Package 'simStateSpace'

November 12, 2023
Title Simulate Data from State Space Models
Version 1.0.0
Description Offers an efficient and user-friendly framework for simulating data in state space models where n subjects/units is greater than one which is common in social and behavioral sciences.
<pre>URL https://github.com/jeksterslab/simStateSpace,</pre>
https://jeksterslab.github.io/simStateSpace/
<pre>BugReports https://github.com/jeksterslab/simStateSpace/issues</pre>
License GPL (>= 3)
Encoding UTF-8
Roxygen list(markdown = TRUE)
Depends R (>= $3.0.0$)
LinkingTo Rcpp, RcppArmadillo
Imports Rcpp
Suggests knitr, rmarkdown, testthat, Matrix
RoxygenNote 7.2.3
NeedsCompilation yes
Author Ivan Jacob Agaloos Pesigan [aut, cre, cph] (https://orcid.org/0000-0003-4818-8420)
Maintainer Ivan Jacob Agaloos Pesigan <r.jeksterslab@gmail.com></r.jeksterslab@gmail.com>
R topics documented:
OU2SSM Sim2Matrix SimSSM0 SimSSM0Fixed SimSSM0Vary SimSSMOU 1

2 OU2SSM

)rr	nst	eir	ı—l	IJħ	len	ıbε	ck	M	100	del	te)	Sta	te	
 	 		 		 						. ,	 			 			 			 			 	4	18 20 22
																										15
Cor	Conver	Convert 1	Convert Par	Convert Param	Convert Paramete	Convert Parameters	Convert Parameters fr	Convert Parameters from	Convert Parameters from to	Convert Parameters from the		Convert Parameters from the Orn	Convert Parameters from the Ornst	Convert Parameters from the Ornstein	Convert Parameters from the Ornstein-	Convert Parameters from the Ornstein-Uh.	Convert Parameters from the Ornstein-Uhler	Convert Parameters from the Ornstein-Uhlenbe	Convert Parameters from the Ornstein-Uhlenbeck	Convert Parameters from the Ornstein-Uhlenbeck M.	Convert Parameters from the Ornstein-Uhlenbeck Mod	Convert Parameters from the Ornstein-Uhlenbeck Model	Convert Parameters from the Ornstein-Uhlenbeck Model to	Convert Parameters from the Ornstein-Uhlenbeck Model to	Convert Parameters from the Ornstein-Uhlenbeck Model to Sta	Convert Parameters from the Ornstein–Uhlenbeck Model to State

Description

This function converts parameters from the Ornstein–Uhlenbeck model to state space model parameterization. See details for more information.

Usage

```
OU2SSM(mu, phi, sigma_sqrt, delta_t)
```

Arguments

mu	Numeric vector. The long-term mean or equilibrium level (μ) .
phi	Numeric matrix. The rate of mean reversion, determining how quickly the variable returns to its mean (Φ) .
sigma_sqrt	Numeric matrix. Cholesky decomposition of the matrix of volatility or randomness in the process (Σ) .
delta_t	Numeric. Time interval (δ_t) .

Details

The state space parameters as a function of the Ornstein-Uhlenbeck model parameters are given by

$$\boldsymbol{\beta} = \exp\left(-\boldsymbol{\Phi}\boldsymbol{\Delta}_t\right)$$

$$oldsymbol{lpha} = -oldsymbol{\Phi}^{-1} \left(oldsymbol{eta} - \mathbf{I}_p
ight)$$

$$\operatorname{vec}\left(\boldsymbol{\Psi}\right) = \left\{\left[\left(-\boldsymbol{\Phi}\otimes\mathbf{I}_{p}\right) + \left(\mathbf{I}_{p}\otimes-\boldsymbol{\Phi}\right)\right]\left[\exp\left(\left[\left(-\boldsymbol{\Phi}\otimes\mathbf{I}_{p}\right) + \left(\mathbf{I}_{p}\otimes-\boldsymbol{\Phi}\right)\right]\Delta_{t}\right) - \mathbf{I}_{p\times p}\right]\operatorname{vec}\left(\boldsymbol{\Sigma}\right)\right\}$$

Author(s)

Ivan Jacob Agaloos Pesigan

Sim2Matrix 3

See Also

Other Simulation of State Space Models Data Functions: Sim2Matrix(), SimSSM0Fixed(), SimSSM0Vary(), SimSSM0(), SimSSM0UFixed(), SimSSM0UVary(), SimSSMVARFixed(), SimSSMVARVary(), SimSSMVAR()

Examples

```
p <- k <- 2
mu <- c(5.76, 5.18)
phi <- matrix(data = c(0.10, -0.05, -0.05, 0.10), nrow = p)
sigma_sqrt <- chol(
    matrix(data = c(2.79, 0.06, 0.06, 3.27), nrow = p)
)
delta_t <- 0.10

OU2SSM(
    mu = mu,
    phi = phi,
    sigma_sqrt = sigma_sqrt,
    delta_t = delta_t
)</pre>
```

Sim2Matrix

Simulation Output to Matrix

Description

This function converts the output of SimSSM0(), SimSSMOU(), SimSSMVAR(), SimSSMOFixed(), SimSSMOFixed(), or SimSSMVARFixed() to a matrix.

