Cours Mathématiques 2

Chapitre 3 : Structures Algébrique

Dr. Imene Medjadj

CHAPITRE 1

Structures Algébriques

1. Lois De Composition Internes

DÉFINITION 1.1. Soit G un ensemble, on appelle loi interne sur G toute application de $G \times G$ dans G, on note souvent une loi interne par \star ou δ .

EXEMPLE 1.2. (1) L'addition est une loi interne sur \mathbb{R}

$$+: \mathbb{R} \times \mathbb{R} \longmapsto \mathbb{R}$$

$$(a,b) \longmapsto a+b.$$

(2) L'application

$$\star: \mathbb{R} - \{\frac{1}{2}\} \longmapsto \mathbb{R} - \{\frac{1}{2}\}$$

$$(a,b) \longmapsto a+b-2ab$$

est une loi interne dans $\mathbb{R} - \{\frac{1}{2}\}$, en effet : $\forall a,b \in \mathbb{R} - \{\frac{1}{2}\}$, montrons que $a+b-2ab \in \mathbb{R} - \{\frac{1}{2}\}$ plus précisement il faut prouver que $a+b-2ab \neq \frac{1}{2}$ car il est évident que $a+b-2ab \in R$, on va raisonner par l'absurde on suppose que $a+b-2ab = \frac{1}{2}$, sachant que $a \neq \frac{1}{2}$, et $b \neq \frac{1}{2}$:

 $a + b - 2ab = \frac{1}{2} \Rightarrow a(1 - 2b) + (b - \frac{1}{2}) = 0 \Rightarrow (\frac{1}{2} - b)(2a - 1) = 0 \Rightarrow a = \frac{1}{2} \lor b = \frac{1}{2}$

contradiction, alors ce qu'on a supposé est faux c'est à dire $a+b-2ab \neq \frac{1}{2}$, d'où $a \star b \in \mathbb{R} - \{\frac{1}{2}\}, \star$ est une loi interne.

DÉFINITION 1.3. Soit G un ensemble et \star une loi interne.

(1) \star est dite **commutative** si et seulement si :

$$\forall x,y \in G, x \star y = y \star x.$$

 $(2) \star est \ dite \ associative \ si \ et \ seulement \ si :$

$$\forall x,y,z \in G, x \star (y \star z) = (x \star y) \star z.$$

 $(3) \star admet \ un \ \'element \ neutre \ si \ et \ seulement \ si :$

$$\exists e \in G, \forall x \in G, x \star e = e \star x = x.$$

3

(4) Soit $x \in G$ on dit qu'un élément $x' \in G$ est l'élement symétrique ou inverse de x si et seulement si $x \star x' = x' \star x = e$, où $e \in G$ est l'élément neutre.

2. Groupes

Définition 2.1. On appelle groupe un ensemble G muni d'une loi ou opération ineterne \star telle que :

- (1) * admet un élément neutre.
- (2) Tout élément de G admet un élément symétrique dans G.
- $(3) \star est \ associative.$

Si de plus \star est commutatif, alors (G, \star) est un groupe commutatif ou abélien.

EXEMPLE 2.2. (1) $(\mathbb{Z}, +)$ est un groupe commutatif.

- (2) (IR, ×) n'est pas un groupe car 0 n'admet pas d'élément symétrique.
- (3) $(\mathbb{R}_{+}^{*}, \times)$ est un groupe commutatif.

3. Anneaux

DÉFINITION 3.1. Soit A un ensemble muni de deux lois de composition internes \star, δ , on dit que (A, \star, δ) est un anneau si :

- (1) (A, \star) est un groupe commutatif.
- $(2) \ \forall x, y, z \in A,$

$$x\delta(y \star z) = (x\delta y) \star (x\delta z) \ et(x \star y)\delta z = (x\delta z) \star (y\delta z),$$

distributivité à gauche et à droite.

(3) δ est associative.

Si de plus δ est commutative, on dit que (A, \star, δ) est un anneau commutatif. Si δ admet un élément neutre, on dit que (A, \star, δ) est un anneau unitaire.

EXEMPLE 3.2. $(\mathbb{Z}, +, \cdot)$ est un anneau commutatif et unitaire.

4. Corps

DÉFINITION 4.1. Soit IK un ensemble munie de deux lois de composition internes \star, δ , on dit que (IK, \star, δ) est un corps si:

- (1) (IK, \star , δ) est un anneau unitaire.
- (2) (IK $\{e\}, \delta$) est un groupe, où e est l'élément neutre de \star .

Si de plus δ est commutative, On dit que (IK, \star , δ) est un corps commutatif.

EXEMPLE 4.2. $(\mathbb{R}, +, \cdot)$ est un corps commutatif.

5. Exercice Corrigé

Exercice 1. Soit * une loi définie sur \mathbb{R} par :

$$x * y = xy + (x^2 - 1)(y^2 - 1)$$

- (1) Vérifier que * est commutative, non associative et admet un élément neutre.
- SOLUTION. (1) * est commutative si et seulement si : $\forall x, y \in \mathbb{R}/x * y = y * x$.

$$x * y = xy + (x^2 - 1)(y^2 - 1) = yx + (y^2 - 1)(x^2 - 1) = y * x.$$

Car le produit et la somme sont commutatives.

(2) * est non associative, on suppose que c'est associative c'est à dire :

$$\forall x, y, z \in \mathbb{R}, (x * y) * z = x * (y * z).$$

$$\begin{array}{lll} (x*y)*z & = & [xy+(x^2-1)(y^2-1)]*z\\ & = & (xy+(x^2-1)(y^2-1))z+(z^2-1)([xy+(x^2-1)(y^2-1)]^2-1)\\ & = & xyz+(x^2-1)(y^2-1)z+(z^2-1)x^2y^2+2(z^2-1)(x^2-1)(y^2-1)(xy)\\ & + & (z^2-1)(x^2-1)^2(y^2-1)^2-(z^2-1)...(1) \end{array}$$

$$\begin{array}{rcl} x*(y*z) & = & x*[yz+(y^2-1)(z^2-1)]\\ & = & x(yz+(y^2-1)(z^2-1))+(x^2-1)([yz+(y^2-1)(z^2-1)]^2-1)\\ & = & xyz+x(y^2-1)(z^2-1)+(x^2-1)y^2z^2+2(x^2-1)(y^2-1)(z^2-1)(yz)\\ & + & (x^2-1)(y^2-1)^2(z^2-1)^2-(x^2-1)...(2) \end{array}$$

contradiction (1) \neq (2) d'où * n'est pas associative

(3) * admet un élément neutre si et seulement si

$$\exists e \in \mathbb{R}, \forall x \in \mathbb{R}/x * e = e * x = x.$$

On prend juste une seule équation car la loi est commutative.

$$\forall x \in \mathbb{R}, \ x * e = x$$

$$\forall x \in \mathbb{R}, \ xe + (x^2 - 1)(e^2 - 1) = x$$

$$\forall x \in \mathbb{R}, \ (e - 1)(x + (x^2 - 1)(e + 1)) = 0$$

Alors on a

$$\begin{cases} e-1=0 \\ \forall x \in \mathbb{R}, x+(e+1)x^2-(e+1)=0 \end{cases}$$

On sait qu'un polynôme est nul $\forall x$ si tous ses coefficients sont tous nuls, et comme le coefficient de x est $1 \neq 0$ on déduit que le polynôme ne peut s'annuler, d'où e = 1 est vraie. e = 1 est l'élément neutre.

Dr. I.Medjadj