Relações e Funções

O capítulo inicia-se com uma discussão sobre pares ordenados e o produto cartesiano de dois conjuntos. O conceito de relação é então definido como sendo um conjunto de pares ordenados. A conexão íntima entre partições e relações de equivalência, num conjunto, é cuidadosamente examinada. Como preparação para os leitores que pretendem seguir estudando mais matemática moderna, propriedades importantes de funções são estudadas. Uma grande quantidade de exemplos é construída.

3.1 Produto cartesiano de conjuntos

Dados dois objetos quaisquer a e b, podemos formar um novo objeto (a,b), chamado par ordenado a,b. O adjetivo "ordenado" enfatiza aqui que a ordem pela qual os objetos a e b aparecem entre parênteses é essencial. Note que o par ordenado (a,b) não é o mesmo que o conjunto $\{a,b\}$. Há um modo satisfatório, embora complicado, de definir o par ordenado (a,b) como sendo o conjunto $\{\{a\},\{a,b\}\}$, de onde segue a propriedade " $(a,b)=(c,d)\Leftrightarrow a=c$ e b=d" (Veja Problema 11, Exercícios 1.3.1).

Dois pares ordenados (a,b) e (c,d) são considerados iguais (=) se e somente se a=c e b=d. Por exemplo, (x,y)=(7,8) se e somente se x=7 e y=8.

Em geometria analítica, o plano cartesiano pode ser considerado como o conjunto de todos os pares ordenados de números reais. Enunciaremos formalmente este conceito do seguinte modo:

Definição 3.1 Sejam A e B dois conjuntos quaisquer. O conjunto de todos os pares ordenados (x, y), com $x \in A$ e $y \in B$, é chamado o produto cartesiano de A e B, e é

 $^{^1}$ Infelizmente, a notação (a,b) para um par ordenado é a mesma para um intervalo aberto quando a e b são números reais. Entretanto, o leitor atento deverá ser sempre capaz de fazer a distinção a partir do contexto.

 $^{^2}$ Desde o Capítulo 2, já fizemos a opção por denotar o intervalo aberto de extremos a e b por]a,b[. (N. do T.)

denotado por $A \times B$. Simbolicamente,

$$A \times B = \{(x, y) \mid x \in A \land y \in B\}$$

Para o par ordenado (a,b), a é chamado a primeira coordenada e b é a segunda coordenada.

Exemplo 3.1 Sejam $A = \{a, b, c\}$ e $B = \{1, 2\}$. Encontre os produtos cartesianos $A \times B$ e $B \times A$.

Solução. Pela Definição 3.1 acima, temos

$$A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}$$

е

$$B \times A = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

Notamos que $A \times B \neq B \times A$. Podemos representar geometricamente o produto cartesiano $A \times B$ como o conjunto de pontos destacados na seguinte figura.

Exemplo 3.2 Seja A um conjunto qualquer. Encontre $A \times \emptyset$ e $\emptyset \times A$.

Solução. Como $A \times \emptyset$ é o conjunto de todos os pares ordenados (a,b), tais que $a \in A$ e $b \in \emptyset$, e como o conjunto vazio \emptyset não contém nenhum elemento, não há nenhum b em \emptyset ; portanto $A \times \emptyset = \emptyset$. Analogamente, $\emptyset \times A = \emptyset$.

Teorema 3.1 Sejam A, B e C três conjuntos quaisquer. Então

(a)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
.

(b)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
.

Demonstração.

$$\begin{array}{lll} \text{(a)} & (a,x) \in A \times (B \cap C) \\ & \Leftrightarrow (a \in A) \wedge (x \in B \cap C) & \text{Def. 3.1} \\ & \Leftrightarrow (a \in A) \wedge (x \in B \wedge x \in C) & \text{Def. de } \cap \\ & \Leftrightarrow (a \in A) \wedge (a \in A) \wedge (x \in B) \wedge (x \in C) \\ & & \text{Idemp., Assoc. (Cap. 1)} \\ & \Leftrightarrow [(a \in A) \wedge (x \in B)] \wedge [(a \in A) \wedge (x \in C)] \\ & & \text{Com., Assoc. (Cap. 1)} \\ & \Leftrightarrow [(a,x) \in A \times B] \wedge [(a,x) \in A \times C] & \text{Def. 3.1} \\ & \Leftrightarrow (a,x) \in (A \times B) \cap (A \times C) & \text{Def. de } \cap \end{array}$$

Portanto, pela Definição 2.1, do Capítulo 2, acabamos de demonstrar que

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

Informalmente, esta igualdade pode ser enunciada: *O produto cartesiano distribui sobre a interseção.*

Deixaremos a demonstração da parte (b) ao leitor, como exercício.

Teorema 3.2 Sejam A, B e C conjuntos quaisquer. Então

$$A \times (B - C) = (A \times B) - (A \times C)$$

Ou seja, o produto cartesiano distribui sobre a complementação.

Demonstração.

$$\begin{array}{lll} (a,x) {\in} \ A \times (B-C) & \text{Def. 3.1} \\ \Leftrightarrow (a \in A) \land (x \in B - C) & \text{Def. 2.5 (Cap. 2)} \\ \Leftrightarrow (a \in A) \land (x \in B \land x \not\in C) & \text{Def. 2.5 (Cap. 2)} \\ \Leftrightarrow (a \in A) \land (a \in A) \land (x \in B) \land (x \not\in C) & \text{Idemp., Assoc. (Cap. 1)} \\ \Leftrightarrow [(a \in A) \land (x \in B)] \land [(a \in A) \land (x \not\in C)] & \text{Com., Assoc. (Cap. 1)} \\ \Leftrightarrow [(a,x) \in A \times B] \land [(a,x) \not\in A \times C] & \text{Def. 3.1} \\ \Leftrightarrow (a,x) \in (A \times B) - (A \times C) & \text{Def. 2.5 (Cap. 2)} \end{array}$$

Assim, acabamos de demonstrar que

$$A \times (B - C) = (A \times B) - (A \times C)$$

3.1.1 Exercícios

- 1. Descreva cada um dos seguintes conjuntos, geometricamente, esboçando um gráfico no plano cartesiano.
 - (a) $\{(x,y) \in \mathbb{R} \times \mathbb{R} \mid x=y\}$
 - (b) $\{(x,y) \in \mathbb{R} \times \mathbb{R} \mid x > y\}$
 - (b) $\{(x,y) \in \mathbb{R} \times \mathbb{R} \mid |x+y| \le 1\}$
- 2. Sob quais condições nos conjuntos A e B será verdade que $A \times B = B \times A$?
- 3. Demonstre o Teorema 3.1(b): $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
- 4. Demonstre que $A \times B = \emptyset \Leftrightarrow A = \emptyset \vee B = \emptyset$.
- 5. Demonstre que, se A, B e C são conjuntos e $A \subset B$, então $A \times C \subset B \times C$.
- 6. Se o conjunto A tem m elementos e o conjunto B tem n elementos, quantos elementos (pares ordenados) tem $A \times B$?
- 7. O produto cartesiano $A \times A$ tem 9 elementos, dentre os quais são encontrados (-1,0) e (0,1). Encontre os elementos restantes e o conjunto A.
- 8. Demonstre ou refute (dando um contra-exemplo) cada uma das seguintes afirmações.
 - (a) $A \times B \subset C \times D$ se e somente se $A \subset C$ e $B \subset D$.
- (b) O conjunto das partes $\wp(A \times B)$ de $A \times B$ é o produto cartesiano $\wp(A) \times \wp(B)$ dos conjuntos das partes $\wp(A)$ e $\wp(B)$.
 - (c) $(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$.
- 9. Demonstre que, se A, B, C e D são quatro conjuntos quaisquer, então

$$(A \times C) \cap (B \times D) = (A \cap B) \times (C \cap D).$$

- 10. Sejam A_1, A_2, \ldots, A_n conjuntos quaisquer. Pode você generalizar a Definição 3.1 ao produto cartesiano $A_1 \times A_2 \times A_3$ de três conjuntos? Pode você generalizar isto ao produto cartesiano $A_1 \times A_2 \times \cdots \times A_n$ de n conjuntos?
- 11. Defina o par ordenado (x,y) como sendo o conjunto $\{\{x\},\{x,y\}\}$. Use esta definição para demonstrar que (a,b)=(c,d) se e somente se a=c e b=d.

3.2 Relações

Dados dois conjuntos A e B, não necessariamente distintos, quando dizemos que um elemento a de A está relacionado a outro elemento b de B,por uma relação $\mathcal R$, estamos fazendo uma afirmação sobre o par ordenado (a,b) no produto cartesiano $A\times B$. Portanto, uma definição matemática de uma relação pode ser dada precisamente em termos de pares ordenados no produto cartesiano de conjuntos.

Definição 3.2 Uma relação \Re de A para B (ou de A em B) é um subconjunto do produto cartesiano $A \times B$. É costume denotar $(a,b) \in \Re$ por $a \Re b$. O símbolo $a \Re b$ é lido "a está \Re -relacionado a b".

