Capítulo 1

Conjuntos estadísticos

La cantidad

$$\rho(\{\vec{q}_i, \vec{p}_i\}, t)d^{3N}qd^{3N}p$$

es el número de microestados en el elemento $d^{3N}qd^{3N}p$ al tiempo t centrado en q,p. Si los microestados son equiprobables $\rho\equiv cte$.. El conjunto $\{\vec{q}_i,\vec{p}_i\}$ son 6N coordenadas.

$$\Omega = \int p d^{3N} q d^{3N} p$$

XXX Dibujos XXXX

el volumen en $\mathbb F$ es proporcional al número de microestados compatibles con E,N, el volumen $\mathbb F$ del macroestado es $\Omega\{n_i\}$

 $n_i=f_id^3qd^3p$ es el número de partículas en una celda i (con su $\vec p$ en $\vec p+d\vec p$ y con su $\vec q$ en $\vec q+d\vec q$)

Un microestados determina una distribución f que da un conjunto $\{n_i\}$. Pero una f determina muchos microestados porque la función de distribución no distingue entre partículas (importan los números de ocupación); entonces una f determina un volumen en \mathbb{F} .

Suponemos que todos los microestados en $\mathbb F$ son igualmente probables. La f que determina el mayor volumen en $\mathbb F$ es la más probable. Suponemos que en el equilibrio el sistema toma la f más probable. Si f_i es el valor de f en cada celda i

$$f_i = \frac{n_i}{d^3pd^3q}$$
 promediada en el ensamble $\bar{f_i} = \frac{< n_i>}{d^3pd^3q}$ en el equilibrio

La integral Ω es imposible porque es difícil determinar el volumen de integración.

Cada microestado tiene su f.

 f_i es la distribución para un miembro en el ensamble.

Esta \bar{f}_i es la de equilibrio, pero la cuenta no es fácil. Asumiremos que la f de equilibrio es la más probable (la de mayor volumen en \mathbb{F}); entonces maximizaremos dicho volumen para hallarla.

Un microestado determina una f; diferentes microestados pueden determinar otras f pero muchos coincidirán en una misma f.

La f en el equilibrio es la que tiene mayor cantidad de microestados (la más probable) pero

$$\bar{f}_i = \frac{\langle n_i \rangle}{d^3 p d^3 q}$$

es el promedio en el ensamble y no será exactamente igual a la f_i del mayor volumen, salvo que el volumen de f sea mucho mayor al ocupado por f', f'', etc.

Dado el volumen $\Omega\{n_i\}$ extremaremos el mismo sujeto a las condiciones

$$E = \sum_{i}^{K} n_i e_i \qquad \qquad N = \sum_{i}^{K} n_i$$

y llegamos a la f de equilibrio que es f_{MB} .

El volumen Ω se escribe en función de los números de ocupación

$$\Omega\left(\left\{n_{i}\right\}\right) = \frac{N!}{\prod_{i}^{K} n_{i}!} \prod_{i}^{K} g_{i}^{n_{i}} \qquad (i = 1, 2, ..., K \quad \text{identifica celdas en } \mu)$$

$$\Omega\left(\left\{n_{i}\right\}\right)=N!\prod_{i}^{K}\frac{g_{i}^{n_{i}}}{n_{i}!}$$

donde g_i son los subniveles en que podríamos dividir la celda K; es por matemática conveniencia y para abarcar más casos (luego será $g_i = 1 \forall i$).

El conjunto $\{\tilde{n}_i\}$ que extrema $\Omega\left(\{n_i\}\right)$ es el más probable y consideraremos

$$\{\tilde{n}_i\} = \langle n_i \rangle$$

Estaremos pensando que cuando $N \to \infty$ la mayor parte de los microestados van a una distribución f_{MB}

1.1 Microcanónico

1.1.1 Solución de equilibrio

La solución de equilibrio satisfacía

$$f(p_1)f(p_2) = f(p_1^\prime)f(p_2^\prime)$$

Necesito $\Omega = \Omega\{n_i\}$ para obtener el $\{\tilde{n}_i\}$.

$$\log f(p_1) + \log f(p_2) = \log f(p_1') + \log f(p_2')$$

que luce como una lev de conservación y admite como solución

$$\log f(p) = Am + \mathbf{B} \cdot \mathbf{p} + C|\mathbf{p}|^2$$
 (A, B, Cctes. adimensionales)

que lista los invariantes colisionales. Completando cuadrados

$$f \propto C_1 \; \mathrm{e}^{-C_2 (\boldsymbol{p} - \boldsymbol{p}_0)^2}$$

La expresión completa se ajusta con

$$n = \int f(\boldsymbol{p}, t) d^3 p$$

donde el p de una partícula es

$$<\boldsymbol{p}> = rac{\int f(\boldsymbol{p}) \boldsymbol{p} \ d^3 p d^3 q}{\int f(\boldsymbol{p}) \ d^3 p d^3 q} = rac{1}{n} \int f(\boldsymbol{p}) \ \boldsymbol{p} \ d^3 p$$

y la energía por partícula

$$< e> = rac{\int f(m{p}) \ m{p}^2/(2m) \ d^3pd^3q}{\int f(m{p}) d^3pd^3q} = rac{1}{n} \int f(m{p}) rac{m{p}^2}{2m} \ d^3p$$

Finalmente se llega a

$$f(\mathbf{p}) = \frac{n}{(2\pi mkT)^{3/2}} e^{-\frac{(\mathbf{p} - \mathbf{p}_0)^2}{2mkT}}$$

que es la función de distribución de momentos de Maxwell-Boltzmann.

Solución de equilibrio de la ecuación de transporte

El cociente es P/N.

(presión ideal)
$$p = \frac{2}{3}\frac{U}{V} = \frac{2}{3}n\epsilon = \frac{2}{3}n\frac{3}{2}kT = nkT$$

1.1.2 Método de la distribución más probable

Con este método también llegamos a f_{MB} pero extremandolo el volumen $\Omega(\{n_i\})$ que ocupa en el espacio $\mathbb F$ sujeto a los vínculos $E=\sum_i n_i e_i$ y $N=\sum_i n_i$.

Luego podemos estimar qué tan probable es la distribución de MB (la más probable) considerando (ASUMIMOS)

los # de ocupación de MB $~\tilde{n}_i \cong < n_i > ~$ el promedio en el ensamble

pero esto sólo valdrá si las desviaciones son pequeñas; es decir si f_{MB} es muy muy probable.

