

CH32V20x_30x 数据手册

适用于 CH32V203/303/305/307/208xx V1.0

概述

CH32Vx 系列基于青稞 32 位 RISC-V 设计的工业级通用微控制器。全系产品配备了硬件堆栈区、快速中断入口,在标准 RISC-V 基础上大大提高了中断响应速度。CH32V208x 搭载 V4C 内核,加入内存保护功能,同时降低硬件除法周期。CH32V303/305/307 搭载 V4F 内核,加入单精度浮点指令集,扩充硬件堆栈区,具有更高的运算性能。产品资源上: 主频支持 144MHz, 独立了 GP10 供电,扩展串口 U(S) ART 数量到 8 组,电机定时器到 4 组,并提供 1 组 32 位的通用定时器。提供 USB2. 0 高速接口(480Mbps)并内置了 PHY 收发器,以太网 MAC 升级到千兆并集成了 10M-PHY 模块,支持蓝牙 BLE5. 3 无线等。

产品特性

● 内核 Core:

- 青稞 32 位 RISC-V 内核, 多种指令集组合
- 快速可编程中断控制器+硬件中断堆栈
- 分支预测、冲突处理机制
- 单周期乘法、硬件除法、硬件浮点
- 系统主频 144MHz

● 存储器:

- 可配最大 128KB 易失数据存储区 SRAM
- 可配 480KB 程序存储区 CodeFlash (零等待应用区+非零等待数据区)
- 28KB 系统引导程序存储区 BootLoader
- 128B 系统非易失配置信息存储区
- 128B 用户自定义信息存储区

● 电源管理和低功耗:

- 系统供电 V₂ 额定: 3.3V
- GPIO 单元独立供电 V₁。额定: 3.3V
- 低功耗模式: 睡眠、停止、待机
- V_{BAT} 电源独立为 RTC 和后备寄存器供电

● 系统时钟、复位

- 内嵌出厂调校的 8MHz 的 RC 振荡器
- 内嵌 40kHz 的 RC 振荡器
- 内嵌 PLL. 可选 CPU 时钟达 144MHz
- 外部支持 3~25MHz 高速振荡器
- 外部支持 32. 768kHz 低速振荡器
- 上/下电复位、可编程电压监测器
- 实时时钟 RTC: 32 位独立定时器
- 2组18路通用 DMA 控制器
- 18 个通道,支持环形缓冲区管理
- 支持 TIMx/ADC/DAC/USART/I2C/SPI/I2S/SDIO
- ◆ 4组运放、比较器: 连接 ADC 和 TIMx
- 2组12位数模转换 DAC
- 2组12位模数转换 ADC
- 模拟输入范围: V_{SSA}~V_{DDA}

- 16 路外部信号+2 路内部信号通道
- 片上温度传感器
- 双 ADC 转换模式
- 16 路 TouchKey 通道检测

● 多组定时器

- 4个16位高级定时器,增加死区控制和紧急 刹车,提供用于电机控制的PWM互补输出
- -3个16位通用定时器,提供输入捕获/输出比较/PWM/脉冲计数及增量编码器输入
- 1 个 32 位或 16 位通用定时器
- 2 个基本定时器
- 2 个看门狗定时器(独立和窗口型)
- 系统时基定时器: 64 位计数器

● 多种通讯接口:

- 8 个 USART 接口(包含 5 个 UART)
- 2个 I2C 接口(支持 SMBus/PMBus)
- 3 个 SPI 接口 (SPI2, SPI3 用于 I2S2, I2S3)
- USB2.0 全速设备接口(全速和低速)
- USB2.0 全速主机/设备接口
- USB2.0 全速 OTG 接口
- USB2.0 高速主机/设备接口(内置 PHY)
- 2组 CAN 接口(2.0B 主动)
- SDIO 主机接口(MMC、SD/SDIO 卡及 CE-ATA)
- FSMC 存储器接口
- 数字图像接口 DVP
- 千兆以太网控制器 MAC, 10M PHY 收发器
- 低功耗蓝牙 BLE5.3
- 快速 GPIO 端口
- 80 个 I/O 口,映像 16 个外部中断
- 安全特性: CRC 计算单元, 96 位芯片唯一 ID
- 调试模式:串行2线调试接口
- 封装形式: LQFP 和 QFN

第1章 系列产品说明

CH32Vx 系列产品是基于 32 位 RISC-V 指令集及架构设计的工业级通用增强型 MCU。其产品按照功能资源划分为通用、连接、无线等类别。它们之间以封装类别、外设资源及数量、引脚数目、器件特性高低上的差异相互延伸,但在软件和功能、硬件引脚配置上保持相互兼容,为用户在产品开发中进行产品迭代及快速应用提供了自由和方便。

有关此系列产品的器件特性及请参考数据手册《CH32V20x_30xDS0》。

有关产品各外设功能描述、使用方法及寄存器配置等详细信息请参考《CH32FV2x_V3xRM》。

数据手册和参考手册均可在沁恒官网下载: www. wch. cn

有关 RISC-V 指令集及架构的相关信息,可在"http://riscv.org"网站下载。

本手册为 CH32V20x 和 CH32V30x 系列产品数据手册。

表 1-1 系列产品概览

	ם שנואווים			1	1	ī		
中小容量通	通用型(V203)	大容量通	用型(V303)	连接型(V305)	互联型(V307)	无线型(V208)		
青穆	₹ V4B		青稞 V4F					
32K 闪存	64K 闪存	128K 闪存	256K 闪存	128K 闪存	256K 闪存	128K 闪存		
10K SRAM	20K SRAM	32K SRAM	64K SRAM	32K SRAM	64K SRAM	64K SRAM		
2*ADC (TKey) ADTM 2*GPTM 2*USART SPI 12C USBD USBHD CAN RTC 2*WDG 2*OPA	2*ADC (TKey) ADTM 3*GPTM 4*USART 2*SPI 2*12C USBD USBHD CAN RTC 2*WDG 2*OPA	2*ADC (TKey) 2*DAC ADTM 3*GPTM 3*USART 2*SPI 2*I2C USBHD CAN RTC 2*WDG 4*OPA	2*ADC (TKey) 2*DAC 4*ADTM 4*GPTM 2*BCTM 8*U (S) ART 3*SPI (2*I2S) 2*I2C USBHD CAN RTC 2*WDG 4*OPA TRNG SDIO FSMC	2*ADC (TKey) 2*DAC 4*ADTM 4*GPTM 2*BCTM 5*U(S) ART 3*SPI (2*12S) 2*12C USB-OTG USBHS (+PHY) 2*CAN RTC 2*WDG 4*OPA TRNG SDIO	2*ADC (TKey) 2*DAC 4*ADTM 4*GPTM 2*BCTM 8*U (S) ART 3*SPI (2*12S) 2*12C USB-OTG USBHS (+PHY) 2*CAN RTC 2*WDG 4*OPA TRNG SDIO FSMC DVP ETH-1000MAC 10M-PHY	ADC (TKey) ADTM 3*GPTM GPTM (32) 4*U (S) ART 2*SPI 2*I2C USBD USBHD CAN RTC 2*WDG 2*OPA ETH-10M (+PHY) BLE5. 1		

注: 同一类产品的某些外设数量或功能可能受封装限制,选择时请确认产品封装。

缩写

ADTM: 高级定时器 TKey: 触摸按键 USBHD: 全速主机/设备控制器 GPTM: 通用定时器 OPA: 运放、比较器 USBHS: 高速主机/设备控制器

 GPTM(32): 32 位通用定时器
 TRNG: 随机数发生器

 BCTM: 基本定时器
 USBD: 全速设备控制器

表 1-2 内核对比概览

特点 内核	指令集	硬件 堆栈 级数	中断 嵌套 级数	快速 中断 通道数	整数 除法 周期	向量表 模式	扩展 指令	内存 保护
V4B	IMAC	2	2	4	9	地址或指令	支持	无
V4C	IMAC	2	2	4	5	地址或指令	支持	标准
V4F	IMAFC	3	8	4	5	地址或指令	支持	标准

第2章 规格信息

CH32Vx 系列基于 RISC-V 指令架构设计的 32 位 RISC 内核 MCU, 工作频率 144MHz, 内置高速存储器, 系统结构中多条总线同步工作,提供了丰富的外设功能和增强型 I/0 端口。本系列产品内置 2 个 12 位 ADC 模块、2 个 12 位 DAC 模块、多组定时器、多通道触摸按键电容检测(TKey)等功能,还包含了标准和专用通讯接口: I2C、I2S、SPI、USART、SDIO、CAN 控制器、USB2. 0 全速主机/设备控制器、USB2. 0 高速主机/设备控制器(内置 PHY 收发器)、数字图像接口、千兆以太网控制器、低功耗蓝牙等。

产品工作额定电压为 3.3V,工作温度范围为-40°C~85°C工业级。支持多种省电工作模式来满足产品低功耗应用要求。系列产品中各型号在资源分配、外设数量、外设功能等方面有所差异,按需选择。提供了 LQFP48/QFN48/LQFP64M/LQFP100 等几种封装形式。可以广泛应用于:电机驱动和应用控制、医疗和手持设备、PC 游戏外设和 GPS 平台、可编程控制器、变频器、打印机、扫描仪、警报系统、视频对讲、暖气通风空调系统等场合。

2.1 型号对比

表 2-1 CH32V 通用型产品资源分配

产品型号 CH32V203x		01100								
		CH32V303x								
资源差异 C6T6 K8T6 C8T6 C8U6	CBT6	RBT6	RCT6	VCT6						
芯片引脚数 48 32 48 48	48	64	64	100						
闪存(字节) ¹ 32K 64K 64K 64K	128K	128K	256K ²	256K ²						
SRAM(字节) 10K 20K 20K 20K	32K	32K	64K	64K						
GPIO 端口数 37 27 37 37	37	51	51	80						
GP10 供电 与 V∞ 共用		ð	独立供电 V	/ 10						
高级(16位) 1 1 1 1	1	1	4	4						
定 通用(16位) 2 3 3 3	3	3	4	4						
时 基本 (16位) -			2	2						
器 看门狗 2 2 2 2	2	2	2	2						
系统时基(24 位)	支持									
RTC	支持									
ADC/TKey(单元/通道数) 2/10 2/10 2/10 2/10	2/10	2/16	2/16	2/16						
DAC(单元) -	2	2	2	2						
运放、比较器 2 2 2 2	4	4	4	4						
随机数发生器 -		_	1	1						
U(S) ART 2 3 3 3	3	3	8	8						
SPI 1 2 2 2	2	2	3	3						
通 I2S -		_	2	2						
信 I2C 1 2 2 2	2	2	2	2						
接 CAN 1 1 1 1	1	1	1	1						
□ SD10 -		_	1	1						
USB (FS) 2 1 (USBD) 2 (USBD+USBHD))	1 (US	SBHD)							
FSMC -		-		1						
CPU 主频 Max	Max: 144MHz									
额定电压	3. 3V									
工作温度 工业级:	工业级: -40°C~85°C									
<u>—— — — — — — — — — — — — — — — — — — —</u>			P64M	LQFP100						

注: 1. 闪存字节表示的是零等待运行区域 Romait, 非零等待区域对于 V303 型号是 480K- Romait

2. 256K FLASH+64K SRAM 的 307 产品支持用户选择字配置为(192K FLASH+128K SRAM)、(224K FLASH+96K SRAM)、(256K FLASH+64K SRAM)、(288K FLASH+32K SRAM)几种组合中的一种。

表 2-2 CH32V 连接/互联/无线型产品资源分配

12.2	2-2 UH32V 连接/ 互联				CH32V208						
\# \E	产品型号			V307	00117		1	l wou.			
分 源	差异	RBT6	RCT6	VCT6	GBU6	CBU6	RBT6	WBU6			
	芯片引脚数	64	64	100	28	48	64	68			
	闪存(字节)1	128K	256K ²	256K ²	128K ³	128K ³	128K ³	128K ³			
	SRAM(字节)	32K	64K ²	64K ²	64K ³	64K ³	64K ³	64K ³			
	GPI0 端口数	51	51	80	21	37	49	53			
	GP10 供电		独立供电 ٧	0		与 Ⅷ共用		独立 Vio			
	高级(16 位)	4 4 4		4	1	1	1	1			
定	通用(16位)	4	4	4	3	3	3	3			
世时	通用(32 位)		-		1	1	1	1			
器	基本(16位)	2	2	2		-	-				
ĦĀ	看门狗	2	2	2	2	2	2	2			
	系统时基(24位)				支持						
	RTC				支持						
ADC/	/TKey(单元/通道数)	2/16	2/16	2/16	1/8	1/16	1/16	1/16			
	DAC(单元)	2									
	运放、比较器	4	4	4	1	2	2	2			
	随机数发生器	1	1	1		-	_				
	U (S) ART	5	8	8	2	4	4	4			
	SPI	3	3	3	1	2	2	2			
	128	2	2	2		-	-				
	120	2	2	2	1	2	2	2			
通	CAN	2	2	2	1	1	1	1			
信	SDIO	1	1	1		-	-				
接	DVP	_	-	1		-	-				
П	USB (FS)		OTG		2 (USBD+USBHD)						
	USB (HS)		1								
	Ethernet	-	1G MAC+	10M PHY		10	OM				
	FSMC	-	-	1		-	_				
	BLE 5.1		_			支	 持				
	CPU 主频			N	Max: 144MH	Z					
	额定电压	3. 3V									
	工作温度			工业组	级: −40°C~	-85°C					
	封装形式	LQFP64M	LQFP64M	LQFP100	QFN28	QFN48	LQFP64M	QFN68			
							I .				

- 注:1. 闪存字节表示的是零等待运行区域 Romair,非零等待区域对于 V305、V307、V208 型号是 480K- Romair
- 2. 256K FLASH+64K SRAM 的 307 产品支持用户选择字配置为(192K FLASH+128K SRAM)、(224K FLASH+96K SRAM)、(256K FLASH+64K SRAM)、(288K FLASH+32K SRAM)几种组合中的一种。
- 3. 128K FLASH+64K SRAM 的 208 产品支持用户选择字配置为(128K FLASH+64K SRAM)、(144K FLASH+48K SRAM)、(160K FLASH+32K SRAM)几种组合中的一种。

2.2 系统架构

微控制器基于 RISC-V 指令集设计,其架构中将内核、仲裁单元、DMA 模块、SRAM 存储等部分通过 多组总线实现交互。设计中集成通用 DMA 控制器以减轻 CPU 负担、提高访问效率,应用多级时钟管理 机制降低了外设的运行功耗,同时兼有数据保护机制,时钟自动切换保护等措施增加了系统稳定性。 下图是系列产品内部总体架构框图。

图 2-1 系统框图

2.3 存储器映射表

图 2-2 存储器地址映射

2.4 时钟树

系统中引入 4 组时钟源:内部高频 RC 振荡器 (HSI)、内部低频 RC 振荡器 (LSI)、外接高频振荡器 (HSE)、外接低频振荡器 (LSE)。其中,低频时钟源为 RTC 和独立看门狗提供了时钟基准。高频时钟源直接或者间接通过 PLL 倍频后输出为系统总线时钟(SYSCLK),系统时钟再由各预分频器提供了 AHB域、APB1 域、APB2 域外设控制时钟及采样或接口输出时钟,部分模块工作需要由 PLL 时钟直接提供。

图 2-3 CH32V305/307 时钟树框图 40kHz to independent watchdog LSI RC OSC32 IN 32.768kHz RTCCLK ➤ to RTC OSC32 OUT LSE OSC 60MHz ► ETH-PHY /128 PLL3MUL → to I2S2 interface PLL3CLK *2.5,*4,*** ➤ to I2S3 interface *16,*20 PLL3VCO ★ to TRNG PREDIV2 PLL2MUL PREDIVISCR *2.5,*4,... /1,/2,... PREDIV1 /15,/16 *16,*20 PLLSCR ➤ XTI to MCO /1,/2,... ♥ PLL2VCO PLLMUL /15,/16 OSC_IN 3-25MHz *3,*4,... HSE OSC OSC_OUT /2 *16,*18 8MHz HSI RC SYSCIK HSI USB prescaler 48MHz USBCLK PLLCLK -/1,/2,/3 HSE USB /1,/2,··· ➤ OTGFSCLK CLKFLS48MHz CSS **HSPLI** /7,/8 USBHSPREDIV USB2.0 PHY OTGFSSCR HSPLLSCR 144MHz max MCO[3:0] /1,/2 to Flash prog IF HSE ► to AHB bus/core/memory/DMA HSI AHB prescaler /1,/2···/512 FCLK core free running clock PLLCLK/2 мсог → to Core System timer /8 PLL2CLK PLL3CLK/2 PLI3CLK APB1 prescaler ► to APB1 peripherals HCLK /1,/2…/16 XTI perpheral clock enable MII/RMII interface if(APB1 prescaler=1)*1 TIMxCLK to TIM2,3,4,5,6,7 MII_TXC → MACTXCLK else *2 perpheral clock enable MII RMII SEL in AFIO MAPR MII_RXC **►** MACRXCLK APB2 prescaler to Ethernet MAC PCLK2 ► to APB2 peripherals /1,/2…/16 perpheral clock enable GTXC RGMII_EN ADC prescaler ▶ GRXC ADCCLK to ADC1,2 GRXC /2,/4,/6,/8 ETH1G EN perpheral clock enable EXT 125M ETH1G 125M PLL2VCO if(APB2 prescaler=1)*1 TIMxCLK to TIM1,8,9,10 PLL3VCO else *2 ETH1G SRC **RGMII** interface perpheral clock enable

注: 当使用 USB 功能时, CPU 的频率必须是 48MHz 或 96MHz 或 144MHz。当系统从停机或待机状态唤醒时,系统会自动切换为 HSI 做主频。

