PRACTICAL 12

#Area Graph

#Scatter plots

import numpy as np import matplotlib.pyplot as plt plt.scatter(x=range(-10, 38, 1), y=range(770, 60, -15)-np.random.randn(48)*40, s=200,

alpha=0.6)

plt.xlabel('Temperature(°C)', size=12) plt.ylabel('Volume per store', size=12) plt.show()

PRACTICAL 12

#Kernel Density Estimate

import sys
import os
import pandas as pd
import matplotlib as ml
import numpy as np
from matplotlib import pyplot as plt
ml.style.use('ggplot')
figl=plt.figure(figsize=(5, 5))
ser = pd.Series (np.random.randn(1000))
ser.plot(figsize=(5, 5), kind='kde')
sPicNameOut1='/content/kde.png'
plt.savefig(sPicNameOut1,dpi=600)
plt.tight_layout()
plt.show()

#Scatter Plot Matrix

import sys import os import pandas as pd import matplotlib as ml import numpy as np from matplotlib import pyplot as plt fig2=plt.figure(figsize=(5, 5)) from pandas.plotting import scatter matrix df = pd.DataFrame(np.random.rand(100, 5),columns=['Y2014', 'Y2015','2016','2017','2018']) scatter matrix(df, alpha=0.2, figsize=(5,5), diagonal='kde') sPicNameOut2='/content/scatter matrix.png' plt.savefig(sPicNameOut2, dpi=600) plt.tight layout() plt.show()

PRACTICAL 12

#Parallel Coordinates

import sys import os import pandas as pd import matplotlib as ml import numpy as np from matplotlib import pyplot as plt from pandas.plotting import parallel coordinates plt.figure(figsize=(5,5)) sDataFile='/content/iris1.csv' data = pd.read csv(sDataFile) parallel coordinates (data, 'Name') sPicNameOut2='/content/parallel coordinates.png' plt.savefig(spicNameOut2, dpi=600) plt.tight layout()

#Autocorrelation Plot

import sys import os

plt.show()

import pandas as pd

import matplotlib as ml

import numpy as np

from matplotlib import pyplot as plt

from pandas.plotting import autocorrelation plot

plt.figure(figsize=(5,5))

data = pd.Series (0.7* np.random.rand(1000) + 1)

0.3* np.sin(np.linspace(-9* np.pi, 9 * np.pi, num=1000)))

autocorrelation plot(data)

spicNameOut2='/content/autocorrelation plot.png'

plt.savefig(sPicNameOut2,dpi=600)

plt.tight layout()

plt.show()