Usage

```
Sim2Matrix(x, eta = FALSE)
```

Arguments

Author(s)

Ivan Jacob Agaloos Pesigan

4 Sim2Matrix

See Also

Other Simulation of State Space Models Data Functions: OU2SSM(), SimSSM0Fixed(), SimSSM0Vary(), SimSSM0(), SimSSMOUFixed(), SimSSMOUVary(), SimSSMVARFixed(), SimSSMVARVary(), SimSSMVAR()

```
# prepare parameters
set.seed(42)
k <- p <- 3
I \leftarrow diag(k)
I_sqrt <- chol(I)</pre>
null\_vec \leftarrow rep(x = 0, times = k)
n <- 5
mu0 <- null_vec
sigma0_sqrt <- I_sqrt</pre>
alpha <- null_vec
beta \leftarrow diag(x = 0.50, nrow = k)
psi_sqrt <- I_sqrt</pre>
nu <- null_vec
lambda <- I
theta_sqrt <- chol(diag(x = 0.50, nrow = k))
time <- 50
burn_in <- 0</pre>
# generate data
ssm <- SimSSM0(
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  alpha = alpha,
  beta = beta,
  psi_sqrt = psi_sqrt,
  nu = nu,
  lambda = lambda,
  theta_sqrt = theta_sqrt,
  time = time,
  burn_in = burn_in
)
# list to matrix
mat <- Sim2Matrix(ssm)</pre>
str(mat)
head(mat)
# generate data
ssm <- SimSSM0Fixed(</pre>
  n = n,
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  alpha = alpha,
  beta = beta,
  psi_sqrt = psi_sqrt,
```

SimSSM0 5

```
nu = nu,
lambda = lambda,
theta_sqrt = theta_sqrt,
time = time,
burn_in = burn_in
)

# list to matrix
mat <- Sim2Matrix(ssm)
str(mat)
head(mat)</pre>
```

SimSSM0

Simulate Data from a State Space Model (n = 1)

Description

This function simulates data from a state space model. See details for more information.

Usage

```
SimSSM0(
  mu0,
  sigma0_sqrt,
  alpha,
  beta,
  psi_sqrt,
  nu,
  lambda,
  theta_sqrt,
  time,
  burn_in
)
```

Arguments

mu0	Numeric vector. Mean of initial latent variable values $(\mu_{\eta 0})$.
sigma0_sqrt	Numeric matrix. Cholesky decomposition of the covariance matrix of initial latent variable values $(\Sigma_{\eta 0})$.
alpha	Numeric vector. Vector of intercepts for the dynamic model (α) .
beta	Numeric matrix. Transition matrix relating the values of the latent variables at time $t-1$ to those at time $t(\beta)$.
psi_sqrt	Numeric matrix. Cholesky decomposition of the process noise covariance matrix (Ψ) .
nu	Numeric vector. Vector of intercepts for the measurement model (ν) .

6 SimSSM0

lambda Numeric matrix. Factor loading matrix linking the latent variables to the ob-

served variables (Λ) .

theta_sqrt Numeric matrix. Cholesky decomposition of the measurement error covariance

matrix (Θ) .

time Positive integer. Number of time points to simulate.

burn_in Positive integer. Number of burn-in points to exclude before returning the re-

sults.

Details

The measurement model is given by

$$\mathbf{y}_{t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{t} + \boldsymbol{\varepsilon}_{t} \quad \mathrm{with} \quad \boldsymbol{\varepsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where \mathbf{y}_t , $\boldsymbol{\eta}_t$, and $\boldsymbol{\varepsilon}_t$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. \mathbf{y}_t is a vector of observed random variables at time t, $\boldsymbol{\eta}_t$ is a vector of latent random variables at time t, and $\boldsymbol{\varepsilon}_t$ is a vector of random measurement errors at time t, while $\boldsymbol{\nu}$ is a vector of intercept, $\boldsymbol{\Lambda}$ is a matrix of factor loadings, and $\boldsymbol{\Theta}$ is the covariance matrix of $\boldsymbol{\varepsilon}$.

The dynamic structure is given by

$$oldsymbol{\eta}_t = oldsymbol{lpha} + oldsymbol{eta} oldsymbol{\eta}_{t-1} + oldsymbol{\zeta}_t \quad ext{with} \quad oldsymbol{\zeta}_t \sim \mathcal{N}\left(oldsymbol{0}, oldsymbol{\Psi}
ight)$$

where η_t , η_{t-1} , and ζ_t are random variables and α , β , and Ψ are model parameters. η_t is a vector of latent variables at time t, η_{t-1} is a vector of latent variables at time t-1, and ζ_t is a vector of dynamic noise at time t while α is a vector of intercepts, β is a matrix of autoregression and cross regression coefficients, and Ψ is the covariance matrix of ζ_t .

Value

Returns a list with the following elements:

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- time: A vector of discrete time points from 1 to t.
- n: Number of individuals.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Shumway, R. H., & Stoffer, D. S. (2017). *Time series analysis and its applications: With R examples*. Springer International Publishing. doi:10.1007/9783319524528

See Also

Other Simulation of State Space Models Data Functions: OU2SSM(), Sim2Matrix(), SimSSM0Fixed(), SimSSM0Vary(), SimSSM0UFixed(), SimSSMOUVary(), SimSSMVARFixed(), SimSSMVARVary(), SimSSMVAR()

SimSSM0Fixed 7

Examples

```
# prepare parameters
set.seed(42)
k < -p < -3
I <- diag(k)</pre>
I_sqrt <- chol(I)</pre>
null_vec \leftarrow rep(x = 0, times = k)
mu0 <- null_vec
sigma0_sqrt <- I_sqrt
alpha <- null_vec</pre>
beta \leftarrow diag(x = 0.50, nrow = k)
psi_sqrt <- I_sqrt</pre>
nu <- null_vec
lambda <- I
theta_sqrt <- chol(diag(x = 0.50, nrow = k))
time <- 50
burn_in <- 0
# generate data
ssm <- SimSSM0(
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  alpha = alpha,
  beta = beta,
  psi_sqrt = psi_sqrt,
  nu = nu,
  lambda = lambda,
  theta_sqrt = theta_sqrt,
  time = time,
  burn_in = burn_in
)
str(ssm)
```

SimSSM0Fixed

Simulate Data using a State Space Model Parameterization for n > 1 Individuals (Fixed Parameters)

Description

This function simulates data using a state space model parameterization for n > 1 individuals. In this model, the parameters are invariant across individuals.

