CM095 – Análise I Prof. Hudson Lima

Lista 02 - Entrega: (segunda-feira) 10/09/2018

- Resolva todos os excercícios do Capítulo 3 do livro Curso de Análise vol.I. A nota máxima desta lista é $(1+2+\cdots+N)$, onde N é o número de questões na lista.
- O valor individual das questões coincide com o número que ela corresponde. Desta forma, a questão 1 vale 1 ponto, a questão 2 vale 2 pontos, e assim por diante.
- 1. Dados a, b, c, d num corpo K, sendo b e d diferentes de zero, prove:
 - 1) $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$;
 - 2) $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$.
- 2. Dado $a\neq 0$ num corpo K, põe-se, por definição, $a^0=1$ e, se $n\in\mathbb{N},$ $a^{-n}=\frac{1}{a^n}$ ou seja, $a^{-n}=(a^n)^{-1}.$ Prove:
 - $1) \ a^m \cdot a^n = a^{m+n};$
 - 2) $(a^m)^n = a^{mn}$ sejam quais forem $m, n \in \mathbb{Z}$.
- 3. Se $\frac{x_1}{y_1} = \frac{x_2}{y_2} = \dots = \frac{x_n}{y_n}$ num corpo K, prove que, dados $a_1, a_2, \dots, a_n \in K$ tais que $a_1y_1 + a_2y_2 + \dots + a_ny_n \neq 0$, tem-se $\frac{a_1x_1 + a_2x_2 + \dots + a_nx_n}{a_1y_1 + a_2y_2 + \dots + a_ny_n} = \frac{x_1}{y_1}$.
- 4. Seja K, L corpos. Uma função $f: K \to L$ chama-se um homomorfismo quando se tem f(x+y) = f(x) + f(y) e $f(x \cdot y) = f(x) \cdot f(y)$, quaisquer que sejam $x, y \in K$.
 - (i) Dado um homomorfismo $f \colon K \to L$, prove que f(0) = 0.
 - (ii) Prove também que, ou f(x) = 0 para todo $x \in K$, ou f(1) = 1 e f é injetiva.
- 5. Seja $f: \mathbb{Q} \to \mathbb{Q}$ um homomorfismo. Prove que, ou f(x) = 0 para todo $x \in \mathbb{Q}$, ou f(x) = x para todo $x \in \mathbb{Q}$.

- 6. Verifique as associatividades da adição e multiplicação em \mathbb{Z}_2 . (*Nota*. Há dois modos de se proceder. Um requer a verificação de 16 igualdades. Outro consiste em verificar que a função quociente $f: \mathbb{Z} \to \mathbb{Z}_2$ satisfaz f(x+y) = f(x) + f(y) e $f(x \cdot y) = f(x) \cdot f(y)$. As associatividades de \mathbb{Z} implicam na de \mathbb{Z}_2 .)
- 7. Seja p um número natural primo. Para cada inteiro m, indiquemos com \overline{m} o resto da divisão de m por p. No conjunto $\mathbb{Z}_p = \{0, 1, 2, ..., p-1\}$ definamos duas operações: uma adição \oplus e uma multiplicação \odot , pondo $m \oplus n = \overline{m+n}$ e $m \odot n = \overline{m \cdot n}$. Prove que a função $f \colon \mathbb{Z} \to \mathbb{Z}_p$, definida por $f(n) = \overline{n}$, cumpre $f(m+n) = f(m) \oplus f(n)$ e $f(m \cdot n) = f(m) \odot f(n)$. Conclua que \oplus e \odot são comutativas, associativas, vale a distributividade, existem 0 e 1. Observe que dados $m, n \in \mathbb{Z}_p$, $m \odot n = 0 \Rightarrow m = 0$ ou n = 0. Conclua que \mathbb{Z}_p é um corpo.
- 8. Seja K um conjunto onde são válidos todos os axiomas de corpo, salvo a existência de inverso multiplicativo. (a.k.a. K é um anel.)
 - (i) Dado $a \neq 0$ em K, prove que a função $f \colon K \to K$, definida por f(x) = ax, é uma bijeção se, e somente se, a possui um inverso multiplicativo.
 - (ii) Mostre que f é injetiva se, e somente se, vale a lei do corte para g
 - (iii) Conclua que, se K é finito, a lei do corte é equivalente à existência de inverso para cada elemento não-nulo de K.
- 9. Explique porque as operações usuais não tornam corpos o conjunto \mathbb{Z} dos inteiros, nem o conjunto $\mathbb{Q}[t]$ dos polinômios de coeficiente racionais.
- 10. Num corpo ordenado K, prove que $a^2 + b^2 = 0 \Leftrightarrow a = b = 0$.
- 11. Seja P o conjunto dos elementos positivos de um corpo ordenado K.
 - (i) Dado um número natural n, prove que a função $f \colon P \to P$, definida por $f(x) = x^n$, é monótona crescente (isto é, $x < y \Rightarrow f(x) < f(y)$).
 - (ii) Dê um exemplo em que f não é sobrejetiva.
 - (iii) Prove que f(P) não é um conjunto limitado superiormente de K.
- 12. Sejam X um conjunto qualquer e K um corpo. Indiquemos com $\mathcal{F}(X;K)$ o conjunto de todas as funções $f:X\to K$. Definamos em

