

Nieformalnie *zdanie* jest dowolne stwierdzenie, które można interpretować jako sensowne stwierdzenie odnoszące się do rzeczywistości.

Dla nas *zdaniem* będzie dowolne stwierdzenie, które jest albo prawdziwe albo fałszywe i które nie może być jednocześnie prawdziwe i fałszywe.

Zdanie nazywamy prostym, jeżeli nie jest zbudowane z innych zdań.

Zatem *zdanie* jest to stwierdzenie, któremu można przypisać wartość logiczną prawda (1) lub fałsz (0), lecz nie obie wartości jednocześnie.

Rachunek zdań

Syntaktyka i semantyka rachunku zdań

W rachunku zdań, dla zdań prostych będziemy zazwyczaj używać alfabetu: $K = \{A, B, C, \dots, A_1, x_1, y, \dots\}$ oraz następujących spójników logicznych przeznaczonych do budowy zdań złożonych:

- $\{\neg \text{ ("nie", negacja, } \neg), \lor \text{ ("lub", alternatywa, dysjunkcja),}$
- \land ("i", koniunkcja), \rightarrow (implikacja), \leftrightarrow ("wtedy i tylko wtedy", równoważność)}.

Proste zdania $A, B, \ldots \subseteq K$ nazywamy zdaniami *atomarnymi*.

10

Rachunek zdań

Przykład.

- 1. Poniźsze stwierdzenia są zdaniami:
- a) 2 + 2 = 4,
- b) 2 + 3 = 7.
- c) Jeźeli zbiór A ma n elementów, to B(A) ma 2^n elementów.
 - d) Juliusz Cezar był prezydentem Stanów Zjednoczonych.

М

Rachunek zdań

- 2. Następujące sformułowania nie są zdaniami:
- a) To twoje czy moje miejsce?
- b) Dlaczego indukcja jest waźna?
- c) x y = y x.

Wykorzystując pojęcie indukcji, podamy definicje syntaktyki rachunku zdań, która pozwala spośród wszystkich słów w alfabecie *K* wyroźnić słowa, które będziemy nazywać *prawidłowo zbudowanymi zdaniami*.

Rachunek zdań

Syntaktyka

Definicja (Definicja syntaktyki). Prawidłowo zbudowane zdanie (PZZ) jest:

- 1. 0, 1 i zdanie atomarne,
- 2. jeźeli A jest PZZ, to $\neg A$ teź jest PZZ,
- 3. jeźeli A i B są PZZ, to $A \lor B$, $A \land B$, $A \rightarrow B$, $A \leftrightarrow B$ teź są PZZ,
- 4. pozostałe wyraźenia, tj. nie spełniajce warunków 1-3, nie są PZZ.

w

Rachunek zdań

Semantyka

Definicja. Przypisywanie atomom $A_1, A_2, ..., A_n$ PZZ wartości logicznych $h(A_i)$ nazywamy interpretacją PZZ.

Jeźeli A jest PZZ, to h(A) oznacza jego wartość logiczną. Zatem, jeśli F jest zdaniem złożonym, to jeźeli $F = \neg A$, to

$$h(F) = h(\neg A) = \neg h(A),$$

a jeźeli $F = B \circ C$, to

$$h(F) = h(B \circ C) = h(B) \circ h(C)$$
, dla $\circ \in \{ \land, \lor, \rightarrow, \leftrightarrow \}$.

Stąd wynika, źe wartość logiczna zdań złożonych całkowicie zależy od wartości logicznych zdań atomarnych pod warunkiem, źe zdefiniowane są wartości logicznie dla zdań atomarnych i spójników logicznych.

Semantyka rachunku zdań konieczne jest, aby opisać, jak dokonać obliczenia, które określa zdanie logiczne, i tak, że obliczenia te mog wykonać komputer.

Rachunek zdań

Definicja (Definicja semantyki). Jeźeli A i B są PZZ i h jest interpretają PZZ, to:

- a) wartość $h(\neg A) = 1$ wtedy i tylko wtedy, gdy h(A) = 0, i
- $h(\neg A) = 0$ wtedy i tylko wtedy, gdy h(A) = 1;
 - b) wartość $h(A \lor B) = 1$ wtedy i tylko wtedy, gdy h(A) =
- 1, lub h(B) = 1;
 - c) wartość $h(A \land B) = 1$ wtedy i tylko wtedy, gdy h(A) =
- 1, i h(B) = 1;
- d) wartość $h(A \rightarrow B) = 1$ wtedy i tylko wtedy, gdy h(A)
- $\leq h(B)$;
- c) wartość $h(A \leftrightarrow B) = 1$ wtedy i tylko wtedy, gdy h(A) = h(B).

