Martin Jullum

Norwegian Computing Center julium@nr.no

May 23, 2017

Outline

- Motivation and idea
- FIC derivation
- 3 Data types and situations
- Properties
- **5** Summary
- **6** Bonus

A focused model selection criterion for selecting among parametric and nonparametric models

Model selection

- Consider i.i.d. data Y_1, \ldots, Y_n from some unknown underlying distribution G
- Parametric approach

- Restrict G to a specific parametric family F_{θ}
- Estimate parameter θ (e.g. by ML) and use $\widehat{G} = F_{\widehat{\theta}}$
- Nonparametric approach
 - Let the data speak for themselves, no structural assumptions
 - Estimate G by ecdf: $\widehat{G}_n(y) = n^{-1} \# \{ Y_i \leq y \}.$
 - Smoother versions: Local kernel smoothers
- K+1 different appropriate models which one should we trust?

Model selection

- Consider i.i.d. data Y_1, \ldots, Y_n from some unknown underlying distribution G
- Parametric approach

- Restrict G to a specific parametric family F_{θ}
- Estimate parameter θ (e.g. by ML) and use $\widehat{G} = F_{\widehat{\theta}}$
- Nonparametric approach
 - Let the data speak for themselves, no structural assumptions
 - Estimate G by ecdf: $\widehat{G}_n(y) = n^{-1} \# \{Y_i \leq y\}.$
 - Smoother versions: Local kernel smoothers
- K+1 different appropriate models which one should we trust?

Model selection

- Consider i.i.d. data Y_1, \ldots, Y_n from some unknown underlying distribution G
- Parametric approach

- Restrict G to a specific parametric family F_{θ}
- Estimate parameter θ (e.g. by ML) and use $\widehat{G} = F_{\widehat{\theta}}$
- Nonparametric approach
 - Let the data speak for themselves, no structural assumptions
 - Estimate G by ecdf: $\widehat{G}_n(y) = n^{-1} \# \{Y_i \leq y\}.$
 - Smoother versions: Local kernel smoothers
- K + 1 different appropriate models which one should we trust?

Information criteria

- AIC= 2 log-likelihood_{max} $-2 \dim(\theta)$
- BIC= 2 log-likelihood_{max} $(\log n) \dim(\theta)$
- DIC, GIC, TIC, etc...
- Select the model optimizing the information criterion

Information criteria

- AIC= 2 log-likelihood_{max} $-2 \dim(\theta)$
- BIC= 2 log-likelihood_{max} $(\log n) \dim(\theta)$
- DIC, GIC, TIC, etc...
- Select the model optimizing the information criterion
- Cannot handle nonparametrics

Information criteria

- AIC= 2 log-likelihood_{max} $-2\dim(\theta)$
- BIC= 2 log-likelihood_{max} $(\log n) \dim(\theta)$
- DIC, GIC, TIC, etc...
- Select the model optimizing the information criterion
- Cannot handle nonparametrics

- Information criteria
 - AIC= 2 log-likelihood_{max} $-2\dim(\theta)$
 - BIC= 2 log-likelihood_{max} $(\log n) \dim(\theta)$
 - DIC, GIC, TIC, etc...
- Select the model optimizing the information criterion
- Cannot handle nonparametrics

Motivation and idea

Goodness of fit measures

- Measures the quality of the parametric fit compared to nonparametric
 - Cramér–von Mises: $\int (\widehat{G}_n(y) F(y;\widehat{\theta}))^2 \mathrm{d}F(y;\widehat{\theta})$
 - Kolmogorov–Smirnov: $\sup_{y} |\widehat{G}_n(y) F(y; \widehat{\theta})|$
 - \bullet Categorical data: Pearson's chi-squared: $\sum_{j=1}^k \frac{(N_j n f_j(\widehat{\theta}))^2}{f_j(\widehat{\theta})}$
- \bullet Problematic to use for selecting between nonparametric and k parametric models
 - How to set thresholds for rejecting the parametric models?
 - How to penalize parametric model complexity?