- $\mathcal{F}(X;K)$ as operações de adição e multiplicação de modo natural: dadas $f,g\colon X\to K$, as funções $f+g\colon X\to K$ e $f\cdot g\colon X\to K$ são dadas por (f+g)(x)=f(x)+g(x) e $(f\cdot g)(x)=f(x)\cdot g(x)$. Verifique quais axiomas de corpo são válidos no conjunto $\mathcal{F}(X;K)$, relativamente a estas operações.
- 13. Sejam x, y elementos positivos de um corpo ordenado K. Tem-se $x < y \Leftrightarrow x^{-1} > y^{-1}$. Prove também que $x > 0 \Leftrightarrow x^{-1} > 0$.
- 14. Seja a um elemento positivo de um corpo ordenado K. Definamos $f: \mathbb{Z} \to K$ pondo $f(n) = a^n$. (Veja o Exercício 2.) Prove que f é crescente se a > 1, decrescente se a < 1 e constante se a = 1.
- 15. Dados $x \neq 0$ num corpo ordenado K e $n \in \mathbb{N}$ qualquer, prove que $(1+x)^{2n} > 1 + 2n \cdot x$.
- 16. Se $n \in \mathbb{N}$ e x < 1 num corpos ordenado K, prove que $(1-x)^n \ge 1-nx$.
- 17. Num corpo ordenado, se a e a+x são positivos, prove que $(a+x)^n \ge a^n + n \cdot a^{n-1} \cdot x$. Enuncie e demonstre desigualdades análogas às dos Exercícios 15 e 16, com a em vez de 1.
- 18. Sejam a, b, c, d elementos de um corpo ordenado K, onde b e d são positivos. Prove que $\frac{a+c}{b+d}$ está compreendido entre o menor e o maior dos elementos $\frac{a}{b}$ e $\frac{c}{d}$. Generalize: mostre que $\frac{a_1+\cdots+a_n}{b_1+\cdots+b_n}$ está compreendido entre o menor e o maior dos elementos $\frac{a_1}{b_1}, \cdots, \frac{a_n}{b_n}$, desde que b_1, \ldots, b_n sejam todos positivos.
- 19. Dados x, y num corpo ordenado K, com $y \neq 0$, prove que $|x \cdot y^{-1}| = |x| \cdot |y|^{-1}$, ou seja $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$.
- 20. Prove por indução que, dados $x_1, ..., x_n$ num corpo ordenado K, tem-se $|x_1 + \cdots + x_n| \le |x_1| + \cdots + |x_n|$ e $|x_1 \cdot x_2 \cdot \cdots \cdot x_n| = |x_1| \cdot |x_2| \cdot \cdots + |x_n|$.
- 21. Seja K um corpo ordenado. Exprima cada um dos conjuntos abaixo como a união de intervalos:
 - (a) o conjunto dos $x \in K$ tais que |x-3| + |x+3| < 8;
 - (b) idem $|x^2 2| \le 1$;
 - (c) |2x+1| < 1;
 - (d) |x-5| < |x+1|;
 - (e) $(2x+3)^6(x-2) > 0$.

