## University of Jeddah College of Computer Science and Engineering Department of Computer & Network Engineering



جامعة جدة كلية علوم و هندسة الحاسب قسم هندسة الحاسب و الشبكات

## CCCN212 : Digital logic design Assignment#2 CLO2.1

Student Name ...... Beem Abdullah Alkthyri ......

**Student\_ID** .......2115561

## **Question 1: Flip Flop**

Consider the following flip flop





1. Give the name of each flip flops used in the fig1 and fig2

1-The first one is D flip flop 2-j-k flip flop 2. Give the timing diagram for each circuit considering the signal CLK



**Pris+** The truth table of the D flip flop:

| CLK | D | Q          |
|-----|---|------------|
| 1   | O | 0          |
| 1   | \ | 1          |
| 0   | 0 | hot change |
| 0   | \ | not chauge |

So in the case  $D=\overline{Q}$  and in the fig 2 we know that j=k=VCC=1So the timing diagram is



## Question2: BCD adder

Consider a 4 bit Adder given the following figure, where A and B are 4 bit numbers:



- 1- Dress the corresponding truth table
- 2- To realize a BCD adder, we need to:
- Step1: First add the two binary numbers A and B
- Step2: If the sum is less or equal than 9, then the value of BCD sum and binary sum will be the same otherwise we will add 6 (0110 in binary)
- a) Dress the truth table for the BCD sum (from decimal numbers 0 to 15)
- b) Give the conditions from the truth table where we need to add 6 to the binary sum? Give a logic equation
- c) Design a BCD adder using two 4 bits' adder and gate AND and OR

1)

| А | В | Cin | Sum | Carry |
|---|---|-----|-----|-------|
| 0 | 0 | 0   | 0   | 0     |
| 0 | 0 | l   | 1   | 0     |
| ٥ | l | σ   | 1   | 0     |
| 0 | l | l   | 0   | (     |
| ( | 0 | Ø   | \   | ٥     |
| 1 | 0 | 1   | O   | (     |
| 1 | 1 | O   | O   | ١     |
| l | ) | \   | 1   | Yea   |

a)

To make a truth table for BCD sum ,we need to consider the decimal number from 0 to 15 and determine their corresponding BCD sum .the BCD sum is a 4-bit number ,so we will have four output columns for the BCD sum bits (S3,S2,S1,S0)