微分方程式:強制振動

モデリングとシミュレーション特論

2019年度

只木進一

連立常微分方程式の数値解法

Numerical method for solving ordinary differential equations

▶今日のサンプルプログラム

https://github.com/modeling-and-simulation-mcsaga/DifferentialEquations

■ Runge-Kutta法

→ t :独立変数(independent variable)

 $-\vec{y}$: 従属変数(dependent variable)。

$$\frac{\mathrm{d}}{\mathrm{d}t}\,\vec{y} = \vec{f}\left(t,\vec{y}\right)$$

- Runge-Kutta法
- ■数値解 (numerical solutions)
 - ■tをh刻みで増加させ、従属変数の列を得る

$$(t_n, \vec{y}_n) \rightarrow (t_{n+1} = t_n + h, \vec{y}_{n+1})$$

4次のRunge-Kutta法

$$\vec{k}_{1} = h\vec{f} (t_{n}, \vec{y}_{n})$$

$$\vec{k}_{2} = h\vec{f} \left(t_{n} + \frac{h}{2}, \vec{y}_{n} + \frac{\vec{k}_{1}}{2} \right)$$

$$\vec{k}_{3} = h\vec{f} \left(t_{n} + \frac{h}{2}, \vec{y}_{n} + \frac{\vec{k}_{2}}{2} \right)$$

$$\vec{k}_{4} = h\vec{f} \left(t_{n} + h, \vec{y}_{n} + \vec{k}_{3} \right)$$

$$\vec{y}_{n+1} = \vec{y}_{n} + \frac{\vec{k}_{1}}{6} + \frac{\vec{k}_{2}}{3} + \frac{\vec{k}_{3}}{3} + \frac{\vec{k}_{4}}{6} + O(h^{5})$$

Javaで連立微分方程式を扱う

- Runge-Kutta法
 - ■ある時刻tにおける従属変数 $\vec{y}(t)$ と連立微分方程式 $\vec{y} = \vec{f}(t, \vec{y})$ から
 - ■次の時刻t + hの従属変数 $\vec{y}(t + h)$ を得る
- ➡副プログラム (subroutine) に相当
 - ▶他に影響を与えない
 - ■static methodに相当

methodに関数を引数として渡 す方法

- java は関数ポインタを持たない
- ■関数はmethod単体
- ■インターフェースのインスタンス (an instance of an interface)として関数に渡す
 - ■インターフェースのインスタンスは作れ ないはず

インターフェースのインスタン ス

- ■java.util.function.DoubleFunction<R>を例に
 - ■匿名クラス (anonymous classes)の利用
 - interfaceExample/UseAnonymousClass.jav a
 - ■Lambda式の利用
 - ▶関数インターフェースの場合
 - interfaceExample/UseLambda.java

myLib.rungeKuttaの中

- DifferentialEquation.java
 - ■インターフェースの定義
 - ■微分方程式の右辺
- RungeKutta.java
 - Runge-Kutta法の実装
 - ■一時間ステップ*h*だけ進める
 - ▶ある時間をステップ数で区切って進める

例題:調和振動+外力

■調和振動

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -kx$$

$$x(t) = A\cos(\omega t + \alpha)$$

$$\omega^2 = \frac{k}{m}$$

■連立方程式へ

$$\frac{\mathrm{d}x}{\mathrm{d}t} = v$$

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{k}{m}x$$

外力下の調和振動

■調和振動子に時間とともに変動する外力*F*(*t*)

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\omega^2 x + \frac{1}{m} F(t)$$

●特に関心があるのは外力も周期的である場合: $F(t) = f\cos(\gamma t + \beta)$

非斉次線形微分方程式の解

特殊解を探す
$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\omega^2 x + \frac{1}{m} F(t)$$

- $x_1 = B\cos(\gamma t + \beta) として、方程式に代$ 入
- $-\gamma^{2}B\cos(\gamma t + \beta) = -\omega^{2}B\cos(\gamma t + \beta) + \frac{1}{m}f\cos(\gamma t + \beta)$
 - ▶特殊解を得る

- 一般解は、斉次方程式の一般解との和

$$x(t) = A\cos(\omega t + \alpha) + \frac{f}{m(\omega^2 - \gamma^2)}\cos(\gamma t + \beta)$$

遅い外力

速い外力

→一般解を適当に係数を変更して

$$x(t) = A'\cos(\omega t + \alpha')$$

$$+ \frac{f}{m(\omega^2 - \gamma^2)} (\cos(\gamma t + \beta) - \cos(\omega t + \beta))$$

$$\gamma = \omega + \epsilon と 置くと \cos(\gamma t + \beta) - \cos(\omega t + \beta) = -t\epsilon \sin(\omega t + \beta)\epsilon + O(\epsilon^2) \frac{1}{\omega^2 - \gamma^2} = -\frac{1}{2\omega\epsilon} (1 + O(\epsilon))$$

→共鳴(ϵ = 0)時には、振幅が線形に増加: l'Hôpitalの定理の例

$$x(t) = A'\cos(\omega t + \alpha') + \frac{f}{2m\omega}t\sin(\omega t + \beta) + O(\epsilon)$$

うなり状態

