Particle spectrograph

Wave operator and propagator

$\mathfrak{r}_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	$\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$\frac{2 k^2 (6 k^2 r_5 + t_1 + 4 t_3)}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#2}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1t_3+2 k^2 r_5 (t_1+t_3))}$	$\frac{6k^2r_5+t_1+4t_3}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$-\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)}$	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1t_3+2 k^2 r_5 (t_1+t_3))}$	0	$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$_{1}^{#1} + ^{\alpha\beta}$	$_{1}^{#2}$ $+ \alpha \beta$	$_{1}^{#1}$ $+^{\alpha\beta}$	$\sigma_{1}^{\#1} + \alpha$	$r_{1}^{#2} + \alpha$	$\tau_1^{\#1} + \alpha$	$\tau_1^{\#2} +^{\alpha}$

	$\omega_{1^{+}lphaeta}^{\#1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1^{-}\alpha}^{\sharp 1}$	$\omega_{1^{-}\ lpha}^{$ #2}	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\#1}\dagger^{lphaeta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	$\frac{i kt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1} \dagger^{\alpha}$	0	0	0	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_3 \right)$	$\frac{t_1 - 2t_3}{3\sqrt{2}}$	0	$\frac{1}{3}$ i k (t ₁ - 2 t ₃)
$\omega_1^{#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	<u>t₁+t₃</u> 3	0	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3} i k (t_1 - 2 t_3)$	$-\frac{1}{3}i\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3}k^2(t_1+t_3)$

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1}\dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

Source constraints/gauge generators				
SO(3) irreps	Multiplicities			
$\tau_{0^{+}}^{\#2} == 0$	1			
$\tau_{0+}^{\#1} - 2 \bar{\imath} k \sigma_{0+}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	5			
Total constraints:	16			

$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2 - t_1$
$f_{0}^{\#2}$	0	0	0	0
$f_{0}^{\#1}$	$-i \sqrt{2} k t_3$	$2 k^2 t_3$	0	0
$\omega_{0}^{\#1}$	t3	$i\sqrt{2}kt_3$	0	0
	$\omega_{0}^{\#1}$ †	$f_{0}^{\#1}$ †	$f_0^{\#2} \uparrow$	$\omega_{0}^{\#1}$ †

$\omega_{2}^{\sharp} + \alpha_{\beta} f_{2}^{\sharp} + \alpha_{\beta} \omega_{2}^{\sharp} \alpha_{\beta} \chi$						
$\omega_{2}^{\sharp 1} \dagger^{\alpha \beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0			
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0			
$\omega_2^{\#1} \dagger^{lphaeta\chi}$	0	0	<u>t</u> 1 2			

$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 \cdot t_1}$
$\tau_0^{\#2}$	0	0	0	0
${\tau_0^\#}_1^1$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_0^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
·	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$

Massive and massless spectra

Massive particle				
Pole residue: $-\frac{1}{r_2} > 0$				
Polarisations:	1			
Square mass:	$\frac{t_1}{r_2} > 0$			
Spin:	0			
Parity:	Odd			

(No massless particles)

Unitarity conditions