(19)日本国特許庁 (JP)

(12) 公表特許公報(A)

(11)特許出願公表番号 特表2002-542623 (P2002-542623A)

(43)公表日 平成14年12月10日(2002.12.10)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

H 0 1 L 21/3065 H05H 1/46

H 0 5 H 1/46 HO1L 21/302

5 F 0 0 4 Α

F

審査請求 未請求

予備審査請求 有

LAM RESEARCH CORPOR

アメリカ合衆国 カリフォルニア州94538

-6516 フリモント, クッシング・パーク

ウェイ, 4650, ピー0508. ピーシーティ

アメリカ合衆国 アリゾナ州85048 フェ

ニックス,イースト・グレンヘイプン・ド

(全34頁)

(21)出願番号

特願2000-612994(P2000-612994)

(86) (22)出願日

平成12年4月6日(2000.4.6)

(85)翻訳文提出日

平成13年10月18日(2001.10.18)

(86)国際出願番号

PCT/US00/09447

(87)国際公開番号

WO00/63960

(87)国際公開日

平成12年10月26日(2000.10.26)

(31)優先権主張番号 09/295,634

(32)優先日

平成11年4月20日(1999.4.20)

(33)優先権主張国

米国(US)

(81)指定国

EP(AT, BE, CH, CY,

DE, DK, ES, FI, FR, GB, GR, IE, I

ライブ、2474 (74)代理人 特許業務法人 明成国際特許事務所

(71)出願人 ラム・リサーチ・コーポレーション

ATION

(72)発明者 マクレイノルズ・ダーレル

T, LU, MC, NL, PT, SE), JP, KR

最終頁に続く

(54) 【発明の名称】 深開口部を形成するためにプラズマ処理室内でシリコン層をエッチングする方法

(57) 【要約】

超深開口部を形成するためにプラズマエッチングリアク 夕においてシリコン層をエッチングする方法を開示す る。この方法は、シリコン層を含む半導体基板をプラズ マエッチングリアクタに供給し、酸素反応ガス、ヘリウ ムガス、及び不活性衝撃強化ガスを含むエッチングガス をプラズマエッチングリアクタに流入させるステップを 含む。この方法は更に、エッチングガス化学剤を使用し てプラズマを発生させ、次に、プラズマを発生させた後 のプラズマエッチングリアクタに、SF6を含む添加ガ スを供給することを含む。この方法では、引き続き、こ のプラズマを使用して、少なくとも部分的にシリコン層 を通じて、開口部をエッチングする。

【特許請求の範囲】

【請求項1】 少なくとも10μmのエッチング深度を有する超深トレンチを形成するために誘導結合プラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記シリコン層を含む半導体基板を前記誘導結合プラズマエッチングリアクタ 内に導入するステップと、

実質的にヘリウムガス、Ozガス、及びアルゴンガスで構成されるエッチングガス化学剤を前記誘導結合プラズマエッチングリアクタに流入させるステップと

前記エッチングガス化学剤を使用してプラズマを発生させるステップと、

前記プラズマの発生の後に、前記誘導結合プラズマエッチングリアクタにSF 6ガスを供給するステップであって、前記SF 6ガスに対する前記へリウムガスの流量比が約350%ないし約550%であり、前記SF 6ガスに対するO2の流量比が約60%ないし約90%であり、前記SF 6ガスに対する前記アルゴンガスの流量比が約350%ないし約550%であるステップと、

少なくとも部分的に前記シリコン層に前記超深トレンチをエッチングするステップと、を備える方法。

【請求項2】 請求項1記載の、超深開口部を形成するために誘導結合プラ ズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

自然酸化膜層が前記シリコン層上に形成され、

塩素含有ガス化学剤が前記誘導結合プラズマエッチングリアクタ内に流入され

前記塩素含有ガス化学剤は、前記シリコン層の前記エッチングのための前記エッチングガス化学剤の流入に先立って、前記自然酸化膜層を貫通してエッチングするために使用される、エッチング方法。

【請求項3】 請求項1記載の、超深開口部を形成するために誘導結合プラ ズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記SF₆ガスに対する前記アルゴンガスの流量比が約350%ないし約550%である、エッチング方法。

【請求項4】 請求項1記載の、超深開口部を形成するために誘導結合プラ ズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記超深開口部の前記エッチングが約 30μ mないし約 60μ mのエッチング 深度まで継続される、エッチング方法。

【請求項5】 請求項1記載の、超深開口部を形成するために誘導結合プラ ズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記プラズマの前記発生が約5秒ないし約10秒の期間にわたって持続する、 エッチング方法。

【請求項6】 超深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記シリコン層を含む半導体基板を前記プラズマエッチングリアクタ内に導入 するステップと、

ヘリウムガス、酸素反応ガス、及び不活性衝撃強化ガスを含むエッチングガス 化学剤を前記プラズマエッチングリアクタ内に流入させるステップと、

前記エッチングガス化学剤を使用してプラズマを発生させるステップと、

前記プラズマの発生の後に、前記プラズマエッチングリアクタ内にフッ素含有 添加ガスを供給するステップと、

少なくとも部分的に前記シリコン層に前記超深開口部をエッチングするステップと、を備える方法。

【請求項7】 請求項6記載の、超深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

自然酸化膜層が前記シリコン層上に形成され、

塩素含有ガス化学剤が前記プラズマエッチングリアクタ内に流入され、

前記塩素含有ガス化学剤は、前記シリコン層の前記エッチングのための前記エッチングガス化学剤の流入に先立って、前記自然酸化膜層を貫通してエッチングするために使用される、エッチング方法。

