

제26장. 원자와 물질의 구조 -양자론

제26장. 원자와 물질의 구조 - 양자론

들어서며

- **및 고전 물리학** : 19세기 말까지의 물리학
 - 🏿 뉴턴의 역학
 - ◉ 전자기학
 - ➡ 설명할 수 없는 새로운 현상의 등장으로 한계
- 學 특수 상대성 이론
 - 물체의 속력이 빛의 속력에 가까와질 때 나타나는 새로운 현상을 설명 (27 장)
- 🦞 양자 물리학
 - ◉ 원자 정도의 극미 세계에서 나타나는 현상을 설명
- 🍳 원자 구조
 - 물질파와 수소 원자 내부에서 전자의 상태 → 양자 역학
- 🥯 여러 전자를 갖는 원자에서의 전자 배열과 주기율표

1. 흑체 복사

흑체복사 (blackbody radiation)

열 복사선 : 물체에서 방출되는 전자기파의 일종으로 물체의 온도에 의존

▲ 그림 26.1 | 흑체의 모형

(Wien's displacement law)

복사량이 최대가 되는 파장 λ_{max} $\lambda_{\text{max}}T = 2.898 \times 10^{-3} \, \text{m} \cdot \text{K}$

▲ 그림 26.2 │ 세 가지 다른 온도의 흑체에 서 나오는 복사도

예제 26.1 적외선 체온계

사람의 체온은 섭씨 36.5도이다. 복사도 최댓값을 이루는 파장을 구하여라.

풀이]

● 빈의 변위 법칙 (Wien displacement law)

$$\lambda_{\text{max}} = \frac{3 \times 10^{-3} \text{ m} \cdot \text{K}}{T}$$

체온의 절대온도를 대입

$$\lambda_{\text{max}} = \frac{3 \times 10^{-3} \text{ m} \cdot \text{K}}{306.5 \text{ K}} = 0.979 \times 10^{-5} \text{ m}$$

- •약 10 µm의 적외선 영역의 빛이 가장 많이 방출
- 최근 체온계는 모두 적외선 측정 장비를 이용
- 밤에 사람을 볼 수 있는 망원경도 적외선 망원경을 사용하는 이유

1. 흑체 복사

- 스테판-볼쯔만의 법칙 (Stefan-Boltzmann's law)
 - ullet 총 복사량은 온도에만 의존 $R = \sigma T^4 \quad \sigma = 스테판-볼쯔만 상수$
- 🍳 흑체에서 나오는 복사도
 - 나오는 빛의 파장에 따른 복사량은 고전 물리로 설명이 안됨

플랑크(Planck)의 가정

역 복사되는 빛이 갖는 에너지의 양자화를 가정

$$E = nhv$$
, $h = 6.626 \times 10^{-34} \,\text{J} \cdot \text{s}$ (플랑크 상수)

n =정수, v =진동자의 진동수

플랑크의 복사 공식 : 플랑크의 가정으로부터

$$R_{\lambda} = \frac{2\pi c^2 h}{\lambda^5} \frac{1}{e^{hc/\lambda K_B T} - 1}$$

▲ 그림 26.3 │ 흑체 복사 분포에 대한 고전이론 (레일리-진스 이론)과 플랑크 이론

2. 광전 효과

- 🥯 광전 효과 (photoelectric effect)
 - 빛을 금속 표면에 비추면 표면에서 전자가 튀어 나와 전류가 흐르는 현상

▲ 그림 26.4 │ 광전 효과를 보이는 실험장치

- 광전문턱 진동수 : 이 진동수보다 작은 진동수의 빛은 빛의 세기와 관계없이 전류가 흐르지 않음
- 저지전압: 빛의 진동수가 일정한 경우, 전류를 영으로 만드는 전압

2. 광전 효과

🍳 빛의 진동수와 저지전압의 관계

▲ 그림 26.5 │ 광전 효과에 의한 광전자 전류와 전압과의 관계.

▲ 그림 26.6 │ Cs 표면에 대한 저지전압과 빛의 진동수.

