Devoir Libre SMIA s2

A rendre: mohamed.ch-chaoui@edu.uca.ma Date limite: 24 Juillet 2020

Exercice 1 1. Montrer que si f est une fonction de classe C^1 de [a, b] dans \mathbb{R} alors

$$\lim_{n \to +\infty} \int_a^b f(x) \sin(nx) \, dx = 0.$$

- 2. Montrer que l'application f définie sur $]0, \frac{\pi}{2}]$ par $f(x) = \frac{1}{x} \frac{1}{\sin x}$ se prolonge en une fonction de classe \mathcal{C}^1 sur $[0, \frac{\pi}{2}]$.
- 3. Calculer, pour tout $n \in \mathbb{N}$ $J_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)x)}{\sin x} dx$
- 4. On pose $K_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)x)}{x} dx$. Montrer que

$$\lim_{n \to +\infty} K_n = \int_0^{\frac{\pi}{2}} \frac{\sin x}{x} \, dx$$

5. Déduire de ce qui précède que

$$\int_0^{\frac{\pi}{2}} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

Exercice II. Soit $a \in]-\pi, \pi[$ Pour $x \in \mathbb{R}$ on pose

$$f(x) = \int_{x}^{2x} \frac{\cos t}{t} dt$$

- 1. 1. Montrer que f est dérivable sur \mathbb{R}^+_* et donner une expression de sa dérivée sans symbole intégral
- 2. Montrer que $\lim_{x \to +\infty} f(x) = 0$.
- 3. Montrer que f possède une limite finie en 0 que l'on déterminera. On pourra étudier le comportement quand x tend vers 0 de $\int_{x}^{2x} \frac{\cos t 1}{t} dt$

Exercice III. Calculer la limite des suites suivantes :

$$S_{1,n} = \sum_{k=0}^{n-1} \frac{1}{n+k}$$

$$S_{2,n} = \frac{1}{n} \left(\sin(\frac{\pi}{n}) + \sin(\frac{2\pi}{n}) + \dots + \sin(\frac{n\pi}{n}) \right)$$

Résoudre l'équation différentielle :

$$x(1 + \ln^2 x)y' + 2\ln xy = 1 \text{ sur }]0, +\infty[$$