## $12n_{0089} \ (K12n_{0089})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$\begin{split} I_1^u &= \langle 1.87206 \times 10^{64} u^{33} - 2.48020 \times 10^{64} u^{32} + \dots + 2.02349 \times 10^{64} b + 8.89696 \times 10^{65}, \\ &- 6.94907 \times 10^{63} u^{33} + 9.26153 \times 10^{63} u^{32} + \dots + 2.89069 \times 10^{63} a - 3.41795 \times 10^{65}, \\ &u^{34} - 2u^{33} + \dots + 160u - 32 \rangle \\ I_2^u &= \langle -2u^7 + u^6 + 3u^5 - 3u^4 - 4u^3 + 3u^2 + b + 2u - 4, \ 6u^7 - 2u^6 - 8u^5 + 7u^4 + 11u^3 - 5u^2 + a - 4u + 9, \\ &u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1 \rangle \\ I_1^v &= \langle a, \ -16v^4 - 47v^3 - 36v^2 + 29b - 104v + 5, \ v^5 + 3v^4 + 3v^3 + 8v^2 + v + 1 \rangle \end{split}$$

\* 3 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 47 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $<sup>^2</sup>$  All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle 1.87 \times 10^{64} u^{33} - 2.48 \times 10^{64} u^{32} + \dots + 2.02 \times 10^{64} b + 8.90 \times 10^{65}, \ -6.95 \times 10^{63} u^{33} + 9.26 \times 10^{63} u^{32} + \dots + 2.89 \times 10^{63} a - 3.42 \times 10^{65}, \ u^{34} - 2u^{33} + \dots + 160u - 32 \rangle$$

(i) Arc colorings

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2.40394u^{33} - 3.20391u^{32} + \dots - 401.792u + 118.240 \\ -0.925166u^{33} + 1.22571u^{32} + \dots + 151.603u - 43.9685 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.0490683u^{33} - 0.0407884u^{32} + \dots - 6.92779u + 0.312774 \\ -0.0578563u^{33} + 0.0671443u^{32} + \dots + 7.65767u - 1.83101 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.03878796u^{33} + 0.0263559u^{32} + \dots + 0.729884u - 1.51823 \\ -0.0578563u^{33} + 0.0671443u^{32} + \dots + 7.65767u - 1.83101 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.135575u^{33} - 0.179353u^{32} + \dots + 21.7295u + 6.37504 \\ -0.0869253u^{33} + 0.113172u^{32} + \dots + 14.9258u - 4.00887 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.159247u^{33} + 0.209304u^{32} + \dots + 26.3062u - 7.44642 \\ 0.0515752u^{33} - 0.0698375u^{32} + \dots - 7.79789u + 2.42273 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2.36320u^{33} - 3.16331u^{32} + \dots + 26.3062u - 7.44642 \\ 0.0515752u^{33} - 0.0698375u^{32} + \dots - 7.79789u + 2.42273 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0444124u^{33} + 1.12821u^{32} + \dots + 140.065u - 41.0098 \\ -0.844124u^{33} + 1.12821u^{32} + \dots + 140.065u - 41.0098 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} 0.222500u^{33} - 0.2925255u^{32} + \dots - 36.6553u + 10.3839 \\ -0.0181808u^{33} + 0.0260797u^{32} + \dots + 2.35027u - 0.870343 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.225921u^{33} - 3.02557u^{32} + \dots - 381.646u + 112.963 \\ -0.870163u^{33} + 1.15421u^{32} + \dots + 144.300u - 42.2250 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $-1.73770u^{33} + 2.33240u^{32} + \cdots + 305.829u 87.7743$

#### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing           |
|-----------------------|------------------------------------------|
| $c_1$                 | $u^{34} + 50u^{33} + \dots + 7022u + 1$  |
| $c_{2}, c_{4}$        | $u^{34} - 10u^{33} + \dots - 94u + 1$    |
| $c_{3}, c_{6}$        | $u^{34} + 6u^{33} + \dots + 1408u + 256$ |
| $c_5, c_8$            | $u^{34} - 3u^{33} + \dots + 2u - 1$      |
| $c_7, c_{10}$         | $u^{34} + 2u^{33} + \dots - 160u - 32$   |
| $c_9, c_{11}, c_{12}$ | $u^{34} - 7u^{33} + \dots + 2u + 1$      |

