Confidence Intervals

EE-209 - Eléments de Statistiques pour les Data Sciences

The 68.3 - 95.5 - 99.7 rule

For
$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mathbb{P}(X \in [\mu - \sigma, \mu + \sigma]) \approx 0.683$$

$$\mathbb{P}(X \in [\mu - 2\sigma, \mu + 2\sigma]) \approx 0.955$$

$$\mathbb{P}(X \in [\mu - 3\sigma, \mu + 3\sigma]) \approx 0.997$$

We see that the probability that a Gaussian random variable takes a value which is further away from the expectation μ than 3σ (even 2 σ) is fairly small.

Intervals with guarantees at 90%, 95% and 99%

EE-209

For
$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mathbb{P}(X \in [\mu - 1.645 \, \sigma, \mu + 1.645 \, \sigma]) \approx 0.90$$

$$\mathbb{P}(X \in [\mu - 1.960 \, \sigma, \mu + 1.960 \, \sigma]) \approx 0.95$$

 $\mathbb{P}(X \in [\mu - 2.576 \,\sigma, \mu + 2.576 \,\sigma]) \approx 0.99$ $\mathbb{P}(X \in [\mu - 3.291 \,\sigma, \mu + 3.291 \,\sigma]) \approx 0.999$

Confidence Intervals 3/3

High probability interval for a single Gaussian observation $X \sim \mathcal{N}(\mu, \sigma^2)$

$$\begin{split} & \mathbb{P}(\quad X \quad \in [\mu - q\,\sigma, \mu + q\,\sigma]) \\ = & \ \mathbb{P}(X - \mu \in \quad \left[\ -q\,\sigma, \ q\,\sigma \ \right] \quad) \\ = & \ \mathbb{P}(\ \frac{X - \mu}{\sigma} \ \in \quad \left[\ -q, \ q \ \right] \quad) \\ = & \ \mathbb{P}(\ Z \ \in \quad \left[\ -q, \ q \ \right] \quad), \end{split}$$
 where $Z \sim \mathcal{N}(0, 1)$.

And $\mathbb{P}(Z \in [-q,q]) = \Phi(q) - \Phi(-q) = 1 - 2\Phi(-q)$ where Φ is the standard Gaussian cdf.

So
$$\mathbb{P}(Z \in [-q,q]) = 1 - \alpha \quad \Leftrightarrow \quad -q = z_{\alpha/2} \quad \Leftrightarrow \quad q = z_{1-\alpha/2} = |z_{\alpha/2}|.$$

$$\begin{array}{lll} \text{We have} & & \mathbb{P}\big(X \in [\mu - z_{1-\alpha/2}\,\sigma, \mu + z_{1-\alpha/2}\,\sigma]\big) & = & 1-\alpha \\ \\ \text{or equivalently} & & \mathbb{P}\big(X \in [\mu - \,|z_{\alpha/2}|\,\,\sigma, \mu + \,|z_{\alpha/2}|\,\,\sigma]\big) & = & 1-\alpha \end{array}$$

High probability interval for the empirical mean of i.i.d. Gaussian data

$$\begin{array}{cccc} & \text{If} & X_1, \dots, X_n & \stackrel{\text{iid}}{\sim} & \mathcal{N}(\mu, \sigma^2) \\ \text{then} & X_1 + \dots + X_n & \sim & \mathcal{N}(n\mu, n\sigma^2) \\ \text{so that} & \bar{X} & \sim & \mathcal{N}(\mu, \frac{\sigma^2}{n}) \end{array}$$

where $\bar{X}:=\frac{1}{n}(X_1+\ldots+X_n).$

 $\operatorname{std}(\bar{X}) = \frac{\sigma}{\sqrt{n}}$ is called the *standard error*.

