Data mining - final

Zhuldyz Amangeldyeva, Sanzhar Sovet, Aigerim Duiset, Anar Kassymova, Kamilla Ten - bd2006

Dataset Description:

- · types.csv reference of transaction types
- · codes.csv reference of transaction codes
- transactions.csv transactional data on banking operations
- train_set.csv training set with client gender marking (0/1 client gender)
- · test set.csv no need to use.

Transactions.csv columns description:

- · client id client is id
- datetime -transaction date (format ordered day number hh:mm:ss 421 06:33:15)
- · code transaction code
- type transaction type
- · sum sum of transaction

In [1]:

```
import warnings
warnings.filterwarnings('ignore')
import datetime
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
from sklearn.model selection import cross val score
from sklearn.model selection import GridSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
from sklearn.metrics import roc curve
from sklearn.metrics import auc
from sklearn.metrics import confusion_matrix, classification_report, precision_score, recal
from warnings import filterwarnings
from sklearn import tree
from matplotlib import pyplot as plt
from sklearn import preprocessing
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import accuracy_score
```

In [2]:

```
types = pd.read_csv('types.csv', sep = ';')
codes = pd.read_csv('codes.csv', sep = ';')
transactions = pd.read_csv('transactions.csv', sep = ';')
train_set = pd.read_csv('train_set.csv', sep = ';')
```

Descriptive Analysis

In [3]:

```
types.describe(include = 'all').T
```

Out[3]:

	count	unique	top	freq	mean	std	min	25%	50%	75%	ma
type	155	NaN	NaN	NaN	10819	80000.3	1000	2385.5	4040	7027.5	99999
type_description	155	139	н/д	13	NaN	NaN	NaN	NaN	NaN	NaN	Nal
4											•

In [4]:

```
codes.describe(include = 'all').T
```

Out[4]:

	count	unique	top	freq	mean	std	min	25%	50%
code	184	NaN	NaN	NaN	6046.79	1470.33	742	5208.25	5813.5
code_description	184	184	Книги, периодические издания и газеты	1	NaN	NaN	NaN	NaN	NaN
4									•

In [5]:

```
transactions.describe(include = 'all').T
# mean value of sum(-18129.1) is less than median value(-5502.49)
# also we have very big difference between max value and 75%tile, it means that most of our
```

Out[5]:

	count	unique	top	freq	mean	std	min	25%
client_id	130039	NaN	NaN	NaN	5.08686e+07	2.87285e+07	22899	2.57717e+07
datetime	130039	114770	456 00:00:00	60	NaN	NaN	NaN	NaN
code	130039	NaN	NaN	NaN	5594.63	606.087	742	5211
type	130039	NaN	NaN	NaN	2489.37	2253.3	1000	1030
sum	130039	NaN	NaN	NaN	-18129.1	558445	-4.15003e+07	-22449.2
4								•

In [3]:

```
#merge transactions, types, codes and train_set
df = pd.merge(pd.merge(pd.merge(transactions, types), codes), train_set)
df.head()
```

Out[3]:

	client_id	datetime	code	type	sum	type_description	code_description	target
0	96372458	421 06:33:15	6011	2010	-561478.94	Выдача наличных в АТМ	Финансовые институты — снятие наличности автом	0
1	96372458	68 02:04:11	6011	2010	-426724.00	Выдача наличных в АТМ	Финансовые институты — снятие наличности автом	0
2	96372458	433 06:45:32	6011	2010	-112295.79	Выдача наличных в АТМ	Финансовые институты — снятие наличности автом	0
3	96372458	270 06:16:18	6011	7010	224591.58	Взнос наличных через АТМ (в своем тер.банке)	Финансовые институты — снятие наличности автом	0
4	96372458	4 09:33:46	4814	1030	-2245.92	Оплата услуги. Банкоматы	Звонки с использованием телефонов, считывающих	0

In [4]:

df.mode()

Out[4]:

	client_id	datetime	code	type	sum	type_description	code_description	target
0	70780820	456 00:00:00	6011	1010	-2245.92	Покупка. POS	Финансовые институты — снятие наличности автом	0

```
In [5]:
```

```
print('Range:', max(transactions['sum']) - min(transactions['sum'])) # Measures of spread
print('IQR:', transactions['sum'].quantile(0.75) - transactions['sum'].quantile(0.25))
print('Variance:', transactions['sum'].var())
print('Standart deviation:', transactions['sum'].std())
```

Range: 108877774.3 IQR: 21326.2

Variance: 311860284637.53296

Standart deviation: 558444.5224348905

Explanatory Data Analysis

```
In [9]:
```

```
df.shape
# Dataset comprises of 129998 observations and 7 characteristics
```