Motivation and idea

Goodness of fit measures

- Measures the quality of the parametric fit compared to nonparametric
 - \bullet Cramér–von Mises: $\int (\widehat{G}_n(y) F(y;\widehat{\theta}))^2 \mathrm{d}F(y;\widehat{\theta})$
 - Kolmogorov–Smirnov: $\sup_{y} |\widehat{G}_n(y) F(y; \widehat{\theta})|$
 - Categorical data: Pearson's chi-squared: $\sum_{j=1}^k \frac{(N_j nf_j(\widehat{\theta}))^2}{f_j(\widehat{\theta})}$
- \bullet Problematic to use for selecting between nonparametric and k parametric models
 - How to set thresholds for rejecting the parametric models?
 - How to penalize parametric model complexity?

Parametrics or nonparametrics

- No appropriate criterion for model selection among parametrics and nonparametrics in the literature
- Different models have strengths and weaknesses on different parts of the data space
- Why you are doing the analysis should reflect your choice of model

Our proposed solution

Motivation and idea

A focused or interest driven model selection criterion for selection among a set of parametric and nonparametric models Motivation and idea

Parametrics or nonparametrics

- No appropriate criterion for model selection among parametrics and nonparametrics in the literature
- Different models have strengths and weaknesses on different parts of the data space
- Why you are doing the analysis should reflect your choice of model

Parametrics or nonparametrics

Data types and situations

- No appropriate criterion for model selection among parametrics and nonparametrics in the literature
- Different models have strengths and weaknesses on different parts of the data space
- Why you are doing the analysis should reflect your choice of model

Our proposed solution

Motivation and idea

A focused or interest driven model selection criterion for selection among a set of parametric and nonparametric models

Data types and situations

- A general population quantity of interest - not(!) a model specific parameter
- A quantity μ mapping the distribution G to a scalar (multivariate situation later)

Examples

Motivation and idea

• Expectation:

$$\mu = \mathsf{E}_G(Y_i) = \int y \, \mathrm{d}G(y)$$

- $\Pr(Y_i > 2)$: $\mu = 1 G(2)$
- Interquartile range:

- A general population quantity of interest - not(!) a model specific parameter
- A quantity μ mapping the distribution G to a scalar (multivariate situation later)

Examples

- Expectation: $\mu = \mathsf{E}_G(Y_i) = \int y \, \mathrm{d}G(y)$
- $\Pr(Y_i > 2)$: $\mu = 1 G(2)$
- Interquartile range:

- A general population quantity of interest – not(!) a model specific parameter
- A quantity μ mapping the distribution G to a scalar (multivariate situation later)

Examples

Motivation and idea

• Expectation: $\mu = \mathsf{E}_G(Y_i) = \int y \, \mathrm{d}G(y)$

• $\Pr(Y_i > 2)$: $\mu = 1 - G(2)$

• Interquartile range: $\mu = G^{-1}(3/4) - G^{-1}(1/4)$

- A general population quantity of interest - not(!) a model specific parameter
- A quantity μ mapping the distribution G to a scalar (multivariate situation later)

Examples

- Expectation:
- $\Pr(Y_i > 2)$: $\mu = 1 G(2)$
- Interquartile range: $\mu = G^{-1}(3/4) - G^{-1}(1/4)$

Simple illustration

Li.d. univariate observations

Motivation and idea

- Focus parameter of interest: $\mu = G^{-1}(1/2)$, the median of the unknown data generating distribution G
- Gaussian or nonparametric?
- Nonparametric sample median $\widehat{G}_n^{-1}(0.5)$ or the Gaussian alternative $\bar{Y} = n^{-1} \sum_{i=1}^{n} Y_i$?