So we have
$$\begin{split} \mathbb{P}\big(\bar{X} \in \left[\mu - \frac{z_{1-\alpha/2}}{\sqrt{n}}, \mu + \frac{z_{1-\alpha/2}}{\sqrt{n}}\right]\big) &= 1-\alpha \\ \text{or equivalently} & \mathbb{P}\big(\bar{X} \in \left[\mu - \frac{|z_{\alpha/2}|}{\sqrt{n}}, \mu + \frac{|z_{\alpha/2}|}{\sqrt{n}}\right]\big) &= 1-\alpha \\ \text{e.g.} & \mathbb{P}\big(\bar{X} \in \left[\mu - \frac{1.96}{\sqrt{n}}, \mu + \frac{1.96}{\sqrt{n}}\right]\big) &= 0.95 \end{split}$$

EE-209 Confidence Intervals

Confidence interval: key idea

$$\mathbb{P}(\bar{X} \in [\mu - c, \mu + c]) = \mathbb{P}(|\bar{X} - \mu| \le c) = \mathbb{P}(\mu \in [\bar{X} - c, \bar{X} + c])$$

$$\mbox{Indeed} \quad \bar{X} \leq \mu + c \quad \Leftrightarrow \quad \mu \geq \bar{X} - c. \qquad \quad \mbox{And} \quad \mu - c \leq \bar{X} \quad \Leftrightarrow \quad \mu \leq \bar{X} + c.$$

So we have
$$\begin{split} \mathbb{P}\big(\mu \in \left[\bar{X} - z_{1-\alpha/2} \, \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{1-\alpha/2} \, \frac{\sigma}{\sqrt{n}}\right]\big) &= 1-\alpha \\ \text{or equivalently} & \mathbb{P}\big(\mu \in \left[\bar{X} - \, |z_{\alpha/2}| \, \frac{\sigma}{\sqrt{n}}, \bar{X} + \, |z_{\alpha/2}| \, \frac{\sigma}{\sqrt{n}}\right]\big) &= 1-\alpha \\ \text{e.g.} & \mathbb{P}\big(\mu \in \left[\bar{X} - \, 1.96 \, \, \frac{\sigma}{\sqrt{n}}, \bar{X} + \, 1.96 \, \, \frac{\sigma}{\sqrt{n}}\right]\big) &= 0.95 \end{split}$$

$$\mu - |z_{\alpha/2}| \frac{\bar{x}}{\sqrt{n}} \quad \mu \quad \mu + |z_{\alpha/2}| \frac{\sigma}{\sqrt{n}}$$

$$\bar{x} - |z_{\alpha/2}| \frac{\sigma}{\sqrt{n}} \quad \bar{x} \quad \bar{x} + |z_{\alpha/2}| \frac{\sigma}{\sqrt{n}}$$

- $[\bar{X} |z_{\alpha/2}|] \frac{\sigma}{\sqrt{n}}, \bar{X} + |z_{\alpha/2}|] \frac{\sigma}{\sqrt{n}}$ is a 1α level confidence interval.
- $[\bar{X} 1.96 \frac{\sigma}{\sqrt{n}}, \bar{X} + 1.96 \frac{\sigma}{\sqrt{n}}]$ is a 95% level confidence interval.

It is the interval which is random, not μ !

EE-209 Confidence Intervals 6/19

Example: estimating a temperature

Let's assume that we are trying to measure a temperature (e.g. below a glacier) with a device which is fairly unstable. We assume that the standard deviation of the measurement error is known and equal to $\sigma=0.6$.

We collect the following list of measured values:

$$[-0.1, 0.3, -0.8, 0.0, 0.1, -0.8, 0.7, -1.9, -0.9, -0.3]$$

We have n = 10 and $\bar{x} = -0.37$.

And we get the following 95% confidence interval:

$$\left[\bar{x} - \ \mathbf{1.96} \ \frac{\sigma}{\sqrt{n}}, \ \bar{x} + \ \mathbf{1.96} \ \frac{\sigma}{\sqrt{n}}\right] = \left[-0.37 - 1.96 \cdot \frac{0.6}{\sqrt{10}}, \ -0.37 + 1.96 \cdot \frac{0.6}{\sqrt{10}} \right] = \left[-0.74, \ 0.00 \right].$$

Note that in this example σ was known which is rarely the case

The case of the Gaussian empirical mean \bar{X} when σ is unknown

We assume again that $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ so that $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$.

