Analisi II - quarta parte bis

Conseguenza del teorema del valor medio

- Teorema
 - Se $f:A(\subseteq\mathbb{R}^n) o\mathbb{R}$ differenziabile in A aperto e connesso ha $abla f(\underline{x})=\underline{0}$ allora $\exists c \in \mathbb{R}$ t.c. $f(\underline{x}) = c$ in A.
 - o Dimostrazione (Idea)

Fissiamo $x_0 \in A$ e consideriamo un generico $\underline{x} \in A$. Poichè A è connesso si può provare che esiste una poligonale di vertici $\underline{x}^0,...,\underline{x}^n=\underline{x}$ interamente contenuta in $A_i \, \forall k=0,...,n-1$ il teorema del valor medio applicato al segmento di estremi $\underline{x}^k,\underline{x}^{k+1}$ implica che $f(\underline{x}^{k+1})=f(\underline{x}^k)=<
abla f(\underline{x}^k)+artheta(\underline{x}^{k+1}-\underline{x}^k)),\underline{x}^{k+1} \underline{x}^k>=0$. Quindi si conclude che $f(\underline{x}^{k+1})=f(\underline{x}^k)$, $\forall k=0,...,1$ e dunque $f(x) = f(x^0) = c$, $\forall x \in A$

Derivarte direzionali e parziali di ordine superiore

Sia $f:A(\subseteq\mathbb{R}^n) o\mathbb{R}$, A aperto e sia $\underline{u}\in\mathbb{R}^n$ un versore. Supponiamo che esista $\dfrac{\partial f}{\partial u}(\underline{x})$ in A. Resta così definita $rac{\partial f}{\partial u}:A(\subseteq\mathbb{R}^n) o\mathbb{R}$. Siano $\underline{v}\in\mathbb{R}^n$ un versore e $\underline{x_0}\in A$. Se esiste $\frac{\partial}{\partial v}\left(\frac{\partial f}{\partial u}\right)\left(\underline{x_0}\right)$ questa si dice derivata direzionale seconda di f in $\underline{x_0}$ lungo la direzione orientata \underline{u} e \underline{v} nell'ordine e si indica con $f_{\underline{uv}}=rac{\partial^2 f}{\partial u \partial v}(\underline{x_0})$

Iterando il processo si definiscono le derivate direzionali successive.

- ullet Sia $f:A(\subseteq \mathbb{R}^n) o \mathbb{R}$, A aperto. Supponiamo che esista $\dfrac{\partial f}{\partial x_i}(\underline{x})$ in A. Resta così definita $\frac{\partial f}{\partial x}:A(\subseteq\mathbb{R}^n) o\mathbb{R}$
- Sia $\underline{x_0}\in A$. Se esiste $\dfrac{\partial}{\partial x_i}\left(\dfrac{\partial f}{\partial x_i}\right)(\underline{x}^0)$ questa si dice derivata parziale seconda di f in $\underline{x_0}$ rispetto a x_i e x_j nell'ordine e si indica con $f_{x_ix_j}(\underline{x^0})=rac{\partial^2 f}{\partial x_i\partial x_i}(\underline{x^0})$ Analogamente si definisce la derivata parziale di ordine superiore

Funzioni di classe C^k

Sia $f:A(\subseteq \mathbb{R}^n) o \mathbb{R} A$ aperto, si dice che f è di classe C^k in A e si scrive $f\in C^k(A)$ se fè dotata di tutte le derivate parziali fino all'ordine k e queste sono continue in A.

