

Integrando Sistemas Multi-Agentes Embarcados, Simulação Urbana e Aplicações de IoT

Lucas Castro (IC-UNICAMP), Fabian Cesar Manoel (CEFET-RJ) Vinícius Souza (CEFET-RJ) Carlos Pantoja (CEFET-RJ) André P. Borges (UTFPR-PG), Gleifer Vaz Alves (UTFPR-PG)

- Cenário
 - Crescente demanda por conectividade computacional:
 - Exemplo de demanda: cidades inteligentes
- Motivação:
 - SMA: candidatos a fornecer suporte à mobilidade dos cidadãos
 - Tratamento de problemas de forma proativa, ubígua
 - SMA em ambientes simulados e SMA embarcados.
 - loT: escalabilidade entre dispositivos
- Objetivo: descrever uma abordagem de integração entre SMA, Simulação Urbana, Sistemas Embarcados e IoT que seja:
 - Heterogênea
 - Sem forte acoplamento entre as tecnologias de integração

- Cenário
 - Crescente demanda por conectividade computacional:
 - Exemplo de demanda: cidades inteligentes
- Motivação:
 - SMA: candidatos a fornecer suporte à mobilidade dos cidadãos
 - Tratamento de problemas de forma proativa, ubígua
 - SMA em ambientes simulados e SMA embarcados.
 - loT: escalabilidade entre dispositivos
- Objetivo: descrever uma abordagem de integração entre SMA, Simulação Urbana, Sistemas Embarcados e IoT que seja:
 - Heterogênea
 - Sem forte acoplamento entre as tecnologias de integração

- Cenário
 - Crescente demanda por conectividade computacional:
 - Exemplo de demanda: cidades inteligentes
- Motivação:
 - SMA: candidatos a fornecer suporte à mobilidade dos cidadãos
 - Tratamento de problemas de forma proativa, ubígua
 - SMA em ambientes simulados e SMA embarcados.
 - loT: escalabilidade entre dispositivos
- Objetivo: descrever uma abordagem de integração entre SMA, Simulação Urbana, Sistemas Embarcados e IoT que seja:
 - Heterogênea
 - Sem forte acoplamento entre as tecnologias de integração

- Cenário
 - Crescente demanda por conectividade computacional:
 - Exemplo de demanda: cidades inteligentes
- Motivação:
 - SMA: candidatos a fornecer suporte à mobilidade dos cidadãos
 - Tratamento de problemas de forma proativa, ubígua
 - SMA em ambientes simulados e SMA embarcados.
 - loT: escalabilidade entre dispositivos
- Objetivo: descrever uma abordagem de integração entre SMA, Simulação Urbana, Sistemas Embarcados e IoT que seja:
 - Heterogênea
 - Sem forte acoplamento entre as tecnologias de integração

- Cenário
 - Crescente demanda por conectividade computacional:
 - Exemplo de demanda: cidades inteligentes
- Motivação:
 - SMA: candidatos a fornecer suporte à mobilidade dos cidadãos
 - Tratamento de problemas de forma proativa, ubígua
 - SMA em ambientes simulados e SMA embarcados.
 - IoT: escalabilidade entre dispositivos
- Objetivo: descrever uma abordagem de integração entre SMA, Simulação Urbana, Sistemas Embarcados e IoT que seja:
 - Heterogênea
 - Sem forte acoplamento entre as tecnologias de integração

- Cenário
 - Crescente demanda por conectividade computacional:
 - Exemplo de demanda: cidades inteligentes
- Motivação:
 - SMA: candidatos a fornecer suporte à mobilidade dos cidadãos
 - Tratamento de problemas de forma proativa, ubígua
 - SMA em ambientes simulados e SMA embarcados
 - IoT: escalabilidade entre dispositivos
- Objetivo: descrever uma abordagem de integração entre SMA, Simulação Urbana, Sistemas Embarcados e IoT que seja:
 - Heterogênea
 - Sem forte acoplamento entre as tecnologias de integração

