

http://al9ahira.com/

Itinéraire d'accès à Al9ahira (point B sur la carte) en partant de la Place Ibéria

المملكة المغربية ROYAUME DU MAROC

Ministère de l'Éducation Nationale, de l'Enseignement Supérieur, de la Recherche Scientifique et de la Formation des Cadres

> Présidence du Concours National Commun École Hassania des Travaux Publics

CONCOURS NATIONAL COMMUN

d'admission aux Établissements de Formation d'Ingénieurs et Établissements Assimilés

Session 2013

ÉPREUVE DE MATHÉMATIQUES II

Filière PSI

Durée 4 heures

Cette épreuve comporte 4 pages au format A4, en plus de cette page de garde L'usage de la calculatrice est interdit

L'énoncé de cette épreuve, particulière aux candidats de la filière PSI, comporte 4 pages.

L'usage de la calculatrice est interdit.

Les candidats sont informés que la qualité de la rédaction et de la présentation, la clarté et la précision des raisonnements constitueront des éléments importants pour l'appréciation des copies. Il convient en particulier de rappeler avec précisions les références des questions abordées.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Le sujet de cette épreuve est composé de deux exercices et d'un problème, tous indépendants.

Premier exercice Matrice de Gram et application

Soient $u_1, ..., u_n$ des vecteurs de \mathbb{R}^n , $n \geq 2$; on note $G(u_1, ..., u_n)$ la matrice de $\mathcal{M}_n(\mathbb{R})$ de terme général $\langle u_i, u_j \rangle$, où $\langle ..., \rangle$ désigne le produit scalaire canonique de \mathbb{R}^n . La matrice $G(u_1, ..., u_n)$ est dite une matrice de Gram.

On note $\mathcal{B} = (e_1, ..., e_n)$ la base canonique de \mathbb{R}^n et, pour tout $j \in \{1, ..., n\}$, on note $u_j = \sum_{k=1}^n m_{k,j} e_k$ l'expression du vecteur u_j dans la base \mathcal{B} . On désigne enfin par M la matrice de $\mathcal{M}_n(\mathbb{R})$ de terme général $m_{i,j}$.

- 1. Pour tout couple (i, j) d'éléments de $\{1, ..., n\}$, exprimer le produit scalaire $\langle u_i, u_j \rangle$ à l'aide des coefficients de la matrice M et en déduire que $G(u_1, ..., u_n) = {}^t MM$.
- 2. Montrer que la matrice $G(u_1,...,u_n)$ est symétrique et positive, et que si la famille $(u_1,...,u_n)$ est libre alors la matrice $G(u_1,...,u_n)$ est définie positive.
- **3.** On note A_n la matrice $\mathcal{M}_n(\mathbb{R})$ de terme général $a_{i,j} = \min(i,j)$.
 - (a) Exprimer A_n comme une matrice de Gram et en déduire qu'elle est symétrique définie positive, puis expliciter une matrice $R_n \in \mathcal{M}_n(\mathbb{R})$, triangulaire supérieure, telle que $A_n = {}^tR_nR_n$.
 - (b) On prend n = 4 et on note X, (resp.Y, resp.Z) le vecteur de $\mathcal{M}_{4,1}(\mathbb{R})$ de composantes x_1, x_2, x_3 et x_4 (resp. 1, 2, 3 et 4 resp. z_1, z_2, z_3 et z_4). Résoudre les systèmes linéaires ${}^tR_4Z = Y$ et $R_4X = Z$ puis en déduire la solution du système $A_4X = Y$.

Deuxième exercice

Résolution de l'équation $X^2 + 3X = A$ dans $\mathcal{M}_3(\mathbb{R})$

On note u l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice $A = \begin{pmatrix} 10 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

- 1. Justifier que A est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$. On note λ_1 , λ_2 et λ_3 les valeurs propres de A et on suppose que $\lambda_1 > \lambda_2 > \lambda_3$; préciser les valeurs de λ_1 , λ_2 et λ_3 .
- 2. Pour tout $k \in \{1, 2, 3\}$, déterminer le vecteur propre e_k de u associé à la valeur propre λ_k et ayant pour composantes des nombres entiers dont l'un est égal à 1.

