Algèbre 1

Gaëtan Chenevier

27 octobre 2023

Table des matières

Ι	Ensembles Quotients	1
1	Partitions et Relations d'Equivalence	1
2	Passage au Quotient	2
3	Sections et systèmes de représentants	2
4	Lemme de Zorn	2
II	Généralités sur les Groupes	4
5	Exemples de Groupes	4
6	Morphismes	4
7	Groupes Cycliques et Monogènes	5
8	Théorème de Lagrange	6
9	Sous-groupes finis de k^{\times} et $(\mathbb{Z}/n\mathbb{Z})^{\times}$	6
10	Groupes Quotients	6

Première partie

Ensembles Quotients

1 Partitions et Relations d'Equivalence

Définition 1.0.1. Une partition d'un ensemble X est un ensemble de parties non vides de X de réunion disjointe X.

Définition 1.0.2. On appelle fibre d'une application $f: X \to Y$ en $y \in Y$ l'ensemble $f^{-1}(y) = \{x \in X \mid f(x) = y\}$. Il s'agit d'une partition de X indexée par Y. Toute partition de X s'obtient ainsi.

Définition 1.0.3. Une relation d'arité n sur un ensemble X est la donnée d'un ensemble $R \subseteq X^n$. Une relation binaire R i.e. une partie de $X \times X$ est dite d'équivalence si elle est réflexive, transitive et symétrique. On appelle classe de R-équivalence de x l'ensemble $[x]_R = \{y \in X \mid \{x,y\} \in R\}$

Proposition 1.0.1. Les classes d'équivalences d'une relation R sur X forment une partition de X.

Définition 1.0.4. Si R est une relation d'équivalence sur X, le sous-ensemble de P(X) constitué des classes de R-équivalence est appelé ensemble quotient de X par R, noté X/R. L'application $\pi_R: X \to X/R, x \mapsto [x]_R$ est appelée projection canonique associée à R. C'est une surjection dont les fibres sont par définition les classes d'équivalences de R.

Exemple 1.1. On définit $\mathbb{Z}/n\mathbb{Z}$ l'ensemble quotient de \mathbb{Z} pour la relation $n \mid b-a$. On note \overline{k} la classe de k.

2 Passage au Quotient

Théorème 2.0.1 (Propriété Universelle du Quotient). Soient $f: X \to Y$ une application et R une relation d'équivalence sur X. On suppose que f est constante sur chaque classe d'équivalence sur X. Alors, il existe une unique application $g: X/R \to Y$ telle que $g([x]_R) = f(x)$ pour tout $x \in X$, i.e. vérifiant $g \circ \pi_R = f$.

Démonstration. Par surjectivité de π_R , g est unique. De plus, si C est une classe de R-équivalence, il y a un sens à poser g(C) = f(x) car C est une classe d'équivalence sur laquelle f est constante.

3 Sections et systèmes de représentants

Définition 3.0.1. Une section de $f: X \to Y$ est une application $s: Y \to X$ telle que $f \circ s = id_Y$

Proposition 3.0.1. f possède une section \Rightarrow f est surjective

Définition 3.0.2 (Axiome du Choix). Pour tout ensemble X il existe une application $\tau : P(X) \setminus \{\emptyset\} \to X$ telle que $\tau(E) \in E$ pour toute partie non vide E de X. On appelle τ fonction de choix sur X.

Proposition 3.0.2. Les propositions suivantes sont équivalentes à l'axiome du choix (donc fausses) :

- 1. Toute surjection admet une section.
- 2. Pour toute famille d'ensembles non vides $\{X_i\}_{i\in I}$, $\pi_{i\in I}X_i$ est non vide.

Définition 3.0.3. Un représentant d'une classe de R-équivalence d'un ensemble X est un élément de cette classe. Un système de réprésentants de (X,R) est la donnée d'une partie de X contenant un et un seul représentant de chaque classe de R-équivalence. C'est l'image d'une section de π_R .

Remarque 3.0.0.1. Ceci est également équivalent à 3.0.2

4 Lemme de Zorn

Définition 4.0.1. — Un relation d'ordre sur un ensemble X est une relation binaire \leq réfléxive, transitive et antisymétrique. On dit alors que X est ordonné.