Freqüentemente A e B são um mesmo conjunto, digamos X. Nesse caso, diremos que \mathcal{R} é uma relação $em\ X$ em vez de "de X para X". Por exemplo, em uma comunidade

X, 3 dizer que a (para Alberto) é o marido de b (para Beatriz), é considerar Alberto e Beatriz como um par (ordenado) (a,b) na relação $\mathcal M$ (de ser o marido de ...). O símbolo $a\,\mathcal M\,b$ ou $(a,b)\in\mathcal M$ pode ser lido "a é marido de b".

Não é necessário colocar Beatriz depois de Alberto no par ordenado (a,b). Podemos dizer que Beatriz é a esposa de Alberto, ou que o par ordenado (b,a) está na relação $\mathcal E$ (de ser a esposa de . . .). O símbolo $b \, \mathcal E \, a$ ou $(b,a) \in \mathcal E$ pode ser lido: "b é a esposa de a". Neste exemplo, a relação $\mathcal E$ é chamada a relação inversa de $\mathcal M$.

Definição 3.3 Sejam A e B dois conjuntos, não necessariamente distintos, e seja \Re uma relação de A para B. Então a relação inversa \Re^{-1} da relação \Re é a relação de B para A tal que $b \Re^{-1} a$ se e somente se $a \Re b$. Ou seja,

$$\mathcal{R}^{-1} = \{ (b, a) \, | \, (a, b) \in \mathcal{R} \}$$

Exemplo 3.3 (a) Sejam $A = \{a, b\}$, $B = \{x, y, z\}$, e seja $\Re \subset A \times B$ dada por $\Re = \{(a, x), (b, y)\}$. Então $\Re^{-1} = \{(x, a), (y, b)\} \subset B \times A$.

$$\mathcal{R} = \{(x, y) \in \mathbb{N} \times \mathbb{N} \,|\, x \text{ divide } y\}$$

Então

$$\mathcal{R}^{-1} = \{(y, x) \in \mathbb{N} \times \mathbb{N} \mid y \text{ \'e m\'ultiplo de } x\}$$

Seja $\mathcal R$ uma relação de A para B. O domínio da relação $\mathcal R$, denotado por $\mathrm{Dom}(\mathcal R)$, é o conjunto de todos aqueles $a\in A$ tais que $a\,\mathcal R\,b$ para algum $b\in B$; e a imagem de $\mathcal R$, denotada por $\mathrm{Im}(\mathcal R)$, é o conjunto de todos aqueles $b\in B$, tais que $a\,\mathcal R\,b$ para algum $a\in A$. Simbolicamente,

$$\mathrm{Dom}(\mathcal{R}) = \{ a \in A \, | \, (a,b) \in \mathcal{R} \text{ para algum } b \in B \}$$

е

$$\operatorname{Im}(\mathcal{R}) = \{ b \in B \mid (a, b) \in \mathcal{R} \text{ para algum } a \in A \}$$

No exemplo das relações ${\mathfrak M}$ (ser o marido de ...) e ${\mathcal E}$ (ser a esposa de ...) na comunidade X, o domínio de ${\mathfrak M}$ é o conjunto de todos os homens em X que são casados, enquanto que o domínio de ${\mathcal E}$ é o conjunto das esposas em X, e a imagem de ${\mathcal E}$ é o conjunto de todos os maridos em X, Isto é,

$$Dom(\mathcal{E}) = Im(\mathcal{M})$$

е

$$\operatorname{Im}(\mathcal{E}) = \operatorname{Dom}(\mathcal{M})$$

Pode você tirar uma conclusão geral? (Veja Problema 3 ao final desta seção).

³Agui, X é o conjunto de todos os membros da comunidade.

Exemplo 3.4 No Exemplo 3.3(a), $Dom(\mathcal{R}) = \{a, b\}$ e $Im(\mathcal{R}) = \{x, y\}$. No Exemplo 3.3(b), $Dom(\mathcal{R}) = \mathbb{N} = Im(\mathcal{R})$.

Definição 3.4 Seja \Re uma relação em um conjunto X. Então dizemos que

- (a) \Re é reflexiva se e somente se $\forall x \in X, x \Re x$.
- (b) \Re é simétrica se e somente se $x \Re y \Rightarrow y \Re x$.
- (c) \Re é transitiva se e somente se $x \Re y \wedge y \Re z \Rightarrow x \Re z$.
- (d) $\mathbb R$ é uma relação de equivalência se e somente se $\mathbb R$ é reflexiva, simétrica e transitiva.

A relação de igualdade, =, no conjunto $\mathbb R$ de números reais é claramente uma relação de equivalência. Seja X um conjunto de bolas coloridas e sejam duas bolas a e b relacionadas por $\mathcal R$ se e somente se a e b tem a mesma cor. Então a relação $\mathcal R$ é uma relação de equivalência.

Relações de equivalência são particularmente importantes na matemática moderna. Por exemplo, grupos quocientes na álgebra, espaços quocientes na topologia, e sistemas numéricos modulares na teoria dos números, todos envolvem certos tipos de relações de equivalência.

Dado um conjunto não vazio X, existem sempre pelo menos duas relações de equivalência em X; uma destas é a relação diagonal Δ_X (também chamada relação identidade) definida por

$$\Delta_X = \{(x, x) \mid x \in X\}$$

que relaciona cada elemento com ele mesmo. Geometricamente, se X é representado como um intervalo linear, então $X\times X$ é um quadrado e Δ_X é a diagonal "principal" do quadrado.

Figura 8.

Há, no outro extremo, sempre outra relação de equivalência $\mathcal{R}=X\times X$ em X. A relação Δ_X é a menor de todas as relações de equivalência em X, enquanto que $X\times X$ é a maior.

Exemplo 3.5 Seja m um inteiro positivo qualquer fixado. A relação de congruência \equiv módulo m, no conjunto $\mathbb Z$ dos números inteiro é definida por $x \equiv y \pmod{m}$ se e somente se x-y=km para algum $k \in \mathbb Z$. A relação de congruência é uma relação de equivalência em $\mathbb Z$.

Demonstração.

- (a) Para cada x em \mathbb{Z} , como $x-x=0\cdot m$, temos $x\equiv x\pmod m$. Portanto, a relação é reflexiva.
- (b) Se $x \equiv y \pmod{m}$, então x y = km para algum $k \in \mathbb{Z}$. Consequentemente, y x = (-k)m e $-k \in \mathbb{Z}$, ou $y \equiv x \pmod{m}$. Portanto, a relação é simétrica.
- (c) Se $x \equiv y \pmod{m}$ e $y \equiv z \pmod{m}$, então $x-y=k_1m$ e $y-z=k_2m$ para alguns k_1 e k_2 em \mathbb{Z} . Portanto, $x-z=(x-y)+(y-z)=(k_1+k_2)m$ e $k_1+k_2\in\mathbb{Z}$, o que mostra que $x\equiv z \pmod{m}$. Portanto, a relação é transitiva.

Portanto, acabamos de demonstrar que a relação de congruência (módulo m) é uma relação de equivalência em \mathbb{Z} .

Como um caso expecial para o Exemplo 3.5, seja m=2. Então, $x\equiv y\pmod 2$ se e somente se x-y é um inteiro par. Conseqüentemente, $x\equiv y\pmod 2$ se e somente se x e y são ambos pares ou ambos ímpares.

3.2.1 Exercícios

- 1. Seja \Re uma relação de A para B. Demonstre que $(\Re^{-1})^{-1} = \Re$.
- 2. Seja $A = \{a, b, c\}$ e seja $\mathcal{R} = \{(a, c), (c, b), (a, b)\}$. Encontre o domínio de \mathcal{R} e a imagem de \mathcal{R} .
- 3. Seja \Re uma relação de A para B. Demonstre que
 - (a) $Dom(\mathcal{R}^{-1}) = Im(\mathcal{R})$
 - (b) $\operatorname{Im}(\mathbb{R}^{-1}) = \operatorname{Dom}(\mathbb{R})$
- 4. Seja $A = \{a, b, c\}$ e seja

$$\mathcal{R} = \{(a, a), (b, b), (c, c), (a, b), (b, a), (c, a), (a, c)\}\$$

Demonstre que \Re é reflexiva e transitiva, mas não é simétrica.

- 5. Dê um exemplo de uma relação que é reflexiva e transitiva, mas não é simétrica.
- 6. Dê um exemplo de uma relação que é simétrica e transitiva, mas não é reflexiva.
- 7. Seja $\mathcal R$ uma relação em um conjunto X. Demonstre que
 - (a) \Re é reflexiva se e somente se $\Re \supset \Delta_X$;
 - (b) \Re é simétrica se e somente se $\Re = \Re^{-1}$;
 - (c) \Re é reflexiva se e somente se \Re^{-1} é reflexiva;
 - (d) \Re é simétriva se e somente se \Re^{-1} é simétrica;
 - (e) \Re é transitiva se e somente se \Re^{-1} é transitiva;
 - (f) \Re é uma relação de equivalência se e somente se \Re^{-1} é uma relação de equivalência.
- 8. Šeja $X=\mathbb{Z}\times(\mathbb{Z}-\{0\})$. Defina uma relação \sim em X declarando que $(a,b)\sim(c,d)$ se e somente se ad=bc. Demonstre que a relação \sim é uma relação de equivalência.

