Table X. GRNs built in this study.

nid	mid	study	tag	note	timeseries
n13a n13b n14a n14b n15a	me13a me13b me14a me14b me15a	li2013 liu2013 hirsch2014 li2014 leiboff2015		SAM1 leaf_13t seedling_503 endsperm_7t SAM_380	TRUE TRUE
n15b n16a n16b n16c n17a	me15b me16a me16b me16c me17a	yu2015 jin2016 stelpflug2016 walley2016 lin2017		leaf_9t kernel_368 B73_76 B73_23 5_tissues	TRUE
n17a_1 n17a_2 n17a_3 n17a_4 n17a_5	me17a me17a me17a me17a me17a	lin2017 lin2017 lin2017 lin2017 lin2017	ear root shoot tassel SAM	ear root shoot tassel SAM	
n18a n18a_1 n18a_2 n18a_3 n18a_4	me18a me18a me18a me18a	kremling2018 kremling2018 kremling2018 kremling2018 kremling2018	GRoot GShoot Kern L3Base	7_tissues GRoot GShoot Kern L3Base	
n18a_5 n18a_6 n18a_7 n18d n99b_1	me18a me18a me18a me18d me99b	kremling2018 kremling2018 kremling2018 shaefer2018 briggs	L3Tip LMAD LMAN root B73	L3Tip LMAD LMAN root GCN B73	
n99b_2 n99b_3 nc01 nc02 nc03 nt01	me99b me99b mec01 mec02 mec03 met01	briggs briggs B73_dev41 B73_dev64 B73_dev122 leaf_22t	Mo17 B73xMo17	Mo17 B73xMo17	TRUE

Area under receiver operating curves (AUROC) and area under precision-recall curve (AUPR) for GRNs built using different input datasets evaluated using experimentally (Chip-seq, mutant & wildtype RNA-Seq) determined transcription factor (TF) targets.

Fig 2

Barplot showing AUROC and AUPRs for lin2017 tissue-specific and pooled GRNs.

Fig 3a

Enrichment of DE genes (using Briggs dataset) in predicted TF targets made by different GRNs. Only the top $10,\!000$ strongest edges were taken from each GRN.

Fig 3b

Enrichment of DE genes (using Briggs dataset) in predicted TF targets made by different GRNs. Only the top $100,\!000$ strongest edges were taken from each GRN.

Fig 3c

Enrichment of DE genes (using Briggs dataset) in predicted TF targets made by different GRNs. Only the top 1,000,000 strongest edges were taken from each GRN.

Fig 4a

Evaluation of GRN predictions using the bioMAP data containing $\sim\!200$ genotypes (34 inbreds + 200 hybrids) in five tissues. The (Pearson) correlations between regulators and targets (as predicted by each GRN) were evaluated using the bioMAP expression matrix in each tissue, and shown as a boxplot for the top 10,000, 100,000 or 1,000,000 strongest edges in each network.

Fig 4b

Evaluation of GRN predictions using the bioMAP data containing ~200 genotypes (34 inbreds + 200 hybrids) in five tissues. The (Pearson) correlations between regulators and targets (as predicted by each GRN) were evaluated using the bioMAP expression matrix in each tissue, and shown as a boxplot for the top 10,000 strongest edges in each network.