

Markscheme

May 2022

Chemistry

Higher level

Paper 2

© International Baccalaureate Organization 2022

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2022

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2022

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Subject Details: Chemistry higher Paper 2 Markscheme

Candidates are required to answer **ALL** questions. Maximum total = **[90 marks]**.

- **1.** Each row in the "Question" column relates to the smallest subpart of the question.
- 2. The maximum mark for each question subpart is indicated in the "Total" column.
- **3.** Each marking point in the "Answers" column is shown by means of a tick (\checkmark) at the end of the marking point.
- **4.** A question subpart may have more marking points than the total allows. This will be indicated by "**max**" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
- 5. An alternative word is indicated in the "Answers" column by a slash (/). Either word can be accepted.
- **6.** An alternative answer is indicated in the "Answers" column by "**OR**". Either answer can be accepted.
- 7. An alternative markscheme is indicated in the "Answers" column under heading **ALTERNATIVE 1** *etc*. Either alternative can be accepted.
- **8.** Words inside chevrons « » in the "Answers" column are not necessary to gain the mark.
- **9.** Words that are <u>underlined</u> are essential for the mark.
- **10.** The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.
- 11. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the "Answers" column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by **OWTTE** (or words to that effect) in the "Notes" column.
- **12.** Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
- 13. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then **follow through** marks should be awarded. When marking, indicate this by adding **ECF** (error carried forward) on the script.
- **14.** Do **not** penalize candidates for errors in units or significant figures, **unless** it is specifically referred to in the "Notes" column.
- 15. If a question specifically asks for the name of a substance, do not award a mark for a correct formula unless directed otherwise in the "Notes" column. Similarly, if the formula is specifically asked for, do not award a mark for a correct name unless directed otherwise in the "Notes" column.
- **16.** If a question asks for an equation for a reaction, a balanced symbol equation is usually expected, do not award a mark for a word equation or an unbalanced equation unless directed otherwise in the "Notes" column.
- 17. Ignore missing or incorrect state symbols in an equation unless directed otherwise in the "Notes" column.

C	uesti	on	Answers Notes	Total
1.	а		2 Li (s) + 2 H ₂ O (l) \rightarrow 2 LiOH (aq) + H ₂ (g) \checkmark	1
1.	b	i	$n_{Li} \ll \frac{0.200 g}{6.94 g} = \text{$>$} 0.0288 \text{$<$} mol \text{$>$} \checkmark$ $\ll n_{LiOH} = n_{Li} \gg$ $[LiOH] \ll = \frac{0.0288 mol}{0.5000 dm^3} = \text{$>$} 0.0576 \text{$<$} mol dm^{-3} \gg \checkmark$	2
1.	b	ii		
1.	b	iii	lithium was impure/«partially» oxidized OR gas leaked/ignited ✓ Accept "gas dissolved".	1 max
1.	С		H ₂ O <i>AND</i> hydrogen gains electrons «to form H ₂ » OR H ₂ O <i>AND</i> H oxidation state changed from +1 to 0 \checkmark Accept "H ₂ O <i>AND</i> H/H ₂ O is reduced".	1

Q	Question		Answers	Notes	Total
1.	d		Any two:	Accept "lithium/hydrogen catches fire".	
			temperature of the water increases ✓	Do not accept "smoke is observed".	2 max
			lithium melts ✓		Ziliax
			pop sound is heard ✓		

Question		on	Answers	Notes	Total
2.	а		increasing number of protons/nuclear charge/Z _{eff} ✓		
			<pre>«atomic» radius/size decreases OR same number of energy levels OR similar shielding «by inner electrons» ✓</pre>		2
2.	b	i	Any two of: does not represent sub-levels/orbitals ✓ only applies to atoms with one electron/hydrogen ✓ does not explain why only certain energy levels are allowed ✓ the atom is considered to be isolated ✓ does not take into account the interactions between atoms/molecules/external fields ✓ does not consider the number of electrons the energy level can fit ✓	Do not accept "does not represent distance «from nucleus»".	2 max
			does not consider probability of finding electron at different positions/OWTTE		

