EJEMPLO 3.2.10 Illustración de la propiedad 3.2.5

Mediante el cálculo directo se puede verificar que para $A = \begin{pmatrix} 1 & -1 & 2 \\ 5 & 7 & 3 \\ 1 & -1 & 2 \end{pmatrix}$ [dos renglones iguales] $y B = \begin{pmatrix} 5 & 2 & 2 \\ 3 & -1 & -1 \\ -2 & 4 & 4 \end{pmatrix}$ [dos columnas iguales], det $A = \det B = 0$.

P Propiedad 3.2.6

Si un renglón (columna) de A es un múltiplo escalar de otro renglón (columna), entonces det A = 0.

Demostración

Sea $(a_{i1}, a_{i2}, \dots, a_{in}) = c(a_{i1}, a_{i2}, \dots, a_{in})$. Entonces por la propiedad 3.2.2,

$$\det A = c \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \cdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = 0 \qquad \text{(de la propiedad 3.2.5)}$$

EJEMPLO 3.2.11 Illustración de la propiedad 3.2.6

$$\begin{vmatrix} 2 & -3 & 5 \\ 1 & 7 & 2 \\ -4 & 6 & -10 \end{vmatrix} = 0 \text{ ya que el tercer renglón es igual a } -2 \text{ veces el primero.}$$

EJEMPLO 3.2.12 Otra ilustración de la propiedad 3.2.6

$$\begin{vmatrix} 2 & 4 & 1 & 12 \\ -1 & 1 & 0 & 3 \\ 0 & -1 & 9 & -3 \\ 7 & 3 & 6 & 9 \end{vmatrix} = 0$$
 porque la cuarta columna es igual a tres veces la segunda.

P Propiedad 3.2.7

Si se suma un múltiplo escalar de un renglón (columna) de A a otro renglón (columna) de A, entonces el determinante no cambia.