

HEATS OF COMBUSTION OF ORGANIC COMPOUNDS

By M. S. Kharasch

ABSTRACT

The literature on the heats of combustion of organic compounds is critically reviewed. A table of "best" values for this constant has been compiled covering all available information on record in the literature.

A method for calculating the heat of combustion from the structural formula of the compound is described, and the values calculated according to this method are tabulated for comparison with the observed values.

The comparison demonstrates that the calculated values are sufficiently accurate for most practical purposes. The difference between calculated and observed values seldom exceeds 1 to 2 per cent except in cases where there is reason to doubt the accuracy of the observed value. In most cases the two values agree within the accuracy of the observed value.

CONTENTS

		Page
I.	Introduction	359
II.	Standards for combustion calorimetry	362
III.	Choice of data	363
IV.	Abbreviations, units, and conventions	363
V.	Calculation of heat of combustion	364
VI.	Structural correction factors	366
	Index of compounds, by classes	370
	1. CH compounds	370
	2. CHO compounds	371
	3. N compounds	371
	4. Halogen and sulphur compounds	372
VIII.	Tables of data	373
IX.	Bibliography	421
X.	Index of compounds, by formula	426

I. INTRODUCTION

In the present collection of the data on the heats of combustion of organic compounds, an attempt has been made to select the best available value for each compound. The work has been particularly difficult because only a few authors give the necessary information concerning the unit of heat and the thermochemical corrections used, and without this information it is impossible to bring the values to a common basis.

The thermochemical data recorded in the tables have been obtained by the use of the following thermochemical methods: (1) The universal-burner method, (2) the bomb method. The "universal-burner" method, in the hands of Thomsen, gave results which agreed on the average to not better than 0.5 per cent. Owing to the design of his apparatus, it is applicable only to gases or to substances easily volatile at room temperature, and his values are to be trusted only to the extent to which this condition was realized. This seems to be the consensus of opinion of most workers in thermochemistry. It is, however, necessary to apply two corrections to his values in order to bring them into accord with modern determinations. Both of these corrections are negative. The first one (-0.3 per cent) corrects his thermometer readings to the hydrogen scale, and the second one (-0.1 per cent) corrects for the new determinations of the heat capacity of water. Only the values so corrected are recorded in the tables.

The "bomb-calorimeter" method was first used by Andrews in 1848, the determinations being carried out at a pressure of one atmosphere. In 1883 Berthelot reintroduced the method and improved it considerably. The combustions by this improved method were carried out with oxygen under pressure. The details of the technic have since undergone revolutionary revisions. For particulars the reader is referred to the articles of Richards and his collaborators; Roth and collaborators; Dickinson, Verkade, and collaborators; and Swietoslawski and collaborators.

Of the four different procedures that have been proposed for the measurement of heats of combustion by means of a calorimetric bomb, only two have attained considerable use.² These are known as the "ordinary" or "common" method and the "adiabatic" method. In the "common" method the rise of temperature of the calorimeter is observed while the "jacket" temperature is kept constant. In the "adiabatic" method the temperature of the "jacket" is kept the same as the temperature of the calorimeter and only the initial and final temperatures measured. This latter method may be called the "American adiabatic" method, for it was first proposed by S. W. Holman ³ and refined thoroughly by Richards and his collaborators. It has been used extensively only in the United States.

It should be stated at this point that the results of the two methods agree within the limits of experimental error.⁴

¹ Andrews, Pogg. Ann., 75, p. 27; 1848.

² The other two methods are those of Hosehus and Fery.

³ S. W. Holman, Proc. Am. Acad., 31, p. 252; 1895.

Dickinson, Bull. Bureau of Standards, 11, p. 243; 1915; Schläpfer and Fioroni, Helv. chim. Acta, 6. p. 725; 1923.

The method of calibrating the calorimetric system is of the greatest importance.⁵ The methods which have been at times employed by the investigators and pertain to the values recorded are as follows: (1) Calibration by the electrical method; (2) thermal calibration;

(3) the additive calibration.

- 1. The electrical calibration consists in supplying electrically a measured amount of energy to the calorimeter and measuring the temperature rise. The results of such observations give directly the heat capacity of the calorimeter and its contents in joules per degree. The value in calories is then obtained by dividing by the mechanical equivalent of heat. This method forms the basis of the work of Fischer and Wrede; Wrede, Jaeger, and von Steinwehr; Dickinson, Roth, Swartz, Moureu, and André. The work of these investigators is very thorough and of a high order of accuracy.
- 2. In the thermal method of calibration a standard substance of known heat of combustion is burned in the calorimeter. Where the other calorimetric measurements have been properly carried out this method, using one of the standard substances mentioned below, yields reliable results.
- 3. In the additive-calibration method the heat capacity of the calorimeter is obtained by adding together the heat capacities of its parts. This method has been used extensively by some French and some Russian investigators. While the work has been carried out with a great deal of zeal, yet essential details of procedure are often entirely lacking and it is thus usually impossible to compare the values with those of other workers. These statements apply to work of Berthelot and his collaborators, Louguinine, Zubov, and a number of other investigators. Recently the values of Zubov's work have been put upon a better basis by Swietoslawski, to whom Zubov turned over most of his experimental material. From the method

Phys. Chem., 56, p. 453; 1906.

⁵ The following are some of the most important references dealing with the calibration of the calorimetric system:

^{1.} Bestimmung des Wasserwertes eines Berthelot'schen Kalorimeter in elektrischen Einheiten, W. Jaeger und H. von Steinwehr, Verhandl. Deutsch. Phys. Ges., 5, p. 50; 1903; and 5, p. 353; 1903.

Concerning the adiabatic determination of the heat of combusion of organic substances, Richards, Henderson and Frevert, Proc. Am. Acad., 42, p. 573; 1907.

Beitrag zur kalorimetrischen Messung von Verbrennungswärme, W. Jaeger and H. von Steinwehr,
 Zs. f. Phys. Chem., 53, p. 153; 1905.
 Eichung eines Berthelot'schen Verbrennungskalorimeters in elektrischen Einheiten mittels des

Platinthermometers, W. Jaeger and H. von Steinwehr, Ann. d. Phys. (4), 21, p. 23; 1906.

5. Ueber die Korrektur für die Wärmestrahlung bei Kalorimetrischen Versuchen, A. Schukarew, Zs. f.

^{6.} An accurate Calorimeter, White, Phys. Rev., 25, p. 137; 1907.

^{7.} Eichung des Verbrennungskalorimeter und Arbeitsweise, Roth, Lieb. Ann., 373, p. 249; 1910.

^{8.} Lag effect and other errors of calorimetry, White, Phys. Rev., 31, p. 562; 1910.

^{9.} A calorimetric arrangement for the new bomb, Phillippe Landrieu, Bull. Soc. Chim., 37, p. 1340; 1925.

employed by Swietoslawski in correcting Zubov's data, it is evident that Zubov applied most thermometric corrections, except that the heat capacity of his calorimetric system has been erroneously determined. These recalculated values of Zubov are in better agreement with more modern values and are the ones recorded in the tables.

II. STANDARDS FOR COMBUSTION CALORIMETRY

Of the three substances which have been used in the past as standards in combustion calorimetry, only one has been shown by recent researches to meet the requirements of a primary standard. At the third conference of the International Union of Pure and Applied Chemistry held at Lyons,⁶ benzoic acid was adopted as the primary standard. The value chosen for its heat of combustion was the one found by Dickinson,⁷ namely, 6,324, g-cal₁₅ per gram in air or 6,319 g-cal₁₅ per gram in vacuo.⁸ It is more or less tacitly assumed that the above value holds for an isothermal heat of combustion in the neighborhood of 20°.⁹ When converted into absolute joules these values become 26,466 and 26,445, respectively. Dickinson's value was obtained by absolute electrical standardization of his calorimetric system, and the measurements were carried out by the ordinary as well as the adiabatic method.

It is of importance to note here the determinations which have been made of the ratios of the heats of combustion of benzoic acid, naphthalene, and cane sugar. For these determinations Richards and his collaborators employed only the adiabatic method, Verkade and his collaborators the ordinary method, while Swietoslawski and his collaborators and Schläpfer and Fioroni employed both the adiabatic and ordinary methods. These ratios, as summed up by Schläpfer and Fioroni as a result of a very thorough investigation both by the ordinary and the adiabatic methods, are:

 $\frac{\text{Naphthalene}}{\text{Benzoic acid}} = \frac{1.5201}{\text{(air)}} \cdot \frac{\text{Benzoic acid}}{\text{Sucrose}} = \frac{1.6028}{\text{(air)}} \cdot \frac{\text{Naphthalene}}{\text{Sucrose}} = \frac{2.4364}{\text{(air)}}$

These ratios are quite similar to those obtained by Dickinson and by Verkade and Coops, jr.¹⁰

Secondary Standards.—Recently Verkade and Coops, jr. 11 have suggested salicylic acid as a secondary standard. Their suggestion, backed by a large amount of information, certainly merits considera-

⁶ Germany was not represented at that conference.

⁷ Bull. Bur. of Standards, 11, p. 243; 1915.

⁸ See W. Swietoslawski's defense of this value, J. Chim. Phys., 22, p. 583; 1925; and P. E. Verkade and J. Coops, Z. Physik. Chem., 118, p. 123; 1925.

⁹ See Rec. Trav. Chim., 44, p. 800; 1925, for the temperature coefficient of the heats of combustion of benzoic and salicylic acids.

¹⁰ P. E. Verkade and Coops, jr., Rec. Trav. Chim., 42, p. 223; 1923.

¹¹ P. E. Verkade and Coops, jr., Rec. Tr. Chim., 43, p. 561; 1924. Note also the discussion by Swietoslawski upon the establishment of such a secondary standard, Bull. Soc. Chim. (4), 37, p. 84; 1925.

tion. The value for salicylic acid recommended by these investigators is 5,242 g-cal₁₅ per gram in air and 5,238 g-cal₁₅ per gram in vacuo, that is, 5,242×4.185=22,699 and 5,238×4.185=21,921 absolute joules, respectively.

III. CHOICE OF DATA

Since in the tables below only one value is as a rule given for each compound, it has been necessary to exercise a certain amount of arbitrariness in the choice, but whenever possible the opinions of all workers in thermochemistry, as expressed in their articles, have been taken into account. Naturally, where an author has described carefully his method of procedure, corrections used, etc., or where his method has been sufficiently well established, his values were given preference over those of an author who merely recorded the heats of combustion obtained. The names of all the investigators who have determined the heats of combustion of each compound are, however, recorded. When only one value for a compound is quoted, irrespective of whether or not the value is very reliable, it has been thought desirable to make available even this approximate result. On the whole, for the guidance of the users of the tables, it may be stated that the work of many of the French investigators is not in complete agreement with the best modern determinations. The values are on the whole rather high, but no factor can be employed to correct them, for the variations from author to author are too large. However, the maximum error in most cases is not larger than from 1 to 1.5 per cent.

Preference has been given also to Thomsen's values for gases and for easily volatile compounds over those of Berthelot and his collaborators. The order, however, was reversed for difficultly volatile substances, for Thomsen's values for such compounds are too high.

IV. ABBREVIATIONS, UNITS, AND CONVENTIONS

Unit Employed.—The heats of combustion recorded are expressed in absolute kilojoules (at constant pressure) per gram molecular weight of substance in vacuo. Where the investigators indicated the unit of heat employed by them that unit of heat was multiplied by the proper factor to convert the value into absolute kilojoules, otherwise the 18° calorie was assumed to have been used. 12

VACUUM CORRECTION.—The vacuum correction in very few cases amounts to more than 0.13 to 0.16 per cent. It is quite evident, therefore, that where the accuracy of the method, experimental procedure, and corrections used apparently introduced a much larger error, such a correction is of very little consequence as far as the

¹² The factors used to convert into joules were the ones adopted by the International Critical Tables.

accuracy of the absolute value is concerned. However, it was felt desirable to bring the values to a common basis, and for that reason the values of the investigators have been corrected ad vacuum whenever there seemed the slightest justification for it and when the specific gravity of the substances was known. Of the investigators who have done considerable work in thermochemistry and whose results were sufficiently accurate to merit this correction, we might mention Stohmann and collaborators; Zubov, 13 Roth, Fischer and Wrede; Wrede, Dickinson, Richards and collaborators; Swietoslawski and collaborators; Verkade and collaborators, and a few others. Of course, some of these investigators have themselves applied the correction and record their result upon the basis of weight in vacuo.

Physical State.—Unless otherwise specified (by g=gas, v=vapor, s=solid), the values recorded refer to the combustion of the substance in the liquid state, the final products of combustion being gaseous carbon dioxide, liquid water, and nitrogen gas, for C, H, N compounds. In the case of compounds containing other elements consult the discussion under the individual headings.

V. CALCULATION OF HEAT OF COMBUSTION

The calculated values recorded in the tables refer to the heat of combustion of the substance in the liquid state. Whenever, therefore, the heat of combustion of a solid substance is recorded, it is necessary, for the purpose of comparison, to convert that value to the liquid basis. In making that conversion it is necessary, for precision work, to know the molecular heat of fusion referred to 18° C. However, no error of any magnitude is introduced into the calculation of the heat of combustion of a liquid substance by merely subtracting the value of the molecular heat of fusion at the melting point from the heat of combustion in the solid state.

The general basis of calculating heats of combustion is discussed in the paper of Kharasch and Sher.¹⁴ Since the publication of this paper a great deal of experimental work has been carried out by the writer and various collaborators, which enables us to elucidate more fully the general formulas employed. This will be done in papers which will appear elsewhere. To conserve space, factors used will be discussed very briefly, and the user of the table is invited to consult the original papers for the theoretical background and postulates.

It is assumed that, whenever an organic substance is burned in oxygen, the heat generated is due to the interdisplacement of the electrons between the carbon and oxygen atoms. It is assumed, also, that the net amount of these energy interchanges in the form of heat

¹³ The corrected values given by Swietoslawski (loc. cit.).

¹⁴ J. Phys. Chem., 29, pp. 625 to 658; 1925.

is equal to 26.05 kg-cal₁₅ per electron per mole, if the initial and final stages correspond to the arrangement the electron occupies around the carbon nucleus in methane and in carbon dioxide, respectively.

It is easy to perceive, therefore, that since the factor 26.05 corresponds only to certain definite initial and final stages of the electron, whenever a substance is burned which contains some electrons displaced from that position the calculated value should be either smaller or larger than the experimental value, depending upon whether the electrons are nearer or farther from the carbon nucleus than those of our reference position; that is, the arrangement of electrons around the carbon nucleus in methane.

In the case of carbon compounds it is assumed that a sharing of electrons may exist, as represented below. The lines merely indicate the distance which the electrons forming the bond may occupy with respect to the two carbon nuclei A and B.

Furthermore, if (1) denotes the arrangement of the pair of electrons linking the carbon nuclei in ethane and the expression for the heat of combustion of that compound is $Q=26.05\times N$, where N denotes the number of electrons, then it is self-evident that if (2), (3), (4), (5), and (6) differ from ethane only in the arrangement of one pair of electrons, then the expression for the heat of combustion of these compounds should be:

- (1) $Q = 26.05 \times N$
- (2) $Q = 26.05 \times N + a$
- (3) $Q = 26.05 \times N b$
- (4) $Q=26.05\times N-c$, where c is larger than b.
- (5) $Q = 26.05 \times N + d e$
- (6) $Q = 26.05 \times N + f$

Bonds of the type (5) and (6) need not be considered here, for (6) is merely a special case of (2) and in (5) the two factors ordinarily cancel one another.

The four distinct types of bonds may be illustrated by a consideration of the following molecules: .

1. Bond of type 1.—Aliphatic hydrocarbons, ethane as a representative compound.

- 2. Bond of type 2.—A carbon-to-carbon linkage in which both groups are weakly electronegative, such as a COOH next to COOH as in oxalic acid or C=O next to COOH as in CH_3 .CO.COOH or two triphenylmethyl nuclei $(C_6H_5)_3$.C: $C(C_6H_5)_3$.
- 3. A bond between a carbon of an aliphatic radical or any other C-atom and a carbon atom of a strongly electronegative radical such as phenyl;¹⁵ thus, C₆H₅.CH₃.
- 4. A bond between two carbon atoms of two strongly electronegative radicals, such as C₆H₅.C₆H₅, naphthalene, anthracene, etc.

We have thus a general expression for the heat of combustion of organic compounds, $Q=26.05\times N$ plus certain correction factors for those electrons that are displaced from the reference position, the sign of the correction factor indicating, except in the case of carbon-oxygen bonds, whether the electrons are displaced away from the nucleus of the carbon atoms or toward the nucleus.

The correction factors, together with some illustrations, are given below with the proper sign and should always be taken into account whenever calculations are made. In the table only the type formulas will be given. Thus, for example, the heat of combustion of aromatic acids is given by the expression $Q=26.05\times N-3.5$, but in calculating the heat of combustion of a substance such as o-toluic acid, we have $Q=26.05\times 36-3.5\times 2=930.8$, the 3.5 being the correction for the bond as in type 3, and there are two such bonds.

VI. STRUCTURAL CORRECTION FACTORS

Sym- bol	Pair of electrons held between—	For each such grouping add or subtract as indicated
a	Aromatic radical & Aliphatic radical	-3.5
ь	Examples: 1. Mesitylene $Q=26.05\times48-3\times3.5=1239.9$. 2. Tertiary butylbenzene $Q=26.05\times54-3.5=1403.2$. Aromatic radical $%$ Aromatic radical	-6.5
c	Ethylene bond-C=C-	+13.0
	Examples: 1. Trimethylethylene $Q = 26.05 \times 30 + 13 = 794.5$.	
	2. Diamylene $Q = 26.05 \times 60 + 13 = 1576.0$.	
	0 c = c -	

¹⁵ Consult paper of Kharasch and Marker, J. A. C. S., 48, p. 3130; 1926, for a table of relative electronegativity of organic radicals, and also Kharasch and Flenner (to be published).

Sym- bol	Pair of electrons held between—	For each such grouping add or subtract as indicated
d e	Aromatic radical carbon $\%$ Vinyl radical	-6. 5 +6. 5
	H H H	
	Examples:	·
	 Tetrahydrobenzene Q=26.05×34+6.5=892.2. Methyl-1-cyclohexene-1 Q=26.05×40+6.5=1048.5. Acetylene bond	
g		+46. 1
h	One or more replaceable hydrogens—C\(\equiv C\)—C——————————————————————————————————	+33. 1
i	No replaceable hydrogens $R-C \equiv C-R$. Example: Dimethyl diacetylene $Q=26.05\times 30+33.1\times 2=847.7$. Aromatic radical carbon $%$ Acetylene radical.	-6. 5
	Example: Phenyl ethine $Q=26.05\times38+46.1-6.5=1029.5$.	
	Alcohols	
j	Aliphatic radical $% (1) = 10000000000000000000000000000000000$	+13.0
k	Secondary radical $\%$ Hydroxyl group (Secondary alcohol) Examples: 1. Cyclohexanol $Q=26.05\times34+6.5=892.7$.	+6.5
1	2. Amyl phenyl propargylalcohol $Q=26.05\times72+33.1+6.5$ $-3.5=1911.7$. Tertiary radical $^\circ$ Hydroxyl group (Tertiary alcohol)	+3.5
	Examples: 1. Methyl diethyl carbinol $Q=26.05\times36+3.5=941.3$. 2. Diphenyl phenyl ethinyl carbinol.	
m	$Q = 26.05 \times 98 + 33.1 + 3.5 - 6.5 - 3.5.2 = 2576.0$. Aromatic radical $?$ Hydroxyl group	+3.5
	Э-3 он	
	Examples: 1. m —Cresol Q =26.05 \times 34+3.5-3.5=885.7. 2. Thymohydroquinol Q =26.05 \times 50+3.5 \times 2-3.5 \times 2=1302.5.	
0	Acetal linkage R.C $\%$ $-(O-R_1)_2$ where R and R ₁ are aliphatic radicals. Examples:	+19. 5
	1. Glycol acetal $Q=26.05\times20+19.5\times2=560.1$. 2. Dipropyl methylal $Q=26.05\times40+19.5\times2=1081.1$.	

Pair of electrons held betweeu—	For each such grouping add or subtract as indicated
Aromatic ethers	+19.5
\$-0-\$ CH₃	
Examples: 1. m-Cresol methyl ether. $Q=26.05\times40+19.5-3.5=1058.5$. 2. Resorcinol dimethyl ether. $Q=26.05\times38+19.5\times2=1028.9$.	
Aliphatic aldehydes $R-C=0$ Example: Acetaldehyde $Q=26.05\times10+13.0=273.5$.	+13.0
Aromatic aldehydes R. C = O Example: p -Hydroxybenzaldehyde. Q =26.05 \times 30+13.0-3.5+3.5=794.5.	+13.0
Examples: 1. Methyl propyl ketone.	+6.5
$Q=26.05\times28+6.5=735.6.$ 2. Allylacetone $Q=26.05\times32+6.5+13.0=866.1.$ Aromatic ketones	+6.5
R-C-C ₆ H ₅ . Example: Benzophenone $Q=26.05\times60+6.5-3.5\times2=1562.5$. If R-C=O radical is next to COOH radical, as in	+13
If R—C radical is next to COOH, as inOH	+6.5
If R-C=0 is next to CO, as in	+6.5
R.C''	$\begin{vmatrix} +16.5 \\ +13.0 \\ +13.0 \end{vmatrix}$
. — C O H Example: Trimethylenecarboxylic acid.	
	Examples: 1. m-Cresol methyl ether. Q = 26.05×40+19.5-3.5=1058.5. 2. Resorcinol dimethyl ether. Q = 26.05×38+19.5×2=1028.9. Aliphatic aldehydes R - C = O. Example: P-Hydroxybenzaldehyde. Q = 26.05×30+13.0-3.5+3.5=794.5. Aliphatic ketones R - C - R. Examples: 1. Methyl propyl ketone. Q = 26.05×28+6.5=735.6. 2. Allylacetone Q = 26.05×32+6.5+13.0=866.1. Aromatic ketones. OR - C - C + Hs. Example: Benzophenone Q = 26.05×60+6.5-3.5×2=1562.5. If R - C = O radical is next to COOH radical, as in OH R - C - 3 - C OH If R - C radical is next to COOH, as in OH For - C = C - bond in trans compounds. For - C = C - bond in trans compounds. For trimethylene ring in carboxylic acids, as in OH OH OH OH For - C = C - bond in trans compounds. For trimethylene ring in carboxylic acids, as in OH OH OH OH OH OH OH OH OH

Sym- bol	Pair of electrons held between—	For each such grouping add or subtract as indicated
aa	For cyclobutane ring in carboxylic acids	+13.0
	-ccсон	
	Example: Tetramethylenedicarboxylic acid. $Q=26.05\times24+13=638.2$.	
bb	Acid anhydride R.C $-$ O $-$ C $-$ R $-$ Example: Succinic anhydride $Q=26.05\times14+10=374.3.$	
cc	Lactone $\overrightarrow{HC} - \overrightarrow{C} - \overrightarrow{C} - \overrightarrow{C} = O$	+13.0
dd	Example: Saccharic acid lactone. $Q=26.05\times24+13+3.5+6.5+13.0=662.2.$ Esters (Aliphatic)	+16. 5
ee	$R-C-O-R$ Example: Methyl acetate $Q=26.05\times14+13=381.2$. Aliphatic radical $% NH_{2$	+13.0
	(Primary aliphatic amine)	
ff	Example: Propyl amine $Q=26.05\times21+13=560.1$. H Aliphatic radical $%$ N $%$ -Aliphatic radical	+19.5
	(Secondary aliphatic amine)	
gg	Example: Benzylethylamine $Q=26.05\times49+19.5-3.4=1292.5$. Aliphatic radical $%$ N $%$ (Aliphatic radical) ₂	+26. 0
	(Tertiary aliphatic amines)	
hh	Aromatic radical carbon $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	
jj	Aromatic radical %-N-H	+6.5
	(Primary aromatic amine)	
	Example: p -Toluidine $Q = 26.05 \times 37 + 6.5 - 3.5 - 3.5 = 963.3.$	
kk	Aromatic radical % N % —aromatic radical	+13.0
11	(Secondary aromatic amine) Example: Diphenylamine $Q=26.05\times59+13.0-3.5\times2=1542.9$. Aromatic radical $^\circ$ N $^\circ$ (Aromatic radical) $^\circ$ Example: Triphenylamine $Q=26.05\times87+19.5-3.5\times3=2275.3$.	+19.5
mm	For substituted amides, as in O=C and N % -N-CH ₃	+6.5

Sym- bol	Pair of electrons held between—	For each such grouping add or subtract as indicated
nn	For Nitrile radical aliphatic or aromatic, RC=N	+16.5
$\mathbf{p}\mathbf{p}$	Example: Propionitrile $Q=26.05\times17+16.5=459.3$. Aromatic radical carbon $C=0.05\times10^{-1}$	-6.5
qq	Example: Benzonitrile $Q=26.05\times33+16.5-6.5=869.6$. For Carbylamine radical, aliphatic $R-N=C$	+33.1
	Example: Propyl carbylamine $Q=26.05\times23+33.1=632.2$.	
rr	Aliphatic radical % N	+13.0
	Example: Nitromethane $Q=26.05\times6+13=169.3$.	
ss	Aromatic radical 3 N	+13
	Examples: 1. Dinitrobenzene $Q=26.05\times26+13\times2=703.3$. 2. Nitrotoluene $Q=26.05\times34+13-3.5=895.2$.	

No equations are given for the fluorine, chlorine, and sulphur compounds. However, an examination of the data reveals that the general form of the equation $Q = 26.05 \times N + a$ holds fairly well, and it is only necessary to evaluate "a" to obtain the equations for these substances. In the case of sulphur compounds it is also necessary to use a factor different from 26.05 for the sulphur atoms which are burned to SO_2 or SO_3 .

VII. INDEX OF COMPOUNDS, BY CLASSES

The compounds recorded in the tables are classified in accordance with the distinct types of organic molecules which they represent. The calculation of the heats of combustion is thus facilitated.¹⁶

1 CH COMPOUNDS

i. cii componido	_
	Page
1. Saturated hydrocarbons (aliphatic)	373
2. Polymethylenes	374
3. Aromatic hydrocarbons	378
4. Aromatic hydrocarbons (two or more aromatic nuclei linked together)	378
5. Unsaturated compounds (aliphatic-ethylene)	376
6. Unsaturated hydrocarbons (aromatic)	376
7. Hydroaromatic hydrocarbons (unsaturated)	377
8. Terpenes	378
9. Acetylene hydrocarbons	378
o. 11000 film injurious some	٠.

¹⁶ A substance such as cinnamic acid would in this classification come under the heading of unsaturated aliphatic acid. Other similar substances were classified in the same manner.

2. CHO COMPOUNDS

10.	Primary alcohols
11.	Primary alcohols (cyclic)
12.	Secondary alcohols
13.	Hydroaromatic and polymethylene secondary alcohols
14.	Tertiary alcohols
15.	Polyhydroxy aliphatic alcohols
16.	Hydroaromatic and polymethylene glycols (all types)
17.	Phenols
	Aliphatic ethers
19.	Aliphatic acetals
20.	Aromatic ethers
	Ethylene oxides (α-oxides)
	Aliphatic aldehydes
23.	Aromatic aldehydes
24.	Aliphatic ketones
25.	Aromatic ketones
	Quinones
27.	Hydroaromatic and polymethylene ketones
28.	Carbohydrates (monosaccharides)
	Disaccharides
30.	Trisaccharides, tetrasaccharides, polysaccharides
31.	Aliphatic acids (saturated monobasic)
32.	Aliphatic acids (hydroxy and keto acids)
	Aliphatic acids (unsaturated)
	Aliphatic acids (monobasic) (acetylene type)
	Aliphatic acids (polybasic saturated)
	Hydroxy polybasic acids (saturated)
37.	Polybasic aliphatic acids (unsaturated)
	Aromatic acids
	Hydroxy aromatic acids
	Phenylated aliphatic acids
	Polybasic aromatic acids
	Phenylated polybasic aliphatic acids
	Hydroaromatic and polymethylene acids
	Acid anhydrides
	Lactones
	Methyl esters of monobasic acids
	Methyl esters of monobasic aromatic acids
	Methyl esters of monoposic aromatic acids
±0.	Methyl esters of polybasic aromatic acids
51	Ethyl esters of monobasic aliphatic acidsEthyl esters of monobasic aromatic acids
UI.	Ethyl esters of monobasic aromatic acidsEthyl esters of polybasic aliphatic acids
)Z.	Entry esters of polypasic amphatic acids.
os.	Esters of aliphatic acids (all types)
	Esters of aromatic acids (all types)
	Phenol esters
56.	Glycerol esters
	3. N COMPOUNDS
57.	Aliphatic amines (primary)
58.	Aliphatic amines (secondary)
59.	Aliphatic amines (tertiary)
60.	Aromatic amines (primary)
	Aromatic amines (secondary)

		Page
62.	Aromatic amines (tertiary)	405
63.	Amino acids (aliphatic)	405
	Amino acids (containing a phenyl radical)	406
65.	Amides (aliphatic)	406
66.	Acid amides (aromatic)	407
67.	Cyclic ureides, hydantoins, pyrimidines, purines	408
68.	Ring nitrogen compounds	408
69.	Ring nitrogen compounds, imides	409
70.	Alkaloids (pyridine, piperidine, quinoline, and isoquinoline)	409
71.	Aliphatic nitriles	409
	Aromatic nitriles	410
73.	Carbylamines	410
	Isocyanates (aliphatic)	411
75.	Hydroxylamine derivatives	411
70.	Aliphatic nitro compounds	411
77.	Aromatic nitro compounds	411
70	Substituted aromatic nitro compounds	412
	Aromatic nitrophenols, phenetoles, nitranilines, nitroacetanilides	412
	Aromatic nitroaldehydes	413
	Aromatic nitro acids	413
	Phenylhydrazones and osazones	413
	Aldoximes (aliphatic)	413
84.	Ketoximes (aliphatic)	413
	Aromatic aldoximes and ketoximes	414
	Nitrosamines	414
	Nitramines	414 414
	Nitroso compounds	414
	Azo compounds	414
	Substituted hydrazines	
91.	Diazonium compounds	$\frac{415}{415}$
	Azoxy compounds	415
93.	Esters of nitric and nitrous acid	410
	4. HALOGEN AND SULPHUR COMPOUNDS	
	I IIII20011 IIII2 bom How oom oon bo	
94.	Fluorine compounds:	
	(a) Fluoro-hydrocarbons (aliphatic)	415
	(b) Fluoro-hydrocarbons (aromatic)	415
	(c) Fluoro-alcohols	415
	(d) Fluoro-phenols	416
	(e) Esters of fluoro-alcohols	416
	(f) Ethers of fluoro-alcohols	416
	(g) Ethers of fluoro-phenols	416
	(h) Fluoro-acids (aliphatic)	416
	(i) Fluoro-acids (aromatic)	416
	(j) Esters of fluoro-acids (aliphatic)	416
	(k) Esters of fluoro-acids (aromatic)	416
	(l) Fluoro-amides (aliphatic)	416
	(m) Fluoro-amides (aromatic)	417
	(n) Fluoro-amines (aliphatic)	417
	(o) Fluoro-nitramines (aliphatic)	417
	(p) Fluoro-nitrobenzenes	417
	(q) Fluoro-nitrotoluenes	417
	(r) Fluoro-anilines	417
	(s) Fluoro-anilides	417
	(t) Fluoro-nitrophenols and nitrophenetoles	417
	(u) Fluoro-nitranilines and nitroacetanilides	417

95.	Chlorine	compounds:	Page
	(a) (Chlorinated hydrocarbons	418
		Compounds of C, H, O, and Cl. (aliphatic)	418
		Compounds of C, H, O, and Cl. (aromatic)	418
		Chloro-hydroquinols	419
		Chloro-quinones	419
		Chlorine compounds of C, H, N, O.	419
96.		omides	419
		mpounds	419
		compounds	420

VIII. TABLES OF DATA

CH COMPOUNDS

1. SATURATED HYDROCARBONS (ALIPHATIC) $Q=26.05\times N$

Formula	Name	Molec- ular weight	Number of electrons (N)	Kg-cal ₁₅ (experi- mental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
CH ₄	Methane (g)	16	8	1 210.8	881.6	208, 4	223; cf. 136,
C ₂ H ₆	Ethane (g) Propane (g) Isobutane (g) (trimethyl-	30 44 58	14 20 26	² 368. 4 ³ 526. 3 ⁴ 683. 4	1, 540. 7 2, 201. 0 2, 858. 0	364.7 521.0 677.3	37, 2, 65. 223; ef. 136. 223; ef. 136. 223.
C ₅ H ₁₂	methane). n -Pentane (g)	72, 10	32	838.3	3, 511. 6	833.6	170.
$\begin{array}{c} C_5H_{12} \\ C_5H_{12} \\ C_5H_{12} \\ C_5H_{12} \\ \end{array}$	n-Pentane Isopentane (g) Isopentane ⁵ Tetramethylmethane (g)	72. 10	32 32 32 32 32	833. 4 843. 5 838. 3 6 842. 6	3, 491. 1 3, 533. 4 3, 511. 6 3, 523. 8	833. 6 833. 6 833. 6 833. 6	170. 170. 170. 223.
C ₆ H ₁₄	n-Hexane	86. 11 86. 11 100. 13	38 38 44	\[\begin{cases} 991.4 \\ 989.8 \\ 993.9 \\ 1,137.3 \\ 1,149.9 \end{cases}	4, 149. 0 4, 139. 3 4, 156. 5 4, 756. 2 4, 812. 3	989. 9 989. 9 1, 146. 2	185. 215. 223. 114. 246.
C ₇ H ₁₆	2-Methylhexane	100. 13	44 44 44 44 44	1, 148. 9 1, 148. 9 1, 148. 9 1, 148. 9 1, 147. 9	4, 808. 1 4, 808. 1 4, 808. 1 4, 808. 1 4, 804. 0	1, 146. 2 1, 146. 2 1, 146. 2 1, 146. 2 1, 146. 2	246. 246. 246. 246. 246.
C ₇ H ₁₆ C ₇ H ₁₆ C ₇ H ₁₆	2,4-Dimethylpentane 3-Ethylpentane 2,2,3-Trimethylbutane	100. 13 100. 13 100. 13	44 44 44	1, 148. 9 1, 149. 9 1, 147. 9 1, 302. 7	4, 808. 1 4, 812. 3 4, 804. 0 5, 447. 9	1, 146. 2 1, 146. 2 1, 146. 2 1, 302. 5	246. 246. 246. 215.
C ₈ H ₁₈	n-Octane		50	1, 304. 7 1, 305. 2	5, 458. 9 5, 467. 5	1, 302. 0	154. 163.
C ₈ H ₁₈	2,5-Dimethylhexane	114. 14	50	1, 303. 3	5, 453.0	1, 302. 5	154.
$\begin{array}{c} C_8H_{18} \\ C_8H_{18} \\ C_8H_{18} \\ C_8H_{18} \\ C_8H_{18} \\ C_8H_{18} \\ \end{array}$	2-Methylheptane 3,4-Dimethylhexane 3-Ethylhexane 2.2,4-Trimethylpentane Hexamethylethane (s)	114. 14 114. 14 114. 14	50 50 50 50 50	1, 306. 1 1, 303. 7 1, 302. 3 1, 303. 9 1, 301. 8	5, 464. 7 5, 454. 7 5, 448. 8 5, 457. 0 5, 448. 3	1, 302. 5 1, 302. 5 1, 302. 5 1, 302. 5 1, 302. 5	154. 154. 154. 246. 246.
C ₁₀ H ₂₂ C ₁₀ H ₂₂ C ₁₆ H ₃₄ C ₂₀ H ₄₂	Decane Diisoamyl Hexadecane (s) Eicosane (s)	142. 18 226. 27	62 62 98 122	1, 610. 2 1, 615. 8 2, 559. 1 3, 183. 1	6, 733. 9 6, 757. 3 10, 709. 8 13, 321. 3	1, 615. 1 1, 615. 1 2, 552. 9 3, 178. 1	215. 153; cf. 244. 192. 192.

¹ The above value is the average of 9 determinations which show a maximum variation of 1.1 per cent.
2 The variation between the highest and lowest result equals 1.1 per cent.
3 The variation between the highest and lowest result equals 0.9 per cent.
4 The variation between the highest and lowest result equals 0.4 per cent.
5 Note the large difference obtained by (170) for the two isomeric pentanes. This difference is rather unusual, particularly in view of the fact that the 9 isomeric heptanes recorded in this report show almost identical heats of combustion. The heptanes used for this purpose at the Bureau of Standards were of a very high degree of purity. In view of that fact, no great reliance should be attached to the value for isopentane until it is substantiated by other determinations.
6 Value uncertain, since tetramethymethane mixe-1 with butylene was burned. The variation between the highest and lowest result equals 0.2 per cent.

1. CH COMPOUNDS—Continued

[2. POLYMETHYLENES

 $Q = 26.05 \times N^7$

Formula	Name	Molec- ular weight	Number of electrons (N)	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calculated to the liquid state)	Literature
C ₃ H ₆	Trimethylene (g) Methylcyclobutane Cyclopentane Methylcyclopentane	42 70. 08 70. 08 84. 10	18 30 30 36	496. 8 784. 2 783. 6 937. 9	2, 077. 6 3, 279. 5 3, 277. 0 3, 922. 3	781. 5 • 781. 5 • 937. 8	223; cf. 37. 215. 215. 215.
C ₆ H ₁₂	CyclohexaneBicyclohexane (0,1,3)	84. 10 82. 08	36 34	$\left\{\begin{array}{c} 936.3\\ 937.2\\ 940.6\\ 912.5 \end{array}\right.$	3, 915. 6 3, 925. 9 3, 933. 6 3, 818. 8	937. 8	215. 165. 152. 91,
C7H ₁₄ C7H ₁₄ C7H ₁₄ C7H ₁₂ C ₈ H ₁₆	1,3-Dimethylcyclopentane Methylcyclohexane Cycloheptane Bicycloheptane 1,2,4-Trimethylcyclopentane	98. 11 98. 11 98. 11 96. 10 112. 13	42 42 42 48	1, 090. 7 1, 091. 8 1, 087. 3 1, 030. 3 1, 245. 4	4, 561. 3 4, 565. 9 4, 547. 1 4, 308. 7 5, 208. 3	1, 094. 1 1, 094. 1 1, 094. 1 	215. 215; cf. 114. 114. 163. 215.
$\begin{array}{c} C_8H_{16} \\ C_8H_{16} \\ C_8H_{16} \\ C_8H_{16} \\ C_9H_{18} \end{array}$	1,1-Dimethylcyclohexane 1,3-Dimethylcyclohexane 1,4-Dimethylcyclohexane Methylcycloheptane Methyl-1-n-propylcyclopentane.	112. 13 112. 13 112. 13 112. 13 126. 14	48 48 48 48 54	1, 242. 5 8 1, 238. 0 8 1, 228. 8 1, 244. 5 1, 401. 4	5, 196. 1 5, 177. 3 5, 138. 8 5, 204. 5 5, 860. 7	1, 250. 4 1, 250. 4 1, 250. 4 1, 250. 4 1, 406. 7	215. 215. 215. 215. 215. 215.
C9H ₁₈	1,2,3-Trimethylcyclohexane 1,3,3-Trimethylcyclohexane 1,3,4-Trimethylhexahydro- benzene.	126. 14 126. 14 126. 14	54 54 54	1, 396. 0 8 1, 394. 7 9 1, 383. 0	5, 837. 7 5, 832. 6 5, 783. 7	1, 406. 7 1, 406. 7 1, 406. 7	215. 215. 144.
C ₁₀ H ₁₈	Fenchane	126. 14 138. 14 138. 14 138. 14	54 58 58 58	1, 406. 8 1, 502. 8 1, 506. 4 1, 502. 5	5, 883. 2 6, 284. 7 6, 310. 3 • 6, 288. 0	1, 406. 7 1, 510. 9	215. 215. 175. 169; cf. 173, 82.
C ₁₀ H ₁₈	Decahydronaphthalene (trans).	138. 14	58	{ 1, 499. 5 1, 497. 4	6, 275. 4 6, 266. 6	1, 510. 9	105. 173; ef. 82.
C ₁₀ H ₂₀	Methyl-1-n-propyl-3-cyclo- hexane. p-Menthane 10 (1-Isopropyl-	140. 16 140. 16	58	1, 502. 9 1, 514. 6	6, 285. 1 6, 334. 1	1, 510. 9 1, 563. 0	215. 215.
C ₁₄ H ₂₆	4-methylcyclohexane). 3,3-Dimethyldieyclohexyl (m-Hexahydroditolyl).	194. 21	82	2, 105. 9	8, 806. 9	2, 136. 1	215.

Except for trimethylene and its derivatives and bicyclo compounds containing trimethylene rings. Swietoslawski (J. Am. Ch. Soc., 42, p. 1315), 1920, believes that the heats of combustion of these compounds are in error and recommends that they be redetermined.

§ This value is probably in error. The work of this investigator does not agree well with the values of modern workers.

1º The author (215) calls the compound "Caromenthane." The heat of combustion of this compound would certainly bear reinvestigation,

1. CH COMPOUNDS—Continued

3. AROMATIC HYDROCARBONS

 $Q = 26.05 \times N - 3.5a - 6.5b$

Formula	Name	Molec- ular weight	Number of electrons (N)	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₆ H ₆	Benzene (v)		30 30 36	787. 2 783. 4 782. 3 937. 0 934. 2	3, 294. 4 3, 277. 7 3, 277. 1 3, 920. 4 3, 913. 4	781. 5 934. 3	200. 153. 165; cf. 154. 152. 165; cf. 203, 153.
C ₈ H ₁₀	o-Xylenem-Xylene	106. 08 106. 08	42 42	$ \left\{ \begin{array}{l} 1,094.2\\ 1,091.7\\ 1,091.7\\ 1,088.4 \end{array} \right. $	4, 578. 1 4, 567. 7 4, 567. 7 4, 559. 3	1, 087. 1	154. 152. 152. 165; ef. 154, 203.
C ₈ H ₁₀ C ₈ H ₁₀	<i>p</i> -XyleneEthylbenzene	106.08 106.08	42 42	1, 089. 1 1, 091. 2	4, 556. 8 4, 565. 6	1, 087. 1 1, 087. 1	154; cf. 152, 152; cf. 138.
C9H ₁₂	Mesitylene	120. 10 120. 10 120. 10 120. 10	48 48 48 48	1, 243. 6 1, 246. 4 1, 247. 3 1, 241. 7	5, 203. 2 5, 214. 9 5, 218. 7 5, 195. 3	1, 239. 9 1, 246. 9 1, 246. 9 1, 239. 9	152; ef. 203. 152; ef. 73. 152; ef. 73. 152.
C ₁₀ H ₁₄ C ₁₀ H ₁₄	tert-Butylbenzene 1,2,4,5-Tetramethylbenzene (s) (Durene).	134. 11 134. 11	54 54	1, 400. 4 1, 393. 6	5, 859. 3 5, 832. 2	1, 403. 2 1, 392. 7	152; ef. 153. 188.
C ₁₀ H ₁₄	iso-Propyltoluene (1,4) (Cymene).	134, 11 134, 11	54 54	{ 1, 412. 3 1, 402. 8 12 1, 405. 4	5, 910. 5 5, 866. 5 5, 878. 8	1, 399. 7 1, 399. 7	182. 203. 73.
$\begin{array}{c} C_{10}H_{14} \\ C_{11}H_{16} \\ C_{12}H_{18} \\ C_{13}H_{12} \\ \end{array}$		134. 11 148. 13 162. 14 168. 10 182. 11		12 1, 409. 5 1, 554. 0 1, 711. 9 1, 655. 0 1, 810. 6	5, 895. 9 6, 503. 5 7, 164. 3 6, 926. 2 7, 577. 4	1, 399. 7 1, 545. 5 1, 700. 3 1, 660. 2 1, 816. 5	73. 188. 188. 182; cf. 179. 182.
$C_{19}H_{15}$	Triphenylmethane (s)	243. 12 244. 13 320. 16		14 2, 378. 5 { 2, 379. 3 2, 388. 7 3, 102. 4	9, 946. 9 9, 957. 4 9, 996. 9 12, 974. 2	2, 373. 5 2, 386. 1 3, 112. 0	179. 182. 179. 179.

