PEC1

cserrano

2025-03-25

En este trabajo se realizará un análsis exploratorio de un estudio metabolómico, escogido desde la base de datos **Metabolomics Workbench**. Por otro lado, usaremos la librería **metabolomics WorkbenchR** para extraer los datos directamente desde la web y **SummarizedExperiment** para manejar los datos de manera estructurada. Ambas librerías se encuentran en el repositorio **Bioconductor**. Para utilizar estas librerías, primero asegurarse de tener instalado Bioconductor y luego instalar metabolomicsWorkbenchR y SummarizedExperiment como indica en sus respectivos links.

En esta sección, importamos las librerías necesarias que utilizaremos a lo largo de este trabajo

```
library(metabolomicsWorkbenchR)
library(SummarizedExperiment)
library(knitr)
library(dplyr)
library(tidyr)
library(ggplot2)
```

La librería **metabolomicsWorkbenchR** permite realizar consultas a directamente a su página web. Aquí se utiliza la función do query para solicitar información de estudios, precisamente con la palabra Bacterial.

```
estudios = do_query(
    context = 'study',
    input_item = 'study_title',
    input_value = 'Bacterial',
    output_item = 'summary'
)
```

El resultado fue almacenado en la variable estudios, la cual se puede visualizar como una tabla. Aquí se muestran los primeros 10 resultados de la consulta.

kable(head(estudios))

study_sindidy_title	species	institute	analy	sis <u>nu</u> tympbe	erstf <u>ud</u> sy	a <u>mth</u> dpe	rtmlæsnt <u>t</u>	_na@inset_	_n eme	il phoi	nesubm	it <u>s</u> thaty	_subjecty
ST003(p)ppGpp and DksA play crucial role in reducing the efficacy of -lactam antibiotics by modulating bacterial membrane permeability	Vibrio cholerae	Translational Health Science And Technology Institute (THSTI)	LC- MS	72	NA	NA	NA	NA	NA	NA	NA	NA	NA
ST003524tabolic Profiling Unveils Enhanced Antibacterial Synergy of Polymyxin B and Teixobactin against Multi-Drug Besistant Acinetobacter baumannii	Acinetob bau- man- nii	acWernash University	LC- MS	58	NA	NA	NA	NA	NA	NA	NA	NA	NA
ST003 1X9 ruption of Glucose Homeostasis by Bacterial Infection Orchestrates Host Innate Immunity Through NAD+/NADH Balance	Mus mus- culus	Northwest A&F University	LC- MS	24	NA	NA	NA	NA	NA	NA	NA	NA	NA
ST00318 margeted plasma metabolomics on bacterial culture supernatants	Escherich coli	niaHarvard University	LC- MS	7	NA	NA	NA	NA	NA	NA	NA	NA	NA
ST0029536amine the through-filter recovery of metabolites extracted from a complex bacterial medium		Duke University	LC- MS	20	NA	NA	NA	NA	NA	NA	NA	NA	NA

study_sikhdy_title	species	institute	analys	is <u>n</u> utympbeer	stf <u>ud</u> syn	<u>m</u> thylpe.r	tnhæntt_	n ann set_	_n emæ i	lphor	ıesubmi	t <u>s</u> tlady_	_surbinaty_species
ST002924tabolomic Characteristics of Nontuberculous Mycobacterial Pulmonary Disease	Homo sapi- ens	Seoul National University College of Medicine and Hospital	LC- MS	418	NA	NA	NA	NA	NA	NA	NA	NA	NA

Teniendo estas alternativas de interés, se decidio seleccionar el estudio ST003521. La justificación de este estudio es mi relación al estudio de microbiología y genes de resistencia. Además, este estudio pudo ser obtenido por los métodos que aquí se muestran y asociarlo con una publicación para mayor información (Se pobraron otros estudios con la misma metodología y varios fallaban). Para mayor información, se puede visitar directamente el estudio ST003521 en su página web.

