NASA Contractor Report 3176

NASA-CR-3176

A Method for Predicting the Noise Levels of Coannular Jets With Inverted Velocity Profiles

James W. Russell

FOR REFERENCE

NOT TO BE TAKEN FROM THIS ROOM

CONTRACT NAS1-13500 OCTOBER 1979

LIBRARY FOR

MOV 1.9 1979

LIDRARY MAGNINA EMPTON, VIRGINIA

A Method for Predicting the Noise Levels of Coannular Jets With Inverted Velocity Profiles

James W. Russell Kentron International, Inc. Hampton, Virginia

Prepared for Langley Research Center under Contract NAS1-13500

Scientific and Technical Information Branch

TABLE OF CONTENTS

SUMMARY	1
INTRODUCTION	2
LIST OF SYMBOLS	3
DESCRIPTION OF DATA BASE	6
PREDICTION PROCEDURE	8
Equivalent Jet	9
Acoustic Power	10
Directivity and Overall Mean Square Pressure	11
Spectral Distribution	12
DATA COMPARISONS	13
Static Case Data	14
Wind Tunnel Case Data	16
CONCLUSIONS	18
REFERENCES	20
TABLES	21
FIGURES	44
APPENDIX A Typical Static Case Spectral Distributions	79
APPENDIX B Typical Wind Tunnel Case Spectral Distributions	120

·	•	
·		
		1

This report presents a method for predicting the noise characteristics of a coannular jet exhaust nozzle with an inverted velocity profile. The method equates the coannular jet to a single stream equivalent jet with the same mass flow, energy, and thrust as the coannular jet. The acoustic characteristics of the coannular jet are then related to the acoustic characteristics of the single jet. The method presented in this report also includes forward flight effects by incorporating a forward velocity exponent, a Doppler amplification factor, and a Strouhal frequency shift.

A comparison of the prediction method with the model test data shows that (1) for the static cases the spectral correlations were generally greater than 90 percent and the spectral sound pressure level standard deviations were generally less than 4 dB in the aft arc direction. (2) For the static cases, the predicted overall sound pressure levels were generally within 4 dB of the measured values. (3) This method predicts the acoustic characteristics of coannular nozzles without centerbodies better than coannular nozzles with centerbodies located in the primary stream exhaust where the flow must either overexpand or neck down. (4) For the forward flight cases, the method underpredicts the jet noise by approximately 3 dB in the forward arc, and overpredicts the jet noise by approximately 2 dB in the aft arc. (5) For the low velocity forward flight cases the spectral correlation coefficients were greater than 90 percent and the standard deviations of the spectral sound pressure levels were generally less than 4 dB. (6) For both the static and wind tunnel cases the spectral correlations, sound pressure level deviations, and overall sound pressure level differences between measured and predicted values were not affected by changes in equivalent jet velocity.

It is recommended that (1) the forward flight effect on jet noise be reevaluated using additional data to determine whether the Doppler amplification factor exponent should be greater than unity, and that (2) additional data be obtained at higher jet exhaust temperatures and velocities to reduce extrapolation errors incurred in evaluating noise levels of variable cycle engines.

INTRODUCTION

In recent years, advanced engine designs which employ coannular jet exhausts have been studied for application to supersonic transport configurations. These engines are efficient at both supersonic and subsonic flight speeds. The coannular jet exhaust flow scheme has been shown to significantly reduce the engine jet exhaust noise levels during takeoff and landing operations.

The prediction method presented herein was developed from three extensive sets of coannular jet noise model test data sponsored by NASA Lewis Research Center (refs. 1, 2, and 3). These data have been correlated by S. P. Pao of NASA Langley Research Center (ref. 4), which provides the basis for the prediction method.

Because the coannular jet contains twice as many flow parameters as the single jet, the prediction scheme is more complex than the SAE single jet prediction method (ref. 5). The noise emitted from a coannular jet contains two major components: the premerged noise produced by the secondary flow stream and the noise produced by the portion of the jet plume where the two streams have merged. In the forward direction angles, the premerged noise is predominant. However, in the aft arc, there are two distinct peaks to the jet noise spectral distribution. The low frequency peak is associated with the plume noise of the merged jet, and the high frequency peak is associated with the premerged noise of the secondary or outer flow stream.

The method presented herein equates the coannular jet to a single stream equivalent jet which has the same mass flow, energy flow, and thrust as the coannular jet. The acoustical power of the coannular jet is then derived by computing the power of the single jet and applying a coannular jet noise benefit function. From the acoustic power, the overall sound pressure level in a given direction is defined. Then the spectrum is defined which is composed of the premerged and postmerged jet noise components. The prediction method also includes forward flight effects by incorporating a forward velocity exponent and a Doppler amplification factor. Also, the frequency is shifted in proportion to the relative velocity, which is the difference

between the nozzle exit velocity and the forward flight velocity.

The following constraints should be applied to the method presented due to the limited data base. The outer to inner stream nozzle exit area ratio should not be less than 0.4 or greater than 2.5. The outer to inner stream velocity ratio should not be less than 1.0. The equivalent jet velocity should be greater than 0.85 times the local ambient speed of sound. The test data upon which this method is based have a range of equivalent jet velocities from just below the ambient speed of sound to 2.5 times the local ambient speed of sound. This prediction method is designed for obtaining free field unattenuated source noise levels. It should be noted that coannular jet area ratio and radius ratio are not included explicitly due to the limitations of the data base.

LIST OF SYMBOLS

A_{e}	equivalent fully expanded jet area, m ²
A ₁	nozzle exit plane area of primary stream, m^2
A ₂	nozzle exit plane area of secondary stream, $\ensuremath{\text{m}}^2$
C _∞	ambient speed of sound, m/s
D(θ)	directivity function
D _e	equivalent jet diameter, m
D_{h}	hydraulic diameter of secondary stream, m
dB	decibel
f	one-third octave band frequency, Hz
G(θ,σ)	normalized spectral distribution in one-third octave band
Н	secondary stream annular exit height, m
^m e	total mass flow of the equivalent jet, kg/s

m ₁	mass flow of the primary stream, kg/s
m ₂	mass flow of the secondary stream, kg/s
n	number of one-third octave band frequencies
OAPWL	overall sound power level, re: 10 ⁻¹² W
OASPL(θ)	predicted overall sound pressure level, re: $2 \times 10^{-5} \text{ N/m}^2$
OASPL _m (θ)	measured overall sound pressure level, re: $2 \times 10^{-5} \text{ N/m}^2$
p ² (θ)	predicted overall mean square pressure, N^2/m^4
p̄ ² (θ,f)	one-third octave band predicted mean square pressure, N ² /m ⁴
p̄ _m ² (θ)	measured overall mean square pressure, N^2/m^4
p̄ _m ² (θ,f)	one-third octave band measured mean square pressure, N^2/m^4
$p_{_{\infty}}$	ambient atmospheric pressure, N/m ²
P(V _e /c _∞)	power deviation factor, W
PISA	international standard atmospheric pressure, ${\rm N/m}^2$
Q(V _e /c _∞ ,V ₂ /V ₁)	power reduction factor, W
r	radial distance between source and observer, m
R	spectral mean square pressure correlation coefficient
s ₁	peak Strouhal number of the first spectral component
s ₂	peak Strouhal number of the second spectral component

SD	spectral sound pressure level standard deviation, dB
SPL(0,f)	predicted one-third octave band sound pressure level, re: $2 \times 10^{-5} \text{ N/m}^2$
SPL _m (0,f)	measured one-third octave band sound pressure level, re: $2 \times 10^{-5} \text{ N/m}^2$
т _е	total temperature of the equivalent single jet, K
T _{ISA}	international standard atmospheric temperature, K
τ ₁	total temperature of the primary stream, K
т ₂	total temperature of the secondary stream, K
T _∞	ambient air temperature, K
V _a	forward velocity of the jet nozzle, m/s
٧ _e	fully expanded jet velocity of the equivalent jet, m/s
v ₁	fully expanded jet velocity of the primary stream, $\ensuremath{\text{m/s}}$
v ₂	fully expanded jet velocity of the secondary stream, m/s
α΄ .	magnitude of peak mean square pressure of second spectral component relative to first spectral component, N^2/m^4
γ_{e}	ratio of specific heats for the equivalent jet
$^{\gamma}$ 1	ratio of specific heats for the primary stream
Y ₂	ratio of specitic heats for the secondary stream
θ	directivity angle from the inlet axis, deg.

П	total sound power, W
$ ho_{f \infty}$	ambient air density, kg/m ³
ρe	density of equivalent jet, kg/m ³
ση	normalized Strouhal number for the first spectral component
^σ 2	normalized Strouhal number for the second spectral component
ф	directivity angle from flight path, deg.
ω	density exponent

DESCRIPTION OF DATA BASE

The inverted flow profile coannular jet data base was obtained from model scale experimental work (refs. 1, 2, and 3). The static tests of references 1 and 2 consist of 98 separate test conditions with three different nozzle configurations. The first two configurations shown in figures 1 and 2 (models 2 and 3) have area ratios of 0.75 and 1.2 respectively. The third configuration (model 4) has a centerbody within the core flow stream which extends past the core flow nozzle exit plane. The area ratio for model 4 of figure 3 is 0.647. The wind tunnel tests of reference 3 consist of 92 separate test conditions with two different nozzle configurations which have inverted flow profiles. The wind tunnel nozzle configurations (models 7 and 8) have area ratios of 0.75 and 1.2 respectively, and are shown in figures 4 and 5. In all models the core flow exit plane was offset from the secondary flow exit plane.

The acoustic data covered thirty one-third octave bands. All the tests were conducted in outdoor facilities using a polar array of microphones. The table below lists the frequency range, directivity range, and microphone distance for each of the test models.

Model	Forward Velocity	Frequency Range	Range of Directivity Angle	Distance to Microphone
2	0	0.1-80 KHz	60 - 165 degrees	4.57 m
3	0	0.1 - 80 KHz	60 - 165 degrees	4.57 m
4	0	0.05-40 KHz	30 - 160 degrees	12.2 m
7	30-130 m/s	0.1 - 80 KHz	70 - 150 degrees	3.05 m
8	30-130 m/s	0.01-80 KHz	70 - 150 degrees	3.05 m

The acoustic data were corrected to remove atmospheric attenuation effects in accordance with ARP 866 (ref. 6). Spherical divergence effects were included to correct the data base to a radius of 45.7 m (150 ft). In the case of model 4, the data were also corrected for ground reflection and attenuation effects using the method of reference 2. The forward flight data of models 7 and 8 of reference 3 already have been corrected for the effects of the wind tunnel flow shear layer on the directivity and intensity. In addition, Doppler frequency shifts were incorporated into the data to account for the relative motion effect between the source and the observer. This effect is included in the prediction but is not present in the wind tunnel.

For all cases used in the development of this prediction method, the secondary stream flow velocity was greater than the primary stream flow velocity. The table below lists the range of temperatures and velocities of each flow stream for each of the models.

