Grupos Cíclicos

José Antônio O. Freitas

MAT-UnB

Caso a operação * seja do tipo multiplicativa, vamos escrever (G, *) =

Caso a operação * seja do tipo multiplicativa, vamos escrever $(G,*)=(G,\cdot)$.

Caso a operação * seja do tipo multiplicativa, vamos escrever $(G, *) = (G, \cdot)$. Assim, dados $x, y \in G$ vamos denotar

Caso a operação * seja do tipo multiplicativa, vamos escrever $(G,*)=(G,\cdot)$. Assim, dados $x, y \in G$ vamos denotar

$$x * y =$$

Caso a operação * seja do tipo multiplicativa, vamos escrever $(G,*)=(G,\cdot)$. Assim, dados $x,\ y\in G$ vamos denotar

$$x * y = x \cdot y =$$

Caso a operação * seja do tipo multiplicativa, vamos escrever $(G,*)=(G,\cdot)$. Assim, dados $x,\ y\in G$ vamos denotar

$$x * y = x \cdot y = xy$$
.

Caso a operação * seja do tipo aditiva, vamos escrever (G, *) =

Caso a operação * seja do tipo multiplicativa, vamos escrever $(G,*)=(G,\cdot)$. Assim, dados $x, y \in G$ vamos denotar

$$x * y = x \cdot y = xy$$
.

Caso a operação * seja do tipo aditiva, vamos escrever (G, *) = (G, +).

Caso a operação * seja do tipo multiplicativa, vamos escrever $(G,*)=(G,\cdot)$. Assim, dados $x,\ y\in G$ vamos denotar

$$x * y = x \cdot y = xy$$
.

Caso a operação * seja do tipo aditiva, vamos escrever (G, *) = (G, +). Assim, dados $x, y \in G$ vamos denotar

Caso a operação * seja do tipo multiplicativa, vamos escrever $(G,*)=(G,\cdot)$. Assim, dados $x,\ y\in G$ vamos denotar

$$x * y = x \cdot y = xy$$
.

Caso a operação * seja do tipo aditiva, vamos escrever (G, *) = (G, +). Assim, dados $x, y \in G$ vamos denotar

$$x * y =$$

Caso a operação * seja do tipo multiplicativa, vamos escrever $(G,*)=(G,\cdot)$. Assim, dados $x, y \in G$ vamos denotar

$$x * y = x \cdot y = xy$$
.

Caso a operação * seja do tipo aditiva, vamos escrever (G, *) = (G, +). Assim, dados $x, y \in G$ vamos denotar

$$x * y = x + y$$
.

Com a notação multiplicativa

Caso a operação * seja do tipo multiplicativa, vamos escrever $(G,*)=(G,\cdot)$. Assim, dados $x,\ y\in G$ vamos denotar

$$x * y = x \cdot y = xy$$
.

Caso a operação * seja do tipo aditiva, vamos escrever (G, *) = (G, +). Assim, dados $x, y \in G$ vamos denotar

$$x * y = x + y$$
.

Com a notação multiplicativa o inverso de um elemento $x \in G$

Caso a operação * seja do tipo multiplicativa, vamos escrever $(G,*)=(G,\cdot)$. Assim, dados $x,\ y\in G$ vamos denotar

$$x * y = x \cdot y = xy$$
.

Caso a operação * seja do tipo aditiva, vamos escrever (G, *) = (G, +). Assim, dados $x, y \in G$ vamos denotar

$$x * y = x + y$$
.

Com a notação multiplicativa o inverso de um elemento $x \in G$ será denotado por x^{-1}

Caso a operação * seja do tipo multiplicativa, vamos escrever $(G,*)=(G,\cdot)$. Assim, dados $x, y\in G$ vamos denotar

$$x * y = x \cdot y = xy$$
.

Caso a operação * seja do tipo aditiva, vamos escrever (G, *) = (G, +). Assim, dados $x, y \in G$ vamos denotar

$$x * y = x + y$$
.

Com a notação multiplicativa o inverso de um elemento $x \in G$ será denotado por x^{-1} e no caso da notação aditiva

Caso a operação * seja do tipo multiplicativa, vamos escrever $(G,*)=(G,\cdot)$. Assim, dados $x, y \in G$ vamos denotar

$$x * y = x \cdot y = xy$$
.

Caso a operação * seja do tipo aditiva, vamos escrever (G, *) = (G, +). Assim, dados $x, y \in G$ vamos denotar

$$x * y = x + y$$
.

