Machine Learning

(Practical File)

Submitted By: Jaskaran Singh

Enrollment No.: 05113202717

Class: CSE-01

AIM:

Estimate the accuracy of the decision classifier on breast cancer dataset using 5 fold cross validation.

ALGORITHM:

- 1. Reserve some portion of sample data-set.
- 2. Using the rest data-set train the model.
- 3. Test the model using the reserve portion of the data-set.

K-Fold Cross Validation

In this method, we split the data-set into k number of subsets(known as folds) then we perform training on all the subsets but leave one(k-1) subset for the evaluation of the trained model. In this method, we iterate k times with a different subset reserved for testing purposes each time.

PROGRAM CODE SNIPPET:

LOADING DATA SET:

PREPROCESSING:

0	<pre>## Finding Relationship: df.corr()</pre>							
D)								<u>^</u>
L,		id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compa
	id	1.000	0.075	0.100	0.073	0.097	-0.013	
	radius_mean	0.075	1.000	0.324	0.998	0.987	0.171	
	texture_mean	0.100	0.324	1.000	0.330	0.321	-0.023	
	perimeter_mean	0.073	0.998	0.330	1.000	0.987	0.207	
	area_mean	0.097	0.987	0.321	0.987	1.000	0.177	
	smoothness_mean	-0.013	0.171	-0.023	0.207	0.177	1.000	
	compactness_mean	0.000	0.506	0.237	0.557	0.499	0.659	
	concavity_mean	0.050	0.677	0.302	0.716	0.686	0.522	
	concave points_mean	0.044	0.823	0.293	0.851	0.823	0.554	
	symmetry_mean	-0.022	0.148	0.071	0.183	0.151	0.558	
	fractal_dimension_mean	-0.053	-0.312	-0.076	-0.261	-0.283	0.585	
	radius_se	0.143	0.679	0.276	0.692	0.733	0.301	
	texture_se	-0.008	-0.097	0.386	-0.087	-0.066	0.068	
	perimeter_se	0.137	0.674	0.282	0.693	0.727	0.296	
	area_se	0.178	0.736	0.260	0.745	0.800	0.247	
	smoothness_se	0.097	-0.223	0.007	-0.203	-0.167	0.332	
	compactness_se	0.034	0.206	0.192	0.251	0.213	0.319	
	concavity_se	0.055	0.194	0.143	0.228	0.208	0.248	

VISUALIZATION:

```
M = df[df.diagnosis == "M"]
        B = df[df.diagnosis == "B"]
       plt.title("Malignant vs Benign Tumor")
       plt.xlabel("Radius Mean")
plt.ylabel("Texture Mean")
plt.scatter(M.radius_mean, M.texture_mean, color = "red", label = "Malignant", alpha = 0.3)
plt.scatter(B.radius_mean, B.texture_mean, color = "lime", label = "Benign", alpha = 0.3)
        plt.legend()
        plt.show()
                                 Malignant vs Benign Tumor
                                                                        Malignant
                                                                       Benign
            35
            30
         Texture Mean 25 20
            15
            10
                                                                      25
                                           Radius Mean
plt.figure(figsize=(10,10))
```


ALGORITHM IMPLEMENTATION:

```
[39] from sklearn.model_selection import cross_val_score
    from sklearn import model_selection as ms
    from numpy import mean

    cv = ms.KFold( n_splits = 5, random_state = 20, shuffle=True)
    scores = cross_val_score(dt, x , y, scoring="accuracy", cv = cv)
    print(scores)

[0.92982456 0.92982456 0.93859649 0.89473684 0.9380531 ]

[40] mean(scores)

0.9262071106970968
```

GITHUB LINK:

https://github.com/jaskarans2000/Python-Introduction-Lab---Assignment-1---Jaskaran-Singh/LabAssignment3.ipynb