Usage

```
SimSSM0Fixed(
  n,
  mu0,
```

8 SimSSM0Fixed

```
sigma0_sqrt,
alpha,
beta,
psi_sqrt,
nu,
lambda,
theta_sqrt,
time,
burn_in
```

Arguments

n Positive integer. Number of individuals.

mu0 Numeric vector. Mean of initial latent variable values $(\mu_{\eta|0})$.

sigma@_sqrt Numeric matrix. Cholesky decomposition of the covariance matrix of initial

latent variable values ($\Sigma_{\eta|0}$).

alpha Numeric vector. Vector of intercepts for the dynamic model (α) .

beta Numeric matrix. Transition matrix relating the values of the latent variables at

time t - 1 to those at time t (β) .

psi_sqrt Numeric matrix. Cholesky decomposition of the process noise covariance ma-

trix (Ψ) .

nu Numeric vector. Vector of intercepts for the measurement model (ν) .

lambda Numeric matrix. Factor loading matrix linking the latent variables to the ob-

served variables (Λ) .

theta_sqrt Numeric matrix. Cholesky decomposition of the measurement error covariance

matrix (Θ) .

time Positive integer. Number of time points to simulate.

burn_in Positive integer. Number of burn-in points to exclude before returning the re-

sults.

Details

The measurement model is given by

$$\mathbf{y}_{i,t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{\varepsilon}_{i,t} \quad ext{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where $\mathbf{y}_{i,t}$, $\eta_{i,t}$, and $\varepsilon_{i,t}$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. $\mathbf{y}_{i,t}$ is a vector of observed random variables at time t and individual i, $\eta_{i,t}$ is a vector of latent random variables at time t and individual i, while $\boldsymbol{\nu}$ is a vector of intercept, $\boldsymbol{\Lambda}$ is a matrix of factor loadings, and $\boldsymbol{\Theta}$ is the covariance matrix of ε .

The dynamic structure is given by

$$oldsymbol{\eta}_{i,t} = oldsymbol{lpha} + oldsymbol{eta} oldsymbol{\eta}_{i,t-1} + oldsymbol{\zeta}_{i,t} \quad ext{with} \quad oldsymbol{\zeta}_{i,t} \sim \mathcal{N}\left(oldsymbol{0}, oldsymbol{\Psi}
ight)$$

SimSSM0Fixed 9

where $\eta_{i,t}$, $\eta_{i,t-1}$, and $\zeta_{i,t}$ are random variables and α , β , and Ψ are model parameters. $\eta_{i,t}$ is a vector of latent variables at time t and individual i, $\eta_{i,t-1}$ is a vector of latent variables at time t-1 and individual i, and $\zeta_{i,t}$ is a vector of dynamic noise at time t and individual i while α is a vector of intercepts, β is a matrix of autoregression and cross regression coefficients, and Ψ is the covariance matrix of $\zeta_{i,t}$.

Value

Returns a list of length n. Each element is a list with the following elements:

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- time: A vector of discrete time points from 1 to t.
- id: A vector of ID numbers of length t.
- n: Number of individuals.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Shumway, R. H., & Stoffer, D. S. (2017). *Time series analysis and its applications: With R examples*. Springer International Publishing. doi:10.1007/9783319524528

See Also

```
Other Simulation of State Space Models Data Functions: OU2SSM(), Sim2Matrix(), SimSSM0Vary(), SimSSM0(), SimSSMOUFixed(), SimSSMOUVary(), SimSSMOU(), SimSSMVARFixed(), SimSSMVARVary(), SimSSMVAR()
```

```
# prepare parameters
set.seed(42)
k <- p <- 3
I \leftarrow diag(k)
I_sqrt <- chol(I)</pre>
null\_vec \leftarrow rep(x = 0, times = k)
n <- 5
mu0 <- null_vec
sigma0_sqrt <- I_sqrt
alpha <- null_vec
beta \leftarrow diag(x = 0.50, nrow = k)
psi_sqrt <- I_sqrt</pre>
nu <- null_vec
lambda <- I
theta_sqrt <- chol(diag(x = 0.50, nrow = k))
time <- 50
burn_in <- 0
```

10 SimSSM0Vary

```
# generate data
ssm <- SimSSM0Fixed(
    n = n,
    mu0 = mu0,
    sigma0_sqrt = sigma0_sqrt,
    alpha = alpha,
    beta = beta,
    psi_sqrt = psi_sqrt,
    nu = nu,
    lambda = lambda,
    theta_sqrt = theta_sqrt,
    time = time,
    burn_in = burn_in
)</pre>
```

SimSSM0Vary

Simulate Data using a State Space Model Parameterization for n > 1 Individuals (Varying Parameters)

Description

This function simulates data using a state space model parameterization for n > 1 individuals. In this model, the parameters can vary across individuals.

Usage

```
SimSSM0Vary(
    n,
    mu0,
    sigma0_sqrt,
    alpha,
    beta,
    psi_sqrt,
    nu,
    lambda,
    theta_sqrt,
    time,
    burn_in
)
```

Arguments

n Positive integer. Number of individuals.

mu0 List of numeric vectors. Mean of initial latent variable values $(\mu_{\eta|0})$.

