(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(10)申请公布号 CN 102584826 A (43)申请公布日 2012.07.18

(21)申请号 201210019038.4

(22)申请日 2012.01.20

(71) 申请人 连云港金康医药科技有限公司 地址 222115 江苏省连云港市赣榆县金山镇 工业园区

(72) 发明人 王哲清 成永之 黄恒

(74) 专利代理机构 南京天华专利代理有限责任 公司 32218

代理人 徐冬涛

(51) Int. CI.

CO7D 475/04 (2006.01)

A61K 31/519 (2006. 01)

A61P 7/06 (2006.01)

A61P 9/00 (2006. 01)

A61P 25/00 (2006.01)

A61P 39/02 (2006.01)

A61P 17/06 (2006. 01)

A61P 19/02 (2006. 01)

A61P 29/00 (2006.01)

A61F 37/00 (2006. 01) *A61K* 47/22 (2006. 01) *A23L* 1/30 (2006. 01)

权利要求书 1 页 说明书 9 页 附图 2 页

(54) 发明名称

(6S)-5- 甲基四氢叶酸盐晶型及其制备方法

(57) 摘要

本发明公开了一种 (6S)-5- 甲基四氢叶酸盐 晶型及其制备方法,该晶型为:B型 (6S)-5- 甲基四氢叶酸钙盐晶型,其 X- 射线衍射图谱在 2 θ 角为 3.2±0.2 和 18.9±0.2 处有衍射峰;或者 C型 (6S)-5- 甲基四氢叶酸钙盐晶型,其 X- 射线衍射图谱在 2 θ 角为 6.3±0.2 和 19.2±0.2 处有衍射峰。本发明的 B型和 C型 (6S)-5- 甲基四氢叶酸钙盐晶型具有理化性质优异、稳定性好、纯度高、重现性好、更适于工业化规模制备等优点。

- 1. 一种 (6S)-5-甲基四氢叶酸盐晶型,其特征在于该晶型为:
- (a) B 型 (6S) -5 甲基四氢叶酸钙盐晶型,其 X 射线衍射图谱在 2 θ 角为 3. 2 \pm 0. 2 和 18. 9 \pm 0. 2 处有衍射峰;或者
- (b) C型(6S) -5- 甲基四氢叶酸钙盐晶型,其 X- 射线衍射图谱在 2 θ 角为 6.3 \pm 0.2 和 19.2 \pm 0.2 处有衍射峰。
 - 2. 根据权利要求 1 所述的 (6S)-5-甲基四氢叶酸盐晶型,其特征在于该晶型为:
- (a) B型(6S) -5- 甲基四氢叶酸钙盐晶型,其 X- 射线衍射图谱在 2 θ 角为 3. 2 ± 0. 2、 6. 4 ± 0. 2、16. 1 ± 0. 2、16. 8 ± 0. 2、18. 9 ± 0. 2 和 20. 0 ± 0. 2 处有衍射峰;或者
- (b) C型(6S) -5- 甲基四氢叶酸钙盐晶型,其 X- 射线衍射图谱在 2 θ 角为 3. 2 ± 0. 2、6. 3 ± 0. 2、13. 2 ± 0. 2、14. 6 ± 0. 2、19. 2 ± 0. 2 和 32. 6 ± 0. 2 处有衍射峰。
 - 3. 根据权利要求 2 所述的 (6S)-5- 甲基四氢叶酸盐晶型, 其特征在于:
 - (a) 所述 B型(6S)-5-甲基四氢叶酸钙盐晶型的 X-射线衍射图谱基本上如图 1。
 - (b) 所述 C型(6S)-5-甲基四氢叶酸钙盐晶型的 X-射线衍射图谱基本上如图 2。
 - 4. 一种制备 (6S)-5- 甲基四氢叶酸盐晶型的方法, 其特征在于:
 - a) 将 (6S)-5- 甲基四氢叶酸先在水性介质中与碱中和至全溶:

所述水性介质为水、盐的水溶液、或者水和能与水混匀的有机溶剂组成的溶液;所述碱为能与(6S)-5-甲基四氢叶酸成盐的无机或有机碱,选自碱金属或碱土金属的碱、碳酸盐、碳酸氢盐、氨水、胺类、吡啶类或哌嗪类;

