日本国特許庁

PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2000年 3月31日

出 願 番 号 Application Number:

特願2000-101305

株式会社デンソー

2001年 3月 9日

特許庁長官 Commissioner, Patent Office

【書類名】

特許願

【整理番号】

IP4330

【提出日】

平成12年 3月31日

【あて先】

特許庁長官殿

【国際特許分類】

H03K 17/08

【発明者】

【住所又は居所】

愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

【氏名】

福田豊

【発明者】

【住所又は居所】

愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

【氏名】

奥田 良一

【発明者】

【住所又は居所】

愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

【氏名】

牧野 友厚

【特許出願人】

【識別番号】

000004260

【氏名又は名称】

株式会社デンソー

【代理人】

【識別番号】

100100022

【弁理士】

【氏名又は名称】

伊藤 洋二

【電話番号】

052-565-9911

【選任した代理人】

【識別番号】

100108198

【弁理士】

【氏名又は名称】

三浦 高広

【電話番号】

052-565-9911

【選任した代理人】

【識別番号】

100111578

【弁理士】

【氏名又は名称】 水野 史博

【電話番号】 052-565-9911

【手数料の表示】

【予納台帳番号】 038287

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 半導体スイッチング素子駆動回路

【特許請求の範囲】

【請求項1】 ゲート端子(4 a)と第1端子(4 b)及び第2端子(4 c)を有し、ゲート端子への電圧印加により前記第1、第2端子間に主電流を流す 半導体スイッチング素子(4)と、

前記主電流が所定時間以上の間所定電流値(i2)を超えるような過電流となる場合に、まず、該主電流を第1の傾斜で低下させ、その後、該主電流を前記第 1の傾斜よりも急な第2の傾斜で低下させる過電流保護回路(20)と、

前記主電流が前記所定時間よりも短時間で前記過電流よりもさらに大きな過電流となる場合に、前記ゲート端子の電圧を瞬時に低減させる過電流制限回路(10)と、を備えていることを特徴とする半導体スイッチング素子駆動回路。

【請求項2】 前記過電流制限回路は、前記過電流保護回路内の遅れ時間より短時間で前記大きな過電流となる場合に、前記ゲート端子の電圧を低減させるようになっていることを特徴とする請求項1に記載の半導体スイッチング素子駆動回路。

【請求項3】 ゲート端子(4 a)と第1端子(4 b)及び第2端子(4 c)を有し、ゲート端子への電圧印加により前記第1、第2端子間に主電流を流す 半導体スイッチング素子(4)と、

前記主電流が第1の比較電流 (i 1)より大きくなると、前記ゲート端子の電圧を瞬時に低減させる過電流制限回路 (10)と、

前記主電流が前記第1の比較電流よりも低い第2の比較電流(i2)より大きくなると、まず、該主電流を第1の傾きで低下させ、その後、該主電流が前記第2の比較電流よりも低い第3の比較電流(i3)より小さくなると前記第1の傾きよりも急な第2の傾きで低下させる過電流保護回路(20)と、を備えていることを特徴とする半導体スイッチング素子駆動回路。

【請求項4】 前記半導体スイッチング素子は、前記主電流に比例したセンス電流を流すセンス端子(4d)を備えており、

前記過電流保護回路は、前記センス電流に基づいて前記主電流が前記第2の比

較電流より大きくなるか否かを比較する第1比較手段と、前記センス電流に基づいて前記主電流が前記第3の比較電流より小さくなるか否かを比較する第2比較手段とを備えていることを特徴とする請求項3に記載の半導体スイッチング素子駆動回路。

【請求項5】 前記過電流保護回路は、前記第1比較手段の出力に遅れ時間 (T2)を形成するディレイ回路(22)を備え、

前記遅れ時間経過後に前記主電流を前記第1の傾きで低下させるようになって いることを特徴とする請求項4に記載の半導体スイッチング素子駆動回路。

【請求項6】 前記過電流保護回路は、前記ゲート端子にコレクタが接続された過電流保護用トランジスタ(26)を備えており、

前記第1比較手段により前記主電流が前記第2の比較電流より大きくなったことが出力された後、前記第2比較手段の比較により前記主電流が前記第3の比較電流より小さくなったことが出力されると、前記過電流保護用トランジスタをオンさせ前記ゲート端子に印加される電圧を低減させるようになっていることを特徴とする請求項5に記載の半導体スイッチング素子駆動回路。

