

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУ «Информатика и системы управления»
КАФЕДРА	ИУ-2 «Приборы и системы ориентации, стабилизации и навигации»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К НИРС

по высокоточным системам навигации

HA TEMY:

Курсовой гироскоп с динамическим демпфером по оси наружной рамки		
Вариант №10		
Студент <u>ИУ1-72</u> (Группа)	20/12/2020 (Подпись, дата)	Кочнов А.А (И.О. Фамилия)
Руководитель курсового проекта	20/12/2020 (Подпись, дата)	Щеглова Н.Н. (И.О. Фамилия)
Консультант	(Подпись, дата)	Щеглова Н.Н. (И.О. Фамилия)

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

	Факультет_	ИУ_	
Кафедра _		ИУ2	

ЗАДАНИЕ

на курсовую работу

по курс	уВысокоточные системы н	авигации)
Студент	Кочнов А.А.	<u>ИУ1-72</u>
	(фамилия, инициалы)	(индекс группы)
Руковод	итель Щеглова Н.Н.	
	(фамилия, инициалы)	
		%к_3_нед., 50 % к 7_нед., 75 % к 10_нед.,
	_15_нед.	
	ита работы2020	
І. Тема	а работы <u>Курсовой гироскоп</u> (с динамическим демпфером по оси наружной
рамки		
		ь динамическую систему_с динамическим
	ером и сопутствующей нелин	
	Пояснить назначение и принцип работы п	
	Записать уравнения движения с сопутству	ющей нелинейностью. ы преобразовать исходные уравнения к векторно-матрично
	для идеализированной линеиной систем форме и записать уравнения для передаточ	
	а) как объекта управления;	топ функции тироспотемы.
	б) как объекта стабилизации.	
		упруго-диссипативной связи для динамических элементо
	гиросистемы по критерию minmax $ W(j\omega) $.	
		системы с оптимальными параметрами µ и С. и необходимы и на условия заданной статической точности и необходимы
	запасов устойчивости.	т на условия заданной стати секой то нюсти и несоходимы
		ующим координатам при действии постоянного возмущающег
	момента.	
	Построить АЧХ податливости замкнутой п Построить АЧХ динамического коэффици	
		ента подавления колеоании. емы с сопутствующей нелинейностью и преобразовать ее
		мент и приведенную линейную часть. Записать выражение дл
	передаточной функции приведенной лине	иной части.
		метода гармонической линеаризации. Построить ЛАЧ
	приведенной линейной части. Осуществить гормоническию линеоризони	ю нелинейной системы. Записать условие амплитудно-фазовог
	осуществить гармоническую линеаризаци баланса.	ю нелинеиной системы. Записать условие амплитудно-фазовог
13.	Решить уравнение амплитудно-фазового б	аланса на комплексной плоскости. Построить АФХ приведенно
		ку гармонически линеаризованного нелинейного элемента.
		уравнения, полученные в п.1. Записать переходный процесс
	Определить параметры автоколебаний. Сравнить результаты, полученные в п. 13	a n 1 <i>1</i>
		и п.т й нелинейности на устойчивость гиросистемы.
		оических работ нет листов
		ваписка на 30-40 листах формата А4)
ΨΟΙ	рмата Ат, рас-теппо-поленительная	minoκα na50-40nnctax φορωατά A4)_
	удент	Руководитель проекта

Дополнительные указания по проектированию

Параметры механической части:

Момент инерции системы относительно оси у	50 гсмс ² ;
Момент инерции системы относительно оси хВ= 1	0 гсмс ²
Момент инерции маховика динамического демпфера относительно оси уА2=	10гсмс^2 ;
Кинетический момент гироскопаН=10	⁴ гсмс;
Статическая ошибка по углу β	≤30";
Статическая ошибка по углу α α^*	≤10";
Возмущающий момент	=100гсм.

Сопутствующая нелинейность:

 $\phi(x)$ – сухое трение в оси наружной рамки.

