数电实验6

姓名: 陈泽义 学号: 23336050

- 一. 实验目的
 - 1. 熟悉J-K触发器的逻辑功能。
 - 2. 掌握J-K触发器构成特殊计数器的方法。
- 二. 实验原理与设计思路
 - 1. 特殊计数器的设计
 - i. 确定电路所需触发器数目 如设计一个十二进制的计数器,十二进制计数器的有效状态为m=12,求所需触发器数目n。根据 $2^n \ge m=12$,可得n=4,即需要4个J-K触发器。
 - ii. 通过J-K触发器的特性方程($Q^*=J\,\overline{Q}+\overline{K}\,Q$)与状态转换图分别画出 J0、K0、J1、K1……J3、K3的卡诺图。
 - iii. 化简卡诺图得到各级触发器的驱动方程
 - iv. 检查自启动

将几个无效状态代入Q3n+1、Q2n+1、Q1n+1、Q0n+1的输出表达式,检查能否进入到有效状态。如果不可以则该电路不能实现自启动,应该重新设计电路。

三. 实验内容

用J-K触发器和门电路设计一个特殊的十进制同步计数器,用逻辑分析仪观察并记录连续脉冲和计数器Q3、Q2、Q1、Q0 的输出波形,分析并验证电路功能

该十进制同步计数器的状态转换如图所示

$$0001 \leftarrow 0010 \leftarrow 0011 \leftarrow 0100 \leftarrow 0101$$
 \downarrow
 \uparrow
 $1010 \rightarrow 1001 \rightarrow 1000 \rightarrow 0111 \rightarrow 0110$

- 注意,此电路没有0000、1011、1100、1101、1110、1111状态,电路设计要考虑自启动。
- 2. 确定需要 n = 4个J-K触发器

3. 通过J-K触发器的特性方程($Q^*=J\ \overline{Q}\ + \overline{K}\ Q$)与状态转换图分别画出JO、KO、J1、K1······J3、K3的卡诺图。

	00	01	11	10		00	01	11	10			00	01	11	10			00	01	11	10
00	Х	1	0	0	00	X	0	0	0		00	X	1	Χ	X		00	X	Χ	Х	1
01	0	0	0	0	01	Х	Х	Х	Х		01	1	0	Χ	Χ		01	1	Χ	X	1
11	Χ	Х	Χ	X	11	Х	X	X	X		11	X	Χ	X	Χ		11	Х	Χ	X	Х
10	X	X	Х	X	10	1	0	Χ	0		10	1	0	X	Х		10	1	Χ	Χ	1
J3				J2						J1						JO					
	00	01	11	10		00	01	11	10			00	01	11	10			00	01	11	10
00	00 X	01 X	11 X	10 X	00	00	01 X	11 X	10 X		00		01 X	11	10		00	00 X	01	11	10 X
00					00						00				_		00 01				
	X	X	X	X		X	X	X	X			X	Х	0	1			X	1	1	X
01	X	X	X	X	01	X 1	X 0	X 0	X 0		01	X	X	0	1		01	X	1	1	X

4. 化简卡诺图得到各级触发器的驱动方程:

i.
$$J_0 = K_0 = 1$$

$$\boldsymbol{J}_1 = \overline{\boldsymbol{Q}}_0 + \overline{\boldsymbol{Q}}_2 \overline{\boldsymbol{Q}}_3; \quad \boldsymbol{K}_1 = \overline{\boldsymbol{Q}}_0$$

$$\boldsymbol{J}_2 = \overline{\boldsymbol{Q}}_1 \overline{\boldsymbol{Q}}_0$$
; $\boldsymbol{K}_2 = \overline{\boldsymbol{Q}}_1 \overline{\boldsymbol{Q}}_0$

$$J_3 = \overline{Q}_1 \overline{Q}_2$$
; $K_3 = \overline{Q}_1 \overline{Q}_0$

5. 检查自启动

通过将无效状态0000、1011、1100、1101、1110、1111代入得到以下状态图

:

电路可以实现自启动。

6. 画出电路图

7. 仿真测试

8. 实验图

注: DO、D1、D2、D3、D4分别代表CLK、Q3、Q2、Q1、Q0

四. 实验总结

通过这次实验我学会了利用状态转换图、卡诺图、通过利用J-K触发器的特性 方程设计出特殊计数器。并且了解了如何检查与解决自启动的问题。本次实 验虽然过程较为繁琐,涉及到的知识并不难,故较为顺利。