Math 1LS3 Week 3: Discrete Time Dynamical Systems

Owen Baker

McMaster University

Sept. 24-28, 2012

This week covers Chapter 2 of the textbook (2.1-2.3; we're skipping 2.4,2.5). Next week is 3.1-3.4. Warning for pacing: 3.3 is relatively long. We'll then finish Chapter 3 the following week.

- Overview
- 2 DTDSs: First Examples
- Visual Representations of a DTDS
- Examples
- 5 Composition of Updating Functions
- 6 Equilibrium
- More examples
- Yet more examples

Overview

You studied discrete-time dynamical systems (DTDS) in grade school!

- Start at 0 and repeatedly add 1 counting
- Start at s and repeatedly add 1 (t times) addition (s + t)
- Start at 0 and repeatedly add d (t times) multiplication ($d \cdot t$)
- Start at 1 and multiply by r(t times) exponentiation (r^t)

A DTDS consists of:

- Starting value, m₀: "intial value"
- Operation to repeat, f: "rule"/"updating function"

Main Question: What happens as we repeatedly apply f? This week, we'll start to answer this question. After we learn some calculus, we will return to it in week 9.

Sequences

A discrete time dynamical system yields a **sequence** by *iteration*.

$$m_1 = f(m_0)$$

 $m_2 = f(m_1) = f^2(m_0) = f(f(m_0))$
 $m_3 = f(m_2) = f^3(m_0) = f(f(f(m_0)))$
 $m_4 = f(m_3) = f^4(m_0) = f(f(f(f(m_0))))$, etc.

Example

Initial Value: $m_0 = 1$.

Updating Function: $f(m) = 2 \cdot m$.

1	2	4	8	16	32	64	128
m_0	m_1	m_2	<i>m</i> ₃	m_4	m_5	m_6	m ₇

Rules vs. Updating Functions

A **rule** is pretty much the same information as an *updating function*.

Example

Initial Value:
$$m_0 = 3$$
.

Rule:
$$m_{t+1} = m_t - 1$$
.

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Example

What is the rule corresponding to $f(m) = m^2$? Answer: $m_{t+1} = m_t^2$

$$\boxed{\text{DTDS}} = \left(\begin{array}{c} \text{Initial value } m_0 \& \\ \text{(Rule } or \text{ Updating Function)} \end{array} \right)$$

Updating Functions vs. Sequences

• The updating function f is a function.

current entry in sequence \mapsto next entry in sequence

• The sequence m_t is also a function.

$$t\mapsto m_t$$

Warning: these are not the same functions!

- The updating function tells how to do *one step*.
- We will graph both functions later to study the DTDS.

Iteration

Repeatedly doing something is called **iteration**.

Initial Value: m_0 Updating Function: f

$$m_1 = f(m_0)$$

 $m_2 = f(m_1) = f(f(m_0))$
 $m_3 = f(m_2) = f(f(f(m_0)))$
 $m_4 = f(m_3) = f(f(f(f(m_0))))$
 \vdots
 $m_{t+1} = f(m_t) = f^{t+1}(m_0)$

Warning: $f^n(x)$ does not mean $(f(x))^n$, but $\sin^2(\varphi)$ means $(\sin(\varphi))^2$. " $\sin^2(\varphi)$ is odious to me"–C.F. Gauss

Solving a DTDS means finding a direct formula for m_t .

Solution to a DTDS

Solving a DTDS means finding a direct formula for m_t .

- Start at $m_0 = 0$.
- f(x) = x + 6.
- Repeatedly add 6: $m_{t+1} = m_t + 6$.

What is m_7 ? $m_7 = 6 \cdot 7 = 42$. What is m_t ? $m_t = 6 \cdot t$.

$$m_t = 6 \cdot t$$
 is a solution to this DTDS.
6 · t is a direct function of t : no reference to m_{t-1} .

Q: Why did you learn how to multiply?

A: To repeatedly add without having to repeatedly add.

Moral: solutions are nice – they fully answer our main question.

Using a DTDS as a mathematical model

In a DTDS model:

- t is usually time (independent variable).
- *m* is some physical quantity (dependent variable).
- m_t is the value of m at time t.

When constructing a model:

- First identify the *updating function* (one step: from m_t to m_{t+1}).
- ② After that, look for a solution (from t to m_t).

In addition to the updating function, the model should specify:

- How long is one time step?
- What does *m* represent?
- In what units is *m* measured?

Updating Functions

In a DTDS model, t is usually time.

An updating function f tells you how to compute the next value (m_{t+1}) from the current value (m_t) .

$$m_{t+1} = f(m_t)$$

Problem

Find updating functions for the follwing scenarios.