 $\eta = 10$ гсм

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Пельпор Д.С. Гироскопические системы. Ч.1.
- 2. <u>Пельпор Д.С. Гироскопические системы. Проектирование гироскопических ситем. Ч.2.</u>
- 3. <u>Бесекерский В.А., Фабрикант Е.А. Динамический синтез систем</u> гироскопической стабилизации.
- 4. Солодовников В.В. Теория автоматического управления техническими системами.
- 5. Черников С.А. Динамика системгироскопической стабилизации.
- 6. Попов Е.П. Учебное пособие для ИУІ по гармонической линеаризации.

Оглавление

1.	Назначение и принцип работы прибора 6	
2.	Уравнения движения ГПК с соответствующей нелинейностью 7	
3.	Расчёт выражения для передаточных функций гиросистемы	
	как объекта управления и как объекта стабилизации 7	
4.	Оптимизация параметров упруго-диссипативной связи динамичест	КИХ
	элементов гиросистемы по критерию $minmax W(j\omega) $ 8	
5.	АЧХ механической части гиросистемы с оптимальными параметра	λМИ
	μиС	

Используемые обозначения и сокращения

	Сокращения
ДД	динамический демпфер
$\Pi\Phi$	передаточная функция
ОДЗ	область допустимых значений (функции)
, ,	Обозначения
x, y	оси внутренней и наружной рамок соответственно
α, β	углы поворота вокруг осей у и х
$lpha_{\scriptscriptstyle m I\hspace{1em}I}=lpha_2$	угол поворота ДД по оси у
$A = A_1$	суммарный момент инерции системы относительно оси
	наружной рамки у
$A_{\rm ДД}=A_2$	момент инерции маховика динамического демпфера
	относительно оси у
B	суммарный момент инерции системы относительно оси
	внутренней рамки х
Н	кинематический момент ротора гироскопа
$\mu_{lpha}, \; \mu_{eta}$	коэффициенты вязкого трения в осях наружной и внутренней
	рамок
$K_{ m OC}$	коэффициент обратной связи
$M_{\alpha}, \ M_{\beta}$	внешние моменты, действующие на систему по осям у и х
$\varphi(\dot{\alpha}),\;\dot{\eta}$	функция и коэффициент нелинейности сухого трения в оси
, , , .	наружной рамки
C, μ	коэффициенты упругой и диссипативной связей
$M_{I\!I\!I}$	момент упруго-диссипативного взаимодействия кожуха
	курсового гироскопа с инерционной массой динамического

демпфера

1. Назначение и принцип работы прибора

Заданный курсовой прибор является гирополукомпасом, так как предназначен для отслеживания заданного азимута. Гирополукомпас (ГПК) — курсовой гироскопический прибор, построенный на основе трехстепенного астатического гироскопа, имеет системы горизонтальной и азимутальной коррекции. Кинематическая схема ГПК приведена на рисунке 1. Система горизонтальной коррекции состит из ЧЭ — датчика угла ДУ₁, расположенного по оси внутренней рамки гироскопа, и исполнительного элемента — электродвигателя ЭДВ, создающего момент относительно оси наружной рамки Oy_1 . Базовая система координат $O\xi\eta\zeta$ - географическая.

При отклонении вектора H от плоскости горизонта на угол β на выходе ДУ₁ появляется напряжение $U=K_{\text{ДУ}}\beta$ при $\beta<\beta_{\text{п}}$. ЭДВ при наличии тока создает момент $M_{\text{эдв}}=E\beta$ относительно оси наружной рамки Oy_1 , из-за чего возникает прецессия гироскопа $\dot{\beta}=\frac{M_{\text{эдв}}}{H}=\frac{E\beta}{H}=\varepsilon\beta$.

Датчик момента ДМ азимутальной коррекции управляется напряжением, поступающим с пульта, и компенсирует величину $\omega_{\zeta} \approx U \sin(\varphi)$. Момент ДМ азимутальной коррекции $M_{\text{ДM}_2} \approx H\omega_{\zeta} = HU/\sin(\varphi)$. Система азимутальной коррекции позволяет скомпенсировать постоянную составляющую ω_0 собственной скорости прецессии. Поэтому на пульте устанавливаются 2 потенциометра со шкалами φ (в градусах — широта), и ω_0 (гр/ч). Величину ω_0 определяют по показаниям ГПК в сравнении с показаниями других средств (GPS, магнитный компас) на стоянке аэродрома или в прямолинейном полете с постоянной линейной скоростью. Момент азимутальной коррекции с учетом ω_0 : $M_{\text{ДM}_2} \approx H(U \sin(\varphi) + \omega_0$.