A continuación se procede a obtener los datos del estudio. Primero se obtendrá el summary del estudio. En la función do_query, se especifíca el estudio que al que se quiere acceder, mientras que en output_item se indica "summary"

Summary de estudio seleccionado

Tipo de análisis: LC-MS

```
summary <- do_query(
    context = "study",
    input_item = "study_id",
    input_value = "ST003521",
    output_item = "summary")</pre>
```

Dentro de los campos disponibles en summary se encuentran: "study_id", "study_title", "species", "institute", "analysis_type", "number_of_samples", "study_type" "department", "last_name", "first_name", "email", "phone", "submit_date", "study_summary", "subject_species". En este caso en particular, solo están disponible los siguientes campos.

```
cat("ID de estudio: ", summary$study_id,"\n")

## ID de estudio: ST003521

cat("Nombre de estudio: ", summary$study_title,"\n")

## Nombre de estudio: Metabolic Profiling Unveils Enhanced Antibacterial Synergy of Polymyxin B and Te

cat("Especies de estudio: ", summary$species,"\n")

## Especies de estudio: Acinetobacter baumannii

cat("Instituto del estudio: ", summary$institute,"\n")

## Instituto del estudio: Monash University

cat("Tipo de análisis: ", summary$analysis_type,"\n")
```

```
cat("Número de muestras: ", summary$number_of_samples,"\n")
```

Número de muestras: 58

A continuación se obtienen los datos del estudio. Para ello se indica su ID, y en output_item se indicará salida de tipo "SummarizedExperiment". De esta manera, los datos se obtendrán en formato del objeto SummarizedExperiment, el cuál permite contener mucha información del estudio de manera estructurada dentro del mismo objeto.

En este caso, al obtener los datos, se obtiene una lista con 2 elementos SummarizedExperiment.Estos se almacenarán en variable llamada se list

Carga de Datos en clase SummarizedExperiment

```
se_list = do_query(
    context = 'study',
    input_item = 'study_id',
    input_value = 'ST003521',
    output_item = 'SummarizedExperiment'
)
```

```
n=1
for (se in se_list)
{cat('Clase de elemento', n ,' : ',class(se), '\n')
n = n+1}
```

```
## Clase de elemento 1 : SummarizedExperiment
## Clase de elemento 2 : SummarizedExperiment
```

Exploraremos cada una de las matrices que contiene el objeto SummarizedExperiment. A continuación, una imagen representativa obtenida directamente desde la **documentación de la librería**.

Observaremos la matriz 'assay'. Lo haremos con el primer elemento de los datos, pero se pueden realizar las mismas acciones con ambos. Para ello utilizamos la funcion assay() y tomamos un subset para visualizar los primeros resultados tanto de filas como de columnas. Observamos también las dimensiones del dataset, donde obtenemos que este objeto consta de 513 filas y 58 columnas.

```
se1 <- se_list$AN005782
se2 <- se_list$AN005783
cat('Dimensiones:\n Filas: ',dim(assay(se1))[1], '\n', 'Columnas: ', dim(assay(se1))[2])

## Dimensiones:
## Filas: 513
## Columnas: 58

kable(assay(se1)[1:10,1:5])</pre>
```

Blank_1	Blank_2	Blank_3	Blank_4	Blank_5
NA	NA	NA	NA	NA
NA	NA	NA	NA	NA
12395	NA	NA	NA	NA
NA	NA	NA	NA	NA
NA	NA	NA	NA	NA
19383	NA	NA	15656	NA
NA	NA	NA	NA	NA
66080	54441	59291	50118	48040

Blank_1	Blank_2	Blank_3	Blank_4	Blank_5
NA	NA	NA	NA	NA
NA	NA	NA	NA	NA

Ahora observaremos específicamente la matriz de Features (o Rows). Accedemos a ellas mediante la función rowData(). Al igual que antes, solo se mostrarán los primeros resultados para evitar extender demasiado el documento.

