

RV College of Engineering

DEPARTMENT OF MATHEMATICS

Academic year 2023-2024 (Odd Semester 2023)

Date	19 th March 2024	Time	10:00 a.m 11:30 a.m.		
TEST	IMPROVEMENT	Maximum Marks	50		
Course Title	Mathematics for Artificial Intelli	Course Code	MAT231ET		
Semester	III	Programs	AIML		

Instructions: i) Answer all questions.

		M	С	В		
Sl. No.	Questions					
1a	Prove that the set of vectors $V = \{(x, y) x, y \in \mathbb{R}\}$ closed under usual vector					
	addition and scalar multiplication is a field over the field \mathbb{Q} .					
1b	Show that the set of all 2×2 symmetric matrices is a subspace of $M_{2\times 2}$, the					
	set of all 2×2 matrices, over the field \mathbb{C} .					
2a	· · · · · · · · · · · · · · · · · · ·					
	matrices $A \in M(\mathbb{R})$ and a fixed matrix C is a linear transformation.					
2b	Show that the polynomials $\{1 + 2t + t^2, 2 + 2t - t^2, 1 + 3t + 2t^2, 1 - t - 3t^2\}$					
	are linearly dependent in \mathbb{P}_2 . Extract a linearly independent subset. Also find					
	the basis and dimension of the subspace spanned by them.					
3	Find the bases and dimension of the four fundamental sub spaces of the					
	matrix					
	$\begin{bmatrix} 2 & 4 & -2 & 1 \end{bmatrix}$					
	$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 1 & 3 & -6 & 5 \end{bmatrix}.$					
4a	Given $T(1,2,1) = (7,0,3,5), T(2,1,1) = (5,2,2,3)T(-1,2,1) = (5,-4,3,5),$					
та	obtain the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ and hence the basis of the range					
	space of the linear transformation.					
4b	Space of the linear transformation. Let $u_1 = (2, 5, -1), u_2 = (-2, 1, 1)$ and $y = (1, 2, 3)$. $W = span\{u_1, u_2\}$. Obtain the					
40	orthogonal projection of y onto the space W and hence obtain the shortest					
	distance between y and W .					
5	r 1 —2 —21	10	2	4		
3	$\begin{bmatrix} 1 & 2 & 2 \\ 2 & -4 & 1 \end{bmatrix}$	10	4	7		
	Obtain the QR factorization of the matrix $A = \begin{vmatrix} -2 & 0 & 4 \end{vmatrix}$.					
	Obtain the <i>QR</i> factorization of the matrix $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & -4 & 1 \\ -2 & 0 & 4 \\ 1 & 0 & -2 \\ 2 & -2 & -2 \end{bmatrix}$.					
	L 2 —2 —2J					

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

Marks	Particulars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Distribution	Test Max Marks	10	14	16	10	-	16	20	14	-	-