Z definicji tej wynika, źe jeźeli A i B są PZZ, to dla poniźszych formuł mamy następujące tablice ich wartości logicznych:

A	$\neg A$	A	В	$A\bigvee$	$A \wedge$	$A \rightarrow B$	$A \longleftrightarrow B$
				B	B		
1	0	1	1	1	1	1	1
0	1	1	0	1	0	0	0
		0	1	1	0	1	0
		0	0	0	0	1	1

×

Rachunek zdań

Za pomocą tych tablic możemy zbudować tablicę wartości logicznych (macierz logiczna) zdania złożonego, zbudowanego ze zdań prostych A, B, C, \ldots Tablica taka podaje wartości zdania złożonego w zależności od wartości logicznych zdań prostych A, B, C, \ldots

Zdania *A*, *B*, *C*, . . . nazywamy zmiennymi zdaniowymi macierzy i zdania złożonego. Wartość logiczną zdania złożonego możemy obliczyć, wyznaczając kolejno wartości logiczne zdań prostych, z których jest ono zbudowane.

Rachunek zdań

Przykład. Zdanie $P = (A \land B) \lor \neg (A \rightarrow B)$ jest zbudowane z dwóch zdań prostych A i B. Moźliwe są zatem tylko cztery kombinacje wartości logicznych dla A i B:

A	В	$A \wedge B$	$A {\rightarrow} B$	$\neg (A \rightarrow B)$	$(A \land B) \lor \neg (A \rightarrow B)$
1	1	1	1	0	1
1	0	0	0	1	1
0	1	0	1	0	0
0	0	0	1	0	0

Definicja. Mówimy, źe zdanie A jest prawdziwe dla pewnej interpretacji h atomów wtedy i tylko wtedy, gdy h(A) = 1.

Jeźeli h(A) = 0, to mówimy, źe zdanie A jest fałszywe w interpretacji h.

Definicja. Zdanie *A* nazywamy tautologią (sprzecznością), jeźeli jest ono zawsze prawdziwe (fałszywe) niezaleźnie od interpretacji *h*.

Definicja. Jeźeli zdanie $A \rightarrow B$ jest tautologią, to mówimy, źe ze zdania logicznego A wynika zdanie B, lub, źe zdanie A implikuje zdanie B.

Jeźeli zdanie $A \leftrightarrow B$ jest tautologią, to mówimy, źe zdania A i B są zdaniami logicznie równowaźnymi.

Korzystając z tablicy wartości logicznych, zawsze możemy sprawdzić czy dane wyraźenie jest tautologią czy nie jest.

v

Rachunek zdań

Przykład. Czy formuła $((A \rightarrow B) \rightarrow B) \rightarrow B$ jest tautologią?

Zgodnie z tablicami wartości logicznych dla spójnika → otrzymujemy

$$A \ B \ A \rightarrow B \ (A \rightarrow B) \rightarrow B \ ((A \rightarrow B) \rightarrow B) \rightarrow B$$
 $1 \ 0 \ 0 \ 1 \ 1 \ 1$
 $0 \ 1 \ 1 \ 1$
 $0 \ 1 \ 1$
 $0 \ 1 \ 1$

i jak widać z ostatniej kolumny, zdanie to nie jest tautologią, ponieważ dla interpretacji h(A) = 1 i h(B) = 0 jest ono fałszywe.

v

Rachunek zdań

1. Zdania A i $A \rightarrow B$ są prawdziwe. Pokazać, źe zdanie B teź jest zdaniem prawdziwym.

Dowód.

$$\begin{array}{cccc}
A & B & A \rightarrow B \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}$$

Jeźeli zdanie B jest fałszywe, wówczas $A \rightarrow B$ jest fałszywe, co jest sprzeczne z załoźeniem. Zatem B musi być prawdziwym.

Rachunek zdań

2. Czy zdanie $A \rightarrow A$ jest tautologia?

Zgodnie z tablicą wartości logicznych dla spojnika → otrzymujemy

$$\begin{array}{ccc}
A & A \rightarrow A \\
1 & 1 \\
0 & 1
\end{array}$$

Jest to wiec tautologia.

Rachunek zdań

Za pomocą tablic wartości logicznych łatwo przekonać się, że dla spojników logicznych \neg , \lor , \land prawdziwe są prawa przemiennośi:

$$A \wedge B = B \wedge A, A \vee B = B \vee A,$$

łączności:

$$A \wedge (B \wedge C) = (A \wedge B) \wedge C, A \vee (B \vee C) = (A \vee B) \vee C,$$

rozdzielności:

$$A \lor (B \land C) = (A \lor B) \land (A \lor C), A \land (B \lor C) = (A \land B) \lor (A \land C),$$

pochłaniania:

$$(A \land B) \lor A = A, (A \lor B) \land A = A,$$

de Morgana: $\overline{A \lor B} = \overline{A} \land \overline{B}, \ \overline{A \land B} = \overline{A} \lor \overline{B},$

Rachunek zdań

Rzeczywiście, dla spójnika / mamy

A	В	$A \wedge B$	$B \wedge A$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Stąd wynika, źe $A \land B = B \land A$, ponieważ formuły $A \land B$ i $B \land A$ mają jednakowie wartości logicznie dla kaźdej interpretacji h.

