



# FCC PART 22H, 24E

## MEASUREMENT AND TEST REPORT

For

# **PAX Technology Limited**

Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road,

Wanchai, Hong Kong

FCC ID: V5PP90

Report Type: **Product Type:** Mobile Payment Terminal Original Report Vi cent: Kang Vicent Kang **Test Engineer: Report No.:** RSZ08022901 **Report Date:** 2008-08-27 merry, where Merry Zhao **RF** Engineer **Reviewed By:** Bay Area Compliance Laboratories Corp. (Shenzhen) Prepared By: 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008

**Note**: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP\*, NIST, or any agency of the Federal Government. \* This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "\*".

# **TABLE OF CONTENTS**

| 4        |
|----------|
| 4        |
| 4        |
| 5        |
| 5        |
| 5<br>5   |
|          |
| 6        |
| 6        |
| 6        |
| 6<br>6   |
| 7        |
|          |
| 8        |
| 9        |
| 10       |
|          |
| 10       |
| 10<br>10 |
| 10       |
|          |
| 16       |
| 16       |
| 16       |
| 17       |
| 17       |
| 17       |
| 17       |
| 17       |
| 23       |
| 23       |
| 23       |
| 23       |
| 23       |
| 30       |
| 30       |
| 30       |
| 30       |
| 31       |
| 32       |
|          |

| APPLICABLE STANDARDS                              | 32 |
|---------------------------------------------------|----|
| TEST PROCEDURE                                    | 32 |
| TEST EQUIPMENT LIST AND DETAILS                   | 32 |
| TEST DATA                                         |    |
| §2.1055, §22.355, & §24.235 - FREQUENCY STABILITY | 37 |
| APPLICABLE STANDARD                               | 37 |
| TEST PROCEDURE                                    | 37 |
| TEST EQUIPMENT LIST AND DETAILS                   | 37 |
| TEST DATA                                         | 38 |

#### **GENERAL INFORMATION**

#### **Product Description for Equipment Under Test (EUT)**

The *PAX Technology Limited*'s product, model number: *P90* or the "EUT" as referred to in this report is a *Mobile Payment Terminal*, which measures approximately: 205 mm L x 89.5 mm W x 53 mm H, rated input voltage: DC 7.4V adapter.

Transmitter Frequency Range: GSM850: 824-849 MHz

PCS1900: 1850-1910 MHz

Receiver Frequency Range: GSM850: 869-893 MHz

PCS1900: 1930-1990 MHz

Type of Modulation: GMSK

AC/DC Power Adapter Information:

Model: ADP036-094B;

Input: 100V-240V, 1.0A 50/60Hz;

Output: 7.4V, 4A.

\* All measurement and test data in this report was gathered from production sample serial number: 0802022 (Assigned by BACL, Shenzhen). The EUT was received on 2008-02-29.

#### **EUT Photo**



Additional photos in Exhibit B

#### **Objective**

This type approval report is prepared on behalf of *PAX Technology Limited* in accordance with Part 2, Subpart J, and Part 22 Subpart H and Part 24 Subpart E of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC rules for output power, modulation characteristic, occupied bandwidth, and spurious emission at antenna terminal, spurious radiated emission, frequency stability, band edge and radiated margin.

#### Related Submittal(s)/Grant(s)

No Related Submittal(s).

#### **Test Methodology**

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 22 Subpart H - Public Mobile Services

Part 24 Subpart E - PCS

Applicable Standards: TIA/EIA 603-C, ANSI 63.4-2003.

All radiated and conducted emissions measurements were performed at Bay Area Compliance Laboratories Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

#### **Test Facility**

The Test site used by Bay Area Compliance Laboratories Corp.(Shenzhen) to collect test data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 04, 2004. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

NVLAP LAB CODE 200707-0

The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2007070.htm

## **SYSTEM TEST CONFIGURATION**

#### **Justification**

The EUT was configured for testing according to TIA/EIA-603-C.

The final qualification test was performed with the EUT operating at normal mode.

## **Equipment Modifications**

No modifications were made to the EUT.