¹¹ The authors (4) report the heats of combustion of two samples of ethylbenzene prepared by the Fittig and Clemensen methods, respectively. The calorimetric determinations were carried out by Langbein and agree within 0.1 per cent with the value recorded by (152). Of interest is the fact that, while the two samples have almost identical heats of combustion within 0.2 per cent, the sample obtained by the Clemensen method has the higher density and index of refraction. 12 The values of this investigator are about 0.4 per cent too high as compared with those of Richards and

Barry (16).

13 The author (179) gives, also, the heat of combustion of triphenylmethyl peroxide and the heat of combustion of the addition product of hexaphenylethane and ethyl acetate.

14 This molecule contains one displaced electron; hence the formula for it becomes $26.05 \times N + 13 = 2,373.5$.

4. AROMATIC HYDROCARBONS

(Two or more aromatic nuclei linked together)

 $Q = 26.05 \times N - 3.5a - 6.5b$

C ₁₀ H ₈	Naphthalene (s)	128.06	48	$ \left\{ \begin{array}{l} 1, 232.5 \\ 1, 231.8 \\ 1, 229.9 \end{array} \right. $	5, 158. 0 5, 150. 2 5, 147. 1		80. 52. 221; cf. 188, 241, 232,
C ₁₂ H ₁₀	Diphenyl (s) Acenaphthene (s), (peri-	154. 08	58	1, 493. 6	6, 250. 7	1,497.9	63.
C ₁₂ H ₁₀		154. 08	58	1, 491. 3	6, 241. 1	1,491.0	188; cf.47.15

 $^{^{15}}$ These authors give the heats of combustion of a freshly prepared sample of diphenyl and one 20 years old, the difference being 11.2 kg-cal $_{15}$ per mole. The authors accept the higher value of 1,510.1 kg-cal $_{15}$ for the fresh sample as the correct value and believe that the new sample is of a higher degree of purity than the old sample.

1. CH COMPOUNDS—Continued

4. AROMATIC HYDROCARBONS-Continued

(Two or more aromatic nuclei linked together)

 $Q=26.05\times N-3.5a-6.5b$

Formula	Name	Molec- ular weight	Number of electrons (N)	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₁₃ H ₁₀	Fluorene (s)	166.08	62	1, 584. 9	6, 628. 1	1, 595. 1	163.
C ₁₄ H ₁₀	Anthracene (s)	178.08	66	1, 693. 4 1, 700. 4	7, 086. 9 7, 116. 2	1, 705. 3	188. 240.
C14H10	Phenanthrene (s)	178.08	66	1,691.6 1,692.5	7, 079. 3 7, 083. 1	1, 693. 3	217. 188.
C ₁₈ H ₁₂	Chrysene (s) Retene (s) (Methylisopropyl- phenanthrene).	228. 10 234. 14	84 90	2, 139. 1 2, 306. 8	8, 952. 1 9, 653. 9	2, 159. 2 2, 311. 5	182. 182.
C ₂₄ H ₁₈	1,3,5-Triphenylbenzene (s) Dianthracene (s)	306. 14 356. 16	114	2, 936. 7 3, 382. 9	12, 290. 1 14, 147. 3	2, 940. 2	182. 240.

5. UNSATURATED COMPOUNDS

(Aliphatic-ethylene)

 $Q = 26.05 \times N + 13$

	1		1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ethylene (g)	28 42 56 70	12 18 24 30	\$\begin{cases} 345.4 \\ 16 331.6 \\ 490.2 \\ 647.2 \\ 803.4 \end{cases}\$	1, 444. 5 1, 387. 8 2, 051. 5 2, 708. 5 3, 362. 2	325. 6 481. 9 638. 2 794. 5	136. 223. 223; cf. 37. 223. 65: cf. 98.
C ₅ H ₁₀ C ₆ H ₁₂	Trimethylethylene (v) \ Trimethylethylene liquid Hexylene	70 70. 08 84. 10	30	803.6 796.0 952.6	3, 363. 1 3, 328. 9 3, 983. 8	794. 5 950. 8	223. 215. 215.
C ₆ H ₁₀	Diallyl (v) Disobutylene ¹⁷	82	34	\$\begin{cases} 928.1 \\ 903.4 \end{cases}\$	3, 884. 1 3, 778. 0	911. 7	223. 38.
C ₈ H ₁₆ C ₁₀ H ₂₀ C ₁₂ H ₂₄	Diamylene Triisobutylene 18	112. 13 140. 16 168. 19	48 60 72	1, 252. 4 1, 582. 2 1, 858. 3	5, 237. 5 6, 616. 8 7, 771. 4	1, 263. 4 1, 576. 0 1, 888. 6	128. 65. 128.

Thomsen's value is probably more reliable than the higher value of Mixter.
 (CH₃)₂ CH.CH.CH.CH.(CH₃)₂.
 (CH₃)₂.CH.C[CH₂.CH.(CH₃)₂]: CH.CH (CH₃)₂.

6. UNSATURATED HYDROCARBONS

(Aromatic)

 $Q=26.05 \times N+13-6.5d$

C ₈ H ₈	Styrene (Phenylethylene)	104. 06	40	{ 1, 045. 4 1, 047. 1	4, 375. 0 4, 386. 3	1,048.5	182. 7; cf. 138,
C ₉ H ₁₀ C ₉ H ₁₀	α-Methylstyrene β-Methylstyrene (p-Tolylethylene).	118.08 118.08	46 46	1, 202. 9 1, 202. 4	5, 038. 9 5, 036. 9	1, 204. 8 1, 204. 8	7; cf. 104. 163; cf. 7, 104.
$C_{10}H_{12}$ $C_{10}H_{12}$	α , β -Dimethylstyrene (s) β -Ethylstyrene	132. 10 132. 10	52 52	1, 357. 2 1, 346. 1	5, 685. 3 5, 638. 8	1, 361. 1 1, 361. 1	7.

¹⁹ The author (104) gives values for styrene and substitution products of that compound which are about 1.4 per cent higher than the values given by (7). As the details of the former (8) work are entirely lacking, and since, in general, the work of (7) is most painstaking, we may safely assume that the values of (104) are in error, and that his results are at least 0.8 per cent too high. No greater accuracy than 0.3 to 0.5 per cent

can even then be attached to his values.

20 Recently Swietoslawski and Popov (J. chim. phys., 22, p. 397; 1925) have attempted to correct Lemoult's values by introducing a correction of '-0.5 per cent. While it is possible that the result of this investigator contains a systematic error, yet we do not believe that this correction brings all of Lemoult's values into agreement with those of later investigators, which indicates other sources of error. In the tables the corrected values are recorded.

1. CH COMPOUNDS-Continued

6. UNSATURATED HYDROCARBONS-Continued

(Aromatic)

 $Q = 26.05 \times N + 13 - 6.5d$

Formula	Name	Molec- ular weight	oloo-	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calculated to the liquid state)	Literature
C ₁₀ H ₁₂ C ₁₀ H ₁₂ C ₁₁ H ₁₄ C ₁₂ H ₁₆ C ₁₄ H ₁₂	Phenyl-1-butene-3 Phenyl-1-pentene-2 \$\beta\$, \$\beta\$-Diethylstyrene	132. 10	52 52 58 64 68	1, 361. 2 1, 356. 9 1, 510. 0 1, 664. 9 1, 765. 0	5, 702. 1 5, 675. 9 6, 325. 4 6, 974. 3 7, 381. 2	1, 364. 1 1, 364. 1 1, 517. 4 1, 673. 7 1, 771. 4	7. 138. 6. 6; cf. 7. 183; cf. 163, 144, 9.
C ₁₄ H ₁₂ C ₁₅ H ₁₄ C ₁₆ H ₁₄	α, β-Methylphenylstyrene (s).	180. 10 194. 11 206. 11	68 74 78	1, 770. 9 11 1, 937. 9 2, 056. 9	7, 405. 9 8, 106. 2 8, 608. 1	1, 771. 4 1, 927. 7 2, 044. 9	9. 104. 172.
C ₁₆ H ₁₄		206. 11	78	2, 035. 1	8, 516. 9	2, 044. 9	172.
C ₁₆ H ₁₄	Diphenylbutadiene(s) (trans- trans).	206. 11	78	2, 030. 3	8, 496. 8	2, 031. 9	172.22
C ₁₈ H ₁₆	Diphenylhexatriene (s)23	232. 13 234. 14	88 90	2, 287. 7 2, 342. 2	9, 574. 0 9, 811. 5	2, 318. 4 2, 355. 5	172. 163.
C ₁₈ H ₁₈	Dibenzylbutadiene (s)	234. 14 ²⁴ 236. 15	90 92	2, 341. 0 2, 372. 6	9, 797. 1 9, 939. 3	2, 357. 5 2, 399. 6	172. 7.
C20H16		256. 13	96	²⁵ 2, 508. 6	10, 493. 5	2, 494. 3	104.

²¹ This value is about 0.6 per cent too high. A better value would be 1,929.2 See footnotes 19 and 20°

7. HYDROAROMATIC HYDROCARBONS 26

(Unsaturated)

 $Q = 26.05 \times N + 6.5e$

,										
C ₆ H ₈	DihydrobenzeneDim ethylenecyclo-	80. 06 82. 08	32 34	833. 2 847. 8 898. 0	3, 484. 4 3, 548. 0 3, 755. 4	846. 6	215. 197. 215.			
C ₆ H ₁₀	ropane. Tetrahydrobenzene (cyclohexene).	82.08	34	891. 2 893. 7 891. 9	3, 727. 0 3, 743. 7 3, 732. 6	892. 2	215. 165. 197; cf. 91. ²⁷			
C ₇ H ₁₂	Methyl-1-cyclohexene-3 Methyl-1-cyclohexene-1	96. 10 96. 10	40 40	1, 043. 6 1, 040. 9 1, 048. 1	4, 364. 3 4, 353. 0 4, 390. 5	1, 048. 5 1, 048. 5	215 215. 165; cf. 162.			
C7H12	Methylenecyclohezane	96. 10	40	{ 1,044.1 1,051.4 1,054.9	4, 366. 4 4, 404. 3 4, 414. 8	1, 055. 0	215. 163. 91.			
C ₇ H ₁₂	Cycloheptene	96. 10 108. 10	40 44	1, 049. 9 1, 149. 2	4, 390. 7 4, 814. 0	1, 048. 5 1, 16 5. 7	215. 162.			
C ₈ H ₁₂	1,3-Dimethyldihydroben- zene.	108. 10	44	²⁸ 1, 148. 2	4,801.7	1, 159. 2	215.			
C ₈ H ₁₂	1,4-Dimethylcyclohexadi-	108. 10	44	1, 152. 2	4, 826. 6	1, 159. 2	165.			
C ₈ H ₁₄	ene-1,3. Ethyl-1-cyclohexene-1	110. 11	46	1, 203. 7	5, 042. 3	1, 204. 8	165; cf. 162.			

p. 376.

2 For trans isomers the correction is 6.5 for the double bond. Consult p. 368.

2 The purity of this product is rather questionable.

2 C₆H₅.CH (CH₂.CH₃).CH₂.CH=CH.C₆H₅.

2 The values of this investigator for this series are uniformly too high by 0.5 per cent. A better value would be 2,496.1 kg-cal₁₅.

²⁰ In the case of 1,4 conjugated systems, the correction factor for each double bond should be not 13, but a smaller value, say 6.5, in agreement with the lower reactivity of these compounds. It is, however, omitted here, for the data at hand do not allow one to draw far-reaching conclusions and are too conflicting.

²⁷ This author gives the heat of combustion of cyclohexene as 898.8 kg.-cal₁₈ Whether it is for constant volume or constant pressure he does not state, and he gives no experimental details of any kind except that he used the internationally accepted value for benzoic acid.

²⁸ Compare values obtained by (215) and (197) for dihydrobenzene.

1. CH COMPOUNDS-Continued

7. HYDROAROMATIC HYDROCARBONS—Continued (Unsaturated)

 $Q = 26.05 \times N + 6.5e$

Formula	Name	Molec- ular weight	Number of electrons	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₈ H ₁₄	Ethylenecyclohexane Laurolene	110. 11 110. 11	46 46	1, 207. 7 1, 192. 7	5, 059. 1 4, 987. 9	1, 211. 3 1, 204. 8	163; cf. 162. 215.
C8H14	iso-Laurolene (1,1,2-Tri-	110. 11	46	1, 193. 3	4, 990. 4	1, 204. 8	215.
C ₈ H ₁₄	methylcyclopentene-2). 1,3-Dimethylcyclohexene-3_1 -Methyl-4-ethylcyclohexa-	110. 11 122. 11	46 50	1, 194. 5 1, 310. 8	4, 995. 4 5, 490. 9	1, 204. 8 1, 315. 5	215. 165.
C0H16	diene-1,3. Isopropyl-1-cyclohexene-1	124, 13	52	1,340.8	5, 611. 2	1, 361. 1	168.
C ₁₀ H ₁₀		130. 08	50	$\left\{\begin{array}{l} 1,296.3\\ 1,312.5 \end{array}\right.$	5, 429. 2 5, 488. 9	1,302.0	165. 105.
C ₁₀ H ₁₀	Δ2-Dihydronaphthalene(s)	130.08	50	1 298 3	5, 438, 6	1, 302. 0	165.
C ₁₀ H ₁₂	Tetrahydronaphthalene	132. 10	52	1, 339. 6 1, 352. 4	5, 611. 6 5, 655. 7	1,347.6	165. 105.
C ₁₀ H ₁₄ C ₁₀ H ₁₆	Hexahydronaphthalene Octohydronaphthalene Isobutenyl-1-cyclohexene-1	134, 11 136, 13 136, 13	54 56 56	1, 419. 3 1, 461. 7 1, 461. 8	5, 935. 5 6, 114. 3 6, 123. 5	1, 419. 7 1, 465. 3 1, 478. 3	105. 105.
C ₁₀ H ₁₆ C ₁₀ H ₁₆	1,5-dimethyl-3-vinylcyclo- hexene-1.	136. 13	56	1, 455. 7	6, 097. 9	1, 478. 3	167. 176; cf. 162.
C ₁₀ H ₁₆	1-Methyl-4-isopropylcyclo- hexadiene-1,3.	136. 13	56	1,470.7	6, 160. 8	1,471.8	165.
C ₁₀ H ₁₈	1-Ethyl-5-dimethylcyclo- hexene-1.	138, 14	58	1, 504. 5	6, 302. 4	1, 517. 4	171.
C ₁₀ H ₁₈	Menthene (∆3-Terpene) 1,5-Dimethyl-3-isopropene- cyclohexene-1.	138. 14 150. 14	58 62	1, 523. 2 1, 615. 0	6, 374. 6 6, 765. 2	1, 517. 4 1, 634. 0	183. 176.
		TERPI $05 \times N + 3$		ie –			
				,			
C10H16	l-Limonene	136. 13	56	1, 457. 2	6, 094. 0	1,477.5	215.
C10H16	d-Limonene	136. 13	56	1, 471. 2	6, 162. 9	1,477.5 1,477.5	215. 7. 32.
	$\begin{array}{ll} l\text{-Limonene} \\ d\text{-Limonene} \\ d\text{-"Citrene"} \\ d\text{-}\alpha\text{-Pinene (Australene)} \\ \end{array}$	136. 13 136. 13 136. 13 136. 13			6, 162. 9 6, 164. 5 6, 155. 5		215. 7. 32. 215; cf. 7,6.
C ₁₀ H ₁₆ C ₁₀ H ₁₆ C ₁₀ H ₁₆	d-Limonene	136. 13 136. 13 136. 13	56 56 56 56	1, 471. 2 1, 473. 0 1, 471. 9 { 1, 473. 2 1, 480. 5	6, 162. 9 6, 164. 5 6, 155. 5 6, 160. 9 6, 195. 9	1, 477. 5	7. 32. 215; cf. 7,6. 215. 183; cf. 32.
C ₁₀ H ₁₆	d -Limonene d -"Citrene" d - α -Pinene (Australene) d - α -Pinene (Terebenthene) d - α -Pinolene d -Pinolene	136. 13 136. 13 136. 13 136. 13	56 56 56 56 56	1, 471. 2 1, 473. 0 1, 471. 9 { 1, 473. 2 1, 480. 5 1, 469. 3	6, 162. 9 6, 164. 5 6, 155. 5 6, 160. 9 6, 195. 9 6, 154. 9	1, 477. 5 1, 465. 3 1, 465. 3	7. 32. 215; cf. 7,6. 215. 183; cf. 32. 175.
C ₁₀ H ₁₆ C ₁₀ H ₁₆ C ₁₀ H ₁₆	d-Limonene	136. 13 136. 13 136. 13 136. 13 136. 13	56 56 56 56	1, 471. 2 1, 473. 0 1, 471. 9 { 1, 473. 2 1, 480. 5 1, 469. 3 1, 464. 7	6, 162. 9 6, 164. 5 6, 155. 5 6, 160. 9 6, 195. 9	1, 477. 5	7. 32. 215; cf. 7,6. 215. 183; cf. 32.
C10H16	d -Limonene d -"Citrene" d - α -Pinene (Australene) $ \beta$ -Pinolene β -Pinolene (Terebenthene) β -Pinolene β -Pino	136. 13 136. 13 136. 13 136. 13 136. 13 136. 13 136. 13	56 56 56 56 56 56 56 56	1, 471. 2 1, 473. 0 1, 471. 9 { 1, 473. 2 1, 480. 5 1, 469. 3 1, 464. 7 { 1, 467. 6 1, 468. 8	6, 162. 9 6, 164. 5 6, 155. 5 6, 160. 9 6, 195. 9 6, 154. 9 6, 135. 6 6, 147. 8 6, 144. 0	1, 477. 5 1, 465. 3 1, 465. 3 1, 477. 5 1, 471. 8	7. 32. 215; cf. 7,6. 215. 183; cf. 32. 175. 6. 6. 47. 183.
C10H16	d -Limonene d -"Citrene" d - α -Pinene (Australene) $ \beta$ -Pinolene β -Pinolene (Terebenthene) β -Pinolene β -Pino	136. 13 136. 13 136. 13 136. 13 136. 13 136. 13 136. 13 136. 13	56 56 56 56 56 56 56 56	1, 471. 2 1, 473. 0 1, 471. 9 { 1, 473. 2 1, 480. 5 1, 469. 3 1, 464. 7 { 1, 467. 6 1, 468. 8 1, 466. 7 1, 470. 2	6, 162. 9 6, 164. 5 6, 155. 5 6, 160. 9 6, 195. 9 6, 154. 9 6, 135. 6 6, 147. 8 6, 144. 0	1, 477. 5 1, 465. 3 1, 465. 3 1, 477. 5 1, 471. 8	7. 32. 215; cf. 7,6. 215. 183; cf. 32. 175. 6. 6. 47. 183. 183.
C10H16	d -Limonene d -"Citrene" d - α -Pinene (Australene) $ l$ - α -Pinene (Terebenthene) β -Pinolene $-$ Sylvestrene $-$ Camphene(s) cryst	136. 13 136. 13 136. 13 136. 13 136. 13 136. 13 136. 13	56 56 56 56 56 56 56 56	1, 471. 2 1, 473. 0 1, 471. 9 { 1, 473. 2 1, 480. 5 1, 469. 3 1, 464. 7 { 1, 467. 6 1, 468. 8	6, 162. 9 6, 164. 5 6, 155. 5 6, 160. 9 6, 195. 9 6, 154. 9 6, 135. 6 6, 147. 8 6, 144. 0	1, 477. 5 1, 465. 3 1, 465. 3 1, 477. 5 1, 471. 8	7. 32. 215; cf. 7,6. 215. 183; cf. 32. 175. 6. 6. 47. 183.
C10H16	d-Limonene d-"Citrene" d-α-Pinene (Australene) l-α-Pinene (Terebenthene) β-Pinolene Sylvestrene Camphene(s) cryst Terecamphene (inact.) Borneocamphene Cyclene(s) (Tricyclene) α-Terpinene	136. 13 136. 13 136. 13 136. 13 136. 13 136. 13 136. 13 136. 13 136. 13 136. 13	56 56 56 56 56 56 56 56 56 56	1, 471. 2 1, 473. 2 1, 473. 2 1, 480. 5 1, 469. 3 1, 464. 7 1, 468. 8 1, 466. 7 1, 470. 2 1, 467. 6 1, 470. 2	6, 162. 9 6, 164. 5 6, 155. 5 6, 160. 9 6, 195. 9 6, 135. 6 6, 147. 8 6, 144. 0 6, 138. 1 6, 146. 5 6, 159. 5	1, 477. 5 1, 465. 3 1, 465. 3 1, 477. 5 1, 471. 8 1, 471. 8 1, 471. 8	7. 32. 215; cf. 7,6. 215. 183; cf. 32. 175. 6. 6. 47. 183. 183. 183. 175.
C10H16	d-Limonene d-"Citrene" d-α-Pinene (Australene) l-α-Pinene (Terebenthene) β-Pinolene Sylvestrene Camphene(s) cryst Terecamphene (inact.) Borneocamphene Cyclene(s) (Tricyclene) α-Terpinene	136. 13 136. 13 136. 13 136. 13 136. 13 136. 13 136. 13 136. 13 136. 13	56 56 56 56 56 56 56 56 56 56	1, 471. 2 1, 473. 2 1, 473. 2 1, 480. 5 1, 469. 3 1, 464. 7 1, 468. 8 1, 466. 7 1, 470. 2 1, 467. 6 1, 470. 2	6, 162. 9 6, 164. 5 6, 155. 5 6, 160. 9 6, 195. 9 6, 135. 6 6, 147. 8 6, 144. 0 6, 138. 1 6, 146. 5 6, 159. 5	1, 477. 5 1, 465. 3 1, 465. 3 1, 477. 5 1, 471. 8 1, 471. 8 1, 471. 8	7. 32. 32. 215; cf. 7,6. 215. 183; cf. 32. 175. 6. 6. 47. 183. 183. 175. 163.
C10H16	d-Limonene d-''Citrene'' d-α-Pinene (Australene) l-α-Pinene (Australene) l-α-Pinene (Terebenthene) β-Pinolene Sylvestrene Camphene(s) cryst Terecamphene (inact.) Borneocamphene Cyclene(s) (Tricyclene) α-Terpinene 9. ACETYLE Q = 26.0 Acetylene (g) (Ethine) Allylene (g) (Propine) Allylen	136, 13 136, 13	56 56 56 56 56 56 56 56 56 56 56 56 3.1h+4	1, 471. 2 1, 473. 0 1, 471. 9 1, 473. 0 1, 478. 2 1, 480. 5 1, 469. 7 1, 467. 6 1, 468. 7 1, 470. 2 1, 467. 3 1, 470. 4 CARBON 66. lg	6, 162. 9 6, 164. 5 6, 155. 5 6, 160. 9 6, 195. 9 6, 135. 6 6, 147. 8 6, 144. 0 6, 138. 1 6, 152. 8 6, 146. 5 6, 159. 5 8	1, 477. 5 1, 465. 3 1, 465. 3 1, 477. 5 1, 471. 8 1, 471. 8 1, 471. 8	7. 32. 32. 215; cf. 7,6. 215. 183; cf. 32. 175. 6. 6. 47. 183. 183. 175. 163.
C10H16	d-Limonene d-"Citrene" d-α-Pinene (Australene) l-α-Pinene (Terebenthene) β-Pinolene Sylvestrene Camphene(s) cryst Terecamphene (inact.) Borneocamphene Cyclene(s) (Tricyclene) α-Terpinene 9. ACETYLE Q=26.0 Acetylene (g) (Ethine) Allylene (g) (Propine) Dipropargyl (v) (1,5-Hexa-	136. 13 136. 13	56 56 56 56 56 56 56 56 56 56 56 3.1h+4	1, 471. 2 1, 473. 0 1, 471. 9 1, 473. 2 1, 480. 5 1, 469. 3 1, 464. 7 1, 467. 6 1, 468. 8 1, 466. 7 1, 470. 2 1, 467. 3 1, 470. 2 1, 467. 3 1, 470. 4 2 3 3 12. 0 4 4 4 4 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	6, 162. 9 6, 164. 5 6, 155. 5 6, 160. 9 6, 195. 9 6, 154. 9 6, 135. 6 6, 144. 0 6, 138. 1 6, 152. 8 6, 145. 5 7 8 8 1, 304. 8 1, 304. 8	1, 477. 5 1, 465. 3 1, 465. 3 1, 477. 5 1, 471. 8 1, 471. 8 1, 471. 8 1, 471. 8	7. 32. 32. 215; cf. 7,6. 215. 183; cf. 32. 175. 6. 6. 47. 183. 183. 175. 163. 187; cf. 223, 23, 27; cf. 103. 12.
C10H16	### d-Limonene ### d-Citrene" ### d-α-Pinene (Australene) ### d-α-Pinene (Australene) ### d-α-Pinene (Terebenthene) ### d-α-Pinene Camphene(s) cryst ### d-α-Pinene ### d-α-Pineneeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	136. 13 136. 13 25. NE HY 25. N+3 26. 02 40 78 78. 05	56 56 56 56 56 56 56 56 56 56 56 3.1h+4	1, 471. 2 1, 473. 0 1, 471. 9 1, 478. 2 1, 480. 5 1, 469. 3 1, 464. 7 1, 467. 6 1, 468. 4 1, 467. 3 1, 470. 2 1, 467. 3 1, 470. 4 CARBON 6.1g	6, 162. 9 6, 164. 5 6, 155. 5 6, 160. 9 6, 195. 9 6, 135. 6 6, 144. 0 6, 134. 0 6, 152. 8 6, 146. 5 6, 159. 5 8	1, 477. 5 1, 465. 3 1, 465. 3 1, 477. 5 1, 471. 8 1, 471. 8 1, 471. 8 306. 1 462. 9 873. 7 847. 7	7. 32. 32. 215; cf. 7,6. 215. 183; cf. 32. 175. 6. 6. 47. 183. 183. 175. 163. 183. 175. 163. 183. 223. 37; cf. 103. 12. 223. 122.
C10H16	d-Limonene d-"Citrene" d-α-Pinene (Australene) l-α-Pinene (Australene) β-Pinolene Sylvestrene Camphene(s) cryst Terecamphene (inact.) Borneocamphene Cyclene(s) (Tricyclene) α-Terpinene 9. ACETYLE Q=26.0 Acetylene (g) (Ethine) Allylene (g) (Propine) Dipropargyl (v) (1,5-Hexadiine). Dimethyldiacetylene (2,4-Hexadiine). Heptine-1 Phenylacetylene (Phenyl-	136. 13 136. 13	56 56 56 56 56 56 56 56 56 56 56 3.1h+4	1, 471. 2 1, 473. 0 1, 471. 9 1, 473. 2 1, 480. 5 1, 469. 3 1, 464. 7 1, 467. 6 1, 468. 3 1, 466. 7 1, 470. 2 1, 467. 3 1, 470. 4 1 20 312. 0 4 65. 1 473. 0 853. 5 882. 9	6, 162. 9 6, 164. 5 6, 155. 5 6, 160. 9 6, 195. 9 6, 135. 6 6, 135. 6 6, 144. 0 6, 138. 1 6, 152. 8 6, 146. 5 6, 159. 5 8	1, 477. 5 1, 465. 3 1, 465. 3 1, 477. 5 1, 471. 8 1, 471. 8 1, 471. 8 306. 1 462. 9 873. 7	7. 32. 32. 215; cf. 7,6. 215. 183; cf. 32. 175. 6. 6. 47. 183. 175. 163. 175. 163. 137; cf. 223, 10. 223. 37; cf. 103. 12. 223.
C10H16	d-Limonene d-"Citrene" d-α-Pinene (Australene) l-α-Pinene (Terebenthene) β-Pinolene Sylvestrene	136. 13 136. 13 136. 13 136. 13 136. 13 136. 13 136. 13 136. 13 136. 13 136. 13 136. 13 26. 12 27 28 29 40 78 78. 05 96. 10 102. 05 130. 08	56 56 56 56 56 56 56 56 56 56 3.1h+4 10 16 30 30 40	1, 471. 2 1, 473. 0 1, 471. 9 1, 473. 0 1, 471. 9 1, 480. 5 1, 463. 3 1, 464. 7 1, 467. 6 1, 468. 8 1, 467. 3 1, 470. 2 1, 467. 3 1, 470. 4 CARBON 6.1g	6, 162. 9 6, 164. 5 6, 155. 5 6, 160. 9 6, 195. 9 6, 195. 9 6, 135. 6 6, 147. 8 6, 144. 0 6, 138. 1 1, 152. 8 6, 146. 5 6, 159. 5 8	1, 477. 5 1, 465. 3 1, 465. 3 1, 477. 5 1, 471. 8 1, 471. 8 1, 471. 8 306. 1 462. 9 873. 7 847. 7 1, 088. 0	7. 32. 32. 415; cf. 7,6. 215. 183; cf. 32. 175. 6. 6. 6. 47. 183. 183. 175. 163. 137; cf. 223, 10. 223. 37; cf. 103. 12. 223. 122. 138.

²⁹ The author (137) gives also the heat of explosion of acetylene.

2. CHO COMPOUNDS

10. PRIMARY ALCOHOLS $Q = 26.05 \times N + 13$

₹-20.00X11 [10									
Formula	Name	Molec- ular weight	Number of electrons (N)	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calculated to the liquid state)	Literature		
CH ₄ O	Methyl alcohol	32. 03	6	170. 9	714.7	169.3	153; cf. 172, 191, 223.		
C ₂ H ₆ O	Ethyl alcohol	46. 05	12	$ \left\{ \begin{array}{c} 327.6 \\ 329.4 \end{array} \right. $	1, 370. 0 1, 378. 5	325. 6	153. 172; cf. 3,		
C ₃ H ₄ O	Propargyl alcohol (v)	56.00	14	428. 9	1, 793. 7	423.8	64. 223.		
C ₃ H ₆ O	Allyl alcohol	58.05	16	442.4	1, 850. 6	442.8	111.		
C ₃ H ₈ O	n-Propyl alcohol	60.06	18	$ \left\{ \begin{array}{c} 483.5 \\ 480.5 \end{array} \right. $	2, 022. 0 2, 009. 4	481. 7	153. 215; cf. 110.		
C4H10O	n-Butyl alcohol	74. 08	24	638.6	2, 674. 4 2, 678. 8	638. 2	215. 229; cf. 153.		
C ₄ H ₁₀ O C ₅ H ₁₂ O			24	638. 2 787. 3	2, 668. 9 3, 293. 3	638. 2	153; cf. 215. 65.		
C ₅ H ₁₂ O	Amyl alcohol (ferm.) ³⁰	i	30	$ \left\{ \begin{array}{c} 791.6 \\ 793.7 \end{array} \right. $	3, 310. 5 3, 320. 1	794.5	215. 110.		
C7H16O	n-Heptyl alcohol	116. 13	42	1, 104. 9	4, 620. 7	1, 107. 1	215.		
C7H8O	Benzyl alcohol	108, 06	34	891. 2 894. 3	3, 727. 9 3, 742. 7	895. 2	179. 182; cf. 205.		
C ₈ H ₁₈ O	Octyl alcohol	130, 14	48	1, 262. 0	5, 278. 9	1, 263. 4	115.		
C ₈ H ₁₄ O C ₀ H ₈ O	Amylpropargyl alcohol ³¹ Phenylpropargyl alcohol ³²	126, 11 132, 06	44 42	1, 191. 9 1, 137. 3	4, 984, 5 4, 757, 33	1, 192, 3 1, 133, 7	138. 138.		
C9H16O	Hexylpropargyl alcohol	140. 13	50	1, 340. 1	5, 605. 6	1, 348. 6	138.		
C ₁₆ H ₃₁ O	Cetyl alcohol (s)	242, 27	96	2, 504. 5	10, 481. 3	2, 513. 8	181.		
30 Mostly	isobutyl carbinol. 31 Cs	H ₁₁ ,C≡	C-CH ₂	OH.	32 Calls.	C≡C-CH ₂	OH.		

Mostly isobutyl carbinol.

11. PRIMARY ALCOHOLS (Cylic) 33 $Q = 26.05 \times N + 13$

C ₅ H ₁₀ O C ₇ H ₁₄ O	Cyclobutyl carbinol	86. 08 114. 11	28 40	747. 8 1, 047. 2	3, 127. 3 4, 379. 4	

 $^{^{33}}$ Among the cyclic alcohols should be included cholesterol. However, it is omitted here because Berthelot and André, Ann. chim. phys., (7), 17, p. 433; 1899, who determined the heat of combustion of cholesterol, give for the formula of the compound $\rm C_{26}H_{46}O$. The present accepted formula is $\rm C_{27}H_{46}O$.

12. SECONDARY ALCOHOLS $Q = 26.05 \times N + 6.5$

	·	20:00/(. ,				
C ₃ H ₈ O	Isopropyl alcohol	60, 06 86, 08 102, 11 112, 10 184, 10	18 28 36 38 62	474. 8 752. 9 938. 6 1, 028. 2 1, 615. 4	1, 985. 6 3, 148. 6 3, 925. 2 4, 299. 9 6, 760. 5	475. 4 748. 9 944. 3 1, 022. 4 1, 614. 6	215; cf. 110. 111. 215. 215. 182; cf. 179.
C ₁₄ H ₁₈ O C ₅ H ₁₀ O ₂ C ₆ H ₁₂ O	Amylphenylpropargyl alco- hol. ³⁴ Dimethylolcyclopropane β-Methylcyclopentanol	202. 14 102. 08 100. 10	72	1, 901. 1 707. 6 887. 6	7, 910. 4 2, 959. 2 3, 711. 9	1, 921. 7	138. 215. 215.
C ₆ H ₁₂ O	Cyclohexanol 1,3-Dimethylcyclopentanol-2	100. 10	34 40 40	890. 7 1, 030. 5 1, 039. 0	3, 724. 9 4, 309. 6 4, 345. 1	892. 7 1, 048. 5 1, 048. 5	153; cf. 215. 215.
C ₇ H ₁₄ O C ₈ H ₁₆ O	β-Methylcyclôhexanol Cycloheptanol 1-3-Dimethylcyclohexanol-2	114. 11 114. 11 128. 13	40 40 46	1, 038. 4 1, 050. 2 1, 196. 0	4, 342. 6 4, 391. 9 5, 001. 7	1, 048. 5 1, 048. 5 1, 204. 8	215. 215. 215.
C ₈ H ₁₆ O C ₉ H ₁₈ O C ₁₀ H ₁₈ O C ₁₀ H ₁₈ O	Thujyl alcohol Borneol (Borneo camphor)	128. 13 142. 14 154. 14 154. 14	46 52 56 56	1, 183. 4 1, 342. 2 1, 477. 5 35 1, 469. 6	4, 949. 0 5, 613. 1 6, 189. 3 6, 145. 9	1, 204. 8 1, 361. 1 1, 465. 3	215. 215. 175. 125.
C ₁₀ H ₁₈ O C ₁₀ H ₁₈ O C ₁₀ H ₁₈ O C ₁₀ H ₂₀ O	d-Borneol (s)	154. 14 154. 14 154. 14 156. 16	56 56 56 58	1, 466. 2 1, 466. 6 1, 467. 2 1, 508. 8	6, 136. 1 6, 131. 9 6, 134. 4 6, 309. 8	1, 465. 3 1, 465. 3 1, 465. 3 1, 517. 4	183; cf. 125 89. 89. 113.

³⁴ C₅H₁₁C≡C-CH(OH)(C₆H₅).

³¹ C₅H₁₁.C≡C−CH₂OH.

³² C₆H₅.C≡C-CH₂OH.

³⁵ Mean value.

2. CHO COMPOUNDS—Continued

13. HYDROAROMATIC AND POLYMETHYLENE SECONDARY ALCOHOLS $Q\!=\!26.05\!\times\!N\!+\!6.5$

Formula	Name	Molec- ular weight	Number of electrons (N)	Kg-cal ₁₅ (experi- mental)	Kilc- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₆ H ₁₂ O ₅	Quercitol (s)	164. 10	26	704. 2	2, 947. 1		195.
C ₆ H ₁₂ O ₆	Inositol (s) (Inosite)	180. 10	24	662. 1	2, 770. 9		195.

14. TERTIARY ALCOHOLS $0 = 26.05 \times N + 3.5$

	$Q=26.05\times N+3.5$										
C ₄ H ₁₀ O	Trimethyl carbinol (Tert. butyl alcohol).	74.08	24	629.3	2, 631. 7	628. 7	215; cf. 115.				
C ₅ H ₁₂ O	Dimethylethyl carbinol	88. 10	30	784. 6	3, 281. 2	785.0	215; cf. 110.				
C ₆ H ₁₂ O	Allyldimethyl carbinol	100.10	34	886. 5 913. 7	3, 707. 3 3, 821. 1	902. 2	215. 113.				
C ₆ H ₁₄ O	Methyldiethyl carbinol	102. 11	36	927. 0	3, 876. 7	941. 3	215.				
C7H ₁₄ O C7H ₁₆ O	Triethyl carbinol	116. 13	40 42	1, 050. 1 1, 080. 0	4, 391. 5 4, 516. 6	1, 058. 5 1, 097. 6	215. 215.				
C ₈ H ₁₄ O			44 46	1, 180. 7 1, 201. 9	4, 937. 7 5, 026. 4	1, 175. 7 1, 214. 8	215; cf. 113. 215.				
C ₈ H ₁₆ O	Allyldiethyl carbinol		46	1, 207. 1	5, 048. 1	1, 214. 8	215.				
C ₈ H ₁₈ O C ₉ H ₁₈ O		130. 14 142. 14	48 52	1, 232. 7 1, 364. 9	5, 155. 2 5, 708. 0	1, 253. 9 1, 371. 1	215. 215.				
C9H ₁₈ O	Allylmethyl-tertbutyl car- binol.	142.14	52	1, 363. 0	5, 700. 0	1, 371. 1	215.				
C9H20O	Ethyldipropyl carbinol	144. 16	54	1, 386. 5	5, 798. 3	1, 410. 2	215.				
C10H18O	Diallylpropyl carbinol	154. 14	56	1, 472. 1	6, 156. 3	1, 488. 3	215.				
C ₁₀ H ₂₀ O	Allyldipropyl carbinol	156. 16	58	{ 1,518.0 1,549.6	6, 348. 3 6, 480. 4	1, 527. 4	215. 113.				
C ₁₁ H ₂₂ O		170. 18	64	1,666.7	6, 970. 1	1, 683. 7	215.				
C ₁₉ H ₁₆ O	Triphenyl carbinol (s) Diphenylphenylethinyl car- binol. ³⁶	260. 13 284. 12	90 98	2, 340. 8 2, 572. 3	9, 796. 3 10, 757. 4	2, 337. 5 2, 576. 0	182; cf. 179. 95.				
C7H14O	1,3-Dimethylcyclopentanol-3	114. 11	40	1, 034. 0	4, 324. 2	1, 045. 7	215.				
C ₈ H ₁₆ O	1,2-Dimethylcyclohexanol-2	128. 13 128. 13	46	1, 196. 5	5, 012. 1	1, 201. 8	163. 215.				
C ₀ H ₁₆ O	1,3-Dimethylcyclohexanol-3. 1,3,5-Trimethylcyclohexene- 6-ol-5.		46 50	1, 192. 5 1, 294. 7	4, 987. 0 5, 414. 4	1, 201. 8 1, 312. 5	215.				
C9H18O	1-Methyl-3-ethylcyclohexan- ol-3.	142. 14	52	1, 322. 4	5, 530. 3	1, 358. 1	215.				
C ₁₀ H ₁₈ O	Terpineol (s)	154. 14	56	1, 469. 5 up to 1, 480. 0	6, 145. 4 6, 189. 4	} 1, 468. 8	125.				
C ₁₀ H ₂₂ O ₃	Terpine hydrate (s)	190. 18	56	1, 451. 0	6, 068. 1		125.				

 $^{^{36}(}C_6H_5)_2:-C-C\equiv C-C_6H_5.$

ÓН

15. POLYHYDROXY ALIPHATIC ALCOHOLS $Q=26.05\times N+13j+6.5k+3.5l$

	·						
C ₂ H ₆ O ₂ C ₃ H ₈ O ₂ C ₃ H ₈ O ₂ C ₃ H ₈ O ₃	Ethylene glycol ³⁷ - Propylene glycol - Isopropylene glycol - Glycerol - Erythritol (s)	62. 05 76. 06 76. 06 92. 06	10 16 16 14 18	281. 9 431. 0 436. 1 397. 0 504. 1	1, 179. 8 1, 802. 4 1, 823. 8 1, 661. 5 2, 109. 7	286. 5 436. 3 442. 8 397. 2 507. 9	195; cf. 109. 111. 111. 195; cf. 181, 64. 182; cf. 126,
C ₅ H ₁₂ O ₄ C ₅ H ₁₂ O ₅ C ₆ H ₁₄ O ₂	Pentaerythritol (s) Arabitol (s) Pinacol (s) (Tetramethylethylene glycol).	136: 10 152: 10 118: 11	24 22 34	661. 2 611. 8 897. 6	2, 767. 1 2, 560. 4 3, 753. 8	657. 7 618. 6 898. 7	31. 195. 195. 115.