3.3 Partições e relações de equivalência

Definição 3.5 Seja X um conjunto não vazio. Por uma partição \mathcal{P} de X queremos dizer um conjunto de subconjuntos não vazios de X, tal que

- (a) Se $A, B \in \mathcal{P}$ e $A \neq B$, então $A \cap B = \emptyset$.
- (b) $\bigcup_{C \in \mathcal{P}} C = X$.

Intuitivamente, uma partição de X é uma subdivisão de X em "pedaços" não vazios e mutuamente disjuntos.

Exemplo 3.6 Seja m um inteiro positivo qualquer. Para cada inteiro j, $0 \le j < m$, seja $\mathbf{Z}_j = \{x \in \mathbb{Z} \mid x - j = km \text{ para algum } k \in \mathbb{Z}\}$. Então o conjunto

$$\{\mathbf{Z}_0,\mathbf{Z}_1,\mathbf{Z}_2,\ldots,\mathbf{Z}_{m-1}\}$$

forma uma partição de \mathbb{Z} . Em particular, seja m=2. Então o conjunto de conjuntos $\{\mathbf{Z}_0,\mathbf{Z}_1\}$, em que

$$\mathbf{Z}_0 = \{ x \in \mathbb{Z} \mid x \text{ \'e par} \}$$

е

$$\mathbf{Z}_1 = \{ x \in \mathbb{Z} \mid x \text{ \'e impar} \}$$

forma uma partição de \mathbb{Z} . (Veja também Problema 4, Exercícios 3.3.1.)

Existe uma conexão íntima entre partições de um conjunto não vazio e relações de equivalência nesse conjunto. Para compreender essa conexão, precisaremos da seguinte definição.

Definição 3.6 Seja \mathcal{E} uma relação de equivalência em um conjunto não vazio X. Para cada $x \in X$, definimos o conjunto

$$x/\mathcal{E} = \{ y \in Y \mid y \mathcal{E} x \}$$

que é chamado a classe de equivalência determinada pelo elemento x. O conjunto de todas essas classes de equivalência em X é denotado por X/\mathcal{E} ; ou seja, $X/\mathcal{E} = \{x/\mathcal{E} \mid x \in X\}$. O símbolo X/\mathcal{E} é lido "X módulo \mathcal{E} ", ou simplesmente "X mod \mathcal{E} ".

Teorema 3.3 Seja \mathcal{E} uma relação de equivalência em um conjunto não vazio X. Então

- (a) Cada x/\mathcal{E} é um subconjunto não vazio de X.
- (b) $x/\mathcal{E} \cap y/\mathcal{E} \neq \emptyset$ se e somente se $x \mathcal{E} y$.
- (c) $x \mathcal{E} y$ se e somente se $x/\mathcal{E} = y/\mathcal{E}$.

 $^{^4}X/\mathcal{E}$ é chamado *conjunto quociente* de X pela relação de equivalência \mathcal{E} . (N. do T.)

⁵Analogamente, x/\mathcal{E} é lido "x módulo \mathcal{E} " (N. do T.)

Demonstração.

- (a) Como \mathcal{E} é reflexiva, para cada $x \in X$, temos $x \mathcal{E} x$. Pela Definição 3.6, $x \in x/\mathcal{E}$ e portanto x/\mathcal{E} é um subconjunto não vazio de X.
 - (b) Como \mathcal{E} é uma relação de equivalência e $X \neq \emptyset$, temos

$$\begin{array}{lll} x/\mathcal{E} \cap y/\mathcal{E} \neq \emptyset \Leftrightarrow (\exists z)(z \in x/\mathcal{E} \ \land \ z \in y/\mathcal{E}) \\ &\Leftrightarrow (z \, \mathcal{E} \, x) \land (z \, \mathcal{E} \, y) & \text{Def. 3.6} \\ &\Leftrightarrow (x \, \mathcal{E} \, z) \land (z \, \mathcal{E} \, y) & \mathcal{E} \ \text{\'e sim\'etrica} \\ &\Leftrightarrow x \, \mathcal{E} \, y & \mathcal{E} \ \text{\'e transitiva} \end{array}$$

(c) De (a) e (b) acima, segue imediatamente que $x/\mathcal{E} = y/\mathcal{E} \Rightarrow x \mathcal{E} y$. Precisamos agora provar que $x \mathcal{E} y \Rightarrow x/\mathcal{E} = y/\mathcal{E}$. Suponhamos $x \mathcal{E} y$. Então

$$\begin{array}{ll} z \in x/\mathcal{E} \Rightarrow z \, \mathcal{E} \, x & \text{Def. 3.6} \\ (z \, \mathcal{E} \, x) \wedge (x \, \mathcal{E} \, y \!\!\!\! \Rightarrow (z \, \mathcal{E} \, y) & \mathcal{E} \, \text{ \'et ransitiva} \\ \Rightarrow z \in y/\mathcal{E} & \text{Def. 3.6} \end{array}$$

Como z é qualquer, segue que $x/\mathcal{E} \subset y/\mathcal{E}$. Um argumento similar deduz $y/\mathcal{E} \subset x/\mathcal{E}$; portanto $x/\mathcal{E} = y/\mathcal{E}$.

Teorema 3.4 Seja \mathcal{E} uma relação de equivalência em um conjunto não vazio X. Então X/\mathcal{E} é uma partição de X.

Demonstração. Pelo Teorema 3.3(a) e pela Definição 3.6, $X/\mathcal{E} = \{x/\mathcal{E} \mid x \in X\}$ é uma família de subconjuntos não vazios de X. Mostraremos então que

$$x/\mathcal{E} \neq y/\mathcal{E} \Rightarrow (x/\mathcal{E}) \cap (y/\mathcal{E}) = \emptyset$$

mostrando sua contrapositiva: $(x/\mathcal{E}) \cap (y/\mathcal{E}) \neq \emptyset \Rightarrow x/\mathcal{E} = y/\mathcal{E}$. A última afirmação é uma conseqüência direta do Teorema 3.3(b) e (c). Finalmente, temos que mostrar que $\bigcup_{x \in X} x/\mathcal{E} = X$. Isto também é trivial, pois cada $x \in X$ pertence a x/\mathcal{E} . Isto completa a demonstração do teorema.

Acabamos de ver, no Teorema 3.4, que uma relação de equivalência no conjunto não vazio X dá origem a uma partição em X. Mostraremos a seguir que a recíproca do Teorema 3.4 é verdadeira; isto é, cada partição de X dá origem a uma relação de equivalência em X.

Definição 3.7 Seja $\mathcal P$ uma partição de um conjunto não vazio X. Definimos uma relação $X/\mathcal P$ em X, por $x(X/\mathcal P)y$ se e somente se existe um conjunto $A\in \mathcal P$ tal que $x\in A$ e $y\in A$.

Cautela! O leitor deveria ler e comparar cuidadosamente as definições 3.6 e 3.7, de modo a compreender as delicadas diferenças entre estas notações similares: x/\mathcal{E} , X/\mathcal{E} , e X/\mathcal{P} .

Teorema 3.5 Seja $\mathfrak P$ uma partição de um conjunto não vazio X. Então a relação $X/\mathfrak P$ é uma relação de equivalência em X, e as classes de equivalência definidas pela relação de equivalência $X/\mathfrak P$ são precisamente os conjuntos em $\mathfrak P$. Simbolicamente, $X/(X/\mathfrak P)=\mathfrak P$.

Demonstração. Como todo elemento de X está contido em algum $A \in \mathcal{P}$, $x(X/\mathcal{P})x$; isto é, X/\mathcal{P} é reflexiva. A simetria de X/\mathcal{P} é uma clara conseqüência da Definição 3.7. Para mostrar que a relação X/\mathcal{P} é transitiva, sejam x, y, e z três elementos de X satisfazendo

$$x(X/\mathfrak{P})y \in y(X/\mathfrak{P})z$$

Então, pela Definição 3.7, existem A e B em $\mathcal P$ tais que, $x,y\in A$ e $y,z\in B$. Consequentemente, $y\in A\cap B\neq\emptyset$. Segue então, pela definição de partição, que A=B. Portanto, $x,z\in A$ e assim $x(X/\mathcal P)z$. Logo, $X/\mathcal P$ é uma relação de equivalência em X.

Para demonstrar o resto do teorema, seja x um elemento qualquer de X. Existe um e somente um conjunto A em \mathcal{P} tal que $x \in A$. (Porquê?)

Consequentemente, pela Definição 3.7, temos

$$x/(X/\mathfrak{P}) = A$$

Acabamos de provar que cada classe de equivalência, módulo X/\mathfrak{P} , é um conjunto da família \mathfrak{P} . Reciprocamente, seja A um conjunto qualquer na partição \mathfrak{P} . Como $A \neq \emptyset$, existe um elemento x em X que pertence a A. Pelo nosso argumento prévio, $x/(X/\mathfrak{P}) = A$. Isto demonstra que $X/(X/\mathfrak{P}) = \mathfrak{P}$. A demonstração do teorema está completa.

Toda relação de equivalência $\mathcal E$ em um conjunto X dá origem a uma partição $X/\mathcal E$ (de X) (Teorema 3.4); esta partição, por sua vez, determina uma relação de equivalência $X/(X/\mathcal E)$ (Teorema 3.5). O fato crucial é que $X/(X/\mathcal E)=\mathcal E$ (veja Problema 6). Isto, juntamente com $X/(X/\mathcal P)=\mathcal P$, estabelece a conexão íntima entre relações de equivalência e partições.

