Sensor Signal Processing Dimensionality Reduction

Sensor Signal Processing

Prof. Dr.-Ing. Andreas König

Lehrstuhl Integrierte Sensorsysteme

FB Elektrotechnik und Informationstechnik Technische Universität Kaiserslautern

Fall Semester 2005

© Andreas König Slide5-1

Course Contents

- 1. Introduction
- 2. Signal Processing and Analysis
- 3. Feature Computation
- 4. Cluster Analysis
- 5. Dimensionality Reduction Techniques
- 6. Data Visualization & Analysis
- 7. Classification Techniques
- 8. Sensor Fusion
- 9. Systematic Design of Sensor Systems
- 10. Outlook

Chapter Contents

Sensor Signal Processing Dimensionality Reduction

- 5. Dimensionality Reduction Techniques
 - 5.1 Motivation
 - 5.2 Assessment functions
 - 5.3 Feature selection
 - 5.4 Feature extraction
 - 5.5 Accelerated methods
 - 5.6 Summary

© Andreas König Slide5-3

Motivation

- > Technical problems are often characterized by sets of high dimensional data
- ➤ Significance, correlations, redundancy, or irrelevancy of the variables v_i with regard to the given application a priori unknown

- ➤ Computational complexity and *Curse of Dimensionality* promote efficient dimensionality reduction, visualization can provide transparence & insight
- ➤ Dimensionality reduction is an ubiquituous problem in many disciplines!

Motivation

Sensor Signal Processing Dimensionality Reduction

- After signal processing and feature computation further condensing or compression of the data in terms of attributes or features is desirable
- > Supervised as well as unsupervised dimensionality reduction techniques can serve for that purpose!

Motivation

- ➤ There is a close relation between data analysis and compression based on dimensionality reduction techniques
- ➤ The purpose is to represent the data by a reduced number of variables or attributes or features according to appropriate <u>assessment functions</u>!

Motivation

Sensor Signal Processing Dimensionality Reduction

- ➤ Projection of multivariate data by DR mappings & ensuing visualization and interactive analysis is a research topic of interest for more than 3 decades
- ➤ Recently, data mining/warehouse & knowledge discovery applications give renewed strong incentive & drive to the field
- For classification, *feature extraction* & *selection* for vectors $\vec{v} = [v_1, v_2, ..., v_o]^T$ are typically defined as (see, e.g., [Kittler 86])

Feature Extraction: $J(A) = \max_{A} J(A(\vec{v}))$ Feature Selection: $J(X) = \max_{\chi} J(\chi)$

A mapping $\Phi : \mathbb{R}^o \to \mathbb{R}^d$ is optimized with regard to assessment criterion J and with d<0 and $\vec{y} = [y_1, y_2, ..., y_d]^T$

- Methods for classification may be salient for visualization and vice versa
- $\vec{v} = A(\vec{v})$ can be a linear or a nonlinear mapping

© Andreas König Slide5-7

Motivation

Sensor Signal Processing Dimensionality Reduction

➤ The dimensionality reducing mapping can be unsupervised or employ supervised information

- Optimization criteria can be, e.g., signal, topology, distance preservation or discriminance gain
- ➤ Dimensionality reduction (DR) methods can be salient both for multivariate data classification and visualization
- ➤ Classification: discriminance optimization with DR constraint for lean and well performing recognition system
- ➤ Visualization: DR fixed to dimension two or three with, e.g., structure preservation constraint for data analysis, advanced MMI & system design

Motivation

Sensor Signal Processing Dimensionality Reduction

- ➤ Benchmark Data is required for method demonstration & assessment
- ➤ Cube data: Artificial data, 3 dimensions, 400 vectors, 8 classes. Data points on 8 edges of two opposite sides of a cube rotated by 45°

- > Iris data: Well known Iris flower data, 4 dimensions, training & test set with 75 vectors each, 3 classes virginica, setosa, and versicolor
- ➤ *Mech_x* data: Mechatronic data from turbine jet engine compressor monitoring. Five data sets with 375 24-D vectors each, 4 classes corresponding to operating regions and compressor stability
- > X-Ray data: X-ray inspection of ball grid array packages in electronics manufacturing. Two sets, 40 10-D vectors each, 3 classes for ok & defect type

© Andreas König Slide5-9

Motivation Sensor Signal Processing Dimensionality Reduction Supervised Assessment Options of Feature Spaces Over₃ Over₃ Over₂ Banana Bimodal Measure discriminance by separability, overlap, compactness, ..., of class regions in feature space

Sensor Signal Processing Dimensionality Reduction

> Taxonomy of Evaluation and Assessment Measures

Assessment Functions

Sensor Signal Processing Dimensionality Reduction

- Simple Parametric Overlap Measure
- ➤ Class specific distributions modelled by Gaussian functions
- \triangleright Pairwise overlap can be computed from mean values μ_i , μ_j and standard deviations σ_i , σ_j by

$$q_{v_{l_{ij}}} = \frac{\left| \mu_{i} - \mu_{j} \right|}{(N_{i} - 1)\sigma_{i} + (N_{j} - 1)\sigma_{j}}$$
(5.1)

> The feature merit for separating one class from all others is given by

$$q_{v_{l_i}} = \frac{1}{L - 1} \sum_{j \neq i}^{L} q_{v_{l_{ij}}}$$
 (5.2)

> The merit of a single feature to distinguish all classes could be computed by

$$q_{v_l} = \frac{1}{L} \sum_{i=1}^{L} q_{v_{l_i}} \tag{5.3}$$

- > Global summation can be misleading in some cases
- > Simple & efficient measure for fast parametric first order feature selection

Sensor Signal Processing Dimensionality Reduction

Inspired by the work of Fukunaga et al. on scatter matrices & nonlinear mappings, a nonparametric compactness measure can be derived based on intra/inter class distances

$$q_{ci} = \frac{\frac{1}{L} \sum_{l=1}^{L} \frac{2}{N_{l}(N_{l}-1)} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \partial(\omega_{i}, \omega_{j}) * \partial(\omega_{i}, l) * d_{X_{ij}}}{\frac{1}{N^{B}} \sum_{i=1}^{N} \sum_{j=i+1}^{N} (1 - \partial(\omega_{i}, \omega_{j})) * d_{X_{ij}}}$$
(5.4)

with
$$d_{X_{ij}} = \sqrt{\sum_{q=1}^{M} (x_{iq} - x_{jq})^2}$$
 and $\partial(\omega_i, \omega_j) = \begin{cases} 1 & \text{if } \omega_i = \omega_j \\ 0 & \text{if } \omega_i \neq \omega_j \end{cases}$

- \triangleright The Kronecker Delta $\partial(\omega_i, l)$ assures, that only vectors of class l are regarded
 - + Nonparametric, multivariate compactness measure
 - + The measure is free of user-definable parameters
 - Measure has O(N²) complexity
 - Normalization properties only allow observation of relative changes

