Mécanique Question 8

Formule de dérivation composée, définition du vecteur rotation

Soient un premier référentiel \mathcal{R}_1 , de point fixe O_1 , et un deuxième \mathcal{R}_2 en mouvement par rapport au premier, de point fixe O_2 .

Dans le cas le plus général, il y a trois rotations entre \mathcal{R}_2 et \mathcal{R}_1 , qu'on note $\alpha_1 \vec{h}_1$, $\alpha_2 \vec{h}_2$ et $\alpha_3 \vec{h}_3$. On pose alors $\Omega = \dot{\alpha}_1 \vec{h}_1 + \dot{\alpha}_2 \vec{h}_2 + \dot{\alpha}_3 \vec{h}_3$, vecteur rotation du référentiel \mathcal{R}_2 par rapport au référentiel \mathcal{R}_1 .

On a alors

$$\frac{\mathrm{d}\vec{u}}{\mathrm{d}t}\Big|_{\mathcal{R}_2} = \frac{\mathrm{d}\vec{u}}{\mathrm{d}t}\Big|_{\mathcal{R}_1} + \frac{\mathrm{d}\overrightarrow{O_1O_2}}{\mathrm{d}t}\Big|_{\mathcal{R}_1} + \overrightarrow{\Omega} \wedge \overrightarrow{u}$$