MEME15203 Statistical Inference

Assignment 3

UNIVERSITI TUNKU ABDUL RAHMAN

Faculty: FES Unit Code: MEME15203

Course: MAC Unit Title: Statistical Inference Year: 1,2 Lecturer: Dr Yong Chin Khian

Session: January 2022 Due by: 24/3/2022

- Q1. Consider a random sample of size n from a single-parameter pareto distribution, $X_i \sim SP(\alpha = 2, \theta)$. Find the UMVUE of the p^{th} percentile. (10 marks)
- Q2. Suppose that X_1, \ldots, X_n is a random sample from a Negative Binomial distribution, $X_i \sim \text{NB}(\mathbf{r} = 6, \theta)$,
 - (a) Show that the p.d.f. of X belongs to the regular exponential family.

(5 marks)

(b) Based on the answer in (a), find a complete and sufficient statistic for θ .

(5 marks)

- (c) Find the UMVUE of $\left[\frac{4\theta}{1-4(1-\theta)}\right]^{6n}$. (5 marks)
- Q3. Consider a random sample of size n from a gamma distribution $X_i \sim GAM(\alpha, \theta)$ and let $\bar{X} = (1/n) \sum X_i$ and $\tilde{X} = (\prod X_i)^{1/n}$ be the sample mean and geometric mean respectively.
 - (a) Show that \bar{X} and \tilde{X} are jointly complete and sufficient for θ and α . (5 marks)
 - (b) Find the UMVUE of $\mu = \alpha \theta$. (5 marks)
 - (c) Find the UMVUE of μ^n . (5 marks)
 - (d) Show that \bar{X} and T are stochastically independent random variables. (5 marks)
- Q4. Suppose that X_1, \ldots, X_n is a random sample from a Poisson distribution, $X_i \sim \text{POI}(\lambda)$. Find the UMVUE of $P(X_1 + X_2 = 0 \text{ or } 1) = (1 + 2\lambda)e^{-2\lambda}$ using Rao-Blackwell theorem. (10 marks)
- Q5. Consider a random sample of size n from a distribution with pdf

$$f(x;\theta) = \frac{(\ln \theta)^x}{\theta x!}, x = 1, 1, \dots; \theta > 1, \text{ zero, otherwise.}$$

- (a) Find a complete sufficient statistic for θ . (5 marks)
- (b) Find the UMVUE of $\ln \theta$. (5 marks)
- (c) Find the UMVUE of $(\ln \theta)^2$. (5 marks)
- Q6. Show that $X \sim N(0, \theta)$ is not a complete family. (10 marks)

MEME15203 Statistical Inference

Q7. Let $X_1, X_2, ..., X_n$ be random sample of size n from a Gamma distribution with probability density function

$$\frac{1}{\theta^2} x e^{-x/\theta}, x > 0$$

zero otherwise. Find the UMVUE of $\gamma = P(X > t)$ using Rao-Blackwell theorem. (20 marks)