Rachunek zdań

Dalej pokaźemy, źe $A = A \vee 0$:

A	$A \lor 0$
0	0
1	1

Analogicznie jak w poprzednim przypadku, z powyźszej tablicy otrzymujemy, źe $A = A \lor 0$.

Rachunek zdań

W ten sam sposób udowadniamy prawdziwość praw de Morgana:

A	В	$\neg A \land \neg B$	$\neg (A \lor B)$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

A	В	$\neg A \lor \neg B$	$\neg (A \land B)$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

Funkcje Boole'a

Definicja. Funkcję $f: X^n \rightarrow Y$ nazywamy funkcją Boole'a jeżeli $X = Y = \{0,1\}$.

Definicja. Ciąg (x_1, x_2, \dots, x_n) jest ciągiem Boole'a jeżeli $x_i \in \{0,1\}.$

Więc, dowolne zdanie z *n* zmiennymi jest *n*-argumentową funkcją wartości logicznych (funkcja Boole'a).

Zdania równowaźne mają jedną i tę samą funkcję wartości logicznych.

Powstaje pytanie: ile można utworzyć różnych funkcji, na przyklad, jednoargumentowych lub dwuargumentowych?

Dla funkcję $f: \{0,1\} \rightarrow \{0,1\}$ oczywista odpowiedż to 4, bo można utworzyć cztery (2²) różne tablice logiczne.

	f_1	f_2	f_3	f_4
0	1	0	1	0
1	0	1	1	0

Tablica wszystkich funkcji jednoargumentowych

×

Rachunek zdań

Ile jest różnych funkcji dwuargumentowych $f: \{0,1\} \times \{0,1\} \rightarrow \{0,1\}$? Oczywiście 2^4 , czyli 16.

X	У	f ₀	<i>f</i> ₁	f ₂	f ₃	f ₄	f ₅	f ₆	f ₇	f ₈	f ₉	f ₁₀	<i>f</i> ₁₁	f ₁₂	f ₁₃	f ₁₄	f ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Tablica wszystkich funkcji dwuargumentowych

Rachunek zdań

Pełny system spójników

Pojawia się więc uzasadnione pytanie: czy wszystkie funkcje Boole'a mogą być przedstawione zdaniami logicznymi?

Twierdzenie. Dowolna funkcja wartości logicznych jest pewnym zdaniem, które posiada tylko spójniki \neg , \land , \lor .

Dowód. Niech $f(x_1, x_2, ..., x_n)$ jest daną funkcją wartości logicznych. Oczywiste jest, że f może być przedstawiona za pomocą tablicy wartości logicznych z 2^n wierszami, gdzie kaźdy wiersz przedstawia pewien zbiór wartości logicznych dla zmiennych $x_1, x_2, ..., x_n$ oraz odpowiednią wartość $f(x_1, x_2, ..., x_n)$.

Ponumerujemy wiersze tej tablicy za pomocą liczb naturalnych 1, 2, ..., 2^n . Niech dla kaźdego $i = 1, 2, ..., 2^n$,

$$C_i(x_1, x_2, \ldots, x_n) = (x_i^1)' \wedge (x_i^2)' \wedge \ldots \wedge (x_i^n)',$$

gdzie $(x_i^j)'$ oznacza x_j , jeźeli w *i*-tym wierszu tablicy wartości logicznych x_i jest prawdziwe, lub $\neg x_j$, jeźeli x_j jest fałszywe.

Niech D będzie dysjunkcją wszystkich zdań C_i takich, źe f w i-tym wierszu jest prawdziwe:

$$D(x_1, x_2, \dots, x_n) = (x_i^1)' \wedge (x_i^2)' \wedge \dots \wedge (x_i^n)' \vee \\ \vee (x_k^1)' \wedge (x_k^2)' \wedge \dots \wedge (x_k^n)' \vee \dots \vee (x_l^1)' \wedge (x_l^2)' \wedge \dots \wedge (x_l^n)'.$$

Rachunek zdań

Jeźeli takich wierszy nie ma, to f jest zawsze fałszywe i dla tej funkcji możemy wykorzystać zdania postaci

$$x_1 \wedge \neg x_1$$
.

Pokaźemy, że tablica wartości logicznych dla D jest równa f.

Niech w wierszu k-tym dany będzie pewien zbiór wartości logicznych dla zdań atomarnych x_1, x_2, \dots, x_n oraz wartość funkcji f odpowiadająca temu zbiorowi.

