CLAIM AMENDMENTS

1. (Currently Amended) A polymer comprising a phenolic monomeric unit of which the phenyl group is substituted by a group A, characterised in that the wherein group A comprises an imide or thioimide group[[,]] with the exception that A is not

$$-CH_{2}^{-}N \xrightarrow{CH_{3}} CH_{3}$$

$$-CH_{2}^{-}N \xrightarrow{CH_{3}} CH_{3}$$

$$CH_{3}$$

2. (Currently Amended) [[A]] <u>The polymer according to claim 1 wherein the group A has the following formula</u>

$$R^{\frac{1}{2}}\left[L^{\frac{1}{2}}\right]_{R}^{R^{2}}$$

wherein X and Y are independently selected from O [[or]] and S, wherein L, L^1 and L^2 are independently a linking group, wherein n, r and s are independently 0 or 1, and wherein one of the groups R^1 , R^2 or R^3 represents the phenolic monomeric unit and the other two represent a terminal group.

3. (Currently Amended) [[A]] <u>The</u> polymer according to claim 1 wherein the group A has the following formula

$$R^{\frac{1}{2} - \left\{ L \right\}_{\bigcap} N \bigvee_{j=1}^{X} G^{1}$$

wherein X and Y are independently selected from O [[or]] and S,

wherein G^1 and G^2 are independently selected from O, S, NR^4 [[or]] and R^5 -[L^3]_t-C-[L^4]_u- R^6 , with the limitation that G^1 is not O or S when G^2 is O and that G^1 is not O or S when G^2 is NR^4 ,

wherein L, L³ and L⁴ are independently a linking group,

wherein n, t and u are independently 0 or 1,

and wherein one of the groups selected from R¹, R⁴, R⁵ [[or]] and R⁶ represents the phenolic monomeric unit and the remaining groups represent a terminal group.

4. (Currently amended) [[A]] <u>The</u> polymer according to claim 1 wherein the group A has the following formula

$$R^{\frac{1}{2}}$$
 L R $G^{\frac{3}{2}}$ $G^{\frac{4}{2}}$

wherein X and Y are independently selected from O [[or]] and S,

wherein G^3 to G^5 are independently selected from O, S, NR^7 [[or]] and R^8 -[L^5]_v-C-[L^6]_w- R^9 with the limitation that at least one group, selected from G^3 to G^5 , is R^8 -[L^5]_v-C-[L^6]_w- R^9 and that two neighbouring neighboring groups, selected from G^3 to G^5 , are not represented by O and S, by O and NR^7 , by S and NR^7 or by O and O,

wherein L, L^5 and L^6 are independently a linking group,

wherein n, v and w are independently 0 or 1, and

wherein one of the groups selected from R¹, R⁷, R⁸ [[or]] and R⁹ represents the phenolic monomeric unit and the remaining groups represent a terminal group.

5. (Currently Amended) [[A]] <u>The</u> polymer according to claim 1 wherein the group A has the following formula

$$R^{\frac{1}{2}} \underbrace{L^{\frac{1}{2}}_{\mathbb{Z}} R^{13}}_{\mathbb{Z}}$$

wherein X and Y are independently selected from O [[or]] and S, wherein G is a group selected from O, S, NR^{10} [[or]] and R^{11} -[L^9]_x-C-[L^{10}]_y- R^{12} ,

wherein L, L⁷, L⁸, L⁹ and L¹⁰ are independently a linking group, wherein n, x, y, z and r are independently 0 or 1, and wherein one of the groups selected from R¹, R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ represents the phenolic monomeric unit and the remaining groups represent a terminal group.