图 2-5 CH32V208 时钟树框图

注: 当使用 USB 功能时, CPU 的频率必须是 48MHz 或 96MHz 或 144MHz。当系统从停机或待机状态唤醒时,系统会自动切换为 HSI 做主频。如果同时使用 USB 和 ETH 功能,需将 PLLCKR=SYSCLK 配置为 240M。

2.5 功能概述

2.5.1 RISC-V4B/4C/4F 处理器

产品基于 RISC-V 组织的规范设计出内核 V4B、V4C、V4F, 其中 V4B 和 V4C 支持 RISC-V 指令集 IMAC 子集, V4F 支持 RISC-V 指令集 IMAFC 子集,增加了单精度浮点运算。处理器内部以模块化管理,包含快速可编程中断控制器(FPIC)、内存保护、分支预测模式、扩展指令支持等单元。对外多组总线与外部单元模块相连,实现外部功能模块和内核的交互。RV32IMAFC 指令集,小端数据模式

处理器以其极简指令集、多种工作模式、模块化定制扩展等特点可以灵活应用不同场景微控制器 设计,例如小面积低功耗嵌入式场景、高性能应用操作系统场景等。

- 支持机器和用户特权模式
- 快速可编程中断控制器(FPIC)
- 多级硬件中断堆栈
- 串行2线调试接口
- 标准内存保护设计
- 静态或动态分支预测、高效跳转、冲突检测机制
- 自定义扩展指令

2.5.2 片上存储器及自举模式

内置最大 128K 字节 SRAM 区,用于存放数据,掉电后数据丢失。具体容量要对应芯片型号。

内置最大 480K 字节程序闪存存储区(Code FLASH),用于用户的应用程序和常量数据存储。其中包括零等待程序运行区域和非零等待区域。区域具体大小对应芯片型号。

内置 28K 字节系统存储区(System FLASH),用于系统引导程序存储(厂家固化自举加载程序)。 128 字节用于系统非易失配置信息存储区,128 字节用于用户选择字存储区。

在启动时,通过自举引脚(B00T0 和 B00T1)可以选择三种自举模式中的一种:

- 从程序闪存存储器自举
- 从系统存储器自举
- 从内部 SRAM 自举

自举加载程序存放于系统存储区,可以通过USART1和USB接口对程序闪存存储区的内容重新编程。

2.5.3 供电方案

- V_D = 2.4~3.6V: 为部分 I/0 引脚和内部调压器供电。
- $V_{10} = 2.4 \sim 3.6 V$: 为大部分 1/0 引脚供电以及以太网模块,决定了引脚输出高压幅值。正常工作时, V_{10} 电压不能高于 V_{20} 电压。
- V_{DDA} = 2.4~3.6V: 为高频 RC 振荡器、ADC、温度传感器、DAC 及 PLL 的模拟部分供电。V_{DDA} 电压必须和 V₁₀电压相同(如果 V_{DD} 掉电,V₁₀带电,则 V_{DDA} 必须带电并且和 V₁₀一致)。使用 ADC 时,V_{DDA} 不得小于 2.4V。
- V_{BAT} = 1.8~3.6V: 当关闭 V_{DD}时,(通过内部电源切换器)单独为 RTC、外部低频振荡器和后备寄存器供电。(注意 V_{BAT}供电)

2.5.4 供电监控器

本产品内部集成了上电复位 (POR) /掉电复位 (PDR) 电路,该电路始终处于工作状态,保证系统在供电超过 2.4V 时工作;当 V₁₀ 低于设定的阀值 (V_{POR/PDR}) 时,置器件于复位状态,而不必使用外部复位电路。

另外系统设有一个可编程的电压监测器(PVD),需要通过软件开启,用于比较 V_{10} 供电与设定的阀值 V_{PVD} 的电压大小。打开 PVD 相应边沿中断,可在 V_{10} 下降到 PVD 阈值或上升到 PVD 阈值时,收到中断通知。关于 $V_{POR/PDR}$ 和 V_{PVD} 的值参考第 4 章。

2.5.5 电压调节器

复位后,调节器自动开启,根据应用方式有三个操作模式

- 开启模式:正常的运行操作,提供稳定的内核电源
- 低功耗模式: 当 CPU 进入停止模式后,可选择调节器低功耗运行
- 关断模式: 当 CPU 进入待机模式后自动切换调节器到此模式,调压器输出为高阻状态,内核电路的供电切断,调压器处于零消耗状态。

该调压器在复位后始终处于开启模式,在待机模式下被关闭处于关断模式,此时是高阻输出。

2.5.6 低功耗模式

系统支持三种低功耗模式,可以针对低功耗、短启动时间和多种唤醒事件等条件下选择达到最佳 的平衡。

● 睡眠模式

在睡眠模式下,只有 CPU 时钟停止,但所有外设时钟供电正常,外设处于工作状态。此模式是最 浅低功耗模式,但可以达到最快唤醒。

退出条件:任意中断或唤醒事件。

● 停止模式

此模式 FLASH 进入低功耗模式, PLL、HSI 的 RC 振荡器和 HSE 晶体振荡器被关闭。在保持 SRAM 和 寄存器内容不丢失的情况下, 停止模式可以达到最低的电能消耗。

退出条件:任意外部中断/事件(EXTI信号)、NRST上的外部复位信号、IWDG复位,其中EXTI信号包括 16 个外部 I/O 口之一、PVD 的输出、RTC 闹钟、以太网唤醒信号或 USB 的唤醒信号。

● 待机模式

此模式下,系统主 LDO 关闭,由低功耗 LDO 给唤醒电路供电,其他数字电路全部断电,且 FLASH 处于断电状态。从待机模式唤醒系统会产生复位,同时 SBF (PWR_CSR)会置位。唤醒后,查询 SBF 状态可知唤醒前的低功耗模式,SBF 由 CSBF (PWR_CR)位清除。在待机模式下,32KB 的 SRAM 的内容可以保持(取决于睡前的规划配置),后备寄存器内容保留。

退出条件:任意外部中断/事件(EXTI 信号)、NRST 上的外部复位信号、IWDG 复位、WKUP 引脚上的一个上升边沿,其中 EXTI 信号包括 16 个外部 I/O 口之一、RTC 闹钟、以太网唤醒信号或 USB 的唤醒信号。

2.5.7 CRC(循环冗余校验)计算单元

CRC (循环冗余校验) 计算单元使用一个固定的多项式发生器,从一个 32 位的数据字产生一个 CRC 码。在众多的应用中,基于 CRC 的技术被用于验证数据传输或存储的一致性。在 EN/IEC 60335-1 标准的范围内,提供了一种检测闪存存储器错误的手段,CRC 计算单元可以用于实时地计算软件的签名,并与在链接和生成该软件时产生的签名对比。

2.5.8 快速可编程中断控制器(FPIC)

产品内置快速可编程中断控制器 (FPIC),最多支持 255 个中断向量,以最小的中断延迟提供了灵活的中断管理功能。当前产品管理了 8 个内核私有中断和 88 个外设中断管理,其他中断源保留。FPIC的寄存器均可以在用户和机器特权模式下访问。

- 88+3 个可单独屏蔽中断
- 提供一个不可屏蔽中断 NMI
- 支持硬件中断堆栈(HPE), 无需指令开销
- 提供 4 路免表中断 (VTF)
- 支持地址或指令模块的向量表模式
- 中断嵌套深度可配置最高8级
- 支持中断尾部链接功能

2.5.9 外部中断/事件控制器(EXTI)

外部中断/事件控制器总共包含 19 个边沿检测器,用于产生中断/事件请求。每个中断线都可以独立地配置其触发事件(上升沿或下降沿或双边沿),并能够单独地被屏蔽;挂起寄存器维持所有中断请求状态。EXTI 可以检测到脉冲宽度小于内部 APB2 的时钟周期。多达 80 个通用 I/0 口都可选择连接到16 个外部中断线。

2.5.10 通用 DMA 控制器

系统内置了 2 组通用 DMA 控制器,总共管理 18 个通道,灵活处理存储器到存储器、外设到存储器和存储器到外设间的高速数据传输,支持环形缓冲区方式。每个通道都有专门的硬件 DMA 请求逻辑,支持一个或多个外设对存储器的访问请求,可配置访问优先权、传输长度、传输的源地址和目标地址等。

DMA 用于主要的外设包括: 通用/高级/基本定时器 TIMx、ADC、DAC、I2S、USART、I2C、SPI、SDIO。 注: DMA1、DMA2 和 CPU 经过仲裁器仲裁之后对系统 SRAM 进行访问。

2.5.11 时钟和启动

系统时钟源 HSI 默认开启,在没有配置时钟或者复位后,内部 8MHz 的 RC 振荡器作为默认的 CPU 时钟,随后可以另外选择外部 3~25MHz 时钟或 PLL 时钟。当打开时钟安全模式后,如果 HSE 用作系统时钟(直接或间接),此时检测到外部时钟失效,系统时钟将自动切换到内部 RC 振荡器,同时 HSE 和 PLL 自动关闭;对于关闭时钟的低功耗模式,唤醒后系统也将自动地切换到内部的 RC 振荡器。如果使能了时钟中断,软件可以接收到相应的中断。

多个预分频器用于配置 AHB 的频率、高速 APB (APB2) 和低速 APB (APB1) 区域提供各外设时钟,最高频率 144MHz,参考图 2-3 的时钟树框图。I2S 单元的时钟来源另一个专用的 PLL (PLL3),这样,I2S 主时钟可产生 8kHz~192kHz 之间的所有标准的采样频率。

2.5.12 RTC (实时时钟) 和后备寄存器

RTC 和后备寄存器在系统内部处于后备供电区域,在 V_{10} 有效时由 V_{10} 供电,在 V_{10} 无效时内部自动 切换到由 V_{BAT} 引脚供电。

RTC 实时时钟是一组 32 位可编程计数器,时基支持 20 位预分频,用于较长时间段的测量。时钟基准来源高速的外部时钟128分频(HSE/128)、外部晶体低频振荡器(LSE)或内部低功耗RC振荡器(LSI)。其中 LSE 也存在后备供电区域,所以,当选择 LSE 做 RTC 时基下,系统复位或从待机模式唤醒后,RTC 的设置和时间能够保持不变。

后备寄存器最多包含 42 个 16 位寄存器,可以用来存储 84 字节的用户应用数据。此数据在待机唤醒后,或系统复位或电源复位时,都能继续保持。在侵入检测功能开启下,一旦侵入检测信号有效,将被清除后备寄存器中所有内容。

2.5.13 ADC (模拟/数字转换器) 和触摸按键电容检测 (TKey)

产品内嵌 2 个 12 位的模拟/数字转换器 (ADC), 共用多达 16 个外部通道和 2 个内部通道采样,可编程的通道采样时间,可以实现单次、连续、扫描或间断转换,且支持双 ADC 转换模式。提供模拟看门狗功能允许非常精准地监视一路或多路选中的通道,用于监视通道信号电压。支持外部事件触发转换,触发源包括片上定时器的内部信号和外部引脚。支持使用 DMA 操作。

ADC 内部通道采样包括一路内置温度传感器采样和一路内部参考电源采样。温度传感器产生一个随温度线性变化的电压。温度传感器在内部被连接到 IN16 输入通道上,用于将传感器的输出转换到数字数值。

触摸按键电容检测单元,提供了多达 16 个检测通道,复用 ADC 模块的外部通道。检测结果通过 ADC 模块转换输出结果,通过用户软件识别触摸按键状态。

2.5.14 DAC (数字/模拟转换器)

产品内嵌 2 个 12 位电压输出数字/模拟转换器 (DAC), 转换 2 路数字信号为 2 路模拟电压信号并输出,支持双 DAC 通道独立或同步转换,支持外部事件触发转换,触发源包括片上定时器的内部信号和外部引脚(EXTI 线 9)。可实现三角波、噪声生成。支持使用 DMA 操作。

2.5.15 定时器及看门狗

系统中的定时器包括高级定时器、通用定时器、基本定时器、看门狗定时器以及系统时基定时器。 系列中不同的产品包含的定时器数量有差异,具体参考表 2-2。

表 2-2 定时器比较

定印	寸器	分辨率	计数类型	时基	DMA	功能作用
	TIM1		向上			PWM 互补输出,单脉冲输出
高级	TIM8	16 位	向下	APB2 时域	支持	输入捕获
定时器	TIM9	10 <u> v</u>	向上/下	16 位分频器	719	输出比较
	TIM10					定时计数
	TIM2		⇔ L			检入技术
通用	TIM3	16 位	向上 向下	APB1 时域	支持	输入捕获 输出比较
定时器	TIM4		向上/下	16 位分频器		定时计数
	TIM5 ¹	16/32 位	14) 17/ 15			在門 I
基本	TIM6	16 位	向上	APB1 时域	支持	定时计数
定时器	TIM7	10 1	1-1)-1	16 位分频器	又1寸	在时间数
空口名	雪门狗	7 位	向下	APB1 时域	不支持	定时
図口1	∃I] 0HJ	7 14	יו נייו	4 种分频	小又玩	复位系统 (正常工作)
孙力	三门 狗	12 位	向下	APB1 时域	一 不支持	定时
独立看门狗 		12 17	יו נייו	7 种分频	小又玩	复位系统(正常+低功耗工作)
玄	基定时器	64 位	向上或下	SYSCLK 或	不支持	 定时
カマミルドリ	坐处門前	04 17	可工以下	SYSCLK/8	1. 又1寸	(CF)

注 1: TIM5 在 CH32V208 (无线型) 产品中为 32 位通用定时器。

● 高级控制定时器

高级控制定时器是一个 16 位的自动装载递加/递减计数器, 具有 16 位可编程的预分频器。除了完整的通用定时器功能外, 可以被看成是分配到 6 个通道的三相 PWM 发生器, 具有带死区插入的互补 PWM 输出功能, 允许在指定数目的计数器周期之后更新定时器进行重复计数周期, 刹车功能等。高级控制定时器的很多功能都与通用定时器相同, 内部结构也相同, 因此高级控制定时器可以通过定时器链接功能与其他 TIM 定时器协同操作, 提供同步或事件链接功能。

● 通用定时器

通用定时器是一个 16 位或 32 位的自动装载递加/递减计数器,具有一个可编程的 16 位预分频器 以及 4 个独立的通道,每个通道都支持输入捕获、输出比较、PWM 生成和单脉冲模式输出。还能通过 定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。在调试模式下,计数器可以 被冻结,同时 PWM 输出被禁止,从而切断由这些输出所控制的开关。任意通用定时器都能用于产生 PWM 输出。每个定时器都有独立的 DMA 请求机制。这些定时器还能够处理增量编码器的信号,也能处理 1至 3 个霍尔传感器的数字输出。

● 基本定时器

基本定时器是一个 16 位自动装载计数器,支持 16 位可编程预分频器。可以位数模转换(DAC)提供时钟,触发 DAC 的同步电路。基本定时器之间是互相独立的,互不共享任何资源。

● 独立看门狗

独立看门狗是一个自由运行的 12 位递减计数器,支持 7 种分频系数。由一个内部独立的 40kHz 的 RC 振荡器(LSI)提供时钟;因为 LSI 独立于主时钟,所以可运行于停止和待机模式。IWDG 在主程序之外,可以完全独立工作,因此,用于在发生问题时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过选项字节可以配置成是软件或硬件启动看门狗。在调试模式下,计数器可以被冻结。

● 窗口看门狗

窗口看门狗是一个7位的递减计数器,并可以设置成自由运行。可以被用于在发生问题时复位整个系统。其由主时钟驱动,具有早期预警中断功能;在调试模式下,计数器可以被冻结。

● 系统时基定时器

这是内核控制器自带的一个64位可选递增或递减的计数器,用于产生SYSTICK异常(异常号:15),可专用于实时操作系统,为系统提供"心跳"节律,也可当成一个标准的64位计数器。具有自动重加载功能及可编程的时钟源。

2.5.16 通讯接口

2.5.16.1 通用同步/异步收发器(USART)

产品提供了3组通用同步/异步收发器(USART1、USART2、USART3),以及5组通用异步收发器(UART4、UART5、UART6、UART7、UART8)。支持全双工异步通信、同步单向通信以及半双工单线通信,也支持LIN(局部互连网),兼容 ISO7816 的智能卡协议和 IrDA SIR ENDEC 传输编解码规范,以及调制解调器(CTS/RTS 硬件流控)操作。还允许多处理器通信。其采用分数波特率发生器系统,并支持 DMA 操作连续通讯。

2.5.16.2 串行外设接口(SPI)

最高 3 组串行外设 SPI 接口,提供主或从操作,动态切换。支持多主模式,全双工或半双工同步传输,支持基本的 SD 卡和 MMC 模式。可编程的时钟极性和相位,数据位宽提供 8 或 16 位选择,可靠通信的硬件 CRC 产生/校验,支持 DMA 操作连续通讯。

2.5.16.3 I2S(音频)接口

最高 2 组标准的 I^2 S 接口(与 SPI2 和 SPI3 复用)工作于主或从模式。软件可配置为 16/32 位数据包传输帧,支持音频采样频率从 B_1 8kHz 到 B_2 192kHz,支持 4 种音频标准。在主模式下,其主时钟可以以固定的 B_2 6倍音频采样频率输出到外部的 B_3 0 CODEC (解码器),支持 B_4 DMA。

2.5.16.4 I2C 总线

多达 2 个 I2C 总线接口, 能够工作于多主机模式或从模式, 完成所有 I2C 总线特定的时序、协议、仲裁等。支持标准和快速两种通讯速度, 同时与 SMBus 2. 0 兼容。

I2C 接口提供 7 位或 10 位寻址, 并且在 7 位从模式时支持双从地址寻址。内置了硬件 CRC 发生器 /校验器。可以使用 DMA 操作并支持 SMBus 总线 2.0 版/PMBus 总线。

2.5.16.5 控制器区域网络(CAN)