#### **External I/O Cable**

| Cable Description                 | Length (m) | From/Port | То      |
|-----------------------------------|------------|-----------|---------|
| Unshielded Detachable Power Cable | 1.74       | EUT       | Adapter |

## **Configuration of Test Setup**



## **Block Diagram of Test Setup**



## **SUMMARY OF TEST RESULTS**

| FCC Rules                                        | Description of Test                                                    | Result                                 |
|--------------------------------------------------|------------------------------------------------------------------------|----------------------------------------|
| §1.1307<br>§2.1093                               | RF Exposure                                                            | Compliant * Please refer to SAR Report |
| \$2.1046;<br>\$ 22.913 (a)<br>\$ 24.232 (c)      | RF Output Power                                                        | Compliant                              |
| § 2.1047                                         | Modulation Characteristics                                             | N/A**                                  |
| \$ 2.1049<br>\$ 22.905<br>\$ 22.917<br>\$ 24.238 | 99% & -26 dB Occupied Bandwidth                                        | Compliant                              |
| § 2.1051,<br>§ 22.917 (a)<br>§ 24.238 (a)        | Spurious Emissions at Antenna Terminal                                 | Compliant                              |
| § 2.1053<br>§ 22.917 (a)<br>§ 24.238 (a)         | Field Strength of Spurious Radiation                                   | Compliant                              |
| § 22.917 (a)<br>§ 24.238 (a)                     | Out of band emission, Band Edge                                        | Compliant                              |
| § 2.1055<br>§ 22.355<br>§ 24.235                 | Frequency stability vs. temperature<br>Frequency stability vs. voltage | Compliant                              |

**Note:** \* Please refer to SAR report (Report No.: R0809024-SAR) \*\* N/A --No specific requirement for digital modulation device.

| PAX Technology Limited                                 | FCC ID: V5PP90 |  |  |  |  |  |  |
|--------------------------------------------------------|----------------|--|--|--|--|--|--|
| §1.1037, §2.1093 - RF EXPOSURE                         |                |  |  |  |  |  |  |
| Please refer to SAR Report. (Report No.: R0809024-SAR) |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |
|                                                        |                |  |  |  |  |  |  |

## § 2.1046, § 22.913 (a), & § 24.232 (c) - RF OUTPUT POWER

#### **Applicable Standard**

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC §2.1046 and §24.232 (C), in no case may the peak output power of a base station transmitter exceed 2 watt EIRP.

#### **Test Procedure**

Conducted method:

The RF output of the transmitter was connected to the wireless test set and the spectrum analyzer through sufficient attenuation.



Radiated method:

EIA/TIA 603-C section 2.2.17

#### **Test Equipment List and Details**

| Manufacturer    | Description                             | Model       | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|-----------------------------------------|-------------|------------------|---------------------|-------------------------|
| Sunol Sciences  | Horn Antenna                            | DRH-118     | A052604          | 2007-09-25          | 2008-09-25              |
| Sunol Sciences  | Broadband Antenna                       | JB1         | A040904-1        | 2008-03-11          | 2009-03-11              |
| Rohde & Schwarz | Spectrum Analyzer                       | FSEM30      | 849720/019       | 2008-05-09          | 2009-05-09              |
| HP              | Preamplifier                            | 8449B       | 3008A00277       | 2007-09-29          | 2008-09-29              |
| HP              | Signal Generator                        | HP8657A     | 2849U00982       | 2007-10-16          | 2008-10-16              |
| HP              | Amplifier                               | HP8447D     | 2944A09795       | 2007-11-15          | 2008-11-15              |
| Giga-tronics    | Signal Generator                        | 1026        | 270801           | 2007-09-29          | 2008-09-29              |
| COM POWER       | Dipole Antenna                          | AD-100      | 041000           | 2007-09-25          | 2008-09-25              |
| A.H. System     | Horn Antenna                            | SAS-200/571 | 135              | 2008-05-17          | 2009-05-17              |
| Rohde & Schwarz | Universal Radio<br>Communication Tester | CMU200      | 1100.0008.02     | 2008-06-21          | 2009-06-21              |

<sup>\*</sup> **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:         | 25 ° C   |
|----------------------|----------|
| Relative Humidity:   | 56%      |
| <b>ATM Pressure:</b> | 100.0kPa |

<sup>\*</sup> The testing was performed by Vicent Kang on 2008-08-26.

#### Conducted Power

#### **GSM 850:**

| Channel No. | Frequency<br>(MHz) | Output Power<br>(dBm) |
|-------------|--------------------|-----------------------|
| 128         | 824.2              | 32.33                 |
| 190         | 836.6              | 32.46                 |
| 251         | 848.8              | 32.33                 |

#### **Low Channel**



#### Middle Channel



**High Channel** 



#### **PCS1900:**

| Channel No. | Frequency<br>(MHz) | Output Power (dBm) |
|-------------|--------------------|--------------------|
| 512         | 1850.2             | 28.43              |
| 661         | 1880.0             | 29.41              |
| 810         | 1909.8             | 29.58              |