Teorema di Schwartz

Se $f:A(\subseteq\mathbb{R}^n) o\mathbb{R}$, A aperto, è di classe C^k in A allora le derivate miste h-esime, con $2\le h\le k$ non dipendono dall'ordine seguiteo nell'eseguire la derivazione

Forme lineari e forme quadratiche

- Un'applicazione $L: \mathbb{R}^n \to \mathbb{R}$, $L(\underline{h}) = \sum a_i h_i = \langle \underline{a}, \underline{h} \rangle$, con $\underline{a} = (a_1, ..., a_n)^T$, è detta forma lineare in \mathbb{R}^n . Se $L \neq 0$ allora L è un polinomio omogeneo di I grado nelle variabili $\ell_1, ..., \ell_n$.
- Un'applicazione $Q:\mathbb{R}^n o\mathbb{R}$, $Q(\underline{h})=\sum\sum a_{ij}h_jh_i=<\mathbb{A}\cdot\underline{h},\underline{h}>$, con $\mathbb{A}=\begin{pmatrix} a_{11}...a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1}...a_{nn} \end{pmatrix}$, è detta forma quadratica in \mathbb{R}^n .

Proprietà delle forme quadratiche

Sia $\mathbb{A} \in M(n,n)$ e $\underline{h},\underline{k} \in \mathbb{R}^n$. Si ha:

- 1. $<\mathbb{A}\cdot\underline{h},\underline{k}>=<\underline{h},\mathbb{A}\cdot\underline{k}>$. Infatti $<\mathbb{A}\cdot\underline{h},\underline{k}>=\sum(\sum a_{ij}\cdot h_j)k_i=\sum(\sum a_{ij}\cdot h_j)h_i$.
- 2. Se $Q(\underline{h})=<\mathbb{A}\underline{h},\underline{h}>$, allora posto $\mathbb{A}^s=\frac{1}{2}(\mathbb{A}+\mathbb{A}^T)$, \mathbb{A}^s è simmetrica. $Q(\underline{h})=<\mathbb{A}^s\cdot\underline{h},\underline{h}$. Infatti $Q(\underline{h})=<\mathbb{A}\cdot\underline{h},\underline{h}=<\underline{h},\mathbb{A}^T\cdot\underline{h}>$ e quindi $2\cdot Q(\underline{h})=<\mathbb{A}\cdot\underline{h},\underline{h}+<\underline{h},\mathbb{A}^T\cdot\underline{h}>=<(\mathbb{A}+\mathbb{A}^T)\cdot\underline{h},\underline{h}>$. Dunque $Q(\underline{h})=<\frac{1}{2}(\mathbb{A}+\mathbb{A}^T)\cdot\underline{h}$

non è restrittivo supporre che $\mathbb{A}=\mathbb{A}^s$

- 3. \circ Se L è una forma lineare, $L(\underline{h})=<\underline{a},\underline{h}>$, si ha $\nabla<\underline{a},\underline{h}>=(\frac{\partial}{\partial h_1}a_1h_1,...,\frac{\partial}{\partial h_n}a_nh_n)=\underline{a}$ (in quanto $\frac{\partial}{\partial h_i}a_ih_i=a_i$)
 - $\begin{array}{l} \circ \ \ \operatorname{Se} \ Q \ \ \operatorname{\grave{e}} \ \ \operatorname{una} \ \operatorname{forma} \ \operatorname{quadratica} \ \operatorname{con} \ Q(\underline{h}) = <\mathbb{A} \cdot \underline{h}, \underline{h} >, \nabla <\mathbb{A} \cdot \underline{h}, \underline{h} > = (\mathbb{A} + \mathbb{A}^T) \cdot \underline{h} = 2\mathbb{A}^s \cdot \underline{h}. \ \operatorname{Infatti} \ \operatorname{per} \ N = 2 : \nabla \cdot (<\mathbb{A} \cdot \underline{h}, \underline{h} >) = \nabla (a_1 h_1^2 + \ldots + a_n h_n^2) = \begin{pmatrix} 2a_{11}h_1 + a_{12}h_2 + a_{21}h_2 \\ a_{12}h_1 + a_{21}h_1 + 2a_{22}h_1 \end{pmatrix} = \begin{pmatrix} 2a_{11} + a_{12} + a_{21} \\ a_{12} + a_{21} + 2a_{22} \end{pmatrix} \cdot \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} a_{11}a_{12} \\ a_{21}a_{22} \end{pmatrix} + \begin{pmatrix} a_{11}a_{21} \\ a_{12}a_{22} \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = (\mathbb{A} + \mathbb{A}^T) \cdot \underline{h} \end{aligned}$

