On Cayley graphs of monoids and semigroups

Kolja Knauer Aix-Marseille Université Universitat de Barcelona

Gil Puig i Surroca Ignacio García-Marco Université Paris Dauphine Universidad La Laguna Ulrich Knauer Ernest Vidal Universität Oldenburg Universitat de Barcelona

named after: Arthur Cayley (1821-1895)

Cayley graphs Dehnsches Gruppenbild

named after: Arthur Cayley (1821-1895)

rediscovered by: Max Dehn (1878-1952)

Cayley graphs Dehnsches Gruppenbild

named after: rediscovered by:
Arthur Cayley (1821-1895) Max Dehn (1878-1952)

Cayley's paper published in 1878

Cayley graphs Dehnsches Gruppenbild

named after: Arthur Cayley (1821-1895) rediscovered by: Max Dehn (1878-1952)

Cayley's paper published in (1878)


```
(finite) set S with binary operation \cdot: S \times S \to S
```

associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in S$

neutral element: $\exists_{e \in S} : a \cdot e = e \cdot a = a$ for all $a \in S$

inverse element: $\forall_{a \in S} \exists_{a^{-1} \in S} : a \cdot a^{-1} = e$

```
(finite) set S with binary operation \cdot: S \times S \to S
```

associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in S$ \longrightarrow semigroup

neutral element: $\exists_{e \in S} : a \cdot e = e \cdot a = a$ for all $a \in S$

inverse element: $\forall_{a \in S} \exists_{a^{-1} \in S} : a \cdot a^{-1} = e$

```
(finite) set S with binary operation \cdot: S \times S \to S
```

associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in S$ \longrightarrow semigroup

neutral element: $\exists_{e \in S} : a \cdot e = e \cdot a = a$ for all $a \in S \longrightarrow \mathsf{monoid}$

inverse element: $\forall_{a \in S} \exists_{a^{-1} \in S} : a \cdot a^{-1} = e$

```
(finite) set S with binary operation \cdot: S \times S \to S

associativity: (a \cdot b) \cdot c = a \cdot (b \cdot c) for all a, b, c \in S \leadsto semigroup neutral element: \exists_{e \in S}: a \cdot e = e \cdot a = a for all a \in S \leadsto monoid inverse element: \forall_{a \in S} \exists_{a^{-1} \in S}: a \cdot a^{-1} = e \leadsto group
```

```
(finite) set S with binary operation \cdot: S \times S \to S
```

```
associativity: (a \cdot b) \cdot c = a \cdot (b \cdot c) for all a, b, c \in S \longrightarrow semigroup
```

neutral element: $\exists_{e \in S} : a \cdot e = e \cdot a = a$ for all $a \in S \longrightarrow \mathsf{monoid}$

inverse element: $\forall_{a \in S} \exists_{a^{-1} \in S} : a \cdot a^{-1} = e$ \rightsquigarrow group

S semigroup and $C \subseteq S \leadsto \operatorname{Cay}(S,C)$ (directed mutli) Cayley graph $\operatorname{vertices} V = S$ $\operatorname{arcs} A: (s,t)$ for each $c \in C$ such that $s \cdot c = t$

(finite) set S with binary operation $\cdot: S \times S \to S$

associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in S$ \longrightarrow semigroup

neutral element: $\exists_{e \in S} : a \cdot e = e \cdot a = a$ for all $a \in S \longrightarrow \mathsf{monoid}$

inverse element: $\forall_{a \in S} \exists_{a^{-1} \in S} : a \cdot a^{-1} = e$ \rightsquigarrow group

S semigroup and $C \subseteq S \leadsto \operatorname{Cay}(S,C)$ (directed mutli) Cayley graph $\operatorname{vertices} V = S$ $\operatorname{arcs} A: (s,t)$ for each $c \in C$ such that $s \cdot c = t$

examples:

right-zero-band: $R_n: i \cdot j = j$ for all $1 \le i, j \le n$

 $Cay(R_3, R_3)$

(finite) set S with binary operation $\cdot: S \times S \to S$

associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in S$ \longrightarrow semigroup

neutral element: $\exists_{e \in S} : a \cdot e = e \cdot a = a$ for all $a \in S \longrightarrow \mathsf{monoid}$

inverse element: $\forall_{a \in S} \exists_{a^{-1} \in S} : a \cdot a^{-1} = e$ \rightsquigarrow group

S semigroup and $C \subseteq S \leadsto \operatorname{Cay}(S,C)$ (directed mutli) Cayley graph $\operatorname{vertices} V = S$ $\operatorname{arcs} A$: (s,t) for each $c \in C$ such that $s \cdot c = t$

examples:

right-zero-band: $R_n: i \cdot j = j$ for all $1 \le i, j \le n$

left-zero-band: $L_n: i \cdot j = i$ for all $1 \leq i, j \leq n$

(finite) set S with binary operation $\cdot: S \times S \to S$

associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in S$ \longrightarrow semigroup

neutral element: $\exists_{e \in S} : a \cdot e = e \cdot a = a$ for all $a \in S \longrightarrow \mathsf{monoid}$

inverse element: $\forall_{a \in S} \exists_{a^{-1} \in S} : a \cdot a^{-1} = e$ \rightsquigarrow group

S semigroup and $C \subseteq S \leadsto \operatorname{Cay}(S,C)$ (directed mutli) Cayley graph $\operatorname{vertices} V = S$ $\operatorname{arcs} A: (s,t)$ for each $c \in C$ such that $s \cdot c = t$

examples:

right-zero-band: $R_n: i \cdot j = j$ for all $1 \le i, j \le n$

left-zero-band: $L_n: i \cdot j = i$ for all $1 \leq i, j \leq n$

add neutral element: semigroup $S \to S^+$ monoid

(finite) set S with binary operation $\cdot: S \times S \to S$

associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in S$ \longrightarrow semigroup

neutral element: $\exists_{e \in S} : a \cdot e = e \cdot a = a$ for all $a \in S \longrightarrow \mathsf{monoid}$

inverse element: $\forall_{a \in S} \exists_{a^{-1} \in S} : a \cdot a^{-1} = e$ \rightsquigarrow group

S semigroup and $C\subseteq S\leadsto \operatorname{Cay}(S,C)$ (directed mutli) Cayley graph $\operatorname{\it vertices}\ V=S$ $\operatorname{\it arcs}\ A$: (s,t) for each $c\in C$ such that $s\cdot c=t$

examples:

right-zero-band: $R_n: i \cdot j = j$ for all $1 \le i, j \le n$

left-zero-band: $L_n: i \cdot j = i$ for all $1 \leq i, j \leq n$

add neutral element: semigroup $S \to S^+$ monoid $\operatorname{Cay}(\mathbb{Z}_6, \{1\})$

(finite) set S with binary operation $\cdot: S \times S \to S$

associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in S$ \longrightarrow semigroup

neutral element: $\exists_{e \in S} : a \cdot e = e \cdot a = a$ for all $a \in S \longrightarrow \mathsf{monoid}$

inverse element: $\forall_{a \in S} \exists_{a^{-1} \in S} : a \cdot a^{-1} = e$ \rightsquigarrow group

S semigroup and $C \subseteq S \leadsto \operatorname{Cay}(S,C)$ (directed mutli) Cayley graph $\operatorname{vertices} V = S$ $\operatorname{arcs} A$: (s,t) for each $c \in C$ such that $s \cdot c = t$

examples:

right-zero-band: $R_n: i \cdot j = j$ for all $1 \le i, j \le n$

left-zero-band: $L_n: i \cdot j = i$ for all $1 \leq i, j \leq n$

add neutral element: semigroup $S \to S^+$ monoid

 $Cay(\mathbb{Z}_6, \{1\}) \ Cay(D_3, \{a, b\}) \ (a^2 = b^2 = (ab)^3 = e) \ Cay(L_3, L_2)$

 D_n =symmetry group of regular n-gon

(finite) set S with binary operation $\cdot: S \times S \to S$

associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in S$ \longrightarrow semigroup

neutral element: $\exists_{e \in S} : a \cdot e = e \cdot a = a$ for all $a \in S \longrightarrow \mathsf{monoid}$

inverse element: $\forall_{a \in S} \exists_{a^{-1} \in S} : a \cdot a^{-1} = e$ \rightsquigarrow group