We can estimate σ^2 using the unbiased variance estimate $S^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$.

The way we proceeded before was using the fact that $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\sim \mathcal{N}(0,1)...$

But, given that S^2 is a random variable, a priori, we cannot simply replace σ^2 by S^2 in the previous equation. However we have the following result:

Theorem: the appropriately standardized mean follows a Student distribution...

Under the assumption that $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$:

$$(i)$$
 $\bar{X}\sim\mathcal{N}(\mu,\frac{\sigma^2}{n}), \qquad (ii)$ $S^2/\sigma^2\sim\frac{1}{n-1}$ $\chi^2_{n-1}, \qquad (iii)$ \bar{X} and S^2 are independent r.v.s

and $T:=rac{X-\mu}{S/\sqrt{n}}$ follows Student's t-distribution St_{n-1} with n-1 degrees of freedom.

EE-209 Confidence Intervals 8/19

The Student distribution

If $T \sim \mathsf{St}_n$ then its pdf is

$$p_T(t) = c_n \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}},$$

where c_n is a normalizing constant.

Away from the mean, the Gaussian density decreases faster than exponentially, while the Student t density decreases only polynomially.

Intervals containing 95% of the probability mass are thus wider for the Student.

Comparing the Student pdfs with n = 1, 2, 5, 30 d.f.s with a $\mathcal{N}(0, 1)$.

EE-209

Confidence Interval for the Gaussian \bar{X} using the Student t-distribution

Given that
$$T:=rac{ar{X}-\mu}{S/\sqrt{n}}\sim \operatorname{St}_{n-1},$$
 if

- $t_{\alpha/2}^{(n-1)}$ is the quantile of level $\frac{\alpha}{2}$ of a St_{n-1} ,
- $\tau_{\underline{\alpha}} := t_{1-\alpha/2}^{(n-1)} = |t_{\alpha/2}^{(n-1)}|$ is the quantile of level $1 \frac{\alpha}{2}$ of a St_{n-1} ,

then
$$\begin{aligned} 1-\alpha &=& \mathbb{P}(-\tau_{\frac{\alpha}{2}} \leq T \leq \tau_{\frac{\alpha}{2}}) \\ &=& \mathbb{P}(-\tau_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \leq \bar{X} - \mu \leq \tau_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}) \\ &=& \mathbb{P}(-\tau_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \leq \mu - \bar{X} \leq \tau_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}) \\ &=& \mathbb{P}(\bar{X} - \tau_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \leq \mu \leq \bar{X} + \tau_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}) \end{aligned}$$

So $[\bar{X} - \tau_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \bar{X} + \tau_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}]$ is a confidence interval of level $1 - \alpha$

Comparing $t_{1-\alpha/2}^{(n)}$ and $z_{1-\alpha/2}$

	Values of $ au_{lpha/2}$ for $n=$								$ z_{\alpha/2} $
$1-\alpha$	1	2	5	10	20	50	100	∞	
									1.645
0.95	12.7	4.30	2.57	2.23	2.09	2.01	1.98	1.960	1.960
0.99	63.6	9.92	4.03	3.17	2.85	2.68	2.62	2.576	2.576

- For n=6, $\left[\bar{X}-2.57\frac{S}{\sqrt{n}}, \bar{X}+2.57\frac{S}{\sqrt{n}}\right]$ is a confidence interval of level 95% for μ .
- For $n=51, \left[\bar{X}-2.01\frac{S}{\sqrt{n}}, \bar{X}+2.01\frac{S}{\sqrt{n}}\right]$ is a confidence interval of level 95% for μ .

When
$$n \to \infty$$
 we have $t_{1-\alpha/2}^{(n)} \longrightarrow z_{1-\alpha/2} = |z_{\alpha/2}|$.

