Fault Detection in Factory Machines

190346A - Laksika T

190287R - Kajanan S

190277L - Jayaweera IGHI

190408R - Nanayakkara NKPI

Introduction

- Predictive maintenance is vital in industry, preventing machine faults, minimizing downtime, and enhancing safety.
- It's used in aviation, manufacturing, energy, transportation, and healthcare, ensuring efficiency and safety.
- We aims to ensure continuous machinery operation and reduce risks associated with unplanned failures.
- Objective: Create a specialized anomaly detection model for vibration data to improve operational efficiency and resource allocation.

1

Data Collection and Organization to Create a Combined Dataset

Introduction to Dataset

- Two distinct datasets:
 - □ Vibration dataset: Contains vibration measurements of M2 recorded from 4 sensors. [It might contain noise of other 20 machines]
 - Machine status dataset: Used 3 sensors to capture 21 machines' status at 1 min time interval.
 [Sensor 1 M1 to M5, Sensor 2 M6 to M13, Sensor 3 M14 to M21]
- Organized on a weekly basis, with each week comprising two essential data sources.
- Vibration measurements:
 - "OAVelocity", "Peakmg", "RMSmg", "Kurtosis", "CrestFactor", "Skewness", "Deviation", "PeaktoPeakDisplacement" are in X, Y, and Z directions.
- Expectation: Earlier Fault Detection for Machine 2

Dataset Preprocessing

Dataset Preprocessing

- ☐ Handling Missing Values: Rows with missing timestamps were removed, and any inconsistencies in timestamp formatting were rectified.
- □ **Duplicate Management:** We identified duplicate records by considering a combination of 'Timestamp' and relevant identifiers. To ensure data integrity, only the initial non-duplicate entries were retained.
- Enhance data interpretation: We transformed the 'Timestamp' column into a human-readable 'DateTime' format, '%Y-%m-%d %H:%M:%S'.

Merging the Vibration Dataset with Machine Status Dataset

```
mapped df = (
    pd.merge asof(
        pd.merge asof(
            pd.merge asof(
                vibration df, sensor1, on="Timestamp", direction="nearest"
            sensor2, on="Timestamp", direction="nearest"
        sensor3, on="Timestamp", direction="nearest"
```

Merging the Vibration Dataset with Machine Status Dataset

	Timestamp	s1_Timestamp_minutes_diff	s2_Timestamp_minutes_diff	s3_Timestamp_minutes_diff
count	1.072540e+05	107254.000000	107254.000000	107254.000000
mean	1.682959e+12	1734.691476	1746.994771	1734.630649
std	8.688836e+09	6227.885838	6225.911193	6227.902302
min	1.668730e+12	0.000017	0.000000	0.000000
25%	1.675262e+12	0.139687	0.140950	0.138033
50%	1.682539e+12	0.285533	0.288067	0.283400
75%	1.690486e+12	0.430229	0.435100	0.429017
max	1.698624e+12	40311.339017	40311.341983	40311.341767

```
s1_m = [f"machine{i}" for i in range(1, 6)]
s2_m = [f"machine{i}" for i in range(6, 14)]
s3_m = [f"machine{i}" for i in range(14, 22)]

def handle_outlier_machine_status(row):
    if row["s1_Timestamp_minutes_diff"] > tolerance:
        row[s1_m] = 0
    if row["s2_Timestamp_minutes_diff"] > tolerance:
        row[s2_m] = 0
    if row["s3_Timestamp_minutes_diff"] > tolerance:
        row[s3_m] = 0

return row
```

