

Assignment: SQL Notebook for Peer Assignment

Estimated time needed: 60 minutes.

Introduction

Using this Python notebook you will:

- 1. Understand the Spacex DataSet
- 2. Load the dataset into the corresponding table in a Db2 database
- 3. Execute SQL queries to answer assignment questions

Overview of the DataSet

SpaceX has gained worldwide attention for a series of historic milestones.

It is the only private company ever to return a spacecraft from low-earth orbit, which it first accomplished in December 2010. SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars wheras other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage.

Therefore if we can determine if the first stage will land, we can determine the cost of a launch.

This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.

This dataset includes a record for each payload carried during a SpaceX mission into outer space.

Download the datasets

This assignment requires you to load the spacex dataset.

In many cases the dataset to be analyzed is available as a .CSV (comma separated values) file, perhaps on the internet. Click on the link below to download and save the dataset (.CSV file):

<u>Spacex DataSet (https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/labs/module_2/data/Spacex.csv?</u>

<u>utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=NA-SkillsNetwork-Channel-SkillsNetworkCoursesIBMDS0321ENSkillsNetwork26802033-2021-01-01)</u>

Store the dataset in database table

it is highly recommended to manually load the table using the database console LOAD tool in DB2.

Now open the Db2 console, open the LOAD tool, Select / Drag the .CSV file for the dataset, Next create a New Table, and then follow the steps on-screen instructions to load the data. Name the new table as follows:

SPACEXDATASET

Follow these steps while using old DB2 UI which is having Open Console Screen

Note: While loading Spacex dataset, ensure that detect datatypes is disabled. Later click on the pencil icon(edit option).

- Change the Date Format by manually typing DD-MM-YYYY and timestamp format as DD-MM-YYYY
 HH\:MM:SS
- 2. Change the PAYLOAD MASS_KG_ datatype to INTEGER.

Changes to be considered when having DB2 instance with the new UI having Go to UI screen

- Refer to this insruction in this link (https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DB0201EN-SkillsNetwork/labs/Labs Coursera V5/labs/Lab%20-%20Sign%20up%20for%20IBM%20Cloud%20-%20Create%20Db2%20service%20instance%20-%20Get%20Started%20with%20the%20Db2%20console/instructional-labs.md.html?
 utm medium=Exinfluencer&utm source=Exinfluencer&utm content=000026UJ&utm term=10006555&utm id:SkillsNetwork-Channel-SkillsNetworkCoursesIBMDS0321ENSkillsNetwork26802033-2021-01-01) for viewing the new Go to UI screen.
- Later click on Data link(below SQL) in the Go to UI screen and click on Load Data tab.
- Later browse for the downloaded spacex file.

Once done select the schema andload the file.

