MCPBA (m-Chloroperoxybenzoic Acid)

revised 4 / 96 6 pages

PROPERTIES:

White powder

F.W. 172.57

m.p. 92-94° (dec.)

Contains up to 15% m-chlorobenzoic acid

Slight pungent odor

Bulk density 0.56g/cc.

pH of a saturated aqueous solution at 25°C: 4.5

 pK_a (in water at 25°C): 7.57

MCPBA (m-chloroperoxybenzoic acid), an oxidizing agent, is superior to hydrogen peroxide or other peracids in terms of reactivity, steroselectivity, and in purity and yield of products. The scope of its reactivity is illustrated in the following table.

Reactant	Product	Example	Ref.
Olefins	Expoxides ^a	CH ₃ CH ₃ Cholesterol CH ₃ Cholesterol α-epoxide 95% yield	1-7
Cyclopropenes	α,β-Unsaturated aldehydes and/or ketones	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8,9
α,β-Unsaturated ketones and esters	Epoxides	CH3(CH2)4CH=CHCOCH3 CH3(CH2)4CH-CHCOCH3	10
Disubstituted actylenes	Oxirenes ^b		11,12
Imines	Oxaziranes	NO_2 CH=NC(CH ₃) ₃ NO ₂ CH-N-C(CH ₃) ₃	13-16

Reactant	Product	Example	Ref.
Ketones (Baeyer- Villiger oxidation)	Esters	CCH ₃ 91% yield	17-21
Acid Chlorides	Alcohols	CH ₃ (CH ₂) ₃ CHCCI ——————————————————————————————————	22
Acids	Alcohols	COOH COOH	23
Primary alkyl amines	Nitro alkanes ^c	NH ₂ NO ₂	24
Primary aromatic amines	Aromatic nitroso compounds	NH ₂ NO	25
Secondary amines	Nitroxide radicals	RNHR' RNR' R,R' = aliphatic or aromatic	26
Tertiary amines	N-oxides	N Me O N Me O O O	27
Nucleic acid components	N-oxide ^d	NH ₂ NH ₂ N-R	28-31

Reactant	Product	Example	Ref.
N-substituted aziridines	Olefin ^e	PhCH ₂ CH ₂ Ph PhCH ₂ CH ₂ Ph CH ₂ Ph H	17-21
2-Pyridine- acetates	Corresponding glycolates ^f	Ph CHCO ₂ CH ₃ CCO ₂ CH ₃	34
Sulfides	Sulfoxides or solfones ^g	$Ph-C \equiv C-S-CH_3$ $Ph-C \equiv C-SO_2-CH_3$	35-40
Carbodiimides	Diaziridinones	$(CH_3)_3C-N=C=N-C(CH_3)_3$ $(CH_3)_3C-N$ $(CH_3)_3C-N$	41
Ketals	Ortho esters	Ph O Ph	42
Trimethylsilyl vinyl and allyl systems	Trimethylsilyl epoxides (latent precursors to car- bonyl groups)	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	43-46
Iminoethers	Esters and hydroxylamines	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47
α-Hydroxy ketones	Aldehydes and acids	O OH R-C-CH-R — RCHO + RCO₂H	48
Mono-, di-, and trimethoxybenz aldehydes	Formate esters	O C H O O O O O O O O O O O O O O O O O	49

Reactant	Product	Example	Ref.
α-Diazoketones	α-Diketones	$\bigcup_{N,i}^{O} \longrightarrow \bigcup_{O}^{O}$	50
β-Lactam acid chlorieds	Aryl-β-lactam derivatives	Ph R' 2) Et ₃ N Ph R' O N-R	51
Secondary alcohols	Ketones	OH O	52
Erythro thioether	Sulfone	H SMe H SO₂Me Ph:::C — C:::H HO Ph HO Ph	53
Terminal olefines	Primary alcohols	$R-CH=CH_2+HSiCI_3 \xrightarrow{H_2PtCI_6} RCH_2CH_2SiCI_3 \xrightarrow{KF}$ $K_2 \begin{bmatrix} RCH_2CH_2SiF_5 \end{bmatrix} \xrightarrow{RCH_2CH_2OH}$	54
Aromatics Hydrocarbons	Arene dioxides	R = H,Me	55