© Andreas König Slide5-13

Assessment Functions

Sensor Signal Processing Dimensionality Reduction

- > Inspired by probability estimation in Edited-Nearest-Neighbor method (ENN) or Leave-One-Out (LOO) classification
- ➤ For each vector, a number of k nearest-neighbors are computed & according to the neighbors' affiliation to same/different class a nonparametric overlap measure is computed

$$q_{oi} = \frac{1}{L} \sum_{c=1}^{L} \frac{1}{N_c} \sum_{j=1}^{N_c} \frac{\sum_{i=1}^{k} q_{NN_{ji}} + \sum_{i=1}^{k} n_i}{2 * \sum_{i=1}^{k} n_i}$$
(5.5)

with
$$n_i = 1 - \frac{d_{NN_{ji}}}{d_{NN_{ii}}}$$
 and $q_{NN_{ji}} = \begin{cases} n_i & \text{if } \omega_j = \omega_i \\ -n_i & \text{if } \omega_j \neq \omega_i \end{cases}$

Simplification of the measure can be achieved by only computing the rank or just the number of nearest neighbors in the measure instead of the distances

Sensor Signal Processing Dimensionality Reduction

- Assessment of the nonparametric overlap measure:
 - + q_{oi} is well normalized in [0,1]; 1.0 indicates no overlap of class regions
 - + q_{oi} is fine grained and thus well suited for optimization
 - The method has one required parameter k (k typically set to 5-10)
 - q_{oi} has O(N²) complexity
- ➤ Application example of q₀ for synthetic & application data:

Data set	qo	q _o ´	q _o ″
Over ₁	1,000000	1,000000	1,000000
Over ₂	0,991100	0,993100	0,992800
Over ₃	0,975300	0,979400	0,978200
Banana	1,000000	1,000000	1,000000
Bimodal	0,990900	0,989800	0,990000
Iris train	0,915600		
Pins	0,952700		
Mech₁	0,978800		

© Andreas König Slide5-15

Assessment Functions

- Nonparametric Separability Measure exploits the fast training run of a Reduced-Nearest-Neighbor-Classifier (RNN)
- Separability is proportional to the number of chosen reference vectors T_{RNNi} per class during dynamic RNN configuration

- ➤ Here, N; denotes the number of patterns per class & L the number of classes
 - + Fast due to O(N) complexity, no required user-definable parameters
 - + normed response [0,1], where 1.0 means linear separability
 - Coarse grained & thus less well suited for optimization

Sensor Signal Processing Dimensionality Reduction

Application example of q_{si} to synthetic and application data in comparison with Fukunaga's measure J from scatter matrices

Data set	qs	Js
Over ₁	1,000000	0,030863
Over ₂	0,985612	0,025812
Over ₃	0,960884	0,026084
Banana	0,993421	0,002372
Bimodal	0,983333	0,007937
Iris train	0,906667	2,659621
Pins	0,908108	3,461134
Mech₁	0,989333	4,824150

- > Synthetic data asssessment results show the sensitivity to underlying & gradually decreasing separability
- \blacktriangleright Identical vectors in the data set with different class affiliations return an assessment value of $q_{si}=0.0$

© Andreas König Slide5-17

Feature Selection

Sensor Signal Processing Dimensionality Reduction

Taxonomy of Dimensionality Reduction Methods:

Dimensionality Reduction Methods Linear Methods **Nonlinear Methods** Signal preserving Discriminance Signal Distance Topology Discriminance preserving preserving **PCA** Scatter FS & FW M-PCA CCA NLM LSB Visor TOPAS Koontz & **Fukunaga** SOM BP (Discr. BP (Auto-BP (Net Associative) Pruning) Analyis)

Sensor Signal Processing Dimensionality Reduction

- **Quest:** Find minimum feature subset with optimum discriminance
- ➤ AFS chooses for a given sample set the subset of variables or configuration X that maximizes a given cost function J:

$$J(X) = \max_{\gamma} J(\chi) \tag{5.7}$$

- AFS is a linear mapping, based on the selection matrix A_S with $\vec{y}_i = A_s \vec{x}_i$
- Feature selection: $c_i \in \{0,1\}$ switch variables, 2^M combinations
- Feature weighting: $c_i \in [0,1]$ or arbitrary real numbers
- $\mathbf{A}_{\mathbf{S}} = \begin{pmatrix} c_1 & 0 & 0 & \dots & 0 \\ 0 & c_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & c_{M-1} & 0 \\ 0 & 0 & 0 & \dots & c_M \end{pmatrix}$ (5.8)
- Cost function J can be one of the measures given in the taxonomy, e.g., q_{si}
- > Combinatorial optimization problem, NP-complete
- \triangleright Exhaustive search for global optimum only feasible for small M
- ➤ Way out: Apply heuristics & optimization strategies to find at least a local optimum with bounded time and effort

© Andreas König Slide5-19

Feature Selection

Sensor Signal Processing Dimensionality Reduction

- > Simplification: J is computed for each individual feature and a selected combination of classes, e.g., pairwise class discriminance
- Considerable computational savings by neglecting possible higher order correlations between feature pairs or tupels
- $ightharpoonup q_{l_{ii}}$ could serve as simple **parametric** measure (1rst order par. selection)
- For each class separation feature are ranked according to their J value
- > Rank table example for *Iristrain* data:

Feature	Rank	C 1-2	Rank	C 1-3	Rank	C 2-3
\mathbf{v}_1	4	1.020	3	1.482	3	0.442
\mathbf{v}_2	3	1.065	4	0.890	4	0.255
V ₃	2	4.139	1	5.451	2	1.218
V ₄	1	4.387	2	5.180	1	1.660

➤ Selection takes place by choosing the features on top rank positions, e.g., features 3 & 4 for first rank position (C=[0, 0, 1, 1]^T)

Sensor Signal Processing Dimensionality Reduction

Assessment of Parametric First-Order Feature Selection (FOFS):

- The method is very fast and its complexity is O(M)
- ➤ However, for pairwise class separation, the complexity grows with O(L)
- ➤ The rank tables grow exponentially, visual inspection becomes infeasible!
- > Only a local optimum solution can be expected
- The method can be extended to different class separation (one vs. all, all)
- ➤ Inclusion of lower ranking features can affect the solution
- > Summary: If parametric assumption is met, method can be fast & effective
- **Problem**: Nonparametric and multimodal one-dimensional distributions:

Feature Selection

Sensor Signal Processing Dimensionality Reduction

© Andreas König Slide5-21

- ➤ **Remedy**: A nonparametric J is computed, e.g., q_{oi} restricted to one dimension
- Example for application data with two classes from visual inspection:

Feature	Rank Par.)	C 1-2	Rank (Nonpar.)	C 1-2
\mathbf{v}_1	5	0.2917	5	0.6977
\mathbf{v}_2	4	0.6489	3	0.8211
\mathbf{v}_3	1	1.1558	4	0.7058
\mathbf{v}_4	3	0.8547	2	0.8808
\mathbf{v}_{5}	2	1.0047	1	0.9270

- \triangleright The global solution C=[0, 0, 0, 1, 1]^T was determined by exhaustive search
- > The nonparametric FOFS found the global optimum, parametric FOFS failed
- ➤ However, the number of rank positions salient for the given problem is not immediately obvious
- > FOFS can serve as first step to confine search space in selection hierarchy

