Multimodal graph networks

Overview

- Multimodal survey
 - Multimodal disciplines
 - Multimodal representations
- Multimodal VAE
- GNN survey
 - 3 frameworks
- Papers
 - Neuromatch
 - Graph matching networks
 - Graph Auto Encoder
 - Neural relational inference
- Discussion
 - Input/output, latent
 - Which graphs
 - Graph similarities

Multimodal learning

- Multimodal problems
 - Alignment
 - Explicit (goal of model)
 - Implicit (side-effect of model/loss)
 - Translation
- Further disciplines
 - Representations
 - Co-Learning (Transfer learning)
 - Fusion (Inference)
- Fusion types
 - Early fusion
 - Concat (or something easy) almost at start
 - Late fusion
 - Train unimodal first, then combine later

Multimodal representations

- Representation wishlist
 - Similarity in latent space means similarity in concept space
 - Usefulness for discriminative tasks
 - Can miss modalities
 - Can fill modalities
- Representation types
 - Joint representation → in same space
 - Autoencoder
 - Coordinated representation → in comparable space
 - Canonical correlation analysis

MVAE

$$p_{\theta}(x_1, x_2, ..., x_N, z) = p(z)p_{\theta}(x_1|z)p_{\theta}(x_2|z)\cdots p_{\theta}(x_N|z)$$

- Assume modalities are conditionally independent
- Approximate inference network

$$o$$
 Product of experts $p(z|x_1,...,x_N) \propto \frac{\prod_{i=1}^N p(z|x_i)}{\prod_{i=1}^{N-1} p(z)} \approx \frac{\prod_{i=1}^N [\tilde{q}(z|x_i)p(z)]}{\prod_{i=1}^{N-1} p(z)} = p(z) \prod_{i=1}^N \tilde{q}(z|x_i).$

- ELBO
 - Not 2^N, but in O(N)

$$ELBO(x_1,...,x_N) + \sum_{i=1}^{N} ELBO(x_i) + \sum_{j=1}^{k} ELBO(X_j)$$

3 GNN-Frameworks

- Message Passing (simple, popular)
 - Edge update
 - M tangled NN for all edges
 - Node update
 - U tangled NN for all nodes
 - End: global aggregation
- Non-local NN (graph attention)
 - $f \rightarrow attention$
 - $g \rightarrow NN$

$$\mathbf{m}_v^{t+1} = \sum_{w \in \mathcal{N}_v} M_t \left(\mathbf{h}_v^t, \mathbf{h}_w^t, \mathbf{e}_{vw} \right)$$

$$\mathbf{h}_v^{t+1} = U_t \left(\mathbf{h}_v^t, \mathbf{m}_v^{t+1} \right)$$

$$\mathbf{\hat{y}} = R(\{\mathbf{h}_v^T | v \in G\})$$

$$\mathbf{h}_i' = \frac{1}{\mathcal{C}(\mathbf{h})} \sum_{\forall j} f(\mathbf{h}_i, \mathbf{h}_j) g(\mathbf{h}_j)$$

3 GNN-Frameworks

- Graph Networks (general)
 - Edge updates
 - Every edge
 - All incident edges of a node
 - All edges to global
 - Node updates
 - Every node
 - Global update
 - One global from
 - Prev. global
 - All nodes
 - All edges

$$\begin{aligned} \mathbf{e}_{k}' &= \phi^{e} \left(\mathbf{e}_{k}, \mathbf{h}_{r_{k}}, \mathbf{h}_{s_{k}}, \mathbf{u} \right) & & \mathbf{\bar{e}}_{i}' &= \rho^{e \to h} \left(E_{i}' \right) \\ \mathbf{h}_{i}' &= \phi^{h} \left(\mathbf{\bar{e}}_{i}', \mathbf{h}_{i}, \mathbf{u} \right) & & \mathbf{\bar{e}}' &= \rho^{e \to u} \left(E' \right) \\ \mathbf{u}' &= \phi^{u} \left(\mathbf{\bar{e}}', \mathbf{\bar{h}}', \mathbf{u} \right) & & \mathbf{\bar{h}}' &= \rho^{h \to u} \left(H' \right) \end{aligned}$$

(c) Recurrent GN blocks

Fig. 3. Examples of architectures composed by GN blocks. (a) The sequential processing architecture; (b) The encode-process-decode architecture; (c) The recurrent architecture.

NeuroMatch

- Message Passing
- Curriculum training

- Check all neighbourhoods and try to match them in embedding space
- Much faster compared to combinatorial
- Custom Hinge loss in embeddings
 - Z is 2-dimensional

$$\begin{split} \mathcal{L}(z_q, z_u) &= \sum_{(z_q, z_u) \in P} E(z_q, z_u) + \sum_{(z_q, z_u) \in N} \max\{0, \alpha - E(z_q, z_u)\}, \text{where} \\ E(z_q, z_u) &= ||\max\{0, z_q - z_u\}||_2^2 \end{split}$$

Graph Matching Networks

- Message Passing
- Additional Edges
 - Between graphs

-

Figure 2. Illustration of the graph embedding (left) and matching models (right).

