





## RAPPORT DE STAGE

# Fracturation de floes de glace par percussion dans un modèle granulaire

Superviseur Stéphane Labbé

**Étudiant**Desmond Roussel Nzoyem

Enseignant référent Christophe Prud'Homme



Ce stage à été effectué dans le cadre du master 2 CSMI, du 03 février 2021, au 31 juillet 2021; initié par le groupe SASIP au LJLL.

Année académique 2020 - 2021

## Remerciements

# Table des matières

| Remerciements |      |                                |                                        | 1 |
|---------------|------|--------------------------------|----------------------------------------|---|
| 1             | État | de l'art                       |                                        | 1 |
|               | 1.1  | Résumé de thèse de D. Balasoiu |                                        | 1 |
|               |      | 1.1.1                          | Théorie de la fracture : état de l'art | 1 |
|               |      | 1.1.2                          | Discussion                             | 3 |
| Bibliographie |      |                                |                                        | 5 |

## Chapitre 1

## État de l'art

### 1.1 Résumé de thèse de D. Balasoiu

Les travaux de D. Balasoiu concernent la modélisation et la simulation du comportement mécanique de floes de glace [Bal20]. Il s'agit d'une amélioration des travaux de M. Rabatel, S. Labbé, et J. Weiss [Rab15; RLW15] prenant en compte la fracture des floes. Précisément, ce travail se focalise sur l'initiation de la fracture, ainsi que la prédiction du chemin que la fracture emprunte. Jusqu'à présent, les floes étaient considérés comme des corps rigides; dans sa thèse, Balasoiu les considère comme des corps élastiques. Son travail est divisé en deux parties. Il commence par proposer un modèle efficace pour la fracture fragile d'un floe de glace, lorsque celui-ci est soumis à un déplacement de son bord (i.e. à une condition au bord de type Dirichlet). Puis, dans un second temps, il cherche à obtenir l'expression du déplacement au bord d'un floe qui percute un autre floe ou une structure solide.

#### 1.1.1 Théorie de la fracture : état de l'art

La théorie de fracture la plus répendue de nos jous est due à A.A. Griffith Dans ses travaux[Gri21], in invalide les résultats que C. Inglis [Ing13] qui ne tennaient pas en compte la taille de la fracture; il présente donc la croissance d'une faille comme une compétition d'énergie entre l'énergie élastique <sup>1</sup> et l'énergie de surface <sup>2</sup>.

Le critère de Griffith est un critère thermodynamique qui stipule que la la fracture progresse si et seulement si cela permet au matériau d'atteindre un état de moindre énergie. En effet, sur un matériau élastique  $\Omega$  dont la frontière est subidiviée en deux zones  $\partial\Omega_D$ , et  $\partial\Omega_N$ , on pose [Bal20, p.31] :

$$E_{el} = \int_{\Omega} W(x, e(u)) dx$$

$$\mathcal{P}(t, \sigma(t)) = \int_{\Omega \setminus \sigma(t)} W(x, \nabla \varphi(t, \sigma(t))) dx - \mathcal{F}(t, \sigma(t))$$

$$\mathcal{F}(t, \sigma(t)) = \int_{\Omega} f_v(x) \cdot \varphi dx + \int_{\partial \Omega_N} f_s(x) \cdot \varphi dx$$

où

- $-E_{el}$  est l'énergie élastique du matériau sans faille.
- $-\sigma(t)$  représente la fracture au temps t, supposée à l'équilibre.
- $-\mathcal{P}$  l'énergie potentielle du matériau qui possède une fracture de taille  $\sigma(t)$  au temps t.
- -e(u) est le tenseur de Green-St Venant, qui représente la déformation locale du matériau.
- $-\varphi = Id + u$  représente le déplacement du mátériau supposé suffisamment régulier.
- W est la densité d'énergie du matériau élastique, supposé hyper-élastique.
- $f_s$  est la contrainte surfacique appliquée sur le bord  $\partial \Omega_N$ .
- 1. Énergie relâchée lorsqu'un défaut subit un accroissement
- 2. Énergie nécessaire à la création des deux nouvelles surfaces les bords de la fissure

 $-f_v$  est le champ de force volumique appliquée sur  $\Omega$ . D'après le critère de Griffith [Bal20, p.32], la fonction  $\sigma(t)$  doit vérifier :

1. 
$$\frac{d\sigma(t)}{dt} \ge 0;$$
2. 
$$-\frac{d\mathcal{P}}{d\sigma}(t, \sigma(t)) \le k;$$

3. 
$$\frac{\mathrm{d}\sigma(t)}{\mathrm{d}t} > 0 \Rightarrow -\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}\sigma}(t,\sigma(t)) = k$$
.