Sensor Signal Processing Dimensionality Reduction

- ➤ Nonparametric cost function is computed for each configuration, i.e., the currently selected subset of features
- ➤ Heuristic search strategy is applied to confine the search space
- > Sequential-Backward/Forward-Selection (SBS/SFS):

- M*(M-1)/2+M combinations have to be assessed for SBS/SFS
 → O(M²) complexity
- ➤ For M=16, a local optimum solution will be found in approx. 136 s (1 s per assessment assumed) in contrast to 18h for exhaustive search

© Andreas König Slide5-23

Feature Selection

Sensor Signal Processing Dimensionality Reduction

> Application example of SBS for *Iris* train:

1 2 3 4 0.90667 - 2 3 4 0.94667 - - 3 4 0.96000 - - - 4 0.00000 Optimum quality: 0.96 Significant Features:3 4

Application example of SBS for visual inspection data:

1 2 3 4 5 0.903846 - 2 3 4 5 0.942308 - - 3 4 5 0.961538 - - - 4 5 0.961538 - - - 5 0.913462 Optimum quality: 0.961538 Significant Features: 4 5

Further applicable heuristics: Branch & bound, floating search, etc.

Sensor Signal Processing Dimensionality Reduction

- > Stochastic methods, e.g., Simulated Annealing (SA), applicable as heuristic
- Perturbation Method (PM) is a simple variant, based on random state changes
- > PM application for *Iristrain*:

- > Random initial state
- ➤ Random selection of variable to propose state transition
- Selected variable is toggled and transition is accepted if

$$\Delta q_{si} = q_{si}^{new} - q_{si}^{old} \tag{5.9}$$

- Random tossing surprisingly effective at moderate effort
- ➤ Different results for each run!
- > Several enhancements possible (multiple variable change or SA)

© Andreas König Slide5-25

Feature Selection

Sensor Signal Processing Dimensionality Reduction

- Additional optimization techniques can be applied to feature selection, e.g., from evolutionary computation like genetic algorithms & swarm intelligence
- > Results for Mech, & Mech,:
 - SFS and FSSPEA find same optimum solution!
 - Inclusion of further constraints

	Method	Mech ₁	Mech ₂	Features
	ORG	0,992500	0,981667	24
-	SFS	0,997500	0,928333	3
	SBS	0,989333	0,981667	12
	PM	0,997500	0,959167	6
	SGA	0,997333	0,969167	12
-	FSSPEA	0,997500	0,928333	3

Mechatronic

1,000
0,980
0,980
0,980
SGA PM SBS SFS ORG Method

Original feature space

Feature space for FSSPEA

Sensor Signal Processing Dimensionality Reduction

- Small application example from microelectronic manufacturing: Wafer Data Analysis
- ➤ Simple example of DR methodology potential for general fab data analysis
- ➤ The database was gathered from an MPC-Run with 10 Wafers and 4 Parameter Extraction Sites per Wafer, 59 parameters each:

- ➤ All chips with unsatisfactory behavior on Wafer 5 (blue; 1-4, 6-10 yellow)
- Assume Wafer 5 processing was abnormal, what makes it different?

© Andreas König Slide5-27

Feature Selection

- ➤ The lack of obvious structure can be due to absence of abnormity or to occlusion by a majority of normal parameters and high intrinsic dimension
- Thus, AFS is employed to find parameters supporting abnormity hypothesis

- From 59 parameters AFS chose 3 for q_{si}/SBS and 7 for q_{oi}/SBS
- ➤ There is (weak) hypothesis support: Can these features be responsible?

Sensor Signal Processing Dimensionality Reduction

Analyzing the AFS choice by probing the parameter meaning:

Parameter	RCNTMPN	RDIFFN	ROIFFP	RMET	PIMET2	PNVELL	RON3NH	RP0LY2	RPOLYN	RVIA
	Ohmloont	Ohm/[]	Ohm/[]	m@hmi[]	m@hm/[]	kOhm/[]	kOhmum	(Juny)	[]myj	mOhmivia RVIA
min		20	25			- 1	15	21	20	
Spec max	20	35	60	140	80	1,4	23	33	28	300
Mitelwert	4,9079	23,5965	43,0638	70,4023	37,2045	1,1110	19,6393	27,6148	25,5955	*****
Varianz	0,0717	0,0240	0,6963	1,5038	0,7536	0,0000	0,0036	0,1757	1,0725	23,1676
Wafer 1 Site 1	0,3271	-0,1765	-0,3637	-1,7822	0,1855	0,0010	-0,0493	-0,5148	-0,1755	-3,8600
Wafer 1 Site 2	0,0081	-0,2565	-0,8738	-0,3422	-1,2045	0,0030	0,0007	-0,4548	0,8745	6,5400
Wafer 1 Site 3	0,1151	-0,1265	-0,6037	0,2278	0,2855	-0,0020	-0,0493	-0,1048	0,2245	0,1400
Wafer 1 Site 4	-0,1089	-0,1665	-0,3438	2,3378	0,3355	-0,0030	-0,0293	0,0752	0,9645	3,5400
Wafer 2 Site 1	0,0801	-0,0765	-0,7137	-2,0622	1,1855	0,0050	-0,0293	-0,5948	0,2245	2,1400
Wafer 2 Site 2	-0,0499	-0,2165	-1,1238	0,4578	0,6355	0,0060	0,0007	-0,8148	0,7645	11,1400
Wafer 2 Site 3	-0,0719	-0,1265	-0,8537	0,2778	0,8255	-0,0030	-0,0893	-0,3048	0,3845	5,9400
Wafer 2 Site 4	-0,0209	-0,1365	-0,5437	1,9178	1,9155	0,0020	-0,0793	-0,0448	0,5745	9,1400
Wafer 3 Site 1	0,2131	-0,0265	-0,2837	-1,6122	-0,4245	-0,0030	-0,0593	-0,4348	0,4145	-9,2600
Wafer 3 Site 2	0,0221	-0,1565	-0,7638	-0,5823	-1,0545	0,0080	-0,0193	-0,5448	1,0845	-0,4600
Wafer 3 Site 3	0,1241	-0,0965	-0,7638	0,4078	-0,0845	-0,0010	-0,0893	-0,0948	0,3645	-4,6600
Wafer 3 Site 4	0,0461	-0,0865	-0,3038	0,7678	-0,1045	-0,0030	-0,0493	0,0852	0,6845	-1,8600
Wafer 4 Site 1	0,0821	0,2435	0,8963	-0,6822	-0,4845	-0,0040	0,0007	-0,3148	0,4545	-6,2600
Wafer 4 Site 2	-0,1059	0,0735	0,7763	0,2278	-0,8945	0,0040	0,0307	-0,3348	1,0245	2,5400
Wafer 4 Site 3	-0,0949	0,0435	0,2263	-0,4822	0,5755	-0,0050	0,1207	0,1052	0,5745	-2,2600
Wafer 4 Site 4	-0,3129	0,1135	0,8363	1,6078	-0,4245	-0,0040	0,0607	0,0852	1,0245	-0,4600
Wafer 5 Site 1	0,3841	0,0035	-0,5938	-1,2723	-0,1045	-0,0010	0,1107	0,6552	-0,4155	-8,6600
Wafer 5 Site 2	0,0521	-0,1565	-0,8738	-0,0422	-1,8645	0,0020	0,1507	0,3952	0,6645	-2,6600
Wafer 5 Site 3	0,1741	-0,0865	-0,8637	0,4678	0,3555	-0,0080	0,0107	0,8052	0,1445	-6,0600
Wafer 5 Site 4	-0,0479	-0,1565	-0,2937	1,7678	0,0855	-0,0020	0,0007	0,7052	0,7645	-3,8600
Wafer 6 Site 1	-0,5139	0,1335	0,4462	-1,8823	0,3155	0,0030	0,0007	0,4052	-2,0855	-5,8600
Wafer 6 Site 2	-0,5469	0,0135	0,4162	-0,2723	-0,8445	0,0040	0,0607	0,0852	-2,0555	2,3400
Wafer 6 Site 3	-0,3849	0,0335	-0,0737	-0,1522	0,4255	-0,0010	-0,0793	0,6552	-2,0855	-1,6600
Wafer 6 Site 4	-0,4699	0,0935	0,7763	1,5278	0,3855	0,0050	0,0507	0,3252	-1,8155	0,7400
Wafer 7 Site 1	-0,2969	-0,0765	-0,8537	-1,2923	-0,3445	0,0010	0,0007	-0,1248	-2,4955	-3,6600
Wafer 7 Site 2	-0,3859	-0,1765	-1,3138	-0,5823	-1,5845	0,0020	0,0907	-0,1848	-1,0355	5,7400
Wafer 7 Site 3	-0,3589	-0,0865	-1,1038	0,0678	0,8555	-0,0130	-0,0493	0,2252	-1,9555	1,9400
Wafer 7 Site 4	-0,4209	-0,1765	-0,7037	1,3378	0,3755	-0,0090	-0,0793	0,1352	-1,0055	4,5400
Wafer 8 Site 1	0,4341	0,1435	0,9263	-1,2723	0,1855	0,0050	0,0007	0,2452	-0,5755	-5,6600
Wafer 8 Site 2	0,0911	0,0335	0,6363	0,1578	-1,1945	0,0110	0,0507	-0,0648	0,5045	5,9400
Wafer 8 Site 3	0,1611	0,0635	0,2763	-0,1322	0,3055	-0,0020	-0,0493	0,3652	-0,1655	-1,0600
Wafer 8 Site 4	0,0641	0,0935	0,8762	1,8378	0,0155	0,0040	0,0007	0,2652	0,5945	2,3400
Wafer 9 Site 1	0.4741	0.3935	1.6663	-0.9622	-0.1045	-0.0020	0.0607	0.2952	-0.2955	-3.6600