ГПК предназначены для отслеживания азимута (заданного направления) и находят широкое применение в авиации и наземных объектах.

Рисунок 1 — Общий вид системы

Рисунок 2 — Демпфер

2. Уравнения движения ГПК с соответствующей нелинейностью

1) Уравнение движения наружной рамки:

$$A\ddot{\alpha} + M_{\text{Л}\text{Л}} - H\dot{\beta} - K_{\text{OC}}\beta + \varphi(\dot{\alpha}) = M_{\alpha}$$

2) Уравнение движения внутренней рамки

$$B\ddot{\beta} + \mu_{\beta}\dot{\beta} + H\dot{\alpha} = M_{\beta}$$

3) Уравнение движения динамического демфера

$$A_{\mathrm{A}}\ddot{\alpha_{\mathrm{A}}} - M_{\mathrm{ДД}} = M_{\alpha_{\mathrm{A}}}$$

4) Момент динамического демфера

$$M_{\Pi\Pi} = \mu(\dot{\alpha} - \dot{\alpha}_{\Pi}) + C(\alpha - \alpha_{\Pi})$$

3. Расчёт выражения для передаточных функций гиросистемы как объекта управления и как объекта стабилизации

Запишем уравнения движения без учета трения в опорах (и, соответственно, нелинейности):

$$\begin{cases}
A\ddot{\alpha} + \mu(\dot{\alpha} - \dot{\alpha}_{\text{A}}) + C(\alpha - \alpha_{\text{A}}) - H\dot{\beta} - K_{\text{OC}}\beta = M_{\alpha}, \\
B\ddot{\beta} + H\dot{\alpha} = M_{\beta}, \\
A_{\text{A}}\ddot{\alpha}_{\text{A}} - \mu(\dot{\alpha} - \dot{\alpha}_{\text{A}}) - C(\alpha - \alpha_{\text{A}}) = M_{\alpha_{\text{A}}}
\end{cases} \tag{1}$$

Преобразуем систему уравнений по Лапласу:

$$\begin{cases}
A\alpha s^{2} + \mu s(\alpha - \alpha_{\Lambda}) + C(\alpha - \alpha_{\Lambda}) - H\beta s - K_{\text{OC}}\beta = M_{\alpha}, \\
B\beta s^{2} + H\alpha s = M_{\beta}, \\
A_{\Lambda}\alpha_{\Lambda}s^{2} - \mu s(\alpha - \alpha_{\Lambda}) - C(\alpha - \alpha_{\Lambda}) = M_{\alpha_{\Lambda}},
\end{cases} (2)$$

и запишем в векторно-матричной форме:

$$\begin{bmatrix} As^2 + \mu s + C & -Hs - K_{\text{OC}} & -\mu s - C \\ Hs & Bs^2 & 0 \\ -\mu s - C & 0 & A_{\pi}s^2 + \mu s + C \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \alpha_{\pi} \end{bmatrix} = \begin{bmatrix} M_{\alpha} \\ M_{\beta} \\ M_{\alpha_{\pi}} \end{bmatrix}.$$

Разрешим полученную систему уравнений относительно вектора $\begin{bmatrix} \alpha & \beta & \alpha_{\mathtt{A}} \end{bmatrix}^T$:

$$\begin{bmatrix} \alpha \\ \beta \\ \alpha_{\mathbf{J}} \end{bmatrix} = \begin{bmatrix} W_{M_{\alpha}}^{\alpha} & W_{M_{\beta}}^{\alpha} & W_{M_{\alpha_{\mathbf{J}}}}^{\alpha} \\ W_{M_{\alpha}}^{\beta} & W_{M_{\beta}}^{\beta} & W_{M_{\alpha_{\mathbf{J}}}}^{\beta} \\ W_{M_{\alpha}}^{\alpha} & W_{M_{\beta}}^{\alpha} & W_{M_{\alpha_{\mathbf{J}}}}^{\alpha} \end{bmatrix} \begin{bmatrix} M_{\alpha} \\ M_{\beta} \\ M_{\alpha_{\mathbf{J}}} \end{bmatrix}.$$

