ГЕОМЕТРИЯ В КОМПЬЮТЕРНЫХ ПРИЛОЖЕНИЯХ

Лекция 5: Внешние и дифференциальные формы

Богачев Николай Владимирович

25 октября 2018

Московский физико-технический институт, Кафедра дискретной математики, Лаборатория продвинутой комбинаторики и сетевых приложений

Внешние формы

Двойственное пространство

Пусть V – конечномерное вещественное пространство с базисом $\{e_1, \ldots, e_n\}$.

- Линейная функция на $V: f(\alpha u + \beta v) = \alpha f(u) + \beta f(v)$ для всех $u, v \in V$.
- Двойственное (или сопряженное) пространство V^* пространство линейных функций (функционалов) на V.
- Какова его размерность?

Двойственный базис.

- Двойственный базис пространства V^* (или двойственный к $\{e_1, \ldots, e_n\}$) это набор функций $\{f_1, \ldots, f_n\}$, где $f_i(e_j) = \delta_{ij}$.
- Почему это действительно базис?
- Таким образом, $\dim V^* = \dim V = n$.

Внешнее умножение

Внешнее умножение 1-форм:

$$\omega_1^1 \wedge \ldots \wedge \omega_k^1 (v_1, \ldots, v_k) = \det \begin{pmatrix} \omega_1^1(v_1) & \ldots & \omega_1^1(v_k) \\ \vdots & \vdots & \vdots \\ \omega_k^1(v_1) & \ldots & \omega_k^1(v_k) \end{pmatrix}$$

- k-форма, называемая **мономом**.

Внешнее умножение

Рис. 1: $u \wedge v = -v \wedge u$

Внешние формы

Внешняя k**-форма** – кососимметрическая полилинейная функция от k аргументов:

$$\omega^k(v_1,\ldots,v_k)=(-1)^{\sigma}\omega^k(v_{\sigma(1)},\ldots,v_{\sigma(k)});$$

$$\omega^k(\mathsf{V}+\mathsf{U},\mathsf{V}_2\ldots,\mathsf{V}_k)=\omega^k(\mathsf{V},\mathsf{V}_2,\ldots,\mathsf{V}_k)+\omega^k(\mathsf{U},\mathsf{V}_2,\ldots,\mathsf{V}_k).$$

k-формы или *k*-векторы

Рис. 2: k-формы для k = 1, 2, 3.

Пространство внешних форм $\Lambda^k(V)$

Пространство внешних форм $\Lambda^k(V)$

- Пространство k-форм обозначим через $\Lambda^k(V)$.
- · Ясно, что $\Lambda^0(V) = \mathbb{R}$, $\Lambda^1(V) = V^*$.
- Можно заметить, что $\Lambda^2(V) \simeq T_E \operatorname{SO}_n(\mathbb{R}) = \mathfrak{so}_n(\mathbb{R}) -$ пространство кососимметрических матриц $n \times n$.

Пример

Определитель $\det(v_1,\ldots,v_k) = \operatorname{Vol}(v_1,\ldots,v_k)$.

Базис пространства $\Lambda^2(V)$

Теорема. $\Lambda^2(V) = \langle f_i \wedge f_j \mid i < j \rangle$, т. е. dim $\Lambda^2(V) = C_n^2 = \frac{n(n-1)}{2}$. Доказательство. Пусть $u = \sum_i u_i e_i$, $v = \sum_i v_j e_j$, тогда

$$\omega^2(u,v) = \sum_{i < j} u_i v_j \omega^2(e_i,e_j) = \sum_{i < j} u_i v_j \omega_{ij}(f_i \wedge f_j)(e_i,e_j) =$$

$$= \sum_{i < j} \omega_{ij}(f_i \wedge f_j) \left(\sum_k u_k e_k, \sum_m v_m e_m \right) = \sum_{i < j} \omega_{ij}(f_i \wedge f_j)(u, v),$$

то есть всякая 2-форма $\omega^2 \in \langle f_i \wedge f_j \mid i < j \rangle$.

Остается проверить линейную независимость. Для этого достаточно применить $\sum_{i < j} \lambda_{ij} f_i \wedge f_j$ к паре (e_i, e_j) .

Существование симплектического базиса для 2-формы

Теорема

Для всякой 2-формы ω^2 существует симплектический базис e_1',\ldots,e_n' , в котором $\omega^2=f_1'\wedge f_2'+f_3'\wedge f_4'+\ldots+f_{2k-1}'\wedge f_{2k}'$.

Доказательство.

