LINEAR REGRESSION

TASK-1:Predict the percentage of marks of an student based on the number of study hours

NAME: JAYAKUMAR

```
In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
In [3]: data=pd.read_csv('http://bit.ly/w-data')
```

In [4]: data

Out[4]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30
5	1.5	20
6	9.2	88
7	5.5	60
8	8.3	81
9	2.7	25
10	7.7	85
11	5.9	62
12	4.5	41
13	3.3	42
14	1.1	17
15	8.9	95
16	2.5	30
17	1.9	24
18	6.1	67
19	7.4	69
20	2.7	30
21	4.8	54
22	3.8	35
23	6.9	76
24	7.8	86

In [5]: data.head()

Out[5]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30

```
In [6]: data.tail()
```

Out[6]:

	Hours	Scores
20	2.7	30
21	4.8	54
22	3.8	35
23	6.9	76
24	7.8	86

In [7]: data.describe()

Out[7]:

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000
75%	7.400000	75.000000
max	9.200000	95.000000

In [8]: data.shape

Out[8]: (25, 2)

```
In [10]: data.plot(x='Hours',y='Scores',style='o')
    plt.title("HOURS VS PERCENTAGE")
    plt.xlabel("Hours studied")
    plt.ylabel('Scores obtained')
    plt.show()
```


Training the algorithm

```
In [11]: X=data.iloc[:,:-1].values
Y=data.iloc[:,1].values
```

Splitting data into train and test sets for training

```
In [12]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,random_state=
0)
In [19]: from sklearn.linear_model import LinearRegression
    regressor=LinearRegression()
```

TRAINING

```
In [21]: regressor.fit(x_train,y_train)
Out[21]: LinearRegression()
```

Plotting regression line

```
In [23]:
         line=regressor.coef_*X+regressor.intercept_
          plt.scatter(X,Y)
          plt.show()
           90
           80
           70
           60
           50
           40
           30
           20
In [33]:
          print(x_test)
          y_pred=regressor.predict(x_test)
          [[1.5]]
           [3.2]
           [7.4]
           [2.5]
           [5.9]]
          df=pd.DataFrame({'Actual':y_test,'Predicted':y_pred})
In [35]:
          df.head()
Out[35]:
             Actual Predicted
                20
                    16.884145
                27 33.732261
           1
           2
                69 75.357018
           3
                30 26.794801
                62 60.491033
In [39]:
         from sklearn.metrics import mean absolute error
          MAE=mean_absolute_error(y_pred,y_test)
          print('meanabsoluteError={}'.format(MAE))
```

EVALUATING

meanabsoluteError=4.183859899002975

```
In [40]: hours=9.25
    hours_arr=np.array(hours).reshape(-1,1)
    predict_score=regressor.predict(hours_arr)
    print("NO of hours={}".format(hours))
    print('predicted score={}'.format(predict_score[0]))
```

NO of hours=9.25 predicted score=93.69173248737538