

인공지능 입문

Part 01. 인공지능의 이해

Chapter 01. 인공지능의 개요

목차

- 1. 인공지능 소개
- 2. 인공지능의 중요성과 시장성
- 3. 인공지능의 연대기
- 4. 인공지능의 분류

01 인공지능 소개

!. 인공지능의 개념

- 지능(Intelligence)
 - 무언가를 이해하고 배우는 능력
 - 오직 인간만 가지고 있는 고유의 성질
 - 본능적으로 행동하는 것이 아니라 생각하고 이해함으로써 행동으로 옮기는 능력

I. 인공지능의 개념

- 인공지능(AI, Artificial Intelligence)
 - 컴퓨터가 학습하고 생각하여 스스로 판단할 수 있도록 만드는 기술

표 1-1 관점별 인공지능 개념

관점	개념 설명	
사전적 개념	철학적인 개념으로, 지성을 갖춘 존재 또는 시스템에 의해 만들어진 인공적인 지능을 의미	
전통적 개념	컴퓨터가 인간의 지능적인 행동을 모방할 수 있도록 하는 소프트웨어로, 인간이 가진 지적 능력의 일부 또 는 전체를 구현한 것	
기술적 개념	인간의 지능으로 할 수 있는 사고, 학습, 자기계발 등을 컴퓨터가 할 수 있도록 하는 방법을 연구하는 컴퓨터공학 및 정보기술의 한 분야	

I. 인공지능의 개념

하나 더 알기 프로그래밍과 인공지능

- **프로그래밍**: 발생할 수 있는 모든 케이스에 대해 사람이 프로그램으로 구현하고 행동
- 인공지능 : 컴퓨터 스스로 데이터를 학습하여 판단하고 행동

Ⅱ. 인공지능의 목표

- 다트머스 컨퍼런스(Dartmouth Conference)
 - 1956년, 미국 다트머스 대학교에서 10명의 학자들이 참여한 회의로, 인공지능이라는 용어가 대중에 처음 알려짐.
- 다트머스 컨퍼런스의 전제
 - 학습의 모든 측면, 혹은 지능의 모든 특성이 원칙적으로 정확히 기술되어서 이를 모사하는 기계를 만들 수 있다는 가정에 토대를 두고 연구를 진행할 것
- 다트머스 컨퍼런스의 목표
 - 사람의 다양한 능력을 컴퓨터가 대신할 수 있도록 하는 것

Ⅱ. 인공지능의 목표

그림 1-2 다트머스 컨퍼런스 참석자들

인공지능이라는 단어는 미국의 전산학자 이며 인지과학자인 존 맥카시가 만들었습니다. 존 맥카시는 다트머스 컨퍼런스 개최를 준비하면서 경비 마련을 위해 록펠러 재단에 후원금 요청서를 보냈는데, 이 요청서에 '인공지능'이라는 용어를 처음 사용한 것입니다. 그는 인공지능에 대한 연구 업적을 인정받아 1971년 튜링상을 수상했습니다.

Ⅱ. 인공지능의 목표

- 인공지능 기술은 현재 생활가전, 의료, 교육, 국방, 제조, 재무분석, 서비
 스 등 다양한 분야에서 활용되고 있음
- 인공지능의 발달은 궁극적으로 로봇의 기능을 향상시키고 실생활에 로 봇이 도입될 수 있도록 하는 데 있음
- (예) **동영상 분석 기술 :** 미래 인공지능 로봇의 눈이 제 역할을 할 수 있 도록 발전시키는 과정에서 나타난 결과임

그림 1-3 동영상 분석 기술과 미래 인공지능 로봇의 눈

Ⅲ. 인공지능의 순기능

인공지능 기술이 다양한 산업 분야에 접목되면서 지금까지 상상할 수 없
 었던 새로운 결과물이 선보여지고 있음

그림 1-4 인공지능 기술 기반 새로운 서비스들

Ⅲ. 인공지능의 순기능

1) 노동대체

- 인간의 정신적·육체적 노동을 최소화하거나 대체함으로써 업무 효율성을 크게 높일 수 있음
- (예) 아마존(Amazon) '키바(Kiva)' 로봇

