Network Simulator: Milestone 2

Sharjeel, Chris, Ying-Yu, and Emily

Current Progress

- Link with buffer and delay
- Setting up static routing tables for routers
- TCP Tahoe Protocol for congestion control
- Demo

One-Link Example

- 20 MB Data
- 10 Mbps Link
- TCP Tahoe

Architecture

- Device: Host, Router, Link
- Packet: Data, Ack, Routing
- Network
- Flow
- Tracker
- Stayed the same, except...

Inter-Device Communication

- Packets are exchanged via SimPy queues
- Enable SimPy to intercept messages

Link

Routing Table

- Hosts initialize routing packets on startup
- Dijkstra's algorithm for each host
- When a router discovers a host
 - a. Incoming direction -> routing table
 - b. Broadcast to all other directions
 - c. Ignore later packets from the same host

Statistics

- Devices generate statistical messages periodically
- Standalone program for plotting
- Tied together via UNIX pipes
- Logging and plotting are decoupled :)

Difficulties

- Ever-changing architecture as we learned more about SimPy environment
- Enabling simulator with statistics

Extra Features

- TCP Vegas
- CUBIC TCP
- Real-time graphing
- Dynamic networks

Congestion Control Plans

Two different approaches:

- TCPTahoe
 - uses packet loss as signal
- FASTTCP
 - uses queuing delay as signal

Division of Remaining Labor

Ying-Yu: Statistics

Chris: Graphics

Emily: FASTTCP

Sharjeel: Dynamic Routing

Timeline

Week 8

- Implement congestion control for Flow
- Implement graphics for Tracker
- Implement dynamic routing

Week 9

- Debug code
- Prepare for presentation

Week 10

- Final presentation
- Prepare final report

Any questions?