🥯 아인슈타인의 광자 이론

- <mark>광자 (photon)</mark> : 빛 에너지 덩어리
- 빛의 세기는 광자 수에 의존하고, 광자 한 개의 에너지는 빛의 세기에는 무관한 진동수의 함수
- $h\nu = \Phi(일함수) + K(운동에너지)$

예제 26.2 광전효과

아연(zinc)과 카드뮴(cadmium)의 광전 효과의 일함수는 각각 W_{Zn} = 4.33 eV와 W_{Cd} = 4.22 eV이다. 동일한 자외선 빛(λ = 0.275 μ m)을 두 금속 표면에 쬘 때 방출되는 광전자의 운동에너지를 구하여라.

풀이]

● 자외선 빛의 에너지를 eV으로 표현

$$h\nu = (6.626 \times 10^{-34} \text{ J} \cdot \text{s}) \frac{3 \times 10^8 \text{ m/s}}{0.275 \times 10^{-6} \text{ m}} = 7.228 \times 10^{-19} \text{ J}$$
$$= (7.228 \times 10^{-19} \text{ J}) \frac{1 \text{ eV}}{1.6 \times 10^{-19} \text{ J}} = 4.52 \text{ eV}$$

광전자의 운동에너지[식 (26.3)]

아연:
$$K_{Zn} = h \nu - \Phi = 4.52 \text{ eV} - 4.33 \text{ eV} = 0.19 \text{ eV}$$

카드뮴 :
$$K_{Cd} = h \nu - \Phi = 4.52 \text{ eV} - 4.22 \text{ eV} = 0.30 \text{ eV}$$

3. 콤프턴 (Compton) 산란

목표턴(A.H. Compton)이 수행한 빛과 자유전자의 산란실험 (1923년)

- 빛의 에너지 = hc/λ(광자 → 입자성)
- 빛의 산란각 φ 가 증가함에 따라 산란빛의 파장(λ ' > λ)이 길어짐
- → 입자로서의 에너지 감소 (입자성)!

전자

그림 26.7 X-선 분광기를 이용한 콤프턴 산란 실험장치

3. 콤프턴 (Compton) 산란

\P 콤프턴 이동 $(\lambda'-\lambda)$

- 빛의 에너지 $=\frac{hc}{\lambda}$, 빛의 운동량 $=\frac{h}{\lambda}$
- 전자의 상대론적 에너지= $\frac{m_0 c^2}{\sqrt{1-(v/c)^2}}$, 운동량= $\frac{m_0 v}{\sqrt{1-(v/c)^2}}$

🥞 콤프턴 산란에서 상대론적 보존 법칙의 적용

• 에너지 보존
$$\frac{hc}{\lambda} + m_0 c^2 = \frac{hc}{\lambda'} + \frac{m_0 c^2}{\sqrt{1 - (v/c)^2}}$$

운동량 보존
$$\frac{h}{\lambda} = \frac{h}{\lambda'}\cos\varphi + \frac{m_0 v}{\sqrt{1 - (v/c)^2}}\cos\theta$$

$$0 = \frac{h}{\lambda'}\sin\varphi - \frac{m_0 v}{\sqrt{1 - (v/c)^2}}\sin\theta$$

• 산란된 빛의 파장과 산란각 φ 의 관계 (실제 관측가능)

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{m_0 c} (1 - \cos \varphi)$$
 (컴프턴 파장 이동)

예제 26.3 콤프턴 산란

탄소 시료로부터 산란되는 X-선(λ = 22 pm)을 입사 방향으로부터 85°되는 방향에서 측정하였다. 콤프턴 이동을 구하여라.

풀이]

◉ 콤프턴 이동

$$\Delta \lambda = \frac{h}{m_0 c} (1 - \cos \phi) = \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{(9.11 \times 10^{-31} \text{ kg})(3 \times 10^8 \text{ m/s})} (1 - \cos 85^\circ)$$
$$= 0.221 \times 10^{-11} \text{ m}$$
$$= 2.21 \text{ pm}$$

산란된 x선 파장

$$\Delta \lambda = \lambda' - \lambda = 2.21 \,\mathrm{pm}$$

 $\lambda' = 24.21 \,\mathrm{pm}$

4. 물질파

- **및의 파동-입자 이중성 (상보성 원리)**
 - ◉ 빛이 가지는 파동과 입자의 양면성
 - 어떤 경우에는 파동처럼 (전자기파동),어떤 경우에는 입자처럼 (광전효과, 컴프턴 산란) 행동
- 드 브로이 (L. de Broglie)의 물질파 (드 브로이 파)
 - 물질도 입자-파동의 양면성 주장
 - \bullet 에너지E와 운동량 p를 갖는 물체의 물질파 진동수와 파장