S semigroup and $C \subseteq S \leadsto \operatorname{Cay}(S,C)$ (directed mutli) Cayley graph $\operatorname{vertices} V = S$ $\operatorname{arcs} A$: (s,t) for each $c \in C$ such that $s \cdot c = t$

examples:

right-zero-band: $R_n: i \cdot j = j$ for all $1 \le i, j \le n$

left-zero-band: $L_n: i \cdot j = i$ for all $1 \leq i, j \leq n$

add neutral element: semigroup $S \to S^+$ monoid

 $Cay(\mathbb{Z}_6, \{1\}) \ Cay(D_3, \{a, b\}) \ (a^2 = b^2 = (ab)^3 = e) \ Cay(L_3, L_2)$

(finite) set S with binary operation $\cdot: S \times S \to S$

associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in S$ \longrightarrow semigroup

neutral element: $\exists_{e \in S} : a \cdot e = e \cdot a = a$ for all $a \in S \longrightarrow \mathsf{monoid}$

inverse element: $\forall_{a \in S} \exists_{a^{-1} \in S} : a \cdot a^{-1} = e$ \rightsquigarrow group

S semigroup and $C \subseteq S \leadsto \operatorname{Cay}(S,C)$ (directed mutli) Cayley graph $\operatorname{vertices} V = S$ $\operatorname{arcs} A: (s,t)$ for each $c \in C$ such that $s \cdot c = t$

 $Cay(R_3^{\dagger}, R_3)$

examples:

right-zero-band: $R_n: i \cdot j = j$ for all $1 \le i, j \le n$

left-zero-band: $L_n: i \cdot j = i$ for all $1 \le i, j \le n$

add neutral element: semigroup $S \to S^+$ monoid

 $Cay(\mathbb{Z}_6, \{1\}) \ Cay(D_3, \{a, b\}) \ (a^2 = b^2 = (ab)^3 = e) \ Cay(L_3, L_2)$

(finite) set S with binary operation $\cdot: S \times S \to S$

associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in S$ \longrightarrow semigroup

neutral element: $\exists_{e \in S} : a \cdot e = e \cdot a = a$ for all $a \in S \longrightarrow \mathsf{monoid}$

inverse element: $\forall_{a \in S} \exists_{a^{-1} \in S} : a \cdot a^{-1} = e$ \rightsquigarrow group

S semigroup and $C \subseteq S \leadsto \operatorname{Cay}(S,C)$ (directed mutli) Cayley graph $\operatorname{vertices} V = S$ $\operatorname{arcs} A$: (s,t) for each $c \in C$ such that $s \cdot c = t$

examples:

right-zero-band: $R_n: i \cdot j = j$ for all $1 \le i, j \le n$

left-zero-band: $L_n: i \cdot j = i$ for all $1 \leq i, j \leq n$

add neutral element: semigroup $S \to S^+$ monoid

 $Cay(\mathbb{Z}_6, \{1\}) \ Cay(D_3, \{a, b\}) \ (a^2 = b^2 = (ab)^3 = e) \ Cay(L_3, L_2)$

 $\mathsf{Cay}(\mathbb{Z}_2\times\mathbb{Z}_3,\{(1,0),(0,1)\})$

(finite) set S with binary operation $\cdot: S \times S \to S$

associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in S$ \longrightarrow semigroup

neutral element: $\exists_{e \in S} : a \cdot e = e \cdot a = a$ for all $a \in S \longrightarrow \mathsf{monoid}$

inverse element: $\forall_{a \in S} \exists_{a^{-1} \in S} : a \cdot a^{-1} = e$ \rightsquigarrow group

S semigroup and $C \subseteq S \leadsto \operatorname{Cay}(S,C)$ (directed mutli) Cayley graph $\operatorname{vertices} V = S$ $\operatorname{arcs} A$: (s,t) for each $c \in C$ such that $s \cdot c = t$

examples:

right-zero-band: $R_n: i \cdot j = j$ for all $1 \le i, j \le n$

left-zero-band: $L_n: i \cdot j = i$ for all $1 \leq i, j \leq n$

add neutral element: semigroup $S \to S^+$ monoid

 $Cay(\mathbb{Z}_6, \{1\}) \ Cay(D_3, \{a, b\}) \ (a^2 = b^2 = (ab)^3 = e) \ Cay(L_3, L_2)$

 $ightharpoonup \mathrm{Cay}_{\mathrm{col}}(S,C)$ colored Cayley graph color arcs with C

(finite) set S with binary operation $\cdot: S \times S \to S$

associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in S$ \longrightarrow semigroup

neutral element: $\exists_{e \in S} : a \cdot e = e \cdot a = a$ for all $a \in S \longrightarrow \mathsf{monoid}$

inverse element: $\forall_{a \in S} \exists_{a^{-1} \in S} : a \cdot a^{-1} = e$ \rightsquigarrow group

S semigroup and $C\subseteq S\leadsto \operatorname{Cay}(S,C)$ (directed mutli) Cayley graph $\operatorname{\it vertices}\ V=S$ $\operatorname{\it arcs}\ A$: (s,t) for each $c\in C$ such that $s\cdot c=t$

examples:

right-zero-band: $R_n: i \cdot j = j$ for all $1 \le i, j \le n$

left-zero-band: $L_n: i \cdot j = i$ for all $1 \le i, j \le n$

add neutral element: semigroup $S \to S^+$ monoid

 $Cay(\mathbb{Z}_6, \{1\}) \ Cay(D_3, \{a, b\}) \ (a^2 = b^2 = (ab)^3 = e) \ Cay(L_3, L_2)$

 $ightharpoonup \mathrm{Cay}_{\mathrm{col}}(S,C)$ colored Cayley graph color arcs with C

 $ightharpoonup ext{Cay}(S,C)$ (underlying) simple Cayley graph forget directions, edge multiplicities, loops

(finite) set S with binary operation $\cdot: S \times S \to S$

associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in S$ \longrightarrow semigroup

neutral element: $\exists_{e \in S} : a \cdot e = e \cdot a = a$ for all $a \in S \longrightarrow \mathsf{monoid}$

inverse element: $\forall_{a \in S} \exists_{a^{-1} \in S} : a \cdot a^{-1} = e$ \rightsquigarrow group

S semigroup and $C \subseteq S \leadsto \operatorname{Cay}(S,C)$ (directed mutli) Cayley graph $\operatorname{vertices} V = S$ $\operatorname{arcs} A: (s,t)$ for each $c \in C$ such that $s \cdot c = t$

examples:

right-zero-band: $R_n: i \cdot j = j$ for all $1 \le i, j \le n$

left-zero-band: $L_n: i \cdot j = i$ for all $1 \leq i, j \leq n$

add neutral element: semigroup $S \to S^+$ monoid

$$\underline{\text{Cay}}(\mathbb{Z}_6, \{1\}) \ \underline{\text{Cay}}(D_3, \{a, b\}) \ (a^2 = b^2 = (ab)^3 = e) \ \underline{\text{Cay}}(L_3, L_2)$$

 $\leadsto \operatorname{Cay}_{\operatorname{col}}(S,C)$ colored Cayley graph

color arcs with $C \Leftrightarrow \underline{\mathrm{Cay}}(S,C)$ (underlying) simple Cayley graph forget directions, edge multiplicities, loops

S planar if S has generating system C such that $\mathsf{Cay}(S,C)$ is planar

Thm [Maschke '96]: the planar groups are \mathbb{Z}_n , D_n , A_4 , S_4 , A_5 , $\mathbb{Z}_2 \times \mathbb{Z}_n$, $\mathbb{Z}_2 \times D_n$, $\mathbb{Z}_2 \times A_4$, $\mathbb{Z}_2 \times S_4$, $\mathbb{Z}_2 \times A_5$

Heinrich Maschke (1853-1908)

Case 1: two generators of order > 2

Case 2: generators of order 2 and > 2

Case 3: three generators of order 2

Thm [Maschke '96]: the planar groups are \mathbb{Z}_n , D_n , A_4 , A_5

```
Thm [Maschke '96]: the planar groups are \mathbb{Z}_n, D_n, A_4, S_4, A_5, \mathbb{Z}_2 \times \mathbb{Z}_n, \mathbb{Z}_2 \times D_n, \mathbb{Z}_2 \times A_4, \mathbb{Z}_2 \times S_4, \mathbb{Z}_2 \times A_5
```

Planar semigroups?

Thm [Maschke '96]: the planar groups are \mathbb{Z}_n , D_n , A_4 , S_4 , A_5 , $\mathbb{Z}_2 \times \mathbb{Z}_n$, $\mathbb{Z}_2 \times D_n$, $\mathbb{Z}_2 \times A_4$, $\mathbb{Z}_2 \times S_4$, $\mathbb{Z}_2 \times A_5$

Planar semigroups?