 $^{^{37}}$ The heat of combustion of diethylene glycol, HO-CH₂.CH₂.O-CH₂.CH₂OH (liq.), is given by Wm. H. Rinkenbach (156) as 566.7 kg.-cal₁₅ per mole. No experimental details as to procedure employed are given,

2. CHO COMPOUNDS—Continued

15. POLYHYDROXY ALIPHATIC ALCOHOLS—Continued $Q = 26.05 \times N + 13 \\ \text{j} + 6.5 \\ \text{k} + 3.51$

Formula	Name	Molec- ular weight	Number of electrons (N)	Kg-cal ₁₅ (experi- mental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₆ H ₁₄ O ₆	d-Mannitol (s)	182. 11 182. 11 212. 13 142. 11 144. 13	26 26 30 42 44	727. 6 729. 1 723. 7 835. 8 1, 142. 3 1, 172. 3	3, 045. 0 3, 049. 1 3, 028. 7 3, 497. 8 4, 780. 5 4, 906. 1	729. 4 729. 4 840. 0 1, 134. 2 1, 166. 2	195; cf. 182. 48. 195. 195; cf. 68. 173.
C ₈ H ₁₆ O ₂	Tetramethylbutenediol (s) (Fumaroid). Hydrobenzoin (s) ³⁸ Isohydrobenzoin (s) ³⁸	144. 13 214. 11 214. 11	66 66	1, 175. 7 1, 723. 0 1, 727. 8	4, 920. 3 7, 210. 8 7, 230. 8	1, 166. 2 1, 725. 3 1, 725. 3	173. 10. 10.

³⁸ The form used is not indicated. See, however, Erlenmeyer, jr., Ber., 30, p. 1537; 1897.

16. HYDROAROMATIC AND POLYMETHYLENE GLYCOLS

(All types) $Q=26.05 \times N+13j+6.5k+3.5l$

$Q=26.05 \times N+13 + 6.5 \text{k} + 3.51$										
C5H10O2	Cyclopentanediol-1,2	102. 08	26	696. 1	2, 913. 2	690, 3	237.			
C ₅ H ₁₀ O ₂	Cyclopentanediol-1,2 (trans).	102. 08	26	694.2	2, 905, 2	690, 3	237.			
C ₆ H ₁₂ O ₂	Cyclohexanediol-1,2 (cis) Cyclohexanediol-1,2 (trans)	116.09 116.09	32 32	841. 6 842. 7	3, 522. 1 3, 526. 7	846. 3 846. 3	237. 237.			
C7H14O2	l-Methylcyclohexane-1,2- diol (cis).	130. 11	38	992. 6	4, 154. 0	999. 9	237.			
C7H14O2	l-Methylcyclohexane - 1,2 - diol (trans).	130. 11	38	995. 1	4, 164. 5	999. 9	237.			
C9H10O2	Hydrindene-1,2-diol (cis)	150.08	42	1,098.5	4, 597. 2	1, 100. 1	237.			
C9H10O2	Hydrindene-1,2-diol (trans)	150.08	42	1,096.7	4, 589. 7	1, 100. 1	237.			
C ₁₀ H ₁₂ O ₂	1,2,3,4-Tetrahydronaphtha- lene-1,2-diol (cis).	164.09	48	1, 250. 7	5, 234. 2	1, 256. 4	237.			
C ₁₀ H ₁₂ O ₂	1,2,3,4-Tetrahydronaphtha- lene-1,2-diol (trans).	164. 09	48	1, 249. 4	5, 228. 7	1, 256. 4	237.			
C ₁₀ H ₁₂ O ₂	1,2,3,4-Tetrahydronaphtha- lene-2,3-diol (cis).	164.09	48	1, 250. 9	5, 235. 0	1, 256. 4	237.			
C ₁₀ H ₁₂ O ₂	1,2,3,4-Tetrahydronaphtha- lene-2,3-diol (trans).	164.09	48	1, 249. 4	5, 228. 7	1, 256. 4	237.			
C ₁₂ H ₁₆ O ₂	1-Phenylcyclohexane-1,2- diol (cis).	192.12	60	1, 563. 1	6, 541. 6	1, 569. 5	237.			
C ₁₂ H ₁₆ O ₂	1-Phenylcyclohexane-1,2-diol (trans).	192. 12	60	1, 564. 9	6, 549. 1	1, 569. 5	237.			

39 The heats of combustion of the acetates and benzoates of these compounds are given below (observer 237):

	Cis		Trans.		
	Kg-cal ₁₅	Kilo- joules	Kg-cal ₁₅	Kilo- joules	
1. Cyclopentane-1,2 diacetate (liq.) 2. Cyclopentane-1,2 dibenzoate (s) 3. Cyclohexane-1,2 diacetate (liq.) 4. Cyclohexane-1,2 dibenzoate (s) 5. 1-Methylcyclohexane-1,2 dibenzoate 6. Hydrindene-1,2 diacetate 7. Hydrindene-1,2 dibenzoate 8. Tetrahydronaphthalene-1,2 diacetate (s)	1, 114. 7 2, 242. 5 1, 261. 6 2, 392. 6 1, 515. 8 (s) 2, 645. 3	4, 665. 0 9, 384. 9 5, 279. 8 10, 013. 0 6, 343. 6 11, 070. 6	1, 114. 1 2, 240. 3 1, 263. 4 2, 388. 7 2, 545. 1 1, 519. 3 (liq.) 2, 647. 1 1, 667. 0	11, 078. 1 6, 976. 4	
9. Tetrahydronaphthalene-1,2 dibenzoate 10. Tetrahydronaphthalene-2,3 dibenzoate	2, 797. 8	11, 708. 8	2, 798. 1 2, 799. 6	11, 710. 1 11, 716. 3	

2. CHO COMPOUNDS—Continued

17. PHENOLS

 $Q = 26.05 \times N + 3.5 - 3.5a - 6.5b$

Formula	Name	Molec- ular weight	Number of electrons	Kg-cal ₁₅ (experi- mental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₆ H ₆ O ₂ C ₆ H ₆ O ₂ C ₆ H ₆ O ₂ C ₆ H ₆ O ₂	Phenol (s)	94. 05 110. 05 110. 05 110. 05	28 26 26 26 26	732. 2 684. 8 683. 0 682. 9 683. 7	3, 064. 3 2, 865. 9 2, 858. 4 2, 857. 9 2, 859. 2	732. 9 684. 3 684. 3 684. 3	195; cf. 30. 195. 195. 195. 195. 225; cf. 30, 180.
C ₆ H ₆ O ₃ C ₆ H ₆ O ₃ C ₇ H ₈ O	Pyrogallol (s)	126.05	24 24 34 34	638. 7 40 617. 3 41 882. 6 879. 5	2, 672. 9 2, 583. 4 3, 693. 7 3, 680. 7	635. 7 635. 7 885. 7	195; cf. 30. 202. 201. 201.
C7H8O	m-Cresol		34 34 34 32	880. 5 895. 1 882. 5 880. 0 824. 3	3, 684. 9 42 3, 746. 0 3, 693. 3 3, 682. 8 3, 449. 7	885. 7 885. 7 837. 1	201. 211. 211. 211. 201.
C ₇ H ₈ O ₂ C ₇ H ₈ O ₂ C ₈ H ₁₀ O C ₈ H ₁₀ O C ₈ H ₁₀ O		124. 06 122. 08	32 32 40 40 40	845. 4 835. 1 1, 035. 1 1, 037. 4 1, 035. 3	3, 535. 5 3, 494. 9 4, 331. 9 4, 341. 5 4, 332. 7	846. 6 837. 1 1, 038. 5 1, 038. 5 1, 038. 5	44. 225. 201. 201. 201.
C ₉ H ₁₂ O C ₁₀ H ₈ O C ₁₀ H ₈ O C ₁₀ H ₁₄ O	α-Naphthol (s)	144.06	46 46 46 52	1, 191. 2 1, 185. 4 1, 187. 2 1, 353. 4 1, 349. 7	4, 985. 2 4, 960. 9 4, 968. 4 5, 663. 9 5, 648. 5	1, 191. 3 1, 188. 8 1, 188. 8 1, 351. 1	201. 225. 225. 201.
	CarvacrolThymohydroquinol (s)Phenanthrahydroquinol	150. 11 166. 11 210. 08	52 50 62	1, 354. 5 1, 307. 1 1, 600. 1	5, 668. 6 5, 470. 2 6, 696. 4	1, 351. 1 1, 302. 5 1, 602. 6	201. 225. 225.
C ₂₁ H ₁₆ O ₂	β-Dioxydinaphthylmethane (s).	300.13	96	2, 475. 8	10, 353. 8	2, 474. 8	60.

⁴⁰ The determinations by (202) were carried out in oxygen at ordinary pressure and differ greatly from later determinations by (195). Thus, (202) give for pyrogallol 616.3 kg-cal₁₅ but (195) give 639.0 kg-cal₁₅ per mole. The above value for phloroglucinol is undoubtedly very low. It should be approximately the same as that for pyrogallol.

⁴¹ It is quite possible that the same objection and the inherent error in the determinations occur also in the values of (201) as occur in (202). See footnote 40.

⁴² This value is undoubtedly too high.

⁴³ M. F. Barker, J. Phys. Chem. 29, p. 1350, 1925, reports the following values for the three cresols at constant pressure: o-(s), 833.7; p-(s), 835.0; m-(liq.), 833.0. However, no experimental details are available except the final values.

able except the final values.

18. ALIPHATIC ETHERS 44

 $Q = 26.05 \times N + 19.5$

	and the second s						
C ₂ H ₆ O C ₃ H ₈ O C ₄ H ₆ O C ₄ H ₈ O	Dimethyl ether (g) Methylethyl ether (v) Methylpropargyl ether (v) Methylallyl ether (v) Joiethyl ether Diethyl ether (v)	46 60 70.00 72.00 74.08	12 18 20 22 24	347. 6 503. 4 600. 8 623. 9 651. 7 660. 3	1, 453. 7 2, 105. 2 2, 512. 6 2, 609. 2 2, 727. 4 2, 763. 4		223; cf. 10. 223. 223. 223. 204. 204.
C ₆ H ₁₀ O ₋ C ₆ H ₁₀ O ₂ C ₆ H ₁₄ O ₂ C ₇ H ₁₂ O ₂ C ₁₀ H ₂₂ O	Diallyl ether (v)	98 114. 08 118. 11 128. 10 158. 17	32 30 34 36 60	906. 6 817. 8 924. 6 968. 0 1, 609. 3	3, 791. 4 3, 422. 5 3, 869. 5 4, 051. 1 6, 730. 1	820. 5 924. 7 976. 8 1, 582. 0	223. 166. 172. 166. 65.

⁴⁴ For heat of combustion of diethylene glycol, see footnote (37), p. 380.

2. CHO COMPOUNDS—Continued

19. ALIPHATIC ACETALS 45

 $Q = 26.05 \times N + 19.5 \times 0$

Formula	Name	Molec- ular weight	Number of electrons (N)	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₃ H ₆ O ₂	Glycolmethylal (Methylene- ethylene dioxide).	74. 05	14	409. 9	1, 715. 43	403.7	59.
C ₃ H ₈ O ₂ C ₄ H ₆ O ₂	Methylal (Ethylidene-	76. 06 88. 06	16 20	462. 8 559. 2	1, 936. 8 2, 340. 3	455. 8 560. 1	26. 59.
C ₄ H ₁₀ O ₂ C ₄ H ₁₀ O ₃		90. 09 106. 0	22 20	620. 0 46 596. 8	2, 594. 7 2, 495. 8	612. 1 579. 5	58. 223.
C ₅ H ₁₂ O ₂	Diethylmethylal	104.10	28	774. 5 47 773. 8	3, 241. 3 3, 238. 4	768. 2	58. 103.
C ₆ H ₁₄ O ₂	Diethylacetal	118.11	34	$ \left\{ \begin{array}{c} 923.0\\ 931.2\\ 919.5 \end{array}\right. $	3, 862. 8 3, 897. 1 3, 848. 1	924. 7	157. 58. 117.
C ₆ H ₁₀ O ₄	Erythritemethylal (s) Dipropylmethylal	146. 08 132. 13	26 40	745. 0 1, 085. 9	3, 117. 8 4, 544. 5	1, 081. 1	59. 58.
C7H14O6	α-Methylglycoside (s)	194. 11	30	842. 5	3, 529. 2		241.
C8H14O4	Erythritediacetal (s)	174.11	38	1, 049. 5	4, 392. 2	1,067.9	59.
C9H20O2	Diisobutylmethylal	160. 16	52	1, 395. 3	5, 839. 3	1, 393. 6	58.
C ₀ H ₁₄ O ₆	Mannitetrimethylal (s)	218. 11	38	1, 084. 1	4, 536. 9	1,074.4	59.
C11H24O2	Diisoamylmethylal	188. 19	64	1, 708. 7	7, 150. 9	1, 706. 2	58.
C ₁₂ H ₂₀ O ₆	Mannitetriacetal (s)	260. 16	56	1, 539. 0	6, 440. 7	1 701 4	59.
C ₁₂ H ₂₂ O ₂ C ₁₂ H ₂₂ O ₄		198. 18 230. 17	66	1, 790. 7 1, 724. 9	7, 494. 1 7, 218. 7	1, 791. 4. 1, 726. 4	138. 138.
012112204	hyde (s).48	200. 11	02	1, 121.0	1, 210. 1	1, 120. 4	100.
C ₁₃ H ₂₄ O ₂	Hexylpropiolic acetal	212. 19	72	1, 946. 4	8, 145. 7	1, 947. 7	138.

 $^{^{45}}$ The values for acetals given by (58 and 59) are about 0.5 per cent to 1.0 per cent too high. 46 Individual determinations do not agree better than 0.5 per cent. 47 The values of (103) are about 0.6 per cent too high. Better value, 769.2 kg-cal $_{15}$. H $_{48}$ (C₂H₅O)₂: C-C=C-C: (OC₂H₅)₂.

20. AROMATIC ETHERS

 $Q = 26.05 \times N + 19.5$

C7H8O	Anisole	108.06	34	905. 1 900. 9	3, 787. 8 3, 770. 3	905, 2	196. 203.
C ₈ H ₁₀ O	Phenetole	122.08	40	1, 056. 9 1, 060. 3	4, 423. 1 4, 437. 4	1,061.5	203.
C ₈ H ₁₀ O	m-Cresolmethyl ether	122.08	40	1, 057. 0	4, 423. 6	1, 058. 5	211. 203.
C ₈ H ₁₀ O ₂	Hydroquinoldimethyl ether (s).	138. 08	38	1, 014. 7	4, 246. 5	1, 028. 9	203.
C8H10O2	Resorcinoldimethyl ether	138. 08	38	1, 022. 6	4, 279. 6	1, 028. 9	203.
C ₉ H ₁₂ O		136. 10	46	1, 213. 1	5, 076. 8	1, 217. 8	203.
C9H ₁₂ O	<i>p</i> -Cresolethyl ether <i>m</i> -Xylenolmethyl ether		46 46	1, 212. 8 1, 213. 4	5, 075. 6 5, 078. 1	1, 214. 3 1, 210. 8	203. 203.
C10H10O2	Safrole	162.08	46	1, 244. 1	5, 206. 6	1, 246. 8	196.
C10H10O2	Isosafrole	162.08	46	1, 233. 9	5, 163. 9	1, 243. 8	196.
C ₁₀ H ₁₂ O	Methylchavicole (p-Ally-lanisole).	148. 10	50	1, 334. 6	5, 585. 3	1, 331. 5	196.
C ₁₀ H ₁₂ O	Anethole (s)	148, 10	50	1, 324. 4	5, 542. 6	1, 331. 5	196.
C ₁₀ H ₁₂ O	α-Ethoxystyrene		50	1, 314. 7	5, 507. 3	1, 328. 5	163.
C ₁₀ H ₁₂ O ₂	Eugenol	164. 10	48	1, 286. 6	5, 384. 4	1, 282. 9	196.
C10H12O2	Isoeugenol	164, 10	48	1, 277. 6	5, 346. 8	1, 279. 9	196.
C10H12O2	Allyl-3,4-guaiacol (Betelphe- nol).	164. 10	48	1, 286. 4	5, 383. 6	1, 282. 9	196.
C ₁₀ H ₁₄ O	p-Xylenolethyl ether	150, 11	52	1, 368. 6	5, 727. 6	1, 366. 1	203.
$C_{11}H_{14}O_{2}$	Methyleugenol	178. 11	54	1, 458. 6	6, 104. 2	1, 455. 2	196.
C ₁₁ H ₁₄ O ₂	Methylisoeugenol	178. 11	54	1, 447. 4	6, 057. 4	1, 452. 2	196.

2. CHO COMPOUNDS—Continued

20. AROMATIC ETHERS-Continued

 $Q = 20.05 \times N + 19.5$

Formula	Name .	Molec- ular weight	Number of electrons (N)	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calculated to the liquid state)	Literature
C ₁₁ H ₁₆ O	Thymolmethyl ether	164. 13	58	1, 524, 3	6, 379. 2	1, 523. 4	203.
C12H14O4	Apiole (s)	222, 11	54 54	1, 498. 8	6, 272. 5	1, 494. 2	196.
C ₁₂ H ₁₄ O ₄	Isoapiole (s)	222. 11	94	1, 488. 2	6, 228. 1	1, 491. 2	196.
C ₁₂ H ₁₆ O ₂	Ethylisoeugenol (s)	192. 13	60	1, 602. 3	6, 705. 6	1, 608. 5	196.
C ₁₂ H ₁₆ O ₃	Asarone(s) ⁴⁹ (Propenyl-2,4,5-trimethoxybenzene).	208. 13	58	1, 576. 2	6, 596. 4	1, 575. 9	196.
C ₁₂ H ₁₈ O	Thymolethyl ether	178. 14	64	1,679.9	7, 030. 4	1, 679. 7	203.
C ₁₆ H ₁₆ O ₂	Di-p-methoxystilbene (s)	240.14	76	2, 016. 6	8, 433. 4	2, 018. 8	104.
C21H16O2		300. 13	96	2, 500. 5	10, 457. 1	2, 513. 8	60.
C ₂₂ H ₁₈ O	Methyl ether of diphenyl- phenylethinyl carbinol. ⁵⁰	298. 14	104	2, 739. 4	11, 456. 2	2, 748. 3	95.
C23H20O	Ethyl ether of diphenyl- phenylethinyl carbinol.	312, 16	110	2, 891. 4	12.091.8	2, 904. 6	95.
C24H22O	Propyl ether of diphenyl- phenylethinyl carbinol.	326. 17	116	3, 047. 5	12, 744. 7	3, 060. 9	95.

⁴⁹ (CH₃O)₃(^{2,4,5})(C₆H₂)(CH=CH.CH₃)(¹). ⁵⁰ (C₆H₅)₂.C(OCH₃)C≡C.C₆H₅.

21. ETHYLENE OXIDES

(a-Oxides)

			,			
C ₂ H ₄ O	Ethylene oxide (v) Ethylene oxide	44, 03	10	308. 4 302. 1	1, 290. 7 1, 264. 3	 16; cf. 223.
C3H6O	«-Propylene oxide 51	58. 05	16	451.1	1, 887. 9	 245.
C5H10O	β -Methyl- β , γ -butene oxide (α -Dimethyltrimethylene oxide). ⁵²	86. 08	28	749.8	3, 137. 9	 245.
C6H12O	γ,δ-Hexylene oxide 53	100. 10	34	913. 9	3, 824. 7	 245.
C9H8O	Indene oxide	132.06	42	1, 116. 8	4, 673. 8	 236.

22. ALIPHATIC ALDEHYDES

[Also those aromatic aldehydes in which the aldehyde group is not attached to the aromatic nucleus] $Q = 26.05 \times N + 13.0$

CH ₂ O	Formaldehyde (g) Paraformaldehyde (g)	30. 02		134, 1 ⁵⁴ 122, 1	561. 2 511. 0		239. 239; cf. 56.
⅓ (CH ₂ O)₃	α -Trioxymethylene (s)			54 109. 5	458.3		239; cf. 56.
C ₂ H ₄ O C ₂ H ₄ O	Acetaldehyde (v)	44 44. 03	10 10	280. 5 279. 0	1, 173. 1 1, 166. 8	279. 5 273. 5	223; cf. 39. 25.
C ₂ H ₂ O ₂ C ₃ H ₆ O C ₃ H ₆ O	Glyoxal (s) Propionaldehyde (v) Propionaldehyde	58. 02 58 58. 05	6	172. 3 438. 4 434. 2	720. 6 1, 833. 4 1, 815. 8	182. 3 429. 8 429. 8	69. 223. 25.

⁶⁴ No great reliance can be put upon the above values until the exact details of the determinations become available. The information in the article is extremely meager and insufficient,

2. CHO COMPOUNDS-Continued

22. ALIPHATIC ALDEHYDES-Continued

[Also those aromatic aldehydes in which the aldehyde group is not attached to the aromatic nucleus] $Q = 26.05 \times N + 13.0$

Formula	Name	Molec- ular weight	Number of electrons (N)	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature		
C ₃ H ₄ O	Acrolein	56. 03	14	{ 389. 6 393. 4	1, 629. 3 1, 646. 4	390.7	141. 238.		
(C ₃ H ₄ O) ₃	Metacrolein (s)	168. 09		1, 168. 8	4, 891. 4		238.		
C4H6O	Crotonaldehyde	70.05	20	542. 1	2, 267. 1	547. 0	117.		
C4H8O		72	22	596.8	2, 495. 8	586. 1	223.		
C ₄ H ₈ O ₂		88.06	20	546.6	2, 285. 9	540.5	118.		
C5H10O	(Aldol). Valeraldehyde	86.08	28	742. 0	3, 103. 0	742.4	113.		
C5H4O2	Furol (Furfuraldehyde)	96, 03	20	559, 5	2, 339. 8		44.		
C6H12O3	Paraldehvde	132, 10		812. 8	3, 399. 1				
(C ₂ H ₄ O) ₃	(Metaldehyde (s)	132. 10		805. 6	3, 371. 4				
(021140)3	(Metaldehyde			814. 0	3, 406. 6		126.		
C7H14O	n-Heptaldehyde (Oenanthol)_	114. İ1	40	1, 062. 4	4, 442. 9	1, 055. 0	110.		
C9H6O	Phenylpropiolic aldehyde	130.05	40	1, 081. 0	4, 520. 7	1, 081. 6	138.		
C₀H₅O			42	1, 112. 3	4, 655. 0	1, 113. 6	183.		
C ₁₀ H ₁₆ O	Citral (Geranial)	152. 13	54	1, 437. 0	6, 019. 6	1, 445. 7	174.		
			1	1		l .			
23. AROMATIC ALDEHYDES									
$Q=26.05 \times N+13-3.5a+3.5m$									
	Q-20.00	V 71. J. 19	0.047	0.0111					
				1		1	1		

C7H6O2	Benzaldehydeo-Hydroxybenzaldehyde	106. 05 122. 05	32 30	841. 3 796. 0	3, 520. 8 3, 328. 9	843. 1 794. 5	205. 62.
C ₇ H ₆ O ₂	(Salicylaldehyde). p-Hydroxybenzaldehyde (s) _ m-Hydroxybenzaldehyde (s) _		30 30	792. 7 788. 7	3, 315. 0 3, 303. 9	794. 5 794. 5	62. 163.
C ₈ H ₈ O ₃	Vanillin (s) (3-Methoxy-4-hydroxybenzaldehyde).	152.06	34	914. 1	3, 825. 5	918. 2	183.
C ₈ H ₆ O ₃	Piperonal (s) (Methyleneprotocatechuic aldehyde).	}150. 05	32	870.1 870.7	3, 641. 4 3, 647. 4	882.1	183. 163.
C ₁₄ H ₁₀ O ₃	Disalicylic aldehyde (s)	226. 08		1,589.0	6, 645. 2		157.

24. ALIPHATIC KETONES

[Also those ketones in which the ketone group is not attached to the aromatic nucleus] $Q = 26.05 \times N + 6.5$

	<u>*</u>						
C ₃ H ₆ O	Acetone (v)	58 58, 05	16 16	435. 8 430. 8	1, 822. 5 1, 801. 2	423. 3	223. 64.
				426.8	1, 784. 9		59.
C ₄ H ₈ O	Methyl ethyl ketone		22	582.3	2, 435. 2	579.6	215.
C ₄ H ₆ O ₂	Diacetyl 55	86. 05	18	503.3	2, 104. 8		94.
C5H8O2	Acetylacetone 56	100, 06	24	⁵⁷ 615. 9	2, 575. 7	638. 2	78.
C ₅ H ₁₀ O	Diethyl ketone		28	735.6			
C5H10O			28		3, 076. 3	735. 6	215; cf. 116.
			28	750.4	3, 138. 2		223.
C5H10O				735.6	3, 076. 3	735. 6	215.
C5H10U	Methyl isopropyl ketone	86.08	28	733. 9	3, 069. 2	735. 6	215.
C6H10O	Ethyl allyl ketone	98, 08	32	857.1	3, 590, 4	853. 1	162.
C6H10O	Mesityl oxide	98, 08	32	846. 7	3, 543. 4	853. 1	117.
C6H10O			32	856. 7	3, 588. 7	866. 1	162.
	[Methylacetylacetone	114.08	30	798. 5	3, 341. 7	794.5	166.
$C_6H_{10}O_2$	After several distillations			792. 6	3, 317. 0		
C6H12O	Pinacolin (s) (Methyl tert,-	100, 10	34	891.8	3, 729, 5	892, 2	215.
0011120	butyl ketone).	100.10	34	991.9	5, 729. 5	092. 2	410.
C6H12O		100.10	34	895. 2	3, 743, 7	892, 2	215.
			1	1	,		

⁵⁵ The author (94) gives only the final value for this compound, and no other information. The values of this observer are about 0.5 per cent too low.
55 See also p. 382 for O-methyl and ethyl ethers.
57 Evidently this value by (78) is too low. Compare the rather good agreement in the case of the methyl-

acetylacetone.

2. CHO COMPOUNDS—Continued

24. ALIPHATIC KETONES-Continued

[Also those ketones in which the ketone group is not attached to the aromatic nucleus] $Q = 26.05 \times N + 6.5$

Formula	Name	Molec- ular weight	Number of electrons (N)	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₇ H ₁₄ O	Dipropyl ketone Diisopropyl ketone	114.11	40 40	1, 050. 5 1, 045. 5	4, 393. 2 4, 372. 3	1, 048. 5 1, 048. 5	215; cf. 116. 116.
C ₈ H ₁₆ O	Methyl hexyl ketone	128. 13	46	1, 205. 1	5, 039. 7	1, 204. 8	215.
C ₉ H ₁₄ O C ₁₀ H ₆ O ₄	Furil (s)	190.05	48 38	1, 280. 7 1, 064. 4	5, 364. 8 4, 454. 5	1, 282. 9	171. 8.
C ₁₀ H ₈ O	Acetylphenylacetylene		46	1, 235. 0	5, 164. 8 4, 598. 1	1, 231. 4	138. 241.
C ₁₀ H ₈ O ₄	Furoin (s)	192.06	40	{ 1, 097. 7 1, 114. 0	4, 662. 1		8.
C ₁₀ H ₁₀ O	Benzalacetone (s)	146.08	48	1, 257. 4	5, 262. 2	1, 266. 4	183.
C ₁₁ H ₁₀ O	Propionylphenylacetylene ⁵⁸ _α -Methyl-α-benzalacetone	158. 08 160. 10	52 54	1, 385. 5	5, 794. 2	1, 387. 7	138.
C ₁₁ H ₁₂ O C ₁₁ H ₁₂ O	α -Methyl- α -benzalacetone	160. 10	54	1, 417. 7 1, 413. 5	5, 933. 1 5, 915. 5	1, 419. 7 1, 419. 7	166. 166.
C ₁₂ H ₁₂ O	(s). Butyrylphenylacetylene	172. 10	58	⁵⁸ 1, 537. 9	6, 431. 5	1, 544. 0	138.
C ₁₃ H ₁₄ O	Propionylphenybutine 59		64	1, 686. 4	7, 052. 5	1, 703. 3	138.
C ₁₃ H ₁₄ O C ₁₃ H ₂₀ O	Isovalerylphenylacetylene \$\psi\$-Ionone	186. 11 192. 16	64	58,601,720.5 1,851.2	7, 195. 1 7, 754. 7	1,700.3 1,868.5	138. 162.
C ₁₄ H ₁₆ O				58 1, 833. 4	7, 667. 3	1, 856. 6	138.
C ₁₇ H ₁₄ O	Dibenzalacetone (s)	234. 11	80	2, 087. 9	8, 737. 9	2, 103. 5	183.

⁵⁵ The experimental values of the compounds marked show such wide variations for members of an homologous series that undoubtedly it is the fault of the experimenter. The difficulties of obtaining these substances in pure condition may have had something to do with it. Consult original paper.

50 CeH5. CH2CH5. C≡C − COC₂H5.

The author (138) claims that this compound behaves abnormally in many respects.

25. AROMATIC KETONES $Q = 26.05 \times N + 6.5 - 3.5a - 6.5b$

	-						
C ₈ H ₈ O C ₁₃ H ₁₀ O	Acetophenone (s) Benzophenone (s)	120.06 182.08	38 60	988. 9 1, 556. 5	4, 138. 6 6, 514. 4	992. 9 1, 562. 5	183. 206; cf. 183,
C ₁₄ H ₁₀ O ₂	Benzil (s)	210.08	62	1, 624. 6	6, 798. 9	1, 627. 6	95. 182; cf. 94.
C ₁₄ H ₁₀ O ₄	Benzoyl peroxide (s) Benzoin (s)	242. 08 212. 10	64	61 1, 551. 7 1, 671. 4	6, 500. 1 6, 994. 8	1,673.2	163. 182.
C ₁₅ H ₁₆ O C ₂₁ H ₁₆ O	Benzoylphenylacetylene (s) - β-Phenylbenzalacetophe-	206. 08 284. 12	68 98	1, 787. 2 2, 545. 3	7, 474. 1 10, 644. 4	1,801.0 2,555.9	138. 95.
C ₂₁ H ₁₈ O ₂	none. ⁶² β,β-Diphenyl-β-hydroxy-	302. 15	98	2, 538. 0	10, 613. 9	2, 555. 4	95.
	propiophenone.						

⁶¹ Compare W. A. Roth and R. Lasse, Z. Electrochem., 30, p. 607; 1924. These authors, using a microcombustion apparatus, obtained values for this substance which varied within 2 per cent. This discrepancy is due to the fact that the substance does not burn completely and always leaves varying amounts of unburned carbon.

62 (C₆H₅)₂:C:O-C-C₆H₅.

26. QUINONES $Q = 26.05 \times N + 33.1 - 3.5a - 6.5b$

C ₆ H ₄ O ₂	Quinone (s) 63	108, 03	24	656.3 656.6	2, 746. 6 2, 747. 9	658. 3	225. 180; cf. 30,
C ₇ H ₆ O ₂ C ₁₀ H ₆ O ₂	Toluquinone (s) α-Naphthoquinone (s)	122, 05 158, 05	30 42	803. 2 1, 100. 8	3, 361. 4 4, 606. 9	811. 1 1, 114. 2	43, 222. 225; cf. 222. 225; cf. 222.
C ₁₀ H ₆ O ₂ C ₁₀ H ₁₂ O ₂ C ₁₄ H ₈ O ₂ C ₁₄ H ₈ O ₃	β-Naphthoquinone (s)	158. 05 164. 10 208. 06 208. 06 224. 06	42 48 60 60 58	1, 106. 4 1, 271. 3 1, 544. 5 1, 544. 0 1, 481. 7	4, 630. 3 5, 320. 4 6, 463. 7 6, 461. 6 6, 200. 9	1, 114. 2 1, 276. 5 1, 562. 0 1, 562. 5 1, 513. 4	225; cf. 222. 225; cf. 222. 225; cf. 222. 225; cf. 222. 225; cf. 222. 225; cf. 222.

⁶³ The heat of combustion of quinhydrone is given by (180), Z. Phys. Chem., 117, p. 57, 1925, as 1,334.5 kg-cal₁₅ per mole.

2. CHO COMPOUNDS-Continued

26. QUINONES-Continued

 $Q=26.05\times N+33.1-3.5a-6.5b$

Formula	Name	Molec- ular weight	Num- ber of elec- trons (N)	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₁₄ H ₈ O ₄	1,2-Dihydroxyanthraquinone (s) (Alizarin).	240.06	56	1, 448. 9	6, 063. 6	1, 464. 8	225; ef. 222.
C ₁₄ H ₈ O ₅	1,2,4-Trìhydroxyanthraqui- none (Purpurin).	256.06	54	1, 402. 1	5, 867. 8	1, 416. 2	225; cf. 222.
C ₁₄ H ₈ O ₈	1, 2, 3, 5, 6, 7-Hexahydroxy- anthraquinone (s) (Rufi- gallic acid).	304.06	48	1, 249. 1	5, 227. 5	1, 268. 4	225; ef. 222.
C ₁₈ H ₁₆ O ₂	Retenequinone (s) (Methylisopropylphenanthraquinone).	264. 13	84	2, 152. 4	9, 007. 8	2, 187. 7	225; ef. 222.

27. HYDROAROMATIC AND POLYMETHYLENE KETONES

 $Q=26.05 \times N+6.5$

C ₅ H ₈ O C ₅ H ₈ O C ₆ H ₁₀ O	Acetyltrimethylene Cyclopentanone β-Methylcyclopentanone	84. 06 84. 06 98. 08	26 26 32	691. 4 682. 0 64 833. 4	2, 891. 4 2, 852. 1 3, 485. 3	683. 8 840. 1	215. 163. 215.
C ₆ H ₁₀ O	Acetylcyclobutane	98. 08 98. 08	32 36	856. 8 942. 9	3, 583. 1 3, 943. 2	950. 8	215. 149.
C ₇ H ₁₂ O	Ethyl-1-cyclopentanone-2 1,3-Dimethylcyclopenta- none-2.	112. 10 112. 10	38 38	990. 4 989. 8	4, 141. 9 4, 139. 3	996. 4 996. 4	215. 215.
C ₇ H ₁₂ O	β-Methylcyclohexanone Cycloheptanone (Suberone). 1,3-Dimethylcyclohexene- 6-one-5.	112, 10 112, 10 124, 10	38 38 42	994. 8 996. 7 1, 102. 2	4, 160. 3 4, 168. 2 4, 609. 4	996. 4 996. 4 1, 107. 1	215. 215. 215.
C ₈ H ₁₄ O	1,1-Dimethylcyclohexa- none-2.	126. 11	44	1, 152. 1	4, 826. 2	1, 152. 7	163.
C ₉ H ₈ O C ₉ H ₈ O C ₉ H ₁₄ O	α-Indanone β-Indanone 1,1,5-Trimethylcyclohexene- 5-one-3.	132.06 132.06 138.11	42 42 48	1, 086. 9 1, 088. 3 1, 248. 4	4, 548. 7 4, 554. 5 5, 220. 8	1, 093. 6 1, 093. 6 1, 263. 4	236. 236. 215.
C9H ₁₄ O	cis-β-Hydrindanone	138. 11	48	1, 248. 1	5, 223. 3	1, 256. 9	83.
C9H ₁₄ O	trans-β-Hydrindanone1,4-Methylacetylcyclohexane Ethylcyclohexyl ketone Methylcycloheptyl ketone Carvone	138, 11 140, 11 140, 11 140, 11 150, 11	48 48 50 50 52	1, 243. 0 1, 267. 8 1, 289. 5 1, 278. 3 1, 374. 4	5, 202. 0 5, 301. 9 5, 392. 7 5, 345. 9 5, 751. 9	1, 256. 9 1, 256. 9 1, 309. 0 1, 309. 0 1, 380, 6	83. 215. 215. 215. 201.
C ₁₀ H ₁₄ O C ₁₀ H ₁₆ O C ₁₀ H ₁₆ O	Eucarvone cis-β-Decalone trans-β-Decalone.	150. 11 152. 13 152. 13	52 54 54	1, 373. 1 1, 404. 4 1, 402. 1	5, 751. 9 5, 877. 4 5, 867. 8	1, 374. 1 1, 413. 2 1, 413. 2	175. 169. 169.
C ₁₀ H ₁₆ O	Carone			1, 397. 1	5, 842. 7	1 492 0	50.
C ₁₀ H ₁₆ O	Dihydrocarvone	152. 13 152. 13	54 54	{ 1, 412. 2 1, 423. 7 { 1, 407. 9 1, 417. 0	5, 905. 8 5, 958. 2 5, 897. 7 5, 930. 2	1, 426. 2	215. 50; cf. 162. 162. 50.
C ₁₀ H ₁₆ O C ₁₀ H ₁₆ O C ₁₀ H ₁₆ O	Pulegone Isopulegone Thujone Dihydroeucarvone	152. 13 152. 13	54 54 54 54 54	1, 412. 1 1, 416. 4 1, 430. 4 65 1, 427. 6	5, 915. 3 5. 933. 3 5, 991. 9 5, 974. 5	1, 426. 2 1, 426. 2 1, 419. 7	174. 162. 175. 50.
C ₁₀ H ₁₆ O	Camphor (s)	152. 13	54	{ 1, 411. 0 1, 410. 8	5, 910. 7 5, 904. 2	1, 413. 2	125. 217; cf. 175,
C ₁₃ H ₂₀ O C ₁₃ H ₂₀ O	α -Ionone	192. 16° 192. 16	70 70	1, 835. 4 1, 839. 9	7, 688. 5 7, 707. 3	1, 849. 5 1, 849. 5	183, 70. 174. 174.

 ⁶⁴ The correction of 1 per cent applied to (215) values is evidently too large. Roth recommends about 0.6 per cent.
 65 The author (50) gives values about 0.6 per cent too high.

2. CHO COMPOUNDS-Continued

28. CARBOHYDRATES (Monosaccharides)

 $Q = 26.05 \times N + 13q + 13j + 6.5k + 3.5l$

Formula	Name	Molee- ular weight	Number of electrons	Kg-cal ₁₅ (experi- mental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₅ H ₁₀ O ₅	Arabinose (s)	150.08	20	{ 558. 0 559. 9	2, 335. 2 2, 343. 2	566. 5	195. 87; cf. 31.
C ₅ H ₁₀ O ₅	Xylose (s)	1	20	$ \left\{ \begin{array}{c} 561.5 \\ 560.5 \end{array} \right. $	2, 350. 3 2, 345. 7	566. 5	183. 87; cf. 31.
C6H10O5	Levoglucosan (s)	162, 08		677. 7	2, 836. 2		87.
C6H12O5	Rhamnose (s)	164. 10	26	{ 717.9 718.3	3, 004. 4 3, 006. 1	722.8	195. 87.
C6H12O5.H2O	Rhamnose (cryst.)			711. 5	2, 977. 6		195.
C ₆ H ₁₂ O ₅ C ₆ H ₁₂ O ₆	Fucose (s)	164. 10 180. 10	26 24	711. 9 673. 0	2, 979. 3 2, 816. 5		195. 182; cf. 195, 64, 87.
C ₆ H ₁₂ C ₆	l-Fructose (s)	180. 10	24	675.6 671.0	2, 827. 4 2, 805. 5	677. 2	195.66 64.66
C6H12O6	Sorbinose (s) (d-Sorbose)	180. 10	24	668.3	2, 796. 8	677. 2	195.
C6H ₁₂ O6	Galactose (s)	180. 10	24	669. 5 670. 7	2, 801. 9 2, 806. 9	677. 2	195. 87; cf. 48.
C7H14O7			28	783. 5	3, 276. 6	787. 9	68.
C ₁₂ H ₁₈ O ₈ C ₁₆ H ₂₂ O ₁₁	Pentaacetylglucose (s)	390.17	50 64	1, 350. 5 1, 726. 3	5, 647. 8 7, 219. 4	1, 354. 5 1, 725. 7	87. 87.66
C ₁₆ H ₂₂ O ₁₁	Pentaacetylgalactose (s)	390. 17	64	1, 725. 5	7, 216. 0	1, 725. 7	87.

⁶⁶ The heat of combustion of benzoic acid obtained by these investigators is about 0.2 per cent higher than the present international value. Their results are therefore uniformly too high.
67 For the method of calculating these compounds, consult the formula for esters.

29. DISACCHARIDES

 $Q = 26.05 \times N + 19.50 + 13j + 6.5k + 3.5l + 13q$

C ₁₂ H ₂₂ O ₁₁	Cane sugar (s) (Sucrose)	342. 18	48	1, 349. 6	5, 648. 3	 230.5; cf. 80, 67, 52, 237, 9, 172, 3, 241, 195, 224, 153,
C ₁₂ H ₂₂ O ₁₁	Milk sugar (anhydr.) (s) (Lactose).			1, 350. 8	5, 653. 1	 87. 195; cf. 87, 181, ⁶⁸ 74, 88.
C ₁₂ H ₂₂ O ₁₁ .H ₂ O ₋	Lactose (cryst.) (s)	360. 19		1, 344. 7	5, 627. 6	 195; cf. 64, 150, 46,
C ₁₂ H ₂₂ O ₁₁	Maltose (s)	342. 18		$\left\{\begin{array}{l} 1,350.2\\ 1,351.3 \end{array}\right.$	5, 649. 8 5, 655. 2	195. 87.
C ₁₂ H ₂₂ O ₁₁ . H ₂ O ₋ C ₁₂ H ₂₂ O ₁₁ C ₁₂ H ₂₂ O ₁₁ .2H ₂ O C ₁₂ H ₂₂ O ₁₁	Maltose (cryst.) Trehalose (s) (Mycose) Trehalose (cryst.) Cellobiose (s) (anhydr.)	342. 18 378. 21		1, 339. 2 1, 349. 4 1, 341. 5 1, 349. 9	5, 604. 6 5, 647. 2 5, 614. 2 5, 649. 3	 195; cf. 64. 183. 183. 87.
C ₂₈ H ₃₈ O ₁₉	Sucrose octaacetate (s)	678.3 678.3		3, 033. 3 3, 030. 6 3, 032. 6 3, 029. 3	12, 694. 4 12, 683. 1 12, 691. 5 12, 677. 7	 87. 87. 87. 87.

⁶⁸ The author (181) used the potassium chlorate method. The value is unreliable.

