How to generate a good word embedding

刘康

中国科学院自动化研究所模式识别国家重点实验室 2015年8月25日

词表示

- One-hot Word Representation
 - 减肥 [000100000]
 - 瘦身[1000000000]
- Distributed Word Representation
 - 减肥 [0.792, -0.177, -0.107, 0.109, -0.542]
 - 瘦身 [0.856, -0.523, 0, 0.2, -0.2]

词表示

词向量表示的核心

- 利用上下文信息进行词表示
 - 具有相同(类似)上下文信息的词应该具有相同(类似)的词表示[Z. Harris, 1954]

$$\vec{v} = (c_1, c_2, ..., c_n)$$

- 两种上下文选择 [Sahlgren 2006]
 - "词-文档"共现矩阵

• "词-词"共现矩阵

- Syntagmatic Relation
- Paradigmatic Relation

- "词-文档"共现矩阵
 - LSA PLSA

	d1	d2	d3
w1	1	1	3
w2	2	2	1
w3	4	2	1
w4		3	

$$X \approx U \Sigma V^T$$

- "词-文档"矩阵
 - Syntagmatic Relation (组合关系/一阶关系): Two words are similar
 if they tend to appear in the contexts of each other
 - Use **co-occurrence events** for building the word space as a syntagmatic use of context [Sahlgren 2006]

I like nature language processing You like machine learning We like deep learning

deep→learning machine→learning

d1	d2	d3
1		
1	1	1
1		
1		
1		
	1	
	1	
	1	1
		1
		1
	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1

- "词-词"共现矩阵
 - HAL [Lund et al. 1996] GloVe [Pennington et al 2014]

	w1	w2	w3	w4
w1		2	4	1
w2	2		3	
w3	4	3		1
w4	1		1	

- "词-词"共现矩阵
 - Paradigmatic Relation (聚合/替换关系/二阶关系): Two words are similar if they tend to appear in similar contexts
 - Use surrounding words for building the word space as a paradigmatic use of context [Sahlgren 2006]

I like nature language processing You like machine learning We like deep learning

deep→machine

	w0	w1	w2	w3	w4	w5	w6	w7	w8	w9
(w0) I		1								
(w1) like	1		1			1	1		1	1
(w2) nature		1		1						
(w3) language			1		1					
(w4) processing				1						
(w5) You		1								
(w6) machine		1						1		
(w7) learning							1			1
(w8) We		1								
(w9) deep		1						1		

Map

This Talk

- 如何训练得到一组词向量?
- 如何训练得到一组好的词向量?

This Talk

- 如何训练一个好的词向量模型
 - NNLM、LBL、C&W、CBOW、Skip-gram.....
 - 上下文与目标词的关系?
 - 如何表示上下文?
- 如何训练一个好的词向量模型
 - 7个不同任务(相似度、文本分类、NER.....)
 - 模型选择(如何对上下文建模)
 - 语料的选择(领域、大小)
 - 参数的选择(迭代次数、词向量的维度)

如何训练得到一组词向量

从语言模型开始

• 目标: 计算一个词串的概率

$$P(S) = P(w_1, w_2, w_3, \dots, w_n)$$

$$= P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_1, w_2) \cdots P(w_n \mid w_1, w_2, w_3, \dots, w_{n-1})$$

$$= \prod_{i} P(w_i \mid w_1, w_2, w_3, \dots, w_{i-1})$$

$$P(w_i \mid w_1, w_2, w_3, \dots, w_{i-1})$$

$$P(w_i \mid w_1, w_2, w_3, \dots, w_{i-1}) = \frac{Count(w_1, w_2, w_3, \dots, w_{i-1}, w_i)}{Count(w_1, w_2, w_3, \dots, w_{i-1})}$$

NNLM

Neural Network Language Model [Y.Bengio et al. 2003]

$$L = \frac{1}{T} \sum_{t} \log f(w_{t}, w_{t-1}, \dots, w_{t-n+1}; \theta) + R(\theta),$$

$$f(w_{t}, w_{t-1}, \dots, w_{t-n+1}) = \hat{P}(w_{t} \mid w_{t-1}, \dots, w_{t-n+1})$$

$$\hat{P}(w_{t} \mid w_{t-1}, \dots, w_{t-n+1}) = \frac{e^{y_{w_{t}}}}{\sum_{i} e^{y_{i}}}$$

$$y = b + Wx + U \tanh(d + Hx)$$

$$x = (C(w_{t-1}), C(w_{t-2}), \dots, C(w_{t-n+1}))$$

$$\theta \leftarrow \theta + \varepsilon \frac{\partial \log \hat{P}(w_t | w_{t-1}, \dots, w_{t-n+1})}{\partial \theta}$$