그림 1-5 아마존의 물류창고 로봇 '키바(Kiva)'

Ⅲ. 인공지능의 순기능

1) 노동대체

- 로봇 바리스타가 등장하면 향후 카페의 노동력을 대체할 것으로 예측됨

그림 1-6 로봇 바리스타

Ⅲ. 인공지능의 순기능

2) 자동화

- 대표적인 RPA 서비스 : 보험금 청구 심사 시스템
- 보험심사 업무가 인공지능으로 자동화되면서 사람은 단순하고 반복적인 업무에서 해방되었고, 심사 업무는 빠르고 효율적으로 변화됨

그림 1-7 RPA 도입으로 인한 사무 자동화

Ⅲ. 인공지능의 순기능

하나 더 알기

RPA

- RPA(Robotic Process Automation)는 사람이 수행하던 규칙적이고 반복적인 업무 프로세스에 소프트웨어 로봇을 적용하여 자동화하는 것
- 저렴한 비용으로 빠르고 정확하게 업무를 수행하는 디지털 노동을 의미
- 사람 70명이 투입되어 15,628시간 동안 진행되던 업무가 인공지능이 접목된
 RPA 1대로 대체 가능

Ⅲ. 인공지능의 순기능

2) 자동화

- 협동로봇을 이용하면 제조 공정의 대부분을 자동화할 수 있음
- 이를 통해 사람은 위험한 작업환경에서 해방될 수 있으며, 기업은 높은 생산성을 기대할 수 있음

그림 1-8 협동로봇

Ⅲ. 인공지능의 순기능

3) 개인 능력 격차 완화

- 인공지능은 다년간의 경험과 깊이 있는 지식을 보유한 전문가만이 할 수 있었던 업무를 비전문가도 쉽게 수행할 수 있도록 도와줌
- 인공지능, 빅데이터 기술이 접목된 로보 어드바이저(Robo-advisor)를 이용하면
 투자전문가가 아니더라도 고객에게 최적화된 투자자문 서비스를 제공할 수 있음

IV. 인공지능의 역기능

1) 명청한 AI(Dumb AI)

- 인공지능에 악의적인 정보를 제공하면 잘못된 판단을 하거나 관점이 편향될 수 있음
- (예) MS의 인공지능 챗봇 테이(Tay)에
 게 일부 이용자들이 악의적인 정보를
 제공하자, 이를 학습한 테이가 인종차
 별적 발언과 욕설을 쏟아낸 사례

그림 1-10 인공지능 챗봇 테이의 잘못된 학습 결과

IV. 인공지능의 역기능

2) 법적·윤리적 책임 소재 문제

- 인공지능은 현행법상 법적 권리나 의무의 주체인 사람(법인)이 아니므로 법적 책임을 물을 수 없음
- (예) 자율주행차가 사고를 낸 경우, 배상책임과 처벌 문제
- (예) 인공지능에 의한 질병검진과 로봇수술 허용 여부 등

그림 1-11 테슬라와 우버 자율주행차 사고

IV. 인공지능의 역기능

3) 빈부격차 심화

- 인공지능이 인간의 일자리를 대체함으로써 인간의 생계 위협 가능성
- 인공지능 활성화로 새로운 직업이 창출되기도 하지만, 새로운 기술을 습득하고 활용하는 데에는 많은 시간 필요
- 시간적, 기술 습득상의 제약으로 인해 배움에서 소외된 사람들은 경제적 어려움을 겪을 수 있음

