1 Netiesinių lygčių sprendimas

Duotos dvi netiesinės lygtys: daugianaris f(x) = 0 ir transcendentinė funkcija g(x) = 0.

Nr.	Daugianaris $f(x)$	Funkcija $g(x)$		
1	$x^4 - 11x^3 - 155x^2 - 33x + 1710$	$x^2 + 10 \cdot \cos(2 \cdot x)$; $-5 \le x \le 5$		
Sprendimo metodai: skenavimo, pusiaukirtos, Niutono (liestinių).				

1.1 Lygties f(x) = 0 (f(x) - daugianaris) sprendimas

Daugianario šaknų intervalo įverčiai

1 pav. Daugianario šaknų intervalo įverčiai (a) ir grafinis funkcijos vaizdas tikslesniame šaknų intervale (b).

1 lentelė. Šaknų intervalo įverčiai.

Grubus lygties $f(x) = 0$ šaknų intervalo įvertis	[-1771; 1771]
Tikslesnis lygties $f(x) = 0$ šaknų intervalo įvertis	[-13,4499; 156]

% komentarai

%-----

• Šaknų atskyrimas skenavimo metodu

Skenavimas atliekamas intervale [-13,4499; 156], skenavimo žingsnis lygus 1.

2 pav. Daugianario šaknų atskyrimo intervalai.

2 lentelė. Šaknies atskyrimo intervalai.

Intervalo Nr.	Intervalas
1	[-6.4498999999999995; -5.4498999999999999
2	[-5.4498999999999995; -4.4498999999999999
3	[2.5501000000000005; 3.5501000000000005]
4	[18.55010000000000000; 19.55010000000000000]

%	komentarai.	Kaip parenkamas	skenavimo	žingsnis	ir	pan
0/6		c				

Šaknų tikslinimas skenavimo, pusiaukirtos ir Niutono metodais.

Tariama, kad x_g yra šaknis (stabdomi skaičiavimai), jei $|f(x_g)| < 1e - 9$. Skaičiavimuose naudojamas šaknies tikslumo įvertis $|f(x_g)|$.

3 lentelė. Rezultatų lentelė.

	Pradinis intervalas	Šaknis	Tikslumas	Iteracijų skaičius
odas	[-6.449900000000000; -5.4499000000000000]	-5.999999999995053	0.0000000001118678	49
no met	[-5.449900000000000; -4.4499000000000000]	-4.999999999950013	0.0000000009599717	39
Skenavimo metodas	[2.550100000000001; 3.5501000000000001]	2.999999999995026	0.0000000005729817	111
Ske	[18.550100000000000; 19.5501000000000000]	18.99999999999680	0.0000000003119567	121
	Pradinis intervalas	Šaknis	Tikslumas	Iteracijų skaičius
todas	[-6.449900000000000; -5.4499000000000000]	-6.0000000000003846	0.0000000000864020	37
Pusiaukirtos metodas	[-5.449900000000000; -4.4499000000000000]	-5.0000000000003846	0.0000000000736691	37
aukirt	[2.550100000000001; 3.5501000000000001]	2.999999999996168	0.0000000004415597	37
Pus	[18.550100000000000; 19.5501000000000000]	19.00000000000000710	0.0000000006816663	41
	Pradinis artinys	Šaknis	Tikslumas	Iteracijų skaičius
no las	-5.949900000000000	-6.0000000000000000	0.0000000000000000	5
Niutono metodas	-4.949900000000000	-5.0000000000000000	0.0000000000000000	5
Ni me	3.0501000000000001	3.00000000000000000	0.0000000000000000	4
	19.050100000000000	19.00000000000000000	0.0000000000000000	4
	Pradinis artinys	Šaknis (fzero)	Šaknis (roots)	
AATLAB funkcijos	-5.949900000000000	-6.00000000000000000002	-6.000000000000012	
TT	-4.949900000000000	-4.99999999999997	-4.99999999999989	
MATLAB funkcijos	3.0501000000000001	3	3.0000000000000000	
4	19.0501000000000000	19.0000000000000004	19.000000000000014	

%-----

%-----

[%] komentarai. Metodų palyginimas

3 pav. Šaknies $x_g = -6$ tikslinimo **skenavimo** metodu vizualizacija. Raudona linija brėžiama funkcija, geltonais taškais žymimi iteracijoje nagrinėjamo intervalo galai.

4 pav. Šaknies $x_g = -6$ tikslinimo **pusiaukirtos** metodu vizualizacija. Raudona linija brėžiama funkcija, geltonais taškais žymimi iteracijoje nagrinėjamo intervalo galai, žaliu – vidurio taškas.

%
% komentarai
%

5 pav. Šaknies $x_g = -6$ tikslinimo Niutono (liestinių) metodu vizualizacija. Raudona linija brėžiama funkcija, žalia – pagalbinės linijos.

%-----% komentarai
%------

1.2 Lygties g(x) = 0 (g(x) – transcendentinė funkcija) sprendimas

• Šaknų atskyrimas skenavimo metodu

4 lentelė. Šaknies atskyrimo intervalai.

Intervalo Nr.	Intervalas
1	[-3.00000000000000000; -2.000000000000000000]
2	[-1.00000000000000000; 0.00000000000000000
3	[0.00000000000000000; 1.00000000000000000
4	[2.00000000000000000; 3.00000000000000000]

6 pav. Funkcijos šaknų atskyrimo intervalai.

• Šaknų tikslinimas skenavimo, pusiaukirtos ir Niutono metodais.

Tariama, kad x_g yra šaknis (stabdomi skaičiavimai), jei $|f(x_g)| < 1e - 9$. Skaičiavimuose naudojamas šaknies tikslumo įvertis $|f(x_g)|$.

5 lentelė. Rezultatų lentelė.