Ilustremos o Teorema 3.5 por um exemplo concreto. Sejam \mathbf{Z}_0 e \mathbf{Z}_1 o conjunto de inteiros pares e o conjunto de inteiros ímpares, respectivamente. Então $\mathcal{P} = \{\mathbf{Z}_0, \mathbf{Z}_1\}$ forma uma partição do conjunto \mathbb{Z} dos inteiros. Pela definição da relação \mathbb{Z}/\mathcal{P} , temos $a(\mathbb{Z}/\mathcal{P})b$ se e somente se ambos $a,b\in\mathbf{Z}_0$ ou $a,b\in\mathbf{Z}_1$. Isto é, $a(\mathbb{Z}/\mathcal{P})b$ se e somente se ambos a e b são pares ou ambos são ímpares. É fácil verificar que esta relação \mathbb{Z}/\mathcal{P} é de fato uma relação de equivalência. Na verdade, $a(\mathbb{Z}/\mathcal{P})b$ se e somente se $a\equiv b\pmod{2}$. Portanto, a relação \mathbb{Z}/\mathcal{P} é a relação familiar $\equiv\pmod{2}$. [Veja Exemplo 3.5.]

Reciprocamente, dado o conjunto \mathbb{Z} , juntamente com a relação $\mathcal E$ tal que $x \, \mathcal E \, y$ se e somente se $x \equiv y \pmod 2$, temos

$$a/\mathcal{E} = \{x \in \mathbb{Z} \mid x \equiv a \pmod{2}\} = \left\{ egin{array}{ll} \mathbf{Z}_0 & \text{se } a \not\in \mathsf{par} \\ \mathbf{Z}_1 & \text{se } a \not\in \mathsf{impar} \end{array} \right.$$

Portanto, $Z/\mathcal{E} = \{\mathbf{Z}_0, \mathbf{Z}_1\}$, que é claramente uma partição de \mathbb{Z} .

3.3.1 Exercícios

- 1. Seja \mathcal{P} uma partição do conjunto não vazio X. Demonstre que a relação de equivalência X/\mathcal{P} , como conjunto de pares ordenados, é igual a $\bigcup_{A\in\mathcal{P}} A\times A$.
- 2. No problema 1, seja X um conjunto finito e seja

$$\mathcal{P} = \{A_1, A_2, \dots, A_k\}$$

com o conjunto A_j contendo n_j elementos, para $j=1,2,\ldots,k$. Demonstre que o número de pares ordenados da relação de equivalência X/\mathcal{P} é exatamente $n_1^2+n_2^2+\cdots+n_k^2$.

- 3. Seja $X = \{a, b, c, d, e\}$ e seja $\mathcal{P} = \{\{a, b\}, \{c\}, \{d, e\}\}.$
 - (a) Mostre que \mathcal{P} é uma partição de X.
- (b) Encontre a relação de equivalência X/\mathcal{P} em X, explicitamente como um conjunto de pares ordenados.
 - (c) Denote $\mathcal{E} = X/\mathcal{P}$ e encontre a/\mathcal{E} , b/\mathcal{E} , c/\mathcal{E} , d/\mathcal{E} e e/\mathcal{E} explicitamente.
- 4. Verifique o Exemplo 3.6 para m=3.
- 5. Seja X o conjunto $\mathbb Z$ dos inteiros e seja $\mathcal E$ uma relação em X definida por $x \mathcal E y$ se e semente se x-y=5k para algum inteiro k.
 - (a) Demonstre que a relação \mathcal{E} é uma relação de equivalência em X.
 - (b) Encontre a partição X/\mathcal{E} de X.
- (c) Verifique que a relação de equivalência $X/(X/\mathcal{E})$ é de fato a relação de equivalência \mathcal{E} .
- 6. Seja $\mathcal E$ uma relação de equivalência no conjunto não vazio X. Demonstre que $X/(X/\mathcal E)=\mathcal E$.

3.4 Funções

Inquestionavelmente, o conceito de função é uma das idéias mais básicas em todos os ramos da Matemática. O leitor pode ter já aprendido a seguinte definição: uma função é uma regra de correspondência que associa a cada elemento x de um certo conjunto (chamado o domínio da função) um e apenas um elemento y de um outro conjunto (chamado o contra-domínio da função). Esta definição é nebulosa. O que se quer dizer precisamente por uma "regra"? De modo a evitar ambigüidades, matemáticos criaram uma definição precisa de função, usando a linguagem de conjuntos.

Definição 3.8 Sejam X e Y conjuntos. Uma função de X em Y é um terno (f, X, Y), sendo f uma relação de X para Y satisfazendo

- (a) Dom(f) = X.
- (b) Se $(x, y) \in f$ e $(x, z) \in f$ então y = z.

Seja (f,X,Y) uma função de X em Y. No que segue, adotaremos o costume de escrever $f\colon X\to Y$ em lugar de (f,X,Y), e y=f(x) em vez de $(x,y)\in f$. A razão pela qual "y=f(x)" é um substituto inteligível para $(x,y)\in f$ é que

Todo elemento $x \in X$ tem um elemento $y \in Y$, determinado de forma única, tal que $(x,y) \in f$.

Para ver que esta asserção é verdadeira, seja $x \in X$. Então, pela condição (a) da Definição 3.8, existe um elemento $y \in Y$ tal que $(x,y) \in f$; se exister um outro elemento $z \in Y$ com $(x,z) \in f$, então de acordo com a condição (b), z=y. Isto mostra que y é determinado de forma única por x.

Seja $f: X \to Y$ uma função. Se y = f(x), dizemos que y é a *imagem* de x sob f e que x é *pré-imagem* (ou *imagem inversa*) de y sob f. O leitor pode interpretar isto geometricamente, conforme ilustrado nas Figuras 9 e 10.

Figura 9.

Figura 10.

Chamaremos o conjunto Y, em $f\colon X\to Y$, de contra-domínio da função. Note o leitor que o contra-domínio de uma função não precisa coincidir com a imagem da função (veja Exemplo 3.7, abaixo). Chamamos a atenção do leitor para o fato de que alguns autores usam o termo "contra-domínio" como sinônimo de "imagem", mas por uma razão técnica, que será aparente na Seção 3.6, faremos distinção entre "imagem" e "contra-domínio" de uma função. De um modo geral, a imagem de uma função é um subconjunto do contra-domínio dessa função.

⁶A imagem da função $f \colon X \to Y$ é a imagem $\operatorname{Im}(f)$, da relação f. Conseqüentemente, $\operatorname{Im}(f) = \{f(x) \mid x \in X\}$.

Exemplo 3.7 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = [x] para todo $x \in \mathbb{R}$, em que [x] denota o maior inteiro $\leq x$, e.g., $[\sqrt{2}] = 1$, $[-\frac{1}{2}] = -1$. Aqui, o contra-domínio de f é \mathbb{R} , enquanto que a imagem de f é \mathbb{Z} , um subconjunto próprio de \mathbb{R} .

É possível alterar o contra-domínio de uma função sem alterar outros aspectos da função. Por exemplo, para a mesma relação f do Exemplo 3.7 acima, $f\colon \mathbb{R} \to \mathbb{Q}$ e $f\colon \mathbb{R} \to \mathbb{Z}$ são funções, porque a Definição 3.8 é satisfeita. De um modo geral, temos o seguinte teorema.

Teorema 3.6 Seja $f: X \to Y$ uma função e seja W um conjunto contendo a imagem de f. Então $f: X \to W$ é uma função.

Demonstração. Demonstraremos primeiramente que f é uma relação de X para W:

$$(x,y) \in f \Rightarrow x \in X \land y \in \operatorname{Im}(f) \qquad \text{Def. de Im} \\ \Rightarrow x \in X \land y \in W \qquad \operatorname{Im}(f) \subset W \\ \Rightarrow (x,y) \in X \times W \qquad \text{Def. 3.1}$$

Isto demonstra que $f\subset X\times W$; em outras palavras, f é uma relação de X em W. Como $f\colon X\to Y$ é uma função, $\mathrm{Dom}(f)=X$ e a condição (b) da Definição 3.8 está satisfeita. Portanto, $f\colon X\to W$ é uma função.

Teorema 3.7 Sejam $f: X \to Y$ e $g: X \to Y$ funções. Então f = g se e somente se $f(x) = g(x), \forall x \in X$.

Demonstração.

(1) Suponha que f = g e que x é um elemento qualquer de X. Então,

$$y = f(x) \Leftrightarrow (x,y) \in f$$
 Notação $\Leftrightarrow (x,y) \in g$ $f = g$ $\Leftrightarrow g(x) = y$ Notação

Portanto, f(x) = g(x).

(2) Suponha que $f(x) = g(x), \forall x \in X$. Então

$$\begin{array}{ll} (x,y) \in f \Leftrightarrow y = f(x) & \quad \text{Notação} \\ \Leftrightarrow y = g(x) & \quad f(x) = g(x) \\ \Leftrightarrow (x,y) \in g & \quad \text{Notação} \end{array}$$

 $^{^7 \}text{Para cada } x \in \mathbb{R} \text{, define-se } [x] = n \text{ quando } x = n + \alpha \text{, com } n \in \mathbb{Z} \text{ e } \alpha \in \mathbb{R} \text{, com } 0 \leq \alpha < 1.$ (N. do T.)