- A tree grows 0.8m every year. Its height at time t is h_t , with t in years, h_t in meters.
- ② A bacteria colony doubles in size every hour. Its population at time t is P_t , with t in hours.

Solution

- **1** $h_{t+1} = h_t + 0.8$, so the updating function is $f(h_t) = h_t + 0.8$.
- 2 $P_{t+1} = 2P_t$, so the updating function is $g(P_t) = 2P_t$.

Solving a discrete-time dynamical system

Solving a DTDS means expressing m_t as a function of just t.

Problem

A tree starts at 1m and grows 0.8m each year. Write and solve the dynamical system for the height h_t .

Solution

The dynamical system consists of:

- Initial height: $h_0 = 1$.
- Interval length: 1 year.
- Updating function: $h_{t+1} = h_t + 0.8$.

The solution is $h_t = 1 + 0.8t$.

Note: The solution expresses h_t in terms of t. The updating function expresses h_{t+1} in terms of h_t .

Graphing a Discrete-Time Dynamical System

Visual Representation 1: *Graphing a DTDS*

Just a "line graph" without the lines.

m_t
0.978897
0.059908
0.163326
0.396286
0.693806
0.616074
0.685928
0.624749
0.679869
0.631177
0.675099

- What does graph suggest about the "Main Question" for this DTDS?
- Do we know for sure?
- The graph consists of discrete, isolated points. (Why?)

Graphing a Sequence along a Line

Visual Representation 2: Graphing a DTDS along a line Same DTDS as previous slide.

- Plot the values on a horizontal or vertical line.
- Label the points

What does the image suggest about the "Main Question" for this DTDS?

Do we know for sure?

Graphing the Updating Function

Visual Representation 3: Graphing the Updating Function

Just the graph of y = f(x). Same DTDS as previous slides.

- Textbook labels the axes: "initial" (x-axis) and "final" (y-axis).
- Better to say: "current" (x-axis) and "next" (y-axis).

Note: f is typically continuous but m_t is discrete.

Graphing the Updating Function

What can we tell about this particular DTDS from the graph of y = f(x)?

- If current value is small, next value is small (but a little bigger).
- Medium (near .5) \mapsto big, while big \mapsto small.
- What happens upon many iterations? Not easy to say (yet).

Graphing the Updating Function: Tree Growth

But some updating functions do answer the main question.

DTDS with
$$h_{t+1} = f(h_t) = h_t + 0.8$$
. What happens?

(Some equally spaced inputs)

- Current value increases by fixed amount to get new value.
- What happens upon many iterations? Height goes off to ∞ .

Graphing the Updating Function: Bacteria Growth

DTDS with $P_{t+1} = f(P_t) = 2P_t$. What happens?

(Some equally spaced inputs)

- Current value doubles to get new value.
- Larger current values experience even larger growth.
- What happens upon many iterations? Population explodes exponentially to ∞ .

Cobwebbing: Combining the Best of (2) and (3)

Visual Representation 4: Cobwebbing Same DTDS as in (1),(2),(3)

We want to take this sequence from before. . .

and plot instead along the diagonal line (y = x).

Cobwebbing: Combining the Best of (2) and (3)

Visual Representation 4: Cobwebbing Same DTDS as in (1),(2),(3)

Instead of plotting x_0 , plot (x_0, x_0) . Instead of plotting x_1 , plot (x_1, x_1) , etc.

Now we'll connect the points to visualize the sequence order.

Cobwebbing

$$x_1=f(x_0)$$

$$x_2 = f(x_1)$$

$$x_3 = f(x_2)$$

- One step is a vertical move followed by a horizontal move.
- What do we see about the Main Question?

Cobwebbing (Tree Growth Example)

Using the graph of the updating function, *cobwebbing* lets you see lots of iterates.

- (Current, next) pair (m_t, m_{t+1}) on graph of f.
- Move horizontally to line y = x: get point (m_{t+1}, m_{t+1}) .
- Move vertically to f: get point (m_{t+1}, m_{t+2}) .
- Repeat.

Cobwebbing (Bacteria Example)

Click: Cobweb Plot Applet. Try 2*x with initial value 0.001.

Bacteria Population Example

Problem

A bacteria population P_t doubles every hour, starting at 1 million. It doubles every hour. Write and solve a dynamical system.

Solution

The dynamical system consists of:

- Initial population: $P_0 = 10^6$.
- Interval length: 1 hour.
- Updating function: $P_{t+1} = 2P_t$.

The solution is $P_t = 10^6 * 2^t$.

Repeated Addition, Repeated Multiplication

Basic additive DTDS:

lf

- Initial value is A, and
- updating function is $f(m_t) = m_t + B$,

then the solution is $m_t = A + t * B$.

