Lucas Frey

**** +1 (971) 312 - 7266

github.com/lcsfrey

EXPERIENCE

Machine Learning Engineer / Data Scientist

Jun 2019 –Present Fremont, California

Lam Research

- · Lead developer of a design optimization framework used to solve high dimensional optimization problems for internal and external stakeholders
- · Implemented a probabilistic deep learning framework to solve inverse optimization problems
- · Reviewed all pull requests meant to merge changes to core code or branches
- · Developed image processing and computer vision algorithms to solve complex image analysis problems
- · Designed high and low-level system overviews of large-scale software
- · Presenting research progress at Lam internal technology conference in May 2020
- · Attended deep learning conferences and stayed up to date on many advances in machine learning related to image segmentation and analysis

Data Science Intern

Jun 2018 –Jun 2019

Lam Research

Fremont, California

- · Implemented computer vision algorithms for analyzing high volume, high magnification images of semiconductors
- · Implemented GUI front-end to deploy automatic image analysis applications
- · Developed Convolutional Neural Networks (CNNs) for image classification and segmentation
- · Implemented image segmentation framework to aid in the development of algorithms to automate image analysis for process engineers.
- · Presented talk on CNNs to a multi-disciplinary team of engineers

Computer Science Tutor

Oct 2017 –Jun 2018

Self-Employed

Corvallis, Oregon

- · Developed own curriculum to teach high school student C++ and Java programming
- · Assisted student in achieving the highest score on the AP Computer Science Exam
- · Taught concepts of pointers, stack vs heap, object orientation, parallelism, polymorphism, algorithms and data structures

Design Optimization Via Sequential Time-Series Modeling

Jun 2019 –Present

- Lam Research
- · Improved design iteration speed by utilizing the prior knowledge of domain experts to boost model performance
- · Managed code repository used by internal and external research partners

· Developed scalable deep learning models to solve design optimization problems

- · Implemented particle swarm and gradient based optimization algorithms
- · Implemented sparse models to improve robustness, accuracy, memory, and power usage
- · Incorporated Bayesian methods for uncertainty estimation
- · Utilized custom built cost functions to constrain and regularize the optimization process
- · Implemented models in Python and Jupyter Notebooks using Keras and Tensorflow

Deep Learning Image Segmentation Pipeline

Jun 2018 -Present

- Lam Research
- · Developed pipeline for building, training, validating and deploying deep learning models
- \cdot Replicated results of academic journals on Dense, Inception, and Resnet variant CNNs and Unets
- · Built Generative Adversarial Networks (GANs) such as Pix2PixHD for domain adaptation
- · Achieved 97% pixel 6-fold cross-validation accuracy on noisy, high resolution images
- · Implemented models in Python and Jupyter Notebooks using Keras, Tensorflow and PyTorch

Automated Computer Vision Tools

Jun 2018 -Present

Lam Research

- \cdot Developed defect detection, segmentation and measurement algorithms used by process engineers to analyze thousands of 1500x1500 scanning electron microscope images per week
- · Designed front-end and back-end documents and diagrams for image analysis software systems
- · Improved efficiency of engineers by automating image analysis, saving an estimate 10 hours per week
- · Implemented solutions in Python using using OpenCV, Keras and Tensorflow

EDUCATION

Oregon State UniversitySep 2016 –Jun 2019Bachelor of ScienceCorvallis, OregonMajor Computer Science Applied in Machine LearningMajor GPA 3.67/4.0Minor MathematicsOverall GPA 3.58/4.0

RELEVANT COURSEWORK & AWARDS

Core	Courses
COLE	COULSES

Computational Biology

Operating Systems (Comfortable in Unix)

Software Engineering (Methodologies & Testing)

Graph Theory (Graduate level course)

Linear Algebra

Statistics for Engineers

Analysis of Algorithms & Data Structure

Awards

President's List (2 terms)

Dean's List (3 terms)

Honor Roll (4 terms)

Capital Manor's Foundation Scholarship (2016)

