北京工业大学 2022—2023 学年第一学期 《高等数学(工)—1》期末考试试卷 A 卷 (答案)

考试说明:考试日期: 2022年12月14日。考试时间: 95分钟。考试方式: 闭卷 承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分 条例》,在考试过程中自觉遵守有关规定和纪律,服从监考教师管理,诚信考 试,做到不违纪、不作弊、不替考,若有违反,愿接受相应处分。

承证	若人:				学	号	:			_ :	班号:		
0000		0000		00000	000	0000		00000	00000				
注:	本试卷共	\equiv	大题,	共	6	页,	满分	100	分,	考试时必	须使用	卷后附	付加的统

一答题纸和草稿纸。 卷 面 成 绩 汇 总 表 (阅卷教师填写)

题 号	_	二	总成绩
满 分	90	10	
得 分			

得分 │ 一、 单项选择题: (在每小题给出的四个选项中,只有一项 符合题目要求,请将正确选项的字母写在括号内.本大题共

30 小题, 每小题 3 分, 共 90 分.)

1. 若
$$f(x) = \begin{cases} (1+2x)^{\frac{1}{x}} & x \neq 0 \text{ 在 } x = 0 \text{ 处连续, } 则 a = \\ a, & x = 0 \end{cases}$$
 (C)

A. 1

B. \sqrt{e} C. e^2 D. 2

2.
$$x = 0$$
 是 $f(x) = x \cdot \cos \frac{1}{2x}$ 的哪一类间断点 (C)

A. 跳跃间断点 B. 无穷间断点 C.可去间断点 D. 不是间断点

3. 设
$$\lim_{t\to 0} \frac{f(3x)-f(0)}{2x} = 1$$
, 则 $f'(0) =$ (B) A. $\frac{3}{2}$ B. $\frac{2}{3}$ C. 6 D. $\frac{1}{6}$ 4. 设函数 $y = f(x)$ 由方程 $xy + 2\ln x = y^4$ 所确定,则曲线 $y = f(x)$ 在点 $(1,1)$ 处的切线方程为 (A) A. $y = x$ B. $y = -x$ C. $x + y = 2$ D. $x - y = 2$ 5. 设 $\left\{ x = \ln(1+t^2) \right\}$ 确定了函数 $y = y(x)$, 则 $\frac{d^2x}{dy^2} \Big|_{t=1} =$ (D) A. 1 B. $-\frac{1}{2}$ C. 2 D. -4 6. $y = x^2 - 4x + 10$ 在点 $(2,6)$ 处的曲率为 (C) A. 0 B. $\frac{1}{2}$ C. 2 D. $\frac{1}{(1+x^2)^{\frac{1}{2}}}$ 7. 当 $x > 0$ 时,曲线 $y = x \sin \frac{1}{x}$ (A) A. 有且仅有水平渐近线 B. 有且仅有垂直渐近线 C. 既有水平渐近线又有垂直渐近线 D. 既无水平渐近线也无垂直渐近线 B. 设 $f(x) = \begin{cases} x^2, & x \le 1 \\ 2x^3, & x > 1 \end{cases}$ 则 $f(x)$ 在 $x = 1$ 处 (B) A. 左、右导数都存在但不相等 B. 左导数存在但右导数不存在 C. 左导数不存在但右导数存在 D. 左、右导数都不存在 9. 设函数 $f(x)$ 的导函数为 $f(x)$ 的一个原函数为 (B) A. $1 + \sin x$ B. $1 - \sin x$ C. $1 + \cos x$ D. $1 - \cos x$ 10. 设 $y = \int_0^{2x} \sqrt{1 + t^2} dt$,则 $y' =$ (D)

11. 关于方程
$$x^5 + 2x^3 + 3x + 4 = 0$$
,下列说法正确的是 (B)

A. 无实根 B. 有唯一实根 C. 有三个不同的实根 D. 有五个不同的实根

12. 函数
$$y = x^{1+x}$$
, 则 $dy|_{x=2} =$ (C)

- A. 12dx B. $8\ln 2dx$ C. $(8\ln 2 + 12)dx$ D. 8dx
- 13. 当 $x \to 0$ 时, $(1-\cos x)^2 \to \sin^2 x$ 的 (A)
- A. 高阶无穷小 B. 同阶无穷小,但不等价 C. 低阶无穷小 D. 等价无穷小

14.
$$f(x) = \frac{1}{1+2x}$$
的 n 阶麦克劳林多项式为 $P_n(x) = a_0 + a_1 x + \dots + a_n x^n$,则 $a_n = a_1 + a_2 x + \dots$

(B)

