Московский физико-технический институт (госудраственный университет)

Устный экзамен по физике (электричество и магнетизм) Вопрос по выбору

Ферромагнетизм

Талашкевич Даниил Александрович Группа Б01-009

Долгопрудный 2021

Содержание

1	Ферромагнетизм	1
2	Теория ферромагнетизма Вейсса	3
3	Антиферромагнетики	6
4	Литература	8

1 Ферромагнетизм

Ферромагнетиками называют твердые тела, которые могут обладать спонтанной намагниченностью, т.е. намагничены уже в отсутствии магнитного поля. Типичными представителями ферромагнетиков являются металлы: железо, кобальт, никель. Ферромагнетики способны сильно намагничиваться даже в небольших полях.

Существенным отличием ферромагнетиков от диа- и парамагнетиков является наличие у ферромагнетиков самопроизвольной (спонтанной) намагниченности в отсутствие внешнего магнитного поля. Наличие у ферромагнетиков самопроизвольного магнитного момента в отсутствие внешнего магнитного поля означает, что электронные спины и магнитные моменты атомных носителей магнетизма ориентированы в веществе упорядоченным образом.

Характерной особенностью ферромагнетиков является сложная нелинейная зависимость между \overrightarrow{I} и \overrightarrow{H} . По мере возрастания \overrightarrow{H} намагниченность \overrightarrow{I} сначала быстро растет, а затем становится практически постоянной: $\overrightarrow{I} = \overrightarrow{I_S}$ (насыщение), т.е. кривая $\overrightarrow{I} = I(H)$ переходит в горизонтальную прямую. Магнитная индукция $\overrightarrow{B} = \overrightarrow{H} + 4\pi \overrightarrow{I}$ также растет с возрастанием поля \overrightarrow{H} , а в состоянии насыщения $\overrightarrow{B} = \overrightarrow{H} + 4\pi \overrightarrow{I_S}$.

Ввиду нелинейной связи между $\overrightarrow{I} = \chi \overrightarrow{H}$ и \overrightarrow{H} для ферромагнетиков магнитная восприимчивость χ и магнитная проницаемость $\mu = 1 + 4\pi\chi$ могут иметь тензорнный характер(вектора \overrightarrow{I} и \overrightarrow{H} не сонаправлены). Эти функции рассматриваются как функции напряженности поля \overrightarrow{H} .

Участок 1 - область обратимого намагничивания, где $M=\chi H$. В этой области происходят процессы упругого смещения границ доменов: увеличивается размер тех доменов, магнитный момент которых близок к направлению магнитного поля, и уменьшаются размеры доменов с противоположным направлением магнитного момента.

Участок 2 характеризуется квадратичной зависимостью M от H. В этой области также идёт процесс обратимого смещения границ, но проявляется нелинейный характер зависимости намагниченности от поля.

Область максимальной скорости роста намагниченности 3 соответствует необратимым смещениям стенок между доменами («стенок Блоха»): им приходится преодолевать «препятствия» в виде примесей, дислокаций и дефектов кристаллической решётки. Когда стенка наталкивается на такое препятствие, она останавливается и держится, пока поле не достигнет порогового значения, при котором она внезапно срывается. Таким образом, движение доменной стенки приобретает скачкообразный характер («скачки Баркгаузена»).

В достаточно сильных полях движение стенок прекращается, и энергетически выгодным становится поворот магнитных моментов тех оставшихся доменов, у которых магнитный момент не совпадает с направлением поля (область 4).

U, наконец, при некотором значении поля (участок 5) все магнитные моменты выстраиваются по полю - намагниченность образца достигает насыщения ($M=M_s$).

Рис. 1: Начальная кривая намагничивания ферромагнетика

Вторая характерная особенность ферромагнетиков состоит в том, что для них зависимость \overrightarrow{I} от \overrightarrow{H} не однозначна, а определяется предшествующей историей намагничивания ферромагнитного образца. Это явление называется магнитным гистерезисом. Благодаря гистерезису намагничивание и перемагничивание ферромагнетиков сопровождается выделением тепла, называемого теплом гистерезиса.

Рис. 2: Начальная кривая намагничивания (OA) и предельная петля гистерезиса

Третья характерная особенность ферромагнетиков, состоит в том, что для любого ферромагнетика существует определенная температура $T=T_K$ называемая температурой или точкой Кюри, при переходе через которую вещество ферромагнетика претерпевает фазовый переход второго рода. Вещество является ферромагнетиком только при $T < T_K$. При $T > T_K$ вещество становиться парамагнетиком. Магнитная восприимчивость подчиняется закону Кюри-Вейсса

$$\chi = \frac{Const}{T - T_K}$$

2 Теория ферромагнетизма Вейсса

В теории Вейсса силы взаимодействия между атомами формально сводятся к "эффективному" полю, которое и ориентирует атомы ферромагнетика. Эффективное поле складывается из обычного макроскопического поля в веществе \overrightarrow{H} и некоторого гипотетического "молекулярного поля". Согласно предположению Вейсса:

$$\overrightarrow{B_{ ext{add}}} = \overrightarrow{H} + b\overrightarrow{I}$$

где b – некоторая положительная постоянная, характеризующая свойства различных ферромагнетиков. Она называется постоянной Вейсса.