Calculamos la desviación cuadrática (varianza) se tiene

$$< n_i^2 > - < n_i >^2 = g_i \frac{\partial < n_i >}{\partial g_i}$$

donde se usó que

$$< n_i > = \frac{\sum_{\{n_j\}} n_i \Omega\{n_j\}}{\sum_{\{n_i\}} \Omega\{n_j\}}$$

Suponiendo que < $n_i > \approx \tilde{n}_i$ entonces < $n_i > \propto f_{MB}$ con lo cual se tiene también

$$< n_i^2 > - < n_i >^2 \cong \tilde{n}_i$$

como $g_i \frac{\partial \tilde{n}_i}{\partial g_i} = \tilde{n}_i$

y las fluctuaciones relativas

$$\sqrt{<\left(\frac{m_i}{N}\right)^2>-<\left(\frac{m_i}{N}\right)>^2}\cong\sqrt{\frac{\tilde{n}_i/N}{N}}\to_{N\to\infty}0$$

En el límite termodinámico MB es totalmente dominante.

1.1.3 Hipótesis ergódica

La trayectoria individual de casi cualquier punto en el Ω pasa, con el tiempo, a través de todos los puntos permitidos del espacio \mathbb{F} . Si esperamos lo suficiente, todos los microestados posibles son visitados.

1.1.4 Observaciones sobre el microcanónico

$$\Gamma(E) = \int_{E < \mathcal{H} < E + \Delta E} \rho d^{3n} p d^{3n} q \qquad \Sigma(E) = \int_{\mathcal{H} < E} \rho d^{3n} p d^{3n} q$$

entonces

$$\Gamma(E) = \Sigma(E + \Delta E) - \Sigma(E) \cong \frac{\partial \Sigma(E)}{\partial E} \Delta E \qquad \text{si } \Delta E \ll E$$

 ΔE es el *paso* entre medidas de energía

$$\Gamma(E) = \Gamma_1(E_1) \Gamma_2(E_2) \qquad (1 \ {\rm y} \ 2 \ {\rm son \ subsistemas})$$

$$E = E_1 + E_2 \Rightarrow \Gamma(E) = \sum_i^{E/\Delta E} \Gamma_1(E_i) \Gamma_2(E - E_i)$$

siendo $E/\Delta E$ el número de términos tales que se cumple $E=E_1+E_2.$ Si se da $N_1\to\infty$ y $N_2\to\infty$ será

$$\log \Gamma_1 \propto N_1 \quad \log \Gamma_2 \propto N_2 \quad E \propto N_1 + N_2$$

luego $\log(E/\Delta E)$ es despreciable pues ΔE es constante y entonces

$$S(E, V) = S(\tilde{E}_1, V_1) + S(\tilde{E}_2, V_2) + \mathcal{O}(\log[N])$$

con lo cual la mayoría de los microestados tienen los valores \tilde{E}_1 y \tilde{E}_2 de energía.

Asimismo

$$\begin{split} \delta(\Gamma_1(\bar{E}_1)\Gamma_2(\bar{E}_2)) &= 0 \qquad \delta(\bar{E}_1 + \bar{E}_2) = 0 \\ \delta\Gamma_1\Gamma_2 + \Gamma_1\delta\Gamma_2 &= 0 \quad \delta(\bar{E}_1) = -\delta(\bar{E}_2) \\ \frac{\delta\Gamma_1}{\bar{E}_1}\Gamma_2 &= \Gamma_1\frac{\delta\Gamma_2}{\bar{E}_2} \Rightarrow \frac{1}{\Gamma_1}\frac{\partial\Gamma_1}{\partial\bar{E}_1} = \frac{1}{\Gamma_2}\frac{\partial\Gamma_2}{\partial\bar{E}_2} \\ \frac{\partial}{\partial\bar{E}_1}\left(k\log\Gamma_1(\bar{E}_1)\right) &= \frac{\partial}{\partial\bar{E}_2}\left(k\log\Gamma_1(\bar{E}_2)\right) \\ \frac{\partial}{\partial E_1}S(E_1)\bigg|_{\bar{E}_1} &= \frac{\partial}{\partial E_2}S(E_2)\bigg|_{\bar{E}_2} \equiv \frac{1}{T} \qquad \text{en equilibrio } T_1 = T_2 \end{split}$$

La T es el parámetro que gobierna el equilibrio entre partes del sistema. La idea es que dado un sistema de $E=E_1+E_2$, sistema compuesto de dos subsistemas, hay muchos valores 1,2 tales que $E=E_1+E_2$ pero hay una combinación que maximiza $\Gamma(E)$ y es

$$\Gamma_{Max}(E) = \Gamma_1(\bar{E}_1)\Gamma_2(\bar{E}_2)$$

Luego, con $N_1, N_2 \to \infty$ se da que la mayoría de los sistemas tendrán $E_1 = \bar{E}_1$ y $E_2 = \bar{E}_2$. Esa configuración, por supuesto, maximiza la entropía $S = k \log(\Gamma)$.

El hecho de que $\Delta S > 0$ para un sistema aislado lo vemos considerando que tal sistema sólo puede variar V (creciendo, como en la expansión libre de un gas), luego $V_F > V_I$ y entonces

$$\Sigma(E) = \int_{\mathcal{H} < E} \rho d^{3N} p d^{3N} q \underbrace{\longrightarrow}_{\text{Si aumento el volumen}} \Sigma(E)' = \int_{\mathcal{H} < E} \rho d^{3N} p d^{3N} q$$

$$\Sigma(E)' > \Sigma(E)$$
 \Rightarrow $\Delta S > 0$

 $\log(E/\Delta E) \propto \log(N)$ pues $E \propto N$ y ΔE cte.

El sistema es E,N,V y yo lo pienso compuesto de dos partes E_1,N_1,V_1 y E_2,N_2,V_2 .

Será un número mayor porque el dominio de integración en q es mayor.