Model	Velocity Range Primary S	e, m/s econdary	Temperature Ra Primary	ange, K Secondary
2	294 - 624 3	10 - 872	381 - 1098	380 - 1133
3	298 - 441 3	19 - 859	389 - 810	702 - 1089
4	291 - 609 2	95 - 847	286 - 814	392 - 1097
7	284 - 306 3	03 - 683	370 - 410	390 - 669
8	297 - 307 43	30 - 638	339 - 407	396 - 710

The applicability of the prediction method presented herein is limited to the velocity range and temperature range of the model test data base. The maximum secondary flow velocity was 872 m/s for the static cases and 683 m/s for the wind tunnel cases, which is less than the 975 m/s for the secondary flow velocity of a varible cycle engine for an SST design. Similarly, the maximum secondary flow total temperature of the data was 1133 K for the static cases and 710 K for the wind tunel cases, which are considerably less than the variable cycle engine secondary flow temperatures of 1750 K.

PREDICTION PROCEDURE

The noise prediction method presented in this report is based on determining the noise characteristics of a single equivalent jet, which has the same total mass flow, energy flow, and thrust as the coannular jet. First, the overall acoustic power level of the coannular jet must be defined. It was found that for the static case (no forward velocity), that the acoustic power of the coannular jet is sometimes as much as 4.0 dB lower than the overall sound power level of the single equivalent jet. The power of the single equivalent jet for the static case is determined using the current SAE prediction method (ref. 5). A jet noise benefit function is employed to obtain the power level of the coannular jet. For the case with forward velocity, a procedure by Hoch (ref. 7) is employed. This procedure employs a power function to account for changes in source strength and sound convection. Also a Doppler amplification factor is used. Both the Doppler factor and the power function vary with directivity angle. The overall sound pressure level in a given direction at a given radius is computed from the overall sound power level using a directivity index which is independent of forward flight velocity. Finally, the one-third octave band sound pressure level is computed by a two component method. The first component is associated with the secondary stream of the premerged jet. The second component is associated with the post merged region of the fully mixed jet. The one-third octave band spectra is corrected for forward velocity effects by basing the Strouhal numbers on the difference between the jet nozzle velocity and the forward flight velocity.

Equivalent Jet

The single equivalent jet has the same mass flow, energy flow, and thrust as the coannular jet. The mass flow of the single equivalent jet is

$$\dot{m}_{e} = \dot{m}_{1} + \dot{m}_{2},$$
 (1)

where

$$\dot{\mathbf{m}} = \rho \ \mathsf{A} \ \mathsf{V}. \tag{2}$$

The condition of equivalence of mass flow and thrust gives

$$V_{e} = \frac{\mathring{m}_{1} V_{1} + \mathring{m}_{2} V_{2}}{\mathring{m}_{1} + \mathring{m}_{2}}.$$
 (3)

Since the gas constant for air is not significantly changed by the addition of a small amount of combustion products, the equivalent temperature can be defined from the total energy flow as

$$T_{e} = \frac{\dot{m}_{1}}{\dot{m}_{1}} \frac{\begin{pmatrix} \gamma_{1} \\ \overline{\gamma_{1}-1} \end{pmatrix}}{\begin{pmatrix} \gamma_{1} \\ \overline{\gamma_{1}-1} \end{pmatrix}} + \dot{m}_{2} \frac{\gamma_{2}}{\langle \gamma_{2}-1 \rangle} + \frac{\gamma_{2}}{\langle \gamma_{2}-1 \rangle}$$
(4)

where

$$\frac{\gamma}{\gamma-1} = \frac{c_p}{R} . \tag{5}$$

The equivalent specific heat ratio is defined from the mixing of the gases of each stream, as

$$\frac{\gamma_{e}}{\gamma_{e}^{-1}} = \frac{\mathring{m}_{1} \left(\frac{\gamma_{1}}{\gamma_{1}^{-1}}\right) + \mathring{m}_{2} \left(\frac{\gamma_{2}}{\gamma_{2}^{-1}}\right)}{\mathring{m}_{1} + \mathring{m}_{2}}.$$
 (6)

Because the fully expanded jet static pressure is equal to the ambient static pressure, the equivalent jet density is

$$\rho_{e} = \rho_{\infty} \left\{ \frac{T_{e}}{T_{\infty}} - \frac{\gamma_{e}-1}{2} \left(\frac{V_{e}}{c_{\infty}} \right)^{2} \right\}^{-1}. \tag{7}$$

The equivalent area is (from equation 2)

$$A_{e} = \frac{\dot{m}_{e}}{\rho_{e} V_{e}}, \qquad (8)$$

the equivalent jet diameter is

$$D_{e} = \left(\frac{4 A_{e}}{\pi}\right)^{1/2}, \tag{9}$$

and the secondary stream hydraulic diameter is

$$D_{h} = 2H. \tag{10}$$

Acoustic Power

The jet acoustic power π is calculated for the single jet using the current SAE prediction method (ref. 5) and applying a coannular jet power benefit function, Q.

$$\pi = 6.67 \times 10^{-5} \quad \rho_{\infty} \quad c_{\infty}^{3} \quad A_{e} \quad \left(\frac{\rho_{e}}{\rho_{\infty}}\right)^{\omega} \left(\frac{V_{e}}{c_{\infty}}\right)^{8} \quad P\left(\frac{V_{e}}{c_{\infty}}\right) \quad Q\left(\frac{V_{e}}{c_{\infty}}, \frac{V_{2}}{V_{1}}\right). \quad (11)$$

The density exponent, ω , is the same as in reference 5 and is given as a function of V_e/c_{∞} in table 1 and figure 6. The power deviation factor $P(V_e/c_{\infty})$ represents the deviation of sound power from the U⁸ law of dependence and is shown in table 2 and figure 7. The coannular jet power benefit function $Q(V_e/c_{\infty}, V_2/V_1)$ is shown in table 3 and figure 8.

The overall sound power level can be obtained from equation 11 as

$$0APWL = 10 Log_{10} \left\{ \left(\frac{\pi}{\rho_{\infty} c_{\infty}^{3} A_{e}} \right) \left(\frac{p_{\infty}}{\rho_{ISA}} \right) \sqrt{\frac{T_{\infty}}{T_{ISA}}} \right\} + 197 dB. \quad (12)$$

The effect of forward flight on acoustic power includes the Doppler amplification factor and a velocity exponent. Both of these terms are related to the directivity angle. Therefore the forward velocity effect is included along with the directivity effects in the determination of the mean square pressure.

Directivity and Overall Mean Square Pressure

The mean square pressure at a given observer position relative to the position of the jet is

$$\bar{p}^{2}(\theta) = \frac{\rho_{\infty} c_{\infty}}{4\pi r^{2}} \frac{D(\theta, V_{e}/c_{\infty})}{(1-V_{a} \cos\phi/c_{\infty})} \left(\frac{V_{e}-V_{a}}{V_{e}}\right)^{m(\theta)}, \tag{13}$$

where r is the distance between the source and the observer, and $D(\theta, V_e/c_\infty)$ is the normalized directivity factor and is given in table 4 and figure 9. The forward velocity exponent function $m(\theta)$ was taken from Hoch (ref. 7) and is presented in table 5 and figure 10. The Doppler amplification factor $(1 - V_a/c_\infty \cos \phi)$ depends on the angle between the flight path vector and the vector between the source and observer. This angle, denoted as, ϕ , is different than the directivity angle, θ , when the jet axis is not along the flight path. Figure 11 shows the geometric variables used for computing the overall mean square pressure at a particular directivity angle.

The overall sound pressure level, computed from the mean square pressure, is:

$$0ASPL = 10 \log_{10} \left\{ \frac{\bar{p}^2(\theta)}{\rho_{\infty}^2 c_{\infty}^4} \left(\frac{p_{\infty}}{P_{ISA}} \right)^2 \right\} + 197 dB.$$
 (14)

Spectral Distribution

The one-third octave band spectra in a given direction are composed of a single component for directivity angles below 110 degrees where the high velocity, secondary stream jet noise is predominant. At directivity angles equal to or greater than 110°, the one-third octave band spectra consist of two components. The low frequency component is associated with the jet noise from the merged portion of the exhaust, and the high frequency component is associated with the secondary stream flow. Figure 12 shows a diagram of the two component spectra. The peak Strouhal number of the first spectral component $S_1(V_e/c_\infty, \theta)$ applies to all directivity angles. For directivity angles equal to or greater than 110°, there is a second component peak Strouhal number, $S_2(V_e/c_\infty, \theta)$. The values of S_1 and S_2 are listed in tables 6 and 7 and are shown in figures 13 and 14, respectively.

Figure 12 shows that there is a difference in amplitude between the first and second peaks. At directivity angles equal to or greater than 110 degrees, the parameter, α' , indicates the relative magnitudes of the mean square pressure of the second peak with respect to the first peak. α' is defined from the parameter, $\alpha(V_e/c_{\infty}, V_2/V_1, \theta)$ as

$$\alpha' = \alpha \frac{A_2}{A_e} . \tag{15}$$

The values of α are presented in table 8 and figure 15.

The one-third octave band mean square pressure

$$\bar{p}^2(\theta, f) = \bar{p}^2(\theta) G(\theta, \sigma_1)$$
, for $\theta < 110^\circ$, (16)

and

$$\bar{p}^{2}(\theta,f) = \bar{p}^{2}(\theta) \left(\frac{G(\theta,\sigma_{1})}{1+\alpha^{2}} + \frac{\alpha^{2}G(\theta,\sigma_{2})}{1+\alpha^{2}} \right) , \text{ for } \theta \ge 110^{\circ}, \tag{17}$$

where the values of $G(\theta, \sigma)$ are given in table 9 and figure 16. The values of σ_1 and σ_2 are defined from S_1 and S_2 by

$$\sigma_{1} = \frac{f D_{e}}{S_{1}(V_{e} - V_{a})} \left(\frac{T_{e}}{T_{\infty}}\right)^{0.4}, \tag{18}$$

and

$$\sigma_2 = \frac{f D_h}{S_2(V_e - V_a)} \left(\frac{T_e}{T_\infty}\right)^{0.4}.$$
 (19)

The forward flight effect is incorporated into equations 18 and 19 in the computation of the peak frequency, the frequency corresponding to a σ value of 1.0. This frequency is dependent on the difference between the nozzle jet exhaust velocity and the aircraft forward flight velocity. A temperature correction factor is included in equations 18 and 19 which corresponds with the frequency shift due to temperature in accordance with the SAE single jet method of reference 5.

The one-third octave band sound pressure level is defined by

$$SPL(\theta,f) = OASPL(\theta) + 10 Log_{10} G(\theta,\sigma_1), \text{ for } \theta < 110^{\circ}, \tag{20}$$

and

$$SPL(\theta,f) = OASPL(\theta) + 10 Log_{10} \left(\frac{G(\theta,\sigma_1)}{1+\alpha^2} + \frac{\alpha^2G(\theta,\sigma_2)}{1+\alpha^2} \right), \tag{21}$$

for $\theta \ge 110^{\circ}$.

DATA COMPARISONS

Comparisons were made to evaluate the prediction method against the model test data for 48 static cases from references 1 and 2 and 22 wind tunnel cases from reference 3. The predicted values were corrected to incorporate shock noise as well as jet noise, as shock noise does exist in the model data. The shock noise was predicted over the range of frequencies and directivity angles for each case using Stone's method from reference 8. For each case at each directivity angle for which spectra data are available,

the spectral mean square pressure correlation coefficient, the spectral sound pressure level standard deviation, and the overall sound pressure level difference between the measured and predicted values were computed.

