Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

Primer Semestre 2015

Curso : Probabilidad y Estadística

Sigla : EYP1113

Pauta : I2

Profesores : Ricardo Aravena C. y Ricardo Olea O.

#### Problema 1

Basado en estudios es posible asumir que, posterior al inicio del proceso eruptivo, la distribución de los pulsos eruptivos<sup>†</sup> del volcán Calbuco se comporta como una distribución Poisson con una tasa esperada de cuatro pulsos por hora. A su vez, la distancia (en kms) en la cual cae el material picoclástico producto de un pulso eruptivo se comporta como una Gamma con media igual a 4 y un c.o.v. igual a un 50 %. Por simplicidad asuma independencia entre las distancias alcanzadas por el material picoclástico entre pulsos.

- (†) Un pulso eruptivo consiste de una explosión que genera una columna eruptiva con material piroclástico.
  - (a) [2.0 Ptos.] Si un vulcanólogo esta observando el comportamiento del volcán, determine el tiempo esperado (en minutos) para que observe un tercer pulso eruptivo.
  - (b) [2.0 Ptos.] ¿Cuál seria la probabilidad que el tercer pulso eruptivo no ocurra durante la primera hora de observación?
  - (c) [2.0 Ptos.] Una estación vulcanológica que se encuentra a 8 km del cráter del volcán aún se encuentra intacta. ¿Cuál es la probabilidad que después del tercer pulso eruptivo observado por el vulcanólogo, el material piroclástico alcance la estación?

### Solución

(a) Sea  $X_t$  el número de pulsos emitidos en t minutos, cuya distribución es Poisson $(\nu t)$ .

Del enunciado se tiene que

$$E(X_{60}) = \nu \cdot 60 = 4 \rightarrow \nu = \frac{1}{15}$$
 [0.5 Ptos.]

Si T es el tiempo transcurrido hasta observar el tercer pulso, entonces

$$T \sim \text{Gamma}(k = 3, \nu = 1/15)$$
 [1.0 Ptos.]

Se pide

$$E(T) = \frac{3}{1/15} = 45$$
 [0.5 Ptos.]

(b) Se pide

[1.0 Ptos.] 
$$P(T > 60) = \sum_{x=0}^{2} \frac{4^x e^{-4}}{x!} = e^{-4} \cdot (1 + 4 + 8) = 0.2381033$$
 [1.0 Ptos.]

(c) Definamos como p a la probabilidad que un pulso lance material piroclástico a más de 8 km y como  $X_i$  a las distancias alcanzadas.

Del enunciado tenemos que

$$X_i \sim \text{Gamma}(k = 4, \nu = 1)$$
 [0.5 Ptos.]

Luego,

$$p = P(X_i > 8) = \sum_{x=0}^{3} \frac{8^x e^{-8}}{x!} = e^{-8} \cdot (1 + 8 + 64/2 + 512/6) = 0.04238011$$
 [0.5 Ptos.]

Sea Y el número de pulsos observados, hasta que se superan los 8 km.

$$Y \sim \text{Geométrica}(p)$$
 [0.5 Ptos.]

Interpretación 1: Se pide

$$P(Y = 4) = (1 - p)^3 p = 0.03721702$$
 [0.5 Ptos.]

Interpretación 2: Se pide

$$P(Y > 3) = 1 - P(Y \le 3) = 1 - (1 - (1 - p)^3) = (1 - p)^3 = 0.8781718$$
 [0.5 Ptos.]

#### Problema 2

El terremoto de magnitud 7,8 ocurrido hace unos días en Nepal ha dejado hasta el momento más de 5.000 muertos, además de muchas víctimas en Bangladesh, India, Tíbet y el monte Everest. Suponga que los rescatistas que están trabajando en las distintas zonas encuentran personas (vivas o fallecidas) con probabilidades que varían según la experiencia de cada rescatista. Si esta probabilidad se comporta como una variable aleatoria Beta(2, 3) y no tenemos información de la experiencia de los rescatista, ¿cuántas zonas esperarían revisar cada uno hasta encontrar personas (vivas o fallecidas) por tercera vez? Suponga que la experiencia de cada rescatistas durante este operativo no varía.

#### Solución

Sea X el número se sectores que un rescatista reviza hasta por tercera vez encuentra personas (vivas o fallecidas) e Y la probabilidad que un rescatista encuentre personas (vivas o fallecidas) en un sector.

