I- Définition

Une fonction polynôme de degré 2 est définie sur \mathbb{R} par $f(x)=ax^2+bx+c$ où les coefficients a, b et c sont des réels donnés avec $a \neq 0$

Les appellations suivantes sont équivalentes

- Fonction du second degré.
- Fonction polynôme de degré 2
- Fonction polynôme du second degré

Exemples

$$f(x)=2x^2-4x+7$$
 $g(x)=\frac{1}{3}x^2-x-\frac{7}{2}$ $h(x)=11-x^2$

Les fonctions \boldsymbol{f} , \boldsymbol{g} et \boldsymbol{h} ci-dessus sont des fonctions polynôme de degré 2.

La fonction carrée est une fonction polynôme de degré 2 particulière avec a=1, b=0 et c=0

$$k(x)=(2x-7)(3-x)$$

La fonction k est également une fonction du second degré mais sous sa forme factorisée.

m(x)=3x-5 n'est pas une fonction du second degré. C'est une fonction du premier degré (affine).

 $n(x)=3x^4-5x^2-8$ n'est pas une fonction du second degré. C'est une fonction polynôme de degré 4.

La courbe représentative d'une fonction du second degré est une parabole.

II- Forme canonique

La fonction $f(x) = ax^2 + bx + c$ peut s'écrire sous sa forme canonique :

$$f(x)=a(x-\alpha)^2+\beta$$

où α et β sont deux nombres réels.

III- Variation et représentation

1- Forme canonique:

Toutes les fonctions polynômes de degré 2 sont représentés par une parabole.

$$f(x) = a(x-\alpha)^2 + \beta$$

$$\alpha = -\frac{b}{2a} \text{ et } \beta = f(\alpha)$$

2- Propriété:

-Si a > 0 (**positif**), f est d'abord décroissante puis croissante. Elle admet un minimum pour $x = \alpha$ et ce minimum est égal à β .

-Si a < 0 (négatif) , f est d'abord croissante puis décroissante. Elle admet un maximum pour $x = \alpha$ et ce maximum est égal à β .

IV- Extremum (minimum / maximum)

La courbe représentative de f est une parabole qui admet un axe de symétrie parallèle à l'axe des ordonnées. Le point de la courbe qui correspond au maximum ou au minimum est appelé le sommet de la parabole.

V- Équation du second degré.

Une équation du second degré est de la forme $ax^2 + bx + c = 0$ où a, b et c sont des réels avec $a \ne 0$

VI- Résolution d'une équation du second degré.

Soit une équation du second degré $ax^2 + bx + c = 0$

Une solution de cette équation s'appelle une racine du trinôme $ax^2 + bx + c$

VII- Discriminant du trinôme du second degré ax^2+bx+c

$$\Delta = b^2 - 4ac$$

- Si
$$\Delta < 0$$
 : L'équation $ax^2 + bx + c = 0$ n'admet pas de solution réelle.

- Si
$$\Delta = 0$$
 : L'équation $ax^2 + bx + c = 0$ admet une unique solution $x_0 = -\frac{b}{2a}$

- Si
$$\Delta > 0$$
 : L'équation $ax^2 + bx + c = 0$ admet deux solutions distinctes $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Exemples : Résoudre les équations suivantes :

1)
$$x^2+x-2=0$$

 $a=1$, $b=1$ et $c=-2$ donc $\Delta=1^2-4\times1\times(-2)=1+8=9$
 $\Delta=9>0$, donc l'équation admet deux solutions distinctes :

$$x_1 = \frac{-1 - \sqrt{9}}{2 \times 1} = \frac{-1 - 3}{2} = \frac{-4}{2} = -2$$
 et $x_2 = \frac{-1 + \sqrt{9}}{2 \times 1} = \frac{-1 + 3}{2} = \frac{2}{2} = 1$ $\Rightarrow S = \{-2; 1\}$

2)
$$-2x^2+x-1=0$$

 $a=-2$, $b=1$ et $c=-1$ donc $\Delta=1^2-4\times(-2)\times(-1)=1-8=-7$
 $\Delta=-7<0$, donc l'équation n'admet pas de solution : $\Rightarrow S=\emptyset$

3)
$$4x^2+4x+1=0$$

 $a=4$, $b=4$ et $c=1$ donc $\Delta=4^2-4\times4\times1=16-16=0$
 $\Delta=0$, donc l'équation admet une unique solution:

$$x_0 = \frac{-4}{2 \times 4} = \frac{-4}{8} = -\frac{1}{2}$$
 $\Rightarrow S = \left\{-\frac{1}{2}\right\}$

VIII-Factorisation d'un trinôme du second degré

$$f(x) = ax^2 + bx + c$$

- Si
$$\Delta < 0$$
 : Le trinôme n'admet pas de racine, donc il n'existe pas de forme factorisée.

