

Akademia Górniczo-Hutnicza w Krakowie Wydział FiIS Fizyka techniczna

Zespół 3:

1. Ryś Przemysław

		La	borate	orium	Technik	Jądrowy	ch

Rok akademicki: 2022/2023	$\operatorname{Semestr} V$	Grupa laboratoryjna: 1
Temat ćwiczenia:		

Spektrometr promieniowania gamma z licznikiem półprzewodnikowym HPGe.

Data wykonania ćwiczenia	Data oddania sprawozdania	Ocena
16.01.2023	17.01.2023	

Wstęp teoretyczny 1

Półprzewodnikowe detektory promieniowania to urządzenia, które wykorzystują właściwości półprzewodników do wykrywania i zliczania promieniowania jonizującego. Działają one poprzez absorpcję promieniowania jonizującego przez półprzewodnikowy materiał, co powoduje powstanie par elektron-dziura. Te pary sa następnie rozdzielane przez pola elektryczne i elektronicznie zliczane, co pozwala na określenie ilości absorbowanego promieniowania. Do detekcji wysokoenergetycznych kwantów gamma wykorzystuje się liczniki germanowe ze względu na ich lepsze właściwości absorbcyjne. Źródła użyte w pomiarze źródeł rozpadają się według poniższych równań:

$${}^{22}_{11}Na \longrightarrow {}^{22}_{10}Ne + e^{+} + \nu_{e}$$

$${}^{60}_{27}Co \longrightarrow {}^{60}_{28}Ni + e^{-} + \overline{\nu_{e}}$$

$${}^{133}_{56}Ba \longrightarrow {}^{133}_{55}Cs + e^{+} + \nu_{e}$$

$${}^{137}_{55}Cs \longrightarrow {}^{137}_{56}Ba + e^{-} + \overline{\nu_{e}}$$

$${}^{241}_{95}Am \longrightarrow \dots \longrightarrow {}^{205}_{81}Tl + 9{}^{4}_{2}He + 4e^{-} + 4\overline{\nu_{e}}$$

Aktywność źródła można wyrazić za pomocą wzoru:

$$A(t) = A_0 \cdot exp(-ln(2)\frac{t}{T_{\frac{1}{2}}}),$$
 (1)

gdzie A_0 to aktywność początkowa źródła, $T_{\frac{1}{2}}$ to czas połowicznego rozpadu pierwiastka, a t to czas mierzony od momentu jak źródło miało aktywność A_0 .

2 Aparatura

W doświadczeniu korzystaliśmy z aparatury, której schemat zamieszczony jest poniżej.

Rys. 1: Schemat blokowy spektrometru z detektorem półprzewodnikowym.

Aparatura ze schematu składała się z poniższych elementów:

- 1 Detektor HPGe firmy Canberra o wydajności około 40[%], znajdujący się w ołowianym domku o grubości ścianek 10 [cm]
- 2 Naczynie Dewara
- 3 Przedwzmacniacz ładunkowy
- W Wzmacniacz
- ZWN Zasilacz wysokiego napięcia
- ZNN Zasilacz niskiego napięcia

3 Analiza danych

Po przygotowaniu stanowiska przez prowadzącego, przeszedłem do mierzenia poszczególnych próbek umieszczając je w ołowianym domku pomiarowym oraz ustawiając czas mierzenia na 300 [s]. W międzyczasie przeliczałem aktywności źródeł promieniotwórczych na dzień dzisiejszy, wykorzystując w tym celu równanie 1 oraz daty jak i wartości zmierzonych aktywności. Przedstawione jest to w tabeli 1. Zebrane, a następnie wyznaczone przez program dane dla otrzymanych próbek wyeksportowałem w formie raportu do pliku pdf. Korzystając ze wzoru

$$\varepsilon(E) = \frac{N(E)}{T \cdot A \cdot p(E)},$$

obliczyłem wydajność spektrometru dla energii każdego piku badanych nuklidów. Zestawione one zostały zbiorczo wraz z danymi otrzymanymi z programu Genie-2000 w tabeli 2.

