Denoising Word Embeddings Generated from Social Media Text

Guided by:

Dr. Premjith B Asst. Professor CEN, Amrita School of Engineering

Co-Guided by :

Dr. Sanjanasri.J.P

Asst. Professor

CEN, Amrita School of Engineering

Presented by:

PHVPavan Kumar CB.EN.P2CEN20020

INTRODUCTION

- ❖ India is a multilingual country where we often spot conversations on social media platforms like YouTube, Facebook and, Twitter in code-mixed text.
- The computational study of people's opinions, attitudes and emotions toward an entity is called Sentiment Analysis.
- ❖ In this work, Sentiment Analysis was conducted on CodeMix Dravidian language texts taken from social media conversations.
- To classify the underlying sentiments of text as positive, negative, mixed feelings, Native and non-Native, initially, we performed sentiment analysis using three different Deep-learning based architectures.
- It's frequent to notice that social media conversations frequently have typos and nonstandard spelling and grammar variations in their text.

INTRODUCTION

- Word embeddings generated from state-of-the-art (SOTA) pre-trained models were also inherent with noise.
- *The source for noise in the word embeddings can be:
 - *Due to the typos in corpora.
 - *During the embeddings generation process:
 - Embedding initialization.
 - * Min-batch ordering.
- *Various signal denoising algorithm techniques are applied to denoise the embeddings.
- The efficacy of the denoised embeddings is evaluated extrinsically using ML classifiers.

Objective

- 1. To develop deep learning models for sentiment analysis in Dravidian languages.
- 2. To denoise the word embeddings generated from social media conversations using various signal denoising algorithms.
- 3. To study the efficacy of denoised embeddings through extrinsic evaluation by considering sentiment analysis in Dravidian languages as a use case.

Dataset Description

❖ Dataset used in conducting experiments is taken from the Competition Dravidian-CodeMix-FIRE2021.

<u>Unbalanced data</u> (Phase 1)

Language	Class	Train	Validation	Test
	unknown_state			
	Positive			
Malayalam-English	Negative	15888	1766	1962
	Mixed_feelings			
	not-Malayalam			
	unknown_state			
	Positive			
Tamil-English	Negative	35656	3962	4402
	Mixed_feelings			
	not-Tamil			
	unknown state			
	Positive			
Kanada-English	Negative	6212	691	768
	Mixed feelings			
	not-Kannada			

Balanced data data (Phase 2)

Contimonto	Malaya	alam-English	Kanada	-English	Tamil-English		
Sentiments	Train	Test	Train	Test	Train	Test	
unknown state	900	100	550	50	1600	150	
Positive	900	100	550	50	1600	150	
Negative	900	100	550	50	1600	150	
Mixed feelings	900	100	550	50	1600	150	
not-Dravidian	900	100	550	50	1600	150	
Total	4500	500	2750	250	8000	750	

Dataset Description (Phase 1)

- (a) Malayalam-English Train Dataset (b) Tamil-English Train Dataset
- (c) Kanada-English Train Dataset
- * Dataset is highly imbalanced, concept of class weights is applied to overcome this issue by computing the Individual class weights.

$$C_w = \frac{\sum_{c=1}^{n} N_c}{N_c}$$

$$C_w \rightarrow Class Weights$$

$$\sum_{c=1}^{n} N_c \to Sum \ of \ all \ the \ sentences \ in \ the \ corpus.$$

 $N_c \rightarrow Number of sentences in each class c.$

Methodology Generated Denoised Denoising algorithms Word embeddings Weighted Regularized Least Square Based Denoising. Denoised Embeddings FFT Based Denoising. Wavelet Filtering Based Denoising. Variational Mode Decomposition Based Denoising Phase 1 Checking the efficiency of Denoised Word embeddings Text Preprocessing Classification algorithms Pre-trained Models SVM Raw MuRIL Analyzing Decision Tree Preprocessing Results Corpus LaBSE Random Forest **mBERT KNN** Generating Extrinsic evaluation Deep-learning Word embeddings architectures Phase 2 Analyzing Results

Methodology (Phase 1)

Preprocessing:

❖ Dataset contains lots of special Characters, emojis, URLs, and hashtags. These entities affect the performance of the Model accuracy. To remove all such entities from the corpus, we implemented the preprocessing stage.

Methodology (Phase 1)

(a) Model-1

Description on Models:

- * By implementing three deep neural network architectures experiments had been conducted on the dataset.
- * Each Model illustrated below follows a set of sequential steps before feeding into the network.

Methodology (Phase 1)

Hyperparameter tuning:

- Hyperparameter tuning was conducted based on improvements in Accuracy, Precision, Recall and, AUC values.
- Though the experiments are conducted on three models the hyperparameters of the best models are listed in the table.

Embedding dimension	50, 100	100
embeddings_initializer	uniform, orthogonal, constant	orthogonal
embeddings_regularizer	L1, L2	L2
Number of neurons in LSTM layer	16, 32, 64, 128, 256	32
Activation Function at hidden layer	Sigmoid, RELU	RELU
Activation Function at Output layer	Softmax	Softmax
Optimizer	Adam	Adam
Loss function	Sparse Categorical Crossentropy, Categorical Crossentropy	Categorical Crossentropy
learning Rate	0.1, 0.01, 0.001	0.01
Batch size	16, 32, 64, 80, 128, 132, 256	128
Embedding dimension	50, 100	100
Number of neurons in hidden layer	16, 32, 64, 128, 256	128
Activation Function at hidden layer	Sigmoid, RELU	RELU
Activation Function at Output layer	Softmax	Softmax
Optimizer	Adam	Adam
Loss function	Sparse Categorical Crossentropy, Categorical Crossentropy	Categorical Crossentropy
learning Rate	0.1, 0.01, 0.001	0.01
Batch size	16, 32, 64, 80, 128, 132, 256	64
	embeddings_initializer embeddings_regularizer Number of neurons in LSTM layer Activation Function at hidden layer Activation Function at Output layer Optimizer Loss function learning Rate Batch size Embedding dimension Number of neurons in hidden layer Activation Function at hidden layer Activation Function at Output layer Optimizer Loss function learning Rate	embeddings_initializer uniform, orthogonal, constant embeddings_regularizer L1, L2 Number of neurons in LSTM layer 16, 32, 64, 128, 256 Activation Function at hidden layer Sigmoid, RELU Activation Function at Output layer Softmax Optimizer Adam Loss function Sparse Categorical Crossentropy, Categorical Crossentropy learning Rate 0.1, 0.01, 0.001 Batch size 16, 32, 64, 80, 128, 132, 256 Embedding dimension 50, 100 Number of neurons in hidden layer 16, 32, 64, 128, 256 Activation Function at hidden layer Sigmoid, RELU Activation Function at Output layer Softmax Optimizer Adam Loss function Sparse Categorical Crossentropy, Categorical Crossentropy, Categorical Crossentropy, Categorical Crossentropy Loss function Categorical Crossentropy Loss function Rate 0.1, 0.01, 0.001