LBL

Log-bilinear Language Model[A. Mnih & G. Hinton, 2007]

$$P(w_n|w_{1:n-1}) = \frac{1}{Z_c} \exp(-E(w_n; w_{1:n-1}))$$
 词向量矩阵 词汇表 $E(w_n; w_{1:n-1}) = -\left(\sum_{i=1}^{n-1} v_i^T R C_i\right) R^T v_n - b_r^T R^T v_n - b_v^T v_n.$

$$Z_c = \sum_{w_n} \exp(-E(w_n; w_{1:n-1}))$$

LBL vs. NNLM

目标函数:
$$P(w_n|w_{1:n-1}) = \frac{1}{Z_c} \exp(-E(w_n; w_{1:n-1}))$$

NNLM: $y = b + Wx + U \tanh(d + Hx)$ LBL: $E(w_n; w_{1:n-1}) = -\left(\sum_{i=1}^{n-1} v_i^T R C_i\right) R^T v_n$ $-b_r^T R^T v_n - b_v^T v_n.$

CBOW / Skip-gram

[T. Mikolov et al, ICLR 2013]

- Word2Vector
 - 去除隐藏层
 - 去除词序

研表究明,汉字序顺并不定一影阅响读!事证实明了也许当你看这完句话之后才发字现都乱是的。

Continuous Bag-of-Words

Skip-gram

CBOW

Continued Bag of Words Model

$$\frac{1}{N} \sum_{i=1}^{N} P(w_i \mid w_{i-k}, w_{i-k+1}, \dots, w_{i-1}, w_{i+1}, \dots, w_{i+k-1}, w_{i+k})$$

$$P(w_i \mid C_i) = \frac{\exp(v_i^T v_{C_i})}{\sum_{w_i} \exp(v_i^T v_{C_i})}$$

$$v_{C_i} = \sum_{j \in C_i} v_j$$

Skip-Gram

$$\frac{1}{N} \sum_{i=1}^{N} \sum_{-c \le j \le c, j \ne 0} P(w_{i+j} | w_i)$$

$$P(w_i \mid w_j) = \frac{\exp(v_i^T v_j)}{\sum_{w_i} \exp(v_i^T v_j)}$$

加速

Hierarchical Softmax

$$p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma\left(\left[n(w,j+1) = \operatorname{ch}(n(w,j)) \right] \cdot v'_{n(w,j)}^{\ \ T} v_{w_I} \right)$$
 保证目标词路径的正确

Negative Sampling

$$\log \sigma(v_{w_O}^{\prime} \mathsf{T} v_{w_I}) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-v_{w_i}^{\prime} \mathsf{T} v_{w_I}) \right]$$
 按照概率随机抽样

