Network Forensics and its Scope & Role

kevinkoo001@gmail.com

May 2013

Overview

1. Introduction

2. Considerations

3. Scope & Role for Network Forensic (Discussion)

4. Packet Analysis for Network Forensics

Introduction

Network?

- Protocols
- Devices
- Packets never lie!

Introduction

Methodology (OSCAR)

- Obtain information
- Strategize
- Collect Evidence
- Analyze
- Report

Considerations

What to know when an incident occurs over network

- Description
- Date, time, and method of incident discovery
- Persons involved
- Systems and data involved
- Actions taken since discovery
- Summary of internal discussions
- Incident manager and process
- Legal issues
- Time frame for investigation/recovery/resolution
- Goals

Considerations

The properties (thus challenges) of Network-based digital evidence

- Communication: Between the two or among multiple participants at a certain point
- Volatile: The matter of when, hard to find artifacts even in memory
- Scattered: No choice but to get involved multiple sources of evidence
- Storage: Possibly stores all packets on the fly??
- Privacy: Problematic if storage is available depending on jurisdiction
- Seizure: Seizing a network device with a warrant?
- Admissibility: No file system and no standard format → admissible in court?
- **Encryption**: Hard to identify network traffic even though it's detected.

Scope & Role for Network Forensic

Things taken into account

- Acquirements → Standard? Format? C.I.A?
- Storage → Chain of Custody

Who is eligible to get access to potential evidence?

How can collected network evidence be handled in a forensically sound manner?

- How to prove the originals and the copies
- Analysis → Correlation from multiple sources of evidence

Are all timestamp trustworthy?

Is skewed timeline allowable to court?

Extracted files over network!

Repeatable?

Scope & Role for Network Forensic

DISCUSSION: Then how much does network forensics cover?

- Network packet acquirement → mandatory?
- If so, are all network range included? Both on the wire and in the air?? Cost???
- Are the followings part of network forensics?
 - Log analysis for correlation
 - Executable found in the packets
 - Encrypted payloads in the packets (SSL/TLS/other home-brewed techniques, ...)
- If so, is the investigation from network-oriented security devices itself as well as all logs (eg. IDS, IPS, WAF, ...)?
- In real time or Post-investigation? Cost? Mandatory?
- Putting all together, what should be defined as forensic readiness?

Packet Analysis for Network Forensics

- Tips to use Wireshark wisely (1/7)
 - Two different filters to help to investigate desired traffic (1)
 - Traffic Capture Filter
 - ❖ BNF (Berkeley Packet Filtering) in straightforward syntax (capture → capture options or Ctrl+K)

- Tips to use Wireshark wisely (2/7)
 - Two different filters to help to investigate desired traffic (2)
 - Display Filter (http://www.wireshark.org/docs/dfref/)
 - Wireshark's own syntax

- Tips to use Wireshark wisely (3/7)
 - Flows of entire packets in details graphically!
 - ❖ Menu → Statistics → FlowGraph

- Tips to use Wireshark wisely (4/7)
 - Statistics of entire packets in details graphically!
 - ♦ Menu → Statistics → I/O Graphs

- Tips to use Wireshark wisely (5/7)
 - How to identify location information with GeoLocation in real time!
 - Download the GeoIP Location from Maxmind and activate it.
 - ❖ Menu → Statistics → Endpoints

- Tips to use Wireshark wisely (6/7)
 - How to Extract HTTP, SMB objects from what you have captured.
 - ❖ Menu → File → Export → Objects → {HTTP, SMB}

How to get abnormal packets quickly

Expert Infos

Tips to use Wireshark wisely (7/7)

- Powerful command-line tools (<u>https://www.wireshark.org/docs/man-pages/</u>)
 - capinfos Prints information about capture files
 - dftest Shows display filter byte-code, for debugging dfilter routines.
 - dumpcap Dump network traffic
 - editcap Edit and/or translate the format of capture files
 - ❖ idl2wrs CORBA IDL to Wireshark Plugin Generator
 - mergecap Merges two or more capture files into one
 - randpkt Random Packet Generator
 - rawshark Dump and analyze raw libpcap data
 - text2pcap Generate a capture file from an ASCII hexdump of packets
 - tshark Dump and analyze network traffic
 - wireshark-filter Wireshark filter syntax and reference
 - wireshark Interactively dump and analyze network traffic

- Trace files from Wireshark.org
 - 239 (1.87GB in size) pcap examples (http://wiresharkbook.com/studyguide.html)
 - Great samples to learn naïve network traffic
 - Try to catch the property of suspicious packets in particular, in advance

- ARP Poisoning (arp-poison.pcap)
 - Duplicate IP addresses are Detected!!

