

Yapay Zeka I: Veri Bilimi ve Makine Öğrenmesine Giriş Sertifika Programı

Doç. Dr. Taner Arsan H. Fuat Alsan, PhD(c) Sena Kılınç, PhD(c)

Train/Test Split

- Veri seti iki alt gruba ayrılmıştır: eğitim seti ve test seti
- Eğitim seti (Training set):
 - Makine öğrenimi modelini eğitmek için kullanılır
 - Model bu küme içindeki desenleri (pattern) ve ilişkileri öğrenir
- Test seti (Testing set):
 - Eğitim sırasında kullanılmaz
 - Modelin performansını yeni, görülmemiş veriler üzerinde test etmek için kullanılır
- Genelleme (Generalization): Modelin yeni, görülmemiş verilere ne kadar iyi sonuçlar verdiği
- K-Fold Cross-Validation: çoklu train/test setleri

Underfitting, Overfitting

Overfitting:

- Model eğitim verilerinde son derece iyi performans gösterir ancak yeni, görülmemiş verilerde zayıf performans gösterir (genelleştirilmemiş)
- Model gereğinden fazla karmaşıktır ve fazla parametre içerir

Underfitting:

- Model çok basit kalır ve verideki desenleri (pattern) öğrenemez
- Model hem eğitim hem test kümesinde zayıf performans gösterir
- Seçilen model veriyi öğrenmek için fazlaca basittir

Underfitting, Overfitting (Görsel)

Underfitting

Hem eğitim hem de test hatası yüksektir

Model, verileri öğrenemeyecek kadar basit

Daha gelişmiş bir model gereklidir

Optimal Fitting

Hem eğitim hem de test hatası düşüktür

Model verileri iyi öğrenir ve genelleme yapabilir

En iyi sonuçtur

Overfitting

Eğitim hatası düşük ama test hatası yüksektir

Model verileri iyi öğreniyor ancak genelleştiremiyor

Model çok karmaşık veya genelleme yapmak için yeterli veri yok

Naïve Bayes Classifier

- Sınıflandırma için kullanılır
- Bayes Teoremi: $P(y|x) = \frac{P(x|y)P(y)}{P(x)}$
 - P(y|x): x özellikleri verildiğinde y sınıfı olasılığı
 - P(x|y): y sınıfı verildiğinde x özellikleri olasılığı
 - P(y): y sınıfının olasılığı
 - P(x): x özelliklerinin olasılığı
- Naïve varsayım: özellikler birbirinden bağımsızdır
 - $P(y|x_1, x_2, x_3, ..., x_n) = P(y|x_1)P(y|x_2) ... P(y|x_n)$
- Sklearn:
 - GaussianNB

Support Vector Machine (SVM)

- SVM, hedefin bir hiperdüzlem (hyperplane) kullanarak veri noktalarını iki sınıfa ayırmak olduğu ikili sınıflandırma görevleri için icat edilmiştir.
- SVM, hiperdüzlem ile her sınıfın en yakın veri noktaları arasındaki mesafe olan maksimum uzaklığa (maximum margin) hesaplar
- Kernel Trick: Bir çekirdek fonksiyonu (kernel function) kullanarak girdi özelliklerini dönüştürerek doğrusal olmayan karar sınırlarını idare edebilir
 - polynomial, radial basis function (RBF), sigmoid, vb.
- Sklearn:
 - SVC (Support Vector Classifier)
 - SVR (Support Vector Regressor)

SVM (Görsel)

SVM Kernel Trick

Decision Trees

- Karar Ağaçları (Decision Trees), düğümlerin (nodes) kararları veya test koşullarını temsil ettiği ve dalların olası sonuçları temsil ettiği hiyerarşik yapıları içerir.
- Her düğümde veriyi bölmek için en iyi özellik ve eşik değerini belirlemek için bir bölme kriteri kullanır.
 - Gini impurity (sınıflandırma)
 - mean squared error (regresyon)
- Sklearn:
 - DecisionTreeClassifier
 - DecisionTreeRegressor

Decision Trees (Görsel)

Ensemble Modelleri

Bagging (Bootstrap Aggregating)

Ensemble Modelleri

Boosting

Random Forest

- Rastgele Orman (Random Forest), birden fazla karar ağacı (decision tree) oluşturan bir ensemble öğrenme tekniğidir
- Her karar ağacı, bootstrap örnekleme kullanılarak verinin rastgele bir alt kümesi üzerinde bağımsız olarak eğitilir (bagging ensemble model)
- feature importance ile özellik seçimi (feature selection) yapabilir
- Sklearn:
 - RandomForestClassifier
 - RandomForestRegressor

Random Forest

İkili Sınıflandırma (Binary Classification)

- İkili sınıflandırmada, etiketler 0 ve 1'dir. Gerçek değerler veri kümesinden gelirken, tahmin değerleri modelden gelir.
- TP (true positive): Gerçek sınıf 1 ve biz 1 olarak tahmin ediyoruz
- TN (true negative): Gerçek sınıf 0 ve biz 0 olarak tahmin ediyoruz
- FP (false positive): Gerçek sınıf 0 fakat biz 1 olarak tahmin ediyoruz
 - Type I Error
- FN (false negative): Gerçek sınıf 1 fakat biz 0 olarak tahmin ediyoruz
 - Type II Error

Sınıflandırma Metrikleri

•
$$precision = \frac{TP}{TP + FP}$$

•
$$recall = sensitivity = \frac{TP}{TP + FN}$$

•
$$F1 \ score = 2 * \frac{precision * recall}{precision + recall}$$

•
$$specificity = \frac{TN}{TN + FP}$$

•
$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Positive Predictive Value (PPV)

True Positive Rate (TPR)

Harmonic Mean of PPV and TPR

True Negative Rate (TNR)

Karmaşıklık Matrisi (Confusion Matrix)

	Predicted O	Predicted 1
Actual O	TN	FP
Actual 1	FN	TP

Karmaşıklık Matrisi (Confusion Matrix)

Oversampling, Undersampling

- Aşırı Örnekleme (Oversampling): Azınlık sınıfındaki örneklerin sayısını artırarak model eğitimindeki önyargı riskini azaltmayı amaçlar
 - SMOTE (Synthetic Minority Oversampling Technique)
- Azaltma Örnekleme (Undersampling): Çoğunluk sınıfındaki örneklerin sayısını azaltarak modellerin azınlık sınıfına odaklanmasına ve tahmin performansını artırmasına yardımcı olur
 - Veri kümesi küçükse genelde tercih edilmez

Veri Bilimi ve Makine Öğrenmesi için Genel İş Akışı

- Veri topla/oluştur
- Veriyi oku ve görselleştir (EDA Keşifsel Veri Analizi)
- Veriyi ön işle (ölçeklendirme, eksik/dengesiz veri düzenleme vb.)
- Özellikleri seç (boyut indirgeme vb.)
- Modeli seç (Doğrusal regresyon, Rastgele Orman, SVM vb.)
- Modelin için en iyi hiperparametreleri seç (Grid search vb.)
- Görevin için değerlendirme metriklerini seç (F1 vb.)
- Eğitim verileri ile modeli eğit (fit), test verilerinde tahmin yap
- Sonuçları değerlendir ve yorum yap