Differenziale per campi scalari

Sia $f:A(\subseteq\mathbb{R}^n) o\mathbb{R}$, A aperto, differenziabile in A e sia $\underline{x}^0\in A$. Sia $g=\nabla f$ in \underline{x}^0 . Si chiama matrice **Hessiana** di f in \underline{x}^0 e risulta $Hf(\underline{x}^0)=Jg(\underline{x}^0=J(\nabla f)(\underline{x}^0)=$

$$\begin{pmatrix} \frac{\partial g_1}{x_1}(\underline{x}^0) \dots \frac{\partial g_1}{x_n}(\underline{x}^0) \\ \vdots \ddots \vdots \\ \frac{\partial g_n}{x_1}(\underline{x}^0) \dots \frac{\partial g_n}{x_n}(\underline{x}^0) \end{pmatrix} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} \dots \frac{\partial^2 f}{\partial x_i x_n} \\ \vdots \ddots \vdots \\ \frac{\partial^2 f}{\partial x_n x_1} \dots \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix} \in M(n,n). \text{ La matrice Hessiana è la}$$

matrice di tutte le derivate parziali seconde.

La forma quadratica $Q(\underline{h})=< Hf(\underline{x}^0)\cdot \underline{h}, \underline{h}>= d^2f(\underline{x}^0)=\sum (\sum rac{\partial^2 f}{\partial x_i\partial x_j}(\underline{x}^0)h_j)h_i$

Teorema di Young (sulla simmetrica delle matrici Hessiane)

Se f è due volte differenziabile in \underline{x}^0 , allora $Hf(\underline{x}^0)$ è simmetrica, cioè $\frac{\partial^2 f}{\partial x_i \partial x_j}(\underline{x}^0) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\underline{x}^0)$.

Condizione sufficiente affinchè una f sia due volte differenziabile

Se $f\in C^2(A)$, A aperto, allora f è due volte differenziabile in ogni punto di A. Inoltre $g=
abla f\in C^1(A)$. Se $g\in C^1(A)\Rightarrow g$ è differenziabile in A si conclude che f è due volte differenziabile in A

Teorema (formula di Taylor di ordine II)

Se f è due volte differenziabile in \underline{x}^0 , allora $f(\underline{x}) = f(\underline{x}^0) + \langle \nabla f(\underline{x}^0), \underline{x} - \underline{x}^0 \rangle + \frac{1}{2} \langle Hf(\underline{x}^0)(\underline{x} - \underline{x}_0), \underline{x} - \underline{x}^0 \rangle + o(||\underline{x} - \underline{x}^0||)$, approssimazione quadratica di f in \underline{x}^0 o polinomio di Taylor di f in \underline{x}^0 di ordine II

