GigaDevice Semiconductor Inc.

GD32303E-EVAL Arm® Cortex®-M4 32-bit MCU

User Manual

Revision 2.0

(Mar 2021)

Table of Contents

TABLE C	OF CONTENTS	1
LIST OF	FIGURES	4
LIST OF	TABLES	5
1. SUM	MARY	6
2. FUN	CTION PIN ASSIGN	6
3. GET	TING STARTED	8
	DWARE LAYOUT OVERVIEW	
	ower	
	Boot	
	ED	
	EY	
	ISART	
	DC	
	AC	
	2S	
	2C	
4.10.	SPI	
4.11.	CAN	_
4.12.	SDIO	
4.13.	NAND	
4.14.	LCD	
4.15.	USBD	
4.16.	Extension	
4.17.	GD-Link	. 16
5. ROU	TINE USE GUIDE	. 17
5.1. G	SPIO_Runing_Led	. 17
5.1.1.	DEMO Purpose	. 17
5.1.2.	DEMO Running Result	. 17
5.2. G	SPIO_Key_Polling_mode	. 17
5.2.1.	DEMO Purpose	. 17
5.2.2.	DEMO Running Result	. 17
5.3. E	XTI_Key_Interrupt_mode	. 18
5.3.1.	DEMO Purpose	. 18
5.3.2.	DEMO Running Result	. 18
5.4. U	ISART_Printf	. 18
5.4.1.	DEMO Purpose	. 18
5.4.2.	DEMO Running Result	. 18
5.5. U	ISART_Echo_Interrupt_mode	. 19

5.5.1.	DEMO Purpose	19
5.5.2.	DEMO Running Result	19
5.6. US	ART_DMA	19
5.6.1.	DEMO Purpose	19
5.6.2.	DEMO Running Result	19
5.7. AD	C_Temperature_Vrefint	20
5.7.1.	DEMO Purpose	20
5.7.2.	DEMO Running Result	20
5.8. AD	C0_ADC1_Follow_up_mode	21
5.8.1.	DEMO Purpose	21
5.8.2.	DEMO Running Result	21
5.9. AD	C0_ADC1_Regular_Parallel_mode	22
5.9.1.	DEMO Purpose	22
5.9.2.	DEMO Running Result	22
5.10. [DAC_Output_Voltage_Value	23
5.10.1.	DEMO Purpose	23
5.10.2.	DEMO Running Result	23
5.11. I	2C_EEPROM	23
5.11.1.	DEMO Purpose	23
5.11.2.	DEMO Running Result	23
5.12.	SPI_SPI_Flash	24
5.12.1.	DEMO Purpose	24
5.12.2.	DEMO Running Result	24
5.13. I	2S_Audio_Player	25
5.13.1.	DEMO Purpose	25
5.13.2.	DEMO Running Result	25
5.14. E	EXMC_NandFlash	26
5.14.1.	DEMO Purpose	26
5.14.2.	DEMO Running Result	26
5.15. E	EXMC_TouchScreen	26
5.15.1.	DEMO Purpose	26
5.15.2.	DEMO Running Result	27
5.16.	SDIO_SDCardTest	27
5.16.1.	DEMO Purpose	27
5.16.2.	DEMO Running Result	28
5.17.	CAN_Network	28
5.17.1.	DEMO Purpose	28
5.17.2.	DEMO Running Result	29
5.18. F	RCU_Clock_Out	29
5.18.1.	DEMO Purpose	29
5.18.2.	DEMO Running Result	29
5.19.	CTC_Calibration	30
5.19.1.	DEMO Purpose	30
5.19.2.	DEMO Running Result	30

5.20. PMU_sleep_wakeup	30
5.20.1. DEMO Purpose	30
5.20.2. DEMO Running Result	30
5.21. RTC_Calendar	30
5.21.1. DEMO Purpose	30
5.21.2. DEMO Running Result	31
5.22. TIMER_Breath_LED	31
5.22.1. DEMO Purpose	31
5.22.2. DEMO Running Result	31
5.23. USBD_Keyboard	
5.23.1. DEMO_Purpose	31
5.23.2. DEMO Running Result	32
6. REVISION HISTORY	32

List of Figures

Figure 4-1. Schematic diagram of power supply	8
Figure 4-2. Schematic diagram of boot option	9
Figure 4-3. Schematic diagram of LED function	9
Figure 4-4. Schematic diagram of Key function	. 10
Figure 4-5. Schematic diagram of USART function	. 10
Figure 4-6. Schematic diagram of ADC function	11
Figure 4-7. Schematic diagram of DAC function	11
Figure 4-8. Schematic diagram of I2S function	11
Figure 4-9. Schematic diagram of I2C function	
Figure 4-10. Schematic diagram of SPI function	. 12
Figure 4-11. Schematic diagram of CAN function	. 13
Figure 4-12. Schematic diagram of SDIO function	. 13
Figure 4-13. Schematic diagram of NAND flash function	. 14
Figure 4-14. Schematic diagram of LCD function	
Figure 4-15. Schematic diagram of USBFS function	. 15
Figure 4-16. Schematic diagram of Extension Pin	. 16
Figure 4-17. Schematic diagram of GD-Link	. 16

List of Tables

Table 2-1.	Function pin ass	sign	6
		<i>/</i> 3	

1. Summary

GD32303E-EVAL uses GD32F303ZET6 as the main controller. It uses Mini USB interface or DC-005 connector to supply 5V power. SWD, Reset, Boot, User button key, LED, CAN, I2C, I2S, USART, RTC, LCD, SPI, ADC, DAC, EXMC, CTC, SDIO, USBD, GD-Link and Extension Pins are also included. For more details please refer to GD32303E-EVAL-V1.0 schematic.