The mean square pressure correlation coefficient, R, for a range of n one-third octave band frequencies is

$$R = \frac{\sum_{\substack{j=1 \ j=1}}^{n} [\bar{p}^{2}(\theta, j) \ \bar{p}^{2}_{m}(\theta, j)]}{\left\{\sum_{\substack{j=1 \ j=1}}^{n} [\bar{p}^{2}(\theta, j)]^{2} \sum_{\substack{j=1 \ j=1}}^{n} [\bar{p}^{2}_{m}(\theta, j)]^{2}\right\}^{1/2}}.$$
 (22)

The spectral sound pressure level standard deviation, SD, in units of decibels for a range of n one-third octave band frequencies is

$$SD = \begin{cases} \frac{n}{\sum} \left[SPL(\theta, i) - SPL_{m}(\theta, i) \right]^{2} \\ \frac{i=1}{(n-1)} \end{cases}$$
 (23)

The difference between the predicted and measured overall sound pressure level, OASPL, at each directivity angle is

$$\Delta OASPL(\theta) = OASPL(\theta) - OASPL_m(\theta)$$
. (24)

The data comparison study consists of two parts: the static comparison and the forward flight comparisons.

Static Case Data

The static data comparison consists of evaluating 48 typical data cases. These include 33 cases from reference 1 (models 2 and 3) and 15 cases from reference 2 (model 4). Table 10 lists the flow properties for the 48 cases including equivalent velocity and the ratio of the secondary flow velocity to the primary flow velocity. Table 11 shows the spectral mean square pressure correlation coefficient, the spectral sound pressure level standard deviation, and the difference in overall sound pressure level between the measured and predicted values for each case at nine directivity angles.

The variation of the comparison parameters of table 11 with normalized equivalent velocity are shown on figures 17, 18, and 19, respectively, at directivity angles of 60, 90, 120, and 150 degrees.

Figure 17 shows that at 90 and 120 degrees the correlation coefficient exceeds 90 percent except in 7 cases. At 60 degrees it can be seen that there is considerable discrepancy which is partially attributable to the relatively low jet noise levels. At 150 degrees the model 4 cases generally seem to have a low correlation, whereas only 4 of the model 2 and model 3 cases are below 90 percent. This may be due to the fact that the jet exhaust flow of model 4 overexpands as it flows over the plug surface.

Figure 18 shows the variation of standard deviation of the spectral sound pressure levels with normalized equivalent velocity for the 48 data cases. From figure 18 it can be seen that at 90, 120, and 150 degrees less than 7 cases exceed a standard deviation of 4 dB, whereas at 60 degrees almost a third of the cases exceed a standard deviation of 4 dB. The standard deviation indicates a discrepancy between the measured and predicted values but does not indicate the direction of this discrepancy. Therefore the difference in overall sound pressure levels for these 48 cases were determined.

Figure 19 shows the variation of the difference between predicted and measured overall sound pressure levels with normalized equivalent velocity for the 48 data cases at directivity angles of 60, 90, 120, and 150 degrees. Figure 19 shows that at 90 degrees, the method overpredicts for model 2 and underpredicts for models 3 and 4. At 120 degrees the method underpredicts the noise of model 4, whereas models 2 and 3 appear to not be biased. At 150 degrees the predicted OASPL levels average slightly higher than the measured values, except at the lower equivalent jet velocities, where they are 2 to 4 dB higher. At 60 degrees it can be seen that there is considerable scatter in the OASPL differences. This corresponds to the low jet noise level problems that were seen in figures 17 and 18.

From table 11 and these figures 17, 18, and 19, it can be seen that the prediction method does not correlate better at higher jet velocities than at lower velocities. Also at angles below 90 degrees, there are some large discrepancies between the prediction method and the measured data, which

can be partially attributed to the lower levels of jet noise which are produced in the forward arc and thus to the lower difference in noise level between the jet noise and the background noise.

Appendix A shows spectral plots of the measured and predicted sound pressure levels for 16 of the 48 static data cases.

Wind Tunnel Case Data

The wind tunnel or forward flight data comparison consists of evaluating 22 typical data cases of reference 3 (models 7 and 8). Table 12 lists the flow properties for the 22 cases including equivalent velocity and the ratio of the secondary stream velocity to the primary stream velocity. In the wind tunnel test, the microphones are stationary with respect to the nozzle, whereas in forward flight they are not. However, the power level and directivity are affected by the wind tunnel flow velocity which alters the strength and direction of the acoustic waves. Also, the frequency is shifted by the wind tunnel flow. However, the frequency shift defined by equations 18 and 19 has incorporated a Doppler shift. Therefore, to correct from forward flight prediction to wind tunnel prediction, the predicted forward flight frequencies were corrected by the Doppler frequency shift which is

$$f_{\text{wind tunnel}} = f_{\text{forward flight}} [1 - V_a/c_{\infty} \cos(\theta)].$$
 (25)

Table 13 shows the spectral mean square pressure correlation coefficient, the spectral sound pressure level standard deviation, and the difference in overall sound pressure level between the measured and predicted values for each case at the nine directivity angles for which measured data are available. Figures 20, 21, and 22 respectively show the variation of these comparison parameters as a function of normalized equivalent velocity at directivity angles of 70, 90, 120, and 150 degrees. Appendix B shows comparisons between the predicted and measured spectral sound pressure level distributions for several typical wind tunnel data cases at directivity angles of 70, 90, 120, and 150 degrees. The spectral plots of Appendix B show that in the high frequency range the measured data rises abnormally. This was attributed to electrical interference and therefore the four highest frequencies were not included in evaluating this prediction method.

From table 13 and figure 20 it can be seen that the correlation coefficients are generally close to or above 90 percent except for the high forward velocity cases. Figures B1, B4, B7, and B8 of Appendix B show typical spectral plots for these high velocity cases. From these four figures, it can be seen that there appears to be something other than jet or shock noise present at the low frequencies. Furthermore, this low frequency interference phenomenon increases as the directivity angle increases and also as the forward velocity increases. Therefore, at the higher forward velocities figure 20 shows that the correlation coefficient is low.

Table 13 and figure 21 show that at the low forward velocities the spectral sound pressure level standard deviation is less than 4 dB except at the directivity angle of 150 degrees where it varies from 4 dB to almost 6 dB. However, at the higher forward velocities the standard deviation is large due to the low frequency interference phenomenon.

From table 13 and figure 22 it can be seen that the method underpredicts the overall sound pressure level at all directivity angles except at 150 degrees where the method overpredicts. The amount of discrepancy in the overall sound pressure level is about 3.5 dB at 70 degrees, 1.5 dB at 90 degrees, 2 dB at 120 degrees, and -2.0 to +2.0 dB at 150 degrees. In general there appears to be no trend in the overall sound pressure level difference with changes in either the jet velocity or forward velocity. Also at a directivity angle of 90 degrees it is anticipated that the overall sound pressure level discrepancy will be at a minimum because the forward velocity effect is reduced to zero in the prediction method per equations 13 and 18.

The prediction method is acceptable at directivity angles of 90 and 120 degrees. At the directivity angle of 70 degrees the method predicts low at all forward flight speeds. At the directivity angle of 150 degrees at the higher flight velocities the prediction method is poor in that it overpredicts the jet noise overall sound pressure level by as much as 3 dB.

In general this prediction method is acceptable for the forward flight cases. However for comparison purposes it should be noted that in reference 3, a least squares fit of the data was made and a forward velocity power index and Doppler amplification factor for noise convection were determined. Using

the method of this report the power index of equation 13 shown in table 5 and figure 10 is about the same as the forward velocity power index factor of reference 3. However, the Doppler amplification factor of equation 13 is raised to the first power in the presented prediction method. In the data correlation of reference 3, the Doppler amplification factor is raised to a power of 4 at a directivity angle of 70 degrees and to a power of 10 at a directivity angle of 150 degrees. The value of the Doppler amplification factor exponent also depends on the total pressure ratio. The fact that this Doppler amplification factor exponent is considerably greater than unity and that it was derived from test data correlations indicates that the prediction method presented herein will underpredict the jet noise at directivity angles below 90 degrees, and overpredict the jet noise at directivity angles above 90 degrees. Furthermore, the amount of discrepancy will increase as the forward velocity increases. However, the amount of OASPL discrepancy in the method of this report is generally less than 2 dB at directivity angles of 90, 120 and 150 degrees, which is probably within the range of the model test data scatter.

CONCLUSIONS

For the static case data without the centerbody plug the coannular jet prediction method presented herein yields correlation coefficients above 90 percent at directivity angles of 90, 120, and 150 degrees. For the static case data with the centerbody plug the correlation coefficient is lower at a directivity angle of 150 degrees. One reason for this difference may be due to the overexpansion, or turning, of the flow as it passes over the centerbody plug. The standard deviations for all the nozzle configurations were generally less than 4 dB at directivity angles of 90, 120, and 150 degrees. At the directivity angle of 60 degrees, where the jet noise levels are relatively low and the data may be affected by background noise, the correlation coefficients were sometimes considerably less than 90 percent and the standard deviations sometimes exceed 10 dB. In general the overall sound pressure levels were predicted within 4 dB at directivity angles of 60, 90, and 150 degrees. At 120 degrees the method appeared to underpredict by sometimes more than 6 dB.

For the wind tunnel cases, the coannular jet prediction method presented herein yields correlation coefficients above 90 percent for the lower forward velocities at directivity angles of 70, 90, 120, and 150 degrees. Also at the lower forward velocities, the standard deviations were less than 4 dB at directivity angles of 60, 90, and 120 degrees, and varied from 4 to 6 dB at the directivity angle of 150 degrees. At the higher forward velocities, there appeared to be some low frequency interference phenomenon which increased as the directivity angle increased and as the forward velocity increased. Therefore at the higher forward velocities the correlation coefficient and standard deviation were not good. However this low frequency phenomenon did not affect the SPL values near the peak level, and therefore did not affect the overall sound pressure levels. For the forward velocity cases the difference between the measured and predicted overall sound pressure levels were less than 4 dB at directivity angles of 70, 90, 120, and 150 degrees, except for two cases at 70 degrees.

For the forward flight cases this method underpredicts the jet noise by approximately 3 dB in the forward arc as shown on Figure 22a. Similarly, at the higher directivity angles this method overpredicts the jet noise by approximately 2 dB, as shown on Figure 22d. To correct this a Doppler amplification factor exponent could be employed in addition to the forward velocity exponent.

For both the static and wind tunnel cases changes in equivalent jet velocity did not affect the correlation coefficients, the sound pressure level standard deviations, or the difference between the measured and predicted overall sound pressure levels.

Since, at supersonic jet velocities, a shock noise prediction is included in the jet noise correlation and the results obtained were found to be satisfactory, it is evident that shock noise is present in the model test data.

The applicability of the prediction method presented herein is limited to the velocity range and temperature range of the model test data base.