- 3. Justifier que (e_1, e_2, e_3) est une base de \mathbb{R}^3 et écrire la matrice Δ de u relativement à cette base.
- **4.** Déterminer une matrice $P \in GL_3(\mathbb{R})$ telle que $A = P\Delta P^{-1}$ puis calculer P^{-1} .
- **5.** Soit $B \in \mathcal{M}_3(\mathbb{R})$ une matrice vérifiant $B^2 + 3B = A$; on note v l'endomorphisme de \mathbb{R}^3 canoniquement associé à B.
 - (a) Justifier que $v^2 + 3v = u$.
 - (b) Vérifier que uv = vu et en déduire que, pour tout $k \in \{1, 2, 3\}$, le vecteur $v(e_k)$ est colinéaire à e_k ; conclure que la matrice V de v relativement à la base (e_1, e_2, e_3) est diagonale.
 - (c) On pose $V = diag(\alpha_1, \alpha_2, \alpha_3)$. Exprimer Δ en fonction de V puis déterminer les valeurs possibles de α_1, α_2 et α_3 ainsi que celles de la matrice B.
- **6.** Combien de solutions l'équation $X^2 + 3X = A$ admet-elle dans $\mathcal{M}_3(\mathbb{R})$?

Problème

Dans ce problème, $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{C})$ désigne l'espace vectoriel des applications de classe \mathcal{C}^{∞} de \mathbb{R} dans \mathbb{C} et \mathscr{D} l'opérateur de dérivation défini sur cet espace vectoriel par : $\mathscr{D}(f) = f', f \in \mathcal{C}^{\infty}(\mathbb{R},\mathbb{C})$; de même, $\mathbb{C}[X]$ désigne l'espace vectoriel des polynômes à coefficients complexes à une indéterminée et D l'opérateur de dérivation défini sur cet espace vectoriel par : $D(P) = P', P \in \mathbb{C}[X]$.

On rappelle que \mathscr{D} et D sont des endomorphismes de $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{C})$ et $\mathbb{C}[X]$ respectivement.

Si $P = a_0 + a_1 X + ... + a_n X^n$ est un polynôme à coefficients complexes de degré $n \ge 1$, on lui associe l'équation différentielle linéaire homogène notée (\mathscr{E}_P) suivante :

$$a_n y^{(n)} + \dots + a_1 y' + a_0 y = 0.$$
 (\mathcal{E}_P)

Par "solution de l'équation différentielle (\mathscr{E}_P) " on fait référence à toute application $f: \mathbb{R} \longmapsto \mathbb{C}$, n-fois dérivable telle que

$$\forall x \in \mathbb{R}, \quad a_n f^{(n)}(x) + \dots + a_1 f'(x) + a_0 f(x) = 0.$$

Comme $a_n \neq 0$, il est évident que toute solution de (\mathcal{E}_P) est un élément de $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$. L'ensemble de ces solutions est donc un sous-espace vectoriel complexe de $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$.

1^{ère} Partie

Résultats préliminaires

- **1.1.** Soient $\alpha \in \mathbb{C} \setminus \{0\}$ et $R = \sum_{k=0}^n a_k X^k \in \mathbb{C}[X]$ un polynôme de degré $n \geqslant 0$.
 - **1.1.1.** On suppose qu'il existe un polynôme $R_1 \in \mathbb{C}[X]$ tel que $R'_1 + \alpha R_1 = R$.
- 1.1.1. En utilisant une propriété relative au degré de la somme de deux polynômes, montrer que le degré de R_1 est égal à n.
- **1.1.1.2.** On décrit donc $R_1 = \sum_{k=0}^n b_k X^k$ avec $b_n \neq 0$. Expliciter les relations liant les coefficients a_k et b_k , $0 \leq k \leq n$, et préciser la matrice $T \in \mathcal{M}_n(\mathbb{C})$ telle que Y = TX où X (resp. Y) est le vecteur de $\mathcal{M}_{n+1,1}(\mathbb{C})$ de composantes $b_0, b_1, ..., b_n$ (resp. $a_0, a_1, ..., a_n$).
- **1.1.2.** Montrer que la matrice T est inversible et en déduire l'existence et l'unicité du polynôme $R_1 \in \mathbb{C}[X]$ vérifiant $R'_1 + \alpha R_1 = R$; en plus R_1 a le même degré que R.

- **1.2.** Soit λ un nombre complexe et $g: \mathbb{R} \longmapsto \mathbb{C}$ une fonction continue.
- **1.2.1.** Montrer que les solutions de l'équation différentielle $y' \lambda y = g$ sont de la forme $x \longmapsto G(x) e^{\lambda x}$ où G est une primitive de la fonction $x \longmapsto g(x) e^{-\lambda x}$.
- **1.2.2.** Dans cette question, on pose $g(x) = R(x) e^{\lambda x}$, $x \in \mathbb{R}$, où $R \in \mathbb{C}[X]$. Montrer que les solutions de l'équation différentielle $y' \lambda y = g$ sont de la forme $x \longmapsto S(x) e^{\lambda x}$ où S est un polynôme à coefficients complexes dont le polynôme dérivé est égal à R.
- **1.2.3.** Dans cette question, on pose $g(x) = R(x) e^{\mu x}$, $x \in \mathbb{R}$, où μ désigne un complexe **distinct** de λ et R un polynôme non nul à coefficients complexes. Montrer que les solutions de l'équation différentielle $y' \lambda y = g$ sont de la forme $x \longmapsto R_1(x) e^{\mu x} + c e^{\lambda x}$, où R_1 est l'unique polynôme à coefficients complexes vérifiant $R'_1 + (\mu \lambda)R_1 = R$ et c un paramètre complexe.

