

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: 2018

 (Δ)

وزارة التربية الوطنية امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات

اختبار في مادة: الرياضيات المدة: 04 سا و 30 د

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع الأول على (03) صفحات (من الصفحة 1 من 6 إلى الصفحة 3 من 6)

التمرين الأول: (04 نقاط)

// الدالة العددية المعرفة على المجال] (∞- ب:

$$f(x) = \frac{x^2 + 1}{x - 1}$$

 $u_0=-3$ المتتالية العددية المعرفة على المتتالية العددية المعرفة المعرفة على المتتالية العددية المتتالية المتالية المتتالية المتتالية المتالية المتتالية المتالية المتال

 $u_{n+1} = f(u_n)$ ، n ومن أجل كل عدد طبيعي

ليكن (C_f) التمثيل البياني للدالة f في المستوي المنسوب إلى

المعلم المتعامد المتجانس $(O; \vec{i}, \vec{j})$ و (Δ) هو المستقيم ذو

المعادلة y = x (أنظر الشكل المقابل).

(1)

- $-3 \le u_n < -1$: n برهن بالتراجع أنّه من أجل كل عدد طبيعي
- $u_{n+1} + 1 \ge \frac{3}{4}(u_n + 1) : n$ عدد طبیعی عدد اجل کل عدد اجل کا عدد (3

. $\lim_{n\to\infty}u_n$ ب. استنتج أنّه من أجل كل عدد طبيعي n : n عدد طبيعي با

. $S_n = u_0 + u_1 + \dots + u_n$ نضع (4

$$8\left[\left(\frac{3}{4}\right)^{n+1}-1\right] \leqslant (u_0+1)+(u_1+1)+\dots+(u_n+1)<0 : n$$
 are denoted by a different point n and n are denoted by n are denoted by n and n are denoted by n and n are denoted by n are denoted by n and n are denoted by n are denoted by n and n are denoted by n

واستنتج "S الستنتج . lim S

اختبار في مادة: الرياضيات / الشعبة: رياضيات / بكالوريا 2018

التمرين الثاني: (04 نقاط)

B(1;0;2) ، نعتبر النقطتين المتعامد المتجانس ($G(\widetilde{i},\widetilde{j},\widetilde{k})$ ، نعتبر النقطتين المعام المتعامد المتجانس المتعامد المتعامد

 $A \in B$ بَيْنَ لَمَنَ النَّقَطُ $A \in B$ ايست في استقامية.

ب) تحقق أنَّ (l-|2;1;-1) شعاع ناظمي المستري (OAB) ثم عيّن معادلة ديكارتية له.

(x;y;x) لتكن (X) مجموعة النفط M من الفضاء التي احداثياتها (x;y;x) وتحقق المعادلة التالية:

$$(2x+2y+6z-11)^2+(2x+4z-5)^2=0$$

بين أنّ المجموعة (Δ) هي تقاطع المستوبين المحوربين القطعتين [OA] و [OB]، ثم عين تستبلا وسيطيا المجموعة (Δ).

3) لتكن 14 نقطة كيفية من القضاء

 Ω مركز Ω مركز التاكية التاكية ($M \in (\Delta)$) يكافئ (M = BM) ثم استنتج إحداثيات النقطة Ω مركز الدلارة المحيطة بالمثلث Ω .

التمرين الثالث: (05 نقاط)

 $\left[-\pi\,(\pi\,
ight]$ المستري المركب منسرب إلى المعلم المتعامد المتجانس ($G(\overline{u},\overline{v})$) عدد حقيقي من المجال

حل في مجموعة الأعداد المركبة () ، المعائلة ذات المجهول 7 التالية:

$$(z^2-2z+2)(z^2-2(\sin\theta)z+1)=0$$

المعاتبا على الترتيب $C \cdot B \cdot A$ الترتيب الت

$$(z_x = \sin \theta + i\cos \theta)$$
 ، $z_y = 1 - i$ ، $z_z = -\sqrt{2}e^{i\frac{5x}{4}}$

الكتب الأعداد عن عنى الشكل الأسي.

$$z_E = \frac{Z_A}{Z_B}$$
 شيخة من المستري الاحقتها z_E حيث E (2

. بين أن النقط $D \cdot C$ و E تتنمي إلى دائرة يطلب تعيين مركزها و نصف قطرها.