Aquó observamos que las dimensiones de esta matriz es de 513 filas y 3 columnas. Aquí se muestran los valores de metabolitos denotados con ids pero también con su nombre químico. Las columnas que se encuentran son: "metabolite_name", "metabolite_id" y "refmet_name"

```
cat('Dimensiones:\n Filas: ',dim(rowData(se1))[1], '\n', 'Columnas: ', dim(rowData(se1))[2])
```

Dimensiones:
Filas: 513
Columnas: 3

kable(rowData(se1)[1:10,1:3])

	metabolite_name	$metabolite_id$	refmet_name
ME917515	10,11-dihydro-20-trihydroxy-leukotriene B4	ME917515	
ME917423	1-(14-methyl-pentadecanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycerol	ME917423	
ME917123	1,2-dihexadecanoyl-sn-glycero-3-phosphosulfocholine	ME917123	
ME917224	1,3,5-trimethoxybenzene	ME917224	1,3,5-Trimethoxybenzene
ME917120	1-4-beta-D-Glucan	ME917120	1,4-beta-D-Glucan
ME917031	1,6-anhydro-N-acetylmuramate	ME917031	
ME917246	$1 - ({\tt beta-D-Ribofuranosyl}) - 1, 4 - {\tt dihydronicotinamide}$	ME917246	1-(beta-D-Ribofuranosyl)-1,4- dihydronicotinamide
ME917307	1-carboxymethylpyridinium	ME917307	·
ME917341	1-deoxyxylonojirimycin	ME917341	
ME917309	$\hbox{1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-cytidine-5'-diphosphate}$	ME917309	

Ahora revisamos la matriz Samples. Para ello accedemos con la función colData(). En este caso, las dimensiones son 58 filas y 7 columnas. Notar que ahora las filas corresponden a las columnas de la matriz assay. Las columnas de esta matriz corresponden a: "local_sample_id", "study_id", "sample_source", "mb_sample_id", "raw_data", "Sample_source", "raw_file_name".

Los nombres que se observan en assay corresponden a local_sample_id. Se asume que el último sufijo "_N" corresponde al número de replicado de la muestra. En sample_source se muestra el nombre más descriptivo de la muestra. En mb_sample_id se tienen códigos de especies bacterianas. Todas corresponden a Acinetobacter baumannii ATCC 19606.

```
cat('Dimensiones:\n Filas: ',dim(colData(se1))[1], '\n', 'Columnas: ', dim(colData(se1))[2])
```

Dimensiones:
Filas: 58
Columnas: 7

kable(head(colData(se1)))

	local_sample_id	study_id	sample_source	mb_sample_id	raw_data	Sample_source	raw_file_name
Blank_1	Blank_1	ST003521	BLANK	SA386750		Extraction blank	Blank_1
Blank_2	Blank_2	ST003521	BLANK	SA386751		Extraction blank	Blank_2
Blank_3	Blank_3	ST003521	BLANK	SA386752		Extraction blank	Blank_3
Blank_4	Blank_4	ST003521	BLANK	SA386753		Extraction blank	Blank_4
Blank_5	Blank_5	ST003521	BLANK	SA386754		Extraction blank	Blank_5
COM_1h_1	COM_1h_1	ST003521	Combination_1h	SA386726		Combination_1h	COM_1h_1

Por último, exploramos la metadata del estudio. Para ello usamos la función metadata(). Esto nos entrega una lista con información. Aquí observamos la base de datos de donde se obtuvieron los datos, el id del

estudio, el id del análsis (Este estudio tiene 2 análisis), el tipo de análsis (HILIC POSITIVE ION MODE corresponde a un modo en HPLC. Segundo análisis corresponde a HILIC NEGATIVE ION MODE), la unidad de medida y la descripción del estudio.

```
metadata(se1)
```

```
## $data_source
## [1] "Metabolomics Workbench"
##
## $study_id
## [1] "ST003521"
##
## $analysis_id
## [1] "AN005782"
## $analysis summary
## [1] "HILIC POSITIVE ION MODE"
##
## $units
## [1] "peak height"
##
## $name
## [1] "ST003521:AN005782"
##
## $description
## [1] "Metabolic Profiling Unveils Enhanced Antibacterial Synergy of Polymyxin B and Teixobactin again
##
## $subject_type
## [1] NA
```

Ahora, teniendo mayor información de cómo se estructuran los datos y cual es el contexto del estudio, procederemos a explorar como darle un sentido a ellos.

