Defeating State-of-the-Art White-Box Countermeasures with Advanced Gray-Box Attacks

Louis Goubin⁴ Matthieu Rivain¹ Junwei Wang (王军委)^{1,2,3}

 1 CryptoExperts 2 University of Luxembourg 3 University Paris 8 4 UVSQ

Prerecorded talk for CHES 2020, September 2020

» Security Models: Shades of Gray

White-Box Cryptography •0000000

» Security Models: Shades of Gray

White-Box Cryptography •0000000

» Security Models: Shades of Gray

White-Box Cryptography •0000000

» White-Box Threat Model

To extract a cryptographic key

Where from a software implementation of cipher

Whom by malwares, co-hosted applications, user themselves, ···

How by all kinds of means

- analyze the code
- spy on the memory
- * interfere the execution
- cut external randomness
- * • •

» Motivation and Real-World Applications

- * Why not using secure hardware?
 - * not always available
 - expensive (to produce, deploy, integrate, update)
 - usually has a long lifecycle
 - * security breach is hard to mitigate
- Applications
 - * Digital Content Distribution
 - * Mobile Payment
 - * Digital Contract Signing
 - Blockchains and cryptocurrencies

Credits to [Shamir, van Someren 99]

» Security through Obscurity

White-Box Cryptography 00000000

- All public white-box designs broken
- No provably secure solution

- * Growing demand in industry
- Huge application potential

Security through obscurity: home-made design + obfuscation

Time consuming reverse engineering + structural analysis

» Differential Computation Analysis (DCA)

White-Box Cryptography 00000000

[BHMT16]

Differential power analysis (DPA) techniques on computational leakages.

grav-box model

side-channel leakages (noisy) e.g. power / EM / time / · · ·

white-box model

computational leakages (noisy-free) e.g. registers / accessed memory / · · ·

Many publicly available implementations are broken by DCA.

» WhibOx Competitions

White-Box Cryptography 00000000

Organized as CHES CTF events

The competition gives an opportunity for researchers and practitioners to confront their (secretly designed) white-box implementations to state-of-the-art attackers

—- WhihOx 2017

- Designer: to submit the C source codes of AES-128 with secret key
- Attacker: to reveal the hidden key
- * No need to disclose identity or underlying techniques

» WhibOx Competitions (cont.)

* WhihOx 2017

White-Box Cryptography 00000000

- 94 submissions were **all broken** by 877 individual breaks
- most (86%) of them were alive for < 1 day
- mostly broken by DCA [BT20]
- WhihOx 2019
 - new rules encourage designers to submit "smaller" and "faster" implementations
 - * 27 submissions with 124 individual breaks
 - 3 implementations survived, but broken after the competition in this article

» Outline

White-Box Cryptography 0000000

Advanced Gray-Box Countermeasures and Attacks

Data-Dependency Analysis

Conclusion

Advanced Gray-Box Countermeasures and Attacks

- * Linear Masking, Higher-Order DCA, and Linear Decoding Analysis
- * Algebraic Security and Non-Linear Masking
- * Shuffling

» Linear Masking

* Intermediate value x is split into n shares

$$x = x_1 \oplus x_2 \cdots \oplus x_n$$

- * Shares are manipulated separately such that any subset of at most n-1shares is independent of x
- * Resistant against (n-1)-th order DCA attacks

» Higher-Order DCA (HO-DCA)

[BVRW19]

* Trace **pre-processing**: an *n*-th order trace contains $q = \binom{t}{n}$ points:

- * The natural combination function ψ is XOR sum
- * Perform DCA attacks on the higher-order traces
- * Linear masking can be broken
 - * \exists fixed *n* positions in which the shares are

$$\binom{1000}{5}\approx 2^{43}$$

» Linear Decoding Analysis (LDA)

* Assumption: there exists a linear (affine) decoding function

$$D(\nu_1, \nu_2, \cdots, \nu_t) = a_0 \oplus \left(\bigoplus_{1 \leq i \leq t} a_i \cdot \nu_i\right) = \varphi_k(x)$$

for some sensitive variable φ_k and some fixed coefficients a_0, a_1, \cdots, a_t .

