Přednáška #5: Vnořování a simulace propojovacích sítí

Vnořovací problém

Statický vnořovací problém: (embedding problem)

- // algoritmus = množina procesů posílajících si zprávy.
- Známe velikost a strukturu grafu procesů.
- Máme počítač s distribuovanou pamětí se známou topologií propojovací sítě (PS).
- Jak mapovat graf procesů na tento stroj, aby výpočet byl co nejefektivnější?

Dynamický vnořovací problém:

- // algoritmus = množina procesů posílajících si zprávy.
- Procesy dynamicky vznikají a zanikají, neznáme velikost ani strukturu grafu procesů, pouze máme nějaké částečné informace (např. max. # potomků jednoho rodiče).
- Máme počítač s distribuovanou pamětí se známou topologií PS.
- Jak distribuovat dynamicky vznikající procesy mezi procesory tak, aby výpočet byl co nejefektivnější?
- Alternativní přístupy: dynamické vyvažování zátěže nebo migrace procesů.

Základní definice a pojmy

Vnoření (embedding) $G \xrightarrow{\mathrm{emb}} H$

Vnoření zdrojového grafu G=(V(G),E(G)) do cílové sítě H=(V(H),E(H)) = dvojice zobrazení (φ,ξ) , kde

$$\varphi:V(G)\to V(H)$$
 a $\xi:E(G)\to \mathcal{P}(H)$

 $(\mathcal{P}(H) = \text{množina všech cest sítě } H.)$

Zatížení

(Zatížení cílových uzlů zdrojovými.)

- Zatížení cílového uzlu $v \in V(H)$: $load(v) = |\{u \in V(G); \varphi(u) = v\}|$.
- Zatížení vnoření (φ, ξ) : $load(\varphi, \xi) = \max_{v \in V(H)} load(v)$.
- lacksquare Průměrné zatížení vnoření (φ,ξ) : $\overline{\mathrm{load}}(\varphi,\xi) = \frac{1}{|V(H)|} \sum_{v \in V(H)} \mathrm{load}(v)$.
- Vnoření (φ, ξ) má stejnoměrné zatížení, pokud $load(\varphi, \xi) = \lceil \overline{load}(\varphi, \xi) \rceil$.

Expanze

(Poměr velikosti cílové sítě (= $\overline{\#}$ uzlů) a zdrojového grafu (= # procesů).)

$$\operatorname{vexp}(\varphi, \xi) = \frac{|V(H)|}{|V(G)|}.$$

Dilatace

(Protažení zdrojových hran v cílové síti.)

- Dilatace zdrojové hrany $e \in E(G)$: $dil(e) = len(\xi(e))$.
- Dilatace vnoření (φ, ξ) : $dil(\varphi, \xi) = \max_{e \in E(G)} dil(e)$.
- lacksquare Průměrná dilatace vnoření (φ,ξ) : $\overline{\mathrm{dil}}(\varphi,\xi)=rac{1}{|E(G)|}\sum_{e\in E(G)}\mathrm{dil}(e).$
- Vnoření (φ, ξ) má **stejnoměrnou dilataci**, pokud $\operatorname{dil}(\varphi, \xi) = \left\lceil \overline{\operatorname{dil}}(\varphi, \xi) \right\rceil$.
- **Výrok 1.** Pokud $G \xrightarrow{\mathrm{emb}} H$ má $\mathrm{dil} = \mathrm{load} = 1$, pak $G \subset H$. Pokud také $\mathrm{vexp} = 1$, pak $G = \mathbf{kostra}\ H$.
- Poznámka: Statická vnoření nemohou postihnout dynamické chování aplikace na cílové síti, např. velká dilatace nevadí, pokud je odpovídající cesta používána zřídka.

Linkové a uzlové zahlcení

(Komunikační zatížení cílových uzlů/linek.)

