Summary

- A. Number systems: decimal, binary, hexadecimal, and octal
- B. Subtraction: Subtraction was converted to addition by introducing two's-complement.
- C. To obtain two's-complement:
 - 1) Convert 1's to 0's and 0's to 1's
 - 2) Add 1 to the result

The algebra deals with binary variables and logic operations

```
Variables : A, B, C, ...
Functions : F, G, H, ...
Values(variables or functions): 0, 1
Operations : AND(.), OR(+), NOT('), XOR(⊕)
```

```
Example : Operations and variables A.B, A+B, A\oplusB, A.(B\oplusC), A + 1, A + 0
```

Example : Function
$$F(A,B,C) = A'.(B+C) + A$$

Table of truth: the value of any Boolean variable is 0 or 1, so a table can be created to display all possible values for one or more variables

Number of rows = $2^{\text{Number of variables}}$

Α
0
1

Α	В
0	0
0	1
1	0
1	1

Α	В	C
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1
	-	

 2^1

 2^2

 2^3

Operations : NOT(')

Example : NOT

$$(B + C)', A' + C, F', A' + B' + C'$$

Operations : AND(.)

Α	В	A.B	(AND)
0	0		0
0	1		0
1	0		0
1	1		1

Example : AND

A.B.C , A'.B, B'.C.A'

Operations : OR(+)

Example : OR

A.(B + C), A'+ B, B'+ C.A'

Operations : XOR(⊕)

Α	В	A⊕B(XOR)
0	0	0
0	1	1
1	0	1
1	1	0

Example : XOR

 $(A \oplus B).C$, $A' \oplus B$, $(B' \oplus C) + A$

Example : Show that

$$A \oplus B = A'B + B'A$$

Α	В	A⊕B(XOR)	Α'	В'	A'.B	B'.A	A'.B + B'.A
0	0	0	1	1	0	0	0
0	1	1	1	0	1	0	1
1	0	1	0	1	0	1	1
1	1	0	0	0	0	0	0

Example :

$$1 + 0 = 1$$

 $1 + 1 = 1$

$$1 \cdot 1 = 1$$

Operations : F

F:

$$A$$
, A' , A' . A

Operations : F

F ?

Operations : F

F: 0, A'B', A'B, A', AB', B', A⊕B, A'+B', AB, A'B'+A.B, B, A'+B, A, A+B', A+B, 1

How many different Boolean functions are there with n inputs?

With n inputs:

$$2^{2^n}$$

Example:

$$n = 1 \quad 2^{2^1} = 2^2 = 4$$

$$n = 2$$
 $2^{2^2} = 2^4 = 16$

Identities table

Name	AND form	OR form
Identity law	1A = A	0 + A = A
Null law	0A = 0	1 + A = 1
Idempotent law	AA = A	A + A = A
Inverse law	AA' = 0	A + A' = 1
Commutative law	AB = BA	A + B = B + A
Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Distributive law	A + BC = (A + B)(A + C)	A(B+C) = AB + AC
Absorption law	A(A + B) = A	A + AB = A
De Morgan's law	(AB)' = A' + B'	(A + B)' = A'B'

Use identities table to simplify Boolean expressions

```
Example : Simplify Boolean expression F. F = A'B + AB' + AB
```


Use identities table to simplify Boolean expressions

2 transistors

Example : Show that
$$(A + B)' = A' \cdot B'$$

Α	В	A + B	(A + B)'	Α'	В'	A' B'
0	0	0	1	1	1	1
0	1	1	0	1	0	0
	0		0	0	1	0
1	1	1	0	0	0	0

Use identities table to simplify Boolean expressions

```
Example : Simplify Boolean expression F and G.
G = A'.(B + C) + A
F = A'B + AB' + AB
```

Use identities table to simplify Boolean expressions

```
Example : Simplify Boolean expressions

F1 = AB' + A(A + C)' + B(B + C)'

F2 = A'BC + AB'C' + A'B'C' + AB'C + ABC

F3 = (AB'(C + BD) + A'B')C

F2 = A'BC + B'C'(A + A') + AC(B'+ B)

= A'BC + B'C'(1) + AC(1)

= A'BC + B'C' + AC
```

Obtaining F from the truth table

Example: Obtain F for the following truth table

Α	В	F
0	0	0
0	1	1
1	0	0
1	1	1

There are two ways to do that:

- 1. Sum of Product (SOP)
- 2. Product of Sum (POS)

1. Sum of Products (SOP)

- 1) Only outputs with the value of one (1) in the truth table are considered
- 2) Minterm for each case is obtained by designating A(B, C, ..) to value 1 and A'(B', C', ..) to value 0 and considering AND combination of variables
- 3) $F = m0 + m1 + \dots = \sum Minterms$

