飞行力学大作业

2018年12月1日

学号	姓名	联系方式	分工
DY1805102	张启明	gyzhangqm@126.com	程序编写,报告书写
SY1805308	李玉格		运动建模,小扰动线化

目录

飞机	L运动建模	3
1.1	推导飞机的质心动力学方程	3
	1.1.1 风轴系质心动力学方程	3
	1.1.2 体轴系质心动力学方程	4
1.2	推导飞机的转动动力学方程	5
1.3	推导飞机的质心运动学方程	7
	1.3.1 风轴系质心运动学方程	7
	1.3.2 体轴系质心运动学方程	8
1.4	推导飞机的转动运动学方程	8
	1.4.1 风轴系转动运动学方程	8
	1.4.2 体轴系转动运动学方程	9
1.5	飞机的6自由度全量运动方程组	9
	1.5.1 风轴系6自由度全量运动方程组	9
	1.5.2 体轴系6自由度全量运动方程组	10
小扰	·····································	11
2.1	基准方程与扰动方程	11
2.2	纵向小扰动线化方程	14
2.3	横侧小扰动线化方程	14
F16	· · · · · · · · · · · · · · · · · · ·	15
3.1	飞机全量运动方程组	15
3.2		17
3.3	零输入全量运动方程时域响应	18
3.4	小扰动线化方程组	18
3.5	时域响应	20
		20
		21
		22
	3.5.4 横向模态激励响应	25
附忠	· 计算程序说明	29
	1.1 1.2 1.3 1.4 1.5 1.5 1.4 1.5 1.5 1.4 2.1 2.2 2.3 F16 3.1 3.2 3.3 3.4 3.5	1.1.1 风轴系质心动力学方程 1.1.2 体轴系质心动力学方程 1.2 推导飞机的转动动力学方程 1.3 推导飞机的质心运动学方程 1.3.1 风轴系质心运动学方程 1.3.2 体轴系质心运动学方程 1.4.4 推导飞机的转动运动学方程 1.4.1 风轴系转动运动学方程 1.4.2 体轴系转动运动学方程 1.5.1 风轴系6自由度全量运动方程组 1.5.1 风轴系6自由度全量运动方程组 1.5.2 体轴系6自由度全量运动方程组 1.5.1 开降舵鱼运动方程 F16飞机运动时域响应 3.1 飞机全量运动方程时域响应 3.5.1 升降舵单位阶跃输入时域响应 3.5.1 升降舵单位阶跃输入时域响应 3.5.2 副翼单位阶跃输入时域响应 3.5.3 纵向模态激励响应

1 飞机运动建模

1.1 推导飞机的质心动力学方程

出发点是力方程(1.1)和动系中加速度表达式(1.2):

$$f = ma_C (1.1)$$

$$a_{M} = a_{OM} + \ddot{r}_{M}' + \tilde{\omega}_{M} r_{M}' + 2\tilde{\omega}_{M} \dot{r}_{M}' + \tilde{\omega}_{M} \tilde{\omega}_{M} r_{M}'$$

$$\tag{1.2}$$

接下来分风轴系和体轴系两种情况

1.1.1 风轴系质心动力学方程

力方程(1.1)在风轴系下写作:

$$f_W = ma_{C_W} (1.3)$$

将动系中加速度表达式(1.2)在地面坐标系中表达:

$$a_{C_E} = a_{\mathcal{O}_E} + \ddot{r}_E' + \tilde{\omega}_E^E \dot{r}_E' + 2\tilde{\omega}_E^E \dot{r}_E' + \tilde{\omega}_E^E \tilde{\omega}_E^E \dot{r}_E'$$

$$= \ddot{r}_E' + 2\tilde{\omega}_E^E \dot{r}_E'$$

$$= \dot{V}_E^E + 2\tilde{\omega}_E^E \dot{r}_E'$$

$$= (1.4)$$

使用旋转矩阵将质心加速度转换到风轴坐标系下:

$$a_{C_W} = T_{WE} a_{C_E}$$

$$= T_{WE} (\dot{V}_E^E + 2\tilde{\omega}_E^E V_E^E)$$

$$= T_{WE} \dot{V}_E^E + 2T_{WE} \tilde{\omega}_E^E V_E^E$$

$$= \dot{V}_W^E + (\tilde{\omega}_W^W - \tilde{\omega}_W^E) V_W^E + 2(T_{WE} \tilde{\omega}_E^E T_{EW}) (T_{WE} V_E^E)$$

$$= \dot{V}_W^E + (\tilde{\omega}_W^W - \tilde{\omega}_W^E) V_W^E + 2\tilde{\omega}_W^E V_W^E$$

$$= \dot{V}_W^E + (\tilde{\omega}_W^W + \tilde{\omega}_W^E) V_W^E$$

$$(1.5)$$

其中

$$V_W^E = \begin{bmatrix} V \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} W_{x_W} \\ W_{y_W} \\ W_{z_W} \end{bmatrix}, \quad \omega_W^W = \begin{bmatrix} p_W \\ q_W \\ r_W \end{bmatrix}, \quad \omega_W^E = \begin{bmatrix} p_E^E \\ q_W^E \\ r_W^E \end{bmatrix}$$
(1.6)

当风速为零($\mathbf{W} = 0$)时:

$$a_{C_{W}} = \begin{bmatrix} \dot{V} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & -(r_{W} + r_{W}^{E}) & q_{W} + q_{W}^{E} \\ -(r_{W} + r_{W}^{E}) & 0 & -(p_{W} + p_{W}^{E}) \\ q_{W} + q_{W}^{E} & -(p_{W} + p_{W}^{E}) & 0 \end{bmatrix} \begin{bmatrix} V \\ 0 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} \dot{V} \\ V(r_{W}^{E} + r_{W}) \\ -V(q_{W}^{E} + q_{W}) \end{bmatrix}$$
(1.7)

力 f_W 分为可控力 A_W 和重力 mg_W :

$$f_W = A_W + mg_W (1.8)$$

可控力分为气动力和推力:

$$A_{W} = \begin{bmatrix} X_{W} \\ Y_{W} \\ Z_{W} \end{bmatrix} = - \begin{bmatrix} D \\ C \\ L \end{bmatrix} + \begin{bmatrix} T_{x_{W}} \\ T_{y_{W}} \\ T_{z_{W}} \end{bmatrix}$$

$$(1.9)$$

风轴系下重力:

$$g_W = T_{WV}g_V = T_{WV} \begin{bmatrix} 0 \\ 0 \\ g \end{bmatrix} = g \begin{bmatrix} -\sin\theta_W \\ \cos\theta_W \sin\phi_W \\ \cos\theta_W \cos\phi_W \end{bmatrix}$$
(1.10)

将式(1.16)(1.8)(1.9)(1.10)带入到(1.5)中,得

$$\begin{cases}
T_{x_W} - D - mg\sin\theta_W = m\dot{V} \\
T_{y_W} - C + mg\cos\theta_W\sin\phi_W = mV(r_W^E + r_W) \\
T_{z_W} - L + mg\cos\theta_W\cos\phi_W = -mV(q_W^E + q_W)
\end{cases}$$
(1.11)

当忽略地球转动时, r_W^E 和 q_W^E 均为零,则有:

$$\begin{cases}
T_{x_W} - D - mg\sin\theta_W = m\dot{V} \\
T_{y_W} - C + mg\cos\theta_W\sin\phi_W = mVr_W \\
T_{z_W} - L + mg\cos\theta_W\cos\phi_W = -mVq_W
\end{cases}$$
(1.12)

1.1.2 体轴系质心动力学方程

力方程(1.1)在体轴系下写作:

$$f_B = ma_{C_P} \tag{1.13}$$

使用旋转矩阵将风轴系下加速度转换到体轴坐标系下:

$$a_{C_B} = T_{BE} a_{C_E}$$

$$= T_{BE} [\dot{V}_W^E + (\tilde{\omega}_W^W + \tilde{\omega}_W^E) V_W^E]$$

$$= \dot{V}_R^E + (\tilde{\omega}_B + \tilde{\omega}_B^E) V_R^E$$
(1.14)

