Lösungen zu Übungsblatt 3 Kryptographische Verfahren

Besprechung 13. November 2015

Aufgabe 3.1. Polynomiell Sichere Kaskadenverschlüsselung

a)

Um ein Textpaar (m,c) zu entschlüsseln, können alle Ergebnisse der Verschlüsselungen $E_{k_i}(m)$ und die der Entschlüssselungen $D_{k_j}(c)$ miteinander verglichen werden. Im Fall $E_{k_i}(m) = D_{k_j}(c)$ gilt, dass ein valider Schlüssel zum Textpaar (m,c) genau (k_i,k_j) ist. Es sind also nun nur genau $2|\mathcal{K}|$ Ver- bzw. Entschlüsselungsoperationen nötig.

b)

Genau wie bei a) können hier Zwischenergebnisse verglichen werden. Dabei müssen wir in einer Richtung $|\mathcal{K}|^2$ Verschlüsselungen anwenden (eben genau $E_{k_i}(E_{k_j}(m))$), in der anderen genau |K| viele Entschlüsselungen, $D_{k_i}(c)$.

Es sind also $|K|^2 + |K|$ Ver- und Entschlüsselungsoperationen nötig.

c)

Wählt man $k_2 = k_1$, so ergibt sich direkt:

$$\begin{split} 3\mathsf{DES}_{k_1,k_2}(\mathfrak{m}) &= \mathsf{DES}_{k_1} \left(\mathsf{DES}_{k_2}^{-1} \left(\mathsf{DES}_{k_1}(\mathfrak{m}) \right) \right) \\ 3\mathsf{DES}_{k_1,k_1}(\mathfrak{m}) &= \mathsf{DES}_{k_1} \left(\mathsf{DES}_{k_1}^{-1} \left(\mathsf{DES}_{k_1}(\mathfrak{m}) \right) \right) \\ 3\mathsf{DES}_{k_1,k_1}(\mathfrak{m}) &= \mathsf{DES}_{k_1} \left(\mathfrak{m} \right) \end{split}$$

Das heißt, um DES zu simulieren, muss in 3DES nur zweimal der selbe Schlüssel gewählt werden.

Aufgabe 3.2. Betriebsmodi

\mathfrak{m}_1	\mathfrak{m}_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9	\mathfrak{m}_{10}	\mathfrak{m}_{11}	\mathfrak{m}_{12}	\mathfrak{m}_{13}	k	c_0
K	R	Υ	Р	Т	0	G	R	Α	Р	Н	I	Ε	D	Χ
10	17	24	15	19	14	6	17	0	15	7	8	4	3	23

a) CBC-Modus

\in	$= [33]_{26}$	26 =	=	7
c	$_{1}:[7+3]_{26}$	=	=	10
($= [27]_2$	26 =	=	1
c	$_{2}:[1+3]_{26}$	=	=	4
($= [28]_2$	26 =	=	2
c	$_{3}:[2+3]_{26}$	=	=	5
($\Theta : [5+15]_{26}$	=	=	20
c	$_{4}:\left[20+3\right] _{26}$	=	=	23
($= [42]_{26}$	26 =	=	16
c	$_{5}:[16+3]_{26}$	=	=	19
($= [33]_2$	26 =	=	7
c	$_{6}:[7+3]_{26}$	=	=	10
($\Theta : [10+6]_{26}$	=	=	16
c	$_{7}:[16+3]_{26}$	=	=	19
\in	$\Rightarrow : [19+17]_{26} = [36]_2$	26 =	=	10
c	$_{8}:[10+3]_{26}$	=	=	13
($\Theta : [13 + 0]_{26}$	=	=	13
c	$_9:[13+3]_{26}$	=	=	16
($= [31]_2$	26 =	=	5
c_1	$_{0}:[5+3]_{26}$	=	=	8
($\Theta : [8+7]_{26}$	=	=	15
c_1	$_{1}:[15+3]_{26}$	=	=	18
($\Theta: [18+8]_{26}$	=	=	0
c_1	$_{2}:[0+3]_{26}$	=	=	3
\in	$\Theta : [3+4]_{26}$	=	=	7
c_1	$_{3}:[7+4]_{26}$	=	=	11