- Embeddings only in contrast to another graph
 - No standalone-embedding, if using a reference graph, then just another NN

Graph Auto Encoder

- Exists
 - by Kipf & Welling
- Try to model the adjacency matrix A
 - Amount of nodes given
- μ,σ estimated with GCN
- Every node has a z
- p(Z) was a weakness
 - Keep graph sparse

$$\begin{split} q(\mathbf{Z} \,|\, \mathbf{X}, \mathbf{A}) &= \prod_{i=1}^N q(\mathbf{z}_i \,|\, \mathbf{X}, \mathbf{A}) \,, \ \, \text{with} \quad q(\mathbf{z}_i \,|\, \mathbf{X}, \mathbf{A}) = \mathcal{N}(\mathbf{z}_i \,|\, \boldsymbol{\mu}_i, \text{diag}(\boldsymbol{\sigma}_i^2)) \,. \\ \\ p\left(\mathbf{A} \,|\, \mathbf{Z}\right) &= \prod_{i=1}^N \prod_{j=1}^N p\left(A_{ij} \,|\, \mathbf{z}_i, \mathbf{z}_j\right) \,, \ \, \text{with} \quad p\left(A_{ij} = 1 \,|\, \mathbf{z}_i, \mathbf{z}_j\right) = \sigma(\mathbf{z}_i^\top \mathbf{z}_j) \,, \\ \\ \mathcal{L} &= \mathbb{E}_{q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A})} \left[\log p\left(\mathbf{A} \,|\, \mathbf{Z}\right)\right] - \text{KL} \left[q(\mathbf{Z} \,|\, \mathbf{X}, \mathbf{A}) \,||\, p(\mathbf{Z})\right] \,, \\ \\ \hat{\mathbf{A}} &= \sigma(\mathbf{Z}\mathbf{Z}^\top) \,, \ \, \text{with} \quad \mathbf{Z} = \text{GCN}(\mathbf{X}, \mathbf{A}) \,. \end{split}$$

Neural Relational Inference

 $\begin{array}{c} x \\ v \rightarrow e \\ \hline \end{array}$

Legend: ■: Node emb. ■ : Edge emb. → : MLP 1 : Concrete distribution --> : Sampling

- Message passing
- Fully connected graph
 - But some edges are "no edge"
- Edges have types, which enforce a different cell architecture

Encoder is a GNN, as in the image

- Z has an entry for each edge
- Z is a graph
- Decoder predicts multiple timesteps from a single latent representation
 - Also is a GNN, can be extended with RNN cells

The ELBO objective, Eq. 3, has two terms: the reconstruction error $\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})]$ and KL divergence $\mathrm{KL}[q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z})]$. The reconstruction error is estimated by:

$$-\sum_{j}\sum_{t=2}^{T}\frac{||\mathbf{x}_{j}^{t}-\boldsymbol{\mu}_{j}^{t}||^{2}}{2\sigma^{2}} + \text{const}$$
 (18)

while the KL term for a uniform prior is just the sum of entropies (plus a constant):

$$\sum_{i \neq j} H(q_{\phi}(\mathbf{z}_{ij}|\mathbf{x})) + \text{const.}$$
 (19)

Input, output, latent?

- Not main focus
 - (GNNs already used for multimodal)
 - Image → graph exists
 - Text → graph exists
 - Modality → graph exists (generally)
- Operations
 - Graph \rightarrow graph
 - Graph → set of node representations
 - Graph → vector/global embedding
- Where latent combination?
 - Graph x Graph
 - Embedding x Embedding
- What combination?
 - Neural
 - Exists a multimodal convolutional kernel for images
 - Combinatorial (à la <u>Weisfeiler-Lehman</u>)

Figure 3 Multimodal Stacked Denoising Autoencoders

$$\mathbf{m}_v^{t+1} = \sum_{w \in \mathcal{N}_v} M_t \left(\mathbf{h}_v^t, \mathbf{h}_w^t, \mathbf{e}_{vw} \right)$$

 $\mathbf{h}_v^{t+1} = U_t \left(\mathbf{h}_v^t, \mathbf{m}_v^{t+1} \right)$

$$\hat{\mathbf{y}} = R(\{\mathbf{h}_v^T | v \in G\})$$

What graphs to focus on?

- Graphs that represent a real situation
 - General graphs
 - Typed entities
- Dynamic graphs
- HMM graphs
 - DAG
- Causal graphs
 - DAG
- Have full adjacency matrix
 - For spectral methods
 - Still popular?

Graph similarities between modalities assumptions

- Same graph, different "graph center"
- Similar types
- Same nodes
- Same edges
- None, but same "real" origin