Derivatives

 $\frac{d}{dx}e^x = e^x$ $\frac{\frac{d}{dx}}{\frac{d}{dx}}\sin(x) = \cos(x)$ $\frac{d}{dx}\cos(x) = -\sin(x)$ $\frac{d}{dx}\tan(x) = \sec^2(x)$ $\frac{d}{dx}\cot(x) = -\csc^2(x)$ $\frac{d}{dx} \sec(x) = \sec(x) \tan(x)$ $\frac{d}{dx}\csc(x) = -\csc(x)\cot(x)$ $\frac{d}{dx}\sin^{-1} = \frac{1}{\sqrt{1-x^2}}, x \in [-1, 1]$ $\frac{d}{dx}\cos^{-1} = \frac{\sqrt{1-x^2}}{\sqrt{1-x^2}}, x \in [-1, 1]$ $\frac{d}{dx} \tan^{-1} = \frac{1}{1+x^2}, \frac{-\pi}{2} \le x \le \frac{\pi}{2}$ $\frac{d}{dx}\sec^{-1} = \frac{1}{|x|\sqrt{x^2-1}}, |x| > 1$ $\frac{d}{dx}\sinh(x) = \cosh(x)$ $\frac{d}{dx}\cosh(x) = \sinh(x)$ $\frac{d}{dx}\tanh(x) = \operatorname{sech}^2(x)$ $\frac{d}{dx} \coth(x) = -csch^2(x)$ $\frac{d}{dx}sech(x) = -sech(x) \tanh(x)$ $\frac{d}{dx}csch(x) = -csch(x)\coth(x)$ $\frac{dx}{dx}\sinh^{-1} = \frac{1}{\sqrt{x^2 + 1}}$ $\frac{d}{dx}\cosh^{-1} = \frac{-1}{\sqrt{x^2 - 1}}, x > 1$ $\frac{d}{dx}\tanh^{-1} = \frac{1}{1 - x^2} - 1 < x < 1$

 $\frac{d}{dx} \operatorname{sech}^{-1} = \frac{1}{x\sqrt{1-x^2}}, 0 < x < 1$

 $\frac{d}{dx}\ln(x) = \frac{1}{x}$ $\frac{d}{dx}b^x = b^x \ln x$ Integrals $\int \sin(x) dx = -\cos(x)$ $\int \cos(x) dx = \sin(x)$ $\int \tan(x)dx = -\ln|\cos(x)|$ $\sec x \tan x dx = \sec x$ $\int \sec x dx = \ln|\sec x + \tan x|$ $\int \sec^2(x)dx = \tan(x) + C$ $\int \sec^3(x) dx = \frac{1}{2} (\sec x \tan x + \ln|\sec x \tan x|)$ $\int \csc^2(x) dx = -\cot(x)$ $\csc(x)\cot(x)dx = -\csc(x)$ $\csc(x)dx = \ln|\csc(x) - \cot(x)|$ $\int \cot(x)dx = \ln|\sin(x)|$ $\int \frac{1}{x} dx = \ln |x|$ $\int e^x dx = e^x$ $\int a^x dx = \frac{1}{\ln a} a^x$ $\int e^{ax} dx = \frac{1}{a} e^{ax}$ $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}(\frac{x}{a})$ $\int \frac{1}{a^2+x^2} dx = \frac{1}{a} \tan^{-1}(\frac{x}{a})$ $\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right|$ $\int \frac{1}{\sqrt{x^2+a^2}} dx = \ln|x+\sqrt{x^2\pm a^2}|$ $\int \frac{1}{x\sqrt{x^2-1}} dx = \sec^{-1}(x)$ $\int \sinh(x)dx = \cosh(x)$ $\int \cosh(x)dx = \sinh(x)$ $\int \tanh(x)dx = \ln|\cosh(x)|$ $\int \tanh(x) \operatorname{sech}(x) dx = -\operatorname{sech}(x)$ $\int \operatorname{sech}^2(x) dx = \tanh(x)$ $\int \operatorname{csch}(x) \operatorname{coth}(x) dx = -\operatorname{csch}(x)$ $\int \ln(x)dx = (x\ln(x)) - x$ $\int_{-r}^{r} \sqrt{r^2 - x^2} \, dx = \frac{\pi r^2}{2}$ $\int \frac{1}{\sqrt{x}} dx = 2\sqrt{x}$ Integrals of inverse trig functions are solved using integration by parts.

