Advanced Algorithms - Homework 2

Question 1

First, we need to find the biggest size of vertices forming a maximal independent set (MIS), note this size by \mathbf{k} .

In order to find k we can perform a binary search in the range [1,n] (n = |V|) using the function A_d that runs in polynomial time.

 \mbox{Note} - The first TRUE that A_d returns is not enough, we need to keep searching for the biggest.

Runtime to find the best k: $log_2(n) \cdot T(A_d)$

A_0 :

After we know the value of k we can start the second part of the solution, run n iterations and each iteration we'll delete a vertex and check with $A_d(G',k)$ if there is still MIS by the size of k and if the graph has k left vertices we can quit the loop and return the graph, if there is not MIS by the size of k (the decision function returns FALSE) then we need to undo the deletion of the vertex and continue to the next iteration.

```
\label{eq:Pseudo:} \begin{split} & A_o(G) \\ * \ check \ edge \ cases \\ & k = binary\_search(G) \ \# \ as \ described \ above \\ & for \ v \ in \ V: \\ & G. delete\_vertex(v) \\ & if \ A_d(G,k): \\ & if \ |V| = k: \\ & return \ vertices \ \& \ edges \\ & else: \\ & G.add\_vertex(v) \end{split}
```

Runtime of $A_o(G)$: $|V| \cdot T(A_d) = n \cdot polynomial$ -time

First, we need to understand how the algorithm works, lets see the example below

As we can see $c(v_i, A) = 2$ and $c(v_i, B) = 3$

The algorithm works in a greedy way \Rightarrow in this example the algorithm will decide to assign v_i to group A. We can see that the worst scenario is if $c(v_i,A)=c(v_i,B)$, therefore half of the edges will be in the maximum cut and half will be "lost" (r=2) Note - the worst case for this algorithm is when the equality I just mentioned above repeats itself for each of the vertices and their edges equal distributed to v_1, v_2 (A, B respectively) without edge between v_1 and v_2

Example for the worst case	The algorithm will produce maximum cut size of 2 but the optimal solution is 4
V ₂ V ₃ V ₄ V ₄	V _A V ₃ V ₄

We can see the simplest example above.

Let G be a **complete** graph with weights that obey the **triangle inequality**, and a subset of vertices R (terminals).

Let OPT be the cost of an optimal solution T^* to Steiner tree problem.

We'll start by doubling each edge to obtain an Euler cycle, with DFS tour we know this cost is $2 \cdot OPT$.

Making a Hamilton circuit using "short-cutting" Steiner vertices and visited vertices (shortcut = connecting new edge between pair of adjacent terminals in the DFS).

The short-cutting doesn't increase the total of the cost (complete graph & triangle inequality). Deleting one edge from this Hamilton circuit yields a spanning tree of R with cost at most $2 \cdot OPT$.

So, if this tree is a MST on R we know its cost is less than $2 \cdot OPT$

To summary:

 $2 \cdot OPT = cost$ of the tour on the terminals in T^*

≥ cost of any spanning tree (the tree after the manipulations, adding edges short-cutting and so on)

≥ cost of the MST of the tree

Let b be the number of the bins after using the algo Next-fit and OPT be the number of bins possible that needed to pack all of the items.

Two things we know:

- 1. The maximum size of each item is $\frac{1}{5}$
- 2. Each of the bins full at least $\frac{4}{5}$ of the maximum capacity (max cap. = 1) (from 1.)
- 3. $bin_{last} + bin_{last-1} > 1$

The total size of the items is at least $\frac{4}{5} \cdot (b-2) + 1 \rightarrow OPT > \frac{4}{5} \cdot (b-2) + 1 = \frac{4b}{5} \cdot \frac{3}{5}$ Order the equation will results us that $\frac{5}{4}OPT + \frac{3}{4} > b$

Let s be a sequence as the following $s = (\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \varepsilon)$ where $\varepsilon \leq \frac{4}{5n}$.

Consider our instance as $\overline{s, s, \cdots, s, s}$, $\frac{1}{5}$ therefore we have $4 \cdot n + 1$ of the items $\frac{1}{5}$ and we have n of the items ε .

The algo Next-fit will pack this instance using n+1 bins and the OPT will do with $\frac{4n}{5}+1$ bins.

$$\frac{5}{4}$$
 · OPT- $\frac{1}{4} = \frac{5}{4} \left(\frac{4n}{5} + 1\right) - \frac{1}{4} = n + 1$ exactly as Next-fit algo.

Note - ε derive from the last bin (in optimal solution), $\frac{1-\frac{1}{5}}{n} = \frac{\left(\frac{4}{5}\right)}{n} = \frac{4}{5n}$

I read and understood the example and the tightness of the analysis.