

HiPerFET™ **Power MOSFETs**

IXFX 44N60 IXFK 44N60

600 V 130 $m\Omega$

Single MOSFET Die

#\ 	t _{rr} ≤ 250 ns
4	

Symbol	Test Conditions	M aximum l	Maximum Ratings		
V _{DSS} V _{DGR}	$T_J = 25^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$ $T_J = 25^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}; R_{GS} = 1 \text{ M}\Omega$	600 600	V		
V _{GS} V _{GSM}	Continuous Transient	±20 ±30	V V		
I _{D25} I _{DM} I _{AR}	$T_{c} = 25^{\circ}C$ $T_{c} = 25^{\circ}C$, pulse width limited by T_{J} $T_{c} = 25^{\circ}C$	44 176 44	A A A		
E _{AR} E _{AS}	T _c = 25°C T _c = 25°C	60 3	mJ J		
dv/dt	$I_{S} \leq I_{DM}, di/dt \leq 100 \text{ A/}\mu\text{s}, V_{DD} \leq V_{DSS}$ $T_{J} \leq 150^{\circ}\text{C}, R_{G} = 2 \Omega$	5	V/ns		
P_{D}	T _C = 25°C	560	W		
T_J		-55 +150	°C		
\mathbf{T}_{JM} \mathbf{T}_{stg}		150 -55 +150	°C °C		
T _L	1.6 mm (0.063 in.) from case for 10 s	300	°C		
M _d	Mounting torque TO-264	0.4/6 N	m/lb.in.		
Weight	PLUS 247 TO-264		6 g 10 g		

G = Gate	D = Drain
S = Source	TAB = Drain

Features

- International standard packages
- Low R_{DS (on)} HDMOS[™] process
 Rugged polysilicon gate cell structure
- Unclamped Inductive Switching (UIS)
- Low package inductance
 - easy to drive and to protect
- · Fast intrinsic rectifier

Symbol Test Conditions Characteristic Values $(T_J = 25^{\circ}C, \text{ unless otherwise specified})$ min. typ. max.

V _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 3\text{mA}$	600	V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 8mA$	2.5	4.5 V
I _{gss}	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0$		±100 nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$	100 μA 2 mA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 0.5 \bullet I_{D25}$ Note 1		130 mΩ

Applications

- · DC-DC converters
- · Battery chargers
- Switched-mode and resonant-mode power supplies
- DC choppers
- · AC motor control
- · Temperature and lighting controls

Advantages

- PLUS 247[™] package for clip or spring mounting
- Space savings
- · High power density

IXYS reserves the right to change limits, test conditions, and dimensions.

98611B (7/00)

Symbol	Test Conditions Characteristic Value $(T_1 = 25^{\circ}C, \text{ unless otherwise specified})$			
	min.	typ.	max.	
g _{fs}	$V_{DS} = 10 \text{ V}; I_{D} = 0.5 \bullet I_{D25} $ Note 1 30	45		S
C _{iss})	8900		pF
C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	1000		pF
C _{rss}	J	330		pF
t _{d(on)})	40		ns
t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$	50		ns
$\mathbf{t}_{d(off)}$	$R_{\rm G} = 1 \Omega \text{ (External)},$	100		ns
t _f)	40		ns
Q _{g(on)})	330		nC
\mathbf{Q}_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$	60		nC
\mathbf{Q}_{gd}	J	65		nC
R _{thJC}			0.22	K/W
R _{thCK}		0.15		K/W

C		Drai	~ D:	- 4-
201	irce.	ıı əran	กบาเ	nae.

Characteristic Values (T₁ = 25°C, unless otherwise specified)

Symbol	Test Conditions	min.	typ.	max.	,
I _s	V _{GS} = 0 V			44	Α
I _{SM}	Repetitive; pulse width limited by T _{JM}			176	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0$ V, Note 1			1.3	V
t _{rr}				250	ns
$\mathbf{Q}_{_{\mathbf{RM}}}$	$I_F = 50A, -di/dt = 100 A/\mu s, V_R = 100 V$		1.4		μС
I _{RM}	J		8		Α

Note: 1. Pulse test, $t \le 300 \mu s$, duty cycle $d \le 2 \%$

PLUS247™ (IXFX) Outline

Dim.	Millimeter		Inches
	Min.	Max.	Min. Max.
Α	4.83	5.21	.190 .205
A,	2.29	2.54	.090 .100
A ₂	1.91	2.16	.075 .085
b	1.14	1.40	.045 .055
b,	1.91	2.13	.075 .084
b ₂	2.92	3.12	.115 .123
С	0.61	0.80	.024 .031
D	20.80	21.34	.819 .840
E	15.75	16.13	.620 .635
е	5.45	BSC	.215 BSC
L	19.81	20.32	.780 .800
L1	3.81	4.32	.150 .170
Q	5.59	6.20	.220 .244
R	4.32	4.83	.170 .190

TO-264 AA (IXFK) Outline

Dim.		meter		hes	
	Min.	Max.	Min.	Max.	
Α	4.82	5.13	.190	.202	
Α1	2.54	2.89	.100	.114	
A2	2.00	2.10	.079	.083	
b	1.12	1.42	.044	.056	
b1	2.39	2.69	.094	.106	
b2	2.90	3.09	.114	.122	
С	0.53	0.83	.021	.033	
D	25.91	26.16	1.020	1.030	
Е	19.81	19.96	.780	.786	
е	5.46	BSC	.215 BSC		
J	0.00	0.25	.000	.010	
K	0.00	0.25	.000	.010	
L	20.32	20.83	.800	.820	
L1	2.29	2.59	.090	.102	
Р	3.17	3.66	.125	.144	
Q	6.07	6.27	.239	.247	
Q1	8.38	8.69	.330	.342	
R	3.81	4.32	.150	.170	
R1	1.78	2.29	.070	.090	
S	6.04	6.30	.238	.248	
T	1.57	1.83	.062	.072	

Figure 1. Output Characteristics at 25°C

Figure 3. $R_{\rm DS(on)}$ normalized to 15A/25°C vs. $I_{\rm D}$

Figure 5. Drain Current vs. Case Temperature

Figure 2. Output Characteristics at 125°C

Figure 4. $R_{\rm DS(on)}$ normalized to 15A/25°C vs. $T_{\rm J}$

Figure 6. Admittance Curves

Figure 8. Capacitance Curves

10000

Ciss

f = 1MHz

Crss

Crss

V_{DS} - Volts

Figure 9. Forward Voltage Drop of the Intrinsic Diode

Figure 10. Transient Thermal Resistance

