FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

DESCRIPTION

M5M442256AJ, L, TP, RT is a high speed 1048576-bit Dual Port Dynamic Memory equipped with a 256K x 4 Dynamic RAM Port and a 512x4 Serial Read/Write Port. High performance CMOS process using triple-layer polysilicon and silicide technology provide both high circuit density and low power dissipation.

The Serial Read/Write Ports are connected to an internal 2048 bit Data Register through a 512 x 4 Serial Input/Output Control circuit and can be serially readout or written in with a clock rate of up to 33MHz.

All reads and writes are done relative to the RAM array, thus data transfer from the RAM array to the Data Register is referred to as a Read Transfer, while Data Transfer from the Data Register to the RAM array is referred to as a Write Transfer.

FEATURES

Type name		Random Read/Write Cycle Time (ns)	Serial Read Cycle Time (ns)	Random Read V _{CC} Supply Current (mA)	Serial Read/Write V _{CC} Supply Current (mA)
M5M442256 AJ, L, TP, RT-7	70	130	30	85	40
M5M442256 AJ, L, TP, RT-8	80	150	30	75	40
M5M442256 AJ, L, TP, RT-10	100	180	30	65	40

Dual Port Architecture

RAM Port: 256K word x 4 bit Serial Port: 512 word x 4 bit

- Bidirectional Data Transfer function between the RAM array and the Data Register
- Fully Asynchronous Dual Port Accessability (Split SAM)
- Addressable Start of Serial Read/Write (Pointer Control Function)
- Write per Bit Function
- Real Time Data Transfer from the RAM Array to the Data Register
- Fast Page Mode, Hidden Refresh and CAS before RAS Refresh
- 512 cycle/8ms Refresh
- Flash write operation
- Block write operation

APPLICATION

Display equipment for personal computer/work station, Frame memory for digital TV/VCR, Videotex, Teletext, Video printer, High Speed data transmission systems

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

PIN DESCRIPTION

Pin	Name	Function
RAS	ROW ADDRESS STROBE INPUT	It is used as a clock which latches the row address $(A_0 \sim A_8)$ and selects the word line. It also latches the mask data for write per-bit, flash write, write transfer and split write transfer function when the $\overline{\text{WB}}$ level is low $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh mode is available by preceeding $\overline{\text{CAS}}$ low
CAS	COLUMN ADDRESS STROBE INPUT	It is used as a clock which latches the column address $\{A_0 \sim A_8\}$ and initiates the reading or writing of the selected words. In the data transfer cycle this latches the SAM Top Address Point. (TAP)
A ₀ ~A ₈	ADDRESS INPUT	The M5M442256 utilizes an address multiplex method for selecting one word among the 256K-word memory cells 9 row addresses and 9 column addresses are latched by the RAS and CAS falling edge. In the data transfer cycle, this RAM address input is also combined with the serial access start address. (TAP)
WB/WE	WRITE-PER-BIT / WRITE ENABLE INPUT	When the WB/WE level is low at the RAS falling edge, Write-per-bit (RAM write with Mask) or Write transfer with MASK or Flash write with MASK cycle is selected. When it is high, normal read/write or Read transfer or Load color register cycle is selected. This clock also controls early/late write mode at the CAS falling edge.
DT/OE	DATA TRANSFER/ OUTPUT ENABLE INPUT	In RAM read cycle, it makes the data output (RAM port) enable. Also when the $\overline{DT}/\overline{OE}$ level is low at the \overline{RAS} falling edge, the data transfer cycle is selected and when it is high, RAM read/write cycle or Load color register cycle or Flash write cycle is activated according to the $\overline{WB}/\overline{WE}$ and the DSF conbination
wion*	WRITE MASK/DATA INPUT/OUTPUT	These are the data input/output pins to the RAM. During RAM write-per-bit cycle/split write transfer cycle/flash write cycle, the high data pin at the RAS falling edge enables the selected-bit (row) write operation. In Write cycle, the data is latched at the late falling edge of the CAS or the WB/WE input, whichever is the later
sc	SERIAL CONTROL	The serial access is initiated from the SC clock rising edge. In the serial read cycle, the output data is held until the next clock rise. Also in the serial write cycle, the data is latched at the SC clock rising edge.
SIOn*	SERIAL INPUT/OUTPUT	512 x 4 word serial data input/output pins
SE	SERIAL ENABLE INPUT	This enables the serial input/output. In the write transfer cycle, when SE is high at the RAS falling edge, Peudo transfer cycle is selected, and when it is low, Write transfer cycle is selected.
DSF	INPUT SPECIAL FUNCTION	This input defines special functions such as Split read/write transfer, Flash write, Block write and Load color register. When it is low grounded, the device works as a basic dual-port memory except for the Normal write transfer cycle masking mode.
QSF	OUTPUT SPECIAL FUNCTION	Output indicating the serial data selector status

