Recall the definitions

1. **Type-1 improper integrals.** Let f be a bounded, continuous function on $[c, \infty)$. How do we define the improper integral

$$\int_{c}^{\infty} f(x) dx?$$

2. **Type-2 improper integrals.** Let f be a continuous function on (a, b], possibly with x = a as a vertical asymptote. How do we define the improper integral

$$\int_a^b f(x)dx?$$

Computation

Calculate, using the definition of improper integral

$$\int_{1}^{\infty} \frac{1}{x^2 + x} dx$$

Hint:
$$\frac{1}{x^2 + x} = \frac{(x+1) - (x)}{x(x+1)}$$

The most important improper integrals

Use the definition of improper integral to determine for which values of $p \in \mathbb{R}$ each of the following improper integrals converges.

1.
$$\int_{1}^{\infty} \frac{1}{x^{p}} dx$$

2.
$$\int_{0}^{1} \frac{1}{x^{p}} dx$$

$$3. \int_0^\infty \frac{1}{x^p} dx$$

Quick review

For which values of $p \in \mathbb{R}$ is each of the following improper integrals convergent?

1.
$$\int_{1}^{\infty} \frac{1}{x^{p}} dx$$

2.
$$\int_0^1 \frac{1}{x^p} dx$$

$$3. \int_0^\infty \frac{1}{x^p} dx$$

Examples

1. Let f be continuous on $[a, \infty)$. Let $A = \int_a^\infty f(x) dx$

Then A may be
$$\begin{cases} \text{convergent (a number)} \\ \text{divergent } \begin{cases} \text{to } \infty \\ \text{to } -\infty \\ \text{"oscillating"} \end{cases}$$

Give one example of each of the four results.

Examples

1. Let f be continuous on $[a, \infty)$. Let $A = \int_a^\infty f(x) dx$

Then A may be
$$\begin{cases} \text{convergent (a number)} \\ \text{divergent } \begin{cases} \text{to } \infty \\ \text{to } -\infty \\ \text{"oscillating"} \end{cases}$$

Give one example of each of the four results.

2. Now do the same thing for "type 2" improper integrals.

Positive functions

• Let f be continuous on $[a, \infty)$. Let $A = \int_a^\infty f(x) dx$ Then A may be $\begin{cases} \text{convergent (a number)} \\ \text{divergent} \end{cases} \begin{cases} \text{to } \infty \\ \text{to } -\infty \\ \text{"oscillating"} \end{cases}$

Positive functions

• Let f be continuous on $[a, \infty)$. Let $A = \int_a^\infty f(x) dx$ $\begin{cases}
\text{convergent (a number)} \\
\text{to } \infty
\end{cases}$

Then A may be
$$\begin{cases} \text{convergent (a number)} \\ \text{divergent } \begin{cases} \text{to } \infty \\ \text{to } -\infty \\ \text{"oscillating"} \end{cases}$$

• Assume $\forall x \geq a, f(x) \geq 0$.

Which of the four options are still possible?

Positive functions

• Let f be continuous on $[a, \infty)$. Let $A = \int_a^\infty f(x) dx$ convergent (a number)

to ∞

Then A may be
$$\begin{cases} \text{convergent (a number)} \\ \text{divergent } \begin{cases} \text{to } \infty \\ \text{to } -\infty \\ \text{"oscillating"} \end{cases}$$

- Assume $\forall x \geq a, f(x) \geq 0$.
 - Which of the four options are still possible?
- Assume $\exists M \geq a$, s.t. $\forall x \geq M, f(x) \geq 0$.
 - Which of the four options are still possible?

A "simple" integral

What is
$$\int_{-1}^{1} \frac{1}{x} dx$$
?

What is
$$\int_{-1}^{1} \frac{1}{x} dx$$
?

1.
$$\int_{-1}^{1} \frac{1}{x} dx = (\ln|x|)\Big|_{-1}^{1} = \ln|1| - \ln|-1| = 0$$

2.
$$\int_{-1}^{1} \frac{1}{x} dx = 0 \text{ because } f(x) = \frac{1}{x} \text{ is an odd function.}$$

3.
$$\int_{-1}^{1} \frac{1}{x} dx$$
 is divergent.