CAN 接口兼容规范 2.0A 和 2.0B(主动),波特率高达 1Mbits/s,支持时间触发通信功能。可以接

收和发送 11 位标识符的标准帧,也可以接收和发送 29 位标识符的扩展帧。具有 3 个发送邮箱和 2 个 3 级深度接收 FIF0。

具有 2 组 CAN 控制器的产品, 共享 28 个可设置的过滤器和 512 字节的 SRAM 存储器资源。

具有1组 CAN 控制器产品只有14个可设置的过滤器,并和USBD 模块共用一个专用的512字节 SRAM 存储器用于数据的发送和接收,当 USBD 和 CAN 同时使用时,为了防止访问 SRAM 冲突, USBD 只能使用低384字节空间。

2.5.16.6 通用串行总线(USBD)

产品内嵌 1 个 USB2. 0 全速控制器,遵循 USB2. 0 Full speed 标准。USBD 提供 16 个可配置的 USB 设备端点,支持低速设备和全速设备,支持控制/批量/同步/中断传输,双缓冲区机制,USB 挂起/恢复操作,具有待机/唤醒功能。USB 专用的 48MHz 时钟由内部主 PLL 分频直接产生。

2.5.16.7 通用串行总线 USB2.0 全速主机/设备控制器(USBHD)

USB2. 0 全速主机控制器和设备控制器(USBHD),遵循 USB2. 0 Fullspeed 标准。提供 16 个可配置的 USB 设备端点及一组主机端点。支持控制/批量/同步/中断传输,双缓冲区机制,USB 总线挂起/恢复操作,并提供待机/唤醒功能。USBHD 模块专用的 48MHz 时钟由内部主 PLL 分频直接产生(PLL 必须为144MHz 或 96MHz 或 48MHz)。

2.5.16.8 通用串行总线 USB2.0 全速 OTG (OTG-FS)

OTG_FS 是双重角色 USB 控制器,支持主机端和设备端的功能,兼容 On-The-Go Supplement to the USB2. 0 规范。同时,该控制器也可配置为仅支持主机端或仅支持设备端功能的控制器,兼容 USB2. 0 全速规范。控制器使用来自 PLL 分频得到的 48MHz 时钟,主要特性包括:

- 支持在(OTG_FS 控制器的物理层)USB On-The-Go Supplement, Revision1.3 规范中定义为可选项目 OTG 协议
- 通过软件可配置 USB 全速主机、USB 全速/低速设备、USB 双重角色设备
- 提供省电功能
- 支持控制传输、批量传输、中断传输、实时/同步传输
- 提供总线复位、挂起、唤醒和恢复功能

2.5.16.9 通用串行总线 USB2.0 高速主机/设备控制器(USBHS)

USB2. 0 高速控制器具有主机控制器和设备控制器双重角色,并且内嵌 USB-PHY 收发器单元。当作为主机控制器时,它可支持低速、全速和高速的 USB 设备。当作为设备控制器时,可以灵活设置为低速、全速或高速模式以适应各种应用。主要特性包括:

- 支持 USB 2.0、USB 1.1、USB 1.0 协议规范
- 支持控制传输、批量传输、中断传输、实时/同步传输
- 提供总线复位、挂起、唤醒和恢复功能
- 支持高速 HUB
- 设备模式下提供8组上下传输通道,支持配置16个端点号
- 除设备端点 0 外,其他端点均支持最大 1024 字节的数据包,可使用双缓冲功能

2.5.16.10 数字图像接口(DVP)

数字图像接口 DVP(Digital Video Port)用来连接摄像头模块获取图像数据流。提供了 8/10/12bit 并行接口方式通讯。支持按原始的行、帧格式组织的图像数据,如 YUV、RGB 等,也支持如 JPEG 格式的压缩图像数据流。接收时,主要依靠 VSYNC 和 HSYNC 信号同步。支持图像裁剪功能。

CH32V20x_30x 数据手册 16 <u>http://wch.cn</u>

2.5.16.11 SDIO 主机控制器

SDIO 主机接口提供了多媒体卡(MMC)、SD 存储卡、SDIO 卡以及 CE-ATA 设备的操作接口。支持 3 种不同的数据总线模式: 1 位(默认)、4 位和 8 位。在 8 位模式下,该接口可以使数据传输速率达到 48MHz。目前该接口全兼容多媒体卡系统规范 4. 2(向前兼容)、SD I/O 卡规范 2. 0、SD 存储卡规范 2. 0、CE-ATA 数字协议规范 1. 1。

2.5.16.12 可配置的静态存储器控制器(FSMC)

FSMC 接口主要提供了同步或异步存储器接口,支持 SRAM、PSRAM、NOR 及 NAND 等器件。内部 AHB 传输信号被转换成合适的外部通讯协议,允许 8/16/32 位数据的连续访问。并灵活可配置采样延迟时间以满足不同器件时序。

此外, FSMC 也可用于多数图形 LCD 控制器接口, 它支持 Intel 8080 和 Motorola 6800 的模式, 很方便地构建简易的图形应用环境,或用于专用加速控制器的高性能方案。

2.5.16.13 千兆以太网控制器(MAC, +10M PHY)

产品提供了符合 IEEE 802.3-2002 标准的千兆以太网控制器(MAC),充当数据链路层的角色,其 Link 速率最高支持 1Gbps,提供 MII/RMII/RGMII 接口连接外置的 PHY (千兆/百兆/速度自适应,内置 10M PHY 收发器),应用时,结合 TCP/IP 协议栈接口实现网络产品的开发。主要特性包括:

- 符合 IEEE. 802. 3 协议规范及设计
- 提供 RGMII、RMII、MII 接口,连接外置的以太网 PHY 收发器
- 支持全双工操作,支持 10/100/1000Mbps 的数据传输速率
- 硬件自动完成 IPv4 和 IPv6 包完整性校验, IP/ICMP/UDP/TCP 包校验和计算机帧长度填充
- 多种 MAC 地址过滤模式
- SMI 即可对外置 PHY 进行配置和管理

2.5.17 通用输入输出接口(GPIO)

系统提供了5组 GPI0 端口,共80个 GPI0 引脚。每个引脚都可以由软件配置成输出(推挽或开漏)、输入(带或不带上拉或下拉)或复用的外设功能端口。多数 GPI0 引脚都与数字或模拟的复用外设共用。除了具有模拟输入功能的端口,所有的 GPI0 引脚都有大电流通过能力。提供锁定机制冻结 I0 配置,以避免意外的写入 I/0 寄存器。

系统中大部分 10 引脚电源由 V_0 提供,通过改变 V_0 供电将改变 10 引脚输出电平高值来适配外部通讯接口电平。具体引脚请参考引脚描述。

2.5.18 随机数发生器(TRNG)

产品内嵌一个随机数发生器,它通过内部的模拟电路提供一个32位的随机数。

2.5.19 运放比较器(OPA)

产品内置 4 组运放/比较器,内部选择关联到 ADC 和 TIMx 外设,其输入和输出均可通过更改配置对多个通道进行选择。支持将外部模拟小信号被放大送入 ADC 以实现小信号 ADC 转换,也可以完成信号比较器功能,比较结果由 GP10 输出或者直接接入 TIMx 的输入通道。

2.5.20 串行 2 线调试接口(SDI Serial Debug Interface)

内核自带一个串行 2 线调试的接口,包括 SWD10 和 SWCLK 引脚。系统上电或复位后默认调试接口引脚功能开启。

第3章 引脚信息

3.1 引脚排列

3.1.1 互联型 V307

CH32V307VCT6

CH32V307RCT6

3.1.2 连接型 V305

CH32V305RBT6

3.1.3 大容量通用型 V303

CH32V303VCT6

CH32V303RxT6 CH32V303CBT6 VSS_3 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB4 PB3 PA14/SWCLK OIA VDD 1 VDD_2 VSS_2 VBAT 48 PC13/TAMPER-RTC PC14/OSC32IN PC15/OSC32OUT 46 PA13/SWDIO PA12/USB1DP PA11/USB1DM VBAT PC13/TAMPER_RTC OSC_IN/PD0 OSC_OUT/PD1 VDD_2 VSS 2 PA10 ■ @VDD power 10 10 12 13 NRST PC0/ADC10 PA9 PA8 PC14/OSC32IN PC15/OSC32OUT PA13/SWDIO PA12/USB1DP (a)VIO power PC9/TXN PC8/TXP PC7/RXN PC1/ADC11 PC2/ADC12 OSC_IN/PD0 OSC_OUT/PD1 @VDD&VIO power PA10 @VDD&VBAT power PC3/ADC13 PA9 PA8 NRST VSSA VDDA PC6/RXP PB15 @VDD&VBAT power 36 35 434 433 433 VDDA PB15 14 15 16 10 11 12 PA0/WKUP/ADC0 PA1/ADC1 PB14 PA0/WKUP/ADC0 PB14 PB13 PA1/ADC1 PB13 PA2/ADC2 PB12 PA2/ADC2 PB12 VSS 4 VDD-4 VDD-4 VDD-4 VDD-4 VDD-4 VDD-4 VDD-4 VDD-4 VDD-4 VDD-6 PA3/ADC3 PA4ADC4/DAC0 PA5/ADC4/DAC0 PA5/ADC5 PA6/ADC7 PA6/ADC7 PA6/ADC7 PA6/ADC7 PA7/ADC7 PB1/ADC9 PB1/BOOT1 PB10 VSS 1 VSS 1 -\frac{1}{2} = \frac{1}{2} \fr =\frac{1}{2}\frac{1}\frac{1}{2}\f

3.1.4 中小容量通用型 V203

CH32V203RBT6

VBAT 2 V 3 V 4 V 5 6 7 8 9 V 10 V 47 PC13/TAMPER-RTC PC14/OSC32IN NC PA13/SWDIO PC15/OSC32OUT OSC_IN OSC_OUT PA12/USB1DP PA11/USB1DM PA10 @VDD power NRST PA9 PC0/ADC10 PA8 @VIO power PC1/ADC11 PC2/ADC12 PC9/TXN PC8/TXP @VDD&VBAT power PC3/ADC13 PC7/RXN VSSA PC6/RXP 76 736 735 734 733 733 733 VDDA PB15 PA0/WKUP/ADC0 PB14 PA1/ADC1 PB13 PA2/ADC2 PB12 VDD_4 PA4ADC4DAC0 PA4ADC5DAC1 PA6ADC5 PA7ADC7 PC4ADC14 PC5ADC18 PB0ADC8 PB1ADC9 PB2BOOT1 PB2BOOT1 PB1B1 VSS_1 VSS_1

CH32V203CxT6

CH32V203CxU6

CH32V203K8T6

3.1.5 无线型 V208

CH32V208Wx

CH32V208Gx

CH32V208Rx

PD4
PA3ADC3
PA3ADC3
PA3ADC3
PA5ADC4
PA5ADC6
PA6ADC1
PA7ADC1
PC4ADC1
PC4ADC1
PB10
PB10
PB10
PB10
VIO_1

\$\frac{1}{2}\frac{1}\frac{1}{2}\f

CH32V208Cx

3.2 引脚描述

表 3-1 CH32V303_305_307xx 引脚定义

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差 异,查看前请先根据产品型号资源表确认是否有此功能。

			先根据产品型号 I	5页까不	初州人人	E首有此初月	ይ <u>。</u>	
	脚编		己田	引脚	1/0	士士华		
LQFP48	LQFP64M	LQFP100	引脚 名称	类型	0 电平	主功能(复位后)	默认复用功能	重映射功能
-	-	1	PE2	1/0	FT	PE2	FSMC_A23	TIM10_BKIN
_	_	2	PE3	1/0	FT	PE3	FSMC_A19	TIM10_CH1N
_	_	3	PE4	1/0	FT	PE4	FSMC_A20	TIM10_CH2N
_	_	4	PE5	1/0	FT	PE5	FSMC_A21	TIM10_CH3N
_	_	5	PE6	1/0	FT	PE5	FSMC_A22	
1	1	6	V_{BAT}	Р	-	V_{BAT}		
2	2	7	PC13- TAMPER-RTC ⁽²⁾	1/0	-	PC13 ⁽³⁾	TAMPER-RTC	TIM8_CH4
3	3	8	PC14- 0SC32_IN ⁽²⁾	1/0/A	ı	PC14 ⁽³⁾	0SC32_IN	TIM9_CH4
4	4	9	PC15- 0SC32_0UT (2)	1/0/A	I	PC15 ⁽³⁾	0SC32_0UT	TIM10_CH4
_	_	10	V _{SS_5}	Р	ı	$V_{\rm SS_5}$		
_	ı	11	$V_{ t DD_5}$	Р	1	$V_{ exttt{DD}_5}$		
5	5	12	OSC_IN	I/A	١	OSC_IN		PDO (4)
6	6	13	OSC_OUT	0/A	ı	OSC_OUT		PD1 (4)
7	7	14	NRST	1	_	NRST		
							ADC_IN10/TIM9_CH1N	
_	8	15	PC0	1/0/A	_	PC0	UART6_TX	
							ETH_RGMII_RXC	
							ADC_IN11/TIM9_CH2N	
							UART6_RX	
-	9	16	PC1	1/0/A	-	PC1	ETH_MII_MDC	
							ETH_RMII_MDC	
							ETH_RGMII_RXCTL	
							ADC_IN12/TIM9_CH3N	
_	10	17	PC2	1/0/A	-	PC2	UART7_TX/OPA3_CH1N	
							ETH_MII_TXD2	
							ETH_RGMII_RXD0	
							ADC_IN13/TIM10_CH3	
-	11	18	PC3	1/0/A	_	PC3	UART7_RX/OPA4_CH1N	
							ETH_MII_TX_CLK	
	4.0	40	V.			.,	ETH_RGMII_RXD1	
8	12	19	V _{SSA}	Р	_	V _{SSA}		
_	_	20	V_{REF^-}	Р	_	V_{REF^-}		

_	_	21	V_{REF^+}	Р	_	V_{REF^+}		
9	13	22	V _{DDA}	Р	-	V _{DDA}		
10	14	23	PAO-WKUP	1/0/A	-	PAO	WKUP/USART2_CTS ADC_INO/TIM2_CH1 TIM2_ETR/TIM5_CH1 TIM8_ETR/OPA4_OUTO ETH_MII_CRS_WKUP ETH_RGMII_RXD2	
11	15	24	PA1	1/0/A	-	PA1	USART2_RTS/ADC_IN1 TIM5_CH2/TIM2_CH2 OPA3_OUTO ETH_MII_RX_CLK ETH_RMII_REF_CLK ETH_RGMII_RXD3	TIM9_BKIN
12	16	25	PA2	1/0/A	-	PA2	USART2_TX/TIM5_CH3 ADC_IN2/TIM2_CH3 TIM9_CH1/TIM9_ETR OPA2_OUTO ETH_MII_MDIO ETH_RMII_MDIO ETH_RGMII_GTXC	
13	17	26	PA3	1/0/A	-	PA3	USART2_RX/TIM5_CH4 ADC_IN3/TIM2_CH4 TIM9_CH2/OPA1_OUTO ETH_MII_COL ETH_RGMII_TXEN	
-	18	27	$V_{\mathtt{SS_4}}$	Р	_	V_{SS_4}		
_	19	28	V_{DD_4}	Р	-	V_{DD_4}		
14	20	29	PA4	1/0/A	ı	PA4	SPI1_NSS/USART2_CK ADC_IN4/DAC_OUT1 TIM9_CH3/DVP_HSYNC	SP13_NSS 12S3_WS
15	21	30	PA5	I/0/A	-	PA5	SPI1_SCK/ADC_IN5 DAC_OUT2/OPA2_CH1N DVP_VSYNC	TIM10_CH1N USART1_CK
16	22	31	PA6	1/0/A	_	PA6	SPI1_MISO/TIM8_BKIN ADC_IN6/TIM3_CH1 OPA1_CH1N/DVP_PCLK	TIM1_BKIN UART7_TX TIM10_CH2N
17	23	32	PA7	I/0/A	-	PA7	SPI1_MOSI/TIM8_CH1N ADC_IN7/TIM3_CH2 OPA2_CH1P ETH_MII_RX_DV ETH_RMII_CRS_DV ETH_RGMII_TXDO	TIM1_CH1N UART7_RX TIM10_CH3N
_	24	33	PC4	1/0/A	-	PC4	ADC_IN14/TIM9_CH4 UART8_TX/OPA4_CH1P	