Ergebnis: KEFXTKTNQISDL

b) CTR-Modus

$\oplus : [23+1]_{26}$	=1
$c_1: [1+10]_{26}$	= 11
$\oplus : [23+2]_{26}$	=2
$c_2: [2+17]_{26}$	= 19
$\oplus : [23+3]_{26}$	=3
$c_3: [3+24]_{26}$	=1
$c_4: [4+15]_{26}$	= 19
$c_5: [5+19]_{26}$	=24
$c_6: [6+14]_{26}$	= 20
$c_7:[7+6]_{26}$	= 16
$c_8: [8+17]_{26}$	=25
$c_9:[9+0]_{26}$	=9
$c_{10}:[10+15]_{26}$	= 25
$c_{11}:[11+7]_{26}$	= 18
$c_{12}: [12+8]_{26}$	= 20
$c_{13}:[13+4]_{26}$	= 17

 ${\sf Ergebnis:} \ \textbf{LTBTYUNZJZSUR}$

c) Counter-Modus

d) OFB-Modus

$s_1 : [23 + 3]_{26}$	=0
$c_1: [10+0]_{26}$	= 10
$s_2 : [0+3]_{26}$	=3
$c_2: [17+3]_{26}$	= 20
$s_3: [3+3]_{26}$	=6
$c_3:[24+6]_{26}$	=4
$s_4: [6+3]_{26}$	=9
$c_4: [15+9]_{26}$	= 24
$s_5: [9+3]_{26}$	= 12
$c_5: [19+12]_{26}$	=5
$s_6: [12+3]_{26}$	= 15
$c_6: [14+15]_{26}$	=3
$s_7: [15+3]_{26}$	= 18
$c_7:[6+18]_{26}$	= 24
$s_8: [18+3]_{26}$	= 21
$c_8: [17+21]_{26}$	= 12
$s_9: [21+3]_{26}$	= 24
$c_9:[0+24]_{26}$	= 24
$s_{10}: [24+3]_{26}$	=1
$c_{10}: [15+1]_{26}$	= 16
$s_{11}:[1+3]_{26}$	=4
$c_{11}: [7+4]_{26}$	= 11
$s_{12}: [4+3]_{26}$	=7
$c_{12}:[8+7]_{26}$	= 15
$s_{13}: [7+3]_{26}$	= 10
$c_{13}: [4+10]_{26}$	= 14

Ergebnis: KUEYFDYMYQLPO

Aufgabe 3.3. Kaskade

Unter der Annahme, dass ein Angreifer A existiert mit

$$P\left(\mathsf{Att}_{\mathcal{A},\Pi}^{\mathsf{CP}}(\mathfrak{n}) = 1\right) = \frac{1}{2} + \frac{1}{\mathfrak{p}(\mathfrak{n})}$$

lässt sich das Schema aus Abbildung 1 konstruieren. Der konstruierte Angreifer \mathcal{A}' spielt gegenüber \mathcal{A} die Rolle von $\Pi = \Pi^1 \circ \Pi^2$. Er erhält von \mathcal{A} zwei Klartexte, leitet diese an Π^2 weiter, das einen zufällig auswählt und mit E_2 verschlüsselt. Den Kryptotext \widetilde{c} verschlüsselt \mathcal{A}' mit E_1 und schickt das Ergebnis $E^1_{k_1}(E^2_{k_2}(\mathfrak{m}_b))$ an \mathcal{A} zurück. \mathcal{A} entscheidet sich nun für einen der beiden Klartexte.

 \mathcal{A}' leitet die Entscheidung an Π^2 weiter. Offensichtlich ist \mathcal{A}' genau dann erfolgreich, wenn \mathcal{A} erfolgreich ist. Damit wäre das sicher Kryptosystem Π^2 mit nicht vernachlässigbarer Wahrscheinlichkeit geknackt.

$$\mathcal{A} \qquad \qquad \mathcal{A}' \qquad \qquad X = \Pi^2$$

$$\xrightarrow{m_0, m_1} \qquad \qquad k_1 \xrightarrow{m_0, m_1} \qquad k_2, \ b$$

$$\xrightarrow{E_{k_1}^1(\widetilde{c})} \qquad k_1 \xrightarrow{\widetilde{c}} \qquad k_2, \ b$$

Abbildung 1: Ablauf des hypothetischen Angriffs