INSTITUTO DE EDUCACIÓN SECUNDARIA

"POLITÉCNICO", DE CARTAGENA, DEPARTAMENTO DE FÍSICA Y QUÍMICA

FORMULARIO DE FÍSICA DE 2º BACHILLERATO

PROFESOR TITULAR:

CAYETANO GUTIÉRREZ PÉREZ (Catedrático de Física y Química).

Cartagena, septiembre de 2008.

CÁLCULO VECTORIAL: FORMULARIO	
$\overrightarrow{u} = \frac{\overrightarrow{v}}{ \overrightarrow{v} }$	VECTOR UNITARIO
$ \vec{v} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$	MÓDULO DE UN VEC- TOR (de origen x ₁ , y ₁ , z ₁) y de extremo (x ₂ , y ₂ , z ₂)
$\cos^{2} \alpha + \cos^{2} \beta + \cos^{2} \gamma = 1$ $\cos \alpha = \frac{x}{ \vec{v} }, \cos \beta = \frac{y}{ \vec{v} }, \cos \gamma = \frac{z}{ \vec{v} }$	COSENOS DIRECTORES
$\vec{S} = \vec{a} + \vec{b} = (a_x + b_x)\vec{i} + (a_y + b_y)\vec{j} + (a_z + b_z)\vec{k}$.	SUMA DE VECTORES
$\vec{R} = \vec{a} - \vec{b} = \vec{a} + (-\vec{b}) = (a_x - b_x)\vec{i} + (a_y - b_y)\vec{j} + (a_z - b_z)\vec{k}$.	RESTA DE VECTORES
$\vec{a}.\vec{b} = \vec{a} . \vec{b} .\cos \alpha$ Si son perpendiculares: $\vec{a}.\vec{b} = \vec{a} . \vec{b} .\cos 90 = 0$ $\vec{a}.\vec{b} = a_x.b_x + a_y.b_y + a_z.b_z$	PRODUCTO ESCALAR (Sirve para calcular el án- gulo que forman dos vec- tores)
$\begin{vmatrix} \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} \end{vmatrix} = \begin{vmatrix} \vec{a} \\ \vec{b} \end{vmatrix} . sen \alpha$ Si son paralelos: $\begin{vmatrix} \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} \end{vmatrix} = \begin{vmatrix} \vec{a} \\ \vec{b} \end{vmatrix} . sen 0 = 0$ $\begin{vmatrix} \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} \end{vmatrix} = \begin{vmatrix} \vec{a} \\ \vec{b} \end{vmatrix} . sen 0 = 0$ $\begin{vmatrix} \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} \end{vmatrix} = \begin{vmatrix} \vec{a} \\ \vec{b} \end{vmatrix} . sen 0 = 0$ $\begin{vmatrix} \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} \end{vmatrix} = \begin{vmatrix} \vec{a} \\ \vec{b} \end{vmatrix} . sen 0 = 0$	PRODUCTO VECTORIAL
$\overrightarrow{M_o}(\overrightarrow{p}) = \overrightarrow{rx}\overrightarrow{p}$	MOMENTO DE UN VEC- TOR, CON RESPECTO A UN PUNTO

INTERACCIÓN GRAVITATORIA: FORMULARIO		
$L = r \times p = r \times m.v$	MOMENTO ANGULAR.	
$T^2/r^3 = cte$.	3 ^a LEY Kepler.	
$\mathbf{F} = -\mathbf{G} \frac{\mathbf{m}_1.\mathbf{m}_2}{\mathbf{r}^3} \mathbf{r}$	LEY DE GRAVITACIÓN UNIVERSAL DE NEWTON.	
$\mathbf{g} = -\mathbf{G} \frac{\mathbf{m}_1}{\mathbf{r}^3} \mathbf{r}$	INTENSIDAD DEL CAMPO GRAVITATORIO.	
$\mathbf{g}_{i} = -G \frac{M}{R^{3}} \mathbf{r} = \mathbf{g}_{o} (1 - h/R)$	INTENSIDAD DE CAMPO GRAVITATORIO, EN EL INTERIOR DE LA TIERRA.	
P = m . g _o	PESO DE UN CUERPO.	
$W_{A\rightarrow B} = -\Delta E_p = E_p (A) - E_p (B)$	TRABAJO DEL CAMPO GRAVITATORIO.	
$E_{p}(A) = -G \frac{M.m}{r_{A}}$	ENERGÍA POTENCIAL GRAVITATORIA EN UN PUNTO.	
$V_{A} = \frac{E_{p}(A)}{m} = -G. \frac{M}{r_{A}}$	POTENCIAL GRAVITATORIO EN UN PUNTO.	
$W_{A\rightarrow B} = m (V_A - V_B)$	RELACIÓN ENTRE TRABAJO Y V _A - V _B .	
$v_e = \sqrt{\frac{2GM}{R}} = \sqrt{2g_0R}$	VELOCIDAD DE ESCAPE DE UN COHETE.	
$v_0 = \sqrt{\frac{GM}{r}} = \sqrt{\frac{g_0 \cdot R^2}{r}}$	VELOCIDAD ORBITAL DE UN SATÉLITE.	
$T = 2.\pi . r / v_0 = \sqrt{4.\pi^2 . r^3 / G.M}$	PERÍODO DE UN SATÉLITE.	
E _o = - ½.G.—— R	ENERGÍA ORBITAL DE UN SATÉLITE.	