- ➤ The subcluster was found for the assumption of Wafer 5 abnormity
- ➤ The parameters must be checked for physical plausibility with regard to observed chip behavior
- ➤ The visualization & analysis result is imposed on the original database in Excel
- ➤ In the given case, the detected abnormity in the selected parameters cannot be held responsible
- Probably a design error, not a manufacturing problem!

© Andreas König Slide5-29

Feature Selection

- > This simple example only scratched the surface of the application potential
- > Feasibility demonstration of DR methodology for microelectronic data

- ➤ In this case found parameters distinguish Wafer 5 but are not relevant to observed problem
- ➤ The outlined approach offers fast, efficient, and transparent access to multivariate, complex data met in today's manufacturing processes
- Other nonobvious information can be found & employed for process optimization & centering
- ➤ Circuit design & design centering is another potential application field

Sensor Signal Processing Dimensionality Reduction

> Taxonomy of Dimensionality Reduction Methods:

Feature Extraction

- ➤ Dimensionality reduction by Principal Component Analysis
- > Dimensionality reduction method from communication science
- > Objective: Find a linear transformation with $\vec{y}_i = W_{1..m} \vec{v}_i$ and $\hat{\vec{v}}_i = W_{1..m}^T \vec{y}_i$ so that the reconstruction error is minimimum for given m $E = \frac{1}{N} \sum_{i=1}^{N} (\vec{v}_i \hat{\vec{v}}_i)^2 \qquad (5.10)$
- ➤ Visualization employs the first two (three) principal components
- > Compute covariance matrix of the database:

$$K = \frac{1}{N} \sum_{i=1}^{N} (\vec{v}_i - \vec{\mu}_j) (\vec{v}_i - \vec{\mu}_j)^T \quad \text{with} \quad \vec{\mu} = \frac{1}{N} \sum_{i=1}^{N} \vec{v}_i$$
 (5.11)

- \blacktriangleright Compute Eigenvalues λ_i and Eigenvectors ψ_i of matrix K
- \triangleright Data is decorrelated by applying $\vec{y}_i = \Psi \vec{v}_i$ (5.12)
- Largest Eigenvalue corresponds to component with largest variance in the data
- Eigenvalues are sorted and the *m* Eigenvectors corresponding to the largest Eigenvalues are selected for projection: $\vec{y}_{i,m} = \Psi_{1,m} \vec{v}_i$ (5.13)

Sensor Signal Processing **Dimensionality Reduction**

- For compression in channel coding or classification, m can be chosen according to Scree-plot or achieved classification rate R
- > PCA is a linear, signal-preserving approach based on the assumption of unimodal Gaussian data. Example for Mech₁ data:

- Most variance is embodied in the first two principal components
- ➤ **R** grows with M² for M-D data (Numerical & accuracy problems)
- ➤ Bad visualization for high *intrinsic dimensionality* or nonlinear components

© Andreas König Slide5-33

Feature Extraction

Sensor Signal Processing **Dimensionality Reduction**

For nonlinear data, the assumptions of PCA do not hold:

- > Remedy: Curvi-linear components (CCA)
- > Piecewise linear approximation in an hierarchical approach using clustering & local PCA computation (M-PCA)

Sensor Signal Processing Dimensionality Reduction

- ➤ Artificial neural networks are commonly applied for function approximation in classification and dimensionality reduction
- > Simple artificial neuron model:

$$o = f\left(\sum_{i=1}^{m} x_i w_i\right) \tag{5.14}$$

 $f(net) = \frac{1}{1 + e^{-net}}$ (5.15)

Stimuli Weights Cell body Output (Activation)

➤ Coarse abstraction of the natural nerve cell in biological systems

© Andreas König Slide5-35

Feature Extraction

Sensor Signal Processing Dimensionality Reduction

Adaptation of a neuron weight is commonly achieved by gradient descent based on an error function:

$$E = \frac{1}{2} \sum_{k=1}^{N} \left(y^{k} - f \left(\sum_{i=1}^{m} x_{i}^{k} w_{i} \right) \right)^{2}$$
 (5.16)

> Every weight is adapted after (random) initialization according to:

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} \tag{5.17}$$

> The gradient is computed as:

$$\frac{\partial E}{\partial w_i} = -\sum_{k=1}^{N} \left(y^k - f\left(\sum_{i=1}^{m} x_i^k w_i\right) \right) \cdot f'\left(\sum_{i=1}^{m} x_i^k w_i\right) \cdot x_i^k$$
 (5.18)