SimSSM0Vary 11

sigma0_sqrt	List of numeric matrices. Cholesky decomposition of the covariance matrix of initial latent variable values $(\Sigma_{\eta 0})$.
alpha	List of numeric vectors. Vector of intercepts for the dynamic model (α) .
beta	List of numeric matrices. Transition matrix relating the values of the latent variables at time $t-1$ to those at time $t(\beta)$.
psi_sqrt	List of numeric matrices. Cholesky decomposition of the process noise covariance matrix (Ψ) .
nu	List of numeric vectors. Vector of intercepts for the measurement model (ν) .
lambda	List of numeric matrices. Factor loading matrix linking the latent variables to the observed variables (Λ) .
theta_sqrt	List of numeric matrices. Cholesky decomposition of the measurement error covariance matrix (Θ) .
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Details

Parameters can vary across individuals by providing a list of parameter values. If the length of any of the parameters (mu0, sigma0_sqrt, alpha, beta, psi_sqrt, nu, lambda, and theta_sqrt) is less the n, the function will cycle through the available values.

Value

Returns a list of length n. Each element is a list with the following elements:

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- time: A vector of discrete time points from 1 to t.
- id: A vector of ID numbers of length t.
- n: Number of individuals.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Shumway, R. H., & Stoffer, D. S. (2017). *Time series analysis and its applications: With R examples*. Springer International Publishing. doi:10.1007/9783319524528

See Also

Other Simulation of State Space Models Data Functions: OU2SSM(), Sim2Matrix(), SimSSM0Fixed(), SimSSM0(), SimSSMOUFixed(), SimSSMOUVary(), SimSSMOU(), SimSSMVARFixed(), SimSSMVARVary(), SimSSMVAR()

12 SimSSMOU

Examples

```
# prepare parameters
# In this example, beta varies across individuals
set.seed(42)
k <- p <- 3
iden <- diag(k)
iden_sqrt <- chol(iden)</pre>
null_vec <- rep(x = 0, times = k)
n <- 5
mu0 <- list(null_vec)</pre>
sigma0_sqrt <- list(iden_sqrt)</pre>
alpha <- list(null_vec)</pre>
beta <- list(</pre>
  diag(x = 0.1, nrow = k),
  diag(x = 0.2, nrow = k),
  diag(x = 0.3, nrow = k),
  diag(x = 0.4, nrow = k),
  diag(x = 0.5, nrow = k)
)
psi_sqrt <- list(iden_sqrt)</pre>
nu <- list(null_vec)</pre>
lambda <- list(iden)</pre>
theta_sqrt <- list(chol(diag(x = 0.50, nrow = k)))</pre>
time <- 50
burn_in <- 0</pre>
ssm <- SimSSM0Vary(</pre>
  n = n,
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  alpha = alpha,
  beta = beta,
  psi_sqrt = psi_sqrt,
  nu = nu,
  lambda = lambda,
  theta_sqrt = theta_sqrt,
  time = time,
  burn_in = burn_in
)
str(ssm)
```

SimSSMOU

Simulate Data from the Ornstein-Uhlenbeck Model using a State Space Model Parameterization (n = 1)

Description

This function simulates data from the Ornstein–Uhlenbeck model using a state space model parameterization. See details for more information.

SimSSMOU 13

Usage

```
SimSSMOU(
   mu0,
   sigma0_sqrt,
   mu,
   phi,
   sigma_sqrt,
   nu,
   lambda,
   theta_sqrt,
   delta_t,
   time,
   burn_in
)
```

Arguments

mu0	Numeric vector. Mean of initial latent variable values $(\mu_{\eta 0})$.
sigma0_sqrt	Numeric matrix. Cholesky decomposition of the covariance matrix of initial latent variable values $(\Sigma_{\eta 0})$.
mu	Numeric vector. The long-term mean or equilibrium level (μ) .
phi	Numeric matrix. The rate of mean reversion, determining how quickly the variable returns to its mean (Φ) .
sigma_sqrt	Numeric matrix. Cholesky decomposition of the matrix of volatility or randomness in the process (Σ) .
nu	Numeric vector. Vector of intercepts for the measurement model (ν) .
lambda	Numeric matrix. Factor loading matrix linking the latent variables to the observed variables (Λ) .
theta_sqrt	Numeric matrix. Cholesky decomposition of the measurement error covariance matrix (Θ) .
delta_t	Numeric. Time interval (δ_t).
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Details

The measurement model is given by

$$\mathbf{y}_{t} = oldsymbol{
u} + oldsymbol{\Lambda} oldsymbol{\eta}_{t} + oldsymbol{arepsilon}_{t} \quad ext{with} \quad oldsymbol{arepsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, oldsymbol{\Theta}
ight)$$

where \mathbf{y}_t , $\boldsymbol{\eta}_t$, and $\boldsymbol{\varepsilon}_t$ are random variables and $\boldsymbol{\nu}$, $\boldsymbol{\Lambda}$, and $\boldsymbol{\Theta}$ are model parameters. \mathbf{y}_t is a vector of observed random variables at time t, $\boldsymbol{\eta}_t$ is a vector of latent random variables at time t, and $\boldsymbol{\varepsilon}_t$ is a vector of random measurement errors at time t, while $\boldsymbol{\nu}$ is a vector of intercept, $\boldsymbol{\Lambda}$ is a matrix of factor loadings, and $\boldsymbol{\Theta}$ is the covariance matrix of $\boldsymbol{\varepsilon}$.

