Exercícios - Cálculo IV - Aula 13 - Semana 16/11 - 20/11

Séries de Fourier: revisão e aprofundamento

1 Coeficientes de Fourier- Caso geral

De forma geral, podemos estudar **séries de Fourier** para funções definidas num intervalo simétrico qualquer $f: [-L, L] \to \mathbb{R}$, para algum L > 0.

Análogo ao caso anterior, podemos provar que os coeficientes de Fourier são dados por

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx$$
 para todo $n \ge 0$,

 \mathbf{e}

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n\pi x}{L}) dx$$
 para todo $n \ge 1$.

Neste caso a série de Fourier associada à f fica

$$s(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(\frac{n\pi x}{L}) + \sum_{n=1}^{+\infty} b_n \sin(\frac{n\pi x}{L}).$$

Observe que no caso especial em que $L=\pi$ reobtemos os coeficientes e a série de Fourier estudados anteriormente.

2 Extensões par e impar de funções

Dada $f:[0,L] \to \mathbb{R}$ uma função, para algum L>0.

Definição. Definimos a **extensão par de** f **no intervalo** [-L, L] por

$$g(x) = \begin{cases} f(x), 0 \le x \le L \\ f(-x), -L \le x < 0 \end{cases}$$

Definição. Definimos a **extensão ímpar de** f **no intervalo** [-L, L] por

$$g(x) = \begin{cases} f(x), 0 \le x \le L \\ -f(-x), -L \le x < 0 \end{cases}$$

Exercício. Dada $f:[0,L] \to \mathbb{R}$ uma função, verifique que sua extensão par (resp. ímpar) é uma função par (resp. função ímpar) no intervalo [-L,L].

Exercício. Considere $f:[0,2]\to\mathbb{R},\, f(x)=x-x^2$ cujo gráfico segue abaixo.

Figure 1: gráfico de f em [0,2]

Sua extensão par é a função $g(x)=\begin{cases} x-x^2, 0\leq x\leq 2\\ -x-x^2, -2\leq x<0 \end{cases}$. Por cálculo direto é fácil verificar que de fato f(-x)=f(x), para todo $x\in [-2,2]$. A parte na cor vermelha no gráfico abaixo representa a parte da extensão par de f no intervalo [-L,0]. Todo o gráfico (cores preta e vermelha) representa a extensão par de f no intervalo simétrico [-L,L].

Figure 2: gráfico de g em [-2, 2]

Exercício. Considere $f:[0,3] \to \mathbb{R}, f(x) = x+1$.

Figure 3: gráfico de f em [0,3]

Sua extensão ímpar é a função
$$h(x)=\begin{cases} x+1, 0\leq x\leq 3\\ x-1, -3\leq x<0 \end{cases}$$
 . É fácil

verificar que de fato h(-x) = -h(x), para todo $x \in [-2, 2]$. Veja gráfico da extensão ímpar de f abaixo.

Figure 4: gráfico da extensão ímpar h em [-3, 3]

Exemplo. Considere a função $f(x) = x + 1, x \in [0, 2]$. Encontre:

- 1) Uma série de f que só tenha cossenos;
- 2) Uma série de f que só tenha senos.

Resp. Para resolver esses problemas vamos lembrar que a série de Fourier de uma função, digamos h, num intervalo simétrico pela origem [-L,L] é dada por $s(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(\frac{n\pi x}{L}) + \sum_{n=1}^{+\infty} b_n \sin(\frac{n\pi x}{L})$. Além disso, se a função h for par no intervalo [-L,L] a série de Fourier é constituida só de cossenos pois os $b_n = 0$, para todo $n \ge 1$, e se a função h for ímpar segue que a série é constituida só de senos pois $a_n = 0$, $n \ge 0$.

Em vista da observação acima, para resolver o problema 1) vamos considerar a **extensão par** de f no intervalo [-2,2], veja gráfico abaixo, que é

dada por
$$g: [-2,2] \to \mathbb{R}, g(x) = \begin{cases} x+1, 0 \le x \le 2 \\ -x+1, -2 \le x < 0 \end{cases}$$

Figure 5: extensão par de f(x) = x + 1 em [-2, 2].

Sendo g uma função par no intervalo simétrico [-2,2] sua série de Fourier será dada só por cossenos. Além disso, como g(x) = f(x) no intervalo [0,2], para finalizar o problema basta considerar a série de g no intervalo [0,2].

