Resumo Artigo principal

Danilo Souza - 201006840008 January 25, 2015

1 Passo a Passo

O algortimo segue os passos abaixo:

- Definir os "rabiscos" (regiões de interesse)
- Considera a imagem como um grafo
 - Nós do grafo = pixels
 - Arestas = conectam os pixels usando distâncias ponderadas
- Calcula a distância geodésica (custo das arestas) utilizando 1 e 2
 - O autor utiliza outras funções peso para a equação 1 que não a luminância da imagem.
 essa parte será detalhada posteriormente
- Baseado no cálculo anterior, encontra-se a probabilidade de um determinado pixel pertencer a um dada região de interesse usando 3

$$d(s,t) := \min_{C_{s,t}} \int |\nabla Y \dot{C}_{s,t}(p)| dp \tag{1}$$

$$d_i(t) = \min_{s \in \Omega_c: label(s) = l_i} d(s, t)$$
(2)

$$Pr(t \in l_i) = \frac{d_i(t)^{-1}}{\sum_{j \in [1, N_l]} d_j(t)^{-1}}$$
(3)

2 Anotações Gerais

matting - seperação suave de fundo e frente da imagem distâncias ponderadas - são o centro do framework proposto

As técnicas de segmentação citadas no texto são em sua maioria para imagens coloridas ou em níveis de cinza, onde o gradiente da intensidade (ou da cor) é baixo na região de interesse e alto nas bordas, entretanto esta afirmação não é válida para imagens mais complexas (com texturas, por exemplo). Para alcaçar segmentação nessas imagens o autor usa um conjunto adaptativo de filtros Gabor e escolhe a função peso da distância geodésica de acordo com a imagem.

A complexidade do algoritmo é linear em relação ao número de pixels graças ao uso da distância geodésica para o cálculo da probailidade de um pixel pertencer à uma região.

A abordagem é interativa onde o objetivo principal é adicionar cor (ou outro efeito) à uma imagem, no artigo tomado como base pelo autor são dados uma série de "rabiscos" (que marcam regiões de interesse na imagem) em uma imagem somente de luminância, e então é calculada a distância geodésica do mesmo canal de luminância para posteriormente calcular a probabilidade de um pixel pertencer a um dado "rabisco" . Sejam s e t dois pixels da imagem Ω e $C_{s,t}$ o caminho conectando esses pixels e Y sendo o canal de luminância dado, a distância geodésica é dada pela equação 1.

Onde p é o arco euclidiano. Seja Ω_c um conjunto de pixels marcados, ou seja, as regiões de interesse dadas pelo usuário l_i , $i \in [1, N_l]$, a distância de um pixel t para uma única região l_i , $i \in [1, N_l]$ é dada por:

A probabilidade $P(t \in l_i$ de um pixel ser associado à região l_i é dada pela equação 3.

O artigo propõe o uso de pesos diferentes para o calculo da distância geodésica e considera a imagem como um grafo onde os pixels são os nós e as distâncias geodésicas são os pesos das arestas ligando cada pixel aos seus vizinhos.

O valor dos pixels assinalados pelo usário bem como sua posição são utilizados pelo algoritmos afim de evitar quebras de segmentos de fundo e/ou frente (primeiro plano).