

Sparse-secret Ring-LWE in FHE: Is It Really Needed?

Ilia Iliashenko (joint work with Hao Chen, Kim Laine, Yongsoo Song)

Lattice Coding & Crypto Meeting, Royal Holloway

Learning with Errors (LWE)

$$oldsymbol{b} = oldsymbol{A} \cdot oldsymbol{s} + oldsymbol{e}$$

 $\pmb{A} \in \mathbb{Z}_q^{n \times n}$ is uniformly random, $\pmb{s} \in \mathbb{Z}_q^n$ and $\pmb{e} \in \mathbb{Z}_q^n$ is small.

Decision: distinguish between (A, b) and uniformly random (M, v).

Search: find s.

Sample s and e coefficient-wise

Uniformly random U_2 over $\{0,1\}^n$. Uniformly random U_3 over $\{-1,0,1\}^n$. Uniformly random U_q over \mathbb{Z}_q^n . Discrete Gaussian \mathcal{D}_q over \mathbb{Z}_q^n .

Hardness of LWE

Uniformly random U_2 over $\{0,1\}^n$. Uniformly random U_3 over $\{-1,0,1\}^n$. Uniformly random U_q over \mathbb{Z}_q^n . Discrete Gaussian \mathcal{D}_q over \mathbb{Z}_q^n .

$$s \leftarrow U_q$$
, or U_2 , or \mathcal{D}_q
 $e \leftarrow \mathcal{D}_q$ with $\sigma \in \Omega(\sqrt{n})$

LWE is as hard as classical lattice problems (GapSVP, DGS)

Sparse-secret LWE

$$\mathbf{s} \leftarrow U_3(h)$$
: $wt(\mathbf{s}) = h$
 $\mathbf{e} \leftarrow \mathcal{D}_q$???

Uniformly random U_2 over $\{0,1\}^n$. Uniformly random U_3 over $\{-1,0,1\}^n$. Uniformly random U_q over \mathbb{Z}_q^n . Discrete Gaussian \mathcal{D}_q over \mathbb{Z}_q^n .

Ring-LWE

Ring-LWE

$$b = a \cdot s + e$$

 $a, b, s, e \in R_q = \mathbb{Z}[X]/(q, X^n + 1)$ (n must be a power of two)

Hardness of Ring-LWE

$$b = a \cdot s + e$$

$$a, b, s, e \in R_q = \mathbb{Z}[X]/(q, X^n + 1)$$
 (n must be a power of two)

$$s \leftarrow U_q \text{ or } \mathcal{D}_q \longrightarrow \text{Ring-LWE is at least as hard as SIVP}$$

Attacks on sparse-secret LWE

Albrecht, Eurocrypt'17
Albrecht et al., Asiacrypt '17
Cheon et al., IEEE Access'19
Curtis and Player, WAHC'19
Cheon and Son, WAHC'19

• • •

Efficient FHE schemes need sparse secrets for bootstrapping

Bootstrapping performs decryption homomorphically.

Efficient FHE schemes need sparse secrets for bootstrapping

Multiplicative depth of bootstrapping depends on wt(s):

- FV: $\log(wt(s)) + \log(\log(wt(s)) + \log t)$
- BGV: $\log(wt(s)) + \log t$

Reference: Chen and Han, Eurocrypt'18

TFHE bootstrapping does not have this dependency.

Approximate HE

$$ct(m_1) \star ct(m_2) = ct(\simeq m_1 \odot m_2)$$

Approximate HE (HEAAN/CKKS)

Idea: consider ciphertext noise as a part of a message.

 $Decrypt(ct) = m + e \simeq m$.

HEAAN bootstrapping

HEAAN bootstrapping

HEAAN "bootstrapping"

plaintext is lost

HEAAN "bootstrapping"

plaintext is lost

Correctness of Homomorphic Encryption

HE scheme E is correct for a circuit C if for any plaintexts $\pi_1, ..., \pi_k$ it holds: If $ct = \text{Evaluate}_E(C, \text{Enc}(\pi_1), ..., \text{Enc}(\pi_k))$, then $\text{Dec}_E(ct) = C(\pi_1, ..., \pi_k)$.

Bootstrappable Encryption Scheme

Let C_E be the set of circuits that E can compactly and correctly evaluate. We say that E is bootstrappable with the respect to gate Γ if

$$Dec_E(\Gamma) \subseteq C_E$$
.