2. CHO COMPOUNDS—Continued

30. TRI, TETRA, AND POLYSACCHARIDES

Formula	Name	Molec- ular weight	01	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calculated to the liquid state)	Literature
$\begin{array}{c} C_{18}H_{22}O_{16}\\ C_{18}H_{22}O_{16}.5H_{2}O\\ C_{18}H_{22}O_{16}.H_{2}O\\ C_{18}H_{22}O_{16}.H_{2}O\\ C_{24}H_{42}O_{21}\end{array}$	Raffinose (s) (Melitose)	664. 34		2, 025, 5 2, 018, 9 2, 042, 0 2, 708, 7 4, 178, 8 4, 499, 0 4, 129, 9 4, 190, 0 4, 522 4, 107, 9 4, 186, 8 4, 180, 8 4, 180, 8 4, 180, 8 4, 243, 0 4, 548, 0	8, 476. 7 8, 449. 1 8, 545. 8 11, 335. 9 17, 488. 3 18, 828. 3 17, 283. 6 17, 535. 2 18, 924. 6 17, 191. 6 17, 521. 8 17, 496. 6 18, 815. 8 17, 756. 9 19, 033. 4		195; cf. 31. 195. 87. 195. 69 87. 195. 87. 195. 87. 87. 195. 207; cf. 64, 75, 133. 195; cf. 76. 87. 87.

 $^{^{60}}$ W. K. Slater gives as the heat of combustion of the dry monohydrate C₆H₁₀O₅.H₂O, 3,836×4.182 joules per gram; Biochem. J., 18, p. 629; 1924. The authors (133), on the other hand, report the following values of the mean heats of combustion of glycogen from Mytilus and from frog muscle, per gram; Anhydrous glycogen, 4,238; hydrate 4,214; dissolved glycogen, 4,202.

These authors also give the values for diamylose, α-tetramylose, β-hexamylose, α-octamylose.

31. ALIPHATIC ACIDS 72

(Saturated monobasic)

 $Q = 26.05 \times N$

CH ₂ O ₂	Formic acid ⁷³ Formic acid (liq. at 0°)	46. 02	2	62. 8 74 62. 6	262. 6 261. 8	65. 1	34, 86. 223.
C2H4O2	Acetic acid		8	$\begin{cases} 209.4 \\ 207.1 \end{cases}$	875. 7 866. 7	208. 4	34. 164.
C3H6O2	Propionic acid	74.05	14	367. 2	1, 536. 7	364.7	192; cf. 118.
C4H8O2	n-Butyric acid	88. 06	20	524, 3	2, 194. 2	521.0	192; cf. 77.
C ₄ H ₈ O ₂ C ₅ H ₁₀ O ₂	Isobutyric acid	88. 06 102. 08	20 26	517. 4 681. 6	2, 163. 8 2, 852. 5	521. 0 677. 3	117. 192.
C ₆ H ₁₂ O ₂	Caproic acid	116.10	32	831.0 838.2	3, 475. 2 3, 511. 2	833.6	215. 66; cf. 115.
C ₆ H ₁₂ O ₂	Isobutylacetic acid	116. 10	32	837.4	3, 504. 5	833. 6	192.
C ₆ H ₁₂ O ₂	Diethylacetic acid	116. 10	32	830.8 837.4	3, 474. 4 3, 504. 5	833. 6	227. 192.
C7H14O2	Ethylpropylacetic acid Heptylic acid	130. 11 130. 11	38 38	994. 5 986. 1	4, 161. 9 4, 123. 9	989. 9 989. 9	192. 227.
				900. 1	'		
C ₈ H ₁₆ O ₂	Dipropylacetic acid		44	1, 151. 6	4, 819. 4	1, 146. 2	192. 192.
C ₉ H ₁₈ O ₂			50	$\left\{\begin{array}{l} 1,309.4\\ 1,287.4 \end{array}\right.$	5, 479. 8 5, 383. 9	1, 302. 5	120.
C10H20O2	Capric acid (s) Undecylic acid (s)	172. 16	56	1, 458. 1	6, 102, 1	1, 458. 8	192.
C11 H22 C2	Undecyne acid (s)	186. 18	62	1, 615. 9	6, 762. 5	1, 615. 1	192.
	Lauric acid (s)	200. 19	68	1, 771. 7	7, 414. 6	1,771.4	193.
C ₁₄ H ₂₈ O ₂			80	2, 085. 8	8, 729. 0 10, 037. 3	2, 084. 0 2, 396. 6	193. 192.74a
C ₁₆ H ₃₂ O ₂	Palmitic acid (s)	256. 26	92	2, 384. 6	9, 970. 0		64.74b
C ₁₈ H ₃₆ O ₂	Stearic acid (s)	284. 29	104	\$752,711.8	11, 348. 9	2, 709. 2	192. 64.
C20H40O2	Arachidic acid (s)		116	2, 697. 7 3, 025, 9	11, 279. 0 12, 663. 4	3, 021. 8	192.
C ₂₂ H ₄₄ O ₂	Behenic acid (s)		128	3, 338. 4	13, 971. 2	3, 334. 4	193,

⁷² The values of (192) are uniformly about 0.5 to 0.7 per cent higher than the values for the same compounds recorded by modern investigators.
73 The formula for formic and oxalic acids is $Q=26.05\times N+13$.
74 This value is calculated from Thomsen's data. The figure is more or less uncertain, for the specific heat

value (4.77 cal.) varies considerably with the temperature.

74a See footnote 72.

74b The values of (64) are uniformly 0.2 per cent high, for the value they employed for benzoic acid was larger than the accepted one by that amount.

75 See footnote 72.

2. CHO COMPOUNDS-Continued

32. ALIPHATIC ACIDS

(Hydroxy and Keto Acids)

 $Q=26.05 \times N+6.5s+13j+6.5k+3.5l+13u+6.5v+6.5w$

Formula	Name	Molec- ular weight	Num- ber of elec- trons	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₂ H ₂ O ₃ .H ₂ O	Dihydroxyacetic acid (s) (Glyoxylic acid).	92, 03	4	⁷⁶ 125. 5	524.8	130. 2	35.
C2H4O3	Glycollic acid (s)	76. 03	6	166.6	697.2	169.3	182.
C ₃ H ₄ O ₃ C ₃ H ₆ O ₃	Pyroracemic acid Lactic acid (s)	88. 03 90. 05	10 12	279. 1 77 326. 0	1, 168. 0 1, 363. 0	280, 5 325, 6	49. 64; cf. 127, 135, 75, 134.78
C4H8O3	Hydroxyisobutyric acid (s)	104.06	18	471.8	1,973.1	481.9	134; cf. 127.
C ₄ H ₈ O ₃	β-Hydroxybutyric acid (s) (Racemic).	104.06	18	487.9	2, 039. 9	475.4	64.
C5H4O3	Pyromucic acid (s)	112.03		489. 7	2, 049. 4		182; cf. 44.
C ₅ H ₈ O ₃	Levulinic acid (s) (β-Aceto- propionic acid).	116.06	22	576.8	2, 412. 2	579.6	18.
C22H44O4	Dihydroxybehenic acid (s)	372. 35	124	3, 235, 7	13, 541. 4	3, 243. 2	193.

53. ALIPHATIC ACIDS (UNSATURATED)

 $Q = 26.05 \times N + 13$

$C_3H_4O_2$	Acrylic acid Crotonic acid (s) Tiglic acid (s) Angelic acid (s)	73. 02 86. 05 100. 06 100. 06	12 18 24 24	79 327. 5 477. 7 626. 4 80 634. 8	1, 369. 6 1, 999. 2 2, 621. 5 2, 656. 6	325. 6 481. 9 631. 7 638. 2	140; cf. 155. 183. 183. 183.
C ₅ H ₈ O ₂	α - β -Pentenoic acid (s)	100.06	24	623. 7	2, 610. 2	638. 2	166.
C ₅ H ₈ O ₂	β - γ -Pentenoic acid (s)	100.06	24	632. 2	2, 645. 8	638. 2	166.
C ₅ H ₈ O ₂	Allylacetic acid	100. 06	24	641. 6	2, 685. 1	638. 2	167.
C ₆ H ₈ O ₂	Sorbic acid (s)	112. 06	28	743. 0	3, 109. 5	755. 4	183.
$C_6H_{10}O_{2}$ $C_{10}H_{16}O_{2}$ $C_{11}H_{20}O_{2}$	Hydrosorbic acid	114. 08	30	795. 4	3, 331. 9	794. 5	66.
	Geranic acid	168. 13	52	1, 379. 0	5, 776. 7	1, 380. 6	171.
	Undecylenic acid (s)	184. 16	60	81 1, 579. 7	6, 611. 0	1, 576. 0	183.
C ₁₈ H ₃₄ O ₂	Oleic acid	282. 27	102	2,657.0 2,681.8	11, 108. 9 11, 223. 3	2, 663. 6	64. 183.
$\begin{array}{c} \mathrm{C_{18}H_{34}O_{2}} \\ \mathrm{C_{22}H_{42}O_{2}} \\ \mathrm{C_{22}H_{42}O_{2}} \end{array}$	Elaidic acid (s)	282. 27	102	2, 664. 2	11, 149. 7	2, 670. 1	183.
	Brassidic acid (s)	338. 34	126	3, 290. 1	13, 769. 1	3, 288. 8	193.
	Erucic acid (s)	338. 34	126	3, 296. 7	13, 796. 7	3, 295. 3	193.

⁷º The above is the mean of two determinations which do not agree better than 0.4 per cent. 8º For method of calculating *cis-trans* isomers, consult formula for maleic acid. 81 Mean value.

34. ALIPHATIC ACIDS (MONOBASIC)

(Acetylene type)

 $Q = 26.05 \times N + 33.1h$

	84. 03 140. 09 154. 11 182. 14 280. 26	16 40 46 58 100		1, 893, 3 4, 529, 1 5, 151, 4 6, 435, 7 11, 000, 7	449. 9 1, 075. 1 1, 231. 4 1, 544. 0 2, 638. 1	183. 138. 138. 138. 183.
Stearolic acid (s)			2, 628. 6			

⁷⁶ See method of calculation for formic and oxalic acids, footnote 73.
77 This value was obtained by burning a concentrated solution of lactic acid and analyzing the same for carbon and hydrogen.
78 The value was obtained by burning the ethyl and methyl esters of lactic acid.

2. CHO COMPOUNDS—Continued

35. ALIPHATIC ACIDS (POLYBASIC SATURATED)

 $Q=26.05\times N$

		Q - 20.00.					
Formula	Name	Molec- ular weight	Number of electrons (N)	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calculated to the liquid state)	Literature
C ₂ H ₂ O ₄	Oxalic acid (s) Malonic acid (s)		2 8	$ \begin{cases} 60.2 \\ 60.1 \\ 207.2 \\ 206.5 \end{cases} $	251. 9 251. 5 8, 671. 3 8, 642. 0	⁸² 65. 1	190. 235; cf. 86; 190. 235; cf. 127,
С4H6O4	Succinic acid (s)	118. 05	14	356. 6 357. 1	1, 492. 4 1, 494. 5	354.7	121, 123. 190. 235; ef. 123,
C4H6O4	Methylmalonic acid (s)	118. 05	14	{ 362. 2 365. 0	1, 515. 8 1, 527. 5	364. 7	127. 192. 190.
C ₅ H ₈ O ₄	Glutaric acid (s)	132. 06	20	514.7 514.9 514.9	2, 154. 0 2, 154. 9 2, 154. 9	521. 0 521. 0	186. 235; ef. 129. 190.
C ₅ H ₈ O ₄	Methylsuccinic acid (s)	132. 06	20	514. 9	2, 154. 9 2, 158. 2	321. 0	234; cf. 127.
C ₅ H ₈ O ₄	Ethylmalonic acid (s) Dimethylmalonic acid (s) Tricarballylic acid (s)	132.06 132.06 170.06	20 20 20	517. 7 515. 1 516. 0 668. 6	2, 166. 6 2, 155. 7 2, 159. 5 2, 798. 1	521. 0 521. 0 521. 0 677. 3	190. 190. 127; ef. 192. 190.
C ₆ H ₁₀ O ₄	Adipic acid (s)	146. 08	26	669. 0	2, 798. 1 2, 799. 8		235.
C ₆ H ₁₀ O ₄	α-Methylglutaric acid (s) Ethylsuccinic acid (s)	146. 08 146. 08	26 26	670. 6 671. 9	2, 806. 5 2, 811. 9	677. 3 677. 3	190. 190.
C ₆ H ₁₀ O ₄	Sym. Dimethylsuccinic acid (s) (para-acid).	146. 08	26	670. 6 670. 6	2, 806. 5 2, 806. 5	677.3	234. 190.
C ₆ H ₁₀ O ₄	Sym. Dimethylsuccinic acid (s) (anti-acid).	146. 08	26	674. 2	2, 821. 5		183.
C ₆ H ₁₀ O ₄	Sym. Dimethylsuccinic acid (s) (M. P. 128°) (Racemic). Sym. Dimethylsuccinic acid	146. 08	26	671. 5	2, 810. 2	677.3	234.
C ₆ H ₁₀ O ₄	Sym. Dimethylsuccinic acid (s) (M. P. 208°) (anti). Unsym. Dimethylsuccinic	146. 08	26	673.0	2, 816. 5 2, 809. 8	677.3 677.3	234. 190.
	acid (s).	146.08	26	670.6	2, 806. 5		234.
C ₆ H ₁₀ O ₄	Methylethylmalonic acid (s)	146. 08	26	82 675. 6	2, 811. 9 2, 827. 4	677. 3	190. 192.
C ₆ H ₁₀ O ₄ C ₆ H ₁₀ O ₄	Propylmalonic acid (s) Isopropylmalonic acid (s)	146. 08 146. 08	26 26	83 676. 1 83 676. 1	2, 827. 4 2, 829. 5 2, 829. 5	677. 3 677. 3	192. 192.
C7H ₁₂ O ₄	Pimelic acid (s) (Isopropyl-	160. 04	32	822.3 827.5	3, 441. 3 3, 463. 0	833. 6	190. 187.
C ₇ H ₁₂ O ₄	succinic acid). Diethylmalonic acid (s) Trimethylsuccinic acid (s)	160. 10 160. 10	32 32	827. 7 83 832. 6 829. 9	3, 463. 9 3, 484. 4 3, 473. 1	833. 6 833. 6	235. 192. 234.
C ₈ H ₁₄ O ₄	Suberic acid (s)	174. 11	38	985. 2 983. 3	4, 123. 0 4, 115. 1	989. 9	190. 187.
C8H14O4	Dimethyladipic acid (s) $(sym.)$.	174. 11	38	983. 4 986. 7	4, 115. 5 4, 129. 3	989. 9	235; cf. 127. 182.
C ₈ H ₁₄ O ₄	Diethylsuccinic acid (s) (unsym.).	174. 11	38	984.6	4, 120. 6	989.9	234.
C8H14O4	Diethylsuccinic acid (s)	174. 11	38	986. 1	4, 126. 8	989. 9	234.
C8H14O4	(sym.) (M. P. 128°). Diethylsuccinic acid (s)	174. 11	38	987.8	4, 133. 9	989. 9	234.
C ₈ H ₁₄ O ₄ C ₈ H ₁₄ O ₄	(sym.) (M. P. 192°). Ethylpropylmalonic acid (s). Tetramethylsuccinic acid (s)	174. 11 174. 11	38 38	84 988. 5 989. 4	4, 136. 9 4, 140. 6	989. 9 989. 9	192. 234.
C9H ₁₆ O ₄ C9H ₁₆ O ₄		188. 13 188. 13	44 44	1, 141. 0 1, 141. 7 85 1, 145. 8	4, 775. 1 4, 778. 0 4, 795. 2	1, 146. 2 	191. 235. 192.

^{\$\$} The calculated heats of combustion for compounds in which 2 weakly electronegative groups, such as COOH, are linked together, is given by the expression $Q=26.05\times N+13$. The correction factor thus denotes that the two carbon atoms share a pair of valence electrons in outer energy levels, compared to a carbon-to-carbon linkage as in ethane.

\$\$ The values of (192) are on the whole about 0.5 to 0.7 per cent too high.

\$\$\$ See footnote 83.

3697°-29---3

2. CHO COMPOUNDS-Continued

35. ALIPHATIC ACIDS (POLYBASIC SATURATED)-Continued $Q=26.05\times N$

Formula	Name	Molec- ular weight	Number of electrons	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₁₀ H ₁₈ O ₄	Sebacic acid (s)	200. 14	50	{ 1, 296. 4 1, 297. 3	5, 425. 4 5, 429. 2	1, 302. 5	191. 235; ef. 127.
C ₁₀ H ₁₈ O ₄ C ₁₀ H ₁₈ O ₄	Heptylmalonic acid (s) Triethylsuccinic acid (s)	200. 14 200. 14	50 50	85 1, 302. 4 1, 301. 3	5, 450. 5 5, 445. 9	1, 302. 5 1, 302. 5	192. 234.
C ₁₁ H ₂₀ O ₄	n-Octylmalonic acid (s)	216. 16		s5 1, 458. 1	6, 102. 1	1, 302. 3	192.
C ₁₁ H ₂₀ O ₄	Nonanedicarboxylic acid (s)	216. 16	56	1, 455. 6	6, 091. 7	1, 458. 8	235.
C ₁₂ H ₂₂ O ₄	Decanedicarboxylic acid (s)	230. 18	62	1, 610. 7	6, 740. 8	1, 615. 1	235.
C12H22O4	Tetraethylsuccinic acid (s)	230. 18	62	1, 618. 8	6, 774. 6	1, 615. 1	235.
C ₁₃ H ₂₄ O ₄	Brassylic acid (s) (Undecane- dicarboxylic acid).	244. 19	68	1,768.6	7, 401. 6	1, 771. 4	235.
C ₁₉ H ₃₆ O ₄	Cetylmalonic acid (s)	328. 29	104	86 2, 707. 3	11, 330. 0	2, 709. 2	192.

⁸⁵ See footnote 83.

86 See footnote 83.

36. HYDROXY POLYBASIC ACIDS (SATURATED)

 $Q = 26.05 \times N + 6.5k + 6.5v$

C ₃ H ₄ O ₅	Tartronic acid (s)	120. 03	6	165. 4	691. 7	175.8	130.
C ₃ H ₄ O ₆	Mesoxalic acid (s) (Dihydrox- ymalonic acid).	136. 03	4	128. 2	536. 1	136. 7	130.
C4H6O5	l-Malic acid (s)		12	320. 1	1, 339. 6	325. 6	75.
C4H6O6	d-Tartaric acid (s)	150. 05	10	275. 1	1, 151. 29	286. 5	54; cf. 29.
C4H6O6	d, l-Tartaric acid (s) (Race-	}150, 05	10	§ 278. 4	1, 164. 3	286. 5	145.88a
C4H6O6	mic; anhydr.). d, l-Tartaric acid (s) (Race-	150. 05	10	273. 0 277. 8	1, 142. 5 1, 161. 8	286. 5	54. 145.
C4H6O6	mic; cryst.).	130.03	10	211.6	1, 101. 8	200.0	140.
C4H6O6		150.05	10	276.0	1, 155. 1	286. 5	54.
C ₅ H ₈ O ₇	Trihydroxyglutaric acid (s)	180.06	14	388. 3	1, 623. 9	397. 2	68.
C6H10O8	Mucic acid (s)	210. 08	18	483. 6	2, 023. 9		183.
C ₆ H ₁₀ O ₈	Allomucic acid (s)	210. 08	18	494. 2	2, 066. 7	507. 9	68.
C6H8O7	Citric acid (s) (anhydr.)	192.06	18	474. 5	1, 985. 8	488. 4	191; cf. 127
C6H8O7.H2O	Citric acid (s) (cryst.)	210. 08	18	471.4	1, 971. 4	000.7	127.
C ₈ H ₁₄ O ₆	Dimethyldihydroxyadipic acid (s).	206. 11	34	889.0	3, 717. 8	898. 7	243.

⁸⁶a Little value should be attached to the work of this investigator. The results are probably not better

than 1 to 2 per cent and are too high.

§ The authors (54) give also the heat of combustion of various ammonium and substituted ammonium salts of d-tartaric, racemic and mesotartaric acids:

	Kg-cal ₁₅	K. J.		Kg-cal ₁₅	K.J.
1. Ammonium d-bitartrate 2. Ammonium biracemate	341. 7 339. 5	1, 430. 0 1, 420. 8	7. Ethylammonium biracemate 8. Phenylammonium d-bitar-	663. 1	2, 775. 1
3. Ammonium bimesotartrate 4. Methylammonium d-bitar-	341. 2	1, 427. 9	trate	1, 079. 3	. 4, 516. 9
trate	508. 0	2, 126. 0	mate	1, 077. 3	4, 508. 5
mate6. Ethylammonium d-bitar-	506. 0	2, 117. 6	mate	1, 229. 9	5, 147. 1
trate	665. 4	2, 784. 7	tartrate	1, 231. 5	5, 153. 8

2. CHO COMPOUNDS—Continued

37. POLYBASIC ALIPHATIC ACIDS (UNSATURATED)

 $Q=26.05 \times N+13y+16.5x$

			,				
Formula	, Name	Molec- ular weight	01	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C4H4O4	Fumaric acid (s) 88 (trans)	116. 03	12	320.0	1, 339. 2	325. 6	190; cf. 163, 127, 146.
C4H4O4	Maleic acid (s) (cis)	116. 03	12	326. 1	1, 364. 7	329. 1	190; cf. 127, 151.
C ₅ H ₆ O ₄	Itaconic acid (s) (Methylenesuccinic acid).	}130. 05	18	$ \left\{ \begin{array}{c} 475.6 \\ 475.0 \end{array} \right. $	1, 990. 4 1, 987. 9	481.9	183. 151; cf. 127.
C ₅ H ₆ O ₄	Citraconic acid (s) (methyl-maleic acid) (cis).	}130. 05	18	{ 479.4 478.8	2, 006. 2 2, 003. 8	485. 4	183. 151; cf. 127.
C ₅ H ₆ O ₄		30. 05	18	476.9 475.9	1, 995. 8 1, 991. 6	481.9	183. 151; cf. 127.
C ₆ H ₆ O ₆	Aconitic acid (s)	174. 05	18	475. 1	1, 988. 3	481. 9	183; ef. 127.
C6H8O4			24	628. 8	2, 631. 5	638. 2	183.
C ₆ H ₈ O ₄	β, γ-Hydromuconic acid (s)		24 24	629. 1 89 637. 8	2, 632. 8 2, 669. 2	638, 2 638, 2	183. 192.
C7H ₁₀ O ₄			30	796. 1	3, 331. 7	794. 5	145.
C ₄ H ₂ O ₄		114. 02	10	305. 9	1, 280. 2		183.

A collection of the heats of combustion of some stereoisomeric acids is given by Liebermann, Ber., 25, p. 90; 1892.
 The values of (192) are from 0.5 to 0.7 per cent too high.

38. AROMATIC ACIDS

 $Q = 26.05 \times N - 3.5a - 6.5b$

	Q 25100/11 0102 0100								
C ₇ H ₆ O ₂	Benzoic acid (s) ⁹⁰	122. 05	30	90 771. 2	3, 227. 5	778. 0	63; cf. 191, 153, 80, 221, 227, 241, 67, 85, 84, 216, 228, 71, 159, 213, 219, 220, 218,		
C ₈ H ₈ O ₂	o-Toluic acid (s)	136. 08 136. 08	36 36	\$\begin{cases} 928. 9 \\ 921. 0 \\ 928. 6 \\ 922. 2 \end{cases}\$	3, 887. 5 3, 858. 1 3, 886. 2 3, 863. 1	930. 8	214. 189. 5. 189. 5.		
C ₈ H ₈ O ₂ C ₈ H ₈ O ₃		136. 08 152. 06	36 34	926. 9 887. 3	3, 879. 1 3, 713. 4	930. 8 891. 7	189. 199.		
C ₉ H ₈ O ₃ C ₉ H ₈ O ₃		164. 06 164. 06	38 38				151. 151.		
C ₉ H ₈ O ₃ C ₉ H ₁₀ O ₂ C ₁₀ H ₁₂ O ₂	Mesitylenic acid (s)	164. 06 150. 08 164. 10	38 42 48	1, 084. 7 1, 238. 1	4, 539. 5 5, 181. 5	1, 083. 6 1, 243. 4	151. 189. 189; cf. 30.		
C ₁₁ H ₈ O ₂ C ₁₁ H ₈ O ₂	pylbenzoic acid). α-Naphthoic acid (s) β-Naphthoic acid (s)	172. 06 172. 06	48 48	, 1, 231. 8 1, 227. 6	5, 155. 1 5, 137. 5	1, 233. 9 1, 233. 9	190. 189.		

¹⁰⁰ The above value is the one accepted at the third conference of the International Union of Pure and Applied Chemistry, held at Lyons, 1923. It is the value found by Dickinson, Bull. Bur. Stds., 11, p. 189; 1915. See also discussion of Verkade in Chem. Weekblad, 19, p, 389; 1922.

2. CHO COMPOUNDS—Continued

39. HYDROXY AROMATIC ACIDS

 $Q=26.05\times N+3.5m-3.5a-6.5b$

Formula	Name	Molec- ular weight	Num- ber of elec- trons (N)	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calculated to the liquid state)	Literature
C7H6O3	Salicylic acid (s)	138. 05	28	$\left\{\begin{array}{c} {}^{91}\ 723.\ 1\\ {}^{723.\ 6}\\ {}^{726.\ 7}\\ {}^{92}\ 723.\ 8\\ \end{array}\right.$	3, 026. 2 3, 028. 3 3, 041. 2 3, 032. 0	729. 4	230. 217. 198. 89; cf.62,189.
C7H6O3	m-Hydroxybenzoic acid (s)	138. 05	28	$ \left\{ \begin{array}{c} 726.1 \\ 724.7 \end{array}\right. $	3, 038. 7 3, 032. 9	729. 4	199. 89; cf. 189.
C7H6O3	p-Hydroxybenzoic acid (s)	138. 05	28	725. 4 723. 8	3, 035. 8 3, 029. 1	729. 4	189. 89.
C7H6O4	β-Resorcylic acid (s) (2,4- Dihydroxybenzoic acid).	154. 05	26	676. 5	2, 831. 2	680. 8	189.
C7H6O5			24	633. 4	2, 650. 8	632. 2	189.
C ₇ H ₆ O ₅ C ₈ H ₆ O ₄		170. 05 166. 05	24 30	633. 7 803. 5	2, 652. 0 3, 362. 7	632. 2	189. 163.
C8H8O3	p-Methoxybenzoic acid (s)	152. 06	34	894. 6	3, 743. 9	901. 7	189.
C8H8O3	1,6,2-Hydroxytoluic acid (s)93.	152.06	34	882. 8	3, 694. 5	882. 2	199.
C ₈ H ₈ O ₃	1,2,3-Hydroxytoluic acid (s)-	152.06	34	878. 7	3, 677. 4	882. 2	199.
C8H8O3	1,2,5-Hydroxytoluic acid (s)	152.06	34	879. 5	3, 680. 7	882. 2	199.
	1,2,4-Hydroxytoluic acid (s). Opianic acid (s).		34 40	877. 8 1, 089. 7	3, 673. 6 4, 557. 1	882. 2 1, 090. 5	199. 106; cf. 107.
C ₁₀ H ₁₀ O ₆			38	1, 089. 7	4, 286. 6	1, 090. 3	100, 61, 107.
						, , , , ,	

^{Q1} As a result of a very exhaustive and painstaking investigation, these authors recommend the use of salicylic acid as a secondary thermochemical standard. Compare Verkade and Coops, Bull. soc. chim., 37, p. 1536, 1925; Verkade and Coops, J. Chem. Soc., p. 1437, 1926; and particularly Cohen, Verkade, Miyaki, Coops and van der Hoeve, Verslag Akad. Wetenschappen Amsterdam, 35, p. 48; 1926.
²⁸ The values of these authors have been corrected to the 15° calorie.

³⁰ The numbers denote the positions of carboxyl, hydroxyl and methyl groups, respectively.

40. PHENYLATED ALIPHATIC ACIDS

 $Q=26.05 \times N-3.5a-6.5b$

C ₈ H ₈ O ₂	Phenylacetic acid (s)	136. 06	36	94 930. 2	3, 892. 9	934. 3	208; cf. 66, 241, 5,
C ₈ H ₈ O ₃			34 34 38	890. 3 902. 8 1, 021. 1	3, 725. 9 3, 778. 2 4, 270. 2	895. 2 911. 7 1, 016. 5	106. 199; cf. 182. 199. 138; cf. 182.
C ₀ H ₈ O ₂	Cinnamic acid (s) (trans)	148. 06	40	1, 040. 2	4, 357. 4	1, 048. 0	177; cf. 189, 155, % 145.
C ₉ H ₈ O ₂	Allocinnamic acid (s) (cis) (M. P. 58°).	148. 06	40	1, 047. 0	4, 3 85. 9	1, 052. 0	177; cf. 183, 108.
C ₉ H ₈ O ₂ C ₉ H ₈ O ₃	Atropic acid (s) p-Hydroxycinnamic acid (s) (trans) (M. P. 206°).	148. 06 164. 06	40 38	1, 044. 4 991. 4	4, 370. 8 4, 152. 9	1, 045. 0 999. 9	183; cf. 145, 177.
C ₀ H ₈ O ₃	Allo-p-hydroxycinnamic acid (s) (cis) (M. P. 126 to 127°).	164. 06	38	996. 5	4, 174. 3	1, 003. 4	177.
C9H ₁₀ O ₂	Hydrocinnamic acid (s) (β-phenylpropionic acid).	150. 08	42	1, 085. 0	4, 540. 7	1, 090. 6	189.
C ₁₀ H ₈ O ₄	Piperonylacrylic acid (s) (trans) (M. P. 238°).	192.06	40	1, 067. 5	4, 471. 8		177.
C ₁₀ H ₈ O ₄	Allopiperonylacrylic acid (s) (cis) (M. P. 99 to 100°).	192.06	40	1, 076. 5	4, 509. 5		177.
C ₁₀ H ₁₀ O ₂	Phenylisocrotonic acid (s) % (cis).	162. 08	46	1, 195. 4	5, 002. 8	1, 208. 3	183.
C ₁₀ H ₁₀ O ₂ C ₁₀ H ₁₀ O ₂	α -Methylcinnamic acid (s) β -Methylcinnamic acid (s)		46 46	1, 198. 4 1, 197. 0	5, 020. 1 5, 014. 2	1, 204. 8 1, 204. 8	163. 163.

 $^{^{94}}$ It is most peculiar that these authors obtained 1,042.8 kg-cal₁₅ for this acid while for naphthalene, which was used in standardizing the bomb, their value is 0.9 per cent higher than the accepted value. 95 One of these authors showed later (Ber., 35, p. 2908, 1902), that cinnamic acid upon illumination goes over to a α -truxillic acid. However, upon combustion there was no evidence of any energy difference. See also Ber., 28, p. 1443; 1895; 46, p. 267; 1913. 96 C₆H₅.CH;CH,CH₂COOH,

2. CHO COMPOUNDS-Continued

40. PHENYLATED ALIPHATIC ACIDS-Continued

 $Q=26.05 \times N-3.5a-6.5b$

Formula	Name	Molec- ular weight	Number of electrons (N)	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature		
C ₁₀ H ₁₀ O ₃	Methylcoumaric acid (s)	170.08	44	1, 161. 0	4, 863. 4	1, 152. 5	177.		
C ₁₀ H ₁₀ O ₃	(trans) (M. P. 182 to 183°). Methylcoumarinic acid (s) (cis) (M. P. 91 to 92°).	170.08	44	1, 167. 2	4, 889. 4	1, 156. 0	177.		
C ₁₀ H ₁₀ O ₃		170. 08	44	1, 163. 0	4, 871.8	1, 172. 2	177.		
C ₁₀ H ₁₀ O ₃		170.08	44	1, 172. 2	4, 910. 4	1, 175. 7	177.		
C ₁₁ H ₁₀ O ₂	Cinnamylideneacetic acid (s) (M. P. 165°).	174. 08	50	98 1, 310. 6	5, 480. 9	1,322.0	155.		
C ₁₁ H ₁₀ O ₂	Allocinnamylideneacetic acid	174. 08	50	1, 319. 4	5, 517. 7	1, 325. 5	155.		
C ₁₁ H ₁₀ O ₄	(s) (M. P. 138°). Acetylcoumaric acid (s)	206. 08	46	1, 207. 6	5, 058. 6	1, 217. 8	177.		
C ₁₁ H ₁₀ O ₄	(trans) (M. P. 154 to 155°). Acetylcounarinic acid (s)	206. 08	46	1, 211. 7	5, 075. 8	1, 221. 3	177.		
C ₁₁ H ₁₀ O ₄ C ₁₁ H ₁₂ O ₃		206. 08 192. 10	46 50	1, 195. 5 1, 316. 5	5, 003. 2 5, 514. 8	1, 204. 8 1, 328. 8	183. 177.		
C ₁₁ H ₁₂ O ₃	Ethylcoumarinic acid (s) (cis)	192. 10	50	1, 323. 0	5, 542. 0	1, 332. 0	177.		
C ₁₂ H ₁₄ O ₃	(M. P. 101 to 102°). Propyleoumarie acid (s)	206. 11	56	1, 470. 4	6, 159. 5	1, 484. 8	177.		
C ₁₂ H ₁₄ O ₃	(trans) (M. P. 105 to 106°). Propyleoumarinic acid (s) (cis) (M. P. 83 to 84°).	206. 11	56	1, 476. 3	6, 184. 2	1, 488. 3	177.		
C ₁₂ H ₁₂ O ₃ C ₁₂ H ₁₂ O ₃	β-Benzallevulinic acid (s)	204. 10 204. 10	54 54	1, 413. 4 1, 410. 1	5, 915. 1 5, 901. 3	1, 419. 7 1, 419. 7	182. 182.		
C ₁₃ H ₁₆ O ₃	n-Butylcoumaric acid (s)	220. 13	62	1, 630. 6	6, 830. 6	1, 641. 1	177.		
C ₁₃ H ₁₆ O ₃	(trans.) (M. P. 89 to 90°). n-Butylcoumarinic acid (s) (cis) (M. P. 53 to 54°).	220. 13	62	1, 637. 0	6, 857. 4	1,644.6	177.		
C ₁₄ H ₁₈ O ₃	Isoamylcoumaric acid (s) (trans.) (M. P. 79 to 79.5°).	234. 14	68	1, 789. 7	7, 497. 1	1, 797. 4	177.		
C ₁₄ H ₁₈ O ₃	Isoamylcoumarinic acid (s) (cis) (M. P. 80 to 80.5°).	234, 14	68	1, 791. 3	7, 503. 8	1, 800. 9	177.		
C ₁₄ H ₁₂ O ₂	Diphenylacetic acid (s)	212. 10	64	1, 651. 5	6, 911. 5	1, 654. 2	182; cf. 227.		
C ₁₄ H ₁₂ O ₃ C ₁₆ H ₁₆ O ₂ C ₁₇ H ₁₆ O ₃	Dibenzylacetic acid (s)	228. 10 240. 13 268. 13	62 76 78	1, 618. 2 1, 954. 3 2, 035. 2	6, 772. 2 8, 178. 8 8, 525. 5	1, 612. 1 1, 972. 8 2, 047. 9	182. 227. 151.		
	acid (s) (stable). β-Tolylmethoxycinnamic	268. 13	78	2, 039, 2	8, 542. 2	2,047.9	151.		
OH11003	acid (s) (labile).	200. 15	***	2, 000. 2	0, 012. 2	2,011.9	101.		

41. POLYBASIC AROMATIC ACIDS

 $Q = 26.05 \times N - 3.5a - 6.5b$

	¥ =0.	00/(1)	0.00				
C8H6O4	Phthalic acid (s)	166. 05	30	771.0	3, 226. 6	774. 5	189; cf. 183,
C ₈ H ₆ O ₄	Isophthalic acid (s) Terephthalic acid (s) Trimesic acid (s) Uvitic acid (s)	166. 05 166. 05 210. 05 183. 06	30 30 30 36	768. 3 770. 4 767. 0 928. 3	3, 215. 3 3, 224. 1 3, 209. 9 3, 884. 9	774. 5 774. 5 771. 0 927. 3	189. 189. 189. 189.
C ₁₀ H ₆ O ₈ C ₁₂ H ₃ O ₄	Pyromellitic acid (s) 99 Naphthalic acid (s) (1,8- Naphthalenedicarboxylic	254. 05 216. 05	30 48	776. 8 1, 244. 1	3, 250. 9 5, 202. 8	767. 5 1, 230. 4	189. 127.
C ₁₂ H ₆ O ₁₂	acid). Mellitic acid (s) 1	342. 05	30	787. 5	3, 295. 7	760. 5	189.

⁹⁹ The combustion of these acids was rather unsatisfactory. Consult original paper. 1 See footnote 99.

M. P. 170° (liq. cryst.); clears at 185°.
 The work of these investigators is not quite reliable. Thus, the value of standard naphthalene used in the calibration of the bomb is about 0.9 per cent too high, and yet their value for cinnamic acid is within 0.1 per cent of the best value.

2. CHO COMPOUNDS—Continued

42. PHENYLATED POLYBASIC ALIPHATIC ACIDS

 $Q = 26.05 \times N - 3.5a - 6.5b$

Formula	Name	Molec- ular weight	Number of electrons (N)	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
$\begin{array}{c} C_{10}H_8O_4 \\ C_{10}H_{10}O_4 \\ C_{10}H_{10}O_4 \\ C_{12}H_{10}O_4 \\ \end{array}$	Benzalmalonic acid (s) Benzylmalonic acid (s) Phenylsuccinic acid (s) Cinnamylidenemalonic acid (s) (yellow).	192. 06 194. 08 194. 08 218. 08	40 42 42 50	1, 056. 0 1, 082. 5 1, 082. 3 2 1, 319. 4	4, 419. 4 4, 530. 3 4, 529. 4 5, 517. 7	1, 048. 5 1, 090. 6 1, 090. 6 1, 322. 0	183. 192. 234. 155.
C ₁₆ H ₁₄ O ₄	α-Diphenylsuccinic acid (s) (anhydr.) (easily sol. form). ³	270. 11	70	4 1, 810. 3	7, 576. 1	1, 816. 5	182; cf. 145.
C ₁₆ H ₁₄ O ₄	β-Diphenylsuccinic acid (s) (difficultly sol.).	270. 11	70	1, 806. 6	7, 560. 3	1, 816. 5	182; cf. 145.
C ₁₈ H ₁₆ O ₄	α-Truxillic acid (s)	296. 13 436. 16	80	2, 083. 5 2, 638. 6	8, 713. 2 11, 034. 6	2, 080. 0	155. 155.
,	acid ⁵ (exposed to the action of light).						

 3 The heat of combustion of the acetone addition product of α -diphenylsuccinic acid (easily soluble form in acetone) is given as 2,287.9 kg-cal₁₅. 4 The authors (234) report the heats of combustion of diphenylsuccinic acid (racem.) and diphenylsuccinic acid (anti) as 1,807.7 kg-cal₁₅ and 1,809.0 kg-cal₁₅, respectively. $^{\delta}$ The structure suggested for this polymer is $\rm C_6H_5$, CH. CH. CH. CC:(CO₂H)₂

(HO₂C)₂:C:CH.CH.CH.C6H₅.

43. HYDROAROMATIC AND POLYMETHYLENE ACIDS $Q = 26.05 \times N + 13z + 13aa$

C4H6O2----Trimethylenecarboxylic acid 479. 3 483. 7 2,007.8 481.9 175. (Cyclopropanecarboxylic 86,05 18 (Cyclopropaneear boxy ne acid).

α,α-Trimethyle n ed i c arboxylic acid (s) (1,1-Cyclopropanedicarboxylic acid).

α,β-Trimethyle n ed i c arboxylic acid (s) (cis-1,2-Cyclopropanedicarboxylic acid) 2, 022. 8 215. 482.9 2,020,9 130, 05 18 187 C5H6O4-----481.9 C5H6O4-----130.05 18 483.9 2,025.1 481.9 187. acid). Tetramethylenecarboxylic acid (Cyclobutanecarboxylic acid)..... C5H8O2----641.0 2, 685. 2 638.2 175. 215. 24 100, 06 639.2 2,673.1 24 2, 686, 8 638.2 187. C6H8O4----a, a-Tetramethylenedicar-144, 05 642.0 boxylic acid (s) (1,1-Cyclobutanedicarboxylic acid). α,β-Tetramethylenedicar-boxylic acid (s) (cis-1,2-Cyclobutanedicarboxylic 144, 05 24 642.1 2,687.2 638. 2 187. C6H8O4----acid). α, γ-Tetramethylenedicar-boxylic acid (s). Cyclohexanecarboxylic acid 2, 673. 9 C6H8O4-----638, 2 243. 144 05 24 639 4 C7H12O2----128.10 36 934.0 3, 905. 9 937.8 215. (Hexahydrobenzoic acid) (M. P. 28°). Hexahydrotetrahydroxy-C7H12O6----192. 10 28 6 833.3 3, 484. 9 755.4 43. benzoic acid (s) (Quinic acid). C7H10O2_____ Δ2-Tetrahydrobenzoic acid 126, 08 34 885, 7 3, 710, 2 892.2 165. (s). Δ₁-Tetrahydrobenzoic acid C7H10O2----126.08 34 3, 586. 2 892.2 167. 856.7 (s). α,β-Pentamethylenedicar-boxylic acid (s) (trans-1,2-Cyclopentanedicarboxylic C7H10O4----158.08 30 781.5 3, 245. 9 775.6 187. acid) $\alpha, \alpha, \beta, \beta$ -Trimethylenetetra-carboxylic acid (s) (1,1,2,2-C7H6O8-----482.7 2,020.1 218.0518 481.9 187 Cyclopropanetetracarboxylic acid).

⁶ The value for this compound appears to be entirely too large and would certainly bear reinvestigation.

