PEA3399 – Conversão Eletromecânica de Energia Prof. Daniel Ribeiro

2ª Lista de Exercícios

- 7.3 Um motor CC de 75 kW e 250 V ligado em derivação tem uma resistência de armadura de 45 m Ω e uma resistência de campo de 185 Ω . Quando está operando em 250 V, a sua velocidade a vazio é 1850 rpm.
 - a. O motor está operando sob carga com uma tensão de terminal de 250 V e uma corrente de terminal de 290 A. Calcule (i) a velocidade do motor em rpm, (ii) a potência de carga em kW e (iii) o conjugado de carga em N·m.
 - b. Assumindo que o conjugado de carga permanece constante em função da velocidade, com o valor calculado na parte (a), calcule (i) a velocidade do motor e (ii) a corrente de terminal se a tensão de terminal for reduzida a 200 V.
 - c. Repita a parte (b) se o conjugado de carga da parte (a) variar com o quadrado da velocidade.

(livro do Fitzgerald)

Obs.: "derivação" se refere a uma excitação independente, porém com alimentação de armadura e campo em paralelo, através de 1 única fonte.

- 7.11 Um motor em derivação de 35 kW e 250 V tem uma reação de armadura de 0,13 Ω e uma resistência de campo de 117 Ω. A vazio e na tensão nominal, a velocidade é 1975 rpm e a corrente de armadura é 7,4 A. A plena carga com a tensão nominal, a corrente de armadura é 152 A. Devido à reação de armadura, o fluxo é 8% menos do que seu valor a vazio. Qual é a velocidade a plena carga? (livro do Fitzgerald)
- 7.13 Quando alimentado a partir de uma fonte CC de 300 V, um motor CC série opera a 1225 rpm com uma corrente de linha de 70 A. A resistência do circuito de armadura é 0,13 Ω e a resistência do campo em série é 0,09 Ω. Devido aos efeitos de saturação, o fluxo produzido por uma corrente de armadura de 25 A é de 54% do produzido por uma corrente de armadura de 70 A. Encontre a velocidade do motor quando a tensão de armadura é 300 V e a corrente de armadura é 25 A.

(livro do Fitzgerald)

4. Os dados nominais de um motor CC são $100~\mathrm{HP}$ / $240~\mathrm{V}$ / $900\text{-}1800~\mathrm{RPM}$. Suponha que o fabricante tenha fornecido algumas curvas de desempenho da máquina. A excitação é do tipo independente.

Obs.: as perdas em vazio do motor CC foram informadas com o valor de 2570 W.

Considerando apenas os dados nominais e as curvas, calcule para o motor CC:

- a. A indutância mútua entre armadura e campo, linearizando no ponto nominal
- b. A resistência de armadura equivalente do motor CC (armadura + interpolos + escovas)
- c. A corrente de campo para o gráfico 2
- d. A corrente nominal do motor CC
- e. A corrente de campo quando são demandados 17 HP no eixo em 1800 RPM, com tensão nominal (perceba que o ponto de magnetização mudou!)

Regulação da velocidade em função da carga no motor CC

- **5.11** Uma máquina síncrona trifásica de dois polos, 50 Hz, 825 kVA e 2300 V tem uma reatância síncrona de 7,47 Ω e atinge a tensão nominal de terminal a vazio com uma corrente de campo de 147 A.
 - a. Calcule a indutância mútua armadura-campo.
 - b. A máquina deve operar como motor alimentando uma carga de 700 kW na sua tensão nominal de terminal. Calcule a tensão interna $E_{\rm af}$ e a respectiva corrente de campo se o motor estiver operando com um fator de potência unitário.
- 6. Um grupo conversor de frequência rotativo é formado por um motor de corrente contínua e um gerador síncrono trifásico acoplados diretamente, conforme o esquema a seguir. Tal conjunto é utilizado para testar transformadores.

O fabricante do conversor forneceu curvas de testes em fábrica para cada uma das máquinas. Com relação ao gerador síncrono, seguem as curvas:

- 1. Vazio e curto-circuito do gerador síncrono a 900 RPM
- 2. Perdas em vazio e em curto-circuito do gerador síncrono a 900 RPM

Os dados nominais do gerador: 250 kVA / 550 V (Y) / 60-120 Hz

- a. Qual o número de polos do gerador?
- b. Calcule a reatância síncrona em pu
- c. No ponto nominal, quanto valem as perdas segregadas (atrito, núcleo, Joule+adicionais)?
- d. Com o conjunto operando em certa carga, ou seja, testando um transformador em curto-circuito a 60 Hz, sabe-se que o trafo demanda 200 kVA / fp 0,24 ind / 550 V. Para tal situação, calcule a corrente de excitação do gerador
- e. Ainda para a situação do item anterior, quanto valerão potência e torque no eixo? E o rendimento?