Thm [K, Knauer '16]: the planar *right groups* are $R_i \times \mathbb{Z}_n$, $R_i \times D_n$, $R_i \times A_4$, $R_i \times S_4$, $R_i \times A_5$, R_{i+1} , $i \leq 3$ Cay($D_3 \times R_3$, { (a, r_1) , (b, r_2) , (e, r_3) }) Cay($\mathbb{Z}_6 \times R_3$, { $(1, r_1)$, $(0, r_2)$, $(0, r_3)$ })

Thm [Maschke '96]: the planar groups are \mathbb{Z}_n , D_n , A_4 , S_4 , A_5 , $\mathbb{Z}_2 \times \mathbb{Z}_n$, $\mathbb{Z}_2 \times D_n$, $\mathbb{Z}_2 \times A_4$, $\mathbb{Z}_2 \times S_4$, $\mathbb{Z}_2 \times A_5$

Cor: the planar Cayley graphs of groups are 1-skeleta of:

Platonic solids

(n-gon), cube, tetrahedron, octahedron, icosahedron

Archimedean solids

n-prism, cuboctahedron truncated cube, truncated octahedron, rhombicuboctahedron, truncated dodecahedron, truncated icosahedron, truncated icosidodecahedron, n-antiprism, snub cube, snub dodecahedron

Thm [Maschke '96]: the planar groups are \mathbb{Z}_n , D_n , A_4 , S_4 , A_5 , $\mathbb{Z}_2 \times \mathbb{Z}_n$, $\mathbb{Z}_2 \times D_n$, $\mathbb{Z}_2 \times A_4$, $\mathbb{Z}_2 \times S_4$, $\mathbb{Z}_2 \times A_5$

Cor: the planar Cayley graphs of groups are 1-skeleta of:

Platonic solids

(n-gon), cube, tetrahedron, octahedron, icosahedron

Àrchimedean solids missing: dodecahedron n-prism, cuboctahedron truncated cube, truncated octahedron, rhombicuboctahedron, truncated dodecahedron, truncated icosahedron, rhombicosidodecahedron, truncated icosidodecahedron, n-antiprism, snub cube, snub dodecahedron missing: icosidodecahedron

Thm [Maschke '96]: the planar groups are \mathbb{Z}_n , D_n , A_4 , S_4 , A_5 , $\mathbb{Z}_2 \times \mathbb{Z}_n$, $\mathbb{Z}_2 \times D_n$, $\mathbb{Z}_2 \times A_4$, $\mathbb{Z}_2 \times S_4$, $\mathbb{Z}_2 \times A_5$

Cor: the planar Cayley graphs of groups are 1-skeleta of:

Platonic solids

(n-gon), cube, tetrahedron, octahedron, icosahedron

Archimedean solids missing: dodecahedron n-prism, cuboctahedron truncated cube, truncated octahedron, rhombicuboctahedron, truncated dodecahedron, truncated icosahedron, rhombicosidodecahedron, truncated icosidodecahedron, n-antiprism, snub cube, snub dodecahedron missing: icosidodecahedron

Quest[K,Knauer '16]: are they underlying Cayley graphs of monoids?

generalized Petersen graph G(10,2)

generalized Petersen graph G(10,2)

(generalized) Petersen graph G(5,2)

generalized Petersen graph G(10,2)

Quest[Mathoverflow '21]:

(generalized) Petersen graph G(5,2)

is the Petersen graph a "Cayley graph" of some more general group-like structure?

generalized Petersen graph G(10,2)

Quest[Mathoverflow '21]:

(generalized) Petersen graph G(5,2)

is the Petersen graph a "Cayley graph" of some more general group-like structure?

how about G(n,k)?

Thm[Nedal, Škoviera '95, Lovrečič Saražin '97]: G(n, k) is Cayley of group iff $k^2 = 1 \mod n$.

```
Thm[Nedal, Škoviera '95, Lovrečič Saražin '97]: G(n,k) is Cayley of group iff k^2=1 \mod n.
```

```
Thm[García-Marco, K '24]: G(n,k) is Cayley of monoid if k=\pm 1 \mod \frac{n}{\gcd(n,k)}.
```

Thm[Nedal, Škoviera '95, Lovrečič Saražin '97]: G(n,k) is Cayley of group iff $k^2=1 \mod n$.

Thm[García-Marco, K '24]:

proof:
$$S = \mathbb{Z}_n \cup (\mathbb{Z}_{\frac{n}{\gcd(n,k)}} \times L_{\gcd(n,k)})$$

$$x(i, \ell_j) = (x + i \mod \frac{n}{\gcd(n, k)}, \ell_{x+j \mod \gcd(n, k)})$$
$$(i, \ell_j)x = (x + i \mod \frac{n}{\gcd(n, k)}, \ell_j)$$

Thm[Nedal, Škoviera '95, Lovrečič Saražin '97]: G(n, k) is Cayley of group iff $k^2 = 1 \mod n$.

Thm[García-Marco, K '24]:

proof:
$$S = \mathbb{Z}_n \cup (\mathbb{Z}_{\frac{n}{\gcd(n,k)}} \times L_{\gcd(n,k)}) = \mathbb{Z}_{10} \cup (\mathbb{Z}_5 \times L_2)$$
 $G(10,4)$

$$x(i, \ell_j) = (x + i \mod \frac{n}{\gcd(n, k)}, \ell_{x+j \mod \gcd(n, k)})$$
$$(i, \ell_j)x = (x + i \mod \frac{n}{\gcd(n, k)}, \ell_j)$$

Thm[Nedal, Škoviera '95, Lovrečič Saražin '97]: G(n,k) is Cayley of group iff $k^2=1 \mod n$.

Thm[García-Marco, K '24]:

proof:
$$S = \mathbb{Z}_n \cup (\mathbb{Z}_{\frac{n}{\gcd(n,k)}} \times L_{\gcd(n,k)}) = \mathbb{Z}_{10} \cup (\mathbb{Z}_5 \times L_2)$$
 $G(10,4)$

$$x(i, \ell_j) = (x + i \mod \frac{n}{\gcd(n, k)}, \ell_{x+j \mod \gcd(n, k)})$$
$$(i, \ell_j)x = (x + i \mod \frac{n}{\gcd(n, k)}, \ell_j)$$

Thm[Nedal, Škoviera '95, Lovrečič Saražin '97]: G(n,k) is Cayley of group iff $k^2=1 \mod n$.

Thm[García-Marco, K '24]:

proof:
$$S = \mathbb{Z}_n \cup (\mathbb{Z}_{\frac{n}{\gcd(n,k)}} \times L_{\gcd(n,k)}) = \mathbb{Z}_{10} \cup (\mathbb{Z}_5 \times L_2)$$
 $G(10,4)$

$$x(i, \ell_j) = (x + i \mod \frac{n}{\gcd(n,k)}, \ell_{x+j \mod \gcd(n,k)})$$
$$(i, \ell_j)x = (x + i \mod \frac{n}{\gcd(n,k)}, \ell_j)$$

Thm[Nedal, Škoviera '95, Lovrečič Saražin '97]: G(n, k) is Cayley of group iff $k^2 = 1 \mod n$.

Thm[García-Marco, K '24]:

proof:
$$S = \mathbb{Z}_n \cup (\mathbb{Z}_{\frac{n}{\gcd(n,k)}} \times L_{\gcd(n,k)}) = \mathbb{Z}_{10} \cup (\mathbb{Z}_5 \times L_2)$$
 $G(10,4)$

$$x(i, \ell_j) = (x + i \mod \frac{n}{\gcd(n,k)}, \ell_{x+j \mod \gcd(n,k)})$$
$$(i, \ell_j)x = (x + i \mod \frac{n}{\gcd(n,k)}, \ell_j)$$

Thm[Nedal, Škoviera '95, Lovrečič Saražin '97]: G(n,k) is Cayley of group iff $k^2=1 \mod n$.

Thm[García-Marco, K '24]:

proof:
$$S = \mathbb{Z}_n \cup (\mathbb{Z}_{\frac{n}{\gcd(n,k)}} \times L_{\gcd(n,k)}) = \mathbb{Z}_{10} \cup (\mathbb{Z}_5 \times L_2)$$
 $G(10,4)$

$$x(i, \ell_j) = (x + i \mod \frac{n}{\gcd(n,k)}, \ell_{x+j \mod \gcd(n,k)})$$
$$(i, \ell_j)x = (x + i \mod \frac{n}{\gcd(n,k)}, \ell_j)$$

Thm[Nedal, Škoviera '95, Lovrečič Saražin '97]: G(n,k) is Cayley of group iff $k^2=1 \mod n$.