$$v = \frac{E}{h} \implies \lambda = \frac{h}{p}$$

미국의 데이비슨 (C.J. Davison)과 거머(L.H. Germer),

 영국의 톰슨 (G.P. Thomson) 이 물질파를 실험적으로 검증

4. 물질파

🊇 톰슨의 실험

● 얇은 알루미늄 박막에 전자와 엑스선을 각각 투사하여 산란시키는 실험

▲ 그림 26. 10 | (a) 같은 파장의 전자와 엑스선이 알루미늄 박막에 충돌하는 톰슨의 실험장치, (b) 엑스선에 의한 회절 실험 결과, (c) 전자에 의한 회절 실험 결과

예제 26.4 물질파의 파장

어떤 방사선 동위원소의 붕괴과정에서 에너지가 1.35 MeV인 감마선이 방출되었다. 이 감마선 광자의 파장은 얼마인가?

풀이]

• 파장
$$\lambda = \frac{c}{\nu} = \frac{hc}{h\nu} = \frac{hc}{E}$$

$$hc = (6.626 \times 10^{-34} \text{ J} \cdot \text{s})(3 \times 10^8 \text{ m/s}) = 1.988 \times 10^{-25} \text{ J} \cdot \text{m}$$

$$= 1.9878 \times 10^{-25} \text{ J} \cdot \text{m} \frac{1 \text{ eV}}{1.6 \times 10^{-19} \text{ J}} = 1.24 \times 10^{-6} \text{ eV} \cdot \text{m}$$

$$E = 1.35 \text{ MeV}$$

$$\lambda = \frac{1.24 \times 10^{-6} \text{ eV} \cdot \text{m}}{1.35 \times 10^6 \text{ J}} = 0.90 \times 10^{-12} \text{ m}$$

$$= 0.90 \text{ pm}$$

5. 보어의 수소원자 모형

🌳 수소 원자에서 나오는 빛은 불연속적인 스펙트럼

● 고전 전자기학을 이용한 전자의 원운동에 의한 복사로 설명 불가능

▲ 그림 26.11 | 수소원자의 빛띠

보어(N. Bohr)의 가정

● 원운동하는 전자의 각운동량의 양자화 가정

$$L = pr = n \frac{h}{2\pi} \qquad n = 1, 2, 3, \dots$$

→ 결과적으로 원주가 전자 물질파 파장의 정수배

$$n\lambda = 2\pi r$$

5. 보어의 수소원자 모형

🍳 보어의 원자 모형

- ◉ 전자의 궤도 반지름
 - 전자의 정전기력 = 구심력

$$\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2} = m \frac{v^2}{r} = \frac{(mvr)^2}{mr^3} = \frac{L^2}{mr^3} = \frac{1}{mr^3} \frac{n^2 h^2}{4\pi^2}$$
$$r = \frac{h^2 \varepsilon_0}{\pi m e^2} n^2 = (0.53 \times 10^{-10} \,\text{m}) \times n^2$$

◉ 전자의 에너지

$$K = \frac{1}{2}mv^{2} = \frac{e^{2}}{8\pi\varepsilon_{0}r}, \qquad U = -\frac{e^{2}}{4\pi\varepsilon_{0}r}$$

$$E_{n} = K + U = -\frac{e^{2}}{8\pi\varepsilon_{0}r} = -\frac{me^{4}}{8\varepsilon_{0}^{2}h^{2}} \frac{1}{n^{2}} = \frac{-13.6 \text{ eV}}{n^{2}}$$

$$= \frac{-4.0}{-5.0}$$

$$= -5.0$$

$$= -6.0$$

$$= -6.0$$

$$= -7.0$$

$$= -7.0$$

$$= -7.0$$

$$= -7.0$$

$$= -7.0$$

$$= -7.0$$

$$= -7.0$$

$$= -9.0$$

ullet 전자가 n 에서 m 으로 이동할 때 방출하는 빛

$$hv = E_n - E_m$$

= -13.6 eV $\left(\frac{1}{n^2} - \frac{1}{m^2}\right)$

그림 26.13 보어의 수소원자 모형으로 해석하는 수소원자에서의 빛때

예제 26.5 수소원자의 스펙트럼

라이만계열의 방출되는 광자의 에너지 중 가장 작은 에너지의 파장을 구하여라.