- Linkové zahlcení cílové linky $e_2 \in E(H)$: $ecng(e_2) = |\{e_1 \in E(G); e_2 \subseteq \xi(e_1)\}|$.
- Linkové zahlcení vnoření (φ, ξ) : $ecng(\varphi, \xi) = max_{e_2 \in E(H)} ecng(e_2)$. (maximální # obrazů zdrojových hran procházejících skrz cílové linky)
- Uzlové zahlcení cílového uzlu $u_2 \in V(H)$: $neng(u_2) = |\{e_1 \in E(G); u_2 \in \xi(e_1)\}|$.
- Podobně: $ncng(\varphi, \xi)$, $\overline{ecng}(\varphi, \xi)$, $\overline{ncng}(\varphi, \xi)$, a stejnoměrná zahlcení.

Quasiisometrické a výpočetně ekvivalentní sítě

- G a H jsou **quasiisometrické**, pokud existují vnoření $G \xrightarrow{\mathrm{emb}} H$ i $H \xrightarrow{\mathrm{emb}} G$ s konstantními hodnotami měřítek vnoření.
- H simuluje G se zpomalením h, jestliže jeden krok výpočtu na G může být simulován v O(h) krocích na H.
- \blacksquare G a H jsou **výpočetně ekvivalentní sítě**, pokud G dokáže simulovat H s konstantním zpomalením a naopak.
- **Výrok 2.** Quasiisometrické sítě \implies výpočetně ekvivalentní, ale ne naopak.

Spodní meze

Zatížení vs. expanze

Výrok 3.

$$load(\varphi, \xi) \ge max\left(1, \left\lceil \frac{1}{vexp(\varphi, \xi)} \right\rceil \right).$$

Průměrový argument

Věta 4. Jestliže |V(G)| = |V(H)| a $load(\varphi, \xi) = 1$, pak

$$\operatorname{dil}(\varphi,\xi) \ge \lceil \operatorname{diam}(H) / \operatorname{diam}(G) \rceil$$
.

Důkaz. Stejnoměrná dilatace cesty délky diam(G) mezi 2 uzly ve vzdál. diam(H).

Dilatace vs. zahlcení

Věta 5. *Jestliže* $k = \overline{\mathrm{dil}}(\varphi, \xi)$, pak

$$\operatorname{ecng}(\varphi, \xi) \ge \left\lceil \frac{k|E(G)|}{|E(H)|} \right\rceil.$$

Důkaz. Čítáním obrazů hran G v H za předpokladu stejnoměrného zahlcení hran.

Vnoření do hyperkrychle

Hyperkrychle simuluje optimálně téměř každou známou propojovací topologii.

Díky **symetrii** Q_n může být vnoření $G \xrightarrow{\mathrm{emb}} Q_n$ popsáno pomocí

- **značení uzlů**: ohodnocení uzlů ve V(G) n-bitovými binárními adresami, nebo
- **značení hran**: ohodnocení hran v E(G) čísly dimenzí $0, 1, \ldots, n-1$.

Definice 6. Q_n je optimální hyperkrychle pro $G \xrightarrow{\text{emb}} Q_n$ s load = 1 \iff $n = \lceil \log |V(G)| \rceil$.

- (a) Značení uzlů stromu (b) Značení hran při témž (c) Značení hran jiného vnořeného do Q_4 a dil = 1 a vnoření. load = 1.
- stromu vnořeného s load = 1 **a** dil = 2.

Vnoření cest a kružnic

Lemma 7. Nechť

- $\blacksquare u,v \in V(Q_n)$ v Hammingově vzdálenosti $\varrho(u,v)$,
- lacksquare $\delta(u,v)=$ množina dimenzí, v kterých se u a v liší,
- $\blacksquare P(u,v) = cesta \ d\'elky \ m \ v \ Q_n$,
- $lackbox{$\blacksquare$} \mathcal{P} = [p_0, p_1, \ldots, p_{n-1}] = n$ -tice popisující hranové značení P(u, v), kde $p_j = \#$ hran cesty P(u, v), které leží v dimenzi j.

