1. Testo del Problema

Realizzare uno scenario di rete in cui siano presenti 2 reti locali interconnesse attraverso una rete WAN composta da 3 router (intermediate system):

Definire il piano di indirizzamento IP della rete usando l'indirizzo IP pubblico 200.1.50.0 e applicando la tecnica del subnetting per creare le reti che interconnettono i vari router. Per le 2 reti locali LAN1 e LAN2 usare indirizzi privati. Configurare il routing dinamico con protocollo RIPv2 su tutti i router e verificare le relative routing table. Infine, provare, più volte e da punti diversi della rete, i percorsi dei pacchetti con il comando traceroute.

2. Dispositivi e Collegamenti

La rete è composta dai seguenti dispositivi e collegamenti:

- 2 End Device(PC0,PC1) in cui viene settato l'IPV4, la Subnet Mask e il GateWay
- 2 **Router**(RouterA,RouterC) in cui viene settato l'IPV4 e relativa Subnet Mask per le porte GigabitEthernet e per le porte Seriali
- 3 **Router**(RouterB,Router1,Router2) in cui viene settato l'IPV4 e relativa Subnet Mask per le porte GigabitEthernet
- · 2 **Switch**(Switch0,Switch1)
- 4 Cavi UTP(copper straight-through) per il collegamento degli End Device agli Switch e degli Switch al Router
- 5 Cavi UTP (Copper Cross-Over) per il collegamento dei router fra di loro
- 1 Cavo Seriale per il collegamento dei due router (RouterA,RouterC)

3. Configurazione dei Dispositivi

I pc e i router sono stati configurati nel seguente modo:

Dispositivo	Interfaccia	Indirizzo IPV4	Subnet Mask	Gateway
PC0	FastEthernet	192.168.200.2	255.255.255.0	192.168.100.1
PC1	FastEthernet	192.168.200.2	255.255.255.0	192.168.200.1
RouterA	GigabitEthernet	200.1.50.1	255.255.255.252	-
	GigabitEthernet	200.1.50.10	255.255.255.252	-
	Serial	200.1.50.21	255.255.	-
Router1	GigabitEthernet	192.168.100.1	255.255.255.0	-
	GigabitEthernet	200.1.50.2	255.255.255.252	-
	GigabitEthernet	200.1.50.6	255.255.255.252	-
RouterB	GigabitEthernet	200.1.50.5	255.255.255.252	-
	GigabitEthernet	200.1.50.17	255.255.255.252	-
RouterC	GigabitEthernet	200.1.50.13	255.255.255.252	-
	GigabitEthernet	200.1.50.18	255.255.255.252	-
	Serial	200.1.50.22	255.255.	-
Router2	GigabitEthernet	200.1.50.9	255.255.255.252	-
	GigabitEthernet	200.1.50.14	255.255.255.252	-
	GigabitEthernet	192.168.200.1	255.255.	-

4. Test della Rete

Viene mostrata la routing table del router A e si sono eseguiti dei test di comunicazione tra PC0 e PC1 di diverse LAN per verificarne il funzionamento tramite il comando ping nel Command Prompt

