Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 7

Aufgabe 7.1 (3+2 Punkte)

An dieser Stelle betrachten wir noch einmal ein Problem ähnlich dem Brückenproblem aus der Vorlesung. Es sei G = (V, E) ein Graph. Es geht um die Frage, ob es in G einen (womöglich geschlossenen) Weg gibt, der jede Kante von G genau einmal enthält.

a) Geben Sie für jeden der folgenden Graphen an, ob es einen Weg gibt, der jede Kante genau einmal enthält *und* ob es einen Zyklus gibt, der jede Kante genau einmal enthält:

b) Geben Sie eine einfache Bedingung an, die notwendig und hinreichend dafür ist, dass ein Graph einen Zyklus enthält, in dem jede Kante genau einmal vorkommt.

Lösung 7.1

- a) G_1 enthält keinen solchen Pfad und keinen solchen Zyklus. G_2 enthält einen solchen Pfad $(C_2, B_2A_2, C_2, D_2, B_2)$ (war nicht gefordert anzugeben) und keinen solchen Zyklus. G_3 enthält einen solchen Pfad $(A_3, B_3, C_3, D_3, A_3, F_3, B_3, D_3, E_3, C_3, A_3)$ (war nicht gefordert anzugeben) und einen solchen Zyklus (der mit dem angegebenen Pfad identisch ist).
- b) Ein gerichteter Graph enthält so einen Zyklus, wenn für jeden Knoten $v \in V$ gilt $d^+(v) = d^-(v)$. Ein ungerichteter Graph enthält so einen Zyklus, wenn für jeden Knoten $v \in V$ gilt $d(v) \mod 2 = 0$.

Punkteverteilung: Volle Punktzahl, wenn nur einer der Fälle betrachtet wurde.

Aufgabe 7.2 (2+3+1 Punkte)

Gegeben sei das Wort $w = \text{caccacababaabbacabcabcabbacac } \ddot{\text{uber }} \{a, b, c\}.$

- a) Zerlegen Sie w von links nach rechts in Dreierblöcke und geben Sie für jeden Block an, wie häufig er in w vorkommt.
- b) Konstruieren Sie den für den Huffman-Code benötigten Baum.
- c) Geben Sie die Codierung von w für den Huffman-Code an, den Sie in Teilaufgabe b) konstruiert haben.

Lösung 7.2

a) w = cac|cac|aba|baa|baa|cab|cab|cac|bba|cac. Die Häufigkeiten sind:

cac	aba	baa	bba	cab	cca
3	1	1	2	2	1

c) Die Codierung ist: 0101000000011011110011001

Hinweis: Der Baum, und damit die Codierung, ist nicht eindeutig!

Aufgabe 7.3 (2+2 Punkte)

Seien $n, k \in \mathbb{N}_0$ mit $1 \le k \le n$.

In einem Wort $w \in \{a,b,c\}^*$ der Länge 3n komme k mal das Zeichen a, n mal das Zeichen b und 2n-k mal das Zeichen c vor.

- a) Geben Sie den für die Huffman-Codierung benötigten Baum an.
- b) Geben Sie (in Abhängigkeit von k und n) die Länge des zu w gehörenden Huffman-Codes an.

Lösung 7.3

a)

b) Jedes a und jedes b wird durch zwei Zeichen codiert, und jedes c wird durch ein Zeichen codiert. Damit erhält man insgesamt 2k + 2n + 2n - k = 4n + k Zeichen in der Codierung.

Aufgabe 7.4 (5 Punkte)

Sei $T_1 = (V_1, E_1)$ ein gerichteter Baum mit Wurzel r_1 , $T_2 = (V_2, E_2)$ ein gerichteter Baum mit Wurzel r_2 , und es gelte $V_1 \cap V_2 = \{\}$.

Sei $r \notin V_1 \cup V_2$.

Zeigen Sie: $T_1 \circ_r T_2 = (V_1 \cup V_2 \cup \{r\}, E_1 \cup E_2 \cup \{(r, r_1), (r, r_2)\})$ ist ein gerichteter Baum mit Wurzel r.

Lösung 7.4

Wir zeigen zuerst, dass es von r zu jedem Knoten in $V_1 \cup V_2 \cup \{r\}$ einen Pfad gibt:

Es gibt offensichtlich einen Pfad (der Länge 0) von *r* nach *r*.

Sei $i \in \{1,2\}$ und $v \in V_i$. Dann gibt es nach Definition einen Pfad von r_i nach v über Kanten aus E_i . Da es auch eine Kante von r nach r_i gibt, gibt es somit auch einen Pfad von r nach v über r_i .

Somit gibt es für alle Knoten $v \in V_1 \cup V_2 \cup \{r\}$ einen Pfad von r nach v.

Wir zeigen nun noch, dass es für keinen Knoten $v \in V_1 \cup V_2 \cup \{r\}$ keine zwei verschiedenen Pfade von r nach v gibt.

Sei $i \in \{1,2\}$. Da jede Kante (x,y) in $E_1 \cup E_2 \cup \{(r,r_1),(r,r_2)\}$ mit $x \in V_i$ auch $y \in V_i$ erfüllt, sind von r_i nur Knoten in V_i erreichbar.

Wenn es zwei Pfade von r nach v gibt, muss einer der Pfade eine Länge größer als 0 haben; der zweite Knoten in diesem Pfad sei r_j mit $j \in \{1,2\}$, und v liegt somit in V_j , da von r_j ausgehend nur Knoten in V_j erreichbar sind.

Der zweite Knoten des zweiten Pfades muss somit ebenfalls r_j sein, da von dem anderen Knoten r_{3-j} der Knoten v nicht erreichbar sind.

Da alle Kanten zwischen Knoten aus V_j in E_j liegen, folgt, dass es dann auch zwei Pfade von r_j nach v geben muss; dies ist ein Widerspruch dazu, dass T_j ein Baum ist.

Somit kann es von r zu jedem Knoten $v \in V_1 \cup V_2 \cup \{r\}$ nur einen Pfad geben, und $T_1 \circ_r T_2$ ist ein Baum.