最大流、线性规划、单纯形法

张腾

2023年12月8日

本文给出用单纯形法求解如下流网络最大流的详细过程。

先将其转化成线性规划问题, 根据容量限制和流量守恒分别有

$$\begin{cases} 0 \le x_1 \le 16 \\ 0 \le x_2 \le 13 \\ 0 \le x_3 \le 4 \\ 0 \le x_4 \le 12 \\ 0 \le x_5 \le 9 \\ 0 \le x_6 \le 14 \\ 0 \le x_7 \le 7 \\ 0 \le x_8 \le 20 \\ 0 < x_9 < 4 \end{cases}$$

$$\begin{cases} v_1: x_1 + x_3 - x_4 = 0 \\ v_2: x_2 + x_5 - x_3 - x_6 = 0 \\ v_3: x_4 + x_7 - x_5 - x_8 = 0 \\ v_4: x_6 - x_7 - x_9 = 0 \end{cases}$$

其标准形式的线性规划为

max
$$x_1 + x_2$$

s.t. $x_1 + x_3 - x_4 = 0$
 $x_2 + x_5 - x_3 - x_6 = 0$
 $x_4 + x_7 - x_5 - x_8 = 0$

$$x_{6} - x_{7} - x_{9} = 0$$

$$x_{1} + y_{1} = 16$$

$$x_{2} + y_{2} = 13$$

$$x_{3} + y_{3} = 4$$

$$x_{4} + y_{4} = 12$$

$$x_{5} + y_{5} = 9$$

$$x_{6} + y_{6} = 14$$

$$x_{7} + y_{7} = 7$$

$$x_{8} + y_{8} = 20$$

$$x_{9} + y_{9} = 4$$

$$x_{i}, y_{i} \ge 0, i \in [9]$$

共有 18 个变量、13 个等式约束,因此基本变量有 13 个,非基本变量有 5 个。 不妨取 $x_{\{1,2,4,5,7\}}$ 为非基本变量,将基本变量由非基本变量表出:

$$x_1 + x_3 - x_4 = 0 \Longrightarrow x_3 = -x_1 + x_4$$

$$x_4 + x_7 - x_5 - x_8 = 0 \Longrightarrow x_8 = x_4 - x_5 + x_7$$

$$x_2 + x_5 - x_3 - x_6 = 0 \Longrightarrow x_6 = x_2 + x_5 - x_3 = x_1 + x_2 - x_4 + x_5$$

$$x_6 - x_7 - x_9 = 0 \Longrightarrow x_9 = x_6 - x_7 = x_1 + x_2 - x_4 + x_5 - x_7$$

易知初始单纯形表为

	1 2	20	20	20	20	24	20	20	20	11	11	11	11	11	11	11	11	11	1
	x_1	x_2	χ_3	χ_4	x_5	x_6	x_7	x_8	<i>X</i> ₉	y_1	y_2	<i>y</i> ₃	y_4	y_5	y_6	<i>y</i> ₇	y_8	<i>y</i> ₉	
x_3	1		1	-1															0
x_6	-1	-1		1	-1	1													0
x_8				-1	1		-1	1											0
x_9	-1	-1		1	-1		1		1										0
y_1	1									1									16
y_2		1									1								13
y_3	-1			1								1							4
y_4				1									1						12
y_5					1									1					9
y_6	1	1		-1	1										1				14
y_7							1									1			7
y_8				1	-1		1										1		20
y_9	1	1		-1	1		-1											1	4
	-1	-1																	0

注意基本变量对应的列构成单位阵,因此令 $x_{\{1,2,4,5,7\}}=0$ 可得基本可行解

取 x_2 为输入变量, $\theta_{y_2}=13$ 、 $\theta_{y_6}=14$ 、 $\theta_{y_9}=4$,因此 y_9 为分离变量,做初等行变换更新单纯形表

	x_1	x_2	x_3	χ_4	x_5	x_6	x_7	x_8	<i>x</i> ₉	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y 9	!
x_3	1		1	-1															0
x_6						1	-1												4
x_8				-1	1		-1	1											0
x_9									1									1	4
y_1	1									1									16
y_2	-1			1	-1		1				1							-1	9
y_3	-1			1								1							4
y_4				1									1						12
y_5					1									1					9
y_6							1								1			-1	10
y_7							1									1			7
y_8				1	-1		1										1		20
x_2	11	_1		_1_	_ 1		_1											_1	4
				-1	1		-1											1	4

当前基本可行解为

对应的流网络为

第 2 轮,取 x_7 为输入变量, $\theta_{y_2}=9$ 、 $\theta_{y_6}=10$ 、 $\theta_{y_7}=7$ 、 $\theta_{y_8}=20$,因此 y_7 为分离变量,做初等行变换更新单纯形表

	x_1	x_2	x_3	χ_4	x_5	x_6	x_7	x_8	<i>x</i> ₉	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y 9	i I
x_3	1		1	-1															0
x_6						1										1			11
x_8				-1	1			1								1			7
χ_9									1									1	4
y_1	1									1									16
y_2	-1			1	-1						1					-1		-1	2
y_3	-1			1								1							4
y_4				1									1						12
y_5					1									1					9
y_6															1	-1		-1	3
x_7							1									1			7
y_8				1	-1											-1	1		13
x_2	1	_1		_1_	_ 1											1		1 _	11
				-1	1											1		1	11

当前基本可行解为

对应的流网络为

第 3 轮,取 x_4 为输入变量, $\theta_{y_2}=2$ 、 $\theta_{y_3}=4$ 、 $\theta_{y_4}=12$ 、 $\theta_{y_8}=13$,因此 y_2 为分离变量,做初等行变换更新单纯形表

	x_1	x_2	x_3	χ_4	x_5	x_6	x_7	x_8	<i>X</i> ₉	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y 9	i I
x_3			1		-1						1					-1		-1	2
x_6						1										1			11
x_8	-1							1			1							-1	9
χ_9									1									1	4
y_1	1									1									16
χ_4	-1			1	-1						1					-1		-1	2
y_3					1						-1	1				1		1	2
y_4	1				1						-1		1			1		1	10
y_5					1									1					9
y_6															1	-1		-1	3
x_7							1									1			7
y_8	1										-1						1	1	11
x_2		_1									_1								13
	-1										1								13

当前基本可行解为

对应的流网络为

第 4 轮,取 x_1 为输入变量, $\theta_{y_1}=16$ 、 $\theta_{y_4}=10$ 、 $\theta_{y_8}=11$,因此 y_4 为分离变量,做初等行变换更新单纯形表

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	<i>x</i> ₉	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8	y 9	
x_3			1		-1						1					-1		-1	2
x_6						1										1			11
x_8					1			1					1			1			19
<i>x</i> ₉									1									1	4
y_1					-1					1	1		-1			-1		-1	6
χ_4				1									1						12
y_3					1						-1	1				1		1	2
x_1	1				1						-1		1			1		1	10
y_5					1									1					9
y_6															1	-1		-1	3
x_7							1									1			7
y_8					-1								-1			-1	1		1
x_2		1									1								13
					1								1			1		1	23

当前基本可行解为

目标行所有元素均非负, 因此这就是最优解, 对应的流网络达到最大流