➤ Inserting (5.18) in (5.17) return the batch learning rule, reducing the batch to one returns on-line learning rule with immediate weight adaptation

Sensor Signal Processing Dimensionality Reduction

➤ Commonly, a multi-layered network of multiple of such neuron models is applied, denoted as multi-layer feedforward neural network :

Output Layer

Hidden Layer

Input Layer

- ➤ The network can be extended by more hidden layers, but already the given topology is proven to be a universal function approximator
- A learning rule is required for this network, in particular the hidden layer

© Andreas König Slide5-37

Feature Extraction

Sensor Signal Processing Dimensionality Reduction

Introducing the following abbreviations using the notation given with the network structure:

$$o_i = f\left(\sum_j h_j w_{ij}\right) \quad ; h_j = f\left(\sum_k x_k w_{jk}\right)$$
 (5.19)

 \triangleright With (5.19) the error can be expressed as:

$$E = \frac{1}{2} \sum_{\mu=1}^{N} \sum_{i=1}^{L} \left(y_i^{\mu} - f \left(\sum_{i=1}^{m} h_j^{\mu} w_{ij} \right) \right)^2$$
 (5.20)

> Every weight is adapted after (random) initialization according to:

$$\Delta w_{ij} = -\eta \frac{\partial E}{\partial w_{ii}} \tag{5.21}$$

➤ The gradient for the output layer weights is computed as:

$$\frac{\partial E}{\partial w_{ij}} = -\sum_{\mu=1}^{N} \left(y_i^{\mu} - f \left(\sum_j h_j^{\mu} w_{ij} \right) \right) \cdot f' \left(\sum_j h_j^{\mu} w_{ij} \right) \cdot h_j^{\mu}$$
 (5.22)

Sensor Signal Processing Dimensionality Reduction

 \triangleright This can be expressed employing the abreviations of (5.19) as

$$\frac{\partial E}{\partial w_{ij}} = -\sum_{\mu=1}^{N} \left(y_i^{\mu} - o_i^{\mu} \right) \cdot o_i^{\prime \mu} \cdot h_j^{\mu}$$
 (5.23)

➤ Inserting in (5.21) gives the output layer batch adaptation rule

$$\Delta w_{ij} = -\eta \frac{\partial E}{\partial w_{ij}} = \eta \sum_{\mu=1}^{N} \left(y_i^{\mu} - o_i^{\mu} \right) \cdot o_i^{\mu} \cdot h_j^{\mu}$$
 (5.24)

For the hidden layer adaptation rule, the error function must be expanded:

$$E = \frac{1}{2} \sum_{\mu=1}^{N} \sum_{i=1}^{L} \left(y_{i}^{\mu} - f \left(\sum_{j} w_{ij} f \left(\sum_{k} x_{k}^{\mu} w_{jk} \right) \right) \right)^{2} \underbrace{ \text{net}_{j} }_{\substack{\text{o}_{i} \\ \text{o}_{i}}} h_{j}$$
(5.25)

© Andreas König Slide5-39

Feature Extraction

Sensor Signal Processing Dimensionality Reduction

> Every hidden weight is adapted after (random) initialization according to:

$$\Delta w_{jk} = -\eta \frac{\partial E}{\partial w_{jk}} \tag{5.26}$$

➤ The gradient for the hidden layer weights is computed by application of the chain rule:

$$\frac{\partial E}{\partial w_{ik}} = \frac{\partial E}{\partial e_i} \cdot \frac{\partial e_i}{\partial o_i} \cdot \frac{\partial o_i}{\partial net_i} \cdot \frac{\partial net_i}{\partial h_i} \cdot \frac{\partial h_j}{\partial net_i} \cdot \frac{\partial net_j}{\partial w_{ik}}$$
(5.27)

$$\frac{\partial E}{\partial w_{jk}} = -\sum_{\mu=1}^{N} \sum_{i=1}^{L} \left(y_i^{\mu} - f \left(\sum_{j} h_j^{\mu} w_{ij} \right) \right) \cdot f' \left(\sum_{j} h_j^{\mu} w_{ij} \right) \cdot w_{ij} \cdot f' \left(\sum_{j} x_k^{\mu} w_{jk} \right) \cdot x_k^{\mu}$$

 \triangleright This can again be expressed employing the abreviations of (5.19) as

$$\frac{\partial E}{\partial w_{ik}} = -\sum_{\mu=1}^{N} \sum_{i=1}^{L} \left(y_i^{\mu} - o_i^{\mu} \right) \cdot o_i^{\mu} \cdot w_{ij} \cdot h_j^{\mu} \cdot x_k^{\mu} \tag{5.29}$$

(5.28)

Sensor Signal Processing Dimensionality Reduction

 \triangleright Introduction of error or δ-terms with

$$\delta_i^{\mu} = \left(y_i^{\mu} - o_i^{\mu} \right) \cdot o_i^{\mu} \tag{5.30}$$

$$\delta_{j}^{\mu} = h_{j}^{\mu} \cdot \sum_{i=1}^{L} w_{ij} \delta_{i}^{\mu}$$
 (5.31)

> ... allows a compact representation of the adaptation rules

$$\Delta w_{ij} = \eta \sum_{\mu=1}^{N} \delta_i^{\mu} \cdot h_j^{\mu} \tag{5.32}$$

$$\Delta w_{jk} = \eta \sum_{\mu=1}^{N} \delta_j^{\mu} \cdot x_k^{\mu} \tag{5.33}$$

- ➤ This learning rule is denoted as error-backpropagation learning rule
- Numerous variants of this vanilla approach are in existence to improve learning behavior, e.g., introduction of a momentum term or adaptive η

© Andreas König Slide5-41

Feature Extraction

- Nonlinear Signal Preserving Mappings
- ➤ Application of backpropagation networks in autoassociative mode:

- ➤ Network learning tries to preserve the feature values over the bottleneck layer
- ➤ 3L networks perform similar to PCA
- Number of bottleneck layer neurons define projection dimension d
- Example with 4-2-4 BP network
- ➤ 5L networks performs nonlinear compression, extracting principal curves
- > Topology must be specified by user
- ➤ Hard to train and to interpret
- Example with 4-9-2-9-4 BP network

Sensor Signal Processing Dimensionality Reduction

➤ Visualization of *Iristrain* data by 3L-BP in autoassociative mode:

➤ Visualization of *Iristest* data by 3L-BP in autoassociative mode:

© Andreas König Slide5-43

Feature Extraction

Sensor Signal Processing Dimensionality Reduction

➤ Visualization of *Iristrain* data by 5L-BP in autoassociative mode:

➤ Visualization of *Iristest* data by 3L-BP in autoassociative mode:

Sensor Signal Processing Dimensionality Reduction

- Distance Preserving Nonlinear Mapping: Sammon's NLM
- > Particular case of Multi-dimensional-scaling (MDS) approach
- Sammon's stress assesses distortion of distances while mapping the data vectors from **X** space to corresponding pivot points in **Y** space by his NLM:

$$E(m) = \frac{1}{c} \sum_{j=1}^{N} \sum_{i=1}^{j} \frac{(d_{X_{ij}} - d_{Y_{ij}}(m))^{2}}{d_{X_{ij}}} \quad with \quad c = \sum_{j=1}^{N} \sum_{i=1}^{j} d_{X_{ij}}$$
 (5.34)

 \triangleright Here, d_{Xij} and d_{Yij} denote the interpoint distance in feature space **X** and projection space **Y**, respectively:

$$d_{Y_{ij}}(m) = \sqrt{\sum_{q=1}^{d} (y_{iq}(m) - y_{jq}(m))^{2}}$$
 (5.35)

$$d_{X_{ij}} = \sqrt{\sum_{q=1}^{M} (x_{iq} - x_{jq})^2}$$
 (5.36)

© Andreas König Slide5-45

Feature Extraction

Sensor Signal Processing Dimensionality Reduction

Minimization of Sammon's stress using gradient descent is achieved by iterative computation of new coordinates for the pivot vectors in Y space:

$$y_{iq}(m+1) = y_{iq}(m) - MF * \Delta y_{iq}(m)$$
 (5.37)

with
$$\Delta y_{iq}(m) = \frac{\partial E(m)}{\partial y_{iq}(m)} / \left| \frac{\partial^2 E(m)}{\partial y_{iq}(m)^2} \right|$$
 (5.38)

> The partial derivatives for gradient descent are given by

$$\frac{\partial E(m)}{\partial y_{iq}} = \frac{-2}{c} \sum_{\substack{j=1\\j \neq i}}^{N} \left[\frac{1}{d_{Y_{ij}}} - \frac{1}{d_{X_{ij}}} \right] (y_{iq} - y_{jq})$$
 (5.39)

$$\frac{\partial^2 E(m)}{\partial y_{iq}^2} = \frac{-2}{c} \sum_{\substack{j=1\\i\neq j}}^N \left[\frac{1}{d_{Y_{ij}}} - \frac{1}{d_{X_{ij}}} - \frac{(y_{iq} - y_{jq})^2}{d_{Y_{ij}}^3} \right]$$
(5.40)

Sensor Signal Processing Dimensionality Reduction

- ➤ NLM maps each point and preserves distances & structure in data
- > Salient visualization method for direct data projection & visual analysis
- ➤ Mapping control:

- ➤ Error E(m)>0.1 indicates unacceptable mapping result [Sammon 69]
- ➤ Computation of NLM has O(N²) complexity
- ➤ Method becomes infeasible for large databases
- > Gradient descent optimization is not capable to exactly preserve all distances
- > Inevitable mapping error is introduced

Acceleration for approximated mapping by heuristics!

© Andreas König Slide5-47

Feature Extraction

- After initial dimensionality reducing mapping computation for a given data set, single or groups of data points shall be subject to the same mapping, too
- ➤ In classification, test & application data shall be mapped in recall
- > In visualization, new data points shall be mapped & displayed

- ➤ In both cases, the mapping of additional points shall take place without recomputation of the entire mapping
- > PCA & ANN's satisfy this requirement, NLM originally does not
- **Remedy 1:** Train an ANN with NLM mapping data & use it for recall
- ➤ Remedy 2: Introduce NLM recall mapping (NLMR)

Sensor Signal Processing Dimensionality Reduction

- ➤ Introduction of a NLM recall method (NLMR) basing on the previously computed NLM
- New data vectors \vec{v}_i^r subject to recall are placed according to their distances
- $ightharpoonup d_{\hat{X}_{ij}}$ to the training data points \vec{v}_{j}^{t}
- Mutual distances between test vectors are neglected in NLMR
- > Thus the cost function is modified to:

$$\hat{E}_{i}(m) = \frac{1}{\hat{c}} \sum_{j=1}^{K} \left(\frac{(d_{\hat{X}_{ij}} - d_{\hat{Y}_{ij}}(m))^{2}}{d_{\hat{X}_{ij}}} \right)$$
with $d_{\hat{X}_{ij}} = \sqrt{\sum_{q=1}^{M} (\vec{v}_{iq}^{r} - \vec{v}_{jq}^{t})^{2}}$ and $\hat{c} = \sum_{j=1}^{K} d_{\hat{X}_{ij}}$

➤ K corresponds to the number of initially mapped training samples

© Andreas König Slide5-49

Feature Extraction

- Each point is randomly initialized in Y space
- > Iterative adjustments by gradient descent take place according to:

$$\hat{y}_{iq}(m+1) = \hat{y}_{iq}(m) - MF * \Delta \hat{y}_{iq}(m)$$

$$with \quad \Delta \hat{y}_{iq}(m) = \frac{\partial \hat{E}_{i}(m)}{\partial \hat{y}_{iq}(m)} / \left| \frac{\partial^{2} \hat{E}_{i}(m)}{\partial \hat{y}_{iq}(m)^{2}} \right| \quad and \quad 0 < MF \le 1$$
(5.42)

- Mapping of test data for recall or postmapping is now feasible
- ➤ The number of iterations required per data vector mapping vary considerably
- Computational savings can be achieved for given Minimum Error threshold

Sensor Signal Processing Dimensionality Reduction

➤ NLMR Application example for *Iristrain* and *Iristest* data:

➤ NLM(R) can now serve as nonlinear alternative to PCA. Quantitative discriminance comparison showed NLM(R) to be superior for given dimension

© Andreas König Slide5-51

Feature Extraction

- Quantitative Assessment of selected unsupervised Mapping Techniques
 Compression from M- to 2D data for linear/nonlinear unsupervised methods
- ightharpoonup Evaluation by overlap q_o and separability q_s measures for training & test sets

Method	Dim.	Train	q _o	q _s	Test	q _o	q _s
Original	4	Iristrain	0.95503	0.90666	Iristest	0.91683	0.88000
PCA	2	Iristrain	0.91329	0.86667	Iristest	0.91970	0.89333
NLM	2	Iristrain	0.94250	0.89333	Iristest	0.93128	0.89333
BP	2	Iristrain	0.93008	0.90666	Iristest	0.91630	0.90667
Original	24	Mech₁	1.000	0.98933	Mech ₂	0.99799	0.96308
PCA	2	Mech₁	0.98959	0.97067	Mech ₂	0.94889	0.91384
NLM	2	Mech₁	0.97898	0.94400	Mech ₂	0.95730	0.91384
BP	2	Mech₁	0.97861	0.94400	Mech ₂	0.93619	0.89538

- ➤ BP has 4-9-2-9-4 network topology, 1000 epochs of quickprop learning
- > PCA is simple and excellent when applicable to the given data
- > NLM(R) outperforms PCA for nonlinear data & is easy to use
- ➤ BP results are very hard to obtain & approximately as those of NLM(R)
- This comparison assessed discriminance not structure preservation!

