Proximal Neural Networks: Wedding Variational Methods and Artificial Intelligence

VI – Conclusion and toolbox presentation

Audrey $\mathrm{Repetti}^{\dagger}$, Nelly $\mathrm{Pustelnik}^{\diamond}$, Jean-Christophe $\mathrm{Pesquet}^*$

TUTORIAL – EUSIPCO 2025 – Palermo, Italy

Unified framework

Inference framework: feed-forward NN

$$egin{align} (orall oldsymbol{x}^{[0]} \in \mathbb{R}^{N_0}) & oldsymbol{x}^{[K]} = \mathfrak{L}_{\Theta}^K(oldsymbol{x}^{[0]}) \ &= \mathfrak{T}_{\Theta_K} \circ \ldots \circ \mathfrak{T}_{\Theta_1}(oldsymbol{x}^{[0]}), \end{split}$$

Layer/iteration

$$\mathfrak{T}_{\Theta_k} \colon \mathbb{R}^{N_{k-1}} o \mathbb{R}^{N_k} \colon oldsymbol{x} \mapsto \mathfrak{D}_{\Lambda_k}(\mathbf{L}_k oldsymbol{x} + oldsymbol{b}_k),$$

- $ightharpoonup \mathbf{L}_k \colon \mathbb{R}^{N_{k-1}} o \mathbb{R}^{N_k} \colon \text{linear operator,}$
- $m{b}_k \in \mathbb{R}^{N_k}$: shift parameter,
- $lackbox{ } \mathfrak{D}_{\Lambda_k}\colon \mathbb{R}^{N_k} o \mathbb{R}^{N_k}\colon$ nonlinear operator parametrized by $\Lambda_k.$

Parameters: $\Theta = \bigcup_{k=1}^K \Theta_k$ with $\Theta_k = \{\Lambda_k, \mathbf{L}_k, \boldsymbol{b}_k\}$.

Unified framework: Unfolded neural networks

Challenges for the next years

THEORETICAL CHALLENGES

- Interpretation of output of (unfolded) neural networks
- Develop mathematical framework to better assess robustness of (unfolded) neural networks

COMPUTATIONAL CHALLENGES

- Boost expressivity of PnP and unfolded methods
- Further explore real applications

SOCIETAL CHALLENGES

- Convince end-users that model-informed deep learning methods such as PnP and unfolded networks are reliable for decision-making processes
- Develop effective quantification measures for environmental impact of data-driven methods ~ Reduce environmental impact by adoption of frugal learning strategies

Soon(ish) available...

From Iterative Methods to Model-Informed Architectures for Data Science.

A. Repetti, N. Pustelnik, J.-C. Pesquet.

To be submitted

Neview article from proximal methods to PnP and unfolded approaches

5/11

Python toolbox

PLAYING WITH INVERSE IMAGING PROBLEMS

Forward model

FORWARD MODEL: $z = \mathcal{D}(\mathbf{A}\overline{x})$

- ullet $\overline{x} \in \mathcal{H}$ original unknown image
- $z \in \mathcal{G}$ degraded measurements
- $\mathbf{A} \colon \mathcal{H} \to \mathcal{G}$ corresponds to the linear measurement operator
- $\mathcal{D} \colon \mathcal{G} \to \mathcal{G}$ models the degradation noise

OBJECTIVE: Find an estimate $\hat{x} \in \mathcal{H}$ of the original image \overline{x} from the measurements z

EXAMPLE: Image restoration (e.g., deblurring)

Estimate

Forward model

FORWARD MODEL: $z = \mathcal{D}(\mathbf{A}\overline{x})$

- $\overline{x} \in \mathcal{H}$ original unknown image
- $z \in \mathcal{G}$ degraded measurements
- $A: \mathcal{H} \to \mathcal{G}$ corresponds to the linear measurement operator
- $\mathcal{D}\colon\mathcal{G}\to\mathcal{G}$ models the degradation noise