#### **Low Channel**



#### Middle Channel



**High Channel** 



## E.R.P for GSM850

| Ind          | icated                   | Table           | Test An    | itenna         | Substituted Ant. Gain Absolute Cable Level Pa |             |                |                | Part 22H   |       |       |              |
|--------------|--------------------------|-----------------|------------|----------------|-----------------------------------------------|-------------|----------------|----------------|------------|-------|-------|--------------|
| Freq. (MHz)  | S.A<br>Reading<br>(dBµV) | Angle<br>Degree | Height (m) | Polar<br>(H/V) | Freq.<br>(MHz)                                | Level (dBm) | Polar<br>(H/V) | Cord.<br>(dBi) | Cord. Loss | (dBm) | (W)   | Limit<br>(W) |
| Low Channel  |                          |                 |            |                |                                               |             |                |                |            |       |       |              |
| 824.2        | 117.84                   | 125             | 1.0        | Н              | 824.2                                         | 28.64       | Н              | 0              | 0.90       | 27.74 | 0.594 | 7            |
| 824.2        | 117.26                   | 250             | 1.1        | V              | 824.2                                         | 28.15       | V              | 0              | 0.90       | 27.25 | 0.531 | 7            |
|              |                          |                 |            |                | Middle                                        | e Channe    | el             |                |            |       |       |              |
| 836.6        | 118.05                   | 120             | 1.1        | Н              | 836.6                                         | 29.40       | Н              | 0              | 0.90       | 28.5  | 0.708 | 7            |
| 836.6        | 117.95                   | 125             | 1.0        | V              | 836.6                                         | 29.17       | V              | 0              | 0.90       | 28.27 | 0.671 | 7            |
| High Channel |                          |                 |            |                |                                               |             |                |                |            |       |       |              |
| 848.8        | 118.45                   | 125             | 1.1        | Н              | 848.8                                         | 29.61       | Н              | 0              | 0.90       | 28.71 | 0.743 | 7            |
| 848.8        | 118.23                   | 130             | 1.0        | V              | 848.8                                         | 29.47       | V              | 0              | 0.90       | 28.57 | 0.719 | 7            |

## E.I.R.P for PCS1900

| Ind          | Indicated                |                 | Test Ar    | itenna         | Sı             | Substituted |                |      | Cable                                        | Abso<br>Le |       | Part 24E |     |              |
|--------------|--------------------------|-----------------|------------|----------------|----------------|-------------|----------------|------|----------------------------------------------|------------|-------|----------|-----|--------------|
| Freq. (MHz)  | S.A<br>Reading<br>(dBµV) | Angle<br>Degree | Height (m) | Polar<br>(H/V) | Freq.<br>(MHz) | Level (dBm) | Polar<br>(H/V) | Cord | Cord. $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ | Cord. Loss |       | (dBm)    | (W) | Limit<br>(W) |
|              | Low Channel              |                 |            |                |                |             |                |      |                                              |            |       |          |     |              |
| 1850.2       | 118.22                   | 125             | 1.0        | Н              | 1850.2         | 17.52       | Н              | 6.2  | 1.02                                         | 22.7       | 0.186 | 2        |     |              |
| 1850.2       | 121.57                   | 150             | 1.1        | V              | 1850.2         | 18.34       | V              | 6.2  | 1.02                                         | 23.52      | 0.225 | 2        |     |              |
|              |                          |                 |            |                | Middle         | e Channe    | l              |      |                                              |            |       |          |     |              |
| 1880         | 117.24                   | 120             | 1.1        | Н              | 1880           | 16.80       | Н              | 6.2  | 1.03                                         | 21.97      | 0.157 | 2        |     |              |
| 1880         | 120.81                   | 125             | 1.0        | V              | 1880           | 19.40       | V              | 6.2  | 1.03                                         | 24.57      | 0.286 | 2        |     |              |
| High Channel |                          |                 |            |                |                |             |                |      |                                              |            |       |          |     |              |
| 1909.8       | 115.62                   | 125             | 1.1        | Н              | 1909.8         | 14.82       | Н              | 6.2  | 1.03                                         | 19.99      | 0.098 | 2        |     |              |
| 1909.8       | 119.86                   | 130             | 1.0        | V              | 1909.8         | 18.76       | V              | 6.2  | 1.03                                         | 23.93      | 0.247 | 2        |     |              |

# §2.1047 – MODULATION CHARACTERISTIC

## **Applicable Standard**

According to FCC  $\S$  2.1047(d), part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

#### Result

N/A

## §2.1049, §22.917, §22.905, & §24.238 - OCCUPIED BANDWIDTH

#### **Applicable Standards**

CFR 47 §2.1049, §22.917, §22.905 and §24.238.