ACADEMIC PROJECTS

Driverless Formula Racecar

Github.com/lcsfrey/OSU-Driverless-Formula-Student

Sep 2018 - Aug 2019

- · Developed deep learning computer vision and localization systems for a fully autonomous racecar
- · Trained neural networks for object detection using Python and PyTorch
- · Experimented with state-of-the-art architectures including Single Shot Detectors and Faster-RCNN
- · Developed software to visualize, compare, and benchmark models using Tensorboard
- · Developed software to deploy object recognition models in the Robot Operating System (ROS)
- · Deployed models on the NVIDIA AGX Xavier embedded device
- · Refactored team's existing S.L.A.M. algorithm to support multithreading
- · Achieved 8th out of 20th place at Formula Student Germany 2019 Driverless Competition
- · Achieved 6th out of 20th place in the design competition at Formula Student Germany 2019

Traveling Salesman Problem (TSP) Algorithms

Aug 2017 - Mar 2018

- $Github.com/lcsfrey/TSP_Algorithms$
- · Implemented genetic and multithreaded heuristic graph algorithms to approximate the TSP
- · Outperformed entire class of 30 in 7 out of 7 in both speed and accuracy on competition test cases
- · Implemented algorithms in C++
- · Continued development outside of class building GUI in Qt Creator to display graph algorithms
- · Implemented augmented reality graph overlay to display graph over drawings of graph nodes

Aces Up Solitaire Game

Github.com/lcsfrey/Aces-Up

Oct 2017 - Dec 2017

- · Worked on an agile development team of 4 completing multiple 2-week sprints over the term
- · Utilized Git version control and a branch workflow to maintain the integrity of project files
- · Developed front-end and back-end systems in both mobile and desktop versions using **Java**, **HTML**, **CSS**, **JavaScript**, and the **Ninja Web Framework**

EXTRA-CIRRUCULAR

Artificial Intelligence / Machine Learning Club

- · Discussed AI/ML related problems, architectures, and other topics
- · Gave talks on state-of-the-art architectures deep learning architectures

Formula Racing Club

- · Discussed solutions to autonomous problems involving path planning, mapping, and localization
- · Participated in the Formula Student Germany and Formula Student Spain driverless racing competitions
- · Presented weekly progress on driverless formula racecar project

Robotics Club

- · Led team of 6 on yearlong projects to develop robots to compete in the FIRST Tech Challenge
- · State finalists and two-time regional champions in competitions of 30+ teams each
- · Developed autonomous systems to complete tasks utilizing touch, light, IR and rotation sensors
- · Volunteered at local middle school teaching children how to build and program Lego NXT robots

PERSONAL PROJECTS

Super Mario Reinforcement Learning Agent

Github.com/lcsfrey/Reinforcement-Learning-Mario

- · Implemented Recurrent CNN-LSTM in PyTorch for action prediction
- · Built using Python, PyTorch, and OpenAI Gym

Foveated Incremental Learning Convolutional Neural Network (CNN)

 $Github.com/lcsfrey/Active_Learning_Pytorch$

- · Implemented CNN in **PyTorch** for sparse prediction of foveated images to mimic human eye
- · Built using Python, PyTorch, and OpenCV

Augmented Reality Graph Algorithm

 $Github.com/lcsfrey/openCV_modules$

- · Created augmented reality computer vision algorithm that draws paths through graphs on paper
- · Built using Python and OpenCV, pybind11, and C++

Security Camera

 $Github.com/lcsfrey/openCV_modules$

- · Developed motion sensitive camera that can highlight movement in frame and write footage to files
- · Built using **Python** and **OpenCV**

TECHNICAL STRENGTHS

Computer Languages C/C++, Python, Java

Software & Tools OpenCV, pybind11, ROS, Git, Tensorflow, Keras, Tensorboard,

PyTorch, Jupyter Lab/Notebook, Matplotlib, Pandas, Qt

Applied Fields Image Segmentation, Object Detection, Automation,

Hyperparameter Optimization, Design Optimization