IV. 인공지능의 역기능

4) 예측 불가능한 AI

- 학습되지 않았거나 추론을 할 수 없는 상황이 발생할 경우, 인공지능은 평소와달리 엉뚱한 결과를 내놓을 수 있음
- 바둑기사 이세돌이 알파고(AlphaGo)와의 대국에서 상대(알파고)가 유리한 곳에 수를 두자 알파고가 실수를 연발하기 시작한 것(알파고는 새로운 변수에 대응하지 못하는 기술적인 한계를 드러냄)

그림 1-12 구글 딥마인드 챌린지 매치에서 이세돌 9단이 둔 78수

02 인공지능의 중요성과 시장성

I. 인공지능의 중요성

- 최근 들어 인공지능이 중요한 화두로 떠오른 데에는 빅데이터로 대변 되는 데이터양의 폭발적인 증가가 한 몫함
- 기존에 보유하고 있던 데이터는 물론, 사물인터넷으로 수집된 데이터까지
 지 분석하여 비즈니스에 활용하고자 하는 요구가 많아짐

그림 1-13 사물인터넷을 통해 모든 것이 연결된 세상

I. 인공지능의 중요성

- 범용성 : 하나의 기술을 여러 용도로 다양한 산업에 사용할 수 있음을 의미함
- 최근에는 인공지능의 범용성이 높아짐
- 기존에는 IT 산업에만 인공지능 기술이 적용되었다면, 최근에는 제조, 금융, 의 료 등 전 산업에 적용되고 있는 추세

그림 1-14 주요 인공지능 응용 분야

Ⅱ. 인공지능의 시장성

- **인공지능 분야의 3대 강국 :** 미국, 일본, 중국
 - 미국과 중국 : 인공지능 주도권 유지를 국가 최상위 과제로 선언
 - 일본 : 'AI 전략 2019'를 통해 단계별 인공지능 맞춤 실무교육도입

Ⅱ. 인공지능의 시장성

- 인공지능 시장 규모는 2025년에 64조 원 이상이 될 것으로 전망
- 인공지능 경쟁력을 갖춘 기업이 시장을 독점하고 미래의 패권을 좌우
 할 것으로 예측할 수 있음

그림 1-16 세계 인공지능 시장 규모 추이

03 인공지능의 연대기

• 인공지능의 시작부터 최근까지의 연대를 시간 흐름순으로 정리

그림 1-17 인공자능 연대

- 인공지능 기술의 라이프 사이클
 - 태동기-1차 암흑기-성장기-2차 암흑기-성숙기

표 1-2 인공자능 기술의 라이프사이클

구분	주요 연혁	설명
태동기	인공지능의 시작 (1950~1956년)	앨런 튜링은 「계산 기계와 지능」이라는 논문에서 기계가 생각할 수 있는지 테스 트하는 방법과 지능적 기계의 개발 가능성 및 학습하는 기계 등에 대해 정의함.
	데이터 기반 분석 체계 구성 (1956~1974년)	10명의 과학자가 참여한 다트머스 컨퍼런스에서 '인공지능' 용어가 처음으로 사용됨.
1차 암흑기	첫 번째 겨울 (1974~1980년)	인공지능 시스템이 애초의 기대를 절대로 만족시키지 못할 것이라는 인식이 투자 삭감으로 이어지면서 첫 번째 인공지능 겨울이 시작됨.
성장기	전문가시스템(1980~1987년)	전문가들의 지식을 데이터베이스로 구성한 규칙 기반 시스템이 탄생함.
2차 암흑기	두 번째 겨울 (1987~1993년)	전문가들의 지식 중 어떤 것을 추출해야 하는지에 대한 정의 부정확, 전문가 시 스템의 개발 및 유지보수의 비효율성으로 인해 두 번째 인공지능 겨울이 시작됨.
성숙기	뉴럴 네트워크 (1993~2000년)	기존의 뉴럴 네트워크와는 달리 입력층과 출력층 사이에 은닉층이 추가되면서 복잡한 연산이 가능해짐.
	머신러닝과 딥러닝 (2000~2010년)	컴퓨터 스스로 데이터를 학습해서 문제를 해결할 수 있게 되었고, 학습한 데이터 를 다른 문제에 재활용할 수 있게 됨. 또한 대량의 데이터 처리에 필요한 빅데이 터의 확산과 하드웨어(GPU) 성능도 향상됨.
	알파고의 등장(2010~현재)	인공지능 기술의 발전 가능성에 대한 기대감이 상승하면서 관심이 높아짐.