ிர்மரை

sad

Experiments and Results (Phase 1)

Testing Performance:

Language	Malaya	alam - En	glish	Tam	nil - Engli	sh	Kannada - English					
Model	Precission	Recall	F1 Score	Precission	Recall	F1 Score	Precission	Recall	F1 Score			
Model-1	0.5854	0.6432	0.6077	0.4397	0.5072	0.4384	0.5007	0.5248	0.5085			
Model-2	0.5797 0.6346 0.6303 0.6304		0.5995	0.4232	0.5072	0.441	0.5062	0.5455	0.5193			
Model-3			0.627	0.43	0.4631	0.4408	0.4855	0.5126	0.4552			

Conclusion (Phase 1)

- We did sentiment analysis for three Dravidian code-mixed languages, Malayalam, Tamil and, Kannada. We used three different deep learning Models:
 - 1) Model-1 had a 1D-CNN layer, Maxpooling layer, LSTM, a fully connected dense layer.
 - 2) Model-2 had one Bi-LSTM layer,
 - 3) Model-3 had only one fully connected dense layer for conducting experiments.

After training three embedding Models on datasets several times, optimal hyperparameters were listed and the results obtained from Model-3 were much better when compared with Model-1 and Model-2 in Malayalam-English linguistics. Model-2 suits good for Kannada-English and Tamil-English linguistics

Denoising embeddings through extrinsic evaluation (Phase 2)

Pre-trained models used

- Being the dataset comprises three different CodeMix languages:
 - a) Malayalam-English (Mal-Eng)
 - b) Kannada-English (Kan-Eng)
 - c) Tamil-English (Ta-Eng)

SOTA

- Multilingual Representations for Indian Languages (MuRIL) is a pre-trained on 17 Indian languages and their transliterated counterparts.
- * Language-agnostic BERT Sentence Embedding (LABSE) pre-trained for sentence embedding for 109 languages.
- Multilingual Bidirectional Encoder Representations from Transformers (mBERT) pre-trained in 104 languages:
 - BERT Cased: Model is case sensitive.
 - 2. BERT Uncased: Model is not case sensitive.

Weighted Regularized Least Square Based Denoising

 $x \rightarrow denoised signal$ $y \rightarrow input signal$

 $D \rightarrow Order \ of Derivative$

 $\lambda \rightarrow Hyper parameter$

Fast Fourier Transform Denoising

Wavelet-Based signal Denoising

Variational Mode Decomposition (VMD) Denoising:

Hyper-parameters in VMD denoising:

Hyper-parameters	Description	Values
Alpha	The balancing parameter of the data-fidelity constraint.	100, 500, 1000, 2000, 3000, 5000
tau	Step on the recursion that updated the Lagrangian multipliers.	0, 0.1, 0.2, 0.3, 0.4, 0.5
Modes	The number of modes to be recovered.	1 to 50
DC	True if the first mode is put and kept at DC (0-freq).	0 and 1
init	The initialization of centre frequency. 0 = all omegas start at 0. 1 = all omegas start uniformly distributed. 2 = all omegas initialized randomly.	0, 1 and 2
Tol	Tolerance of convergence criterion.	1e-5, 1e-6
Mode selection	Modes used in reconstructing the signal.	All modes

