Wednesday, Feb 16

The Sampling Distribution of \bar{x} and Estimation of μ

Note: To keep the notation simple, we will use μ and σ to represent the mean and standard deviation of x, respectively (i.e., we will omit the subscript from μ_x and σ_x).

We know the following about the sampling distribution of \bar{x} :

- 1. The mean of \bar{x} is μ .
- 2. The standard deviation of \bar{x} is σ/\sqrt{n} .
- 3. The shape of the distribution is approximately that of a normal distribution.

This allows us to make statements about the *probability* that \bar{x} will be within a certain distance of μ .

We can say that

$$P\left(\mu - 2\frac{\sigma}{\sqrt{n}} < \bar{x} < \mu + 2\frac{\sigma}{\sqrt{n}}\right) \approx 0.95,$$

which can also be stated as

$$P\left(|\bar{x} - \mu| < 2\frac{\sigma}{\sqrt{n}}\right) \approx 0.95.$$

The probability that the distance between μ and \bar{x} will be less than $2\sigma/\sqrt{n}$ is approximately 0.95. We call this distance the **margin of error**.

The choice of a probability of 0.95 is arbitrary, but is a common convention. We can make similar statements for other probabilities. Recall that the **standard error** of \bar{x} is its standard deviation, which is σ/\sqrt{n} . The

probability that the distance between μ and \bar{x} does not exceed the standard error is about 0.68. That is

$$P\left(|\bar{x} - \mu| < \frac{\sigma}{\sqrt{n}}\right) \approx 0.68.$$

So the standard error corresponds to a margin of error for a probability of 0.68.

Other Ways to Look at the Error of Estimation

We might call $|\bar{x} - \mu|$ the **error of estimation**. We know some things about the distribution of the error of estimation.

- 1. The 95th percentile of the error of estimation is about $2\sigma/\sqrt{n}$ (from above).
- 2. The 68th percentile of the error of estimation is about σ/\sqrt{n} (from above).
- 3. The 50th percentile of the error of estimation is about $0.674\sigma/\sqrt{n}$. This is its median.
- 4. The mean of the error of estimation is about $0.798\sigma/\sqrt{n}$.

Example: Suppose that the mean height of all Hobbits is 100 cm, and the standard deviation of all heights is 10 cm. Let x be the height of one Hobbit, selected at random. Then x has a mean of $\mu = 100$ cm and a standard deviation of $\sigma = 10$ cm. What are the *standard error* and the *margin of error* of \bar{x} computed from a sample of n = 25 Hobbits? What are the median and mean of the error of estimation?

Note that calculation of the standard error and margin of error do not require knowing μ . But they do require σ . In practice this parameter would be unknown, so we can *estimate* it using the standard deviation from the sample (i.e., s).

Example: Let x be yield of a chemical reaction under certain circumstances. Let \bar{x} be the mean yield for a sample of n=25 observations of x. Suppose we obtain a sample and find that s=0.4. What are the (estimated) standard error and the margin of error of \bar{x} What are the (estimated) median and mean of the error of estimation?

Example: Let x be the height of one Hobbit, selected at random. Suppose we obtain a sample of n = 25 Hobbits and find that s = 10.2. What are the (estimated) standard error and the margin of error of \bar{x} ? What are the (estimated) median and mean of the error of estimation?

The Sampling Distribution of \hat{p} and Estimation of p

Note: Recall that \hat{p} is just a special case of \bar{x} that results in some algebraic simplifications.

We know the following about the sampling distribution of \hat{p} :

- 1. The mean of \hat{p} is p.
- 2. The standard deviation of \hat{p} is $\sqrt{p(1-p)/n}$.
- 3. The shape of the distribution is approximately that of a normal distribution.

This allows us to make statements about the *probability* that \hat{p} will be within a certain distance of p.

We can say that

$$P\left(p - 2\sqrt{p(1-p)/n} < \hat{p} < p + 2\sqrt{p(1-p)/n}\right) \approx 0.95,$$

which can also be stated as

$$P\left(|\hat{p}-p| < 2\sqrt{p(1-p)/n}\right) \approx 0.95.$$

The probability that the distance between p and \hat{p} will be less than $2\sqrt{p(1-p)/n}$ is approximately 0.95. We call this distance the **margin of error**. Note that the standard error here is $\sqrt{p(1-p)/n}$.

Note that computing the standard error and the margin of error of \hat{p} require p, which we would not typically know in practice. But it can be estimated from a sample using \hat{p} .

Example: Let x be whether or not polymerase chain reaction (PCR) test is successful under certain circumstances. Suppose we conduct 100 tests to produce a sample of 100 observations of x and observe that the PCR test was successful on 90 of those 100 observations. What are the (estimated) *standard error* and *margin of error* of \hat{p} ?

Example: Suppose we obtained a sample of 100 of Hobbits and found that 15 had foot lice. What are the (estimated) standard error and margin of error of \hat{p} ?

Confidence Intervals

Two kinds of estimation:

- 1. **Point estimation** is estimation of the value of a parameter with the value of a statistic (e.g., estimation of μ with \bar{x} , or estimation of p with \hat{p}).
- 2. **Interval estimation** is the estimation of the value of a parameter with an *interval* of values. The device we will be using for interval estimation is a *confidence interval*.

Confidence Interval for μ

Some algebra shows that if

$$P\left(\mu - 2\frac{\sigma}{\sqrt{n}} < \bar{x} < \mu + 2\frac{\sigma}{\sqrt{n}}\right) \approx 0.95,$$

then

$$P\left(\bar{x} - 2\frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + 2\frac{\sigma}{\sqrt{n}}\right) \approx 0.95,$$

The confidence interval

$$\bar{x} \pm 2 \frac{\sigma}{\sqrt{n}} \Leftrightarrow \left(\bar{x} - 2 \frac{\sigma}{\sqrt{n}}, \ \bar{x} + 2 \frac{\sigma}{\sqrt{n}}\right).$$

has a probability of approximately 0.95 of containing μ .

Note: In *practice*, we need to replace σ with s since σ will be unknown.

Example: Let μ be the mean height of *all* Hobbits. A recent survey found that in a random sample of 64 Hobbits the mean height was $\bar{x} = 95$ cm and the standard deviation was s = 16 cm. What is the *confidence interval* for estimating μ ?

Confidence Interval for p

We can similarly derive a confidence interval for p as

$$\hat{p} \pm 2\sqrt{p(1-p)/n} \Leftrightarrow \left(\hat{p} - 2\sqrt{p(1-p)/n}, \ \hat{p} + 2\sqrt{p(1-p)/n}\right).$$

Note: In *practice*, we need to replace p with \hat{p} since p will be unknown.

Example: Let x be whether or not polymerase chain reaction (PCR) test is successful under certain circumstances. Suppose we conduct 100 tests to produce a sample of 100 observations of x and observe that the PCR test was successful on 90 of those 100 observations. What is the confidence interval for estimating the probability of a successful PCR test?

Example: Suppose we obtained a sample of 100 of Hobbits and found that 15 had foot lice. What is the confidence interval for estimating the proportion of all Hobbits that have foot lice?