6. (Currently Amended) [[A]] <u>The</u> polymer according to claim 1 wherein the group A has the following formula

$$R^{\frac{1}{2}} \underbrace{L \frac{1}{n}}_{N} \underbrace{E^{\frac{1}{2}} \underbrace{p} \underbrace{L^{\frac{11}{2}} \underbrace{e}}_{L^{\frac{12}{2}} \underbrace{f}} R^{19}$$

wherein X and Y are independently selected from O [[or]] <u>and</u> S, wherein E^1 and E^2 are independently selected from O, S, NR^{15} [[or]] <u>and</u> R^{16} -[L^{13}]_g-C-[L^{14}]_h- R^{17} ,

wherein n, e, f, g, h, p and q are independently 0 or 1,

wherein e is 0 when E^1 is represented by O, S or NR^{15} , wherein f is 0 when and E^2 is represented by O, S or NR^{15} ,

wherein L, L¹¹, L¹², L¹³ and L¹⁴ are independently a linking group, and wherein one of the groups selected from R¹, R¹⁵, R¹⁶, R¹⁷, R¹⁸ and R¹⁹ represents the phenolic monomeric unit and the remaining groups represent a terminal group.

7. (Currently Amended) [[A]] <u>The</u> polymer according to claim 1 wherein the group A has one of the following <u>formula</u> <u>formulae</u>

$$\begin{bmatrix}
R^{1} & L & R^{20} \\
R^{1} & R^{21} \\
R^{1} & R^{21}
\end{bmatrix}_{E}$$

$$R^{\frac{1}{2}} = \left[\frac{1}{2} \right]_{\overline{n}} N$$

wherein X and Y are independently selected from O [[or]] <u>and</u> S, wherein each R¹[[,]] <u>and</u> R²⁰ to R²³ <u>are is</u> a terminal group[[,]] independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, -SO₂-NH-R²⁴, -NH-SO₂-R²⁷, -CO-NR²⁴-R²⁵, -NR²⁴-CO-R²⁷, -NR²⁴-CO-NR²⁵-R²⁶, -NR²⁴-CS-NR²⁵-R²⁶, -NR²⁴-CO-O-R²⁵, -O-CO-NR²⁴-R²⁵, -O-CO-R²⁷, -CO-O-R²⁴, -CO-R²⁴, -SO₃-R²⁴, -O-SO₂-R²⁷, -SO₂-R²⁴, -SO-R²⁷, -P(=O)(-O-R²⁴)(-O-R²⁵), -O-P(=O)(-O-R²⁴)(-O-R²⁵), -NR²⁴-R²⁵, -O-R²⁴, -S-R²⁴, -CN, -NO₂, -N(-CO-R²⁴)(-CO-R²⁵), -N-phthalimidyl, -M-N-phthalimidyl, [[or]] <u>and</u> -M-R²⁴, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R²⁴ to R²⁶ are independently selected from hydrogen [[or]] <u>and</u> an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R²⁷ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl [[or]] and heteroaralkyl group, wherein a and d are independently 0, 1, 2, 3 or 4,

wherein b and c are independently 0, 1, 2 or 3,

wherein E^3 is selected from O, S, NR^{28} [[or]] and R^{29} -[L^{15}]_i-C-[L^{16}]_j- R^{30} ,

wherein L, L¹⁵ and L¹⁶ are independently a linking group, wherein n, i and j independently are 0 or 1,

and wherein one of the groups selected from R¹, R²⁰, R²¹, R²², R²³, R²⁸, R²⁹ and R³⁰ represents the phenolic monomeric unit and the remaining groups represent a terminal group.

8. (Currently Amended) [[A]] <u>The</u> polymer according to any of the preceding elaims claim 1, wherein said polymer comprising a phenolic monomeric unit is a novolac, resol or polyvinylphenol.

- 9. (Currently Amended) A heat-sensitive lithographic printing plate precursor comprising a support having a hydrophilic surface and an oleophilic coating[[,]] provided on the hydrophilic surface, said coating comprising an infrared light absorbing agent and a polymer according to claim 1.
- 10. (Currently Amended) [[A]] <u>The</u> lithographic printing plate precursor according to claim 9, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 11. (Currently Amended) [[A]] <u>The</u> lithographic printing plate precursor according to claim 10, wherein said dissolution inhibitor is selected from <u>the group consisting</u> of
- [[-]] an organic compound which comprises at least one aromatic group and a hydrogen bonding site, and/or
- [[-]] a polymer or surfactant comprising siloxane or perfluoroalkyl units, and mixtures thereof.
 - 12. (Canceled)
- 13. (Currently Amended) [[A]] <u>The heat-sensitive</u> lithographic printing plate precursor according to claim 9, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
 - 14. (Canceled)
- 15. (New) The heat-sensitive lithographic printing plate precursor according to claim 9 wherein the group A has the following formula

