## คู่มือ SNAP v.6 สำหรับการวิเคราะห์ Vegetation index จาก Sentinel2

ก่อนนำเข้าข้อมูล ให้ unzip ไฟล์ที่ดาวน์โหลดมา

1. การนำเข้าข้อมูล Sentinel2 level L1C



เลือกไฟล์ MTD\_MSIL1C.xml ภายใต้โฟลเดอร์ S2\*\_MSIL1C\_\*\*\*\*\*.SAFE เพื่อนำเข้าข้อมูล sentinel2 level 1C





- เปิดภาพดาวเทียมโดยการคลิกขวาที่ชื่อไฟล์ที่นำเข้ามา เลือก Open RGB Image Window
- ใน Select RGB-Image Channels เลือก Profile โดยปกติจะกำหนดมาเป็น Sentinel 2 MSI Natural Colors





## 2. ทำ ATCOR ด้วยคำสั่ง Sen2Cor



หน้าต่าง SEN2COR ในแทบ I/O Parameters เลือกไฟล์ที่จะทำการปรับแก้ จากนั้นเลือกแทบ Processing Parameters



- เลือก Resolution : ALL

- กำหนด Visibility : 40.0 หรือ ถ้าภาพมีเมฆมาก อาจจะกำหนดค่าน้อยกว่าได้ เช่น 23.0

- สั่ง Run
- เมื่อทำงานเสร็จแล้วจะได้ไฟล์ใหม่ ให้เลือก File > Close All Product เพื่อปิดไฟล์ทั้งหมดที่เปิดใช้ งานอยู่ โปรแกรม SNAP จะถามต้องการ save หรือไม่ ให้ตอบ No
- ไฟล์ใหม่จะได้เป็นข้อมูล level 2A มีชื่อไฟล์เป็น S2\*\_MSIL2A\_\*\*\*\*\*.SAFE
- 3. ทำการ Resampling ข้อมูลดาวเทียมให้มีขนาด pixel เท่ากันทุกแบนด์ กำหนดให้เป็น 10 เมตร



- Import ไฟล์ข้อมูล sentinel level 2A ที่ได้จากการทำ Sen2Cor โดยเลือก S2-MSI L2A
- เลือกไฟล์ MTD MSIL2A.xml ภายใต้โฟลเดอร์ S2\* MSIL2A \*\*\*\*\*.SAFE



- ลองตรวจสอบข้อมูล Bands ตามรูปด้านล่าง ถ้าเลือก resolution เป็น All จะได้แบนด์ทั้งหมด 12 แบนด์ โดยจะไม่มี B10



- เลือกคำสั่ง Optical > Geometric > S2 Resampling Processor



- ตรวจสอบแทป I/O Parameters ชื่อไฟล์ที่จะทำการ resampling ถูกต้องหรือไม่ และชื่อไฟล์ output ในส่วนของ Target Product ที่ได้จะตามด้วย \*\*\*\*\_s2resampled
- เลือก Save as เป็น DEAM-DIMAP
- เลือก Directory ที่จะใช้จัดเก็บ



- ในแทป Processing Parameters เลือก Output resolution: 10 และเลือก Upsampling method: Nearest



- สั่ง Run
- จะได้ไฟล์ใหม่เพิ่มเข้ามาในหน้าต่าง Product Explorer เป็นไฟล์ที่ได้จากการทำ resampling โดย หมายเลขใน [ ] คือลำดับการนำเข้าข้อมูลใน SNAP



- 4. การทำการวิเคราะห์หา Biophysical Processor (LAI, fAPAR)
- ใช้ไฟล์ที่ได้จากขั้นตอนที่ 3 ถ้าจะทำการนำเข้าใหม่ ให้เลือกนำเข้าโดย
  File > Import > Generic Formats > BEAM-DIMAP
  เลือกโฟลเดอร์ที่จัดเก็บข้อมูลและไฟล์ที่ได้จากขั้นตอน resampling โดยเลือกไฟล์นามสกุล \*.dim
- เลือกคำสั่งคำนวนค่า Biophysical จาก Optical > Thematic Land Processing > Biophysical Processor (LAI, fAPAR...)



