

## MA384 Fundamentos para el Cálculo

# Ejercicios de Funciones especiales

1. Indique el dominio de la función definida por f(x) = 3;  $x \in ]-4$ ; -1]. A continuación, trace su gráfica. *Solución:* 

El dominio de la función es Dom(f) = ]-4;-1].



2. Trace la gráfica de la función definida por  $f(x) = x^2 - 1$ ;  $x \in ]-3; 2]$ .

#### Solución:

La gráfica de la función cuadrática es una parábola cóncava hacia arriba (por el coeficiente principal positivo) y que corta al eje y en -1 y al eje x en -1 y 1 ( $x^2 - 1 = 0$ ).

Debemos tabular valores entre -3 y 2.



$$f(x) = x^2 - 1; x \in ]-3; 2]$$

| х              | f(x)           |  |
|----------------|----------------|--|
| <del>-</del> 3 | 8              |  |
| <del>-</del> 2 | 3              |  |
| <del>-</del> 1 | 0              |  |
| 0              | <del>-</del> 1 |  |
| 1              | 0              |  |
| 2              | 3              |  |



3. Trace la gráfica de la función  $f(x) = \sqrt{x-1}$ ;  $x \in [1; 10]$ . Use mínimo 3 puntos. A partir de la gráfica obtenida determine el rango.

#### Solución:

La gráfica de f(x) es una curva que se abre hacia la derecha y que parte de  $1(x-1 \ge 0)$ .

Debemos tabular valores entre 1 y 10.

| х  | f(x) |
|----|------|
| 1  | 0    |
| 2  | 1    |
| 5  | 2    |
| 10 | 3    |

El rango de la función es Ran(f) = [0; 3].



$$f(x) = \sqrt{x-1}; x \in [1; 10]$$



4. Trace la gráfica de la función  $f(x) = \frac{1}{x}$ ;  $x \in ]0;4]$ . Determine el rango. Use como mínimo 4 puntos.

### Solución:

La gráfica de f(x) es una curva decreciente entre 0 y 4  $(x \neq 0)$ .

Debemos tabular valores entre 0 y 4.

$$f(x) = \frac{1}{x}; x \in ]0; 4]$$



El rango de la función es  $Ran(f) = [0,25; \infty[$ .



| $2^n$          | х     | f(x) |
|----------------|-------|------|
| 2-3            | 0,125 | 8    |
| 2-2            | 0,25  | 4    |
| 2-1            | 0,5   | 2    |
| 2 <sup>0</sup> | 1     | 1    |
| 2 <sup>1</sup> | 2     | 0,5  |
| 2 <sup>2</sup> | 4     | 0,25 |

5. Grafique la función lineal f(x) = 2x - 4;  $x \le 3$ .

# Solución:

La gráfica de f(x) es una recta creciente  $(x \le 3)$ .

Debemos tabular los puntos de corte con los ejes.

Para 
$$x = 0$$
,  $y = -4$  y para  $y = 0 = 2x - 4$ ,  $x = 2$ 

Entonces el corte con el eje y sería en (0; -4) y el corte con el eje x sería en (2; 0)

$$f(x) = 2x - 4; x \in ]-\infty; 3]$$



| Función              | Dominio            | Rango              |
|----------------------|--------------------|--------------------|
| $f(x) = \frac{1}{x}$ | $\mathbb{R}-\{0\}$ | $\mathbb{R}-\{0\}$ |
| f(x) = -2            | $\mathbb{R}$       | {-2}               |
| f(x) = -3x + 6       | $\mathbb{R}$       | $\mathbb{R}$       |
| $f(x) = \sqrt{x}$    | [0;∞[              | [0;∞[              |
| $f(x) = x^2$         | $\mathbb{R}$       | [0;∞[              |

