Desvendando IA e Machine Learning

Thaís Ratis

Diego Alexandre

Práticas Tecnológicas, 19.09.2023

Conteúdo programático

- 1. Perceptron
- 2. Rede Neural
- 3. Correção de erros
- 4. Backpropagation
- 5. Modos de treinamento
- 6. Critérios de parada
- 7. Métodos Ensemble

01

Inspiração biológica

- ➤ O cérebro é o principal órgão associado à inteligência e aprendizagem
- O cérebro é composto por uma rede complexa de aproximadamente 100 bilhões de neurônios interconectados
- Existem mais de 500 trilhões de conexões entre neurônios no cérebro humano
- Mesmo as maiores redes neurais artificiais de hoje não chegam perto do cérebro humano

Inspiração biológica

A unidade básica de uma rede neural é o neurônio artificial

Neurônios artificiais são modelados como neurônios biológicos do cérebro, nos quais são estimulados por entradas

Neurônio

Em 1943, McCullock e Pitts propuseram um modelo de neurônio artificial: perceptron

Modelo linear utilizado para classificação binária

Funções de ativação

Várias funções podem ser usadas como função de ativação (F_a)

Função Sigmóide:

$$f_a(z) = \frac{1}{1 + e^{-z}}$$

Funções de ativação

Várias funções podem ser usadas como função de ativação (F_a)

Função ReLU:

 $f_a(z) = max(0,z)$

Podemos usar o neurônio artificial para diferentes problemas

Ele nos fornece uma saída de acordo com as entradas

O resultado do processamento das entradas para fornecer uma saída é determinado pela função de ativação e pelos pesos

Gatos e cachorros:

	Peso	Altura	Classe
0	20	44	Cachorro
1	15	43	Cachorro
2	12	28	Cachorro
3	15	49	Cachorro
4	7	28	Gato
5	7	25	Gato
6	9	25	Gato
7	4	24	Gato

Dada a altura e o peso, vamos fazer o neurônio ter:

Saída 0 se for um gato

Saída 1 se for um cachorro

Rede Neural

02

Quais são os valores de w?

Podemos tentar encontrá-los manualmente, porém este é um processo complexo e muitas vezes inviável

Como não sabemos os pesos iniciais, vamos iniciá-los aleatoriamente

$$W_1 = 0.25$$

$$W_2 = 0.66$$

Em seguida, vamos calcular a saída para

$$x_1 = 7$$

$$x_2 = 28$$

Esperado	Obtido	Ajuste	Esperado - Obtido
0	0	-	0
0	1	Diminuir W	-1
1	0	Aumentar W	1
1	1	-	0

Para isso, eu preciso saber o erro, ou seja a diferença entre o valor esperado e o valor obtido

Quanto maior o erro, maior precisa ser o ajuste dos valores de w

Então, vamos atualizar **w**₁ da seguinte forma:

$$w_1 \leftarrow w_1 + \eta \ (esperado - obtido) \ x_1$$

Taxa de aprendizagem: controla o tamanho da atualização

Cada ajuste vai melhorando um pouco a rede neural

Vamos ajustar os pesos para cada um dos exemplos dos dados de treinamento

$$w_1 \leftarrow w_1 + \eta(esperado - obtido)x_1$$

$$w_2 \leftarrow w_2 + \eta(esperado - obtido)x_2$$

mınsaıt

Treinamento de todas as amostras do conjunto.

Esse número de vezes é chamado de **épocas**

Temos como resultado:

Usando o neurônio com a estrutura que fizemos, sempre teremos uma fronteira linear partindo da origem

➤ Para permitir que a fronteira possa se deslocar no eixo X, vamos adicionar uma entrada extra no neurônio chamada de **viés**

- O viés geralmente recebe 1 como entrada
- O peso dessa entrada segue o comportamento das outras

Viés (bias)

mınsaıt

Estrutura do perceptron

Função de ativação de Heaviside:
$$f(v) = \begin{cases} 0 & v < 0 \\ 1 & v > = 0 \end{cases}$$

Como vimos, o perceptron possui a limitação de criar apenas fronteiras lineares

Ele não consegue classificar bem um conjunto de dados dessa forma:

Rede neural

Rede neural

Rede neural

$$Z_1 = 0.5 \times 0.3 + 0.1 \times -1 = 0.049$$

$$A_1 = F_a(0.049) = 0.51$$

Rede neural

Treinando uma rede neural

O algoritmo é semelhante ao que fizemos para apenas um neurônio

Iniciamos os pesos de forma aleatória

Entramos com os dados de treinamento e comparamos o resultado da rede com o resultado esperado

Ajustamos os pesos de acordo com o erro

Treinando uma Rede neural

O valor de A₃ é a saída da rede. Podemos compará-lo diretamente com o resultado dos dados de treinamento

E para A₁ e A₂? Quais são os valores esperados? Não temos esses dados

Treinando uma Rede neural

Para treinar uma rede com multicamadas usamos o algoritmo backpropagation

Nele, vamos definir uma função que mede o erro da saída da rede

Também conseguimos calcular através do gradiente da função de erro, em qual sentido devemos ajustar os pesos para que o erro diminua

Correção de Erros

Correção de erros

Calculamos o erro para um exemplo através da função:

$$e_k = d_k - y_k$$

Onde:

e - Sinal de erro

d - Saída desejada apresentada durante o treinamento

y - Saída real da rede

Aprendizado por Correção de erros

- ➤ O processo de aprendizado por correção de erros utiliza algoritmos para caminhar sobre a curva de erros, com o intuito de alcançar o menor valor de erro possível, o mínimo global
- Muitas vezes o algoritmo não alcança este mínimo global, atingindo o que chamamos de mínimo local. Caso este erro alcançado seja desfavorável, é necessário recomeçar o processo de aprendizagem

Aprendizado por Correção de erros

Para correção do erro, os pesos devem ser ajustados de forma a aproximar a saída real à desejada

$$\Delta wi(n) = \eta e(n) xi(n)$$

Onde:

 \triangle wi(n) - Valor de ajuste a ser acrescido ao peso wi;

n - Taxa de aprendizagem (constante positiva);

e(n) - Valor do erro;

xi - Valor da entrada

Correção de erros

Encontrar o vetor (matriz) de pesos sinápticos (w*) que minimizem o erro (e) entre a saída da rede neural e a saída desejada

Backpropagation

Método do Gradiente

O método do gradiente (ou método do máximo declive) é um método numérico usado em otimização. Para encontrar um mínimo (local) de uma função usa-se um esquema iterativo, onde em cada passo se toma a direção (negativa) do gradiente, que corresponde à direção de declive máximo.

Backpropagation

Sinal de erro se origina em um neurônio de saída e se propaga para trás (camada por camada) através da rede

Correção dos pesos - Regra delta

Gradiente Local

Camada de saída

Camada oculta

Taxa de aprendizagem

Modos de treinamento: Estocástico, por lote e mini-lote

Modos de treinamento

Baseado na forma de atualização dos pesos, temos 3 modos de treinamento:

- Estocástico Ajuste de pesos é realizado após a apresentação de cada exemplo
- ➤ Por lote (batch) Ajuste de pesos é realizado após a apresentação de todo os exemplos à rede (fim da época)
- Mini-lote (mini-batch) Ajuste de pesos é realizado após a apresentação de um subconjunto de exemplos

Estocástico

Vantagens:

- > Ajuda a escapar de mínimos locais
- Mais simples de implementar
- ➤ Pode tirar vantagens de dados (exemplos) redundantes

Desvantagens:

- Estimar o erro baseado em um único exemplo não é uma boa aproximação do erro real
- Treinamento muito lento
- Mais difícil provar teoricamente que o algoritmo converge

Por lote (batch)

Vantagens:

- > Estimativa precisa do gradiente
- Convergência mais rápida sob condições simples
- Mais fácil de paralelizar

Desvantagens:

Pode ficar preso em mínimos locais

Por mini-lote (mini-batch)

Bom balanço entre o modo estocástico e o modo por lote:

- Convergência mais rápida (modo por lote)
- > Evita mínimos locais

Critérios de parada

Critérios de parada

Existem alguns critérios razoáveis para a convergência:

- > Vetor gradiente alcançar um limiar suficiente pequeno
- ➤ Taxa de variação do erro muito pequena entre as épocas (ex: menor que 1%)
- ➤ Rede apresenta um bom desempenho de generalização, ou seja, funciona bem com um outro conjunto de exemplos (conjunto de validação)

- Aumento no número de conexões implica em maior propensão a overfitting.
- ▶ Ex: RNA formada por 1 camada oculta contendo:

Aumento no número de camadas também aumenta a propensão a Overfitting.