【請求項7】 前記過電流保護回路は、

前記ディレイ回路の出力を保持しておくラッチ回路(23)と、

前記ラッチ回路と前記第2比較手段の出力が入力されるアンド回路(25)と を備えており、

前記アンド回路の出力信号によって前記過電流保護用トランジスタのオンオフを制御するようになっていることを特徴とする請求項6に記載の半導体スイッチング素子駆動回路。

【請求項8】 前記半導体スイッチング素子は、前記主電流に比例したセンス電流を流すセンス端子(4d)を備えており、

前記過電流制限回路は、前記ゲート端子にコレクタが接続されると共に、前記 センス電流に基づいてベースへの印加電圧が制御される過電流制限用トランジス タ (13)を備えており、

前記センス電流に基づいて前記過電流制限用トランジスタをオンさせ、前記ゲート端子に印加される電圧を低減させるようになっていることを特徴とする請求

項1乃至7のいずれか1つに記載の半導体スイッチング素子駆動回路。

【請求項9】 前記半導体スイッチング素子は、前記第1端子をコレクタ端子(4b)とし、前記第2端子をエミッタ端子(4c)とするIGBT(4)であることを特徴とする請求項1乃至8のいずれか1つに記載の半導体スイッチング素子駆動回路。

【請求項10】 電気自動車又はハイブリッド自動車のモータの制御を半導体スイッチング素子にて行なう自動車用モータ駆動回路において、

前記半導体スイッチング素子の駆動に、請求項1乃至9に記載の半導体スイッチング素子駆動回路が使用されていることを特徴とする自動車用モータ駆動回路

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、過電流保護機能を有する半導体スイッチング素子駆動回路に関し、 特に、電気自動車等のモータ駆動回路に用いられるIGBT等を駆動する回路に 適用して好適である。

[0002]

【従来の技術】

半導体スイッチング素子、例えばIGBTをモータ駆動用として用いる場合、 負荷短絡等が発生するとIGBTのコレクタ電流が急激に増大し、IGBTが過 電流破壊若しくは熱破壊されてしまう。このため、IGBTが破壊されるのを防 止するためには、過電流を検出し、保護回路によりIGBTを短時間で遮断する 必要がある。

[0003]

しかしながら、過電流相当のノイズが発生する場合があるため、このようなノイズによる誤作動を防止しなければならず、保護回路の高速化には限界がある。このため、誤作動の耐量を確保しつつ、IGBTを高速遮断するのは困難となっていた。

[0004]

また、ゲート電圧の遮断時に、通常の駆動電圧から 0 V へ高速で電圧を変化させるため、高速遮断時の電流変化率 - d I / d t が大きくなり、配線インダクタンスに起因する跳ね上がり電圧が大きくなって、 I G B T が耐圧破壊される場合もある。

[0005]

これらの問題を解決するものとして、特開平9-64707号公報に示される 半導体スイッチング素子駆動回路がある。この公報に示される半導体スイッチン グ素子駆動回路を図5に示す。

[0006]

この従来の半導体スイッチング素子駆動回路は、図5に示すように、IGBT 101のゲート端子101aとセンス端子(電流検出用エミッタ端子)101b との間に、コンパレータ102とドライバ回路103とによる遮断遅れ時間T1よりも高速にターンオンする短絡保護トランジスタ104を設けると共に、IGBT101のセンス端子101bとアースとの間にノイズ防止用のコンデンサ105を設けた構成となっている。

[0007]

このような構成により、コンデンサ105によってノイズによる誤作動を防止しつつ、負荷短絡による過電流が発生すると、遅れ時間T1より速く短絡保護トランジスタ104がターンオンしてIGBT101のゲート電圧Vgを低下させ、遅れ時間T1経過するとドライバ回路103によってIGBT101が遮断されるようにしている。これにより、ノイズによる誤作動に強く、かつIGBT101を高速遮断できる半導体スイッチング素子駆動回路を実現している。

