The RISC-V MCU Assembly Language Manual

Version: 3.00 ©2020 james mealy & Paul Hummel

Table of Contents

Table of Contents	- 2	-
Acknowledgements		
The RISC-V Assembler	- 5	-
The RISC-V OTTER Registers		
The RISC-V OTTER Memory Map		
The RISC-V OTTER Instruction Set		
RISC-V OTTER Assembly Instructions Formats	- 8	-
Instruction Type: R-type	- 9	-
Instruction Type: I-type	10	-
Instruction Type: S-type	11	-
Instruction Type: B-type		
Instruction Type: U-type		
Instruction Type: J-type		
The RISC-V OTTER ISA Formats and Opcodes		
RISC-V OTTER Assembly Instructions Brief Listing		
RISC-V OTTER Assembly Instruction Overview		
RISC-V OTTER Immediate Value Generation		
Detailed RISC-V OTTER Assembly Instruction Description		
add	18	-
addi	18	-
and	19	-
andi	19	-
auipc	20	_
beq	20	_
beqz		
bge		
bgeu		
bgez		
bgt		
3		
bgtu		
bgtz		
ble		
bleu		
blez		
blt		
bltz	26	-
bltu	27	-
bne	28	-
bnez	28	-
call		
csrrw		
j		
٠٠٠٠٠٠٠٠٠٠٠٠٠٠ ر		

jalr -32 jr -32 la -33 lb -33 lbu -34 lh -34 lh -35 li -35 lw -36 lui -36 mret -37 mv -37 meg -38 nop -38 not -38 ori -39 ret -40 sb -40 seqz -41 sgtz -41 sh -42 sw -42 sw -42 sw -42 sll -43 slli -43 slti -44 slti -44 slti -45 slti -45 slti -47 sra -47 sra -47 srai -47 srai -47 srai -	jal	31
1a 33 1b -33 1bu -34 1h -34 1hu -35 1i -35 1w -36 1ui -36 mret -37 mv -37 neg -38 nop -38 not -38 ori -39 ret -40 seqz -41 sgtz -41 sh -42 sw -42 sw -42 sll -43 sll -43 sll -43 slti -44 slti -45 sltu -45 sltu -45 sltu -45 sra -47 srai -47 srai -47 srai -48 srli -48 srli -48 srli -48 srli	jalr	32
1bb -33 1bu -34 1h -34 1hu -35 1i -35 1w -36 1ui -36 mret -37 mv -37 neg -38 nop -38 not -38 or -39 ret -40 sb -40 seqz -41 sch -42 sw -42 sh -42 sw -42 sh -42 sk -42 slli -43 slli -43 slti -44 slti -44 slti -45 sltu -45 sltu -45 sltu -45 sltu -45 sra -47 sra -47 srai	- jr	32
1bu .34 1h .34 1hu .35 1i .35 1w .36 lui .36 mret .37 mv .37 neg .38 nop .38 not .38 or .39 ori .39 ret .40 sb .40 seqz .41 sft .42 sw .42 sk .42 sw .42 sk .43 slli .43 slti .44 slti .44 slti .45 slt .47 sra .47 srai .47 srai .47 srai .47 srai .47 srai .48 srli .48 srli .48 srai .49 <td>- la</td> <td> 33</td>	- la	33
1h -34 1hu -35 1i -35 1w -36 lui -36 mret -37 mv -37 neg -38 nop -38 not -39 ori -39 ret -40 sbb -40 seqz -41 sgtz -41 sk -42 sw -42 sw -42 sll -43 sll -43 slt -43 slt -44 slti -44 slti -45 slt -45 slt -45 slt -45 slt -47 sra -47 srai -47 srai -47 srai -47 srai -47 srai -47 srai -48 srai	lb	33
1h -34 1hu -35 1i -35 1w -36 1ui -36 mret -37 mv -37 neg -38 nop -38 not -39 ori -39 ret -40 sbb -40 seqz -41 sgtz -41 sh -42 sw -42 sw -42 sll -43 slli -43 slt -43 slt -44 slti -45 slti -45 sltu -45 sltz -46 sra -47 srai -47 srl -48 srli -48 srli -48 sub -49 xor -49 xori -50	lbu	34
li -35 lw -36 lui -36 mret -37 mv -37 neg -38 nop -38 not -38 or -39 ori -39 ret -40 sb -40 seqz -41 sgtz -41 sw -42 sw -42 sw -42 sll -43 slli -43 slti -44 slti -44 slti -45 sltu -45 sltu -45 sltu -45 sra -47 srai -47 srai -47 srl -48 srli -48 sub -49 xor -49 xori -50		
lw -36 lui -36 mret -37 mv -37 neg -38 nop -38 not -38 ori -39 ori -39 ret -40 sb -40 seqz -41 sk -42 sw -42 sw -42 sw -42 sl -43 slli -43 slli -43 slti -44 slti -44 slti -45 sltz -46 sre -46 sra -47 sra -47 sra -47 srai -47 srai -48 srli -48 sub -49 xor -49 xori -50	lhu	35
lui _ 36 mret _ 37 mw _ 37 neg _ 38 nop _ 38 not _ 38 or _ 39 ori _ 39 ret _ 40 sb _ 40 seqz _ 41 sk _ 41 sk _ 42 sw _ 42 sw _ 42 sw _ 42 sk _ 42 sk _ 42 sk _ 42 sll _ 43 slli _ 43 slli _ 43 slti _ 44 slti _ 44 slti _ 44 slti _ 45 sltz _ 46 sra _ 47 srai _ 48 sub _ 49 xor _ 49 xori _ 5	li	35
lui _ 36 mret _ 37 mw _ 37 neg _ 38 nop _ 38 not _ 38 or _ 39 ori _ 39 ret _ 40 sb _ 40 seqz _ 41 sk _ 41 sk _ 42 sw _ 42 sw _ 42 sw _ 42 sk _ 42 sk _ 42 sk _ 42 sll _ 43 slli _ 43 slli _ 43 slti _ 44 slti _ 44 slti _ 44 slti _ 45 sltz _ 46 sra _ 47 srai _ 48 sub _ 49 xor _ 49 xori _ 5	lw	36
mv - 37 neg - 38 not - 38 or - 39 ori - 39 ret - 40 sb - 40 seqz - 41 sh - 42 sw - 42 sl - 43 slli - 43 slt - 44 slti - 44 slti - 44 slti - 45 sltu - 45 sltz - 46 snez - 46 sra - 47 srai - 47 srai - 47 srai - 47 srai - 48 sub - 49 xor - 49 xori - 50	lui	36
neg -38 not -38 or -39 ori -39 ret -40 sb -40 seqz -41 sqtz -41 sh -42 sw -42 sll -43 slli -43 slti -44 slti -45 slti -45 sltz -46 sra -47 srai -47 srai -47 srli -48 sub -49 xor -49 xori -50	mret	37
nop 38 not 38 or 39 ret -40 sb -40 seqz -41 sqtz -41 sh -42 sw -42 sl -43 slli -43 slti -44 slti -44 slti -45 sltu -45 sltz -46 snez -46 sra -47 srai -47 srl -48 srli -48 sub -49 xor -49 xori -50	mv	37
nop 38 not 38 or 39 ret -40 sb -40 seqz -41 sqtz -41 sh -42 sw -42 sl -43 slli -43 slti -44 slti -44 slti -45 sltu -45 sltz -46 snez -46 sra -47 srai -47 srl -48 srli -48 sub -49 xor -49 xori -50	neg	38
not -38 or -39 ori -39 ret -40 sb -40 seqz -41 sqtz -41 sh -42 sw -42 sl -43 sl1i -43 slti -44 slti -44 slti -45 sltu -45 sltz -46 snez -46 sra -47 srai -47 srl -48 sub -48 sub -49 xor -49 xori -50	5	
or -39 ret -40 sb -41 sqz -41 sgtz -41 sh -42 sw -42 sll -43 slli -43 slt -44 slti -44 slti -45 sltu -45 sltz -46 snez -46 sra -47 srai -47 srl -48 sub -49 xor -49 xori -50	-	
ori - 39 ret - 40 sb - 40 seqz - 41 sgtz - 41 sh - 42 sw - 42 sll - 43 slli - 43 slti - 44 slti - 44 slti - 45 sltu - 45 sltz - 46 sra - 47 srai - 47 srl - 48 srli - 48 srli - 48 sub - 49 xor - 49 xori - 50		
ret -40 sb -40 seqz -41 sgtz -41 sh -42 sw -42 sll -43 slli -43 slt -44 slti -44 sltiu -45 sltu -45 sltz -46 snez -46 sra -47 srai -47 srl -48 sub -48 sub -49 xor -49 xori -50		
sb -40 seqz -41 sgtz -41 sh -42 sw -42 sll -43 slli -43 slt -44 slti -44 sltiu -45 sltz -46 snez -46 sra -47 srai -47 srl -48 sub -49 xor -49 xori -50		
seqz -41 sqtz -41 sh -42 sw -42 sll -43 slli -43 slt -44 sltiu -45 sltz -46 snez -46 sra -47 srai -47 srli -48 sub -49 xor -49 xori -50		
sgtz -41 sh -42 sw -42 sll -43 slt -44 slti -44 sltiu -45 sltz -46 snez -46 sra -47 srai -47 srli -48 sub -49 xor -49 xori -50		
sh -42 sw -42 sll -43 slli -44 slti -44 sltiu -45 sltu -45 sltz -46 snez -46 srai -47 srai -47 srl -48 sub -49 xor -49 xori -50		
SW - 42 S11 - 43 S1ti - 44 S1ti - 44 S1ti - 45 S1tz - 45 S1tz - 46 Snez - 46 Srai - 47 Srli - 48 Sub - 49 Sori - 49 Sori - 50	-	
511 -43 511i -44 51ti -44 51tiu -45 51tz -46 5nez -46 5ra -47 5rai -47 5rli -48 5rli -48 5ub -49 5vri -50		
Silli - 43 Silti - 44 Silti - 45 Siltu - 45 Siltz - 46 Snez - 46 Srai - 47 Srai - 47 Srli - 48 Sub - 49 Kori - 50		
slt - 44 slti - 45 sltu - 45 sltz - 46 snez - 46 sra - 47 srai - 47 srli - 48 sub - 49 xori - 50		
slti - 44 sltiu - 45 sltz - 46 snez - 47 srai - 47 srli - 48 sub - 49 xor - 49 xori - 50		
sltiu - 45 sltz - 46 snez - 46 sra - 47 srai - 47 srli - 48 sub - 49 xor - 49 xori - 50		
sltu - 45 sltz - 46 snez - 47 srai - 47 srli - 48 sub - 49 xor - 49 xori - 50		
sltz - 46 snez - 46 sra - 47 srai - 47 srl - 48 srli - 48 sub - 49 xor - 49 xori - 50		
snez - 46 sra - 47 srai - 48 srli - 48 sub - 49 xor - 49 xori - 50		
sra - 47 srai - 47 srl - 48 srli - 49 xor - 49 xori - 50		
srai - 47 srl - 48 srli - 49 xor - 49 xori - 50		
srl - 48 srli - 48 sub - 49 xor - 49 xori - 50		
srli - 48 sub - 49 xor - 49 xori - 50		
sub - 49 xor - 49 xori - 50		
xor49 xori50		
xori50		

