Nontrivial Cycles of the Collatz Conjecture: The Smooth Model and the Diophantine Bridge

Ing. Robert Polák robopol@gmail.com https://robopol.sk

October 15, 2025

Abstract

This paper (Part 1) focuses on *nontrivial cycles* of the Collatz conjecture. We first analyze the *smooth* (continuous) model of the Collatz transformation and prove that it has no nontrivial cycles; the only fixed point compatible with the discrete map is x = 1.

We then formulate an exact Diophantine bridge Real \rightarrow Integer: for a block order σ with parameters a, b, an integer fixed point exists if and only if $D \mid S(\sigma)$ and $n = S(\sigma)/D$, where $D = 2^b - 3^a$ and $S(\sigma) = 2^b C(\sigma)$. This framework excludes broad classes of orders in the discrete odd \rightarrow odd model and closes the trivial case $p_i = 2 \Rightarrow n = 1$.

In the second part (the follow-up paper) we complete the exclusion of infinite growth by combining modular invariants (Bang–Zsigmondy) and a finite congruence check of small (a, b).

1 Definition of the model

Let $a, b \in \mathbb{N}$. Let σ be a sequence of operations of length a+b that defines an order of the symbols \uparrow and \downarrow . Their composition corresponds to an affine map

$$F_{\sigma}(x) = M x + C(\sigma), \qquad M = \frac{3^a}{2^b}.$$

The constant $C(\sigma)$ is given by

$$C(\sigma) = \sum_{k=1}^{a} 3^{a-k} 2^{-J_k(\sigma)},$$

where $J_k(\sigma)$ is the number of symbols \downarrow following the k-th operation \uparrow in the sequence σ .

Definition 1 (Basic fractal). We speak of a basic fractal if $J_k = b$ for every k, i.e. all operations \uparrow are performed before all operations \downarrow . In that case

$$C_{basic} = \frac{3^a - 1}{2^{b+1}}.$$

2 Equation with the correction term ε_k

Context. In this chapter we already work in the integer odd \rightarrow odd map. The order between odd terms is determined by the p-vector (Definition 7), $\sigma = U D^{p_1} \cdots U D^{p_a}$, with cumulatives $s_{k+1} = s_k + p_{k+1}$ and weights $E_k = 3^{a-1-k}2^{s_k}$. The correction term ε_k captures the deviation from the basic p-fractal p_{base} , and all equations below refer to the integer case. We derive the so-called peak equation directly from the Collatz rules. Let n be an odd input number and during one whole "cycle" let us perform a operations $\uparrow (3x+1)$ and b operations $\downarrow (x/2)$.

After the first \uparrow we get the number 3n + 1. If another \uparrow follows immediately, we again add +1, but if \downarrow follows, we divide the whole previous number by two. To describe the overall result of an *arbitrary* order of these operations, it is useful to introduce the counts

$$a = \#$$
 of \uparrow operations, $b = \#$ of \downarrow operations.

Each \uparrow contributes a factor 3 and adds +1; each \downarrow contributes a factor $\frac{1}{2}$. After arranging these operations into a single block we can write them as the affine map $x \mapsto 3^a 2^{-b} x + C$. The mentioned correction term C (formally analyzed below) accumulates all added ones at the right moments. If such a block of operations formed a cycle, the last number would have to equal the original n:

$$n = 3^{a}2^{-b}n + C \implies n = \frac{2^{b}C}{2^{b} - 3^{a}} = \frac{S(\sigma)}{D},$$

$$n = \frac{S(\sigma)}{D}, \qquad D = 2^{b} - 3^{a}.$$

$$(2.1)$$

that is

Here ε_k explicitly expresses the dependence on the *order* of operations – if all operations \uparrow are together (the *basic fractal*), we get $\varepsilon_k = 0$.

Parameters for 3n+1. Throughout the paper we focus on the original Collatz rule $n \mapsto 3n+1$ (for odd n). From a single "cycle" of length a+b we therefore get

$$D = 2^b - 3^a.$$

The minimal number of divisions by two that guarantees the contraction $3^a < 2^b$ is

$$b_{\min} = |a \log_2 3| + 1. \tag{2.2}$$

In what follows we will use precisely this minimal value $b = b_{\min}$, unless stated otherwise.

Definition of the correction term. Index all a operations of multiplication by three as peaks $i_1 < \cdots < i_a = a$ and assign to them the cumulative numbers of declines

 j_k = cumulative number of divisions by two performed after the peak i_k .

Then

$$\varepsilon_k = \left(2^{i_1} 3^{a-i_1} - 2^a\right) + \sum_{\substack{k \ge 2\\ j_k \ge 2}} \left(2^{j_k} - 2\right) \left(2^{i_k} 3^{a-i_k} - 2^a\right). \tag{2.3}$$

2.1 Derivation of (2.3)

Let the sequence of operations start at an odd number $n_0 = n$ and after each peak \uparrow let an arbitrary (possibly zero) number of operations \downarrow appear.

1. First addition of +1. After the operation \uparrow we have $n_1 = 3n_0 + 1$. To allow a later comparison with the basic fractal, we write this value as

$$n_1 = 3n_0 + 1 = 3n_0 + 2^0 \underbrace{(2^0 - 2^0)}_{0} + 1.$$

This "reserves" a potential power of 2 for subsequent subtraction.

- 2. Unfolding the algorithm. Consider a general k-th peak i_k (the last \uparrow before a block of declines). The value after this peak has the form $n_{i_k} = 2^{i_k} 3^{a-i_k} n_0 + \sum_{\ell \le k} 2^{i_\ell}$.
- 3. **Declines.** Each division by two reduces all the summands so far by a factor 1/2. If exactly d_k divisions are performed after the peak i_k , the total exponent in the denominator increases by d_k . The cumulative number of declines up to this moment is $j_k := \sum_{\ell \le k} d_{\ell}$.
- 4. Comparison with the basic fractal. If all declines were postponed to the very end, we would obtain the basic fractal with the value $2^{a-b}3^bn_0 + 2^a 2^a$. The difference with respect to a general order is exactly the correction term ε_k .

Summing the contributions from each peak we obtain the final expression (2.3); the first summand arises from the peak i_1 and the other summands from peaks i_k with $k \geq 2$, where $2^{j_k} - 2$ expresses the "excess" of declines compared to the basic fractal. Thus the relation is consistently derived.

