METODE INTELIGENTE DE REZOLVARE A PROBLEMELOR REALE

Laura Dioşan Tema 1

Conținut

- Instruire automata (Machine Learning ML)
 - Problematică
 - Proiectarea unui sistem de învăţare automată
 - Tipologie
 - Învăţare supervizată
 - Învăţare nesupervizată
 - Învăţare cu întărire
 - Teoria învăţării

De citit:

- S.J. Russell, P. Norvig Artificial Intelligence A Modern Approach → capitolul 18, 19, 20
- Documentele din directoarele: ML, classification, clustering

Proiectarea unui sistem de învățare automată

- Îmbunătăţirea task-ului T
 - stabilirea scopului (ceea ce trebuie învăţat) funcţiei obiectiv – şi reprezentarea sa
 - alegerea unui algoritm de învăţare care să realizeze inferenţa (previziunea) scopului pe baza experienţei
- □ respectând o metrică de performanţă P
 - evaluarea performanţelor algortimului ales
- bazându-se pe experienţa E
 - alegerea bazei de experienţă

Proiectare – Alegerea funcției obiectiv

- Care este funcţia care trebuie învăţată?
 - Ex. pt jocul de dame
 - o funcție care
 - alege următoarea mutare
 - evaluează o mutare
 - obiectivul fiind alegerea celei mai bune mutări

Proiectare – Reprezentarea funcției obiectiv

- Diferite reprezentări
 - tablou (tabel)
 - reguli simbolice
 - funcţie numerică
 - funcţii probabilistice
 - ex. jocul de dame
 - Combinaţie liniară a nr. de piese albe, nr. de piese negre, nr. de piese albe compromise la următoarea mutare, nr. de piese negre compromise la următoarea mutare
- Există un compromis între
 - expresivitatea reprezentării şi
 - uşurinţa învăţării
- Calculul funcţiei obiectiv
 - timp polinomial
 - timp non-polinomial

Proiectare – Alegerea unui algoritm de învățare

Algoritmul

- folosind datele de antrenament
- induce definirea unor ipoteze care
 - să se potirvească cu datele de antrenament şi
 - să generalizeze cât mai bine datele ne-văzute (datele de test)

□ Principiul de lucru

minimizarea unei erori (funcţie de cost – loss function)

Proiectare – Învățare automată – tipologie

- □ Învăţare supervizată
- □ Învăţare nesupervizată
- □ Învățare cu întărire

Învățare supervizată

- Scop:
 - Furnizarea unei ieşiri corecte pentru o nouă intrare
- □ Tip de probleme
 - regresie
 - Scop: predicţia output-ului pentru un input nou
 - Output continuu (nr real)
 - Ex.: predicţia preţurilor
 - clasificare
 - Scop: clasificarea (etichetarea) unui nou input
 - Output discret (etichetă dintr-o mulţime predefinită)
 - Ex.: detectarea tumorilor maligne
- Caracteristic
 - BD experimentală adnotată (pt. învăţare)

Învățare supervizată – definire

Definire

- Se dă
 - un set de date (exemple, instanțe, cazuri)
 - date de antrenament sub forma unor perechi (atribute_datai, ieşirei), unde
 - i =1,N (N = nr datelor de antrenament)
 - atribute_data_i= (atr_{i1}, atr_{i2}, ..., atr_{im}), m nr atributelor (caracteristicilor, proprietăţilor) unei date
 - ieşire_i
 - o categorie dintr-o mulţime dată (predefinită) cu k elemente (k − nr de clase) → problemă de clasificare
 - un număr real → problemă de regresie
 - date de test
 - sub forma (atribute data_i), i =1,n (n = nr datelor de test).
- Să se determine
 - o funcţie (necunoscută) ipoteză care realizează corespondenţa atribute ieşire pe datele de antrenament
 - ieşirea (clasa/valoarea) asociată unei date (noi) de test folosind funcţia învăţată pe datele de antrenament

Alte denumiri

Clasificare (regresie), învăţare inductivă

Învățare supervizată – exemple

- Recunoaşterea scrisului de mână
- Recunoaşterea imaginilor
- Previziunea vremii

Detecţia spam-urilor

Învățare supervizată – proces

Procesul

- 2 paşi:
 - Antrenarea
 - Învăţarea, cu ajutorul unui algoritm, a modelului de clasificare
 - Testarea
 - Testarea modelului folosind date de test noi (unseen data)

Calitatea învățării

- - Acc = nr de exemple corect clasificate / nr total de exemple
- calculată în:
 - faza de antrenare
 - Ansamblul de date antrenament se împarte în
 - Date de învătare
 - Date de validare
 - Performanţa se apreciază pe sub-ansamblul de validare
 - O singură dată
 - De mai multe ori → validare încrucişată (cross-validation)
 - faza de testare
- probleme
 - Învăţare pe derost (overfitting) → performanţă bună pe datele de antrenament, dar foarte slabă pe datele de test

Metode de evaluare

- Seturi disjuncte de antrenare şi testare
 - pt. date numeroase
 - setul de antrenare
 - poate fiîmpărţit în
 - Date de învătare
 - Date de validare
 - Folosit pentru estimarea parametrilor modelului
 - Cei mai buni parametri obținuți pe validare vor fi folosiți pentru construcția modelului final
- Validare încrucişată cu mai multe (h) sub-seturi ale datelor (de antrenament)
 - separararea datelor de h ori în
 - □ *h-1* sub-seturi pentru învăţare
 - 1 sub-set pt validare
 - dimensiunea unui sub-set = dimensiunea setului / h
 - performanţa este dată de media pe cele h rulări
 - h = 5 sau h = 10
 - pt date puţine
- Leave-one-out cross-validation
 - similar validării încrucişate, dar h = nr de date \rightarrow un sub-set conţine un singur exemplu
 - pt. date foarte puţine

Măsuri de performanță

- Măsuri statistice
- Eficienţa
 - În construirea modelului
 - În testarea modelului
- Robusteţea
 - Tratarea zgomotelor şi a valorilor lipsă
- Scalabilitatea
 - Eficienţa gestionării seturilor mari de date
- Interpretabilitatea
 - Modelului de clasificare
- Proprietatea modelului de a fi compact
- Scoruri

Măsuri de performanță

- Măsuri statistice
 - Acurateţea
 - Nr de exemple corect clasificate / nr total de exemple
 - Opusul erorii
 - Calculată pe
 - Setul de validare
 - Setul de test
 - Uneori
 - Analiză de text
 - Detectarea intruşilor într-o reţea
 - Analize financiare

este importantă doar o singură clasă (clasă pozitivă) → restul claselor sunt negative

Măsuri de performanță

- Măsuri statistice
 - Precizia şi Rapelul
 - Precizia (P)
 - nr. de exemple pozitive corect clasificate / nr. total de exemple clasificate ca pozitive
 - probabilitatea ca un exemplu clasificat pozitiv să fie relevant
 - TP / (TP + FP)
 - Rapelul (R)
 - nr. de exemple pozitive corect clasificate / nr. total de exemple pozitive
 - Probabilitatea ca un exemplu pozitiv să fie identificat corect de către clasificator
 - TP/ (TP +FN)
 - Matricea de confuzie
 - Rezultate reale vs. rezultate calculate
 - Scorul F1
 - Combină precizia şi rapelul, facilitând compararea a 2 algoritmi
 - Media armonică a preciziei şi rapelului
 - 2PR/(P+R)

		Rezultate reale		
		Clasa pozitivă	Clasa(ele) negativă(e)	
Danulkaka	Clasa pozitivă	True positiv (TP)	False positiv (FP)	
Rezultate calculate	Clasa(ele) negativă(e)	False negative (FN)	True negative (TN)	

Condiții fundamentale

- Distribuţia datelor de antrenament şi test este aceeaşi
 - În practică, o astfel de condiție este adesea violată

Exemplele de antrenament trebuie să fie reprezentative pentru datele de test

- După tipul de date de ieşire
 - Real → probleme de regresie
 - Etichete → probleme de clasificare (regresie logistică)
 - Clasificare binară
 - Ieşiri (output-uri) binare \rightarrow nr binar de etichete posibile (k = 2)
 - Ex. diagnostic de cancer malign sau benign
 - Ex. email acceptat sau refuzat (spam)
 - Clasificare multi-clasă
 - Ieşiri multiple \rightarrow nr > 2 de etichete posibile (k > 2)
 - Ex. recunoaşterea cifrei 0, 1, 2,... sau 9
 - Ex. risc de creditare mic, mediu, mare şi foarte mare
 - Clasificare multi-etichetă
 - Fiecărei ieşiri îi pot corespunde una sau mai multe etichete
 - Ex. frumos → adjectiv, adverb