REFERENCES

- 1. Kozlowski, H.; and Packman, A. B.: Pratt and Whitney Data Base on Model Coannular Jet, NASA CR-134910, Pratt and Whitney Aircraft Company, February 1977.
- 2. Allan, R. D.; and Joy, W.: Comprehensive Data Report Acoustic Tests of Duct-Burning Turbofan Jet Noise Simulation, NASA CR-135236, General Electric Co., November 1977.
- 3. Kozlowski, Hilary; and Packman, Allan B.: Flight Effects on the Aero/Acoustic Characteristics of Inverted Profile Coannular Nozzles, NASA CR-3018, 1978.
- 4. Pao, S. P.: A Correlation of Mixing Noise from Coannular Jets with Inverted Flow Profiles, NASA TP-1301, 1979.
- 5. Aerospace Recommended Practice Procedure 876, Gas Turbine Jet Exhaust Noise Prediction, March 1978.
- 6. Aerospace Recommended Practice Procedure 866, Standard Values of Atmospheric Absorption as a Function of Temperature and Humidity for use in Evaluating Aircraft Flyover Noise, Society of Automotive Engineers, March 1978.
- 7. Hoch, R. G.; Duponchel, J. P.; Cocking, B. J.; and Bryce, W. D.: Studies of the Influence of Density on Jet Noise, Paper presented at the First International Symposium on Airbreathing Engines, Marseille, June 1972.
- 8. Stone, J. R.: Interim Prediction Method for Jet Noise, NASA TM X-71618, 1974.

TABLE 1.

JET NOISE DENSITY EXPONENT.

Log ₁₀	(V _e /c _∞)	ω
-0.4		-0.90
-0.35		-0.76
-0.30		-0.58
-0.25		-0.41
-0.20		-0.22
-0.15		0.0
-0.10		0.22
-0.05		0.50
0.0		0.77
0.05	•	1.07
0.10		1.39
0.15		1.74
0.20		1.95
0.25		2.0
0.30		2.0
0.35		2.0
0.40		2.0

TABLE 2.

POWER DEVIATION FACTOR.

log ₁₀ (V _e /c _∞)	10 log ₁₀ (P), dB
-0.40	-1.3
-0.35	-1.3
-0.30	-1.3
-0.25	-1.3
-0.20	-1.3
-0.15	-1.2
-0.10	-1.0
-0.05	-0.5
0.0	0.0
0.05	1.0
0.10	2.1
0.15	3.2
0.20	4.1
0.25	4.3
0.30	4.1
0.35	3.1
0.40	1.4

TABLE 3.

COANNULAR JET NOISE POWER REDUCTION FACTOR.

10 Log₁₀(Q), dB

V /V			Log ₁₀	(V _e /c _∞)			 _
V ₂ /V ₁	0,00	.05	10	.15	.80	.25	.30
1.0 1.2 1.3 1.4 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6		0.0000000000000000000000000000000000000	0.00050005555500055555	0.00 1.00 1.00 3.00 3.00 3.00 1.50 1.00	00000500055000055	000500500000505500	0.0 0.0 1.0 1.5 2.0 3.5 4.0 4.0 4.0 4.0 4.0 5.0
8.5 2.9 3.0	0.0	0.0	.5 0.0 0.0	1.0 .5 .5	1.0	1,5	2.5 2.0 2.0

TABLE 4.

COANNULAR JET NOISE DIRECTIVITY INDEX.

10 Log₁₀(D), dB

Directivity				Log ₁₀ (V	e/c <u></u>)			
angle,0	0.00	.05	. 10	.15	.20	. 25	.30	.35
0	=8,60	=9.70	-11,55	-12'40	-13.02	-13.04	-13.98	=14,49
10	-B.40	=9.5 0	-11.35	-12,15	-12.72	-13,14	-13.63	#14.09
5 ū	-8,20	-9.30	-11.10	-11.85	-12.42	-12.84	-13,28	-13,69
3.0	-8 ,00	-9.10	m10.85	-11,55	-12.02	-12.44	-12.93	-13,19
40	-7.7 0	-8.80	=10.55	-11,15	-11.62	-12.04	-12.37	-12.69
50	=7.40	-8.5 0	-10.25	-10.75	-11.17	-11.54	-11.84	-12,09
60	=7 ,00	*8.10	-9.85	-10,35	-10.72	-11.02	-11.20	-11.39
70	-6.40	-7.70	-8.98	=9'35	=9.68	*9.88	-10.16	=10.20
8.0	≠5 ,70	=6.80	-7.60	-7,98	-8.22	=A_43	-8.53	-8,70
90	=4.70	=5.80	-6.41	-6.75	*6.95	-7. 06	-7.09	=7.00
100	-3.20	=4.10	-4.71	=5 ,06	-5,33	-5,47	=5.59	≠5 ,60
110	-1.30	-2.00	-2.46	-2,74	-2.95	=3 .08	-3.19	-3.20
120	90	.50	. 14	- 02	13	- 16	16	10
130	3.40	3.20	3.04	3,04	3.03	3.06	3,12	3.20
140	5.20	5.70	5,99	6, 56	4.45	6.61	6.68	6.71
150	6.30	7.00	7.49	7.81	7.95	8.02	8.08	8.09
160	6.10	6.30	6.55	7 B1 6 14	5.97	5.73	5.60	5.50
170	5.10	4.50	3.64	2.96	2.33	1.74	1.18	1.20
180	4.60	3.80	2.94	2,26	1.63	99	.46	. 60

TABLE 5.

JET NOISE FORWARD VELOCITY INDEX.

Directivity	
Angle, θ	m(e)
0	3.0
10	1.65
20	1.1
30	0.5
40	0.2
50	0.0
60	0.0
70	0.1
80	0.4
90	1.0
100	1.9
110	3.0
120	4.7
130	7.0
140	8.5
150	8.5
160	8.5
170	8.5
180	8.5

TABLE 6.

LOCATION OF FIRST PEAK STROUHAL NUMBER.

 $Log_{10}(S_1)$

Directivity	 			Log ₁₀ (V _e	/c _∞)			-
angle,0	0.00	.05	.10	.15	.20	.25	.30	.35
90	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0,00
100	05	05	- 05	05	05	05	-,05	-,05
110	=.12	12	- 12	12	12	-,12	-,12	-,12
120	22	~.22	- 22	22	22	-,22	-,23	24
130	- 33	33	33	33	33	~. 35	w.36	37
140	42	- 42	42	42	42	45	 49	-,53
150	a 50	5 0	- 30	- 50	52	-,57	62	66
160	-,58	- 59	61	-,62	65	77	- 87	94
170	=.75	-,77	79	82	*. 88	=1,06	-1.17	-1.25

TABLE 7.

LOCATION OF SECOND PEAK STROUHAL NUMBER.

 $Log_{10}(S_2)$

Directivity	Log ₁₀ (V _e /c _∞)										
angle,θ	0.00	.05	• 10	.15	•50	.25	.30	. 35			
110	•,59	* ,59	-,59	•,59	59	-,59	4,59	-,59			
120	34	35	*,35	36	- 37	39	41	45			
130	24	- 24	- 24	24	• . 25	-,29	. 39	52			
140	21	20	- 18	18	-, 25	38	= 50	= ,66			
150	= 06	12	- 19	+.27	36	48	m 60	- 89			
160	m 06	13	22	-,31	-,43	-,56	= 87	-1.27			
170	.03	13	24	-, 56	52	-,69	-1.04	=1.34			

TABLE 8. FACTOR RELATIVE HEIGHT OF SECOND SPECTRAL PEAK TO FIRST SPECTRAL PEAK. $10\ \text{Log}_{10}(\alpha)$

		Dir	ectivity	angle =	110 de	grees						
V ₂ /V ₁		Log ₁₀ (V _e /c _∞)										
2 I	0.00	.05	. 10	. 15	• 50	.25	. 30	. 35				
1.0	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3,70				
1,1	3.70	3.70	3.70	3.70	3.70	3.70	3,70	3.70				
1,2	3.70	3,70	3.70	3.70	3.70	3.70	3.70	3.70				
1,3	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.76				
1,4	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70				
1,5	3.70	3,70	3.70	3.70	3.70	3.76	3.70	3.70				
1.6	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70				
1,7	3.70	3.70	3.70	3.70	3.70	3,70	3.70	3.70				
1.8	3.70	3,70	3.70	3,70	3.70	3.70	3.70	3.70				
1.9	3.70	3.70	3.70	3.70	3.70	3./0	3.70	3.70				
2.0	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70				
2.1	3.70	3.70	3.70	3.70	3.70	3.70	3.70	-				
2,2	3.70	3,70	3.70	3.70	3.70	3.70	3.70	3.70 3.70				

		Dire	ectivity	angle =	120 deg	rees		
V ₂ /V ₁	· .		Log	1 ₁₀ (V _e /c _∞)			· · · · ·
- '	0.00	.05	•10	.15	• 50	. 25	.30	. 35
1.0	3.58	3,58	3,58	3.58	3.58	3,58	3,58	3.58
1.1	3,59	3,59	3.60	3.61	3,62	3.62	3.63	3.63
1.4	3.61	3.63	3.64	3.66	3.68	3,70	3.72	3.72
1.3	3.70	3.70	3.70	3.70	3.70	3.72	3.75	3.80
1.4	3.75	3.75	3.76	3,77	3.78	3.79	3.62	3.90
1.5	3,80	3,82	3,83	3.85	3.88	3.92	3.96	4.05
1.6	3.81	3,86	3,92	3,99	4.02	4,05	4.11	4.20
1.7	3,97	4.01	4.05	4.10	4.14	4.18	4.24	4.32
1.8	4.09	4.13	4.17	4.22	4.25	4.28	4.34	4 40
1.9	4,25	4.28	4.31	4.35	4.36	4.40	4.46	4,55
2,0	4.40	4 44	4 48	4.53	4.55	4.59	4 65	4.71
2,1	4.61	4.64	4.67	4.71	4.73	4.76	4.81	4.87
2.2	4.61	4.64	4.67	4.71	4.73	4.76	4.81	4.87

Table 8. - Continued.

 $\log_{10}(\alpha)$

		Di	rectivit	y angle	= 130 de	egrees						
V ₂ /V ₁		Log ₁₀ (V _e /c _∞)										
	0.00	• 05	• 1 0	.15	• 20	. 25	, 3 0	.35				
1.0	-6.88	-5.43	-3.70	-1.96	10	1,59	2.97	3,80				
1.1	-4.14	-3.04	-1.81	42	98	2.37	3,36	4.19				
1,2	-2.53	-1.62	- .60	. 54	1.75	2.42	3.73	4,08				
1.3	-1.20	- 43	. 47	1.46	2,23	3,31	4.07	4.82				
1.4	-,24	.45	1.23	2.10	2.82	3,01	4.41	5,00				
1.5	78	1.34	1.97	80.5	3.36	4.07	4.76	5,28				
1.6	1.68	2.14	2.66	3.24	3.89	4.51	5.09	5.48				
1,7	5.44	2.86	3.30	3.78	4.38	4.92	5.40	5.00				
1.8	3,16	3.119	3.46	4.28	4.82	5,30	5.69	5.88				
1.9	3,68	3,98	4.32	4.71	5.20	5.01	5,95	6.04				
2.0	50.0	4.32	4.65	5.03	5.47	5.84	5,11	6,20				
2.1	4.15	4.46	4.81	5,21	5.61	5.97	6.21	6.30				
5.2	4.15	4.45	4.81	5.21	5.61	5.97	6.21	6.30				

		D	irectivit	y angle	= 140 d	egrees					
v ₂ /v ₁		Log ₁₀ (V _e /c _∞)									
2, 1	0.00	.05	.10	.15	05.	.25	.30	.35			
1.0	-13.66	-12.20	-10.6 4	≈8,85	-6.93	•4.9a	-5.41	-1,99			
1,1	=9.90	-8.75	-7.45	⇔6.00	=4.37	-2.81	-1,38	16			
1.2	-6.89	- 5 89	-u.76	-3,50	-5.55	* , 99	.21	1.36			
1.3.	-4.54	-3.66	-2.73	≈1.65	- 44	.50	1.43	2,45			
1.4	-2.52	=1.81	-1.01	- 12	.76	1,06	2,56	3,56			
1.5	50	08	50	1.15	1,95	2,75	3.51	4.35			
1.6	91	1.37	1.89	2.47	3.05	3,77	4.38	5.04			
1.7	5.09	2,51	2.98	3,51	4.01	4.61	5.12	5.63			
1.8	5.92	3,31	3.70	4.25	4.70	5.24	5.00	6.12			
1,9	3.64	4.00	4.40.	4.86	5.27	5,69	6.05	6.44			
2.0	2 29	4.50	4.95	5.35	5.72	6,08	0.33	6.72			
2,1	4.82	5.12	5.45	5.63	6.32	n.40	6.63	6.90			
2.2	4.82	5,12	5.45	5.83	0.32	6.40	0.65	6.90			

Table 8. - Concluded.