[0008]

【発明が解決しようとする課題】

近年、高電圧が要求される電気自動車等のモータ駆動においてもIGBT等が 使用されている。このような電気自動車等のモータ駆動回路を図6に示す。この 図に示されるように、モータ駆動回路には例えば3相の駆動回路が使用される。

[0009]

このようなモータ駆動回路では、モータ110内の巻線同士がショートしたり

各相への配線間でショートする負荷短絡や、図6に示す上下に並べられたIGB T111が誤作動により同時にオン状態となってしまうアーム短絡の際には比較 的短時間に非常に大きくなる過電流(短絡電流)を発生させ、モータロック等の 際には短絡電流よりは小さくなる過電流を比較的長時間発生させる。

[0010]

このようなモータ駆動回路に従来の半導体スイッチング素子駆動回路を適用した場合、モータロック等による過電流については、上述した作動によってIGBT101を高速遮断し、IGBT101に流れることを防止できる。しかしながら、負荷短絡やアーム短絡のように比較的短時間に非常に大きくなる短絡電流については、ノイズ除去のためのコンデンサ105の存在により瞬間的に対応することができず、IGBT101に流れることを防止できない。そして、このとき流れる短絡電流は、モータ駆動電圧が非常に高いことから、莫大な大きさ(例えば定格電流の5倍以上)まで増大する。このため、IGBTが破壊されたりするという問題がある。

[0011]

また、従来の半導体スイッチング素子駆動回路では遅れ時間T1が経過するまで過電流をオフできないため、図6に示される他のIGBT111にも過電流が供給され、モータシステム上問題がある。

[0012]

本発明は上記点に鑑みて、特に高電圧が要求される装置において瞬間的に増大する過電流を制御でき、かつ半導体スイッチング素子の高速遮断ができる半導体スイッチング素子駆動回路を提供することを目的とする。

[0013]

【課題を解決するための手段】

上記目的を達成するため、請求項1に記載の発明では、ゲート端子(4 a)と第1端子(4 b)及び第2端子(4 c)を有し、ゲート端子への電圧印加により第1、第2端子間に主電流を流す半導体スイッチング素子(4)と、主電流が所定時間以上の間所定電流値(i 2)を超えるような過電流となる場合に、まず、該主電流を第1の傾斜で低下させ、その後、該主電流を前記第1の傾斜よりも急

な第2の傾斜で低下させる過電流保護回路(20)と、主電流が前記所定時間よりも短い時間で前記過電流よりもさらに大きな過電流となる場合に、ゲート端子の電圧を瞬時に低減させる過電流制限回路(10)と、を備えていることを特徴としている。

[0014]

このように、比較的短期間で非常に大きくなる過電流(短絡電流)に対しては、過電流制限回路により瞬時にゲート端子への電圧を低減させれば、負荷短絡やアーム短絡等の際に過電流が半導体スイッチング素子に流れないようにできる。また、モータロック等の際に比較的長期間発生する短絡電流よりも小さい過電流に対しては、過電流保護回路により、まず、主電流を第1の傾きで低下させ、その後、主電流を第1の傾きよりも急な第2の傾きで低下させれば、配線インダクタンスによる跳ね上がり電圧の影響を防止しつつ半導体スイッチング素子の高速遮断を行なうことができる。これにより、瞬間的に増大する過電流を制御でき、かつ半導体スイッチング素子の高速遮断を行なうことができる。

[0015]

例えば、請求項2に示すように、過電流制限回路は、回路内の遅れ時間より短時間で前記大きな過電流となる場合に、ゲート端子の電圧を低減させるようにすればよい。

[0016]

請求項3に記載の発明においては、主電流が第1の比較電流(i1)より大きくなると、ゲート端子の電圧を瞬時に低減させる過電流制限回路(10)と、主電流が第1の比較電流よりも低い第2の比較電流(i2)より大きくなると、まず、主電流を第1の傾きで低下させ、その後、主電流が第2の比較電流よりも低い第3の比較電流(i3)より小さくなると第1の傾きよりも急な第2の傾きで低下させる過電流保護回路(20)と、を備えていることを特徴としている。