- Si
$$\Delta = 0$$
 : Pour tout x réel on a $f(x) = a(x - x_0)^2$

- Si
$$\Delta = 0$$
: Pour tout x réel on a $f(x) = a(x - x_0)^2$
- Si $\Delta > 0$: Pour tout x réel on a $f(x) = a(x - x_1)(x - x_2)$

IX-Signe d'un trinôme du second degré

IV) Signe de $f(x) = ax^2 + bx + c$

Théorème : Soit la fonction polynôme $f: x \mapsto ax^2 + bx + c$, où $a \neq 0$ et \mathscr{C}_t la représentation graphique de f dans un repère.

repere.	Δ <0	$\Delta = 0$	Δ >0
Conséquence graphique	La parabole V, qui représente f ne coupe pas l'axe des abscisses.	La parabole \mathscr{C}_r qui représente f est tangente en un point et un seul à l'axe des abscisses .	La parabole \mathscr{C}_r qui représente f coupe l'axe des abscisses en deux points d'abscisses respectives x_i et x_2 .
a>0			
Parabole V r tournée vers le haut	0 -1/2a	$x_0 = -\frac{b}{2a}$	O X, X ₂
Equation $f(x) = 0$	Pas de solution	Une solution double x_0	Deux solutions distinctes x_1 et x_2
Signe de f(x)	$\begin{array}{c ccc} x & -\infty & +\infty \\ \hline \text{Signe} & + \\ \text{de } f(x) & + \\ \end{array}$	$\begin{array}{c cccc} x & -\infty & x_0 & +\infty \\ \text{Signe } & + & 0 & + \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
a < 0			
Parabole % r tournée vers le bas	o -½a	$0 x_0 = -\frac{b}{2a}$	O x, x, -b/2a
Equation $f(x) = 0$	Pas de solution	Une solution double x_0	Deux solutions distinctes x_1 et x_2
Signe de f(x)	X -∞	X -∞ X₀ +∞ Signe de f(x) - 0 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

X-Démonstration des formules de la forme canonique :

$$f(x) = ax^{2} + bx + c$$

$$f(x) = a\left(x^{2} + \frac{b}{a}x\right) + c \qquad (1)$$
On constate que $\left(x^{2} + \frac{b}{a}x\right)$ est le début de l'une identité remarquable de type $(A+B)^{2} = A^{2} + 2ABx + B^{2}$

$$\left(x + \frac{b}{2a}\right)^{2} = x^{2} + 2\left(\frac{b}{2a}\right)x + \left(\frac{b}{2a}\right)^{2} \iff \left(x + \frac{b}{2a}\right)^{2} = x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}}$$

$$x^{2} + \frac{b}{a}x = \left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}} \qquad (2)$$

En remplaçant $x^2 + \frac{b}{a}x$ de l'expression (1) par sa valeur dans l'expression (2), on obtient

$$f(x) = a \left(\left(x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2} \right) + c \text{ soit } \Leftrightarrow f(x) = a \left(x + \frac{b}{2a} \right)^2 - a \left(\frac{b^2}{4a^2} \right) + c$$

$$\Leftrightarrow f(x) = a \left(x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a} + c$$

$$\Leftrightarrow f(x) = a \left[x - \left(-\frac{b}{2a} \right) \right]^2 + \left(-\frac{b^2}{4a} + c \right)$$

En posant
$$\alpha = -\frac{b}{2a}$$
 et $\beta = -\frac{b^2}{4a} + c$, on a $f(x) = a(x-\alpha)^2 + \beta$ et $\beta = f(\alpha)$

XI-Démonstration de formule du discriminant:

$$ax^2+bx+c=0$$

$$a\left(x^2+\frac{b}{a}x+\frac{c}{a}\right)=0$$
 Factorisation de a et on obtient un produit nul avec $a\neq 0$

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0$$
 (1)

On constate le début de l'une identité remarquable :

$$(x+\alpha)^2 = x^2 + 2\alpha x + \alpha^2 \quad \text{avec} \quad 2\alpha = \frac{b}{a} \quad \text{donc} \quad \alpha = \frac{b}{2a}$$

$$\left(x + \frac{b}{2a}\right)^2 = x^2 + 2\left(\frac{b}{2a}\right)x + \left(\frac{b}{2a}\right)^2 \iff \left(x + \frac{b}{2a}\right)^2 = x^2 + \frac{b}{a}x + \frac{b^2}{4a^2}$$

$$x^2 + \frac{b}{a}x = \left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} \quad (2)$$

En remplaçant $x^2 + \frac{b}{a}x$ de l'expression (1) par sa valeur dans l'expression (2), on obtient

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} = 0 \quad \text{soit} \quad \left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{4ac}{4a^2} = 0 \quad \Leftrightarrow \quad \left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{4ac}{4a^2}$$

$$\Leftrightarrow \left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \quad \Leftrightarrow \quad \left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{(2a)^2}$$

Posons
$$\Delta = b^2 - 4ac \Rightarrow (x + \frac{b}{2a})^2 = \frac{\Delta}{(2a)^2} \Leftrightarrow (x + \frac{b}{2a})^2 = \frac{\sqrt{\Delta^2}}{(2a)^2}$$

$$\Leftrightarrow \left(x + \frac{b}{2a}\right)^2 = \left(\frac{\sqrt{\Delta}}{2a}\right)^2 \quad \Leftrightarrow \quad x + \frac{b}{2a} = \pm \frac{\sqrt{\Delta}}{2a} \quad \Leftrightarrow \quad x = -\frac{b}{2a} \pm \frac{\sqrt{\Delta}}{2a}$$

$$\Rightarrow x = \frac{-b \pm \sqrt{\Delta}}{2a} \quad \text{d'où} \qquad S = \begin{cases} x_1 = \frac{-b - \sqrt{\Delta}}{2a} \\ x_2 = \frac{-b + \sqrt{\Delta}}{2a} \end{cases}$$