TD 6 - ANNEAUX, PARTIE 2

Exercice 1. Soit $\varphi: A \to B$ un morphisme d'anneaux.

- 1. Montrer que pour tout idéal I de B, $\varphi^{-1}(I)$ est un idéal de A.
- 2. On suppose que φ est surjectif. Montrer que pour tout idéal I de A, $\varphi(I)$ est un idéal de B.

Exercice 2. Soient $m, n \in \mathbb{Z}$. Déterminer les idéaux $(m) \cap (n)$ et (m) + (n).

Exercice 3. Soit K un intervalle de \mathbb{R} . On considère $A = \mathcal{C}^0(K, \mathbb{R})$.

- 1. Rappeler pourquoi A est naturellement muni d'une structure d'anneau commutatif.
- 2. L'anneau A est-il intègre?
- 3. Soit $x_0 \in K$. Montrer que l'ensemble $J = \{ f \in A \mid f(x_0) = 0 \}$ est un idéal de A.
- 4. Étudier le quotient A/J.
- 5. Montrer que J est un idéal maximal de A.

Exercice 4. 1. Montrer que l'application suivante est un morphisme d'anneau

$$\begin{array}{cccc} \phi: & \mathbb{R}[X] & \to & \mathbb{C} \\ & P & \mapsto & P(i). \end{array}$$

- 2. Déterminer le noyau de ϕ .
- 3. En déduire qu'il existe un isomorphisme d'anneaux entre $\mathbb{R}[X]/(X^2+1)$ et \mathbb{C} .

Exercice 5. On considère l'ensemble $\mathbb{Q}[i] = \{p + iq \mid p, q \in \mathbb{Q}\}.$

- 1. Montrer que $\mathbb{Q}[i]$ est un corps. (On commencera par montrer que c'est un sous-anneau de \mathbb{C} .)
- 2. Montrer que $\operatorname{Frac}(\mathbb{Z}[i]) \simeq \mathbb{Q}[i]$.

† Anneaux principaux

Exercice 6. Dans $\mathbb{Z}[X]$, on considère l'idéal I=(2,X).

- 1. Montrer que I est un idéal maximal.
- 2. Montrer que I n'est pas principal. En déduire que $\mathbb{Z}[X]$ n'est pas principal.

Exercice 7. Soit A un anneau principal et soit I un idéal de A.

- 1. Soit $a \in A$, $a \neq 0$. Montrer l'équivalence des assertions suivantes :
 - (a) a est irréductible.
 - (b) l'idéal (a) engendré par a est un idéal maximal.
 - (c) (a) est un idéal premier.
- 2. Soit p un élément irréductible de A. On considère l'idéal I = (p, X) de A[X] engendré par le polynôme constant p et le polynôme X.
 - (a) Montrer que A[X]/I est isomorphe à A/(p) où (p) est l'idéal de A engendré par p.
 - (b) En déduire que I est un idéal maximal de A[X].
 - (c) Montrer que I n'est pas un idéal principal.
 - (d) Montrer que 1 est le PGCD de p et de X dans A[X] et qu'il n'existe pas de polynôme G, H dans A[X] tels que 1 = pG + XH.

Exercice 8 (Théorème des deux carrés). On considère l'ensemble $\mathbb{Z}[i]$ l'ensemble des nombres complexes de la forme a+ib avec $a,b\in\mathbb{Z}$. On rappelle que $\mathbb{Z}[i]$ est un anneau euclidien pour le stathme N défini par $N(a+ib)=a^2+b^2\in\mathbb{N}$. Les parties de l'exercice sont indépendantes.

Partie 1 : $\mathbb{Z}[i]$ et les sommes de deux carrés.

Soit $p \in \mathbb{N}$ un nombre premier. Montrer que les assertions suivantes sont équivalentes

- (a) p est réductible dans $\mathbb{Z}[i]$.
- (b) Il existe $\alpha \in \mathbb{Z}[i]$ tel que $N(\alpha) = p$ (indication : on remarquera que N(zz') = N(z)N(z')).
- (c) p s'écrit comme somme de deux carrés de nombres entiers.

Partie 2: Un isomorphisme d'anneau.

- 1. Soit p un nombre premier. On pose $f: \mathbb{Z}[X] \to \mathbb{Z}[i]/(p)$ le morphisme d'anneaux envoyant P(X) sur la classe de P(i) modulo (p).
 - (a) Soit $P(X) \in \mathbb{Z}[X]$. Montrer que P(X) s'écrit de manière unique sous la forme $P(X) = (X^2 + 1)Q(X) + aX + b$ avec $a, b \in \mathbb{Z}$.
 - (b) En utilisant cette écriture, montrer que P(X) appartient à l'idéal $(X^2 + 1, p)$ si et seulement si p divise a et b. En déduire que $(X^2 + 1, p)$ est le noyau de f.
 - (c) Montrer que f induit un isomorphisme $\mathbb{Z}[X]/(X^2+1,p)\simeq \mathbb{Z}[i]/(p)$.
- 2. Montrer que $\mathbb{Z}[X]/(X^2+1,p)$ est isomorphe à $\mathbb{Z}/p\mathbb{Z}[X]/(X^2+1)$.
- 3. Montrer que p est réductible dans $\mathbb{Z}[i]$ si et seulement si X^2+1 admet une racine dans $\mathbb{Z}/p\mathbb{Z}$.

Partie 3: Les carrés dans $\mathbb{Z}/p\mathbb{Z}$.

- 4. Soit p=2. Montrer que $-1 \in \mathbb{Z}/2\mathbb{Z}$ s'écrit comme un carré dans $\mathbb{Z}/2\mathbb{Z}$.
- 5. Soit p un nombre premier impair. Montrer que l'application $\varphi: \mathbb{Z}/p\mathbb{Z}^* \to \mathbb{Z}/p\mathbb{Z}^*$ envoyant x sur $x^{\frac{p-1}{2}}$ est un morphisme de groupes.
- 6. Montrer que Ker φ est donnée par les racines non nulles du polynôme $X^{\frac{p-1}{2}}-1$. En déduire que $|\operatorname{Ker} \varphi| \leqslant \frac{p-1}{2}$.
- 7. Montrer que l'application $\psi: \mathbb{Z}/p\mathbb{Z}^* \to \mathbb{Z}/p\mathbb{Z}^*$ envoyant x sur x^2 est un morphisme de groupes. Montrer que son image est inclue dans $\operatorname{Ker} \varphi$.
- 8. Montrer que $|\operatorname{Im}\psi|=\frac{p-1}{2}.$ En déduire que $\operatorname{Ker}\varphi=\operatorname{Im}\psi.$
- 9. Montrer que -1 est un carré dans $\mathbb{Z}/p\mathbb{Z}$ si et seulement si $(-1)^{\frac{p-1}{2}}=1$.

Partie 4 : Soit $p \in \mathbb{N}$ un nombre premier. En utilisant les parties précédentes, montrer que les deux assertions suivantes sont équivalentes :

- p s'écrit comme somme de deux carrés de nombres entiers.
- p=2 ou bien $p\equiv 1[4]$.