Pak platí:

- $\blacksquare \ \Sigma_{j=0}^{n-1} p_j = m,$
- $\blacksquare |\delta(u,v)| = \varrho(u,v)$,
- každá dimenze z $\delta(u,v)$ se objeví v $\mathcal P$ lichý-počet krát a každá z $n-\varrho(u,v)$ zbývajících dimenzí se objeví v $\mathcal P$ sudý-počet krát,
- $\blacksquare m = \varrho(u, v) \pmod{2},$
- \blacksquare jestliže u=v, pak m je sudé (\Longrightarrow neexistují kružnice s lichou délkou),
- lacktriangleq jestliže P(u,v) je hamiltonovská cesta v Q_n , pak $\varrho(u,v)$ je lichá.

Důkaz a příklad

Důkaz. Plyne ze dvou elementárních faktů:

- 1. Přechod hyperkubické hrany = negace příslušného bitu.
- 2. Dvojitá negace je identita: $\overline{\overline{x_i}} = x_i$.

- $\blacksquare u = 0001$, $v = 0010 \implies \varrho(u, v) = 2$
- \bullet $\delta(u,v) = \{0,1\}$ a m=6
- $\blacksquare \mathcal{P} = \{1, 1, 2, 2\}$

Grayovo kódování

- Grayova posloupnost = uzlové značení cesty v Q_n .
- n-bitový Grayův kód = uzlové značení hamiltonovské cesty/kružnice v Q_n .
- ∃ mnoho různých Grayových kódů.
- \blacksquare Základní a nejpřirozenější je **Binární zrcadlový Grayův kód** (BRGC) G_n
 - 1. $G_1 = \{0, 1\}$,
 - 2. $G_n = \{0G_{n-1}, 1G_{n-1}^R\}$, kde
 - $0G_i$ ($1G_i$) = každý prvek G_i dostane 1-bitovou předponu 0 (1),
 - $G_i^R = \operatorname{zrcadlov\check{e}}$ otočená posloupnost G_i .

Věta 8. BRGC zakódování binárního čísla $b=b_{n-1}\dots b_0$ je $G_n(b)=g_{n-1}\dots g_0$, kde

- 1. $g_{n-1} = b_{n-1}$,
- 2. $g_i = b_{i+1} XOR b_i$ pro i = n 2, ..., 0.

Statická vnoření stromů

Úplné binární stromy (CBT)

- $CBT_n \not\subset Q_{n+1}$, i když $|V(CBT_n)| < |V(Q_{n+1})|$ (nepoměr v počtu černých a bílých uzlů ve 2-barvení).
- $CBT_n \subset Q_{n+2}$ (obecný důkaz je netriviální) malý příklad je na obr. (a).
- $CBT_n \rightarrow Q_{n+1}$ s dil = 1 a load = 2 malý příklad je na obr. (b). Pak

$$2^{n-2} + 2^{n-4} + \cdots$$
 uzlů hyperkrychle bude mít $load = 2$ a $2^{n-1} - 2^{n-3} + \cdots$ uzlů hyperkrychle bude mít $load = 0$.

 $\blacksquare CBT_n \xrightarrow{\text{emb}} Q_{n+1} \text{ s dil} = 2 \text{ a load} = 1 \text{ a ecng} = 2$:

Inorder číslování počínaje číslem 1 indukuje takové vnoření.

(a) Indukční základ.

(b) Indukční krok.

■ Nejlepší a krásně rekurzivní vnoření $CBT_n \xrightarrow{\text{emb}} Q_{n+1}$ s dil = 2 a load = ecng = 1. **Trik:** přeměň CBT_n na **vyvážený** bipartitní graf $drCBT_n$ s 2^{n+1} uzly

zdvojením kořenu.

Potom

 $drCBT_n$ je faktorem Q_{n+1} .

- klad.
- (a) Indukční zá- (b) Indukční hypotéza v Q_n^0 a auto- (c) Indukční krok. morfismus v opačné Q_n^1 .

- (a) $T_0 \xrightarrow{\mathrm{emb}} Q_3^0$. (b) $T_1 \equiv T_0 \xrightarrow{\mathrm{emb}} Q_3^1$. (c) Indukční krok.

