VARIATIONAL AUTOENCODER (VAE) ANALYSIS

AMIRHOSSEIN GHANAATIAN

NEW DATASETS OLD DATASETS

23 CRS F1 AND HO COMBINED AGRON AND SPECTRAL DATA_WEATHER TO CARAGEA 9_16_24

TO CARAGEA WORKING 2022_2023 ALL LOC_KPEGG_MULTISPECTRAL_STACKED TO CARAGEA WORKING 2023 ALL LOC KPEGG THERMAL STACKED

DATA PREPROCESSING

- Selected relevant columns
- Sorted data based on 'expt', 'plot', and 'entry'
- Replaced "." with null values
- Converted columns to numeric format
- Aggregated data by grouping and calculating means
- Added 'yield' and 'stage' columns back
- Reordered columns

AGGREGATED DATA BY GROUPING AND CALCULATING MEANS

E10	E10 f_x =AVERAGEIF(E2:E9,"<>",E2:E9)										
	Α	В	С	D	Е	F	G	Н	1	J	K
1	expt	plot	entry	yield	СС	ndvi	blu	gre	red	re	nir
2	22 KPE GG F2	1321	621	40.3440678	30388	0.82174715	0.01098792	0.02802799	0.01337262	0.01098792	0.13666843
3	22 KPE GG F2	1321	621	40.3440678		0.86837615	0.0129881	0.03221868	0.01321263	0.13637333	0.18755086
4	22 KPE GG F2	1321	621	40.3440678		0.87546337	0.01012124	0.02541223	0.01187734	0.11676214	0.17886724
5	22 KPE GG F2	1321	621	40.3440678		0.88695479	0.01092556	0.02367702	0.01014531	0.10361819	0.16934593
6	22 KPE GG F2	1321	621	40.3440678		0	0.01058852	0.02319826	0.02319826	0.02319826	0.02319826
7	22 KPE GG F2	1321	621	40.3440678		0.88070039	0.01240885	0.02690455	0.01254708	0.13273332	0.19779861
8	22 KPE GG F2	1321	621	40.3440678		0.77044222	0.01598618	0.04152398	0.02389031	0.14763777	0.18425173
9	22 KPE GG F2	1321	621	40.3440678		0.47161309	0.0161965	0.02680502	0.0365112	0.07100984	0.10168753
10					30388	0.69691215	0.01252536	0.02847096	0.01809434	0.0927901	0.14742107

VAE IMPLEMENTATION

- •Implemented a Variational Autoencoder on the preprocessed data
- •Performance metrics:

Metric	Value
Test Mean Squared Error	45.9015
Test R ²	0.7479
Test Mean Absolute Error	5.1987
Test Mean Percentage Error	13.5262%

CONFUSION MATRIX

CONFUSION MATRIX ANALYSIS

- Multi-class classification model performance (classes 0-9)
- Best performance for classes 4, 5, 6, 7
- Class 9: insufficient data, misclassified as class 8
- Classes 0, 1, 2: few instances, class imbalance, similarity
- Misclassifications more common between adjacent classes
- Higher precision for middle classes, better recall for classes 6, 7

DATA PREPROCESSING FOR STAGE

- Drop the Rows which 'Stage' is null
- Divided the dataset based on the "Stage" columns
- Preprocess every sub-dataset based on number of nulls
- If a column has 100% null, we remove that column in training the models
- If percentage of columns is low, we remove only rows with nulls in that columns

R1

0.0

pcol

R5

R5

0.000000

pcol

Percentage of missing values in each column: yield 1.980198 0.000000 stage Removing rows with nulls in Yield and CC 32.673267 CC 0.000000 ndvi Trained on: 'CC', 'ndvi', 'blu', 'gre', 'red', 're', 'nir' 0.000000 blu 0.000000 gre Test R²: 0.5063 0.000000 red 0.000000 re 0.000000 nir 0.000000 expt 1.980198 plot 1.980198 entry 0.000000 loc 0.000000 prow

SUMMARY

Stage	Which Column Ignored?	Null Cleaning on?	nu. of rows after preprocessing	R2 (test, 20%)
R1	CC	-	660	0.1278
R2	CC	yield	3300	0.1041
R3	yield		1320	0.7206
R4		yield, CC	1320	0.024
R4	CC	yield	1980	0.1092
R5	CC	yield	5940	0.3878
R5		yield, CC	3960	0.5063
R6	CC	-	1320	0.633
R7	CC	yield	7260	0.6245
R8	CC	-	660	0.1296
V4	-	ndvi', 'blu', 'gre', 'red', 're', 'nir'	0	-
V6.5	CC	-	660	0.3291

DATA PREPROCESSING

23 CRS F1 AND HO COMBINED AGRON AND SPECTRAL DATA_WEATHER TO CARAGEA 9_16_24.XLSX

- Selected relevant columns
- Sorted data based on 'expt', 'plot', and 'entry'
- Replaced "." with null values
- Converted columns to numeric format
- Aggregated data by grouping and calculating means

MORE DETAILS

- all P4 data = [cc, blu, gre, red, re, nir, ndvi]
 - 4800 rows
- all Thermal data = [TH]
 - 3072 rows
- Agron = [Yeild]
 - 384 rows
- Merge these data based on the uniqe match of 'expt', 'plot', and 'entry', remove rows with nulls
 - 381 rows