Thm[García-Marco, K '24]:

proof:
$$S = \mathbb{Z}_n \cup (\mathbb{Z}_{\frac{n}{\gcd(n,k)}} \times L_{\gcd(n,k)}) = \mathbb{Z}_{10} \cup (\mathbb{Z}_5 \times L_2)$$
 $G(10,4)$

$$x(i, \ell_j) = (x + i \mod \frac{n}{\gcd(n,k)}, \ell_{x+j \mod \gcd(n,k)})$$
$$(i, \ell_j)x = (x + i \mod \frac{n}{\gcd(n,k)}, \ell_j)$$

Thm[Nedal, Škoviera '95, Lovrečič Saražin '97]: G(n, k) is Cayley of group iff $k^2 = 1 \mod n$.

Thm[García-Marco, K '24]:

proof:
$$S = \mathbb{Z}_n \cup (\mathbb{Z}_{\frac{n}{\gcd(n,k)}} \times L_{\gcd(n,k)}) = \mathbb{Z}_{10} \cup (\mathbb{Z}_5 \times L_2)$$
 $G(10,4)$

$$x(i, \ell_j) = (x + i \mod \frac{n}{\gcd(n, k)}, \ell_{x+j \mod \gcd(n, k)})$$
$$(i, \ell_j)x = (x + i \mod \frac{n}{\gcd(n, k)}, \ell_j)$$

$$-k+1 = 2 \mod \frac{n}{\gcd(n,k)}$$
$$k = -1 \mod \frac{n}{\gcd(n,k)}$$

Thm[Nedal, Škoviera '95, Lovrečič Saražin '97]: G(n, k) is Cayley of group iff $k^2 = 1 \mod n$.

Thm[García-Marco, K '24]:

proof:
$$S = \mathbb{Z}_n \cup (\mathbb{Z}_{\frac{n}{\gcd(n,k)}} \times L_{\gcd(n,k)}) = \mathbb{Z}_{10} \cup (\mathbb{Z}_5 \times L_2)$$
 $G(10,4)$

Thm[Nedal, Škoviera '95, Lovrečič Saražin '97]: G(n,k) is Cayley of group iff $k^2=1 \mod n$.

Thm[García-Marco, K '22⁺]:

G(n,k) is Cayley of monoid if $k^2 = \pm k \mod n$.

group

monoid

Thm[Nedal, Škoviera '95, Lovrečič Saražin '97]: G(n,k) is Cayley of group iff $k^2=1 \mod n$.

Thm[García-Marco, K '22⁺]:

G(n,k) is Cayley of monoid if $k^2 = \pm k \mod n$.

group

monoid

The Petersen graph

	M	0	1	2	3	4	5	6	7	8	9	0 1
•	0	0	1	2	3	4	5	6	7	8	9	
	1	1	2	3	4	5	0	7	8	6	9	
	2	2	3	4	5	0	1	8	6	7	9	X 0-
	3	3	4	5	0	1	2	6	7	8	9	$\frac{7}{6}$
	4	4	5	0	1	2	3	7	8	6	9	$\frac{1}{2}$
	5	5	0	1	2	3	4	8	6	7	9	
	6	6	6	6	6	6	6	9	9	9	9	
	7	7	7	7	7	7	7	9	9	9	9	
	8	8	8	8	8	8	8	9	9	9	9	
	9	9	9	9	9	9	9	9	9	9	9	4 3

The Petersen graph

exploiting the (less obvious) symmetry $\mathbb{Z}_6 < \operatorname{Aut}(G(5,2))$

The Petersen graph

exploiting the (less obvious) symmetry $\mathbb{Z}_6 < \operatorname{Aut}(G(5,2))$

Cor[Krnc, Pisanski, '19]: apart from this, the trick won't leave the family $k^2 = \pm k \mod n$

M	0	1	2	3	4	5	6	7	8	9	10	11	12	13	G4(105 2	2_{16}	17	18	19	
0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	-
1	1	0	11	10	9	8	7	6	5	4	3	2	16	18	17	19	12	14	•13	15	
2	2	3	4	5	6	7	8	9	10	11	0	1	17	18	16	19	13	14	12	15	
3	3	2	1	0	11	10	9	8	7	6	5	4	13	12	14	15	17	16	18	10	
4	4	5	6	7	8	9	10	11	0	1	2	3	14	12	13	\$ 5	18	16	17	19	7
5	5	4	3	2	1	0	11	10	9	8	7	6	18	17	16		14	43	12	15	1
6	6	7	8	9	10	11	0	1	2	3	4+	5	16		18	19	12	*2		15	
7	7	6	5	4	3	2	1	0	11	10	9_	8	12	14	13	15	16	48	47	19	
8	8	9	10	11	0	1	2	3	4	5	96	7	13	14	12	15	17	18	16	19	_
9	9	8	7	6	5	4	3	2	1	0	11	10	21		18	19	13	12	14	15	
10	10	11	0	1	2	3	4	5	6	7	8	9	13	16	17	19	14	42	13	15	
11	11	10	9	8	7	6	5	4	3	2	1	0	14	13	12	X	18	17	16	19	
12	12	12	12	12	12	12	12	12	12	12	12	12	15	15	15	15	15	15	15	15	
13	13	13	13	13	13	13	13	13	13	13	13	13	15	15	15	15	15	15	15	15	
14	14	14	14	14	14	14	14	14	14	14	14	14	15	15	15	15	15	15	15	15	
15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	
16	16	16	16	16	16	16	16	16	16	16	16	16	19	19	19	19	19	19	19	19	
17	17	17	17	17	17	17	17	17	17	17	17	17	19	19	19	19	19	19	19	19	
18	18	18	18	18	18	18	18	18	18	18	18	18	19	19	19	19	19	19	19	19	
19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	
	'	exp	oloit	ting	the	e (le	SS C	bvi	ous) sy	mm	etr	y D	6 <	Au	$\mathrm{it}(G$	r(10)	0, 2)			

	M	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
•	0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	1	1	0	11	10	9	8	7	6	5	4	3	2	16	18	17	19	12	14	13	15
	2	2	3	4	5	6	7	8	9	10	11	0	1	17	18	16	19	13	14	12	15
	3	3	2	1	0	11	10	9	8	7	6	5	4	13	12	14	15	17	16	18	19
	4	4	5	6	7	8	9	10	11	0	1	2	3	14	12	13	15	18	16	17	19
	5	5	4	3	2	1	0	11	10	9	8	7	6	18	17	16	19	14	13	12	15
	6	6	7	8	9	10	11	0	1	2	3	4	5	16	17	18	19	12	13	14	15
	7	7	6	5	4	3	2	1	0	11	10	9	8	12	14	13	15	16	18	17	19
	8	8	9	10	11	0	1	2	3	4	5	6	7	13	14	12	15	17	18	16	19
	9	9	8	7	6	5	4	3	2	1	0	11	10	17	16	18	19	13	12	14	15
	10	10	11	0	1	2	3	4	5	6	7	8	9	18	16	17	19	14	12	13	15
	10 11	10 11	11 10	0 9	1 8	2 7	3 6	4 5	5 4	6 3	7 2	8 1	9 0	18 14	16 13		19 15	14 18	12 17		15 19
		10 11 12			1 8 12	2 7 12	-	4 5 12	-			8 1 12									
	11	11	10	9		7	6	5	4	3	2	1	0	14	13	12	15	18	17	16	19
	11 12	11 12	10 12	9	12	7	6	5 12	4 12	3	2	1	0 12	14 15	13 15	12 15	15 15	18 15	17 15	16 15	19 15
_	11 12 13	11 12 13	10 12 13	9 12 13	12 13	7 12 13	6 12 13	5 12 13	12 13	3 12 13	12 13	1 12 13	0 12 13	14 15 15	13 15 15	12 15 15	15 15 15	18 15 15	17 15 15	16 15 15	19 15 15
	11 12 13 14	11 12 13 14	10 12 13 14	9 12 13 14	12 13 14	7 12 13 14	6 12 13 14	5 12 13 14	12 13 14	3 12 13 14	12 13 14	1 12 13 14	0 12 13 14	14 15 15 15	13 15 15 15	12 15 15 15	15 15 15 15	18 15 15 15	17 15 15 15	16 15 15 15	19 15 15 15
	11 12 13 14 15	11 12 13 14 15	10 12 13 14 15	9 12 13 14 15	12 13 14 15	7 12 13 14 15	6 12 13 14 15	5 12 13 14 15	12 13 14 15	3 12 13 14 15	12 13 14 15	1 12 13 14 15	0 12 13 14 15	14 15 15 15 15	13 15 15 15 15	12 15 15 15 15	15 15 15 15 15	18 15 15 15 15	17 15 15 15 15	16 15 15 15 15	19 15 15 15 15
	11 12 13 14 15 16	11 12 13 14 15 16	10 12 13 14 15 16	9 12 13 14 15 16	12 13 14 15 16	7 12 13 14 15 16	6 12 13 14 15 16	5 12 13 14 15 16	12 13 14 15 16	3 12 13 14 15 16	12 13 14 15 16	1 12 13 14 15 16	0 12 13 14 15 16	14 15 15 15 15 19	13 15 15 15 15 15	12 15 15 15 15 15	15 15 15 15 15 19	18 15 15 15 15 19	17 15 15 15 15 19	16 15 15 15 15 19	19 15 15 15 15 15
	11 12 13 14 15 16 17	11 12 13 14 15 16 17	10 12 13 14 15 16 17	9 12 13 14 15 16 17	12 13 14 15 16 17	7 12 13 14 15 16 17	6 12 13 14 15 16 17	5 12 13 14 15 16 17	12 13 14 15 16 17	3 12 13 14 15 16 17	12 13 14 15 16 17	1 12 13 14 15 16 17	0 12 13 14 15 16 17	14 15 15 15 15 19	13 15 15 15 15 19 19	12 15 15 15 15 19 19	15 15 15 15 15 19	18 15 15 15 15 19 19	17 15 15 15 15 19 19	16 15 15 15 15 19	19 15 15 15 15 19 19