Median estimation

Criterion idea

- Model selection problem \rightarrow Best estimator for μ
 - Compare estimated performance of $\widehat{\mu}_{pm,1},\ldots,\widehat{\mu}_{pm,k}$ and $\widehat{\mu}_{np}$
 - Select model with best performing estimator $\widehat{\mu}_M$
- Performance measure:

Motivation and idea

$$\operatorname{risk} = \operatorname{mse}(\widehat{\mu}_M) = \operatorname{E}\{(\widehat{\mu}_M - \mu_{\operatorname{true}})^2\} = \operatorname{bias}^2(\widehat{\mu}_M) + \operatorname{Var}(\widehat{\mu}_M)$$

Estimate the mean squared error (mse) as squared bias + variance:

$$FIC(M) = \widehat{\mathrm{mse}}(\widehat{\mu}_M) = \widehat{\mathrm{bias}}^2(\widehat{\mu}_M) + \widehat{\mathrm{Var}}(\widehat{\mu}_M)$$

Criterion idea

- Model selection problem \rightarrow Best estimator for μ
 - Compare estimated performance of $\widehat{\mu}_{pm,1},\ldots,\widehat{\mu}_{pm,k}$ and $\widehat{\mu}_{np}$
 - Select model with best performing estimator $\widehat{\mu}_M$
- Performance measure:

Motivation and idea

risk =
$$\operatorname{mse}(\widehat{\mu}_M) = \operatorname{E}\{(\widehat{\mu}_M - \mu_{\text{true}})^2\} = \operatorname{bias}^2(\widehat{\mu}_M) + \operatorname{Var}(\widehat{\mu}_M)$$

Basic idea: Focused information criterion (FIC)

• Estimate the mean squared error (mse) as squared bias + variance:

$$FIC(M) = \widehat{\mathrm{mse}}(\widehat{\mu}_M) = \widehat{\mathrm{bias}^2}(\widehat{\mu}_M) + \widehat{\mathrm{Var}}(\widehat{\mu}_M)$$

Choose the model and estimator with the smallest FIC score

• Let (generically) $\mu_{0,\mathrm{pm}} = T(F_{\theta_0})$ be the least false focus parameter value with θ_0 be the least false parameter value of θ

Under weak regularity conditions:

FIC derivation

- Nonparametric: $\sqrt{n}(\widehat{\mu}_{np} \mu_{true}) \rightarrow_d \sim N(0, v_{np})$
- Parametric $\sqrt{n}(\widehat{\mu}_{pm} \mu_{0,pm}) \rightarrow_d \sim N(0, v_{pm})$

Nonparametric:
$$\operatorname{mse}(\widehat{\mu}_{\operatorname{np}}) \approx \widetilde{\operatorname{mse}}(\widehat{\mu}_{\operatorname{np}}) = 0 + \frac{1}{n}v_{\operatorname{np}}$$

Parametric:
$$\operatorname{mse}(\widehat{\mu}_{pm}) \approx \widetilde{\operatorname{mse}}(\widehat{\mu}_{pm}) = b^2 + \frac{1}{n}v_{pm}$$

FIC construction: Derivation details (I)

• Let (generically) $\mu_{0,\mathrm{pm}} = T(F_{\theta_0})$ be the least false focus parameter value with θ_0 be the least false parameter value of θ

Under weak regularity conditions:

FIC derivation

- Nonparametric: $\sqrt{n}(\widehat{\mu}_{np} \mu_{true}) \rightarrow_d \sim N(0, v_{np})$
- Parametric $\sqrt{n}(\widehat{\mu}_{pm} \mu_{0,pm}) \rightarrow_d \sim N(0, v_{pm})$

Large sample approximate risks

Nonparametric: $\operatorname{mse}(\widehat{\mu}_{np}) \approx \widetilde{\operatorname{mse}}(\widehat{\mu}_{np}) = 0 + \frac{1}{n}v_{np}$

Parametric:
$$\operatorname{mse}(\widehat{\mu}_{\mathrm{pm}}) \approx \widetilde{\operatorname{mse}}(\widehat{\mu}_{\mathrm{pm}}) = b^2 + \frac{1}{n}v_{\mathrm{pm}}$$

where $b = \mu_{0,pm} - \mu_{true}$

FIC construction: Derivation details (II)

