Einführung in die Geometrie und Topologie - Mitschrieb -

Übung im Wintersemester 2011/2012

Sarah Lutteropp

4. November 2011

Inhaltsverzeichnis

1	24.]	10.2011
	1.1	Induzierte Topologie
	1.2	Offen und abgeschlossen
	1.3	Basis der von der Standardmetrik auf dem \mathbb{R}^n definierten
		Topologie
	1.4	Teilraumtopologie
	1.5	Homotopieäquivalenz
2	31.	10.2011
	2.1	Universelle Eigenschaft der Teilraumtopologie
	2.2	Homöomorphismen
	2.3	Die Peano-Kurve

Vorwort

Dies ist ein Mitschrieb der Übung "Einführung in die Geometrie und Topologie" vom Wintersemester 2011/2012 am Karlsruher Institut für Technologie, die von Frau Dipl.-Math. Sandra Lenz gehalten wird.

Kapitel 1

24.10.2011

1.1 Induzierte Topologie

Definition 1.1 (Induzierte Topologie). Sei X eine Menge. Sei $d: X \times X \to \mathbb{R}$ eine Metrik. Diese Metrik d definiert durch folgende Bedingung eine Topologie \mathcal{O} auf X:

 $O \subseteq X$ ist genau dann offen (d.h. $O \in \mathcal{O}_d$), wenn für alle $x \in O$ ein $\epsilon > 0$ existiert mit

$$B_{\epsilon}(x) := \{ y \in X \mid d(x, y) < \epsilon \} \subseteq O.$$

 $(B_{\epsilon} nennt man offenen \epsilon - Ball.)$

1.2 Offen und abgeschlossen

Sei X eine Menge.

• Mengen können sowohl offen als auch abgeschlossen (zugleich) sein.

Beispiel 1.1. Betrachte \emptyset und X in der trivialen Topologie $\mathcal{O} = \{X, \emptyset\}.$

Es gilt: $X \in \mathcal{O}, \emptyset \in \mathcal{O}$ nach Definition, d.h. X und \emptyset sind offen. Außerdem gilt: $X^c = \emptyset \in \mathcal{O}$, ebenso: $\emptyset^c = X \in \mathcal{O}$, d.h. die Komplemente von X und \emptyset sind offen und somit X und \emptyset abgeschlossen.

- Mengen können weder offen noch abgeschlossen sein.
 - Beispiel 1.2. Betrachte \mathbb{R} mit der von der Standardmetrik induzierten Topologie. Es ist [0,1[nicht offen in dieser Topologie, denn für den Punkt 0 finden wir kein $\epsilon > 0$, so dass $B_{\epsilon}(0)$ in [0,1[liegt. Die Menge [0,1[ist aber auch nicht abgeschlossen, da ihr Komplement $\mathbb{R}\setminus[0,1[=]-\infty,0[\cup[1,\infty[$ nicht offen ist.
- Bilder offener Mengen unter stetigen Abbildungen müssen nicht notwendigerweise offen sein.

Beispiel 1.3. Betrachte \mathbb{R} mit der von der Standardmetrik induzierten Topologie.

Definiere $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$. Es gilt für die in \mathbb{R} offene Menge]-1,1[:f(]-1,1[)=[0,1[und [0,1[ist nicht offen in \mathbb{R} .

1.3 Basis der von der Standardmetrik auf dem \mathbb{R}^n definierten Topologie

$$\mathcal{B} = \{ B_{\frac{1}{m}}(x) \mid x \in \mathbb{Q}^n, m \in \mathbb{N} \}$$

Diese Basis ist abzählbar.

1.4 Teilraumtopologie

Es sei (X, \mathcal{O}) ein topologischer Raum, $A \subseteq X$. Die Teilraumtopologie (oder Spurtopologie) ist definiert durch

$$\mathcal{O}|_A := \{ U \cap A \mid U \in \mathcal{O} \}$$

Satz 1.1. In der Tat definiert $\mathcal{O}|_A$ eine Topologie auf A.

Beweis. •<u>z.z.</u>: Für jede Indexmenge I gilt: $\forall i \in I : O_i \in \mathcal{O}|_A \Rightarrow \bigcup_{i \in I} O_i \in \mathcal{O}|_A$. Sei I beliebige Indexmenge. Für alle $i \in I$ mit $O_i \in \mathcal{O}|_A$ gilt: Es existieren $\mathcal{U}_i \in \mathcal{O}$ mit $O_i = \mathcal{U}_i \cap A$. Es gilt:

$$\bigcup_{i \in I} O_i = \bigcup_{i \in I} (\mathcal{U}_i \cap A) = (\bigcup_{i \in I} \mathcal{U}_i) \cap A \in \mathcal{O}|_A$$

 $(\operatorname{da} \bigcup_{i \in I} \mathcal{U}_i \in \mathcal{O}).$

• $\underline{\mathbf{z}.\mathbf{z}.}$: $\forall O_1, O_2 \in \mathcal{O}|_A$: $O_1 \cap O_2 \in \mathcal{O}|_A$.

