Recitation 2

ABA Spring 2024 02/02/24

Agenda

- Kaplan Meier Example
- Likelihood functions and MLE
- MLE Example: Poisson

Reminders

- Quiz 2 due Feb 5, 11:59PM

Kaplan Meier Example

KM estimator

- The **Kaplan–Meier estimator** is a non-parametric statistic used to estimate the survival function (probability of a person surviving) from lifetime data.
- In medical research, it is often used to measure the fraction of patients living for a certain amount of time after treatment. For example, calculating the amount of time certain patient lived after he/she was diagnosed with the cancer or when his treatment starts. The estimator is named after **Edward L. Kaplan** and **Paul Meier**.
- Probability of survival is how many subject (patients) survive (do not perish) out of the total events (patients) at that time.
- The probability of survival at time t_i, S(t_i), is calculated as

$$S(t) = \prod_{t \le t} \frac{n_i - d_i}{n_i} = \frac{survive}{total}$$

Example

- A study involves 20 participants who are 65 years of age and older; they are enrolled over a 5-year period and are followed for up to 24 years until they die, the study ends, or they drop out of the study (lost to follow-up). [Note that if a participant enrolls after the study start, their maximum follow up time is less than 24 years. e.g., if a participant enrolls two years after the study start, their maximum follow up time is 22 years.]
- The data are shown. In the study, there are 6 deaths and 3 participants with complete follow-up (i.e., 24 years). The remaining 11 have fewer than 24 years of follow-up due to enrolling late or loss to follow-up.

participant	Year of Death	Year of Last Contact
1		24
2	3	
3		11
4		19
5		24
6		13
7	14	
8		2
9		18
10		17
11		24
12		21
13		12
14	1	
15		10
16	23	
17		6
18	5	
19		9
20	17	

- Survival probability is given by $S(t) = \prod_{t_i < t} \frac{n_i d_i}{n_i}$
- We only take times when either the event or censoring happens
- 1, 2, 3, 5, 6, 9, 10, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24
- The number at risk goes down only when di >0 which is only in years 1, 3, 5, 14, 17, 23
- So we write the survival probability as

Example:

https://docs.google.com/spreadsheets/d/16qdtrjxo8sYUU0fnLTt1BjdE1rh8j0HFrZdri2x0DsM/edit?usp=sharing

• We use the

approach.

does not

survival

change the

probability.

Key to note is

that censoring

same

KM table

6

9...

13

14

17

18

19

21

23

24

Time,

Year

15...

11

10

9

7

6

5

4

3

No at Risk

- Nt

No of

1

1

1

1

1

1

Deaths-Dt

No Censored -

Ct

1

1....

1

1

1

3

=0.844 =0.844*(1-1/10) = 0.760 =0.760*(1-1/9) = 0.676 =0.676 =0.676

Survival Probability

 $S_{t+1} = S_t*(1-D_{t+1}/N_{t+1})$

=1*(1-1/20)=0.95

=0.95*(1-0/19)=0.95

=0.95*(1-1/18)=0.897

=0.897*(1-1/17) = 0.844

1

=0.844

=0.676

=0.507

=0.507

KM Curve

Maximum Likelihood

Motivation for Maximum likelihood estimation

- KM provided us with useful information about survival
- We need a "regression" like model to account for covariates
- We'll use the widely studied Cox Proportional Hazard model (Cox Regression Model)
- Cox is a semi-parametric approach:

We estimate the parameters (Betas) of the model using the partial likelihood.

Maximum likelihood estimation

- The goal of data analysis is to identify the population that is most likely to have generated the sample (we want to make inferences about the population)
- Each population is identified by a corresponding probability distribution (distribution of y, pdf/pmf).
- The desired parameters of the probability distribution are the ones that make the observed data "most likely"
- Likelihood: how likely the observed data is, given a set of parameters values. Formally: L(w|y) equals the probability of the observed data, given the parameters.
- The MLE finds the parameters which make the distribution fit closest to the data. It does by maximizing the likelihood function.

Maximum likelihood estimation

It turns out that likelihood function L(w|y) – where w is parameters and y is data - is proportional to the density function

$$L(w/y) \propto f(y/w)$$

- One simply maximizes L(.) to recover parameter w.
- With n independent observations, likelihood function is simply

$$L(w/y_1, y_2, \dots, y_n) = f(y_1, y_2, \dots, y_n/w) = \prod_n f(y_n/w)$$

- Multiplication of n densities.
- Taking logs would simplify this (multiplication would turn to addition) and hence

$$\max_{w} LogL = \max_{w} \sum_{n} Log(f(y_n/w))$$

MLE Example: Poisson

- •How does one write a likelihood function if Y follows Poisson distribution?
- •Since we know the pdf of Poisson,

$$f(y_i/\lambda) = \frac{e^{-\lambda}\lambda^y}{y!}$$

•λ is the parameter of Poisson distribution. For n sample, log likelihood (LL) function would be:

$$LL(\lambda|y) = \sum_{i=1}^{n} \operatorname{Ln}(\frac{e^{-\lambda}\lambda^{y}}{y!})$$

$$\bullet = \sum_{i=1}^{n} -\lambda + y \ln(\lambda) - \ln(y!)$$

 \bullet One maximizes this likelihood function to estimate parameter λ . This is simple maximize since it can be analytically solved

$$\frac{\partial LL}{\partial \lambda} = 0 \text{ or } -\sum_{1}^{n} 1 + \sum_{i=1}^{n} \frac{y}{\lambda} = 0 \text{ or } \lambda = \frac{1}{n} \sum y$$

- •Or estimate λ is simply mean of y
- •In many cases, this **can not be solved analytically**, and one relies on numerical methods (and we minimize the Negative LL)

Motivation for Maximum likelihood estimation

- KM provided us with useful information about survival
- We need a "regression" like model to account for covariates
- We'll use the widely studied Cox Proportional Hazard model (Cox Regression)
- Cox is a semi-parametric approach:

We estimate the parameters (Betas) of the model using the partial likelihood.