Worksheet 4: Error Analysis and Langevin Thermostat

April Cooper, Patrick Kreissl und Sebastian Weber

January 10, 2013 University of Stuttgart

Contents

1	\mathbf{Err}	or Analysis	2
	1.1	Autocorrelation Analysis	2
	1.2	Binning Analysis	6
	1.3	Jackknife Analysis	C

1 Error Analysis

1.1 Langevin Thermostat

The Langevin Thermostat was implemented in Python according to the following formula ¹ (reduced units):

$$F = -\nabla U(x) - \gamma v + \sqrt{2\gamma \cdot T} \cdot R(t) \tag{1}$$

R(t) should be white noise. As an approximation Gaussian noise with mean = 0 and variance = 1 was used. Furthermore it was necessary to multiply the values of the generated noise by ten to get the right temperatures. This points to a possible error.

The function was written in the python part because no loops or other time consuming stuff was needed - except for the noise generation that was done by a fast numpy function.

As a result we got the following equilibrium mean values

The averages were taken from t = 700 to t = 1000. For T = 0.3 (measurement 0.302)

• pressure p = -0.0903, potential energy per particle $E_{pot} = -5.74$

For T = 1.0 (measurement 1.004)

• pressure p = 0.0624, potential energy per particle $E_{pot} = -2.48$

For T = 2.0 (measurement 2.018)

• pressure p = 0.6319, potential energy per particle $E_{pot} = -1.69$

¹source:http://en.wikipedia.org/wiki/Langevin_dynamics, visited on January 9, 2013

Plots

For T=0.3

For T=1.0

For T=2.0

