Le champ magnétique en régime stationnaire

Le champ magnétique \vec{B} I.

1. Distribution discrète de charges

$$\boxed{ \overbrace{f_{1,\dots,N\to t}} = q_t \ \vec{v} \land \vec{B} } \\ \overrightarrow{f_{1\to 2}} \neq \overrightarrow{f_{2\to 1}} \text{ et } \delta W(\vec{f}) = 0 \\ \begin{cases} 1 \text{ charge pct}: & \overrightarrow{B} = \frac{\mu_0}{4\pi} \qquad q_1 \overrightarrow{v_1} \land \frac{P_1 M}{P_1 M^3} \\ \\ \text{N charges pct}: & \overrightarrow{B} = \frac{\mu_0}{4\pi} \sum_{i=1}^N q_i \overrightarrow{v_i} \land \frac{\overline{P_i M}}{P_i M^3} \end{cases}$$

2. Distribution continues de charges

	Volumique	Surfacique	Linéique
Densité de charges	$\vec{j} = ho_m \vec{v}$	$\vec{J_s} = \sigma_m \vec{v}$	
$I = Dq = \frac{dq}{dt}$	$\iint_{S} \vec{j} \cdot \overrightarrow{d^{2}S}$	$\int_{L} \overrightarrow{j_{S}} \cdot \overrightarrow{dl}$	$\lambda_m v$
$\overrightarrow{B}(M)$ Biot-Savart	$\frac{\mu_0}{4\pi}\iiint_V \vec{J} \wedge \frac{\overrightarrow{PM}}{PM^3} \ d^3\tau_P$	$\frac{\mu_0}{4\pi} \iint_S \overrightarrow{J_s} \wedge \frac{\overrightarrow{PM}}{PM^3} \ d^2S_P$	$\frac{\mu_0}{4\pi} \oint_{L_{cond}} I \overrightarrow{dr} \wedge \frac{\overrightarrow{PM}}{PM^3}$

3. Conservation de la charge électrique et régime permanent

$$\frac{\partial \rho(M)}{\partial t} = -\underbrace{\operatorname{div} \vec{j}(M) = 0}_{\text{en régime perm.}} \qquad \qquad \begin{aligned} \operatorname{div} \vec{E} &> 0 & \Leftrightarrow & \text{les lignes de champ divergent} \\ \operatorname{div} \vec{E} &= 0 & \Leftrightarrow & \text{les lignes de champ se referment} \\ \operatorname{div} \vec{E} &< 0 & \Leftrightarrow & \text{les lignes de champ convergent} \end{aligned}$$

Théorème d'Ampère II.

$$\operatorname{rot} \vec{B}(M) = \mu_0 \vec{J}(M)$$

 $\mathbf{v0}$

 $|\overrightarrow{div} \overrightarrow{B}(M) = 0|$ \Rightarrow les lignes de champ magnétique se referment. Il n'y a pas de charge magnétique.

III. Potentiel vecteur \overrightarrow{A}

$$\vec{B} = \operatorname{rot} \vec{A}$$

Distribution volumique	Distribution surfacique	Distribution linéique
$\vec{A} = \frac{\mu_0}{4\pi} \iiint_V \frac{\vec{J}(P)}{PM} d^3 \tau_P$	$\vec{A} = \frac{\mu_0}{4\pi} \iint_S \frac{\vec{j}_s(P)}{PM} d^2 S_P + \operatorname{grad} \varphi(M)$	$\vec{A} = \frac{\mu_0 I}{4\pi} \oint_C \frac{\overrightarrow{dr_p}}{PM} + \operatorname{grad} \varphi(M)$
$+\operatorname{grad} \varphi(M)$		

Flux de champ magnétique :
$$\overrightarrow{\int}_{S} \overrightarrow{B}(M) \cdot \overrightarrow{d^{2}S_{M}} = \oint_{C} \overrightarrow{A} \cdot \overrightarrow{dr}$$

Le champ magnétique en régime stationnaire P5 - Chapitre 5

Le champ magnétique en régime stationnaire

IV. Invariances et symétries

1. Invariances

Translation: $\vec{B}(\rho, \varphi, z) = \vec{B}(\rho, \varphi, z')$

 $\|\vec{B}(\rho, \boldsymbol{\varphi}, z)\| = \|\vec{B}(\rho, \boldsymbol{\varphi}', z)\|$ **Rotation:**

2. Symétries

• Symétrie plan :

o
$$\vec{j}$$
 et $\vec{j}' \perp \text{plan} \Rightarrow \vec{B} + \vec{B'} = \vec{0}$
o Sinon $\Rightarrow \vec{B} + \vec{B'} \perp \text{plan}$

• Asymétrie plan : $\Rightarrow \vec{B} + \vec{B'} \in \text{plan}$

V. Applications

1. Distribution volumique rectiligne uniforme symétrique cylindrique

$$\overrightarrow{B_{ext}}(M) = \frac{\mu_0 I}{2\pi} \overrightarrow{e_{\varphi}}$$

$$\overline{B_{ext}}(M) = \frac{\mu_0 I}{2\pi} \overrightarrow{e_{\varphi}} \qquad \overline{B_{int}}(M) = \frac{\mu_0 I}{2\pi} \frac{\rho}{R^2} \overrightarrow{e_{\varphi}}$$

2. Discontinuité du champ magnétique a la traversée d'une distribution surfacique de courants

$$\lim_{\substack{M_1 \to M^+ \\ M_2 \to M^-}} \left[\overrightarrow{B}(M_2) - \overrightarrow{B}(M_1) \right] = \mu_0 \overrightarrow{J_s} \wedge \overrightarrow{n_{1 \to 2}}$$

$$\lim_{\substack{M_1 \to M^+ \\ M_2 \to M^-}} \left[\overrightarrow{B}(M_2) \cdot \overrightarrow{n_{1 \to 2}} - \overrightarrow{B}(M_1) \overrightarrow{n_{1 \to 2}} \right] = 0 \quad \text{et} \quad \lim_{\substack{M_1 \to M^+ \\ M_2 \to M^-}} \left[\overrightarrow{B}(M_2) \wedge \overrightarrow{n_{1 \to 2}} - \overrightarrow{B}(M_1) \wedge \overrightarrow{n_{1 \to 2}} \right] = -\mu_0 \overrightarrow{J_s}$$