WHAT IS CLAIMED IS:

	1	A method for identifying protocol encapsulation in received
	2	network data comprising providing a grammar and parsing incoming network data using
	3	said grammar, said network data being organized into data packets.
_	$\overline{}$	
, ,	/1	2. The method of claim 1 wherein said grammar is a grammar graph,
)/	2	the method further including providing a deterministic finite automaton (DFA)
	3	representing said grammar graph
	1	3. The method of claim 1 further including scanning said incoming
	2	network data using lexical token scanning to produce plural lexical tokens, said step of
	3	parsing including parsing said lexical tokens.
	1	4. The method of claim 3 wherein said lexical scanning includes
	2	providing a set of regular expressions.
	1	5. The method of claim 3 further including providing a deterministic
	2	finite automaton (DFA), said DFA including a representation of said lexical tokens and
	3	said grammar, said step of scanning including recognizing lexical tokens contained in
	4	said data packets using said DFA, said step of parsing including identifying grammatical
	5	structure among said lexical tokens using said DFA to identify protocol encapsulation in
	6	said incoming network data.
	1	In a data packet network switching device, a method for processing
	2	data packets comprising:
	3	providing a grammar;
	4	receiving plural data packets, each having a length not necessarily equal to
	5	one another; and
	6	for each data packet, lexically scanning said data packet to produce plural
	7	lexical tokens, parsing said lexical tokens to produce one or more identified protocols,
	8	and processing said data packet based on said identified protocols.
	1	7. The method of claim 6 further including compiling said grammar
	2	to produce a grammar graph.

1	8. The method of claim 7 wherein said lexical scanning includes
2	providing regular expressions for identifying said lexical tokens.
1	9. The method of claim 8 further including compiling said regular
2	expressions are into a deterministic finite automaton (DFA).
1	10. The method of claim 9 further including incorporating said
2	grammar graph into said DFA.
1	In a data packet receiving and forwarding device a method for
_	In a data packet receiving and forwarding device, a method for
2	processing data packets comprising a stream of data, said method comprising:
3	receiving a description of grammar rules in a grammar packet
4	classification language;
5	compiling said grammar packet classification language to produce a
6	grammar graph;
7	configuring a programmable grammatical packet classifier with said
8	grammar graph;
9	parsing said data stream with said grammatical packet classifier to identify
10	a protocol structure in a received data packet; and
11	processing said received data packet in accordance with said protocol
12	structure.
1	12. The method of claim 11 further including:
2	receiving a description of classification rules in a lexical classification
3	language;
4	compiling said classification language to produce a deterministic finite
5	automaton (DFA) comprising plural states;
6	configuring said hardware packet classifier with said DFA; and
7	scanning said data stream with said hardware packet classifier to produce
8	plural lexical tokens,
9	wherein said parsing is a step of parsing said lexical tokens.
1	13 The method of claim 12 wherein said grammar graph is
2	incorporated into/said DFA.

1	14. The method of claim 12 wherein said lexical classification
2	language includes regular expressions.
1	15. The method of claim 14 wherein said regular expressions include
1	
2	arithmetic and logic operations.
1	16. The method of claim 15 wherein said regular expressions further
2	include skip operations.
1	17. The method of claim 16 wherein said regular expressions further
2	include data storage operations.
1	A network data packet classifier comprising:
2	an input port for receiving network data packets comprising a stream of
3	data;
4	a memory assemblage configured with data representing a deterministic
5	finite automaton (DFA), said DFA representing a grammar graph and plural regular
6	expressions; and
7	decompression logid operatively coupled to said memory assemblage and
8	configured to scan said stream of data with said DFA to find a matching one of said
9	regular expressions thereby producing plural lexical tokens,
10	said decompression logic further configured to parse said lexical tokens
11	with said DFA to identify a protocol structure in a received network data packet,
12	wherein processing of said network data packet depends on said protocol
13	structure.
1	19. The classifier of claim 18 wherein some of said regular expressions
2	include arithmetic instructions and logic instructions, said memory assemblage further
3	configured to contain said instructions, the classifier further including an arithmetic logic
4	unit operatively coupled to said decompression logic and configured to execute said
5	instructions.
1	20. The classifier of claim 19 further including at least one register
2	operatively coupled to said arithmetic logic unit, said arithmetic logic unit further
3	configured to store data into said register in response to a save instruction.

1	21. The classifier of claim 19 further including skip logic operatively
2	coupled to said logic component and configured to skip over an amount of data in
3	response a skip instruction.
1	22. The classifier of claim 18 wherein said network data packets can
2	vary from one packet to another.
1	23. The classifier of claim 18 wherein said DFA is in compressed
2	form.
1	24. The classifier of claim 23 wherein said DFA comprises plural non-
2	default states and plural default states, and said memory assemblage comprises a base
3	memory, a next-state memory, and a default-state memory; said base memory configured
4	to contain address locations of said next-state memory, said next-state memory
5	representing all of said non-default states, said default-state memory representing all of
6	said default states.
1	25. The classifier of claim 24 wherein said memories are random
2	access memories.
1	26. The classifier of claim 24 wherein said memories are read-only
2	memories.
1	27. A network packet classifier comprising:
2	means for receiving an incoming network packet; and
3	means for identifying protocol structure in said network packet including
4	means for scanning to match patterns in its constituent data against plural regular
5	expressions to produce lexical tokens and means for parsing through said lexical tokens
6	using a grammar.
1	28. The classifier of claim 27 wherein said means for scanning
2	includes a memory component configured with data to represent a deterministic finite
3	automaton (DFA).
1	29. The classifier of claim 28 wherein said memory component is
2	further configured to include said grammar.

- 1 30. The classifier of claim 27 wherein said regular expressions include
- 2 arithmetic specifiers and said means for classifying includes an arithmetic logic unit
- 3 configured to perform operations in accordance with said arithmetic specifiers.