

# ISIS5315.ST25.txt SEQUENCE LISTING

Bennett, C. Frank Cowsert, Lex M. Malik, Leila Siwkowski, Andrew Eldrup, Anne B. <120> ANTISENSE MODULATION OF CD40 EXPRESSION <130> ISIS-5315 <140> US 10/698,689 <141> 2003-10-31 <150> PCT/US03/31166 <151> 2003-09-30 <150> US 10/261,382 <151> 2002-09-30 <150> US 09/067,638 <151> 1998-04-28 <150> US 60/081,483 <151> 1998-04-13 <160> 248 <170> PatentIn version 3.2 <210> 1 18 <211> <212> DNA <213> Artificial Sequence <220> <223> Synthetic Construct <400> 1 18 ccaggcggca ggaccact <210> 2 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Construct <400> 2 18 gaccaggcgg caggacca <210> <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Construct <400> 3 18 aggtgagacc aggcggca <210> 4 <211> 18 <212> DNA

| <213>                            | Artificial Sequence                   |    |
|----------------------------------|---------------------------------------|----|
| <220><br><223>                   | Synthetic Construct                   |    |
| <400><br>cagagg                  | 4<br>caga cgaaccat                    | 18 |
| <210><211><211><212><213>        | 18<br>DNA                             |    |
| <220><br><223>                   | Synthetic Construct                   |    |
| <400><br>gcagag                  | 5<br>gcag acgaacca                    | 18 |
| <210><211><211><212><213>        | DNA                                   |    |
| <220><br><223>                   | Synthetic Construct                   |    |
| <400><br>gcaagc                  | 6<br>agcc ccagagga                    | 18 |
| <210><br><211><br><212><br><213> | 18<br>DNA                             |    |
| <220><br><223>                   | Synthetic Construct                   |    |
| <400><br>ggtcag                  | 7<br>caag cagcccca                    | 18 |
| <210><br><211><br><212><br><213> | 18 ,<br>DNA                           |    |
| <220><br><223>                   | Synthetic Construct                   |    |
| <400><br>gacago                  | 8<br>ggtc agcaagca                    | 18 |
| <210><211><211><212><213>        | 9<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                   |    |
| <400><br>gatgga                  | 9<br>cagc ggtcagca                    | 18 |
| <210>                            | 10                                    |    |

|                                  | 1.0                                      | 10100010.0120.010 |    |
|----------------------------------|------------------------------------------|-------------------|----|
| <211><br><212><br><213>          | 18<br>DNA<br>Artificial Sequence         |                   |    |
| <220><br><223>                   | Synthetic Construct                      |                   |    |
| <400><br>tctgga                  | 10<br>tgga cagcggtc                      |                   | 18 |
| <210><br><211><br><212><br><213> | 11<br>18<br>DNA<br>Artificial Sequence   |                   |    |
| <220><br><223>                   | Synthetic Construct                      |                   |    |
| <400><br>ggtggt                  | 11<br>tctg gatggaca                      | ,                 | 18 |
| <210><br><211><br><212><br><213> | 12<br>18<br>DNA ·<br>Artificial Sequence |                   |    |
| <220><br><223>                   | Synthetic Construct                      |                   |    |
| <400><br>gtgggt                  | 12<br>ggtt ctggatgg                      |                   | 18 |
| <210><br><211><br><212><br><213> | 13<br>18<br>DNA<br>Artificial Sequence   |                   |    |
| <220><br><223>                   | Synthetic Construct                      |                   |    |
| <400><br>gcagtg                  | 13<br>ggtg gttctgga                      |                   | 18 |
| <210><211><211><212><213>        | 14<br>18<br>DNA<br>Artificial Sequence   |                   |    |
| <220><br><223>                   | Synthetic Construct                      |                   |    |
| <400><br>cacaaa                  | 14<br>gaac agcactga                      |                   | 18 |
| <210><br><211><br><212><br><213> | 15<br>18<br>DNA<br>Artificial Sequence   |                   |    |
| <220><br><223>                   | Synthetic Construct                      |                   |    |
| <400><br>ctggca                  | 15<br>caaa gaacagca                      |                   | 18 |

| <210><br><211><br><212><br><213> | 16<br>18<br>DNA<br>Artificial Sequence |    |
|----------------------------------|----------------------------------------|----|
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>tcctgg                  | 16<br>ctgg cacaaaga                    | 18 |
| <210><br><211><br><212><br><213> | 17<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>ctgtcc                  | 17<br>tggc tggcacaa                    | 18 |
| <210><br><211><br><212><br><213> | 18<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>ctcacca                 | 18<br>agtt tetgteet                    | 18 |
| <210><211><211><212><213>        | 19<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    | •  |
| <400><br>tcactca                 | 19<br>acca gtttctgt                    |    |
| <210><211><211><212><213>        | 20<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>gtgcag                  | 20<br>tcac tcaccagt                    | 18 |
| <210><211><211><212><213>        | 21<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400>                            | 21                                     |    |

| actctgtgca gtcactca 18           |                                        |  |    |
|----------------------------------|----------------------------------------|--|----|
| <210><211><211><212><213>        |                                        |  |    |
| <220><br><223>                   | Synthetic Construct                    |  |    |
| <400><br>cagtga                  | 22<br>actc tgtgcagt                    |  | 18 |
| <210><br><211><br><212><br><213> | DNA                                    |  |    |
| <220><br><223>                   | Synthetic Construct                    |  |    |
| <400><br>attccg                  | 23<br>tttc agtgaact                    |  | 18 |
| <210><211><211><212><213>        | DNA                                    |  |    |
| <220><br><223>                   | Synthetic Construct                    |  |    |
| <400><br>gaaggc                  | 24<br>attc cgtttcag                    |  | 18 |
| <210><211><211><212><213>        | 18<br>DNA                              |  |    |
| <220><br><223>                   | Synthetic Construct                    |  |    |
| <400><br>ttcacc                  | 25<br>gcaa ggaaggca                    |  | 18 |
| <210><211><212><212><213>        | 26<br>18<br>DNA<br>Artificial Sequence |  |    |
| <220><br><223>                   | Synthetic Construct                    |  | •  |
| <400><br>ctctgt                  | <400> 26<br>ctctgttcca ggtgtcta 18     |  |    |
| <210><211><211><212><213>        | 27<br>18<br>DNA<br>Artificial Sequence |  |    |
| <220><br><223>                   | Synthetic Construct                    |  |    |

| <400><br>ctggtg                  | 27<br>gcag tgtgtctc                    | 18 |
|----------------------------------|----------------------------------------|----|
| <210><211><211><212><213>        | 28<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>tggggt                  | 28<br>cgca gtatttgt                    | 18 |
| <210><br><211><br><212><br><213> | 29<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>ggttgg                  | 29<br>ggtc gcagtatt                    | 18 |
| <210><211><211><212><213>        | 30<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>ctaggt                  | 30<br>tggg gtcgcagt                    | 18 |
| <210><211><212><212><213>        | 31<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>ggtgcc                  | 31<br>cttc tgctggac                    | 18 |
| <210><211><212><212><213>        | 32<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>ctgagg                  | 32<br>tgcc cttctgct                    | 18 |
| <210><211><211><212><213>        | DNA                                    |    |

| <220><br><223>                   | Synthetic Construct                    |    |
|----------------------------------|----------------------------------------|----|
| <400>                            | 33<br>gttt ctgaggtg                    | 18 |
| grgrer                           | gete etgaggeg                          | 10 |
| <210><br><211><br><212><br><213> | 34<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>tggtgt                  | 34<br>ctgt ttctgagg                    | 18 |
| <210><211><211><212><213>        | 35<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>acaggt                  | 35<br>gcag atggtgtc                    | 18 |
| <210><br><211><br><212><br><213> | 36<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>ttcaca                  | 36<br>ggtg cagatggt                    | 18 |
| <210><br><211><br><212><br><213> | 37<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>gtgcca                  | 37<br>gcct tcttcaca                    | 18 |
| <210><211><212><212><213>        | 38<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>tacagt                  | 38 .<br>gcca gccttctt                  | 18 |
| <210><br><211><br><212>          | 39<br>18<br>DNA                        |    |