EE-209 Confidence Intervals 11/1

${\color{blue} \boxplus}$ Example: estimating a temperature again but with σ unknown

We are still trying to measure a temperature (e.g. below a glacier) with a device which is fairly unstable, but now σ is unknown.

We have the same list of measured values:

$$[-0.1, 0.3, -0.8, 0.0, 0.1, -0.8, 0.7, -1.9, -0.9, -0.3]$$

and we still have n=10 and $\bar{x}=-0.37$.

We compute the sample standard deviation $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2} = 0.747$

And we get the following 95% Student confidence interval using that $t_{0.975}^{(9)}=2.26$.

$$\left[\bar{x} - \frac{\tau_{\underline{\alpha}}}{2} \frac{s}{\sqrt{n}}, \bar{x} + \frac{\tau_{\underline{\alpha}}}{2} \frac{s}{\sqrt{n}}\right] = \left[-0.37 - 2.26 \cdot \frac{0.747}{\sqrt{10}}, -0.37 + 2.26 \cdot \frac{0.747}{\sqrt{10}}\right] = \left[-0.90, \ 0.16\right].$$

The confidence interval is larger because $s > \sigma$ and because $t_{1-\alpha/2} > z_{1-\alpha/2}$.

Asymptotic Confidence Intervals

- What if $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} P$ with P unknown?
- ullet Can we still determine a confidence interval for $\mu=\mathbb{E}[X_1]$?
- If we assume that $\mathbb{E}[X_1^2]<\infty$, then by the CLT, $\qquad \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \xrightarrow{(d)} \mathcal{N}(0,1).$
- $\bullet \ \ \text{Even better, if} \ \mathbb{E}[X_1^2] < \infty, \ \text{by the CLT} \ + \ \text{Slutsky's lemma,} \quad \frac{\bar{X} \mu}{S/\sqrt{n}} \xrightarrow{(d)} \mathcal{N}(0,1).$

then if
$$n$$
 is large
$$\begin{aligned} 1-\alpha &\approx & \mathbb{P}(-|z_{\alpha/2}| \leq \frac{\bar{X}-\mu}{S/\sqrt{n}} \leq |z_{\alpha/2}|) \\ &= \mathbb{P}(-|z_{\alpha/2}| \frac{S}{\sqrt{n}} \leq \bar{X} - \mu \leq |z_{\alpha/2}| \frac{S}{\sqrt{n}}) \\ &= \mathbb{P}(-|z_{\alpha/2}| \frac{S}{\sqrt{n}} \leq \mu - \bar{X} \leq |z_{\alpha/2}| \frac{S}{\sqrt{n}}) \\ &= \mathbb{P}(\bar{X} - |z_{\alpha/2}| \frac{S}{\sqrt{n}} \leq \mu \leq \bar{X} + |z_{\alpha/2}| \frac{S}{\sqrt{n}}) \end{aligned}$$

So $\left[\bar{X} - \tau_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \bar{X} + \tau_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}\right]$ is a approximate confidence interval of level $1 - \alpha$ when n is sufficiently large. This is called an asymptotic CI, and $1 - \alpha$ is its nominal probability coverage. Note that we used S here but any consistent estimator of σ could be used.

EE-209 Confidence Intervals 13/19

Asymptotic Confidence Intervals: Application to the Bernoulli

Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathsf{Ber}(p)$ with p unknown, and we consider the estimator $\hat{p} := \bar{X}$.

ullet Given that $\mathbb{E}[X_1^2]=\mathbb{E}[X_1]=p<\infty$ and that $\mathsf{Var}(X)=p(1-p)$, by the CLT

$$\frac{\hat{p}-p}{\sqrt{p(1-p)/n}} \xrightarrow{(d)} \mathcal{N}(0,1).$$

• p(1-p) is unknown but can be estimated consistently by $\hat{p}(1-\hat{p})$, and by Slutsky

$$\frac{\hat{p}-p}{\sqrt{\hat{p}(1-\hat{p})}/\sqrt{n}} \xrightarrow{(d)} \mathcal{N}(0,1).$$

