BSM 公式

杨弘毅

创建: 2020 年 4 月 19 日 修改: 2021 年 9 月 12 日

目录

1	布朗运动、维纳过程	2
	1.1 特征	2
	1.2 为何使用标准布朗运动	2
	1.3 部分证明	2
	1.4 几种随机过程	3
2	伊藤引理(Itô lemma)	3
3	几何布朗运动	5
4	百分比收益率与对数收益率 百分比收益率与对数收益率	5
	4.1 比例收益率与对数收益率	6
5	对数正态分布	6
	5.1 PDF 与 CDF	7
	5.2 对数正态分布: 具体推导	8
	5.2.1 期望推导	8
	5.2.2 方差推导	8
6	BSM 偏微分方程(PDE)	9
	6.1 假设	9
	6.2 推导	9
7	BSM 公式(鞅方法)	10
8	·····································	11
	8.1 波动率分类与计算	12
	8.1.1 历史波动率(Historical volatility)	12
	8.1.2 已实现波动率(Readlized volatility)	12
	8.1.3 随机波动率(Sochastic volatility)	12
	8.1.4 GARCH 波动率	12
	8.1.5 隐含波动率(Implied volatility)	12
	8.1.6 无模型波动率(Model-free volatility)	12
	8.2 典型实证现象	12

		波动率聚类		
	8.2.2	肥尾现象	12	
	8.2.3	不对称性	13	
9	Delta 对冲		13	
10	10 内在价值(考虑中国市场的新定义)			
11	平价期权		15	
12	注意与备注 12.1 做空限	制	15 15	
	,,,,,			

1 布朗运动、维纳过程

标准布朗运动简易表达式有:

$$dZ_t = \varepsilon_t \sqrt{dt}$$

其离散形式的表达式有:

$$Z_T - Z_t = \sum_{i=1}^n \varepsilon_i \sqrt{\Delta t}$$

1.1 特征

标准布朗运动(Brownian motion)或维纳过程(Wiener process)的特征有:

- 初值为零
- 连续
- 独立增量: 对于任意两个不同时间点 Δt_i 与 Δt_i ,其增量 ΔZ_i 与 ΔZ_i 相互独立
- 独立同分布 (方差可加): 增量 ΔZ 服从均值为零、方差等于时间长度的正态分布, 即 $\Delta Z_i \sim N(0,\Delta t_i)$

1.2 为何使用标准布朗运动

- 股价不能为负,所以不能遵循正态分布,但股票连续复利收益率($d \ln S_t$)近似服从正态分布
- 维纳过程是一个马尔可夫随机过程,增量 ΔZ 独立,与弱式 EMH 相同,即技术分析无效,无法使用历史信息预测未来,过去信息跟未来信息相互独立
- 维纳过程对时间处处不可导,且二次变分(Quadratic Variation)不为零,与股票价格变化存在转折尖点的性质相符

1.3 部分证明

增量均值为零,方差为时间长度,当X与Y独立时,则有:

$$Var(XY) = Var(X) Var(Y) + [E(X)]^2 Var(Y) + [E(Y)]^2 Var(X)$$

此时,由于 ε_t 与 dt独立,套用上式,同时由于 $\varepsilon_t \sim N(0,1)$,则有:

$$E(dZ_t) = E(\varepsilon_t \sqrt{dt}) = 0$$

$$Var(dZ_t) = Var(\varepsilon_t \sqrt{dt})$$

$$= Var(\varepsilon_t) Var(\sqrt{dt}) + [E(\varepsilon_t)]^2 Var(\sqrt{dt}) + [E(\sqrt{dt})]^2 Var(\varepsilon_t)$$

$$= Var(\varepsilon_t) \left[Var[(\sqrt{dt})^2] - [E(\sqrt{dt})]^2 \right]$$

$$= Var(\varepsilon_t) \left[E[(\sqrt{dt})^2] - [E(\sqrt{dt})]^2 + [E(\sqrt{dt})]^2 \right]$$

$$= 1 \cdot E(dt) = dt$$

方差可加性,由下式可见,由于独立增量,导致协方差项为零,使得方差可加。

$$Var(X_1 + X_2 + X_3)$$
= $Var(X_1) + Var(X_2) + Var(X_3)$
+ $Cov(X_1, X_2) + Cov(X_2, X_3) + Cov(X_1, X_3)$

由上可知,增量在连续形式 dZ_t 以及离散形式 $Z_T - Z_t$ 下,均服从均值为零,方差为时间长度的正态分布,即有:

$$dZ_t \sim N(0, dt)$$

$$Z_T - Z_t \sim N(0, T - t)$$

1.4 几种随机过程

广义维纳过程(generalized Wiener process),a 与 b 为常数。此时,易知其均值为 $E(dX_t) = adt$,由于 b 为常数,且 $Var(dZ_t) = dt$,则有方差为 $Var(dX_t) = b^2dt$ 。

$$dX_t = adt + bdZ_t$$

普通布朗运动, $\mathbf{a}(t)$ 与 $\mathbf{b}(t)$ 都是 t 的确定性函数。由于都为确定函数,所以如上可知,其均值方差为 $\mathbf{E}(dX_t)=a(t)dt$,由于 b 为常数,且 $\mathrm{Var}(dZ_t)=dt$,则有方差为 $\mathrm{Var}(dX_t)=b(t)^2dt$ 。

$$dX_t = a(t)dt + b(t)dZ_t$$

扩散过程(Diffusion Process),此时 a(X(t),t) 与 b(X(t),t) 都为 X_t 和 t 的确定性函数。由于漂移项与方差项都包含 X(t),使得扩散之后过程的条件分布无法保证仍是正态分布。但更能刻画一般动态变化,未加入新的风险源,仍具有独立增量,马尔可夫性,和方差可加性等性质。

$$dX_t = a(X(t), t)dt + b(X(t), t)dZ_t$$

伊藤过程 (Itô Process),最一般化的随机过程, a_t 和 b_t 为任意函数或随机过程。

$$dX_t = a_t dt + b_t dZ_t$$

2 伊藤引理(Itô lemma)