2. Function Pin Assign

Table 2-1. Function pin assign

Function	Pin	Description
LED	PF0	LED2
	PF1	LED3
	PF2	LED4
	PF3	LED5
RESET		K1-Reset
	PA0	K2-Wakeup
KEY	PC13	K3-Tamper
KET	PF5	K4-User key1
	PF4	K5-User key2
USART0	PA9	USART0_TX
USARTU	PA10	USART0_RX
ADC	PC3	ADC012_IN13
DAC	PA4	DAC_OUT0
DAC	PA5	DAC_OUT1
100	PB6	I2C0_SCL
I2C	PB7	I2C0_SDA
	PA5	SPI0_SCK
SPI	PA6	SPI0_MISO
3PI	PA7	SPI0_MOSI
	PE3	SPI0_CS
	PA4	MSEL
	PA5	MCLK
	PA7	MDIN
I2S	PB12	I2S_WS
	PB13	I2S_CK
	PB15	I2S_DIN
	PC6	I2S_MCK
CANI	PD0	CAN0_RX
CAN	PD1	CAN0_TX
SDIO	PD2	SDIO_CMD

		ODOZOOOL LV/ (L
	PC12	SDIO_CLK
	PC8	SDIO_DAT0
	PC9	SDIO_DAT1
	PC10	SDIO_DAT2
	PC11	SDIO_DAT3
	PD14	EXMC_D0
	PD15	EXMC_D1
	PD0	EXMC_D2
	PD1	EXMC_D3
	PE7	EXMC_D4
	PE8	EXMC_D5
NIAND Flack	PE9	EXMC_D6
NAND Flash	PE10	EXMC_D7
	PD11	EXMC_A16
	PD12	EXMC_A17
	PD4	EXMC_NOE
	PD5	EXMC_NWE
	PD6	EXMC_NWAIT
	PD7	EXMC_NCE1
	PD14	EXMC_D0
	PD15	EXMC_D1
	PD0	EXMC_D2
	PD1	EXMC_D3
	PE7	EXMC_D4
	PE8	EXMC_D5
	PE9	EXMC_D6
	PE10	EXMC_D7
	PE11	EXMC_D8
	PE12	EXMC_D9
LCD	PE13	EXMC_D10
	PE14	EXMC_D11
	PE15	EXMC_D12
	PD8	EXMC_D13
	PD9	EXMC_D14
	PD10	 EXMC_D15
	PE2	EXMC_A23
	PD4	EXMC_NOE
	PD5	EXMC_NWE
	PG9	EXMC_NE1
	PA11	USB_DM
USBD	PA12	USB_DP
	1712	

3. Getting started

The EVAL board uses Mini USB connecter or DC-005 connector to get power DC +5V, which is the hardware system normal work voltage. A J-Link tool or GD-Link on board is necessary in order to download and debug programs. Select the correct boot mode and then power on, the LED1 will turn on, which indicates that the power supply is OK.

There are Keil version and IAR version of all projects. Keil version of the projects are created based on Keil MDK-ARM 4.74 uVision4. IAR version of the projects are created based on IAR Embedded Workbench for ARM 7.40.2. During use, the following points should be noted:

- 1. If you use Keil uVision4 to open the project, install the GigaDevice.GD32F30x_Add On.1.1.0.exe to load the associated files.
- 2. If you use Keil uVision5 to open the project, there are two ways to solve the "Device Missing (s)" problem. One is to install \GD32F30x_AddOn\Keil\Keil5\GigaDevice.GD 32F30x_DFP.1.1.0.pack. In Project menu, select the Manage sub menu, click on the "Version Migrate 5 Format..." menu, the Keil uVision4 project will be converted to Keil uVision5 project. Then add "C:\Keil_v5\ARM\Pack\ARM\CMSIS\4.2.0\CMSIS\Include" to C/C++ in Option for Target. The other is to install Addon directly. Select the installation directory of Keil uVision5 software, such as C:\Keil_v5, in Destination Folder of Folder Selection. Select the corresponding device in Device of Option for Target and add "C:\Keil_v5\ARM\Pack\ARM\CMSIS\4.2.0\CMSIS\Include" to C/C++ in Option for Target.
- 3. If you use IAR to open the project, install IAR_GD32F30x_ADDON.1.1.0.exe to loa d the associated files.

4. Hardware layout overview

4.1. Power

Figure 4-1. Schematic diagram of power supply

4.2. **Boot**

Figure 4-2. Schematic diagram of boot option

4.3. LED

Figure 4-3. Schematic diagram of LED function

4.4. **KEY**

Figure 4-4. Schematic diagram of Key function

4.5. USART

Figure 4-5. Schematic diagram of USART function

4.6. ADC

Figure 4-6. Schematic diagram of ADC function

4.7. DAC

Figure 4-7. Schematic diagram of DAC function

4.8. I2S

Figure 4-8. Schematic diagram of I2S function

4.9. I2C

Figure 4-9. Schematic diagram of I2C function

4.10. SPI

Figure 4-10. Schematic diagram of SPI function

4.11. CAN

Figure 4-11. Schematic diagram of CAN function

4.12. SDIO

Figure 4-12. Schematic diagram of SDIO function

4.13. NAND

Figure 4-13. Schematic diagram of NAND flash function

4.14. LCD

Figure 4-14. Schematic diagram of LCD function

4.15. USBD

Figure 4-15. Schematic diagram of USBFS function

4.16. Extension

Figure 4-16. Schematic diagram of Extension Pin

4.17. **GD-Link**

Figure 4-17. Schematic diagram of GD-Link

5. Routine use guide

5.1. GPIO_Runing_Led

5.1.1. **DEMO Purpose**

This demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the LED
- Learn to use SysTick to generate 1ms delay

GD32303E-EVAL board has four LEDs. The LED2, LED3, LED4 and LED5 are controlled by GPIO. This demo will show how to light the LEDs.

5.1.2. DEMO Running Result

Download the program <01_GPIO_Running_Led> to the EVAL board, LED2, LED3, LED4 will turn on in sequence with interval of 200ms, and turn off together, 200ms later, repeat the process.

