Internet Protocol (IP) Addresses

What is an IP Address?

- Unique identifier for devices in a network
- Functions: Identification, Location, Routing
- ♦ Analogy: Like a postal address (Network = Street, Host = House)

Versions of IP

- ♦ IPv4 (32-bit): ~4.3 billion addresses, Example: 192.168.1.5
- ♦ IPv6 (128-bit): ~3.4 × 10^38 addresses, Example: 2001:db8::1
- ♦ IPv6 created to overcome IPv4 exhaustion

Types of IP Addresses

- **♦ Public**: Routable on the Internet
- Private: Used within LANs (RFC1918 ranges)
- ♦ Static: Fixed, manually configured
- ♦ **Dynamic**: Automatically assigned by DHCP

IPv4 Address Classes

Class	Range	Default Mask	Hosts/Net	Private Range	Usage
A	0–127	/8	~16M	10.0.0.0/8	ISPs, enterprises
В	128–191	/16	~65K	172.16.0.0/1 2	Medium orgs
С	192–223	/24	254	192.168.0.0/ 16	Small/home networks
D	224–239	Multicast		_	Streaming, conferencing
E	240–255	Reserved	-	_	Research/exp erimental

Special IPv4 Addresses

- \diamond **127.0.0.1** \rightarrow Loopback (localhost)
- \diamond **0.0.0.0** \rightarrow Unspecified (any interface)
- \diamond **255.255.255.255** \rightarrow Broadcast (local network)

Subnetting Basics

- ♦ **Subnetting** = dividing a network into smaller sub-networks
- ♦ Benefits: efficient IP use, better performance, security isolation
- ♦ Subnet mask determines network vs host bits

Case Study: Subnetting a /24

- ♦ Company buys 192.168.10.0/24 (256 addresses)
- ♦ Needs 3 networks:
- \diamond Subnet A \rightarrow 100 hosts
- \diamond Subnet B \rightarrow **50** hosts
- \diamond Subnet C \rightarrow 25 hosts

Subnetting Solution

- \Rightarrow Subnet A (/25): 192.168.10.0 192.168.10.127, 126 usable hosts
- ♦ **Subnet B** (/26): 192.168.10.128 192.168.10.191, **62 usable** hosts
- ♦ **Subnet C** (/27): 192.168.10.192 192.168.10.223, **30 usable** hosts
- **Remaining**: 192.168.10.224 − 192.168.10.255

IPv6 Highlights

- ♦ 128-bit addresses (virtually unlimited)
- ♦ Example: 2001:db8::1/64
- Types: Unicast (one-to-one), Multicast (one-to-many), Anycast (one-to-nearest)
- ♦ No NAT required

Summary

- ♦ **IP** = Unique identifier for devices
- ♦ IPv4 (32-bit) and IPv6 (128-bit)
- **Public** vs **Private**, **Static** vs **Dynamic**
- **♦ Classes A–E** with **private ranges**
- ♦ Special addresses: loopback, broadcast
- ♦ Subnetting: efficient address division
- ♦ **IPv6** = future of addressing