- $egin{aligned} egin{aligned} \mathbf{3} & \mathbf{g}\mathbf{b}\mathbf{b} & f(x) = rac{1}{2}\left(x+rac{2}{x}
 ight)$, (x>0) について次の操作を行う . $x_1>\sqrt{2}$ とする . 直線 $x=x_1$ が曲線 y=f(x) と交わる点を P_1 とする . P_1 から x 軸に平行に引いた直線が直線 y=x と交わる点を Q_1 とし , Q_1 から x 軸への垂線と曲線 y=f(x) の交点を P_2 とする . 点 P_2 の x 座標を x_2 とする . x_1 から x_2 を定めたように x_2 から x_3 を定め , 以下同じように x_4 , x_5 , \cdots を定める .
- (1) x_n と x_{n+1} $(n=1, 2, 3, \dots)$ の関係を漸化式の形で与えよ.
- (2) $0 \le x_{n+1} \sqrt{2} \le \frac{1}{2}(x_n \sqrt{2})$ であることを示し, $\lim_{n \to \infty} x_n = \sqrt{2}$ を証明せよ.
- (3) 範囲 $x>\sqrt{2}$ で定義された関数 g(x) のグラフ上の点 (t,g(t)) , $(t>\sqrt{2})$ における接線が x 軸と 1 点で交わるとし , その交点の x 座標を h(t) とする . t と h(t) の関係が (1) で求めた x_n と x_{n+1} の関係に等しいとき , 関数 g(x) の形を求めよ .