Заметим, что искомая матрица передаточных функций - ни что иное как обратная матрица системы уравнений. Получимеё с помощью возможностей символьного вычисления Matlab. Для дальнейшей работы необходимы лишь две передаточных функции, их и запишем:

1) системы как объекта управления

$$W_{M_{\alpha}}^{\beta} = \frac{-H(A_{\mathbf{A}}s^2 + \mu s + C)}{\Lambda},$$

2) системы как объекта стабилизации

$$W_{M_{\alpha}}^{\alpha} = \frac{Bs(A_{\alpha}s^2 + \mu s + C)}{\Delta},$$

Здесь Δ - определитель матрицы системы (после сокращения одной s):

$$\Delta = AA_{\pi}Bs^{5} + \mu B(A + A_{\pi})s^{4} + (A_{\pi}H^{2} + BC(A + A_{\pi}))s^{3} + H(A_{\pi}K_{OC} + H\mu)s^{2} + H(CH + K_{OC}\mu)s + CHK_{OC}.$$

Получили передаточные функции системы как объекта управления и объекта стабилизации в общем виде.

4. Оптимизация параметров упруго-диссипативной связи динамических элементов гиросистемы по критерию $minmax|W(j\omega)|$

Проведём оптимизацию параметров μ и С для ДД. Для этого рассмотрим разомкнутую ПФ курсового гироскопа как объекта стабилизации (принимаем $K_{\rm OC}=0$).

Запишем полное выражение вышеназванной ПФ с указанными допущениями:

$$W^{\alpha}_{M_{\alpha}} = \frac{Bs(A_{\mathrm{M}}s^2 + \mu s + C)}{AA_{\mathrm{M}}Bs^5 + \mu B(A + A_{\mathrm{M}})s^4 + (A_{\mathrm{M}}H^2 + BC(A + A_{\mathrm{M}}))s^3 + H^2\mu s^2 + CH^2s}$$
(3)

Эта ПФ обладает замечательным свойством: при одном значении C, но разных μ , на AЧX будут существовать две инвариантные точки (все АЧX пересекаются в них). При изменении C эти точки будут перемещаться.

Целью оптимизации является минимизация максимумов АЧХ $\Pi\Phi$, а именно минимизация резонансных пиков АЧХ. Таким образом, учитывая особенности нашей $\Pi\Phi$, оптимизация сводится к следующим двум этапам:

- Поиск значения C^* , при котором инвариантные точки будут располагаться на одном уровне, тем самым обеспечивается минимальное значение амплитуды в обеих инвариантных точках;
- Поиск значения μ^* , обеспечивающего минимальное значение резонансных пиков.

Поиск значения C^*

Условие инвариантности имеет следующий вид:

$$|W(j\omega)|_{\mu=0} = |W(j\omega)|_{\mu=\infty}$$

После раскрытия модуля получаем:

$$W(j\omega)_{\mu=0} = -W(j\omega)_{\mu=\infty}$$

С помощью Matlab вычислим пределы:

$$\frac{B(A_{\Lambda}(j\omega)^{2} + C)}{AA_{\Lambda}B(j\omega)^{4} + (A_{\Lambda}H^{2} + BC(A + A_{\Lambda}))(j\omega)^{2}} = \frac{-B}{B(A + A_{\Lambda})(j\omega)^{2} + H^{2}}$$

$$\frac{B(A_{\Lambda}\omega^{2} - C)}{AA_{\Lambda}B\omega^{4} - (A_{\Lambda}H^{2} + BC(A + A_{\Lambda}))\omega^{2} + CH^{2}} = \frac{B}{H^{2} - B(A + A_{\Lambda})\omega^{2}} \tag{4}$$