Weierstrass

 $t = \tan \frac{x}{2} \quad \cos x = \frac{1-t^2}{1+t^2}$ $\sin x = \frac{2t}{1+t^2}$ $dx = \frac{2}{1+t^2}dt$

 $\int \sin^m x \cos^n x$ m is odd factor sines, then sub $u = \cos x$ If n is odd factor cosines, then sub $u = \sin x$. If both even, use $\frac{1-\cos{(2x)}}{2}$, $\frac{1+\cos{(2x)}}{2}$. If both odd, factor one with less power.

 $\int \tan^m x \sec^n x$ n even save one $\sec^2 x$ and $\sup u = \tan x$. m odd save one $\sec x \tan x$ and $\sin u = \sec x$

Integration by Parts $\int u dv = uv - \int v du$

 $1 + \cot^2(x) = \csc^2(x)$

 $\tan(x \pm y) = \frac{\tan(x) \pm \tan(y)}{1 \mp \tan(x) \tan(y)}$

 $\cos(2x) = \cos^2(x) - \sin^2(x)$

 $\sin(2x) = 2\sin(x)\cos(x)$

 $\cosh(n^2 x) - \sinh^2 x = 1$

 $1 + \tan^2(x) = \sec^2(x)$

 $1 + \cot^2(x) = \csc^2(x)$

 $\sin^2(x) = \frac{1 - \cos(2x)}{2}$ $sin^{2}(x) = \frac{1-cos(2x)}{2}$ $cos^{2}(x) = \frac{1+cos(2x)}{2}$ $tan^{2}(x) = \frac{1-cos(2x)}{1+cos(2x)}$

 $\sin(-x) = -\sin(x)$

 $\tan(-x) = -\tan(x)$

 $\cosh^2(x) - \sinh^2(x) = 1$

 $1 - \tanh^2(x) = \operatorname{sech}^2(x)$

 (x_1, y_1, z_1) and (x_2, y_2, z_2) ,

Distance between them:

 $\cos(-x) = \cos(x)$

given two points:

Midpoint:

3D

Functions/ Identities

Most of trig identities work with hyperbolic, exceptions below $\sin(\cos^{-1}(x)) = \sqrt{1 - x^2}$ $\cos(\sin^{-1}(x)) = \sqrt{1-x^2}$ $\sec(\tan^{-1}(x)) = \sqrt{1+x^2}$ $\tan(\sec^{-1}(x))$ $=(\sqrt{x^2-1} \text{ if } x \ge 1)$ $= (-\sqrt{x^2 - 1} \text{ if } x \le -1)$ $\sinh^{-1}(x) = \ln x + \sqrt{x^2 + 1}$ $\sinh^{-1}(x) = \ln x + \sqrt{x^2 - 1}, \ x \ge -1$ $\tanh^{-1}(x) = \frac{1}{2} \ln x + \frac{1+x}{1-x}, \ 1 < x < -1$

 $\operatorname{sech}^{-1}(x) = \ln\left[\frac{1+\sqrt{1-x^2}}{x}\right], \ 0 < x \le -1$

 $\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y)$

 $cos(x \pm y) = cos(x) cos(y) \pm sin(x) sin(y)$

 $\sin A \cos B = \frac{1}{2}(\sin (A - B) + \sin (A + B))$

 $\sin A \sin B = \frac{1}{2}(\cos (A - B) - \cos (A + B))$

 $\cos A \cos B = \frac{1}{2}(\cos (A - B) + \cos (A + B))$

 $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}$

 $(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2})$ Sphere with center (h,k,l) and radius r:

 $(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

$$\sin^2(x) + \cos^2(x) = 1$$

$$1 + \tan^2(x) = \sec^2(x)$$

$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

 $\vec{u} \times \vec{v} = \vec{0}$ means the vectors are parallel $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a}.\vec{c})\vec{b} - (\vec{a}.\vec{b})\vec{c}$