| <213>                            | Artificial Sequence                    |  |    |
|----------------------------------|----------------------------------------|--|----|
| <220><br><223>                   | Synthetic Construct                    |  |    |
| <400><br>ggacaca                 | 39<br>agct ctcacagg                    |  | 18 |
| <210><br><211><br><212><br><213> | DNA                                    |  |    |
| <220><br><223>                   | Synthetic Construct                    |  |    |
| <400><br>tgcagga                 | 40<br>acac agctctca                    |  | 18 |
| <210><br><211><br><212><br><213> | DNA                                    |  |    |
| <220><br><223>                   | Synthetic Construct                    |  |    |
| <400><br>gagcggf                 | 41<br>tgca ggacacag                    |  | 18 |
| <210><br><211><br><212><br><213> | 18<br>DNA                              |  |    |
| <220><br><223>                   | Synthetic Construct                    |  |    |
| <400><br>aagccg                  | 42<br>ggcg agcatgag                    |  | 18 |
| <210><br><211><br><212><br><213> | 43<br>18<br>DNA<br>Artificial Sequence |  |    |
| <220><br><223>                   | Synthetic Construct                    |  |    |
| <400><br>aatctgo                 | 43<br>ettg accccaaa                    |  | 18 |
| <210><br><211><br><212><br><213> | 44<br>18<br>DNA<br>Artificial Sequence |  |    |
| <220><br><223>                   | Synthetic Construct                    |  |    |
| <400><br>gaaacco                 | 44<br>cctg tagcaatc                    |  | 18 |
| <210>                            | 45                                     |  |    |

#### TSTS5315 ST25 txt

|                           |                                        | 1S1S5315.ST25.txt |     |
|---------------------------|----------------------------------------|-------------------|-----|
| <211><br><212><br><213>   |                                        |                   |     |
| <220><br><223>            | Synthetic Construct                    |                   |     |
| <400><br>gtatca           | 45<br>gaaa cccctgta                    |                   | 18  |
| <210><211><211><212><213> |                                        |                   |     |
| <220><br><223>            | Synthetic Construct                    |                   |     |
| <400><br>gctcgc           | 46<br>agat ggtatcag                    |                   | 18  |
| <210><211><211><212><213> | DNA                                    |                   |     |
| <220><br><223>            | Synthetic Construct                    |                   |     |
| <400><br>gcaggg           | 47<br>ctcg cagatggt                    |                   | 18  |
| <210><211><211><212><213> | DNA                                    |                   |     |
| <220><br><223>            | Synthetic Construct                    |                   |     |
| <400><br>tgggca           | 48<br>gggc tegcagat                    |                   | 18  |
| <210><211><211><212><213> | 49<br>18<br>DNA<br>Artificial Sequence |                   |     |
| <220><br><223>            | Synthetic Construct                    |                   |     |
| <400><br>gactgg           | 49<br>gcag ggctcgca                    |                   | 18  |
| <210><211><211><212><213> | DNA                                    |                   |     |
| <220><br><223>            | Synthetic Construct                    |                   |     |
| <400>                     | 50                                     |                   | 1 8 |

| <210><br><211><br><212><br><213> | 51<br>18<br>DNA<br>Artificial Sequence |    |
|----------------------------------|----------------------------------------|----|
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>gatgac                  | 51<br>acat tggagaag                    | 18 |
| <210><br><211><br><212><br><213> | 52<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>gcagate                 | 52<br>gaca cattggag                    | 18 |
| <210><br><211><br><212><br><213> | 53<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>tcgaaa                  | 53.<br>gcag atgacaca                   | 18 |
| <210><br><211><br><212><br><213> | 54<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>gtccaa                  | 54<br>gggt gacatttt                    | 18 |
| <210><br><211><br><212><br><213> | 55<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>cacago                  | 55<br>ctgt ccaagggt                    | 18 |
| <210><211><211><212><213>        | 56<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400>                            | 56                                     |    |

| ttggtc                           | tcac agcttgtc                          | 18 |
|----------------------------------|----------------------------------------|----|
| <210><br><211><br><212><br><213> |                                        |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>caggtc                  | 57<br>tttg gtctcaca                    | 18 |
| <210><br><211><br><212><br><213> | 18                                     |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>ctgttg                  | 58<br>caca accaggtc                    | 18 |
| <210><br><211><br><212><br><213> | 18                                     |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>gtttgt                  | 59<br>gcct gcctgttg                    | 18 |
| <210><br><211><br><212><br><213> | DNA                                    |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>gtcttg                  | 60<br>tttg tgcctgcc                    | 18 |
| <210><br><211><br><212><br><213> | 61<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                    |    |
| <400><br>ccacag                  | <400> 61<br>ccacagacaa catcagtc 18     |    |
| <210><br><211><br><212><br><213> |                                        |    |
| <220><br><223>                   | Synthetic Construct                    |    |

| <400><br>ctgggg                    | 62<br>acca cagacaac                      | 18 |
|------------------------------------|------------------------------------------|----|
| <210><br><211><br><212><br><213>   | 63<br>18 ·<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                     | Synthetic Construct                      |    |
| <400><br>tcagcc                    | 63<br>gatc ctggggac                      | 18 |
| <210><br><211><br><212><br><213>   | 64<br>18<br>DNA<br>Artificial Sequence   |    |
| <220><br><223>                     | Synthetic Construct                      |    |
| <400><br>caccac                    | 64<br>cagg gctctcag                      | 18 |
| <210><br><211><br><212><br><213>   | 65<br>18<br>DNA<br>Artificial Sequence   |    |
| <220><br><223>                     | Synthetic Construct                      |    |
| <400><br>gggatc                    | 65<br>acca ccagggct                      | 18 |
| <210><br><211><br><212><br><213>   | 66<br>18<br>DNA<br>Artificial Sequence   |    |
| <220><br><223>                     | Synthetic Construct                      |    |
| <400><br>gaggat                    | 66<br>ggca aacaggat                      | 18 |
| <210><br><211><br><212><br><213>   | 67<br>18<br>DNA<br>Artificial Sequence   |    |
| <220><br><223>                     | Synthetic Construct                      |    |
| <400> 67<br>accagcacca agaggatg 18 |                                          |    |
| <210><211><211><212><212><213>     | 68<br>18<br>DNA<br>Artificial Sequence   |    |

| <220>           |                     | 10100010.0120.0 |  |
|-----------------|---------------------|-----------------|--|
|                 | Synthetic Construct |                 |  |
| <400>           | 68<br>taaa gaccagca | 18              |  |
| <b>3</b> -      | <u> </u>            |                 |  |
| <210>           | 69                  |                 |  |
| <211><br><212>  |                     |                 |  |
| <213>           | Artificial Sequence |                 |  |
| <220>           | Synthetic Construct |                 |  |
|                 |                     |                 |  |
| <400><br>tattgg | 69<br>ttgg cttcttgg | 18              |  |
|                 |                     |                 |  |
| <210><br><211>  |                     |                 |  |
| <212>           | DNA                 |                 |  |
| <213>           | Artificial Sequence |                 |  |
| <220><br><223>  | Synthetic Construct |                 |  |
| <400>           |                     |                 |  |
| gggttc          | ctgc ttggggtg       | 18              |  |
| <210>           | 71                  |                 |  |
| <211>           | 18                  |                 |  |
| <212><br><213>  | Artificial Sequence |                 |  |
| <220>           | •                   |                 |  |
| <223>           | Synthetic Construct |                 |  |
| <400>           | 71<br>aaaa ttgatctc | 18              |  |
| greggg          | adda ttgatete       | 10              |  |
| <210>           | 72                  |                 |  |
| <211><br><212>  | 18<br>DNA           |                 |  |
| <213>           |                     |                 |  |
| <220>           |                     |                 |  |
| <223>           | Synthetic Construct | •               |  |
| <400>           | 72<br>cggg aaaattga | 18              |  |
| gacege          | -                   | 10              |  |
| <210>           | 73                  |                 |  |
| <211><br><212>  | 18<br>DNA           |                 |  |
| <213>           | Artificial Sequence |                 |  |
| <220>           |                     |                 |  |
| <223>           | Synthetic Construct |                 |  |
| <400>           | 73<br>agga agatcgtc | 18              |  |
| 554500          |                     |                 |  |
| <210>           | 74                  |                 |  |
| <211><br><212>  | 18<br>DNA           |                 |  |

