Quanten-Hall-Effekt

Michael Rößner Jonas Schambeck

26. November 2020

Inhalt

2D Elektronengas

Hall-Effekt

2D Elektronengas

Definition

- Elektronen in konstantem Potential delokalisiert
- ▶ In Potenzialbarriere (Probenrand) eingesperrt
- Pauliprinzip für Elektronen: Ein Teilchen pro Zustand

(a) Potentialverlauf der Probe

(b) Zustandsverteilung im Elektronengas

Herstellung

- ► Halbleiter-Heterostruktur aus Materialien mit unterschiedlichen Bandlücken
 - ► Im Versuch: GaAs (1.4 eV) & AlGaAs (1.4 2.2 eV)
- Angleichen der Fermi-Niveaus bei Kontakt
- Wanderung der Elektronen aus n-dot. AlGaAs:Si in reines GaAs in tief liegenden Potentialtopf
- Sehr hohe Beweglichkeit durch hohe Ladungsträgerdichte in weitgehend defektfreiem Material

Zustandsdichte (DOS)

- Beschreibt Anzahl besetzter Zustände pro Energie und Volumen
- ▶ DOS für 2D Systeme: $D^{(2)}(E) = \frac{m}{\pi \hbar^2}$ konstant!
- Aufspaltung der Dispersionskurve in Subbänder auf
 - \Rightarrow Stufen konstanter DOS mit Abstand $\frac{m}{\pi\hbar^2}$

Hall-Effekt

Hallprobe

- Stromfluss in x-Richtung durch Probe (P)
- ► B-Feld in z-Richtung
- Messung der Längsspannung U_{xx} (2 ightarrow 3) und Hall-Spannung U_{H} (3 ightarrow 5)
- Aus Widerstandstensoren: $R_H = \frac{U_H}{I}$, $R_{\Box} = \frac{U_{xx}}{I} \frac{W}{L}$

Definition

Aus klassischer statischer BGL mit $\vec{B} = (0, 0, B)$ errechnet man:

$$R_H = \frac{B}{n_s e}$$
 $R_{\square} = \frac{1}{n_s e \mu}$

 n_s : Ladungsträgerdichte, e: Elementarladung, μ : Beweglichkeit

Quanten-Hall-Effekt

Auftreten von Quanteneffekten bei sehr tiefen Temperaturen und starken Magnetfeldern

(a) Widerstände mit Quanteneffekten

Landau-Level

Quantelung der Elektronenenergie im homogenen Magnetfeld

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega_c, \quad \omega_c = \frac{eB}{m^*}$$

► Energiewerte der "Landauniveaus/-levels"

(a) Diskrete Zustände bei Energiewerte, der Landauniveaus

(b) Zustände kondensieren auf Kreislinien

(c) Zustandsdichte spaltet in diskrete Landauniveaus auf