MATH 401: Lecture 4 (08/28/2025)

Today: * images/preimages and unions/intersections

* injective/surjective functions

* relations, equivalence relations, partitions

We now consider how images and inverse images commute (or not) with unions and intersections of families of sets.

Prop 1.4.1 Inverse images commute with arbitrary unions and intersections:

$$f^{-1}(B) = 0$$
 $f^{-1}(B)$ and "inverse of union = union of inverses"

 $f^{-1}(B) = 0$ "inverse of intersection = intersection of inverses"

Proof (of the second statement) -> See LSIRA for proof of first statement

(C) Let
$$x \in f^{-1}(\Omega B) \Rightarrow f(x) \in \Omega B$$

$$\Rightarrow f(x) \in B \text{ for every } B \in \emptyset.$$

$$\Rightarrow \times \in f^{-1}(B) \text{ for every } B \in \emptyset.$$

$$\Rightarrow \times \in (f^{-1}(B),$$

$$\Rightarrow$$
 \times \in $f^{-1}(B)$ for every $B \in \mathcal{B}$.

$$\Rightarrow$$
 $f(x) \in B$ for every $B \in \mathcal{B}$.

$$\Rightarrow f(x) \in (B) \Rightarrow x \in f^{-1}(B).$$

We saw that inverse images commute with unions and intersections. But forward images behave a bit differently.

Prop 1.4.2 f: X -> Y is a function, A is a family of subsets of X.

Then
$$f(\bigcup A) = \bigcup f(A)$$
, $f(\bigcap A) \subseteq \bigcap f(A)$.

('\(\sigma'\) Let y \(\xi\) f(UA)

There exists"

 $\Rightarrow \exists x \in \bigcup A$ such that f(x) = y.

 \Rightarrow $x \in A$ for at least one $A \in A$ such that f(x) = y

 \Rightarrow y \in f(A) for at least one A \in A

⇒ y ∈ Uf(A).

(2) let $y \in U_{AGA}$

 \Rightarrow y \in f(A) for at least one $A \in A$

 $\Rightarrow \exists x \in A \text{ for at least one } A \in A \text{ such that } f(x) = y.$

 \Rightarrow $\exists x \in \bigcup_{A \in A} A$ such that f(x)=y.

 \Rightarrow y \in f(UA)

LSIRA gines a slightly different proof for (2):

We consider intersections now:

$$f(\bigcap_{A\in A}A)\subseteq \bigcap_{A\in A}f(A)$$
.

Proof for ('S)

Since this inclusion holds for every AEA, we get

$$f(\bigcap_{A \in \mathcal{A}}) \subseteq \bigcap_{A \in \mathcal{A}} f(A)$$

Counterexample for ('=') for 1

For
$$x_1 \neq x_2$$
, $x_1, x_2 \in X$, let $f(x_i) = y_i i^{-1/2}$.

Let
$$A_i = \{x \in X_i\}$$
, $i = 1, 2$. $\implies \bigcap_{i = 1, 2} A_i = \emptyset$ (empty set).

But note that f(Ai) = Syz, i=1,2.

$$\Rightarrow f\left(\bigcap_{i=1,2}^{n}A_{i}\right)=\emptyset.$$
 But $\bigcap_{i=1,2}^{n}f(A_{i})=\S{y}^{2}\neq\emptyset.$

$$\Rightarrow \bigcap_{i=1,2} f(Ai) \neq f(\bigcap_{i=1,2} Ai).$$

But we get this reverse inclusion if we specify that f is injective.

Det let f:X->Y be a function.

f is injective (1-to-1) if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$. Equivalent definition: For any y EY, there is at most one x EX s.t. f(x)=y.

There would be no x EX

It is surjective (onto) if for every $y \in Y$, there is at least one $x \in X$ such that f(x) = y.

There could be more than one f(x) = y and surjective.

If it is both injective and surjective.

LSIRA 1.4 Prob 4 (1917)

Let $f: \mathbb{R} \to \mathbb{R}$ be a strictly increasing function, i.e., $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ for $x_i \in \mathbb{R}$, i=1,2. 1. Show that f is injective. or a counterexample. 2. Does if have to be surjective? The same result holde when $x_2 < x_1$ as well.

1. We show $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

Without loss of generality (WLOGI), let $X_1 < X_2$.

Then $f(x_i) < f(x_2)$, as f is storely increasing. Hence $f(x) \neq f(x_2)$, and so f is injective.

2. No. $f = \arctan(x)$ is strictly increasing. $f: \mathbb{R} \to \mathbb{R}$, but $\arctan(\mathbb{R}) = (-\frac{\pi}{2}, \frac{\pi}{2}) \subset \mathbb{R}$.

So f need not be surjective. Another example is $f = e^{x}$.

Kelations (LSIRA 1.5)

We had seen functions, where a <u>unique</u> yEY is assigned for each XEX by f: X -> Y. But entities are related in other ways — numbers are 7 or < each other, lines are parallel, etc. We define relations formally to describe such dependencies.

Def A relation R on a set X is a subset of $X \times X$. Cartesian We write xRy, (x,y) ER, or x~y. product of X with Itself

e.g., R = { (x,y) & R2 | x=y }

Recall, y=x is the 45° line through (0,0).
All points are "related" by them
belonging to this line.

Here is another relation (on integers).

 $P = \frac{2}{3}(x,y) \in \mathbb{Z}^2 | x_i y \text{ have same parity } \frac{2}{3}$. So, all odd integers are related, and so are all even integers.

Some relations have more structure than default - as defined belows.

Equivalence Relations

(iii) transitive, i.e., X~Y, Y~Z => X~Z + x, y, Z E X.

Def Given an equivalence relation \sim on X, we define the equivalence class [x] of $x \in X$ as $[x] = \frac{2}{3}y \in X[x \sim y]$. The set of all "relatives" of $x \in X$.

The collection of equivalence classes forms a partition of X.

Def A partition β of X is a family of nonempty subsets of X such that $x \in X$ satisfies $x \in P \in \beta$ for exactly one P in β (for every $x \in X$).

The elements P of P are called partition classes of P.

e.g., $P = \frac{1}{2} \frac{$

Here is a direct example of a partition of R.

The collection of all lines with slope=1 (45°) is a partition of R?

Any point in \mathbb{R}^2 belongs to exactly one line with a slope of m=1 (i.e., 45° degree slope).

We have not checked that the defining relation is an equivalence relation, but this can be blone easily.

relation, and my and recall, the point-slope form of the equation of a line: $\frac{y-y_0}{x-x_0}=m$, given slope m and one point (x_0,y_0) .

I here are infinitely many lines with slope m=1.