Em vista da discussão acima, considere agora $s(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(\frac{n\pi x}{L}) + \sum_{n=1}^{+\infty} b_n \sin(\frac{n\pi x}{L})$ a série de Fourier de g (extensão par de f) em [-2, 2].

Como L=2 segue que

$$s(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(\frac{n\pi x}{2}) + \sum_{n=1}^{+\infty} b_n \sin(\frac{n\pi x}{2}).$$

Sendo g uma função par segue que $b_n = 0, n \ge 1$.

Vamos encontrar agora os coeficientes de Fourier $a_n, n \geq 0$.

O coeficiente
$$a_0 = \frac{1}{2} \int_{-2}^{2} g(x) dx = \underbrace{\frac{2}{2} \int_{0}^{2} g(x) dx}_{\text{pois g \'e par}} = \int_{0}^{2} (x+1) dx = 4.$$

Agora para $n \ge 1$ temos que

$$a_n = \frac{1}{2} \int_{-2}^{2} g(x) \cos(\frac{n\pi x}{2}) dx = \int_{0}^{2} g(x) \cos(\frac{n\pi x}{2}) dx = \int_{0}^{2} (x+1) \cos(\frac{n\pi x}{2}) dx.$$

Contudo,
$$\int_0^2 (x+1)\cos(\frac{n\pi x}{2})dx = \underbrace{\int_0^2 x\cos(\frac{n\pi x}{2})dx}_{\text{(I)}} + \underbrace{\int_0^2 \cos(\frac{n\pi x}{2})dx}_{\text{(II)}}.$$

A integral (II) **é zero**! (verifique os detalhes). Para resolver a integral (I) podemos fazer intergração por partes e a primitiva é:

$$\int x \cos(\frac{n\pi x}{2}) dx = \frac{2x}{n\pi} \sin(\frac{n\pi x}{2}) + \frac{4}{n^2 \pi^2} \cos(\frac{n\pi x}{2}) + C.$$

Logo,

$$\int_0^2 x \cos(\frac{n\pi x}{2}) dx = \frac{4}{\pi^2 n^2} [\cos(n\pi) - 1] \Big|_0^2 = \begin{cases} 0, & \text{n par} \\ -\frac{8}{\pi^2 n^2}, & \text{n impar.} \end{cases}$$

De volta aos coeficientes a_n obtemos que para todo $n \ge 1$,

$$a_n = \int_0^2 (x+1)\cos(\frac{n\pi x}{2})dx = \begin{cases} 0, & \text{n par} \\ -\frac{8}{\pi^2 n^2}, & \text{n impar} \end{cases}$$

Portanto, a série de Fourier de f só de cossenos no intervalo [0,2] fica

$$s(x) = 2 - \frac{8}{\pi^2} \sum_{n=1}^{+\infty} \frac{\cos(\frac{(2n-1)\pi x}{2})}{(2n-1)^2}.$$

Isso resolve a parte 1) do problema.

Para resolver a parte 2) vamos considerar $h: [-2,2] \to \mathbb{R}$ a extensão ímpar de f no intervalo [-2,2] que é dada por

$$h(x) = \begin{cases} x+1, & 0 \le x \le 2\\ x-1, & -2 \le x < 0 \end{cases}$$

Neste caso os coeficientes de Fourier $a_n = 0, n \ge 0$, e os coeficientes

$$b_n = \frac{1}{2} \int_{-2}^2 h(x) \sin(\frac{n\pi x}{2}) dx = \int_0^2 h(x) \sin(\frac{n\pi x}{2}) dx, \text{ em que na última integral foi usado o fato que o produto } h(x) \sin(\frac{n\pi x}{2})$$
 é uma função par no intervalo $[-2,2]$.

