

Soutenance projet de troisième année : Algorithme d'apprentissage en chimie quantique et application au screening (sélection) de cellules photovoltaïques

Etudiant: Pierre Gauthier

Tuteurs : Jérémie Unterberg, Marianne Clausel, Dario Rocca

5 Février 2019

Harvard Clean Energie Project

Description des données

• Travail sur la publication de Mathias Rupp Machine Learning for Quantum Mechanics in a Nutshell, s'inscrit dans le

Couplage Physique Quantique / Apprentissage automatique

Join the Harvard Clean Energy Project http://cleanenergy.harvard.edu

- Outils d'apprentissage automatique
 - Support Vector Machines methods (SVM)
 - Astuce du noyau
 - Ridge Regression
- Expérimentations
 - Base d'entrainement et de Test du modèle
 - Fonctions d'erreurs utilisées
 - Recherche hyparamètres optimaux
- Perspectives
- Conclusion

Description des données

• Dataset de molécules en .xyz :

	•		
Nombre d'atome			
numéro de la molécule	énergie d'atomisation		
atome 1	×(1)	y(1)	z(1)
atome 2	x(2)	y(2)	z(2)
	•		
	•		
atome n	x(n)	y(n)	z(n)

Description des données

Utilisation des Matrices de Coulomb (Z numéro atomique) :

$$M_{ij} = \begin{cases} 0.5Z_i^{2.4} & i = j \\ \frac{Z_iZ_j}{||R_i - R_j||_2} & i \neq j \end{cases}$$

- Matrice sysmétrique, de taille $23 \times 23 \rightarrow$ stockage dans vecteur taille $\frac{23 \times (23+1)}{2} = 276$.
- La matrice varie avec permutation des atomes → Tri des lignes par norme décroissante

Exemple simple de matrice Coulombs pour C-H et H-C-H:

Nous allons commencer par présenter le problème de classification avant la régression

Hyperplan de séparation

$$H = \{x | w^T x + b = 0\}$$
 Marge $(H) = \min_{x_i} d(x_i, H)$

$$2 \times \mathsf{Marge} = 2 \times d(x, \ H) = \frac{|w^T x_{vs} + b|}{||w||}$$
$$|w^T x_{vs} + b| = 1 \quad \to \quad \mathsf{Marge} = \frac{2}{||w||}$$

On en arrive au problème de minimisation suivant :

$$\left\{ \begin{array}{l} \mathop{\rm arg\ min}_{w,b} \frac{1}{2} ||w||^2 \\ \forall \ 1 \leqslant i \leqslant N, \ y_i (w \cdot x_i + b) \geqslant 1 \end{array} \right.$$

On formule le problème dual en introduisant le Laplacien :

$$\begin{cases} \max L(\lambda) = \sum_{i} \lambda_{i} - \frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} x_{i} \cdot x_{j} \\ \lambda_{i} \geqslant 0 \\ \sum_{i} \lambda_{i} y_{i} = 0 \end{cases}$$

$$f^*(x) = \sum_{i=1}^n \lambda_i^* y_i x_i^T x + b^*$$

Astuce du noyau

Description des données

Augmentation de la dimension de l'espace pour rendre les données linéairement séparables

Linear inseparability in input space

Linear separability in transformed space

Astuce du noyau

$$f(x) = \sum_{i=1}^{n} \lambda_i y_i x_i^T x + b \rightarrow \sum_{i=1}^{n} \lambda_i y_i K(x_i, x) + b$$

Si K doit vérifier les conditions :

- K est continue symétrique
- $K(x_i, x_j)$ $1 \le i, j \le N$ est une matrice définie positive

Alors il existe $\phi: \xi \to H$ telle que $K(x,y) = \langle \phi(x), \phi(y) \rangle$.

Ridge Régression

Description des données

On ajoute un terme de pénalisation $|.|_2^2$ au problème de régression classique

$$\underset{w \in \mathbb{R}^n}{\arg\min} \sum (f(x_i) - y_i)^2 \quad \to \quad \underset{w \in \mathbb{R}^n}{\arg\min} \sum (f(x_i) - y_i)^2 + \lambda ||w||_2^2$$

$$w = (X^T X)^{-1} X^T y \quad \to \quad w^{ridge} = (X^T X + \lambda I)^{-1} X^T y$$

Ridge Régression

Applications aux méthodes à noyaux avec $f(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x)$

$$\underset{\alpha \in \mathbb{R}^n}{\arg \min} \sum (f(x_i) - y_i)^2 + \lambda ||f||_H^2$$

$$\Leftrightarrow \underset{\alpha \in \mathbb{R}^n}{\arg \min} < K\alpha - y, K\alpha - y > +\lambda \alpha^T K\alpha$$

$$\Rightarrow \alpha = (K + \lambda I)^{-1} y$$

Avec $K \in \mathbb{R}^{n \times n}$ est la matrice du noyau $K_{i,j} = K(x_i, x_j)$

Expérimentations

On séparer le dataset d'environ 7000 molécules en

- un set d'entrainement de 900 molécules → recherche des hyperparamètres (λ , paramètres des noyaux)
- un hold-out set de 100 molécules pour vérifier qu'il n'y a pas de sur-apprentissage sur le set d'entrainement
- Un set de prédiction avec reste des molécules.

• RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2}$$

• MAE =
$$\frac{1}{n} \sum_{i=1}^{n} |y_i - f(x_i)|$$

•
$$(1-R^2)\sum_{i=1}^n (\overline{y}-y_i)^2 = \sum_{i=1}^n (y_i-f(x_i))^2$$

Expérimentations

Présentation des noyaux utilisés :

Noyau Gaussien

Description des données

$$K(x,z) = \exp{-\frac{||x-z||_2^2}{2\sigma^2}} = \exp{-\gamma||x-z||_2^2}$$

Noyau Laplacien

$$K(x,z) = \exp{-\frac{||x-z||_1}{\sigma}} = \exp{-\gamma||x-z||_1}$$

Expérimentations

000000

Résultats noyau laplacien

Description des données

Expérimentations

000000

Recherche hyparamètres optimaux

Erreur utilisée	RMSE	MAE	R^2
KRR avec noyau gaussien			
KRR avec noyau laplacien	5.4019	3.4555	0.9993

Perspectives

- Utilisation d'autres modèle comme Random Forest
- Utilisation d'autres descripteurs que les matrices de Coulomb

Conclusion

- Un projet efficient pour développer ces compétences en machine learning.
- Nous avons reproduis l'article scientifique
- Nous ne sommes pas allé plus loin...

Merci de votre attention