Entropia

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

1 Reversibilidade e Espontaneidade

- 1. Trabalho de expansão reversível.
- 2. Teorema do Trabalho Máximo.
- 3. Reversibilidade e entropia.
- 4. Definição macroscópica de entropia:

$$\Delta S = \frac{Q_{rev}}{T}$$

5. Segunda Lei da Termodinâmica.

1.0.1 Habilidades

 a. Calcular a variação de entropia para uma transformação reversível.

2 Entropia

- 1. Entropia e desordem.
- 2. Entropia e temperatura:

$$\Delta S = nC_P \ln \left(\frac{T_2}{T_1}\right)$$

3. Entropia e volume de gás ideal:

$$\Delta S = nR \ln \left(\frac{V_2}{V_1}\right)$$

- Entropia e estado físico: sólido, líquido, gasoso e em solução.
- 5. Entropia de mudança de fase:

$$\Delta S = \frac{\Delta H}{T}$$

2.0.1 Habilidades

- a. **Determinar** qualitativamente o sinal da variação de entropia para uma transformação.
- b. Calcular a variação de entropia para aquecimento ou resfriamento de uma substância.
- c. **Calcular** a variação de entropia para um gás ideal em uma transformação isotérmica.
- d. Calcular a entropia padrão para transição de fase.

3 Entropia Absoluta

- 1. Interpretação microscópica da entropia.
- 2. Fórmula de Boltzmann:

$$S = k_B \ln \Omega$$

- 3. Entropia Residual.
- 4. Terceira Lei da Termodinâmica.

3.0.1 Habilidades

 a. Calcular a entropia residual a partir da Fórmula de Boltzmann.

4 Entropia de Reação

- 1. Entropia padrão.
- 2. Entropia de reação.

4.0.1 Habilidades

- a. Calcular a variação de entropia para uma reação química.
- b. **Determinar** qualitativamente o sinal da variação de entropia para uma reação química.

5 Mudanças Globais de Entropia

1. Variação de entropia da vizinhança:

$$\Delta S_{viz} = -\frac{\Delta H}{T}$$

- 2. Variação de entropia do Universo.
- 3. Equilíbrio.

5.0.1 Habilidades

- a. Calcular a variação de entropia da vizinhança devido à uma transferência de calor em pressão e temperatura constantes.
- b. Calcular a variação de entropia do Universo para um processo.

Nível I

PROBLEMA 5.1

2B01

Um sistema $\bf A$ transfere, naturalmente, uma determinada quantidade de energia, na forma de calor, para um sistema $\bf B$, que envolve totalmente $\bf A$.

Assinale a alternativa correta.

PROBLEMA 5.2

2B02

O termo *seta do tempo* é usado para distinguir uma direção no tempo nos fenômenos naturais, ou seja, que o estado 2 de um sistema macroscópico ocorre após o estado 1.

Assinale a alternativa *correta* a respeito de um processo que ocorre em sistema fechado.

PROBLEMA 5.3 2803

Assinale a alternativa que mais se aproxima da variação de entropia da água quando $100\,\mathrm{J}$ são transferidos de forma reversível à água a $25\,^{\circ}\mathrm{C}$.

PROBLEMA 5.4

2B04

Assinale a alternativa que mais se aproxima da entropia de congelamento do mercúrio.

Dados

- $\Delta H_{\text{fus}}^{\circ}(\text{Hg}) = 2,29 \,\text{kJ mol}^{-1}$
- $T_{fus}(Hg) = -38.8 \,^{\circ}C$

PROBLEMA 5.5

2B05

Assinale a alternativa que mais se aproxima da variação de entropia do gás quando 1 mol de um gás ideal monoatômico é aquecido reversivelmente de 300 K a 400 K sob pressão constante.

PROBLEMA 5.6

2B06

Assinale a alternativa que mais se aproxima da variação de entropia do gás quando um cilindro de 20 L de gás nitrogênio sob 5,00 kPa é aquecido reversivelmente de 20 °C a 400 °C.

Dados

• $C_P(N_2, g) = 29.1 \, \text{J K}^{-1} \, \text{mol}^{-1}$

PROBLEMA 5.7

2B0

Assinale a alternativa que mais se aproxima da variação de entropia do gás quando 1 mol de nitrogênio se expande reversível e isotermicamente de 22 L a 44 L.

PROBLEMA 5.8

2B08

Assinale a alternativa que mais se aproxima da variação de entropia do gás quando um mol de oxigênio é rapidamente comprimido de 5 L a 1 L por um pistão e, no processo, sua temperatura aumentou de 20 °C para 25 °C.