5.2. **GPIO_Key_Polling_mode**

5.2.1. **DEMO Purpose**

This demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the LED and the KEY
- Learn to use SysTick to generate 1ms delay

GD32303E-EVAL board has five keys and four LEDs. The five keys are Reset key, Tamper key, Wakeup key, User1 key and User2 key. The LED2, LED3, LED4 and LED5 are controlled by GPIO.

This demo will show how to use the Tamper key to control the LED2. When press down the Tamper Key, it will check the input value of the IO port. If the value is 0 and will wait for 50ms. Check the input value of the IO port again. If the value still is 0, it indicates that the button is pressed successfully and toggle LED2.

5.2.2. DEMO Running Result

Download the program <02_GPIO_Key_Polling_mode> to the EVAL board, press down the Tamper Key, LED2 will be turned on. Press down the Tamper Key again, LED2 will be turned off.

5.3. EXTI_Key_Interrupt_mode

5.3.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the LED and the KEY
- Learn to use EXTI to generate external interrupt

GD32303E-EVAL board has five keys and four LEDs. The five keys are Reset key, Tamper key, Wakeup key, User1 key and User2 key. The LED2, LED3, LED4 and LED5 are controlled by GPIO.

This demo will show how to use the EXTI interrupt line to control the LED2. When press down the Tamper Key, it will produce an interrupt. In the interrupt service function, the demo will toggle LED2.

5.3.2. DEMO Running Result

Download the program <03_EXTI_Key_Interrupt_mode> to the EVAL board, LED2 is turned on and off for test. When press down the Tamper Key, LED2 will be turned on. Press down the Tamper Key again, LED2 will be turned off.

5.4. USART_Printf

5.4.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the LED
- Learn to retarget the C library printf function to the USART

5.4.2. DEMO Running Result

Download the program < 04_USART_Printf > to the EVAL board, connect serial cable to EVAL_COM1. Firstly, all the LEDs are turned on and off, HyperTerminal outputs "USART printf example: please press the Tamper key" on the HyperTerminal using EVAL_COM1. Press the Tamper key, serial port will output "USART printf example" and LED2 is turned on, otherwise, LED2 turn off.

The output information via the serial port is as following.

USART printf example: please press the Tamper key

USART printf example

5.5. USART_Echo_Interrupt_mode

5.5.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

■ Learn to use the USART transmit and receive interrupts to communicate with the serial terminal tool

5.5.2. DEMO Running Result

Download the program < 05_USART_Echo_Interrupt_mode > to the EVAL board, connect serial cable to EVAL_COM1. Firstly, all the LEDs are turned on and off for test. Then, the EVAL_COM1 sends the tx_buffer array (from 0x00 to 0xFF) to the serial terminal tool supporting hex format communication and waits for receiving data of BUFFER_SIZE bytes from the serial terminal. The data MCU has received is stored in the rx_buffer array. After that, compare tx_buffer with rx_buffer. If tx_buffer is same with rx_buffer, LED2, LED3, LED4, LED5 flash by turns. Otherwise, LED2, LED3, LED4, LED5 toggle together.

The output information via the serial port is as following.

```
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E OF 10 11 12 13 14 15 16 17 18 19 1A 1B
    1D 1E
              1F 20
                      21
                                                        28 29 2A 2B 2C
                                                                               2D 2E 2F
                                                                                              30 31
                                          25 26 27
                                     24
                           3E 3F
                                     40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
                  30
                       ЗD
54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 89 8A 8B
    8D 8E 8F 90 91 92 93 94 95 96 97
                                                        98 99 9A 9B 9C 9D 9E 9F AO A1 A2
A8 A9 AA AB AC AD AE AF BO B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF CO C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF DO D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB
FC FD FE FF
```

5.6. USART_DMA

5.6.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

Learn to use the USART transmit and receive data using DMA

5.6.2. DEMO Running Result

Download the program < 06_USART_DMA > to the EVAL board, connect serial cable to EVAL_COM1. Firstly, all the LEDs are turned on and off for test. Then, the EVAL_COM1 sends the tx_buffer array (from 0x00 to 0xFF) to the serial terminal tool supporting hex format communication and waits for receiving data of same bytes as tx_buffer from the serial terminal. The data MCU have received is stored in the rx_buffer array. After that, compare tx_buffer with rx_buffer. If tx_buffer is same with rx_buffer, LED2, LED3, LED4, LED5 flash by turns.

Otherwise, LED2, LED3, LED4, LED5 toggle together.

```
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F AO A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF BO B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF CO C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF DO D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF EO E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF FO F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF
```

5.7. ADC_Temperature_Vrefint

5.7.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use the ADC to convert analog signal to digital data
- Learn to get the value of inner channel 16(temperature sensor channel) and channel 17 (VREFINT channel)

5.7.2. DEMO Running Result

Download the program <07_ADC_Temperature_Vrefint> to the GD32303E-EVAL-V1.0 board. Connect serial cable to EVAL_COM1, open the HyperTerminal.

When the program is running, HyperTerminal display the value of temperature and internal voltage reference (VREFINT).

Notice: because there is an offset, when inner temperature sensor is used to detect accurate temperature, an external temperature sensor part should be used to calibrate the offset error.

the temperature data is 26 degrees Celsius the reference voltage data is 1.185V

the temperature data is 26 degrees Celsius the reference voltage data is 1.184V

the temperature data is 27 degrees Celsius the reference voltage data is 1.184V

the temperature data is 27 degrees Celsius the reference voltage data is 1.184V

the temperature data is 27 degrees Celsius the reference voltage data is 1.184V

the temperature data is 27 degrees Celsius the reference voltage data is 1.184V

the temperature data is 27 degrees Celsius the reference voltage data is 1.183V

5.8. ADC0_ADC1_Follow_up_mode

5.8.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use the ADC to convert analog signal to digital data
- Learn to use ADC0 and ADC1 follow-up mode

5.8.2. DEMO Running Result

Download the program <08_ADC0_ADC1_Follow_up_mode> to the GD32303E-EVAL-V1.0 board. Connect serial cable to EVAL_COM1, open the HyperTerminal. PC3 and PC5 pin voltage access by external voltage.