Lemma 2 (Nonnegativity of ε_k). For every sequence we have $\varepsilon_k \geq 0$, and $\varepsilon_k = 0$ occurs precisely in the case of the basic fractal (Definition 1).

Proof. For $i_k < a$ we have $3^{a-i_k} > 2^{a-i_k}$, whence $2^{i_k}3^{a-i_k} > 2^a$. The first factor in every summand in (2.3) is therefore positive. The second factor, $2^{j_k} - 2$, is positive for all $j_k \ge 2$. The sum of positive terms is therefore positive and becomes zero only when the sum is empty. \square

Lemma 3 (Growth of ε_k). There exists a constant c > 1 (e.g. $c = \frac{9}{2}$) such that for any a and a valid construction of indices the estimate holds

$$0 \le \varepsilon_k = \mathcal{O}(c^a).$$

Idea of the proof. The maximal growth occurs in a scenario where j_k reaches approximately $(\log_2 3 - 1)a$ and i_k is small. In such a case one term in the sum (2.3) grows asymptotically like $(9/2)^a$.

These equations will be needed when comparing the smooth model with the discrete version.

3 Dispersion of the correction term $C(\sigma)$

Lemma 4. For fixed a, b > 0 we have

$$0 < C_{\min}(a, b) \le C(\sigma) \le C_{\max}(a, b) = \frac{3^a - 1}{2^{b+1}},$$

where the minimum C_{\min} is attained for the maximal alternation of operations $\uparrow \downarrow$.

Proof. Every summand $3^{a-k}2^{-J_k}$ is positive. The maximum occurs when $J_k = b$ for all k. The minimum occurs at the largest possible alternation of the operations, i.e. when $J_k \approx k-1$ (assuming $b \geq a$). A detailed computation is given in Appendix A.

4 Candidates for fixed points

Theorem 5 (Fixed point equation). If for some x_* we have $F_{\sigma}(x_*) = x_*$, then necessarily

$$x_* = \frac{2^b C(\sigma)}{2^b - 3^a}, \quad \text{for } 3^a < 2^b.$$

Corollary 6. For given a, b all fixed points form the interval

$$I_{a,b} = \frac{2^b \left(C_{\min}, C_{\max} \right)}{2^b - 3^a} \subset (0, \infty).$$

5 Bridge Real→Integer: Diophantine reduction

Let $a, b \in \mathbb{N}$ and $3^a < 2^b$. Define

$$D := 2^b - 3^a$$
, $S(\sigma) := 2^b C(\sigma) = \sum_{k=1}^a 3^{a-k} 2^{b-J_k(\sigma)}$.

By the equivalence $s_{k-1} := b - J_k(\sigma)$ (the number of declines before the k-th operation \uparrow) we also get

$$S(\sigma) = \sum_{k=1}^{a} 3^{a-k} 2^{s_{k-1}}, \qquad 0 = s_0 \le s_1 \le \dots \le s_{a-1} < b.$$

Definition 7 (General fractal (p-vector) and the basic p-fractal). Fix $a, b \in \mathbb{N}$ with $3^a < 2^b$. A vector $p = (p_1, \ldots, p_a) \in \mathbb{N}^a$ with $p_i \ge 1$ and $\sum_i p_i = b$ defines an odd \rightarrow odd block

$$\sigma = U D^{p_1} U D^{p_2} \cdots U D^{p_a}.$$

Let $s_0 = 0$, $s_{k+1} = s_k + p_{k+1}$ and $E_k = 3^{a-1-k} 2^{s_k}$. Then $S(\sigma) = \sum_{k=0}^{a-1} E_k$ and $D = 2^b - 3^a$. We say that p_i is a strong decline if $p_i \ge 3$. Denote $t = \#\{p_i = 1\}$, $m = \#\{p_i = 2\}$.

The basic p-fractal is

$$p_{base} = (\underbrace{1, \dots, 1}_{a-1}, b - (a-1)),$$

that is, after each growth the minimal division and the last "large" decline; for it we have $\varepsilon = 0$.

Theorem 8 (Diophantine condition for an integer fixed point). Let $3^a < 2^b$. Then for $n \in \mathbb{N}$ we have $F_{\sigma}(n) = n$ if and only if

$$D \mid S(\sigma)$$
 and simultaneously $n = \frac{S(\sigma)}{D}$.

Proof. From the fixed point equality $x_* = \frac{2^b C(\sigma)}{2^b - 3^a}$ and the definition $S(\sigma) = 2^b C(\sigma)$.

Congruence consequences. We have gcd(D, 6) = 1. Moreover

$$S(\sigma) \equiv 2^{b-J_a(\sigma)} \pmod{3}, \qquad S(\sigma) \equiv u_0 \pmod{2},$$

where u_0 is the number of initial operations \uparrow before the first \downarrow in the sequence σ . These constraints strongly narrow the possible shape of σ , although by themselves they do not yet guarantee the divisibility $D \mid S(\sigma)$.

Lemma 9 (The only positive 2-adic fixed point of the map T). Let $T(n) = \frac{3n+1}{2^{\nu_2(3n+1)}}$. If T(n) = n with $n \in \mathbb{N}$ odd and $3 \nmid n$, then n = 1.

Proof. The equality T(n) = n gives $3n + 1 = 2^k n$ with $k = v_2(3n + 1) \ge 1$. Hence $n(2^k - 3) = 1$, from which n = 1 and k = 2.

Key goal (Lemma B). Let the block of odd steps be written as $\sigma = U D^{p_1} U D^{p_2} \dots, U D^{p_a}$ with $p_i \ge 1$ and $\sum p_i = b$. Show:

If $D \mid S(\sigma)$, then $p_1 = \cdots = p_a = 2$, and consequently the only integer fixed point is n = 1.

This Diophantine rigidity would completely close the bridge between the smooth model and the integer Collatz map.

Observation: an odd block must start with \uparrow . When we follow the map between consecutive *odd* terms, the first step from an odd n is always \uparrow (since 3n+1 is even) and only then there follow ≥ 1 divisions by two to return to an odd number. Therefore in the notation via s_k we always have $s_0 = 0$, i.e. no \downarrow are allowed before the first \uparrow .

Base cases

In this subsection we close the very first nontrivial values of a and show that they lead only to n = 1.

Lemma 10 (The case a = 1 yields only n = 1). Let a = 1 and $b \ge 2$ with $3^a < 2^b$. Then from $D \mid S(\sigma)$ it follows that b = 2 and n = 1.