Word level

		Malayalam Accuracy Procision F1 Po						WTR De	noising			FFT De	 ทกเรทฮ		Wavlet Denoisng				
	Malay	yalam	Accuracy	Precision	F1	Recall	Accuracy	Precision	F1	Recall	Accuracy		F1	Recall	Accuracy	Precision	F1	Recall	
	د	SVM	31.40%	43.05%	26.34%	31.40%	31.40%	43.05%	26.34%	31.40%	31.40%	43.04%	26.32%	31.40%	32.40%	43.79%	27.13%	32.40%	
		DTree	34.00%	34.60%	34.25%	34.00%	35.00%	34.87%	34.93%	35.00%	36.20%	35.67%	35.86%	36.20%	29.20%	29.51%	29.34%	29.20%	
	MuRII	Rforest	37.80%	35.56%	36.25%	37.80%	39.60%	37.64%	38.22%	39.60%	40.40%	38.81%	39.16%	40.40%	36.40%	34.68%	35.24%	36.40%	
C		KNN	30.80%	30.22%	30.13%	30.80%	31.20%	30.40%	30.42%	31.20%	32.60%	32.13%	31.81%	32.60%	27.60%	26.84%	26.90%	27.60%	
-	E	SVM	51.20%	50.06%	50.38%	51.20%	51.20%	50.06%	50.39%	51.20%	51.40%	50.19%	50.54%	51.40%	51.20%	50.06%	50.38%	51.20%	
	BSI	DTree	37.80%	37.71%	37.66%	37.80%	37.60%	37.47%	37.49%	37.60%	32.40%	32.34%	32.34%	32.40%	39.40%	38.91%	38.70%	39.40%	
	$[\mathbf{Y}]$	Rforest	51.60%	50.17%	50.45%	51.60%	50.80%	49.16%	49.66%	50.80%	49.40%	47.57%	48.11%	49.40%	50.60%	49.44%	49.65%	50.60%	
		KNN	51.40%	51.38%	50.54%	51.40%	52.00%	51.83%	50.97%	52.00%	49.80%	50.05%	49.21%	49.80%	51.00%	50.83%	50.14%	51.00%	
		SVM	39.20%	46.25%	34.48%	39.20%	39.40%	46.49%	34.71%	39.40%	38.40%	39.75%	33.60%	38.40%	39.20%	46.25%	34.48%	39.20%	
	Cased	DTree	34.80%	34.35%	34.54%	34.80%	34.60%	33.91%	34.20%	34.60%	31.00%	32.12%	31.43%	31.00%	32.20%	32.34%	32.26%	32.20%	
		Rforest	45.00%	42.53%	43.10%	45.00%	45.00%	42.88%	43.49%	45.00%	47.60%	45.18%	45.52%	47.60%	43.80%	41.20%	41.78%	43.80%	
		KNN	37.80%	38.06%	37.14%	37.80%	37.80%	38.21%	37.17%	37.80%	38.20%	38.81%	37.61%	38.20%	37.80%	38.06%	37.14%	37.80%	
	Ţ	SVM	31.80%	44.70%	26.63%	31.80%	31.80%	44.70%	26.63%	31.80%	31.20%	43.99%	26.01%	31.20%	31.80%	44.70%	26.63%	31.80%	
	BERT Uncased	DTree	32.80%	32.29%	32.50%	32.80%	32.20%	32.23%	32.19%	32.20%	35.00%	34.48%	34.70%	35.00%	32.60%	32.30%	32.41%	32.60%	
10		Rforest	42.80%	40.61%	41.27%	42.80%	45.20%	42.83%	43.50%	45.20%	43.20%	41.41%	41.89%	43.20%	43.60%	41.45%	42.12%	43.60%	
		KNN	36.40%	36.25%	36.01%	36.40%	37.00%	36.71%	36.56%	37.00%	37.20%	36.97%	36.91%	37.20%	36.60%	36.53%	36.25%	36.60%	

Note:

• If denoising performance is improving at W-level, then it has to be reflected at S-level as well, Further...

Sentence level

			(• •)				1 (2.3)	nnc	111//	9					~/			
				BFR De	noising			WTR De	enoising			FFT De	noisng			Wavlet I	Denoisng	
0	Mala _y	yalam	Accuracy	Precision	F1	Recall	Accuracy	Precision	F 1	Recall	Accuracy	Precision	F1	Recall	Accuracy	Precision	F1	Recall
-		SVM	33.60%	18.67%	21.47%	33.60%	34.00%	19.59%	22.08%	34.00%	34.20%	19.64%	23.30%	34.20%	34.40%	20.31%	23.27%	34.40%
	R I	DTree	38.40%	37.14%	37.28%	38.40%	42.00%	42.33%	41.96%	42.00%	40.00%	40.04%	39.95%	40.00%	36.80%	37.79%	37.16%	36.80%
10	MuRII	Rforest	49.40%	47.71%	48.11%	49.40%	48.40%	46.90%	46.88%	48.40%	51.00%	49.03%	49.58%	51.00%	49.00%	48.07%	47.43%	49.00%
10		KNN	48.60%	48.72%	47.42%	48.60%	47.20%	47.81%	46.14%	47.20%	50.60%	51.38%	49.51%	50.60%	48.40%	48.20%	47.40%	48.40%
	丘	SVM	57.00%	56.91%	56.85%	57.00%	57.60%	57.52%	57.46%	57.60%	57.60%	57.33%	57.41%	57.60%	57.20%	57.18%	57.08%	57.20%
	BSI	DTree	33.20%	34.56%	33.68%	33.20%	37.80%	37.63%	37.60%	37.80%	35.40%	36.09%	35.66%	35.40%	37.60%	40.09%	37.70%	37.60%
		Rforest	49.40%	48.70%	48.73%	49.40%	53.00%	52.21%	52.22%	53.00%	51.80%	50.92%	51.10%	51.80%	53.80%	53.38%	53.36%	53.80%
		KNN	46.80%	51.00%	47.08%	46.80%	47.40%	51.48%	47.78%	47.40%	46.80%	51.31%	47.27%	46.80%	47.00%	51.18%	47.30%	47.00%
		SVM	46.40%	45.43%	45.00%	46.40%	46.20%	45.06%	44.58%	46.20%	46.60%	46.19%	45.08%	46.60%	46.60%	45.69%	45.20%	46.60%
	BERT Cased	DTree	33.20%	33.30%	33.21%	33.20%	38.20%	38.45%	38.26%	38.20%	35.60%	36.46%	35.93%	35.60%	34.40%	34.40%	34.36%	34.40%
	BE Ca	Rforest	43.00%	41.63%	41.90%	43.00%	45.20%	44.05%	44.43%	45.20%	44.00%	42.27%	42.64%	44.00%	43.80%	42.24%	42.71%	43.80%
		KNN	34.40%	36.90%	34.58%	34.40%	34.40%	36.57%	34.38%	34.40%	36.60%	38.62%	36.70%	36.60%	34.60%	36.86%	34.64%	34.60%
	r ed	SVM	38.40%	40.75%	33.63%	38.40%	38.40%	40.45%	33.60%	38.40%	37.40%	37.94%	32.48%	37.40%	38.00%	40.62%	33.03%	38.00%
)(BERT Jncased	DTree	29.80%	29.71%	29.69%	29.80%	32.20%	32.17%	32.13%	32.20%	32.00%	31.97%	31.96%	32.00%	30.20%	30.80%	30.40%	30.20%
	BER1 Uncase	Rforest	39.00%	37.36%	37.86%	39.00%	42.00%	40.21%	40.60%	42.00%	43.20%	41.60%	42.00%	43.20%	39.20%	36.58%	37.29%	39.20%
		KNN	33.40%	32.87%	32.30%	33.40%	32.80%	31.97%	31.56%	32.80%	34.40%	33.75%	33.49%	34.40%	32.60%	32.33%	31.66%	32.60%

Performance of Malayalam-English language at both sentence and word level.

