Klausur zur Experimentalphysik 4

Prof. Dr. W. Henning, Prof. Dr. L. Fabbietti Sommersemester 2012 26. Juli 2012

Zugelassene Hilfsmittel:

- 1 beidseitig handbeschriebenes oder computerbeschrieben DIN A4 Blatt
- 1 nichtprogrammierbarer Taschenrechner

Bearbeitungszeit 90 Minuten. Es müssen nicht alle Aufgaben vollständig gelöst sein, um die Note 1,0 zu erhalten.

Aufgabe 1 (4 Punkte)

Auf ein Teilchen wirke die Kraft $K = -kx + k_0$, mit $(k = m_0\omega^2)$.

- (a) Stellen Sie die dazugehörige Schrödingergleichung auf und zeigen Sie mittels binomischer Formel, dass es sich hierbei um einen harmonischen Oszillator handelt,.
- (b) Interpretieren Sie das Potential V(x).
- (c) Geben Sie die Energieeigenwerte des Teilchens an.

Aufgabe 2 (4 Punkte)

Zeigen Sie, dass die Wellenfunktion

$$\psi_{100} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0} \tag{1}$$

für den Grundzustand des Wasserstoffes eine Lösung der Schrödinger-Gleichung

$$-\frac{\hbar^2}{2mr^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right) - \frac{\hbar^2}{2mr^2}\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2\psi}{\partial\phi^2}\right] + E_{pot}(r)\psi = E\psi \qquad (2)$$

ist, wobei die Abstandsabhängigkeit der potentielle Energie gegeben ist durch

$$E_{pot}(r) = -\frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r} \tag{3}$$

und berechnen sie die Energie des Grundzustandes.

Aufgabe 3 (7 Punkte)

Die Natrium D-Linien sind emittiertes Licht der Wellenlänge 589, 5932nm (D1) und 588, 9965nm (D2). Diese charakteristischen Spektrallinien entstehen beim Übergang eines Elektrons von $3^2P_{1/2}$ (D1) bzw. $3^2P_{3/2}$ (D2) auf $3^2S_{1/2}$. Betrachten Sie Natrium dabei als Ein-Elektronen-System.

- (a) Skizzieren Sie die Aufspaltung der Energieniveaus in einem schwachen Magnetfeld und geben Sie diese in Einheiten von $\mu_B B$ an!
- (b) Zeichnen Sie alle erlaubten Übergänge ein.
- (c) Wie stark muss das Magnetfeld sein, damit der energetische Abstand des niedrigsten Zustands des $3^2P_{3/2}$ und des höchsten Zustands von $3^2P_{1/2}$ 90% der Feinstrukturaufspaltung dieser beiden Zustände ($\Delta E_{\rm FS} = 3 \cdot 10^{-22} \rm J$) beträgt?

Aufgabe 4 (4 Punkte)

Metastabile He(2^1S_0)-Atome in einer Gasentladungszelle bei T=1000K absorbieren Licht auf dem Übergang $2^1S_0 \to 3^1P_1$. Die Termwerte ($T_n=E_n/hc$) der Niveaus sind 166 272 cm⁻¹ (2^1S_0) und 186 204 cm⁻¹ (3^1P_1), die Lebensdauern $\tau(3^1P_1)=1,4$ ns und $\tau(2^1S_0)=1$ ms.

- (a) Bei welcher Wellenlänge liegt die entsprechende Resonanzlinie (Absorptionslinie)?
- (b) Wie groß ist die Frequenz ihrer natürlichen Linienbreite?
- (c) Wie groß ist die Frequenz ihrer Dopplerbreite?

Aufgabe 5 (5 Punkte)

Wie groß ist die Photonenenergie beim Übergang $n=2 \rightarrow n=1$ eines myonischen Atoms mit einer Masse von 140amu und einer Kernladungszahl Z=60?

Bei welchem Wert der Hauptquantenzahl n wird der Radius r_n der Myon-Bahn so groß wie der kleinste Radius der Elektronenbahn?

Hinweis: Myonenmasse: $m_{\mu} = 206, 6m_e$

Aufgabe 6 (3 Punkte)

Man berechne die Geschwindigkeit der Photoelektronen, die durch K_{α} -Strahlung von Silber aus der K-Schale des Molybdäns ausgelöst werden. Die Kernladungszahl Z von Silber beträgt 47 und die Ionisierungsenergie von Molybdän (Z=42) ist 20 keV.

Aufgabe 7 (4 Punkte)

Ein radioaktives Tritiumatom (³H) im Grundzustand wandelt sich durch den β -Zerfall eines Neutrons ($n \to p + e^- + \bar{\nu}$) in ein ³He⁺-Ion um. Nehmen Sie an, dass für die Grunszustandswellenfunktion des wasserstoffähnlichen Atoms vor und nach dem Zerfall gilt:

$$\psi_{100} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{\frac{3}{2}} e^{-\frac{Zr}{a_0}} \tag{4}$$

Wie hoch ist die Wahrscheinlichkeit, dass sich das Helium-Ion durch den Übergang in einem 1s-Zustand befindet?