MOVIMIENTO ARMÓNICO SIMPLE: FORMULARIO		
CINEMÁTICA		
T = 1 / f	PERÍODO.	
$x = A \cdot \cos(\omega \cdot t + \phi_0)$	ECUACIÓN GENERAL DEL M.A.S.	
ω = 2.π / T = 2. π. f	FRECUENCIA ANGULAR O PULSACIÓN.	
$v = -A \cdot \omega \cdot sen(\omega \cdot t + \phi_0)$	VELOCIDAD.	
Si $v = 0 \Rightarrow \omega .t + \phi_0 = \pm n. \pi$	VELOCIDAD MÍNIMA.	
Si $v = \pm A$. $\omega \Rightarrow \omega \cdot t + \varphi_0 = \pm (2.n + 1) \pi/2$	VELOCIDAD MÁXIMA.	
$a = -\omega^2$. x	ACELERACIÓN.	
Si $x = \pm A \Rightarrow a = \pm \omega^2$. A	ACELERACIÓN MÁXIMA.	
Si $x = 0 \Rightarrow a = 0$	ACELERACIÓN MÍNIMA.	
x = A .sen (ω .t + βo) φo = βo - π/2	OTRA FORMA DE LA ECUACIÓN GENERAL DEL M.A.S.	
DINÁMICA		
K = m . g / I - I _o	CONSTANTE RECUPERADORA DE UN MUELLE.	
F _m = - k . x	LEY DE HOOKE.	
$K = m \cdot \omega^2$	CONSTANTE RECUPERADORA DE UN MUELLE.	
$T = 2.\pi . \sqrt{\frac{m}{k}}$	PERÍODO DEL MUELLE.	
$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$	FRECUENCIA DEL MUELLE ENERGÍA.	
ENERGÍA		
$E_c = \frac{1}{2} \text{ m} \cdot \omega^2 \cdot (A^2 - x^2)$	ENERGÍA CINÉTICA.	
$E_c = \frac{1}{2} k (A^2 - x^2)$	ENERGIA CINETION.	
E_c (Mínima): Si $x = \pm A \Rightarrow v = 0 \Rightarrow E_c = 0$		
E_c (Máxima): Si $x = 0 \Rightarrow v = \pm A.\omega \Rightarrow E_c = \frac{1}{2} k.A^2$		
$W_{TOTAL} = \Delta E_c$	TEOREMA DE LA ENERGÍA CINÉTICA	
$W_{A\to B} = -\Delta E_p = \frac{1}{2} k.x_A^2 - \frac{1}{2} k.x_B^2$	TRABAJO Y ENERGÍA POTENCIAL ELÁSTICA.	
$E_p(x) = \frac{1}{2} k.x^2$	ENERGÍA POTENCIAL ELÁSTICA EN UN PUNTO.	
CONSERVACIÓN DE LA ENERGÍA		
$W_{TOTAL} = W_c + W_{nc} = -\Delta E_p + W_{nc} = \Delta E_c$		

MOVIMIENTO ARMÓNICO SIMPLE: FORMULARIO

 $W_{nc} = \Delta E_c + \Delta E_p$

PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA.

