

Instituto de Computação UNIVERSIDADE ESTADUAL DE CAMPINAS

Capacitação profissional em tecnologias de Inteligência Artificial

Machine Learning Overview

Prof. Edson Borin

https://www.ic.unicamp.br/~edson
Institute of Computing - UNICAMP

ML Process

Model evaluation (II) Performance measures

Performance measures: regression tasks

Usually distance between $h_{\theta}(x^{(i)})$ and $y^{(i)}$

RMSE: Root Mean Square Error

RMSE(X,h_{\theta}) =
$$\sqrt{\frac{1}{m}} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

MAE: Mean Absolute Error

MAE(X,
$$h_{\theta}$$
) = $\frac{1}{m} \sum_{i=1}^{m} |h_{\theta}(x^{(i)}) - y^{(i)}|$

Performance measures: regression tasks

Usually distance between $h_{\theta}(x^{(i)})$ and $y^{(i)}$

MSE: Mean Square Error

RMSE =
$$\sqrt{MSE}$$

MSE(X,h_{\theta}) =
$$\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Performance measures: regression tasks

Usually distance between $h_{\rho}(x^{(i)})$ and $y^{(i)}$

• R²: Coefficient of determination (a.k.a. "R squared")

$$\overline{y} = \frac{1}{m} \sum_{i=1}^{m} y^{(i)}$$

$$SS_{res} \qquad \sum_{i=1}^{m} (y^{(i)})$$

$$R^{2}(X,h_{\theta}) = 1 - \frac{SS_{res}}{SS_{tot}} = 1 - \frac{\sum_{i=1}^{m} (y^{(i)} - h_{\theta}(x^{(i)}))}{\sum_{i=1}^{m} (y^{(i)} - \overline{y})^{2}}$$

Ranges from -∞ to 1 and indicates gression tasks how well the model fits data.

distance between $h_{\theta}(x^{(i)})$ and $y^{(i)}$

• R²: Coefficient of determination (a.k.a. "R squared")

$$\overline{y} = \frac{1}{m} \sum_{i=1}^{m} y^{(i)}$$

$$R^{2}(X, h_{\theta}) = 1 - \frac{SS_{res}}{SS_{tot}} = 1 - \frac{\sum_{i=1}^{m} (y^{(i)} - h_{\theta}(x^{(i)}))}{\sum_{i=1}^{m} (y^{(i)} - \overline{y})^{2}}$$

Performance measures: classification tasks

• $h_{\theta}(x_1, x_2, ..., x_n) \rightarrow \{1, 2, ..., k\}$

Map features to classes

• Distance measures (e.g., $h_{\theta}(x^{(i)})$ - $y^{(i)}$) do not reflect well the performance of the classifier

Performance measures: classification tasks

• $h_{\theta}(x_1, x_2, ..., x_n) \rightarrow \{1, 2, ..., k\}$

Map features to

- Distance measures (e.g., $h_{\theta}(x^{(i)})$ $y^{(i)}$) do not reflect well the performance of the classifier
- Ex: for a given sample $(x^{(i)}, y^{(i)})$, assume:

$$y^{(i)} = 2$$

$$h_{\theta'}(x^{(i)}) = 3 \Rightarrow h_{\theta'}(x^{(i)}) - y^{(i)} = 3-2 = 1$$

$$\begin{array}{cccc} \circ & h_{\theta'}(x^{(i)}) = 3 & \Rightarrow & h_{\theta'}(x^{(i)}) - y^{(i)} = 3-2 = 1 \\ \circ & h_{\theta''}(x^{(i)}) = 7 & \Rightarrow & h_{\theta''}(x^{(i)}) - y^{(i)} = 7-2 = 5 \end{array}$$

Performance measures: classification tasks

• $h_{\theta}(x_1, x_2, ..., x_n) \rightarrow \{1, 2, ..., k\}$

Map features to classes

- Distance measures (e.g., $h_{\theta}(x^{(i)})$ $y^{(i)}$) do not reflect well the performance of the classifier
- Ex: for a given sample $(x^{(i)},y^{(i)})$, assume:

$$\begin{array}{lll} \circ & y^{(i)} = 2 & \\ \circ & h_{\theta'}(x^{(i)}) = 3 & \Rightarrow & h_{\theta'}(x^{(i)}) - y^{(i)} = 3 - 2 = 1 \\ \circ & h_{\theta''}(x^{(i)}) = 7 & \Rightarrow & h_{\theta''}(x^{(i)}) - y^{(i)} = 7 - 2 = 5 \end{array}$$