După forma clasificatorului

Clasificare liniară

- Clasificare ne-liniară
 - se crează o reţea de clasificatori liniari
 - se mapează datele într-un spaţiu nou (mai mare) unde ele devin separabile

- După caracteristicile datelor
 - Clasificare pt date perfect separabile
 - Clasificare fără eroare

- Clasificare pt date ne-separabile
 - Clasificare cu o anumită eroare (anumite date sunt plasate eronat în clase)

După algoritm

- Bazată doar pe instanţe
 - Foloseşte direct datele, fără a crea un model de separare
 - Ex. algoritmul cel mai apropiat vecin (k-nearest neighbour)
- Discriminative
 - Estimează o separare al datelor
 - Ex. arbori de decizie, reţele neuronale artificiale, maşini cu suport vectorial, algoritmi evolutivi
- Generative
 - Construieşte un model probabilistic
 - Ex. reţele Bayesiene

Învățare supervizată – algoritmi

- Cel mai apropiat vecin
- Arbori de decizie
- Sisteme bazate pe reguli
- Reţele neuronale artificiale
- Maşini cu suport vectorial
- □ Algoritmi evolutivi regresie

clasificare

Învățare supervizată – algoritmi

Problemă de clasificare

- Se dă
 - un set de date (exemple, instanţe, cazuri)
 - date de antrenament sub forma unor perechi (atribute_datai, ieşirei), unde
 - i =1,N (N = nr datelor de antrenament)
 - atribute_data_i= (atr_{i1}, atr_{i2}, ..., atr_{im}), m nr atributelor (caracteristicilor, proprietăţilor) unei date
 - ieşire_i =
 - o categorie dintr-o mulţime dată (predefinită) cu k elemente (k nr de clase)
 - date de test sub forma (atribute_data_i), i =1,n (n = nr datelor de test)
- Să se determine
 - o funcţie (necunoscută) care realizează corespondenţa atribute ieşire pe datele de antrenament
 - ieşirea (clasa) asociată unei date (noi) de test folosind funcţia învăţată pe datele de antrenament

Învățare supervizată – algoritmi

Problemă de regresie

- Se dă
 - un set de date (exemple, instanţe, cazuri)
 - □ date de antrenament sub forma unor perechi (atribute_data, ieşire,), unde
 - i =1,N (N = nr datelor de antrenament)
 - atribute_data_i= (atr_{i1}, atr_{i2}, ..., atr_{im}), m nr atributelor (caracteristicilor, proprietăţilor) unei date
 - ieşire_i
 - un număr real
 - date de test sub forma (atribute_data;), i =1,n (n = nr datelor de test)
- Să se determine
 - o funcţie (necunoscută) care realizează corespondenţa atribute ieşire pe datele de antrenament
 - Ieşirea (clasa/valoarea) asociată unei date (noi) de test folosind funcţia învăţată pe datele de antrenament

Învățare supervizată — algoritmi Cel mai apropiat vecin (*k-nearest neighbour*)

- Cel mai simplu algoritm de clasificare
- În etapa de antrenament, algoritmul doar citeşte datele de intrare (atributele şi clasa fiecărei instanţe)
- În etapa de testare, pentru o nouă instanță (fără clasă) se caută (printre instanțele de antrenament) cei mai apropiați k vecini și se preia clasa majoritară a acestor k vecini
- Căutarea vecinilor se bazează pe:
 - distanţa Minkowski (Manhattan, Euclidiană) atribute continue
 - distanţa Hamming, Levensthein analiza textelor
 - alte distanţe (funcţii kernel)

Scop

- Divizarea unei colecţii de articole în seturi mai mici prin aplicarea succesivă a unor reguli de decizie → adresarea mai multor întrebări
 - Fiecare întrebare este formulată în funcţie de răspunsul primit la întrebarea precedentă
- Elementele se caracterizează prin informaţii non-metrice

Definire

- Arborele de decizie
 - Un graf special → arbore orientat bicolor
 - Conţine noduri de 3 tipuri:
 - Noduri de decizie → posibilitățile decidentului (ex. Diversele examinări sau tratamente la care este supus pacientul) şi indică un test pe un atribut al articolului care trebuie clasificat
 - Noduri ale hazardului evenimente aleatoare în afara controlului decidentului (rezultatul examinărilor, efectul terapiilor)
 - Noduri rezultat situaţiile finale cărora li se asociază o utilitate (apreciată aprioric de către un pacient generic) sau o etichetă
 - Nodurile de decizie şi cele ale hazardului alternează pe nivelele arborelui
 - Nodurile rezultat noduri terminale (frunze)
 - Muchiile arborelui (arce orientate) → consecinţele în timp (rezultate) ale decizilor, respectiv ale realizării evenimentelor aleatoare (pot fi însoţite de probabilităţi)
- Fiecare nod intern corespunde unui atribut
- Fiecare ramură de sub un nod (atribut) corespunde unei valori a atributului
- Fiecare frunză corespunde unei clase (ieşire de tip discret)

□ Tipuri de probleme

- Exemplele (instanţele) sunt reprezentate printr-un număr fix de atribute, fiecare atribut putând avea un număr limitat de valori
- Funcţia obiectiv ia valori de tip discret
- AD reprezintă o disjuncţie de mai multe conjuncţii
 - $\hfill \Box$ fiecare conjuncție fiind de forma atributul a_i are valoarea v_j
- Datele de antrenament pot conţine erori
- Datele de antrenament pot fi incomplete
 - Anumitor exemple le pot lipsi valorile pentru unele atribute

Probleme de clasificare

- Binară
 - exemple date sub forma [(atribut_{ij}, valoare_{ij}), clasă_i, i=1,2,...,n, j=1,2,...,m, clasăi putând lua doar 2 valori]
- Multi-clasă
 - exemple date sub forma [(atribut_{ij}, valoare_{ij}), clasă_i, i=1,2,...,n, j=1,2,...,m, clasăi putând lua doar k valori]

Probleme de regresie

- AD se construiesc similar cazului problemei de clasificare, dar în locul etichetării fiecărui nod cu eticheta unei clase se asociază nodului o valoare reală sau o funcție dependentă de intrările nodului respectiv
- Spaţiul de intrare se împarte în regiuni de decizie prin tăieturi paralele cu axele Ox şi Oy
- Are loc o transformare a ieşirilor discrete în funcţii continue
- Calitatea rezolvării problemei
 - Eroare (pătratică sau absolută) de predicţie

Exemplu

rec	Age	Income	Student	Credit_rating	Buys_computer(CLASS)
r1	<=30	High	No	Fair	No
r2	<=30	High	No	Excellent	No
r3	3140	High	No	Fair	Yes
r4	>40	Medium	No	Fair	Yes
r5	>40	Low	Yes	Fair	Yes
r6	>40	Low	Yes	Excellent	No
r7	3140	Low	Yes	Excellent	Yes
r8	<=30	Medium	No	Fair	No
r9	<=30	Low	Yes	Fair	Yes
r10	>40	Medium	Yes	Fair	Yes
r11	<=30	Medium	Yes	Excellent	Yes
r12	3140	Medium	No	Excellent	Yes
r13	3140	High	Yes	Fair	Yes
r14	>40	Medium	No	Excellent	No

- Construirea (creşterea, inducţia) arborelui
 - Se bazează pe un set de date de antrenament
 - □ Lucrează de jos în sus sau de sus în jos (prin divizare *splitting*)
- Utilizarea arborelui ca model de rezolvare a problemelor
 - Ansamblul decizilor efectuate de-a lungul unui drum de la rădăcină la o frunză formează o regulă
 - Regulile formate în AD sunt folosite pentru etichetarea unor noi date
- Tăierea (curăţirea) arborelui (pruning)
 - Se identifică şi se mută/elimină ramurile care reflectă zgomote sau excepţii

- Construirea AD
 - Exemplu

rec	Age	Income	Student	Credit_rating	Buys_computer(CLASS)
r1	<=30	High	No	Fair	No
r2	<=30	High	No	Excellent	No
r3	3140	High	No	Fair	Yes
r4	>40	Medium	No	Fair	Yes
r5	>40	Low	Yes	Fair	Yes
r6	>40	Low	Yes	Excellent	No
r7	3140	Low	Yes	Excellent	Yes
r8	<=30	Medium	No	Fair	No
r9	<=30	Low	Yes	Fair	Yes
r10	>40	Medium	Yes	Fair	Yes
r11	<=30	Medium	Yes	Excellent	Yes
r12	3140	Medium	No	Excellent	Yes
r13	3140	High	Yes	Fair	Yes
r14	>40	Medium	No	Excellent	No
r14	>40	Medium	No	Excellent	No