* Record the v_i 's over N executions:

$$\begin{bmatrix} 1 & \nu_1^{(1)} & \cdots & \nu_t^{(1)} \\ 1 & \nu_1^{(2)} & \cdots & \nu_t^{(2)} \\ 1 & \vdots & \ddots & \vdots \\ 1 & \nu_1^{(N)} & \cdots & \nu_t^{(N)} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} \varphi_k(x^{(1)}) \\ \varphi_k(x^{(2)}) \\ \vdots \\ \varphi_k(x^{(N)}) \end{bmatrix}$$

» Linear Decoding Analysis (LDA) (cont.)

[GPRW20]

* Record the v_i 's over N executions:

$$\begin{bmatrix} 1 & v_1^{(1)} & \cdots & v_t^{(1)} \\ 1 & v_1^{(2)} & \cdots & v_t^{(2)} \\ 1 & \vdots & \ddots & \vdots \\ 1 & v_1^{(N)} & \cdots & v_t^{(N)} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_t \end{bmatrix} = \begin{bmatrix} \varphi_k(x^{(1)}) \\ \varphi_k(x^{(2)}) \\ \vdots \\ \varphi_k(x^{(N)}) \end{bmatrix}$$

- * Linear masking is vulnerable to LDA
 - * system solvable for k^*
 - * but not for incorrect key guess k^{\times}
- * Trace Complexity $t + \mathcal{O}(1)$
- * Computation complexity $\mathcal{O}ig(t^{2.8}\cdot|\mathcal{K}|ig)$

 $1000^{2.8} \approx 2^{28}$

- * Linear Masking, Higher-Order DCA, and Linear Decoding Analysis
- * Algebraic Security and Non-Linear Masking
- * Shuffling

» Algebraic Security and Non-Linear Masking

BU18]

- * Introduced by Biryukov and Udovenko at Asiacrypt 2018
- * To capture LDA like algebraic attack

A d-th degree algebraically-secure non-linear masking ensures that any function of up to d degree to the intermediate variables should not compute a "predictable" variable.

» First-Degree Secure Non-Linear Masking

BU18]

* Quadratic decoding function

$$(a,b,c)\mapsto ab\oplus c$$

- Secure gadgets for bit XOR, bit AND, and refresh
- * Provably secure composition
- * But vulnerable to DCA attack

$$Cor(ab \oplus c, c) = \frac{1}{2}$$

* They suggest using a combination of linear masking and non-linear masking to thwart both DCA (probing security) and LDA (algebraic security).

» Combination of Linear Masking and Non-linear Masking

We suggest three possible natural combinations:

1. apply linear masking on top of non-linear masking

$$x = (a_1 \oplus a_2 \oplus \cdots \oplus a_n)(b_1 \oplus b_2 \oplus \cdots \oplus b_n) \oplus (c_1 \oplus c_2 \oplus \cdots \oplus c_n)$$

2. apply non-linear masking on top of linear masking

$$x = (a_1b_1 \oplus c_1) \oplus (a_2b_2 \oplus c_2) \oplus \cdots \oplus (a_nb_n \oplus c_n).$$

3. merge the two maskings into a new encoding

$$x = ab \oplus c_1 \oplus c_2 \oplus \cdots \oplus c_n$$
.

» Higher-Degree Decoding Analysis (HDDA)

[GPRW20]

- * Assume the decoding function is of degree d
- * Trace **pre-processing**: a d-th degree trace contains all monomials of degree $\leq d$

- * Perform LDA attacks on the higher-degree traces
- * Higher-degree trace samples: $\sum_{i=0}^d \binom{t}{i} = \binom{t+d}{d} \ll t^d$
- * Complexity: $\mathcal{O}\left(t^{2.8d}\cdot|\mathcal{K}|\right)$, practical when t,d are small.

$$t^{2.8d} < 2^{50}$$

$$d = 2 \Rightarrow t < 487$$

 $d = 3 \Rightarrow t < 62$

Advanced Gray-Box Countermeasures and Attacks

- * Linear Masking, Higher-Order DCA, and Linear Decoding Analysis
- * Algebraic Security and Non-Linear Masking
- * Shuffling

» Shuffling

- * The order of execution is randomly chosen for each run of the implementation.
- * To increase noise in the adversary's observation

» Shuffling (cont.)

[BRVW19]

- * Not enough in white-box model: traces can be aligned by memory
- * Thus, the memory location of shares has to be shuffled.