| <213>                   | Artificial Sequence              |    |
|-------------------------|----------------------------------|----|
| <220><br><223>          | Synthetic Construct              |    |
| <400>                   |                                  |    |
| tggagc                  | cagg aagatcgt                    | 18 |
| <210>                   | 75                               |    |
| <211><br><212>          |                                  |    |
| <220>                   | Artificial Sequence              |    |
| <223>                   | Synthetic Construct              |    |
| <400><br>tggagc         | 75<br>agca gtgttgga              | 18 |
|                         |                                  |    |
| <210><br><211><br><212> | 76<br>18<br>DNA                  |    |
|                         | Artificial Sequence              |    |
| <220><br><223>          | Synthetic Construct              |    |
| <400>                   |                                  |    |
| gtaaag                  | tctc ctgcactg                    | 18 |
| <210><br><211>          |                                  |    |
| <212><br><213>          | DNA<br>Artificial Sequence       |    |
| <220><br><223>          | Synthetic Construct              |    |
| <400>                   |                                  |    |
|                         | ccat gtaaagtc                    | 18 |
| <210>                   | 78                               |    |
| <211><br><212><br><213> | 18<br>DNA<br>Artificial Sequence |    |
| <220>                   | Altificial Sequence              |    |
| <223>                   | Synthetic Construct              |    |
| <400><br>cggttg         | 78<br>gcat ccatgtaa              | 18 |
| <210>                   | 79                               |    |
| <211><br><212>          | 18<br>DNA                        |    |
| <213>                   | Artificial Sequence              |    |
| <220><br><223>          | Synthetic Construct              |    |
| <400>                   | 79                               |    |
| ctcttt                  | gcca tecteetg                    | 18 |
| <210>                   | 80                               |    |

|                         | 15155515.676                                                                                                          |    |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------|----|
| <211><br><212><br><213> | 18<br>DNA<br>Artificial Sequence                                                                                      |    |
| <220><br><223>          |                                                                                                                       |    |
| <400>                   | Synthetic Construct 80                                                                                                |    |
| ctgtct                  | ctcc tgcactga                                                                                                         | 18 |
| <210><br><211>          | 81<br>18                                                                                                              |    |
| <212><br><213>          | DNA<br>Artificial Sequence                                                                                            |    |
| <220><br><223>          | Synthetic Construct                                                                                                   |    |
| <400><br>ggtgcag        | 81<br>gcct cactgtct                                                                                                   | 18 |
|                         |                                                                                                                       |    |
| <210>                   | 82                                                                                                                    |    |
| <211><br><212>          | 18<br>DNA                                                                                                             |    |
| <213>                   | Artificial Sequence                                                                                                   |    |
| <220><br><223>          | Synthetic Construct                                                                                                   |    |
| <400>                   | 82                                                                                                                    |    |
| aactgc                  | ctgt ttgcccac                                                                                                         | 18 |
|                         |                                                                                                                       |    |
| <210><br><211>          | 83<br>18                                                                                                              |    |
| <212>                   |                                                                                                                       |    |
| <213>                   | Artificial Sequence                                                                                                   |    |
| <220><br><223>          | Synthetic Construct                                                                                                   |    |
| <400>                   | 83                                                                                                                    |    |
| cttctg                  | cetg caccectg '                                                                                                       | 18 |
| <210>                   | 84                                                                                                                    |    |
| <211><br><212>          | 18<br>DNA                                                                                                             |    |
| <213>                   | Artificial Sequence                                                                                                   |    |
| <220><br><223>          | Synthetic Construct                                                                                                   |    |
| <400>                   | 84                                                                                                                    |    |
| actgact                 | tggg catagctc                                                                                                         | 18 |
| <210>                   | 85                                                                                                                    |    |
| <211>                   | 1004                                                                                                                  |    |
| <212><br><213>          | DNA<br>Homo sapiens                                                                                                   |    |
| <300>                   |                                                                                                                       |    |
| <301>                   | Stamenkovic et al.                                                                                                    |    |
| <302>                   | A B-lymphocyte activation molecule related to the nerve growth factor receptor and induced by cytokines in carcinomas |    |
| <303><br><304>          | EMBO J. 8                                                                                                             |    |

| ISIS5315.ST25.txt                                                                |      |
|----------------------------------------------------------------------------------|------|
| <305> 5 <306> 1403-1410 <307> 1989 <308> X60592 <309> 1997-11-14 <313> (1)(1004) |      |
| <400> 85<br>gcctcgctcg ggcgcccagt ggtcctgccg cctggtctca cctcgccatg gttcgtctgc    | 60   |
| ctctgcagtg cgtcctctgg ggctgcttgc tgaccgctgt ccatccagaa ccacccactg                | 120  |
| catgcagaga aaaacagtac ctaataaaca gtcagtgctg ttctttgtgc cagccaggac                | 180  |
| agaaactggt gagtgactgc acagagttca ctgaaacgga atgccttcct tgcggtgaaa                | 240  |
| gcgaattcct agacacctgg aacagagaga cacactgcca ccagcacaaa tactgcgacc                | 300  |
| ccaacctagg gcttcgggtc cagcagaagg gcacctcaga aacagacacc atctgcacct                | 360  |
| gtgaagaagg ctggcactgt acgagtgagg cctgtgagag ctgtgtcctg caccgctcat                | 420  |
| gctcgcccgg ctttggggtc aagcagattg ctacaggggt ttctgatacc atctgcgagc                | 480  |
| cctgcccagt cggcttcttc tccaatgtgt catctgcttt cgaaaaatgt cacccttgga                | 540  |
| caagetgtga gaccaaagae etggttgtge aacaggeagg cacaaacaag actgatgttg                | 600  |
| totgtggtoc coaggatogg otgagagood tggtggtgat occoatoato ttogggatod                | 660  |
| tgtttgccat cctcttggtg ctggtcttta tcaaaaaggt ggccaagaag ccaaccaata                | 720  |
| aggcccccca ccccaagcag gaaccccagg agatcaattt tcccgacgat cttcctggct                | 780  |
| ccaacactgc tgctccagtg caggagactt tacatggatg ccaaccggtc acccaggagg                | 840  |
| atggcaaaga gagtcgcatc tcagtgcagg agagacagtg aggctgcacc cacccaggag                | 900  |
| tgtggccacg tgggcaaaca ggcagttggc cagagagcct ggtgctgctg ctgcaggggt                | 960  |
| gcaggcagaa gcggggagct atgcccagtc agtgccagcc cctc                                 | 1004 |
| <210> 86 <211> 23 <212> DNA <213> Artificial Sequence                            |      |
| <220><br><223> PCR Primer                                                        |      |
| <400> 86<br>cagagttcac tgaaacggaa tgc                                            | 23   |
| <210> 87<br><211> 23<br><212> DNA<br><213> Artificial Sequence                   |      |
| <220> <223> PCR Primer                                                           |      |
| <400> 87 ggtggcagtg tgtctctctg ttc                                               | 23   |
| <210> 88<br><211> 25<br><212> DNA                                                |      |

| <213>                            | Artificial Sequence                       | 300101012010AC                |
|----------------------------------|-------------------------------------------|-------------------------------|
| <220><br><223>                   | PCR Primer                                |                               |
| <400><br>ttcctt                  | 88<br>gcgg tgaaagcgaa ttcct               | 25                            |
| <210><br><211><br><212><br><213> | 89<br>19<br>DNA<br>Artificial Sequence    |                               |
| <220><br><223>                   | PCR Primer                                |                               |
| <400><br>gaaggt                  | 89<br>gaag gtcggagtc                      | 19                            |
| <210><211><211><212><213>        | 90<br>20<br>DNA<br>Artificial Sequence    |                               |
| <220><br><223>                   | PCR Primer                                |                               |
| <400><br>gaagate                 | 90<br>ggtg atgggatttc                     | 20                            |
| <210><211><212><212><213>        | 91<br>20<br>DNA<br>Artificial Sequence    |                               |
| <220><br><223>                   | PCR Primer                                |                               |
| <400><br>caagct                  | 91<br>tccc gttctcagcc                     | 20                            |
| <210><br><211><br><212><br><213> | 92<br>1579<br>DNA<br>Mus musculus         |                               |
| <400><br>tgccct                  | 92<br>gcat ggtgtctttg cctcggctgt gcgcgcta | atg gggctgcttg ttgacagcgg 60  |
| tccatc                           | tagg gcagtgtgtt acgtgcagtg acaaaca        | gta cctccacgat ggccagtgct 120 |
| gtgatt                           | tgtg ccagccagga agccgactga caagcca        | ctg cacagetett gagaagaeee 180 |
| aatgcc                           | accc atgtgactca ggcgaattct cagccca        | gtg gaacagggag attcgctgtc 240 |
| accagca                          | acag acactgtgaa cccaatcaag ggcttcg        | ggt taagaaggag ggcaccgcag 300 |
| aatcaga                          | acac tgtctgtacc tgtaaggaag gacaaca        | ctg caccagcaag gattgcgagg 360 |
| catgtg                           | ctca gcacacgccc tgtatccctg gctttgg        | agt tatggagatg gccactgaga 420 |
| ccactg                           | atac cgtctgtcat ccctgcccag tcggctt        | ctt ctccaatcag tcatcacttt 480 |
| tcgaaa                           | agtg ttatccctgg acaagctgtg aggataa        | gaa cttggaggtc ctacagaaag 540 |
| gaacga                           | gtca gactaatgtc atctgtggtt taaagtc        | ccg gatgcgagcc ctgctggtca 600 |