A.
$$(-1)^n 2^n \cdot n!$$
 B. $(-1)^n 2^n$ C. $\frac{(-1)^n}{2^n}$ D. $\frac{(-1)^n 2^n}{n!}$

- 15. 设 $f(x) = e^{x}(x-1)^{2}$,则关于 f(x) 的极值,下面说法正确的是 (B)
- A. x=-1 不是极值点, x=1 是极值点
- B. x=-1 是极大值点, x=1 是极小值点
- C. x=-1 是极小值点, x=1 是极大值点
- D. x=-1, x=1都不是极值点

A.
$$\frac{2022!}{3} \left[\frac{1}{(x-4)^{2023}} - \frac{1}{(x-1)^{2023}} \right]$$
 B. $\frac{2022!}{3} \left[\frac{1}{(x-4)^{2022}} - \frac{1}{(x-1)^{2022}} \right]$

C.
$$\frac{2022!}{3} \left[\frac{1}{(x-1)^{2023}} - \frac{1}{(x-4)^{2023}} \right]$$
 D. $\frac{2022!}{3} \left[\frac{1}{(x-1)^{2022}} - \frac{1}{(x-4)^{2022}} \right]$

17. 曲线
$$y = (x-5)x^{\frac{2}{3}}$$
的拐点坐标为 (D)

18. 设
$$y = f(\sqrt{x})$$
, 其中 $f(x)$ 具有连续的一阶导数,则 $y' =$ (C)

A.
$$\frac{\left(f(\sqrt{x})\right)'}{2\sqrt{x}}$$
 B. $\frac{f'(\sqrt{x})}{\sqrt{x}}$

B.
$$\frac{f'(\sqrt{x})}{\sqrt{x}}$$

C.
$$\frac{f'(\sqrt{x})}{2\sqrt{x}}$$
 D. $f'(\sqrt{x})$

D.
$$f'(\sqrt{x})$$

19.
$$\int_{-2}^{2} \frac{|x| + x}{2 + x^2} \, \mathrm{d}x =$$

$$20. \int x \cos^2 x dx =$$

A.
$$\frac{1}{4}x^2 + \frac{x}{4}\sin 2x + \frac{1}{8}\cos 2x + C$$

B.
$$\frac{1}{4}x^2 + \frac{x}{4}\sin 2x - \frac{1}{8}\cos 2x + C$$

C.
$$\frac{1}{2}x^2 + \frac{x}{4}\sin 2x + \frac{1}{8}\cos 2x + C$$

D.
$$\frac{1}{2}x^2 - \frac{x}{4}\sin 2x - \frac{1}{8}\cos 2x + C$$

21.
$$\int_{1}^{5} \frac{x-1}{1+\sqrt{2x-1}} dx =$$

A.
$$\frac{7}{3}$$

A.
$$\frac{7}{3}$$
 B. $\frac{19}{3}$

C.
$$\frac{44}{3}$$
 D. $\frac{80}{3}$

D.
$$\frac{80}{3}$$

22.
$$\int_{-5}^{5} 4\sqrt{25 - x^2} \, \mathrm{d}x =$$

A.
$$\frac{25\pi}{2}$$

C.
$$50\pi$$

D.
$$100\pi$$

23. 广义积分
$$\int_0^{+\infty} \frac{\mathrm{d}x}{x^2 + 2x + 2} =$$

B.
$$\frac{\pi}{2}$$

C.
$$\frac{3\pi}{4}$$
 D. $\frac{\pi}{4}$

D.
$$\frac{\pi}{4}$$

24. 由
$$y = \ln x$$
, $y = \ln 2$, $y = \ln 4$ 和 y 轴所围成的图形的面积为

25. 曲线
$$y = \frac{\sqrt{x}}{3}(3-x)$$
上相应于 $1 \le x \le 3$ 的弧长为

$$A. \quad \frac{1}{2} \int_{1}^{3} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right)^{2} dx$$

B.
$$\frac{1}{2}\int_{1}^{3}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)dx$$

C.
$$\int_{1}^{3} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right) dx$$

D.
$$\int_{1}^{3} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right)^{2} dx$$

26. 由 $y = x^2 - 2x$, x = 1 和 x 轴所围图形绕 y 轴旋转所得立体的体积为 (C)

A.
$$\pi \int_{-1}^{0} (1 + \sqrt{1 - y})^2 dy - \pi$$

B.
$$\pi \int_{-1}^{0} (1 - \sqrt{1 - y})^2 dy - \pi$$

C.
$$\pi - \pi \int_{-1}^{0} (1 - \sqrt{1 + y})^2 dy$$

D.
$$\pi - \pi \int_{-1}^{0} (1 + \sqrt{1 + y})^2 dy$$

27.
$$\int_0^{\frac{\pi}{2}} \cos^5 x dx =$$
 (C)