15 min as tolerance

FINAL MERGED DATASET

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 107254 entries, 0 to 107253
Data columns (total 63 columns):
# Column
                               Non-Null Count
                                                 Dtype
     Timestamp
                               107254 non-null
                                                 int64
                               107254 non-null
     DateTime
                                                 object
     SensorID
                               107254 non-null
                                                 object
                               107254 non-null
     SequenceNumber
                                                 object
     TotalLength
                               107254 non-null
                                                 float64
     SourceAddress
                               0 non-null
107254 non-null
                                                  float64
     TempHumiRange
                                                 float64
                               107254 non-null
     TempHumiStatus
                                                 float64
     TempHumiEvent
                               107254 non-null
                                                 float64
     TempHumiSenVal
                               107254 non-null
                                                 float64
    XSenEvent
XOAVelocity
                               107254 non-null
107254 non-null
                                                 float64
                                                 float64
     XPeakmg
                               107254 non-null
                                                 float64
 13
    XRMSmg
                               107254 non-null
                                                 float64
 14
     XKurtosis
                               107254 non-null float64
                               107254 non-null float64
 15
    XCrestFactor
                               107254 non-null
107254 non-null
     XSkewness
                                                 float64
     XDeviation
                                                 float64
     XPeaktoPeakDisplacement
                               107254 non-null
                                                 float64
     YSenEvent
                               107254 non-null
                                                 float64
 20
     Y0AVelocity
                               107254 non-null
                                                 float64
                               107254 non-null
 21
                                                 float64
     YPeakmg
 22
     YRMSmg
                               107254 non-null
                                                 float64
     YKurtosis
                               107254 non-null
                                                 float64
 24
     YCrestFactor
                               107254 non-null
                                                 float64
     YSkewness
                               107254 non-null
                                                 float64
     YDeviation
                               107254 non-null
                                                 float64
                               107254 non-null
     YPeaktoPeakDisplacement
                                                 float64
     ZSenEvent
                               107254 non-null
                                                 float64
     ZOAVelocity
                               107254 non-null
 29
                                                 float64
                               107254 non-null
                                                 float64
 30
     ZPeakmg
                               107254 non-null
107254 non-null
 31
     ZRMSma
                                                 float64
     ZKurtosis
                                                 float64
 33
     ZCrestFactor
                               107254 non-null
                                                 float64
 34
     ZSkewness
                               107254 non-null
                                                 float64
 35
     ZDeviation
                               107254 non-null
                                                 float64
     ZPeaktoPeakDisplacement
                               107254 non-null float64
                               107254 non-null
     LoaIndex
                                                 float64
     DeviceEvents
                               107254 non-null
                                                 float64
     DevicePowerSrc
                               107254 non-null
                                                 float64
     DeviceBatteryVolt
                               107254 non-null
                                                 float64
                               107254 non-null
     DeviceTime
                                                 float64
                               107254 non-null
107254 non-null
     machine1
                                                 float64
     machine2
                                                 float64
                               107254 non-null
     machine3
                                                 float64
     machine4
                               107254 non-null
                                                 float64
                               107254 non-null
     machine5
                                                 float64
                               107254 non-null
     machine6
                                                 float64
                               107254 non-null
     machine7
                                                 float64
                               107254 non-null
     machine8
                                                 float64
     machine9
                               107254 non-null
                                                 float64
 51
     machine10
                               107254 non-null
                                                 float64
                               107254 non-null
     machine11
                                                 float64
                               107254 non-null
                                                 float64
     machine12
     machine13
                               107254 non-null
                                                 float64
     machine14
                               107254 non-null
                                                 float64
 56
     machine15
                               107254 non-null
                                                 float64
 57
     machine16
                               107254 non-null float64
                               107254 non-null
                                                 float64
     machine17
     machine18
                               107254 non-null
                                                 float64
     machine19
                               107254 non-null
                                                 float64
    machine20
                               107254 non-null float64
     machine21
                               107254 non-null float64
dtypes: float64(59), int64(1), object(3)
memory usage: 51.6+ MB
```

2

Exploratory Data Analysis

Data Analysis

- Analysis was conducted in following approaches.
 - Null and unique value analysis.
 - Correlation Analysis
 - Univariate time series analysis

- The dataset consisted of vibration data and machine status data.
- Analysis was performed on both types of data.

Null value Analysis

Percentage of null values was calculated and the feature 'SequenceNumber' was removed due to having significantly higher null value percentage.

Unique values

- Number of unique values were counted for each feature.
- This is helpful in determining the values which do not vary across the time.
- ☐ These values can be neglected when doing time series analysis since there is no change with the time.

Correlation Analysis

- Correlation analysis is important in feature selection for modelling as well.
- Correlation was checked in vibration data and machine status data separately.

- 1.0																		
	TempHumiSenVal -	1	0.36	0.58	0.58		0.44		0.57	0.27	0.45	0.56	0.56	0.6	0.54	0.54		0.079
	XOAVelocity -	0.36	1	0.7	0.7				0.35		0.69	0.46	0.46	0.67	0.31	0.31		0.11
	XPeakmg -	0.58	0.7				0.37			0.58	0.71				0.72	0.72		0.13
- 0.8	XRMSmg -	0.58	0.7				0.37			0.58	0.71				0.72	0.72		0.13
	XKurtosis -	0.11	0.032	0.11	0.11	1	0.26			0.059								-0.01
	XCrestFactor -	0.44		0.37	0.37	0.26	1		0.56		0.23	0.47	0.47	0.36	0.4	0.4		0.089
	XSkewness -	-0.018	0.094	0.035	0.034	0.0067			-0.0026		0.056	0.018	0.018	0.026	0.0043	0.0043		-0.019
- 0.6	XDeviation -	0.57	0.35				0.56		1	0.31	0.54			0.67	0.69	0.69		0.055
	XPeaktoPeakDisplacement -	0.27	0.87	0.58	0.58		0.077		0.31	1	0.63	0.39	0.39	0.6	0.21	0.21		0.083
	YOAVelocity -	0.45	0.69	0.71	0.71		0.23		0.54	0.63	1	0.71	0.71	0.71	0.44	0.44		0.095
	YPeakmg -	0.56	0.46	0.89			0.47		0.89	0.39	0.71	1	1	0.72	0.71	0.71		0.11
- 0.4	YRMSmg -	0.56	0.46				0.47			0.39	0.71		1	0.72	0.71	0.71		0.11
	ZOAVelocity -	0.6	0.67				0.36		0.67	0.6	0.71	0.72	0.72	1				0.094
	ZPeakmg -	0.54	0.31	0.72	0.72		0.4		0.69	0.21	0.44	0.71	0.71	0.76	1.	1		0.044
	ZRMSmg -	0.54	0.31	0.72	0.72		0.4		0.69	0.21	0.44	0.71	0.71					0.044
- 0.2	DevicePowerSrc -	-0.0056	-0.0033	-0.0052	-0.0051	-0.0013	0.001		-0.0044	-0.0027	-0.0049	-0.0048	-0.0048	-0.004			1	0.098
	DeviceBatteryVolt -																0.098	1
		TempHumiSenVal -	XOAVelocity -	XPeakmg -	XRMSmg -	XKurtosis -	XCrestFactor -	XSkewness -	XDeviation -	eaktoPeakDisplacement -	YDAVelocity -	'Peakmg -	YRMSmg -	ZOAVelocity -	ZPeakmg -	ZRMSmg -	DevicePowerSrc -	DeviceBattery/volt -

- 0.8

Analysis with machine 2

- Different phase of analysis was done taking into account the status of machine 2.
- Status of any machine can be one of,
 - □ 1 : on
 - □ 0 : off
 - -1 : unknown
- When considering the correlation between vibration data and status of machine 2 following features showed the highest correlation.
 - ☐ ZOAVelocity: 0.630355
 - ☐ XPeakmg: 0.592414
 - ☐ XRMSmg: 0.592159
 - ☐ TempHumiSenVal: 0.58641
 - ☐ ZPeakmg:0.585569

Univariate time series analysis

- The selected set of features were further taken into consideration for univariate time series analysis.
- □ Seasonal decomposition was used to decompose the time series data.
- The intention of this analysis was to observe trend and seasonality after decomposition.
- ☐ There were no significant patterns observed in trend and seasonality.

Preparing Machine 2
Dataset including Pure &
Noisy Data

Data Filtering

- Our analysis on machine 2
- ☐ Machine 2 should be in the "on" (1) mode
- Other rows were omitted
- Differentiated resulting dataset into
 - "pure" (only machine 2's vibrations)
 - "noisy" (affected by other machines)
- □ Created a binary feature called "is_pure" (0 for noisy, 1 for pure data)

Data Filtering

Assumptions on Data Filtering

- Machines 1 to 5 (M1 M5) are physically close to machine 2 (M2) in the industrial setup. Based on,
 - Serial number
 - □ Same sensor has been used to capture the status of them
- When M2 operates, its vibrations are **mostly** affected by the neighboring machines (M1, M3 M5) rather than far away machines 6 to 21.
- \square is pure = (M2 == 1) & (M1, M3 M5 == 0)

Model Development

Overview of Model Methodology

Overview of Model Methodology

Discriminator Development: Penalizer of Generator

One input sample	>

XOAVelocity	XPeakmg	XRMSmg	XKurtosis	XCrestFactor	XSkewness	XDeviation	XPeaktoPeakDisplacement
YOAVelocity	YPeakmg	YRMSmg	YKurtosis	YCrestFactor	YSkewness	YDeviation	YPeaktoPeakDisplacement
ZOAVelocity	ZPeakmg	ZRMSmg	ZKurtosis	ZCrestFactor	ZSkewness	ZDeviation	ZPeaktoPeakDisplacement

Architecture of Discriminator

