More on ACCESS-GE Rainfall Verification

D. Smith

Model Evaluation Workshop May 19 2015

Background

ACCESS-GE rainfall verification

- Review domain averaged error/spread results for members and mean, with ACCESS-G comparison
- Look at some real ensemble verification scores, ROCA and Brier
- 10 day forecast, 24 member global ensemble
- N216 (60km) resolution,

Previous Rainfall Verification

Previous efforts calculated domain RMS errors for all ensemble members, and the mean, comparing results with ACCESS-G

For November 2014, this looked like

Previous Ensemble Rainfall Verification

Error snapshot at 2014113012+180

Largest errors are negative, in heavy rain areas

Brier Score for Rainfall Threshold

Choose a rainfall (exceedance) threshold, x_{mm}

At any grid point:

What does the analysis say?

What do the members say?

Average the members' opinions to give a 'probability' fraction, between 0 and 1.

Brier Score for Rainfall Threshold

Define 'error' as

 $\mbox{error} = \mbox{member fraction} - \mbox{analysis}$ and take domain \mbox{RMS} (weighted).

Low(good) Brier scores are achieved by high member consensus at analysis *Yes* gridpoints and low member consensus at analysis *No* gridpoints

Take a picture for 10mm threshold on November 30 forecast, +180 lead time

Yes, No Points, 10mm Threshold, and Member Contours

Error Histograms at Yes, No Points, 10mm Threshold

Brier Score 10mm threshold

Yes, No Points and member contours

Error Histograms

- Almost 90% No points at this threshold
- Error histogram for No points appears far healthier

Repeat at 5mm threshold

Yes, No Points and member contours

Error Histograms

- More Yes points, just under 25%
- Yes histogram creeping towards zero

Compare histograms 5/10mm thresholds

10mm (score=0.102, better)

5mm (score=0.2, worse)

On decreasing the threshold:

- No points shifted away from 0 (worse)
- Yes points shifted towards 0 (better)

Improvement at 10mm appears to come from the No points

December Brier Results, fixed Lead Time

December Brier Results

Introducing the ROCA Score

The ROCA score is concerned with ability to discriminate

Once again, consider analysis Yes and No points.

- Construct ROC curve (parametrically) by taking a series of warning(decision) thresholds
- Proportion of Yes points exceeding warning threshold is hit rate, similarly for false alarm rate at No points
- Area under ROC curve is the ROCA score
- ROCA above $\frac{1}{2}$ means skill, perfect score is 1

A Healthy Example: 1mm threshold, T+36 (2015041012)

ROC Curve

- Yes histogram heavy right, No heavy left
- Reverse cumulative summation = 'hit', 'false alarm' rates
- \bullet Rapid FA rate decrease and slow HR decrease \to gap
- ROC well above diagonal means positive skill
- ROCA Score = 0.80, by trapezoid approximation

Back to 2014113012+180, 5mm threshold

ROC Curve

• Yes histogram not so good, No histogram ok

10

- Colourbar on ROC picture indicates warning threshold
- Calculated score = 0.64

Members Fraction

And 10mm threshold

Histograms

ROC Curve

- Calculated score = 0.65, slightly better than 5mm case
- Histogram for Yes points (10%) not looking healthy
- ROC stayed above diagonal (+ skill)

December ROCA Results

December ROCA Results

Future

- Also need ensemble CRPS score
- Apply rainval to members, mean and compare ACCESS-G for various other scores
- Compare with other ensemble(s)