```
In [1]:
from scipy.sparse import csr matrix
from scipy.sparse.csgraph import minimum spanning tree as mst
from scipy.optimize import fmin
from copy import copy
import pandas as pd
from mpl toolkits.mplot3d import Axes3D
import json
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
                                                                                                          In [2]:
def distance(coor1, coor2):
    return ((coor1[0] - coor2[0])**2 + (coor1[1] - coor2[1])**2)**0.5
def plt2coor(coor):
    return 73.4 + coor[0]*(13.16/600), 52.4 + (450-coor[1])*(5.63/450)
                                                                                                          In [3]:
def coordinate descent(f, x0, e=0.001):
    iter list = [0]
    m list = [-1]
    dist list = [-1]
    f list = [f(x0)]
    x_{list} = [x0]
    def f 1(x, \star args):
        return f([x, args[0]])
    def f 2(y, *args):
        return f([args[0], y])
    x1 = copy(x0)
    iteration = 0
    while distance (x0, x1) >e or iteration == 0:
        x0 = copy(x1)
        x \text{ new} = \text{fmin}(f 1, x0[0], args=tuple([x0[1]]), disp=False)[0]
        y_new = fmin(f_2, x0[1], args=tuple([x0[0]]), disp=False)[0]
        m = 0
        if abs(x_new - x0[0]) > abs(y_new - x0[1]):
            x1[0] = x new
        else:
            x1[1] = y_new
            m = 1
        iteration += 1
        iter_list.append(iteration)
        m list.append(m)
        dist_list.append(distance(x0, x1))
        f_{list.append(copy(f(x1)))}
        x list.append(copy(x1))
    data = {'Итерация': iter list,
           'Изменяемая координата': m list,
           'Размер шага': dist list,
            'f(x)': f list,
           'x': x_list}
    return x1, data
```

1. Поиск без учета пассажиропотока

```
with open("new_coordinates_of_district_center.json", "r") as read_file:
    new_data = json.load(read_file)

In [5]:

def f(x):
    s = 0
    for coor in new_data.values():
        s += distance(x, coor)
    return s
```

In [4]:

```
%matplotlib notebook
fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(0, 600, 1)
Y = np.arange(0, 450, 1)
X,Y = np.meshgrid(X,Y)
ax.plot_surface(X,Y,f([X,Y]), rstride=1, cstride=1, cmap='viridis')
plt.show()
```


plt.scatter(x[-1], y[-1], s=100, c='r')

plt.show()

```
In [7]:
p, data = coordinate_descent(f, [400, 150])
                                                                                                                 In [8]:
plt2coor(p)
                                                                                                                Out[8]:
(80.0952913967677, 54.88455362929275)
                                                                                                                 In [9]:
df = pd.DataFrame(data)
x = []
y = []
z = []
x list = data['x']
dist_list = data['f(x)']
for i in range(len(x_list)):
    x.append(x_list[i][0])
y.append(x_list[i][1])
    z.append(dist_list[i])
                                                                                                                In [10]:
%matplotlib inline
plt.figure(figsize=(12, 9))
plt.axis([0, 600, 450, 0])
image = mpimg.imread("map.png")
plt.imshow(image)
```


In [11]:

```
%matplotlib notebook
fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(0, 600, 1)
Y = np.arange(0, 450, 1)
X,Y = np.meshgrid(X,Y)
ax.plot_surface(X,Y,f([X,Y]), rstride=1, cstride=1, cmap='viridis')
ax.scatter(x[-1], y[-1], z[-1], s=100, c='r')
plt.show()
```


	Итерация	Изменяемая координата	Размер шага	f(x)	х
0	0	-1	-1.000000	5282.491033	[400, 150]
1	1	0	105.053482	4729.176323	[294.94651794433594, 150]
2	2	1	102.086906	3696.743444	[294.94651794433594, 252.08690643310547]
3	3	0	10.252706	3689.866059	[305.19922408081766, 252.08690643310547]
4	4	1	0.671318	3689.824389	[305.19922408081766, 251.41558887717838]
5	5	0	0.056931	3689.824177	[305.25615554618616, 251.41558887717838]
6	6	1	0.003357	3689.824176	[305.25615554618616, 251.4122321169204]

In [13]:

```
%matplotlib inline
plt.figure(figsize=(12, 9))
plt.axis([0, 600, 450, 0])
image = mpimg.imread("map.png")
plt.imshow(image)

plt.plot(x, y, 'r')
plt.show()
```



```
In [14]:
```

```
%matplotlib notebook
fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(0, 600, 1)
Y = np.arange(0, 450, 1)
X,Y = np.meshgrid(X,Y)
ax.plot_surface(X,Y,f([X,Y]), rstride=1, cstride=1, cmap='viridis')
ax.plot(x, y, z, 'r-*')
plt.show()
```


2. Поиск с учетом пассажиропотока

```
In [15]:
with open("new_coordinates_of_district_center.json", "r") as read_file:
    new_data = json.load(read_file)
                                                                                                                       In [16]:
s = 0
for v in new data.values():
    s += v[-1]
def f(x):
    s = 0
    for coor in new_data.values():
        s += distance(x, coor) * (coor[-1]/S)
    return s
                                                                                                                       In [17]:
%matplotlib notebook
fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(0, 600, 1)
Y = np.arange(0, 450, 1)
X,Y = np.meshgrid(X,Y)
{\tt ax.plot\_surface}\,({\tt X},{\tt Y},{\tt f}\,([{\tt X},{\tt Y}])\,,\,\,{\tt rstride=1},\,\,{\tt cstride=1},\,\,{\tt cmap='viridis'})
plt.show()
```



```
In [18]:
p, data = coordinate_descent(f, [100, 100])
                                                                                                          In [19]:
plt2coor(p)
                                                                                                         Out[19]:
(82.71250038856705, 54.99166968593075)
                                                                                                          In [20]:
df = pd.DataFrame(data)
x = []
y = []
z = []
x list = data['x']
dist_list = data['f(x)']
for i in range(len(x_list)):
    x.append(x_list[i][0])
    y.append(x_list[i][1])
    z.append(dist_list[i])
                                                                                                          In [21]:
%matplotlib inline
plt.figure(figsize=(12, 9))
plt.axis([0, 600, 450, 0])
image = mpimg.imread("map.png")
plt.imshow(image)
plt.scatter(x[-1], y[-1], s=100, c='r')
plt.show()
```



```
In [22]:
```

```
%matplotlib notebook
fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(0, 600, 1)
Y = np.arange(0, 450, 1)
X,Y = np.meshgrid(X,Y)
ax.plot_surface(X,Y,f([X,Y]), rstride=1, cstride=1, cmap='viridis')
ax.scatter(x[-1], y[-1], z[-1], s=100, c='r')
plt.show()
```


	Итерация	Изменяемая координата	Размер шага	f(x)	x
0	0	-1	-1.000000	334.474633	[100, 100]
1	1	0	307.971573	166.162456	[407.97157287597656, 100]
2	2	1	143.699570	54.670683	[407.97157287597656, 243.69956970214844]
3	3	0	16.475799	45.548239	[424.44737187732244, 243.69956970214844]
4	4	1	0.840766	45.091304	[424.44737187732244, 242.85880321182776]
5	5	0	0.133417	45.019748	[424.58078886738394, 242.85880321182776]
6	6	1	0.008153	45.015288	[424.58078886738394, 242.85065060307738]
7	7	0	0.001296	45.014637	[424.5820845851234, 242.85065060307738]

In [24]:

```
%matplotlib inline
plt.figure(figsize=(12, 9))
plt.axis([0, 600, 450, 0])
image = mpimg.imread("map.png")
plt.imshow(image)

plt.plot(x, y, 'r')
plt.show()
```



```
In [25]:
```

```
%matplotlib notebook
fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(0, 600, 1)
Y = np.arange(0, 450, 1)
X,Y = np.meshgrid(X,Y)
ax.plot_surface(X,Y,f([X,Y]), rstride=1, cstride=1, cmap='viridis')
ax.plot(x, y, z, 'r-*')
plt.show()
```


3. Поиск без учета пассажиропотока г. Новосибирска

```
In [26]:
\begin{tabular}{ll} \textbf{with} & open ("new_coordinates_of_district_center.json", "r") & \textbf{as} & read_file: \\ \end{tabular}
    new_data = json.load(read_file)
c = new_data['Обь']
c[-1] = 0
new_data['Обь'] = c
                                                                                                                    In [27]:
s = 0
for v in new_data.values():
    s += v[-1]
def f(x):
    s = 0
    for coor in new data.values():
        s += distance(x, coor)*(coor[-1]/S)
    return s
                                                                                                                    In [28]:
%matplotlib notebook
fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(0, 600, 1)
Y = np.arange(0, 450, 1)
X,Y = np.meshgrid(X,Y)
ax.plot_surface(X,Y,f([X,Y]), rstride=1, cstride=1, cmap='viridis')
plt.show()
```



```
In [29]:
p, data = coordinate_descent(f, [100, 100])
                                                                                                          In [30]:
plt2coor(p)
                                                                                                         Out[30]:
(81.20057892431248, 54.80067788839758)
                                                                                                          In [31]:
df = pd.DataFrame(data)
x = []
y = []
z = []
x list = data['x']
dist_list = data['f(x)']
for i in range(len(x_list)):
    x.append(x_list[i][0])
    y.append(x_list[i][1])
    z.append(dist_list[i])
                                                                                                          In [32]:
%matplotlib inline
plt.figure(figsize=(12, 9))
plt.axis([0, 600, 450, 0])
image = mpimg.imread("map.png")
plt.imshow(image)
plt.scatter(x[-1], y[-1], s=100, c='r')
plt.show()
```


In [33]:

```
%matplotlib notebook
fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(0, 600, 1)
Y = np.arange(0, 450, 1)
X,Y = np.meshgrid(X,Y)
ax.plot_surface(X,Y,f([X,Y]), rstride=1, cstride=1, cmap='viridis')
ax.scatter(x[-1], y[-1], z[-1], s=100, c='r')
plt.show()
```


\sim 1	F 2 4 7	
()I ITI	1 34	
Out		

	Итерация	Изменяемая координата	Размер шага	f(x)	x
0	0	-1	-1.000000	292.173793	[100, 100]
1	1	0	235.084763	204.394465	[335.0847625732422, 100]
2	2	1	157.475433	129.654684	[335.0847625732422, 257.4754333496094]
3	3	0	20.451823	129.003557	[355.5365855892014, 257.4754333496094]
4	4	1	0.633022	129.002095	[355.5365855892014, 258.1084553405526]
5	5	0	0.111553	129.002077	[355.64813833946346, 258.1084553405526]
6	6	1	0.007778	129.002077	[355.64813833946346, 258.1162337249413]
7	7	0	0.001357	129.002077	[355.6494950294443, 258.1162337249413]

In [35]:

```
%matplotlib inline
plt.figure(figsize=(12, 9))
plt.axis([0, 600, 450, 0])
image = mpimg.imread("map.png")
plt.imshow(image)

plt.plot(x, y, 'r')
plt.show()
```



```
In [36]:
```

```
%matplotlib notebook
fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(0, 600, 1)
Y = np.arange(0, 450, 1)
X,Y = np.meshgrid(X,Y)
ax.plot_surface(X,Y,f([X,Y]), rstride=1, cstride=1, cmap='viridis')
ax.plot(x, y, z, 'r-*')
plt.show()
```

