Aabir AK HW03

February 9, 2020

```
[1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
  from sklearn.linear_model import LinearRegression
  from sklearn.metrics import mean_squared_error as MSE
  import tabulate as tb

import seaborn as sns

sns.set_style("whitegrid")
```

[2]: np.random.seed(42)

0.1 Conceptual exercises

0.1.1 Generating data (X) and computing Y with noise

```
[3]: X = np.random.normal(loc=np.random.randint(0, 100, 20), scale=np.random.

→randint(0, 25, 20), size=(1000, 20))
```

```
[4]: beta = np.random.normal(0, 30, 20)
for i in range(beta.shape[0]):
    if np.random.random() >= 0.70:
        beta[i] = 0

beta = np.array(beta)

assert any([i==0 for i in beta.T]), "beta contains no zeros"
zero_pos = [i for i in range(len(beta)) if beta[i]==0]
print(f"zero values for beta at positions: {zero_pos}")

epsilon = np.random.randn(1000,)
print(X.shape, beta.shape, epsilon.shape)
```

```
zero values for beta at positions: [6, 10, 17, 19] (1000, 20) (20,) (1000,)
```

```
[5]: Y = np.matmul(X, beta) + epsilon
print(Y.shape)
```

(1000,)

0.1.2 Splitting the data

```
[6]: X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size=100) print(X_train.shape, X_test.shape, Y_train.shape, Y_test.shape)
```

(100, 20) (900, 20) (100,) (900,)

0.1.3 Performing best subset selection and compiling results on training set

```
[7]: # I analyze results of the forward selection algorithm. For backward selection,
      \rightarrowuse forward = False
     forward = True
     best_featureset = [] if forward else list(range(20))
     best_MSE = []
     best model = []
     model_size = []
     for select_step in range(1, 21):
         s = select_step if forward else 21-select_step
         model_size.append(s)
         \#print(f'best\_featureset : \{best\_featureset\}')
         new_mse = []
         all_models = []
         for feature_no in range(20):
             if forward:
                 if feature_no in best_featureset:
                     new_mse.append(np.inf)
                     all_models.append(None)
                 else:
                     #print(f"{feature_no} not in {best_featureset}")
                     f list = best featureset+[feature no]
                     mdl = LinearRegression(fit_intercept=True).fit(X_train[:,__
      →f_list], Y_train)
                     Y_train_pred = mdl.predict(X_train[:, f_list])
                     new_mse.append(MSE(Y_train, Y_train_pred))
                     all_models.append(mdl)
             else:
                 if feature_no in best_featureset:
                     f_list = best_featureset.copy()
```

```
f_list.remove(feature_no)
                mdl = LinearRegression(fit_intercept=True).fit(X_train[:,__
→f_list], Y_train)
                Y train pred = mdl.predict(X train[:, f list])
                 new_mse.append(MSE(Y_train, Y_train_pred))
                all models.append(mdl)
            else:
                new_mse.append(np.inf)
                all_models.append(None)
    #print(new_mse)
    if forward:
        best_feat = np.argmin(new_mse)
        #print(f'adding new best feature # {best_feat}')
        best_featureset.append(best_feat)
        best_MSE.append(np.min(new_mse))
        best_model.append(all_models[best_feat])
   else:
        worst_feat = np.argmax(new_mse)
        best featureset.pop(worst feat)
        best_MSE.append(np.min(new_mse))
    #print(f"best subset of size {model size}: {best featureset}\n\tMSE = |
\hookrightarrow {best MSE[-1]}")
\#assert\ all([MSE(Y\ train,\ best\ model[i].predict(X\ train))==\ best\ MSE[i]\ for\ i_{\sqcup}
\rightarrow in range(20)])
```

```
[8]: plt.clf()
     ranks = np.argsort(best_MSE)
     colnums = list(reversed(np.linspace(0.3, 0.99, 20)))
     cols = np.zeros(20)
     for i, r in enumerate(ranks):
         cols[r] = colnums[i]
     plt.scatter(range(1, 21), best_MSE, label='best MSE', c=cols, cmap=plt.cm.
      ⇒seismic)
     plt.title('Training set MSE for n best features (OLS)')
     plt.xticks(range(1, 21))
     plt.xlabel('n (number of features)')
     plt.ylabel('MSE')
     plt.ylim(0)
     plt.legend()
     plt.show()
     print(f'Train MSE is lowest for the best {ranks[0]+1} features.\n\n')
     print(tb.tabulate(dict(zip(['rank', 'feature #', 'beta weight', 'MSE',
                                 'L2 of coefs', #'abs-sum of betas',
                                 'L2 b/w coefs and betas'
                                ],
```

```
[list(range(1, 21)), [f"f{i+1}" for i in_

→best_featureset],

beta[best_featureset], best_MSE,

[np.linalg.norm(mdl.coef_) for mdl in_

→best_model],

#[np.abs(beta[best_featureset][:i+1]).sum() for

→i in range(len(beta))]

[np.linalg.norm(beta[:i+1] - mdl.coef_) for i,

→mdl in enumerate(best_model)]

])), headers="keys"))
```


