GPU-Accelerated Forward-Backward Algorithm with Application to LF-MMI Training

Lucas Ondel*, Léa-Marie Lam-Yee-Mui*, **Martin Kocour**†, Caio Filippo Corro*, Lukáš Burget[†]

 $^{\star} LISN \; (ex-LIMSI), \; CNRS, \; Orsay, \; France \\ ^{\dagger} Brno \; University \; of \; Technology, \; Brno, \; Czech \; Republic$

May 22, 2022

Overview

1. Implementation challenge of the MMI loss

2. A new implementation of the Forward-Backward algorithm

3. Results

Implementation challenge of the MMI loss

The MMI loss

- SoTA for ASR (Vyas et. al)
- MMI stands for Maximum Mutual Information

$$\mathcal{L} = \log \frac{p(\mathbf{X}|\mathbb{G}_{\mathsf{num}})}{p(\mathbf{X}|\mathbb{G}_{\mathsf{den}})},\tag{1}$$

- "Lattice-Free" MMI (LF-MMI) uses phone rather than words to keep a small memory footprint bypassing the need to build lattices
- Its gradient is given by:

$$\nabla \mathcal{L} = p(z_n = i | \mathbf{X}, \mathbb{G}_{\text{num}}) - p(z_n = i | \mathbf{X}, \mathbb{G}_{\text{den}}). \tag{2}$$

where z_n is the state index at time n.

[A. Vyas, S. Madikeri, H. Bourlard, Comparing CTC and LFMMI for out-of-domain adaptation of wav2vec 2.0 acoustic model. InterSpeech 2021]

Forward-Backward algorithm

▶ Algorithm to compute the probability to be in a given state at time *n*.

$$p(z_n=i|x_1,\ldots,x_N) \tag{3}$$

- Usage:
 - Expectation-Maximization for HMM (E-step)
 - ► Calculating the gradient of the losses: CTC, (LF-)MMI

Description

▶ Algorithm comprises of computing forward $\alpha_n(z_n)$ and backward $\beta_n(z_n)$ messages

$$\alpha_n(z_n) = p(x_n|z_n) \sum_{z_n} p(z_n|z_{n-1}) \alpha_{n-1}(z_{n-1})$$
 (4)

$$\beta_n(z_n) = \sum_{z_{n+1}} p(z_{n+1}|z_n) \beta_{n+1}(z_{n-1}) p(x_{n+1}|z_{n+1})$$
 (5)

$$p(z_n = i | \mathbf{x}) = \frac{\alpha_n(i)\beta_n(i)}{\sum_j \alpha_N(j)}$$
(6)

Implementation challenges

Implementation is not trivial:

- state-space is big (at the very least several toushand)
- numerically unstable, we need to do the computations in the log-domain
- transition probabilities are sparse
- it needs to run on GPU

A new implementation of the Forward-Backward algorithm

The notation

$$\mathbf{T} = \begin{bmatrix} p(z_n = 1 | z_{n-1} = 1) & \dots & p(z_{n-1} = K | z_{n-1} = 1) \\ \vdots & \ddots & \vdots \\ p(z_n = 1 | z_{n-1} = K) & \dots & p(z_n = K | z_{n-1} = K) \end{bmatrix}$$

$$\mathbf{v}_n = \begin{bmatrix} p(x_n | z_n = 1) \\ \vdots \\ p(x_n | z_n = K) \end{bmatrix} \boldsymbol{\alpha}_n = \begin{bmatrix} \alpha_n & 1 \\ \vdots \\ \alpha_n(K) \end{bmatrix} \boldsymbol{\beta}_n = \begin{bmatrix} \beta_n & 1 \\ \vdots \\ \beta_n(K) \end{bmatrix},$$

Naive solution

Matrix-based forward-backward:

$$\alpha_n = \mathbf{v}_n \circ (\mathbf{T}^\top \alpha_{n-1}) \tag{7}$$

$$\beta_n = \mathsf{T}(\beta_{n+1} \circ \mathsf{v}_n) \tag{8}$$

$$\rho(z_n|\mathbf{x}) = \frac{\alpha_n(z_n)\beta_n(z_n)}{\sum_{z_N} \alpha_N(z_N)}.$$
 (9)

- efficient for computation on GPU
- ▶ **T** has to be sparse, i.e. 0 values are not stored
- stability issue: product of probabilities goes to zero exponentially