Proces

- Construirea AD
 - Exemplu

high

yes

fair

yes

Pentru rădăcină se alege atributul age

- Construirea AD
 - Exemplu
 - Pentru rădăcină se alege atributul age
 - Pe ramura <=30 se alege atributul student

- Construirea AD
 - Exemplu
 - Pentru rădăcină se alege atributul age
 - Pe ramura <=30 se alege atributul student
 - Pe ramura > 40 se alege atributul credit

- Construirea AD → Algoritmul ID3/C4.5 → Selectare atribut → Câştigul de informaţie
 - O măsură de impuritate
 - 0 (minimă) dacă toate exemplele aparţin aceeaşi clase
 - 1 (maximă) dacă avem număr egal de exemple din fiecare clasă
 - Se bazează pe entropia datelor
 - măsoară impuritatea datelor
 - numărul sperat (aşteptat) de biţi necesari pentru a coda clasa unui element oarecare din setul de date
 - clasificare binară (cu 2 clase): $E(S) = -p_+log_2p_+ p_-log_2p_$, unde
 - p_+ proporția exemplelor pozitive în setul de date S
 - p_{\perp} proporția exemplelor negative în setul de date S
 - clasificare cu mai multe clase: $E(S) = \sum_{i=1, 2, ..., k} p_i \log_2 p_i$ entropia datelor relativ la atributul tintă (atributul de ieșire), unde
 - p_i proporția exemplelor din clasa i în setul de date S
 - câştigul de informaţie (information gain) al unei caracterisitici a (al unui atribut al) datelor
 - Reducerea entropiei setului de date ca urmare a eliminării atributului a
 - $Gain(S, a) = E(S) \sum_{v \in valori(a)} |S_v| / |S| E(S_v)$
 - $\sum_{v \in valori(a)} |S_v| / |S| E(S_v)$ informaţia scontată

Proces

Construirea AD → Algoritmul ID3/C4.5 → Selectare atribut → Câştigul de informaţie

а3

cerc

pătrat

cerc

cerc

d1

d2

d3

d4

mare

mic

mic

mare

roşu

roşu

roşu

albastru

Clasa

clasa 1

clasa 2

clasa 1

clasa 2

exemplu

S = {d1, d2, d3, d4} \Rightarrow p ₊ = 2 / 4, p ₋ = 2 / 4 \Rightarrow E(S) = -p ₊ log ₂ p ₊ - p ₋ log ₂ p ₋ = 2
$S_{v=mare} = \{d1, d4\} \rightarrow p_{+} = \frac{1}{2}, p_{-} = \frac{1}{2} \rightarrow E(S_{v=mare}) = 1$
$S_{v=mic} = \{d2, d3\} \rightarrow p_{+} = \frac{1}{2}, p_{-} = \frac{1}{2} \rightarrow E(S_{v=mic}) = 1$
$S_{v=rosu} = \{d1, d2, d3\} \rightarrow p+ = 2/3, p- = 1/3 \rightarrow E(S_{v=rosu}) = 0.923$
$S_{v=albastru} = \{d4\} \Rightarrow p+ = 0, p- = 1 \Rightarrow E(S_{v=albastru}) = 0$
$S_{v=cerc} = \{d1, d3, d4\} \rightarrow p+ = 2/3, p- = 1/3 \rightarrow E(S_{v=cerc}) = 0.923$
$S_{v=patrat} = \{d2\} \Rightarrow p+=0, p-=1 \Rightarrow E(S_{v=patrat}) = 0$

$$\begin{aligned} &\text{Gain}(S,\,a) = \text{E}(S) - \sum_{\text{v e valori(a)}} |S_v| \, / \, |S| \, \, \text{E}(S_v) \\ &\text{Gain}(S,\,a_1) = 1 - (|S_{\text{v=mare}}| \, / \, |S| \, \, \text{E}(S_{\text{v=mare}}) + |S_{\text{v=mic}}| \, / \, |S| \, \, \text{E}(S_{\text{v=mic}})) = 1 - (2/4 \, ^* \, 1 + 2/4 \, ^* \, 1) = 0 \\ &\text{Gain}(S,\,a_2) = 1 - (|S_{\text{v=rosu}}| \, / \, |S| \, \, \text{E}(S_{\text{v=rosu}}) + |S_{\text{v=albastru}}| \, / \, |S| \, \, \text{E}(S_{\text{v=albastru}})) = 1 - (3/4 \, ^* \, 0.923 \, + \, 1/4 \, ^* \, 0) = 0.307 \\ &\text{Gain}(S,\,a_3) = 1 - (|S_{\text{v=cerc}}| \, / \, |S| \, \, \text{E}(S_{\text{v=cerc}}) + |S_{\text{v=patrat}}| \, / \, |S| \, \, \text{E}(S_{\text{v=patrat}})) = 1 - (3/4 \, ^* \, 0.923 \, + \, 1/4 \, ^* \, 0) = 0.307 \end{aligned}$$

- Construirea AD → Algoritmul ID3/C4.5 → Selectare atribut → Rata câştigului
 - Penalizează un atribut prin încorporarea unui termen split information – sensibil la gradul de împrăştiere şi uniformitate în care atributul separă datele
 - Split information entropia relativ la valorile posibile ale atributului a
 - Sv proporţia exemplelor din setul de date S care au atributul a eval cu valoarea v
 - splitInformation(S,a)=

$$-\sum_{v=value(a)} \frac{|S_v|}{|S|} \log_2 \frac{|S_v|}{|S|}$$

Proces

- Construirea arborelui
- Utilizarea arborelui ca model de rezolvare a problemelor
 - Ideea de bază
 - Se extrag regulile formate în arborele anterior construit → Reguli extrase din arborele dat în exemplul anterior:
 - IF age = "<=30" AND student = "no" THEN buys_computer = "no"</p>
 - IF age = "<=30" AND student = "yes" THEN buys_computer = "yes"</p>
 - IF age = "31...40" THEN buys_computer = "yes"
 - IF age = ">40" AND credit_rating = "excellent" THEN buys_computer = "no"
 - IF age = ">40" AND credit_rating = "fair" THEN buys_computer = "yes"
 - Regulile sunt folosite pentru a clasifica datele de test (date noi). Fie x o dată pentru care nu se ştie clasa de apartenenţă → Regulile se pot scrie sub forma unor predicate astfel:
 - IF age(x, <=30) AND student(x, no) THEN $buys_computer(x, no)$
 - IF age(x, <=30) AND student (x, yes) THEN buys_computer (x, yes)

Dificultăți

- Underfitting (sub-potrivire) → AD indus pe baza datelor de antrenament este prea simplu →
 eroare de clasificare mare atât în etapa de antrenare, cât și în cea de testare
- Overfitting (supra-potrivire, învăţare pe derost) → AD indus pe baza datelor de antrenament se potriveşte prea accentuat cu datele de antrenament, nefiind capabil să generalizeze pentru date noi
- Soluţii:
 - fasonarea arborelui (pruning) \rightarrow Îndepărtarea ramurilor nesemnificative, redundante \rightarrow arbore mai puţin stufos
 - Validare cu încrucişare

Proces

- Construirea arborelui
- Utilizarea arborelui ca model de rezolvare a problemelor
- Tăierea (fasonarea) arborelui
 - Necesitate
 - Odată construit AD, se pot extrage reguli (de clasificare) din AD pentru a putea reprezenta cunoștințele sub forma regulilor dacă-atunci atât de ușor de înțeles de către oameni
 - O regulă este creată (extrasă) prin parcurgerea AD de la rădăcină până la o frunză
 - Fiecare pereche (atribut, valoare), adică (nod, muchie), formează o conjuncţie în ipoteza regulii (partea dacă)
 - Mai puţin ultimul nod din drumul parcurs care este o frunză şi reprezintă consecinţa (ieşirea, partea atunci) regulii

Tipologie

- Prealabilă (pre-pruning)
 - Se oprește creșterea arborelui în timpul inducției prin sistarea divizării unor noduri care devin astfel frunze etichetate cu clasa majoritară a exemplelor aferente nodului respectiv
- Ulterioară (post-pruning)
 - După ce AD a fost creat (a crescut) se elimină ramurile unor noduri care devin astfel frunze → se reduce eroarea de clasificare (pe datele de test)