1. Sum of Product (SOP)

Example: Obtain F for the following truth table

	Α	В	F	Minterms	
0	0	0	0		
1	0	1	1	A'B	m1
2	1	0	0		
3	1	1	1	AB	m3

$$F = m1 + m3 = A'B + AB$$

 $F = (A' + A)B$
 $F = B$

Example: Obtain F(SOP) for the following truth table

	A	В	C	F
0	0	0	0	0
1	0	0	1	0
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

1. Product of Sums (POS)

- 1) Only outputs with the value of zero (0) in the truth table are considered
- 2) Maxterm for each case is obtained by designating A(B, C, ..) to value 0 and A'(B', C', ..) to value 1 and considering OR combination of variables
- 3) $F = m0.m1.m2... = \prod Maxterms$

1. Product of Sums (POS)

Example: Obtain F for the following truth table

	Α	В	F	Maxterms	
0	0	0	0	A+B	m0
1	0	1	1		
2	1	0	0	A¹+B	m2
3	1	1	1		

$$F = M0 \cdot M2 = (A + B)(A' + B)$$
 $F = AA' + AB + BA' + BB$
 $F = 0 + B(A + A') + B = B + B$
 $F = B$

Example: Express the Boolean function F = (C' + A + B)(A' + C) as standard product of Maxterms (POS).

```
F = (C' + A + B)(A' + C + \emptyset)
F = (C' + A + B)(A' + C + BB')
F = (C' + A + B)((A' + C) + BB')
F = (C' + A + B)((A' + C) + B)((A' + C) + B')
F = (C' + A + B)((A' + C + B)(A' + C + B')
```

Karnaugh map (K-map)

Used to simplify Boolean terms, in order to create a K-map

- A K-map is a grid of squares, one square for each row in truth table
- The value for each square comes from F values, just 1'es (SOP)
- Make rectangular groups of 1'es and look for unchanging variables
- Allowed rectangular groups : 1, 2, 4, .. just power of 2
- Each group should be as large as possible
- Group may overlap and also may wrap around a table
- There should be as few groups as possible
- Every 1 must be in at least one group
- Just horizontal or vertical rectangular groups are allowed

RefLink

(Note that no Boolean laws broken, but not sufficiently minimal)

Example: Obtain a simplified form of F(SOP) for the following truth table.

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	1

$$F = A + B$$

Example: Obtain a simplified form of F(SOP) for the following truth table.

$$F = A'B'C' + A'BC' + A'BC + AB'C' + ABC'$$

	Α	В	C	F	AB\C 0	1			
0	0	0	0	1	00 1 1		A D C		
1	0	0	1	0	01 1	1	ABC	4 I D	
2	0	1	0	1	11 1-1-1		01 0	A'B	
3	0	1	1	1	10 1		01 <mark>1</mark>		
4	1	0	0	1	ABC				
5	1	0	1	0	000			_	_
6	1	1	0	1	010	C¹	F	= C'	+ A'B
7	1	1	1	0	110				
					100				

Example: Express the Boolean function F = C' + A'B as standard sum of Minterms (SOP).

```
F = C' + A'B = C'.1.1 + A'.B.1 = C'(B' + B)(A' + A) + A'B(C'+C)
F = (C'B' + C'B)(A' + A) + A'BC'+A'BC
F = C'B'A' + C'B'A + C'BA' + C'BA + A'BC' + A'BC
F = A'B'C' + A'BC' + A'BC' + A'BC
F = A'B'C' + A'BC' + A'BC' + A'BC' + A'BC
```

Analog to digital

Α	A'
0	1
1	0

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

Α	В	А⊕В
0	0	0
0	1	1
1	0	1
1	1	0

Building blocks in any digital circuits

NOT, AND, OR, XOR, NOR, NAND

Α	В	NOR
0	0	1
0	1	0
1	0	0
1	1	0

Α	В	(A.B)'
0	0	1
0	1	1
1	0	1
1	1	0

Designing rules

- 1. Determine the number of inputs and outputs
- 2. Derive the truth table for inputs and outputs
- 3. Consider outputs with TRUE values (1)
- 4. Obtain outputs in terms of inputs using **sum of products (SOP)** rule
- 5. Simplify the Boolean expression for each output

Example: Obtain the Boolean function F?

	Α	В	C	F
0	0	0	0	1
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Example: Obtain the Boolean function F?

	Α	В	C	F	Minterms
0	0	0	0	1	A'B'C'
1	0	0	1	0	
2	0	1	0	0	
3	0	1	1	1	A'BC
4	1	0	0	0	
5	1	0	1	1	AB'C
6	1	1	0	1	ABC'
7	1	1	1	0	

F = A'B'C' + A'BC + AB'C + ABC'

Example:

$$F = A'B'C' + A'BC + AB'C + ABC'$$

Designing

	Α	В	C	F
0	0	0	0	1
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$F = A'B'C' + A'BC + AB'C + ABC'$$