Equipartición implica

$$\left\langle x_i \frac{\partial \mathcal{H}}{\partial x_j} \right\rangle = \delta_{ij} kT$$

y entonces

$$\left\langle p_i \frac{\partial \mathcal{H}}{\partial p_i} \right\rangle = \left\langle p_i \dot{q}_i \right\rangle = kT$$

у

$$\left\langle q_i \frac{\partial \mathcal{H}}{\partial q_i} \right\rangle = \left\langle q_i \dot{p}_i \right\rangle = kT$$

$$\left\langle \sum_{i}^{3N} q_i \frac{\partial \mathcal{H}}{\partial q_i} \right\rangle = \sum_{i}^{3N} \left\langle q_i \frac{\partial \mathcal{H}}{\partial q_i} \right\rangle = \sum_{i}^{3N} kT = 3NkT$$

entonces llegamos al virial,

$$\sum_{\cdot}^{3N} \langle q_i \dot{p}_i \rangle = 3NkT.$$

Considerando un hamiltoniano armónico,

$$\langle \mathcal{H} \rangle = E$$
 con $\mathcal{H} = \sum_{i}^{3N} a_i p_i^2 + b_i q_i^2$
$$p_k \frac{\partial \mathcal{H}}{\partial p_k} = 2a_k p_k^2 \qquad q_k \frac{\partial \mathcal{H}}{\partial q_k} = 2b_k q_k^2$$

de modo que

$$\mathcal{H} = \sum_{i}^{3N} \frac{1}{2} p_{k} \frac{\partial \mathcal{H}}{\partial p_{k}} + \frac{1}{2} q_{k} \frac{\partial \mathcal{H}}{\partial q_{k}}$$
$$\langle \mathcal{H} \rangle = \sum_{i}^{3N} \frac{1}{2} \left\langle p_{k} \frac{\partial \mathcal{H}}{\partial p_{k}} \right\rangle + \frac{1}{2} \left\langle q_{k} \frac{\partial \mathcal{H}}{\partial q_{k}} \right\rangle$$

y si fes el número de constantes a_k,b_k no nulos

$$\langle \mathcal{H} \rangle = \frac{1}{2} f k T$$

Si fuesen todas no nulas entonces

$$\langle \mathcal{H} \rangle = 3NkT.$$

1.1.5 Gas ideal (microcanónico)

$$\mathcal{H} = \sum_{i}^{N} \frac{p_i^2}{2m}$$

$$\Sigma(E) = \frac{1}{h^{3N}} \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_1 ... d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_1 ... d^3p_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N d^3q_N = \left(\frac{V}{h^{3N}}\right)^N \int_{\mathcal{H} < E} d^3p_1 ... d^3p_N d^3q_N d^$$

donde la integral en $\{q_i\}$ es inmediata porque no están los mismos en los límites y donde el límite de integración $\mathcal{H} < E$ implica la condición

$$p_1^2 + p_2^2 + \ldots + p_N^2 < (\sqrt{2mE})^2$$

Es una especie de radio 2mE.

$$\Sigma(E) = C_{3N} \left[\frac{V}{h^3} (2mE)^{3/2} \right]^N$$

Luego,

$$S = k \log \left\{ C \left(\frac{V}{h^3} (2mE)^{3/2} \right)^N \right\}$$

$$S = k \log C + Nk \log \left[\frac{V}{h^3} (2mE)^{3/2} \right]$$

 $k \log C \approx -3/2Nk \log 3N/2$

$$\frac{\partial S}{\partial E}\Big|_{VN} = \frac{1}{T} \qquad \Rightarrow \qquad \frac{1}{T} = Nk\frac{3}{2}\frac{1}{E}$$

y entonces

$$E = \frac{3}{2}NkT$$
 gas ideal

Vemos que la termodinámica es bastante insensible a las aproximaciones.

1.1.6 Paradoja de Gibbs

$$S \propto Nk \log(V) + Nk \log(E^{3/2})$$

Supongamos dos gases idénticos con la misma ρ y T

Quitar la pared es una operación mental si los gases son idénticos (o al menos eso podemos pensar)_{vo}

$$\Delta S = Nk \log V + Nk \log(E^{3/2}) - N_1 k \log V_1 - N_2 k \log(E_1^{3/2}) - N_1 k \log V_2 - N_2 k \log(E_2^{3/2})$$

$$\Delta S = N_1 k \log \left(\frac{V}{V_1}\right) + N_2 k \log \left(\frac{V}{V_2}\right) + N_1 k \log \left(\frac{E}{E_1}\right)^{3/2} + N_2 k \log \left(\frac{E}{E_2}\right)^{3/2}$$

$$\Delta S > 0$$
 pues: $\frac{V}{V_1} = 1 + \frac{V_2}{V_1} > 1, \frac{V}{V_2} > 1, \frac{E}{E_1} > 1, \frac{E}{E_2} > 1$

Podemos hacer algo menos cuentoso tomando

$$S \propto Nk \log \left(V \left[\frac{4\pi mE}{3h^2 N} \right]^{3/2} \right)$$

donde la N viene de $k \log C_{3N}$ con $N \to \infty$. Vemos que E/N mantiene el cambio en S respecto de E igual, puesto que

$$\frac{E}{N} = \frac{E_1 + E_2}{N_1 + N_2} = \frac{E_1}{N_1} = \frac{E_2}{N_2} = \epsilon$$

pero V no balance. Luego la inclusión de 1/N! hará que

$$S = k \log(\frac{1}{N!}\Sigma(E, N, V)) = k \log(\Sigma) - k \log N!$$

de forma que resultará

$$S \propto Nk \log \left(\frac{V}{N} \left[\frac{4\pi mE}{3h^2 N} \right]^{3/2} \right)$$

y esta S sí está libre de paradoja de Gibbs.

1.2 Canónico

Consideramos un microcanónico con

$$E = E_1 + E_2$$
, $N = N_1 + N_2$, $V = V_1 + V_2$

donde N_i, V_i están fijos y ${\cal E}_i$ varían de acuerdo a

$$E = E_1 + E_2$$

Consideramos un microcanónico

$$\begin{split} \Gamma(E) &= \Sigma_{E_1} \Gamma_1(E_1) \Gamma_2(E-E_1) \leq C \Gamma_1(\bar{E}_1) \Gamma_2(E-\bar{E}_1) \approx C \Gamma_2(\bar{E}_1) \\ &S(E-\bar{E}_1) \approx k \log \Gamma_2(E-\bar{E}_1) \\ &S(E) + \left. \frac{\partial S(E)}{\partial E} \right|_E (-\bar{E}_1) \approx k \log \Gamma_2(E-\bar{E}_1) \end{split}$$

Si los gases son distintos está correcto $\Delta S>0$ pero si son idénticos no porque un estado como F podría provenir de infinitas compartimentacionales las cuales darían todas difrentes ΔS y entonces la entropía S no sería función de estado.