■ Tool-uri

- http://webdocs.cs.ualberta.ca/~aixplore/learning /DecisionTrees/Applet/DecisionTreeApplet.html
- WEKA → J48
- http://id3alg.altervista.org/
- http://www.rulequest.com/Personal/c4.5r8.tar.gz

Biblio

http://www.public.asu.edu/~kirkwood/DAStuff/d ecisiontrees/index.html

Avantaje

- Uşor de înţeles şi interpretat
- Permit utilizarea datelor nominale şi categoriale
- Logica deciziei poate fi urmărită uşor, regulile fiind vizibile
- Lucrează bine cu seturi mari de date

Dezavantaje

- Instabilitate → modificarea datelor de antrenament
- Complexitate → reprezentare
- Greu de manevrat
- Costuri mari pt inducerea AD
- Inducerea AD necesită multă informaţie

Dificultăţi

- Existenţa mai multor arbori
 - Cât mai mici
 - Cu o acurateţe cât mai mare (uşor de "citit" şi cu performanţe bune)
 - □ Găsirea celui mai bun arbore → problemă NP-dificilă
- Alegerea celui mai bun arbore
 - Algoritmi euristici
 - ID3 → cel mai mic arbore acceptabil
 - → teorema lui Occam: "always choose the simplest explanation"
- Atribute continue
 - Separarea în intervale
 - Câte intervale?
 - Cât de mari sunt intervalele?
- Arbori prea adânci sau prea stufoşi
 - □ Fasonarea prealabilă (pre-pruning) → oprirea construirii arborelui mai devreme
 - 🛾 Fasonarea ulterioară (post-pruning) > înlăturarea anumitor ramuri

Învățare supervizată – algoritmi Sisteme bazate pe reguli

- Transformarea AD într-un set de reguli
- □ Fiecare drum din arbore → regulă
- Regulile IF-THEN pot fi identificate din date


```
Own_house = true → Class = Yes
Own_house = false, Has_job = true → Class = Yes
Own_house = false, Has_job = false → Class = No
```

Învățare supervizată – algoritmi Sisteme bazate pe reguli

Conversia unui AD în reguli

Vremea propice pentru tenis

DACĂ vremea=înnorată şi vântul=slab ATUNCI joc tenis

Învățare supervizată – algoritmi Sisteme bazate pe reguli

- Secvenţele de reguli = liste de decizii
- Găsirea regulilor
 - Acoperire secvenţială
 - Se învaţă o regulă
 - Se elimină exemplele care respectă regula
 - Se caută noi reguli

Învățare supervizată – algoritmi

Clasificare

- Clasificare binară pt orice fel de date de intrare (discrete sau continue)
 - Datele pot fi separate de:
 - □ o dreaptă → ax + by + c = 0 (dacă m = 2)
 - □ un plan \rightarrow ax + by + cz + d = 0 (dacă m = 3)
 - □ un hiperplan $∑a_i x_i + b = 0$ (dacă m > 3)
 - Cum găsim modelul de separare (valorile optime pt. a, b, c, d, a; şi forma modelului)?
 - Reţele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi

Clasificare binară cu m=2 intrări

Clasificare binară cu m=3 intrări

- Similar unei retele neuronale biologice
- □ O mulţime de neuroni dispuşi ca într-un graf (un nod → un neuron) pe mai multe straturi (layere)
 - Strat de intrare
 - Conţine m (nr de atribute al unei date) noduri
 - Strat de ieşire
 - Conţine r (nr de ieşiri) noduri
 - Straturi intermediare (ascunse) rol în "complicarea" reţelei
 - Diferite structuri
 - Diferite mărimi

- Cum învaţă reţeaua?
 - Plecând de la un set de n date de antrenament de forma $((x_{p1}, x_{p2}, ..., x_{pm}, y_{p1}, y_{p2}, ..., y_{pr}))$ cu p = 1, 2, ..., n, m nr atributelor, r nr ieşirilor
 - Se formează o RNA cu m noduri de intrare, r noduri de ieşire şi o anumită structură internă (un anumit nr de nivele ascunse, fiecare nivel cu un anumit nr de neuroni)
 - Se caută valorile optime ale ponderilor între oricare 2 noduri ale reţelei prin minimizarea erorii (diferenţa între outputul real y şi cel calculat de către reţea)
 - Reţeaua = mulţime de unităţi primitive de calcul interconectate între ele
 →
 - □ Învăţarea reţelei = ∪ învăţarea unităţilor primitive (unitate liniară, unitate sigmoidală, etc)

- Neuronul ca element simplu de calcul
 - Structura neuronului
 - Fiecare nod are intrări şi ieşiri
 - Fiecare nod efectuează un calcul simplu prin intermediul unei funcţii asociate
 - Procesarea neuronului
 - Se transmite informaţia neuronului → se calculează suma ponderată a intrărilor
 - Neuronul procesează informaţia → se foloseşte o funcţie de activare
 - Funcţia semn → perceptron
 - Funcția liniară → unitate liniară
 - Funcţia sigmoidală → unitate sigmoidală
 - Se citeşte răspunsul neuronului → se stabileşte dacă rezultatul furnizat de neuron coincide sau nu cu cel dorit (real)
 - Învăţarea neuronului algoritmul de învăţare a ponderilor care procesează corect informaţiile
 - Se porneşte cu un set iniţial de ponderi oarecare
 - Cât timp nu este îndeplinită o condiţie de oprire
 - Se stabileşte calitatea ponderilor curente
 - Se modifică ponderile astfel încât să se obţină rezultate mai bune

□ Procesare → Funcţia de activare

- Funcţia constantă f(net) = const
- Funcţia prag (c pragul)

$$f(net) = \begin{cases} a, & \text{dacă } net < c \\ b, & \text{dacă } net > c \end{cases}$$

- Pentru a=+1, b =-1 şi c = 0 → funcţia semn
- Funcţie discontinuă
- Funcţia rampă

$$f(net) = \begin{cases} a, & \text{dacă } net \le c \\ b, & \text{dacă } net \ge d \\ a + \frac{(net - c)(b - a)}{d - c}, & \text{altfel} \end{cases}$$

- Funcţia liniară f(net)=a*net + b
 - Pentru a = 1 și b = 0 → funcția identitate f(net)=net
 - Funcţie continuă

□ Procesare → Funcția de activare

- Funcţia sigmoidală
 - În formă de S
 - Continuă și diferențiabilă în orice punct
 - Simetrică rotațional față de un anumit punct (net = c)
 - Atinge asimptotic puncte de saturație

$$\lim_{n \to \infty} f(net) = a$$

$$\lim_{net\to\infty} f(net) = a \qquad \qquad \lim_{net\to\infty} f(net) = b$$

Exemple de funcții sigmoidale:

f(net)

- □ Pentru y=0 și z = 0 → a=0, b = 1, c=0
- Pentru y=0 și z = -0.5 → a=-0.5, b = 0.5, c=0
- Cu cât x este mai mare, cu atât curba este mai abruptă

□ Procesare → Funcţia de activare

- Funcţia Gaussiană
 - În formă de clopot
 - Continuă
 - Atinge asimptotic un punct de saturaţie

$$\lim_{net\to\infty} f(net) = a$$

- Are un singur punct de optim (maxim) atins când net
- Exemplu

$$f(net) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{net - \mu}{\sigma}\right)^{2}\right]$$

Algoritm de învăţare a ponderilor

□ Învăţare

- 2 reguli de bază
 - Regula perceptronului
 - 1. Se porneste cu un set de ponderi oarecare
 - 2. Se stabileşte calitatea modelului creat pe baza acestor ponderi pentru una dintre datele de intrare
 - 3. Se ajustează ponderile în funcție de calitatea modelului
 - 4. Se reia algoritmul de la pasul 2 până când se ajunge la calitate maximă

Regula Delta

 Similar regulii perceptronului dar calitatea unui model se stabileşte în funcţie de toate datele de intrare (tot setul de antrenament)