2^{ème} Partie

Expression des solutions de l'équation différentielle (\mathcal{E}_P)

2.1. Cas où $P = (X - \lambda)^n$ avec $\lambda \in \mathbb{C}$ et $n \in \mathbb{N}*$

Montrer que dans ce cas, $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$ est solution de l'équation différentielle (\mathscr{E}_P) si, et seulement si, il existe un polynôme $R \in \mathbb{C}_{n-1}[X]$ tel que $f(x) = R(x) e^{\lambda x}$, $x \in \mathbb{R}$. On pourra calculer la dérivée n-ième de la fonction $h: x \longmapsto e^{-\lambda x} f(x)$.

2.2. Soit $\lambda \in \mathbb{C}$ et $Q \in \mathbb{C}[X]$, $Q \neq 0$; on pose $P = (X - \lambda)Q$ et on écrit

$$P = \sum_{k=0}^{n} a_k X^k$$
 et $Q = \sum_{k=0}^{n-1} b_k X^k$.

2.2.1. Montrer que les coefficients de P et Q vérifient les relations

$$a_0 = -\lambda b_0, \ a_n = b_{n-1} \text{ et } a_k = b_{k-1} - \lambda b_k, \ 1 \leqslant k \leqslant n-1.$$

- **2.2.2.** Soit $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$. À l'aide des relations précédentes montrer, en opérant un changement d'indice, que $\sum_{k=0}^{n-1} b_k (f' \lambda f)^{(k)} = \sum_{k=0}^{n} a_k f^{(k)}$, puis en déduire que f est solution de l'équation différentielle (\mathscr{E}_P) si, et seulement si, $(f' \lambda f)$ est solution de (\mathscr{E}_Q) .
- **2.3.** En faisant un raisonnement par récurrence, retrouver le résultat de la question 2.1. ci-dessus sans avoir recours à un calcul de dérivée *n*-ième.
- **2.4.** Un exemple : Déterminer les entiers qui sont racines du polynôme $P_1 = X^4 + 2X^3 2X 1$ puis le factoriser dans $\mathbb{C}[X]$; donner l'expression des solutions de l'équation différentielle (\mathscr{E}_{P_1}) .
- **2.5.** Cas général : On suppose ici que le polynôme $P \in \mathbb{C}[X]$ s'écrit $P = \prod_{k=1}^r (X \lambda_k)^{m_k}$, où r est un entier $\geq 2, \lambda_1, \lambda_2, ..., \lambda_r$ sont des complexes deux à deux distincts, et $m_1, m_2, ..., m_r$ des entiers naturels non nuls.

En faisant un raisonnement par récurrence sur le degré de P, montrer que les solutions de l'équation différentielle (\mathscr{E}_P) sont les fonctions de la forme $x \mapsto \sum_{k=1}^r R_k(x) e^{\lambda_k x}$, où $R_k \in \mathbb{C}_{m_k-1}[X]$ pour tout $k \in \{1, ..., r\}$. On pourra exploiter le résultat de la question 2.2.2.

- **2.6.** Montrer, en précisant l'énoncé du théorème utilisé, que pour tout $P \in \mathbb{C}[X]$ les solutions de l'équation différentielle (\mathscr{E}_P) ont toujours la forme des solutions trouvées dans la question 2.5. précédente. Quelle est alors la dimension du \mathbb{C} -espace vectoriel des solutions de (\mathscr{E}_P) ?
- **2.7.** Un autre exemple : Donner la forme générale des solutions de l'équation différentielle (\mathscr{E}_{P_2}) où $P_2 = X^7 3X^6 + 5X^5 7X^4 + 7X^3 5X^2 + 3X 1$, sachant que 1 est racine triple de P_2 .

