GV:		Date	Duyệt bởi:				$Ng\grave{a}y$	
		26/4/202	3				26/04/2	2023
	\mathbf{L}	iẩm tr	a cuối kỳ	Year	2022-2023	HF	ζ	2
BK	17	iem tra	a Cuoi Ky	Ngày	30/05/2023			
TRHOM	Mĉ	n học	Phương pháp	tính				

BK
BKHCM
Khoa KHUD

Kiểm tr	a cuối kỳ	Year	2022-2023	HK	2
IXIGIII 01	a cuối kỳ	Ngày	30/05/2023		
	Phương pháp t				
Mã môn học	MT1009				
Duration	100 phút Mã	đề		1234	

Ghi chú

- Bài thi có 2 phần: 16 câu trắc nghiệm và 1 câu hỏi tự luận
- Được sử dung tài liệu, ngoại trừ laptop, tablet, mobile phone.
- Nếu không phát biểu gì, làm tròn kết quả đến 4 chữ số thập phân.
- Mỗi câu trả lời sai bị từ 0.1 điểm.

Họ tên:		
MSSV:	CBCT:	

Phần trắc nghiệm

Cho $S(x) = \begin{cases} 3.3 + b_0(x-1) + d_0(x-1)^3 & \text{if } x \in [1, 3.3] \\ 6.6 + b_1(x-3.3) + 4(x-3.3)^2 + d_1(x-3.3)^3 & \text{if } x \in [3.3, 5.3] \end{cases}$ là hàm nội suy Spline của hàm f(x). Trả lời câu hỏi $1 \rightarrow 5(L.O.1, L.O.2, L.O.3)$

1. Xác định b_0 .

(A)
$$b_0 \approx -1.6319$$
 (B) $b_0 \approx -1.5323$ (C) $b_0 \approx -0.8261$ (D) $b_0 \approx -1.1846$ (E) $b_0 \approx -0.9724$

2. Tính giá trị $y_1 = f(3.3)$.

(A)
$$y_1 = 6.6000$$
 (B) $y_1 = 6.6533$ (C) $y_1 = 6.6630$ (D) $y_1 = 6.6527$ (E) $y_1 = 6.6452$

3. Sử dụng phép nội suy đa thức tại các nút $x_0 = 1, x_1 = 3.3, x_2 = 5.3$, tìm xấp xỉ f(2.5).

(A) 2.2563 (B) 2.2541 (C) 2.2602 (D) 2.2541 (E) 2.2522

4. Tính tỷ sai phân f[1, 3.3].

(C) 1.4356 (D) 1.4620 $\stackrel{\text{\tiny(E)}}{=} 1.5276$ (A) 1.4584 (B) 1.4348

5. Áp dụng phương pháp bình phương b
é nhất cho parabol $y=A+Bx+Cx^2$ mô tả dữ liệu tại $x_0 = 1$, $x_1 = 3.3$, $x_2 = 5.3$. Tim A?

(A) 10.7176 (B) 10.7116 (C) 10.6652 (D) 10.6989 (E) 10.7172

Một đường cong tham số được cho bởi các phương trình $x(t) = e^t + t$, $y(t) = e^t$, $t \in [0, 1]$. Tìm độ dài L của đường cong này $(L = \sqrt{x'(t)^2 + y'(t)^2} dt)$ Trả lời các câu hỏi $6 \rightarrow 8(L.O.1, L.O.2, L.O.3)$.

6. Sử dụng phương pháp hình thang mở rộng với bước chia h=0.25, khi đó giá trị xấp xỉ L là:

(C) 3.2323(A) 3.2422 (B) 3.2356 (D) 3.2370 (E) 3.2397

7. Sử dụng phương pháp Simson mở rộng với bước chia h = 0.25, khi đó giá trị xấp xỉ L là:

(A) 3.2223 (B) 3.2224 (C) 3.2275 (D) 3.2262 (E) 3.2195

8.	Tính L	bằng	phương	pháp	cầu	phương	Gauss	trong	trường	hơp	n = 2	2 điểm	ı).
----	--------	------	--------	------	-----	--------	-------	-------	--------	-----	-------	--------	-----

(A) 3.2207 (B) 3.2208

 \bigcirc 3.2273 \bigcirc 3.2190

Sự tăng trưởng của một loại cá ở Thái Bình Dương được mô phỏng bởi phương trình $\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$ với N(t): khối lượng phụ thuộc thời gian đo bằng năm, $K = 8 \times 10^7 (\text{kg}), r = 0.80 (\text{mỗi năm})$. Giả sử tại thời điểm đầu năm 2000(t=0), khối lương là $2\times10^7(\text{kg})$. Trả lời các câu hỏi sau $9\to12(\text{L.O.1},$ L.O.2, L.O.3) .