 $10 \operatorname{Log}_{10}(\alpha)$

		Di	rectivit	y angle	= 150 de	grees					
V ₂ /V ₁	Log ₁₀ (V _e /c _∞)										
	0.00	.05	.10	.15	.20	.25	.30	.35			
1.0	-22,33	-19.72	-16.79	-13,51	-9.89	-6,53	-4.17	-2.81			
1.1	#16,65	-14.61	-12.32	-9.74	-6,87	-4. 00	-2.22	42			
1.2	-13.82	m11.84	-9.63	-7.15	-4. 44	-2,20	= 00	.65			
1.3	#9,65	-7.92	-5.9A	-3,80	-1.77	37	93	2.05			
1.4	=4.89	-4.03	=3. 08	-2.00	54	.63	1.71	2.68			
1.5	-3.33	-2.45	-1.46	₹.36	.69	1.63	2 48	3.31			
1.6	-1.69	97	- 16	.74	1.58	2.35	3.02	3.74			
1.7	20	41	1.08	1.84	2.54	3.16	3.76	4.32			
1.8	.98	1.48	5.00	2.67	3,26	3.78	4.30	4 A4			
1.9	2.11	2.54	3.03	3,57	4.07	4.54	5.04	5.48			
2.0	3.26	3.64	4.06	4.52	4.95	5.35	5.69	4.05			
2,1	4.37	4.67	5,00	5.38	5.74	6.03	6.32	6.59			
2.2	5.38	5,73	6.12	6.57	6.48	7.13	7.37	7.57			

		Di	rectivity	y angle	= 160 de	grees		
V ₂ /V ₁			Lo	g ₁₀ (V _e /c	<u></u>			
	0.00	.05	.10	.15	•50	. 25	.30	.35
1.0	-37,12	-32.31	=26,91	-20.85	-15.03	-6,67	1.69	4.05
1.1	-31.91	*27.77	~23.13	=17,93	-12.48	=4,86	1.99	3.88
1.3	-27.68	-24.12 -19.60	-19,90 -16,18	-15,16 -12,34	=9.99 =7.59	-3.29 -1.86	2.21 2.33	3,76 3,69
1.4	=18.20	-15,73	-12,95	-4,84	•5.65	91	5.42	3.64
1.5	=15.67	-13.33	-10.71	-7,76	=4.19	= , 1 4	2,55	3.57
1.6	=13.17 =10.94	-11.07 -9.14	-8,72 -7,13	-6.07 -4.87	-3.09 -2.15	.45	2.59 2.64	3,54
1.8	-10.13	-A.27	=6.17	-3.83	=1.39	1.28	2.72	3.47
1.0	-9.38	-7.52	-5.42	-3,08	73	1.61	2,75	3.49
2.0	-8.73 -8.23	=6.87 =6.38	=4.77 =4.31	-2.43 -1.98	-,25 12	1,80	2.77	3.44
s.s	-7.61	-5,98	-3.93	-1.62	.39	1.93	2.77 2.77	3.44

TABLE 9.

NORMALIZED SPECTRAL DISTRIBUTION.

10 Log₁₀(G), dB

.0010		DI	RECTIVIT	Y ANGLE	O, DEGREE	Ş	
(5- \$)	≥110	120	130	140	150	160	170
-1'.2	-25,60	-26.72	-31.32	-36.15	-41.30	-5n.00	-52.20
-1.1	-23.60	-20.52	#28.42	+32.55	-37,40	=44.60	-47.1(
#1.9	-22.00	-22.32	-25.52	-28.95	-33,50	-39,20	-42.00
	-20,20	-20,12	-55.05	-25.35	-29.60	-33.20	-36.90
~ □	-18,40	-18,07	-50.15	-22.25	-25.70	-28,7 0	=31.6
	-16,60	-16.27	-17.82	-19.40	-22.20	-24.90	-26.8
* ,6	-14.80	-14.74	-15.72	-17.00	-19.10	-21.30	-23.1
* 6 * 5	-13.24	-13,42	-13.92	-14.75	-16,00	-17.80	-19.8
-, 11	-12,44	-12,42	-12.57	-13.10	=13.90	-15.00	-16.6
-, 3	-11.74	-11.67	-11,42	-11.55	-11.90	-12.50	-13.5
-, 2	-11.24	50,11	+10,52	-10.25	-10.10	-10.10	-10.5
- 1	-10,86	÷10,57	-10,00	·9.41	-8.85	≈5.3 0	-8.6
V • 0	-10,74	=10,42	-9,82	-9,15	-8,40	~7.53	=6.5
1	-10.84	+10.54	-10,01	49.45	-8.9 0	-8.40	-7.7
.s	-11.14	-10,98	-10.57	-10.35	-10.00	-9.90	-9.7
. 3	=11.64	-11,63	-11.52	-11,40	-11.40	-11.50	-11.8
4	-12.32	-12.34	-12.57	-12,65	-12.90	-13.30	-13.7
.5	-13.24	-13.22	-13.62	-13.95	-14,40	-15.10	-15.5
.6	-14,20	-14.32	-14,82	-15,15	-15,90	-16.70	-17.5
7	-15.28	-15.52	=16.1.2	-16,60	-17.40	-18.40	-19.3
8	-10.49	+16.92	-17.52	+17,95	-18,90	-20.10	-21.3
9	-17.74	-18,24	-18,92	-19.55	-20,40	-21,80	-23.0
1.0	-18,99	-19,62	-20,32	-21.05	-21,80	-23,50	-25.0
1.1	-50.50	-20,97	-21.72	+22.65	-23,50	-25.30	=26.9
4 1 70 1	#21.5 6	-22.37	-23,22	-24.15	-25,30	-27,10	-28.8
1,3	-22.71	-23,67	-24,57	-25.70	-27.00	-29,00	-30.6
1.4	-24.04	-25,02	=25,97	-27.25	-28.90	-30.80	-32.5
1.5	=25.34	-26.32	-27.37	-28.75	-30,60	-32.50	=34.3

TABLE 10.

COANNULAR JET FLOW PROPERTIES FOR STATIC DATA CASES.

CASE	MODEL	ve m/s	V2/V1	Ti DEG K	TE DEG K	₩1 KG/8	WZ KG/S	V 1 M/S	V2 M/8	P1/PA	P2/PA
1	2	315.1	1,159	380.9	377.6	2.280	1,969	293.5	340.2	1,520	1.780
2	2	450.3	1.178	700.9	394.3	1.658	3.497	401.7	473.4	1,530	3.190
3	2	486.3	2,098	399.8	702.6	2.253	2.715	303.9	637.6	1,530	3.220
4	2	433.2	1,893	403.7	705.9	2.244	2.094	302.7	573.0	1.520	2.480
5	2	364.1	1.581	387.1	705.4	2.297	1.481	296.6	468.8	1.520	1.800
6	5	387,8	1.728	402.1	885.9	2.250	1.319	301.8	521.5	1.520	1.770
7	2	550.5	2,561	413.2	1077.1	2.249	2.233	309.7	793.1	1,530	3.210
8	۶.	482.3	2,285	413.7	1065.9	5.263	1.725	310.0	708.4	1.540	2.490
Q	5	1195.9	1.432	695.9	704.3	1.718	2.096	400 A	573.9	1.530	2.500
10	2	589.5	1,794	704.8	901.5	1.679	2.376	402.3	721.8	1.530	3.190
1.1	7	312.7	1.206	389.8	903.7	2.304	.785	297.2	358.4	1.520	1.290
15	۶	456.2	1.344	693.2	906.5	1.694	1.280	397.5	534.0	1,520	1.800
1.3	چ	562.6	1 813	700.9	1093.7	1.711	1.716	399.9	724.8	1.520	2,550
14	2	557.9	1.473	812.6	703.2	1,532	2.637	429.5	632.5	1,520	3.150
15	ج (551.2	1.514	808.7	907.1	1.569	1.846	431.3	653.2	1.530	2.500
16	5	475.8	1.204	805.4	897.1	1.625	1.302	429.2	534.0	1,520	1.810
17	2	642.1	1 Ba9	808.7	1097.1	1.589	2.165	431.0	797.1	1.520	3.180
1.8	2	495.0	1.338	808.7	1089.3	1.612	1.177	433.1	579.7	1.530	1.780
19	5	617.3	1.313	810.4	1085.4	2.084	1.674	541.6	711.4	1,990	2.470
20	2	559.1	1.065	808.7	1087.1	2.142	1.176	546.5	582.2	5.050	1.790
21	2	629.5	1.027	9.058	708.2	2.581	2.062	620.9	637.9	2,500.	3,190
22	2	750.3	1.386	829.3	1009.3	2.376	2.784	624.2	865.3	2.500	4.040
23	2	652.0	1.172	812.1	1093.2	2.609	1.684	610.A	715.7	2.450	2.480
24	ج	598.3	1.285	1087.1	719.8	1.352	2.679	502.4	646.5	1.530	3.230
25	2	593.3	1,290	1094.3	904.8	1.374	1.862	508.4	655.9	1.540	2,530

