Thus $s(|\psi_{\alpha}|) \leq p_j$ and even $s(|\psi_{\alpha}|) = p_j$ by the minimality property of p_j . On the other hand, ${\psi_{\alpha}}^{\star} \in Fix((\lambda + i\alpha)R(\lambda))$. As above we obtain

$$\mu R(\mu) 's(|\psi_{\alpha}^{*}|) = s(|\psi_{\alpha}^{*}|)$$
.

Consequently, the closed left ideals $Ms(|\psi_{\alpha}^*|)$ and $Ms(|\psi_{\alpha}|)$ are R'-invariant.

Next fix $\mu \in \mathbb{R}_+$, let $S := (\mu - i\alpha)R(\mu)$ ' and $T = \mu R(\mu)$ '. Then $(Sx)(Sx)^* \leq T(xx^*)$, $S_*(\psi_\alpha^*) = \psi_\alpha^*$, $T_*(|\psi_\alpha^*|) = |\psi_\alpha^*|$, and T is an identity preserving Schwarz map. Since $s(|\psi_\alpha^*|)M$ is T-invariant, the assumptions of Lemma 1.2 are fulfilled and we obtain for every $x \in M$

$$S(x)u_{\alpha}^* = T(xu_{\alpha}^*)$$
.

Since the closed left ideal $\,{\rm Mp}_{\dot{1}}\,$ is S-invariant it follows

$$S(x) = T(xu_{\alpha}^*)u_{\alpha}, x \in Mp_{j}$$

(see Remark 1.3). Since $\,u_{\alpha}^{}\,$ does not depend on $\,\mu\, \varepsilon \mathbb{R}_{+}^{}\,$ we obtain for all $\,\mu\, \varepsilon \mathbb{R}_{+}^{}\,$

$$\mu R (\mu + i\alpha)' x = \mu R (\mu)' (xu_{\alpha}^*) u_{\alpha}.$$

Consequently, the holomorphic functions $(\mu \rightarrow \mu R(\mu)'(xu_{\alpha})u_{\alpha}^*)$ and $(\mu \rightarrow \mu R(\mu + i\alpha)'x)$ coincide on \mathbb{R}_+ from which we conclude

$$\lambda R(\lambda + i\alpha)'x = \lambda R(\lambda)'(xu_{\alpha}^*)u_{\alpha}$$

for every $\lambda \in D$ and all $x \in Mp_j$. Since the map $(y \to yu_\alpha)$ is a continuous bijection from $M(u_\alpha u_\alpha^*)$ onto Mp_j and its inverse is the map $(y \to yu_\alpha^*)$, we can deduce that

$$\dim \ \operatorname{Fix}((\lambda-\mathrm{i}\alpha)\, \mathrm{R}(\lambda)\,'\, \big|\, \mathrm{Mp}_{\mathrm{j}}) \ = \ \dim \ \operatorname{Fix}(\lambda \, \mathrm{R}(\lambda)\,')\, \big|\, \mathrm{M}(\mathrm{u}_{\alpha}\mathrm{u}_{\alpha}^{\, \star}) \ \le \$$

$$\leq$$
 dim Fix(R').

Since $\Theta_{j=1}^n Mp_j = M$ and $\Theta_{j=1}^n L_j = M_*$ we obtain

dim Fix((
$$\lambda - i\alpha$$
)R(λ)')) = dim Fix(λ R(λ)') =

= dim Fix(
$$\lambda R(\lambda)$$
)