

Universidade Federal da Grande Dourados (UFGD)

Dourados, 22 de Outubro de 2022.

Prof. Dr. Willian Isao Tokura Disciplina: Análise.

Definições apresentadas na última aula

Definição 1: Limite

Seja $f:U\subset\mathbb{R}^n\to\mathbb{R}$ uma função e $a\in U$ um ponto de acumulação de U. Dizemos que L é o limite de f quando x tende para a, e escrevemos

$$\lim_{x \to a} f(x) = L,$$

se, para todo $\varepsilon > 0$, existe $\delta > 0$, tal que

$$x \in U \text{ e } 0 < ||x - a|| < \delta \Longrightarrow |f(x) - L| < \varepsilon.$$

Definição 2: Continuidade

Uma função $f:U\subset\mathbb{R}^n\to\mathbb{R}$ é contínua em $a\in U$ se, para todo $\varepsilon>0$, existe $\delta>0$, tal que

$$x \in U \ e \ ||x - a|| < \delta \Longrightarrow |f(x) - f(a)| < \varepsilon.$$

Definição 3: Derivadas parciais

Seja $f: U \subset \mathbb{R}^n \to \mathbb{R}$ uma função e $e_1 = (1, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, \dots, 0, 1).$ Para cada $i = 1, \dots, n$, a i-ésima derivada parcial de f no ponto $a \in U$ é

$$\frac{\partial f}{\partial x_i}(a) = \lim_{t \to 0} \frac{f(a + te_i) - f(a)}{t},$$

caso esse limite exista.

Definição 4: Diferenciabilidade

Uma função $f:U \subset \mathbb{R}^n \to \mathbb{R}$ é diferenciável em $a \in U$ se

- a) Existem as derivadas parciais $\frac{\partial f}{\partial x_1}(a), \ldots, \frac{\partial f}{\partial x_n}(a)$.
- b) Para todo $v = (v_1, \dots, v_n)$ tal que $a + v \in U$, tem-se

$$f(a+v) - f(a) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)v_i + r(v), \text{ onde } \lim_{v \to 0} \frac{r(v)}{||v||} = 0.$$

REGRA DA CADEIA

Teorema 1: Regra da cadeia

Seja $f=(f_1,\ldots,f_n):U\subset\mathbb{R}^m\to\mathbb{R}^n$ uma aplicação tal que cada função coordenada $f_k:U\to\mathbb{R}$ é diferenciável no ponto $a\in U$. Seja ainda $g:V\subset\mathbb{R}^n\to\mathbb{R}$ uma função diferenciável no ponto b=f(a). Se $f(U)\subset V$, então a composta $g\circ f:U\to\mathbb{R}$ é diferenciável no ponto a e suas derivadas parciais são dadas por

$$\frac{\partial (g \circ f)}{\partial x_i}(a) = \sum_{k=1}^n \frac{\partial g}{\partial y_k}(b) \frac{\partial f_k}{\partial x_i}(a).$$

Esboço da demonstração: Segue da diferenciabilidade de f_k em a, que para todo $v=(v_1,\ldots,v_m)$ com $a+v\in U$, nós temos

$$f_k(a+v) - f_k(a) = \sum_{i=1}^m \frac{\partial f_k}{\partial x_i}(a)v_i + r(v), \text{ onde } \lim_{v \to 0} \frac{r(v)}{||v||} = 0.$$

Agora, pondo $w = f(a+v) - f(a) = (w_1, \dots, w_n)$, temos pela diferenciabilidade de g em b = f(a) que

$$g(b+w)-g(b)=\sum_{k=1}^n\frac{\partial g}{\partial y_k}(b)w_k+s(w), \text{ onde } \lim_{w\to 0}\frac{s(w)}{||w||}=0.$$