- Confusion matrix
- Accuracy / Error rate
- Precision
- Recall
- F-score

- Confusion matrix: table that shows, for each class, how many of its samples where predicted as each one of the possible classes
- Example: $h_{\theta}(x_1, x_2, ..., x_n) \to \{$ $(x_1, x_2, ..., x_n) \to \{$

- Confusion matrix: table that shows, for each class, how many of its samples where predicted as each one of the possible classes
- Example: $h_{\theta}(x_1, x_2, ..., x_n) \to \{ (0, (0, 1)) \}$

- Confusion matrix: table that shows, for each class, how many of its samples where predicted as each one of the possible classes
- Example: $h_{\theta}(x_1, x_2, ..., x_n) \to \{ (0, (0, 1)) \}$

- Confusion matrix: table that shows, for each class, how many of its samples where predicted as each one of the possible classes
- Example: $h_{\theta}(x_1, x_2, ..., x_n) \to \{ b, b \}$

- Confusion matrix: table that shows, for each class, how many of its samples where predicted as each one of the possible classes
- Example: $h_{\theta}(x_1, x_2, ..., x_n) \to \{ (5, (5, 1)) \}$

- Confusion matrix: table that shows, for each class, how many of its samples where predicted as each one of the possible classes
- Example: $h_{\theta}(x_1, x_2, ..., x_n) \to \{ (5, (5, 1)) \}$

- Confusion matrix: table that shows, for each class, how many of its samples where predicted as each one of the possible classes
- Example: $h_{\theta}(x_1, x_2, ..., x_n) \to \{ (5, (5, 1)) \}$

Performance measures: classification tasks

- Confusion matrix: table that shows, for each class, how many of its samples where predicted as each one of the possible classes
- Example: $h_{\theta}(x_1, x_2, ..., x_n) \to \{$

Incorrect prediction

Predicted as

Performance measures: classification tasks

- Confusion matrix: table that shows, for each class, how many of its samples where predicted as each one of the possible classes
- Example: $h_{\theta}(x_1, x_2, ..., x_n) \to \{A, B, ..., K\}$

Confusion matrix colored with **Heatmap**

Performance measures: classification tasks

- Confusion matrix: table that shows, for each class, how many of its samples where predicted as each one of the possible classes
- Example: $h_{\theta}(x_1, x_2, ..., x_n) \to \{A, B, ..., K\}$

Confusion matrix colored with Heatmap

Sometimes is useful to summarize the whole result as a single number (e.g., accuracy)

- Accuracy = all correct predictions / all predictions.
- Example: $h_{\theta}(x_1, x_2, ..., x_n) \to \{$ $(x_1, x_2, ..., x_n) \to \{$

Performance measures: classification tasks

- Accuracy = all correct predictions / all predictions.
- Example: $h_{\theta}(x_1, x_2, ..., x_n) \to \{$ $(x_1, x_2, ..., x_n) \to \{$

Accuracy = 120/250 = 48%

Summarizes all results

Performance measures: classification tasks

- Error rate = all incorrect predictions / all predictions.
- Example: $h_{\theta}(x_1, x_2, ..., x_n) \to \{$

Error rate = 130/250 = 52%

error rate = 1 - accuracy

Performance measures: classification tasks

<u>Precision</u> = proportion of samples predicted as class X that really belong to class X.

• Example: $h_{\theta}(x_1, x_2, ..., x_n) \rightarrow \{$ Confusion Matrix

Predicted as

Performance measures: classification tasks

 <u>Precision</u> = proportion of samples predicted as class X that really belong to class X.

• Example: $h_{\theta}(x_1, x_2, ..., x_n) \rightarrow \{$ Confusion Matrix

precision = 40/60 = 66.7%

| Variable | Vari

- <u>Precision</u> = proportion of samples predicted as class X that really belong to class X.
- Example: $h_{\theta}(x_1, x_2, ..., x_n) \rightarrow \{$ Confusion Matrix

Performance measures: classification tasks

- <u>Precision</u> = proportion of samples predicted as class X that really belong to class X.
- Example: $h_{\theta}(x_1, x_2, ..., x_n) \to \{ (0, (0, 1)) \}$ Confusion Matrix

60 30 40 rue/Actua precision = 40/60 = 66.7%20 precision = 20/100 = **20**% 20 60 precision = 60/90 = 66.7%