#### (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing             |
|-----------------------|------------------------------------------------|
| $c_1$                 | $y^{34} - 122y^{33} + \dots - 49242950y + 1$   |
| $c_2, c_4$            | $y^{34} - 50y^{33} + \dots - 7022y + 1$        |
| $c_{3}, c_{6}$        | $y^{34} + 54y^{33} + \dots - 5357568y + 65536$ |
| $c_5, c_8$            | $y^{34} - y^{33} + \dots - 14y + 1$            |
| $c_7, c_{10}$         | $y^{34} - 36y^{33} + \dots - 3584y + 1024$     |
| $c_9, c_{11}, c_{12}$ | $y^{34} - 41y^{33} + \dots - 152y + 1$         |

### (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.956156 + 0.210490I |                                       |                     |
| a = 0.92043 - 2.41941I    | -3.57437 - 2.68652I                   | -15.9734 + 5.7320I  |
| b = -0.297004 + 1.016390I |                                       |                     |
| u = -0.956156 - 0.210490I |                                       |                     |
| a = 0.92043 + 2.41941I    | -3.57437 + 2.68652I                   | -15.9734 - 5.7320I  |
| b = -0.297004 - 1.016390I |                                       |                     |
| u = -0.825291 + 0.508770I |                                       |                     |
| a = 0.290634 + 0.392014I  | 1.50616 + 2.15286I                    | -1.89528 - 3.55598I |
| b = 0.215796 + 0.185230I  |                                       |                     |
| u = -0.825291 - 0.508770I |                                       |                     |
| a = 0.290634 - 0.392014I  | 1.50616 - 2.15286I                    | -1.89528 + 3.55598I |
| b = 0.215796 - 0.185230I  |                                       |                     |
| u = -0.459276 + 0.600077I |                                       |                     |
| a = 0.34212 - 2.13952I    | -4.37210 + 0.56022I                   | -15.7627 - 4.5815I  |
| b = 0.325798 + 0.681195I  |                                       |                     |
| u = -0.459276 - 0.600077I |                                       |                     |
| a = 0.34212 + 2.13952I    | -4.37210 - 0.56022I                   | -15.7627 + 4.5815I  |
| b = 0.325798 - 0.681195I  |                                       |                     |
| u = -1.25779              |                                       |                     |
| a = 0.262102              | -7.19178                              | -11.0680            |
| b = -0.999548             |                                       |                     |
| u = 0.421643 + 0.589535I  |                                       |                     |
| a = 0.76749 - 1.22638I    | -1.23502 + 0.89870I                   | -5.08124 + 0.75731I |
| b = -0.076416 - 0.398409I |                                       |                     |
| u = 0.421643 - 0.589535I  |                                       |                     |
| a = 0.76749 + 1.22638I    | -1.23502 - 0.89870I                   | -5.08124 - 0.75731I |
| b = -0.076416 + 0.398409I |                                       |                     |
| u = 0.679857 + 0.008937I  |                                       |                     |
| a = 1.75490 - 5.31791I    | -2.48043 + 0.15884I                   | -35.3818 - 0.1674I  |
| b = -0.87873 + 2.06096I   |                                       |                     |

