Alfabetos y lenguajes Alfabetos, palabras y lenguajes

Fabio Martínez Carrillo

Autómatas Escuela de Ingeniería de Sistemas e Informatica Universidad Industrial de Santander - UIS

29 de agosto de 2017

Agenda

Alfabetos, Palabras y Lenguajes

Jerarquia de Máquinas y gramáticas

Autómatas y complejidad

Los autómatas son esenciales para el estudio de los límites de la computación

decibilidad: los problemas que una computadora puede resolver

tratabilidad: los problemas que una computadora puede resolver en un tiempo proporcional a alguna función que crezca

lentamente con el tamaño de la entrada (polinómica)

Lenguajes y Gramaticas

Lenguajes Naturales

Existen reglas gramaticas que condicionan de cierto modo la forma de evolucionar un lenguaje. Son flexibles y dependientes de entornos sociales, culturales, etc.

Lenguaje de Maquina o Programación

Tienen estructuras claramente definidas y determinadas por las reglas gramaticales.

- Traductores automaticos (compiladores)
 - Analizador de léxico: tranforma el código en una secuencia individual de contenidos
 - Analizador sintáctico verifica que las secuencias individuales estén bien escritas
 - Generador de código

Alfabeto

Un alfabeto es un conjunto finito de símbolos finito y no vacío

- $\Sigma = \{0, 1\}$ alfabeto binario
- $\Sigma = \{a, b, \dots, z\}$ conjunto letras minúsculas
- Conjunto de los caracteres ASCII

Palabra: Cadenas de caracteres

Secuencia finita de símbolos seleccionados de algún alfabeto.

• 01101 es una cadena del alfabeto binario

Palabra: Cadenas de caracteres

Secuencia finita de símbolos seleccionados de algún alfabeto.

• 01101 es una cadena del alfabeto binario

Cadena Vacia ε

Cero apariciones de símbolos

Palabra: Cadenas de caracteres

Secuencia finita de símbolos seleccionados de algún alfabeto.

• 01101 es una cadena del alfabeto binario

Longitud de una cadena ω : $|\omega|$

El número de posiciones ocupadas por símbolos dentro de la cadena

• 01101 Longitud de 5

Potencias de un alfabeto

Conjunto de cadenas de una determinada Longitud. Se utiliza la notación exponencial:

- Σ^k Alfabeto Σ con el conjunto de cadenas de longitud k
- Si $\Sigma^k = \{0, 1\}$ entonces $\Sigma^2 = \{00, 01, 10, 11\}$
- Si $\Sigma^k = \{0,1\}$ entonces $\Sigma^3 = \{000,001,010,011,100,101,110,111\}$
- Todas las cadenas de un alfabeto:

$$\Sigma^* = \{\varepsilon, 0, 1, 00, 11, 01, 10, 000, 101, \ldots\}$$
 Expresado como:

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \cdots$$

- Conjuto de cadenas no vacias: $\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \cdots$
- $\Sigma^* = \Sigma^+ \cup \{\varepsilon\}$

Concatenación de cadenas

Concatenación

Sean x y y dos cadenas, entonces xy es el proceso de concatenación. Si x es una cadena de i simbolos y y es una cadena de j simbolos. Entonces $xy = i + j = a_1 a_2 \cdots a_i b_1 b_2 \cdots b_j$

Ejemplo

Sea x = 01101 y y = 110. Cual es la concatenación xy y yx?

Concatenación de cadenas

Concatenación

Sean x y y dos cadenas, entonces xy es el proceso de concatenación. Si x es una cadena de i simbolos y y es una cadena de j simbolos. Entonces $xy = i + j = a_1 a_2 \cdots a_i b_1 b_2 \cdots b_j$

Iteración de concatenación de una cadena en Σ^*

- $u^0 = \varepsilon$
- $u^{i+1} = u^i u, \forall i > 0$

Concatenación de cadenas

Concatenación

Sean x y y dos cadenas, entonces xy es el proceso de concatenación. Si x es una cadena de i simbolos y y es una cadena de j simbolos. Entonces $xy = i + j = a_1 a_2 \cdots a_i b_1 b_2 \cdots b_j$

Propiedades

- $\bullet \mid u, v \mid = \mid u \mid + \mid v \mid, \forall u, v \in \Sigma^*$
- Asociativa: $u \cdot (vw) = (uv) \cdot w, \forall u, v, w \in \Sigma^*$
- Elemento neutro: $u\varepsilon = \varepsilon u = u, \forall u \in \Sigma^*$

Cadenas

Reflexión o inverso

$$u^{R}$$

$$\begin{cases} \varepsilon & \text{Si } u = \varepsilon \\ a_{n} \dots a_{1} & \text{Si } u = a_{1} \dots a_{n} \end{cases}$$

Subcadenas, Prefijos y Sufijos

- Una cadena v es subcadena de u si u = xvy. x, y son subcadenas también.
- Un **prefijo** de u es una cadena v tal que u = vw. Prefijo propio si $u \neq v$
- Un sufijo de u es una cadena v tal que u = wv. Sufijo propio si u ≠ v

Dado $\sigma = \{a, b, c, d\}$ y u = bcbaadb. Cuales son los posibles prefijos y sufijos de u

Un conjunto de cadenas Σ^* , donde Σ es un determinado alfabeto se denomina **lenguaje**.