Page 17

|                                                                             |                                    |            | 1515551    | J.5125.CAC |            |      |
|-----------------------------------------------------------------------------|------------------------------------|------------|------------|------------|------------|------|
| ttcctgtcgt                                                                  | gatgggcatc                         | ctcatcacca | ttttcggggt | gtttctctat | atcaaaaagg | 660  |
| tggtcaagaa                                                                  | accaaaggat                         | aatgagatgt | taccccctgc | ggctcgacgg | caagatcccc | 720  |
| aggagatgga                                                                  | agattatccc                         | ggtcataaca | ccgctgctcc | agtgcaggag | acactgcacg | 780  |
| ggtgtcagcc                                                                  | tgtcacacag                         | gaggatggta | aagagagtcg | catctcagtg | caggagcggc | 840  |
| aggtgacaga                                                                  | cagcatagcc                         | ttgaggcccc | tggtctgaac | cctggaactg | ctttggaggc | 900  |
| gatggctgct                                                                  | tgctgacctt                         | tgaagtttga | gatgagccaa | gacagagccc | agtgcagcta | 960  |
| actctcatgc                                                                  | ctgccccctg                         | tcatttctca | acttgctttt | taaggatgga | gggaaagctc | 1020 |
| gggcatcggg                                                                  | aggtccacag                         | tgatatctac | caagtgcagc | agtgcaggac | ccagagttgt | 1080 |
| cttgctgcgg                                                                  | cgttcactgt                         | aaggagtcgt | ggctacagga | gtccgtggcc | cgcagcttgt | 1140 |
| gctcgtagag                                                                  | ggcacctggt                         | tgccatcagc | agggtactgg | ctaaataaat | ctgtaattat | 1200 |
| ttatacaatg                                                                  | gcatctcaga                         | aactctagca | ggtggggcag | aaaacaggta | gtggaatgat | 1260 |
| gggtagagaa                                                                  | acagctttta                         | aaacacattc | caaggcaggt | aagatggctt | ttgtgggtaa | 1320 |
| aggagcttgc                                                                  | tgcccaaacc                         | cggttacctg | attttgatcc | ctgggacttc | atggtaaaag | 1380 |
| ggagagaacc                                                                  | aaatccagag                         | ggttgtcatt | tgacctccat | gtgtgctctg | tggtaatgta | 1440 |
| ccccgtgtgt                                                                  | gcacatgtgc                         | acatatccta | aaatggatgt | ggtggtgtat | tgtagaaatt | 1500 |
| atttaatccg                                                                  | ccctgggttt                         | ctacctgtgt | gttaccattt | agttcttgaa | taaagacaca | 1560 |
| ctcaaccttt                                                                  | atatttaca                          |            |            |            |            | 1579 |
| <220> <223> PCR <400> 93 tgatatagag  <210> 94 <211> 27 <212> DNA <213> Arti | ificial Sequent Primer  aaacaccccg | aaaatgg    |            |            |            | 27   |
| <400> 94                                                                    | Primer<br>ccactgatac               | cgtctgt    |            |            |            | 27   |
| <210> 95<br><211> 20<br><212> DNA<br><213> Art:                             | ificial Sequ                       | pence      |            |            |            |      |
|                                                                             | Primer                             |            |            |            |            |      |
| <400> 95<br>gccagtacac                                                      | ctgccacaaa                         |            |            |            |            | 20   |

| <210><br><211><br><212><br><213> | 96<br>24<br>DNA<br>Artificial Sequence  |    |
|----------------------------------|-----------------------------------------|----|
| <220><br><223>                   | PCR Primer                              |    |
| <400><br>gaccaaa                 | 96<br>attc cattttcctt cttg              | 24 |
| <210><br><211><br><212><br><213> | 97<br>28<br>DNA<br>Artificial Sequence  |    |
| <220><br><223>                   | PCR Primer                              |    |
| <400><br>aggcga                  | 97<br>gact ctgagccact cacatctg          | 28 |
| <210><br><211><br><212><br><213> | 98<br>20<br>DNA<br>Artificial Sequence  |    |
| <220><br><223>                   | PCR Primer                              |    |
| <400><br>ctgcate                 | 98<br>gtcc ggaggaaatt                   | 20 |
| <210><br><211><br><212><br><213> | 99<br>19<br>DNA<br>Artificial Sequence  |    |
| <220><br><223>                   | PCR Primer                              |    |
|                                  | 99<br>cgtc tgtggcaaa                    | 19 |
| <210><br><211><br><212><br><213> | 100<br>22<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | PCR Primer                              |    |
| <400><br>ctggcg                  | 100<br>caat gtcacgaggc tg               | 22 |
| <210><br><211><br><212><br><213> | 101<br>23<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | PCR Primer                              |    |

|                                  |                                         | 15153313.5123.CXC |    |
|----------------------------------|-----------------------------------------|-------------------|----|
| <400><br>cactga                  | 101<br>tacc gtctgtcatc cct              | 2                 | 23 |
| <210><211><211><212><212><213>   | 25                                      |                   |    |
| <220>                            | PCR Primer                              |                   |    |
| <400><br>agttct                  | 102<br>tatc ctcacagctt gtcca            | 2                 | 25 |
| <210><br><211><br><212><br><213> | 103<br>31<br>DNA<br>Artificial Sequence |                   |    |
| <220><br><223>                   | PCR Primer                              |                   |    |
| <400><br>agtcgg                  | 103<br>cttc ttctccaatc agtcatcact t     | 3                 | 31 |
| <210><br><211><br><212><br><213> | 23                                      |                   |    |
| <220><br><223>                   | PCR Primer                              |                   |    |
| <400><br>cactga                  | 104<br>tacc gtctgtcatc cct              | 2                 | 23 |
| <210><br><211><br><212><br><213> |                                         |                   |    |
| <220><br><223>                   | PCR Primer                              |                   |    |
| <400><br>ccacat                  | 105<br>ccgg gactttaaac cttgt            | 2                 | 25 |
| <210><br><211><br><212><br><213> | 27                                      |                   |    |
| <220><br><223>                   | PCR Primer                              |                   |    |
| <400><br>ccagtc                  | 106<br>ggct tcttctccaa tcagtca          | 2                 | 27 |
| <210><211><211><212><212><213>   | 24                                      |                   |    |
| <220>                            | •                                       |                   |    |

