Алгебра

Содержание

1	Решение уравнений и неравенств. 1.1 Иррациональные уравнения	2
	1.1 Иррациональные уравнения	2
2	Многочлены	2
3	Множества	4
4	Числовые последовательности 4.1 Аксиоматика действительных чисел	
5	Эквивалентность и группы	6
6	Пределы	7

1 Решение уравнений и неравенств.

1.1 Иррациональные уравнения

$$\sqrt{f(x)} = g(x) \Longleftrightarrow \begin{cases} f(x) = (g(x))^2 \\ g(x) \geqslant 0 \end{cases} \qquad \sqrt{f(x)} = \sqrt{g(x)} \Longleftrightarrow \begin{cases} f(x) = g(x) \\ f(x) \geqslant 0 \end{cases}$$

1.2 Иррациональные неравенства

$$\frac{f(x)}{g(x)} \le 0 \Longleftrightarrow \begin{bmatrix} \begin{cases} f(x) \ge 0 \\ g(x) < 0 \end{cases} \\ \begin{cases} f(x) \le 0 \\ g(x) > 0 \end{cases}$$

$$\sqrt{f(x)} > g(x) \Longleftrightarrow \begin{cases} g(x) < 0 \\ f(x) \ge 0 \\ g(x) \ge 0 \\ f(x) > (g(x))^2 \end{cases} \qquad \sqrt{f(x)} < g(x) \Longleftrightarrow \begin{cases} g(x) \ge 0 \\ f(x) \ge 0 \\ f(x) < (g(x))^2 \end{cases}$$
$$\sqrt{f(x)} > \sqrt{g(x)} \Longleftrightarrow \begin{cases} f(x) > g(x) \\ g(x) \ge 0 \end{cases}$$

1.3 Неравенства с модулем

$$|f(x)| < a, \ a > 0 \Longleftrightarrow \begin{cases} f(x) > -a \\ f(x) < a \end{cases} \qquad |f(x)| > a \Longleftrightarrow \begin{cases} f(x) > a \\ f(x) < -a \end{cases}$$

$$|f(x)| \le |g(x) \Longleftrightarrow (f(x) - g(x)) \cdot (f(x) + g(x)) \le 0$$

$$|f(x)| + |g(x)| > |f(x) + g(x)| \Longleftrightarrow f(x) \cdot g(x) < 0$$

$$|f(x)| + |g(x)| \le |f(x) + g(x)| \Longleftrightarrow f(x) \cdot g(x) \ge 0$$

2 Многочлены

Определение 1. Многочленом от переменной x над K называется выражение вида: $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, \ a_k \in K$ – коэффициент многочлена, $a_n \neq 0$.

Определение 2. Наибольшее k такое, что $a_k \neq 0$, называется степенью многочлена f:

$$k = deg f$$
 a_0 — свободный член
 $a_n x^n$ — старший член
 a_n — старший коэффициент

Определение 3. Два многочлена называются равными, если их коэффициенты при соответственных степенях x равны.

Определение 4.

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

$$g(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$$

Суммой многочленов f(x) и g(x) называется:

$$n(x) = (a_n + b_n)x^n + (a_{n-1} + b_{n-1})x^{n-1} + \dots + (a_1 + b_1)x + (a_0 + b_0)$$

Произведением многочленов f(x) и q(x) называется:

$$S(x) = d_{2n}x^{2n} + d_{2n-1}x^{2n-1} + \ldots + d_1x + d_0, \text{ } r \neq d_k = a_0b_k + a_1b_{k-1} + \ldots + a_{k-1}b_1 + a_kb_0 = \sum_{i=0}^k a_ib_{k-i}$$

Утверждение 2.1. Пусть $def f(x) \neq 0, deg g(x) \neq 0$, тогда:

1.
$$deg(f(x) + g(x)) \le \max\{deg f, deg g\}$$

2.
$$f(x) \cdot g(x) \neq 0$$

3.
$$deg(f(x) \cdot g(x)) = deg f(x) + deg g(x)$$

Доказательство.