- ตรวจสอบแทป I/O Parameters โดย
 Source Product เลือก ไฟล์ที่ได้จากการ resampling
 ในส่วนของ Target Product ชื่อไฟล์จะต่อท้ายด้วย \*\*\*\_s2resampled\_biophysical
 Save as: BEAM-DIMAP
 กำหนด Directory สำหรับจัดเก็บไฟล์ผลลัพธ์ที่ได้



- ในส่วนแทป Processing Parameters กำหนดเลือกทุกตัว



- สั่ง Run
- Output ที่ได้



- 5. การวิเคราะห์ Vegetation Index, Soil Index และ Water Index
- นำเข้าข้อมูล level 2A ที่ได้จากขั้นตอนที่ 2 และ ไฟล์ Resampling ที่ได้จากขั้นตอนที่ 3 (การ เลือกใช้ไฟล์ L2A หรือ resampling ดูได้จากตารางท้ายคู่มือ)
- เลือกคำสั่งจาก Optical > Thematic Land Processing > Vegetation Radiometric Indices > เลือก Index ที่ต้องการวิเคราะห์เกี่ยวกับ vegetation เช่น NDVI Processor



- เลือกแทป I/O Parameters
- เลือกไฟล์ที่ต้องการวิเคราะห์ในส่วนของ source:
- Target Product จะกำหนดชื่อ index ที่วิเคราะห์ต่อท้ายชื่อไฟล์ เช่น \*\*\*\*\_ndvi
- Save as: BEAM-DIMAP
- กำหนด Directory สำหรับเก็บไฟล์ output



- ในแทป Processing Parameters กำหนด band ให้ตรงกับที่โมเดลกำหนด เช่น ใน NDVI ต้องการ แบนด์ Red และ NIR โดยใน sentinel 2 ได้แก่ Red = B4 , NIR = B8



- สั่ง Run
- ใน Index ตัวอื่นๆ มีวิธีการทำในลักษณะเดียวกัน
- การวิเคราะห์ Soil index และ Water index ทำในลักษณะเดียวกันกับ Vegetation index โดยดู รายละเอียดเพิ่มเติมได้จากตารางท้ายคู่มือ
- 6. การวิเคราะห์ Index ตัวอื่น นอกเหนือจากที่โปรแกรม SNAP กำหนดมาให้
- นำเข้าไฟล์ที่จะทำการวิเคราะห์เช่นเดียวกับการวิเคราะห์ index ของ SNAP (โดยมากจะใช้ไฟล์ Resampling เนื่องจากมีการจัดทำ resolution ของทุกแบนด์ให้มีขนาดเท่ากันแล้ว)

- ใช้คำสั่ง Raster > Band Maths...



- Target product คือ โฟลเดอร์ที่ผลการวิเคราะห์จะไปจัดเก็บ
- Name : ใส่ชื่อ index ที่จะวิเคราะห์ เพื่อจะได้เป็นชื่อของ layer ที่จะไปเพิ่มใน target เช่น ใน ตัวอย่างเป็นการคำนวนค่า EVI
- คลิกเครื่องหมาย ✓ ในช่อง Virtual (save expression only, don't store data) ออก



- เลือก Load... เพื่อนำเข้าโมเดลในการคำนวนดัชนีต่าง โดยอยู่ในรูปแบบ txt file



## - กด OK เพื่อสั่งประมวลผล





- ทำการวิเคราะห์ index จนครบทุกตัว ผลการวิเคราะห์จะสร้างเป็น layer ใหม่เพิ่มใน target



- 7. การ Export ดัชนีที่วิเคราะห์
- คลิกที่ไฟล์ target
- เลือก File > Export > BEAM-DIMAP



- เลือกที่ปุ่ม Subset... เพื่อเลือก export เฉพาะ index ที่วิเคราะห์



- จากหน้าต่าง Specify Product Subset เลือกแทป Band Subset เพื่อกำหนดแบนด์ที่จะ export
- ในแทป Band Subset คลิกเลือก Select none
- เลื่อนลงมาข้างล่าง คลิกเครื่องหมาย ✓ ตัวดัชนีที่ต้องการ export จากรูปตัวอย่าง เลือก export เฉพาะ EVI, NDRE, NDRE2 และ VARI
- กด OK



- ตั้งชื่อไฟล์ output โดยในการทำงานนี้กำหนดให้เติม \_MVI ต่อท้าย (MVI : multi vegetation index)
- คลิกปุ่ม Export Product



หมายเหตุ โปรแกรม SNAP จะเติม subset\_S2\*\_\*\*\*.dim มาให้อัตโนมัติ เพื่อแสดงว่าเป็นไฟล์ที่ได้จากการทำ การ subset

- ทำการปิดไฟล์ที่ใช้วิเคราะห์ดัชนีพืชพรรณ โดย File > Close All Products โปรแกรมจะถามว่า ต้องการ save การเปลี่ยนแปลงหรือไม่ ให้เลือก No

