

Round 3 2009

A. EZ-Sokoban

B. Alphabetomials

C. Football Team

D. Interesting Ranges

Contest Analysis

Questions asked

Submissions

EZ-Sokoban

7pt Not attempted 231/262 users correct (88%)

10pt | Not attempted 158/219 users correct (72%)

Alphabetomials

4pt | Not attempted 186/225 users correct (83%)

20pt | Not attempted 37/71 users correct (52%)

Football Team

8pt | Not attempted 36/138 users correct (26%)

19pt | Not attempted 16/36 users correct (44%)

Interesting Ranges

9pt Not attempted 24/41 users correct (59%)

23pt Not attempted 1/3 users correct (33%)

Top Scores	
bmerry	77
qizichao	77
winger	68
Ahyangyi	68
misof	50
rem	50
kia	50
mystic	50
marek.cygan	50
dzhulgakov	50

Problem D. Interesting Ranges

This contest is open for practice. You can try every problem as many times as you like, though we won't keep track of which problems you solve. Read the Quick-Start Guide to get started.

Small input 9 points

Solve D-small

Large input 23 points

Solve D-large

Problem

A positive integer is a *palindrome* if its decimal representation (without leading zeros) is a palindromic string (a string that reads the same forwards and backwards). For example, the numbers 5, 77, 363, 4884, 11111, 12121 and 349943 are palindromes.

A range of integers is *interesting* if it contains an even number of palindromes. The range [L, R], with $L \le R$, is defined as the sequence of integers from L to R (inclusive): (L, L+1, L+2, ..., R-1, R). L and R are the range's first and last numbers.

The range $[L_1,R_1]$ is a *subrange* of [L,R] if $L \le L_1 \le R_1 \le R$. Your job is to determine how many interesting subranges of [L,R] there are.

Input

The first line of input gives the number of test cases, **T**. **T** test cases follow. Each test case is a single line containing two positive integers, L and R (in that order), separated by a space.

Output

For each test case, output one line. That line should contain "Case #x: y", where x is the case number starting with 1, and y is the number of interesting subranges of [L,R], modulo 100000007.

Limits

 $1 \le T \le 120$

Small dataset

 $1 \le L \le R \le 10^{13}$

Large dataset

 $1 \le L \le R \le 10^{100}$

Sample

Input	Output
3 1 2 1 7 12 110	Case #1: 1 Case #2: 12 Case #3: 2466

All problem statements, input data and contest analyses are licensed under the Creative Commons Attribution License.

© 2008-2017 Google Google Home - Terms and Conditions - Privacy Policies and Principles