HEAAN "bootstrapping"

plaintext is lost

Correctness of Homomorphic Encryption

HE scheme E is correct for a circuit C if for any plaintexts $\pi_1, ..., \pi_k$ it holds: If $ct = \text{Evaluate}_E(C, \text{Enc}(\pi_1), ..., \text{Enc}(\pi_k))$, then $\text{Dec}_E(ct) = C(\pi_1, ..., \pi_k)$.

Bootstrappable Encryption Scheme

Let C_E be the set of circuits that E can compactly and correctly evaluate. We say that E is bootstrappable with the respect to gate Γ if

$$Dec_E(\Gamma) \subseteq C_E$$
.

HEAAN works with complex vectors

*with primitive roots of unity

How to encode less than n/2 values?

Decoding

^{*}with primitive roots of unity

Rotation of encoded vectors

Rotation of encoded vectors

 \mathbb{C}^m z_1 z_2 ... z_m z_1 z_2 ... z_m

Rotations by km slots are automorphisms of R fixing $R' = \mathbb{Z}\left[X^{\frac{n}{2m}}\right]/(q, X^n + 1)$, $R' \subset R$.

Key generation, encryption and decryption

Key generation

Key generation, encryption and decryption

Key generation

Encryption

Given a public key pk and an encoding $m \in R_q$ compute

Key generation, encryption and decryption

Key generation

Encryption

Given a public key pk and an encoding $m \in R_q$ compute

Decryption

Given a secret key s and a ciphertext $ct = (c_0, c_1)$ compute

$$[ct(s)]_q = c_0 + c_1 \cdot s \bmod q = m + e$$

Rescaling

Let Δ divide q.

 $R_{q/\Delta}$ R_q $\left\lfloor \frac{c_0}{\Delta} \right\rfloor$, $\left\lfloor \frac{c_1}{\Delta} \right\rfloor$ c_0, c_1 $\Delta^2 \cdot z_1$ $\Delta \cdot z_1$ $\Delta^2 \cdot z_2$ $\Delta \cdot z_2$... $\Delta^2 \cdot z_{n/2}$ $\Delta \cdot z_{n/2}$

 $\mathbb{C}^{n/2}$

HEAAN bootstrapping

Ciphertext

Plaintext

Cleartext vector

Input

 $ct \in R_q^2$

$$m\left(X^{\frac{n}{2m}}\right) = [ct(s)]_q$$

 $\boldsymbol{z_0}$

...

 Z_{m-1}

$$ct' \in R_{q'}^2, q' > q$$

$$\simeq m(X^{\frac{n}{2m}})$$

 $\boldsymbol{z_0}$

...

 Z_{m-1}

Ciphertext

Plaintext

Cleartext vector

Input

$$ct \in R_q^2$$

$$m\left(X^{\frac{n}{2m}}\right) = ct(s) - I(X) \cdot q$$

 $\mathbf{z_0}$

 z_{m-1}

$$ct' \in R_{q'}^2, q' > q$$

$$\simeq m(X^{\frac{n}{2m}})$$

 $\boldsymbol{z_0}$

...

 Z_{m-1}

Ciphertext

Plaintext

Cleartext vector

Input

$$ct \in R_q^2$$

$$m\left(X^{\frac{n}{2m}}\right) = ct(s) - I(X) \cdot q$$

 $\boldsymbol{z_0}$

...

 z_{m-1}

$$ct \in R^2_{Q_0}, Q_0 > q$$

$$\left[m\left(X^{\frac{n}{2m}}\right) + I(X) \cdot q\right]_{Q_0}$$

$$ct' \in R_{q'}^2, q' > q$$

$$\simeq m(X^{\frac{n}{2m}})$$

 $\boldsymbol{z_0}$

...

