Step-1

Consider the following matrices equation:

$$M = I - UV$$

$$M^{-1} = I_n + U(I_m - VU)^{-1}V$$

Multiply M and M^{-1} to get $I^{(MM^{-1}=I)}$. This M^{-1} shows the change in A^{-1} when a matrix is subtracted from A.

Step-2

Do the following calculations:

$$\begin{aligned} MM^{-1} &= (I_{n} - UV) \Big(I_{n} + U \big(I_{m} - VU \big)^{-1} V \Big) \\ &= I_{n} - UV + U \big(I_{m} - VU \big)^{-1} V - UVU \big(I_{m} - VU \big)^{-1} V \\ &= I_{n} - UV + U \big(I_{m} - VU \big)^{-1} V \big(I_{m} - VU \big) \\ &= I_{n} - UV + U \big(I_{m} - VU \big)^{-1} \big(I_{m} - VU \big) V \\ &= I_{n} - UV + UV \end{aligned}$$

$$MM^{-1} &= I_{n}$$

Step-3

Therefore, $MM^{-1} = I_n$