Train MSE is lowest for the best 19 features.

rank feat	ure # bet	a weight		MSE L2	of coefs	L2 b/w coefs
1 f5		24.4879	878367		26.3608	
17.9478						
2 f16		27.3752	638503		40.9984	
24.4321						
3 f4	-	38.9013	434847		54.946	
28.2849						

4	f12	-25.2876	336982	58.0339
31.1381				
5		17.5056	225363	63.318
30.9881				
6		20.2686	121443	70.5721
30.8221		11 5000	01000 5	CO 000F
7 31.2721		11.5036	81299.5	69.2825
8		11.2583	E/1873	70.4401
31.6916		11.2505	J4023	70.4401
9		-35.6605	36339.9	77.4138
39.2698		00.0000	00000.0	11.1100
10		-11.9184	23392.2	76.9538
38.3716				
11	f17	-3.0314	13116.9	77.584
39.3817				
12	f15	-4.06156	7129.68	77.3908
46.029				
13	f10	-5.3283	1275.6	76.4245
48.296				
14		3.57638	62.4206	77.3582
48.8478				
15		8.41296	0.622241	77.6478
50.3792		^	0 576600	77 6476
16		0	0.576682	77.6476
57.2873 17		0	0.573091	77.6495
57.3696		O	0.575091	11.0433
18		0	0.569609	77.6504
57.3727		· ·	0.00000	
19		0	0.569525	77.6504
67.5517				
20	f3	-21.3005	0.569525	77.6504
67.5517				

As the variance of each feature is quite large, and the beta values are large too, the MSE decreases rapidly until the 16th feature is added. The f16 through f19 are those for which $\beta = 0$, which intuitively makes sense.

It is a little unusual that f3 (with a relatively large magnitude β is the 'worst' performing feature by this method.

0.1.4 Compiling results on test set

```
[9]: plt.clf()
test_MSEs = [MSE(Y_test, mdl.predict(X_test[:, best_featureset[:i+1]])) for i,

→mdl in enumerate(best_model)]
```

```
ranks = np.argsort(test_MSEs)
colnums = list(reversed(np.linspace(0.3, 0.99, 20)))
cols = np.zeros(20)
for i, r in enumerate(ranks):
   cols[r] = colnums[i]
plt.scatter(range(1, 21), test_MSEs, label='best MSE', c=cols, cmap=plt.cm.
⇔seismic)
plt.title('TEST set MSE for n best features (OLS)')
plt.xlabel('n (number of features)')
plt.ylabel('MSE')
plt.xticks(range(1, 21))
plt.ylim(0, 1.2*max(test_MSEs))
plt.legend(loc='lower right')
plt.show()
print(f'Test MSE is lowest for the best {ranks[0]+1} features.\n\n')
print(tb.tabulate(dict(zip(['rank', 'feature #','train MSE', 'test MSE'
                           ],
                           [list(range(1, 21)), [f"f{i+1}" for i in_
→best_featureset],
                            best_MSE, test_MSEs
                           ])), headers="keys"))
```


Test MSE is lowest for the best 15 features.

rank		train MSE	test MSE
1	f5	878367	907799
2	f16	638503	631939
3	f4	434847	438833
4	f12	336982	327119
5	f2	225363	188702
6	f6	121443	154619
7	f13	81299.5	102197
8	f8	54823	60055.1
9	f19	36339.9	37190.1
10	f9	23392.2	26241.2
11	f17	13116.9	21473.9
12	f15	7129.68	10034
13	f10	1275.6	1779.84
14	f14	62.4206	81.0563
15	f1	0.622241	1.2726
16	f18	0.576682	1.31484
17	f11	0.573091	1.31802
18	f20	0.569609	1.32218
19	f7	0.569525	1.32324
20	f3	0.569525	1.32324

```
[10]: # plotting train and test set MSEs
      plt.plot(range(1, 21), test_MSEs, label='test MSE')
      plt.plot(range(1, 21), best_MSE, label='train MSE')
      plt.title('Comparing train and test set MSE for n best features')
      plt.xlabel('n (number of features)')
      plt.ylabel('MSE')
      plt.xticks(range(1, 21))
      plt.ylim(0.01, 1.2*max(test_MSEs))
      plt.legend(loc='lower right')
      plt.yscale('log')
      plt.show()
      print('Based on test MSE, it would appear that the best featureset is the top⊔
      →15 features')
      f_string15 = 'f'+', f'.join([str(x) for x in best_featureset[:15]])
      print(f'{f_string15}')
      print("\n\nThe 5 worst performing features are excluded:")
      f_string5 = 'f'+', f'.join([str(x) for x in best_featureset[15:]])
```