- L'ordre \leq est total quand tous deux éléments de X sont comparables.
- On appelle majorant d'une partie Y de X, tout élément $x \in X$ tel que $y \le x$ pour tout $y \in Y$. On parle de plus grand élément dans le cas Y = X.
- $-x \in X$ est un élément maximal si le seul $y \in X$ tel que $y \le x$ est x. Un plus grand élément est nécessairement maximal, et unique s'il existe.
- On appelle X inductif si tout sous-ensemble totalement ordonné admet et majorant.
- On appelle bon ordre un ordre pour lequel toute partie non vide admet un plus petit élément.

Théorème 4.0.1 (Lemme de Zorn). Un ensemble ordonné inductif possède au moins un élément maximal. Ceci est équivalent à l'axiome du choix 3.0.2.

Corollaire 4.0.1.1. Tout espace vectoriel possède une base.

Corollaire 4.0.1.2 (Théorème de Zermelo). Tout ensemble peut être muni d'un bon ordre.

 $D\acute{e}monstration.$ C'est équivalent à l'axiome du choix donc faux et les preuves prennent trois plombes. \blacksquare

Deuxième partie

Généralités sur les Groupes

5 Exemples de Groupes

Définition 5.0.1. Une loi de composition interne est une application $\star : X \times X \to X$.

Définition 5.0.2 (Groupe). Un groupe est un ensemble G muni d'une loi de composition associative, unifère et inversible, i.e. :

- 1. $\forall (x, y, z) \in G, \ x \star (y \star z) = (x \star y) \star z$
- 2. $\exists e \in G, \forall x \in G, e \star x = x \star e = x$.
- 3. $\forall x \in G, \exists y \in G, x \star y = y \star x = e$

Remarque 5.0.0.1. Le neutre est unique.

Exemple 5.1 (Groupe Symétrique). On note : $\mathfrak{S}_X = X^X$ le groupe muni de la loi \circ de composition des applications, appelé groupe symétrique de X, de neutre id_X . L'inverse d'une bijection σ est sa bijection réciproque σ^{-1} . On note $\mathfrak{S}_n = |1, n|^{|1,n|}$ et alors $|\mathfrak{S}_n| = n!$.

Définition 5.0.3. Un groupe est dit abélien lorsque tous deux élements commutent.

Définition 5.0.4. Une partie H d'un groupe G est un sous-groupe de G lorsque la loi induite par le produit dans G fait de H un groupe. On le notera ici $H \leq G$.

Exemple 5.2 (Groupes d'ordre n). Pour $n \geq 1$, on note μ_n le sous-groupe de \mathbb{C}^{\times} composé des racines n-ièmes de l'unité. C'est un sous-groupe d'ordre n. L'application $\mathbb{Z}/n\mathbb{Z} \to \mu_n, \overline{k} \mapsto e^{2ik\pi/n}$ est un isomorphisme de groupe.

Définition 5.0.5. Un anneau est un groupe abélien (A, +) muni d'une loi associative unifère et distributive sur +, notée \times . Il est dit commutatif lorsque la loi produit est commutative.

Définition 5.0.6. On note A^{\times} le groupe des inversibles du monoïde (A,\cdot) .

Proposition 5.0.1. La loi d'un groupe vérifie les propriété de la loi produit usuelle sur \mathbb{R} .

Définition 5.0.7. On appelle groupe engendrée par une partie X de G le plus petit sous groupe de G contenant X. C'est l'ensemble des produits de puissances d'éléments de X.

6 Morphismes

Définition 6.0.1. On appelle morphisme une application entre deux groupes qui préserve le produit. On note Hom(G, G') l'ensemble des morphismes de G dans G'. Ce n'est à priori pas naturellement un groupe si G' n'est pas abélien.

On dit que G et G' sont isomorphes lorsqu'il existe un morphisme bijectif de l'un vers l'autre. La réciproque d'un isomorphisme est un isomorphisme. On note alors $G \simeq G'$.