14 SimSSMOU

The dynamic structure is given by

$$\mathrm{d}\boldsymbol{\eta}_t = \boldsymbol{\Phi} \left(\boldsymbol{\mu} - \boldsymbol{\eta}_t \right) \mathrm{d}t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d}\mathbf{W}_t$$

where μ is the long-term mean or equilibrium level, Φ is the rate of mean reversion, determining how quickly the variable returns to its mean, Σ is the matrix of volatility or randomness in the process, and dW is a Wiener process or Brownian motion, which represents random fluctuations.

Value

Returns a list with the following elements:

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- time: A vector of continuous time points of length t starting from 0 with delta_t increments.
- n: Number of individuals.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the brownian motion. *Physical Review*, 36(5), 823–841. doi:10.1103/physrev.36.823

See Also

Other Simulation of State Space Models Data Functions: OU2SSM(), Sim2Matrix(), SimSSM0Fixed(), SimSSM0Vary(), SimSSM0Vary(), SimSSM0UFixed(), SimSSM0UVary(), SimSSMVARFixed(), SimSSMVARVary(), SimSSMVAR()

```
# prepare parameters
set.seed(42)
p <- k <- 2
I <- diag(p)</pre>
I_sqrt <- chol(I)</pre>
mu0 < -c(-3.0, 1.5)
sigma0_sqrt <- I_sqrt
mu < -c(5.76, 5.18)
phi <- matrix(data = c(0.10, -0.05, -0.05, 0.10), nrow = p)
sigma_sqrt <- chol(</pre>
  matrix(data = c(2.79, 0.06, 0.06, 3.27), nrow = p)
nu < -rep(x = 0, times = k)
lambda <- diag(k)</pre>
theta_sqrt <- chol(diag(x = 0.50, nrow = k))
delta_t <- 0.10
time <- 50
```

SimSSMOUFixed 15

```
burn_in <- 0
# generate data
ssm <- SimSSMOU(
 mu0 = mu0,
 sigma0_sqrt = sigma0_sqrt,
 mu = mu,
 phi = phi,
 sigma_sqrt = sigma_sqrt,
 nu = nu,
 lambda = lambda,
 theta_sqrt = theta_sqrt,
 delta_t = delta_t,
 time = time,
 burn_in = burn_in
)
str(ssm)
```

SimSSMOUFixed

Simulate Data from an Ornstein-Uhlenbeck Model using a State Space Model Parameterization for n > 1 Individuals (Fixed Parameters)

Description

This function simulates data from an Ornstein–Uhlenbeck model using a state space model parameterization for n > 1 individuals. In this model, the parameters are invariant across individuals. See details for more information.

Usage

```
SimSSMOUFixed(
    n,
    mu0,
    sigma0_sqrt,
    mu,
    phi,
    sigma_sqrt,
    nu,
    lambda,
    theta_sqrt,
    delta_t,
    time,
    burn_in
)
```

16 SimSSMOUFixed

Arguments

Positive integer. Number of individuals. n Numeric vector. Mean of initial latent variable values $(\mu_{\eta|0})$. mu0 sigma0_sqrt Numeric matrix. Cholesky decomposition of the covariance matrix of initial latent variable values $(\Sigma_{\eta|0})$. mu Numeric vector. The long-term mean or equilibrium level (μ) . Numeric matrix. The rate of mean reversion, determining how quickly the variphi able returns to its mean (Φ) . Numeric matrix. Cholesky decomposition of the matrix of volatility or randomsigma_sqrt ness in the process (Σ) . nu Numeric vector. Vector of intercepts for the measurement model (ν) . Numeric matrix. Factor loading matrix linking the latent variables to the oblambda served variables (Λ) . theta_sqrt

Numeric matrix. Cholesky decomposition of the measurement error covariance matrix (Θ) .

delta_t Numeric. Time interval (δ_t).

Positive integer. Number of time points to simulate. time

burn in Positive integer. Number of burn-in points to exclude before returning the re-

sults.

Details

The measurement model is given by

$$\mathbf{y}_{i,t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{\varepsilon}_{i,t} \quad \text{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Theta}\right)$$

where $y_{i,t}$, $\eta_{i,t}$, and $\varepsilon_{i,t}$ are random variables and ν , Λ , and Θ are model parameters. $y_{i,t}$ is a vector of observed random variables at time t and individual i, $\eta_{i,t}$ is a vector of latent random variables at time t and individual i, and $\varepsilon_{i,t}$ is a vector of random measurement errors at time t and individual i, while ν is a vector of intercept, Λ is a matrix of factor loadings, and Θ is the covariance matrix of ε .

The dynamic structure is given by

$$\mathrm{d} oldsymbol{\eta}_{i,t} = oldsymbol{\Phi} \left(oldsymbol{\mu} - oldsymbol{\eta}_{i,t}
ight) \mathrm{d} t + oldsymbol{\Sigma}^{rac{1}{2}} \mathrm{d} \mathbf{W}_{i,t}$$

where μ is the long-term mean or equilibrium level, Φ is the rate of mean reversion, determining how quickly the variable returns to its mean, Σ is the matrix of volatility or randomness in the process, and dW is a Wiener process or Brownian motion, which represents random fluctuations.

Value

Returns a list of length n. Each element is a list with the following elements:

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- time: A vector of continuous time points of length t starting from 0 with delta_t increments.
- id: A vector of ID numbers of length t.
- n: Number of individuals.

