Глава 18

Ядро и образ на линейно изображение, теорема за ранга и дефекта. Обратим линеен оператор

Определение 18.1. Ако $\varphi: U \to V$ е линейно изображение на пространства над поле F, то множеството

$$\ker(\varphi) = \{ u \in U \,|\, \varphi(u) = \overrightarrow{\mathcal{O}}_V \}$$

се нарича ядро на φ , а множеството

$$\operatorname{im}(\varphi) = \{ \varphi(u) \in V \mid u \in U \}$$

ce нарича образ на φ .

Твърдение 18.2. Ако $\varphi: U \to V$ е линейно изображение, то ядрото $\ker(\varphi)$ на φ е подпространство на U, а образът $\operatorname{im}(\varphi)$ на φ е подпространство на V.

Доказателство. Ако $a_1,\dots,a_n\in\ker(\varphi),$ то линейността на φ и свойствата на нулевия вектор на V дават

$$\varphi(x_1a_1 + \ldots + x_na_n) = x_1\varphi(a_1) + \ldots + x_n\varphi(a_n) = x_1\overrightarrow{\mathcal{O}}_V + \ldots + x_n\overrightarrow{\mathcal{O}}_V = \overrightarrow{\mathcal{O}}_V$$

за произволни $x_1,\ldots,x_n\in F$. Това доказва, че $x_1a_1+\ldots+x_na_n\in \ker(\varphi)$ и $\ker(\varphi)$ е подпространство на U.

За произволни $u_1,\ldots,u_n\in U$ и $x_1,\ldots,x_n\in F$ е изпълнено

$$x_1\varphi(u_1) + \ldots + x_n\varphi(u_n) = \varphi(x_1u_1 + \ldots + x_nu_n) \in \operatorname{im}(\varphi),$$

съгласно линейността на φ . С това установяваме, че $\operatorname{im}(\varphi)$ е подпространство на V.

Определение 18.3. Ако $\varphi: U \to V$ е линейно изображение, то размерността $d(\varphi) = \dim \ker(\varphi)$ на ядрото $\ker(\varphi)$ на φ се нарича дефект на φ , а размерността $\operatorname{rk}(\varphi) = \dim \operatorname{im}(\varphi)$ на образа $\operatorname{im}(\varphi)$ на φ се нарича ранг на φ .

Твърдение 18.4. Нека $\varphi: U \to V$ е линейно изображение и е = (e_1, \ldots, e_n) е базис на U. Тогава образът

$$\operatorname{im}(\varphi) = l(\varphi(e_1), \dots, \varphi(e_n))$$

на φ се поражда от образите $\varphi(e_i)$ на базисните вектори e_i на U. Още повече, ако V е крайномерно пространство, $f=(f_1,\ldots,f_m)$ е базис на V и $A\in M_{m\times n}(F)$ е матрицата на φ спрямо базисите е и f, то рангът

$$rk(\varphi) = rk(A)$$

на φ съвпада с ранга на A.

Доказателство. Произволен вектор от $\operatorname{im}(\varphi)$ има вида $\varphi(u)$ за някакъв вектор $u \in U$. Изразяваме

$$u = ex = (e_1, \dots, e_n) \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \sum_{i=1}^n x_i e_i$$

като линейна комбинация на базисните вектори e_1, \ldots, e_n на U. Прилагаме Лема 16.1 и получаваме, че

$$\varphi(u) = \varphi(ex) = \varphi(e)x = (\varphi(e_1), \dots, \varphi(e_n)) \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \in l(\varphi(e_1), \dots, \varphi(e_n))$$