- b) 加热至 25°C~ 100°C;
- c) 加入钙盐或钙盐溶液;
- d) 超声波结晶,分离出晶型。
- 5. 根据权利要求 4 所述的方法, 其特征在于步骤 a) 中所述碱为氢氧化钾、氢氧化钠、氢氧化钙、氢氧化镁、碳酸钾、碳酸钠、碳酸氢钾、碳酸氢钠、氨水、一甲胺、4-二甲基吡啶或哌嗪; 步骤 b) 中所述钙盐是氯化钙或六水氯化钙。
- 6. 根据权利要求 4 所述的方法, 其特征在于步骤 d) 中超声波的频率是 $20 \sim 100 \text{KHz}$, 超声波的功率是 $50 \sim 10000 \text{w}$ 。
- 7. 根据权利要求 6 所述的方法, 其特征在于步骤 d) 中超声波的频率是 $40 \sim 80 \text{KHz}$, 超声波功率是 $100 \sim 4500 \text{w}$ 。
- 8. 一种药物组合物, 其特征在于该组合物包含 B 型或 C 型 (6S) -5- 甲基四氢叶酸钙盐 晶型作为其主要活性成分以及药学上可接受的辅料。
 - 9. 一种制剂,包含有有效剂量的 B 型或 C 型 (6S)-5- 甲基四氢叶酸钙盐晶型。
- 10. 权利要求 1 所述的 (6S)-5- 甲基四氢叶酸盐晶型在制备作为药物活性成分的药物或食品添加剂方面的用途。

(6S)-5-甲基四氢叶酸盐晶型及其制备方法

技术领域

[0001] 本发明属于药物晶型领域,具体涉及两种(6S)-5-甲基四氢叶酸盐晶型及其制备方法和用途。

背景技术

[0002] (6S)-5-甲基四氢叶酸是组织和血叶酸的主要形式,参与体内多种重要的生化反应,比如嘌呤和胸腺嘧啶的生物合成等。它在人体中不需要经过烦琐的酶促步骤,可以直接被利用。此外(6S)-5-甲基四氢叶酸是叶酸类药物中惟-可以渗透过血脑屏障的药物,具有防治阿尔茨海默病(老年痴呆症)的作用,因此它具有其他叶酸类药物无法比拟的优越性。主要用于药物活性成分和食品添加剂,有预防胎儿神经管缺陷、动脉硬化,治疗巨幼红细胞贫血等作用。

[0003] (6S) -5 -甲基四氢叶酸的化学名称为 (6S) -N — [4—[[(2- 氨基 -1, 4, 5, 6, 7, 8— 六 氢 -4 — 氧 -5 — 甲基 -6 — 喋啶基)甲基]氨基]苯甲酰]—L— 谷氨酸,简称 (6S) -5 — MTHF。结构式如式 I 所示:

[0004]

[0005] 式 [

[0006] (6S)-5-甲基四氢叶酸在市面上常常是以盐的形式存在,尤其是碱土金属盐,特别是钙盐。现有技术中已经采取了许多方法制备(6S)-5-甲基四氢叶酸及其盐。

[0007] US6441168公开了通过热处理,在极性溶剂中结晶,获得了四种稳定的 5-甲基四氢叶酸钙盐的晶型,分别为 I, II, III, IV。

[0008] W02008144953公开了一种制备 5-甲基四氢叶酸的方法,同时获得了稳定的 5-甲基四氢叶酸晶型和无定形 5-甲基四氢叶酸钙盐。

[0009] US5006655公开了一种以 5,10-次甲基 (6RS)-四氢叶酸为原料,在极性溶剂中分步结晶,分离非对映体,再进行还原,成盐,得到 5-甲基四氢叶酸盐的方法。

[0010] CH699426 叙述了一种经过 13 步反应制备无定型 5- 甲基四氢叶酸钙盐的方法。

[0011] 对于药用化合物而言,其不同存储条件下的物理化学稳定性非常重要,但是 (6S)-5-甲基四氢叶酸非常不稳定,极易降解,特别是对氧和水分高度敏感,因此很难得到足够纯度的产品用于药物活性成分和食品添加剂。

