Databáze typu SQL

SQL je jazyk určený pro práci s relačními databázemi. Tyto databáze ukládají data do tabulek, které jsou navzájem propojené pomocí relací (vztahů).

Pomocí SQL můžeme:

Vytvářet tabulky a databáze: CREATE
 Vkládat data: INSERT
 Upravovat data: UPDATE
 Mazat data: DELETE
 Vyhledávat data: SELECT

<u>Výhody</u>: přehlednost, rychlost dotazů, možnost spojování dat z více tabulek.

```
SELECT jmeno, prijmeni
FROM Uzivatele
WHERE mesto = 'Brno';
```

Základní pojmy z databází

- Databáze = systém pro ukládání, správu a vyhledávání dat
- Databázový model = popisuje strukturu a vztahy v databázi
 - o Síťová, objektová, objektově relační, <u>relační databáze</u>

Relační databáze – databáze založená na tabulkách. Je nejrozšířenějším způsobem uložení dat v databázi.

Primární klíč – jednoznačný identifikátor záznamu, tabulky. Primárním klíčem může být jeden sloupec či kombinace více sloupců tak, aby byla zaručena jednoznačnost.

Cizí klíče – slouží pro vyjádření vztahů, relací, mezi databázovými tabulkami

Záznam a pole, práce s nimi

```
<u>Řádky</u> = Záznamy <u>Sloupce</u> = Atributy / Pole
```

Druhy relací:

- Relace 1:1 nejjednodušší vazba
- Relace 1:N tyto vazby jsou v projektu nejčastější
- Relace N:M tuto vazbu je nutno převést na relační vazbu 1:N
- <u>Bez relace</u> mezi tabulkami není žádný vztah

^{*} Atributy mají určen svůj konkrétní datový typ

Relace 1:1

Jednomu záznamu v tabulce odpovídá přesně jeden záznam (řádek) v druhé tabulce. Vhodné pro přehlednost nebo rozdělení údajů do více tabulek

Tabulka JMENA

Tabulka BYDLISTE

Sloučená tabulka OSOBY

id	Jméno	Příjmení		id	
1	Jan	Jiný		1	
2	Jana	Nová		2	
3	Pepa	Zdepa		3	S

id	Ulice	Město	
1 Horní		Brno	
2	Dolní	Praha	
3 Střední		Ostrava	

id	Jméno	Příjmení	Ulice	Město
1	Jan	Jiný	Horní	Brno
2	Jana	Nová	Dolní	Praha
3	Pepa	Zdepa	Střední	Ostrava

Relace 1:N

Jeden záznam v první tabulce odpovídá několika záznamům ve druhé tabulce. Nejpoužívanější při tvorbě rozsáhlých databází.

Příklad: OSOBA a PŘEČTENÉ KNIHY. Jedna osoba může mít přečteno více knih.

Tabulka OSOBY

Tabulka PŘEČTENÉ KNIHY

id	Jméno	Příjmení
1	Jan	Jiný
2	Jana	Nová
3	Pepa	Zdepa

id	Kniha	
1	Rumcajs	
1	Cipísek	
1	Máj	
1	RUR	
3	Ohníček	

Relace N:M

Nastává, když jeden čtenář může mít více knih a jedna kniha může být půjčena více čtenářům. Proto mezi tabulkami ČTENÁŘI a KNIHY vzniká vztah N:M.

Abychom s tím mohli v databázi pracovat, vytvoříme pomocnou tabulku VÝPŮJČKY. Tím vzniknou <u>dvě vazby 1:N</u>: ČTENÁŘI --> VÝPŮJČKY <u>KNIHY --> VÝPŮJČKY</u>

Tím zachováme vztah N:M, ale ve formě, se kterou si databáze poradí.

Tabulka ČTENÁŘI

Tabulka KNIHY

id	Jméno	Příjmení	id kniha	Název knihy	Autor
1	Jan	Jiný	11	Babička	Němcová
2	Jana	Nová	12	RUR	Čapek
3	Pepa	Zdepa	13	Máj	Mácha

Tabulka VÝPŮJČKY

id čtenář	id kniha	Datum výpůjčky	Datum vrácení
1	11	1.1.2010	10.1.2010
1	12	1.1.2010	10.1.2010
1	13	1.1.2010	10.1.2010
2	11	20.1.2010	22.1.2010
3	11	2.2.2010	
3	12	2.2.2010	
1	13	5.2.2010	