#### **Test Procedure**

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 30 kHz (Cellular /PCS) and the 26 dB & 99% bandwidth was recorded.



#### **Test Equipment List and Details**

| Manufacturer    | Description                             | Model  | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|-----------------------------------------|--------|------------------|---------------------|-------------------------|
| Rohde & Schwarz | EMI Test Receiver                       | ESCI   | 100224           | 2007-10-16          | 2008-10-16              |
| Rohde & Schwarz | Universal Radio<br>Communication Tester | CMU200 | 1100.0008.02     | 2008-06-21          | 2009-06-21              |

<sup>\*</sup> **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25 ° C   |
|--------------------|----------|
| Relative Humidity: | 56%      |
| ATM Pressure:      | 100.0kPa |

<sup>\*</sup> The testing was performed by Vicent Kang on 2008-08-28.

#### **GSM850:**

| Chann | el No. | Frequency<br>(MHz) | 99% Occupied<br>Bandwidth<br>(kHz) | 26 dB Occupied<br>Bandwidth<br>(kHz) |
|-------|--------|--------------------|------------------------------------|--------------------------------------|
| 19    | 0      | 836.6              | 250.0000                           | 334.0000                             |

## PCS1900:

| Channel No. | Frequency<br>(MHz) | 99% Occupied<br>Bandwidth<br>(kHz) | 26 dB Occupied<br>Bandwidth<br>(kHz) |
|-------------|--------------------|------------------------------------|--------------------------------------|
| 661         | 1880.0             | 252.0000                           | 336.0000                             |

Please refer to the following plots.

#### 99 % OBW of GSM 850



Date: 28.MAR.2008 05:58:48

#### -26 dB OBW of GSM 850



Date: 28.MAR.2008 05:54:45

## 99% OBW of PCS 1900



Date: 28.MAR.2008 05:39:28

#### -26 dB OBW of PCS 1900



Date: 28.MAR.2008 05:40:06

# §2.1051, §22.917(a), & §24.238(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

#### **Applicable Standards**

CFR 47 §2.1051, §22.917(a) and §4.238(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

#### **Test Procedure**

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to  $10^{\text{th}}$  harmonic.



#### **Test Equipment List and Details**

| Manufacturer    | Description                             | Model  | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |  |
|-----------------|-----------------------------------------|--------|------------------|---------------------|-------------------------|--|
| Rohde & Schwarz | Spectrum Analyzer                       | FSEM30 | 849720/019       | 2008-05-09          | 2009-05-09              |  |
| Rohde & Schwarz | Universal Radio<br>Communication Tester | CMU200 | 1100.0008.02     | 2008-06-21          | 2009-06-21              |  |

<sup>\*</sup> **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25 ° C   |
|--------------------|----------|
| Relative Humidity: | 56%      |
| ATM Pressure:      | 100.0kPa |

<sup>\*</sup> The testing was performed by Vicent Kang on 2008-08-20.

Pass, Please refer to the following plots.

#### **GSM 850:**

#### 30 - 1000 MHz - Middle Channel



#### 1 - 10 GHz - Middle Channel



Date: 8.SEP.2008 18:12:30

#### **PCS 1900:**

30 - 1000 MHz - Middle Channel



Date: 8.SEP.2008 18:26:13

#### 1 - 3 GHz - Middle Channel



#### 3 - 13.6 GHz - Middle Channel



Date: 8.SEP.2008 18:24:35

#### 13.6 - 20 GHz - Middle Channel



Date: 8.SEP.2008 18:25:09

## §2.1053 - SPURIOUS RADIATED EMISSIONS

#### **Applicable Standards**

CFR 47 § 2.1053, 22.917 and § 24.238.

#### **Test Procedure**

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in  $dB = 10 \lg (TXpwr in Watts/0.001) - the absolute level$ 

Spurious attenuation limit in  $dB = 43 + 10 \text{ Log}_{10}$  (power out in Watts)