Dynamické vnoření stromu (pravděpodobnostní algoritmus)

- 1. Kořen stromu je umístěn do libovolného uzlu hyperkrychle.
- 2. Každý uzel x vnořeného stromu
 - \blacksquare zná **dimenzi** hyperkrychle $n \ge 1$,
 - \blacksquare zná svou hyperkubickou **adresu** $\varphi(x)$,
 - \blacksquare zná číslo své **hladiny** l(x) ve stromu,
 - lacktriangle vypočte si **číslo cesty** $t(x) = l(x) \pmod n$, reprezentované jako n-bitové slovo s jedinou 1 na pozici t(x),
 - \blacksquare má **náhodný generátor** svého **flip bitu** $\mathrm{fb}(x)$.
- 3. Jestliže listový proces x stromu vnořený do $\varphi(x)$ **porodí jednoho nebo 2 syny**, vygeneruje $\mathrm{fb}(x)$ a provede následující kroky:

if (fb(x) = 0) then umísti levého syna (pokud existuje) do svého uzlu $\varphi(x)$; umísti pravého syna (pokud existuje) do uzlu $\varphi(x) \operatorname{XOR} t(x)$; else umísti levého syna (pokud existuje) do uzlu $\varphi(x) \operatorname{XOR} t(x)$; umísti pravého syna (pokud existuje) do svého uzlu $\varphi(x)$.

Věta 9. Pro strom s M uzly a pro hyperkrychli s N uzly, tento algoritmus dává dil = 1 a load = O(M/N + log N) s vysokou pravděpodobností.

Binární n-úrovňový výpočet Rozděl&Panuj (D&C)

Jednovlnový *n*-úrovňový **D&C** výpočet:

- 1. Kořen rozdělí problém do dvou polovin, které předá svým dvěma potomkům.
- 2. Potomci provedou rekurzivně totéž.
- 3. Na úrovni n jsou podproblémy vyřešeny listovými procesy.
- 4. Výsledky jsou rekurzivně předány zpět kořenu.
- 5. Nová vlna může začít, až se předchozí vlna vrátí do kořene.

Vícevlnový *n*-úrovňový **D&C** výpočet:

■ Jednotlivé vlny, popsané výše, procházejí stromem po úrovních za sebou.

D&C na hyperkrychli

Vícevlnový D&C:

Standardní vnoření CBT_n do Q_{n+1} s load = 1 a dil = 2 je optimální.

Jednovlnový D&C:

Standardní vnoření CBT_n do Q_{n+1} s load = 1 plýtvá 50% uzlů.

Optimální implementace jednovlnového D&C výpočtu na Q_n

Založeno na binomiální kostře hyperkrychle.

- 1. Kořen rozdělí problém (vstupní data) do dvou polovin.
- 2. Předá polovinu svému sousedu v dimenzi 0 a nechá si druhou polovinu.
- 3. Oba tyto uzly jsou aktivní a udělají totéž s použitím dimenze 1.
- 4. To se opakuje pro dimenze $2, \ldots, n$.
- 5. **Všechny** uzly Q_n se stanou listy CBT_n a spočítají listové podproblémy.
- 6. Výsledky jsou sbírány v opačném pořadí zpět do kořenu.

Implementace 3-úrovňového jednovlnového D&C výpočtu na Q_3 .

Vnoření mřížek a toroidů

Věta 10. Nechť k > 1 a z_1, \ldots, z_k , $z_i \ge 2$, jsou přirozená čísla. Nechť $n_i = \lceil \log z_i \rceil$ pro všechny i a $n = n_1 + n_2 + \cdots + n_k$. Pak

- $\blacksquare M(z_1, z_2, \ldots, z_k) \subseteq Q_n.$
- $K(z_1, z_2, \dots, z_k) \subseteq Q_n$, jsou-li všechny z_i sudé.
- $\blacksquare K(z_1, z_2, \dots, z_k) \xrightarrow{\text{emb}} Q_n \text{ s load} = 1 \text{ a dil} = 2, \text{ je-li některé } z_i \text{ liché.}$
- $\blacksquare Q_n$ je **optimální** hyperkrychle pro všechna tato vnoření, pokud

$$\lceil \log z_1 \rceil + \cdots + \lceil \log z_k \rceil = \lceil \log(z_1 \dots z_k) \rceil.$$

Důkaz.