A.
$$\frac{8}{15}\pi$$
 B. $\frac{4}{15}\pi$ C. $\frac{8}{15}$ D. $\frac{4}{15}$

B.
$$\frac{4}{15}\pi$$

C.
$$\frac{8}{15}$$

D.
$$\frac{4}{15}$$

28. 设函数
$$f(x) = \begin{cases} e^{-x}, & x < 0 \\ x, & x \ge 0 \end{cases}$$
,记 $F(x) = \int_{-1}^{x} f(t) dt$,则 (CC)

A.
$$F(x) = \begin{cases} e-1, & x < 0 \\ \frac{x^2}{2} + \frac{1}{2}, & x \ge 0 \end{cases}$$
 B. $F(x) = \begin{cases} e-e^{-x}, & x < 0 \\ \frac{x^2}{2} + \frac{1}{2}, & x \ge 0 \end{cases}$

B.
$$F(x) = \begin{cases} e - e^{-x}, & x < 0 \\ \frac{x^2}{2} + \frac{1}{2}, & x \ge 0 \end{cases}$$

C.
$$F(x) = \begin{cases} e - e^{-x}, & x < 0 \\ e - 1 + \frac{x^2}{2}, & x \ge 0 \end{cases}$$
 D. $F(x) = \begin{cases} e - 1, & x < 0 \\ e - 1 + \frac{x^2}{2}, & x \ge 0 \end{cases}$

D.
$$F(x) = \begin{cases} e-1, & x < 0 \\ e-1+\frac{x^2}{2}, & x \ge 0 \end{cases}$$

29.
$$I_1 = \int_e^x \ln t dt$$
, $I_2 = \int_e^x \ln t^2 dt$, $\sharp + x > 1$, \sharp

A. 仅当
$$x > e$$
时, $I_1 < I_2$

B. 对一切
$$x \neq e$$
有 $I_1 < I_2$

C. 仅当
$$x < e$$
时, $I_1 < I_2$

D. 对一切
$$x \neq e$$
有 $I_1 \geq I_2$

$$30. \lim_{n\to\infty}\sum_{i=1}^n\frac{i}{n^2}e^{\left(\frac{i}{n}\right)^2}=$$

A.
$$\int_0^1 e^x dx$$
 B. $\int_0^1 x e^x dx$ C. $\int_0^1 e^{x^2} dx$ D. $\int_0^1 x e^{x^2} dx$

B.
$$\int_0^1 xe^x dx$$

C.
$$\int_0^1 e^{x^2} dx$$

D.
$$\int_{0}^{1} xe^{x^{2}} dx$$

二、证明题: (本大题共2小题,每小题5分,共10分)

得分

31 证明:
$$\frac{1}{2} \le \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin x}{x} dx \le \frac{\sqrt{2}}{2}$$
.

证明: 设
$$f(x) = \frac{\sin x}{x}$$
,

则 $f'(x) = \frac{x \cos x - \sin x}{x^2}$,

----2

设 $g(x) = x \cos x - \sin x$, 则 $g'(x) = -x \sin x < 0$,

所以 g(x) 单调减少,而 $g(\frac{\pi}{4}) < 0$,所以当 $\frac{\pi}{4} < x < \frac{\pi}{2}$ 时, $g(x) < g(\frac{\pi}{4}) < 0$,

所以 f'(x) < 0, f(x) 单调减少,

当
$$\frac{\pi}{4} \le x \le \frac{\pi}{2}$$
时, $f(x)$ 的最大值 $M = f(\frac{\pi}{4}) = \frac{2\sqrt{2}}{\pi}$,最小值 $m = f(\frac{\pi}{2}) = \frac{2}{\pi}$,-----4

由积分估值定理得 $\frac{2}{\pi} \cdot \frac{\pi}{4} \le \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin x}{x} dx \le \frac{2\sqrt{2}}{\pi} \cdot \frac{\pi}{4}$,原命题得证. ______5

得 分

32. 设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,

 $f(\frac{1}{2}) = \frac{1}{2}$, 证明: 存在 $\xi \in (0,1)$, 使得 $f'(\xi) + 2[f(\xi) - \xi] = 1$.

证明: 设 $F(x) = e^{2x} (f(x) - x)$,

----2'

则 F(x) 在 [0,1] 上连续, 在 (0,1) 内可导。

而 $F(0) = F(\frac{1}{2}) = 0$, 由罗尔定理有

----4'

存在 $\xi \in (0, \frac{1}{2}) \subset (0,1)$, 使得 $F'(\xi) = 0$,

即 $f'(\xi) + 2[f(\xi) - \xi] = 1$.

----5'