Data Structures 2018 Exercise 2, solutions (Week 38)

1

$$\sqrt{19n} = \sqrt{19}\sqrt{n} \in \mathcal{O}(\frac{1}{\sqrt{19}} * (\sqrt{19}\sqrt{n})) = \mathcal{O}(\sqrt{n})$$

$$21n^2 \in \mathcal{O}(n^2)$$

$$2^{100000} \in \mathcal{O}(\frac{1}{2^{100000}} * (2^{100000} * 1)) = \mathcal{O}(1)$$

$$\log(4n^7) = \log 4 + 7\log n \in \mathcal{O}(\log n)$$

$$\log\left(\frac{n\log n^2}{\log n}\right) = \log\left(\frac{2n\log n}{\log n}\right) = \log 2n \in \mathcal{O}(\log n)$$

$$\log k^n = \underbrace{\log k + \log k + \dots + \log k}_{n \text{ kappaletta}} = n \underbrace{\log k}_{\text{vakio}} \in \mathcal{O}(n)$$

$$7(n^3 + 1)(n + 1) = 7n^4 + 7n^3 + 7n + 7 \in \mathcal{O}(n^4)$$

$$\log(10n) = \underbrace{\log 10 + \log n}_{\text{vakio}} \in \mathcal{O}(\log n)$$

$$11n\log n \in \mathcal{O}(n\log n)$$

2 Correct order is as follows:

$$42, 7 \log \log n, 3 \log n, \sqrt{n}, \sqrt{n} \log n, 6n, n \log n, 5n^2, n!.$$

As for example:

$$\lim_{n\to\infty} \left(\frac{n!}{5n^2}\right) = \lim_{n\to\infty} \left(\frac{(n-1)!}{5n}\right) = \lim_{n\to\infty} \left(\frac{1}{5} \cdot \underbrace{(n-1)}_{n} \cdot \underbrace{(n-2)!}_{n\to\infty}\right) = \infty,$$

so n! grows asymptotically faster than $5n^2$.

3 Check PrintValue.java.

4 Check SortingComparison.java.

5 Let $f(n) = a_0 + a_1 n + a_2 n^2 + \dots + a_d n^d$ where $a_k \in \mathbb{R}$ and $a_d \neq 0$, $k = 0, 1, 2, \dots, d$. Since for all $n \geq 1$

$$f(n) \leq |f(n)| = |a_0 + a_1 n + a_2 n^2 + \dots + a_d n^d|$$

$$\leq |a_0| + |a_1|n + |a_2|n^2 + \dots + |a_d|n^d$$

$$= (\frac{|a_0|}{n^d} + \frac{|a_1|}{n^{d-1}} + \frac{|a_2|}{n^{d-2}} + \dots + |a_d|)n^d$$

$$\leq (|a_0| + |a_1| + |a_2| + \dots + |a_d|)n^d$$

holds and by choosing $c = |a_0| + |a_1| + |a_2| + \cdots + |a_d|$ and $n_0 = 1$, we obtain that $f(n) \leq cn^d$ when $n \geq n_0$, i.e. f(n) is $\mathcal{O}(n^d)$.

6 Since d(n) is $\mathcal{O}(f(n))$ and e(n) is $\mathcal{O}(g(n))$, there exist $n_0, n_1 \in \mathbb{N}$ and r, s > 0 such that $d(n) \leq rf(n)$ and $e(n) \leq sg(n)$. Hence by choosing $n_2 = \max\{n_0, n_1\}$ and b = rs we obtain $d(n)e(n) \leq r \cdot s \cdot f(n)g(n) = b \cdot f(n)g(n)$, when $n \geq n_2$. Thus, d(n)e(n) is $\mathcal{O}(f(n)g(n))$.

7 Let
$$f(n) = 7 + \sqrt{5n} + n + 12n^3 + 6n^4$$
 and $g(n) = n^4$. Because
$$6n^4 \le 6n^4,$$

$$12n^3 \le 12n^4,$$

$$n \le n^4,$$

$$\sqrt{5n} = \sqrt{5}\sqrt{n} \le \sqrt{5}n \le \sqrt{5}n^4,$$

$$7 < 7n^4$$

for all $n \ge 1$ we obtain

$$f(n) = 7 + \sqrt{5n} + n + 12n^3 + 6n^4$$

$$\leq 7n^4 + \sqrt{5}n^4 + n^4 + 12n^4 + 6n^4 = (26 + \sqrt{5})n^4,$$

when $n \geq 1$. Thus, we can choose $c = 26 + \sqrt{5}$ and $n_0 = 1$. Hence, there exist positive constants c and n_0 such that $f(n) \leq cg(n)$ when $n \geq n_0$. Thus, f(n) is $\mathcal{O}(n^4)$.

8 Let $f(n) = 6 + 2 \log \log \log n + 5n\sqrt{n} + n^3 + \sqrt[3]{2}n^4 + n^5$ and $g(n) = n^5$. Since

$$n^{5} \leq n^{5},$$

$$\sqrt[3]{2}n^{4} \leq \sqrt[3]{2}n^{5},$$

$$n^{3} \leq n^{5},$$

$$5n\sqrt{n} \leq 5n \cdot n = 5n^{2} \leq 5n^{5}$$

$$6 < 6n^{5}$$

for all $n \ge 1$ and $2 \log \log \log n \le 2 \log n \le 2n \le 2n^5$, when $n \ge 3$ ($n \ge 3$ ($n \ge 3$ ($n \ge 3$) ($n \ge 3$) ($n \ge 3$) and $n \ge 3$) and $n \ge 3$) are logarithm, we obtain

$$6 + 2\log\log\log n + 5n\sqrt{n} + n^3 + \sqrt[3]{2}n^4 + n^5$$

$$\leq 6n^5 + 2n^5 + 5n^5 + n^5 + \sqrt[3]{2}n^5 + n^5 = (15 + \sqrt[3]{2})n^5.$$

when $n \geq 3$. Thus, we can choose $c = 15 + \sqrt[3]{2}$ and $n_0 = 3$. Hence, there exist positive constants c and n_0 such that $f(n) \leq cg(n)$ when $n \geq n_0$. Hence, f(n) is $\mathcal{O}(n^5)$.