$$R^{\frac{1}{2}-\left\{L\right\}} \prod_{i=1}^{N} N \prod_{i=1}^{N} G^{2}$$

wherein X and Y are independently selected from O and S,

wherein G^1 and G^2 are independently selected from O, S, NR^4 and R^5 - $[L^3]_t$ -C- $[L^4]_u$ - R^6 , with the limitation that G^1 is not O or S when G^2 is O and that G^1 is not O or S when G^2 is NR^4 , wherein L, L^3 and L^4 are independently a linking group,

wherein n, t and u are independently 0 or 1,

and wherein one of the groups selected from R¹, R⁴, R⁵ and R⁶ represents the phenolic monomeric unit and the remaining groups represent a terminal group.

16. (New) The heat-sensitive lithographic printing plate precursor according to claim 9 wherein the group A has the following formula

$$R^{\frac{1}{2}}\left(L\right)_{\overline{H}}N$$
 $G^{\frac{3}{2}}G^{4}$

wherein X and Y are independently selected from O and S,

wherein G^3 to G^5 are independently selected from O, S, NR^7 and R^8 - $[L^5]_v$ -C- $[L^6]_w$ - R^9 with the limitation that at least one group, selected from G^3 to G^5 , is R^8 - $[L^5]_v$ -C- $[L^6]_w$ - R^9 and that two neighbouring groups, selected from G^3 to G^5 , are not represented by O and S, by O and NR^7 , by S and NR^7 or by O and O,

wherein L, L⁵ and L⁶ are independently a linking group, .wherein n, v and w are independently 0 or 1,

and wherein one of the groups selected from R¹, R⁷, R⁸ and R⁹ represents the phenolic monomeric unit and the remaining groups represent a terminal group.

17. (New) The heat-sensitive lithographic printing plate precursor according to claim 9 wherein the group A has the following formula

$$R^{\frac{1}{2}}\left[L\right]_{R}^{R^{\frac{1}{3}}} = R^{\frac{1}{3}}$$

wherein X and Y are independently selected from O and S, wherein G is a group selected from O, S, NR^{10} and R^{11} - $[L^9]_x$ -C- $[L^{10}]_y$ - R^{12} ,

wherein L, L⁷, L⁸, L⁹ and L¹⁰ are independently a linking group, wherein n, x, y, z and r are independently 0 or 1, and wherein one of the groups selected from R¹, R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ represents the phenolic monomeric unit and the remaining groups represent a terminal group.

18. (New) The heat-sensitive lithographic printing plate precursor according to claim 9 wherein the group A has the following formula

$$R^{1} = \left[L^{\frac{1}{2}} - L^{\frac{11}{2}} - R^{18}\right]$$

$$\left[E^{\frac{1}{2}} - L^{\frac{11}{2}} - R^{19}\right]$$

wherein X and Y are independently selected from O and S, wherein E¹ and E² are independently selected from O, S, NR¹⁵ and R¹⁶-[L¹³]_g-C-[L¹⁴]_h-R¹⁷, wherein n, e, f, g, h, p and q are independently 0 or 1, wherein e is 0 when E¹ is represented by O, S or NR¹⁵, wherein f is 0 when E² is represented by O, S or NR¹⁵, wherein L, L¹¹, L¹², L¹³ and L¹⁴ are independently a linking group, and wherein one of the groups selected from R¹, R¹⁵, R¹⁶, R¹⁷, R¹⁸ and R¹⁹ represents the phenolic monomeric unit and the remaining groups represent a terminal group.