【請求項8】 請求項6記載の、超深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記不活性衝撃強化ガスがアルゴンである、エッチング方法。

【請求項9】 請求項6記載の、超深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記不活性衝撃強化ガスがキセノンである、エッチング方法。

【請求項10】 請求項6記載の、超深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記半導体基板がシリコンウェーハである、エッチング方法。

【請求項11】 請求項6記載の、超深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記超深開口部がトレンチである、エッチング方法。

【請求項12】 請求項6記載の、超深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記SF6ガスに対する前記不活性衝撃強化ガスの流量比が約350%ないし約550%である、エッチング方法。

【請求項13】 請求項6記載の、超深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記フッ素含有添加ガスがSF6である、エッチング方法。

【請求項14】 請求項6記載の、超深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記フッ素含有添加ガスがC4F8、CF4、NF3、及びCHF3のいずれかである、エッチング方法。

【請求項15】 請求項6記載の、超深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記超深開口部の前記エッチングが約30μmないし約60μmのエッチング 深度まで継続される、エッチング方法。

【請求項16】 請求項6記載の、超深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記プラズマエッチングリアクタの下部電極温度が約15℃ないし約60℃である、エッチング方法。

【請求項17】 請求項6記載の、超深開口部を形成するためにプラズマエ

ッチングリアクタ内でシリコン層をエッチングする方法であって、

前記プラズマエッチングリアクタの処理室圧力が約50mTorrないし約60mTorrである、エッチング方法。

【請求項18】 請求項6記載の、超深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記プラズマの前記発生が約5秒ないし約10秒の期間にわたって持続する、 エッチング方法。

【請求項19】 請求項6記載の、超深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記プラズマエッチングリアクタの最大電力が約400Wないし約1000Wである、エッチング方法。

【請求項20】 請求項6記載の、超深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記プラズマエッチングリアクタが誘導結合プラズマエッチングリアクタである、エッチング方法。

【請求項21】 深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記シリコン層を含む半導体基板を前記プラズマエッチングリアクタ内に導入 するステップと、

ヘリウムガス、及び酸素反応ガスを含むエッチングガス化学剤を前記プラズマ エッチングリアクタ内に流入させるステップと、

前記エッチングガス化学剤を使用してプラズマを発生させるステップと、

前記プラズマの発生の後に、前記プラズマエッチングリアクタ内にフッ素含有 添加ガスを供給するステップと、

少なくとも部分的に前記シリコン層に前記深開口部をエッチングするステップ であって、前記シリコン層の前記エッチングが前記プラズマを使用して行われる ステップと、を備える方法。

【請求項22】 請求項21記載の、深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

自然酸化膜層が前記シリコン層上に形成され、

塩素含有ガス化学剤が前記プラズマエッチングリアクタに流入され、

前記塩素含有ガス化学剤は、前記シリコン層の前記エッチングのための前記エッチングガス化学剤の流入に先立って、前記自然酸化膜層をエッチングするために使用される、エッチング方法。

【請求項23】 請求項21記載の、深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記半導体基板がシリコンウェーハである、エッチング方法。

【請求項24】 請求項21記載の、深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記深開口部がトレンチである、エッチング方法。

【請求項25】 請求項21記載の、深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記フッ素含有添加ガスがSF6である、エッチング方法。

【請求項26】 請求項21記載の、深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記フッ素含有添加ガスがC4Fs、CF4、NF3、及びCHF3のいずれかである、エッチング方法。

【請求項27】 請求項21記載の、深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記深開口部の前記エッチングが約 10μ mないし約 15μ mのエッチング深度まで継続する、エッチング方法。

【請求項28】 請求項21記載の、超深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記SF₆ガスに対する前記へリウムガスの流量比が約350%ないし約550%である、エッチング方法。

【請求項29】 請求項21記載の、深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記プラズマエッチングリアクタの処理室圧力が約40mTorrないし約1

00mTorrである、エッチング方法。

【請求項30】 請求項21記載の、深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記プラズマの前記発生が約5秒ないし約10秒の期間にわたって持続する、 エッチング方法。

【請求項31】 請求項21記載の、深開口部を形成するためにプラズマエッチングリアクタ内でシリコン層をエッチングする方法であって、

前記プラズマエッチングリアクタの最大電力が約300Wないし約2000Wである、エッチング方法。

【発明の詳細な説明】

[0001]

【発明の背景】

本発明は半導体集積回路(IC)の製造に関する。特に、本発明はアスペクト 比が高い深開口部を形成すべくプラズマ処理室内でシリコン層をエッチングする ための改良された方法に関する。

[0002]