Perceptron - exemplu

Epoch	Inputs		Desired output	Initial weights		Actual output	Error	or Final weights	
Zp sen	x_1	x_2	Y_d	w_1	w_2	Y	e	w_1	w_2
1	0	0	0	0.3	-0.1	0	0	0.3	-0.1
	0	1	0	0.3	-0.1	0	0	0.3	-0.1
	1	0	0	0.3	-0.1	1	-1	0.2	-0.1
	1	1	1	0.2	-0.1	0	1	0.3	0.0
2	0	0	0	0.3	0.0	0	0	0.3	0.0
	0	1	0	0.3	0.0	0	0	0.3	0.0
	1	0	0	0.3	0.0	1	-1	0.2	0.0
	1	1	1	0.2	0.0	1	0	0.2	0.0
3	0	0	0	0.2	0.0	0	0	0.2	0.0
	0	1	0	0.2	0.0	0	0	0.2	0.0
	1	0	0	0.2	0.0	1	-1	0.1	0.0
	1	1	1	0.1	0.0	0	1	0.2	0.1
4	0	0	0	0.2	0.1	0	0	0.2	0.1
	0	1	0	0.2	0.1	0	0	0.2	0.1
	1	0	0	0.2	0.1	1	-1	0.1	0.1
	1	1	1	0.1	0.1	1	0	0.1	0.1
5	0	0	0	0.1	0.1	0	0	0.1	0.1
	0	1	0	0.1	0.1	0	0	0.1	0.1
	1	0	0	0.1	0.1	0	0	0.1	0.1
	1	1	1	0.1	0.1	1	0	0.1	0.1

Threshold: $\theta = 0.2$; learning rate: $\alpha = 0.1$

Perceptron - limitări

Un perceptron poate învăţa operaţiile AND şi OR, dar nu poate învăţa operaţia XOR (nu e liniar separabilă)

- Nu poate clasifica date non-liniar separabile
 - → soluţia = mai mulţi neuroni

- Cum învață rețeaua cu mai mulți neuroni așezați pe unul sau mai multe straturi ?
 - RNA este capabilă să înveţe un model mai complicat (nu doar liniar) de separare a datelor
 - Algoritmul de învăţare a ponderilor → backpropagation
 - Bazat pe algoritmul scădere după gradient (versiunea clasică sau cea stocastică)
 - Îmbogăţit cu:
 - Informaţia se propagă în RNA înainte (dinspre stratul de intrare spre cel de ieşire)
 - Eroarea se propagă în RNA înapoi (dinspre stratul de ieşire spre cel de intrare)
 - Pp că avem un set de date de antrenament de forma:
 - □ (x^d, t^d), cu:
 - $X^d \in \mathbb{R}^m \to X^d = (X^d_1, X^d_2, ..., X^d_m)$
 - $t^d \in \mathbb{R}^R \rightarrow t^d = (t^d_1, t^d_2, ..., t^d_R)$
 - cu d = 1,2,...,n
 - Presupunem 2 cazuri de RNA
 - □ O RNA cu un singur strat ascuns cu H neuroni → RNA₁
 - O RNA cu p straturi ascunse, fiecare strat cu Hi (i =1,2,...,p) neuroni → RNA_p

Algoritmul backpropagation

- Se iniţializează ponderile
- Cât timp nu este îndeplinită condiţia de oprire
 - Pentru fiecare exemplu (x^d,t^d)
 - Se activează fiecare neuron al reţelei
 - Se propagă informaţia înainte şi se calculează ieşirea corespunzătoare fiecărui neuron al reţelei
 - Se ajustează ponderile
 - Se stabileşte şi se propagă eroarea înapoi
 - Se stabilesc erorile corespunzătoare neuronilor din stratul de ieşire
 - Se propagă aceste erori înapoi în toată reţeaua → se distribuie erorile pe toate conexiunile existente în reţea proporţional cu valorile ponderilor asociate acestor conexiuni
 - Se modifică ponderile

- Condiţii de oprire
 - S-a ajuns la eroare 0
 - S-au efectuat un anumit număr de iteraţii
 - La o iteraţie se procesează un singur exemplu
 - n iteraţii = o epocă

- Dezvoltate de Vapnik în 1970
- Popularizate după 1992
- Clasificatori liniari care identifică un hiperplan de separare între clasa pozitivă şi cea negativă
- Au o fundamentare teoretică foarte riguroasă
- Funcţionează foarte bine pentru date de volum mare
 - analiza textelor,
 - analiza imaginilor

Concepte de bază

- Un set de date
 - De antrenament
 - $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_N, y_N)$, unde
 - $\mathbf{x}_i = (x_1, x_2, ..., x_m)$ este un vector de intrare într-un spaţiu real $X \subseteq R^m$ şi
 - y_i este eticheta clasei (valoarea de ieşire), $y_i \in \{1, -1\}$
 - 1 → clasă pozitivă,
 - -1 → clasă negativă
- MSV găseşte o funcţie liniară de forma

$$f(\mathbf{x}) = \langle \mathbf{w} \cdot \mathbf{x} \rangle + b$$
, (w: vector pondere)

$$y_i = \begin{cases} 1 & if \langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b \ge 0 \\ -1 & if \langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b < 0 \end{cases}$$

- Hiperplanul de decizie care separă cele 2 clase este:
- Pot exista mai multe hiperplanuri
 - Care este cel mai bun?

- MSV caută hiperplanul cu cea mai largă margine (cel care micşorează eroarea de generalizare)
 - Algoritmul SMO (Sequential minimal optimization)

Cazuri de date

- Liniar separabile
 - Separabile
 - Eroarea = 0

- Se relaxează constrângerile → se permit unele erori
- C coeficient de penalizare

Cazuri de date

- Non-liniar separabile
 - Spaţiul de intrare se transformă într-un spaţiu cu mai multe dimensiuni (feature space), cu ajutorul unei funcţii kernel, unde datele devin liniar separabile

- Kernele posibile
 - Clasice
 - Polynomial kernel: $K(\mathbf{x}_1, \mathbf{x}_2) = (\langle \mathbf{x}_1, \mathbf{x}_2 \rangle + 1)^d$
 - RBF kernel: $K(\mathbf{x}_1, \mathbf{x}_2) = exp(-\sigma |\mathbf{x}_1 \mathbf{x}_2|^2)$
 - Kernele multiple
 - Liniare: $K(\mathbf{x}_1, \mathbf{x}_2) = \sum w_i K_i$
 - Ne-liniare
 - Fără coeficienți: $K(\mathbf{x}_1, \mathbf{x}_2) = K_1 + K_2 * exp(K_3)$
 - Cu coeficienți: $K(\mathbf{x}_1, \mathbf{x}_2) = K_1 + c_1 * K_2 * exp(c_2 + K_3)$

Probleme

- Doar atribute reale
- Doar clasificare binară
- Background matematic dificil

Tool-uri

- LibSVM → http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Weka → SMO
- SVMLight → http://svmlight.joachims.org/
- SVMTorch → http://www.torch.ch/
- http://www.support-vector-machines.org/

Învățare supervizată – algoritmi

Regresie

- Studiul legăturii între variabile
- Se dă
 - un set de date (exemple, instanţe, cazuri)
 - □ date de antrenament sub forma unor perechi (atribute datai, ieşirei), unde
 - i =1,N (N = nr datelor de antrenament)
 - **atribute_data**_i= $(atr_{i1}, atr_{i2}, ..., atr_{im}), m$ nr atributelor (caracteristicilor, proprietăților) unei date
 - ieşire_i un număr real
 - date de test
 - sub forma ($atribute_data_i$), i = 1, n (n = nr datelor de test)
- Să se determine
 - o funcţie (necunoscută) care realizează corespondenţa atribute ieşire pe datele de antrenament
 - Ieşirea (valoarea) asociată unei date (noi) de test folosind funcţia învăţată pe datele de antrenament
- Cum găsim forma (expresia) funcţiei?
 - Algoritmi evolutivi → Programare genetică

Învățare supervizată – algoritmi Algoritmi evolutivi

- Algoritmi
 - Inspiraţi din natură (biologie)
 - Iterativi
 - Bazaţi pe
 - populaţii de potenţiale soluţii
 - căutare aleatoare ghidată de
 - Operaţii de selecţie naturală
 - Operaţii de încrucişare şi mutaţie
 - Care procesează în paralel mai multe soluţii
- Metafora evolutivă

Evoluţie naturală	Rezolvarea problemelor
Individ	Soluţie potenţială (candidat)
Populație	Mulţime de soluţii
Cromozom	Codarea (reprezentarea) unei soluţii
Genă	Parte a reprezentării
Fitness (măsură de adaptare)	Calitate
Încrucişare și mutație	Operatori de căutare
Mediu	Spaţiul de căutare al problemei

Învățare supervizată – algoritmi Algoritmi evolutivi

```
Initializare populație P(0)
Evaluare P(0)
g := 0; //generaţia
CâtTimp (not condiţie_stop) execută
   Repetă
                                                         Încrucişare
     Selectează 2 părinţi p1 şi p2 din P(g)
     Încrucişare(p1,p2) =>o1 şi o2
                                               perturbare
    Mutație(o1) => o1*
    Mutație(o2) => o2*
                                             Selectie
    Evaluare(o1*)
    Evaluare(o2*)
    adăugare o1* și o* în P(g+1)
                                                          Selecţie de
   Până când P(g+1) este completă
                                                          supravieţuire
  g := g + 1
Sf CâtTimp
                                                                    Populație
                                              Populație
                                                                    (urmaşi)
                                              (părinţi)
```

