

James Grundy (University of Oxford)

HH VBF Taskforce Meeting 05/10/20

Introduction

There is ongoing discussion regarding the result(s) the VBF HH analyses should aim for.

Suggested aims for VBF HH→4b analysis team:

- Include VBF in main (ggF) non-resonant κ_{λ} scan.
- Exclude $c_{2V} = 0$.
- Generate first 2D κ_{λ} - κ_{2V} scan (timescale of ~1-2 years).

Q: are we confident VBF will improve main non-resonant κ_{λ} scan? Today, I'll go through some studies that will help inform a judgement on this.

Comparing ggF and VBF HH σ

Around the SM point, there is the biggest gap between σ_{VBF} and σ_{ggF} . VBF looks more competitive at κ_{λ} points > 1.

Accounting for VHH Contamination

VBF HH MC samples also contain VHH events \rightarrow LO σ on AMI is VBF+VHH \rightarrow require correction to scale to just VBF σ .

Correction factor is highlighted below. Measured the VBF fraction in VBF HH EXOT8 MC16a (thanks to Tulin and Chris!).

$$\sigma_{N3LO}^{\lambda=x}=\sigma_{LO}^{\lambda=x}rac{\sigma_{N3LO}^{\lambda=1}}{\sigma_{LO}^{\lambda=1}} rac{(VBF\ fraction\ at\ \lambda=x)}{(VBF\ fraction\ at\ \lambda=1)}$$

Accounting for VHH Contamination

VBF HHbbb EXOT8 MC16a

κ _λ	VBF Fraction	VHH Fraction	
0	0.95494	0.04506	
1	0.81864	0.18136	
2	0.70975	0.29025	
10	0.94405	0.05595	

Good agreement w/ bbyy & bbττ

To study all κ_{λ} points for VBF HH, implemented MC combination and re-weightinging procedure used for c_{2V} in previous VBF HH \to 4b analysis.

$$|A(c_V,c_{2V},\lambda)|^2 = \Big(1-rac{3}{2}\lambda+rac{1}{2}\lambda^2\Big)|A(1,1,0)|^2 + \Big(2\lambda-\lambda^2\Big)|A(1,1,1)|^2 + rac{1}{2}\Big(\lambda^2-\lambda\Big)|A(1,1,2)|^2$$

For ggF HH, I used a set of weights derived in the previous ggF HH→4b analysis (thanks to Nicole!).

Comparing Signal Yields

Main Analysis NNTs: <u>JUN20</u>. VBF Analysis NNTs: <u>APR20-VBF</u> (has issue w/ MC-MC SFs).

Q: are the BSM VBF events in a sensitive region of phase space?

Ratio of signal yields does reflect σ ratio, but peak is lost.

James Cameron Grundy

05/10/20

VBF mHH shape ~stable w/ BSM κλ, change in signal yield ratio is driven by ggF.

- + $\kappa\lambda \to soft\ ggF \to decreased\ acceptance \to VBF\ is\ more\ competitive.$
- $\kappa\lambda$ \rightarrow hard ggF \rightarrow increased acceptance \rightarrow VBF is less competitive.

 $\kappa\lambda$ = 3.0 \rightarrow majority hard ggF \rightarrow increased acceptance \rightarrow VBF is less competitive.

Approximating Backgrounds

Generate background estimate by RWing 2-tag SR data using binned SFs derived in CR.

 \Box^2 value is driven by highest mHH bins. Range 0-1000 has $\Box^2 \sim= 1$ (back up) \to statistical errors in 4-tag are very large and go some way to covering shape difference.

APR20-VBF (2016-2018 Data)

9

Measuring Sensitivity

Using corrected mHH distributions for 4-Tag SR MC and the aforementioned background estimate, I calculated:

Quadrature sum of binned significances, Z, (<u>paper here</u>):

$$Z = \begin{cases} +\sqrt{2\left(n\ln\left[\frac{n(b+\sigma^2)}{b^2+n\sigma^2}\right] - \frac{b^2}{\sigma^2}\ln\left[1 + \frac{\sigma^2(n-b)}{b(b+\sigma^2)}\right]\right)} & \text{if } n \geqslant b \\ -\sqrt{2\left(n\ln\left[\frac{n(b+\sigma^2)}{b^2+n\sigma^2}\right] - \frac{b^2}{\sigma^2}\ln\left[1 + \frac{\sigma^2(n-b)}{b(b+\sigma^2)}\right]\right)} & \text{if } n < b. \end{cases}$$

• Approximation of the limit on μ (Bill's Thesis (6.2.4) + b/u).