[0017]

このように、主電流が第1の比較電流よりも大きくなったときに過電流制限回路にてゲート電圧を瞬時に低減させることができる。また、主電流が第2の比較電流よりも大きくなったときに主電流を第1の傾きで低下させ、主電流が第3の

比較電流よりも小さくなったときに主電流を第1の傾きより急な第2の傾きで低下させることにより、配線インダクタンスによる跳ね上がり電圧の影響を防止しつつ半導体スイッチング素子の高速遮断を行なうことができる。さらに、過電流が発生してからの時間に関係なく、主電流が第3の比較電流よりも小さくなったときに主電流を急に低下させるようにしているため、過電流が一定時間必ず流れてしまうことを防止することもできる。

[0018]

請求項4に記載の発明では、半導体スイッチング素子は、主電流に比例したセンス電流を流すセンス端子(4 d)を備えており、過電流保護回路は、センス電流に基づいて主電流が第2の比較電流より大きくなるか否かを比較する第1比較手段と、センス電流に基づいて主電流が第3の比較電流より小さくなるか否かを比較する第2比較手段とを備えていることを特徴としている。

[0019]

このように、第1、第2比較手段により、センス電流に基づいて主電流が第2 の比較電流より大きいか、若しくは主電流が第3の比較電流よりも小さいかを検 出することができる。

[0020]

請求項5に記載の発明においては、過電流保護回路は、第1比較手段の出力に 遅れ時間(T2)を形成するディレイ回路(22)を備え、遅れ時間経過後に主 電流を第1の傾きで低下させるようになっていることを特徴としている。これに より、ノイズによるセンス電流の変動によって過電流保護回路が半導体スイッチ ング素子を遮断してしまうような誤作動を防止することができる。

[0021]

請求項6においては、第1比較手段により主電流が第2の比較電流より大きくなったことが出力された後、第2比較手段の比較により主電流が第3の比較電流より小さくなったことが出力されると、過電流保護用トランジスタをオンさせゲート端子に印加される電圧を低減させることを特徴としている。

[0022]

これにより、主電流が第1の比較電流よりも低い第2の比較電流より大きくな

特2000-101305

ると、まず、主電流を第1の傾きで低下させ、その後、主電流が第2の比較電流 よりも低い第3の比較電流より小さくなると第1の傾きよりも急な第2の傾きで 低下させることができる。

[0023]

例えば、請求項7に示すように、ディレイ回路の出力を保持しておくラッチ回路(23)と、ラッチ回路と第2比較手段の出力が入力されるアンド回路(25)とを備え、アンド回路の出力信号によって過電流保護用トランジスタのオンオフを制御するようにすればよい。

[0024]

請求項8に記載の発明においては、過電流制限回路は、ゲート端子にコレクタが接続されると共に、センス電流に基づいてベースへの印加電圧が制御される過電流制限用トランジスタ(13)を備えており、センス電流に基づいて過電流制限用トランジスタをオンさせ、ゲート端子に印加される電圧を低減させるようになっていることを特徴としている。

[0025]

このように構成された過電流制限回路によれば、過電流制限用トランジスタの ターンオン時間を短くすることができるため、比較的短時間に非常に大きくなる ような過電流(短絡電流)に対して瞬時に半導体スイッチング素子を遮断するこ とができる。

[0026]

なお、請求項10に示すように、電気自動車又はハイブリッド自動車のモータのスイッチングを半導体スイッチング素子にて行なう自動車用モータ駆動回路に、本発明における半導体スイッチング素子駆動回路を使用すると好適である。

[0027]

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。

[0028]

【発明の実施の形態】

(第1実施形態)

図1に、本発明の第1実施形態を適用した半導体スイッチング素子駆動回路の 回路構成を示す。この半導体スイッチング素子駆動回路は、図6に示したような 電気自動車等のモータ駆動回路の各半導体スイッチング素子の駆動に使用される ものである。以下、図1に基づいて半導体スイッチング素子駆動回路の説明を行 う。

[0029]