We therefore have the asymptotic CI at level $1 - \alpha$ (nominal probability coverage)

$$p \in \left[\hat{p} - |z_{\alpha/2}| \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}, \ \hat{p} + |z_{\alpha/2}| \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}\right].$$

EE-209 Confidence Intervals

14/19

Wald confidence intervals for the Maximum Likelihood Estimator

By the CLT, if $\hat{\theta} = \hat{\theta}_{MLE}$ is the maximum likelihood estimator for θ based on an i.i.d. sample of size n, and if $I_1(\theta) > 0$, then

$$\sqrt{nI_1(\theta)}(\hat{\theta} - \theta) = \sqrt{I(\theta)}(\hat{\theta} - \theta) \xrightarrow{(d)} \mathcal{N}(0, 1).$$

With Slutsky's lemma, we also have
$$\sqrt{I(\hat{\theta})}(\hat{\theta}-\theta) \xrightarrow{(d)} \mathcal{N}(0,1).$$

 $1-\alpha \approx \mathbb{P}(-|z_{\alpha/2}| \leq \sqrt{I(\hat{\theta})(\hat{\theta}-\theta)} \leq |z_{\alpha/2}|)$ So we have $= \mathbb{P}\Big(\hat{\theta} - \frac{|z_{\alpha/2}|}{\sqrt{I(\hat{\theta})}} \le \theta \le \hat{\theta} + \frac{|z_{\alpha/2}|}{\sqrt{I(\hat{\theta})}}\Big)$

Finally, $\left[\hat{\theta} - \frac{|z_{\alpha/2}|}{\sqrt{I(\hat{\theta})}}, \hat{\theta} + \frac{|z_{\alpha/2}|}{\sqrt{I(\hat{\theta})}}\right]$ is an asymptotic confidence interval of level $1 - \alpha$ which is thus valid when n is large.

\blacksquare Wald CI for the MLE of the parameter p in the Bernoulli model

Let
$$X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \operatorname{Ber}(p_*)$$
. If $N = \sum_{i=1}^n X_i = n\bar{X}$. then

- the log-likelihood is $\ell(p) = N \log p + (n-N) \log (1-p)$.
- the score function is $\ell'(p) = \frac{N}{p} \frac{n-N}{1-p} = \frac{(1-p)N p(n-N)}{p(1-p)} = \frac{N-pn}{p(1-p)}$.
- the stationary points of ℓ satisfy $\ell'(p)=0$. The unique solution is $\hat{p}=\frac{N}{n}=\bar{X}$.
- $\ell'(p) > 0$ for $p < \hat{p}$ and $\ell'(p) < 0$ for $p > \hat{p}$ so \hat{p} attains the maximum and is the MLE.
- the Fisher Information is $I(p) = \text{Var} \big(\ell'(p) \big) = \frac{\text{Var}(N)}{p^2(1-p)^2} = \frac{np(1-p)}{p^2(1-p)^2} = \frac{n}{p(1-p)}.$
- It can be estimated by the observed information $I(\hat{p}) = \frac{n}{\hat{p}(1-\hat{p})}$.

Using the definition of the Wald confidence interval we have $p \in \left[\hat{p} - \frac{|z_{\alpha/2}|}{\sqrt{I(\hat{p})}}, \, \hat{\theta} + \frac{|z_{\alpha/2}|}{\sqrt{I(\hat{p})}}\right]$

After replacement $p \in \left[\hat{p} - |z_{\alpha/2}|\sqrt{\frac{\hat{p}(1-\hat{p})}{n}},\,\hat{p} + |z_{\alpha/2}|\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$. This is the same asymptotic confidence interval as the one we had obtained from applying the general CLT.