Del enunciado se deduce que

[1.0 Ptos.] 
$$Y \sim \text{Beta}(2, 3)$$
 y  $X \mid Y = y \sim \text{Binomial-Negativa}(k = 3, p = y)$  [2.0 Ptos.]  $\text{con } \Theta_Y = [0, 1]$ . [0.5 Ptos.]

Se pide

[1.0 Ptos.] 
$$E(X) = E[E(X \mid Y)] = E\left(\frac{3}{Y}\right) = \int_0^1 \frac{3}{y} \cdot \frac{y(1-y)^2}{B(2,3)} dy = 12$$
 [1.5 Ptos.]

#### Problema 3

Sean  $X_1, X_2, \ldots, X_n$  variables aleatorias independientes con distribución Beta(1, 1) en el intervalo [0, 1]. Proponga una distribución exacta y una aproximada para la variable aleatoria Y definida como:

$$Y = -\ln\left[\prod_{i=1}^{n} (1 - X_i)\right]$$

## Solución

Tenemos que

$$Y = \sum_{i=1}^{n} -\ln(1 - X_i) = \sum_{i=1}^{n} Z_i$$
 [2.0 Ptos.]

Por otra parte

$$f_{Z_i}(z) = f_{X_i} (1 - e^{-z}) \cdot |e^{-z}| = 1 \cdot e^{-z}$$
 [1.0 Ptos.]

con z > 0, la cual corresponde a un función de densidad de una Exponencial $(\nu = 1)$ . [0.5 Ptos.]

Como los  $X_i$ 's son independientes, entonces los  $Z_i$ 's también lo son. [0.5 Ptos.]

Luego

$$Y \sim \text{Gamma}(k = n, \nu = 1)$$
 [1.0 Ptos.]

Aplicando el Teorema del Límite central [0.5 Ptos.]

$$Y \stackrel{.}{\sim} \text{Normal}(n, \sqrt{n})$$
 [0.5 Ptos.]

#### Problema 4

Posterior a la erupción volcánica del Calbuco, la emisión de la lava se empezó a distribuir en torno al cráter. Suponga que la distancia en kilómetros, X, que alcanza la lava al cabo de una hora y su dirección, Y, están determinadas por la siguiente función de densidad conjunta

$$f_{X,Y}(x,y) = \frac{\nu}{\Gamma^2(1/2)} x e^{-\nu x^2}$$

con  $\nu > 0$ ,  $y \in [0, 2\pi]$  y x > 0.

- (a) [3.0 Ptos.] ¿Cómo distribuye la distancia X que recorre la lava en la hora posterior a la erupción?
- (b) [3.0 Ptos.] ¿Cuál es la probabilidad que la lava que va en dirección norte supere el radio de seguridad de 20 kilómetros establecido por las autoridades durante la hora posterior a la erupción? Evalúe para  $\nu = 0.005$ .



# Solución

(a) Se pide

$$f_X(x) = \int_0^{2\pi} \frac{\nu}{\Gamma^2(1/2)} x e^{-\nu x^2} dy = \frac{\nu}{\Gamma^2(1/2)} x e^{-\nu x^2} y \Big|_0^{2\pi} = \frac{2\pi\nu}{\Gamma^2(1/2)} x e^{-\nu x^2} = 2\nu x e^{-\nu x^2}$$
 [2.5 Ptos.]

con x > 0 y  $\nu > 0$ . [0.5 Ptos.]

(b) Tenemos que

$$f_Y(y) = \int_0^\infty \frac{\nu}{\pi} x e^{-\nu x^2} dx = \frac{1}{2\pi} \int_0^\infty e^{-u} = \frac{1}{2\pi}$$
 [0.8 Ptos.]

con  $y \in [0, 2\pi]$  [0.2 Ptos.], es decir  $Y \sim \text{Uniforme}(0, 2\pi)$ . [1.0 Ptos.]

Alternativa 1: Notemos que X e Y son independientes, ya que

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$$
 [1.0 Ptos.]