- a In nonconjugated dienes the more substituted double bond is selectively epoxidized.
- b Oxirenes break down to ketones, carobxylic acids or esters depending on reaction conditions.
- c The yields of nitroalkanes decrease in the order: tert-alkyl > sec-alkyl > n-alkyl.
- d I.R. Subbaraman and co-workers²¹ reported that cytosine, adenine and their derivatives are oxidized to N-oxides while uracil, thymine, guanosine and their derivatives give ring-cleavage products. However, M.R. Harden et al.²² indicated that N(1)-oxides were obtained from adenine, cytosine and uracil derivatives while guanine derivatives yielded the N(3)-oxides.
- e N-substituted zairidines are presumably oxidezed to the corresponding N-oxides. This reaction is successfully used in the sterospecific deamination of N-alkylaziridines to olefins.
- f the 3- and 4-pyridyl isomers gave the corresponding N-oxides in high yields.
- g Yields of sulfones or sulfoxides are excellent even in the presence of amino,²⁷ olefinic or acetylenic²⁸ moiety.

REFERENCES:

- 1. Paquette, L.A.; Barrett, J.H. Org. Syn. 1969, 49, 62.
- 2. Swern, D. Chem. Rev. 1949, 45,1.
- 3. Fieser, L.; Fieser, M. Reagents for Org. Syn. 1968, 1, 1136.
- 4• Haywood-Farmer, J.; Friedlander, B.T.; Hammond, L.M. J. Org. Chem. 1973, 38, 3145.
- 5. Anderson, W.K.; Veysoglu, T. ibid. 1973, 38, 2267.
- 6. Ikegami, Sl; et al. Tetrahedron Lett. 1980, 21, 3587.
- 7• Kende, A.S.; Blacklock, T.J. ibid. 1980, 21, 3119.
- 8. Ciabatton, J.; Kocienski, P.J. J. Am. Chem. Soc. 1969, 91, 6534.
- 9. Kocienski, P.J.; Ciabattoni, J. J. Org. Chem. 1974, 39, 388.
- 10. Schwartz, N.N.; Blumbers, J.H. ibid. 1964, 29, 1976.
- 11. Stille, J.K.; Whitehurst, D.D. J. Am. Chem. Soc. 1964, 86, 4871.

- 12. Ciabattoni, J.; Campbell, R.A.; Renner, C.A. ibid. 1970, 92, 3826.
- 13• Emmons, W.D. ibid. 1956, 78, 6208.
- 14. Padwa, A. ibid. 1965, 87, 4365.
- 15• Madan, V.; Clapp, L.B. ibid, 1969, 91, 6078.
- 16• Madan, V.; Clapp, L.B. ibid, 1970, 92, 4902.
- 17. Meinwald, J.; Tufariello, J.J.; Hurst, J.J. J. Org. Chem. 1964, 29, 2914.
- 18. Palmer, B.W.; Fry, A. J. Am. Chem. Soc. 1970, 92, 2580.
- 19. Syrkin, Y.K.; Moiseev, I.I. Russ. Chem. Rev. 1960, 29, 193.
- 20. Marshall, J.A.; Ellison, R.H. J. Org. Chem. 1975, 40, 2070.
- 21. Hudrlik, P.R.; et al. J. Am. Chem. Soc. 1980, 102, 6894.
- 22. Denney, D.B.; Sherman, N. J. Org. Chem. 1965, 30, 3760.

REFERENCES (CONTINUED):

- 23• Rosen, P.; et. al. 166th National Meeting of the American Chemical Society, Chicago, IL, August, 1973, MEDI Abstr. 61.
- 24. Robinson, C.H.; Milewich, L.; Hofer, P. J. Org. Chem. 1966, 31, 524.
- 25. Terabe, S.; Konaka, R. J. Chem. Soc., Perkin Trans. 2 1973, 369.
- 26 Chapelet-Letourneux, G.; Lemaire, H.; Rassat, A. Bull. Soc. Chim. France 1965, 3283.
- 27. Craig, J.C.; Purushotharnan, K.K. J. Org. Chem. 1970, 35, 1721.
- 28. Delia, T.J.; Olsen, J.J.; Brown, G.B. ibid. 1965, 30, 2766.
- 29. Subbaraman, L.R.; Subbaraman, J.; Behrman, E.J. Biochemistry 1969, 8, 2059.
- Harnden, M.R.; Brown, A.G.; Verg Hodge, R.A. J. Chem. Soc., Perkin Trans. 1 1973, 333.
- 31. Deady, L.W. Synth. Commun. 1977, 7, 509.
- 32. Padwa, A.; Hamilton, L. J. Org. Chem. 1966, 31, 1995.
- 33• Heine, H.W.; Myers, J.D.; Peltzer III, F.T. Angew, Chem., Int. Ed. Engl. 1970, 9, 374.
- 34. Skattebol, L.; Boulette, B. J. Org. Chem. 1969, 34, 4150.
- 35. Curci, R.; Giovine, A.; Modena, G. Tetrahedron 1966, 22, 1235.
- 36. Brown, D.J.; Ford, P.W. J. Chem. Soc. (C) 1969, 2720.
- 37. Russell, G.A.; Ochrymowycz, L.A. J. Org. Chem. 1970, 35, 2106.
- 38• Trost, B.M.; Mao, M.R.T. Tetrahedron Lett. 1980, 21, 3523.

