Lesson 27c. Triple Integrals, cont.

1 Last time: integrating over general 3D regions

• Type A 3D region

$$\iiint_E f(x,y,z) dV = \iint_D \left[\int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) dz \right] dA$$

• Type B 3D region

$$\iiint_E f(x,y,z) dV = \iint_D \left[\int_{u_1(y,z)}^{u_2(y,z)} f(x,y,z) dx \right] dA$$

• Type C 3D region

$$\iiint_E f(x, y, z) dV = \iint_D \left[\int_{u_1(x, z)}^{u_2(x, z)} f(x, y, z) dy \right] dA$$

2 Using different orders of integration

Example 1. Draw the projection of the 3D region below onto the *xy*-plane.

Example 2. Express $\iiint_E f(x, y, z) dV$ as an iterated integral, where E is the region in Example 1, using the order of integration dz dx dy.

Example 3. Draw the projection of the 3D region in Example 1 (below) onto the *yz*-plane.

Example 4. Express $\iiint_E f(x, y, z) dV$ as an iterated integral, where E is the region in Example 1, using the order of integration dx dz dy.

Example 5. Draw the projection of the 3D region in Example 1 (below) onto the *xz*-plane.

Example 6. Express $\iiint_E f(x, y, z) dV$ as an iterated integral, where E is the region in Example 1, using the order of integration dy dz dx.

3 If we have time...