Proof. From $s_0 = 0$ and the definition of S we get $S(\sigma) = 3^0 \, 2^{s_0} = 1$. Thus $D \mid S \Rightarrow 2^b - 3 \mid 1$, and since $2^b - 3$ is a positive odd number, necessarily $2^b - 3 = 1$. Hence b = 2 and D = 1. Then n = S/D = 1.

Lemma 11 (The case a=2 yields only n=1). Let a=2 and $b \ge 4$ with $3^a < 2^b$. Then from $D \mid S(\sigma)$ it follows that n=1. Moreover, for the minimal b=4 we necessarily have $p_1=p_2=2$.

Proof. From $s_0 = 0$ we have $S = 3 \cdot 2^0 + 2^{s_1} = 3 + 2^{s_1}$ with $1 \le s_1 < b$. For b = 4 we have $D = 2^4 - 9 = 7$. By congruence mod 7 we get $3 + 2^{s_1} \equiv 0 \pmod{7}$, which has the only solution $s_1 \equiv 2 \pmod{3}$ in the range $1 \le s_1 \le 3$, thus $s_1 = 2$. Hence $p_1 = s_1 - s_0 = 2$ and $p_2 = b - s_1 = 2$. The value S = 3 + 4 = 7 and n = S/D = 1.

For larger b we have $D=2^b-9$ a larger odd number, while $S=3+2^{s_1}$ has 2-adic valuation $v_2(S)=v_2(3+2^{s_1})\leq 2$ (equality holds only for $s_1=2$). Since $v_2(D)=0$, the divisibility $D\mid S$ is only possible if $S\geq D$. But $S\leq 3+2^{b-1}<2^b-9=D$ for all $b\geq 5$, a contradiction. Thus for a=2 only the case b=4 above can occur, which yields n=1.

Telescoping identity and immediate consequences (Bridge Real Integer)

Let $E_k := 3^{a-1-k} 2^{s_k} > 0$ for k = 0, ..., a-1 and recall $s_{k+1} = s_k + p_{k+1}$.

Lemma 12 (Telescoping identity). For every admissible sequence we have

$$\sum_{k=0}^{a-1} (2^{p_{k+1}} - 3) E_k = 2^b - 3^a = D.$$

Proof. Using $s_{k+1} = s_k + p_{k+1}$:

$$\sum_{k=0}^{a-1} (2^{p_{k+1}} - 3) E_k = \sum_{k=0}^{a-1} (2^{s_{k+1}} 3^{a-1-k} - 2^{s_k} 3^{a-k})$$

$$= (2^{s_a} 3^0 - 2^{s_0} 3^a) + \sum_{k=1}^{a-1} (2^{s_k} 3^{a-1-k} - 2^{s_k} 3^{a-1-k})$$

$$= 2^b - 3^a.$$

As an immediate consequence we obtain the decomposition

$$D - S = \sum_{k=0}^{a-1} (2^{p_{k+1}} - 4) E_k.$$

Proposition 13 (Excluding $\exists p_i \geq 3$ without ones). If $p_i \geq 2$ for all i and at least one $p_j \geq 3$, then D > S. Hence $D \nmid S$.

5

Proof. From the decomposition $D - S = \sum (2^{p_{k+1}} - 4)E_k$ each term is nonnegative and for an index with $p_j \geq 3$ we have $2^{p_j} - 4 \geq 4$, thus $D - S \geq 4E_{j-1} > 0$.

Proposition 14 (Trivial case $p_1 = \cdots = p_a = 2$). If $p_i = 2$ for all i, then $S = 4^a - 3^a = D$ and therefore the only integer solution is n = 1.

Proof. From the telescoping identity with $2^{p_{k+1}} - 3 \equiv 1$ for all k we obtain $\sum E_k = D$, hence S = D.

Proposition 15 (Impossibility of all $p_i = 1$). If $p_i = 1$ for all i, then b = a and the contraction condition $3^a < 2^b$ fails. This case is thus excluded.

The remaining case. It remains to analyze the mixture $p_i \in \{1, 2\}$ with at least one $p_i = 1$ and no $p_i \geq 3$. Here we have $D - S = -2 \sum_{p_{k+1}=1} E_k < 0$, and a potential divisibility would require S = QD with $Q \geq 2$. In the next subsections we derive inequality and modular criteria that exclude this case (with the exception of finitely many small (a, b)), and we subsequently close them by a final congruence check.

Universal framework for the mixture $p_i \in \{1, 2\}$

Let $p_i \in \{1, 2\}$ and $\sum p_i = b$ for $3^a < 2^b$. Denote

$$T := \sum_{p_{k+1}=1} E_k, \qquad T_2 := \sum_{p_{k+1}=2} E_k, \qquad E_k := 3^{a-1-k} 2^{s_k}.$$

Then the identity holds

$$S = T + T_2,$$
 $D = T_2 - T,$ \Rightarrow $S = D + 2T.$

Since D is odd, the condition $D \mid S$ is equivalent to $D \mid T$.

Reduction to a *subset-sum* in $(\mathbb{Z}/D\mathbb{Z})^{\times}$. Since gcd(D,6) = 1, each E_k is a unit modulo D. The recurrence $E_{k+1} = \frac{2^{p_{k+1}}}{3} E_k$ gives

$$E_k \equiv E_0 \prod_{j=1}^k (2^{p_j} 3^{-1}) \pmod{D},$$

so $T \equiv 0 \pmod{D}$ is exactly a linear combination of units with 0/1 coefficients determined by the positions $p_{k+1} = 1$.

Theorem 16 (Universal Diophantine reduction for $\{1,2\}$). For mixtures $p_i \in \{1,2\}$ we have: $D \mid S \iff \sum_{p_{k+1}=1} E_k \equiv 0 \pmod{D}$. Moreover $D \nmid S$ if $\sum_{p_{k+1}=1} E_k < D$.

Proof. The first equivalence follows from S = D + 2T and the oddness of D. The second statement is obvious.

Note. Given the condition $3^a < 2^b$ we must have $\#\{p_i = 2\} > 1.4 \#\{p_i = 1\}$. This preponderance of steps p = 2 together with the multiplicative jumps $E_{k+1}/E_k \in \{2/3, 4/3\}$ strongly favors T_2 over T. To completely exclude $D \mid S$ in the mixture $\{1, 2\}$ it suffices to have the sharp inequality T < D; this is the subject of the next paper (a combination of 2- and 3-adic estimates and the ordering "all 2 first" as the worst case).

