Mise en œuvre d'un réseau WiFi sécurisé

Sécuriser les réseaux wi-fi

OPEN AUTHENTICATION

- Authentification Ouverte
- Seule exigence : Norme 802.11
- Pas de mot de passe
- Pas de contrôle de l'identité
- Principalement utilisé dans les lieux publics (Aéroport, Hôtel...)

WEP (WIRED EQUIVALENT PRIVACY)

- Défini par la norme **802.11** en 1999
- Algorithme de chiffrement RC4
- Méthode de sécurité à clé partagée
- L'outil de chiffrement est une « phrase aléatoire »
- Longueur de 40 ou 104 bits = Chaine de 10 ou 26 caractères hexadécimaux
- Méthode faible pour sécuriser un LAN sans fil

La clé WEP sert à la fois d'authentification et de chiffrement

La cie WEI Sert à la 1013 à authentineation et de chimemen

Pre-shared key authentication

- Clé commune connue du client et de la borne
- À partir de 802.11a Wired Equivalent Privacy

PSK (pre-shared key) = mot de passe

Clé WEP

128 bits = 104 bits + 24 bits vecteur d'initialisation (IV) + algorithme (RC4)

Extensible Authentication Protocol (802.1X)

802.1X / EAP

- Plus sécurisée que le WEP
- Norme 802.1x (juin 2001 par L'IEEE)
- Authentification par un serveur d'authentification
- Le 802.1x repose sur le protocole EAP (Extensible Authentication Protocol)
- Garde-barrière

- Tunnel EAP (couche 2 OSI)
- AS interroge une base de données local / ou distant exemple : serveur AD

Lightweight Extensible Authentication Protocol (LEAP)

- Propriétaire Cisco
- Authentification mutuelle
- Clés WEP dynamiques
- Déprécié

LEAP(Lightweight Extensible Authentication Protocol),

- Le client doit fournir un nom d'utilisateur et son mot de passe.
- Messages cryptés de type « Challenge »
- utilise des clés WEP dynamiques
- Méthode cryptés de type « Challenge » très vulnérable

EAP-FAST

- Simple
- Sécurisé via tunnel TLS
- Tunnel établi via Protected Access Credential et clé prépartagée
- Certificats en option

EAP-FAST (EAP Flexible Authentication by Secure Tunneling)

- Crée par Cisco pour pallier aux faiblesses du LEAP
- Protection par PAC (Protected Access Credential)
 - 1. Le PAC est généré et installé sur le client
 - 2. Négociation d'un tunnel TLS (Transport Layer Security)
 - Authentification par le tunnel TLS
- Demande un serveur RADIUS

Protected Extensible Authentication Protocol (PEAP)

- Standard ouvert
- Établissement d'un tunnel TLS
- Authentification de l'AS via une PKI
- Authentification en 2 phases
 - 1. Authentification du serveur AS via PKI
 - 2. Établissement du tunnel TLS

PEAP (Protected EAP)

- · Authentification interne et externe
- Certificat numérique pour s'identifier auprès du client
- Tunnel TLS (Transport Layer Security)

PKI: clé publique du serveur

Extensible Authentication Protocol Transport Layer Security (EAP TLS)

- Sécurisé et complexe
- Standard ouvert
- Établissement d'un tunnel TLS
- Authentification de l'AS via une PKI
- Authentification du client par un certificat

EAP-TLS (EAP Transport Layer Security)

- Utilise la couche transport de sécurité, le TLS.
- Utilise deux certificats pour la création d'un tunnel sécurisé
 - 1. Certificat côté serveur
 - 2. Certificat côté client
- Difficile et couteux, de gérer 1 certificat par machines

Besoin d'un certificat sur chaque client (contrainte de gestion et configuration)

Temporal Key Integrity Protocol (TKIP)

- Amélioration de WEP
- Chiffrement

Série de clés changeantes

Algorithme RC4

Une clé par paquet

Intégrité

IV chiffré

Code MIC

Spécification WPA2

TKIP (Temporal Key Integrity Protocol)