Решаем уравнение относительно С. В результате получаем четыре корня. Два из них отрицательные и не удовлетворяют ОДЗ. Два других же вполне соответствуют инвариантным точкам ω_1 и ω_2 :

$$\omega_{1,2} = \sqrt{\frac{A_{\text{A}}H^2 + BC(A + A_{\text{A}}) \pm \sqrt{B^2C^2(A^2 + A_{\text{A}}^2) + 2AA_{\text{A}}BC^2 - 2AA_{\text{A}}BCH^2 + AA_{\text{A}}BCH^2 + AA_{\text{A}}BCH$$

Подставив численные значения, получаем следующие функции:

$$\omega_{1,2} = \sqrt{\frac{10^6 + 0,6C \pm \sqrt{0,36C^2 - 10^6C + 10^{12}}}{11}}$$

Известно, что в инвариантных точках значения амплитуд равны, что можно записать как

$$|W(j\omega)|_{\mu=0}^{\omega=\omega_1} = |W(j\omega)|_{\mu=0}^{\omega=\omega_2}$$

Подставим сюда $\Pi\Phi$ из правой части (4) и раскроем модуль:

$$\frac{B(A_{\pi}\omega_{1}^{2} - C)}{AA_{\pi}B\omega_{1}^{4} - (A_{\pi}H^{2} + BC(A + A_{\pi}))\omega_{1}^{2} + CH^{2}} =
= \frac{B(A_{\pi}\omega_{2}^{2} - C)}{AA_{\pi}B\omega_{2}^{4} - (A_{\pi}H^{2} + BC(A + A_{\pi}))\omega_{2}^{2} + CH^{2}}$$
(5)

Имея значения частот от C, решим уравнение (5) относительно C. Получаем $C^*=\frac{12500000}{9}\approx 13,89\cdot 10^5.$

С учетом полученного значения рассчитаем $\omega_1, \ \omega_2$:

$$\omega_1 = 465, 5$$
 $\omega_2 = 341, 2$ $lg\omega_1 = 2,668$ $lg\omega_2 = 2,53$

Рисунок 3 — АЧХ системы для оптимального C^* и предельных μ

Поиск значения μ^*

Для определения значения μ^* следует определить значения μ_1 и μ_2 , при которых в каждой из инвариантных точек будет экстремум АЧХ (это обеспечивает минимум «всплеска» АЧХ в соответствующих инвариантных точках). Тогда

$$\mu^* = \frac{\mu_1 + \mu_2}{2}$$

Запишем условия поиска:

$$\begin{cases} \frac{\partial |W(J\omega)|}{\partial \omega}|_{\omega=\omega_1} = 0, \\ \frac{\partial |W(J\omega)|}{\partial \omega}|_{\omega=\omega_2} = 0 \end{cases}$$
 (6)

$$W(j\omega) = \frac{M(j\omega)}{N(J\omega)},$$

где

$$\begin{cases}
M(j\omega) = B(A_{\pi}(j\omega)^{2} + \mu(j\omega) + C), \\
N(J\omega) = AA_{\pi}B(j\omega)^{4} + \mu B(A + A_{\pi})(j\omega)^{3} + \\
+ (A_{\pi}H^{2} + BC(A + A_{\pi}))(j\omega)^{2} + H^{2}\mu j\omega + CH^{2}
\end{cases}$$
(7)

$$\begin{cases}
M(j\omega) = B(-A_{\pi}\omega^{2} + j\mu\omega + C), \\
N(J\omega) = AA_{\pi}B\omega^{4} - \mu B(A + A_{\pi})j\omega^{3} - \\
-(A_{\pi}H^{2} + BC(A + A_{\pi}))\omega^{2} + H^{2}\mu j\omega + CH^{2}
\end{cases} \tag{8}$$

Для каждого ω решим уравнение. Получим:

$$\begin{cases} \mu_1 = 1767, 26 \\ \mu_2 = 1954, 77 \end{cases} \tag{9}$$

Тогда $\mu^* = 1861, 01.$

Построим АЧХ для этого значения (см рис. 4).

5. АЧХ механической части гиросистемы с оптимальными параметрами μ и С

Построим АЧХ системы на основе функции (3), куда подставим найденные оптимальные параметры (см рис. 4).

Рисунок 4 — АЧХ системы для оптимальных С* и μ^*