Utilizando propriedade da soma de integrais temos,

$$b_n = \int_0^2 (x+1)\sin(\frac{n\pi x}{2})dx = \underbrace{\int_0^2 x\sin(\frac{n\pi x}{2})dx}_{\text{(III)}} + \underbrace{\int_0^2 \sin(\frac{n\pi x}{2})dx}_{\text{(IV)}}.$$

Fazendo novamente integração por partes segue que

$$\int x \sin(\frac{n\pi x}{2}) dx = -\frac{2x}{\pi n} \cos(\frac{n\pi x}{2}) + \frac{4}{n^2 \pi^2} \sin(\frac{n\pi x}{2}) + C.$$

Logo, a parte (III) fica

$$\int_0^2 x \sin(\frac{n\pi x}{2}) dx = \frac{4(-1)^{n+1}}{n\pi}. \text{ A parte (IV) fica}$$

$$\int_0^2 \sin(\frac{n\pi x}{2}) dx = \frac{2(-1)^{n+1} + 2}{n\pi} \text{ a conficient } h = \frac{6(-1)^{n+1} + 2}{n\pi}$$

$$\int_0^2 \sin(\frac{n\pi x}{2}) dx = \frac{2(-1)^{n+1} + 2}{n\pi}, \text{ e o coeficiente } b_n = \frac{6(-1)^{n+1} + 2}{n\pi}.$$

Portanto, analogamente ao caso anterior, a série só de senos de f no intervalo [0,2] fica

$$s(x) = \frac{1}{\pi} \sum_{n=1}^{+\infty} \frac{(6(-1)^{n+1} + 2)}{n} \sin(\frac{n\pi x}{2}).$$

Exercício. Considere a função $f(x) = x - x^2$, $x \in [0, 2]$. Encontre:

- 1) Uma série de f que só tenha cossenos;
- 2) Uma série de f que só tenha senos.

Exercício. Considere a função $f(x) = x\pi - x^2, x \in [0, \pi]$. Encontre:

- 1) Uma série de f que só tenha cossenos; (Dica: veja video aula)
- 2) Uma série de f que só tenha senos (Dica: veja video aula)

3 Espaço vetorial com produto interno

Seja V um espaço vetorial real.

Definição. Um produto interno em V é uma função $\langle \ , \ \rangle : V \times V \to \mathbb{R}, \ (\overrightarrow{u}, \overrightarrow{v}) \mapsto \langle \overrightarrow{u}, \overrightarrow{v} \rangle$, que associa a cada par de vetores $\overrightarrow{u}, \overrightarrow{v} \in V$, um número real denotado por $\langle \overrightarrow{u}, \overrightarrow{v} \rangle$, de modo que as seguintes condições sejam satisfeitas para todo $\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \in V$ e $\lambda \in \mathbb{R}$:

- 1) $\langle \overrightarrow{u} + \overrightarrow{v}, \overrightarrow{w} \rangle = \langle \overrightarrow{u}, \overrightarrow{w} \rangle + \langle \overrightarrow{v}, \overrightarrow{w} \rangle$ (propriedade distributiva na soma);
- 2) $\langle \overrightarrow{u}, \overrightarrow{v} \rangle = \langle \overrightarrow{v}, \overrightarrow{u} \rangle$ (propriedade comutativa);

3)
$$\langle \lambda \overrightarrow{u}, \overrightarrow{v} \rangle = \langle \overrightarrow{u}, \lambda \overrightarrow{v} \rangle = \lambda \langle \overrightarrow{u}, \overrightarrow{v} \rangle$$
;

4)
$$\langle \overrightarrow{u}, \overrightarrow{u} \rangle \ge 0$$
, $e \langle \overrightarrow{u}, \overrightarrow{u} \rangle = 0$ se e somente se $\overrightarrow{u} = \overrightarrow{0}$.

Dado um espaço vetorial com produto interno definimos a **norma ou comprimento** de um vetor \overrightarrow{u} , e denotamos, por $||\overrightarrow{u}|| = \sqrt{\langle \overrightarrow{u}, \overrightarrow{u} \rangle}$.

Diremos também que dois vetores \overrightarrow{u} e \overrightarrow{v} de V são **ortogonais** se $\langle \overrightarrow{u}, \overrightarrow{v} \rangle = 0$. Neste caso denotaremos por $\overrightarrow{u} \perp \overrightarrow{v}$.

Exercício. Mostre que num espaço vetorial V com produto interno vale a **desigualdade de Schwarz**: para todo \overrightarrow{u} , $\overrightarrow{v} \in V : |\langle \overrightarrow{u}, \overrightarrow{v} \rangle| \leq ||\overrightarrow{u}|| ||\overrightarrow{v}||$. (Dica: veja que para todo $t \in \mathbb{R}$ temos que $||\overrightarrow{u} - t\overrightarrow{v}||^2 \geq 0$.)