The convergence in distribution also holds jointly:

$$\sqrt{n} \begin{pmatrix} \widehat{\mu}_{\rm np} - \mu_{\rm true} \\ \widehat{\mu}_{\rm pm} - \mu_{0,\rm pm} \end{pmatrix} \rightarrow_d N_2 \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} v_{\rm np} & v_{\rm c} \\ v_{\rm c} & v_{\rm pm} \end{pmatrix} \end{pmatrix}$$

- $\bullet \Rightarrow \sqrt{n}(\widehat{b}-b) \rightarrow_d N(0,v_b)$, with $\widehat{b} = \widehat{\mu}_{pm} \widehat{\mu}_{np}$ and $v_b = v_{\rm pm} + v_{\rm np} - 2v_c$
- $\bullet \Rightarrow \mathsf{E}\{(\widehat{b})^2\} = (\mathsf{E}\{\widehat{b}\})^2 + \mathsf{Var}(\widehat{b}) \approx b^2 + \frac{1}{n}v_b$

- Squared parametric bias: b^2 estimated by $\max\{0, \hat{b}^2 \frac{1}{\pi} \hat{v}_b\}$
- Variances: $v_{\rm np}$ estimated by $\widehat{v}_{\rm np}$, and $v_{\rm pm}$ estimated by $\widehat{v}_{\rm pm}$

Nonparametric:
$$FIC(\widehat{\mu}_{np}) = \widehat{mse}(\widehat{\mu}_{np}) = 0 + \frac{1}{n}\widehat{v}_{np}$$

Parametric:
$$FIC(\widehat{\mu}_{pm}) = \widehat{mse}(\widehat{\mu}_{pm}) = \max\{0, (\widehat{b})^2 - \frac{1}{n}\widehat{v}_b\} + \frac{1}{n}\widehat{v}_{pm}$$

FIC construction: Derivation details (II)

The convergence in distribution also holds jointly:

$$\sqrt{n} \begin{pmatrix} \widehat{\mu}_{\rm np} - \mu_{\rm true} \\ \widehat{\mu}_{\rm pm} - \mu_{0,\rm pm} \end{pmatrix} \rightarrow_d N_2 \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} v_{\rm np} & v_{\rm c} \\ v_{\rm c} & v_{\rm pm} \end{pmatrix} \end{pmatrix}$$

- $\Rightarrow \sqrt{n}(\widehat{b} b) \rightarrow_d \mathrm{N}(0, v_b)$, with $\widehat{b} = \widehat{\mu}_{\mathrm{pm}} \widehat{\mu}_{\mathrm{np}}$ and $v_b = v_{\mathrm{pm}} + v_{\mathrm{np}} 2v_c$
- $\bullet \ \Rightarrow \mathsf{E}\{(\widehat{b})^2\} = (\mathsf{E}\{\widehat{b}\})^2 + \mathsf{Var}(\widehat{b}) \approx b^2 + \frac{1}{n}v_b$

General estimates of risk components

- Squared parametric bias: b^2 estimated by $\max\{0, \hat{b}^2 \frac{1}{n} \widehat{v}_b\}$
- ullet Variances: $v_{
 m np}$ estimated by $\widehat{v}_{
 m np}$, and $v_{
 m pm}$ estimated by $\widehat{v}_{
 m pm}$

FIC scores

Nonparametric:
$$FIC(\widehat{\mu}_{np}) = \widehat{mse}(\widehat{\mu}_{np}) = 0 + \frac{1}{n}\widehat{v}_{np}$$

Parametric:
$$FIC(\widehat{\mu}_{pm}) = \widehat{mse}(\widehat{\mu}_{pm}) = \max\{0, (\widehat{b})^2 - \frac{1}{n}\widehat{v}_b\} + \frac{1}{n}\widehat{v}_{pm}$$

FIC construction: Derivation details (II)

The convergence in distribution also holds jointly:

$$\sqrt{n} \begin{pmatrix} \widehat{\mu}_{\rm np} - \mu_{\rm true} \\ \widehat{\mu}_{\rm pm} - \mu_{0,\rm pm} \end{pmatrix} \rightarrow_d N_2 \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} v_{\rm np} & v_{\rm c} \\ v_{\rm c} & v_{\rm pm} \end{pmatrix} \end{pmatrix}$$