TIMER0_CH0 is the trigger source of ADC0 and ADC1. When the rising edge of TIMER0_CH0 coming, ADC0 starts immediately and ADC1 starts after a delay of several ADC clock cycles. The values of ADC0 and ADC1 are transmitted to array adc_value[0] and adc_value[1] by DMA.

When the first rising edge of TIMER0_CH0 coming, the value of the ADC0 conversion of PC3 pin is stored into the low half word of adc_value[0], and after a delay of several ADC clock cycles the value of the ADC1 conversion of PC5 pin is stored into the high half word of adc_value[0]. When the second rising edge of TIMER0_CH0 coming, the value of the ADC0 conversion of PC5 pin is stored into the low half word of adc_value[1], and after a delay of several ADC clock cycles the value of the ADC1 conversion of PC3 pin is stored into the high half word of adc_value[1].

When the program is running, HyperTerminal display the regular value of ADC0 and ADC1 by adc_value[0] and adc_value[1].

```
the data adc_value[0] is 00010799 the data adc_value[1] is 079C0000 the data adc_value[0] is 00000799 the data adc_value[1] is 079B0000 the data adc_value[0] is 00000798 the data adc_value[1] is 079C0000 the data adc_value[1] is 079B0000 the data adc_value[1] is 079B0000
```


5.9. ADC0_ADC1_Regular_Parallel_mode

5.9.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use the ADC to convert analog signal to digital data
- Learn to use ADC0 and ADC1 regular parallel mode

5.9.2. DEMO Running Result

Download the program <09_ADC0_ADC1_Regular_Parallel_mode> to the GD32303E-EVAL-V1.0 board. Connect serial cable to EVAL_COM1, open the HyperTerminal. PC3 and PC5 pin connect to external voltage input.

TIMER0_CH0 is the trigger source of ADC0 and ADC1. When the rising edge of TIMER0_CH0 coming, ADC0 and ADC1 convert the regular channel group parallelly. The values of ADC0 and ADC1 are transmitted to array adc_value[0] and adc_value[1] by DMA.

When the first rising edge of TIMER0_CH0 coming, the value of the ADC0 conversion of PC3 pin is stored into the low half word of adc_value[0], the value of the ADC1 conversion of PC5 pin is stored into the high half word of adc_value[0]. When the second rising edge of TIMER0_CH0 coming, the value of the ADC0 conversion of PC5 pin is stored into the low half word of adc_value[1], the value of the ADC1 conversion of PC3 pin is stored into the high half word of adc_value[1].

When the program is running, HyperTerminal displays the regular value of ADC0 and ADC1 stored in adc_value[0] and adc_value[1].

```
the data adc_value[0] is 0000073C the data adc_value[1] is 073C0000 the data adc_value[0] is 0000073B the data adc_value[1] is 073B0000 the data adc_value[0] is 0000073B the data adc_value[1] is 073B0000 the data adc_value[1] is 073C0000 the data adc_value[1] is 073B0000 the data adc_value[1] is 073B0000
```


5.10. DAC_Output_Voltage_Value

5.10.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

Learn to use DAC to output voltage on DAC0 output

5.10.2. DEMO Running Result

Download the program <10_DAC_Output_Voltage_Value> to the EVAL board and run, all the LEDs will turn on and turn off for test. The digital value is 0x7FF0, its converted analog voltage should be 1.65V (VREF/2), using the voltmeter to measure PA4 or DA1 on JP7, its value is 1.65V.

5.11. **I2C_EEPROM**

5.11.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use the master transmitting mode of I2C module
- Learn to use the master receiving mode of I2C module
- Learn to read and write the EEPROM with I2C interface

5.11.2. DEMO Running Result

Download the program <11_I2C_EEPROM> to the EVAL board and run. Connect serial cable to COM1, and open the HyperTerminal to show the print message.

Firstly, the data of 256 bytes will be written to the EEPROM from the address 0x00 and printed by the serial port. Then, reading the EEPROM from address 0x00 for 256 bytes and the result will be printed. Finally, compare the data that were written to the EEPROM and the data that were read from the EEPROM. If they are the same, the serial port will output "I2C-AT24C02 test passed!" and the four LEDs lights flashing, otherwise the serial port will output "Err: data read and write aren't matching." and all the four LEDs light.