Se pide

$$P(X > 20 \mid Y = \pi/2) = P(X > 20) = \int_{20}^{\infty} 2 \nu x \, e^{-\nu x^2} \, dx = \int_{400 \nu}^{\infty} e^{-u} \, du = e^{-400 \nu} = e^{-2} = 0.1353353 \quad \text{[1.0 Ptos.]}$$

## Alternativa 2: Tenemos que

$$f_{X \mid Y=y} = \frac{f_{X,Y}(x,y)}{f_Y(y)} = 2 \nu x e^{-\nu x^2}$$
 [0.8 Ptos.]

con  $x>0,\,\nu>0$  e  $y\in[0,\,2\,\pi].$  [0.2 Ptos.] Se pide

$$P(X > 20 \mid Y = \pi/2) = \int_{20}^{\infty} 2 \nu x \, e^{-\nu x^2} \, dx = \int_{400 \, \nu}^{\infty} e^{-u} \, du = e^{-400 \, \nu} = e^{-2} = 0.1353353 \quad \text{[1.0 Ptos.]}$$

# **Formulario**

Propiedades función  $\Gamma(\cdot)$ 

(1) 
$$\Gamma(k) = \int_0^\infty u^{k-1} e^{-u} du;$$
 (2)  $\Gamma(a+1) = a \Gamma(a);$ 

(3) 
$$\Gamma(n+1) = n!$$
, si  $n \in \mathbb{N}_0$ ; (4)  $\Gamma(1/2) = \sqrt{\pi}$ 

Propiedades función  $B(\cdot, \cdot)$ 

(1) 
$$B(q, r) = \int_0^1 x^{q-1} (1-x)^{r-1} dx;$$
 (2)  $B(q, r) = \frac{\Gamma(q) \Gamma(r)}{\Gamma(q+r)}$ 

**Igualdades** 

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}, \qquad \sum_{k=x}^\infty \phi^k = \frac{\phi^x}{1-\phi} \quad \text{si } |\phi| < 1, \qquad \sum_{k=0}^\infty \frac{\lambda^k}{k!} = \exp(\lambda)$$

Propiedad distribución Gamma

Si 
$$T \sim \text{Gamma}(k, \nu)$$
, con  $k \in \mathbb{N} \longrightarrow F_T(t) = 1 - \sum_{x=0}^{k-1} \frac{(\nu t)^x e^{-\nu t}}{x!}$ 

#### Transformación

Sea Y = g(X) una función cualquiera, con k raíces:

$$f_Y(y) = \sum_{i=1}^k f_X\left(g_i^{-1}(y)\right) \cdot \left| \frac{d}{dy} g_i^{-1}(y) \right|$$
$$p_Y(y) = \sum_{i=1}^k p_X\left(g_i^{-1}(y)\right)$$

Sea Z = g(X, Y) una función cualquiera:

$$p_Z(z) = \sum_{g(x,y)=z} p_{X,Y}(x,y)$$

Sea Z = g(X, Y) una función invertible para X o Y fijo:

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X,Y}(g^{-1}, y) \left| \frac{\partial}{\partial z} g^{-1} \right| dy$$
$$= \int_{-\infty}^{\infty} f_{X,Y}(x, g^{-1}) \left| \frac{\partial}{\partial z} g^{-1} \right| dx$$

Esperanza y Varianza Condicional

$$E(Y) = E[E(Y \mid X)]$$
 y  $Var(Y) = Var[E(Y \mid X)] + E[Var(Y \mid X)]$ 

Teorema del Límite Central

Sean  $X_1, \ldots, X_n$  variables aleatorias independientes e idénticamente distribuidas, entonces

$$Z_n = \frac{\sum_{i=1}^n X_i - n \cdot \mu}{\sqrt{n} \, \sigma} = \frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \longrightarrow Z \sim \text{Normal}(0, 1),$$

cuando  $n \to \infty$ ,  $E(X_i) = \mu$  y  $Var(X_i) = \sigma^2$ .