Dimostrazione

Poniamo $\varphi(\underline{x})=f(\underline{x})-(f(\underline{x}^0)+<\nabla f(\underline{x}^0),\underline{x}-\underline{x}^0>+\frac{1}{2}< Hf(\underline{x}^0)(\underline{x}-\underline{x}_0),\underline{x}-\underline{x}^0>+o(||\underline{x}-\underline{x}^0||)).$ Proviamo che $\varphi(\underline{x})=o(||\underline{x}-\underline{x}^0||).$ Poichè f è differenziabile in \underline{x}^0 , anche φ è differenziabile in \underline{x}^0 e $\nabla \varphi(\underline{x})=\nabla f(\underline{x})-\nabla f(\underline{x}^0)-Hf(\underline{x}^0)(\underline{x}-\underline{x}^0).$ Poichè ∇f è differenziabile in \underline{x}^0 , si ha che $\nabla \varphi(\underline{x})=o(||\underline{x}-\underline{x}^0||).$ Applichiamo il teorema del valor medio a $\varphi\colon\varphi(\underline{x})-\varphi(\underline{x}^0)=<\nabla \varphi(\underline{x}^0)=<o(||\underline{x}-\underline{x}^0||),\underline{x}-\underline{x}^0>$, per qualche $\vartheta\in]0,1[$ e quindi $|\varphi(\underline{x})|=|<\nabla \varphi(\underline{x}^0+\vartheta(\underline{x}-\underline{x}^0)),\underline{x}-\underline{x}^0>|\leq ||\nabla \varphi(\underline{x}^0+\vartheta(\underline{x}-\underline{x}^0))||\cdot||\underline{x}-\underline{x}^0||^2=\frac{x\to x^0}{<||o(||\underline{x}-\underline{x}^0||)|}$ $\frac{||o(||\vartheta(\underline{x}-\underline{x}^0)||)||\cdot||\underline{x}-\underline{x}^0||^2}{<||o(||\underline{x}-\underline{x}^0||^2)}$

Punti di minimo e massimo relativo

Sia $f: E(\subseteq \mathbb{R}^n) \to \mathbb{R}$, un punto $\underline{x}^0 \in E$. Si dice minimo (massimo) relativo per f se esiste un intorno U di \underline{x}^0 t.c. $f(\underline{x}) > f(\underline{x}^0)$, $\forall \underline{x} \in U \cap E$

Studio degli estremi liberi

Test del quoziente o tesi di Fermat (condizione necessaria per l'esistenza del punto di estremo)

Se $f:E(\subseteq\mathbb{R}^n) o\mathbb{R}$ è differenziabile in $\underline{x}^0\in intE$ e \underline{x}^0 è punto di estremo relativo per f allora $\nabla f(\underline{x}^0)=\underline{0}$.

Dimostrazione

Fissato un versore $\underline{u} \in \mathbb{R}^n$. Poichè $\underline{x}^0 \in intE$ esiste $\delta > 0$ t.c. $\underline{x} = \underline{x}^0 + t\underline{u} \in E$, $\forall |t| < \delta$. Poniamo $g(t) = f(\underline{x}^0 + t\underline{u})$, $\forall |t| < \delta$. Poichè f ha un punto di minimo in \underline{x}^0 , g ha un punto di minimo in $t = 0, 0 \in]-\delta, \delta[$ ed è derivabile in 0, essendo la composta di funzioni differenziabile e derivabile. Per il teorema di Fermat unidimensionale si ha $0 = g'(0) = <\nabla f(\underline{x}^0), \underline{u} > = \frac{\partial f}{\partial \underline{u}}(\underline{x}^0)$. In particolare risulta $\frac{\partial f}{\partial x_i}(\underline{x}^0) = 0$, per i = 1, ..., n, cioè $\nabla f(x^0) = 0$

Punti critici

Sia $f:E(\subseteq\mathbb{R}^n) o\mathbb{R}$ differenziabile in $\underline{x}^0\in intE$. Si dice che \underline{x}^0 è punto critico per f se $\nabla f(\underline{x}^0)=0$

Punto di sella

Un punto critico \underline{x}^0 per f si dice punto di sella per f se esistono due versori $\underline{u},\underline{v}\in\mathbb{R}^n$ linearmente indipendenti t.c. posto $g(t)=f(\underline{x}^0+t\underline{u})$ e $h(t)=f(\underline{x}^0+t\underline{v})$, $\forall |t|<\delta$, g ha un punto di minimo relativo per t=0 e h ha un punto di massimo relativo per t=0

Studio della natura dei punti critici

Segno di una forma quadratica (o di una matrice simmetrica)

Sia $Q(\underline{h}):\mathbb{R}^n \to \mathbb{R}$ una forma quadratica con $Q(\underline{h})=<\mathbb{A}\cdot\underline{h},\underline{h}>$ dove \mathbb{A} è una matrice simmetrica $N\times N$.