发明内容

[0012] 本发明的目的是为了解决现有技术中存在的不足,提供两种即稳定、纯度又高、重现性好的5-甲基四氢叶酸盐新晶型。

[0013] 本发明的另一个目的是提供上述新的(6S)-5-甲基四氢叶酸盐晶型的制备方法。

[0014] 本发明的第三个目的是提供上述新的(6S)-5-甲基四氢叶酸盐晶型的药物组合物。

[0015] 本发明的第四个目的是提供上述新的(6S)-5-甲基四氢叶酸盐晶型的用途。

[0016] 本发明的目的可以通过以下措施达到:

[0017] 一种 (6S)-5-甲基四氢叶酸盐晶型,该晶型为 B型 (6S)-5-甲基四氢叶酸钙盐晶型或者 C型 (6S)-5-甲基四氢叶酸钙盐晶型。

[0018] 本发明一方面提供了一种 B 型 (6S) –5- 甲基四氢叶酸钙盐晶型,使用 Cu-Ka 辐射,其 X- 射线衍射图,以度表示的 2 θ 角在 3. 2±0. 2 和 18. 9±0. 2 处有衍射峰,特别是在 3. 2±0. 2、6. 4±0. 2、16. 1±0. 2、16. 8±0. 2、18. 9±0. 2 和 20. 0±0. 2 处还有一个或多个衍射峰。 B 型 (6S) –5- 甲基四氢叶酸钙盐晶型的 X- 射线衍射图谱呈现出强的衍射峰及低背景谱,表明了高结晶度。

[0019] B型(6S)-5-甲基四氢叶酸钙盐的进一步 X-射线衍射图基本上如附图 1。B型(6S)-5-甲基四氢叶酸钙盐晶型的化学纯度进一步在 99.0%以上。

[0020] 本发明另一方面提供了一种 C型 (6S) –5- 甲基四氢叶酸钙盐晶型,使用 Cu-Ka 辐射,其 X- 射线衍射图,以度表示的 2 θ 在 6.3 ± 0.2 和 19.2 ± 0.2 处有衍射峰,特别是在 3.2 ± 0.2、6.3 ± 0.2、13.2 ± 0.2、14.6 ± 0.2、19.2 ± 0.2 和 32.6 ± 0.2 处还有一个或多个衍射峰。C型 (6S) –5- 甲基四氢叶酸钙盐晶型的 X- 射线衍射图谱呈现出强的衍射峰及低背景谱,表明了高结晶度。

[0021] C型(6S)-5-甲基四氢叶酸钙盐的进一步 X-射线衍射图谱基本上如附图 2。C型(6S)-5-甲基四氢叶酸钙盐晶型的化学纯度进一步在 99.0%以上。

[0022] 本发明中的 B 型 (6S) -5- 甲基四氢叶酸钙盐晶型或 C 型 (6S) -5- 甲基四氢叶酸钙盐晶型中的水分为 $12\% \sim 17\%$,进一步为 $13.5\% \sim 15.5\%$ 。

[0023] 本发明的再一个方面还提供了一种新的制备(6S)-5-甲基四氢叶酸盐的方法,该方法包括如下步骤:

[0024] (1) 将 (6S)-5-甲基四氢叶酸先在水性介质中与碱中和至全溶;

[0025] 所述水性介质为水、盐的水溶液、或者水和能与水混匀的有机溶剂组成的溶液,也可以是盐类;优选的水性介质为水。所述碱为能与(6S)-5-甲基四氢叶酸成盐的无机或有机碱,选自碱金属或碱土金属的碱、碳酸盐、碳酸氢盐、氨水、胺类、吡啶类或哌嗪类,优选:氢氧化钾、氢氧化钠、氢氧化钙、氢氧化镁、碳酸钾、碳酸钠、碳酸氢钾、碳酸氢钠、氨水、一甲胺、4-二甲基吡啶或哌嗪;

[0026] (2) 加热至 25 °C以上,特别是加热至 25 °C ~ 100 °C;

[0027] (3) 加入钙盐或钙盐溶液;