其中

$$V_{B}^{E} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} + \begin{bmatrix} W_{x} \\ W_{y} \\ W_{z} \end{bmatrix}, \quad \omega_{B} = \begin{bmatrix} p \\ q \\ r \end{bmatrix}, \quad \omega_{B}^{E} = \begin{bmatrix} p_{B}^{E} \\ q_{B}^{E} \\ r_{B}^{E} \end{bmatrix}$$
(1.15)

当风速为零($\mathbf{W} = 0$)时:

$$a_{C_B} = \begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{bmatrix} + \begin{bmatrix} 0 & -(r+r_B^E) & q+q_B^E \\ -(r+r_B^E) & 0 & -(p+p_B^E) \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

$$= \begin{bmatrix} \dot{u} + (q+q_B^E)w - (r+r_B^E)v \\ \dot{v} + (r+r_B^E)w - (p+p_B^E)w \\ \dot{w} + (p+p_B^E)w - (q+q_B^E)u \end{bmatrix}$$
(1.16)

体轴系中的外力 f_B :

$$f_B = A_B + mg_B \tag{1.17}$$

可控力分为气动力和推力:

$$A_{B} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} X_{A} \\ Y_{A} \\ Z_{A} \end{bmatrix} + \begin{bmatrix} T_{x} \\ T_{y} \\ T_{z} \end{bmatrix}$$
 (1.18)

体轴系中重力:

$$g_B = T_{BV}g_V = T_{BV} \begin{bmatrix} 0 \\ 0 \\ g \end{bmatrix} = g \begin{bmatrix} -\sin\theta \\ \cos\theta\sin\phi \\ \cos\theta\cos\phi \end{bmatrix}$$
(1.19)

将式(1.16)(1.17)(1.18)(1.19)带入到(1.13)中,得

$$\begin{cases} X - mg \sin \theta &= m[\dot{u} + (q + q_B^E)w - (r + r_B^E)v] \\ Y + mg \cos \theta \sin \phi &= m[\dot{v} + (r + r_B^E)u - (p + p_B^E)w] \\ Z + mg \cos \theta \cos \phi &= m[\dot{w} + (p + p_B^E)w - (q + q_B^E)u] \end{cases}$$
(1.20)

当忽略地球转动时, p_B^E 、 r_B^E 、 q_B^E 为零,则有:

$$\begin{cases} X - mg\sin\theta &= m(\dot{u} + qw - rv) \\ Y + mg\cos\theta\sin\phi &= m(\dot{v} + ru - pw) \\ Z + mg\cos\theta\cos\phi &= m(\dot{w} + pw - qu) \end{cases}$$
(1.21)

1.2 推导飞机的转动动力学方程

出发点是动量矩定理:

$$G = \dot{h} \tag{1.22}$$

一般变形体在 F_I 上的角动量为:

$$h_I = \int R_I \times V_I dm = \int R_I \times \dot{R}_I dm = \int \tilde{R}_I \dot{R}_I dm \qquad (1.23)$$

将角动量 h_I 转换到 F_B 上得:

$$h_{B} = T_{BI}h_{I}$$

$$= \int T_{BI}\tilde{R}_{I}\dot{R}_{I}dm$$

$$= \int T_{BI}\tilde{R}_{I}T_{IB}T_{BI}\dot{R}_{I}dm$$

$$= \int \tilde{R}_{B}(\dot{R}_{B} + \tilde{\omega}_{B}R_{B})dm \qquad (\because T_{BI}\dot{R}_{I} = \dot{R}_{B} + \tilde{\omega}_{B}R_{B}) \qquad (1.24)$$

$$= \int \tilde{R}_{B}\dot{R}_{B}dm + \int \tilde{R}_{B}\tilde{\omega}_{B}R_{B}dm$$

$$= \int \tilde{R}_{B}\dot{R}_{B}dm - \int \tilde{R}_{B}\tilde{R}_{B}\omega_{B}dm \qquad (\because \tilde{\omega}R = -\tilde{R}\omega)$$

$$= \int \tilde{R}_{B}\dot{R}_{B}dm + J_{B}\omega_{B}$$

其中

$$J_{B} = -\int \tilde{R}_{B}\tilde{R}_{B}dm$$

$$= \int \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix} \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix} dm$$

$$= \int \begin{bmatrix} y^{2} + z^{2} & -xy & -zx \\ -xy & x^{2} + z^{2} & -yz \\ -zx & -yz & x^{2} + y^{2} \end{bmatrix} dm$$

$$= \begin{bmatrix} I_{x} & -I_{xy} & -I_{zx} \\ -I_{xy} & I_{y} & -I_{yz} \\ -I_{zx} & -I_{yz} & I_{z} \end{bmatrix}$$
(1.25)

对于变形分量 $\int \tilde{R}_B \dot{R}_B dm$,这里只考虑一个发动机的转子系统

$$h_{B}^{r} = \int \tilde{R}_{B} \dot{R}_{B} dm$$

$$= \int \tilde{R}_{B} \tilde{\omega}_{B}^{r} R_{B}^{r} dm$$

$$= -\int \tilde{R}_{B} \tilde{R}_{B}^{r} \omega_{B}^{r} dm$$

$$= -\omega_{B}^{r} \int (\tilde{R}_{B}^{r} + \tilde{R}_{B}^{r}) \tilde{R}_{B}^{r} dm$$

$$= -\omega_{B}^{r} \tilde{R}_{B}^{r} \int \tilde{R}_{B}^{r} dm - \omega_{B}^{r} \int \tilde{R}_{B}^{r} \tilde{R}_{B}^{r} dm$$

$$= J_{B}^{r} \omega_{B}^{r}$$

$$= J_{B}^{r} \omega_{B}^{r}$$

$$(1.26)$$

在下文计算中将单转子发动机带来的附加动量矩视为一个常数矢量。

将惯性系下的动量矩定理(1.22)变换到体轴系中:

$$G_{B} = T_{BI}G_{I} = T_{BI}\dot{h}_{I} = \dot{h}_{B} + \tilde{\omega}_{B}h_{B}$$

$$= \dot{J}_{B}\omega_{B} + J_{B}\dot{\omega}_{B} + h_{B}^{r} + \tilde{\omega}_{B}J_{B}\tilde{\omega}_{B} + \tilde{\omega}_{B}\dot{h}_{B}^{r}$$

$$= J_{B}\dot{\omega}_{B} + h_{B}^{r} + \tilde{\omega}_{B}J_{B}\tilde{\omega}_{B}$$

$$(1.27)$$

其中

$$G_B = \begin{bmatrix} L \\ M \\ N \end{bmatrix}, \quad h_B^r = \begin{bmatrix} h_x^r \\ h_y^r \\ h_z^r \end{bmatrix}, \quad \tilde{\omega}_B = \begin{bmatrix} 0 & -r & q \\ r & 0 & -p \\ -q & p & 0 \end{bmatrix}$$
(1.28)

将式(1.27)进行标量展开得:

$$\begin{bmatrix} L \\ M \\ N \end{bmatrix} = \begin{bmatrix} I_{x} & -I_{xy} & -I_{zx} \\ -I_{xy} & -I_{y} & -I_{yz} \\ -I_{zx} & -I_{yz} & -I_{z} \end{bmatrix} \begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} + \begin{bmatrix} h_{x}^{r} \\ h_{y}^{r} \\ h_{z}^{r} \end{bmatrix} + \begin{bmatrix} 0 & -r & q \\ r & 0 & -p \\ -q & p & 0 \end{bmatrix} \begin{bmatrix} I_{x} & -I_{xy} & -I_{zy} \\ -I_{xy} & -I_{y} & -I_{yz} \\ -I_{z} & -I_{yz} & -I_{z} \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$

$$(1.29)$$

考虑飞机有对称面,即 $I_{xy} = I_{yz} = 0$,则式(2.12)可化为:

$$\begin{cases}
L = I_x \dot{p} - I_{zx} (\dot{r} + pq) - (I_y - I_z) qr - rh_y^r + qh_z^r \\
M = I_y \dot{q} - I_{zx} (r^2 - p^2) - (I_z - I_x) rp + rh_x^r - ph_z^r \\
N = I_z \dot{r} - I_{zx} (\dot{p} + qr) - (I_x - I_y) pq - qh_x^r + ph_y^r
\end{cases} (1.30)$$