Note * n = 0 ~ 3

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

256Kx4 Truth Table

Code			RA:	S falling	edge			ā	AS fall	ing edge	e	Write		F	Register			
mnemo nic	CAS	OE OE	WB WE	DSF	SE	Addr	WIOn	WB/WE	DSF	Addr	WIOn	mask	Raster op		mask persistant	Color		
CBR	0	0/1	0/1	0/1	_	_	_	_	_		_	_	_	_	_		CBR	
MWT/	. 1	0	0	a	0/1	Row/ Ref	WM1	1	0	TAP		Yes		Load use		_	Wr transfer (SE=0)	
PWT	1	0	0	0	0/1	Row/ Ref	WM1	ł	1	TAP		per row		Load oac			Pseudo write transfer (SE=1)	
SWT	1	0	0	1		Row	WM1	1	0	TAP		Yes	_	Load use	_		Split write transfer with	
3111	1	0	0	1		Row	WM1	1	1	TAP	_	per row		2000 030			new mask	
RT	1	0	1	0	_	Row			0	TAP		_	_	_			Read transfer	
	1	0	1	0	_	Row	_	_	1	TAP	_							
SRT	1	0	1	1	_	Row	-	_	0	TAP		_	ı	_	_		Split read transfer	
3,11	1	0	1	1		Row	_	-	1	TAP	· —						Spire road (taristic)	
RWNM	1	1	0	0	_	Row	WM1	*E/L	0	Col.	DOin	Yes	I	Load use	_	-	RAM write with new mask	
виим	1	1	0	0	_	Row	WM1	_	1	Col.	Sel.	Yes	_	Load use	_	Use	Block write with new mask	
FWT	1	1	0	1	_	Row	WM1	_	0	-	_	Yes		Load use	_	_	Flash write with new mask	
["]	1	1	0	1	_	Row	WM1	-	1	_	-	per row	_	Load use	_	_	Trasif write with new mask	
RW	1	1	1	0	_	Row	-	*E/L	0	Col.	DQın	_	_	_	_	_	R/W	
вw	1	1	1	0	_	Row	1	-	1	Col.	Sel.	_		_	- -		Block write with no mask	
LCR	1	1	1	1	_	Ref	_	*E/L	0	-	CLR.						Load color reg	
LOA	1	1	1	1	_	Ref	-	∗ E/L	1		CLR.			_ _		Load	Loud color reg	

[★]E/L Early write/Late write **★**★Ref Refresh Address

FUNCTION

1. Flash Write

Utility: A high speed clear can be performed with flash write cycle.

- # Write a color (0 or 1) to an entire row in one RAM cycle.
- * Before flash write cycle, the color data must be set into an internal color register at least once.

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

* The mask must be asserted on each flash write cycle.

2. Split Register

Utility

- To simplify real time transfer timing (Fully asynchronous Serial Access)
- Split Serial Register into two halves To optimize the memory size to CRT.

Pointer Path

At Normal read transfer cycle

- Transfer the data from RAM to SAM, and set the SAM start address among 512.
- 2. Start the Serial Read cycle.
- Serial Read from Lower to Upper/Upper to Lower.
 (The pointer of the Lower/Upper SAM will be automatically cleared to address 0/256 after over-carried)

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

At Split read transfer cycle

- Normal transfer cycle must be performed prior to the split transfer cycle.
- The data is transfered between idle half of the SAM and the selected Row. At the same time the idle SAM's start address is set to give the next start address after the end of the busy SAM.
- At the split transfer mode, data are transfered to the idle half of the SAM automatically. (Column A₈ is ignored.)
- 4. QSF indicates the busy SAM.

(Lower Half SAM is busy: 0)

(Upper Half SAM is busy: 1)

Serial Read can be performed asynchronously during RAM cycle and Split transfer cycle.

