Deep Neural Networks And Where to Find Them

Lecture 5

Artem Korenev, Nikita Gryaznov

Recap of Convolutional NNs

Recap – Convolutional Neural Network

- Learning small *filters* (*kernels*) to catch useful features
- Using convolution operation to apply filter to every position on the *feature map* (or on the image)
- Adding layers of convolutions filters learn more complex features

Recap – Kernels Learn Useful Features

Recap – Convolution Computations

Kernel (i.e. filter) has size 3x3

Kernel Values

1	0	1
0	1	0
1	0	1

1,	1 _{×0}	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

Recap – Number of Channels

Therefore we apply kernels of size 20x20x3 to the image

Recap – Max Pooling

Max Pooling window size is set to 2x2

Recap — Basic Structure of CNN

Deep Convolutional NNs

ImageNet Classification Challenge

- 1000 classes
- 1.2kk training images, 150k
- Main metric: top-5 error

LeNet

- Created by Yann LeCun in 1998 (!)
- Classification of handwritten digits dataset (MNIST)

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

AlexNet - ImageNet 2012 Winner

- First winning deep learning solution
- Convolutions 11x11, 5x5 and 3x3
- 3 Dense layers at the end
- Top-1 Acc: 57%, Top-5 Acc: 80.3%

VGG - 2014

- Improved AlexNet
- There are two versions: VGG16 and VGG19 (number of layers)
- Transforming big convolutions to a subsequent 3x3 Convolutions
- E.g. 7x7 -> 3*(3x3)
- VGG19 Top-5 Acc: 92.7%

Dense Layers

GoogleNet – ImageNet 2014 Winner

- Making NN more tree-structured
- Created Inception Model

• Top-5 Acc: 93.3%

GoogleNet – ImageNet 2014 Winner

- Making NN more tree-structured
- Created Inception Model

GoogleNet – Inception Module

ResNet – ImageNet 2015 Winner

- Released by Microsoft
- They won every other competition as well
- ResNet-50, ResNet-101, ResNet-152
- Using idea of residual connections
- Top-5 Acc: 96.43% (surpasses human performance)

Number of layers!

ResNet – Residual Block

Layers and Performance

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Transfer Learning

- We can reuse these high-performance NNs
- Pretrained NNs are available
- You can create the same NN but with different final layers to adjust it to your problem
- Then you learn the whole network or only small parts of it to train it directly on your model

These models exists mostly for image classification only

Transfer Learning

What is Used Nowadays

- ResNet, Inception, VGG networks are still used
- ResNet is the most popular choice
- Choose ResNet version for your problem (trade-off for complexity, time, amount of parameters, memory consumption...)
- Never train them from scratch train it from pretrained version

Final Recap

slightly to make it better

of the model

Neural Network as a ML Black Box

Types of Problems and Losses

Most frequent problems:

- Classification (predicting label(s) across the predefined set)
 Losses:
 - Binary Cross Entropy (2 classes) or Categorical Cross Entropy (>2 classes)
 - (rarely) Hinge Loss
- Regression (predicting real value without predefined set of outcomes)
 Losses:
 - Mean Squared Error (L2 Loss)
 - Mean Absolute Error (L1 Loss)

Dense Layer

- x_1 Layer input
- Neuron Output $(W_{i1}x_1 + \cdots + W_{i2}x_2 + b_i)$
- Activation function
 (Non-linearity)
 (Neuron activation)
- Layer weight (trainable parameter)
- Layer bias (trainable parameter)

Multi Layer Neural Network

Regression Problem

Logistic Regression Problem as a NN

Least Squares Regression Problem as a NN

Optimization

- Backpropagation using chain rule allows us to compute gradients for all parameters of deep networks
- We use mini-batch gradient descent to optimize the network

• Stochastic means we use small batches to update the model instead

of the whole dataset

Learning Rate

• Learning rate is a parameter you need to adjust wisely

Training Neural Networks

- Split all data to training and testing data
- Train on training data
- Evaluate performance on testing data
- Make sure you don't overfit the data

Activation Functions

- A non-linearity function between layers of Neural Networks
- The main reason why NNs are so powerful

Popular Activation Functions: Sigmoid, Tanh, ReLU (best in practice)

Metrics

- You should use *metrics* to track your performance
- Popular metrics for classification:
 - Accuracy
 - Precision
 - Recall
 - PR AUC, ROC AUC

Regularization

- Helps to prevent overfitting
- Restricting your model to continue learning the same stuff it has already learnt
- L2 Weight Regularization (sometimes used)

$$L(y, f(x)) + \frac{1}{2}\lambda ||w||_2^2$$

L1 Weight Regularization (very rarely used)

$$L(y, f(x)) + \lambda ||w||_1$$

Dropout

- Switching off random neurons of the layer with the given probability
- Harder to train but harder to overfit as well

Batch Normalization

Batch Normalization

- Extremely powerful technique
- Decreases training time
- A rule of thumb: Dense -> Batch Normalization -> Activation

```
x = Dense(128)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
```

Data Augmentation

- Artificially adding more data
- Very specific to your task

Convolutional Neural Network

- Learning small *filters* (*kernels*) to catch useful features
- Using convolution operation to apply filter to every position on the *feature map* (or on the image)
- Adding layers of convolutions filters learn more complex features

Max Pooling

- Reducing spatial size (thus amount of computations)
- Adding more non-linearity

Max Pooling window size is set to 2x2

Basic Structure of CNN

Using Pretrained CNNs – Transfer Learning

- There are plenty of high-performance pretrained NNs
- Use pretrained weights and train from them instead of from scratch

This is it guys

To learn more we would recommend

- Attend Deep Learning course by V. Lempitsky in Term 4
- cs231n course from Stanford Univerity (http://cs231n.stanford.edu/)
- Book "Deep Learning" by Ian Goodfellow
- Try to solve Kaggle Competitions

This is It For the Final Lecture