

Huffman Codes

Problem Definition

Algorithms: Design and Analysis, Part II

Codes as Trees

Goal: Best binary prefix-free encoding for a given set of character frequencies.

Useful fact: Binary codes ↔ Binary trees

Examples: $(\Sigma = \{A,B,C,D\})$

Prefix-Free Codes as Trees

In general: - Left child edges \leftrightarrow "0", right child edges \leftrightarrow "1"

- For each $i \in \Sigma$, exactly one node labeled "i"
- Encoding of $i \in \Sigma \leftrightarrow$ Bits along path from node to the node "i"
- Prefix-free ↔ Labelled nodes = the leaves
 [since prefixes ↔ one node an ancestor of another]

To decode: Repeadetly follow path from root until you hit a leaf. [ex. $0110111 \mapsto ACD$] (unambiguous since only leaves are labelled)

Note: Encoding length of $i \in \Sigma = \text{depth of } i \text{ in tree.}$

Problem Definition

Input: Probability p_i for each character $i \in \Sigma$.

Notation: If T = tree with leaves \leftrightarrow symbols of Σ , then average encoding length $L(T) = \sum_{i \in \Sigma} p_i \cdot [\text{depth of } i \text{ in } T]$

Example: If $p_A = 60\%$, $p_B = 25\%$, $p_C = 10\%$, $p_D = 5\%$, then

$$L(\bigcirc) = 2$$
 while $L(\bigcirc) = 1.55$

Output: A binary tree T minimizing the average encoding length $L(\cdot)$.