In [1]:

```
!pip install sqlalchemy==1.3.9
!pip install ibm_db_sa
!pip install ipython-sql
```

```
9/28/21, 11:15 PM
                                                jupyter-labs-eda-sgl-coursera
  Requirement already satisfied: sqlalchemy==1.3.9 in /home/jupyterlab/conda/en
   vs/python/lib/python3.6/site-packages (1.3.9)
   Requirement already satisfied: ibm_db_sa in /home/jupyterlab/conda/envs/pytho
  n/lib/python3.6/site-packages (0.3.3)
  Requirement already satisfied: sqlalchemy>=0.7.3 in /home/jupyterlab/conda/en
  vs/python/lib/python3.6/site-packages (from ibm db sa) (1.3.9)
  Requirement already satisfied: ipython-sql in /home/jupyterlab/conda/envs/pyt
  hon/lib/python3.6/site-packages (0.3.9)
  Requirement already satisfied: ipython>=1.0 in /home/jupyterlab/conda/envs/py
  thon/lib/python3.6/site-packages (from ipython-sql) (7.16.1)
  Requirement already satisfied: sqlparse in /home/jupyterlab/conda/envs/pytho
  n/lib/python3.6/site-packages (from ipython-sql) (0.4.1)
  Requirement already satisfied: prettytable in /home/jupyterlab/conda/envs/pyt
  hon/lib/python3.6/site-packages (from ipython-sql) (2.1.0)
  Requirement already satisfied: ipython-genutils>=0.1.0 in /home/jupyterlab/co
  nda/envs/python/lib/python3.6/site-packages (from ipython-sql) (0.2.0)
  Requirement already satisfied: sqlalchemy>=0.6.7 in /home/jupyterlab/conda/en
  vs/python/lib/python3.6/site-packages (from ipython-sql) (1.3.9)
  Requirement already satisfied: six in /home/jupyterlab/conda/envs/python/lib/
  python3.6/site-packages (from ipython-sql) (1.15.0)
   Requirement already satisfied: decorator in /home/jupyterlab/conda/envs/pytho
   n/lib/python3.6/site-packages (from ipython>=1.0->ipython-sql) (4.4.2)
  Requirement already satisfied: backcall in /home/jupyterlab/conda/envs/pytho
  n/lib/python3.6/site-packages (from ipython>=1.0->ipython-sql) (0.2.0)
  Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 i
  n /home/jupyterlab/conda/envs/python/lib/python3.6/site-packages (from ipytho
  n = 1.0 - ipython - sql) (3.0.19)
  Requirement already satisfied: pexpect; sys_platform != "win32" in /home/jupy
  terlab/conda/envs/python/lib/python3.6/site-packages (from ipython>=1.0->ipyt
  hon-sql) (4.8.0)
  Requirement already satisfied: pygments in /home/jupyterlab/conda/envs/pytho
  n/lib/python3.6/site-packages (from ipython>=1.0->ipython-sql) (2.9.0)
  Requirement already satisfied: traitlets>=4.2 in /home/jupyterlab/conda/envs/
   python/lib/python3.6/site-packages (from ipython>=1.0->ipython-sql) (4.3.3)
  Requirement already satisfied: jedi>=0.10 in /home/jupyterlab/conda/envs/pyth
  on/lib/python3.6/site-packages (from ipython>=1.0->ipython-sql) (0.17.2)
  Requirement already satisfied: pickleshare in /home/jupyterlab/conda/envs/pyt
  hon/lib/python3.6/site-packages (from ipython>=1.0->ipython-sql) (0.7.5)
  Requirement already satisfied: setuptools>=18.5 in /home/jupyterlab/conda/env
```

s/python/lib/python3.6/site-packages (from ipython>=1.0->ipython-sql) (49.6. 0.post20210108)

Requirement already satisfied: wcwidth in /home/jupyterlab/conda/envs/python/ lib/python3.6/site-packages (from prettytable->ipython-sql) (0.2.5)

Requirement already satisfied: importlib-metadata; python version < "3.8" in /home/jupyterlab/conda/envs/python/lib/python3.6/site-packages (from prettyta ble->ipython-sql) (4.6.1)

Requirement already satisfied: ptyprocess>=0.5 in /home/jupyterlab/conda/env s/python/lib/python3.6/site-packages (from pexpect; sys platform != "win32"-> ipython>=1.0->ipython-sql) (0.7.0)

Requirement already satisfied: parso<0.8.0,>=0.7.0 in /home/jupyterlab/conda/ envs/python/lib/python3.6/site-packages (from jedi>=0.10->ipython>=1.0->ipyth on-sql) (0.7.1)

Requirement already satisfied: zipp>=0.5 in /home/jupyterlab/conda/envs/pytho n/lib/python3.6/site-packages (from importlib-metadata; python version < "3. 8"->prettytable->ipython-sql) (3.5.0)

Requirement already satisfied: typing-extensions>=3.6.4; python version < "3. 8" in /home/jupyterlab/conda/envs/python/lib/python3.6/site-packages (from im portlib-metadata; python_version < "3.8"->prettytable->ipython-sql) (3.10.0.
0)

Connect to the database

Let us first load the SQL extension and establish a connection with the database

In [3]:

%load_ext sql

DB2 magic in case of old UI service credentials.

