Discrete Fourier Transform

Hsi-Yu Schive (薛熙于) National Taiwan University

Fourier Series

• Assuming f(x) has a period of L

$$egin{aligned} f(x) &= \sum_{n=0}^{\infty} \left[a_n \cos(k_n x) + b_n \sin(k_n x)
ight] \ k_n &= rac{2\pi n}{L} \ a_0 &= rac{1}{L} \int_0^L f(x) dx \ a_n &= rac{2}{L} \int_0^L f(x) \cos(k_n x) dx, \;\; n > 1 \ b_n &= rac{2}{L} \int_0^L f(x) \sin(k_n x) dx \end{aligned}$$

alternative

$$egin{aligned} f(x) &= \sum_{n=-\infty}^\infty c_n e^{ik_n x} \ c_n &= rac{1}{L} \int_0^L f(x) e^{-ik_n x} dx \ &= rac{1}{L} \int_{-L/2}^{L/2} f(x) e^{-ik_n x} dx \end{aligned}$$

$$egin{align} c_0 &= a_0 \ c_n &= rac{1}{2}(a_n - i b_n)\,, \;\; n > 0 \ c_{-n} &= rac{1}{2}(a_n + i b_n)\,, \;\; n > 0 \ \end{align}$$

Fourier Transform

• Let
$$L{ o}\infty,\,k_n{ o}k$$
: $f(x)=rac{1}{2\pi}\int_{-\infty}^\infty F(k)e^{ikx}dk$ $F(k)=\int_{-\infty}^\infty f(x)e^{-ikx}dx$

- |F(k)| represents the amplitudes of different Fourier modes
 - $|F(k)|^2 \rightarrow \text{power spectrum}$
- **Properties**
 - If f(x) is real $\rightarrow F(-k) = F(k)^*$ (Hermitian) $\rightarrow |F(-k)| = |F(k)|$
 - If f(x) is even/odd $\rightarrow F(k)$ is even/odd
 - Linearity: $af(x) + bg(x) \rightarrow aF(k) + bG(k)$
 - **Translation:** $f'(x) = f(x-\Delta x) \rightarrow F'(k) = F(k)e^{-ik\Delta x} \rightarrow |F'(k)| = |F(k)|$
 - **DC** (average): $F(0) = \int_{-\infty}^{\infty} f(x) dx$
 - $lacksquare Parseval's theorem: \int^{\infty} |f(x)|^2 dx = \int^{\infty} |F(k)|^2 dk$

Nyquist Frequency

- Assuming a finite and fixed sampling interval Δ with N consecutive samples: $x_m = m\Delta, \ m=0, \ 1, \ 2, \ ..., \ (N-1)$
- Nyquist critical frequency: $f_c = 1/(2\Delta) \rightarrow k_c = 2\pi f_c = \pi/\Delta$
 - \circ The shortest wavelength resolved by a sampling interval \varDelta is $2\varDelta$
 - \circ k_c is the corresponding (highest) Fourier mode

Nyquist Frequency

- Aliasing: For a sampling interval Δ , the two Fourier modes give exactly the same samples if k_1 - k_2 = $(2\pi/\Delta)m$ = $2k_cm$, m \in Z
 - \circ Solution: ensure power spectrum around k_e is negligible

Assuming signal f(x) is real here $\rightarrow |F(k)|$ is symmetric

Nyquist Frequency Example

From the given sampling points, one CANNOT determine whether the real signals are red (low-k) or blue (high-k) lines!

Discrete Fourier Transform (DFT)

Only includes frequencies within the Nyquist frequency: - $k_c \leqslant k \leqslant k_c$

$$f(x_m) = \sum_{n=-N/2+1}^{N/2} c_n e^{ik_n x_m} = \sum_{n=0}^{N-1} c_n e^{ik_n x_m} \ c_{-N/2} = c_{N/2} \ c_{-n} = c_{-n+N} \ \sum_{m=0}^{N-1} e^{ik_{n1} x_m} e^{ik_{n2} x_m} = N \delta_{n1,n2}, \ x_m = m \Delta, k_n = 2\pi n/(N \Delta), F_n \equiv c_n \ derive it!$$