22. Prove que para todo x num corpo ordenado K, tem-se

$$|x-1| + |x-2| \ge 1$$
 e
 $|x-1| + |x-2| + |x-3| \ge 2$.

23. Dados a, b, ϵ num corpo ordenado K, prove que

$$|a - b| < \epsilon \Rightarrow |b| - \epsilon < |a| < |b| + \epsilon$$

Conclua que $|a - b| < \epsilon \Rightarrow a < |b| + \epsilon$.

- 24. Prove que, num corpo ordenado K as seguintes afirmações são equivalentes:
 - (i) K é arquimediano;
 - (ii) Z é ilimitado superior e inferiormente;
 - (iii) Q é ilimitado superior e inferiormente.
- 25. Prove que um corpo K é arquimediano se, e somente se, para todo $\epsilon > 0$ em K, existe $n \in \mathbb{N}$ tal que $\frac{1}{2^n} < \epsilon$.
- 26. Seja a > 1 num corpo arquimediano K. Considere a função $f: \mathbb{Z} \to K$, definida por $f(n) = a^n$. Prove as seguintes afirmações:
 - (i) $f(\mathbb{Z})$ não é limitado superiormente;
 - (ii) inf $f(\mathbb{Z}) = 0$.
- 27. Sejam a racional diferente de zero, e x irracional. Prove que ax e a+x são irracionais. Dê exemplos de números irracionais x, y tais que x+y e $x\cdot y$ são racionais.
- 28. Sejam a, b, c e d números racionais. Prove que $a + b\sqrt{2} = c + d\sqrt{2} \Leftrightarrow a = c$ e b = d.
- 29. Prove que o conjunto K dos números reais da forma $a+b\sqrt{2}$, com a e b racionais, é um corpo relativamente as operações de adição e multiplicação de números reais. Examine se o mesmo ocorre com números da forma $a+b\sqrt[3]{2}$, com $a,b\in\mathbb{Q}$.
- 30. Sejam a e b números racionais positivos. Prove que $\sqrt{a} + \sqrt{b}$ é racional se, e somente se, \sqrt{a} e \sqrt{b} forem ambos racionais. (Sugestão: multiplique por $\sqrt{a} \sqrt{b}$.)

- 31. Sejam $X \subset \mathbb{R}$ não-vazio, limitado superiormente, e \mathbf{c} um número real. Tem-se $\mathbf{c} \leq \sup X$ se, e somente se, para cada $\epsilon > 0$ real dado pode-se achar $x \in X$ tal que $\mathbf{c} \epsilon < x$. Enuncie e demonstre um resultado análogo com inf no lugar de sup.
- 32. Seja $X = \{\frac{1}{n}; n \in \mathbb{N}\}$. Prove que inf X = 0.
- 33. Sejam $A \subset B$ conjuntos não-vazios limitados de números reais. Prove que inf $B \leq \inf A \leq \sup A \leq \sup B$.
- 34. Sejam A, B conjuntos não-vazios de números reais, tais que $x \in A$, $y \in B \Rightarrow x \leq y$. Prove que $\sup A \leq \inf B$. Prove que $\sup A = \inf B$ se, e somente se, para todo $\epsilon > 0$ dado, podem-se obter $x \in A$ e $y \in B$ tais que $y x < \epsilon$.
- 35. Dado $A \subset \mathbb{R}$ não-vazio, limitado inferiormente, seja $-A = \{-x; x \in A\}$. Prove que -A é limitado superiormente e que $\sup(-A) = -\inf A$.
- 36. Seja $A \subset \mathbb{R}$ não-vazio, limitado. Dado c > 0, seja $c \cdot A = \{c \cdot x; x \in A\}$. Prove que $c \cdot A$ é limitado e que $\sup(c \cdot A) = c \cdot \sup A$, $\inf(c \cdot A) = c \cdot \inf A$. Enuncie e demonstre o que ocorre quando c < 0.
- 37. Dados $A, B \subset \mathbb{R}$ não-vazios e limitados, seja $A+B = \{x+y; x \in A, y \in B\}$. Prove:
 - (i) A + B é limitado;
 - (ii) $\sup(A+B) = \sup A + \sup B$;
 - (iii) $\inf(A+B) = \inf A + \inf B$;
 - (iv) Enuncie e demonstre resultados análogos supondo apenas A e B limitados superiormente (ou A e B limitados inferiormente).
- 38. Seja $X \subset \mathbb{R}$. Uma função $f \colon X \to \mathbb{R}$ chama-se limitada quando sua imagem $f(X) \subset \mathbb{R}$ é um conjunto limitado. Neste caso define-se o sup f como o supremo do conjunto f(X). (Às vezes se escreve $\sup_{x \in X} f(x)$ ou $\sup_X f$.)
 - (i) Prove que a soma de duas funções limitadas $f, g: X \to \mathbb{R}$ é uma função limitada $f + g: X \to \mathbb{R}$.
 - (ii) Mostre que $(f+g)(X) \subset f(X) + g(X)$, na notação do Exercício 37.