半導体ICの製造において、コンポーネントトランジスタ等のデバイスは、通常はシリコンで作成される半導体ウェーハ又は基板上に形成することができる。深開口部は、アスペクト比が35:1よりも高い可能性があり、例えば、蓄電のために、独立したコンデンサを形成する目的でシリコンにエッチングされ、或いはMEMデバイス応用装置にエッチングされる。約3μmないし約10μmのエッチング深度を有する開口部は深開口部と呼ばれ、約10μmより大きなエッチング深度を有する開口部は超深開口部と呼ばれる。こうした数値範囲は本発明を説明する上での指針として提示されるものであり、本発明に任意の制限を定めることを意図するものではない。例えば、超深開口部をエッチングする方法は、これよりも浅い開口部をエッチングする場合でも同等に効果的であると考えられる。

[0003]

この説明を容易にするために、図1では、従来技術のエッチングガス化学剤を利用して深開口部をエッチングする、従来技術の方法に関与するステップを示している。この従来技術の方法は102で開始され、この時、基板はプラズマ処理室に供給され、104において、例えばCF4とすることが可能なフッ素化学剤を使用して初期ブレークスルーエッチングが開始される。この初期エッチング段階の後、メインエッチングステップの準備が行われ、これは106において、SF6/O2/Heエッチングガス化学剤を供給することで開始され、108において、このガス化学剤を使用してプラズマを発生させる。その後、110において、例えば、約5.5 μ mの深度を有するトレンチ等のシリコン層の深開口部をエッチングするためにプラズマを使用してメインエッチングが開始される。深トレ

ンチのエッチングが達成された後、112に示すように、この処理は完了する。

[0004]

例えば、側壁の弓状特徴部 2 0 8 及びノッチ状特徴部 2 1 0 などの多数の構造的 欠陥を有する。これらは、ハードマスクのアンダーカットによって生じたもので ある。

[0005]

図2に直接例示されてはいないが、深トレンチのエッチングにおいて発生する可能性のあるその他の問題としては、非垂直エッチング断面、低いエッチング速度、不適切なエッチング深度、RIEラグ、低いTEOS/Si選択性、CD(critical dimension) バイアス、及びシリコンの不均一性が含まれる。こうした問題のいくつかは、大きなエッチング深度及び高いアスペクト比を有する開口部をエッチングすることを試みるまでは現れないず、あるいは問題を引き起こすほどに深刻なものにならないかもしれない。当業者は、現在の技術において一般に使用されているものよりも深く狭い開口部の使用を求める業界の急速な進歩と共に、前記の問題点が発生することを理解するべきである。

[0006]

上述したことから、先に説明した多数の問題点の一部又は全部を回避すると同時に、シリコン層において深く狭い開口部をエッチングするような改良された手法が望まれる。

[0007]

【発明の概要】

前記およびその他の目的を達成するために、そして、本発明の目的にしたがって、プラズマエッチングリアクタ内でシリコン層に深開口部をエッチングする方法が開示される。この方法は、シリコン層を含む半導体基板をプラズマエッチングリアクタに供給し、メインエッチングのために、酸素反応ガスを含むガス化学剤及びヘリウムガスをプラズマエッチングリアクタに流入させるステップを含む。この方法は更に、エッチングガス化学剤を使用してプラズマを発生させ、次に、プラズマを発生させた後のプラズマエッチングリアクタに、例えばSF6等を含むフッ素含有添加ガスを供給することを含む。この方法では、引き続き、このプラズマを使用して、少なくとも部分的にシリコン層に対して、開口部をエッチングする。好適な実施形態において、シリコン層の上に配置される可能性がある自然酸化膜層を貫通してエッチングするために、メインエッチングガス化学剤の流入の前に塩素含有化学剤が供給される。

[0008]

本発明の別の実施形態においては、プラズマエッチングリアクタ内でシリコン層に超深開口部をエッチングする方法が開示される。この方法は、シリコン層を含む半導体基板をプラズマエッチングリアクタに供給し、メインエッチングのために、酸素反応ガス、ヘリウムガス及び不活性衝撃強化ガスを含むガス化学剤をプラズマエッチングリアクタに流入させるステップを含む。この方法は更に、エッチングガス化学剤を使用してプラズマを発生させ、次に、プラズマを発生させた後のプラズマエッチングリアクタに、例えばSF6を含むことが可能なフッ素含有添加ガスを供給することを含む。この方法では、引き続き、このプラズマを使用して、少なくとも部分的にシリコン層に、開口部をエッチングする。好適な実施形態においては、シリコン層の上に配置される可能性がある自然酸化膜層を貫通してエッチングするために、不活性衝撃強化ガスとしてアルゴンが選択され、メインエッチングガス化学剤の流入の前に塩素含有化学剤が供給される。

[0009]

本発明のその他の態様及び利点は、以下の詳細な説明によって、そして本発明の原理を例示する添付図面を参照することで、明らかとなろう。

[0010]

【好適な実施形態の詳細な説明】

以下、添付図面に例示されたいくつかの好適な実施形態を参照して本発明を詳細に説明する。本発明の一態様による本発明のエッチング処理は、正確に制御された側壁角度を有する、深く、アスペクト比が高い開口部を作成する複雑な応用である。本発明の処理を使用して達成されるエッチング深度は、約30µm以上に達することが可能であり、アスペクト比は約10:1よりも大きく、約35:1の高さになる場合もある。側壁角度は一般に、約87度よりも大きい。

[0011]