What is wrong with this computation?

$$\int_{-1}^{1} \frac{1}{x} dx = \lim_{\varepsilon \to 0^{+}} \left[\int_{-1}^{-\varepsilon} \frac{1}{x} dx + \int_{\varepsilon}^{1} \frac{1}{x} dx \right]$$

$$= \lim_{\varepsilon \to 0^{+}} \left[\ln|x| \Big|_{-1}^{-\varepsilon} + \ln|x| \Big|_{\varepsilon}^{1} \right]$$

$$= \lim_{\varepsilon \to 0^{+}} \left[\ln|-\varepsilon| - \ln|\varepsilon| \right]$$

$$= \lim_{\varepsilon \to 0^{+}} \left[0 \right] = 0$$

Probability

A nonnegative function f defined on $(-\infty, \infty)$ is called a **probability density function** if

$$\int_{-\infty}^{\infty} f(x) \, dx = 1.$$

The mean of a probability density function is defined as

$$\mu = \int_{-\infty}^{\infty} x \, f(x) \, dx.$$

Let
$$f(x) = \begin{cases} Ce^{-kx} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

- 1. For k > 0, find a constant C such that the function f is a probability density function.
- 2. Calculate the mean μ .

Collection of antiderivatives

Let f be a positive, continuous function with domain \mathbb{R} . We know two ways to describe a collection of antiderivatives:

- 1. G(x) + C for $C \in \mathbb{R}$, where G is any one antiderivative.
- 2. The collection of functions F_a for $a \in \mathbb{R}$, where

$$F_a(x) = \int_a^x f(t)dt$$

Collection of antiderivatives

Let f be a positive, continuous function with domain \mathbb{R} . We know two ways to describe a collection of antiderivatives:

- 1. G(x) + C for $C \in \mathbb{R}$, where G is any one antiderivative.
- 2. The collection of functions F_a for $a \in \mathbb{R}$, where

$$F_a(x) = \int_a^x f(t)dt$$

These two collections are not always the same. Why not? Are they the same for some functions f? When are they the same?

A simple BCT application

We want to determine whether $\int_{1}^{\infty} \frac{1}{x + e^{x}} dx$ is convergent or divergent.

We can try at least two comparisons:

- 1. Compare $\frac{1}{x}$ and $\frac{1}{x+e^x}$.
- 2. Compare $\frac{1}{e^x}$ and $\frac{1}{x+e^x}$.

Try both. What can you conclude from each one of them?

True or False - Comparisons

Let $a \in \mathbb{R}$.

Let f and g be continuous functions on $[a, \infty)$.

Assume that $\forall x \geq a$, $0 \leq f(x) \leq g(x)$.

What can we conclude?

- 1. IF $\int_{a}^{\infty} f(x)dx$ is convergent, THEN $\int_{a}^{\infty} g(x)dx$ is convergent.
- 2. IF $\int_{a}^{\infty} f(x)dx = \infty$, THEN $\int_{a}^{\infty} g(x)dx = \infty$.
- 3. IF $\int_{0}^{\infty} g(x)dx$ is convergent, THEN $\int_{0}^{\infty} f(x)dx$ is convergent.
- 4. IF $\int_{a}^{\infty} g(x)dx = \infty$, THEN $\int_{a}^{\infty} f(x)dx = \infty$.

True or False - Comparisons II

Let $a \in \mathbb{R}$.

Let f and g be continuous functions on $[a, \infty)$.

Assume that $\forall x \geq a, \quad f(x) \leq g(x)$.

What can we conclude?

- 1. IF $\int_{a}^{\infty} f(x)dx$ is convergent, THEN $\int_{a}^{\infty} g(x)dx$ is convergent.
- 2. IF $\int_a^\infty f(x)dx = \infty$, THEN $\int_a^\infty g(x)dx = \infty$.
- 3. IF $\int_{0}^{\infty} g(x)dx$ is convergent, THEN $\int_{0}^{\infty} f(x)dx$ is convergent.
- 4. IF $\int_{a}^{\infty} g(x)dx = \infty$, THEN $\int_{a}^{\infty} f(x)dx = \infty$.

