Primos e Maiores Divisores Comuns Matemática Discreta

Prof. MSc. Samy Sá

Universidade Federal do Ceará Campus de Quixadá

17 de março de 2014

Outline

Números Primos

Encontrando Números Primos

Resultados Importantes

Conjecturas e Problemas em Aberto

Outline

Números Primos

Encontrando Números Primos

Resultados Importantes

Conjecturas e Problemas em Aberto

- São considerados os blocos básicos de construção da aritmética.
- Essenciais para criptografia moderna.
- O conceito de número primo é baseado no de divisibilidade.

Todo inteiro maior que 1 tem dois ou mais divisores.

Definição

Um inteiro p maior que 1 é dito primo se os únicos divisores positivos de p são 1 e p. Dizemos que um inteiro positivo maior que 1 que não é primo é um número composto.

Exemplo

O número 11 é primo, pois seus únicos divisores positivos são 1 e 11. O número 15 é composto, pois seus divisores são 1,3,5,15.

Todo inteiro maior que 1 tem dois ou mais divisores.

Definição

Um inteiro p maior que 1 é dito primo se os únicos divisores positivos de p são 1 e p. Dizemos que um inteiro positivo maior que 1 que não é primo é um número composto.

Exemplo

O número 11 é primo, pois seus únicos divisores positivos são 1 e 11. O número 15 é composto, pois seus divisores são 1,3,5,15.

Constatação:

Um inteiro n é composto se e somente se existir um inteiro a tal que $a \mid n$ e 1 < a < n.

Teorema Fundamental da Aritmética

Os primos são os blocos básicos de construção da aritmética.

Teorema

Todo inteiro maior que 1 pode ser escrito de maneira única como um primo ou o produto de dois ou mais números primos escritos em ordem cescente.

Teorema Fundamental da Aritmética

Os primos são os blocos básicos de construção da aritmética.

Teorema

Todo inteiro maior que 1 pode ser escrito de maneira única como um primo ou o produto de dois ou mais números primos escritos em ordem cescente.

Exemplo

- 100 = 2.2.5.5
- 641 = 641
- 999 = 3.3.3.37
- 1024 = 2.2.2.2.2.2.2.2.2

O método principal envolve tentativa e erro:

- 1. Tente dividir o número por 2... (repita até falhar)
- 2. Tente dividir o número por 3... (repita até falhar)
- 3. Tente dividir o número por 5... (repita até falhar)

..

Essa dificuldade é base para a criptografia moderna, pois dificulta encontrar os números capazes de decodificar uma mensagem.

Alguns resultados que veremos facilitam implementações.

Teorema

Se n é um inteiro composto, então n tem um divisor primo menor ou igual a \sqrt{n} .

Alguns resultados que veremos facilitam implementações.

Teorema

Se n é um inteiro composto, então n tem um divisor primo menor ou igual a \sqrt{n} .

Prova

Se n é composto, existe $a \mid n$ tal que 1 < a < n.

Alguns resultados que veremos facilitam implementações.

Teorema

Se n é um inteiro composto, então n tem um divisor primo menor ou igual a \sqrt{n} .

Prova

Se n é composto, existe a|n tal que 1 < a < n.Logo, n = ab, onde $a, b \in \mathbb{Z}_+$ e a, b > 1.

Alguns resultados que veremos facilitam implementações.

Teorema

Se n é um inteiro composto, então n tem um divisor primo menor ou igual a \sqrt{n} .

Prova

Se n é composto, existe a|n tal que 1 < a < n.Logo, n = ab, onde $a,b \in \mathbb{Z}_+$ e a,b > 1.Mostraremos que $a \le \sqrt{n}$ ou $b \le \sqrt{n}$.

Alguns resultados que veremos facilitam implementações.

Teorema

Se n é um inteiro composto, então n tem um divisor primo menor ou igual a \sqrt{n} .

Prova

Se n é composto, existe a|n tal que 1 < a < n.Logo, n = ab, onde a, b $\in \mathbb{Z}_+$ e a, b > 1.Mostraremos que a $\leq \sqrt{n}$ ou b $\leq \sqrt{n}$.Por contradição, suponha que a $> \sqrt{n}$ e b $> \sqrt{n}$.

Alguns resultados que veremos facilitam implementações.

Teorema

Se n é um inteiro composto, então n tem um divisor primo menor ou igual a \sqrt{n} .

Prova

Se n é composto, existe a|n tal que 1 < a < n.Logo, n = ab, onde $a, b \in \mathbb{Z}_+$ e a, b > 1.Mostraremos que $a \le \sqrt{n}$ ou $b \le \sqrt{n}.Por$ contradição, suponha que $a > \sqrt{n}$ e $b > \sqrt{n}.Nesse$ caso, $ab > \sqrt{n}\sqrt{n} = n$, um absurdo.

Alguns resultados que veremos facilitam implementações.

Teorema

Se n é um inteiro composto, então n tem um divisor primo menor ou igual a \sqrt{n} .