若变量 X_t 遵循伊藤过程:

$$dX_t = a_t dt + b_t dW_t$$

在导数 $\frac{\partial f}{\partial t}$ 、 $\frac{\partial f}{\partial X}$ 与 $\frac{\partial^2 f}{\partial X^2}$ 存在的前提下,则有变量 X_t 和 t 的函数 f(X(t),t) 将遵循如下过程:

$$df_t = \left(\frac{\partial f}{\partial X}a_t + \frac{\partial f}{\partial t} + \frac{1}{2}\frac{\partial^2 f}{\partial X^2}b_t^2\right)dt + \frac{\partial f}{\partial X}b_t dW_t$$

为方便记忆,可记为(金融随机分析第二卷 P118):

$$df(X(t),t) = f_t(X(t),t)dt + f_x(X(t),t)dX(t) + \frac{1}{2}f_{xx}(X(t),t)dX(t)dX(t)$$

或可写为更简洁的形式:

$$df = f_t dt + f_x dX + \frac{1}{2} f_{xx} dX dX$$

证明

f(X,t) 的泰勒展开式为:

$$\Delta f_t = \frac{\partial f}{\partial X} \Delta X + \frac{\partial f}{\partial t} \Delta t + \frac{1}{2} \frac{\partial^2 f}{\partial X^2} \Delta X^2 + \frac{\partial f}{\partial X \partial t} \Delta X \Delta t + \frac{1}{2} \frac{\partial^2 f}{\partial t^2} \Delta t^2 + \dots$$

当 $\Delta t \to 0$ 时, $(\Delta t)^2$,认为是高阶无穷小,可忽略。而对于 $\Delta X \Delta t$ 项有:

$$\Delta X = a\Delta t + b\varepsilon\sqrt{\Delta t}$$
$$\Delta X\Delta t = a(\Delta t)^2 + b\varepsilon(\Delta t)^{3/2}$$

其中的 $(\Delta t)^{3/2}$ 项,也被认为时高阶无穷小项,可忽略。同时由于 $(\Delta X)^2$ 项中包含 Δt 项,因此需要保留。因此仅考虑前三项(**注意**: 此与常微分不同,而在常微分中, $(\Delta X)^2$ 项是也是高阶无穷小项),展开得到:

$$\Delta f_t = \frac{\partial f}{\partial X} \Delta X + \frac{\partial f}{\partial t} \Delta t + \frac{1}{2} \frac{\partial^2 f}{\partial X^2} \Delta X^2$$

$$= \frac{\partial f}{\partial X} \Delta X + \frac{\partial f}{\partial t} \Delta t + \frac{1}{2} \frac{\partial^2 f}{\partial X^2} [a \Delta t + b \varepsilon \sqrt{\Delta t}]^2$$

$$= \frac{\partial f}{\partial X} \Delta X + \frac{\partial f}{\partial t} \Delta t + \frac{1}{2} \frac{\partial^2 f}{\partial X^2} b^2 \varepsilon^2 \Delta t$$

对于 $\varepsilon^2 \Delta t$ 项,由于 $\varepsilon \sim N(0,1)$,因此有 $\mathrm{E}(\varepsilon) = 0$ 。又因 $\mathrm{Var}(\varepsilon) = \mathrm{E}(\varepsilon^2) - [\mathrm{E}(\varepsilon)]^2 = 1$,得到 $\mathrm{E}(\varepsilon^2) = 1$,同时有 $\mathrm{E}(\varepsilon^2 \Delta t) = \Delta t$ 。计算 $\varepsilon^2 \Delta t$ 的方差可得:

$$Var(\varepsilon^{2}\Delta t) = Var(\varepsilon^{2}) Var(\Delta t) + [E(\varepsilon^{2})]^{2} Var(\Delta t) + [E(\Delta t)]^{2} Var(\varepsilon^{2})$$
$$= Var(\varepsilon^{2}) Var(\Delta t) + 1 \cdot Var(\Delta t) + [E(\Delta t)]^{2} Var(\varepsilon^{2})$$
$$= \mathcal{O}(\Delta t^{2})$$

可以认为 $\varepsilon^2 \Delta t$ 方差为高阶无穷小,其期望为 1。因此,可认为 $\varepsilon^2 \Delta t \approx \Delta t$,可将原式化简为:

$$\Delta f_t = \frac{\partial f}{\partial X} \Delta X + \frac{\partial f}{\partial t} \Delta t + \frac{1}{2} \frac{\partial^2 f}{\partial X^2} b^2 \Delta t$$

而连续形式为:

$$df_{t} = \frac{\partial f}{\partial X} dX_{t} + \frac{\partial f}{\partial t} dt + \frac{1}{2} \frac{\partial^{2} f}{\partial X^{2}} b^{2} dt$$

$$= \frac{\partial f}{\partial X} (a_{t} dt + b_{t} dZ_{t}) + \frac{\partial f}{\partial t} dt + \frac{1}{2} \frac{\partial^{2} f}{\partial X^{2}} b^{2} dt$$

$$= \left(\frac{\partial f}{\partial X} a_{t} + \frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^{2} f}{\partial X^{2}} b_{t}^{2} \right) dt + \frac{\partial f}{\partial X} b_{t} dZ_{t}$$