Isto demonstra que f = g.

Se o domínio e o contra-domínio de uma função são subconjuntos do conjunto dos números reais, então, como na geometria analítica, o gráfico da função pode ser esboçado no plano cartesiano.⁸ Por exemplo, a função do Exemplo 3.7 tem o seguinte gráfico.

Figura 10.

Exemplo 3.8 Seja A um subconjunto de um conjunto não vazio X. Então a relação

$$\{(x,y) \in X \times \{0,1\} \mid y=1 \text{ se } x \in A, \text{ e } y=0 \text{ se } x \not\in A\}$$

dá origem a uma função de X em $\{0,1\}$, conhecidada como função característica de A em X. Esta função é habitualmente denotada pela letra grega qui, com um índice A, χ_A . Ou seja,

$$\chi_A \colon X \to \{0,1\}$$

é definida por

$$\chi_A(x) = \left\{ \begin{array}{ll} 1 & \textit{se } x \in A \\ 0 & \textit{se } x \in X - A \end{array} \right.$$

Embora a função seja, por definição, escrita (f,X,Y) ou $f\colon X\to Y$, é freqüentemente um incômodo ter que escrever explicitamente o domínio e o contra-domínio de uma função, quando eles são implicitamente claros a partir do contexto. Portanto, denotaremos uma função por f quando o domínio e o contra-domínio de f forem claramente compreendidos, sem dar explicitamente o domínio e o contra-domínio de f.

⁸Pressupondo-se que a função seja "bem comportada".

Exemplo 3.9 Seja X um conjunto. A relação diagonal Δ_X em X, definida na página 54, é uma função de X em X. Quando queremos enfatizar que a relação Δ_X é uma função, usamos a notação alternativa $1_X \colon X \to X$, em que $1_X(x) = x$ para todo x em X. A função 1_X é chamada função identidade em X.

Exemplo 3.10 Sejam X e Y dois conjuntos não vazios e seja b um elemento fixado de Y. A relação

$$C_b = \{(x, b) \mid x \in X\}$$

dá origem a uma função $C_b \colon X \to Y$, dada por $C_b(x) = b$ para todo x em X. A função C_b é chamada função constante.

No cálculo, vemos freqüentemente uma função definida por duas (ou mais) regras de correspondência: por exemplo, $h \colon \mathbb{R} \to \mathbb{R}$, definida por

$$h(x) = \begin{cases} 1 - 2x, \text{ se } x \le 0\\ x^2 + 1, \text{ se } x \ge 0 \end{cases}$$

Esta função pode ser considerada como a união das seguintes duas funções:

- (1) $f:]-\infty,0] \to \mathbb{R}$, definida por f(x)=1-2x, $\forall x \in]-\infty,0]$
- (2) $g: [0, \infty[\to \mathbb{R}, \text{ definida por } g(x) = x^2 + 1, \forall x \in [0, \infty[$

O leitor deverá notar que aqui $Dom(f) \cap Dom(g) = \{0\}$ e que f(0) = g(0).

Os últimos exemplos motivam o seguinte teorema geral.

Teorema 3.8 Sejam $f: A \to C$ e $g: B \to D$ duas funções tais que $f(x) = g(x), \forall x \in A \cap B$. Então a união de f e g define uma função

$$h = f \cup q \colon A \cup B \to C \cup D$$

em que

$$h(x) = \begin{cases} f(x), \text{ se } x \in A \\ g(x), \text{ se } x \in B \end{cases}$$

Demonstração.

Como f e g são relações, $f \subset A \times C$ e $g \subset B \times D$, e temos

$$h = f \cup g \subset (A \times C) \cup (B \times D)$$
$$\subset (A \cup B) \times (C \cup D)$$

porque ambos $A \times C$ e $B \times D$ são subconjuntos de $(A \cup B) \times (C \cup D)$. Assim, h é uma relação de $A \cup B$ para $C \cup D$. Deixaremos ao leitor verificar que

$$Dom(h) = Dom(f) \cup Dom(g)$$
$$= A \cup B$$

Isto mostra que a relação h satisfaz a Definição 3.8(a).

Para cada elemento $x \in A \cup B$, podemos considerar os seguintes três casos: (1) $x \in A - B$, (2) $x \in B - A$, e (3) $x \in A \cap B$. Como $f \colon A \to C$ e $g \colon B \to D$ satisfazem a Definição 3.8(b), e f(x) = g(x), $\forall x \in A \cap B$, temos que h(x) é definido de modo único em cada um dos três casos. Logo, a relação h satisfaz a Definição 3.8(b) também. Portanto, $h \colon A \cup B \to C \cup D$ é de fato uma função.

3.4.1 Exercícios

1. Teste se cada um dos seguintes diagramas define ou não uma função de $X=\{x,y,z\}$ em $Y=\{u,v,w\}$.

2. Seja $f: \mathbb{R} \to \mathbb{R}$ a função dada por

$$f(x) = \begin{cases} 5 & \text{se } x \text{ \'e racional} \\ -3 & \text{se } x \text{ \'e irracional} \end{cases}$$

Encontre f(1/3), f(7), e f(1, 323232...).

3. Seja a função $f \colon \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = \begin{cases} 4x + 3 & \text{se } x > 5 \\ x^2 - 2 & \text{se } -6 \le x \le 5 \\ 4 - 5x & \text{se } x < -6 \end{cases}$$

Encontre f(-7), f(3) e f(6).

4. Seja $f \colon X \to Y$ a função definida pelo diagrama

Qual é a imagem desta função?

- 5. Seja a função $f\colon X\to\mathbb{R}$ definida por $X=\{-2,-1,0,1,2\}$ e $f(x)=x^2-3$ para todo $x\in X$. Encontre a imagem da função f.
- 6. Cada uma das seguintes expressões define uma função de $\mathbb R$ em $\mathbb R$. Encontre a imagem de cada função.
 - (a) $f(x) = 2x^2 + 5$
 - (b) $g(x) = \cos x$
 - (c) $h(x) = x^3 1$
- 7. Seja $X\subset Y$ e $f=\{(x,x)\mid x\in X\}$. Demonstre que $f\colon X\to Y$ é uma função. [Nota. Esta função é chamada uma função inclusão, e pode ser denotada por $f\colon X\subset Y$.] 8. Sejam $X=\{x,y,z\}$ e $Y=\{1,2,3\}$. Quais das seguintes é uma função de X em Y? Justifique.
 - (a) $f = \{(x, 1), (y, 2), (z, 3)\}$
 - (b) $g = \{(x, 2), (y, 3), (z, 2)\}$
 - (c) $h = \{(x, 2), (y, 1)\}$
 - (d) $i = \{(x, 1), (x, 2), (y, 1), (z, 3)\}$
- 9. Se $X=\{x,y,z\}$ e $Y=\{1,2\}$, quantas funções de X em Y existem? De modo geral, se o conjunto X tem m elementos e se Y tem n elementos, quantas funções de X e Y existem?
- 10. Quantas funções do problema 9 são constantes?
- 11. Seja $f: X \to Y$ uma função. Demonstre que todo subconjunto g de f dá origem a uma função.
- 12. Seja $f: X \to X$ uma função de X em X, que também é uma relação reflexiva em X. Demonstre que f tem que ser a função identidade $1_X: X \to X$.
- 13. Seja X o intervalo unitário [0,1]. Encontre uma função $f\colon X\to X$ que é uma relação simétrica em X.
- 14. Sejam $f: X \to Y$ e $g: X \to Y$ duas funções com o mesmo domínio e o mesmo contra-domínio. Demonstre que se $f \subset q$ então f = q.

3.5 Imagens e imagens inversas de conjuntos

Recordemos que se $f \colon X \to Y$ é uma função e se x e y são elementos de X e Y, respectivamente, tais que y = f(x), então y é a imagem de x, e x é uma pré-imagem ou

uma imagem inversa de y. Este conceito pode ser estendido naturalmente de elementos a subconjuntos, como segue:

Definição 3.9 Seja $f: X \to Y$ uma função, e sejam A e B subconjuntos de X e Y, respectivamente.

- (a) A imagem de A sob f, que denotamos por f(A), é o conjunto de todas as imagens f(x) tais que $x \in A$.
- (b) A imagem inversa de B sob f, que denotamos por $f^{-1}(B)$, é o conjunto de todas as pré-imagens dos elementos $y \in B$.

Sob a notação de construção de um conjunto, temos as seguintes expressões:

$$f(A) = \{ f(x) \mid x \in A \}$$
$$f^{-1}(B) = \{ x \mid f(x) \in B \}$$

Teorema 3.9 Seja $f: X \to Y$ uma função. Então

- (a) $f(\emptyset) = \emptyset$.
- (b) $f({x}) = {f(x)}.$
- (c) Se $A \subset B \subset X$, então $f(A) \subset f(B)$.
- (d) Se $C \subset D \subset Y$, então $f^{-1}(C) \subset f^{-1}(D)$.

O Teorema 3.9 segue facilmente da Definição 3.9; portanto, a demonstração é deixada para o leitor.