下文F16发动机带来的附加动量矩在只在体轴系Ox方向有分量,那么:

$$\begin{cases}
L = I_x \dot{p} - I_{zx} (\dot{r} + pq) - (I_y - I_z) qr \\
M = I_y \dot{q} - I_{zx} (r^2 - p^2) - (I_z - I_x) rp + rh^r \\
N = I_z \dot{r} - I_{zx} (\dot{p} + qr) - (I_x - I_y) pq - qh^r
\end{cases} (1.31)$$

这便是在平面假设下,体轴系中飞机的转动动力学方程。在风轴系中,用风轴系导数代替体轴系导数,得到的风轴系转动动力学方程具有一样的形式。

1.3 推导飞机的质心运动学方程

由速度矢量三角形 $V^E = V + W$ 出发,推导飞机的质心运动学方程。分为体轴系和风轴系两种情况。

1.3.1 风轴系质心运动学方程

由 $V^E = V + W$ 出发,可知 $V^E_W = V_W + W_W$,牵连垂直坐标系中的分量为:

$$V_V^E = T_{VW}(V_W + W_W) (1.32)$$

其中

$$V_{W} = \begin{bmatrix} V \\ 0 \\ 0 \end{bmatrix}, \quad W_{W} = \begin{bmatrix} W_{Wx} \\ W_{Wy} \\ W_{Wz} \end{bmatrix}$$
 (1.33)

当忽略地球曲率时,可认为 F_v 平行于 F_E ,假设大气相对于地球静止,也就是W=0,则风轴系中的质心位置坐标如下:

$$\begin{cases}
\dot{x}_E = V \cos \theta_W \cos \phi_W \\
\dot{y}_E = V \cos \theta_W \sin \phi_W \\
\dot{z}_E = -V \sin \theta_W
\end{cases} (1.34)$$

1.3.2 体轴系质心运动学方程

$$V^{E} = V_{V}^{E} = V + W = T_{VB} \begin{bmatrix} u \\ v \\ w \end{bmatrix} + T_{VB}T_{BW} \begin{bmatrix} W_{xW} \\ W_{yW} \\ W_{zW} \end{bmatrix}$$
(1.35)

其中转换矩阵

$$T_{VB} = \begin{bmatrix} \cos \psi \cos \theta & -\sin \psi \sin \phi + \cos \psi \sin \theta \sin \phi & \sin \psi \sin \phi + \cos \psi \sin \theta \cos \phi \\ \sin \psi \cos \theta & \cos \psi \cos \phi + \sin \psi \sin \theta \sin \phi & -\cos \psi \sin \phi + \sin \psi \sin \theta \cos \phi \\ -\sin \theta & \cos \theta \sin \phi & \cos \theta \cos \phi \end{bmatrix}$$
(1.36)

$$T_{BW} = \begin{bmatrix} \cos \alpha \cos \beta & -\cos \alpha \sin \beta & -\sin \alpha \\ \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & -\sin \alpha \sin \beta & \cos \alpha \end{bmatrix}$$
(1.37)

当忽略地球曲率时,可认为 F_v 平行于 F_E ,假设大气相对于地球静止,也就 EW = 0,则体轴系中的质心位置坐标如下:

$$\begin{bmatrix} \dot{x}_E \\ \dot{y}_E \\ \dot{z}_E \end{bmatrix} = T_{VB}(\phi, \theta, \psi) \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$
 (1.38)

推导飞机的转动运动学方程 1.4

风轴系转动运动学方程 1.4.1

在风轴系上 ω^W 的分量为:

$$\omega^{W} = \begin{bmatrix} p_{W} \\ q_{W} \\ r_{W} \end{bmatrix} + T_{x}(\phi_{W})T_{y}(\theta_{W}) \begin{bmatrix} 0 \\ 0 \\ \dot{\psi_{W}} \end{bmatrix} + T_{x}(\phi_{W}) \begin{bmatrix} 0 \\ \dot{\theta_{W}} \\ 0 \end{bmatrix} + \begin{bmatrix} \dot{\phi_{W}} \\ 0 \\ 0 \end{bmatrix}$$
(1.39)

可得

$$\begin{cases}
p_{W} = \dot{\phi}_{W} - \dot{\psi}_{W} \sin \theta_{W} \\
q_{W} = \dot{\theta}_{W} \cos \phi_{W} + \dot{\psi}_{W} \cos \theta_{W} \sin \phi_{W} \\
r_{W} = \dot{\psi}_{W} \cos \theta_{W} \cos \psi_{W} - \dot{\theta}_{W} \sin \phi_{W}
\end{cases}$$

$$\Rightarrow \begin{cases}
\dot{\phi}_{W} = p_{W} + \tan \theta_{W} (q \sin \phi_{W} + r_{W} \cos \phi_{W}) \\
\dot{\theta}_{W} = q_{W} \cos \phi_{W} - r_{W} \sin \phi_{W} \\
\dot{\psi}_{W} = (q_{W} \sin \phi_{W} + r_{W} \cos \phi_{W}) / \cos \theta_{W}
\end{cases}$$
(1.41)

$$\Rightarrow \begin{cases} \dot{\phi}_W = p_W + \tan \theta_W (q \sin \phi_W + r_W \cos \phi_W) \\ \dot{\theta}_W = q_W \cos \phi_W - r_W \sin \phi_W \\ \dot{\psi}_W = (q_W \sin \phi_W + r_W \cos \phi_W) / \cos \theta_W \end{cases}$$
(1.41)

1.4.2 体轴系转动运动学方程

在体轴系上 ω^B 的分量为:

$$\omega^{B} = \begin{bmatrix} p \\ q \\ r \end{bmatrix} + T_{x}(\phi)T_{y}(\theta) \begin{bmatrix} 0 \\ 0 \\ \dot{\psi} \end{bmatrix} + T_{x}(\phi) \begin{bmatrix} 0 \\ \dot{\theta} \\ 0 \end{bmatrix} + \begin{bmatrix} \dot{\phi} \\ 0 \\ 0 \end{bmatrix}$$
(1.42)

可得

$$\begin{cases} p = \dot{\phi} - \dot{\psi} \sin \theta \\ q = \dot{\theta} \cos \phi + \dot{\psi} \cos \theta \sin \phi \\ r = \dot{\psi} \cos \theta \cos \psi - \dot{\theta} \sin \phi \end{cases}$$

$$(1.43)$$

$$\begin{cases} \dot{\phi} = p + \tan \theta (q \sin \phi + r \cos \phi) \end{cases}$$

$$\Rightarrow \begin{cases} \dot{\phi} = p + \tan \theta (q \sin \phi + r \cos \phi) \\ \dot{\theta} = q \cos \phi - r \sin \phi \\ \dot{\psi} = (q \sin \phi + r \cos \phi) / \cos \theta \end{cases}$$
(1.44)

1.5 飞机的6自由度全量运动方程组

在无风,具有对称面的刚体飞机,发动机的推力在体轴系Ox方向有分量,发动机带来的附加动量矩在体轴系Ox方向有分量的条件下,根据以上推导,可以汇总飞机的6自由度全量运动方程组如下:

1.5.1 风轴系6自由度全量运动方程组

质心动力学方程 (1.34)

$$\begin{cases} T_{x_W} - D - mg\sin\theta_W = m\dot{V} \\ T_{y_W} - C + mg\cos\theta_W\sin\phi_W = mVr_W \\ T_{z_W} - L + mg\cos\theta_W\cos\phi_W = -mVq_W \end{cases}$$