Imagen del microcanónico...

$$e^{\frac{S(E)}{k}} e^{-\frac{E_1}{kT}} \approx \Gamma_2(E - \bar{E}_1)$$

Claramente como '1' siempre está metido dentro de '2' entre mayor sea el Γ_2 mayor también el tamaño de '1' en \mathbb{F} , luego:

#de config en \mathbb{F} del sistema '1+2' = #de config de '1' en '2'×#de config de '2' en \mathbb{F}

config '1' =
$$\frac{\# \text{ config '1+2'}}{\# \text{ config '2'}} \approx e^{-\frac{E_1}{kT}} = C \int e^{-\mathcal{H}/kT} d^3p d^3q$$
$$Q_N(V,T) = \frac{1}{h^{3N}N!} \int e^{-\mathcal{H}/kT} d^3p d^3q$$

1/N! es el factor de buen conteo.

La función de partición es el volumen ocupado en \mathbb{F} . El vínculo con la termodinámica viene de

$$Q_N(V,T) = e^{-\beta A}$$

$$A = -kT \log[Q_N(V,T)]$$

donde A=A(T,V,N) es la energía libre de Helmholtz. Podemos ver que se deduce esto de

$$<\mathcal{H}> = E = -\frac{\partial}{\partial\beta} \log[Q_N(V,T)] = A + TS = A - T \left. \frac{\partial A}{\partial T} \right|_{N,V}$$

pero

$$\frac{\partial}{\partial \beta} = \frac{\partial}{\partial T} \frac{\partial T}{\partial \beta} = -kT^2 \frac{\partial}{\partial T}, \quad \text{pues } \frac{\partial \beta}{\partial T} = -\frac{1}{kT^2}$$
$$\frac{\partial}{\partial T} \left(\frac{A}{T}\right) = -\frac{A}{T^2} + \frac{1}{T} \frac{\partial A}{\partial T}$$

de modo que

$$-T^2\frac{\partial}{\partial T}\left(\frac{A}{T}\right) = A - T\frac{\partial A}{\partial T}$$

 $S = -\partial A/\partial T|_{N,V}$

y entonces

$$E = -kT^{2} \frac{\partial}{\partial T} \log Q_{N} = -T^{2} \frac{\partial}{\partial T} \left(\frac{A}{T} \right)$$

de lo que se desprende

$$\log Q_N = -\frac{A}{kT}$$

Podemos usar E=A+TS y llegar a $Q_n=\exp(-\beta A)$ o bien $Q_N=\exp(-\beta A)$ y llegar a E=A+TS.

1.2.1 Equivalencia canónico y microcanónico

Vemos cómo son las fluctuaciones de energía en el canónico. Desde

$$U = \langle \mathcal{H} \rangle = \frac{\int e^{-\beta \mathcal{H}} \mathcal{H} d^3 p d^3 q}{\int e^{-\beta \mathcal{H}} d^3 p d^3 q}$$

$$\int e^{-\beta \mathcal{H}} U d^3 p d^3 q = \int e^{-\beta \mathcal{H}} \mathcal{H} d^3 p d^3 q$$

$$\frac{\partial}{\partial \beta} \left[\int e^{-\beta \mathcal{H}} (U - \mathcal{H}) d^3 p d^3 q \right] = \frac{\partial}{\partial \beta} [0] = 0$$

$$\langle \mathcal{H}^2 \rangle - \langle \mathcal{H} \rangle^2 = kT^2 C_V$$

Las fluctuaciones van como el C_V , luego

$$<\mathcal{H}^2/N^2>-<\mathcal{H}/N>^2=kT^2c_V/N$$
 donde $c_V=C_V/N$ $<\mathcal{H}>\propto N$ y $C_V\propto N$

de modo que las fluctuaciones relativas van a 0 con $N \to \infty$.

Otro modo de verlo es considerando

$$\frac{1}{h^{3N}N!}\int \mathrm{e}^{-\beta\mathcal{H}}d^3pd^3q = \int_0^\infty dE \frac{\partial\Sigma(E)}{\partial E} \mathrm{e}^{-\beta E} = \int_0^\infty dE \mathrm{e}^{-\beta E + \log(\partial\Sigma(E)/\partial E)}$$

donde

$$\frac{\partial \Sigma(E)}{\partial E} dE = \frac{d^3 p d^3 q}{h^{3N} N!}$$

y como $S/k = \beta TS$

$$Q_N = \int_0^\infty dE \, \mathrm{e}^{-\beta E + \beta TS}$$

Si suponemos que es S máxima en $E=\bar{E}$ entonces $S_{MAX}=S(\bar{E})$ y será

$$\left. \frac{\partial S}{\partial E} \right|_{\bar{E}} = 0$$

con lo cual

$$E + TS \cong \bar{E} + TS(\bar{E}) + \frac{1}{2}(E - \bar{E})^2 T \left. \frac{\partial^2 S}{\partial E^2} \right|_{\bar{E}}$$
$$E + TS \cong \bar{E} + TS(\bar{E}) - (E - \bar{E})^2 \frac{1}{2kTC_V}$$

de modo que

$$Q_N = \int_0^\infty dE \, \mathrm{e}^{-\beta[\bar{E} + TS(\bar{E})] - \beta \frac{(E - \bar{E})^2}{2kTC_V}}$$

$$Q_N = {\,{
m e}}^{-eta[ar E + TS(ar E)]} \int_0^\infty dE \, {
m e}^{-etarac{(E-ar E)^2}{2kTC_V}}$$

y vemos que la integral se va a una delta con $N \to \infty$ (pués $C_V \propto N$) en cuyo caso

$$Q_N = e^{-\beta[\bar{E} + TS(\bar{E})]}$$

y la mayor parte de los estados tienen energía \bar{E} , que es la de un sistema aislado a temperatura T.