Si dice che:

- Q (o \mathbb{A}) è definita positiva se $Q(\underline{h})>0$, $orall \underline{h}
 eq \underline{0}$
- Q (o \mathbb{A}) è definita negativa se $Q(\underline{h}) < 0$, $orall \underline{h}
 eq \underline{0}$

ullet Q è indefinita nel segno se esistono $\underline{u},\underline{v}$ t.c. $Q(\underline{u})>0 \land Q(\underline{v})<0$

Criteri di definitezza

Sia $Q:\mathbb{R}^n o \mathbb{R}$ una forma quadratica, esiste $\mathbb{A}(n,n)$ simmetrica t.c. $Q(\underline{h}) = <\mathbb{A} \cdot \underline{h}, \underline{h}>$, $\forall \underline{h} \in \mathbb{R}^n$. \mathbb{A} ha n autovalori reali: $\lambda_1,...,\lambda_n$ e n autovettori $\underline{u}_1,...,\underline{u}_n$ t.c. $\mathbb{A} \cdot \underline{u}_i = \lambda_i \underline{u}_i$, per i=1,...,n e li scelgo in modo da avere: $<\underline{u}_i,\underline{u}_j>=\begin{pmatrix} 1 \text{ se } i=j \\ 0 \text{ se } i \neq j \end{pmatrix} = \delta_{ij}$, per i,j=1,...,n Rango di una matrice di autovettori: $\mathbb{U}=(u_1,...,u_n)$ e definisco la matrice diagonale $\lambda=\begin{pmatrix} \lambda_1 & \ldots & 0 \\ 0 & \ddots & \vdots \\ 0 & \ldots & \lambda_n \end{pmatrix}$. Si ha $\mathbb{U}^t \cdot \mathbb{U}=I_n$, ossia $\mathbb{U}^T=\mathbb{U}^{-1}$ e $\mathbb{U}^T\mathbb{A}\mathbb{U}=\lambda \Leftrightarrow \mathbb{A}\mathbb{U}=\mathbb{U}\lambda$, con λ_i radice di $\det(\mathbb{A}-t\mathbb{I}_n)$.

Proposizione

Q è definita positiva $\Leftrightarrow \lambda_1>0,...,\lambda_n>0$. Q è definita negativa $\Leftrightarrow \lambda_1<0,...,\lambda_n<0$. Q è invece indefinita nel segno \Leftrightarrow esistono i,j t.c. $\lambda_i<0<\lambda_j$

Dimostrazione

Prendo $\underline{h} \in \mathbb{R}^n$. Esiste uno ed un solo $\underline{k} \in \mathbb{R}^n$ t.c. $\underline{h} = \mathbb{U} \cdot \underline{k}$. Si ha $Q(\underline{h}) = <\mathbb{A} \cdot \underline{h}, \underline{h}> = <\mathbb{A} \cup \underline{k}, \mathbb{U} \underline{k}>$, per le proprietà delle forme quadratiche: $<\mathbb{A} \mathbb{U} \underline{k}, \mathbb{U} \underline{k}> = <\mathbb{U}^T \mathbb{A} \mathbb{U} \underline{k}, \underline{k}> = <\mathbb{U}^T \mathbb{A} \mathbb{U} \underline{k}, \underline{k}> = <\mathbb{U}^T \mathbb{A} \mathbb{U} \underline{k}$

$$=<\lambda \underline{k},\underline{k}>==\lambda_1k_1^2+...+\lambda_nk_n^2.$$
 Si deduce quindi

immediatamente il criterio enunciato.