In the next cell enter your db2 connection string. Recall you created Service Credentials for your Db2 instance before. From the **uri** field of your Db2 service credentials copy everything after db2:// (except the double quote at the end) and paste it in the cell below after ibm_db_sa://

in the following format

%sql ibm_db_sa://my-username:my-password\@my-hostname:my-port/my-db-name

DB2 magic in case of new UI service credentials.

- · Use the following format.
- · Add security=SSL at the end

%sql ibm_db_sa://my-username:my-password\@my-hostname:my-port/my-db-name?security=SSL

In []:			
In []:			

In [4]:

\$ sql ibm_db_sa://mns53034:9xk4cn2%5E2rxvr9ct@dashdb-txn-sbox-yp-lon02-04.services.eu-gb.bl uemix.net:50000/BLUDB

Out[4]:

'Connected: mns53034@BLUDB'

Tasks

Now write and execute SQL queries to solve the assignment tasks.

Task 1

Display the names of the unique launch sites in the space mission

In [31]:

```
\% \mathbf{sql} select distinct LAUNCH_SITE from SPACEXDATASET
```

* ibm_db_sa://mns53034:***@dashdb-txn-sbox-yp-lon02-04.services.eu-gb.bluemix.net:50000/BLUDB
Done.

Out[31]:

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Task 2

Display 5 records where launch sites begin with the string 'CCA'

In [32]:

%%sql
select * from SPACEXDATASET where LAUNCH_SITE LIKE 'CCA%'LIMIT 5;

Out[32]:

DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO
2012- 05-22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)
2012- 10-08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)
4							>

Task 3

Display the total payload mass carried by boosters launched by NASA (CRS)

^{*} ibm_db_sa://mns53034:***@dashdb-txn-sbox-yp-lon02-04.services.eu-gb.bluemi x.net:50000/BLUDB Done.

Task 4

Display average payload mass carried by booster version F9 v1.1

Task 5

List the date when the first successful landing outcome in ground pad was acheived.

Hint:Use min function

```
In [17]:
```

```
%%sql
Select MIN(DATE) from SPACEXDATASET where LANDING_OUTCOME = 'Success (ground pad)';
```

* ibm_db_sa://mns53034:***@dashdb-txn-sbox-yp-lon02-04.services.eu-gb.bluemix.net:50000/BLUDB
Done.

Out[17]:

2015-12-22

Task 6

List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

In [20]:

```
%%sql

Select distinct PAYLOAD from SPACEXDATASET where LANDING_OUTCOME = 'Success (drone ship)'
AND (PAYLOAD_MASS__KG_ BETWEEN 4000 AND 6000);
```

* ibm_db_sa://mns53034:***@dashdb-txn-sbox-yp-lon02-04.services.eu-gb.bluemix.net:50000/BLUDB
Done.

Out[20]:

payload
JCSAT-14
JCSAT-16
SES-10
SES-11 / EchoStar 105

Task 7

List the total number of successful and failure mission outcomes

In [22]:

```
%%sql
```

Select MISSION_OUTCOME, COUNT(MISSION_OUTCOME) from SPACEXDATASET
GROUP BY MISSION_OUTCOME ORDER BY COUNT(MISSION_OUTCOME) DESC;

* ibm_db_sa://mns53034:***@dashdb-txn-sbox-yp-lon02-04.services.eu-gb.bluemix.net:50000/BLUDB
Done.

Out[22]:

2	mission_outcome
99	Success
1	Failure (in flight)
1	Success (payload status unclear)

Task 8

List the names of the booster_versions which have carried the maximum payload mass. Use a subquery

In [30]:

```
%%sq1
```

Select distinct BOOSTER_VERSION from SPACEXDATASET where PAYLOAD_MASS__KG_ = (select MAX(P
AYLOAD_MASS__KG_) from SPACEXDATASET);

* ibm_db_sa://mns53034:***@dashdb-txn-sbox-yp-lon02-04.services.eu-gb.bluemix.net:50000/BLUDB
Done.

