Álgebra Linear I – Prof. José Luiz Neto – Resumo_A15

Livro de preparação do resumo: Álgebra Linear → Boldrine/Costa e Figueiredo/Wetzler (BOLDRINI, J. L. et al. Álgebra Linear. 3 ed. São Paulo: Harbra, 1986)

Transformações Lineares. Núcleo e Imagem de uma Transformação Linear

Definição: Sejam V e W dois espaços vetoriais. Uma transformação linear (aplicação linear) é uma função de V em W, $F: V \rightarrow W$, que satisfaz as seguintes condições:

i) Quaisquer que sejam u e v em V,

$$F(\mathbf{u} + \mathbf{v}) = F(\mathbf{u}) + F(\mathbf{v})$$

ii) Quaisquer que sejam $k \in \mathbb{R}$ e $\mathbf{v} \in V$,

$$F(k\mathbf{v}) = kF(\mathbf{v})$$

Exemplo

$$V = \mathbb{R}^2$$
 e $W = \mathbb{R}^3$
 $F: \mathbb{R}^2 \to \mathbb{R}^3$
 $(x, y) \mapsto (2x, 0, x + y)$ ou $F(x, y) = (2x, 0, x + y)$.

Por exemplo, $F(1, 2) = (2, 0, 3) \in \mathbb{R}^3$.

Dados $\mathbf{u}, \mathbf{v} \in \mathbb{R}^2$, sejam $\mathbf{u} = (x_1, y_1)$ e $\mathbf{v} = (x_2, y_2)$ onde $x_i, y_i \in \mathbb{R}$. Temos:

$$F(\mathbf{u} + \mathbf{v}) = F((x_1, y_1) + (x_2, y_2)) = F(x_1 + x_2, y_1 + y_2)$$

$$= (2(x_1 + x_2), 0, (x_1 + x_2) + (y_1 + y_2))$$

$$= (2x_1, 0, x_1 + y_1) + (2x_2, 0, x_2 + y_2)$$

$$= F(\mathbf{u}) + F(\mathbf{v})$$

Logo, a primeira condição é satisfeita. Mais ainda,

$$F(k\mathbf{u}) = F(k(x, y)) = F(kx, ky)$$

= $(2kx, 0, kx + ky)$
= $k(2x, 0, x + y) = kF(\mathbf{u})$

e a segunda condição é satisfeita. Então F é uma transformação linear.

Importante!

Decorre da definição que uma transformação linear $T:V \to W$ leva o vetor nulo de V no vetor nulo de W, isto é, se $0 \in V$, $T(0) = 0 \in W$. Isto nos ajuda a detectar transformações não lineares. Se $T(0) \neq 0$, T não é linear Mas cuidado T(0) = 0 não é suficiente para que T seja linear Assim, por exemplo, $T:\mathbb{R}^3 \to \mathbb{R}^2$ onde T(x, y, z) = (x + 1, y, z) não é linear.

Definição: Seja $T: V \to W$ uma aplicação linear. A *imagem* de T é o conjunto dos vetores $\mathbf{w} \in W$ tais que existe um vetor $\mathbf{v} \in V$, que satisfaz $T(\mathbf{v}) = \mathbf{w}$. Ou seja

$$Im(T) = \{ \mathbf{w} \in W; \ T(\mathbf{v}) = \mathbf{w} \ \text{para algum} \ \mathbf{v} \in V \}$$

Observe que Im(T) é um subconjunto de W e, além disso, é um subespaço vetorial de W.

As vezes Im(T) é escrito como T(V).

Definição: Seja $T: V \to W$ uma transformação linear. O conjunto de todos os vetores $\mathbf{v} \in V$ tais que $T(\mathbf{v}) = \mathbf{0}$ é chamado *núcleo* de T, sendo denotado por ker(T). Isto é

$$ker(T) = \{ \mathbf{v} \in V; T(\mathbf{v}) = \mathbf{0} \}$$

Observe que $ker(T) \subseteq V$ é um subconjunto de V e, ainda mais, é um subespaço vetorial de V.

Exemplo: Seja a transformação linear

 $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x, y, z) = (x, 2y, 0). Então a imagem de T

$$Im(T) = \{(x, 2y, 0) : x, y \in \mathbb{R}\}\$$

$$= \{x(1, 0, 0) + y(0, 2, 0) : x, y \in \mathbb{R}\}\$$

$$= \{(1, 0, 0), (0, 2, 0)\}\$$

Observe que $\dim Im(T) = 2$.

O núcleo de T é dado por:

$$ker(T) = \{(x, y, z) : T(x, y, z) = (0, 0, 0)\}$$

$$= \{(x, y, z) : (x, 2y, 0) = (0, 0, 0)\}$$

$$= \{(0, 0, z) : z \in \mathbb{R}\}$$

$$= \{z(0, 0, 1) : z \in \mathbb{R}\}$$

$$= [(0, 0, 1)]$$

Observe que dim ker(T) = 1.