Finite Elements: examples 3

Colin Cotter

April 12, 2017

- 1. Let V be a discontinuous Lagrange finite element space of degree k defined on a triangulation \mathcal{T} of a domain Ω . Show that functions in V do not have weak derivatives in general.
- 2. Let Δ be the triangle with vertices (x_i, y_j) , (x_{i+1}, y_j) , (x_i, y_{j+1}) , with $x_i = hi$, $y_j = hj$. Define a transformation g from the reference element K with vertices (0,0), (1,0) and (0,1) to K, and show that

$$\int_{\Delta} \left| \frac{\partial}{\partial x} (u - \mathcal{I}_{\Delta} u) \right|^2 dx dy = \int_{K} \left| \frac{\partial \bar{u}}{\partial \xi} - \bar{u}(0, 0) + \bar{u}(1, 0) \right|^2 d\xi d\eta,$$

where $\bar{u} = u \circ g$, ξ and η are the coordinates on K, and \mathcal{I}_{Δ} is the interpolation operator from $H^2(\Delta)$ onto linear polynomials defined on Δ .

3. From the previous question, apply integration by parts repeatedly and use the Schwarz inequality to obtain

$$\int_{\Delta} \left| \frac{\partial}{\partial x} (u - \mathcal{I}_{\Delta} u) \right|^2 dx dy \le C \int_{K} \left| \frac{\partial^2 \bar{u}}{\partial \xi^2} \right|^2 + \left| \frac{\partial^2 \bar{u}}{\partial \xi \partial \eta} \right|^2 d\xi d\eta.$$

Hence show that

$$\int_{\Delta} \left| \frac{\partial}{\partial x} (u - \mathcal{I}_{\Delta} u) \right|^2 \mathrm{d}\, x \, \mathrm{d}\, y \leq C h^2 \int_{\Delta} \left| \frac{\partial^2 u}{\partial \xi^2} \right|^2 + \left| \frac{\partial^2 u}{\partial \xi \partial \eta} \right|^2 \mathrm{d}\, \xi \, \mathrm{d}\, \eta.$$

4. Consider a triangulation \mathcal{T} of points x_i and y_j arranged in squares as above, with each square subdivided into two right-angled triangles. Explain how to use this result to obtain

$$||u - \mathcal{I}_{\mathcal{T}}||_{E} < ch|u|_{H^{2}(\Omega)},$$

where

$$||f||_E = \int_{\Omega} \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 dx dy, \quad |u|_{H^2(\Omega)}^2 = \int_{\Omega} \left(\frac{\partial^2 u}{\partial x^2}\right)^2 + \left(\frac{\partial^2 u}{\partial xy}\right)^2 + \left(\frac{\partial^2 u}{\partial y^2}\right)^2 dx dy.$$

5. Show that

$$D^{\beta}Q_B^k f = Q_B^{k-|\beta|}D^{\beta}f,$$

where Q_B^l is the degree l averaged Taylor polynomial of f, and D^{β} is the β -th derivative where β is a multi-index.