Criterio di Sylvester

$$Q$$
 è definita positiva \Leftrightarrow dato $\mathbb{A}=egin{pmatrix} a_{11}&\ldots&a_{1n}\ dots&\ddots&dots\ a_{n1}&\ldots&a_{nn} \end{pmatrix}$, simmetrica, $A_1=a_{11}>0$, $A_2=det \begin{pmatrix} a_{11}&a_{12}\ a_{12}&a_{22} \end{pmatrix}>0,...,A_n=det \mathbb{A}>0$. Q è invece definita negativa $\Leftrightarrow A_1<0,A_2>0,...,(-1)^nA_n>0$

Lemma

Q è definita positiva $\Leftrightarrow \exists m>0$ t.c. $Q(\underline{h})\geq m||\underline{h}||^2$ per ogni $\underline{h}\in\mathbb{R}^n$. Q è definita negativa $\Leftrightarrow \exists M<0$ t.c. $Q(\underline{h})\leq M||\underline{h}||^2$, per ogni $\underline{h}\in\mathbb{R}^n$

Dimostrazione

Q è definita positiva $\Leftrightarrow \lambda_1>0,...,\lambda_n>0$. Pongo $m=min\{\lambda_1,...,\lambda_n\}>0$. Allora $orall \underline{h}\in\mathbb{R}^n$ esiste $\underline{k}\in\mathbb{R}^n$ t.c. $\underline{h}=\mathbb{U}\underline{k}$. Si ha $Q(\underline{h})=\lambda_1k_1^2+...+\lambda_nk_n^2\geq mk_1^2+...+mk_n^2=m||\underline{k}||^2=m||\mathbb{U}^T\underline{h}||^2=m||\underline{h}||^2$, essendo $\mathbb U$ ortogonale

Test Hessiana (condizione sufficiente per l'esistenza di un punto di estremo)

Teorema

Sia $f:E(\subseteq\mathbb{R}^n) o\mathbb{R}$ due volte differenziabile in $\underline{x}^0\in intE$ e sia \underline{x}^0 un punto criticodi f, ossia $\nabla f(\underline{x}^0)=\underline{0}$. Si ha:

 $f(\underline{x}^0) = f(\underline{x}^0) + <
abla f(\underline{x}^0), \underline{x} - \underline{x}^0 > + rac{1}{2} < Hf(\underline{x}^0)(\underline{x} - \underline{x}^0), \underline{x} - \underline{x}^0 > + o(||\underline{x} - \underline{x}^0|)$

- 1. Se $Hf(\underline{x}^0)$ è definita positiva, allora \underline{x}^0 è punto di minimo per f
- 2. Se $Hf(\underline{x}^0)$ è definita negativa, allora \underline{x}^0 è punto di massimo per f
- 3. Se $Hf(\underline{x}^0)$ è indefinita nel segno, allora \underline{x}^0 è punto di sella per f

