

AZ4558

General Description

The AZ4558 consists of two high performance operational amplifiers. The IC features high gain, high input resistance, excellent channel separation, wide range of operating voltage and internal frequency compensation. It is specifically suitable for applications in differential-in, differential-out as well as in potential-metric amplifiers and where gain and phase matched channels are mandatory. The AZ4558 contains \pm 18Vmaximum power supply voltage.

The AZ4558 is available in DIP-8 or SOIC-8 package.

Figure 1. Package Types of AZ4558

Features

- Internal frequency compensation
- Large DC voltage gain with 100 dB typical
- High input resistance with $5M\Omega$ typical
- Low input noise voltage with $10 \text{nV} / \sqrt{HZ}$
- Maximum power supply voltages: ± 18V
- Compatible with NJM 4558

Applications

- Audio AC-3 decoded system
- Audio amplifier

Pin Configuration

Figure 2. Pin Configuration of AZ4558

Functional Block Diagram

Figure 3. Representative Schematic Diagram of AZ4558 (Each amplifier)

Advanced Analog Circuits Data Sheet

AZ4558

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type	
SOIC-8	-40 to 85°C	AZ4558M	4558M	Tube/Tape/Reel	
DIP-8	-40 10 03 C	AZ4558P	AZ4558P	Tube	

Absolute Maximum Ratings (Note 1)

DUAL OPERATIONAL AMPLIFIERS

Parameter	Symbol	Value		Unit	
Dowar Supply Voltage	V _{CC}	+ 18		V	
Power Supply Voltage	V _{EE}	- 18			
Differential Input Voltage	V _{ID}	± 30		V	
Input Voltage	V _{IC}	± 15		V	
D. Dissipation	D.	DIP	500	mW	
Power Dissipation	P_{D}	SOIC	800	111 VV	
Operating Temperature Range	T _{OP}	-40 to 85		°C	
Storage Temperature Range	T _{STG}	-40 to 125		°C	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Min	Max	Unit	
Supply Voltage	± 4	± 18	V	

Advanced Analog Circuits Data Sheet

AZ4558

Electrical Characteristics

DUAL OPERATIONAL AMPLIFIERS

Operating Conditions: V_{CC} = +15V, V_{EE} = -15V, T_A = 25°C unless otherwise specified.

Parameter		Conditions	Min	Тур	Max	Unit	
Input Offset Voltage			ı	0.5	6	mV	
Input Bias Current		$V_{CM} = 0V$	-	25	250	nA	
Input Offset Current		$V_{CM} = 0V$	-	2.5	100	nA	
Input Resistance			0.3	5	-	МΩ	
Supply Current		$R_L = \infty$, Over full temperature range	-	3.3	5.7	mA	
Large Signal Voltage G	ain	$R_L \ge 2K$, $V_O = 1V$ to $11V$	85	100	-	dB	
Common Mode Rejecti	on Ratio	$V_{CM} = 0V$ to $V_{CC} - 15V$	80	92	-	dB	
Power Supply Rejection	1 Ratio	V_{CC} =5V to 18V V_{EE} = -5V to -18V	80	95	-	dB	
Output Current	Source	V+=1V, V-=0V	-	50	-	mA	
	Sink	V+=0V, V-=1V	-	50	-	mA	
Output Voltage Swing		$R_L \ge 2K\Omega$	±10	±13	-	V	
		$R_L \ge 10 K\Omega$	±12	±14	-		
Slew Rate			-	1.3	-	V / µS	
Equivalent Input Noise Voltage		Rs=50Ω, f=1KHz	-	10	-	nV/(HZ) ^{0.5}	
Gain Bandwidth Produc	et		-	3.4	-	MHz	

Typical Performance Characteristics

Figure 4. Open Loop Voltage Gain vs. Frequency

Figure 5. Maximum Output Voltage Swing vs. Frequency

Figure 6. Maximum Output Voltage Swing vs. Load Resistance

Figure 7. Equivalent Input Noise Voltage vs. Frequency

Typical Performance Characteristics (Continued)

Figure 8. Input Offset Voltage vs. Temperature

Figure 9. Input Bias Current vs. Temperature

Typical Application

Figure 10. Typical Application of AZ4558

AZ4558

Mechanical Dimensions

DIP - 8 Unit: mm

AZ4558

Mechanical Dimensions (Continued)

SOIC - 8 Unit: mm

http://www.aacmicro.com

USA: 860 Hillview Court, Suite 160, Milpitas, CA 95035, USA Tel: 408-586 8809, Fax: 408-586 8801

China: 8th Floor, Zone B, 900 Yi Shan Road, Shanghai 200233, China Tel: 86-21-6495 9539, Fax: 86-21-6485 9673

Taiwan: Room 2210, 22nd Fl, 333, Keelung Road, Sec. 1, TaiPei 110, Taiwan Tel: 886-2-2758 6828, Fax: 886-2-2758 6892

IMPORTANT NOTICE

Advanced Analog Circuits Corporation reserves the right to make changes without further notice to any products or specifications herein. Advanced Analog Circuits does not assume any responsibility for use of any its products for any particular purpose, nor does Advanced Analog Circuits assume any liability arising out of the application or use of any its products or circuits. Advanced Analog Circuits Corporation does not convey any license under its patent rights or other rights nor the rights of others.