 Z_{m-1}

Ciphertext

Plaintext

Cleartext vector

$$ct \in R_q^2$$

$$m\left(X^{\frac{n}{2m}}\right) = ct(s) - I(X) \cdot q$$

$$z_{m-1}$$

$$ct_1 \in R_{Q_1}^2$$

 $ct \in R^2_{Q_0}$, $Q_0 > q$

$$\left[m\left(X^{\frac{n}{2m}}\right) + I(X) \cdot q\right]_{Q_0}$$

$$\simeq \left[m \left(X^{\frac{n}{2m}} \right) + I \left(X^{\frac{n}{2m}} \right) \cdot q \right]_{Q_1}$$

$$ct' \in R_{q'}^2, q' > q$$

$$\simeq m(X^{\frac{n}{2m}})$$

Ciphertext

Plaintext

Cleartext vector

$$ct \in R_q^2$$

$$m\left(X^{\frac{n}{2m}}\right) = ct(s) - I(X) \cdot q$$

$$z_{m-1}$$

$$ct_1 \in R_{Q_1}^2$$

 $ct \in R^2_{Q_0}$, $Q_0 > q$

$$\left[m\left(X^{\frac{n}{2m}}\right) + I(X) \cdot q\right]_{Q_0}$$

$$\simeq \left[t(X^{\frac{n}{2m}})\right]_{Q_1}$$

$$ct' \in R_{q'}^2, q' > q$$

$$\simeq m(X^{\frac{n}{2m}})$$

Ciphertext

Plaintext

Cleartext vector

$$ct \in R_q^2$$

$$m\left(X^{\frac{n}{2m}}\right) = ct(s) - I(X) \cdot q$$

$$z_0$$
 ... z_{m-1}

$$ct \in R^2_{Q_0}, Q_0 > q$$

$$\left[m\left(X^{\frac{n}{2m}}\right) + I(X) \cdot q\right]_{Q_0}$$

$$ct_1 \in R^2_{Q_1}$$

$$\simeq \left[t(X^{\frac{n}{2m}})\right]_{Q_1}$$

$$ct_2 \in R^2_{Q_2}$$

$$t_0$$
 ...

$$t_{2m-1}$$

$$ct' \in R_{q'}^2, q' > q$$

$$\simeq m(X^{\frac{n}{2m}})$$

$$z_0$$

Ciphertext

Plaintext

Cleartext vector

$$ct \in R_q^2$$

$$m\left(X^{\frac{n}{2m}}\right) = ct(s) - I(X) \cdot q$$

$$z_0$$
 ... z_{m-1}

$$ct \in R^2_{Q_0}, Q_0 > q$$

$$\left[m\left(X^{\frac{n}{2m}}\right) + I(X) \cdot q\right]_{Q_0}$$

$$ct_1 \in R^2_{Q_1}$$

$$\simeq \left[t(X^{\frac{n}{2m}})\right]_{Q_1}$$

$$ct_2 \in R^2_{Q_2}$$

$$ct_3 \in R^2_{Q_3}$$

$$t_0$$
 ... t_{2m-1}

$$m_0$$
 ...

$$m_{2m-1}$$

$$ct' \in R_{q'}^2, q' > q$$

$$\simeq m(X^{\frac{n}{2m}})$$

$$\boldsymbol{z_0}$$

$$z_{m-1}$$

Ciphertext

Plaintext

Cleartext vector

Input

$$ct \in R_q^2$$

$$m\left(X^{\frac{n}{2m}}\right) = ct(s) - I(X) \cdot q$$

$$z_0$$
 ... z_{m-1}

ModRaise

$$ct \in R^2_{Q_0}, Q_0 > q$$

$$\left[m\left(X^{\frac{n}{2m}}\right) + I(X) \cdot q\right]_{Q_0}$$

SubSum

$$ct_1 \in R^2_{Q_1}$$

$$\simeq \left[t(X^{\frac{n}{2m}})\right]_{Q_1}$$

CoefToSlot (inverse DFT)

$$ct_2 \in R^2_{Q_2}$$

 t_0 ... t_{2m-1}

Mod q

$$ct_3 \in R^2_{Q_3}$$

 m_0 ...

SlotToCoef (DFT)

$$ct_4 \in R^2_{Q_4}$$

$$\simeq \left[m(X^{\frac{n}{2m}}) \right]_{Q_4}$$

Output

$$ct' \in R_{q'}^2, q' > q$$

$$\simeq m(X^{\frac{n}{2m}})$$

*z*₀ ...

 z_{m-1}

 m_{2m-1}

Ciphertext

Plaintext

Cleartext vector

$$ct \in R_q^2$$

$$m\left(X^{\frac{n}{2m}}\right) = ct(s) - I(X) \cdot q$$

$$z_0$$
 ... z_{m-1}

$$ct \in R^2_{Q_0}, Q_0 > q$$

$$\left[m\left(X^{\frac{n}{2m}}\right) + I(X) \cdot q\right]_{Q_0}$$

$$ct_1 \in R_{Q_1}^2$$

$$\simeq \left[t(X^{\frac{n}{2m}})\right]_{Q_1}$$

$$ct_2 \in R^2_{Q_2}$$

$$t_0$$
 ... t_{2m-1}

$$ct_3 \in R^2_{Q_3}$$

$$m_0$$
 ...

