Design and calibration of stochastic models for DNA methylation patterns

Master seminar by Andrea Kupitz

Supervisors: Prof. Dr. Verena Wolf, Alexander Lück

Overview

- Problem:
 - Method of operation of DNMTs unclear
 - Measure distances between methylation pattern distributions
- Approach:
 - MCMC algorithm to simulate cell cycle
 - Pairwise distances for ABC
- Results:
 - Parameters of MCMC difficult to identify
- Outlook:
 - Validation of ABC method

Introduction – Epigenetics

- Histon modifications
 - Histon methylation
 - Histon acetylation
 - ...
- DNA modifications
 - DNA methylation

Introduction- Methylation

- Influences gene expression
- Indicator for diseases
- Heritable

Introduction - Methylation

- DNA methylation at CpG
- Methylation transmitted by DNMTs
- Method of operation of DNMTs unclear

Introduction- DNMTs

Methylation

• Maintainance:

• De novo:

Introduction- DNMTs

Processivity

• High:

• Low:

Methods – Markov Chain

ρ – Dissociation probability

Methods – Markov Chain

τ – Association probability

Methods – Markov Chain

δ – De novo methylation probability

M
M
M
M
M

μ - Maintenance methylation probability

Methods – Cell Division

Methods - MCMC

Markov chain Monte Carlo

- Given:
 - Measured methylation pattern distribution before cell divisions
 - Simulation parameters ρ , τ , δ and μ
- Aim:
 - Simulate a pattern distribution after cell division

Methods- MCMC

Workflow:

- 1. Sample from pattern distribution
- 2. Simulate t cell divisions
 - Draw RN and decide using ρ , τ , δ and μ if DNMT binds/methylates
- 3. Repeat 1 and 2 10000 times

Results- MCMC

DMNT3 - Expectations

• Low processivity:

 De novo methylation/few maintenance methylation activity:

Result:

- τ high (0.89)
- Plow (0.28)

Result:

- μ high (0.78)
- δ high (1.00)

Results- MCMC

DMNT1 - Expectations

High processivity:

processive methylation

Dnmt

CG — CG — CG — CG — 3'

GC — GC — GC — GC — 5'

Maintenance methylation:

Result:

- τ low (0.23)
- P high (1.00)

Result:

- μ high (0.75)
- δ low (0.43)

Methods - MLE

Log-likelihood:

- L(θ) = $\sum_{i=1}^{4^l} log(\hat{\pi_i}(\theta)) * N_i$
- $\theta = (\rho, \tau, \delta, \mu)$
- I: number of CpGs
- $\hat{\pi}$: pattern distribution of simulation
- N_i : occurrences of pattern i in measured data

MLE: $\theta = \arg max_{\theta}L(\theta)$

Results- MLE

- Param 3: δ
- ρ, τ and μ fixed
- Neg. log-likelihood
- Large interval for δ

Results- MLE

- Param 1: ρ
- Param 2: μ
- τ and δ fixed
- Neg. log-likelihood
- ρ and μ linear dependent

Approximate Bayesian Computation

- Given:
 - Measured methylation pattern distribution after cell division
 - Function simulating cell division
- Needed:
 - Distance between pattern distributions
- Output:
 - Best parameters

Pattern distributions – distance function

Pattern distributions – distance function

• dist(
$$(X_1, ..., X_{l_1}), (Y_1, ..., Y_{l_2})$$
) =
$$\sum_{i=1}^{l_1} \sum_{j=1}^{l_2} w_{ij} (X_i - Y_j)^2$$

• w_{ij} : distance between pattern i and j

Methylation patterns – distance function

$$dist(i, j) = w_{ij}$$

Workflow:

- 1. Choose ρ , τ , δ and μ randomly
- 2. Simulate cell division
- 3. Compute dist $((X_1, ..., X_{l_1}), (Y_1, ..., Y_{l_2}))$
- 4. Repeat 1-3
- 5. Yield best ρ , τ , δ and μ

Outlook

- Implement distance function w_{ij} for ABC
- Use distance function to validate results from MCMC
- Test ABC for artificial data

"There are no stupid questions, so let's also agree there are no stupid answers."

Thank you!

Any Questions?

References

- A. Lück et al., A Stochastic Model for the Formation of Spatial Methylation Patterns
- A. Q. Fu et al., DNA Methyltransferases from Double-Stranded Methylation Patterns
- https://de.wikipedia.org/wiki/MCMC-Verfahren
- https://de.wikipedia.org/wiki/DNA-Methylierung
- https://en.wikipedia.org/wiki/DNA_methyltransferase

Pictorial sources

- Slide 2: https://www.biomol.de/die-top-10-der-dna-farbstoffe-und-sonden.html?id=821
- Slide 3: https://www.ncc.go.jp/en/ri/division/epigenomics/project/230/2017 0913152903.html
- Slide 7–9, 11, 14, 15: A. Lück et al., A Stochastic Model for the Formation of Spatial Methylation Patterns, p.3
- Slide 22: https://www.cartoonstock.com/cartoonview.asp?catref=cwln5040