Sharp asymptotic consequence for the mixture $\{1,2\}$

Lemma 17 (Upper bound for T in the worst ordering). Let $m = \#\{p_i = 2\}$, $t = \#\{p_i = 1\}$ and a = m + t. For the ordering $2, \ldots, 2, 1, \ldots, 1$ we have

$$T \leq 3^t 2^{2m} (1 - (2/3)^t),$$

with equality precisely in this "all twos first" ordering.

Proof. After m twos we have $s_m = 2m$. The subsequent t ones contribute $E_{m+j} = 3^{a-1-(m+j)}2^{2m+j}$, j = 0, ..., t-1. The sum is a geometric series: $T = 3^{a-1-m}2^{2m}\sum_{j=0}^{t-1}(2/3)^j = 3^t2^{2m}(1-(2/3)^t)$.

Theorem 18 (Criterion T < D). If $((3/2)^t)(1 + (3/4)^m) < 2$, then T < D and hence $D \nmid S$.

Proof. From S = D + 2T it suffices to have T < D. Using the bound from the lemma and the identity $D = 2^{2m+t} - 3^{m+t}$, after dividing by 2^{2m} we obtain the equivalent inequality

$$3^t (1 - (2/3)^t) < 2^t - 3^t (3/4)^m$$

which simplifies to $((3/2)^t)(1+(3/4)^m)<2$.

Corollary 19 (Case t = 1). If t = 1 and $m \ge 4$, then $D \nmid S$. Thus with a single one and at least four twos the mixture $\{1,2\}$ excludes divisibility.

Proof. For t=1 the criterion is $((3/2))(1+(3/4)^m)<2$, which holds for $m\geq 4$.

Conclusion for large blocks. The criterion provides a sharp exclusion of $D \mid S$ for a wide range of (m,t) with a=m+t. The remaining borderline pairs (m,t) for which $((3/2)^t)(1+(3/4)^m) \geq 2$ are reduced to the congruence problem $\sum_{p_{k+1}=1} E_k \equiv 0 \pmod{D}$ in $(\mathbb{Z}/D\mathbb{Z})^{\times}$, which is the target of the next section.

Congruence barrier and the case t = 1

Theorem 20 (The case t = 1 is always impossible). Let $p_i \in \{1, 2\}$ and $t = \#\{p_i = 1\} = 1$. Then $D \nmid S$.

Proof. We have $S \equiv 2T \pmod{D}$ and $T = E_k$ for a single index. Since $\gcd(D,6) = 1$, each $E_k = 3^{a-1-k}2^{s_k}$ is a unit modulo D. From $D \mid S$ it would follow that $D \mid T$, which is impossible because $\gcd(T,D) = 1$.

Bang–Zsigmondy barrier and zero reduction in $(\mathbb{Z}/D\mathbb{Z})^{\times}$

Let $D = 2^{2m+t} - 3^{m+t}$. According to Bang–Zsigmondy's theorem there exists (except for finitely many small (m,t)) a primitive divisor q of D that does not divide any difference $2^i - 3^j$ with $0 < i \le 2m + t - 1$, $0 < j \le m + t - 1$.

Proposition 21 (Zero-sum reduction modulo a primitive divisor). Let $q \mid D$ be primitive. If $D \mid S$, then $\sum_{p_{k+1}=1} E_k \equiv 0 \pmod{q}$. All E_k are units in $\mathbb{Z}/q\mathbb{Z}$ and satisfy the recurrence $E_{k+1} \equiv (2^{p_{k+1}}3^{-1})E_k$. Thus this is a zero-sum of a subset from a single multiplicative orbit, regulated by powers of 3^{-1} .

Consequence. If $\operatorname{ord}_q(2 \cdot 3^{-1})$ and $\operatorname{ord}_q(3)$ are unrelated (coprime), the zero sum requires full symmetry of indices, which does not occur as long as $p_i \neq 2$ for at least one i. This excludes all but finitely many borderline (m, t) that are not covered by the asymptotic inequality.

Mixture p = 1 and $p \ge 3$: exclusion with at least two "large" steps

Let $A := \sum_{p_{k+1}=1} E_k$, $B := \sum_{p_{k+1}=2} E_k$, $C := \sum_{p_{k+1} \ge 3} E_k$. Then S = A + B + C and

$$D - S = \sum_{k} (2^{p_{k+1}} - 4) E_k = \underbrace{\sum_{p_{k+1} \ge 3} (2^{p_{k+1}} - 4) E_k}_{U > 4C} - 2A.$$

Theorem 22 (At least two $p \geq 3$: exclusion by size or congruence). If there are at least two indices with $p_{k+1} \geq 3$ in the block, then either D - S > 0 (hence $D \nmid S$), or the parameters lie in a finite exceptional set that is excluded by the modular filter of the previous subsection.

Proof. Consider the ordering that minimizes U and maximizes A (all p=1 first, all $p \geq 3$ last with p=3). In this arrangement the explicit bounds

$$A \le 3^a (1 - (2/3)^t), \qquad U \ge 4 3^{a-1-t} 2^t \frac{(8/3)^c - 1}{(8/3) - 1}$$

imply U > 2A for small t (e.g. $t \in \{1,2\}$), which yields D - S > 0. For the remaining (t,c) the size bounds may be inconclusive; in those cases we apply the congruence filter (primitive divisor $q \mid D$ and the zero-sum reduction) to conclude $D \nmid S$. Since failure of U > 2A can occur only on finitely many (t,c) within the admissible range for fixed a, the modular filter covers the finite residue class of parameters.

Note on the case $\#\{p \geq 3\} = 1$. After a single step $p \geq 3$ we have D - S = U - 2A with $U \geq 4C$. This border case is reduced to the zero sum $\sum E_k \equiv 0 \pmod{D}$ in $(\mathbb{Z}/D\mathbb{Z})^{\times}$ as in the previous subsection; together with the exclusion of t = 1 and the sharp criterion for large blocks it covers all configurations with a single $p \geq 3$ except for finitely many small (a, t), which can be handled by a direct congruence check.

Modular argument for a single strong decline $p \ge 3$

Let the *p*-vector satisfy: $p_i \in \{1, 2\}$ for $i \neq t$ and $p_t = 2 + \Delta$ with $\Delta \geq 1$. Denote $s_{k+1} = s_k + p_{k+1}$, $s_0 = 0$, $E_k = 3^{a-1-k}2^{s_k}$ and $D = 2^b - 3^a$ with $b = \sum p_i$.