本発明を応用することによって得られる望ましい結果は、ほぼ垂直な断面、高いエッチング速度/深度、最低限のRIEラグ及びCDバイアス、高いTEOS /Si選択性及びシリコン均一性等の、あらゆる望ましい特性を有するシリコン層の深開口部を達成することである。以下の説明においては、本発明の完全な理解を提供するために多数の特定の詳細について述べる。しかしながら、当業者にとって、こうした特定の詳細の一部又は全部がなくとも、本発明を実施できることは明らかである。別の事例においては、本発明を不必要に曖昧にしないために、広く知られた処理ステップについては詳細に説明していない。

[0012]

本発明の一態様において、プラズマエッチングリアクタ内でシリコン層に深開口部をエッチングする方法が開示される。この方法は、シリコン層を含む半導体基板をプラズマエッチングリアクタに供給し、メインエッチングのために、酸素反応ガス及びヘリウムガスを含むガス化学剤をプラズマエッチングリアクタに流入させるステップを含む。この方法は更に、エッチングガス化学剤を使用してプラズマを発生させ、次に、プラズマを発生させた後のプラズマエッチングリアクタに、例えばSF。等を含むフッ素含有添加ガスを供給することを含む。つづいて、この方法では、このプラズマを使用して、少なくとも部分的にシリコン層に対して、開口部をエッチングする。好適な実施形態において、シリコン層の上に存在する可能性がある自然酸化膜層を貫通してエッチングするために、メインエッチングガス化学剤の流入の前に塩素含有化学剤が供給される。

[0013]

本発明の別の実施形態においては、プラズマエッチングリアクタ内でシリコン層に超深開口部をエッチングする方法が開示される。この方法は、シリコン層を含む半導体基板をプラズマエッチングリアクタに供給し、メインエッチングのために、酸素反応ガス及び不活性衝撃強化ガスを含むガス化学剤をプラズマエッチングリアクタに流入させるステップを含む。この方法は更に、エッチングガス化学剤を使用してプラズマを発生させ、次に、プラズマを発生させた後のプラズマエッチングリアクタに、例えばSF。等を含むフッ素含有添加ガスを供給することを含む。つづいて、この方法では、このプラズマを使用して、少なくとも部分的にシリコン層を通じて、開口部をエッチングする。好適な実施形態においては、シリコン層の上に存在する可能性がある自然酸化膜層を貫通してエッチングするために、不活性衝撃強化ガスとしてアルゴンが選択され、メインエッチングガス化学剤の流入の前に塩素含有化学剤が供給される。

[0014]

好適な実施形態において、本発明は誘導結合プラズマリアクタにおいて利用される。誘導結合プラズマリアクタとしては、例えば、カリフォルニア州フレモントのラムリサーチコーポレーションから入手可能な9400PTX(商標)プラズマリアクタ等のTCP(商標)プランドのプラズマリアクタがある。図3では、本発明を実施するのに好適なプラズマ処理リアクタを表す誘導結合プラズマリアクタの簡略図を示している。図3では、ウェーハリアクタ302はプラズマ処理室304を含む。処理室304の最上面には、石英窓306が配置され、これは高周波エネルギが処理室に入ることを可能にする透明な媒体の役割を果たす。プラズマ処理室304の上に位置するコイル308は、この高周波エネルギを放出し、その高周波エネルギは、発電器310によって供給される。発電器310は、約300Wないし約2000Wの範囲の電力、好ましくは約400Wないし約1200Wの範囲の電力、更に好ましくは一実施形態において約1000Wとすることが可能な電力を発生させる。

[0015]

処理室304内では、エッチングガス化学剤が、ガス送出口312を通じて、

石英窓306とウェーハ316との間の高周波誘導プラズマ領域314に放出さ れる。このエッチングガス化学剤は、処理室自体の壁に組み込まれた他のポート から放出することもできる。ウェーハ316は処理室304に搬入され、発電器 320によって作動する底部電極として機能する静電チャック318上に配置さ れる。発電器320は、約20Wないし約100Wの範囲、好ましくは約20W ないし約30Wの範囲、更に好ましくは一実施形態において約25Wの電力を発 生させる。ヘリウム冷却ガスを、静電チャック318とウェーハ316との間に 、加圧して(約4ないし14Torr、好ましくは約6ないし10Torr、更 に好ましくは一実施形態において、例えば約8 Torr) 導入する態様とするこ とができる。このヘリウム冷却ガスは、均一で反復可能なエッチング結果を確保 するために、処理中のウェーハ温度を正確に制御する熱伝達媒体の役割を果たす 。静電チャック318の温度は、約0℃ないし約70℃、好ましくは約15℃な いし約60℃、更に好ましくは一実施形態において約20℃に維持することが可 能であり、処理室の温度は、約20℃ないし70℃、好ましくは約40℃ないし 約70℃、更に好ましくは一実施形態において約50℃に維持することができる 。プラズマエッチング中、プラズマ処理室304内の圧力は低く維持され、例え ば、約40mTorrないし約110mTorr、好ましくは約50mTorr ないし約100mTorr、更に好ましくは一実施形態において約60mTor rとなる。

[0016]

図4は、本発明の一態様による、深開口部をエッチングするための第一の発明 方法に含まれるステップを示している。本発明方法は、402で開始され、この 時、基板はプラズマ処理室内の下部電極上に配置される。下部電極は、静電チャ ックであってもよい。下部電極温度は約30℃に維持される。これは従来技術の 方法における約50℃の下部電極温度よりも大幅に低い。下部電極温度を低くす ることで、CDバイアスが最小化されると考えられ、その結果、エッチングされ た開口部の深さ方向全体についての断面エリアの均一性が高まる。この例では、 約0.03未満のCDバイアスが達成される。

