

High Frequency Communications Response to Solar Activity in September 2017 as Observed by Amateur Radio Networks

Nathaniel A. Frissell, W2NAF¹

Joshua S. Vega¹, Evan Markowitz¹, Andrew J. Gerrard¹, William D. Engelke², Philip J. Erickson³, Ethan S. Miller⁴, R. Carl Luetzelschwab⁵, and Jacob Bortnik⁶

¹New Jersey Institute of Technology, K2MFF

²University of Alabama

³MIT Haystack Observatory

⁴Johns Hopkins University Applied Physics Laboratory

⁵HamSCI Community

⁶University of California, Los Angeles

Introduction

- •Numerous solar flares and CME-induced interplanetary shocks occurred September 4-14, 2017, disrupting HF (3-30 MHz) communications.
- Simultaneously, Hurricanes Irma and Jose caused significant damage to the Caribbean Islands and parts of Florida.
- •The timing was unfortunate, as HF radio was needed for emergency communications.
- •We present of HF amateur radio observations during this period.
 - Reverse Beacon Network (RBN)
 - Weak Signal Propagation Reporting Network (WSPRNet)

Amateur Radio and the HF Bands

Frequency	Wavelength
1.8 MHz	160 m
3.5 MHz	80 m
7 MHz	40 m
10 MHz	30 m
14 MHz	20 m
18 MHz	17 m
21 MHz	15 m
24 MHz	12 m
28 MHz	10 m
50 MHz	6 m

- Hobbyists routinely use HF-VHF transionospheric links.
- Often ~100 W into dipole antennas.

K2MFF, The NJIT Ham Radio Station

1600 UT 21 Aug 2017 14.03 MHz - Eclipsed SAMI3 TX: AA2MF (Florida) RX: WE9V (Wisconsin)

Hamsci.org

HF Response to Solar Flare

13,245 Paths

21 MHz

28 MHz (n=27)

2,594 Paths

RX: 425 Paths: 2594

7 MHz (n=882) 28 MHz

21 MHz

EU Response to Solar Flares

06 Sep 2017
Ham Radio Networks
N Spots = 185579
RBN: 14%
WSPRNet: 86%

Quiet Kp/Sym-H

- Europe in daylight.
- Both flares cause deep blackouts.

US Response to Solar Flares

(a) 06 Sep 2017 **Ham Radio Networks** SYM-H [nT] N Spots = 50813Quiet Kp/Sym-H **RBN: 12%** WSPRNet: 88% -200 (b) _{10⁻³.} — GOES 13 — GOES 15 **GOES Flares** E 10-X2.2 & X9.3 3 NOAA GOES X-Ray (0.1 -: 0.8 nm) Irradiance 14 1.08 (C) 3000-0.96 (T) (E) 2000-0.72 at W W (E) 2000-0.60 to 50 (D) 2000-0.24 0.270 0.225 28 MHz 0.180 9 0.135 0.090 **5** 0.045 **9** Radio Spots (N = 47) 0.96 0.84₁-0.72 0.60 840 0.48 910 0.36 910 0.24 90 0.12 9 (d) 21 MHz R_{QC} [Km] 0.450 q stods) 60 0.375 q stods) 60 0.225 g 0.150 g 0.075 21 MHz (e) 2.4 2.1 1.8 1.5 1.2 0.9 0.6 0.3 14 MHz Km 7000-14 MHz Radio Spots (N = 28907) (f) 2.1 (1-1.8 loss) 1.2 loss) 2.3 loss) 2.4 (1-1.8 loss) 2.5 loss) 2.4 (1-1.8 1.68 1.20 stods 0.96 ots 0.72 stods 0.48 ots 0.24

US is at

dawn.

Diurnal

variations

evident

1st Flare

effect

has little

Radio Spots (N = 21687)

6 UT

12

Hours [UT]

18[°]UT

7 MHz

Global Response to Geomagnetic Storm

8 Sept 2100 UT

Storm Onset

9 Sept 0000 UT

Geomagnetic Quiet

9 Sept 1400 UT

Radio Recovery

Z-Score

$$z = \frac{x - \mu}{\sigma}$$

Quiet Time Baseline

- 2016-2017
- -25 < SYM-H < 25 nT
- $K_p < 3$
- n = 283 days

7, 14 MHz

 Clearly below average during storm

1.8, 3.5, 21 MHz

Inconclusive

28 MHz

 Above average... more work to be done here...

Caribbean Response

Comparison to Mean US TEC

Summary and Conclusions

- •X-class flares on 6, 7, and 10 September 2017
 - acute radio blackouts during the day in the Caribbean
 - with recovery times of tens of minutes to hours, based on the decay time of the flare.
- Severe geomagnetic storm 7-10 September 2017
 - Kp_{max} = 8+ and SYM- H_{min} = -146 nT
 - wiped out ionospheric communications first on 14 MHz and then on 7 MHz starting at ~1200 UT 8 September.
- •This storm, combined with effects from additional flare and geomagnetic activity, contributed to a significant suppression of effective HF propagation bands both globally and in the Caribbean for a period of 12 to 15 days.

Thank you!

THIS WORK WAS PARTIALLY SUPPORTED BY NSF GRANT AGS-1552188/479505-19C75.