ไฟล์ที่ได้จากการ export ประกอบไปด้วยแบนด์ของดัชนี EVI, NDRE, NDRE2 และ VARI



## ตารางดัชนีที่ใช้งาน (ต้นแบบ) ดาวเทียม Sentinel2

| ลำดับ | ชื่อดัชนี | แบนด์ที่ใช้            | Formula                    | ไฟล์ที่ใช้  |
|-------|-----------|------------------------|----------------------------|-------------|
| 1     | NDVI      | R : B4 NIR : B8        |                            | L2A         |
| 2     | SAVI      | R : B4 NIR : B8        |                            | L2A         |
| 3     | TSAVI     | R : B4 NIR : B8        |                            | L2A         |
| 4     | MSAVI     | R : B4 NIR : B8        |                            | L2A         |
| 5     | MSAVI2    | R : B4 NIR : B8        |                            | L2A         |
| 6     | DVI       | R : B4 NIR : B8        |                            | L2A         |
| 7     | RVI       | R : B4 NIR : B8        |                            | L2A         |
| 8     | PVI       | R : B4 NIR : B8        |                            | L2A         |
| 9     | IPVI      | R : B4 NIR : B8        |                            | L2A         |
| 10    | WDVI      | R : B4 NIR : B8        |                            | L2A         |
| 11    | TNDVI     | R : B4 NIR : B8        |                            | L2A         |
| 12    | GNDVI     | G : B3 NIR : <b>B8</b> |                            | L2A         |
| 13    | GEMI      | R : B4 NIR : B8A       |                            | S2resampled |
| 14    | ARVI      | R:B4 B:B2 NIR:B8       |                            | L2A         |
| 15    | NDI45     | R : B4 VRE : B5        | (B5 - B4) / (B5 + B4)      | S2resampled |
| 16    | MTCI      | R: B4 VRE: B5 NIR: B6  | (B6 - B5) / (B5 - B4)      | S2resampled |
| 17    | MCARI     | R:B4 VRE:B5 G:B3       | [(B5-B4)-0.2*(B5-B3)]*(B5- | S2resampled |
|       |           |                        | B4)                        |             |
| 18    | REIP      | R: B4 VRE: B5 VRE: B6  |                            | S2resampled |
|       |           | NIR : B7               |                            |             |
| 19    | S2REP     | R: B4 VRE: B5 VRE: B6  |                            | S2resampled |
|       |           | NIR : B7               |                            |             |
| 20    | IRECI     | R: B4 VRE: B5 VRE: B6  |                            | S2resampled |
|       |           | NIR : B7               |                            |             |
| 21    | PSSRa     | R: B4 NIR: B7          |                            | S2resampled |
| 22    | BI        | R: B4 G: B3            |                            | L2A         |
| 23    | BI2       | R: B4 G: B3 NIR: B8    |                            | L2A         |
| 24    | RI        | R: B4 G: B3            |                            | L2A         |
| 25    | CI        | R: B4 G: B3            |                            | L2A         |
| 26    | NDWI      | MIR : B12 NIR : B8     |                            | S2resampled |
| 27    | NDWI2     | G: B3 NIR: B8          |                            | L2A         |
| 28    | MNDWI     | G: B3 MIR: B12         |                            | S2resampled |
| 29    | NDPI      | G: B3 SWIP: B11        |                            | S2resampled |
| 30    | NDTI      | R:B4 G:B3              |                            | L2A         |
| 31    | LAI       |                        |                            | S2resampled |

| ลำดับ | ชื่อดัชนี | แบนด์ที่ใช้         | Formula                    | ไฟล์ที่ใช้  |
|-------|-----------|---------------------|----------------------------|-------------|
| 32    | FAPAR     |                     |                            | S2resampled |
| 33    | FCOVER    |                     |                            | S2resampled |
| 34    | LAI_CAB   |                     |                            | S2resampled |
| 35    | LAI_CW    |                     |                            | S2resampled |
| 36    | EVI       | NIR: B8 R: B4 B: B2 | 2.5 * ((B8 – B4) / (B8 +   | S2resampled |
|       |           |                     | (6*B4) - (7.5*B2) + 1))    |             |
| 37    | NDRE      | NIR : B8 VRE : B6   | (B8 - B6) / (B8 + B6)      | S2resampled |
| 38    | NDRE2     | NIR : B8A VRE : B6  | (B8A - B6) / (B8A + B6)    | S2resampled |
| 39    | VARI      | R:B4 G:B3 B:B2      | (B3 - B4) / (B3 + B4 - B2) | S2resampled |

<sup>\*\*\*</sup>\_biophysical : LAI, fAPAR, FCOVER, LAI\_CAB, LAI\_CW \*\*\*\_MVI : EVI, NDRE, NDRE2, VARI

B = Blue

G = Green

R = Red

VRE = Visible Red-Edge

NIR = Near Infrared

SWIR = Short Wave Infrared

L2A = Level 2 A (จากการทำ Sen2Cor)

S2resampled = Level2A และทำ S2 Resampling

MIR = Mid Infrared

LAI: Leaf Area Index (LAI)

FAPAR: Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)

FCOVER: Fraction of vegetation cover (FCOVER)

Cab: Chlorophyll content in the leaf (LAI\_CAB)

CW: Canopy Water Content (LAI\_CW)