Problem compilation

 M^2

April 17, 2021

Contents

1	Topology	3
	1.1 Metric spaces	3
2	Algebra	5
	2.1 Linear algebra	5
	2.2 Group theory	6
3	Analysis	8
	3.1 Real analysis	8
4	Geometry	10
	4.1 Differential geometry of curves and surfaces	10

Topology

1.1 Metric spaces

Problem 1. Let $X = \{f : [a,b] \to \mathbb{R} | f \in C[a,b] \}$, and define $d : X \times X \to X$ by

$$d(f,g) = \int_a^b |f(t) - g(t)| dt.$$

for $f, g \in X$. Prove that (X, d) is a metric space.

Proof. It is certainly the case that

$$0 \le |f(t) - g(t)|,$$

and integrating both sides

$$0 \le \int_a^b |f(t) - g(t)| dt = d(f, g),$$

so positive definiteness holds.

Moreover, suppose d(f,g)=0, then $\int_a^b |f(t)-g(t)|dt=0$, so f(t)=g(t) on every subset with non-zero measure of [a,b]. However, suppose $\lambda\in[a,b]$ and $f(\lambda)\neq g(\lambda)$, then, there exists an open set $B(f(\lambda))$ such that, for any $x\in[a,b]$, $g(x)\notin B(f(\lambda))$, but this means that $f(t)\neq g(t)$ in some set of non-zero measure, which contradicts our initial assumption, hence f(t)=g(t) everywhere on [a,b]. Conversely, if f(t)=g(t), on [a,b], then |f(t)-g(t)|=0 and d(f,g)=0.

Finally, we know that $|a+b| \le |a| + |b|$, so letting a = g(t) - f(t), b = f(t) - h(t) and integrating, we show that the triangle inequality holds.

Consequently, (X, d) is a metric space.

Problem 2. Let $(X_i, d_i), (Y_i, d_i)$ and $f_i: X_i \to Y_i, (i = 1, 2, ..., n)$ be metric spaces and continuous functions.

Let $X = \prod_{i=1}^n X_i$ and $Y = \prod_{i=1}^n Y_i$ and convert X and Y into metric spaces in the standard manner. Define the function $F: X \to Y$ by

$$F(x_1, x_2, ..., x_n) = (f_1(x_1), f_2(x_2), ..., f_n(x_n)).$$

Prove that F is continuous.

Proof. Let $\varepsilon > 0$ be given. Since each function f_i is continuous, there must exists $\delta_i > 0$, such that, if $a_i, b_i \in X_i$, and

$$d_i(a_i, b_i) < \delta_i$$

then

$$d'_i(f_i(a_i), f_i(b_i)) < \varepsilon.$$

Let $\delta=\min_{1\leq i\leq n}\{\delta_1,...,\delta_n\}$, and suppose $a=(a_1,...,a_n),b=(b_1,...,b_n)\in X.$ If

$$d(a,b) = \max_{1 \le i \le n} \{d_i(a_i,b_i)\} < \delta,$$

then for each i = 1, ..., n, $d_i(a_i, b_i) < \delta$, which means $d'_i(f_i(a_i), f_i(b_i)) < \varepsilon$, and especially:

$$\max_{1 \le i \le n} \{ d_i'(f_i(a_i), f_i(b_i)) \} < \varepsilon.$$

Therefore:

$$d(F(a), F(b)) < \varepsilon$$
,

so F is a continuous function.

Algebra

2.1 Linear algebra

Problem 1. Find $p \in P_5(\mathbb{R})$ that makes:

$$\int_{-\pi}^{\pi} |\sin(x) - p(x)|^2 dx$$

as small as posible.

Proof. Define the inner product $\langle u, v \rangle$ by

$$\langle u, v \rangle = \int_{-\pi}^{\pi} (uv)(x) \, dx$$

Since $\{1, x, x^2, x^3, x^4\}$ is a basis of $P_5(\mathbb{R})$, applying Gram-Schmidt procedure using the inner product we just defined yields the orthonormal basis:

$$\left(\frac{1}{\sqrt{2\pi}}, \frac{\sqrt{\frac{3}{2}}x}{\pi^{3/2}}, \frac{3\sqrt{\frac{5}{2}}\left(x^2 - \frac{\pi^2}{3}\right)}{2\pi^{5/2}}, \frac{5\sqrt{\frac{7}{2}}\left(x^3 - \frac{3\pi^2x}{5}\right)}{2\pi^{7/2}}, \frac{105\left(x^4 - \frac{6}{7}\pi^2\left(x^2 - \frac{\pi^2}{3}\right) - \frac{\pi^4}{5}\right)}{8\sqrt{2}\pi^{9/2}}\right)$$

which we denote by $(e_1, e_2, e_3, e_4, e_5)$. Let v = sin(x), we want to find $u \in P_5(\mathbb{R})$ such that

$$||v - u||$$

is as small as posible.

