Statistical Learning Theory - Introduction -

Hisashi Kashima / Makoto Yamada

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

Statistical learning theory: Foundations of recent data analysis technologies

- This course will cover:
 - Basic ideas, problem, solutions, and applications of statistical machine learning
 - Supervised & unsupervised learning
 - Models & algorithms: linear regression, SVM, perceptron, ...
 - Statistical learning theory
 - Probably approximately correct (PAC) learning
- Advanced topics: sparse modeling, semi-supervised learning, transfer learning, ...

Textbooks?:

Most of the topics can be found in...

- Pattern recognition and machine learning / Bishop
- The elements of statistical learning / Hastie & Tibshirani
- Understanding machine learning / Shalev-Shwartz & Ben-David

Evaluations: Mainly by final exam (or a substitute)

- Evaluations will be based on the final exam
 - However, we may substitute a report submission/an online work for the final exam depending on the situation

Introduction:

Basic ideas of machine learning and applications

- 1. What is machine learning?
- 2. Machine learning applications
- 3. Some machine learning topics
 - 1. Recommender systems
 - 2. Anomaly detection

What is machine learning?

"The third A.I. boom": Machine learning is a core technology

- You can see many successes of "Artificial Intelligence":
 - Q.A. machine beating quiz champions
 - Go program surpassing top players
 - Machine vision is better at recognizing objects than humans
- Current A.I. boom owes machine learning
 - Especially, deep learning

What is machine learning?: A branch of artificial intelligence

- Originally started as a branch of artificial intelligence
 - has its more-than-50-years history
 - Computer programs that "learns" from experience
 - Based on logical inference

What is machine learning?: A data analytics technology

- Rise of "statistical" machine learning
 - Successes in bioinformatics, natural language processing, and other business areas
 - Victory of IBM's Watson QA system, Google's Alpha Go
- Recently rather considered as a data analysis technology
 - "Big data" and "Data scientist"
 - Data scientist is "the sexiest job in the 21st century"
- Success of deep learning
 - The 3rd AI boom

What can machine learning do?: Prediction and discovery

- Two categories of the use of machine learning:
 - 1. Prediction (supervised learning)
 - "What will happen in future data?"
 - Given past data, predict about future data
 - 2. Discovery (unsupervised learning)
 - "What is happening in data in hand?"
 - Given past data, find insights in them

Prediction machine:

A function from a vector to a scalar

- We model the intelligent machine as a mathematical function
- Relationship of input and output $f: \mathbf{x} \to y$
 - Input $\mathbf{x} = (x_1, x_2, ..., x_D)^{\mathsf{T}} \in \mathbb{R}^D$ is a D-dimensional vector
 - Output y is one dimensional
 - Regression: real-valued output $y \in \mathbb{R}$
 - Classification: discrete output $y \in \{C_1, C_2, ..., C_M\}$

A model for regression: Linear regression model

• Model f takes an input $\mathbf{x}=(x_1,x_2,\dots,x_D)^{\mathsf{T}}$ and outputs a real value

$$f(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \dots + w_D x_D$$

- Model parameter $\mathbf{w} = (w_1, w_2, ..., w_D)^{\mathsf{T}} \in \mathbb{R}^D$

A model for classification: Linear classification model

■ Model f takes an input $\mathbf{x} = (x_1, x_2, ..., x_D)^{\mathsf{T}}$ and outputs a value from $\{+1, -1\}$

$$f(\mathbf{x}) = \text{sign}(w_1 x_1 + w_2 x_2 + \dots + w_D x_D)$$

- -Model parameter $\mathbf{w} = (w_1, w_2, ..., w_D)^{\mathsf{T}} \in \mathbb{R}^D$:
 - w_d : contribution of x_d to the output (if $w_d > 0$, $x_d > 0$ contributes to +1, $x_d < 0$ contributes to -1)

Formulations of machine learning problems: Supervised learning and unsupervised learning

- What we want is the function f
 - We estimate f from data
- Two learning problem settings: supervised and unsupervised
 - Supervised learning: input-output pairs are given
 - $\{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\} : N \text{ pairs}$
 - Unsupervised learning: only inputs are given
 - $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}\} : N \text{ inputs}$

Machine learning applications

Growing ML applications: Emerging applications from IT areas to non-IT areas

- Recent advances in ML offer:
 - Methodologies to handle uncertain and enormous data
 - Black-box tools
- Not limited to IT areas, ML is wide-spreading over non-IT areas
 - Healthcare, airline, automobile, material science, education,
 ...