Thm[Nedal, Škoviera '95, Lovrečič Saražin '97]: G(n,k) Cayley of group iff $k^2=1 \mod n$.

Thm[García-Marco, K '24]:

G(n,k) Cayley of monoid if $k^2 = \pm k \mod n$ or (n,k) = (5,2), (10,2), (10,3)

group

monoid

Thm[Nedal, Škoviera '95, Lovrečič Saražin '97]: G(n,k) Cayley of group iff $k^2=1 \mod n$.

Thm[García-Marco, K '24]:

G(n,k) Cayley of monoid if $k^2 = \pm k \mod n$ or (n,k) = (5,2), (10,2), (10,3).

Thm[Nedal, Škoviera '95, Lovrečič Saražin '97]: G(n,k) Cayley of group iff $k^2=1 \mod n$. **Thm**[García-Marco, K '24]:

Initing Garcia-Ivianco, K 24]. $C(m, h) Coulou of monoid if <math>h^2 = h + h \mod m$ or (m, h) = (5, 9) (10, 9).

Cayley graphs

```
(finite) set S with binary operation \cdot: S \times S \to S
```

```
associativity: (a \cdot b) \cdot c = a \cdot (b \cdot c) for all a, b, c \in S \longrightarrow semigroup
```

neutral element: $\exists_{e \in S} : a \cdot e = e \cdot a = a$ for all $a \in S \longrightarrow \mathsf{monoid}$

invers	se element: $\forall_{a \in S}$	$g\exists_{a^{-1}\in S}: a\cdot a^{-1} = e$	
order	#groups	# monoids	# semigroups
1	1	1	1
2	1	2	5
3	1	7	24
4	2	35	188
5	1	228	1915
6	2	2237	28634
7	1	31559	1627672
8	5	1668997	3684030417
9	2		105978177936292
10	2	· ·	
11	1		

Cayley graphs

```
(finite) set S with binary operation \cdot: S \times S \to S

→ semigroup

associativity: (a \cdot b) \cdot c = a \cdot (b \cdot c) for all a, b, c \in S
neutral element: \exists_{e \in S} : a \cdot e = e \cdot a = a for all a \in S \longrightarrow \mathsf{monoid}
inverse element: \forall_{a \in S} \exists_{a^{-1} \in S} : a \cdot a^{-1} = e

→ group

order •
                                      # monoids
                                                                # semigroups
            #groups
  2
3
                                                                24
                                      35
                                                                188
  5
                                      228
                                                                1915
  6
            2
                                      2237
                                                                28634
                                      31559
                                                                 1627672
  8
            5
                                      1668997
                                                                3684030417
  9
            2
                                                                 105978177936292
  10
            2
  11
                                    trying all pairs C \subseteq S is unfeasable
  12
```

endomorphism: $\varphi: V \to V \text{ such that:} \qquad \text{End}(\underline{\operatorname{Cay}}^o(S,C)) \text{ Aut}(\underline{\operatorname{Cay}}(S,C)) \\ \{u,v\} \in E \Rightarrow \{\varphi(u),\varphi(v)\} \in E \\ \text{automorphism if bijective } \operatorname{End}(\operatorname{Cay}(S,C)) \text{ Aut}(\underline{\operatorname{Cay}}^o(S,C)) \\ \qquad \qquad \operatorname{End}(\operatorname{Cay}_{\operatorname{col}}(S,C)) \text{ Aut}(\operatorname{Cay}(S,C)) \\ \qquad \qquad \operatorname{Aut}(\operatorname{Cay}_{\operatorname{col}}(S,C))$

endomorphism: $\varphi: V \to V \text{ such that:} \qquad \text{End}(\underline{\text{Cay}}^o(S,C)) \text{ Aut}(\underline{\text{Cay}}(S,C))$ $\{u,v\} \in E \Rightarrow \{\varphi(u),\varphi(v)\} \in E$ automorphism if bijective $\text{End}(\text{Cay}(S,C)) \text{ Aut}(\underline{\text{Cay}}^o(S,C))$ color $(a,b) = \text{color}(\varphi(a),\varphi(b))$ $\blacktriangleright \text{End}(\text{Cay}_{\text{col}}(S,C)) \text{ Aut}(\text{Cay}(S,C))$

Lem: $M < \operatorname{End}(\operatorname{Cay}_{\operatorname{col}}(M, C))$ and $\exists_{e \in V} \forall_{v \in V} \exists \varphi \in M : \varphi(e) = v$

Lem: $M < \operatorname{End}(\operatorname{Cay}_{\operatorname{col}}(M, C))$ and $\exists_{e \in V} \forall_{v \in V} \exists \varphi \in M : \varphi(e) = v$

left-multiplication with M is in $\operatorname{End}(\operatorname{Cay}_{\operatorname{col}}(M,C))$

$$s = t$$

$$ms = mt$$

$$and \lambda_m(e) = m$$

Lem: $M < \operatorname{End}(\operatorname{Cay}_{\operatorname{col}}(M, C))$ and $\exists_{e \in V} \forall_{v \in V} \exists \varphi \in M : \varphi(e) = v$

Thm: if $M = \langle C \rangle$, then $M \cong \operatorname{End}(\operatorname{Cay}_{\operatorname{col}}(M, C))$

Lem: $M < \operatorname{End}(\operatorname{Cay}_{\operatorname{col}}(M, C))$ and $\exists_{e \in V} \forall_{v \in V} \exists \varphi \in M : \varphi(e) = v$

Thm: if $M = \langle C \rangle$, then $M \cong \operatorname{End}(\operatorname{Cay}_{\operatorname{col}}(M, C))$ naive approach:

- \circ get a multi-orientation D of G
- \circ add some loops to get D'
- \circ compute $\operatorname{End}(D')$
- $\circ \text{ get } M < \operatorname{End}(D') \text{ with } |M| = n \text{ and check } C \subseteq M$
- \circ or get $C \subseteq \operatorname{End}(D')$ and check < C >

Thm: if M = < C >, then $M \cong \operatorname{End}(\operatorname{Cay}_{\operatorname{col}}(M,C))$ naive approach:

- \circ get a multi-orientation D of G
- \circ add some loops to get D' \circ color the arcs
- \circ compute $\operatorname{End}(D')$ \circ compute $\operatorname{End}_{\operatorname{col}}(D')$
- \circ get $M < \operatorname{End}(D')$ with |M| = n and check $C \subseteq M$
- \circ or get $C \subseteq \operatorname{End}(D')$ and check < C >

Lem: $M < \operatorname{End}(\operatorname{Cay}_{\operatorname{col}}(M, C))$ and $\exists_{e \in V} \forall_{v \in V} \exists \varphi \in M : \varphi(e) = v$

Thm: if $M = \langle C \rangle$, then $M \cong \operatorname{End}(\operatorname{Cay}_{\operatorname{col}}(M, C))$ naive approach:

- \circ get a multi-orientation D of G G(7,2) has 747197622 multiorientations!
- \circ add some loops to get D' \circ color the arcs
- \circ compute $\operatorname{End}(D')$ \circ compute $\operatorname{End}_{\operatorname{col}}(D')$
- \circ get $M < \operatorname{End}(D')$ with |M| = n and check $C \subseteq M$
- \circ or get $C \subseteq \operatorname{End}(D')$ and check < C >

consider $Cay_{col}(S,C)$ as an arc-coloured directed multigraph

Cay(S, C) is |C|-outregular directed multigraph

consider $Cay_{col}(S, C)$ as an arc-coloured directed multigraph

Cay(S,C) is |C|-outregular directed multigraph

If S=M monoid, $e\notin C$, then e has at least |C| neighbors

consider $Cay_{col}(S, C)$ as an arc-coloured directed multigraph

 $\operatorname{Cay}(S,C)$ is |C|-outregular directed multigraph

If S=M monoid, $e\notin C$, then e has at least |C| neighbors

if
$$G = \underline{\operatorname{Cay}}(M, C)$$
 then $|C| \leq \Delta_G$

consider $Cay_{col}(S, C)$ as an arc-coloured directed multigraph

Cay(S, C) is |C|-outregular directed multigraph

If S=M monoid, $e\notin C$, then e has at least |C| neighbors

if
$$G = \underline{\operatorname{Cay}}(M, C)$$
 then $|C| \leq \Delta_G$

D = (V, A) 1-outregular \iff

 \circ each component K has unique (directed) cycle C_K

 \circ every $v \in K$ has unique directed path P_v to C_K

 $\leadsto D$ has n arcs (as a multidigraph)

consider $Cay_{col}(S, C)$ as an arc-coloured directed multigraph

Cay(S,C) is |C|-outregular directed multigraph

If S=M monoid, $e\notin C$, then e has at least |C| neighbors

if
$$G = \underline{\operatorname{Cay}}(M, C)$$
 then $|C| \leq \Delta_G$

D = (V, A) 1-outregular \iff

 \circ each component K has unique (directed) cycle C_K

• every $v \in K$ has unique directed path P_v to C_K

 $\leadsto D$ has n arcs (as a multidigraph)

if
$$G = \underline{\operatorname{Cay}}(S, C)$$
 then $\frac{m}{n} \leq |C|$

consider $Cay_{col}(S, C)$ as an arc-coloured directed multigraph

 $\operatorname{Cay}(S,C)$ is |C|-outregular directed multigraph If S=M monoid, $e\notin C$, then e has at least |C| neighbors

if
$$G = \underline{\operatorname{Cay}}(M, C)$$
 then $|C| \leq \Delta_G$

$$D = (V, A)$$
 1-outregular \iff

 \circ each component K has unique (directed) cycle C_K

• every $v \in K$ has unique directed path P_v to $C_K \leadsto D$ has n arcs (as a multidigraph)

if
$$G = \underline{\operatorname{Cay}}(S, C)$$
 then $\frac{m}{n} \le |C|$

$$\leadsto G(n,k) = \underline{\operatorname{Cay}}(M,C) \implies 2 \le |C| \le 3$$

consider $Cay_{col}(S, C)$ as an arc-coloured directed multigraph

Cay(S, C) is |C|-outregular directed multigraph

If S=M monoid, $e\notin C$, then e has at least |C| neighbors

if
$$G = \underline{\operatorname{Cay}}(M, C)$$
 then $|C| \leq \Delta_G$

$$D = (V, A)$$
 1-outregular \iff

 \circ each component K has unique (directed) cycle C_K

 \circ every $v \in K$ has unique directed path P_v to C_K

 $\leadsto D$ has n arcs (as a multidigraph)

if
$$G = \underline{\operatorname{Cay}}(S, C)$$
 then $\frac{m}{n} \leq |C|$

$$\leadsto G(n,k) = \underline{\operatorname{Cay}}(M,C) \implies 2 \le |C| \le 3$$

multiorientations with vertex e of outdegree ≥ 2

if < C >= M then everybody reachable from e

 $\rightsquigarrow G(7,2)$ still 240088032 multiorientations ($\sim 65\%$)

consider $Cay_{col}(S, C)$ as an arc-coloured directed multigraph

Cay(S,C) is |C|-outregular directed multigraph

If S=M monoid, $e\notin C$, then e has at least |C| neighbors

if
$$G = \underline{\operatorname{Cay}}(M, C)$$
 then $|C| \leq \Delta_G$

$$D = (V, A)$$
 1-outregular \iff

 \circ each component K has unique (directed) cycle C_K

 \circ every $v \in K$ has unique directed path P_v to C_K

 $\leadsto D$ has n arcs (as a multidigraph)

if
$$G = \underline{\operatorname{Cay}}(S, C)$$
 then $\frac{m}{n} \leq |C|$

multiorientations with vertex e of outdegree ≥ 2

if < C >= M then everybody reachable from e

 $\leadsto G(7,2)$ still 240088032 multiorientations ($\sim 65\%$)

consider $Cay_{col}(S, C)$ as an arc-coloured directed multigraph

Cay(S, C) is |C|-outregular directed multigraph

If S=M monoid, $e\notin C$, then e has at least |C| neighbors

$$D = (V, A)$$
 1-outregular \iff

 \circ each component K has unique (directed) cycle C_K

• every $v \in K$ has unique directed path P_v to C_K

 $\leadsto D$ has n arcs (as a multidigraph)

if
$$G = \underline{\operatorname{Cay}}(S, C)$$
 then $\frac{m}{n} \leq |C|$

$$\leadsto G(n,k) = \underline{\operatorname{Cay}}(M,C) \implies 2 \le |C| \le 3$$

$$xc = e \implies c \in Aut(G)$$

consider $Cay_{col}(S, C)$ as an arc-coloured directed multigraph

 $\mathrm{Cay}(S,C)$ is |C|-outregular directed multigraph e^{L} If S=M monoid, $e\notin C$, then e has at least |C| neighbors

if
$$G = \underline{\operatorname{Cay}}(M, C)$$
 then $|C| \leq \Delta_G$

$$D = (V, A)$$
 1-outregular \iff

 \circ each component K has unique (directed) cycle C_K

• every $v \in K$ has unique directed path P_v to $C_K \leadsto D$ has n arcs (as a multidigraph)

if
$$G = \operatorname{Cay}(S, C)$$
 then $\frac{m}{n} \leq |C|$

$$\leadsto G(n,k) = \operatorname{Cay}(M,C) \implies 2 \le |C| \le 3$$

$$xc = e \implies c \in \operatorname{Aut}(G)$$

the e-component of $\underline{\mathrm{Cay}}(M, N^-(e))$ is a group Cayley graph for some $\Gamma < \mathrm{Aut}(G)$

Thm [García-Marco, K '24]:

 $G(n,k)=\operatorname{Cay}(M,C)$ with $M=\langle C \rangle$ and |C|=2 if and only if:

- (a) (n,k) = (5,2) (Petersen graph),
- (b) $k^2 \equiv 1 \pmod{n}$, or
- (c) $k^2 \equiv \pm k \pmod{n}$.

|C'|=2

Thm [García-Marco, K '24]:

 $G(n,k) = \operatorname{Cay}(M,C)$ with $M = \langle C \rangle$ and |C| = 2 if and only if:

- (a) (n,k)=(5,2) (Petersen graph),
- (b) $k^2 \equiv 1 \pmod{n}$, or
- (c) $k^2 \equiv \pm k \pmod{n}$.

proof ingredients:

 $|C|=2 \implies$ some c generates a cyclic subgroup of $\operatorname{Aut}(G)$ non-involution

Thm [García-Marco, K '24]:

 $G(n,k)=\operatorname{Cay}(M,C)$ with $M=\langle C \rangle$ and |C|=2 if and only if:

- (a) (n, k) = (5, 2) (Petersen graph),
- (b) $k^2 \equiv 1 \pmod{n}$, or
- (c) $k^2 \equiv \pm k \pmod{n}$.

proof ingredients:

 $|C|=2 \implies$ some c generates a cyclic subgroup of $\operatorname{Aut}(G)$ non-involution

Thm [Frucht, Graver, Watkins '71]: full descripton of $\operatorname{Aut}(G(n,k))$

Thm [García-Marco, K '24]:

 $G(n,k)=\operatorname{Cay}(M,C)$ with $M=\langle C \rangle$ and |C|=2 if and only if:

- (a) (n, k) = (5, 2) (Petersen graph),
- (b) $k^2 \equiv 1 \pmod{n}$, or
- (c) $k^2 \equiv \pm k \pmod{n}$.

proof ingredients:

 $|C|=2 \implies$ some c generates a cyclic subgroup of $\operatorname{Aut}(G)$ non-involution