е линейна комбинация на $\varphi(e_1),\ldots,\varphi(e_n)$ и $\operatorname{im}(\varphi)\subseteq l(\varphi(e_1),\ldots,\varphi(e_n))$. Обратното включване $l(\varphi(e_1),\ldots,\varphi(e_n))\subseteq\operatorname{im}(\varphi)$ се дължи на $\varphi(e_1),\ldots,\varphi(e_n)\in\operatorname{im}(\varphi)$ и на това, че $\operatorname{im}(\varphi)$ е подпространство на V. Това доказва

$$\operatorname{im}(\varphi) = l(\varphi(e_1), \dots, \varphi(e_n)).$$

Рангът на φ е

$$\operatorname{rk}(\varphi) = \dim \operatorname{im}(\varphi) = \dim l(\varphi(e_1), \dots, \varphi(e_n)) = \operatorname{rk}(\varphi(e_1), \dots, \varphi(e_n)).$$

Ако V е крайномерно пространство, то по определение, вектор-стълбовете на матрицата $A \in M_{m \times n}(F)$ на φ спрямо базиса e на U и базиса f на V са съставени от координатите на $\varphi(e_1), \ldots, \varphi(e_n)$ спрямо базиса f_1, \ldots, f_m на V. Следователно

$$\operatorname{rk}(\varphi(e_1), \ldots, \varphi(e_n)) = \operatorname{rk}(A)$$
 и $\operatorname{rk}(\varphi) = \operatorname{rk}(A)$.

Твърдение 18.5. (Теорема за ранга и дефекта на линейно изображение на крайномерно пространство:) Нека $\varphi: U \to V$ е линейно изображение на n-мерно пространство U в произволно линейно пространство V. Тогава рангът $\mathrm{rk}(\varphi)$ и дефектът $d(\varphi)$ на φ изпълняват равенството

$$\operatorname{rk}(\varphi) + d(\varphi) = n.$$

ДОКАЗАТЕЛСТВО. Нека $k = d(\varphi) = \dim \ker(\varphi)$. Ако $k \in \mathbb{N}$, избираме базис e_1, \ldots, e_k на ядрото $\ker(\varphi)$ на φ и допълваме до базис $e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$ на U. В случая $k = \dim \ker(\varphi) = 0$, нека e_1, \ldots, e_n е произволен базис на U. Достатъчно е да проверим, че $\varphi(e_{k+1}), \ldots, \varphi(e_n) \in \operatorname{im}(\varphi)$ е базис на образа $\operatorname{im}(\varphi)$ на φ , за да получим, че

$$\operatorname{rk}(\varphi) := \dim \operatorname{im}(\varphi) = n - k = \dim(U) - d(\varphi)$$

и да докажем твърдението.

По Твърдение 18.4, $\operatorname{im}(\varphi) = l(\varphi(e_1), \dots, \varphi(e_k), \varphi(e_{k+1}), \dots, \varphi(e_n))$. Вземайки предвид $\varphi(e_1) = \dots = \varphi(e_k) = \overrightarrow{\mathcal{O}}_V$ за векторите $e_1, \dots, e_k \in \ker(\varphi)$, получаваме

$$\operatorname{im}(\varphi) = l(\varphi(e_{k+1}), \dots, \varphi(e_n)).$$

Ако

$$\overrightarrow{\mathcal{O}}_V = \sum_{i=k+1}^n x_i \varphi(e_i) = \varphi\left(\sum_{i=k+1}^n x_i e_i\right)$$

за линейното изображение φ , то $\sum_{i=k+1}^n x_i e_i \in \ker(\varphi)$ и съществуват скалари $x_1,\dots,x_k\in F$ с

$$\sum_{i=k+1}^{n} x_i e_i = \sum_{j=1}^{k} x_j e_j,$$

защото e_1, \ldots, e_k е базис на $\ker(\varphi)$. В резултат,

$$\sum_{i=1}^{k} x_i e_i + \sum_{i=k+1}^{n} (-x_i) e_i = \overrightarrow{\mathcal{O}}_U,$$

откъдето $x_i=0$ за всички $1\leq i\leq n$, съгласно линейната независимост на базиса e_1,\ldots,e_n на U. Това доказва, че $\varphi(e_{k+1}),\ldots,\varphi(e_n)$ са линейно независими, а оттам и базис на $\operatorname{im}(\varphi)$.

Определение 18.6. Линейните изоморфизми $\varphi: U \to U$ на пространство U над поле F със себе си се наричат обратими линейни оператори.