Overfitting é um problema comum em DL.

- DL procura resolver problemas muito complexos com modelos complexos
 - Necessário tomar medidas para prevenir o overfitting.
 - Veremos algumas dessas medidas

Prevenção de Overfitting

- Medida 1: Não avalie seu modelo com os dados que você usou para treinar.
 - Divida seu conjunto em conjunto de treinamento e conjunto de testes.

Prevenção de Overfitting

- Medida 2: Crie também um conjunto de validação.
 - Use-o para avaliar o treinamento de época em época;
 - Se o desempenho continuar melhorando no treinamento mas piorando no conjunto de validação, é hora de parar.
 - Você está em OVERFITTING.

Dropouts

Durante o treinamento, mantém um neurônio ativo com uma probabilidade p.

Dropout

Uma das estratégias preferidas, em DL, para prevenir overfitting.

Força a rede a ter uma boa acurácia mesmo na ausência de certas informações.

 Evita que a rede se torne muito dependente de um (ou um conjunto de) neurônios.

Métodos Ensemble

Métodos Ensemble

Estes métodos constroem vários modelos de *machine learning*, utilizando o resultado de cada modelo na definição de um único resultado, obtendo-se assim um valor final único.

Isso significa que a resposta agregada de todos esses modelos é que será dada como o resultado final para cada dado que se está testando. Aqui estamos falando de algoritmos mais robustos e complexos, que envolvem mais operações, com um

custo computacional um pouco maior.

Métodos Ensemble - Funcionamento

Vamos imaginar que estamos trabalhando com algoritmos de árvores de decisão: ao invés de criar apenas uma árvore que classifique os dados, e depois utilizar um novo conjunto de dados para receber sua classificação para ver como essa árvore de decisão os classificará, vamos construir várias árvores de decisão, e agregar os resultados de todas elas num resultado final.

- 1. Maior quantidade de votos;
- 2. Usar os resultados de um algoritmo de uma árvore de decisão e, a partir dele, construir uma nova árvore que vai aprender com os erros da árvore anterior.

Métodos Ensemble - Funcionamento

Métodos Ensemble - Evolução dos algoritmos de árvore

Árvore de Decisão

Métodos Ensemble - Evolução dos algoritmos de árvore

Bootstrap aggregating or Bagging is a ensemble meta-algorithm combining predictions from multipledecision trees through a majority voting mechanism

Random Forest

Random Forest Classifier

Métodos Ensemble - Evolução dos algoritmos de árvore

Bootstrap aggregating or Bagging is a ensemble meta-algorithm combining predictions from multipledecision trees through a majority voting mechanism

Models are built sequentially by minimizing the errors from previous models while increasing (or boosting) influence of high-performing models

Gradient Boost

Métodos Ensemble - Evolução dos algoritmos de árvore

Bootstrap aggregating or Models are built sequentially Optimized Gradient Boosting Bagging is a ensemble meta-algorithm combining predictions from multipleby minimizing the errors from algorithm through parallel previous models while processing, tree-pruning, handling missing values and increasing (or boosting) influence of high-performing decision trees through a regularization to avoid majority voting mechanism models overfitting/bias Boosting **XGBoost Bagging** Gradient Decision Random Boosting **Trees Forest** Bagging-based algorithm where only a subset of **Gradient Boosting** A graphical employs gradient descent algorithm to representation of features are selected at possible solutions to a decision based on random to build a forest minimize errors in or collection of decision sequential models certain conditions trees

XGBoost

Referências

Inteligência Artificial - Aulas de Inteligência Artificial (google.com)

ARIA - YouTube

O que são Métodos Ensemble e como eles funcionam? (didatica.tech)

Aula-Ensemble-Learning.pdf (cefet-rj.br)

Desvendando IA e Machine Learning

Thaís Ratis

Diego Alexandre

Práticas Tecnológicas, 19.09.2023