- I. 1차 태동기 : 인공지능의 시작(1950~1956년)
 - 튜링 테스트(Turing Test)
 - 기계가 사람처럼 지능적으로 동작할 수 있는지 판단하는 테스트
 - 튜링 테스트의 과정 →

- I. 1차 태동기 : 인공지능의 시작(1950~1956년)
 - 캡차(CAPTCHA)
 - 2000년 미국 카네기 멜론 대학교의 연구원들이 사람과 로봇을 구별하기 위해
 만든 튜링 테스트로, 로봇은 구별하기 난해한 문자를 제시하여 이를 맞추면 사람으로 인정하는 방식

그림 1-19 캡차 튜링 테스트의 예

I. 1차 태동기 : 인공지능의 시작(1950~1956년)

하나 더 알기 앨런 튜링

 앨런 튜링(Alan Turing)은 알고리즘과 수학 원리를 이용한 튜링 머신으로 컴퓨터 과학 발전에 큰 공헌을 하였으며, 튜 링 테스트를 고안해 낸 것으로 유명함

II. 2차 태동기 : 데이터 기반 분석 체계 구성(1956~1974년)

 인공지능을 컴퓨터 과학의 세부 영역으로 이끈 학자들은 '다트머스 컨 퍼런스'에 참석했던 10명의 학자들이었음

그림 1-20 다트머스 컨퍼런스에 참석한 10명의 과학자들

Ⅱ. 2차 태동기 : 데이터 기반 분석 체계 구성(1956~1974년)

- 1956년에 다트머스 대학교에서 열린 워크숍에서 이들은 인공지능(AI) 이라는 이름과 연구개발 목표, 추진 방향 등을 제안하고 토론하였음
- '인공지능'이라는 단어는 '지능을 가진 기계'의 이름을 고민하던 중, 존 맥카시가 '인공지능'이라는 이름을 제안하면서 사용되기 시작했음
- 지금과 같은 수준의 인공지능을 다루는 것이 아니라 경우의 수를 계산하는 수준이었지만, 이들에 의해 지금 정도의 인공지능이 완성되었다고할 수 있음

III. 1차 암흑기 : 인공지능의 첫 번째 겨울(1974~1980년)

 허버트 사이먼은 "앞으로 20년 안에 기계는 사람이 할 수 있는 일은 무 엇이든 할 수 있게 될 것"이라고 선언

1958년, 허버트 사이먼과 앨런 뉴얼:

"10년 LH에 디지털 컴퓨터가 체스 세계 챔피언을 이길 것이다. 그리고 10년 LH에 디지털 컴퓨터는 중요한 새로운 수학적 정리를 발견하고 증명할 것이다."

1965년, 허버트 사이먼:

"20년 내에 기계가 사람이 할 수 있는 모든 일을 하게 될 것이다."

1967년, 마빈 민스키 :

"이번 세기에 인공지능을 만드는 문제는 거의 해결될 것이다."

1970년, 마빈 민스키:

"3~8년 안에 우리는 평균 정도의 인간 지능을 가진 기계를 가지게 될 것이다."