Discrete Fourier Transform

- Convention: F_n with n=0, 1, 2, ..., N-1. But remember $F_n=F_{n-N}$
 - \circ n=0: DC mode
 - \circ 1 \leqslant n \leqslant N/2-1: positive frequency
 - \circ $N/2+1 \leqslant n \leqslant N-1 \rightarrow -N/2+1 \leqslant n \leqslant -1$: negative frequency
 - \circ n=N/2: Nyquist frequency
- Normalization 1/N: $DFT^{-1}(DFT(f_m)) = f_m$
- Discrete power spectrum: $|F_n|^2$
- Symmetry properties: same as Fourier transform
 - \circ If f_m is real $\to F_{-n} = F_n^* \to |F_{-n}| = |F_n| \to \text{power spectrum is symmetric}$
 - \circ If f_m is even/odd $\to F_n$ is even/odd (here even/odd means $f_m = \pm f_{N-m}$)
- ullet Parseval's theorem: $\displaystyle\sum_{m=0}^{N-1}|f_m|^2=N\sum_{n=0}^{N-1}|F_n|^2$

DFT on Real Data

- If f_m are <u>real</u> instead of complex data
 - Only N degree of freedom (DoF)
 - Half of the data in F_n , n=0, ..., N-1 must be redundant
- Recall that (i) $F_n = F_{n-N}$ and (ii) $F_{-n} = F_n^*$ if f_m is real
 - $\circ F_0 = F_0^* \to Im[F_0] = 0 \to DoF: 1$
 - DC element is purely real
 - o If N is even
 - $F_{N/2+t} = F_{-N/2+t} = F_{N/2-t}^*, t=1, ..., N/2-1 \rightarrow \text{DoF: N-2}$
 - $F_{N/2} = F_{-N/2} = F_{N/2} * \rightarrow Im[F_{N/2}] = 0 \rightarrow DoF: 1$
 - Nyquist frequency element is purely real
 - o If N is odd
 - Let N/2 be the integer (truncated) division $\rightarrow 7/2=3$
 - $F_{N/2+t} = F_{N/2+t-N} = F_{-N/2-t+t} = F_{N/2+t-t}^*, t=1, ..., N/2 \rightarrow DoF: N-1$
 - \circ So there are exactly N redundant data in F_n

DFT on Real Data

Example

$$\circ \quad \textbf{N=8:} \ Re[F_0], F_1, F_2, F_3, Re[F_4], \underbrace{(F_5, F_6, F_7)}_{\textbf{II}} \\ \circ \quad \textbf{N=7:} \ \underset{Re[F_0], F_1, F_2, F_3, \underbrace{(F_4, F_5, F_6)}_{\textbf{II}} \\ F_3^*, F_2^*, F_1^* \\ \end{matrix}$$

- In practice, DFT libraries usually do not store these redundant data
 - o But be aware that libraries such as *numpy FFT* and *FFTW* (see the Reference page) still store $Im[F_o]$ and $Im[F_{N/2}]$
 - Advantage: complex-to-complex and complex-to-real transforms have similar data structure
 - Disadvantage: input and output arrays are of different sizes
 - Be careful about the *in-place* transform

Multi-Dimensional DFT

d-dimensional DFT

$$egin{aligned} f_{m_1,m_2,...m_d} &= \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} \dots \sum_{n_d=0}^{N_d-1} F_{n_1,n_2,...,n_d} e^{i2\pi m_1 n_1/N_1} e^{i2\pi m_2 n_2/N_2} \dots e^{i2\pi m_d n_d/N_d} \ & F_{n_1,n_2,...,n_d} &= \sum_{m_1=0}^{N_1-1} \sum_{m_2=0}^{N_2-1} \dots \sum_{m_d=0}^{N_d-1} f_{m_1,m_2,...,m_d} e^{-i2\pi m_1 n_1/N_1} e^{-i2\pi m_2 n_2/N_2} \dots e^{-i2\pi m_d n_d/N_d} \ & \cdot \left[rac{1}{N_1 N_2 \dots N_d}
ight] \end{aligned}$$

- ullet If f is real $o F_{-n_1,-n_2,...,-n_d} = F_{n_1,n_2,...,n_d}^* = F_{N_1-n_1,N_2-n_2,...,N_d-n_d}$ (Hermitian)
 - Again, half of the data are redundant

Fast Fourier Transform (FFT)

- Computational complexity of the brute-force DFT: $O(N^2)$
 - \circ For each k mode, simply perform an integration over N sampling points
- FFT: reduce the complexity to $O(N \log_2 N)$
 - For example, check out the Danielson-Lanczos lemma
- Example libraries
 - Fastest Fourier Transform in the West (FFTW): http://www.fftw.org
 - Intel Math Kernel Library (MKL):
 https://software.intel.com/en-us/mkl-developer-reference-c-fft-functions
 - numpy FFT:
 https://docs.scipy.org/doc/numpy/reference/generated/numpy.fft.fft.html
 - cuFFT (FFT on GPU): <u>https://developer.nvidia.com/cufft</u>

DFT for Diffusion Eq.

