

保險業務員缺失行為頻傳,提前進行防範勢在必行

商業問題

保險業務員缺失案件層出不窮,手法日新月異,影響公司聲譽。南山人壽欲建立事前偵測機制防範缺失行為,以增加保戶的信任。

現行做法 與 目前痛點

隨機

電訪

針對新保單、特定形式保單隨機電訪保戶

→ 隨機抽樣可能錯失真正高風險案例

業務規則

依照過往案件及專家經驗找出可疑業務員

→ 各種規則複雜度高,且受調查者主觀經驗影響

預測

建置保險業務員風險預測模型,透過風險評分聚焦高風險業務員

模型

→ 變數選擇過少可能導致預測能力不佳,選擇過多又可能導致過度配適,使穩定度不佳

專案任務

運用南山人壽現有資料,使用Python機器學習建構更精準的業務員風險模型,並兼顧模型準確性、穩定性、可解釋性

資料集與評估指標

建模資料

建模資料共30,000筆,為2019年、2020年資料

- 自變數:共390個,包括以下四個面向:
 - 1. 基本資料與事件:業務員所在地區、縣市、職級;工作年資、年收入、過往風險行為等
 - 2. 客戶面:被保人數、保費、特殊保單數、同樣資訊保單/客戶數量、比例等
 - 3. 保單面:短期保單成交、變更、失效之數量、比例;各類保單數量、金額、比例等
 - 4. 理賠面:業務員理賠件數、拒絕理賠數量、金額、比例;業務員短期理賠趨勢性指標
- 應變數Y:2020年1~12月是否舞弊,為類別資料

測試資料

測試資料共32,000筆,自變數為2020年資料,應變數為2021年1~3月是否舞弊

評估方式

準確性 模型預測風險最高前5%業務員,能有效捕捉到多少比例的舞弊業務員

穩定性 驗證資料能維持多少比例的捕捉率

解釋性 模型是否具備可解釋性,並具有商業洞見

模型建置流程

資料前處理

分割樣本 使用交叉驗證

平衡各群樣本

特徵選擇與特徵工程

建立模型與驗證資料

超參數調校

資料前處理

分割樣本 使用交叉驗證

平衡各群樣本

執行 原因

缺失值、類別變數須 經適當轉換 妥善運用所有資料,避免 過度配適 因舞弊樣本數極少,使用上採 樣將舞弊樣本增加至一定比例

使用 套件

Pandas

- fillna()
- get_dummies()

sklearn.feature_selection

- train_test_split
- StratifiedKFold

imblearn.over_sampling

- RandomOverSampler
- SMOTE

執行方式

- Recency補上大數 字代表無紀錄
- 將類別變數轉成Dummy Variable

將樣本切分成數份,執行 k-Fold CV,經反覆驗證 後使用 4-Fold CV

超參數調整後使用 RandomOverSampler將舞 弊樣本比例提升至1:1

特徵選擇與特徵工程

執行原因

● 特徵選擇:可降低資料維度,縮短訓練時間,並降低模型過度配適的可能性。

● 特徵工程:增加模型變數,提升預測能力(最終因效果不顯著而未採用)

使用套件

- sklearn.feature_selection.SelectFromModel
- sklearn.decomposition.PCA(最終因解釋性差而未採用)
- XGBoost : feature_importance_

執行 方式

- 1. 計算每項變數舞弊與非舞弊資料的平均、標準差,挑選Z值絕對值最大的30個變數
- 2. 先使用所有變數進行建模,再使用feature_importance_篩選最重要的40個變數
- 3. 使用SelectFromModel對每份樣本資料篩選40個變數,再挑選被重複挑選3次以上的變數

建立模型與驗證資料

超參數調校

執行 原因

測試各種特徵選擇方式的模型準確度, 進一步決定最終使用模型 將初步模型進行優化,得出預測力最佳的參 數組合

使用套件

XGBoost.XGBRegressor

sklearn.model_selection.GridSearchCV

執行方式

- 使用Logistic Regression預測每筆 資料的風險值,介於0~1之間
- 將資料依風險值高低排序,計算捕捉 舞弊業務員準確度

調整XGBRegressor的eta、max_depth、n_estimator、min_child_weight,避免過度配適,增加模型穩定性

使用全部資料重新進行建模並整合,得到最終模型

得到每個模型的最佳超參數組合後,再重新將全部樣本進行建模,得到4個最終模型,其預測風險最高前5%業務員測試資料準確度,及本組最終加成比例如下

測試資料準確度	舞弊滲透度	捕捉倍數	捕捉舞弊佔比	最終加成比例
使用所有變數	5.53%	8.51倍	42.56%	0.4
使用feature_importance選擇變數	5.40%	8.31倍	41.54%	0.3
使用Z值絕對值選擇變數	5.00%	7.70倍	38.46%	0.1
使用SelectFromModel選擇變數	5.27%	8.10倍	40.51%	0.2
加成後模型精確度	6.07%	9.33倍	46.67%	

使用加成後模型預測建模資料,風險最高前5%捕捉到46.67%的舞弊業務員,**優於業主使用 傳統計分卡的預測結果31.8%**

測試資料結果:風險最高的前5%業務員捕捉到36.36%舞弊

在預測資料中,風險最高前5%業務員捕捉到36.36%舞弊業務員,**優於業主使用傳統計分卡的預測結果29.1%**。

百分比	累積資料數	累積舞弊資料數	舞弊滲透度	捕捉倍數	捕捉舞弊佔比	捕捉舞弊累積佔比
5%	1,600	20	1.25%	7.27倍	36.36%	36.36%
10%	3,200	27	0.44%	2.55倍	12.73%	49.09%
20%	6,400	32	0.22%	1.27倍	12.73%	58.18%
30%	9,600	39	0.22%	1.27倍	12.73%	70.91%
40%	12,800	41	0.06%	0.37倍	3.64%	74.55%
50%	16,000	47	0.16%	0.91倍	9.09%	83.64%
60%	19,200	51	0.13%	0.73倍	7.27%	92.73%
70%	22,400	52	0.03%	0.36倍	3.64%	94.55%
80%	25,600	54	0.03%	0.18倍	1.82%	98.18%
90%	28,800	54	0.00%	0.00倍	0.00%	98.18%
100%	32,000	55	0.03%	0.18倍	0.00%	100%

過往舞弊資料、保單停效失效、客戶自行繳費為最顯著變數

根據XGBoost前8項重要變數 (Total Gain)