ETH_MII_RXD0 ETH_RMII_RXD0 ETH_RMII_RXD0 ETH_RGMII_TXD1
ETH_RGMII_TXD1
ADC_IN15/TIM9_BKIN UART8_RX/OPA3_CH1P ETH_MII_RXD1 ETH_RMII_RXD1 ETH_RGMII_TXD2 ADC_IN8/TIM3_CH3 TIM1_CH2N TIM9_CH1N UART4_TX BETH_MII_RXD2 ETH_MII_RXD2 ETH_RGMII_TXD3 ADC_IN9/TIM3_CH4 TIM8_CH3N/OPA4_CHON ETH_MII_RXD3 UART4_RX UART4_RX
Decomposition Property Prop
- 25 34 PC5 I/O/A - PC5 ETH_MII_RXD1 USART1_RTS ETH_RMII_RXD1 ETH_RGMII_TXD2 ADC_IN8/TIM3_CH3 TIM9_CH1N ETH_MII_RXD2 ETH_MII_RXD2 ETH_RGMII_TXD3 PB0 I/O/A - PB0 ADC_IN9/TIM3_CH4 TIM9_CH1N UART4_TX ADC_IN9/TIM3_CH4 TIM1_CH3N TIM9_CH2N UART4_RX UART4_RX
BTH_RMII_RXD1 ETH_RGMII_TXD2
B
18 26 35 PB0 I/O/A - PB0 ADC_IN8/TIM3_CH3 TIM1_CH2N TIM9_CH1N UART4_TX 19 27 36 PB1 I/O/A - PB1 ADC_IN9/TIM3_CH4 TIM8_CH3N/OPA4_CHON ETH_MII_RXD3 TIM1_CH3N TIM1_CH3N TIM1_CH3N TIM1_CH3N TIM1_CH3N TIM1_CH2N UART4_RX UART4_RX
18
18 26 35 PBO
ETH_MII_RXD2
ETH_RGMII_TXD3
19 27 36 PB1 I/O/A - PB1 TIM8_CH3N/OPA4_CHON
19 27 36 PB1 I/O/A - PB1 TIM8_CH3N/OPA4_CHON TIM9_CH2N UART4_RX
ETH_MII_RXD3 UART4_RX
FTH RGMII 125IN UAR14_RX
20 28 37 PB2 I/O FT PB2/B00T1 0PA3_CH0N TIM9_CH3N
38 PE7 I/O/A FT PE7 FSMC_D4/OPA3_OUT1 TIM1_ETR
39 PE8 I/O/A FT PE8 FSMC_D5/OPA4_OUT1 TIM1_CH1N/UART5_T
40 PE9 I/O FT PE9 FSMC_D6 TIM1_CH1/UART5_RX
41 PE10 I/0 FT PE10 FSMC_D7 TIM1_CH2N/UART6_T
42 PE11 I/O FT PE11 FSMC_D8 TIM1_CH2/UART6_RX
43 PE12 I/0 FT PE12 FSMC_D9 TIM1_CH3N/UART7_T
44 PE13 I/0 FT PE13 FSMC_D10 TIM1_CH3/UART7_RX
45 PE14 I/O/A FT PE14 FSMC_D11/OPA2_OUT1 TIM1_CH4/UART8_TX
46 PE15 I/O/A FT PE15 FSMC_D12/OPA1_OUT1 TIM1_BKIN/UART8_R
12C2_SCL/USART3_TX
21 29 47 PB10 I/O/A FT PB10 OPA2_CHON TIM2_CH3
ETH_MII_RX_ER TIM10_BKIN
I 2C2_SDA/USART3_RX
0PA1_CH0N TIM2_CH4
22 30 48 PB11 I/O/A FT PB11 STAT_STREET TIM10_ETR
ETH_RMII_TX_EN
23 31 49 V _{SS_1} P V _{SS_1}
- 32 50 V _{10_1} P V _{10_1}
24 V _{DD_10_1} P V _{DD_10_1}
SP12_NSS/12S2_WS
12C2_SMBA/USART3_CK
25 33 51 PB12 I/O/A FT PB12 TIM1_BKIN/OPA4_CHOP
CAN2_RX/ETH_MII_TXDO
ETH_RMII_TXDO
SP12_SCK/12S2_CK
26 34 52 PB13 I/O/A FT PB13 USART3_CTS/TIM1_CH1N

							ETH_MII_TXD1	
							ETH_RMII_TXD1	
27	35	53	PB14	1/0/A	FT	PB14	SPI2_MISO/TIM1_CH2N	
							USART3_RTS/OPA2_CHOP	
28	36	54	PB15	1/0/A	FT	PB15	SP12_MOS1/12S2_SD	USART1_TX
							TIM1_CH3N/OPA1_CHOP	
								USART3_TX/TIM9_CH1N
_	_	55	PD8	1/0	FT	PD8	FSMC_D13	ETH_MII_RX_DV
								ETH_RMII_CRS_DV
								USART3_RX
_	_	56	PD9	1/0	FT	PD9	FSMC_D14	TIM9_CH1/TIM9_ETR
								ETH_MII_RXD0
								ETH_RMII_RXD0
								USART3_CK/TIM9_CH2N
_	-	57	PD10	1/0	FT	PD10	FSMC_D15	ETH_MII_RXD1
								ETH_RMII_RXD1
_	_	58	PD11	1/0	FT	PD11	FSMC_A16	USART3_CTS/TIM9_CH2
		00		17 0		1011	1 01110_7110	ETH_MII_RXD2
								TIM4_CH1/TIM9_CH3N
_	-	59	PD12	1/0	FT	PD12	FSMC_A17	USART3_RTS
								ETH_MII_RXD3
_	-	60	PD13	1/0	FT	PD13	FSMC_A18	TIM4_CH2/TIM9_CH3
_	-	61	PD14	1/0	FT	PD14	FSMC_DO	TIM4_CH3/TIM9_BKIN
_	-	62	PD15	1/0	FT	PD15	FSMC_D1	TIM4_CH4/TIM9_CH4
	37	63	DC4	1./0	FT	DC4	I2S2_MCK/TIM8_CH1	TIM2 CU1
_	37	03	PC6	1/0	ГІ	PC6	SDIO_D6/ETH_RXP	TIM3_CH1
	20	4.4	D07	1./0	ГТ	D07	12S3_MCK/T1M8_CH2	TIMO OUO
_	38	64	PC7	1/0	FT	PC7	SDIO_D7/ETH_RXN	TIM3_CH2
	20	, [D00	1.70	ГТ	DOO	TIM8_CH3/SDIO_DO	TIMO OUO
_	39	65	PC8	1/0	FT	PC8	ETH_TXP/DVP_D2	TIM3_CH3
	40		200			500	TIM8_CH4/SDIO_D1	T1110 0114
_	40	66	PC9	1/0	FT	PC9	ETH_TXN/DVP_D3	TIM3_CH4
							USART1_CK	
29	41	67	PA8	1/0	FT	PA8	TIM1_CH1/MCO	
							USART1 TX/TIM1 CH2	
30	42	68	PA9	1/0	FT	PA9	OTG_FS_VBUS/DVP_D0	USART1_RTS
							USART1_RX/TIM1_CH3	
31	43	69	PA10	1/0	FT	PA10	OTG_FS_ID/DVP_D1	USART1_CK
							USART1_CTS/USBDM	
32	44	70	PA11	1/0/A	FT	PA11	CAN1_RX/TIM1_CH4	
	• •			., 5, 11	- •		OTG_FS_DM	
							USART1_RTS/USBDP	
33	45	71	PA12	1/0/A	FT	PA12	CAN1_TX/TIM1_ETR	
	+0	' '	17112	1, 0, 1		17.12	TIM10_CH1N	
							TIMITO_OITIN	

							OTG_FS_DP	
34	46	72	PA13	1/0	FT	SWD10	TIM10_CH2N	PA13/TIM8_CH1N
_	-	73					 未使用	
35	47	74	V _{SS_2}	Р	_	V _{ss_2}		
36	48	75	V_{DD_2}	Р	_	V _{DD_2}		
37	49	76	PA14	1/0	FT	SWCLK	TIM10_CH3N	TIM8_CH2N/UART8_TX PA14
38	50	77	PA15	1/0	FT	PA15	SP13_NSS 12S3_WS	TIM2_CH1/TIM2_ETR PA15/SPI1_NSS TIM8_CH3N/UART8_RX
_	51	78	PC10	1/0	FT	PC10	UART4_TX/SDI0_D2 TIM10_ETR/DVP_D8	USART3_TX SP13_SCK/12S3_CK
_	52	79	PC11	1/0	FT	PC11	UART4_RX/SDI0_D3 TIM10_CH4/DVP_D4	USART3_RX SPI3_MISO
_	53	80	PC12	1/0	FT	PC12	UART5_TX/SDIO_CK TIM10_BKIN/DVP_D9	USART3_CK SP13_MOS1/12S3_SD
-	ı	81	PD0	1/0/A	FT	PD0	FSMC_D2	CAN1_RX/TIM10_ETR
-	ı	82	PD1	1/0/A	FT	PD1	FSMC_D3	CAN1_TX/TIM10_CH1
-	54	83	PD2	1/0	FT	PD2	TIM3_ETR/UART5_RX SDIO_CMD/DVP_D11	
ı	1	84	PD3	1/0	FT	PD3	FSMC_CLK	USART2_CTS TIM10_CH2
-	ı	85	PD4	1/0	FT	PD4	FSMC_NOE	USART2_RTS
_	-	86	PD5	1/0	FT	PD5	FSMC_NWE	USART2_TX TIM10_CH3
_	-	87	PD6	1/0	FT	PD6	FSMC_NWAIT/DVP_D10	USART2_RX
_	-	88	PD7	1/0	FT	PD7	FSMC_NE1 FSMC_NCE2	USART2_CK TIM10_CH4
39	55	89	PB3	1/0	FT	PB3	SP13_SCK 12S3_CK	TIM2_CH2/SPI1_SCK TIM10_CH1
40	56	90	PB4	1/0	FT	PB4	SP13_MISO	TIM3_CH1 SPI1_MISO/UART5_TX TIM10_CH2
41	57	91	PB5	1/0	FT	PB5	I2C1_SMBA/SPI3_MOSI I2S3_SD ETH_MII_PPS_OUT ETH_RMII_PPS_OUT	TIM3_CH2/SPI1_MOSI CAN2_RX TIM10_CH3 UART5_RX
42	58	92	PB6	1/0	FT	PB6	I2C1_SCL/TIM4_CH1 USBHD_DM/DVP_D5 USBHS_DM	USART1_TX CAN2_TX TIM8_CH1
43	59	93	PB7	1/0	FT	PB7	I2C1_SDA/FSMC_NADV TIM4_CH2/USBHD_DP USBHS_DP	USART1_RX TIM8_CH2
44	60	94	B00T0	I	_	B00T0		

		1		1				
							TIM4_CH3/SD10_D4	12C1_SCL/CAN1_RX
45	61	95	PB8	1/0/A	FT	PB8	TIM10_CH1/DVP_D6	UART6_TX
							ETH_MII_TXD3	TIM8_CH3
46	62	96	PB9	1/0/A	FT	PB9	TIM4_CH4/SDIO_D5	12C1_SDA/CAN1_TX
40	02	90	PD9	1/U/A	ГІ	PD9	TIM10_CH2/DVP_D7	UART6_RX
-	_	97	PE0	1/0	FT	PE0	TIM4_ETR/FSMC_NBL0	UART4_TX
-	_	98	PE1	1/0	FT	PE1	FSMC_NBL1	UART4_RX
47	63	99	V _{SS_3}	Р	_	V _{SS_3}		
	64	100	V _{10_3}	Р	_	V _{10_3}		
48	ı	_	$V_{DD_10_3}$	Р		$V_{DD_10_3}$		

表 3-2 CH32V203xx 引脚定义

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差 异,查看前请先根据产品型号资源表确认是否有此功能。

开,	旦百	, אי ניח	无根据产品型 包	שאוואינע	· H/TI 1/ \ /	EHHUNN	E 0	
引	脚编	号						
LQFP32	LQFP48/QFN48	LQFP64M	引脚 名称	引脚 类型	1/0 电平	主功能(复位后)	默认复用功能	重映射功能
-	0	-						
-	1	1	V_{BAT}	Р	-	V_{BAT}		
_	2	2	PC13- TAMPER-RTC ⁽²⁾	1/0	_	PC13 ⁽³⁾	TAMPER-RTC	
_	3	3	PC14- 0SC32_IN ⁽²⁾	I/0/A	-	PC14 ⁽³⁾	0SC32_IN	
_	4	4	PC15- OSC32_OUT (2)	1/0/A	-	PC15 ⁽³⁾	0SC32_0UT	
2	5	5	OSC_IN	I/A	-	OSC_IN		PDO ⁽⁴⁾
3	6	6	OSC_OUT	0/A	-	OSC_OUT		PD1 (4)
4	7	7	NRST	1	-	NRST		
_	-	8	PC0	1/0/A	-	PC0	ADC_IN10	
_	-	9	PC1	1/0/A	-	PC1	ADC_IN11	
_	_	10	PC2	1/0/A	-	PC2	ADC_IN12	
_	-	11	PC3	1/0/A	-	PC3	ADC_IN13	
	8	12	$V_{\sf SSA}$	Р	_	$V_{\sf SSA}$		
5	9	13	V_{DDA}	Р	_	V_{DDA}		
6	10	14	PAO-WKUP	1/0/A	_	PAO	WKUP/USART2_CTS ADC_INO/TIM2_CH1 TIM2_ETR/TIM5_CH1	
7	11	15	PA1	I/0/A	_	PA1	USART2_RTS/ADC_IN1 TIM2_CH2/TIM5_CH2	
8	12	16	PA2	I/0/A	_	PA2	USART2_TX/ADC_IN2 TIM2_CH3/OPA2_OUTO	

							TIM5_CH3	
							USART2_RX/ADC_IN3	
9	13	17	PA3	1/0/A	_	PA3	TIM2_CH4/OPA1_OUTO	
	.0	.,	1710	17 07 11		1710	T1M5_CH4	
_	-	18	V _{SS_4}	Р	_	V _{SS_4}		
_	_	19	V _{DD_4}	P		V _{DD_4}		
		.,	₹ 00_4			₹ 00_4	SPI1 NSS/USART2 CK	
10	14	20	PA4	1/0/A	-	PA4	ADC IN4/OPA2 OUT1	
							SPI1_SCK/ADC_IN5	
11	15	21	PA5	1/0/A	-	PA5	0PA2_CH1N	USART1_CK
							SPI1_MISO/ADC_IN6	
12	16	22	PA6	1/0/A	-	PA6	TIM3_CH1/OPA1_CH1N	TIM1_BKIN
							SPI1_MOSI/ADC_IN7	
13	17	23	PA7	1/0/A	-	PA7	TIM3_CH2/OPA2_CH1P	TIM1_CH1N
_	-	24	PC4	1/0/A		PC4	ADC IN14	
_	_	25	PC5	1/0/A		PC5	ADC_IN15	USART1_RTS
		25	P05	1/0/A		P05	ADC_IN8/TIM3_CH3	TIM1_CH2N
14	18	26	PB0	1/0/A	-	PB0	OPA1 CH1P	UART4_TX
							_	
15	19	27	PB1	1/0/A	_	PB1	ADC_IN9/TIM3_CH4	TIM1_CH3N
_	20	20	DDO	1./0	ГТ	DD2 /D00T4	OPA1_OUT1	UART4_RX
	20	28	PB2	1/0	FT	PB2/B00T1	LOOP COL /HEADTO TV	
-	21	29	PB10	1/0/A	FT	PB10	1202_SCL/USART3_TX	TIM2_CH3
							OPA2_CHON	
_	22	30	PB11	1/0/A	FT	PB11	12C2_SDA/USART3_RX	TIM2_CH4
1.7	22	24	V	_		V	OPA1_CHON	
16	23	31	V _{ss_1}	Р		V _{SS_1}		
47	-	32	V _{10_1}	Р		V _{10_1}		
17	24	_	V _{DD_10_1}	Р		V _{DD_10_1}	0010 N00 (1000 OND)	
_	25	33	PB12	1/0/A	FT	PB12	SP12_NSS/12C2_SMBA	
							USART3_CK/TIM1_BKIN	
_	26	34	PB13	1/0/A	FT	PB13	SP12_SCK/USART3_CTS	
							TIM1_CH1N	
_	27	35	PB14	1/0/A	FT	PB14	SPI2_MISO/TIM1_CH2N	
							USART3_RTS/OPA2_CHOP	
-	28	36	PB15	1/0/A	FT	PB15	SPI2_MOSI/TIM1_CH3N	USART1_TX
		07	D0/	1 /0 /4	ГТ	DO/	OPA1_CHOP	TIMO OUA
_	_	37	PC6	1/0/A	FT	PC6	ETH_RXP	TIM3_CH1
_	-	38	PC7	1/0/A	FT	PC7	ETH_RXN	TIM3_CH2
_	_	39	PC8	1/0/A	FT	PC8	ETH_TXP	TIM3_CH3
_	-	40	PC9	1/0/A	FT	PC9	ETH_TXN	TIM3_CH4
18	29	41	PA8	1/0	FT	PA8	USART1_CK	
							TIM1_CH1/MCO	
19	30	42	PA9	1/0	FT	PA9	USART1_TX/TIM1_CH2	USART1_RTS
20	31	43	PA10	1/0	FT	PA10	USART1_RX/TIM1_CH3	USART1_CK

21	32	44	PA11	1/0/A	FT	PA11	USART1_CTS/USBDM	
							CAN1_RX/TIM1_CH4	
22	33	45	PA12	1/0/A	FT	PA12	USART1_RTS/USBDP	
22	33	45	PAIZ	1/0/A	гі	PAIZ	CAN1_TX/TIM1_ETR	
23	34	46	PA13	1/0	FT	SWDIO		PA13
-	35	47	V_{SS_2}	Р	_	$V_{\rm SS_2}$		
-	36	48	$V_{ t DD_2}$	Р	-	V_{DD_2}		
24	37	49	PA14	1/0	FT	SWCLK		PA14
25	20		DA4E	1./0	СТ	DA45		TIM2_CH1/TIM2_ETR
25	38	50	PA15	1/0	FT	PA15		SPI1_NSS
_	_	51	PC10	1/0	FT	PC10	UART4_TX	USART3_TX
_	-	52	PC11	1/0	FT	PC11	UART4_RX	USART3_RX
_	-	53	PC12	1/0	FT	PC12		USART3_CK
_	1	54	PD2	1/0	FT	PD2		
26	39	55	PB3	1/0	FT	PB3		TIM2_CH2/SPI1_SCK
27	40	56	PB4	1/0	FT	PB4		TIM3_CH1/SPI1_MISO
28	41	57	PB5	1/0	FT	PB5	I2C1_SMBA	TIM3_CH2/SPI1_MOSI
	4.0		/				I2C1_SCL/TIM4_CH1	
29	42	58	PB6	1/0	FT	PB6	USBHD_DM	USART1_TX
	4.0						I2C1_SDA	
30	43	59	PB7	1/0	FT	PB7	TIM4_CH2/USBHD_DP	USART1_RX
31	44	60	B00T0	I	_	B00T0		
_	45	61	PB8	1/0/A	FT	PB8	TIM4_CH3	12C1_SCL/CAN1_RX
_	46	68	PB9	1/0/A	FT	PB9	TIM4_CH4	I2C1_SDA/CAN1_TX
32	47	63	V _{SS_3}	Р	_	V _{SS_3}		
_	1	64	V _{10_3}	Р	_	V _{10_3}		
1	48	ı	V _{DD_10_3}	Р	-	V _{DD_10_3}		