- 1. Vnoř každou 1-D $M(z_i)$ nebo $K(z_i)$ do Q_{n_i} pomocí Grayova kódování G_{n_i} .
- 2. Aplikuj na tato dílčí vnoření kartézský součin.

Nechť $[x_1, ..., x_k] \in V(M(z_1, z_2, ..., z_k))$, kde $0 \le x_i \le z_i - 1$. Pak

$$\varphi([x_1,\ldots,x_k]) = G_{n_1}(\sin_{n_1}(x_1)) \circ G_{n_2}(\sin_{n_2}(x_2)) \circ \ldots \circ G_{n_k}(\sin_{n_k}(x_k)),$$

kde $\sin_m(x) = m$ -bitová reprezentace čísla $x < 2^m$ a $\circ =$ zřetězení.

Ostatní případy vnoření mřížek

■ Jestliže $\lceil \log z_1 \rceil + \cdots + \lceil \log z_k \rceil > \lceil \log(z_1 \dots z_k) \rceil$, pak tato

metoda "kartézské dekompozice" dává $M \xrightarrow{\text{emb}} Q_n$ s vexp > 2 (není optimální).

- Optimální expanze, dil = 1 a $load \ge 2$: velká hyperkrychle se zmačkne do menší.
- Optimální expanze, load = 1 a dil > 1: velmi **sofistikované metody** (zde pouze konstatujeme výsledky).
 - Jakákoli **2-D mřížka** M(a,b) taková, že $\lceil \log a \rceil + \lceil \log b \rceil > \lceil \log(ab) \rceil$, může být vnořena do své optimální $Q_{\lceil \log(ab) \rceil}$ s $\log d = 1$ a $\dim eng = n = 2$.

Vnoření M(5,5) do Q_5 s load = 1 a dil = 2.

• Podobně: nejlepší algoritmus pro **3-D mřížky** dává vnoření s dil = 5.

Vnoření hyperkubických sítí

Věta 11. Nechť $n \geq 2$.

- 1. Optimální hyperkrychle pro vnoření CCC_n nebo wBF_n s load = 1 je $Q_{n+\lceil log n \rceil}$. Podobně, $Q_{n+\lceil log (n+1) \rceil}$ je optimální pro oBF_n .
- 2. Je-li n sudé, pak $CCC_n \subset Q_{n+\lceil \log n \rceil}$.
- 3. Je-li n liché, pak $CCC_n \xrightarrow{\text{emb}} Q_{n+\lceil \log n \rceil}$ s dil = 2 a load = 1.
- 4. $wBF_n \xrightarrow{\text{emb}} Q_{n+\lceil \log n \rceil} s \text{ dil} = O(1) a \text{ ecng} = O(1).$
- 5. $oBF_n \subset Q_{n+\lceil \log(n+1) \rceil}$.

Důkaz. (Opět metodou kartézské dekompozice.)

ad (1):
$$|V(CCC_n)| = |V(wBF_n)| = n2^n$$
 a $|V(oBF_n)| = (n+1)2^n$.

ad (2):
$$CCC_n \subset Q_n \times K(n) \subset Q_n \times Q_{\lceil \log n \rceil} = Q_{n+\lceil \log n \rceil}$$
.

ad (3): Je-li
$$n$$
 liché, pak $K(n) \xrightarrow{\text{emb}} Q_{\lceil \log n \rceil}$ s $\text{dil} = 2$.

ad (4): Plyne z Věty 22.

ad (5): Jak oBF_n tak $Q_{n+\lceil \log(n+1) \rceil}$ jsou rekurzivní.

(a) $oBF_2 \subset Q_4$. (b) $oBF_3 \subset Q_5$: příklad indukčního kroku.

Vnoření ostatních grafů

lacktriangle Je-li dán graf G a celá čísla k a n, pak problém existence vnoření G do Q_n s dilatací k je

NP-úplný.

Vnoření do mřížek a toroidů

- Velmi důležité v praxi, např. návrhování VLSI obvodů.
- Je-li dán graf G, celá čísla k a n, problém existence vnoření G do n-rozměrné mřížky s $dil \leq k$ je **NP-úplný**.