Out[9]:

(91800, 8)

In [10]:

```
df.columns
```

Out[10]:

In [11]:

```
df.nunique() # number of unique values for every column
```

Out[11]:

```
client id
                      6000
                     81491
datetime
code
                       173
                        58
type
                     20856
type_description
                        53
code_description
                       173
                          2
target
dtype: int64
```

```
In [12]:
df.info()
# our data have integer, float and object values, object values used for datetime and text
<class 'pandas.core.frame.DataFrame'>
Int64Index: 91800 entries, 0 to 91799
Data columns (total 8 columns):
                       Non-Null Count Dtype
#
     Column
                       -----
 0
     client_id
                       91800 non-null int64
 1
     datetime
                       91800 non-null object
 2
     code
                       91800 non-null int64
                       91800 non-null int64
 3
     type
 4
     sum
                       91800 non-null float64
     type_description 91800 non-null object
 6
     code_description 91800 non-null object
 7
     target
                       91800 non-null int64
dtypes: float64(1), int64(4), object(3)
memory usage: 6.3+ MB
In [13]:
df.isna().any()
# as we can see we have no null/missing values, so we dont need to delete them
Out[13]:
client_id
                    False
datetime
                    False
                    False
code
                    False
type
                    False
sum
type_description
                    False
code_description
                    False
                    False
target
dtype: bool
In [14]:
clients = np.array(df['client id'].unique())
len(clients) # number of unique clients
Out[14]:
6000
In [6]:
df.drop_duplicates(inplace = True)
df.shape
# shape of dataframe before deleting dublicates = (129998, 7)
# 129998-129969 = 29 rows was deleted
Out[6]:
(91781, 8)
```

Visualizations

In [16]:

```
# Realtionship analysis based on correlation matrix
correlation = df.corr()
sns.heatmap(correlation, xticklabels = correlation.columns, yticklabels = correlation.colum
plt.show()
# the higher correlation coefficient between type and code
# type of transaction has the greatest influence on sum
```


In [17]:

```
# box plot
sns.catplot(x = 'sum', kind = 'box', data = df)
plt.xlim(-70000, 50000)
plt.show()
```


In [18]:

```
# graphs show Top 10 codes of transactions
df['code_description'].value_counts()[0:10].plot.barh()
plt.show()
```


In [19]:

```
# graphs show Top 10 types of transactions
df['type_description'].value_counts()[0:10].plot.barh()
plt.show()
```


Feature engineering and Data cleaning

In [7]:

```
# divide datetime column to date and time columns
df[['day', 'time']] = df['datetime'].str.split(' ', expand = True)
df[['hour', 'minute', 'second']] = df['time'].str.split(':', expand=True)
```

In [8]:

```
df.head()
```

Out[8]:

	client_id	datetime	code	type	sum	type_description	code_description	target	day
0	96372458	421 06:33:15	6011	2010	-561478.94	Выдача наличных в АТМ	Финансовые институты — снятие наличности автом	0	421
1	96372458	68 02:04:11	6011	2010	-426724.00	Выдача наличных в АТМ	Финансовые институты — снятие наличности автом	0	68
2	96372458	433 06:45:32	6011	2010	-112295.79	Выдача наличных в АТМ	Финансовые институты — снятие наличности автом	0	433
3	96372458	270 06:16:18	6011	7010	224591.58	Взнос наличных через АТМ (в своем тер.банке)	Финансовые институты — снятие наличности автом	0	270
4	96372458	4 09:33:46	4814	1030	-2245.92	Оплата услуги. Банкоматы	Звонки с использованием телефонов, считывающих	0	4
4									•

In [9]:

```
df = df.astype({'day': int})
df = df.astype({'hour': int})
df = df.astype({'minute': int})
df = df.astype({'second': int})
```

In [10]:

```
date = datetime.datetime(2021, 1, 1) # start date is 1 january of 2021
step = datetime.timedelta(days = 1)
dates = {} # dictionary will store the serial number of the date and date
date_list = []
for i in range(0, 457):
    dates[i] = date.strftime('%Y-%m-%d')
    date += step

for i in df['day']:
    date_list.append(dates[i])
#new column date
df['date'] = date_list
df
```

