$\mathrm{CS}223$ - Lab
 5- Preliminary Report

Mehmet Akif Şahin - 22203673 - Section 1 $27 \ {\rm November} \ 2023$

Traffic Light System

Moore Machine State Transition Diagram

State Encodings

State	Encoding				
	N_2	N_1	N_0		
S0	0	0	0		
S1	0	0	1		
S2	0	1	0		
S3	0	1	1		
S4	1	0	0		
S5	1	0	1		
S6	1	1	0		
S7	1	1	1		

Output Encodings

Output	Encoding				
	Y_2	Y_1	Y_0		
G	0	1	1		
Y	0	0	1		
R	1	1	1		

State Transition Table

State	Inp	uts	Next State	
	S_A	S_B	Next State	
S0	0	X	S1	
S0	1	X	S0	
S1	X	X	S2	
S2	X	X	S3	
S3	X	X	S4	
S4	X	0	S5	
S4	X	1	S4	
S5	X	X	S6	
S6	X	X	<i>S</i> 7	
S7	X	X	S0	

State			Inputs		Next State		
N_2	N_1	N_0	S_A	S_B	N_2'	N_1'	N_0'
0	0	0	0	X	0	0	1
0	0	0	1	X	0	0	0
0	0	1	X	X	0	1	0
0	1	0	X	X	0	1	1
0	1	1	X	X	1	0	0
1	0	0	X	0	1	0	1
1	0	0	X	1	1	0	0
1	0	1	X	X	1	1	0
1	1	0	X	X	1	1	1
1	1	1	X	X	0	0	0

Output Table

State			Output					
$N_2 N_1 N_0$		N_0	L_A			L_B		
1 1 2	111	1,0	L_{A2}	L_{A1}	L_{A0}	L_{B2}	L_{B1}	L_{B0}
0	0	0	0	1	1	1	1	1
0	0	1	0	0	1	1	1	1
0	1	0	1	1	1	1	1	1
0	1	1	1	1	1	0	0	1
1	0	0	1	1	1	0	1	1
1	0	1	1	1	1	0	0	1
1	1	0	1	1	1	1	1	1
1	1	1	0	0	1	1	1	1

State Logic

$$N_2' = N_2 \overline{N_0} + N_2 \overline{N_1} + \overline{N_2} N_1 N_0$$

 $N_1' = N_1 \overline{N_0} + \overline{N_1} N_0 = N_1 \oplus N_0$

$$N_0' = N_1 \overline{N_0} + \overline{N_2} \overline{N_1} \overline{N_0} \overline{S_A} + N_2 \overline{N_1} \overline{N_0} \overline{S_B}$$

Output Logic

$$L_{A2} = N_2 \oplus N_1 + N_1 \overline{N_0}$$

$$L_{A1} = N_2 \oplus N_1 + \overline{N_0}$$

$$L_{A0} = 1$$

$$L_{B2} = \overline{N_2 \oplus N_1} + \overline{N_2} \overline{N_0}$$

$$L_{B1} = \overline{N_2 \oplus N_1} + \overline{N_0}$$

$$L_{B0} = 1$$

Finite State Machine Schematic

Answer to question This machine has 8 states so i need $\lceil \log_2 8 \rceil = 3$ flipflops.

Output Using Decoder