Învățare supervizată – algoritmi Algoritmi evolutivi → Programare genetică

- Un tip particular de algoritmi evolutivi
- Cromozomi
 - sub formă de arbore care codează mici programe
- □ Fitness-ul unui cromozom
 - Performanţa programului codat în el
- http://www.genetic-programming.org/

Învățare supervizată – algoritmi Algoritmi evolutivi -> Programare genetică

Reprezentare

- Cromozomul = un arbore cu noduri de tip
 - □ Funcţie → operatori matematici (+,-,*,/,sin,log,...)
 - □ Terminal \rightarrow atribute ale datelor problemei sau constante (x,y,z,a,b,c,...)
- care codează expresia matematică a unei funcții x(y+2) $x+y^2+3$

Învățare supervizată – algoritmi Algoritmi evolutivi → Programare genetică

Fitness

- Eroarea de predicţie
- pp următoarele date de intrare (2 atribute şi o ieşire) şi
 2 cromozomi:

$$c_1 = 3x_1 - x_2 + 5$$

 $c_2 = 3x_1 + 2x_2 + 2$ $f^*(x_1, x_2) = 3x_1 + 2x_2 + 1$ - necunoscută

			-			
X_1	<i>X</i> ₂	$f^*(x_1,x_2)$	$f_1(X_1,X_2)$	$f_2(x_1,x_2)$	f*-f ₁	$ f^*-f_2 $
1	1	6	7	7	1	1
0	1	3	4	4	1	1
1	0	4	8	5	4	1
-1	1	0	1	1	1	1
					Σ=7	Σ= 4

 \rightarrow c₂ e mai bun ca c₁

Învățare supervizată – algoritmi Algoritmi evolutivi > Programare genetică

Iniţializare

■ Generare aleatoare de arbori corecţi → expresii matematice valide

□ Încrucişare

Cu punct de tăietură – se interchimbă doi sub-arbori

Învățare supervizată − algoritmi Algoritmi evolutivi → Programare genetică

Mutaţie

Generarea unui nou sub-arbore

$$p=(x+y)*(z-sin(x))$$

$$f=(x+y)*(z-sin(x+4))$$

Învățare automată

- Învăţare supervizată
- □ Învăţare ne-supervizată
- □ Învăţare cu întărire
- □ Teoria învăţării

Învățare nesupervizată

- Scop
 - Găsirea unui model sau a unei structuri utile a datelor
- □ Tip de probleme
 - Identificara unor grupuri (clusteri)
 - Analiza genelor
 - Procesarea imaginilor
 - Analiza reţelelor sociale
 - Segmentarea pieţei
 - Analiza datelor astronomice
 - Clusteri de calculatoare
 - Reducerea dimensiunii
 - Identificarea unor cauze (explicaţii) ale datelor
 - Modelarea densităţii datelor
- Caracteristic
 - Datele nu sunt adnotate (etichetate)

Învățare ne-supervizată – definire

Împărțirea unor exemple neetichetate în submulțimi disjuncte (clusteri) astfel încât:

- exemplele din acelaşi cluster sunt foarte similare
- exemplele din clusteri diferiţi sunt foarte diferite

Definire

- Se dă
 - un set de date (exemple, instanțe, cazuri)
 - Date de antrenament
 - Sub forma atribute_data;, unde
 - i =1,N (N = nr datelor de antrenament)
 - **atribute_data**_i= $(atr_{i1}, atr_{i2}, ..., atr_{im}), m$ nr atributelor (caracteristicilor, proprietăților) unei date
 - Date de test
 - Sub forma (atribute_data_i), i =1,n (n = nr datelor de test)
- Se determină
 - o funcție (necunoscută) care realizează gruparea datelor de antrenament în mai multe clase
 - Nr de clase poate fi pre-definit (k) sau necunoscut
 - Datele dintr-o clasă sunt asemănătoare
 - clasa asociată unei date (noi) de test folosind gruparea învăţată pe datele de antrenament

Alte denumiri

Clustering

Învățare ne-supervizată – definire

□ Supervizată *vs.* Ne-supervizată

Învățare ne-supervizată – definire

- Distanțe între 2 elemente p și $q \in R^m$
 - Euclideana

- Manhattan
 - $d(p,q) = \sum_{i=1,2,...,m} |p_i q_i|$
- Mahalanobis
 - $\qquad \qquad d(\boldsymbol{p},\boldsymbol{q}) = sqrt(\boldsymbol{p}-\boldsymbol{q})S^{-1}(\boldsymbol{p}-\boldsymbol{q})),$
 - unde S este matricea de variație și covariație $(S = E[(\mathbf{p}-E[\mathbf{p}])(\mathbf{q}-E[\mathbf{q}])])$
- Produsul intern

$$d(\boldsymbol{p},\boldsymbol{q}) = \sum_{j=1,2,\ldots,m} p_j q_j$$

- Cosine
 - $d(\mathbf{p}, \mathbf{q}) = \sum_{i=1,2,...,m} p_i q_i / (sqrt(\sum_{i=1,2,...,m} p_i^2) * sqrt(\sum_{i=1,2,...,m} q_i^2))$
- Hamming
 - numărul de diferențe între **p** și **q**
- Levenshtein
 - numărul minim de operații necesare pentru a-l transforma pe p în q
- Distanță vs. Similaritate
 - Distanţa → min
 - Similaritatea → max

Învățare ne-supervizată – exemple

Gruparea genelor

 Studii de piaţă pentru gruparea clienţilor (segmentarea pieţei)

news.google.com

Învățare ne-supervizată – proces

Procesul

- 2 paşi:
 - Antrenarea
 - Învăţarea (determinarea), cu ajutorul unui algoritm, a clusterilor existenţi
 - Testarea
 - Plasarea unei noi date într-unul din clusterii identificaţi în etapa de antrenament

Calitatea învățării (validarea clusterizării):

- Criterii interne
 - Similaritate ridicată în interiorul unui cluster şi similaritate redusă între clusteri
- Criteri externe
 - Folosirea unor benchmark-uri formate din date pre-grupate

Măsuri de performanță

- Criterii interne
 - Distanţa în interiorul clusterului
 - Distanţa între clusteri
 - Indexul Davies-Bouldin
 - Indexul Dunn
- Criteri externe
 - Compararea cu date cunoscute în practică este imposibil
 - Precizia
 - Rapelul
 - F-measure

Măsuri de performanță

- Criterii interne
 - Distanța în interiorul clusterului c_j care conține n_j instanțe
 - Distanţa medie între instanţe (average distance)
 - $D_a(c_j) = \sum_{x_{i1}, x_{i2} \in c_j} ||x_{i1} x_{i2}|| / (n_j(n_j-1))$
 - Distanţa între cei mai apropiaţi vecini (nearest neighbour distance)
 - $D_{nn}(c_i) = \sum_{xil \in c_i} \min_{xi2 \in c_i} ||x_{il} x_{i2}|| / n_i$
 - Distanţa între centroizi
 - $D_c(c_j) = \sum_{x_i, \epsilon c_j} \frac{||x_i \mu_j||}{|n_j|}$, unde $\mu_j = \frac{1}{n_j} \sum_{x_i \epsilon c_j} x_i$

Măsuri de performanță

- Criterii interne
 - lacktriangle Distanța între 2 clusteri c_{j1} și c_{j2}
 - Legătură simplă

•
$$d_s(c_{j1}, c_{j2}) = min_{xi1ecj1, xi2ecj2} \{ / |x_{i1} - x_{i2}| / \}$$

Legătură completă

•
$$d_{co}(c_{j1}, c_{j2}) = \max_{xi1ecj1, xi2ecj2} \{/|x_{i1} - x_{i2}|/\}$$

Legătură medie

•
$$d_a(c_{j1}, c_{j2}) = \sum_{xi1ecj1, xi2ecj2} \{/|x_{i1} - x_{i2}|/\} / (n_{j1} * n_{j2})$$