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Serial-Out

Data transfer mode	SIO mode	SAM TAP	Data transfer	QSF set
Normal read transfer	Output	Col. (A ₀ ~A ₈)	RAM→SAM	Ag
Normal write transfer	Input	Col. (A ₀ ~A ₈)	SAM→RAM	Α8
Pseudo write transfer	Input	Col. (A ₀ -A ₈)	_	A ₈
Split read transfer	Not effect	Col. (A ₀ ~A ₇)	RAM→SAM *1	
Split write transfer	Not effect	Col. (A ₀ ~A ₇)	SAM→RAM *1	_

^{*1} If QSF=0 then the upper half data ($256 \sim 511$) is transfered If QSF=1 then the lower half data ($0 \sim 255$) is transfered.

3. Block Write

In the Block Write cycle, Data from the Color Register can be written into 4 bit-columns (which Blocks are selected with column address $\text{CA}_2\text{-}\text{CA}_8)$ at one time. The $\text{DQ}_{0^{\sim 3}}$ the input at $\overline{\text{CAS}}$ falling edge enables a selective column write operation of the selected 4 bit-columns.

When WB/WE is low at RAS falling edge Write-per-bit operation applies to the writing of color data.

The Color Register must be loaded prior to the Block Write cycle.

Application

Block Write operation is useful for the partial-clearing or partial-painting of a bit-map display with same color data. With the selective-column writing of data, any of the 4 bit-columns can be masked, so allowing the boundary treatment in the same cycle.

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Block Write Timing Description

#1 H, No mask

Select W/IO₀; CA₀=0, CA₁=0

W/IO₁; CA₀=1, CA₁=0 W/IO₂; CA₀=0, CA₁=1 W/IO₃, CA₀=1, CA₁=1

H, Write enable (no mask) L, Disable (mask)

L. Write per bit operation *2 H, Write enable (No mask)

L. Disable (mask)

Only when WB/WE is low at RAS falling edge

6249825 0024780 94T

*3 Column address $CA_2 \sim CA_8$, CA_6 , $CA_1 = Don't$ care (H/L fixed)

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

 $A_0,\ A_1$ at \overline{CAS} falling edge are "don't care", but must be set H or L state.

Example of Block Write Operation

'X' indicates pre-state, 'H'; high level (1), 'L'; low level (0).

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

BLOCK WRITE CYCLE WITH MASK WITHOUT MASK		ROW COLUMN XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т	<u>н</u> Вххххххххххххх	H KXXXXXXXX		H KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	- KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		SELECT 1,3 SELECT 1,2	
LOAD COLOR REG CYCLE WITHOUT MASK		RXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		1 D	T KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	I	T CONTRACTOR TO THE CONTRACTOR	T KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	T KXXXXXXX H KXXXXXXXXXXXX T	SELECT 0,3	LLTT XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX
HAS	CAS	A ₀ ~A ₇ WRF	₩B/WE	<u>δ</u> Τ/οε	DSF	%/10°	w/10,	w/102	w/103		

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-1~7	V
Vı	Input voltage	With respect to V _{SS}	-1~7	V
V ₀	Output voltage		-1~7	V
10	Output current		50	mA
Pd	Power dissipation	Ta = 25°C	1000	mW
Topr	Operating temperature		0~70	°C
Tstg	Storage temperature		−65~150	°C

RECOMMENDED OPERATING CONDITIONS ($T_a = 0 \sim 70^{\circ}C$, unless otherwise noted) (Note 1)

Symbol	Parameter		Limits					
	ratameter	Min	Norm	Max	Unit			
Vcc	Supply voltage	4.5	5	5.5	٧			
Vss	Supply voltage	0	0	0	V			
VIH	High-level input	2,4		6.5	٧			
VIL	Low-level input	-1.0		0.8	٧			

Note 1 All voltage values are with respect to VSS.

ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test conditions		Limits				
	r aratteter	rest conditions	Min	Тур	Max	Unit		
V _{OH} (R)	High level output (RAM port)	I _{OH (R)} = -2 mA	2.4		Vcc	٧		
V _{OL(R)}	Low level output (RAM port)	I _{OL (R)} =4.2mA	0		0,4	٧		
V _{OH(S)}	High level output (Serial Io port)	$I_{OH(S)} = -2 mA$	2.4		Vcc	٧		
V _{OL} (s)	Low level output (Serial I _Q port)	I _{OL(S)} =4.2mA	0		0.4	٧		
loz	Off-state output current	Q Floating 0 <vout<v<sub>CC</vout<v<sub>	-10		10	μA		
l _l	Input current	0 <vin<vcc< td=""><td>-10</td><td></td><td>10</td><td>μА</td></vin<vcc<>	-10		10	μА		