| <223>          | PCR Primer                 |     |
|----------------|----------------------------|-----|
| <400>          | 107                        |     |
| tgtgtt         | acgt gcagtgacaa acag       | 24  |
|                | •                          |     |
| <210>          | 108                        |     |
| <211><br><212> | 18<br>DNA                  |     |
| <213>          |                            |     |
| <220>          |                            |     |
| <223>          | PCR Primer                 |     |
| <400>          | 108                        |     |
|                | tggc tggcacaa              | 18  |
|                |                            |     |
| <210>          | 109                        |     |
| <211>          |                            |     |
| <212><br><213> |                            |     |
|                | •                          |     |
| <220><br><223> | PCR Primer                 |     |
|                |                            |     |
| <400>          | 109<br>cgat cgccagtgct gtg | 23  |
| 000000         |                            |     |
| <210>          | 110                        |     |
| <211>          | 15                         |     |
| <212><br><213> | DNA Artificial Seguence    |     |
| \213/          | Artificial Sequence        |     |
| <220><br><223> | PCR Primer                 |     |
| \2237          | FOR FILMEL                 |     |
| <400>          |                            | 1 5 |
| Legeeg         | cttg ctgca                 | 15  |
| <b>2010</b> 5  | 111                        |     |
| <210><br><211> | 111<br>17                  |     |
| <212>          | DNA                        |     |
| <213>          | Artificial Sequence        |     |
| <220>          |                            |     |
| <223>          | PCR Primer                 |     |
| <400>          | 111                        |     |
| atcggc         | cgtg atgtcga .             | 17  |
|                |                            |     |
| <210><br><211> | 112<br>23                  |     |
| <212>          | DNA                        |     |
| <213>          | Artificial Sequence        |     |
| <220>          |                            |     |
| <223>          | PCR Primer                 |     |
| <400>          | 112                        |     |
| ccatgg         | tcaa ccccaccgtg ttc        | 23  |
|                |                            |     |
| <210>          | 113                        |     |
| <211><br><212> | 15<br>DNA                  |     |
| <213>          | Artificial Sequence        |     |

| <220><br><223>                   | Synthetic Construct                     |    |
|----------------------------------|-----------------------------------------|----|
| <400><br>gctagt                  | 113<br>cact gagca                       | 15 |
| <210><br><211>                   |                                         |    |
| <212><br><213>                   |                                         |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>caaagt                  | 114<br>ccct gctag                       | 15 |
| <210><br><211><br><212><br><213> | 15                                      |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>agccac                  | 115<br>aagt cactc                       | 15 |
| <210><br><211><br><212><br><213> | 14<br>DNA                               |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>agacac                  | 116<br>catc gcag                        | 14 |
| <210><211><211><212><212><213>   |                                         |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>gcgaga                  | 117<br>tcag aagag                       | 15 |
| <210><211><211><212><213>        | 118<br>15<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>cgctgt                  | 118<br>caac aagca                       | 15 |
| <210><br><211>                   | 119<br>15                               |    |

| <212>           | DNA                 | 151555151251616 |   |
|-----------------|---------------------|-----------------|---|
|                 | Artificial Sequence |                 |   |
| <220><br><223>  | Synthetic Construct |                 |   |
| <400>           |                     |                 | _ |
| ctgccc          | taga tggac          | 15              | 5 |
| <210>           | 120                 |                 |   |
| <211><br><212>  |                     |                 |   |
| <213>           | Artificial Sequence |                 |   |
| <220>           |                     |                 |   |
| <223>           | Synthetic Construct |                 |   |
| <400>           |                     | 1:              | _ |
| etgget          | ggca caaat          | 1               | 2 |
| <210>           | 121                 |                 |   |
| <211><br><212>  |                     |                 |   |
|                 | Artificial Sequence |                 |   |
| <220>           |                     |                 |   |
| <223>           | Synthetic Construct |                 |   |
| <400>           | 121<br>caca gtgtc   | 1:              | _ |
| egggee          | caea gigic          | 1:              | כ |
| <210>           | 122                 |                 |   |
| <211><br><212>  |                     |                 |   |
| <213>           |                     |                 |   |
| <220>           |                     |                 |   |
| <223>           | Synthetic Construct |                 |   |
| <400>           | 122<br>cata actcc   | 1:              | 5 |
| cacccc          | caca accec          |                 | _ |
| <210>           |                     |                 |   |
| <211><br><212>  | 15<br>DNA           |                 |   |
|                 | Artificial Sequence |                 |   |
| <220>           |                     |                 |   |
| <223>           | Synthetic Construct |                 |   |
| <400><br>cttatc | 123<br>cagg gataa   | 1:              | 5 |
| <b>J</b>        |                     | _               |   |
| <210>           | 124                 |                 |   |
| <211><br><212>  | 15<br>DNA           |                 |   |
| <213>           | Artificial Sequence |                 |   |
| <220>           | DV2 01:             |                 |   |
| <223>           | PNA Oligomer        |                 |   |
| <400><br>cacaga | 124<br>tgac attag   | 1:              | 5 |

|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500101012010110 |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
| <210>  | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
| <211>  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |
| <212>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <213>  | Artificial Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
| <220>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <223>  | Synthetic Construct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
| \2237  | Synthetic Constituct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |  |
| <400>  | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
|        | agag aaaca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15              |  |
| cyacac | agag aaaca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13              |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <210>  | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
| <211>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <212>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
|        | Artificial Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
|        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |  |
| <220>  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |  |
| <223>  | Synthetic Construct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <400>  | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
| tcttga | ccac ctttt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15              |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <210>  | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
| <211>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <212>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <213>  | Artificial Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <220>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <223>  | Synthetic Construct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <400>  | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
| ctcatt | atcc tttgg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15              |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <210>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <211>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <212>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <213>  | Artificial Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
| .0005  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |  |
| <220>  | Company of the Compan |                 |  |
| <223>  | Synthetic Construct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
| <100×  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
| <400>  | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12              |  |
| ggttca | gacc agg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13              |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <210>  | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
| <210>  | 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
| <211>  | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
| <213>  | Artificial Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
| \2137  | Artificial Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
| <220>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <223>  | Synthetic Construct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
| \2237  | Synthetic constituet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |  |
| <400>  | 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
|        | caaa ggtca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15              |  |
|        | 99000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15              |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <210>  | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
| <211>  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |
| <212>  | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
| <213>  | Artificial Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <220>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <223>  | Synthetic Construct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |
| <400>  | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |
| tttatt | tagc cagta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15              |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |

```
<210> 131
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Construct
<400> 131
                                                                        15
agccccacgc actgg
<210> 132
<211>
       938
<212> DNA
<213> Mus musculus
<400> 132
gcctcctggc ccttcagctg tggtctttcc cgttttctga ctttgcggtg acactgggga
                                                                        60
cttccttaga cctctctgga gacgctttcg gttctgcaga gattcccagg ggtattgtgg
                                                                       120
gtggggtggg gtaacaatag tgtccctgtg gcgctcccag tccctatagt aatccttcac
                                                                       180
ccctctgcta tcttgcaatc aggagagtcc ttagccctgc tataggtggc ttttgaggtc
                                                                       240
ctqqatqcqa qqaqqqqac tqqqqqqtqq qtcqqqtaat qtaaqaaaaq qqctcctttt
                                                                       300
gggaccctgg ctcctccagc caccttggtg cccatccctt aaactcttgg ggacaatcag
                                                                       360
actcctggga aggtcctggg gaaatccctg ctcagtgact agccataggc ccaccgcgat
                                                                       420
                                                                       480
tggtgcccga agaccccgcc ctcttcctgg gcgggactcc tagcagggac tttggagtga
cttgtggctt cagcaggagc cctgtgattt ggctcttctg atctcgccct gcgatggtgt
                                                                       540
ctttgcctcg gctgtgcgcg ctatggggct gcttgttgac agcggtgagt ggcttgtgtt
                                                                       600
ctaacctcca agggagttag ggcttagaga gtgagagatg gaaagaggaa agaggagaca
                                                                       660
agactttgga gatgagagat cttcctactg gaagcggcgg ttagtaggat gggcaagatc
                                                                       720
                                                                      780
totogogtot tgacacacac acacacaca acaaatgagg tgggctgctc ctctttcctt
ccagaaggtc ggggttctgt tccacgaagc ccacagggaa ccttagggag ggcattcctc
                                                                       840
cacagoggtg cotggacago titgtotgac coaagoottg cicoggagot gactgoagag
                                                                       900
                                                                       938
actggaaagg gttagcagac aggaagcctg gctggggg
<210> 133
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide Primer
<220>
<221> misc_feature
<222> (1)..(20)
<223> n is a, c, g, or t
<400> 133
nnnnnnnnn nnnnnnnn
                                                                        20
```

```
<210> 134
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide Primer
<220>
<221> misc_feature
<222>
       (1)...(4)
<223> 2'-O-methoxyethyl gapmer with phosphorothioate backbone
<220>
<221> misc_feature
<222> (15)..(18)
<223> 2'-O-methoxyethyl gapmer with phosphorothioate backbone
<400> 134
                                                                             18
tctcactcct atcccagt
<210> 135
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide Primer
<400> 135
cactgatcag ataag
                                                                             15
<210> 136
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<400> 136
actagtgcta gcgtc
                                                                             15
<210> 137
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide Primer
<400> 137
                                                                             15
cgtcatgata ccgat
<210> 138
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223>
       PNA Oligomer
<220>
```

```
<221> misc_feature
<222> (1)..(1)
<223> L-histidine
<220>
<221> misc_feature
<222> (15)..(15)
<223> Lysine-NH2
<400> 138
attagtctga ctcgt
                                                                                                               15
<210> 139
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<220>
<221> misc_feature
<222> (1)..(1)
<223> L-histidine
<220>
<221> misc_feature
<222> (15)..(15)
<223> Lysine-NH2
<400> 139
acattagtct gactc
                                                                                                               15
<210> 140
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<220>
<221> misc_feature
<222> (1)..(1)
<223> L-histidine
<220>
<221> misc_feature
<222> (15)..(15)
<223> Lysine
<400> 140
tgacattagt ctgac
                                                                                                               15
<210> 141
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<220>
<221> misc_feature
```

