Sistemas Distribuídos – Modelos Fundamentais

Prof. MSc Marcelo Lisboa Rocha

Introdução

- Aqui serão apresentados modelos baseados nas propriedades fundamentais que nos permitem ser mais específico sobre suas características, as falhas e os riscos de segurança.
- De forma geral um modelo contém somente os ingredientes essenciais que nos necessitamos para considerar e entender a razão de determinados comportamentos nos sistemas. Um modelo de sistemas tem que tratar os seguintes pontos:
 - Quais são as principais entidades dos sistemas?
 - Como elas interagem?
 - Quais são as características que afeta seu comportamento individual e coletivo?

Introdução

- O propósito de um modelo é:
 - Tornar explicito todas as suposições relevantes sobre o sistema que estamos modelando.
 - Fazer generalizações relativamente ao que é possível ou impossível mostrando estas suposições. A generalização pode tomar a forma de algoritmos de propósito geral, ou propriedades desejadas com existência garantida. As garantias são dependentes de analise lógica e onde apropriado, de prova matemática.

Modelos de Interação

- Sistemas distribuídos são compostos de muitos processos interagindo entre si de formas complexas.
- Múltiplos servidores podem cooperar entre si para prover um serviço. Um conjunto de processos pares pode cooperar entre si para atingir um objetivo comum.
- Sistemas distribuídos compõem-se de múltiplos processos e o comportamento e estado podem ser descritos por um algoritmo distribuído – uma definição dos passos a serem seguidos por cada processo do qual o sistema é composto incluindo a transmissão de mensagens entre os processos.
- A seguir serão discutidos dois fatores significantes que afetam a interação de processos em um sistema distribuído: performance na comunicação e impossibilidade de manter um sistema único de relógio.

Performance na Comunicação

- A comunicação em nosso modelo se realiza de diferentes formas, por exemplo pela implementação de fluxos, ou pela passagem de mensagens através da rede.
- Na comunicação através da rede temos preocupações como:
 - Latência A diferença de tempo entre o início de uma transmissão em um processo e o início da recepção da mensagem em outro processo.
 - Largura de banda Quantidade de informação que passa por unidade de tempo.
 - o *Jjitter* Variação de tempo para entregar uma serie de mensagens. Mais relevante em dados multimídia.

- Cada computador em um sistema distribuído tem o seu relógio próprio.
- O controle dos eventos nos diferentes processos pode ser feito com tempo associado ao evento.
- Nem sempre os relógios dos diferentes sistemas marcam um tempo único.
- Mesmo que todos os computadores acertassem o seu relógio com base em um relógio padrão, com o decorrer do tempo pequenas variações podem ocorrer pois não existe uma precisão exata no relógio de cada computador.

- Nos sistemas distribuídos é difícil de determinar limites de tempo para a execução de um processo, entrega da mensagem ou diferença ocorrida no relógio do computador.
- Duas posições extremas podem ser adotadas para este modelo:
 - Sistemas Distribuídos Síncronos
 - Sistemas Distribuídos Assíncronos

Sistemas Distribuídos Síncronos

- Todas as operações, processamento e transmissão de mensagens tem limites de tempos conhecidos e são controladas por tempo.
- Podemos detectar falhas devido a intervalos de tempo estabelecidos para determinadas operações.

Sistemas Assíncronos

Distribuídos

 Alguns sistemas distribuídos, como a internet, não tem limites bem definidos de tempo para velocidade de execução e tempos de transmissão das mensagens.

- Em alguns casos precisamos saber se um evento (envio ou recebimento de mensagens) em um processo ocorre antes, depois ou concorrentemente com outro evento em outro processo.
- A execução do sistema pode ser descrita em termos dos eventos e sua ordenação independente da falta de relógios precisos.
- A Figura do próximo slide mostra um exemplo desta ordenação de eventos. Temos quatro usuários de uma lista de email, X, Y, Z e A.

- X manda uma mensagem, Y lê esta mensagem e responde, Z recebe a mensagem e responde porem A recebe fora de ordem, primeiro a resposta de Z, depois a mensagem de X e por fim a resposta de Y.
- Esta preocupação de ordenamento de mensagens é muito comum e necessária em comunicação de grupo.

Ordenação de Eventos em Tempo Real

Modelo de Falhas

- Em um sistema distribuído, tanto os processos como os canais de comunicação podem falhar.
- O modelo de falhas define as formas como podem ocorrer as falhas de maneira a entendermos os efeitos das falhas. Podemos ter:
 - Falhas de omissão
 - Falhas arbitrárias
 - Falhas de Tempo

Falhas de Omissão

 São Falhas nos casos onde um processo ou canal de comunicação falha na execução da ação que deveria fazer.

Falhas Arbitrárias

- O termo falha arbitraria é empregado para descrever o pior falha de semântica, na qual qualquer tipo de erro pode ocorrer.
- Por exemplo um processo pode colocar valores errados em seus itens de dados, ou podem retornar valores errados em resposta a uma chamada. Canais de comunicação podem sofrer falhas arbitrarias.
- Por exemplo o conteúdo de uma mensagem pode ser corrompido, uma mensagem não existente pode ser entregue ou uma mensagem real pode ser entregue mais de uma vez.

Falhas de Tempo

 Falhas de tempo são aplicáveis a sistemas distribuídos síncronos onde limites de tempo são estabelecidos para tempo de execução do processo, tempo de entrega da mensagem e taxa de erro do relógio é conhecida.

Modelo de Segurança

- A segurança de um sistema distribuído pode ser alcançada se temos segurança nos processos e nos canais de comunicação usados para sua interação e protegendo os objetos que eles encapsulam contra acesso não autorizado.
- Assim um cliente que acessa um servidor é necessário que o objeto acessado possa proteger seus dados privados e o acesso a informações compartilhadas deve ocorrer se existir o direito de acesso para este cliente.

Modelo de Segurança

- Quanto aos canais de comunicação, temos que ver a segurança dos mesmos em termos de ataques pois sendo uma rede aberta podemos ter ataques externos de usuários malfeitores.
- Temos ameaças aos processos, ameaça aos canais de comunicação e sobrecarga de uso do recurso.

Modelo de Segurança

- Podemos ter copia de mensagens, inserção de mensagens falsas e ataques de volume de requisição exagerada.
- Um forma de proteger os canais de comunicação é com o uso de criptografia e autenticação de acesso.