• Si Σ es un alfabeto y $L \subseteq \Sigma^*$. Entonces L es un lenguaje de Σ

Analogía con otros lenguajes

- Lenguaje natural: El español esta conformado por un subconjunto de palabras conformado por las letras
- lenguaje de Programación: un subconjunto de palabras fromada por caracteres ASCII

Ejemplos de lenguajes en Automatas

 Conjunto de cadenas binarias con el mismo número de ceros y unos:

Ejemplos de lenguajes en Automatas

 Conjunto de cadenas binarias con el mismo número de ceros y unos:

```
\{01, 10, 0011, 0101, 1001\}
```

Conjunto de cadenas binarias cuyo valor es un primo:

Ejemplos de lenguajes en Automatas

 Conjunto de cadenas binarias con el mismo número de ceros y unos:

$$\{01, 10, 0011, 0101, 1001\}$$

Conjunto de cadenas binarias cuyo valor es un primo:

• $\{\varepsilon\}$ lenguaje unicamente con una cadena vacia

Lenguajes como conjuntos

Conjunto de palabras w tal que el predicado

• {w | w entero binario primo }

Ejemplos

- $\{0^n1^n \mid n \ge 1\}$
- $\bullet \ \left\{ 0^{i}1^{j} \mid 0 \leq i \leq j \right\}$
- $\{a^{n^2} | = 1, 2, 3, ...\}$

Propiedades sobre los lenguajes

Si L_1 y $L_2 \subseteq \Sigma^*$

- $L\emptyset = L\emptyset = \emptyset$
- $\{\varepsilon\} L = L\{\varepsilon\} = L$
- \bullet $L_1(L_2L_3) = (L_1L_2)L_3$

Aplican todas las propiedades de conjuntos como por ejemplo la Unión, intersección, diferencia y complemento.

Concatenación de lenguajes

La concatenación de dos lenguajes A y B sobre Σ , es notada como $A \cdot B$:

$$AB = \{uv : u \in A, v \in B\}$$

Dado $\Sigma = \{a, b, c\}, A = \{a, ab, ac\}, B = \{b, b^2\}$

- Cual es la concatenación AB y BA?.
- Son iguales?
- Cual es la concatenación AB y BA para $A = \{ba, bc\}$ y $B = \{b^n : n \ge 0\}$

Iteración (Potencias) de lenguajes

$$L^{0} = \varepsilon$$
$$L^{i+1} = LL^{i}$$

Clausura de Kleene

$$L^* = \bigcup_{i \ge 0} L^i$$
$$L^+ = \bigcup_{i \ge 1} L^i$$

Algunas propiedades del la Clausura de Kleene

1.
$$A^+ = A^* \cdot A = A \cdot A^*$$
.

2.
$$A^* \cdot A^* = A^*$$
.

3.
$$(A^*)^n = A^*$$
, para todo $n \ge 1$.

4.
$$(A^*)^* = A^*$$
.

5.
$$A^+ \cdot A^+ \subseteq A^+$$
.

6.
$$(A^*)^+ = A^*$$
.

7.
$$(A^+)^* = A^*$$
.

8.
$$(A^+)^+ = A^+$$
.

Demuestre la primera propiedad.

Cual es el inverso de un lenguaje?

Algunas propiedades

- $1. \ (A \cdot B)^R = B^R \cdot A^R.$
- $2. (A \cup B)^R = A^R \cup B^R.$
- $3. \ (A \cap B)^R = A^R \cap B^R.$
- 4. $(A^R)^R = A$.
- 5. $(A^*)^R = (A^R)^*$.
- 6. $(A^+)^R = (A^R)^+$.

Cual es el inverso de un lenguaje?

$$L^{-1} = \{ u \mid u^{-1} \in L \}$$

Algunas propiedades

- $1. (A \cdot B)^R = B^R \cdot A^R.$
 - $2. \ (A \cup B)^R = A^R \cup B^R.$
 - $3. (A \cap B)^R = A^R \cap B^R.$
- 4. $(A^R)^R = A$.
- 5. $(A^*)^R = (A^R)^*$.
- 6. $(A^+)^R = (A^R)^+$.

Homorfismo de dos lenguajes

$$h:\Sigma_1^* \to \Sigma_2^*$$

• $h(a_1, a_2, ..., a_n) = h(a_1)h(a_2)h(a_3)...h(a_n)$

Sea $\Sigma_1^* = \{0,1,2,\ldots,9\}$ y $\Sigma_2^* = \{0,1\}$

- h(0) =
- h(4) =
- h(9) =

Problemas y Lenguajes

En un problema se decide si una determinada cadena pertence o no a un determinado **lenguaje**

Ejemplos

- Buscar si una determinada cadena pertence al lenguaje de primos L_p
- Analizador sintactico en el lenguaje C. Decidir sobre una cadena ASCII

Lenguajes Regulares

Son todos los lenguajes que se pueden formar a partir de los lenguajes básicos: $\{\emptyset\}, \{\varepsilon\}, \{a\}, a \in \Sigma$

Si A y B son lenguajes regulares:

También son lenguajes regulares:

- A ∪ B
- A · B
- A*

Agenda

Alfabetos, Palabras y Lenguajes

2 Jerarquia de Máquinas y gramáticas

Automata finito y su gramatica asociada

Automata

- un conjunto de estados p, q, r, . . .
- función de transición
- Alfabeto de entrada a, b, c
- cabezal de lectura que se mueve en un sentido para leer secuencialmente

Automata con pila y su gramatica independiente del contexto

Automata

- incorpora una memoria LIFO
- simbolo para definir el fondo de la pila #

Automata finito birideccional y gramaticas regulares

Automata

Simbolos secuenciales que limitan los caracteres de entrada

Automata linealmente acotado y gramaticas dependiente del contexto

Automata

- Graba sobre la misma cinta de entrada
- la función de estado define el próximo paso

Maquina de Turing y Gramatica sin restricciones

Automata

- Graba sobre la misma cinta de entrada
- la función de estado define el próximo paso

Muchas gracias por su atención

