Katedra softwarového inženýrství

Bc. Daniel Crha

Unifikované dotazování nad multi-modelovými daty

Obhajoba diplomové práce

Multi-modelová data

Obrázek: Ukázka multi-modelových dat – data relační, grafová a dokumentová.

Úvod

- Co jsou multi-modelová data?
 - Motivace: rychlost, přirozenost reprezentace, redundance
- Dotazovat lze pouze jednotlivé modely zvlášť
- Chceme data dotazovat unifikovaně
- Jedno řešení: MultiCategory: Multi-model Query Processing Meets Category Theory and Functional Programming (Valter Uotila et al., 2021)
 - Funkcionální programování (Haskell)
 - Neuvažuje datovou redundanci
 - Náročné na použití pro širší spektrum uživatelů

Předpoklady

- Cíl: unifikované dotazování dat ve více databázích
 - Jednotný dotazovací jazyk
 - Chceme ignorovat specifika jednotlivých datových modelů
- Potřebujeme unifikovanou abstraktní reprezentaci dat
 - Reprezentace založená na teorii kategorií
 - Unifikuje specifika populárních modelů relační, dokumentový, grafový, key-value, sloupcový
 - Budeme nad touto reprezentaci dotazovat
- Tři zásadní koncepty schématická kategorie, instanční kategorie a mapování dat z nativní do kategorické reprezentace

Kategorický model

Obrázek: Schématická kategorie (vlevo) a instanční kategorie (vpravo).

Návrh přístupu

- Máme unifikovanou kategorickou reprezentaci, potřebujeme kategorický dotazovací jazyk
- Kategorii Ize reprezentovat jako multigraf
 - Můžeme použít grafový dotazovací jazyk jako základ
 - Jazyk SPARQL expresivita, známá technologie

Přínos 1: Jazyk MMQL

- Dotazovací jazyk Multi-Model Query Language
 - Analýza existujících grafových dotazovacích jazyků
 - Inspirace SPARQL kategorická doména, objekty a morfismy
 - Dotazujeme schématickou kategorii, výsledkem je instanční kategorie
 - Matchování grafových vzorů
 - Projekce, selekce, filtrování, agregace, řazení
 - Množinové operace, vnořené dotazy, více proměnných pro jeden schématický objekt
- Výstupem je i gramatika MMQL

Přínos 2: Dotazovací algoritmy

Obrázek: Kroky 1-3 zpracování MMQL dotazu.

Přínos 2: Dotazovací algoritmy

Obrázek: Kroky 4-7 zpracování MMQL dotazu.

Přínos 2: Dotazovací algoritmy

- Dotazovací jazyk je nutné implementovat
 - Velice netriviální
 - Pro multi-modelovou doménu není dostatek relevantních zdrojů
- Návrh přístupu a specifikace algoritmů pro implementaci MMQL
 - Tvorba plánů dotazu
 - Tvorba plánů spojení
 - Výběr nejlepšího plánu dotazu
 - Překlad query parts do nativních dotazů
 - Spojení výsledků
 - Projekce a další operace
 - Transformace do finální reprezentace
- Zaměření na jednoduchost a pochopitelnost, výkon je pro nás vedlejší

Přínos 3: Nástroj MM-quecat

- Ověření validity návrhu
- Nástroj MM-quecat
 - Implementace konceptů MMQL
 - Podporuje databáze PostgreSQL, MongoDB
 - Selekce, projekce, spojení v rámci databáze i mezi databázemi
- Experimentální evaluace s profilováním
 - Odhalení neefektivních částí dotazovacího algoritmu
 - Efektivita není primárním cílem práce

Experimentální evaluace MM-quecat

Obrázek: Vizualizace výstupu profileru pro experiment s MongoDB.

Publikace

- Demo článek MM-quecat: A Tool for Unified Querying of Multi-Model Data
 - Autoři: Pavel Koupil, Daniel Crha, Irena Holubová
 - Přijat na konferenci EDBT 2023 (CORE A)
 - Rozšířená verze nástroje z diplomové práce
- Příprava rozšířeného žurnálového článku o MMQL

Uživatelské rozhraní MM-quecat

Obrázek: Návrh uživatelského rozhraní MM-quecat.

Závěr

- Hlavní přínos práce: jazyk MMQL
 - Jednoduché dotazy jsou jednoduché, složité jsou možné
 - Podpůrné algoritmy pro implementaci jazyka
 - Unifikované dotazování multi-modelových dat
- Proof-of-concept implementace MM-quecat
 - Verifikace návrhu
- Kritická evaluace návrhu
 - Identifikace neefektivních částí
 - Návrhy na další zlepšení a rozšíření
- První krok v unifikovaném dotazování multi-modelových dat, poukázání na další zajímavé problémy

Děkuji za pozornost!

Za ochotu a čas mně věnovaný při vypracování diplomové práce děkuji též své vedoucí práce doc. RNDr. Ireně Holubové, Ph.D.

Připomínky oponenta – Čitelnost MMQL

- "s. 19: Požadavky na kategoriální dotazovací jazyk zmiňují čitelnost jazyka. Použití signatur v jazyku MMQL (viz kap. 4) ovšem jeho čitelnost nikterak nezvyšuje, spíše naopak."
 - MMQL počítá s alfanumerickými signaturami
 - Čísla jsou automaticky vygenerovaná z MM-evocat, lze používat i lepší identifikátory

Připomínky oponenta – Mappings

- "s. 42: krok 4 jak systém pro vyhodnocení dotazu rozezná, zda má použít při přístupu k objektu pole nebo vnořený objekt. Jde o 2 různé dotazy."
 - Koncept mappings podkapitola 2.5
 - Mapping definuje mapování nativní reprezentace do kategorické reprezentace

Připomínky oponenta – ER Diagramy

- Používám zjednodušené diagramy pro přehlednost
 - Chybjející kardinality dle kontextu
 - Klíčové atributy dle kořenu kindu
 - _src a _tgt atributy udávají směr hrany
 - Diagramy obsahují mapy klíč/hodnota
- To platí i pro schématické kategorie

Připomínky oponenta – Plány dotazu

- "s. 88: který typ uživatele bude analyzovat různé plány dotazu?"
 - Cena plánu se může měnit (přidání indexu, velká zátěž na konkrétní databázi, ...)
 - Můžeme chtít přidat indexy podle daného plánu