Toto platí dokonce pro k=1, n=2 a G= binární strom.

Vnoření mezi stejnými mřížkami a toroidy

Věta 12. *Mřížky a toroidy jsou* quaziizometrické \implies výpočetně ekvivalentní!!! **Důkaz.** Nechť $M=M(z_1,\ldots,z_n)$ a $K=K(z_1,\ldots,z_n)$.

- 1. $M \subset K \implies K$ simuluje M bez zpomalení.
- 2. Existuje $K \xrightarrow{\text{emb}} M$ s load = 1 a dil = ecng = 2: opět metoda kartézské dekompozice.
 - (a) Dekomponuj $M = M(z_1) \times \ldots \times M(z_n)$ a $K = K(z_1) \times \ldots \times K(z_n)$.
 - (b) Vnoř každý $K(z_i) \xrightarrow{\text{emb}} M(z_i)$ s load = 1 a dil = ecng = 2, viz. obr. (a).
 - (c) Použij kartézský součin, viz. obr. (b).

Hamiltonské cesty/cykly

- Jakýkoli $K(z_1,\ldots,z_n)$ má hamiltonovskou kružnici (viz obr. (a)).
- lacksquare Jakákoli $M(z_1,\ldots,z_n)$ má hamiltonovskou cestu.
- $M(z_1, ..., z_n)$ má hamiltonovskou kružnici \iff nejméně jedno z_i je sudé (viz obr. (b)).

Fraktálovité (rekurzivní) hamiltonské cesty v $M(2^k,2^k)$

Vnoření hyperkrychlí do mřížek/toroidů

Důsledek 13. (věty 4) Spodní mez na dilataci vnoření $Q_{2k} \xrightarrow{\mathrm{emb}} M(2^k, 2^k)$ s load = 1 je $2^{k+1}/(2k) = 2^k/k.$

Peanova křivka: spojuje uzly v lexikographickém pořadí při dělení střídavě podle osy x a y.

- (a) Indukční krok. (b) φ vnoření $Q_4 \xrightarrow{\mathrm{emb}} M(4,4)$. (c) ξ vnoření $Q_4 \xrightarrow{\mathrm{emb}} M(4,4)$.
- Manhattanská vzdálenost 2 uzlů lišících se v bitu i, $0 \le i \le n-1$, je

$$d(u, u \operatorname{XOR} 2^i) = 2^{\left\lfloor \frac{i}{2} \right\rfloor}.$$

dilatace vnoření $Q_{2k} \xrightarrow{\text{emb}} M(2^k, 2^k)$ je $2^{\left\lfloor \frac{2k-1}{2} \right\rfloor} = 2^{k-1}$.

Vnoření toroidů do toroidů

- Obtížný a otevřený problém pro obecné vícerozměrné kvádrové a krychlové toroidy.
- Řešení 1 speciálního případu:

Věta 14. Pro $z_1 \neq z_2$, \exists optimální vnoření $K(z_1, z_2) \xrightarrow{\text{emb}} K(z_1 z_2)$ s load = 1, $\text{dil} = \text{ecng} = \min(z_1, z_2)$.

Důkaz. Lexikografické mapování uzlů **po řádcích** $K(z_1, z_2)$, jestliže $z_1 \ge z_2$, **po sloupcích** v opačném případě.

Vnoření $K(3,4) \xrightarrow{\mathrm{emb}} K(12)$ s $\mathrm{dil} = 3 = \min(3,4)$, horizontální hrany K(3,4) mají $\mathrm{dil} = 3$, vertikální obalující hrany mají $\mathrm{dil} = 2$.

lacksquare Poznámka: Je-li $z_1 \geq z_2$, pak spodní mez na dilataci $K(z_1,z_2) \stackrel{
m emb}{\longrightarrow} K(z_1z_2)$ je

$$\frac{z_2}{2} \le \frac{\operatorname{diam}(K(z_1 z_2))}{\operatorname{diam}(K(z_1, z_2))} \doteq \frac{z_1 z_2}{z_1 + z_2} \le z_2.$$

Vnoření čtvercových mřížek do obdelníkových mřížek

Věta 15. Ne $\overline{cht'} z_1 > z_2$ a $w = \sqrt{z_1 z_2}$. Pak S = M(w,w) lze vno \overline{t} do $R = M(z_1,z_2)$ s $\operatorname{dil} = \left\lceil \sqrt{z_1/z_2} \right\rceil$, $\operatorname{load} = 2$ a $\operatorname{eeng} = 1 + \left\lceil \sqrt{z_1/z_2} \right\rceil$.