3 几何布朗运动

由于衍生品价格是标的资产价格与时间的函数,即只需要假定标的资产遵循过程,即可用伊藤引理求得其衍生品遵循过程。假设股票价格服从几何布朗运动(Geometric Brownian Motion, GBM):

$$dS_t = \mu S_t dt + \sigma S_t dZ_t$$

$$\frac{\partial f}{\partial S} = \frac{1}{S_t}, \quad \frac{\partial^2 f}{\partial S^2} = -\frac{1}{S_t^2}, \quad \frac{\partial f}{\partial t} = 0$$

代入伊藤引理之中, 此时 $a_t = \mu S_t$, $b_t = \sigma S_t$, 则有:

$$df_t = d \ln S_t = \left(\frac{1}{S_t} \mu S_t + 0 - \frac{1}{2} \frac{1}{S_t^2} \sigma^2 S_t^2\right) dt + \frac{1}{S_t} \sigma S_t dZ_t$$
$$= \left(\mu - \frac{1}{2} \sigma^2\right) dt + \sigma dZ_t$$

即有:

$$d \ln S = \left(\mu - \frac{1}{2}\sigma^2\right)dt + \sigma dZ_t \sim N\left(\left(\mu - \frac{\sigma^2}{2}\right)dt, \sigma^2 dt\right)$$

或有离散形式下为:

$$\Delta \ln S = \ln S_T - \ln S_t = \left(\mu - \frac{\sigma^2}{2}\right) \Delta t + \sigma(Z_T - Z_t) \sim N\left(\left(\mu - \frac{\sigma^2}{2}\right)(T - t), \sigma^2(T - t)\right)$$

4 百分比收益率与对数收益率

https://en.wikipedia.org/wiki/Rate_of_return

百分比收益率或(Arithmetic return)或称为简单收益率(simple return)连续复利收益率(Continuously compounded return),或称为对数收益率(Logarithmic return,或 Log return)。

其对应则有算术平均收益率(Arithmetic mean return),和几何平均收益率(Geometric mean return)。收益率可分为百分比收益率(Simple return)以及对数收益率(连续复利收益率,Log return)两种连续复利收益率

百分比收益率

, 为未年化收益率:

$$R = d \ln S_t = \ln S_t - \ln S_{t-1} = \ln \frac{S_t}{S_{t-1}} = \ln(1+r)$$
(1)

服从期望值为 $(\mu - \frac{\sigma^2}{2})dt$,方差为 $\sigma^2 dt$ 的正态分布,与现实较为吻合。且 $d \ln S_t$ 的定义,使得股票价格非负。 注意: $d \ln S$ (极短时间内)和 $\ln S_T - \ln S_t$ 为连续复利收益率,其在较长时间间距内都服从正态分布。

$$d \ln S = \ln S_T - \ln S_t \sim N\left(\left(\mu - \frac{\sigma^2}{2}\right)(T - t), \sigma^2(T - t)\right)$$

从而可以发现股票价格的对数服从正态分布:

$$\ln S_T \sim N \left(\ln S_t + (\mu - \frac{\sigma^2}{2})(T - t), \sigma^2(T - t) \right)$$

而比例收益率为:

$$\frac{dS_t}{S_t} = \mu d_t + \sigma dZ_t$$

可以看到,在极短时间间距内 dS_t/S_t 服从正态分布。而在较长时间间距内, 因 S_t 的大小改变,使得其均值和方差发生改变,而再不服从正态分布。

4.1 比例收益率与对数收益率

股票价格服从几何布朗运动:

$$dS_t = \mu S_t dt + \sigma S_t dZ_t$$

其离散形式可写作:

$$\frac{\Delta S_t}{S_t} = \mu \Delta t + \sigma \varepsilon \sqrt{\Delta t}$$

其期望有,可以看到 $\Delta S_t/S_t$ 为 Δt 时间内百分比年化收益率或**比例收益率**(percentage returns)为 μ :

$$E(\frac{\Delta S_t}{S_t}) = \mu \Delta t$$

而连续复利收益率或对数收益率(log returns)的期望则为:

$$d \ln S = (\mu - \frac{\sigma^2}{2})dt + \sigma dZ_t$$
$$E(d \ln S_t) = (\mu - \frac{\sigma^2}{2})dt$$

比例收益率在实际应用过程中意义较小,假设 4 年盈亏为 +50%,-50%,+50%,-50%,其比例收益率期望与均值 μ 均为 0,但实际上相比期起初有-43.75% 的亏损。而使用几何平均(复利)计算,年化亏损 -13.40% 即盈亏应使用几何平均的方式计算,简单的算术平均比例收益率没有意义。而使用对数收益率,其期望为 $\mu - \sigma^2/2$,即算术平均 μ 需要减去 $\sigma^2/2$,才是几何平均期望。在此例子中均值为 0,方差为 0.25,此时对数收益率的期望为 -12.5%。即波动越大,降低实际收益率,符合现实情况,具有经济学意义。

5 对数正态分布

由**股票价格的对数**服从**正态分布**可知,股票价格服从**对数正态分布**(Log-normal distribution)。由正态分布与对数正态分布的性质可知,对一个服从正态分布的随机变量 X 取指数,则 e^X 服从对数正态分布。相反,对一个服从对数正态分布的随机变量 X 取对数,则 $\ln X$ 服从正态分布(因而得名,取对数得到正态分布的分布)。因此有如下关系:

$$\ln S_T \sim N(\mu, \sigma^2) \quad \leftrightarrow \quad S_T \sim \text{Log-normal}(\mu, \sigma^2)$$