- (iii) Conclua que $\sup(f+g) \le \sup f + \sup g$ e que $\inf(f+g) \ge \inf f + \inf g$.
- (iv) Considerando as funções $f, g: [-1, 1] \to \mathbb{R}$, definidas por f(x) = x e g(x) = -x, mostre que se pode ter $\sup(f+g) < \sup f + \sup g$ e que $\inf(f+g) > \inf f + \inf g$.
- 39. Sejam $A \in B$ conjuntos de números reais positivos. Definamos $A \cdot B = \{x \cdot y; x \in A, y \in B\}$. Prove que se $A \in B$ forem limitados então $A \cdot B$ é limitado, sendo $\sup(A \cdot B) = \sup A \cdot \sup B$ e $\inf(A \cdot B) = \inf A \cdot \inf B$.
- 40. (i) Prove que o produto de duas funções limitadas $f, g: X \to \mathbb{R}$ é uma função limitada $f \cdot g: X \to \mathbb{R}$.
 - (ii) Mostre que $(f \cdot g)(X) \subset f(X) \cdot g(X)$.
 - (iii) Conclua que, se f, g forem ambas positivas, tem-se $\sup(f \cdot g) \leq \sup f \cdot \sup g$ e $\inf(f \cdot g) \geq \inf f \cdot \inf g$.
 - (iv) Dê exemplos em que valham as desigualdades estritas.
 - (v) Mostre também que para toda f positiva tem-se $\sup(f^2) = (\sup f)^2$.
- 41. Analise os Exercícios 39 e 40 sem as hipóteses de positividade feitas neles.
- 42. Seja $f(x) = a_0 + a_1 x + \dots + a_n x^n$ um polinômio com coeficientes inteiros.
 - (i) Se um número racional $\frac{p}{q}$ (com p e q primos entre si) é tal que $f\left(\frac{p}{q}\right)=0$, prove que p divide a_0 e que q divide a_n .
 - (ii) Conclua que, quando $a_n = 1$, as raízes reais de f são inteiras ou irracionais. Em particular, examindando $x^n a = 0$, conclua que, se um número inteiro a > 0 não possui n-ésima raiz inteira, então $\sqrt[n]{a}$ é irracional.
 - (iii) Use o resultado geral para provar que $\sqrt{2} + \sqrt[3]{2}$ é irracional.
- 43. Dado um número natural p > 1, prove que os números racionais da forma $\frac{m}{p^n}$, onde $m \in \mathbb{Z}$ e $n \in \mathbb{N}$ constituem um conjunto denso em \mathbb{R} .
- 44. Um número real r chama-se algébrico quando existe um polinômio $f(x) = a_0 + a_1 x + \cdots + a_n x^n$, não identicamente nulo, com coeficientes inteiros tal que f(r) = 0.