Out[10]:

	client_id	datetime	code	type	sum	type_description	code_description	target
0	96372458	421 06:33:15	6011	2010	-561478.94	Выдача наличных в АТМ	Финансовые институты — снятие наличности автом	0
1	96372458	68 02:04:11	6011	2010	-426724.00	Выдача наличных в АТМ	Финансовые институты — снятие наличности автом	0
2	96372458	433 06:45:32	6011	2010	-112295.79	Выдача наличных в АТМ	Финансовые институты — снятие наличности автом	0
3	96372458	270 06:16:18	6011	7010	224591.58	Взнос наличных через АТМ (в своем тер.банке)	Финансовые институты — снятие наличности автом	0
4	96372458	4 09:33:46	4814	1030	-2245.92	Оплата услуги. Банкоматы	Звонки с использованием телефонов, считывающих	0
						•••		
91795	77171868	194 08:39:03	4829	2340	-112295.79	Списание с карты по операции "перевода с карты	Денежные переводы	0
91796	79803584	151 13:46:48	4829	2340	-56147.89	Списание с карты по операции "перевода с карты	Денежные переводы	1
91797	66391854	425 15:33:02	4829	2331	-228364.72	Списание с карты по операции "перевода с карты	Денежные переводы	1

	client_id	datetime	code	type	sum	type_description	code_description	target	
91798	15166647	432 00:00:00	5964	1200	-10284.50	Покупка. Зарубеж.	Прямой маркетинг — торговля через каталог	0	
91799	15166647	403 00:00:00	5964	1200	-1309.14	Покупка. Зарубеж.	Прямой маркетинг— торговля через каталог	0	
91781 rows × 14 columns									
4								•	

In [11]:

```
df['date']
```

Out[11]:

```
0
         2022-02-26
1
         2021-03-10
2
         2022-03-10
3
         2021-09-28
         2021-01-05
91795
         2021-07-14
91796
         2021-06-01
91797
         2022-03-02
91798
         2022-03-09
91799
         2022-02-08
```

In [12]:

```
df[['year', 'month', 'day']] = df['date'].str.split('-', expand = True)
df
```

Out[12]:

	client_id	datetime	code	type	sum	type_description	code_description	target
0	96372458	421 06:33:15	6011	2010	-561478.94	Выдача наличных в АТМ	Финансовые институты — снятие наличности автом	0
1	96372458	68 02:04:11	6011	2010	-426724.00	Выдача наличных в АТМ	Финансовые институты — снятие наличности автом	0
2	96372458	433 06:45:32	6011	2010	-112295.79	Выдача наличных в АТМ	Финансовые институты — снятие наличности автом	0
3	96372458	270 06:16:18	6011	7010	224591.58	Взнос наличных через АТМ (в своем тер.банке)	Финансовые институты — снятие наличности автом	0
4	96372458	4 09:33:46	4814	1030	-2245.92	Оплата услуги. Банкоматы	Звонки с использованием телефонов, считывающих	0
				•••				
91795	77171868	194 08:39:03	4829	2340	-112295.79	Списание с карты по операции "перевода с карты	Денежные переводы	0
91796	79803584	151 13:46:48	4829	2340	-56147.89	Списание с карты по операции "перевода с карты	Денежные переводы	1
91797	66391854	425 15:33:02	4829	2331	-228364.72	Списание с карты по операции "перевода с карты	Денежные переводы	1
91798	15166647	432 00:00:00	5964	1200	-10284.50	Покупка. Зарубеж.	Прямой маркетинг — торговля через каталог	0
91799	15166647	403 00:00:00	5964	1200	-1309.14	Покупка. Зарубеж.	Прямой маркетинг — торговля через каталог	0
91781 r	rows × 16 d	columns						
						_		

In [13]:

```
# change types of columns to int
df = df.astype({'year': int})
df = df.astype({'month': int})
df = df.astype({'day': int})
```

In [14]:

```
def f(x):
    if (x > 4) and (x <= 8):
        return 'Early Morning'
    elif (x > 8) and (x <= 12 ):
        return 'Morning'
    elif (x > 12) and (x <= 16):
        return'Noon'
    elif (x > 16) and (x <= 20) :
        return 'Eve'
    elif (x > 20) and (x <= 23):
        return'Night'
    elif (x <= 4):
        return'Late Night'</pre>
```