- $\bullet \Rightarrow \sqrt{n}(\widehat{b}-b) \rightarrow_d N(0,v_b)$, with $\widehat{b} = \widehat{\mu}_{pm} \widehat{\mu}_{np}$ and $v_b = v_{\rm pm} + v_{\rm up} - 2v_c$
- $\bullet \Rightarrow \mathsf{E}\{(\widehat{b})^2\} = (\mathsf{E}\{\widehat{b}\})^2 + \mathsf{Var}(\widehat{b}) \approx b^2 + \frac{1}{2}v_b$

General estimates of risk components

FIC derivation

- Squared parametric bias: b^2 estimated by $\max\{0, \hat{b}^2 \frac{1}{\pi} \hat{v}_b\}$
- Variances: $v_{\rm np}$ estimated by $\widehat{v}_{\rm np}$, and $v_{\rm pm}$ estimated by $\widehat{v}_{\rm pm}$

FIC scores

Nonparametric: $FIC(\widehat{\mu}_{np}) = \widehat{mse}(\widehat{\mu}_{np}) = 0 + \frac{1}{2}\widehat{v}_{np}$

Parametric: $FIC(\widehat{\mu}_{pm}) = \widehat{mse}(\widehat{\mu}_{pm}) = \max\{0, (\widehat{b})^2 - \frac{1}{n}\widehat{v}_b\} + \frac{1}{n}\widehat{v}_{pm}$

- Focus on a (weighted) set of focus parameters simultaneously
- Performance measure: risk = $\int E[(\widehat{\mu}(t) \mu_{true}(t))^2] dW(t)$,

$$\begin{split} \text{Nonparametric: AFIC}(\widehat{\mu}_{\mathrm{np}}) &= \int \frac{1}{n} V_{\mathrm{np}}(t; \widehat{G}_n) \mathrm{d}W(t) \\ \text{Parametric: AFIC}(\widehat{\mu}_{\mathrm{pm}}) &= \max \left[0, \int \{ b(t; \widehat{\theta}, \widehat{G}_n)^2 - \frac{1}{n} V_{\mathrm{b}}(t; \widehat{\theta}, \widehat{G}_n) \} \, \mathrm{d}W(t) \right] \\ &+ \int \frac{1}{n} V_{\mathrm{pm}}(t; \widehat{\theta}) \, \mathrm{d}W(t) \end{split}$$

FIC derivation

- Focus on a (weighted) set of focus parameters simultaneously
- Performance measure: risk = $\int E[(\widehat{\mu}(t) \mu_{\mathsf{true}}(t))^2] dW(t)$, for some cumulative weight function W

Nonparametric:
$$\operatorname{AFIC}(\widehat{\mu}_{\mathrm{np}}) = \int \frac{1}{n} V_{\mathrm{np}}(t; \widehat{G}_n) \mathrm{d}W(t)$$

$$\operatorname{Parametric: } \operatorname{AFIC}(\widehat{\mu}_{\mathrm{pm}}) = \max \left[0, \int \{ b(t; \widehat{\theta}, \widehat{G}_n)^2 - \frac{1}{n} V_{\mathrm{b}}(t; \widehat{\theta}, \widehat{G}_n) \} \, \mathrm{d}W(t) \right] \\ + \int \frac{1}{n} V_{\mathrm{pm}}(t; \widehat{\theta}) \, \mathrm{d}W(t)$$

- Focus on a (weighted) set of focus parameters simultaneously
- Performance measure: risk = $\int E[(\widehat{\mu}(t) \mu_{\mathsf{true}}(t))^2] dW(t)$, for some cumulative weight function W