- Всякая 2-форма задается кососимметрической матрицей.
- Индукция по $n=\dim V$. При n=0,1 доказывать нечего.
- При $n \geq 2$ существуют такие два вектора $e_1', e_2',$ что матрица ω^2 при ограничении на $U = \langle e_1', e_2' \rangle$ имеет вид $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.
- \cdot Тогда $V=U\oplus U^\perp$, и для U^\perp выполнено предположение индукции.

Базис пространства $\Lambda^k(V)$

Теорема

$$\Lambda^k(V) = \langle f_{j_1} \wedge \ldots \wedge f_{j_k} \mid j_1 < \ldots < j_k \rangle$$
, то есть $\dim \Lambda^k(V) = C_n^k$.

Доказательство.

Аналогично теореме про базис пространства $\Lambda^2(V)$.

Общее внешнее умножение

Определим внешнее умножение двух произвольных форм ω_1^k и ω_2^m :

$$\omega_1^k \bar{\wedge}_{k,m} \omega_2^m(\mathsf{v}_1,\ldots,\mathsf{v}_k,\mathsf{v}_{k+1},\ldots,\mathsf{v}_{k+m}) =$$

$$= \sum_{\substack{\sigma \in S_{k+m} \\ \sigma(1) < \ldots < \sigma(k) \\ \sigma(k+1) < \ldots < \sigma(k+m)}} (-1)^{\sigma} \cdot \omega_1^k (V_{\sigma(1)}, \ldots, V_{\sigma(k)}) \cdot \omega_2^m (V_{\sigma(k+1)}, \ldots, V_{\sigma(k+m)})$$

Свойства

- · Косокоммутативность: $\omega_1^k \bar{\wedge} \omega_2^m = (-1)^{km} \omega_2^m \bar{\wedge} \omega_1^k$
- · Дистрибутивность: $(a_1\omega_1^k + a_2\omega_2^k)\bar{\wedge}\omega_3^m = a_1\omega_1^k\bar{\wedge}\omega_3^m + a_2\omega_2^k\bar{\wedge}\omega_3^m$
- Ассоциативность: $(\omega_1^k \bar{\wedge} \omega_2^l) \bar{\wedge} \omega_3^m = \omega_1^k \bar{\wedge} (\omega_2^l \bar{\wedge} \omega_3^m)$.
- На мономах $\omega_1^1 \wedge \ldots \wedge \omega_k^1 = \omega_1^1 \bar{\wedge} \ldots \bar{\wedge} \omega_k^1$.

Доказательство.

Самая сложная часть – совпадение разных умножений на мономах.

Для этого достаточно доказать, что

$$(\omega_1^1 \wedge \ldots \wedge \omega_k^1) \bar{\wedge} (\omega_{k+1}^1 \wedge \ldots \wedge \omega_{k+m}^1) = \omega_1^1 \wedge \ldots \wedge \omega_k^1 \wedge \omega_{k+1}^1 \wedge \ldots \wedge \omega_{k+m}^1.$$
 (1)

Правая часть равна $\det(\omega_i^1(v_j))_{k+l}$, а левая часть равна сумме произведений миноров $\sum_{\sigma} (-1)^{\sigma} \det(\omega_i^1(v_j))_k \det(\omega_i^1(v_j))_l$. Ясно, что они совпадают.

Поведение при отображениях

Пусть А: $\mathbb{R}^m \to \mathbb{R}^n$ – линейное отображение, $\omega^k \in \Lambda^k(\mathbb{R}^n)$.

Тогда на \mathbb{R}^m можно построить k-форму $A^*\omega^k$, определив ее следующим образом:

$$(A^*\omega^k)(v_1,\ldots,v_k)=\omega^k(A(v_1),\ldots,A(v_k)).$$

Предложение

Операция $A\mapsto A^*$ удовлетворяет следующим условиям:

- А $^*\omega^k\in \Lambda^k(\mathbb{R}^n)$ действительно k-форма.
- $A^*: \Lambda^k(\mathbb{R}^m) \to \Lambda^k(\mathbb{R}^n)$ линейный оператор.
- $\cdot (A \circ B)^* = B^* \circ A^*.$
- $\cdot A^*(\omega_1^k \wedge \omega_2^m) = (A^*\omega_1^k) \wedge (A^*\omega_2^m).$

Звезда Ходжа

Звезда Ходжа $\star : \Lambda^k(V) \to \Lambda^{n-k}(V)$ — это изоморфизм линейных пространств, заданный формулой

$$\star (f_{j_1} \wedge \ldots \wedge f_{j_k}) = \operatorname{sgn} \sigma_{j_1,\ldots,j_n} \cdot f_{j_{k+1}} \wedge \ldots \wedge f_{j_n}.$$

Дифференциальные формы на

многообразиях

Дифференциал функции

Простейший пример

Дифференциал функции (например, $f(x) = x^2$).