To do this, we compute:

$$P_{P_5(\mathbb{R})}(v) = \sum_{i=1}^5 \langle v, e_i \rangle e_i = \left(\int_{-\pi}^{\pi} (\sin(x)e_i) dx \right) e_i.$$

Which equals

$$\frac{35\left(\pi^2 - 15\right)\left(x^3 - \frac{3\pi^2 x}{5}\right)}{2\pi^6} + \frac{3x}{\pi^2},$$

thus, for any $u \in P_5(\mathbb{R})$:

$$||v - P_{P_5(\mathbb{R})}(v)|| = \int_{-\pi}^{\pi} \left| sin(x) - \frac{35\left(\pi^2 - 15\right)\left(x^3 - \frac{3\pi^2 x}{5}\right)}{2\pi^6} + \frac{3x}{\pi^2} \right|^2 dx \le ||v - u||.$$

2.2 Group theory

Problem 1. If K is a field, denote the columns of the $n \times n$ identity matrix E by $\varepsilon_1, ..., \varepsilon_n$.

A permutation matrix P over K is a matrix obtained from E by permuting its columns; that is, the columns of P are $\varepsilon_{\alpha(1)}, ..., \varepsilon_{\alpha(n)}$ form some $\alpha \in S_n$.

Prove that the set of all permutation matrices over K is a group isomorphic to S_n . (The inverse of P under matrix multiplication is P^t).

Proof. Let $P_M(K)$ the set of all permutation matrices over K. It is clearly the case that $P_M(K) \subset GL_n(K)$, and $E \in P_M(K)$, since it can be obtained from itself permuting with the identity permutation $i \in S_n$.

Now suppose $A, B \in P_M(K)$, then AB is certainly $n \times n$ and

$$(AB)_{\bullet,k} = A(B)_{\bullet,k}$$

$$= A\varepsilon_{\alpha(s)}$$

$$= \sum_{i=1}^{n} (\varepsilon_{\alpha(s)})_{i,\bullet} \times A_{\bullet,i}$$

$$= (\varepsilon_{\alpha(s)})_{\alpha^{-1}(s),\bullet} \times A_{\bullet,\alpha^{-1}(s)}$$

$$= \varepsilon_{x},$$

for some $s, x \in \{1, 2, ...n\}$.

Then AB is indeed a permutation matrix and $AB \in P_M(K)$. Moreover, suppose $A \in P_M(K)$, then $A^t \in P_M(K)$ and $A \times A^t = E$, so $P_M(K)$ has the desired closure and we conclude

$$(P_M(K), \times)$$

is a group.

Moreover, define $\phi: S_n \to P_M(K)$ by

$$\phi(\alpha) = P_{\alpha}$$

where P_{α} is the permutation matrix with columns $\varepsilon_{\alpha}(1),...,\varepsilon_{\alpha}(n)$. Clearly ϕ is injective and suppose $X \in P_M(K)$, then $X_{\bullet,\lambda} = \varepsilon_k$ for some $k \in \{1,...,n\}$, but then $X = P_{\lambda}$, for $\lambda \in S_n$, thus, ϕ is surjective.

Finally:

$$\phi(\alpha \circ \beta) = P_{\alpha \circ \beta},$$

but

$$(P_{\alpha \circ \beta})_{\bullet,i} = \varepsilon_{\alpha \circ \beta(i)},$$

and

$$\begin{split} (P_{\alpha} \circ P_{\beta})_{\bullet,i} &= P_{\alpha} \circ (P_{\beta})_{\bullet,i} \\ &= P_{\alpha} \circ \varepsilon_{\beta(i)} \\ &= \sum_{j=1}^{n} (P_{\alpha})_{\bullet,j} \left(\varepsilon_{\beta(i)} \right)_{j,\bullet} \\ &= \sum_{j=1}^{n} \varepsilon_{\alpha(j)} \left(\varepsilon_{\beta(i)} \right)_{j,\bullet}, \end{split}$$

and $(\varepsilon_{\beta(i)})_{j,\bullet}$ equals 1 when $j=\beta(i),$ so this equals

$$\varepsilon_{\alpha}(\beta(i)) = \varepsilon_{\alpha \circ \beta(i)} = (P_{\alpha \circ \beta})_{\bullet, i}$$

therefore

$$\phi(\alpha \circ \beta) = P_{\alpha \circ \beta} = P_{\alpha} \circ P_{\beta} = \phi(\alpha) \circ \phi(\beta).$$

Then ϕ is an isomorphism and

$$S_n \cong P_M(K)$$

Analysis

3.1 Real analysis

Problem 1. Show that if $f \in R[a,b]$, then $|f|^p \in R[a,b]$, for $p \ge 0$.