Observamos anteriormente que las columnas de las muestras presentaban un sufijo '_N', el cual indica el número de réplica, por lo que una opción será agrupar las columnas con nombre equivalente y luego promediar sus valores para cada metabolito (filas)

Primero creamos un dataframe con la matriz del experimento 1 y seleccionamos los nombres del experimento 1. Para ello seleccionaremos los nombres descriptivos de las muestras en matriz colData. Generamos una lista unica de muestras, las que usaremos para identificar qué columnas se usarán para obtener promedio

```
data_df1 <- as.data.frame(assay(se1))
col_names1 <- se1@colData$sample_source
row_names1 <- se1@celementMetadata$metabolite_name

colnames(data_df1) <- col_names1 # Se asigan nombres de columnas a dataframe
rownames(data_df1) <- row_names1 # Se asigan nombres de filas a dataframe

unicos1 <- unique(col_names1[duplicated(col_names1)]) # Generamos una lista unica de nombres de columna

data_avg1 <- data.frame(row.names = rownames(data_df1)) # Crea dataframe vacío con largo de filas

for (name in unicos1) {
   data_avg1[[name]] <- rowMeans(data_df1[, colnames(data_df1) == name], na.rm = TRUE)
} # Itera sobre lista de nombres unicos para determinar promedio</pre>
```

Ahora realizamos el mismo ejercicio con el segundo objeto.

```
data_df2 <- as.data.frame(assay(se2))
col_names2 <- se2@colData$sample_source
row_names2 <- se2@elementMetadata$metabolite_name

colnames(data_df2) <- col_names2 # Se asigan nombres de columnas a dataframe
rownames(data_df2) <- row_names2 # Se asigan nombres de filas a dataframe

unicos2 <- unique(col_names2[duplicated(col_names2)]) # Generamos una lista unica de nombres de columna

data_avg2 <- data.frame(row.names = rownames(data_df2)) # Crea dataframe vacío con largo de filas

for (name in unicos2) {
   data_avg2[[name]] <- rowMeans(data_df2[, colnames(data_df2) == name], na.rm = TRUE)
} # Itera sobre lista de nombres unicos para determinar promedio</pre>
```

Ahora, teniendo las matrices con promdeios de ambos objetos provenientes de summarized experiment, concatenamos los dataframes antes creados en uno solo

```
data_avg <- rbind(data_avg1, data_avg2)

kable(data_avg[1:10,1:5])</pre>
```

	BLANK	Combination_1h	Combination_3h	Combination_6h	Control_1h
10,11-dihydro-20-trihydroxy-leukotriene B4	NaN	199784.0	514042.00	452823.75	1596473.75
1-(14-methyl-pentadecanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycerol	NaN	43236.0	72269.50	67371.25	108278.50
1,2-dihexadecanoyl-sn-glycero-3-phosphosulfocholine	12395.0	2206761.0	2414995.75	2950121.75	2920088.25
1,3,5-trimethoxybenzene	NaN	11197.0	30593.50	24576.50	84796.75
1-4-beta-D-Glucan	NaN	132375.2	169030.25	131530.25	423642.25
1,6-anhydro-N-acetylmuramate	17519.5	201987.0	221758.50	279904.25	434804.50
1-(beta-D-Ribofuranosyl)-1,4-dihydronicotinamide	NaN	108070.0	80567.33	89926.00	85004.75
1-carboxymethylpyridinium	55594.0	227125.5	186415.50	215638.50	236746.00
1-deoxyxylonojirimycin	NaN	62268.0	118603.75	106085.50	196470.75
1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-cytidine-5'-diphosphate	NaN	73331.0	132536.25	142474.75	225906.50