III. 1차 암흑기 : 인공지능의 첫 번째 겨울(1974~1980년)

- 다트머스 컨퍼런스 이후 많은 과학자들이 인공지능 개발을 위한 연구에 뛰어들었지만, 기대와 달리 연구 성과가 낮아 인공지능에 대한 투자가 적어지면서 재정적 위기를 맞이함
- 낙관의 거품이 걷히자 인공지능은 비판의 대상이 되었고 인공지능 역사의 첫 번째 겨울(First Al Winter)이 시작됨

Ⅳ. 성장기: 전문가 시스템(1980~1987년)

- 전문가 시스템(Expert System)
 - 인간이 특정 분야에 대하여 가지고 있는 전문적인 지식을 정리하고 표현하여
 컴퓨터에 기억시킴으로써 일반인도 전문지식을 이용할 수 있도록 하는 시스템

그림 1-23 전문가 시스템 추론 과정

V. 2차 암흑기 : 인공지능의 두 번째 겨울(1987~1993년)

- 전문가 시스템 유지비가 비싸고 전문가의 지식을 추출하는 데 병목현
 상이 발생하면서 시스템을 유지하는 것이 어려웠음
- 뿐만 아니라 데이터베이스에 축적되지 않은 질문들에 대해서는 예측할
 수 없는 행동을 하는 전문가 시스템에 대해 사람들은 의구심을 가짐
- 이로 인해 인공지능의 **두 번째 겨울(Second Al Winter)**이 시작됨

그림 1-24 인공지능의 두 번째 겨울

VI. 1차 성숙기 : 뉴럴 네트워크(1993~2000년)

- 1990년대 인공지능 연구는 인터넷과 함께 다시 한 번 중흥기를 맞이함
- 이전의 인공지능은 사람이 규칙을 만들어 시스템을 구현했다면,
 - → 성숙기 단계의 인공지능은 공식을 스스로 만듦
 - → 머신러닝과 딥러닝으로 발전

VI. 1차 성숙기 : 뉴럴 네트워크(1993~2000년)

• 인간의 뇌 신경망을 모방한 <u>인공신경망 연구</u>는 인공지능 발전에 큰 영향을 미침

• 신경세포들의 연결로 이루어진 인간의 뇌는 시냅스를 통해 전기 자극을

전달함

 이것을 그대로 모사한 인공신경망은 뉴런이 일정한 자극을 받으면 다음 뉴런으로 신호가 전달되는 방식으로 동작함

VI. 1차 성숙기 : 뉴럴 네트워크(1993~2000년)

- 인공신경망 알고리즘의 구분
 - 입력층(Input Layer)
 - 은닉층 (Hidden Layer)
 - 출력층(Output Layer)

인공신경망 알고리즘이란 유한한 시간 내에 특정 문제를 해결하기 위해 일련의 순서로 진행되는 계산 및 풀이 절차의 집합을 말합니다.

그림 1-27 인간의 신경세포를 모방한 인공신경망

VI. 1차 성숙기 : 뉴럴 네트워크(1993~2000년)

- 입력층은 뇌의 수상돌기, 출력층은 축삭돌기(축삭말단)에 해당
- 입력층 사이의 연결 강도는 시냅스에 해당하므로 일정한 자극이 있을 때만 다음 층(인간의 뉴런)으로 전달
- 특히 2개 이상의 은닉층을 구성함으로써 복잡한 문제들을 쉽게 해결할
 수 있게 되면서 인공지능은 성숙기를 맞이하게 됨

VII. 2차 성숙기: 머신러닝과 딥러닝(2000~2010년)

- 1) 머신러닝(Machine Learning)
- 머신러닝(Machine Learning)
 - 기본적으로 알고리즘을 이용해 데이터를 분석하고, 분석을 통해 학습하며, 학습 한 내용을 기반으로 판단이나 예측

- 2) 딥러닝(Deep Learning)
- 딥러닝(Deep Learning)
 - 인공신경망에서 발전한 형태의 인공지능으로, 인간 뇌의 뉴런과 유사 한 입력층,
 은닉층, 출력층을 활용해 데이터를 학습