Model	Classifier	WTR Denoising	FFT Denoising	Wavelet Denoising
	SVM	Х	Х	✓
Madi	Dtree	✓	✓	- X 9
MuRIL	RForest	X	✓	Х
	KNN	Х	✓	Х
716	SVM	Х	✓	Х
LADCE	Dtree	Х	Х	✓
LABSE	RForest	✓	X	X
	KNN	✓	Х	X bo
іопа	SVM	Х	Х	Х
DEDT Coast	Dtree	Х	Х	₹8X ⊗
BERT Cased	RForest	Х	✓	X
	KNN	X	✓	Х
n	SVM	X	Х	X
BERT	Dtree	Х	✓	✓
UnCased	RForest	✓	✓	Х
	KNN	Х	✓	Х

✓: Denoising happens at both word and sentence levels.

X: Denoising does not occur at both word and sentence levels together.

Word level

	BFR Denoising		WTR Denoising				na sila da			_ \	Waylet Dansigns						
			BFR Der	noising	T		WTR De	noising			FFT De	noisng			Wavlet D	enoisng	
Ka	nnada	Accuracy	Precision	F 1	Recall	Accuracy	Precision	F1	Recall	Accuracy	Precision	F1	Recall	Accuracy	Precision	F1	Recall
ر	SVM	41.60%	44.38%	39.24%	41.60%	42.00%	44.93%	39.76%	42.00%	43.60%	45.88%	41.51%	43.60%	41.20%	41.34%	39.80%	41.20%
	DTree	41.60%	41.26%	36.30%	41.60%	40.80%	41.25%	38.14%	40.80%	40.80%	45.09%	39.76%	40.80%	41.20%	39.02%	35.76%	41.20%
MuRII	Rforest	44.80%	44.09%	44.15%	44.80%	45.60%	44.60%	44.62%	45.60%	46.80%	45.63%	45.61%	46.80%	47.20%	46.09%	45.93%	47.20%
	KNN	44.40%	45.62%	44.44%	44.40%	44.00%	45.35%	44.10%	44.00%	44.00%	44.60%	43.91%	44.00%	42.80%	43.67%	43.03%	42.80%
[+]	SVM	48.00%	49.97%	47.16%	48.00%	47.60%	49.72%	46.82%	47.60%	46.40%	48.72%	45.58%	46.40%	48.00%	49.97%	47.16%	48.00%
ABSE	DTree	39.20%	39.47%	39.21%	39.20%	36.00%	36.65%	36.19%	36.00%	36.00%	36.47%	36.17%	36.00%	34.80%	34.55%	34.52%	34.80%
	Rforest	51.20%	51.36%	50.96%	51.20%	52.40%	53.27%	52.17%	52.40%	51.60%	51.39%	51.10%	51.60%	50.00%	51.01%	49.72%	50.00%
	KNN	48.00%	48.45%	47.28%	48.00%	47.20%	47.68%	46.57%	47.20%	45.60%	45.51%	45.10%	45.60%	46.40%	46.52%	45.77%	46.40%
	SVM	35.60%	34.15%	32.15%	35.60%	48.40%	48.03%	47.78%	48.40%	37.60%	37.07%	34.45%	37.60%	34.80%	33.41%	31.40%	34.80%
BERT Cased	DTree	35.20%	36.67%	35.71%	35.20%	47.20%	49.95%	46.26%	47.20%	40.00%	40.16%	39.86%	40.00%	40.80%	44.19%	39.00%	40.80%
BE Ca	Rforest	46.00%	45.99%	45.63%	46.00%	46.80%	47.12%	45.26%	46.80%	46.80%	46.26%	46.27%	46.80%	49.20%	49.16%	48.08%	49.20%
	KNN	37.20%	39.79%	37.90%	37.20%	36.00%	38.52%	36.67%	36.00%	37.60%	40.41%	38.04%	37.60%	36.00%	38.42%	36.47%	36.00%
p	SVM	50.40%	51.56%	50.32%	50.40%	50.80%	51.94%	50.85%	50.80%	52.80%	53.15%	52.74%	52.80%	52.80%	52.37%	51.72%	52.80%
BERT Jncased	DTree	42.00%	42.52%	42.02%	42.00%	42.80%	42.87%	41.10%	42.80%	42.40%	41.93%	40.64%	42.40%	42.00%	45.31%	41.27%	42.00%
BE Inc	Rforest	48.00%	47.95%	47.62%	48.00%	48.80%	47.99%	47.98%	48.80%	47.60%	48.02%	47.22%	47.60%	46.40%	46.36%	45.78%	46.40%
	KNN	37.20%	38.53%	37.38%	37.20%	36.80%	38.30%	37.07%	36.80%	36.80%	37.54%	36.90%	36.80%	40.40%	41.13%	40.10%	40.40%
	12.12.1	27.2070		27.2070	27.2070	20.0070	20.2070	27.0770	20.0070	20.0070	7.10 170	20.2070	20.0070	1011070		1011070	