Legătură între centroizi

•
$$d_{ce}(c_{i1}, c_{i2}) = //\mu_{i1} - \mu_{i2} //$$

Măsuri de performanţă

- Criterii interne
 - Indexul Davies-Bouldin → min → clusteri compacţi
 - $DB = 1/nc* \sum_{i=1,2,...,nc} max_{j=1,2,...,nc,j\neq i} ((\sigma_i + \sigma_j)/d(\mu_i, \mu_j))$
 - unde:
 - nc numărul de clusteri
 - μ_i centroidul clusterului i
 - σ_i media distanțelor între elementele din clusterul i și centroidul μ_i
 - $d(\mu_i, \mu_i)$ distanța între centroidul μ_i și centroidul μ_i

Indexul Dunn

- Identifică clusterii denşi şi bine separaţi
- $D = d_{min}/d_{max}$
- Unde:
 - d_{min} distanţa minimă între 2 obiecte din clusteri diferiţi distanţa intracluster
 - d_{max} distanța maximă între 2 obiecte din același cluster distanța intercluster

- După modul de formare al clusterilor
 - C. ierarhic
 - C. ne-ierarhic (partiţional)
 - C. bazat pe densitatea datelor
 - C. bazat pe un grid

După modul de formare al clusterilor

- Ierarhic
 - se crează un arbore taxonomic (dendogramă)
 - crearea clusterilor (recursiv)
 - nu se cunoaşte k (nr de clusteri)
 - aglomerativ (de jos în sus) → clusteri mici spre clusteri mari
 - □ diviziv (de sus în jos) → clusteri mari spre clusteri mici
 - Ex. Clustering ierarhic aglomerativ

- După modul de formare al clusterilor
 - Ne-ierarhic
 - □ Partiţional → se determină o împărţire a datelor → toţi clusterii deodată
 - Optimizează o funcţie obiectiv definită
 - Local doar pe anumite atribute
 - Global pe toate atributele

care poate fi

- Pătratul erorii suma patratelor distanţelor între date şi centroizii clusterilor → min
 - Ex. K-means
- Bazată pe grafuri
 - Ex. Clusterizare bazată pe arborele minim de acoperire
- Bazată pe modele probabilistice
 - Ex. Identificarea distribuţiei datelor → Maximizarea aşteptărilor
- Bazată pe cel mai apropiat vecin
- □ Necesită fixarea apriori a lui k → fixarea clusterilor iniţiali
 - Algoritmii se rulează de mai multe ori cu diferiţi parametri şi se alege versiunea cea mai eficientă
- Ex. K-means, ACO

După modul de formare al clusterilor

- bazat pe densitatea datelor
 - Densitatea şi conectivitatea datelor
 - Formarea clusterilor de bazează pe densitatea datelor într-o anumită regiune
 - Formarea clusterilor de bazează pe conectivitatea datelor dintr-o anumită regiune
 - Funcţia de densitate a datelor
 - Se încearcă modelarea legii de distribuţie a datelor
 - Avantaj:
 - Modelarea unor clusteri de orice formă

- După modul de formare al clusterilor
 - Bazat pe un grid
 - Nu e chiar o metodă nouă de lucru
 - Poate fi ierarhic, partiţional sau bazat pe densitate
 - Pp. segmentarea spaţiului de date în zone regulate
 - Obiectele se plasează pe un grid multi-dimensional
 - Ex. ACO

După modul de lucru al algoritmului

- Aglomerativ
 - 1. Fiecare instanță formează inițial un cluster
 - 2. Se calculează distanțele între oricare 2 clusteri
 - 3. Se reunesc cei mai apropiaţi 2 clusteri
 - 4. Se repetă pașii 2 și 3 până se ajunge la un singur cluster sau la un alt criteriu de stop
- Diviziv
 - Se stabileşte numărul de clusteri (k)
 - 2. Se iniţializează centrii fiecărui cluster
 - 3. Se determină o împărțire a datelor
 - 4. Se recalculează centrii clusterilor
 - 5. Se reptă pasul 3 și 4 până partiționarea nu se mai schimbă (algoritmul a convers)
- După atributele considerate
 - Monotetic atributele se consideră pe rând
 - Politetic atributele se consideră simultan

- După tipul de apartenență al datelor la clusteri
 - Clustering exact (hard clustering)
 - fAsociază fiecarei intrări $m x_i$ o etichetă (clasă) c_i
 - Clustering fuzzy
 - □ Asociază fiecarei intrări x_i un grad (probabilitate) de apartenență f_{ij} la o anumită clasă $c_j \rightarrow$ o instanță x_i poate aparține mai multor clusteri

Învățare ne-supervizată – algoritmi

- Clustering ierarhic aglomerativ
- K-means
- AMA
- Modele probabilistice
- Cel mai apropiat vecin
- Fuzzy
- Reţele neuronale artificiale
- Algoritmi evolutivi
- ACO

Învățare ne-supervizată – algoritmi Clustering ierarhic aglomerativ

- Se consideră o distanță între 2 instanțe $d(x_{i1}, x_{i2})$
- Se formează N clusteri, fiecare conţinând câte o instanţă
- Se repetă
 - Determinarea celor mai apropiaţi 2 clusteri
 - Se reunesc cei 2 clusteri → un singur cluster
- Până când se ajunge la un singur cluster (care conţine toate instanţele)

Învățare ne-supervizată – algoritmi Clustering ierarhic agloemrativ

\square Distanţa între 2 clusteri c_i şi c_i :

- Legătură simplă → minimul distanţei între obiectele din cei
 2 clusteri
 - $d(c_i, c_j) = \max_{xi1 \in ci, xi2 \in cj} sim(\mathbf{x_{i1}}, \mathbf{x_{i2}})$
- Legătură completă → maximul distanţei între obiectele din cei 2 clusteri
 - $d(c_i, c_j) = \min_{xi1 \in ci, xi2 \in cj} sim(x_{i1}, x_{i2})$
- Legătură medie → media distanţei între obiectele din cei 2 clusteri
 - $d(c_i, c_j) = 1 / (n_i * n_j) \sum_{xi1 \in ci} \sum_{xi2 \in cj} d(\mathbf{x}_{i1}, \mathbf{x}_{i2})$
- Legătură medie peste grup → distanţa între mediile (centroizii) celor 2 clusteri

Învățare ne-supervizată – algoritmi K-means (algoritmul Lloyd/iterația Voronoi)

- □ Pp că se vor forma k clusteri
- \blacksquare Iniţializează k centroizi $\mu_1, \mu_2, ..., \mu_k$
 - Un centroid μ_j (i=1,2,...,k) este un vector cu m valori (m nr de atribute)
- Repetă până la convergență
 - Asociază fiecare instanță celui mai apropiat centroid → pentru fiecare instanță $\mathbf{x_i}$, i=1,2,...,N□ $c_i = arg min_{i=1,2,...,k} ||\mathbf{x_i} \boldsymbol{\mu_i}||^2$
 - Recalculează centroizii prin mutarea lor în media instanţelor asociate fiecăruia → pentru fiecare cluster c_j, j = 1, 2, ..., k
 - $\mathbf{p}_{i} = \sum_{i=1,2,...N} 1_{ci=j} \mathbf{x}_{i} / \sum_{i=1,2,...N} 1_{ci=j}$

Învățare ne-supervizată – algoritmi K-means

Învățare ne-supervizată – algoritmi K-means

- \blacksquare Iniţializarea a k centroizi $\mu_1, \mu_2, ..., \mu_k$
 - Cu valori generate aleator (în domeniul de definiţie al problemei)
 - Cu k dintre cele N instanţe (alese în mod aleator)
- Algoritmul converge întotdeauna?
 - Da, pt că avem funcţia de distorsiune J

care este descrescătoare

- Converge într-un optim local
- Găsirea optimului global → NP-dificilă

Învățare ne-supervizată – algoritmi Clusterizare bazată pe arborele minim de acoperire (AMA)

- Se construieşte AMA al datelor
- Se elimină din arbore cele mai lungi muchii, formându-se clusteri

Învățare ne-supervizată – algoritmi Modele probabilistice

- http://www.gatsby.ucl.ac.uk/~zoubin/cours e04/ul.pdf
- http://learning.eng.cam.ac.uk/zoubin/nipstu t.pdf

Învățare ne-supervizată – algoritmi Cel mai apropiat vecin

- Se etichetează câteva dintre instanţe
- Se repetă până la etichetarea tuturor instanţelor
 - O instanţă ne-etichetată va fi inclusă în clusterul instanţei cele mai apropiate
 - dacă distanţa între instanţa neetichetată şi cea etichetată este mai mică decât un prag