AFIC scheme

$$\begin{split} \text{Nonparametric: AFIC}(\widehat{\mu}_{\mathrm{np}}) &= \int \frac{1}{n} V_{\mathrm{np}}(t; \widehat{G}_n) \mathrm{d}W(t) \\ \text{Parametric: AFIC}(\widehat{\mu}_{\mathrm{pm}}) &= \max \left[0, \int \{ b(t; \widehat{\theta}, \widehat{G}_n)^2 - \frac{1}{n} V_{\mathrm{b}}(t; \widehat{\theta}, \widehat{G}_n) \} \, \mathrm{d}W(t) \right] \\ &+ \int \frac{1}{n} V_{\mathrm{pm}}(t; \widehat{\theta}) \, \mathrm{d}W(t) \end{split}$$

The criterion selects the model with the smallest AFIC score

FIC derivation

- Focus on a (weighted) set of focus parameters simultaneously
- Performance measure: risk = $\int E[(\widehat{\mu}(t) \mu_{\mathsf{true}}(t))^2] dW(t)$, for some cumulative weight function W

AFIC scheme

$$\begin{split} \text{Nonparametric: AFIC}(\widehat{\mu}_{\mathrm{np}}) &= \int \frac{1}{n} V_{\mathrm{np}}(t; \widehat{G}_n) \mathrm{d}W(t) \\ \text{Parametric: AFIC}(\widehat{\mu}_{\mathrm{pm}}) &= \max \left[0, \int \{ b(t; \widehat{\theta}, \widehat{G}_n)^2 - \frac{1}{n} V_{\mathrm{b}}(t; \widehat{\theta}, \widehat{G}_n) \} \, \mathrm{d}W(t) \right] \\ &+ \int \frac{1}{n} V_{\mathrm{pm}}(t; \widehat{\theta}) \, \mathrm{d}W(t) \end{split}$$

The criterion selects the model with the smallest AFIC score

Estimate W empirically if it depends on unknown quantities

Data types and situations (I)

Data types and situations

General setup requirements

- Some data generating mechanism G
- Focus parameters which can be written as a functional T of the data generating mechanism G: $\mu = T(G)$
- Focus parameter μ estimated by plug-in for each model M: $\widehat{\mu}_M = T(\widehat{G}_M)$

As seen: Standard i.i.d. situation

- G is cumulative distribution function
- Nonparametric estimation: Cumulative distribution function $\widehat{G}_n = n^{-1} \# \{Y_i \leq y\}$ or smoothed versions
- Parametric estimation: Whatever you can think of
- Typical focus parameters: Smooth functions of means and quantiles

Data types and situations (II)

Data types and situations

Dependency modelling in stationary Gaussian time series models

- G = Unknown spectral measure/distribution
- Nonparametric estimation: Integrated periodogram $\widehat{G}_n(\omega) = \int_{-\pi}^{\omega} I_n(u) \, \mathrm{d}u$ for I_n the periodogram
- Parametric estimation: Typically ARMA-models, but also more general parametric models for the spectral distribution
- Typical focus parameters: Differences in spectral distribution, covariance lags and correlation lags

Data types and situations (III)

Data types and situations

Censoring

- Semiparametric Cox regression vs. fully parametric proportional hazard regression models
 - $G = (A(\cdot), \beta)$ corresponding to the hazard rate function: $\alpha(s) \exp(x^{t}\beta)$, with α unspecified baseline hazard and A its cumulative
 - Semiparametric Cox regression: $\widehat{\beta}_{cox}$ via Cox's partial likelihood, $\widehat{A}_{cox}(\cdot) =$ Breslow estimator
 - Parametric estimation: Joint ML estimation of θ , β , with a parametric hazard rate function α_{θ} (exponential, Weibull, Gompertz, ...)
 - Typical focus parameters: Survival probabilities, quantiles and cumulative hazards, conditional on covariate values
- Without covariates: Nelson–Aalen or Kaplan–Meier estimators vs. parametric survival models

Consider one of the parametric model $M: F_{\theta}$ with least false model specification F_{θ_0} and least false focus parameter value $\mu_{0,pm}$:

- If M is biased $(\mu_{\text{true}} \neq \mu_{0,\text{pm}})$
 - $\Pr(\mathsf{FIC}/\mathsf{AFIC} \; \mathsf{selects} \; M) \to 0$
- If M is fully correct $(G = F_{\theta_0})$
 - Pr (FIC selects M over nonparametric) $\rightarrow \chi_1^2(2) \approx 0.843$
 - ullet No general results for AFIC (depends on μ and weight W)
 - AFIC for parametric with focus on all $\mu(y) = G(y)$ and $\dot{W} = F_{\theta \alpha}$
 - Re-invents the Cramér-von Mises goodness-of-fit test, with a threshold
- - Insurance mechanism against parametric misspecification

FIC/AFIC asymptotics

Consider one of the parametric model $M: F_{\theta}$ with least false model specification F_{θ_0} and least false focus parameter value $\mu_{0,pm}$:

- If M is biased $(\mu_{\text{true}} \neq \mu_{0,\text{pm}})$
 - $\Pr(\mathsf{FIC}/\mathsf{AFIC} \; \mathsf{selects} \; M) \to 0$
- If M is fully correct $(G = F_{\theta_0})$
 - Pr (FIC selects M over nonparametric) $\rightarrow \chi_1^2(2) \approx 0.843$
 - No general results for AFIC (depends on μ and weight W)
 - AFIC for parametric with focus on all $\mu(y) = G(y)$ and $W = F_{\theta_0}$
 - Re-invents the Cramér-von Mises goodness-of-fit test, with a threshold value found by the theory itself
- - Insurance mechanism against parametric misspecification

FIC/AFIC asymptotics

Consider one of the parametric model $M: F_{\theta}$ with least false model specification F_{θ_0} and least false focus parameter value $\mu_{0,pm}$:

- If M is biased $(\mu_{\text{true}} \neq \mu_{0,\text{pm}})$
 - $\Pr(\mathsf{FIC}/\mathsf{AFIC} \; \mathsf{selects} \; M) \to 0$
- If M is fully correct $(G = F_{\theta_0})$
 - Pr (FIC selects M over nonparametric) $\rightarrow \chi_1^2(2) \approx 0.843$
 - No general results for AFIC (depends on μ and weight W)
 - AFIC for parametric with focus on all $\mu(y) = G(y)$ and $W = F_{\theta_0}$
 - Re-invents the Cramér-von Mises goodness-of-fit test, with a threshold value found by the theory itself

⇒ If all parametric candidate models are biased: $Pr(FIC/AFIC \text{ selects nonparametric}) \rightarrow 1$

• Insurance mechanism against parametric misspecification

Summary

- Focus driven model selection with a nonparametric alternative
- Rank models according to $\widehat{\mu}_M$'s estimated risk
- Robustifies parametric model selection by including the nonparametric candidate model
- AFIC allows several focus parameters to be handled simultaneously
- FIC and AFIC Are model selection schemes, but may also justify the use of different significance levels in hypothesis testing of models

AFIC curiosity 1

- Consider count data $(N_1, \ldots, N_k), (p_1, \ldots, p_k), \sum p_i = 1, \sum N_i = n$
- Focus on all p_i , with weight $1/p_i$

$$X_n = n \sum \frac{(\widehat{p}_{\mathsf{np},j} - \widehat{p}_{\mathsf{pm},j})^2}{\widehat{p}_{\mathsf{np},j}} \text{ vs. 2df}$$

• Implicit test level for test of pm true with df=1,..., 10:

- Consider count data $(N_1, \ldots, N_k), (p_1, \ldots, p_k), \sum p_i = 1, \sum N_i = n$
- Focus on all p_i , with weight $1/p_i$
- Direct comparison between parametrics and nonparametrics reduces to

$$X_n = n \sum \frac{(\widehat{p}_{\mathsf{np},j} - \widehat{p}_{\mathsf{pm},j})^2}{\widehat{p}_{\mathsf{np},j}} \text{ vs. } 2\mathsf{df}$$

• Implicit test level for test of pm true with df=1,...,10:

AFIC curiosity 1

- Consider count data $(N_1, \ldots, N_k), (p_1, \ldots, p_k), \sum p_i = 1, \sum N_i = n$
- Focus on all p_i , with weight $1/p_i$
- Direct comparison between parametrics and nonparametrics reduces to

$$X_n = n \sum \frac{(\widehat{p}_{\mathsf{np},j} - \widehat{p}_{\mathsf{pm},j})^2}{\widehat{p}_{\mathsf{np},j}} \text{ vs. } 2\mathsf{df}$$

• Implicit test level for test of pm true with df=1,..., 10: 0.157, 0.135, 0.112, 0.092, 0.075, 0.062, 0.051, 0.042, 0.035.

