<u>Automotive Engineering, FIZ137 2nd Midterm Exam | Instructor: Emre S. Taşcı | 18 / 12 / 2015</u> <u>Choose 5 questions among the 7</u>

1) Calculate the position of the center of mass of the system when a quarter (1/4th) of a square of side 2a is removed from one of its edges. (Assume uniform mass distribution)

2) Two boxes, each having a mass of M_1 are attached to a massless rod of length d. The rod is able to rotate around a pivot attached at its center.

At t=0, as the rod is situated parallel to the ground, a particle of mass M_2 hits the box on the right edge with a speed of v and sticks to it.

- a) What is the angular velocity ω (along with its direction) of the system just after the collision? (in terms of M_1 , M_2 , v and d) (15 points)
- b) How many radians does the system rotate before it stops momentarily? (in terms of M_1 , M_2 , v, d and g) (5 points)
- 3) A pulley with radius R and moment of inertia I spins on a frictionless axle. A rope on the pulley holds two blocks of m_A and m_B . The coefficient of kinetic friction between block A and the table is μ_k . When the system is released from rest, block B descends (goes downwards).

Calculate the speed of the block B in terms of the distance d that it has traversed and g, m_A , m_B , I, R, μ_k .

4) A disk is of radius R and mass M_d is being rotated with an angular velocity of ω_0 around its edge, with a bug of mass m_b standing on its outer edge.

Find the new angular speed of the system and the change in kinetic energy when the bug walks

- a) to the center (10 points)
- b) to the connection point (10 points)

<u>Automotive Engineering, FIZ137 2nd Midterm Exam | Instructor: Emre S. Taşcı | 18 / 12 / 2015</u> <u>Choose 5 questions among the 7</u>

5) A pulley-mass system consists of two blocks of masses m_1 and m_2 ($m_2 > m_1$); a pulley of radius R_0 , mass M_P ; and a string of negligable mass. The system is released from rest, and the friction is negligable. The pulley rotates around a pivot driven through its center of mass.

Find the expression for the speed v of either block after it has moved a distance h (in terms of m_1 , m_2 , g and h).

(For practicality, you can assume that at the beginning, m_2 is positioned h distance above m_1)

6) A uniform rod of length d and mass M_{rod} is attached from its center. A bullet of mass m_b hits and exists the rod at a point $\frac{d}{4}$ from the center. The bullet's initial and final speeds are v_i and $v_f(v_i > v_f)$.

What is the rod's angular velocity after the collision? (In terms of M_{rod}, m_b, d)

- 7) A rope tied to a pulley (of radius R) is being pulled by a force F, thereby rolling the pulley smoothly. The coefficient of friction between the pulley and the ground is μ , and the mass of the circular pulley is m.
 - a) Calculate the translational acceleration *a* of the pulley. (In terms of m and F) (15 Points)
 - b) Calculate the frictional force *f* between the pulley and the ground. (In terms of m and F) (5 Points)

Bonus Question: When we are considering a rolling wheel on a surface with friction present between them, when should we use which coefficient of friction (kinetic (μ_k) or static (μ_s)) and why? (10 Points)

A)
$$P = ?$$
 m_p
 $S: \left(-\frac{a}{2}, -\frac{a}{2}\right), d = a\frac{c_2}{2} m_s$
 $C: \left(0,0\right)$ m_{s+m_p}

2)a)
$$L_i = L_f$$

$$M_2 \mathcal{G} \frac{d}{2} = \text{Tsystem} \cdot \omega$$

$$\text{Tsystem} = \frac{3}{2} m_i r_i^2 = \frac{M_i d^2}{4} + \frac{M_i d^2}{4} + \frac{M_2 d^2}{4} = \frac{d^2}{4} \left(2M_1 + M_2 \right)$$

$$\rightarrow M_2 \mathcal{G} \frac{d}{d} = \frac{d^2}{4} \left(2M_1 + M_2 \right) \omega$$

$$\rightarrow \omega = \frac{2M_2 \mathcal{G}}{2M_2 \mathcal{G}}$$

$$\Rightarrow \times p = \frac{a}{2} \frac{m_S}{m_P} = \frac{a}{2} \cdot \frac{m}{3m} = \frac{a}{6}$$

$$\forall p = \text{Specifore} / \text{symmetric to} \times p$$

$$= \frac{a}{6}$$

$$(\times p, \forall p) = (\frac{a}{6}, \frac{a}{6})$$

$$\Rightarrow \text{distance} = a\sqrt{2} \quad (\theta = 45^\circ)$$

$$\frac{d}{2} + \frac{d}{2} \int_{-\infty}^{\infty} \frac$$

(2M1+M2)d

$$\begin{array}{c} u_{1} + u_{1} = u_{1} + u_{2} \\ 2 M_{1} \cdot g \stackrel{d}{=} + M_{2} g \stackrel{d}{=}) + \frac{1}{2} \operatorname{Tsys} \omega^{2} = \operatorname{Mig} \left(\frac{d}{2} - \frac{d}{2} \operatorname{Sin} \theta \right) \\ + \operatorname{Mig} \left(\frac{d}{2} - \frac{d}{2} \operatorname{Sin} \theta \right) \\ + \operatorname{Mig} \left(\frac{d}{2} + \frac{d}{2} \operatorname{Sin} \theta \right) \\ \theta = \operatorname{Sui'} \left[- \frac{M_{2} u^{2}}{g d \left(2 M_{1} + M_{2} \right)} \right] \end{array}$$