Zależność wydajności spektrometru od energii przedstawiona jest na wykresie 2. Z uwagi na mało czytelny jej obraz, poniżej na wykresie 3 przedstawiona została zależność logarytmu naturalnego wydajności od logarytmu naturalnego energii po odrzuceniu punktów dla których energia była niższa niż 200 [keV] oraz punktu dla energii 511 [keV]. Następnie dopasowano prostą do tych punków, której to równanie przedstawione jest również na wykresie.

Rys. 2: Wykres zależności wydajności spektrometru w zależności od energii.

Rys. 3: Wykres zależności wydajności spektrometru w zależności od energii w skali log-log.

 ${\bf W}$ kolejnym kroku przeprowadzono kalibrację energetyczną spektrometru bazując na uzyskanych pikach źródeł wzorcowych.

Rys. 4: Wykres zależności Energii przypadającej pikowi głównemu w zależności od kanału detektora.

Na koniec próbowałem zidentyfikować nieznane źródło naturalne. W tym celu zanotowałem energie pików głównych, był nim tylko jeden pik o następujących parametrach:

- Peak centroid = 4307
- Energy = 1461,28 [keV]
- FWHM = 2.25 [keV]
- Net Peak Area = 8,35

Korzystając ze strony [2] określiłem, iż szukanym nuklidem był $^{40}_{19}K$, którego tablicowa wartość energii kwantu gamma wynosi 1460,83 [keV].

Tab. 1: Tabela aktywności poszczególnych nuklidów w przeliczeniu na dzień $16.01.2023~\mathrm{r.}$

	Na-22	Co-60	Ba-133	Cs-137	Am-241
Numer na pastylce	28	137/18	278	273	136/18
Aktywność [kBq]	455,8	10,37	124,69	38,48	10,56
Data pomiaru aktywności	02.04.2003	01.12.2018	01.05.1976	01.05.1976	01.12.2018
$T_{\frac{1}{2}}$ [lat]	2,602	5,275	10,551	30,090	432,667
Minęło [dni]	7229	1507	17061	17061	1507
Minęło [lat]	19,805	4,129	46,742	46,742	4,129
Aktywność na dziś [kBq]	2,33	6,03	5,78	13,11	10,49

Tab. 2: Tabela danych dla pików poszczególnych nuklidów wyeksportowanych z programu Genie-2000 wraz z obliczoną wydajnością w zależności od energii.

	Energia	Energia	Peak	FWHM	Net Peak	Obliczona
	zmierzona [keV]	tablicowa [keV]	centroid	[keV]	Area	wydajność
Na-22	511,73	511	1516,06	2,61	52200	0,075
1\a-22	1275,11	1275	3760,13	1,99	10300	0,015
Co-60	1173,91	1173	3462,62	2,02	37500	0,021
00-00	1333,21	1333	3930,9	2,09	33600	0,019
	52,77	53	166,88	0,82	1170	0,034
	81,32	81	250,79	0,89	58600	0,099
Ba-133	277,27	276	826,82	1,09	9150	0,075
Da-155	303,7	303	904,52	1,18	22800	0,073
	356,8	356	1060,6	1,19	68500	0,064
	384,6	384	1142,35	1,2	11600	0,074
Cs-137	662,19	662	1958,35	1,48	122000	0,036
Am-241	59,46	60	186,55	0,87	102000	0,093

4 Aneks

Rys. 5: Liczba zliczeń w zależności od kanału dla Am-241.

Rys. 6: Liczba zliczeń w zależności od kanału dla Ba-133.

Rys. 7: Liczba zliczeń w zależności od kanału dla Co-60.

Rys. 8: Liczba zliczeń w zależności od kanału dla Cs-137.

Rys. 9: Liczba zliczeń w zależności od kanału dla Na-22.

Rys. 10: Liczba zliczeń w zależności od kanału dla nieznanego pierwiastka.

5 Literatura

- 1 B. Dziunikowski, S.J. Kalita Ćwiczenia laboratoryjne z jądrowych metod pomiarowych.
- $2\ \ http://nucleardata.nuclear.lu.se$