[0028] 钙盐是指可溶于或部分溶于水性介质的钙离子的无机盐或有机盐,例如氯化钙、 六水氯化钙;

[0029] (4) 超声波结晶,分离出晶体。

[0030] 超声波可以使过饱和溶液的固体溶质产生迅速而平缓的沉淀,同时可以强化晶体生长。由于不需要添加其他试剂并且结晶过程中不引入污染物,因此能够制备很纯的晶体物质。我们在实验中发现:在超声波频率为 20~100KHz,功率为 50~10000w,所得晶体较均匀、完整、光洁,纯度较高,达到 99.0%以上;优选超声波频率为 40~80KHz,功率为 100~4500w。

[0031] 步骤 (2) 中本发明人进一步研究发现当加热温度在 25 \mathbb{C} \sim 45 \mathbb{C} 区间时,得到的晶体为 B 晶型,优先 38 \mathbb{C} \sim 45 \mathbb{C} 。当温度上升到 45 \mathbb{C} 以上(如 45 \mathbb{C} \sim 100 \mathbb{C})时,所得晶体为 C 晶型,优选采用 65 \mathbb{C} \sim 70 \mathbb{C} 。

[0032] 步骤(1)中的与碱中和一般指中和到 pH 值 7.0 左右,一般为 pH 值 $6.5 \sim 7.5$,优 选中和至 pH 值 $7.0 \sim 7.5$,最优选中和至 pH 值 7.0。碱可直接投加,也可以溶液的形式(如水溶液)加入。本方法对水性介质的用量并无具体要求,以一般的反应或结晶介质用量为 官。

[0033] 步骤(3)中采用钙盐溶液时,一般采用5%~30%的钙盐水溶液。

[0034] 步骤(4)中超声波结晶并分离出晶体后一般还进行水洗和干燥(如 20 \mathbb{C} \sim 40 \mathbb{C} 下真空烘干)的步骤。

[0035] 本发明还提供了一种包含上述 B 型或 / 和 C 型 (6S) -5- 甲基四氢叶酸钙盐的药用组合物,其还可含有药学上可接受的辅料或载体。所述载体包括稀释剂、粘合剂、崩解剂、润滑剂等,这些辅料均为现有的常规辅料。组合物的制剂形式为口服固体制剂或注射剂,如片剂、胶囊、口崩片、含片、缓控释制剂、注射剂、冻干粉等,采用相应剂型的方法制备即得。

[0036] 一种制剂,包含有有效剂量的 B 型或 / 和 C 型 (6S)-5- 甲基四氢叶酸钙盐晶型。

[0037] 本发明的 B 型或 C 型 (6S)-5-甲基四氢叶酸盐晶型可应用于制备作为药物活性成分的药物或食品添加剂方面。本发明的 B 型或 C 型 (6S)-5-甲基四氢叶酸钙盐晶型具体可用于治疗疾病和症状的例子包括但不限于:巨成红细胞叶酸缺乏性贫血、预防和治疗心血管疾病、预防神经管营养缺乏症、作为癌症治疗中增进叶酸拮抗剂(尤其是氨基蝶呤和氨甲基蝶呤)相容性的解毒剂(抗叶酸救助剂)、用于增强氟化嘧啶的疗效、用于治疗牛皮鲜和类风湿性关节炎等自身免疫性疾病、用于增进某些抗寄生虫药-如三甲氧苄二氨嘧啶-磺胺甲恶唑-的相容性以及用于降低化疗中双去氮杂-四氢叶酸的毒性等。

[0038] 本发明人发现 B型和 C型 (6S)-5-甲基四氢叶酸钙盐很稳定,在温度为 25℃和相对湿度为 60%的空气中长期存放,晶型的颜色并没有明显变化,这对于将 (6S)-5-甲基四氢叶酸钙盐应用于药物制剂来说是极其重要的。