#### **Test Equipment List and Details**

| Manufacturer    | Description                             | Model       | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|-----------------------------------------|-------------|------------------|---------------------|-------------------------|
| Sunol Sciences  | Horn Antenna                            | DRH-118     | A052604          | 2007-09-25          | 2008-09-25              |
| Sunol Sciences  | Broadband Antenna                       | JB1         | A040904-1        | 2008-03-11          | 2009-03-11              |
| Rohde & Schwarz | Spectrum Analyzer                       | FSEM30      | 849720/019       | 2008-05-09          | 2009-05-09              |
| НР              | Preamplifier                            | 8449B       | 3008A00277       | 2007-09-29          | 2008-09-29              |
| HP              | Signal Generator                        | HP8657A     | 2849U00982       | 2007-10-16          | 2008-10-16              |
| НР              | Amplifier                               | HP8447D     | 2944A09795       | 2007-11-15          | 2008-11-15              |
| Giga-tronics    | Signal Generator                        | 1026        | 270801           | 2007-09-29          | 2008-09-29              |
| COM POWER       | Dipole Antenna                          | AD-100      | 041000           | 2007-09-25          | 2008-09-25              |
| A.H. System     | Horn Antenna                            | SAS-200/571 | 135              | 2008-05-17          | 2009-05-17              |
| Rohde & Schwarz | Universal Radio<br>Communication Tester | CMU200      | 1100.0008.02     | 2008-06-21          | 2009-06-21              |

<sup>\*</sup> **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

## **Test Data**

## **Environmental Conditions**

| Temperature:       | 25 ° C   |
|--------------------|----------|
| Relative Humidity: | 56%      |
| ATM Pressure:      | 100.0kPa |

<sup>\*</sup> The testing was performed by Vicent Kang on 2008-08-26.

#### **GSM 850:**

| Indi           | cated                    | T.1.1.                   | Test Ar    | itenna         |                | Su          | bstitute       | d                     |                       | About 4                    |                |                |
|----------------|--------------------------|--------------------------|------------|----------------|----------------|-------------|----------------|-----------------------|-----------------------|----------------------------|----------------|----------------|
| Freq.<br>(MHz) | S.A<br>Reading<br>(dBµV) | Table<br>Angle<br>Degree | Height (m) | Polar<br>(H/V) | Freq.<br>(MHz) | Level (dBm) | Polar<br>(H/V) | Ant.<br>Gain<br>(dBi) | Cable<br>Loss<br>(dB) | Absolute<br>Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|                | Middle Channel           |                          |            |                |                |             |                |                       |                       |                            |                |                |
| 2509.8         | 79.49                    | 90                       | 1.8        | V              | 2509.8         | -25.92      | V              | 7.3                   | 1.19                  | -19.81                     | -13            | 6.81           |
| 2509.8         | 74.35                    | 180                      | 1.8        | Н              | 2509.8         | -30.11      | Н              | 7.3                   | 1.19                  | -24.00                     | -13            | 11.00          |
| 1673.2         | 67.88                    | 0                        | 1.5        | V              | 1673.2         | -37.24      | V              | 6.2                   | 0.98                  | -32.02                     | -13            | 19.02          |
| 1673.2         | 62.06                    | 180                      | 1.5        | Н              | 1673.2         | -42.98      | Н              | 6.2                   | 0.98                  | -37.76                     | -13            | 24.76          |
| 3600.3         | 47.93                    | 120                      | 1.6        | Н              | 3600.3         | -60.41      | Н              | 7.1                   | 1.44                  | -54.75                     | -13            | 41.75          |
| 44.66          | 43.25                    | 230                      | 1.0        | V              | 44.66          | -55.94      | V              | 0                     | 1.03                  | -56.97                     | -13            | 43.97          |
| 919.8          | 39.74                    | 117                      | 1.0        | Н              | 919.8          | -54.4       | Н              | 0                     | 4.87                  | -59.27                     | -13            | 46.27          |
| 40.06          | 41.3                     | 112.0                    | 1.0        | Н              | 40.06          | -58.26      | Н              | 0                     | 1.03                  | -59.29                     | -13            | 46.29          |

