التطورات غير الرتيبة

الكتاب الثاني

التطورات الإهتزازية

الوحدة 07

GUEZOURI Aek - L. Maraval - Oran

الدرس الثاني: الاهتزازات الكهربائية

أفريل 2015

ما يجب أن أعرفه حتى أقول: إنى استوعبت هذا الدرس

وعدم دورية q عند تغريغ مكثفة في دارة q ومناقشة دورية q عند تغريغ مكثفة في دارة q ومناقشة دورية q عدم دورية q حسب قيم q .

مثالية ، أي أن الطاقة لا تضيع فيها ، وأعرف كيفية استنتاج العبارات اللحظية لكل من L مثالية ، أي أن الطاقة لا تضيع فيها ، وأعرف كيفية استنتاج العبارات اللحظية لكل من i ، u_c ، q

الدرس

1 - الدارة الكهربائية RLC ماذا نريد في هذا الدرس ؟

- نشحن مكثفة بالطريقة المعروفة في الوحدة الثالثة ، ثم نفر عها في دارة تحتوي على ناقل أومي ووشيعة ونتابع تطور التوتر بين طرفي المكثفة وشحنتها والتيار المار في الدارة .
 - نخزن طاقة في وشيعة (طاقة مغناطيسية) ثم نفر عها في دارة تحتوي على هذه الوشيعة ومكثفة وناقل أومي .

حالة تفريغ المكتفة

تُشحن المكتّفة عند وصل البادلة للنقطة (1)

تُفرّغ المكتّفة في الناقل الأومي والوشيعة عند وصل البادلة للنقطة (2) عند اللحظة t=0 .

 $E_C = \frac{1}{2} C E^2$: الطاقة المخزّنة في المكثفة في هذه اللحظة هي

ثفرّغ هذه الطاقة على شكل:

$$E_L = \frac{1}{2} L I^2$$
: طاقة مغناطيسية في الوشيعة -

r و R و مائعة بفعل جول في

المعادلة التفاضلية لتغير التوتر بين طرفي المكتفة

$$u_C + Ri + ri + L \frac{di}{dt} = 0$$
 : التوترات يكون لدينا : حسب قانون جمع التوترات يكون لدينا

$$i = \frac{dq}{dt}$$
 $\dot{\psi}$, $\frac{q}{C} + (R+r)\frac{dq}{dt} + L\frac{d^2q}{dt^2} = 0$

(1)
$$\frac{d^2q}{dt^2} + \frac{R_0}{L}\frac{dq}{dt} + \frac{q}{LC} = 0$$
 نکتب ($R+r$) = R_0 بوضع

وهي معادلة تفاضلية من الدرجة الثانية حلها خارج البرنامج .

نسمّي المقاومة الحرجة للدارة $ho_{
m C} = 2\sqrt{rac{L}{C}}$ محيث ، حيث ، $ho_{
m C}$ القبل بدون برهان

$$R_C = 2\sqrt{\frac{L}{C}} = 2\sqrt{\frac{0,010}{0,4\times 10^{-6}}} = 316\Omega$$
 نحسب المقاومة الحرجة نجدها ، $C = 0.4~\mu F$ ، $L = 10~mH$

نعطي لمقاومة الدارة ثلاث قيم مختلفة : q(t) من أجل كل $R=400~\Omega$ ، $R=150~\Omega$ ، $R=30~\Omega$) من أجل كل

اهتزازات متخامدة شبه دورية $R=30~\Omega$ شبه الدور $Tpprox T_0$

التخامد ناتج عن ضياع الطاقة في النواقل الأومية ومقاومة الوشيعة

تخامد سریع و عدم اهتزاز $R = 400 \ \Omega$

2 - الاهتزازات الحرة غير المتخامدة (الدارة المثالية LC)

نستعمل وشيعة مقاومتها صغيرة جدا حتى يمكن إهمال الطاقة الضائعة بفعل جول في الدارة أمام الطاقة التي تخزّنها المكثفة .

: بوضع R=0 في المعادلة التفاضلية أثناء التفريغ : بوضع R=0 في المعادلة التفاضلية (1) نكتب :

$$(2) \qquad \frac{d^2q}{dt^2} + \frac{1}{LC}q = 0$$

(3) $q = Q_0 \cos(\omega_0 t + \varphi)$: هذه المعادلة التفاضلية حلها من الشكل : باشتقاق المعادلة (3) مرتين ومطابقتها مع المعادلة التفاضلية نجد :

$$T_0=2\pi\sqrt{LC}$$
 : النبض الذاتي : $\sigma_0=rac{2\pi}{\omega_0}$ ، ولدينا $\sigma_0=rac{2\pi}{\omega_0}$ ، وبالتالي تكون عبارة الدور الذاتي

$$oldsymbol{\omega}_0 = 2 oldsymbol{\pi} oldsymbol{N}_0$$
 النبض الذاتي : $oldsymbol{N}_0 = rac{1}{oldsymbol{T}_0}$: النبض الذاتي

 u_C ، i، q المقادير اللحظية 2-2

$$q = Q_0 \cos(\omega_0 t + \varphi)$$

$$i = \frac{dq}{dt} = -Q_0 \omega_0 \sin(\omega_0 t + \varphi) = -I_{max} \sin(\omega_0 t + \varphi)$$

$$u_c = \frac{q}{C} = \frac{Q_0}{C} cos(\omega_0 t + \varphi) = E cos(\omega_0 t + \varphi)$$

$$i = 0$$

$$E_C = \frac{1}{2}CE^2 = \frac{1}{2}\frac{Q_0^2}{C}$$

$$E_L = 0$$

2 - 3 - الشروط الابتدائية

نعتبر t=0 ، أي لحظة بدأ التفريغ . يحون في هذه اللحظة :

 $q=Q_0$ نحدد الصفحة في اللحظة $q=Q_0$ كالتالي : عندما $q=Q_0$ تكون الشحنة في المكثفة عظمى ، أي $q=Q_0$ نعوض في المعادلة $q=Q_0$ ، $q=Q_0$ ، وبالتالي $q=Q_0$ ، وبالتالي $q=Q_0$ عتبر لاحقا $q=Q_0$ حسب الشروط المُشار لها سابقا .