Out[30]:

booster_version

F9 B5 B1048.4

F9 B5 B1048.5

F9 B5 B1049.4

F9 B5 B1049.5

F9 B5 B1049.7

F9 B5 B1051.3

F9 B5 B1051.4

F9 B5 B1051.6

F9 B5 B1056.4

F9 B5 B1058.3

F9 B5 B1060.2

F9 B5 B1060.3

Task 9

List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

In [37]:

%%sql

select BOOSTER_VERSION, LAUNCH_SITE from SPACEXDATASET where LANDING__OUTCOME = 'Failure
 (drone ship)' AND DATE LIKE '2015%'

* ibm_db_sa://mns53034:***@dashdb-txn-sbox-yp-lon02-04.services.eu-gb.bluemix.net:50000/BLUDB
Done.

Out[37]:

booster_version	launch_site
F9 v1.1 B1012	CCAFS LC-40
F9 v1.1 B1015	CCAFS LC-40

Task 10

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

In [40]:

%%sql

Select LANDING__OUTCOME, COUNT(LANDING__OUTCOME) from SPACEXDATASET where (DATE between '2 010-06-04' AND '2017-03-20')
GROUP BY LANDING__OUTCOME ORDER BY COUNT(LANDING__OUTCOME) DESC;

* ibm_db_sa://mns53034:***@dashdb-txn-sbox-yp-lon02-04.services.eu-gb.bluemix.net:50000/BLUDB
Done.

Out[40]:

landing_outcome	2
No attempt	10
Failure (drone ship)	5
Success (drone ship)	5
Controlled (ocean)	3
Success (ground pad)	3
Failure (parachute)	2
Uncontrolled (ocean)	2
Precluded (drone ship)	1

Reference Links

- Hands-on Lab: String Patterns, Sorting and Grouping (https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DB0201EN-SkillsNetwork/labs/Labs Coursera V5/labs/Lab%20-%20String%20Patterns%20-%20Sorting%20-%20Grouping/instructional-labs.md.html?
 - utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id: SkillsNetwork-Channel-SkillsNetworkCoursesIBMDS0321ENSkillsNetwork26802033-2021-01-01&origin=www.coursera.org)
- Hands-on Lab: Built-in functions (https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DB0201EN-SkillsNetwork/labs/Labs Coursera V5/labs/Lab%20-%20Built-in%20functions%20/Hands-on Lab Built-in Functions.md.html?
 - utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id: SkillsNetwork-Channel-SkillsNetworkCoursesIBMDS0321ENSkillsNetwork26802033-2021-01-01&origin=www.coursera.org)
- Hands-on Lab: Sub-queries and Nested SELECT Statements (https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DB0201EN-SkillsNetwork/labs/Labs Coursera V5/labs/Lab%20-%20Sub-queries%20and%20Nested%20SELECTs%20/instructional-labs.md.html?
 utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id:SkillsNetwork-Channel-SkillsNetworkCoursesIBMDS0321ENSkillsNetwork26802033-2021-01-01&origin=www.coursera.org)
- Hands-on Tutorial: Accessing Databases with SQL magic (https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DB0201EN-SkillsNetwork/labs/Module%205/DB0201EN-Week3-1-3-SQLmagic.ipynb?
 utm medium=Exinfluencer&utm source=Exinfluencer&utm content=000026UJ&utm term=10006555&utm id:SkillsNetwork-Channel-SkillsNetworkCoursesIBMDS0321ENSkillsNetwork26802033-2021-01-01)
- Hands-on Lab: Analyzing a real World Data Set (https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DB0201EN-SkillsNetwork/labs/Module%205/DB0201EN-Week3-1-4-Analyzing.ipynb?
 utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id:SkillsNetwork-Channel-SkillsNetworkCoursesIBMDS0321ENSkillsNetwork26802033-2021-01-01)

Author(s)

Lakshmi Holla

Other Contributors

Rav Ahuja

Change log

Date	Version	Changed by	Change Description
2021-08-24	0.3	Lakshmi Holla	Added library update
2021-07-09	0.2	Lakshmi Holla	Changes made in magic sql
2021-05-20	0.1	Lakshmi Holla	Created Initial Version

© IBM Corporation 2021. All rights reserved.