Твърдение 18.7. Следните условия са еквивалентни за линеен оператор $\varphi: U \to U$ в n-мерно пространство U над поле F:

- $(i) \varphi$ е обратим линеен оператор;
- (ii) ядрото $\ker(\varphi) = \{\mathcal{O}_U\}$ на φ е нулевото подпространство;
- (iii) дефектът на φ е $d(\varphi) = 0$;
- (iv) рангът на φ e $\operatorname{rk}(\varphi) = n$;
- (v) образът $\operatorname{im}(\varphi) = U$ на φ съвпада с цялото пространство U;
- (vi) φ трансформира базис e_1, \ldots, e_n на U в базис $\varphi(e_1), \ldots \varphi(e_n)$ на U.

Доказателство. $(i)\Rightarrow (ii)$ Произволен линеен оператор $\varphi:U\to U$ оставя на място нулевия вектор $\varphi(\overrightarrow{\mathcal{O}}_U)=\overrightarrow{\mathcal{O}}_U$, така че $\overrightarrow{\mathcal{O}}_U\in\ker(\varphi)$. Поради взачината еднозначност на φ , за всеки ненулев вектор $u\in U,\,u\neq\overrightarrow{\mathcal{O}}_U$ е в сила $\varphi(u)\neq\varphi(\overrightarrow{\mathcal{O}}_U)=\overrightarrow{\mathcal{O}}_U$, откъдето $\ker(\varphi)=\{\overrightarrow{\mathcal{O}}_U\}$ се състои само от нулевия вектор $\overrightarrow{\mathcal{O}}_U$ на U.

- $(ii) \Rightarrow (iii)$ Ако ядрото $\ker(\varphi) = \{\overrightarrow{\mathcal{O}}_U\}$ е нулевото подпространство, то дефектът на φ е $d(\varphi) := \dim \ker(\varphi) = 0$.
- $(iii)\Rightarrow (iv)$ По Твърдение 18.5 Теорема за ранга и дефекта на линейно изображение $\varphi:U\to U$ на n-мерно пространство U, рангът на φ е

$$rk(\varphi) = n - d(\varphi) = n - 0 = n.$$

 $(iv) \Rightarrow (v)$ Ако подпространството $\operatorname{im}(\varphi)$ на U е с размерност $\operatorname{dim}\operatorname{im}(\varphi) = \operatorname{rk}(\varphi) = n = \dim(U)$, то $\operatorname{im}(\varphi)$ съвпада с U, $\operatorname{im}(\varphi) = U$ съгласно Следствие 5.13.

 $(v)\Rightarrow (vi)$ Ако e_1,\dots,e_n е базис на U, то по Твърдение 18.4 имаме $\operatorname{im}(\varphi)=l(\varphi(e_1),\dots,\varphi(e_n))$. Комбинирайки с предположението $\operatorname{im}(\varphi)=U$, получаваме, че $l(\varphi(e_1),\dots,\varphi(e_n))=U$. Съгласно Твърдение 5.12 за n-мерното пространство U, векторите $\varphi(e_1),\dots,\varphi(e_n)$ образуват базис на U.

 $(vi) \Rightarrow (i)$ Ако линеен оператор $\varphi: U \to U$ изобразява базис e_1, \ldots, e_n на U в базис $\varphi(e_1), \ldots, \varphi(e_n)$ на U, то еднозначно определеният линеен оператор $\psi: U \to U$ с $\psi(\varphi(e_i)) = e_i$ за всички $1 \le i \le n$ е обратен на φ . По-точно, от определението за $\psi\varphi$, линейността на φ, ψ и определенията на ψ, Id_U имаме

$$(\psi\varphi)\left(\sum_{i=1}^{n} x_i e_i\right) = \psi\left(\varphi\left(\sum_{i=1}^{n} x_i e_i\right)\right) = \psi\left(\sum_{i=1}^{n} x_i \varphi(e_i)\right) =$$
$$= \sum_{i=1}^{n} x_i \psi(\varphi(e_i)) = \sum_{i=1}^{n} x_i e_i = \operatorname{Id}_U\left(\sum_{i=1}^{n} x_i e_i\right)$$