Com a notação multiplicativa o inverso de um elemento $x \in G$ será denotado por x^{-1} e no caso da notação aditiva o oposto de $x \in G$

Caso a operação * seja do tipo multiplicativa, vamos escrever $(G,*)=(G,\cdot)$. Assim, dados $x, y \in G$ vamos denotar

$$x * y = x \cdot y = xy$$
.

Caso a operação * seja do tipo aditiva, vamos escrever (G, *) = (G, +). Assim, dados $x, y \in G$ vamos denotar

$$x * y = x + y$$
.

Com a notação multiplicativa o inverso de um elemento $x \in G$ será denotado por x^{-1} e no caso da notação aditiva o oposto de $x \in G$ será denotado por -x.

Seja G um grupo multiplicativo

Seja G um grupo multiplicativo e denote por e o elemento neutro de G.

Seja G um grupo multiplicativo e denote por e o elemento neutro de G. Se $x \in G$

Seja G um grupo multiplicativo e denote por e o elemento neutro de G. Se $x \in G$ e $m \in \mathbb{Z}$,

Seja G um grupo multiplicativo e denote por e o elemento neutro de G. Se $x \in G$ e $m \in \mathbb{Z}$, a **potência** m-ésima de x,

 x^{m}

 x^{m}

$$x^{m}$$

$$x^m =$$

$$x^m = \begin{cases} e, & \text{se m} = 0. \end{cases}$$

$$x^m = \begin{cases} e, & \text{se m} = 0, \\ x^{m-1}x, & \end{cases}$$

$$x^{m} = \begin{cases} e, & \text{se m} = 0, \\ x^{m-1}x, & \text{se } m \ge 1, \end{cases}$$

$$x^{m} = \begin{cases} e, & \text{se m} = 0, \\ x^{m-1}x, & \text{se } m \ge 1, \\ (x^{-m})^{-1}, & \end{cases}$$

$$x^{m} = \begin{cases} e, & \text{se m} = 0, \\ x^{m-1}x, & \text{se } m \ge 1, \\ (x^{-m})^{-1}, & \text{se } m < 0. \end{cases}$$

i) No grupo multiplicativo $GL_2(\mathbb{R})$

i) No grupo multiplicativo $GL_2(\mathbb{R})$ seja

i) No grupo multiplicativo $GL_2(\mathbb{R})$ seja

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}.$$

i) No grupo multiplicativo $GL_2(\mathbb{R})$ seja

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}.$$

Então:

ii) No grupo multiplicativo \mathbb{Z}_5^*

ii) No grupo multiplicativo \mathbb{Z}_5^* seja $a=\overline{2}$.

ii) No grupo multiplicativo \mathbb{Z}_5^* seja $a=\overline{2}$. Então:

iii) No grupo multiplicativo S_3

iii) No grupo multiplicativo S₃ seja

$$a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}.$$

iii) No grupo multiplicativo S₃ seja

$$a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}.$$

Então:

Seja G um grupo multiplicativo.

Seja G um grupo multiplicativo. Se m e n são números inteiros

$$i) x^m x^n =$$

$$i) x^m x^n = x^{m+n}$$

$$i) x^m x^n = x^{m+n}$$

ii)
$$x^{-m} =$$

i)
$$x^{m}x^{n} = x^{m+n}$$

ii)
$$x^{-m} = (x^m)^{-1}$$

i)
$$x^{m}x^{n} = x^{m+n}$$

ii)
$$x^{-m} = (x^m)^{-1}$$

iii)
$$(x^m)^n =$$

i)
$$x^{m}x^{n} = x^{m+n}$$

ii)
$$x^{-m} = (x^m)^{-1}$$

iii)
$$(x^m)^n = x^{mn}$$

i)
$$x^{m}x^{n} = x^{m+n}$$

ii)
$$x^{-m} = (x^m)^{-1}$$

iii)
$$(x^m)^n = x^{mn}$$

$$iv) x^m x^n =$$

i)
$$x^{m}x^{n} = x^{m+n}$$

ii)
$$x^{-m} = (x^m)^{-1}$$

$$iii) (x^{m})^{n} = x^{mn}$$

$$iv) x^m x^n = x^n x^m$$

Seja G um grupo aditivo

Seja G um grupo aditivo e denote por e o elemento neutro de G.