已知对数正态分布 $X \sim \text{Log-normal}(\mu, \sigma^2)$, 其期望与标准差为:

$$E(X) = e^{\mu + \frac{\sigma^2}{2}}$$
$$Var(X) = e^{2\mu + \sigma^2} (e^{\sigma^2} - 1)$$

因股票价格 S_T 服从对数正态分布,代入上式可知其期望及方差为:

$$E(S_T) = \exp\left(\ln S_t + (\mu - \frac{\sigma^2}{2})(T - t) + \frac{\sigma^2}{2}(T - t)\right)$$

$$= \exp\left(\ln S_t + \mu(T - t)\right)$$

$$= S_t e^{\mu(T - t)}$$

$$Var(S_T) = \left[\exp(\sigma^2(T - t)) - 1\right] \exp\left\{2\left[\ln S_t + (\mu - \frac{\sigma^2}{2})(T - t)\right] + \sigma^2(T - t)\right\}$$

$$= \left[\exp(\sigma^2(T - t)) - 1\right] \exp\left[2\ln S_t + 2\mu(T - t)\right]$$

$$= S_t^2 e^{2\mu(T - t)} \left[e^{\sigma^2(T - t)} - 1\right]$$

注意

对于正态分布 μ 与 σ^2 ,为其均值与标准差。而对于对数正态分布,仅为确定其分布的两个参数。对于相同的 μ 与 σ 参数确定的正态分布与对数正态分布,两者之间的期望与方差通过如下表格关系转化:

	正态分布	对数正态分布
期望	$E_N(X) \equiv \mu = \ln[E_L(X)] - \frac{1}{2} \ln \left[1 + \frac{\operatorname{Var}_L(X)}{[E_L(X)]^2} \right]$	$E_L(X) = e^{\mu + \frac{1}{2}\sigma^2}$
方差	$E_N(X) \equiv \mu = \ln[E_L(X)] - \frac{1}{2} \ln\left[1 + \frac{\operatorname{Var}_L(X)}{[E_L(X)]^2}\right]$ $\operatorname{Var}_N(X) \equiv \sigma^2 = \ln\left[1 + \frac{\operatorname{Var}_L(X)}{[E_L(X)]^2}\right]$	$\operatorname{Var}_{L}(X) = e^{2\mu + \sigma^{2}} \left(e^{\sigma^{2}} - 1 \right)$

5.1 PDF与CDF

如下图所示,通过对服从**正态分布**的随机变量**取指数**,可以将其转换为对数正态分布。同理,通过对服从**对数正态分布**的随机变量**取对数**,使其转换为正态分布。假设随机变量 $Y \sim N(\mu, \sigma^2)$ 服从正态分布,随机变量 $X \sim \text{Log}N(\mu, \sigma^2)$,对正态分布随机变量 Y 取指数 $x = e^y$,此时有 $y = \ln x$,带入 CDF 中,可得到对数正态函数 CDF。对两者求导,可得 PDF 函数。

	正态分布	对数正态分布
PDF	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma}}$	$\frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\frac{(\ln x - \mu)^2}{\sigma}}$
\mathbf{CDF}	$\frac{1}{2}\left[1 + \operatorname{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right)\right]$	$\frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{\ln x - \mu}{\sigma\sqrt{2}}\right) \right]$

图 1: 两者相互转换

5.2 对数正态分布: 具体推导

如上文所述,对于相同参数 μ 与 σ^2 的正态分布与对数正态分布可以相互转化。两者互相经过转化后,其累积分布函数(Cumulative distribution fuction,CDF)相同。如上图所示,假设随机变量 $Y \sim N(\mu, \sigma^2)$ 服从正态分布,随机变量 $X \sim \text{Log}N(\mu, \sigma^2)$,则应有如下关系,对服从对数正态分布的随机变量 X 取对数,使其转化为正态分布:

$$CDF_{logN}(x) = CDF_N(\ln x) = CDF_N(y)$$

对公式两边取导数,则可得到其概率密度函数(Probability density function, PDF):

$$PDF_{logN}(x) = \frac{1}{y}PDF_N(\ln x)$$

此时,带入已知正态分布 PDF,即可得到对数正态分布 PDF:

$$PDF_{logN} = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}$$

5.2.1 期望推导

根据对数正态分布的 PDF, 可计算其期望:

$$E(X) = \int_0^{+\infty} x f(x) dx = \int_0^{+\infty} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}} dx$$

使用换元法,令 $t = \frac{\ln x - \mu}{\sqrt{2}\sigma}$,则有 $x = e^{\sqrt{2}\sigma t + \mu}$,则原积分转化为:

$$E(X) = \int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{-t^2} de^{\sqrt{2}\sigma t + \mu}$$

$$= \frac{e^{\mu + \frac{\sigma^2}{2}}}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-(t - \frac{\sqrt{2}\sigma}{2})^2} dt$$

$$= \frac{e^{\mu + \frac{\sigma^2}{2}}}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^2} de^{-(t - \frac{\sqrt{2}\sigma}{2})^2} d(t - \frac{\sqrt{2}\sigma}{2})$$

由于 $\int_{-\infty}^{+\infty} e^{x^2} = \sqrt{\pi}$,可得到:

$$E(X) = e^{\mu + \frac{\sigma^2}{2}}$$

5.2.2 方差推导

已知:

$$Var(X) = E[(X - \mu)^2] = E(X^2 - 2\mu X + \mu^2) = E(X^2) - 2\mu E(X) + \mu^2 = E(X^2) - [E(X)]^2$$

同上,已知对数正态分布 PDF:

$$E(X^{2}) = \int_{0}^{+\infty} x^{2} f(x) dx = \int_{0}^{+\infty} \frac{x}{\sigma \sqrt{2\pi}} e^{-\frac{(\ln x - \mu)^{2}}{2\sigma^{2}}} dx$$