Thm [Frucht, Graver, Watkins '71]: full descripton of $\operatorname{Aut}(G(n,k))$

Thm:

if $M = \langle C \rangle$, then $M \cong \operatorname{End}(\operatorname{Cay}_{\operatorname{col}}(M, C))$

Thm [García-Marco, K '24]:

 $G(n,k) = \operatorname{Cay}(M,C)$ with $M = \langle C \rangle$ and |C| = 2 if and only if:

- (a) (n,k) = (5,2) (Petersen graph),
- (b) $k^2 \equiv 1 \pmod{n}$, or
- (c) $k^2 \equiv \pm k \pmod{n}$.

proof ingredients:

 $|C|=2 \implies$ some c generates a cyclic subgroup of $\operatorname{Aut}(G)$ non-involution

Thm [Frucht, Graver, Watkins '71]: full descripton of $\operatorname{Aut}(G(n,k))$

Thm:

if $M = \langle C \rangle$, then $M \cong \operatorname{End}(\operatorname{Cay}_{\operatorname{col}}(M, C))$

still quite some work

Thm [García-Marco, K '24]:

 $G(n,k)=\operatorname{Cay}(M,C)$ with $M=\langle C \rangle$ and |C|=2 if and only if:

- (a) (n,k) = (5,2) (Petersen graph),
- (b) $k^2 \equiv 1 \pmod{n}$, or
- (c) $k^2 \equiv \pm k \pmod{n}$.

Conjecture [García-Marco, K '24]:

 $G(n,k) = \operatorname{Cay}(M,C)$ with |C| = 2 if and only:

- (a) (n,k) = (5,2) (Petersen graph),
- (b) (n, k) = (10, 3) (Desargues graph),
- (c) $k^2 \equiv 1 \pmod{n}$,
- (d) $k^2 \equiv \pm k \pmod{n}$.

Thm [García-Marco, K '24]:

 $G(n,k) = \operatorname{Cay}(M,C)$ with $M = \langle C \rangle$ and |C| = 2 if and only if:

- (a) (n,k) = (5,2) (Petersen graph),
- (b) $k^2 \equiv 1 \pmod{n}$, or
- (c) $k^2 \equiv \pm k \pmod{n}$.

Conjecture [García-Marco, K '24]:

 $G(n,k) = \operatorname{Cay}(M,C)$ with |C| = 2 if and only:

- (a) (n, k) = (5, 2) (Petersen graph),
- (b) (n, k) = (10, 3) (Desargues graph),
- (c) $k^2 \equiv 1 \pmod{n}$,
- (d) $k^2 \equiv \pm k \pmod{n}$. true if $\frac{n}{\gcd(n,k)}$ odd or $\gcd(n,k) = 1$

Thm [García-Marco, K '24]:

 $G(n,k)=\operatorname{Cay}(M,C)$ with $M=\langle C \rangle$ and |C|=2 if and only if:

- (a) (n,k) = (5,2) (Petersen graph),
- (b) $k^2 \equiv 1 \pmod{n}$, or
- (c) $k^2 \equiv \pm k \pmod{n}$.

Conjecture [García-Marco, K '24]:

 $G(n,k) = \operatorname{Cay}(M,C)$ with |C| = 2 if and only:

- (a) (n, k) = (5, 2) (Petersen graph),
- (b) (n, k) = (10, 3) (Desargues graph),
- (c) $k^2 \equiv 1 \pmod{n}$,
- (d) $k^2 \equiv \pm k \pmod{n}$. true if $\frac{n}{\gcd(n,k)}$ odd or $\gcd(n,k) = 1$

 $\leadsto G(10,2), G(7,2)$ not monoid with |C|=2

Thm [García-Marco, K '24]:

 $G(n,k)=\operatorname{Cay}(M,C)$ with $M=\langle C \rangle$ and |C|=2 if and only if:

- (a) (n,k) = (5,2) (Petersen graph),
- (b) $k^2 \equiv 1 \pmod{n}$, or
- (c) $k^2 \equiv \pm k \pmod{n}$.

Conjecture [García-Marco, K '24]:

 $G(n,k) = \operatorname{Cay}(M,C)$ with |C| = 2 if and only:

- (a) (n, k) = (5, 2) (Petersen graph),
- (b) (n, k) = (10, 3) (Desargues graph),
- (c) $k^2 \equiv 1 \pmod{n}$,
- (d) $k^2 \equiv \pm k \pmod{n}$. true if $\frac{n}{\gcd(n,k)}$ odd or $\gcd(n,k) = 1$
 - $\leadsto G(10,2), G(7,2) \text{ not monoid with } |C| = 2$ possible with |C| = 3

Thm [García-Marco, K '24]:

 $G(n,k) = \operatorname{Cay}(M,C)$ with $M = \langle C \rangle$ and |C| = 2 if and only if:

- (a) (n,k) = (5,2) (Petersen graph),
- (b) $k^2 \equiv 1 \pmod{n}$, or
- (c) $k^2 \equiv \pm k \pmod{n}$.

Conjecture [García-Marco, K '24]:

 $G(n,k) = \operatorname{Cay}(M,C)$ with |C| = 2 if and only:

- (a) (n,k) = (5,2) (Petersen graph),
- (b) (n, k) = (10, 3) (Desargues graph),
- (c) $k^2 \equiv 1 \pmod{n}$,
- (d) $k^2 \equiv \pm k \pmod{n}$.

true if $\frac{n}{\gcd(n,k)}$ odd or $\gcd(n,k)=1$

 $\sim G(10,2), G(7,2) \text{ not monoid with } |C| = 2$ possible with |C| = 3

use of computer →

Proposition [K, Vidal '24]:

 $G(7,2) = \operatorname{Cay}(M,C) \implies C$ contains no invertible element

G(7,2) and many generalized Petersen graphs

G(7,2) and many generalized Petersen graphs

icosidodecahedron

use of computer \rightsquigarrow yes, for $n \leq 6$

...wait, is every graph a monoid graph? use of computer \leadsto yes, for $n \leq 6$

Thm [K, Puig i Surroca '23]: Every forest is a monoid graph

$$|C| = 1$$

D = (V, A) 1-outregular \iff

 \circ each component K has unique (directed) cycle C_K

• every $v \in K$ has unique directed path P_v to C_K

$$|C| = 1$$

$$D = (V, A)$$
 1-outregular \iff

 \circ each component K has unique (directed) cycle C_K

$$\leadsto \sigma(K) = |C_K|, \ \pi(K) = \max_{v \in K} |P_v|$$

$$|C| = 1$$

 $\pi = 3$

D = (V, A) 1-outregular \iff

 \circ each component K has unique (directed) cycle C_K

• every $v \in K$ has unique directed path P_v to C_K

$$\leadsto \sigma(K) = |C_K|, \ \pi(K) = \max_{v \in K} |P_v|$$
 $\sigma = 7$

Thm [Zelinka '81, K, Puig i Surroca '22]: let D be 1-outregular, then

$$\circ D = \operatorname{Cay}(S, \{a\}) \Leftrightarrow \exists_{\operatorname{comp} K} \forall_{\operatorname{comp} K'} : \pi(K') \leq \pi(K) + 1 \text{ and } \sigma(K') | \sigma(K) |$$

$$\circ D = \operatorname{Cay}(M, \{a\}) \Leftrightarrow \exists_{\operatorname{comp} K} \forall_{\operatorname{comp} K'} : \pi(K') \leq \pi(K) \text{ and } \sigma(K') | \sigma(K) |$$

$$|C| = 1$$

D = (V, A) 1-outregular \iff

 \circ each component K has unique (directed) cycle C_K

• every $v \in K$ has unique directed path P_v to C_K

$$\leadsto \sigma(K) = |C_K|, \ \pi(K) = \max_{v \in K} |P_v|$$

Thm [Zelinka '81, K, Puig i Surroca '22]: let D be 1-outregular, then

- $\circ D = \operatorname{Cay}(S, \{a\}) \Leftrightarrow \exists_{\operatorname{comp} K} \forall_{\operatorname{comp} K'} : \pi(K') \leq \pi(K) + 1 \text{ and } \sigma(K') | \sigma(K) |$
- $D = \operatorname{Cay}(M, \{a\}) \Leftrightarrow \exists_{\operatorname{comp} K} \forall_{\operatorname{comp} K'} : \pi(K') \leq \pi(K) \text{ and } \sigma(K') | \sigma(K) |$