3)
$$U_1 = M_g g d$$
, work done by friction: $W = p_{LL} m_{R} g d$

$$U_1 = 0$$

$$U_2 = \frac{1}{2} m_{A} u^2 + \frac{1}{2} m_{B} u^2 + \frac{1}{2} T \omega^2, \quad \omega = \frac{u}{R}$$

$$= \frac{1}{2} \left(m_{A} + m_{R} + \frac{T}{R^2} \right) u^2,$$

$$U_2 = 0$$

$$U_{1+1} U_{1+1} U_{2+1} U_{2+1} = M_{R} g d - M_{LL} m_{A} g d = \frac{1}{2} \left(m_{A} + m_{R} + \frac{T}{R^2} \right) u^2 \Rightarrow u^2 = \sqrt{\frac{2g d \left(m_{R} - M_{LL} m_{A} \right)^2}{m_{A} + m_{R} + T}}$$

$$U_{1+1} U_{1+1} U_{2+1} U_{2+1} U_{2+1} = M_{R} g d - M_{LL} m_{A} g d = \frac{1}{2} \left(m_{A} + m_{R} + \frac{T}{R^2} \right) u^2 \Rightarrow u^2 = \sqrt{\frac{2g d \left(m_{R} - M_{LL} m_{A} \right)^2}{m_{A} + m_{R} + T}}$$

$$K = \frac{1}{2} I \omega^2 \rightarrow \times K = \frac{1}{2} \left(I_{S_R} \omega_R^2 - I_{S_{2R}} \omega_e^2 \right)$$

Frul:

$$T_{sym_0} = \frac{3}{2} M_1 R^2$$

$$W_{d=0} = \frac{R^2 \left(\frac{3}{2} M_1 + d M_6\right)}{R^2 \cdot \frac{3}{2} M_d}$$

$$\Delta \omega = \omega_{d=0} - \omega_{o}$$

$$\Delta K = \frac{1}{2} \left(I_{s_{o}} \omega_{d=0}^{2} - I_{s_{2n}} \omega_{o}^{2} \right)$$

$$E_{i} = U = M_{2}g^{h}$$

$$E_{f} = U + k_{4rons} + k_{rot} = m_{1}g_{h} + \frac{1}{2}(m_{1} + m_{2}) g^{2} + \frac{1}{2}I\omega$$

$$V = R_{0}\omega, \omega = \frac{\omega}{R_{0}}, I = \frac{1}{2}MR_{0}^{2}$$

$$\Rightarrow E_{f} = m_{1}g_{h} + \frac{1}{2}(m_{1} + m_{2} + \frac{1}{2}Mr_{0})$$

$$E_{i} = E_{f}$$

$$M_{2}g_{h} = m_{1}g_{h} + \frac{1}{2}(m_{1} + m_{2} + \frac{1}{2}Mr_{0})g^{2}$$

$$V = \sqrt{\frac{2(m_{2} - m_{1})g_{h}}{m_{1} + m_{2} + \frac{1}{2}Mr_{0}}}$$

$$U = \sqrt{\frac{2(m_{2} - m_{1})g_{h}}{m_{1} + m_{2} + \frac{1}{2}Mr_{0}}}$$

$$U = \sqrt{\frac{4}{4}(V_{i} - V_{f})}I_{2\omega} = \frac{m_{1}g_{h}}{M_{1}g_{h}}(\varphi_{i} - V_{f}) = \sqrt{\frac{3m_{1}}{M_{0}d}}(\varphi_{i} - V_{f})$$

$$V = \sqrt{\frac{1}{4}Mr_{0}d^{2}}}$$

$$V = \sqrt{\frac{1}{4}m_{1}g_{h}}(\varphi_{i} - V_{f}) = \sqrt{\frac{3m_{1}}{M_{0}d}}(\varphi_{i} - V_{f})$$

$$V = \sqrt{\frac{1}{4}m_{1}g_{h}}(\varphi_{i} - V_{f}) = \sqrt{\frac{3m_{1}}{M_{0}d}}(\varphi_{i} - V_{f})$$

$$V = \sqrt{\frac{1}{4}m_{1}g_{h}}(\varphi_{i} - V_{f}) = \sqrt{\frac{3m_{1}}{M_{0}d}}(\varphi_{i} - V_{f})$$

$$V = \sqrt{\frac{3m_{1}}{4}(V_{i} - V_{f})} = \sqrt{\frac{3m_{1}}{M_{0}d}}(\varphi_{i} - V_{f})$$

$$V = \sqrt{\frac{3m_{1}}{4}(V_{i} - V_{f})} = \sqrt{\frac{3m_{1}}{M_{0}d}}(\varphi_{i} - V_{f})$$

$$V = \sqrt{\frac{3m_{1}}{4}(V_{i} - V_{f})} = \sqrt{\frac{3m_{1}}{4}(V_{i} - V_{f})} = \sqrt{\frac{3m_{1}}{4}(V_{i} - V_{f})}$$

$$V = \sqrt{\frac{3m_{1}}{4}(V_{i} - V_{f})} = \sqrt{\frac{3m_{1}}{4}(V_{i} - V_{f})} = \sqrt{\frac{3m_{1}}{4}(V_{i} - V_{f})} = \sqrt{\frac{3m_{1}}{4}(V_{i} - V_{f})}$$

$$V = \sqrt{\frac{3m_{1}}{4}(V_{i} - V_{f})} = \sqrt{\frac{3m_{1}}{4}(V_{i}$$

$$\frac{mR}{2}a = 2FR - mRa$$

$$\frac{3m}{2}a = 2FR - mRa$$

b.)
$$ma = F - f_s$$

$$m \cdot \frac{4F}{3m} = F - f_s \longrightarrow \int_{s}^{\infty} \int_{s}^{\infty} \frac{1}{3} \int_{s}^{\infty}$$

BONUS: Mu-> seips (translate)
Ms->volls (crotation)