Project Description

Modelling the effects of domestication in Wheat through novel computer-vision techniques

Nathan Hughes

April 18, 2018

Outline

- 1 Project Description
- 2 Materials and Methods
- 3 Data Analysis
- 4 Example of Method
- **6** Results
- **6** Software Progress
- **7** Thanks

What is the project?

Description

The project is aiming to use computational methods to answer biologically significant questions on wheat grain morphology and domestication using μ CT images.

How?

To do this, I will be using:

- Computer vision on 3D image sets
- Statistical analysis and data science
- Scientific theory to create reproducible results

About Wheat Domestication

Why Domestication?

- Answers to questions about diversity in the wheat genus is hidden in the ancestors Cockram et al. [2007]
- Crop breeding depends on making informed decisions, exploring domestication presents an opportunity to augment these decisions

Why?

Project Description

- In this project, μ-CT has enabled the study of individual seeds of wheat
- Particularly examining traits which are lost during other methods:
 - Depth, 3D shape, spike location, spikelet formation etc.

Population Diversity

000000

Figure 1: Phylogeny of wheat genotypes (Provided by Dr. Hugo Oliveira)

Research Question:

Is it possible to use μCT imaging to answer questions about Wheat domestication?

I hope so!

Project Description

Main Groups that we are comparing

- Einkorn Wild and Einkorn Domesticated
- 2 Emmer Wild and Emmer Domesticated
- Spelt and Bread wheat
- Emmer Domesticated and Pasta Wheat
- 6 Einkorn Wild and Emmer Wild

References

Aims

Primary Aims

I am wanting to produce:

- ullet A software library (in Python) which can be used to help analysis of μCT scanned seeds
- A GUI application for researchers to use to auto analyse seeds
- Descriptions of the differences/similarities of the aforementioned groups

Extracted Features

Features List

The features I am collecting are:

- Length
- Width
- Depth
- Volume
- Surface Area
- X,Y,Z coordinates of grains

Figure 2: Major features extracted from analysis

Outline

- 1 Project Description
- 2 Materials and Methods
- 3 Data Analysis
- 4 Example of Method
- 6 Results
- **6** Software Progress
- 7 Thanks

Materials (Plant)

Project Description

Wheat information

We have a wide range of Wheat genotypes, these are:

- Ranged between diploid, tetraploid and hexaploid
- 12 total genotypes
- Divided between domestication status

Figure 3: Two wheat spikes, showing diversity in Population, Club Wheat (6N) left, Pasta Wheat right (4N)

Methods

CT Scanning software

The features where extracted using an improved and optimised version of our software which was used in our previous study.

Modifications were implemented to handle the wide range of diversity in the population of this experiment

Figure 4: Grains extracted from our imaging software and displayed in 3D

Outline

- 1 Project Description
- Materials and Methods
- 3 Data Analysis
- 4 Example of Method
- 6 Results
- **6** Software Progress
- 7 Thanks

Why I don't trust the T-Test

Proof of deception

History

The t-statistic was introduced in 1908 by William Sealy Gosset, a chemist working for the Guinness brewery in Dublin, Ireland. "Student" was his pen name. [00,00] [6]

Gosset had been hired owing to Claude Guinness's policy of recruiting the best graduates from Oxford and Cambridge to apply biochemistry and statistics to Guinness's industrial processes.⁵⁷ Gosset

Figure 5: Exhibit A - Why the T-Test is evil

Bayesian Hypothesis Testing

Why?

• "Despite their wide use in scientific journals ..., statistical hypothesis tests add very little value to the products of research" - [Johnson, 1999]

Bayesian Hypothesis Testing

Why?

- "Despite their wide use in scientific journals ..., statistical hypothesis tests add very little value to the products of research" [Johnson, 1999]
- It provides interpretable answers, such as "the true parameter θ has a probability of 0.95 of falling in a 95% credible interval."

Bayesian Hypothesis Testing

Why?

