

SILICON NPN SWITCHING TRANSISTOR

■ SGS-THOMSON PREFERRED SALESTYPE

DESCRIPTION

The MJE13009 is a multiepitaxial mesa NPN transistor. It is mounted in Jedec TO-220 plastic package, intended for use in motor controls, switching regulators, deflection circuits, etc.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CEO}	Collector-Emitter Voltage (I _B = 0)	400	V
V _{CEV}	Collector-Emitter Voltage (V _{BE} = -1.5 V)	700	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	9	V
Ic	Collector Current	12	Α
I _{CM}	Collector Peak Current (t _p ≤ 10 ms)	24	Α
lв	Base Current	6	Α
I _{BM}	Base Peak Current (t _p ≤ 10 ms)	12	Α
Ι _Ε	Emitter Current	18	Α
I _{EM}	Emitter Peak Current	36	Α
P _{tot}	Total Power Dissipation at T _c ≤ 25 °C	100	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

September 1997

THERMAL DATA

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
ICEV	Collector Cut-off Current	V_{CEV} = rated value $V_{BE(off)}$ = 1.5 V V_{CEV} = rated value $V_{EB(off)}$ = 1.5 V T_{case} = 100°C				1 5	mA mA
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 9 V				1	mA
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage	I _C = 10 mA	I _E = 0	400			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 5 A I _C = 8 A I _C = 12 A I _C = 8 A T _{case} = 100°C	$I_{B} = 1 A$ $I_{B} = 1.6 A$ $I_{B} = 3 A$ $I_{B} = 1.6 A$			1 1.5 3	V V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 5 A I _C = 8 A I _C = 8 A T _{case} = 100°C	I _B = 1 A I _B = 1.6 A I _B = 1.6 A			1.2 1.6 1.5	V V V
h _{FE} *	DC Current Gain	Ic = 5 A Ic = 8 A	V _{CE} = 5 V V _{CE} = 5 V	8 6		40 30	
f _T	Transistor Frequency	I _C = 500 mA	$V_{CE} = 10 \text{ V}$	4			MHz
Сов	Output Capacitance	V _{CB} = 10 A f = 0.1 MHz	I _E = 0		180		pF
t _{on} t _s t _f	Turn-on Time Storage Time Fall Time	RESISTIVE LOAD $V_{CC} = 125 \text{ V}$ $I_{B1} = -I_{B2} = 1.6 \text{ A}$ Duty Cycle $\leq 1\%$	$I_C = 8A$ $t_p = 25 \mu s$			1.1 3 0.7	μs μs μs

^{*} Pulsed: Pulse duration = 300μs, duty cycle ≤ 2 %

Safe Operating Areas

Derating Curve

DC Current Gain

Collector Emitter Saturation Voltage

Inductive Fall Time

DC Current Gain

Base Emitter Saturation Voltage

Inductive Storage Time

Reverse Biased SOA

RBSOA and Inductive Load Switching Test

- (1) Fast electronic switch (2) Non-inductive Resistor (3) Fast recovery rectifier

TO-220 MECHANICAL DATA

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - UnitedKingdom - U.S.A

