Musterlösung zum Übungsblatt 5 der Vorlesung "Grundbegriffe der Informatik"

Aufgabe 5.1

- a) $G = (\{S\}, \{a, b\}, S, P = \{S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon\})$
- b) $S \Rightarrow bSb \Rightarrow baSab \Rightarrow baaab$
- c) $S \Rightarrow aSa \Rightarrow abSba \Rightarrow abaSaba \Rightarrow abaaaba$
- d) Sei w ein Palindrom über $\{a,b\}$. Wir zeigen durch Induktion über n=|w|, dass alle Palindrome gerader Länge aus S abgeleitet werden können. Die Induktionsannahme soll sein: Alle Palindrome der Länge n und der Länge n+1 sind aus S ableitbar.

Induktionsanfang: n = 0: Das leere Wort ϵ ist in einem Schritt aus S ableitbar.

Die einzigen Wörter aus $\{a, b\}^*$ der Länge 1 sind a und b.

Es gibt die Ableitungen $S \Rightarrow$ a und $S \rightarrow$ b.

Induktionsannahme: Für ein festes $n \in \mathbb{N}_0$ gilt, dass alle Palindrome der Länge n und alle Palindrome der Länge n+1 aus S abgeleitet werden können.

Induktionsschritt: Dann sind auch alle Palindrome der Länge n + 1 und alle Palindrome der Länge n + 2 aus S ableitbar:

Nach Induktionsannahme sind alle Palindrome der Länge n+1 aus S ableitbar.

Sei w ein Palindrom der Länge n+2. Das erste (und damit auch das letzte) Zeichen sei a. Dann gibt es ein $w' \in \{a, b\}^*$, so dass w = aw'a ist.

Da w ein Palindrom ist, Gilt für $0 \le i \le n+1$: w(i) = w(n+1-i). Daraus folgt, dass auch für $0 \le i \le n-1$ gilt: w'(i) = w'(n-1-i), und damit ist auch auch w' ein Palindrom. Weiterhin gilt |w'| = n. Nach Induktionsannahme gibt es somit eine Ableitung $S \Rightarrow^* w'$.

Somit gibt es die Ableitung $S \Rightarrow aSa \Rightarrow^* aw'a = w$, und $w \in L(G)$ folgt.

Entsprechendes gilt, wenn das erste Zeichen von w ein b ist.

Aufgabe 5.2

a) Wir zeigen, dass für jedes aus S ableitbare Wort $w \in \{S, a, b\}^*$ gilt: $N_a(w) = N_b(w)$. Dies wird durch eine Induktion über die Ableitungslänge k gezeigt.

Induktionsanfang: k = 0: Aus S lässt sich mit 0 Schritten nur S ableiten, und $N_a(S) = N_b(S) = 0$.

Induktionsannahme: Für ein festes k gilt: Jedes Wort $w \in \{S, a, b\}^*$, dass sich in k Schritten aus S ableiten lässt, erfüllt $N_a(w) = N_b(w)$.

Induktionsschritt: Wenn die Induktionsannahme gilt, erfüllen auch alle Wörter $w' \in \{S, a, b\}^*$ die Gleichung $N_a(w') = N_b(w')$.

Nach k Ableitungsschritten haben wir ein Wort $w \in \{S, a, b\}^*$, aus dem wir ein weiteres Wort w' ableiten können; somit muss w mindestens ein S enthalten.

Es gibt also $w_1 \in \{S, a, b\}^*, w_2 \in \{S, a, b\}^*$, so dass $w = w_1 S w_2$ und $w' \in \{w_1\}\{SS, aSb, bSa, \epsilon\}\{w_2\}$ gilt.

1. Fall: $w' \in \{w_1SSw_2, w_1w_2\}$: In diesem Fall gilt $N_a(w') = N_a(w_1) + N_a(w_2) = N_a(w_1Sw_2)$

Nach Induktionsvoraussetzung gilt $N_a(w_1Sw_2) = N_b(w_1Sw_2)$, und es folgt:

$$N_a(w') = N_a(w_1 S w_2) = N_b(w_1 S w_2) = N_b(w_1) + N_b(w_2) = N_b(w').$$

2. Fall: $w' \in \{w_1 a S b w_2, w_1 b S a w_2\}$: In diesem Fall gilt $N_a(w') = N_a(w_1) + 1 + N_a(w_2) = 1 + N_a(w_1 S w_2)$

Nach Induktionsvoraussetzung gilt $N_a(w_1Sw_2) = N_b(w_1Sw_2)$, und es folgt:

$$N_a(w') = 1 + N_a(w_1 S w_2) = 1 + N_b(w_1 S w_2) = N_b(w_1) + 1 + N_b(w_2) = N_b(w').$$

Damit ist die Behauptung gezeigt.

Da jedes Wort in L(G) aus S ableitbar ist, folgt die Behauptung der Aufgabenstellung.

b) Wir zeigen durch Induktion über die Wortlänge n, dass jedes Wort $w \in \{a, b\}^*$ mit $N_a(w) = N_b(w)$ aus S ableitbar ist:

Induktionsanfang: n = 0: ϵ ist aus S ableitbar.