Page 27

```
<222> (1)..(1)
<223> L-histidine
<220>
<221> misc_feature
<222> (15)..(15)
<223> Lysine
<400> 141
gatgacatta gtctg
                                                                                                       15
<210> 142
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<220>
<221> misc_feature
<222> (1)..(1)
<223> L-histidine
<220>
<221> misc_feature
<222> (15)..(15)
<223> Lysine
<400> 142
                                                                                                       15
cagatgacat tagtc
<210> 143
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<220>
<221> misc_feature <222> (1)..(1)
<223> L-histidine
<220>
<221> misc feature
<222> (15)..(15)
<223> Lysine
<400> 143
ctggactcac cacag
                                                                                                       15
<210> 144
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<220>
<221> misc_feature <222> (1)..(1)
```

```
<223> L-histidine
<220>
<221> misc_feature
<222> (15)..(15)
<223> Lysine
<400> 144
                                                                                                              15
ggactcacca cagat
<210> 145
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<220>
<221> misc_feature
<222> (1)..(1)
<223> L-histidine
<220>
<221> misc_feature
<222> (15)..(15)
<223> Lysine
<400> 145
                                                                                                              15
actcaccaca gatga
<210> 146
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<220>
<221> misc_feature
<222> (1)..(1)
<223> L-histidine
<220>
<221> misc_feature
<222> (15)..(15)
<223> Lysine
<400> 146
tcaccacaga tgaca
                                                                                                              15
<210> 147
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<220>
<221> misc_feature
<222> (1)..(1)
<223> L-histidine
```

```
<220>
<221> misc_feature
<222> (15)..(15)
<223> Lysine
<400> 147
accacagatg acatt
                                                                                                  15
<210> 148
<211> 7
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<220>
<221> misc_feature
<222> (1)..(1)
<223> L-histidine
<220>
<221> misc_feature
<222> (7)..(7)
<223> Lysine
<400> 148
                                                                                                   7
acattag
<210> 149
<211> 8
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<220>
<221> misc_feature
<222> (1)..(1)
<223> L-histidine
<220>
<221> misc_feature
<222> (8)..(8)
<223> Lysine
<400> 149
                                                                                                   8
gacattag
<210> 150
<211> 9
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<220>
<221> misc_feature
<222> (1)..(1)
<223> L-histidine
```

```
<220>
<221> misc_feature
<222> (9)..(9)
<223> Lysine
<400> 150
                                                                                                          9
tgacattag
<210> 151
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<220>
<221> misc_feature
<222> (1)..(1)
<223> L-histidine
<220>
<221> misc_feature
<222> (10)..(10)
<223> Lysine
<400> 151
atgacattag
                                                                                                        10
<210> 152
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<220>
<221> misc_feature
<222> (1)..(1)
<223> L-histidine
<220>
<221> misc_feature
<222> (11)..(11)
<223> Lysine
<400> 152
                                                                                                         11
gatgacatta g
<210> 153
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<220>
<221> misc_feature <222> (1)..(1)
<223> L-histidine
```

Page 31

<220>

```
<221> misc_feature
<222> (12)..(12)
<223> Lysine
<400> 153
agatgacatt ag
                                                                                                         12
<210> 154
<211> 13
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<220>
<221> misc_feature
<222> (1)..(1)
<223> L-histidine
<220>
<221> misc_feature
<222> (13)..(13)
<223> Lysine
<400> 154
cagatgacat tag
                                                                                                         13
<210> 155
<211> 14
<211> 14
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<220>
<221> misc_feature
<222> (1)..(1)
<223> L-histidine
<220>
<221> misc_feature
<222> (14)..(14)
<223> Lysine
<400> 155
acagatgaca ttag
                                                                                                         14
<210> 156
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<220>
<221> misc_feature
<222> (1)..(1)
<223> L-histidine
<220>
<221> misc feature
```

```
<222> (16)..(16)
<223> Lysine
    <400> 156
                                                                                                   16
    ccacagatga cattag
    <210> 157
<211> 17
<212> DNA
    <213> Artificial Sequence
    <220>
    <223> PNA Oligomer
    <220>
    <221> misc_feature
    <222> (1)..(1)
<223> L-histidine
    <220>
   <221> misc_feature
<222> (17)..(17)
<223> Lysine
    <400> 157
                                                                                                   17
    accacagatg acattag
   <210> 158
<211> 18
<212> DNA
<213> Artificial Sequence
    <220>
    <223> PNA Oligomer
    <220>
    <221> misc_feature
    <222> (1)..(1)
<223> L-histidine
    <220>
    <221> misc_feature
<222> (18)..(18)
    <223> Lysine
    <400> 158
                                                                                                   18
    caccacagat gacattag
    <210> 159
<211> 19
<212> DNA
    <213> Artificial Sequence
    <220>
    <223> PNA Oligomer
    <220>
    <221> misc_feature
    <222> (1)..(1)
<223> L-histidine
    <220>
<221> misc_feature
<222> (19)..(19)
```

```
<223> Lysine
<400> 159
tcaccacaga tgacattag
                                                                                     19
<210> 160
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> PNA Oligomer
<220>
<221> misc_feature
<222> (1)..(1)
<223> L-histidine
<220>
<221> misc_feature
<222> (20)..(20)
<223> Lysine
<400> 160
ctcaccacag atgacattag
                                                                                     20
<210> 161
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Construct
<400> 161
cgagaggcgg acgggaccg
                                                                                     19
<210> 162
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Construct
<220>
<221> misc_feature <222> (20)..(21)
<223> two-nucleobase overhang of deoxythymidine (dT)
<400> 162
                                                                                     21
cgagaggcgg acgggaccgt t
<210> 163
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Construct
<220>
<221> misc_feature
```

| <222><br><223>                   | (20)(21) two-nucleobase ovrhang of deoxythymidine (dT) |    |
|----------------------------------|--------------------------------------------------------|----|
| <400><br>cggtcc                  | 163<br>egte egeetetegt t                               | 21 |
| <210><br><211><br><212><br><213> | 164<br>19<br>DNA<br>Artificial Sequence                |    |
| <220><br><223>                   | Synthetic Construct                                    |    |
| <400><br>cggtcc                  | 164<br>egte egeeteteg                                  | 19 |
| <210><br><211><br><212><br><213> | 165<br>18<br>DNA<br>Artificial Sequence                |    |
| <220><br><223>                   | Synthetic Construct                                    |    |
| <400><br>agtggt                  | 165<br>cctg ccgcctgg                                   | 18 |
| <210><br><211><br><212><br><213> | 166<br>18<br>DNA<br>Artificial Sequence                |    |
| <220><br><223>                   | Synthetic Construct                                    |    |
| <400><br>tggtcct                 | 166<br>tgcc gcctggtc                                   | 18 |
| <210><br><211><br><212><br><213> | 167<br>18<br>DNA<br>Artificial Sequence                |    |
| <220><br><223>                   | Synthetic Construct                                    |    |
| <400><br>tgccgcd                 | 167<br>ctgg teteacet                                   | 18 |
| <210><br><211><br><212><br><213> | 168<br>18<br>DNA<br>Artificial Sequence                |    |
| <220><br><223>                   | Synthetic Construct                                    |    |
| <400><br>atggtto                 | 168<br>cgtc tgcctctg                                   | 18 |
| <210><br><211><br><212>          | 169<br>17<br>DNA                                       |    |