Various applications of machine learning: From on-line shopping to system monitoring

- Marketing
 - Recommendation
 - Sentiment analysis
 - Web ads optimization
- Finance
 - Credit risk estimation
 - Fraud detection
- Science
 - Biology
 - Material science

- Web
 - Search
 - Spam filtering
 - Social media

- Multimedia
 - Image/voice understanding
- System monitoring
 - Fault detection

An application of supervised classification learning: Sentiment analysis

- Judge if a document (\mathbf{x}) is positive or not $(y \in \{+1, -1\})$ toward a particular product or service
- For example, we want to know reputation of our newly launched service S
- Collect tweets by searching the word "S", and analyze them

An application of supervised learning: Some hand labeling followed by supervised learning

- First, give labels to some of the collected documents
 - 10,000 tweets hit the word "S"
 - Manually read 300 of them and give labels
 - "I used S, and found it not bad." \rightarrow \clubsuit
 - "I gave up S. The power was not on." $\rightarrow \bigcirc$
 - "I like S." \rightarrow
- Use the collected 300 labels to train a predictor.
 Then apply the predictor to the rest 9,700 documents

How to represent a document as a vector: bag-of-words representation

Represent a document x using words appearing in it

Note: design of the feature vector is left to users

A model for classification: Linear classification model

■ Model f takes an input $\mathbf{x} = (x_1, x_2, ..., x_D)^{\mathsf{T}}$ and outputs a value from $\{+1, -1\}$

$$f(\mathbf{x}) = \text{sign}(w_1 x_1 + w_2 x_2 + \dots + w_D x_D)$$

- -Model parameter $\mathbf{w} = (w_1, w_2, ..., w_D)^{\mathsf{T}} \in \mathbb{R}^D$:
 - w_d : contribution of x_d to the output $(x_d > 0 \text{ contributes to } +1, x_d < 0 \text{ contributes to } -1)$

An application of supervised regression learning: Discovering new materials

- Material science aims at discovering and designing new materials with desired properties
 - Volume, density, elastic coefficient, thermal conductivity, ...
- Traditional approach:
 - Determine chemical structure
 - 2. Synthesize the chemical compounds
 - 3. Measure their physical properties

Computational approach to material discovery: Still needs high computational costs

- Computational approach: First-order principle calculations based on quantum physics to run simulation to estimate physical properties
- First-order calculation still requires high computational costs
 - Proportional to the cubic number of atoms
 - -Sometimes more than a month...

Data driven approach to material discovery: Regression to predict physical properties

Predict the result of first-order principle calculation from data

Feature vector representation of chemical compounds

Estimate regression models of physical properties from data

Predict physical properties of new compounds

Recommendation systems

Recommender systems: Personalized information filter

 Amazon offers a list of products I am likely to buy (based on my purchase history)

Ubiquitous recommender systems: Recommender systems are present everywhere

- A major battlefield of machine learning algorithms
 - 2006-2009: Netflix challenge (with \$100 million prize)
- Recommender systems are present everywhere:
 - Product recommendation in online shopping stores
 - Friend recommendation on SNSs
 - Information recommendation (news, music, ...)
 - _ ...

A formulation of recommendation problem: Matrix completion

- A matrix with rows (customers) and columns (products)
 - Each element = review score \in {1,2,3,4,5,?}
- Given observed parts of the matrix, predict the unknown parts (?)