FIGURE 1.1 – Illustration du critère de Griffith [GS17]. ( $\Pi$  et  $\Gamma$  représentent les énergie potentielles et de fracture respectivement. *Cette figure est à refaire manuellement!*)

Une illustration de ce critère peut être observée à la figure 1.1. Comme mentionné plus haut, ce modèle souffre de problèmes de nuclaetion et de prédiction de la fracture. Pour contouner le problème de nucleation, les mécaniciens considèrent que tout matérixu possède des micro-fissures, et ce sont ces dernières qui sont a l'origine des fissure observables à l'oeil. Quant au problème du chemin emprenté par la fracture, A. Chambolle, G. Francfort et J.-J. Marigo [CFM09] montrent que les critères d'Irwin [Irw57] sont invalides car, ils impliquent que, dans un matériau homogène et isotrope, le chemin de la fracture ne peut être courbé.

Le modèle proposé par Francfort et Marigo [FM98], suit un résultat théorique du à De Giorgi, M. Carriero et A. Leaci [DCL89], qui prouvent le théorème d'existence de minimum pour la fonctionnelle de Mumford-Shah qui intervient dans la détection des contours d'une image. Présentons les données géamoétriques du problème [Bal20, p.35]. Soit  $\Omega \subset \mathbb{R}^N$  un ouvert connexe, dont la frontière  $\partial \Omega$  est suffisamment lisse. On partitionne sa frontière :

$$\partial\Omega = \partial\Omega_D \cup \partial\Omega_N$$
,

ou  $\partial\Omega_D$  et  $\partial\Omega_N$  sont les bords où l'on applique respectivement des conditions de Dirichlet et de Neumann. Sur la partie Dirichlet, on applique un déplacement du bord noté  $U_D$ , tandis que l'on laisse libre la partie de Neumann. On suppose également que le matériau est soumis à un champ de force volumique  $f_v$ . On suppose que  $\Omega$  est un matériau hyper-élastique, dont la densité d'énergie est notée W. Ainsi, lorsque le matériau  $\Omega$  subit (sans fracture) une déformation  $\varphi = u + \operatorname{Id}$  suffisamment lisse, son énergie élastique vaut :

$$E_{\rm el}(u) = \int_{\Omega} W(x, e(u)) \, \mathrm{d}x,$$

où l'on a noté u le champ de déplacement du matériau, et e(u) son gradient symétrisé. On notera l'énergie élastique du matériau qui présente une fracture  $\sigma$ :

$$E_{\mathrm{el}}(u,\sigma) = \inf_{u \in V_{U_D,\sigma}} \int_{\Omega \setminus \sigma} W(x,e(u)) \, \mathrm{d}x,$$

où l'on a défini l'espace fonctionnel  $V_{U_D,\sigma}$ ,  $\sigma$  par :

$$V_{U_D,\sigma} = \left\{ u \in H^1(\Omega \setminus \sigma, \mathbb{R}^N) | u = U_D \text{ sur } \partial \Omega_D \right\}.$$

Francfort et Marigo proposent l'énergie de fracture suivante sur  $\partial\Omega_D$ :

$$E_{\text{frac}}(\sigma) = \int_{\sigma} k(x) \, d\mathcal{H}^{N-1}$$
,

où le champ scalaire k(x) traduit la rigidité du matériau, et est supposée strictement positive sur tout le matériau;  $\mathcal{H}^{N-1}$  représente la mesure de Haussdorf de dimension N-1, qui peut être comprise comme la longueur du contour pour N=2.