Basic exponential DTDS:

lf

- Initial value is A, and
- updating function is $f(m_t) = B * m_t$,

then the solution is $m_t = A * B^t$.

Memorize this slide. (Better yet, understand it as the *definition* of multiplication, exponentiation!)

Dynamics of Absorption of Pain Meds (p.95)

Problem

A patient takes one dose of the pain drug methadone each day. The half-life of the drug in this patient is 24 hours. Describe an updating function for the amount of drug in the body and solve the DTDS.

Solution

If m_t is the current amount (in doses), then tomorrow the patient has

- half of today's m_t left, plus
- the 1 new dose they take tomorrow.

So the update function is $f(m_t) = \frac{m_t}{2} + 1$.

Examples 2.1.8, 2.1.9 (p.100-101) solve the dynamical system for different initial values of m. Let's try the general case. . .

It's hard – so just focus on the main ideas.

Solving a linear DTDS: $f(m_t) = (m_t)/2 + 1$

Solution

<u>Observe</u>: if $m_t = 2$ doses, then $m_{t+1} = 2$. So $m_{t+2} = 2$, etc.

Idea: introduce a new variable e = m - 2, so $m_t = 2 + e_t$.

e represents excess dosage – dosage beyond 2.

Find a DTDS for e:

$$e_{t+1} = m_{t+1} - 2 = \left(\frac{m_t}{2} + 1\right) - 2 = \frac{2 + e_t}{2} - 1 = \frac{e_t}{2}$$

So e_t is an exponential DTDS:

$$e_t = e_0 \cdot \left(\frac{1}{2}\right)^t = \left(m_0 - 2\right) \left(\frac{1}{2}\right)^t$$

Solving the original DTDS:

$$m_t = 2 + e_t = 2 + (m_0 - 2) * (1/2)^t$$

Running a DTDS Backwards

How can we run a discrete-time dynamical system backwards? f does one step forward, so f^{-1} does one step backward. The "backwards DTDS" has updating function f^{-1} .

Problem

Bacteria pop. doubles each hr. Now it's 10^6 . What was it 3 hrs ago?

Solution

Update function $f(P_t) = 2P_t$, so $f^{-1}(P_t) = \frac{1}{2}P_t$. Current value is 10^6 .

time	population			
now	10 ⁶			
1 hour ago	$f^{-1}(10^6) = 500000$			
2 hours ago	$f^{-1}(500,000) = 250000$			
3 hours ago	$f^{-1}(250,000) = 125000$			

Self-Composition

 $f(m_t) = m_{t+1}$. In words, f computes the next value from the current value. What does $f \circ f$ compute? Two steps into the future.

Example

The DTDS: $f(x_t) = 3.35x_t(1 - x_t), x_0 = 0.5$ oscillates.

Study an auxilliary DTDS with:

- updating function $f \circ f$
- initial value 0.5

Iterate the *auxilliary DTDS*. What happens? m_{even} 's only. Stabilizes!

Click: Cobweb Plot Applet. Compare f(x) = 3.35*x*(1-x) and $f \circ f(x) = 11.2225*x-48.8179*x^2+75.1908*x^3-37.5954*x^4$.

Self-Composition

 $f(m_t) = m_{t+1}$. In words, f computes the next value from the current value. What does $f \circ f$ compute? Two steps into the future.

Example

The DTDS: $f(x_t) = 3.35x_t(1 - x_t), x_0 = 0.5$ oscillates.

Study an auxilliary DTDS with:

- updating function $f \circ f$
- initial value f(0.5) = 0.8375

Iterate the *auxilliary DTDS*. What happens? m_{odd} 's only. Stabilizes!

Click: Cobweb Plot Applet. Compare f(x) = 3.35*x*(1-x) and $f \circ f(x) = 11.2225*x-48.8179*x^2+75.1908*x^3-37.5954*x^4$.

Play with the parameter: change 3.35

Click: Cobweb Plot Applet

We looked at f(x) = 3.35*x*(1-x). Change r = 3.35 to interesting r-values below. See what happens. Challenge: compute bifurcation points.

Equilibrium (Algebraic Description)

An equilibrium point m^* for a dynamical system is where $f(m^*) = m^*$. If m^* is equilibrium point and $m_t = m^*$, then $m_{t+1} = m^*$, $m_{t+2} = m^*$, etc.

Problem

Find the equilibrium points for the pain medication DTDS: $f(m_t) = \frac{m_t}{2} + 1$.

Solution

Solve $f(m^*) = m^*$.

$$m^* = \frac{m^*}{2} + 1$$

$$\frac{m^*}{2} = 1$$

$$m^* = 2$$

There is just the one equilibrium point: $m^* = 2$.