• Focus on the complete G(y), weighted by $W(y) = F(y; \theta_0)$

$$\operatorname{CvM}_n = \int n(\widehat{G}_n(y) - F(y; \widehat{\theta}))^2 \, \mathrm{d}F(y; \widehat{\theta}) \text{ vs. } \kappa$$

- If $G = F \sim N(\xi, \sigma^2)$: Pr (Select pm) $\rightarrow 1 0.062$

- Focus on the complete G(y), weighted by $W(y) = F(y; \theta_0)$
- Direct comparison between parametrics and nonparametrics reduces to

$$\mathsf{CvM}_n = \int n(\widehat{G}_n(y) - F(y;\widehat{\theta}))^2 \, \mathrm{d}F(y;\widehat{\theta}) \; \mathsf{vs.} \; \; \kappa$$

- If $G = F \sim N(\xi, \sigma^2)$: Pr (Select pm) $\rightarrow 1 0.062$

- Focus on the complete G(y), weighted by $W(y) = F(y; \theta_0)$
- Direct comparison between parametrics and nonparametrics reduces to

$$\mathsf{CvM}_n = \int n(\widehat{G}_n(y) - F(y;\widehat{\theta}))^2 \, \mathrm{d}F(y;\widehat{\theta}) \; \mathsf{vs.} \; \; \kappa$$

- If $G = F \sim N(\xi, \sigma^2)$: Pr(Select pm) $\rightarrow 1 0.062$

Data types and situations

- Focus on the complete G(y), weighted by $W(y) = F(y; \theta_0)$
- Direct comparison between parametrics and nonparametrics reduces to

$$\mathsf{CvM}_n = \int n(\widehat{G}_n(y) - F(y;\widehat{\theta}))^2 \, \mathrm{d}F(y;\widehat{\theta}) \; \mathsf{vs.} \; \; \kappa$$

- If $G = F \sim N(\xi, \sigma^2)$: Pr(Select pm) $\rightarrow 1 0.062$
- Replacing dW(y) by 1 dy gives $Pr(Select pm) \rightarrow 1 0.049$

- Data: Lifelengths of 82 men and 59 women Pearson (1902)
- $\mu_1 = G_{\text{men}}^{-1}(0.5) G_{\text{women}}^{-1}(0.5)$
- $\mu_2 = G_{\text{men}}^{-1}(0.9) G_{\text{women}}^{-1}(0.9)$

- Data: Lifelengths of 82 men and 59 women Pearson (1902)
- $\mu_1 = G_{\text{men}}^{-1}(0.5) G_{\text{women}}^{-1}(0.5)$
- $\mu_2 = G_{\text{men}}^{-1}(0.9) G_{\text{women}}^{-1}(0.9)$

- Data: Lifelengths of 82 men and 59 women Pearson (1902)
- $\mu_1 = G_{\text{men}}^{-1}(0.5) G_{\text{women}}^{-1}(0.5)$
- $\mu_2 = G_{\text{men}}^{-1}(0.9) G_{\text{women}}^{-1}(0.9)$

Illustration: Egyptian Roman era lifelengths

Data types and situations

• Data: Lifelengths of 82 men and 59 women - Pearson (1902)

- $\mu_1 = G_{\text{men}}^{-1}(0.5) G_{\text{women}}^{-1}(0.5)$
- $\mu_2 = G_{\text{men}}^{-1}(0.9) G_{\text{women}}^{-1}(0.9)$

Model fit WOMEN

A focused model selection criterion for selecting among parametric and nonparametric models