Exercício. Mostre que num espaço vetorial V com produto interno vale a **desigualdade triangular**: para todo \overrightarrow{u} , $\overrightarrow{v} \in V$: $\|\overrightarrow{u} + \overrightarrow{v}\| \le \|\overrightarrow{u}\| + \|\overrightarrow{v}\|$.

Considere o intervalo I = [-L, L], para algum L > 0 e o espaço vetorial das funções integráveis em I, $\mathcal{F}_{int}(I) = \{f : I \to \mathbb{R}, f \text{ \'e integrávei}\}$.

Dados
$$f, g \in \mathcal{F}_{int}(I)$$
, defina $\langle f, g \rangle := \int_{-L}^{L} f(x)g(x)dx$.

Exercício. Mostre que $\langle f,g\rangle:=\int_{-L}^L f(x)g(x)dx$ é um produto interno em $\mathcal{F}_{int}(I)$.

Considere $I = [-\pi, \pi]$ e $\mathcal{A} = \{1, \sin(x), \cos(x), \sin(2x), \cos(2x), \dots, \sin(nx), \cos(nx), \dots\}, n \in \mathbb{N}^*$. Vamos verificar que em \mathcal{A} os vetores são dois a dois ortogonais. Para isso resolva o seguinte exercício:

Exercício. Mostre que para todo $n, m \in \mathbb{N}^*$ temos que:

a)
$$\langle 1, \cos(nx) \rangle = \int_{-\pi}^{\pi} \cos(nx) dx = 0$$
, b) $\langle 1, \sin(mx) \rangle = \int_{-\pi}^{\pi} \sin(mx) dx = 0$,

c) se
$$n \neq m$$
 então $\langle \cos(nx), \cos(mx) \rangle = \int_{-\pi}^{\pi} \cos(nx) \cos(mx) dx = 0$,

d) se
$$n \neq m$$
 então $\langle \sin(nx), \sin(mx) \rangle = \int_{-\pi}^{\pi} \sin(nx) \sin(mx) dx = 0$,

e) para todo
$$n, m : \langle \cos(nx), \sin(mx) \rangle = \int_{-\pi}^{\pi} \cos(nx) \sin(mx) dx = 0.$$

Além disso, para todo $n \ge 1$,

segue que
$$\|\cos(nx)\|^2 = \langle\cos(nx),\cos(nx)\rangle = \int_{-\pi}^{\pi}\cos^2(nx)dx = \pi$$
, e

$$\|\sin(nx)\|^2 = \langle \sin(nx), \sin(nx) \rangle = \int_{-\pi}^{\pi} \sin^2(nx) dx = \pi.$$

Logo,
$$\|\cos(nx)\| = \|\sin(nx)\| = \sqrt{\pi}$$
.

Portanto, se denotarmos as funções trigonométricas da família ${\mathcal A}$ por

 $f_n(x) = \cos(nx), n \ge 0$, e $g_m(x) = \sin(mx), m \ge 1$, o exercício acima mostra que $f_n(x) \perp g_m(x)$, para todo $n \ge 0$ e $m \ge 1$. Além disso, $\|\cos(nx)\| = \|\sin(mx)\| = \sqrt{\pi}$, $n, m \ge 1$.

4 Convergência de séries numéricas

Uma aplicação interessante desses resultados é a famosa identidade abaixo, que em particular nos ajuda a encontrar valores de convergência de algumas séries numéricas.

Identidade de Parseval. Seja $f: [-\pi, \pi] \to \mathbb{R}$ com série de Fourier $f(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(nx) + \sum_{n=1}^{+\infty} b_n \sin(nx)$. Então,

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f(x)^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{+\infty} (a_n^2 + b_n^2).$$

Para uma aplicação deste resultado vamos lembrar que na lista de exercícios da **Aula 12** mostramos que a série de Fourier da função $f: [-\pi, \pi] \to \mathbb{R}$,

$$f(x) = x^2 \, \text{\'e} \, f(x) = \frac{\pi^2}{3} + \sum_{n=1}^{+\infty} \frac{4(-1)^n}{n^2} \cos(nx)$$
. Logo, os coeficientes de Fourier são $a_0 = \frac{2}{3}\pi^2$, $a_n = \frac{4(-1)^n}{n^2}$ e $b_n = 0$, para $n \ge 1$.