The output information via the serial port is as following.


```
I2C-24CO2 configured....
The I2CO is hardware interface
The speed is 400000
AT24CO2 writing...
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F
0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27 0x28 0x29 0x2A 0x2B 0x2C 0x2D 0x2E 0x2F
       0x31 0x32 0x33 0x34 0x35
                                               0x36 0x37
0x40 0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C
                                                                                                       Ox4D Ox4E Ox4F
0x50 0x51 0x52 0x53 0x54 0x55 0x56 0x57 0x58 0x59 0x5A 0x5B 0x5C
0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C
                                                                                                       0x6D
                                                                                                               0x6E
                                                                                                                       0x6F
                       0x73 0x74 0x75 0x76 0x77 0x78 0x79 0x7A 0x7B 0x7C 0x83 0x84 0x85 0x86 0x87 0x88 0x89 0x8A 0x8B 0x8C
0x70 0x71 0x72 0x73 0x74
                                                                                                       0x7D 0x7E
                                                                                                                       0x7F
       0x81 0x82
                                                                                                       0x8D
                                                                                                               0x8E
                                                                                                                       0x8F
0x90 0x91 0x92 0x93 0x94 0x95 0x96 0x97 0x98 0x99 0x9A 0x9B 0x9C
0xAO 0xA1 0xA2 0xA3 0xA4 0xA5 0xA6 0xA7 0xA8 0xA9 0xAA 0xAB 0xAC
                                                                                                       Ox9D Ox9E Ox9E
                                                                                                       OxAD OxAE
                                                                                                                       0xAF
0xB0 0xB1 0xB2 0xB3 0xB4 0xB5 0xB6 0xB7 0xB8 0xB9 0xBA 0xBB 0xC0 0xC1 0xC2 0xC3 0xC4 0xC5 0xC6 0xC7 0xC8 0xC9 0xCA 0xCB 0xCC
                                                                                                       OxBD OxBE
                                                                                                                       \Omega_{\mathbf{Y}}\mathbf{BF}
OxDO OxD1 OxD2 OxD3 OxD4 OxD5 OxD6 OxD7 OxD8 OxD9 OxDA OxDB OxDC OxDD OxDE OxDF
OxFO OxF1 OxF2 OxF3 OxF4 OxF5 OxF6 OxF7 OxF8 OxF9 OxFA OxFB OxFC OxFD OxFE OxFE
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x16 0x18 0x18 0x18 0x17 0x16 0x17 0x18 0x18 0x18 0x19 0x10 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27 0x28 0x29 0x2A 0x2B 0x2C
                                                                                                       Ox1D Ox1E Ox1F
Ox2D Ox2E Ox2F
0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x3A 0x3B 0x3C
0x40 0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C
                                                                                                      Ox3D Ox3E Ox3F
Ox4D Ox4E Ox4F
0x50 0x51 0x52 0x53 0x54 0x55 0x56 0x57 0x58 0x59 0x5A 0x5B 0x5C
                                                                                                       OvSD OvSE OvSE
       0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B
0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78 0x79 0x7A 0x7B 0x7C
0x80 0x81 0x82 0x83 0x84 0x85 0x86 0x87 0x88 0x89 0x8A 0x8B 0x8C
                                                                                                       0x7D 0x7E 0x7E
0x90 0x91 0x92 0x93 0x94 0x95 0x96 0x97 0x98 0x99 0x9A 0x9B 0x9C 0x9D 0x9E 0x9E
0xA0 0xA1 0xA2 0xA3 0xA4 0xA5 0xA6 0xA7 0xA8 0xA9 0xAA 0xAB 0xAC
0xB0 0xB1 0xB2 0xB3 0xB4 0xB5 0xB6 0xB7 0xB8 0xB9 0xBA 0xBB 0xBC
                                                                                                       OxBD OxBE OxBE
OxFO OxF1 OxF2 OxF3 OxF4 OxF5 OxF6 OxF7 OxF8 OxF9 OxFA OxFB OxFC OxFD OxFE OxFF
```

5.12. SPI_SPI_Flash

5.12.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

■ Learn to use the master mode of SPI unit to read and write NOR Flash with the SPI interface

5.12.2. DEMO Running Result

The computer serial port line connected to the COM1 port of development board, set the baud rate of HyperTerminal software to 115200, 8 bits data bit, 1 bit stop bit. At the same time you should jump the JP12 to SPI.