```
Discriminator(
  (discriminator): Sequential(
    (0): Conv1d(3, 24, kernel_size=(3,), stride=(1,), padding=(1,))
    (1): ReLU()
    (2): Conv1d(24, 8, kernel size=(3,), stride=(1,), padding=(1,))
    (3): ReLU()
    (4): MaxPool1d(kernel_size=4, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Flatten(start dim=1, end dim=-1)
    (6): Linear(in features=24, out features=8, bias=True)
    (7): ReLU()
    (8): Linear(in features=8, out features=3, bias=True)
    (9): ReLU()
    (10): Linear(in_features=3, out_features=1, bias=True)
    (11): Sigmoid()
```

$num_{epochs} = 500, lr = 0.001$

Generator Development

One input sample	>

XOAVelocity	XPeakmg	XRMSmg	XKurtosis	XCrestFactor	XSkewness	XDeviation	XPeaktoPeakDisplacement
YOAVelocity	YPeakmg	YRMSmg	YKurtosis	YCrestFactor	YSkewness	YDeviation	YPeaktoPeakDisplacement
ZOAVelocity	ZPeakmg	ZRMSmg	ZKurtosis	ZCrestFactor	ZSkewness	ZDeviation	ZPeaktoPeakDisplacement

Architecture of Generator