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Contextual Vector

$$P(w_i | w_j) = \frac{\exp(v_i^T v_j)}{\sum_{w_i} \exp(v_i^T v_j)}$$

$$P(w_i \mid w_j) = \frac{\exp(v_i^T v_j)}{\sum_{w_i} \exp(v_i^T v_j)}$$

Syntagmatic Relation

Which one should we choose

$$\vec{w}_{x}$$
 \vec{c}_{x}

- Paradigmatic Relation: \vec{w}_x 或者 \vec{c}_x
- Syntagmatic Relation: 两者都要考虑

$$\begin{split} \vec{v}_{x} &= \vec{w}_{x} + \vec{c}_{x} \\ cos(x,y) &= \frac{\vec{v}_{x} \cdot \vec{v}_{y}}{\sqrt{\vec{v}_{x} \cdot \vec{v}_{x}} \sqrt{\vec{v}_{y} \cdot \vec{v}_{y}}} = \\ & \frac{(\vec{w}_{x} + \vec{c}_{x}) \cdot (\vec{w}_{y} + \vec{c}_{y})}{\sqrt{(\vec{w}_{x} + \vec{c}_{x})} \cdot (\vec{w}_{x} + \vec{c}_{x})} \sqrt{(\vec{w}_{y} + \vec{c}_{y}) \cdot (\vec{w}_{y} + \vec{c}_{y})} \\ &= \frac{\vec{w}_{x} \cdot \vec{w}_{y} + \vec{c}_{x} \cdot \vec{c}_{y} + \vec{w}_{x} \cdot \vec{c}_{y} + \vec{c}_{x} \cdot \vec{w}_{y}}{\sqrt{\vec{w}_{x}^{2} + 2\vec{w}_{x} \cdot \vec{c}_{x} + \vec{c}_{x}^{2}} \sqrt{\vec{w}_{y}^{2} + 2\vec{w}_{y} \cdot \vec{c}_{y} + \vec{c}_{y}^{2}}} \\ &= \frac{\vec{w}_{x} \cdot \vec{w}_{y} + \vec{c}_{x} \cdot \vec{c}_{y} + \vec{w}_{x} \cdot \vec{c}_{y} + \vec{c}_{x} \cdot \vec{w}_{y}}{2\sqrt{\vec{w}_{x} \cdot \vec{c}_{x} + 1} \sqrt{\vec{w}_{y} \cdot \vec{c}_{y} + 1}} \end{split}$$

Paradigmatic Relation
$$\vec{w}_x \cdot \vec{w}_y$$
 $\vec{c}_x \cdot \vec{c}_y$
Syntagmatic Relation $\vec{w}_x \cdot \vec{c}_y$ $\vec{c}_x \cdot \vec{w}_y$

$$sim(x,y) = \frac{sim_2(x,y) + sim_1(x,y)}{\sqrt{sim_1(x,x) + 1}\sqrt{sim_1(y,y) + 1}}$$

[Omer Levy et al, TACL 2015]

• 目标: 词向量

目标函数 $\max(0, 1 - s(w, c) + s(w', c))$

如何训练得到一组好的词向量

模型分析

- 词向量与上下文密切相关
- 两个重要问题
 - 上下文如何表示
 - 上下文与目标词的关系

Skip-gram

目标词和上下文的关系: $P(w_i \mid C_i) = P(w_j \mid w_{j+i})$

上下文表示: $e(w_{j+i}), -k \leq j \leq k, j \neq 0$

CBOW

Continuous Bag-of-Words

目标词和上下文的关系: $P(w_i | C_i)$

$$= P(w_i \mid w_{i-k}, w_{i-k+1}, \cdots, w_{i-1}, w_{i+1}, \cdots, w_{i+k-1}, w_{i+k})$$

上下文表示:
$$\frac{1}{k-1}(e(w_{i-\frac{k-1}{2}})+\cdots+e(w_{i-1})+e(w_{i+1})+\cdots+e(w_{i+\frac{k-1}{2}}))$$

LBL

目标词和上下文的关系: $P(w_i | C_i) = P(w_i | w_{i-1}, w_{i-2}, \dots, w_{i-k})$

上下文表示: $H[e(w_1), \dots, e(w_{n-2}), e(w_{n-1})]$

NNLM

目标词和上下文的关系: $P(w_i | C_i) = P(w_i | w_{i-1}, w_{i-2}, \dots, w_{i-k})$

上下文表示: $\tanh(d+H[e(w_1),\dots,e(w_{n-2}),e(w_{n-1})])$

Order(Virtual Model)

目标词和上下文的关系: $P(w_i \mid C_i)$

$$= P(w_i \mid w_{i-k}, w_{i-k+1}, \cdots, w_{i-1}, w_{i+1}, \cdots, w_{i+k-1}, w_{i+k})$$

上下文表示: $[e(w_1), \dots, e(w_{n-2}), e(w_{n-1})]$

C&W

目标词和上下文的关系: $Score(w_i, C_i)$

上下文表示: $H[e(w_{i-\frac{k-1}{2}}), \dots, e(w_{i-1}), e(w_i), e(w_{i+1}), \dots, e(w_{i+\frac{k-1}{2}}))$

模型总结

Model	Relation of w, c	Representation of c	简单
Skip-gram [18]	c predicts w	one of c	
CBOW [18]	$c ext{ predicts } w$	average	
Order	$c ext{ predicts } w$	concatenation	
LBL [22]	$c ext{ predicts } w$	compositionality	
NNLM [2]	$c ext{ predicts } w$	compositionality	_
C&W [3]	scores w, c	compositionality	/ 复杂