- "Despite their wide use in scientific journals ..., statistical hypothesis tests add very little value to the products of research" [Johnson, 1999]
- ullet It provides interpretable answers, such as "the true parameter heta has a probability of 0.95 of falling in a 95% credible interval."
- Allows for missing data points i.e. where a complete range of data is not possible i.e. ALL OF BIOLOGY

Bayesian Model Used

Project Description

Bayes states that

- $P(A|B) \propto P(B|A) \times P(A)$
 - The posterior is proportional to the likelihood times the prior
- $P(mean.1|sample.1) \propto P(sample.1|mean.1) \times P(mean.1)$

Likelihood is described as

- $y_i^{(g)} \sim T(\nu, \mu, \sigma)$
 - ν (Degrees of freedom) is assumed similar for groups g
 - μ (mean) of groups is assumed the same
 - σ (S.D.) is assumed the same

Prior Mean μ

Mean

- Using the method described in [Kruschke, 2012]
- $\mu_k \sim N(\bar{x}, 2s)$
 - The data are real-values and normal priors are applied (to ensure the posterior follows suit)
 - 2s twice the S.D. ensures no values are favoured in the model

Prior Standard Deviations σ

Standard Deviations

- Using the method described in [Kruschke, 2012]
- Uniform(1, 10000) is used
- Whilst no values in the model will have this range, it makes no difference due to random sampling
- Figure:7 shows the distribution expected by random sampling

Figure 7: Uniform(1,10000)

Prior Degrees of freedom u

Degrees of freedom

- Using the method described in [Kruschke, 2012]
- \bullet ν of 30 is used with an exponential distribution
- Shown in Figure:8

Sampling and Testing

Markov chain Monte Carlo

- 1000 random samples are drawn using Markov chain Monte Carlo
 - This is done twice, independently to ensure convergence of randomness
- These provide a posterior of possibilities where the same mean could exist for the given data

Outline

- 1 Project Description
- Materials and Methods
- 3 Data Analysis
- 4 Example of Method
- 6 Results
- **6** Software Progress
- 7 Thanks

Example Input Data

Figure 9: Histogram of input data

Example Posterior

Figure 10: Histogram of posterior data

Example Difference of Means

Figure 11: Histogram of posterior data subtracted

Example Forest Plot

Figure 12: Forest Plot of both chains (bold is 95% of data)

Outline

- 1 Project Description
- 2 Materials and Methods
- 3 Data Analysis
- 4 Example of Method
- 6 Results
- **6** Software Progress
- 7 Thanks

Einkorn Wild and Einkorn Domesticate (P < 0.01)

Boxplots

Figure 13: Boxplot for volume

Emmer Wild and Emmer Domesticated (P = 0.032)

Boxplots

Figure 15: Boxplot for width

Difference of means

Figure 16: Difference of means

Spelt and Bread wheat (P = 0.11)

Boxplots

Figure 17: Boxplot for width

Outline

- 1 Project Description
- 2 Materials and Methods
- 3 Data Analysis
- 4 Example of Method
- 6 Results
- **6** Software Progress
- 7 Thanks

Loading CT Data

Figure 19: Showing the Data loading window

Investigating CT Data Distributions

Figure 20: Histogram of some data attributes

Comparing CT Data Distributions

Figure 21: Grouping by data columns

Running T-Tests on CT Data

Figure 22: Running T-Tests

Running Bayesian Tests on CT Data

Figure 23: Running Bayesian Tests

Outline

- 1 Project Description
- Materials and Method
- 3 Data Analysis
- 4 Example of Method
- 6 Results
- **6** Software Progress
- **7** Thanks

Thanks to

All these people:

Dr. Wayne Aubrey Prof. John Doonan

Dr. Candida Nibau Dr. Kevin Williams

Mr. Jason Brook Everyone at the NPPC

References

- James Cockram, Huw Jones, Fiona J. Leigh, Donal O'Sullivan, Wayne Powell, David A. Laurie, and Andrew J. Greenland. Control of flowering time in temperate cereals: Genes, domestication, and sustainable productivity. *Journal of Experimental Botany*, 58(6):1231–1244, 2007. ISSN 00220957. doi: 10.1093/jxb/erm042.
- Douglas H. Johnson. The Insignificance of Statistical Significance Testing. *The Journal of Wildlife Management*, 63(3):763, jul 1999. ISSN 0022541X. doi: 10.2307/3802789. URL
 - http://www.jstor.org/stable/3802789?origin=crossref.
- John K Kruschke. Bayesian estimation supersedes the t test. Journal of Experimental Psychology: General Version of May, 31, 2012. URL http://www.indiana.edu/{~}kruschke/BEST/BEST.pdf.