Мелехин Александр Кс-30 Вариант 9 Лабораторная работа 5 Данные таблицы для лабораторной работы 5

Таблица salers

	saler_id [PK] integer	saler_name character varying (100)	saler_sex character varying (100)	saler_age /
1	1	Иванов	Мужской	20
2	2	Петрова	Женский	19
3	3	Сидорова	Женский	21

Таблица brands

	brand_id [PK] integer	brand_name character varying (100)
1	1	Самсунг
2	2	Леново
3	3	Сони

Таблица sales

	sale_id [PK] integer	sale_date /	brand integer	price numeric	sale_count integer	saler integer
1	1	2005-01-03	1	12000	5	1
2	2	2005-01-15	2	8000	4	2
3	3	2005-02-02	1	25000	3	3
4	4	2005-03-02	1	10000	5	1
5	5	2005-02-14	3	11000	3	3
6	6	2005-04-04	1	19000	4	2
7	7	2005-01-07	2	16500	4	[null]
8	8	2005-01-07	[null]	12500	3	2

Задание: Создайте объединение из двух запросов, которое показало бы имена ОБЪЕКТов, некоторый числовой параметр (значения NULL не показывать) их в дочерней таблице и текстовый параметр. Строки набора, которые имеют значения числового параметра больше среднего, должны иметь текстовый параметр "Выше среднего", а те, которые имеют меньше среднего текстовый параметр "Ниже среднего". Результат отсортируйте по алфавиту имен.

SQL код для задания:

SELECT saler_name AS "имя объекта", sales.price AS "числовой параметр", 'Выше среднего' AS "текстовый параметр"

FROM sales

JOIN salers ON sales.saler = salers.saler_id

WHERE sales.price > (SELECT AVG(price) FROM sales)

UNION ALL

SELECT saler_name AS "имя объекта", sales.price AS "числовой параметр", 'Ниже среднего' AS "текстовый параметр"

FROM sales

JOIN salers ON sales.saler = salers.saler_id

WHERE sales.price < (SELECT AVG(price) FROM sales)

ORDER BY "имя объекта";

Пояснение: запрос формирует объединение данных для продавцов, где указывается имя объекта, числовой параметр, а также текстовое поле, указывающее, выше или ниже среднего значение числового параметра. Сортировка осуществляется по имени объекта в алфавитном порядке.

	имя объекта character varying (100)	числовой параметр numeric	текстовый параметр text
1	Иванов	12000	Ниже среднего
2	Иванов	10000	Ниже среднего
3	Петрова	8000	Ниже среднего
4	Петрова	19000	Выше среднего
5	Петрова	12500	Ниже среднего
6	Сидорова	11000	Ниже среднего
7	Сидорова	25000	Выше среднего

Задание: Создайте объединение из двух запросов, которое показало бы имена ОБЪЕКТов, некоторый числовой параметр в дочерней таблице (значения NULL не показывать) и текстовый параметр. Строки набора, которые имеют максимальное значение числового параметра, должны, кроме того, иметь текстовый параметр "Наивысший", а те, которые имеют минимальное значение "Низший". Результат отсортируйте по алфавиту имен в обратном порядке.

SQL код для задания:

SELECT brands.brand_name AS "имя объекта", sales.sale_count AS

"числовой параметр", 'Наивысший' AS "текстовый параметр"

FROM sales

JOIN brands ON sales.brand = brands.brand_id

WHERE sales.sale_count = (SELECT MAX(sale_count) FROM sales)

UNION

SELECT brands.brand name AS "имя объекта", sales.sale count AS

"числовой параметр", 'Низший' AS "текстовый параметр"

FROM sales

JOIN brands ON sales.brand = brands.brand_id

WHERE sales.sale_count = (SELECT MIN(sale_count) FROM sales)

ORDER BY "имя объекта" DESC;

Пояснение: объединение отображает объекты с наивысшим и низшим значением для числовых параметров, добавляя текстовый параметр "Наивысший" или "Низший" соответственно. Результаты отсортированы в обратном алфавитном порядке по имени объекта.