எதிர்மறை

end

ദു:ഖകരമായ

Sentence level

		BFR Denoising			6.32	W/TD Danoising												
				BFR Den	oising			WTR De	noising			FFT De	noisng			Wavlet D	enoisng	
	Kan	nada	Accuracy	Precision	F1	Recall	Accuracy	Precision	F1	Recall	Accuracy	Precision	F1	Recall	Accuracy	Precision	F 1	Recall
	ت	SVM	42.40%	43.36%	40.63%	42.40%	51.60%	50.62%	50.84%	51.60%	48.80%	47.43%	47.60%	48.80%	46.40%	45.21%	45.61%	46.40%
	N N	DTree	38.40%	39.87%	38.37%	38.40%	42.00%	41.75%	39.08%	42.00%	41.20%	41.37%	39.76%	41.20%	42.40%	40.77%	40.37%	42.40%
	MuRII	Rforest	48.80%	48.51%	48.25%	48.80%	53.20%	52.95%	52.48%	53.20%	51.20%	51.17%	50.52%	51.20%	51.20%	51.37%	50.17%	51.20%
١	Ħ	KNN	51.20%	52.78%	50.50%	51.20%	49.20%	50.72%	48.47%	49.20%	50.00%	51.77%	49.20%	50.00%	45.60%	46.27%	44.45%	45.60%
	(-)	SVM	58.00%	58.54%	57.88%	58.00%	57.60%	58.10%	57.47%	57.60%	53.60%	53.55%	53.31%	53.60%	56.40%	56.92%	56.25%	56.40%
	3SE	DTree	41.20%	42.89%	41.53%	41.20%	41.20%	41.02%	40.85%	41.20%	42.80%	46.13%	42.28%	42.80%	35.60%	36.44%	35.74%	35.60%
	AB	Rforest	52.00%	52.18%	51.44%	52.00%	54.40%	54.60%	54.09%	54.40%	55.60%	56.39%	55.27%	55.60%	46.40%	47.01%	46.14%	46.40%
	Ι	KNN	47.20%	49.42%	46.65%	47.20%	46.40%	49.40%	45.58%	46.40%	46.00%	47.92%	45.24%	46.00%	46.80%	50.54%	45.73%	46.80%
		SVM	47.60%	46.67%	45.85%	47.60%	46.40%	45.26%	44.77%	46.40%	46.40%	45.40%	44.75%	46.40%	49.60%	48.91%	47.82%	49.60%
	BERT Cased	DTree	31.20%	31.15%	31.13%	31.20%	32.80%	32.90%	32.83%	32.80%	33.60%	33.31%	33.03%	33.60%	30.00%	30.31%	30.07%	30.00%
	BE Ca	Rforest	44.00%	43.58%	42.90%	44.00%	42.80%	42.12%	41.56%	42.80%	46.00%	45.65%	45.03%	46.00%	46.80%	46.81%	46.41%	46.80%
		KNN	40.80%	44.14%	39.48%	40.80%	40.40%	40.77%	38.96%	40.40%	39.20%	43.26%	37.82%	39.20%	41.20%	43.55%	40.19%	41.20%
	þ	SVM	39.20%	32.29%	34.66%	39.20%	39.20%	32.47%	34.74%	39.20%	39.20%	32.28%	34.63%	39.20%	38.00%	34.01%	34.13%	38.00%
	BERT Uncased	DTree	30.40%	30.33%	30.22%	30.40%	35.60%	35.00%	35.21%	35.60%	27.60%	28.19%	27.54%	27.60%	31.60%	32.07%	31.68%	31.60%
		Rforest	43.20%	42.59%	42.65%	43.20%	45.20%	45.32%	45.02%	45.20%	46.40%	45.74%	45.67%	46.40%	43.60%	44.33%	43.46%	43.60%
		KNN	38.00%	38.77%	37.53%	38.00%	36.80%	37.89%	36.53%	36.80%	38.80%	39.22%	38.26%	38.80%	36.40%	34.11%	34.16%	36.40%
1 4					7							7						

and

Performance of Kannada-English language at both sentence and word level.

Model	Classifier	WTR Denoising	FFT Denoising	Wavelet Denoising
	SVM	✓	7	Х
MuRIL	Dtree	X	X	X
MUKIL	RForest	✓	>	>
	KNN	X	X	X
716	SVM	X	Х	Х
LADCE	Dtree	X	X	X
LABSE	RForest	✓	✓	X
	KNN	Х	Х	x bac
OLDITA	SVM	X	Х	Х
	Dtree	✓	~	₹8 X 🥿
BERT Cased	RForest	Х	✓	~
	KNN	Oxogo	Х	Х
ne	SVM	X	Х	Х
DEDT Huckery	Dtree	Х	Х	Х
BERT UnCased	RForest	✓	Х	Х
	KNN	Х	Х	Х

✓: Denoising happens at both word and sentence levels.

X: Denoising does not occur at both word and sentence levels together.