2. CHO COMPOUNDS-Continued

43. HYDROAROMATIC AND POLYMETHYLENE ACIDS-Continued

 $Q = 26.05 \times N + 13z + 13aa$

Formula	Name	Molec- ular weight	Number of electrons	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calculated to the liquid state)	Literature			
C8H8O4		168.06	32	835. 6	3, 497. 0	846. 6	185.			
C ₈ H ₈ O ₄	acid (s). Δ _{1,5} -Dihydroterephthalic	168.06	32	842. 1	3, 524. 2	846. 6	185.			
C ₈ H ₈ O ₄	acid (s). Δ_2 ,5-Dihydroterephthalic acid (s) $(fum.)$.	168.06	32	844. 9	3, 535. 9	846. 6	186.			
C ₈ H ₈ O ₄ C ₈ H ₁₀ O ₄	Dihydroterephthalic acid (s). \[\D_2-\text{Tetrahydroterephthalic} \] \[\acid (s). \]	168. 06 170. 08	32 34	842. 6 881. 1	3, 526. 3 3, 687. 4	846. 6 892. 2	186. 186.			
C ₈ H ₁₀ O ₄	Δ_{1} -Tetrahydroterephthalic acid (s).	170.08	34	882.3	3, 692. 4	892. 2	185.			
C ₈ H ₁₂ O ₂	Cyclohexylideneacetic acid (s).	140. 10	40	1, 042. 0	4, 364. 9	1, 055. 0	167.			
C ₈ H ₁₂ O ₂		140. 10	40	1, 044. 8	4, 376. 7	1, 048. 5	167.			
C ₈ H ₁₂ O ₄	Hexahydroterephthalic acid (s) (trans).	172.10	36	929. 1	3, 888. 3	937. 8	185.			
C ₈ H ₁₂ O ₄	Hexahydroterephthalic acid (s) (cis).	172. 10	36	928. 2	3, 884. 5	937.8	185.			
C ₈ H ₁₂ O ₄		172. 10	36	930. 4	3, 893. 7	937. 8	79.			
C ₇ H ₄ O ₇ .3H ₂ O C ₈ H ₁₄ O ₂	Meconic acid (s)Cycloheptanecarboxylic acid (s).	254. 08 142. 11	42	490. 08 1, 087. 9	2, 052. 5 4, 549. 6	1, 094. 1	106. 215.			
C ₈ H ₁₄ O ₂	Hexahydro-m-toluic acid (s) (3-Methylhexamethylene-carboxylic acid).	142. 11	42	1, 086. 2	4, 542. 5	1, 094. 1	215.			
C8H14O2	Cyclooctanecarboxylic acid (act).	142. 11	42	1, 089. 2	4, 555. 0	1, 094. 1	215.			
C ₉ H ₁₄ O ₂	α-Cyclohexene-1-propionic acid.	154. 11	46	1, 199. 6	5, 025. 1	1, 204. 8	167.			
C ₁₀ H ₁₆ O ₂ C ₁₀ H ₁₆ O ₂	Isocampholytic acid (s) Campholenic acid (s) (M. P. 50°).	168. 13 168. 13	52 52	1, 363. 0 1, 365. 7	5, 700. 1 5, 711. 4	1, 367. 6 1, 367. 6	44. 44.			
C ₁₀ H ₁₆ O ₃	α-Tanacetoneketocarboxylic acid (s).	184. 13	50	1, 327. 4	5, 560. 5	1, 322. 0	175.			
C ₁₀ H ₁₆ O ₄		200. 13	48	8 1, 243. 8	5, 205. 3	1, 250. 4	187; ef. 124, 127, 112.			
$\begin{array}{c} C_{10}H_{18}O_2 - \dots \\ C_{10}H_{18}O_2 - \dots \\ C_{12}H_{12}O_{12} - \dots \end{array}$	Campholic acid (s)	170. 14 170. 14 348. 10	54 54 36	1, 412. 0 9 1, 396. 4 923. 2	5, 904. 9 5, 839. 7 3, 863. 6	1, 406. 7 1, 406. 7 937. 8	44. 243. 186.			

44. ACID ANHYDRIDES

 $Q = 26.05 \times N + 10$ bb

			·				
C4H2O3	Maleic anhydride (s)	98.02	12	333. 9	1, 397. 4	339.1	182.
C4H4O3	Succinic anhydride (s)	100.03	14	$\begin{cases} 369.4 \\ 369.6 \end{cases}$	1, 545. 9 1, 546. 8	374.3	182. 234; cf. 127.
C4H6O3	Acetic anhydride (v) Acetic anhydride (liq.)	102.00	16	458. 3 431. 9	1, 916. 6 1, 806. 2	426.8	}223.
C ₅ H ₄ O ₃ C ₅ H ₆ O ₃ C ₅ H ₆ O ₃	Itaconic anhydride (s)Glutaric anhydride (s)Monomethylsuccinic anhy-	112. 03 114. 05 114. 05	18 20 20	481. 5 528. 0 527. 7	2, 015. 1 2, 209. 7 2, 208. 4	491. 9 531. 0 531. 0	183. 183. 234.

 $^{^7}$ C₆H₁₀: CH.COOH. 8 Values of (124), (127), and (112) vary between 1,242.5 and 1,254.2 kg-cal₁₅. 9 This value has been corrected according to the method employed by Swietoslawski, J. Amer. Chem. Soc., 42, p. 1093; 1920. The correction factor employed by him appears to be too large, however.

2. CHO COMPOUNDS-Continued

44. ACID ANHYDRIDES-Continued

 $Q=26.05 \times N+10bb$

Formula	Name	Molec- ular weight	Number of electrons (N)	Kg-cal 15 (experimental)	Kilo- joules (K. J.)	Kg-cal 15 (calcu- lated to the liquid state)	Literature
C ₆ H ₈ O ₃	Dimethylsuccinic anhydride	128, 06	26	682, 6	2, 856. 7	687. 3	234.
C ₆ H ₈ O ₃	(s) (unsym.). Dimethylsuccinic anhydride	128. 06	26	679.3	2,842.9	687. 3	234.
	(sym.) (M. P. 87°). Dimethylsuccinic anhydride						
C ₆ H ₈ O ₃	(M. P. 43°).	128. 06	26	681, 1	2, 850. 4	687.3	234.
C ₆ H ₈ O ₃	Monoethylsuccinic anhy- dride.	128.06	26	684. 8	2, 865. 9	687. 3	234.
C ₆ H ₁₀ O ₃ C ₇ H ₁₀ O ₃	Propionic anhydride Trimethylsuccinic anhydride (s).	130. 08 142. 08	28 32	746. 6 836. 1	3, 122. 3 3, 499. 1	739. 4 843. 6	118. 234.
C8H4O3	Phthalic anhydride (s)	148. 03	30	₹ 783.4	3, 278. 5	784.5	189, 217; cf.
C ₈ H ₁₀ O ₃	Hexahydrophthalic anhy-	154.08	36	780. 5 932. 0	3, 266. 4 3, 900. 4	947.8	127. 172.
C ₈ H ₁₂ O ₃	dride (s) (sol.) (cis). Hexahydrophthalic anhy-			937. 8	3, 924. 7		172.
C ₈ H ₁₂ O ₃	dride (s) (sol.) (trans.). Tetramethylsuccinic anhydride (s).	156. 09	38	992. 6	4, 154. 0	999, 9	234.
C ₈ H ₁₂ O ₃	Diethylsuccinic anhydride	156.09	38	998, 3	4, 177. 9	999. 9	234.
C ₈ H ₁₂ O ₃	(s) (unsym.). Diethylsuccinic anhydride	156.09	38	995. 6	4, 166. 6	999.9	234.
	(s) (racem.) (sym.). Diethylsuccinic anhydride			997. 2	4, 173. 2		234.
C ₁₀ H ₈ O ₃ C ₁₀ H ₁₄ O ₃	(s) (racem.) (anti). Phenylsuccinic anhydride (s) Camphoric anhydride (s)	176. 06 182. 11	42 48	1, 094. 1 10 1, 251. 8	4, 578. 8 5, 238. 8	2, 106. 6 1, 260. 4	234. 183; cf. 127, 124.
C ₁₀ H ₁₆ O ₃	Triethylsuccinic anhydride (s).	184. 12	50	1,309.5	5, 480. 3	1, 312. 5	234.
${}^{\mathrm{C}_{12}\mathrm{H}_6\mathrm{O}_3}_{\mathrm{C}_{12}\mathrm{H}_{20}\mathrm{O}_3}_{\mathrm{C}_{12}}$	Naphthalic anhydride (s) Tetraethylsuccinic anhydride (s).	198. 05 212, 15	48 62	11 1, 257. 6 1, 621. 3	5, 259. 3 6, 785. 1	1, 240. 4 1, 625. 1	127. 234.
$C_{12}H_{22}O_{3}$	Diethylacetic anhydride (s) Benzoic anhydride (s)	214. 18 226. 08	64 60	1, 669. 1 1, 555. 1	6, 980. 2 6, 508. 1	1, 677. 2 1, 566. 0	227. 205; cf. 227.
$C_{14}H_{26}O_{3}$	Heptylic anhydride (s) Diphenylsuccinic anhydride (racem.) (s).	242. 21 252. 10	76 70	1, 985. 5 1, 815. 9	8, 303. 4 7, 599. 5	1, 989. 8 1, 826. 5	227. 234.
C ₁₆ H ₁₀ O ₃	Diphenylmaleic anhydride (s).	250.08	68	1, 768. 9	7, 402. 9	1, 774. 9	182.
$\begin{array}{c} C_{18}H_{14}O_{3}\\ C_{28}H_{22}O_{3}\end{array}$	Cinnamic anhydride (s) Diphenylacetic anhydride (s).	298. 11 406. 18	80 128	2, 091. 3 3, 308. 0	8, 745. 8 13, 834. 1	2, 107. 0 3, 337. 4	227. 227.
C ₃₂ H ₃₀ O ₃	Dibenzylacetic anhydride (s) (glassy).	462. 24	152	3, 931. 4	16, 441. 1	3, 962. 6	227.

The mean of several values.
 Individual determinations do not agree better than 0.7 per cent; values of (127) are also on the whole
 1 per cent higher than those of (183).

2. CHO COMPOUNDS—Continued

45. LACTONES $Q=26.05 \times N+13$

Formula	Name	Molec- ular weight	Number of electrons (N)	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₈ H ₁₀ O ₅ C ₆ H ₁₀ O ₆ C ₆ H ₁₀ O ₆ C ₆ H ₁₀ O ₆ C ₇ H ₁₀ O ₄ C ₇ H ₁₂ O ₇	Saceharinic acid lactone (s) ¹² <i>l</i> -Gulonolactone (s). <i>l</i> -Mannolactone (s). <i>d</i> -Mannolactone (s). Terebic acid (s) (γ,γ-Dimethylparaconic acid). Glucoheptonic acid lactone	162. 08 178. 08 178. 08 178. 08 178. 08 158. 08	24 22 22 22 22 30 26	656. 6 614. 7 616. 3 618. 7 778. 3	2, 747. 9 2, 570. 7 2, 577. 4 2, 587. 4 3, 254. 9 3, 037. 4	662. 2 625. 1 625. 1 625. 1 794. 5	195. 68. 68. 68. 145.
C ₈ H ₆ O ₂ C ₈ H ₁₄ O ₈ C ₁₀ H ₁₀ O ₄ C ₁₁ H ₁₂ O ₅	(s). Phthalide (s)	134. 05 238. 11 194. 08 224. 10	34 30 42 46	884. 1 836. 7 1, 136. 7	3, 699. 9 3, 499. 1 4, 753. 7 5, 281. 5	891. 7 843. 5 1, 139. 1 1, 139. 1	199; cf. 157. 68. 106; cf. 107.

46. METHYL ESTERS OF MONOBASIC ACIDS $Q=26.05 \times N+16.5$

₹-20.00 \ 14 \ \ 10.0									
C ₂ H ₄ O ₂	Methyl formate (v)	60 60. 03	8	240. 2 233. 1	1,004.5		223; cf. 40.		
C ₃ H ₆ O ₂	Methyl formate (liq.) Methyl acetate (v)		14	397. 7	974. 8 1, 663. 2		26. 223.		
	Methyl acetate (liq.)			{ 390. 0 381. 2	1, 631. 0 1, 595. 2	381. 2	78. 172; cf. 65.		
C ₄ H ₈ O ₂	Methyl propionate (v) Methyl lactate	88 104, 06	20 18	552. 3 497. 2	2, 309. 7 2, 079. 3	537. 5 498. 3	223. 75.		
C ₅ H ₁₀ O ₂	Methyl butyrate	102.00	26	692. 8	2, 897. 3	693. 8	65.		
C5H10O2	Methyl isobutyrate	102.08	26	694. 2	2, 904. 5	693. 8	154.		
C ₅ H ₈ O ₃	Methyl acetylacetate	116.06		594. 0	2, 484. 1		78.		
$C_6H_{10}O_2$	Methyl dimethylacrylate Methyl cyclobutanecarbox-	114. 08 114. 08	30 30	804. 4 14 809. 1	3, 369. 6 3, 383. 7	810. 8 810. 8	163. 215.		
00111002	ylate.	114.00	30	303.1	0, 000. 1	810.8	215.		
C9H ₁₄ O ₂	Methyl cyclohexene-1-ace-	154. 11	46	1, 210. 1	5, 069. 1	1, 221. 3	167.		
C ₉ H ₁₄ O ₂	tate. 15 Methyl cyclohexylideneace-	154. 11	46	1, 216. 5	5, 095. 9	1, 221. 3	167.		
0 7 6	tate.					ĺ			
C ₁₀ H ₁₆ O ₂	Methyl α-cyclohexene-1-	168. 13	52	1, 349. 3	5, 652. 2		167. 5.		
C ₁₀ H ₁₆ O ₂	propionate. Methyl methyl-4-cyclo-	168. 13	52	1, 373. 9	5, 755. 3	1, 377. 6	167.		
C ₁₀ H ₁₆ O ₂	hexylidene-1-acetate. 16 Methyl methyl-4-cyclo- hexene-1-acetate.	168. 13	52	1, 362. 0	5, 705. 5	1, 377. 6	167.		
C ₁₀ H ₁₆ O ₂	Methyl α-cyclohexylidene-	168. 13	52	1, 374. 6	5, 758. 2	1, 377. 6	167.		
C ₁₁ H ₁₈ O ₃	propionate. Methyl pinonate.	198. 14	56	1, 477. 3	6, 188. 4	1, 481.8	175.		

14 Note correction for cyclobutane ring in formula for polymethylenecarboxylic acids.

2. CHO COMPOUNDS—Continued

47. METHYL ESTERS OF MONOBASIC AROMATIC ACIDS

 $Q=26.05 \times N+16.5-3.5a-6.5b$

Formula	Name	Molec- ular weight	Number of electrons	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₈ H ₈ O ₂ C ₅ H ₃ O ₃ C ₈ H ₈ O ₃ C ₈ H ₁ OO ₃	Methyl benzoate	136. 06 152. 06 152. 06 184. 06 166. 08	36 34 34 30 40	943. 5 898. 3 895. 4 801. 6 1, 068. 7	3, 948. 6 3, 759. 4 3, 747. 3 3, 354. 7 4, 472. 5	950. 8 902. 2 902. 2 805. 0 1, 074. 5	205. 206. 191. 191.
$\begin{array}{c} C_{10}H_{10}O_2 \\ \\ C_{10}H_{3}O_2 \\ \\ C_{12}H_{10}O_2 \\ \\ C_{12}H_{14}O_3 \\ \\ \\ C_{12}H_{14}O_3 \\ \\ \end{array}$	Methyl cinnamate (s) Methyl phenylpropiolate Methyl β-naphthoate (s) Methyl ethylcoumarate (trans). Methyl ethylcoumarinate (cis).	162. 08 160. 06 186. 08 206. 11 206. 11	46 44 54 56 56	{ 1, 213. 0 1, 210. 4 1, 196. 2 1, 401. 5 1, 490. 3 1, 495. 0	5, 076. 4 5, 070. 4 5, 002. 5 5, 865. 3 6, 242. 9 6, 262. 6	1, 221. 3 	191. 163. 138. 191. 177.

48. METHYL ESTERS OF POLYBASIC ALIPHATIC ACIDS

 $Q = 26.05 \times N + 16.5 dd$

C ₃ H ₆ O ₃	Dimethyl carbonate	90. 05	12	340. 8	7, 290. 5	345.7	215; cf. 119.
C4П6O4	Dimethyl oxalate (s)	118. 05	14.	{ 401. 9 401. 0	1, 681. 9 1, 678. 2	410. 8	191. 233.
C5H8O4	Dimethyl malonate	132. 06	20	\$ 552. 2 554. 3	2, 309. 3 2, 319. 8	554. 1	78. 233.
C ₆ H ₈ O ₄	Dimethyl fumarate (s) Dimethyl maleate (s)	144. 06 144. 06	24 24	664. 3 669. 2	2, 780. 1 2, 798. 6	17 671. 3 674. 8	191; cf. 145. 145.
C6H10U4	Dimethyl succinate		26	708. 2 707. 4 703. 3	2, 963. 8 2, 960. 5 2, 943. 3	710. 4	191. 233. 191.
				(17a 617. 8			
C6H10O6	Dimethyl racemate (s)	178. 08	22	617.3	2, 583. 6 2, 581. 6		
C ₆ H ₁₀ O ₆	d-Dimethyl tartrate (s)	178. 08	22	619. 0 618. 3	2, 588. 7 2, 585. 8		145. 10 cf; 9.
C ₆ H ₁₀ O ₆	Dimethyl mesotartrate (s)	178. 08	22	617.3	2, 581. 6	632. 2	10; cf. 180.
C7H10O4	Dimethyl trimethylene-α, α-dicarboxylate.	158. 08	30	826. 9	3, 463. 9	827. 6	175.
	Dimethyl acetylmalonate	174. 08	28	752. 8	3, 148. 2	769. 0	78.
C ₇ H ₁₂ O ₄	Dimethyl glutarate Dimethyl tetramethylene-	160. 09 172. 10	32 36	863. 2 983. 5	3, 612. 5 4, 119. 9	866. 7 983. 8	233. 175.
C ₈ H ₁₄ O ₄	α, β-dicarboxylate. Dimethyl adipate	174. 11	38	1, 019. 6	4, 267. 0	1, 023. 0	233.
C9H16O4	Dimethyl pimelate	188. 12	44	1, 176. 0	4, 921. 5	1, 179. 3	233.
C ₁₀ H ₁₈ O ₄	Dimethyl suberate Dimethyl azelate	202. 14 216. 15	50 56	1, 333. 2 1, 488. 3	5, 579. 4 6, 228. 5	1, 335. 6 1, 491. 9	233. 233.
	Dimethyl sebacate (s)	230. 17	62	1,644.7	6, 883. 1	1, 648. 2	233.
C9H14O7	Trimethyl citrate (s)	234, 11	36	1, 635. 8 983. 0	6, 845. 8 4, 113. 9	993, 9	233. 191.
C ₉ H ₁₄ O ₄	Dimethyl pentamethylene- αβ-dicarboxylate.	186. 11	42	1, 116. 6	4, 677. 4	1, 127. 2	175.
C ₁₀ H ₁₂ O ₄	Dimethyl Δ-1,4-dihydrotere- phthalate (s).	196. 1	44	1, 180. 6	4, 940. 8	1, 192. 3	185.
C ₁₀ H ₁₄ O ₄	Dimethyl Δ -tetrahydrotere-phthalate (s).	198. 11	46	1, 226. 2	5, 131. 7	1, 237. 8	185.

¹⁷ The heat of fusion of dimethyl fumarate is 8.3, which would bring the calculated value to approxi-

The heat of fusion of dimethyl lumarate is 8.3, which would bring the calculated value a deprenantly 663.0 kg-cal.

The work of (10) is much more accurate than that of (145), and preference should be given to his values. The values of (145) are included here merely to allow one to estimate the accuracy of his results and to use this information as a guide in estimating the accuracy of his measurements when no other measurements are available. His results vary widely. On the whole, they are not to be trusted to an accuracy greater than 0.5 per cent, and in many cases the values are not better than 1 to 2 per cent.

2. CHO COMPOUNDS—Continued

48. METHYL ESTERS OF POLYBASIC ALIPHATIC ACIDS—Continued $\label{eq:Q=26.05} Q{=}26.05{\times}N{+}16.5\mathrm{dd}$

Formula	Name	Molec- ular weight	Number of electrons (N)	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₁₀ H ₁₄ O ₈	Tetramethyl ethanetetracar- boxylate (s) (sym.).	262. 11	38	1, 045. 1	4, 373. 7	1, 056. 0	183.
C ₁₀ H ₁₆ O ₄	Dimethyl norpinate (cis) (Dimethyl 1,1-dimethyl-cyclobutane-2,4-dicarboxylate).	200. 13	48	1, 287. 5	5, 393. 3	1, 296. 5	175.
C10H16O4	Dimethyl hexahydrotereph- thalate (fum) (s)	200.13	48	1, 273.5	5, 329.6	1, 283. 5	185.
C ₁₁ H ₁₄ O ₈	Tetramethyl α, α, β, β-tri- methylenetetracarboxy- late (s).	274. 11	42	1, 169. 7	4, 895. 2	1, 173. 2	187.
C ₁₁ H ₁₆ O ₄	Dimethyl spiroheptanedi- carboxylate.	212. 13	52	1, 407. 7	5, 896. 9	1, 400. 6	175.
C ₁₁ H ₁₆ O ₈	Tetramethyl methylenedi- malonate 18 (s).	276. 13	44	1, 201. 4	5, 027. 9	1, 212. 3	187.
C ₁₁ H ₁₈ O ₄	Dimethyl a-tanacetonedi- carboxylate.	214. 14	54	1, 451. 4	6, 079. 9	1, 452. 7	175.
C ₁₁ H ₁₈ O ₄	Dimethyl pinate	214. 14	54	1, 440. 2	6, 032. 9	1, 452. 7	175.

^{18 (}CH₃.CO₂)₂.CH.CH₂.CH(CO₂CH₃)₂.

49. METHYL ESTERS OF POLYBASIC AROMATIC ACIDS

 $Q = 26.05 \times N + 16.5 dd - 3.5a - 6.5b$

			1	1			
C10H10O4	Dimethyl phthalate	194.08	42	1, 119. 7	4, 685. 9	1, 120. 1	191.
C10H10O4	Dimethyl isophthalate (s)	194.08	42	1, 111.1	4, 649. 9	1, 120. 1	191.
C10H10O4	Dimethyl terephthalate (s)	194.08	42	1, 111.6	4,652.0	1, 120. 1	191; cf. 185.
C12H12O6	Trimethyl trimesate (s)	252. 10	48	1, 291. 7	5, 405. 8	1, 289. 4	191.
C18H16O4	Dimethyl diphenylmaleate	296. 13	80	2, 111. 9	8, 838. 3	2, 120. 5	183.
	(s).			1		, i	
C18H18O12	Hexamethyl mellitate (s)	426. 13	66	19 1, 824. 3	7, 634. 7		191.
C20H20O4	Dimethyl B-truxillate (s)	324. 16		2, 421. 6	10, 134. 4		183.
					· ·		

¹⁹ This value is not quite satisfactory, although it is the mean of a number of determinations.

50. ETHYL ESTERS OF MONOBASIC ALIPHATIC ACIDS

 $Q = 26.05 \times N + 16.5$

C3H6U2	Ethyl formate (v) Ethyl formate (liq) Ethyl acetate (v)	74.05	14	398. 4 391. 7 544. 4		537. 5	223.
C ₄ H ₈ O ₂	Ethyl acetate (liq)	88.06		{536. 9 539. 9	2, 245. 3 2, 257. 9		78. 172.
	Ethyl propiolate		22	634. 8	2, 654. 7	635. 7	138.
C ₅ H ₁₀ O ₂	Ethyl propionate Ethyl lactate	102. 08 118. 08	26 24	690. 8 653. 3	2, 891. 0 2, 732. 1	693. 8 654. 7	172. 75; ef. 118.
C ₆ H ₁₀ O ₃	Ethyl acetoacetate		28	753. 6	3, 151. 6	755. 4	112.
0011003	Ethyl accoacciate	100.00		100.0	0, 101. 0	100.1	112.
C6H12O2	Ethyl n-butyrate	116. 10	32	851. 2	3, 559. 7	850. 1	118.
C ₆ H ₁₂ O ₂	Ethyl isobutyrate	116. 10	32	845. 7	3, 536. 7	850. 1	118.
C7H ₁₂ O ₂	Ethyl tetramethylenecar- boxylate.		36	965. 1	8, 297. 9	967. 3	175.
C7H12O2	Ethyl angelate	128. 10	36	964. 2	4, 035. 2	967.8	151.
C7H12O2	Ethyl tiglate (s)	128. 10	36	954. 4	3, 994. 2	967. 8	151.
C7H12O2	Ethyl allylacetate		36	971.5	4, 065. 7	967. 8	151.
C7H12O3	Ethyl α-ethoxyacrylate (s)	144. 10	34	926. 1	3, 875. 7	934. 7	166.
C7H12O3	Ethyl &-ethoxyacrylate	144. 10	34	923. 4	3, 864. 4		166.
C7H14O2			38	1,017.5	4, 255. 1	1, 006. 4	65.
C ₈ H ₁₂ O ₂	Ethyl sorbate	140. 10	40	20 1, 012. 0	4, 239. 3		162.
C8H12O4	Ethyl diacetylacetate	172. 10	36	972. 1	4, 065. 3	967.3	78,

^{.40} This value is apparently too low and would bear reinvestigation,

2. CHO COMPOUNDS—Continued

50. ETHYL ESTERS OF MONOBASIC ALIPHATIC ACIDS-Continued $Q = 26.05 \times N + 16.5$

Formula	Name	Molec- ular weight	Number of electrons	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calculated to the liquid state)	Literature
C ₈ H ₁₄ O ₃ C ₈ H ₁₄ O ₃ C ₁₀ H ₁₆ O ₂	Ethyl α-ethoxycrotonate (s) Ethyl α-ethylacetoacetate Ethyl β, δ-dimethylsorbate	158. 11 158. 11 168. 13	40 40 52	1, 076. 9 1, 070. 9 21 1, 351. 3	4, 506. 8 4, 481. 6 6, 078. 8	1, 091. 0 1, 068. 0	166. 242. 162.
C ₁₀ H ₁₆ O ₂ C ₁₀ H ₁₆ O ₂	Ethyl amylpropiolate Ethyl (cyclohexene-1)-ace- tate.	168. 13 168. 13	52 52	1, 394. 0 1, 360. 4	5, 829. 7 5, 698. 7	1, 404. 2 1, 377. 6	138. 167.
C ₁₀ H ₁₆ O ₂	Ethylcyclohexylidene	168. 13	52	1, 367. 0	5, 726. 4	1, 384. 1	167.
C ₁₁ H ₁₆ O ₂	acetate. Ethyl 1-methylcyclohexene- 1-methene-3-carboxylate.	180. 13		1, 477. 0	6, 187. 2		174.
C ₁₁ H ₁₈ O ₂	Ethyl hexylpropiolate Ethyl α-(cyclohexene-1)-	182. 14 182. 14	58 58	1, 550. 8 22 1, 501. 5	6, 485. 5 6, 289. 8	1, 560. 5	138. 167.
C ₁₁ H ₁₈ O ₃	propionate. Ethyl methyl-1-ethyl-4-cy-	198.14		1, 465. 8	6, 129. 9		215.
C ₁₂ H ₁₈ O ₂	clopentanone carboxylate. ²³ Ethyl 1,3-Dimethyl-4-cy- clohexene-3-methene-5- carboxylate.	194.14		1, 631. 4	6, 833. 9		176.

51. ETHYL ESTERS OF MONOBASIC AROMATIC ACIDS $Q=26.05 \times N+16.5 -3.5a-6.5b$

		· ·						
$C_9H_{10}O_3$ $C_{11}H_{10}O_2$ $C_{12}H_{14}O_2$	Ethyl benzoate	174. 08 190. 11 190. 11	42 40 40 50 58 58 56	1, 098. 7 1, 051. 2 1, 042. 8 1, 338. 6 1, 526. 8 1, 527. 5 1, 494. 2	4, 598. 1 4, 399. 3 4, 364. 1 5, 598. 0 6, 395. 8 6, 398. 7 6, 259. 2	1, 107. 1 1, 055. 0 1, 055. 0 1, 345. 6 1, 533. 9 1, 533. 9 1, 501. 3	205. 206. 206. 138. 163. 163. 177.	

²⁴ See also Ber., 25, p. 90; 1892, for heats of combustion of polymers of ethyl cinnamate.

52. ETHYL ESTERS OF POLYBASIC ALIPHATIC ACIDS $Q = 26.05 \times N + 16.5 dd$

C ₅ H ₁₀ O ₃	Diethyl carbonate	118. 08 146. 08 160. 10 174. 11 206. 11 206. 11 170. 08	24 26 32 38 34 34 34	{ 647. 9 642. 1 716. 0 860. 4 1, 007. 3 930. 6 931. 3 957. 6	2, 709. 5 2, 685. 3 2, 994. 3 3, 598. 2 4, 212. 5 3, 894. 6 3, 896. 9 4, 004. 7	723. 3 866. 6 1, 022. 9 931. 7 931. 7 951. 8	215. 119. 119. 119. 119. 9. 9. 138.
C ₁₀ H ₁₈ O ₄	Diethyl dimethylsuccinate $(sym.)$.	202. 14	50	1, 328. 9	5, 561. 4	1, 335. 5	183.
C ₁₀ H ₁₈ O ₄	Diethyl dimethylsuccinate (rac.).	202. 14	50	1, 322. 9	5, 536. 3	1, 335. 5	9.
C ₁₀ H ₁₈ O ₄	Diethyl dimethylsuccinate (meso) (s).	202. 14	50	1, 324. 1	5, 541. 4	1, 335. 5	9.
C ₁₂ H ₂₀ O ₇	Triethyl citrate	276. 16	54	1, 459. 1	6, 101. 9	1, 462. 7	118.
C ₁₄ H ₂₀ O ₈	Tetraethyl ethylenetetracar- boxylate (s).	316. 16	60	1, 627. 7	6, 811. 9	1, 642. 0	183.
C ₁₄ H ₂₂ O ₈	Tetraethyl ethanetetracar- boxylate (sym.) (s).	318. 18	62	1, 661. 2	6, 952. 1	1, 681. 1	
C ₂₀ H ₂₂ O ₄	Diethyl diphenylsuccinate	326. 18	94	2, 450. 8	10, 256. 6	2, 474. 9	166.
C ₂₀ H ₂₂ O ₄	(rac.) (s). Diethyl diphenylsuccinate (meso) (s).	326. 18	94	2, 449. 4	10, 250. 7	2, 474. 9	166.

<sup>This value appears to be low.
This value appears to be low.
In the article by Swietoslawski (J. Amer. Chem. Soc., 40, p. 1099; 1920) the compound is named "ethyl ester of methylethyl-1,4-cyclopentanecarboxylic acid." However, neither the empirical formula nor the molecular weight corresponds to the above name. The above formula is suggested, for it corresponds to the molecular weight given.</sup>

2. CHO COMPOUNDS—Continued

53. ESTERS OF ALIPHATIC ACIDS

(All types)

 $Q = 26.05 \times N + 16.5 dd$

Formula	Name	Molec- ular weight	Num- ber of elec- trons (N)	Kg-cal ₁₅ (experi- mental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₄ H ₆ O ₂ C ₄ H ₆ O ₂ C ₇ H ₁₄ O ₂ C ₇ H ₁₄ O ₂ C ₁₂ H ₂ O ₂ C ₁₈ H ₃₈ O ₂ C ₃₂ H ₆₄ O ₂ C ₃₂ H ₆₄ O ₂	Allyl formate (v)	86. 0 86. 05 100. 06 130. 11 196. 16 284. 2 480. 51	18 18 24 40 64 104 188	525. 8 498. 1 655. 8 25 1, 042. 5 1, 717. 3 2, 728. 1 4, 872. 8	2, 198. 9 2, 084. 5 2, 742. 6 4, 359. 7 7, 181. 8 11, 417. 1 20, 392. 7	498. 4 654. 7 1, 058. 5 1, 716. 8 2, 725. 7 4, 913. 9	223. 164. 119. 158. 138. 183.

²⁵ The accuracy of the method employed and the value for the compound given are probably not better than 1 per cent.

54. ESTERS OF AROMATIC ACIDS

(All types)

 $Q = 26.05 \times N + 16.5$

	,,		,				
C10H12O2	Propyl benzoate	164. 10	48	1, 254. 5	5, 250, 1	1, 263, 4	205.
C ₁₀ H ₁₂ O ₃	Propyl salicylate	180. 10	46	1, 205. 7	5, 045, 9	1, 214. 8	206.
C ₁₀ H ₁₂ O ₃	Propyl p-hydroxybenzo-	180. 10	46	1, 200. 6	5, 024. 5	1, 214.8	206.
C ₁₁ H ₁₄ O ₂	ate (s). Isobutyl benzoate	178, 11	54	1, 411, 4	5, 906, 7	1, 419, 7	205.
C111114O2	Isobutyi benzoate	110.11	04	1,411.4	0, 900. 1	1, 419. /	200.
C11H14O3	Isobutyl salicylate	194.0	52	1, 365. 5	5, 714, 6	1, 371. 1	206.
C ₁₂ H ₁₆ O ₂	Amyl benzoate	192.13	60	1, 569. 5	6, 568. 4	1, 576. 0	205.
C ₁₂ H ₁₄ O ₂	Propyl cinnamate	190.11	58	1, 526. 0	6, 392. 4	1, 533. 9	163.
C48H38O12	Mannitol hexabenzoate (s)	806.30	206	5, 358. 5	22, 425. 3		206.
						1	

55. PHENOL ESTERS

$Q=26.05 \times N+16.5-3.5a-6.5b+3.5m$

C ₁₂ H ₁₄ O ₃	Eugenol acetate (s)	206. 11	56	1, 497. 8	6, 268. 3	1, 504. 3	196.
C ₁₂ H ₁₄ O ₃		206. 11	56	1, 488. 2	6, 228. 1	1, 501. 3	196.
C ₁₃ H ₁₀ O ₂		198. 08	58	1, 510. 5	6, 321. 4	1, 523. 9	183.
C ₁₄ H ₁₂ O ₂		212. 10	64	1, 660. 1	6, 947. 5	1, 680. 2	205.
C ₁₄ H ₁₂ O ₄ C ₁₅ H ₁₄ O ₂ C ₁₆ H ₁₆ O ₂ C ₁₇ H ₁₈ O ₂	Guaiacol salicylate (s)o-Xylenyl benzoate (s)Pseudocumenyl benzoate (s)Thymyl benzoate (s)Thymyl benzoate (liq.)	244. 10 226. 11 240. 13 254. 14	60 70 82	1, 589. 8 1, 814. 3 1, 967. 8 2, 127. 6 2, 131. 9	6, 653. 3 7, 592. 9 8, 235. 2 8, 904. 0 8, 922. 0	1, 583. 0 1, 829. 5 	192, 205, 205, 205, 205,
C ₁₇ H ₁₆ O ₃	Eugenol benzoate (s)	268. 13	78	2, 064. 1	8, 638. 3	2, 074. 4	196.
C ₁₇ H ₁₆ O ₃		268. 13	78	2, 054. 9	8, 599. 8	2, 071. 4	196.
C ₁₇ H ₁₆ O ₃		268. 13	78	2, 064. 3	8, 639. 1	2, 073. 9	196.
C ₂₀ H ₁₄ O ₄		318. 11	86	2, 237. 0	9, 361. 9	2, 266. 0	205.

56. GLYCEROL ESTERS

C ₁₅ H ₂₆ O ₆ C ₁₅ H ₂₀ O ₆ C ₁₈ H ₂₆ O ₆ C ₂₄ H ₂₀ O ₆ C ₃₉ H ₇₄ O ₆	Glyceryl tributyrate	302. 21 296. 16 338. 21 404. 16 638. 59	 1, 941. 1 1, 844. 9 2, 308. 6 2, 718. 9 5, 706. 3	8, 117. 7 7, 715. 4 9, 654. 6 11, 378. 6 23, 880. 9	215. 215. 215. 206. 193; cf. 120.
C45H86O6 C47H88O5 C47H88O5 C69H128O6 C69H128O6	Glyceryl trimyristate	722. 69 732. 70 732. 70 1,053.02 1,053.02	 6, 650. 3 6, 953. 0 6, 979. 0 10, 235. 8 10, 264. 7	27, 831. 5 29, 098. 3 29, 207. 1 42, 836. 8 42, 957. 8	 193; cf. 120. 193. 193. 193. 193.

3. N COMPOUNDS

57. ALIPHATIC AMINES (PRIMARY)

 $Q = 26.05 \times N + 13ee$

Formula	Name	Molec- ular weight	Number of electrons (N)	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
CH ₅ N	{Methylamine (g) Methylamine (liq.) {Ethylamine (g)	31. 05 45. 0	9	256. 9 261. 4 256. 1 413. 1	1, 074. 4 1, 092. 3 1, 071. 0 1, 727. 6	247. 4	223. 142. 99. ²⁶ 223.
C ₂ H ₈ N ₂ .H ₂ O C ₃ H ₇ N	Ethylamine (liq.) Ethylenediamine Allylamine (g) Allylamine (liq.)	78. 10 57. 0 57. 07	16 19	408. 5 452. 6 528. 1 524. 8	1, 709. 6 1, 894. 1 2, 208. 6 2, 196. 3	403. 7 442. 8 521. 0	99; cf. 15. 19. 223. 99.
C ₄ H ₁₁ N	Isobutylamine	73. 10 73. 10	21 27 27	572. 3 558. 3 710. 6 713. 6	2, 393. 4 2, 336. 5 2, 973. 9 2, 986. 4	560. 1 716. 4 716. 4	99. 99.
C ₄ H ₁₁ N	Isoamylamine	73. 10 87. 11 85. 10	27 27 33 31	713. 0 716. 0 866. 8 823. 3	2, 983. 9 2, 996. 5 3, 627. 6 3, 443. 0	716. 4 716. 4 872. 6 833. 5	99. 99. 99; cf. 143. ²⁷ 215.
C ₆ H ₁₅ N	Benzylamine	101. 13 107. 08 113. 13	39 37 43	$ \left\{ \begin{array}{c} 1,022.2\\965.8\\969.4\\ 1,118.7 \end{array} \right. $	4, 277. 9 4, 039. 0 4, 054. 0 4, 678. 4	1, 028. 9 973. 3 1, 133. 1	99. 101. 147.
C ₇ H ₁₇ N	HeptylamineCamphylamine	115. 14	45 59	1, 178. 9 1, 533. 1	4, 933. 7 6, 416. 0	1, 185. 3 1, 576. 9	99. 99.

The author (99) used naphthalene to standardize his bomb calorimeter. However, the value he used for naphthalene was 9,665.0 cal./g. The present best value is 9,617.0 cal./g. His values, therefore, ought to be about 0.5 per cent too high, and they have accordingly been corrected by the proper factor. The data are probably not of a high degree of accuracy.

The data are probably not of a high degree of accuracy.

58. ALIPHATIC AMINES (SECONDARY)

 $Q = 26.05 \times N + 19.5$

C ₂ H ₇ N	Dimethylamine (g)	45. 0 45. 07 73. 0 73. 1	15 	$\left\{\begin{array}{c} 418.2\\ 426.0\\ 416.7\\ 730.6\\ 722.8\\ 28\ 716.9 \end{array}\right.$	1, 749. 4 1, 782. 8 1, 743. 9 3, 057. 6 3, 024. 9 3, 000. 2	410. 2	223. 142. 99. 223. 99. 143.
C ₈ H ₁₉ N C ₉ H ₁₃ N C ₁₀ H ₂₃ N C ₁₄ H ₁₅ N	Diisobutylamine Benzylethylamine Diisoamylamine Dibenzylamine (s)	129. 16 135. 11 157. 19 197. 13	51 49 63 71	1, 348. 4 1, 289. 6 1, 660. 4 1, 853. 0	5, 643. 1 5, 397. 1 6, 948. 8 7, 754. 8	1, 358. 1 1, 292. 5 1, 660. 5 1, 869. 0	99. 99. 99.

²⁸ Little significance should be attached to values of (143) for the redetermination of the heats of combustion of the three amines by the same author (142) some 25 years later showed enormous variations from the values obtained previously. The values by (142) are, on the whole, too low.

59. ALIPHATIC AMINES (TERTIARY)

 $Q = 26.05 \times N + 26$

²⁹ See footnote 28.

3. N COMPOUNDS—Continued

60. AROMATIC AMINES_(PRIMARY)

 $Q = 26.05 \times N + 6.5 - 3.5 \text{hh} - 3.5 \text{a} - 6.5 \text{b}$

Formula	Name	Molec- ular weight	Number of electrons	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₆ H ₇ N	Aniline	93. 07	31	812. 7 811. 7 816. 7	3, 401. 2 3, 396. 9 3, 417. 9	810. 5	182. 99. 211; cf. 184, 147.
C ₆ H ₇ NO C ₆ H ₈ N ₂	p-Aminophenol (s)p-Phenylenediamine (s)	109. 07 108. 08	29 32	760. 0 843. 4	3, 180. 6 3, 529. 6	765. 5 839. 6	97. 24.
C7H9N C7H9N C7H9N C7H9NO	m-Toluidinep-Toluidine (s)	107. 08 107. 08 107. 08 123. 08	37 37 37 37 35	964. 3 965. 3 958. 4 924. 0	4, 032. 7 4, 036. 9 4, 008. 0 3, 866. 9	963. 3 -963. 3 963. 3 934. 2	147. 147. 147. 99.
C ₈ H ₁₁ N C ₉ H ₁₃ N C ₁₀ H ₉ N C ₁₀ H ₉ N	Pseudocumidine (s)		43 49 49 49	1, 108. 0 1, 265. 9 1, 263. 5 1, 261. 0	4, 637. 0 5, 297. 8 5, 287. 8 5, 298. 2	1, 116. 2 1, 268. 9 1, 266. 4 1, 266. 4	99. 99. 99. 99.
$\begin{array}{c} C_{12}H_{12}N_2 \\ C_{12}H_{12}N_2 \\ C_{19}H_{19}N_3O \end{array}$	Benzidine (s)	184. 12 184. 12 305. 18	60 60	{ 1, 556. 0 1, 560. 9 1, 561. 8 2, 483. 5	6, 511. 9 6, 532. 4 6, 536. 1 10, 386. 0	1, 562. 5 1, 562. 5	100. 147. 147. 179.

³⁰ This article also contains the heats of combustion of rosaniline hydrochloride and the hexamethylrosaniline hydrochloride.

61. AROMATIC AMINES (SECONDARY)

 $Q\!=\!26.05\!\times\!N\!\!+\!\!13\!-\!\!3.5\mathrm{hh}$

$ \begin{array}{cccc} C_7H_9N & & & & & \\ C_8H_{11}N & & & & & \\ C_{12}H_{11}N & & & & & \\ C_{12}H_{11}N & & & & & \\ C_{16}H_{12}N & & & & \\ C_{16}H_{12}N & & & & \\ \end{array} $ $ \begin{array}{cccc} Methylaniline & & & & \\ Diphenylamine & (s) & & & \\ Phenyl-\alpha-naphthylamine & (s) & & \\ Phenyl-\beta-naphthylamine & (s) & & \\ Phenyl-\beta-naphthylamine & (s) & & \\ \end{array} $		37 43 59 77 77	973. 5 1, 121. 5 1, 536. 2 1, 530. 2 2, 003. 8 1, 998. 0	4, 071. 2 4, 693. 5 6, 428. 9 6, 403. 9 8, 382. 6 8, 361. 6	973. 3 1, 129. 6 1, 542. 9 	147; ef. 72. 99. 182. 99. 99.
---	--	----------------------------	---	--	--------------------------------------	---

62. AROMATIC AMINES (TERTIARY)

 $Q=26.05 \times N+19.5-3.5 \text{hh}$

C ₈ H ₁₁ N. Dimethylaniline. Diethylaniline. Triphenylamine (s).	149, 13	55 1, 451. 6	6, 074, 9	1, 448, 7	182.
--	---------	--------------	-----------	-----------	------

63. AMINO ACIDS 31 (ALIPHATIC)

C ₂ H ₅ NO ₂	Glycine (s) Sarcosine (s) (N-methylgly-	75. 05 89. 07	9 15	234. 5 233. 4 401. 1	981. 4 977. 7 1, 678. 6	194. 241. 195.
C ₃ H ₇ NO ₂	cine). Alanine (s) (α -Aminopropionic acid).	89. 07	15	{ 387.7 389.4	1, 622. 5 1, 631. 2	94. 66; cf. 23,
C ₃ H ₇ NO ₂ C ₃ H ₇ NO ₂ C ₃ H ₇ NO ₃	d-l-Alanine (s) d-Alanine (s) Isoserine (s)	89. 07 89. 07 105. 07	15 15 13	387. 5 387. 5 343. 7	1, 623. 2 1, 623. 2 1, 439. 8	241. 241. 241. cf. 66.