	имя объекта character varying (100)	числовой параметр integer	текстовый параметр text
1	Сони	3	Низший
2	Самсунг	5	Наивысший
3	Самсунг	3	Низший

```
Задание: создайте внешнее объединение двух запросов.
```

SQL код для задания:

```
SELECT
  sales.sale_id AS "Номер продажи",
  salers.saler name AS "Имя продавца",
  brands.brand name AS "Марка",
  sales.price AS "Цена",
  sales.sale count AS "Количество продаж",
  sales.sale_date AS "Дата продажи"
FROM
  sales
LEFT JOIN salers ON sales.saler = salers.saler_id
LEFT JOIN brands ON sales.brand = brands.brand_id
UNION
SELECT
  NULL AS "Номер продажи",
  salers.saler_name AS "Имя продавца",
  NULL AS "Марка",
  NULL AS "Цена",
  NULL AS "Количество продаж",
  NULL AS "Дата продажи"
FROM
  salers
WHERE NOT EXISTS (
```

SELECT 1

FROM sales

WHERE sales.saler = salers.saler_id

)

ORDER BY "Имя продавца" DESC;

Пояснение: запрос показывает все продажи с соответствующими продавцами и марками.

	Номер продажи integer	Имя продавца character varying (100)	Марка character varying	Цена numeric ⊕	Количество продаж integer	Дата продажи date
1	7	[null]	Леново	16500	4	2005-01-07
2	5	Сидорова	Сони	11000	3	2005-02-14
3	3	Сидорова	Самсунг	25000	3	2005-02-02
4	6	Петрова	Самсунг	19000	4	2005-04-04
5	2	Петрова	Леново	8000	4	2005-01-15
6	8	Петрова	[null]	12500	3	2005-01-07
7	9	Иванов	Самсунг	15000	5	2015-01-03
8	1	Иванов	Самсунг	12000	5	2005-01-03
9	4	Иванов	Самсунг	10000	5	2005-03-02

Задание: Создайте запрос на пересечение однотипных запросов с разными условиями отбора строк

SQL код для задания:

SELECT sale_id, sale_date, price

FROM sales

WHERE price > 10000

INTERSECT

SELECT sale_id, sale_date, price

FROM sales

WHERE sale_count > 3;

Пояснение: запрос выбирает пересечение строк, удовлетворяющих двум условиям: цена должна быть выше 10000, а количество продаж больше 3.

	sale_id integer	â	sale_date date	price numeric
1		7	2005-01-07	16500
2		6	2005-04-04	19000
3		1	2005-01-03	12000

Задание: Создайте запрос на вычитание однотипных запросов с разными условиями отбора строк

SQL код для задания:

SELECT sale_id, sale_date, price

FROM sales

WHERE price > 10000

EXCEPT

SELECT sale_id, sale_date, price

FROM sales

WHERE sale_count <= 3;

Пояснение: запрос выбирает строки, где цена превышает 10000, но количество продаж более 3, путем исключения строк с количеством продаж, меньшим или равным 3.

	sale_id integer	â	sale_date date	price numeric
1		7	2005-01-07	16500
2		6	2005-04-04	19000
3		1	2005-01-03	12000

Задание: Создайте модифицируемое представление (с опцией проверки), которое ограничивает доступ к определенным строкам и столбцам в родительской таблице.

SQL код для задания:

CREATE VIEW limited_sales_view AS

SELECT sale_id, sale_date, price

FROM sales

WHERE price > 15000;

SELECT * FROM limited_sales_view;

Пояснение: создается представление для таблицы *sales*, доступное только для строк с ценой выше 15000.

	sale_id integer	sale_date address	price numeric
1	3	2005-02-02	25000
2	6	2005-04-04	19000
3	7	2005-01-07	16500

Задание: Создайте представление "Itog_query" для просмотра и модификации данных, в котором отражены данные исходной таблицы с наименованиями полей вашего варианта задания в Лаб. №1