AGGREGATED DATA BY GROUPING AND CALCULATING MEANS

E10	E10 f_x =AVERAGEIF(E2:E9,"<>",E2:E9)										
	Α	В	С	D	Е	F	G	Н	1	J	K
1	expt	plot	entry	yield	СС	ndvi	blu	gre	red	re	nir
2	22 KPE GG F2	1321	621	40.3440678	30388	0.82174715	0.01098792	0.02802799	0.01337262	0.01098792	0.13666843
3	22 KPE GG F2	1321	621	40.3440678		0.86837615	0.0129881	0.03221868	0.01321263	0.13637333	0.18755086
4	22 KPE GG F2	1321	621	40.3440678		0.87546337	0.01012124	0.02541223	0.01187734	0.11676214	0.17886724
5	22 KPE GG F2	1321	621	40.3440678		0.88695479	0.01092556	0.02367702	0.01014531	0.10361819	0.16934593
6	22 KPE GG F2	1321	621	40.3440678		0	0.01058852	0.02319826	0.02319826	0.02319826	0.02319826
7	22 KPE GG F2	1321	621	40.3440678		0.88070039	0.01240885	0.02690455	0.01254708	0.13273332	0.19779861
8	22 KPE GG F2	1321	621	40.3440678		0.77044222	0.01598618	0.04152398	0.02389031	0.14763777	0.18425173
9	22 KPE GG F2	1321	621	40.3440678		0.47161309	0.0161965	0.02680502	0.0365112	0.07100984	0.10168753
10					30388	0.69691215	0.01252536	0.02847096	0.01809434	0.0927901	0.14742107

VAE IMPLEMENTATION

- •Implemented a Variational Autoencoder
- •K-fold cross-validation results (K=5)
- Average Metrics

oMean Squared Error (MSE): 60.1191

∘R² Score: 0.5313

Fold	MSE	R ²	MAE	MPE
1	70.2446	0.4908	6.0127	13.2878%
2	39.6278	0.7020	5.1391	11.2822%
3	61.5302	0.5877	6.1645	12.9856%
4	64.1423	0.3772	5.9125	12.7816%
5	65.0506	0.4986	5.9600	12.5112%

$$MPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|actual_y - predicted_y|}{actual_y} \times 100\%$$

CONFUSION MATRIX

RESULTS FOR "SAS" DATA

23 CRS F1 AND HO COMBINED AGRON AND SPECTRAL DATA WEATHER TO CARAGEA 9 16 24.XLSX

Model Performance Evaluation K-fold cross-validation results (K=5) **Average Metrics**

oMean Squared Error (MSE): 53.0747

∘R² Score: 0.5893

Results by Fold

Fold	MSE	R^2	MAE	MPE
1	69.3842	0.4971	6.1160	13.5881%
2	30.8453	0.7681	4.4166	9.1228%
3	55.6282	0.6272	5.6451	12.2313%
4	50.9172	0.5056	5.3736	11.7496%
5	58.5982	0.5483	5.7079	11.4970%

DATA OVERVIEW

- Old Data
 - Multispectral
 - Thermal
- Data Aggregation
 - Aggregate based on experiment plot entry
 - Calculate averages for:
 - NDVI
 - RED
 - GREEN
 - ..
 - THERMAL

- Data Cleaning
 - Row count mismatch between multispectral and thermal data
 - Remove extra multispectral entries to synchronize
 - Final row count after cleaning: 1980 rows
 - Merge based on experiment plot entry
 - To have Thermal and Multispectral together

MODEL PERFORMANCE

- Old DATA Performance
 - Metrics
 - Test Mean Squared Error: 53.6881
 - Test R²: 0.7681
 - Test Mean Absolute Error: 5.7176
 - Test Mean Percentage Error: 14.0103%
- New DATAPerformance
 - Metrics
 - Test Mean Squared Error: 68.9005
 - Test R²: 0.5616
 - Test Mean Absolute Error: 6.5699
 - Test Mean Percentage Error: 14.6783%

MODEL TRANSFER TEST

- Old Data
 - 90% used for training
 - 10% used for testing
 - Model saved after training
- Old Data TEST
 - MSE = 54
 - $R^2 = 0.976$
- New Data TEST (ALL 381 ROWS)
 - Saved model tested on new data
 - $R^2 = -2.5$
 - MSE = 468

NEGATIVE R-SQUARED?

$$R^2 = 1 - rac{SS_{ ext{res}}}{SS_{ ext{tot}}} \quad egin{array}{c} SS_{ ext{res}} = \sum_i (y_i - f_i)^2 = \sum_i e_i^2 \ SS_{ ext{tot}} = \sum_i (y_i - ar{y})^2 \end{array}$$

$$SS_{ ext{res}} = \sum_i (y_i - f_i)^2 = \sum_i e_i^2$$

$$SS_{
m tot} = \sum_i (y_i - ar{y})^2$$

For example, a model with an R-squared value of 0.9 means that approximately 90% of the variance in the dependent variable is explained by the independent variables. This suggests a strong relationship between the variables and indicates that the model provides a good fit to the data.

R2 is negative only when the chosen model does not follow the trend of the data, so fits worse than a horizontal line.

When SS res is greater than SS tot, that equation could compute a negative value for R2, if the value of the coeficient is greater than 1.

It simply means that the chosen model (with its constraints) fits the data really poorly.