表 3-3 CH32V208xx 引脚定义

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差 异,查看前请先根据产品型号资源表确认是否有此功能。

	引脚	编号			⊐ l o+n				
QFN28	0FN48	MF944M	89NJ0	引脚 名称	引脚 类型	1/0 电平	主功能 默认复用功能		重映射功能
0	0	-	0	V _{ss}	Р	-	V_{ss}		
28	48	1	1	V_{BAT}	Р	1	V_{BAT}		
-	1	2	2	PC13- TAMPER-RTC ⁽²⁾	1/0	ı	PC13 ⁽³⁾	TAMPER-RTC	
_	2	3	3	PC14- 0SC32_IN ⁽²⁾	1/0/A	1	PC14 ⁽³⁾	0SC32_IN	
_	3	4	4	PC15- 0SC32_0UT ⁽²⁾	1/0/A	_	PC15 ⁽³⁾	0SC32_0UT	

1	4	5	5	OSC_IN	I/A	_	OSC_IN		
2	5	6	6	OSC_OUT	0/A	_	OSC_OUT		
3	6	7	7	NRST	ı	_	NRST		
_	_	8	8	PC0	1/0/A	_	PC0	ADC_IN10	
_	_	9	9	PC1	1/0/A	_	PC1	ADC_IN11	
_	_	10	10	PC2	1/0/A	_	PC2	ADC_IN12	
_	_	11	11	PC3	1/0/A	_	PC3	ADC_IN13	
_	7	12	12	V _{SSA}	Р	_	V _{SSA}		
4	8	13	13	$V_{ exttt{DDA}}$	Р	-	V_{DDA}		
5	9	14	14	PAO-WKUP	1/0/A	-	PAO	WKUP/USART2_CTS ADC_INO/TIM2_CH1 TIM2_ETR/TIM5_CH1	
6	10	15	15	PA1	1/0/A	-	PA1	USART2_RTS/ADC_IN1 TIM5_CH2/TIM2_CH2	
7	11	16	16	PA2	1/0/A	ı	PA2	USART2_TX/TIM5_CH3 ADC_IN2/TIM2_CH3 OPA2_OUTO	
_	-	ı	17	V _{10_4}	Р	ı	V _{10_4}		
_	-	ı	18	PD4	1/0	FT	PD4		
8	12	17	19	PA3	I/0/A	ı	PA3	USART2_RX/TIM5_CH4 ADC_IN3/TIM2_CH4 OPA1_OUT0	
_	_	18		V _{SS_4}	Р	-	V _{SS_4}		
_	_	19	-	$V_{\text{DD_IO_4}}$	Р	-	V _{DD_10_4}		
9	13	20	20	PA4	1/0/A	-	PA4	SPI1_NSS/USART2_CK ADC_IN4/OPA2_OUT1	
10	14	21	21	PA5	1/0/A	ı	PA5	SPI1_SCK/ADC_IN5 OPA2_CH1N	USART1_CK
11	15	22	22	PA6	1/0/A	1	PA6	SPI1_MISO/ADC_IN6 TIM3_CH1/OPA1_CH1N	TIM1_BKIN
12	16	23	23	PA7	1/0/A	-	PA7	SPI1_MOSI/ADC_IN7 TIM3_CH2/OPA2_CH1P	TIM1_CH1N
_	-	24	24	PC4	1/0/A	_	PC4	ADC_IN14	
_	-	25	25	PC5	1/0/A	-	PC5	ADC_IN15	USART1_RTS
-	17	26	26	PB0	1/0/A	ĺ	PB0	ADC_IN8/TIM3_CH3 OPA1_CH1P	TIM1_CH2N UART4_TX
-	18	27	27	PB1	1/0/A	-	PB1	ADC_IN9/TIM3_CH4 OPA1_OUT1	TIM1_CH3N UART4_RX
-	19	28	28	PB2	1/0	FT	PB2/B00T1		
_	20	29	29	PB10	1/0/A	FT	PB10	12C2_SCL/USART3_TX OPA2_CHON	TIM2_CH3
-	21	30	30	PB11	1/0/A	FT	PB11	12C2_SDA/USART3_RX OPA1_CHON	TIM2_CH4
		31	_	V _{SS_1}	Р		V _{SS_1}		

13	22	32	_	$V_{DD_I0_1}$	Р		$V_{DD_10_1}$		
-	_	JZ _	31	V _{10_1}	P		V _{10_1}		
_	_	-	32		P				
	_	_	33	V _{DD_1} PD5	1/0	FT	V _{DD_1} PD5		
	_		34						
	_	_	34	PD6	1/0	FT	PD6	CD12 NCC/1202 CMDA	
	23	33	35	DD12	1/0/4	гт	DD12	SP12_NSS/12C2_SMBA	
-	23	33	35	PB12	1/0/A	FT	PB12	USART3_CK	
								TIM1_BKIN	
	24	24	27	DD4.0	1 /0 /4	гт	DD4.0	SPI2_SCK	
-	24	34	36	PB13	1/0/A	FT	PB13	USART3_CTS	
								TIM1_CH1N	
								SPI2_MISO	
-	25	35	37	PB14	1/0/A	FT	PB14	TIM1_CH2N	
								USART3_RTS	
								OPA2_CHOP	
	24	24	20	DD1 <i>E</i>	1/0/A	гт	DD1 <i>E</i>	SPI2_MOSI	LICADTA TV
-	26	36	38	PB15	1/U/A	FT	PB15	TIM1_CH3N	USART1_TX
1.4	_	27	20	DO.4	1./0	ГТ	D04	OPA1_CHOP	T I M 2 OU 4
14		37	39	PC6	1/0	FT	PC6	ETH_RXP	TIM3_CH1
15	_	38	40	PC7	1/0	FT	PC7	ETH_RXN	TIM3_CH2
16	-	39	41	PC8	1/0	FT	PC8	ETH_TXP	TIM3_CH3
17	-	40	42	PC9	1/0	FT	PC9	ETH_TXN	TIM3_CH4
_	27	41	43	PA8	1/0	FT	PA8	USART1_CK	
								TIM1_CH1/MCO	
_	28	42	44	PA9	1/0	FT	PA9	USART1_TX/TIM1_CH2	USART1_RTS
-	29	43	45	PA10	1/0	FT	PA10	USART1_RX/TIM1_CH3	USART1_CK
18	30	44	46	PA11	1/0/A	FT	PA11	USART1_CTS/USBDM	
								CAN1_RX/TIM1_CH4	
19	31	45	47	PA12	1/0/A	FT	PA12	USART1_RTS/USBDP	
								CAN1_TX/TIM1_ETR	
20	32	46	48	PA13	1/0	FT	SWDIO		PA13
-	35	-	49	V _{SS_2}	Р	-	V _{SS_2}		
21	33	47	50	VINTA	Р	-	VINTA		
22	34	48	51	ANT	Α	_	ANT		
23	36	49	52	PA14	1/0	FT	SWCLK		PA14
24	37	50	53	PA15	1/0	FT	PA15		TIM2_CH1/TIM2_ETR
24	37	50	JJ	FAID	1/0	1" 1	CINT		SPI1_NSS
-	-	51	54	PC10	1/0	FT	PC10	UART4_TX	USART3_TX
_	-	52	55	PC11	1/0	FT	PC11	UART4_RX	USART3_RX
-	-	53	56	PC12	1/0	FT	PC12		USART3_CK
-	-	54	57	PD2	1/0	FT	PD2		
-	38	55	58	PB3	1/0	FT	PB3		TIM2_CH2/SPI1_SCK
_	39	56	59	PB4	1/0	FT	PB4		TIM3_CH1/SPI1_MISO
_	40	57	60	PB5	1/0	FT	PB5	I2C1_SMBA	TIM3_CH2/SPI1_MOSI

25	41	58	61	PB6	1/0	FT	PB6	I2C1_SCL/TIM4_CH1 USBHD_DM	USART1_TX
26	42	59	62	PB7	1/0	FT	PB7	12C1_SDA TIM4_CH2/USBHD_DP	USART1_RX
27	43	60	63	B00T0	1	_	B00T0		
-	44	61	64	PB8	1/0/A	FT	PB8	TIM4_CH3	12C1_SCL/CAN1_RX
-	45	62	65	PB9	1/0/A	FT	PB9	TIM4_CH4	I2C1_SDA/CAN1_TX
-	_	_	66	PD3	1/0	FT	PD3		
-	46	63	_	V _{SS_3}	Р	-	V _{SS_3}		
28	47	64	_	V _{DD_10_3}	Р	-	V _{DD_10_3}		
-	_	-	67	V _{10_3}	Р	-	V _{10_3}		
_	-	-	68	V_{DD_3}	Р	-	V _{DD_3}		

注1: 表格缩写解释

I = TTL/CMOS 电平斯密特输入;

0 = CMOS 电平三态输出;

A = 模拟信号输入或输出;

P = 电源;

FT = 耐受5V;

ANT = 射频信号输入输出(天线);

注2: PC13, PC14和PC15引脚通过电源开关进行供电,而这个电源开关只能够吸收有限的电流(3mA)。因此这三个引脚作为输出引脚时有以下限制:在同一时间只有一个引脚能作为输出,作为输出脚时只能工作在2MHz模式下,最大驱动负载为30pF,并且不能作为电流源(如驱动LED)。

注3: 这些引脚在备份区域第一次上电时处于主功能状态下,之后即使复位,这些引脚的状态由备份区域寄存器控制(这些寄存器不会被主复位系统所复位)。关于如何控制这些10口的具体信息,请参考CH32FV2x V3xRM手册的电池备份区域和BKP寄存器的相关章节。

注4: LQFP64M封装的引脚5和引脚6在芯片复位后默认配置为0SC_IN和0SC_OUT功能脚。软件可以重新设置这两个引脚为PD0和PD1功能。但对于LQFP100封装,由于PD0和PD1为固有的功能引脚,因此没有必要再由软件进行重映像设置。CH32V203RBT6只有0SC_IN和0SC_OUT功能脚,不能复用为PD0和PD1功能。更多详细信息请参考CH32FV2x_V3xRM手册的复用功能I/0章节和调试设置章节。

第4章 电气特性

4.1 测试条件

除非特殊说明和标注,所有电压都以Vss为基准。

所有最小值和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。典型数值是基于常温 25° C和 $V_{00} = 3.3V$ 环境下用于设计指导。

对于通过综合评估、设计模拟或工艺特性得到的数据,不会在生产线进行测试。在综合评估的基础上,最小和最大值是通过样本测试后统计得到。除非特殊说明为实测值,否则特性参数以综合评估或设计保证。

供电方案:

图 4-1 常规供电典型电路

4.2 绝对最大值

临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏。

表 4-1 绝对最大值参数表

符号	対最大値参数表 描述	最小值	最大值	单位
T _A	工作时的环境温度	-40	85	°C
Ts	存储时的环境温度	-40	125	°C
V _{DD} -V _{SS}	外部主供电电压(包含 V _{DDA} 和 V _{DD})	-0. 3	4. 0	٧
V ₁₀ -V _{SS}	10 域端供电电压	-0. 3	4. 0	٧
V	FT(耐受 5V)引脚上的输入电压	V _{ss} -0. 3	5. 5	٧
V _{IN}	其他引脚上的输入电压	V _{ss} -0. 3	V _{DD} +0. 3	
$ \triangle V_{DD_x} $	不同主供电引脚之间的电压差		50	mV
$ \triangle V_{10_x} $	不同 10 端供电引脚之间的电压差		50	mV
$ \triangle V_{ss_x} $	不同接地引脚之间的电压差		50	mV
V _{ESD (HBM)}	ESD 静电放电电压(人体模型,非接触式)		4K	٧
I _{VDD}	经过 V _{DD} /V _{DDA} /V _{ID} 电源线的总电流(供应电流)		150	
I _{Vss}	经过 Vss 地线的总电流(流出电流)		150	
	任意 1/0 和控制引脚上的灌电流		25	
I 10	任意 1/0 和控制引脚上的输出电流		-25	mA
	NRST 引脚注入电流		+/-5	
I INJ (PIN)	HSE 的 OSC_IN 引脚和 LSE 的 OSC_IN 引脚注入电流		+/-5	
	其他引脚的注入电流		+/-5	

Σ I INJ (PIN)

4.3 电气参数

4.3.1 工作条件

表 4-2 通用工作条件

符号	参数	条件	最小值	最大值	单位
F _{HCLK}	内部 AHB 时钟频率			144	MHz
F _{PCLK1}	内部 APB1 时钟频率			144	MHz
F _{PCLK2}	内部 APB2 时钟频率			144	MHz
V	 标准工作电压		2. 4	3. 6	٧
$V_{ extsf{DD}}$	秋/连二1F电压 	使用 USB 或 ETH	3. 0	3. 6	V
V 10	大部分 10 引脚输出电压	V₀不能高于 V∞	2. 4	3. 6	٧
$V_{ exttt{DDA}}$	模拟部分工作电压(未使用 ADC)	V _{DDA} 必须与 V _{IO} 相同,V _{REF+}	2. 4	3. 6	v
V DDA	模拟部分工作电压(使用 ADC)	不能高于 V _{DDA} ,V _{REF} 等于 V _{SS}	2. 4	3. 0	V
V_{BAT}^{1}	备份单元工作电压	不能大于 Vո	1.8	3. 6	٧
T _A	环境温度		-40	85	°C
TJ	结温度范围		-40	85	°C

注: 1. 电池到 VBAT 连线要尽可能的短。

表 4-3 上电和掉电条件

符号	参数	条件	最小值	最大值	单位
+	V∞上升速率		0	8	/\/
L _{VDD}	V∞下降速率		30	8	us/V

4.3.2 内嵌复位和电源控制模块特性

表 4-4 复位及电压监测(PDR选择高阈值档位)

符号	参数	条件	最小值	典型值	最大值	单位
		PLS[2:0] = 000(上升沿)		2. 39		٧
		PLS[2:0] = 000(下降沿)		2. 31		٧
		PLS[2:0] = 001(上升沿)		2. 56		٧
		PLS[2:0] = 001(下降沿)		2. 48		٧
		PLS[2:0] = 010(上升沿)		2. 65		٧
		PLS[2:0] = 010(下降沿)		2. 57		٧
	可编程电压检测器的电 平选择	PLS[2:0] = 011(上升沿)		2. 78		٧
V _{PVD} 1		PLS[2:0] = 011(下降沿)		2. 69		٧
V PVD		PLS[2:0] = 100(上升沿)		2. 89		٧
		PLS[2:0] = 100(下降沿)		2. 81		٧
		PLS[2:0] = 101(上升沿)		3. 05		٧
		PLS[2:0] = 101(下降沿)		2. 96		٧
		PLS[2:0] = 110(上升沿)		3. 17		٧
		PLS[2:0] = 110(下降沿)		3. 08		٧
		PLS[2:0] = 111(上升沿)		3. 31		٧
		PLS[2:0] = 111(下降沿)		3. 21	<u>'</u>	٧

$V_{ t PVDhyst}$	PVD 迟滞			0. 1		٧
$V_{ t POR/PDR}$	上电/掉电复位阈值	上升沿	1. 9	2. 2	2. 4	٧
		下降沿	1. 9	2. 2	2. 4	٧
$V_{PDRhyst}$	PDR 迟滞			20		mV
t _{RSTTEMPO}	复位持续时间		5		100	mS

注: 1. 常温测试值。

4.3.3 内置的参考电压

表 4-5 内置参考电压

符号	参数	条件	最小值		最大值	单位
V_{REFINT}	内置参考电压	$T_A = -40^{\circ}C \sim 85^{\circ}C$	1. 17	1. 2	1. 23	٧
$T_{S_vrefint}$	当读出内部参考电压 时,ADC 的采样时间				17. 1	us

4.3.4 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/0 引脚的负载、产品的软件配置、工作频率、I/0 脚的翻转速率、程序在存储器中的位置以及执行的代码等。电流消耗测量方法如下图:

图 4-2 电流消耗测量

微控制器处于下列条件:

常温 V_{DD} = 3. 3V 情况下,测试时: 所有 IO 端口配置上拉输入,HSE 或 HSI 只开 1 个,HSE=8M(32M 应用于 V208 芯片),HSI=8M(已校准), $F_{PLOKI}=F_{HCLK}/2$, $F_{PLOKZ}=F_{HCLK}$,当 $F_{HCLK}>8$ 时,PLL 打开。使能或关闭所有外设时钟的功耗。

表 4-6-1 运行模式下典型的电流消耗,数据处理代码从内部闪存中运行(应用于 V30x)

符号	女 粃	条件		典型值		☆ /÷
175	参数			使能所有外设	关闭所有外设 ²	単位
I _{DD} ¹	运行模式下的 供应电流	外部时钟	F _{HCLK} = 144MHz	31. 2	19. 3	
			$F_{HCLK} = 72MHz$	16. 5	10. 1	
			$F_{HCLK} = 48MHz$	12. 0	7. 2	
			F _{HCLK} = 36MHz	10. 3	6. 1	
			F _{HCLK} = 24MHz	7. 7	4. 4	mA
			F _{HCLK} = 16MHz	6. 3	3. 5	
			$F_{HCLK} = 8MHz$	4. 4	1. 8	
			F _{HCLK} = 4MHz	3. 5	1. 3	
			F _{HCLK} = 500kHz	2. 8	0.8	

