Laboratorio Nro. 5 Grafos

Alejandro Villada Toro

Universidad Eafit Medellín, Colombia avilladat@eafit.edu.co

Cristian Alzate Urrea

Universidad Eafit Medellín, Colombia calzateu@eafit.edu.co

3) Simulacro de preguntas de sustentación de Proyectos

3.1

El funcionamiento es bastante sencillo, lo que se hace primeramente es encontrar el nodo más lejano de la universidad, la cual está representada con el nodo 0, es decir se encuentra el nodo que tiene mayor arco con el nodo 0. Después se sacan todas las permutaciones posibles que cumplan con las condiciones del problema, es decir, que no superen el límite de tiempo y que no tengan más de cinco elementos; y se elige la permutación más larga para después añadirla a la lista solución. El proceso se repite con el siguiente nodo más lejano, pero con la condición de que la permutación mas larga elegida no debe contener ningún nodo que ya haya sido recorrido por una permutación anterior que ya haya sido añadida la lista solución, y además el nodo actual tampoco debe estar en la solucion. Esto se hace hasta que se hayan revisado cada uno de los nodos del grafo. Al final nos queda una lista de permutaciones, que cumplen con las condiciones dadas, y tiene la mínima longitud.

Se utilizo un grafo formado por matrices de adyacencia ya que durante el metodo se accede una gran cantidad de veces, por lo que era fundamental usar una estructura de datos que nos permitiera acceder en tiempo constante.

3.2

Ocuparía alrededor 300.000² espacios de memoria ya que se necesitaría una matriz de orden 300.000, es decir, 300.000 arreglos de tamaño 300.000.

3.3

En el momento en que se añade el arco entre dos nodos, se optó por ingresar ambos nodos restándole uno, lo que permitiría que el identificador iniciara en cero y que no ocurriera ningún problema al acceder a la matriz.

3.4

El tipo de grafo que elegimos fue la implementación con matrices de adyacencia, ya que durante el funcionamiento, se usa una gran cantidad de veces el metodo *getSuccessors*, el cual, aunque en ambas implementaciones su complejidad es O(n), en la práctica es mucho más rápida con las matrices de adyacencia.

PhD. Mauricio Toro Bermúdez

Grafo bicolorable

El hecho de que un grafo se pueda pintar con dos colores es equivalente a que el grafo sea bipartito, es decir, que no contenga ciclos con un número impar de nodos. Para saber si el grafo es bipartito se implementó un metodo recursivo basado en la búsqueda en profundidad(DFS), entre sus parámetros hay una lista que permite conocer los nodos visitados y el padre del nodo, para que no se devuelva, y si llega a un nodo que ya visito se considera un ciclo y se cuenta cuantos nodos se han visitado, en caso de que sea par, continua, y si no simplemente se intuye que no es bicolorable

3.5

La complejidad del algoritmo que nos permite conocer si un grafo es bicolorable esta dada por la ecuación de recurrencia T(n) = n + T(n-1), que al ser resuelta y al aplicar las reglas de producto y suma, nos queda que su complejidad asintótica es $O(n^2)$.

3.6

2.1. La complejidad asintótica es O(n²) donde n es el numero de nodos del grafo.

4) Simulacro de Parcial

4.1.

	0	1	2	3	4	5	6	7
0				1	1			
1	1		1			1		
2					1		1	
3								1
4			1					
5 6								
6			1					
7								

4.2.

 $0 \rightarrow [3,4]$

 $1 \rightarrow [0,2,5]$

3 -> [7]

4 -> [2]

5 -> []

6 -> [2]

7 -> []

4.3. B

4.4.

4.4.1. ii)

4.4.2. i)

PhD. Mauricio Toro Bermúdez

5) Lectura recomendada (opcional)

Mapa conceptual

6) Trabajo en Equipo y Progreso Gradual (Opcional)

Integrante	Fecha	rogreso Gradua Hecho	Haciendo	Por hacer
Cristian	1/10/2020	Primer vistazo del laboratorio		Realización del laboratorio
Alejandro	3/11/2020	Primer vistazo del laboratorio		Realización del laboratorio
Cristian	5/11/2020	La planeación del diseño del algoritmo para la solucion del punto 2.1	Diseñando el algoritmo para solucion del punto 2.1	realización de pruebas que determinen la correcta ejecución del algoritmo que da solucion al punto 2.1 además de la realización del resto del laboratorio.
Alejandro	5/11/2020	La planeación del diseño del algoritmo para la solucion del punto 2.1	Diseñando el algoritmo para solucion del punto 2.1	Realización de pruebas que determinen la correcta ejecución del algoritmo que da solucion al punto 2.1 además de la realización del resto del laboratorio.
Cristian	6/11/2020	Implementación del algoritmo que da solucion al punto 2.1	Planeación y diseño del algoritmo que da solucion al punto 1.1	Implementación pruebas del algoritmo que da solucion al punto 1.1

PhD. Mauricio Toro Bermúdez

Alejandro	6/11/2020	Implementación del algoritmo que da solucion al punto 2.1	Planeación y diseño del algoritmo que da solucion al punto 1.1	Implementación pruebas del algoritmo que da solucion al punto 1.1
Cristian	7/11/2020	Planeación y comienzo de la implementación del algoritmo que da solucion al punto 1.1	Implementando el algoritmo que da solucion al punto 1.1	Realización de ajustes y pruebas que determinen la correcta ejecución del algoritmo que da solucion al punto 1.1 además de la realización del simulacro de parcial.
Alejandro	7/11/2020	Planeación y comienzo de la implementación del algoritmo que da solucion al punto 1.1	Implementando el algoritmo que da solucion al punto 1.1	Realización de ajustes y pruebas que determinen la correcta ejecución del algoritmo que da solucion al punto 1.1 además de la realización del simulacro de parcial.
Cristian	8/11/2020	Realización de ajustes y pruebas al algoritmo que da solución al punto 1.1	Realizando el informe y el simulacro de parcial	Hacer la lectura del informe cada uno
Alejandro	8/11/2020	Realización de ajustes y pruebas al algoritmo que da solución al punto 1.1	Realizando el informe y el simulacro de parcial	Hacer la lectura del informe cada uno

PhD. Mauricio Toro Bermúdez

