Math 10350 – Example Set 05B Section 3.5 Higher Derivatives Section 3.6 Trigonometric Functions

1. Consider the function $f(t) = t^4 - 2e^t + 2$.

a. Find the following derivatives of f(t): (i) f'(t), (ii) $f''(t) = \frac{d^2 f}{dt^2}$, (iii) f'''(t), and (iv) $\frac{d^4 f}{dt^4}$.

b. If f(t) represents the position of a particle moving on a straight line, what would f'(t) and f''(t) mean physically?

2. Define the trigonometric functions:

$$\tan x = \frac{\sin x}{\cos x}$$
, $\cot x = \frac{\cos x}{\sin x}$, $\sec x = \frac{1}{\cos x}$ and $\csc x = \frac{1}{\sin x}$.

Use the fact that $\frac{d}{dx}(\sin x) = \cos x$ and $\frac{d}{dx}(\cos x) = -\sin x$ to show that

$$\mathbf{a.} \ \frac{d}{dx}(\tan x) = \sec^2 x$$

b.
$$\frac{dx}{dx}(\cot x) = -\csc^2 x$$

$$\mathbf{c.} \ \frac{d}{dx}(\sec x) = \sec x \tan x$$

c.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

d. $\frac{d}{dx}(\csc x) = -\csc x \cot x$

2

3. Using the equilateral triangle and right isosceles triangle, determine all trigonometric ratios of the special angles $\pi/6$, $\pi/4$ and $\pi/3$.

4. A piece if wood floating on the surface of a pond is bobbing up and down according to the position function

$$s(t) = \cos(t) + \sin(t)$$
 cm

where t is in seconds.

(a) Find formulas for both its velocity and acceleration at time t seconds.

(b) Find smallest time at which the velocity of the piece of wood is zero.

5. Assuming that $\lim_{x\to 0} \frac{\sin x}{x} = 1$ and $\lim_{x\to 0} \frac{1-\cos x}{x} = 0$, answer the questions below:

a. Find the values of (i) $\lim_{x\to 0} \frac{\sin 7x}{3x}$ and (ii) $\lim_{x\to 0} \frac{\tan x}{2x}$

b. Show that the derivative of $\sin x$ is $\cos x$. You will need the identity $\sin(A+B) = \sin A \cos B + \cos A \sin B$.

- 1. Consider the function $f(t) = t^4 2e^t + 2$.
- **a.** Find the following derivatives of f(t): (i) f'(t), (ii) $f''(t) = \frac{d^2 f}{dt^2}$, (iii) f'''(t), and (iv) $\frac{d^4 f}{dt^4}$.

Derivative notations: f'(t), $\frac{d}{dt}f$ Second Derivative: f''(t), $\left(\frac{d}{dt}\right)^2 f = \frac{d^2}{dt^2}f$

(a) j.
$$f'(t) = 4t^3 - 2e^t + 0$$
 derivative rules:
ii. $f''(t) = 12t^2 - 2e^t$ $f(x) = c = 0$ $f'(x) = 0$
iii. $f'''(t) = 24t - 2e^t$ $f(x) = ax^n = 0$ $f'(x) = a \cdot n \cdot x^{n-1}$
iv. $f''''(t) = 24 - 2e^t$ $f(x) = ae^x = 0$

b. If f(t) represents the position of a particle moving on a straight line, what would f'(t) and f''(t) mean physically?

If f(t)=s(t) the position function then f'(t)=s'(t) is the instancous rate of change of position, also known as velocity v(t). Which makes f'(t)=s'(t)=v'(t) the rate of change of velocity, i.e. the acceleration function.

2. Define the trigonometric functions:

$$\tan x = \frac{\sin x}{\cos x}$$
, $\cot x = \frac{\cos x}{\sin x}$, $\sec x = \frac{1}{\cos x}$ and $\csc x = \frac{1}{\sin x}$.

Use the fact that $\frac{d}{dx}(\sin x) = \cos x$ and $\frac{d}{dx}(\cos x) = -\sin x$ to show that

$$\mathbf{a.} \ \frac{d}{dx}(\tan x) = \sec^2 x$$

c.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

b.
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

c.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

d. $\frac{d}{dx}(\csc x) = -\csc x \cot x$

(a)
$$\frac{d}{dx}$$
 (tanx) = $\frac{d}{dx}$ ($\frac{\sin x}{\cos x}$)

$$= \frac{(\cos x)(\cos x) - (-\sin x)(\sin x)}{(\cos x)^2}$$
 quotient rule: $\frac{f'g - g'f}{g^2}$
 $f = \sin x$ $g = \cos x$