풀이]

🏿 라이만 계열

⇒ n=2 이상의 높은 에너지를 가진 전자들이 n=1로 떨어질 때 방출되는 광자

● 가장 적은 에너지의 광자를 방출 : n=2인 상태에서 n=1 상태로 전이

$$h\nu = (-13.6 \text{ eV}) \left(\frac{1}{2^2} - \frac{1}{1^2}\right) = 10.2 \text{ eV}$$

$$\lambda = \frac{hc}{hv} = \frac{1.24 \times 10^{-6} \text{ eV} \cdot \text{m}}{10.2 \text{ eV}} = 0.12 \,\mu\text{m}$$

6. 물질파동과 확률

🌳 드브로이 물질파의 실체

- ullet 물질파동을 기술하는 파동함수 $\Psi(m{r},t)$
- 파동함수는 슈뢰딩거 방정식을 만족
- $|\Psi(\mathbf{r},t)|^2$: 시각 t, 위치 \mathbf{r} 에서 입자를 발견할 확률분포함수 → 불확정성 원리와 부합

🥯 수소 원자에서 전자의 파동함수

수소 원자에 대해 슈뢰딩거 방정식을 풀어서 전자의 파동함수를 구할 수 있다

6. 물질파동과 확률

🊇 물리량의 양자화

② 고전적인 파동에서 양 끝이 고정된 길이 L 인 줄에서 가능한 파장은 $\lambda = 2 L / n \ (n = 1, 2, 3,)$

- ▲ 그림 26.15 │ 길이 L인 줄에 형성될 수 있는 몇몇 기본 정상파
- 물질 파동의 파장도 띄엄띄엄한 값 (양자수: quantum number)을 갖는다
 - → 에너지 또한 양자화된다

n=3

7. 불확정성의 원리

- ♠ 하이젠베르크 (W. Heisenberg, 1927년)
 - 무한한 정밀도로 입자의 위치와 속력을 동시에 측정하는 것은 근본적으로 불가능하다.
- 파장이 λ 인 빛으로 입자를 측정하는 경우
 - ullet 입자의 위치의 오차 $\Delta x pprox \lambda$
 - ullet 광자와 충돌한 입자의 운동량의 변화량 $\Delta ppprox \mathbf{h} \,/\, \lambda$
 - ullet 따라서 위치와 운동량의 오차의 곱 $\Delta x \Delta p pprox {
 m h}$

$$\Delta x \Delta p \ge \frac{h}{4\pi}, \qquad \Delta E \Delta t \ge \frac{h}{4\pi}$$

절대온도 0도에서 정지된 상태로 보는 물체도 정지하지 않고 진동운동(영점운동)을 한다. ⇒ 불확정성의 결과

예제 26.6 전자 위치에 대한 불확정성

전자의 속력을 측정한 결과, 1.5%의 측정 오차 안에서 속력이 2.05 × 10⁶ m/s라면, 동시에 측정할 수 있는 전자의 위치에 대한 오차 범위를 구하여라.

풀이]

◉ 전자의 운동량

$$p = mv = (9.11 \times 10^{-31} \text{ kg})(2.05 \times 10^6 \text{ m/s}) = 1.87 \times 10^{-24} \text{ kg} \cdot \text{m/s}$$

운동량의 오차

- 속력의 오차에 비례

$$\Delta p = (1.87 \times 10^{-24} \text{ kg} \cdot \text{m/s}) \times 0.015 = 2.80 \times 10^{-26} \text{ kg} \cdot \text{m/s}$$

위치에 대한 오차

$$\Delta x = \frac{h}{4\pi} \frac{1}{\Delta p} = \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{(4\pi)(2.80 \times 10^{-26} \text{ kg} \cdot \text{m/s})} = 0.188 \times 10^{-8} \text{ m}$$
$$= 1.88 \text{ nm}$$

