Final Exam

Date: 22/02/2022 Duration: 120 minutes

Open Book and Online

SUBJECT: PHYSICS 2 (FLUID MECHANICS AND THERMAL PHYSICS)	
(ID: PH014IU)	
Approval by Deputy Chair of Department of Physics	Lecturer: Nguyễn Đức Diệu
Signature	Signature:
	1012
Full name: Phan Hiền Vũ	Full name: Nguyễn Đức Diệu
Proctor 1	Proctor 2
Signature	Signature
Full name:	Full name:
STUDENT INFO	
Student name:	
Student ID:	

INSTRUCTIONS: the total of point is 100 (equivalent to 30% of the course)

1. Purpose:

- Test your understanding of basic knowledge of The Kinetic Energy of Ideal Gas and the Second Law of Thermal Dynamics (CLO3).
- Examine your skill in analysis and design a problem in science and engineering (CLO2).
- Test your ability in applying knowledge of physics (CLO1).
- Evaluate your English skills in writing communication manner (CLO4).

2. Requirement:

- Read carefully each question and answer it following the requirements.
- Write the answers and draw models CLEAN and TIDY directly in the exam paper.
- Submit your exam including this cover page and the solutions of the following problems.

Q1: (20 marks):

- a. The latest heat of fusion of a material is 6 kJ/mole and the heat capacity (C_p) in solid and liquid phases of the material is a linear function of temperature $C_p = 30.6 + 0.0103T$, with units J/mole/K. How much heat is required to increase the temperature of 1 mole of the material from 20° C to 200° C if the fusion phase transition occurs at 80° C?
- b. Show that for a monatomic ideal gas undergoing an adiabatic process, $PV^{5/3} = \text{constant}$.

Q2 (20 marks): A water with mass m = 0.5 kg, specific heat capacity c = 4,187 J/kg.K, and initial temperature $T_1 = 25^0$ K is supplied a heat until its temperature rises to $T_2 = 50^0$ C. Calculate the change in entropy of the water?

Q3 (20 marks):

- a. Heat Q = 3,000 J is added to a monatomic ideal gas under conditions of constant volume, resulting in a temperature change ΔT . How much heat will be required to produce the same temperature change, if it is added under conditions of constant pressure?
- b. A balloon will carry a total load of 175 kg when the temperature is of 273 K and pressure is of 76 cm of mercury. What load will the balloon carry on rising to a height at which the barometric pressure is 50 cm of mercury and the temperature is −10°C, assuming the envelope maintains a constant volume?

Q4 (20 marks): One mole of a real gas that obeys the van der Waals equation of state $\left(p + \frac{a}{V^2}\right)(V - b) = RT$, where a and b are constants. If the gas undergoes an isothermal expansion at temperature T_0 from volume V_1 to volume V_2 .

- a. Proving the work done is given by $W = RT_0 \ln \left(\frac{V_2 b}{V_1 b} \right) + a \left(\frac{1}{V_2} \frac{1}{V_1} \right)$.
- b. The coefficient of cubical expansion is defined as $\beta = -\frac{1}{V} \frac{(\frac{dp}{dT})_{V=const}}{(\frac{dp}{dV})_{p=const}}$, prove $\beta =$

$$\frac{RV^2(V-b)}{RTV^3-2a(V-b)^2}$$

Q5 (20 marks): Figure 1 shows the P-V diagram of one mole of an ideal gas, undergoing the reversible cycle ABCA; here, the procedure AB is an isotherm. The molar heat capacities are C_P at constant pressure and C_V at constant volume.

- a) Prove that the net heat added to the gas during the cycle is $Q_{ABCA} = RT_h \ln \left(\frac{V_2}{V_1}\right) R(T_h T_c)$.
- b) Prove that the above net heat formula can be rewritten as $Q_{ABCA} = (C_P C_V)[T_h \ln \left(\frac{V_2}{V_1}\right) (T_h T_c)].$