怎样才算是好的词向量

词向量应用

- 语言学应用
- 作为某一任务的特征
- 作为某一任务神经网络模型的初始值

评价任务选择

- 语言学应用
 - 类比任务(syn、sem)
 - 相似度/相关度计算(ws)
 - 同义词 (tfl)
- 作为某一任务的特征
 - 情感分类 (avg)
 - 命名实体识别(NER)
- 作为某一任务神经网络模型的初始值
 - 情感分类 (cnn)
 - 词性标注(pos)

评价任务: 类比任务

[Mikolov et al. 2013]

- 语法相似度(syn)10.5k
 - <u>predict</u> predicting ≈ dance dancing
- 类比关系(语义) (sem) 9k
 - king queen ≈ man woman
- 评测
 - man woman + queen → king
 - predict-dance+dancing → predicting
- 评价指标
 - Accuracy

Model	syn	\mathbf{sem}
Random	0.00	0.00
Skip-gram	51.78	44.80
CBOW	55.83	44.43
Order	55.57	36.38
LBL	45.74	29.12
NNLM	41.41	23.51
C&W	3.13	2.20

评价任务:相似度/相关度

[L. Finkelstein et al., 2013]

- 任务: 计算给定词语的相关词语 (ws)
 - student, professor 6.81
 - professor, cucumber 0.31
- 数据: WordSim353
- 指标: 皮尔逊距离

$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

Model	ws
Random	0.00
Skip-gram	63.89
CBOW	62.21
Order	62.44
LBL	57.86
NNLM	59.25
C&W	46.17
mo-mo-mo-mo-mo-m	-drie-drie-drie-dri

评价任务: 同义词

[T. Landauer & S. Dumais, 2013]

• 任务: 找给定词语的同义词(tfl)80个选择题

levied

A) imposed

B) believed

C) requested

D) correlated

• 数据:托福考试同义词题

• 指标: Accuracy

ta <u>latalatalatalatalatalat</u>	gittigittigittigit
Model	tfl
Random	25.00
Skip-gram CBOW Order LBL NNLM C&W	76.25 77.50 77.50 75.00 71.25 47.50

评价任务: 文本分类

- 任务: 情感分类 (avg)
 - 10万条(5万有标注)
 - 25,000 Train, 25,000 Test
- 特征: 文档中各词词向量平均值
- 分类模型: Logistic Regression
- 数据: IMDB
- 指标: Accuracy

tgittigittigittigittigittigitti	gittegittegittegit
Model	avg
Random	64.38
Skip-gram CBOW Order LBL NNLM C&W	74.94 74.68 74.93 74.32 73.70 73.26

评价任务: 命名实体识别

[Turian et al., 2010]

• 任务: NER

• 特征: 传统特征[Ratinov 2009]+训练得到的词向量

• 模型: CRFs

• 数据: CoNLL03 shared task

• 指标: F1

Model	ner
Random	84.39
Skip-gram	88.90
CBOW	88.47
Order	88.41
LBL	88.69
NNLM	88.36
C&W	88.15

评价任务: 情感分类

[Y. Kim, 2014]

- 任务: 情感分类, 5分类 (cnn)
- 模型: Convolutional Neural Network
- 数据: Standford Sentiment Tree Bank
 - 6920 Train, 872 Dev, 1821 Test
- 指标: Accuracy

wait for the video and do n't rent it				A
	n x k representation of sentence with static and non-static channels	Convolutional layer with multiple filter widths and feature maps	Max-over-time pooling	Fully connected layer with dropout and softmax output

Model	cnn
Random	36.60
Skip-gram	43.84
CBOW	43.75
Order	44.77
LBL	43.98
NNLM	44.40
C&W	41.86

评价任务: 词性标注

[R. Collobert et al., 2011]

- 任务: 标注给定句子中词的词性 (pos) 数据规模
- 模型: SENNA
- 数据: Wall Street Journal
 - 18,540 Train, 2,824 Dev, 3,229 Test
- 指标: Accuracy

Model	pos
Random	95.41
Skip-gram	96.57
CBOW	96.63
Order	96.76
LBL	96.77
NNLM	96.73
C&W	96.66

实验设置

- Corpus
 - Wiki:100M, 1.6B
 - NYT: 100M, 1.2B
 - W&N: 10M, 100M, 1B, 2.8B
 - IMDB: 13M
- Parameters
 - Dimension: 10, 20, 50, 100, 200
 - Window size: 5