EE-209 Confidence Intervals 16/19

Confidence Interval: general view

In the case of a scalar parameter θ

- ullet instead of looking for a *pointwise estimator* $\hat{ heta}$ which aims at being close to heta
- ullet we try to find a (short) interval $[\hat{\Theta}_l,\hat{\Theta}_u]$ such that

$$\mathbb{P}(\theta \in [\hat{\Theta}_l, \hat{\Theta}_u]) \ge 1 - \alpha.$$

- This interval is often of the form $[\hat{\theta}-m,\hat{\theta}+m]$ where m is the margin of error (MOE).
- Often, $m=q\frac{\sigma}{\sqrt{n}}$ or $m=q\frac{\hat{\sigma}}{\sqrt{n}}$ where q is the quantile of a distribution that does not depend on any (unknown) parameter, where σ is the standard deviation of a single observation and $\frac{\sigma}{\sqrt{n}}$ is called the *standard* error (SE).
- A confidence interval is a way to quantify our *uncertainty* about our estimate, and the MOE and SE are ways to measure it.
- When an approximate confidence interval is built it targets a level 1α , which is called the *nominal probability coverage*.
- It can be different from the actual value of $\mathbb{P}(\theta \in [\hat{\Theta}_l, \hat{\Theta}_u])$, which is called the *actual probability coverage* and which is often unknown.

E-209 Confidence Intervals 1

Pivots and how to construct confidence intervals

A **pivot** is a statistic $T(X_1, \ldots, X_n, \theta)$ that depends on the sample and on the parameter of interest in such a way that its distribution does not depend on θ .

For example:

- For $X_i \dots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2), \quad T := \frac{\bar{X} \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$ is a pivot.
- For $X_i \dots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$, $T := \frac{\bar{X} \mu}{S/\sqrt{n}} \sim \operatorname{St}_{n-1}$ is a pivot, for $S^2 = \frac{n}{n-1} (\overline{X^2} \bar{X}^2)$.

We can also have some asymptotic pivots:

- For $X_i \ldots, X_n$ i.i.d. with $\mathbb{E}[X_1^2] < \infty$, $T := \frac{\bar{X} \mu}{\hat{\sigma}/\sqrt{n}} \xrightarrow{(d)} \mathcal{N}(0, 1)$.
- For $\hat{\theta} = \hat{\theta}_{MLE}$, $T := \sqrt{I(\hat{\theta})}(\hat{\theta} \theta) \xrightarrow{(d)} \mathcal{N}(0, 1)$.

Wilson score CI for the MLE of the parameter p in the Bernoulli model

We can also consider the central limit theorem based on the true variance p(1-p):

$$\frac{\hat{p}-p}{\sqrt{p(1-p)/n}} \xrightarrow{(d)} \mathcal{N}(0,1) \quad \text{so that} \quad \frac{n(\hat{p}-p)^2}{p(1-p)} \xrightarrow{(d)} \chi_1^2.$$

Let $z=z_{1-\alpha/2}$ be an $1-\alpha/2$ normal quantile. Then z^2 is an $1-\alpha$ quantile of the χ^2_1 .

Therefore

$$\mathbb{P}\left(\frac{n(\hat{p}-p)^2}{p(1-p)} \le z^2\right) \xrightarrow[n \to \infty]{} 1 - \alpha.$$

The inequality can be rewritten as

$$np^2 - 2np\hat{p} + n\hat{p}^2 \le z^2 p(1-p)$$

$$p^2(n+z^2) - 2p(n\hat{p} + \frac{1}{2}z^2) + n\hat{p}^2 \le 0$$

Calculations show that this is equivalent to

$$p \in \left[\hat{p}_z - \frac{\hat{\sigma}_z}{\sqrt{n}}z, \, \hat{p}_z + \frac{\hat{\sigma}_z}{\sqrt{n}}z\right]$$

with
$$\hat{p}_z := \frac{n\hat{p} + z^2 \frac{1}{2}}{n + z^2}$$
,

and
$$\hat{\sigma}_z := \frac{n}{n + z^2} \sqrt{\hat{p}(1 - \hat{p}) + \frac{z^2}{4n}}$$
.