Performance measures: classification tasks

- Recall = proportion of class X samples classified correctly
- Example: $h_{\theta}(x_1, x_2, ..., x_n) \to \{$ $(x_1, x_2, ..., x_n) \to \{$

Predicted as

- Recall = proportion of class X samples classified correctly
- Example: $h_{\theta}(x_1, x_2, ..., x_n) \to \{$ $(x_1, x_2, ..., x_n) \to \{$

Performance measures: classification tasks

- Recall = proportion of class X samples classified correctly
- Example: $h_{\theta}(x_1, x_2, ..., x_n) \to \{$ $(x_1, x_2, ..., x_n) \to \{$

Confusion Matrix

Predicted as

Performance measures: classification tasks

- Recall = proportion of class X samples classified correctly
- Example: $h_{\theta}(x_1, x_2, ..., x_n) \to \{$ $(x_1, x_2, ..., x_n) \to \{$

Confusion Matrix

- Summarizing Recall and Precision
 - \circ F₁-score = (2 × precision × recall) / (precision + recall)
 - macro vs weighted average

	5	
)	
1		

Precision	Recall
66.7%	30.8%
20%	66.7%
66.7%	66.7%

Performance measures: classification

Precision and recall Harmonic mean

- Summarizing Recall and Precision
 - \circ F₁-score = (2 × precision × recall) / (precision + recall)
 - macro vs weighted average

	Precision	Recall	F ₁ -score
Pear	66.7%	30.8%	42.1%
Banana	20%	66.7%	30.8%
Apple	66.7%	66.7%	66.7%

Performance measures: classification tasks

- Summarizing Recall and Precision
 - \circ F₁-score = (2 × precision × recall) / (precision + recall)
 - macro vs weighted average

	Precision	Recall	F ₁ -score
Pear	66.7%	30.8%	42.1%
Banana	20%	66.7%	30.8%
Apple	66.7%	66.7%	66.7%
Macro avg	51.1%	54.73	46.5%
Weighted avg	61.1%	48.0%	49.6%
	Banana Apple Macro avg	Pear 66.7% Banana 20% Apple 66.7% Macro avg 51.1%	Pear 66.7% 30.8% Banana 20% 66.7% Apple 66.7% 66.7% Macro avg 51.1% 54.73

Weighted by the number of samples

Accuracy = 120/250 = 48%

Pei

from sklearn import metrics print(metrics.classification_report(y_true, y_pred, digits=3))

	precision	recall f	f1-score	support
Apple	0.667	0.667	0.667	90
Banana	0.200	0.667	0.308	30
Pear	0.667	0.308	0.421	130
accuracy			0.480	250
macro avg	0.511	0.547	0.465	250
weighted avg	0.611	0.480	0.496	250

130 🍊

30 📞

90 🍊

		Precision	Recall	F ₁ -score
	Pear	66.7%	30.8%	42.1%
	Banana	20%	66.7%	30.8%
)	Apple	66.7%	66.7%	66.7%
	Macro avg	51.1%	54.73	46.5%
	Weighted avg	61.1%	48.0%	49.6%

scikit learn classification report

Accuracy = 120/250 = 48%

Performance measures: classification tasks

$$F_{\beta}\text{-score} = \frac{(1+\beta^2) \times \text{precision} \times \text{recall}}{(\beta^2 \times \text{precision}) + \text{recall}}$$

$$F_1$$
-score =
$$\frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

 F_1 -score is a special case of F_{β} -score (β =1)

Performance measures: **classification tasks** P. N.TP, FP, TN, FN

- On binary classifiers, precision and recall are usually expressed as a function of Positives, Negatives, True Positive (TP), False Positives (FP), True Negative (TN), and False Negatives (FN)
- For a given class X
 - Positives: samples predicted as class X
 - TP (True Positives) samples correctly predicted as X
 - FP (False Positives) samples incorrectly predicted as X
 - Negatives: samples predicted as non-X (other classes)
 - TN (True Negative) samples correctly predicted as non-X
 - FN (False Negative) samples incorrectly predicted as non-X

Performance measures: **classification tasks** P. N.TP, FP, TN, FN

Ex: Credit card fraud

Fraud

Legitimate transaction

Positives: samples predicted as fraud

- TP: correctly predicted as fraud
- FP: incorrectly predicted as fraud

Negatives: samples predicted as non-fraud

- TN: correctly predicted as non-fraud (legit)
- FN: incorrectly predicted as non-fraud (legit)

