0000000000

Proiectarea algoritmilor

Paradigma programării dinamice Lucrare de laborator nr. 12 Cuprins

Problema rucsacului
Descrierea problemei
Modelul matematic
Algoritm
Sarcini de lucru și barem de notare
Bibliografie

Problema rucsacului, varianta discretă - descrierea problemei

- Se consideră un rucsac de capacitate $M \in \mathbb{Z}_+$ și n obiecte $1, \ldots, n$ de dimensiuni (greutăți) $w_1, \ldots, w_n \in \mathbb{Z}_+$.
- Un obiect i este introdus în totalitate în rucsac, $x_i = 1$, sau nu este introdus deloc, $x_i = 0$, astfel că o umplere a rucsacului constă dintr-o secvență x_1, \ldots, x_n cu $x_i \in \{0,1\}$ și $\sum_{i=1}^n x_i \cdot w_i \leq M$.
- Introducerea obiectului i în rucsac aduce profitul $p_i \in \mathbb{Z}$, iar profitul total este $\sum_{i=1}^n x_i p_i$.
- Problema constă în a determina o alegere (x_1, \ldots, x_n) care să aducă un profit maxim.
- Singura deosebire față de varianta continuă studiată la metoda greedy constă în condiția $x_i \in \{0,1\}$, în loc de $x_i \in [0,1]$.

Problema rucsacului, varianta discretă - model matematic

Problema inițială (starea RUCSAC(n, M)):

• Funcția obiectiv:

$$\max \sum_{i=1}^n x_i \cdot p_i$$

• Restricții:

$$\sum_{i=1}^{n} x_i \cdot w_i \leq M$$

$$x_i \in \{0,1\}, i = 1, \dots, n$$

$$w_i \in \mathbb{Z}_+, p_i \in \mathbb{Z}, i = 1, \dots, n$$

$$M \in \mathbb{Z}_+$$

Problema rucsacului, varianta discretă - model matematic (continuare)

Generalizarea problemei inițiale (starea RUCSAC(i, X)):

• Funcția obiectiv:

$$\max \sum_{i=1}^{j} x_i \cdot p_i$$

• Restricții:

$$\begin{split} &\sum_{i=1}^{j} x_i \cdot w_i \leq X \\ &x_i \in \{0,1\}, i=1,\dots,j \\ &w_i \in \mathbb{Z}_+, p_i \in \mathbb{Z}, i=1,\dots,j \\ &X \in \mathbb{Z}_+ \end{split}$$

Problema rucsacului, varianta discretă - model matematic (continuare)

- Notăm cu $f_i(X)$ valoarea optimă pentru instanța RUCSAC(j,X).
- Dacă j = 0 și $X \ge 0$, atunci $f_i(X) = 0$.
- Presupunem j > 0. Notăm cu $(x_1, ..., x_j)$ alegerea care dă valoarea optimă $f_j(X)$.
 - Dacă x_j = 0 (obiectul j nu este pus în rucsac), atunci, conform principiului de optim, f_j(X) este valoarea optimă pentru starea RUCSAC(j-1,X) și de aici f_j(X) = f_{j-1}(X).
 Dacă x_j = 1 (obiectul j este pus în rucsac), atunci, din nou conform principiului de
 - Dacă $x_j = 1$ (obiectul j este pus în rucsac), atunci, din nou conform principiului de optim, $f_j(X)$ este valoarea optimă pentru starea $\text{RUCSAC}(j-1, X-w_j)$ plus p_j și, de aici, $f_j(X) = f_{j-1}(X-w_j) + p_j$.
- Combinând relaţiile de mai sus obţinem:

$$f_{j}(X) = \begin{cases} -\infty, & \text{dacă } X < 0 \\ 0, & \text{dacă } j = 0 \text{ şi } X \ge 0 \\ \max\{f_{j-1}(X), f_{j-1}(X - w_{j}) + p_{j}\}, & \text{dacă } j > 0 \text{ şi } X \ge 0 \end{cases}$$
 (1)

• Am considerat $f_i(X) = -\infty$, dacă X < 0.