Teorema 3.10 Seja $f: X \to Y$ uma função e seja $\{A_{\gamma} \mid \gamma \in \Gamma\}$ uma família de subconjuntos de X. Então

- $\begin{array}{l} \textit{(a)} \ f(\bigcup_{\gamma \in \Gamma} A_{\gamma}) = \bigcup_{\gamma \in \Gamma} f(A_{\gamma}). \\ \textit{(b)} \ f(\bigcap_{\gamma \in \Gamma} A_{\gamma}) \subset \bigcap_{\gamma \in \Gamma} f(A_{\gamma}). \end{array}$

Demontração.

(a) Por uso repetido da Definição 3.9 e da Definição 2.6 do Capítulo 2, temos

$$\begin{split} y \in f\left(\bigcup_{\gamma \in \Gamma} A_{\gamma}\right) &\Leftrightarrow y = f(x) \qquad \text{ para algum } x \in \bigcup_{\gamma \in \Gamma} A_{\gamma} \\ &\Leftrightarrow y = f(x) \qquad \text{ para algum } x \in A_{\gamma}, \quad \text{ para algum } \gamma \in \Gamma \\ &\Leftrightarrow y \in f(A_{\gamma}) \qquad \text{ para algum } \gamma \in \Gamma \\ &\Leftrightarrow y \in \bigcup_{\gamma \in \Gamma} f(A_{\gamma}) \end{split}$$

Portanto, $f(\bigcup_{\gamma \in \Gamma} A_{\gamma}) = \bigcup_{\gamma \in \Gamma} f(A_{\gamma}).$

(b) Como $\bigcap_{\gamma \in \Gamma} \subset A_{\gamma}$, para todo $\gamma \in \Gamma$, pelo Teorema 3.9(c), temos $f(\bigcap_{\gamma \in \Gamma} A_{\gamma}) \subset f(A_{\gamma})$, para todo $\gamma \in \Gamma$. Segue então, da Definição 2.7, do Capítulo 2, que $f(\bigcap_{\gamma\in\Gamma}A_{\gamma})\subset\bigcap_{\gamma\in\Gamma}f(A_{\gamma}).$

Pode não ser possível trocar o símbolo de inclusão ⊂, no Teorema 3.10(b), por um sinal de igualdade, como mostra o próximo exemplo.

Exemplo 3.11 Sejam $X = \{a, b\}$, $Y = \{c\}$, $\Gamma = \{1, 2\}$, $A_1 = \{a\}$, $A_2 = \{b\}$, e seja $f: X \to Y$ a função constante f(a) = f(b) = c. Então $f(A_1 \cap A_2) = f(\emptyset) = \emptyset$, enquanto que $f(A_1) \cap f(A_2) = \{c\}$. Isto mostre que nem sempre $f(\bigcap_{\gamma \in \Gamma} A_\gamma) =$ $\bigcap_{\gamma \in \Gamma} f(A_{\gamma}).$

Teorema 3.11 Seja $f: X \to Y$ uma função e seja $\{B_{\gamma} \mid \gamma \in \Gamma\}$ uma família de subconjuntos de Y. Então

(a)
$$f^{-1}(\bigcup_{\gamma \in \Gamma} B_{\gamma}) = \bigcup_{\gamma \in \Gamma} f^{-1}(B_{\gamma})$$

(a)
$$f^{-1}(\bigcup_{\gamma \in \Gamma} B_{\gamma}) = \bigcup_{\gamma \in \Gamma} f^{-1}(B_{\gamma})$$

(b) $f^{-1}(\bigcap_{\gamma \in \Gamma} B_{\gamma}) = \bigcap_{\gamma \in \Gamma} f^{-1}(B_{\gamma})$

Demonstração.

(a) Aplicando-se repetidamente a Definição 3.9 e a Definição 2.6 do Capítulo 2, temos

$$\begin{split} x \in f^{-1}\left(\bigcup_{\gamma \in \Gamma} B_{\gamma}\right) &\Leftrightarrow f(x) \in \bigcup_{\gamma \in \Gamma} B_{\gamma} \\ &\Leftrightarrow f(x) \in B_{\gamma}, \qquad \text{para algum } \gamma \in \Gamma \\ &\Leftrightarrow x \in f^{-1}(B_{\gamma}), \qquad \text{para algum } \gamma \in \Gamma \\ &\Leftrightarrow x \in \bigcup_{\gamma \in \Gamma} f^{-1}(B_{\gamma}) \end{split}$$

Assim, acabamos de demonstrar que $f^{-1}(\bigcup_{\gamma\in\Gamma}B_{\gamma})=\bigcup_{\gamma\in\Gamma}f^{-1}(B_{\gamma}).$

(b) Trocando-se ∪ por ∩ e a frase "para algum" por "para todo", na demonstração da parte (a), temos uma demonstração da parte (b). O estudante deverá realizar as mudanças sugeridas, passo a passo, até estar claramente convencido.

Teorema 3.12 Seja $f: X \to Y$ uma função e sejam B e C subconjuntos quaisquer de Y. Então

$$f^{-1}(B-C) = f^{-1}(B) - f^{-1}(C)$$

Demonstração.

Examinemos as seguintes equivalências:

$$x \in f^{-1}(B-C) \Leftrightarrow f(x) \in B-C \qquad \qquad \text{Def. 3.9}$$

$$\Leftrightarrow f(x) \in B \ \land \ f(x) \not\in C \qquad \qquad \text{Def. 2.5 (Cap. 2)}$$

$$\Leftrightarrow x \in f^{-1}(B) \ \land \ x \not\in f^{-1}(C) \qquad \qquad \text{Def. 3.9}$$

$$\Leftrightarrow x \in [f^{-1}(B)-f^{-1}(C)] \qquad \qquad \text{Def. 2.5 (Cap. 2)}$$

Isto demonstra que $f^{-1}(B-C) = f^{-1}(B) - f^{-1}(C)$.

3.5.1 Exercícios

- 1. No Problema 2, Exercícios 3.4.1, encontre
 - (a) $f(\{-1,0,1\})$, $f(\{\sqrt{2},\pi\})$, e $f(\{2,\log 2\})$
 - (b) $f^{-1}(\{0,1\})$, $f^{-1}(\{-3,3\})$, $f^{-1}(\{4,5\})$, e $f^{-1}(\{-3,4,5\})$.
- 2. No Problema 3, Exercícios 3.4.1, encontre
 - (a) $f(\{-7,3,6\})$, $f(\{-8,2,7\})$, e $f(\{-9,1,8\})$
 - (b) $f^{-1}(\{0,1\})$, $f^{-1}(\{-3,3\})$, e $f^{-1}(\{1,2,3\})$.
- 3. No Problema 4, Exercícios 3.4.1, encontre $f(\{v,w\})$, $f^{-1}(\{c\})$, e $f^{-1}(\{a,b\})$.
- 4. Seja $f: X \to Y$ uma função e sejam $A \subset X$, $B \subset Y$. Demonstre que
 - (a) $A \subset f^{-1}(f(A))$
 - (b) $f(f^{-1}(B)) \subset B$.
- 5. Seja $f: X \to Y$ uma função e sejam $A \subset X$, $B \subset Y$. Encontre exemplos que mostrem que as seguintes afirmações são falsas.
 - (a) Se $B \neq \emptyset$, então $f(B) \neq \emptyset$
 - (b) $f^{-1}(f(A)) = A$
 - (c) $f(f^{-1}(B)) = B$
 - (d) f(X) = Y
- 6. Mostre que a afirmação do Problema 5(c) é verdadeira quando f(X) = Y.
- 7. Seja $f\colon X\to Y$ uma função tal que f(X)=Y, e sejam B e C subconjuntos de
- Y. Demonstre que B=C se $f^{-1}(B)=f^{-1}(C)$. Dê um exemplo mostrando que esta afirmação é falsa se $f(X)\neq Y$.
- 8. Sejam X e Y dois conjuntos, e sejam $p_X\colon X\times Y\to X$ e $p_Y\colon X\times Y\to Y$ duas funções, dadas respectivamente por $p_X(x,y)=x$ e $p_Y(x,y)=y$, para todo $(x,y)\in X\times Y$ (p_X e p_Y são chamadas projeção em X e projeção em Y, respectivamente). Demonstre que se $\mathcal R$ é uma relação de X para Y, isto é, se $\mathcal R\subset X\times Y$, então $p_X(\mathcal R)=\mathrm{Dom}(\mathcal R)$ e $p_Y(\mathcal R)=\mathrm{Im}(\mathcal R)$.
- 9. Seja $f: X \to Y$ uma função, e sejam $A \subset X$, $B \subset Y$. Demonstre que
 - (a) $f(A \cap f^{-1}(B)) = f(A) \cap B$
 - (b) $f(f^{-1}(B)) = f(X) \cap B$.
- 10. Seja $f: X \to Y$ uma função, e seja $B \subset Y$. Demonstre que

$$f^{-1}(Y - B) = X - f^{-1}(B)$$

11. Seja $f: X \to Y$ uma função, e sejam A e B subconjuntos de X. Dê um exemplo que mostra que, em geral, não é verdadeiro afirmar que

$$f(A - B) = f(A) - f(B)$$

12. Demonstre o Teorema 3.9.

3.6 Funções injetoras, sobrejetoras e bijetoras

No estudo das funções, é conveniente dar nomes a três tipos importantes de funções.