RAT Assembler Manual The RAT Assembler

Acknowledgements

Transitioning to the RISC-V OTTER was initially the work of Joseph Callenes-Sloan. The RISC-V OTTER replaced the RAT MCU, which effectively modernized and removed many constraints from using the RAT MCU to teach a course in computer architecture and assembly language programming. Teaching any course for the first time requires a ton of work, but designing and implementing the course for the first time, which is what Joseph did, requires even more work. Bridget Benson was the first instructor outside of Joseph to use the RISC-V OTTER; Joseph's and Bridget's work has paved the way for other instructors using the RISC-V OTTER.

The RISC-V Assembler

The RISC-V OTTER Registers

The RISC-V OTTER has 32, 32-bit registers (x0-31). To enable the assembly code to become more portable and reusable, a common usage is defined for each of the 32 registers. This effort is aided by giving each register an alternate name that assemblers can also understand. This not only makes the code more portable, but also more readable. Table 1 below shows each register along with its corresponding alternate name and usage designation.

Register Name	Alternate Name	Usage Description			
x0	zero	Hardwired to zero			
x1	ra	Return address			
x2	sp	Stack pointer			
х3	gp	Global pointer			
х4	tp	Thread pointer			
х5	t0	Temporary / alternate link register			
x6-7	t1-2	Temporaries			
х8	s0/fp	Saved register / frame pointer			
х9	s1	Saved register			
x10-11	a0-1	Function arguments / return values			
x12-17	a2-7	Function arguments			
x18-27	s2-11	Saved register			
x28-31	t3-6	Temporaries			

Table 1: RISC-V register names and common usage designation.

The RISC-V OTTER Memory Map

The RISC-V OTTER has a 32-bit address space and can address 4GiB (2^{32} bytes) of data. However, the hardware is limited to 64kb of memory for program code, data, and stack. The RISC-V OTTER is implemented as a Von Neumann architecture, which just means that all the memory shares the same address space. This architecture simplifies the hardware design and allows the programmer to have flexibility of how to best optimize the usage of memory. To give a starting framework that should be adequate for all of programming tasks in this course, the memory in the RISC-V OTTER will be divided as shown below in Figure 1.

Figure 1: RISC-V OTTER Memory Map

The RISC-V OTTER Instruction Set

The RISC-V OTTER instructions are the RV32I instructions from the open RISC-V architecture. The RISC-V OTTER instruction set comprises of two types of instructions: base instructions and pseudoinstructions. The base pseudoinstructions are special cases of the base instructions.

RISC-V OTTER Assembly Instructions Formats

The RISC-V OTTER instruction set has seven types of instruction formats. Table 2 shows each of these formats.

Table 2: Instruction types and associated instruction formats.

Instruction Type: R-type

Figure 2 shows the R-type instruction format. Table 3 lists the instructions using the R-type format.

Figure 2: R-type instruction format.

Table 3: R-type instructions with opcodes.

Instruction Type: I-type

Figure 3: I-type instruction format.

Table 4: I-type instructions with opcodes.

Instruction Type: S-type

Figure 4 shows the S-type instruction format. Table 5 lists the instructions using the S-type format.

Figure 4: S-type instruction format.

Table 5: S-type instructions with opcodes.

Instruction Type: B-type

Figure 5 shows the B-type instruction format. Table 6 lists the instructions using the B-type format.

Figure 5: B-type instruction format.

Table 6: B-type instructions with opcodes.

Instruction Type: U-type

Figure 6 shows the U-type instruction format. Table 7 lists the instructions using the U-type format.

Figure 6: U-type instruction format.

Table 7: U-type instructions with opcodes.

Instruction Type: J-type

Figure 7 shows the J-type instruction format. Table 8 lists the instructions using the J-type format.

Figure 7: J-type instruction format.

Table 8: J-type instructions with opcodes.

The RISC-V OTTER ISA Formats and Opcodes

31	25	24	20	19	15	14	12	11	7	6	0	
fun	ct7	rs	2	rs	1	fun	ct3	ro	d	opc	ode	R-type
imm[11:0]		rs	1	fun	ct3	ro	d	opc	ode	I-type		
imm[11:5]	rs	2	rs	1	fun	ct3	imm	[4:0]	opc	ode	S-type
imm[12	imm[12,10:5] rs2 rs1 funct3			ct3	imm[4	:1,11]	opc	ode	B-type			
	imm[31:12]						ro	d	орс	ode	U-type	
	imm	[20,10]	:1,11,	19:12]			<u> </u>	ro	d	opc	ode	J-type

RISC-V Base Instruction Set

imm[31:12]				rd	0110111	LUI	U
	imm[31:12]			rd	0010111	AUIPC	U
imr	n[20,10:1,11,1	19:12]		rd	1101111	JAL	J
imm[11:0]]	rs1	000	rd	1100111	JALR	I
imm[11:0]]	rs1	000	rd	0000011	LB	I
imm[11:0]]	rs1	001	rd	0000011	LH	I
imm[11:0]]	rs1	010	rd	0000011	LW	I
imm[11:0]		rs1	100	rd	0000011	LBU	I
imm[11:0]]	rs1	101	rd	0000011	LHU	I
imm[11:0]]	rs1	000	rd	0010011	ADDI	I
imm[11:0]]	rs1	010	rd	0010011	SLTI	I
imm[11:0]	imm[11:0]		011	rd	0010011	SLTIU	I
imm[11:0]	imm[11:0]		110	rd	0010011	ORI	I
imm[11:0]		rs1	100	rd	0010011	XORI	I
imm[11:0]	imm[11:0]		111	rd	0010011	ANDI	I
imm[11:5]	*imm[4:0]	rs1	001	rd	0010011	SLLI	I
0000000	*imm[4:0]	rs1	101	rd	0010011	SRLI	I
0100000	*imm[4:0]	rs1	101	rd	0010011	SRAI	I
imm[12,10:5]	rs2	rs1	000	imm[4:1,11]	1100011	BEQ	В
imm[12,10:5]	rs2	rs1	001	imm[4:1,11]	1100011	BNE	В
imm[12,10:5]	rs2	rs1	100	imm[4:1,11]	1100011	BLT	В
imm[12,10:5]	rs2	rs1	101	imm[4:1,11]	1100011	BGE	В
imm[12,10:5]	rs2	rs1	110	imm[4:1,11]	1100011	BLTU	В
imm[12,10:5]	rs2	rs1	111	imm[4:1,11]	1100011	BGEU	В
imm[11:5]	rs2	rs1	000	imm[4:0]	0100011	SB	S
imm[11:5]	rs2	rs1	001	imm[4:0]	0100011	SH	S
imm[11:5]	rs2	rs1	010	imm[4:0]	0100011	SW	S
0000000	rs2	rs1	000	rd	0110011	ADD	R
0100000	rs2	rs1	000	rd	0110011	SUB	R
0000000	rs2	rs1	001	rd	0110011	SLL	R
0000000	rs2	rs1	010	rd	0110011	SLT	R
0000000	rs2	rs1	011	rd	0110011	SLTU	R
0000000	rs2	rs1	100	rd	0110011	XOR	R
0000000	rs2	rs1	101	rd	0110011	SRL	R
0100000	rs2	rs1	101	rd	0110011	SRA	R
0000000	rs2	rs1	110	rd	0110011	OR	R
0000000	rs2	rs1	111	rd	0110011	AND	R
csr		rs1	001	rd	1110011	CSRRW	sys
0011000	01000	0000	000	00000	1110011	MRET	sys
	l		l	<u> </u>			

Table 9: Everything you want to know about RISC-V instructions but were afraid to ask.

