The Arrhenius Equation (Svante Arrhenius, 1889)

- The rates of chemical reactions are highly sensitive to temperature
- Lizards become lethargic when their body temperature drops
- For example, typically a 10 Kelvin increase in temperature increases the rate of a typical biological reaction by two or three times
- How do we explain this highly sensitive temperature dependence?

Temperature dependence of a reaction rate is contained in the rate constant, k

The Arrhenius Equation (Svante Arrhenius, 1889)

Activation energy (E_a): An energy barrier that must be surmounted by the reactants to transform into the products

Frequency factor (A): Number of times the reactants approach the activation barrier per unit time

- T should be in Kelvin (K)
- R=8.314 J mol⁻¹ K⁻¹

The Activation Energy (E_a)

Consider the following reaction in which methyl isonitrile (CH₃NC) rearranges to form acetonitrile (CH₃CN)

To reach from the reactant to product, the molecule must go through a high energy state called as activated complex or transition state

Even though ΔH < 0 (exothermic, energetically downhill), it must go uphill to reach the activated complex because energy is required to initially weaken the H_3 C-N bond and allow the NC group to begin to rotate

Higher is the activation energy, the slower the reaction rate

The Frequency Factor (A)

Frequency factor (A): Number of times the reactants approach the activation barrier per unit time [Recall]

- In this example, any time the NC group begins to rotate it approaches the activation barrier
- For this reaction, "A" represents the rate at which the NC part of the molecule wags (vibrates side-by-side)
- With each wag, the reactant approaches the activation barrier
- However, approaching the barrier does not mean surmounting it.
- Only some approaches pass and most fail to make it over the activation barrier because of lack of enough energy.

The Frequency Factor (A closer look through collision model)

$$A(g) + B(g) \rightarrow product$$

- 1. In the collision model, a reaction occur after two reactant molecules collide with sufficient energy
- 2. In collision theory, each approach to the activation of barrier is a collision between the reactant molecules.
- 3. This means, the frequency factor should be the number of collisions that occur per unit time (collision frequency, z).
- However, the frequency factor for most gas-phase reactions are observed to be smaller than collision frequency

Collision frequency: Number of collisions that occur per unit time, typically 10⁹ per second.

Orientational factor: Fractions of collisions with an orientation that facilitates the reaction to occur (Ranges between 0 and 1)

The Frequency Factor (A closer look through collision model)

- For the reaction to occur, two NOCI molecules must collide with sufficient energy
 - Three possible collision orientations:

Ineffective collision

Ineffective collision

Effective collision

- Even if the collision has sufficient energy, the orientation is not appropriate for the Cl atoms to bond
- For this reaction, p = 0.16 (orientation factor)
- ⇒ Only 16 out of 100 sufficiently energetic collisions are actually successful in forming the products

The Exponential Factor $(e^{-E_a/RT})$

- **1.** When E_a is *low* and T is *high*: $e^{-E_a/RT} \rightarrow 1$
- **2.** When E_a is high and T is low: $e^{-E_a/RT} \rightarrow 0$

When the temperature increases, the number of molecules having enough thermal energy to surmount the activation barrier increases

$$0 \leq e^{-E_a/RT} \leq 1$$

- $e^{-E_a/RT}$ represents the fraction of molecules that have enough energy to make it over the activation barrier on a given approach.
- In other words, the exponential factor signifies the fraction of approaches that are actually successful and result in the product
- **Example:** If A = 10^9 /s and $e^{-E_a/RT} = 10^{-7}$ at a certain temperature, then $k = 10^9$ /s x $10^{-7} = 10^2$ /s
- Consider the previous example of conversion of CH_3NC to CH_3CN .
- If CN group wags at a rate of 10^9 /s and with each wag, the activation barrier is approached. Then, for a given wag only **1** in 10^7 molecules has sufficient energy to actually reach or cross the activation barrier.
- Commonly, only small percentage of molecules have enough energy to surmount the barrier
- But, only small change in T makes huge difference in the number molecules which can surmount the barrier

