Newton-Cotes Methods for $\int_a^b f(x)dx$

- Approximate f(x) by a polynomial of degree n
- Integrate the interpolating polynomial
- Evaluate f(x) at n+1 evenly-spaced points
- Can we reduce the error further by consider other choices of points and approaches?

Can we do better if we allow different points?

Gaussian Quadrature Rules

- Choose values
 - $-x_0, x_1, ..., x_{n-1}$ in [a,b]
 - coefficients c_0 , c_1 , ..., c_{n-1}
- to minimize expected error when approximating $\int_a^b f(x)dx$ with $\sum_{i=0}^{n-1} c_i f(x_i)$
- We want to be exact for as many degrees of polynomials as possible

Gaussian Quadrature Rules (con't)

- We have 2n unknowns
- We can impose 2n conditions: being exact for polynomials of degree 2n-1
 - -1, x, x^2 , x^3 , ..., x^{2n-1}
 - And any linear combination of them.

Consider a special case: restrict the interval to [-1,1] and choose n=3

•
$$\int_{-1}^{1} f(x)dx = c_0 f(x_0) + c_1 f(x_1) + c_2 f(x_2)$$

- Our approximating polynomial can then be of degree at most 5:
- $p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5$
- There are now more unknowns (a_k). How does this help?

•
$$\int_{-1}^{1} f(x)dx = \int_{-1}^{1} (a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5) dx$$

Which leads to

• Approximate $\int_{-1}^{1} f(x) dx$ by

$$\frac{5}{9}f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}f(0) + \frac{5}{9}f\left(\sqrt{\frac{3}{5}}\right)$$

Example:
$$\int_{-1}^{1} x \sin x \, dx$$

- Actual solution: $(-x \cos(x) + \sin(x))_{-1}^{1} = 0.6023$
- Simpson's Rule: 2/6(f(-1)+4f(0)+f(1)) = 0.5610
- Gaussian Quadrature:

$$\frac{5}{9}f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}f(0) + \frac{5}{9}f\left(\sqrt{\frac{3}{5}}\right) = 0.6020$$

How useful is this?

- Only works for interval [-1,1]
- Need to solve a system of nonlinear equations to define unknowns c_k and x_k .

First: the interval

Any interval x ∈[a,b] can be mapped onto
 t∈ [-1,1] by noting that:

$$x = \frac{a}{2}(1-t) + \frac{b}{2}(1+t)$$

Rewrite the interval and update the variable

Example: Integrate $\int_1^{1.5} e^{-x^2} dx$

- Exact (to 7 decimals) = 0.1093643
- Convert the interval to [-1,1] and change variable
- Use our 3-point Gaussian Quadrature rule

What about solving the system of unknowns?

 The x_k values are actually the roots of the Legendre polynomials, defined recursively as:

$$-P_0(x) = 1$$

$$-P_1(x) = x$$

$$-P_{n+1}(x) = \frac{2n+1}{n+1}xP_n(x) + \frac{n}{n+1}P_{n-1}(x)$$

For example:

$$-P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$$
 and $P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x$

Legendre Polynomials

- Roots (our x_k points) are well-established
- The coefficients c_k can be calculated as:

$$c_k = \int_{-1}^{1} \prod_{\substack{j=0 \ j \neq k}}^{n-1} \frac{x - x_j}{x_k - x_j} dx$$

- These values are also well-established and are accessible.
- These polynomials have many very interesting properties (that we won't get into)

What about the error using the Gaussian quadrature approach?

- The error is proportional to |f⁽²ⁿ⁾(x)|
- So, when using n=3 points, it will be proportional to |f⁽⁶⁾(x)|
- Recall:
 - Simpson's Rules error was proportional to $|f^{(4)}(x)|$
 - Midpoint/Trapezoid's error proportional to $|f^{(2)}(x)|$
- Will be exact for more polynomials than the other approaches, using the same number of points
 - Does not necessarily mean it will always be more accurate for higher order or non-polynomial functions