Jeźeli $f(x_1, x_2, ... x_n) = 0$ w s-tym wierszu, to w tym wierszu

$$C_i(x_1, x_2, \dots x_n) = 0, C_k(x_1, x_2, \dots x_n) = 0, \dots,$$

 $C_l(x_1, x_2, \dots x_n) = 0.$

Wiec, $D(x_1, x_2, ... x_n) = 0$.

Jeźeli $f(x_1, x_2, ... x_n) = 1$ w danym wierszu, to jedno z

$$C_i(x_1, x_2, \dots x_n), C_k(x_1, x_2, \dots x_n), \dots, C_l(x_1, x_2, \dots x_n)$$

równe się 1 w tym wierszu. Więc, $D(x_1, x_2, \dots x_n)$, = 1.

Rachunek

Rachunek zdań

Dysjunkcją D wszystkich zdań C_i takich, źe f w i-tym wierszu jest prawdziwe będziemy nazywać postacią kanoniczną dla funkcję f wartości logicznych.

Jak otrzymać postać kanoniczną?

Metoda 1. Dla dowolnej funkcję f wartości logicznych znależć tablicę logiczną. Utwożyć dysjunkcję D wszystkich zdań C_i takich, źe f w i-tym wierszu jest prawdziwe. D jest postać kanoniczna.

Metoda 2. Najpierw korzystamy z praw De Morgana, aby przenieść dopelnienia do symboli atomowych.

Nastęmpnie rozdzielamy mnożenie względem dodawania.

Wtedy zastęmpujemy xx symbolem x i xx' zerem tam, gdzie jest to potrzebne oraz wstawiamy dodatkowe zmienne korzystając z równości $x \lor x' = 1$.

М

Rachunek zdań

Przykład.

1)
$$x_1 x_2 f(x_1, x_2)$$

1 1 0
0 1 1
1 0 1
0 0 1

Zgodnie z dowodem twierdzenia, budujemy formuły C_2 , C_3 i C_4 , poniewaź dla tych interpretacji funkcja $f(x_1, x_2)$ jest prawdziwa:

$$C_2 = \neg x_1 \land x_2, \ C_3 = x_1 \land \neg x_2 \ i \ C_4 = \neg x_1 \land \neg x_2.$$

Rachunek zdań

Ostatecznie budujemy dyzjunkcję postaci

$$D = C_2 \lor C_3 \lor C_4 = (\neg x_1 \land x_2) \lor (x_1 \land \neg x_2) \lor (\neg x_1 \land \neg x_2).$$

Rachunek zdań

Analogicznie jak i w poprzednim przykładzie, otrzymujemy

$$C_1 = x_1 \land x_2, C_2 = \neg x_1 \land x_2, C_4 = \neg x_1 \land \neg x_2.$$

Wówczas mamy:

$$D = C_1 \lor C_2 \lor C_4 = (x_1 \land x_2) \lor (\neg x_1 \land x_2) \lor (\neg x_1 \land \neg x_2).$$

Wykorzystując prawa łączności, przemienności i rozdzielności otrzymujemy:

$$D = (\neg x_1 \land \neg x_2) \lor ((x_1 \lor \neg x_2) \land x_2) = (\neg x_1 \land \neg x_2) \lor x_2 = (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_2) = \neg x_1 \lor x_2.$$

Zauwaźmy, źe $f(x_1, x_2)$ jest funkcją wartości logicznych dla zdania $x_1 \rightarrow x_2$, tzn.

$$x_1 \rightarrow x_2 = \neg x_1 \lor x_2.$$

Rachunek zdań

3)
$$x_1 \ x_2 \ f(x_1, x_2)$$

1 1 1 1

0 1 0

1 0 0

1 0 0

0 0 1

 $C_1 = x_1 \land x_2, C_2 = \neg x_1 \land \neg x_2.$ Mamy wówczas:

 $D = (\neg x_1 \land \neg x_2) \lor (x_1 \land x_2) = (\neg x_1 \lor (x_1 \land x_2)) \land (\neg x_2 \lor (x_1 \land x_2)) = ((\neg x_1 \lor x_1) \land (\neg x_1 \lor x_2)) \land \land ((\neg x_2 \lor x_1) \land (\neg x_2 \lor x_2)) = (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_1).$

Zatem

$$x_1 \leftrightarrow x_2 = (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_1) = (x_1 \rightarrow x_2) \land (x_2 \rightarrow x_1).$$

Rachunek zdań

Twierdzenie. Dowolna funkcja wartości logicznych f jest pewnym zdaniem, które ma tylko jedną z następujących par spójników logicznych: $(\neg, \land), (\neg, \lor), (\rightarrow, \neg)$.

Dowód wynika z poprzedniego twierdzenia i praw de Morgana.