Teaching Demo

Introduction of Classification (Supervised Learning): Big Pictures and Practicum

Ludy Hasby Aulia

Our Agenda

- Algorithm in big picture
- Example Case
- Model Building Demo

Machine Learning?

"Field of study that gives computers the ability to learn without being explicitly programmed."

(Arthur Samuel, 1959)

Supervised Learning **Unsupervised** Reinforcement

Labeled data

Direct feedback

Predict outcome/future

- No labels
- No feedback
- "Find hidden structure"

- Decision process
- Reward system
- Learn series of actions

Classification

1) Learn from training data

2) Map unseen (new) data

A Few Common Classifiers

Perceptron

Naive Bayes

Decision Tree

K-Nearest Neighbor

Logistic Regression

Artificial Neural Network / Deep Learning

Support Vector Machine

Ensemble Methods: Random Forest, Bagging, AdaBoost

A Few Common Classifiers

Perceptron

Naive Bayes

Decision Tree

K-Nearest Neighbor

Logistic Regression

Artificial Neural Network / Deep Learning

Support Vector Machine

Ensemble Methods: Random Forest, Bagging, AdaBoost

Logistic Regression

Binomial

Step 1. Calculate and Predict MLR

$$z = b + w.X$$

Step 2. Convert to Sigmoid Function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Multinomial

Use Softmax Function

$$softmax(z) = \frac{e^{z}}{\sum_{j=1}^{K} e^{z_j}} = P(Y = c \mid X)$$

Read More

https://www.geeksforgeeks.org/machine-learning/understanding-logistic-regression/

Decision Tree

Read More

https://www.geeksforgeeks.org/machine-learning/decision-tree-algorithms.

Algorithm ID3

Step 1. Select an attribute as the root (Highest Gains)

$$Entropy(s) = \sum_{i=1}^{n} -pi * \log_2 pi$$

Gain(S, A)

$$= Entropy(S) - \sum_{i=1}^{n} \frac{|S_i|}{|S|} * Entropy(S_i)$$

Step 2. Create Branch Each Value

Step 3. Repeat the process until each branch has the same class

Random Forest

Classification Case

IRIS

https://archive.ics.uci.edu/ml/datasets/Iris

petal

Instances (samples, observations)

		sepal_length	sepal_width	petal_length	petal_width	class
	1	5.1	3.5	1.4	0.2	setosa
	2	4.9	3.0	1.4	0.2	setosa
			:	:	:	
	50	6.4	3.2	4.5	1.5	veriscolor
			:	:	:	
	150	5.9	3.0	5.1	1.8	virginica
•						1

Features (attributes, dimensions)

Classes (targets)

sepal

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1D} \\ x_{21} & x_{22} & \cdots & x_{2D} \\ x_{31} & x_{32} & \cdots & x_{3D} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{ND} \end{bmatrix}$$

$$\mathbf{y} = [y_1, y_2, y_3, \cdots y_N]$$

Missing Values:

- Remove features (columns)
- Remove samples (rows)
- Imputation (mean, nearest neighbor, ...)

Feature Scaling: $z = \frac{x_{ik} - \mu_k}{\sigma_k}$ (use same parameters for the test/new data!)

- Faster convergence (gradient descent)
- Distances on same scale (k-NN with Euclidean distance)
- Mean centering for free
- Normal distributed data
- Numerical stability by avoiding small weights

Sampling:

- Random split into training and validation sets
- Typically 60/40, 70/30, 80/20
- Don't use validation set until the very end! (overfitting)

Error Metrics

here: "setosa" = "positive"

setosa versicolor predicted class

[Linear SVM on sepal/petal lengths]

"micro" and "macro" averaging for multi-class

$$Accuracy = \frac{TP + TN}{FP + FN + TP + TN}$$
$$= 1 - Error$$

False Positive Rate =
$$\frac{FP}{N}$$

True Positive Rate =
$$\frac{TP}{P}$$
 (Recall)

$$Precision = \frac{TP}{TP + FP}$$

Demo Time