Simplex Method:

Z = 24 + 32

24+22 £100 8.10

74 +2×2 ≤ 110

21 +4×2 ≤ 160

X1, X2 7,0

Introduce slack variables:

 $4 + \chi_2 + \chi_3 = 100$

24 + 272 + 74 = 110

4+42+15=160

74, x2 70, 73, 74, 7570

only stack variables are

introduced.

= 24+322+023+024+075

This LPP has only one oftenal solution.

(See the Simplex Tablean)

	CN	1	3	
CB	BN	24	7 2	XB
0	73	1	1	100
0	X4	1	2	110
0	75	1	4	160
		-1	-3	0
	CN	1	M	

	CN	1	0	
GB	BNB	24	75	XB
0	X3	34	-4	60
0	74	24	-24	30
3	7/2	14	14	40
		-14	3 4	120
	CN	0	0	
СВ	NB	74	75	XB
0	73	-3/2	12	15
1	24	2	-1	60

X2

$$\chi_1 = 60, \chi_2 = 25, \chi_3 = 15$$

 $Z = 135$

Simplex Method:

 $max: Z = 4 + 4x_2$ 8. to $4 + x_2 \le 100$

74+2×2 ≤ 110

74 +4×2 £ 160

74, X2 70

21+12+13 = 100

21 + 222 + 24 = 110

× +4×2 +×5 = 160

24, X2 70, , X3, X4, X5 70

Slack variables are introduced.

max: Z = 24 + 42 + 083 + 084 + 085

This LPP has infinitely many solutions.

	CN	1	4	,	4)
GB	BH	24	χ_2	XB	
0	23	1	1	100	·
0	24	1	2	110	
0	75	1	4	160	
		-1	-4	0	
			V		
	CH	1	0		
CB	BH	24	25	XB	
0	73	34	7-	60	
0	24	2	-24	30	7 . – <i>6</i> .
4	7/2	4	4	40	$\gamma_{4} = 0$ $\gamma_{2} = 4$
(Optim	of)	0	1	160*	
	CH	0	0		
G	NB	~ X4	75	XB	
0	73	-32	1	15	
1	74	2	-1	60	×4=60
4	X2	-1_2	12	25	$\chi_2 = 2$
		O	1	168	

$$X^* = \lambda \begin{pmatrix} 0 \\ 40 \end{pmatrix} + (1-\lambda)\begin{pmatrix} 60 \\ 25 \end{pmatrix}$$

$$0 \le \lambda \le 1$$
(infinite solutions)

Big-M Method: (I)

5

max: Z = 211+4x2+6x3

Soubject to

 $24 + 2x_2 + 3x_3 = 6$

x1 + 2x2+5x3=10

 $\chi_1, \chi_2, \chi_3 > 0$

We introduce tuo artibicial variables: 24,75 70

 $4 + 2x_2 + 3x_3 + x_4 = 6$

 $4 + 2x_2 + 5x_3 + x_5 = 10$

max: Z = 224+4x2+6x3-Mx4-Mx5

where M Es very large tre

number.

M'és used to drêve out the artificial variables.

	CN	2	4	6			
CB	N B	24	72	χ_3	XB		
-M	74	1	2	3	6		
-M	75	1	2	5	10		
	,	-2MI	-4M -4	-8M	-16M		
	CN	2	4	-M			
CB	7/2	×	χ_2	74	XB		
6	73	13	2/3	LM-	2		
-M	75	-2/3	-4/3	-5/3			
Z	=12	2 <u>M</u> 3	4M 3	8M+6	12		
×	=0,	$x_2 = 0$, ×3	=2,	X4=0	7,75=	0
						often	na
19						u u	

Big-M Method: (II) min: Z = 224+422+623

Subject to $\chi_{1} + 2\chi_{2} + 3\chi_{3} \ge 6$ $\chi_{1} + 2\chi_{2} + 5\chi_{3} \ge 10$ $\chi_{1}, \chi_{2}, \chi_{3} \ge 0$