print(f'{f_string5}')

Based on test MSE, it would appear that the best featureset is the top 15 features f4, f15, f3, f11, f1, f5, f12, f7, f18, f8, f16, f14, f9, f13, f0

The 5 worst performing features are excluded: f17, f10, f19, f6, f2

```
print(f'\n\nY_train mean: {np.mean(Y_train)}\nY_train std: {np.std(Y_train)}')
print(f'\n\nY_test mean: {np.mean(Y_test)}\nY_test std: {np.std(Y_test)}')
```

Comparing betas and trained weights for top 15

feature	beta	coef	absolute difference
f4	24.4879	24.4866	0.00131481
f15	27.3752	27.3841	0.00885102
f3	-38.9013	-38.9028	0.00152833
f11	-25.2876	-25.2945	0.00696448
f1	17.5056	17.4989	0.00673293
f5	20.2686	20.2472	0.0213728
f12	11.5036	11.5112	0.00759373
f7	11.2583	11.2474	0.0108286
f18	-35.6605	-35.664	0.00343784
f8	-11.9184	-11.9061	0.0122746
f16	-3.0314	-3.03784	0.00644101
f14	-4.06156	-4.05922	0.00233925
f9	-5.3283	-5.3328	0.00449614
f13	3.57638	3.58911	0.0127271
fO	8.41296	8.40132	0.0116457

model intercept: -305.3161570324494

Y_train mean: -1422.4022211681897 Y_train std: 1099.459363803579

Y_test mean: -1358.61291988624 Y_test std: 1078.7174916080571

Clearly the coefficients are very similar between the true generating process and the best fit model. This is expected as we are fitting a linear model to a process with a linear generating process.

It is worth noting some of the factors that may be leading to the minor mismatch: - There is some noise added to the Y values (in the form of epsilon) - 4 the betas are set to zero. Of the 5 features excluded from the model, 4 are the ones with $\beta=0$. However, one of the 'predictive' features is excluded. - The generating process has no intercept, but the linear regression does. If the generated data clusters heavily, the intercept could explain a significant degree of the variance, allowing other coefficients. As we can see, the Ys have a mean around -1400 and standard deviation of around 1000. This means an intercept of -300 would do a decent job of beginning to model the data.

0.2 Plot of $\sqrt{\sum_{j=1}^{p} (\beta_{j} - \hat{\beta}^{r_{j}^{2}})}$

```
[12]: plt.clf()
      beta_L2 = [np.linalg.norm(beta[:i+1] - mdl.coef_) for i, mdl in_
      →enumerate(best model)]
      ranks = np.argsort(beta_L2)
      colnums = list(reversed(np.linspace(0.3, 0.99, 20)))
      cols = np.zeros(20)
      for i, r in enumerate(ranks):
          cols[r] = colnums[i]
      plt.scatter(range(1, 21), beta_L2, c=cols, cmap=plt.cm.seismic)
      plt.title(r'L2 norm between ground truth and trained $\beta$s')
      plt.xticks(range(1, 21))
      plt.xlabel('n (number of features)')
      plt.ylabel(r'L2 norm between $\beta$s')
      #plt.ylim(0)
      plt.show()
      # plotting L2 norm between trained weights and known betas
      12_diff = [(np.linalg.norm(beta[:i+1] - mdl.coef_)) for i, mdl in_
      →enumerate(best_model)]
      12_div = [(np.linalg.norm(beta[:i+1] - mdl.coef_))/(i+1) for i, mdl in_
      →enumerate(best model)]
      plt.plot(range(1, 21), 12_diff, label='L2 distance')
      plt.plot(range(1, 21), 12_div, label='L2 distance divided by number of_
      plt.title('L2 distance between trained coefficients and known betas')
      plt.xlabel('n (number of features)')
      plt.ylabel('L2 distance')
      plt.xticks(range(1, 21))
      plt.ylim(0, 1.2*max(12_diff))
      plt.legend(loc='upper left')
      #plt.yscale('log')
      plt.show()
```


As we can see, the L2 distance between trained coefficients and known betas for each best model

of size r increases steadily, though it does flatten out in a few zones. We observe flattening from 4-8, 9-11 and 13-15.