使用换元法,令 $t = \frac{\ln x - \mu}{\sigma}$,则有 $x = e^{\sigma t + \mu}$:

$$\begin{split} \mathbf{E}(X^2) &= \frac{e^{2\mu}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{t^2}{2} + 2\sigma t} dt \\ &= \frac{e^{2\mu}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}(t - 2\sigma)^2 + 2\sigma^2} dt \qquad \left(\overrightarrow{X} - \frac{t^2}{2} + 2\sigma t \overrightarrow{B} \overrightarrow{D} \right) \\ &= \frac{e^{2\mu + 2\sigma^2}}{\sqrt{2\pi}} \sqrt{2} \int_{-\infty}^{+\infty} e^{(-\frac{t - 2\sigma}{\sqrt{2}})^2} d\left(\frac{t - 2\sigma}{\sqrt{2}} \right) \\ &= e^{2\mu + 2\sigma^2} \end{split}$$

此时则有:

$$Var(X) = E(X^{2}) - [E(X)]^{2}$$

$$= e^{2\mu + 2\sigma^{2}} - (e^{\mu + \frac{\sigma^{2}}{2}})^{2}$$

$$= e^{2\mu + 2\sigma^{2}} - e^{2\mu + \sigma^{2}}$$

$$= e^{2\mu + \sigma^{2}} \left(e^{\sigma^{2}} - 1\right)$$

6 BSM 偏微分方程(PDE)

6.1 假设

- 人性假设
 - 不存在无风险套利机会(无套利)
- 完美世界
 - 允许卖空标的证券
 - 没有交易费用和税收
 - 证券交易时连续的,价格变动也是连续的
 - 所有证券都完全可分
- 可交易资产
 - 证券价格遵循几何布朗运动, 即 μ 和 σ 为常数
 - 衍生品有效期内, 无风险利率 r 为常数
 - 衍生证券有效期内,标的证券没有现金收益支付

6.2 推导

假设股票价格 S_t 遵循几何布朗运动,以及其离散形式有:

$$dS_t = \mu S_t dt + \sigma S_t dZ_t$$
$$\Delta S_t = \mu S_t \Delta t + \sigma S_t \Delta Z_t$$

假设衍生品价格 $f(S_t,t)$ 为 S_t 以及 t 的函数,根据伊藤引理可得其连续和离散形式有:

$$df(S_t, t) = \left(\frac{\partial f}{\partial S}\mu S_t + \frac{\partial f}{\partial t} + \frac{1}{2}\frac{\partial^2 f}{\partial S^2}\sigma^2 S_t^2\right)dt + \frac{\partial f}{\partial S}\sigma S_t dZ_t$$
$$\Delta f(S_t, t) = \left(\frac{\partial f}{\partial S}\mu S_t + \frac{\partial f}{\partial t} + \frac{1}{2}\frac{\partial^2 f}{\partial S^2}\sigma^2 S_t^2\right)\Delta t + \frac{\partial f}{\partial S}\sigma S_t \Delta Z_t$$

由此可见,股票价格与衍生品价格的风险源均来自 ΔZ_t ,因此可以构建投资组合,由一单位衍生品空头,以及 $\partial f/\partial S$ 单位证券多头构成,进行对冲消除该风险源:

$$\Pi_t = -f_t + \frac{\partial f}{\partial S} S_t$$

在 Δt 时间内,该投资组合价值的变化 $\Delta \Pi_t$ 来源其标的资产以及衍生品的价格变动,代入 ΔS_t 与 Δf_t 可得:

$$\begin{split} \Delta\Pi_t &= -\Delta f_t + \frac{\partial f}{\partial S} \Delta S_t \\ &= -\left[\left(\frac{\partial f}{\partial S} \mu S_t + \frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial S^2} \sigma^2 S_t^2 \right) \Delta t + \frac{\partial f}{\partial S} \sigma S_t \Delta Z_t \right] + \frac{\partial f}{\partial S} \left(\mu S_t \Delta t + \sigma S_t \Delta Z_t \right) \\ &= -\left(\frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial S^2} \sigma^2 S_t^2 \right) \Delta t \end{split}$$

由于此时组合消除了风险,因此组合只应获得无风险收益率:

$$\Delta\Pi_t = r\Pi_t \Delta t$$
$$-\left(\frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial S^2} \sigma^2 S_t^2\right) \Delta t = r\left(-f_t + \frac{\partial f}{\partial S} S_t\right) \Delta t$$

整理等式,消去 Δt ,即可得到 BSM 偏微分方程:

$$\frac{\partial f}{\partial t} + rS_t \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S_t^2 \frac{\partial^2 f}{\partial S^2} = rf_t$$

7 BSM 公式(鞅方法)

在风险中性世界中, 无收益资产在 t 时刻, 其看涨期权价值的期望为:

$$\tilde{E}_t \left[\max(S_T - K, 0) \right]$$

欧式看涨期权的现值应为其期望值以无风险利率进行贴现:

$$c = e^{-r(T-t)}\tilde{\mathbf{E}}_t \left[\max(S_T - K, 0) \right]$$

同时在风险中性世界下,漂移率 μ 应等于无风险收益率 r,因此有:

$$\ln S_T - \ln S_t \sim N\left((r - \frac{\sigma^2}{2})(T - t), \sigma^2(T - t) \right)$$

己知:

$$S_T = S_t \exp \left[\left(r - \frac{\sigma^2}{2} \right) (T - t) + \sigma (Z_T - Z_t) \right]$$

已知 $Y = \frac{Z_T - Z_t}{\sqrt{T - t}} \sim N(0, 1)$,其概率密度函数(PDF)为:

$$\varphi(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^2}$$

在风险中性下的期望,可以改写为如下积分的形式:

$$\tilde{\mathbf{E}}_t \left[\max(S_T - K, 0) \right] = \tilde{\mathbf{E}}_t \left[S_t e^{(r - \frac{1}{2}\sigma^2)(T - t) + \sigma\sqrt{T - t}Y} - K \right]^+ \\
= \int_{-\infty}^{\infty} \left(S_t e^{(r - \frac{1}{2}\sigma^2)(T - t) + \sigma\sqrt{T - t}y} - K \right)^+ \varphi(y) dy$$

当 $S_t e^{(r-\frac{1}{2}\sigma^2)(T-t)+\sigma\sqrt{T-t}Y} - K \ge 0$ 时,有 $y \ge \frac{\ln(K/S_t) - (r-\frac{1}{2}\sigma^2)(T-t)}{\sigma\sqrt{T-t}}$,设其为 $-d_2$,同时假设 $d_1 = d_2 + \sigma\sqrt{T-t}$ 。

$$\begin{split} \tilde{\mathbf{E}}_t \left[\max(S_T - K, 0) \right] &= \int_{-\infty}^{\infty} \left(S_t e^{(r - \frac{1}{2}\sigma^2)(T - t) + \sigma\sqrt{T - t}y} - K \right)^+ \varphi(y) dy \\ &= S_t e^{(r - \frac{1}{2}\sigma^2)(T - t)} \int_{-d_2}^{\infty} e^{\sigma\sqrt{T - t}y} \varphi(y) dy - K \int_{-d_2}^{\infty} \varphi(y) dy \\ &= S_t e^{(r - \frac{1}{2}\sigma^2)(T - t)} \int_{-d_2}^{\infty} e^{\sigma\sqrt{T - t}y} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy - KN(d_2) \\ &= S_t e^{r(T - t)} \int_{-d_2}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(\sigma^2(T - t)}{2} + \sigma\sqrt{T - t}y - \frac{y^2}{2})} dy - KN(d_2) \\ &= S_t e^{r(T - t)} \int_{y = -d_2}^{y = \infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(y - \sigma\sqrt{T - t})^2}{2}} dy - KN(d_2) \quad (換元法: \ u = y - \sigma\sqrt{T - t}) \\ &= S_t e^{r(T - t)} \int_{u = -d_2 - \sigma\sqrt{T - t}}^{u = \infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du - KN(d_2) \quad (dy = du) \\ &= S_t e^{r(T - t)} \int_{-d_1}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du - KN(d_2) \\ &= S_t e^{r(T - t)} N(d_1) - KN(d_2) \end{split}$$

得到 **BSM** 公式,即欧式看涨期权的解析解(注: $N(\cdot)$ 为标准正态分布的累积分布函数(CDF),而 $N'(\cdot)$ 为标准正态分布的概率分布函数(PDF)):

$$c = e^{-r(T-t)} \tilde{E}_t \left[\max(S_T - K, 0) \right]$$

= $S_t N(d_1) - K e^{-r(T-t)} N(d_2)$

己知期权平价公式:

$$c + Ke^{r(T-t)} = p + S_t$$

代入 BSM 看涨期权解析解中,可得:

$$p = c + Ke^{-r(T-t)} - S_t$$

$$= S_t N(d_1) - Ke^{-r(T-t)} N(d_2) + Ke^{-r(T-t)} - S_t$$

$$= S_t (N(d_1) - 1) - Ke^{-r(T-t)} (N(d_2) - 1)$$

$$= S_t (-N(-d_1)) - Ke^{-r(T-t)} (-N(-d_2))$$

$$= Ke^{-r(T-t)} N(-d_2) - S_t N(-d_1)$$

此时 d_1 和 d_2 分别为:

$$d_{1} = \frac{\ln \frac{S_{t}}{K} + (r + \frac{1}{2}\sigma^{2})(T - t)}{\sigma\sqrt{T - t}}$$
$$d_{2} = \frac{\ln \frac{S_{t}}{K} + (r - \frac{1}{2}\sigma^{2})(T - t)}{\sigma\sqrt{T - t}}$$

8 波动率

 r_t 为一个资产的收益率时间序列,有 t = 1, 2, 3, ..., T,则有样本方差为:

$$\sigma^{2}(r_{t}) = \frac{1}{T-1} \sum_{t=1}^{T} (r_{t} - \bar{r})^{2}$$

其中样本均值应有:

$$\bar{r} = \frac{1}{T} \sum_{t=1}^{T} r_t$$

8.1 波动率分类与计算

波动率可以大致分为两类,一类为回望波动率(backward looking),一类为前瞻波动率(forward looking)。 两者的区别在于回望波动率使用的是一段时间内的历史数据所计算出来的,是已经发生的波动率,如:历史波动率、已实现波动率、GARCH 波动率。而后者为根据 BSM 模型等,根据期权市场现有的价格信息,倒求出其中所包含的波动率信息(隐含),为人们对未来给定期限的波动率的预期值,如:隐含波动率(包含无模型波动率)。

8.1.1 历史波动率 (Historical volatility)

样本对数收益率标准差(日频数据)

8.1.2 已实现波动率(Readlized volatility)

已实现波动率(Realized volatility, 日内高频, 5 分钟, 假设均值为零)

8.1.3 随机波动率 (Sochastic volatility)

8.1.4 GARCH 波动率

广义自回归条件异方差(GARCH, 计量方法)

8.1.5 隐含波动率 (Implied volatility)