Si $W_{nc} = 0 \Rightarrow \Delta E_c + \Delta E_p = 0$

ENERGÍA TOTAL DEL OSCILADOR ARMÓNICO

$$E_m = E_c + E_p = \frac{1}{2} \text{ m.v}^2 + \frac{1}{2} \text{ k.x}^2 = \frac{1}{2} \text{ k.A}^2 = \frac{1}{2} \text{ m.v}^2_{\text{máx.}}$$

$$\frac{1}{2}$$
 m.v² = E_c = $\frac{1}{2}$ k (A² - x²)

$$v = \sqrt{k.(A^2 - x^2)/m} = \pm \omega.\sqrt{A^2 - x^2}$$

MOVIMIENTO ONDULATORIO: FORMULARIO		
PARÁMETROS DEL MOVIMIENTO ONDULATORIO		
v _p = λ / T	VELOCIDAD DE PROPAGACIÓN (m/s)	
T = 1 / f	PERÍODO (s)	
ω = 2.π / Τ	FRECUENCIA ANGULAR O PULSACIÓN (rad/s)	
Κ = 2.π / λ	NÚMERO DE ONDAS (rad/m)	
ECUACIÓN DE ONDAS ARMÓN	ICAS	
y = A sen (ω.t - k.x)	SI SE MUEVE HACIA LA DERECHA>	
y = A sen (ω.t + k.x)	SI SE MUEVE HACIA LA IZQUIERDA <	
y :	= A sen (ω.t ± k.x +φ ₀)	
OTRAS FORMAS DE ECUACIÓN	N DE ONDAS ARMÓNICAS	
y = A sen (k.x - ω.t)		
y = A sen (ω.t - k.x)	SLSE MIJEVE HACIA LA DERECHA	
y = A cos (k.x - ω.t)	SI SE MUEVE HACIA LA DERECHA>	
y = A cos (ω.t - k.x)		
$y = A sen (k.x + \omega.t)$		
$y = A sen (\omega.t + k.x)$	SI SE MUEVE HACIA LA IZQUIERDA <	
$y = A \cos(k.x + \omega.t)$	SI SE MUEVE HACIA LA IZQUIERDA <	
$y = A \cos(\omega . t + k.x)$		
	as condiciones iniciales. Recordemos que: : y = A.sen (ω.t - k.x) = A.cos (ω.t - k.x - π/2)	
ENERGÍA DE UNA ONDA		
$E_m = E_P + E_c = \frac{1}{2}.k.x^2 + \frac{1}{2}.m.v^2 =$	$\frac{1}{2}$.k.A ² = $\frac{1}{2}$.m.v ² _{máx} .	
$E_m = \frac{1}{2}.m.(A.\omega)^2 = 2.\pi^2.m.A^2.f^2$		
INTENSIDAD DE UNA ONDA		
I = E/t.S _N	Unidad: vatios/m ² = W/m ²	
INTENSIDAD DE LAS ONDAS ESFÉRICAS		
$I = E/t.4.\pi.R^2$		
$I_1 . R_1^2 = I_2 . R_2^2$	RELACIÓN ENTRE "I" Y "R"	
A ₁ . R ₁ = A ₂ .R ₂	RELACIÓN ENTRE "A" Y "R"	