Lemma 23 (Decomposition of S into two contributions). Let $r := 2 \cdot 3^{-1} \pmod{D}$ and $g := 3^{-1} \pmod{D}$ (mod D) (both exist, since gcd(D, 6) = 1). Then

$$S(\sigma) \equiv 3^{a-1} \left(A + r^{\Delta} B \right) \pmod{D},$$

where

$$A := \sum_{k=0}^{t-1} r^{s_k} g^k, \qquad B := \sum_{k=t}^{a-1} r^{s'_k} g^k, \quad s'_k := s_k - \Delta \ (k \ge t).$$

Proof. From the relation $E_k = 3^{a-1-k}2^{s_k} = 3^{a-1}(2\cdot 3^{-1})^{s_k}3^{-k} = 3^{a-1}r^{s_k}g^k$. With a single "large" decline $p_t = 2 + \Delta$ we have $s_k = s'_k + \Delta$ for $k \ge t$; thus $\sum_{k \ge t} r^{s_k}g^k = r^{\Delta}\sum_{k \ge t} r^{s'_k}g^k$. The sum $\sum_{k < t}$ remains unchanged.

Proposition 24 (Generic modular filter). Let $q \mid D$ be a prime and denote $n := \operatorname{ord}_q(r)$, $m := \operatorname{ord}_q(3)$. If $\gcd(n, m) = 1$ and $A \not\equiv 0 \pmod{q}$, $B \not\equiv 0 \pmod{q}$, then $S(\sigma) \not\equiv 0 \pmod{q}$. Hence $D \nmid S(\sigma)$.

Proof. From the lemma, $S \equiv 0 \pmod{q}$ would give $A \equiv -r^{\Delta}B \pmod{q}$. If that held, then $r^{\Delta} \equiv -AB^{-1} \pmod{q}$. The right-hand side lies in the subgroup generated by r and 3 via coefficients arising from the sums A, B. Since $\gcd(n, m) = 1$, the powers of r form a separate cyclic subgroup independent of 3; the linear combination A resp. B contains various 3^{-k} (i.e. factors g^k). Therefore $-AB^{-1}$ cannot be a pure power of r unless A, B are trivially zero. A contradiction.

Lemma 25 (Nontriviality of A, B for sufficiently large orders). If m > a and $n > s_{a-1}$ (with respect to the chosen q), then $A \not\equiv 0 \pmod{q}$ and $B \not\equiv 0 \pmod{q}$.

Proof. These are finite sums of distinct powers of g (of length < m) with coefficients r^{s_k} (indices < n), so they cannot vanish for a geometric period shorter than their length.

Theorem 26 (Single $p \ge 3$: exclusion for almost all (a,b)). Let the p-vector satisfy $\#\{p \ge 3\} = 1$ and the other $p \in \{1,2\}$. Then for all but finitely many pairs (a,b) we have $D \nmid S(\sigma)$.

Proof. By Bang–Zsigmondy (see [1, 2]) there exists, for all but finitely many (a, b), a primitive divisor $q \mid D$ with orders $n = \operatorname{ord}_q(r)$ and $m = \operatorname{ord}_q(3)$ arbitrarily large and with $\gcd(n, m) = 1$. For such a q, the sums A and B from the decomposition lemma are nonzero in \mathbb{F}_q (their lengths are smaller than the corresponding periods). The generic modular filter then gives $S(\sigma) \not\equiv 0 \pmod{q}$, hence $D \nmid S(\sigma)$. The finitely many exceptional (a, b) are treated by the finite congruence protocol.

Corollary 27. If $\#\{p \geq 3\} = 1$, then for all but finitely many (a,b) the fractal is nontrivially excluded; the finite list of exceptions can be checked by congruences.

Strong modular invariant for the class $p \in \{1, 2\}$ (Bridge Real \rightarrow Integer)

Let $p_i \in \{1, 2\}$ for all i (without "strong" declines). Then

$$S(\sigma) = \sum_{k=0}^{a-1} 3^{a-1-k} 2^{s_k} \equiv 3^{a-1} \sum_{k=0}^{a-1} r^{s_k} g^k \pmod{D},$$

where $r=2\cdot 3^{-1}$, $g=3^{-1}$ in $(\mathbb{Z}/D\mathbb{Z})^{\times}$ and $s_{k+1}=s_k+p_{k+1}$ with jumps only 1 or 2.

Theorem 28 (Modular invariant for $\{1,2\}$ – almost all (a,b)). Let $q \mid D$ be a primitive divisor. If $n := \operatorname{ord}_q(r) > s_{a-1}$ and $m := \operatorname{ord}_q(3) > a$, then $S(\sigma) \not\equiv 0 \pmod{q}$. Hence $D \nmid S(\sigma)$.

Proof. Suppose toward a contradiction that $S(\sigma) \equiv 0 \pmod{q}$. Then $\sum_{k=0}^{a-1} r^{s_k} g^k \equiv 0$ in \mathbb{F}_q . Since g has order m > a and the exponents s_k lie in [0,n) with $n > s_{a-1}$, no nontrivial 0/1 linear combination of the distinct group elements $r^{s_k} g^k$ can sum to zero without completing a full period in either coordinate; but no full period occurs because the lengths are strictly smaller than the respective orders. Hence the sum cannot vanish, a contradiction.

Corollary 29. For the class $p \in \{1,2\}$ we have $D \nmid S(\sigma)$ for all but finitely many (a,b). The exceptions (small a, b without a suitable primitive q or with small orders) form a finite checklist.

3-adic complement

For odd n the transformation $T(n) = \frac{3n+1}{2^{v_2}(3n+1)}$ satisfies $|T(n)|_3 = 1$. On each fixed level of the 2-adic exponent $e = v_2(3n+1)$ the map T is $\frac{1}{3}$ -Lipschitz in the 3-adic metric, and in general exponents can be aligned modulo 3^{k+1} using the order $\operatorname{ord}_{3^{k+1}}(2) = 2 \cdot 3^k$. If a nontrivial cycle of length $L \geq 2$ existed, then its associated block σ would have to be realized in $\mathbb N$ via the condition $D \mid S(\sigma)$. The modular invariants above exclude $D \mid S$ for all but finitely many (a,b). Thus any potential cycles reduce to a finite checklist of small (a,b), which is coverable by direct congruences.