- (i) Prove que o conjunto dos polinômios com coeficientes inteiros é enumerável.
- (ii) Dada uma enumeração $\{f_1, f_2, ...\}$ desses polinômios não identicamente nulos, seja, para cada $n \in \mathbb{N}$, A_n o conjunto das raízes reais de f_n . Cada A_n é um conjunto finito (podendo ser vazio). O conjunto A dos números algébricos escreve-se $A = \bigcup_{n \in \mathbb{N}} A_n$. Conclua que A é enumerável. Mostre que A é denso em \mathbb{R} .
- 45. Seja X o complementar de um conjunto enumerável de números reais. Mostre que, para cada intervalo aberto (a,b), a interseção $(a,b) \cap X$ é não-enumerável. Em particular, X é denso.
- 46. Um número real chama-se transcendente quando não é algébrico. Prove que o conjunto dos números transcendentes é não-enumerável e denso em \mathbb{R} .
- 47. Prove que o conjunto dos números algébricos é um corpo. (Este exercício requer conhecimentos de Álgebra muito acima do que estamos admitindo até aqui.)
- 48. Dê exemplo de uma sequência decrescente de intervalos fechados (ilimitados) cuja interseção seja vazia e de uma sequência decrescente de intervalos (abertos) limitados cuja interseção seja vazia.
- 49. Seja $B \subset A$ conjuntos não-vazios de números reais. Suponha que A seja limitado superiormente e que, para $x \in A$, exista um $y \in B$ tal que $x \leq y$. Prove que nestas condições, tem-se sup $B = \sup A$. Enuncie e demonstre um resultado análogo para o inf.
- 50. Um corte de Dedekind é um par ordenado (A,B) onde A e B são subconjuntos não-vazios de números racionais, tais que A não possui um elemento máximo, $A \cup B = \mathbb{Q}$ e, dados $x \in A$ e $y \in B$ quaisquer, tem-se x < y.
 - (a) Prove que, num corte de Dedekind (A, B), vale sup $A = \inf B$.
 - (b) Seja \mathcal{D} o conjunto dos cortes de Dedekind. Prove que existe uma bijeção $f \colon \mathcal{D} \to \mathbb{R}$.
- 51. Sejam X, Y conjuntos não-vazios e $f: X \times Y \to \mathbb{R}$ uma função limitada. Para cada $x_0 \in X$ e cada $y_0 \in Y$, ponhamos $s_1(x_0) = \sup\{f(x_0, y); y \in Y\}$ e $s_2(y_0) = \sup\{f(x, y_0); x \in X\}$. Isto define funções $s_1: X \to \mathbb{R}$

e $s_2: Y \to \mathbb{R}$. Prove que se tem $\sup_{x \in X} s_1(x) = \sup_{y \in Y} s_2(y)$. Em outras palavras,

$$\sup_{x} [\sup_{y} f(x,y)] = \sup_{y} [\sup_{x} f(x,y)].$$

52. Enuncie e prove um resultado análogo ao anterior com inf em vez de sup. Considere, em seguida, o caso "misto" e prove que

$$\sup_{y} [\inf_{x} f(x, y)] \le \inf_{x} [\sup_{y} f(x, y)].$$

Dê um exemplo onde de tem < na desigualdade acima.

53. Sejam x, y números reais positivos. Prove que se tem

$$\sqrt{xy} \le \frac{x+y}{2}.$$

- 54. A desigualdade entre a média aritmética e a média geométrica, vista no exercício anterior, vale para n números reais positivos $x_1, x_2, ..., x_n$. Sejam $G = \sqrt[n]{x_1x_2\cdots x_n}$ e $A = \frac{x_1+x_2+\cdots +x_n}{n}$. Tem-se $G \leq A$. Isto é evidente quando $x_1 = x_2 = \cdots = x_n$. Para provar a desigualdade no caso geral, considere a operação que consiste em substituir o menor dos números dados, digamos x_i e o maior deles, digamos x_j , respectivamente por $x_i' = \frac{x_i \cdot x_j}{G}$ e $x_j' = G$. Isto não altera a média geométrica e, quanto à média aritmética, ela não aumenta, pois, como é fácil de se ver, $x_i' + x_j' \leq x_i + x_j$. Prove que, repetida esta operação no máximo n vezes, obtemos n números todos iguais a G e, portanto, sua média aritmética é G. Como em cada operação a média aritmética não aumentou, conclua que $G \leq A$, ou seja, $\sqrt[n]{x_1x_2\cdots x_n} \leq \frac{x_1+x_2+\cdots +x_n}{n}$.
- 55. Seja K um corpo ordenado completo. Indique com 0' e 1' o zero e a unidade de K. Para $n \in \mathbb{N}$, sejam $n' = n \cdot 1' = 1' + \dots + 1'$ (n vezes) e (-n)' = -n'. Definamos uma função $f \colon \mathbb{R} \to K$ pondo $f(\frac{p}{q}) = \frac{p'}{q'}$ para todo $\frac{p}{q} \in \mathbb{Q}$ e, para x irracional, seja $f(x) = \sup \left\{ \frac{p'}{q'} \in K; \frac{p}{q} < x \right\}$. Prove que f é um homomorfismo sobrejetivo e conclua que f é uma bijeção, ou seja um isomorfismo de \mathbb{R} sobre K.
- 56. Seja $f: \mathbb{R} \to \mathbb{R}$ um isomorfismo de \mathbb{R} sobre si mesmo. Prove que f = identidade. Conclua que se K e L são corpos ordenados completos, existe um único isomorfismo de K sobre L.