转动运动学方程 (1.41)

$$\begin{cases} \dot{\phi}_W = p_W + \tan \theta_W (q \sin \phi_W + r_W \cos \phi_W) \\ \dot{\theta}_W = q_W \cos \phi_W - r_W \sin \phi_W \\ \dot{\psi}_W = (q_W \sin \phi_W + r_W \cos \phi_W) / \cos \theta_W \end{cases}$$

转动动力学方程 (1.31)

$$\begin{cases} L = I_x \dot{p} - I_{zx} (\dot{r} + pq) - (I_y - I_z) qr \\ M = I_y \dot{q} - I_{zx} (r^2 - p^2) - (I_z - I_x) rp + rh^r \\ N = I_z \dot{r} - I_{zx} (\dot{p} + qr) - (I_x - I_y) pq - qh^r \end{cases}$$

质心运动学方程 (1.34)

$$\begin{cases} \dot{x}_E = V \cos \theta_W \cos \phi_W \\ \dot{y}_E = V \cos \theta_W \sin \phi_W \\ \dot{z}_E = -V \sin \theta_W \end{cases}$$

1.5.2 体轴系6自由度全量运动方程组

质心动力学方程 (1.21)

$$\begin{cases} X_A + T_x - mg\sin\theta &= m(\dot{u} + qw - rv) \\ Y_A + T_y + mg\cos\theta\sin\phi &= m(\dot{v} + ru - pw) \\ Z_A + T_z + mg\cos\theta\cos\phi &= m(\dot{w} + pw - qu) \end{cases}$$

转动运动学方程 (1.44)

$$\begin{cases} \dot{\phi} = p + \tan \theta (q \sin \phi + r \cos \phi) \\ \dot{\theta} = q \cos \phi - r \sin \phi \\ \dot{\psi} = (q \sin \phi + r \cos \phi) / \cos \theta \end{cases}$$

转动动力学方程 (1.31)

$$\begin{cases} L = I_x \dot{p} - I_{zx} (\dot{r} + pq) - (I_y - I_z) qr \\ M = I_y \dot{q} - I_{zx} (r^2 - p^2) - (I_z - I_x) rp + rh^r \\ N = I_z \dot{r} - I_{zx} (\dot{p} + qr) - (I_x - I_y) pq - qh^r \end{cases}$$

质心运动学方程 (1.38)

$$\begin{bmatrix} \dot{x}_E \\ \dot{y}_E \\ \dot{z}_E \end{bmatrix} = T_{VB}(\phi, \theta, \psi) \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

2 小扰动线性化

2.1 基准方程与扰动方程

设基准运动为对称定常直线水平飞行,对刚体飞机全量运动方程组进行小 扰动线化处理。其中力和力矩用下面导数形式表示:

$$\begin{cases}
\Delta X = X_{u} \cdot \Delta u + X_{w} \cdot w + X_{q} \cdot q + X_{\Delta \delta_{T}} \cdot \Delta \delta_{T} + X_{\Delta \delta_{e}} \cdot \Delta \delta_{e} \\
\Delta Y = Y_{v} \cdot v + Y_{p} \cdot p + Y_{r} \cdot r + Y_{\delta_{a}} \cdot \delta_{a} + Y_{\delta_{r}} \cdot \delta_{r} \\
\Delta Z = Z_{u} \cdot \Delta u + Z_{w} \cdot w + Z_{q} \cdot q + Z_{\Delta \delta_{T}} \cdot \Delta \delta_{T} + Z_{\Delta \delta_{e}} \cdot \Delta \delta_{e} \\
\Delta L = L_{v} \cdot v + L_{p} \cdot p + L_{r} \cdot r + L_{\delta_{a}} \cdot \delta_{a} + L_{\delta_{r}} \cdot \delta_{r} \\
\Delta M = M_{u} \cdot \Delta u + M_{w} \cdot w + M_{q} \cdot q + M_{\Delta \delta_{T}} \cdot \Delta \delta_{T} + M_{\Delta \delta_{e}} \cdot \Delta \delta_{e} \\
\Delta N = N_{v} \cdot v + N_{p} \cdot p + N_{r} \cdot r + N_{\delta_{a}} \cdot \delta_{a} + N_{\delta_{r}} \cdot \delta_{r}
\end{cases} (2.1)$$

线化方程形式为

$$\dot{x} = Ax + Bc \tag{2.2}$$

式中A为状态矩阵, B为控制矩阵。

纵向方程组状态变量 $x=[\Delta u,w,q,\Delta\theta]^T$,控制变量 $c=[\Delta\delta_T,\Delta\delta_e]^T$ 。 横侧向方程组状态变量 $x=[v,p,r,\phi]^T$,控制变量 $c=[\delta_a,\delta_r]^T$ 。 各变量均采用国际单位制:

- 速度m/s;
- 角度rad;
- 角速度rad/s

取机体坐标系进行简化。质心运动学方程与其他方程解耦,可以单独求解。 基准运动为定常平飞,则飞行状态满足: 表 1: 定直平飞飞行状态

	基准运动	扰动运动	时间导数
速度	$ \begin{cases} u_0 \\ v_0 = 0 \\ w_0 = 0 \end{cases} $	$\begin{cases} u = u_0 + \Delta u \\ v = \Delta v \\ w = \Delta w \end{cases}$	$\begin{cases} \dot{u} = \Delta \dot{u} \\ \dot{v} = \Delta \dot{v} \\ \dot{w} = \Delta \dot{w} \end{cases}$
角速度	$\begin{cases} p_0 = 0 \\ q_0 = 0 \\ r_0 = 0 \end{cases}$	$ \begin{cases} p = \Delta p \\ q = \Delta q \\ r = \Delta r \end{cases} $	$\begin{cases} \dot{p} &= \Delta \dot{p} \\ \dot{q} &= \Delta \dot{q} \\ \dot{r} &= \Delta \dot{r} \end{cases}$
角度	$ \begin{cases} \phi_0 = 0 \\ \theta_0 \\ \psi_0 = 0 \end{cases} $	$\begin{cases} \phi = \Delta \phi \\ \theta = \theta_0 + \Delta \theta \\ \psi = \Delta \psi \end{cases}$	$\begin{cases} \dot{\phi} &= \Delta \dot{\phi} \\ \dot{\theta} &= \Delta \dot{\theta} \\ \dot{\psi} &= \Delta \dot{\psi} \end{cases}$
位置	$\begin{cases} x_{E0} \\ y_{E0} \\ z_{E0} \end{cases}$	$\begin{cases} x_E = x_{E0} + \Delta x_E \\ y_E = y_{E0} + \Delta y_E \\ z_E = z_{E0} + \Delta z_E \end{cases}$	$\begin{cases} \dot{x}_E &= \Delta \dot{x}_E \\ \dot{y}_E &= \Delta \dot{y}_E \\ \dot{z}_E &= \Delta \dot{z}_E \end{cases}$

将表1中基准状态带入体轴系质心动力学方程(1.21)和转动动力学方程(1.31),可得平衡状态方程

$$\begin{cases}
X_0 - mg \sin \theta_0 &= 0 \\
Y_0 &= 0 \\
Z_0 + mg \cos \theta_0 &= 0 \\
L_0 &= 0 \\
M_0 &= 0 \\
N_0 &= 0
\end{cases}$$
(2.3)

将表1中扰动状态带入体轴系质心动力学方程(1.21)和转动动力学方程(1.31), 考虑到平衡方程(2.3),并忽略二阶及以上小量,可得扰动方程:

等衡方程(2.3),并忽略二阶及以上小量,可得扰动方程:
$$\begin{cases} \Delta X - mg\cos\theta_0\Delta\theta &= m\Delta\dot{u} \\ m\Delta\dot{v} &= \Delta Y + mg\cos\theta_0\Delta\phi - mu_0\Delta r \\ m\Delta\dot{w} &= \Delta Z - mg\sin\theta_0\Delta\theta + u_0\Delta q \\ \Delta L &= I_x\Delta\dot{p} - I_{zx}\Delta\dot{r} \\ \Delta M &= I_y\Delta\dot{q} \\ \Delta N &= I_z\Delta\dot{r} - I_{zx}\Delta\dot{p} \end{cases}$$
 (2.4)
$$\Rightarrow \begin{cases} \Delta X - mg\cos\theta_0\Delta\theta &= m\Delta\dot{u} \\ m\dot{v} &= \Delta Y + mg\cos\theta_0\phi - mu_0r \\ m\dot{w} &= \Delta Z - mg\sin\theta_0\Delta\theta + mu_0q \\ \Delta L &= I_x\dot{p} - I_{zx}\dot{r} \\ \Delta M &= I_y\dot{q} \\ \Delta N &= I_z\dot{r} - I_{zx}\dot{p} \end{cases}$$
 (2.5)
로可以写成:

最终可以写成:

$$\begin{cases}
\Delta \dot{u} = \frac{\Delta X}{m} - g \cos \theta_0 \Delta \theta \\
\dot{v} = \frac{\Delta Y}{m} + g \cos \theta_0 \phi - u_0 r \\
\dot{w} = \frac{\Delta Z}{m} - g \sin \theta_0 \Delta \theta + u_0 q \\
\dot{p} = \frac{I_z \Delta L + I_{zx} \Delta N}{I_x I_z - I_{zx}^2} \\
\dot{q} = \frac{\Delta M}{I_y} \\
\dot{r} = \frac{I_{zx} \Delta L + I_x \Delta N}{I_x I_z - I_{zx}^2}
\end{cases} (2.6)$$

将力与力矩的线化公式(2.1)代入公式(2.6) 可得:

$$\begin{cases}
\Delta \dot{u} &= \frac{X_u}{m} \cdot \Delta u + \frac{X_w}{m} \cdot w + \frac{X_q}{m} \cdot q - g \cos \theta_0 \cdot \Delta \theta + \frac{X_{\Delta \delta_T}}{m} \cdot \Delta \delta_T + \frac{X_{\Delta \delta_e}}{m} \cdot \Delta \delta_e \\
\dot{v} &= \frac{Y_v}{m} \cdot v + \frac{Y_p}{m} \cdot p + \left(\frac{Y_r}{m} - u_0\right) \cdot r + g \cos \theta_0 \cdot \phi + \frac{Y_{\delta_a}}{m} \cdot \delta_a + \frac{Y_{\delta_r}}{m} \cdot \delta_r \\
\dot{w} &= \frac{Z_u}{m} \cdot \Delta u + \frac{Z_w}{m} \cdot w + \left(\frac{Z_q}{m} + u_0\right) \cdot q - g \sin \theta_0 \cdot \Delta \theta + \frac{Z_{\Delta \delta_T}}{m} \cdot \Delta \delta_T + \frac{Z_{\Delta \delta_e}}{m} \cdot \Delta \delta_e \\
\dot{p} &= \frac{I_z L_v + I_{zx} N_v}{I_x I_z - I_{zx}^2} \cdot v + \frac{I_z L_p + I_{zx} N_p}{I_x I_z - I_{zx}^2} \cdot p + \frac{I_z L_r + I_{zx} N_r}{I_x I_z - I_{zx}^2} \cdot r \\
&+ \frac{I_z L_{\delta_a} + I_{zx} N_{\delta_a}}{I_x I_z - I_{zx}^2} \cdot \delta_a + \frac{I_z L_{\delta_r} + I_{zx} N_{\delta_r}}{I_x I_z - I_{zx}^2} \cdot \delta_r \\
\dot{q} &= \frac{M_u}{I_y} \cdot \Delta u + \frac{M_w}{I_y} \cdot w + \frac{M_q}{I_y} \cdot q + \frac{M_{\Delta \delta_T}}{I_y} \cdot \Delta \delta_T + \frac{M_{\Delta \delta_e}}{I_y} \cdot \Delta \delta_e \\
\dot{r} &= \frac{I_{zx} L_v + I_x N_v}{I_x I_z - I_{zx}^2} \cdot v + \frac{I_{zx} L_p + I_x N_p}{I_x I_z - I_{zx}^2} \cdot p + \frac{I_{zx} L_r + I_x N_r}{I_x I_z - I_{zx}^2} \cdot r \\
&+ \frac{I_{zx} L_{\delta_a} + I_x N_{\delta_a}}{I_x I_z - I_{zx}^2} \cdot \delta_a + \frac{I_{zx} L_r + I_x N_{\delta_r}}{I_x I_z - I_{zx}^2} \cdot \delta_r
\end{cases} (2.7)$$

同样地,将表1中基准状态带入体轴系质心运动学方程(1.38)和转动运动学 方程(1.44),可得平衡状态方程,将扰动状态带入可得扰动方程,扰动方程减去 平衡方程并忽略二阶及以上小量可得六个运动学方程的线化形式:

$$\begin{cases}
\dot{\phi} = p + r \tan \theta_0 \\
\Delta \dot{\theta} = q \\
\dot{\psi} = r \sec \theta_0 \\
\Delta \dot{x}_E = \Delta u \cos \theta_0 - u_0 \sin \theta \Delta \theta + w \sin \theta_0 \\
\Delta \dot{y}_E = u_0 \psi \cos \theta_0 + v \\
\Delta \dot{z}_E = -\Delta u \sin \theta_0 - u_0 \Delta \theta \cos \theta_0 + w \cos \theta_0
\end{cases} (2.8)$$

2.2 纵向小扰动线化方程

可以将(2.7和2.8)线化方程形式写为

$$\dot{x} = Ax + Bc \tag{2.9}$$

线化后的动力学方程和运动学方程纵、横向互不耦合。

纵向方程组状态变量 $x = [\Delta u, w, q, \Delta \theta]^T$, 控制变量 $c = [\Delta \delta_T, \Delta \delta_e]^T$ 。

$$\begin{bmatrix} \Delta \dot{u} \\ \dot{w} \\ \dot{q} \\ \Delta \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{X_u}{m} & \frac{X_w}{m} & \frac{X_q}{m} & -g \sin \theta_0 \\ \frac{Z_u}{m} & \frac{Z_w}{m} & \frac{Z_q}{m} + u_0 & -g \cos \theta_0 \\ \frac{M_u}{I_y} & \frac{M_w}{I_y} & \frac{M_q}{I_y} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \Delta u \\ w \\ q \\ \Delta \theta \end{bmatrix} + \begin{bmatrix} \frac{X_{\Delta \delta_T}}{m} & \frac{X_{\Delta \delta_e}}{m} \\ \frac{Z_{\Delta \delta_T}}{m} & \frac{Z_{\Delta \delta_e}}{m} \\ \frac{M_{\Delta \delta_T}}{I_y} & \frac{M_{\Delta \delta_e}}{I_y} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta \delta_T \\ \Delta \delta_e \end{bmatrix}$$
(2.10)

$$\begin{cases} \Delta \dot{x}_E = \Delta u \cos \theta_0 - u_0 \sin \theta \Delta \theta + w \sin \theta_0 \\ \Delta \dot{z}_E = -\Delta u \sin \theta_0 - u_0 \Delta \theta \cos \theta_0 + w \cos \theta_0 \end{cases}$$
(2.11)