结果

Model	syn	sem	ws	tfl	avg	ner	cnn	pos
Random	0.00	0.00	0.00	25.00	64.38	84.39	36.60	95.41
Skip-gram	51.78	44.80	63.89	76.25	74.94	88.90	43.84	96.57
CBOW	55.83	44.43	62.21	77.50	74.68	88.47	43.75	96.63
Order	55.57	36.38	62.44	77.50	74.93	88.41	44.77	96.76
LBL	45.74	29.12	57.86	75.00	74.32	88.69	43.98	96.77
NNLM	41.41	23.51	59.25	71.25	73.70	88.36	44.40	96.73
C&W	3.13	2.20	46.17	47.50	73.26	88.15	41.86	96.66

语言学特性

作为特征 作为网络输入

问题: 不同任务间很难进行公平比较

评价指标:效果增益率

Performance Gain Ratio

$$PGR(a,b) = \frac{p_a - p_{rand}}{p_b - p_{rand}}$$

Model	syn	\mathbf{sem}	ws	tfl	\mathbf{avg}	\mathbf{ner}	cnn	pos
Random	0.00	0.00	0.00	25.00	64.38	84.39	36.60	95.41

$$PGR(a, \max) = \frac{p_a - p_{rand}}{p_{\max} - p_{rand}}$$

结果

Model	syn	sem	ws	tfl	avg	ner	cnn	pos
Random	0.00	0.00	0.00	25.00	64.38	84.39	36.60	95.41
Skip-gram	51.78	44.80	63.89	76.25	74.94	88.90	43.84	96.57
CBOW	55.83	44.43	62.21	77.50	74.68	88.47	43.75	96.63
Order	55.57	36.38	62.44	77.50	74.93	88.41	44.77	96.76
LBL	45.74	29.12	57.86	75.00	74.32	88.69	43.98	96.77
NNLM	41.41	23.51	59.25	71.25	73.70	88.36	44.40	96.73
C&W	3.13	2.20	46.17	47.50	73.26	88.15	41.86	96.66

Model	syn	sem	ws	tfl	avg	ner	cnn	pos
Skip-gram	93	100	100	98	100	100	89	85
CBOW	100	99	97	100	98	90	88	90
Order	100	81	98	100	100	89	100	99
LBL	82	65	91	95	94	95	90	100
NNLM	74	52	93	88	88	88	95	97
C&W	6	5	72	43	84	83	64	92

上下文和目标词的关系

Model	syn	sem	ws	tfl	avg	ner	cnn	pos
Skip-gram	93	100	100	98	100	100	89	85
CBOW	100	99	97	100	98	90	88	90
Order	100	81	98	100	100	89	100	99
LBL	82	65	91	95	94	95	90	100
NNLM	74	52	93	88	88	88	95	97
C&W	6	5	72	43	84	83	64	92
上下文预测目标词							词	

上下文、目标词 联合打分

C&W: Syntagmatic Relation

Skip-gram, CBOW, Order, LBL, NNLM: Paradigmatic Relation

上下文和目标词的关系

Model	syn	sem	ws	tfl	avg	ner	cnn	pos
Skip-gram	93	100	100	98	100	100	89	85
CBOW	100	99	97	100	98	90	88	90
Order	100	81	98	100	100	89	100	99
LBL	82	65	91	95	94	95	90	100
NNLM	74	52	93	88	88	88	95	97
C&W	6	5	72	43	84	83	64	92

Model	Monday	commonly
	Thursday	generically
	Friday	colloquially
CBOW	Wednesday	popularly
	Tuesday	variously
	Saturday	Commonly
	8:30	often
	12:50	generally
C&W	$1\mathrm{PM}$	previously
	4:15	have
	mid-afternoon	are

paradigmatic relation

syntagmatic relation

上下文表示

Model	syn	sem	ws	tfl	avg	ner	cnn	pos	
Skip-gram	93	100	100	98)	100	100	89	85	3-
CBOW	100	99	97	100	98	90	88	90	
Order	100	81	98	100	100	89	100	99	
LBL	82	65	91	95	94	95	90	100)	1+
NNLM	74	52	93	88	88	88	95	97	
C&W	6	5	72	43	84	83	64	92	

上下文表示

	Model	10M	100M	1B	2.8B
简单	Skip-gram	4+2	4+2	2+2	3+2
	CBOW	1 + 1	3+3	4+1	4+1
	Order	0+2	1+2	2+3	3+3
	LBL	0+2	0+2	0+2	1+2
复杂【】	NNLM	0+2	0+3	0+3	0+2
					\\/ \\ \ \