Sensor Signal Processing Dimensionality Reduction

- Supervised linear technique for dimensionality reduction [Fukunaga 90]
- ➤ <u>Objective:</u> Find a linear transformation that minimizes the within or intraclass distances between data points and maximizes the between or interclass distances, i.e., class regions shall become compact & well separated
- ➤ Scatter matrices are computed for this aim. In the parametric approach interclass S_b and intraclass S_w scatter matrices are computed by:

$$S_{w} = \frac{1}{N} \sum_{i=1}^{L} \sum_{j=1}^{N_{i}} (\vec{v}_{j}^{\omega_{i}} - \vec{\mu}_{j}^{\omega_{i}}) (\vec{v}_{j}^{\omega_{i}} - \vec{\mu}_{j}^{\omega_{i}})^{T} \quad \text{with} \quad \vec{\mu}^{\omega_{i}} = \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \vec{v}_{j}^{\omega_{i}}$$
 (5.43)

$$S_b = \frac{1}{N} \sum_{i=1}^{L} \frac{N_i}{N} (\vec{\mu}_j^{\omega_i} - \vec{\mu}) (\vec{\mu}_j^{\omega_i} - \vec{\mu})^T \quad \text{with} \quad \vec{\mu} = \frac{1}{N} \sum_{j=1}^{N} \vec{v}_j = \sum_{j=1}^{N} \frac{N_i}{N} \vec{\mu}^{\omega_i} \quad (5.44)$$

© Andreas König Slide5-53

Feature Extraction

Sensor Signal Processing Dimensionality Reduction

 \triangleright One possible measure of the underlying separability is given by J_s with:

$$J_{s} = Tr(S_{w}^{-1}S_{b}) {(5.45)}$$

- \triangleright Computation of Eigenvalues λ_i and Eigenvectors ψ_i of matrix $(S_w^{-1}S_b)$
- Largest Eigenvalues correspond to components with largest <u>discriminance</u>
- ➤ Eigenvalues are sorted and the *m* Eigenvectors corresponding to the largest Eigenvalues are selected for dimensionality reduction:

$$\vec{y}_{i_{1}m} = \Psi_{1.m} \vec{v}_{i} \tag{5.46}$$

- Dimensionality is reduced and discriminance improved in one step
- For classification, m is chosen according to Scree plot of λ_i or one of the measures given in the taxonomy of section 2
- \triangleright Visualization by 2 (3) ψ_i , for m>2 combination with unsupervised methods
- The parametric approach is limited in scope and ability!

Sensor Signal Processing Dimensionality Reduction

- Extension of scatter matrices for nonparametric or even multimodal data [Fukunaga 90]
- ➤ Interclass scatter is computed based on k-nearest-neighbor technique for nonparametric scatter matrix **S**_b by:

$$S_b = \frac{1}{N} \sum_{i=1}^{L} \sum_{j=1}^{N_i} g_i (\vec{v}_j^{\omega_i} - \vec{\mu}_{jNN}^{\neq \omega_i}) (\vec{v}_j^{\omega_i} - \vec{\mu}_{jNN}^{\neq \omega_i})^T$$
 (5.47)

- Here, $\vec{\mu}_{jNN}^{\neq \omega_i} = \frac{1}{k} \sum_{l=1}^{k} \vec{v}_{l_{NN}}^{\neq \omega_l}$ denotes the mean vector of the k-nearest-neighbors of $\vec{v}_{j}^{\omega_i}$ with different class affiliations
- ➤ The weighting factor for off-class-borders vectors g_i is given by:

$$g_{j} = \frac{\min\{d^{\varsigma}(v_{j}^{\omega_{i}}, \mu_{jNN}^{\omega_{i}}), d^{\varsigma}(v_{j}^{\omega_{i}}, \mu_{jNN}^{\omega_{i}})\}}{d^{\varsigma}(v_{j}^{\omega_{i}}, \mu_{jNN}^{\omega_{i}}) + d^{\varsigma}(v_{j}^{\omega_{i}}, \mu_{jNN}^{\omega_{i}})} \qquad \text{with weight decay factor} \qquad (5.48)$$

© Andreas König Slide5-55

Feature Extraction

Sensor Signal Processing Dimensionality Reduction

- \triangleright The parametric intraclass scatter matrix S_w is retained
- ► Decorrelation with regard to S_w , i.e., S_w in space Y will be $S_w = I$
- > Pattern data is transformed by

$$\vec{y}_{j} = (\Psi_{1...M}^{W} (\Lambda^{W})^{-\frac{1}{2}})^{T} \vec{v}_{j}$$
 (5.49)

- ightharpoonup In space Y, now $Tr(S_w^{-1}\mathbf{S}_b) = Tr(\mathbf{S}_b)$ holds (whitening according to S_w)
- \triangleright Computation of Eigenvalues λ_i and Eigenvectors ψ_i of matrix \mathbf{S}_b
- ➤ Eigenvalues are sorted and the *m* Eigenvectors corresponding to the largest Eigenvalues are selected for dimensionality reduction:

$$\vec{y}_{j_{1,m}}^* = (\Psi_{j_{1,m}}^b)^T \vec{v}_j^* \tag{5.50}$$

Finally, the dimensionality reducing projection is computed by:

$$\vec{y}_{j_{1...m}}^* = (\Psi_{1...m}^b)^T \vec{y}_j = (\Psi_{1...m}^b)^T (\Psi_{1...m}^w (\Lambda^w)^{-\frac{1}{2}})^T \vec{v}_j$$
 (5.51)

Sensor Signal Processing Dimensionality Reduction

Visualization example of nonparametric scatter matrix (NPSCM) application for *Mech_I* data:

➤ Numerical assessment of the method with regard to discriminance will follow after presentation of nonlinear supervised mapping methods

© Andreas König Slide5-57

Feature Extraction

Sensor Signal Processing Dimensionality Reduction

- ➤ Koontz & Fukunaga extended Sammon's stress in the NLM by an additional term dedicated to assessment of intraclass distances
- ➤ The KFM mapping pursues intraclass reduction & structure preservation and thus nonlinear discriminance analysis by the following cost function:

$$E(m) = \frac{1}{c} \sum_{j=1}^{N} \sum_{i=1}^{j} \frac{\delta(\omega_{i}, \omega_{j}) d_{y_{ij}}^{2}(m) + \hat{\lambda} (d_{X_{ij}} - d_{Y_{ij}}(m))^{2}}{d_{X_{ij}}}$$
(5.52)

 \blacktriangleright Here, $c,\,d_{Xij}$ and d_{Yij} are the same terms defined for Sammon's stress in the NLM and

$$\delta(\omega_i, \omega_j) = \begin{cases} \hat{\alpha} & : \quad \omega_i = \omega_j \\ 0 & : \quad \omega_i \neq \omega_j \end{cases} \quad with \quad \hat{\alpha} = 1$$
 (5.53)

Sensor Signal Processing Dimensionality Reduction

➤ Minimization of KFM cost function using gradient descent is achieved by iterative computation of new coordinates for the pivot vectors in **Y** space:

$$y_{iq}(m+1) = y_{iq}(m) - MF * \Delta y_{iq}(m)$$
 (5.54)

with
$$\Delta y_{iq}(m) = \frac{\partial E(m)}{\partial y_{iq}(m)} / \left| \frac{\partial^2 E(m)}{\partial y_{iq}(m)^2} \right|$$