Word level

	BFR Denoising				6.39		10011	TIVO					- 10					
				BFR Der	noising			WTR De	noising			FFT De	noisng			Wavlet D	enoisng	
	Ta	mil	Accuracy	Precision	F 1	Recall	Accuracy	Precision	F 1	Recall	Accuracy	Precision	F 1	Recall	Accuracy	Precision	F 1	Recall
	ے	SVM	25.60%	21.60%	21.99%	25.60%	25.73%	21.71%	22.11%	25.73%	25.60%	21.60%	21.99%	25.60%	25.87%	21.98%	22.44%	25.87%
	RI I	DTree	29.47%	30.04%	29.69%	29.47%	29.33%	28.73%	28.97%	29.33%	26.67%	27.12%	26.85%	26.67%	25.20%	25.44%	25.28%	25.20%
	MuRIL	Rforest	31.73%	30.41%	30.74%	31.73%	32.53%	30.98%	31.46%	32.53%	32.67%	31.78%	31.94%	32.67%	31.60%	30.75%	30.99%	31.60%
		KNN	24.80%	24.73%	24.42%	24.80%	24.53%	24.41%	24.13%	24.53%	23.60%	23.51%	23.14%	23.60%	24.67%	24.94%	24.29%	24.67%
	(-)	SVM	45.73%	44.63%	44.85%	45.73%	46.00%	44.99%	45.18%	46.00%	47.07%	46.37%	46.51%	47.07%	45.07%	44.06%	44.26%	45.07%
	ABSE	DTree	34.67%	36.64%	34.40%	34.67%	35.33%	35.84%	35.47%	35.33%	34.53%	39.28%	33.72%	34.53%	34.67%	36.64%	34.40%	34.67%
	Ą	Rforest	44.00%	43.41%	43.52%	44.00%	43.60%	42.87%	43.01%	43.60%	44.80%	44.29%	44.47%	44.80%	42.93%	42.24%	42.18%	42.93%
		KNN	40.67%	41.60%	40.95%	40.67%	40.00%	40.92%	40.28%	40.00%	39.73%	41.02%	40.00%	39.73%	40.67%	41.60%	40.95%	40.67%
7		SVM	35.33%	40.61%	32.46%	35.33%	35.33%	40.56%	32.43%	35.33%	35.33%	42.15%	32.40%	35.33%	35.33%	40.61%	32.46%	35.33%
	BERT Cased	DTree	31.73%	32.21%	31.90%	31.73%	27.20%	27.58%	27.34%	27.20%	27.07%	27.39%	27.16%	27.07%	32.80%	32.78%	32.74%	32.80%
	BE Ca	Rforest	39.33%	38.59%	38.70%	39.33%	39.33%	38.44%	38.63%	39.33%	40.40%	39.46%	39.55%	40.40%	39.47%	38.77%	38.93%	39.47%
		KNN	33.87%	36.51%	34.25%	33.87%	34.40%	36.83%	34.73%	34.40%	32.13%	34.36%	32.15%	32.13%	33.87%	36.51%	34.25%	33.87%
	d	SVM	30.80%	25.18%	26.99%	30.80%	30.67%	25.10%	26.89%	30.67%	30.13%	24.82%	26.51%	30.13%	30.80%	25.18%	26.99%	30.80%
1	BERT Uncased	DTree	27.20%	27.18%	27.16%	27.20%	29.33%	29.45%	29.37%	29.33%	27.20%	27.29%	27.24%	27.20%	24.67%	24.85%	24.68%	24.67%
	BE Jnc	Rforest	35.20%	34.09%	34.22%	35.20%	35.07%	33.71%	33.99%	35.07%	35.60%	33.99%	34.30%	35.60%	36.13%	35.00%	35.08%	36.13%
	<u> </u>	KNN	29.47%	31.06%	29.80%	29.47%	29.87%	31.76%	30.23%	29.87%	30.67%	31.50%	30.65%	30.67%	29.33%	30.92%	29.67%	29.33%
					17											0		

and

Sentence level

				BFR Der	noising			WTR De	noising		FFT Denoisng				Wavlet D	enoisng		
Tan		mil	Accuracy	Precision	F 1	Recall	Accuracy	Precision	F 1	Recall	Accuracy	Precision	F 1	Recall	Accuracy	Precision	F 1	Recall
	ר	SVM	33.73%	47.14%	26.47%	33.73%	45.46%	45.07%	45.13%	45.47%	44.80%	44.03%	44.31%	44.80%	44.80%	44.22%	44.37%	44.80%
	MuRIL	DTree	34.53%	35.99%	34.92%	34.53%	31.20%	31.21%	31.19%	31.20%	27.20%	27.35%	27.25%	27.20%	32.00%	32.30%	31.55%	32.00%
	Mu	Rforest	43.33%	42.24%	42.47%	43.33%	42.40%	41.41%	41.52%	42.40%	40.53%	39.45%	39.67%	40.53%	40.80%	39.57%	39.20%	40.80%
4	I	KNN	40.93%	41.46%	40.84%	40.93%	40.40%	41.09%	40.33%	40.40%	39.87%	40.40%	39.95%	39.87%	38.13%	38.48%	37.91%	38.13%
	[-]	SVM	47.20%	46.38%	46.51%	47.20%	48.40%	47.80%	47.88%	48.40%	48.13%	47.55%	47.68%	48.13%	47.20%	46.39%	46.51%	47.20%
	ABSE	DTree	33.47%	34.15%	33.61%	33.47%	27.47%	27.54%	27.44%	27.47%	31.20%	31.29%	31.17%	31.20%	28.13%	28.03%	28.05%	28.13%
	[FA]	Rforest	40.93%	40.56%	40.51%	40.93%	39.20%	38.66%	38.79%	39.20%	40.27%	39.31%	39.51%	40.27%	40.40%	39.85%	39.98%	40.40%
		KNN	40.53%	42.94%	41.17%	40.53%	39.47%	41.83%	40.07%	39.47%	39.60%	41.58%	40.19%	39.60%	40.53%	42.85%	41.14%	40.53%
		SVM	40.93%	40.15%	39.40%	40.93%	41.20%	40.33%	39.67%	41.20%	42.27%	41.72%	41.66%	42.27%	41.07%	40.31%	39.63%	41.07%
	BERT Cased	DTree	26.40%	26.64%	26.48%	26.40%	28.00%	28.28%	28.09%	28.00%	27.33%	27.53%	27.31%	27.33%	28.27%	28.02%	28.12%	28.27%
	BE Ca	Rforest	38.00%	36.81%	36.59%	38.00%	38.53%	37.05%	37.12%	38.53%	36.40%	35.65%	35.35%	36.40%	38.00%	36.99%	37.04%	38.00%
		KNN	31.47%	33.17%	31.57%	31.47%	31.87%	34.02%	32.08%	31.87%	31.47%	33.97%	31.73%	31.47%	31.87%	33.81%	32.03%	31.87%
n	ر ت	SVM	33.73%	30.36%	29.58%	33.73%	33.20%	29.88%	29.19%	33.20%	37.60%	36.03%	36.04%	37.60%	33.20%	30.36%	29.16%	33.20%
	BERT Uncased	DTree	27.47%	27.55%	27.51%	27.47%	28.00%	28.30%	28.11%	28.00%	28.00%	27.48%	27.56%	28.00%	27.33%	27.50%	27.40%	27.33%
	BE Jnc	Rforest	36.93%	35.90%	36.01%	36.93%	39.20%	38.30%	38.44%	39.20%	38.80%	38.25%	38.20%	38.80%	35.07%	34.30%	34.51%	35.07%
	1	KNN	32.40%	33.52%	32.56%	32.40%	32.40%	33.30%	32.47%	32.40%	31.73%	33.09%	31.85%	31.73%	32.27%	33.31%	32.40%	32.27%
					17							1		·	·			

ாதிர்மறை

sad

ദു:ഖകരമായ

Performance of Tamil-English language at both sentence and word level.