2.3 横侧小扰动线化方程

横侧向方程组状态变量 $x = [v, p, r, \phi]^T$, 控制变量 $c = [\delta_a, \delta_r]^T$ 。

$$\begin{bmatrix} \dot{v} \\ \dot{p} \\ \dot{r} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} \frac{Y_{v}}{m} & \frac{Y_{p}}{m} & \frac{Y_{r}}{m} - u_{0} & g \cos \theta_{0} \\ \frac{I_{z}L_{v} + I_{zx}N_{v}}{I_{x}I_{z} - I_{zx}^{2}} & \frac{I_{z}L_{p} + I_{zx}N_{p}}{I_{x}I_{z} - I_{zx}^{2}} & 0 \\ \frac{I_{zx}L_{v} + I_{x}N_{v}}{I_{x}I_{z} - I_{zx}^{2}} & \frac{I_{zx}L_{p} + I_{x}N_{p}}{I_{x}I_{z} - I_{zx}^{2}} & 0 \\ 0 & 1 & \tan \theta_{0} & 0 \end{bmatrix} \begin{bmatrix} v \\ p \\ r \\ \phi \end{bmatrix} + \begin{bmatrix} \frac{Y_{\Delta\delta_{a}}}{m} & \frac{Y_{\Delta\delta_{r}}}{m} \\ \frac{I_{z}L_{\delta_{a}} + I_{zx}N_{\delta_{a}}}{I_{x}I_{z} - I_{zx}^{2}} & \frac{I_{z}L_{\delta_{r}} + I_{zx}N_{\delta_{r}}}{I_{x}I_{z} - I_{zx}^{2}} \\ \frac{I_{zx}L_{\delta_{a}} + I_{x}N_{\delta_{a}}}{I_{x}I_{z} - I_{zx}^{2}} & \frac{I_{zx}L_{\delta_{r}} + I_{x}N_{\delta_{r}}}{I_{x}I_{z} - I_{zx}^{2}} \end{bmatrix} \begin{bmatrix} \Delta\delta_{a} \\ \Delta\delta_{r} \end{bmatrix}$$

$$\begin{cases}
\dot{\psi} = r \sec \theta_0 \\
\Delta \dot{y}_E = u_0 \psi \cos \theta_0 + v
\end{cases}$$
(2.13)

3 F16飞机运动时域响应

3.1 飞机全量运动方程组

飞机建模数据

表 2: 惯性数据(SI单位制)

质量(kg)	转动惯量(kg·m²)			
M	I_x	I_y	I_z	I_{xz}
9298.644	12874.847	75673.624	85552.113	1331.413

表 3: 机翼几何尺寸(SI单位制)

		平均气动弦 $\bar{c}(m)$
9.144	27.871	3.450

参考重心位置 $X_{cgr} = 0.35\bar{c}$ 。

发动机转动惯量 $h_B^r=216.9309kg\cdot m^2/s$,发动机推力根据表格插值得到:T=f(throttle,H,M),其中马赫数定义为飞行速度与当地声速之比 $M=V_t/a$ 。

某飞行高度下的大气密度和声速可以通过USSA76大气密度模型计算得到: ρ , a=f(H)。

表 4: 气动模型

7700			
体轴系	X轴	Y轴	Z轴
力系数	$C_x(\alpha, \delta_e)$	$C_y(\beta, \delta_a, \delta_r)$	$C_z(\alpha, \beta, \delta_e)$
力矩系数	$C_l(lpha,eta)$	$C_m(\alpha, \delta_e)$	$C_n(\alpha,\beta)$
力矩控制导数	$C_{l\delta_a}(\alpha,\beta), C_{l\delta_r}(\alpha,\beta)$		$C_{n\delta_a}(\alpha,\beta), C_{n\delta_r}(\alpha,\beta)$
阻尼导数	$C_{xq}(\alpha)$	$C_{yr}(\alpha), C_{yp}(\alpha)$	$C_{zq}(\alpha)$
四亿寸刻	$C_{lr}(\alpha), C_{lp}(\alpha)$	$C_{mq}(\alpha)$	$C_{nr}(\alpha), C_{np}(\alpha)$

已知攻角 α 、侧滑角 β 、升降舵偏角 δ_e 、方向舵偏角 δ_r 、副翼偏角 δ_a ,气动系数根据附件表格提供的数据插值得到(表4),进而进算出体轴系下的(气动)力与

(气动)力矩:

$$X = \frac{1}{2}\rho V_T^2 S C_x^t + T \quad C_x^t = C_x + \frac{\bar{c}}{2V_T} C_{xq} \cdot q$$

$$Y = \frac{1}{2}\rho V_T^2 S C_y^t \qquad C_y^t = C_y + \frac{b}{2V_T} C_{yr} \cdot r + \frac{b}{2V_T} C_{yp} \cdot p$$

$$Z = \frac{1}{2}\rho V_T^2 S C_z^t \qquad C_z^t = C_z + \frac{\bar{c}}{2V_T} C_{zq} \cdot q$$

$$L = \frac{1}{2}\rho V_T^2 S \bar{c} C_l^t \qquad C_l^t = C_l + \frac{b}{2V_T} C_{lr} \cdot r + \frac{b}{2V_T} C_{lp} \cdot p + C_{l\delta_a} \cdot \delta_a + C_{l\delta_r} \cdot \delta_r$$

$$M = \frac{1}{2}\rho V_T^2 S \bar{c} C_m^t \qquad C_m^t = C_m + \frac{\bar{c}}{2V_T} C_{mq} \cdot q$$

$$N = \frac{1}{2}\rho V_T^2 S \bar{c} C_n^t \qquad C_n^t = C_n + \frac{b}{2V_T} C_{nr} \cdot r + \frac{b}{2V_T} C_{np} \cdot p + C_{n\delta_a} \cdot \delta_a + C_{n\delta_r} \cdot \delta_r$$

$$(3.1)$$

这里需要说明的有两点,一是在计算 C_l^t 和 C_n^t 时, δ_a 和 δ_r 也是需要无量纲化的,分别用舵偏角的最大值进行无量纲化($\delta_{a,max}=20^\circ,\delta_{r,max}=30^\circ$)。二是表中的气动系数是作用在名义重心 $X_{cgr}=0.35\bar{c}$ 处的,如果F-16实际的重心 $X_{cg}\neq X_{cgr}$ 那么力矩分量M需要添加 $Z(X_{cgr}-X_{cg})$,力矩分量N需要添加 $-Y(X_{cgr}-X_{cg})$ 。

体轴系下状态矢量为:

$$\mathbf{X} = [u, v, w, p, q, r, \theta, \phi, \psi, x_E, y_E, z_E]^T$$
(3.2)

有些状态变量相互关联,在平地球情况下,有9个独立的状态数:

$$\mathbf{X} = [u, v, w, p, q, r, \theta, \phi, z_V]^T \tag{3.3}$$

其中(u, v, w)可以用 (V_T, α, β) 代替。

操纵面位置有:

$$\mathbf{U} = [\delta_e, \delta_a, \delta_r, \delta_T]^T \tag{3.4}$$

平地球、体轴系6DOF方程 $f(\dot{\mathbf{X}}, \mathbf{X}, \mathbf{U}) = 0$ 写成 $\dot{\mathbf{X}} = f(\mathbf{X}, \mathbf{U})$ 的形式,给定某时刻的状态变量,通过6DOF方程可以求出该时刻状态变量对时间的导数。

质心动力学方程

$$\dot{u} = X/m - qw + rv - g\sin\theta$$

$$\dot{v} = Y/m - ru + pw + g\cos\theta\sin\phi$$

$$\dot{w} = Z/m - pv + qu + g\cos\theta\cos\phi$$
(3.5)

转动运动学方程

$$\dot{\phi} = p + \tan \theta (q \sin \phi + r \cos \phi)
\dot{\theta} = q \cos \phi - r \sin \phi
\dot{\psi} = (q \sin \phi + r \cos \phi) / \cos \theta$$
(3.6)

转动动力学方程

$$\Gamma = I_{x}I_{z} - I_{xz}^{2}
\dot{p} = \{I_{xz}(I_{x} - I_{y} + I_{z})pq - [I_{z}(I_{z} - I_{y}) + I_{xz}^{2}]qr + I_{z}L + I_{xz}N + I_{xz}qh^{r}\}/\Gamma
\dot{q} = [(I_{z} - I_{x})pr - I_{xz}(p^{2} - r^{2}) + M - rh^{r}]/I_{y}
\dot{r} = \{(I_{x} - I_{y})I_{x} + I_{xz}^{2})pq - I_{xz}(I_{x} - I_{y} + I_{z})qr + I_{xz}^{2}L + I_{x}N + I_{x}qh^{r}\}/\Gamma
(3.7)$$