[0017]

404において、塩素含有化学剤が初期プレークスルーエッチングのために供 給される。この塩素含有化学剤は、こうした初期ブレークスルーエッチングの目 的を達成する上で、従来技術で使用されるフッ素含有化学剤よりも効果的である ことが分かっている。塩素含有化学剤は、通常シリコンが空気中の酸素と反応す る時にシリコン層上に形成される自然酸化膜層を貫通して、エッチングする。塩 素含有化学剤を使用することで、更に、図2に示すようなエッチング結果におけ る弓状特徴部208を排除することができると考えられる。406において、酸 素及びヘリウムを含むガス化学剤が供給され、その後、108において、このガ ス化学剤を使用してプラズマが発生される。SF。等のフッ素含有ガスは、この エッチング化学剤において有用な要素であるが、この反応ガス要素は、プラズマ の発生中は、垂直フラッシュ効果を回避するために、意図的に除外される。垂直 フラッシュ効果は、ハードマスクとシリコンの境界におけるアンダカットを発生 させ、その結果、開口部の側壁に沿ってノッチ状構造を発生させる恐れがある。 SF₆が存在しない状態でのプラズマ発生動作は、一定の期間、例えば7秒間に わたって持続させることができる。プラズマ発生後、410において、SF₆が プラズマ処理室に追加され、その後、メインエッチングが開始される。この処理 は、414において、深開口部のエッチングが完了した時に終了する。SF6の 代わりにすることが可能なその他のガスには、C4F3、CF4、NF3、及びCH F₃が含まれる。

[0018]

図5 a は、本発明の一実施形態にしたがって本発明のエッチング方法を使用してエッチングしたシリコン層5 0 4 の深開口部5 0 2 の断面図を示している。こうした結果は、この新しい方法が、約3. 5 μ m/分の増加したエッチング速度を達成することが可能であり、従来技術の方法を使用した際の問題を発生させることなく、約1 0 μ mないし約1 5 μ mの深さのエッチング深度を有する開口部をエッチングするのに効果的であることを示している。例えば、深開口部5 0 2 は、約5 0 5 μ mのエッチング深度を有し、直線垂直断面を有しており、問題のある特性を有していない。その問題のある特性というのは、図2 に示したような従来技術の方法を使用してエッチングした深開口部に生じる、ハードマスクのア

ンダカットの結果である弓状特徴部及びノッチ状特徴部等の特性である。

[0019]

図5bは、図5aとほぼ同じ発明エッチング方法及びパラメータを使用して、 シリコン層で超深開口部をエッチングすることを試みて得られた結果の断面図で ある。ただし、微少寸法制御を更に改善することを試みて、下部電極温度を更に 20℃に下げられている。この図では、約13μmのエッチング深度を有するシ リコン層514の深開口部512を示されている。達成された平均エッチング速 度は、約1.6μm/分であった。この事例で計算された平均エッチング速度が 実際のエッチング速度を完全に反映しているかどうかは疑わしい。なぜならば、 このエッチングは目標とされたエッチング深度である30μmに到達できなかっ たためであり、実際には、指定エッチング時間である500秒が終了する前に、 約15μmのエッチング深度でエッチングの停止が発生した。深開口部512は ほぽ垂直な断面を有しているが、最上面近くでは、ハードマスクのアンダカット の再発により、開口部の側壁が後退している。これにより、後退が発生したレベ ルからエッチング開口部の最上端部までに傾斜断面516が生じている。そのた め、アスペクト比の高い深開口部をエッチングすることができる別の改善された 方法が必要とされる。必要とされるエッチング方法は、15μmよりも大きな深 度を有し、ほぽ垂直な断面、高いエッチング速度/深度、低い微少寸法バイアス 、高いTEOS/Si選択性、最低限のRIEラグ、及び高いシリコン均一性等 の望ましい特性を有する開口部をエッチングすることが可能なエッチング方法で ある。

[0020]

図6は、本発明の別の態様による第二のエッチングガス化学剤を使用して深開口部をエッチングする第二の発明方法に含まれるステップを示しており、これは602で開始される。604において、初期ブレークスルーエッチングのために塩素化学剤が供給される。606において、酸素反応物質、ヘリウム、及び不活性衝撃強化ガス(アルゴン等)を有するガス化学剤が供給される。このガス化学剤の流入後、608において、このガス化学剤を使用してプラズマが発生される。前の発明方法と同じく、フッ素含有反応ガス要素は、このエッチング化学剤に

おいて有用な要素であるが、この反応ガス要素はプラズマの発生中は、垂直フラッシュ効果を回避するために、意図的に除外される。垂直フラッシュ効果は、ハードマスクとシリコンの境界でのアンダカットを発生させ、その結果、開口部の側壁に沿ってノッチ状構造を発生させる恐れがある。SF6等のフッ素含有化学剤が存在しない状態でのプラズマ発生動作は、一定の時間、例えば7秒間にわたって持続させることができる。プラズマ発生後、610において、SF6がプラズマ処理室に追加され、その後、612でメインエッチングが開始される。この処理は、614において、深開口部のエッチングが完了した時に終了する。