19. (New) The heat-sensitive lithographic printing plate precursor according to claim 9 wherein the group A has one of the following formulae

$$R^{\frac{1}{2}}\left[L\right]_{n}N$$

$$R^{21}\left[b\right]_{n}$$

$$R^{22}\left[c\right]_{n}$$

$$R_1 - F_3$$

wherein X and Y are independently selected from O and S,

wherein each R^1 and R^{20} to R^{23} is a terminal group independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, $-SO_2$ -NH- R^{24} , $-NH-SO_2$ - R^{27} , $-CO-NR^{24}$ - R^{25} , $-NR^{24}$ - $CO-R^{27}$, $-NR^{24}$ - $CO-NR^{25}$ - R^{26} , $-NR^{24}$ - $CS-NR^{25}$ - R^{26} , $-NR^{24}$ - $CO-O-R^{25}$, $-O-CO-R^{25}$, $-O-CO-R^{27}$, $-CO-O-R^{24}$, $-CO-R^{24}$, $-SO_3$ - R^{24} , $-O-SO_2$ - R^{27} , $-SO_2$ - R^{24} , $-SO_3$ - $R^$

wherein R²⁷ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl and heteroaralkyl group,

wherein a and d are independently 0, 1, 2, 3 or 4,

wherein b and c are independently 0, 1, 2 or 3,

wherein E^3 is selected from O, S, NR^{28} or R^{29} – $[L^{15}]_i$ -C- $[L^{16}]_j$ – R^{30} , wherein L, L^{15} and L^{16} are independently a linking group,

wherein n, i and j independently are 0 or 1,

and wherein one of the groups selected from R¹, R²⁰, R²¹, R²², R²³, R²⁸, R²⁹ and R³⁰ represents the phenolic monomeric unit and the remaining groups represent a terminal group.

20. (New) The heat-sensitive lithographic printing plate precursor according to claim 15, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.

- 21. (New) The heat-sensitive lithographic printing plate precursor according to claim 16, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 22. (New) The heat-sensitive lithographic printing plate precursor according to claim 17, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 23. (New) The heat-sensitive lithographic printing plate precursor according to claim 18, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 24. (New) The heat-sensitive lithographic printing plate precursor according to claim 19, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 25. (New) The heat-sensitive lithographic printing plate precursor according to claim 15, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 26. (New) The heat-sensitive lithographic printing plate precursor according to claim 16, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 27. (New) The heat-sensitive lithographic printing plate precursor according to claim 17, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 28. (New) The heat-sensitive lithographic printing plate precursor according to claim 18, wherein said coating further comprising a latent Brönsted acid and an

acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.

- 29. (New) The heat-sensitive lithographic printing plate precursor according to claim 19, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 30. (New) The polymer according to claim 2, wherein said polymer comprising a phenolic monomeric unit is a novolac, resol or polyvinylphenol.
- 31. (New) The polymer according to claim 3, wherein said polymer comprising a phenolic monomeric unit is a novolac, resol or polyvinylphenol.
- 32. (New) The polymer according to claim 4, wherein said polymer comprising a phenolic monomeric unit is a novolac, resol or polyvinylphenol.
- 33. (New) The polymer according to claim 5, wherein said polymer comprising a phenolic monomeric unit is a novolac, resol or polyvinylphenol.
- 34. (New) The polymer according to claim 6, wherein said polymer comprising a phenolic monomeric unit is a novolac, resol or polyvinylphenol.
- 35. (New) The polymer according to claim 7, wherein said polymer comprising a phenolic monomeric unit is a novolac, resol or polyvinylphenol.
- 36. (New) A method for increasing the chemical resistance of a coating of a positive working heat-sensitive lithographic printing plate precursor against printing liquids and press chemicals, the method comprising providing a coating comprising:

a polymer according to claim 1, an infrared absorbing agent, and

a dissolution inhibitor.

37. (New) A method for increasing the chemical resistance of a coating of a negative working heat-sensitive lithographic printing plate precursor against printing liquids and press chemicals, the method comprising providing a coating comprising:

a polymer according to claim 1, a latent Brönsted acid, and an acid-crosslinkable compound.