$$ct_4 \in R^2_{Q_4}$$

$$\simeq \left[m(X^{\frac{n}{2m}}) \right]_{Q_4}$$

$$ct' \in R^2_{q'}, q' = Q_4$$

$$\simeq m(X^{\frac{n}{2m}})$$

$$z_{m-1}$$

 m_{2m-1}

SubSum

SubSum computes Tr: $R \to R'$, where $[R': \mathbb{Z}] = 2m$.

$$\sum_{i=0}^{\frac{n}{2m}-1} \operatorname{Rot}(ct, im)$$

$$\left[m\left(X^{\frac{n}{2m}}\right) + I(X) \cdot q\right]_{Q_0} \longrightarrow \left[m\left(X^{\frac{n}{2m}}\right) + I\left(X^{\frac{n}{2m}}\right) \cdot q\right]_{Q_1}$$

$$z_0$$
 ... z_{m-1} ... $\frac{n}{2m}z_0$... $\frac{n}{2m}z_{m-1}$

CoefToSlot = Encoding done homomorphically

SlotToCoef = Decoding done homomorphically

CoefToSlot = Encoding done homomorphically

SlotToCoef = Decoding done homomorphically

 Σ is the canonical embedding matrix (DFT with 4m-th primitive roots of unity)

$$\mathbf{z} \mapsto \mathbf{t} = \mathbf{\Sigma}^{-1} \cdot \mathbf{z}$$

$$\mathbf{t} \mapsto \mathbf{z} = \mathbf{\Sigma} \cdot \mathbf{t}$$

CoefToSlot = Encoding done homomorphically

SlotToCoef = Decoding done homomorphically

 Σ is the canonical embedding matrix (DFT with 4m-th primitive roots of unity)

$$\mathbf{z} \mapsto \mathbf{t} = \mathbf{\Sigma}^{-1} \cdot \mathbf{z} = L_1 \cdot \dots \cdot L_l \cdot \mathbf{z}$$

 L_i 's are sparser than M .

$$\mathbf{t} \mapsto \mathbf{z} = \mathbf{\Sigma} \cdot \mathbf{t} = \mathbf{L'}_1 \cdot \dots \cdot \mathbf{L'}_{l'} \cdot \mathbf{t}$$

The columns of L_i 's need to be encoded into the plaintext space.

CoefToSlot = Encoding done homomorphically

SlotToCoef = Decoding done homomorphically

 Σ is the canonical embedding matrix (DFT with 4m-th primitive roots of unity)

$$\mathbf{z} \mapsto \mathbf{t} = \mathbf{\Sigma}^{-1} \cdot \mathbf{z} = \mathbf{L}_1 \cdot \dots \cdot \mathbf{L}_l \cdot \mathbf{z}$$

 L_i 's are sparser than M .

$$\mathbf{t} \mapsto \mathbf{z} = \mathbf{\Sigma} \cdot \mathbf{t} = \mathbf{L'}_1 \cdot ... \cdot \mathbf{L'}_{l'} \cdot \mathbf{t}$$

The columns of L_i 's need to be encoded into the plaintext space.

CoefToSlot

$$ct_1 \in R_{Q_1}^2$$

SlotToCoef

$$ct_3 \in R^2_{Q_3}$$

Since $Q_1 > Q_3$, homomorphic operations in CoefToSlot are heavier than those of SlotToCoeff. Thus, use more FFT in CoefToSlot (l > l').