Ainsi, l'énergie totale du matériau vaut :

$$\begin{split} E_{\text{tot}}(u,\sigma) &= E_{\text{el}}(u,\sigma) + E_{\text{frac}}(\sigma) \\ &= \int_{\Omega \setminus \sigma} W(x,e(u)) \, \mathrm{d}x + \int_{\sigma} k(x) \, \mathrm{d}\mathcal{H}^{N-1} \,, \end{split}$$

où  $\sigma$  est une union dénombrable d'ensembles rectifiables. Ainsi donc, une solution du problème de fracture est un minimum de la fonctionnelle  $E_{\text{tot}}$ . Rappelons que dans le cas d'un mouvement antiplan, Balasoiu montre, dans le cas d'un mouvement antiplan  $^3$ , que ce modèle est quasiment identique au modèle de De Giorgi, M. Carriero et A. Leaci, pour lequel un théorème d'existence a pu être exhibé.

La méthode numérique employée est la méthode à champ de phases. Elle repose sur la notion de Γ-convergence, en particulier sur le résultat de **convergence des minimums**. On remplace l'inconnue  $\sigma$  par une suite de fonctions lisses  $v_{\varepsilon}$  [AT90]. Par exemple, dans le cas du traitement d'image, pour la fonctionnelle de Mumford-Shah dont se sont inspiré Bourdin, Francfort et Marigo, on constate d'après Ambrosio et Tortorelli [AT90] que la suite de fonctionnelle

$$G_{\varepsilon}() = \int_{\Omega} \left( |u - g|^2 + (v^2 + \eta_{\varepsilon})|\nabla u|^2 + \varepsilon |\nabla v|^2 + \frac{(v - 1)^2}{4\varepsilon} \right) \mathrm{d}x,$$

 $\Gamma$ -converge vers la fonctionnelle limite

$$G_f = \int_{\Omega} |u - g|^2 + |\nabla u|^2 dx + \mathcal{H}^{N-1}(S_u),$$

où  $g: \Omega \mapsto [0,1]$  est la fonction de contraste de l'image, et  $\mathcal{H}^{N-1}(S_u)$  est la restriction de la mesure de Hausdorff à l'ensemble des sauts de u, noté  $S_u$ , qui est un ensemble mesurable et composé d'une union dénombrable d'ensembles rectifiables [Bal20, pp.33-35].

Plusieurs études numériques reposant sur ce résultat de  $\Gamma$ -convergence sont disponibles dans la littérature. On cite par exemple ici les résultats obtenus dans [Nag+19] à la figure 1.2.

#### 1.1.2 Discussion

Plusieurs hypothèses sont faites dans la thèse :

- 1. Le modèle suppose que les floes sont d'épaisseur négligeable devant leur extension horizontale; autrement dit, les déformations du floe de glace peuvent être étudiées en deux dimensions.
- 2. Le modèle restreint l'ensemble des fractures admissibles à celui des segments de droites.

<sup>3.</sup> Un mouvement antiplan est mouvement pour lequel le champ de déplacement *u* est porté par un vecteur constant.



**FIGURE 1.2** – Trois résultats némériques obtenus dans [Nag+19] à l'aide d'une discrétisation éléments finis (hp-FEM) et volume finis en ne remaillant le domaine que lorsque c'est nécéssaire.

# Bibliographie

- [Bal20] Dimitri Balasoiu. « Modélisation et simulation du comportement mécanique de floes de glace ». Thèse de doct. Université Grenoble Alpes, 2020.
- [GS17] Dietmar Gross et Thomas Seelig. *Fracture mechanics : with an introduction to micromechanics.* Springer, 2017.
- [Rab15] Matthias RABATEL. « Modélisation dynamique d'un assemblage de floes rigides ». Theses. Université Grenoble Alpes, nov. 2015. URL: https://tel.archives-ouvertes.fr/tel-01293341.
- [RLW15] Matthias RABATEL et al. « Dynamics of an assembly of rigid ice floes ». In: *Journal of Geophysical Research: Oceans* 120.9 (2015), p. 5887-5909.