

- Prelegerea 23.1 - Schimbul de chei Diffie-Hellman pe curbe eliptice

Adela Georgescu, Ruxandra F. Olimid

Facultatea de Matematică și Informatică Universitatea din București

Cuprins

1. Schimbul de chei Diffie-Hellman pe curbe eliptice

2. Securitate

Am studiat schimbul de chei Diffie-Hellman peste un grup ciclic \mathbb{G} , de ordin q;

- Am studiat schimbul de chei Diffie-Hellman peste un grup ciclic \mathbb{G} , de ordin q;
- ► Transpunem construcția pe curbe eliptice:

$$(\mathbb{G},\cdot) \to (E(\mathbb{Z}_q),+)$$

► Alice și Bob doresc să stabilească o cheie secretă comună;

- Alice și Bob doresc să stabilească o cheie secretă comună;
- Alice generează o curbă eliptică $E(\mathbb{Z}_q)$, și P un punct pe curbă (generator);

- Alice și Bob doresc să stabilească o cheie secretă comună;
- Alice generează o curbă eliptică $E(\mathbb{Z}_q)$, și P un punct pe curbă (generator);
- ▶ Alice alege $x \leftarrow^R \mathbb{Z}_q$ și calculează $H_1 := xP$;

- Alice și Bob doresc să stabilească o cheie secretă comună;
- Alice generează o curbă eliptică $E(\mathbb{Z}_q)$, și P un punct pe curbă (generator);
- ▶ Alice alege $x \leftarrow^R \mathbb{Z}_q$ și calculează $H_1 := xP$;
- ▶ Alice îi trimite lui Bob mesajul $(E(\mathbb{Z}_q), P, H_1)$;

- Alice și Bob doresc să stabilească o cheie secretă comună;
- Alice generează o curbă eliptică $E(\mathbb{Z}_q)$, și P un punct pe curbă (generator);
- ▶ Alice alege $x \leftarrow^R \mathbb{Z}_q$ și calculează $H_1 := xP$;
- ▶ Alice îi trimite lui Bob mesajul $(E(\mathbb{Z}_q), P, H_1)$;
- ▶ Bob alege $y \leftarrow^R \mathbb{Z}_q$ și calculează $H_2 := yP$;

- Alice și Bob doresc să stabilească o cheie secretă comună;
- Alice generează o curbă eliptică $E(\mathbb{Z}_q)$, și P un punct pe curbă (generator);
- ▶ Alice alege $x \leftarrow^R \mathbb{Z}_q$ și calculează $H_1 := xP$;
- ▶ Alice îi trimite lui Bob mesajul $(E(\mathbb{Z}_q), P, H_1)$;
- ▶ Bob alege $y \leftarrow^R \mathbb{Z}_q$ și calculează $H_2 := yP$;
- ▶ Bob îi trimite H_2 lui Alice și întoarce cheia $k_B := yH_1$;

- Alice și Bob doresc să stabilească o cheie secretă comună;
- Alice generează o curbă eliptică $E(\mathbb{Z}_q)$, și P un punct pe curbă (generator);
- ▶ Alice alege $x \leftarrow^R \mathbb{Z}_q$ și calculează $H_1 := xP$;
- ▶ Alice îi trimite lui Bob mesajul $(E(\mathbb{Z}_q), P, H_1)$;
- ▶ Bob alege $y \leftarrow^R \mathbb{Z}_q$ și calculează $H_2 := yP$;
- ▶ Bob îi trimite H_2 lui Alice și întoarce cheia $k_B := yH_1$;
- ▶ Alice primește H_2 și întoarce cheia $k_A = xH_2$.

- ► Corectitudinea protocolului presupune ca $k_A = k_B$, ceea ce se verifică ușor:
- Bob calculează cheia

$$k_B = yH_1 = y(xP) = (xy)P$$

► Alice calculează cheia

$$k_A = xH_2 = x(yP) = (xy)P$$

O condiție minimală pentru ca protocolul să fie sigur este ca ECDLP să fie dificilă în ₲;

- O condiție minimală pentru ca protocolul să fie sigur este ca ECDLP să fie dificilă în ₲;
- ▶ Întrebare: Cum poate un adversar pasiv să determine cheia comună dacă poate sparge ECDLP?