$$[ct(s)]_{Q_0} = m\left(X^{\frac{n}{2m}}\right) + I(X) \cdot q,$$

$$[ct(s)]_{Q_0} = m\left(X^{\frac{n}{2m}}\right) + I(X) \cdot q, \qquad |I(X)|_{\infty} < K$$

$$[ct(s)]_{Q_0} = m\left(X^{\frac{n}{2m}}\right) + I(X) \cdot q, \qquad |I(X)|_{\infty} < K \le 1 + wt(s)/2$$

$$[ct(s)]_{Q_0} = m(X^{\frac{n}{2m}}) + I(X) \cdot q, \qquad |I(X)|_{\infty} < K \le 1 + wt(s)/2$$

$$[x]_q \simeq \frac{q}{2\pi} \sin\left(\frac{2\pi x}{q}\right), \qquad x \in (-Kq, Kq)$$

$$[ct(s)]_{Q_0} = m(X^{\frac{n}{2m}}) + I(X) \cdot q, \qquad |I(X)|_{\infty} < K \le 1 + wt(s)/2$$

$$[x]_q \simeq \frac{q}{2\pi} \sin\left(\frac{2\pi x}{q}\right) = \frac{q}{2\pi} \cos\left(\frac{2\pi x}{q} - \frac{\pi}{2}\right), \qquad x \in (-Kq, Kq)$$

Sine should be approximated by a polynomial

Previous works:

• Cheon et al., Eurocrypt'18:

• Chen et al., Eurocrypt'19:

• Han-Ki, eprint'19:

Taylor + double-angle formula for sine

Chebyshev

Hermite + Chebyshev nodes + double-angle formula for cosine

Sine should be approximated by a polynomial

Previous works:

Cheon et al., Eurocrypt'18: Taylor + double-angle formula for sine

Chen et al., Eurocrypt'19: Chebyshev

• Han-Ki, eprint'19: Hermite + Chebyshev nodes + double-angle formula for cosine

The above results assume that

- the secret key s is sparse, wt(s) = 64,
- and, thus, $K \leq 12$ with high probability.

Sine should be approximated by a polynomial

Previous works:

Cheon et al., Eurocrypt'18: Taylor + double-angle formula for sine

Chen et al., Eurocrypt'19: Chebyshev

Han-Ki, eprint'19: Hermite + Chebyshev nodes + double-angle formula for cosine

The above results assume that

- the secret key s is sparse, wt(s) = 64,
- and, thus, $K \leq 12$ with high probability.

What happens when secret keys are dense?

Distribution of K when secret keys are dense

$$n = 2048$$

$$\max K = 57$$

$$n = 4096$$

$$\max K = 90$$

$$n = 8192$$

$$\max K = 125$$

Distribution of K when secret keys are dense

$$n = 16384$$

 $\max K = 177$

$$n = 32768$$

$$\max K = 255$$

$$n = 65536$$

$$\max K = 360$$

Distribution of K when secret keys are dense

Similar to the extreme value distribution.

Chebyshev approximation grows linearly with K

Approximation error: 10^{-12}

$$deg \simeq 7K + 25$$

Chebyshev approximation grows linearly with K

Approximation error: 10^{-12}

$$\deg \simeq 7K + 25$$

Using Paterson-Stockmeyer such approximation require:

- $\simeq \sqrt{2(7K + 25)} + \log_2(2(7K + 25))$ multiplications
- $\simeq \log_2 K + 3$ mult. levels

Chebyshev approximation grows linearly with K

Approximation error: 10^{-12}

$$deg \simeq 7K + 25$$

Using Paterson-Stockmeyer such approximation require:

- $\simeq \sqrt{2(7K + 25)} + \log_2(2(7K + 25))$ multiplications
- $\simeq \log_2 K + 3$ mult. levels

Example:

$$n = 65536 \Rightarrow K = 360$$
:

- 84 multiplications
- 12 mult, levels

$$\cos 2\alpha = 2\cos^2 \alpha - 1$$

$$\cos 2\alpha = 2\cos^2 \alpha - 1$$

1. Take a sufficiently large $K = 2^k$.

$$\cos 2\alpha = 2\cos^2 \alpha - 1$$

- 1. Take a sufficiently large $K = 2^k$.
- 2. Approximate $\cos\left(2\pi x \frac{\pi}{2K}\right)$ in the range [-q,q] (e.g using Chebyshev).

$$\cos 2\alpha = 2\cos^2 \alpha - 1$$

- 1. Take a sufficiently large $K = 2^k$.
- 2. Approximate $\cos\left(2\pi x \frac{\pi}{2K}\right)$ in the range [-q,q] (e.g using Chebyshev).
- 3. Compute k iterations of the double-angle formula.

$$\cos 2\alpha = 2\cos^2 \alpha - 1$$

- 1. Take a sufficiently large $K = 2^k$.
- 2. Approximate $\cos\left(2\pi x \frac{\pi}{2K}\right)$ in the range [-q,q] (e.g using Chebyshev).
- 3. Compute k iterations of the double-angle formula.