In [15]:

```
# new column sessions
df['sessions'] = df['hour'].apply(f)
df
```

Out[15]:

	client_id	datetime	code	type	sum	type_description	code_description	target
0	96372458	421 06:33:15	6011	2010	-561478.94	Выдача наличных в АТМ	Финансовые институты — снятие наличности автом	0
1	96372458	68 02:04:11	6011	2010	-426724.00	Выдача наличных в АТМ	Финансовые институты — снятие наличности автом	0
2	96372458	433 06:45:32	6011	2010	-112295.79	Выдача наличных в АТМ	Финансовые институты — снятие наличности автом	0
3	96372458	270 06:16:18	6011	7010	224591.58	Взнос наличных через АТМ (в своем тер.банке)	Финансовые институты — снятие наличности автом	0
4	96372458	4 09:33:46	4814	1030	-2245.92	Оплата услуги. Банкоматы	Звонки с использованием телефонов, считывающих	0
91795	77171868	194 08:39:03	4829	2340	-112295.79	Списание с карты по операции "перевода с карты	Денежные переводы	0
91796	79803584	151 13:46:48	4829	2340	-56147.89	Списание с карты по операции "перевода с карты	Денежные переводы	1
91797	66391854	425 15:33:02	4829	2331	-228364.72	Списание с карты по операции "перевода с карты	Денежные переводы	1
91798	15166647	432 00:00:00	5964	1200	-10284.50	Покупка. Зарубеж.	Прямой маркетинг — торговля через каталог	0
91799	15166647	403 00:00:00	5964	1200	-1309.14	Покупка. Зарубеж.	Прямой маркетинг— торговля через каталог	0

91781 rows × 17 columns

In [16]:

```
#convert to the positive values
df['sum'] = df['sum'].abs()
df.drop(['datetime', 'type_description', 'code_description', 'hour', 'minute','second','tim
# copy dataframe
df1 = df.copy()
df.head()
```

Out[16]:

	client_id	code	type	sum	target	sessions
0	96372458	6011	2010	561478.94	0	Early Morning
1	96372458	6011	2010	426724.00	0	Late Night
2	96372458	6011	2010	112295.79	0	Early Morning
3	96372458	6011	7010	224591.58	0	Early Morning
4	96372458	4814	1030	2245.92	0	Morning

In [17]:

```
df = pd.get_dummies(data = df, drop_first = True)
```

In [18]:

```
df.shape
```

Out[18]:

(91781, 10)

In [19]:

```
df.head()
```

Out[19]:

	client_id	code	type	sum	target	sessions_Eve	sessions_Late Night	sessions_Morning	s
0	96372458	6011	2010	561478.94	0	0	0	0	
1	96372458	6011	2010	426724.00	0	0	1	0	
2	96372458	6011	2010	112295.79	0	0	0	0	
3	96372458	6011	7010	224591.58	0	0	0	0	
4	96372458	4814	1030	2245.92	0	0	0	1	
4									•

In [20]:

```
scaler = MinMaxScaler()
df[['sum']] = scaler.fit_transform(df[['sum']])
```

In [21]:

df

Out[21]:

	client_id	code	type	sum	target	sessions_Eve	sessions_Late Night	sessions_Morning
0	96372458	6011	2010	0.008333	0	0	0	C
1	96372458	6011	2010	0.006333	0	0	1	C
2	96372458	6011	2010	0.001667	0	0	0	C
3	96372458	6011	7010	0.003333	0	0	0	C
4	96372458	4814	1030	0.000033	0	0	0	1
91795	77171868	4829	2340	0.001667	0	0	0	C
91796	79803584	4829	2340	0.000833	1	0	0	C
91797	66391854	4829	2331	0.003389	1	0	0	C
91798	15166647	5964	1200	0.000153	0	0	1	C
91799	15166647	5964	1200	0.000019	0	0	1	C
91781	rows × 10 d	column	s					k

In [22]:

```
df_sales = df.loc[df.type.isin([1000, 1100, 1110, 1010, 1210, 1200])]
df_sales # dataframe consist only sales type of transactions
# тут мы вывели наши оснавные переменные для анализа а конкретнее code, type
# и дополнительная переменная это время суток в котором происходит транзакция
# переделанная в вид подходящий рандомфорест и тд при помощи функций get_dummies
```

Out[22]:

	client_id	code	type	sum	target	sessions_Eve	sessions_Late Night	sessions_Morning
23	21717441	4814	1100	0.000080	0	0	0	1
24	21717441	5411	1010	0.001068	0	0	0	C
25	21717441	5732	1110	0.006157	0	0	0	1
27	21717441	7993	1200	0.000120	0	0	1	C
30	2444292	5411	1010	0.000046	0	0	0	1
91710	58819313	7995	1200	0.000057	0	0	1	C
91763	73117692	7311	1100	0.000033	0	0	1	C
91768	8890644	7995	1200	0.000052	1	0	1	C
91798	15166647	5964	1200	0.000153	0	0	1	C
91799	15166647	5964	1200	0.000019	0	0	1	C
36668	rows × 10 d	column	S					
4								•

```
In [23]:
```

```
len(df_sales['client_id'].unique())
```

Out[23]:

4741

Supervised learning. kNN, Decision Trees, Random Forest.