VII. 2차 성숙기: 머신러닝과 딥러닝(2000~2010년)

VIII. 3차 성숙기: 알파고의 등장(2010~현재)

- 영화《신의 한 수 : 귀수 편》에는 다양한 스타일로 자신만의 바둑을 두 는 바둑의 고수 등장
- 현실 속 바둑의 고수로는 알파고(AlphaGo)를 떠올릴 수 있음

그림 1-29 영화 《신의 한 수 : 귀수 편》

VIII. 3차 성숙기: 알파고의 등장(2010~현재)

- 이세돌과 승부를 겨뤘던 알파고 리(AlphaGo Lee)는 나날이 성장하여 알파고 제로(AlphaGo Zero)로 완성됨
- 알파고 제로는 학습을 하는 데 인간의 기본 데이터가 필요하지 않음
- 알파고 제로는 알파고 리의 실력을 압도하는 기력(棋歷)을 불과 72시간만
 에 얻었으며, 알파고 리와의 경기에서 백전백승함

그림 1-30 알파고의 충격적인 등장과 인공지능에 대한 관심 © Financial Times

04 인공지능의 분류

• 인공지능은 지적 수준, 기능 발전, 구현 방식에 따라 분류할 수 있음

표 1-3 인공지능의 분류

분류	기준	상세 분류	
지적 수준	인간과 같은 사고의 가능 여부	약인공지능초인공지능	
기능 발전(레벨)	입력에 따른 출력이 변하는 에이전트 관점	 레벨 1 : 단순 제어 프로그램 레벨 2 : 고전적 인공지능 레벨 3 : 머신러닝 레벨 4 : 딥러닝 	
구현 방식	지적 기능 구현 방식	 지식 기반 방법론(인지, 추론, 학습, 행동) 데이터 기반 방법론(머신러닝, 데이터마이닝) 	

I. 지적 수준에 따른 분류

- 약인공지능
- 강인공지능
- 초인공지능

표 1-4 지적 수준에 따른 인공지능 분류

분류	설명	사례
약인공지능	특정 문제해결에 전문화된 인공지능	스팸메일 필터링, 검색 서비스, 구글번역, 유튜브 영상 추천
강인공지능	모든 영역에서 인간과 같은 수준인 인공 지능	영화 《터미네이터》에 등장하는 스카이넷, 비서로봇, 협동로봇 (공장로봇)
초인공지능	인류 전체의 지능을 초월하는 인공지능	'인류가 앞으로 1,000년 동안 쓸 수 있는 신(新) 에너지원 만들 기'와 같은 고차원의 명령 수행 가능

I. 지적 수준에 따른 분류

1) 약인공지능

- 약인공지능(Weak AI, Artificial Narrow Intelligence)
 - 한 분야의 특정한 일을 인간의 지시에 따라 수행하는 인공지능
 - 어떠한 목적에 최적화된 알고리즘으로, 적당한 규칙에 의해 구현됨
 - (예) 알파고는 바둑, 테슬라의 자율주행차는 자율주행에만 최적화

그림 1-31 약인공지능의 예 : 테슬라의 자율주행차

I. 지적 수준에 따른 분류

- 2) 강인공지능
- 강인공지능(Strong AI, Artificial General Intelligence)
 - 약인공지능의 제한된 기능을 뛰어넘어 모든 산업 분야에서 범용적으로 사용되는는 인공지능
 - 지각력이 있고 스스로를 인식할 수 있는 존재

(a) 《아이, 로봇》

(b) 《터미네이터》

그림 1-32 영화 속에서 등장하는 강인공지능

I. 지적 수준에 따른 분류

- 3) 초인공지능
- 초인공지능(Artificial Super Intelligence)
 - 인간보다 몇 백배 이상 뛰어난 지능을 가진 존재
 - 연산 능력뿐만 아니라 과학 및 예술 분야에서 뛰어난 창의성을 발휘
 - 일반적인 지식과 사회적인 능력도 인간을 뛰어넘는 지능을 가짐