Note 2 Current flowing into an IC is positive, out is negative

CAPACITANCE ($T_a = 25$ °C, f = 1MHz, $V_i = 25$ mVmrs)

Symbol	Pin name	Test conditions		Limits		Unit
Зүшбөг	Tittlane	rest conditions	Min	Тур	Max	Unit
C _{IN0}	RAS, CAS, WB/WE, SC, SE, DT/OE, DSF				7	pF
C _{IN1}	A ₀ ~A ₈	V _I =V _{SS} , f=1MHz, V _I =25mVrms			7	pF
Co	WIO0-WIO7, SIO0-SIO7, QSF	1			9	рF

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

ELECTRICAL CHARACTERISTICS (Ta=0-70°C, $V_{CC}=5$ V ± 10 %, $V_{SS}=0$ V, unless otherwise noted)

				Limits	ĺ	
Symbol	Parameter		M5M442256A -7	M5M442256A -8	M5M442256A -10	Unit
	RAM port	SAM port	Max	Max	Max	_
1001	Random R/W cycle, RAS/CAS cycling, t _{RC} =min (Note 3, 4)		85	75	65	mA
Icc2	Standby, RAS=V _{IH} , CAS=V _{IH} , D _{OUT} =H _I -Z		5	5	5	mΑ
1003	RAS only refresh cycle, RAS = cycling, CAS = V _{IH} , t _{RC} = min(Note 3,4)	Standby	85	75	65	mA
¹ CC4	Page mode cycle, RAS=V _{IL} , CAS=cycling tpc=min (Note 3, 4)	(SC=VIL)	75	65	55	mΑ
Iccs	CAS befere RAS refresh, t _{RC} =min befor (Note 3, 4)		85	75	65	mΑ
I _{CC6}	Data transfer cycle, t _{RC} =min (Note 3, 4)		85	75	65	mΑ
1007	Random R/W cycle, RAS/CAS cycling, t _{RC} =min (Note 3, 4)		115	105	95	mΑ
I _{CC8}	Standby, RAS=V _{IH} , CAS=V _{IH} , D _{OUT} =H _I -Z (Note 3, 4)		40	40	40	mΑ
I _{CC9}	RAS only refresh cycle, RAS=cycling, CAS=V _{IH} , t _{RC} =min(Note 3 4)	Active	115	105	95	mΑ
I _{CC10}	Page mode cycle, RAS=V _{IL} , CAS=cycling, t _{PC} =min (Note 3, 4)	(t _{SCC} =min)	105	95	85	mΑ
I _{CC11}	CAS before RAS refresh, t _{RC} =min (Note 3, 4)		115	105	95	mA
I _{GG12}	Data transfer cycle, t _{RC} =min (Note 3, 4)		115	105	95	mA

Note 3 Icc 1, Icc3~Icc12 are dependent on output loading. Specific values are obtained with the output open

SWITCH CHARACTERISTICS (Ta=0~70°C, V_{CC}=5V±12%, V_{SS}=0V, unless otherwise noted) (Note 5)

					Lin	nits		·	
Symbol	Parameter		M5M44	2256A-7	M5M44	2256A-8	M5M44	256A-10	Unit
			Mın	Max	Mın	Max	Mın	Max	
t _{CAC}	Access time from CAS	(Note 6, 8)		20		20		25	ns
tRAC	Access time from RAS	(Note 6, 9)		70		80		100	ns
tcaa	Column address access time	(Note 6, 10)		35		40		50	ns
t _{CPA}	Access time from CAS precharge	(Note 6, 11)		40		45		55	ns
toEA	Access time from OE	(Note 6)		20		20		25	ns
t _{CLZ}	Output low impedance from CAS low		5		5		5		ns
toff	Output disable time after CAS high	(Note 12)	0	20	0	20	0	20	ns
toez	Output disable time after OE high	(Note 12)	0	20	0	20	0	20	ns
t _{SCA}	Access time from SC high	(Note 7)		25		25		25	ns
tsoa	Access time from SE low	(Note 7)	0	20	0	20	0	25	ns
t _{soz}	Output disable time after SE high	(Note 12)	0	20	0	20	0	20	ns
t _{soh}	Serial output hold time after SC high		5		5		5		ns

Note 5 An initial pause of 500 µs is required after power up followed by eight initialization cycles (any combination of cycles containing a RAS clock, such as RAS only refresh)

