Московский Физико-Технический Институт

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа №4.4.4

Интерферометр Фабри-Перо

Студент Ришат ИСХАКОВ 513 группа

Преподаватель Александр Александрович Казимиров

Цель работы: изучение интерферометра Фабри-Перо и определение его характеристик, как спектрального прибора.

В работе используются: интерферометры Фабри-Перо, линзы, светофильтр, ртутная лампа ПРК-2, высокочастотная натриевая лампа, катетометры КМ-6.

1. Теоретическая часть

Интерферометр Фабри-Перо

Интерферометр Фабри-Перо состоит из двух отражающих пластин, внутренние поверхности которых хорошо отполированы и установлены параллельно друг другу. Его можно рассматривать как плоскопараллельную воздушную пластину, на которой происходят многократные отражения и интерференция световых лучей. Интерференционная картина, наблюдаемая в фокальной плоскости линзы Л. состоит из

Рис. 1: Интерферометр Фабри-Перо

концентрических колец. Для двух соседних лучей, распространяющихся между зеркалами интерферометра под углом θ , разность хода определяется соотношением

$$\Delta = 2L\cos\theta,\tag{1}$$

где L — расстояние между зеркалами интерферометра. Будем считать, что поглощение света в зеркалах отсутствует, что достигается лишь при целых значениях отношения Δ/λ . Интерференционная картина состоит из узких светлых колец, разделенных широкими промежутками, расстояния между которыми мы будем измерять.

Измерение длин волн λ и расстояний $d\lambda$ между спектральными линиями.

Исследуем диаметры интерференционных колец, предполагая, что угол θ достаточно мал. Рассмотрим два кольца с разным порядком интерференции: m_i и m_j соответственно. Из (1) и условия отсутствия поглощения следует, что светлое кольцо порядка m образуется при

$$\Delta = 2L\cos\theta = m\lambda \ (m - \text{целое}). \tag{2}$$

При уменьшении угла θ порядок интерференции возрастает, то есть больший порядок соответствует кольцам меньшего диаметра.

Для малых углов θ :

$$2L\left(1 - \frac{\theta_i^2}{2}\right) = m_i \lambda; \quad 2L\left(1 - \frac{\theta_j^2}{2}\right) = m_j \lambda. \tag{3}$$

Вычтем второе уравнение из первого и рассмотрим два соседних кольца:

$$L(\theta_i^2 - \theta_i^2) = (j - i)\lambda$$

Диаметр D кольца в фокальной плоскости линзы связан c ее фокусным расстоянием:

$$D = 2f\theta$$

Тогда выразим λ из уравнения:

$$\lambda = \frac{L}{4f^2} \frac{D_j^2 - D_i^2}{j - i} \tag{4}$$

Пусть в интерферометре Фабри-Перо наблюдается система колец для двух близких спектральных линий λ и $\lambda + d\lambda$, дифференцируя (2) при малых θ найдем

$$-2L\theta d\theta = md\lambda$$
.

откуда следует:

$$d\lambda = -\frac{2L\theta}{m} \simeq -\lambda\theta d\theta = -\frac{\lambda\overline{D}}{4f^2}dD,\tag{5}$$

где \overline{D} — средний диаметр колец, а dD — разность диаметров колец, образующихся для спектральных линий с длинами волна λ , и $\lambda+d\lambda$ при одинаковом порядке интерференции. С помощью формулы (5) можно определять $d\lambda$, не зная постоянной интерферометра L.

Дисперсия интерферометра

Отношение $D^* = dl/d\lambda$, где dl — расстояние между спектральными линиями в плоскости спектра, а $d\lambda$ — разность длин волн этих линий, называют ЛИНЕЙНОЙ ДИСПЕРСИЕЙ спектрального прибора. Линейная дисперсия для интерферометра Фабри-Перо выражается через угловую $(d\Theta/d\lambda)$ (формула (5):

$$D^* = f \frac{d\Theta}{d\lambda} = \frac{dD}{2d\lambda} = \frac{2f^2}{\lambda D}$$