Measuring Sensitivity

11

Comparing Sensitivity

At higher $+\kappa\lambda$, our sensitivity to VBF becomes a lot closer to that of ggF.

James Cameron Grundy 05/10/20 12

Comparing Sensitivity

$$ggF \kappa_{\lambda} = 6.0$$

$VBF \kappa_{\lambda} = 6.0$

Including Uncertainties

Low statistics in VBF analysis $CR \rightarrow$ uncertainty on bkg est SFs. To account for this, approximated the bkg est error as the difference between the nominal bkg est and the bkg est generated with SFs at their upper/lower error bounds.

	VBF Analysis		ggF Analysis		
	σ _B /B		σ _B /B		
Corrected mHH Bin	Stat. Only	Stat+Syst	Stat. Only	Stat+Syst	
1	0.007	0.04	0.001	0.005	
10	0.021	0.13	0.006	0.025	
19	0.060	0.34	0.022	0.15	

Comparing Sensitivity

Statistical Error + Bkg Est SF Uncertainty

Including Uncertainties

ggF analysis' largest uncertainty is the shape+scale systematic on the background. Accounted with a proxy error, which was simply a constant % of the bkg est.

	VBF Analysis	ggF Analysis	
Corrected mHH Bin	σ _B /B (Stat+Syst)	σ _B /B (Stat+Syst)	
1	0.04	0.005	
10	0.13	0.025	
19	0.34	0.15	

Existing error is much larger in VBF analysis than $ggF \rightarrow the$ percentage increase on overall VBF uncertainty should be less than for ggF.

Comparing Sensitivity

Explored using a range of background systematics correlated across bins.

The above result indicates that our sensitivity to VBF may be equal (or better) than ggF when accounting for background systematics for certain κ_{λ} values.

Comparing 95% CL on μ

κ _λ	Ratio Value	
1.0	0.07	
5.0	0.86	
3.0-18.0	> 0.5	

ATLAS' best current exclusion limit is $-2.3 < \kappa_{\lambda} < 10.3 (link) \rightarrow VBF improves sensitivity at unexcluded kl values.$

Including background systematics (1 NP for bkg shape systematic not 2 HT split NPs).

James Cameron Grundy 05/10/20 18

Moving Forward

What's the next step? Study a ggF-VBF Combination!

Sadly, that's not possible with pyhf...

pyhf doesn't support models w/ two POIs \rightarrow must lobby them to include this!

James Cameron Grundy 05/10/20 19

Summary and Outlook

- Including VBF HH will not improve sensitivity at the SM point for the current HH→bbbb analysis.
- The inclusion of VBF HH shows significant potential to improve sensitivity for BSM points, in particular for points above κ_{λ} =1.
- Results of a ggF-VBF combination are required before a definitive statement can be made, but results so far indicate VBF HH should be included in the HH \rightarrow bbbb analysis κ_{λ} scan.

Plan going forward:

Explore ggF-VBF combinations.

Back-Up Slides

$$\sigma_{N3LO}^{\lambda=x} = \sigma_{LO}^{\lambda=x} imes (VBF\ fraction\ at\ \lambda=x) imes rac{\sigma_{N3LO}^{\lambda=1}}{\sigma_{LO}^{\lambda=1} imes (VBF\ fraction\ at\ \lambda=1)}$$

Fit to VBF xs values. Equation below.

VBF theoretical σ curve: fit quadratic polynomial to VBF HH σ (above) for four available BSM κ_{λ} samples.

ggF theoretical σ curve: quadratic function provided by LHCHXSWG (link).

 $1.302308200044769x^2 + -4.058979734141353x + 4.479354054351827$

FIG. 2: The scaling of the cross section with modifications to $\lambda = \lambda_{SM}(1+c_3)$ of the leading di-Higgs production channels. The VHH channels are at this level the most sensitive to small positive modifications to λ .

Main (ggF) Selection

JUN20 (2016-2018 Data)

 \Box^2 =/= 1 \rightarrow statistical errors are small \rightarrow motivates the use of an improved method and systematic uncertainty.