RISC-V OTTER Assembly Instructions Brief Listing

Progra	m Control				
jal	rd,imm	j	imm	jal	imm
jalr	rd,rs1,imm	jr	rs	jalr	rs
call	imm				
ret		mret			
beq	rs1,rs2,imm	beqz	rs1,imm		
bne	rs1,rs2,imm	bnez	rs1,imm		
blt	rs1,rs2,imm	blez	rs1,imm	bgt	rs1,rs2,imm
bge	rs1,rs2,imm	bgez	rs1,imm	ble	rs1,rs2,imm
bltu	rs1,rs2,imm	bltz	rs1,imm	bgtu	rs1,rs2,imm
bgeu	rs1,rs2,imm	bgtz	rs1,imm	bleu	rs1,rs2,imm

Load/S	Store (& I/O)		
lb	rd,imm(rs1)	sb	rs2,imm(rs1)
lh	rd,imm(rs1)	sh	rs2,imm(rs1)
lw	rd,imm(rs1)	sw	rs2,imm(rs1)
lbu	rd,imm(rs1)		
lhb	rd,imm(rs1)		

Operation	ons				
addi	rd,rs1,imm	add	rd,rs1,rs2		
		sub	rd,rs1,rs2	neg	rd,rsl
xori	rd,rs1,imm	xor	rd,rs1,rs2	not	rd,rs1
ori	rd,rs1,imm	or	rd,rs1,rs2		
andi	rsd,rs1,imm	add	rd,rs1,rs2		
slli	rd,rs1,imm	sll	rd,rs1,rs2		
srli	rd,rs1,imm	srl	rd,rs1,rs2	sgtz	rd,rs1
srai	rd,rs1,imm	sra	rd,rs1,rs2	sltz	rd,rs1
slti	rd,rs1,imm	slt	rd,rs1,rs2	snez	rd,rs1
sltiu	rd,rs1,imm	sltu	rd,rs1,rs2	seqz	rd,rs1

Auxillar	y				
nop		auipc	rd,imm	lui	rd,imm
csrrw	rd,csr,rs1	li	rd,imm	mv	rd,rs
csrw	csr,rs1	la	rd,imm		

Table 10: RISC-V OTTER Brief format instruction set listing.

Shaded instructions are pseudo instructions

RISC-V OTTER Assembly Instruction Overview

Table 11 lists RISC-V OTTER instructions including instruction format, description, and RTL description. Shaded instructions are pseudo instructions