[0021]

図7は、本発明の一実施形態による第二の発明方法を使用してエッチングしたシリコン層の開口部の断面図を示している。商業的に許容できるエッチング結果を達成するために、一実施形態において、最大電力を増加させ、処理室の圧力を低下させてエッチング処理を強化し、これによりエッチング停止の可能性を最小限にする。アルゴンの追加も、イオン衝突の強化に貢献する。この図では、約30:1よりも大きな高アスペクト比を有する、約30μmの超深開口部702が、シリコン層704にエッチングされている。この事例では、3.6μm/分のエッチング速度が達成された。更に、この図で確認できるように、側壁断面は、優れたCD制御によりほぼ垂直である。これは、同等の深度及びアスペクト比の開口部をエッチングする場合に、非常に達成が困難なことである。

[0022]

超深開口部をエッチングする本発明方法の重要な特徴は、アルゴンやキセノン等の不活性衝撃強化ガスを含めることである。こうした不活性衝撃強化ガスの追加は、ハードマスクのアンダカットを排除する役割を果たす可能性があり、これにより、側壁断面の制御に役立つ可能性があると考えられる。アルゴン等の重い不活性ガスを、全体のガス流量に追加することは、RIEラグの問題の改善にも貢献すると考えられる。RIEラグは、エッチング中の異なる開口部間でのエッチング速度の差異である。通常、RIEラグは、異なる特徴サイズを有する開口部で発生するが、場合によっては、同じサイズの特徴部において発生する。後者の状況は、エッチングを継続するのに十分な反応イオンが開口部に存在していな

い時に発生すると考えられる。不活性衝撃強化ガスを全体のガス流量に追加すると、エッチング処理におけるイオン衝突が強化されて、この問題が緩和され、その結果、重合体形成及び断面への影響を発生させずに、エッチング停止条件を減少させることができる。

[0023]

アルゴン等の重いガスは酸化膜エッチングにおいて使用されるが、シリコンエッチングでは使用されない場合が多い。イオン衝突を強化するためのアルゴン等の重不活性ガスの追加は自明のものではない。なぜなら、高いエッチング深度及びアスペクト比の開口部のエッチングにおいて、イオン衝突を強化することが自明のアプローチではないことが明白なためである。特に、シリコン層の上に配置されるマスキング層の厚さは特徴サイズの低下により減少し、また、エッチング完了前にマスキング層を摩滅させる強い衝突は、処理にとって望ましい効果をもたらさないことを考慮すれば、イオン衝突の強化は自明のアプローチではない。

[0024]

強化されたイオン衝突の影響にもかかわらず、こうした改善されたエッチング方法の別の利点は、エッチングの目的でシリコン層をマスクするために使用されるTEOS等のマスキング材料に対する驚くべき選択性である。特徴部のサイズの減少と共に、シリコン層上に配置可能なマスキング層の厚さが減少することを考慮すると、TEOSに対するシリコンの選択性は、エッチング処理において非常に重要な要素となる。シリコン層での深く狭い開口部のエッチングが完了する前にTEOS層が完全に摩滅しないことは絶対に必要な事柄であり、実際、適切な幾何学形状の開口部を達成するにはマスキング材料に対する高い選択性が求められる。衝突剤(Ar等)を追加しても、改善されたエッチングガス化学剤は、約60:1よりも大きなシリコン:TEOS選択性比率を提供することが分かっており、これは従来技術のエッチングガス化学剤(Ar等の不活性衝撃強化ガスを利用しないもの)によって提供される約25:1以下の選択性比率よりも大幅に高い。

[0025]

高いエッチング速度、優れたエッチング断面制御、及びマスキング層に対する

高い選択性を有することに加え、この改善されたエッチング方法に内在する別の利点として、次のものがある。すなわち、本発明方法それぞれには重合化ステップのない一度のみのメインエッチングステップを含んでいるため、事前に定められた深度まで行うエッチングを含む業界で一般に使用される深閉口部のエッチング方法に比べ、より直接的で汚染の少ない処理となる点である。業界で一般に使用される方法では、エッチングの後、不動態化のための重合化工程が行われ、その後、望ましいエッチング深度に達するまで、こうした交互のシーケンスが繰り返される。対照的に、この改善されたエッチング方法では、有利なことに、一度のメインエッチングによって、望ましいエッチング深度を有する開口部のエッチングが可能となる。

[0026]

【実施例】

下の表では、典型的なシリコンウェーハをエッチングするのに最適なパラメータを示している。四種類の別個の処理A、B、C、及びDに関して、好適なおよその範囲と、更に好適なおよその範囲と、代表値とを提示している。処理A、B、C、及びDによって得られた結果は、それぞれ図2、図5a、図5b、及び図7に表示されている。処理Aは従来技術の処理である。

[0027]

ここの表示されているおよその値の処理パラメータは、一般に、前記のTCP (商標) プランド9400PTX (商標) プラズマリアクタにおける6インチ (15.24cm) ウェーハのエッチングに適したものである。異なる寸法又はパターン密度を有する基板をエッチングするために、或いは特定のプラズマリアクタの要件に合わせるために、このパラメータを適切に定数倍できること及び又は修正できることは容易に明らかであり、当業者の技能の範囲内にある。

[0028]