La densidad de estados va entonces de acuerdo al producto de dos efectos contrarios:

$$g(E) = \frac{\partial \Sigma(E)}{\partial E} e^{-\beta E}$$

1.2.2 Ejemplos sencillos

$$\mathcal{H} = \sum_{i}^{N} \frac{p_{i}^{2}}{2m} + \frac{m}{2}\omega_{i}^{2}q_{i}^{2} \qquad \text{oscilador clásico 1D}$$

$$\mathcal{H} = \sum_{i}^{N} \left(n_{i} + \frac{1}{2}\right)\hbar\omega \qquad \text{oscilador Schrödinger 1D}$$

$$\mathcal{H} = \sum_{i}^{N} n_{i}\hbar\omega \qquad \text{oscilador Planck 1D}$$

$$U = NkT \rightarrow C_{V} = Nk \qquad \text{Clásico}$$

$$U \approx \frac{N\hbar\omega}{2} \quad U \approx 0(T \ll 1) \qquad \rightarrow C_{V} = 0 \quad \text{Schrödinger-Planck}$$

$$U \approx NkT \ (T \gg 1) \qquad \rightarrow C_{V} = Nk \quad \text{Schrödinger-Planck}$$

Los casos Schrödinger y Planck aproximan al ${\cal C}_V$ clásico con ${\cal T}$ altas.

1.2.3 Una derivación más del canónico

El tamaño del sistema '1' en $\mathbb F$ (su volumen $\Gamma_1(E_1)$) será proporcional al tamaño del sistema '2' en $\mathbb F$ (su volumen $\Gamma_2(E-E_1)$) de manera que

$$\begin{split} \Gamma_1(E_1) &\propto \Gamma_2(E-E_1) \\ k \log \Gamma_1(E_1) &\approx S(E) + \left. \frac{\partial S}{\partial E} \right|_E (-E_1) = S(E) - \frac{E_1}{T} \text{ (del sistema '2')} \\ &\Gamma_1(E_1) \approx \text{ e}^{S(E)/k} \, \text{e}^{-E_1/kT} \end{split}$$

conf '1' = # conf '2' \times densidad del '1' en el '2'

y finalmente

$$Q_N(V,T) = \frac{1}{h^{3N} N!} \int d^{3N} p d^{3N} q \ \mathrm{e}^{-\mathcal{H}(\{p_i,q_i\})/kT}$$

1.3 El gran canónico

$$\begin{split} Q_N(V,T) &= \frac{1}{h^{3N}N!} \int d^{3N_1}p_1 d^{3N_2}p_2 \sum_{N_1=0}^N \frac{N!}{N_1!N_2!} \int d^{3N_1}q_1 d^{3N_2}q_2 \mathrm{e}^{-\beta[\mathcal{H}_1+\mathcal{H}_2]} \\ Q_N(V,T) &= \frac{1}{h^{3N_1}h^{3N_2}} \sum_{N_1=0}^N \frac{1}{N_1!N_2!} \int d^{3N_1}p_1 d^{3N_1}p_1 \mathrm{e}^{-\beta\mathcal{H}_1} \int d^{3N_2}q_2 d^{3N_2}q_2 \mathrm{e}^{-\beta\mathcal{H}_2} \\ Q_N(V,T) &= \sum_{N_1=0}^N \int \frac{1}{h^{3N_1}N_1!} d^{3N_1}p_1 d^{3N_1}p_1 \mathrm{e}^{-\beta\mathcal{H}_1} \int \frac{1}{h^{3N_2}N_2!} d^{3N_2}q_2 d^{3N_2}q_2 \mathrm{e}^{-\beta\mathcal{H}_2} \\ 1 &= \sum_{N_1=0}^N \frac{1}{h^{3N_1}N_1!} \int d^{3N_1}q_1 d^{3N_1}p_1 \ \mathrm{e}^{-\beta\mathcal{H}_1} \frac{Q_{N_2}(V_2,T)}{Q_N(V,T)} \\ 1 &= \sum_{N_1=0}^N \int d^{3N_1}q_1 d^{3N_1}p_1 \ \frac{\mathrm{e}^{-\beta\mathcal{H}_1}}{h^{3N_1}N_1!} \frac{Q_{N_2}(V_2,T)}{Q_N(V,T)} \end{split}$$

siendo el último factor un $\rho(\{p_1,q_1\},N_1)$

$$\frac{Q_{N_2}(V_2,T)}{Q_N(V,T)} = \, \mathrm{e}^{-\beta A(V-V_1,N-N_1,T)} \, \mathrm{e}^{-\beta A(V,N,T)} = \, \mathrm{e}^{-\beta \left[\frac{\delta A}{\delta V}\delta V + \frac{\delta A}{\delta N}\delta N\right]}$$

donde las diferencias δ se toman discretas:

$$\begin{split} \frac{\delta A}{\delta V}\delta V + \frac{\delta A}{\delta N}\delta N &= (-p)(-V_1) + \mu(-N)_1 = pV_1 - \mu N_1 \\ A &= U - TS \qquad dA = dU - TdS - SdT = -pdV + \mu dN - SdT \\ \frac{Q_{N_2}(V_2,T)}{Q_N(V,T)} &= \mathrm{e}^{-\beta PV_1 + \beta \mu N_1}, \end{split}$$

De forma que la densidad del sistema '1' es

$$\frac{1}{h^{3N_1}N_1!}\;{\rm e}^{-\beta\mathcal{H}_1}\;{\rm e}^{-\beta PV_1}\;{\rm e}^{\beta\mu N},$$

v definiendo $z \equiv e^{\beta\mu}$

$$\rho(\{p,q\},N) = \frac{z^N}{h^{3N}N!} e^{-\beta \mathcal{H}} e^{-\beta PV}$$

Nótese que μ, P, V, T son los valores fijos del sistema mayor y hemos sacado subíndices.

$$1 = \sum_{N=0}^{\infty} \int d^{3N}q d^{3N}p \frac{z^N}{h^{3N}N!} e^{-\beta \mathcal{H}} e^{-\beta PV}$$

$$e^{\beta PV} = \sum_{N=0}^{\infty} \frac{z^N}{h^{3N}N!} \int d^{3N}q d^{3N}p e^{-\beta \mathcal{H}} = \sum_{N=0}^{\infty} z^N Q_N(V, T)$$

$$\beta PV = \log \left(\sum_{N=0}^{\infty} z^N Q_N(V, T) \right)$$
(3.1)

y tenemos

$$\Xi(z,V,T) \equiv \sum_{N=0}^{\infty} z^N Q_N(V,T)$$

que es la gran función de partición. La termodinámica puede extraerse desde

$$< N > = z \frac{\partial}{\partial z} \log [\, \Xi(z,V,T) \,] \qquad < E > = - \frac{\partial}{\partial \beta} \log [\, \Xi(z,V,T) \,]$$