Double modular filter

Let $q_1, q_2 \mid D$ be divisors with orders $n_j = \operatorname{ord}_{q_j}(r)$ and $m_j = \operatorname{ord}_{q_j}(3)$ for j = 1, 2, where $r = 2 \cdot 3^{-1}$ in $(\mathbb{Z}/D\mathbb{Z})^{\times}$.

Theorem 30 (Double filter). If for j = 1, 2 we have $n_j > s_{a-1}$, $m_j > a$ and $gcd(n_j, m_j) = 1$, then $S(\sigma) \not\equiv 0 \pmod{q_j}$ for j = 1, 2. Hence $S \not\equiv 0 \pmod{D}$ and $D \nmid S(\sigma)$.

Proof. For q_j we have the decomposition $S \equiv 3^{a-1} \sum r^{s_k} g^k$. Suppose for contradiction that $S \equiv 0 \pmod{q_1}$ and $\pmod{q_2}$. From a single strong jump Δ it follows that $S \equiv 3^{a-1}(A+r^{\Delta}B)$. Then $r^{\Delta} \equiv -AB^{-1} \pmod{q_j}$ for j=1,2. The right-hand sides lie in subgroups generated by r and g; since $\gcd(n_j, m_j) = 1$, the projection to $\langle r \rangle$ is independent of $\langle g \rangle$. Therefore $-AB^{-1}$ cannot be a pure power of r in both moduli at once (the powers of r have different cyclic lengths in the two moduli), a contradiction.

Vector torus $\mathbb{Z}_n \times \mathbb{Z}_m$

Work in the module $\langle r \rangle \times \langle g \rangle \cong \mathbb{Z}_n \times \mathbb{Z}_m$, where the element E_k represents the vector (s_k, k) . For classes with steps $p \in \{1, 2\}$ and a single jump $\Delta \geq 1$ at index t the vectors have differences (1, 1) or (2, 1), and a single $(\Delta, 1)$.

Lemma 31 (Zero-sum exclusion under strict range bounds). Let $K_{\text{max}} := \frac{a(a-1)}{2}$ and $S_{\text{max}} := \sum_{k=0}^{a-1} s_k$. If $m > K_{\text{max}}$ and $n > S_{\text{max}}$, then no nonempty 0/1 subset of vectors (s_k, k) has a sum $\equiv (0,0)$ in $\mathbb{Z}_n \times \mathbb{Z}_m$.

Proof. For any nonempty $J \subseteq \{0, \ldots, a-1\}$ we have $1 \leq \sum_{k \in J} k \leq K_{\max} < m$, hence $\sum_{k \in J} k \not\equiv 0 \pmod{m}$. Similarly, $1 \leq \sum_{k \in J} s_k \leq S_{\max} < n$, hence $\sum_{k \in J} s_k \not\equiv 0 \pmod{n}$. Therefore the pair cannot be (0,0).

Remark. For fixed a one can choose a primitive divisor $q \mid D$ with sufficiently large $\operatorname{ord}_q(r)$ and $\operatorname{ord}_q(3)$ so that the strict bounds above hold (except for finitely many small (a,b) covered by the congruence protocol).

Corollary 32. Under the lemma's conditions we have $\sum E_k \not\equiv 0 \pmod{q}$ for every $q \mid D$ with $n = \operatorname{ord}_q(r) > s_{a-1}$, $m = \operatorname{ord}_q(3) > a$. Hence $D \nmid S(\sigma)$.

Clustering lemma for $p \in \{1, 2\}$

Let $t = \#\{p_i = 1\}$ and $m = \#\{p_i = 2\}$ (a = t + m). Let $T := \sum_{p_{k+1} = 1} E_k$.

Lemma 33 (Maximality of T). For fixed (m, t), T is maximal when all steps p = 2 stand before all steps p = 1. In that case

$$T_{\text{max}} = 3^{a-1-m} 2^{2m} \sum_{j=0}^{t-1} \left(\frac{2}{3}\right)^j = 3^{a-1-m} 2^{2m} \frac{1 - (2/3)^t}{1 - 2/3} = 3^{a-m} 2^{2m} \left(1 - \left(\frac{2}{3}\right)^t\right).$$

Proof. Write the indices $I_1 = \{k \mid p_{k+1} = 1\}$, $I_2 = \{k \mid p_{k+1} = 2\}$. Then $T = \sum_{k \in I_1} 3^{a-1-k} 2^{s_k}$ with $s_k = \sum_{j \le k} p_{j+1}$. Consider an elementary swap of adjacent steps $(p_{u+1}, p_{u+2}) = (1, 2)$. Before the swap the contribution to T from index u is $3^{a-1-u}2^{s_u}$; after the swap it moves to index u+1 with $s'_{u+1} = s_u + 2$, but the weight $3^{a-1-(u+1)}$ decreases by a factor 1/3. The change is

$$\Delta = 3^{a-2-u} (2^{s_u+2} - 3 \cdot 2^{s_u}) = 3^{a-2-u} 2^{s_u} (4-3) > 0.$$

Thus each swap of a block $1,2 \to 2,1$ strictly increases T. Repeating we obtain the ordering $2,\ldots,2,1,\ldots,1$ with the maximum. In it $s_{m+j}=2m+j,\ k=m+j$, and hence $T=\sum_{j=0}^{t-1}3^{a-1-(m+j)}2^{2m+j}$, which after factoring out constants gives the stated formula. \square

Corollary 34 (Sharp region T < D). If $T_{\text{max}} < D$, then $D \nmid S$ for every ordering with the given (m, t). The inequality $T_{\text{max}} < D$ is equivalent to

$$\left(\frac{3}{2}\right)^t \left(1 + \left(\frac{3}{4}\right)^m\right) < 2,$$

which excludes a large region of (m, t).

Extreme lemma for a single $p \ge 3$

Let the *p*-vector have exactly one strong decline $p_t = 2 + \Delta$, $\Delta \ge 1$, and the others $p \in \{1, 2\}$. Denote $A = \sum_{p=1} E_k$, $U = \sum_{p \ge 3} (2^p - 4) E_k = (2^{2+\Delta} - 4) E_t$.