Comparing this with the plot on test MSE error, we observe **no real correlations**. This can be attributed to the gradual accumulation of difference in the trained coefficients. Typically, we would hope that we would reach a sweet spot between over-fitting and under-fitting as the learned parameters begin to approximate the known β s. In this case, the L2 distance between learned and known coefficients would hopefully also show some kind of local optima.

However, for reasons discussed above, this does not happen in this example.

0.3 Application exercises with GSS data

Note that as per scikit-learn convention, I treat alpha (in sklearn) as λ and l1_ratio (in sklearn) as α .

```
[13]: train_d = pd.read_csv('./data/gss_train.csv')
       test_d = pd.read_csv('./data/gss_test.csv')
[14]: print(train_d.shape, test_d.shape)
      (1481, 78) (493, 78)
[15]:
      train_d.head()
[15]:
          age
                attend
                         authoritarianism
                                              black
                                                       born
                                                              childs
                                                                       colath
                                                                                colrac
                                                                                          colcom
                                                                    0
       0
           21
                      0
                                                   0
                                                          0
                                                                             1
                                                                                      1
                                                                                                0
       1
           42
                      0
                                           4
                                                   0
                                                          0
                                                                    2
                                                                             0
                                                                                      1
                                                                                                1
       2
           70
                      1
                                           1
                                                   1
                                                          0
                                                                    3
                                                                             0
                                                                                      1
                                                                                                1
       3
           35
                      3
                                           2
                                                   0
                                                          0
                                                                    2
                                                                             0
                                                                                      1
                                                                                                0
       4
                      3
                                           6
                                                   0
                                                                    3
                                                                             1
                                                                                      1
                                                                                                0
           24
                                                          1
                       {\tt zodiac\_GEMINI}
                                                          zodiac_LEO
                                        zodiac_CANCER
          colmil
                                                                        zodiac VIRGO
       0
                1
                                     0
       1
                0
                                                       0
                                                                     0
                                                                                     0
       2
                0
                                     0
                                                       0
                                                                     0
                                                                                     0
       3
                                     0
                                                                     0
                1
                                                       0
                                                                                     0
       4
                0
                                     0
                                                       0
                                                                     0
                                                                                     0
          zodiac LIBRA
                          zodiac SCORPIO
                                             zodiac SAGITTARIUS
                                                                     zodiac CAPRICORN
       0
                       0
                                          0
                                                                 0
       1
                       0
                                          0
                                                                 0
                                                                                      0
       2
                       0
                                          0
                                                                 0
                                                                                      0
       3
                       0
                                                                                      0
                                          1
                                                                 0
       4
                                          1
                                                                 0
                                                                                      0
          zodiac_AQUARIUS
                              zodiac_PISCES
       0
                           0
                                            0
       1
```

```
2
                      0
                                     0
      3
                                     0
                      0
      4
      [5 rows x 78 columns]
[16]: Y_train, X_train = train_d['egalit_scale'], train_d[train_d.columns.

→difference(['egalit_scale'])]
      Y_test, X_test = test_d['egalit_scale'], test_d[test_d.columns.

→difference(['egalit_scale'])]
      print(Y_train.shape, X_train.shape, Y_test.shape, X_test.shape)
     (1481,) (1481, 77) (493,) (493, 77)
[17]: from sklearn.linear_model import RidgeCV, LassoCV, ElasticNetCV
      from sklearn.model_selection import cross_validate
      iters = 10000
      ols, rdg = LinearRegression().fit(X_train, Y_train), RidgeCV(alphas=np.
      \rightarrowlinspace(0.1,2,10))
      las, ela = LassoCV(n_alphas=10, max_iter=iters), ElasticNetCV(l1_ratio=np.
      →linspace(0.1, 1, 10), max_iter=iters)
      ols_err1, ols_err2 = MSE(Y_train, ols.predict(X_train)), MSE(Y_test, ols.
      →predict(X_test))
      print(f'For OLS Linear Regression:\nTrain error = {ols_err1}\n\nTest error =
      →{ols_err2}')
     For OLS Linear Regression:
     Train error = 55.12263854924573
     Test error = 63.213629623015
[24]: def get_alpha_and_MSE(modelCV):
         modelCV.fit(X_train, Y_train)
         al = modelCV.alpha
         tr_mse = MSE(Y_train, modelCV.predict(X_train))
         te_mse = MSE(Y_test, modelCV.predict(X_test))
         return al, tr_mse, te_mse, modelCV
      n = X_train.shape[1]
      print(f"Ordinary Linear Regression: {n-sum(np.abs(ols.coef_)<0.1)}/{n}_u
```

```
print('Cross validation results\n')
rdg_alpha, rdg_mse1, rdg_mse2, rdgmod = get_alpha_and_MSE(rdg)
print(f"Ridge Regression: {n-sum(np.abs(rdgmod.coef_)<0.1)}/{n} coefficients⊔
→are non-zero")
las_alpha, las_mse1, las_mse2, lasmod = get_alpha_and_MSE(las)
print(f"Lasso Regression: {n-sum(np.abs(lasmod.coef)<0.1)}/{n} coefficients
⇒are non-zero")
ela_alpha, ela_mse1, ela_mse2, elamod = get_alpha_and_MSE(ela)
print(f"ElasticNet1: {n-sum(np.abs(elamod.coef )<0.1)}/{n} coefficients are</pre>
→non-zero")
ela2 = ElasticNetCV(alphas=[0.01, 0.05, .1, *list(np.linspace(0.12, 0.45, 5)),
                            .5, .7, .9, .95, .99, 1],
                    11_ratio = [elamod.l1_ratio_], max_iter=iters)
ela2_alpha, ela2_mse1, ela2_mse2, elamod2 = get_alpha_and_MSE(ela2)
print(f"ElasticNet2: {n-sum(np.abs(elamod.coef_)<0.1)}/{n} coefficients are_</pre>
 →non-zero\n\n")
```