运行于高速内部 RC 振荡器(HSI), 使用 AHB 预分粉 以减低频率	$F_{HCLK} = 36MHz$	29. 5 14. 7 10. 2 8. 1 5. 8 4. 5 2. 3 1. 6 0. 9	19. 7 10. 2 7. 2 5. 9 4. 4 3. 3 1. 8 1. 3 0. 8	
--	--------------------	---	--	--

注: 1. 以上为实测参数

2. 测试时,关闭所有外设时钟时,串口 1, GPIOA 时钟未关闭。

表 4-6-2 运行模式下典型的电流消耗. 数据处理代码从内部闪存中运行(应用于 V208 芯片)

W + 0 2 E	17次以1次至前	电流泪耗,致据处理 	- 1 C + 3 / / C + 3 / C + 3		V 值	
符号	参数	条件			关闭所有外设 ²	单位
				使能所有外设		
			$F_{HCLK} = 144MHz$	21. 37	16. 77	
			$F_{HCLK} = 72MHz$	10. 91	8. 73	
			$F_{HCLK} = 48MHz$	7. 58	6. 16	
	外部时钟		$F_{HCLK} = 36MHz$	6. 49	5. 29	
		外部时钟	$F_{HCLK} = 24MHz$	4. 59	3. 61	
		$F_{HCLK} = 16MHz$	3. 13	2. 59		
		$F_{HCLK} = 8MHz$	2. 0	1. 71		
			$F_{HCLK} = 4MHz$	1. 42	1. 28	
I _{DD} 1	运行模式下的		F _{HCLK} = 500KHz	1. 0	0. 95	Л
I DD	供应电流		F _{HCLK} = 144MHz	20. 75	16. 27	mA
			$F_{HCLK} = 72MHz$	10. 74	8. 53	
		上午二百年中初	$F_{HCLK} = 48MHz$	7. 42	5. 98	
		运行于高速内部 RC振荡器(HSI),	$F_{HCLK} = 36MHz$	5. 96	5. 05	
		•	$F_{HCLK} = 24MHz$	4. 62	3. 41	
	使用 AHB 预分频	以減低频率	$F_{HCLK} = 16MHz$	3. 03	2. 49	
		 人小 人 以 火 火 大 大 大 大 大 大 大 大	$F_{HCLK} = 8MHz$	1. 66	1. 42	
			$F_{HCLK} = 4MHz$	1. 11	1. 0	
			F _{HCLK} = 500kHz	0. 63	0. 62	

注: 1. 以上为实测参数

2. 测试时, 关闭所有外设时钟时, 串口 1, GPIOA 时钟未关闭。

表 4-7-1 睡眠模式下典型的电流消耗,数据处理代码从内部闪存或 SRAM 中运行(应用于 V30x)

Ī	符号	← ₩ _t	夕 //	Ø III.		型值	公
	付写	参数	条件	•	使能所有外设	关闭所有外设 ²	单位
ſ		睡眠模式下		$F_{HCLK} = 144MHz$	15.1	4.1	
		的供应电流		$F_{HCLK} = 72MHz$	8.9	2.4	
	I_{DD}^{1}	(此时外设供	外部时钟	$F_{HCLK} = 48MHz$	6.9	1.9	mA
		电和时钟保		$F_{HCLK} = 36MHz$	6.5	2.1	
		持)		$F_{HCLK} = 24MHz$	5.1	1.4	

	$F_{HCLK} = 16MHz$	4.6	1.39	
	$F_{HCLK} = 8MHz$	3.5	0.94	
	$F_{HCLK} = 4MHz$	3.1	0.87	
	F _{HCLK} = 500kHz	2.8	0.82	
	F _{HCLK} = 144MHz	13.3	4.1	ı
	$F_{HCLK} = 72MHz$	7.1	2.4	
	$F_{HCLK} = 48MHz$	5.4	1.85	
运行于高速内部	F _{HCLK} = 36MHz	4.4	1.74	
RC 振荡器 (HSI), 使用 AHB 预分频	F _{HCLK} = 24MHz	3.0	1.4	ı
以减低频率	$F_{HCLK} = 16MHz$	2.4	1.3	ı
	$F_{HCLK} = 8MHz$	1.4	0.9	ı
	F _{HCLK} = 4MHz	1.1	0.84	
	F _{HCLK} = 500kHz	0.8	0.79	

注: 1. 以上为实测参数

2. 测试时,串口 1, GPIOA 时钟,电源模块时钟未关闭。

表 4-7-2 睡眠模式下典型的电流消耗. 数据处理代码从内部闪存或 SRAM 中运行(应用于 V208 芯片)

		电流消耗,数据处理			型值	
符号	参数	条件		使能所有外设	关闭所有外设 ²	单位
			F _{HCLK} = 144MHz	8.17	3.69	
			$F_{HCLK} = 72MHz$	4.75	2.16	
			$F_{HCLK} = 48MHz$	3.35	1.69	
		$F_{HCLK} = 36MHz$	3.29	1.89		
		外部时钟	$F_{HCLK} = 24MHz$	2.18	1.26	
			$F_{HCLK} = 16MHz$	1.63	1.11	
	睡眠模式下 的供应电流 I [™] (此时外设供		$F_{HCLK} = 8MHz$	1.23	0.98	
			$F_{HCLK} = 4MHz$	1.06	0.94	
			F _{HCLK} = 500kHz	0.97	0.91	Л
I DD	(此时外设供 电和时钟保		F _{HCLK} = 144MHz	7.65	3.44	mA
	持)		$F_{HCLK} = 72MHz$	4.61	2.02	
	147		$F_{HCLK} = 48MHz$	3.22	1.55	
		运行于高速内部 RC 振荡器 (HSI),	$F_{HCLK} = 36MHz$	2.73	1.44	
		-	$F_{HCLK} = 24MHz$	1.9	1.1	
	使用 AHB 预分频 · 以减低频率 · · ·	$F_{HCLK} = 16MHz$	1.48	0.95		
		 人小 人 以 火 火 大 大 大 大 大 大 大 大	$F_{HCLK} = 8MHz$	0.93	0.69	
			$F_{HCLK} = 4MHz$	0.75	0.63	
			F _{HCLK} = 500kHz	0.58	0.56	

注: 1. 以上为实测参数

2. 测试时, 串口1, GPIOA 时钟, 电源模块时钟未关闭。

表 4-8-1 停止和待机模式下典型的电流消耗(应用于 V30x)

<i>55</i> 5 □	↔ ¥L	た 14	# 피/士	* 1×
付写	参 数	余件	典型钼	里位
1,3,5	2 20	27.11	/	—

	(京.1.) ## - # T - # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 #	调压器处于运行模式,低速和高速 内部 RC 振荡器及外部振荡器都处 于关闭状态(没有独立看门狗)	110. 5	
	停止模式下的供应电流 	调压器处于低功耗模式,低速和高速内部 RC 振荡器及外部振荡器都处于关闭状态(没有独立看门狗, PVD 关闭)	34	
l _{DD}		低速内部 RC 振荡器和独立看门狗 处于开启状态	1. 91	uA
	待机模式下的供应电流	低速内部 RC 振荡器处于开启状态,独立看门狗处于关闭状态	1.9	
		低速内部 RC 振荡器和独立看门狗 处于关闭状态,低速外部振荡器和 RTC 关闭状态	1. 18	
I dd_vbat	备份区域的供应电流 (移除 V ₀₀ 和 V _{00A} , 只使用 V _{BAT} 供电)	低速外部振荡器和 RTC 处于开启状态	1.9	

注: 以上为实测参数

表 4-8-2 停止和待机模式下典型的电流消耗(应用于 V208 芯片)

符号	参数	条件	典型值	单位
	/京.1.拼光下 4 .4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	调压器处于运行模式,低速和高速 内部 RC 振荡器及外部振荡器都处 于关闭状态(没有独立看门狗)	253. 4	
	停止模式下的供应电流	调压器处于低功耗模式,低速和高速内部 RC 振荡器及外部振荡器都处于关闭状态(没有独立看门狗,PVD 关闭)		
l _{DD}	待机模式下的供应电流	低速内部 RC 振荡器和独立看门狗 处于开启状态	1. 21	uA
		低速内部 RC 振荡器处于开启状态,独立看门狗处于关闭状态	1.18	
		低速内部 RC 振荡器和独立看门狗 处于关闭状态,低速外部振荡器和 RTC 关闭状态	0. 6	
I _{DD_VBAT}	备份区域的供应电流 (移除 V _{DD} 和 V _{DDA} , 只使用 V _{BAT} 供电)	低速外部振荡器和 RTC 处于开启状态	1. 23	

注: 以上为实测参数

4.3.5 外部时钟源特性

表 4-9 来自外部高速时钟

符号	参数	条件	最小值	典型值	最大值	单位
_	 外部时钟频率		3	8	25	MII-
F_{HSE_ext}	外部的 你	应用于 V208 芯片		32		MHz
V _{HSEH} ¹	OSC_IN 输入引脚高电平电压		0. 8V ₁₀		Vio	٧
V _{HSEL} ¹	OSC_IN 输入引脚低电平电压		0		0. 2V ₁₀	٧
$C_{in(HSE)}$	OSC_IN 输入电容			5		pF
DuCy (HSE)	占空比			50		%
Ι _L	OSC_IN 输入漏电流				±1	uA

注: 1. 不满足此条件可能会引起电平识别错误。

图 4-3 外部提供高频时钟源电路

表 4-10 来自外部低速时钟

符号	参数	条件	最小值	典型值	最大值	单位
F_{LSE_ext}	用户外部时钟频率			32. 768	1000	kHz
V_{LSEH}	0SC32_IN 输入引脚高电平电压		0. 8V _{DD}		V_{DD}	٧
V_{LSEL}	0SC32_IN 输入引脚低电平电压		0		0. 2V _{DD}	٧
$C_{in(LSE)}$	0SC32_IN 输入电容			5		рF
DuCy _(LSE)	占空比			50		%
Iι	0SC32_IN 输入漏电流				±1	uA

图 4-4 外部提供低频时钟源电路

表 4-11 使用一个晶体/陶瓷谐振器产生的高速外部时钟

符号	参数	条件	最小值	典型值	最大值	单位
_	F _{osc_in} 谐振器频率		3	8	25	MHz
F _{osc_in}	值加商列 车 			32		WITZ
$R_{\scriptscriptstyle F}$	反馈电阻			250		kΩ
С	建议的负载电容与对应晶体串	R _s =60 Ω ¹		20		C
U	行阻抗 Rs	R _S -00 \(\Omega\)		20		pF
l ₂	HSE 驱动电流	V _{DD} = 3.3V, 20p 负载		0. 53		mA
gm	振荡器的跨导	启动		17. 5		mA/V
t _{SU (HSE)}	启动时间	V₀ 稳定, 8M 晶体		2. 5		ms

注 1: 25M 晶体 ESR 建议不超过 60 欧, 低于 25M 可适当放宽。

电路参考设计及要求:

晶体的负载电容以晶体厂商建议为准, CLi=CL2, 一般建议 10~20pF。

图 4-5 外接 8M 晶体典型电路

表 4-12 使用一个晶体/陶瓷谐振器产生的低速外部时钟(f(LSE)=32.768kHz)

符号	参数	条件	最小值	典型值	最大值	单位
$R_{\scriptscriptstyle{F}}$	反馈电阻			5		MΩ
С	建议的负载电容与对应晶体串 行阻抗 R _s	R_s <70k Ω			15	pF
i ₂	LSE 驱动电流	VDD = 3.3V		0. 35		uA
$\mathbf{g}_{\scriptscriptstylem}$	振荡器的跨导	启动		25. 3		uA/V
t _{SU(LSE)}	启动时间	VDD 是稳定的		800		mS

电路参考设计及要求:

晶体的负载电容以晶体厂商建议为准, CL1=CL2, 一般建议 10~20pF。

图 4-6 外接 32.768K 晶体典型电路

注: 负载电容 C_L 由下式计算: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$, 其中 C_{stray} 是引脚的电容和 PCB 板或 PCB 相关的电容,它的典型值是介于 2pF 至 7pF 之间。

4.3.6 内部时钟源特性

表 4-13 内部高速(HSI)RC振荡器特性

符号	参数	条件	最小值	典型值	最大 值	单位
F _{HS1}	频率(校准后)			8		MHz
DuCy _{HS1}	占空比		45	50	55	%
ACC _{HS1}	│ │HSI 振荡器的精度(校准后)	$TA = 0^{\circ}C \sim 70^{\circ}C$	-1.0		1. 6	%
ACCHSI	101 1版/勿拾的特色(牧作力)	$TA = -40^{\circ}C \sim 85^{\circ}C$	-2. 2		2. 2	%
t _{SU(HSI)}	HSI 振荡器启动稳定时间			10		us
DD (HS1)	HSI 振荡器功耗		120	180	270	uA

表 4-14 内部低速(LSI)RC 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
_	姑 女		25	39	60	1.11=
FLSI	频率	应用于 V208 芯片	25	32	45	kHz

DuCy _{LSI}	占空比		45	50	55	%
ACC _{LS1}	LSI 振荡器的精度 (校准后)	应用于 V208 芯片, 恒温± 1℃内, 建议 10s 校准一次		±500		ppm
t _{SU(LSI)}	LSI 振荡器启动稳定时间			100		us
I DD (LSI)	LSI 振荡器功耗			0. 6		uA

4. 3. 7 PLL 特性

表 4-15 PLL 特性

符号	参数	条件	最小值	典型值	最大值	单位
	 PLL 输入时钟		3	8	25	MHz
$F_{PLL_{IN}}$	PLL 和八叶 押	应用于 V208 芯片	4	8	25	WI□Z
	PLL 输入时钟占空比		40		60	%
_	PLL 倍频输出时钟		18		144¹	MII
F _{PLL_OUT}		应用于 V208 芯片	40		240 ¹	MHz
t _{LOCK}	PLL 锁定时间				200	us

注 1: 须选择合适倍频,满足 PLL 输出频率范围。

表 4-16 PLL2 和 PLL3 特性

符号	参数	条件	最小值	典型值	最大值	单位
F	PLL 输入时钟		3		25	MHz
$F_{PLL_{IN}}$	PLL 输入时钟占空比		40		60	%
F _{PLL_OUT}	PLL 倍频输出时钟		30		75 ¹	MHz
F _{vco}	VCO 输出时钟		60		150	MHz
t _{LOCK1}	PLL 锁定时间				200	us

注 1: 须选择合适倍频,满足 PLL 输出频率范围。

4.3.8 从低功耗模式唤醒的时间

表 4-17-1 低功耗模式唤醒的时间 ¹ (应用于 V307)

符号	参数	条件	典型值	单位
twusleep	从睡眠模式唤醒	使用 HSI RC 时钟唤醒	2. 4	us
	从停止模式唤醒(调压器处于运行模式)	HSI RC 时钟唤醒	23. 1	us
t_{wustop}	 从停止模式唤醒(调压器为低功耗模式)	调压器从低功耗模式唤醒时间 +	76. 7	
		HSI RC 时钟唤醒	70. 7	us
_	 从待机模式唤醒	LDO 稳定时间 + HSI RC 时钟唤醒 +	8. 9	
twustdby	外付机保式映性 	代码加载时间 ² (举例 256K)	0. 9	ms

注: 1. 以上为实测参数。

2. 代码加载时间以当前芯片配置 0 等待运行区域容量和加载配置时钟大小计算可得。

表 4-17-2 低功耗模式唤醒的时间 (应用于 V208 芯片)

符号	参数	条件	典型值	单位
twusleep	从睡眠模式唤醒	使用 HSI RC 时钟唤醒	2. 6	us
_	从停止模式唤醒(调压器处于运行模式)	HSI RC 时钟唤醒	23. 1	us
t _{wustop}	从停止模式唤醒(调压器为低功耗模式)	调压器从低功耗模式唤醒时间 +	299	us

		HSI RC 时钟唤醒		
twustdby	从待机模式唤醒	LDO 稳定时间 + HSI RC 时钟唤醒 + 代码加载时间 ² (举例 128K)	5. 0	ms

注: 1. 以上为实测参数。

2. 代码加载时间以当前芯片配置 0 等待运行区域容量和加载配置时钟大小计算可得。

4.3.9 存储器特性

表 4-18 闪存存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
F_{prog}	操作频率	$T_A = -40^{\circ}C \sim 85^{\circ}C$			72	MHz
t _{prog_page}	页(256字节)编程时间	$T_A = -40^{\circ}C \sim 85^{\circ}C$		2		ms
t _{erase_page}	页(256字节)擦除时间	$T_A = -40^{\circ}C \sim 85^{\circ}C$		16		ms
t _{erase_sec}	扇区(4K 字节)擦除时间	$T_A = -40^{\circ}C \sim 85^{\circ}C$		16		ms
V_{prog}	编程电压		2. 4		3. 6	٧

注: 1. flash 的操作频率包括读、编程、擦除, 时钟来自于 HCLK。

表 4-19 闪存存储器寿命和数据保存期限

符号	参数	条件	最小值	典型值	最大值	单位
N_{END}	擦写次数	$T_A = 25^{\circ}C$	10K	80K ¹		次
t _{RET}	数据保存期限		20			年

注: 实测操作擦写次数, 非担保。

4.3.10 I/0 端口特性

表 4-20 通用 1/0 静态特性

符号	参数	条件	最小值	典型值	最大值	单位
V	标准 I/0 脚,输入高电平电压		0. 41* (V _{DD} - 1. 8) +1. 3		V _{DD} +0. 3	٧
V _{IH}	FT 10 引脚,输入高电平电压		0. 42* (V _{DD} - 1. 8) +1		5. 5	٧
VIL	标准 I/O 脚,输入低电平电压		-0. 3		0. 28* (V _{DD} - 1. 8) +0. 6	٧
V IL	FT 10 引脚,输入低电平电压		-0. 3		0. 32* (V _{DD} - 1. 8) +0. 55	٧
.,	标准 I/0 脚施密特触发器电压迟滞		150			
V_{hys}	FT 10 引脚施密特触发器电压迟滞		90			mV
	 輸入漏电流	标准 I0 端口			±1	uA
l _{Ikg}	荆八峒电流	FT 10 端口			3	uA
R _{PU}	弱上拉等效电阻		30	40	50	kΩ
R _{PD}	弱下拉等效电阻		30	40	50	kΩ
C ₁₀	1/0 引脚电容			5		pF