- développé pour remplacer le WEP
- Ajoute plusieurs fonctionnalités de sécurité :
 - « MIC » (Message Integrity Check)
 - « time stamp »
 - « L'Adresse MAC de l'expéditeur »
 - 4. « TKIP sequence counter »
 - « Key mixing algorithm »
 - 6. « Longer initialization vectore (IV) »
- 4 algorithmes supplémentaires :
 - Code d'intégrité de message
 - Compteur pour les vecteurs d'initialisation
 - Génération périodique d'une nouvelle clé temporaire
 - 4. Génération de sous-clé (key mixing)
- Déconseillé dans la norme 802.11

Counter Mode CBC-MAC Protocol (CCMP)

- Remplacement de TKIP
- Chiffrement

Algorithme AES

Blocs et clés temporaires 128 bits

Intégrité

IV unique

Code MAC (CBC-MAC)

Spécification WPA2

CCMP (The Counter/CBC-MAC Protocol)

- + sûr que le TKIP
- Se compose de 2 algorithmes :
 - Compteur de chiffrement AES (The Advanced Encryption Standard)
 - Code d'authentification des messages (Cipher Block Chaining Message Authentication Code [CBC-MAC])
 - (Message Integrity Check [MIC])
- Utilisé par le NIST (U.S. National Institute of Standards and Technology) et le gouvernement américain
- Egalement très utilisée dans le monde entier
- Méthode de cryptage la plus sécurisée
- Imposé sur la norme WPA2

Galois/Counter Mode Protocol (GCMP)

- En cours d'implémentation
- Chiffrement

Algorithme AES 256

Intégrité

Code Galois

Spécification WPA3

GCMP (Galois/Counter Mode Protocol)

- + sécurisé et plus efficace que le CCMP
- Se compose de deux algorithmes :
 - Chiffrement très rependu AES (The Advanced Encryption Standard)
 - Code d'authentification de message (Galois Message Authentication Code [GMAC])
 - (Message Integrity Check [MIC])
- Utilisé sur la norme WPA3

WPA, WPA2 ET WPA3

- « Wi-Fi Alliance » => http://wi-fi.org
- Certifications WPA (Wi-Fi Protected Access)
 - WPA (Solution intermédiaire pour remplacer le WEP)
 - WPA2 (certifiée par l'Alliance Wi-Fi)
 - WPA3 (ajoute de meilleurs mécanismes de sécurité)
- Le WPA3 propose un cryptage renforcé en s'appuyant sur le chiffrement AES (The Advanced Encryption Standard) couplé avec le protocole GCMP (Galois/Counter Mode Protocol).
- Le WPA3 utilise le protocole PMF (Protected Management Frames)
- 2 modes d'authentification client:
 - La clé pré-partagée (Pre-Shared Key [PSK])
 Mode Personnel
 - La norme 802.1x Mode Entreprise

Prise en charge de l'Authentification et du Cryptage	WPA	WPA2	WPA3
Authentification avec des clés pré-partagées ?	OUI	OUI	OUI
Authentification avec 802.1x?	OUI	OUI	OUI
Cryptage et MIC avec TKIP?	OUI	NON	NON
Cryptage et MIC avec AES et CCMP?	OUI	OUI	ИОИ
Cryptage et MIC avec AES et GCMP ?	ИОИ	NON	OUI

Niveaux de certification d'équipement

Certification	Apparition	Authentification	Norme
WPA	2004	TKIP	802.11i 802.1x possible
WPA2	2004-2005	CCMP + AES	802.11i 802.1x possible
WPA3	2018 – à présent	GCMP + Forward secrecy	802.1x possible

Modes WPA

Personal mode

Authentification PSK

Enterprise mode

Authentification 802.1X

WPA2-Personal / WPA2-PSK

WPA2-Enterprise

- Mode WPA enterprise
- PEAP ou EAP-TLS
- WPA2 ou WPA3
- Clé à 14 caractères minimum

- WPA et WEP (bornes autonomes)
- Box opérateur