Problema rucsacului, varianta discretă - model matematic (continuare)

- Din relația (1) rezultă că proprietatea de substructură optimă se caracterizează astfel:
 - Soluția optimă $(x_1,...,x_j)$ a problemei RUCSAC(j,X) include soluția optimă (x_1, \dots, x_{i-1}) a subproblemei RUCSAC $(j-1, X-x_i w_i)$.
- Soluția optimă pentru RUCSAC(i, X) se poate obține utilizând soluțiile optime pentru subproblemele RUCSAC(i, Y) cu $1 \le i < j, 0 \le Y \le X$.
- Relaţia (1) implică o recursie în cascadă şi deci numărul de subprobleme de rezolvat este $O(2^n)$, fapt pentru care calculul și memorarea eficientă a valorilor optime pentru subprobleme devine un task foarte important.

• Fie M = 10, n = 3 și greutățile și profiturile date de următorul tabel:

ullet Valorile optime pentru subprobleme sunt calculate cu ajutorul relației $(1){\equiv}(2)$

$$f_{j}(X) = \begin{cases} -\infty, & \text{dacă } X < 0 \\ 0, & \text{dacă } j = 0 \text{ şi } X \ge 0 \\ \max\{f_{j-1}(X), f_{j-1}(X - w_{j}) + p_{j}\}, & \text{dacă } j > 0 \text{ şi } X \ge 0 \end{cases}$$
 (2)

Valorile optime pot fi memorate într-un tablou bidimensional astfel:

X	0	1	2	3	4	5	6	7	8	9	10
f_0	0	0	0	0	0	0	0	0	0	0	0
f_1	0	0	0	10	10	10	10	10	10	10	10
f_2	0	0	0	10	10	30	30	30	40	40	40
f_3	0	0	0	0 10 10 10	10	30	30	30	40	40	40

- Tabloul de mai sus este calculat linie cu linie.
 - Pentru a calcula valorile de pe o linie sunt consultate numai valorile de pe linia precedentă.
 - Exemplu: $f_2(8) = \max\{f_1(8), f_1(8-5) + 30\} = \max\{10, 40\} = 40$.

- Tabloul valorilor optime are dimensiunea $n \cdot M$ (au fost ignorate prima linie și prima coloană).
- Dacă $M = O(2^n)$ rezultă că atât complexitatea spațiu, cât și cea timp sunt exponentiale.
- Privind tabloul de mai sus observăm că există multe valori care se repetă.
- Cum putem memora mai compact tabloul valorilor optime?
- Soluție: Construim graficele funcțiilor $f_0, f_1, f_2 \cdots$

$$f_0(X) = \begin{cases} -\infty & , X < 0 \\ 0 & , X \ge 0 \end{cases}$$

$$g_0(X) = f_0(X - w_1) + p_1 = \begin{cases} -\infty & , X < 3 \\ 10 & , 3 \le X \end{cases}$$

Figura 1: Funcțiile f_0 și g_0

00000000000

$$f_1(X) = \max\{f_0(X), g_0(X)\} = \begin{cases} -\infty & , X < 0 \\ 0 & , 0 \le X < 3 \\ 10 & , 3 \le X \end{cases}$$

$$g_1(X) = f_1(X - w_2) + p_2 = \begin{cases} -\infty & , X < 5 \\ 30 & , 5 \le X < 8 \\ 40 & , 8 \le X \end{cases}$$

Figura 2: Funcțiile f_0 și g_0 ; Funcțiile f_1 și g_1

00000000000

$$f_2(X) = \max\{f_1(X), g_1(X)\} = \begin{cases} -\infty & , X < 0 \\ 0 & , 0 \le X < 3 \\ 10 & , 3 \le X < 5 \\ 30 & , 5 \le X < 8 \\ 40 & , 8 \le X \end{cases}$$

$$g_2(X) = f_2(X - w_3) + p_3 = \begin{cases} -\infty & , X < 6 \\ 20 & , 6 \le X < 9 \\ 30 & , 9 \le X < 11 \\ 50 & , 11 \le X < 14 \\ 60 & , 14 \le X \end{cases}$$

Figura 3: Funcțiile f_1 și g_1 ; Funcțiile f_2 și g_2

$$f_3(X) = \max\{f_2(X), g_2(X)\} = \begin{cases} -\infty & , X < 0 \\ 0 & , 0 \le X < 3 \\ 10 & , 3 \le X < 5 \\ 30 & , 5 \le X < 8 \\ 40 & , 8 < X \le 11 \\ 50 & , 11 \le X < 14 \\ 60 & , 14 \le X \end{cases}$$