输出驱动电流特性

GP10(通用输入/输出端口)可以吸收或输出多达±8mA 电流,并且吸收或输出±20mA 电流(不严格达到 V_□/V_□)。在用户应用中,所有 10 引脚驱动总电流不能超过 4.2 节给出的绝对最大额定值:

表 4-21 输出电压特性

符号	参数	条件	最小值	最大值	单位
V_{oL}	输出低电平,8个引脚吸收电流	TTL端口, I₁₀= +8mA		0.4	V
V_{OH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <3. 6V	V _{DD} -0. 4		V
V_{oL}	输出低电平,8个引脚吸收电流	CMOS端口, I₁₀= +8mA		0.4	V
V_{OH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <3. 6V	2. 3		٧
V_{oL}	输出低电平,8个引脚吸收电流	I ₁₀ = +20mA		1.3	٧
V _{oH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <3. 6V	V _{DD} -1.3		V
V_{oL}	输出低电平,8个引脚吸收电流	I ₁₀ = +6mA		0.4	V
V _{oH}	输出高电平,8个引脚输出电流	2. 4V< V _{DD} <2. 7V	V _{DD} -1.3		V

注:以上条件中如果多个 10 引脚同时驱动,电流总和不能超过表 4.2 节给出的绝对最大额定值。另外 8个 10 引脚同时驱动时,电源/地线点上的电流很大,会导致压降使内部 10 的电压达不到表中电源电压,从而导致驱动电流小于标称值。

表 4-22 输入输出交流特性

MODEx[1:0] 配置	符号	参数	条件	最小值	最大值	单位
10	F _{max(10) out}	最大频率	CL=50pF, V _{DD} =2. 7-3. 6V		2	MHz
(2MHz)	t _{f(I0)out}	输出高至低电平的下降时间	CL=50pF, V _{DD} =2. 7-3. 6V		125	ns
(ZIVITZ)	t _{r(10)out}	输出低至高电平的上升时间	GL-30pr, VDD-2. 7-3. 0V		125	ns
01	F _{max(10) out}	最大频率	CL=50pF, V _{DD} =2. 7-3. 6V		10	MHz
(10MHz)	t _{f(I0)out}	输出高至低电平的下降时间	CL=50pF, V _{DD} =2. 7-3. 6V		25	ns
(TOWINZ)	t _{r(10)out}	输出低至高电平的上升时间	GL-30pr, VDD-2. 7-3. 0V		25	ns
	F _{max (10) out}	最大频率	CL=30pF, V _{DD} =2. 7-3. 6V		50	MHz
		取入则平	CL=50pF, V _{DD} =2. 7-3. 6V		30	MHz
11	_	* 大山京石((中央-1477))	CL=30pF, V _{DD} =2. 7-3. 6V		20	ns
(50MHz)	t _{f(10)out}	输出高至低电平的下降时间 	CL=50pF, V _{DD} =2. 7-3. 6V		5	ns
	_		CL=30pF, V _{DD} =2. 7-3. 6V		8	ns
	t _{r(10) out} 输出低	输出低至高电平的上升时间 	CL=50pF, V _{DD} =2. 7-3. 6V		12	ns
	t _{EXTIpw}	EXTI 控制器检测到外部信号 的脉冲宽度		10		ns

4. 3. 11 NRST 引脚特性

表 4-23 外部复位引脚特性

符号	参数	条件	最小值	典型值	最大值	単位
V _{IL (NRST)}	NRST 输入低电平电压		-0. 3		0. 28* (V _{DD} -1. 8) +0. 6	٧
V _{IH (NRST)}	NRST 输入高电平电压		0. 41* (V _{DD} -1. 8) +1. 3		V _{DD} +0. 3	٧
$V_{hys(NRST)}$	NRST 施密特触发器电压 迟滞		150			mV
R_{PU}^{-1}	弱上拉等效电阻		30	40	50	kΩ
$V_{\text{F (NRST)}}$	NRST 输入可被滤波脉宽				100	ns
V _{NF (NRST)}	NRST 输入无法滤波脉宽		300			ns

注: 1. 上拉电阻是一个真正的电阻串联一个可开关的 PMOS 实现。这个 PMOS/NMOS 开关的电阻很小(约

占 10%)。

电路参考设计及要求:

图 4-7 外部复位引脚典型电路

4.3.12 TIM 定时器特性

表 4-24 TIMx 特性

符号	参数	条件	最小值	最大值	单位
	定时器基准时钟		1		t _{TIM×CLK}
t _{res(TIM)}		$f_{TIM\times CLK} = 72MHz$	13. 9		ns
F _{EXT}	 CH1 至 CH4 的定时器外部时钟频率		0	$f_{\text{TIMxCLK}}/2$	MHz
FEXT	661 主 664 的处的钻外的的锁个	f _{TIMxCLK} = 72MHz	0	36	MHz
R _{esTIM}	定时器分辨率			16	位
+	当选择了内部时钟时, 16 位计数		1	65536	t _{TIM×CLK}
t _{counter}	器时钟周期	f _{TIMxCLK} = 72MHz	0. 0139	910	us
t _{MAX_COUNT}	 最大可能的计数			65535	t _{TIM×CLK}
	取入り能別り数	f _{TIMxCLK} = 72MHz		59. 6	s

4.3.13 I2C 接口特性

图 4-8 1°C 总线时序图

表 4-25 I2C 接口特性

符号	参数	标准 I2C		快速	单位	
	多 奴	最小值	最大值	最小值	最大值	半加
t _{w(SCKL)}	SCL 时钟低电平时间	4. 7		1. 2		us
t _{w(SCKH)}	SCL 时钟高电平时间	4. 0		0.6		us
t _{SU (SDA)}	SDA 数据建立时间	250		100		ns
t _{h (SDA)}	SDA 数据保持时间	0		0	900	ns
$t_{r(SDA)}/t_{r(SCL)}$	SDA 和 SCL 上升时间		1000	20		ns

$t_{f(SDA)}/t_{f(SCL)}$	SDA 和 SCL 下降时间		300			ns
t _{h(STA)}	开始条件保持时间	4. 0		0.6		us
t _{SU (STA)}	重复的开始条件建立时间	4. 7		0.6		us
t _{SU (STO)}	停止条件建立时间	4. 0		0.6		us
tw(STO:STA)	停止条件至开始条件的时间(总线空闲)	4. 7		1. 2		us
Сь	每条总线的容性负载		400		400	pF

4.3.14 SPI 接口特性

图 4-9 SPI 主模式时序图

图 4-10 SPI 从模式时序图 (CPHA=0)

图 4-11 SPI 从模式时序图 (CPHA=1)

表 4-26 SPI 接口特性

符号	参数	条件	最小值	最大值	单位
£ /±	CD I □→₹₩₩₹₹₩	主模式		36	MHz
f_{SCK}/t_{SCK}	SPI 时钟频率	从模式		36	MHz
$t_{r(SCK)}/t_{f(SCK)}$	SPI 时钟上升和下降时间	负载电容: C = 30pF		20	ns
t _{SU (NSS)}	NSS 建立时间	从模式	2t _{PCLK}		ns
t _{h (NSS)}	NSS 保持时间	从模式	2t _{PCLK}		ns
1 / 1	w(SCKL) SCK 高电平和低电平时间	主模式,fpclk = 36MHz,预分频	40	60	
$t_{w(SCKH)}/t_{w(SCKL)}$		系数=4	40	00	ns
t _{SU(MI)}	 数据输入建立时间	主模式	5		ns
t _{SU(SI)}	数循制八连亚門미	从模式	5		ns
$t_{h(MI)}$	 数据输入保持时间	主模式	5		ns
t _{h(SI)}) 数据制入床待时间 	从模式	4		ns
t _{a (S0)}	数据输出访问时间	从模式,fpcLK = 20MHz	0	1t _{PCLK}	ns
$t_{\text{dis}(S0)}$	数据输出禁止时间	从模式	0	10	ns
t _{V(S0)}	*************************************	从模式 (使能边沿之后)		25	ns
t _{V (MO)}	数据输出有效时间	主模式(使能边沿之后)		5	ns
t _{h(S0)}	** 据检山伊林叶闪	从模式 (使能边沿之后)	15		ns
t _{h (M0)}	·数据输出保持时间 ·	主模式(使能边沿之后)	0		ns

4.3.15 I2S 接口特性

图 4-12 I2S 总线主模式时序图(飞利浦协议)

图 4-13 I2S 总线从模式时序图(飞利浦协议)

表 4-27 I2S 接口特性

符号	参数	条件	最小值	最大值	单位
£ /±	I ² S 时钟频率	主模式		8	MHz
f _{ck} /t _{ck}	13円押処平	从模式		8	MHz
$t_{r(CK)}/t_{f(CK)}$	I ² S 时钟上升和下降时间	负载电容: C = 30pF		20	ns
t _{v(ws)}	WS 有效时间	主模式		5	ns
t _{su(Ws)}	WS 建立时间	从模式	10		ns
_	 WS 保持时间	主模式	0		ns
t _{h (WS)}	WOTATHIJUJ	从模式	0		ns
tw(ckH)/tw(ckL)	SCK 高电平和低电平时间	主模式,fpcLK = 36MHz,	40	60	%
Cw(CKH) / Cw(CKL)	300 同电十种似电干的问	预分频系数=4	40	00	70
t _{SU(SD_MR)}	数据输入建立时间	主模式	8		ns
t _{SU(SD_SR)}	双加州八炷北川미	从模式	8		ns

t _{h (SD_MR)}	数据输入保持时间	主模式	5		ns
$t_{h(SD_SR)}$	数据期入床付的回	从模式	4		ns
t _{h(SD_MT)}	*************************************	主模式(使能边沿之后)		5	ns
t _{h(SD_ST)}	- 数据输出保持时间 	从模式 (使能边沿之后)		5	ns
t _{V(SD_MT)}	*************************************	主模式(使能边沿之后)		5	ns
t _{v(SD_ST)}	- 数据输出有效时间 	从模式(使能边沿之后)		4	ns

4. 3. 16 USB 接口特性 表 4-28 USB 模块特性

符号	参数	条件	最小值	最大值	单位
$V_{ extsf{DD}}$	USB 操作电压		3. 0	3. 6	٧
V_{SE}	单端接收器阈值	$V_{DD} = 3.3V$	1. 2	1. 9	٧
V_{oL}	静态输出低电平			0. 3	٧
V_{OH}	静态输出高电平		2. 8	3. 6	٧
V_{HSSQ}	高速压制信息检测阈值		100	150	mV
V _{HSDSC}	高速断开连接检测阈值		500	625	mV
V_{HSOI}	高速空闲电平		-10	10	mV
V_{HSOH}	高速数据高电平		360	440	mV
V_{HSOL}	高速数据低电平		-10	10	mV

4.3.17 SD/MMC 接口特性

图 4-14 SD 高速模式时序图

图 4-15 SD 默认模式时序图

表 4-29 SD/MMC 接口特性

符号	参数	条件	最小值	最大值	单位			
f _{cK} /t _{cK}	数据传输模式下的时钟频率	CL≪30pF		48	MHz			
tw(ckL)	时钟低电平时间	CL≪30pF	6					
tw(ckH)	时钟高电平时间	CL≪30pF	6		no			
t _{r (CK)}	上升时间	CL≪30pF		4	ns			
t _{f(CK)}	下降时间	CL≪30pF		4				
CMD/DAT 输入	(参考 CK)							
t _{isu}	输入建立时间	CL≪30pF	7		20			
t _{ін}	输入保持时间	CL≪30pF	2		ns			
在 MMC 和 SD 和	高速模式下,CMD/DAT 输出(参	考 CK)						
tov	输出有效时间	CL≪30pF		5				
t _{он}	输出保持时间	CL≪30pF	20		ns			
在 SD 默认模式	在 SD 默认模式下, CMD/DAT 输出(参考 CK)							
t _{ovd}	输出有效默认时间	CL≤30pF		8	20			
t _{OHD}	输出保持默认时间	CL≪30pF	20		ns			

4. 3. 18 FSMC 特性

图 4-16 异步总线复用 PSRAM/NOR 读操作波形

表 4-30 异步总线复用的 PSRAM/NOR 读操作时序

符号	参数	最小值	最大值	单位
t _{W (NE)}	FSMC_NE 低电平时间	7t _{HCLK}		
t _{V (NOE_NE)}	FSMC_NE 低至 FSMC_NOE 低	0		
tw(NOE)	FSMC_NOE 低时间	7t _{HCLK}		
t _{h (NE_NOE)}	FSMC_NOE 高至 FSMC_NE 高保持时间	0		
t _{V(A_NE)}	FSMC_NE 低至 FSMC_A 有效	0	5	
t _{v (NADV_NE)}	FSMC_NE 低至 FSMC_NADV 低	0	5	
t _{W (NADV)}	FSMC_NADV 低时间			
t _{h (AD_NADV)}	FSMC_NADV 高之后 FSMC_AD(地址)有效保持时间	2t _{HCLK}		ns
t _{h (A_NOE)}	FSMC_NOE 高之后的地址保持时间	0		
$t_{h(BL_NOE)}$	FSMC_NOE 高之后的 FSMC_BL 保持时间	0		
t _{v (BL_NE)}	FSMC_NE 低至 FSMC_BL 有效	0	5	
t _{su(data_ne)}	数据至 FSMC_NE 高的建立时间	3t _{HCLK}		
t _{SU(DATA_NOE)}	数据至 FSMC_NOE 高的建立时间	3t _{HCLK}		
t _{h(DATA_NE)}	FSMC_NE 高之后的数据保持时间	0		
t _{h (DATA_NOE)}	FSMC_NOE 高之后的数据保持时间	0		

图 4-17 异步总线复用 PARAM/NOR 写操作波形

表 4-31 异步总线复用 PARAM/NOR 写操作时序

符号	参数	最小值	最大值	单位
t _{W (NE)}	FSMC_NE 低电平时间	5t _{HCLK}		
t _{v(NEW_NE)}	FSMC_NE 低至 FSMC_NWE 低	3t _{HCLK}		
tw(NWE)	FSMC_NWE 低时间	2t _{HCLK}		
t _{h (NE_NWE)}	FSMC_NWE 高至 FSMC_NE 高保持时间	t _{HCLK}		
t _{V(A_NE)}	FSMC_NE 低至 FSMC_A 有效	0	5	
t _{v (NADV_NE)}	FSMC_NE 低至 FSMC_NADV 低	0	5	
tw(NADV)	FSMC_NADV 低时间	t _{HCLK}		ns
t _{h (AD_NADV)}	FSMC_NADV 高之后 FSMC_AD(地址)有效保持时间	2t _{HCLK}		
t _{h (A_NWE)}	FSMC_NWE 高之后的地址保持时间	t _{HCLK}		
t _{V(BL_NE)}	FSMC_NE 低至 FSMC_BL 有效	0	5	
$t_{h(BL_{_NWE})}$	FSMC_NWE 高之后的 FSMC_BL 保持时间	t _{HCLK}		
t _{v(DATA_NADV)}	FSMC_NADV 高至数据保持时间	2t _{HCLK}		
t _{h (DATA_NWE)}	FSMC_NWE 高之后的数据保持时间	t _{HCLK}		

图 4-18 同步总线复用 NOR/PARAM 读波形

表 4-32 同步总线复用 NOR/PSRAM 读时序

符号	参数	最小值	最大值	单位
t _{w(cLK)}	FSMC_CLK 周期	2t _{HCLK}		
t _{d (CLKL_NEL)}	FSMC_CLK低至FSMC_NE低	0	5	
t _{d (CLKH_NEH)}	FSMC_CLK高至FSMC_NE高	0.5t _{HCLK}	0.5t _{HCLK}	
t _{d (CLKL_NADVL)}	FSMC_CLK低至FSMC_NADV低	0	5	
t _{d (CLKL_NADVH)}	FSMC_CLK低至FSMC_NADV高	0	5	
t _{d (CLKL_AV)}	FSMC_CLK低至FSMC_Ax有效(x = 16…23)	0	5	
t _{d (CLKH_AIV)}	FSMC_CLK高至FSMC_Ax无效(x = 16…23)	0	5	
t _{d (CLKL_NOEL)}	FSMC_CLK低至FSMC_NOE低	2t _{HCLK}		ns
t _{d (CLKH_NOEH)}	FSMC_CLK高至FSMC_NOE高	t _{HCLK}		
t _{d (CLKL_ADV)}	FSMC_CLK低至FSMC_AD[15:0]有效	0	5	
t _{d(CLKL_ADIV)}	FSMC_CLK低至FSMC_AD[15:0] 无效	0	5	
t _{SU (ADV_CLKH)}	FSMC_CLK高之前FSMC_AD[15:0]有效数据	8		
t _{h (CLKH_ADV)}	FSMC_CLK高之后FSMC_AD[15:0]有效数据	8		
t _{su (NWA I TV_CLKH)}	FSMC_CLK高之前FSMC_NWAIT有效	6		
t _{h (CLKH_NWAITV)}	FSMC_CLK高之后FSMC_NWAIT有效	2		