Дисперсионная область

Областью дисперсии называют максимальный интервал длин волн $\Delta\lambda$, при котором еще не происходит перекрытия интерференционных полос соседних порядков. Пусть накладывается кольцо (m+1)-го порядка для длины волны λ и кольца m-го порядка для длины волны $\lambda + \Delta\lambda$:

$$m(\lambda + \Delta\lambda) = (m+1)\lambda,\tag{6}$$

откуда

$$\Delta \lambda = \frac{\lambda}{m} \approx \frac{\lambda^2}{2L} \tag{7}$$

Разрешающая способность интерферометра Фабри-Перо

Разрешающая способность спектрального прибора определяется соотношением:

$$R = \frac{\lambda}{\delta \lambda},\tag{8}$$

где $\delta\lambda$ — минимальная разность длин волн, разрешимая прибором вблизи волны λ . Если определить ширину линии на уровне, на котором интенсивность падает в два раза по сравнению с максимальным значением в середине линии, можно из критерия разрешения Релея определить разрешающую способность:

$$R \approx \frac{2\pi L\sqrt{r}}{\lambda(1-r)}\tag{9}$$

2. Установка и параметры измерения

Рис. 2: Схема экспериментальной установки

Свет от лампы S, пройдя через линзу Π_0 светофильтр C попадает в интерферометр Фабри-Перо (ИФП). Линза Π_0 формирует пучек лучей. Интерференционные кольца наблюдаются в фокальной плоскости линзы Π .

Ртутная лампа

Сначала измерим координаты i — ых колец, двигаясь снизу вверх. По ним можно определить диаметр каждого кольца.

i	1	2	3	4	5	6
$x_{\mathrm{H}}, \mathrm{MM}$	166.61	172.33	175.52	177.99	179.85	181.87
x_{B}, MM	155.53	152.38	149.92	147.88	146.12	144.48
D, mm	11.08	19.95	25.6	30.11	33.73	37.39
D^2 , mm ²	122.77	398.00	655.36	906.61	1137.71	1398.01

Таблица 1: Измерение диаметров зеленых колец

Оценим максимальный порядок интерференции m (номер центрального кольца) для желтой и зеленой линии ртути:

$$m_{\text{зел}} = \frac{2L\cos\theta}{\lambda} \approx \frac{2L}{\lambda} = 357; \qquad m_{\text{жел}} = 345$$

Оценим дисперсионную область:

$$\Delta\lambda = \frac{\lambda}{m}$$

$$\lambda_{\rm m} = 160~{\rm \AA}; \qquad \lambda_{\rm 3} = 170~{\rm \AA}$$

Построим график зависимости $D_i^2 = f(i)$

Рис. 3: График зависимости $D_i^2 = f(i)$ для зеленых колец ртути

Определим постоянную интерферометра L (расстояние между зеркалами) по формуле (5), учитывая, что $\lambda=5461 {\rm \AA}$

$$L = \frac{4f^2\lambda}{k} = (1.04 \pm 0.09) \cdot 10^{-4} \text{ M}$$

i	1	2	3	4	5	6
$x_{\rm H1}, { m MM}$	166.78	172.53	175.64	178.13	180.28	182.15
x_{B1}, MM	160.85	155.22	151.99	149.47	147.19	145.42
$x_{\text{H}2}, \text{MM}$	169.53	173.65	176.61	178.84	181.1	182.74
x_{B2}, MM	158.32	153.98	151.27	148.74	146.71	144.88
D_1 , mm	5.93	17.31	23.65	28.66	33.09	36.73
D_2 , mm	11.21	19.67	25.34	30.1	34.39	37.86
\overline{D} , mm	8.57	18.49	24.50	33.74	33.56	37.30
ΔD , mm	5.28	2.36	1.69	1.44	1.3	1.13
$1/\Delta D$, mm	0.19	0.42	0.59	0.69	0.77	0.88

Таблица 2: Измерение диаметров желтых колец

Построим график $\overline{D}(1/\Delta D)$ для желтых колец ртути.