Basic idea of recommendation algorithms: "Find people like you"

- GroupLens: an earliest algorithm (for news recommendation)
 - Inherited by MovieLens (for Movie recommendation)
- Find people similar to the target customer, and predict missing reviews with theirs

GroupLens:

Weighted prediction using correlations among customers

- Define customer similarity by correlation (of observed parts)
- Prediction by weighted averaging with correlations:

Low-rank assumption for matrix completion: GroupLens implicitly assumes low-rank matrices

- Assumption of GroupLens algorithm:
 Each row is represented by a linear combination of the other rows (i.e. linearly dependent)
 - ⇒ The matrix is not full-rank (≒ low-rank)

Low-rank assumption helps matrix completion

Low-rank matrix factorization: Projection onto low-dimensional latent space

Low-rank matrix: product of two (thin) matrices

- Each row of \boldsymbol{U} and \boldsymbol{V} is an embedding of each customer (or product) onto low-dimensional latent space
 - Similar users/items are put close to each other

Low-rank matrix decomposition methods: Singular value decomposition (SVD)

Find a best low-rank approximation of a given matrix

minimize
$$\| X - Y \|_{F}^{2}$$
 s.t. rank $(Y) \le k$

Singular value decomposition (SVD)

w.r.t. the constraints: $U^{T}U = I$, $V^{T}V = I$

- The k leading eigenvectors of X^TX best approximate

Strategies for matrices with missing values: EM algorithm, gradient descent, and trace norm

- SVD is not directly applicable to matrices with missing values
 - Our goal is to fill in missing values in a partially observed matrix
- For completion problem:
 - Direct application of SVD to a (somehow) filled matrix
 - Iterative applications: iterations of completion and decomposition
- For large scale data:
 Gradient descent using only observed parts
- Convex formulation: Trace norm constraint

Predicting more complex relations: Multinomial relations

- Matrices can represent only one kind of relations
 - Various kinds of relations (actions):
 Review scores, purchases, browsing product information, ...
 - Correlations among actions might help
- Multinomial relations:
 - (customer, product, action)-relation:
 (Alice, iPad, buy) represents "Alice bought an iPad."
 - (customer, product, time)-relation:
 (John, iPad, July 12th) represents "John bought an iPad on July 12th."

Multi-dimensional arrays: Representation of multinomial relations

- Multidimensional array: Representation of complex relations among multiple objects
 - -Types of relations (actions, time, conditions, ...)
 - Relations among more than two objects

Hypergraph: allows variable number of objects involved in

relations
time
product
customer

Tensor decomposition: Generalization of low-rank matrix decomposition

- Generalization of matrix decomposition to multidimensional arrays
 - A small core tensor and multiple factor matrices
- Increasingly popular in machine learning/data mining

Tensor decompositions: CP decomposition and Tucker decomposition

- CP decomposition: A natural extension of SVD (with a diagonal core)
- Tucker decomposition: A more compact model (with a dense core)

Applications of tensor decomposition: Tag recommendation, social network analysis, ...

- Personalized tag recommendation (user×webpage×tag)
 - predicts tags a user gives a webpage
- Social network analysis (user×user×time)
 - analyzes time-variant relationships
- Web link analysis (webpage×webpage×anchor text)
- Image analysis (image×person×angle×light×...)

Anomaly detection

Anomaly detection: Early warning for system failures reduces costs

- A failure of a large system can cause a huge loss
 - Breakdown of production lines in a factory, infection of computer virus/intrusion to computer systems, credit card fraud, terrorism, ...
- Modern systems have many sensors to collect data
- Early detection of failures from data collected from sensors

Anomaly detection techniques: Find "abnormal" behaviors in data

- We want to find precursors of failures in data
 - Assumption: Precursors of failures are hiding in data
- Anomaly: An "abnormal" patterns appearing in data
 - —In a broad sense, state changes are also included: appearance of news topics, configuration changes, ...
- Anomaly detection techniques find such patterns from data and report them to system administrators

Difficulty in anomaly detection: Failures are rare events

- If target failures are known ones, they are detected by using supervised learning:
 - 1. Construct a predictive model from past failure data
 - 2. Apply the model to system monitoring
- However, serious failures are usually rare, and often new ones
 - → (Almost) no past data are available
- Supervised learning is not applicable

An alternative idea:

Model the normal times, detect deviations from them

- Difficult to model anomalies → Model normal times
 - -Data at normal times are abundant
- Report "strange" data according to the normal time model
 - Observation of rare data is a precursor of failures

