Week 8 Exercises

Qi Ji

31st March 2020

1 \mathbf{ACA}_0 is arithmetically conservative over \mathbf{PA}^U

Let $M=(|M|,U_M,0_M,1_M,+_M,\cdot_M,\exp_M,<_M) \models \mathbf{PA}^U$. For each arithmetical formula $\varphi(x)$ in $\mathcal{L}_2(|M|\cup\{U\})$ we associate a witness $X_\varphi\subseteq |M|$ satisfying $\forall x[\varphi(x)\leftrightarrow x\in X_\varphi]$. Now collect all such witnesses

$$\mathcal{S} = \big\{ X_{\varphi} : \varphi(x) \text{ arithmetical} \big\}$$

and we show that

$$M' = (|M|, \mathcal{S}, \mathbf{0}_M, \mathbf{1}_M, +_M, \cdot_M, \exp_M, <_M) \vDash \mathbf{ACA}_0.$$

Firstly by our choices of X_{φ} it's easy to see that $M' \models$ arithmetical- ${\bf CA}$. The second order induction axiom

$$\forall X [0 \in X \land \forall x (x \in X \to x + 1 \in X) \to \forall x (x \in X)]$$

is also satisfied by M' as we have only added arithmetical sets to $\mathcal S$ and for any $X_\varphi\in\mathcal S$,

$$\varphi(0) \land \forall x (\varphi(x) \to \varphi(x+1)) \to \forall x (\varphi(x))$$

is an instance of **IND** in PA^U .

So suppose F is an arithmetic formula and $\mathbf{ACA}_0 \vdash F$, let $M = (|M|, U_M, \dots) \models \mathbf{PA}^U$ and use construction above to get $M' = (|M|, \mathcal{S}_M, \dots) \models \mathbf{ACA}_0$. As $M' \models F$ and F, being arithmetic, only quantifies over |M|, $M \models F$ too.

2

Find strength of $\mathbf{PA} + I\Sigma_n$.

Let $\mathbf{PA}_n q \vdash_k^m \Gamma \Rightarrow \Delta$ also be like $\mathbf{PA}_n \vdash_k^m \Gamma \Rightarrow \Delta$ where we replace cut rank with q-rnk.

Week 8 Exercises 31st March 2020

2.1 (a)

If
$$\mathbf{PA}_n q \vdash_{n+2+r+1}^m \Gamma \Rightarrow \Delta$$
 then $\mathbf{PA}_n q \vdash_{n+2+r}^{4^m} \Gamma \Rightarrow \Delta$.

Given φ is a formula with q-rnk $(\varphi) \ge n + 1$ and we want to eliminate cuts involving φ .

Given Σ_n induction, any formula produced by an instance our induction axiom $I\Sigma_n$ is Π_{n+1} , so if we have φ a formula with $q\operatorname{-rnk}(\varphi)>n+1$,

- φ is too complicated (say Π_{n+2}) to ever be involved with an instance of induction axiom, then we directly apply reduction lemma.
- We can also directly apply reduction lemma until φ itself originated in an instance of induction axiom.
- For cases where φ is simple enough (Π_{n+1}) but has an inflated q-rnk, let's just restrict our induction axiom to not work on φ but only its prenex normal form, this should not affect the strength.

2.2 (b)

If
$$\mathbf{PA}_n q \vdash_{n+2}^m \Gamma \Rightarrow \Delta$$
 then $\mathbf{PA}_\omega q \vdash_{n+2}^{\omega+k} \Gamma' \Rightarrow \Delta'$.

I think the stronger bound given by the First Interpretation Theorem still works here and the weaker bound in Pohler 7.3.19 ($\omega \cdot (m+1)$) is due to induction being weakened into a structural *rule* from an axiom.

2.3 (c)

If
$$\mathbf{P}\mathbf{A}_{\omega}q \vdash_{1+m+1}^{\alpha} \Gamma \Rightarrow \Delta$$
 then $\mathbf{P}\mathbf{A}_{\omega}q \vdash_{1+m}^{4^{\alpha}} \Gamma \Rightarrow \Delta$.

Proof of cut elimination theorem almost exactly applies here.

2.4 (d)

If
$$\mathbf{P}\mathbf{A}_{\omega}q \vdash_{1}^{\alpha} \Gamma \Rightarrow \Delta$$
, then $\mathbf{P}\mathbf{A}_{\omega} \vdash_{1}^{\omega \cdot \alpha} \Gamma \Rightarrow \Delta$.

I still cannot figure out how to reduce quantifier-free cuts to atomic cuts only introducing a ω - factor so I will just skip and black-box.

Qi Ji 2

Week 8 Exercises 31st March 2020

2.5 (e)

Compute $\|\mathbf{P}\mathbf{A}_n\|$.

In general, this is useful,

$$4^{\omega \cdot \alpha} = (4^{\omega})^{\alpha} = \omega^{\alpha}$$
.

Whenever $\mathbf{PA}_n \vdash \Gamma \Rightarrow \Delta$, we have

$$\begin{split} \mathbf{P}\mathbf{A}_n q \vdash_{n+2}^m \Gamma &\Rightarrow \Delta \\ \mathbf{P}\mathbf{A}_\omega q \vdash_{n+2}^{\omega+k} \Gamma &\Rightarrow \Delta \\ \mathbf{P}\mathbf{A}_\omega q \vdash_{n+1}^{4^{\omega+k}} \Gamma &\Rightarrow \Delta \\ \mathbf{P}\mathbf{A}_\omega q \vdash_{n+1}^{\omega\cdot l} \Gamma &\Rightarrow \Delta \text{ where } l = 4^k \\ \mathbf{P}\mathbf{A}_\omega q \vdash_{n+1}^{\omega^l} \Gamma &\Rightarrow \Delta \text{ as } 4^{\omega\cdot l} = \omega^l \\ \mathbf{P}\mathbf{A}_\omega q \vdash_{n-1}^{\omega^{\omega^{l-1}}} \Gamma &\Rightarrow \Delta \text{ as } 4^{\omega^l} = \omega^{\omega^{l-1}} \end{split}$$

and so on, so in general we have

$$\mathbf{PA}_{\omega}q \vdash_{1}^{\alpha} \Gamma \Rightarrow \Delta$$

where

$$\alpha = \omega^{\omega^{\cdot^{\cdot^{\cdot^{m}}}}}$$

where ω^- is iterated n times starting from some finite m. Now by part (d), $\omega \cdot \alpha = \alpha$ when n>1 and $\omega \cdot \alpha = \omega^{m+1}$ when n=1, and we have

$$\mathbf{PA}_{\omega} \vdash_{1}^{\alpha} \Gamma \Rightarrow \Delta.$$

We should be able to measure $\|\mathbf{P}\mathbf{A}_n\|$ with

$$\left.\omega^{\omega^{\cdot,\omega}}\right\}n$$
 iterated exponentiations from ω

but I still cannot convince myself how allowing atomic cuts are fine (which is Pohler Exercise 7.3.18?).

Qi Ji 3