1. Пусть
$$deg f = def g = n$$

$$f(x) + g(x) = (a_n + b_n)x^n + (a_{n-1} + b_{n-1})x^{n-1} + \ldots + (a_1 + b_1)x + (a_0 + b_0)$$
Если $k > n$, то $a_k = 0$, $b_k = 0$, то есть $(a_k + b_k) = 0$

Пусть
$$deg\ f=n,\ deg\ g=m,\ m< n$$
 Если $k>n,$ то $a_k+b_k=0,$ так как $b_{m+1}=b_{m+2}=\ldots=b_{n-1}=b_n=0$ Тогда $a_n+b_n=a_n\neq 0$

2.
$$f(x) \cdot g(x) = a_n b_m x^{n+m} + \underbrace{\cdots \cdots}_{\text{степень} < n}$$

Определение 5. Многочлен f(x) делится на многочлен g(x), если существует такой многочлен h(x), что $h(x) \cdot g(x) = f(x)$.

Утверждение 2.2. Свякий многочлен $f(x) \neq 0$ делится на самого себя.

Утверждение 2.3. Если f(x) делится на g(x), а g(x) делится на f(x), то $f(x) = c \cdot g(x)$, $c \in K$.

Определение 6. Число x_0 является корнем f(x), если $f(x_0) = 0$.

Теорема 2.4 (Теорема Безу). Остаток от деления многочлена P(x) на двучлен (x-a) равен P(a).

Доказательство.

$$P(x) = (x - a) \cdot q(x) + r$$

$$P(a) = 0 \cdot p(x) + r = r$$

Следствие 2.4.1. Число a является корнем многочлена P(x) тогда и только тогда, когда P(x) делится на (x-a).

3 Множества

Определение 7. Множества равномощны, если между ними существует биекция.

Определение 8. Множества A и B называются равными, если $A \subseteq B$, $B \subseteq A$.

Определение 9. Множества, равномощные №, называются счетными.

Определение 10. Декартовым произведением множеств A и B называется множество $A \times B = \{x \mid x = (a, b), a \in A, b \in B\}.$

Определение 11. Число a называется числом кратности k многочлена f(x), если f(x) делится на $(x-a)^k$, но не делится на $(x-a)^{k+1}$.

4 Числовые последовательности

Определение 12. Бесконечной числовой последовательностью (a_n) называется отображение $\mathbb{N} \to \mathbb{R}$.

Определение 13. Конечной числовой последовательностью (a_n) называется отображение $a: \{1, 2, ..., k\} \to \mathbb{R}$.

Определение 14. Множество $M, M \subset \mathbb{R}$ называется ограниченным сверху, если $\exists \, c: \, \forall x \in M: x \leqslant c.$

Определение 15. Множество $M, M \subset \mathbb{R}$ называется ограниченным снизу, если $\exists \, c : \, \forall x \in M : x \geqslant c$.

Определение 16. Множество $M, M \subset \mathbb{R}$ называется ограниченным, если оно ограничено сверху и снизу.

Определение 17. Последовательность a_n называется ограниченной, если $a(\mathbb{N})$ ограничено.

Определение 18. Последовательность a_n называется называется монотонно возрастающей, если $\forall n \in \mathbb{N}: a_{n+1} > a_n.$

Теорема 4.1. Пусть все элементы последовательности a_n положительны. Последовательность a_n возстает тогда и только тогда, когда $\frac{a_{n+1}}{a_n} > 1$.

4.1 Аксиоматика действительных чисел

Определение 19. Пусть $M \subset \mathbb{R}$, M ограничено. Тогда наименьшая из верхних граней множества M называется точной верхней гранью:

$$a = \sup M \iff \forall x \in M : x \leq a, \forall \varepsilon > 0 \ \exists x \in M : x > a - \varepsilon$$

Определение 20. Пусть $M \subset \mathbb{R}$, M ограничено. Тогда наибольшая из нижних граней множества M называется точной нижней гранью:

$$a = \inf M \iff \forall x \in M : x \ge a, \ \forall \varepsilon > 0 \ \exists x \in M : x < a + \varepsilon$$

Теорема 4.2. Пусть $a: \mathbb{N} \to \mathbb{R}$, $a(\mathbb{N})$ ограничена. Тогда:

$$\exists x_0 \in \mathbb{R} : \forall \varepsilon > 0 : a^{-1}((x_0 - \varepsilon; x_0 + \varepsilon))$$
 бесконечно $U_{\varepsilon(x_0)}$

