

Projet MEGABOT

Étudiants:

Floris JOUSSELIN Mathilde POMMIER

Stagiaire:

Hugo LAPLACE

Superviseurs:

Julien ALLALI Vincent PADOIS Grégoire PASSAULT

Comment déplacer un robot de 250 kg?

Plan

- Comment déterminer la cinématique inverse d'un robot à boucle cinématique fermée ? → programmation quadratique
- 2. Intégrer les limitations physique au solveur
- Comment maintenir la stabilité ?
- 4. Quelle marche choisir?
- Nos résultats
- 6. Challenges rencontrés & perspectives futures
- 7. Conclusion

Cinématique inverse et programmation quadratique (QP)

La **programmation quadratique** est la **minimisation** de fonctions d'objectifs **sous contrainte** linéaire

Contraintes de vitesse et d'élongation

Caractérisation des vérins

Intégration d'une contrainte en vitesse des vérins dans Placo

Stabilisation du Megabot - Zero-Moment Point (ZMP)

GRÉGOIRE PASSAULT "Optimisation de la locomotion de robots bas coût à pattes" (2016)

ZMP: point où M_{Δ} (gravitationnelle) + M_{Λ} (inertielle) + M_{Λ} (Coriolis) + M_{Λ} (centrifuge) = **0**

P : centre de **pression**

C: projeté du centre de **masse**

Triangle orange : triangle de sustentation

Triangle jaune : triangle de **sustentation** (avec marge de sécurité)

Marche stable du Megabot - Creeping gait

OUSSAMA KHATIB, BRUNO SICILIANO "Handbook of Robotic" (2008)

Sens de déplacement du Megabot

Position
• possible
d'une patte

Position
• d'une patte
au sol

Position
• d'une patte
levée

Surface de sustentation

Résultat du creeping gait stable en simulation

Triangle vert : surface de **sustentation**

Point rouge : projeté du **centre de masse**

Zone rose : **surface d'action** de chaque patte

Communication Placo → Megabot

- Publication des valeures de positions de tous les vérins dans la **simulation**
- Transmission des positions au microcontrôleurs via un protocol de communication
- 3. Transmission des ordre des microcontrôleurs aux vérins

Problèmes rencontrés & pistes de recherche

Problèmes rencontrés	Pistes de recherche
A-coups sur les vérins ("Il faut au minimum 20% de la puissance pour que le vérin bouge ?")	Modifications au niveau des contrôleurs ? des vérins ?
Arc de cercle dans la trajectoire de déplacement des pattes	Diminution de l' erreur limite dans le QP pour considérer la cible comme atteinte
Affichage des espaces de travail 3D des pattes à chaque instant avec Pycapacity	Envoie des jacobiennes directement dans Pycapacity
Retard des vérins par rapport aux ordres des contrôleurs	Pause à chaque changement de direction des vérins pour permettre de rattraper le retard
Les positions réelles initiale des pattes sont différentes des positions de la simulation	Lecture des positions des vérins du Megabot + implémentation retour en position initiale de simulation
	Agrandir la taille des pas (20 cm → 40 cm)
	Ajout d'une contrainte d'accélération

Conclusion

Réalisations

Etat de l'art (choix de l'allure de marche et stabilisation optimale)

Caractérisation des vérins

Implémentation du creeping gait en simulation

Communication Placo - Microcontrôleurs

Creeping gait d'une patte sur le vrai Megabot

Étudiants:

Floris JOUSSELIN

Mathilde POMMIER

Remerciements:

Julien ALLALI

Grégoire PASSAULT

Vincent PADOIS

Hugo LAPLACE

Autres résultats : simulation

Autres résultats : caractérisation vérins

Autres résultats : champs d'action des pattes

Autres résultats : problème de la trajectoire en arc

Autres résultats : logs vérins sinus

Autres résultats : logs vérins creeping gait

Autres résultats : Pycapacity