#### **PCS 1900:**

| Indi           | cated                    | Т.Ы.                     | Test Aı    | ntenna         |                | Su             | bstitute       | d                     |                       | Alimal da                  |                |                |
|----------------|--------------------------|--------------------------|------------|----------------|----------------|----------------|----------------|-----------------------|-----------------------|----------------------------|----------------|----------------|
| Freq.<br>(MHz) | S.A<br>Reading<br>(dBµV) | Table<br>Angle<br>Degree | Height (m) | Polar<br>(H/V) | Freq.<br>(MHz) | Level<br>(dBm) | Polar<br>(H/V) | Ant.<br>Gain<br>(dBi) | Cable<br>Loss<br>(dB) | Absolute<br>Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|                | Middle Channel           |                          |            |                |                |                |                |                       |                       |                            |                |                |
| 9400.0         | 54.62                    | 90                       | 1.5        | Н              | 9400.0         | -50.37         | Н              | 8.3                   | 2.36                  | -44.43                     | -13            | 31.43          |
| 9400.0         | 55.53                    | 90                       | 1.5        | V              | 9400.0         | -55.76         | V              | 8.3                   | 2.36                  | -49.82                     | -13            | 36.82          |
| 3760.0         | 47.36                    | 120                      | 1.6        | Н              | 3760.0         | -55.71         | Н              | 6.7                   | 1.50                  | -50.51                     | -13            | 37.51          |
| 3760.0         | 47.33                    | 0                        | 1.5        | V              | 3760.0         | -55.75         | V              | 6.7                   | 1.50                  | -50.55                     | -13            | 37.55          |
| 2460.7         | 46.61                    | 180                      | 1.5        | Н              | 2460.7         | -57.93         | Н              | 7.3                   | 1.18                  | -51.81                     | -13            | 38.81          |
| 11280.0        | 45.75                    | 180                      | 1.8        | Н              | 11280.0        | -56.48         | Н              | 9.1                   | 4.47                  | -51.85                     | -13            | 38.85          |
| 5640.0         | 44.04                    | 0                        | 1.6        | Н              | 5640.0         | -60.82         | Н              | 8.2                   | 1.65                  | -54.27                     | -13            | 41.27          |
| 5640.0         | 44.65                    | 0                        | 1.6        | V              | 5640.0         | -61.34         | V              | 8.2                   | 1.65                  | -54.79                     | -13            | 41.79          |

## §22.917(a) & §24.238(a) - BAND EDGES

#### **Applicable Standards**

According to § 22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P) dB$ .

According to \$24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P)$  dB.

#### **Test Procedure**

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency, RBW set to 10 kHz.



#### **Test Equipment List and Details**

| Manufacturer    | Description                             | Model  | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |  |
|-----------------|-----------------------------------------|--------|------------------|---------------------|-------------------------|--|
| Rohde & Schwarz | EMI Test Receiver                       | ESCI   | 100224           | 2007-10-16          | 2008-10-16              |  |
| Rohde & Schwarz | Universal Radio<br>Communication Tester | CMU200 | 1100.0008.02     | 2008-06-21          | 2009-06-21              |  |

<sup>\*</sup> **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25 ° C   |
|--------------------|----------|
| Relative Humidity: | 56%      |
| ATM Pressure:      | 100.0kPa |

<sup>\*</sup> The testing was performed by Vicent Kang on 2008-09-04.

#### **GSM 850:**

#### **Lowest Channel of GSM 850**



Date: 9.SEP.2008 10:39:48

## **Highest Channel of GSM 850**



Date: 9.SEP.2008 10:42:06

#### **PCS 1900:**

#### **Lowest Channel of PCS 1900**



Date: 9.SEP.2008 10:46:41

## **Highest Channel of PCS 1900**



Date: 9.SEP.2008 10:47:48

## §2.1055, §22.355, & §24.235 - FREQUENCY STABILITY

#### **Applicable Standard**

CFR47 § 2.1055 (a), § 2.1055 (d), §22.355, §24.235

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

| Frequency   | Tolerance for | or  | <b>Transmitters</b> | in  | the | Public | Mobile   | Services  |
|-------------|---------------|-----|---------------------|-----|-----|--------|----------|-----------|
| I I Cquelle | I Ololulloc I | OI. | 1 I WII DITTI CCI D | 111 | uic | I done | 11100110 | DOI VICOS |

| Frequency Range<br>(MHz) | Base, fixed (ppm) | Mobile ≤3 watts (ppm) | Mobile ≤ 3 watts (ppm) |
|--------------------------|-------------------|-----------------------|------------------------|
| 25 to 50                 | 20.0              | 20.0                  | 50.0                   |
| 50 to 450                | 5.0               | 5.0                   | 50.0                   |
| 450 to 512               | 2.5               | 5.0                   | 5.0                    |
| 821 to 896               | 1.5               | 2.5                   | 2.5                    |
| 928 to 929.              | 5.0               | N/A                   | N/A                    |
| 929 to 960.              | 1.5               | N/A                   | N/A                    |
| 2110 to 2220             | 10.0              | N/A                   | N/A                    |

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

#### **Test Procedure**

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

## **Test Equipment List and Details**

| Manufacturer    | Description                             | Model  | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|-----------------------------------------|--------|------------------|---------------------|-------------------------|
| WUHUAN          | Temperature & Humidity Chamber          | HTP205 | 20021115         | 2007-12-28          | 2008-12-28              |
| Rohde & Schwarz | Universal Radio<br>Communication Tester | CMU200 | 1100.0008.02     | 2008-06-21          | 2009-06-21              |

<sup>\*</sup> **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

## **Test Data**

## **Environmental Conditions**

| Temperature:       | 25 ° C   |
|--------------------|----------|
| Relative Humidity: | 56%      |
| ATM Pressure:      | 100.0kPa |

<sup>\*</sup> The testing was performed by Vicent Kang on 2008-08-26.