図1に示す半導体スイッチング素子駆動回路は、PWM信号などの入力信号1が入力される入力ロジック回路2と、入力ロジック回路2によってオンオフ制御されるドライバ回路3と、ドライバ回路3のオンオフに応じてスイッチングを行なうIGBT4と、比較的短時間に非常に大きくなる過電流(短絡電流)がIGBT4に流れるのを制限する過電流制限回路10と、IGBT4にモータロック等の際に発生する短絡電流よりも小さな過電流が流れないように保護する過電流保護回路20とを備えている。

[0030]

ドライバ回路 3 は、入力ロジック回路 2 によってオンオフ切替えが行なわれる ソースドライバ 3 a とシンクドライバ 3 b とからなるプッシュプル回路で構成され、ソースドライバ 3 a とシンクドライバ 3 b との接続点がゲート抵抗 5 を介して I G B T 4 のゲート端子 4 a に接続されている。入力ロジック回路 2 はドライバ回路 3 を介して、 I G B T 4 のゲート端子 4 a に電圧を印加することにより、第 1 端子としてのコレクタ端子 4 b と第 2 端子としてのエミッタ端子 4 c との間にコレクタ電流 I c を流すようになっている。

[0031]

過電流制限回路10には、IGBT4のセンス端子4dに接続されたセンス抵抗11、12と、IGBT4のゲート端子4aにコレクタが接続された過電流制限用トランジスタ13とが備えられている。なお、センス端子4dは、IGBT4のコレクタ電流(主電流)Icに比例した電流が流れる電流検出用端子である。また、過電流制御回路10には、両センス抵抗11、12の間と過電流制限用トランジスタ13のベースとの間に接続されたベース電流制限抵抗14が備えられている。このような構成により、センス端子4dを介してセンス電流が流れる

と、センス抵抗11、12が電流検出手段として働き、これらセンス抵抗11、12により分圧された電圧に基づいて過電流制限用トランジスタ13をオンさせるようになっている。ただし、これらセンス抵抗11、12の各抵抗値は、比較的短時間に非常に大きくなるような過電流が発生しようとした時に過電流制限用トランジスタ13がオンするように、コレクタ電流Icが数1に示されるi1(第1の比較電流)になったときに抵抗12にかかる電圧が過電流制限用トランジスタ13のベースーエミッタ間電圧Vbeと同等になるような抵抗値に配分されている。

[0032]

【数1】 $i1=m\times Vbe/R1$

[0033]

このような構成の過電流制限回路10は、図5で示した従来の回路構成で付加 されていたコンデンサ105をなくしたものであり、コンデンサ105による遅 れ時間が発生しないようになっている。

[0034]

なお、上述したように、過電流制限回路10は比較的短時間に非常に大きくなるような過電流が発生した場合にコレクタ電流Icを制限するようになっている。ここでいう比較的短時間とは、過電流保護回路20によって過電流を抑制できない所定時間、すなわち後述する過電流保護用トランジスタ26をオンさせるまでの回路内の遅れ時間T2に相当し、この回路内遅れ時間より短時間で過電流が許容電流を超える場合にコレクタ電流Icが制限されるようになっている。

[0035]

過電流保護回路20には、IGBT4のセンス端子4dの電位と電圧V1とを 比較する第1比較手段としての第1のコンパレータ21と、第1のコンパレータ 21の出力を所定時間遅らせるディレイ回路22と、ディレイ回路22の出力を 一定時間保持するラッチ回路23とが備えられている。また、過電流保護回路2 0には、センス端子4dの電位と電圧V2とを比較する第2比較手段としての第2のコンパレータ24と、ラッチ回路23と第2のコンパレータ24の出力信号が入力されるアンド回路25、及びアンド回路25からの信号に基づいてオンオフ制御される過電流保護用トランジスタ26が備えられている。過電流保護用トランジスタ26のコレクタは、抵抗27を介してIGBT4のゲート端子4aに接続されており、IGBT4のゲート電圧を低下させる役割を果たす。

[0036]

なお、第1のコンパレータ21の比較電圧V1は、コレクタ電流Icが数2で示すi2(第2の比較電流)になったときに抵抗11及び12にかかる電圧と同等にされている。なお、R2は抵抗11の抵抗値を示している。

