UNIVERSITY OF TORONTO FACULTY OF ARTS AND SCIENCE

 $Test1,\,Feb\ 16,\,2024$

MAT224H1 S

Examiners: A. Berdnikov, A.Pirhosseinloo, D. Gorodkov, J. Garcia, N.Jung, M. Volpe

Duration: 100 mins

This test has 12 pages.

Total: 50 marks

NO AIDS ALLOWED

No marks will be given for a completely wrong solution.

- 1. (6 marks)Let $T: \mathbb{R}^4 \to W$ be a linear transformation. Suppose W is an n-dimensional vector space and $Ker(T) = span\{(1,1,1,1)\}.$
 - (a) (2 marks) Is T injective?
 - (b) (2 marks) Find the dimension of Im(T).
 - (c) (2 marks) If T is surjective, what is the dimension of W?

2. (4 marks) Let V and W be vector spaces over \mathbf{R} . Show that $T(\mathbf{0}_v) = \mathbf{0}_w$, where T is any linear mapping from V to W, and $\mathbf{0}_v$ and $\mathbf{0}_w$ are the additive identities of V and W respectively.

- **3.** (6 marks) Let $T: P_2(\mathbf{R}) \to M_{2\times 2}(\mathbf{R})$ be defined by $T(p(x)) = \begin{bmatrix} p(0) & p'(0) \\ p'(0) & p''(0) \end{bmatrix}$.
 - (a) (2 marks) Show that T is a linear transformation.

(b) (2 marks) Is T injective? Explain your answer.

(c) (2 marks) Is T surjective? Explain your answer.

4. (7 marks) Let $T: \mathbf{R}^2 \longrightarrow \mathbf{R}^2$ be a linear transformation with bases $\alpha = \{\mathbf{v}_1, \mathbf{v}_2\}$ and $\beta = \{(1, 1), (-2, 3)\}$ of domain and codomain respectively.

Suppose the coordinate matrix $[T]_{\alpha}^{\beta} = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$.

(a) (2 marks) Find $T(\mathbf{v}_1)$ and $T(\mathbf{v}_2)$.

(b) (2 marks) Find $T(-\mathbf{v}_1 + 2\mathbf{v}_2)$.

(c) (3 marks) If T is invertible, find $[T^{-1}]^{\alpha}_{\beta}$.

5. (7 marks) Suppose \mathbf{R}^2 has the standard vector structure and $(\mathbf{R}^+)^2$ has the following vector structure: for any $\mathbf{x} = (x_1, x_2), \mathbf{y} = (y_1, y_2) \in (\mathbf{R}^+)^2$, and any $c \in \mathbf{R}$,

$$\mathbf{x} + \mathbf{y} = (x_1 y_1, x_2 y_2) \text{ and } c \cdot \mathbf{x} = (x_1^c, x_2^c).$$

(a) (2 marks) Show that (1,1) is the additive identity of $(\mathbf{R}^+)^2$.

(b) (1 marks) Find the additive inverse of $(2,3) \in (\mathbf{R}^+)^2$.

(c) (4 marks) Let $T: \mathbf{R}^2 \to (\mathbf{R}^+)^2$ be defined by $T(x_1, x_2) = (e^{x_1}, e^{x_2})$. Show that T is a linear mapping.

- **6.** (3 marks) The following statement is false. Explain why it is false by providing a counterexample.
 - Let V be a vector space. If S_1 and S_2 are subspaces of V, then $S_1 \cup S_2$ is also a subspace of V.

7. (3 marks) Let $F(\mathbf{R})$ be the set of functions from \mathbf{R} to \mathbf{R} with standard vector addition and scalar multiplication and $S_1 = \{f \in F(\mathbf{R}) | f(x) = f(-x)\}$. Show that S_1 is a subspace of $F(\mathbf{R})$.

8. (6 marks) Let $T: V = \text{span}\{e^x, e^{2x}, e^{3x}\} \to \mathbf{R}^3$ be a linear transformation and $\alpha = \{e^x, e^{2x}, e^{3x}\}$ and $\beta = \{(1,0,0), (1,1,0), (1,1,2)\}$ be bases of V and \mathbf{R}^3 respectively.

Suppose
$$[T]_{\alpha}^{\beta} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$
.

(a) (1 marks) Find $Ker([T]^{\beta}_{\alpha})$.

(b) (1 marks) Find Ker(T).

(c) (2 marks) Find a basis of Im(T).

(d) (2 marks) Find a basis of V including the basis of $\mathrm{Ker}(T)$ in (b).

- **9.** (8 marks) Let V be a vector space over \mathbf{R} . Suppose $\alpha = \{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis of V.
 - (a) (4 marks) Show that $\beta = \{2\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_1 \mathbf{v}_2\}$ is a basis of V.

(b) (4 marks) Suppose $\mathbf{v} \in V$ and $[\mathbf{v}]_{\alpha} = (3,4)$. Find $[\mathbf{v}]_{\beta}$.