| Distribución      | Densidad de Probabilidad                                                                                                | Φ<br>×                                    | Parámetros       | Esperanza y Varianza                                                                                                                                                                    |
|-------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Binomial          | $\binom{n}{x} p^x (1-p)^{n-x}$                                                                                          | $x = 0, \dots, n$                         | n, p             | $\mu_X = n p$ $\sigma_X^2 = n p (1-p)$ $M(t) = [p e^t + (1-p)]^n,  t \in \mathbb{R}$                                                                                                    |
| Geométrica        | $p (1-p)^{x-1}$                                                                                                         | $x=1,2,\ldots$                            | a                | $M(t) = p e^{t} / [1 - (1 - p)/p^{2}]$ $M(t) = p e^{t} / [1 - (1 - p) e^{t}], t < -\ln(1 - p)$                                                                                          |
| Binomial-Negativa | $\binom{x-1}{r-1} p^r (1-p)^{x-r}$                                                                                      | $x = r, r + 1, \dots$                     | r, r             | $\begin{split} \mu X &= r/p \\ \sigma_X^2 &= r  (1-p)/p^2 \\ M(t) &= \left\{ p  e^t / [1-(1-p)  e^t] \right\}^r,  t  < - \ln(1-p) \end{split}$                                          |
| Poisson           | $\frac{(\nu t)^x e^{-\nu t}}{x!}$                                                                                       | $x = 0, 1, \dots$                         | 7                | $\mu X = \nu t$ $\sigma_X^2 = \nu t$ $\sigma_X^2 = \nu t$ $\left[\lambda \left(e^t - 1\right)\right],  t \in \mathbb{R}$                                                                |
| Exponencial       | 7 e - 7                                                                                                                 | 0<br>\\ \\ \\ \                           | λ                | $M(t) = \frac{\mu_X}{\sigma_X} = 1/\nu$ $\frac{\sigma_X}{\sigma_X} = 1/\nu^2$ $M(t) = \nu/(\nu - t),  t < \nu$                                                                          |
| Gamma             | $\frac{\nu^k}{\Gamma(k)}  x^{k-1}  e^{-\nu}  x$                                                                         | О<br>ЛІ<br>в                              | k, v             | $\mu_X = k/\nu$ $\sigma_X^2 = k/\nu^2$ $M(t) = [\nu/(\nu - t)]^k,  t < \nu$                                                                                                             |
| Normal            | $\frac{1}{\sqrt{2\pi\sigma}}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$                           | 8<br>V<br>8<br>V                          | $\mu$ , $\sigma$ | $\mu_X = \mu$ $\sigma_X^2 = \sigma^2$ $M(t) = \exp(\mu t + \sigma^2 t^2/2),  t \in \mathbb{R}$                                                                                          |
| Log-Normal        | $\frac{1}{\sqrt{2\pi}\left(\zeta x\right)} \exp\left[-\frac{1}{2}\left(\frac{\ln x - \lambda}{\zeta}\right)^{2}\right]$ | a<br>VI<br>O                              | У, С             | $\mu_X = \exp\left(\lambda + \frac{1}{2}\zeta^2\right)$ $\sigma_X^2 = \mu_X^2 \left(e^{\zeta^2} - 1\right)$ $E(X^r) = e^{r\lambda} M_Z(r\zeta), \text{ con } Z \sim \text{Normal}(0,1)$ |
| Uniforme          | $\frac{1}{(b-a)}$                                                                                                       | a                                         | a, $b$           | $\begin{split} \mu  X &= (a+b)/2 \\ \sigma_X^2 &= (b-a)^2/12 \\ M(t) &= [e^t b - e^t a]/[t  (b-a)],  t \in \mathbb{R} \end{split}$                                                      |
| Beta              | $\frac{1}{B(q, r)} \frac{(x-a)^{q-1} (b-x)^{r-1}}{(b-a)^{q+r-1}}$                                                       | Ф<br>VI<br>8<br>VI<br>в                   | g, r             | $\mu_X = \alpha + \frac{q}{q+r} (b-a)$ $\sigma_X^2 = \frac{q r (b-a)^2}{(q+r)^2 (q+r+1)}$                                                                                               |
| Hipergeométrica   | $\frac{\binom{m}{x}\binom{N-m}{n}}{\binom{n}{x}}$                                                                       | $\max\{0,n+m-N\} \leq x \leq \min\{n,m\}$ | $N,\ m,\ n$      | $\mu_X = n \frac{m}{N}$ $\sigma_X^2 = \left(\frac{N-n}{N-1}\right) n \frac{m}{N} \left(1 - \frac{m}{N}\right)$                                                                          |
|                   |                                                                                                                         |                                           |                  |                                                                                                                                                                                         |

# Tabla Percentiles Distribución Normal Estándar



| $S_p$ | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0   | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1   | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2   | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3   | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4   | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5   | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6   | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7   | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8   | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9   | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0   | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1   | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2   | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3   | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4   | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5   | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6   | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7   | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8   | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9   | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
| 2.0   | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.1   | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
| 2.2   | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.3   | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4   | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.5   | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.6   | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.7   | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8   | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
| 2.9   | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 3.0   | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
| 3.1   | 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 |
| 3.2   | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995 |
| 3.3   | 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997 |
| 3.4   | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998 |
| 3.5   | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 |
|       |        |        |        |        |        |        |        |        |        |        |