- ullet Diffusion eq. $\dfrac{\partial u(x,t)}{\partial t} = D\dfrac{\partial^2 u(x,t)}{\partial x^2}$
- Fourier transform: $\nabla \rightarrow i \mathbf{k}, u(x,t) \rightarrow U(k,t)$

$$egin{align} rac{\partial U(k,t)}{\partial t} &= -Dk^2 U(k,t) \ U(k,t+\Delta t) &pprox U(k,t) - \Delta t Dk^2 U(k,t) \ u(x,t+\Delta t) &= FT^{-1} (U(k,t+\Delta t)) \ \end{pmatrix}$$

```
# DFT
    uk = np.fft.rfft( u )
# compute the wavenumber (actually it needs to be computed just once)
    k = 2.0*np.pi*np.fft.rfftfreq( N, dx )
# inverse DFT
    u = np.fft.irfft( uk - dt*D*k**2.0*uk )
lec05-demo01.py
```

Exercise

- Use DFT to determine the amplitudes of different Fourier modes
 - $\circ \quad \textit{f}(x) = A + B sin(k_1 x) + C cos(k_2 x) \rightarrow \textbf{Given } \textit{f}(x) \textit{, determine } (A, B, C, k_1, k_2)$
 - Refer to the slide of "Fourier Series"

```
# set the input data
x = np.arange( 0.0, L, dx )  # x=L/N*n, n=0,1,...,N-1
u1 = amp1*np.cos( k1*x )  # cosine component
u2 = amp2*np.sin( k2*x )  # sine component
dc = np.ones(x.size)*dc  # DC component
u = u1 + u2 + dc  # overall

# compute the coefficients of all sin() and cos() using np.fft.rfft
...
```

lec05-exercise01-template.py

DFT for Convolution

Convolution of two functions f and g

$$(fst g)(t)\equiv\int_{-\infty}^{\infty}f(t- au)g(au)d au$$

- \circ Weighted average of f at t, where g is the weighting function
- Convolution can be used for various purposes by choosing different weighting functions
 - E.g., smoothing (blurring), sharpening, edge detection, embossing
 - Google "convolution matrix/filter/kernel"
- Commutativity: f * g = g * f
- Convolution theorem

 \circ Reduce the computational complexity from $O(N^2)$ to $O(N \log 2N)$ using FFT

Image Processing with Convolution

Original

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Sharpening

$$\left[egin{array}{cccc} 0 & -1 & 0 \ -1 & 5 & -1 \ 0 & -1 & 0 \ \end{array}
ight]$$

Blurring

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Edge detection

$$egin{bmatrix} -1 & -1 & -1 \ -1 & 8 & -1 \ -1 & -1 & -1 \end{bmatrix}$$

credit: wikipedia

Convolution Demo

```
# set the input data
x = np.arange(0.0, L, dx) + 0.5*dx # cell-centered coordinates
u = amp1*np.sin(2.0*np.pi/lambda1*x) + amp2*np.sin(2.0*np.pi/lambda2*x)
# define a convolution filter
f = np.array([1.0, 2.0, 4.0, 2.0, 1.0])
              # normalization
f /= f.sum()
f pad0 = np.zeros( u.size ) # zero-padded filter
f pad0[ 0:f.size ] = f
f pad0 = np.roll( f pad0, -(f.size//2)) # [0.4, 0.2, 0.1, 0.0, ..., 0.0, 0.1, 0.2]
# convolution
uk = np.fft.rfft( u )
fk = np.fft.rfft( f pad0 )
u con = np.fft.irfft( uk*fk )
```

lec05-demo02.py

Exercise

- Apply a <u>sharpening</u> convolution filter to lec05-demo02.py
- Apply an <u>edge detection</u> convolution filter to a step function