$$\frac{\cos^2 x + \sin^2 x}{\cos^2 x} \qquad \qquad f' = \cos x \quad g' = -6$$

$$= \frac{1}{\cos^2 x} \sin^2 x + \cos^2 x = 1$$

$$f = \cos x$$

$$= -\sin^2 x - \cos^2 x$$

$$f' = -\sin x$$

$$\frac{-1(\sin^2 x + \cos^2 x)}{\sin^2 x}$$

$$\frac{-1}{\sin^2 x} \qquad \sin^2 x + \cos^2 x = 1$$

$$\mathbf{a.} \ \frac{d}{dx}(\tan x) = \sec^2 x$$

$$\mathbf{c.} \ \frac{d}{dx}(\sec x) = \sec x \tan x$$

a.
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

b.
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\mathbf{d.} \frac{d}{dx}(\csc x) = -\csc x \cot x$$

C.
$$\frac{d}{dx}(secx) = \frac{d}{dx}(\frac{1}{cosx})$$

quotient rule
$$\frac{f'g}{g}$$

 $\frac{(0)(\cos x)-(-\sin x)(1)}{(\cos x)^2}$ $f=1$ $g=\cos x$

$$= \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x}$$

$$d \cdot \frac{d}{dx} (\csc x) = \frac{d}{dx} (\frac{1}{\sin x})$$

$$\begin{array}{c} \text{quotient rule} \\ \text{elo}(\sin x) - (\cos x)(1) \\ \text{(sin} x)^2 \\ \text{f=1} \\ \text{f=0} \\ \text{g=co} \\ \text{f'=0} \\ \text{g'=co} \\ \text{sin}^2 x \\ \text{-1} \\ \text{cos} x \end{array}$$

3. Using the equilateral triangle and right isosceles triangle, determine all trigonometric ratios of the special angles $\pi/6$, $\pi/4$ and $\pi/3$.

pythagorean theorem right triangles only):

$$x^{2} + x^{2} = C^{2}$$
 $2x^{2} = C^{2}$

a = adjacent

4. A piece if wood floating on the surface of a pond is bobbing up and down according to the position function

$$s(t) = \cos(t) + \sin(t)$$
 cm

where t is in seconds.

- (a) Find formulas for both its velocity and acceleration at time t seconds.
- (b) Find smallest time at which the velocity of the piece of wood is zero.

(a) velocity = derivative of position; acceleration = derivative of

$$y(t) = s'(t) = -sin(t) + cos(t)$$

$$a(t)=v'(t)=s''(t)=-cos(t)-sin(t)$$

- **5.** Assuming that $\lim_{x\to 0} \frac{\sin x}{x} = 1$ and $\lim_{x\to 0} \frac{1-\cos x}{x} = 0$, answer the questions below:
- **a.** Find the values of (i) $\lim_{x\to 0} \frac{\sin 7x}{3x}$ and (ii) $\lim_{x\to 0} \frac{\tan x}{2x}$
- **b.** Show that the derivative of $\sin x$ is $\cos x$. You will need the identity $\sin(A+B) = \sin A \cos B + \cos A \sin B$.

(a) i.
$$\lim_{x\to 0} \frac{\sin 7x}{3x} = \frac{1}{3} \lim_{x\to 0} \frac{\sin (7x)}{x}$$

$$= \frac{7}{3} \lim_{x\to 0} \frac{\sin (7x)}{7x}$$

$$= \lim_{x\to 0} \frac{\sin x}{2x} \cdot \frac{1}{\cos x}$$

$$= \frac{1}{2} \cdot 1 \cdot 1$$

$$= \frac{1}{2} \cdot 1$$

(b)
$$\frac{d}{dx}(\sin x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} \frac{d}{dx}(f(x)) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x) \cos(h) + \cos(x) \sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{-\sin(x) + \sin(x) \cos(h) + \cos(x) \sin(h)}{h}$$

$$= \lim_{h \to 0} \frac{-\sin(x) (1 - \cos(h)) + \cos(x) \sin(h)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x) (1 - \cos(h)) + \cos(x) \sin(h)}{h}$$

$$= -\sin(x) \cdot \lim_{h \to 0} \frac{(1 - \cos(h))}{h} + \cos(x) \cdot \lim_{h \to 0} \frac{\sin(h)}{h}$$

$$= -\sin(x) \cdot \lim_{h \to 0} \frac{(1 - \cos(h))}{h} + \cos(x) \cdot \lim_{h \to 0} \frac{\sin(h)}{h}$$

$$= -\sin(x) \cdot 0 + \cos(x) \cdot 1$$