SimSSMOUFixed 17

Author(s)

Ivan Jacob Agaloos Pesigan

References

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the brownian motion. *Physical Review*, 36(5), 823–841. doi:10.1103/physrev.36.823

See Also

Other Simulation of State Space Models Data Functions: OU2SSM(), Sim2Matrix(), SimSSM0Fixed(), SimSSM0Vary(), SimSSM0Vary(), SimSSM0U(), SimSSMVARFixed(), SimSSMVARVary(), SimSSMVAR()

```
# prepare parameters
set.seed(42)
p < -k < -2
I <- diag(p)</pre>
I_sqrt <- chol(I)</pre>
n <- 5
mu0 < -c(-3.0, 1.5)
sigma0_sqrt <- I_sqrt</pre>
mu <- c(5.76, 5.18)
phi <- matrix(data = c(0.10, -0.05, -0.05, 0.10), nrow = p)
sigma_sqrt <- chol(</pre>
  matrix(data = c(2.79, 0.06, 0.06, 3.27), nrow = p)
)
nu \leftarrow rep(x = 0, times = k)
lambda <- diag(k)</pre>
theta_sqrt <- chol(diag(x = 0.50, nrow = k))
delta_t <- 0.10
time <- 50
burn_in <- 0</pre>
# generate data
ssm <- SimSSMOUFixed(</pre>
  n = n,
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  mu = mu,
  phi = phi,
  sigma_sqrt = sigma_sqrt,
  nu = nu,
  lambda = lambda,
  theta_sqrt = theta_sqrt,
  delta_t = delta_t,
  time = time,
  burn_in = burn_in
)
```

18 SimSSMOUVary

str(ssm)

SimSSMOUVary

Simulate Data from an Ornstein-Uhlenbeck Model using a State Space Model Parameterization for n > 1 Individuals (Varying Parameters)

Description

This function simulates data from an Ornstein–Uhlenbeck model using a state space model parameterization for n > 1 individuals. In this model, the parameters can vary across individuals.

Usage

```
SimSSMOUVary(
    n,
    mu0,
    sigma0_sqrt,
    mu,
    phi,
    sigma_sqrt,
    nu,
    lambda,
    theta_sqrt,
    delta_t,
    time,
    burn_in
)
```

Arguments

n	Positive integer. Number of individuals.
mu0	Numeric vector. Mean of initial latent variable values $(\mu_{\eta 0})$.
sigma0_sqrt	Numeric matrix. Cholesky decomposition of the covariance matrix of initial latent variable values ($\Sigma_{\eta 0}$).
mu	List of numeric vectors. The long-term mean or equilibrium level (μ) .
phi	List of numeric matrices. The rate of mean reversion, determining how quickly the variable returns to its mean (Φ) .
sigma_sqrt	List of numeric matrices. Cholesky decomposition of the matrix of volatility or randomness in the process (Σ) .
nu	Numeric vector. Vector of intercepts for the measurement model (ν) .
lambda	Numeric matrix. Factor loading matrix linking the latent variables to the observed variables (Λ).
theta_sqrt	Numeric matrix. Cholesky decomposition of the measurement error covariance matrix (Θ) .

SimSSMOUVary 19

delta_t	Numeric. Time interval (δ_t) .
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the re-

Details

Parameters can vary across individuals by providing a list of parameter values. If the length of any of the parameters (mu0, sigma0_sqrt, mu, phi, sigma_sqrt, nu, lambda, theta_sqrt) is less the n, the function will cycle through the available values.

Value

Returns a list of length n. Each element is a list with the following elements:

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- time: A vector of discrete time points from 1 to t.
- id: A vector of ID numbers of length t.

sults.

• n: Number of individuals.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the brownian motion. *Physical Review*, 36(5), 823–841. doi:10.1103/physrev.36.823

See Also

```
Other Simulation of State Space Models Data Functions: OU2SSM(), Sim2Matrix(), SimSSM0Fixed(), SimSSM0Vary(), SimSSM0(), SimSSM0UFixed(), SimSSM0U(), SimSSMVARFixed(), SimSSMVARVary(), SimSSMVAR()
```

```
# prepare parameters
# In this example, phi varies across individuals
set.seed(42)
p <- k <- 2
iden <- diag(p)
iden_sqrt <- chol(iden)
n <- 5
mu0 <- list(c(-3.0, 1.5))
sigma0_sqrt <- list(iden_sqrt)
mu <- list(c(5.76, 5.18))
phi <- list(</pre>
```

20 SimSSMVAR

```
as.matrix(Matrix::expm(diag(x = -0.1, nrow = k))),
  as.matrix(Matrix::expm(diag(x = -0.2, nrow = k))),
  as.matrix(Matrix::expm(diag(x = -0.3, nrow = k))),
  as.matrix(Matrix::expm(diag(x = -0.4, nrow = k))),
  as.matrix(Matrix::expm(diag(x = -0.5, nrow = k)))
)
sigma_sqrt <- list(</pre>
  chol(
    matrix(data = c(2.79, 0.06, 0.06, 3.27), nrow = p)
)
nu \leftarrow list(rep(x = 0, times = k))
lambda <- list(diag(k))</pre>
theta_sqrt <- list(chol(diag(x = 0.50, nrow = k)))
delta_t <- 0.10
time <- 50
burn_in <- 0
ssm <- SimSSMOUVary(</pre>
  n = n,
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  mu = mu,
  phi = phi,
  sigma_sqrt = sigma_sqrt,
  nu = nu,
  lambda = lambda,
  theta_sqrt = theta_sqrt,
  delta_t = delta_t,
  time = time,
  burn_in = burn_in
)
str(ssm)
```

SimSSMVAR

Simulate Data from the Vector Autoregressive Model using a State Space Model Parameterization (n = 1)

Description

This function simulates data from the vector autoregressive model using a state space model parameterization. See details for more information.