| Solutions to $I_1^u$        | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|-----------------------------|---------------------------------------|---------------------|
| u = 0.679857 - 0.008937I    |                                       |                     |
| a = 1.75490 + 5.31791I      | -2.48043 - 0.15884I                   | -35.3818 + 0.1674I  |
| b = -0.87873 - 2.06096I     |                                       |                     |
| u = 1.204240 + 0.640025I    |                                       |                     |
| a = 0.153762 - 0.187566I    | -3.73420 - 5.65524I                   | -8.00000 + 0.I      |
| b = 0.460927 + 0.211334I    |                                       |                     |
| u = 1.204240 - 0.640025I    |                                       |                     |
| a = 0.153762 + 0.187566I    | -3.73420 + 5.65524I                   | -8.00000 + 0.I      |
| b = 0.460927 - 0.211334I    |                                       |                     |
| u = 0.610196                |                                       |                     |
| a = 0.685401                | -0.859418                             | -11.8170            |
| b = -0.364452               |                                       |                     |
| u = -0.021309 + 0.580331I   |                                       |                     |
| a =  0.0854012 - 0.0908812I | -7.07612 - 4.33049I                   | -3.74509 + 2.01968I |
| b = -0.412066 + 1.299410I   |                                       |                     |
| u = -0.021309 - 0.580331I   |                                       |                     |
| a = 0.0854012 + 0.0908812I  | -7.07612 + 4.33049I                   | -3.74509 - 2.01968I |
| b = -0.412066 - 1.299410I   |                                       |                     |
| u = 0.033914 + 0.417650I    |                                       |                     |
| a =  0.837170 - 0.008519I   | -0.57544 - 1.50411I                   | -4.52476 + 4.55824I |
| b = 0.336239 - 0.914967I    |                                       |                     |
| u = 0.033914 - 0.417650I    |                                       |                     |
| a = 0.837170 + 0.008519I    | -0.57544 + 1.50411I                   | -4.52476 - 4.55824I |
| b = 0.336239 + 0.914967I    |                                       |                     |
| u = 0.333190                |                                       |                     |
| a = 5.02872                 | -2.28474                              | 0.324850            |
| b = -1.11629                |                                       |                     |
| u = -1.71423 + 0.26922I     |                                       |                     |
| a = 0.105003 - 1.399260I    | -13.7038 + 7.6996I                    | 0                   |
| b = 0.34011 + 1.96867I      |                                       |                     |

| Solutions to $I_1^u$       | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|----------------------------|---------------------------------------|------------|
| u = -1.71423 - 0.26922I    |                                       |            |
| a = 0.105003 + 1.399260I   | -13.7038 - 7.6996I                    | 0          |
| b = 0.34011 - 1.96867I     |                                       |            |
| u = 1.71822 + 0.31095I     |                                       |            |
| a = -0.469943 - 1.223830I  | -13.63590 + 0.50051I                  | 0          |
| b = -0.06244 + 1.83419I    |                                       |            |
| u = 1.71822 - 0.31095I     |                                       |            |
| a = -0.469943 + 1.223830I  | -13.63590 - 0.50051I                  | 0          |
| b = -0.06244 - 1.83419I    |                                       |            |
| u = -1.74355 + 0.15186I    |                                       |            |
| a = 0.014975 - 1.244930I   | -10.90540 + 1.31562I                  | 0          |
| b = 1.07725 + 2.72182I     |                                       |            |
| u = -1.74355 - 0.15186I    |                                       |            |
| a = 0.014975 + 1.244930I   | -10.90540 - 1.31562I                  | 0          |
| b = 1.07725 - 2.72182I     |                                       |            |
| u = -0.01973 + 1.82329I    |                                       |            |
| a = 0.0829691 + 0.0828182I | -16.1286 + 4.0950I                    | 0          |
| b = -0.11557 - 1.98219I    |                                       |            |
| u = -0.01973 - 1.82329I    |                                       |            |
| a = 0.0829691 - 0.0828182I | -16.1286 - 4.0950I                    | 0          |
| b = -0.11557 + 1.98219I    |                                       |            |
| u = 1.85359 + 0.31631I     |                                       |            |
| a = -0.231341 - 1.229070I  | -12.71500 - 5.35446I                  | 0          |
| b = -0.48186 + 1.53845I    |                                       |            |
| u = 1.85359 - 0.31631I     |                                       |            |
| a = -0.231341 + 1.229070I  | -12.71500 + 5.35446I                  | 0          |
| b = -0.48186 - 1.53845I    |                                       |            |
| u = 1.72228 + 0.86852I     |                                       |            |
| a = 0.576188 + 1.082400I   | 18.1726 - 13.4286I                    | 0          |
| b = 0.76478 - 2.07350I     |                                       |            |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|---------------------------|---------------------------------------|------------|
| u = 1.72228 - 0.86852I    |                                       |            |
| a = 0.576188 - 1.082400I  | 18.1726 + 13.4286I                    | 0          |
| b = 0.76478 + 2.07350I    |                                       |            |
| u = -1.71660 + 0.90954I   |                                       |            |
| a = -0.667196 + 0.794326I | 18.3538 + 5.3451I                     | 0          |
| b = -0.51034 - 1.64958I   |                                       |            |
| u = -1.71660 - 0.90954I   |                                       |            |
| a = -0.667196 - 0.794326I | 18.3538 - 5.3451I                     | 0          |
| b = -0.51034 + 1.64958I   |                                       |            |
| u = 1.95923               |                                       |            |
| a = -0.601374             | -15.4063                              | 0          |
| b = -0.892648             |                                       |            |