Figura 4: Funcțiile f_2 și g_2 ; Funcția f_3

Problema rucsacului, varianta discretă - exemplu (comentarii)

- Se remarcă faptul că funcțiile fi și gi sunt funcții în scară. Graficele acestor funcții pot fi reprezentate prin multimi finite din puncte din plan.
 - De exemplu, graficul functiei f2 este reprezentat prin multimea $\{(0,0),(3,10),(5,30),(8,40)\}.$
- O mulţime care reprezintă o funcţie în scară conţine acele puncte în care funcţia face salturi.
- Graficul funcției g_i se obține din graficul funcției f_i printr-o translație.
- Graficul funcției f_{i+1} se obține prin interclasarea graficelor funcțiilor f_i și g_i .

Problema rucsacului, varianta discretă - algoritm (descriere)

- În general, fiecare f_i este complet specificat de o mulțime $S_i = \{(X_i, Y_i) \mid j = 0, ..., r\}$, unde $Y_i = f_i(X_i)$.
 - Presupunem $X_1 < \cdots < X_r$.
- Analog, funcțiile g_i sunt reprezentate prin mulțimile T_i = {(X + w_{i+1}, Y + p_{i+1}) | (X, Y) ∈ S_i}.
 - Notăm $T_i = \tau(S_i)$ și $S_{i+1} = \mu(S_i, T_i)$.
- Mulţimea S_{i+1} se obţine din S_i şi T_i prin interclasare.
 - Operația de interclasare se realizează într-un mod asemănător cu cel de la interclasarea a două linii ale orizontului.
- Se consideră o variabilă L care ia valoarea 1 dacă graficul lui f_{i+1} coincide cu cel al lui f_i și cu 2 dacă el coincide cu cel al lui g_i .
 - Deoarece (0,0) aparține graficului rezultat, considerăm L=1, j=1 și k=1.

Problema rucsacului, varianta discretă - algoritm de interclasare grafice (descriere)

Presupunând că la un pas al interclasării se compară $(X_j, Y_j) \in S_i$ cu $(X_k, Y_k) \in T_i$, atunci:

- dacă L = 1:
 - dacă $X_i < X_k$, atunci se adaugă (X_i, Y_i) în S_{i+1} și se incrementează j;
 - dacă $X_i = X_k$:
 - dacă $Y_j \ge Y_k$, atunci se adaugă (X_j, Y_j) în S_{i+1} și se incrementează j și k;
 - dacă $Y_j < Y_k$, atunci se adaugă (X_k, Y_k) în S_{i+1} , L=2 și se incrementează j și k;
 - dacă $X_j > X_k$ sau $j > |S_i|$:

00000

- dacă $Y_{j-1} \ge Y_k$, atunci se incrementează k;
- dacă $Y_{j-1} < Y_k$, atunci L=2;
- dacă L = 2:
 - dacă $X_k < X_j$, atunci se adaugă (X_k, Y_k) în S_{i+1} și se incrementează k;
 - dacă $X_k = X_j$:
 - dacă Y_k ≥ Y_j, atunci se adaugă (X_k, Y_k) în S_{i+1} şi se incrementează j şi k;
 dacă Y_k < Y_j, atunci se adaugă (X_j, Y_j) în S_{i+1}, L = 1 şi se incrementează j şi k;
 - dacă $X_k > \hat{X}_i$ sau $k > |T_i|$:
 - dacă $Y_{k-1} \ge Y_j$, atunci se incrementează j;
 - dacă $Y_{k-1} < Y_i$, atunci L = 1;

Dacă se termină mulțimea S_i , atunci se adauga la S_{i+1} restul din T_i .

Dacă se termină mulțimea T_i , atunci se adauga la S_{i+1} restul din S_i .

Notăm cu intercl $Grafice(S_i,T_i)$ funcția care determină S_{i+1} conform algoritmului de mai sus.

