

Crossing points with real-axis:

$$G(j\omega) = \frac{j\omega - 1}{(j\omega - 2)(j\omega - 4)} = \frac{j\omega - 1}{8 - \omega^2 - j6\omega}$$
$$= \frac{(j\omega - 1)(8 - \omega^2 + j6\omega)}{(8 - \omega^2)^2 + 36\omega^2}$$
$$= \frac{-8 - 5\omega^2 + j\omega(2 - \omega^2)}{(8 - \omega^2)^2 + 36\omega^2}$$

Im $\{G(j\omega)\}=0 \implies \omega=0 \text{ or } \omega=\pm\sqrt{2}$

$$G(j0) = \frac{-8}{8^2} = -\frac{1}{8}$$
$$G(j\sqrt{2}) = \frac{-8 - 5 \times 2}{6^2 + 36 \times 2} = -\frac{1}{6}$$

The open-loop system has two poles on RHP, P=2.

Stability analysis:

- (i) For K=1, N=0, $N+P=2 \Rightarrow$ unstable
- (ii) For K = 7, N = -2, $N + P = 0 \Rightarrow$ stable

(iii) The system is stable if and only if

$$-\frac{1}{6}K < -1 < -\frac{1}{8}K \implies 6 < K < 8.$$

Question: What if K > 8?

10.2 (a) For K=1, the open-loop transfer function is $G(s) = \frac{1}{(s+1)(3s+1)(0.4s+1)}$

$$G(j\omega) = \frac{1}{(j\omega+1)(j3\omega+1)(j0.4\omega+1)}$$

$$= \frac{1}{1-4.6\omega^2 + j\omega(4.4-1.2\omega^2)}$$

The intersection with the real axis means that $Im\{G(j\omega)\}=0$, implying

$$\omega(4.4-1.2\omega^2) = 0 \implies \omega = 0, \pm 1.9149$$

At A,
$$\omega = \pm 1.9149$$
 and $G(j1.9149) = G(-j1.9149) = -0.063$

Since there is no encirclement of (0,-1) point, N=0, N+P=0 , the system is stable.

(b) The Nyquist plot will not encircle -1+j0 if

$$-0.063K > -1 \implies K < 15.873$$

Range of K for stability: 0 < K < 15.873

Note: In stability analysis using Nyquist stability criterion, K > 0 is assumed.

10.3

$$G_{op}(s) = \frac{K}{s(Ts+1)}, \quad |G_{op}(j\omega)| = \frac{K}{\omega\sqrt{T^2\omega^2 + 1}}$$

At the gain cross-over frequency,

$$|G_{op}(\omega_g)| = 1, i.e., K = \omega_g \sqrt{T^2 \omega_g^2 + 1} = 3\sqrt{9T^2 + 1}$$
 ----- (1)

Also, note that
$$\angle G_{op}(j\omega_g) = -90^\circ - \tan^{-1}(\omega_g T)$$

 $PM = 180^\circ + \angle G_{op}(j\omega_g) = 90^\circ - \tan^{-1}(\omega_g T) = 45^\circ$

Then, $\tan^{-1}(\omega_g T) = 45^{\circ} \Rightarrow \omega_g T = 1 \Rightarrow T = \frac{1}{3}$

From (1), we get K = 4.24

To achieve $K_{\nu} \ge 5$, $K \ge 5$. Since the phase of $G_{op}(j\omega)$ is decreasing with the increase of ω . With the higher gain K, the gain cross-over frequency will be higher and phase margin will be smaller than the required.

_

10.4 Observe from the Bode plot

 $\omega_{\rm g} \approx 7.6\,$ rad/s, $\omega_{\rm \phi} = 2.67\,$ rad/s; $PM \approx -50^{\rm o}$, GM=-20dB The system is unstable.

(b) From the phase plot, to achieve the phase margin of $\,10^{\circ}$, the new gain crossover frequency is estimated to be

$$\omega_g^{'} \approx 2.1 \text{ rad/s}$$

For $K_A = 40$, the magnitude of the open-loop system is about 24 dB at $\omega = 2.1$ rad/s.

To achieve $\omega_g \approx 2.1$, the magnitude plot needs to be shifted down by 24 dB, i.e.

$$20\lg 40 - 20\lg K_A = 24 \implies K_A = 2.52$$