II. 
$$I_2^u = \langle -2u^7 + u^6 + \dots + b - 4, \ 6u^7 - 2u^6 + \dots + a + 9, \ u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -6u^{7} + 2u^{6} + 8u^{5} - 7u^{4} - 11u^{3} + 5u^{2} + 4u - 9 \\ 2u^{7} - u^{6} - 3u^{5} + 3u^{4} + 4u^{3} - 3u^{2} - 2u + 4 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{7} + u^{6} + 2u^{5} - u^{4} - 2u^{3} + 2u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -6u^{7} + 2u^{6} + 8u^{5} - 7u^{4} - 11u^{3} + 6u^{2} + 4u - 10 \\ 2u^{7} - u^{6} - 3u^{5} + 3u^{4} + 4u^{3} - 2u^{2} - 2u + 4 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} - 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -6u^{7} + 2u^{6} + 8u^{5} - 7u^{4} - 11u^{3} + 5u^{2} + 4u - 9 \\ 2u^{7} - u^{6} - 3u^{5} + 3u^{4} + 4u^{3} - 3u^{2} - 2u + 4 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes =  $-44u^7 + 15u^6 + 58u^5 53u^4 78u^3 + 42u^2 + 28u 85$

#### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing                              |
|-----------------------|-------------------------------------------------------------|
| $c_1, c_2$            | $(u-1)^8$                                                   |
| $c_3, c_6$            | $u^8$                                                       |
| C <sub>4</sub>        | $(u+1)^8$                                                   |
| <i>C</i> <sub>5</sub> | $u^8 - 3u^7 + 7u^6 - 10u^5 + 11u^4 - 10u^3 + 6u^2 - 4u + 1$ |
|                       | $u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1$              |
| c <sub>8</sub>        | $u^8 + 3u^7 + 7u^6 + 10u^5 + 11u^4 + 10u^3 + 6u^2 + 4u + 1$ |
| <i>c</i> 9            | $u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1$                   |
| $c_{10}$              | $u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1$              |
| $c_{11}, c_{12}$      | $u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1$                   |

### (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing                           |
|-----------------------|--------------------------------------------------------------|
| $c_1, c_2, c_4$       | $(y-1)^8$                                                    |
| $c_3, c_6$            | $y^8$                                                        |
| $c_5,c_8$             | $y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1$ |
| $c_7, c_{10}$         | $y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1$  |
| $c_9, c_{11}, c_{12}$ | $y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1$  |

### (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = 0.570868 + 0.730671I  |                                       |                      |
| a = 1.194470 - 0.635084I  | -2.68559 + 1.13123I                   | -12.74421 + 0.55338I |
| b = -0.281371 - 1.128550I |                                       |                      |
| u = 0.570868 - 0.730671I  |                                       |                      |
| a = 1.194470 + 0.635084I  | -2.68559 - 1.13123I                   | -12.74421 - 0.55338I |
| b = -0.281371 + 1.128550I |                                       |                      |
| u = -0.855237 + 0.665892I |                                       |                      |
| a = 0.637416 - 0.344390I  | 0.51448 + 2.57849I                    | -9.60894 - 4.72239I  |
| b = 0.208670 + 0.825203I  |                                       |                      |
| u = -0.855237 - 0.665892I |                                       |                      |
| a = 0.637416 + 0.344390I  | 0.51448 - 2.57849I                    | -9.60894 + 4.72239I  |
| b =  0.208670 - 0.825203I |                                       |                      |
| u = -1.09818              |                                       |                      |
| a = -0.687555             | -8.14766                              | -20.4520             |
| b = 0.829189              |                                       |                      |
| u = 1.031810 + 0.655470I  |                                       |                      |
| a = 0.286111 + 0.344558I  | -4.02461 - 6.44354I                   | -12.4754 + 9.9976I   |
| b = 0.284386 - 0.605794I  |                                       |                      |
| u = 1.031810 - 0.655470I  |                                       |                      |
| a = 0.286111 - 0.344558I  | -4.02461 + 6.44354I                   | -12.4754 - 9.9976I   |
| b = 0.284386 + 0.605794I  |                                       |                      |
| u = 0.603304              |                                       |                      |
| a = -7.54843              | -2.48997                              | -72.8910             |
| b = 2.74744               |                                       |                      |

$$III. \ I_1^v = \langle a, \ -16v^4 - 47v^3 - 36v^2 + 29b - 104v + 5, \ v^5 + 3v^4 + 3v^3 + 8v^2 + v + 1 
angle$$