True or False - Comparisons III

Let $a \in \mathbb{R}$.

Let f and g be continuous functions on $[a, \infty)$.

Assume that $\exists M \geq a \text{ s.t. } \forall x \geq M, \quad 0 \leq f(x) \leq g(x)$.

What can we conclude?

- 1. IF $\int_{a}^{\infty} f(x)dx$ is convergent, THEN $\int_{a}^{\infty} g(x)dx$ is convergent.
- 2. IF $\int_a^\infty f(x)dx = \infty$, THEN $\int_a^\infty g(x)dx = \infty$.
- 3. IF $\int_{0}^{\infty} g(x)dx$ is convergent, THEN $\int_{0}^{\infty} f(x)dx$ is convergent.
- 4. IF $\int_{a}^{\infty} g(x)dx = \infty$, THEN $\int_{a}^{\infty} f(x)dx = \infty$.

What can you conclude?

Let $a \in \mathbb{R}$. Let f be a continuous, **positive** function on $[a, \infty)$. In each of the following cases, what can you conclude about $\int_{-\infty}^{\infty}$

$$\int_{a}^{\infty} f(x)dx$$
? Is it convergent, divergent, or we do not know?

1.
$$\forall b \geq a, \ \exists M \in \mathbb{R} \ \text{s.t.} \qquad \int_a^b f(x) \, dx \leq M.$$

2.
$$\exists M \in \mathbb{R} \text{ s.t. } \forall b \geq a, \quad \int_a^b f(x) dx \leq M.$$

3.
$$\exists M > 0$$
 s.t. $\forall x \ge a, f(x) \le M$.

4.
$$\exists M > 0$$
 s.t. $\forall x \ge a, f(x) \ge M$.

BCT calculations

Use BCT to determine whether each of the following is convergent or divergent

1.
$$\int_{1}^{\infty} \frac{1 + \cos^2 x}{x^{2/3}} \, dx$$

$$2. \int_{1}^{\infty} \frac{1 + \cos^2 x}{x^{4/3}} \, dx$$

3.
$$\int_0^\infty \frac{\arctan x^2}{1+e^x} dx$$

BCT calculations

Use BCT to determine whether each of the following is convergent or divergent

1.
$$\int_{1}^{\infty} \frac{1 + \cos^2 x}{x^{2/3}} dx$$

$$4. \int_0^\infty e^{-x^2} dx$$

2.
$$\int_{1}^{\infty} \frac{1 + \cos^2 x}{x^{4/3}} dx$$

5.
$$\int_{2}^{\infty} \frac{(\ln x)^{10}}{x^2} dx$$

3.
$$\int_0^\infty \frac{\arctan x^2}{1+e^x} dx$$

Rapid questions: convergent or divergent?

1.
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$
 4. $\int_{0}^{1} \frac{1}{x^2} dx$ 7. $\int_{1}^{\infty} \frac{3}{x^2} dx$

2.
$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$$
 5. $\int_{0}^{1} \frac{1}{\sqrt{x}} dx$ 8. $\int_{1}^{\infty} \frac{1}{x^2 + 3} dx$

3.
$$\int_{1}^{\infty} \frac{1}{x} dx$$
 6. $\int_{0}^{1} \frac{1}{x} dx$ 9. $\int_{1}^{\infty} \left(\frac{1}{x^2} + 3\right) dx$

Slow questions: convergent or divergent?

1.
$$\int_{1}^{\infty} \frac{x^3 + 2x + 7}{x^5 + 11x^4 + 1} dx$$

$$\frac{+7}{4+1} dx$$
 5. $\int_0^1 \frac{\sin x}{x^{3/2}} dx$

2.
$$\int_{1}^{\infty} \frac{1}{\sqrt{x^2 + x + 1}} dx$$

$$6. \int_0^\infty e^{-x^2} dx$$

$$3. \int_0^1 \frac{3\cos x}{x + \sqrt{x}} \, dx$$

7.
$$\int_{2}^{\infty} \frac{(\ln x)^{10}}{x^2} dx$$

4.
$$\int_0^1 \sqrt{\cot x} \, dx$$

A harder calculation

For which values of a > 0 is the integral

$$\int_0^\infty \frac{\arctan x}{x^a} \, dx$$

convergent?