A simple unsupervised approach: Anomaly detection using thresholds

- Suppose a 1-dimensional case (e.g. temperature)
- Find the value range of the normal data (e.g. 20-50 °C)
- Detect values deviates from the range, and report them as anomalies (e.g. 80°C is not in the normal range)

Clustering for high-dimensional anomaly detection: Model the normal times by grouping the data

- More complex cases:
 - -Multi-dimensional data
 - -Several operation modes in the systems
- Divide normal time data $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(N)}\}$ into K groups
 - -Groups are represented by centers $\{\mu^{(1)}, \mu^{(2)}, ..., \mu^{(N)}\}$

Clustering for high-dimensional anomaly detection: Find anomalies not belonging to the groups

- Divide normal time data $\{\mathbf{x}^{(1)},\mathbf{x}^{(2)},...,\mathbf{x}^{(N)}\}$ into K groups
 - —Groups are represented by centers $\{\mu^{(1)}, \mu^{(2)}, ..., \mu^{(K)}\}$
- Data x is an "outlier" if it lies far from all of the centers
 = system failures, illegal operations, instrument faults

K-means algorithm: Iterative refinement of groups

- Repeat until convergence:
 - 1. Assign each data $\mathbf{x}^{(i)}$ to its nearest center $\mathbf{\mu}^{(k)}$

2. Update each center to the center of the assigned data

Anomaly detection in time series: On-line anomaly detection

- Most anomaly detection applications require real-time system monitoring
- Data instances arrive in a streaming manner:
 - $-\mathbf{x}^{(1)},\mathbf{x}^{(2)},...,\mathbf{x}^{(t)},...:$ at each time t, new data $\mathbf{x}^{(t)}$ arrives
- Each time a new data arrives, evaluate its anomaly
- Also, models are updated in on-line manners:
 - In the one dimensional case, the threshold is sequentially updated
 - In clustering, groups (clusters) are sequentially updated

Sequential K-means: Simultaneous estimation of clusters and outliers

- Data arrives in a streaming manner, and apply clustering and anomaly detection at the same time
 - 1. Assign each data $\mathbf{x}^{(i)}$ to its nearest center $\mathbf{\mu}^{(k)}$

2. Slightly move the center to the data

If the distance is large, report the data as an anomaly

Limitation of unsupervised anomaly detection: Details of failures are unknown

- In supervised anomaly detection, we know what the failures are
- In unsupervised anomaly detection,
 we can know something is happening in the data,
 but cannot know what it is
 - Failures are not defined in advance
- Based on the reports to system administrators, they have to investigate what is happening, what are the reasons, and what they should do

Recent topics

Emergence of deep learning: Significant improvement of prediction accuracy

- Artificial neural networks were hot in 1980s, but burnt low after that...
- In 2012, a deep NN system won in the ILSVRC image recognition competition with 10% improvement
- Major IT companies (such as Google and Facebook) invest much in deep learning technologies
- Big trend in machine learning research

Deep neural network: Deeply stacked NN for high representational power

- Essentially, multi-layer neural networks
 - -Regarded as stacked linear classification models
 - First to semi-final layers bear feature extraction
 - Final layer makes predictions
- Deep stacking introduces high non-linearity in the model and ensures high representational power

A model for classification:

Linear classification model

■ Model f takes an input $\mathbf{x} = (x_1, x_2, ..., x_D)^{\mathsf{T}}$ and outputs a value from $\{+1, -1\}$

$$f(\mathbf{x}) = \operatorname{sign}(w_1 x_1 + w_2 x_2 + \dots + w_D x_D)$$

- -Model parameter $\mathbf{w} = (w_1, w_2, ..., w_D)^{\mathsf{T}} \in \mathbb{R}^D$:
 - w_d : contribution of x_d to the output $(x_d > 0 \text{ contributes to } +1, x_d < 0 \text{ contributes to } -1)$

What is the difference from the past NN?: Deep structures and new techniques with modern flavors

- Differences from the ancient NNs:
 - -Far more computational resources are available now
 - Deep network structure: from wide-and-shallow to narrowand-deep
 - –New techniques: Dropout, ReLU, batch normalization, adversarial learning, ...
- Unfortunately we will not cover DNNs in this lecture