Dimostrazione

$$\begin{split} &\underline{x}_0||^2). \text{ Il punto è critico } \Rightarrow \nabla f(\underline{x}^0) = \underline{0} \Rightarrow <\nabla f(\underline{x}^0), \underline{x} - \underline{x}^0 > = 0. \text{ Allora: } f(\underline{x}) - f(\underline{x}^0) = \frac{1}{2} < Hf(\underline{x}^0)(\underline{x} - \underline{x}^0), \underline{x} - \underline{x}^0 > + o(||\underline{x} - \underline{x}_0||^2). \text{ Nel primo caso } Hf(\underline{x}^0) \text{ è definita positiva e quindi } \exists m > 0 \text{ t.c.} < Hf(\underline{x}^0)\underline{h}, \underline{h} > \geq m||\underline{h}||^2, \ \forall \underline{h} \in \mathbb{R}^n. \text{ Allora risulta che la funzione } f(\underline{x}) - f(\underline{x}^0) = \frac{1}{2} < Hf(\underline{x}^0)(\underline{x} - \underline{x}^0), \underline{x} - \underline{x}^0 > + o(||\underline{x} - \underline{x}_0||^2) \geq \\ &\frac{m}{2}||\underline{x} - \underline{x}^0||^2 + o(||\underline{x} - \underline{x}^0||^2) = \left(\frac{m}{2} + \frac{o(||\underline{x} - \underline{x}^0||^2)}{||\underline{x} - \underline{x}^0||^2}\right)||\underline{x} - \underline{x}^0||^2. \text{ Poichè} \\ &\lim_{\underline{x} \to \underline{x}^0} \left(\frac{m}{2} + \frac{o(||\underline{x} - \underline{x}^0||^2)}{||\underline{x} - \underline{x}^0||^2}\right) = \frac{m}{2} > 0 \text{ e, per il teorema di permanenza del segno esiste un intorno } U \text{ di } \underline{x}^0 \text{ tale per cui } \frac{m}{2} + \frac{o(||\underline{x} - \underline{x}^0||^2)}{||\underline{x} - \underline{x}^0||^2} > 0, \ \forall \underline{x} \in U \cap E, \text{ con } \underline{x} \neq \underline{x}^0. \text{ Ne segue che } f(\underline{x}) - f\underline{x}^0) > 0, \ \forall \underline{x} \in U \cap E, \text{ con } \underline{x} \neq \underline{x}^0. \text{ ossia } \underline{x}^0 \text{ è punto di minimo relativo, la situazione è analoga per il secondo caso.} \\ &\text{Nel terzo caso: } Hf(\underline{x}^0) \text{ è indefinita nel segno, quindi } \exists \underline{u}, \underline{v} \in \mathbb{R}^n, \text{ versori, t.c.} < Hf(\underline{x}^0)\underline{u}, \underline{u} > < 0 < < Hf(\underline{x}^0)\underline{v}, \underline{v} >). \text{ Pongo } g(t) = f(\underline{x}^0 + t\underline{u}) \text{ e } h(t) = f(\underline{x}^0 + t\underline{v}). \\ &\text{Ossia: } \frac{1}{2} < Hf(\underline{x}^0)t\underline{u}, t\underline{u} > + o(||t\underline{x}^0||^2). \\ &\frac{1}{2} < Hf(\underline{x}^0)\underline{u}, \underline{u} > + o(||t\underline{x}^0||^2) = \frac{t^2}{2} < Hf(\underline{x}^0)\underline{u}, \underline{u} + o(t^2) = \left(\frac{1}{2} < Hf(\underline{x}^0)\underline{u}, \underline{u} > + \frac{o(t^2)}{t^2}\right)t^2. \end{aligned}$$

Ma allora: $\lim_{t \to 0} \left(\frac{1}{2} < Hf(\underline{x}^0)\underline{u}, \underline{u} > + \frac{o(t^2)}{t^2} \right) t^2 = \frac{1}{2} < Hf(\underline{x}^0)\underline{u}, \underline{u}) > < 0$. Allora per il teorema di permanenza del segno esiste $\delta > 0$ t.c. $\frac{1}{2} < Hf(\underline{x}^0)\underline{u}, \underline{u}) > + \frac{o(t^2)}{t^2} > 0$, per $0 < |t| < \delta$ e quindi g(t) - g(0) < 0, $\forall 0 < |t| < \delta$, ossia g ha un massimo in t = 0. Ugualmente si verificache h ha un minimo in t = 0, ossia \underline{x}^0 è un punto di sella.

Teorema

Sia $f:\mathbb{R}^n o\mathbb{R}$ continua e $\lim_{||\underline{x}^0 o+\infty||}f(\underline{x}^0)=+\infty$ allora esiste $\underset{\mathbb{R}^n}{min}f$, concetto simile alla coercività di \mathbb{R} . Analogmente se $\lim_{||\underline{x}^0 o+\infty||}f(\underline{x}^0)=+\infty$ allora esiste $\underset{\mathbb{R}^n}{max}f$, concetto simile all'anticoercività di \mathbb{R} .