3) ليكن
$$S$$
 التشابه المعاشر الذي مركزه النقطة A و زاويته $\frac{\pi}{4}$ ونسبته $(2-2\sqrt{2}-2)$).

. عَيْنَ قَيْمَةً $\, heta \,$ حتى تكون النقطة $\, B \,$ مسورة النقطة $\, C \,$ بالتشابه المباشر $\, S \,$

4) نضع $rac{-3\pi}{4}$ عين قيم العدد الطبيعي n التي من أجلها يكون العدد " (z_{D}) تخيليا مسرفاء

اختبار في مادة: الوياضيات / الشعبة: رياضيات / بكالوريا 2018

التمرين الرابع: (07 نقاط)

$$\begin{cases} f(x) = x + 1 - \frac{1}{\ln x}; & x \in \mathbb{R}^*_+ - \{1\} \\ f(0) = 1 \end{cases} : + \begin{bmatrix} 0; 1 \begin{bmatrix} \bigcup \end{bmatrix} 1; + \infty \begin{bmatrix} \text{otherwise} \\ \text{otherwise} \end{bmatrix} \end{cases}$$

(يرمز ب ln الى اللوغاريتم النيبيري)

 (O, \vec{i}, \vec{j}) سنجانى البياني للدالة f في المستوي المنسوب إلى المعلم المتعامد المتجانس (C_f)

أ/ بيّن أن f مستمرة عند () بقيم أكبر.

ب/ احسب $\lim_{h \to 0} \frac{f(h) - f(0)}{h}$ ثم فسر النتيجة هندسيا.

 $\lim_{x \to \infty} f(x)$ و $\lim_{x \to \infty} f(x)$ المسب (2)

ب/ ادرس اتجاه تغير الدالة / ثم شكّل جدول تغيراتها.

- (C,) بين أنّ المنحنى (C,) يقبل مستقيمًا مقاربًا مائلاً (A) يطلب تعيين معادلة له ثم ادرس وضعية (C,) بالنسبة الي (Δ).
- $1,49 < \alpha < 1,5$ بين أنّ المنحني (C_f) يقطع حامل محور الفواصل في نقطة وحيدة ω فاصلتها معرد (α $y = \left(\alpha + 3 + \frac{1}{\alpha}\right)(x - \alpha)$ لأم بيّن أنّ معادلة المماس للمنحني (C_f) في النقطة ω تكتب على الشكل معادلة المماس للمنحني
 - (C_i) ارسم المستقيم (Δ) و المنحنى
 - $h(x) = 1 x + x \ln x$: بالدالة العددية المعرفة على المجال إh (6) الدالة العددية المعرفة على المجال المجال المعرفة على المجال المعرفة على المجال المعرفة على المجال المعرفة على المعرفة المعرفة على المعرفة ع

 $[1;+\infty]$ على المجال على المجال $[1;+\infty]$ و استنتج إشارة [n(x)] على المجال المجال أ[n]

$$f(x)-x+\frac{1}{x\ln x}=\frac{h(x)}{x\ln x}$$
: $x>1$ کل کا ایک من اُجل کل ایک بین اُنّه من اُجل کل

$$x - \frac{1}{x \ln x} < f(x) < x + 1 : x > 1$$
 is not less it is not less of $x = 1$

مساحة الحير من المستوي المحدّد بالمنحني (C_r) وحامل محور الفواصل والمستقيمين اللذين Aمعادلتيهما: x = e و x = e معادلتيهما: $x = \alpha$ النيبيري).

$$(a^2 - a^2) \cdot \ln(a+1) = 4 \cdot \frac{1}{2} (a-1)(a+1) \cdot \frac{1}{2} (a+1) \cdot \frac{1}{2} (a+1$$

$$\frac{1}{2}(e^2 - \alpha^2) - \ln(\alpha + 1) < A < \frac{1}{2}(e - \alpha)(e + \alpha + 2)$$
 بيّن أنّ - بيّ - بيّن أنّ - بيّ

انتهى الموضوع الأول

اختبار في مادة: الرياضيات / الشعبة: رياضيات / بكالوريا 2018

الموضوع الثاني

يحتوي الموضوع الثاني على (03) صفحات (من الصفحة 4 من 6 إلى الصفحة 6 من 6)

التمرين الأرل: (04 نقاط)

$$\begin{cases} \alpha+\beta=4035 \\ \alpha-\beta=1 \end{cases}$$
 و β عندان طبيعيان بحيث: α (1

. عين العدين α و lpha ، ثم بين أنّ العدين $rac{lpha}{2}$ و lpha أوليان فيما بينهما.

1009x - 2017y = 1: غين كل الثنائيات الصحيحة (x, y) الذي تحقق المعادلة (x, y) عين كل الثنائيات الصحيحة (

$$a = 2019[2017]$$
 يَنِ الأعداد الصحيحة $a = 2019[1009]$ وين الأعداد الصحيحة $a = 2019[1009]$

4) أ) م عند طبيعي، ادرس شعا لفيم م بواقي القسمة الاقلينية للعند "7 على 9.

$$L = \overline{\coprod \coprod \ldots}$$
 : كما يلي : L كما يلي : والنظام ذي الأساس 7 كما يلي : L عند طبيعي يكتب في النظام ذي الأساس 7 كما يلي :

ـ عين باقى القسمة الاكلينية للعند 42 L على 9.

التمرين الثاني: (04 نقاط)

كيس يحوي 9 كريات لا نفرق بينها باللمس موزعة كما يلي:

خمس كريات حمراء مرتمة بـ: 1,1,2,2,2 وثلاث كريات خضراء مرقمة بـ: 3, 2, -3 وكرية بيضاء مرقمة بـ: 1 نسحب عشرائيا 4 كريات في آن واحد.

1) احسب احتمال الحرادث الثالية:

A : الحصول على أربع كربات من نفس اللون .

B : العصول على كرية بيضاء على الأكثر .

C : الحصول على أربع كربات مجموع أرقامها معدوم".

 $\, 2 \,$ لَيكن $\, \chi \,$ المتغير المشوائي الذي يرفق بكل نثيجة سحب عدد الكريات الخضراء المتبقية في الكيس.

أ) عين قبع المتغير العشوائي X ثم عزف فانون احتماله .

X . با المسب الأمل الرياضياتي (X) المنظير المثوائي X

. ' $X^2 - X > 0$ ': Relati literal (5)

التعرين الثالث: (05 نقاط)

1) ه عدد حقیقی ، نعابر فی مجموعة الأعداد المركبة \(\mathcal{U}\) المعادلة ذات المجهول = الثالية:

$$z^2 + (m+1)z + (2m-1) = 0....(E)$$

عين فيم العدد الحقيقي m التي من أجلها تقبل المعادلة (E) حاين مركبين غير حقيقيين.

اختبار في مادة: الوياضيات / الشعبة: رياضيات / بكالوريا 2018

2) نضع m=3 حل المعادلة (2).

(3) نعتبر في المستوي المركب المنسوب إلى المعلم المتعامد المتجانس
$$O(\vec{u};\vec{v})$$
 النقط C ، B ، A النقي المركب المنسوب إلى المعلم المتعامد المتجانس $O(\vec{u};\vec{v})$

$$-\alpha>-2$$
 و قبط معدد حقیقی و $z_c=\alpha$ ، $z_B=-2-i$ ، $z_A=-2+i$ الحقائها الحقائها

$$-2+\sqrt{3}$$
) منقابس الأضلاع هي ($-2+\sqrt{3}$) منقابس الأضلاع هي α

:
$$\frac{z_c - z_s}{z_s - z_s}$$
 على الشكل الأسي ثم استنتج أن :

5) ليكن
$$r$$
 الدوران الذي يحوّل النقطة B إلى C و يحوّل C إلى A عبارته المركبة هي:

. عدد مرکب
$$z' = az + \left(\frac{\sqrt{3}-6}{2}\right) + i\left(\frac{2\sqrt{3}-1}{2}\right)$$

أ) احسب العدد المركب a ثم استنتج زاوية الدوران r.

ب) تحقق أنّ النقطة G مركز ثقل المثلث ABC هي مركز الدوران ٢.

التمرين الرابع: (07 نقاط)

 $g(x) = (1 + x + x^2) e^{-\frac{1}{x}} - 1$: $g(x) = (1 + x + x^2) e^{-\frac{1}{x}} - 1$ الدالة العددية المعرفة على المجال $g(x) = (1 + x + x^2) e^{-\frac{1}{x}}$

،
$$g'(x) = \frac{(x+1)(2x^2+1)}{x^2}e^{-\frac{1}{x}}$$
 : $]0; +\infty[$ من أجل كل x من أجل كل x من أجل كل x من المجال x

واستنتج اتجاه تغير الدالة g على المجال]∞+:0] .

 $0.9 < \alpha < 1$ بين أن المعادلة g(x) = 0 تقبل حلا وحيدا α حيث g(x) = 0

$$f(x) = \frac{1}{x} + (1+x)e^{-\frac{1}{x}} : + [0] : +\infty[$$
 lhad also also also fill f .

 (C_r) التمثيل البياني للدالة f في المستوي المنسوب إلى المعلم المتعامد المتجانس (C_r) .

$$\lim_{x \to 0} f(x) = \lim_{x \to \infty} f(x) + \lim_{x \to 0} (1 - 1)$$

$$y=x$$
 المعادلية (Δ) أن المستقيم (Δ) أنه المستقيم (Δ) أنه المستقيم (Δ) أنه المعادلية (Δ) أنه المعادلية (Δ) أنه المعادلية (Δ) بجوار (Δ) بجوار (Δ) بجوار (Δ) بجوار (Δ)

اختبار في مادة: الرياضيات / الشعبة: رياضيات / بكالوريا 2018

.
$$h(x) = \frac{1}{x} - 1 + e^{-\frac{1}{x}}$$
: ب $]0; +\infty[$ الدالة العددية المعرفة على المجال h (3

.]
$$0$$
 ; + ∞ [الحسب $h(x)$ على الجاه تغير الدالة h واستنتج إشارة $h(x)$ على الحسب (أ

$$\cdot$$
 (Δ) بالنسبة إلى المستقيم (C_r) بالنسبة ألى المستقيم ($f(x) - x = (1+x) h(x)$ بالنسبة إلى المستقيم (x)

(4) ارسم المستقيم
$$(\Delta)$$
 و المنحنى (C_f) . (نأخذ 1.73) (4)

.
$$u_n = \frac{n}{n+1} f\left(\frac{1}{n}\right) - \frac{n^2}{n+1}$$
 : $u_n = u_n$ recall that $u_n = \mathbb{N}^*$ and $u_n = u_n$ (5)

أ) اكتب
$$u_n$$
 بدلالة n ثم بيّن أن المنتالية (u_n) هندسية يطلب تعيين أساسها وحدها الأول u_n

$$S_{n} = \left(\frac{1}{2}f(1) - \frac{1}{2}\right) + \left(\frac{2}{3}f\left(\frac{1}{2}\right) - \frac{1}{3}\right) + \left(\frac{3}{4}f\left(\frac{1}{3}\right) - \frac{1}{4}\right) + \dots + \left(\frac{n}{n+1}f\left(\frac{1}{n}\right) - \frac{1}{n+1}\right)$$