Performance measures: classification tasks

<u>P, N, TP, FP, TN, FN</u>

Ex: Credit card fraud

Fraud

Legitimate transaction

467 6456

Positives: samples predicted as fraud

- TP: correctly predicted as fraud
- FP: incorrectly predicted as fraud

Negatives: samples predicted as non-fraud

- TN: correctly predicted as non-fraud (legit)
- FN: incorrectly predicted as non-fraud (legit)

A	
Pred	icted as

Confusion Matrix

Positives	6923
TP	
FP	
Negatives	
TN	
FN	

Performance measures: classification tasks

<u>P, N, TP, FP, TN, FN</u>

Ex: Credit card fraud

Fraud

Legitimate transaction

Positives: samples predicted as fraud

- TP: correctly predicted as fraud
- FP: incorrectly predicted as fraud

Negatives: samples predicted as non-fraud

- TN: correctly predicted as non-fraud (legit)
- FN: incorrectly predicted as non-fraud (legit)

Positives	6923
TP	
FP	
Negatives	
TN	
FN	

Performance measures: classification tasks

<u>P, N, TP, FP, TN, FN</u>

Ex: Credit card fraud

Fraud

Legitimate transaction

Positives: samples predicted as fraud

- TP: correctly predicted as fraud
- FP: incorrectly predicted as fraud

Negatives: samples predicted as non-fraud

- TN: correctly predicted as non-fraud (legit)
- FN: incorrectly predicted as non-fraud (legit)

Positives	6923
TP	467
FP	
Negatives	
TN	
FN	

Performance measures: classification tasks

<u>P, N, TP, FP, TN, FN</u>

Ex: Credit card fraud

Fraud

Legitimate transaction

Positives: samples predicted as fraud

- TP: correctly predicted as fraud
- FP: incorrectly predicted as fraud

Negatives: samples predicted as non-fraud

- TN: correctly predicted as non-fraud (legit)
- FN: incorrectly predicted as non-fraud (legit)

Confusion Matrix		
Actual	467 TP	7
True//	6456	277879

Positives	6923
TP	467
FP	
Negatives	
TN	
FN	

Performance measures: classification tasks

<u>P, N, TP, FP, TN, FN</u>

Ex: Credit card fraud

Fraud

Legitimate transaction

Positives: samples predicted as fraud

- TP: correctly predicted as fraud
- (FP:)ncorrectly predicted as fraud

Negatives: samples predicted as non-fraud

- TN: correctly predicted as non-fraud (legit)
- FN: incorrectly predicted as non-fraud (legit)

Positives	6923
TP	467
FP	6456
Negatives	
TN	
FN	

Performance measures: classification tasks

<u>P, N, TP, FP, TN, FN</u>

Ex: Credit card fraud

Fraud

Legitimate transaction

Positives: samples predicted as fraud

- TP: correctly predicted as fraud
- FP: incorrectly predicted as fraud

Negatives: samples predicted as non-fraud

- TN: correctly predicted as non-fraud (legit)
- FN: incorrectly predicted as non-fraud (legit)

Positives	6923
TP	467
FP	6456
Negatives	277886
TN	
FN	

Performance measures: classification tasks

<u>P, N, TP, FP, TN, FN</u>

Ex: Credit card fraud

Fraud

Legitimate transaction

Positives: samples predicted as fraud

- TP: correctly predicted as fraud
- FP: incorrectly predicted as fraud

Negatives: samples predicted as non-fraud

- (TN:)correctly predicted as non-fraud (legit)
- FN: incorrectly predicted as non-fraud (legit)

Positives	6923
TP	467
FP	6456
Negatives	277886
TN	277879
FN	

Performance measures: classification tasks

<u>P, N, TP, FP, TN, FN</u>

Ex: Credit card fraud

Fraud

Legitimate transaction

Positives: samples predicted as fraud

- TP: correctly predicted as fraud
- FP: incorrectly predicted as fraud

Negatives: samples predicted as non-fraud

- TN: correctly predicted as non-fraud (legit)
- FN:)ncorrectly predicted as non-fraud (legit)

Positives	6923
TP	467
FP	6456
Negatives	277886
TN	277879
FN	(7)

Performance measures: classification tasks

<u>P, N, TP, FP, TN, FN</u>

Ex: Credit card fraud

Fraud

Legitimate transaction

467 TP FN 6456 FP TN

Positives: samples predicted as fraud

- TP: correctly predicted as fraud
- FP: incorrectly predicted as fraud

Negatives: samples predicted as non-fraud

- TN: correctly predicted as non-fraud (legit)
- FN: incorrectly predicted as non-fraud (legit)