за произволни $x_i \in F$. Аналогично, определението на $\psi \varphi$, линейността и определението на ψ , линейността на φ и определението на Id_U дават

$$(\varphi\psi)\left(\sum_{i=1}^{n}y_{i}\varphi(e_{i})\right) = \varphi\left(\psi\left(\sum_{i=1}^{n}y_{i}\varphi(e_{i})\right)\right) = \varphi\left(\sum_{i=1}^{n}y_{i}\psi(\varphi(e_{i}))\right) =$$

$$= \varphi\left(\sum_{i=1}^{n}y_{i}e_{i}\right) = \sum_{i=1}^{n}y_{i}\varphi(e_{i}) = \operatorname{Id}_{U}\left(\sum_{i=1}^{n}y_{i}\varphi(e_{i})\right)$$

за всички $y_i \in F$. Следователно $\psi \varphi = \mathrm{Id}_U, \ \varphi \psi = \mathrm{Id}_U$ и $\varphi : U \to U$ е обратим линеен оператор с обратен $\varphi^{-1} = \psi$.

Твърдение 18.8. Линеен оператор $\varphi: U \to U$ в п-мерно пространство U е обратим тогава и само тогава, когато матрицата $A_{\varphi} \in M_{n \times n}(F)$ на φ спрямо произволен базис $e = (e_1, \dots, e_n)$ на U е обратима. Ако това е в сила, то матрицата на $\varphi^{-1}: U \to U$ спрямо базиса е e

$$A_{\varphi^{-1}} = A_{\varphi}^{-1}.$$

Доказателство. Ако линейният оператор $\varphi: U \to U$ е обратим, то матрицата A_{φ} на φ спрямо дадения базис e, матрицата $A_{\varphi^{-1}}$ на $\varphi^{-1}: U \to U$ спрямо базиса e и единичната матрица $A_{\mathrm{Id}} = E_n$ на тъждествения линеен оператор $\mathrm{Id}: U \to U, \, \mathrm{Id}(u) = u, \, \forall u \in U$ изпълняват равенствата

$$A_{\varphi}A_{\varphi^{-1}} = A_{\varphi\varphi^{-1}} = A_{\mathrm{Id}} = E_n = A_{\mathrm{Id}} = A_{\varphi^{-1}\varphi} = A_{\varphi^{-1}}A_{\varphi}$$

съгласно Твърдение 17.4. Следователно $A_{\varphi}\in M_{n\times n}(F)$ е обратима и нейната обратна $A_{\varphi}^{-1}=A_{\varphi^{-1}}$ е матрицата на $\varphi^{-1}:U\to U$ спрямо базиса e. Обратно, ако матрицата $A_{\varphi}\in M_{n\times n}(F)$ на $\varphi:U\to U$ е обратима, нека

$$\psi: U \longrightarrow U$$

е линейният оператор с матрица $A_{\psi}=A_{\varphi}^{-1}$ спрямо базиса e. С помощта на Твърдение 17.4 пресмятаме, че

$$E_n = A_{\varphi} A_{\varphi}^{-1} = A_{\varphi} A_{\psi} = A_{\varphi\psi}$$

И

$$E_n = A_{\varphi}^{-1} A_{\varphi} = A_{\psi} A_{\varphi} = A_{\psi \varphi}.$$

Единственият линеен оператор в U с единична матрица E_n спрямо фиксирания базис e е тъждественият оператор $\mathrm{Id}: U \to U$, така че $\varphi \psi = \mathrm{Id}$ и $\psi \varphi = \mathrm{Id}$. Това

доказва, че операторът $\varphi:U\to U$ е обратим и неговият обратен е $\varphi^{-1}=\psi$ има матрица $A_{\varphi^{-1}}=A_{\psi}=A_{\varphi}^{-1}$ спрямо фиксирания базис e.