수소 원자

에너지 값은 주양자수 n 에만 의존

$$E_n = -\frac{13.6 \text{eV}}{n^2}$$
 $n = 1, 2, 3, \dots$

❷ 궤도양자수 ℓ : 전자 각운동량의 양자화

$$L = \sqrt{l(l+1)} \, \hbar$$
 $l = 0, 1, 2, \dots, n-1$

 \P 자기양자수 m_l : 각운동량 한 성분의 양자화

$$L_z = m_l \hbar$$
 $m_l = -l, -l+1, \dots, -1, 0, 1, \dots, l-1, l$

 $^{\textcircled{q}}$ 스핀양자수 m_s : 전자의 두 가지 스핀 상태

$$m_{s} = \pm 1/2$$

수소 원자의 자기쌍극자 모멘트

- (예) 궤도 양자수 l=2 인 경우
 - 각운동량의 크기 $L = \sqrt{2 \cdot 3} \hbar = \sqrt{6} \hbar$
 - 가능한 자기 양자수 $m_1 = -2, -1, 0, 1, 2$
- 🎱 자기 쌍극자 모멘트

$$\mu = -\frac{e}{2m}L$$

 $^{igstyle 2}$ 자기마당 (z 방향) 안에서 위치 에너지

$$E = -\boldsymbol{\mu} \cdot \boldsymbol{B} = -\mu_z B = \frac{e}{2m} L_z B = m_l \frac{e\hbar}{2m} B$$

수소 원자의 파동함수

$^{igstyle 2}$ 주양자수 n 에 대해서 가능한 전자의 상태수

- 궤도양자수 *l* 은 0, 1, ..., (*n* -1) 로 *n* 가지가 가능
- ullet 주어진 $m{l}$ 에 대해 자기양자수 m_s 는 (2 $m{l}$ +1) 가지 가능
- 따라서 가능한 상태의 수는 $\sum_{l=0}^{n-1} (2l+1) = n^2$
- 각 상태의 수에 전자의 스핀양자수를 고려하면, $2n^2$ 가지 가능

여러 전자를 갖는 원자

- 두 개 이상의 전자는 전자끼리의 상호 작용때문에 슈뢰딩거 방정식을 정확히 풀기 어렵다.
 - 각 전자의 양자 상태는 수소 원자에서 도입한 4가지 양자수 (주양자수, 궤도양자수, 자기양자수, 스핀)로 기술
 - ullet 에너지는 주양자수 n 뿐만 아니라 궤도 양자수 $m{l}$ 에도 의존
- 입절: 주양자수 n으로 나타내는 궤도부껍질: 궤도 양자수 l로 나타내는 준위

$$l = 0, 1, 2, 3, 4, 5.....$$

 s, p, d, f, g, h

- 여러 전자의 경우 수소 원자와는 달리 에너지 준위가 주양자 수의 순서를 따르지 않는다
 - (예) 4s 준위가 3p 준위보다 에너지가 낮다

예제 26.7 수소 원자의 에너지 상태

수소원자의 주양자수가 2인 상태의 가능한 에너지 상태들을 모두 기술하여라.

풀이]

- 주양자수가 2이면, 궤도 양자수는 0과 1이 가능
- 궤도 양자수가 0인 경우, 자기양자수는 0만 가능하나, 궤도 양자수가 1인 경우, 자기 양자수는 -1, 0, 1의 3 경우가 가능
- 각 자기 양자수마다 2 개의 스핀 양자수가 가능
- 가능한 양자상태 수 : 2× 2×2=8가지

9*. 배타원리와 주기율표

배타원리 (파울리, 1928년)

• 두 개의 전자는 같은 양자수 조합 (n, l, m_l, m_s) 를 가질 수 없다. 즉, 두 개의 전자는 같은 양자 상태에 있을 수 없다.

🍳 전자배열

- 바닥상태 : 원자의 에너지가 가장 낮은 상태
- 배타원리에 의해 원자의 바닥상태에서 전자는 가장 낮은 에너지 준위부 터 채워 나간다.

(예) Li (전자수 3)
$$1s^2 2s^1$$

O (전자수 8) $1s^2 2s^2 2p^4$
Al (전자수 13) $1s^2 2s^2 2p^6 3s^2 3p^1$

9*. 배타원리와 주기율표

주기율표 (멘델레프, 1869년)

- 양성자수에 따라 원소들을 배열
- ◎ 주기: 가로줄
- 각 주기의 원소 수는 부껍질에 들어갈 수 있는 전자수와 관계

s, p, d, f 부껍질: 각각 2, 6, 10, 14 개의 최대 전자

첫 번째 주기: 2개의 원소

2, 3 주기: 각 8 개의 원소

4, 5 주기: 각 18개의 원소

- 족 : 세로줄. 최외각 전자 배열이 같아서 화학적 성질이 비슷
- 전이 원소 : 마지막 전자가 d 부껍질을 차지