[0037]

【数2】 $i2=m\times V1/(R1+R2)$

また、第2のコンパレータ24の比較電圧V2は、コレクタ電流Icが数3で示すi3 (第3の比較電流)になったときに抵抗11及び12にかかる電圧と同等にされている。

[0038]

【数3】 $i3=m\times V2/(R1+R2)$

すなわち、第1のコンパレータ21の比較電圧V1と第2の比較電圧V2は、 V1>V2の関係を満たしており、比較的長時間発生する過電流に対して第1の コンパレータ21の方が第2のコンパレータ24よりも先に反転信号を出力する ようになっている。

[0039]

なお、ここでは、比較的長時間過電流が発生する場合と説明しているが、この 比較的長時間とは過電流保護用トランジスタ26をオンさせるまでの回路内の遅 れ時間に相当する。

[0040]

次に、上記構成の半導体スイッチング素子駆動回路の作動について説明する。 図2に、過電流が生じた場合におけるタイミングチャートを示す。ただし、図2 において、(a)はIGBT4のコレクタ電流Ic、(b)はラッチ回路23の 出力信号、(c)はIGBT4のゲート電圧Vg、(d)はIGBT4のエミッターコレクタ間電圧Vceを示しているものとする。

[0041]

まず、図2(a)中の期間taで示されるように負荷短絡やアーム短絡等が発生したときには、図中の一点鎖線で示されるように、比較的短時間に非常に大きな過電流となり、この大きな過電流が瞬間的(比較的短時間)にIGBT4に流れようとする。しかしながら、コレクタ電流Icがilに達すると、IGBT4のセンス端子4d側に流れるセンス電流により、抵抗12の両端電圧が過電流制限用トランジスタのベースーエミッタ間電圧Vbeまで上昇し、過電流制限用トランジスタ13をオンさせる。これにより、IGBT4のゲート電圧が低下して、コレクタ電流Icの増大が制限される。

[0042]

このとき、従来のようにセンス端子4dにおける電位固定するためのコンデンサ(図5参照)を配置していないため、過電流制限用トランジスタ13のターンオン時間は非常に短くなる。このため、コレクタ電流Icの増加を瞬時に制限することができ、IGBT4に莫大な過電流が流れ、IGBT4が破壊されることを防止することができる。

[0043]

さらに、コレクタ電流 I cがi 2を超えるため、第1のコンパレータ21の出力信号が「ハイレベル」となる。そして、この出力信号がディレイ回路22で時間T2だけ遅らされたのちラッチ回路23で保持され、ラッチ回路23の出力信号が「ハイレベル」となる。

[0044]

続いて、ラッチ回路23からの「ハイレベル」信号、つまりフェイル信号が入 カロジック回路2に入力されると、入力ロジック回路2はシンクドライバ3bを オンさせる。これにより、IGBT4のゲート電圧が低下し、コレクタ電流Ic が緩やかな第1の傾きで低下してゆく。

[0045]

このとき、コレクタ電流減少時の一dI/dtによりIGBT4のコレクター

エミッタ間に跳ね上がり電圧が発生するが、コレクタ電流 I c が緩やかな傾きで 低下するようになっているため、跳ね上がり電圧は大きくならない。

[0046]

そして、コレクタ電流Icがi3以下になると、第2のコンパレータ24の出力信号が「ハイレベル」となり、ラッチ回路23で保持されている「ハイレベル」信号と第2のコンパレータ24の「ハイレベル」信号を受けて、アンド回路25が「ハイレベル」信号を出力し、過電流保護用トランジスタ26をオンする。これにより、IGBT4のゲート電圧が0Vまで急激に下がり、コレクタ電流Icが第1の傾きより急な第2の傾きで低下してIGBT4が高速遮断される。

[0047]

また、このIGBT4の遮断時にも、コレクタ電流減少時の-dI/dtによりIGBT4のコレクターエミッタ間に跳ね上がり電圧が発生する。

[0048]

