

Diffusion of Innovation and the **Characteristics of Seeds**

Sebastian Lechner, Adrian Oesch & Amrollah Seifoddini

December 2014

You have news for this given world. Whom do you tell first?

Degree **Betweenness Centrality Eigenvector Centrality Local Clustering Coefficient**

Scale-free network by Simon Cockell (https://www.flickr.com/photos/sjcockell/4684828794/I)

Goal: Which parameters of innovation seeds have an effect on the diffusion success? How large is it?

- No knowledge on the seeds of innovation
- Very few parameters of nodes are known to be important
 - Degree and Eigenvector Centrality (Delre et. al JPIM, 27: 267-282 (2010)
 - Number of easily influenced neighbors (Watts & Dodds, JCR, 34(4): 441-458 (2007)
- Main possible application: programmability of innovation diffusion
 - Increase initial speed of news messages
 - Introduction of (disruptive) technology
 - Marketing strategies for novel products
 - ...

The Theory of Innovation Diffusion

- Founded in 1960s
 - Fourt & Woodlock, Journal of Marketing, 25(2), 31-38 (1960)
 - Rogers, Diffusion of Innovations (1962)
 - others

 Research mostly dominated by Marketing Research, Business Administration, Social Sciences

Few work by Network Sciences

Start at: Freeman, Research Policy, 20, 499-514 (1991)

- Most common model
 - Social contagion model with threshold and memory of past events

100

Model

McCullen

$$u_i(t) = \alpha p_i + \beta s_i + \gamma m_i ,$$

$$\alpha = 0.3, \beta = 0.6, \text{ and } \gamma = 0.1$$

$$s_i(t) = \frac{1}{k_i} \sum_{i=1}^{N} A_{ij} x_j(t) , \qquad m_i = \frac{1}{N} \sum_{i=1}^{N} x_i(t) .$$

Model cont.

- Neighborhood utility has big effect
- Threshold based synchronous update

$$x_i(t+1) = \begin{cases} 1 \text{ if } x_i(t) = 1\\ 1 \text{ if } x_i(t) = 0 \text{ and } u_i(t) > \theta\\ 0 \text{ otherwise.} \end{cases}$$

Network topology

Small-world

Network topology

Power-law

Implementation

- %10 success
- 30 iterations

Results I – Descriptives

Table 1: Descriptive Statistics

Statistic	N	Mean	St. Dev.	Min	Max
success	500	0.104	0.306	0	1
$\operatorname{seed_perspref}$	500	0.504	0.103	0.143	0.831
seed_degree	500	9.944	8.999	5	65
seed_eigenc	500	0.033	0.030	0.006	0.210
$seed_betweenness$	500	885.040	2,139.630	35.768	18,131.290
seed_localc	500	0.125	0.138	0.000	0.800

Results II - Plots

Results III - Plots

Results IV

Table 3: Results Seed Characteristics

(4)	(5)	(6) 3.434***
(4)	(5)	3.434***
		(1.247)
		0.463** (0.225)
		-0.110 (1.694)
1.910*** (0.255)		-1.049 (0.738)
	-0.421^{**} (0.193)	-0.289 (0.483)
-2.796^{***} (0.219)	-2.214^{***} (0.156)	-3.268*** (0.357)
500 -96.150 196.301	500 -164.016 332.031	500 -75.784 163.568
	500 -96.150 196.301	500 500 -96.150 -164.016

Results V

Table 6: Results Maximum Value of Neighboring Nodes

	Dependent variable: success							
	(1)	(2)	(3)	(4)	(5)	(6)		
$ m neighsmax_degree$	1.322*** (0.298)					-3.434^* (1.853)		
neighsmax_perspref		1.215*** (0.185)				1.243*** (0.243)		
$neighsmax_betweenness$			1.179*** (0.235)			2.190** (1.065)		
neighsmax_eigenc				1.465*** (0.329)		2.291* (1.302)		
neighsmax_localc					1.166*** (0.145)	0.822*** (0.161)		
Constant	-2.663^{***} (0.243)	-2.663^{***} (0.209)	-2.611^{***} (0.221)	-2.744^{***} (0.261)	-2.713*** (0.210)	-3.583** (0.351)		
Observations	500	500	500	500	500	500		
Log Likelihood Akaike Inf. Crit.	-149.235 302.470	-139.638 283.275	-147.970 299.940	-147.932 299.864	-128.118 260.237	-101.682 215.365		

Note:

`p<0.1; **p<0.05; ***p<0.01

Conclusion and Outlook

Seeds

- Centrality measures of seeds positively correlate with diffusion success
- Local clustering negatively correlates (Reason: inert local clustering)
- Degree is best predictor

Neighboring Nodes

- Complex results
- Local clustering positively correlates

Outlook

Network: Use empirical scale-free network with directed and weighted edges, and others

Model: Threshold model is new (2013); improved future models can be easily

incorporated into simulation

Thank you for your attention!

Appendix I

Table 2: Correlation Table of Independent Variables

			1	
	$\operatorname{seed_perspref}$	$\operatorname{seed_degree}$	$\operatorname{seed_eigenc}$	$seed_betweenness$
seed_perspref				
$\operatorname{seed_degree}$	-0.01			
$\operatorname{seed_eigenc}$	-0.01	0.95***		
$seed_betweenness$	-0.02	0.97***	0.93***	
seed_localc	0.04	-0.11*	0.05	-0.09*
			Note:	*p<0.1; **p<0.05; ***p<0.01

Appendix II

Table 5: Results: Mean of Neighboring Nodes

				,				
	Dependent variable:							
	success							
	(1)	(2)	(3)	(4)	(5)	(6)		
neighs_degree	-0.590^{***} (0.175)					-6.834*** (1.533)		
neighs_perspref		0.190 (0.148)				0.288 (0.179)		
neighs_betweenness			-0.469^{***} (0.174)			2.926*** (0.966)		
neighs_eigenc				-0.366** (0.162)		3.449*** (1.026)		
neighs_localc					0.796*** (0.146)	0.491*** (0.173)		
Constant	-2.279^{***} (0.164)	-2.168*** (0.148)	-2.233^{***} (0.158)	-2.204*** (0.153)	-2.402^{***} (0.176)	-2.827*** (0.237)		
Observations	500	500	500	500	500	500		
Log Likelihood Akaike Inf. Crit.	-160.441 324.882	-166.057 336.115	-162.782 329.563	-164.162 332.325	-151.131 306.263	-134.517 281.035		
Note:				*p<	(0.1; **p<0.05	5; ***p<0.01		

Appendix III

Table 4: Results Model Comparison with different Variable Sources

	Dependent variable:				
	success				
	(1)	(2)	(3)	(4)	
$seed_params$	X				
seed_params & neighsmax_params		X			
seed_params & neighs_params			X		
seed_params & neighsmax_params					
& neighs_params				X	
Observations	500	500	500	500	
Log Likelihood	-75.681	-68.753	-67.338	-63.118	
Akaike Inf. Crit.	163.362	159.507	156.677	158.236	
Note:		*p<0.1	; **p<0.05;	***p<0.01	