Note that RAS may be cycled during the initial pause And any 8 RAS/CAS cycles are required after prolonged periods (greater than 8 ms) of RAS inactivity before proper device operation is achieved

- 6 Measured with a load circuit equivalent to 1TTL loads and 100pF
- 7 Measured with a load circuit equivalent to 1TTL loads and 30pF
- 8 Assume that $t_{RCD} \ge t_{RCD}$ (max) and $t_{RAD} \le t_{RAD}$ (max)
- 9 Assume that t_{RCD}≤t_{RCD} (max) and t_{RAD}≥t_{RAD} (max)
- 10 Assume that tRCD-tRAD≦tCAA (max)-tCAC (min) and tRCD≥tRCD (max)
- 11 Assume that t_{CP}≤t_{CP}(max)
- 12 topp(max), tsoz(max) and topz(max) define the time at which output achieves high impedance state

⁴ Icc 1, Icc3~Icc12 are dependent on cycle rate. Maximum current is measured at the fastest cycle rate

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

TIMING REQUIREMENTS (Ta = 0 \sim 70 °C, V_{CC} = 5V \pm 10%, V_{SS} = 0V, unless otherwise noted) (Note 13, 14)

(1) Read, Write, Refresh, Load Color Register, Block Write, Flash Write Read/Write Transfer and Page Mode Cycles

				Lir	nits			
Symbol	Parameter	M5M44	2256A-7	M5M44	2256A-8	M5M442	2256A-10	Unit
		Mın	Max	Min	Max	Mın	Max	
t _{RC}	Read, write cycle time	130		150		180		ns
tras	RAS low pulse width	70	10000	80	10000	100	10000	ns
tcas	CAS low pulse width	20	10000	20	10000	25	10000	ns
t _{CSH}	CAS hold time after RAS	70		80		100		ns
t _{RSH}	RAS hold time after CAS	25		25		30		ns
t _{REF}	Refresh cycle time		8		8		8	ms
t _{RP}	RAS high pulse width	50		60		70		ns
tRCD	Delay time RAS low to CAS low (Note 15)	20	50	25	60	25	75	ns
tore	Delay time CAS high to RAS low (Note 16)	10		10		10		ns
t _{CPN}	CAS high pulse width	10		10		10		ns
tasa	Row address setup time before RAS	0		0		0		ns
t _{RAH}	Row address hold time after RAS	10		15		15		ns
t _{RAD}	Column address delay time from RAS (Note 17)	15	35	20	40	20	50	ns
tasc	Column address setup time before CAS	0		0		0		ns
t _{CAH}	Column address hold time after CAS	15		20		20		ns
twsR	WB/WE setup time before RAS	0		0		0		ns
tawn	WB/WE hold time after RAS	10		15		15		ns
t _{DTRS}	DT/OE setup time before RAS	0		0		0		ns
totan	DT/OE high hold time after RAS	10		15		15		ns
t _{FSR}	DSF setup time before RAS	0		0		0		ns
t _{RFH}	DSF hold time after RAS	10		15		15		ns
t _{FSC}	DSF setup time before CAS	0		0		0		ns
t _{CFH}	DSF hold time after CAS	15		20		20		ns
tws	Write mask setup time before RAS	0		0		0		ns
t _{WH}	Write mask hold time after RAS	10		15		15		ns
t _T	Transition time (Note 18)	3	35	3	35	3	35	ns

Note 13 Timing requirements are assumed $t_T = 5 \text{ns}$

¹⁴ V_{IH}(min) and V_{IL}(max) are raference levels for measuring timing of input signals

¹⁵ tacc)(max) limit ensures that tacc)(max) can be met tacc)(max) is specified as a reference point only. If tacc) is greater than tacc)(max), access time is controlled by toac or toal as shown in notes 7 or 9.

¹⁶ t_{CRP} requirement is applicable for all RAS/CAS cycles

¹⁷ trad/max) limit ensures that trad/max) can be met trad/max) is specified as a reference point only. If trad is grater than trad/max), access time is controlled by trad or trad as shown in notes 7 or 9.

