Fonction logarithme népérien

1 Logarithme népérien d'un réel strictement positif

1.1 Définition

Définition 1.

La fonction **logarithme népérien**, notée ln, est la fonction définie sur $]0; +\infty[$ qui à tout réel x > 0 associe le réel $\ln(x)$ dont l'exponentielle est x.

Pour tout x > 0, $\ln(x) = y \iff x = e^y$

1.2 Fonction réciproque de la fonction exponentielle

- La fonction exponentielle e^x admet une fonction réciproque appelée fonction logarithme, notée $\ln(x)$. Elles sont réciproques l'une de l'autre car $(x = \ln(e^x) = e^{\ln(x)})$.
- Leur courbes respectives sont symétriques par rapport la droite d'équation y = x.

Propriétés [admises]

- Pour tout x > 0, $e^{\ln x} = x$
- Pour tout réel x, $\ln(e^x) = x$
- $\ln(1) = 0$ et $\ln(e) = 1$, sont des valeurs remarquables

Positions relatives : Pour tout réel x de $]0; +\infty[$, on a $\ln(x) < x < e^x$.

1.3 Relations fonctionnelles

Propriétés [admises] Pour x > 0 et y > 0:

- **Produit** : $\ln(x \times y) = \ln(x) + \ln(y)$
- Quotient 1: $\ln\left(\frac{x}{y}\right) = \ln(x) \ln(y)$
- Quotient 2: $\ln\left(\frac{1}{x}\right) = -\ln(x)$

- Racine carrée : $\ln(\sqrt{x}) = \frac{1}{2}\ln(x)$
- Puissance : Pour x > 0 et n entier relatif,

 $\ln(x^n) = n \ln(x)$

Étude de la fonction logarithme népérien 2

Sens de variation et représentation graphique de $f(x) = \ln(x)$

Théorème :

La fonction logarithme $\ln(x)$ est dérivable sur l'intervalle $]0;+\infty[$ et sa dérivée est la fonction inverse sur

Pour tout
$$x > 0$$
, $\left(\ln(x)\right)' = \frac{1}{x}$

Tableau de variation 2.1.1

Courbe graphique de ln(x)

2.2 **Propriétés**

- La fonction $f(x) = \ln(x)$ est strictement croissante sur $[0; +\infty[$
- La fonction ln est **concave** sur l'intervalle $]0; +\infty[$.

2.3 Fonctions composées avec la fonction logarithme népérien

Propriété:

Soit u une fonction dérivable sur un intervalle I telle que u(x) > 0 pour tout réel x de I. La fonction f définie par $f(x) = \ln(u(x))$ est dérivable sur I et

pour tout réel
$$x$$
 de I , $f'(x) = \frac{u'(x)}{u(x)} \iff (\ln(u))' = \frac{u'}{u}$

Résoudre une équation ou une inéquation avec des logarithmes 2.4

Propriétés Pour tout nombres réels x et y strictement positif :

- $\ln(x) = \ln(y) \iff x = y$ et $\ln(x) < \ln(y) \iff x < y$
- $\ln(x) = 0 \iff x = 1$; $\ln(x) < 0 \iff 0 < x < 1$
- $_{
 m et}$
- $ln(x) > 0 \iff x > 1$

A faire :

- exercices 1, 2, 3 et 4page 237-239 (résolus)
- \bullet les exercices 57, 58, 75, 76, 95, 97, 108, 109 et 116 page 246-250 (entrainement ; corrigés en classe)
 - exercices 142, 146, 148 et 157 page 252 (en autonomie, réponses en fin de livre)

3 Limites liées à la fonction logarithme ln

3.1 Limites aux bornes de l'ensemble de définition de la fonction ln

Propriétés 1 et 2:

$$\lim_{x \to +\infty} \ln(x) = +\infty$$

e

$$\lim_{x \to 0} \ln(x) = -\infty$$
$$x > 0$$

3.2 Croissance comparée du \ln et x^n

Propriétés 3 et 4:

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$

 $_{
m et}$

$$\lim_{x \to 0} x \ln(x) = 0$$
$$x > 0$$

Propriétés 5 et 6 : Pour tout nombre entier n strictement positif, on a :

$$\lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0$$

et

$$\lim_{x \to 0} x^n \ln(x) = 0$$
$$x > 0$$

Démonstrations faites en cours.

A faire:

- exercices 5 et 6 page 241 (résolus)
- les exercices 122 et 129 page 246-250 (entrainement ; corrigés en classe)
 - exercices 152 à 155 page 253 (en autonomie, réponses en fin de livre)

Synthèse ; Fonction logarithme page 252

Courbe représentative

- Dans un repère orthonormé, les courbes représentatives des fonctions logarithme népérien et exponentielle sont symétriques l'une de l'autre par rapport à la droite d'équation y = x.
- L'axe des ordonnées est asymptote à la courbe de In.

Limites

$$\lim_{x \to +\infty} \ln(x) = +\infty \cdot \lim_{\substack{x \to 0 \\ x > 0}} \ln(x) = -\infty$$

Croissances comparées

$$\cdot \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$

 $\lim_{\substack{x \to 0 \\ x > 0}} x \ln(x) = 0$

Pour tout entier n strictement positif

•
$$\lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0$$

$$\lim_{\substack{x \to 0 \\ x > 0}} x^n \ln(x) = 0$$

Lien avec la fonction exponentielle

- Pour tout réel x, $\ln(\exp(x)) = x$, ce qui s'écrit $\ln(e^x) = x$.
- Pour tout réel x strictement positif, exp(ln (x)) = x, ce qui s'écrit $e^{\ln(x)} = x$.
- In (1) = 0; In (e) = 1 et pour tout entier n, In (eⁿ) = n.

Logarithme népérien

- La fonction logarithme népérien que l'on note ln est la fonction réciproque de la fonction exponentielle.
- Pour x > 0, $y = \ln(x)$ équivaut à $e^y = x$. • La fonction ln est définie sur]0; $+\infty[$.

Fonction dérivée

- Pour tout réel x de]0; $+\infty$ [, $\ln'(x) = \frac{1}{x}$.
- Soit *u* une fonction dérivable sur un intervalle l telle que u(x) > 0.

Pour tout réel x de I, on a $(\ln (u))' = \frac{u'}{u}$.

Relation fonctionnelle Propriétés

Pour tous réels *a* et *b* strictement positifs et tout entier *n* :

- $\cdot \ln (ab) = \ln (a) + \ln (b)$
- $\cdot \ln\left(\frac{1}{a}\right) = -\ln\left(a\right)$
- $\cdot \ln \left(\frac{a}{b} \right) = \ln (a) \ln (b)$
- $\cdot \ln (a^n) = n \ln (a)$
- $\cdot \ln \left(\sqrt{a} \right) = \frac{1}{2} \ln \left(a \right)$

Variations et conséquences

- La fonction In est strictement croissante sur]0; +∞[.
- Pour tous réels a et b strictement positifs, $\ln(a) = \ln(b)$ équivaut à a = b.
- Pour tous réels a et b strictement positifs, $\ln(a) < \ln(b)$ équivaut à a < b.
- $\cdot 0 < x < 1$ équivaut à $\ln(x) < 0$.
- $\cdot x > 1$ équivaut à $\ln(x) > 0$.