Source	Destination	Dport Protocol	Length Info
192,168,1,102	192,168,1,1	ICMP	5 0 (0) Westings 2 (2) Notes 0 (0) Object 0 (0) Bottile 0
192,168,1,1	192,168,1,102	LCMP	Errors: 0 (0) Warnings: 2 (2) Notes: 0 (0) Chats: 0 (0) Details: 2
192,168,1,103	192,168,1,1	LCMP	Group ◀ Protocol ◀ Summary
192,168,1,1	192,168,1,103	LCMP	☐ Sequence ARP/RARP Duplicate IP address configured (192.168.1.1)
192,168,1,1	192,168,1,103	LCMP	
00:d0:59:aa:af:80	00:20:78:d9:0d:db	ARP	Packet: 20
00:d0:59:aa:af:80	00:d0:59:12:9b:01	ARP	☐ Sequence ARP/RARP Duplicate IP address configured (192.168.1.103)
192,168,1,1	192,168,1,103	LCMP	Packet: 20
00:d0:59:aa:af:80	00:20:78:d9:0d:db	ARP	04 WHO HAS 132,100,1,1: 1811 132,100,1,100
00:20:78:d9:0d:db	00:d0:59:aa:af:80	ARP	64 192,168,1,1 is at 00:20:78:d9:0d:db
00:d0:59:aa:af:80	00:d0:59:12:9b:01	ARP	64 Who has 192,168,1,103? Tell 192,168,1,1
00:d0:59:12:9b:01	00:d0:59:aa:af:80	ARP	64 192,168,1,103 is at 00:d0:59:12:9b:01
00:d0:59:aa:af:80	00:20:78:d9:0d:db	ARP	64 192,168,1,103 is at 00:d0:59:aa:af:80
00:d0:59:aa:af:80	00:d0:59:12:9b:01	ARP	64 192,168,1,1 is at 00:d0:59:aa:af:80
00:d0:59:aa:af:80	00:20:78:d9:0d:db	ARP	64 Who has 192,168,1,1? Tell 192,168,1,103
00:20:78:d9:0d:db	00:d0:59:aa:af:80	ARP	64 192,168,1,1 is at 00:20:78:d9:0d:db
00:d0:59:aa:af:80	00:d0:59:12:9b:01	ARP	64 Who has 192,168,1,103? Tell 192,168,1,1
00:d0:59:12:9b:01	00:d0:59:aa:af:80	ARP	64 192,168,1,103 is at 00:d0:59:12:9b:01
00:d0:59:aa:af:80	00:20:78:d9:0d:db	ARP	64 192,168,1,103 is at 00:d0:59:aa:af:80
00:d0:59:aa:af:80	00:d0:59:12:9b:01	ARP	64 192,168,1,1 is at 00:d0:59:aa:af:80 (duplicate use of 192,168,1,103

- Dictionary Attack (sec-dictionary2.pcap)
 - Dictionary attack against FTP server was performed!
 - Filter: "ftp.request.command==PASS"

Source	Destination	Dport	Protocol	Length Info	
69,181,135,56	67,161,39,46	21	FTP	61 Request:	PASS
69,181,135,56	67,161,39,46	21	FTP	65 Request:	PASS salt
69,181,135,56	67,161,39,46	21	FTP	64 Request:	PASS aaa
69,181,135,56	67,161,39,46	21	FTP	64 Request:	PASS abc
69,181,135,56	67,161,39,46	21	FTP	69 Request:	PASS academia
69,181,135,56	67,161,39,46	21	FTP	69 Request:	PASS academic
69,181,135,56	67,161,39,46	21	FTP	67 Request:	PASS access
69,181,135,56	67,161,39,46	21	FTP	64 Request:	PASS ada
69,181,135,56	67,161,39,46	21	FTP	66 Request:	PASS admin
69,181,135,56	67,161,39,46	21	FTP	74 Request:	PASS administrator
69,181,135,56	67,161,39,46	21	FTP	67 Request:	PASS adrian
69,181,135,56	67,161,39,46	21	FTP	69 Request:	PASS adrianna
69,181,135,56	67,161,39,46	21	FTP	69 Request:	PASS aerobics
69,181,135,56	67,161,39,46	21	FTP	69 Request:	PASS airplane
69,181,135,56	67,161,39,46	21	FTP	67 Request:	PASS albany
69,181,135,56	67,161,39,46	21	FTP	70 Request:	PASS albatross

- MAC Flooding (sec-macof.pcap)
 - I/O Graph shows too many packets had flooded over network! (1.28Mbps)
 - Source MAC must not be a group address. (Wireshark Expert Infos)

- Ethernet II, Src: f7:53:e0:39:8b:e9 (f7:53:e0:39:8b:e9), Dst: 8f:46:2b:16:6b:b9 (8f:46:2b
 - Destination: 8f:46:2b:16:6b:b9 (8f:46:2b:16:6b:b9)
 - Source: f7:53:e0:39:8b:e9 (f7:53:e0:39:8b:e9)

Type: IP (0x0800)

- Port Scanning (sec-nmap-osdetect-sV-O-v.pcap)
 - The same source IP, many destination ports in a target and/or many SYN/ACKs and FINs.

References

Question and Answer