C	uesti	on	Answers	Notes	Total
2.	b	ii	$ \begin{array}{c} $		1
2.	b	iii	$ \frac{n=\infty}{n=6} $ $ n=5 $ $ n=4 $ $ n=3 $ $ n=2 $ $ \frac{n=1}{n=1} $ downward or upward arrow between $n=3$ and $n=2$		1

Question		on	Answers	Notes	Total
3.	а	i	«E ^o _{cell} = 1.09 − 0.77 =» 0.32 «V» √		1
3.	а	ii	«2Fe²+ (aq) + I₂ (s) \rightarrow 2Fe³+ (aq) + 2I⁻ (aq) » no/non-spontaneous AND E°_{cell} «= 0.54 − 0.77 »= $-$ 0.23 «V»/ E° < 0 OR no AND reduction potential of I₂ lower «than Fe³+ »/ 0.54 <0.77 \checkmark	Accept "standard electrode potential of I_2 lower /less positive than iron".	1
3.	b	i	Cathode (negative electrode): $Zn^{2+} + 2e^{-} \rightarrow Zn (l) \checkmark$ Anode (positive electrode): $2Cl^{-} \rightarrow Cl_{2}(g) + 2e^{-}$ OR $Cl^{-} \rightarrow \frac{1}{2} Cl_{2}(g) + e^{-} \checkmark$		2
3.	b	ii	$ZnCl_2(l) \rightarrow Zn(l) + Cl_2(g)$ balanced equation \checkmark correct state symbols \checkmark	Accept ionic equation.	2

G	Question		Answers	Notes	Total
4.	а	i	first order ✓		1
4.	а	ii	$Rate=k[H_2][I_2]$		1
4.	а	iii	$k = \frac{1.2 \times 10^{-6} \text{ mol dm}^{-3} \text{ s}^{-1}}{2.0 \times 10^{-3} \text{ mol dm}^{-3} \times 3.0 \times 10^{-3} \text{ mol dm}^{-3}} = 0.20 \checkmark$ $\text{mol}^{-1} \text{ dm}^{3} \text{ s}^{-1} \checkmark$		2
4.	b		$E \ge E_a$ AND appropriate «collision» geometry/correct orientation \checkmark		1
4.	С		$\mathcal{K}_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]} \checkmark$		1
4.	d	i	« $\Delta S^{\ddot{o}}_{reaction}$ = 2 × 206.6 − (130.6 + 116.1) =» 166.5 «J K ⁻¹ mol ⁻¹ » ✓		1
4.	d	ii	$\Delta S^{\ddot{o}}_{ m reaction}$ lower/less positive AND same number of moles of gas OR $\Delta S^{\ddot{o}}_{ m reaction}$ lower/less positive AND a solid has less entropy than a gas \checkmark		1

Q	Question		Answers	Notes	Total
4.	d	iii	$^{\text{v}}\Delta G^{\text{O}} = 53.0 \text{ kJ mol}^{-1} - (298 \text{ K} \times 0.1665 \text{ kJ K}^{-1} \text{ mol}^{-1}) = ^{\text{v}} 3.4 \text{ «kJ mol}^{-1} ^{\text{v}}$ ✓		1
4.	d	iv	«In K_c = - (3.4 × 10 ³ J mol ⁻¹ /8.31 J K ⁻¹ mol ⁻¹ × 298 K)» = -1.37 ✓ « K_c =» 0.25 ✓	Award [2] for "0.45" for the use of 2.0kJ mol^{-1} for ΔG° .	2

Q	uesti	on	Answer	Notes	Total
5.	а	i	1s² 2s² 2p ⁶ 3s² 3p ⁶ 3d ⁶ ✓		1
5.	a	ii	Any two of: IE ₉ : electron in lower energy level OR IE ₉ : more stable/full electron level ✓ IE ₉ : electron closer to nucleus OR IE ₉ : electron more tightly held by nucleus ✓ IE ₉ : less shielding by «complete» inner levels ✓		2 max
5.	b		_1 ✓	Accept "- I".	1
5.	С		electrostatic attraction/hold between «lattice of» positive ions/cations AND delocalized «valence» electrons ✓		1