W&N

小语料时,简单的上下文表示有效果随着语料规模的增大,相对复杂的语料展现较好的结果

语料规模的影响

• 同领域语料,越大越好

Corpus	syn	sem	ws	tfl	avg	ner	cnn	pos
NYT 1.2B	93	52	90	98	50	76	85	96
100M	76	30	88	93	46	77	83	86
Wiki 1.6B	92	100	100	93	51	100	86	94
100M	74	65	98	93	47	88	90	83
W&N 2.8B	100	89	95	93	50	97	91	100
1B	98	87	95	100	48	98	90	98
100M	79	63	97	96	51	85	92	86
10M	29	27	76	60	42	49	77	42
IMDB 13M	32	21	55	82	100	26	100	-13

语料规模的影响

• syn任务,语料越大越好

Corpus	syn	sem	ws	tfl	avg	ner	cnn	pos
NYT 1.2B 100M	93 76	52 30	90 88	98 93	50 46	76 77	85 83	96 86
Wiki 1.6B 100M	92	100 65	100 98	93 93	51 47	100 88	86 90	94 83
W&N 2.8B 1B 100M 10M	98 79 29	89 87 63 27	95 95 97 76	93 100 96 60	50 48 51 42	97 98 85 49	91 90 92 77	100 98 86 42
IMDB 13M	32	21	55	82	100	26	100	-13

语料领域的影响

• 对于语义相似度任务(sem、ws),维基百科具有 优势

Corpus	syn	sem	ws	tfl	avg	ner	cnn	pos
NYT 1.2B	93	52	90	98	50	76	85	96
100M	76	30	88	93	46	77	83	86
Wiki 1.6B 100M	92 74	100 65	98	93 93	$\frac{51}{47}$	100 88	86 90	94 83
W&N 2.8B	100	89	95	93	50	97	91	100
1B	98	87	95	100	48	98	90	98
100M	79	63	97	96	51	85	92	86
10M	29	27	76	60	42	49	77	42
IMDB 13M	32	21	55	82	100	26	100	-13

语料领域的影响

• 领域相关任务: 利用领域内语料训练效果好

Corpus	mov	vie	Sci-F	`i	seas	on					
IMDB	filr thi it	s	SciFi sci-fi fi		episo seaso installa	ons	tfl	avg	ner	cnn	pos
IMDB	thin minise	ng	Sci SF		episo seri	des	98 93	50 46	76 77	85 83	96 86
W&N	filr big-bu mov	dget	Nickeloo Cartoo PBS	on	half-se sease homes	ons	93 93	51 47	100 88	86 90	94 83
	live-ao low-bu	ction	SciF TV		playo gan		93 100	50 48	97 98	91 90	100 98
)M	79 29	03 27	97 76	96 60	$\frac{51}{42}$	85 49	92 77	86 42
)B 13M	32	21	55	82	100	26	100	-13

语料领域和大小哪一个更重要

• 情感分类

IMDB W&N	20%	40%	60%	80%	100%
+0%	91	94	100	100	100
+20%	79	87	91	96	99
+40%	68	86	88	92	98
+60%	65	79	85	88	93
+80%	64	75	84	87	92
+100%	64	70	83	86	88

CBOW

领域更加重要

训练参数: Iteration Number

Early stop

训练参数: Dimension

总结

- 没有最好,只有适合
 - 适合任务,用(任务相关)领域内语料训练
- 确定合适领域的语料之后,语料越大越好
- 大语料(数据丰富),使用复杂模型(NNLM、C&W)
- 小语料(数据稀疏),使用简单模型(Skip-gram)
- 使用任务的验证集,而非词向量的验证集
- 词向量维度建议50以上
- 注意区分Syntagmatic(组合/一阶)关系和Paradigmatic(替换/二阶)关系

未来

- 跨领域训练词向量
 - ACL2015: Unsupervised Cross-Domain Word Representation Learning

IMDB W&N	20%	40%	60%	80%	100%
+0%	91	94	100	100	100
+20%	79	87	91	96	99
+40%	68	86	88	92	98
+60%	65	79	85	88	93
+80%	64	75	84	87	92
+100%	64	70	83	86	88