[0039] 本发明人还发现 B型和 C型 (6S)-5-甲基四氢叶酸钙盐具有良好的溶解速率,在25℃的水中,1分钟内就可以迅速达到饱和状态,溶解速度快不仅可以提高肠胃外给药制剂如注射剂的可制备性,方便工业化生产,还可以制成口服制剂,对于药物的口服给药具有重要的生物制药学优势,因为活性药物更迅速的溶解速率行为可以使活性药物通过胃肠壁的吸收速率提高。另外本发明的晶型还具有结晶度高、颗粒分布均匀、表面光洁、化学纯度达到99.0%以上等优点。

[0040] 本发明的制备(6S)-5-甲基四氢叶酸盐晶型的方法优点是:反应步骤简单,无污染,所得到的(6S)-5-甲基四氢叶酸钙盐新晶型具有很高的化学稳定性,纯度高、溶解速度快,且生物利用度高,为制备新型(6S)-5-甲基-四氢叶酸结晶盐提供了新途径。

[0041] 本发明的 B型和 C型 (6S)-5-甲基四氢叶酸钙盐晶型具有理化性质优异、稳定性好、纯度高、重现性好、更适于工业化规模制备等优点。

附图说明

[0042] 图 1 是 B 型 (6S)-5- 甲基四氢叶酸钙盐晶型的 X- 射线衍射图谱。

[0043] 图 $2 \pm C$ 型 (6S) -5 一甲基四氢叶酸钙盐晶型的 X 射线衍射图谱。

[0044] 图 3 是 B 型、C 型和 I 型 (6S)-5-甲基四氢叶酸钙盐晶型的溶解速率曲线。

具体实施方式

[0045] 不需要进一步描述,利用先前的说明,本领域的技术人员可以最大限度地实施本发明。下面优选的具体实施方案只是作为例证,无论如何不限制本发明所公开的内容。

[0046] 实施例 1

[0047] 将 40 毫升去离子水放置在容器中,加入 3.0 克 (6S) –5–MTHF,搅拌下用 2mo1/L 液碱中和到 pH 值 7.5 至 (6S) –5–MTHF 全溶,转移到频率为 40KHz、功率为 500w 的超声波反应器中,加热到 30°C,加入 10%的氯化钙溶液(含氯化钙 1.0 克),超声反应 0.5 小时后过滤,水洗。30°C 真空烘干,得到 2.11 克白色 B 型 (6S) –5–MTHF 钙盐。化学纯度 99.7% (HPLC 检测),含量 101.5%,水分 15.0%。

[0048] 实施例 2

[0049] 将 30 毫升去离子水放置在容器中,加入 2. 0 克 (6S) -5-MTHF,搅拌下用 2mo1/L 液碱中和到 pH 值 7. 0 至 (6S) -5-MTHF 全溶,转移到频率为 60KHz、功率为 100w 的超声波反应器中,加热到 43 \mathbb{C} ,加入 10%的氯化钙溶液(含氯化钙 0.5 克),超声反应 0.5 小时后过滤,洗涤。25 \mathbb{C} 真空烘干,得到 1.59 克白色 B 型 (6S) -5-MTHF 钙盐。化学纯度 99.5% (HPLC 检测),含量 100.1.1%,水分 14.9%。

[0050] 实施例3

[0051] 将 30 毫升去离子水放置在容器中,加入 2. 0 克 (6S) -5-MTHF,搅拌下用 2mo1/L 液碱中和到 pH 值 7.3 至 (6S) -5-MTHF 全溶,转移到频率为 80KHz、功率为 1000w 的超声波反应器中,加热到 40 °C,加入 10 %的氯化钙溶液(含氯化钙 1.2 克),超声反应 0.5 小时后过滤,水洗。 30 °C 真空烘干,得到 1.70 克白色 B 型 (6S) -5-MTHF 钙盐。化学纯度 99.2%(HPLC 检测),含量 99.4%,水分 14.4%。

[0052] 实施例 4

[0053] 去离子水 75 毫升,加入 3. 0 克 (6S) -5-MTHF,搅拌下用 2mo1/L 碳酸氢钠中和到 pH 值 7. 2 至 (6S) -5-MTHF 全溶,转移到频率为 80KHz、功率为 4500w 的超声波反应器中,加热 到 58°C,加入 10%的氯化钙溶液(含氯化钙 1.8 克),超声反应 1.0 小时过滤,洗涤。 30°C 真空烘干,得到 2.60 克白色 C 型 (6S) -5-MTHF 钙盐。化学纯度 99.0% (HPLC 检测),含量 101.1%,水分 14.5%。