これに対し、IGBT4の遮断をコレクタ電流Icの大きさに基づいて行なっているため、跳ね上がり電圧が十分に抑制できる程度の値にi3を設定しておけば、跳ね上がり電圧による影響を受けないようにIGBT4の高速遮断を行うことができる。また、コレクタ電流Icがi3以下になったときに、過電流が発生してからの時間に関係なく、IGBT4を高速遮断するようにしているため、過電流が一定時間必ず流れてしまうことはなく、他のIGBT4に過電流が供給されることを防止することができる。

[0049]

一方、図2(a)中の期間 t b で示されるように、モータロック等が発生した際には、短絡電流よりは小さな過電流が比較的長時間発生しようとする。この場合には、コレクタ電流 I c が i 2 を超えるが、 i 1 を超えないため、コレクタ電流 I c が i 2 を超えてから時間 T 2 経過後に、 I G B T 4 のゲート電圧が低下し、コレクタ電流 I c が第1の傾きで低下してゆく。この後、上記した期間 t a の場合と同様にしてコレクタ電流 I c が低下し、 I G B T 4 が高速遮断される。

[0050]

このように、本半導体スイッチング素子駆動回路では、所定レベル以上の大電

流(i1)を検出した場合には、時間遅れなく瞬時に電流を制限し、上記所定レベルよりも小さい中電流(i2)を検出した場合には、時間遅れを形成してIGBT4をソフトにオフさせて電流を減らしていき、所定の小電流(i3)となったときに瞬時にIGBT4をオフさせるようにしている。換言すれば、コレクタ電流Icが大電流の場合は瞬時に低下させ、中電流の場合は小電流に低下させたのち、小電流をさらに低下させるという3段階の電流制御を行なうようにしている。このため、比較的短時間に過電流が莫大に大きくなる場合にも、比較的長時間過電流を発生させる場合にも共に対応でき、いずれの場合にもIGBT4に過電流が流れることを防止することができる。

[0051]

なお、本実施形態におけるi 1 ~ i 3 は、IGBT4が使用される対象によって異なるが、IGBT4を電気自動車に使用する場合には、i 1 が 1 2 0 0 A程度、i 2 が 8 0 0 A程度、i 3 が 5 0 0 A程度に設定される。

[0052]

(第2実施形態)

図3に、本発明の第2実施形態における半導体スイッチング素子駆動回路の回路構成を示す。本実施形態における半導体スイッチング素子駆動回路は、第1実施形態に対して回路構成を部分的に変更したものであるため、異なる部分についてのみ説明する。

[0053]

図3に示すように、本実施形態における半導体スイッチング素子駆動回路は、図1に示す半導体スイッチング素子駆動回路と比べて過電流保護用トランジスタ26の構成が異なっている。すなわち、第2のコンパレータ24では、IGBT4のゲート電圧と所定電圧(V3)とを比較するようになっており、この第2コンパレータ24の出力に基づいてコレクタ電流Ic低下の傾き切替えが制御されるようになっている。

[0054]

このように I G B T 4 のゲート電圧が所定電位となったときに過電流保護用トランジスタ 2 6 がオンするようにしても第1 実施形態と同様の効果を得ることが

できる。

[0055]

(第3実施形態)

図4に、本発明の第3実施形態における半導体スイッチング素子駆動回路の回路構成を示す。本実施形態における半導体スイッチング素子駆動回路は、第1実施形態に対して回路構成を部分的に変更したものであるため、異なる部分についてのみ説明する。

[0056]

図4に示すように、本実施形態では、ラッチ回路23の出力信号に基づいて過電流保護用トランジスタ26のオンオフを制御するように構成している。また、ラッチ回路23及び第2のコンパレータ24の出力信号が入力されるアンド回路25の出力に基づいて、入力ロジック回路2がドライバ回路3のオンオフを制御するように構成している。

[0057]

このため、比較的長時間過電流が発生しようとした際には、まず、過電流保護 用トランジスタ26がオンして電流を第1の傾きで低下させ、続いて、ドライバ 回路3のシンクドライバ3bをオンさせて電流を第1の傾きより急な第2の傾き で低下させてIGBT4を高速遮断するようになっている。

[0058]