In [24]:

```
X = df.drop(['client_id', 'target'], axis = 1)
y = df['target']
X1 = df_sales.drop(['client_id', 'target'], axis = 1)
y1 = df_sales['target']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 2
X1_train, X1_test, y1_train, y1_test = train_test_split(X1, y1, test_size = 0.2, random_state = pasdeляем наши данные на train u test часть с перемешиваем их в рандомном порядке(2022)
```

In [25]:

Х

Out[25]:

	code	type	sum	sessions_Eve	sessions_Late Night	sessions_Morning	sessions_Night
0	6011	2010	0.008333	0	0	0	0
1	6011	2010	0.006333	0	1	0	0
2	6011	2010	0.001667	0	0	0	0
3	6011	7010	0.003333	0	0	0	0
4	4814	1030	0.000033	0	0	1	0
91795	4829	2340	0.001667	0	0	0	0
91796	4829	2340	0.000833	0	0	0	0
91797	4829	2331	0.003389	0	0	0	0
91798	5964	1200	0.000153	0	1	0	0
91799	5964	1200	0.000019	0	1	0	0
91781 ı	ows ×	8 colu	mns				
4							•

KNN

In [26]:

```
# KNN - это алгоритм обучения который используют в класстеризаций(или регрессии)
 который для определения классификации точки объединяет классификацию К ближайших точек.
# Он является контролируемым, поскольку вы пытаетесь классифицировать точку на основе извес
\# отличается от k-теаns тем что KNN учитывает классификации других точек а k-теаns нет
filterwarnings(action = 'ignore', category = DeprecationWarning, message = '`np.bool` is a
num_folds = 5
neighbors = range(3, 51, 3)
k_scores = []
for k in neighbors:
   knn = KNeighborsClassifier(n_neighbors = k)
   scores = cross_val_score(knn, X, y, cv = num_folds, scoring = 'accuracy')
   k_scores.append(scores.mean())
plt.plot(neighbors, k_scores)
plt.xlabel('Value of k for kNN')
plt.ylabel('Cross-Validated Accuracy')
plt.show()
# здесь мы используем cross validation ассигасу для нахождения лучшего k(количество ближайш
```


As we can see the best K is approximately between 47 and 51.

In []:

```
# здесь мы тоже находим лучший к но уже другим методом(для сравнения результатов)
# GridSearchCV это функция для удобного подбора гиперпараметров в алгоритмах машинного обуч
knn2 = KNeighborsClassifier()
param_grid = {'n_neighbors': np.arange(1, 51)}

#use gridsearch to test all values for n_neighbors
knn_gscv = GridSearchCV(knn2, param_grid, cv = 5)
#fit model to data
knn_gscv.fit(X, y)

knn_gscv.best_params_
```

In []:

```
# здесь мы тоже находим лучший к но уже другим методом(для сравнения результатов)
# GridSearchCV это функция для удобного подбора гиперпараметров в алгоритмах машинного обуч
knn2 = KNeighborsClassifier()
param_grid = {'n_neighbors': np.arange(49, 51)}

#use gridsearch to test all values for n_neighbors
knn_gscv = GridSearchCV(knn2, param_grid, cv = 5)

#fit model to data
knn_gscv.fit(X, y)

knn_gscv.best_params_
```

результат вышел один и тот же в двух случаях что говорит о правильности результатов

In [41]:

```
# здесь мы строим ROC curve of KNN для того чтобы оценить степень шума в наших данных
# из ROC cuve видно что AUC = 0.61 что говорит либо низкой либо о высокой степени шума в на
from warnings import filterwarnings
filterwarnings(action = 'ignore', category = DeprecationWarning, message = '`np.int` is a d
knn = KNeighborsClassifier(n_neighbors = 50)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
y_scores = knn.predict_proba(X_test)
fpr, tpr, threshold = roc_curve(y_test, y_scores[:, 1])
roc_auc = auc(fpr, tpr)
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.title('ROC Curve of kNN')
plt.show()
```


In [42]:

```
print(classification_report(y_test, y_pred, target_names = ['0', '1']))
              precision
                           recall f1-score
                                               support
           0
                   0.58
                             0.67
                                        0.62
                                                  9415
           1
                             0.49
                                        0.53
                   0.58
                                                  8942
                                        0.58
    accuracy
                                                 18357
  macro avg
                   0.58
                             0.58
                                        0.58
                                                 18357
weighted avg
                   0.58
                             0.58
                                        0.58
                                                 18357
```

In [43]:

```
conf_matrix = confusion_matrix(y_test, y_pred).T #.transpose()
conf_matrix
```