- O condiție minimală pentru ca protocolul să fie sigur este ca ECDLP să fie dificilă în ₲;
- ▶ Întrebare: Cum poate un adversar pasiv să determine cheia comună dacă poate sparge ECDLP?
- ▶ Răspuns: Ascultă mediul de comunicație și preia mesajele H_1 și H_2 . Rezolvă ECDLP pentru H_1 și determină x, apoi calculează $k_A = k_B = xH_2$.

- O condiție **minimală** pentru ca protocolul să fie sigur este ca ECDLP să fie dificilă în \mathbb{G} ;
- ▶ Întrebare: Cum poate un adversar pasiv să determine cheia comună dacă poate sparge ECDLP?
- ▶ Răspuns: Ascultă mediul de comunicație și preia mesajele H_1 și H_2 . Rezolvă ECDLP pentru H_1 și determină x, apoi calculează $k_A = k_B = xH_2$.
- Aceasta nu este însă singura condiție necesară pentru a proteja protocolul de un atacator pasiv!

ECCDH (Elliptic Curve Computational Diffie-Hellman)

▶ O condiție mai potrivită ar fi că adversarul să nu poată determina cheia comună $k_A = k_B$, chiar dacă are acces la întreaga comunicație;

ECCDH (Elliptic Curve Computational Diffie-Hellman)

- ▶ O condiție mai potrivită ar fi că adversarul să nu poată determina cheia comună $k_A = k_B$, chiar dacă are acces la întreaga comunicație;
- Aceasta este problema de calculabilitate Diffie-Hellman pe curbe eliptice (ECCDH): Fiind date curba eliptică $E(\mathbb{Z}_q)$, un punct P pe curbă și 2 alte puncte $H_1, H_2 \leftarrow^R E(\mathbb{Z}_q)$, să se determine:

$$ECCDH(H_1, H_2) = (ECDLP(P, H_1)ECDLP(P, H_2))P$$

ECCDH (Elliptic Curve Computational Diffie-Hellman)

- ▶ O condiție mai potrivită ar fi că adversarul să nu poată determina cheia comună $k_A = k_B$, chiar dacă are acces la întreaga comunicație;
- Aceasta este problema de calculabilitate Diffie-Hellman pe curbe eliptice (ECCDH): Fiind date curba eliptică $E(\mathbb{Z}_q)$, un punct P pe curbă și 2 alte puncte $H_1, H_2 \leftarrow^R E(\mathbb{Z}_q)$, să se determine:

$$ECCDH(H_1, H_2) = (ECDLP(P, H_1)ECDLP(P, H_2))P$$

Pentru schimbul de chei Diffie-Hellman, rezolvarea ECCDH înseamnă că adversarul determină $k_A = k_B = xyP$ cunoscând $H_1, H_2, E(\mathbb{Z}_q), P$ (toate disponibile pe mediul de transmisiune nesecurizat).

 Nici această condiție nu este suficientă: chiar dacă adversarul nu poate determina cheia exactă, poate de exemplu să determine părți din ea;

- Nici această condiție nu este suficientă: chiar dacă adversarul nu poate determina cheia exactă, poate de exemplu să determine părți din ea;
- O condiție și mai potrivită este ca pentru adversar, cheia $k_A = k_B$ să fie **indistinctibilă** față de o valoare aleatoare;

- Nici această condiție nu este suficientă: chiar dacă adversarul nu poate determina cheia exactă, poate de exemplu să determine părți din ea;
- O condiție și mai potrivită este ca pentru adversar, cheia $k_A = k_B$ să fie **indistinctibilă** față de o valoare aleatoare;
- ► Sau, altfel spus, să satisfacă problema de decidabilitate Diffie-Hellman pe curbe eliptice (ECDDH):

