Spring 2020

1 DeMorgan's Laws

Use truth tables to show that $\neg(A \lor B) \equiv \neg A \land \neg B$ and $\neg(A \land B) \equiv \neg A \lor \neg B$. These two equivalences are known as DeMorgan's Laws.

Solution:

A	В	$A \lor B$	$\neg (A \lor B)$	$\neg A \wedge \neg B$
T	T	T	F	F
T	F	T	F	F
F	T	T	F	F
F	F	F	T	T
A	В	$A \wedge B$	$\neg(A \land B)$	$\neg A \lor \neg B$
T	T	T	F	F
T	F	F	T	T
F	T	F	T	T
177	177	177	т	т

2 Propositional Practice

Convert the following English sentences into propositional logic and the following propositions into English. State whether or not each statement is true with brief justification. Recall that \mathbb{N} refers to the set of natural numbers, \mathbb{Q} refers to the set of rational numbers, \mathbb{Z} refers to the set of integers, \mathbb{C} refers to the set of complex numbers, and $x \mid y$ denotes that x divides y.

- (a) There is a real number which is not rational.
- (b) All integers are natural numbers or are negative, but not both.
- (c) If a natural number is divisible by 6, it is divisible by 2 or it is divisible by 3.
- (d) $(\forall x \in \mathbb{R}) (x \in \mathbb{C})$
- (e) $(\forall x \in \mathbb{Z}) (((2 \mid x) \lor (3 \mid x)) \Longrightarrow (6 \mid x))$
- (f) $(\forall x \in \mathbb{N}) ((x > 7) \implies ((\exists a, b \in \mathbb{N}) (a + b = x)))$

Solution:

- (a) $(\exists x \in \mathbb{R}) \ (x \notin \mathbb{Q})$, or equivalently $(\exists x \in \mathbb{R}) \ \neg (x \in \mathbb{Q})$. This is true, and we can use π as an example to prove it.
- (b) $(\forall x \in \mathbb{Z}) (((x \in \mathbb{N}) \lor (x < 0)) \land \neg ((x \in \mathbb{N}) \land (x < 0)))$. This is true, since we define the naturals to contain all integers which are not negative.
- (c) $(\forall x \in \mathbb{N})$ $((6 \mid x) \implies ((2 \mid x) \lor (3 \mid x)))$. This is true, since any number divisible by 6 can be written as $6k = (2 \cdot 3)k = 2(3k)$, meaning it must also be divisible by 2.
- (d) All real numbers are complex numbers. This is true, since any real number x can equivalently be written as x + 0i.
- (e) Any integer that is divisible by 2 or 3 is also divisible by 6. This is false–2 provides the easiest counterexample. Note that this statement is false even though its converse (part c) is true.
- (f) If a natural number is larger than 7, it can be written as the sum of two other natural numbers. This is trivially true, since we can take a = x and b = 0.

(Aside: this is a reference to the very weak Goldback Conjecture (https://xkcd.com/1310/).)

3 Preserving Set Operations

For a function f, define the image of a set X to be the set $f(X) = \{y \mid y = f(x) \text{ for some } x \in X\}$. Define the inverse image or preimage of a set Y to be the set $f^{-1}(Y) = \{x \mid f(x) \in Y\}$. Prove the following statements, in which A and B are sets. By doing so, you will show that inverse images preserve set operations, but images typically do not.

Hint: For sets X and Y, X = *Y if and only if X* \subseteq *Y and Y* \subseteq *X. To prove that X* \subseteq *Y, it is sufficient to show that* $(\forall x)$ $((x \in X) \implies (x \in Y))$.

- (a) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.
- (b) $f(A \cup B) = f(A) \cup f(B)$.

Solution:

In order to prove equality A = B, we need to prove that A is a subset of B, $A \subseteq B$ and that B is a subset of A, $B \subseteq A$. To prove that LHS is a subset of RHS we need to prove that if an element is a member of LHS then it is also an element of the RHS.

(a) Suppose x is such that $f(x) \in A \cup B$. Then either $f(x) \in A$, in which case $x \in f^{-1}(A)$, or $f(x) \in B$, in which case $x \in f^{-1}(B)$, so in either case we have $x \in f^{-1}(A) \cup f^{-1}(B)$. This proves that $f^{-1}(A \cup B) \subseteq f^{-1}(A) \cup f^{-1}(B)$.

Now, suppose that $x \in f^{-1}(A) \cup f^{-1}(B)$. Suppose, without loss of generality, that $x \in f^{-1}(A)$. Then $f(x) \in A$, so $f(x) \in A \cup B$, so $x \in f^{-1}(A \cup B)$. The argument for $x \in f^{-1}(B)$ is the same. Hence, $f^{-1}(A) \cup f^{-1}(B) \subseteq f^{-1}(A \cup B)$.

(b) Suppose that $x \in A \cup B$. Then either $x \in A$, in which case $f(x) \in f(A)$, or $x \in B$, in which case $f(x) \in f(B)$. In either case, $f(x) \in f(A) \cup f(B)$, so $f(A \cup B) \subseteq f(A) \cup f(B)$.

Now, suppose that $y \in f(A) \cup f(B)$. Then either $y \in f(A)$ or $y \in f(B)$. In the first case, there is an element $x \in A$ with f(x) = y; in the second case, there is an element $x \in B$ with f(x) = y. In either case, there is an element $x \in A \cup B$ with f(x) = y, which means that $y \in f(A \cup B)$. So $f(A) \cup f(B) \subseteq f(A \cup B)$.