La ecuación de estado se obtiene reemplazando z en la expresión de (3.1) y en < N >

1.3.1 Fluctuaciones de densidad

$$\begin{split} &< N^2 > - < N >^2 = z \frac{\partial}{\partial z} \left(z \frac{\partial}{\partial z} \log \Xi \right) = kTV \frac{\partial^2 P}{\partial \mu^2} \\ &< N^2 > - < N >^2 = kTV \frac{\partial}{\partial \mu} \frac{1}{v} = kTV \frac{1}{v^2} \kappa_T = kT \frac{N^2}{V} \kappa_T = NkT \frac{\kappa_T}{v} \end{split}$$

Viene de $\frac{\partial}{\partial u} \frac{1}{v} = -\frac{1}{v^2} \frac{1}{v} \frac{\partial v}{\partial P} = \frac{1}{v^2} \kappa_T$

Si A = Na entonces a = u - Ts y entonces

$$\frac{\partial a}{\partial v} = -p$$

$$U = TS - pV + \mu N \quad \Rightarrow \quad u = Ts - pv$$

$$\frac{\partial \mu}{\partial v} = -P - v \frac{\partial^2 a}{\partial v^2} + p = v \frac{\partial p}{\partial v} \qquad \frac{\partial p}{\partial \mu} \qquad = \frac{\frac{\partial p}{\partial v}}{\frac{\partial \mu}{\partial v}} = \frac{1}{v}$$

pues

$$u - Ts = a = -pV + \mu$$
 $\mu = a + pv$

Las fluctuaciones relativas tiende a cero cuando $N\to\infty$ provistos de que $\kappa_T<\infty$. Esto no vale en la transición de fase de primer oden pues

$$\left.\frac{\partial p}{\partial v}\right|_{\text{punto crítico}} = 0 \qquad \frac{1}{v}\frac{\partial v}{\partial p} \to \infty$$

Se calculan como

$$\sqrt{\frac{< N^2 > - < N >^2}{N^2}} = \sqrt{kT \frac{\partial \kappa_T}{\partial v} \frac{1}{N}} \to 0 \text{ si } N \to \infty$$

1.3.2 Fluctuaciones de energía

$$<\mathcal{H}^2> - <\mathcal{H}>^2 = kT^2 \left(\frac{\partial U}{\partial T}\right)_{z,V}$$

y como

$$\begin{split} \left(\frac{\partial U}{\partial T}\right)_{z,V} &= \left.\frac{\partial U}{\partial T}\right|_{N,V} + \left.\frac{\partial U}{\partial N}\right|_{T,V} \left.\frac{\partial N}{\partial T}\right|_{z,V} \\ &<\mathcal{H}^2> - <\mathcal{H}>^2 = kT^2C_V + \left[\left.\frac{\partial U}{\partial N}\right|_{T,V}\right]^2 < (\Delta N)^2> \end{split}$$

siendo kT^2C_V fluctuación del canónico y $(\Delta N)^2 = < N^2 > - < N >^2$

1.3.3 Gas ideal

$$Q_N = \frac{(Vf(T))^N}{N!} \Rightarrow \Xi = \sum_{N=0}^{\infty} \frac{(zVf(t))^N}{N!} = e^{zVf(T)}$$

 $\beta pV = \log(\Xi) = zVf(T) \qquad < N > = z\frac{\partial}{\partial z}\log(\Xi) = zVf(T)$

y luego

$$\beta pV = < N > \qquad \rightarrow \quad pV = < N > kT$$

y recuperamos la ecuación de estado del gas ideal.

1.3.4 Equivalencia canónico-gran canónico

Para ver que con $N \to \infty$ son equivalentes consideramos

$$\kappa_T = \frac{1}{v} \left(-\frac{\partial v}{\partial p} \right) < \infty \qquad \frac{\partial p}{\partial v} < 0$$

Pero en la coexistencia de una transición de fase de 1er orden se da

$$\frac{\partial p}{\partial v} = 0 \to \kappa_T \to \infty$$
 (sistema homogéneo)

La idea es ver que

- Dado z existe N tal que $\Xi = \sum_{N} z^{N} Q_{N}(V, T)$
- Dado Nexiste ztal que $\Xi = \sum_N z^N Q_N(V,T)$

Esto se comprueba. Además, si:

$$W(N) = z^N Q_N(V,T) \propto \mbox{ Prob.}$$
de que el sistema tenga N partículas

XXX dibujos XXXX

En la transición de fase, donde $\frac{\partial p}{\partial v}=0$ todos los N son igual de probables porque fluctúa la densidad. La p se mantiene constante pero se varían los N_i de cada fase 'i'.

1.3.5 Otra derivación del gran canónico

Podemos derivar el gran canónico desde

Es la probabilidad de hallar al sistema '1' en un estado con E_1, N_1 .

 $\partial S/\partial E = 1/T$ y $\partial S/\partial N = -\mu/T$.

Prob
$$\propto \Gamma_2(E - E_1, N - N_1)$$

$$\begin{split} \log \Gamma_2(E-E_1,N-N_1) &\cong \log \Gamma_2(E,N) + \frac{1}{k} \left. \frac{\partial S(E,N)}{\partial E} \right|_E (-E_1) + \frac{1}{k} \left. \frac{\partial S(E,N)}{\partial N} \right|_N (-N_1) \\ &\cong \log \Gamma_2(E,N) - \frac{E_1}{kT} + \frac{N_1 \mu}{kT} \\ &\text{Prob} \; \propto \; \mathrm{e}^{-\beta E} \; \mathrm{e}^{\beta \mu N} = \; \mathrm{e}^{-\beta E} z^N \end{split}$$

donde T y μ son las asociadas al baño.