³¹ The general expression $Q=26.05 \times N+a$ covers this class of compounds adequately. However, since no heat of fusion is available for this class, it is impossible to estimate the value of "a". It is probably 6.5.

3. N COMPOUNDS—Continued

63. AMINO ACIDS (ALIPHATIC)—Continued

Formula	Name	Molec- ular weight	Num- ber of elec- trons (N)	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calculated to the liquid state)	Literature
C4H7NO4 C4H7NO4		133. 07 133. 07		396. 1 384. 9	1, 657. 7 1, 610. 8		198. 183; cf. 23.
$\begin{array}{cccc} C_4H_7NO_4 & & \\ C_4H_8N_2O_3 & & \\ C_4H_8N_2O_3H_2O_4H_8N_2O_3 & & \\ \end{array}$	l-Aspartic acid (s) Asparagine (s) Asparagine (cryst) Glycylglycine (s)	132. 08		$\left\{\begin{array}{c} 385.6\\ 32\ 383.\ 1\\ 463.\ 3\\ 459.\ 7\\ 470.\ 7\end{array}\right.$	1, 615. 3 1, 601. 7 1, 938. 9 1, 922. 0 1, 971. 8		66. 64. 194. 64. 66.
C ₅ H ₈ N ₂ O ₅ C ₅ H ₁₁ NO ₂	Glycylglycinecarboxylic acid (s). dl-α-Aminoisovaleric acid (s)	176. 08 117. 10		471. 3 700. 8	1, 974. 3 2, 935. 7		241; cf. 66. 241.
C ₅ H ₉ NO ₄ C ₆ H ₉ NO ₆	(Valine). Glutamic acid (s) (act.) Triglycolamidic acid (s)	147. 08 191. 0		542. 4 559. 6	2, 272. 1 2, 341. 9		66; cf. 64. 198.
$C_6H_{10}N_2O_2$ $C_6H_{10}N_2O_2$ $C_6H_{11}N_3O_4$ $C_6H_{12}N_2O_3$	Alanine anhydride (s)d-Alanine anhydride (s)Diglycylglycine (s)Glycylglycine ethyl ester (s)	142, 10 142, 10 189, 12 160, 12		786. 4 786. 0 709. 8 803. 2	3, 294. 2 3, 292. 6 2, 973. 4 3, 364. 6		66. 66. 241. 66.
C ₆ H ₁₃ NO ₂	roic acid).	131, 11		855. 6	3, 580. 7		194; cf. 66, 23.
C ₇ H ₁₃ NO ₃ C ₈ H ₁₆ N ₂ O ₃ C ₈ H ₁₄ N ₄ O ₅		159. 11 188. 15 246. 15		917. 4 1, 095. 3 946. 6	3, 842. 9 4, 588. 2 3, 965. 3		241. 241. 241.
C ₉ H ₁₆ N ₂ O ₅	ethyl ester (s).	232. 15		1, 120. 4	4, 693. 4		66.
C ₉ H ₁₆ N ₂ O ₅	β-Carbethoxyglycylglycine ethyl ester (s). Leucylglycylglycine (s)	232. 15 245. 18		1, 091. 9 1, 333. 1	4, 573. 9 5, 584. 4		66. 66.
C ₁₂ H ₂₂ N ₂ O ₂	Leucineimide (s) (3,6-diiso- butyl-2,5-diacipiperazine).	226. 20		1, 723. 8	7, 220. 9		66.

³² See footnote 74b.

64. AMINO ACIDS

(Containing a phenyl radical)

C ₈ H ₉ NO ₂	Phenylglycine (s)	165, 10	 965. 2 1, 111. 3	4, 043. 2 4, 655. 2	 66. 66. 66. 64; cf. 23.

65. AMIDES (ALIPHATIC)

$Q=26.05\times N$

CH ₃ NO CH ₄ N ₂ O	Formamide Urea (s)	45. 03 60. 05	5 6	134. 9 151. 6	564. 6 633. 8	156. 3	209. 64; cf. 194
C ₂ H ₃ NO ₃	Oxamic acid (s)	89. 03	5	{ 128. 6 132. 6	537. 8 554. 9	130. 2	42, 92. 130. ³³ 184.
C2H4N2O2	Oxamide (s)	88. 05	8	203. 2	850. 4	208. 4	184.
C ₂ H ₄ N ₂ O ₂			11	207. 0 282. 6	865. 7 1, 182. 7		130. 209.
C ₃ H ₄ N ₂ O ₄ C ₃ H ₅ N O ₃	Oxaluric acid (s) Methyl oxamate (s)	132. 05 103. 05	8	207. 5 305. 4	868. 4 1, 278. 1		130. 184.
C ₃ H ₆ N ₂ O ₂	Malonamide (s)		14	358. 8	1, 501. 6	364. 7	184.
C ₃ H ₆ N ₂ O ₂	Acetylurea (s)	102. 07	14	360. 9	1, 510. 4	364. 7	130.
	Hydantoic acid (s) Propionamide (s)		12 17	308. 6 439. 9	1, 291. 5 1, 840. 9	312. 6 442. 8	130. 209.
C ₃ H ₇ NO ₂ C ₃ H ₈ N ₂ O	Urethane (s) Ethylurea (s)		15 18	397. 2 472. 0	1, 662. 3 1, 975. 3	402. 7 475. 4	184. 130.

³³ The author (130.5) gives the heat of combustion of guanidine nitrate, CH₆N₄O₃.

3. N COMPOUNDS—Continued

65. AMIDES (ALIPHATIC)-Continued

 $Q=26.05\times N$

Formula	Name	Molec- ular weight	Number of electrons	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C4H7NO3	Ethyl oxamate (s)	117. 07 113. 08	17	457. 3 563. 4	1, 913. 8	459. 3	184. 64.
C ₄ H ₇ N ₃ O C ₄ H ₈ N ₂ O ₂	Creatinine (s) Succinamide (s)		20	509. 2	2, 355. 6 2, 131. 0	521. 0	184.
C4H8N2O4	d-Tartramide	148.08	16	427.0	1, 786. 9	429.8	54.
C4H8N2O4	Mesotartramide	148.08	16	426. 6	1, 785. 3	429.8	54.
C ₄ H ₉ NO			23 23	596. 0 595. 9	2, 494. 3 2, 493. 8	599. 2 599. 2	209. 209.
C4H9N3O2	Creatine (anhydr.) (s)	131. 10		559.8 555.4	2, 342. 8 2, 322. 1		194. 64.
C4H9N3O2.H2O.	Creatine (cryst)	149. 12		553. 1	2, 314. 7		194.
C ₅ H ₁₀ N ₂ O ₂	Dimethylmalonamide (sym.) (s).	130, 1	26	685.8	2, 870. 1	677. 3	184.
C5H11NO	Isovaleramide (s)	101. 10	29	751. 5	3, 145. 0	755. 5	209.
C7H14N2O2			38	994.8	4, 163. 2	989. 9	184.
C ₈ H ₁₃ NO	Amylpropiolamide (s)	139. 11	43	1, 150. 4	4, 810. 9	1, 153. 2	138.
C8H16N2O4	d-Tartaricdiethylamide		40	1, 064. 1	4, 453. 3	1, 068. 0	54.
C8H16N2O4	dl-Tartaricdiethylamide		40	1, 064. 3	4, 454. 1	1,068.0	54.
C ₈ H ₁₆ N ₂ O ₄ C ₉ H ₁₅ NO	Mesotartaricdiethylamide Hexylpropiolamide (s)		40 49	1, 065. 3 1, 308. 0	4, 458. 3	1, 068. 0 1, 309. 5	54. 138.
C91151NO	Heralbiobioramide (8)	100, 10	49	1, 508.0	5, 470. 1	1, 509. 5	100.

66. ACID AMIDES (AROMATIC)

 $Q = 26.05 \times N - 3.5 \text{hh}$

C ₇ H ₇ NO C ₇ H ₇ NO C ₇ H ₈ N ₂ O C ₈ H ₉ NO C ₉ H ₇ NO	Benzamide (s)	121. 07 121. 07 136. 08 135. 08 145. 06	33 33 34 39 41	847. 6 861. 0 879. 6 1, 010. 4 1, 095. 6	3, 547. 2 3, 603. 3 3, 681. 1 4, 228. 5 4, 581. 8	856. 1 882. 2 1, 012. 4 1, 094. 7	209. 209. 184. 209. 138.
C ₉ H _@ NO ₃ C ₀ H ₁₁ NO C ₁₀ H ₁₁ NO ₃	Hippuric acid (s) (Benzoylglycine)., Propionanilide (s) Benzoylalanine (s) Benzoylsarcosine (s)	179. 08 149. 10 193. 10 193. 10	39 45 45 45	1, 012. 4 1, 167. 6 1, 168. 1 1, 179. 8	4, 236. 9 4, 886. 4 4, 888. 5 4, 937. 5	1, 018. 9 1, 168. 7 1, 175. 2 1, 175. 2	208; cf. 64, 23. 209. 208. 208.
C ₁₀ H ₁₁ NO ₃ C ₁₀ H ₁₁ NO ₄	o-Toluylglycine (s) ³⁴ m-Toluylglycine (s) p-Toluylglycine (s) Phenaceturic acid (s) p-Anisylglycine (s) ³⁵	193. 10 193. 10 209. 10	45 45 45 45 43	1, 167. 7 1, 167. 0 1, 167. 5 1, 164. 9 1, 135. 2	4, 886. 8 4, 883. 9 4, 885. 9 4, 875. 1 4, 750. 8	1, 171. 7 1, 171. 7 1, 171. 7 1, 175. 7 1, 139. 6	208. 208. 208. 208. 208.
C ₁₀ H ₁₃ NO ₂ C ₁₁ H ₁₃ NO ₃ C ₁₁ H ₁₃ NO ₃ C ₁₃ H ₁₁ NO C ₁₃ H ₁₂ N ₂ O	Phenacetin (s) o-Toluylalanine (s) p-Toluylalanine (s) Benzanilide (s) Diphenylurea (s) (sym.)	207. 11 197. 10 212. 12	51 51 61 62	1, 285. 2 1, 321. 7 1, 319. 5 1, 575. 5 1, 612. 1	5, 378. 6 5, 531. 3 5, 522. 1 6, 593. 5 6, 746. 6	1, 289. 4 1, 328. 0 1, 328. 0 1, 582. 1 1, 608. 1	208. 208. 209. 184.
C ₁₃ H ₁₂ N ₂ O C ₁₆ H ₁₆ N ₂ O ₂ C ₁₆ H ₁₁ NO ₂ C ₁₆ H ₁₃ NO ₃	Diphenylurea (s) (unsym.) Succinanilide (s) (sym.) Benzalhippuric acid lactone & Benzalhippuric acid (s) (\alpha:\text{\(\alpha\)} = \text{\(\alpha\)} = \te	212, 12 268, 15 249, 10 267, 11	62 76 	1, 614. 5 1, 970. 4 1, 852. 1 1, 848. 4	6, 756. 7 8, 246. 1 7, 758. 5 7, 742. 9	1, 608. 1 1, 972. 8 	184. 66. 66.
С16П15NО3	mic acid). ³⁷ Benzoylphenylalanine (s)	269. 13	73	1, 890. 1	7, 917. 6	1,894.0	66.

34 CH₃.C₆H₄.CONH.CH₂.COOH.
35 H₃CO.C₆H₄.CO.NH.CH₂CO₂H.
36 C₆H₅CO.N—C = CH.C₆H₅.

CO
37 C₆H₅C_H: C(CO₂H).HN.OC.C₆H₅.

3697°--29---4

3. N COMPOUNDS—Continued

67. CYCLIC UREIDES, HYDANTOINS, PYRIMIDINES, PURINES

Formula	Name	Molec- ular weight	Number of electrons (N)	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₃ H ₂ N ₂ O ₃	Parabanic acid (s) l(Oxaylurea).	114. 04		212. 4	888. 9		130.
C ₃ H ₄ N ₂ O ₂ C ₄ H ₂ N ₂ O ₄ .H ₂ O C ₄ H ₄ N ₂ O ₃ C ₄ H ₅ N ₃ O ₃	Hydantoin (s) Alloxan (s) Barbituric acid (s) Aminobarbituric acid (s)	160. 05 128. 05		311. 7 276. 3 358. 7 379. 1	1, 304. 5 1, 156. 3 1, 501. 2 1, 586. 5		130. 130. 66; cf. 130. 130.
C4H6N4O3 C5H4N4O		158. 09 136. 06		{ 413.5 408.1 821.0	1, 730. 5 1, 706. 3 3, 435. 9		130. 64. 19.
C ₅ H ₄ N ₄ O C ₅ H ₄ N ₄ O	purine). 8-Oxypurine (s) Xanthine (s) (2,6-Dioxy-			591. 8 514. 6			19. 24.
C ₅ H ₄ N ₄ O ₃	purine). Uric acid (s) ³⁹	168. 07		460. 2	1, 925. 9		194; cf. 130, 64.
$C_5H_5N_5O_{}$ $C_5H_6N_2O_{2}$ $C_5H_6N_2O_{2}$	Guanine (s) 4-Methyluracil (s) (Natural	151. 01 126. 07 126. 07		586. 4 566. 1 564. 8	2, 454. 1 2, 371. 6 2, 366. 1		194. 241; cf. 66. 66.
C ₅ H ₆ N ₂ O ₃	"thymus"). Dimethylparabanic acid (s)	142. 07		538. 3	2, 252. 8		130.
$C_5H_6N_4O_4$ $C_5H_8N_2O_2$ $C_6H_6N_4$ $C_6H_6N_4O$	Pseudouric acid (s) 4-Methylhydrouracil (s) 7-Methylpurine (s) 7-Methylhypoxanthine (s)	128. 08 134. 08		454. 2 618. 2 821. 0 759. 9	1, 900. 8 2, 589. 8 3, 435. 9 3, 180. 2		130. 66. 19. 19.
C7H8N4O2	Theobromine (s) (3,7-Dimethyl-2,6-dihydroxypurine).	180. 11		845.3	3, 537. 6		130.
$\begin{array}{c} C_8H_6N_4O_8.2H_2O \\ C_8H_8N_6O_6 \\ C_8H_{10}N_4O_2 \end{array}$	Alloxanthine (s) Murexide (s) Caffeine (s) (1,3,7-Trimethyl-xanthine)	322. 12 284. 12 194. 12		583. 9 735. 9 1, 014. 2	2, 443. 6 3, 079. 7 4, 244. 4		130. 130. 194.
$\begin{array}{c} C_8H_{12}N_2O_3 - \dots \\ C_{10}H_8N_2O_2 - \dots \\ C_{12}H_{14}N_4O_6 - \dots \\ C_{12}H_{14}N_4O_8 - \dots \end{array}$	Veronal (s)	188.08		1, 131. 0 1, 322. 1	4, 113. 3 4, 737. 8 5, 533. 0 5, 186. 5		66. 66. 130.

 $^{^{28}}$ The author (130) gives the heat of combustion of methylallantoin, $C_5H_8N_4O_3$. Note, however, that the analysis for nitrogen shows a wide divergence from the calculated value. The values of (130) are open to serious objections in that he used camphor to aid in the combustion of the substance. No great reliance should be attached to any of his values. 39 The author (130) gives also the heat of combustion of ammonium urate, $C_5H_7N_5O_3$.

68. RING NITROGEN COMPOUNDS

C ₄ H ₅ N C ₄ H ₆ N ₂ O ₂	Pyrrole	67. 05 114. 07	567. 7 474. 6	2, 375. 8 1, 988. 1	 24. 241; cf. 66.
C ₅ H ₅ N C ₅ H ₁₁ N	Pyridine Piperidine	79, 05 85, 10	 658. 5 664. 8 826. 6	2, 755. 8 2, 782. 2 3, 459. 3	 53. 57. 57.
C ₆ H ₁₂ N ₄ C ₆ H ₇ N	Hexamethylenetetramine (s). α-Picoline	140. 14 93. 07	 1, 006. 7 815. 2	4, 213. 0 3, 411. 6	 55. * 53.
C ₆ H ₇ N	β-Picoline γ-Picoline	93. 07 93. 07	 812. 2 815. 8	3, 399. 1 3, 414. 1	 53. 53.
C ₇ H ₉ N C ₈ H ₅ NO ₂	Lutidine 40 (Dimethylpyridine). Isatin (s)41	107. 08 147. 05	 968. 0 867. 8	4, 051. 1 3, 631. 7	 53. 1.
C8H7N	Indole (s) - Dioxindol (s) - Tetrahydroquinoline	117. 07 149. 07 135. 11	 1, 022. 2 915. 7 1, 228. 7	4, 277. 9 3, 832. 2 5, 142. 1	 24. 1. 57.

 $^{^{40}}$ The exact isomer not designated in article. 41 The author (1) gives also the heat of combustion of isatide, $\rm C_{16}H_{12}N_2O_4$. obtained by reducing isatin. with zinc dust in acid solution, as 1,777.8 kg-cal $_{15}$ per mole.

3. N COMPOUNDS—Continued

68. RING NITROGEN COMPOUNDS-Continued

Formula	Name	Molec- ular weight	Number of electrons	Kg-cal ₁₅ (experimental)	-Kilo- joules (K. J.)	Kg-cal ₁₅ (calculated to the liquid state)	Literature
C ₉ H ₉ N	Skatole (3-Methylindole)α-MethylindoleQuinoline	131. 08 131. 08 129. 06 143. 08 143. 08	e	1, 170. 5 1, 168. 7 1, 123. 5 1, 283. 5 1, 287. 7	4, 898. 5 4, 891. 0 4, 701. 9 5, 371. 5 5, 389. 0		24. 24. 57. 183. 57.
C ₁₀ H ₉ NO ₄	Opianic acid oxime anhy- dride (s).	207. 08		1, 151. 4	4, 818. 6		183; cf. 161.
C ₁₀ H ₁₃ N	Tetrahydroquinaldine Carbazole (s) Indigo (s)	167.08		1, 382. 1 1, 475. 0 1, 815. 0	5, 784. 1 6, 172. 9 7, 595. 8		57. 24. 1.
C ₂₀ H ₂₇ NO ₁₁	Amygdalin (s)	457. 2		2, 348. 4	9, 828. 0		19.

69. RING NITROGEN COMPOUNDS, IMIDES

$Q=26.05 \times N-3.5 hh$

C ₄ H ₅ NO ₂	Succinimide (s) dl -N-Methyltartrimide (s) d -N-Ethyltartrimide (s) dl	99. 05 145. 06 159. 08 159. 08	17 19 25 25	437. 9 516. 5 671. 1 671. 2	1, 832. 6 2, 161. 6 2, 808. 6 2, 809. 0	442. 8 514. 4 670. 7 670. 7	184; cf. 27. 231. 231. 231.
C ₆ H ₉ NO ₄ C ₈ H ₅ NO ₂ C ₁₀ H ₉ NO ₄ C ₁₀ H ₉ NO ₄	N-Ethylmesotartrimide (s)	159. 08 147. 05 207. 08 207. 08	25 33 41	672. 7 849. 5 1, 099. 0 1, 085. 7	2, 811. 9 3, 555. 2 4, 599. 3 4, 543. 7	670. 7 852. 6 1, 077. 6	231. 184. 108; cf. 161. 231.
C ₁₀ H ₉ NO ₄ C ₁₁ H ₁₁ NO ₄ C ₁₁ H ₁₁ NO ₄	dl-N-Phenyltartrimided-N-Benzyltartrimide (s)dl-N-Benzyltartrimide (s)N-Benzylmesotartrimide (s).	221. 10	41 47 47 47 47	1, 085. 9 1, 237. 8 1, 237. 7 1, 240. 7	4, 544. 5 5, 180. 2 5, 179. 8 5, 192. 3	1, 077. 6 1, 240. 3 1, 240. 3 1, 240. 3	231. 231. 231. 231.

70. ALKALOIDS

(Pyridine, Piperidine, Quinoline, and Isoquinoline)

	Conline	317. 20	 1, 275. 5 1, 427. 7 2, 146. 3 2, 327. 6 2, 441. 3	8, 975. 8 9, 734. 0	19. 24. 106. 106.
$\begin{array}{c} C_{20}H_{21}NO_4 \\ C_{21}H_{22}N_2O_2 \\ C_{22}H_{23}NO_7 \\ C_{23}H_{26}N_2O_4 \\ C_{23}H_{27}NO_8.2H_2O \end{array}$	Narcotine (s) Brucine (s)	339. 18 334. 20 413. 20 394. 23 481. 27	 2, 478. 1 2, 685. 7 2, 644. 5 2, 933. 0 2, 802. 9	12, 274. 6	 106 28. 106. 28. 106.

71. ALIPHATIC NITRILES

$Q = 26.05 \times N + 16.5$

C ₂ N ₂	Cyanogen (g)	52. 0 41. 0 41. 03 57. 03	8 	258. 3 262. 1 310. 4 302. 4 256. 7	1, 080. 2 1, 096. 9 1, 298. 1 1, 265. 5 1, 074. 3	257. 4	223. 10. 223. 102. 24.
$\begin{array}{c} C_3H_2N_2 \\ C_3H_3NO_2 \\ C_3H_4N_2O \\ C_3H_5N \\ C_2H_5NO \\ \end{array}$	Malononitrile (s) Cyanoacetic acid (s) Cyanoacetamide (s) Propionitrile Ethylidene lactonitrile (aldehyde cyanhydrin),	84. 05 85. 03 84. 05 55. 05 71. 05	14 11 14 17 15	394. 8 298. 8 376. 3 456. 4 421. 1	1, 652, 2 1, 250, 5 1, 574, 8 1, 910, 0 1, 762, 3	397. 7 303. 0 381. 2 459. 3 420. 2	41. 78. 78. 102. 24,

3. N COMPOUNDS-Continued

71. ALIPHATIC NITRILES-Continued

 $Q=26.05\times N+16.5$

Formula	Name	Molec- ular weight	Num- ber of elec- trons	Kg-cal ₁₅ (experi- mental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₄ N ₂	Carbon subnitride (s) (acetylenedicarboxylic acid nitrile).	76. 0	16	⁴² 514. 8	2, 152. 9	482. 9	139.
C4H4N2		80. 04	20	545. 7	2, 283. 7	554.0	41.
C4H5N	Allyl cyanide	67.05	21	574. 9	2, 406. 0	576. 6	51.
C4H5N	Trimethylene nitrile	67. 05	21	581. 5	2, 433. 6	576.6	51.
C4H5N	Crotononitrile	67. 05	21	571.9	2, 393. 4	576. 6	51.
a trait	T	07.05	0.4	F70 0	0.401.4	570.0	F1
C4H5N		67. 05	21	573.8	2, 401. 4	576. 6	51.
C4H5NO2	Methyl cyanoacetate	99. 05	17	471.6	1, 973. 7	475.8	78. 198.
C ₄ H ₅ N ₃	Diglycolamidic nitrile (di- (cyanomethyl)amine).43	95. 07		590. 6	2, 471. 7		198.
C4H7N	n-Butyronitrile	69.07	23	613.3	2, 566. 7	615.6	102.
C5H6N2	Glutaric nitrile (s)	94. 07	26	699. 6	2, 927. 8	710. 3	41.
C5H7NO2	Ethyl cyanoacetate	113, 07	23	630, 0	2, 636. 6	635. 1	78.
C ₅ H ₉ N	Isovaleronitrile	83, 08	29	772. 1	3, 231. 2	771. 9	102.
$C_6H_6N_4$		134. 09		846. 0	3, 540. 5	.,,,,,	198.
- 0	(cyanomethyl)amine).44				-,		
C ₆ H ₇ NO ₃		141. 07	25	685. 0	2, 866. 7	693. 7	78.
C6H9NO2		127, 08	29	789. 0	3, 301, 9	791. 4	78.
C7H9NO3			31	836. 6	3, 501. 2	850. 0	78.
C8H11N		121. 09	43	1, 164. 2	4, 868. 7	1, 169. 7	138.
C11H15NO		177. 05	57	1, 495, 4	6, 258. 3	1, 507. 8	42.
)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,	, , , , , ,	

⁴² The above value represents the result of a single determination and should be considered merely as

an approximate value.

43 Considerable difficulty was experienced in the combustion of the compound due to its explosive character.

44 N≡(CH2C≡N)3.

72. AROMATIC NITRILES

 $Q=26.05 \times N+16.5 \text{nn}-6.5 \text{pp}$

C ₇ H ₅ N C ₈ H ₇ N C ₈ H ₇ N C ₈ H ₅ NO	Benzonitrile Benzyl cyanide o-Tolunitrile Benzoyl cyanide (s)	103. 05 117. 07 117. 07 131. 05	33 39 39 35	865. 5 1, 023. 5 1, 030. 3 940. 2	3, 622. 1 4, 283. 4 4, 311. 8 3, 934. 7	869. 6 1, 029. 4 1, 022. 4 45 937. 7	41. 41. 41. 78.
C ₉ H ₇ NO	Cyanoacetophenone (s)	145. 07 127. 04 153. 07 153. 07	41 51 51	1, 085. 6 1, 117. 8 1, 326. 2 1, 321. 0	4, 543. 2 4, 674. 6 5, 550. 2 5, 528. 4	1, 111. 2 1, 325. 5 1, 325. 5	78. 138. 102. 102.

⁴⁵ See formula for ketonic acids.

73. CARBYLAMINES (Aliphatic)

 $Q = 26.05 \times N + 33.1 -$

C ₂ H ₃ N	Methyl carbylamine	41. 03 55. 05	11 17	{ 317. 4 320. 1 477. 1 480. 5	1, 328. 3 1, 339. 6 1, 996. 7 2, 010. 9	319. 6 475. 9	98. 77. 98. 77.
C ₄ H ₅ N C ₄ H ₇ N C ₅ H ₉ N C ₆ H ₁₁ N C ₈ H ₇ N	Allyl carbylamine Propyl carbylamine Isobutyl carbylamine Isoamyl carbylamine Benzyl carbylamine	67. 05 69. 06 83. 08 97. 10 117. 07	21 23 29 35 39	609. 1 639. 6 796. 0 949. 5 1, 046. 5	2, 549. 1 2, 676. 7 3, 331. 3 3, 973. 7 4, 379. 6	593. 1 632. 2 788. 3 944. 8 1, 045. 5	77. 77. 77. 77. 77.

 $^{^{46}}$ The same article contains also the heats of combustion of double compounds of silver cyanide with methyl, ethyl, propyl, isobutyl, isoamyl carbylamines, $\rm C_8H_8N_2Ag$ to $\rm C_7H_1N_2Ag$. The heats of combustion of these compounds are, within the limits of experimental error, rather uniformly about 503 kile-joules larger than the values for the carbylamines.

3. N COMPOUNDS-Continued

74. ISOCYANATES

(Aliphatic)

 $Q=26.05 \times N+33.1$

Formula	Name	Molec- ular weight	Num- ber of elec- trons	Kg-cal ₁₅ (experi- mental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₂ H ₃ NO	Methyl isocyanateEthyl isocyanate	57. 03	9	269. 4	1, 127. 4	267. 6	96.
C ₃ H ₅ NO		71. 05	15	424. 5	1, 776. 5	423. 9	96.

75. HYDROXYLAMINE DERIVATIVES

	Phenylhydroxylamine 47 m-Nitrophenylhydroxylam- ine						
--	---	--	--	--	--	--	--

⁴⁷ The author (163) does not indicate which isomer is burned.

76. ALIPHATIC NITRO COMPOUNDS

 $Q = 26.05 \times N + 13$

C ₂ H ₅ NO ₂	Nitromethane Nitroethane Nitropropane. α-Nitrocamphor (s)	61. 03 75. 05 89. 07 197. 13	6 12 18		1, 348. 4 1, 998. 6	325. 6 481. 9	
---	---	---------------------------------------	---------------	--	------------------------	------------------	--

⁴⁸ This article contains also the heat of combustion of other forms of nitrocamphor.

77. AROMATIC NITRO COMPOUNDS 49

 $Q = 26.05 \times N + 13ss$

C ₆ H ₅ NO ₂ C ₆ H ₄ N ₂ O ₄ C ₆ H ₄ N ₂ O ₄ C ₆ H ₄ N ₂ O ₄	Nitrobenzene	123. 05 168. 05 168. 05 168. 05	28 26 26 26	$\left\{\begin{array}{c} 739.2\\ 732.4\\ 703.2\\ 695.1\\ 692.0\\ 696.8\\ 694.7 \end{array}\right.$	3, 091. 3 3, 062. 9 2, 942. 9 2, 908. 9 2, 893. 9 2, 916. 1 2, 905. 2	742. 4 703. 3 703. 3 703. 3	72. 211. 33; cf. 72. 33. 33. 211; cf. 72.
C ₆ H ₃ N ₃ O ₆	1,3,5-Trinitrobenzene (s)		24	663. 7	2, 777. 6	664. 2	33; cf. 72.
C ₆ H ₃ N ₃ O ₆	1,2,4-Trinitrobenzene (s)		24	673. 7	2, 817. 4	664. 7	72.
C ₁₉ H ₁₃ N ₃ O ₆	Trinitrotriphenylmethane(s)		86	2, 271. 5	9, 499. 4	2, 279. 3	179.
C ₁₉ H ₁₃ N ₃ O ₇	Trinitrotriphenyl carbinol(s)		84	2. 216. 7	9, 270. 2	2, 230. 7	179.

⁴⁹ The heats of combustion of 1,3,5-trinitrobenzene, 2,4,6-trinitro-l-methylnitroaminobenzene, C₇H₅N₅O₈, 2,4,6-trinitrotoluene, C₇H₅N₅O₈, 2,3,4,6-tetranitro-l-methylnitroaminobenzene, C₇H₄N₅O₁₉, ammonium pierate, C₆H₅N₅O₇, ammonium salt of hexanitrodiphenylamine, C₁2H₅N₅O₁₂, and trinitroethane, C₂H₅N₅O₇, used as explosives, are given by Rubtzov and Sever' yanov, J. Russ. Phys. Chem. Soc., 50, p. 140; 1918. However, the results are valueless as far as accuracy is concerned, and, since the data in regard to the methods employed are entirely missing, the values have been omitted from this report.

The author (148) claims that by mixing m-dinitrobenzene and naphthalene no heat is evolved. Certainly the lower heat of combustion 0.18 per cent obtained for the mixture is meaningless for individual determinations do not check better than 0.5 to 1 per cent.

3. N COMPOUNDS-Continued

78. SUBSTITUTED AROMATIC NITRO COMPOUNDS $Q = 26.05 \times N + 13ss - 3.5a$

Formula	Name	Molec- ular weight	Num- ber of elec- trons	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C ₇ H ₇ NO ₂ C ₇ H ₇ NO ₂ C ₇ H ₇ NO ₂ C ₇ H ₆ N ₂ O ₄	p-Nitrotoluene (s)	137. 06 137. 06 137. 06 182. 06	34 34 34 32	897. 0 888. 6 892. 9 889. 9 859. 6	3, 751. 3 3, 716. 1 3, 734. 1 3, 721. 6 3, 594. 9	895. 2 895. 2 895. 2	72. 72. 72. 211. 211.
C7H6N2O4	2,5-Dinitrotoluene (s) 2,6-Dinitrotoluene (s) 3,4-Dinitrotoluene (s)	182.06	32 32 32 32 32 32	852. 8 855. 2 854. 3 859. 9 853. 0	3, 566. 4 3, 576. 5 3, 572. 7 3, 596. 1 3, 567. 3	856. 1 856. 1 856. 1 856. 1 856. 1	211. 72. 72. 72. 72. 72.
C7H5N3O6	2,3,4-Trinitrotoluene (s) 3,4,6-Trinitrotoluene (s) 3,4,5-Trinitrotoluene (s)	227. 06	30 30 30 30 30	820. 7 832. 9 825. 6 828. 1 823. 8	3, 432. 2 3, 483. 2 3, 452. 7 3, 463. 1 3, 445. 1	817 0 817. 0 817. 0 817. 0 817. 0	72. 72. 72. 72. 72.
$\begin{array}{c} C_7H_5N_3O_6\\ C_8H_6N_2O_4\\ C_8H_6N_2O_4\\ C_9H_{11}NO_2\\ C_9H_{11}NO_2\end{array}$	m - β -Dinitrostyrene (s) p - β -Dinitrostyrene (s) Nitromesitylene (s)	194.06	30 36 36 46 46	825. 3 957. 4 962. 6 1, 204. 7 1, 194. 3	3, 451. 4 4, 006. 7 4, 028. 5 5, 038. 1 4, 994. 6	817. 0 970. 3 970. 3 1, 200. 8 1, 208. 0	72. 226. 226. 243. ⁵¹ 243.
C9H ₁₀ N ₂ O ₄ C9H ₁₀ N ₂ O ₄ C ₁₄ H ₉ NO ₄ C ₁₆ H ₁₁ NO ₅ C ₂₁ H ₁₃ NO ₅	ω-o-Dinitromesitylene p-Nitrobenzil (s) p-Nitroacetylbenzoin (s)	210. 10 255. 08 297. 10	44 44 60 70 92	1, 175. 7 52 1, 155. 7 1, 600. 9 1, 864. 3 2, 443. 4	4, 916. 8 4, 830. 8 6, 699. 8 7, 802. 1 10, 225. 6	1, 161. 7 1, 161. 7 1, 589. 0 1, 852. 5 2, 422. 1	243. 243. 8. ⁵³ 8. 8.

<sup>Mall the values by (243) have been corrected according to the method suggested by Swietoslawski, J. Amer. Chem. Soc., 42, p. 1091; 1920.
The author (243) believes that the difference in the heats of combustion of these two isomers, 1.79 per cent, is due to the fact that the compounds were not quite pure.
Details as to procedure employed in obtaining the data are completely lacking in the paper.</sup>

79. AROMATIC NITROPHENOLS, PHENETOLES, NITRANILINES, NITROACETANILIDES

 $Q = 26.05 \times N + 13ss + 3.5m + 6.5jj + 13kk + 19.5p$

V=20.00 × 11 + 1055 + 0.011 + 1044 + 15.01										
C6H5NO3	o-Nitrophenol (s)	139. 05	26	689. 1 687. 9 688. 3	2, 881. 8 2, 878. 9	693. 8	72. 131. 210.			
C6H5NO3	m-Nitrophenol (s)	139. 05	26	684.4	2, 880. 5 2, 864. 2	693. 8	210.			
C ₆ H ₅ NO ₃	p-Nitrophenol (s)	139. 05	26		2, 869. 7 2, 882. 6 2, 880. 1	693. 8	72. 131. 210.			
C6H4N2O5		1	24	648. 0	2, 709. 9	654.7	72.			
C ₆ H ₃ N ₃ O ₇	2,4,6-Trinitrophenol (s) (Picric acid).	229. 05	22	621. 1 611. 8	2, 597. 4 2, 562. 8	615. 6	72. 170.			
C ₈ H ₉ NO ₃		167. 08 167. 08	38 38	1, 021. 2 1, 009. 2	4, 270. 7 4, 223. 5	1, 022. 4 1, 022. 4	211. 210.			
	p-Nitrophenetole_ o-Nitraniline (s)	138. 06 138. 06	38 29 29 29	1, 006. 0 765. 8 765. 2 761. 0	4, 210. 1 3, 204. 8 3, 200. 1 3, 187. 8	1, 022. 4 771. 4 771. 4 771. 4	210. 210. 211. 170.			
C7H8N2O2 C7H7N3O4	<i>p</i> -Nitromethylaniline (s)2,4-Dinitromethylaniline (s) _	152. 08 197. 08	35 33	924. 3 884. 5	3, 865. 4 3, 698. 9	934. 3 895. 2	72. 72.			
C7H6N4O6	2,4,6-Trinitromethylaniline	242. 08	31	857. 9	3, 587. 7	856. 0	72.			
C7H5N5O8	(s). Tetryl (s)	287. 08		842. 3	3, 522. 5		72.			
C8H7N5O8		301. 10		1, 009. 3	4, 220. 9		72.			
C ₈ H ₈ N ₂ O ₃ C ₈ H ₈ N ₂ O ₃ C ₈ H ₈ N ₂ O ₃	m-Nitroacetanilide (s)	180. 08 180. 08	37 37 37	973. 9 969. 5 968. 2	4, 075. 8 4, 054. 5 4, 051. 9	973. 3 973. 3 973. 3	210. 211; cf. 131. 210.			

3. N COMPOUNDS—Continued

80. AROMATIC NITROALDEHYDES

 $Q=26.05 \times N+13ss+13r-3.5a$

Formula	Name	Molec- ular weight	Num- ber of elec- trons	Kg-cal ₁₅ (experi- mental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C7H5NO3	m-Nitrobenzaldehyde (s)	151. 05	30	800. 4	3, 349. 7	804.0	131.

81. AROMATIC NITRO ACIDS

 $Q=26.05 \times N+13ss-3.5a+13c$

	itrobenzoic acid (s)	167. 05 167. 05	28 28	729. 8 735. 0 726. 4 729. 1	3, 054. 2 3, 078. 9 3, 039. 9	738. 9 738. 9	131. 151. 58.
C ₇ H ₅ NO ₄	itrobenzoic acid (s)itrocinnamic acid (s)	167. 05 193. 06 193. 06	28 38 38	729. 1 728. 3 728. 3 999. 0 995. 6	3, 049. 1 3, 047. 9 3, 045. 8 4, 180. 8 4, 166. 6	738. 9 1, 009. 4 1, 009. 4	58. 151. 226. 226.

82. PHENYLHYDRAZONES AND OSAZONES

The two articles by Ph. Landrieu, Compt. rend., 141, p. 358; 1905; 142, p. 540; 1906, contain the heats of combustion of the phenylhydrazones of the following aldehydes and ketones: Acetaldehyde, acetone, diacetyl, furfuraldehyde, benzaldehyde, salicylaldehyde, acetophenone, anisaldehyde, benzohenone, benzoin, benzil; the phenylhydrazones of the following sugars: Arabinose, glucose, galactose, levulose, mannose, maltose, lactose; the osazones of glyoxal, diacetyl, benzil; and of the following sugars: Arabinose, xylose, glucose, levulose, mannose, galactose, mattose, lactose. The data are not included in the tables, for the information given in the above articles in regard to the work is extremely meager, and a careful analysis of the values indicates that they do not form a homogeneous series.

83. ALDOXIMES (ALIPHATIC)

	Aldoxime (s)						
--	--------------	--	--	--	--	--	--

 $^{^{-54}}$ It is of interest to compare these values of (93) with those of,(215) for methyl ethyl ketoxime, C₄H₉NO. The former's values appear to be about 0.8 per cent too high.

84. KETOXIMES (ALIPHATIC)

C ₄ H ₉ NO Methyl ethyl ketoxime C ₉ H ₁₇ NO Cycloheptyl methyl ketoxime (s). Camphoroxime (s)	87. 08 155. 15 167. 15		646. 5 651. 0 1, 363. 5 1, 480. 8	2, 703. 7 2, 724. 4 5, 702. 2 6, 197. 2		215. 93. 215. 93.
--	------------------------------	--	--	--	--	----------------------------

3. N COMPOUNDS—Continued

85. AROMATIC ALDOXIMES AND KETOXIMES

Formula	Name	Molec- ular weight	Num- ber of elec- trons	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature
C6H6NO2	Benzoquinone oxime (p-Ni-trosophenol).	123. 05		713. 5	2, 985. 9		225; cf. 222.
C ₇ H ₇ NO C ₈ H ₉ NO C ₁₀ H ₇ NO ₂	Benzaldoxime (s)	121. 07 135. 08 173. 07		907. 2 1, 054. 4 1, 163. 5	3, 793. 9 4, 409. 5 4, 868. 3		93. 93. 225; cf. 222.
C ₁₀ H ₇ NO ₂	thol). β -Naphthoquinone oxime (s) $(\beta$ -Nitroso- α -naphthol).	173. 07		1, 167. 4	4, 885. 6		225; cf. 222.
C ₁₀ H ₇ NO ₂	β-Naphthoquinone oxime (s) (α-Nitroso-β-naphthol).	173.07		1, 166. 7	4, 882. 6		225; ef. 222.
C ₁₀ H ₁₃ NO ₂ C ₁₃ H ₁₁ NO	Oxime of opianic anhydride ⁵⁵ _ Thymoquinone oxime (s) Diphenyl ketoxime (s)	179.11		1, 152. 3 1, 331. 8 1, 626. 8	4, 822. 4 5, 573. 6 6, 803. 3		108. 225; cf. 222. 225; cf. 93.

⁵⁵ Stohmann, communicated by Liebermann (Ber., 25, p. 89; 1892.) Formula and molecular weight not indicated. He does not specify whether the above value refers to constant volume or constant pressure.

86. NITROSAMINES 56

$\begin{array}{c} C_2H_6N_2O \\ C_3H_{10}N_2O \\ C_{12}H_{16}N_2O \end{array}$	Dimethylnitrosamine Ethylphenylnitrosamine (s) Diphenylnitrosamine (s)	74. 07 150. 10 198. 10	 394. 5 1, 118. 4 1, 532. 6	1, 650. 9 4, 680. 5 6, 413. 9	 212. 212. 132.

⁵⁶ See also article by Delépine (C. R., 123, p. 650; 1896) for nitrose and nitro compounds of hexamethylene tetramine. 87. NITRAMINES

C ₂ H ₆ N ₂ O ₂	Ethylnitramine 57	90.06	 372. 5	1, 557. 8	 211.

⁶⁷ CH3.CH2.NH.NO2.

88. NITROSO COMPOUNDS

	Dinitrosoresorcinol (s)p_Nitrosodimethylaniline				
C ₁₂ H ₁₀ N ₂ O	p-Nitrosodiphenylamine (s).	198. 10	 1, 526. 9	6, 385. 5	 132.

