Calculus II

Alessio Esposito

October 23, 2022

Theorem 1. A is closed \iff every accumulation point for A is in A

Proof. " \Longrightarrow " Let $A \subseteq \mathbb{R}^n$, $A = A \cup \partial A$.

Then $\forall p \in \bar{\mathcal{D}}(A), \ C_r(p)_{\searrow p} \cap A \neq \emptyset \ \forall C \in \mathcal{C}_p.$

if $p \notin A$ then $C_r(p)$ has elements that dont belong to $A \Rightarrow p \in \partial A$.

" \Leftarrow " Let $p \in \partial A \Rightarrow \forall C \in \mathcal{C}_p$ of center r with $r \in \mathbb{R}$ by definition we can find some $x \in C_{\setminus p} \cap A$, so that means $p \in \bar{\mathcal{D}}(A) \Rightarrow p \in A$.

1 Limits

Definition 1. Let $A \subseteq \mathbb{R}^2$ and (x_0, y_0) an accumulation point for A. we define A^* as follows:

$$A^* = \{ (\rho, \theta) \in [0, +\infty] \times [0, 2\pi] : (x_0 + \rho \cos(\theta), y_0 + \rho \sin(\theta)) \in A \}.$$

Proposition 1. Lets suppose that exist a circle C of center (x_0, y_0) such that $C_{\setminus \{(x_0, y_0)\}} \subseteq A$ let r be the radius of the circle and as a consequence $(0, r] \times [0, 2\pi] \subseteq A^*$

Proof. Let
$$C_{\setminus \{(x_0,y_0)\}}$$
 and
$$\begin{cases} 0 < \rho \leqslant r \\ 0 \leqslant \theta \leqslant 2\pi \end{cases}$$
 if $(\rho,\theta) \in (0,r] \times [0,2\pi]$ then $(x_0 + \rho \cos(\theta), y_0 + \rho \sin(\theta)) \in C_{\setminus \{(x_0,y_0)\}} \subseteq A \Rightarrow (\rho,\theta) \in A^*$.

Definition 2. Let $\theta \in [0, 2\pi]$ and $\forall \rho \in (0, r]$ we define $\varphi_{\theta}(\rho) = F(\rho, \theta)$ if $\rho \in (0, r], (\rho, 0) \in A^*$ so the $\lim_{\rho \to 0} \varphi(\rho) = l \in \mathbb{R}$.

If that limit exists that means $\forall \theta \in [0, 2\pi]$ and $\forall \varepsilon > 0$, $\exists \delta > 0 \ \forall \rho \in (0, r]$ with $\rho < \delta \ |\varphi_{\theta} - l| < \varepsilon$.

We say that $\lim_{\rho\to 0} \varphi(\rho) = l \in \mathbb{R}$ Uniformly With Respect To (U.W.R.T) θ

Theorem 2. Let $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ with (x_0, y_0) accumulation point for A. Follows the equivalence:

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = l \in \bar{\mathbb{R}} \iff \lim_{\rho\to 0} F(\rho,\theta) = l \ U.W.R.T \ \theta$$

Proof. Let $l \in \bar{\mathbb{R}}$.

"
$$\Rightarrow$$
" $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = l$ so $\forall \varepsilon > 0, \exists \delta > 0 : \forall (x,y) \in A$ with $\|(x,y)-(x_0,y_0)\| < \delta, |f(x,y)-l| < \varepsilon.$

We have to prove that $\forall \varepsilon > 0, \exists \delta > 0 : \forall \theta \in [0, 2\pi], \ \forall \rho(0, r]$ with $\rho < \delta \ |F(\rho, \theta) - l| < \varepsilon$.