Assignment 3 MAT 347

Q5: We first claim that for any normal subgroups M,N that $M\cap N \subseteq G$. Note if we take some $a\in M\cap N$, we have that for any $g\in G$, $gag^{-1}\in M$ and $gag^{-1}\in N$ since they are normal in G. Therefore $gag^{-1}\in M\cap N$. Hence $M\cap N\subseteq G$. We now claim that $\langle M,N\rangle\subseteq G$. Note that by definition, every element of $\langle M,N\rangle$ must be of the form mn for some $m,n\in M,N$. Then for any $g\in G$, we have that

$$gmng^{-1} = (gmg^{-1})(gng^{-1})$$

Since $gmg^{-1} \in M$ and $gng^{-1} \in N$, their product must also belong to $\langle M, N \rangle$.