- 39. Ager, D.J. ibid. 1980, 21, 4759.
- 40. Heissler, D.; Riehl, J.-J. ibid. 1980, 21, 4707.
- 41. Greene, F.D.; Bergmark, W.R.; Pazos, J.F. J. Org. Chem. 1970, 35, 2813.
- 42. Gaoni, Y. J. Chem. Soc. (C) 1968, 2934.
- 43. Stork, G.; Jung, M.E. J. Am. Chem. Soc. 1974, 96, 3682.
- 44. Pennanen, S.I. Tetrahedron Lett. 1980, 21, 657.
- 45. Paquette, L.A.; et al. J. Org. Chem. 1980, 45, 3028.
- 46. Magnus, P.; Ehlinger, E. J. Am. Chem. Soc. 1980, 102, 5004.
- 47. Aue, D.H.; Thomas, D. Tetrahedron Lett. 1973, 1807.
- 48. Greibrokk. T. Acta Chem. Scand. 1973, 27, 3365.
- 49. Sargent, M.V.; Godfrey, I.M. J. Chem. Soc., Perkin Trans. 1 1974, 1353.
- Curci, R.; DiFuria, F.; Ciabattoni, J.; Concannon, P.W. J. Org. Chem. 1974, 39, 3295.
- 51. Bose, A.K.; Kapur, J.C. Tetrahedron Lett. 1973, 1811.
- 52. Cella, J.A.; Kelley, J.A.; Kenehan, E.F. J. Org. Chem. 1975, 40, 1860.
- 53. Alcudia, F.; et al. J. Chem. Soc., Perkin Trans. 2 1979, 564.
- 54. Kumada, M.; Tamao, K.; Kakui, T. J. Am. Chem. Soc. 1978, 100, 2268.
- 55. Griffin, G.W.; Ishikawa, K. Angew. Chem., Int. Ed. Engl. 1977, 16, 171.

SOLUBILITY, g / 100ml

Benzene	8.0
Hexane	1.4
Methylene chloride	11.2
Chloroform	9.8
Carbon tetrachloride	2.1
1,2-Dichloroethane	10.6

Diethyl ether	89.4
Ethyl alcohol	113.0
tert-Butyl alcohol	69.0
Ethyl acetate	51.0
Water	0.154

HANDLING

m-Chloroperoxybenzoic acid irritates the mucous membranes and respiratory tract, eyes and skin. Skin contact with MCPBA results in burns and blisters similar to those cause by hydrogen peroxide. the material should be used only in a chemical fume hood. Safety goggles, rubber gloves, and a dust mask should be worn.

EMERGENCY PROCEDURES

FIRE

Extinguish with "alcohol" foam, dry powder, or carbon dioxide. Water may be ineffective. Fire conditions may cause explosions. Wear a self-contained breathing apparatus.

SPILL

Wear safety goggles and rubber gloves. Treat with excess sodium bisulfite solution. Test with acidic starch-iodide paper to ensure complete decomposition of the peracid. wash down the drain.

SKIN CONTACT

Wash immediately with soap and water or sodium bicarbonate solution. Remove contaminated clothing.

EYE CONTACT

Flush immediately with large amounts of water and call a physician.

INGESTION

Take large quantities of milk or water immediately. Wash out mouth. Call a physician.

WASTE DISPOSAL

Treat with excess solium bisulfite solution. Test with acidic starch-oidide paper to ensure complete decomposition. Dispose of properly. Observe all state, local and federal laws.

STORAGE AND STABILITY

Solid MCPBA shows less that 1% decomposition when stored at room temperature for 1 year. It has been determined that 95-100% metarial can be detonated by shock or sparks. 85% MCPBA is not shock-sensitive, but may be decomposed violently with heat. It should be stroed in a refrigerator in tightly closed containers. MCPBA is a flammable solid and contact with heat or oxidizable material should be avoided.

Aldrich Chemical Company, Inc.

1001 West Saint Paul Ave., Milwaukee, WI 53233
Telephone 414-273-3850 Fax 414-273-4979
800-231-8327 800-962-9591

Internet aldrich@sial.com