Usage

```
SimSSMVAR(mu0, sigma0_sqrt, alpha, beta, psi_sqrt, time, burn_in)
```

SimSSMVAR 21

Arguments

mu0	Numeric vector. Mean of initial latent variable values $(\mu_{\eta 0})$.
sigma0_sqrt	Numeric matrix. Cholesky decomposition of the covariance matrix of initial latent variable values $(\Sigma_{\eta 0})$.
alpha	Numeric vector. Vector of intercepts for the dynamic model (α) .
beta	Numeric matrix. Transition matrix relating the values of the latent variables at time $t-1$ to those at time $t(\beta)$.
psi_sqrt	Numeric matrix. Cholesky decomposition of the process noise covariance matrix (Ψ) .
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Details

The measurement model is given by

$$\mathbf{y}_t = \boldsymbol{\eta}_t$$
.

The dynamic structure is given by

$$oldsymbol{\eta}_t = oldsymbol{lpha} + oldsymbol{eta} oldsymbol{\eta}_{t-1} + oldsymbol{\zeta}_t \quad ext{with} \quad oldsymbol{\zeta}_t \sim \mathcal{N}\left(oldsymbol{0}, oldsymbol{\Psi}
ight)$$

where η_t, η_{t-1} , and ζ_t are random variables and α , β , and Ψ are model parameters. η_t is a vector of latent variables at time t, η_{t-1} is a vector of latent variables at t-1, and ζ_t is a vector of dynamic noise at time t while α is a vector of intercepts, β is a matrix of autoregression and cross regression coefficients, and Ψ is the covariance matrix of ζ_t .

Value

Returns a list with the following elements:

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- time: A vector of discrete time points from 1 to t.
- n: Number of individuals.

References

Shumway, R. H., & Stoffer, D. S. (2017). *Time series analysis and its applications: With R examples*. Springer International Publishing. doi:10.1007/9783319524528

See Also

Other Simulation of State Space Models Data Functions: OU2SSM(), Sim2Matrix(), SimSSM0Fixed(), SimSSM0Vary(), SimSSM0U(), SimSSM0UVary(), SimSSM0U(), SimSSMVARFixed(), SimSSMVARVary()

22 SimSSMVARFixed

Examples

```
# prepare parameters
set.seed(42)
k < -3
I \leftarrow diag(k)
I_sqrt <- chol(I)</pre>
null_vec \leftarrow rep(x = 0, times = k)
mu0 <- null_vec
sigma0_sqrt <- I_sqrt
alpha <- null_vec</pre>
beta \leftarrow diag(x = 0.5, nrow = k)
psi_sqrt <- I_sqrt</pre>
time <- 50
burn_in <- 0
# generate data
ssm <- SimSSMVAR(
  mu0 = mu0,
  sigma0_sqrt = sigma0_sqrt,
  alpha = alpha,
  beta = beta,
  psi_sqrt = psi_sqrt,
  time = time,
  burn_in = burn_in
)
str(ssm)
```

SimSSMVARFixed

Simulate Data from a Vector Autoregressive Model using a State Space Model Parameterization for n > 1 Individuals (Fixed Parameters)

Description

This function simulates data from a vector autoregressive model using a state space model parameterization for n > 1 individuals. In this model, the parameters are invariant across individuals.

Usage

```
SimSSMVARFixed(n, mu0, sigma0_sqrt, alpha, beta, psi_sqrt, time, burn_in)
```

Arguments

n Positive integer. Number of individuals.

mu0 Numeric vector. Mean of initial latent variable values $(\mu_{\eta|0})$.

sigma0_sqrt Numeric matrix. Cholesky decomposition of the covariance matrix of initial

latent variable values $(\Sigma_{\eta|0})$.

SimSSMVARFixed 23

alpha	Numeric vector. Vector of intercepts for the dynamic model (α) .
beta	Numeric matrix. Transition matrix relating the values of the latent variables at time $t-1$ to those at time $t(\beta)$.
psi_sqrt	Numeric matrix. Cholesky decomposition of the process noise covariance matrix (Ψ) .
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

Value

Returns a list of length n. Each element is a list with the following elements:

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- time: A vector of discrete time points from 1 to t.
- id: A vector of ID numbers of length t.
- n: Number of individuals.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Shumway, R. H., & Stoffer, D. S. (2017). *Time series analysis and its applications: With R examples*. Springer International Publishing. doi:10.1007/9783319524528

See Also

```
Other Simulation of State Space Models Data Functions: OU2SSM(), Sim2Matrix(), SimSSM0Fixed(), SimSSM0Vary(), SimSSM0(), SimSSM0UFixed(), SimSSM0UVary(), SimSSMOU(), SimSSMVARVary(), SimSSMVAR()
```

```
# prepare parameters
set.seed(42)
k <- 3
iden <- diag(k)
iden_sqrt <- chol(iden)
null_vec <- rep(x = 0, times = k)
n <- 5
mu0 <- null_vec
sigma0_sqrt <- iden_sqrt
alpha <- null_vec
beta <- diag(x = 0.5, nrow = k)
psi_sqrt <- iden_sqrt
time <- 50</pre>
```

24 SimSSMVARVary

```
burn_in <- 0

ssm <- SimSSMVARFixed(
    n = n,
    mu0 = mu0,
    sigma0_sqrt = sigma0_sqrt,
    alpha = alpha,
    beta = beta,
    psi_sqrt = psi_sqrt,
    time = time,
    burn_in = burn_in
)

str(ssm)</pre>
```

SimSSMVARVary

Simulate Data from a Vector Autoregressive Model using a State Space Model Parameterization for n > 1 Individuals (Varying Parameters)

Description

This function simulates data from a vector autoregressive model using a state space model parameterization for n > 1 individuals. In this model, the parameters can vary across individuals.