MOVIMIENTO ONDULATORIO: FORMULARIO			
ABSORCIÓN DE ONDAS	ABSORCIÓN DE ONDAS		
$I = I_0 \cdot e^{-\beta \cdot x}$	LEY DE LAMBERT (cam	bia I y A, pero no f)	
β: COEFICIENTE DE ABSORCIÓ x: ESPESOR DEL MATERIAL (m	` ' \ .	edio y de f).	
CONDICIONES DE INTERFEREI	NCIA		
A + B sen A + sen B = 2.sen c	A – B		
2	2		
	/ = A´. sen (ω.t - k.d)		
A'= 2.A.cos k (x ₂ - x ₁)/2	$d = (x_2 + x_1)/2$		
INTERFERENCIA CONSTRUCTI	VA (MÁXIMO DE INTERFE	RENCIA)	
A´= ± 2.A	$x_2 - x_1 = n.\lambda$ (n: 0, 1, 2,	.)	
INTERFERENCIA DESTRUCTIVA	A (MÍNIMO DE INTERFERI	ENCIA)	
A´= 0	$x_2 - x_1 = (2.n + 1). \lambda/2 (n: 0)$	0, 1, 2,)	
ECUACIÓN DE LAS ONDAS ES	TACIONARIAS		
y = y← + y→	$y = y_{\leftarrow} + y_{\rightarrow}$		
A' = 2. A .cos k. x			
MÁX. AMPLITUD: VIENTRE	A´ = ± 2.A	x = n.λ/2	
MÍNIMA AMPLITUD: NODO	A´ = 0	$x = (2.n + 1).\lambda/4$	
Si para x = 0, hay un nodo ⇒ y	= 2. A. Sen (k. x).cos (ω. t) = A´. cos ω. T	
MÁX. AMPLITUD: VIENTRE	A' = ± 2 A	$x = (2.n + 1).\lambda/4$	
MÍNIMA AMPLITUD: NODOS	A´ = 0	X = n.λ/2	
CUERDA FIJA POR LOS DOS EXTREMOS (los extremos son nodos):ARMÓNICOS			
L = n. λ /2 (n: 1, 2, 3,) N°. DE NODOS = n + 1,, f = V _P / λ = n V _P /2 L			
CUERDA FIJA POR UN EXTREMO (un extremo es nodo y el otro vientre)			
L = (2 n + 1). $\lambda/4$ (n: 1, 2, 3,) N°. DE NODOS = n + 1,, f = V_P/λ = (2 n +1) $V_P/4$ L			
SONIDO			
$\beta = 10.\text{Log (I/I}_0)$ $I = I_0.10^{\beta/10}$	SONORIDAD O SENSACIÓN SONORA (dB)		
$I_0 = 10^{-12} \text{ W/m}^2$	INTENSIDAD UMBRAL DE AUDICIÓN HUMANA		
$v = v_0. (1 + t/273)^{\frac{1}{2}} (t: \mathfrak{C})$	VELOCIDAD DEL SONIDO	D EN FUNCIÓN DE T	

NOTA IMPORTANTE: CUANDO UNA ONDA PASA DE UN MEDIO MATERIAL A OTRO, SU FRECUENCIA NO VARÍA.

ÓPTICA: FORMULARIO		
REFRACCIÓN		
n = c / v _m	ÍNDICE DE REFRACCIÓN ABSOLUTO	
$n_R = n_1 / n_2$	ÍNDICE DE REFRACCIÓN RELATIVO	
Sen i v_i n_R λ_i	LEY DE SNELL	
$Sen L v_i n_R$ $$	REFLEXIÓN TOTAL. ÁNGULO LÍMITE (L, es el ángulo límite. R, es el ángulo de refrac- ción y vale 90°)	
	e menor a mayor "n", se acerca a la normal (- a +) e mayor a menor "n", se aleja de la normal (+ a -)	
ESPEJOS PLANOS: Imagen si	métrica, de igual tamaño y virtual.	
Ν = (360/φ) - 1	Nº. IMÁGENES EN ESPEJOS QUE FORMAN ÁN- GULOS	
ESPEJOS ESFÉRICOS		
CARACTERÍSTICAS DE LA IMAGEN	* NATURALEZA (REAL O VIRTUAL) * TAMAÑO RELATIVO (MAYOR, IGUAL O MENOR) * ORIENTACIÓN (DERECHA O INVERTIDA)	
ELEMENTOS C F O	 CENTRO DE CURVATURA (C) CENTRO DE FIGURA (O) FOCO (F) EJE PRINCIPAL (CO) DISTANCIA FOCAL: FO = CO/2 = f = R / 2 	
CÓNCAVOS (5 CASOS) CONVEXOS (1 CASO)	CLASES DE ESPEJOS ESFÉRICOS (CÓNCAVOS: VIRTUAL, DERECHA Y MENOR T.)	
A = y'/ y = - s' / s	AUMENTO LATERAL	
Si "A" es +	 y´es + ⇒ imagen derecha s´es + ⇒ imagen virtual 	
Si "A" es -	 y´es - ⇒ imagen invertida s´es - ⇒ imagen real 	
Si A < 1	■ imagen de menor tamaño	
Si A > 1	■ imagen de mayor tamaño	
"s", siempre es -	 Si s´es + ⇒ imagen virtual Si s´es - ⇒ imagen real 	
"y", siempre es +	 Si y´es + ⇒ imagen derecha Si y´es - ⇒ imagen invertida 	
1/s + 1/s´= 1/f	ECUACIÓN DE LOS ESPEJOS ESFÉRICOS	
LÁMINA DE CARAS PARALELAS		

