Al Engineer Training: III In the Era of Deep Learning

IT21 Learning Alvin Jin

Al News

- Impact AI summit aims to establish Ottawa as another AI hub in Canada
- Big Data & AI Toronto Expo, 12-13 Jun, MTCC
- SenseTime become the most funded AI startup valued over \$3B.
- GDPR was effect in May 25, how will it impact AI industry?

Agenda

- Machine Learning Practices
- Case Studies:
 - Sentiment Analysis II: word embeddings
 - Regression Algorithm: house price prediction

Features

- Base Features
 - Directly observed from raw data
- New Features
 - Extract from raw data by simple transform and calculation.
- Latent/hidden features
 - Not obvious, no idea exactly what attributes these factors are describing

Feature Engineering

- The process of using **domain knowledge** of the data by expressing it in a simpler way.
- It is hard, time-consuming, arts rather than science.
- Good feature engineering
 - Solve problems elegantly using fewer resources.
 - Solve problems with far less data.

Quiz

• King – Man + Woman ≈

Word	Power	Gender	Wealth
King	1.0	1.0	1.0
Man	0.2	1.0	0.2
Woman	0.1	0.0	0.1
Queen	0.9	0.0	0.9

Word Embeddings

- Dense representations of word sequences in a lowdimensional vector space.
- Vector elements describe an as yet unknown feature
- Items with similar distributions have similar meanings

One-hot-encode vs. Embeddings

- One-hot-encode
 - binary, sparse, very high-dimensional vectors
 - built in data preprocess phase
- Word Embeddings
 - low-dimensional floating-point vectors
 - learned from data set via neural network

Embedding Matrix

- Initialize all word vectors randomly to form a matrix
- Weights are learned via gradient descent in neural networks

	Context ₁	Context ₁	 Context k
Word ₁			
Word ₂			
:			
Word _n			

Case Study: Regression Problem

- Predict a continuous value instead of a discrete label values for forecasting, time series modelling
- Understanding the causal effect relationship between variables.
- However, Logistic Regression is a binary classification algorithm to regress for the probability of a binary categories.

Normalization

- Take small values
 - Most values are in o-1 range.
- Homogenous
 - All features should take values in roughly the same range
 - Each feature has a standard deviation of 1 and a mean of 0

Standard Deviation

- A measure to quantify the amount of variation of a set of values.
- When low: the data points tend to be close to the mean
- When high: the data points are spread out over a wider range of values.

$$s_x = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

 η = The number of data points

 $\bar{x} =$ The mean of the x_i

 x_i = Each of the values of the data

Regression Functions & Metrics

- Mean Squared Error
 - more sensitive to extreme values

$$MSE_{S}(h) = \frac{1}{n} \sum_{x \in S} (f(x) - h(x))^{2}$$

- Mean Absolute Error
 - the same magnitude of the actual values

$$MAE_S(h) = \frac{1}{n} \sum_{x \in S} |f(x) - h(x)|$$

Adaptive Moment Estimation

• Adam(2015) combines the benefits of RMSProp and Momentum, normally is your first choice.

$$m_{t} = \beta_{1} m_{t-1} + (1 - \beta_{1}) g_{t}$$

$$v_{t} = \beta_{2} v_{t-1} + (1 - \beta_{2}) g_{t}^{2}$$

$$\theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{\hat{v}_{t}} + \epsilon} \hat{m}_{t}.$$

 Adam multiplies the learning rate by the momentum, also divides by a factor related to the variance.

Q&A