" \Rightarrow :" a of index i and period $p \rightsquigarrow a^i = a^{i+p}$ K component of e

$$|C| = 1$$

$$D = (V, A)$$
 1-outregular \iff

- \circ each component K has unique (directed) cycle C_K
- every $v \in K$ has unique directed path P_v to C_K

$$\leadsto \sigma(K) = |C_K|, \ \pi(K) = \max_{v \in K} |P_v|$$

Thm [Zelinka '81, K, Puig i Surroca '22]: let D be 1-outregular, then

- $\circ D = \operatorname{Cay}(S, \{a\}) \Leftrightarrow \exists_{\operatorname{comp} K} \forall_{\operatorname{comp} K'} : \pi(K') \leq \pi(K) + 1 \text{ and } \sigma(K') | \sigma(K) |$
- $D = \operatorname{Cay}(M, \{a\}) \Leftrightarrow \exists_{\operatorname{comp} K} \forall_{\operatorname{comp} K'} : \pi(K') \leq \pi(K) \text{ and } \sigma(K') | \sigma(K) |$

" \Rightarrow :" a of index i and period $p \rightsquigarrow a^i = a^{i+p}$ K component of e

$$|C| = 1$$

$$D = (V, A)$$
 1-outregular \iff

- \circ each component K has unique (directed) cycle C_K
- every $v \in K$ has unique directed path P_v to C_K

$$\leadsto \sigma(K) = |C_K|, \ \pi(K) = \max_{v \in K} |P_v|$$

- $\circ D = \operatorname{Cay}(S, \{a\}) \Leftrightarrow \exists_{\operatorname{comp} K} \forall_{\operatorname{comp} K'} : \pi(K') \leq \pi(K) + 1 \text{ and } \sigma(K') | \sigma(K) |$
- $D = \operatorname{Cay}(M, \{a\}) \Leftrightarrow \exists_{\operatorname{comp} K} \forall_{\operatorname{comp} K'} : \pi(K') \leq \pi(K) \text{ and } \sigma(K') | \sigma(K)$

"
$$\Rightarrow$$
:" a of index i and period $p \rightsquigarrow a^i = a^{i+p}$ K component of e

suppose
$$\pi(K') > i$$
 $d(x, C_{K'}) > i \Rightarrow xa^i \neq xa^{i+k}$ for all $k \geq 1$ $e^{\sum_{i=1}^{2} a^3} a^4 = \sigma(K) = p$ $\sum_{i=1}^{2} a^3 = a^4 = \sigma(K) = p$ $\sum_{i=1}^{2} a^3 = a^4 = \sigma(K) = p$ $\sum_{i=1}^{2} a^3 = a^4 = \sigma(K) = p$

 $\pi = 3$

$$|C| = 1$$

$$D = (V, A)$$
 1-outregular \iff

- \circ each component K has unique (directed) cycle C_K
- every $v \in K$ has unique directed path P_v to C_K

$$\leadsto \sigma(K) = |C_K|, \ \pi(K) = \max_{v \in K} |P_v| \quad \sigma = 7$$

Thm [Zelinka '81, K, Puig i Surroca '22]: let D be 1-outregular, then

- $\circ D = \operatorname{Cay}(S, \{a\}) \Leftrightarrow \exists_{\operatorname{comp} K} \forall_{\operatorname{comp} K'} : \pi(K') \leq \pi(K) + 1 \text{ and } \sigma(K') | \sigma(K) |$
- $D = \operatorname{Cay}(M, \{a\}) \Leftrightarrow \exists_{\operatorname{comp} K} \forall_{\operatorname{comp} K'} : \pi(K') \leq \pi(K) \text{ and } \sigma(K') | \sigma(K) |$

"
$$\Rightarrow$$
:" a of index i and period $p \rightsquigarrow a^i = a^{i+p}$

K component of e

suppose
$$\pi(K') > i$$
 $d(x, C_{K'}) > i \Rightarrow xa^i \neq xa^{i+k} \text{ for all } k \geq 1$
 $\Rightarrow a^i \neq a^{i+p}$

$$\pi(K') \le i \le \pi(K) = i$$

$$|C| = 1$$

$$D = (V, A)$$
 1-outregular \iff

- \circ each component K has unique (directed) cycle C_K
- every $v \in K$ has unique directed path P_v to C_K

$$\leadsto \sigma(K) = |C_K|, \ \pi(K) = \max_{v \in K} |P_v|$$

Thm [Zelinka '81, K, Puig i Surroca '22]: let D be 1-outregular, then

- $\circ D = \operatorname{Cay}(S, \{a\}) \Leftrightarrow \exists_{\operatorname{comp} K} \forall_{\operatorname{comp} K'} : \pi(K') \leq \pi(K) + 1 \text{ and } \sigma(K') | \sigma(K) |$
- $D = \operatorname{Cay}(M, \{a\}) \Leftrightarrow \exists_{\operatorname{comp} K} \forall_{\operatorname{comp} K'} : \pi(K') \leq \pi(K) \text{ and } \sigma(K') | \sigma(K)$

"
$$\Rightarrow$$
:" a of index i and period $p \rightsquigarrow a^i = a^{i+p}$ K co

K component of e

suppose
$$\pi(K') > i$$
 $d(x, C_{K'}) > i \Rightarrow xa^i \neq xa^{i+k}$ for all $k \geq 1$ $e^{\sum_{i=1}^{2} a^3} a^4 = \sigma(K) = p$ $\sum_{i=1}^{2} a^3 = a^4 = \sigma(K) = p$ $\sum_{i=1}^{2} a^3 = a^4 = \sigma(K) = p$ $\sum_{i=1}^{2} a^3 = a^4 = \sigma(K) = p$

suppose
$$\sigma(K') = q \not| p$$

 $\Rightarrow i \not\equiv i + p \mod q$
 $x \in K' \Rightarrow xa^i \neq xa^{i+p}$
 $\Rightarrow a^i \neq a^{i+p}$

$$\pi(K') \le i \le \pi(K) = i$$

 $rac{\sim} xa^i \in C_{K'}$ but can't return by p steps

$$|C| = 1$$

$$D = (V, A)$$
 1-outregular \iff

- \circ each component K has unique (directed) cycle C_K
- every $v \in K$ has unique directed path P_v to C_K

$$\leadsto \sigma(K) = |C_K|, \ \pi(K) = \max_{v \in K} |P_v|$$

•
$$D = \operatorname{Cay}(M, \{a\}) \Leftrightarrow \exists_{\operatorname{comp} K} \forall_{\operatorname{comp} K'} : \pi(K') \leq \pi(K) \text{ and } \sigma(K') | \sigma(K)$$

"
$$\Rightarrow$$
:" a of index i and period $p \rightsquigarrow a^i = a^{i+p}$ K c

K component of e

suppose
$$\pi(K') > i$$
 $\Rightarrow xa^i \neq xa^{i+k}$ for all $k \geq 1$ $\Rightarrow a^i \neq a^{i+p}$ $\Rightarrow a^i \neq a^{i+p}$

 $\pi = 3$

suppose
$$\sigma(K') = q \not| p$$

 $\Rightarrow i \not\equiv i + p \mod q$
 $x \in K' \Rightarrow xa^i \neq xa^{i+p}$
 $\Rightarrow a^i \neq a^{i+p}$

$$\pi(K') \le i \le \pi(K) = i$$
$$\sigma(K')|\sigma(K)$$

 $rac{\sim} xa^i \in C_{K'}$ but can't return by p steps

|C| = 1

D = (V, A) 1-outregular \iff

- \circ each component K has unique (directed) cycle C_K
- every $v \in K$ has unique directed path P_v to C_K

$$\leadsto \sigma(K) = |C_K|, \ \pi(K) = \max_{v \in K} |P_v|$$
 $\sigma = 7$

Thm [Zelinka '81, K, Puig i Surroca '22]: let D be 1-outregular, then

- $\circ D = \operatorname{Cay}(S, \{a\}) \Leftrightarrow \exists_{\operatorname{comp}K} \forall_{\operatorname{comp}K'} : \pi(K') \leq \pi(K) + 1 \text{ and } \sigma(K') | \sigma(K) |$
- $\circ D = \operatorname{Cay}(M, \{a\}) \Leftrightarrow \exists_{\operatorname{comp} K} \forall_{\operatorname{comp} K'} : \pi(K') \leq \pi(K) \text{ and } \sigma(K') | \sigma(K) |$

- \rightsquigarrow for every pseudotree P there is monoid M with $P = \underbrace{\operatorname{Cay}}(M, \{a\})$
- \rightsquigarrow for every forest F there is monoid M with $F = \underline{\operatorname{Cay}}(M, \{a\})$