00000

Problema rucsacului, varianta discretă - algoritm de extragere a solutiei (exemplu)

- $S_3 = \{(0,0),(3,10),(5,30),(8,40),(11,50),(14,60)\}.$
- $S_2 = \{(0,0),(3,10),(5,30),(8,40)\}.$
- $S_1 = \{(0,0),(3,10)\}.$
- $S_0 = \{(0,0)\}.$
- Se caută în S_n = S₃ perechea (X_j, Y_j) cu cel mai mare X_j pentru care X_j ≤ M. Obținem (X_j, Y_j) = (8,40). Deoarece (8,40) ∈ S₃ și (8,40) ∈ S₂ rezultă f_{optim}(M) = f_{optim}(8) = f₃(8) = f₂(8) și deci x₃ = 0. Perechea (X_j, Y_j) rămâne neschimbată.
- Pentru că $(X_j, Y_j) = (8,40)$ este în S_2 și nu este în S_1 , rezultă că $f_{optim}(8) = f_1(8-w_2) + p_2$ și deci $x_2 = 1$. În continuare se ia $(X_j, Y_j) = (X_j w_2, Y_j p_2) = (8-5,40-30) = (3,10)$.
- Pentru că $(X_j, Y_j) = (3,10)$ este în S_1 și nu este în S_0 , rezultă că $f_{optim}(3) = f_1(3-w_1) + p_1$ și deci $x_1 = 1$.

Problema rucsacului, varianta discretă - algoritm de extragere a solutiei (descriere)

- Inițial se determină perechea $(X_j,Y_j)\in S_n$ cu cel mai mare X_j pentru care $X_j\leq M$. Valoarea Y_j constituie încărcarea optimă a rucsacului, *i.e.*, valoarea funcției obiectiv din problema inițială.
- Pentru i = n 1, ..., 0:
 - dacă (X_j, Y_j) este în S_i , atunci $f_{i+1}(X_j) = f_i(X_j) = Y_j$ și se consideră $x_{i+1} = 0$ (obiectul i+1 nu este ales);
 - dacă (X_j,Y_j) nu este în S_i , atunci $f_{i+1}(X_j)=f_i(X_j-w_{i+1})+p_{i+1}=Y_j$ și se consideră $x_{i+1}=1$ (obiectul i+1 este ales), $X_j=X_j-w_{i+1}$ și $Y_j=Y_j-p_{i+1}$.

Problema rucsacului, varianta discretă - algoritm (pseudocod)

```
procedure rucsac_II(M, n, w, p, x)
    S_0 \leftarrow \{(0,0)\}
    T_0 \leftarrow \{(w_1, p_1)\}
     for i \leftarrow 1 to n
            S_i \leftarrow interclGrafice(S_{i-1}, T_{i-1})
           T_{i} \leftarrow \{(X + w_{i+1}, Y + p_{i+1}) \mid (X, Y) \in S_{i}\}
     determină (X_i, Y_i) cu X_i = max\{X_i \mid (X_i, Y_i) \in S_n, X_i \leq M\}
     for i \leftarrow n-1 downto 0 do
            if (X_i, Y_i) \in S_i
                 then x_{i+1} \leftarrow 0
                 else x_{i+1} \leftarrow 1
                         X_i \leftarrow X_i - W_{i+1}
                         Y_i \leftarrow Y_i - p_{i+1}
end
```

Sarcini de lucru și barem de notare

Sarcini de lucru si barem de notare

Sarcini de lucru:

- 1. Scrieți o funcție C/C++ care implementează algoritmul rucsac.
- 2. Se consideră un rucsac de capacitate $M \in \mathbb{Z}_+$ și n objecte $1, \ldots, n$ de dimensiuni (greutăți) $w_1, \ldots, w_n \in \mathbb{Z}_+$.. Scrieți un program care să afișeze soluția optimă.

Barem de notare:

- 1. Implementarea algoritmului rucsac: 7p
- 2. Afișarea soluției optime: 2p
- Baza: 1p

Bibliografie

Lucanu, D. și Craus, M., Proiectarea algoritmilor, Editura Polirom, 2008.

R.E. Bellman şi S.E. Dreyfus, *Applied Dynamic Programming*, Princeton University Press, 1962.

Moret, B.M.E.şi Shapiro, H.D., *Algorithms from P to NP: Design and Efficiency*, The Benjamin/Cummings Publishing Company, Inc., 1991.