(i) Arc colorings

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.551724v^{4} + 1.62069v^{3} + \dots + 3.58621v - 0.172414 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.344828v^{4} - 1.13793v^{3} + \dots - 3.24138v - 1.51724 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.344828v^{4} - 1.13793v^{3} + \dots - 3.24138v - 0.517241 \\ -0.344828v^{4} - 1.13793v^{3} + \dots - 3.24138v - 1.51724 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.655172v^{4} + 1.86207v^{3} + \dots + 4.75862v + 0.482759 \\ v^{4} + 3v^{3} + 3v^{2} + 8v + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.655172v^{4} - 1.86207v^{3} + \dots - 3.75862v - 0.482759 \\ -v^{4} - 3v^{3} - 3v^{2} - 8v - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.655172v^{4} - 1.86207v^{3} + \dots - 4.75862v - 0.482759 \\ -0.137931v^{4} - 0.655172v^{3} + \dots - 1.89655v - 2.20690 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.655172v^{4} - 1.86207v^{3} + \dots - 4.75862v - 0.482759 \\ -v^{4} - 3v^{3} - 3v^{2} - 8v - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.551724v^{4} + 1.62069v^{3} + \dots + 4.758621v - 0.172414 \\ 0.0344828v^{4} + 0.413793v^{3} + \dots + 0.724138v + 1.55172 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes = 
$$\frac{65}{29}v^4 + \frac{142}{29}v^3 + \frac{81}{29}v^2 + \frac{437}{29}v - \frac{613}{29}$$

#### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing     |
|-----------------------|------------------------------------|
| $c_1$                 | $u^5 - 5u^4 + 8u^3 - 3u^2 - u - 1$ |
| $c_2$                 | $u^5 + u^4 - 2u^3 - u^2 + u - 1$   |
| $c_3$                 | $u^5 - u^4 + 2u^3 - u^2 + u - 1$   |
| $c_4$                 | $u^5 - u^4 - 2u^3 + u^2 + u + 1$   |
| <i>C</i> <sub>5</sub> | $u^5 - 3u^4 + 4u^3 - u^2 - u + 1$  |
| $c_6$                 | $u^5 + u^4 + 2u^3 + u^2 + u + 1$   |
| $c_7, c_{10}$         | $u^5$                              |
| <i>c</i> <sub>8</sub> | $u^5 + 3u^4 + 4u^3 + u^2 - u - 1$  |
| <i>c</i> 9            | $(u-1)^5$                          |
| $c_{11}, c_{12}$      | $(u+1)^5$                          |

# (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing    |
|-----------------------|---------------------------------------|
| $c_1$                 | $y^5 - 9y^4 + 32y^3 - 35y^2 - 5y - 1$ |
| $c_2, c_4$            | $y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1$    |
| $c_3, c_6$            | $y^5 + 3y^4 + 4y^3 + y^2 - y - 1$     |
| $c_5, c_8$            | $y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1$    |
| $c_7, c_{10}$         | $y^5$                                 |
| $c_9, c_{11}, c_{12}$ | $(y-1)^5$                             |

### (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^v$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| v = -0.01014 + 1.59703I   |                                       |                    |
| a = 0                     | -1.97403 - 1.53058I                   | -13.4575 + 4.4032I |
| b = 0.339110 - 0.822375I  |                                       |                    |
| v = -0.01014 - 1.59703I   |                                       |                    |
| a = 0                     | -1.97403 + 1.53058I                   | -13.4575 - 4.4032I |
| b = 0.339110 + 0.822375I  |                                       |                    |
| v = -0.043806 + 0.365575I |                                       |                    |
| a = 0                     | -7.51750 - 4.40083I                   | -22.0438 + 5.2094I |
| b = -0.455697 + 1.200150I |                                       |                    |
| v = -0.043806 - 0.365575I |                                       |                    |
| a = 0                     | -7.51750 + 4.40083I                   | -22.0438 - 5.2094I |
| b = -0.455697 - 1.200150I |                                       |                    |
| v = -2.89210              |                                       |                    |
| a = 0                     | -4.04602                              | -2.99730           |
| b = -0.766826             |                                       |                    |