Prova

Se n é composto, existe a|n tal que 1 < a < n.Logo, n = ab, onde $a, b \in \mathbb{Z}_+$ e a, b > 1.Mostraremos que $a \le \sqrt{n}$ ou $b \le \sqrt{n}.$ Por contradição, suponha que $a > \sqrt{n}$ e $b > \sqrt{n}.$ Nesse caso, $ab > \sqrt{n}\sqrt{n} = n$, um absurdo.Logo, $a \le \sqrt{n}$ ou $b \le \sqrt{n}$ e n tem ao menos um divisor primo menor ou igual a \sqrt{n} .

Outline

Números Primos

Encontrando Números Primos

Resultados Importantes

Conjecturas e Problemas em Aberto

Alguns resultados que veremos facilitam implementações.

Teorema

Se n é um inteiro composto, então n tem um divisor primo menor ou igual a \sqrt{n} .

Alguns resultados que veremos facilitam implementações.

Teorema

Se n é um inteiro composto, então n tem um divisor primo menor ou igual a \sqrt{n} .

Constatação:

Basta procurarmos fatores primos até \sqrt{n} .

Alguns resultados que veremos facilitam implementações.

Teorema

Se n é um inteiro composto, então n tem um divisor primo menor ou igual a \sqrt{n} .

Constatação:

Basta procurarmos fatores primos até \sqrt{n} .

Exemplo

Considere fatorar o número 101. Os únicos primso que não excedem $\sqrt{101}$ são 2,3,5,7. Como 101 não é divisível por nenhum destes, 101 é primo.

TABLE 1 The Sieve of Eratosthenes.																					
Integers divisible by 2 other than 2 receive an underline.												Integers divisible by 3 other than 3 receive an underline.									
1 11 21 31 41 51 61 71 81	2 12 22 32 42 52 62 72 82 92	3 13 23 33 43 53 63 73 83 93	4 24 34 44 54 64 74 84 94	5 15 25 35 45 55 65 75 85 95	6 26 36 46 56 66 76 86 96	7 17 27 37 47 57 67 77 87 97	8 28 38 48 58 68 78 88 98	9 19 29 39 49 59 69 79 89	10 20 30 40 50 60 70 80 90		1 11 21 31 41 51 61 71 81 91	2 12 22 32 42 52 62 72 82 92	3 13 23 33 43 53 63 73 83 93	4 14 24 34 44 54 64 74 84 94	5 25 35 45 55 65 75 85 95	16 26 36 46 56 66 76 86	7 17 27 37 47 57 67 77 87 97	8 28 38 48 58 68 78 88 98	9 19 29 39 49 59 69 79 89	10 20 30 40 50 60 70 80 90 100	
Integers divisible by 5 other than 5 receive an underline.												Integers divisible by 7 other than 7 receive an underline; integers in color are prime.									
1 11 21 31 41 51 61 71 81	2 12 22 32 42 52 62 72 82 92	3 13 23 33 43 53 63 73 83 93	4 24 34 44 54 64 74 84 94	5 15 25 35 45 55 65 75 85 95	6 26 36 46 56 66 76 86 96	7 17 27 37 47 57 67 77 87 97	8 28 28 38 48 58 68 78 88 98	9 19 29 39 49 59 69 79 89	10 20 30 40 50 60 70 80 90		1 11 21 31 41 51 61 71 81 91	2 12 22 32 42 52 62 72 82 92	3 13 23 33 43 53 63 73 83 93	4 24 34 44 54 64 74 84 94	5 15 25 35 45 55 65 75 85	6 16 26 36 46 56 66 76 86	7 17 27 37 47 57 67 77 87	8 28 28 38 48 58 68 78 88 98	9 19 29 39 49 59 69 79 89	10 20 30 40 50 60 70 80 90	

Figura: Método: A Colheita de Eratosthenes

Outline

Números Primos

Encontrando Números Primos

Resultados Importantes

Conjecturas e Problemas em Aberto

PERGUNTA:

Quantos números primos existem?

PERGUNTA:

Quantos números primos existem?

Teorema

Existem infinitos números primos.

PERGUNTA:

Quantos números primos existem?

Teorema

Existem infinitos números primos.

Prova

Suponha que existem apenas uma quantidade finita de primos n, a dizer, os números $p_1, p_2, ..., p_n$.

PERGUNTA:

Quantos números primos existem?

Teorema

Existem infinitos números primos.

Prova

Suponha que existem apenas uma quantidade finita de primos n, a dizer, os números $p_1, p_2, ..., p_n$. Considere

$$Q = p_1.p_2....p_n + 1.$$

PERGUNTA:

Quantos números primos existem?

Teorema

Existem infinitos números primos.

Prova

Suponha que existem apenas uma quantidade finita de primos n, a dizer, os números $p_1, p_2, ..., p_n$. Considere

$$Q = p_1.p_2....p_n + 1.$$

Pelo teorema fundamental da aritmética, Q deve ter um divisor primo diferente de 1 e de Q ou será primo

PERGUNTA:

Quantos números primos existem?