未来

- 词向量和已有人工标注相结合
 - ACL2015 Best Paper:AutoExtend: Extending Word Embeddings to Embeddings for Synsets and Lexemes
 - 联合学习word、synset、lexemes的向量表示
 - EMNLP2014: Knowledge Graph and Text Jointly Embeddings
 - 联合学习词、知识库的向量表示

本项工作

- Siwei Lai, Kang Liu, Liheng Xu, Jun Zhao. How to Generate a Good Word Embedding? In http://arxiv.org/abs/1507.05523
- Code: https://github.com/licstar/compare
- 中文导读: <u>http://licstar.net/archives/620</u>

来斯惟

徐立恒

赵军

Reference

- [1] M. Baroni, G. Dinu, and G. Kruszewski. Dont count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors. In ACL, 2014.
- [2] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A Neural Probabilistic Language Model. JMLR, 2003.
- [3] R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural networks with multitask learning. In ICML, 2008.
- [4] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natural language processing (almost) from scratch. JMLR, 12, 2011.
- [5] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. JMLR, 2011.
- [6] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio. Why does unsupervised pre-training help deep learning? JMLR, 2010.
- [7] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and E. Ruppin. Placing search in context: The concept revisited. TOIS, 2002.
- [8] M. U. Gutmann and A. Hyvarinen. Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics. JMLR, 2012.
- [9] Z. S. Harris. Distributional structure. Word, 1954.
- [10] K. M. Hermann. Distributed Representations for Compositional Semantics. PhD thesis, University of Oxford, 2014.
- [11] Y. Kim. Convolutional neural networks for sentence classification. In EMNLP, 2014.

Reference

- [12] T. K. Landauer. On the computational basis of learning and cognition: Arguments from Isa. Psychology of learning and motivation, 2002.
- [13] T. K. Landauer and S. T. Dumais. A solution to plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review, 1997.
- [14] R. Lebret and R. Collobert. Word embeddings through hellinger pca. In EACL, 2014.
- [15] O. Levy and Y. Goldberg. Neural word embedding as implicit matrix factorization. In NIPS, 2014.
- [16] O. Levy, Y. Goldberg, and I. Dagan. Improving distributional similarity with lessons learned from word embeddings. TACL, 2015.
- [17] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning word vectors for sentiment analysis. In ACL, 2011.
- [18] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. ICLR Workshop Track, 2013.
- [19] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, 2013.
- [20] T. Mikolov, W.-t. Yih, and G. Zweig. Linguistic regularities in continuous space word representations. In NAACL-HLT, 2013.
- [21] D. Milajevs, D. Kartsaklis, M. Sadrzadeh, and M. Purver. Evaluating neural word representations in tensor-based compositional settings. In EMNLP, 2014.
- [22] A. Mnih and G. Hinton. Three new graphical models for statistical language modelling. In ICML, 2007.
- [23] A. Mnih and G. E. Hinton. A scalable hierarchical distributed language model. In NIPS, 2009.

Reference

- [23] A. Mnih and G. E. Hinton. A scalable hierarchical distributed language model. In NIPS, 2009.
- [24] A. Mnih and K. Kavukcuoglu. Learning word embeddings efficiently with noise-contrastive estimation. In NIPS, 2013.
- [25] F. Morin and Y. Bengio. Hierarchical probabilistic neural network language model. In AISTATS, 2005.
- [26] J. Pennington, R. Socher, and C. D. Manning. GloVe: Global Vectors for Word Representation. In EMNLP, 2014.
- [27] L. Prechelt. Early stopping-but when? Neural Networks: Tricks of the trade, 1998.
- [28] R. Rapp. The computation of word associations: comparing syntagmatic and paradigmatic approaches. In Coling, 2002.
- [29] L. Ratinov and D. Roth. Design challenges and misconceptions in named entity recognition. In CoNLL, 2009.
- [30] M. Sahlgren. The Word-Space Model. PhD thesis, Gothenburg University, 2006.
- [31] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In EMNLP, 2013.
- [32] P. Stenetorp, H. Soyer, S. Pyysalo, S. Ananiadou, and T. Chikayama. Size (and domain) matters: Evaluating semantic word space representations for biomedical text. In SMBM, 2012.
- [33] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-rich part-of-speech tagging with a cyclic dependency network. In NAACL-HLT, 2003.
- [34] J. Turian, L. Ratinov, and Y. Bengio. Word representations: a simple and general method for semi-supervised learning. In ACL, 2010.

谢谢! Q&A!