# Lecture 3. Linear Regression

COMP90051 Statistical Machine Learning

Lecturer: Jean Honorio



#### This lecture

- Linear regression
  - Simple model (convenient maths at expense of flexibility)
  - \* Often needs less data, "interpretable", lifts to non-linear
  - Derivable under all Statistical Schools: Lect 2 case study
    - This week: Frequentist + Decision theory derivations
    - \*\*Later in semester: Bayesian approach
  - Convenient optimisation: Training by "analytic" (exact) solution
- Basis expansion: Data transform for more expressive models

# Linear Regression via Decision Theory

A warm-up example

#### Example: Predict humidity from temperature

| Temperature   | Humidity |
|---------------|----------|
| Training Data |          |
| 85            | 85       |
| 80            | 90       |
| 83            | 86       |
| 70            | 96       |
| 68            | 80       |
| 65            | 70       |
| 64            | 65       |
| 72            | 95       |
| 69            | 70       |
| 75            | 80       |
| TEST DATA     |          |
| 75            | 70       |



In regression, the task is to predict numeric response (aka dependent variable) from features (aka predictors or independent variables)

Assume a linear relation: H = a + bT(H - humidity; T - temperature; a, b - parameters)

#### Example: Problem statement

- The model is H = a + bT
- Fitting the model =
   finding "best" a, b
   values for data at
   hand
- Important criterion: minimise the sum of squared errors (aka residual sum of squares)



## Example: Minimise Sum Squared Errors

To find a, b that minimise  $L = \sum_{i=1}^{10} (H_i - (a + b T_i))^2$  set derivatives to zero:

$$\frac{\partial L}{\partial a} = -2 \sum_{i=1}^{10} (H_i - a - b \, T_i) = 0$$

if we know b, then  $\hat{a} = \frac{1}{10} \sum_{i=1}^{10} (H_i - b T_i)$ 

$$\frac{\partial L}{\partial b} = -2\sum_{i=1}^{10} (H_i - a - b \, T_i) T_i = 0$$

if we know a, then  $\hat{b} = \frac{1}{\sum_{i=1}^{10} T_i^2} \sum_{i=1}^{10} (H_i - a) T_i$ 

#### High-school optimisation:

- Write derivative
- Set to zero
- Solve for model
- (Check 2<sup>nd</sup> derivatives)

#### **Example: Analytic solution**

- We have two equations and two unknowns a, b
- Rewrite as a system of linear equations

$$\begin{pmatrix} 10 & \sum_{i=1}^{10} T_i \\ \sum_{i=1}^{10} T_i & \sum_{i=1}^{10} T_i^2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{10} H_i \\ \sum_{i=1}^{10} T_i H_i \end{pmatrix}$$

- Analytic solution: a = 25.3, b = 0.77
- (Solve using numpy.linalg.solve)

#### More general decision rule

• Adopt a linear relationship between response  $y \in \mathbb{R}$  and an instance with features  $x_1, \dots, x_m \in \mathbb{R}$ 

$$\hat{y} = w_0 + \sum_{i=1}^m x_i w_i$$

Here  $w_0, ..., w_m \in \mathbb{R}$  denote weights (model parameters)

• Trick: add a dummy feature  $x_0 = 1$  and use vector notation

$$\hat{y} = \sum_{i=0}^{m} x_i w_i = \mathbf{x}' \mathbf{w}$$

#### Mini Summary

- Linear regression
  - \* Simple, effective, "interpretable", basis for many approaches
  - Decision-theoretic frequentist derivation

#### Next:

Frequentist derivation; Solution/training approach

# Linear Regression via Frequentist Probabilistic Model

Max-Likelihood Estimation

#### Data is noisy!

<u>Example</u>: predict mark for Statistical Machine Learning (SML) from mark for Intro ML (IML aka KT)





\* synthetic data:)

## Regression as a probabilistic model



- Assume a probabilistic model:  $y = x'w + \varepsilon$ 
  - \* Here x, y and  $\varepsilon$  are r.v.'s
  - \* Variable  $\varepsilon$  encodes noise
- Next, assume Gaussian noise (indep. of x):  $\varepsilon \sim \mathcal{N}(0, \sigma^2)$  thus:  $y \sim \mathcal{N}(x'w, \sigma^2)$

• Recall that  $\mathcal{N}(z; \mu, \sigma^2) \equiv \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(z-\mu)^2}{2\sigma^2}\right)$ 

this is a squared error!

Therefore

$$p_{\boldsymbol{w},\sigma^2}(y|\boldsymbol{x}) = \mathcal{N}(y; \boldsymbol{x}'\boldsymbol{w}, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y - \boldsymbol{x}'\boldsymbol{w})^2}{2\sigma^2}\right)$$

#### Parametric probabilistic model



Using simplified notation, discriminative model is:

$$p(y|\mathbf{x}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y - \mathbf{x}'\mathbf{w})^2}{2\sigma^2}\right)$$

• Unknown parameters:  $\mathbf{w}, \sigma^2$ 

- Given observed data  $\{(x_1, y_1), ..., (x_n, y_n)\}$ , we want to find parameter values that "best" explain the data
- Maximum-likelihood estimation: choose parameter values that maximise the probability of observed data

#### Maximum likelihood estimation

Assuming independence of data points, the probability of data is

$$p(y_1, ..., y_n | \mathbf{x}_1, ..., \mathbf{x}_n) = \prod_{i=1}^n p(y_i | \mathbf{x}_i)$$

- For  $p(y_i|\mathbf{x}_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i x_i'w)^2}{2\sigma^2}\right)$
- "Log trick": Instead of maximising this quantity, we can maximise its logarithm

$$\sum_{i=1}^{n} \log p(y_i|x_i) = -\frac{1}{2\sigma^2} \left[ \sum_{i=1}^{n} (y_i - x_i'w)^2 \right] + C$$

here C doesn't depend on w (it's a constant)

the sum of squared errors!