Dados

• $C_P(O_2, g) = 29.4 \, \text{J K}^{-1} \, \text{mol}^{-1}$

PROBLEMA 5.9

2B09

Assinale a alternativa que mais se aproxima da variação de entropia do gás quando a pressão de 1,5 mol de neônio diminui isotermicamente de 15 atm até 0,5 atm.

PROBLEMA 5.10

2B10

Assinale a alternativa que mais se aproxima da variação de entropia do gás quando a pressão de 70,9 g de gás metano aumenta isotermicamente de 7 kPa até 350 kPa.

PROBLEMA 5.11

2B11

A entalpia de fusão de uma determinada substância é $200 \, \rm kJ \, kg^{-1}$, e seu ponto de fusão normal é $27 \, ^{\circ} \rm C$.

Assinale a alternativa que mais se aproxima da variação de entropia do sistema na fusão de 3 kg dessa substância.

PROBLEMA 5.12

2B12

A entalpia de fusão de uma determinada substância é $6 \, \text{kJ} \, \text{mol}^{-1}$, e seu ponto de fusão normal é $-183 \, ^{\circ}\text{C}$.

Assinale a alternativa que mais se aproxima da variação de entropia do sistema na fusão de 1 mol dessa substância.

PROBLEMA 5.13

2B13

Assinale a alternativa que mais se aproxima do ponto de ebulição do mercúrio.

Dados

- $\Delta H_{\text{vap}}^{\circ}(\text{Hg}) = 59.3 \,\text{kJ mol}^{-1}$
- $\Delta S_{\text{van}}^{\circ}(\text{Hg}) = 94.2 \, \text{J K}^{-1} \, \text{mol}^{-1}$

PROBLEMA 5.14

2B14

A *Regra de Trouton* estabelece que a entropia molar de vaporização de líquidos em sua temperatura de ebulição é

$$\Delta S_{\text{vap}} \approx 10.5 \, \text{R} = 87.2 \, \text{J K}^{-1} \, \text{mol}^{-1}$$

Assinale a alternativa que mais se aproxima do ponto de ebulição do éter metílico.

Dados

• Hvap(CH3OCH3)=21,5

PROBLEMA 5.15 2B17

Assinale a alternativa que mais se aproxima da variação de entropia para a formação da amônia.

Dados

- $\Delta S^{\circ}(NH_3, g) = 192 J K^{-1} mol^{-1}$
- $\bullet \ \Delta S^{\circ}(H_2, g) = 131 \, J \, K^{-1} \, mol^{-1}$
- $\Delta S^{\circ}(N_2, g) = 192 J K^{-1} mol^{-1}$

PROBLEMA 5.16

2B18

Assinale a alternativa que mais se aproxima da variação de entropia para a decomposição do clorato de potássio formando perclorato e cloreto de potássio.

Dados

- $\Delta S^{\circ}(KClO_3, s) = 143 \, J \, K^{-1} \, mol^{-1}$
- $\Delta S^{\circ}(KCl, s) = 82,6 J K^{-1} mol^{-1}$
- $\Delta S^{\circ}(KClO_4, s) = 151 J K^{-1} mol^{-1}$

PROBLEMA 5.17

2B19

Considere os processos:

- 1. Cristalização de um sal.
- 2. Sublimação da naftalina.
- 3. Mistura de água e álcool.
- 4. Fusão do ferro.

Assinale a alternativa que relaciona os processos que ocorrem com aumento de entropia do sistema.

PROBLEMA 5.18

2B20

Considere as reações:

- 1. $Cl_2(g) + H_2O(l) \longrightarrow HCl(aq) + HClO(aq)$
- **2.** $Cu_3(PO_4)_2(s) \longrightarrow 3Cu^{2+}(aq) + 2PO_4^{3-}(aq)$
- 3. $SO_2(g) + Br_2(g) + 2H_2O(l) \longrightarrow H_2SO_4(aq) + 2HBr(aq)$
- **4.** $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \longrightarrow 4 \text{ NO}(g) + 6 \text{ H}_2 \text{O}(g)$

Assinale a alternativa que relaciona as reações com variação positiva de entropia.

Nível II

Assinale a alternativa incorreta.

PROBLEMA 5.20

2B23

Considere as proposições:

- 1. A entropia do HBr é maior que a do HF a 298 K.
- 2. A entropia da amônia é maior que a do neônio a 298 K.
- A entropia do ciclopentano é maior que a do pent-1-eno a 298 K.
- A entropia do ciclobutano é maior que a do cicloexano a 298 K.

Assinale a alternativa que relaciona as proposições corretas.

PROBLEMA 5.21

2B24

Considere os processos:

- 1. Conversão de grafite e diamante
- 2. Supersaturação de uma solução saturada.
- 3. Cristalização de um sólido amorfo.
- 4. Adsorção do nitrogênio em sílica.