An equivalent version

A more generic version:

$$\alpha_n^{\log} = \mathbf{v}_n^{\log} \circ (\mathbf{T}^{\log \top} \alpha_{n-1}^{\log}) \tag{10}$$

$$\beta_n^{\log} = \mathsf{T}^{\log}(\beta_{n+1}^{\log} \circ \mathsf{v}_n^{\log}) \tag{11}$$

$$\log p(z_n|\mathbf{x}) = \frac{\alpha_n^{\log}(z_n)\beta_n^{\log}(z_n)}{\sum_{z_N} \alpha_N^{\log}(z_N)}.$$
 (12)

where $x^{\log} = \log(x)$ and $x^{\log} \in \mathcal{S}$ and $\mathcal{S} = (\mathbb{R}, \oplus, \otimes, \oslash, \bar{0}, \bar{1})$ is the log-semiring:

$$a^{\log} \oplus b^{\log} = \log(e^{a^{\log}} + e^{b^{\log}}) \tag{13}$$

$$a^{\log} \otimes b^{\log} = a^{\log} + b^{\log} \tag{14}$$

$$a^{\log} \oslash b^{\log} = a^{\log} - b^{\log} \tag{15}$$

$$\bar{0} = -\infty \quad \bar{1} = 0 \tag{16}$$

Sparse matrix in semiring alegbra

- stability issue solved: calculations are numerically stable in the log-semiring
- ▶ GPU efficiency: \mathbf{T}^{log} should be represented as a sparse matrix which stores only the element that are not $\bar{0}$, i.e. not $-\infty$.

Dealing with batches

- when using GPU, we need to train on batches of sequence to fully exploit the hardware
- hopefully, this is very easy when our algorithm is expressed in terms of linear matrix operation...
- ... we just need to stack everything together!

$$\mathbf{T} = \begin{bmatrix} \mathbf{T}_1 & & & \\ & \ddots & & \\ & & \mathbf{T}_I \end{bmatrix} \qquad \mathbf{v}_n = \begin{bmatrix} \mathbf{v}_{1,n} \\ \vdots \\ \mathbf{v}_{I,n} \end{bmatrix}$$
 $\boldsymbol{\alpha}_n = \begin{bmatrix} \boldsymbol{\alpha}_{1,n} \\ \vdots \\ \boldsymbol{\alpha}_{I,n} \end{bmatrix} \qquad \boldsymbol{\beta}_n = \begin{bmatrix} \boldsymbol{\beta}_{1,n} \\ \vdots \\ \boldsymbol{\beta}_{I,n} \end{bmatrix},$

In practice

Implementation of this algorithm is trivial if:

- you have (sparse) semiring algebra library
- we have used the Julia programming language:
 - native support for semiring-algebra
 - can be used to write CUDA kernels
 - rich deep learning ecosystem
 - https://github.com/lucasondel/MarkovModels.jl/ blob/master/src/inference/algorithms.jl

Results

State-of-the-art implementation

PyChain (https://github.com/YiwenShaoStephen/pychain):

- ► C++/CUDA implementation
- wrapped with python/pytorch for training with a neural network
- optional use of the "leaky-HMM" approximation for efficiency reason

Experiment

Comparing PyChain and our Julia implementation:

- datasets:
 - MiniLibriSpeech: subset of librispeech for software testing (5 hours)
 - Wall Street Journal (WSJ) (80 hours)
- ▶ features: high-resolution MFCC extracted with Kaldi
- model: 5-layers TD-NN (equivalent to the "Chain" model in Kaldi)
- 4-gram Kaldi decoder
- neural network backends:
 - PyChain: PyTorch
 - ours: KNet

Results I

System	Dataset	B/F	Duration	WER (%)
PyChain	MiniLS	128/1	0h42	27.17
proposed	MiniLS	64/2	0h22	21.21
PyChain	WSJ	128/1	6h48	4.74
proposed	WSJ	64/2	3h20	4.37

 \overline{B} is the batch-size and \overline{F} is the update frequency.

Results II

	Avg. duration (s)		
System	LF-MMI	Neural network propagation	
PyChain	4.08	0.076	
proposed	0.220	0.180	

To sum up

- ▶ Julia offers new abstractions to numerical computation:
 - easy to use semiring algebra
 - no need to mix languages (python/c++), direct optimization in Julia

To sum up

- Julia offers new abstractions to numerical computation:
 - easy to use semiring algebra
 - no need to mix languages (python/c++), direct optimization in Julia
- we proposed new matrix-based implementation of forward-backward
 - we make it simpler
 - we do it faster
- Reproducing the results: https://lucasondel.github.io/recipes

Thank you for your attention :) !

Comparing the implementations

Forward-Backward calculated on:

- the longest numerator graph and the denominator graph of WSJ
- simulated likelihood of 128 sequences of 14 seconds of speech

			Duration (s)	
Implementation	Device	Leaky-HMM	Num.	Den.
PyChain	CPU	no	5.696	421.447
PyChain	CPU	yes	1.212	27.601
proposed	CPU	no	3.789	226.60
PyChain	GPU	no	0.093	5.862
PyChain	GPU	yes	0.248	5.449
proposed	GPU	no	0.058	1.04