Diabetes prediction with machine learning methods

Siwei Wu

Health data analytics and machine learning
Imperial College London

Background

Background Method Result Conclusion

Increasing DM makes a prediction model necessary; some prediction models have been developed.

High incidence of diabetes makes a prediction model in need:

- Target people at higher risk
- Intervene their lifestyle to prevent or postpone the onset of diabetes

A variety of (logistic model based) risk scores but with drawbacks:

- Variable selection sensitive to statistic power
- Not robust to collinearity
- Can't model non-linearity

A new model: can machine learning help us?

FOS T2DM risk score is based on logistic regression with a sparse set of predictors; Adding more predictors doesn't improve performance

	Model 1	Model 2-1	Model 2-2	Model 2-3	Model 2-4	Model 3-1	Model 3-2	Model 3-3	Model 4
AUC	0.724	0.852	0.850	0.852	0.881	0.854	0.850	0.851	0.869
Age				ı					
Sex									
Parental history						i			
BMI									
Waist circumstance									
Blood pressure									
HDL-C				l .					
Triglyceride									
Fasting glucose									
2-hour OGTT									
Fasting insulin									
C-reactive protein									
Gutt insulin sensitivity level									
HOMA insulin resistance index									
HOMA β-cell index				1					
Hormone therapy, smoking, alcohol, drug use, HbA1C									

Variables included as discrete

Variables included as continuous

Variables not included

METHODS

Background Method Result Conclusion

Data description: UK BIOBANK

Data description: 45 predictors are included; more risk factors and biomarkers are included compared with FOS T2DM risk score

Category	Variable	Count
Demographic information	Sex, Age	
Physical Measurement	SBP, DBP, waist, BMI	
Life style	Physical activity, Smoking, Alcohol	
Family history	Family history of mother, Family history of father	
Co-mobidity	Hypertension, Dyslipidemia	2
Blood biochemical metrics (Sex hormone)	testosterone, shbg	2
Blood biochemical metrics (Glucose metabolism)	Glucose, HaB1C, IGF1	3
Blood biochemical metrics (Liver function)	Alkaline phosphate, Alanine aminotransferase(ALT), Aspartate aminotransferase(AST), Direct bilirubin, Gamma glutamyltransferase (GGT), Total bilirubin	6
Blood biochemical metrics (Inflammation)	C-Reactive protein	1
Blood biochemical metrics (Urate)	Urate	1
Blood biochemical metrics (Lipid metabolism)	Apolipoprotein A, Bio apolipoprotein B, Cholesterol, HDL cholesterol, Idl direct, Lipoprotein A, Triglycerides	
Blood biochemical metrics (Nutrition)	Albumin, Total protein	2
Blood biochemical metrics (Skeleton mechanism)	Calcium, Phosphate, Vitamin D	
Blood biochemical metrics (Renal function)	Urea, creatinine, Cystatin C	3
Urine biochemical metrics (Renal function)	Microalbumin, Creatine, Potassium, Sodium	
Sum		45

The FOS score is replicated as the baseline to compare with; 4 new models are trained to improve the prediction for DM;

Baseline model: replication of FOS

Model tuning: hyper-parameters of clustering is tuned based on silhouette score; hyper-parameter of random forest is pre-tuned on a decision tree

Methods	Data required	Hyper-parameter	Hyper-parameter tuning
Logistic	Only numeric data scaled	/	/
Logistic (on) Clustering	Only numeric data scaled	/	/
	Scaled data	 Number of clusters 	 Pick number of clusters based on silhouette score (closest to 1);
Lasso	Scaled data (one hot categorical variable)	• Lambda	Cross-validation;Pick lambda.1se for prediction;
Random forest	Un-scaled data	Impurity criterion;Max depth;Min samples each node;Number of estimators;	 Cross-validation Did pilot tuning on a decision tree; Narrow down the range of hyper-parameters tuning a forest model
ANN	Scaled data	Depth(layer) of network	Cross-validationTuned manually

RESULT

Model 1: Logistic regression(replication of FOS): HDL-C is the most importance predictor; AUC of FOS diabetes score is 0.79 Regression model:

 $Logit(Probability\ of\ DM) = -1.105*HDLC + 0.623*Mother\ with\ DM + 0.532*Glu + 0.471*Father\ with\ DM + 0.115*Cholesterol + 0.075*BMI - 0.064*male + 0.054*age + 0.033*waist\ circumstance\ + 0.001*SBP$

Variable importance: the most important predictor is HDLC with the largest coefficient, follow by family history and glucose

The AUC of FOS diabetes score is 0.79

Model 2: Logistic regression on clustering: k-means clustering on 29 biomarkers; 4 clusters can result in the silhouette score closest to 1

Motivation:

Logistic regression struggles with too many predictors(overfitting)
But these predictors are also informative and we want to include them

KMeans Clustering on the 29 biomarkers (out of 32) available in UK Biobank; Number of clusters is decided based on average silhouette score;

Hyperparameter tuning: Average silhouette score gets closest to 1 when number of clusters is four

Model 2(Logistic regression on clusters): Clustering is interpreted by a decision tree and using SHAP value.

Cluster 1: **Higher ALT**

Higher AST Higher GGT

Cluster 3:

Higher bilirubin

Low ApoB

SHAP Density plot for Cluster3 ApoB

Cluster 2:

High ApoB **High Testosterone High Triglycerides**

Cluster 4

Low Testosterone Low urate Low uric creatine

Model 2(Logistic regression on clusters): the clusters on biomarkers play an important role; AUC improves to 0.80 Regression model:

Logit(Probability of DM) = -1.12*cluster4 - 1.05*cluster3 -0.629*HDLC + + 0.619*Mother with DM + 0.528*Glu + -0.516*cluster2 + 0.487*Father with DM +0.454*dyslipidemia + 0.388*HTN +

Clusters play an important role in prediction; those in cluster 4 and cluster 3 are at a higher risk of diabetes

The AUC improves to 0.80 compared to 0.79 of FOS diabetes score

Model 3(LASSO): 23 variables are selected by Lasso; HbA1c, waist circumstance and BMI are the three with largest effect size; ROC increases to 0.84

- 23 variables are selected by Lasso;
- Higher HbA1c, waist circumstance and BMI mostly increase the risk of diabetes
- Lambda is set as Lambda.1se=0.059 (See Appendix)

- A significant improvement in AUC
- Less information is lost with lasso selecting all variables important to prediction

Model 4(Random forest): higher HbA1c, waist circumstance, and BMI are most predictive of diabetes; AUC of random forest is 0.84

- **Hyper-parameters:** criterion=Gini; depth=14; min samples per leaf = 64; num estimators=200
- HbA1c, waist circumstance, and BMI are most predictive of diabetes

 AUC of random forest = 0.84, equivalent to LASSO

A comparison of variable importance between random forest and lasso: important features are similar across two models

• HbA1c, waist circumstance, and BMI are top predictors for both random forest and lasso

ANN with only 1 hidden layer outperforms those with multiple hidden layers; It doesn't outperform random forest or lasso

- Hyper-parameters are tuned manually with cross-validation
- Network with only 1 hidden layer outperforms those with more hidden layers

- The AUC is 0.84
- Neural network doesn't outperform random forest or lasso

CONCLUSION

Background Method Result Conclusion

Conclusion

- Replicated the Framingham equation as the baseline.
- Built four new models: logistic regression on clusters, LASSO, random forest, and ANN.
- All the four models outperform the Framingham equation.
- LASSO, random forest, and ANN performs equally with the same AUC(0.84)
- LASSO and random forest are preferred for sake of interpretability.

Limitation & future work

- More observations can be included if I imputed them.
- More predictors can be included to our model like polygenetic risk score for type 2 diabetes, which can be helpful to our prediction.
- Significance test on AUC can be performed to get a confident conclusion whether new models are significantly better than the FOS
- The ANN is not well tuned. It may outperform other methods if the hyper-parameters are well calibrated.

QUESTIONS?

Appendix: lambda.1se for lasso is 0.059 with cross validation

Appendix: error metrics for prediction model

	accuracy	F1 score	Precision	Recall
Logistic	0.95	0.19	0.18	0.20
Logistic + clustering	0.95	0.20	0.18	0.23
LASSO	0.92	0.25	0.17	0.48
Random forest	0.96	0.21	0.26	0.18
ANN	0.92	0.24	0.16	0.49