CASE	MUDEL	VE M/S	V2/V1	T1 DEG N	TZ DEG k	M1 KG/S	₩.Ż ₩.Ż	V1 ·M/S	V2 M/S	PIZPA	H2/P4
56	2	581.5	1,572	1077.1	1082.6	1.366	2.185	504.1	792.5	1.540	3,190
27	3	586.2	1.464	810.9	701.5	1.123	3,461	434.0	635.5	1.530	3.200
28	3	531.8	1,326	809.3	700.0	1.151	2.703	432.8	573.9	1.530	2.510
20	3	643.9	2.567	448.7	1094.3	1.617	2,963	319.7	820.8	1.520	3,450
30	1 3	53H A	2.295	419.8	1048.7	1.704	2,165	312.4	716.9	1.540	2.500
31	3	433.4	1,935	397.6	1084.8	1.774	1.516	303.0	586.1	1,530	1.810
35	3	306.4	1.066	389.3	702.1	1.823	1.089	299.0	318.8	1,530	1,300
33	3	748 4	1.945	843.7	1079.A	1.230	3.414	441.7	858.9	1.530	4.060
34	a	347.3	1.529	262.2	543.3	4.739	2.484	293.8	449.3	1.702	2.048
35	1 4	490 2	1,990	430.6	832.8	3.498	2.400	338.3	673.3	1.642	2.480
36	a	501.0	1.517	678.9	730.0	2.514	2.753	394.4	598.3	1,525	2.040
37	4.	612.8	1 983	677.2	1000.0	2.542	3,130	397.2	787.6	1.536	3.552
38	4	670.9	1 991	804.4	1087.2	2,322	3.276	424.6	645.5	1,509	3.877
39	ı,	386.9	460	557.2	551.7	2.372	2.503	313.0	456.9	1.377	2.074
49	4	477.3	1.956	551.1	752.2	2.423	2.807	315.5	010.9	1.389	2,734
41	a	524.6	1.501	557.2	786.1	3.539	2,866	428.5	643.1	1.869.	2.861
42	<u> </u>	628.3	1 984	550.7	1091.7	3.564	3.203	426.7	846.4	1.860	3.864
43	i i	430.7	2.030	288.9	648.9	4.717	3.524	299.0	606.9	1.796	3.179
44	\ <u>u</u>	414.4	1 483	427.2	523.9	3.503	3.190	336.8	499.6	1.641	2.577
	l ü	471.6	5.026	426.7	930.0	3.488	2.415	332.2	673.0	1,619	2.604
45	ļ .	_	1,517	552.8	573.9	2.813	3.365	362.0	549.9	1,552	2,897
46	4 4	464.5	•		1097.2	2.883	2.260	363.6	739.4	1,552	2.657
47	4	528.8	2.034	556.7		3.827	3.110	509 ₄ 3	757.4	2.461	3.401
48	4	675.7	1.243	806.7	453.9	3 4 0 2 1	20110	Ct () 7 () 73	12144	E • ** * *	

TABLE 11.

SPECTRAL COMPARISON PARAMETERS FOR STATIC DATA CASES.

CASE					DIRE	CTIVITY	ANGLE	•		
		60	75	90	105	120	130	140	150	165
1	CORR CUEF	.951	.051	. 946	.799	.826	. 952	.238	.945	,546
	STO DEV	2.785	6.630	1.806	2.395	2,655	4.174	15.926	3,203	9.693
	DELTA CASPL		•6,813	.550	998	2.148	-	14.521	3,698	-2.431
2	CORR COEF	.876	,915	.R18	.749	.737	,635	.741	.883	.156
	STO DEV	2.845	5.587	2.324	3.153	3,188	5.333	4.402	3.985	8.033
	DELTA DASPL	-2.408	2.042		-1.035	- .092	1.826	2.253	2.424	-1,632
3	CORR COEF	.799	.813	.872	.913	.887	.945	.825	.793	,619
	STD DEV	3.357	4.024	1.996	2.878	2.968	2.250	1.714	2.969	5,790
	DELTA DASPL	612	-2.503	743	-1.387	= 879	- R97	•.233	.492	2.715
4 .	CORR COEF	.871	.915	, 959	. 854	.899	.961	.985	.933	.617
	STD DEV	3.360	2.461	1.487	2.972	2.769	080.5	1.302	2,772	6,986
	DELTA VASPL	*,258	-1.373	114	-1.583	-1.205	613	.842	2,237	2.981
5	CORK GOEF	.942	,880	.911	.779	.911	.953	.988	.954	.776
	STD DEV	2.332	3.529	2.146	3.473	2,563	3,069	3.587	5.364	5.164
	DELTA DASPL	.573	1,092	-,170	568	144	1.492	3.148	4.251	3.479
6	CORR COEF	, 937	.867	.905	.770	914	.064	.991	.966	. 808
i	STD DEV	1,909	3.937	2.537	4,363	2.961	2.360	2.487	3,551	4,150
	DELTA DASPL	.136	.840	-1.035	-1.266	-1.009	.459	2.309	3.727	3.205
7	CORR CUEF	.758	.819	. 887°	.842	.913	.981	.976	. 953	.772
ł	STO DEV	4.079	3.417	2.542	3,737	3.464	2.172	1.722	3,655	7.550
	DELTA WASPL	1.079	399	.961	325		- 435	1.081	2.717	3.720

Table 11. - Continued.

CASE					DIRE	CTIVITY	ANGLE			
		60	75	90	105	120	130	140	150	105
8	CORR CUEF	.807	.937	.H15	,750	.894	.954	.976	. 455	.779
1	STO DEV	4.379	2.059	2.334	3,939	3,839	2,792		3,141	5.405
	DELTA DASPL	1.473	.585	-,590	-1.761	-3,118	-1,768	.867	2.413	2.932
9	CORR COEF	.860	.909	.950	.883	946	.986	.904	.795	.801
	STU DEV	3.042	2,274	1.396	2.185	1.932	1.465	2.168	2.901	4.773
	DELTA HASPL	-1.286	-1.051	· 177	360	-,290	.642	1.410.	1.143	1,311
10	CORR COEF	.784	.801	.929	.897	.933	.975	.951	. 966	.810
	STD DEV	3.592	2.811	1.377	2.063	2.094	1,402	1.461	2.214	8.786
j	DELTA GASPL	580.	821	.336	-,045	-1,030	 873	* ,109	-,061	1.847
11	CORR CUEF	.979	.968	,936	,684	.708	.921	.983	.979	0.000
İ	STO DEV	1.797	5.054	1.642	3.286	2,955	4.720	4.716	4.915	0.000
	DELTA GASPL	1.074	1.337	.812	1.161	1.162	3.390	4.699	4.776	0.000
12	CORR COEF	,979	.971	.961	.911	. 983	.994	.959	. 898	0.000
1	STD DEV	2.102	1.931	1.322	3.208	1.762	2,155	3.828	4.149	0.000
	DELTA DASPL	280	.240	125	.338	.564	1.738	3.352	3.038	0.000
13	CORR COEF	.398	.694	901	.850	. 455	.980	.919	.882	.857
i	STO DEV	6,846	2.767	2.380	2.642	2,130	1.268	2.013	2.075	6.901
	DELTA DASPL	• .055	265	946	671	-1,727	915	.258	.554	1.907
14	CORR COEF	.610	.725	.908	.852	.933	.895	.796	.919	.862
	STO DEV	5.923	4.304	1.480	2.457	4.383	1.672	2.499	1.670	4.564
l	DELTA DASPL	-3.371	=3.248	430	.186	2.678	.056	351	-,520	.424
15	CORR COEF	.83 0	.929	.943	. 593	. 967	589.	.927	.917	.947
	8TD DEV	4.562	1,402	2.058	2.726	1.818	1.315	1.629	2.422	2.794
	DELTA DASPL	621	,167	050.	-1.765		- 538	149	.134	862

Table 11. - Continued.

CASE		* * * *			DIREC	CTIVITY	ANGLE			
		b ()	75	90	105	120	130	140	150	165
16	CORR CUEF	911	.940	. 988	949	,995	. 984	.948	.435	,908
	STO DEV	2.713	2.731	1.511	2.349	2,269	2,916	4.307	4.265	2,956
	DELTA DASPL	.026	1.088	.686	.336	,499	1.839	2.506	5.018	.100
17	CORR COEF	0.000	.899	.919	.890	.951	.974	.951	.950	.875
1	STO DEV	0.000	2.284	1.903	2.165	2,105	1.430	1.741	2.140	5,650
	DELTA DASPL	0.000	048	.592	-,358	-1.123	787	036	-,322	352
18	CORH COEF	0.000	.922	.973	.927	989	.988	. 946	.935	.862
	STO DEV	0.000	4.447	2,957	2.396	1,119	1.342	2.525	2.413	5.254
	DELTA DASPL	0.000	197	-1.347	979	~.524	.830	1.739	1.064	1.011
19	CORR COEF	.988	.758	.974	908	990	.981	.983	. 475	.870
	STO DEV	38,490	3.512	2.639	2.942	2.472	2.175	2.171	2,671	2.634
	DELTA DASPL	34.412	1.613	1.921	1,050	1,195	1.302	.427	-,411	.520
20	CORR COEF	679	.965	. 994	.964	,991	.966	.980	.962	.866
1	STD DEV	10.039	3.801	3.471	3.469	4.206	4.393	3.538	3.626	3.278
ļ	DELTA DASPL	*5.611	4.072	3.044	2,545	2.627	2.444	.856	-,268	5.550
21	CORR CUEF	.290	ASP.	,968	.971	. 441	.965	. 958	.970	.916
	STD DEV	12.614	4.744	5.161	4.942	5,199	4.374	3,137	3,321	5,643
	DELTA DASPL	150°B	3,907	4,150	3,808	3.720	\$.495	215	1.200	2.849
22	CORR COEF	,585	.715	.977	.950	.980	.973	.986	.974	.976
	STO DEV	12,122	4.579	3.875	3.833	4.276	3.045	5.445	3,577	4,593
	DELTA GASPL	-5,596	2.801	3.514	2.293	5.991	1:003	.352	1.728	2.610
23	CORR COEF	. คหย	.790	.052	.934	.991	.976	,953	. 955	,937
	STO DEV	10.167	4.219	3.684	3,650	4.104	3,451	3.323	3.777	4.941
Ì	DELTA DASPL	-7.031	1,002	2.092	1.694	2.523	1.850	629	.045	2,019

Table 11. - Continued.

CASE					DIRE	CTIVITY	ANGLE			
		- 60	75	90	105	120	130	140	150	165
24	CORR COEF	.911	.771	.921	,941	.981	, 95,9	.915	, 454	.835
İ	STO DEV	11,958	3.853	1.679	2.319	2.543	2.405	2.109	2.117	4.997
	DELTA DASPL	-8.829	-1.311	.773	.446	1,216	1.211	.071	 768	2.417
25	CORR COEF	.859	.255	.980	.920	, 986	.923	.928	.989	.822
	STO DEV	6.898	5.213	1.514	2,552	2.016	2.632	2.451	2.504	4.807
	DELTA DASPL	-6.045	-3.508	1,289	• 0.06	,539	. A29	.710	.279	2.448
26	CORR COEF	.836	.572	. 963	.931	.974	.946	.919	.961	.979
	STD DEV	5,029	3,928	2.791	2.564	2,616	2.338	2.628	2,590	1,845
	DELTA DASPL	=3.442	.917	2.716	1,166	1.392	1.265	1.025	.595	1.383
27	CURR COEF	906	,962	.856	.936	.918	.985	.929	.925	.943
	STO DEV	1.573	3,045	3.841	2,985	3,733	2.002	2.110	2.534	4.948
	DELTA DASPL	-1.271	-2,157	-2.027	.159	1,255	1,583	1.631	.712	.817
28	CORR COEF	• a46	980	. 942	949	940	.076	.916	.410	.920
	STO DEV	2.544	1.302	2.101	2.290	3.156	5.062	2.346	2.484	4.659
	DELIA DASPL	.354	-,394	567	,502	1.208	1.782	1.789	.015	1.055
59	COPR COEF	.881	.941	,011	.927	.940	.978	.964	.926	.911
	STO DEV	1.930	2.584	3.059	3.310	3.500	2.046	1.794	2.762	5.242
	DELIA GASPL	156	-1.518	-1.531	~1.133	-1.217	-,213	1.615	151.5	1,255
30	CORR COEF	.914	.970	.924	. 544	.915	.977	.955	. 882	.855
	STO DEV	3.033	1.279	2.617	3.639	3.857	2,173	1.723	3.440	4.942
	DELTA CASPL	1.170	-,507	-1,718	≈ 2.299	-2.390	-,938	1.424	1.976	1.796
31	CORR CUEF	• 044	.905	-	.757		.987	.950	.864	.814
	STO DEV	3.162	5.046				2.069	1.715	3,447	3.845
	DELTA DASPL	-2.504	-3,506	-3.965	=3.659	-2.999	735	1.588	2,568	2.793

Table 11. - Continued.

