

Decrease and Conquer

Chapter 5

Decrease and Conquer

- Reduce problem instance to smaller instance of the same problem
- 2. Solve smaller instance
- 3. Extend solution of smaller instance to obtain solution to original problem

3 Variations of Decrease and Conquer

- 1. Decrease by A constant normally one:
 - Insertion sort
 - DFS
 - BFS
 - Topological sorting
- 2. Decrease by a constant factor
 - Binary search
 - Fake-coin problems
- 3. Variable-size decrease
 - Euclid's algorithm

Decrease (by one) and Conquer Technique

Decrease (by half) and Conquer Technique

Algorithm Insertion Sort

```
ALGORITHM InsertionSort(A[0..n-1])
    //Sorts a given array by insertion sort
    //Input: An array A[0..n-1] of n orderable elements
    //Output: Array A[0..n-1] sorted in nondecreasing order
    for i \leftarrow 1 to n-1 do
       v \leftarrow A[i]
       j \leftarrow i - 1
         while j \ge 0 and A[j] > v do
              A[j+1] \leftarrow A[j]
             j \leftarrow j - 1
         A[i+1] \leftarrow v
```


Insertion Sort Example

89	45	68	90	29	34	17
45	89	68	90	29	34	17
45	68	89	90	29	34	17
45	68	89	90 1	29	34	17
29	45	68	89	90 1	34	17
29	34	45	68	89	90	17
17	29	34	45	68	89	90

Example of sorting with insertion sort. A vertical bar separates the sorted part of the input from the remaining elements; the element being inserted is in bold.

Efficiency of Insertion Sort

$$C_{worst}(n) = \sum_{i=1}^{n-1} \sum_{j=0}^{i-1} 1 = \sum_{i=1}^{n-1} i = \frac{(n-1)n}{2} \in \Theta(n^2).$$

$$C_{best}(n) = \sum_{i=1}^{n-1} 1 = n - 1 \in \Theta(n).$$

$$C_{avg}(n) \approx \frac{n^2}{4} \in \Theta(n^2).$$

Graph Traversal

- Many problems require processing all graph vertices in systematic fashion
- Graph traversal algorithms:
 - Depth-first search
 - Breadth-first search

Depth-first search

Algorithm DFS(G)

```
ALGORITHM DFS(G)
```

```
//Implements a depth-first search traversal of a given graph //Input: Graph G = \langle V, E \rangle //Output: Graph G with its vertices marked with consecutive integers //in the order they've been first encountered by the DFS traversal mark each vertex in V with 0 as a mark of being "unvisited" count \leftarrow 0 for each vertex v in V do

if v is marked with 0

dfs(v)
```


Algorithm dfs(v)

```
dfs(v)

//visits recursively all the unvisited vertices connected to vertex v and //assigns them the numbers in the order they are encountered //via global variable count

count \leftarrow count + 1; mark v with count

for each vertex w in V adjacent to v do

if w is marked with 0

dfs(w)
```


Efficiency of Depth-first search

Adjacency matrix representation : Θ(IVI²)

Adjacency list representation : Θ(IVI+IEI)

Breadth-first search

Algorithm BFS(v)

ALGORITHM BFS(G)

```
//Implements a breadth-first search traversal of a given graph
//Input: Graph G = ⟨V, E⟩
//Output: Graph G with its vertices marked with consecutive integers
//in the order they have been visited by the BFS traversal
mark each vertex in V with 0 as a mark of being "unvisited"

count ← 0

for each vertex v in V do

if v is marked with 0

bfs(v)
```


Algorithm bfs(v)

```
bfs(v)
//visits all the unvisited vertices connected to vertex v
//and assigns them the numbers in the order they are visited
//via global variable count
count \leftarrow count + 1; mark v with count and initialize a queue with v
while the queue is not empty do
    for each vertex w in V adjacent to the front's vertex v do
        if w is marked with 0
            count \leftarrow count + 1; mark w with count
             add w to the queue
    remove vertex v from the front of the queue
```


Efficiency of Breadth-first search

- Adjacency matrices: $\Theta(V^2)$
- Adjacency linked lists: Θ(V+E)

Comparison between DFS & BFS

	DFS	BFS
Data structure	stack	queue
No. of vertex orderings	2 ordering	1 ordering
Edge types (undirected graphs)	Tree and back edges	Tree and cross edges
Applications	connectivity, acyclicity, articulation points	connectivity, acyclicity, Minimum edge paths
Efficiency for adjacent matrix	$0(IV^21)$	$0(IV^21)$
Efficiency for adjacent linked lists	O(IVI +IEI)	O(IVI +IEI)

Topological Sorting

- These problem deals with digraphs only.
- We can apply DFS & BFS algorithms for digraphs.