⁵⁵ The author (212) gives as the mean value 3,473 cal/g. In his calculation of the molecular heat of combustion he employs 186 as the molecular weight instead of 168.05. The article contains, also, the heats of reaction of a large number of compounds with nitrous acid. For a detailed treatment of this subject consult Ber., 43, p. 1470; 1910; 44, p. 2429; 1911.
56 The author (212) gives also the heat of combustion of nitrosodimethylaniline hydrochloride as 4,687.2 bellockules.

kilo-joules.

89. AZO COMPOUNDS

⁶⁰ Undoubtedly the best value is that of (217),

3. N COMPOUNDS—Continued

90. SUBSTITUTED HYDRAZINES

Formula	Name	Molec- ular weight	Num- ber of elec- trons	Kg-cal ₁₅ (experi- mental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calculated to the liquid state)	Litera ture				
C ₆ H ₈ N ₂	Phenylhydrazine (s)	108. 08 122. 10 184. 12		{ 875. 4 805. 4 1, 038. 1 { 1, 597. 3 1, 598. 8	3, 663. 6 3, 370. 6 4, 344. 5 6, 684. 7 6, 690. 9		100. 147. 100. 100.				
				(1, 050, 0	0,000.0		147.				
	91. DIAZONIUM COMPOUNDS										
C6H5N3O3	Benzenediazonium nitrate (s).	167. 07		782. 6	3, 275. 2		45.				
92. AZOXY COMPOUNDS											
C ₁₂ H ₁₀ N ₂ O C ₁₄ H ₁₆ N ₄ O C ₁₆ H ₁₈ N ₂ O ₃ C ₁₆ H ₁₈ N ₂ O ₃	Azoxybenzene (s)	198. 10 256. 17 286. 13 286. 13		{ 1, 534. 5 1, 530. 1 1, 903. 4 2, 098. 4 2, 088. 0	6, 421. 9 6, 403. 5 7, 965. 7 8, 781. 8 8, 730. 3		101. 147. 101. 101.				
93. ESTERS OF NITRIC AND NITROUS ACID											
C ₂ H ₅ NO ₂ C ₂ H ₅ NO ₃ C ₃ H ₅ N ₃ O ₉ C ₄ H ₉ NO ₂	Ethyl nitrite (v)	75. 0 91. 0 227. 06 103. 0		332, 6 322, 4 432, 4 644, 6	1, 390. 9 1, 348. 3 1, 809. 6 2, 695. 7		223. 223. 81. 223.				
	4. HALOGEN AND 94. FLUOR: (a) FLUORO-HY	INE CO	MPO	UNDS		os					
C ₇ H ₁₅ F C ₈ H ₁₇ F C ₈ H ₁₇ F	n-Heptyl fluoride	118. 12 132. 13 132. 13		1, 121. 5 1, 271. 0	4, 690. 1 5, 315. 3 5, 296. 1		211. 211. 211.				
⁶¹ The B. P. of the product prepared from the iodide is 0.6° higher than the one prepared from the bromide. See also Ber., 55, p. 3378; 1922. (B) FLUORO-HYDROCARBONS (AROMATIC)											
$\begin{array}{c} C_0H_5F \\ C_0H_4F_2 \\ C_7H_7F \\ C_7H_7F \\ C_7H_6F_2 \\ C_7H_5F_3 \\ C_9H_{11}F \end{array}$	Fluorobenzene	96. 05 114. 05 110. 05 110. 05 128. 05 146. 05 138. 1		747. 2 706. 1 903. 2 903. 0 856. 9 810. 3 1, 208. 5	3, 124. 8 2, 952. 9 3, 777. 2 3, 776. 3 3, 583. 6 3, 388. 7 5, 053. 9		211. 211. 211. 211. 211. 211. 211. 211.				
	(C) FLUORO	-ALCOHO	LS (ALI	PHATIC)							
C ₂ H ₅ OF C ₂ H ₄ OF ₂	Fluoroethanol Difluoroethanol	64. 05 82. 02		290. 4 245. 8	1, 214. 5 1, 027. 9		211. 211.				

4. HALOGEN AND SULPHUR COMPOUNDS—Continued

94. FLUORINE COMPOUNDS-Continued

(D) FLUORO-PHENOLS

Formula	Name	Molec- ular weight	Num- ber of elec- trons	Kg-cal ₁₅ (experi- mental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calculated to the liquid state)	Literature			
C ₆ H ₅ OF C ₆ H ₅ OF C ₆ H ₅ OF C ₇ H ₅ OF ₃	o-Fluorophenol	112. 05 112. 05 112. 05 112. 05		705. 8 696. 6 696. 6 763. 4	2, 951. 7 2, 913. 2 2, 913. 2 3, 192. 5		211. 211. 211. 211.			
	(E) ESTERS	OF FLU	ORO-AI	COHOLS						
C ₄ H ₇ O ₂ F C ₄ H ₆ O ₂ F ₂	Fluoroethyl acetate Difluoroethyl acetate	106. 05 124. 05		499. 9 455. 5	2, 090. 6 1, 904. 9		211. 211.			
(F) ETHERS OF FLUORO-ALCOHOLS										
C ₅ H ₉ OF	Ethyl fluoroallyl ether	104. 07		731. 0	3, 057. 0		211.			
(G) ETHERS OF FLUORO-PHENOLS										
C ₈ H ₉ OF C ₈ H ₉ OF	m-Fluorophenetol	140. 05 140. 05		1, 023. 1 1, 019. 9	4, 278. 6 4, 265. 2		211. 211.			
	(H) FLUORO-ACIDS ALIPHATIC									
$\begin{array}{c} C_2H_3O_2F \\ C_2H_2O_2F_2 \end{array}$	Fluoroacetic acid (s)	78. 02 96. 02		170. 8 134. 6	714. 3 562. 9		211. 211.			
	(I) FLUO	RO-ACIDS	(AROM	ATIC)						
C7H ₅ O ₂ F C7H ₅ O ₂ F C7H ₅ O ₂ F C ₈ H ₅ O ₂ F ₃ C ₉ H ₇ O ₂ F	o-Fluorobenzoic acid (s)	140. 05 140. 05 140. 05 190. 05 166. 06		740. 2 737. 6 739. 7 807. 1 1, 013. 6	3, 095. 5 3, 084. 6 3, 093. 4 3, 375. 4 4, 238. 9		211. 211. 211. 211. 211.			
61a m-F ₃ C-C	C ₆ H ₄ .COOH.	FLUORO-	-ACIDS	(ALIPHATIC)	·				
C ₄ H ₇ O ₂ F C ₄ H ₆ O ₂ F ₂	Ethyl fluoroacetate Ethyl difluoroacetate	106. 05 124. 05		503. 1 436. 5	2, 103. 9 1, 825. 4		211. 211.			
	(K) ESTERS OF	FLUORO	-ACIDS	(AROMATIC)					
C ₉ H ₉ O ₂ F C ₁₀ H ₉ O ₂ F	Ethyl p-fluorobenzoate (s) Methyl α-fluorocinnamate (s).	168. 05 180. 05		1, 060. 1 1, 187. 5	4, 433. 3 4, 966. 1		211. 211.			
	(L) FLUOR	O-AMIDE	S (ALIP	HATIC)						
C ₂ H ₄ ONF C ₂ H ₃ ONF ₂	Fluoroacetamide (s) Difluoroacetamide (s)	77. 05 95. 05		250. 0 208. 3	1, 045. 5 871. 1		211. 211.			
goods rays, as Carre		*******					4			

4. HALOGEN AND SULPHUR COMPOUNDS—Continued

94. FLUORINE COMPOUNDS-Continued

(M) FLUORO-AMIDES (AROMATIC)

Formula	Name	Molec- ular weight	Num- ber of elec- trons	Kg-cal ₁₅ (experi- mental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature			
C ₈ H ₇ ONF ₂ C ₉ H ₈ ONF ₃	Difluoroacetanilide (s)	171. 06 203. 75		944. 8 1, 043. 2	3, 951. 2 4, 362. 7		211. 211.			
	(N) FLUOR	O-AMINE	S (ALII	PHATIC)						
C ₂ H ₅ NF ₂ C ₄ H ₇ NF ₄	Difluoroethylamine Tetrafluorodiethylamine	81. 05 145. 06		326. 1 566. 1	1, 363. 8 2, 367. 4		211. 211.			
(O) FLUORO-NITRAMINES (ALIPHATIC)										
C ₂ H ₄ O ₂ N ₂ F ₂	Diffuoroethylnitramine (s) (M. P. 22.4°).	126.06		290. 6	1, 215. 3		211.			
(P) FLUORO-NITROBENZENES										
C ₆ H ₄ O ₂ NF C ₆ H ₄ O ₂ NF C ₅ H ₄ O ₂ NF C ₆ H ₃ O ₂ NF ₂ C ₆ H ₃ O ₄ N ₂ F	o-Fluoronitrobenzene m-Fluoronitrobenzene (s) 1,4-Diduoro-2-nitrobenzene (s) 2,4-Dinitro-1-fluorobenzene (s).	141. 05 141. 05 141. 05 159. 04 186. 05		707. 5 706. 4 703. 0 673. 1 669. 3	2, 958. 8 2, 954. 2 2, 939. 9 2, 814. 9 2, 799. 0		211. 211. 211. 211. 211. 211.			
	(Q) FLUC	ORO-NITI	ROTOLU	ENES						
C7H4O2NF3	m-Nitrobenzotrifluoride	191. 05		771. 5	3, 226. 4		211.			
	(R) I	FLUORO-A	ANILINI	ES						
C ₆ H ₆ NF C ₆ H ₆ NF C ₆ H ₆ NF	o-Fluoroaniline	111. 05 111. 05 111. 05		778. 2 771. 1 782. 2	3, 254. 4 3, 249. 8 3, 271. 2		211. 211. 211.			
	(s)	FLUORO	ANILID	ES						
C ₈ H ₈ ONF	m-Fluoroacetanilide (s)p-Fluoroacetanilide (s)	153. 07 153. 07		978. 1 978. 9	4, 090. 4 4, 093. 8		211. 211.			
	(T) FLUORO-NITROFE	IENOLS A	AND NI	TROPHENE	OLES					
C ₆ H ₄ O ₃ NF C ₈ H ₈ O ₃ NF	3-Nitro-4-fluorophenol (s) 3-Nitro-4-fluorophenetol (s)_	157. 04 185. 07		652. 8 981. 4	2, 730. 0 4, 104. 21		211. 211.			
	(U) FLUORO-NITRAN	ILINES A	ND NI	PRACETANII	IDES					
C ₆ H ₅ O ₂ N ₂ F C ₈ H ₇ O ₃ N ₂ F	3-Nitro-4-fluoroaniline (s) 3-Nitro-4-fluoroacetanilide	156. 04 198. 06		736. 9 936. 2	3, 081. 7 3, 915. 2		211. 211.			

4. HALOGEN AND SULPHUR COMPOUNDS-Continued

95. CHLORINE COMPOUNDS

(A) CHLORINATED HYDROCARBONS 62

Formula	Name	Molec- ular weight	Num- ber of elec- trons	Kg-cal ₁₅ (experi- mental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calculated to the liquid state)	Literature
CH ₃ Cl CH ₂ Cl ₂ CHCl ₃	Methyl chloride (g) Methylene chloride (v) (Chloroform (v) Chloroform (liq.)	85. 0		164. 2 173. 2 106. 8 70. 3 89. 2	686. 7 724. 8 446. 9 293. 9 373. 3		223. 14. 40. 223. 17.
C ₂ H ₅ Cl	(Carbon tetrachloride (v) Carbon tetrachloride (liq.) Ethyl chloride (v) Ethylene chloride (v)	64. 5		$\left\{\begin{array}{c} 44.5 \\ 37.3 \\ 316.7 \\ 326.9 \\ 271.0 \end{array}\right.$			17. 17. 223. 14. 223.
C ₂ Cl ₆	{Ethylidene chloride (v) Ethylidene chloride (liq.) Hexachloroethane (s) Chloroethylene (v). Tetrachloroethylene	237.0		271. 1 64 267. 1 110. 0 281. 5 162. 5	1, 133. 7 1, 117. 8 460. 4 1, 177. 2 680. 1		223. 40. 17. 223. 17.
C ₃ H ₆ Cl ₂ C ₃ H ₅ Cl C ₃ H ₅ Cl	(Acetone chloride) (v). Chloropropylene (v)	76.5		478. 3 427. 8 439. 5 440. 8	1, 789. 1 1, 838. 0 1, 843. 4		223. 223. 223. 223.
C ₃ H ₄ Cl ₂	Hexachlorobenzene (s) Benzyl chloride	285. 0 126. 5		886. 4	1, 782. 8 2, 657. 7 2, 811. 5 2, 130. 2 3, 706. 9		36. 223. 17. 17. 179.
C ₁₀ H ₁₆ HCl C ₁₀ H ₁₀ .2HCl C ₁₀ H ₁₆ HCl C ₁₃ H ₁₁ Cl	Terpilene dihydrochloride Terebenthene hydrochloride (cryst.). Diphenyichloromethane (s)	209. 0 172. 5 202. 5		1, 469. 8 1, 467. 7 1, 469. 2 1, 617. 3	6, 146. 7 6, 137. 9 6, 144. 2 6, 763. 6		32. 32. 32.
C ₁₉ H ₁₅ Cl		278. 0			9, 821. 4		179.

these compounds are not arranged in classes, but are given according to the number of carbon atoms they contain. In view of the relativity large error in the determinations, the molecular weights are all rounded off. All the data except Thomsen's determinations, or unless otherwise indicated, refer to the formation of a dilute solution of hydrochloric acid. Thomsen's determinations are calculated to the production of gaseous hydrogen chloride. No vacuum correction was applied to any of the values. It is impossible to calculate the heats of combustion of these compounds with any degree of precision, for the amounts of water used in the respective combustions are not specified by any of the writers (except Thomsen) and, hence, it is impossible to correct the values for the heat of dilution of the hydrogen chloride formed. formed.

63 HCl-gas.
64 HCl-gas.

(B) COMPOUNDS OF C. H. O AND CL. (ALIPHATIC)

(b) delited to c, ii, o little of (hind little)										
C ₂ H ₃ OCl C ₂ H ₃ O ₂ Cl C ₂ H ₀ O ₂ Cl ₂ C ₄ H ₇ O ₂ Cl C ₄ H ₆ O ₂ Cl ₂	Monochloroacetaldehyde Monochloroacetic acid (s) Trichloroacetic acid (s) Ethyl monochloroacetate Ethyl dichloroacetate	78. 5 94. 5 163. 5 122. 5 157. 0		234. 4 171. 0 92. 8 493. 9 463. 4	980. 3 715. 6 388. 4 2, 065. 5 1, 937. 9		157. 36. 36. 157. 157.			
(c) compounds of c, h, o and cl (aromatic)										
C7H5OCl	Benzoyl chloride o-Chlorobenzoic acid (s) p-Chlorobenzoic acid (s) o-Chlorobenzoic chloride (s). Chlorosalicylaldehyde 65. o-Toluyl chloride (s). Phthalyl chloride (s). Ethyl o-chlorobenzoate	140. 5 156. 5 156. 5 175. 0 156. 5 154. 5 203. 0 184. 5		782. 8 734. 5 726. 6 741. 5 746. 3 944. 0 801. 8 1,065. 8	3, 273. 7 3, 071. 7 3, 038. 6 3, 100. 9 3, 121. 0 3, 947. 8 3, 353. 1 4, 457. 2		157. 157. 157. 157. 157. 157. 157. 157.			

⁶⁵ The position of the chlorine atom in the molecule is not given.

4. HALOGEN AND SULPHUR COMPOUNDS-Continued

95. CHLORINE COMPOUNDS-Continued

(D) CHLOROHYDROQUINOLS

Formula	Name	Molec- ular weight	Num- ber of elec- trons	Kg-cal ₁₅ (experi- mental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calcu- lated to the liquid state)	Literature								
C ₆ H ₅ O ₂ Cl C ₆ H ₄ O ₂ Cl ₂ C ₆ H ₃ O ₂ Cl ₃ C ₆ H ₂ O ₂ Cl ₄	Trichlorohydroquinol (s)	144. 5 179. 0 213. 5 248. 0		645. 9 614. 1 593. 0 562. 8	2, 568. 2		225; cf. 222. 225; cf. 222. 225; cf. 222. 225; cf. 223.								
(E) CHLOROQUINONES															
C ₆ H ₂ O ₄ Cl ₂ C ₆ H ₃ O ₂ Cl ₁ C ₆ H ₂ O ₂ Cl ₂ C ₆ H _O ₂ Cl ₃ C ₆ O ₂ Cl ₄	2,6-Dichloroquinone (s)	209. 0 142. 5 177. 0 211. 5 246. 0		484. 9 616. 6 578. 9 546. 4 517. 7		2, 029. 3 2, 580. 5 2, 422. 7 2, 286. 7 2, 166. 6	225; cf. 222. 225; cf. 222. 225; cf. 222. 225; cf. 222. 225; cf. 222.								
	(F) CHLORINE	COMPOU	NDS OF	С, н, о, 1	4										
C ₂ H ₄ ONCl C ₂ H ₂ ONCl ₃	Chloroacetamide (s) Trichloroacetamide (s)	93. 5 162. 5		242, 5 165, 2	1, 014. 1 690. 9		157. 157.								
	96. ALK	YL BRO	OMID:	ES 66											
CH ₃ Br C ₂ H ₅ Br C ₈ H ₇ Br	Ethyl bromide (v)	95 109. 0 123. 0		$ \left\{ \begin{array}{c} 184.0 \\ 180.4 \\ 340.5 \\ 329.5 \\ 497.3 \end{array}\right. $	769. 5 754. 9 1, 423. 9 1, 378. 9 2, 079. 7		223. 14. 223. 14. 236.								

 $^{^{66}}$ See footnote 62, p. 418, under chlorinated hydrocarbons. The final product of combustion in the case of the bromine derivatives is bromine vapor.

97. IODINE COMPOUNDS 67

CH ₃ I CH ₂ I ₂ CHI ₃	Methyl iodide (v) Methyl iodide (liq.) Methylene iodide Iodoform (s)	268. 0	200. 5 194. 7 178. 4 161. 9	838. 5 814. 8 746. 6 677. 6	 223. 21. 21. 21.
C ₂ H ₅ I	Tetraiodoethylene (s)	282. 0	357. 8 356. 0 324. 8 261. 6 514. 3		223. 21. 21. 21. 21. 21.
C ₃ H ₇ I	Allyl iodide Tetraiodopyrrol (s) (Iodol)	168. 0	509. 1 478. 3 503. 1 770. 7	2, 001. 7 2, 105. 5	 21. 21. 21. 21.
C ₆ H ₆ NI	Iodosalicylic acid (s)	248. 0 264. 0	810. 7 769. 6 706. 4 699. 9	3, 220. 8	 170. 21. 21. 21. 21.

⁶⁷ It is claimed that all the iodo compounds give upon combustion iodine and only inappreciable amounts of HI or HIO₃. Under the conditions of the experiments solid iodine is always the end product. Individual determinations do not agree better than 0.5 to 1.0 per cent.

4. HALOGEN AND SULPHUR COMPOUNDS-Continued

98. SULPHUR COMPOUNDS 68

Formula	Name	Molec- ular weight	Num- ber of elec- trons	Kg-cal ₁₅ (experimental)	Kilo- joules (K. J.)	Kg-cal ₁₅ (calculated to the liquid state)	Literature
cos	Carbonyl sulphide (g)	60. 0		130. 5	545, 8		223.
	Carbon disulphide (v)	76. 0		257. 7	1, 077. 7		223.
CS ₂	Carbon disulphide (liq.)			69 246. 6 394. 5	1, 032. 0 1, 650. 9		13. 17.
CH ₄ S	Methyl mercaptan (v)	48. 0		297.6	1, 244. 6		223.
CH ₄ N ₂ S	Thiourea (s)	76.0		70 342. 8	1, 434. 6		130.
C2H6S	Ethyl mercaptan (v) Ethyl mercaptan (liq.)	62. 0 62. 0		452. 0 517. 2	1, 890. 3 2, 164. 5		223. 22.
					,		
C ₂ H ₆ S	Dimethyl sulphide (v)	62. 0		455. 6	1, 905. 3		223.
C ₂ H ₃ NS	Methyl thiocyanate (v)	73.0		397. 4	1, 661. 9		223.
C ₂ H ₃ NS	Methyl thiocyanate (liq.) Methyl isothiocyanate (v)	73. 0		453. 1 390. 5	1,896.2 1,633.1		20. 223.
	(Methyl mustard oil). Methyl isothiocyanate (v)			442. 9			20.
	Methyl isothiocyanate (s).				1		
C ₂ H ₇ O ₃ NS	Taurine (s)	125. 0		382, 9	1, 602. 4		17.
C3H5NS	Ethyl thiocyanate Ethyl isothiocyanate (ethyl	87.0			2, 568. 8		20.
C ₃ H ₅ NS	mustard oil).	87. 0		604. 1	2, 528. 2		20.
C3H6O2N2S	Thiohydantoic acid (s)	134.0			2, 086. 2 2, 105. 1		
C ₃ H ₄ ON ₂ S				503. 0			130.
C4H10S	Diethyl sulphide (v)	90.0		769. 2 829. 5	3, 216. 8 3, 471. 5		223. 22.
C4H9NS2	Dimethyl N-methylcarbim-	103. 0		969. 2	4, 056. 1		61.
C4H9NS2	idodithiolate 71 S-Methyl N-dimethyldithi-	103.0		953. 9	3, 992, 1		61.
	ocarbamate (sol.).72						
C4N9NS2				964. 5			61.
C4H8N2S	Thiosinamine (s)	116. 0		791. 8 732. 5			20. 20.
C4H5NS		99.0		672.8	2, 813, 6		223.
C4H4S	ThiopheneThiophene (v)	84. 0		670. 5 608. 2	2, 806. 0 2, 543. 5		37. 223.
					Í.		
C ₅ H ₁₁ NS ₂	Dimethyl N-ethylcarbimide- dithiolate. 74	117. 0		1, 130. 1	4, 729. 5		61.
C ₅ H ₁₁ NS ₂		117. 0		1, 122. 0	4, 695. 6		61.
C5H10N2S2		130		1, 098. 4	4, 596. 8		61.
G TT 3 T G	, ,						
C ₅ H ₁₀ N ₂ S ₂ C ₅ H ₁₀ N ₂ S ₂		130. 0 130. 0			4, 544. 1		61. 61.
	sulfine (sol.). 78	ļ.	ł	Ι .	1	l .	
68 The data of	(223) refer to the formation of	gaseous	SO ₂ . A	All other v	alues, unle	ss otherwis	se indicated

68 The data of (223) refer to the formation of gaseous SO₂. All other values, unless otherwise indicated, refer to the production of a dilute solution of sulphuric acid. Cf. the recent paper of A. Mennucci, Rev facultad. cienc. quim., 2, p. 25; 1924. This author states that complete oxidation of sulphur derivatives to SO₃ does not occur even at 25 atm. with an evolution of 10,000 calories of heat. The results of the different investigators are not comparable and can not be brought to a comparable basis, for the amount of water used in the bombs is not in all cases specified. In view of the relatively large error that may thus be introduced, all molecular weights are given in round numbers, and no vacuum or other corrections have been applied to the values of any investigator except that the usual correction has been applied to work of (223).

223).

**Gaseous SO2.

**o Gaseous SO2.

**o Bomb contained exactly 25 cm³ H₂O. Final state of H₂SO₄ corresponds to H₂SO₄. 200 H₂O.

**71 CH₃.N=C=(SCH₃)₂.

**72 (CH₃)₂NC=S-SCH₃.

**o CH₂

**S-CH₂

**NCH₃.

**O CH₃

**O C

^{75 (}CH₃)₂N - C (SCH₃)₂.
76 (CH₃)₂N - C (S_S - C₂H₅.
76 CS₂ (CH₂=N - CH₃)₂.
H
77 CS₂ (CH₃C=NH)₂.

SCH₂NCH₂N=CH₂.

4. HALOGEN AND SULPHUR COMPOUNDS-Continued

98. SULPHUR COMPOUNDS-Continued

Formula	Name	Molec- ular	Num- ber of	Kg-cal ₁₅ (experi-	Kilo- joules	Kg-cal ₁₅ (calcu- lated to the	Literature
		weight	elec- trons	mental)	(K. J.)	liquid state)	
C ₅ H ₈ O ₂ S	Tetrahydro – α – thiophene- carboxylic acid (s).	130, 2		754.8	3, 156. 6		185.
C5H4O2S	α-Thiophenecarboxylic acid (s).	128.0		646. 2	2, 702. 4		185.
C ₆ H ₁₃ NS ₂ C ₆ H ₁₃ NS ₂	Thialdine (sol) 79 Diethyl N-methylcarbimi-	131. 0 131. 0		1, 263. 6 1, 289. 4	5, 288. 2 5, 396. 1		61. 61.
C ₆ H ₁₃ NS ₂	dedithiolate. 80 S-Methyl N-diethyldithiocar- bamate. 81	131.0	•	1, 271. 7	5, 322. 0		61.
C ₆ H ₁₂ O ₄ N ₂ S ₂ C ₇ H ₅ NS	Cystine (s) Phenyl mustard oil	240. 25 135. 0		82 993. 9 1, 024. 3	4, 156. 5 4, 286. 7		19. 22.
C9H ₁₁ NS ₂		165. 0		1, 544. 5	6, 463. 7		61.
C ₁₈ H ₁₄ O ₂ N ₂ S	Benzonaphthoquinone thiazine (s).	322, 20		2, 278. 1	9, 533. 8		178.

 $\begin{array}{c} H \\ H_{3} \\ \text{F} \\ \text{F} \\ \text{H}_{3} \\ \text{C.C.} \\ \text{S} \\ \text{C.C.} \\ \text{S} \\ \text{C.C.} \\ \text{NH} \\ \text{C.H}_{3} \\ \text{NH} \\ \text{C.H}_{3} \\ \text{C.C.} \\ \text{S} \\ \text{C.C.} \\ \text{C.C.} \\ \text{C.C.} \\ \text{S} \\ \text{C.C.} \\ \text{S} \\ \text{C.C.} \\ \text{S} \\ \text{C.C.} \\ \text{C.C.} \\ \text{C.C.} \\ \text{S} \\ \text{C.C.} \\ \text$

IX. BIBLIOGRAPHY

- 1. d'Aladern, Compt. rend., 116, p. 1457; 1893.
- 2. Andrews, Phil. Mag. (3), 32, p. 321; 1848.
- 3. Atwater and Snell, J. Amer. Chem. Soc., 25, p. 608; 1903.
- 4. Auwers and Kolligs, Ber. Chem. Ges., 55, p. 3872; 1922.
- 5. Auwers and Roth, Lieb. Ann., 373, p. 239; 1910.
- 6. Auwers, Roth, and Eisenlohr, Lieb. Ann., 373, p. 267; 1910.
- 7. Auwers, Roth, and Eisenlohr, Lieb. Ann., 385, p. 102; 1911.
- 8. Barker, J. Phys. Chem., 29, p. 1345; 1925.
- 9. Berner, Arch. Math. og Naturw. (Oslo), 34, Nr. 6; 1926.
- 10. Berner, Tidskrift Kemi, 16, pp. 97, 118; 1919.
- 11. Berner, J. Chem. Soc., 127, p. 2747; 1925.
- 12. Berthelot, Ann. chim. phys. (5), 23, p. 188; 1881.
- 13. Berthelot, Ann. chim. phys. (5), 23, p. 209; 1881.
- 14. Berthelot, Ann. chim. phys. (5), 23, p. 214; 1881.
- 15. Berthelot, Ann. chim. phys. (5), 23, pp. 243, 252; 1881.
- 16. Berthelot, Ann. chim. phys. (5), 27, p. 374; 1882.
- 17. Berthelot, Ann. chim. phys. (6), 28, p. 126; 1893.
- 18. Berthelot, Thermochimie, 11, 1897.
- 19. Berthelot, Ann. chim. phys. (7), 20, pp. 145, 163, 189; 1900.
- 20. Berthelot, Ann. chim. phys. (7), 20, p. 197; 1900.
- 21. Berthelot, Ann. chim. phys. (7), 21, p. 296; 1900.
- 22. Berthelot, Ann. chim. phys. (7), 22, pp. 322, 327; 1901.
- 23. Berthelot and André, Ann. chim. phys. (6), 22, p. 5; 1891.
- 24. Berthelot and André, Ann. chim. phys. (7), 17, p. 433; 1899.

- 25. Berthelot and Delépine, Compt. rend., 129, p. 920; 1899.
- 26. Berthelot and Delépine, Ann. chim. phys. (7), 21, p. 289; 1900.
- 27. Berthelot and Fogh, Ann. chim. phys. (6), 22, p. 18; 1891.
- 28. Berthelot and Gaudechon, Compt. rend., 140, p. 753; 1905.
- 29. Berthelot and Jungfleisch, Ann. chim. phys. (5), 6, p. 147; 1875.
- 30. Berthelot and Louguinine, Ann. chim. phys. (6), 13, p. 321; 1888.
- 31. Berthelot and Matignon, Ann. chim. phys. (6), 21, p. 409; 1890.
- 32. Berthelot and Matignon, Ann. chim. phys. (6), 23, p. 538; 1891.
- 33. Berthelot and Matignon, Compt. rend., 113, p. 246; 1891.
- 34. Berthelot and Matignon, Compt. rend., 114, p. 1145; 1892.
- 35. Berthelot and Matignon, Ann. chim. phys. (6), 28, p. 139; 1893.
- 36. Berthelot and Matignon, Ann. chim. phys. (6), 28, p. 565; 1893.
- 37. Berthelot and Matignon, Ann. chim. phys. (6), 30, p. 547; 1893.
- 38. Berthelot and Ogier, Ann. chim. phys. (5), 23, p. 197; 1881.
- 39. Berthelot and Ogier, Ann. chim. phys. (5), 23, p. 199; 1881.
- 40. Berthelot and Ogier, Ann. chim. phys. (5), 23, pp. 201, 225; 1881.
- 41. Berthelot and Petit, Ann. chim. phys. (6), 18, p. 107: 1889.
- 42. Berthelot and Petit, Ann. chim. phys. (6), 20, pp. 5, 13; 1890.
- 43. Berthelot and Recoura, Ann. chim. phys. (6), 13, pp. 298, 304, 340; 1888.
- 44. Berthelot and Rivals, Ann. chim. phys. (7), 7, pp. 29, 47; 1896.
- 45. Berthelot and Vieille, Ann. chim. phys. (5), 27, p. 194; 1882.
- 46. Berthelot and Vieille, Compt. rend., 102, p. 1284; 1886.
- 47. Berthelot and Vieille, Ann. chim. phys. (6), 10, p. 433; 1887.
- 48. Berthelot and Vieille, Ann. chim phys. (6), 10, p. 455; 1887.
- 49. Blaschko, Biochem. Z., 158, p. 428; 1925.
- 50. Brühl, Ber., 32, p. 1222; 1899.
- 51. Bruylants and Christiaen, Bull. soc. chim. Belg., 34, p. 144; 1925.
- 52. Bureau of Standards, Cir. 11, 3d. ed., 1917.
- 53. Constam and White, Amer. Chem. J., 29, p. 1; 1903.
- 54. Coops and Verkade, Rec. trav. chim., 44, p. 983; 1925.
- 55. Delépine, Compt. rend., 123, p. 650; 1896.
- 56. Delépine, Compt. rend., 124, p. 1525; 1897.
- 57. Delépine, Compt. rend., 126, p. 964; 1898.
- 58. Delépine, Compt. rend., 131, p. 684; 1900.
- 59. Delépine, Compt. rend., 131, p. 745; 1900.
- 60. Delépine, Compt. rend., 132, p. 777; 1901.
- 61. Delépine, Compt. rend., 136, p. 451; 1903.
- 62. Delépine and Rivals, Compt. rend., 129, p. 520; 1899.
- 63. Dickinson, B. of S. Bull., 11, p. 189; 1915.
- 64. Emery and Benedict, Am. J. of Physiol., 28, p. 301; 1911.
- 65. Favre and Silbermann, Ann. chim. phys. (3), 34, p. 357; 1852.
- 66. Fischer and Wrede, Sitzber. kgl. preuss, Akad. Wiss., 1904, p. 687.
- 67. Fischer and Wrede, ZS. phys. Ch., 69, p. 218; 1909.
- 68. Fogh, Compt. rend., 114, p. 920; 1892.
- 69. de Forcrand, Ann. chim. phys. (6), 3, p. 187; 1884.
- Fries, Chem. Zentrbl. (1), p. 1510; 1907. U. S. Dept. Agri. Bur. An. Ind. Bull., 94; 1907.
- 71. Fries, U. S. Dept. Agri. Bur. An. Ind. Bull. 124; 1910.
- 72. Garner and Abernethy, Proc. Roy. Soc. London (A), 99, p. 213; 1921.
- 73. Genvresse, Bull. soc. chim. (3), 9, p. 219; 1893.
- 74. Gibson, Storrs School Agri. Exper. Sta. Bull. 6, p. 182; 1890.
- 75. Ginsberg, Diss. Braunschweig; 1923; quoted in Landolt-Börnstein Tabellen; 1923.
- 76. Gottlieb, J. prakt. Ch. (2), 28, p. 385; 1883.

- 77. Guillemard, Ann. chim. phys. (8), 14, p. 311; 1908.
- 78. Guinchant, Compt. rend., 121, p. 354; 1895; 122, p. 943; 1896; all data collected and evaluated in Ann. de Chim., 10, p. 59; 1918.
- 79. Hartmann, Proefschr. Delft; 1925.
- 80. Henning, Z. phys. Ch., 97, p. 467; 1921.
- 81. Hibbert and Fuller, J. Am. Chem. Soc., 35, p. 978; 1913.
- 82. Hückel, Lieb. Ann., 451, p. 117; 1926.
- 83. Hückel, Lieb. Ann., 451, p. 160; 1927; Det. by Roth.
- 84. Jaeger and von Steinwehr, Zeit. phys. chem. 114, p. 59; 1924.
- 85. Jaeger and von Steinwehr, Zeit. phys. chem., 119, p. 214; 1926.
- 86. Jahn, Wied. Ann., 37, p. 408; 1889.
- 87. Karrer and Fioroni, Helv. Chim. Acta, 6, p. 396; 1923.
- 88. Karrer and Fioroni, Ber., 55B, p. 2854; 1922.
- 89. Keffler and Guthrie, J. Physic. Chem., 31, p. 68; 1927.
- 90. Kitran, Farmaceutski vjesnik, 14, pp. 583, 617, 668, 702, 748, 777; 1924.
- 91. Konovalov, J. Chim. Phys., 23, 359; 1926.
- 92. Krummacher, ZS. Biol., 46, p. 310; 1904.
- 93. Landrieu, Compt. rend., 140, p. 867; 1905.
- 94. Landrieu, Compt. rend., 142, p. 580; 1906.
- 95. Landrieu and Blatt, Bull. Soc. Chim., 35, p. 1424; 1924.
- 96. Lemoult, Compt. rend., 126, p. 343; 1898.
- 97. Lemoult, Compt. rend., 143, p. 772; 1906.
- 98. Lemoult, Compt. rend., 143, p. 902; 1906.
- 99. Lemoult, Ann. chim. phys. (8), 10, p. 395; 1907.
- 100. Lemoult, Ann. chim. phys. (8), 13, p. 562; 1908.
- 101. Lemoult, Ann. chim. phys. (8), 14, pp. 184, 289; 1908.
- 102. Lemoult, Compt. rend., 148, p. 1602; 1909.
- 103. Lemoult, 7th Int. Cong. Appl. Chem.; 10, p. 75; 1909.
- 104. Lemoult, Compt. rend., 152, p. 1402; 1911.
- 105. Leroux, Compt. rend., 151, p. 384; 1910.
- 106. Leroy, Ann. chim. phys. (7), 21, p. 87; 1900.107. Leroy, Compt. rend., 130, p. 508; 1900.
- Liebermann, Ber. chem. Ges., 46, p. 267; 1913; (Det. carried out by Stohmann).
- 109. Louguinine, Ann. chim. phys. (5), 20, p. 558; 1880.
- 110. Louguinine, Ann. chim. phys. (5), 21, p. 139; 1880.
- 111. Louguinine, Compt. rend., 91, p. 297; 1880.
- 112. Louguinine, Compt. rend., 91, p. 329; 1880.
- 113. Louguinine, Ann. chim. phys. (5), 23, p. 384; 1881.
- 114. Louguinine, Compt. rend., 93, p. 274; 1881.
- 115. Louguinine, Ann. chim. phys. (5), 25, p. 140; 1882.
- 116. Louguinine, Compt. rend., 98, p. 94; 1884.
- 117. Louguinine, Compt. rend., 100, p. 63; 1885.
- 118. Louguinine, Compt. rend., 101, pp. 1061, 1154; 1885.
- 119. Louguinine, Ann. chim. phys. (6), 8, p. 128; 1886.
- 120. Louguinine, Ann. chim. phys. (6), 11, p. 220; 1887.
- 121. Louguinine, Compt. rend., 106, p. 1289; 1888.
- 122. Louguinine, Compt. rend., 106, p. 1472; 1888.
- 123. Louguinine, Compt. rend., 107, p. 597; 1888.
- 124. Louguinine, Compt. rend., 107, p. 624; 1888.
- 125. Louguinine, Ann. chim. phys. (6), 18, p. 378; 1889.
- 126. Louguinine, Compt. rend., 108, p. 620; 1889.
- 127. Louguinine, Ann. chim. phys. (6), 23, p. 179; 1891.
- 128. Malbot, Ann. chim. phys. (6), 18, p. 404; 1889.
- 129. Massol, Ann. chim. phys. (7), 1, p. 145; 1894.

- 130. Matignon, Ann. chim. phys. (6), 28, pp. 70, 289, 498; 1893. These articles contain also the data reported by Matignon in Compt. rend., 110, p. 1267, 1890; 113, p. 198; 1891.
- 130.5 Matignon, Compt. rend., 113, p. 198; 1891.
- 131. Matignon and Deligny, Compt. rend., 121, p. 422; 1895.
- 132. Matignon and Deligny, Compt. rend., 125, p. 1103; 1897.
- 133. Meier and Meyerhof, Biochem. Z., 150, p. 233; 1924.
- 134. Meyerhof, Biochem. Z., 129, p. 594; 1922.
- 135. Meyerhof, Pflüg. Arch., 195, pp. 22, 24; 1922.
- 136. Mixter, Sill. J. (4), 12, p. 347; 1901.
- 137. Mixter, Sill. J. (4), 22, p. 13; 1906.
- 138. Moureu and André, Ann. chim. (9), 1, p. 113; 1914.
- 139. Moureu and Bongrand, Compt. rend., 170, p. 1025; 1920.
- 140. Moureu and Boutaric, J. chim. phys., 18, p. 348; 1920.
- 141. Moureu, Boutaric, and Dufraisse, J. chim. phys., 18, p. 333; 1921.
- 142. Muller, Ann. chim. phys. (8), 20, p. 116; 1910.
- 143. Muller, Bull. soc. chim. (2), 44, p. 608; 1885.
- 144. Ossipov, Z. physik. Ch., 2, p. 646; 1888.
- 145. Ossipov, Ann. chim. phys. (6), 20, p. 371; 1890.
- 146. Ossipov, J. de la Soc. Chim. russe, 22, p. 317; 1890.
- 147. Petit, Ann. chim. phys. (6), 18, p. 145; 1889.
- 148. Pushin, Z. physik. Chem., 124, p. 16; 1926.
- 149. Rabe and Pollock, Ber. Chem. Ges., 45, p. 2924; 1912.
- 150. Van Rechenberg, J. prakt. Chem. (2), 22, p. 11; 1880.
- Reyer, Diss., Braunschweig; 1923; quoted in Landolt-Börnstein Tabellen;
 1923.
- 152. Richards and Barry, J. Am. Chem. Soc., 37, p. 993; 1915.
- 153. Richards and Davis, J. Am. Chem. Soc., 39, p. 341; 1917; 42, p. 1599, 1920.
- 154. Richards and Jesse, J. Am. Chem. Soc., 32, p. 268; 1910.
- 155. Riiber and Schetelig, ZS. ph. Ch., 48, p. 345; 1904.
- 156. Rinkenbach, Ind. Eng. Chem., 19, p. 474; 1927.
- 157. Rivals, Ann. chim. phys. (7), 12, p. 501; 1897.
- 158. Rosenhain, J. Soc. chem. Ind., 25, p. 239; 1906.
- 159. Roth, Lieb. Ann., 373, p. 249; 1910.
- 160. Roth, Rec. trav. chim., 45, p. 248; 1926. (Value by Lemoult corr. by Roth.)
- 161. Roth, ZS. Elektrochem., 16, p. 654; 1910.
- 162. Roth, ZS. Elektrochem., 17, p. 789; 1911.
- 163. Roth, Unpub. work. Authority for these values in Landolt-Börnstein Tabellen; 1923.
- 164. Roth, Landolt-Börnstein Tabellen; 1927.
- 165. Roth and v. Auwers, Lieb. Ann., 407, p. 145; 1915.
- 166. Roth and v. Auwers, Landolt-Börnstein Tabellen; 1927.
- 167. Roth and Ellinger, Landolt-Börnstein Tabellen; 1923.
- 167.5. Roth and Ellinger, Landolt-Börnstein Tabellen; 1912.
- 168. Roth and Ellinger, Landolt-Börnstein Tabellen; 1927.
- 169. Roth and Lassé, Lieb. Ann., 441, p. 48; 1925.
- 170. Roth and Macheleldt, Diss. Braunschweig; 1921; quoted in Landolt-Börnstein Tabellen; 1923.
- 171. Roth and Moosbrugger, Landolt-Börnstein Tabellen; 1923.
- 172. Roth and Müller, Landolt-Börnstein Tabellen; 1927.
- 173. Roth and Müller, Ber., 60, p. 643; 1927.
- 174. Roth and Murawski, Landolt-Börnstein Tabellen; 1923.
- 175. Roth and Ostling, Ber. Chem. Ges., 46, p. 309; 1913.
- 176. Roth and Peters, Landolt-Börnstein Tabellen; 1923.
- 177. Roth and Stoermer, Ber. chem. Ges., 46, p. 260; 1913.
- 178. Roth and Wolff, Landolt-Börnstein Tabellen; 1927.