Assinale a alternativa que relaciona os processos que ocorrem com diminuição de entropia do sistema.

PROBLEMA 5.22

2B22

Um recipiente de paredes adiabáticas contém duas amostras de água pura separadas por uma parede também adiabática e de volume desprezível. Uma das amostras consiste em $54\,\mathrm g$ de água a $25\,^\circ\mathrm C$ e, a outra, em $126\,\mathrm g$ a $75\,^\circ\mathrm C$. A parede que separa as amostras é retirada e que as amostras de água se misturam até atingir o equilíbrio.

Considere as proposições:

- 1. A temperatura da mistura no equilíbrio é de 323 K.
- 2. A variação de entalpia no processo é nula.
- 3. A variação de energia interna no processo é nula.
- 4. A variação de entropia no processo é nula.

Assinale a alternativa que relaciona as proposições *corretas*.

PROBLEMA 5.23

2B25

PROBLEMA 5.19

Considere as proposições:

- A variação da entropia independe da quantidade de gás presente no sistema.
- 2. Se a transformação é isotérmica, a variação da entropia é dada por: $\Delta S = nR \ln \left(\frac{P_2}{P_1} \right)$
- 3. Se a transformação é isobárica, a variação de entropia é dada por: $\Delta S = n C_P \ln \left(\frac{T_2}{T_1} \right)$
- **4.** Se o sistema realiza um processo cíclico, a variação de entropia é positiva.

Assinale a alternativa que relaciona as proposições *corretas*.

PROBLEMA 5.24

2B27

Um bloco de gelo a $0\,^{\circ}$ C é colocado em contato com um recipiente fechado que contém vapor de água a $100\,^{\circ}$ C e 1 atm. Após algum tempo, separa-se o bloco de gelo do recipiente fechado. Nesse instante $25\,g$ de gelo foram convertidos em água líquida a $0\,^{\circ}$ C e que no recipiente fechado existe água líquida e vapor em equilíbrio.

Determine a variação de entropia do bloco de gelo.

Dados

• $\Delta H_{\text{fus}}^{\circ}(\text{H}_2\text{O}) = 6.01 \,\text{kJ mol}^{-1}$

PROBLEMA 5.25

2B29

Moléculas diatômicas idênticas, na forma de um sólido cristalino, podem ser modeladas como um conjunto de osciladores.

- 1. À temperatura de 0 K a maioria dos osciladores estará no estado vibracional fundamental, cujo número quântico vibracional é zero.
- **2.** À temperatura de 0 K todos os osciladores estarão no estado vibracional fundamental, cujo número quântico vibracional é zero.
- 3. O movimento vibracional cessa a 0 K.

4. O princípio da incerteza de Heisenberg será violado se o movimento vibracional cessar.

Assinale a alternativa que relaciona as proposições corretas.

PROBLEMA 5.26

2B26

Um motor de $3\,L$ contendo $1\,m$ ol de gás nitrogênio a $18,5\,^{\circ}$ C foi comprimido rapidamente até $500\,m$ L por um pistão. A temperatura do gás aumentou para $28,1\,^{\circ}$ C.

Assinale a alternativa que mais se aproxima da variação de entropia do gás.

PROBLEMA 5.27

2B28

Um dispositivo utiliza radiação solar para quantificar variações em propriedades termodinâmicas. Este dispositivo é composto por uma lente convergente e por um porta-amostras. A lente possui área útil de $80 \, \mathrm{cm}^2$, absortividade, $\alpha = 20\%$ e transmissividade, $\tau = 80\%$. O porta-amostras possui absortividade de 100% e volume variável, operando à pressão constante de $1 \, \mathrm{atm}$.

Em um procedimento experimental, injetou-se 0,1 mol de uma substância pura líquida no porta-amostras do dispositivo. Em seguida, mediu-se um tempo de 15,0 min. para a vaporização total da amostra, durante o qual a irradiação solar permaneceu constante e igual a $750\,\mathrm{W}\,\mathrm{m}^2$. Nesse processo, a temperatura do porta-amostras estabilizou-se em $351\,\mathrm{K}$.

Assinale a alternativa que mais se aproxima da variação de entropia molar de vaporização do líquido.

PROBLEMA 5.28

2B15

Assinale a alternativa que mais se aproxima da entropia residual do monóxido de carbono.

PROBLEMA 5.29

2B16

Considere as moléculas:

- 1. CO₂
- 2. NO
- 3. N₂O
- 4. Cl₂

Assinale a alternativa que relaciona as moléculas com entropia residual não nula.

Nível III

PROBLEMA 5.30 2B30

Considere a vaporização de 1 mol de água a 85 °C e 1 bar.