Que	estio	n	Answers	Notes	Total
6. a	a		increases rate <i>AND</i> lower E_a \checkmark provides alternative pathway «with lower E_a » <i>OR</i> more/larger fraction of molecules have the «lower» E_a \checkmark	Accept description of how catalyst lowers E_a for M2 (e.g. "reactants adsorb on surface «of catalyst»", "reactant bonds weaken «when adsorbed»", "helps favorable orientation of molecules").	2
6. k	b	i	kinetic energy both axes correctly labelled ✓ peak of T₂ curve lower AND to the right of T₁ curve ✓ lines begin at origin AND correct shape of curves AND T₂ must finish above T₁ ✓	Accept "probability «density» / number of particles / N / fraction" on y-axis. Accept "kinetic E/KE/E _k " but not just "Energy/E" on x-axis.	3

C	Question		Answers	Notes	Total
6.	b	ii	decrease <i>AND</i> equilibrium shifts left / favours reverse reaction ✓ «forward reaction is» exothermic / ΔH is negative ✓		2
6.	С	i	; o :	Accept any of the above structures as formal charge is not being assessed.	1
6.	С	ii	three electron domains «attached to the central atom» ✓ repel/as far away as possible /120° «apart» ✓		2
6.	d	i	sulfuric acid/H₂SO₄ ✓	Accept "disulfuric acid/H ₂ S ₂ O ₇ ".	1
6.	d	ii	fully ionizes/dissociates ✓ proton/H+ «donor »✓		2

Q	uesti	on	Answers	Notes	Total
7.	а	i	donates «lone/non-bonding» pair of electrons ✓		1
7.	а	ii	$Kb = 10^{-4.75} / 1.78 \times 10^{-5}$	Award [3] for correct final answer.	
			OR		
			$Kb = \frac{[OH^-]^2}{[NH_3]} \checkmark$		
			$[OH^{-}] = \sqrt{(1.00 \times 10^{-2} \times 10^{-4.75})} = $ 4.22 × 10 ⁻⁴ «(mol dm ⁻³)» \checkmark		
			$pOH = -log_{10} (4.22 \times 10^{-4}) = 3.37$		3
			AND		
			pH = «14 - 3.37» = 10.6		
			OR		
			$[H^+]$ « = $\frac{1.00 \times 10^{-14}}{4.22 \times 10^{-4}}$ » = 2.37×10^{-11}		
			AND		
			$pH = -log_{10} \ 2.37 \times 10^{-11} = 10.6 $		

C	uesti	on	Answers	Notes	Total
7.	а	iii	no AND is not a weak acid conjugate base system	Accept "no AND contains 0.10 mol NH ₄ Cl + 0.10 mol HCl".	
			OR		
			no AND weak base «totally» neutralized/ weak base is not in excess		1
			OR		
			no AND will not neutralize small amount of acid √		
7.	b	i	Sigma (σ):	Accept overlapping p-orbital(s) with both lobes of equal size/shape.	
			OR OR		
			Pi (π):		2
			OR OR OR	Shaded areas are not required in either diagram.	-

Question		on	Answers	Notes	Total
7.	b	ii	Sigma (σ): 2 AND Pi (π): 2 √		1
7.	b	iii	sp ✓		1
7.	С		HCN has stronger dipole–dipole attraction ✓	Do not accept reference to H-bonds.	1
7.	d		Any three from: partially filled d-orbitals ✓ «CN- causes» d-orbitals «to» split ✓ light is absorbed as electrons transit to a higher energy level «in d–d transitions» OR light is absorbed as electrons are promoted ✓ energy gap corresponds to light in the visible region of the spectrum ✓	Do not accept "colour observed is the complementary colour" for M4.	3 max