ÓI	ÓPTICA: FORMULARIO	
El rayo emergente es paralelo al incidente, si los medios externos son iguales. La lámina desplaza el rayo de luz.		
PRISMA ÓPTICO		
δ = i + e - α,, α = R + R΄	ÁNGULO DE DESVIACIÓN (i, incidente; e, emergente o ángulo refringente)	
LENTES DELGADAS		
CARACTERÍSTICAS DE LA	NATURALEZA (REAL: "s'	" +) (VIRTUAL: "s´" -)
IMAGEN	TAMAÑO R. (MAYOR: y´>	y) (MENOR: y´< y)
S: SIEMPRE ES -	ORIENTACIÓN (DERECHA	A: y´+) (INVERTIDA: y´-)
ELEMENTOS: Convergente	 CENTROS DE CURVA EJE PRINCIPAL (CC') CENTRO ÓPTICO O C FOCO IMAGEN (F') FOCO OBJETO (F) DISTANCIA FOCAL IM 	ENTRO DE FIGURA (O)
CLASES DE LENTES	 CONVERGENTES (5 C DIVERGENTES (1 CAS Y MENOR TAMAÑO) 	ASOS) SO): VIRTUAL, DERECHA
A = y'/ y = s'/s	AUMENTO LATERAL	
1/s' - 1/s = 1/f'	ECUACIÓN FUNDAMENTAL DE LAS LENTES DELGADAS (ECUACIÓN DE GAUSS)	
P = 1/ f'	POTENCIA O CONVERGENCIA DE UNA LENTE. CONVERGENTES: P (+). DIVERGENTES: P (-)	
ECUACIÓN DE FABRICANTE DE LENTES:	Convergentes: R ₁ + Biconvexa: R ₂ − Planoconvexa: R ₂ ∞ Cóncavo-convexa:	Divergentes: R ₂ + Bicóncava: R ₁ − Planocóncava: R ₁ ∞ Convexo-cóncava:
$1/ f' = (n - 1) (1/R_1 - 1/R_2)$	R_2 + (R_1 < R_2)	$R_2 + (R_1 > R_2)$
LENTES DIVERGENTES	IMÁGENES VIRTUALES	
LENTES CONVERGENTES	I. REAL: Si "s'", es +. I. VIRTUAL: Si "s'" es	

NOTA IMPORTANTE: LA IMAGEN VIRTUAL SE FORMA SIEMPRE CON LA PROLONGA-CIÓN DE LOS RAYOS.

DEFECTOS DEL OJO		
DEFECTO	CONSECUENCIA	CORRECCIÓN
PRESBICIA O VISTA CANSADA	VEN MAL DE CERCA, PERO BIEN DE LEJOS	CONVERGENTES
MIOPÍA(Exceso de convergencia)	VEN MAL DE LEJOS, PERO BIEN DE CERCA	DIVERGENTES
HIPERMETROPÍA	VEN MAL DE CERCA	CONVERGENTES
ASTIGMATISMO	NO TIENEN VISIÓN CLARA	CILÍNDRICAS
CATARATAS	PÉRDIDA TRANSPARENCIA CRIS- TALINO	INTERVENCIÓN QUIRÚRGICA