Důkaz.

- (a) Vlož zrcadlo doprostřed R.
- (b) Použij stejné hady, ale zdvojuj je.
- (c) Použij stejné hady, ale částečně je překrývej.
- (d) Použij užší hady (= hady s load=2)

Vnoření obdelníkových mřížek do čtvercových mřížek

Věta 16. *Nechť* $z_1 > z_2$ a $w = \sqrt{z_1 z_2}$. *Pak*

 $R = M(z_1, z_2)$ může být vnořena do S = M(w, w) s dil = 1 a load = eeng = 2.

Řešení s lepší expanzí

Expanzi lze zlepšit (přiblížit ke spodní mezi 1/2) přehýbáním **rovných** částí vnořovaného hada.

Vnoření mezi 2-D obdélníkovými mřížkami

- **Věta 17.** Uvažujme M(a,b) a M(a',b') takové, že $a' < a \le b$ a b' je minimální celé číslo, pro které platí $a'b' \ge ab$. Pak
- 1. spodní meze na dilataci a hranové zahlcení jsou 2,
- 2. jestliže $a/a' \leq 2$, pak \exists vnoření $M(a,b) \xrightarrow{\mathrm{emb}} M(a',b')$ s $\mathrm{dil} \leq 2$,
- 3. jestliže $a/a' \leq 3$, pak \exists vnoření $M(a,b) \xrightarrow{\mathrm{emb}} M(a',b')$ s $\mathrm{dil} \leq 3$.

$$M(2,9) \xrightarrow{\text{emb}} M(3,6) \text{ s dil} = 2 \text{ a ecng} = 3.$$

Implementace jednovlnového D&C výpočtu na 2-D mřížce

Důsledek 18. (věty 4) Spodní mez na dilataci vnoření $CBT_n \xrightarrow{\text{emb}} M(2^{\left\lfloor \frac{n+1}{2} \right\rfloor}, 2^{\left\lceil \frac{n+1}{2} \right\rceil})$ s load = 1 je $(2^{\left\lfloor \frac{n+1}{2} \right\rfloor} + 2^{\left\lceil \frac{n+1}{2} \right\rceil} - 2)/(2n)$.

Věta 19. Jednovlnový n-úrovňový D&C výpočet lze simulovat na $M(2^{\left\lfloor \frac{n}{2} \right\rfloor}, 2^{\left\lceil \frac{n}{2} \right\rceil})$ tak, že každý uzel mřížky simuluje 1 list stromu a dilatace vnoření je $d_n = 1$ pro $n \leq 4$ a

$$d_n = 2(2^k + 2^{k-2} + 2^{k-4} + \dots + 2^{k \mod 2}) + 1$$
, $kde \quad k = \left\lfloor \frac{n-5}{2} \right\rfloor$ pro $n \ge 5$.

Implementace vícevlnového D&C výpočtu na 2-D čtvercové mřížce

Věta 20. CBT_{2m} může být vnořený do $M(2^m, 2^m)$ s obousměrnými linkami tak, že

- load = 2: každý uzel mřížky je zatížen
 - přesně jedním listem stromu a
 - (kromě jednoho) přesně jedním vnitřním uzlem stromu,
- různé hrany stromu jsou mapované na disjunktní cesty v mřížce,
- $dil = 2^m + O(m)$.

Vnoření lineárního pole/kružnice do jakékoli sítě

Věta 21. N-uzlová kružnice C může být vnořena do jakékoli N-uzlové sítě G s load = 1, $dil \leq 3$ a eeng = 2.

Důkaz.

