SVM (ForestFire)

classify the Size_Categorie using SVM

month month of the year: 'jan' to 'dec' day day of the week: 'mon' to 'sun'

FFMC FFMC index from the FWI system: 18.7 to 96.20 DMC DMC index from the FWI system: 1.1 to 291.3 DC DC index from the FWI system: 7.9 to 860.6 ISI ISI index from the FWI system: 0.0 to 56.10 temp temperature in Celsius degrees: 2.2 to 33.30

RH relative humidity in %: 15.0 to 100 wind wind speed in km/h: 0.40 to 9.40 rain outside rain in mm/m2: 0.0 to 6.4

Size Categorie the burned area of the forest (Small, Large)

1. Import Libs

In [55]:

```
import numpy as np
import pandas as pd
from sklearn import preprocessing
from sklearn import metrics
import seaborn as sns
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt
from sklearn.decomposition import PCA
from mlxtend.plotting import plot_decision_regions
from sklearn.metrics import confusion_matrix as cm
from sklearn.metrics import accuracy_score as ac
from sklearn.metrics import classification_report as report,roc_curve
from sklearn.metrics import roc_auc_score
```

2. Import Data

In [2]:

```
forest_fire = pd.read_csv('forestfires.csv')
forest_fire
```

Out[2]:

	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	 monthfeb	monthjan	n
0	mar	fri	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0	 0	0	
1	oct	tue	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0	 0	0	
2	oct	sat	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0	 0	0	
3	mar	fri	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2	 0	0	
4	mar	sun	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0	 0	0	
512	aug	sun	81.6	56.7	665.6	1.9	27.8	32	2.7	0.0	 0	0	
513	aug	sun	81.6	56.7	665.6	1.9	21.9	71	5.8	0.0	 0	0	
514	aug	sun	81.6	56.7	665.6	1.9	21.2	70	6.7	0.0	 0	0	
515	aug	sat	94.4	146.0	614.7	11.3	25.6	42	4.0	0.0	 0	0	
516	nov	tue	79.5	3.0	106.7	1.1	11.8	31	4.5	0.0	 0	0	

517 rows × 31 columns

3. EDA

In [3]:

forest_fire.isna().sum()

Out[3]:

month	0
day	0
FFMC	0
DMC	0
DC	0
ISI	0
temp	0
RH	0
wind	0
rain	0
area	0
dayfri	0
daymon	0
daysat	0
daysun	0
daythu	0
daytue	0
daywed	0
monthapr	0
monthaug	0
monthdec	0
monthfeb	0
monthjan	0
monthjul	0
monthjun	0
monthmar	0
monthmay	0
monthnov	0
monthoct	0
monthsep	0
size_category	0
dtype: int64	

In [4]:

forest_fire.dtypes

Out[4]:

month object day object float64 FFMC float64 DMC DC float64 ISI float64 float64 temp RH int64 wind float64 rain float64 float64 area int64 dayfri daymon int64 daysat int64 daysun int64 daythu int64 daytue int64 int64 daywed monthapr int64 monthaug int64 monthdec int64 monthfeb int64 monthjan int64 monthjul int64 monthjun int64 monthmar int64 monthmay int64 monthnov int64 monthoct int64 monthsep int64 size_category object

dtype: object

forest_fire['size_category'].value_counts()

Out[5]:

In [5]:

small 378 large 139

Name: size_category, dtype: int64

In [6]:

forest_fire.describe().T

Out[6]:

	count	mean	std	min	25%	50%	75%	max
FFMC	517.0	90.644681	5.520111	18.7	90.2	91.60	92.90	96.20
DMC	517.0	110.872340	64.046482	1.1	68.6	108.30	142.40	291.30
DC	517.0	547.940039	248.066192	7.9	437.7	664.20	713.90	860.60
ISI	517.0	9.021663	4.559477	0.0	6.5	8.40	10.80	56.10
temp	517.0	18.889168	5.806625	2.2	15.5	19.30	22.80	33.30
RH	517.0	44.288201	16.317469	15.0	33.0	42.00	53.00	100.00
wind	517.0	4.017602	1.791653	0.4	2.7	4.00	4.90	9.40
rain	517.0	0.021663	0.295959	0.0	0.0	0.00	0.00	6.40
area	517.0	12.847292	63.655818	0.0	0.0	0.52	6.57	1090.84
dayfri	517.0	0.164410	0.371006	0.0	0.0	0.00	0.00	1.00
daymon	517.0	0.143133	0.350548	0.0	0.0	0.00	0.00	1.00
daysat	517.0	0.162476	0.369244	0.0	0.0	0.00	0.00	1.00
daysun	517.0	0.183752	0.387657	0.0	0.0	0.00	0.00	1.00
daythu	517.0	0.117988	0.322907	0.0	0.0	0.00	0.00	1.00
daytue	517.0	0.123791	0.329662	0.0	0.0	0.00	0.00	1.00
daywed	517.0	0.104449	0.306138	0.0	0.0	0.00	0.00	1.00
monthapr	517.0	0.017408	0.130913	0.0	0.0	0.00	0.00	1.00
monthaug	517.0	0.355899	0.479249	0.0	0.0	0.00	1.00	1.00
monthdec	517.0	0.017408	0.130913	0.0	0.0	0.00	0.00	1.00
monthfeb	517.0	0.038685	0.193029	0.0	0.0	0.00	0.00	1.00
monthjan	517.0	0.003868	0.062137	0.0	0.0	0.00	0.00	1.00
monthjul	517.0	0.061896	0.241199	0.0	0.0	0.00	0.00	1.00
monthjun	517.0	0.032882	0.178500	0.0	0.0	0.00	0.00	1.00
monthmar	517.0	0.104449	0.306138	0.0	0.0	0.00	0.00	1.00
monthmay	517.0	0.003868	0.062137	0.0	0.0	0.00	0.00	1.00
monthnov	517.0	0.001934	0.043980	0.0	0.0	0.00	0.00	1.00
monthoct	517.0	0.029014	0.168007	0.0	0.0	0.00	0.00	1.00
monthsep	517.0	0.332689	0.471632	0.0	0.0	0.00	1.00	1.00