Seja G um grupo aditivo e denote por e o elemento neutro de G. Se $x \in G$

Seja G um grupo aditivo e denote por e o elemento neutro de G. Se $x \in G$ e $m \in \mathbb{Z}$,

Seja G um grupo aditivo e denote por e o elemento neutro de G. Se $x \in G$ e $m \in \mathbb{Z}$, o **múltiplo** m-ésimo de x

$$m \cdot x$$

$$m \cdot x$$

$$m \cdot x =$$

$$m \cdot x$$

$$m \cdot x = \begin{cases} e, & \text{se m} = 0, \end{cases}$$

$$m \cdot x$$

$$m \cdot x = \begin{cases} e, & \text{se m} = 0, \\ (m-1) \cdot x + x, \end{cases}$$

$$m \cdot x$$

$$m \cdot x = \begin{cases} e, & \text{se m} = 0, \\ (m-1) \cdot x + x, & \text{se } m \geq 1, \end{cases}$$

$$m \cdot x$$

$$m \cdot x = \begin{cases} e, & \text{se m} = 0, \\ (m-1) \cdot x + x, & \text{se } m \ge 1, \\ -[(-m) \cdot x], \end{cases}$$

$$m \cdot x$$

$$m \cdot x = \begin{cases} e, & \text{se m} = 0, \\ (m-1) \cdot x + x, & \text{se } m \ge 1, \\ -[(-m) \cdot x], & \text{se } m < 0. \end{cases}$$

Seja G um grupo aditivo.

Seja G um grupo aditivo. Se m e n são números inteiros

i)
$$m \cdot x + n \cdot x =$$

i)
$$m \cdot x + n \cdot x = (m + n) \cdot x$$

i)
$$m \cdot x + n \cdot x = (m + n) \cdot x$$

$$ii) (-m) \cdot x =$$

i)
$$m \cdot x + n \cdot x = (m + n) \cdot x$$

ii)
$$(-m) \cdot x = -(m \cdot x)$$

i)
$$m \cdot x + n \cdot x = (m + n) \cdot x$$

ii)
$$(-m) \cdot x = -(m \cdot x)$$

iii)
$$n \cdot (m \cdot x) =$$

i)
$$m \cdot x + n \cdot x = (m + n) \cdot x$$

ii)
$$(-m) \cdot x = -(m \cdot x)$$

iii)
$$n \cdot (m \cdot x) = (nm) \cdot x$$

Seja G um grupo multiplicativo

Seja G um grupo multiplicativo e $x \in G$. Denote por [x]

$$[x] =$$

$$[x] = \{x^m$$

$$[x] = \{x^m \mid m \in \mathbb{Z}\}$$

$$[x] = \{x^m \mid m \in \mathbb{Z}\} \subset G.$$

$$[x] = \{x^m \mid m \in \mathbb{Z}\} \subset G.$$

Proposição

Seja G um grupo multiplicativo

$$[x] = \{x^m \mid m \in \mathbb{Z}\} \subset G.$$

Proposição

$$[x] = \{x^m \mid m \in \mathbb{Z}\} \subset G.$$

Proposição

Seja G um grupo multiplicativo e $x \in G$.

i) O subconjunto [x]

$$[x] = \{x^m \mid m \in \mathbb{Z}\} \subset G.$$

Proposição

Seja G um grupo multiplicativo e $x \in G$.

i) O subconjunto [x] é um subgrupo de G.

$$[x] = \{x^m \mid m \in \mathbb{Z}\} \subset G.$$

Proposição

- i) O subconjunto [x] é um subgrupo de G.
- ii) Se H é um subgrupo de G

$$[x] = \{x^m \mid m \in \mathbb{Z}\} \subset G.$$

Proposição

- i) O subconjunto [x] é um subgrupo de G.
- ii) Se H é um subgrupo de G tal que $x \in H$,

$$[x] = \{x^m \mid m \in \mathbb{Z}\} \subset G.$$

Proposição

- i) O subconjunto [x] é um subgrupo de G.
- ii) Se H é um subgrupo de G tal que $x \in H$, então $[x] \subset H$.

Um grupo multiplicativo G

Um grupo multiplicativo G será chamado de grupo cíclico

Um grupo multiplicativo G será chamado de **grupo cíclico** se, para algum $x \in G$,

Um grupo multiplicativo G será chamado de **grupo cíclico** se, para algum $x \in G$, vale

Um grupo multiplicativo G será chamado de **grupo cíclico** se, para algum $x \in G$, vale

$$G = [x].$$

Um grupo multiplicativo G será chamado de **grupo cíclico** se, para algum $x \in G$, vale

$$G = [x].$$

Nessas condições, o elemento x

Um grupo multiplicativo G será chamado de **grupo cíclico** se, para algum $x \in G$, vale

$$G = [x].$$

Nessas condições, o elemento x é chamado de **gerador** do grupo G.

i) No grupo multiplicativo \mathbb{C}^* ,

i) No grupo multiplicativo \mathbb{C}^* , encontre o subgrupo gerado por i.

ii) No grupo S_3 ,

ii) No grupo S_3 , encontre o subgrupo gerado por

$$f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}.$$

Todo subgrupo de um grupo cíclico é também cíclico.