- Nici această condiție nu este suficientă: chiar dacă adversarul nu poate determina cheia exactă, poate de exemplu să determine părți din ea;
- O condiție și mai potrivită este ca pentru adversar, cheia $k_A = k_B$ să fie **indistinctibilă** față de o valoare aleatoare;
- ► Sau, altfel spus, să satisfacă problema de decidabilitate Diffie-Hellman pe curbe eliptice (ECDDH):

Definiție

Spunem că problema decizională Diffie-Hellman (ECDDH) este dificilă (relativ la curba eliptică $E(\mathbb{Z}_q)$), dacă pentru orice algoritm PPT \mathcal{A} există o funcție neglijabilă negl așa nncat : $|Pr[\mathcal{A}(E(\mathbb{Z}_q), P, xP, yP, zP) = 1] - Pr[\mathcal{A}(E(\mathbb{Z}_q), P, xP, yP, xyP) = 1]| \leq \operatorname{negl}(n)$, unde $x, y, z \leftarrow^R \mathbb{Z}_q$

Am analizat până acum securitatea față de atacatori pasivi;

- Am analizat până acum securitatea față de atacatori pasivi;
- ► Arătăm acum că schimbul de chei Diffie-Hellman este total nesigur pentru un adversar activ ...

- Am analizat până acum securitatea față de atacatori pasivi;
- ► Arătăm acum că schimbul de chei Diffie-Hellman este total nesigur pentru un adversar activ ...
- care are dreptul de a intercepta, modifica, elimina mesajele de pe calea de comunicaţie;

- Am analizat până acum securitatea față de atacatori pasivi;
- ► Arătăm acum că schimbul de chei Diffie-Hellman este total nesigur pentru un adversar activ ...
- care are dreptul de a intercepta, modifica, elimina mesajele de pe calea de comunicaţie;
- Un astfel de adversar se poate interpune între Alice şi Bob, dând naștere unui atac de tip Man-in-the-Middle.

▶ Alice generează o curbă eliptică $E(\mathbb{Z}_q)$ și P un punct pe curbă;

- lackbox Alice generează o curbă eliptică $E(\mathbb{Z}_q)$ și P un punct pe curbă;
- ▶ Alice alege $x \leftarrow^R \mathbb{Z}_q$ și calculează $H_1 := xP$;

- Alice generează o curbă eliptică $E(\mathbb{Z}_q)$ și P un punct pe curbă;
- ▶ Alice alege $x \leftarrow^R \mathbb{Z}_q$ și calculează $H_1 := xP$;
- ▶ Alice îi trimite lui Bob mesajul $(E(\mathbb{Z}_q), P, H_1)$;

- lacktriangle Alice generează o curbă eliptică $E(\mathbb{Z}_q)$ și P un punct pe curbă;
- ▶ Alice alege $x \leftarrow^R \mathbb{Z}_q$ și calculează $H_1 := xP$;
- ▶ Alice îi trimite lui Bob mesajul $(E(\mathbb{Z}_q), P, H_1)$;
- Oscar interceptează mesajul și răspunde lui Alice în locul lui Bob: alege $a \leftarrow^R \mathbb{Z}_q$ și calculează $H'_2 := aP$;

- lacktriangle Alice generează o curbă eliptică $E(\mathbb{Z}_q)$ și P un punct pe curbă;
- ▶ Alice alege $x \leftarrow^R \mathbb{Z}_q$ și calculează $H_1 := xP$;
- ▶ Alice îi trimite lui Bob mesajul $(E(\mathbb{Z}_q), P, H_1)$;
- Oscar interceptează mesajul și răspunde lui Alice în locul lui Bob: alege $a \leftarrow^R \mathbb{Z}_q$ și calculează $H_2' := aP$;
- Oscar și Alice dețin acum cheia comună $k_A = axP$;