Pensamos en η copias del sistema; $n_{E_1N_1}=\#$ de sistemas con energía E_1 y N_1 partículas, luego

$$\sum_{\{E_1,N_1\}} n_{E_1N_1} = \eta \qquad \sum_{\{E_1,N_1\}} n_{E_1N_1} E_1 = n\bar{E}_1 \cong \text{ Energ\'a Total}$$

$$\sum_{\{E_1,N_1\}} n_{E_1N_1} N_1 = \eta \bar{N}_1 \cong \ \#$$
 Total de partículas (no físico)

donde \bar{N}_1 es el número de medio.

$$\Omega\{n_{E_1N_1}\} = \frac{\eta!}{\prod (n_{E_1N_1})!} \qquad \text{combinatorio}$$

La conbinación de mayor volumen será

$$\begin{split} \log \Omega - \alpha \sum nE_1 - \beta_L \sum nN_1 &= 0 \\ - \sum \left[n \log n - n - \alpha nE_1 - \beta_L nN_1 \right] &= 0 \\ - \sum n \left[\log n - 1 - \alpha E_1 - \beta_L N_1 \right] &= 0 \rightarrow \log(\tilde{n}) = 1 + \alpha E_1 + \beta_L N_1 \\ \tilde{n} \propto \mathrm{e}^{\alpha E_1 + \beta_L N_1} \end{split}$$

que es el conjunto $n_{E_1N_1}$ de mayor volumen en Ω . Esperaremos qeu con $\eta \to \infty$ sea $< n_{E_1N_1}> \cong \tilde{n}_{E_1N_1}$. Para determinar α, β usaremos

$$\tilde{N} \cong < N > = \frac{\partial}{\partial \beta_L} \left(\log \sum_{\{E_1, N_1\}} \, \mathrm{e}^{\alpha E_1 + \beta_L N_1} \right)$$

$$\tilde{E} \cong <\mathcal{H}> = \frac{\partial}{\partial \alpha} \left(\log \sum_{\{E_1, N_1\}} e^{\alpha E_1 + \beta_L N_1} \right)$$

1.4 Entropía de Gibbs

Sea X extensiva mecánica,

$$S = k \log \Gamma(E, X)$$
 $dU = TdS + YdX, \frac{dS}{k} = \beta dU + \xi dX$

Donde $\beta Y = \xi$

Refiriéndo al estado ν

$$\begin{split} P_{\nu} &= \frac{\mathrm{e}^{-\beta E_{\nu} - \xi X_{\nu}}}{\sum_{\nu} \mathrm{e}^{-\beta E_{\nu} - \xi X_{\nu}}} = \frac{\mathrm{e}^{-\beta E_{\nu} - \xi X_{\nu}}}{\Theta} \\ &< E > = -\frac{\partial}{\partial \beta} \log \Theta \qquad < X > = -\frac{\partial}{\partial \varepsilon} \log \Theta \end{split}$$

Caso
$$X = N \ z \frac{\partial}{\partial z} \cong \frac{\partial}{\partial \beta \mu}$$

$$d(\log \Theta) = - < E > d\beta - < X > d\xi$$

Sea

$$\begin{split} \mathcal{L} &\equiv -k \sum_{\nu} P_{\nu} \log P_{\nu} = -k \sum_{\nu} P_{\nu} \log \left[\, \mathrm{e}^{-\beta E_{\nu} - \xi X_{\nu}} \Theta^{-1} \right] \\ \mathcal{L} &= \sum_{\nu} P_{\nu} k \log \Theta + k P_{\nu} \beta E_{\nu} + k P_{\nu} \xi X_{\nu} \\ \mathcal{L} &= k \log \Theta + k \beta < E > + k \xi < X > \\ d\mathcal{L} &= k \beta d < E > + k \xi d < X > \end{split}$$

Es una transformada de Legendre que toma $\log \Theta$ y la lleva a una función de < E>, < X>

$$d\mathcal{L} = k\beta dE + k\beta Y dX = dS = \frac{1}{T}dE + \frac{Y}{T}dX$$

entonces \mathcal{L} es la entropía S.

$$\mathcal{L} = -k \sum_{\nu} P_{\nu} \log P_{\nu}$$

y ν son equiprobables

$$\mathcal{L} = -k \sum_{n} \frac{1}{\Gamma} \log \left(\frac{1}{\Gamma} \right) = \sum_{n} \frac{k}{\Gamma} \log(\Gamma)$$

y entonces

$$\mathcal{L} = k \log(\Gamma) \equiv S.$$

1.4.1 Observación promedios

$$< G> = \frac{\sum_N z^N GQ_N(V,T)}{\Xi} = \frac{\sum_N z^N \sum_{\nu} G(E_{\nu},N,T)Q_N(V,T)}{\Xi}$$

donde el último factor en la sumatoria es $\langle G \rangle_{\text{CAN}} Q_N(V, T)$.

La parte crítica está en el pasaje de

$$\sum_{\nu} e^{-\beta E_{\nu}}$$

a algún índice útil que permite realizar la sumatoria. En el caso de cuasipartículas, como osciladores, tenemos

$$\hat{H} = \sum_{i}^{N} \left(n_i + \frac{1}{2} \right) \hbar \omega_i$$

donde n_i es el número de fotones del oscilador i-ésimo. Los fonones cumplen el rol de partículas 1 Un oscilador d
dado puede tener en principio cualquier valor de energía (cualquier valor de n_i) y esto independientemente de los otros N-1 osciladores. El número total de fonones del sistema

$$\sum_{i}^{N} n_{i}$$

no es una constante del mismo con lo cual no hay vínculo. Entonces

$$\sum_{\nu} \qquad \rightarrow \qquad \sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \dots \sum_{n_{\nu}=0}^{\infty}$$

1.5 SUELTO: reubicar

$$Z_N = \int d^{3N}q \prod_{i < j}^{N} (1 + f_{ij})$$
 integral configuracional

En realidad esta integral serán N(N-1)/2 integrales (N-grafos). Podemos factorizar los N(N-1)/2 grafos en l-racimos teniendo en cuenta que se cumple

$$N = \sum_{l=1}^{N} l n_l,$$

de forma que cada N-grafo d
termina un conjunto $\{m_l\}=(m_1,m_2,...,m_N)$ de ' m_1 ' 1-racimos, '
 m_2 ' 2-racimos y ' m_N ' N-racimos. Por supuesto, un mismo conjunto
 $\{m_l\}$ determina muchos (en principio) N-grafos en función de la permutación de etique
tas.