Seja G um grupo com elemento neutro e.

Seja G um grupo com elemento neutro e. Dado $x \in G$

Seja G um grupo com elemento neutro e. Dado $x \in G$ se existir um inteiro h > 0

Seja G um grupo com elemento neutro e. Dado $x \in G$ se existir um inteiro h > 0 tal que

Seja G um grupo com elemento neutro e. Dado $x \in G$ se existir um inteiro h > 0 tal que

i)
$$x^h = e$$

<u>Definição</u>

- i) $x^h = e$
- ii) $x^r \neq e$

- i) $x^h = e$
- ii) $x^r \neq e$ qualquer que seja o inteiro r

- *i*) $x^{h} = e$
- ii) $x^r \neq e$ qualquer que seja o inteiro r tal que 0 < r < h

- *i*) $x^{h} = e$
- ii) $x^r \neq e$ qualquer que seja o inteiro r tal que 0 < r < h diremos que a **ordem**

- *i*) $x^{h} = e$
- ii) $x^r \neq e$ qualquer que seja o inteiro r tal que 0 < r < h diremos que a **ordem** ou **período**

- *i*) $x^{h} = e$
- ii) $x^r \neq e$ qualquer que seja o inteiro r tal que 0 < r < h diremos que a **ordem** ou **período** de x é h.

- *i*) $x^{h} = e$
- ii) $x^r \neq e$ qualquer que seja o inteiro r tal que 0 < r < h diremos que a **ordem** ou **período** de x é h. Nesse caso escreveremos |x| = 1

- *i*) $x^{h} = e$
- ii) $x^r \neq e$ qualquer que seja o inteiro r tal que 0 < r < h diremos que a **ordem** ou **período** de x é h. Nesse caso escreveremos |x| = o(x) = h.

Seja G um grupo com elemento neutro e. Dado $x \in G$ se existir um inteiro h > 0 tal que

- *i*) $x^{h} = e$
- ii) $x^r \neq e$ qualquer que seja o inteiro r tal que 0 < r < h
- diremos que a **ordem** ou **período** de x é h. Nesse caso escreveremos
- |x|=o(x)=h.

Se para qualquer inteiro

Seja G um grupo com elemento neutro e. Dado $x \in G$ se existir um inteiro h > 0 tal que

- *i*) $x^{h} = e$
- ii) $x^r \neq e$ qualquer que seja o inteiro r tal que 0 < r < h diremos que a **ordem** ou **período** de x é h. Nesse caso escreveremos

|x| = o(x) = h.

Se para qualquer inteiro $r \neq 0$,

Seja G um grupo com elemento neutro e. Dado $x \in G$ se existir um inteiro h > 0 tal que

- i) $x^h = e$
- ii) $x^r \neq e$ qualquer que seja o inteiro r tal que 0 < r < h
- diremos que a **ordem** ou **período** de x é h. Nesse caso escreveremos
- |x|=o(x)=h.

Se para qualquer inteiro $r \neq 0$, $x^r \neq e$,

Seja G um grupo com elemento neutro e. Dado $x \in G$ se existir um inteiro h > 0 tal que

- i) $x^h = e$
- ii) $x^r \neq e$ qualquer que seja o inteiro r tal que 0 < r < h
- diremos que a **ordem** ou **período** de x é h. Nesse caso escreveremos
- |x|=o(x)=h.

Se para qualquer inteiro $r \neq 0$, $x^r \neq e$, diremos que a **ordem** de x é **zero**.

i) No grupo multiplicativo \mathbb{C}^* temos:

ii) Em S₃ temos:

iii) Em \mathbb{Z}_5 temos:

iv) Em \mathbb{Z}

iv) Em $\mathbb Z$ o único elemento de ordem diferente de zero

iv) Em $\mathbb Z$ o único elemento de ordem diferente de zero é o elemento neutro.

Seja x um elemento de ordem h > 0

Seja x um elemento de ordem h > 0 de um grupo G.

Seja x um elemento de ordem h > 0 de um grupo G. Então $x^m = e$

Seja x um elemento de ordem h > 0 de um grupo G. Então $x^m = e$ se, e somente se, $h \mid m$.