 Under this model, maximising log-likelihood as a function of w is equivalent to minimising the sum of squared errors

## Method of least squares

- Training data:  $\{(x_1, y_1), ..., (x_n, y_n)\}$ . Note bold face in  $x_i$
- For convenience, place instances in rows (so attributes go in columns), representing training data as an  $n \times m$  matrix  $\pmb{X}$ , and n vector  $\pmb{y}$
- Probabilistic model/decision rule assumes  $y \approx Xw$
- To find w, minimise the sum of squared errors

$$L = \sum_{i=1}^{n} (y_i - x_i'w)^2$$

$$= ||y - Xw||^2$$

$$= (y - Xw)'(y - Xw) \quad \text{since } ||u||^2 = u'u$$

$$= y'y - 2y'Xw + w'X'Xw$$

## Method of least squares

• To find w, minimise the sum of squared errors

$$L = y'y - 2y'Xw + w'X'Xw$$

Setting gradient to zero

$$\nabla L = \left[ \frac{\partial L}{\partial w_1}, \dots, \frac{\partial L}{\partial w_m} \right]' = -2X'y + 2X'Xw = \mathbf{0}$$

Solving for w yields

$$\widehat{\boldsymbol{w}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$$

#### Analytic solution:

- Write gradient
- Set to zero
- Solve for model
- This system of equations called the normal equations
- System is well defined only if the inverse exists

# Bayesian derivation?

- Later in the semester: return of linear regression
- Fully Bayesian, with a posterior:
  - Bayesian linear regression
- Bayesian (MAP) point estimate of weight vector:
  - Adds a penalty term to sum of squared losses
  - \* Equivalent to  $L_2$  "regularisation" to be covered next week
  - Called: ridge regression

#### Mini Summary

- Linear regression
  - Simple, effective, "interpretable", basis for many approaches
  - Probabilistic frequentist derivation
  - Solution by normal equations

Later in semester: Bayesian approaches

Next: Basis expansion for non-linear regression

# **Basis Expansion**

Extending the utility of models via data transformation

## Basis expansion for linear regression

- Real data is likely to be non-linear
- What if we still wanted to use a linear regression?
  - Simple, easy to understand, computationally efficient, etc.
- How to marry non-linear data to a linear method?



If you can't beat'em, join'em

#### Transform the data

- The trick is to transform the data: Map data into another features space, s.t. data is linear in that space
- Denote this transformation  $\varphi \colon \mathbb{R}^m \to \mathbb{R}^k$ . If x is the original set of features,  $\varphi(x)$  denotes new feature set
- Example: suppose there is just one feature x, and the data is scattered around a parabola rather than a straight line



## Example: Polynomial regression

- Define
  - \*  $\varphi_1(x) = x$
  - \*  $\varphi_2(x) = x^2$



• Next, apply linear regression to  $\varphi_1$ ,  $\varphi_2$ 

$$y = w_0 + w_1 \varphi_1(x) + w_2 \varphi_2(x) = w_0 + w_1 x + w_2 x^2$$

and here you have quadratic regression

• More generally, obtain polynomial regression if the new set of attributes are powers of x

#### Example: linear classification

- Example binary classification problem: Dataset not linearly separable
- Define transformation as

$$\varphi_i(x) = ||x - z_i||$$
, where  $z_i$  some pre-defined constants

• Choose  $\mathbf{z}_1 = [0,0]'$ ,  $\mathbf{z}_2 = [0,1]'$ ,  $\mathbf{z}_3 = [1,0]'$ ,  $\mathbf{z}_4 = [1,1]'$ 



#### Radial basis functions

- Previous example: motivated by approximation theory where sums of RBFs approx. functions
- A radial basis function is a function of the form  $\varphi(x) = \psi(\|x z\|)$ , where z is a constant

- Examples:
- $\varphi(\mathbf{x}) = \|\mathbf{x} \mathbf{z}\|$
- $\varphi(\mathbf{x}) = \exp\left(-\frac{1}{\sigma}\|\mathbf{x} \mathbf{z}\|^2\right)$



## Challenges of basis expansion

- Basis expansion can significantly increase the utility of methods, especially, linear methods
- In the above examples, one limitation is that the transformation needs to be defined beforehand
  - Need to choose the size of the new feature set
  - \* If using RBFs, need to choose  $z_i$
- Regarding  $z_i$ , one can choose uniformly spaced points, or cluster training data and use cluster centroids
- Another popular idea is to use training data  $z_i \equiv x_i$ 
  - \* E.g.,  $\varphi_i(x) = \psi(||x x_i||)$
  - Nowever, for large datasets, this results in a large number of features → computational hurdle



#### Further directions

- There are several avenues for taking the idea of basis expansion to the next level
  - Will be covered later in this subject
- One idea is to *learn* the transformation  $\varphi$  from data
  - E.g., Artificial Neural Networks
- Another powerful extension is the use of the kernel trick
  - \* "Kernelised" methods, e.g., kernelised perceptron
- Finally, in sparse kernel machines, training depends only on a few data points
  - \* E.g., SVM

#### Mini Summary

- Basis expansion
  - Extending model expressiveness via data transformation
  - Examples for linear and logistic regression

#### Next time:

First/second-order iteration optimisation;

Logistic regression - linear probabilistic model for classification.