[0054] 实施例 5

[0055] 将 30 毫升去离子水放置在容器中,加入 2. 0 克 (6S) -5-MTHF,搅拌下用 2mo1/L 液 碱中和到 pH 值 7. 5 至 (6S) -5-MTHF 全溶,转移到频率为 50KHz、功率为 1000w 的超声波反应器中,加热到 80 $^{\circ}$ C,加入 10%的氯化钙溶液(含氯化钙 0.5 克),超声反应 0.5 小时后过滤,

水洗。30℃真空烘干,得到 1. 41 克白色 C 型 (6S) -5 –MTHF 钙盐。化学纯度 99. 4% (HPLC 检测),含量 100.9%,水分 13.8%。

[0056] 实施例 6

[0057] 将 450 毫升去离子水放置在容器中,加入 30 克 (6S) –5–MTHF,搅拌下用 2mo1/L 碳酸钠中和到 pH 值 7.0 至 (6S) –5–MTHF 全溶,转移到频率为 20KHz、功率为 500w 的超声波反应器中,加热到 65℃,缓慢加入 10%氯化钙溶液(含氯化钙 7.0 克),超声反应 1.0 小时后过滤,洗涤。30℃真空烘干,得到 16.2 克白色 C型 (6S) –5–MTHF 钙盐。化学纯度 99.6% (HPLC 检测),含量 101.2%,水分 14.4%。

[0058] 实施例 7

[0059] 去离子水 30 毫升,加入 2. 0 克 (6S) –5–MTHF,搅拌下用 2mo1/L 液碱中和到 pH 值 7. 5 至 L–5–MTH F 全溶,转移到频率为 60KHz、功率为 350w 的超声波反应器中,加热到 70 ℃,缓慢加入 10 %的氯化钙溶液(含氯化钙 0.5 克),超声反应 0.5 小时后过滤,洗涤。 30 ℃ 真空烘干,得到 1.53 克白色 C 型 (6S) –5–MTHF 钙盐。化学纯度 99.5 % (HPLC 检测),含量 99.5 %,水分 14.6 %。

[0060] 实施例 8

[0061] 去离子水 50 毫升,加入 2. 0 克 (6S) -5-MTHF,搅拌下滴加 2mo 1/L 液碱中和到 pH 值 7. 0 至 L-5-MTHF 全溶,转移到频率为 60KHz、功率为 500w 的超声波反应器中,加热到 90 ℃,缓慢加入 10%的氯化钙溶液(含氯化钙 1. 2 克),超声反应 0. 5 小时后过滤,洗涤。 30 ℃ 真空烘干,得到 1. 48 克白色 C 型 (6S) -5-MTHF 钙盐。化学纯度 99. 7% (HPLC 检测),含量 100. 3%,水分 14. 5%。

[0062] 实施例 9

[0063] 去离子水 50 毫升,加入 2.0 克 (6S) -5-MTHF,搅拌下滴加 2mo1/L 液碱中和到 pH 值 7.0 至 L-5-MTH F 全溶,转移到频率为 40KHz、功率为 1000w 的超声波反应器中,加热到 95 °C,缓慢加入 10 %的氯化钙溶液(含氯化钙 1.0 克),超声反应 0.5 小时后过滤,洗涤。 30 °C 真空烘干,得到 1.56 克白色 C 型 (6S) -5-MTHF 钙盐。化学纯度 99.4% (HPLC 检测),含量 101.0%,水分 14.8%。

[0064] 实施例 10 溶解度试验

[0065] 方法:称取(6S)-5-甲基四氢叶酸钙盐晶型适量于100ml 烧杯中,加入一定量的25℃的水,然后置于控温25℃的水浴锅中,不停的搅拌,检测(6S)-5-甲基四氢叶酸钙盐晶型的溶解情况。

[0066] B型、C型 (6S)-5-甲基四氢叶酸钙盐晶型与 US6441168 公开的 I 型晶型的溶解度 结果列于下表:

[0067]

