Relatório 2º Projeto ASA 2020/2021

Grupo: al024

Alunos: António Coelho (ist195535) e Gustavo Aguiar (ist195587)

1 Descrição do Problema e da Solução

Pelo enunciado, temos que o pretendido é $min\{\sum_{i\in P_x}X_i+\sum_{i\in P_y}Y_i+\sum_{(i,j)\in P_x\times P_y}c_{ij}\}$. Assim, por definição, este problema trata-se de um corte de capacidade mínima, pelo que com base no Teorema de Fluxo Máximo Corte Mínimo, modelámo-lo como um de rede de fluxo, onde a fonte e o sumidouro correspondem aos processadores X e Y, respetivamente, e os restantes vértices aos n processos do programa. Para além disso, sabendo que $(\sum_{i\in P_x}X_i+\sum_{i\in P_y}Y_i)\in O(n)$, temos que $|f^*|\in O(|V|)$. Justifica-se assim usar um algoritmo de caminhos de aumento, baseado no método de Ford-Fulkerson, sendo esses determinados por uma BFS - Algoritmo de Edmonds-Karp.

Assim, como auxílio de resolução dos problemas encontrados utilizaram-se as seguintes referências:

- Análise teórica do algoritmo de *Edmonds-Karp*
- Implementação do algoritmo de Edmonds-Karp para determinar o fluxo máximo

2 Análise Teórica

A representação da rede residual em memória foi feita com recurso a uma matriz de adjacências - complexidade de espaço $\Theta(V^2)$ - justificada pela bidirecionalidade dos arcos correspondentes aos custos inter-processos e pelo acesso O(1) às capacidades dos arcos na rede residual no decorrer do algoritmo.

A solução visada para a resolução dos problemas apresentados consiste em 2 etapas: ler a rede de fluxo de input (1) e computar o fluxo máximo com recurso ao algoritmo de Edmonds-Karp(2).

Para $(\underline{1})$ - leitura de input - usando \mathtt{scanf} , ler os dados de entrada dentro de dois ciclos $(n \in k)$ a dependerem linearmente e quadraticamente de V para os custos entre os processos e os processadores e entre processos, respetivamente. Mais concretamente, $\Theta(V-2)=\mathrm{O}(\mathrm{V})$ para o primeiro ciclo e $\mathrm{O}(\frac{(V-2)(V-3)}{2})=\mathrm{O}(\mathrm{V}^2)$ para o segundo.

Para $(\underline{2})$ - aplicar o algoritmo de Edmonds-Karp na rede de fluxo - enquanto houver caminhos de aumento (o que se verifica em O(VE) vezes) aplica-se a $BFS(O(V^2))$, uma vez que se trata de uma matriz de adjacências) para encontrar entre esses o mais curto em número de arcos - distância de Edmonds-Karp mínima. Existindo um, determina-se a sua capacidade crítica por backtrack (que é O(V)) e o fluxo máximo é incrementado esse valor. No total tem-se $O(VE(V^2+V)) = O(EV^3)$.

Por fim, como a complexidade de $(\underline{2})$ domina a de $(\underline{1})$, tem-se que a solução geral aos problemas apresentados $\in O(EV^3)$.

3 Avaliação Experimental dos Resultados

Para a devida análise do algoritmo implementado, utilizou-se um computador com processador *Intel Core i5 Quad-Core* a 1.4 GHz, com 8 GB de memória RAM, com o sistema operativo $macOS\ Big\ Sur.$

Utilizou-se a ferramenta gen2procs fornecida pelo corpo docente para gerar redes de fluxo com capacidade por arco não superior a 15 — mostra-se irrelevante utilizar capacidades muitos superiores uma vez que a solução apresentada tem complexidade independente desse valor - e número de vértices entre 102 e 1602 aumentando de 100 em 100, perfazendo um tamanho de grafo até à ordem de grandeza 10^6 . Com o intuito de cronometrar o desempenho do algoritmo implementado utilizou-se a chamada de sistema time para o programa a correr sobre as tais redes geradas.

Por fim, registaram-se os valores obtidos da testagem e ajustou-se uma regressão polinomial de ordem 3 que demonstra, experimentalmente, a veracidade da complexidade do algoritmo esperada teoricamente. Como $|E|\gg |V|$, vemos que o tempo de execução está proximamemente relacionado com $|V^3|$, pelo que podemos concluir que o tempo de execução está proximamente relacionado com $\mathbf{O}(\mathbf{E}\mathbf{V}^3)$.