(Geometrically, the cross product is the area of a paralellogram with sides $||\vec{u}||$ and $||\vec{v}||$

Volume of Parallelpiped

Vectors

Vector: \vec{u}

Unit Vector: \hat{u}

Dot Product

projection)

NOTE:

 $\vec{u} \times \vec{v}$

 $\hat{u} \cdot \hat{v} = \cos(\theta)$

 $||\vec{u}||^2 = \vec{u} \cdot \vec{u}$

 $\vec{u} \cdot \vec{v} = 0$ when \perp

Cross Product

Produces a Vector

 $\vec{u} = \langle u_1, u_2, u_3 \rangle$

 $\vec{v} = \langle v_1, v_2, v_3 \rangle$

Produces a Scalar

 $\vec{u} = \langle u_1, u_2, u_3 \rangle$

 $\vec{v} = \langle v_1, v_2, v_3 \rangle$

 $\vec{u} \cdot \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos(\theta)$

Angle Between \vec{u} and \vec{v} :

Projection of \vec{u} onto \vec{v} : $pr_{\vec{v}}\vec{u} = \left(\frac{\vec{u} \cdot \vec{v}}{||\vec{v}||^2}\right)\vec{v}$

 $\theta = \cos^{-1}(\frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| \, ||\vec{v}||})$

 $\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$

 $\vec{u} \cdot \vec{v}$

Unit Vector: $\hat{u} = \frac{\vec{u}}{||\vec{u}||}$

Magnitude: $||\vec{u}|| = \sqrt{u_1^2 + u_2^2 + u_3^2}$

 $\vec{u} \cdot \vec{v} = \vec{0}$ means the two vectors are

(Geometrically, the dot product is a vector

Perpendicular θ is the angle between them.

$$(\vec{v} \times \vec{u}).\vec{w}$$

However, in the case the question gave you three vectors directly

$$Volume = det \left(\begin{bmatrix} v_1 & v_2 & v_3 \\ u_1 & u_2 & u_3 \\ w_1 & w_2 & w_3 \end{bmatrix} \right)$$

Lines and Planes

Equation of a Plane (x_0, y_0, z_0) is a point on the plane and $\langle A, B, C \rangle$ is a normal vector $A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$ $\langle A, B, C \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$ Ax + By + Cz = D where $D = Ax_0 + By_0 + Cz_0$

Equation of a line

A line requires a Direction Vector $\vec{u} = \langle u_1, u_2, u_3 \rangle$ and a point (x_1, y_1, z_1)

Parametric equation: $x = u_1t + x_1$ $y = u_2t + y_1$ $z = u_3t + z_1$ Symmetric equations:

 $t=rac{x-x_1}{u_1}=rac{y-y_1}{u_2}=rac{z-z_1}{u_3})$ Distance from a Point to a Plane The distance from a point (x_0, y_0, z_0) to a plane Ax+By+Cz=D can be expressed by the formula: $d = \frac{|Ax_0 + By_0 + Cz_0 - D|}{\sqrt{A^2 + B^2 + C^2}}$

A line intersects a plane Just put the equations of x, y, z in the equation of the plane given, and solve for t. Then you'll have the points.

Distance between two skew lines through P_1P_2 , P_3P_4

$$D = \frac{Vol_{parallelepiped}}{Area_{base}} = \frac{|(\vec{P_1P_2} \times \vec{P_3P_4}).\vec{P_1P_3}|}{|\vec{P_1P_2} \times \vec{P_3P_4}|}$$

Or go for the intuitive approach of forcing perpendicularity.

If two vectors are parallel $|\vec{v_1} \times \vec{v_2}| = 0$

Distance between a point and a line \vec{v} $D = \frac{|\vec{Pv_0} \times \vec{v}|}{|\vec{v}|}$

Other Information

$$\begin{array}{l} \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \\ \text{Law of Cosines:} \\ a^2 = b^2 + c^2 - 2bc(\cos(\theta)) \\ \text{Quadratic Formula:} \\ \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \text{ when } ax^2 + bx + c = 0 \end{array}$$