

FOUNDATION OF DATA SCIENCE

"PYTHON FOR DATA SCIENCE" - WEEK 1

LEARNING OBJECTIVE OF THIS MODULE

- Basic Working proficiency in Python
- Basic Data-Manipulation using Python
- Basic Data-Visualization using Python
- Basics of Statistics

LET'S SET SOME GROUND RULES

- Come prepared for these sessions by watching the videos.
 - Concepts will be covered in the videos.
- Submit all assignments on time.
- Let's be punctual & respect each other's time.

A Few Analytics Application

Case1: Can you predict which client will default the loan payment based on the client's spending?

- •Why does the bank want to know who will default?
- •What type of information I would need about the client to know the risk?
- •Do you know what went wrong with ICICI bank and Yes bank

Great Learning Case2: Can you predict when an employee

- Why is this important for a company?
- What type of information do we need to make an informed decision?
- If my company is a 40-50 years old company, should one use all the available data to proceed with this analysis?

LEARNING OBJECTIVES OF THIS SESSION

 Understand the big picture of Data Science & Machine Learning

 Basic Operations in Python using a Case Study

Introduction to Python

 A journey of a thousand miles begins with a single step

Content Covered:

- Python
- Libraries Used
- NumPy
- Pandas
- Visualizations: matlplotlib, seaborn etc.
- Case Study

POP Up Questions:

- How do you define the data science life cycle?
- What is data?
- What are libraries and their uses in python ?

Python In Statistics

- One of the fastest growing programming languages
- Great functionality to deal with mathematics, statistics and data science applications.
- Easy to use, easy to debug language that also caters to people with non-programming backgrounds.
- Python libraries can be used as tools to assist you in working with data
- Quantitative analysis: Describes and summarizes data numerically
- Visual analysis: Illustrates data with charts, plots, graphs etc.

Frequently Used Libraries

Data Processing & Analysis

NumPy

Pandas

Data Visualization

Matplotlib

Seaborn

Pandas

Numpy

To use NumPy -> import numpy as np

- Stands for Numerical Python
- Library used for working with linear algebra and multi-dimensional arrays
- First step on the journey of a data scientist working with Python
- Pre-requisite for installing NumPy is Python itself.
- If you use the Anaconda distribution, you will automatically be able to use the common libraries, NumPy being one of them.

Pandas

To use Pandas -> import pandas as pd

- Built on top of NumPy
- Data processing, manipulation and analysis tool
- Used for typical data processing steps: load, prepare, manipulation and saving
- Additionally, it is also used for data merging and joining, data normalization, data modeling and analysis.
- If you use the Anaconda distribution, you will automatically be able to use the common libraries, pandas being one of them.

Data Visualization

- Visual analysis of data to determine patterns and/ or gather insights.
- Helps people to understand the summary of data by summarizing and presenting data in a simple, easy-to-understand format.
- Python offers some great libraries such as matplotlib and seaborn for creating graphs that are not only interactive but can also be customized.
- Some of the commonly used visualizations are bar plots, pie charts, line charts, scatter plots, boxplots, histograms, heatmaps etc.

Case Study -Introduction

Analyze the net worth of Forbes Top Billionaires 2020

Proprietary content. ©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Importing the Data

Loading the pre-requisite libraries:

import numpy as np

import pandas as pd

Importing the Data

- Open Anaconda Command prompt as administrator
- Use /cd to come out of a particular path (if needed)
- Run pip install/uninstall command (for example, pip install seaborn)

Reading the Data

Reading the dataset in Python:

The data can be imported by giving any data frame name and

using the following command.

It is a good practice to keep the input file in the same location as

the python file.

df = pd.read_csv('Forbes Billionaires.csv')

Knowing the Data

Knowing the data types:

To know the data type of each column in the dataset, use the following command.

The command lists all columns, the no. of values in them and their data types.

df.info()

Knowing the Data

Data in python can belong to any of the following types:

- Numeric (integer or float)
- String (also c/a object)
- Boolean
- Complex

Understanding the Data

Summary of the data:

To understand each of the variable in the data, we may look at their mean, median and mode values.

These values can be calculated by appending the following to the column names:

.mean()

.median()

.mode()

We may also use the following command to get this information about all the columns:

df.summary()

Cleaning the Data

The data that we see is often "unclean" and not fit for use.

- It is a good practice to clean the data before it is analyzed.
- Following are few examples of unclean data:
- -Improper column names (such as v1, v2)
- -Lengthy column names
- -Missing Values
- -Outliers & others...

Missing Values

Finding and treating missing values in the data:

To find if there are any missing values in the data, we may do the following:

df.isnull.sum()

If there are missing values in the data, they need to be treated before analysis.

(Boxplot)

sns.boxplot()

A boxplot uses what is called as IQR to find outliers in the data:

- IQR stands for Inter-Quartile Range.
- It is defined as Q3-Q1, where Q3 is the 75th percentile of the data and Q1 is the 25th percentile
- Remember, median is the 50th percentile ©

(Stripplot)

sns.stripplot()

(Countplot)

sns.countplot()

Heatmap & pairplot

Correlation is the extent to which two variables are linearly related

Two variables (i.e., two numeric variables) may have one of the following relationship with each other:

- Positively correlated
- Negatively correlated
- Not correlated

There are different ways to know the correlation in a data:

.corr(), .pairplot(), .heatmap()

PDS- Pima India Diabetes Project

Do you know?

In these 2 weeks, you will learn techniques to analyze the data and understand the patterns in the given data.

In the upcoming Project, you will be working on a real data which is based on the patients having diabetes. The objective of the project will be to analyze different aspects of having diabetes.

ANY QUESTIONS

HAPPY LEARNING