Teorema

Existem infinitos números primos.

Prova

Suponha que existem apenas uma quantidade finita de primos n, a dizer, os números $p_1, p_2, ..., p_n$. Considere

$$Q = p_1.p_2....p_n + 1.$$

Pelo teorema fundamental da aritmética, Q deve ter um divisor primo diferente de 1 e de Q ou será primo , mas nenhum número primo conhecido $p_1, p_2, ..., p_n$ divide Q.

PERGUNTA:

Quantos números primos existem?

Teorema

Existem infinitos números primos.

Prova

Suponha que existem apenas uma quantidade finita de primos n, a dizer, os números $p_1, p_2, ..., p_n$. Considere

$$Q = p_1.p_2....p_n + 1.$$

Pelo teorema fundamental da aritmética, Q deve ter um divisor primo diferente de 1 e de Q ou será primo , mas nenhum número primo conhecido $p_1, p_2, ..., p_n$ divide Q.Portanto, Q é primo ou tem divisores primos não listados.

Busca por Números Primos

- Programas de computador para encontrar novos primos são objeto de pesquisa.
- Conhecemos primos grandes como 2^{43.112.609} 1, um primo de Mersenne.

Busca por Números Primos

- Programas de computador para encontrar novos primos são objeto de pesquisa.
- Conhecemos primos grandes como 2^{43.112.609} 1, um primo de Mersenne.

PERGUNTA:

Com que frequência os primos aparecem?

Busca por Números Primos

PERGUNTA:

Com que frequência os primos aparecem?

Teorema

A razão entre números de primos que não excedem x e $x/\ln x$ se aproxima de 1 à medida que x cresce em direção ao infinito.

Progressões Aritméticas e Primos

- Todo número inteiro ímpar está em uma das duas progressões 4k + 1 ou 4k + 3.
- Cada progressão ak + b em que a, b não têm divisores comuns contém infinitos primos.

Outline

Números Primos

Encontrando Números Primos

Resultados Importantes

Conjecturas e Problemas em Aberto

Funções para Primos

Seria útil encontrarmos uma função f(n) para definir primos.

Conjectura:

Considere a função $f(n) = n^2 - n + 41$. É certo que f(n) é primo para todo n.

Funções para Primos

Seria útil encontrarmos uma função f(n) para definir primos.

Conjectura:

Considere a função $f(n) = n^2 - n + 41$. É certo que f(n) é primo para todo n.

Constatação:

Podemos verificar que a função gera números primos para todo $n \le 40$, mas a afirmação é falsa. Se n = 41, teremos $f(n) = 41^2 - 41 - 41 = 41.41 - 2.41 = 41.39$, divisível por 3.

Conjectura:

Conjectura:

- Antes da criação de computadores, a conjectura já havia sido verificada para milhões de inteiros.
- Até o meio de 2011, todos os inteiros até 1,6.10¹⁸ haviam sido verificados.

Conjectura:

- Antes da criação de computadores, a conjectura já havia sido verificada para milhões de inteiros.
- Até o meio de 2011, todos os inteiros até 1,6.10¹⁸ haviam sido verificados.
- Resultados mais fracos foram provados:
 - 1. Todo inteiro mairo que 2 é a soma de no máximo 6 números primos. [Ramaré, 1995]

Conjectura:

- Antes da criação de computadores, a conjectura já havia sido verificada para milhões de inteiros.
- Até o meio de 2011, todos os inteiros até 1, 6.10¹⁸ haviam sido verificados.
- Resultados mais fracos foram provados:
 - 1. Todo inteiro mairo que 2 é a soma de no máximo 6 números primos. [Ramaré, 1995]
 - Todo inteiro suficientemente grande é a soma de um primo e um segundo número que ou é primo ou é o produto de dois primos. [Chen, 1966]

Conjecturas sobre Primos

- Várias conjecturas sugerem sequências em que existiriam infinitos primos.
- Um exemplo sugere que existem infinitos da forma $n^2 + 1$.

Conjecturas sobre Primos

- Várias conjecturas sugerem sequências em que existiriam infinitos primos.
- Um exemplo sugere que existem infinitos da forma $n^2 + 1$.
- Um resultado mais fraco foi provado:
 - Há infinitos inteiros positivos n tais que n² + 1 é a soma de um primo e um segundo número que ou é primo ou é o produto de dois primos. [lwaniec, 1973]

Primos Gêmeos

Pares de primos com diferença 2 são ditos *gêmeos*. Ex: 5 e 7, 11 e 13, ...

Conjectura:

Existem infinitos pares de primos gêmeos.

Primos Gêmeos

Pares de primos com diferença 2 são ditos *gêmeos*. Ex: 5 e 7, 11 e 13, ...

Conjectura:

Existem infinitos pares de primos gêmeos.

• Até o meio de 2011, o recorde de números gêmeos tem os primos 65.516.468.355.2 $^{333.333}\pm$ 1, que tem 100.355 dígitos.