Usage

```
SimSSMVARVary(n, mu0, sigma0_sqrt, alpha, beta, psi_sqrt, time, burn_in)
```

Arguments

n	Positive integer. Number of individuals.
mu0	List of numeric vectors. Mean of initial latent variable values $(\mu_{\eta 0})$.
sigma0_sqrt	List of numeric matrices. Cholesky decomposition of the covariance matrix of initial latent variable values $(\Sigma_{\eta 0})$.
alpha	List of numeric vectors. Vector of intercepts for the dynamic model (α) .
beta	List of numeric matrices. Transition matrix relating the values of the latent variables at time $t-1$ to those at time $t(\beta)$.
psi_sqrt	List of numeric matrices. Cholesky decomposition of the process noise covariance matrix (Ψ) .
time	Positive integer. Number of time points to simulate.
burn_in	Positive integer. Number of burn-in points to exclude before returning the results.

SimSSMVARVary 25

Details

Parameters can vary across individuals by providing a list of parameter values. If the length of any of the parameters (mu0, sigma0_sqrt, alpha, beta, and psi_sqrt) is less the n, the function will cycle through the available values.

Value

Returns a list of length n. Each element is a list with the following elements:

- y: A t by k matrix of values for the manifest variables.
- eta: A t by p matrix of values for the latent variables.
- time: A vector of discrete time points from 1 to t.
- id: A vector of ID numbers of length t.
- n: Number of individuals.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Shumway, R. H., & Stoffer, D. S. (2017). *Time series analysis and its applications: With R examples*. Springer International Publishing. doi:10.1007/9783319524528

See Also

```
Other Simulation of State Space Models Data Functions: OU2SSM(), Sim2Matrix(), SimSSM0Fixed(), SimSSM0Vary(), SimSSM0U(), SimSSMOUFixed(), SimSSMOUVary(), SimSSMOU(), SimSSMVARFixed(), SimSSMVAR()
```

```
# prepare parameters
# In this example, beta varies across individuals
set.seed(42)
k <- 3
iden <- diag(k)
iden_sqrt <- chol(iden)</pre>
null\_vec \leftarrow rep(x = 0, times = k)
n <- 5
mu0 <- list(null_vec)</pre>
sigma0_sqrt <- list(iden_sqrt)</pre>
alpha <- list(null_vec)</pre>
beta <- list(
  diag(x = 0.1, nrow = k),
  diag(x = 0.2, nrow = k),
  diag(x = 0.3, nrow = k),
  diag(x = 0.4, nrow = k),
  diag(x = 0.5, nrow = k)
)
```

26 SimSSMVARVary

```
psi_sqrt <- list(iden_sqrt)
time <- 50
burn_in <- 0

ssm <- SimSSMVARVary(
    n = n,
    mu0 = mu0,
    sigma0_sqrt = sigma0_sqrt,
    alpha = alpha,
    beta = beta,
    psi_sqrt = psi_sqrt,
    time = time,
    burn_in = burn_in
)

str(ssm)</pre>
```

Index

* Simulation of State Space Models Data Functions	Sim2Matrix, 2, 3, 6, 9, 11, 14, 17, 19, 21, 23,
	25
OU2SSM, 2	SimSSM0, 2, 3, 5, 9, 11, 14, 17, 19, 21, 23, 25
Sim2Matrix, 3	SimSSM0(), 3
SimSSM0, 5	SimSSM0Fixed, 2, 3, 6, 7, 11, 14, 17, 19, 21,
SimSSM0Fixed, 7	23, 25
SimSSM0Vary, 10	SimSSM0Fixed(), 3
SimSSMOU, 12	SimSSM0Vary, 2, 3, 6, 9, 10, 14, 17, 19, 21, 23,
SimSSMOUFixed, 15	25
SimSSMOUVary, 18	SimSSMOU, 2, 3, 6, 9, 11, 12, 17, 19, 21, 23, 25
SimSSMVAR, 20	SimSSMOU(), 3
SimSSMVARFixed, 22	SimSSMOUFixed, 2, 3, 6, 9, 11, 14, 15, 19, 21,
SimSSMVARVary, 24	23, 25
* misc	SimSSMOUFixed(), 3
Sim2Matrix, 3	SimSSMOUVary, 2, 3, 6, 9, 11, 14, 17, 18, 21,
* simStateSpace	23, 25
0U2SSM, 2	SimSSMVAR, 2, 3, 6, 9, 11, 14, 17, 19, 20, 23, 25
Sim2Matrix, 3	SimSSMVAR(), 3
SimSSM0, 5	SimSSMVARFixed, 2, 3, 6, 9, 11, 14, 17, 19, 21,
SimSSM0Fixed, 7	22, 25
SimSSM0Vary, 10	SimSSMVARFixed(), 3
SimSSMOU, 12	SimSSMVARVary, 2, 3, 6, 9, 11, 14, 17, 19, 21,
SimSSMOUFixed, 15	23, 24
SimSSMOUVary, 18	
SimSSMVAR, 20	
SimSSMVARFixed, 22	
SimSSMVARVary, 24	
* sim	
0U2SSM, 2	
SimSSM0, 5	
SimSSM0Fixed, 7	
SimSSM0Vary, 10	
SimSSMOU, 12	
SimSSMOUFixed, 15	
SimSSMOUVary, 18	
SimSSMVAR, 20	
SimSSMVARFixed, 22	
SimSSMVARVary, 24	
OU2SSM, 2, 3, 6, 9, 11, 14, 17, 19, 21, 23, 25	