Seien $O_1, O_2 \in \mathcal{O}|_A$. Dann ex. $\mathcal{U}_1, \mathcal{U}_2 \in \mathcal{O}$ mit $O_i = \mathcal{U}_i \cap A, i \in \{1, 2\}$. Es gilt: $O_1 \cap O_2 = (\mathcal{U}_1 \cap A) \cap (\mathcal{U}_2 \cap A) = (\mathcal{U}_1 \cap \mathcal{U}_2) \cap A \in \mathcal{O}|_A$, da $\mathcal{U}_1 \cap \mathcal{U}_2 \in \mathcal{O}$.

• $\underline{\mathbf{z}}.\underline{\mathbf{z}}.$: $A, \emptyset \in \mathcal{O}|_A$.

Es gilt: $A = X \cap A \in \mathcal{O}|_A$, da $X \in \mathcal{O}$ nach Definition von \mathcal{O} .

Es gilt: $\emptyset = \emptyset \cap A \in \mathcal{O}|_A$, da $\emptyset \in \mathcal{O}$ nach Definition von \mathcal{O} .

1.5 Homotopieäquivalenz

Definition 1.2. Seien X, Y topologische Räume. X heißt homotopieäquivalent zu Y, falls es stetige Abbildungen $f \colon X \to Y$ und $g \colon Y \to \overline{X}$ gibt, so dass $f \circ g \simeq id_Y$ und $g \circ f \simeq id_X$.

Satz 1.2. $\mathbb{R}^n \setminus \{0\}$ ist homotopieäquivalent zur Sphäre S^{n-1} .

Beweis. Sei $f\colon S^{n-1}\hookrightarrow \mathbb{R}^n\backslash\{0\}, x\mapsto x$ (Inklusions abbildung). Dann ist f stetig.

Sei weiter $g \colon \mathbb{R}^n \setminus \{0\} \to S^{n-1}, x \mapsto \frac{x}{||x||}$. Dann ist auch g stetig und es gilt: $g \circ f = id_{S^{n-1}}$, also insbesondere $g \circ f \simeq id_{S^{n-1}}$.

Für $f \circ g$ betrachte folgende Abbildung:

$$H \colon \mathbb{R}^n \backslash \{0\} \times [0,1] \to \mathbb{R}^n \backslash \{0\}, (x,t) \mapsto (1-t) \frac{x}{||x||} + t \cdot x$$

Dann ist H stetig und es gilt für alle $x \in \mathbb{R} \setminus \{0\}$:

$$H(x,1) = x = id_{\mathbb{R}^n \setminus \{0\}}(x)$$

$$H(x,0) = \frac{x}{||x||} = (f \circ g)(x)$$

Dann ist H Homotopie von $f \circ g$ nach $id_{\mathbb{R}^n \setminus \{0\}}$ (in Zeichen: $f \circ g \simeq id_{\mathbb{R}^n \setminus \{0\}}$).

Kapitel 2

31.10.2011

2.1 Universelle Eigenschaft der Teilraumtopologie

Es sei (X, \mathcal{O}_X) ein topologischer Raum und $A \subseteq X$ versehen mit der Teilraumtopologie $\mathcal{O}_A = \{O \cap A \mid O \in \mathcal{O}_X\}$. Weiter sei $\iota \colon A \hookrightarrow X$ die Inklusionsabbildung und (Y, \mathcal{O}_Y) ein weiterer topologischer Raum.

Satz 2.1. Behauptung Eine Abbildung $\phi: Y \to A$ ist genau dann stetig, wenn die Komposition $\iota \circ \phi: Y \to X$ stetig ist.

Beweis. ' \Rightarrow ': Es sei $\phi: Y \to A$ stetig. [<u>z.z.</u>: $\iota \circ \phi$ ist stetig, d.h. $\forall O \in \mathcal{O}_X$: ($\iota \circ \phi$)⁻¹(O) $\in \mathcal{O}_Y$]

Sei $O \in \mathcal{O}_X$. Dann gilt $(\iota \circ \phi)^{-1}(O) = \phi^{-1}(\iota^{-1}(O))$ und es ist $\iota^{-1}(O) \in \mathcal{O}_A$, da ι stetig ist.

Es gilt somit $\phi^{-1}(\iota^{-1}(O)) \in \mathcal{O}_Y$, da ϕ stetig ist (nach Voraussetzung).

'⇐': Es sei ϕ : $Y \to A$ eine Abbildung, so dass $\iota \circ \phi$: $Y \to X$ stetig ist. [z.z.: ϕ ist stetig, d.h. $\forall O \in \mathcal{O}_A$: $\phi^{-1}(O) \in \mathcal{O}_Y$.]

Sei also $O \in \mathcal{O}_A$. Dann existiert $O' \in \mathcal{O}_X$, so dass $O = O' \cap A$. Es gilt: $\iota^{-1}(O') = O' \cap A = O$.

$$\phi^{-1}(O) = \phi^{-1}(O' \cap A) = \phi^{-1}\left(\iota^{-1}(O')\right) = (\iota \circ \phi)^{-1}(O') \in \mathcal{O}_Y, \text{ da } \iota \circ \phi \text{ stetig}$$
 (nach Voraussetzung).