晶型	溶解度 (g/100m1)	达到稳定状态的时间
I型	1. 10	15min
B型	1. 21	20s

C型 1.32 10s

[0068] B型、C型(6S)-5-甲基四氢叶酸钙盐晶型与US6441168公开的 I 型晶型的溶解速率见附图 3。

[0069] 从上表及溶解速率图可看出,本发明涉及的 (6S)-5-甲基四氢叶酸钙盐新晶型在水中的溶解度略优于 US6441168 的 I 型结晶钙盐,而溶解速率显著优于 I 型结晶钙盐,更有利于人体的吸收利用,从而具有更好的生物利用度。

[0070] 实施例 11 稳定性考察

[0071] 为了测定 (6S)-5-MTHF 钙盐新晶型的稳定性,将 B型和 C型一起存放在温度为 25℃和相对湿度为 60%的空气中,定期测量剩余 (6S)-5-MTHF 钙盐的含量:

[0072]

	贮存月数	外观	含量
	0	白色结晶	100.00%
	1	白色结晶	99. 72%
B 型	2	白色结晶	99. 54%
	3	白色结晶	99. 30%
	6	白色结晶	98. 87%
	0	白色结晶	100. 00%
C 型	1	白色结晶	99. 86%
	2	白色结晶	99. 72%
	3	白色结晶	99. 30%
	6	白色结晶	98. 96%

[0073] 以上结果表明, B型和C型具有良好的稳定性, 有利于药物制剂的生产和储层。

[0074] B晶型的 X-射线衍射图谱条件及数据

[0075] 仪器型号:Bruker D8 advance XRD

[0076] 衍射线:CuK a (40kV, 40mA)

[0077] 扫描速率:8°/min(2θ值)

[0078] 扫描范围:2°~45°(2θ值)

[0079] Peak Search Report (23Peaks, Max P/N = 34.3)

[0080] PEAK: 35-pts/Parabolic Filter, Threshold = 3.0, Cutoff = 0.1 %, BG = 3/1.0, Peak-Top = Summit

[0081]

#	2-Theta	d (A)	BG	Height	Ι%	Area	Ι%	FWHM

[0082]

1	3. 210	27. 4991	358	5388	100.00	119300	100.00	0. 398
2	6. 428	13. 7382	421	4248	78. 84	72768	61.00	0. 319
3	9. 625	9. 1814	417	889	16. 50	9088	7. 62	0. 323
4	12. 845	6. 8861	620	835	15. 50	2326	1. 95	0. 182
5	13. 201	6. 7012	701	1066	19. 78	6650	5. 57	0. 306
6	13. 651	6. 4812	654	1113	20. 66	7002	5. 87	0. 256
7	14. 109	6. 2720	739	1008	18. 71	3306	2. 77	0. 206
8	14. 695	6. 0233	687	880	16. 33	2014	1.69	0. 175
9	15. 331	5. 7746	681	1013	18. 80	4462	3. 74	0. 225
10	16.060	5. 5141	768	1189	22.07	7970	6.68	0. 318
11	16. 813	5. 2690	697	1205	22. 36	16660	13. 96	0. 550
12	18. 904	4. 6904	821	1624	30. 14	16232	13. 61	0. 339
13	20. 046	4. 4258	911	1461	27. 12	11226	9. 41	0. 342
14	20. 699	4. 2875	807	1228	22. 79	8607	7. 21	0. 343
15	22. 539	3. 9415	603	752	13. 96	2269	1. 90	0. 256
16	23. 405	3. 7976	623	881	16. 35	6140	5. 15	0. 399
17	23. 956	3. 7115	641	993	18. 43	8761	7. 34	0. 418
18	24. 983	3. 5612	689	951	17. 65	4687	3. 93	0. 300
19	25. 869	3. 4413	683	959	17.80	2372	1. 99	0. 144
20	27. 448	3. 2467	653	883	16. 39	7498	6. 28	0. 547
21	28. 339	3. 1467	678	832	15. 44	4059	3. 40	0. 442
22	30. 984	2. 8838	611	782	14. 51	3233	2. 71	0. 317
23	32. 523	2. 7508	612	872	16. 18	10971	9. 20	0. 708
				61. 77 N/J. LIPI				