تعقيبات

- $\frac{T_0}{4}$ بعد مدة قدر ها تُفرّغ المكتّفة بعد مدة قدر الم
- . T_0 هو نصف الدور الذاتي $q = Q_0$ هو نصف الدور الذاتي . $T = \frac{T_0}{2}$ هو نصف الدور الذاتي . T_0
 - يحدث التبادل في الطاقة بين الوشيعة والمكثفة بمرور الزمن دوريا ، ومن هذا جئنا بالاسم : اهتزازات كهربائية

2 - 5 - تمثيل التوتر بين طرفي المكثفة وشدة التيار الكهربائي في الدارة بدلالة الزمن

ثمثيل شحنة المكثفة يماثل تمثيل التوتر بين طرفيها .

الفرق فقط في القيمة العظمى ، وهي Q_0 بدل E .

صورة مأخوذ من وثائق Hatier (بتصرّف)

2 - 6 - الطاقة الكلية في الدارة

 $m{E}_c = rac{m{q}^2}{2m{C}} = rac{1}{2m{C}}m{Q}_0^2 \; m{cos}^2\left(m{\omega}_0m{t} + m{arphi}
ight)$: الطاقة المخزنة في المكثفة

تتحول هذه الطاقة للوشيعة دون ضياع لتصبح:

$$\boldsymbol{E}_{L} = \frac{1}{2}\boldsymbol{L}\boldsymbol{i}^{2} = \frac{1}{2}\boldsymbol{L}\boldsymbol{Q}_{0}^{2}\boldsymbol{\omega}_{0}\sin^{2}(\boldsymbol{\omega}_{0}\boldsymbol{t} + \boldsymbol{\varphi})$$

$$E = E_c = E_L = \frac{1}{2} \frac{Q_0^2}{C} = \frac{1}{2} L I_{max}^2$$
 : الطاقة الكلية هي

2-7 - نثبت أن دور التفريغ هو نصف الدور الذاتي

 $E_{C}=rac{1}{2}Cu_{C}^{2}=rac{1}{2}CE^{2}\cos^{2}rac{2\pi}{T_{0}}$ هي t=0 هي المخزنة في المكثفة في اللحظة t=0

$$E_C=rac{1}{4}CE^2+rac{1}{4}CE^2\cosrac{4\pi}{T_0}$$
 ، وبالتالي $\cos^2lpha=rac{1+\cos2lpha}{2}$: لينا

$$T = \frac{T_0}{2}$$
 ومنه $E_C = \frac{1}{4}CE^2 + \frac{1}{4}CE^2 \cos\left(\frac{2\pi}{\frac{T_0}{2}}\right)t$

حالة تفريغ الوشيعة (شحن المكثفة)

نستعمل في هذه الحالة وشيعة مهملة المقاومة مربوطة مع مكثفة سعتها C. نغدى الدارة بمولد للتيار I_0 ثابت).

عندما نغلق القاطعة يسلك التيار أقصر طريق (أسهل طريق) ، وبالتالي يمر في الوشيعة .

(لا تظن أن هذه الدارة قصيرة .. لا .. لأن المولد للتيار وليس للتوتر)

إذن عند غلق القاطعة تكون شدّة التيار في الوشيعة $i=I_0$ وفرق الكمون بين طرفيها :

. $u_C=0$ ، وحسب قانون جمع التوترات فإن التوتر بين طرفي المكثفة ، $u=ri+L\frac{di}{dt}=0 imes i+L imes 0=0$

 $E_{L} = \frac{1}{2} L I_{0}^{2}$ أثناء مرور التيار في الوشيعة تتخزّن فيها طاقة مغناطيسية

. نفتح القاطعة في اللحظة t=0 ، فتشرع الطاقة في التحوّل من الوشيعة إلى المكتّفة .

: حسب قانون جمع التوثر ات فإن $L\frac{di}{dt}+u_{C}=0$ ، أي $L\frac{d^{2}q}{dt^{2}}+\frac{1}{LC}q=0$ ، وهذه معادلة تفاضلية حلها من الشكل :

(1)
$$q = Q_0 \cos(\omega_0 t + \varphi)$$

(2)
$$u_C = U_m \cos(\omega_0 t + \varphi)$$

(3)
$$i = -Q_0 \omega_0 \sin(\omega_0 t + \varphi)$$

 $i=I_0$ ، q=0 $u_C=0$ يكون t=0 عند اللحظة : عند اللحظة

بهذه الشروط نحدد قيمة $\,\,\,\,\,\,\,\,\,\,\,\,$ ، بحيث نعوّض في المعادلة (1) مثلا $\,$

$$\varphi = \frac{3\pi}{2} \quad \varphi = \frac{\pi}{2}$$

 $I_0 = -\ Q_0 \omega_0 \sin arphi$: من أجل اختيار القيمة الموافقة نعوّض في عبارة الشدة

یجب أن تکون $\varphi = \frac{3\pi}{2}$ حتى تکون الشدة موجبة .