Proposition 6.0.1 (Transport de Structure). Si G est un groupe, $\varphi: X \to G$ une bijection, il existe une unique loi de groupe sur X telle que φ soit un isomorphisme, à savoir $x \star y = \varphi^{-1}(\varphi(x)\varphi(y))$. On dit que la loi est déduite de celle de G par transport de structure via φ .

Définition 6.0.2. On appelle automorphisme de G un isomorphisme de G dans G. L'ensemble des automorphismes Aut(G) est un sous groupe de S_G . On appelle automorphisme intérieur associé à $g \in G$ l'application : $h \in G \mapsto ghh^{-1}$.

Définition 6.0.3. On appelle noyau d'un morphisme $\ker(f) = f^{-1}(1) = \{g \in G \mid f(g) = 1\}$. C'est un sous-groupe de G.

Proposition 6.0.2. Si $f \in Hom(G, G')$:

- 1. $H \leq G \Rightarrow f(H) \leq G'$
- 2. $H \leq G' \Rightarrow f^{-1}(H) \leq G$ Avec A l'ensemble des sous-groupes de G contenant $\ker f$ et \mathcal{B} celui des sous-groupes de G' inclus dans Imf, alors :
- 3. $A \to B, H \mapsto f(H)$ est une bijection croissante.

Proposition 6.0.3. Les fibres non vides de f sont en bijection avec ker f. En particulier:

- $f injective \Leftrightarrow \ker f = \{1\}.$
- $Si\ G\ est\ fini,\ |G| = |Im\ f| |\ker f|.$

Théorème 6.0.1 (Cayley). Tout groupe d'ordre fini n est isomorphe à un sous-groupe de S_n .

Lemme 6.0.2. Si $\varphi: X \to Y$ est bijective, l'application : $\varphi_{X,Y}: S_X \to S_Y, \sigma \mapsto \varphi \circ \sigma \circ \varphi^{-1}$ est un isomorphisme de groupes.

Définition 6.0.4. Un morphisme d'anneau est un morphisme des groupes additifs et des monoïdes multiplicatifs (en particulier, il envoie 1 sur 1).

7 Groupes Cycliques et Monogènes

Proposition 7.0.1. Les sous-groupes de \mathbb{Z} sont les $n\mathbb{Z}$.

Proposition 7.0.2. Si $g \in G$ est d'ordre fini n, alors $\langle g \rangle$ a exactement n éléments et est isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

Définition 7.0.1. Un groupe G est monogène s'il est engendré par un seul élément, appelé générateur. Il est cyclique s'il est fini.

Corollaire 7.0.0.1. Un groupe G est monogène infini si et seulement si il est isomorphe à \mathbb{Z} . Il est cyclique d'ordre $n \geq 1$ si et seulement si isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

Proposition 7.0.3 (Générateurs d'un Groupe Cyclique). — Les générateurs de \mathbb{Z} , + sont les $k \in \mathbb{Z}$ tels que $\mathbb{Z} = k\mathbb{Z}$, i.e. $k = \pm 1$.

- Pour $k \in \mathbb{Z}$, $G = \langle g \rangle$ un groupe cyclique d'ordre n, on a équivalence entre :
 - 1. $\langle g^k \rangle = G$
 - 2. $g \in \langle g^k \rangle$
 - $\exists k' \in \mathbb{Z}, \ kk' = 1 \ mod \ n$
 - 4. $\overline{k} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$
 - 5. $k \wedge n = 1$

Corollaire 7.0.0.2. Un groupe cyclique d'ordre n a exactement $\varphi(n)$ générateurs.

Corollaire 7.0.0.3. Si G est cyclique d'ordre $n: Aut(G) = \{g \mapsto g^k \mid k \in (\mathbb{Z}/n\mathbb{Z})^{\times}\}$. On a alors un isomorphisme de $(\mathbb{Z}/n\mathbb{Z})^{\times}$ dans Aut(G).

Remarque 7.0.0.1. Si $g \in G$ est d'ordre fini n, si $d \ge 1$, g^d est d'ordre fini $\frac{n}{n \wedge d}$.

