An emotionally aware P300 speller

Andreas De Lille

Brain Computer Interfaces

Measure brain activity

BCI application: P300 Speller

BCI for emotion Recognition

Influence of emotion on the P300 wave

Emotion

Emotion

Expression

Emotion in the brain

Emotion in the brain

Delta	0 - 4
Theta	4 - 8
Alpha	8 - 13
Beta	13-30
Gamma	30-50

Quick Summary

How?

Input: brain waves

Feature Extraction and Machine Learning

Output: valence/arousal

Machine learning requires samples

Problem - Labels via survey

Problem - Data unbalance

Very first trial: SVM

Split dataset in low / high valence

Feature extraction

Video 1	Video 2	Video 3	Video 4
Video 1	Video 2	Video 3	Video 4
Video 1	Video 2	Video 3	Video 4
Video 1	Video 2	Video 3	Video 4

Leave-one-out validation

Common Spatial Patterns (CSP)

Linear Discriminant Analysis (LDA)

CSP + LDA

0.13	0.29	0.35	0.41	0.48	0.68
	•			0.5	

Split dataset in low / high valence

Feature extraction

Video 1	Video 2	Video 3	Test set
Video 1	Video 2	Video 3	Test set
Video 1	Video 2	Video 3	Test set

Person 14 accuracy of 90%

Person 21 accuracy of 30%

Person 2 accuracy of 60%

Similar research

Model	Features	# Emotions	# Persons	Accuracy
SVM	EEG + HR + BP	5 emotions	12	58.2%
FDA	EEG + BP + RSP + HR	3 levels of arousal	4	50-72 %
SVM	EEG	3 emotions + 1 neutral state	4	87.5 %
Deep neural nets	EEG	3 states, negative, positive, neutral	15	avg: 86% std: 8.34%

Further steps

- Improve Accuracy
 - only use important channels
 - epochs of 6 seconds with 5 seconds overlap
 - Use additional wavebands
- Classify different arousal levels
- Classify videos from other persons
- Unsupervised
- Improve accuracy of P300 speller

Questions