그림 1-33 초인공지능

I. 지적 수준에 따른 분류

하나 더 알기 특이점

• 특이점(Singularity): 인공지능의 발전이 가속화되어 모든 인류의 지성을 합친 것보다 더 뛰어난 초인공지능이 출현하는 시점

Ⅱ. 기능 발전에 따른 분류

- 단순 제어 프로그램
- 고전적 인공지능
- 머신러닝이 도입된 인공지능
- 딥러닝이 도입된 인공지능

표 1-5 기능 발전에 따른 인공지능 분류

◎ 마쓰오 유타카, 「인공지능과 딥러닝」

레벨	분류	설명	응용 제품
1	단순 제어 프로그램	단순한 제어 프로그램엄밀한 의미로 인공지능은 아님	세탁기, 전자면도기 등
2	고전적 인공지능	 입력과 출력의 조합 수가 극단적으로 많은 경우 추론 및 탐색을 하거나 기존의 지식베이스를 기반으로 판단 	고전적 퍼즐
3	머신러닝이 도입된 인공지능	• 빅데이터를 바탕으로 자동 판단 • 전형적으로 머신러닝 알고리즘 이용	지도학습, 비지도학습, 강화학습
4	딥러닝이 도입된 인공지능	• 입력 데이터 자체를 학습해 스스로 판단하고 예측	구글의 고양이 인식

Ⅱ. 기능 발전에 따른 분류

1) 단순 제어 프로그램

- On/Off, Yes/No와 같이 필요한 변수가 두 가지 뿐인 가장 기초적인 단계의 인 공지능
- (예) 세탁기, 청소기 등

그림 1-34 단순 제어 프로그램의 예 : 세탁기와 청소기

Ⅱ. 기능 발전에 따른 분류

2) 고전적 인공지능

- 단순 제어 프로그램과 크게 다르지 않은 알고리즘
- 단순 제어 프로그램과의 차이는 패턴이 다양해진 것뿐
- 경우의 수에 따라 행동하기 때문에 '학습'이 아닌 '정해진 규칙'에 따라 행동
- (예) 로봇 청소기와 바둑 게임 프로그램 등

그림 1-35 고전적 인공자능의 예 : 로봇 청소기와 바둑 게임 프로그램

Ⅱ. 기능 발전에 따른 분류

3) 머신러닝이 도입된 인공지능

- 적절한 판단을 위해 보유한 지식을 기반으로 추론 및 탐색하는 인공지능
- (예) 스마트폰의 얼굴인식, 유튜브의 맞춤 동영상 추천 시스템 등

(a) 스마트폰의 얼굴인식

그림 1-36 머신러닝이 도입된 인공자능의 예

(b) 유튜브의 맞춤 동영상 추천 시스템

Ⅱ. 기능 발전에 따른 분류

4) 딥러닝이 도입된 인공지능

- 머신러닝보다 발전하여 데이터 자체를 스스로 학습하는 수준의 인공지능
- 머신러닝을 이용한 학습 과정에는 인간이 개입하지만, 딥러닝을 이용한 학습 과정에서는 기계가 스스로 해답을 찾아 분류나 예측을 수행

Ⅱ. 기능 발전에 따른 분류

4) 딥러닝이 도입된 인공지능

하나 더 알기 특징 추출

■ 특징 추출(Feature Extraction): 머신러닝에서 컴퓨터가 스스로 학습하려면 사람이 인지하는 데이터를 컴퓨터가 인지할 수 있는 데이터로 변환해야 하는데, 이때 데이터별로 어떤 특징을 가지고 있는지를 찾아내고 그것을 토대로 데이터를 벡터로 변환하는 작업

