Deteção Automática de Anomalias em Arquiteturas de Microsserviços

Valentim Romão, Rafael Soares, Vasco Manquinho, Luís Rodrigues

1. Motivação

2. Objetivo

- A migração de monólito para microsserviços pode introduzir anomalias;
- Estas anomalias são difíceis de detetar.

- Criar uma ferramenta capaz de detetar de forma automática estas anomalias;
- MAD: Microservices
 Anomaly Detector.

3. Implementação do MAD

- O MAD foi desenvolvido como uma extensão de uma ferramenta anterior, o CLOTHO;
- O MAD constrói grafos que capturam os padrões de acesso aos dados feitos pelos microsserviços;
- A existência de um ciclo no grafo sinaliza uma anomalia;
- O MAD introduz uma aresta, SOT (Same Original Transaction), para indicar que duas sub-transações pertencem à mesma funcionalidade, e considera o microsserviço em que cada operação irá ser executada.

Novo formato de ciclos no MAD

4. Resultados

 Os nossos resultados focam-se na comparação entre os resultados obtidos através de heurísticas como a descrita no trabalho "A Complexity Metric for Microservices Architecture Migration" (CMMAM) e os resultados obtidos pelo MAD.

	#Transações	#Tabelas	# Microsserviços	Ferramenta	Complexidade/	Tempo de
					$\# \mathbf{A} \mathbf{n} \mathbf{o} \mathbf{m} \mathbf{a} \mathbf{l} \mathbf{i} \mathbf{a} \mathbf{s}$	Execução [s]
TPC-C mono	5	9	1	CMMAM	0	$\simeq 0$
				MAD	0	33
TPC-C decomposição-1	22	9	9	CMMAM	36	$\simeq 0$
				MAD	68	13.241
TPC-C decomposição-2	12	9	3	CMMAM	20	$\simeq 0$
				MAD	25	2.094

Vantagens:

Desvantagens:

- O MAD é mais preciso, pois considera dependências entre escritas e as linhas das tabelas acedidas;
 - O MAD pode também ser utilizado para escolher a decomposição com menos anomalias.
- O MAD tem uma maior complexidade temporal.

5. Agradecimentos

• Este trabalho foi suportado pela FCT – Fundação para a Ciência e a Tecnologia, através dos projectos UIDB/50021/2020 e DACOMICO (financiado pelo OE com a ref. PTDC/CCI-COM/2156/2021).