Bemerkung 2.1. (Bemerkung in der Vorlesung) Die Teilraumtopologie ist die gröbste Topologie, bezüglich der die Inklusionsabbildung $\iota \colon A \hookrightarrow X$ stetig ist.

Beweis. Stetigkeit der Inklusionsabbildung: $[\underline{z}.\underline{z}.: \forall O \in \mathcal{O}_X : \iota^{-1}(O) \in \mathcal{O}_A]$ Sei $O \in \mathcal{O}_X$. Dann gilt $\iota^{-1}(O) = O \cap A \in \mathcal{O}_A$.

Beweis. Nichtstetigkeit in gröberen Topologien: [z.z.: $\mathcal{O}_A \not\subseteq \tilde{\mathcal{O}} \Rightarrow \exists O' \in \mathcal{O}_X : \iota^{-1}(O') \notin \tilde{\mathcal{O}}$]

Sei $\mathcal{O}_A \nsubseteq \tilde{\mathcal{O}} \Rightarrow \exists O \in \mathcal{O}_A \colon O \notin \tilde{\mathcal{O}}$. Dann $\exists O' \in \mathcal{O}_X \colon O = O' \cap A$. Damit ist aber $\iota^{-1}(O') = O' \cap A = O \notin \tilde{\mathcal{O}} \Rightarrow \iota \colon (A, \tilde{\mathcal{O}}) \to (X, \mathcal{O}_X)$ ist nicht stetig. \square

2.2Homöomorphismen

Zeigen Sie, dass für $a, b \in \mathbb{R}$ mit a < b das Intervall (a, b) homöomorph zum Intervall (0,1) ist, sowie dass (0,1) homöomorph ist zu \mathbb{R} .

Definiere $f:(a,b) \rightarrow (0,1), x \mapsto \frac{a-x}{a-b}$, und $g:(0,1) \rightarrow (a,b), x \mapsto$ $(1-x)\cdot a + x\cdot b.$

Es gilt für alle
$$x \in (a, b)$$
:
 $(g \circ f)(x) = g\left(\frac{a-x}{a-b}\right) = \left(1 - \frac{a-x}{a-b}\right)a + \frac{a-x}{a-b}b = \left(\frac{a-b-a+x}{a-b}\right)a + \frac{a-x}{a-b}b = \frac{x-b}{a-b}a + \frac{a-x}{a-b}b = \frac{ax-ab+ab-bx}{a-b} = x.$
Es gilt für alle $x \in (0, 1)$:
 $(f \circ g)(x) = f((1-x) \cdot a + x \cdot b) = \frac{a-((1-x)a+bx)}{a-b} = \frac{a-a+ax-bx}{a-b} = x.$ Somit

 $(f \circ g)(x) = f((1-x) \cdot a + x \cdot b) = \frac{a - ((1-x)a + bx)}{a - b} = \frac{a - a + ax - bx}{a - b} = x$. Somit ist f bijektiv. Da f und $g = f^{-1}$ stetig sind, gilt damit: f ist ein Homöomorphismus, d.h. $(a, b) \equiv (0, 1)$.

Definiere $h: (0,1) \to \mathbb{R}, x \mapsto \tan \left((x - \frac{1}{2})\pi \right)$.

 $f: [0,1) \to S^1, t \mapsto e^{2\pi i t} (= (\cos 2\pi t, \sin 2\pi t))$ ist kein Homöomorphismus (da die Umkehrabbildung nicht stetig ist).

(a) f ist stetig ...

(b) ... f^{-1} aber nicht.

2.3Die Peano-Kurve

(Guiseppe Peano, ~ 1890)

Satz 2.2. Es gibt eine surjektive, stetige Abbildung $I = [0,1] \rightarrow I \times I$.

Abbildung 2.1: Prinzip der Peano-Kurve

Verallgemeinerung

- Es gibt eine surjektive, stetige Abbildung $I \to I^n = I \times I \times ... \times I(n \in$ \mathbb{N}).
- Es gibt eine surjektive, stetige Abbildung $\mathbb{R} \to \mathbb{R}^n$.

Zugang mit Hilfe der Cantor-Menge $\mathcal C$

Definiere $f: \mathcal{C} \to I, f\left(\sum_{i=1}^{\infty} \frac{a_i}{3}\right) = \sum_{i=1}^{\infty} \frac{\frac{a_i}{2}}{2^i}$ für $a_i \in \{0, 2\}$. Dann ist f surjektiv und stetig.

Definiere $g: \mathcal{C} \to \mathcal{C} \times \mathcal{C}, g\left(\sum_{i=1}^{\infty} \frac{a_i}{3}\right) = \left(\sum_{i=1}^{\infty} \frac{a_{2i}}{3^i}, \frac{a_{2i+1}}{3^i}\right) =: (g_1, g_2) \text{ für } a_i \in$ $\{0, 2\}.$

Dann ist g surjektiv und stetig.

Es ist auch $h: \mathcal{C} \to I \times I, x \mapsto (f(g_1(x)), f(g_2(x)))$ surjektiv und stetig. Setze die Abbildung h durch lineare Fortsetzungen stetig auf I fort.