvarez, and Neil D Lawrence. 2017. "Efficient Modeling of Latent Information in Supervised Learning Using Gaussian Processes." In *Advances in Neural Information Processing Systems*.

Depeweg, Stefan, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluft1. 2018. "Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-Sensitive Learning." In *International Conference on Machine Learning*.

Hensman, James, Magnus Rattray, and Neil D. Lawrence. 2015. "Fast Nonparametric Clusteringof Structured Time-Series." *IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE* 37 (2).

Lawrence, Andrew R, Carl Henrik Ek, and Neill D F Campbell. 2018. "DP-Gp-Lvm: A Bayesian Non-Parametric Model for Learning Multivariate Dependency Structures." In *Arxiv*.