Arrhenius Plot: Experimental Measurements of A and E_a

$$k = Ae^{-E_a/RT}$$

$$\ln k = \ln(Ae^{-E_a/RT})$$
 • Taking natural log of both sides

$$\ln k = \ln A + \ln e^{-E_a/RT}$$

$$\ln k = \ln A - \frac{E_a}{RT}$$

$$\ln k = -\frac{E_a}{R} \left(\frac{1}{T}\right) + \ln A \qquad \mathbf{y} = mx + c \text{ form}$$

• A plot of $\ln k$ vs $\frac{1}{\tau}$ yields a straight line with slope of $-\frac{E_a}{R}$ and intercept of $\ln A$. Such plot is called as an **Arrhenius plot**

Arrhenius Plot: Experimental Measurements of A and E_a

In some cases, when the data is limited or ploting tools are not available, we can still calculate A and E_a if we know the rate constants at just two temperatures

$$\ln k_2 = -\frac{E_a}{R} \left(\frac{1}{T_2}\right) + \ln A \quad \bullet \quad \text{rate at temperature } \mathbf{T_2}$$

$$\ln k_1 = -\frac{E_a}{R} \left(\frac{1}{T_1}\right) + \ln A$$
 • rate at temperature T_1

$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$
 • Two-point form of Arrhenius equation

Catalyst and Inhibitor

- A catalyst is substance which acts as both a reactant and a product of a reaction. Not consumed during the course of reaction and used to accelerates the reaction
- It's concentration enters into the kinetic equation but not into the equilibrium constant for the reaction

$$\mathbf{A} + \mathbf{B} + \text{catalyst} \stackrel{k_1}{\underset{k_{-1}}{\rightleftharpoons}} \mathbf{Y} + \mathbf{Z} + \text{catalyst}$$

- Rate from left to right: $v_1 = k_1[A][B][catalyst]$
- Rate from right to left: $v_{-1} = k_{-1}[Y][Z][catalyst]$
- A catalyst increases the rates to the same extent in forward and reverse directions

At equilibrium, the rates are same in the two directions

$$k_1[A][B][catalyst] = k_{-1}[Y][Z][catalyst]$$

At equilibrium,

$$K = \frac{k_1}{k_{-1}} = \left(\frac{[Y][Z][\text{catalyst}]}{[A][B][\text{catalyst}]}\right)_{eq} = \left(\frac{[Y][Z]}{[A][B]}\right)_{eq}$$

• Catalyst does not modify the standard Gibb's free energy change for the reaction: $\Delta G^0 = -RT \ln K$

Catalysis

Effect of catalyst on the activation energy and rate constant

• **Effect on \mathbf{E}_a:** A catalyst lowers the activation energy and provides an alternative path to accelerate the reaction

Effect on
$$k$$
:
$$\frac{k_{catalyzed}}{k_{uncatalyzed}} = \frac{A e^{-E_{a,catalyzed}/RT}}{A e^{-E_{a,uncatalyzed}/RT}} = e^{-(E_{a,catalyzed}-E_{a,uncatalyzed})/RT}$$

$$k_{catalyzed} = k_{uncatalyzed} e^{-\Delta E_{a}/RT}$$

Even a small change in E_a leads to significant change in the rate, some times by orders of magnitude

• Example: Enzyme catalase reduces the activation energy for the decomposition of hydrogen peroxide from 76 kJ/mol to 8 kJ/mol

$$> \frac{k_{catalyzed}}{k_{uncatalyzed}} = 8.3 \times 10^{11}$$

Catalysis

Catalyst and Inhibitor

Inhibitor: An inhibitor is a substance that diminishes the rate of chemical reaction and may be consumed during the course of reaction

Degree of inhibition:

$$\epsilon_i = \frac{\upsilon_0 - \upsilon}{\upsilon_0} = 1 - \frac{\upsilon}{\upsilon_0}$$

 υ_0 rate without inhibitor υ rate with inhibitor