质心运动学方程

$$\begin{bmatrix} \dot{x}_E \\ \dot{y}_E \\ \dot{z}_E \end{bmatrix} = T_{VB}(\phi, \theta, \psi) \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$
(3.8)

3.2 纵向配平

以某定直平飞状态作为基准运动状态,完成纵向力和力矩的配平,得到迎 角、配平升降舵偏角和配平油门的大小。

在配平时, 质心运动学方程不需要求解。稳态飞行要求:

$$[\dot{u}, \dot{v}, \dot{w}, \dot{p}, \dot{q}, \dot{r}]^T = 0$$
 (3.9)

$$[\delta_e, \delta_a, \delta_r, \delta_T]^T = \text{constant}$$
 (3.10)

定直平飞状态约束:

$$[\phi, \dot{\phi}, \dot{\theta}, \dot{\psi}]^T = 0 \quad (\therefore [p, q, r]^T = 0) \tag{3.11}$$

方位角ψ可自由指定,也令其为0作为约束。

配平,相当于是在满足(3.9)和(3.11)的条件下,求解6DOF方程,得到状态变量和操纵面位置。

具体数值算法实现上,本文将求解该非线性方程组的问题,转化为最优化为题:

minimize
$$\phi(\dot{X}) = \dot{u}^2 + \dot{v}^2 + \dot{v}^2 + \dot{p}^2 + \dot{q}^2 + \dot{r}^2$$
 (3.12a)

subject to
$$f(\dot{\mathbf{X}}, \mathbf{X}, \mathbf{U}) = 0$$
 (3.12b)

$$[\phi, \psi, \dot{\phi}, \dot{\theta}, \dot{\psi}]^T = 0 \tag{3.12c}$$

$$[\delta_e, \delta_a, \delta_r, \delta_T]^T = \text{constant}$$
 (3.12d)

给定
$$V_T = \sqrt{u^2 + v^2 + w^2}, z_E$$
 (3.12e)

本文采用SIMPLEX算法求解上述最优化问题。具体的计算程序(Fortran语言)见附录,第五组飞行状态是 $V_T = 130m/s, H = 1000m$ 条件下,计算结果为:

配平攻角
$$\alpha_{\text{trim}} = 3.9854^{\circ}$$

配平升降舵偏角 $\delta_{e,\text{trim}} = -0.605^{\circ}$
油门开度 $\delta_{T,\text{trim}} = 0.123$
推力 $T = 8519.19~N$

此时的状态变量为:

 $u = 129.6856 \, m/s$ $v = 0 \, m/s$ $w = 9.0353 \, m/s$ $\phi = 0^{\circ}$ $\theta = 3.9854^{\circ}$ $\psi = 0^{\circ}$ $p = 0 \, rad/s$ $q = 0 \, rad/s$ $r = 0 \, rad/s$

说明:本文的配平算法具有普适性,可以用来配平定直平飞、稳定盘旋、稳定爬升和稳定滚转等稳态状态。其实这里配平定直平飞状态,通过求解铅垂面内的三自由度模型更为方便。

3.3 零输入全量运动方程时域响应

在外界输入为零情况下飞机,显然飞机将继续保持该定直平飞的状态。数值求解得到的结果,也是各个状态变量均为水平直线(除了方位坐标 x_E)。

3.4 小扰动线化方程组

本文的小扰动线化方程通过两种方式得到。一种是上文通过对飞机6DOF非线性状态方程进行线化处理,得到特定飞行条件下的线性时不变状态方程。这里采用数值线化的方法。

对状态方程 $\dot{\mathbf{X}} = f(\mathbf{X}, \mathbf{U})$ 在稳态点 $(\mathbf{X}_e, \mathbf{U}_e)$ 附近进行一阶泰勒展开:

$$\dot{\mathbf{X}} + \delta \dot{\mathbf{X}} \approx f(\mathbf{X}_e, \mathbf{U}_e) + \frac{\partial f}{\partial \mathbf{X}} \delta \mathbf{X} + \frac{\partial f}{\partial \mathbf{U}} \delta \mathbf{U}$$
 (3.13)

由于稳态条件:

$$\dot{\mathbf{X}} = f(\mathbf{X}_e, \mathbf{U}_e) = 0 \tag{3.14}$$

所以

$$\delta \dot{\mathbf{X}} = \frac{\partial f}{\partial \mathbf{X}} \delta \mathbf{X} + \frac{\partial f}{\partial \mathbf{U}} \delta \mathbf{U}$$
 (3.15)

其中 $\frac{\partial f}{\partial \mathbf{X}}$ 和 $\frac{\partial f}{\partial \mathbf{U}}$ 可以通过数值中心差分的方式计算,这样,上式可以写成线性时不变状态方程的形式:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \tag{3.16}$$

具体到我们小组的飞行状态,对于纵向状态变量 $\mathbf{x} = [\Delta u, w, q, \Delta \theta]^T$, 控制变量 $\mathbf{u} = [\Delta \delta_T, \Delta \delta_e]^T$

$$\mathbf{A} = \begin{bmatrix} -0.9628E - 02 & 0.4190E - 01 & -0.8613E + 01 & -0.9783E + 01 \\ -0.9561E - 01 & -0.7932E + 00 & 0.1181E + 03 & -0.6816E + 00 \\ -0.2890E - 03 & 0.4148E - 02 & -0.8326E + 00 & 0.0000E + 00 \\ 0.0000E + 00 & 0.0000E + 00 & 0.1000E + 01 & 0.0000E + 00 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 0.7110E + 01 & 0.4086E - 01\\ 0.0000E + 00 & -0.2141E + 00\\ 0.0000E + 00 & -0.1146E + 00\\ 0.0000E + 00 & 0.0000E + 00 \end{bmatrix}$$

A矩阵4个特征值如下:

 $\Lambda = diag(-1.513685, -0.121847 + 0.134943i, -0.121847 - 0.134943i, 0.121962)$ 相应的特征向量为:

$$\mathbf{R} = \begin{bmatrix} 0.036555 & 0.866106 + 0.000000i & 0.866106 - 0.000000i & -0.956607 \\ -0.999305 & 0.049928 + 0.497105i & 0.049928 - 0.497105i & 0.291098 \\ 0.006100 & 0.000473 + 0.002811i & 0.000473 - 0.002811i & 0.001554 \\ -0.004030 & 0.009732 - 0.012293i & 0.009732 + 0.012293i & 0.012745 \end{bmatrix}$$

对于横向状态变量 $\mathbf{x} = [v, p, r, \phi]^T$, 控制变量 $\mathbf{u} = [\Delta \delta_a, \Delta \delta_r]^T$

$$\mathbf{A} = \begin{bmatrix} -0.2483E + 00 & 0.9084E + 01 & -0.1288E + 03 & 0.9783E + 01 \\ -0.1790E + 00 & -0.2783E + 01 & 0.6348E + 00 & 0.0000E + 00 \\ 0.4360E - 01 & -0.4234E - 01 & -0.3686E + 00 & 0.0000E + 00 \\ 0.0000E + 00 & 0.1000E + 01 & 0.6967E - 01 & 0.0000E + 00 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 0.2958E - 01 & 0.8075E - 01\\ -0.4839E + 00 & 0.8387E - 01\\ -0.2041E - 01 & -0.4069E - 01\\ 0.0000E + 00 & 0.0000E + 00 \end{bmatrix}$$

A矩阵4个特征值如下:

 $\mathbf{\Lambda} = \operatorname{diag}(-0.365721 + 2.636124i, -0.365721 - 2.636124i, -2.653124, -0.015255)$

相应的特征向量为:

$$\mathbf{R} = \begin{bmatrix} 0.998423 + 0.000000i & 0.998423 - 0.000000i & 0.500149 & 0.497925 \\ -0.036066 + 0.034843i & -0.036066 - 0.034843i & -0.809755 & -0.017619 \\ -0.000541 - 0.017095i & -0.000541 + 0.017095i & -0.024553 & 0.063558 \\ 0.014389 + 0.011699i & 0.014389 - 0.011699i & 0.305853 & 0.864708 \end{bmatrix}$$

3.5 时域响应

基于全量运动方程,计算时域响应,即将方程 $\dot{\mathbf{X}} = f(\mathbf{X}, \mathbf{U})$ 对时间积分,得到状态变量随时间的变化。

基于小扰动方程,计算时域响应,即将方程 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ 对时间积分,得到状态变量随时间的变化。

本文采用四阶Runge-Kutta进行积分。最大推进时间取5s,因为老师给定飞行器重心 $x_{cg}=0.35\bar{c}$ 处,气动力作用点也是该点。时间过长飞行器就不稳定(大概在6s左右飞行器攻角超出插值范围,大概在10左右飞行器高度就到海平面以下,超出插值范围).