Исходя из этих предположений, рассчитаем намагничивание ферромагнетика I. Для этого заменим в теории Ланжевена поле \overrightarrow{H} на эффективное поле $B_{\text{эфф}}$.

Воспользуемся распределением Больцмана. Число атомов в единице объема ферромагнетика, угол оси которых с направлением эффективного поля $B_{\ni d d b}$ лежит в пределах θ и $\theta + d\theta$, будет равно

$$dn = Ce^{x\cos\theta}\sin\theta d\theta$$

$$x = \frac{\mathfrak{M}B_{\mathsf{b}\Phi\Phi}}{kT} = \frac{\mathfrak{M}(H+bI)}{kT}$$

Определим константу C из условия того, что общее число всех атомов должно равняться n:

$$n = \int dn = C \int_{0}^{\pi} e^{x \cos \theta} \sin \theta d\theta = \frac{C}{x} (e^{x} - e^{-x})$$

Получаем выражение для С:

$$C = \frac{xn}{e^x - e^{-x}}$$

Теперь определим результирующий магнитный момент единицы объема I. Вектор I считаем параллельным эффективному полю $B_{9\Phi\Phi}$. Общий момент dn атомов, оси которых лежат между θ и $\theta + d\theta$, равен $\mathfrak{M}dn$. Проекция этого момента на направление $B_{9\Phi\Phi}$ равна $\mathfrak{M}dn\cos\theta$. Отсюда получаем:

$$I = \int \mathfrak{M}\cos\theta dn = C\mathfrak{M} \int e^{x\cos\theta}\cos\theta\sin\theta d\theta = C\mathfrak{M} \left(\frac{e^x + e^{-x}}{x} - \frac{e^x - e^{-x}}{x^2}\right)$$

$$I = n\mathfrak{M}\left(\coth x - \frac{1}{x}\right) = n\mathfrak{M}L(x)$$

L(x) – функция Ланжевена.

Заметим, что $I_S=n\mathfrak{M}$, тогда выразим I из предыдущих уравнений:

$$I = I_S L(x), \ I = \frac{kTn}{I_S b} x - \frac{H}{b}$$

Исследуем эту систему графически. Будем откладывать по горизонтальной оси величину x, a по вертикальной – намагничивание I.

Рис. 3: Зависимость I(x)

Допустим сначала, что наклон прямой СА меньше наклона кривой

$$\frac{kTn}{I_S b} < I_S \left(\frac{dL}{dx}\right)_{x=0}$$

$$T < \frac{I_S^2 b}{kn} \left(\frac{dL}{dx}\right)_{x=0} = T_K$$

Прямая пересечет прямую Ланжевена в точке A, оридината и будет намагничиванием ферромагнетика I.

Если уменьшать поле H до нуля точка C будет подниматься к точке O, а точка A — перемещаться к точке A_0 . Когда поле H обратиться в нуль, ферромагнетик останется намагниченным — его намагничивание представится ординатой точки A_0 .

Стоит отметить, что ферромагнетик будет спонтанно намагничен и в том случае, когда он вообще не вносился ни в какое магнитное поле, потому что благодаря гипотетическому взаимодействию между атомами, введенному Вейсом, состояние спонтанного намагничивания "энергетически выгодно".

Таким образом, при $T < T_K$ ферромагнетик должен быть спонтанно намагничен. Энергии теплового движения недостаточно, чтобы разрушить это намагничивание. Величина T_K называется температурой или точкой Кюри.