Definição 3.10 Uma função $f\colon X\to Y$ é injetora ou um-a-um⁹ quando satisfaz: se $x_1,x_2\in X$ e $f(x_1)=f(x_2)$ então $x_1=x_2$. Uma função injetora é também chamada uma injeção.

Pela Lei Contrapositiva da lógica, podemos dizer equivalentemente que a função $f\colon X\to Y$ é uma injeção se e somente se: $x_1,x_2\in X$, com $x_1\neq x_2$, implica $f(x_1)\neq f(x_2)$. Por exemplo, a função inclusão do Problema 7, Exercícios 3.4.1, é uma injeção.

Definição 3.11 Uma função $f: X \to Y$ é dita ser sobrejetora se satisfaz: se $y \in Y$, então existe ao menos um $x \in X$ tal que f(x) = y. Uma função sobrejetora é chamada uma sobrejeção. Em outras palavras, $f: X \to Y$ é uma sobrejeção se e somente se f(X) = Y.

A função do Exemplo 3.7, Seção 3.4, por exemplo, não é sobrejetora.

Exemplo 3.12 A função seno $f: \mathbb{R} \to [-1,1]$, dada por $f(x) = \sin x$ é uma sobrejeção; mas se o contra-domínio [-1,1] for trocado por \mathbb{R} , então $f: \mathbb{R} \to \mathbb{R}$ não é sobrejetora.

Definição 3.12 Uma função $f\colon X\to Y$ é chamada uma bijeção ou é dita ser bijetora se é simultaneamente injetora e sobrejetora. Uma bijeção é também chamada correspondência um-a-um. 10

Por exemplo, a função identidade no Exemplo 3.9, Seção 3.4, é uma bijeção. As definições 10, 11, e 12 são ilustradas nos três diagramas abaixo (Figuras 12, 13 e 14). Os conjuntos X e Y são representados como conjuntos de pontos dentro de círculos. Em cada ilustração, cada ponto em X é emparelhado com algum ponto em Y, por uma flecha desenhada entre ambos. O conjunto de pares assim obtido dá origem a uma função $f\colon X\to Y$.

Para funções injetoras, o resultado do Teorema 3.10(b) pode ser melhorado.

 $^{^{9}}$ lsto é denotado por f é 1−1. (N. do T.)

¹⁰Ou correspondência biunívoca (N. do T.)

Teorema 3.13 Seja $f\colon X\to Y$ uma injeção e seja $\{A_\gamma\mid \gamma\in\Gamma\}$ uma família de subconjuntos de X. Então

$$f\left(\bigcap_{\gamma\in\Gamma}A_{\gamma}\right)=\bigcap_{\gamma\in\Gamma}f(A_{\gamma})$$

Demonstração. Pela Definição 3.9, e pela Definição 2.7 do Capítulo 2, temos

$$\begin{split} y \in \bigcap_{\gamma \in \Gamma} f(A_\gamma) \Leftrightarrow y \in f(A_\gamma), \forall \gamma \in \Gamma \\ \Leftrightarrow (\exists x_\gamma \in A_\gamma \ \text{ tal que } \ y = f(x_\gamma)) \ \forall \gamma \in \Gamma \end{split}$$

Como $f\colon X\to Y$ é injetora, todos esses x_γ 's são o mesmo; denotaremos este elemento por x_0 . Então temos

$$\begin{split} y \in \bigcap_{\gamma \in \Gamma} f(A_\gamma) &\Leftrightarrow \exists x_0 \in A_\gamma \ \text{ tal que } \ y = f(x_0), \forall \gamma \in \Gamma \\ &\Leftrightarrow \exists x_0 \in \bigcap_{\gamma \in \Gamma} A_\gamma \ \text{ tal que } \ y = f(x_0) \\ &\Leftrightarrow y \in f\left(\bigcap_{\gamma \in \Gamma} A_\gamma\right) \end{split}$$

Portanto, $f(\bigcap_{\gamma\in\Gamma}A_{\gamma})=\bigcap_{\gamma\in\Gamma}f(A_{\gamma}).$

Figura 12. $f \colon X \to Y$ é injetora.

Figura 13. $f: X \to Y$ é sobrejetora.

Figura 14. $f: X \to Y$ é bijetora.

Recordemos que se \Re é uma relação de X para Y, então a inversa

$$\mathcal{R}^{-1} = \{ (y, x) \mid (x, y) \in \mathcal{R} \}$$

é uma relação de Y para X. Como uma função $f\colon X\to Y$ é um tipo particular de relação de X para Y, f^{-1} é ao menos uma relação de Y para X. É natural querer saber quando f^{-1} torna-se uma função. Esta questão é considerada no seguinte teorema.

Teorema 3.14 Seja $f: X \to Y$ uma bijeção. Então $f^{-1}: Y \to X$ é uma bijeção.

Demonstração. Demonstraremos primeiramente que a relação f^{-1} , de Y para X, forma uma função. Como $f\colon X\to Y$ é sobrejetora, pelo Problema 3(a), Exercícios 3.2.1, temos $\mathrm{Dom}(f^{-1})=\mathrm{Im}(f)=Y$. Assim, a condição (a) da Definição 3.8 está satisfeita. Para mostrar que f^{-1} satisfaz a outra condição, sejam $(y,x_1)\in f^{-1}$ e $(y,x_2)\in f^{-1}$. Então temos $(x_1,y)\in f$ e $(x_2,y)\in f$. Conseqüentemente, $f(x_1)=y=f(x_2)$. Agora, como $f\colon X\to Y$ é injetora, a última igualdade implica $x_1=x_2$. Portanto, acabamos de estabelecer que $f^{-1}\colon Y\to X$ é uma função.

Para mostrar que a função $f^{-1}\colon Y\to X$ é injetora, sejam $y_1,y_2\in Y$, com $f^{-1}(y_1)=f^{-1}(y_2)=x$ (digamos). Então temos $f(x)=y_1$ e $f(x)=y_2$, e portanto $y_1=y_2$. Isto mostra que f^{-1} é injetora.

Finalmente, resta ser mostrado que $f^{-1}\colon Y\to X$ é sobrejetora. Pelo Problema 3(b) dos Exercícios 3.2.1, temos $\mathrm{Im}(f^{-1})=\mathrm{Dom}(f)=X$, o que demonstra que f^{-1} é sobrejetora. Assim, a demonstração está completa.

Se $f\colon X\to Y$ é uma bijeção, a função $f^{-1}\colon Y\to X$ é chamada a função inversa de f (veja também Problema 14, Exercícios 3.6.1).

Em virtude do Teorema 3.14, se $f: X \to Y$ é uma bijeção (= correspondência um-a-um), diremos que f é uma correspondência um-a-um entre os conjuntos X e Y.

3.6.1 Exercícios

- 1. Quais das funções nos Problemas 2, 3 e 4, dos Exercícios 3.4.1 são injetoras? Sobrejetoras?
- 2. Quais das funções nos Problemas 5 e 6, dos Exercícios 3.4.1 são injetoras? Bijetoras?
- 3. Seja $f: \mathbb{R} \to \mathbb{R}$ a função definida por f(x) = 3x 2, para todo $x \in \mathbb{R}$.
 - (a) Demonstre que a função f é uma bijeção.
 - (b) Encontre a inversa f^{-1} de f.
- 4. Seja $g\colon]-\pi/2,\pi/2[\to\mathbb{R}$ a função dada por $g(x)=\operatorname{tg} x$, para todo x tal que $-\pi/2< x<\pi/2$. Esta função é bijetora? Em caso afirmativo, descreva sua função inversa.
- 5. Demonstre que a função característica $\chi_A \colon X \to \{0,1\}$, do Exemplo 3.8, Seção 3.4, é sobrejetora se e somente se $\emptyset \neq A \subsetneq X$. Quando é que $\chi_A \colon X \to \{0,1\}$ torna-se uma injeção?
- 6. Demonstre que a função constante $C_b \colon X \to Y$ é sobrejetora se e somente se $Y = \{b\}$. Quando é que $C_b \colon X \to Y$ torna-se uma injeção?
- 7. Demonstre que a projeção em X, $p_X \colon X \times Y \to X$, e a projeção em Y, $p_Y \colon X \times Y \to Y$, do Problema 8, Exercícios 3.5.1, são sobrejetoras. Quando é que a projeção em X é uma injeção?
- 8. Demonstre que existe uma correspondência um-a-um entre o conjunto $\mathbb N$ dos números naturais e o conjunto de todos os números naturais pares.
- 9. Demonstre que existe uma correspondência um-a-um entre o conjunto \mathbb{Z} dos números inteiros e o conjuntos de todos os inteiros ímpares.
- 10. Sejam X uma conjunto finito com m elementos e Y um conjunto finito com n elementos. Demonstre que
 - (a) Se m > n, então não pode haver nenhuma injeção $f: X \to Y$.
- (b) Se $m \le n$, então existem exatamente n!/(n-m)! injeções de X em Y. [Veja também o Problema 9, Exercícios 3.5.1.]
- 11. Seja X um conjunto finito com m elementos. Quantas bijeções de X em X existem? [Nota: Uma bijeção de um conjunto finito em si mesmo é chamada uma permutação.]
- 12. Seja $f: X \to Y$ uma função, e sejam $A \subset X$, $B \subset Y$. Demonstre que
 - (a) Se f é injetora, então $f^{-1}(f(A)) = A$.
 - (b) Se f é sobrejetora, então $f(f^{-1}(B)) = B$.
- 13. Seja $f: X \to Y$ uma injeção, e sejam A e B subconjuntos de X. Demonstre que f(A-B) = f(A) f(B). [Compare isto com o Problema 11, Exercícios 3.5.1.]
- 14. Demonstre a seguinte recíproca do Teorema 3.14: Seja $f: X \to Y$ uma função tal que f^{-1} é uma função de Y para X. Então $f: X \to Y$ é bijetora.

