MULTI-DATA-SOURCE AI TRAINING MECHANISM AND THE REVELATION PRINCIPLE

Abstract.

1. Introduction

2. The Proof of the Revelation Principle

Definition 2.1. Let $\vec{v}=(v_1,...,v_n)$ be an n-dimentional vector. We will denote the (n-1)-dimentional vector in which the i-th coordinate is removed by $\vec{v_{-i}}=(v_1,...,v_{i-1},v_{i+1},...,v_n)$. Thus we have three equivalent notations: $\vec{v}=(v_1,...,v_n)=(v_i,\vec{v_{-i}})$.

Definition 2.2. An original AGI mechanism is a choice function f and a vector of utility functions $u_1^f, ..., u_n^f$

$$f: V_1 \times \dots \times V_n \to A \tag{2.1}$$

$$u_i^f: V_1 \times \dots \times V_n \to \mathbb{R}$$
 (2.2)

Definition 2.3. An original AGI mechanism $(f, u_1^f, ..., u_n^f)$ is called incentive compatible if $\forall i, \exists v_i \in V_i, \forall v_i' \in V_i$,

$$u_i^f(v_i, v_{-i}) \ge u_i^f(v_i', v_{-i}) \tag{2.3}$$

Definition 2.4. A trained AGI with (independent private values and) strict incomplete information for a set of n trainers is given by the following ingredients:

- (i) For every trainer i, a set of actions X_i .
- (ii) For every trainer i , a set of $data\ T_i$. A value $t_i\in T_i$ is the private information that i has.
- (iii)For every trainer i, a utility function $u_i:T_i\times X_1\times ...\times X_n\to\mathbb{R}$, where $u_i(t_i,x_1,...,x_n)$ is the utility achieved by player i, if his type is t_i , and the profile of actions taken by all trainers is $x_1,...,x_n$.

Definition 2.5. (i) A strategy of a trainer i is a function $s_i: T_i \to X_i$.

(ii)A strategy s_i is a (weakly) dominant strategy if for every t_i we have that the action $s_i(t_i)$ is a dominant strategy in the full information training defined by t_i . Formally:For all t_i , all x_i and all x_i' we have that

$$u_i(t_i, s_i(t_i), x_{-i}) \ge u_i(t_i, x_i', x_{-i})$$
 (2.4)

A profile $s_1, ..., s_n$ is called a dominant strategy equilibrium if each s_i is a dominant strategy.

Definition 2.6. (i) A synthetic training for n trainers is given by

- (a)trainers' data spaces $T_1, ..., T_n$,
- (b) trainers' action spaces $X_1, ..., X_n$,
- (c) an alternative set A,
- (d)an outcome function $a: X_1 \times ... \times X_n \to A$ and,

 $^{1991\} Mathematics\ Subject\ Classification.\ .$

The AGI with strict incomplete information induced by the synthetic training is given by using the data spaces T_i , the action spaces X_i , and the utilities $u_i(t_i, x_1, ..., x_n)$.

(ii) The synthetic training implements a choice function $f: T_1 \times ... \times T_n \to A$ in dominant strategies if for some dominant strategy equilibrium $s_1, ..., s_n$ of the induced game, where $s_i: T_i \to X_i$, we have that for all $t_1, ..., t_n$, $f(t_1, ..., t_n) = a(s_1(t_1), ..., s_n(t_n))$.

Proposition 2.1 (Revelation Principle). If there exists an arbitrary synthetic training AGI that implements f in dominant strategies, then there exists an incentive compatible original AGI that implements f.

Proof. The new AGI will simply simulate the equilibrium strategies of the players. That is , let $s_1, ..., s_n$ be a dominant strategy equilibrium of the synthetic training AGI, we define a new direct revelation AGI:

$$f(t_1, ..., t_n) := a(s_1(t_1), ..., s_n(t_n))$$
(2.5)

$$u_i^f(t_1, ..., t_n) := u_i(t(i), s_1(t_1), ..., s_n(t_n)), \text{ where } t(i) := t_i$$
 (2.6)

. Now since each s_i is a dominant strategy for player i , then for every t_i, x_{-i}, x_i' we have that

$$u_i(t(i), s_i(t_i), x_{-i}) \ge u_i(t(i), x_i', x_{-i})$$
 (2.7)

$$u_i(t(i), s_i(t_i), s_{-i}(t_{-i})) \ge u_i(t(i), s_i(t_i'), s_{-i}(t_{-i}))$$
 (2.8)

$$u_i^f(t_i, t_{-i}) \ge u_i^f(t_i', t_{-i})$$
 (2.9)

, which gives the definition of incentive compatibility of the original AGI $(f, u_1^f, ..., u_n^f)$. \Box

tips:if $\forall s_i$ is an injection , then the original AGI is equal to the synthetic training AGI given by:

$$\forall x_i \in Ims_i, a(x_1,...,x_n) := f(s_1^{-1}(x_1),...,s_n^{-1}(x_n))$$

3. Preorder on Syntheticness

Definition 3.1. *Measured data* is defined as data collected directly from measurements or experiments without any modifications from algorithms.

Definition 3.2. Synthetic data is defined as data that is generated algorithmicly with prompt or through algorithmic simulations based on models rather than being directly measured or collected from real-world events.

However, things are not purely black-and-white in real world. Even if some data came right out from a measurement instrument, it still may not be "purely-measured", because certain instruments have built-in denoise filter algorithms. Thus, the distinction between measured data and synthetic data is practically "fuzzy", with the following preorder on syntheticness.

Definition 3.3. For certain algorithm f,

$$a \succeq_f b \iff a = f(b)$$
 (3.1)

In particular, if f is not bijective, then $a \succ_f b$. If f is bijective, then f is called a transform and $a \sim_f b$.

Theorem 3.1. Suppose synthetic data is generated from two distinct AGI models a_1, a_2 , with synthesis function $s_1(t_1, a_1), s_2(t_2, a_2)$. Then $\exists f$ as a training mechanism, such that $f(...) = a_0$ with $a_0 \succeq a_1, a_2$.

Proof, hint an AGI model is a loss-less compression (bijective) on some observed data t.

References