Checking Outlires

In [7]:

```
sns.boxplot(forest_fire['area'])
plt.grid()
```

C:\Users\shubham\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.1 2, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretati on.

warnings.warn(

There are 3 Outlier instances in our data

In [8]:

```
plt.figure(figsize=(16,5))
print("Skewness =",forest_fire['area'].skew())
print("Kurtosis =",forest_fire['area'].kurtosis())
sns.kdeplot(forest_fire['area'],shade=True,color='r')
plt.xticks([i for i in range(0,1200,50)])
plt.show()
```

Skewness = 12.846933533934868 Kurtosis = 194.1407210942299

The Data is highly skewed and has large kurtosis value

Majority of the forest fires do not cover a large area, most of the damaged area is under 100 hectares of land

In [9]:

```
dfa = forest_fire[forest_fire.columns[0:10]]
month_colum = dfa.select_dtypes(include='object')
month_colum
```

Out[9]:

	month	day
0	mar	fri
1	oct	tue
2	oct	sat
3	mar	fri
4	mar	sun
512	aug	sun
513	aug	sun
514	aug	sun
515	aug	sat
516	nov	tue

517 rows × 2 columns

In [10]:

```
plt.figure(figsize=(16,10))
for i,col in enumerate(month_colum,1):
    plt.subplot(2,2,i)
    forest_fire[col].value_counts(normalize=True).plot.bar()
    plt.ylabel(col)
    plt.xlabel('% distribution per category')
plt.tight_layout()
plt.show()
```


In [16]:

```
scL =forest_fire['size_category'] == 'large'
```

In [23]:

```
forest_fire.plot(kind='scatter', x='month', y='day', alpha=0.2, s=20*forest_fire['area'],fi
plt.xlabel('Months',color='red',fontsize=15)
plt.ylabel('Days',color='red',fontsize=15)
plt.title('Different Time periode of fire',color='blue',fontsize=18)
```

Out[23]:

Text(0.5, 1.0, 'Different Time periode of fire')

Majority of the fire accors in the month Aug and Sep || sunday and friday have recorded the most cases of fire

In [25]:

```
num_columns = dfa.select_dtypes(exclude='object')
```

In [26]:

```
plt.figure(figsize=(18,40))
for i,col in enumerate(num_columns,1):
    plt.subplot(8,4,i)
    sns.kdeplot(forest_fire[col],color='g',shade=True,legend=True)
    plt.ylabel(col)
plt.tight_layout()
plt.show()
```


In [27]:

pd.DataFrame(data=[num_columns.skew(),num_columns.kurtosis()],index=['skewness','kurtosis']

Out[27]:

		FFMC	DMC	DC	ISI	temp	RH	wind	rain
	skewness	-6.575606	0.547498	-1.100445	2.536325	-0.331172	0.862904	0.571001	19.816344
	kurtosis	67.066041	0.204822	-0.245244	21.458037	0.136166	0.438183	0.054324	421.295964
4									•

Finding Correlation

In [28]:

```
corr = forest_fire[forest_fire.columns[0:11]].corr()
```

In [29]:

```
plt.figure(figsize=(10,10))
sns.heatmap(corr,annot=True)
```

Out[29]:

<AxesSubplot:>

4. Model Building

SVM

```
In [31]:
```

```
X = forest_fire.iloc[:,2:30]
y = forest_fire.iloc[:,30]
```

In [32]:

Χ

Out[32]:

	FFMC	DMC	DC	ISI	temp	RH	wind	rain	area	dayfri	 monthdec	monthfeb
0	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0	0.00	1	 0	0
1	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0	0.00	0	 0	0
2	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0	0.00	0	 0	0
3	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2	0.00	1	 0	0
4	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0	0.00	0	 0	0
512	81.6	56.7	665.6	1.9	27.8	32	2.7	0.0	6.44	0	 0	0
513	81.6	56.7	665.6	1.9	21.9	71	5.8	0.0	54.29	0	 0	0
514	81.6	56.7	665.6	1.9	21.2	70	6.7	0.0	11.16	0	 0	0
515	94.4	146.0	614.7	11.3	25.6	42	4.0	0.0	0.00	0	 0	0
516	79.5	3.0	106.7	1.1	11.8	31	4.5	0.0	0.00	0	 0	0

517 rows × 28 columns

←

In [33]:

```
y
```

Out[33]:

```
0 small
1 small
2 small
```

3 small
4 small

...

