

Sep 06, 2022

Thawing, Passaging and Freezing of hPSCs on MEFs

Hanqin Li¹, Oriol Busquets², Steven Poser², Dirk Hockemeyer¹, Frank Soldner²

¹University of California, Berkeley; ²Albert Einstein College of Medicine

dx.doi.org/10.17504/protocols.io.b4msqu6e

ABSTRACT

This collection contains protocols which describe the standard procedure of culturing human pluripotent stem cells (hPSCs) on inactivated mouse embryonic fibroblasts (MEFs).

Collection overview

Thawing of hPSCs grown on MEFs Passaging of hPSCs grown on MEFs Freezing of hPSCs grown on MEFs

- A. Freezing of hPSCs as single cell suspension using trypsin
- B. Freezing of hPSCs as cell aggregates using collagenase

General notes

- 1. Throughout these protocols, the term hPSC is used to collectively refer to both hiPSCs and hESCs. All described procedures have been tested and work equally well for hiPSCs and hESCs.
- 2. Until otherwise indicated, hPSCs are routinely grown in a humidified cell culture incubator under "low" oxygen conditions. We have successfully maintained hPSCs using either 3% O2 (3% O2, 5% CO2) or 5% O2 (5% O2, 5% CO2) conditions.
- 3. While freezing hPSCs as single cell solution (using Rock Inhibitor) results in better cell recovery, some laboratories prefer freezing of hPSCs as cell clusters. We have used both approaches and do not observe obvious differences.
- 4. While bulk/collagenase passaging is used for routine maintenance of hPSC cultures, manual/microdissection passaging is used to enrich for undifferentiated hPSC colonies ("clean-up" of culture based on undifferentiated hPSC colony morphology) or to expand ("pick") individual colonies (e.g.,for clonal expansion of individual targeted cells in the process of establishing genome edited cell lines). Manual passaging/microdissection requires (i) the identification and discrimination of undifferentiated and differentiated hPSC colonies and (ii) the capacity to excise the undifferentiated cells and transfer them to a new plate and can be performed using various approaches as established in many hPSC laboratories.

dx.doi.org/10.17504/protocols.io.b4msqu6e

COLLECTION CITATION

Hanqin Li, Oriol Busquets, Steven Poser, Dirk Hockemeyer, Frank Soldner 2022. Thawing, Passaging and Freezing of hPSCs on MEFs. **protocols.io** https://dx.doi.org/10.17504/protocols.io.b4msqu6e

FUNDERS ACKNOWLEDGEMENT

F

Aligning Science Across Parkinson's

Grant ID: ASAP-000486

KEYWORDS

ASAPCRN

LICENSE

This is an open access collection distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Feb 03, 2022

LAST MODIFIED

Sep 06, 2022

COLLECTION INTEGER ID

57746

MATERIALS TEXT

Α	В	С
Item	Vendor	Catalog #
DMEM/F12	Thermo	11320082
	Fisher	
DPBS w/o	Corning	MT21031CV
Calcium and magnesium		
Fetal Bovine	Corning	35-011-CV
Serum (FBS)		
Knockout Serum Replacement	Thermo	10828-028
	Fisher	
FB Essence	Avantor	10803-034
Newborn Calf Serum	Sigma	N4762
L-Glutamine	Sigma	G8540
Penicillin & Streptomycin (100X)	Thermo	15140163
	Fisher	
MEM Non-Essential Amino Acids	Thermo	11140050
(100X)	Fisher	
Heat Stable Recombinant Human	Thermo	PHG0360
FGF2	Fisher	
Collagenase type IV	Thermo	17104019
	Fisher	
DMSO	Fisher	BP231-100
	Scientific	
BSA	Sigma	A4503
Y-27632	Chemdea	CD0141
2-Mercaptoethanol	Sigma	M3148
0.25% Trypsin with EDTA	Thermo	25200114
	Fisher	
Styrofoam	Labnet	R8000
microtube freezer box		
Nalgene®	Thermo	
Mr. Frosty® Cryo 1°C Freezing	Fisher	
Containers		

ABSTRACT

This collection contains protocols which describe the standard procedure of culturing human pluripotent stem cells (hPSCs) on inactivated mouse embryonic fibroblasts (MEFs).

Collection overview

Thawing of hPSCs grown on MEFs

Passaging of hPSCs grown on MEFs Freezing of hPSCs grown on MEFs

- A. Freezing of hPSCs as single cell suspension using trypsin
- B. Freezing of hPSCs as cell aggregates using collagenase

General notes

- 1. Throughout these protocols, the term hPSC is used to collectively refer to both hiPSCs and hESCs. All described procedures have been tested and work equally well for hiPSCs and hESCs.
- 2. Until otherwise indicated, hPSCs are routinely grown in a humidified cell culture incubator under "low" oxygen conditions. We have successfully maintained hPSCs using either 3% O2 (3% O2, 5% CO2) or 5% O2 (5% O2, 5% CO2) conditions.
- 3. While freezing hPSCs as single cell solution (using Rock Inhibitor) results in better cell recovery, some laboratories prefer freezing of hPSCs as cell clusters. We have used both approaches and do not observe obvious differences.
- 4. While bulk/collagenase passaging is used for routine maintenance of hPSC cultures, manual/microdissection passaging is used to enrich for undifferentiated hPSC colonies ("clean-up" of culture based on undifferentiated hPSC colony morphology) or to expand ("pick") individual colonies (e.g.,for clonal expansion of individual targeted cells in the process of establishing genome edited cell lines). Manual passaging/microdissection requires (i) the identification and discrimination of undifferentiated and differentiated hPSC colonies and (ii) the capacity to excise the undifferentiated cells and transfer them to a new plate and can be performed using various approaches as established in many hPSC laboratories.

FILES