3^{ème} Partie

Soit $f: \mathbb{R} \longmapsto \mathbb{R}$ une fonction **dérivable**; pour tout réel τ , on désigne par f_{τ} la fonction de \mathbb{R} dans \mathbb{R} définie par : $f_{\tau}(x) = f(x + \tau)$, $x \in \mathbb{R}$; on note $E_f = \text{Vect}(\{f_{\tau}; \tau \in \mathbb{R}\})$ le sous-espace vectoriel réel de $\mathcal{F}(\mathbb{R}, \mathbb{R})$ engendré par les fonctions f_{τ} lorsque τ décrit \mathbb{R} .

3.1. Exemples

- **3.1.1.** On considère la fonction $h_1: x \longmapsto x e^{2x}$. Montrer que E_{h_1} est l'ensemble des combinaisons linéaires des fonctions h_1 et $h_2: x \longmapsto e^{2x}$. Quelle est sa dimension?
- **3.1.2.** On considère la fonction $h_3: x \longmapsto \cos x e^{3x}$. Montrer que E_{h_3} est l'ensemble des combinaisons linéaires des fonctions h_3 et $h_4: x \longmapsto \sin x e^{3x}$. Quelle est sa dimension?

On se propose dans la suite de cette partie de caractériser f pour que E_f soit de dimension 2. Pour cela, on suppose donc que E_f est de dimension finie 2 et on note (φ_1, φ_2) une base de E_f .

- **3.2.** Pour tout $n \in \mathbb{N}^*$, on définit la fonction $g_n : \mathbb{R} \mapsto \mathbb{R}$ par $: g_n(x) = n(f(x + \frac{1}{n}) f(x)), x \in \mathbb{R}$.
- **3.2.1.** Vérifier que, pour tout $n \in \mathbb{N}^*$, la fonction $g_n \in E_f$ et justifier qu'il existe des réels $\alpha_{1,n}, \alpha_{2,n}$ tels que $g_n = \alpha_{1,n}\varphi_1 + \alpha_{2,n}\varphi_2$. (1)
 - **3.2.2.** Montrer que, pour tout réel x, la suite réelle $(g_n(x))_{n\geqslant 1}$ converge vers f'(x).
- **3.3.** On veut montrer que $f' \in E_f$, pour cela on va étudier les suites $(\alpha_{1,n})_{n \geqslant 1}$ et $(\alpha_{2,n})_{n \geqslant 1}$.
- **3.3.1.** Justifier que la fonction φ_1 n'est pas identiquement nulle sur \mathbb{R} et en déduire qu'il existe $a_1 \in \mathbb{R}$ tel que $\varphi_1(a_1) \neq 0$. Montrer de plus que la fonction $x \longmapsto \varphi_2(x)\varphi_1(a_1) \varphi_1(x)\varphi_2(a_1)$, définie sur \mathbb{R} , n'est pas identiquement nulle puis en déduire qu'il existe $a_2 \in \mathbb{R}$ tel que la matrice $M = \begin{pmatrix} \varphi_1(a_1) & \varphi_2(a_1) \\ \varphi_1(a_2) & \varphi_2(a_2) \end{pmatrix}$ soit inversible.
- soit inversible. **3.3.2.** Pour tout $n \in \mathbb{N}^*$, on note $Z_n = \begin{pmatrix} g_n(a_1) \\ g_n(a_2) \end{pmatrix}$ et $Y_n = \begin{pmatrix} \alpha_{1,n} \\ \alpha_{2,n} \end{pmatrix}$. Vérifier que $Z_n = MY_n$ et en déduire l'expression de $\alpha_{1,n}$ et $\alpha_{2,n}$ en fonction de $g_n(a_1)$, $g_n(a_2)$ et des coefficients de la matrice M.
- **3.3.3.** Montrer alors que les suites $(\alpha_{1,n})_{n\geqslant 1}$ et $(\alpha_{2,n})_{n\geqslant 1}$ sont convergentes puis en déduire que $f'\in E_f$. On pourra exploiter la relation (1) et faire tendre n vers $+\infty$.
- **3.4.** Montrer plus généralement que si $h \in E_f$ alors h est dérivable et $h' \in E_f$, puis en déduire que E_f est un sous-espace vectoriel de $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$.
- **3.5.** Justifier que (f, f', f'') est une famille liée de E_f et en déduire que la fonction f est solution d'une équation différentielle linéaire d'ordre deux à coefficients constants. En déduire une expression de f, selon les cas, puis vérifier que ces fonctions répondent bien à la question.

FIN DE L'ÉPREUVE

Rien ne saurait remplacer un livre en papier

Des livres de prépas très joliment imprimés à des prix très accessibles

La qualité est notre point fort.

Vos commentaires sont importants pour nous Pour toute information, n'hésitez pas à nous contacter

> mailto:al9ahira@gmail.com http://al9ahira.com/

> > Tél: 0539/34 33 20

7, rue Égypte. Tanger