Hinweis:
$$\int r^2 e^{\alpha r} dr = e^{\alpha r} \left(\frac{r^2}{\alpha} - \frac{2r}{\alpha^2} + \frac{2}{\alpha^3} \right)$$

Aufgabe 8 (7 Punkte)

- (a) Bestimmen Sie mit Hilfe der Hundschen Regeln das $^{2S+1}L_J$ -Symbol des Grundzustandes von Kohlenstoff. Wie groß ist die Dimension der Entartung des Grundzustandes? *Hinweis*: Kohlenstoff hat sechs Elektronen.
- (b) Die Grundzustandskonfiguration von Kobalt-27 ist $[Ar] 3d^7 4s^2$. Wie groß ist die Entartung dieser Konfiguration gemäß dem Zentralfeldmodell? Bestimmen Sie mit Hilfe der Hundschen Regeln das $^{2S+1}L_J$ -Symbol des 'wahren' Grundzustandes und geben Sie die Dimension seiner Entartung an.

Aufgabe 9 (5 Punkte)

Beim H_2 - Molekül ist die Schwingungsfrequenz $\omega_0=8,28\cdot 10^{14}~s^{-1}$ und die Dissoziationsenergie beträgt $E_{Dis}=4,478~eV$. Vergleichen Sie im folgenden das H_2 - Molekül mit dem HD- Molekül. D ist das Deuterium mit einem Kern aus Proton und Neutron. Nehmen Sie Proton und Neutron als gleich schwer an.

- (a) Warum kann man annehmen, daß die Kraftkonstante ("Federkonstante") bei beiden Molekülen gleich ist?
- (b) Ist unter der Bedingung von 9a auch die Dissoziationsenergie gleich bei beiden Molekülen und warum?
- (c) Berechnen Sie die Dissoziationsenergie des HD- Moleküls.

Aufgabe 10 (3 Punkte)

Die Zustandsdichte eines zweidimensionalen Elektronengases ist konstant und unabhängig von der Energie. Welcher Bruchteil aller Elektronen eines solchen Materials mit der Fermienergie E_F hat bei $T=300\mathrm{K}$ eine Energie $E\geq E_F(T=0)=4\mathrm{eV}$?

$$\mathit{Hinweis} \colon \int \frac{1}{e^{(E-E_F)kT}+1} dE = -kT \ln \left(e^{-\frac{E}{kT}} + e^{-\frac{E_F}{kT}} \right)$$

Konstanten

Physikalische Konstanten

G ::0	0 1 1 01 1 1	777
Größe	Symbol, Gleichung	Wert
Vakuumlichtgeschwindigkeit	c	$2,9979 \cdot 10^8 \mathrm{ms}^{-1}$
Plancksche Konstante	h	$6,6261 \cdot 10^{-34} \mathrm{Js} = 4,1357 \cdot 10^{-15} \mathrm{eVs}$
Red. Plancksche Konstante	$\hbar = h/2\pi$	$1,0546 \cdot 10^{-34} \mathrm{Js}$
Elektr. Elementarladung	e	$1,6022 \cdot 10^{-19} \mathrm{C}$
Boltzmann-Konstante	k_{B}	$1,3807 \cdot 10^{-23} \mathrm{JK^{-1}} = 8,617 \cdot 10^{-5} \mathrm{eVK^{-1}}$
Magnetische Feldkonstante	μ_0	$4\pi \cdot 10^{-7} \mathrm{VsA^{-1}m^{-1}}$
Elektrische Feldkonstante	$\varepsilon_0 = 1/\mu_0 c^2$	$8,8542 \cdot 10^{-12} \mathrm{AsV^{-1}m^{-1}}$
Elektronruhemasse	$m_{ m e}$	$9{,}1094 \cdot 10^{-31} \mathrm{kg} = 0{,}5110 \mathrm{MeV}/c^2$
(Anti-)Protonruhemasse	$m_{ar{ ext{p}}, ext{p}}$	$1,6726 \cdot 10^{-27} \mathrm{kg} = 938,2720 \mathrm{MeV}/c^2$
Neutronruhemasse	$m_{ m n}$	$1,6749 \cdot 10^{-27} \mathrm{kg} = 939,5653 \mathrm{MeV}/c^2$
Atomare Masseneinheit	amu	$1,6605 \cdot 10^{-27} \mathrm{kg}$
Avogadro-Zahl	N_A	$=6.023\cdot 10^{23}$
Bohr'scher Radius	$a_0 = \frac{4\pi\epsilon_0\hbar^2}{e^2m_e}$	$5,29 \cdot 10^{-11} \mathrm{m}$
Bohr'sches Magneton	μ_B	$9,2741 \cdot 10^{-24} \mathrm{JT^{-1}} = 5,7884 \cdot 10^{-5} \mathrm{eVT^{-1}}$
Kernmagneton	μ_K	$= 5,0508 \cdot 10^{-27} \mathrm{J/T} = 3,152 \cdot 10^{-14} \mathrm{MeV/T}$
Magnetisches Moment des Protons:	μ_P	$2,79\mu_{K}$
Feinstrukturkonstante	$1/\alpha$	137,036
Rydbergsche Konstante	R_{∞}	13,6057 eV