CAMPO ELÉCTRICO: FORMULARIO		
$\vec{F} = K \frac{Q_1 \cdot Q_2}{r^3} \vec{r}$	LEY DE COULOMB.	
$K = \frac{1}{4.\pi.\epsilon} = \frac{1}{4.\pi.\epsilon_{r}.\epsilon_{0}}$	RELACIÓN ENTRE LA CONSTANTE DE COULOMB Y LA PERMITIVIDAD DIELÉCTRICA DEL MEDIO.	
$\mathbf{r} = (x_2 - x_1).\mathbf{i} + (y_2 - y_1).\mathbf{j} + (z_2 - z_1).\mathbf{k}$	VECTOR POSICIÓN [CARGA (x_1, y_1, z_1) ; PUN-TO (x_2, y_2, z_2)]	
E = F / Q ₂	INTENSIDAD DEL CAMPO ELÉCTRICO.	
$\vec{E} = K \frac{Q_1}{r^3} \vec{r}$	INTENSIDAD DEL CAMPO ELÉCTRICO.	
$E = E_1 + E_2 + E_3 + \dots$	PRINCIPIO DE SUPERPOSICIÓN.	
$W_{A\rightarrow B} = -\Delta E_p = E_p (A) - E_p (B)$	TRABAJO DEL CAMPO ELÉCTRICO.	
$E_{p}\left(A\right) = K \frac{Q_{1}.Q_{2}}{r_{A}}$	ENERGÍA POTENCIAL ELÉCTRICA EN UN PUNTO.	
$E_n = k \cdot \frac{q_1 \cdot q_2}{k} + k \cdot \frac{q_1 \cdot q_3}{k} + k \cdot \frac{q_2 \cdot q_3}{k}$	ENERGÍA POTENCIAL ELÉCTRICA CREADO POR UN SISTEMA DE CARGAS.	
$V_{A} = \frac{r_{12}}{Q_{2}} = \frac{r_{13}}{R_{13}} = \frac{r_{23}}{R_{23}}$	POTENCIAL ELÉCTRICO EN UN PUNTO.	
$W_{A\rightarrow B} = Q_2 (V_A - V_B)$	RELACIÓN ENTRE TRABAJO Y V _A - V _B .	
$V_P = V_1 + V_2 + V_3 + \dots$	POTENCIAL CREADO POR UN SISTEMA CARGAS.	
$V = -\int \vec{E} \cdot d\vec{r}$; $\mathbf{E} = - \mathrm{dV} / \mathrm{dx}$. $\mathbf{i} = - \mathrm{grad} \mathbf{V}$	RELACIÓN ENTRE POTENCIAL Y CAMPO ELÉCTRICO.	
M. a = E. Q \Rightarrow a = Q. E/m v = a.t; s = ½.a.t ²	MOVIMIENTO DE UNA PARTÍCULA CARGA- DA EN REPOSO, EN UN "E" UNIFORME.	
$a_z = Q \cdot E / m$ $v_x = v_0, v_z = a_z \cdot t$ $x = v_0 \cdot t; z = z_0 + \frac{1}{2} \cdot a_z \cdot t^2$	MOVIMIENTO DE UNA PARTÍCULA CARGA- DA, CON M.R.U., PERPENDICULAR AL CAM- PO ELÉCTRICO UNIFORME.	
$d\Phi = E \cdot dS_N$	FLUJO ELÉCTRICO.	
$\Phi = Q / \epsilon$	TEOREMA DE GAUSS.	
E = 0	CAMPO ELÉCTRICO EN EL INTERIOR DE UN CONDUCTOR CARGADO, EN EQUILIBRIO.	
$E = K Q_1 / r^2$	"E" EN EL EXTERIOR DE UN CONDUCTOR ESFÉRICO CARGADO, EN EQUILIBRIO.	

CAMPO MAGNÉTICO: FORMULARIO		
$\mathbf{m} = \mathbf{p} \cdot \mathbf{I} (A.m^2)$	MOMENTO DIPOLAR MAGNÉTICO	
$\mathbf{m} = \mathbf{p} \cdot \mathbf{r} (\mathbf{A} \cdot \mathbf{m})$	Unidades: p (N/T = A.m)	
$\mathbf{M} = \mathbf{I} \times \mathbf{F} = \mathbf{m} \times \mathbf{B} \text{ (N.m)}$	MOMENTO MAGNÉTICO Unidades: B (TESLA: T)	
EFECTOS PROD	UCIDOS POR UN CAMPO MAGNÉTICO	
F = q (v x B) F = q (E + v x B)	FUERZA DE LORENTZ: ACCIÓN DE UN CAMPO MAGNÉTICO SOBRE UNA CARGA MÓVIL	
$F = m.a = m. v^2/R$		
$F = q.v.B.sen \alpha$	MOVIMIENTO DE UNA CARGA EN UN CAMPO MAG-	
m. $v^2/R = q.v.B.sen \alpha$	NÉTICO UNIFORME	
$v = \omega .R; \omega = 2.\pi/T$		
F = I (L x B)	FUERZA EJERCIDA POR UN "B" UNIFORME SOBRE UN CONDUCTOR (1ª LEY DE LAPLACE)	
$M = I (S \times B)$		
m = I.S (N.I.S, para N espiras)	MOMENTO DEL PAR DE FUERZAS EJERCIDAS POR UN "B" UNIFORME, SOBRE UNA ESPIRA RECTAN-	
S = a . b M = m x B	GULAR	
EFECTOS PRODU	ICIDOS POR CARGAS EN MOVIMIENTO	
$\mathbf{B} = \frac{\mu}{4.\pi} \cdot \frac{q}{r^3} (\mathbf{v} \times \mathbf{r})$	CAMPO MAGNÉTICO CREADO POR UNA CARGA MÓVIL	
B = $\mu_0.ε_0$ (v x E),, $\mu_0.ε_0 = 1/c^2$		
$B = \frac{\mu_0}{2\pi} \cdot \frac{I}{r}$ $B = \frac{\mu_0}{2} \cdot \frac{I}{r}$	CAMPO MAGNÉTICO CREADO POR UNA CORRIEN-	
B = μ_0 .I / 2.r (En el centro de una espira circular)	TE RECTILÍNEA E INDEFINIDA (LEY DE BIOT Y SA- VART)	
B = N.μ.I / 2.r (BOBINA)		
B = N.µ.I / L (SOLENOIDE)		
$f = \frac{F}{L} = \frac{\mu_0 I_1.I_2}{2.\pi d}$	ACCIONES ENTRE CORRIENTES	
L 2. π d $W = \mu_0.I$	LEY DE AMPÈRE	