512 large513 large

513 large514 large

515 small

516 small

Name: size_category, Length: 517, dtype: object

In [34]:

```
mapping = {'small': 0, 'large': 1}
```

```
In [35]:
```

```
y = y.replace(mapping)
```

```
In [36]:
```

```
x_train,x_test,y_train,y_test = train_test_split(X,y,test_size = 0.20, stratify = y)
```

4.1 Linear

In [37]:

```
model_linear = SVC(kernel = "linear")
model_linear.fit(x_train,y_train)
pred_test_linear = model_linear.predict(x_test)
print("Accuracy:",metrics.accuracy_score(y_test, pred_test_linear))
```

Accuracy: 0.9711538461538461

In [110]:

```
fpr, tpr, thresholds = roc_curve(y_test, pred_test_linear)
plt.figure(figsize=(8,6))
plt.plot(fpr, tpr, linewidth=2, color='red')
plt.plot([0,1], [0,1], 'k--')
plt.rcParams['font.size'] = 12
plt.title('ROC curve for SVM Classifier using Linear Kernel for Predicting Size_category')
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
plt.show()
ROC_AUC = roc_auc_score(y_test, pred_test_linear)
print('ROC AUC : {:.4f}'.format(ROC_AUC))
```

ROC curve for SVM Classifier using Linear Kernel for Predicting Size category

ROC AUC: 0.9690

4.2 Poly

In [38]:

```
model_poly = SVC(kernel = "poly")
model_poly.fit(x_train,y_train)
pred_test_poly = model_poly.predict(x_test)
print("Accuracy:",metrics.accuracy_score(y_test, pred_test_poly))
```

Accuracy: 0.7692307692307693

In [109]:

```
fpr, tpr, thresholds = roc_curve(y_test, pred_test_poly)
plt.figure(figsize=(8,6))
plt.plot(fpr, tpr, linewidth=2, color='red')
plt.plot([0,1], [0,1], 'k--')
plt.rcParams['font.size'] = 12
plt.title('ROC curve for SVM Classifier using Polynomial Kernel for Predicting Size_categor
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
plt.show()
ROC_AUC = roc_auc_score(y_test, pred_test_poly)
print('ROC AUC : {:.4f}'.format(ROC_AUC))
```

ROC curve for SVM Classifier using Polynomial Kernel for Predicting Size_category

ROC AUC: 0.5714

4.3 RBF

In [39]:

```
model_rbf = SVC(kernel = "rbf")
model_rbf.fit(x_train,y_train)
pred_test_rbf = model_rbf.predict(x_test)
print("Accuracy:",metrics.accuracy_score(y_test, pred_test_rbf))
```

Accuracy: 0.7596153846153846

In [107]:

```
fpr, tpr, thresholds = roc_curve(y_test, pred_test_rbf)
plt.figure(figsize=(8,6))
plt.plot(fpr, tpr, linewidth=2, color='red')
plt.plot([0,1], [0,1], 'k--')
plt.rcParams['font.size'] = 12
plt.title('ROC curve for SVM Classifier using RBF Kernel for Predicting Size_category')
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
plt.show()
ROC_AUC = roc_auc_score(y_test, pred_test_rbf)
print('ROC AUC : {:.4f}'.format(ROC_AUC))
```

ROC curve for SVM Classifier using RBF Kernel for Predicting Size_category

ROC AUC : 0.5536

4.4 Sigmoid

In [40]:

```
model_sigmoid = SVC(kernel = "sigmoid")
model_sigmoid.fit(x_train,y_train)
pred_test_sigmoid = model_sigmoid.predict(x_test)
print("Accuracy:",metrics.accuracy_score(y_test, pred_test_sigmoid))
```

Accuracy: 0.7019230769230769

In [108]:

```
fpr, tpr, thresholds = roc_curve(y_test, pred_test_sigmoid)
plt.figure(figsize=(8,6))
plt.plot(fpr, tpr, linewidth=2, color='red')
plt.plot([0,1], [0,1], 'k--')
plt.rcParams['font.size'] = 12
plt.title('ROC curve for SVM Classifier using Sigmoid Kernel for Predicting Size_category')
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
plt.show()
ROC_AUC = roc_auc_score(y_test, pred_test_sigmoid)
print('ROC AUC : {:.4f}'.format(ROC_AUC))
```

ROC curve for SVM Classifier using Sigmoid Kernel for Predicting Size_category

ROC AUC: 0.5141

The Linear Model has best accuracy compare to other Models

In []: