In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing, svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [3]:

#Step-2:Reading the dataset
dt=pd.read_csv(r"C:\Users\91955\Downloads\fiat500_VehicleSelection_Dataset (1).csv")
dt

Out[3]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	
0	1	lounge	51	882	25000	1	44.907242	8.611
1	2	рор	51	1186	32500	1	45.666359	12.241
2	3	sport	74	4658	142228	1	45.503300	11.417
3	4	lounge	51	2739	160000	1	40.633171	17.634
4	5	рор	73	3074	106880	1	41.903221	12.495
1533	1534	sport	51	3712	115280	1	45.069679	7.704
1534	1535	lounge	74	3835	112000	1	45.845692	8.666
1535	1536	рор	51	2223	60457	1	45.481541	9.413
1536	1537	lounge	51	2557	80750	1	45.000702	7.682
1537	1538	pop	51	1766	54276	1	40.323410	17.568

1538 rows × 9 columns

In [5]:

- 1 dt=dt[['engine_power','age_in_days']]
- 2 #Taking only the selected two attributes from the dataset
- 3 dt.columns=['Eng','Age']
- 4 #Renaming the columns for easier writing of the code

In [7]:

```
1 dt.head(10)
2 #Displaying only the 1st 10 rows
```

Out[7]:

	Eng	Age
0	51	882
1	51	1186
2	74	4658
3	51	2739
4	73	3074
5	74	3623
6	51	731
7	51	1521
8	73	4049
9	51	3653

In [23]:

```
sns.lmplot(x='Eng',y='Age',data=dt,order=2,ci=None)
```

Out[23]:

<seaborn.axisgrid.FacetGrid at 0x230977c8b20>

In [10]:

1 dt.describe()

Out[10]:

	Eng	Age
count	1538.000000	1538.000000
mean	51.904421	1650.980494
std	3.988023	1289.522278
min	51.000000	366.000000
25%	51.000000	670.000000
50%	51.000000	1035.000000
75%	51.000000	2616.000000
max	77.000000	4658.000000

```
In [11]:
```

```
dt.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1538 entries, 0 to 1537
Data columns (total 2 columns):
     Column Non-Null Count Dtype
 0
     Eng
             1538 non-null
                              int64
 1
     Age
             1538 non-null
                              int64
dtypes: int64(2)
memory usage: 24.2 KB
In [12]:
   dt.fillna(method='ffill')
 1
Out[12]:
      Eng
           Age
   0
       51
           882
       51 1186
   1
       74 4658
   2
   3
       51 2739
       73 3074
   4
            ...
1533
       51 3712
1534
       74 3835
1535
       51 2223
1536
       51 2557
1537
       51 1766
1538 rows × 2 columns
In [15]:
 1 x=np.array(dt['Eng']).reshape(-1,1)
   y=np.array(dt['Age']).reshape(-1,1)
In [16]:
   dt.dropna(inplace=True)
In [17]:
   X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    reg=LinearRegression()
 3
    reg.fit(X_train,y_train)
    print(reg.score(X_test,y_test))
```

0.08100123668984383

In [24]:

```
1  y_pred=reg.predict(X_test)
2  plt.scatter(X_test,y_test,color='b')
3  plt.plot(X_test,y_pred,color='k')
4  plt.show()
```


In [19]:

```
dt500=dt[:][:500]
sns.lmplot(x='Eng',y='Age',data=dt500,order=1,ci=None)
```

Out[19]:

<seaborn.axisgrid.FacetGrid at 0x230841ae350>

In [20]:

```
dt500.fillna(method='ffill',inplace=True)

X=np.array(dt500['Eng']).reshape(-1,1)

y=np.array(dt500['Age']).reshape(-1,1)

dt500.dropna(inplace=True)

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25)

reg=LinearRegression()

reg.fit(X_train,y_train)

print("Regression:",reg.score(X_test,y_test))

y_pred=reg.predict(X_test)

plt.scatter(X_test,y_test,color='b')

plt.plot(X_test,y_pred,color='k')

plt.show
```

Regression: 0.044422623802540806

Out[20]:

<function matplotlib.pyplot.show(close=None, block=None)>

In [21]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
mode1=LinearRegression()
mode1.fit(X_train,y_train)
y_pred=mode1.predict(X_test)
r2=r2_score(y_test,y_pred)
print("R2 score: ",r2)
```

R2 score: 0.044422623802540806

In []:

1 #conclusion:Linear regression is not fit for the model