 $max: -z = -2x_1 - 4x_2 - 6x_3$

Subject to

 $74+2x_2+3x_3-x_4+x_5=6$ $x_4+2x_2+5x_3-x_6+x_7=10$ $x_4,x_6>0$ Surflius variables

75 and 77 are the artilicit

max: -2 = -224 - 42 - 623- max: -2 = -224 - 42 - 623

> where MI is a large tre number. It is used to drive out the artibials

	CN	-2	-4	-6	0	0	
CB	BN	ay	χ_2	73	X4	×6	XB
-M	X5	1	2	3	-1	0	6
-M	XZ	,	2	5	0	-1	10
		-2M	-4M +4	-8M +6	M	M	-16H
				-M		0	
GB	BN	24				76	XB
-6	X3	13	23	3	-13	0	2
-MI	XZ	الم	-43	<u>-5</u> (3)	53	-1	0
				011			
		2M 3	4113	$\frac{8M-6}{3}$	-5M +2-3	M	-12
		2M 3	4M 3	8M-6 3 -M	-5M +23 -M	M	-12

		-2	_4	-M	-M	0	
GB	BN	24	×2	75	χ_{7}	76	XB
-6	7/3	15	2/5	0	15	-15	2
0	X4	2/5	-45	-1	3 5	1/2/20	0
		45	8/5	M	M+6 5	6/5	-12

 $\chi_{1}=0, \chi_{2}=0, \chi_{3}=2$ -Z=-12, Z=12

Two-Phase Simplex Method:

min: Z = 274 + 472 + 6738.+0 74 + 272 + 373 76 74 + 272 + 573 71074, 72, 7370

max: -Z = -284 - 412 - 6138. to $24 + 2x_2 + 3x_3 - x_4 + x_5 = 6$ $24 + 2x_2 + 5x_3 - x_6 + x_7 = 10$ $24 \text{ and } x_6 \text{ are sumflun var.}$ $24 \text{ and } x_7 \text{ are artificial var.}$

Phase-I: min: $Z_1 = \chi_5 + \chi_7$ max: $-Z_1 = -\chi_5 - \chi_7$

8.+0 $24+2x_2+3x_3-x_4+x_5=6$ $24+2x_2+5x_3-x_6+x_7=10$ $24,x_2,x_3,x_4,x_5,x_6,x_7>0$

Phase-II: max: - Z = -2×1-4×2-6×3

	CN	0	0	0	0	0	
CB	BH	24	×2	2/3	24	X6	XB
-1	25	1	2	3	-1	0	6
-1	77	1	2	5	0	-1	10
		-2	-4	-8	1	1	-16

s	CN	0	0	-1	0	0	
CB	BN	24	x ₂	75	74	26	XB
6	7/3	13	23	13	-13	0	2
-1	77	-23	-43	-53	(3)	-1	0
		23	43	8/3	15/3	1	0
	CN	0	0	-1	-1	0	
CB	BN	24	γ_2	25	77	N6	XB
0	73	15	2/5	0	15	-1-5	2
0	24	-25	-45	-1	3 5	-3	0
		0	0	1	1	0	0

Phase - I afternal $\chi_3 = 2$, $\chi_4 = 0$, $\chi_5 = \chi_7 = 0$

rnaxe-	-11		
	4	-2	-4

	44	-2	-4			0	
CB	NB	24	7 2	75	XZ		XB
-6	73	15	2 5	~ \	{	-15	2
0	×4	-25	-4	}	\	-35	0
		45	85	. }		6/5	-12
	CH	-2	-4				
B	BN	24	X2	75	77	76	XB
-6	7/3	15	25	}	5	-1-5	2
0	74	-2	-4	- }	3	3	0
		5	5			5	

$$\chi_1 = 0$$
, $\chi_2 = 0$, $\chi_3 = 2$
 $-Z = -12$ $Z = 12$ (min)