CASE					DIRE	CTIVITY	ANGLE			
	_	60	75	90		•		140	150	165
32	CORR COEF	846	.961	.050	,456	495	.983	,990	.981	,955
Ī	STO DEV	6.119	4.228	5.128	4,654			4.468	3,656	5.032
	DELTA GASPL	-1.472	.081	-1.018	.050	1.198	1.787	2.469	2.153	1.034
33	CORR COEF	.857	.867	. 944	.905	.962	,960	. 954	.975	.886
j	STO DEV	4.447	4.115	4.363	4.532	5.843	2.549	2.296	1.465	4.289
	DELTA DASPL	-1.842	1.398	-1,140	-1.618	2.497		136	594	625
CASE					DIRE	CTIVITY	ANGLE			
		60	9.0	100	110	150	130	140	150	160
34	CORR COEF	.735	.824	, p 0 5	,853	.972	.946	. 980	.424	. 505
	STO DEV	4.302	4.611	5.080	4.215	2.873	2.312	1.303		6.602
	DELTA DASPL	-5.605	-2.593	-2.73 0	-2,636	-5.505	- * A62	. 355	1.737	1.209
35	CORR COEF	,883	.943	.912	.953	. 484	.962	.902	.878	.827
.	STD DEV	3.351	3,173	3.952	3.854	3,475		2.817		
	DELTA DASPL	•4.023	~2.688	*3. 181	-3,213	=3,683	42,907	-1.051		-1.279
36	CORR CUEF	.973	.961	.964	.972	969	.045	.874	. 539	.887
	STD DEV	2.229			3.827	3.564	2.975	2.673		5.584
{	DELTA DASPL	-2.131	-2,331	-1.858	-3.305	-3.429	-2,731		-,552	
37	CORR COEF	,831	.956	. 945	. 962	,937	,931	.853	.750	.754
1	STD DEV	2.885	2,891			4.497	4.408	4.070	4.312	5.698
	DELTA DABPL	-2.857	-2.221			-4,206		+2.624		-
38	CORR CUEF	,582	.927	. 947	,955	.942	.936	.826	.695	.558
}	STD DEV	4.119	2.516	3. 083	3.930	5.034	4.576	0.248	444	5.958
İ	DELTA DASPL	-6.300	-1.820		-3.803	=4.504	-4.176	-2.750	-1.874	-2.074

Table II. - Continued.

CASE				-			<u> </u>		· · · · · · · · · · · · · · · · · · ·	 -
	•	60	96	100		CTIVITY 120		140	150	16
39	- CORR COEF	9 ÷ 0								
34.	STD DEV		95A		.971				• 860	.74
			3.134			1.737			3,679	4,95
1	DELTA DASPL	-,703	-1,564	■.A78	-1.629	=1,236	279	.936	2.175	2.74
40	CORR COEF	.976	934	.034	,950	.967	, 935	.871	.850	.79
	STD DEV		2.607							4.70
·	DELTA DASPL		-1,177				-2.450	- 909	605	1.10
41	CORR COEF	.935	חלים.	200	047	050				
1	STD DEV	-	2.761	7 067	97//	777	.037	.880	908	. 49
	DELTA DASPL	-2 17A	=1 800	3,007	3,783	3,636	2,630	2.642	3,196	6.54
		-24310	-19033	-1,504	-2,73/	-2.122	-2.188	-1,349	=1.230	-5.34
42	CORR COEF	, 843	.951	. 957	.965	.959	.920	. 823	.721	. 64
	STO DEV	3.127	704	3.227	3.840	3.873	1 - H40	3.671	4.484	5 35
}	DELTA DASPL	-3.342	-1.842	-2,417	-3,311	-3.489	-3,382	-2.050	-1.570	-1.64
43	CORR CUEF	.876	-950	,961	.944	.926	.935	.886	.873	.72
į	STD DEV	-		3,142				3.085	4.106	
	DELTA DASPL	=4.300	-2.432	-2.475	-2.967	-3,372	=1.751	=1.648	299	5,42
44	CORR CUEF	,925	.957	.935	.956	.970			471	
1	STD DEV	3,027	2,128	2.437	5.823	-	180	.953	.621	.70
	DELTA GASPL		-2.051		-2.074	2,365	1.354	1,892	3,686	95.0
•					- = 0 / 4	-1.75	. 179	.283	1.224	•50
45	CORR COEF	.964	.947	. 904	.957	992	.973	.937	. 866	~7
j	STD DEV	2.728	3,220	3,957	3,636	2.032	2.096	2.056	3.737	.77
	DELTA DASPL			-2.379	2.981	-2.67A	-5.005	046	1.045	5,02
						-		. 0 - 0	4.8043	.,37
46	CORK COEF	,969	.957	,930	.922	,916	.918	.905	.861	. 888
	STD DEV	1.068	1,582	2.250	2.561	3,172	2.643	3.092	3,645	5.38
	DELTA DASPL	•,053	-,225	304	m_840		-1.n2B	.586	1.684	808

Table 11. - Concluded.

CASE					01880	TIVITY	ANGLE			
		ħ (*	9.0	160	110	150	130	140	150	100
47	COMM CUEF STD DEV DELTA DASPL	.925 2.267 -1.666	,947 3,233 -2,219		4.346		2.978		-	.85¢ 5.482 .078
48	CORR COEF STD DEV DELTA DASPL	.859 3.325 1.037	,960 4.049 1.919	.964 3.068 .818	.955 3.739 .107		3.211		.920 4.261 1.217	.714 5.338 2.294

TABLE 12.

COANNULAR JET FLOW PROPERTIES FOR WIND TUNNEL DATA.CASES.

CASE	MODEL	VE M/S	V2/V1	T1 DEG K	TZ DEG K	W1 KG/8	KG\8	V1 M/S	v2 u/s	P1/PA	A4/24	VA M/S
1	7	406.6	1,568	392.6	388.7	.390	.649	300.2	470.6	1,530	3.207	101.5
- B	7	369.4	1,432	397.6	391.5	.390	. 494	297.5	426.1	1.508	2.505	101.8
3	7	459 4	1,879	402.5	577.6	.413	.544	306.3	575.5	1,539	3.214	31.1
4	7	454.1	1 941	389.3	590.4	413	.503	299.3	580.9	1.530	3.199	61.3
5	7	480.6	2,068	402.1	692.6	.417	.490	304 A	630.3	1.533	3.201	31.1
6	7	481.4	5.081	408.2	698.7	408	.472	304 B	634.3	1,523	3.215	61.9
7	7	#24.8	1.908	401.5	701.5	.417	.349	300.5	573.3	1,515	2.511	61.6
8	7	426.1	1.900	394.3	703.7	.417	.352	301.A	573.3	1,533	2.503	30,2
9	7	473.3	2,159	388.7	705.9	381	.413	295.4	637.0	1,514	3.212	124.5
10	7	419.1	1 914	342.1	691.5	390	.322	296.6	567.5	1.530	2.495	129.5
11	7	6.55	1 943	386.5	705.4	395	.331	245.4	573.9	1,517	2.501	103.6
12	Ŕ	513.7	5,112	389.3	702.6	340	.594	300 B	635.5	1.538	3,206	31.1
13	8	507.4	2,118	393.2	698.2	354	585	299 n	633.4	1.522	3.203	61.6
14	8	459.1	1.924	395.4	708.7	.331	. 454	299.3	575.8	1,519	2.506	61.3
15	8	455.6	1 915	304.3	699.8	340	.458	298.7	572.1	1,519	2.507	30.8
16	A	491.4	1,913	403.2	589.8	304	.640	303.6	580.6	1,526	3,200	103.6
17	8	515.6	2.069	497.1	705.4	295	508	307.5	036.4	1,536	3.201	130.5
18	Ä	514.2	2,089	402.1	702.6	304	.526	304.2	635.5	1,530	3.206	103.6
19	R	453.4	1,902	393.7	707.1	308	404	299.9	570.6	1,526	2.466	103.9
20	8	455.4	1,936	388.7	709.3	209	390	297.A	576.4	1,525	2.511	129.8
21	A	482.2	1,965	379.3	585.9	349	676	294.7	579.1	1,527	3.205	61.3
55	A	488.8	1.954	387.1	595.4	345	.685	299.0	5A4.3	1,533	3.215	29.9

TABLE 13.

SPECTRAL COMPARISON PARAMETERS FOR WIND TUNNEL DATA CASES.

SASE					DIRE	CTIVITY	ANGLE			, , , , , , , , , , , , , , , , , , ,
		70	80	90	100	110	120	130	140	150
1	CORR COEF	971	,989	,979	.970	.958	.966	,953	.915	,889
-	STO DEV	7.112	5,638	6.945		4,857	5.391	8,251	9,336	9,221
	DELTA DASPL			-1.263		- 839	-, 337	991	-1,325	677
2	CORR COEF	944	,930	.916	.902	.843	.870	. 784	.743	.814
	STD DEV	8.589					6.702	9.147		10,553
	DELTA DASPL		-1,592		953		.172	=1.114	w1.820	-1.389
3	CORR GOEF	.934	.960	.967	.967	,918	.945	.856	.943	.919
-	STO DEV	3,155						2.589	2.746	4.981
	DELTA GASPL			+1.194			-1.406		.549	2.50
4	CORR COEF	906	.940	.964	. 939	.880	,918	.837	.906	.926
	STD DEV	2.945	2.876	3.042			2.475	3.118	2,729	4.749
	DELTA DASPL	-3,901	+2,963	-1.599	-1,231	-1.343	-1.432	#2. 506	*.331	2.827
Ś	COPR COEF	924	949	.939	,929	.847	.918	, 936	.957	.940
	STD DEV		2.888			2,787		2.144	2.649	5.140
	DELTA DASPL	-3.478	-2.777	-1.607	-1.590	-2,159	-2,408	-1.739	.077	2.238
6	CORR COEF	903	.937	.035	,896	,812	.888	.915	,943	,919
	STD DEV	3.008	2,870	3.171	3,008			2.678	2,311	5.016
	DELTA GASPL	-3.896	-3.017	-1.661	-1,574	-2.030	-2.453	-2.047	317	2.448
. 7	CORR COEF	.915	.904	.871					.944	,922
	STD DEV	3.275	2,640	2.649	3,162			2,601	3,102	5.050
	DELTA GASPL	1-1.275	,370	281	-1.458	-2.283	-2.720	-2.198	-,448	2.073

Table 13. - Continued.