| <213>                     | Artificial Sequence                     |    |
|---------------------------|-----------------------------------------|----|
| <220><br><223>            | Synthetic Construct                     |    |
| <400><br>tggttc           | 169<br>gtct gctctgc                     | 17 |
| <210><211><212><212><213> | 170<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>            | Synthetic Construct                     |    |
| <400><br>tcctct           | 170<br>gggg ctgcttgc                    | 18 |
| <210><211><211><212><213> |                                         |    |
| <220><br><223>            | Synthetic Construct                     |    |
| <400><br>tggggc           | 171<br>tgct tgctgacc                    | 18 |
| <210><211><211><212><213> |                                         |    |
| <220><br><223>            | Synthetic Construct                     |    |
| <400><br>tgcttg           | 172<br>ctga ccgctgtc                    | 18 |
| <210><211><211><212><213> | 173<br>18<br>DNA                        |    |
| <220><br><223>            | Synthetic Construct                     |    |
| <400><br>tgctga           | 173<br>ccgc tgtccatc                    | 18 |
| <210><211><212><212><213> | 174<br>19<br>DNA<br>Artificial Sequence |    |
| <220><br><223>            | Synthetic Construct                     |    |
| <400><br>gaccgc           | 174<br>tgtc cactccaga                   | 19 |
| <210>                     | 175                                     |    |

| <211>           | 18                         | 10100010.0120.0 |     |
|-----------------|----------------------------|-----------------|-----|
| <212><br><213>  |                            |                 |     |
| <220><br><223>  | Synthetic Construct        |                 |     |
| <400><br>tgtcca | 175<br>tcca gaaccacc       |                 | 18  |
| <210>           | 176                        |                 |     |
| <211><br><212>  |                            |                 |     |
| <213>           | Artificial Sequence        |                 |     |
| <220><br><223>  | Synthetic Construct        |                 |     |
| <400>           |                            |                 |     |
| ccatcc          | agaa ccacccac              |                 | 18  |
| <210>           | 177                        |                 |     |
| <211><br><212>  |                            |                 |     |
| <213>           | Artificial Sequence        |                 |     |
| <220><br><223>  | Synthetic Construct        |                 |     |
| <400>           | 177                        |                 | 1.0 |
| tccaga          | acca cccactgc              |                 | 18  |
| <210><br><211>  |                            |                 |     |
| <212>           | DNA                        |                 |     |
| <213>           | Artificial Sequence        |                 |     |
| <220><br><223>  | Synthetic Construct        |                 |     |
| <400>           | 178<br>ctgt tctttgtg       |                 | 18  |
| ,.,             |                            | •               |     |
| <210><br><211>  | 179<br>18                  |                 |     |
| <212><br><213>  | DNA<br>Artificial Sequence |                 |     |
| <220>           | metroiar bequence          |                 |     |
| <223>           | Synthetic Construct        |                 |     |
| <400><br>tgctgt | 179<br>tett tgtgecag       |                 | 18  |
| <210>           | 180                        |                 |     |
| <211>           | 18                         |                 |     |
| <212><br><213>  | DNA<br>Artificial Sequence |                 |     |
| <220>           |                            |                 |     |
| <223>           | Synthetic Construct        |                 |     |
| <400><br>tctttg | 180<br>tgcc agccagga       |                 | 18  |

| <210><br><211><br><212><br><213> |                            |    |
|----------------------------------|----------------------------|----|
| <220><br><223>                   | Synthetic Construct        |    |
| <400><br>ttgtgc                  | 181<br>cagc caggacag       | 1  |
| <210><br><211>                   | 182                        |    |
| <212><br><213>                   | DNA                        |    |
| <220><br><223>                   | Synthetic Construct        |    |
| <400><br>aggaca                  | 182<br>gaaa ctggtgag       | 18 |
|                                  |                            |    |
| <210>                            | 183<br>18                  |    |
| <211><br><212>                   |                            |    |
| <213>                            | Artificial Sequence        |    |
| <220><br><223>                   | Synthetic Construct        |    |
| <400>                            | 183                        |    |
| acagaa                           | actg gtgagtga              | 18 |
| <210>                            | 184                        |    |
| <211>                            |                            |    |
| <212><br><213>                   |                            |    |
|                                  | mreiriciai bequence        |    |
| <220><br><223>                   | Synthetic Construct        |    |
| <400>                            | 184                        | 18 |
| actygt                           | gagt gactgcac              | 10 |
| <210>                            | 185                        |    |
| <211>                            | 18                         |    |
| <212><br><213>                   | DNA<br>Artificial Sequence |    |
|                                  |                            |    |
| <220><br><223>                   | Synthetic Construct        |    |
| <400>                            | 185                        |    |
| tgagtg                           | actg cacagagt              | 18 |
|                                  | ¥                          |    |
| <210><br><211>                   | 186                        |    |
| <211>                            | 18<br>DNA                  |    |
| <213>                            | Artificial Sequence        |    |
| <220>                            |                            |    |
| <223>                            | Synthetic Construct        |    |
| <400>                            | 186                        |    |

| actgca                           | caga gttcactg                           | 18 |
|----------------------------------|-----------------------------------------|----|
| <210><211><211><212><213>        | DNA                                     |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>agttca                  | 187<br>ctga aacggaat                    | 18 |
| <210><211><211><212><213>        | DNA                                     |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>ctgaaa                  | 188<br>cgga atgccttc                    | 18 |
| <210><211><211><212><213>        | DNA                                     |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>tgcctt                  | 189<br>cctt gcggtgaa                    | 18 |
| <210><br><211><br><212><br><213> | DNA                                     |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>tagaca                  | 190<br>cctg gaacagag                    | 18 |
| <210><211><211><212><212><213>   | 191<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>gagaca                  | 191<br>cact gccaccag                    | 18 |
| <210><211><211><212><213>        | DNA                                     |    |
| <220>                            | Synthetic Construct                     |    |

| <400><br>acaaat                  | 192<br>actg cgaccca                     | 18 |
|----------------------------------|-----------------------------------------|----|
| <210><br><211><br><212><br><213> | DNA                                     |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>aatact                  | 193<br>gcga ccccaacc                    | 18 |
| <210><br><211><br><212><br><213> |                                         |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>actgcg                  | 194<br>accc caacctag                    | 18 |
| <210><br><211><br><212><br><213> |                                         |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>gtccag                  | 195<br>caga agggcacc                    | 18 |
| <210><br><211><br><212><br><213> |                                         |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>agcaga                  | 196<br>aggg cacctcag                    | 18 |
| <210><br><211><br><212><br><213> | 197<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>cacctc                  | 197<br>agaa acagacac                    | 18 |
| <210><211><211><212><212><213>   | 198<br>18<br>DNA<br>Artificial Sequence |    |

| <220><br><223>                   | Synthetic Construct                     |    |
|----------------------------------|-----------------------------------------|----|
| <400>                            | 198<br>aaac agacacca                    | 18 |
| -                                | -                                       |    |
| <210><br><211><br><212><br><213> |                                         |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>gacacc                  | 199<br>atct gcacctgt                    | 18 |
|                                  |                                         |    |
| <210><211><211><212><213>        |                                         |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>accatc                  | 200<br>tgca cctgtgaa                    | 18 |
| <210><211><211><212><213>        | 201<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>tgtgaa                  | 201<br>gaag getggeae                    | 18 |
| <210><211><211><212><213>        |                                         |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>aagaag                  | 202<br>gctg gcactgta                    | 18 |
| <210><br><211><br><212><br><213> | 203<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>cctgtg                  | 203<br>agag ctgtgtcc                    | 18 |
| <210><br><211><br><212>          | 204<br>18<br>DNA                        |    |

| <213>                            | Artificial Sequence                     |    |
|----------------------------------|-----------------------------------------|----|
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>tgagag                  | 204<br>ctgt gtcctgca                    | 18 |
| <210><211><211><212><213>        | 205<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>ctgtgt                  | 205<br>cctg caccgctc                    | 18 |
| <210><211><211><212><213>        |                                         |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>ctcatg                  | 206<br>ctcg cccggctt                    | 18 |
| <210><211><211><212><213>        | 207<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>tttggg                  | 207<br>gtca agcagatt                    | 18 |
| <210><br><211><br><212><br><213> | 208<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>gattgc                  | 208<br>taca ggggtttc                    | 18 |
| <210><br><211><br><212><br><213> | 209<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>tacagg                  | 209<br>ggtt totgatac                    | 18 |
| <210>                            | 210                                     |    |

