Learning context invariant representations for EEG data

Thibault de Surrel

LAMSADE Spring School - April 17th 2024

Motivation - Brain Computer Interfaces (BCI)

Applications

- Control prosthesis
- Write using a virtual keyboard
- Study the sleep level
- Many more applications...

The data - Electroencephalogram (EEG)

The data - Electroencephalogram (EEG)

The data - From EEG to covariance matrices

$$\mathbf{E} \in \mathbb{R}^{c \times t} \longrightarrow \text{Cov}(\mathbf{E}) = \frac{1}{1-t} \sum_{i=1}^{t} \mathbf{E}_i \mathbf{E}_i^{\mathsf{T}}$$

The data - From EEG to covariance matrices

$$\mathbf{E} \in \mathbb{R}^{c \times t} \longrightarrow \underbrace{\operatorname{Cov}(\mathbf{E})}_{c} = \frac{1}{1-t} \sum_{i=1}^{t} \mathbf{E}_{i} \mathbf{E}_{i}^{\top}$$

$$\in \mathbb{S}_{c}^{++} = \begin{cases} X \in \mathbb{R}^{c \times c} : X = X^{\top}, \\ \forall u \in \mathbb{R}^{c} \setminus \{0\}, \ u^{\top} X u > 0 \end{cases}$$

The data - From EEG to covariance matrices

$$\mathbf{E} \in \mathbb{R}^{c \times t} \longrightarrow \underbrace{\operatorname{Cov}(\mathbf{E})}_{c \times c} = \frac{1}{1-t} \sum_{i=1}^{t} \mathbf{E}_{i} \mathbf{E}_{i}^{\top}$$

$$\in \mathbb{S}_{c}^{++} = \begin{cases} X \in \mathbb{R}^{c \times c} : X = X^{\top}, \\ \forall u \in \mathbb{R}^{c} \setminus \{0\}, \ u^{\top} X u > 0 \end{cases}$$

The limitations

A lot of variabilities

- Intrasubjet : noise, mental state, the subject's state of fatigue...
- Intersubjet

The problematic

How to build a context invariant representation for EEG data?

An example : Model the height of a population

In France, the mean height of the population is 1.71 m. We can model the height of the french population using the normal distribution $\mathcal{N}(\mu, \sigma^2)$.

An example: Model the height of a population

In France, the mean height of the population is 1.71 m. We can model the height of the french population using the *normal distribution* $\mathcal{N}(\mu, \sigma^2)$.

An example : Model the height of a population

In France, the mean height of the population is 1.71 m. We can model the height of the french population using the *normal distribution* $\mathcal{N}(\mu, \sigma^2)$.

Two examples in 2D

Two examples in 2D

Isotropic gaussian: the spread is uniform.

Two examples in 2D

Isotropic gaussian: the spread is uniform.

Two examples in 2D

Isotropic gaussian: the spread is uniform.

Two examples in 2D

Isotropic gaussian: the spread is uniform. Anisotropic gaussian: there are some

preferred directions.

One example in 3D

Modelization of the variabilities of EEG

Caution! We need to take into account the Riemannian geometry of covariance matrices!

2 solutions to send an Euclidean Gaussian onto a Riemannian manifold

• First solution : an isotropic gaussian

$$p_{(\mu,\sigma^2)}(x) = \frac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-\frac{\|x-\mu\|^2}{2\sigma^2}\right)$$

2 solutions to send an Euclidean Gaussian onto a Riemannian manifold

• First solution : an isotropic gaussian

$$p_{(\bar{X},\sigma^2)}(X) = \zeta(\sigma)^{-1} \exp\left(-\frac{\delta(X,X)^2}{2\sigma^2}\right)$$

2 solutions to send an Euclidean Gaussian onto a Riemannian manifold

• First solution : an isotropic gaussian

$$p_{(\bar{X},\sigma^2)}(X) = \zeta(\sigma)^{-1} \exp\left(-\frac{\delta(X,\bar{X})^2}{2\sigma^2}\right)$$

• Second solution : an anisotropic gaussian

Euclidean anisotropic Gaussian

Push forward

Riemannian anisotropic Gaussian

Mixture of gaussians

Sometime one gaussian fails at capturing the complexity of the dataset.

Mixture of gaussians

Sometime one gaussian fails at capturing the complexity of the dataset.

Mixture of gaussians

Sometime one gaussian fails at capturing the complexity of the dataset.

Estimating the parameters of a mixture of gaussians can be done using an *Expectation-Maximization* (EM) algorithm.

The applications

The applications of a Riemannian gaussian in BCI

- Better understand the variabilities
- Build an "informed" classifier
- Detect outliers
- Do some transfer learning
- Do some data augmentation

Conclusion

Motivations

Translate the electrical signals of the brain into commands.

Type of data

Electroencephalogram (multivariate time series) that are then converted into covariance matrices.

Modelization

A probability distribution.

The tools used

Riemannian geometry, probability theory, statistics...

Context invariant representations for EEGs

Thank you! Questions, remarks, comments...?