SQL код для задания:

INSERT INTO public.sales(sale_date, brand, price, sale_count, saler) VALUES ('3.1.2015', 1, NULL, 5, 1); ← понадобится для задания 8

CREATE VIEW Itog_query AS

SELECT s.sale_id, s.sale_date, b.brand_name, s.price, s.sale_count, sl.saler_name FROM sales s

FULL JOIN brands b ON s.brand = b.brand_id

FULL JOIN salers sl ON s.saler = sl.saler_id;

SELECT * FROM Itog_query;

Пояснение: представление объединяет данные из таблиц *sales*, *brands* и *salers*, позволяя просматривать полную информацию о продажах, включая бренд и имя продавца.

	sale_id integer	â	sale_date date	brand_name character varying (100)	price numeric	sale_count integer	saler_name character varying (100)
1		1	2005-01-03	Самсунг	12000	5	Иванов
2		2	2005-01-15	Леново	8000	4	Петрова
3		3	2005-02-02	Самсунг	25000	3	Сидорова
4		4	2005-03-02	Самсунг	10000	5	Иванов
5		5	2005-02-14	Сони	11000	3	Сидорова
6		6	2005-04-04	Самсунг	19000	4	Петрова
7		7	2005-01-07	Леново	16500	4	[null]
8		8	2005-01-07	[null]	12500	3	Петрова
9		9	2015-01-03	Самсунг	[null]	5	Иванов

Задание: С помощью созданного представления "Itog_query" произведите обновления в строке, содержащей NULL-значения.

SQL код для задания:

CREATE OR REPLACE RULE update_itog_query AS

ON UPDATE TO Itog_query

DO INSTEAD

UPDATE sales

SET price = NEW.price,

sale_date = NEW.sale_date,

sale_count = NEW.sale_count

WHERE sale_id = NEW.sale_id;

UPDATE Itog_query

SET price = 15000

WHERE sale_id = (SELECT sale_id FROM sales WHERE price IS NULL);

SELECT * FROM Itog_query;

Пояснение: запрос обновляет значение *price* в строке, где оно было NULL, установив значение в 15000.

	sale_id integer	sale_date date	brand_name character varying (100)	price numeric	sale_count integer	saler_name character varying (100)
1	1	2005-01-03	Самсунг	12000	5	Иванов
2	2	2005-01-15	Леново	8000	4	Петрова
3	3	2005-02-02	Самсунг	25000	3	Сидорова
4	4	2005-03-02	Самсунг	10000	5	Иванов
5	5	2005-02-14	Сони	11000	3	Сидорова
6	6	2005-04-04	Самсунг	19000	4	Петрова
7	7	2005-01-07	Леново	16500	4	[null]
8	8	2005-01-07	[null]	12500	3	Петрова
9	9	2015-01-03	Самсунг	15000	5	Иванов

Задание: Создайте представление (с возможностью модификации и с опцией проверки) для дочерней таблицы.

SQL код для задания:

CREATE VIEW brands_view AS

SELECT brand_id, brand_name

FROM brands

WHERE brand_name != 'Леново';

SELECT * FROM brands_view;

Пояснение: представление ограничивает доступ к производителям Леново.

	brand_id integer	l	brand_name character varying (100)
1	1		Самсунг
2	3		Сони

Задание: Создайте представление "Avg_Obj", которое бы показывало усредненные значения ОБЪЕКТов для каждого ОБЪЕКТа после его имени.

SQL код для задания:

CREATE VIEW Avg_Obj AS

SELECT brand_name AS "производитель", ROUND(AVG(sales.price), 0) AS "средняя цена"

FROM sales

JOIN brands ON sales.brand = brands.brand_id

GROUP BY brands.brand_name;

SELECT * FROM Avg_Obj;

Пояснение: представление Avg_Obj показывает усредненные значения цен для каждого бренда, группируя данные по названию бренда.

	производитель character varying (100)	средняя цена numeric
1	Леново	12250
2	Сони	11000
3	Самсунг	16200