| <211>          | 18                   | 10100010.0120.020 |
|----------------|----------------------|-------------------|
| <212>          | DNA                  |                   |
| <213>          | Artificial Sequence  |                   |
| <220><br><223> | Synthetic Construct  |                   |
| <400>          |                      | 11                |
| Cigata         | ccat ctgcgagc        | 1:                |
| <210>          | 211                  |                   |
| <211><br><212> |                      |                   |
|                | Artificial Sequence  |                   |
| <220>          |                      |                   |
| <223>          | Synthetic Construct  |                   |
| <400>          | 211<br>tgcg agccctgc | 1:                |
|                | -5-555-              | _                 |
| <210>          |                      |                   |
| <211><br><212> |                      |                   |
| <213>          | Artificial Sequence  |                   |
| <220><br><223> | Synthetic Construct  |                   |
| <400>          | 212                  |                   |
|                | gage cetgecea        | 1:                |
|                |                      |                   |
| <210><br><211> |                      |                   |
| <212>          | DNA                  |                   |
| <213>          | Artificial Sequence  |                   |
| <220><br><223> | Synthetic Construct  |                   |
| <400>          |                      |                   |
| tgcgag         | cct gcccagtc         | 11                |
| <210>          | 214                  |                   |
| <211><br><212> | 18                   |                   |
| <213>          |                      |                   |
| <220>          |                      |                   |
| <223>          | Synthetic Construct  |                   |
| <400>          | 214<br>tott otocaatg | 1:                |
| 33             |                      |                   |
| <210>          | 215                  |                   |
| <211><br><212> | 18<br>DNA            |                   |
| <213>          | Artificial Sequence  |                   |
| <220>          | Symthetic Construct  |                   |
| <223>          | Synthetic Construct  |                   |
| <400>          | 215<br>caat gtgtcatc | 1                 |

| <210><br><211><br><212><br><213> |                                         |    |
|----------------------------------|-----------------------------------------|----|
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>ctccaa                  | 216<br>tgtg tcatctgc                    | 18 |
| <210><211><211><212><213>        | 217<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>tgtgtc                  | 217<br>atct gctttcga                    | 18 |
| <210><211><211><212><213>        | 218<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>aaaatg                  | 218<br>tcac ccttggac                    | 18 |
| <210><br><211><br><212><br><213> | 18<br>DNA                               |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>accctt                  | 219<br>ggac aagctgtg                    | 18 |
| <210><br><211><br><212><br><213> | 220<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>gacaag                  | 220<br>ctgt gagaccaa                    | 18 |
| <210><211><211><212><213>        |                                         |    |
| <220><br><223>                   |                                         |    |
|                                  | Synthetic Construct                     |    |

| tgtgag                           | gacca aagacctg        | 18 |
|----------------------------------|-----------------------|----|
| <210><211><211><212>             | 18<br>DNA             |    |
|                                  | Artificial Sequence   |    |
| <220><br><223>                   |                       |    |
| <400><br>gacctg                  | 222<br>ggttg tgcaacag | 18 |
| <210><br><211><br><212><br><213> | 18                    |    |
| <220><br><223>                   |                       |    |
| <400><br>caacag                  | 223<br>ggcag gcacaaac | 18 |
| <210><211><211><212><213>        | 18                    |    |
| <220><br><223>                   | Synthetic Construct   |    |
| <400><br>ggcagg                  | 224<br>gcaca aacaagac | 18 |
| <210><br><211><br><212><br><213> | 18<br>DNA             |    |
| <220><br><223>                   | Synthetic Construct   |    |
| <400><br>gactga                  | 225<br>atgtt gtctgtgg | 18 |
| <210><br><211><br><212><br><213> | 18<br>DNA             |    |
| <220><br><223>                   | Synthetic Construct   |    |
| <400><br>gttgtc                  | 226<br>ctgtg gtccccag | 18 |
| <210><br><211><br><212><br><213> | 18<br>DNA             |    |
| <220><br><223>                   | Synthetic Construct   |    |

| <400><br>gtcccc                  | 227<br>agga tcggctga                    | 18 |
|----------------------------------|-----------------------------------------|----|
| <210><br><211><br><212><br><213> | 228<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>ctgaga                  | 228<br>gccc tggtggtg                    | 18 |
| <210><br><211><br><212><br><213> | DNA                                     |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>agccct                  | 229<br>ggtg gtgatccc                    | 18 |
| <210><211><211><212><213>        |                                         |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>atcctg                  | 230<br>tttg ccatcctc                    | 18 |
| <210><br><211><br><212><br><213> | 231<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>catcct                  | 231<br>cttg gtgctggt                    | 18 |
| <210><211><211><212><213>        | 232<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>tgctgg                  | 232<br>tctt tatcaaaa                    | 18 |
| <210><211><211><212><213>        | 233<br>18<br>DNA<br>Artificial Sequence |    |

| <220><br><223>                   | Synthetic Construct                     |    |
|----------------------------------|-----------------------------------------|----|
| <400><br>ccaaga                  | 233<br>agcc aaccaata                    | 18 |
| <210><br><211><br><212><br><213> | DNA                                     |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>cacccc                  | 234<br>aagc aggaaccc                    | 18 |
| <210><211><211><212><213>        | DNA                                     |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>gagato                  | 235<br>aatt ttcccgac                    | 18 |
| <210><211><211><212><213>        | 18<br>DNA                               |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>tcaatt                  | 236<br>ttcc cgacgatc                    | 18 |
| <210><211><211><212><213>        | 18                                      |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>gacgate                 | 237 . cttc ctggctcc                     | 18 |
| <210><br><211><br><212><br><213> | 238<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                   | Synthetic Construct                     |    |
| <400><br>acgate                  | 238<br>ttcc tggctcca                    | 18 |
| <210><br><211><br><212>          | 239<br>18<br>DNA                        |    |

| <213>                          | Artificial Sequence                     |    |
|--------------------------------|-----------------------------------------|----|
| <220><br><223>                 | Synthetic Construct                     |    |
| <400><br>tccaac                | 239<br>actg ctgctcca                    | 18 |
| <210><211><211><212><212><213> | 18<br>DNA                               |    |
| <220><br><223>                 | Synthetic Construct                     |    |
| <400><br>cagtgc                | 240<br>agga gactttac                    | 18 |
| <210><211><211><212><213>      |                                         |    |
| <220><br><223>                 | Synthetic Construct                     |    |
| <400><br>gacttt                | 241<br>acat ggatgcca                    | 18 |
| <210><211><211><212><213>      | 18<br>DNA                               |    |
| <220><br><223>                 | Synthetic Construct                     |    |
| <400><br>ttacate               | 242<br>ggat gccaaccg                    | 18 |
| <210><211><211><212><213>      | DNA                                     |    |
| <220><br><223>                 | Synthetic Construct                     |    |
| <400><br>caggage               | 243<br>gatg gcaaagag                    | 18 |
| <210><211><211><212><213>      | 244<br>18<br>DNA<br>Artificial Sequence |    |
| <220><br><223>                 | Synthetic Construct                     |    |
| <400><br>tcagtg                | 244<br>cagg agagacag                    | 18 |
| <210>                          | 245                                     |    |

|                                  | 15                   | 155515.5125.686 |  |
|----------------------------------|----------------------|-----------------|--|
| <211><br><212><br><213>          |                      |                 |  |
| <220><br><223>                   | Synthetic Construct  |                 |  |
| <400><br>agacag                  | 245<br>tgag gctgcacc | 18              |  |
| <210><211><211><212><213>        | 18                   |                 |  |
| <220><br><223>                   | Synthetic Construct  |                 |  |
| <400><br>gtgggc                  | 246<br>aaac aggcagtt | 18              |  |
| <210><br><211><br><212><br><213> | 18<br>DNA            |                 |  |
| <220><br><223>                   | Synthetic Construct  |                 |  |
| <400><br>cagggg                  | 247<br>tgca ggcagaag | 18              |  |
| <210><211><211><212><213>        | 18<br>DNA            |                 |  |
| <220><br><223>                   | Synthetic Construct  |                 |  |
| <400><br>gagcta                  | 248<br>tgcc cagtcagt | 18              |  |