Confusion Matrix

Positives	6923
TP	467
FP	6456
Negatives	277886
TN	277879
FN	7

Performance measures: classification tasks

Ex: Credit card fraud

Fraud

Legitimate transaction

$$recall = \frac{1P}{TP+FN} = 98.5\%$$

FN

Performance measures: classification tasks

<u>P, N, TP, FP, TN, FN</u>

Ex: Credit card fraud

Fraud

Legitimate transaction

$$recall = \frac{TP}{TP+FN} = 98.5\%$$

precision =
$$\frac{TP}{TP+FP} = \frac{TP}{P} = 6.7\%$$

Positives

TP

Problem: Many legit transactions flagged as fraud!

6923

467

Performance measures: classification tasks

<u>P, N, TP, FP, TN, FN</u>

Ex: Credit card fraud

Fraud

Legitimate transaction

$$recall = \frac{TP}{TP+FN} = 98.5\%$$

precision =
$$\frac{TP}{TP+FP}$$
 = 6.7%

Positives

11	TO/
FP	6456
Negatives	277879
TN	277879
FN	7

6923

Performance measures: classification tasks

<u>P, N, TP, FP, TN, FN</u>

Ex: Credit card fraud

Fraud

Legitimate transaction

$$recall = \frac{TP}{TP+FN} = 98.5\%$$

precision =
$$\frac{TP}{TP+FP}$$
 = 6.7%

accuracy =
$$\frac{TP+TN}{TP+TN+FP+FN} = 97.7\%$$

Confusion Matrix

Positives	6923
TP	467
FP	6456
Negatives	277879
TN	277879
FN	7

- Precision/Recall tradeoff
 - Many classifiers can be adjusted to favor precision or recall
 - Ex:Threshold based classifier

Performance measures: classification tasks

- Precision/Recall tradeoff
 - Many classifiers can be adjusted to favor precision or recall
 - Ex:Threshold based classifier

Our test set sorted by probability of being a fraud

- Precision/Recall tradeoff
 - Many classifiers can be adjusted to favor precision or recall

- Precision/Recall tradeoff
 - Many classifiers can be adjusted to favor precision or recall
 - Ex:Threshold based classifier

- Precision/Recall tradeoff
 - Many classifiers can be adjusted to favor precision or recall
 - Ex:Threshold based classifier

- Precision/Recall tradeoff
 - Many classifiers can be adjusted to favor precision or recall
 - Ex:Threshold based classifier

- Precision/Recall tradeoff
 - Many classifiers can be adjusted to favor precision or recall
 - Ex:Threshold based classifier

Performance measures: classification tasks My model is Precision/Recall tradeoff great, it has almost 100% Many classifiers can be adjusted to favor preci precision! Ex: Threshold based classifier 1.0 Look, it it is missing too 8.0 many fraudulent transactions Precision/Recall .0 .0 .0 0.2 Fraud Precision Fraud Recall 0.0 0.2 0.3 0.5 0.7 0.1 0.4 0.6 8.0 0.9

Fraud classifier threshold

Performance measures: classification tasks

Fraud classifier threshold

- Precision/Recall tradeoff
 - Many classifiers can be adjusted to favor precision or recall
 - Ex:Threshold based classifier

- Precision/Recall tradeoff
 - Many classifiers can be adjusted to favor precision or recall
 - Ex:Threshold based classifier

Performance measures: classification tasks

• Precision/Recall tradeoff

Many classifiers can be adjusted

 f_{β} -score can be used to assign more importance to precision or recall.

- Precision/Recall tradeoff
 - Many classifiers can be adjusted to favor precision or recall
 - Ex:Threshold based classifier

- No silver bullet
 - Best measure depends on the task being solved

Performance measures: classification tasks

No silver bullet

Best measure depends on the task being solved

Performance measures: classification tasks

No silver bullet

Performance measures: classification tasks

No silver bullet

Best measure depends on the task being sol

Focus on recall or f_{β} -score with high β (e.g., $\beta = 10$)

Performance measures: classification tasks

- No silver bullet
 - Best measure depends on the task being solved

Precision

 $f_{0.5}$ -score f_{1} -score

 f_{γ} -score

Recall

Instituto de Computação

UNIVERSIDADE ESTADUAL DE CAMPINAS

Capacitação profissional em tecnologias de Inteligência Artificial

Machine Learning Overview

Prof. Edson Borin

https://www.ic.unicamp.br/~edson
Institute of Computing - UNICAMP