Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів»

Варіант<u>23</u>

Виконав студент	<u>III-13 Недельчев Євген Олександрович</u>		
•	(шифр, прізвище, ім'я, по батькові)		
Перевірив			
	(прізвище, ім'я, по батькові)		

Лабораторна робота 4 Дослідження ітераційних циклічних алгоритмів

Мета – дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Індивідуальне завдання Варіант 23

23. Обчислити суму
$$n$$
 членів ряду
$$S = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} \dots$$

Постановка задачі

Задані формула обчислення суми ряду, число x та кількість n членів ряду. Розробити універсальний алгоритм, результатом роботи якого ε обчислення та виведення суми n членів заданого ряду відносно числа x.

Побудова математичної моделі

Змінна	Tun	Ім'я	Призначення
Кількість членів ряду	Цілий	n	Вхідні дані
Число х	Дійсний	x	Вхідні дані
Сума ряду	Дійсний	S	Результат
Факторіал числа 2*n	Дійсний	factorial	Проміжне значення
Лічильник у циклі 1	Цілий	i	Лічильник
Лічильник у циклі 2	Цілий	j	Лічильник

pow(x, y) – операція піднесення числа x до степені y

Розв'язання

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію знаходження суми п членів ряду відносно числа х

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Псевдокод

```
Крок 1.
початок
     введення змінної х
     обчислення суми п членів ряду відносно числа х
кінець
Крок 2.
початок
     введення змінної п
     введення змінної х
     S := 0
     повторити для і від 0 до n+1
          factorial := 1
          j := 1
          повторити для ј від 1 до і*2
               factorial:= factorial * j
          все повторити
          S += pow(-1, i) * pow(x, 2 * i) / factorial
     все повторити
     виведення S
кінець
```


Основи програмування – 1. Алгоритми та структури даних

Блок	Дія
	Початок
1	Введення: n = 2 x = 3
2	i = 0
	factorial = 1
	j = 1
	S = 1
	(i <= n) = true
	i++
4	i = 2
	factorial = 24
	j = 4
	S = -0.125
	(i <= n) = false
5	Виведення S

Висновки

Під час виконання лабораторної роботи я дослідив особливості роботи арифметичних циклів та набув практичних навичок їх використання під час складання програмних специфікацій.