IV. u-Polynomials

| Crossings             | u-Polynomials at each crossing                                                                                                                                            |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $c_1$                 | $((u-1)^8)(u^5 - 5u^4 + \dots - u - 1)(u^{34} + 50u^{33} + \dots + 7022u + 1)$                                                                                            |
| $c_2$                 | $((u-1)^8)(u^5+u^4+\cdots+u-1)(u^{34}-10u^{33}+\cdots-94u+1)$                                                                                                             |
| $c_3$                 | $u^{8}(u^{5} - u^{4} + \dots + u - 1)(u^{34} + 6u^{33} + \dots + 1408u + 256)$                                                                                            |
| C4                    | $((u+1)^8)(u^5 - u^4 + \dots + u + 1)(u^{34} - 10u^{33} + \dots - 94u + 1)$                                                                                               |
| $c_5$                 | $(u^{5} - 3u^{4} + 4u^{3} - u^{2} - u + 1)$ $\cdot (u^{8} - 3u^{7} + 7u^{6} - 10u^{5} + 11u^{4} - 10u^{3} + 6u^{2} - 4u + 1)$ $\cdot (u^{34} - 3u^{33} + \dots + 2u - 1)$ |
| $c_6$                 | $u^{8}(u^{5} + u^{4} + \dots + u + 1)(u^{34} + 6u^{33} + \dots + 1408u + 256)$                                                                                            |
| $c_7$                 | $u^{5}(u^{8} - u^{7} + \dots + 2u - 1)(u^{34} + 2u^{33} + \dots - 160u - 32)$                                                                                             |
| c <sub>8</sub>        | $(u^{5} + 3u^{4} + 4u^{3} + u^{2} - u - 1)$ $\cdot (u^{8} + 3u^{7} + 7u^{6} + 10u^{5} + 11u^{4} + 10u^{3} + 6u^{2} + 4u + 1)$ $\cdot (u^{34} - 3u^{33} + \dots + 2u - 1)$ |
| <i>c</i> <sub>9</sub> | $((u-1)^5)(u^8+u^7+\cdots+2u-1)(u^{34}-7u^{33}+\cdots+2u+1)$                                                                                                              |
| $c_{10}$              | $u^{5}(u^{8} + u^{7} + \dots - 2u - 1)(u^{34} + 2u^{33} + \dots - 160u - 32)$                                                                                             |
| $c_{11}, c_{12}$      | $((u+1)^5)(u^8-u^7+\cdots-2u-1)(u^{34}-7u^{33}+\cdots+2u+1)$                                                                                                              |

#### V. Riley Polynomials

| Crossings             | Riley Polynomials at each crossing                                                                                                                    |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| $c_1$                 | $(y-1)^8(y^5 - 9y^4 + 32y^3 - 35y^2 - 5y - 1)$ $\cdot (y^{34} - 122y^{33} + \dots - 49242950y + 1)$                                                   |
| $c_2, c_4$            | $((y-1)^8)(y^5 - 5y^4 + \dots - y - 1)(y^{34} - 50y^{33} + \dots - 7022y + 1)$                                                                        |
| $c_3, c_6$            | $y^{8}(y^{5} + 3y^{4} + \dots - y - 1)(y^{34} + 54y^{33} + \dots - 5357568y + 65536)$                                                                 |
| $c_5, c_8$            | $(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)$ $\cdot (y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1)$ $\cdot (y^{34} - y^{33} + \dots - 14y + 1)$ |
| $c_7, c_{10}$         | $y^{5}(y^{8} - 3y^{7} + 7y^{6} - 10y^{5} + 11y^{4} - 10y^{3} + 6y^{2} - 4y + 1)$ $\cdot (y^{34} - 36y^{33} + \dots - 3584y + 1024)$                   |
| $c_9, c_{11}, c_{12}$ | $(y-1)^{5}(y^{8}-7y^{7}+19y^{6}-22y^{5}+3y^{4}+14y^{3}-6y^{2}-4y+1)$ $\cdot (y^{34}-41y^{33}+\cdots-152y+1)$                                          |