Out[43]:

```
array([[6268, 4553], [3147, 4389]], dtype=int64)
```

For the sales dataframe

In [44]:

```
# cross-validation
from warnings import filterwarnings
filterwarnings(action = 'ignore', category = DeprecationWarning, message = '`np.bool` is a
num_folds = 5
neighbors = range(3,51,3)
k_scores = []
for k in neighbors:
    knn = KNeighborsClassifier(n_neighbors = k)
    scores = cross_val_score(knn, X1, y1, cv = num_folds, scoring = 'accuracy')
    k_scores.append(scores.mean())

plt.plot(neighbors, k_scores)
plt.xlabel('Value of k for kNN')
plt.ylabel('Cross-Validated Accuracy')
plt.show()
```


As we can see the best K is approximately between 47 and 51.

In [45]:

```
knn2 = KNeighborsClassifier()
param_grid = {'n_neighbors': np.arange(48, 51)}

#use gridsearch to test all values for n_neighbors
knn_gscv = GridSearchCV(knn2, param_grid, cv=5)

#fit model to data
knn_gscv.fit(X1, y1)

knn_gscv.best_params_
```

Out[45]:

```
{'n_neighbors': 48}
```

In [46]:

```
filterwarnings(action='ignore', category = DeprecationWarning, message = '`np.int` is a dep
knn = KNeighborsClassifier(n_neighbors = 48)
knn.fit(X1_train, y1_train)
y_pred = knn.predict(X1_test)
y_scores = knn.predict_proba(X1_test)
fpr, tpr, threshold = roc_curve(y1_test, y_scores[:, 1])
roc_auc = auc(fpr, tpr)
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.title('ROC Curve of kNN')
plt.show()
```


In [47]:

```
print(classification_report(y1_test, y_pred, target_names = ['0', '1']))
```

	precision	recall	f1-score	support
0	0.58	0.62	0.60	3694
1	0.59	0.54	0.56	3640
accuracy			0.58	7334
macro avg	0.58	0.58	0.58	7334
weighted avg	0.58	0.58	0.58	7334

```
In [48]:
```

```
conf_matrix = confusion_matrix(y1_test, y_pred).T #.transpose()
conf_matrix

Out[48]:
array([[2307, 1676],
```

Decision Trees

In [49]:

```
#grid search

parameters = {'max_depth': range(3, 20)}

dt = GridSearchCV(DecisionTreeClassifier(), parameters, n_jobs = 4)

dt.fit(X = X, y = y)

dt_model = dt.best_estimator_
print (dt.best_score_, dt.best_params_)
```

```
0.5493076292618377 {'max_depth': 12}
```

[1387, 1964]], dtype=int64)

As we can see the best max_depth is 12.

In [50]:

```
dt = DecisionTreeClassifier(max_depth = 12)
dt.fit(X_train, y_train)
```

Out[50]:

DecisionTreeClassifier(max_depth=12)

In [51]:

```
dt.get_params()
```

Out[51]:

```
{'ccp_alpha': 0.0,
  'class_weight': None,
  'criterion': 'gini',
  'max_depth': 12,
  'max_features': None,
  'max_leaf_nodes': None,
  'min_impurity_decrease': 0.0,
  'min_samples_leaf': 1,
  'min_samples_split': 2,
  'min_weight_fraction_leaf': 0.0,
  'random_state': None,
  'splitter': 'best'}
```

```
In [52]:
predictions = dt.predict(X_test)
predictions
Out[52]:
array([0, 1, 0, ..., 0, 1, 0], dtype=int64)
In [53]:
y_scores = dt.predict_proba(X_test)
y_scores
Out[53]:
array([[0.54377147, 0.45622853],
       [0.47460686, 0.52539314],
       [0.54377147, 0.45622853],
       [0.55178571, 0.44821429],
       [0.47623486, 0.52376514],
       [0.5140809 , 0.4859191 ]])
In [54]:
accuracy_score(y_test, predictions)
Out[54]:
0.5746036934139566
In [55]:
conf_matrix = confusion_matrix(y_test, predictions, labels = [0, 1]).T #.transpose()
conf_matrix
Out[55]:
array([[6307, 4701],
       [3108, 4241]], dtype=int64)
In [56]:
precision_score(y_test, predictions)
Out[56]:
0.5770853177303035
In [57]:
recall_score(y_test, predictions)
Out[57]:
0.4742786848579736
```