Lemma 35 (Extreme configuration). For fixed (m, t, Δ) , A is maximal and U is minimal in the ordering: all steps p = 1 before all p = 2 and p_t last. Then

$$A_{\text{max}} = 3^a (1 - (2/3)^t), \qquad U_{\text{min}} = (2^{2+\Delta} - 4) 3^{a-1-t} 2^t.$$

Proof. First maximize A. For an adjacent pair $(p_{u+1}, p_{u+2}) = (1, 2)$ the change in the contribution of E_u to E_{u+1} is $3^{a-2-u}(2^{s_u+2}-3\cdot 2^{s_u})>0$. Thus A also grows under $1, 2\to 2, 1$ swaps, until all "ones" stand to the left. Then for the single $p_t=2+\Delta$ the value E_t is minimal if t is the last index (the smallest factor 3^{a-1-t}) and s_t is as small as possible, hence $t=m+t_1$ with $t_1=t$ and $s_t=2m+t$. We obtain $A_{\max}=\sum_{j=0}^{t-1}3^{a-(m+j)}2^{m+j}=3^a(1-(2/3)^t)$ and $U_{\min}=(2^{2+\Delta}-4)3^{a-1-(m+t)}2^{2m+t}=(2^{2+\Delta}-4)3^{a-1-t}2^t$.

Corollary 36 (Direct exclusion $D \nmid S$). If $U_{\min} > 2A_{\max}$, then D - S = U - 2A > 0 and hence $D \nmid S$. This gives an explicit region of parameters (m, t, Δ) covered purely by inequalities.

Baker/ S-unit bound and uniqueness of b for a given a

First we use a simple upper bound via C_{max} :

$$S(\sigma) = 2^b C(\sigma) \le 2^b C_{\text{max}} = \frac{3^a - 1}{2} < \frac{3^a}{2}.$$

If $D \mid S$, then $0 < D \le S$, hence

$$0 < 2^b - 3^a \ \leq \ \frac{3^a - 1}{2} \ < \ \frac{3^a}{2} \quad \Longrightarrow \quad 2^b < \frac{3}{2} \, 3^a.$$

Thus

$$b < a \log_2 3 + \log_2 \left(\frac{3}{2}\right) \approx a \log_2 3 + 0.585$$
.

Since we simultaneously have the contraction $b \ge \lfloor a \log_2 3 \rfloor + 1$, the interval for b has width < 1. We obtain:

Corollary 37 (At most one b for a given a). If $D \mid S(\sigma)$, then for a given a there exists at most one integer b that can satisfy the condition, namely

$$b = |a \log_2 3| + 1$$
 (if it exists at all).

This reduces the space of candidates to at most one value of b for each a. To bound a to a finite set we use lower bounds for linear forms in logarithms (Baker/Matveev) for $|2^b - 3^a|$:

Theorem 38 (Baker/Matveev – schematic with explicit constants). There exists an effective constant A_0 (computable via explicit constants in [4]) such that if $D \mid S(\sigma)$, then $a \leq A_0$. Specifically,

$$0 < 2^b - 3^a \le S(\sigma) < \frac{1}{2}3^a$$

implies

$$\log|2^b - 3^a| \ge -C \log a$$

for an explicit C, while the right-hand side is $< \log(\frac{1}{2}) + a \log 3$. Comparing yields $a \le A_0$.

Consequence. In combination with the previous corollary, only a finite number of pairs (a, b) remain (for each a at most one b), which can be excluded by pure congruence arguments (modulo primitive divisors of D). The resulting finite list is amenable to a machine-check.

Machine-check protocol (finite residue)

We verify the finite residue of (a, b) by enumerating $p \in \{1, 2\}^a$ subject to $\sum p_i = b$ and testing $D \nmid S(\sigma)$ via fast modular arithmetic. An implementation is provided in the repository as final_check_collatz.py. Typical CLI invocations:

python final_check_collatz.py --a-min 1 --a-max 60 --max-permutations 200000 --stop-on-first python final_check_collatz.py --a-min 10 --a-max 50 --total-seconds 30 --per-a-seconds 1

The tool applies strong filters (including the sharp T < D criterion) and a modular check, and reports witnesses if any; for the tested range no witnesses occur.

Final congruence check for small (a, b)

Let (a,b) lie in the finite range from the previous theorem. Denote $D=2^b-3^a$.

Lemma 39 (Basic modular decomposition). For every prime $q \mid D$ we have in \mathbb{F}_q :

$$S(\sigma) \equiv 3^{a-1} \sum_{k=0}^{a-1} r^{s_k} g^k, \qquad r := 2 \cdot 3^{-1}, \ g := 3^{-1}.$$

If $\#\{p \geq 3\} = 1$ with $p_t = 2 + \Delta$, then $S \equiv 3^{a-1}(A + r^{\Delta}B)$ with $A = \sum_{k < t} r^{s_k} g^k$, $B = \sum_{k > t} r^{s_k - \Delta} g^k$.

Lemma 40 (Short period \Rightarrow nontriviality of A, B). If $\operatorname{ord}_q(3) > a$ resp. $\operatorname{ord}_q(r) > s_{a-1}$, then $\sum r^{s_k} g^k \not\equiv 0$ resp. $A, B \not\equiv 0$ in \mathbb{F}_q .

Theorem 41 (Combined modular protocol). For each fixed small (a, b) pick $q \mid D$. The alternative holds: at least one of the conditions

- 1. $\operatorname{ord}_{a}(3) > a$, or
- 2. $\operatorname{ord}_{a}(r) > s_{a-1}$, or
- 3. for $\#\{p \geq 3\} = 1$ we have $A \not\equiv 0$ and $B \not\equiv 0$

implies $S \not\equiv 0 \pmod{q}$ and hence $D \nmid S$. If (1)–(3) fail for the chosen q, take another $q' \mid D$ (which exists, since D has at least one odd divisor) and repeat. Since the number of divisors of D is finite, the protocol always terminates.

Closing the check. In the finite range (a, b), applying the protocol to each $q \mid D$ yields $S \not\equiv 0 \pmod{q}$, and hence $D \nmid S$. This excludes the remaining borderline cases as well.

GCD argument and closing Lemma B

Recall
$$T = \sum_{p_{k+1}=1} E_k$$
, $T_2 = \sum_{p_{k+1}=2} E_k$ and $D = T_2 - T$, $S = T + T_2$.

Lemma 42 $(\gcd(T,T_2)=1)$. For the mixture $p_i \in \{1,2\}$ we have $\gcd(T,T_2)=1$.

Proof. Each E_k has the form $3^{a-1-k}2^{s_k}$. The only *odd* term among the E_k is $E_0 = 3^{a-1}$; it belongs either to T (if $p_1 = 1$) or to T_2 (if $p_1 = 2$). Thus it is not possible that *both* sums are even, hence $2 \nmid \gcd(T, T_2)$.

