Question 1 – You may get different solutions depending on the order you normalised the FDS

a)

AB+=ABCDE (AB is the candidate key)

Final answer:

R1 [A, C] FD 1: $A \rightarrow C$

R2 [A, B, D, E] FD2: $\{A, B\} \rightarrow \{D, E\}$

b)

AC+=ABCDE (AC is the candidate key)

Final answer:

R1[A, B] FD1: $A \rightarrow B$

R3[C, D, E] FD2: $C \rightarrow \{D, E\}$

R4[A, C] No non-trivial FD

c)

A⁺=ABCDEF (A is the candidate key)

Functional dependency $E \rightarrow F$ is lost

Final answer:

R1[C, D, E] FD2: $C \rightarrow \{D, E\}$

R3[C, F] $C \rightarrow F$ [Implicit FD]

R4[A, B, C] FD1: $A \rightarrow \{B, C\}$

d)

AC+=ABCDE

ADE+=ADECB

BC+=BCADE

AC, ADE, BC are all candidate keys

Functional dependencies {A, D, E} \rightarrow C and {B, C} \rightarrow A are lost

Final answer:

R1[A, B] FD1: $A \rightarrow B$

R3[C, D, E] FD2: $C \rightarrow \{D, E\}$

R4[A, C] No non-trivial FD

Notice that this is the same solution as **b**), think why this is the case despite **d**) having double the number of initials FDs. What is lost?

Question 2

a)

FDs in Standard Form

- $\mathsf{A}\to\mathsf{D}$
- $A \rightarrow E$
- $\mathsf{D} \to \mathsf{A}$
- $\mathsf{B} \to \mathsf{C}$
- $\{B, C\} \rightarrow A$
- $\{B,C\} \rightarrow D$
- $\{E, A\} \rightarrow D$

Minimize LHS

- $A \rightarrow D$
- $A \rightarrow E$
- $\mathsf{D}\to\mathsf{A}$
- $B \rightarrow C$
- $\mathsf{B} \to \mathsf{A}$
- $\mathsf{B}\to\mathsf{D}$
- $\mathsf{A}\to\mathsf{D}$

Delete Redundancy (Final Result)

- $A \rightarrow D$
- $\mathsf{A}\to\mathsf{E}$
- $\mathsf{D} \to \mathsf{A}$
- $\mathsf{B} \to \mathsf{C}$
- $B \rightarrow A$

b)

FDs in Standard Form

- $A \rightarrow B$
- $\mathsf{A} \to \mathsf{C}$
- $\mathsf{A}\to\mathsf{D}$
- $\mathsf{A} \to \mathsf{E}$
- $\mathsf{A}\to\mathsf{F}$
- $\{B, C\} \rightarrow A$
- $\{D, E\} \rightarrow B$
- $C \rightarrow D$

Minimize LHS

No Changed Possible

Delete Redundancy

We can delete A \rightarrow D and A \rightarrow B as they are redundant

Final Result

- $\mathsf{A} \to \mathsf{C}$
- $A \rightarrow E$
- $\mathsf{A}\to\mathsf{F}$
- $\{B, C\} \rightarrow A$
- $\{D, E\} \rightarrow B$
- $C \rightarrow D$

Question 3 – You may get different solutions depending on the order you normalised the FDs.

a)

FDs after Minimal Cover is determined:

FD 1: $\{A, B\} \rightarrow C$

FD 2: $C \rightarrow D$

FD 3: $C \rightarrow E$

Through transitive rule we can derive 2 implicit FDs

FD4: $\{A, B\} \rightarrow D$

FD5: $\{A, B\} \rightarrow E$

ABF⁺=ABFCDE (ABF is the candidate key)

Prime attributes: A, B, F

Final answer:

R1[A, B, C] FD 1: $\{A, B\} \rightarrow C$

R3[C, D] FD 2: $C \rightarrow D$ [To preserve the FD]

R4[C, E] FD 2: $C \rightarrow E$ [To preserve the FD]

R5[A, B, D] FD 4: $\{A, B\} \rightarrow D$ [Implicit FD]

R7[A, B, E] FD 5: $\{A, B\} \rightarrow E$ [Implicit FD]

R8[A, B, F] No non-trivial FD

b)

FDs after Minimal Cover is determined:

FD 1: $\{A, B\} \rightarrow C$

FD 2: $\{C, D\} \rightarrow E$

FD 3: D \rightarrow F

FD 4: D \rightarrow G

Using the pseudotransitive rule we can derive one implicit FD

FD5: $\{A, B, D\} \rightarrow E$

ABDH⁺=ABDHCEFG (ABDH is the candidate key)

Prime attributes: A, B, D, H

Final answer:

R1[A, B, C] FD 1: $\{A, B\} \rightarrow C$

R3[C, D, E] FD 2: $\{C, D\} \rightarrow E$ [To preserve the FD]

R4[D, F] FD 3: D \rightarrow F

R6[D, G] FD 4: D \rightarrow G

R8[A, B, D, E] FD 5: $\{A, B, D\} \rightarrow E$ [Implicit FD]

R9[A, B, D, H] No non-trivial FD