

Simon Hirländer

Tutorial RL4AA

Meta RL via gradients

MAML outline

Require
$$\alpha, \beta$$
: step size hyper-parameters

1. randomly initialise θ

Require $p(\mathcal{T})$: distribution over tasks

- 2. while not done do
- sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- for each \mathcal{T}_i do
- 5.
 - Sample $\mathscr{D}^{tr}_{\mathscr{T}_i} \sim \mathscr{D}_{\mathscr{T}_i}$
 - Sample $\mathcal{D}_{\mathcal{T}_i}^{test} \sim \mathcal{D}_{\mathcal{T}_i}$
- 6.
- 8.
- Evaluate $\nabla_{\theta} \mathscr{L}(\theta, \mathscr{D}^{tr}_{\mathscr{T}})$ with respect to K examples

Meta RL via gradients

MAML outline

Require $p(\mathcal{T})$: distribution over tasks

Require α , β : step size hyper-parameters

- 1. randomly initialise θ
- 2. while not done do
- sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- for each \mathcal{T}_i do
- Sample $\mathscr{D}_{\mathscr{T}_i}^{tr} \sim \mathscr{D}_{\mathscr{T}_i}$
- Sample $\mathcal{D}_{\mathcal{T}_i}^{test} \sim \mathcal{D}_{\mathcal{T}_i}$
- Evaluate $\nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_{\mathcal{T}_{i}}^{tr})$ with respect to K examples
- Compute adapted parameters with gradient descent: $\phi_i = \theta \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_{\mathcal{T}}^{tr})$ 8.
- Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{i} \mathcal{L}(\phi_{i}, \mathcal{D}_{\mathcal{T}_{i}}^{test})$

learning/adaption

Simon Hirländer

Why MAML is a good idea

- MAML is universally applicable beyond our specific scenario:
 - → It can be implemented across various optimization problems.
 - → The required gradients (to second order) can be efficiently computed using automatic differentiation.

31