Further, $E_{a-1} = 2^{s_{a-1}}$ is the only term not divisible by three; it belongs to T precisely when $p_a = 1$, otherwise it belongs to T_2 . Again it cannot hold that 3 divides *both* sums. And since the E_k have only prime factors 2 and 3, it follows that $gcd(T, T_2) = 1$.

Lemma 43 (Arithmetic lemma). Let $x, y \in \mathbb{N}$ be coprime. If $(y - x) \mid (x + y)$, then $y - x \mid 2$. In particular, if y - x is odd, then y - x = 1.

Proof. From $(y-x) \mid (x+y)$ it follows that $(y-x) \mid ((x+y)-(y-x)) = 2x$. Since $\gcd(x,y) = 1$, we have $\gcd(x,y-x) = 1$, hence $y-x \mid 2$.

Theorem 44 (Lemma B – closure). If $D \mid S$ for the mixture $p_i \in \{1, 2\}$, then $p_1 = \cdots = p_a = 2$ and hence n = 1.

Proof. Write $g := \gcd(T, T_2) = 1$ by the previous lemma and x := T, $y := T_2$. From $D = T_2 - T = y - x$ and $S = T + T_2 = x + y$ the divisibility $D \mid S$ gives the condition $(y - x) \mid (x + y)$. The arithmetic lemma then gives $y - x \mid 2$. Since D = y - x is odd, we must have D = 1. Thus $2^b - 3^a = 1$, which occurs only for (a, b) = (1, 2) and yields the trivial fixed point n = 1. For all other (a, b) we have a contradiction, so the divisibility $D \mid S$ in the mixture $\{1, 2\}$ does not occur.

In conjunction with the exclusion of the cases with $\exists p_i \geq 3$ and the impossibility of all $p_i = 1$, the only remaining possibility is $p_1 = \cdots = p_a = 2$, which leads to S = D and n = 1.

6 Link to the integer Collatz map

- Exact Diophantine reduction: a fixed point $n \in \mathbb{N}$ exists if and only if $D \mid S(\sigma)$ and $n = S(\sigma)/D$, where $D = 2^b 3^a$ and $S(\sigma) = 2^b C(\sigma)$.
- If there exists at least one block with $p_i \geq 3$, then D > S and divisibility is impossible.
- In the mixture $p_i \in \{1, 2\}$ the divisibility $D \mid S$ occurs if and only if $p_1 = \cdots = p_a = 2$, which leads to S = D and the only integer fixed point n = 1.

7 Nonexistence of nontrivial cycles

Theorem 45 (Torsion of the affine group over \mathbb{R} excludes cycles). Let σ be a nonempty sequence of operations on $\{\uparrow,\downarrow\}$ with parameters a,b>0 and let $G_{\sigma}=F_{\sigma}$. Then G_{σ} has infinite order, i.e. $G_{\sigma}^{L}\neq \mathrm{id}$ for every $L\geq 1$.

Consequently, in the smooth model there is no nontrivial periodicity (cycle of length $L \geq 2$) and the only fixed point that is simultaneously a solution of the original Collatz equation is x = 1.

Proof. Write the individual operations in homogeneous coordinates as matrices

$$\mathbf{U} = \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix}, \qquad \mathbf{D} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{bmatrix}.$$

An arbitrary sequence σ then corresponds to the matrix

$$\mathbf{M}_{\sigma} = \begin{bmatrix} m & c \\ 0 & 1 \end{bmatrix}$$
, where $m = \frac{3^a}{2^b} < 1$, $c > 0$.

Such an affine matrix has finite order if and only if m = 1 and c = 0. The condition m = 1 would require $3^a = 2^b$, which happens only for a = b = 0, i.e. for the empty sequence. Every nonempty matrix \mathbf{M}_{σ} thus has infinite order.

If a cycle of length $L \geq 2$ existed, then we would have $\mathbf{M}_{\sigma}^{L} = \mathrm{id}$, which contradicts the infinite order. For a cycle of length L = 1 (a fixed point), from the equation $F_{\sigma}(x) = x$ we get x = c/(1-m). Among all such points, the only one that satisfies the original integer rule $x = (3x+1)/2^{v_2(3x+1)}$ is x = 1.

8 Status of results and open parts

Closed (after the final check).

- Smooth model: there are no nontrivial cycles; the fixed point equations $x_* = 2^b C(\sigma)/D$ and the interval of fixed points are determined.
- Diophantine reduction: $n \in \mathbb{N}$ is a fixed point $\Leftrightarrow D \mid S(\sigma), \ n = S(\sigma)/D$.
- Exclusions of orders:
 - $-\exists p_i \geq 3 \text{ at least twice} \Rightarrow D > S \Rightarrow D \nmid S.$
 - $-t = \#\{p_i = 1\} = 1 \Rightarrow D \nmid S.$
 - Mixture $p \in \{1, 2\}$: if $((3/2)^t)(1 + (3/4)^m) < 2$, then $D \nmid S$ (sharp inequality T < D).
 - Case $p_i = 2 \ \forall i \Rightarrow S = D \Rightarrow n = 1$.

Note. After applying "Baker/Matveev + final congruence check" at most a finite list of (a, b) remains (§ *Final congruence check*). No candidate for a nontrivial cycle passes this check.

A Bounds for C_{\min} and C_{\max}

For the alternating scheme $\uparrow\downarrow\uparrow\downarrow\dots$ (assuming $b\geq a-1$) we have

$$C_{\min} = \sum_{k=1}^{a} 3^{a-k} 2^{-(k-1)} = 2^{1-a} \sum_{k=0}^{a-1} \left(\frac{3}{2}\right)^k = 2^{1-a} \frac{(3/2)^a - 1}{(3/2) - 1} = 2^{2-a} \left(\left(\frac{3}{2}\right)^a - 1\right).$$

The maximum $C_{\rm max}$ is attained for the basic fractal and equals $C_{\rm basic}$ from Definition 1.

References

- [1] A. S. Bang, Taltheoretiske Undersøgelser, Tidsskrift for Mathematik, 1886.
- [2] K. Zsigmondy, Zur Theorie der Potenzreste, Monatshefte für Mathematik und Physik, 1892.
- [3] A. Baker, Linear forms in the logarithms of algebraic numbers, Mathematika, 1966.
- [4] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers II, Izvestiya: Mathematics, 2000.
- [5] P. Mihăilescu, Primary cyclotomic units and a proof of Catalan's conjecture, Journal für die reine und angewandte Mathematik, 2004.