Имеем $d_x f = 2x \cdot dx$, где dx — дифференциал координатной функции, который действует так: dx(v) = v.

Видно, что $d_x f$ — функция, линейная по векторам и гладко зависящая от точки x.

Дифференциальная 1-форма на многообразии — пример

Пусть $f:M \to \mathbb{R}$ — гладкая функция на многообразии M.

Тогда $d_P f$ есть 1-форма на $T_P M$.

Тогда $df: T(M) \to \mathbb{R}$ — есть гладкое отображение, линейное на каждом T_PM .

Дифференциальная 1-форма

 $T_p(M)$ имеет базис $\left\{\frac{\partial}{\partial x_1},\ldots,\frac{\partial}{\partial x_n}\right\}$, а двойственное ему кокасательное пространство $T_p^*(M)$ имеет двойственный базис $\{dx_1,\ldots,dx_n\}$.

Дифференциальная 1-форма на M — гладкое отображение $\omega^1 \colon T(M) \to \mathbb{R}$, линейное на каждом $T_P M$.

$$\omega^1 = a_1(x)dx_1 + \ldots + a_n(x)dx_n.$$

Дифференциальная к-форма

Дифференциальная к-форма

$$\omega = \sum_{j_1 < \ldots < j_k} \omega_{j_1 \ldots j_k}(x) dx_{j_1} \wedge \ldots \wedge dx_{j_k}$$

— это набор k-форм в касательных пространствах к M, гладко зависящий от точки: $\omega_{j_1...j_k}(x)$ — гладкие функции.

Внешний дифференциал

Внешний дифференциал $d: \Lambda^k(V) \to \Lambda^{k+1}(V)$ переводит k-форму ω в (k+1)-форму

$$d\omega = \sum_{j_1 < \dots < j_k} d\omega_{j_1 \dots j_k}(x) \wedge dx_{j_1} \wedge \dots \wedge dx_{j_k}$$

•

- (a) Докажите, что если k=0, то $d\phi(X)=D_X\phi$.
- (b) Докажите, что $d^2\omega = d \circ d(\omega) = 0$.
- (c) Докажите, что $d(\omega_1^k \wedge \omega_2^m) = d\omega_1^k \wedge \omega_2^m + (-1)^k \omega_1^k \wedge d\omega_2^m$.

Кодифференциал

Кодифференциал δ переводит $\omega \in \Lambda^k(M)$ в $\delta \omega := \star (d(\star \omega))$.

- (a) Докажите, что если k=0, то $\delta\omega=0$.
- (b) Докажите, что если $\omega \in \Lambda^k(M)$, то $\delta \omega \in \Lambda^{k-1}(M)$

Лапласиан

Лапласиан на функциях:

$$\Delta := \operatorname{div} \circ \operatorname{grad} = \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}}$$

Обобщённый Лапласиан на k-формах задаётся по формуле

$$\Delta := \delta d + d\delta = \star d \star d + d \star d \star.$$

Разбиение единицы

Пусть (X, τ) — топологическое пространство.

Разбиением единицы называется такое семейство функций $h_j: A_j \to \mathbb{R}$ на локально конечном открытом покрытии X множествами A_j , что

$$\sum_{j} h_{j}(x) = 1$$

для всех $x \in X$.

Интеграл от n-формы по карте

Пусть (U, ϕ) — карта на n-мерном многообразии M. В ней $\omega^n = \omega(x_1, \ldots, x_n) dx_1 \wedge \ldots \wedge dx_n$.

Тогда

$$\int_{U} \omega^{n} := \int_{\phi(U)} \omega(x_{1}, \ldots, x_{n}) dx_{1} \ldots dx_{n}.$$

Интеграл от n-формы с компактным носителем

Пусть $(U_{\alpha}, \phi_{\alpha})$ — локально конечный атлас на n-мерном многообразии M. Тогда существует разбиение единицы $\{h_{\alpha}\}$, подчиненное этому атласу, и

$$\int_{M} \omega^{n} := \sum_{k=1}^{N} \int_{U_{k}} h_{k} \omega^{n}.$$

Теорема Стокса

Пусть M- гладкое n-мерное многообразие с краем $\partial M.$ Пусть $\omega \in \Lambda^{n-1}(M).$ Тогда

$$\int_{M} d\omega = \int_{\partial M} \omega.$$