Induktionsannahme: Es gibt ein festes $n \in \mathbb{N}_0$, so dass alle Wörter $w \in \{a, b\}^*$, für die $N_a(w) = N_w(b)$ gilt und die **höchstens** die Länge n haben, aus S ableitbar sind.

Induktionsschritt: Dann gilt dies auch für alle Wörter $w \in \{a, b\}^*$, für die $N_a(w) = N_w(b)$ gilt und die **höchstens** die Länge n + 1 haben:

Falls $|w| \leq n$, folgt diese Aussage direkt aus der Induktionsannahme.

Sei im Folgenden also |w| = n + 1:

1. Fall: $w(0) \neq w(n)$: In diesem Fall gibt es ein $w' \in \{a, b\}^*$, so dass gilt:

w = aw'b oder w = bw'a.

Es muss dann gelten $N_a(w')N_a(w)-1=N_b(w)-1=N_b(w')$, und da |w'|<|w| gilt, folgt, dass w' aus S ableitbar ist.

Es gibt also eine Ableitung $S \Rightarrow aSb \Rightarrow^* aw'b = w$ beziehungsweise eine Ableitung $S \Rightarrow bSa \Rightarrow^* bw'a = w$.

Somit ist auch w aus S ableitbar.

2. Fall: w(0) = w(n):

Wir definieren $c: \mathbb{G}_{n+1} \to \mathbb{Z}$,

$$i \to \begin{cases} 1 & \text{falls } w(i) = w(0) \\ -1 & \text{sonst} \end{cases}$$

und
$$s: \mathbb{G}_{n+1} \to \mathbb{Z}, s(i) = \sum_{k=0}^{i} c(k)$$
.

Nach Voraussetzung gilt s(n) = 0, da das Zeichen w(0) ebenso oft in w vorkommt wie das andere Zeichen aus $\{a, b\}^*$.

Weiterhin gilt
$$s(0) = 1 > 0$$
 und $s(n) = s(n-1) + c(n) = s(n-1) + 1 \Rightarrow s(n-1) = -1 < 0$.

Da anfangs der Wert von s größer als 0 ist und eine Stelle vor Ende kleiner als 0 ist, muss es eine Stelle $j \in \mathbb{G}_{n-1}$ geben, für die gilt s(j) = 0.

Sei $w_1 = w(0) \cdots w(j)$ und w_2 das Wort in $\{a, b\}^*$, für das $w = w_1 w_2$ gilt.

Dann gilt, da s(j) = 0 gilt, $N_a(w_1) = N_b(w_1)$ und wegen $N_a(w) = N_b(w)$ und $N_a(w_1w_2) = N_a(w_1) + N_a(w_2)$ und $N_b(w_1w_2) = N_b(w_1) + N_b(w_2)$ folgt:

$$N_a(w_2) = N_a(w) - N_a(w_1) = a_b(w) - N_b(w_1) = N_b(w_2).$$

Sowohl w_1 als auch w_2 haben höchstens die Länge n-1 und sind somit nach Induktionsvoraussetzung aus S ableitbar.

Somit gibt es eine Ableitung $S \Rightarrow SS \Rightarrow^* w_1S \Rightarrow^* w_1w_2 = w$.

Somit ist auch w aus S ableitbar, und damit ist der Induktionsschritt gezeigt.

Aufgabe 5.3

- a) $S \circ R = S$.
- b) Wir müssen einerseits zeigen, dass jedes Paar $(a,b) \in S$ auch in $S \circ R$ liegt, und andererseits zeigen, dass jedes Paar $(a,b) \in S \circ R$ auch in S liegt.

• $(a,b) \in S \Rightarrow (a,b) \in S \circ R$:

Sei
$$(a, b) \in S$$
.

Es gilt: a teilt a, und somit gilt $(a, a) \in R$.

Damit $(a, b) \in S \circ R$ gilt, muss es ein $c \in \mathbb{N}_0$ geben, für das $(a, c) \in R$ und $(c, b) \in S$ gilt.

Für c = a sind beide Bedingungen erfüllt, und somit gilt $(a, b) \in S \circ R$.

• $(a,b) \in S \circ R \Rightarrow (a,b) \in S$:

Sei
$$(a, b) \in S \circ R$$
.

Dann gilt: $\exists c \in \mathbb{N}_0 : (a, c) \in R \land (c, b) \in S$.

Sei d = ggT(a, b). Dann ist d ein Teiler von a, und da a ein Teiler von c ist, ist auch d ein Teiler von c.

Damit ist d aber ein gemeinsamer Teiler von c und b, und da der größte gemeinsame Teiler von c und b 1 ist, folgt, dass d=1 gelten muss.

Somit folgt $(a, b) \in S$.

- c) $R \circ S = \mathbb{N}_0 \times \mathbb{N}_0$
- d) Offensichtlich liegt jedes Paar (a, b) aus $R \circ S$ auch in $\mathbb{N}_0 \times \mathbb{N}_0$.

Sei
$$(a, b) \in \mathbb{N}_0 \times \mathbb{N}_0$$
 und $c = 1$.

Dann gilt: ggT(a,c)=1 und c teilt b, also $(a,c)\in S\wedge (c,b)\in R$ und damit folgt

$$(a,b) \in R \circ S.$$