Denoising of the CSM

J. Antoni, A. Dinsenmeyer and Q. Leclère Laboratoire Vibrations Acoustique

February 2018

Context

CSM properties

$$oldsymbol{S}_p = rac{1}{N_s} \sum_i oldsymbol{p}_i oldsymbol{p}_i'$$

- ► Hermitian (conjugate symmetric)
- ► Positive semidefinite (nonnegative eigenvalues)

$$oldsymbol{S_p}_p = oldsymbol{S_a} + oldsymbol{S_n}_{ ext{measured CSM}}$$
 signal of interest unwanted noise

- ► Signal CSM : one eigenvalue for one incoherent source
- lacktriangle Noise CSM : off-diagonal elements ightarrow 0 with averaging

Denoising algorithms

Diagonal reconstruction

maximize
$$\sum_i \sigma_{n_i}$$
 subject to $m{S}_{pp} - \mathrm{diag}(m{\sigma}_n) \geq 0$

Solved with CVX Matlab toolbox citation

Robust Principal Component Analysis

minimize $\| \boldsymbol{S}_a \|_* + \lambda \| \boldsymbol{S}_n \|_1$ subject to $\boldsymbol{S}_{aa} + \boldsymbol{S}_{nn} = \boldsymbol{S}_{pp}$

Solved with proximal gradient algorithm

citation

Probabilistic Factorial Analysis

$$\mathbf{p} = \mathbf{L} \operatorname{diag}(\boldsymbol{\alpha}) \mathbf{C} + \operatorname{diag}(\boldsymbol{\sigma}^2)$$

$$L, C, \sigma^2 \sim \mathcal{N}(0, \Omega^2_{L,C,\sigma})$$
 and $\alpha \sim \mathcal{N}(\mu_\alpha, \Omega^2_\alpha)$

Solved with Gibbs sampling algorithm

Results