

Architecture Design

Alexander Standaert Wouter Diels

- ARICHTECTURE AND TIMING
- DECODERS
- SENCE AMPLIFIERS
- LOAD
- PLANNING AND CONTENT TABLE
- CONCLUSION : Conclusion and Future work

TIMING (I)

Constraints / Optimisation

- T1 ≈ T2 : cell should be selected when the load is turned on, if not → dead time. (BL and WL decoder same size)
- T1 ≈ T3 : if T1 > T3 ref is selected before mem → energy waste (Design non optimal ref buffer)

REFERENCE ARRAY: Buffers

TIMING (2)

Constraints / Optimisation

3. cell should be selected when load is turned on \rightarrow $T_3 \approx T_4 \approx T_5$. $T_3 < T_4$ because of inverter. T_5 is dependent of size of BL and WL decoders. When $T_3 < T_4, T_5$ the bitline is rising without cell selected

TIMING (3)

Memory cell disconnected to BL

Constraints / Optimisation

cell should be deselected when load is turned off $\rightarrow T_3 \approx T_4 \approx T_5$. $T_3 < T_4$ because of inverter. T_5 is dependent of size of BL and WL decoders. When $T_3 > T_5$ the bitline is rising without cell selected

Constraints / Optimisation

4. cell should be deselected when load is turned off \rightarrow $T_3 \approx T_4 \approx T_5$. $T_3 < T_4$ because of inverter. T_5 is dependent of size of BL and WL decoders. When $T_3 > T_5$ the bitline is rising without cell selected

TIMING (5)

Constraints / Optimisation

ref should be selected when load is turned on \rightarrow T₆ \approx T₇ \approx T₈. T₆< T₇ because of inverter. T₈ is dependent of delay element (2 inverters)

TIMING (6)

Constraints / Optimisation

ref should be selected when load is turned off \rightarrow T₉ \approx T₁₀ \approx T₁₁ . T₉< T₁₀ because of inverter. T₁₁ is dependent of 2 inverters

TIMING (7)

	Affects	Implies
(1)	Speed	#WL≈#BL
(2)	Energy	/
(3)	Speed	#WL < #BL
(4)	Clean signals	#WL>#BL
(5)	Speed	$T_{delay} < T_{nor + inv}$
(6)	Clean signals	$T_{delay} > T_{nor + inv}$

Could try to extend ref delay to compensate energy wast in bitlines but time is to short → Don't connect all the ref cells to bitline

ADDRESSING

Use not fully coded address (number of bits = 24??)

address_GB select_LB0 select_LB1 address_BL address_WL
--

Consider address bit voltage to come from ideal voltage source

ARCHITECTURE (I)

- Find all possible solutions for #WL, #BL, #GB in the range 2³⁻⁹
- That comply to the following constraints:
 - # cells = 4194304 (4MB)
 - # BL ≤ #WL
- Simulate as follows:

• Add initial conditions to nodes to get a quicker convergence in dc op point

20 solutions

ARCHITECTURE (2)

ARCHITECTURE (2)

Leakage energy is 2 orders of magnitude smaller

- ARICHTECTURE AND TIMING
- DECODERS
- SENCE AMPLIFIERS
- LOAD
- PLANNING AND CONTENT TABLE
- **CONCLUSION**: Conclusion and Future work

DECODERS (I)

Type I

- Delay dependent of previous and current address
- Prone to glitches

Type 2

- Delay more or less constant for each address
- Delay and Energy are more robust against mismatch

DECODERS (2)

DECODERS (3)

←Worst case delay and energy at worst case delay
(≠ worst case energy !!!)

 \downarrow Total area (F² = min technology area)

- ARICHTECTURE AND TIMING
- DECODERS
- SENCE AMPLIFIERS
- LOAD
- PLANNING AND CONTENT TABLE
- **CONCLUSION**: Conclusion and Future work

Sense Amplifier

- Sensitivity analysis
- Sweep Vt- & β-mismatch of different transistors independently and manually
- Offset as function of variation instances
- Done for minimal SA, since no idea yet of sizes to be used in our architecture

Sensitivity Analysis

- Mainly contributions by differential pair
- Also β-variations pass-gates:
 charge injection not matched anymore

Sense amplifier pareto

- Very large simulation
- Pareto surface delay-energy-ΔV

- ARICHTECTURE AND TIMING
- TIMING
- SENCE AMPLIFIERS
- LOAD
- PLANNING AND CONTENT TABLE
- **CONCLUSION**: Conclusion and Future work

- ARICHTECTURE AND TIMING
- TIMING
- SENCE AMPLIFIERS
- LOAD
- PLANNING AND CONTENT TABLE
- **CONCLUSION**: Conclusion and Future work

- ARICHTECTURE AND TIMING
- TIMING
- SENCE AMPLIFIERS
- LOAD
- PLANNING AND CONTENT TABLE
- **CONCLUSION**: Conclusion and Future work