Instru	ection	Description	RTL	Comment
add	rd,rs1,rs2	addition	X[rd] ← X[rs1] + X[rs2]	Comment
addi	rd,rs1,imm	addition with immediate	X[rd] ← X[rs1] + sext(imm)	
and	rd,rs1,rs2	bitwise AND	$X[rd] \leftarrow X[rs1] \cdot X[rs1]$	
andi	rd,rs1,imm	Bitwise AND immediate	$X[rd] \leftarrow X[rs1] \cdot sext(imm)$	
auipc	rd,imm	add upper immediate to PC	X[rd] ← PC + (sext(imm)<<12)	
beq	rs1,rs2,imm	branch if equal	$PC \leftarrow PC + sext(imm)$ if $(X[rs1] == X[rs2])$	imm ≠ value
beqz	rs1,imm	branch if equal to zero	$PC \leftarrow PC + sext(imm)$ if $(X[rs1] == 0)$	imm ≠ value
bge	rs1,rs2,imm	branch if greater than or equal	$PC \leftarrow PC + sext(imm) \text{ if } (X[rs1] \ge_s X[rs2])$	imm ≠ value
bgeu	rs1,rs2,imm	branch if greater than or equal unsigned	$PC \leftarrow PC + sext(imm) \text{ if } (X[rs1] \ge_u X[rs2])$	imm ≠ value
bgez	rs1,imm	branch if greater than or equal to zero	$PC \leftarrow PC + sext(imm) \text{ if } (X[rs1] \ge_s 0)$	imm ≠ value
bgt	rs1,rs2,imm	branch if greater than	$PC \leftarrow PC + sext(imm) \text{ if } (X[rs1] >_s X[rs2])$	imm ≠ value
bgtu	rs1,rs2,imm	branch if greater than unsigned	$PC \leftarrow PC + sext(imm) if (X[rs1] >_u X[rs2])$	imm ≠ value
bgtz	rs1,rs2,imm	branch if greater than zero	$PC \leftarrow PC + sext(imm) \text{ if } (X[rs1] >_s 0)$	imm ≠ value
ble	rs1,rs2,imm	branch if less than or equal	$PC \leftarrow PC + sext(imm)$ if $(X[rs1] \leq_s X[rs2])$	imm ≠ value
bleu	rs1,rs2,imm	branch if less than or equal (unsigned)	$PC \leftarrow PC + sext(imm)$ if $(X[rs1] \le_u X[rs2])$	imm ≠ value
blez	rs1,rs2,imm	branch if less than or equal zero	$PC \leftarrow PC + sext(imm)$ if $(X[rs1] \leq_s 0)$	imm ≠ value
blt	rs1,rs2,imm	branch if less than	$PC \leftarrow PC + sext(imm)$ if $(X[rs1] <_s X[rs2])$	imm ≠ value
bltz	rs1,imm	branch if less than zero	$PC \leftarrow PC + sext(imm)$ if $(X[rs1] <_s 0)$	imm ≠ value
bltu	rs1,rs2,imm	branch if less than (unsigned)	PC ← PC + sext(imm) if (X[rs1] < _u X[rs2])	imm ≠ value
bne	rs1,rs2,imm	branch if not equal	$PC \leftarrow PC + sext(imm) if (X[rs1] \neq X[rs2])$	imm ≠ value
bnez	rs1,imm	branch if not equal to zero	$PC \leftarrow PC + sext(imm) \text{ if } (X[rs1] \neq 0)$	imm ≠ value
call	label	branch to subroutine	$X[rd] \leftarrow PC + 8$; $PC \leftarrow &symbol$	imm ≠ value
			(rd=X1 if rd omitted)	IIIIII + value
csrrw	rd,csr,rs1	control & status register read & write	$X[rd] \leftarrow CSR[csr]; CSR[csr] \leftarrow rs1$	
csrw	csr,rs1	control & status register write	CSR[csr] ← rs1	
j	imm	unconditional branch	PC ← PC + sext(imm)	imm ≠ value
jal	rd,imm	unconditional branch with offset	$X[rd] \leftarrow PC + 4$; $PC \leftarrow PC + sext(imm)$	imm ≠ value
jal	imm	diconditional branch with onset		rd=X1 if rd omitd
jalr	rd,rs1,imm			imm ≠ value
jalr	rs .	unconditional branch with offset & link	$X[rd] \leftarrow PC+4; PC \leftarrow (X[rs1] + sext(imm)) \& \sim 1$	rd=X1 if rd omitd
jalr	rs,imm			14 / 11 11 0 11 11 14
jr	rs1	unconditional branch to register address	PC ← X[rs1]	
la	rd,symbol	load absolute address of symbol	$X[rd] \leftarrow & symbol$	
1b	rd,imm(rs1)	load byte	X[rd] ← sext(M[X[rs1] + sext(imm)] [7:0])	
1bu	rd,imm(rs1)	load byte unsigned	$X[rd] \leftarrow M[X[rs1] + sext(imm)]$ [7:0]	
lh	rd,imm(rs1)	load halfword	X[rd] ← sext(M[X[rs1] + sext(imm)] [15:0])	
lhu	rd,imm(rs1)	load halfword unsigned	X[rd] ← M[X[rs1] + sext(imm)] [15:0]	
li	rd,imm	load immediate	X[rd] ← imm	
lw lui	rd,imm(rs1)	load word into register	$X[rd] \leftarrow M[X[rs1] + sext(imm)]$ [31:0]	
mret	rd,imm	load upper immediate	X[rd] ← imm[31:12] << 12	
mv	rd,rs1	machine mode exception return	PC ← CSR[mepc]	
	rd,rs1	move	$X[rd] \leftarrow X[rs1]$	
neg	ru, rsz	negate	$X[rd] \leftarrow -X[rs2]$	
nop	rd,rs2	no operation	nada (PC ← PC + 4) X[rd] ← ~X[rs2]	
	rd,rs1,rs2	ones complement bitwise inclusive OR	X[rd] ← ~X[rs2] X[rd] ← X[rs1] X[rs2]	
or	rd,rs1,rs2 rd,rs1,imm	bitwise inclusive OR immediate	X[rd] ← X[rs1] X[rs2] X[rd] ← X[rs1] sext(imm)	+
ret	14/101/1HHH	return from subroutine	$A[IG] \leftarrow A[ISI] \mid Sext(IIIIII)$ $PC \leftarrow X1$	
sb	rs2,imm(rs1)	store byte in memory	M[X[rs1] + sext(imm)] ← X[rs2][7:0]	
seqz	rd,rs1	set if equal to zero	$X[rd] \leftarrow (X[rs1] == 0)?1:0$	
sgtz	rd,rs2	set if greater than zero	$X[rd] \leftarrow (X[rs1] = 0) ? 1 : 0$ $X[rd] \leftarrow (X[rs2] >_s 0) ? 1 : 0$	
sh	rs2,imm(rs1)	store halfword in memory	$M[X[rs1] + sext(imm)] \leftarrow X[rs2][15:0]$	
sw	rs2,imm(rs1)	store word	M[X[rs1] + sext(imm)] ← X[rs2]	
sll	rd,rs1,rs2	logical shift left	$X[rd] \leftarrow X[rs1] << X[rs2][4:0]$	1
slli		logical shift left immediate	$X[rd] \leftarrow X[rs1] \leftarrow X[rs2] + 0$ $X[rd] \leftarrow X[rs1] << shft_amt[4:0]$	1
	ru, rsi, snil and	, g. car orms for miniouluto		†
slt	rd,rs1,shft_amt rd,rs1,rs2		I Xirdi ← (Xirs1i <, Xirs2i) ? 1 · ()	
slt slti	rd,rs1,rs2	set if less than	$X[rd] \leftarrow (X[rs1] <_s X[rs2]) ? 1 : 0$ $X[rd] \leftarrow (X[rs1] <_s sext(imm)) ? 1 : 0$	
slti sltiu			$X[rd] \leftarrow (X[rs1] <_s sext(imm))?1:0$	
slti sltiu	rd,rs1,rs2 rd,rs1,imm rd,rs1,imm	set if less than set if less than immediate set if less than immediate unsigned	$X[rd] \leftarrow (X[rs1] <_s sext(imm))?1:0$ $X[rd] \leftarrow (X[rs1] <_u sext(imm))?1:0$	
sltiu sltiu sltu	rd,rs1,rs2 rd,rs1,imm rd,rs1,imm rd,rs1,rs2	set if less than set if less than immediate set if less than immediate unsigned set if less than unsigned	$X[rd] \leftarrow (X[rs1] <_s \text{ sext(imm)}) ? 1 : 0$ $X[rd] \leftarrow (X[rs1] <_u \text{ sext(imm)}) ? 1 : 0$ $X[rd] \leftarrow (X[rs1] <_u X[rs2]) ? 1 : 0$	
slti sltiu	rd,rs1,rs2 rd,rs1,imm rd,rs1,imm rd,rs1,rs2 rd,rs1	set if less than set if less than immediate set if less than immediate unsigned set if less than unsigned set if less than zero	$ \begin{array}{l} X[rd] \leftarrow (X[rs1] <_s \operatorname{sext(imm)}) ? 1 : 0 \\ X[rd] \leftarrow (X[rs1] <_u \operatorname{sext(imm)}) ? 1 : 0 \\ X[rd] \leftarrow (X[rs1] <_u X[rs2]) ? 1 : 0 \\ X[rd] \leftarrow (X[rs1] <_s 0) ? 1 : 0 \end{array} $	
slti sltiu sltu sltz snez	rd,rs1,rs2 rd,rs1,imm rd,rs1,imm rd,rs1,rs2 rd,rs1 rd,rs2	set if less than set if less than immediate set if less than immediate unsigned set if less than unsigned set if less than zero set if not equal to zero	$X[rd] \leftarrow (X[rs1] <_s \text{ sext(imm)}) ? 1 : 0$ $X[rd] \leftarrow (X[rs1] <_u \text{ sext(imm)}) ? 1 : 0$ $X[rd] \leftarrow (X[rs1] <_u X[rs2]) ? 1 : 0$ $X[rd] \leftarrow (X[rs1] <_s 0) ? 1 : 0$ $X[rd] \leftarrow (X[rs2] \neq 0) ? 1 : 0$	
sltiu sltu sltz	rd,rs1,rs2 rd,rs1,imm rd,rs1,imm rd,rs1,rs2 rd,rs1 rd,rs2 rd,rs1,rs2	set if less than set if less than immediate set if less than immediate unsigned set if less than unsigned set if less than zero set if not equal to zero arithmetic shift right	$ \begin{array}{l} X[rd] \leftarrow (X[rs1] <_s \operatorname{sext(imm)}) ? 1 : 0 \\ X[rd] \leftarrow (X[rs1] <_u \operatorname{sext(imm)}) ? 1 : 0 \\ X[rd] \leftarrow (X[rs1] <_u X[rs2]) ? 1 : 0 \\ X[rd] \leftarrow (X[rs1] <_s 0) ? 1 : 0 \end{array} $	
slti sltiu sltu sltz snez sra srai	rd,rs1,rs2 rd,rs1,imm rd,rs1,imm rd,rs1,rs2 rd,rs1 rd,rs2 rd,rs1,rs2 rd,rs1,rs2 rd,rs1,shft amt	set if less than set if less than immediate set if less than immediate unsigned set if less than unsigned set if less than zero set if not equal to zero arithmetic shift right arithmetic shift right immediate	$ \begin{array}{c} X[rd] \leftarrow (X[rs1] <_s \text{ sext(imm)})? 1:0 \\ X[rd] \leftarrow (X[rs1] <_u \text{ sext(imm)})? 1:0 \\ X[rd] \leftarrow (X[rs1] <_u \text{ X[rs2]})? 1:0 \\ X[rd] \leftarrow (X[rs1] <_s 0)? 1:0 \\ X[rd] \leftarrow (X[rs2] \neq 0)? 1:0 \\ X[rd] \leftarrow (X[rs1] >_s X[rs2] \neq 0) \\ X[rd] \leftarrow X[rs1] >_s X[rs2] \neq 0) \\ X[rd] \leftarrow X[rs1] >_s X[rs2] \neq 0) \\ X[rd] \leftarrow X[rs1] >_s X[rs2] \neq 0 \\ X[rd] \leftarrow X[rs1] >_s X[rs2] = 0 \\ X[rd] \leftarrow X[rd] = 0 \\ X[rd] = 0$	
slti sltu sltu sltz snez sra	rd,rs1,rs2 rd,rs1,imm rd,rs1,imm rd,rs1,rs2 rd,rs1 rd,rs2 rd,rs1,rs2	set if less than set if less than immediate set if less than immediate unsigned set if less than unsigned set if less than zero set if not equal to zero arithmetic shift right arithmetic shift right immediate logical shift right	$\begin{array}{l} X[rd] \leftarrow (X[rs1] <_s \text{ sext(imm)})? 1:0 \\ X[rd] \leftarrow (X[rs1] <_u \text{ sext(imm)})? 1:0 \\ X[rd] \leftarrow (X[rs1] <_u \text{ X[rs2]})? 1:0 \\ X[rd] \leftarrow (X[rs1] <_s 0)? 1:0 \\ X[rd] \leftarrow (X[rs2] \neq 0)? 1:0 \\ X[rd] \leftarrow (X[rs2] \neq 0)? 1:0 \\ X[rd] \leftarrow X[rs1] >_s X[rs2] [4:0] \\ X[rd] \leftarrow X[rs1] >>_s \text{ shft amt}[4:0] \\ X[rd] \leftarrow X[rs1] >> X[rs2][4:0] \\ X[rd] \leftarrow X[rs1] >> X[rs2][4:0] \\ \end{array}$	
slti sltu sltz snez sra srai srl	rd,rs1,rs2 rd,rs1,imm rd,rs1,imm rd,rs1,rs2 rd,rs1 rd,rs2 rd,rs1,rs2 rd,rs1,rs2 rd,rs1,rs2	set if less than set if less than immediate set if less than immediate unsigned set if less than unsigned set if less than zero set if not equal to zero arithmetic shift right arithmetic shift right immediate	$\begin{array}{l} X[rd] \leftarrow (X[rs1] <_s \text{ sext(imm)})? 1:0 \\ X[rd] \leftarrow (X[rs1] <_u \text{ sext(imm)})? 1:0 \\ X[rd] \leftarrow (X[rs1] <_u \text{ X[rs2]})? 1:0 \\ X[rd] \leftarrow (X[rs1] <_s 0)? 1:0 \\ X[rd] \leftarrow (X[rs1] <_s 0)? 1:0 \\ X[rd] \leftarrow (X[rs2] \neq 0)? 1:0 \\ X[rd] \leftarrow (X[rs1] >_s \text{ X[rs2]} [4:0] \\ X[rd] \leftarrow X[rs1] >_s \text{ shft amt[4:0]} \\ X[rd] \leftarrow X[rs1] >> X[rs2] [4:0] \\ X[rd] \leftarrow X[rs1] >> x[rd] \\ X[rd] \leftarrow X[rd] $	
slti sltiu sltu sltz snez sra srai srli	rd,rs1,rs2 rd,rs1,imm rd,rs1,imm rd,rs1,rs2 rd,rs1 rd,rs2 rd,rs1,rs2 rd,rs1,rs2 rd,rs1,shft amt rd,rs1,rs2 rd,rs1,imm	set if less than set if less than immediate set if less than immediate unsigned set if less than unsigned set if less than zero set if not equal to zero arithmetic shift right arithmetic shift right immediate logical shift right logical shift right immediate	$\begin{array}{l} X[rd] \leftarrow (X[rs1] <_s \text{ sext(imm)})? 1:0 \\ X[rd] \leftarrow (X[rs1] <_u \text{ sext(imm)})? 1:0 \\ X[rd] \leftarrow (X[rs1] <_u \text{ X[rs2]})? 1:0 \\ X[rd] \leftarrow (X[rs1] <_s 0)? 1:0 \\ X[rd] \leftarrow (X[rs2] \neq 0)? 1:0 \\ X[rd] \leftarrow (X[rs2] \neq 0)? 1:0 \\ X[rd] \leftarrow X[rs1] >_s X[rs2] [4:0] \\ X[rd] \leftarrow X[rs1] >>_s \text{ shft amt}[4:0] \\ X[rd] \leftarrow X[rs1] >> X[rs2][4:0] \\ X[rd] \leftarrow X[rs1] >> X[rs2][4:0] \\ \end{array}$	

Table 11: RISC-V OTTER Instructions with RTL description.

RISC-V OTTER Immediate Value Generation

Table 12 lists the immediate value format for the RISC-V OTTER.

Table 12: RISC-V OTTER Immediate values based on instruction formats.

Detailed RISC-V OTTER Assembly Instruction Description

The following section lists each of the RISC-V instructions in a detailed format. The instruction details include the following:

- Instruction mnemonic for instructions and pseudoinstructions
- Short instruction description
- Associated RTL statement(s)
- Detailed instruction format (for ABI instructions only)
- Instruction usage example
- An ever-so-helpful "Also See" listing

beqz	branch if equal to zero		(pseudoins	struction: beq)
RTL: PC ← PC + sex	t(imm << 1) if (X[rs1] == 0)	Form:	beqz	rs1,imm

Description: The beqz instruction can cause the PC to be modified by adding a signed offset to it if the value in the source register is zero. If the condition evaluates as true, the branch is taken (the address of the next instruction to executed is loaded into the PC); otherwise, the PC advances normally. This instruction can only change the PC and not the source register. The branch address is formed by sign-extending the 12-bit immediate value to 32-bits before being added to the PC. This is a PC-relative branch; the resulting PC value can increase or decrease based on the sign of the immediate value. beqz is a pseudoinstruction based on the beq instruction, and is equivalent to: "beq rs1,x0,imm". The imm operand must be a label.

		beqz	X10,0ak		ranch to the instru associated with the		
		nop			# X10 equals 0		
Usage:		nop		#	X10=0x0000 0000	PC=0x00DF 0000	(before exec)
· ·		nop		#	_	_	
		nop		# b	ranch taken		
	Oak:	nop		#	X10=0x0000 0000	PC=0x00DF 00014	(after exec)

See Also: beq

bge	branch if greater than or equ	ual		
RTL: PC ← PC + sex	$t(imm << 1)$ if $(X[rs1] \ge_s X[rs2])$	Forms:	bge	rs1,rs2,imm

Description: The bge instruction can cause the PC to be modified by adding a signed offset to it if the value in the source registers rs1 is greater than or equal to the value in source register rs2 (both source operands are treated as signed numbers in 2's complement format). If the condition evaluates as true, the branch is taken (the address of the next instruction to executed is loaded into the PC); otherwise, the PC advances normally. This instruction can only change the PC and not either source register. The branch address is formed by sign-extending the 12-bit immediate value to 32-bits before being added to the PC. This is a PC-relative branch; the resulting PC value can increase or decrease based on the sign of the immediate value. The imm operand must be a label.