	Pradinis intervalas	Šaknis	Tikslumas	Iteracijų skaičius
Skenavimo metodas	[-3.0000000000000000; -2.000000000000000000]	-2.1225254373500007	0.0000000009908296	68
	[-1.0000000000000000; 0.00000000000000000]	-0.8189579630500000	0.0000000004463032	46
enaviı	[0.00000000000000000; 1.00000000000000000	0.8189579630499996	0.0000000004462951	68
Sk	[2.00000000000000000; 3.00000000000000000]	2.1225254373500011	0.0000000009908394	46
	Pradinis intervalas	Šaknis	Tikslumas	Iteracijų skaičius
etodas	[-3.0000000000000000; -2.00000000000000000]	-2.1225254372693598		
Pusiaukirtos metodas	[-1.0000000000000000; 0.00000000000000000]	-0.8189579630270600	0.0000000000261104	30
iaukir	[0.0000000000000000; 1.00000000000000000]	0.8189579630270600	0.0000000000261104	30
Pus	[2.0000000000000000; 3.00000000000000000]	2.1225254372693598	0.0000000007913696	31
	Pradinis artinys	Šaknis	Tikslumas	Iteracijų skaičius
no las	-2.5000000000000000	-2.1225254373058662	0.0000000000154374	4
Niutono metodas	-0.5000000000000000	-0.8189579630256345	0.00000000000000009	5
iz m	0.5000000000000000	0.8189579630256345	0.00000000000000009	5
	2.5000000000000000	2.1225254373058662	0.0000000000154374	4
	Pradinis artinys	Šaknis (fzero)		
MATLAB funkcijos	-2.5000000000000000	-2.122525437305168		
TL	-0.5000000000000000	-0.818957963025635		
MATL funkci	0.5000000000000000	0.818957963025635		
I	2.5000000000000000	2.122525437305168		

%-----

% komentarai Metodų palyginimas

%-----

1.3 Išvados

% išvados

1.4 Programų tekstai

• Daugianario šaknų intervalo įverčių nustatymas

Programos tekstas

• Skenavimo metodas

Programos tekstas

• Pusiaukirtos metodas

Programos tekstas

• Niutono (liestinių) metodas

Programos tekstas

2 Netiesinių lygčių sistemų sprendimas

Varianto Nr.	I lygčių sistema	II lygčių sistema	Metodas
1	$\begin{cases} 4 \cdot x_1^2 + x_2^2 - 25 = 0 \\ 3 \cdot x_1^2 - 5 \cdot x_2^2 + 33 = 0 \end{cases}$	$\begin{cases} x_1 + 2x_2 + x_3 + 4x_4 - 20.7 = 0 \\ x_1^2 + 2x_1x_2 + x_4^3 - 15.88 = 0 \\ x_1^3 + x_3^2 + x_4 - 21.218 = 0 \\ 3x_2 + x_3x_4 - 7.9 = 0 \end{cases}$	Greičiausio nusileidimo

2.1 I-os netiesinių lygčių sistemos sprendimas

• Paviršių grafinis vaizdas

7 pav. Paviršių grafinis vaizdas.

%-----% komentarai
%------

• Sprendimas grafiniu būdu

8 pav. Lygčių sistemos sprendiniai nustatomi grafikų susikirtimo taškuose.

%-----

% komentarai

%-----

Sprendimas greičiausio nusileidimo metodu

%-----

% komentarai

%-----

Tariama, kad x_g yra sprendinys (stabdomi skaičiavimai), jei $|f(x_g)| < 1e - 5$, čia f(x) – tikslo funkcija. Pradinis metodo žingsnis 0,5.

6 lentelė. Rezultatų lentelė.

Pradinis	Sprendinys greičiausio	Tikslumas	Iteracijų	Sprendinys MATLAB
artinys	nusileidimo metodu		skaičius	funkcija fsolve
[0; 0]	Nekonverguoja			Nerastas sprendinys
[-4; -4]	[-2.000030901020542;	0.0000001619331241	6	[-2.00000000035683;
	-3.000012444433512]			-2.99999999999903]
[-4; 4]	[-2.000030901020542;	0.0000001619331241	6	[-2.00000000035683;
	3.000012444433512]			2.9999999999993]
[4; 4]	[2.000030901020542;	0.0000001619331241	6	[2.00000000035683
	3.000012444433512]			2.99999999999903]
[4; -4]	[2.000030901020542;	0.0000001619331241	6	[2.00000000035683
	-3.000012444433512]			-2.99999999999903]

%_____

% komentarai.

%-----

%-----

% komentarai

%-----

10 pav. Pradinių artinių tinklelis, kai greičiausio nusileidimo metodo pradinis žingsnis 0,5 (a) arba 0,25 (b). Ta pačia spalva žymimi pradiniai artiniai, nuo kurių pradėjus skaičiuoti gaunami artimi sprendiniai.

%-----% komentarai
%------

2.2 II-os netiesinių lygčių sistemos sprendimas

Tariama, kad x_g yra sprendinys (stabdomi skaičiavimai), jei $|f(x_g)| < 1e - 4$, čia f(x) – tikslo funkcija. Pradinis metodo žingsnis 0,5.

7 lentelė. Rezultatų lentelė.

Pradinis	Sprendinys greičiausio	Tikslumas	Iteracijų	Sprendinys MATLAB
artinys	nusileidimo metodu		skaičius	funkcija fsolve
[-1	[-0.834791770015536	0.0000990835423618	251	[-0.828147323522408
7	6.957082799515092			6.953322402887657
-4	-4.336713055409398			-4.335517457026655
3]	2.992471759132490]			2.989254993693451]

%-----

% komentarai.

%_____

2.3 Išvados

% išvados

2.4 Programų tekstai

Programos tekstas