Learning rate schedulers and Optimisers

Content

- Gradient Descent Variants
 - Batch gradient descent
 - Stochastic gradient descent
 - Mini-batch gradient descent
- Learning rate scheduling methods
- Issues with vanilla stochastic gradient descent variants
- Gradient with momentum
- Adaptive gradient methods
- Gradient descent visualisation

- Batch gradient descent:
 - Algorithm:
 - For e in epochs:
 - ullet Compute the gradients given the dataset $-> \nabla J(\theta_e)$
 - Update parameters $\theta_{e+1} = \theta_e \eta \nabla J(\theta_e)$ // η is the learning rate $0 < \eta < 1$
 - Uses the entire dataset to update the parameters
 - Issues:
 - Very slow since the entire dataset is used for the update
 - Intractable when dataset does not fit to memory
 - Can't update online when new data comes

- Stochastic gradient descent:
 - Instead of updating the parameters for the entire dataset, update for each datapoint
 - Algorithm:
 - For e in epochs:
 - For x_i, y_i in dataset:
 - Compute the gradients given the data point $-> \nabla J(\theta_i; x_i; y_i)$
 - Update parameters $\theta_{i+1} = \theta_i \eta \nabla J(\theta_i; x_i, y_i)$
 - Parameters can be updated online when new data comes
 - Issues:
 - Since the parameter update is done for each datapoint, has a high variance in the parameter update
 - ullet Jumping from one local minima to other with a constant learning rate η could lead to overshooting; learning rate schedulers address this problem

- Mini-batch gradient descent:
 - Instead of updating on each sample, use a small batch of samples for the update; Reduces the variance in the update
 - Algorithm:
 - For e in epochs:
 - For $x_{i:i+n}, y_{i:i+n}$ in dataset: // n is the batch size
 - Compute the gradients given the dataset $-> \nabla J(\theta_{i:i+n}; x_{i:i+n}; y_{i:i+n})$
 - Update parameters $\theta_{(i:i+n)+1} = \theta_{i:i+n} \eta \nabla J(\theta_{i:i+n}; x_{i:i+n}, y_{i:i+n})$
 - Online learning is possible when new data mini-batches arrives
 - Hardware parallelism can accelerate the computation in the mini-batch setup
 - Issues:
 - Similar to SGD, not guaranteed to converge; can stuck on a local minima; use LR-Scheduling to solve the issue (not completely)

Ref.1: Convergence of different gradient descent methods

Learning rate scheduling methods

- As the loss decreases, the gradient of the loss surface reduces
 - When LR is constant, the gradients will bounce off the minima when the cost reaches zero
- So a schedular that reduces the learning rate at later steps can control the gradient step
- Different types of schedulers:
 - Polynomial decay: $\eta_t = \eta_0 * (t+1)^{\frac{1}{2}}$
 - Factor scheduler: $\eta_{t+1} = \eta_t * \alpha$ with a lower bound at $\eta_{t+1} = max(\eta_{min}, \eta_t * \alpha)$
 - ullet Multifactor scheduler: $\eta_{t+1} = \eta_t * \alpha$ where $t \in S$; $S = \{10,20,30\}$; S set of epoch points
 - Cosine scheduler: $\eta_{t+1} = \eta_T + \frac{\eta_0 \eta_t}{2} (1 + cos(\frac{\pi t}{T}))$ where $t \in [0,T]$
- LR Warmup: When models are very complex random initialisation of weights could lead to oscillations in performances; Have a warmup phase to stabilise this

Issues with vanilla stochastic gradient descent variants

- Very difficult to choose a learning rate
- To do learning rate scheduling, the scheduler structure must be properly determined:
 - Need an understanding about where the local minima occurs
 - When a momentum is applied to the gradient update, the suboptimal minima can be avoided
- When some data has low frequency features; applying the same LR could lead to slower low frequency feature extraction:
 - An adaptive learning rate applied to each neurone individually could solve this issue

Gradient momentum

• Momentum:

- Idea: Use the moving average of the gradients instead of pure gradients for parameter update
- y axis we want slower gradient updates and x axis faster
- Compute the moving average for each parameter