表1では、処理室圧力(mTorr)と、最大電力及びバイアス電力 (W) と、処理室温度及び下部電極温度と(摂氏温度)、静電チャックでのヘリウム圧力 (Torr) と等のプラズマリアクタにおいて使用するのに最適なパラメータの概算範囲、及び図2、図5 a、図5 b、及び図7に表示されるエッチング結果を

得るために使用される代表パラメータを提示している。表2では、本発明方法で使用されるエッチングガス化学剤の例における基本構成要素のいくつか、例えば、Clz、SF6、O2、He、及びArの流量(sccm)の好適なおよその範囲及び更に好適なおよその範囲と、図に表示されるエッチング結果を得るために使用される特定のガス化学剤に関する数値の例とを提示している。表3では、本発明方法で使用されるエッチング化学剤の例における基本構成要素のいくつか、例えばClz、O2、He、及びArの流量の好適なおよその範囲、更に好適なおよその範囲、及び代表パラメータを、SF6流量に対するパーセンテージの形式で提示している。

[0029]

ガス構成要素のいくつかは特定のガス化学剤に存在する場合と存在しない場合とがあると理解される。例えば、Clzは、従来技術の処理において初期ブレークスルーエッチング用に使用されるCF4とほぼ置き換わる形で使用される。このため、処理Aにおいて使用されるブレークスルーエッチングガス化学剤の主要な構成要素ではない。更に、表2に列挙されたガス化学剤構成要素はすべてを包括するものではなく、特定の目的を達成するために、或いは使用される特定のタイプのエッチング設備の具体的な必要性を満たすために、ガス化学剤に他のタイプのガスを含めることもできる。しかしながら、超深開口部をエッチングするメインエッチングにおいて使用するのに最も好適なガス化学剤には、表2に提示されるもの、つまりSF6、Oz、He、及びAr以外には、任意の有意な量の添加ガスは含まれない。

[0030]

【表1】

エッチング パラメータ	好適な およその	更に好適 なおよそ	およその代表パラ	カ ラメータ(<u> </u>	
	範囲	の範囲	A	В	С	D
処理室圧力	4 0	5 0	8 0	8 0	8 0	6 0
(mTorr)	~110	~100				1
最大電力(W)	300~	400~	500	500	500	1000
	2000	1200				
バイアス電力	1 0	2 0	2 5	2 5	2 5	2 5
	~100	~30				
後部ヘリウム	4	6	8	8	8	8
圧力(Torr)	~14	~10				
下部電極温度	0	1 5	5 0	3 0	2 0	2 0
(°C)	~ 7 0	~60				
処理室温度	2 0	4 0	6 0	5 0	5 0	5 0
(℃)	~ 7 0	~70				

(20)

表 1

[0031]

【表 2】

エッチングガ ス化学物質構 成要素/流量 (secm)		更に好適 なおよそ の範囲		の ラメータ(B	直 C	D
Cl ₂ (sccm)	5 0 ~ 2 0 0	8 0 ~1 2 0	なし	100	100	100
SF ₆ (sccm)	2 0 ~9 0	3 5 ~ 5 5	4 5	4 5	4 5	4 5
O ₂ (sccm)	1 0 ~ 7 0	2 5 ~4 5	3 5	3 5	3 5	3 5
H e (sccm)	1 0 0 ~4 0 0	1 5 0 ~ 2 5 0	200	200	200	200
A r (secm)	100 ~400	1 5 0 ~ 2 5 0	なし	なし	なし	なし

表 2

[0032]

【表 3】

エッチングガス化 学物質構成要素流 量(SF ₆ 流量に対 する%)		更に好適な およその範囲	およその代表 パラメータ値
C 1 2 (%)	110~330	180~270	2 2 2
O ₂ (%)	40~120	60~90	8 0
He (%)	200~650	350~550	4 4 4
Ar (%)	200~650	$350 \sim 550$	4 4 4

表3

[0033]

以上、本発明をいくつかの好適な実施形態に基づき説明してきたが、本発明の範囲に含まれる変更、置換、及び等価物が存在する。更に、本発明の方法及び装置を実施する数多くの代替方法が存在することにも留意されたい。例えば、この方法は、純粋なシリコンウェーハと同様にポリシリコン層において深開口部をエッチングするために利用することができる。更に、本発明方法を使用してエッチングされる開口部のエッチング深度は、好適な実施形態において提示された例によって全く制限されない。本発明の方法を利用し、エッチングパラメータのいくつかに適切な調整を施すことで、大きなエッチング深度を有し垂直断面等の望ましいその他の特性を有する開口部が得られると考えられる。したがって、前記特許就の範囲は、本発明の趣旨及び範囲に入るこうしたすべての変更、変形、及び等価物を含むものとして解釈されるべきである。