Instruction Format (B-type)	31	imm[12,10:5]	25 24 rs2		20 19 15 14 12 11 7 6 rs1 1 0 1 imm[4:1,11] 1	1 0 0 0 1 1
	1					
		bge	X10,X11,Dog	#	branch to the instruction at the address	
				#	associated with the Dog label if the value X10 is greater than or equal to the value.	
		nop		#		pefore exec)
Usage:		nop		#		pefore exec)
o ca.go.		nop		#	-	,
		nop		#	branch taken	
	Dog:	nop		#	X10=0x0000_FFFF X11=0x8000_FFF0 (a	after exec)
				#	PC=0x0F00 OC14 (a	after exec)

bgeu	branch if greater than or equal u	ınsigned		
RTL : <i>PC</i> ← <i>PC</i> +	$sext(imm << 1) if (X[rs1] \ge_u X[rs2])$	Forms:	bgeu	rs1,rs2,imm

Description: The bgeu instruction can cause the PC to be modified by adding a signed offset to it if the value in the source registers rs1 is greater than or equal to the value in source register rs2 (both source operands are treated as unsigned numbers). If the condition evaluates as true, the branch is taken (the address of the next instruction to executed is loaded into the PC); otherwise, the PC advances normally. This instruction can only change the PC and not either source register. The branch address is formed by sign-extending the 12-bit immediate value to 32-bits before being added to the PC. This is a PC-relative branch; the resulting PC value can increase or decrease based on the sign of the immediate value. The imm operand must be a label.

Instructio Format (B-type)	n	imm[12,10):5]	24	rs2	20 1	rs1	15 14	1	12 11	imm[4	1:1,11]	7 6	1	0 0	0 1	1
		bgeu	V10 :	X11,D	.00 #	hran	ch to t	ho inst	- 110	tion	a+ +	ho a	ddro				
		bgeu	AIU,	X11, D	09 # #		ociated								e in		
					#		is gre			_							1
		nop			#		X10=0xC	000 FFI	FF :	X11=	-)x800	0 FF	F0	(bef	ore	exec)
Usage:		nop;			#		PC=0x0F	E0_0500)			_		(bef	ore	exec)
•		nop			#												
		nop			#	bran	ch take	n									
	Dog:	nop			#		X10=0xC			X11=	008xC	0_FF	F0	(aft	er e	xec)	
					#		PC=0x0F	E0 0514	4					(aft	er e	xec)	

bgez	branch if greater than or equa	I to zero	(pseudoins	struction bge)
RTL: PC ← PC + sex	$t(imm << 1)$ if $(X[rs1] \ge_s 0)$	Form:	bgez	rs1,imm

Description: The bgez instruction can cause the PC to be modified by adding a signed offset to it if the value in the source register is greater than or equal to zero (the source operand is treated as signed number in 2's complement format). If the condition evaluates as true, the branch is taken (the address of the next instruction to executed is loaded into the PC); otherwise, the PC advances normally. This instruction can only change the PC and not either source register. The branch address is formed by sign-extending the 12-bit immediate value to 32-bits before being added to the PC. This is a PC-relative branch; the resulting PC value can increase or decrease based on the sign of the immediate value. bgez is a pseudoinstruction based on the bge instruction and is equivalent to "bge rs1,x0,imm". The imm operand must be a label.

		beqz	X10,Pine		branch to the instruction associated with the Pine		
		nop			X10 is greater than or e		ne varaco in
Usage:		nop		#	X10=0x0000 0010 PC=0)x012F 0008	(before exec)
U		nop		#	_	_	
		nop		#	branch taken		
	Pine:	nop		#	X10=0x0000 0010 PC=0	0x012F 001C	(after exec)

bgt	branch if greater than		(pseudoir	nstruction blt)
RTL: PC ← PC + sex	t(imm << 1) if (X[rs1] > _s X[rs2])	Form:	bgt	rs1,rs2,imm

Description: The bat instruction can cause the PC to be modified by adding a signed offset to it if the value in source register rs1 is greater than the value in source register rs2 (the source operands are treated as a signed numbers in 2's complement format). If the condition evaluates as true, the branch is taken (the address of the next instruction to executed is loaded into the PC); otherwise, the PC advances normally. This instruction can only change the PC and not either source register. The branch address is formed by sign-extending the 12-bit immediate value to 32-bits before being added to the PC. This is a PC-relative branch; the resulting PC value can increase or decrease based on the sign of the immediate value. The bgt instruction is a pseudoinstruction based on the blt instruction, and is equivalent to: "blt rs2,rs1,offset". The imm operand must be a label..

```
X10,X11,Gum # branch to the instruction at the address
                   bqt
                                           associated with the Gum label if the value in X10
                                           is greater than the value in X11
                   non
                                              X10=0x2000 2003 X11=0x2000 0002 (before exec)
                    nop
Usage:
                                              PC=0x0E31 0004
                                                                               (before exec)
                   gon
                   nop
                                        # branch taken
                                              X10=0x2000 2003 X11=0x2000 0002 (after exec)
            Gum:
                   nop
                                              PC=0x0E31 0018
                                                                                (after exec)
```

See Also: blt

bgtu	branch if greater than (unsign	ed)	(pseudoins	struction bltu)
RTL : $PC \leftarrow PC + sex$	$tt(imm << 1)$ if $(X[rs1] >_u X[rs2])$	Form:	bgtu	rs1,rs2,imm

Description: The batu instruction can cause the PC to be modified by adding a signed offset to it if the value in source register rs1 is greater than the value in source register rs2 (the source operands are treated as a unsigned numbers). If the condition evaluates as true, the branch is taken (the address of the next instruction to executed is loaded into the PC); otherwise, the PC advances normally. This instruction can only change the PC and not either source register. The branch address is formed by sign-extending the 12-bit immediate value to 32-bits before being added to the PC. This is a PC-relative branch; the resulting PC value can increase or decrease based on the sign of the immediate value. The bgtu instruction is a pseudoinstruction based on the bltu instruction and is equivalent to the following: "bltu rs2, rs1, imm". The imm operand must be a label.

```
X10,X11,Red # branch to the instruction at the address
                    batu
                                           # associated with the Red label if the value in X10
                                             is greater than the value in X11
                     nop
                                                X10=0xC000 0002 X11=0xB358 A332 (before exec)
                     nop
Usage:
                                                PC=0x0E31 0014
                                                                                   (before exec)
                    nop
                    nop
                                          # branch taken
                                                X10=0xC000 0002 X11=0xB358_A332 (after exec)
             Red:
                    nop
                                                 PC = 0 \times 0E31 \quad 0028
                                                                                   (after exec)
```

See Also: bltu

bgtz	branch if greater than zero		(pseudoins	struction blt)
RTL: PC ← PC + sex	t(imm << 1) if (X[rs1] > _s 0)	Form:	bgtz	rs1,rs2,imm

Description: The bgtz instruction can cause the PC to be modified by adding a signed offset to it if the value in the source register is greater than zero (the source operand is treated as a signed number in 2's complement format). If the condition evaluates as true, the branch is taken (the address of the next instruction to executed is loaded into the PC); otherwise, the PC advances normally. This instruction can only change the PC and not the source register rs1. The branch address is formed by sign-extending the 12-bit immediate value to 32-bits before being added to the PC. This is a PC-relative branch; the resulting PC value can increase or decrease based on the sign of the immediate value. The bgtz instruction is a pseudoinstruction based on the blt instruction and is equivalent to "blt x0,rs2,imm". The imm operand must be a label.

Usage:		bgtz nop nop	Х10,Нод	<pre># branch to the instruction at the address # associated with the Hog label if the value in # X10 is greater than 0 # X10=0x0000_0011 PC=0x0679_000C (before exec)</pre>
	Hog:	nop nop nop		# # branch taken # X10=0x0000_0011 PC=0x0679_0020 (after exec)

See Also: blt, bgtu

ble	branch if less than or equal		(pseudoir	nstruction bge)
RTL: $PC \leftarrow PC + sex$	$t(imm << 1)$ if $(X[rs1] \leq_s X[rs2])$	Form:	ble	rs1,rs2,imm

Description: The ble instruction can cause the PC to be modified by adding a signed offset to it if the value in the source register rs1 is less than or equal to the value in source register rs2 (the source operands are treated as signed numbers in 2's complement format). If the condition evaluates as true, the branch is taken (the address of the next instruction to executed is loaded into the PC); otherwise, the PC advances normally. This instruction can only change the PC and not either source register. The branch address is formed by sign-extending the 12-bit immediate value to 32-bits before being added to the PC. This is a PC-relative branch; the resulting PC value can increase or decrease based on the sign of the immediate value. The ble instruction is a pseudoinstruction based on the bge instruction and is equivalent to "bge rs2,rs1,imm". The imm operand must be a label.

Usage:		nop nop nop	X10,X11,Hot	# # #	branch to the instruction at the add associated with the Hot label if th is less than or equal the value in X10=0xBEE1_0002 X11=0xBEE1_0002 PC=0x0E31_001C	e value in X10 X11
		nop		#	branch taken	
	Hot:	nop		#	X10=0xBEE1_0002 X11=0xBEE1_0002	(after exec)
				#	PC=0x0E31_0030	(after exec)

See Also: bge

bleu	branch if less than or equal (un	signed)	(pseudoins	struction bgeu)
RTL : <i>PC</i> ← <i>PC</i> + se	$ext(imm << 1) if (X[rs1] \le_u X[rs2])$	Form:	bleu	rs1,rs2,imm

Description: The bleu instruction can cause the PC to be modified by adding a signed offset to it if the value in the source register rs1 is less than or equal to the value in source register rs2 (the source operands are treated as signed numbers in 2's complement format). If the condition evaluates as true, the branch is taken (the address of the next instruction to executed is loaded into the PC); otherwise, the PC advances normally. This instruction can only change the PC and not either source register. The branch address is formed by sign-extending the 12-bit immediate value to 32-bits before being added to the PC. This is a PC-relative branch; the resulting PC value can increase or decrease based on the sign of the immediate value. The ble instruction is a pseudoinstruction based on the bgeu instruction and is equivalent to "bgeu rs2,rs1,imm". The imm operand must be a label.

llaana.		bleu nop nop	X10,X11,Beg	#	branch to the instruction at the add associated with the Beg label if the is less than or equal the value in X10=0xFEE1 7439 X11=0xFEE1 743A	e value in X10 X11
Usage:		nop		#	PC=0x7E34_0044	(before exec)
		nop		#	branch taken	
	Beg:	nop		#	X10=0xFEE1 7439 X11=0xFEE1 743A	(after exec)
				#	PC=0x7E34 0058	(after exec)

See Also: bgeu

blez	branch if less than or equal ze	ero	(pseudoins	struction bge)
RTL: PC ← PC + sex	$t(imm << 1)$ if $(X[rs1] \leq_s 0)$	Form:	blez	rs1,rs2,imm

Description: The blez instruction can cause the PC to be modified by adding a signed offset to it if the value in the source register is less than or equal to zero (the source operands is treated as signed number in 2's complement format). If the condition evaluates as true, the branch is taken (the address of the next instruction to executed is loaded into the PC); otherwise, the PC advances normally. This instruction can only change the PC and not the source register. The branch address is formed by sign-extending the 12-bit immediate value to 32-bits before being added to the PC. This is a PC-relative branch; the resulting PC value can increase or decrease based on the sign of the immediate value. The blez pseudo instruction is equivalent to "bge X0, rs2, imm". The imm operand must be a label.

```
X10,Nom
                    blez
                                        # branch to the instruction at the address
                                        # associated with the Nom label if the value in
                                        \# X10 is less than or equal to 0
                    nop
Usage:
                    nop
                                             X10=0xE000 0010 PC=0x0A34 103C (before exec)
                    nop
                    nop
                                        # branch taken
             Nom:
                    nop
                                             X10=0xE000 0011 PC=0x0A34 0050
                                                                                (after exec)
```

See Also: bge

blt	branch if less than			
RTL: PC ← PC + sex	t(imm << 1) if (X[rs1] < _s X[rs2])	Form:	blt	rs1,rs2,imm

Description: The blt instruction can cause the PC to be modified by adding a signed offset to it if the value in source register rs1 is less than the value in source register rs2 (the source operands are treated as signed numbers in 2's complement format). If the condition evaluates as true, the branch is taken (the address of the next instruction to executed is loaded into the PC); otherwise, the PC advances normally. This instruction can only change the PC and not either source register. The branch address is formed by sign-extending the 12-bit immediate value to 32-bits before being added to the PC. This is a PC-relative branch; the resulting PC value can increase or decrease based on the sign of the immediate value. The imm operand must be a label.

Instruction Format (B-type)	31	imm[12,10:5]	25 24 rs2		20 19 15 14 12 11 7 6 0 rs1 1 0 imm[4:1,11] 1 1 0 0 0 1 1
		blt	X10,X11,Elm	#	branch to the instruction at the address
				#	associated with the Elm label if the value in X10
		nop		#	is less than the value in X11
Usage:		nop		#	X10=0xFFFF_EEE7 X11=0xFFFF_EEE8 (before exec)
usaye.		nop		#	PC=0x0F21_0000 (before exec)
		nop		#	branch taken
	Elm:	nop		#	X10=0xFFFF_EEE7 X11=0xFFFF_EEE8 (after exec)
				#	PC=0x0F21 0014 (after exec)

bltz	branch if less than zero		(pseudoins	truction blt)
RTL : $PC \leftarrow PC + sex$	t(imm << 1) if (X[rs1] < _s 0)	Form:	bltz	rs1,imm

Description: The bltz instruction can cause the PC to be modified by adding a signed offset if the value in the source register is less than zero (the source operand is treated as a signed number in 2's complement format). If the condition evaluates as true, the branch is taken (the address of the next instruction to executed is loaded into the PC); otherwise, the PC advances normally. This instruction can only change the PC and not the source register. The branch address is formed by sign-extending the 12-bit immediate value to 32-bits before being added to the PC. This is a PC-relative branch; the resulting PC value can increase or decrease based on the sign of the immediate value. The bltz instruction is a pseudoinstruction based on the blt instruction and is equivalent to "blt rs1,x0,imm". The imm operand must be a label.

		bltz	X10,Mug		oranch to the instruction	at the address label if the value in X10
		nop			is less than 0	Tabel II the value in Alo
loogo		nop		#	X10=0x8000 0001	(before exec)
Jsage:		nop		#	PC=0x0F21 000C	(before exec)
		nop		# }	oranch taken	
	Mug:	nop		#	X10=0x8000 0001	(after exec)
				#	PC=0x0F21 0020	(after exec)

bltu	branch if less than (unsigned)			
RTL: PC ← PC + sex	t(imm << 1) if (X[rs1] <_u X[rs2])	Form:	bltu	rs1,rs2,imm

Description: The bltu instruction can cause the PC to be modified by adding a signed offset if the value in source register rs1 is less than the value in source register rs2 (the source operands are treated as unsigned numbers). If the condition evaluates as true, the branch is taken (the address of the next instruction to executed is loaded into the PC); otherwise, the PC advances normally. This instruction can only change the PC and not either source register. The branch address is formed by sign-extending the 12-bit immediate value to 32-bits before being added to the PC. This is a PC-relative branch; the resulting PC value can increase or decrease based on the sign of the immediate value. The imm operand must be a label.

Instruction	31		25 24	, ,	20 19 15 14	12 11 7 6	0
Format (B-type)	L.	imm[12,10:5]	rs2		rs1 1 1	0 imm[4:1,11] 1	1 0 0 0 1 1
		bltu	X10,X11,Pig	ς # #	branch to the instru associated with the		
				#	X10 is less than th	-	value III
		nop		#	X10=0x8000 FFFF	X11=0xE000 FFF0	(before exec)
Usage:		nop		#	$PC=0\times0FE3 \overline{0}700$	_	(before exec)
Ū		nop		#			
		nop		#	branch taken		
	Pig:	nop		#	X10=0xE000_FFFF	X11=0x8000_FFF0	(after exec)
	1			#	PC=0x0FE3 0714		(after exec)

bne	branch if not equal			
RTL: PC ← PC + se	ext(imm << 1) if (X[rs1] ≠ X[rs2])	Form:	bne	rs1,rs2,imm

Description: The **bne** instruction can cause the PC to be modified by adding a signed offset to it if the value in the two source registers are not equal. If the condition evaluates as true, the branch is taken (the address of the next instruction to executed is loaded into the PC); otherwise, the PC advances normally. This instruction can only change the PC and not either source register. The branch address is formed by sign-extending the 12-bit immediate value to 32-bits before being added to the PC. This is a PC-relative branch; the resulting PC value can increase or decrease based on the sign of the immediate value. The imm operand must be a label.

Instruction	31		25 2	4		20 19	15	14	12	11		7 6				0
Format (B-type)		imm[12,10:5]		rs2	!	r	s1	0 0	1	imm	[4:1,11]	1	1 (0	0	1 1
		bne	X20,X2	21,Bob	#	branch t										
					#	associa							e val	ue :	in	
					#	X20 is	not equa 0x0000 :						(1 4			- \
llaama.		nop			#		_		Λ.	ZI=UX8	JUU_F	rrr	(bef			,
Usage:		nop			#	PC=0	x0FE3_2	800					(bei	ore	exe	C)
		nop			#											
		nop			#	branch t										
	Bob:	nop			#	X20=	0x0000_	FFFF	' X.	21=0x80	000_F	FFF	(aft	er e	exec)
					#	PC=0	x0FE3 2	814					(aft	er e	exec)

bnez	branch if not equal to zero		(pseudoins	struction bne)
RTL: PC ← PC + sex	$t(imm)$ if $(X[rs1] \neq 0)$	Form:	bnez	rs1,imm

Description: The bnez instruction can cause the PC to be modified by adding a signed offset to it if the value in the source register is not equal to zero. If the condition evaluates as true, the branch is taken (the address of the next instruction to executed is loaded into the PC); otherwise, the PC advances normally. This instruction can only change the PC and not the source register. The branch address is formed by sign-extending the 12-bit immediate value to 32-bits before being added to the PC. This is a PC-relative branch; the resulting PC value can increase or decrease based on the sign of the immediate value. bnez is a pseudoinstruction based on the bne instruction and is equivalent to: "bne rs1,x0,imm". The imm operand must be a label.

Usage:		bnez nop nop	X20,Who	#	branch to the instru associated with the X20 is not equal to X20=0x0000_FF3F PC=0x0AA3 3900	Junk label if th	e value in
osage.	Who:	nop nop nop		# # #	branch taken	X11=0x8000_FFFF	(after exec)

See Also: bne

call	branch to subroutine		(pseudoins	struction – auipc, jalr)
RTL : <i>X[rd]</i> ← <i>PC</i> + 8;	PC ← &label	Forms:	call	label

Description: The call instruction is a pseudoinstruction used to transfer program control to another location in program memory. The call instruction causes the assembler the assembler to issue two ABI instructions: auipc & jalr; these two instructions formulate a 32-bit value that is loaded into the PC (thus forming an absolute address). The destination register rd is overwritten with the return value, which is the address value of the instruction two instruction slots after the call instruction. The call instruction uses X1 as the destination register if a register is not included as an operand in the call instruction. The label operand can't be a number.

Usage: Call Sue	Instruction Format				
Usage: nop			call	Sue	
nop #	Usage:		-		
			-		# #
Sue: nop # X1=UXUFD3_149C PC=UXUFD3_14A4 (after exec)		Sue:	nop		# X1=0x0FD3_149C PC=0x0FD3_14A4 (after exec)

csrrw		control &	status register	read & write			
RTL: X[rd] ←	- CSR[csr]; CSR[d	csr] ← rs1	Form:	csrrw	rd,csr,r	:s1
), mtve	ec (CSR[0x	eads from and wi 305]), and mie (0				
Instructio n Format	31		_ 25 _ 24 2 :Sr	0 19 15 rs1	14 12 11 0 0 1 1	rd 7 6	1 1 0 0 1 1
Usage:		CSTTW	x10,0x341,x15	# x10=0x0000 # CSR[0x341] # x10=0x3333	=0x3333_333 _3333 x15	=0x4040_4000	(before exec)
See Also: mre	et			# x10=0x3333 # CSR[0x341]			

csrw	control &	status registe	er read & v	vrite	Pseudoinstru	ıtion (cs	rrw)			
RTL : $X[rd] \leftarrow CS$	R[csr]; CSR	[csr] ← rs1	Form:		csrw	csr	,rs1			
Description: This instruction writes the value in rs1 to the CSR address specified by csr. The value of cs is the address of one of the CSR registers.										
Usage:		csrw	mtvec,x15	# CSR # x15=		AAAA				
See Also: mret, cs	srrw	1								

j	unconditional branch		(pseud	doinstruction jal)	
RTL : $PC \leftarrow PC + sex$	t(imm)	Form:	j	imm	
Description, The Lie	a pagudainatruation based on the	1 inotru	otion TI	ho : instruction is an	

Description: The j is a pseudoinstruction based on the jal instruction. The j instruction is an unconditional branch instruction that modifies the PC by adding the current PC value to a sign-extended version of the immediate value, which transfers program execution to the address of an instruction that is not the "next" instruction. This j instruction is equivalent to "jal x0,imm". The immed value must be a label.

		j nop	Bug	<pre># unconditional branch to the instruction at the address # adjusted by the immediate value</pre>	
Usage:		nop nop		# PC=0x001F_0500 (before exec) #	
	Bug:	nop		# PC=0x001F_0510 (after exec)	

See Also: jal, jalr, jr

```
jalunconditional branch with offsetRTL: X[rd] \leftarrow PC + 4; PC \leftarrow PC + sext(imm << 1)Form:jal rd,imm imm
```

Description: The jal instruction is an unconditional branch instruction that modifies the PC by adding an immediate value to it, which transfers program execution to the address of an instruction that is not the "next" instruction. The jal instruction writes the address of the instruction after jal to the destination rd. The instruction then sign extends the 20-bit immediate value, adds it to the current PC, and then loads the result into the PC. The jal instruction is a PC-relative unconditional branch; the resulting PC value can increase or decrease based on the sign of the immediate value. If the destination operand rd is omitted from the jal instruction, the assembler will use X1 as the destination register. The immediate operand must be a label.

nstruction	31		25 24		20 19	15 14	12	11		7	6					
Format (J-type)			im	m[20,10:1,	11,19:12]				rd	,	1	1 () .	1 .	1 1	
		jal	X8,Emu	# b	ranch to	the inst	ructi	on at	the	addr	ess					
		٠. ر	,		associate next inst			u lab	el; p	lace	ad	ldre	SS	of		
Hoogo		nop		#	X8=0xE	000 FFFF	1		(b	efor	e e	xec)			
Usage:		nop		#	PC=0x0	0500 OEF	ı		(b	efor	e e	xec)			
		nop		#		_										
	Emu:	nop		#	X8=0x0	OEF 0504			(af	ter (exe	c)				
				#	PC=0vC	0EF 0510	1		(a	fter	ΑV	(20				

jalr	unconditional branch with offset & li	ink		
RTL : <i>X[rd]</i> ← <i>PC</i> +4;	PC ← (X[rs1] + sext(imm << 1)) & ~1	Forms:	jalr jalr jalr jalr	rd,rs1,imm rd,imm(rs) rs rs,imm

Description: The jalr instruction is an unconditional branch instruction that modifies the PC by overwriting it with a summation of the source register value and an immediate value, which transfers program execution to the address of an instruction that is not the "next" instruction. The jalr instruction writes the address of the instruction after <code>jalr</code> to the destination rd. The instruction sign extends the 20-bit immediate value, multiplies it by two, and then clears the LSB before adding it to the value in the source register; the resulting value is loaded into the PC, which ensures instruction access from program memory must happen on halfword boundaries. If the destination operand rd is omitted, the jalr instruction assumes the destination operand to be X1. When <code>jalr</code> is used to transfer program control from subroutines back to calling code, the destination register is assigned but not used. The immediate value cannot be a label. RARS does not support the version with parenthesis.

Instruction Format (I-type)	31	25 24 imm[11:0]	20	19 15 14 rs1 C		0 0	11 .	rd	. 7	1 1	0 0	1	1 7
	jalr	X4,X1,4	# 111	ımp to address s	:ne	∩ifi	ad in	V1 7	reate				
	, , , ,	,,	#	X1=0x0045_FF0 PC=0x00E4 052	0				34				

jr	unconditional branch to register	address	(pseudoi	nstruction jalr)	
RTL : <i>PC</i> ← <i>X[r</i> s1]		Form:	jr rs1 jr rs1,imm		
	$\mathbf{j}_{m{x}}$ is a pseudoinstruction based on the ch instruction that modifies the PC by	•		•	

unconditional branch instruction that modifies the PC by overwriting it with the value in the source register, which transfers program execution to the address of an instruction that is not the "next" instruction in program memory. This jr instruction is equivalent to "jalr x0,0 (rs1)". The imm operand can't be a label. VENUS does not support "jr rs1, imm" version.

See Also: jalr, jal

la	load absolute address of syml	ool	(pseudo	oinstruction – auipc & addi)
RTL: X[rd] ← &symbo	ol	Form:	la	rd,symbol

Description: The la instruction is a pseudoinstruction which causes the assembler to issue two ABI instructions: auipc & addi. The auipc instructions loads the upper 20 bits of the address associated with the label into the destination register rd (the 12 LSBs are zeroed); the addi instruction loads the 12 lower bits of the label by adding the immediate value of the addi instruction to the destination register rd, which contains the upper 20-bits set by the auipc instruction. The assembler takes care of the lower-level address formatting details.

Usage:		la nop nop	x10,Ear:	<u> </u>	
	Ear:	nop		# Instr Addr associated with E	$Ear = 0x00D3_1494$

See Also: lw, sw

lh		load halfword				
RTL: X[rd] ←	sext(M	[X[rs1] + sext(imn	n)] [15:0])	Form:	lh	rd,imm(rs1)
a specified re extending the	egister. T e 12-bit ir	he 1h instruction nmediate value a	forms the addres	s of the da e value sp	ata to be lo ecified in s	two bytes) from memory into baded from memory by sign-source register rs1. The estination register rd.
Instruction Format (I-type)	31	25 24 imm[11:0]	20 19 rs	15 14	0 1	rd 0 0 0 0 1 1
Usage:	1	h X10,4(X12)	# immediate v # X12=0x00 # X10=0x01 # M[0x021] # X12=0x02 # X10=0xF]	value and 21F_FB05 DE2_75AA F_FB09]=0x	source re	ddress specified by the egister (X20) (before exec) (before exec) (before exec) (after exec) (after exec) (after exec)
See Also: 1hu	ı, lb, l	w				

Part: X[rd] ← M[X[rs1] + sext(imm)] [15:0] Poscription: The 1hu is a memory access instruction that loads a halfword (two bytes) from memory in a specified register. The 1hu instruction forms the address of the data to be loaded from memory by sign extending the 12-bit immediate value and adding it to the value specified in source register rs1. The halfword read from memory is zero-extended before being loaded into the destination register rd. Instruction Format (I-type)	1hu load halfword u			ınsigned				
a specified register. The 1hu instruction forms the address of the data to be loaded from memory by sign extending the 12-bit immediate value and adding it to the value specified in source register rs1. The halfword read from memory is zero-extended before being loaded into the destination register rd. Instruction Format (I-type) The proper continuous properties of the data to be loaded from memory by sign extending the 12-bit immediate value and source register rs1. The part of the properties of the data to be loaded from memory by sign extending the 12-bit immediate rd. Instruction	RTL: X[rd] ←	- M[X[rs	1] + sext(imm)] [15:0]	Form:	lhu	rd,imm(rs1)	
Format (I-type)	a specified re extending the	egister. T e 12-bit ir	he 1hu instructio nmediate value a	n forms the addre	ess of the o	data to be lo ecified in so	paded from memor ource register rs1.	ry by sign- The
# immediate value and source register (X12) # X12=0x021F_FB00 (before exec) # X10=0x0DE2_75AA (before exec) # M[0x021F_FB04]=0xDEAD (before exec)	Format	31	, , , , , , , , , , , , , , , , , , , 				7 6 0 0 0 0	0 1 1
# X12=0x021F FB00 (after exec)	Usage:	1	hu X10,4(X12)	# immediate	value and 21F_FB00 DE2_75AA	source reg	ister (X12) (before exe (before exe	c)
# X10=0x0000_DEAD (after exec) # M[0x0010_FB04]=0xDEAD (after exec)				# X10=0x00	000_DEAD	DEAD	(after exec	.)