Exemplo. Encontre o valor de convergência da série $\sum_{n=1}^{+\infty} \frac{1}{n^4}$.

Resp. Aplicando a **identidade de Parseval** para a função acima, obtemos que

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f(x)^2 dx = \frac{1}{\pi} \int_{-\pi}^{\pi} x^4 dx = \frac{a_0^2}{2} + \sum_{n=1}^{+\infty} (a_n^2 + b_n^2).$$

Segue disto que
$$\int_{-\pi}^{\pi} x^4 dx = \frac{x^5}{5} \Big|_{-\pi}^{\pi} = \frac{2}{5} \pi^5, \ a_0^2 = \frac{4}{9} \pi^4, \ a_n^2 = \frac{16}{n^4}, \ n \ge 1.$$

Juntando obtemos que
$$\frac{1}{\pi} \int_{-\pi}^{\pi} x^4 dx = \frac{2}{5} \pi^4 = \frac{2}{9} \pi^4 + 16 \sum_{n=1}^{+\infty} \frac{1}{n^4}$$
.

Disso segue que
$$16\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{2}{5}\pi^4 - \frac{2}{9}\pi^4 = 2\pi^4(\frac{1}{5} - \frac{1}{9}) = \frac{8}{45}\pi^4.$$

Portanto,

$$\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

Observação. A identidade de Parseval pode ser provada no contexto mais geral de série de Fourier de funções $f: [-L, L] \to \mathbb{R}$. Neste caso o resultado é:

Identidade de Parseval (Caso geral). Seja L>0 e $f:[-L,L]\to\mathbb{R}$ com série de Fourier $f(x)=\frac{a_0}{2}+\sum_{n=1}^{+\infty}a_n\cos(\frac{n\pi x}{L})+\sum_{n=1}^{+\infty}b_n\sin(\frac{n\pi x}{L})$. Então,

$$\frac{1}{L} \int_{-L}^{L} f(x)^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{+\infty} (a_n^2 + b_n^2).$$

Exercício. Considere $f:[-2,2]\to\mathbb{R}, f(x)=x^3-4x$ (note que f é função ímpar). Encontre:

- 1) a série de Fourier de f(x).
- 2) Aplique a identidade de Parseval para encontrar $\sum_{n=1}^{+\infty} \frac{1}{n^6}$

5 Polinômio de Fourier da função

Neste ponto vamos considerar novamente as funções do tipo $f: [-\pi, \pi] \to \mathbb{R}$.

Definimos o polinômio de Fourier de ordem k de f por

$$F_k(x) = \frac{a_0}{2} + \sum_{n=1}^{k} [a_n \cos(nx) + b_n \sin(nx)],$$

em que $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx, n \ge 0$, e $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx, n \ge 1$ são os coeficientes de Fourier de f.

Análogo ao caso de séries de potências, podemos mostrar que o polinômio de Fourier de ordem k é a melhor aproximação de f, no seguinte sentido: dado outro polinômio trigonomêtrico digamos $P_k(x) = \frac{c_0}{2} + \sum_{n=1}^k [c_n \cos(nx) + d_n \sin(nx)]$, em que agora $\{c_n\}_{n=0}^k$ e $\{d_n\}_{n=1}^k$ são sequências reais quaisquer, então

$$\int_{-\pi}^{\pi} |f(x) - F_k(x)|^2 dx \le \int_{-\pi}^{\pi} |f(x) - P_k(x)|^2 dx.$$

Exemplo. Mostramos também na **Aula 12** que para f(x) = x em $[-\pi, \pi]$ a série de Fourier é dada por $f(x) = \sum_{n=1}^{+\infty} \frac{2(-1)^{n+1}}{n} \sin(nx)$. Disso segue que os polinômios de Fourier de ordem 2 e 3 de f são dados por $F_2(x) = 2\sin(x) - \sin(2x)$ e $F_3(x) = 2\sin(x) - \sin(2x) + \frac{2}{3}\sin(3x)$.

Exercício. Para $f(x) = x^2$ em $[-\pi, \pi]$ encontre:

- 1) os polinômios de Fourier de ordem 3 e 4.
- 2) utilize algum software para fazer o gráfico desses polinômios e compare com o gráfico da própria função em $[-\pi, \pi]$.