Komplexität von Algorithmen - Lösung zur Kurzklausur Nr. 1

Aufgabe 1 (12 Punkte)

Jedes korrekte Kreuz gibt 2 Punkte, jedes falsch gesetzte Kreuz -2 Punkte. Sie können keine negative Gesamtpunktzahl für diese Aufgabe bekommen.

Behauptung	richtig	falsch
Sei $t(n) \ge \log(n)$ für alle $n \in \mathbb{N}$. Dann gilt $\text{NTIME}(t(n)) \subseteq \text{SPACE}(2^{O(t(n))})$.		
Es gilt $TIME(n^{O(1)}) \subsetneq NTIME(2^{n^{O(1)}})$.		
Sei $s: \mathbb{N} \to \mathbb{N}$ raumkonstruierbar, $s' = O(s)$. Dann ist $SPACE(s') \subsetneq SPACE(s)$.		
$SPACE(n^{O(1)}) = NSPACE(n^{O(1)}).$		
Sei $a, b \in \mathbb{N}$. Dann ist die Funktion $f(n) = a \cdot \log(n) + b$ raumkonstruierbar.		
Für jede Funktion $f : \mathbb{N} \to \mathbb{N}$ gilt: $f \in o(f)$.		

Aufgabe 2 (12 Punkte)

Wie lauten die folgenden Definitionen? Jede Teilaufgabe ist 2 Punkte wert.

- (a) Eine Funktion $f: \mathbb{N} \to \mathbb{N}$ ist raumkonstruierbar, wenn es eine deterministische Turingmaschine gibt, die bei Eingabe eines Wortes x einen Platzbedarf von genau f(|x|) hat.
- (b) Eine Sprache A gehört zur Klasse NTIME(n), wenn es eine Mehrband-NTM gibt, die A entscheidet und in Zeit O(n) arbeitet.
- (c) Der Speicherbedarf einer Turingmaschine M bei Eingabe w, ist die Anzahl der Bandzellen auf den Arbeitsbändern (d.h. nicht auf dem Eingabeband, falls vorhanden), die M während der Rechnung besucht.
- (d) Eine Turingmaschine M arbeitet in Zeit $t: \mathbb{N} \to \mathbb{N}$, falls für alle n und für alle Wörter w der Länge n die Anzahl der Rechenschritte von M bei Eingabe w durch f(n) beschränkt ist.
- (e) Seien $f, g: \mathbb{N} \to \mathbb{N}$ zwei Funktionen. $f \in O(g)$, falls es $c, n_0 \in \mathbb{N}$ gibt, sodass für alle $n \geq n_0$ gilt $f(n) \leq c \cdot g(n)$.
- (f) Seien $f, g: \mathbb{N} \to \mathbb{N}$ zwei Funktionen. $f \in o(g)$, falls $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.