3.5.1 升降舵单位阶跃输入时域响应

这里为了方便对比,只给出纵向状态变量 $\mathbf{x} = [\Delta u, w, q, \Delta \theta]^T$ 的时域响应:

图 1: 纵向u时域响应

图 2: 纵向w时域响应

图 3: 纵向q时域响应

图 4: 纵向θ时域响应

3.5.2 副翼单位阶跃输入时域响应

这里为了方便对比,只给出横向状态变量 $\mathbf{x} = [v, p, r, \phi]^T$ 的时域响应:

图 5: 横向v时域响应

图 6: 横向p时域响应

图 7: 横向r时域响应

图 8: 横向∂时域响应

从计算结果可以看出,在短时间内,线性小扰动方程和全量运动方程得到的结果是比较一致的。但随着时间推进,两种方式算出来的结果出现差别。原因主要在于:小扰动方程只在状态偏离平衡态小范围内适用,当时间总够长后,状态变量偏离平衡态比较大,这时候小扰动方程就不再适用。其次,由于时间推进的时候,油门开度throttle保持不变,但推力随着飞行高度而发生变化T=f(throttle,H,M);大气密度和声速随着飞行高度发生变化 $\rho,a=f(H)$ 。这样纵横向并不能完全解耦。或者由于本文采用数值微分的方式计算纵横解耦的模态,这种方式并没有把高阶小量直接扔掉,也会带来一定的影响。

3.5.3 纵向模态激励响应

将特征向量实部作为状态变量初始值,计算时域响应。

对于纵向状态变量,矩阵A有四个特征值,其中-1.513685和-0.121847±0.134943*i*的实部小于零,其模态激励为稳定的,0.121962实部大于零,其模态激励为发散的。很容易看出长周期模态和短周期模态,两种模态的周期相差在一个数量级以上。长周期模态的阻尼小,周期长,飞行员容易抑制长周期震荡。具体结果如下:

图 9: 纵向 $\lambda = -1.513685$ 时域响应(u) 图 10: 纵向 $\lambda = -1.513685$ 时域响应(w)

图 11: 纵向 $\lambda = -1.513685$ 时域响应(q) 图 12: 纵向 $\lambda = -1.513685$ 时域响应 (θ)

图 13: 纵向 $\lambda = -0.121847 \pm 0.134943i$ 时 图 14: 纵向 $\lambda = -0.121847 \pm 0.134943i$ 时 域响应(u) 域响应(w)

图 15: 纵向 $\lambda = -0.121847 \pm 0.134943i$ 时 图 16: 纵向 $\lambda = -0.121847 \pm 0.134943i$ 时 域响应(q) 域响应 (θ)

图 17: 纵向 $\lambda = 0.121962$ 时域响应(u)

图 18: 纵向 $\lambda = 0.121962$ 时域响应(w)

图 19: 纵向 $\lambda = 0.121962$ 时域响应(q)

图 20: 纵向 $\lambda = 0.121962$ 时域响应(θ)

3.5.4 横向模态激励响应

对于纵向状态变量,矩阵A有四个特征值: -0.365721±2.636124*i*, -2.653124, -0.015255, 实部均小于零,各个特征值对应的模态激励都是稳定的。其中共轭特征值对应荷兰滚模态,大的负特征根对应滚转衰减模态,小的负特征根对应螺旋模态。具体结果如下:

图 21: 横向 $\lambda = -0.365721 \pm 2.636124i$ 时 图 22: 横向 $\lambda = -0.365721 \pm 2.636124i$ 时 域响应(v) 域响应(p)

图 23: 横向 $\lambda = -0.365721 \pm 2.636124i$ 时 图 24: 横向 $\lambda = -0.365721 \pm 2.636124i$ 时 域响应(r) 域响应 (ϕ)

荷兰滚模态涉及到所有变量,是带有一定侧滑的滚转和偏航复合运动。该 特征值表明,荷兰滚模态的周期比较短,振荡阻尼也很小,这给飞行员在突风 条件下着陆造成困难。

图 25: 纵向 $\lambda = -2.653124$ 时域响应(v) 图 26: 横向 $\lambda = -2.653124$ 时域响应(p)

图 27: 横向 $\lambda = -2.653124$ 时域响应(r) 图 28: 横向 $\lambda = -2.653124$ 时域响应 (ϕ)

滚转衰减模态是简单的指数稳定模态,时间常数比较小,很快就达到了稳定。

图 29: 横向 $\lambda = -0.015255$ 时域响应(v) 图 30: 横向 $\lambda = -0.015255$ 时域响应(p)

图 31: 横向 $\lambda = -0.015255$ 时域响应(r) 图 32: 横向 $\lambda = -0.015255$ 时域响应 (ϕ)

螺旋模态也是一个指数稳定模态,区别在于它的时间常数更大,需要相当长的时间才达到稳态。

4 附录: 计算程序说明

本文计算程序基于《飞机控制与仿真》课本 [1]上的部分代码,全部采用Fortran语言,除了计算矩阵特征值和特征向量调用Lapack库中的DGEEV子程序,其余程序均由本人完成。计算结果的正确性已经验证,与文献 [2]中的Matlab与Simulation低保真度仿真结果完全一致。

本文程序包含代码如下:

/src

_main.f _aero.f

```
_calAB.f
     _dq.f
     _dq1.f
     _eiq.f
     _jacob.f
     _rk4.f
     _trim.f
  具体子程序说明如下:
1
        program main !主程序
1
       SUBROUTINE F16_AERO (CX, CY, CZ, CL, CM, CN,
2
                           VT, ALPHA, BETA, P, Q, R,
3
       $
                           EL, AIL, RDR, XCG)
4
        !根据状态变量和控制变量计算气动系数
       SUBROUTINE JACOB (FN, F, X, XD, V, IO, JO, ABC, NR, NC)
1
       SUBROUTINE calAB(X, XD, U, Alongitudinal, Blongitudinal
2
3
                    , Alateral, Blateral)
        !采用数值微分的方法计算小扰动方程中的矩阵
4
1
       SUBROUTINE F(X,XD)
2
        !给定状态变量,根据全量运动方程计算对时间的导数XX
1
        subroutine computeEig(AA,N)
2
        !计算矩阵的特征值与特征向量并打印到屏幕AA
        ! 采用阶龙格库塔推进一个时间步长4
1
2
        SUBROUTINE RK4(F,DT,XX,NX)
        !配平程序
1
2
        SUBROUTINE TRIMMER (NV, COST)
```

参考文献

- [1] Stevens L B , Lewis L F . Aircraft control and simulation. Aircraft Engineering and Aerospace Technology, 2003.
- [2] Richard S. Russell. Non-linear F-16 Simulation using Simulink and Matlab. http://www.aem.umn.edu/~balas/darpa_sec/SEC.Software.html, June 2003.