- 7. Uma máquina síncrona trifásica de 6,8 kVA, 240 V (Y), 240 Hz, 16 polos salientes, quando operando como gerador a vazio, absorve 1,4 A no campo para gerar tensão nominal nos terminais.
 - a. Qual rotação nominal da máquina em RPM?
 - b. Calcule a reatância síncrona de eixo direto em pu, sabendo que com a mesma excitação citada acima,
 13 A circularam na armadura no ensaio de curto-circuito como gerador
 - c. Assumindo uma reatância síncrona de eixo em quadratura igual a 2/3 da reatância de eixo direto, estime a corrente de campo para valores nominais de tensão e corrente de armadura com fp 0,92 indutivo nos quadrantes (i) gerador e (ii) motor
 - d. Na situação do item anterior, compare as potências de relutância para os dois quadrantes (despreze as perdas)
- 8. Considere o motor com os dados nominais abaixo:

Motor ty	ype:1	CV2287	7C	SIN	MOTICS DP	- 280 N	I - IM ВЗ - 6р					
Client order no. Order no.					Iter	Item-No. Consignment no.				Offer no.		
					Сог					Project		
Remarks					<u> </u>							
U	al data	f	P [kW]	I [A]	n [1/min]	M [Nm]	M _{Brake}	M _{max}	Nom. Eff. [%]	Only VPWM SINAM Power factor 4/4 load	ICS S120 Operating mode	IE-CL
	ΔΙ		P [kW]	I [A] 99.13	n [1/min] 988	M [Nm] 870	II	M _{max} [Nm] 2207.7	_	Power factor	Operating	IE-CL
U [V]	Δ / Υ	f [Hz]	[kW]		[1/min]	[Nm]	[Nm]	[Nm]	Nom. Eff. [%] 4/4 load	Power factor 4/4 load	Operating mode	IE-CL
[V]	Δ <i>I</i>	f [Hz] 50	[kW]	99.13	[1/min] 988	[Nm] 870	[Nm] 2870.0	[Nm]	Nom. Eff. [%] 4/4 load	Power factor 4/4 load 0.81	Operating mode S9	IE-CL
U [V] 690	Δ <i>I</i>	f [Hz] 50 50	[kW] 90.00 99.00	99.13 108.99	[1/min] 988 985	[Nm] 870 960	[Nm] 2870.0	[Nm]	Nom. Eff. [%] 4/4 load	Power factor 4/4 load 0.81	Operating mode S9 S3 – 60%	IE-CL

- a. Quantos polos tem o motor? Justifique.
- b. Quanto valem o escorregamento e o rendimento nominais para o regime de trabalho S3 40%?
- c. Sendo $R_1 = 0.24 \Omega/fase$, estime o valor das perdas no núcleo somadas às rotacionais
- d. Você conseguiria estimar as reatâncias de dispersão do estator e do rotor (referida)?
- 9. Um motor de indução trifásico, dados nominais 100 kW / 460 V (Y) / 60 Hz / 4 polos, é ensaiado a vazio e com rotor bloqueado. Os valores a seguir são de linha (tensões, correntes) e trifásicos (perdas):

Resistência ôhmica entre 2 terminais: 60,6 m Ω

- a. Calcule os parâmetros do circuito equivalente
- b. Estime o torque de partida
- c. Você conseguiria estimar o ponto nominal do motor (rotação, corrente, fator de potência, rendimento)?

Respostas:

 $7.3 \text{ a. (i) } 1754 \text{ RPM (ii) } 68,41 \text{ kW (iii) } 372,5 \text{ N.m} \quad \text{b. (i) } 1698 \text{ RPM (ii) } 361,6 \text{ A } (360,5+1,081) \quad \text{c. (i) } 1706 \text{ RPM (ii) } 342,2 \text{ A } (341,1+1,081)$

7.11 1984,8 RPM

7.13 2347 RPM

4. a. 0,392 H b. 33,5 m Ω c. 6,19 A d. 337,4 A e. 2,37 A

5.11 a. 0,0407 H (lig. Y) b. 1867 V/fase (3234 V/linha) - 206,7 Aexc

6. a. 8 polos b. 0.926 pu c. 1000 / 1500 / 7500 W (respectivamente) d. 82.0 A e. 55.3 kW / 586.8 N.m / 86.8%

7. a. 1800 RPM b. 1,258 pu c. (i) 2,64 A (ii) 1,77 A d. 1173 W (ger) e 1337 W (mot)

8. a. 6 polos b. 1,8% e 91,7% c. 4337 W d. 1,16 Ω/fase

9. a. $R_1 = 0{,}0303$ $R_2' \simeq 0{,}0659$ $X_1 \approx X_2' \simeq 0{,}177$ $X_m \simeq 7{,}586$ $R_c \simeq 176{,}6$ $[\Omega/{\rm fase}]$ b. 536,9 N.m c. 1734,9 RPM / 146,2 A / 0,917 ind / 93,6%