 $^{18^{\}circ}$ t_T is measured between $V_{IH}(min)$ and $V_{IL}(max)$

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

(2) Read and Refresh Cycles

		Limits						
Symbol	Parameter	M5M442256A-7		M5M442256A-8		M5M442256A-10		Unit
		Min	Max	Min	Max	Min	Max	
tacs	Read setup time before CAS low	0		0		0		ns
t _{RCH}	Read hold time after CAS high (Note 19)	0		0		0		ns
t _{RRH}	Read hold time after RAS high (Note 19)	0		0		0		ns
t _{RAL}	Column address to RAS setup time	35		40		50		ns
t _{RPC}	Precharge to CAS active time	0		0		0		ns
th(CLOE)	OE hold time after CAS low	20		25		25		ns
th (RLOE)	OE hold time after RAS low	70		80		100		ns
tDOEL	Delay time data to OE low	0		0		0		ns
t _{OEHD}	Delay time OE high to Data	15		15		20		ns
th (OECH)	CAS hold time after OE low	20		20		25		ns
th(OERH)	RAS hold time after OE low	20		20		25		ns

Note 19: Either t_{RCH} or t_{RRH} must be satisfied

(3) Write Cycle (Early Write and Delayed Write)

		Limits						
Symbol	Parameter	M5M442256A-7		M5M442256A-8		M5M442256A-10		Unit
		Min	Max	Mın	Max	Min	Max	
twcs	Write setup time before CAS (Note 20)	0		0		0		ns
twoH	Write hold time after CAS	15		15		15		ns
towL	CAS hold time after write	20		20		25		ns
tnwL	RAS hold time after write	20		20		25		ns
twe	Write pulse width	15		15		15		ns
tosc	Data setup time before CAS	0		0		0		ns
tonc	Data hold time after CAS	15		15		20		ns
tosw	Data setup time before write	0		0		0		ns
t _{DHW}	Data hold time after write	15		15		20		ns
toehd	Delay time $\overline{\text{OE}}$ high to data	15		15		20		ns
th(WOE)	OE hold time after write	15		15		20		ns

Note 20 twcs, trwb, tcwb and twb do not define the limits of operation, but are included in the data sheet as electrical characteristics only. If twcs\textit{twcs\textit{min}}, early write cycle is performed with data outputs keeping high impedance state. If trwb\textit{trwb\textit{e}_{RWD}\textit{e}_{RWD}(min)} tcwb\textit{e}_{LCWD}(min) and trwb\textit{e}_{LAWD}(min), read-write cycle is performed with the data of the selected address being out from the data output. If neither of the above condition is satisfied, the condition of data out (at access time and untill CAS or OE goes back to ViH) is indetermined.

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

(4) Read-Write and Read-Modify-Write Cycle

			Limits						
Symbol	Parameter	M5M44	2256A-7	M5M442256A-8		M5M442256A-10		Unit	
		Min	Max	Min	Max	Mın	Max		
t _{RWC}	Read-write, read-modify-write cycle time	185		205		245		ns	
tRAS	RAS low pulse width	115	10000	125	10000	155	10000	ns	
tcas	CAS low pulse width	70	10000	70	10000	85	10000	ns	
t _{CSH}	CAS hold time after RAS	115		125		155		ns	
t _{RSH}	RAS hold time after CAS	70		70		85		ns	
t _{RCS}	Read setup time before CAS	0		0		0		ns	
t _{CWD}	Delay time CAS to write (Note 20)	40		40		50		ns	
t _{RWD}	Delay time RAS to write (Note 20)	90		100		125		ns	
t _{CWL}	CAS hold time after write	20		20		25		ns	
t _{RWL}	RAS hold time after write	20		20		25		ns	
twe	Write pulse width	15		15		15		ns	
$t_{\text{DSW}} \\$	Data setup time before write	0		0		0		ns	
t _{DHW}	Data hold time after write	15		15		20		ns	
t _{AWD}	Delay time address to write (Note 20)	55		60		75		ns	
th(CLOE)	OE hold time after CAS	20		20		25		ns	
th(RLOE)	OE hold time after RAS	70		80		100		ns	
t _{DOEL}	Delay time data to $\overline{\text{OE}}$ low	0		0		0		ns	
toEHD	Delay time OE high to data	15		15		20		ns	
th (WOE)	OE hold time after write	15		15		20		ns	

(5) Fast-Page Mode Cycle (Read, Early Write, Read-Write, Read-Modify-Write Cycle)