In [58]:

```
print(classification_report(y_test, predictions))
```

	precision	recall	f1-score	support
0	0.57	0.67	0.62	9415
1	0.58	0.47	0.52	8942
accuracy			0.57	18357
macro avg	0.58	0.57	0.57	18357
weighted avg	0.57	0.57	0.57	18357

In [59]:

```
fpr, tpr, threshold = roc_curve(y_test, y_scores[:, 1])
roc_auc = auc(fpr, tpr)

plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.title('ROC Curve of kNN')
plt.show()
```


In [60]:

```
feature_names = X.columns
feature_names
```

Out[60]:

In [61]:

```
dt.feature_importances_
```

Out[61]:

```
array([0.26214092, 0.15780432, 0.44017625, 0.05993283, 0.03788173, 0.00942628, 0.01413568, 0.01850199])
```

In [62]:

For the sales dataframe

In [63]:

```
parameters = {'max_depth': range(3, 20)}
dt = GridSearchCV(DecisionTreeClassifier(), parameters, n_jobs = 4)
dt.fit(X = X1, y = y1)
dt_model = dt.best_estimator_
print (dt.best_score_, dt.best_params_)
```

```
0.5802335326916277 {'max_depth': 10}
```

```
In [64]:
```

```
dt = DecisionTreeClassifier(max_depth = 10)
dt.fit(X1_train, y1_train)
predictions = dt.predict(X1_test)
predictions
```

Out[64]:

```
array([0, 1, 1, ..., 1, 0, 1], dtype=int64)
```

In [65]:

```
y1_scores = dt.predict_proba(X1_test)
y1_scores
```

Out[65]:

In [66]:

```
print('Accuracy:', accuracy_score(y1_test, predictions), '\n')
print('Precision:', precision_score(y1_test, predictions), '\n')
print('Recall:', recall_score(y1_test, predictions), '\n')
print(classification_report(y1_test, predictions))
```

Accuracy: 0.5743114262339787

Precision: 0.5755983654407473

Recall: 0.5417582417582417

	precision	recall	f1-score	support
0	0.57	0.61	0.59	3694
1	0.58	0.54	0.56	3640
accuracy			0.57	7334
macro avg	0.57	0.57	0.57	7334
weighted avg	0.57	0.57	0.57	7334

In [67]:

```
confusion_matrix(y1_test, predictions, labels = [0, 1]).T
```

Out[67]:

```
array([[2240, 1668],
[1454, 1972]], dtype=int64)
```

In [68]:

```
fpr, tpr, threshold = roc_curve(y1_test, y1_scores[:, 1])
roc_auc = auc(fpr, tpr)

plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.title('ROC Curve of kNN')
plt.show()
```


In [69]:

```
dt.feature_importances_
```

Out[69]:

```
array([0.55464821, 0.03565256, 0.33403897, 0.01510125, 0.03483475, 0.00274476, 0.01652425, 0.00645526])
```

In [70]:

Random Forest

In [71]:

```
parameters = {'max_depth':range(3, 20)}
rf = GridSearchCV(RandomForestClassifier(), parameters, n_jobs = 4)
rf.fit(X = X, y = y)
rf_model = rf.best_estimator_
print (rf.best_score_, rf.best_params_)
```

0.5488718828107311 {'max_depth': 12}

In [72]:

```
rf = RandomForestClassifier(max_depth = 13, random_state = 0)
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
y_scores = rf.predict_proba(X_test)
fpr, tpr, threshold = roc_curve(y_test, y_scores[:, 1])
roc_auc = auc(fpr, tpr)
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.title('ROC Curve of kNN')
plt.show()
```


In [73]:

```
print(classification_report(y_test, y_pred, target_names=['0', '1']))
```

	precision	recall	f1-score	support
0	0.58	0.66	0.62	9415
1	0.58	0.50	0.54	8942
accuracy			0.58	18357
macro avg	0.58	0.58	0.58	18357
weighted avg	0.58	0.58	0.58	18357

```
In [74]:
```

```
conf_matrix = confusion_matrix(y_test, y_pred).T #.transpose()
conf_matrix
```

Out[74]:

```
array([[6232, 4484], [3183, 4458]], dtype=int64)
```

For sales dataframe

In [75]:

```
parameters = {'max_depth':range(3, 20)}
rf = GridSearchCV(RandomForestClassifier(), parameters, n_jobs = 4)
rf.fit(X = X1, y = y1)
rf_model = rf.best_estimator_
print (rf.best_score_, rf.best_params_)
```

```
0.5748063665486542 {'max_depth': 11}
```

