

Masa jądra izotopu litu 7_3 Li jest równa $m_{Li}=11,6508\cdot 10^{-27}~{\rm kg}$. Masy protonu m_p oraz neutronu m_n wynoszą odpowiednio: $m_p=1,6726\cdot 10^{-27}{\rm kg}$, $m_n=1,6749\cdot 10^{-27}~{\rm kg}$. Prędkość światła w próżni ma wartość $c=2,998\cdot 10^8~{\rm m/s}$.

Oblicz najmniejszą energię, jaką należałoby dostarczyć do jądra litu ${}^{7}_{3}$ Li, aby rozbić je na oddzielne (tzn. nieoddziałujące ze sobą) nukleony.

Zadanie 13. (0-1)

Jądro izotopu toru $^{232}_{90}$ Th ulega ciągowi przemian jądrowych α i β , w wyniku których powstaje jądro izotopu ołowiu $^{208}_{82}$ Pb.

Dokończ zdanie. Zaznacz właściwą odpowiedź spośród podanych.

Opisany proces przemian jądra toru w jądro ołowiu wymaga

- A. 24 rozpadów α oraz 8 rozpadów β⁺.
- B. 6 rozpadów α oraz 4 rozpadów β⁺.
- C. 6 rozpadów α oraz 4 rozpadów β⁻.
- D. 6 rozpadów α oraz 8 rozpadów β⁻.

Zadanie 13. (0-1)

Emisja fotonu przez atom wodoru następuje wtedy, gdy elektron przechodzi z poziomu energetycznego n=a na niższy poziom energetyczny n=b (gdzie a>b). Takie przejście oznaczymy jako $a\to b$. Rozważmy wybrane przejścia elektronu pomiędzy stanami w atomie wodoru:

 $3 \rightarrow 2$ $7 \rightarrow 4$ $4 \rightarrow 3$ $4 \rightarrow 1$

Ustal, któremu spośród przedstawionych przejść elektronu pomiędzy stanami w atomie wodoru towarzyszy emisja fotonu <u>o największej długości fali</u>. Zapisz to przejście poniżej.

•••••

......

Zadanie 14. (0-2)

Do wytwarzania neutronów można wykorzystać próbkę zawierającą polon 218 Po oraz beryl 9 Be. Polon ulega przemianie α , dlatego próbka zawierająca ten izotop jest źródłem cząstek α (jąder helu), które następnie uderzają w jądra berylu. W wyniku reakcji cząstki α z jądrem berylu powstają jeden neutron oraz jedno jądro.

Uzupelnij dwa poniższe równania reakcji opisanych w treści zadania 14. Wpisz w wykropkowane miejsca właściwe liczby atomowe, liczby masowe oraz symbole pierwiastków. Skorzystaj z Wybranych wzorów i stałych fizykochemicznych.

2)
$$\cdots \alpha + {}^{9}Be \rightarrow \cdots + \cdots n$$

Zadanie 10.

Na schematycznym rysunku obok zaznaczono trzy poziomy energetyczne atomu wodoru, przejścia elektronu pomiędzy tymi poziomami oraz fotony emitowane podczas tych przejść.

Zadanie 10.1. (0-1)

Zaznacz właściwe dokończenie zdania wybrane spośród A-C oraz jego poprawne uzasadnienie wybrane spośród 1.-3.

Długości fal fotonów emitowanych podczas przejść elektronu z poziomu n=3 na poziom n=1 (λ_{31}) oraz z poziomu n=2 na poziom n=1 (λ_{21}) spełniają relację

A.	$\lambda_{31} < \lambda_{21}$	ponieważ wartości energii emitowanych fotonów spełniają związek	1.	$E_{31} \le E_{21}$
B.	$\lambda_{31} > \lambda_{21}$		2.	$E_{31} > E_{21}$
C.	$\lambda_{31} = \lambda_{21}$,		3.	$E_{31} = E_{21}$

(E31 oraz E21 są wartościami energii fotonów emitowanych podczas przejścia elektronu pomiędzy odpowiednimi poziomami).

Zadanie 10.2. (0-2)

Oblicz energię fotonu emitowanego przez atom wodoru podczas przejścia elektronu z poziomu drugiego (n=2) do stanu podstawowego (n=1). Wynik podaj w dżulach lub w elektronowoltach. Pomiń efekt związany z odrzutem atomu.

Zadanie 9.

Rozważamy elektron w atomie wodoru znajdujący się początkowo na poziomie energetycznym o numerze n=4. Ten elektron może przejść na wyższy poziom energetyczny w wyniku pochłonięcia fotonu albo może przejść na niższy poziom energetyczny, emitując przy tym foton.

Zadanie 9.1. (0-1)

Częstotliwość fotonu pochłoniętego podczas przejścia elektronu z poziomu n=4 na poziom n=5 oznaczymy jako f_{45} , a częstotliwość fotonu pochłoniętego podczas przejścia elektronu z poziomu n=4 na poziom n=6 oznaczymy jako f_{46} . Wartości energii fotonów pochłoniętych podczas tych przejść oznaczymy odpowiednio jako E_{45} oraz E_{46} .

Dokończ zdanie. Zaznacz odpowiedź A, B albo C oraz jej uzasadnienie 1., 2. albo 3.

Częstotliwości f_{45} i f_{46} fotonów pochłoniętych przez atom wodoru spełniają relację

A.	$f_{45} > f_{46}$	ponieważ wartości energii tych fotonów spełniają relację	1.	$E_{45} > E_{46}$.
В.	$f_{45} = f_{46}$		2.	$E_{45} = E_{46}$.
C.	$f_{45} < f_{46}$		3.	$E_{45} < E_{46}$.

Zadanie 9.2. (0-3)

Elektron w atomie wodoru przeszedł z poziomu energetycznego n=4 na niższy poziom energetyczny, emitując w tym procesie foton o energii 2,55 eV.

Wyznacz numer poziomu energetycznego, na który przeszedł elektron. Wykonaj odpowiednie obliczenia.

Zadanie 15. (0-2)

Izotop promieniotwórczy bizmutu $^{210}_{83}$ Bi jest niestabilny i po dwóch rozpadach przemienia się w stabilny ołów $^{206}_{82}$ Pb. Przyjmij, że są to rozpady α i β^- .

Uzupelnij poniższe schematy opisujące możliwe ciągi reakcji. Nad strzałkami we wskazanych miejscach zapisz symbole zachodzących przemian. Dla każdego ciągu reakcji wpisz izotopy pośrednie – zapisz ich symbole łącznie z liczbami masowymi i atomowymi.

Pierwszy możliwy ciąg reakcji:	²¹⁰ ₈₃ Bi			²⁰⁶ ₈₂ Pb
Drugi możliwy ciąg reakcji:	²¹⁰ ₈₃ Bi			²⁰⁶ ₈₂ Pb

Zaznacz właściwe dokończenie zdania wybrane spośród A-C oraz jego poprawne uzasadnienie wybrane spośród 1.-3.

Gdy metalowa płytka jest oświetlana światłem monochromatycznym o ustalonej długości fali, takiej, że energia fotonów padających na płytkę jest większa od pracy wyjścia elektronów z tego metalu, to zwiększenie natężenia tego światła

A.	będzie przyczyną zwiększenia liczby elektronów wybitych z metalu,		1.	zwiększy się liczba fotonów, a tym samym więcej z nich zostanie pochłoniętych przez elektrony.
В.	będzie przyczyną wzrostu energii kinetycznej każdego z wybitych elektronów,	ponieważ	2.	wzrost natężenia światła oznacza tutaj wzrost energii każdego fotonu
C.	nie zmieni ani liczby elektronów wybitych z metalu, ani energii wybitych elektronów,		3.	energie kinetyczne oraz liczba wybitych elektronów zależą tylko od rodzaju metalowej płytki.

Otwórz w ▼

Zadanie 12.

Spektrometr masy to urządzenie pozwalające wyznaczyć stosunek m do q - masy m jonu do ładunku elektrycznego q tego jonu. Jedna z metod pomiaru stosunku m do q polega na pomiarze czasu przelotu jonu przez komorę analizatora (zobacz rys. poniżej). W tym celu początkowo spoczywające jony najpierw przyśpiesza się w polu elektrycznym napięciem U. Rozpędzone jony uzyskują pewną prędkość \vec{v} , z którą opuszczają obszar pola elektrycznego i wpadają do komory analizatora. Zakładamy, że jony poruszają się w próżni, oraz pomijamy wpływ innych pól na ruch jonów.

Iloraz $\frac{m}{a}$ może być podawany w jednostkach nazywanych tomson [Th], w których masa m jest wyrażona w atomowych jednostkach masy u, a ładunek elektryczny q jest wyrażony poprzez wielokrotność ładunku elementarnego e.

Zadanie 12.1. (0-2)

Wyraź jednostkę tomson w podstawowych jednostkach układu SI oraz oblicz jej wartość.

ometrze jony są przyśpieszane w polu elektrycznym napięciem o wartości stępnie wpadają do komory analizatora, gdzie nie ma już pola elektrycznego. Przyjmij, że w komorze analizatora o długości L = 1,5 m jony poruszają się ruchem jednostajnym prostoliniowym. Czas przelotu jonów przez tę komorę jest równy $\Delta t = 9.4 \mu s$.

Oblicz iloraz $\frac{m}{q}$ dla tego jonu.

		T	T		T
adan	ie	12	.2.	(0	-3
v pew v = 12					