Models of Computation

Tutorial Exercises 3

- 1. Use the Pumping Lemma to prove that the following languages over the alphabet $\Sigma = \{0, 1\}$ are not regular:
 - (i) $L_1 = \{0^n 1^m 0^n : m, n > 0\}.$
 - (ii) $L_2 = \Sigma^* \setminus \{ 0^n 1^n : n \ge 0 \}.$
 - (iii) $L_3 = \{ 0^m 1^n : m \neq n \}.$
- 2. Consider $L = \{ w \in \{0, 1\} : w \text{ is not a palindrome } \}$. A palindrome is a string that reads the same forward or backward. Show that L is not regular in three different ways:
 - (i) using the fact that the set of palindroms is not regular;
 - (ii) using the Myhill-Nerode Theorem;
 - (iii) using the Pumping Lemma.
- 3. Let $L_1 = \{01^i 01^j 01^j \mid i, j > 0\}$ and $L_2 = \{w \in \{0, 1\}^* \mid w \text{ contains } 00\}.$
 - (i) Show that $L = L_1 \cup L_2$ satisfies the Pumping Lemma with pumping length 3.
 - (ii) Prove that $L = L_1 \cup L_2$ is not regular using the Myhill-Nerode theorem.
 - (iii) Does (ii) contradict (i)?
- 4. The alphabet is $\Sigma = \{0, 1\}$. Give context-free grammars that generate the following languages.
 - (i) The empty set.
 - (ii) The language of palindromes.
 - (iii) The set of strings containing at least three 1's.
 - (iv) The set of odd-length strings whose middle symbol is 0.
- 5. Find context-free grammars for the following languages (where $m, n \ge 0$):
 - (a) $L = \{ a^n b^m : n \le m+3 \}$
 - (b) $L = \{ a^n b^m : n \neq 2m \}$
- 6. (a) Describe what is meant by *well-bracketing* in the case where there are two kinds of parentheses, namely, () and []. For example ([]) and ([] (())) [] are well-bracketed, but ([)] is not.
 - Give a CFG over $\Sigma = \{ [,], (,) \}$ that generates well-bracketed parentheses.
 - (b) Say that (and] are positive and) and [are negative. A string over Σ is said to be *alternating* if any two adjacent symbols have opposite polarities.
 - Give a CFG that generates the set L of alternating and well-bracketed strings over Σ . For example $[\ (\)\]\ [\]$ and $(\ [\ (\ [\]\)\]\)\ (\)$ are in L but $[\]\ (\)$ and $[\ [\]\]$ are not.

Tom Melham, Trinity 2009

Adapted from materials by Hanno Nickau and Luke Ong