Question		on	Answers Notes	Notes	Total
8.	а	i	Any two of: C ₆₀ fullerene: bonded to 3 C AND diamond: bonded to 4 C ✓ C ₆₀ fullerene: delocalized/resonance AND diamond: not delocalized / no resonance ✓ C60 fullerene: sp² AND diamond: sp³✓ C ₆₀ fullerene: bond angles between 109–120° AND diamond: 109° ✓	Accept "bonds in fullerene are shorter/stronger/have higher bond order OR bonds in diamond longer/weaker/have lower bond order".	2 max
8.	а	ii	diamond giant/network covalent <i>AND</i> sublimes at higher temperature ✓ C ₆₀ molecular/London/dispersion/intermolecular «forces» ✓	. Accept "diamond has strong covalent bonds AND require more energy to break «than intermolecular forces»" for M1.	2
8.	b	i	same general formula / C _n H _{2n+2} ✓ differ by CH₂/common structural unit ✓	Accept "similar chemical properties". Accept "gradation/gradual change in physical properties".	2
8.	b	ii	R : ⁺ C ₃ H ₇ ✓		1

C	Question		Answers	Notes	Total
8.	d	i		Accept H ₃ C C=C H H	1
8.	d	ii	CH₃CH=CHCH₃ + HBr → CH₃CH₂CHBrCH₃ Correct reactants ✓ Correct products ✓	Accept molecular formulas for both reactants and product	2
8.	d	iii	«electrophilic» addition/E _A ✓	Do not accept nucleophilic or free radical addition.	1
8.	d	iv	ALTERNATIVE 1: Any two of: but-2-ene: 2 signals AND product: 4 signals ✓ but-2-ene: «area ratio» 3:1/6:2 AND product: «area ratio» 3:3:2:1 ✓ product: «has signal at» 3.5-4.4 ppm «and but-2-ene: does not» ✓ but-2-ene: «has signal at» 4.5-6.0 ppm «and product: does not» ✓ ALTERNATIVE 2: but-2-ene: doublet AND quartet/multiplet/4 ✓ product: doublet AND triplet AND quintet/5/multiplet AND sextet/6/multiplet ✓	Accept "product «has signal at» 1.3–1.4 ppm «and but-2-ene: does not»".	2 max

Question		on	Answers	Notes	Total
8.	d	v	CH₃CH₂CH(OH)CH₃ ✓ «secondary» carbocation/CH₃CH₂CH+CH₃ more stable ✓	Do not accept "Markovnikov's rule" without reference to carbocation stability.	2
8.	е	i	HOCBr HCH ₂ CH ₃ Curly arrow going from lone pair/negative charge on O in HO ⁻ to C ✓ curly arrow showing Br breaking ✓ representation of transition state showing negative charge, square brackets and partial bonds ✓ formation of organic product CH ₃ CH ₂ CH ₂ OH <i>AND</i> Br ✓	Do not allow curly arrow originating on H in HO ⁻ . Accept curly arrow either going from bond between C and Br to Br in 1-bromopropane or in the transition state. Do not penalize if HO and Br are not at 180° to each other. Award [3 max] for S _N 1 mechanism.	4
8.	е	ii	triplet/3 AND multiplet/6 AND triplet/3 ✓		1

Question		on	Answers	Notes	Total
8.	f	i	bond breaking: C-H + Cl-Cl / 414 «kJ mol-1» + 242 «kJ mol-1»/656 «kJ» <i>OR</i> bond breaking: 4C-H + Cl-Cl / 4×414 «kJ mol-1» + 242 «kJ mol-1» / 1898 «kJ» \checkmark bond forming: «C-Cl + H-Cl / 324 kJ mol-1 + 431 kJ mol-1» / 755 «kJ» <i>OR</i> bond forming: «3C-H + C-Cl + H-Cl / 3×414 «kJ mol-1» + 324 «kJ mol-1» + 431 kJ mol-1» / 1997 «kJ» \checkmark « Δ H = bond breaking – bond forming = 656 kJ – 755 kJ» = -99 «kJ» \checkmark	Award [3] for correct final answer. Award [2 max] for 99 «kJ».	3