【図面の簡単な説明】

【図1】

従来技術のエッチングガス化学剤を利用して深開口部をエッチングする従来技 術の方法に含まれるステップを示す図。

【図2】

従来技術のエッチング方法を使用してエッチングされたシリコン層の深開口部 の断面図。

【図3】

本発明の一態様による、改善されたガス化学剤と共に適切に利用可能なプラズマリアクタの簡略図。

【図4】

本発明の一態様による、深開口部をエッチングする第一の発明方法に含まれるステップを示す図。

【図5a】

本発明の一実施形態にしたがって本発明のエッチング方法を使用してエッチングされたシリコン層の深開口部の断面図。

【図5b】

図5aと同じ本発明のエッチング方法を使用してシリコン層に超深開口部をエッチングすることを試みて得られた結果の断面図。

【図6】

本発明の別の態様にしたがって第二のエッチングガス化学剤を使用して超深開口部をエッチングする第二の発明方法に含まれるステップを示す図。

【図7】

本発明の一実施形態による第二の発明方法を使用してエッチングされたシリコン層の超深開口部を示す断面図。

【符号の説明】

- 202、504、514、704 … シリコン層
- 204 … マスキング層
- 206 … 深トレンチ
- 208 … 弓状特徵部
- 210 … ノッチ状特徴部
- 302 … ウェーハリアクタ
- 304 … プラズマ処理室
- 306 … 石英窓
- 308 … コイル
- 310、320 … 発電器
- 312 … ガス送出口

- 314 … 高周波誘導プラズマ領域
- 316 … ウェーハ
- 318 … 静電チャック
- 502、512 … 深開口部
- 5 1 6 … 傾斜断面
- 702 … 超深開口部

【図1】

Fig. 1

[図2]

Fig. 2

Fig. 3

【図4】

Fig. 4

【図5a】

Fig. 5(a)

【図5b】

Fig. 5(b)

【図6】

Fig. 6

特表2002-542623

【図7】

Fig. 7

【国際調査報告】

	INTERNATIONAL SEARCH	REPORT		
				plication No
A (1 ASC	ECATION OF BUR IECY MATTER		PCT/US OC	709447
IPC 7	HICATION OF SUBJECT MATTER H01L21/3065			
	o International Patent Classification (IPC) or to both national classific	lostion and IPC		
	ocumentation searched (classification system followed by classifica-	illon symbols)		
IPC 7	H01L	,		
	tion searched other than minimum documentation to the extent the			
	iata base consulted during the International search (name of data b		al, search terms use	t)
PAJ, I	NSPEC, IBM-TDB, EPO-Internal, WPI D	ata		
	ENTS CONSIDERED TO BE RELEVANT			· · · · · · · · · · · · · · · · · · ·
Category *	Citation of document, with indication, where appropriate, of the r	Mevant passages		Relevant to defin No.
A	US 5 047 1]5 A (CHARLET BARBARA 10 September 1991 (1991-09-10) column 2, line 54 -column 3, lin claims 1,3-5	ET AL) e 32;		1-32
A	BURTSEY A ET AL: "An anisotropi SF6-based plasma silicon trench investigation" MICROELECTRONIC ENGINEERING,NL,E PUBLISHERS BY., AMSTERDAN, vol. 40, no. 2, 1 July 1998 (199 pages 85-97, XP004128754 ISSN: 0167-9317 the whole document	etching LSEVIER		1-32
		-/		
X Furth	er documents are listed in the continuation of box C.	X Patent family	members are listed	ій алгех.
"A" documer conside serior de Hilog de Hilog de Cumer which is citation other m documer later the	nt which may throw doubts on priority claim(s) or s cried to establish the publication date of another or other special reason (as especified) nt referring to an oral disclosure, use, exhibition or neems of published prior to the international filing date but an the priority date claimed	"X" document of partic cannot be consid involve an invarid "Y" document of partic cannot be consid document is con-	Id not in conflict with not the principle or the utar relevance; the ca ared novel or cannot ve step when the do- utar relevance; the clared to involve an im- bined with one or mo- principle.	the application but nory underlying the laimed invention be considered to numeric to taken alone airmed invention entire step when the re other such docu- tio one person skilled
	ctual completion of the international search July 2000	Date of mailing of 31/07/2	the international sea	rch report
	alling address of the ISA	Authorized officer		
	European Patent Office, P. B. 5818 Patentlean 2 NL – 2290 MV Rijewijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl Fax: (+31–70) 340–3016	Szarows	ki, A	

Form PCT/IBA/210 (second sheet) (July 1982)

ı

INTERNATIONAL SEARCH REPORT

inte	lone)	Application No	
PCT	/US	00/09447	

:. (Continu		
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
ategory *	Citation of document, with indication, where appropriate, of the setovant passages	PRINCE D COMP NO.
1	US 4 726 879 A (BONDUR JAMES A ET AL) 23 February 1988 (1988-02-23) column 2, line 15 - line 21 abstract	1-32

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

		ONAL SEARCI				Application No 00/09447
Patent document cited in search report		Publication date	F	atent family member(s)		Publication date
US 5047115	A	10-09-1991	FR DE DE EP WO	26160 38733 38733 03597 88098	37 A 37 Γ 77 A	02-12-1988 03-09-1992 11-02-1993 28-03-1990 15-12-1988
US 4726879	A	23-02-1988	EP JP JP JP	02563 20104 70441 630656	91 C 75 B	24-02-1988 02-02-1996 15-05-1995 24-03-1988
						24-03-1966
•						

Form PCT/ISA/210 (paterni family annex) (Adv 1992)

フロントページの続き

F ターム(参考) 5F004 AA01 AA05 BA20 BB13 BB22 BB25 CA02 DA00 DA01 DA04 DA16 DA17 DA18 DA22 DA23 DA26 DB01 DB02 EA03 EA28

EB08