Assim,

$$g(f(a+v)) - g(f(b)) = \sum_{k=1}^{n} \frac{\partial g}{\partial y_k}(b) \left[\sum_{i=1}^{m} \frac{\partial f_k}{\partial x_i}(a) v_i + r(v) \right] + s(w),$$

$$= \sum_{i=1}^{m} \left(\sum_{k=1}^{n} \frac{\partial g}{\partial y_k}(b) \frac{\partial f_k}{\partial x_i}(a) \right) v_i + \underbrace{\sum_{k=1}^{n} \frac{\partial g}{\partial y_k}(b) r(v) + s(w)}_{R(s)}.$$

Daí

$$\frac{R(v)}{||v||} = \sum_{k=1}^{n} \frac{\partial g}{\partial y_k}(b) \frac{r(v)}{||v||} + \frac{s(w)}{||v||} = \sum_{k=1}^{n} \frac{\partial g}{\partial y_k}(b) \frac{r(v)}{||v||} + \frac{s(w)}{||w||} \frac{||w||}{||v||}.$$
 (1)

Munindo \mathbb{R}^n com a norma da soma, temos que

$$\frac{||w||}{||v||} = \frac{|w_1| + \dots + |w_n|}{||v||} \le \left| \sum_{i=1}^m \frac{\partial f_1}{\partial x_i}(a) \frac{v_i}{||v||} \right| + \left| \frac{r(v)}{||v||} \right| + \dots + \left| \sum_{i=1}^m \frac{\partial f_n}{\partial x_i}(a) \frac{v_i}{||v||} \right| + \left| \frac{r(v)}{||v||} \right|.$$

Como as derivadas parciais de f existem, $\frac{v_k}{||v||}$ é limitado e $\frac{r(v)}{||v||} \to 0$, temos que $\frac{||w||}{||v||}$ é limitado. Temos então pela expressão (1) que $\frac{R(v)}{||v||} \to 0$. Portanto f é diferenciável em a e as derivadas parciais de $g \circ f$ em a são dadas por:

$$\frac{\partial (g \circ f)}{\partial x_i}(a) = \sum_{k=1}^n \frac{\partial g}{\partial y_k}(b) \frac{\partial f_k}{\partial x_i}(a),$$

o que finaliza a demonstração.

LISTA DE EXERCÍCIOS

Exercício 1.

Considere as funções:

a)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$

b)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = \begin{cases} (x^2 + y^2)sen\left(\frac{1}{x^2 + y^2}\right) & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$

Estude o limite, a continuidade, as derivadas parciais e a diferenciabilidade de f.

Exercício 2.

Considere a função:

a)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$

Estude o limite, a continuidade, as derivadas parciais e a diferenciabilidade de f.

Exercício 3. ____

Considere a função:

$$f: \mathbb{R}^3 \to \mathbb{R}, \qquad f(x, y, z) = \begin{cases} \frac{sen(x^2 + y^2 + z^2)}{x^2 + y^2 + z^2} & \text{se } (x, y, z) \neq (0, 0, 0) \\ 0 & \text{se } (x, y, z) = (0, 0, 0) \end{cases}$$

Determine os pontos onde f é diferenciável e, por meio da regra da cadeia, calcule as derivadas parciais $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ e $\frac{\partial f}{\partial z}$

Suponha que a distribuição de temperatura em um ponto (x, y) na cidade de Dourados seja modelado por $T(x, y) = 40 - x^2 - y^2$. Admita que x e y sejam dados em Hectômetros (100m), a temperatura em $^{\circ}C$ e a coordenada (0, 0) seja no cruzamento da Av. Marcelino Pires com a Av. Presidente Vargas, conforme a figura acima. Um indivíduo encontra-se na posição (3, 2) e pretende dar um passeio.

- a) Descreva o lugar geométrico dos pontos que ele deverá percorrer se for seu desejo desfrutar sempre da mesma temperatura do ponto (3,2).
- b) Qual a direção e sentido que deverá tomar se for seu desejo caminhar na direção de maior crescimento da temperatura?