Multivariate Statistical Analysis

Lecture 04

Fudan University

luoluo@fudan.edu.cn

Outline

Singular Normal Distributions

Outline

Singular Normal Distributions

Singular Normal Distributions

In previous section, we focus on non-singular normal normally distributed variate $\mathbf{x} \sim \mathcal{N}(\mu, \mathbf{\Sigma})$ with $\mathbf{\Sigma} \succ \mathbf{0}$ whose density function is

$$n(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^p \det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right).$$

What about the case of singular Σ ?

General Linear Transformation

1 Let $\mathbf{x} \sim \mathcal{N}_{\rho}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\Sigma} \succ \mathbf{0}$. Then

$$y = Cx$$

is distributed according to $\mathcal{N}_p(\mathbf{C}\boldsymbol{\mu},\mathbf{C}\boldsymbol{\Sigma}\mathbf{C}^{\top})$ for non-singular $\mathbf{C}\in\mathbb{R}^{p imes p}$.

② Let $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\Sigma} \succ \mathbf{0}$. Then

$$y = Cx$$

is distributed according to $\mathcal{N}_q(\mathbf{C}\mu,\mathbf{C}\mathbf{\Sigma}\mathbf{C}^{\top})$ for $\mathbf{C}\in\mathbb{R}^{q imes p}$ of rank $q\leq p$.

3 Let $\mathbf{x} \sim \mathcal{N}_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then

$$y = Cx$$

is distributed according to $\mathcal{N}_q(\mathbf{C}\mu,\mathbf{C}\mathbf{\Sigma}\mathbf{C}^{ op})$ for any $\mathbf{C}\in\mathbb{R}^{q imes p}$.

Transformation

 $c \neq 0$

 $\sigma^2 > 0$

 $\Sigma \succ 0$

 $2.0 \times 10^6 \sim 3.0 \times 10^6$

 $\mathbf{C} \in \mathbb{R}^{p \times p}$ is non-singular $\mathbf{C} \in \mathbb{R}^{q \times p}$ of rank $q \leq p$

 $\pmb{\Sigma} \succ 0$

 $> 3.0 \times 10^{7}$

 $\mathbf{C} \in \mathbb{R}^{q imes p}$

 $\pmb{\Sigma} \succ 0$

General Linear Transformation

Theorem

Let $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\Sigma} \succ \mathbf{0}$. Then

$$\mathbf{z} = \mathbf{D}\mathbf{x}$$

is distributed according to $\mathcal{N}_q(\mathbf{D}\boldsymbol{\mu},\mathbf{D}\mathbf{\Sigma}\mathbf{D}^\top)$ for $\mathbf{D}\in\mathbb{R}^{q imes p}$ of rank $q\leq p$.

General Linear Transformation

Theorem

Let $\mathbf{x} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then

$$z = Dx$$

is distributed according to $\mathcal{N}_q(\mathbf{D}\boldsymbol{\mu},\mathbf{D}\mathbf{\Sigma}\mathbf{D}^{ op})$ for any $\mathbf{D}\in\mathbb{R}^{q imes p}$.

understand the singular normal distribution

no limitation

Singular Normal Distribution

Singular normal distribution:

- 1 The mass is concentrated on a given lower dimensional set.
- ② The probability associated with any set that does not intersecting the given low-dimensional set is 0.

For example, consider that

$$\mathbf{x} = egin{bmatrix} x_1 \ x_2 \end{bmatrix} \sim \mathcal{N} \left(egin{bmatrix} 0 \ 0 \end{bmatrix}, egin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix}
ight).$$

- **1** Probability of any set that does not intersecting the x_2 -axis is 0.
- ② The measure of x_2 -axis in the space of \mathbb{R}^2 is zero.
- The random vector x has no density, but its distribution exists.

To be continued...

To be continued...