> The partial derivatives for gradient descent are given by

$$\frac{\partial E(m)}{\partial y_{iq}} = \frac{2}{c} \sum_{\substack{j=1\\i\neq j}}^{N} \left[\frac{\delta(\omega_i, \omega_j)}{d_{X_{ij}}} - \hat{\lambda} \left(\frac{1}{d_{Y_{ij}}} - \frac{1}{d_{X_{ij}}} \right) \right] (y_{iq} - y_{jq})$$
 (5.55)

$$\frac{\partial^{2} E(m)}{\partial y_{iq}^{2}} = \frac{2}{c} \sum_{\substack{j=1\\j\neq i}}^{N} \left[\frac{\delta(\omega_{i}, \omega_{j})}{d_{X_{ij}}} - \hat{\lambda} \left(\frac{1}{d_{Y_{ij}}} - \frac{1}{d_{X_{ij}}} - \frac{(y_{iq} - y_{jq})^{2}}{d_{Y_{ij}}^{3}} \right) \right]$$
(5.56)

© Andreas König Slide5-59

Feature Extraction

- Modification of the original approach by setting $\hat{\alpha} = 1 \hat{\lambda}$ reduces parameters and gives convenient control from pure structure preservation ($\hat{\lambda} = 0.0$) to pure separability achievement ($\hat{\lambda} = 1.0$)
- Visualization of *Iristrain* and *Mech*₁ with $\hat{\lambda} = 0.3$ after 100 iterations

Sensor Signal Processing Dimensionality Reduction

- As for NLM, a recall procedure is not straight forward available for KFM
- ➤ Koontz & Fukunaga presented a (restricted) method using polynomial distance approximation and a pivot point approach for mapping
- Employment of neural network, e.g., BP, as universal function approximator is an interesting alternative
- ➤ Network is supplied with original feature data at the input & KFM data at the output
- Training phase aims on mapping error minimization with generalization
- ➤ Test data is mapped later for classification or visualization employing the trained net
- **Problem:** Net configuration & convergence

© Andreas König Slide5-61

Feature Extraction

Sensor Signal Processing Dimensionality Reduction

➤ Visualization of KFM applied to *Iristrain* and *Iristest* data with a 4-9-5-2 BP network (training & test data mapped by BP network!)

Achieving network convergence & good approximation properties is not straightforward for combined KFM/BP nonlinear mapping

Sensor Signal Processing Dimensionality Reduction

- Employment of BP neural network with a bottleneck topology for nonlinear mapping or nonlinear discriminance analysis (NDA) is an interesting alternative:
- ➤ Network is supplied with original feature data at the input & class data at the output
- Training phase aims on classification error minimization with given bottleneck
- The number of neurons in the bottleneck layer determine projection dimension *d*
- > The trained net is cut after bottleneck
- ➤ Test data is mapped later for classification or visualization employing the cut net
- **Problem:** Net configuration & convergence

© Andreas König Slide5-63

Feature Extraction

Sensor Signal Processing Dimensionality Reduction

➤ Result of BP_NDA for *Mech*₁ and *Mech*₂ data employing a 24-9-2-4 BP neural network with a bottleneck topology (d=2):

- ➤ Fast and rather easy training, only 130-150 epochs were required
- Much easier & faster than KFM/BP, but no structure preservation

Sensor Signal Processing Dimensionality Reduction

- Compression from M- to 2D data for linear/nonlinear supervised methods
- \triangleright Evaluation by overlap q₀ and separability q_s measures for training & test sets

Method	Dim.	Train	qo	q _s	Test	qo	q _s
Original	4	Iristrain	0.95503	0.90666	Iriste st	0.91683	0.88000
NPSCM	2	Iristrain	0.98224	0.94666	Iriste st	0.95788	0.90666
BP	2	Iristrain	0.97536	1.000	Iriste st	0.95295	0.94667
KFM/BP	2	Iristrain	1.000	1.000	Iriste st	0.94023	0.92000
Original	24	Mech ₁	1.000	0.98933	Mech ₂	0.99799	0.96308
NPSCM	2	Mech ₁	0.99908	0.98200	Mech ₂	0.98716	0.97536
BP	2	Mech ₁	0.99988	0.99733	Mech ₂	0.99373	0.99385

- ➤ KFM with trained BP network (only for *Iris* data, hard to train for *Mech* data)
- ➤ BP with 24-9-2-4 network topology for Mech₁ fast to train & good results
- Linear NPSCM is simple and excellent when applicable to the given data
- Nonlinear BP, KFM/BP outperform NPSCM. Problem: overfitting/overlap
- ➤ BP & KFM/BP similar but KFM/BP results are very hard to obtain

© Andreas König Slide5-65

Accelerated Methods

- Lee, Slaggle & Blum's Triangulation Mapping:
- ➤ Compute *Minimal-Spanning-Tree* (MST) of the data (O(N²) complexity!)
- ➤ Select initial data points from the MST and map to 2D space
- > Step through MST & map each of the remaining points by triangulation

- > Only 2N-3 distances are exactly preserved
- > The algorithm tends to unfold circular structures, misleading in analysis!
- Option: Choose a fixed, global reference point for focusing the mapping (ROI)

Sensor Signal Processing Dimensionality Reduction

Accelerated Methods

Visor Mapping [König et al. 94]:

- Fast mapping with only O(N) complexity as data previewer
- ➤ Bases on the assumption to find three suited global pivot points for ensuing triangulation mapping of the remaining N-3 data points
- ➤ Mapping steps (no parameters):
 - 1. Compute centroid of the data set
 - 2. Determine data point most distant from centroid
 - 3. Determine two more data points with maximum from centroid & each other
 - 4. Place these pivot points in the 2D-plane, exactly preserving their mutual distances
 - 5. Place the remaining N-3 points by triangulation based on pivot points
- ➤ The concept is amenable to enhancement by reference or multiple pivot points

© Andreas König Slide5-67

Accelerated Methods,

- NLM and Visor mapping results are displayed for *Iristrain* data
- Mappings can be subject to rotation & mirroring
- ➤ Basic global data structure is quite similar
- The relevant information, e.g., for <u>classification</u> <u>system design</u> can be extracted by fast preview
- Quantitative analysis of mapping error required!

Summary

Sensor Signal Processing Dimensionality Reduction

- ➤ The chapter addressed the issue of decreasing the dimensionality of data sets to achieve visualization and/or improved classification
- ➤ A survey of the basic idea and selected conventional as well as neural supervised and unsupervised methods was provided
- ➤ In particular, pontential cost functions for assessment and optimization of dimensionality reducing mappings have been regarded and applied
- > Special attention was given to automatic feature selection (AFS)
- ➤ AFS allows the selection of a subset of salient attributes or features from an initially large set and the pruning of the architecture to a lean system
- Another focus was on unsupervised methods, e.g., NLM, to project arbitrary, prepferably to two dimensions in the wake of system design
- Numerous more advanced and more recent methods can be found today
- > Application is in system design and system operation

© Andreas König Slide5-69