#### **AC Power:**

#### **GSM** 850

|                     | Middle Channel fo =836.6 MHz |                      |                |                |  |
|---------------------|------------------------------|----------------------|----------------|----------------|--|
| Temperature<br>(°C) | Power Supplied<br>(Vac)      | Frequency Error (Hz) | Error<br>(ppm) | Limit<br>(ppm) |  |
|                     | 102                          | 12                   | 0.0143         | 2.5            |  |
| -30                 | 120                          | -8                   | -0.0096        | 2.5            |  |
|                     | 138                          | 9                    | 0.0108         | 2.5            |  |
|                     | 102                          | 14                   | 0.0167         | 2.5            |  |
| -20                 | 120                          | 7                    | 0.0084         | 2.5            |  |
|                     | 138                          | 6                    | 0.0072         | 2.5            |  |
|                     | 102                          | 11                   | 0.0131         | 2.5            |  |
| -10                 | 120                          | 7                    | 0.0084         | 2.5            |  |
|                     | 138                          | -4                   | -0.0048        | 2.5            |  |
|                     | 102                          | 10                   | 0.0120         | 2.5            |  |
| 0                   | 120                          | 9                    | 0.0108         | 2.5            |  |
|                     | 138                          | 5                    | 0.0060         | 2.5            |  |
|                     | 102                          | 12                   | 0.0143         | 2.5            |  |
| 10                  | 120                          | -6                   | -0.0072        | 2.5            |  |
|                     | 138                          | 11                   | 0.0131         | 2.5            |  |
|                     | 102                          | 12                   | 0.0143         | 2.5            |  |
| 20                  | 120                          | 7                    | 0.0084         | 2.5            |  |
|                     | 138                          | -6                   | -0.0072        | 2.5            |  |
|                     | 102                          | 8                    | 0.0096         | 2.5            |  |
| 30                  | 120                          | -3                   | -0.0036        | 2.5            |  |
|                     | 138                          | 13                   | 0.0155         | 2.5            |  |
|                     | 102                          | 3                    | 0.0036         | 2.5            |  |
| 40                  | 120                          | 9                    | 0.0108         | 2.5            |  |
|                     | 138                          | 8                    | 0.0096         | 2.5            |  |
|                     | 102                          | 19                   | 0.0227         | 2.5            |  |
| 50                  | 120                          | -16                  | -0.0191        | 2.5            |  |
|                     | 138                          | 12                   | 0.0143         | 2.5            |  |

## PCS 1900:

|                     | Midd                 | le Channel fo =1880 I   | MHz            |                |
|---------------------|----------------------|-------------------------|----------------|----------------|
| Temperature<br>(°C) | Power Supplied (Vac) | Frequency Error<br>(Hz) | Error<br>(ppm) | Limit<br>(ppm) |
|                     | 102                  | -8                      | -0.0043        | 2.5            |
| -30                 | 120                  | 2                       | 0.0011         | 2.5            |
|                     | 138                  | 7                       | 0.0037         | 2.5            |
|                     | 102                  | 15                      | 0.0080         | 2.5            |
| -20                 | 120                  | 10                      | 0.0053         | 2.5            |
|                     | 138                  | -9                      | -0.0048        | 2.5            |
|                     | 102                  | 7                       | 0.0037         | 2.5            |
| -10                 | 120                  | 3                       | 0.0016         | 2.5            |
|                     | 138                  | -9                      | -0.0048        | 2.5            |
|                     | 102                  | -10                     | -0.0053        | 2.5            |
| 0                   | 120                  | 6                       | 0.0032         | 2.5            |
|                     | 138                  | 4                       | 0.0021         | 2.5            |
|                     | 102                  | 3                       | 0.0016         | 2.5            |
| 10                  | 120                  | -3                      | -0.0016        | 2.5            |
|                     | 138                  | -11                     | -0.0059        | 2.5            |
|                     | 102                  | 8                       | 0.0043         | 2.5            |
| 20                  | 120                  | 2                       | 0.0011         | 2.5            |
|                     | 138                  | -3                      | -0.0016        | 2.5            |
|                     | 102                  | -1                      | -0.0005        | 2.5            |
| 30                  | 120                  | -6                      | -0.0032        | 2.5            |
|                     | 138                  | 7                       | 0.0037         | 2.5            |
|                     | 102                  | 7                       | 0.0037         | 2.5            |
| 40                  | 120                  | -10                     | -0.0053        | 2.5            |
|                     | 138                  | 6                       | 0.0032         | 2.5            |
|                     | 102                  | 11                      | 0.0059         | 2.5            |
| 50                  | 120                  | 8                       | 0.0043         | 2.5            |
|                     | 138                  | -9                      | -0.0048        | 2.5            |