Topological Sorting

- If DFS forest has no back edges then the graph is a dag (directed acyclic graph).
- For topological sorting we can consider only dags.

Topological Sorting

- Definition: Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices such that for every directed edge uv, vertex u comes before v in the ordering.
- Topological Sorting for a graph is not possible if the graph is not a DAG.

Topological sorting Algorithms

1. Application of DFS:

- Note the order in which vertices become dead ends.(poped off the stack)
- Reverse this order to get topological order.

Topological sorting Algorithms

- 2. Application of decrease and conquer technique(source removal method)
 - Identify a source vertex whose in-degree is zero. Delete the vertex with all the edges outgoing from it.
 - Repeat the process until all vertices are removed.

The solution obtained is C1, C2, C3, C4, C5

• Complexity $\Theta(IVI^2)$ using matrix and $\Theta(IVI+IEI)$ using adjacency linked lists

Generating Combinatorial objects

- Combinatorial objects:
 - Permutations
 - Combinations
 - Subsets of a given set

Generating Permutations (3 methods)

- 1) Minimal change requirement algorithm:
 - Here we need to insert n in previously generated permutation.
 - First start with right to left and switch the direction every time a new permutation needs to be processed.
 - Here each permutation can be obtained from its immediate predecessor by exchanging just 2 elements in it.

FIGURE 5.12 Generating permutations bottom up

Generating Permutations

2) using Johnson Trotter algorithm

```
//Implements Johnson-Trotter algorithm for generating permutations
//Input: A positive integer n
//Output: A list of all permutations of {1, ..., n}
Initialize the first permutation with 1 2 ... n
while there exists a mobile integer k do
find the largest mobile integer k
swap k and the adjacent integer its arrow points to
reverse the direction of all integers that are larger than k
```

Here is an application of this algorithm for n = 3, with the largest mobile integer shown in bold:

3) Lexicographic order permutation education for the real work

- If $a_{n-1} < a_n$ simply swap last 2 elements.
- If $a_{n-1} > a_n$ & if $a_{n-2} < a_{n-1}$
 - Rearrange last 3 elements.
- Ex: 123 132 213 231 312 321
- General procedure: scan the current permutation from right to left for the first pair of consecutive elements such that a_i < a_{i+1}
- Find the smallest digit in the tail larger than a_i and put it in position I
- Positions from i+1 to n are filled in increasing order of remaining elements Design and Analysis of Algorithms -

Chapter 5

Generating Subsets

- 1. Decrease by one Technique
- If there are n items 2ⁿ sub sets are possible.
- Let $A = \{a_1, a_2, a_3, \dots, a_n\}$ then all possible subsets of A is P(A).
- Divide A into 2 groups. 1. Containg a_n 2. Without a_n (all sub sets of $\{a_1, a_2, a_{n-1}\}$)
- We can generate P(A) by including a_n to all possible subsets of $\{a_1, a_2, a_3, a_{n-1}\}$.

n	subsets								
	Ø								
1	Ø	$\{a_1\}$							
2	Ø	$\{a_1\}$	$\{a_2\}$	$\{a_1,a_2\}$				{a ₁ ,a ₂ ,a ₃ }	
3	Ø	$\{a_1\}$	$\{a_2\}$	$\{a_1,a_2\}$	$\{a_3\}$	$\{a_1,a_3\}$	$\{a_2,a_3\}$	$\{a_1,a_2,a_3\}$	

Generating Subsets - 2. using Bit String

- Have a 1-1 correspondence between 2ⁿ subsets of n element set A={a₁,a₂,a₃,....a_n} and 2ⁿ bit strings b₁,b₂,b₃,....b_n of length n.
- i.e. for the bit string b_i=1 if a_i subset else b_i=0.
- Ex:
 - 000 null set
 - 010 $\{a_2\}$
- **•** 000 001 010 011 100 101 110 111
- \emptyset {a₁} {a₂} {a₁,a₂} {a₃} {a₁,a₃} {a₂,a₃} {a₁,a₂,a₃}

3. Minimal change algorithm for generating Bit String

- Using gray codes.
- The gray code of order k denoted by G_k defines an ordering among all k-bit binary numbers,
- G₁ is 0 1
- For k>1 G_k $O[G_{k-1}]$, $1[G_{k-1}]^{reverse}$
- 0 1
- **•** 00 01 11 10
- 000 001 011 010 110 111 101 100

The End

Thank You