3.7 Composição de funções

A um leitor atento, uma função $f\colon X\to Y$ pode ser considerada como uma máquina que toma um objeto arbitrário x do conjunto X, opera sobre ele de um certo modo, e transforma-o em um novo objeto f(x), um produto da máquina. Esta idéia é ilustrada na Figura 15.

Sejam $f\colon X\to Y$ e $g\colon Y\to Z$ duas funções, sendo o domínio da segunda igual ao contra-domínio da primeira. Imagine estas duas funções como duas máquinas, tais quais uma lavadora e uma secadora. Não temos que ser inventores para imaginar a possibilidade de combinar estas duas máquinas em uma nova máquina; o resultado seria uma combinação lavadora-secadora, que pega uma uma roupa suja x, lava-a de modo a torná-la uma roupa limpa porém úmida f(x), e então seca-a. O resultado é uma roupa limpa e seca g(f(x)). A idéia é ilustrada na Figura 16.

Figura 16.

A "combinação" das máquinas $f\colon X\to Y$ e $g\colon Y\to Z$ resulta em uma nova máquina, denotada por $h\colon X\to Z$, que toma um objeto arbitrário x em X, e transforma-o no objeto h(x)=g(f(x)) em Z. A notação tradicional para h é $g\circ f$, e $(g\circ f)(x)=g(f(x))$; o nome tradicional para o termo "combinação" é "composição".

Estamos agora prontos para a seguinte definição.

Definição 3.13 Sejam $f\colon X\to Y$ e $g\colon Y\to Z$ duas funções. A composição destas duas funções é a função $g\circ f\colon X\to Z$, sendo $(g\circ f)(x)=g(f(x))$, para todo x em X. Em outra notação

$$g \circ f = \{(x, z) \in X \times Z \mid \exists y \in Y \text{ tal que } (x, y) \in f \land (y, z) \in g\}$$

Exemplo 3.13 Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ duas funções, dadas respectivamente por f(x) = x + 1, e $g(x) = x^2$, para todo x em \mathbb{R} . Encontre as composições $(g \circ f)(x)$ e $(f \circ g)(x)$.

¹¹ou função composta de g e f. (N. do T.)

Solução. Usando a Definição 3.13, temos

$$(g \circ f)(x) = g(f(x))$$

$$= g(x+1)$$

$$= (x+1)^{2}$$

$$= x^{2} + 2x + 1$$

$$(f \circ g)(x) = f(g(x))$$

$$= f(x^{2})$$

$$= x^{2} + 1$$

O resultado do Exemplo 3.13 nos mostra que, em geral, $g \circ f \neq f \circ g$; portanto, a composição funcional não é comutativa.

Teorema 3.15 A composição funcional é associativa. Ou seja, tendo-se $f: X \to Y$, e $g: Y \to Z$, e $h: Z \to W$, então

$$(h \circ g) \circ f = h \circ (g \circ f)$$

Demonstração. Notemos primeiramente que ambas, $h\circ (g\circ f)$ e $(h\circ g)\circ f$, são funções de X em W. Portanto, para mostrar que $h\circ (g\circ f)=(h\circ g)\circ f$, pelo Teorema 3.7 da Seção 3.4, precisamos apenas mostrar que $[h\circ (g\circ f)](x)=[(h\circ g)\circ f](x)$, para todo x em X. Usamos a Definição 3.13 para obter o seguinte:

$$[h \circ (g \circ f)](x) = h((g \circ f)(x)) = h(g(f(x)))$$

e

$$[(h \circ g) \circ f](x) = (h \circ g)(f(x)) = h(g(f(x)))$$

para todo x em X. Isto mostra que $[h \circ (g \circ f)](x) = [(h \circ g) \circ f](x)$, para todo x em X. A demonstração está agora completa.

Teorema 3.16 Seja $f: X \to Y$ uma função. Então

- (a) Se existe uma função $g \colon Y \to X$ tal que $g \circ f = 1_X$ (sendo $1_X \colon X \to X$ a função identidade, definida no Exemplo 3.9, Seção 3.4), então $f \colon X \to Y$ é injetora.
- (b) Se existe uma função $h\colon X\to Y$ tal que $f\circ h=1_Y$, então $f\colon X\to Y$ é sobrejetora.

Demonstração.

(a) Suponha que existe uma função $g\colon Y\to X$ tal que $g\circ f=1_X$. Então para quaisquer x_1 e x_2 em X, com $f(x_1)=f(x_2)$, temos

$$x_1 = (g \circ f)(x_1) = g(f(x_1)) = g(f(x_2)) = (g \circ f)(x_2) = x_2$$

 $^{^{12}}$ Muitas vezes, define-se $f\circ g$ mas não se define $g\circ f$ (N. do T.)

Isto demonstra que $f: X \to Y$ é injetora.

(b) Suponha que existe uma função $h\colon Y\to X$ tal que $f\circ h=1_Y$. Então, para cada $y\in Y$, existe um elemento

$$x = h(y) \in X$$

tal que

$$f(x) = f(h(y)) = (f \circ h)(y) = 1_Y(y) = y$$

Pela Definição 3.11, $f: X \to Y$ é sobrejetora.

3.7.1 Exercícios

- 1. Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ duas funções definidas por $f(x) = 2x^3 + 1$ e $g(x) = \cos x$, respectivamente, para todo $x \in \mathbb{R}$.
 - (a) Encontre a composição $g \circ f$.
 - (b) Encontre a composição $f \circ g$.
- 2. Sejam $f: \mathbb{R}_+ \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}_+$ duas funções definidas por $f(x) = \log_{10} x$, para todo $x \in \mathbb{R}_+$, e $g(x) = 10^x$ para todo $x \in \mathbb{R}$.
 - (a) Encontre a composição $g \circ f \colon \mathbb{R}_+ \to \mathbb{R}_+$
 - (b) Encontre a composição $f \circ g \colon \mathbb{R} \to \mathbb{R}$.
- 3. Sejam f, g e h as funções dadas no Problema 6, Exercícios 3.4.1.
 - (a) Encontre a composição $g \circ f$.
 - (b) Encontre a composição $h \circ q$.
 - (c) Encontre a composição $h \circ (q \circ f)$.
 - (d) Encontre a composição $(h \circ g) \circ f$.
 - (e) Compare suas respostas para $h \circ (g \circ f)$ e $(h \circ g) \circ f$; são a mesma?
- 4. Seja $f: X \to Y$ uma função. Demonstre que $f \circ 1_X = f = 1_Y \circ f$.
- 5. Seja $f: X \to Y$ uma bijeção e seja $f^{-1}: Y \to X$ a função inversa de f. Demonstre que $f^{-1} \circ f = 1_X$ e que $f \circ f^{-1} = 1_Y$.
- 6. Seja $f: X \to Y$ uma função. Se existem funções $g: Y \to X$ e $h: Y \to X$, tais que $g \circ f = 1_X$ e $f \circ h = 1_Y$, demonstre que $f: X \to Y$ é bijetora e que $g = h = f^{-1}$.
- 7. Sejam $f: X \to Y$ e $q: Y \to Z$ funções. Demonstre que
 - (a) Se $f: X \to Y$ e $g: Y \to Z$ são injetoras, então também o é $g \circ f: X \to Z$.
 - (b) Se $f: X \to Y$ e $g: Y \to Z$ são sobrejetoras, então também o é $g \circ f: X \to Z$.
- 8. Seja $\mathcal R$ uma relação de X para Y e seja $\mathcal S$ uma relação de Y para Z. Podemos, como na composição de funções, definir a *composição* destas relações por

$$\mathbb{S} \circ \mathbb{R} = \{ (x, z) \in X \times Z \mid (\exists y \in Y) [(x, y) \in \mathbb{R} \land (y, z) \in \mathbb{S}] \}$$

que é uma relação de X para Z. Demonstre que

- (a) $(S \circ \mathcal{R})^{-1} = \mathcal{R}^{-1} \circ S^{-1}$.
- (b) Se \mathfrak{T} é uma relação de Z para W, então $\mathfrak{T} \circ (S \circ \mathfrak{R}) = (\mathfrak{T} \circ S) \circ \mathfrak{R}$.
- 9. Sejam $f\colon X\to Y$ e $g\colon Y\to Z$ duas bijeções. Demonstre que $g\circ f\colon X\to Z$ é uma bijeção, e que a função inversa $(g\circ f)^{-1}\colon Z\to X$, é o mesmo que a composição

 $f^{-1}\circ g^{-1}\colon Z\to X$ das funções inversas $g^{1-}\colon Z\to Y$ e $f^{-1}\colon Y\to X.$ Ou seja, $(g\circ f)^{-1}=f^{-1}\circ g^{-1}.$