# **Battery Operation:**

GSM 850:

| Middle Channel fo =836.6 MHz |                            |                         |                |             |  |
|------------------------------|----------------------------|-------------------------|----------------|-------------|--|
| Temperature<br>(°C)          | Power<br>Supplied<br>(Vac) | Frequency Error<br>(Hz) | Error<br>(ppm) | Limit (ppm) |  |
| -30                          | 7.4                        | 11                      | 0.0131         | 2.5         |  |
| 30                           | 6.7                        | -3                      | -0.0036        | 2.5         |  |
| -20                          | 7.4                        | 9                       | 0.0108         | 2.5         |  |
| -20                          | 6.7                        | -6                      | -0.0072        | 2.5         |  |
| -10                          | 7.4                        | -11                     | -0.0131        | 2.5         |  |
| -10                          | 6.7                        | 7                       | 0.0084         | 2.5         |  |
| 0                            | 7.4                        | 3                       | 0.0036         | 2.5         |  |
| U                            | 6.7                        | 13                      | 0.0155         | 2.5         |  |
| 10                           | 7.4                        | 11                      | 0.0131         | 2.5         |  |
| 10                           | 6.7                        | 6                       | 0.0072         | 2.5         |  |
| 20                           | 7.4                        | 5                       | 0.0060         | 2.5         |  |
| 20                           | 6.7                        | 7                       | 0.0084         | 2.5         |  |
| 30                           | 7.4                        | 7                       | 0.0084         | 2.5         |  |
| 30                           | 6.7                        | 15                      | 0.0179         | 2.5         |  |
| 40                           | 7.4                        | 9                       | 0.0108         | 2.5         |  |
| 40                           | 6.7                        | 11                      | 0.0131         | 2.5         |  |
| 50                           | 7.4                        | -14                     | -0.0167        | 2.5         |  |
| 50                           | 6.7                        | 11                      | 0.0131         | 2.5         |  |

## PCS1900:

| Middle Channel fo =836.6 MHz |                            |                      |                |             |  |
|------------------------------|----------------------------|----------------------|----------------|-------------|--|
| Temperature<br>(°C)          | Power<br>Supplied<br>(Vac) | Frequency Error (Hz) | Error<br>(ppm) | Limit (ppm) |  |
| -30                          | 7.4                        | 12                   | 0.0064         | 2.5         |  |
| -30                          | 6.7                        | 4                    | 0.0021         | 2.5         |  |
| -20                          | 7.4                        | 7                    | 0.0037         | 2.5         |  |
| -20                          | 6.7                        | -5                   | -0.0027        | 2.5         |  |
| -10                          | 7.4                        | -10                  | -0.0053        | 2.5         |  |
| -10                          | 6.7                        | 7                    | 0.0037         | 2.5         |  |
| 0                            | 7.4                        | 5                    | 0.0027         | 2.5         |  |
| U                            | 6.7                        | 8                    | 0.0043         | 2.5         |  |
| 10                           | 7.4                        | 9                    | 0.0048         | 2.5         |  |
| 10                           | 6.7                        | 7                    | 0.0037         | 2.5         |  |
| 20                           | 7.4                        | 9                    | 0.0048         | 2.5         |  |
| 20                           | 6.7                        | 5                    | 0.0027         | 2.5         |  |
| 30                           | 7.4                        | 13                   | 0.0069         | 2.5         |  |
| 30                           | 6.7                        | 10                   | 0.0053         | 2.5         |  |
| 40                           | 7.4                        | 7                    | 0.0037         | 2.5         |  |
| 40                           | 6.7                        | 4                    | 0.0021         | 2.5         |  |
| 50                           | 7.4                        | -9                   | -0.0048        | 2.5         |  |
| 50                           | 6.7                        | 12                   | 0.0064         | 2.5         |  |

| PAX Technology Limited |                       | FCC ID: V5PP90               |
|------------------------|-----------------------|------------------------------|
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
| **                     | **** END OF REPORT ** | ***                          |
|                        | 21,2 01 1121 0111     |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        |                       |                              |
|                        | Page 41 of 41         | FCC Part 22H/24E Test Report |