- a. Determine a variação de entropia do sistema.
- b. **Determine** a variação de entropia da vizinhança.
- c. **Determine** a variação entropia do universo.

Dados

- $C_P(H_2O, 1) = 75.3 \, \text{J K}^{-1} \, \text{mol}^{-1}$
- $C_P(H_2O, g) = 33.6 \, \text{J K}^{-1} \, \text{mol}^{-1}$
- $\Delta H_{\text{vap}}^{\circ}(H_2O) = 40.7 \text{ kJ mol}^{-1}$

PROBLEMA 5.31

2B31

Considere a vaporização de 1 mol de acetona a 296 K e 1 bar.

- a. **Determine** a variação de entropia do sistema.
- b. **Determine** a variação de entropia da vizinhança.
- c. Determine a variação entropia do universo.

Dados

- $C_P(CH_3COCH_3, 1) = 125 J K^{-1} mol^{-1}$
- $\Delta H_{\text{vap}}^{\circ}(\text{CH}_3\text{OCH}_3) = 29,1 \,\text{kJ} \,\text{mol}^{-1}$
- $T_{eb}(CH_3COCH_3) = 56,2 \, ^{\circ}C$

PROBLEMA 5.32

2B32

Uma amostra de 71 g de cloro, inicialmente a 300 K e 100 atm se expande contra uma pressão constante de 1 atm até o estado de equilíbrio. Como resultado da expansão, 10% da massa de gás é condensada.

- a. **Determine** a variação de energia interna do sistema.
- b. **Determine** a variação de entropia do sistema.

Dados

- $\rho(Cl_2, l) = 1,56 \, g \, cm^{-3}$
- Hvap(Cl2)=20,42
- Teb(Cl2)=-34
- $C_P(Cl_2, g) = 33.9 \, \text{J K}^{-1} \, \text{mol}^{-1}$

PROBLEMA 5.33

2B33

Em um calorímetro isolado são misturadas duas amostras de massa $\mathfrak m$ de um líquido de calor específico $\mathfrak c$ em temperaturas $\mathsf T_1$ e $\mathsf T_2$.

- a. Determine a variação de entropia de mistura
- b. **Prove** que a variação de entropia é sempre positiva.

Considere um sistema com k cilindros, cada um contendo certa quantidade de um gás ideal diferente. Os cilindros são conectados e os gases se misturam isotermicamente.

Determina a variação de entropia de mistura. Determine a variação de entropia máxima.

PROBLEMA 5.35

2B35

A capacidade calorífica de certas substâncias pode ser calculada como:

 $C_P = a + bT + \frac{c}{T^2}$

Determine a variação de entropia quando o grafite é aquecido de 298 K a 400 K.

Dados

- $\alpha(\text{grafita, s}) = 16,68 \, \text{J K}^{-1} \, \text{mol}^{-1}$
- $b(grafita, s) = 4,77 \text{ mJ K}^{-2} \text{ mol}^{-1}$
- $c(\text{grafita}, s) = -854 \,\text{kJ K mol}^{-1}$

PROBLEMA 5.36

2B36

Em baixas temperaturas, a capacidade calorífica um dado material é proporcional a T^2 .

Prove que, para temperaturas muito baixas, a entropia absoluta desse material é igual a metade de sua capacidade calorífica na mesma temperatura.

Gabarito

Nível I

- . C 2. D 3. E 4. A
- 6. D 7. E 8. B 9. D 10. B
- 16. C 17. D 18. C

Nível II

- 1 E
- 2. D
- 3. D
- 1 C
- 5 P
- **6.** $30 \, \mathrm{J} \, \mathrm{K}^{-1}$
- 7 (
- Q A
- 9. C
- 10. A
- 11. C

Nível III

- **1.** a. $111 \, \mathrm{J} \, \mathrm{K}^{-1}$
 - b. $-115\,J\,K^{-1}$
 - c. $-4 \, \mathrm{J} \, \mathrm{K}^{-1}$
- **2.** a. $98,3 \, \mathrm{J} \, \mathrm{K}^{-1} \, \mathrm{mol}^{-1}$
 - b. $-108 \, \mathrm{J \, K^{-1} \, mol^{-1}}$
 - c. $-10,4 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$
- **3.** a. $-3590 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
 - b. $21,35 \, \mathrm{J} \, \mathrm{K}^{-1} \, \mathrm{mol}^{-1}$
- **4.** a. $2mc ln\left(\frac{T_1+T_2}{2\sqrt{T_1T_2}}\right)$
 - b. Demonstração.
- 5. a. $-nR\sum_{i=1}^k x_i \, ln \, x_i$
 - b. nR ln(k)
- **6.** $3,31 \, \text{J K}^{-1} \, \text{mol}^{-1}$
- 7. Demonstração