Download the program <12_SPI_SPI_Flash> to the EVAL board, the HyperTerminal software can observe the operation condition and will display the ID of the flash, 256 bytes data which are written to and read from flash. Compare the data that were written to the flash and the data that were read from the flash. If they are the same, the serial port will output "SPI-GD25Q16 Test Passed!", otherwise, the serial port will output "Err: Data Read and Write aren't Matching.". At last, turn on and off the leds one by one. The following is the experimental results.


```
GD32303E-EVAL-V1.0 System is Starting up...
GD32303E-EVAL-V1.0 Flash:512K
GD32303E-EVAL-V1.0 The CPU Unique Device ID:[37373431-6363533-400200]
GD32303E-EVAL-V1.0 SPI Flash:GD25Q16 configured...
The Flash ID:0xC84015
Write to tx_buffer
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C
                                                                 Ox1D Ox1E Ox1F
0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27 0x28 0x29 0x2A 0x2B 0x2C
                                                                 0x2D 0x2E 0x2F
0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x3A 0x3B 0x3C
                                                                 Ox3D Ox3E Ox3F
0x40 0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C
                                                                 Ox4D Ox4E Ox4F
0x50 0x51 0x52 0x53
                    0x54 0x55
                             0x56
                                   0x57
                                        0x58 0x59 0x5A 0x5B 0x5C
                                                                 0x5D 0x5E
                                                                           0x5F
0x60 0x61 0x62 0x63 0x64 0x65 0x66
                                   0x67
                                        0x68 0x69 0x6A 0x6B 0x6C
                                                                 Ox6D Ox6E
                                                                           0x6F
0x70 0x71 0x72 0x73
                    0x74 0x75
                             0x76
                                   0x77
                                        0x78 \ 0x79
                                                  Ox7A Ox7B Ox7C
                                                                 0x7D 0x7E
                                                                           0x7F
0x80 0x81 0x82 0x83
                    0x84 0x85
                              0x86
                                   0x87
                                        0x88 0x89
                                                  Ox8A Ox8B Ox8C
                                                                 Ox8D Ox8E
0x90 0x91
          0x92 0x93 0x94 0x95 0x96
                                   0x97
                                        0x98 0x99 0x9A 0x9B 0x9C
                                                                 Ox9D Ox9E
                                                                           0x9F
     0xA1 0xA2 0xA3
                    0xA4 0xA5 0xA6
                                   0xA7
                                        0xA8 0xA9
0xA0
                                                  OxAA OxAB OxAC
                                                                 OxAD OxAE
                                                                           0xAF
|OxBO OxB1 OxB2 OxB3 OxB4 OxB5 OxB6
                                   0xB7
                                        OxB8 OxB9 OxBA OxBB OxBC
                                                                 OxBD OxBE
                                                                           \Omega_{\mathbf{Y}}\mathbf{R}\mathbf{F}
0xC0 0xC1 0xC2 0xC3 0xC4 0xC5 0xC6
                                   OxC7 OxC8 OxC9 OxCA OxCB OxCC
                                                                 OxCD OxCE
                                                                           OxCF
OxDO OxD1 OxD2 OxD3 OxD4 OxD5 OxD6
                                   0xD7 0xD8 0xD9 0xDA 0xDB 0xDC
                                                                 OxDD OxDE
OxEO OxE1 OxE2 OxE3 OxE4 OxE5 OxE6 OxE7 OxE8 OxE9 OxEA OxEB OxEC
                                                                 OxED OxEE
                                                                           OxEF
OxFO OxF1 OxF2 OxF3 OxF4 OxF5 OxF6 OxF7 OxF8 OxF9 OxFA OxFB OxFC OxFD OxFE OxFE
Read from rx_buffer:0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B
OxOC OxOD OxOE OxOF Ox10 Ox11 Ox12
                                   0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B
                                   0x23 0x24 0x25
                                                            0x28
     Ox1D Ox1E Ox1F
                    0x20 0x21
                             0x22
                                                  0x26 \ 0x27
                                                                 0x29
                                                                      Ox2A Ox2B
10x2C
     0x2D
          0x2E 0x2F
                    0x30 0x31
                             0x32
                                   0x33
                                        0x34 0x35
                                                  0x36
                                                       0x37
                                                            0x38
                                                                 0x39
                                                                      Ox3A Ox3B
0x3C
     Ox3D Ox3E Ox3F
                    0x40 0x41 0x42
                                   0x43 0x44 0x45
                                                  0x46 0x47 0x48 0x49 0x4A 0x4B
     Ox4D Ox4E Ox4F
                    0x50 0x51 0x52
                                   0x53 0x54 0x55
                                                  0x56 0x57
                                                            0x58
                                                                 0x59
                                                                      Ox5A Ox5B
0x5C 0x5D 0x5E 0x5F 0x60 0x61 0x62
                                   0x63 0x64 0x65
                                                  0x66 0x67 0x68 0x69 0x6A 0x6B
                    0x70 0x71
10x6C
     Ox6D Ox6E Ox6F
                             0x72
                                   0x73 0x74 0x75
                                                  0x76 0x77
                                                            0x78
                                                                 0x79
                                                                      Ox7A Ox7B
0x70
     0x7D 0x7E 0x7F
                    0x80 0x81
                              0x82
                                   0x83 0x84 0x85
                                                  0x86
                                                       0x87
                                                            0x88
                                                                 0x89
                                                                      Ox8A Ox8B
     Ox8D Ox8E Ox8F
                    0x90 0x91 0x92
                                   0x93 0x94 0x95
                                                  0x96 0x97 0x98 0x99 0x9A 0x9B
     Ox9D Ox9E Ox9F
                    0xA0 0xA1 0xA2
                                   0xA3 0xA4 0xA5
                                                  0xA6 0xA7
                                                            0xA8
                                                                 OxA9 OxAA OxAB
OxAC OxAD OxAE OxAF OxBO OxB1 OxB2 OxB3 OxB4 OxB5 OxB6 OxB7 OxB8 OxB9 OxBA OxBB
lOxBC
     OxBD OxBE OxBF OxCO OxC1 OxC2 OxC3 OxC4 OxC5
                                                  0xC6 0xC7 0xC8 0xC9 0xCA 0xCB
l0xCC
     OxCD OxCE OxCF OxDO OxD1 OxD2 OxD3 OxD4 OxD5 OxD6 OxD7 OxD8 OxD9 OxDA OxDB
OxDC OxDD OxDE OxDF OxEO OxE1 OxE2 OxE3 OxE4 OxE5 OxE6 OxE7 OxE8 OxE9 OxEA OxEB
     OxED OxEE OxEF
                    OxFO OxF1 OxF2 OxF3 OxF4 OxF5 OxF6 OxF7 OxF8 OxF9 OxFA OxFB
OxFC OxFD OxFE OxFF
|SPI-GD25Q16 Test Passed!|
```

5.13. I2S_Audio_Player

5.13.1. DEMO Purpose

This Demo includes the following functions of GD32 MCU:

- Learn to use I2S module to output audio file
- Parsing audio files of wav format

GD32303E-EVAL board integrates the I2S (Inter-IC Sound) module, and the module can communicate with external devices using the I2S audio protocol. This Demo mainly shows how to use the I2S interface of the board for audio output.

5.13.2. DEMO Running Result

Download the program<13_I2S_Audio_Player>to the EVAL board, insert the headphone into the audio port, and then listen to the audio file.