Symbol	Parameter		M5M442256A-7		12256A-8	M5M44	2256A-10	Unit
		Mın	Max	Mın	Max	Min	Max	
t _{PC}	Read, write cycle time	45		50		60		ns
t _{RWPC}	Read-write read modify write cycle time	95		100		115		ns
TRASP	RAS low pulse width	115	100000	135	100000	160	100000	ns
tcas	CAS low pulse width	20	10000	20	10000	25	10000	ns
t _{CP}	CAS high pulse width (Note 21)	10	15	10	20	10	25	ns
tash	RAS hold time after CAS	25		25		30		ns

Note 21 tcp(max) is specified as a reference point only. If tcp(max) \(\leq tcp\) access time is determined by tcac

(6) CAS before RAS Refresh Cycle (Note 22)

	Parameter		Limits						
Symbol		M5M44	M5M442256A-7		M5M442256A-8		2256A-10	Unit	
		Min	Max	Min	Max	Mın	Max		
t _{CSR}	CAS setup time for CAS before RAS	10		10		10		ns	
t _{CHR}	CAS hold time for CAS before RAS	15		15		20		ns	
t _{RPC}	Precharge to CAS active time	0		0	-	0		ns	

Note 22 Eight or more CAS before RAS cycles are necessary for proper operation of CAS before RAS refresh mode

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

(7) Normal-Read/Normal-Write/Pseudo-Write Transfer Cycle

				Lin	nits			
Symbol	Parameter	M5M44	2256A-7	M5M44	2256A-8	M5M442	256A-10	Unit
		Min	Max	Min	Max	Mın	Max	
t _{RDH}	DT/OE low hold time after RAS	10	10000	15	10000	15	10000	ns
t _{RSD}	Delay time RAS to SC	80		80		100		ns
t _{ASD}	Delay time address to SC	40		40		50		ns
tosp	Delay time CAS to SC	30		30		30		ns
t _{SDH}	SC hold time after DT	15		15		15		ns
t _{RQ}	Delay time RAS to QSF		85		85		85	ns
t _{AQ}	Delay time address to QSF		40	_	40		40	ns
tco	Delay time CAS to QSF		35		35		35	ns
t _{DTO}	Delay time DT to QSF		25		25		25	ns
t _{TRP}	DT to RAS precharge time	70		80		90		ns
torw	DT high pulse width	30		30		30		ns
tes	SE setup time before RAS low	0		0		0		ns
t _{EH}	SE hold time after RAS low	15		15		15		ns
tsas	Last SC to RAS setup time (serial input)	30	,	30		30		пѕ
tsan	RAS to first SC delay time (serial input)	20		20		20		ns
t _{SZS}	Serial input to first SC delay time (serial in → serial out)	0		0		0		ns
t _{SDZ}	Serial output turn-off delay from RAS (serial out → serial in)	10	50	10	50	10	50	ns
t _{SDP}	RAS to senal input delay time (serial out → serial in)	50		50		50		пѕ

(8) Real Time Read Transfer Cycle

			Lin					
Symbol	Parameter	M5M44	M5M442256A-7		2256A-8	M5M442256A-10		Unit
		Min	Max	Min	Max	Mın	Max	
t _{RDH}	DT hold time after RAS	55	10000	65	10000	80	10000	ns
t _{CDH}	DT hold time after CAS	30		30		30		ns
t _{ADH}	DT hold time after address	30		30		30		ns
tsoo	Delay time SC to DT	5		5		5		ns
t _{SDH}	SC hold time after DT	15		15		15		ns
toro	Delay time DT to QSF		25		25		25	ns

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

(9) Split Read/Write Transfer Cycle

	Parameter							
Symbol		M5M442256A-7		M5M442256A-8		M5M442256A-10		Unit
		Mın	Max	Min	Max	Mın	Max	
tscsr	Split transfer setup time	30		30		30		ns
tschr	Split transfer hold time	30		30		30		ns

(10) Serial Read/Serial Write Cycle

			Limits						
Symbol	Parameter	M5M44	M5M442256A-7		M5M442256A-8		2256A-10	Unit	
		Mın	Max	Min	Max	Min	Max		
tscc	SC clock cycle time	30		30		30		ns	
tsch	SC high pulse width	10		10		10		ns	
t _{SCL}	SC low pulse width	10		10		10		ns	
tsop	SE high pulse width	25		25		25		ns	
tsoe	SE low pulse width	25		25		25		ns	
tsis	Serial input data setup time bafore SC high	0		0		0		ns	
t _{SIH}	Senal input data hold time after SC high	15		15	l	15		ns	
tswis	SE disable setup time before SC high	5		5		5		ns	
tswin	SE disable hold time after SC high	15		15		15		ns	
tsws	SE enable setup time before SC high	5		5		5		ns	
tswH	SE enable hold time after SC high	15		15		15		ns	
t _{SZE}	Serial input to SE delay time	0		0		0	}	ns	
tsco	Delay time SC to QSF		25		25		25	ns	