li load immediate				(pseudoinstruction – addi)		
RTL : $X[rd] \leftarrow ir$	nm		Form:	li	rd,imm	
pseudoinstructi value can be re	on and is equivale presented with the	nt to the following instr	uction: "ad in the add	ddi di instruct	on register rd. This is an rd, X0, imm" if the immion, or a combination of immediate value.	nediate
Usage:	li X9,1023	# write an immedia # X9=0x021F_3E # X9=0x0000_03	88A	into des	tination register X9 (before exec) (before exec)	
See Also: addi	, lui					

lw		load word into	register			
RTL : <i>X[rd]</i> ←	– M[X[rs1] + sext(imm)] [3	31:0]	Forms:	lw	rd,imm(rs1)
specified des	stination r sign-exter	register rd. The 1- nding the 12-bit in	พ instruction form nmediate value a	s the addr nd adding	ess of the	r bytes) from memory into the e data to be loaded from alue specified in source n to the destination register rd
Instruction Format (I-type)	31	25 24 imm[11:0]	20 19 rs	15 14	1 0	rd 0 0 0 0 0 1 1
	1	w X10,8(X13)	# immediate	value and 21F_FB0C	-	address specified by the egister (X13) (before exec)

mret		machine n	node exception retu	rn		
RTL : <i>PC]</i> ← 0	CSR[mep	oc]		Form:	mret	
Description: This instruction serves as a return from interrupt by loading the CSR[mepc] register into the PC. The mepc register is one of the CSR registers. The mepc register is loaded as part of the interrupt cycle and represent the address of the instruction that would have been executed had the MCU not entered the interrupt cycle.						
Instruction Format	0 0 1	1 0 0 0	24 20 19 0 0 0 1 0 0 0 0	15 14	12 11 7 6 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1	
Usage:	mi	cet	# copy csr[mepc] in # CSR[mepc]=0x4678 # PC = 0x2020_3030 # PC = 0x4678 0000	_0000 (before e		

mv	r	move			(pseud	oinstruction –	addi)
RTL: $X[rd] \leftarrow X[rs1]$ Form: mv rd,rs1							
contents of the	e source r	egister rs1 into	uction based on the the destination reservites equivalent to the	egister rd.	The conf	tents of the so	•
Usage:	mv	X10,X11		n register 7_3B0D X1	x10 .1=0345_6	register X11 i 668A (before 668A (after	e exec)
See Also: addi	i						

neg	n	egate			(pseudoi	nstruction – su	ıb)
RTL: <i>X[rd]</i> ←	-X[rs2]			Form:	neg	rd,rs2	
•	nd places t	he result in th	truction that perfor e destination regis x0,rs2".		•		
Usage:	neg	X12,X13	# # X12=0x021F_3F	and copy 300 X13=0	result to 0000_0001	destination r	egister X12
See Also: sub	, not						

nop	no op	eration		(pseudoinstruction –	addi)			
RTL: nada (Po	RTL: nada (PC ← PC + 4) Form: nop							
		eudoinstruction that effect instruction is equivalent to			ancing the PC by x0,x0,0″.			

not		ones comple	ement		(pseudo	instruction – xo	ri)
RTL: X[rd] ← ~X[rs2] Form: not rd,rs2							
content of the	source r	egister rs2 an	struction that perfor d places the result i ion: "xori r	n the desti	ination reg		•
Usage:	not	x14, x15	# # X14=0x021F_3B0	and copies	s result t	ue in the sour co destination (before exe	register X14 c)
See Also: xor	i, neg						

ret	return	from subroutine		(pseudoir	nstruction jalr)		
RTL: $PC \leftarrow X[1]$ Form: ret							
subroutine back t the return addres	the calling coess has been s	tored in register X1 (ra), w	the caller hich by co). The retention is	instruction only works when		
Usage:	ret	# return from subro # X1=0x0236_FE30 # X1=0x0236_FE30	PC=0x032		(before exec) (after exec)		

seqz	Set if equal to zero		(pseudoinst	truction sltiu)
RTL: $X[rd] \leftarrow (X[rs1]$	== 0)?1:0	Form:	seqz	rd,rs1

Description: The seqz instruction compares the value in the source register rs1 to 0; if the value in rs1 equals 0, the destination register rd is set to 1; otherwise the destination register is set to 0. The seqz instruction treats the source operand as a signed numbers in two's complement format. The seqz instruction does not change the source operand. The seqz instruction is a pseudoinstruction based on the sltiu instruction and is equivalent to: "sltiu rd,rs1,1"

sgtz	Set if greater than zero		(pseudoinst	ruction slt)
RTL : $X[rd] \leftarrow (X[rs2])$	>, 0)?1:0	Form:	sgtz	rd,rs2

Description: The seqz instruction compares the value in the source register rs1 to 0; if the value in rs1 equals 0, the destination register rd is set to 1; otherwise the destination register is set to 0. The seqz instruction treats the source operand as a signed numbers in two's complement format. The seqz instruction does not change the source operand. The seqz instruction is a pseudoinstruction based on the sltiu instruction and is equivalent to: "slt rd, x0, rs2"

Usage: # if the value in X12 is greater than 0, then 1 # is written to X10; otherwise 0 is written to X1 # X10=0x1812_DD74 X12=0x8000_0001 (before exec) # X10=0x0000_0000 X12=0x8000_0001 (after exec)	0.
--	----

See Also: slt, sltiu

sh	store halfword in m	iemory						
RTL: M[X[rs1] +	+ sext(imm)] \leftarrow X[rs2][18	5:0] Forn	n: s	h rs2,imm	(rs1)			
in source registe adding it to the c	Description: The sh instruction stores a halfword (two bytes) specified by the least significant two bytes in source register rs2 in memory at the address formed by sign-extending the 12-bit immediate value and adding it to the contents of the source register rs1. The halfword that is stored is the 16 LSBs of the source register rs2. The sh instruction does not change the contents of the rs1 or rs2 source registers.							
Instruction Format (S-type)	31 25 24 imm[11:5]	20 19 rs2	rs1 15 14 0	12 11 7 0 1 imm[4:0]	6 0 0 0 0 1 1			
Usage:	sh X10,2(X11)	# addres # X10=0x # M[0x00 # # X10=0x	s specified 0011_7591 2 00_F34C]=02	X11=0x0000_F34A	e offset (before exec) (before exec)			
See Also: sb, st	w				<u> </u>			

sltiu		Set if less tha	ii iiiiiiedia	ate unsi	gneu					
RTL: X[rd] ←	- (<i>X[r</i> s1]	<u)<="" sext(imm)="" th=""><th>? 1 : 0</th><th></th><th>Form:</th><th>slti</th><th>.u</th><th>rd,rs</th><th>1,imm</th><th></th></u>	? 1 : 0		Form:	slti	.u	rd,rs	1,imm	
alue; if the vocaded to 1; on the mediate value in	alue in th otherwise llue befor	iu instruction ce source registe the destination ethe comparisces	er is less that register is lon; the slt:	an the ir loaded v iu instro	mmediate vith 0. Th uction inte	value, the sltiue sltiuerprets bo	e desti zero-ex oth sour	nation re tends the	gister ro e 12-bit	d is
nstruction Format (I-type)	31	25 24 imm[11:0]	20	19 rs1	15 14	1 1 1	rd	7 6	1 0	0 1

sltz	Set if less than zero		(pseudoins	truction slt)
RTL: $X[rd] \leftarrow (X[rs1])$	< _s 0) ? 1 : 0	Form:	sltz	rd,rs1
Description: The s1:	z pseudoinstruction writes a 1 to	he destina	ation register	rd if the value in the

Description: The sltz pseudoinstruction writes a 1 to the destination register rd if the value in the source register is less than zero; otherwise a 0 is written to the destination register rd. The source operand is treated as a signed binary number in two's complement format. The sltz pseudo instruction is equivalent to "slt rd,rs1,x0" The sltz pseudoinstruction does not change the source operand.

See Also: snez, slt, sltu

snez	Set if not equal to zero		(pseudoinstruction sltu)	
RTL : <i>X[rd]</i> ← (<i>X[rs2]</i> ≠ 0) ? 1 : 0		Form:	snez	rd,rs2

Description: The snez pseudoinstruction writes a 1 to the destination register rd if the value in the source register is not equal to zero; otherwise a 0 is written to the destination register rd. The snez pseudoinstruction works with both signed and unsigned values. The snez pseudo instruction is equivalent to "sltu rd, x0, rs2" The snez pseudoinstruction does not change the source operand.

See Also: sltz, sltu

xori	bitwise exclusive OR						
RTL: $X[rd] \leftarrow X[rs1] \land sext(imm)$		Form:	xor 1	rd,rs1,imm			
Description: The xori instruction performs a bitwise inclusive OR between the value in the source register rs1 and the immediate value. The immediate value is signed extended from 12-bits to 32 bits before the being exclusive ORed with the value in the source register. The result of the XOR operation is stored in the destination register rd. The xori instruction does not change the value in the source register unless it is also specified as the destination register.							
Instruction Format (I-type)	31 25 24 imm[11:0]	20 19 rs1	15 14 12 11	rd 0 0 1 0 0 1 1			
Usage:	xori X14,X15,-1	-	tores result ir X15=0x1111_3EEE				
See Also:				. (02202 0000)			

RISC-V OTTER Assembly Language Style File

Figure 8 shows an example assembly language program highlighting respectable RAT assembly language source code appearance.

Figure 8: Example RISC-V OTTER assembly language code showing required coding style.