Example:

$$n = 65\bar{5}36 \Rightarrow K = 2^9$$

$$\cos 2\alpha = 2\cos^2 \alpha - 1$$

- 1. Take a sufficiently large $K = 2^k$.
- 2. Approximate $\cos\left(2\pi x \frac{\pi}{2K}\right)$ in the range [-q,q] (e.g using Chebyshev).
- 3. Compute k iterations of the double-angle formula.

Example:

$$n = 65536 \Rightarrow K = 2^9:$$

$$\cos\left(2\pi x - \frac{\pi}{2K}\right) \simeq p(X), \ \deg p(X) = 26$$

$$\cos 2\alpha = 2\cos^2 \alpha - 1$$

- 1. Take a sufficiently large $K = 2^k$.
- 2. Approximate $\cos\left(2\pi x \frac{\pi}{2K}\right)$ in the range [-q,q] (e.g using Chebyshev).
- 3. Compute k iterations of the double-angle formula.

Example:

$$n = 65\overline{536} \Rightarrow K = 2^9:$$

$$\cos\left(2\pi x - \frac{\pi}{2K}\right) \simeq p(X), \operatorname{deg} p(X) = 26$$

9 iterations of the double-angle formula

$$\cos 2\alpha = 2\cos^2 \alpha - 1$$

- 1. Take a sufficiently large $K = 2^k$.
- 2. Approximate $\cos\left(2\pi x \frac{\pi}{2K}\right)$ in the range [-q,q] (e.g using Chebyshev).
- 3. Compute k iterations of the double-angle formula.

Example:

$$n = 65\overline{536} \Rightarrow K = 2^9$$
:
 $\cos\left(2\pi x - \frac{\pi}{2K}\right) \simeq p(X), \deg p(X) = 26$

9 iterations of the double-angle formula

Total cost:

- 19 multiplications
- 14 levels

Results for the entire pipeline

n = 65536, $\Delta = 2^{50}$, $q \simeq 2^{60}$, $\lambda = 128$ bits

Input data: $z \in \mathbb{C}$, |Re(z)|, |Im(z)| < 16.

Number of experiments per parameter set: 100

# slots	CtoS levels	StoC levels	After levels	Avg. time, sec	Avg. amort. time, msec
4096	2	2	9	179	44
	3	2	8	114	28
8192	3	2	8	204	25
	4	2	7	121	15
16384	4	3	6	181	11
	5	3	5	159	10

Precision before bootstrapping: $\simeq 33$ bits Precision after bootstrapping: $\simeq 8$ bits

Results for the entire pipeline

n = 65536, $\Delta = 2^{50}$, $q \simeq 2^{60}$, $\lambda = 128$ bits

Input data: $z \in \mathbb{C}$, |Re(z)|, |Im(z)| < 16.

Number of experiments per parameter set: 100

# slots	CtoS levels	StoC levels	After levels	Avg. time, sec	Avg. amort. time, msec
4096	2	2	9	179	44
	3	2	8	114	28
8192	3	2	8	204	25
	4	2	7	121	15
16384	4	3	6	181	11
	5	3	5	159	10

Precision before bootstrapping: $\simeq 33$ bits Precision after bootstrapping: $\simeq 8$ bits Memory consumption: ~47GB (mostly due to key-switching keys)

Comparison to HK19

Conclusion

• Attacks on sparse-secret LWE/RLWE become more powerful.

Conclusion

- Attacks on sparse-secret LWE/RLWE become more powerful.
- HEAAN can avoid sparse secrets as its "bootstrapping" is practically possible without them.

• Bootstrapping definition for HEAAN.

- Bootstrapping definition for HEAAN.
- Better approximation of mod q (e.g. Hermite approximation of HK19).

- Bootstrapping definition for HEAAN.
- Better approximation of mod q (e.g. Hermite approximation of HK19).
- Mixed bootstrapping using other schemes (e.g. TFHE).

- Bootstrapping definition for HEAAN.
- Better approximation of mod q (e.g. Hermite approximation of HK19).
- Mixed bootstrapping using other schemes (e.g. TFHE).
- Bootstrapping without sparse secrets in other schemes.

Thank you!

Thank you!

We're hiring!