High value of □² is driven by single bin at very high mHH bins.

James Cameron Grundy 05/10/20 29

VBF Selection

VBF APR20-VBF (2016-2018 Data)

Range reduced to 0-1000 GeV.

Approximating μ Limit

Say signal strength, μ , is a Gaussian r.v. centred at hypothesis μ (as in SM).

6.2.4)

For any Gaussian distribution, the below relation holds at the 95% confidence bound:

$$rac{\mu}{\sigma_{\mu}}=1.64$$

Using the top right equation and error propagation, we can generate a formula for the uncertainty on μ , $\sigma_{_{11}}$, based on the errors on N, B and S.

$$\sigma_{\mu}=rac{\sqrt{N}}{S}$$

Knowing σ_{μ} , the middle equation can be solved numerically to get an approximation of μ at the 95% confidence bound.

Complexity can be increased by including systematics and performing in bins.

VBF and ggF comparison (statistical uncertainty only).

	ggF			VBF				
kl	S	В	Binned Sig.	Approx. mu	S	В	Binned Sig.	Approx. mu
-6	386.4	43109	2.28	0.72	15.39	1043	0.53	3.17
-5	308.9	43109	1.85	0.89	11.68	1043	0.41	4.17
-4	240.3	43109	1.46	1.13	8.48	1043	0.3	5.71
-3	180.7	43109	1.12	1.47	5.81	1043	0.2	8.29
-2	130.1	43109	0.83	1.98	3.65	1043	0.13	13.06
-1	88.4	43109	0.59	2.79	2.01	1043	0.07	23.25
0	55.8	43109	0.4	4.13	0.89	1043	0.03	50.08
1	32.2	43109	0.25	6.48	0.28	1043	0.01	136.56
2	17.5	43109	0.16	10.58	0.19	1043	0.01	245.29
3	11.9	43109	0.1	16.65	0.61	1043	0.02	83.8
4	15.2	43109	0.09	18.83	1.56	1043	0.05	32.73
5	27.5	43109	0.14	12.17	3.03	1043	0.1	16.79
6	48.8	43109	0.24	6.92	5.02	1043	0.17	10.1
7	79.1	43109	0.39	4.23	7.52	1043	0.25	6.72
8	118.4	43109	0.59	2.8	10.54	1043	0.35	4.78
9	166.7	43109	0.84	1.97	14.08	1043	0.47	3.57
10	224.0	43109	1.13	1.46	18.14	1043	0.61	2.77
11	290.3	43109	1.47	1.12	22.72	1043	0.76	2.21
12	365.5	43109	1.86	0.88	27.82	1043	0.93	1.8
13	449.8	43109	2.3	0.71	33.43	1043	1.12	1.5

VBF and ggF 95% CL limit on μ comparison.

kl	VBF mu limit	ggF mu limit	Ratio	
-20	0.52	0.18	0.34	
-19	0.57	0.19	0.34	
-18	0.63	0.21	0.34	
-17	0.7	0.24	0.34	
-16	0.78	0.26	0.34	
-15	0.87	0.29	0.33	
-14	0.99	0.33	0.33	
-13	1.13	0.37	0.32	
-12	1.3	0.42	0.32	
-11	1.51	0.48	0.32	
-8	2.6	0.76	0.29	
-7	3.22	0.92	0.28	
-6	4.12	1.12	0.27	
-5	5.43	1.39	0.26	
-4	7.5	1.78	0.24	
-2	17.41	3.2	0.18	
-1	31.52	4.7	0.15	
0	69.39	7.22	0.1	
1	161.37	11.88	0.07	

kl	VBF mu limit	ggF mu limit	Ratio
2	241.88	18.88	0.08
3	90.4	25.83	0.29
4	37.12	25.5	0.69
5	19.58	16.75	0.86
6	11.97	9.67	0.81
7	8.05	5.87	0.73
8	5.77	3.9	0.68
9	4.34	2.73	0.63
10	3.38	2.03	0.6
11	2.7	1.56	0.58
12	2.21	1.23	0.56
13	1.84	1	0.54
14	1.56	0.82	0.53
15	1.34	0.69	0.52
16	1.16	0.59	0.51
17	1.01	0.51	0.5
18	0.89	0.44	0.5
19	0.79	0.39	0.49
20	0.71	0.34	0.48

NB: points -10, -9, -3 are missing.