» HO-DCA and Integrated HO-DCA against Masking and Shuffling

	shuffling degree λ		
	correlation decrease	attack slowdown	
HODCA	λ	λ^2	
Integrated HODCA	$\sqrt{\lambda}$	λ	

Data-Dependency Analysis

- * Data-Dependency Graph
- * Data-Dependency Analysis against Masking Combinations

Data-Dependency Analysis

- * Data-Dependency Graph
- * Data-Dependency Analysis against Masking Combinations

» Data Dependency Graph

- * White-box adversary also observes data-flow.
- Data-dependency graph (DDG) can visually reveal the structure of the implementation.

Illustration from [GPRW20]

Data-Dependency Analysis

- * Data-Dependency Graph
- * Data-Dependency Analysis against Masking Combinations

» Linear Masking Gadget for AND

[ISW03]

$$(x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \mapsto (z_1, z_2, \dots, z_n)$$
 s.t. $\bigoplus_i x_i \cdot \bigoplus_i y_i = \bigoplus_i z_i$.

$$\begin{bmatrix} x_1y_1 & 0 & 0 \\ x_1y_2 & x_2y_2 & 0 \\ x_1y_3 & x_2y_3 & x_3y_3 \end{bmatrix} \oplus \begin{bmatrix} 0 & x_2y_1 & x_3y_1 \\ 0 & 0 & x_3y_2 \\ 0 & 0 & 0 \end{bmatrix}^T \oplus \begin{bmatrix} 0 & r_{1,2} & r_{1,3} \\ r_{1,2} & 0 & r_{2,3} \\ r_{1,3} & r_{2,3} & 0 \end{bmatrix} \xrightarrow{\text{sum rows}} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$$

Each x_i is multiplied with all shares of y: $(y_i)_i$, vice versa.

» Data-Dependency Analysis against Masking Combinations

- Find co-operands of each node for ⊗
- Collecting data-dependency (DD) traces
 - * Sum co-operands values
- Launch HO-DCA attacks on DD traces
 - Biased variables can be recovered in DD trace
- * Computation complexity substantially improved
- Successfully applied to break WhibOx 2019 winning implementations

» Attack Comparison

	linear masking		linear	linear + NL masking	
	#trace	computation	#trace	computation	
without shuffling					
LDA/HDDA	$t + \mathcal{O}(1)$	$\mathcal{O}(\mathcal{K} \cdot t^{2.8})$	$\mathcal{O}(t^2)$	$\mathcal{O}(\mathcal{K} \cdot t^{5.6})$	
HODCA	С	$\mathcal{O}(\mathcal{K} \cdot t^n)$	4 c	$\mathcal{O}(\mathcal{K} \cdot t^n)$	
DD-DCA	С	$\mathcal{O}(\mathcal{K} \cdot t)$	4 c	$\mathcal{O}(\mathcal{K} \cdot t)$	
with shuffling of degree λ					
HO-DCA	$c \lambda^2$	$\mathcal{O}(\mathcal{K} \cdot t^n \cdot \lambda^2)$	$4 c \lambda^2$	$\mathcal{O}(\mathcal{K} \cdot t^n \cdot \lambda^2)$	
Intg. HO-DCA	$c \lambda$	$\mathcal{O}(\mathcal{K} \cdot t^n \cdot \lambda)$	4 c λ	$\mathcal{O}(\mathcal{K} \cdot t^n \cdot \lambda)$	
DD-DCA	$c \lambda^2$	$\mathcal{O}(\mathcal{K} \cdot t \cdot \lambda^2)$	$4 c \lambda^2$	$\mathcal{O}(\mathcal{K} \cdot t \cdot \lambda^2)$	
Intg. DD-DCA	cλ	$\mathcal{O}(\mathcal{K} \cdot t \cdot \lambda)$	4 λ	$\mathcal{O}(\mathcal{K} \cdot t \cdot \lambda)$	

Note that c is some small empirical factor

Conclusion

White-Box Cryptography

» Conclusion

- * Revisited state-of-the-art countermeasures employed in practice
 - * Linear masking, non-linear masking, shuffling and how to combine them
- * Quantified different (advanced) gray-box attack performance against different countermeasures
 - * (Higher-order) DCA, (higher-degree) Decoding Analysis, ...
- * Proposed new attacks based on data-dependency with substantial computation complexity improvement
- * Broke three WhibOx 2019 winning challenges
 - ia.cr/2020/413
 - attack CryptoExperts / breaking-winning-challenges-of-whibox2019