A variation on LCT

This is the theorem you have learned:

Theorem (Limit-Comparison Test)

Let $a \in \mathbb{R}$. Let f and g be positive, continuous functions on $[a, \infty)$.

- IF the limit $L = \lim_{x \to \infty} \frac{f(x)}{g(x)}$ exists and L > 0
- THEN $\int_{a}^{\infty} f(x)dx$ and $\int_{a}^{\infty} g(x)dx$ are both convergent or both divergent.

A variation on LCT

This is the theorem you have learned:

Theorem (Limit-Comparison Test)

Let $a \in \mathbb{R}$. Let f and g be positive, continuous functions on $[a, \infty)$.

- IF the limit $L = \lim_{x \to \infty} \frac{f(x)}{g(x)}$ exists and L > 0
- THEN $\int_{a}^{\infty} f(x)dx$ and $\int_{a}^{\infty} g(x)dx$ are both convergent or both divergent.

What if we change the hypotheses to L=0?

- 1. Write down the new theorem (different conclusion).
- 2. Prove it.

A variation on LCT

This is the theorem you have learned:

Theorem (Limit-Comparison Test)

Let $a \in \mathbb{R}$. Let f and g be positive, continuous functions on $[a, \infty)$.

- IF the limit $L = \lim_{x \to \infty} \frac{f(x)}{g(x)}$ exists and L > 0
- THEN $\int_{a}^{\infty} f(x)dx$ and $\int_{a}^{\infty} g(x)dx$ are both convergent or both divergent.

What if we change the hypotheses to L = 0?

- 1. Write down the new theorem (different conclusion).
- 2. Prove it.

Hint: If
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$
, what is larger $f(x)$ or $g(x)$?

A variation on LCT - 2

This is the theorem you have learned:

Theorem (Limit-Comparison Test)

Let $a \in \mathbb{R}$. Let f and g be positive, continuous functions on $[a, \infty)$.

- IF the limit $L = \lim_{x \to \infty} \frac{f(x)}{g(x)}$ exists and L > 0
- THEN $\int_{a}^{\infty} f(x)dx$ and $\int_{a}^{\infty} g(x)dx$ are both convergent or both divergent.

What if we change the hypotheses to $L = \infty$?

- 1. Write down the new theorem (different conclusion).
- 2. Prove it.

Absolute Convergence

Definition

The integral $\int_{a}^{\infty} f(x) dx$ is called **absolutely convergent** when $\int_{a}^{\infty} |f(x)| dx$ converges.

Prove that

- IF an improper integral is absolutely convergent
- THEN it is convergent

Hint: Consider the functions

$$f_{+}(x) = \begin{cases} f(x) & \text{if } f(x) \ge 0 \\ 0 & \text{if } f(x) \le 0 \end{cases} \qquad f_{-}(x) = \begin{cases} 0 & \text{if } f(x) \ge 0 \\ |f(x)| & \text{if } f(x) \le 0 \end{cases}$$

Write f(x) and |f(x)| in terms of $f_+(x)$ and $f_-(x)$. Use BCT.

Dirichlet integral

Let
$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$$

- 1. Is $\int_0^1 f(x) dx$ an inproper integral?
- 2. Show that $\int_{1}^{\infty} \frac{\cos x}{x^2} dx$ is absolutely convergent. Hint: Use BCT.
- 3. The same argument is inconclusive for $\int_{1}^{\infty} f(x) dx$. Why?
- 4. Show that $\int_{1}^{\infty} f(x)dx$ is convergent

Hint: Use the definition of improper integral, not comparison tests. Use integration by parts with $u = \frac{1}{x}$ and $dv = \sin x \, dx$.

Note: It is possible to prove that $\int_{1}^{\infty} \frac{\sin x}{x} dx$ is not absolutely convergent.