Model	Classifier	WTR Denoising	FFT Denoising	Wavelet Denoising
	SVM	✓	Х	✓
G. 59	Dtree	X	Х	56000 X 7
MuRIL	RForest	Х	Х	Х
	KNN	X	X	X
) "	SVM	✓	✓	Х
LADCE	Dtree	X	Х	Х
LABSE	RForest	x	0000x	у х
	KNN	Х	x	x Dad
ல்மாக	SVM	Х	Х	Х
DEDT Const	Dtree	Х	Х	✓
BERT Cased	RForest	X	X	Х
	KNN	✓	Х	Х
1 (0) 1	SVM	X	Х	X
BERT	Dtree	✓	X	Х
	RForest	Х	✓	Х
	KNN	Х	Х	Х

✓: Denoising happens at both word and sentence levels.

X: Denoising does not occur at both word and sentence levels together.

Malayalam embeddings from BERT Cased (Extrinsic evaluation)

BERT Cased						
Malayalar	Malayalam		Precision	F1	Recall	
2 (0)	SVM	46.40%	45.43%	45.00%	46.40%	
Bfr Denoising	DTree	33.20%	33.30%	33.21%	33.20%	
Dir Denoising	Rforest	43.00%	41.63%	41.90%	43.00%	
	KNN	34.40%	36.90%	34.58%	34.40%	
	SVM	46.20%	45.06%	44.58%	46.20%	
WTR Denoising	DTree	38.20%	38.45%	38.26%	38.20%	
W I K Denoising	Rforest	45.20%	44.05%	44.43%	45.20%	
ol	KNN	34.40%	36.57%	34.38%	34.40%	
	SVM	46.60%	46.19%	45.08%	46.60%	
FFT Denoising	DTree	35.60%	36.46%	35.93%	35.60%	
TTT Denoising	Rforest	44.00%	42.27%	42.64%	44.00%	
	KNN	36.60%	38.62%	36.70%	36.60%	
	SVM	46.60%	45.69%	45.20%	46.60%	
Wavelet Denoising	DTree	34.40%	34.40%	34.36%	34.40%	
wavelet Denoising	Rforest	43.80%	42.24%	42.71%	43.80%	
	KNN	34.60%	36.86%	34.64%	34.60%	
9	SVM	47.80%	47.54%	46.57%	47.80%	
VMD Donoising	DTree	36.20%	37.27%	36.65%	36.20%	
VMD Denoising	Rforest	45.40%	44.20%	44.46%	45.40%	
(9)	KNN	35.60%	38.35%	35.75%	35.60%	

Best Hyperparameter tunning

Malayal	am	alpha_tau_modes_DC_init_Tol_mode-selection
20 O I	SVM	1000_0.1_8_0_1_1e-05all_modes
VMD	DTree	1000_0.1_10_0_1_1e-05all_modes
Denoising	Rforest	1000_0.1_11_0_1_1e-05all_modes
)	KNN	1000_0.1_9_0_1_1e-05all_modes

- Among all classifiers, SVM with VMD denoised embeddings shows a 1.37% improvement in the classification performance compared with all traditional denoising algorithms.
- The Rforest show 0.03% improvement, which is not a good sign for denoising.
- DTree and KNN show no sign of denoising with VMD denoising.

Kannada embeddings from MuRIL (Extrinsic evaluation)

		$\lambda \subset \mathcal{I}$		0.00				
719	MuRIL							
Kannada	0	Accuracy	Precision	F1	Recall			
	SVM	48.40%	47.42%	47.38%	48.40%			
Bfr Denoising	DTree	38.40%	39.87%	38.37%	38.40%			
Dir Denoising	Rforest	48.80%	48.51%	48.25%	48.80%			
inv (-)	KNN	51.20%	52.78%	50.50%	51.20%			
77	SVM	51.60%	50.62%	50.84%	51.60%			
WTR Denoising	DTree	42.00%	41.75%	39.08%	42.00%			
W I K Denoising	Rforest	53.20%	52.95%	52.48%	53.20%			
53 B (19)	KNN	49.20%	50.72%	48.47%	49.20%			
of the man	SVM	48.80%	47.43%	47.60%	48.80%			
FFT Denoising	DTree	41.20%	41.37%	39.76%	41.20%			
TT I Denoising	Rforest	51.20%	51.17%	50.52%	51.20%			
	KNN	50.00%	51.77%	49.20%	50.00%			
	SVM	46.40%	45.21%	45.61%	46.40%			
Wavelet Denoising	DTree	42.40%	40.77%	40.37%	42.40%			
wavelet Denoising	Rforest	51.20%	51.37%	50.17%	51.20%			
A LA	KNN	45.60%	46.27%	44.45%	45.60%			
	SVM	43.60%	44.72%	41.86%	43.60%			
VMD Denoising	DTree	43.20%	44.08%	43.55%	43.20%			
VMD Denoising	Rforest	52.80%	53.30%	52.47%	52.80%			
rத ா ரமறை	KNN	52.00%	53.66%	51.49%	52.00%			

Best Hyperparameter tunning

Kannad	la	alpha_tau_modes_DC_init_Tol_mode-selection
	SVM	3000_0.1_28_0_1_1e-05all_modes
VMD Denoising	DTree	500_0_7_1_1_1e-06all_modes
VIVID Denoising	Rforest	500_0.5_7_0_1_1e-06all_modes
7700	KNN	5000_0.1_27_0_1_1e-05all_modes

- Among the VMD denoising embeddings, DTree shows a 3.18% improvement in the F1-score compared with DTree on Wavelet Denoising.
- VMD denoised embeddings with KNN are also a case where we can see an improvement in the F1-score as 1.26% compared with noised embedding (Bfr Denoising).
- SVM and Rforest models show no improvement with VMD denoised signals compared to the traditional denoising algorithms.