OBJECTIVE: Find an estimate $\widehat{x} \in \mathcal{H}$ of the original image \overline{x} from the measurements z

EXAMPLE: Medical imaging (CT)

Observation

Estimate

o**•**00000

Forward model

FORWARD MODEL: $z = \mathcal{D}(\mathbf{A}\overline{x})$

- $\overline{x} \in \mathcal{H}$ original unknown image
- $z \in \mathcal{G}$ degraded measurements
- $A: \mathcal{H} \to \mathcal{G}$ corresponds to the linear measurement operator
- $\mathcal{D}\colon\mathcal{G}\to\mathcal{G}$ models the degradation noise

OBJECTIVE: Find an estimate $\widehat{x} \in \mathcal{H}$ of the original image \overline{x} from the measurements z

EXAMPLE: Magnetic resonance imaging in medicine

Forward model

FORWARD MODEL: $z = \mathcal{D}(\mathbf{A}\overline{x})$

- ullet $\overline{oldsymbol{x}}\in\mathcal{H}$ original unknown image
- $z \in \mathcal{G}$ degraded measurements
- ullet $\mathbf{A}\colon \mathcal{H} o \mathcal{G}$ corresponds to the linear measurement operator
- $\mathcal{D} \colon \mathcal{G} \to \mathcal{G}$ models the degradation noise

OBJECTIVE: Find an estimate $\widehat{x} \in \mathcal{H}$ of the original image \overline{x} from the measurements z

EXAMPLE: Radio-interferometric imaging in astronomy

Estimate

Deconvolution

- Most common imaging model encountered in the literature, also known as deblurring
- A associated with a 2D or 3D convolution (or blur) kernel
- For example to model motion between the scene and the camera, for defocusing of an optical imaging system, or to model atmospheric turbulence (e.g., in astronomical or satellite imaging)

- Deconvolution
- Subsampling/inpainting
 - A corresponds to a *mask* operator, only selecting visible pixels
 - Used to model missing information, for example in the context of low-resolution acquisition (i.e., *super-resolution*), or from an occultation process (i.e., *inpainting*).

- Deconvolution
- Subsampling/inpainting
- Fourier sampling
 - A can be decomposed into two linear operators: the discrete Fourier transform (i.e., 2D FFT), and the subsampling operator
 - → In a realistic setting, the Fourier transform should act in a continuous space (i.e., using non-uniform FFT)
 - Encountered for instance in medicine for magnetic resonance imaging, and in astronomy for radio-interferometric imaging

- Deconvolution
- Subsampling/inpainting
- Fourier sampling
- Radon transform
 - A produces a 2D (or 3D) sinogram
 - Usually used to approximate tomography projection operators as encountered for Positron Emission Tomography (PET) or Computed Tomography (CT)
- etc.

FORWARD MODEL: $z = \mathcal{D}(\mathbf{A}\overline{x})$

VARIATIONAL FORMULATION: Define the estimate \hat{x} as $\mathbf{0} \in \partial h_z(\hat{x}) + \lambda \partial g(\hat{x})$

- Additive white Gaussian noise (AWGN)
 - Most common type of noise encountered in practice
 - Model boils down to $z=A\overline{x}+\varepsilon$ where $\varepsilon\in\mathcal{G}$ is a realization of an independent identically distributed random Gaussian variable with zero mean and standard deviation $\sigma>0$ (or diagonal covariance Σ)
 - $h_z(x) = \frac{1}{2\sigma^2} ||\mathbf{A}x z||^2$

FORWARD MODEL: $z = \mathcal{D}(\mathbf{A}\overline{x})$

VARIATIONAL FORMULATION: Define the estimate \hat{x} as $\mathbf{0} \in \partial h_{z}(\hat{x}) + \lambda \partial g(\hat{x})$

- Additive white Gaussian noise (AWGN)
- Coloured Gaussian noise
 - \bullet More general version of AWGN where the the covariance Σ of the noise is not diagonal
 - $h_{z}(x) = \frac{1}{2} ||\mathbf{A}x z||_{\Sigma^{-1}}^{2}$

