Name:

1. (5 points) What does it mean that the worst case run time of an algorithm is in $\Theta(n^2)$?

Answer: The maximum value of T(n) for each n is greater than or equal to some n_0 is tightly bound by the function n^2 .

2. (5 points) Consider the recursive function:

```
// Returns an integer
SomeRecursiveFunction(n)
  if n==1 then
    return 1
  else
    a = SomeRecursiveFunction(Floor(n/2))
    b = SomeRecursiveFunction(Ceiling(n/2))
    c = SomeRecursiveFunction(Floor(n/2))
    return (a+b+c)
```

Give a tight asymptotic bound for T(n) the runtime of SomeRecursiveFunction i.e. show $T(n) = \Theta(g(n))$ for some function g(n).

Answer: The runtime function for this function is T(n) = 3T(n/2) + 1. Using the master theorem Case 1 we obtain that $T(n) = \Theta(n^{\log_2 3})$.

3. (5 points) Find a tight asymptotic bound using the Master Method for the recurrence

$$T(n) = 4T(n/3) + n^2.$$

Answer: We see that $n^2 = \Omega(n^{\log_3 4 + \epsilon})$ for $\epsilon = 2 - \log_3 4$. Hence we are in Case 3 of the Master Method. So show regularity: $4(n/3)^2 = 4/9n^2$. So for $c_1 = 4/9$ and $n \ge 1$ the regularity condition holds. Therefore $T(n) = \Theta(n^2)$.

4. (5 points) Use the substitution method to find a tight asymptotic bound for

$$T(n) = 2T(\lfloor n/2 \rfloor) + n.$$

(*Hint:* Find the bound by using the Master Theorem so you know what to guess.)

Answer: By the Master Method Case 2 we see that $T(n) = \Theta(n \log n)$. Suppose $T(n/2) \le c(n/2) \log(n/2)$. We first show that $T(n) \le cn \log n$:

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

$$\leq 2T(n/2) + n$$

$$\leq c(n/2) \log(n/2) + n$$

$$\leq c(n/2) \log n - c(n/2) \log 2 + n$$

$$\leq cn/2 \log n - c(n/2) + n$$

$$\leq cn \log n$$

for c=2. A similar calculation shows that $0 \le cn \log n \le 2T(\lfloor n/2 \rfloor) + n$. Hence $T(n) = \Theta(n \log n)$.