In [76]:

```
rf = RandomForestClassifier(max_depth = 10, random_state = 0)
rf.fit(X1_train, y1_train)
y_pred = rf.predict(X1_test)
y_scores = rf.predict_proba(X1_test)
fpr, tpr, threshold = roc_curve(y1_test, y_scores[:, 1])
roc_auc = auc(fpr, tpr)
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.title('ROC Curve of kNN')
plt.show()
```


In [77]:

print(classification_report(y1_test, y_pred, target_names=['0', '1']))

	precision	recall	f1-score	support
0	0.59	0.55	0.57	3694
1	0.57	0.61	0.59	3640
accuracy			0.58	7334
macro avg	0.58	0.58	0.58	7334
weighted avg	0.58	0.58	0.58	7334

Analysis

In [79]:

```
def plot_roc_curve_multiple_classifiers(X_test, y_true, clf_list,
                                        clf_names, class_num=1):
   for i, clf in enumerate(clf_list):
        pred = clf.predict_proba(X_test)[:, class_num]
        fpr, tpr, thresh = metrics.roc_curve(y_true, pred)
        auc = metrics.roc_auc_score(y_true, pred)
        label_plot = clf_names[i] + ' auc=' +str(auc.round(2))
        plt.plot(fpr,tpr,label=label_plot)
        plt.legend(loc='best')
        plt.xlabel('False Positive Rate')
        plt.ylabel('True Positive Rate')
def plot_precision_recall_curve_multiple_classifiers(X_test, y_true,
                                                      clf_list,
                                                      clf_names,
                                                      class num=1):
   for i, clf in enumerate(clf_list):
        pred = clf.predict_proba(X_test)[:, class_num]
        precision, recall, thresholds = metrics.precision_recall_curve(y_true, pred)
        auc = metrics.average_precision_score(y_true, pred)
        label plot = clf names[i] + ' auc=' +str(auc.round(2))
        plt.plot(recall,precision,label=label plot)
        plt.legend(loc='best')
        plt.xlabel('Recall')
        plt.ylabel('Precision')
def plot_multiple_model_evaluation(X_test, y_true,
                                   clf list, clf names, class num=1):
   plt.subplots(figsize=(15, 4))
   plt.subplot(121)
   plt.title('ROC Curve')
   plot_roc_curve_multiple_classifiers(X_test, y_test, clf_list, clf_names)
   plt.subplot(122)
   plt.title('Precision Recall Curve')
   plot_precision_recall_curve_multiple_classifiers(X_test, y_test, clf_list, clf_names)
   plt.show()
```

In [80]:

```
#sales dataset
clf_names = ['kNN', 'Decision Tree', 'Random Forest']
clf_list = [knn, dt, rf]
plot_multiple_model_evaluation(X_test, y_test, clf_list, clf_names)
```


Evaluating the Random Forest model, decision tree, knn on Validation data. Analysing the result in the validation dataset with a prediction threshold of 61%

We were able to correctly classify our data, but the overall accuracy score of 0.55 to 0.59 is not very good. It looks like we need more data (more features or a larger data set) to build a more reliable model.

Also from the ROC curve plot we got AUC = 0.61-0.62 which tells us Acceptable discrimination

Comparing Random forest and Decision tree, Random fores has a higher precision (0.58 vs. 0.57) and higher AUC (0.55 vs. 0.54). Their Sensitivity also differs by 0.01. Which says that Random forest is more suitable for our data

Random forest is the best algorithm for our dataset

We can see from the data visualization analysis that the transaction code "financial institution - manual withdrawal" appears the most in the transaction data. The highest number of transaction code descriptions were "Calls Using a Recorded Phone," "Grocery Stores, Supermarkets," and "Financial Institutions - Manual Withdrawals," all of which had similar numbers.

If we talk about the types of transactions, then most often we met "Purchase. Foreign POS." .

By evaluating the correlation between the values in our database, we can conclude that the values among themselves have a low correlation, which indicates a weak relationship. At the same time, the largest correlation coefficient was found between the type and transaction code.

If we talk about the amount of the transaction, then it has too much difference, since it includes both negative and positive values(depending on the operation), therefore they have a huge number of deviations

Conclusion

In short, we tried to predict the sex of the client based on the available dataset, to this end we had to help KNN, Desicion tree, Random forest machine learning algorithms

Neither KNN, Random Forest, nor the Decision tree algorithm are very useful in predicting customer gender based on time of day, code, type and sum attributes. This indicates that the data does not have the ability to predict. This is not a big surprise, indicating that there is no significant difference between genders when it

comes to these variables.

Possible solutions could be to extract new variables from the dataset (e.g. try to divide transactions by the time of year in which they occurred based on days), Optimize our current model - Find new hyperparameters that improve the roc AUC metric;