Ⅱ. 기능 발전에 따른 분류

- 4) 딥러닝이 도입된 인공지능
 - (예) 자율주행차와 지능형 CCTV 등

(a) 자율주행차

(b) 지능형 CCTV

그림 1-38 딥러닝이 도입된 인공자능의 예

Ⅲ. 구현 방식에 따른 분류

- _ 지식 기반 방법론
- 데이터 기반 방법론

표 1-6 구현 방식에 따른 인공지능 분류

분류	설명	핵심 기능 영역	
지식 기반 방법론	저장된 지식을 기반으로 의사결정 수행	• 인지 • 추론	학습행동
데이터 기반 방법론	데이터로부터 추출된 지식으로 의사결정 수행	머신러닝데이터마이닝	

Ⅲ. 구현 방식에 따른 분류

1) 지식 기반 방법론

- 인지, 학습, 추론, 행동과 같은 인간의 지적 기능을 모방하기 위해 지적 기능들을 기호로 표현하고 이를 논리적인 규칙에 근거하여 처리함으로써 문제를 해결하고자 하는 방법이 시도되었음

그림 1-39 지식 기반 방법론의 발전 과정

Ⅲ. 구현 방식에 따른 분류

- 1) 지식 기반 방법론
- 인지(Recognition)
 - 컴퓨터가 특정 대상을 보고 듣고 읽을 수 있게 하려는 것
 - 인지의 종류: 자연어 처리, 통번역, 글씨/음성 인식, 이미지/동영상 인식 기술 등

그림 1-40 드론 카메라를 통한 사람의 형상 인식

Ⅲ. 구현 방식에 따른 분류

- 1) 지식 기반 방법론
- 학습(Learning), 추론(Mechanism)
 - 데이터를 이용하여 규칙(Rule)을 만들고 결론을 도출하는 영역
 - 머신러닝과 딥러닝이 여기에 속함

(a) 학습 영역

그림 1-41 학습 영역과 추론 영역

Ⅲ. 구현 방식에 따른 분류

1) 지식 기반 방법론

- 행동(Behavior)
 - 기계가 인간과 같이 사고하고 행동하는 영역으로, 매 순간 결정(Decision)을 내리고 행동할 수 있도록 전략(Policy)과 보상(Reward) 개념 사용
 - 딥마인드는 이러한 과정을 '소코반(Sokoban)' 게임을 이용하여 증명

(b) 현재 상황에서 행동 수행 시 발생할 미래 상황들

그림 1-42 인공지능의 행동 영역 증명 : 소코반 게임

Ⅲ. 구현 방식에 따른 분류

2) 데이터 기반 방법론

- 제공된 데이터로부터 연역적으로 지식을 추출하여 문제를 해결하는 방법론

그림 1-43 데이터마이닝과 머신러닝의 관계

Ⅲ. 구현 방식에 따른 분류

하나 더 알기 인공지능의 한계

- 1) 머신러닝의 99%는 인간의 수작업에 의존
 - 머신러닝을 유지하기 위해 많은 양의 데이터를 분류하고 정리하는 것이 필요
 - 데이터를 분류하고 적절한 알고리즘을 제공하는 과정에는 사람이 개입해야 함
 - 결국 인공지능의 핵심은 인간의 노동력에 기반한다고 할 수 있음

Ⅲ. 구현 방식에 따른 분류

하나 더 알기 인공지능의 한계

- 2) 편향된 데이터로 학습할 경우 인공지능(AI)도 편견 형성
 - MS의 챗봇 '테이(Tay)'에 네티즌들이 인종차별 같은 모욕적인 단어들을 주입시킨 결과, 테이는 불쾌한 발언들을 쏟아내기 시작함
 - 이 사건을 통해 인간이 어떤 유형의 데이터를 제공하는지에 따라 인공지능도 편견을 형성할 수 있다는 결론이 나옴

왜 기계가 편향되어질까요?

기술을 프로그래밍하는 데 있어 적절한 주의가 없으면 프로그래머의 편견도 결과에 영향을 미칠 가능성이 있습니다. 즉, 교육 데이터 세트를 공격하는 악의적인 해귀 때문에 기계가 변형될 수 있는 것입니다.

Thank You!