FÍSICA MODERNA: FORMULARIO		
E / t .S = σ . T ⁴	LEY DE STEFAN-BOLTZMANN	
$\lambda_{\text{máx.}}$ T = cte. = 2,89710 ⁻³	LEY DE WIEN	
E = h . f	HIPÓTESIS DE Planck	
$E_{cin. máx.} = \frac{1}{2} m. v_{máx.}^2$ $E_{cin. máx.} = e . V_0$	EFECTO FOTOELÉCTRICO	
$E_{cinética \ máx.} = h \cdot f - h \cdot f_0$ $c = f \cdot \lambda$	ECUACIÓN EINSTEIN PARA E. FOTOELÉCTRICO	
λ = h / m . v = h / p f = E / h	HIPÓTESIS DE Broglie	
$\Delta x. \Delta p_x \ge h / 2\pi$ $\Delta E. \Delta t \ge h / 2\pi$	PRINCIPIO INCERTIDUMBRE DE HEISENBERG	
$x' = x - v \cdot t,, y' = y,, z' = z$		
$u'_x = u_x - v_{,,} u'_y = u_{y,,} u'_z = u_z$	TRANSFORMACIONES DE GALILEO	
$a'_{x} = a_{x}, a'_{y} = a_{y}, a'_{z} = a_{z}$		
t´= t		
$x' = \frac{x - v \cdot t}{\sqrt{1 - \frac{v^2}{c^2}}}$		
y´= y ,, z´= z	TRANSFORMACIONES DE LORENTZ	
$t' = \frac{t - (v \cdot x / c^2)}{\sqrt{1 - \frac{v^2}{c^2}}}$	TRANSFORWACIONES DE LORENTE	
$u = (u' + v) / 1 - (u.v/c^2)$		
$L = L_0 \cdot \sqrt{1 - \frac{v^2}{c^2}}$	CONTRACCIÓN DE LONGITUDES	
$\Delta t = \Delta t_0 / \sqrt{1 - \frac{v^2}{c^2}}$	DILATACIÓN DEL TIEMPO	
E = m . c ²		
$E_0 = m_0 \cdot c^2$		
$E = E_c + E_0$ $m.c^2 = \frac{1}{2}. m_0.v^2 + m_0. c^2$	RELACIÓN MASA ENERGÍA	
$E = E_0 / \sqrt{1 - \frac{v^2}{c^2}}$		
$M = m_0 / \sqrt{1 - \frac{v^2}{c^2}}$		

FÍSICA NUCLEAR: FORMULARIO		
$N = N_0 \cdot e^{-\lambda \cdot t}$ $A = A_0 \cdot e^{-\lambda \cdot t}$ $M = m_0 \cdot e^{-\lambda \cdot t}$	LEY DE DESINTEGRACIÓN N (nº. de núcleos o átomos) A (actividad radiactiva)	
N = m . N _A / M	N _A (Nº. de Avogadro: átomos/mol) y M (masa molar: g/mol)	
A = λ . N (A: unidad S.I.: Bq = 1 des./s)	RELACIÓN ENTRE A Y N	
$T_{1/2} = \text{In } 2/\lambda$	PERÍODO DE SEMIDESINTEGRACIÓN	
Τ = 1/λ	VIDA MEDIA	
$\Delta m = [Z .m_p + (A - Z).m_n] - m$	DEFECTO DE MASA	
$E_e = \Delta m \cdot c^2$	ENERGÍA DE ENLACE NUCLEAR	
E _n = E _e /A	ENERGÍA DE ENLACE POR NUCLEÓN	