- 57. Verifique que $f: \mathbb{R} \to (-1,1)$, definida por $f(x) = \frac{x}{\sqrt{1+x^2}}$, é uma bijeção de \mathbb{R} sobre o intervalo (-1,1).
- 58. Um conjunto G de números reais chama-se um grupo aditivo quando $0 \in G$ e $x, y \in G \Rightarrow x y \in G$. Então, $x \in G \Rightarrow -x \in G$ e $x, y \in G \Rightarrow x + y \in G$. Seja então $G \subset \mathbb{R}$ um grupo aditivo de números reais. Indiquemos com G^+ o conjunto dos números reais positivos pertencentes a G. Excetuando o caso trivial $G = \{0\}$, G^+ é não-vazio. Suponhamos pois $G \neq \{0\}$. Prove que:
 - (i) Se inf $G^+ = 0$, então G é denso em \mathbb{R} ;
 - (ii) Se inf $G^+ = a > 0$, então $a \in G^+$ e $G = \{0, \pm a, \pm 2a, ...\}$. [Sugestão: para provar (ii) note primeiro que se fosse $a \notin G^+$ existiriam $g, h \in G^+$ com $a < h < g < a + \frac{a}{2}$, donde $\frac{a}{2} > g h \in G^+$, uma contradição. Em seguida, observe que todo $g \in G$ se escreve sob a forma $g = a \cdot q + r$, com $q \in \mathbb{Z}$, sendo $0 \le r < a$. Veja que $r = g a \cdot q \in G$, pois q é inteiro.]
 - (iii) Conclua que se α é irracional, os números reais da forma $m + n\alpha$, com $m, n \in \mathbb{Z}$, constituem um subconjunto denso em \mathbb{R} .
- 59. Sejam $f, g: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ e $\phi, \psi: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ as funções definidas por f(x,y) = 3x y, $g(x,y) = (x-1)^2 + (y+1)^2 9$, $\phi(x,y,z) = 3z$, $\psi(x,y,z) = x^2 + y^2 z$. Interpretando (x,y) como as coordenadas cartesianas de um ponto do plano \mathbb{R}^2 e (x,y,z) como coordenadas de um ponto do espaço \mathbb{R}^3 , descreva geometricamente os conjuntos $f^{-1}(0)$, $g^{-1}(0)$, $\phi^{-1}(0)$ e $\psi^{-1}(0)$.
- 60. Seja a um número real positivo. Dado um número racional p/q (onde $p \in \mathbb{Z}$ e $q \in \mathbb{N}$), defina a potência de base a e expoente racional p/q como $a^{p/q} = \sqrt[q]{a^p}$. Prove que:
 - (i) Para quaisquer $r, s \in \mathbb{Q}$ tem-se $a^r \cdot a^s = a^{r+s}$ e $(a^r)^s = a^{r \cdot s}$;
 - (ii) Para todo $r \in \mathbb{Q}$, a função $f: (0, +\infty) \to (0, +\infty)$, dada por $f(x) = x^r$, é uma bijeção crescente;
 - (iii) A função $g \colon \mathbb{Q} \to \mathbb{R}$, definida por $g(r) = a^r$, (onde a é um número real positivo fixado) é crescente se a > 1, e decrescente se 0 < a < 1.