[0083] C晶型的 X-射线衍射图谱条件及数据

[0084] 仪器型号:Bruker D8advance XRD

衍射线:CuKα(40kV,40mA) [0085]

扫描速率:8°/min(2θ值) [0086]

扫描范围: $2^{\circ} \sim 45^{\circ}$ (2 θ 值) [0087]

[8800] Peak Search Report (37Peaks, Max P/N = 46.1)

[0089] PEAK: 35-pts/Parabolic Filter, Threshold = 3.0, Cutoff = 0.1 %, BG =

3/1.0, Peak-Top = Summit

[0090]

#	2-Theta	d (A)	BG	Height	Ι%	Area	Ι%	FWHM
1	3. 151	28. 0163	612	8740	89. 06	165950	100.00	0. 343
2	6. 309	13. 9974	689	9814	100.00	155754	93. 86	0. 286
3	9. 447	9. 3545	681	1601	16. 31	16953	10. 22	0. 309
4	13. 199	6. 7022	913	4338	44. 20	46545	28. 05	0. 228
5	13. 612	6. 4999	1029	2121	21. 61	14775	8. 90	0. 227
6	14. 166	6. 2469	1072	1514	15. 43	12344	7. 44	0. 441
7	14. 639	6. 0462	1057	4630	47. 18	52370	31. 56	0. 246
8	15. 329	5. 7755	1055	1310	13. 35	2233	1. 35	0. 147
9	16. 001	5. 5343	1133	2147	21. 88	18187	10. 96	0. 301
10	16. 534	5. 3572	958	1409	14. 36	15394	9. 28	0. 539
11	17. 046	5. 1973	1089	2406	24. 52	14700	8. 86	0. 187
12	18. 824	4. 7103	1017	3484	35. 50	74762	45. 05	0. 479
13	19. 158	4. 6288	1118	3998	40. 74	84209	50. 74	0. 491
14	20. 125	4. 4085	1295	3176	32. 36	30820	18. 57	0. 275
15	20. 976	4. 2316	1169	2397	24. 42	22579	13. 61	0. 308
16	21. 411	4. 1466	1068	1503	15. 31	5525	3. 33	0. 213

[0091]

17	22. 614	3. 9287	863	1716	17. 49	13799	8. 32	0. 271
18	24. 073	3. 6937	857	1619	16. 50	9785	5. 90	0. 215
19	24. 785	3. 5892	884	1719	17. 52	26584	16. 02	0. 503
20	25. 022	3. 5558	898	1971	20. 08	26647	16.06	0. 417
21	25. 914	3. 4354	884	1390	14. 16	7075	4. 26	0. 235
22	26. 858	3. 3168	846	1262	12. 86	10476	6. 31	0. 423
23	27. 334	3. 2601	852	1244	12. 68	8923	5. 38	0. 359
24	27. 674	3. 2207	901	1048	10.68	1050	0.63	0. 113
25	28. 358	3. 1446	915	1606	16. 36	15814	9. 53	0. 384
26	28. 908	3. 0860	913	1339	13. 64	16265	9. 80	0. 641
27	29. 444	3. 0310	977	1419	14. 46	9424	5. 68	0. 358
28	30. 251	2. 9520	921	1248	12. 72	3742	2. 25	0. 192
29	30. 769	2. 9035	880	1518	15. 47	9728	5. 86	0. 256
30	31. 537	2. 8345	836	1196	12. 19	4349	2. 62	0. 203
31	32. 602	2. 7443	813	1863	18. 98	21721	13. 09	0. 347
32	35. 722	2. 5115	617	929	9. 47	4980	3. 00	0. 268
33	37. 675	2. 3856	659	1229	12. 52	10784	6. 50	0. 317
34	38. 819	2. 3179	633	884	9. 01	5939	3. 58	0. 397
35	40. 263	2. 2381	607	776	7. 91	4592	2. 77	0. 429
36	42. 037	2. 1476	580	988	10. 07	14181	8. 55	0. 583
37	43. 615	2. 0735	563	841	8. 57	6633	4.00	0.400

图 1

图 2

图 3