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Switching Measurement Condition

1. Input reference point

2. Output reference point

DC LEVEL OF OUTPUT IS $V_{OH} = 24V$, $V_{OL} = 0.4V$

3. Load condition

$$\begin{bmatrix} V = V_{OH} + R_1 \cdot I_H & V = V_{OL} + R_1 \cdot I_L \\ V_{OH} = (I_H - I_{OH}) \cdot R_2 & V_{OL} = (I_L - I_{OL}) \cdot R_2 \end{bmatrix}$$

$$When \ V = 5V, \ R_1 = 919 \ \Omega, \ R_2 = 497 \ \Omega$$

$$R_{1} = \frac{V_{OH}(V - V_{OL}) - V_{OL}(V - V_{OH})}{V_{OH} \cdot I_{OL} - V_{OL} \cdot I_{OH}}$$

$$R_{2} = \frac{V_{OH} \cdot R_{1}}{(V - V_{OH}) - I_{OH} \cdot R_{1}}$$

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

TIMING DIAGRAMS Read Cycle

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Write Cycle (Early Write)

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Write Cycle (Late Write)

SE

SC

SIO_{0~3}
(INPUT)

SIO_{0~3}
(OUTPUT)

OSF

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Read Modify Write Cycle

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Page Mode Read Cycle

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Page Mode Write Cycle (Early Write)

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Page Mode Write Cycle (Read-Modify-Write)

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

RAS Only Refresh Cycle

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

CAS before RAS Refresh Cycle

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Hidden Refresh Cycle

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Block Write Cycle

SE

SC

SIO_{0~3} (INPUT)

SIO_{0~3} (OUTPUT)

QSF

Serial input/output can be freely performed

Column select **

WIO 0	Col- 0	CA ₀ =0, CA ₁ =0
WIO 1	Col-1	CA ₀ =1, CA ₁ =0
WIO 2	Col- 2	$CA_0=0$, $CA_1=1$
W1O 3	Col- 3	$CA_0 = 1, CA_1 = 1$

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Page Mode Block Write Cycle

SE

SC

SIOn-3 (INPUT)

Serial input/output can be freely performed

Column select **

WIO 0	Col- 0	$CA_0 = 0$, $CA_1 = 0$
WIO 1	Col-1	CA ₀ =1, CA ₁ =0
WIO 2	Col-2	$CA_0=0$, $CA_1=1$
WIO 3	Co1-3	$CA_0 = 1$, $CA_1 = 1$

QSF

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Flash Write Cycle

SE

SC

SIO_{0~3} (INPUT)

SIO_{0~3} (OUTPUT)

OSF

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Load Color Register Cycle

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Read Transfer Cycle (Previous Transfer=Write Transfer)

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Real Time Read Transfer

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Pseudo Write Transfer Cycle

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Write Transfer Cycle

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Split Read Transfer Cycle

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Split Write Transfer Cycle

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Serial Read Cycle (SE=L)

Serial Read Cycle (SE Control)

FAST PAGE MODE 1048576-BIT DUAL-PORT DYNAMIC RAM

Serial Write Cycle (SE=L)

Serial Write Cycle (SE Control)

MITSUBISHI LSIS PACKAGE OUTWARD

ZIP

SOJ

TSOP

MITSUBISHI LSIS PACKAGE OUTLINES

PACKAGE OUTLINES

PACKAGE OUTLINES

70P3S-L Plastic 70pin 400mil TSOP(II) EIAJ Package Code * TSOP070-P-0400 JEDEC Code Weight(g) Under Planning Scale . 3/1 F 岁 뽀 ш Recommended Mount Pad Dimension in Millimeters Min Nom Max 1.2 (I) (I) 0.125 0.2 0.05 Αı A2 1.0 ь 0.25 0.3 0.4 0.105 0.125 0.175 D D 23.39 23.49 23.59 Ε 10 06 10.16 10.26 e 0.65 HE 11.56 11.76 11.96 0.4 0.5 е 06 b Lı 0.8 01 0 10 10.36 ME 12 0.9 Detail F 0.35 b₂

PACKAGE OUTLINES