- Cenário
 - Crescente demanda por conectividade computacional:
 - Exemplo de demanda: cidades inteligentes
- Motivação:
 - SMA: candidatos a fornecer suporte à mobilidade dos cidadãos
 - Tratamento de problemas de forma proativa, ubígua
 - SMA em ambientes simulados e SMA embarcados.
 - IoT: escalabilidade entre dispositivos
- Objetivo: descrever uma abordagem de integração entre SMA, Simulação Urbana, Sistemas Embarcados e IoT que seja:
 - Heterogênea
 - Sem forte acoplamento entre as tecnologias de integração

Integração: Agentes, Ambiente e Simulação

Integração: Agentes, Ambiente e Simulação

UTFPR - Campus Ponta Grossa

- Duas etapas para a integração:
- Nível dos agentes (Jason)
- Nível dos artefatos (Cartago)

Integração: Agentes, Ambiente e Simulação

- Bibliotecas de comunicação com o SUMO (Via TraCI)
 - Traci4 J
 - TraaS

- Port do TraaS do Python;
- Fácil integração por meio dos artefatos.

Integração: Agentes, Ambiente e Ferramentas IoT

Integração: Agentes, Artefatos e o Meio Físico

- Possibilitando utilizar JaCaMo em um sistema embarcado. Existem duas formas:
 - Integração de um SMA a um meio físico utilizando diretamente a camada de agentes:
 - Integração do meio físico com a camada de ambiente (artefatos) de um SMA.
- Ambas utilizam o *middleware* Javino [Lazarin and Pantoja 2015].

ARGO: Integração de Agente Jason e Hardware

- Arquitetura customizada de agente denominada ARGO [Pantoja et al. 2016].
- O middleware Javino permite aos agentes ARGO enviar e receber informações de microcontroladores.

ARGO: Integração de Agente Jason e Hardware

- Os agentes ARGOs possuem 4 novas ações internas:
 - .port("Porta serial")
 - .perceive(open/block)
 - .limit(Tempo em milissegundos)
 - act("Ação")

- Os agentes do SMA não precisam incluir as responsabilidades de integração em seu ciclo de raciocínio.
- A vantagem da abordagem proposta é permitir que os agentes possam continuar interagindo com a camada de ambiente localizada dentro do SMA sem que eles precisem tomar conhecimento de que os artefatos estão ligados ao meio físico.

- Artefato desenvolvido dentro do framework CArtAgO [Ricci et al. 2006].
 - Operações
 - Propriedades Observáveis
- Artefato Físico.

- Para implementar Artefatos Físicos em um projeto específico, três configurações devem ser feitas por três métodos abstratos:
 - String definePort()
 - int defineAttemptsAfterFailure()
 - int defineWaitTimeout()

- Quando é necessário implementar as Operações e as Propriedades Observáveis dos Artefatos Físicos, dois métodos podem ser utilizados para realizar a comunicação com o dispositivo físico:
 - String read()
 - void send(String message)

Conclusão

- Foi apresentado uma abordagem para integração de um SMA desenvolvido em JaCaMo com ferramentas de Simulação Urbana, Sistemas Embarcados e a camada IoT.
- O objetivo principal é descrever a integração e evidenciar baixo acoplamento entre os níveis de ambiente, agentes, loT e simulação.
- A vantagem desta abordagem está na sua generalização.

Conclusão

Trabalhos futuros:

- Busca-se desenvolver uma metodologia de integração como um framework para soluções de mobilidade urbana integrado SMA, IoT, Simulação e Sistemas Embarcados.
- Implantar uma aplicação no domínio de Cidades Inteligentes, a qual utilize todos os níveis propostos.
- Pretende-se contemplar a integração da camada de organização social com o Moise (JaCaMo).

Obrigado!

- **Lucas Castro**
 - lucas.castro@ic.unicamp.br

- **Fabian César Manoel**
 - fabiancpbm@gmail.com

- Vinicius Jesus
 - souza.vdj@gmail.com