Time series clustering

Julien JACQUES

Introduction

Basics of Time Series Clustering

To go further

Clustering

The **goal of clustering** is to create homogeneous group of obsevations, s.t.:

- observations within a group are as similar as possible
- groups are as different as possible from each other

The groups are called **clusters**.

Use of clustering

- ► Clustering is an unsupervised technique.
- ▶ It aims to explore the data and to discover some typical pattern.
- It is often used as a preliminary step between supervised approach.

The data

Our goal is to cluster time series.

For instance, the number of new cases of Covid19 in the different countries of the world.

```
covid19 = read.csv("data/2022-05-13-WHO-COVID-19-global-date
x=matrix(covid19$New_cases,ncol = 861,byrow = TRUE)
rownames(x)=unique(covid19$Country_code)
x_s=x[,(861-364):861]
x_s=x_s[rowMeans(x_s)>1000,]
```

For the example, a subset of countries having large number of cases are selected

The data

We have 80 time series, observed on 365 points

We want to cluster them into homogeneous group

Basics of Time Series Clustering

Time serie clustering

An easy way is to use usual algorithms:

- kmeans,
- hierarchical clustering,

applied on a given distance for time series:

- either the usual Euclidean distance
- or specific distances as DTW

Kmeans with Euclidean distance

We can apply the usual kmeans algorithm using the Euclidean distance between time series:

```
wss=NULL
for (k in 1:10){
  tmp=kmeans(x_s,centers=k)
  wss=c(wss,tmp$tot.withinss)
}
plot(1:10,wss,main="Within SS",type="b")
```


May be 4 clusters?

Kmeans with Euclidean distance

Kmeans with Euclidean distance

```
par(mfrow=c(2,2))
for (k in 1:4){
 matplot(t(x_s[tmp$cluster==k,]),pch=20)
                          s(tmp$cluster === k,
   0.6
        0.8
```

Dynamic Time Warping

The Euclidean distance is influenced by non-alignment of time series:

Figure from https://rtavenar.github.io/blog/dtw.html

Dynamic Time Warping look for the best alignment of the 2 time series.

A distance can be build by measuring the distance between the best time series alignement.

```
library(dtw)
distMatrix <- dist(x_s, method="DTW")</pre>
```

Hierarchical clustering

We can then apply any clustering algorithm using this DTW distance

```
hc <- hclust(distMatrix, method="average")
plot(hc, hang = -1)</pre>
```


Clustering representation

```
cluster=cutree(hc.5)
mds2 <- -cmdscale(distMatrix)</pre>
plot(mds2, type="n", axes=FALSE, ann=FALSE)
text(mds2, labels=rownames(x_s), xpd = NA,col = cluster)
                          IN
                           BR
```


The dtwclust package

The following package allows different type of clustering, based on DTW distances:

```
library(dtwclust)
tmp=tsclust(x_s,k=5)
plot(tmp)
```


Functional data approach

An alternative way to work with time series is to assumes that $x_i(t_1), \ldots, x_i(t_m)$ are **discrete observations of a function**:

$$x_i(t)$$
 with $t \in [0, T]$

This is the functional data approach

The funHDDC package

The funHDDC package provides clustering algorithm for functional data

```
library(funHDDC)
```

```
## Registered S3 method overwritten by 'funHDDC':
## method from
## plot.fd fda
##
## Attaching package: 'funHDDC'
## The following object is masked from 'package:fda':
##
## plot.fd
```