5.14. EXMC_NandFlash

5.14.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

■ Learn to use EXMC control the NAND flash

5.14.2. DEMO Running Result

GD32303E-EVAL board has EXMC module to control NAND flash. Before running the demo, P2 and P3 must be fitted to the EXMC port, JP24 must be fitted to the Nwait port. Download the program <14_EXMC_NandFlash> to the EVAL board. This demo shows the write and read operation process of NAND flash memory by EXMC module. If the test pass, LED2 will be turned on. Otherwise, turn on the LED4. Information via a HyperTerminal output as following:

```
NAND flash initialized!
Read NAND ID!
Nand flash ID:0xAD 0xF1 0x80 0x1D
Write data successfully!
Read data successfully!
Check the data!
Access NAND flash successfully!
The data to be read:
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B
                                                              0x1C
                                                                   Ox1D Ox1E
0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27 0x28 0x29 0x2A 0x2B
                                                              0x2C
                                                                   0x2D 0x2E
                                                                             0x2F
0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x3A 0x3B
                                                              0x3C
                                                                   0x3D 0x3E
                                                                             0x3F
                                         0x48 0x49
0x40 0x41 0x42
               0x43 0x44 0x45 0x46 0x47
                                                   Ox4A Ox4B
                                                              0x4C
                                                                   Ox4D Ox4E
                                                                             0x4F
0x50 0x51 0x52 0x53 0x54 0x55 0x56 0x57
                                         0x58 0x59 0x5A
                                                        0x5B
                                                              0x5C
                                                                   0x5D 0x5E
0x60 0x61 0x62 0x63 0x64 0x65 0x66 0x67
                                         0x68 0x69 0x6A 0x6B
                                                              0x6C
                                                                   0x6D 0x6E
0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77
                                         0x78 \ 0x79
                                                   0x7A 0x7B
                                                              0x7C
                                                                   0x7D 0x7E
                                                                             0x7F
0x80 0x81
          0x82
               0x83
                    0x84 0x85
                               0x86
                                    0x87
                                         0x88
                                              0x89
                                                   0x8A
                                                        0x8B
                                                              0x8C
                                                                   Ox8D
                                                                        0x8E
                                                                             0x8F
0x90 0x91 0x92 0x93 0x94 0x95 0x96 0x97
                                         0x98 0x99 0x9A
                                                              0x9C
                                                        0x9B
                                                                   0x9D 0x9E
                                                                             0x9F
OxAO OxA1 OxA2 OxA3 OxA4 OxA5 OxA6
                                    0xA7
                                         Oxas Oxas Oxaa
                                                        OxAB
                                                              OxAC
                                                                   OxAD OxAE
0xB0 0xB1 0xB2
               0xB3 0xB4 0xB5
                               0xB6
                                    0xB7
                                         0xB8 0xB9
                                                   OxBA OxBB
                                                              0xBC
                                                                   OxBD OxBE
                                                                             OxBF
0xC0 0xC1 0xC2 0xC3 0xC4 0xC5 0xC6
                                    0xC7
                                         0xC8 0xC9 0xCA
                                                        0xCB
                                                              0xCC
                                                                   OxCD OxCE
0xD0 0xD1 0xD2 0xD3 0xD4 0xD5 0xD6 0xD7 0xD8 0xD9 0xDA 0xDB
                                                              0xDC
                                                                   OxDD OxDE
                                         OxE8 OxE9 OxEA OxEB
OxEO OxE1 OxE2 OxE3 OxE4 OxE5 OxE6 OxE7
                                                              0xEC
                                                                   OxED OxEE
                                                                             OxEF
0xF0 0xF1 0xF2 0xF3 0xF4 0xF5 0xF6 0xF7
                                         0xF8 0xF9 0xFA 0xFB
                                                              0xFC
                                                                   OxFD OxFE
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E
                                                                             -0 \times 0 F
```

5.15. EXMC_TouchScreen

5.15.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

■ Learn to use EXMC control LCD

5.15.2. DEMO Running Result

GD32303E-EVAL board has EXMC module to control LCD. Before running the demo, JP12 must be fitted to the SPI port, P2 and P3 must be fitted to the EXMC port. Download the program <15_EXMC_TouchScreen> to the EVAL board. This demo displays GigaDevice logo and four green buttons on the LCD screen by EXMC module. Users can touch the green button to turn on the corresponding LED on board, and then the color of button you had touched will change to red.

5.16. SDIO_SDCardTest

5.16.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use SDIO to single block or multiple block write and read
- Learn to use SDIO to erase, lock and unlock a SD card

GD32303E-EVAL board has a secure digital input/output interface (SDIO) which defines the SD/SD I/O /MMC CE-ATA card host interface. This demo will show how to use SDIO to operate on SD card.

5.16.2. DEMO Running Result

Download the program <16_SDIO_SDCardTest> to the EVAL board and run. Connect serial cable to EVAL_COM1, open the HyperTerminal. Firstly, all the LEDs flash once for test. Then initialize the card and print out the information of the card. After that, test the function of single block operation, lock and unlock operation, erase operation and multiple blocks operation. If any error occurs, print the error message and turn on LED2, LED4 and turn off LED3 and LED5. Otherwise, turn on all the LEDs.

Uncomment the macro DATA_PRINT to print out the data and display them through HyperTerminal. Set bus mode(1-bit or 4-bit) and data transfer mode(polling mode or DMA mode) by comment and uncomment the related statements.

Information via a serial port output as following.

```
Card init success!
Card information:
## Card version 3.0x ##
## SDHC card ##
## Device size is 7782400KB ##
## Block size is 512B ##
## Block count is 15564800 ##
## CardCommandClasses is: 5b5 ##
## Block operation supported ##
## Erase supported ##
## Lock unlock supported ##
## Application specific supported ##
## Switch function supported ##
 Card test:
Block write success!
 Block read success!
 The card is locked!
 Erase failed!
 The card is unlocked!
 Erase success!
 Block read success!
 Multiple block write success!
 Multiple block read success!
```

5.17. CAN_Network

5.17.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

■ Learn to use the CAN0 communication between two boards

GD32303E-EVAL development board integrates the CAN(Controller Area Network) bus controller, which is a common industrial control bus. CAN bus controller follows the CAN bus protocol of 2.0 A and 2.0 B. This demo mainly shows how to communicate two EVAL boards through CAN0.

5.17.2. DEMO Running Result

This example is tested with two GD32303E-EVAL boards. Jump the P2, P3 to CAN with the jumper cap. Connect L pin to L pin and H pin to H pin of JP14 on the boards for sending and receiving frames. Download the program <17_CAN_Network> to the two EVAL boards, and connect serial cable to EVAL_COM1. Firstly, the EVAL_COM1 sends "please press the Tamper key to transmit data!" to the HyperTerminal. The frames are sent and the transmit data are printed by pressing Tamper Key push button. When the frames are received, the receive data will be printed and the LED2 will toggle one time.

The output information via the serial port is as following.

```
please press the Tamper key to transmit data!
CANO transmit data: ab,cd
CANO recive data: ab,cd
```

5.18. RCU Clock Out

5.18.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use GPIO control the LED
- Learn to use the clock output function of RCU
- Learn to communicate with PC by USART

5.18.2. **DEMO Running Result**

Download the program <18_RCU_Clock_Out> to the EVAL board and run. Connect serial cable to EVAL_COM1, open the HyperTerminal. When the program is running, HyperTerminal will display the initial information. Then user can choose the type of the output clock by pressing the TAMPER button. After pressing, the corresponding LED will be turned on and HyperTerminal will display which mode be selected. The frequency of the output clock can be observed through the oscilloscope by PA8 pin.