- 1. Zkonstruuj kostru T_G grafu G.
- 2. Rozděl její uzly na uzly sudé úrovně (V_0) a liché úrovně (V_1) .
- 3. Procházej T_G do hloubky zleva doprava (DFS) a umísťuj postupně uzly C do T_G
 - \blacksquare momentálně navštívený uzel je ve V_1 a je to první návštěva tohoto uzlu,
 - lacktriangle momentálně navštívený uzel je ve V_0 a je to poslední návštěva tohoto uzlu.

Vnoření do hyperkubických topologií

Věta 22. CCC a oba typy motýlků jsou výpočetně ekvivalentní. **Důkaz.**

(1) CCC_n je faktorem wBF_n .

 $\varphi : V(CCC_n) \to V(wBF_n)$ definovaný jako $\varphi((i,x)) = (i \oplus_n \operatorname{parity}(x), x)$, kde $\operatorname{parity}(x) = 1$, jestliže x má lichou paritu, a $\operatorname{parity}(x) = 0$ jinak.

 CCC_3 je faktorem wBF_3 .

(2) wBF_n může být vnořen do CCC_n s dil = ecng = 2.

identické mapování uzlů: každý elementární 2×2 motýlek $\stackrel{\text{emb}}{\longrightarrow}$ 3-hranovou cestu v CCC.

(3) oBF_n může být vnořen do wBF_n s load = 2 a dil = 1. sloučením koncových uzlů řad oBF_n dostaneme kružnice ve wBF_n .

(4) wBF_n může být vnořen do oBF_n s $dil \leq 3$.

Zobecnitelný komentář k předchozímu příkladu:

- (a) Cesta z uzlu u = (0, 1111) do v = (0, 0000) ve wBF_4 , bity se invertují v pořadí 0, 1, 2, 3.
- (b) Cesta z uzlu u=(0,1111) do v=(0,0000) v oBF_4 , bity se invertují v pořadí 0,1,2,3, dilatace je $n=\log N$ (!!!!).
- (c) Cesta z uzlu u=(0,1111) do v=(0,0000) v oBF_4 , bity se invertují v pořadí 1,3,2,0, dilatace je 3. Definujme permutaci bitů $\pi:\{0,1,2,3\} \rightarrow \{1,3,2,0\}$.
- (d) Permutace kružnic v wBF_4 indukovaná π^{-1} , čili kružnice k se přemístí na pozici kružnice $\pi^{-1}(k)$. V závorkách jsou původní čísla řádků a dimenzí.
- (e) Vnoření takto permutované wBF_4 do oBF_4 , čili grafu (d) do grafu (c).

Ekvivalence delta MIN sítí

Opakování z minulé přednášky:

Lemma 23. Delta sítě stejného typu a počtu a velikosti stupňů jsou izomorfní. **Důkaz.** Všechny tyto sítě se liší pouze v pořadí, v jakém jsou bity adresy vystavovány inverzi, každý bit právě jednou. Ale i stejného pořadí lze dosáhnout různými způsoby.

Příklad 24. Izomorfismus MIN sítí motýlek (a) a Omega (b).

Důsledek 25. Stačí se zabývat vlastnostmi sítě motýlek.

Normální hyperkubické algoritmy

Definice 26. Hyperkubický algoritmus v Q_n je normální, jestliže

- 1. v jakémkoli kroku algoritmu jsou použity pouze hrany jedné dimenze hyperkrychle
- 2. a jestliže v po sobě jdoucích krocích jsou používány po sobě jdoucí dimenze.

Třída normálních hyperkubických algoritmů zahrnuje mnoho důležitých algoritmů, např., **D&C**!!!, maticové výpočty, třídění, kolektivní komunikační algoritmy.

Věta 27.

- N-uzlová řídká hyperkubická síť může provést N-uzlový normální hyperkubický algoritmus s pouze konstantním zpomalením (technický důkaz).
- N-uzlový motýlek může simulovat **jakoukoli** N-uzlovou síť s **omezeným** stupěm se zpomalením $O(\log N)$ za předpokladu že je povoleno určité předzpracování (bude dokázáno v přednášce o permutacích).