图 4-19 同步总线复用 PSRAM 写波形

表 4-33 同步总线复用 PSRAM 写时序

符号	参数	最小值	最大值	单位
tw(clk)	FSMC_CLK 周期	2t _{HCLK}		
t _{d (CLKL_NEL)}	FSMC_CLK低至FSMC_NE低	0	5	
t _{d (CLKH_NEH)}	FSMC_CLK高至FSMC_NE高	0.5t _{HCLK}	0.5t _{HCLK}	
t _{d (CLKL_NADVL)}	FSMC_CLK低至FSMC_NADV低	0	5	
t _{d (CLKL_NADVH)}	FSMC_CLK低至FSMC_NADV高	0	5	
t _{d (CLKL_AV)}	FSMC_CLK低至FSMC_Ax有效(x = 16…23)	0	5	
t _{d (CLKH_AIV)}	FSMC_CLK高至FSMC_Ax无效(x = 16…23)	0	5	
t _{d (CLKL_NWEL)}	FSMC_CLK低至FSMC_NWE低	0		ns
t _{d (CLKH_NWEH)}	FSMC_CLK高至FSMC_NWE高	0		
t _{d (CLKL_ADV)}	FSMC_CLK低至FSMC_AD[15:0]有效	0	5	
t _{d(CLKL_ADIV)}	FSMC_CLK低至FSMC_AD[15:0] 无效	0	5	
t _{d (CLKL_DATA)}	FSMC_CLK低之后FSMC_AD[15:0]有效	2		
tsu(NWAITV_CLKH)	FSMC_CLK高之前FSMC_NWAIT有效	6		
th(CLKH_NWAITV)	FSMC_CLK高之后FSMC_NWAIT有效	2		
t _{d (CLKL_NBLH)}	FSMC_CLK低至FSMC_NBL高	2		

NAND 控制器波形和时序

测试条件: NAND 操作区域,选择 16 位数据宽度,使能 ECC 计算电路,512 字节页面大小,其他时序配置为设置寄存器 FSMC_PCR2=0x0002005E, FSMC_PMEM2=0x01020301, FSMC_PATT2=0x01020301。

图 4-20 NAND 控制器读操作波形

图 4-21 NAND 控制器写操作波形

图 4-22 NAND 控制器在通用存储空间的读操作波形

图 4-23 NAND 控制器在通用存储空间的写操作波形

表 4-34 NAND 闪存读写周期的时序特性

符号	参数	最小值	最大值	单位
t _{d (D-NWE)}	FSMC_NWE 高之前至 FSMC_D[15:0]数据有效	4t _{HCLK}		
t _{w (NOE)}	FSMC_NOE低时间	4t _{HCLK}		
t _{su(D-NOE)}	FSMC_NOE高之前至FSMC_D[15:0]数据有效	20		
t _{h (NOE-D)}	FSMC_NOE高之后至FSMC_D[15:0]数据有效	15		
t _{w (NWE)}	FSMC_NWE低时间	4t _{HCLK}		
t _{v (NWE-D)}	FSMC_NWE低至FSMC_D[15:0]数据有效	0		ns
t _{h (NWE-D)}	FSMC_NWE高至FSMC_D[15:0]数据无效	2t _{HCLK}		
t _{d (ALE-NWE)}	FSMC_NWE低之前至FSMC_ALE有效	2t _{HCLK}		
th(NWE-ALE)	FSMC_NWE高至FSMC_ALE无效	2t _{HCLK}		
t _{d (ALE-NOE)}	FSMC_NOE低之前至FSMC_ALE有效	2t _{HCLK}		
th(NOE-ALE)	FSMC_NOE高至FSMC_ALE无效	4t _{HCLK}		

4. 3. 19 DVP 接口特性

图 4-24 DVP 时序波形

表 4-35 DVP 接口特性

符号	参数及描述	最小值	最大值	单位
$f_{\text{PixCLK}}/t_{\text{PixCLK}}$	像素时钟输入频率		144	MHz

DuCy (PixCLK)	像素时钟的占空比	15	%
t _{su(DATA)}	数据建立时间	2	
t _{h (DATA)}	数据保持时间	1	
$t_{\text{su}(\text{HSYNC})}/t_{\text{su}(\text{VSYNC})}$	HSYNC/VSYNC信号输入建立时间	2	ns
$t_{h(HSYNC)}/t_{h(VSYNC)}$	HSYNC/VSYNC信号输入保持时间	1	

4.3.20 千兆以太网接口特性

图 4-25 ETH-SMI 时序波形

表 4-36 以太网 MAC 的 SMI 信号特性

符号	参数及描述	最小值	典型值	最大值	单位
f _{MDC} /t _{MDC}	MDC 时钟频率			2. 5	MHz
t _{d (MDIO)}	MD10写数据的有效时间	0		300	
t _{su(MD10)}	读数据建立时间	10			ns
t _{h (MDIO)}	读数据保持时间	10			

图 4-26 ETH-RMII 信号时序波形

表 4-37 以太网 MAC 信号 RMII 信号特性

符号	参数及描述	最小值	典型值	最大值	单位
t _{su(RXD)}	接收数据的建立时间	4			ns

t _{ih(RXD)}	接收数据的保持时间	2		
$t_{su(CRS_DV)}$	载波侦测信号建立时间	4		
t _{ih(CRS_DV)}	载波侦测信号保持时间	2		
t _{d (TXEN)}	传输使能有效延迟时间		16	
t _{d (TXD)}	数据传输有效延迟时间		16	

图 4-27 ETH-MII 信号时序波形

表 4-38 以太网 MAC 信号 MII 信号特性

符号	参数及描述	最小值	典型值	最大值	单位
t _{su(RXD)}	接收数据的建立时间	10			
t _{ih(RXD)}	接收数据的保持时间	10			
t _{su(DV)}	数据有效信号建立时间	10			
t _{ih(DV)}	数据有效信号保持时间	10			
t _{su(ER)}	错误信号建立时间	10			ns
t _{ih(ER)}	错误信号保持时间	10			
t _{d (TXEN)}	传输使能有效延迟时间	11	13	16	
t _{d (TXD)}	数据传输有效延迟时间	11	13	16	

图 4-28 ETH-RGMII 信号时序波形

表 4-39 以太网 MAC 信号 RGMII 信号特性

符号	参数及描述	最小值	典型值	最大值	单位
f_{TXC}/t_{TXC}	TXC/RXC 时钟频率	7. 2	8	8.8	
t _R	TXC/RXC上升时间			2. 0	
t _F	TXC/RXC下降时间			2. 0	
t _{su(TDATA)}	发送数据建立时间	1. 2	2. 0		ns
t _{h (TDATA)}	发送数据保持时间	1. 2	2. 0		
t _{su (RDATA)}	输入数据建立时间	1. 2	2. 0		
t _{h (RDATA)}	输入数据保持时间	1. 2	2. 0		

4. 3. 21 12 位 ADC 特性

表 4-40 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{ extsf{DDA}}$	供电电压		2. 4		3. 6	٧
V _{REF+}	正参考电压		2. 4		V_{DDA}	٧
l _{VREF}	参考电流			160	220	uA
l _{DDA}	供电电流			480	530	uA
f _{ADC}	ADC 时钟频率				14	MHz
fs	采样速率		0. 05		1	MHz
$f_{ exttt{TRIG}}$	外部触发频率	$f_{ADC} = 14MHz$			875	kHz
I TRIG					16	1/f _{ADC}
V _{AIN}	转换电压范围		0		V_{REF^+}	٧
RAIN	外部输入阻抗				50	kΩ
R _{ADC}	采样开关电阻			0.6	1	kΩ
\mathbf{C}_{ADC}	内部采样和保持电容			8		pF
+	松准时间	$f_{ADC} = 14MHz$			0. 143	us
t _{CAL}	校准时间					1/f _{ADC}

_	注入触发转换时延	$f_{ADC} = 14MHz$			us
t _{lat}	注入服友转换的延			2	1/f _{ADC}
	常规触发转换时延	$f_{ADC} = 14MHz$		0. 143	us
t _{latr}	吊戏艇及转换的延 			2	1/f _{ADC}
	采样时间	$f_{ADC} = 14MHz$	0. 107	17. 1	us
t _s			1.5	239. 5	1/f _{ADC}
t _{STAB}	上电时间			1	us
_	总的转换时间(包括采样时间)	$f_{ADC} = 14MHz$	1	18	us
t _{conv}			14	252	1/f _{ADC}

公式:最大 RAIN

$$R_{AIN} < \frac{Ts}{f_{ADC} \times C_{ADC} \times \ln 2^{N+2}} - R_{ADC}$$

上述公式用于决定最大的外部阻抗,使得误差可以小于 1/4 LSB。其中 N=12(表示 12 位分辨率)。

表 4-41 f_{ADC} = 14MHz 时的最大 R_{AIN}

T _s (周期)	t _s (us)	最大 R _{AIN} (kΩ)
1.5	0. 11	0. 4
7. 5	0. 54	5. 9
13. 5	0. 96	11. 4
28. 5	2. 04	25. 2
41. 5	2. 96	37. 2
55. 5	3. 96	50
71. 5	5. 11	无效
239. 5	17. 1	无效

表 4-42 ADC 误差

符号	参数	条件	最小值	典型值	最大值	单位
E0	偏移误差	$f_{PCLK2} = 56 \text{ MHz}, f_{ADC} =$		±2		
ED	微分非线性误差	14 MHz, R_{AIN} < 10		±0.5	±3	LSB
EL	积分非线性误差	$k \Omega$, $V_{DDA} = 3.3V$		±1	±4	

 C_p 表示 PCB 与焊盘上的寄生电容(大约 5pF),可能与焊盘和 PCB 布局质量有关。较大的 C_p 数值将降低转换精度,解决办法是降低 f_{ADC} 值。

图 4-29 ADC 典型连接图

图 4-30 模拟电源及退耦电路参考

4.3.22 温度传感器特性 表 4-43 温度传感器特性

符号	参数	条件	最小值	典型值	最大值	单位
R_{TS}	温度传感器测量范围		-40		85	°C
A _{TSC}	温度传感器校准后的测量误差			±12		Ĵ
Avg_Slope	平均斜率		3. 8	4. 3	4. 7	mV/°C
V_{25}	在 25°C时的电压		1. 38	1. 43	1. 48	٧
T_{S_temp}	当读取温度时,ADC 采样时间	$f_{ADC} = 14MHz$			17. 1	us

4. 3. 23 DAC 特性 表 4-44 DAC 特性

符号	参数	条件	最小值	典型值	最大值	单位	
V_{DDA}	供电电压			3. 3	3. 6	V	
V _{REF+}	正参考电压 VREF+必须低于 VDA		2. 4	3. 3	3. 6	٧	
R∟	缓冲器打开时的负载电阻		5			kΩ	
C_{L}	缓冲器打开时负载电容				50	рF	
V _{OUT_MIN}	缓冲器打开时,12 位 DAC 转换		3			mV	
V _{OUT_MAX}	级作品计划中,12 位 070 科沃				V _{REF+} -0. 01	V	
V _{OUT_MIN}	缓冲器关闭时,12 位 DAC 转换			0		mV	
V_{OUT_MAX}	级作品人的时,12位2000和15				V _{REF+} -0. 02	V	
l _{vref+}	无负载,			60		uA	
I VREF+	无负载, V _{REF+} =3.6V 时, 输入值(xF1C		202		uA	
I _{DDA}	无负载,输入值 0x800			211		uA	
I DDA	无负载, V _{REF+} =3.6V 时, 输入值(xF1C		193		UA	
DNL	微分非线性误差			±1		LSB	
INL	积分非线性误差			±4		LSB	
	偏移误差(代码 0x800 时测量的			±8		mV	
偏移	数值与理想数值 V _{REF+} /2 之间的偏差)	V _{REF+} =3. 6V		±10		LSB	
增益误差		DAC配置为12位		±0.1		%	
发大器增益	开环时放大器的增益 5kΩ的负载(最大)		80	85		dB	
tsettling	设置时间(全范围: 10位输入代码 从最小值转变为最大值, DAC_OUT达到其终值的±1 LSB) C _{LOAD} ≤50pF R _{LOAD} ≥5k Ω					us	
更新速率	当输入代码为较小变化时(从数值 i 变到 i+1LSB), 得到正确	•			1	MS/s	

	DAC_OUT的最大频率				
twakeup	从关闭状态唤醒的时间 (PDV18 从 1 变到 0)	C _{LOAD} ≤50pF, R _{LOAD} ≥5kΩ,输入代 码介于最小和最大 可能数值之间			us
PSRR+	供电抑制比(相对于V _{DDA})(静态 直流测量)	没有R _{LOAD} , C _{LOAD} ≤50pF	-100	-75	dB

4. 3. 24 OPA 特性

表 4-45 OPA 特性

符号	参数	条件 最小值 !		典型值	最大值	单位
V_{DDA}	供电电压		2. 4	3. 3	3. 6	٧
C _{MIR}	共模输入电压		0		V _{DDA} -0. 9	٧
VIOFFSET	输入失调电压			4. 5		mV
I LOAD	驱动电流				600	uA
DDOPAMP	消耗电流	无负载,静态模式		195		uA
\mathbf{C}_{MRR}	共模抑制比	@1kHz		96		dB
P_{SRR}	电源抑制比	@1kHz		86		dB
Av	开环增益	C _{LOAD} =5pF		136		dB
$G_{\scriptscriptstyle BW}$	单位增益带宽	C _{LOAD} =5pF		19		MHz
P _M	相位裕度	C _{LOAD} =5pF		93		
S _R	压摆率	C _{LOAD} =5pF		8		V/us
twakup	关闭到唤醒建立时间, 0.1%	输入V _{DDA} /2, C _{LOAD} =5pF, R _{LOAD} =4kΩ			368	ns
$R_{\scriptscriptstyle LOAD}$	电阻性负载		4			kΩ
\mathbf{C}_{LOAD}	电容性负载				50	pF
V_{OHSAT}	 高饱和输出电压	R _{LOAD} =4kΩ,输入 V _{DDA}	V_{DDA} -45			mV
V OHSAT	同心外制山化压	R _{LOAD} =20kΩ,输入 V _{DDA}	V_{DDA} -10			IIIV
$V_{ extsf{OLSAT}}$	 低饱和输出电压	R _{LOAD} =4k Ω , 输入 0			0. 5	mV
V OLSAT	似地和制山电压	R _{LOAD} =20kΩ,输入0			0. 5	IIIV
		R _{LOAD} =4k Ω , @1kHz		83		nv
EN	等效输入电压噪声	R _{LOAD} =4k Ω , @10kHz		42		$\frac{HV}{\sqrt{Hz}}$

注:负载电流会限制饱和输出电压。

第5章 封装及订货信息

芯片封装

封装形式	塑体宽度	引脚	间距	封装说明	订货型号
LQFP48	7*7mm	0. 5mm	19.7mil	LQFP48(7*7)贴片	CH32V203C6T6
LQFP32	7*7mm	0. 5mm	19.7mil	LQFP48(7*7)贴片	CH32V203K8T6
LQFP48	7*7mm	0. 5mm	19.7mil	LQFP48(7*7)贴片	CH32V203C8T6
QFN48X7	7*7mm	0. 5mm	19.7mil	方形无引线 48 脚	CH32V203C8U6
LQFP48	7*7mm	0. 5mm	19.7mil	LQFP48(7*7)贴片	CH32V303CBT6
LQFP64M	10*10mm	0. 5mm	19.7mil	LQFP64M(10*10)贴片	CH32V303RBT6
LQFP64M	10*10mm	0. 5mm	19.7mil	LQFP64M(10*10)贴片	CH32V303RCT6
LQFP100	14*14mm	0. 5mm	19.7mil	LQFP100(14*14)贴片	CH32V303VCT6
LQFP64M	10*10mm	0. 5mm	19.7mil	LQFP64M(10*10)贴片	CH32V305RBT6
LQFP64M	10*10mm	0. 5mm	19.7mil	LQFP64M(10*10)贴片	CH32V307RCT6
LQFP100	14*14mm	0. 5mm	19.7mil	LQFP100(14*14)贴片	CH32V307VCT6
QFN48X5	5*5mm	0. 35mm	13.8mil	方形无引线 48 脚	CH32V208CBU6
LQFP64M	10*10mm	0. 5mm	19.7mil	LQFP64M(10*10)贴片	CH32V208RBT6
QFN68X8	8*8mm	0. 4mm	15.75mil	方形无引线 68 脚	CH32V208WBU6

说明:尺寸标注的单位是 mm(毫米),引脚中心间距总是标称值,没有误差,除此之外的尺寸误差不大于±0.4mm或者 15%。

图 5-2 QFN48X7 封装

图 5-3 QFN68X8 封装

图 5-4 LQFP32 封装

图 5-5 LQFP48 封装

图 5-6 LQFP64M 封装

图 5-7 LQFP100 封装

系列产品命名规则

举例: CH32 ٧ 03 产品系列 F = 基于 ARM 内核 V = 基于 RISC-V 内核 产品类型 0 = V2 内核 1 = M3/V3A 内核, 主频@72M 2 = M3/V4B_C 内核, 主频@144M 3 = V4F 浮点内核, 主频@144M 产品子系列 03 = 通用型 05 = 连接型(USB 高速、SDIO、双 CAN) 07 = 互联型(USB 高速、双 CAN、以太网、DVP、SDIO、FSMC) 08 = 无线型(蓝牙 BLE5.3、CAN、USB、以太网) 引脚数目 G = 28 脚 K = 32 脚 T = 36 脚 C = 48 脚 R = 64 脚 W = 68 脚 V = 100 脚 Z = 144 脚 闪存存储容量 6 = 32K 闪存存储器 8 = 64K 闪存存储器 B = 128K 闪存存储器 C = 256K 闪存存储器 封装 T = LQFPU = QFN

6 = -40°C~85°C (工业级)

温度范围

7 = -40℃~105℃ (汽车2级)

3 = -40℃~125℃ (汽车1级)

D = -40°C~150°C (汽车0级)