Ordinary Linear Regression: 69/77 coefficients are non-zero

Cross validation results

Ridge Regression: 68/77 coefficients are non-zero Lasso Regression: 18/77 coefficients are non-zero ElasticNet1: 18/77 coefficients are non-zero ElasticNet2: 18/77 coefficients are non-zero

CV model	Train Error	Test Error	Notes
Linear Regression	55.1226	63.2136	
Ridge Regression (alpha=2.0)	55.1442	62.9317	
Lasso Regression (alpha=0.11)	57.3912	62.864	
<pre>ElasticNet (alpha=0.11, l1_ratio=1.0)</pre>	57.2941	62.8166	optimizing
alpha w/ default l1_ratio			
<pre>ElasticNet (alpha=0.1, l1_ratio=1.0)</pre>	57.2069	62.7786	optimizing
l1_ratio w/ optimal alpha			

Mean egalit_scale value of 493 samples = 19.113590263691684 Standard deviation = 9.515673735298671

In the ordinary regression model, 8/77 coefficients are within the threshold to be considered small i.e. within (-0.1, 0.1). In these terms, ridge regression only has one more coefficient that drops into this threshold. As expected, we see a gradual increase in the training error with more regularization. However, as the model is able to generalize better, the test error decreases.

Lasso regression seems to be overzealous with the regularization (with nearly 80% of weights being set to very small values), but still performs slightly better than ridge regression. This means that it is likely reducing the effect of most variables on the dataset on the outcome of interest. Given the complexity of social behavior, it is quite likely that there may not be any meaningful linear relationship between egalitarian outlooks and arbitrary GSS variables like tvhours (number of hours of TV consumed per week), or the 12 fields zodaic_* representing zodiac sign. This could therefore potentially be ignoring confounders in the dataset.

This is worth noting especially because the subsequent regularization methods of Lasso and ElasticNet reduce the test MSE by only around 0.13 and 0.26 respectively. In fact, searching alpha for ElasticNet while keeping l1_ratio at the default value produces the best performance. Somehow, searching l1_ratio over a range of values with this optimal alpha actually performs worse on the test set. This could be because of overfitting on the training data, has to balance the two parameters to effectively regularize.

The best performer on the test set is ElasticNet. Note that the marginal improvement is quite small from regularization.

All in all, we do a pretty good job of predicting an individual's self-reported inclination towards egalitarian behvaior. The standard deviation of the test set is around 10, and our test MSE on nearly 500 samples is just about 63. This is a fair level of accuracy.

This can be justified by the fact that the dataset also contains many variables that are known to be predictors of egalitarian attitudes - such as political orientation, confidence in science, opinions on personal liberty (such as homosexuality, marijuana consumption, etc.).