Învățare ne-supervizată – algoritmi Clusterizare fuzzy

- Se stabileşte o partiţionare fuzzy iniţială
 - Se construiește matricea gradelor de apartenență U, unde u_{ij} gradul de apartenență al instanței $\boldsymbol{x_i}$ (i=1,2,...,N) la clusterul c_j (j=1,2,...,k) $(u_{ij} \in [0,1])$
 - \Box Cu cât u_{ii} e mai mare, cu atât e mai mare încrederea că instanța x_i face parte din clusterul c_i
- Se stabileşte o funcţie obiectiv

 - □ $E^2(U) = \sum_{i=1,2,...,N} \sum_{j=1,2,...,k} u_{ij} || \mathbf{x}_i \mathbf{\mu}_j ||^2$, unde $\mathbf{\mu}_j = \sum_{i=1,2,...,N} u_{ij} \mathbf{x}_i$ centrul celui de-al j-lea fuzzy cluster □ care se optimizează (min) prin re-atribuirea instanţelor (în clusteri noi)
- □ Clusering fuzzy → clusterizare hard (fixă)
 - impunerea unui prag funcţiei de apartenenţă uii

Învățare ne-supervizată – algoritmi Algoritmi evolutivi

Algoritmi

- Inspiraţi din natură (biologie)
- Iterativi
- Bazaţi pe
 - populații de potențiale soluții
 - căutare aleatoare ghidată de
 - Operaţii de selecţie naturală
 - Operaţii de încrucişare şi mutaţie
- Care procesează în paralel mai multe soluţii
- Metafora evolutivă

Evoluţie naturală	Rezolvarea problemelor
Individ	Soluţie potenţială (candidat)
Populație	Mulţime de soluţii
Cromozom	Codarea (reprezentarea) unei soluţii
Genă	Parte a reprezentării
Fitness (măsură de adaptare)	Calitate
Încrucişare și mutație	Operatori de căutare
Mediu	Spaţiul de căutare al problemei

Învățare ne-supervizată – algoritmi Algoritmi evolutivi

```
Initializare populație P(0)
Evaluare P(0)
g := 0; //generaţia
CâtTimp (not condiţie_stop) execută
   Repetă
                                                      Încrucişare
    Selectează 2 părinţi p1 şi p2 din P(g)
    Încrucişare(p1,p2) =>o1 şi o2
    Mutație(o1) => o1*
    Mutație(o2) => o2*
    Evaluare(o1*)
    Evaluare(o2*)
    adăugare o1* și o* în P(g+1)
                                                        Selecție de
  Până când P(g+1) este completă
                                                        supravieţuire
  g := g + 1
Sf CâtTimp
                                                                 Populație
                                            Populație
                                                                 (urmaşi)
                                            (părinţi)
```

Învățare ne-supervizată – algoritmi Algoritmi evolutivi

- Reprezentare
 - Cromozomul = o partiţionare a datelor
 - □ Ex. 2 clusteri → cromozom = vector binar
 - Ex. K clusteri \rightarrow cromozom = vector cu valori din $\{1,2,...,k\}$
- Fitness
 - Calitatea partiţionării
- Iniţializare
 - Aleatoare
- Încrucişare
 - Punct de tăietură
- Mutaţie
 - Schimbarea unui element din cromozom

Învățare ne-supervizată – algoritmi ACO

- Preferinţa pentru drumuri cu nivel ridicat de feromon
- □ Pe drumurile scurte feromonul se înmulţeşte
- □ Furnicile comunică pe baza urmelor de feromon

Învățare ne-supervizată – algoritmi ACO

- Algoritm de clusterizare bazat pe un grid
- Obiectele se plasează aleator pe acest grid, urmând ca furnicuţele să le grupeze în funcţie de asemănarea lor
- 2 reguli pentru furnicuţe
 - Furnica "ridică" un obiect-obstacol
 - Probabilitatea de a-l ridica e cu atât mai mare cu cât obiectul este mai izolat (în apropierea lui nu se află obiecte similare)
 - $p(ridica) = (k^{+}/(k^{+}+f))^{2}$
 - Furnica "depune" un obiect (anterior ridicat) într-o locaţie nouă
 - Probabilitatea de a-l depune e cu atât mai mare cu cât în vecinătatea locului de plasare se afla mai multe obiecte asemănătoare
 - $p(depune)=(f/(k^-+f))^2$
 - k^+ , k^- constante
 - f procentul de obiecte similare cu obiectul curent din memoria furnicuţei
- Furnicuţele
 - au memorie
 - reţin obiectele din vecinătatea poziţiei curente
 - se mişcă ortogonal (N, S, E, V) pe grid pe căsuţele neocupate de alte furnici

Învățare automată

- □ Învăţare supervizată
- □ Învăţare ne-supervizată
- □ Învăţare cu întărire
- □ Teoria învăţării

Învățare cu întărire

- Scop
 - Învăţarea, de-a lungul unei perioade, a unui mod de acţiune (comportament) care să maximizeze recompensele (câştigurile) pe termen lung
- Tip de probleme
 - Ex. Dresarea unui câine (good and bad dog)
- Caracteristic
 - Interacţiunea cu mediul (acţiuni → recompense)
 - Secvenţă de decizii
- □ Învăţare supervizată
 - Decizie → consecinţă (cancer malign sau benign)

Învățare cu întărire – definire

Exemplu: plecând din căsuţa roşie să se găsească un drum până la căsuţa verde

- Agentul învață prin interacțiunea cu mediul și prin observarea rezultatelor obținute din aceste interacțiuni
 - Este vorba de "cauză şi efect" -- modul în care oamenii îşi formează cunoaşterea aupra mediului pe parcursul vieţii
 - Acţiunile pot afecta şi recompensele ulterioare, nu numai pe cele imediate (efect întârziat)

Învățare cu întărire – definire

Învăţarea unui anumit comportament în vederea realizării unei sarcini → execuţia unei acţiuni → primeşte un feedback (cât de bine a acţionat pentru îndeplinirea sarcinii) → execuţia unei noi acţiuni

Învățare cu întărire

- Se primeşte o recompensă (întărire pozitivă) dacă sarcina a fost bine îndeplinită
- □ Se primeşte o pedeapsă (întărire negativă) dacă sarcina nu a fost bine îndeplinită

Definire

- Se dau
 - Stări ale mediului
 - Acțiuni posibile de executat
 - Semnale de întărire (scalare) recompense sau pedepse
- Se determină
 - O succesiune de acţiuni care să maximizeze măsura de întărire (recompensa)

Alte denumiri

- Reinforcement learning
- Învăţare împrospătată

Învățare cu întărire – definire

- □ Învăţare supervizată
 - Învăţarea pe baza unor exemple oferite de un expert extern care deţine o bază importantă de cunoştinţe
- □ Învăţare cu întărire
 - Învăţarea pe baza interacţiunii cu mediul

Învățare cu întărire – exemple

- Robotică
 - Controlul membrelor
 - Controlul posturii
 - Preluarea mingii în fotbalul cu roboţii
- Cercetări operaţionale
 - Stabilirea preţurilor
 - Rutare
 - Planificarea task-urilor

Învățare cu întărire – proces

Procesul

- Agentul observă o stare de intrare
- Agentul alege o acţiune pe baza unei funcţii de decizie (o strategie)
- Agentul execută acţiunea aleasă
- Agentul primeşte o recompensă/pedeapsă numerică de la mediu
- Agentul reţine recompensa/pedeapsa primită

Învățare cu întărire – proces

- Mediul este modelat ca un proces de decizie de tip Markov
 - *S* mulţimea stărilor posibile
 - A(s) acţiuni posibile în starea s
 - P(s, s', a) probabilitatea de a trece din starea s în starea s' prin acţiunea a
 - R(s, s', a) recompensa aşteptată în urma trecerii din starea s în starea s'prin acţiunea a
 - γ rata de discount pentru recompensele întârziate

- Obiectivul
 - Găsirea unei politici $\pi: s \in S \rightarrow a \in A(s)$ care maximizează
 - valoarea (recompensa viitoare aşteptată) a unei stări
 - $V^{\Pi}(s) = E\{r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s_t = s, \Pi\}$
 - calitatea fiecărei perechi stare-acţiune
 - $Q^{\Pi}(s,a) = E\{r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s_t = s, a_t = a, \pi\}$

Învățare cu întărire – evaluare

Măsuri de performanță

- Recompensa acumulată pe parcursul învăţarii
- Numărul de paşi necesari învăţării

Învățare cu întărire – algoritmi

- Q-learning
 - Calitatea unei combinaţii stare-acţiune
- □ SARSA (State-Action-Reward-State-Action)

Învățare automată

- □ Învăţare supervizată
- □ Învăţare ne-supervizată
- □ Învăţare cu întărire
- Teoria învăţării