Доказательство. Если $\exists x_0: a^{-1}(x_0)$ бесконечно, то доказано. Если $\exists x_0: a^{-1}(x_0)$ конечно или пусто, то:

Отметим на числовой прямой $a_0=\inf a(\mathbb{N})$ и $b_0=\sup a(\mathbb{N})$, а также середину a_0b_0 , то есть $c_0=\frac{a_0+b_0}{2}$. Разделим один из получившихся отрезков (отметим c_0 и b_0 , как a_1 и b_1 соотвественно) пополам, получив $c_1=\frac{a_1+b_1}{2}$. Данный процесс можно продолжать, получая следующую конструкцию:

$$[a_0; b_0] \supset [a_1; b_1] \supset \ldots \supset [a_n; b_n] \supset \ldots$$

Теперь необходимо доказать следующее:

$$\bigcap_{n=0}^{\infty} [a_n; b_n] \neq \emptyset$$

- 1. $a_0 \leqslant a_1 \leqslant \ldots \leqslant a_n \leqslant \ldots$
- 2. $a(\mathbb{N})$ ограничена сверху b_i элементом
- 3. $a(\mathbb{N})$ имеет точную верхнюю грань $M_1 = \sup a(\mathbb{N})$ и точную нижнюю грань $M_2 = \inf a(\mathbb{N})$
- 4. $M_1 \leq M_2$
- 5. $[M_1; M_2] \subset \bigcap_{n=0}^{\infty} [a_n; b_n]$
- 6. Пусть $M_1 < M_2$, тогда $\exists \, n: \, b_n a_n < M_2 M_1$. Получаем противоречие, значит $M_1 = M_2 = M$.
- 7. Возьмем такое n, что $b_n-a_n<\varepsilon$. Тогда $[a_n;\,b_n]\subset U_\varepsilon(M)$. То есть $\forall \varepsilon>0:\,a^{-1}(U_\varepsilon(M))$ бесконечно.

Определение 21. Число x называется частичным пределом последовательности $a(\mathbb{N}) \to \mathbb{R}$, если $\forall \varepsilon > 0$: $a^{-1}(U_{\varepsilon}(x))$ бесконечно.

4.2 Прогрессии

Определение 22. Арифметической прогрессией называется числовая последовательность, заданная формулой n-го члена:

$$a_n = a_1 + (n-1) \cdot d$$

Определение 23. Разностью арифметической прогрессии называется разность a_{n+1} и a_n .

Утверждение 4.3. Пусть (a_n) – арифметическая прогрессия, тогда:

$$a_{n+2} - a_{n+1} = a_{n+1} - a_n$$

Утверждение 4.4. Пусть (a_n) – арифметическая прогрессия, тогда:

$$\forall n \in \mathbb{N}, \ n \geqslant 2 \ \forall k \in \mathbb{N}, \ k < n : \ a_n = \frac{a_{n+k} + a_{n-k}}{2}$$

Теорема 4.5. Сумма первых n членов арифметической прогрессии равна:

$$S_n = n \cdot \left(a_1 + \frac{(n-1) \cdot d}{2}\right) = n \cdot \frac{a_1 + a_n}{2}$$

Доказательство.

$$S_n = a_1 + a_2 + a_3 + \dots + a_n =$$

$$= a_1 + (a_1 + d) + (a_1 + 2d) + \dots + (a_1 + (n - 1) \cdot d) =$$

$$= n \cdot a_1 + d \cdot \left(\frac{(n - 1) \cdot n}{2}\right) =$$

$$= n \cdot \left(a_1 + \frac{(n - 1) \cdot d}{2}\right) =$$

$$= n \cdot \frac{a_1 + (a_1 + (n - 1) \cdot d)}{2} =$$

$$= n \cdot \frac{a_1 + a_n}{2}$$

Определение 24. Арифметической прогрессией называется числовая последовательность, заданная формулой n-го члена:

$$b_n = b_1 \cdot q^{n-1}, b_1 \neq 0, q \neq 0$$

Утверждение 4.6. Пусть (b_n) – геометрическая прогрессия, тогда:

$$\forall n \in \mathbb{N}, \ n \geqslant 2: \ b_n^2 = b_{n-1} \cdot b_{n+1}$$

Доказательство.