Рис. 4: График зависимости $\overline{D}(1/\Delta D)$ для желтых колец ртути

По углу наклона прямой рассчитаем разность длин волн для желтой пары линий ртути:

$$\Delta \lambda = \frac{\lambda \overline{D} \Delta D}{4f^2} = \frac{\lambda k}{4f^2} = (4.9 \pm 0.3) \text{ Å}$$

Измерим ширину кольца:

$$\delta r = (0.8 \pm 0.01) \text{ mm}$$

Оценим аппаратную разрешающую способность:

$$R = \frac{\lambda}{\delta \lambda} = \frac{4f^2}{D\delta r} = 5040 \pm 20$$

Найдем теоретическое значение добротности для r=0.85:

$$Q = \frac{2\pi L}{\lambda(1-r)} = 7600$$

Найдем число интерферирующих лучей:

$$N = \frac{Q}{m} = 21$$

Натриевая лампа

i	1	2	3	4	5	6
$x_{\text{H}1}, \text{MM}$	165.76	169.92	172.64	174.54	176.52	178.23
x_{B1}, MM	155.56	151.69	148.95	146.77	144.9	143.19
$x_{{ ext{ iny H2}}},{ ext{ iny MM}}$	167.39	170.85	173.46	175.28	177.09	178.74
x_{B2}, MM	154.07	150.73	148.23	146.17	144.32	142.66
D_1 , mm	10.2	18.23	23.69	27.77	31.62	35.04
D_2 , mm	13.32	20.12	25.23	29.11	32.77	36.08
D, mm	11.76	19.18	24.46	28.44	32.20	35.56
D^2 , MM	138.30	367.68	598.29	808.83	1036.52	1264.51
ΔD , mm	3.12	1.89	1.54	1.34	1.15	1.04
$1/\Delta D$, mm	0.32	0.53	0.65	0.75	0.87	0.96

Таблица 3: Измерение диаметров желтых колец натрия

Построим график зависимости $D_i^2 = f(i)$

Рис. 5: График зависимости $D_i^2 = f(i)$ для зеленых колец натрия

Определим постоянную интерферометра L (расстояние между зеркалами) по формуле (5), учитывая, что $\lambda=5893 {\rm \AA}$

$$L = \frac{4f^2\lambda}{k} = (0.92 \pm 0.06) \cdot 10^{-4} \,\mathrm{M}$$

Построим график $\overline{D}(1/\Delta D)$ для колец натрия.

Рис. 6: График зависимости $\overline{D}(1/\Delta D)$ для колец натрия

По углу наклона прямой рассчитаем разность длин волн для желтой пары линий натрия:

$$\Delta \lambda = \frac{\lambda \overline{D} \Delta D}{4f^2} = \frac{\lambda k}{4f^2} = (6.3 \pm 0.2) \text{ Å}$$

Оценим экспериментальные и теоретические значения линейной дисперсии интерферометров:

$$D_{\text{\tiny 9KCII}}^* = \frac{\Delta D}{2\Delta \lambda}; \quad D_{\text{\tiny Teop}}^* = \frac{2f^2}{\lambda D}$$

$D^*_{\mathfrak{s}_{\mathrm{KCII}}}, \ \mathrm{MM/\mathring{A}}$	D_{reop}^* , mm/Å	$\sigma D^*_{ m skch}, \ { m mm/\mathring{A}}$	
0.54	0.44	0.08	
0.24	0.25	0.04	
0.17	0.19	0.03	ртуть
0.15	0.16	0.02	pT
0.13	0.14	0.02	
0.12	0.13	0.02	
0.25	0.24	0.03	
0.15	0.15	0.02	, <u>z</u>
0.12	0.11	0.02	натрий
0.11	0.10	0.01	нал
0.09	0.09	0.01	
0.08	0.08	0.01	

Таблица 4: Экспериментальные и теоретические значения линейной дисперсии

Измерим ширину кольца:

$$\delta r = (0.52 \pm 0.01) \text{ mm}$$

Оценим аппаратную разрешающую способность:

$$R = \frac{\lambda}{\delta \lambda} = \frac{4f^2}{D\delta r} = 4930 \pm 20$$

Найдем теоретическое значение добротности для r=0.85:

$$Q = \frac{2\pi L}{\lambda (1 - r)} = 7100$$

Найдем число интерферирующих лучей:

$$N = \frac{Q}{m} = 20$$

3. Вывод

Мы изучили работу интерферометр Фабри-Перо, определили его постоянную, аппаратную разрешающую способность, значение линейной дисперсии. Полученные результаты с точностью до погрешности совпадают с теоретическими/заводскими значениями.