Tamil embeddings from LABSE (Extrinsic evaluation)

7 0 0	/				$\nu \nu \nu$
	I	LABSE)	0
Tamil	-19	Accuracy	Precision	F1	Recall
16	SVM	47.20%	46.38%	46.51%	47.20%
Bfr Denoising	DTree	33.47%	34.15%	33.61%	33.47%
Dir Denoising	Rforest	40.93%	40.56%	40.51%	40.93%
PPY	KNN	40.53%	42.94%	41.17%	40.53%
	SVM	48.40%	47.80%	47.88%	48.40%
WTD Danaising	DTree	27.47%	27.54%	27.44%	27.47%
WTR Denoising	Rforest	39.20%	38.66%	38.79%	39.20%
	KNN	39.47%	41.83%	40.07%	39.47%
一、一年時	SVM	48.13%	47.55%	47.68%	48.13%
FFT Donoising	DTree	31.20%	31.29%	31.17%	31.20%
FFT Denoising	Rforest	40.27%	39.31%	39.51%	40.27%
	KNN	39.60%	41.58%	40.19%	39.60%
	SVM	47.20%	46.38%	46.51%	47.20%
Wayalat Danaiging	DTree	28.13%	28.03%	28.05%	28.13%
Wavelet Denoising	Rforest	40.40%	39.85%	39.98%	40.40%
	KNN	40.53%	42.85%	41.14%	40.53%
3	SVM	47.33%	46.56%	46.65%	47.33%
VMD Donoisis -	DTree	35.20%	34.72%	34.91%	35.20%
VMD Denoising	Rforest	45.40%	43.72%	44.17%	45.40%
	KNN	40.53%	42.91%	41.17%	40.53%

Best Hyperparameter tunning

Tamil		alpha_tau_modes_DC_init_Tol_mode-selection
	SVM	3000_0.1_20_0_1_1e-05all_modes
VMD Donoising	DTree	500_0.1_26_0_1_1e-05all_modes
VMD Denoising	Rforest	500_0.1_30_0_1_1e-05all_modes
	KNN	1000_0.1_16_0_1_1e-05all_modes

- We can notice that Rforest shows a 3.66% improvement in the classification performance compared with all the traditional denoising algorithms.
- For the case of the traditional denoising algorithm, there is no performance improvement with the DTree classifier model. But with VMD denoising, there is a 1.31% improvement in classification performance.
- SVM and KNN models show there is no sign of improvement with VMD denoising.

Observation

- > Based on the experiments conducted, By applying the traditional signal denoising algorithms to the Sentence as we as on Word level Embeddings, there is an improvement in the classification performance. This clearly states that denoising is happening, and the noise in the social media text is proven.
- > Applying the VMD denoising algorithm on the embeddings and evaluating at extrinsic levels. We notice that improvement in classification performance is not at a higher level.

Conclusion

- > Initially, Sentiment Analysis was conducted on the dataset using the three different deep learning Models and evaluated its performance on each language.
- > Experimental results evident that there exists noise in word embeddings.
- > The best denoising algorithm for the corresponding languages are:

Language	Denoising algorithm
Malayalam-English	Fast Fourier Transform (FFT)
Kannada-English	Weighted Regularized Least Square Based Denoising (WTR)
Tamil-English	Weighted Regularized Least Square Based Denoising (WTR)

Publications:

Paper accepted:

- ✓ Pavan Kumar P.H.V, Premjith B, Sanjanasri J.P, Soman K.P Deep Learning Based Sentiment Analysis for Malayalam, Tamil and Kannada Languages. FIRE 2021 Forum for Information Retrieval Evaluation Virtual Event.
- ✓ **Status:** Accepted and yet to be indexed
- ✓ **Publication Status:** In press

Further Publication:

- Pavan Kumar P.H.V, Premjith B, Sanjanasri J.P, Denoising Word Embeddings Generated from Social Media Text.
- Status: Final draft yet to be finalized.
- **Conference:** yet to be finalized

References

- [1] Nguyen KA, Walde SS, Vu NT. Neural-based noise filtering from word embeddings. arXiv preprint arXiv:1610.01874. 2016 Oct 6.
- [2] Caciularu A, Dagan I, Goldberger J. Denoising Word Embeddings by Averaging in a Shared Space. arXiv preprint arXiv:2106.02954. 2021 Jun 5.
- [3] Malykh V, Logacheva V, Khakhulin T. Robust word vectors: Context-informed embeddings for noisy texts. InProceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated Text 2018 Nov (pp. 54-63).
- [4] Guo Y, Tang Y. Collaborative filtering algorithm based on denoising auto-encoder and item embedding. In 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) 2017 Mar 25 (pp. 1751-1755). IEEE.
- [5] Nooralahzadeh F, Lønning JT, Øvrelid L. Reinforcement-based denoising of distantly supervised NER with partial annotation. Association for Computational Linguistics.

References

- [6] Veena PV, Devi GR, Sowmya V, Soman K. Least square based image denoising using wavelet filters. Indian journal of science and technology. 2016 Aug 18;9(30):1-6.
- [7] Srikanth M, Krishnan KG, Sowmya V, Soman KP. Image denoising based on weighted regularized least square method. In2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT) 2017 Apr 20 (pp. 1-5). IEEE.
- [8] Naveed K, Akhtar MT, Siddiqui MF, ur Rehman N. A statistical approach to signal denoising based on data-driven multiscale representation. Digital Signal Processing. 2021 Jan 1;108:102896.
- [9] Li F, Verma S, Deng P, Qi J, Marfurt KJ. Seismic denoising using thresholded adaptive signal decomposition. InSEG Technical Program Expanded Abstracts 2017 2017 Aug 17 (pp. 5095-5099). Society of Exploration Geophysicists.
- [10] Motwani MC, Gadiya MC, Motwani RC, Harris FC. Survey of image denoising techniques. InProceedings of GSPX 2004 Sep 27 (Vol. 27, pp. 27-30). Proceedings of GSPX.