Ниже точки Кюри из-за наличия спонтанного намагничивания χ и μ являются функциями от H:

$$\chi = \frac{dI}{dH}, \ \mu = \frac{dB}{dH}$$

Теперь предположим, что наклон прямой СА больше наклона кривой Ланжевена в точке О. Это означает, что $T > T_K$. Тогда при отсутствии магнитного поля прямая СА займет положение ОD, т.е. пересечет функцию Лагжевена только в начале координат. При этом спонтанное намагничивание не возникнет: намагничивание разрушается тепловым движением. Поэтому, чтобы намагнитить необходимо приложить магнитное поле. Прямая СА займет положение СЕ и пересечет кривую Ланжевена в точке A_1 . Из эксперементов известно, что ордината $OC = -\frac{H}{b}$ мала, а поэтому мал и учаток OA_1 кривой Ланжевена.

$$L(x) = \left(\frac{dL}{dx}\right)_{x=0} x$$

$$I = I_S L(x) = I_S \left(\frac{dL}{dx}\right)_{x=0} x$$

$$T_K = \frac{I_S^2 b}{kn} \left(\frac{dL}{dx}\right)_{x=0} \Rightarrow \left(\frac{dL}{dx}\right)_{x=0} = \frac{T_K kn}{I_S^2 b}$$

$$I = \frac{T_K kn}{I_S b} x = \frac{T_K kn}{I_S b} \frac{T}{T} x = \frac{T_K}{T} \left(I + \frac{H}{b}\right)$$

$$I = \chi H \Rightarrow \chi = \frac{T_K}{T} \left(\chi + \frac{1}{b}\right) \Rightarrow \chi \left(\frac{T}{T_K} - 1\right) = \frac{1}{b}$$

$$\chi = \frac{T_K}{b(T - T_K)} = \frac{const}{T - T_K}$$

Намагничивание пропорционально полю, т.е. выше точки Кюри ферромагнетик превращается в парамагнетик, причем зависимость магнитной восприимчивости от температуры определяется законом Кюри-Вейсса.

3 Антиферромагнетики

Выше мы рассмотрели ферромагнетики - вещества, в которых обменное взаимодействие вызывает параллельную ориентацию элементарных магнитных моментов. Однако существуют магнитоупорядоченные вещества и с другими магнитными структурами. Они могут быть коллинеарными (когда элементарные магнитные моменты параллельны или антипараллельны) и неколлинеарными, могут иметь или не иметь средний макроскопический спонтанный магнитный момент. Рассмотрим подробнее последние. Важным классом магпитоупорядоченных веществ являтотся антиферромагнетики - вещества, в которых при наличии магнитного упорядочения спонтанный (без внешнего магнитного поля) магнитный момент элементарной магнитной ячейки и, следовательно, любой макроскопической области равен нулю или же имеет небольшую, по сравнению с суммой элементарных моментов, величину.

Введение в это определение величины области связано с тем, что и для ферромагнетиков средний момент достаточно большой области может быть равен нулю из-за наличия доменов. Замечание же о возможности наличия небольшого момента обусловлено тем, что обладающие таким моментом так называемые слабые ферромагнетики разумно отнести к антиферромагнетикам. Можно антиферромагнетики определить как вещества, в которых обменное взаимодействие «стремится» так сориентировать элементарные матнитные моменты, чтобы магнитный момент любой макроскопической области был равен нулю.

К таким веществам относятся некоторые переходные и редкоземельные металлы и очень многие их окислы и соли. В качестве характерных примеров можно привести окислы MnO, NiO, Cr_2O_3 , $\alpha-Fe_2O_3^2$); галогониды MnF_2 , NiF_2 , $CuCl_2 \cdot 2H_2O$; карбонаты $MnCO_3$, $CoCO_3$ и многие соединения состава $Me^+Me^{2+}F_3$ или $R^{3+}Me^{3+}O_3$ (где Me^+ - ион щелочного металла, Re^{3+} – редкоземельный ион, Me^{2+} и Me^{3+} - ионы переходных металлов).

Выше некоторой температуры T_N — температуры Нееля, все эти вещества являются парамагнетиками, и их статическая восприимчивость, как и восприимчивость ферромагнетиков выше температуры Кюри (см. 1.1), удовлетворяет закону Кюри - Вейсса. Но, в отличие от ферромагнетиков, парамагнитная температура Кюри T_p для антиферромагнетиков отрицательна (см. рис. 1.1.3) . При температуре T_N имеют место "аномалии" теплоемкости и некоторых других величин, характерные для фазового перехода второго рода. Ниже температуры T_N восприимчивость антиферромагнетиков, в отличие от ферромагнетиков, остается небольшой, но обнаруживает (в монокристаллах) резкую анизотропию — быстро уменьшается с понижением температуры для одних направлений приложенного поля ($\chi_{||}$ на рис. 1.1.3) и остается постоянной или уменьшается медленно — для других (χ_{\perp}). Величины T_N изменяются в широких пределах - от единиц градусов (например, 4,3 К для $CuCl_2 \cdot 2H_2O$) до сотен градусов (647°К для NiO, 950°К для α — Fe₂O₃).

4 Литература

- 1. Общий курс физики. Том 3. Электричество Сивухин Д.В.
- 2. Магнитный резонанс в ферритах и антиферромагнетиках Гуревич А.Г.
- 3. Электричество и магнетизм. Кириченко Н.А.