Update the parameters with averaged gradients

$$\bullet \ \theta_{t+1} = \theta_t - \eta v_t$$

- Oscillation will be dampened when taking the moving average of (+) and (-) gradients
- Gradients in the same direction will be encouraged:
 More momentum

Loss surface of a model with two parameters θ_1 and θ_2

• Adagrad:

- When there are features that occurs at different frequencies, it is suitable to apply an individual learning rate to each parameter
- Adagrad achieves this by scaling the original learning rate by the accumulated gradient of that parameter
 - \bullet $\theta_{t+1} = \theta_t \frac{\eta}{\sqrt{diag(G_t) + \epsilon I}} g_t$; ϵ to prevent the singularity
 - \bullet $g_t = \nabla J(\theta_t)$; parameter gradient at time step t
 - \bullet $G_t = \sum_{\tau=1}^t g_{\tau}g_{\tau}^T$; Accumulated squared gradient until time time step t
- The adaptive gradient relaxes the choice of the initial learning rate
- However positive accumulation of gradients through time could lead to a very small learning rate

• RMSProp:

- RMSProp and Adadelta are designed to address the gradient accumulation problem
- RMSProp addresses this issue by computing the moving average of square gradients
- moving average

•
$$s_t = \rho s_{t-1} + (1 - \rho) [\nabla J(\theta_t)]^2$$

ullet LR is scaled by s_t for each parameter

$$\bullet \ \theta_{t+1} = theta_t - \frac{\eta}{\sqrt{s_t + \epsilon I}} \nabla J(\theta_t)$$

• Adadelta:

- With Adadelta, the choice of initial LR is not difficult and benefits from large initialisations
- Instead of LR only, use the following expected moving average

$$\bullet \mathbb{E}[\Delta \theta^2]_t = \rho \mathbb{E}[\Delta \theta^2]_{t-1} + (1-\rho)\Delta \theta_t^2$$

Scale the learning rate by the expected squared gradients

$$\bullet \mathbb{E}[g^2]_t = \rho \mathbb{E}[g^2]_{t-1} + (1 - \rho)g_t^2$$

$$\Delta \theta = -\eta \frac{\sqrt{\mathbb{E}[\Delta \theta^2]_{t-1}}}{\sqrt{\mathbb{E}[g^2]_t + \epsilon I}} g_t$$

$$\bullet \ \theta_{t+1} = \theta_t + \Delta \theta_t$$

- Adam:
 - Adam combines the benefits of both momentum and adaptive learning rate methods
 - Moving average momentum:
 - $v_t = \rho_1 v_{t-1} + (1 \rho_1) [\nabla J(\theta_t)]$; Momentum damps oscillations
 - Moving average scaling factor:
 - $s_t = \rho_2 s_{t-1} + (1 \rho_2) [\nabla J(\theta_t)]^2$; Adapt the learning rate for each parameters
 - ullet When ρ_1, ρ_2 are large, v_t, s_t leans towards 0; specially at the early iterations
 - Use the following biased versions:

$$\hat{v}_t = \frac{v_t}{1 - \rho_1^t} \quad \text{and} \quad \hat{s}_t = \frac{s_t}{1 - \rho_2^t}$$

• Adaptive parameter update with a LR and momentum:

$$\bullet \ \theta_{t+1} = \theta_t - \eta \frac{\hat{v}_t}{\sqrt{\hat{s}_t + \epsilon I}}$$

Gradient descent visualisation

Ref.02: Gradient descent optimisation on a loss contour

Ref.02: Gradient descent on a saddle point

Reference

- Different gradient descent methods:
 - Ref.1: https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3
 - Ref.2: https://ruder.io/optimizing-gradient-descent/
 - https://blog.paperspace.com/optimization-in-deep-learning/
- On momentum method:
 - https://distill.pub/2017/momentum/
- Adaptive gradients:
 - https://medium.com/konvergen/an-introduction-to-adagrad-f130ae871827
 - https://towardsdatascience.com/10-gradient-descent-optimisation-algorithms-86989510b5e9