- 179. Schmidlin, Ann. chim. phys. (8), 7, p. 195; 1906.
- 180. Schreiner, Z. physik. Chem., 117, p. 57; 1925.
- 181. Stohmann, Journ. prakt. Ch. (2), 31, p. 273; 1885.
- 182. Stohmann, ZS. ph. Ch., 6, p. 334; 1890. 183. Stohmann, ZS. ph. Ch., 10, p. 410; 1892.
- 184. Stohmann and Haussmann, J. prakt. Ch. (2), 55, p. 263; 1897. For details consult Berichte über die Verhandl. der kgl. Sächs. Ges. der Wissensch. zu Leipzig, 49, p. 1; 1897.
- 185. Stohmann and Kleber, J. prakt. Ch. (2), 43, p. 1; 1891.
- 186. Stohmann and Kleber, J. prakt. Ch. (2), 43, p. 538; 1891.
- 187. Stohmann and Kleber, J. prakt. Ch. (2), 45, p. 475; 1892.
- 188. Stohmann, Kleber, and Langbein, J. prakt. Ch. (2), 40, p. 77; 1889.
- 189. Stohmann, Kleber, and Langbein, J. prakt. Ch. (2), **40**, p. 128; 1889. 190. Stohmann, Kleber, and Langbein, J. prakt. Ch. (2), **40**, p. 202; 1889.
- 191. Stohmann, Kleber, and Langbein, J. prakt. Chem. (2), 40, p. 341; 1889.
- 192. Stohmann, Kleber, Langbein, and Offenhauer, J. prakt. Ch. (2), 49, p. 99; 1894. For details of the work consult Berichte über die Verhandl. der kgl. Sächs. Ges. der Wissensch. zu Leipzig, 45, p. 604; 1893.
- 193. Stohmann and Langbein, J. prakt. Ch., 42, p. 361; 1890.
- 194. Stohmann and Langbein, J. prakt. Ch., 44, p. 336; 1891.
- 195. Stohmann and Langbein, J. prakt. Ch. (2), 45, p. 305; 1892.
- 196. Stohmann and Langbein, J. prakt. Ch. (2), 46, p. 530; 1893. For details consult Berichte über die Verhandl. der kgl. Sächs. Ges. der Wissensch. zu Leipzig., 49, p. 1; 1897.
- 197. Stohmann and Langbein, J. prakt. Ch. (2), 48, p. 447; 1893.
- 198. Stohmann and Langbein, J. prakt. Ch. (2), 49, p. 483; 1894. For details consult Berichte über die Verhandl. der kgl. Sächs. Ges. der Wissensch. zu Leipzig, 49, p. 1; 1897.
- 199. Stohmann and Langbein, J. prakt. Ch. (2), 50, p. 388; 1894. For details consult Berichte über die Verhandl. der kgl. Sächs. Ges. der Wissensch. zu Leipzig, 49, p. 1; 1897.
- 200. Stohmann, Rodatz, and Herzberg, J. prakt. Ch. (2), 33, p. 241; 1886.
- 201. Stohmann, Rodatz, and Herzberg, J. prakt. Ch. (2), 33, p. 464; 1886.
- 202. Stohmann, Rodatz, and Herzberg, J. prakt. Ch. (2), 34, p. 311; 1886.
- 203. Stohmann, Rodatz, and Herzberg, J. prakt. Ch. (2), 35, p. 22; 1887.
- 204. Stohmann, J. prakt. Ch. (2), 35, pp. 40, 136; 1887.
- 205. Stohmann, Rodatz, and Herzberg, J. prakt. Ch. (2), 36, p. 1; 1887.
- 206. Stohmann, Rodatz, and Herzberg, J. prakt. Ch. (2), 36, p. 353; 1887.
- 207. Stohmann and Schmidt, J. prakt. Ch. (2), 50, p. 385; 1894.
- 208. Stohmann and Schmidt, J. prakt. Ch. (2), 52, p. 59; 1895. For details consult Berichte über die Verhandl. der kgl. Sächs. Ges. der Wissensch. zu Leipzig, 47, p. 1; 1895.
- 209. Stohmann and Schmidt, J. prakt. Ch. (2), 53, p. 345; 1896.
- 210. Swarts, Bull Acad. Belg., 14; 1924.
- 211. Swarts, Rec. Trav. Chim. Pays Bas, 32, p. 59; 1913; J. chim. phys., 17, p. 3; 1919.
- 212. Swietoslawski, ZS. ph. ch., 72, p. 49; 1910.
- 213. Swietoslawski, J. Russ. Phys. Chem. Soc., 46, p. 1302; 1914.
- 214. Swietoslawski, J. Am. Chem. Soc., 39, p. 2595; 1917.
- 215. Swietoslaswki, J. Am. Chem. Soc., 42, p. 1092; 1920.
- 216. Swietoslawski, J. chim. phys., 22, p. 583; 1925.
- 217. Swietoslawski, Private comm.
- 218. Swietoslawski and Pakovick, J. Russ. Phys. Chem. Soc., 46, p. 1284; 1914.
- 219. Swietoslawski and Popov, J. Russ. Phys. Chem. Soc., 46, p. 935; 1914.
- 220. Swietoslawski, Popov, and Pakovick, J. Russ. Phys. Chem. Soc., 46, p. 1293; 1914.
- 221. Swietoslawski and Starczewska, Bull. soc. chim. (4), 31, p. 654; 1922.

- 222. Swietoslawski and Starczewska, J. chim. phys., 22, p. 399; 1925.
- 223. Thomsen, Thermoch. Unters. IV: letzte Zusammenstellung; ZS. ph. Ch., 52, p. 343; 1905.
- 224. Tower, Value reported by Atwater and Snell, J. Am. Chem. Soc., 25, p. 608; 1903.
- 225. Valeur, Ann. chim. phys. (7), 21, p. 470; 1900.
- 226. Verkade, Amst. Akad. Versl., 35, p. 496; 1926. Values by Verkade, van de Lee and Coops.
- 227. Verkade, Proefschr. Delft; 1915.
- 228. Verkade, Chem. Weekbl., 19, p. 389; 1922.
- 229. Verkade and Coops, Rec. Tr. Chim. P. B., 45, p. 551; 1926.
- 230. Verkade and Coops, Rec. Trav. Chim. P. B., 43, p. 561; 1924.
- 230.5. Verkade and Coops, Rec. Trav. Chim, 42, p. 223; 1923.
- 231. Verkade and Coops, Private comm.
- 232. Verkade, Coops and Hartmann, Rec. Trav. Chim. P. B., 41, p. 241; 1922.
- 233. Verkade, Hartmann and Coops, Rec. Tr. Chim. P. B., 45, p. 585; 1926.
- 234. Verkade and Hartmann, Priv. comm.
- 235. Verkade, Hartmann and Coops, Proc. Acad. Sc. Amsterdam, 27, p. 859; 1924.
- 236. Verkade, Verkade and Coops, Landolt-Börnstein Tabellen; 1927.
- 237. Verkade, Verkade, Coops, and Maan, Priv. comm.
- 238. Voisenet, Bull. soc. chim. (4), 17, p. 34; 1915.
- 239. Wartenberg, Muchlinski, and Riedler, Z. Angew. Chem., 37, p. 457; 1924.
- 240. Weigert, ZS. phys. Ch., 63, p. 458; 1908.
- 241. Wrede, ZS. phys. Ch., 75, p. 81; 1910.
- 242. Wrede, Landolt-Börnstein Tabellen; 1927.
- 243. Zubov, J. Russ. Phys. Chem. Soc. (7), 28, p. 687; 1896.
- 244. Zubov, J. Russ. Chem. Phys. Soc. (7), 30, p. 926; 1898.
- 245. Zubov and Swietoslawski, Bull. Soc. Chim., 37, p. 271; 1925.
- 246. Bureau of Standards, Unpublished work.

X. INDEX OF COMPOUNDS, BY FORMULA

1. CH COMPOUNDS

Formula	Page	Formula	Page	Formula	Page
CH ₄ C₂ C₂H₂ C₂H ₄ C₂H ₆ C₃H ₄	373 378 376 373 378	C8 C8H16- C8H18- C9H10- C9H12- C9H14-		C ₁₂ C ₁₄ H ₁₂ C ₁₄ H ₁₄ C ₁₄ H ₂₆ C ₁₅ H ₁₄ C ₁₆ C ₁₆ H ₁₀	374
$\begin{array}{c} C_3H_6 \\ C_3H_8 \\ C_4 \\ C_4H_8 \\ C_4H_{10} \\ C_5H_{10} \\ \end{array}$	374, 376 373 376 373 374, 376	$\begin{array}{c} C_9H_{16} \\ C_9H_{18} \\ C_{10} C_{10}H_{8} \\ C_{10}H_{10} \\ C_{10}H_{12} \\ \end{array}$	374 375 378	$\begin{array}{c} C_{16}H_{14} \\ C_{16}H_{34} \\ C_{18}H_{12} \\ C_{18}H_{16} \\ C_{18}H_{18} \\ \end{array}$	376 377
$\begin{array}{c} C_5H_{12} \\ C_6 & C_6H_6 \\ C_6H_8 \\ C_6H_{10} \\ C_6H_{12} \\ \end{array}$	373 375, 378 377 374, 376, 377 374, 376	$\begin{array}{c} C_{10}H_{14} \\ C_{10}H_{16} \\ C_{10}H_{18} \\ C_{10}H_{20} \\ C_{10}H_{22} \\ \end{array}$	378 374, 378	$egin{array}{c} C_{18}H_{20} & & & \\ C_{19}H_{15} & & & \\ C_{19}H_{16} & & & \\ C_{20}H_{16} & & & \\ C_{20}H_{42} & & & \\ \hline \end{array}$	
$\begin{array}{c} C_6H_{14} - \dots \\ C_7H_8 - \dots \\ C_7H_{12} - \dots \\ C_7H_{14} - \dots \\ C_7H_{16} - \dots \end{array}$	375	$\begin{array}{c} C_{11}H_{14} \\ C_{11}H_{16} \\ C_{11}H_{18} \\ C_{12}C_{12}H_{10} \\ C_{12}H_{16} \\ \end{array}$	375 378 375	$\begin{array}{c} C_{20}H_{42} \\ C_{24}H_{18} \\ C_{25}H_{20} \\ C_{28}H_{20} \end{array}$	376
C ₈ C ₈ H ₆	375 377	$\begin{array}{c} C_{12}H_{18} \\ C_{12}H_{24} \\ C_{13}H_{10} \\ C_{13}H_{12} \\ C_{14}H_{10} \\ \end{array}$	375 376 376 375 376		

2. CHO COMPOUNDS

Formula	Page	Formula	Page	Formula	Page
C ₁ CH ₂ O	384 384 389 379, 384 384, 399	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	380 386 382 382 382	C8 C8H8O2 C8H8O3 C8H8O5 C8H8O5 C8H10O	393, 394, 400 385, 393, 394, 400 397 400 382, 383
$\begin{array}{c} C_2H_2O_3,H_2O \dots \\ C_2H_2O_4 \dots \\ C_2H_4O \dots \\ C_2H_4O_2 \dots \\ C_2H_4O_3 \dots \end{array}$	390 391 384, 385 389, 399 390	$\begin{array}{c} C_6H_6O_6 \\ C_6H_8O_2 \\ C_6H_8O_3 \\ C_6H_8O_4 \\ C_6H_8O_6 \\ \end{array}$	393 390 398 393, 396, 400 391	$\begin{array}{c} C_8H_{10}O_2 \\ C_8H_{10}O_3 \\ C_8H_{10}O_4 \\ C_8H_{12}O \\ C_8H_{12}O_2 \\ \end{array}$	383 398 397, 402 387 390, 397, 401
$\begin{array}{c} C_2H_6O \\ C_2H_6C_2 \\ C_3 & C_3H_4O \\ C_3H_4O_2 \\ C_3H_4O_2 \\ \end{array}$	379, 382 380 379, 385 390 390	$\begin{array}{c} C_6H_8O_7 - \\ C_6H_8O_7 - H_2O - \\ C_6H_10O - \\ C_6H_10O_2 - \\ \end{array}$	392 392 382, 385, 387 382, 385, 390, 399 398, 401	C ₈ H ₁₂ O ₃ C ₈ H ₁₂ O ₄ C ₈ H ₁₄ O ₂	398 397, 400, 401 379, 380, 387 381, 397
$\begin{array}{c} C_3H_4O_4 \\ C_3H_4O_5 \\ C_3H_4O_6 \\ C_3H_6O \\ C_3H_6O_2 \\ \end{array}$	391 392 392 379, 384, 385 383, 389, 399, 401	$\begin{array}{c} C_6H_{10}O_4\\ C_6H_{10}O_5\\ (C_6H_{10}O_5)x\\ C_6H_{10}O_6\\ C_6H_{10}O_8\end{array}$	383, 391, 400, 402 388, 399 389 399, 400 392	C8H ₁₄ O ₃	402 383, 391, 400, 402 392, 402 399 379, 380, 386
$\begin{array}{c} C_3H_6O_3 \\ C_3H_8O \\ C_3H_8O_2 \\ C_3H_8O_3 \\ C_4 C_4H_2O_3 \end{array}$	390, 400 379, 382 380, 383 380 397	$\begin{array}{c} C_6H_{12}O \\ \\ C_6H_{12}O_2 \\ \\ C_6H_{12}O_3 \\ \\ C_6H_{12}O_5 \\ \\ C_6H_{12}O_5 \\ \end{array}$	379, 380, 384, 385, 389, 401 385, 380, 388 380, 388	$ \begin{array}{c} C_8H_{16}O_2\\ C_8H_{18}O\\ C_9C_9H_{6}O\\ C_9H_{6}O_2\\ C_9H_{6}O_6\\ C_9H_{8}O \end{array} $	381, 389 379, 380 385 394 395 379, 384, 385, 387
$\begin{array}{c} C_4H_2O_4$	393 390 397 393 382, 385	C ₆ H ₁₂ O ₆ C ₆ H ₁₄ O ₂ C ₆ H ₁₄ O ₅ C ₇ C ₇ H ₄ O ₇	380, 388 379, 380 380, 382, 383 381 397	$\begin{array}{c} C_9H_8O_2 \\ C_9H_8O_3 \\ C_9H_8O_4 \\ C_9H_1O_2 \\ \end{array}$	394, 402 393, 394 395 381, 393, 394, 402 400, 402
$\begin{array}{c} C_4H_6O_3 \\ C_4H_6O_4 \\ C_4H_6O_5 \\ C_4H_6O_6 \end{array}$	396, 403 397 391, 400 392 392	C ₇ H ₆ O ₂ C ₇ H ₆ O ₂ C ₇ H ₆ O ₃ C ₇ H ₆ O ₄ C ₇ H ₆ O ₅	385, 386, 393 394 394 394	$\begin{array}{c} C_9H_{12}O \\ C_9H_{12}O \\ C_9H_{14}O_{3} \\ C_9H_{14}O_{2} \\ C_9H_{14}O_{4} \\ \end{array}$	382, 383 385 386, 387 390, 397, 399 381, 400
$\begin{array}{c} C_4H_8O \\ C_4H_8O_2 \\ \\ C_4H_8O_3 \\ \\ C_4H_{10}O \\ \\ C_4H_{10}O_2 \\ \\ \end{array}$	382, 385 385, 389, 399, 401 390, 399 379, 380, 382 383	$\begin{array}{c} C_7H_6O_8\\ C_7H_8O\\ C_7H_8O_2\\ C_7H_{10}O_2\\ C_7H_{10}O_3\\ \end{array}$	396 379, 382, 383 382 396 398 393, 396, 399,	$\begin{array}{c} C_9H_{14}O_5\\ C_9H_{14}O_7\\ C_9H_{16}O\\ C_9H_{16}O_4\\ C_9H_{15}O\end{array}$	383 400 379, 380, 387 391, 400 379, 380
$\begin{array}{c} C_4H_{10}O_3\\ C_4H_{10}O_4\\ \textbf{C}_5 C_5H_4O_2\\ C_5H_6O_2\\ \end{array}$	380, 383 380 385 390, 397 401	C ₇ H ₁₀ O ₅ C ₇ H ₁₂ O C ₇ H ₁₂ O ₂ C ₇ H ₁₂ O ₃	379, 387 382, 396, 401 401	$\begin{array}{c} C_9H_18O_2 \\ C_9H_20O \\ C_8H_{20}O_2 \\ C_{10} C_{10}H_6O_2 \\ C_{10}H_6O_4 \\ \end{array}$	389 380 383 386 386
$egin{array}{c} C_5H_6O_3\\ C_5H_6O_4\\ C_5H_8O\\ C_5H_8O_2\\ C_5H_8O_3\\ \end{array}$	397 393, 396 387 385, 390, 396, 403 390, 399	C7H ₁₂ O ₄ C7H ₁₂ O ₆ C7H ₁₂ O ₇ C ₇ H ₁₄ O ₂	391, 400, 402 396 399 379, 380, 385, 386 381, 389, 401, 403	$\begin{array}{c} C_{10}H_{6}O_{8}\\ C_{10}H_{8}O\\ C_{10}H_{8}O_{2}\\ C_{10}H_{8}O_{3}\\ C_{10}H_{8}O_{4}\end{array}$	395 382, 386 400 398 386, 394, 396
$\begin{array}{c} C_5H_8O_4 \\ C_5H_8O_7 \\ C_5H_{10}O \\ C_5H_{10}O_2 \\ \end{array}$	391, 400 392 379, 384, 385 379, 381, 389, 399, 401	C ₇ H ₁₄ O ₈ C ₇ H ₁₄ O ₇ C ₇ H ₁₆ O C ₇ H ₁₆ O ₂ C ₇ H ₁₆ O ₇	383 388 379, 380 383 381	$\begin{array}{c} C_{10}H_{10}O \\ C_{10}H_{10}O_2 \\ C_{10}H_{10}O_3 \\ C_{10}H_{10}O_4 \\ C_{10}H_{10}O_5 \\ \end{array}$	383, 394, 400 395 396, 399, 401 394
$\begin{array}{c} C_5H_{10}O_{3-} \\ C_5H_{10}O_{5-} \\ C_5H_{12}O_{-} \\ C_5H_{12}O_{2-} \\ C_5H_{12}O_{2-} \\ \end{array}$	401, 402 388 379, 380	C ₈ C ₈ H ₄ O ₃ C ₈ H ₆ O ₂ C ₈ H ₆ O ₃ C ₈ H ₆ O ₄ C ₈ H ₈ O C ₈ H ₈ O	398 399 385 394, 395 386	$\begin{array}{c} C_{10}H_{10}O_{6}.\\ C_{10}H_{12}O.\\ C_{10}H_{12}O_{2}.\\ \end{array}$	394 383 381, 383, 386, 393, 403 403 400

2. CHO COMPOUNDS—Continued

Formula	Page	Formula	Page	Formula	Page
C10 C10H14O	382, 383, 387	C ₁₂ C ₁₂ H ₁₈ O ₈	388	C ₁₈ C ₁₈ H ₁₆ O ₂	387
C ₁₀ H ₁₄ O ₂ C ₁₀ H ₁₄ O ₃	382 398	$\begin{array}{c} \mathrm{C_{12}H_{20}O_2} \\ \mathrm{C_{12}H_{20}O_3} \end{array}$	403 398	C ₁₈ H ₁₆ O ₄ C ₁₈ H ₁₈ O ₁₂	396, 401 401
C ₁₀ H ₁₄ O ₄	400	$C_{12}^{12}H_{20}O_{6}$	383	C ₁₈ H ₁₈ O ₁₂	403
C ₁₀ H ₁₄ O ₈	401	C ₁₂ H ₂₀ O ₇	402	C ₁₈ H ₃₂ O ₂	390
$C_{10}H_{16}O_{}$ $C_{10}H_{16}O_{2}$	385, 387 390, 397, 399,	C ₁₂ H ₂₂ O ₂	383 398	C ₁₈ H ₃₂ O ₁₆ C ₁₈ H ₃₂ O ₁₆ H ₂ O	389 389
1	402	$C_{12}H_{22}O_{3}$ $C_{12}H_{22}O_{4}$	383, 392, 400	$C_{18}H_{32}O_{16}.5H_2O$	389
C ₁₀ H ₁₆ O ₃	397, 398	C ₁₂ H ₂₂ O ₁₁	388	$C_{18}H_{34}O_{2}$	390
C ₁₀ H ₁₆ O ₄ C ₁₀ H ₁₈ O	397, 398 381, 397, 401 379, 380	C ₁₂ H ₂₂ O ₁₁ .H ₂ O ₋	388	C ₁₈ H ₃₆ O ₂	389, 403
C ₁₀ H ₁₈ O ₂	397	C ₁₃ C ₁₂ H ₂₄ O ₂	389 386	C ₁₉ C ₁₉ H ₁₅ O ₂ C ₁₉ H ₁₆ O	375 380
C ₁₀ H ₁₈ O ₄	392, 400, 402	C ₁₃ H ₁₀ O ₂	403	C ₁₉ H ₁₈ O ₄	381 396
$C_{10}H_{20}O_{}$ $C_{10}H_{20}O_{2}$	379, 380 389	C12H12O	379	C ₁₉ H ₂₀ O ₅ C ₁₉ H ₃₆ O ₄	392
C ₁₀ H ₂₂ O	382	C ₁₃ H ₁₄ O	386	C20 C20H14O4	403
C C10H22O3	380	C ₁₃ H ₁₄ O ₄ C ₁₃ H ₁₆ O ₈	381 395	C20H20O4	381, 401
C ₁₁ C ₁₁ H ₈ O ₂	393 386	C ₁₃ H ₂₀ O	386, 387	$\begin{array}{c} { m C_{20}H_{22}O_4} \\ { m C_{20}H_{40}O_{2}} \end{array}$	402 389
$C_{11}H_{10}O_{2}$	395, 402	C ₁₃ H ₂₄ O ₂ C ₁₃ H ₂₄ O ₄	383	$C_{21} C_{21}H_{16}O_{}$ $C_{21}H_{16}O_{2}$	380, 386
C ₁₁ H ₁₀ O ₄	395		392		382, 384
C ₁₁ H ₁₂ O	386 395	C ₁₄ C ₁₄ H ₈ O ₂	386	C21H18O2	386
$C_{11}H_{12}O_{3}$ $C_{11}H_{12}O_{5}$	399	C14H8O3	386 387	C ₂₁ H ₂₂ O ₄ C ₂₂ C ₂₂ H ₁₈ O	381 384
$C_{11}H_{14}O_{2}$	383, 403	C ₁₄ H ₈ O ₄ C ₁₄ H ₈ O ₅	387	C ₂₂ H ₄₀ O ₂	390
C ₁₁ H ₁₄ O ₃	403	C ₁₄ H ₈ O ₈	387	C ₂₂ H ₄₂ O ₂	390
C ₁₁ H ₁₄ O ₈ C ₁₁ H ₁₆ O	401 384	$C_{14}H_{10}O_{2}$ $C_{14}H_{10}O_{3}$	382, 386 385, 398	C ₂₂ H ₄₄ O ₂ C ₂₂ H ₄₄ O ₄	389 390
C ₁₁ H ₁₆ O ₂	402	$C_{14}H_{10}O_{4}$	386 1	C ₂₃ C ₂₃ H ₁₈ O ₄ C ₂₃ H ₂₀ O	381
$C_{11}H_{16}O_{2}$ $C_{11}H_{16}O_{4}$ $C_{11}H_{16}O_{8}$	401 401	$C_{14}H_{12}O_{2}$ $C_{14}H_{12}O_{3}$	386, 395, 403 395	$C_{23}H_{20}O_{}$ $C_{24}C_{24}H_{20}O_{4}$	384 381
j.					
$C_{11}H_{18}O_{2}$ $C_{11}H_{18}O_{3}$	390, 402 399, 402	$C_{14}H_{12}O_{4}$ $C_{14}H_{14}O_{2}$	403 381	$C_{24}H_{20}O_{6}$	403 396
C11H18O4	401	C14H16O	386	C24H22O	384
$C_{11}\overline{H}_{20}O_{2}$ $C_{11}\overline{H}_{20}O_{4}$	390 392, 400	C ₁₄ H ₁₆ O ₄	381 379	$C_{24}H_{42}O_{21}$ $C_{27}+C_{27}H_{46}O$	389 379
	380				
$C_{11}H_{22}O_{}$ $C_{11}H_{22}O_{2}$	389	$C_{14}H_{18}O_{3}$ $C_{14}H_{20}O_{8}$	395 402	C ₂₈ H ₂₂ O ₃ C ₂₈ H ₃₈ O ₁₉	398 388
$C_{11}H_{24}O_{2}$	383	C ₁₄ H ₂₂ O ₈	- 402	C ₃₂ H ₃₀ O ₃	398
C ₁₂ C ₁₂ H ₆ O ₃	398 395	$C_{14}H_{26}O_{3}$ $C_{14}H_{28}O_{2}$	398 389	C ₃₂ H ₆₄ O ₂ C ₃₉ H ₇₄ O ₆	403 403
C ₁₂ H ₈ O ₄	395	C ₁₅ C ₁₅ H ₁₀ O	386	C45H86O6	403
$C_{12}H_{10}O_{2}$	400	$C_{15}H_{14}O_{2}$	403	C ₄₇ H ₈₈ O ₅	403
$C_{12}H_{10}O_4$ $C_{12}H_{12}O$	386, 396 386	$C_{15}H_{20}O_{6}$ $C_{15}H_{26}O_{6}$	403 403	C ₄₈ H ₃₈ O ₁₂ C ₆₉ H ₁₂₈ O ₆	403 4 03
C ₁₂ H ₁₂ O ₃	395	C ₁₆ C ₁₆ H ₁₀ O ₃	398	C0911128O6	400
C ₁₂ H ₁₂ O ₆	401	C ₁₆ H ₁₂ O ₃	398		
C ₁₂ H ₁₂ O ₁₂	397	C ₁₆ H ₁₄ O ₄	396		
$C_{12}H_{14}O_{2}$ $C_{12}H_{14}O_{3}$	402, 403 395, 400, 402,	$C_{16}H_{16}O_{2}$ $C_{16}H_{22}O_{11}$	384, 395, 403 388		
	403	$C_{16}H_{32}O_{2}$	389		
C ₁₂ H ₁₄ O ₄	384	C ₁₆ H ₃₄ O	379		
C ₁₂ H ₁₆ O ₂	381, 384, 403	C ₁₇ C ₁₇ H ₁₄ O	386		
C ₁₂ H ₁₆ O ₃ C ₁₂ H ₁₈ O	384 384	$C_{17}H_{16}O_{3}$ $C_{17}H_{18}O_{2}$	395, 403 403		
C ₁₂ H ₁₈ O ₂	402	C ₁₈ C ₁₈ H ₁₄ O ₃	398		

3. N COMPOUNDS

Formula	Page	Formula	Page	Formula	Page
CH ₃ NO CH ₃ NO ₂ CH ₄ N ₂ O CH ₆ N	406 411 406	$\begin{array}{cccc} C_5 & C_5H_5N_{-} & & \\ & C_5H_5N_5O_{-} & & \\ & C_5H_6N_2 & & \\ & C_5H_6N_2O_{2-} & & \\ & C_5H_6N_2O_{3-} & & \\ \end{array}$	408 408 410	C7 C7H15N	404 404
CH6N4U3	404 406		408 408	C ₈ C ₈ H ₅ NO	408, 410 412
C ₂ C ₂ N ₂ C ₂ H ₃ N C ₂ H ₃ NO	409 409, 410 409, 411	$\begin{array}{c} C_5H_6N_4O_4\\ C_5H_7NO_2\\ C_5H_7NO_4\\ C_5H_7N_2Ag\\ C_5H_7N_5O_3\\ \end{array}$	408 410 409 410	C ₈ H ₆ N ₄ O ₃ . 2H ₂ O	408, 410
C ₂ H ₃ NO ₃ C ₂ H ₄ N ₂ O ₂ C ₂ H ₅ NO ₂ C ₂ H ₅ NO ₂	406 406 406, 413		408 408	C ₈ H ₇ NO ₂ C ₈ H ₇ N ₅ O ₈ C ₈ H ₈ N ₂ O ₃ C ₈ H ₈ N ₆ O ₆ C ₈ H ₉ NO	408 412 412
0211514 03	405, 411 , 415 415	$\begin{array}{c} C_5H_8N_2O_2\\ C_5H_8N_2O_5\\ C_5H_8N_4O_3\\ C_5H_9N\end{array}$	406 408 410		408 407, 414
$\begin{array}{c} C_2H_6N_2O \\ C_2H_6N_2O_2 \\ C_2H_7N \\ C_2H_8N_2.H_2O \end{array}$	414 414 404 404	C5H9N U4	406 407 404, 408	C ₈ H ₉ NO ₂ C ₈ H ₉ NO ₃ C ₈ H ₁₀ N ₂ O C ₈ H ₁₀ N ₄ O ₂ C ₈ H ₁₁ ClN ₂ O	406 412 414 408
C ₃ C ₃ H ₂ N ₂	. 408	$\begin{array}{c} C_5 \underline{H}_{10} N_2 O_2 \underline{\hspace{1cm}} \\ C_5 \underline{H}_{11} N \underline{\hspace{1cm}} \\ C_5 \underline{H}_{11} N O \underline{\hspace{1cm}} \\ C_5 \underline{H}_{11} N O_2 \underline{\hspace{1cm}} \\ C_5 \underline{H}_{11} N O_6 \underline{\hspace{1cm}} \end{array}$	407 406 392	C.H.N	405, 410
C ₃ H ₃ N ₂ Ag C ₃ H ₃ NO ₂ C ₃ H ₄ N ₂ O C ₃ H ₄ N ₂ O ₂	410 409 409	C.H.N	404 411	C ₈ H ₁₂ N ₂ O ₃	408 407 406
C ₃ H ₄ N ₂ O ₄ C ₃ H ₅ N	408 406 409, 410	C ₆ C ₆ H ₃ N ₃ O ₆ C ₆ H ₃ N ₃ O ₇ C ₆ H ₄ N ₂ O ₄ C ₆ H ₄ N ₂ O ₅	412 411, 414 412	C ₈ H ₁₄ N ₄ O ₅ C ₈ H ₁₆ N ₂ O ₃ C ₈ H ₁₆ N ₂ O ₄	406 407 409
C ₃ H ₅ NO ₃ C ₃ H ₅ NO ₃ C ₃ H ₅ N ₃ O ₉	409, 411 406 415	$\begin{array}{c} C_6H_5NO_2 \\ C_6H_5NO_3 \\ C_6H_5N_3O_3 \\ C_6H_6N_2O_2 \\ C_6H_6N_2O_3 \\ \end{array}$	411, 414 412 415	C ₈ H ₁₇ N C ₈ H ₁₉ N C ₉ C ₉ H ₅ N C ₉ H ₇ N C ₉ H ₇ NO	404 410 409
C ₃ H ₆ N ₂ O ₃	406 406 404		412 411		407, 410
C ₃ H ₇ N C ₃ H ₇ NO C ₃ H ₇ NO ₂ C ₃ H ₇ NO ₃	406, 413 405, 406, 411 405	$\begin{array}{c} C_6H_6N_4\\ C_6H_6N_4O\\ C_6H_7N\\ C_6H_7NO\\ C_6H_7NO_3\end{array}$	408, 410 408 405, 408 405, 411 410	$\begin{array}{c} C_9H_7NO_4 \\ C_9H_9N \\ C_9H_9NO_3 \\ C_9H_{10}N_2O_4 \\ C_9H_{11}N \end{array}$	409 407 412 408
$\begin{array}{c} C_3H_8N_2O \\ C_3H_9N \\ C_4 C_4N_2 \\ C_4H_2N_2O_4. \end{array}$	406 404 410			C ₀ H ₁₁ NO C ₉ H ₁₁ NO ₂ C ₉ H ₁₁ NO ₃	407 406, 412 406
H ₂ O	408 410	$\begin{array}{c} C_6H_8N_2_\\ C_6H_9NO_2_\\ C_6H_9NO_4_\\ C_6H_9NO_6_\\ C_6H_9N_2Ag_\\ \end{array}$	409 406 410	C9H ₁₅ NO	404, 405 407
$\begin{array}{c} C_4H_4N_2 - \cdots \\ C_4H_4N_2O_3 - \cdots \\ C_4H_5N - \cdots \\ C_4H_5NO_2 - \cdots \end{array}$	408 408, 410 409, 410	$\begin{array}{c} C_6H_{10}N_2O_2\\ C_6H_{11}N\\ C_6H_{11}N_3O_4\\ C_6H_{12}N_2O_3\\ C_6H_{12}N_4\end{array}$	406 410 406	$\begin{array}{c} C_{9}H_{16}N_{2}O_{5}\\ C_{9}H_{17}NO\\ C_{10}H_{7}NO_{2}\\ C_{10}C_{10}H_{5}N_{2}O_{2}\\ C_{10}H_{9}N\\ C_{10}H_{9}NO_{4}\end{array}$	406 413 414 408
$C_4H_5N_2Ag$ $C_4H_5N_3$ $C_4H_5N_3O_3$	410 410 408				405, 409 409
C ₄ H ₆ N ₂ O ₂ C ₄ H ₆ N ₄ O ₃ C ₄ H ₇ N	408 408	C ₆ H ₁₃ NO ₂ C ₆ H ₁₃ NO ₆ C ₆ H ₁₅ N C ₇ C ₇ H ₅ N C ₇ H ₆ NO ₃	392 404 410	C ₁₀ H ₁₁ NO ₃ C ₁₀ H ₁₁ NO ₄ C ₁₀ H ₁₃ N C ₁₀ H ₁₃ NO ₂	407 407 409 407, 414
	410 407 406	C7H5NO4	413 413 412	C ₁₀ H ₁₃ NO ₂ C ₁₀ H ₁₃ NO ₆ C ₁₀ H ₁₄ N ₂	392 409
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	407 407 406	$\begin{array}{c} C_7H_5N_3O_6\\ C_7H_5N_5O_8\\ C_7H_6N_2O_4\\ C_7H_6N_4O_6\end{array}$	412 412 412	$\begin{array}{c} C_{10}H_{15}N \\ C_{10}H_{15}NO_3 \\ C_{10}H_{17}NO \\ C_{10}H_{19}N \\ C_{10}H_{19}N_3O_4 \\ C_{10}H_{23}N \\ \end{array}$	405 411 413
$\begin{array}{c} {\rm C_4H_8N_2O_3.} \\ {\rm H_2O} \\ {\rm C_4H_8N_2O_4} \end{array}$	406 407	C ₇ H ₇ NO	407, 414 412 412		404 406 404
$\begin{array}{c} C_4H_8N_2O_4$	407, 413 415 392	C7H7NO2 C7H7N3O4 C7H8N2O C7H8N2O2	412 407 412	$\begin{array}{c} \textbf{C}_{11} \ C_{11}H_7N \\ C_{11}H_{11}NO_4 \\ C_{11}H_{13}NO_3 \\ C_{11}H_{15}NO \\ C_{11}H_{15}NO \\ C_{12}H_{15}NO_6 \\ \textbf{C}_{12} \ C_{12}H_{9}N \\ \end{array}$	410 409 407
$C_4H_9N_3O_2$	407	C ₇ H ₈ N ₄ O ₂ C ₇ H ₉ N C ₇ H ₉ NO C ₇ H ₉ NO ₃	404, 405, 408 405 410		410 392 409
C ₄ H ₁₁ N C ₅ C ₅ H ₄ N ₄ O C ₅ H ₄ N ₄ O ₂ C ₅ H ₄ N ₄ O ₃		C7H ₁₀ N ₂ C7H ₁₁ N ₂ Ag C7H ₁₁ N ₂ Ag C7H ₁₃ NO ₃ C7H ₁₄ N ₂ O ₂		C ₁₂ H ₁₀ N ₂ C ₁₂ H ₁₀ N ₂ O C ₁₂ H ₁₁ N C ₁₂ H ₁₁ N ₃ C ₁₂ H ₁₃ N ₂	414, 415 405
C ₅ H ₄ N ₄ O ₂ C ₅ H ₄ N ₄ O ₃	408 408	C7H ₁₃ NO ₃ C7H ₁₄ N ₂ O ₂	406 407	C ₁₂ H ₁₁ N ₃ C ₁₂ H ₁₂ N ₂	414 405, 415

3. N COMPOUNDS—Continued

	Formula	Page	Formula	Page	Formula	Page
	C ₁₂ H ₁₂ N ₄ C ₁₂ H ₁₄ N ₄ O ₆ C ₁₂ H ₁₄ N ₄ O ₆ C ₁₂ H ₂₂ N ₂ O ₂ C ₁₂ H ₂₇ N C ₁₃ H ₁₁ NO C ₁₃ H ₁₂ N ₂ O C ₁₄ H ₉ NO ₄ C ₁₄ H ₁₄ N ₂ O ₂	414 408 408 406 406 407 407 412 414	C ₁₆ C ₁₆ H ₁₂ N ₂ O ₄ C ₁₆ H ₁₃ N C ₁₆ H ₁₃ NO ₃ C ₁₆ H ₁₅ NO ₃ C ₁₆ H ₁₅ N ₂ O ₂ C ₁₆ H ₁₅ N ₂ O ₂ C ₁₆ H ₁₆ N ₂ O ₃ C ₁₇ H ₁₉ NO ₃ H ₂ O C ₁₈ C ₁₈ H ₁₅ N	408 405 407 407 407 414 415 409 405	$\begin{array}{c} C_{20} \ C_{20} H_{21} N O_4 \\ C_{20} H_{27} N O_{11} \\ C_{21} H_{13} N O_5 \\ C_{21} H_{21} N \\ \\ \\ C_{22} H_{23} N O_7 \\ \\ \\ C_{22} H_{23} N O_7 \\ C_{22} H_{23} N_{3} O_4 \\ \\ \\ C_{22} H_{27} N O_8 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	40 40 41 40 40 40 40
C ₁₆	C ₁₄ H ₁₅ N C ₁₄ H ₁₆ N ₄ O C ₁₅ H ₁₃ N C ₁₈ H ₁₀ N ₂ O ₂ C ₁₆ H ₁₁ NO ₂ C ₁₆ H ₁₁ NO ₅	404 415 404 409 407 412	C ₁₈ H ₂₁ NO ₃ H ₂ O C ₁₀ H ₁₃ N ₃ O ₃ C ₁₀ H ₁₃ N ₃ O ₇ C ₁₀ H ₁₆ N ₃ O C ₁₀ H ₂₁ NO ₃	409 411 411 405 409		
		Ą.	HALOGEN CO	MPOUNE	S	
	Kr CH₃Br C₂H₅Br C₃H₁Br	419 419 419	$\begin{array}{cccc} \mathbb{C}_{8} & \mathbb{C}_{6}\mathbb{H}_{3}\mathbb{C}1\mathbb{O}_{2}\\ & \mathbb{C}_{6}\mathbb{H}_{3}\mathbb{C}1_{3}\mathbb{O}_{2}\\ & \mathbb{C}_{6}\mathbb{H}_{4}\mathbb{C}1_{2}\\ & \mathbb{C}_{6}\mathbb{H}_{4}\mathbb{C}1_{2}\mathbb{O}_{2}\\ & \mathbb{C}_{9}\mathbb{H}_{5}\mathbb{C}1\mathbb{O}_{2} \end{array}$	419 419 418 419 419	$\begin{array}{cccc} \textbf{C}_6 & C_6H_5FO \\ & C_6H_0FN \\ & C_7H_4F_3FNO_2 \\ & C_7H_6F_3 \\ & C_7H_5FO_2 \end{array}$	41 41 41 41 41
\mathbb{C}_1	CII CCl2 CHCl3		C ₇ H ₄ Cl ₂ O C ₇ H ₅ ClO C ₇ H ₅ ClO ₂ C ₇ H ₇ Cl C ₈ H ₄ Cl ₂ O ₂	418 418 418 418 418	$\begin{array}{c} C_7H_5F_8O \\ C_7H_0F_2 \\ C_7H_7F_1 \\ C_7H_1F_2 \\ \end{array}$	41 41 41 41
\mathbb{C}_2	CH ₂ Cl ₂ CH ₃ Cl C ₂ Cl ₄ C ₂ Cl ₅ C ₂ HCl ₃ O ₂	418	C ₈ C ₈ H ₇ ClO C ₉ H ₉ ClO ₂ C ₁₀ C ₁₀ H ₁₇ Cl C ₁₀ H ₁₈ Cl ₂ C ₁₈ H ₁₁ Cl	418 418 418 418 418	C ₈ H ₇ FN ₂ O ₃ C ₈ H ₇ F ₂ NO C ₈ H ₈ FNO C ₈ H ₈ FNO ₃	41 41 41 42 43
	C ₂ H ₂ Cl ₂ NO C ₂ H ₃ Cl. C ₂ H ₃ ClO C ₃ H ₃ ClO ₂ C ₂ H ₄ ClNO	419 418 418 418 419	C ₁₉ H ₁₅ Cl F C ₂ C ₂ H ₂ F ₂ O ₂ C ₂ H ₃ F ₂ NO C ₂ H ₃ F ₀ O ₂	418 416 416 416	C ₈ H ₁ rF	4: 4: 4: 4: 4: 4:
C ₃	C ₂ H ₄ Cl ₂	418 418	C ₂ H ₃ FO ₂ C ₂ H ₄ FNO	417	T CHI3	4: 4: 4: 4:
C ₄	$\begin{array}{c} C_3H_7C! \\ C_4H_6Cl_2O_2 \\ C_4H_7ClO_2 \\ C_4H_9Cl \\ C_6Cl_4O_2 - \end{array}$		C ₄ H ₇ F ₄ N C ₄ H ₇ F ₀ 2 C ₅ H ₉ F ₀ C ₆ H ₃ F _N 2 ₀ 4 C ₆ H ₃ F ₂ N ₀ 2	417 416 416 417 417	C ₂ I ₄ C ₂ H ₄ I ₂ C ₂ H ₅ I C ₃ H ₅ I C ₃ H ₇ I C ₄ H ₄ N	4: 4: 4: 4: 4:
	$\begin{array}{c} C_6 Cl_6 \\ C_6 H Cl_3 O_2 \\ C_6 H_2 Cl_2 O_2 \\ C_6 H_2 Cl_2 O_4 \\ C_6 H_2 Cl_4 O_2 \end{array}$	418 419 419 419 419	$C_{6}H_{4}F_{2}$	415 417 417 415 417	$\begin{array}{c} C_{4}H_{1}I_{1}\\ C_{6}H_{5}I_{1}\\ C_{6}H_{6}IN_{1}\\ C_{7}H_{5}IO_{2}\\ C_{7}H_{5}IO_{3}\\ C_{7}H_{4}I_{2}O_{3} \end{array}$	4: 4: 4: 4: 4:
			5. S COMP	DUNDS		
C ₁	COS	420	C ₃ H ₆ NS	420 420 420 420 420 420 420 420	C ₈ H ₈ O ₂ S C ₅ H ₁₀ N ₂ S ₂ C ₆ H ₁₁ NS ₂ C ₆ H ₁₂ N ₂ O ₄ S ₂ C ₇ H ₅ NS C ₉ H ₁₁ NS ₂ C ₉ H ₁₁ NS ₂ C ₁₈ H ₁₄ N ₂ O ₂	42 42 42 42 42 42 42 42 42