DFT for Self-Gravity with Periodic BC

- ullet Poisson eq. in 1D: $rac{\partial^2 \phi}{\partial x^2} =
 ho$
- Fourier transform: $\partial/\partial x \to ik, \phi(x) \to \Phi(k), \rho(x) \to D(k)$

$$\Phi(k) = -rac{D(k)}{k^2} ~
ightarrow ~\phi(x) = FT^{-1}(\Phi(k))$$

 Alternatively, we can discretize the Poisson eq. first and then use DFT to compute its exact solution

$$egin{aligned} (\phi_{m+1}-2\phi_m+\phi_{m-1})&=\Delta^2
ho_m\ \phi_m&=\sum_{n=0}^{N-1}\Phi_ne^{i2\pi mn/N},\
ho_m&=\sum_{n=0}^{N-1}D_ne^{i2\pi mn/N}\ ext{For mode }n:\Phi_ne^{i2\pi mn/N}(e^{i2\pi n/N}-2+e^{-i2\pi n/N})&=\Delta^2D_ne^{i2\pi mn/N}\ \Phi_n&=rac{-\Delta^2D_n}{4\sin^2(\pi n/N)}
ightarrow \phi_m&=FT^{-1}(\Phi_n) \end{aligned}$$

Pros: consistent discretization on root and refinement levels in AMR

DFT for Self-Gravity with Isolated BC

Continuous case:

$$abla^2\phi=4\pi G
ho ext{ with } \phi(r o\infty) o0 \ \phi(r)=-G\intrac{
ho(m{r}')}{|m{r}-m{r}'|}d^3m{r}'=-G\left(\!
ho*r^{-1}
ight)(r) \ ext{convolution of }
ho(r) ext{ and the Green's function } r^{-1}$$

Discrete case:

• Let $M_{iik} = \rho_{iik} \Delta h^3$ be the mass of cell (i,j,k) and treat each cell as a point mass

$$\phi_{i,j,k} = -G\sum_{m=0}^{N_x-1}\sum_{n=0}^{N_y-1}\sum_{l=0}^{N_z-1}rac{M_{m,n,l}}{|m{r}_{i,j,k}-m{r}_{m,n,l}|} ext{ ~exclude (m,n,l)=(i,j,k)}$$

Question: how to use the discrete (periodic) convolution to solve it?

$$(f*g)_m = \sum_{i=0}^{N-1} f_i g_{m-i} = N \cdot DFT^{-1}(DFT(f) \cdot DFT(g)) ~ \text{1D example}$$
 assuming periodicity: $g_{m-i} = g_{m-i+N}$ depending on the DFT normalization

DFT for Self-Gravity with Isolated BC

Zero padding on the mass array: $M_m \rightarrow M'_m \ (m=0, ..., 2N-1)$

m	0	1	2	 N-1	N	N+1	 2N-2	2N-1
M _m '	M _o	M ₁	M ₂	 M _{N-1}	0	0	 0	0

Define a <u>symmetric discrete Green's function</u>: R_{in}

m	0	1	2	 N-1	N	N+1	 2N-2	2N-1
R _m	0	-1/1	-1/2	 -1/(N-1)	X	-1/(N-1)	 -1/2	-1/1

self force

arbitrary

$$\Rightarrow$$

$$\phi_m = rac{G}{\Delta h} \sum_{i=0}^{2N-1} R_i M'_{m-i} = rac{G}{\Delta h} (R*M')_m = rac{G}{\Delta h} 2N \cdot DFT^{-1} (DFT(R) \cdot DFT(M'))$$

DFT for Self-Gravity with Isolated BC

Properties

- \circ R_N can be set arbitrarily since the greatest distance between any two cells is N-1 cells
- Results should be exactly the same as computing the pairwise potential among all cells directly (i.e., direct N-body)
- \circ DFT(R) only needs to be computed once
- $\circ \quad R_o$ is related to the potential from the mass <u>within the same cell</u>
 - \blacksquare $R_0 = 0 \rightarrow \text{ignore self force} \rightarrow \text{consistent with point mass}$
 - $lacksquare R_0
 eq 0 o$ take into account the mass distribution within each cell
- Generalization to 3D is straightforward

Homework

- 1. Power spectrum and convolution
 - a. Download the data "density.dat", which is a 1024x1024 array. The script "plot__density.py" can be used to load and plot the data.
 - b. Apply 2D convolution using a Gaussian filter with σ = 10 cells. Show the resulting image.
 - c. Same as (b) but with $\sigma = 100$ cells.
 - d. Compare the power spectra of the original data, (b), and (c). Discuss the results.

Deadline: May 11 at 11 PM

Cosmological large-scale structure at high-z

Reference

- 1. Numerical Recipes 3rd Edition: The Art of Scientific Computing
- Numpy FFT: https://docs.scipy.org/doc/numpy/reference/routines.fft.html
- 3. FFTW: http://www.fftw.org