- lacktriangle Alice generează o curbă eliptică $E(\mathbb{Z}_q)$ și P un punct pe curbă;
- ▶ Alice alege $x \leftarrow^R \mathbb{Z}_q$ și calculează $H_1 := xP$;
- ▶ Alice îi trimite lui Bob mesajul $(E(\mathbb{Z}_q), P, H_1)$;
- Oscar interceptează mesajul și răspunde lui Alice în locul lui Bob: alege $a \leftarrow^R \mathbb{Z}_q$ și calculează $H_2' := aP$;
- Oscar și Alice dețin acum cheia comună $k_A = axP$;
- ▶ Oscar inițiază, în locul lui Alice, o nouă sesiune cu Bob: alege $b \leftarrow^R \mathbb{Z}_q$ și calculează $H_1' := bP$;

- lacktriangle Alice generează o curbă eliptică $E(\mathbb{Z}_q)$ și P un punct pe curbă;
- ▶ Alice alege $x \leftarrow^R \mathbb{Z}_q$ și calculează $H_1 := xP$;
- ▶ Alice îi trimite lui Bob mesajul $(E(\mathbb{Z}_q), P, H_1)$;
- Oscar interceptează mesajul și răspunde lui Alice în locul lui Bob: alege $a \leftarrow^R \mathbb{Z}_q$ și calculează $H_2' := aP$;
- Oscar și Alice dețin acum cheia comună $k_A = axP$;
- Oscar inițiază, în locul lui Alice, o nouă sesiune cu Bob: alege $b \leftarrow^R \mathbb{Z}_q$ și calculează $H'_1 := bP$;
- ▶ Bob alege $y \leftarrow^R \mathbb{Z}_q$ și calculează $H_2 := yP$;

- lacktriangle Alice generează o curbă eliptică $E(\mathbb{Z}_q)$ și P un punct pe curbă;
- ▶ Alice alege $x \leftarrow^R \mathbb{Z}_q$ și calculează $H_1 := xP$;
- ▶ Alice îi trimite lui Bob mesajul $(E(\mathbb{Z}_q), P, H_1)$;
- Oscar interceptează mesajul și răspunde lui Alice în locul lui Bob: alege $a \leftarrow^R \mathbb{Z}_q$ și calculează $H_2' := aP$;
- Oscar și Alice dețin acum cheia comună $k_A = axP$;
- ▶ Oscar inițiază, în locul lui Alice, o nouă sesiune cu Bob: alege $b \leftarrow^R \mathbb{Z}_q$ și calculează $H'_1 := bP$;
- ▶ Bob alege $y \leftarrow^R \mathbb{Z}_q$ și calculează $H_2 := yP$;
- Oscar și Bob dețin acum cheia comună $k_B = ybP$.

Atacul este posibil pentru că poate impersona pe Alice şi pe Bob;

- Atacul este posibil pentru că poate impersona pe Alice şi pe Bob;
- ▶ De fiecare dată când Alice va transmite un mesaj criptat către Bob, Oscar îl interceptează şi îl previne să ajungă la Bob;

- Atacul este posibil pentru că poate impersona pe Alice şi pe Bob;
- ▶ De fiecare dată când Alice va transmite un mesaj criptat către Bob, Oscar îl interceptează și îl previne să ajungă la Bob;
- Oscar îl decriptează folosind k_A , apoi îl recriptează folosind k_B și îl transmite către Bob;

- Atacul este posibil pentru că poate impersona pe Alice şi pe Bob;
- ▶ De fiecare dată când Alice va transmite un mesaj criptat către Bob, Oscar îl interceptează şi îl previne să ajungă la Bob;
- Oscar îl decriptează folosind k_A , apoi îl recriptează folosind k_B și îl transmite către Bob;
- Alice şi Bob comunică fără să fie conștienți de existența lui Oscar.

Important de reținut!

- Modalitatea de trecere de la o construcție peste (\mathbb{Z}_q,\cdot) la $(E(\mathbb{Z}_q),+)$
- ► Prezumții criptografice: ECCDH, ECDDH
- ightharpoonup Schimbul de chei Diffie-Hellman pe curbe eliptice păstrează proprietățile schimbului de chei Diffie Hellman definit peste $\mathbb G$ grup ciclic de ordin q