$$b_{n-1} \cdot b_{n+1} = b_1 \cdot q^{n-2} \cdot b_1 \cdot q^n = b_1^2 \cdot q^{2n-2} = (b_1 \cdot q^{n-1})^2$$

Теорема 4.7. Сумма первых n членов геометрической прогрессии равна:

$$S_n = b_1 \cdot \frac{1 - q^n}{1 - q}, \ q \neq 1$$

Доказательство.

$$S_n = b_1 + b_2 + b_3 + \dots + b_n =$$

$$= b_1 + b_1 \cdot q + b_1 \cdot q^2 + \dots + b_1 \cdot q^{n-1} =$$

$$= b_1 \cdot (1 + q + q^2 + \dots + q^n) =$$

$$= b_1 \cdot \frac{1 - q^n}{1 - q}$$

5 Эквивалентность и группы

Определение 25. Пусть M – множество, тогда множество $R \subset \{(a, b) \mid a, b \in M\}$ упорядоченных пар элементов M называется бинарным отношением на M.

Определение 26. Бинарное отношение называется отношением эквивалентности, если оно удовлетворяет свойствам:

- 1. Рефлексивность $a \sim a$
- 2. Симметричность $a \sim b \iff b \sim a$
- 3. Транзитивность $a \sim b, b \sim c \Longleftrightarrow a \sim c$

Теорема 5.1 (Малая теорема Ферма). $\forall n \in \mathbb{N}, p \in \mathbb{P} : n^{p-1} \equiv_p 1$

Определение 27. Бинарной операцией \times на множестве M называется отображение из множества упорядоченных пар $M^2 = \{(a, b) \mid a, b \in M\}$ в множество M.

Определение 28. Пара $G(M; \times)$, M – множество, \times – бинарная операция, называется группой, если выполняются свойства:

- 1. $\forall a, b \in M : (a \times b) \in M$
- $2. \exists e \in M \ \forall a \in M : e \times a = a$
- 3. $\forall a \in M \ \exists a^{-1} \in M : a \times a^{-1} = a^{-1} \times a = e$
- 4. $\forall a, b, c \in M : (a \times b) \times c = a \times (b \times c) = (a \times c) \times b$

6 Пределы

Определение 29. Число A называется пределом (x_n) , если:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N \ |x_n - A| < \varepsilon$$

Теорема 6.1.

$$\lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} (x_n) + \lim_{n \to \infty} (y_n)$$

Доказательство. Пусть $x_n \to a$; $y_n \to b$. По определению $N_a(\varepsilon): \forall n > N_a(\varepsilon) |x_n - a| < \varepsilon$, $N_b(\varepsilon): \forall n > N_b(\varepsilon) |y_n - b| < \varepsilon$. Рассмотрим $N_c(\varepsilon): \forall n > N_c(\varepsilon) |x_n + y_n - a - b| < \varepsilon: |x_n + y_n - a - b| \leqslant |x_n - a| + |y_n - b| \leqslant 2\varepsilon$ при $N_c = \max(N_a(\varepsilon); N_b(\varepsilon))$, то есть $2N_c(\varepsilon)$ – это номер, с которого утверждение точно выполняется.

Теорема 6.2 (Теорема Вейерштрасса). Пусть (x_n) монотонна, тогда:

- 1. Она имеет предел в $\mathbb{R} = \mathbb{R} \cup \{-\infty; +\infty\}$
- 2. Если она ограничена, то она имеет вредел в \mathbb{R}

Доказательство. По определению монотонно возрастающей последовательности: $\forall n: x_{n+1} > x_n$, пусть (x_n) не ограничена, то есть $\nexists m: \forall n: x_n < m$, тогда $\sup(x_n) = +\infty$, а значит $(x_n) \to \infty$. Пусть $\exists m: \forall n: x_n \leqslant m$ и $m = \sup(x_n)$. Тогда $m = \lim_{n\to\infty} (x_n)$. Доказательство для монотонно убывающей последовательности аналогично.