Proposition 7.0.4. Si G est cyclique d'ordre n, $d \mapsto G_d = \{g^d \mid g \in G\}$ est une bijection de l'ensemble des diviseurs de n sur l'ensemble des sous-groupes de G.

Théorème 7.0.1 (Chinois). Soient $m, n \in \mathbb{Z}$ premiers entre eux. L'application $\mathbb{Z} \to (\mathbb{Z}/n\mathbb{Z}) \times (\mathbb{Z}/m\mathbb{Z})$, $k \mapsto (k \mod n, k \mod m)$ définit un isomorphismepar par passage au quotient de par la propriété universelle 2.0.1.

8 Théorème de Lagrange

Définition 8.0.1. Si A, B sont deux parties d'un groupe, $AB = \{ab \mid a \in A, b \in B\}$. Si $A = \{g\}$, on le note gB.

Lemme 8.0.1. $H \leq G \Leftrightarrow (H \neq \emptyset, HH = H, H^{-1} = H)$.

Définition 8.0.2. On pose $g \sim_H g^{'}$ si $g^{'} \in gH$. C'est une relation d'équivalence. On note G/H son ensemble quotient, et on appelle indice de H dans G son cardinal noté [G:H].

Théorème 8.0.2 (Lagrange). ?? Si H est un sous-groupe de G, $G \sim H \times (G/H)$. En particulier, si deux des trois ensembles G, H, G/H sont finis, |G| = |H| [G:H].

Corollaire 8.0.2.1. — Si H est un sous-groupe du groupe fini G, |H| | |G|.

- Si G est fini, $g \in G$, $g^{|G|} = 1$.
- $-\ n^{p-1} \cong 1 \ mod \ p \ pour \ n \in \mathbb{Z}, p \in \P.$
- Tout groupe d'ordre premier p est isomorphe à $\mathbb{Z}/p\mathbb{Z}$.

Théorème 8.0.3 (Cauchy). Soit G un groupe fini, p un nombre premier divisant |G|. G possède un élément d'ordre p. Si G est abélien, on peut généraliser immédiatement à tout $p \in \mathbb{Z}$.

9 Sous-groupes finis de k^{\times} et $(\mathbb{Z}/n\mathbb{Z})^{\times}$

Théorème 9.0.1. Si k est un corps, tout sous-groupe fini de k^{\times} est cyclique.

Lemme 9.0.2 (Cauchy). Soit G un groupe, x, y deux éléments qui commutent d'ordres a et b premiers entre eux. Alors, xy est d'ordre ab.

Théorème 9.0.3 (Gauss). Pour p premier, le groupe $(\mathbb{Z}/p\mathbb{Z})^{\times}$ est cyclique.

Définition 9.0.1. Un isomorphisme de groupes $(\mathbb{Z}/p\mathbb{Z})^{times} \simeq \mathbb{Z}/(p-1)\mathbb{Z}$ est appelé un logarithme discret.

Définition 9.0.2. Pour un groupe, on note $G^{(n)}$ le groupe des puissances n-ièmes.

Proposition 9.0.1. Soient $p \in \P$, $n \ge 1$ et $m = (p-1) \land n$.

- 1. $(\mathbb{Z}/p\mathbb{Z})^{\times,(n)}$ est cyclique d'ordre $\frac{p-1}{m}$ et égal à $(\mathbb{Z}/p\mathbb{Z})^{\times,(m)}$
- 2. Pour $x \in ((\mathbb{Z}/p\mathbb{Z}))^{\times}$, on a $x \in ((\mathbb{Z}/p\mathbb{Z}))^{\times,(n)}$ si et seulement si $x^{\frac{p-1}{m}} = 1$, i.e. $X^{\frac{p-1}{m}}$ a au plus $\frac{p-1}{m}$ racines dans $(\mathbb{Z}/p\mathbb{Z})$ et donc ses racines sont exactement les puissances n-èmes.

Proposition 9.0.2. Si p est premier impair, m > 1, alors $((\mathbb{Z}/p^m\mathbb{Z}))^{\times}$ est cyclique.

10 Groupes Quotients