AUTOEVALUACIÓN 7.3

1) Si $T: \mathbb{R}^3 \to \mathbb{R}^3$ es la transformación lineal $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \\ -x \\ -y \end{pmatrix}$, entonces $A_T = \frac{z}{z}$

a)
$$\begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 b) $\begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ d) $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$

II) ______ representa(n) una expansión a lo largo del eje y.

a)
$$\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
 b) $\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$

III) _____ representa(n) una expansión a lo largo del eje x.

a)
$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$

d)
$$\begin{pmatrix} 1 & \frac{1}{3} \\ 0 & 1 \end{pmatrix}$$
 e) $\begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$ f) $\begin{pmatrix} 1 & 0 \\ \frac{1}{3} & 1 \end{pmatrix}$

Respuestas a la autoevaluación

I) b) II) c) III) c), d)

PROBLEMAS 7.3

De los problemas 1 al 39 encuentre la representación matricial A_T de la transformación lineal T, nu T, im T, $\nu(T)$ y $\rho(T)$. A menos que se especifique otra cosa, suponga que B_1 y B_2 son bases canónicas.

1.
$$T: \mathbb{R}^2 \to \mathbb{R}; T\begin{pmatrix} x \\ y \end{pmatrix} = 3x - 2y$$
 2. $T: \mathbb{R}^2 \to \mathbb{R}^2; T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - 2y \\ -x + y \end{pmatrix}$

3.
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
; $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ x-y \\ 2x+3y \end{pmatrix}$
4. $T: \mathbb{R}^2 \to \mathbb{R}^3$; $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x-y \\ x+y \\ 3x-2y \end{pmatrix}$

5.
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
; $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - y + z \\ -2x + 2y - 2z \end{pmatrix}$ **6.** $T: \mathbb{R}^2 \to \mathbb{R}^2$; $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$

7.
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
; $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \\ y - x - z \\ x \end{pmatrix}$
8. $T: \mathbb{R}^3 \to \mathbb{R}^3$; $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - y + 2z \\ 3x + y + 4z \\ 5x - y + 8z \end{pmatrix}$