```
Generator(
  (encoder): Sequential(
    (0): Conv1d(3, 24, kernel_size=(3,), stride=(1,), padding=(1,))
    (1): LeakyReLU(negative slope=0.2)
    (2): Conv1d(24, 16, kernel size=(3,), stride=(1,), padding=(1,))
    (3): LeakyReLU(negative_slope=0.2)
    (4): Conv1d(16, 8, kernel_size=(3,), stride=(1,), padding=(1,))
    (5): LeakyReLU(negative slope=0.2)
    (6): Flatten(start_dim=1, end_dim=-1)
    (7): Linear(in features=64, out features=3, bias=True)
    (8): LeakyReLU(negative_slope=0.2)
  (decoder): Sequential(
    (0): Linear(in_features=3, out_features=8, bias=True)
    (1): LeakyReLU(negative slope=0.2)
    (2): Linear(in features=8, out features=16, bias=True)
    (3): LeakyReLU(negative_slope=0.2)
    (4): Linear(in_features=16, out_features=24, bias=True)
    (5): ReLU()
```

Generator Development

```
Cost
=
α * [-log(reconstruction_is_pure).mean()]
+
β * MSE(reconstructed_data, original_data)
```

num epochs = 500, 1r=0.001, alpha = 1, beta = 2


```
with torch.no_grad():
    test_X_hat = generator(test_X_tensor)
    test_is_pure = discriminator(test_X_hat)
    test_is_pure_class = test_is_pure.round()

print(f"mse as reconstruction_error: {generator_cost(test_X_hat, test_X_tensor)}")
print(f"accuracy_score: {accuracy_score(torch.ones(test_is_pure_class.shape), test_is_pure_class)}")
```

Fault Detection

- Our project revolves around the core principle of unsupervised anomaly detection.
- □ Dataset lacks predefined labels for normal or anomalous data points, making unsupervised methods a natural choice.
- We thoughtfully selected three specific unsupervised approaches:
 - □ K-means clustering Clustering approach
 - ☐ Isolation Forest
 - One-Class SVM

Anomaly detection approaches

K-Means Clustering: Understanding Faulty States

- K-Means clustering, an unsupervised method, is a crucial component of our approach.
- → K-Means' capability allows us to categorize data into "faulty" and "non-faulty" states without the need for predefined labels.
- We used below of them are the selected features,
 - XOAVelocity, YOAVelocity, ZOAVelocity

K-Means Clustering

cluster

0

Isolation Forest and One-Class SVM for Anomaly Detection

- We used the Isolation Forest and the One-Class Support Vector Machine (SVM) as our next approaches.
- These unsupervised techniques excel at identifying anomalies without the need for predefined labels, which is vital for detecting early machine faults.
- We used below of them are the selected features,
 - □ XOAVelocity, YOAVelocity, ZOAVelocity

Isolation Forest

is_anomaly

• 0

• 1

One-Class SVM

is_anomaly

• 0

• 1

Fault Detection

Algorithm	Silhouette Score
K-Means clustering	0.731
Isolation Forest	0.727
One-Class SVM	0.563

Model Explainability - SHAP

Security & Ethical Consideration

- ☐ We ensure not to share the data with anyone by signing a nondisclosure agreement.
- The machine learning model built for machine 2 has been adhered to all relevant constraints and ethical considerations.
- Protect the privacy machine data
- Restrict data access and disclose sensitive data only when necessary
- ☐ To maintain the fairness of the model, the data has been preprocessed with eliminating the bias.

Business Impact

- Financial Decision Making
- Operational Efficacy
- Data-Driven Decision-Making

References

https://youtu.be/uflNa-XGX2M?si=zj3rsVCsiJZMz2-9

https://www.analyticsvidhya.com/blog/2023/01/learning-different-techniques-of-anomaly-detection/

https://www.intellspot.com/anomaly-detection-algorithms/

https://towardsdatascience.com/a-novel-approach-to-feature-importance-shapley-additive-explanations-d18af30fc21b

https://medium.com/analytics-vidhya/anomaly-detection-using-generative-adversarial-networks-gan-ca433f2ac287

THANK YOU!

Any Questions?