このように、コレクタ電流 I c を中電流から小電流に低下させる時には、過電流保護用トランジスタ26を使用し、小電流からさらに低下させる時には、ドライバ回路3を使用するというようにしてもよい。なお、ドライバ回路3とIGBT4の電子4aとの間の抵抗5の抵抗値を十分に小さくしておけば、IGBT4の電圧の低下(立下がり)を十分早くすることができる。

[0059]

また、本実施形態では、IGBT4のゲート端子4aと過電流保護用トランジスタ26のコレクタの間に、抵抗27を直列接続していると共に、コンデンサ28を並列接続している。これにより、抵抗27とコンデンサ28とで決定される時定数によって、コレクタ電流Icを中電流から小電流に低下させる時の第1の

傾きを決定することができる。従って、抵抗27やコンデンサ28を適宜選択することにより、半導体スイッチング素子駆動回路が使用する対象に応じて上記傾きを設定することが可能である。

[0060]

なお、IGBT4のゲート端子4aとコンデンサ28との間にはダイオード29が接続してあるが、このダイオード29はコンデンサ28に蓄わえられた電圧による電流の逆流を防止するためのものである。

[0061]

(他の実施形態)

上記実施形態では、回路内の遅れ時間がディレイ回路22によって形成されるとして説明を行ったが、回路内の遅れ時間はIGBT4のゲート電圧を低減するために必要とされる時間であるため、ディレイ回路22を設けなくても必然と形成される。この場合、ディレイ回路22を設けなくても過電流相当のノイズによる誤作動を起こさない程度の遅れ時間が形成されるようであれば、ディレイ回路22を設ける必要はない。

【図面の簡単な説明】

【図1】

本発明の第1実施形態における半導体スイッチング素子駆動回路の回路構成を 示した図である。

【図2】

図1に示す半導体スイッチング素子駆動回路の各部分におけるタイムチャート を示した図である。

【図3】

本発明の第2実施形態における半導体スイッチング素子駆動回路の回路構成を示した図である。

【図4】

本発明の第3実施形態における半導体スイッチング素子駆動回路の回路構成を 示した図である。

【図5】

特2000-101305

従来の半導体スイッチング素子駆動回路の回路構成を示した図である。

【図6】

半導体スイッチング素子駆動回路をモータ駆動回路として用いる場合の回路構成を示した図である。

【符号の説明】

2…入力ロジック回路、3…ドライバ回路、4…IGBT、4a…ゲート端子

- 4 b…センス端子、10…過電流制限回路、11…抵抗、12…抵抗、
- 13…過電流制限用トランジスタ、20…過電流保護回路、
- 21、24…第1、第2のコンパレータ、22…ディレイ回路、
- 23…ラッチ回路、25…アンド回路、26…過電流保護用トランジスタ。

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【書類名】

要約書

【要約】

【課題】 瞬間的に増大する過電流を制御でき、かつ半導体スイッチング素子の 高速遮断ができるようにする。

【解決手段】 コレクタ電流 I cがi 1より大きくなると、ゲート端子4 a の電圧を瞬時に低減させる過電流制限回路 1 0 と、コレクタ電流 I cがi 2より大きくなると、まず、コレクタ電流 I cを第1の傾きで低下させ、その後、コレクタ電流 I cがi 3より小さくなると急な第2の傾きで低下させる過電流保護回路 2 0 とを備える。これにより、比較的短期間の過電流に対しては過電流制限回路 1 0 にてゲート電圧を瞬時に低減ができる。また、比較的長期間の過電流に対しては過電圧保護回路 2 0 にて、電流変動による跳ね上がり電圧を防止しつつ I G B T 4 の高速遮断を行なえる。さらに、過電流が発生してからの時間に関係なくコレクタ電流 I cがi 3より小さくなったときに I G B T 4 を遮断しているため、過電流が一定時間必ず流れることも防止できる。

【選択図】

図 1

出願人履歴情報

識別番号

[000004260]

1. 変更年月日

1996年10月 8日

[変更理由]

名称変更

住 所

愛知県刈谷市昭和町1丁目1番地

氏 名

株式会社デンソー