Problem 2. Starting from Holder's inequality for sums, obtain Holder's inequality for integrals:

$$\left|\int_a^b (f*g)(x)dx\right| \leq \left(\int_a^b |f|^p(x)\right)^{\frac{1}{p}} * \left(\int_a^b |g|^q(x)dx\right)^{\frac{1}{q}},$$

 $if \ f,g \in R[a,b], p > 1, q > 1, \ and \ \tfrac{1}{p} + \tfrac{1}{q} = 1.$

Problem 3. Starting from Minkwoski's inequality for sums, obtain Minkowski's inequality for integrals:

$$\left(\int_{a}^{b} |f + g|^{p}(x) dx \right)^{\frac{1}{p}} \leq \left(\int_{a}^{b} |f|^{p}(x) dx \right)^{\frac{1}{p}} + \left(\int_{a}^{b} |g|^{p}(x) dx \right)^{\frac{1}{p}},$$

if $f, g \in R[a, b]$ and $p \ge 1$.

Proof. Let us begin with the inequality:

$$\left(\sum_{k=1}^{n} |a_k + b_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} |a_k|^p\right)^{1/p} + \left(\sum_{k=1}^{n} |b_k|^p\right)^{1/p}. \tag{3.1}$$

Let P be a partition of [a, b], with distinguished points λ_k , and intervals Δ_k , with length $\Delta X_k = x_k - x_{k-1}$. Let $a_k = f(\lambda_k)$, and $b_k = g(\lambda_k)$. We now have:

$$\left(\sum_{k=1}^{n} |f+g|^{p}(\lambda_{k})\right)^{\frac{1}{p}} \leq \left(\sum_{k=1}^{n} |f|^{p}(\lambda_{k})\right)^{1/p} + \left(\sum_{k=1}^{n} |g|^{p}(\lambda_{k})\right)^{1/p}$$

and multiplying both sides by $(\Delta X_k)^{\frac{1}{p}}$:

$$\left(\sum_{k=1}^{n}\left|f+g\right|^{p}(\lambda_{k})\Delta X_{k}\right)^{\frac{1}{p}} \leq \left(\sum_{k=1}^{n}\left|f\right|^{p}(\lambda_{k})\Delta X_{k}\right)^{1/p} + \left(\sum_{k=1}^{n}\left|g\right|^{p}(\lambda_{k})\Delta X_{k}\right)^{1/p}$$

Finally, since $f,g\in R[a,b]$, then $f+g\in R[a,b]$, moreover, by problem a) it follows that $|f|^p,|g|^p,|f+g|^p\in R[a,b]$, so taking the limit as $\lambda(P)\to 0$ yields:

$$\left(\int_{a}^{b} |f + g|^{p}(x) dx \right)^{\frac{1}{p}} \le \left(\int_{a}^{b} |f|^{p}(x) dx \right)^{\frac{1}{p}} + \left(\int_{a}^{b} |g|^{p}(x) dx \right)^{\frac{1}{p}}$$

Geometry

4.1 Differential geometry of curves and surfaces

Problem 1. A logarithmic spiral is a plane curve of the form

$$\gamma(t) = c \left(e^{\lambda t} \cos(t), e^{\lambda t} \sin(t) \right),\,$$

where $c, \lambda \in \mathbb{R}$ and $c \neq 0$. Suppose $\lambda < 0$, and γ is restricted to $[0, \infty)$. Show that under this conditions, λ has finite arc length.

Proof. First, we have that

$$\dot{\gamma}(t) = ce^{\lambda t} \left(\left[\cos(t) - \sin(t) \right], \left[\sin(t) + \cos(t) \right] \right)$$

and under the starndard euclidean norm

$$||\dot{\gamma(t)}|| = ce^{\lambda t} \sqrt{2},$$

so we must show that

$$\int_0^\infty ce^{\lambda t} \sqrt{2} dt,$$

converges. To do this, first notice that for x > 0

$$\int_0^x e^{\lambda t} \sqrt{2} dt = \frac{c\sqrt{2}}{\lambda} \left(e^{\lambda x} - 1 \right),$$

and since $\lambda < 0$,

$$\lim_{x \to \infty} e^{\lambda x} = 0,$$

therefore

$$\int_0^\infty c e^{\lambda t} \sqrt{2} dt = \lim_{x \to \infty} \frac{c\sqrt{2}}{\lambda} \left(e^{\lambda x} - 1 \right) = -\frac{c\sqrt{2}}{\lambda}.$$

So γ has finite arc length.