Equilibrium: Geometric Description

Find the equilibrium points for $f(m_t) = 1 + \frac{m_t}{2}$ geometrically. Then cobweb starting with $m_0 = 1$ and with $m_0 = 4$ to see what happens.

Solution

The equilibrium point is the intersection point: $m^* = 2$. Starting at $m_0 = 1$ or $m_0 = 4$, cobwebbing draws us in to this equilibrium.

An equilibrium point is **stable** if nearby values are drawn in.

An equilibrium point is unstable if nearby values are pushed away.

Tree Growth, Bacteria Colony Equilibria

Find the equilibria. Are they stable?

Tree growth: $f(m_t) = m_t + 0.8$.

No equilibrium value!

Bacteria colony: $g(P_t) = 2P_t$.

Equilibrium only at $P^* = 0$. Is it stable? No, unstable.

Stable/Unstable Equilibria Summary

- An equilibrium point is where $f(m^*) = m^*$.
- An equilibrium point is where y = f(x) intersects y = x.
- The equilibrium m^* is *stable* if nearby points are drawn in by cobwebbing.
- The equilibirum m^* is unstable if nearby points are pushed away.

Note: if you can't

- graph f, or
- directly solve $f(m^*) = m^*$,

you can computer search for stable equilibria.

How? By iterating! Unstable equilibria remain hidden. —

Example 2.2.6: p.117

Codfish population is given by the updating function $n_{t+1} = -0.6n_t + 5.3$ (million codfish). Find equilibria and classify as stable/unstable.

Solution

Solve $-0.6n^* + 5.3 = n^*$ to find unique equilibrium $n^* \approx 3.3125$ Cobweb to determine stability:

Spirals in towards equilibrium: stable!

One more problem (time permitting): go back to f(t) = 3.35 * x * (1 - x) and find stable/unstable fixed points. What about $f \circ f$?

Per Capita Production: p.123-4

Problem

Consider the bacteria population model $P_{t+1} = r * P_t$.

The parameter $r \ge 0$ is called **per capita production**.

Find equilibria and classify as stable/unstable.

Note: this is the basic exponential DTDS.

Solution

For equilibrium P^* , solve $rP^* = P^*$.

If $r \neq 1$, the unique solution is $P^* = 0$.

If r = 1, then every point is an equilibrium value!

If r > 1, the equilibrium is unstable. (Exponential growth!)

If r < 1, the equilibrium is stable. (Exponential decay!)

Homework: verify stability by Cobwebbing.

Memorize (or understand) this result! We'll use it later.

Note: r is still called **per capita production** if it's a *function* of P_t .

Limited Population Model: p.126-7

In *limited population models*, the per capita production is a variable rate. It decreases as the population gets bigger. The resulting population doesn't grow as quickly as in the exponential case.

Problem

Consider the limited population model

$$b_{t+1} = \left(\frac{2}{1 + 0.001b_t}\right)b_t.$$

Find equilibria and classify as stable/unstable. (Cobweb.)

Solution

Solve
$$b^* = \frac{2}{1+0.001b^*}b^*$$
.
Either $b^* = 0$ or $1 = \frac{2}{1+0.001b^*} \implies 1 + 0.001b^* = 2 \implies b^* = 1000$.
There are two equilibria ($b^* = 0$ is unstable; $b^* = 1000$ is stable).

Limited Population Model: p.126-7 Cobweb Plot

Caffeine Absorption Model

Problem

The body eliminates caffeine at a constant rate of 13% per hour. Find the updating function if d extra mg of caffeine are consumed each hour.

- c_t is caffeine present in body in mg.
- One time step = 1 hour

Solution

$$f(c_t) = .87c_t + d$$

- The half-life is \approx 5 hours.
- Caffeine taken by 2PM should be about quartered by midnight.

Alcohol Dynamics

Unlike caffeine, which is eliminated at a constant proportion, the liver removes alcohol at a rate that decreases with amount present:

$$r(a_t) = \frac{10.1}{4.2 + a_t}.$$

Problem

A student drinks d grams of alcohol at the end of each hour. Write an updating function to describe the amount a_t .

Solution

$$a_{t+1} = a_t - r(a_t)a_t + d = a_t - \frac{10.1a_t}{4.2 + a_t} + d$$

Alcohol Equilibrium

Problem

A student drinks one standard drink (14g) and keeps consuming a drink on the hour. What happens?

Solution

To find equilibrium:

$$a^* = a^* - \frac{10.1a^*}{4.2 + a^*} + 14$$

$$10.1a^* = 14(4.2 + a^*) = 58.8 + 14a^*$$

$$a^* = -15.1$$

The only equilibrium is biologically meaningless, so a_t can't approach an equilibrium.

Cobwebbing shows alcohol level increases without end. . .

Alcohol Equilibrium Continued