隐含波动率 (Implied volatility): 直接从期权价格中提取未来预期,提取的为至到期日之间的波动率,BSIV: 期权直到到期的波动率,option-implied volatility expectations until expiration

8.1.6 无模型波动率 (Model-free volatility)

8.2 典型实证现象

有些现象能够在几乎所有收益率的时间序列中观察到。一个好的条件异方差模型要能够捕捉大部分实证现象。在这个部分,我们列出在波动性分析中最知名典型实证现象。

https://vinsight.shnyu.edu.cn/about_volatility.php

8.2.1 波动率聚类

如果 t-1 时的波动率很高,t 时的波动率也很可能会很高。即,在 t-1 时的冲击不仅会增加 t-1 时的波动率,也会影响到 t 时的波动率。换句话说,市场在某些时期较为波动,在其他时间更为平静。波动率特征按照时间集中分类。GARCH 类模型能够很好地捕捉这一现象。事实上,这些模型更准确地来说,是衡量 t 时的波动率是如何依赖历史波动率 (和其他可能的条件变量)。

8.2.2 肥尾现象

收益率的时间序列通常呈现肥尾分布,又叫做超额峰度,或者尖峰。也就是说,它们的峰度(用方差的平方根标准化的第四中心矩)通常都大于 3(高斯随机变量的峰度为 3)。事实上,一种流行的检验高斯分布假设的方法,Jarque-Bera 测试,能够同时测试此分布是否是对称的以及其峰度是否等于 3。

如果收益率是肥尾分布的,则极端事件(非常高或非常低的回报率)的发生概率会高于收益率分布满足正态(高斯)分布时其发生的概率。

大部分波动率模型,例如 GARCH 模型会造成收益率呈现肥尾分布,不管真正的潜在冲击是高斯分布还是肥尾分布。在估计时,我们通常假设潜在冲击服从高斯分布。在样本量很大时,即使真实分布不是高斯,模型通常也能给出合适的估计值。这些估计值为最大似然估计值,并且能够在相对宽松的限制条件下给出一致的估计。

8.2.3 不对称性

有一个普通 GARCH 模型不能捕捉的实证现象是 t-1 时刻的负面冲击比正面冲击对 t 时刻的方差有更强烈的影响。尽管如此,GARCH 模型能够很容易地调整扩充从而捕捉到这种不对称性。类似的例子有门限 GARCH (TGARCH) 模型,,不对称 GARCH (AGARCH) 模型和指数 GARCH (EGARCH))模型。

这一不对称性过去被成为杠杆效应,因为增加的风险被认为是来自于负面冲击所引起杠杆的增加,但是限制人们认识到这个效应不能解释所有现象,并且风险规避是一个重要的机制。

9 Delta 对冲

Delta 为衍生品价格变动与其标的资产价格变动的比率。如果假定股票价格(X)与期权价格(Y)为折线,则其斜率应为 Delta,即对股票价格变动一单位,期权价格变动 Δ 单位。而现实中并非折线,Delta 则为两者切线斜率。

$$\Delta = \frac{\partial V}{\partial S}$$

而从持有标的资产和衍生品数量分别为 N_S 和 N_V 而言,为了维持对冲结果为 0,易知对于每一单位标的资产,应使用 Δ 单位衍生品进行对冲。

$$\Delta V \times N_V = \Delta S \times N_S \quad \Rightarrow \quad \Delta = \frac{\partial V}{\partial S} = \frac{N_S}{N_V}$$

如上所述,假定股票价格遵循几何布朗运动,则有在显示测度(Physical probability measure)下:

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t$$

根据伊藤引理:

$$f(T, W_T) = f(t, W_t) = \int_t^T \frac{\partial f}{\partial u} du + \int_t^T \frac{\partial f}{\partial S} dW_t \frac{1}{2} + \int_t^T \frac{\partial^2 f}{\partial S^2} dW_t \frac{1}{2} + \int_t$$

在 Bakshi and Kapadia 2003 中,

在一段时间内的使用看涨看跌期权进行 Delta 对冲(**注意**:由几何布朗运动与伊藤过程推到而来,因此看涨看跌期权形式相同,买入看涨看跌期权,并卖出股票,净投资金额获得无风险收益)。

Call Gain =
$$C_{t+\tau} - C_t - \Delta_t (S_{t+\tau} - S_t) - \frac{r\tau}{365} (C_{t+\tau} - \Delta_t S_t)$$

Put Gain =
$$P_{t+\tau} - P_t - \Delta_t (S_{t+\tau} - S_t) - \frac{r\tau}{365} (P_{t+\tau} - \Delta_t S_t)$$

Long call, short delta stock/ short call, long delta stock

Long put, long delta stock/ short put, short delta stock

10 内在价值(考虑中国市场的新定义)

由于:

期权价值(Option value) = 内在价值(Intrinsic value) + 时间价值(Time value)

内在价值为即**不考虑资产价格波动**的情况下,期权条款赋予期权多头的最高价值。而时间价值为**标的资产价格波动**为期权多头(权利方)所带来的隐含价值,由于期权权利方只有权力而无义务,因此期权的时间价值应该大于 0。内在价值不受时间价值的影响,因而可以使用二分法。

若定义内在价值为,期权若在当下时点到期,期权所含的的价值(Hull, CME)。这样考虑的缺点为没有考虑货币的时间价值,且在中国市场由于现货的卖空限制,其价格高于其真实价格。

看涨期权内在价值 =
$$\max(S_t - K)$$

看跌期权内在价值 =
$$\max(K - S_t)$$

在考虑货币时间价值的情形内在价值如下,缺点为依然没有考虑中国市场的卖空限制。

看涨期权内在价值 =
$$\max(S_t - Ke^{-r(T-t)})$$

看跌期权内在价值 =
$$\max(Ke^{-r(T-t)} - S_t)$$

因此考虑使用期货价格代替现货价格,以为期货市场多空双方均能自由表达其看法,因此有:

看涨期权内在价值 =
$$\max((F_{t,T} - K)e^{-r(T-t)})$$

看跌期权内在价值 =
$$\max((K - F_{t,T})e^{-r(T-t)})$$

由于在中国市场 ETF 期权有红利保护机制,即会下调行权价格,放大每手期权数量,相当于变相抬高了股票价格,或复权(加挂 A 标记的期权)。且在 ETF 中的成分股分红,其分红留在 ETF 当中。而 ETF 没有期货,只有股指期货,而股指期货不对分红进行调整,即没有红利保护,即其成分股分红后股指自然下跌。因而在使用股指期货或期权以及 ETF 现货或期权时,需要做红利调整。即在 ETF 现货中将红利剔除,此时有:

$$F_{t,T} = (S_t - I)e^{r(T-t)}$$

此时则有,将上式代入,在中国市场中:

看涨期权内在价值 =
$$\max((F_{t,T} - K)e^{-r(T-t)} + I)$$

看跌期权内在价值 =
$$\max((K - F_{t,T})e^{-r(T-t)} - I)$$

因为平值点为使内在价值为零,则平值点定义为为 $F_{t,T} = K$,这样定义使得实值虚值部分左右较为对称,有利于比较。此时有当 F < K 为 OTM,此时值域为正,当 F > K 为 ITM,则有值域为负。此时有对数在值状态 (log-moneyness):

$$\ln \frac{K}{K_{atm}} = \ln \frac{K}{F}$$

同时可以发现,在 PCP 下:

$$c = p + (F_{t,T} - K)e^{-r(T-t)}$$

对于平直期权 ATM,则有 $F_{t,T} = K$,易得此时 c = p。而当看涨期权为 ITM,其内在价值部分不为零。而对于此时得看跌期权为 OTM,其内在价值为零,而仅有时间价值,因此可以得到,在新平值点定义下的,相同行权价,相同期限的看涨看跌期权:

 $c_{\text{Hinhf}} = p_{\text{Hinhf}}$

11 平价期权

当平值点为 $S = Ke^{-r(T-t)}$ 时,将其带入看涨 BSM 公式当中,则有:

$$\frac{c}{S} = N(d_1) - N(d_2) \tag{2}$$

对于看跌期权则有:

$$\frac{p}{S} = N(-d_2) - N(-d_1)$$

$$= 1 - N(d_2) - [1 - N(d_1)]$$

$$= N(d_1) - N(d_2) = \frac{c}{S}$$

对于 d_1 和 d_2 , 此时有:

$$d_1 = \frac{\ln(S/K) + (r + \sigma^2/2)(T - t)}{\sigma\sqrt{T - t}} = \frac{\sigma}{2}\sqrt{T - t}$$
(3)

$$d_2 = \frac{\ln(S/K) + (r - \sigma^2/2)(T - t)}{\sigma\sqrt{T - t}} = d_1 - \sigma\sqrt{T - t} = -\frac{\sigma}{2}\sqrt{T - t}$$
(4)

则对于欧式平价期权:

$$\begin{split} &\frac{c}{S} = \frac{p}{S} = N\left(\frac{\sigma\sqrt{T-t}}{2}\right) - N\left(-\frac{\sigma\sqrt{T-t}}{2}\right) \\ &= 2N\left(\frac{\sigma\sqrt{T-t}}{2}\right) - 1 \\ &= 2\left[\frac{1}{2} + \frac{1}{\sqrt{2\pi}}\left(\frac{\sigma\sqrt{T-t}}{2} - \frac{(\sigma\sqrt{T-t}/2)^3}{6} + \frac{(\sigma\sqrt{T-t}/2)^5}{40} - \dots + \dots\right)\right] - 1 \qquad (使用泰勒展开) \\ &\approx \frac{\sigma\sqrt{T-t}}{2\pi} \approx 0.4\sqrt{T-t} \end{split}$$

12 注意与备注

- 期限、无风险利率、波动率应匹配(以年为单位,一般使用交易日计算,美国交易日252天)
- 无风险利率选择即期利率(Spot rate)而非到期收益率(YTM,真实收益率,票息 5%,但非平价发行)
- 由于只有交易日才有历史数据与收益率数据,波动率使用交易天数进行年化,中国 240 天左右,美国 252 天
- 波动率为一个时间窗口(一般为年,252 天交易日,较以月每 21 天为窗口更为平滑)内连续复利收益率或对数收益率($\ln S_t/S_{t-1}$)标准差进行年化。即日波动率乘以 $\sqrt{252}$ (一天的方差为 s^2 ,由于方差可加,252个交易日的方差即为 $s^2 \times 252$,标准差或波动率为 $s\sqrt{252}$),月波动率应乘以 $\sqrt{252/21}$ 进行年化。

12.1 做空限制

且在中国市场中现货存在较大的做空限制,即在现货市场的价格由看多者和少量看空者决定,并不能反应所有投资者的真实情绪,以至于难以复制期权,违法 BSM 公式假设条件。解决方法有:

- 1. 使用期货进行贴现,得到其隐含现货价格,使用 BSM 进行计算,其中有:
 - 期货隐含现货价格

$$S^* = Fe^{-q(T-t)}$$

• 期权隐含现货价格

$$S^* = (c - p) + Ke^{-r(T-t)}$$

2. 直接使用 Black 公式,使用期货价格进行计算,即:

$$c = e^{-r(T-t)} \left[F_t N(d_1) - K N(d_2) \right]$$