Information via a serial port output as following:

/-----Gigadevice Clock output Demo -----/
press tamper key to select clock output source
CK_OUTO: system clock
CK_OUTO: IRC8M
CK_OUTO: HXTAL
CK_OUTO: system clock

5.19. CTC_Calibration

5.19.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use external low speed crystal oscillator (LXTAL) to implement the CTC calibration function
- Learn to use clock trim controller (CTC) to trim internal 48MHz RC oscillator (IRC48M) clock

The CTC unit trim the frequency of the IRC48M based on an external accurate reference signal source. It can automatically adjust the trim value to provide a precise IRC48M clock.

5.19.2. DEMO Running Result

Download the program <19_CTC_Calibration> to the EVAL board and run. Firstly, all the LEDs flash once for test. Then if the clock trim is OK, LED2 will be on. Otherwise, all the LEDs are turned off.

5.20. PMU_sleep_wakeup

5.20.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

■ Learn to use the USART receive interrupt to wake up the MCU from sleep mode

5.20.2. DEMO Running Result

Download the program <20_PMU_sleep_wakeup> to the EVAL board, connect serial cable to COM1. After power-on, all the LEDs are off. The mcu will enter sleep mode and the software stops running. When the USART0 receives a byte of data from the HyperTerminal, the mcu will wake up from a receive interrupt. And all the LEDs will flash together.

5.21. RTC_Calendar

5.21.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use RTC module to implement calendar and alarm function
- Learn to use USART module to implement time display

5.21.2. DEMO Running Result

Download the program <21_RTC_Calendar> to the EVAL board and run. Connect serial cable to EVAL_COM1, open the HyperTerminal. After start-up, the program will ask to set the time on the HyperTerminal. The calendar will be displayed on the HyperTerminal. At the same time, set current time add 10 second as alarm time. After 10 second, the alarm note will be displayed on the HyperTerminal and turn on LEDs.

```
========Time Settings=============
 Please Set Hours: 23
Please Set Minutes: 23
Please Set Seconds: 23
Set Alarm Time: 23:23:33
Time: 23:23:23
Time: 23:23:23
Time: 23:23:24
Time: 23:23:25
Time: 23:23:26
Time: 23:23:27
Time: 23:23:28
Time: 23:23:29
Time: 23:23:30
Time: 23:23:31
Time: 23:23:32
       ======RTC Alarm and turn on LED=========================
Time: 23:23:33
```

5.22. TIMER_Breath_LED

5.22.1. DEMO Purpose

This demo includes the following functions of GD32 MCU:

- Learn to use Timer output PWM wave
- Learn to update channel value

5.22.2. DEMO Running Result

Use the DuPont line to connect the TIMER0_CH0 (PA8) and LED2 (PF0), and then download the program <22_TIMER_Breath_LED> to the GD32303E-EVAL board and run. PA8 should not be reused by other peripherals.

When the program is running, you can see LED2 lighting from dark to bright gradually and then gradually darken, ad infinitum, just like breathing as rhythm.

5.23. USBD_Keyboard

5.23.1. DEMO_Purpose

This demo includes the following functions of GD32 MCU:

- Learn how to use the USBD peripheral
- Learn how to implement USB HID(human interface) device

GD32303E-EVAL board has five keys and one USBD interface. The five keys are Reset key, Wakeup key, Tamper key, User1 key and User2 key. In this demo, the GD32303E-EVAL board is enumerated as an USB Keyboard, which uses the native PC Host HID driver, as shown below. The USB Keyboard uses three keys(Wakeup key, Tamper key and User1 key) to output three characters ('b', 'a' and 'c'). In addition, the demo also supports remote wakeup which is the ability of a USB device to bring a suspended bus back to the active condition, and the Tamper key is used as the remote wakeup source.

5.23.2. DEMO Running Result

Download the program <23_USBD_Keyboard> to the EVAL board and run. If you press the Wakeup key, will output 'b'. If you press the User1 key, will output 'c'. If you press the Tamper key, will output 'a'.

If you want to test USB remote wakeup function, you can do as follows:

- Manually switch PC to standby mode
- Wait for PC to fully enter the standby mode
- Push the Tamper key
- If PC is ON, remote wakeup is OK, else failed.

6. Revision history

Table 6-1. Revision history

Revision No.	Description	Date
2.0	Initial Release	Mar. 23, 2021

Important Notice

This document is the property of GigaDevice Semiconductor Inc. and its subsidiaries (the "Company"). This document, including any product of the Company described in this document (the "Product"), is owned by the Company under the intellectual property laws and treaties of the People's Republic of China and other jurisdictions worldwide. The Company reserves all rights under such laws and treaties and does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. The names and brands of third party referred thereto (if any) are the property of their respective owner and referred to for identification purposes only.

The Company makes no warranty of any kind, express or implied, with regard to this document or any Product, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Company does not assume any liability arising out of the application or use of any Product described in this document. Any information provided in this document is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Except for customized products which has been expressly identified in the applicable agreement, the Products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only. The Products are not designed, intended, or authorized for use as components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, atomic energy control instruments, combustion control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or Product could cause personal injury, death, property or environmental damage ("Unintended Uses"). Customers shall take any and all actions to ensure using and selling the Products in accordance with the applicable laws and regulations. The Company is not liable, in whole or in part, and customers shall and hereby do release the Company as well as it's suppliers and/or distributors from any claim, damage, or other liability arising from or related to all Unintended Uses of the Products. Customers shall indemnify and hold the Company as well as it's suppliers and/or distributors harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of the Products.

Information in this document is provided solely in connection with the Products. The Company reserves the right to make changes, corrections, modifications or improvements to this document and Products and services described herein at any time, without notice.

© 2021 GigaDevice - All rights reserved