9. Với khoảng chia là 6 tháng, tìm khối lượng cá đầu năm 2003 bằng phương pháp Euler.

 $\bigcirc A 6.3131 \times 10^7 \quad \bigcirc B 6.3139 \times 10^7 \quad \bigcirc C 6.3059 \times 10^7 \quad \bigcirc D 6.3046 \times 10^7$

 $(E) 6.3118 \times 10^7$

10. Với khoảng chia là 6 tháng, tìm khối lượng cá đầu năm 2001 bằng phương pháp Euler cải tiến.

(A) 3.3953×10^7

(B) 3.4093×10^7 (C) 3.4065×10^7

(D) 3.4032×10^7

(E) 3.4041×10^7

11. Với khoảng chia là 6 tháng, tìm khối lượng cá sau 6 tháng bằng phương pháp Runge-Kutta.

(A) 2.6569×10^7

(B) 2.6769×10^7 (C) 2.6621×10^7 (D) 2.6759×10^7

(E) 2.6575×10^7

12. Với phương pháp Runge-Kutta 4 và khoảng chia 6 tháng, tìm tốc độ tăng trưởng của cá tại sau 6 tháng

(A) 1.4352×10^7

(B) 1.4222×10^7 (C) 1.4294×10^7 (D) 1.4196×10^7 (E) 1.4394×10^7

(E) Tăng 15

Xét một môi trường sống có 2 loài : sói và thỏ, gọi w, r là số lượng sói và thỏ tương ứng. Mối liên hệ giữa hai loài này theo thời gian (đo bằng tháng) được mô tả bởi:

$$\frac{dr}{dt} = kr - arw \quad \frac{dw}{dt} = -cw + brw.$$

Biết k = 0.06, a = 0.001, c = 0.02, b = 0.00002. Trả lời các câu hỏi sau $13 \rightarrow 14(\text{L.O.1}, \text{L.O.2},$ L.O.3) .

13. Lấy bước chia 7.5(ngày)(xét trên 1 tháng(30 ngày)), giả sử tại thời điểm ban đầu, số lượng sói là 47, số lượng thỏ là 968. Sử dụng phương pháp Euler cải tiến để ước lượng sói sau nửa tháng đầu tiên

(B) 50 (C) 52 (D) 53

 $\stackrel{\frown}{(E)}$ 54

14. Sử dụng dữ liệu ban đầu được cho ở câu 13, sau nửa tháng đầu tiên thì lượng thỏ thay đối thế nào?

(B) Các câu khác đều sai (C) Tăng 14 con (A) Tăng 16 con (D) Tăng 13 con con

Cho ma trận $\begin{pmatrix} 5 & -6 \\ 0 & -1 \end{pmatrix}$. Trả lời các câu hỏi sau 15 \to 16(L.O.1, L.O.2, L.O.3) .

15. Áp dụng phương pháp lũy thừa để xấp xỉ trị riêng của A, ta có được một dãy số thực $\{\mu_k\}_{k\in\mathbb{N}}$, khi $k \to \infty$ thì dãy số thực này hội tụ về giá trị nào dưới đây?

(A) 5 (B) -1 (C) 8 (D) -4 (E) -3

16. Cũng với phương pháp lũy thừa, sau k bước, ta thu được vecto X_k , vecto này cùng phương với

Phần tự luận

Cho m, n là hai chữ số cuối cùng trong mã số sinh viên(MSSV), ví dụ, MSSV **212456** thì m =5, n = 6. Dặt $\mathcal{M} := \frac{2m + 3n + 4}{10}$.

17. Xét bài toán giá trị biên sau:

$$(\mathcal{M} + 1)y''(x) + \sin xy'(x) + (x^2 + 1)y = \cos x.$$

Với độ rộng bước h = 0.25 trên đoạn [0, 1], biết $y(0) = \mathcal{M}$ và y(1) = 3.

- (a) (0.5 điểm) Chúng minh rằng, với phương pháp sai phân hữu hạn, ta có thể tìm giá trị của y tại các nút khác khi giải hệ phương trình tuyến tính. (Chứng minh và viết kết quả cho ma trận A và B khi giả hệ Ay = B)
- (b) (1 diểm) Viết kết quả của y.
- (c) (0.5 diểmt) Tính y'' tại các nút.

Phần trả lời của sinh viên cho câu hỏi tự luận

Key answers.

Question	Key
1	A
2	A
3	E
4	В
5	С
6	B C C E
7	E
8	D
9	D
10	A
11	A
12	D
13	A
14	D
15	A
16	D
(L.O.1.1, L.O.1.2, L.O.1.3, L.O.2.1, L.O.2.3)	??