$$\frac{N(N-1)}{2}$$
 N-grafos $\to M$ conjuntos $\{m_l\}$

y la

$$Z_N = \sum_1^{N(N-1)/2} \text{ N-grafos } \quad \equiv \quad \sum_{\{m_l\}}^{\prime} S(\{m_l\})$$

donde

$$S(\{m_l\}) = \prod_{l=1}^N \left(\sum \text{ l-racimos de l partículas } \right)^{m_l} \frac{N!}{1!^{m_1} 2!^{m_2} ..., N!^{m_N} m_1! m_2! ... m_N!}$$

 $^{^{1}}$ Porque podemos considerar que la 1 se hace en niveles energéticos en lugar de entre osciladores y tenemos un # indeterminado de "particulas" (fonones) distribuidas en 'N' niveles energéticos.

siendo la productoria entre todos los l-racimos posibles de l partículas y donde el combinatorio tiene en cuenta que habría que permutar entre las etiquetas de las N partículas (pués la sumatoria contempla l-racimos de l partículas).

$$\begin{split} S(\{m_l\}) &= \frac{N!}{1!^{m_1} 2!^{m_2} ... N!^{m_N} m_1! m_2! ... m_N!} \prod_{l=1}^N (l! \lambda^{3(l-1)} V b_l)^{m_l} \\ S(\{m_l\}) &= N! \lambda^{3N} \prod_{l=1}^N \left(\frac{V b_l}{\lambda^3}\right)^{m_l} \frac{1}{m_l!} \\ Z_N &= \sum_{\{m_l\}}' S(\{m_l\}) \\ Q_N &= \frac{1}{N! \lambda^{3N}} Z_N = \sum_{\{m_l\}}' \prod_{l=1}^N \left(\frac{V b_l}{\lambda^3}\right)^{m_l} \frac{1}{m_l!} \\ \Xi &= \sum_{N=0}^\infty z^N Q_N(V,T) = \sum_{N=0}^\infty z^N \sum_{\{m_l\}}' \prod_{l=1}^N \left(\frac{V b_l}{\lambda^3}\right)^{m_l} \frac{1}{m_l!} \\ \Xi &= \sum_{m_1=0}^\infty ... \sum_{m_N=0}^\infty z^N \prod_{l=1}^N \left(\frac{V b_l}{\lambda^3}\right)^{m_l} \frac{1}{m_l!} \end{split}$$

donde hemos utilizado los resultados

$$\begin{split} z^N &= z^{\sum_1^N l m_l} = \prod_1^N (z^l)^{m_l} \qquad \prod_{l=1}^N \frac{(l!)^{m_l}}{1!^{m_1} \dots N!^{m_l}} = 1 \\ &\prod_{l=1}^N \lambda^{3l m_l} = \lambda^3 \sum_1^N l m_l = \lambda^{3N} \\ \Xi &= \sum_{m_1=0}^\infty \dots \sum_{m_N=0}^\infty z^N \prod_{l=1}^N \left(\frac{V b_l}{\lambda^3} \right)^{m_l} \frac{1}{m_l!} = \prod_{l=1}^N \sum_{m_1=0}^\infty \frac{1}{m_l!} \left(\frac{z^l V b_l}{\lambda^3} \right)^{m_l} = \prod_{l=1}^N \mathrm{e}^{\frac{z^l V b_l}{\lambda^3}} \\ \beta p V &= \log \Xi = \sum_l \frac{z^l V b_l}{\lambda^3} = \frac{V}{\lambda^3} \sum_l z^l b_l \\ \begin{cases} \beta p &= \frac{1}{\sqrt{3}} \sum_l z^l b_l \\ \frac{N}{V} &= \frac{1}{\sqrt{3}} \sum_l z^l b_l \end{cases} \end{split}$$

que es la cluster-expansion.

1.5.1 Integral configuracional y $Q_N(V,T)$

Para un hamiltoniano usual

$$\mathcal{H} = \sum_{i}^{N} \frac{|\vec{p}_{i}|^{2}}{2m} + \sum_{i < j} V_{ij}(q_{i}) = K(\{p_{i}\}) + V(\{q_{i}\})$$

$$\begin{split} Q_N(V,T) &= \frac{1}{h^{3N}N!} \int d^{3N}p \int d^{3N}q \mathrm{e}^{-\beta \mathcal{H}(\{p_i,q_i\})} = \frac{1}{h^{3N}N!} \int d^{3N}p \mathrm{e}^{-\beta K(\{p_i\})} \int d^{3N}q \mathrm{e}^{-\beta V(\{q_i\})} \\ Q_N(V,T) &= \frac{1}{\lambda^{3N}N!} \int d^{3N}q \, \mathrm{e}^{-\beta V(\{q_i\})} = \frac{1}{\lambda^{3N}N!} \, Z_N(V,T) \end{split}$$

donde \mathbb{Z}_N es la integral configuracional

$$\begin{split} \beta p &= \frac{1}{\lambda^3} \sum_l z^l b_l \qquad \frac{1}{v} = \frac{1}{\lambda^3} \sum_l l z^l b_l \\ \beta p v &= \frac{\sum_l z^l b_l}{\sum_l l z^l b_l} \end{split}$$

y el virial es

$$\begin{split} \sum_{l=1} a_l(T) \left(\frac{\lambda^3}{v}\right)^{l-1} &= \frac{\sum_l z^l b_l}{\sum_l l z^l b_l} \\ \sum_{l=1} a_l(T) \left(\sum_l l z^l b_l\right)^{l-1} \sum_l l z^l b_l &= \sum_l z^l b_l \\ \sum_{k=1} a_k [zb_1 + 2z^2 b_2]^{k-1} (zb_1 + 2z^2 b_2) \cong zb_1 + z^2 b_2 \\ a_1(zb_1 + 2z^2 b_2) + a_2(zb_1 + 2z^2 b_2) (zb_1 + 2z^2 b_2) \cong zb_1 + z^2 b_2 \\ za_1b_1 + 2z^2 a_1b_2 + a_2z^2 b_1^2 + 4a_2z^3 b_1 b_2 + 4a_2z^4 b_2^2 \cong zb_1 + z^2 b_2 \end{split}$$

e igualando coeficientes de z tendremos

$$\begin{array}{ccc} a_1b_1=b_1 & \to & a_1=1 \\ \\ 2a_1b_2+a_2b_1^2=b_2 & \to & a_2=-\frac{b_2}{b_1^2}=-b_2 \end{array}$$