FORWARD MODEL: $z = \mathcal{D}(\mathbf{A}\overline{x})$

VARIATIONAL FORMULATION: Define the estimate \hat{x} as $\mathbf{0} \in \partial h_z(\hat{x}) + \lambda \partial g(\hat{x})$

- Additive white Gaussian noise (AWGN)
- Coloured Gaussian noise
- Poisson noise
 - Often used to model noise in low-photon-count imaging techniques
 - ~ Poisson distribution is a counting procedure that can express the number of photons received by the sensor in a given time interval
 - $h_{\boldsymbol{z}}(\boldsymbol{x}) = \sum_{m} ([\mathbf{A}\boldsymbol{x}]_{m} \boldsymbol{z}_{m} \log([\mathbf{A}\boldsymbol{x}]_{m}))$

FORWARD MODEL: $z = \mathcal{D}(\mathbf{A}\overline{x})$

VARIATIONAL FORMULATION: Define the estimate \hat{x} as $\mathbf{0} \in \partial h_{z}(\hat{x}) + \lambda \partial g(\hat{x})$

- Additive white Gaussian noise (AWGN)
- Coloured Gaussian noise
- Poisson noise
- Uniformly bounded noise
 - $\mathcal D$ introduces a bounded noise in the sense that there exists $\varepsilon>0$ such that $\|\mathbf A\overline x-\mathbf z\|^2\leq \varepsilon$
 - $h_{z}(x) = \iota_{\mathcal{B}_{2}(z,\epsilon)}(\mathbf{A}x)$ (Morozov formulation)
 - etc.

Problem solvers: Results

on

Problem solvers: Results

Problem solvers: Results

Python Toolbox: Based on DeepInverse and Pytorch

$$\begin{array}{ll} \text{Goal: Find } \widehat{\Theta} \in \underset{\Theta}{\operatorname{Argmin}} & \frac{1}{|\mathbb{I}|} \sum_{j \in \mathbb{I}} \ell \big(\overline{\boldsymbol{x}}_j, \mathfrak{L}_{\Theta}^K(\boldsymbol{z}_j) \big). \end{array}$$

Python Toolbox: Based on DeepInverse and Pytorch

Goal: Design \mathfrak{L}_Θ^K

Quickstart Examples User Guide API Finding Help More *

DeepInverse: a Python library for imaging with deep learning

Python Toolbox: Based on DeepInverse and Pytorch

Goal: Design $\mathfrak{L}_{\Theta}^{K}$

Python Toolbox

https://perso.ens-lyon.fr/nelly.pustelnik/PNN/

Model-based neural networks			
Proximal algorithms	Plug-and-Play	Unfolded	Contacts
This webpage provides basics codes to perform image reconstruction tasks with	th Deepirverse library	To install it, follow	the instructions provided at this link.
We provide the codes necessary to reproduce part of the experiments detailed additional codes to deepen the understanding. Utilizing the Deeptriverse library term and prior design, as well as their associated gradient and proximity operate.	enables us to concen		
Proximal algorithms			
Forward-backward Example in Image restoration (Blur + Gaussian noise) with TV-L12 denoise	r. [Code Python] [Note	book Google Cols	abd)
FISTA Example in image restoration (Blur + Gaussian noise) with TV-L12 denoise	r [Code Python] [Note	book Google Cola	ab)
Douglas-Rachford Exemple in Image restoration (Blur * Gaussian noise) with TV-L12 denoise	r. [Code Python]		
Lorie-Verhoeven Example in Image restoration (Blur + Gaussian noise) with TV-L12 denoise	er [Code Python]		
Condat-Vu Example in image restoration (Blur + Gaussian noise) with TV-L1 denoiser. Example in image restoration (Blur + Gaussian noise) with TV-L12 denoise.		book Google Cold	ald
Chambolle-Pock Example in image restoration (Blur + Gaussian noise) with TV-L12 denoise	er. [Code Python]		
Plug-and-play			