CASE					DIRE	CTIVITY	ANGLE			
		. 70	80	90		110		130	140	150
8	CORR COEF	.958	.949	.919	.848	,794	,911	.950	959	,925
	STO DEV					3,392			2,303	4.436
	DELTA DASPL					-3,068			*. 069	1,970
9	CORR COEF	.856	. 922	.906	.821	.125	.828	.878	.768	.773
į	STD DEV	6.316				5,738				
	DELTA GASPL	-5,019	m3,591	-2,253	-2.024	-2.010	-2.749	-3.451	-3,210	745
10	CORH COEF	.856	.767	.735	.667	.052	. A09	.809	.594	.631
1	STD DEV	8.043	7.771			6.407				
	DELTA DASPL	-1.890	401			w1 020				
11	COPR COEF	897	.845	.805	.711	, 6 84	.835	.906	.923	.879
1	STO DEV					5.078				9,625
	DELTA DASPL	-1.246	081	. 1 44	-1.304	-2.053	=3.074	-3.137	-2.034	.383
1.5	CORR COEF	.878	.920	.966	,975	.922	.956	.992	.967	.954
ľ	STO DEV	3.532	3.041			2.494				
	DELTA DASPL	-2.837	-1,957	-1.155	+1.270	-1,083	+1,558	803	.597	2.070
13	CORR CHEF	.856	.902	.958	.960	.894	.936	.977	.982	,935
[STO DEV	3.008	3.026	2.656	2.374	3,208	2,481	2.961	3,291	
	DELTA DASPL	-3. 281	-2.413	-1,229	-1,293	-,908	-1.314	863	.571	2.713
14	CORR COEF	.922	.910	.904	.903	.806	, A99	,967	.976	,919
- 1	STD DEV	4.060	2.732	2,297	2.469	3.734	2.773	2.037	3.176	
	DELTA DASPL	-3,526	-1,499	583	== 445	-,565	-1.847	-1.066	1,272	1.820
15	CORR COEF	,921	894	,889	,920	,814	,911	,966	, 958	.908
1	STO DEV	3.552	3.207	2.759	2.635	3,151	2.733	2.035	5.660	
	DELTA DASPL	44,151	-3,205	=1,909	.5.565	-2.482	-2,817	-1.532	-,197	1,485

Table 13. - Concluded.

CASE	DIRECTIVITY ANGLE									
		70	80	90				130	140	150
16	CORR LOEF	903	.931	.976	.968	,933	946	979	986	.925
	STD DEV	5,456		5.052	3.654	4,628	4.350	7.030	8.345	9.703
	DELTA DASPL	-5.984	-1.523	-,160	045	, 936	.648	.475	1.476	3.188
17.	CORR COEF	.861	,925	. 958	,938	.856	.896	,948	.948	.877
	STD DEV	7,415	7,500		6,423	5,132		10.392	11.912	11.011
	DELTA CASPL	-3.676	-42,688	018	-1,199	740	A79	-5.065	821	1.989
18	CORR COEF	.866	.914	.952	,948	.864	.912	.963	, 968	.894
	STD DEV	5.314	3,526	4,990	3.329	4.246		7.034	8.614	9.963
	DELTA GASPL	-3.414	-2,180	-,976	-1.172	-,788	-1.115	-1.403	.066	2.287
19	CORR COEF	.922	.877	.863	.836	.745	.866	.944	,961	.922
	STD DEV	4.156	4,730		3.842			9.240		10.783
	DELTA DASPL	=3.742	-1,915	 479	055	-1,180	-1.926	-2.077	841	1,396
50	CORR COEF	.908	.890	.818	.794	.728	.851	.651	.484	.887
	STD DEV	8.635	6.942	7.839	7.231	5,871	6.311	13,183	14.893	12.402
	DELTA DASPL	+4,355	-2.338	=1.105	-1,286		-1.803	-4.092	-3.768	.544
21	CORR COEF	907	.940	.971	.959	.926	.953	.986	. 979	914
	STD DEV	3,367	2,989		2.432	.3.147		1.892	1.691	4.138
	DELTA DASPL	-3,106	-2,279	907	-1.155	-,545	638	237	.854	2.598
22	CORR COEF	.914	.945	, 971	958	.939	.966	.992	.974	.927
	STD DEV	3.691			1,930			1.519		5.321
	DELTA DASPL	=3,383	-2.420	-1.114			-1,055	- 261	900	2.175

Figure 1. -0.75 Area ratio static test coannular nozzle - model 2.

Figure 2. -1.2 Area ratio static test coannular nozzle - model 3.

Figure 3. -0.647 Area ratio static test coannular plug nozzle - model 4.

Figure 4. -0.75 Area ratio wind tunnel test coannular nozzle - model 7.

Figure 5. -1.2 Area ratio wind tunnel test coannular nozzle - model 8.

Figure 6. - Jet noise density exponent.

Figure 7. - Jet noise power deviation factor, P.

Figure 8. - Coannular jet power reduction factor, Q.

Figure 9. - Coannular jet noise directivity index, D.

Figure 10. - Jet noise forward velocity index.

Figure 11. - Source to observer jet noise geometric characteristics.

Figure 12. - Coannular jet two component spectrum.

Figure 13. - Location of first peak Strouhal number, S_1 .

Figure 14. - Location of second peak Strouhal number, S_2 .

Figure 15. - Factor relating height of second spectral peak to first spectral spectral peak, α .

(b) Directivity angle, 130 degrees.

Figure 15. - Continued.

(c) Directivity angle, 140 degrees.

Figure 15. - Continued.

(d) Directivity angle, 150 degrees.

Figure 15. - Continued.

(e) Directivity angle, 165 degrees.

Figure 15. - Concluded.

Figure 16. - Normalized spectral distribution, G.

Figure 16. - Continued.

Figure 16. -Concluded.

(a) Directivity angle, 60 degrees.

(b) Directivity angle, 90 degrees.

Figure 17. - Spectral mean square pressure correlation coefficients for static data cases.

(c) Directivity angle, 120 degrees.

(d) Directivity angle, 150 degrees.

Figure 17. - Concluded.

(a) Directivity angle, 60 degrees.

(b) Directivity angle, 90 degrees.

Figure 18. - Spectral sound pressure level standard deviations for static data cases.

Directivity angle, 120 degrees.

Directivity angle, 150 degrees.

Figure 18. - Concluded.

Figure 19. - OASPL comparisons for static data cases.

(d) Directivity angle, 150 degrees Figure 19. - Concluded.

(a) Directivity angle, 60 degrees.

(b) Directivity angle, 90 degrees.

Figure 20. - Spectral mean square pressure correlation coefficients for wind tunnel data cases.

(c) Directivity angle, 120 degrees.

Figure 20. - Concluded.

(a) Directivity angle, 60 degrees.

(b) Directivity angle, 90 degrees.

Figure 21. - Spectral sound pressure level standard deviations for wind tunnel data cases.

(c) Directivity angle, 120 degrees.

(d) Directivity angle, 150 degrees.

Figure 21. - Concluded.

Figure 22. - OASPL comparisons for wind tunnel data cases.

Figure 22. - Concluded.

APPENDIX A

Typical Static Case

Spectral Distributions

<u></u>					
FLOW PROPERTIES FOR CASE 1 NOZZLE MODEL 2					
*FORWARD FLIGHT VELOCITY.VA = 0.0 M/S TEMPERATURE VELOCITY MASS FLOW PT/PA TT, DEG K V. M/S W. KG/S					
PRIMARY 380.9 293.5 2.2797 1.5200 SECONDARY 377.6 340.1 1.9690 1.7800 EQUIVALENT 379.3 315.1 4.2488					
REFERENCE RADIUS = 45.7 M					

FIGURE A1 . SPECTRA COMPARISON FOR CASE 1 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE A1 . SPECTRA COMPARISON FOR CASE 1
(B) DIRECTIVITY ANGLE = 60 DEGREES

FIGURE A1 - SPECTRA COMPARISON FOR CASE 1 (C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE A1 . SPECTRA COMPARISON FOR CASE 1
(D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE A1 • SPECTRA COMPARISON FOR CASE 1
(E) DIRECTIVITY ANGLE = 150 DEGREES

		·			
FLOW PROPERTIES FOR CASE 3 NOZZLE MODEL 2					
FORW	ARD FLIGHT VE	LOCITY.VA:	= 0.0 M/	S	
TEMPERATURE VELOCITY MASS FLOW PT/PA					
PRIMARY	399.8	303.8	2.2529	1.5300	
SECONDARY	702-6	637.6	2.7147	3.2200	
EQUIVALENT	565-2	486.2	4.9677		
REFERENCE RADIUS = 45.7 M					

FIGURE A2 - SPECTRA COMPARISON FOR CASE 3
(A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE A2 . SPECTRA COMPARISON FOR CASE 3 (B) DIRECTIVITY ANGLE = 60 DEGREES

FIGURE A2 . SPECTRA COMPARISON FOR CASE 3
(C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE A2 . SPECTRA COMPARISON FOR CASE 3
(D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE A2 : SPECTRA COMPARISON FOR CASE 3 (E) DIRECTIVITY ANGLE = 150 DEGREES

					
FLOW PROPERTIES FOR CASE 5 NOZZLE MODEL 2					
FORWE	NRD FLIGHT VEL	OCITY.V _A :	= 0.0 M/S	3	
TEMPERATURE VELOCITY MASS FLOW PT/PA					
PRIMARY	•	296.5	2.2974	1.5200	
SECONDARY	705.3	468.7	1.4809	1.8000	
EQUIVALENT	511-8	364.0	3.7784		
REFERENCE RADIUS = 45.7 M					

FIGURE A3 - SPECTRA COMPARISON FOR CASE 5 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE A3 - SPECTRA COMPARISON FOR CASE 5
(B) DIRECTIVITY ANGLE = 60 DEGREES

FIGURE A3 - SPECTRA COMPARISON FOR CASE 5 (C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE A3 · SPECTRA COMPARISON FOR CASE 5
(D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE A3 . SPECTRA COMPARISON FOR CASE 5
(E) DIRECTIVITY ANGLE = 150 DEGREES

FLOW PROPERTIES FOR CASE 7 NOZZLE MODEL 2				
FORW	ARD FLIGHT VE	LOCITY.V _A :	= 0.0 M/	s
·	TEMPERATURE T _T , DEG K	VELOCITY	MASS FLOW	I P _T /P _A
PRIMARY	413.1	309.6	2.2493	1.5300
SECONDARY	1077.0	793.0	2.2334	3.2100
EQUIVALENT	743.9	550.5	4.4828	
REFERENCE RADIUS = 45.7 M				

FIGURE A4 . SPECTRA COMPARISON FOR CASE 7 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE A4 - SPECTRA COMPARISON FOR CASE 7
(B) DIRECTIVITY ANGLE = 60 DEGREES

FIGURE A4 - SPECTRA COMPARISON FOR CASE 7
(C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE A4 - SPECTRA COMPARISON FOR CASE 7
(D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE A4 . SPECTRA COMPARISON FOR CASE 7
(E) DIRECTIVITY ANGLE = 150 DEGREES

FLOW PROPERTIES FOR CASE 8 NOZZLE MODEL 2				
FORWARD FLIGHT VELOCITY, V _A = 0.0 M/S TEMPERATURE VELOCITY MASS FLOW P _T /P _A T _T , DEG K V, M/S W, KG/S				
PRIMARY 413.7 309.9 2.2634 1.5400 SECONDARY 1065.9 708.3 1.7245 2.4900 EQUIVALENT 695.7 482.2 3.9879				
REFERENCE RADIUS = 45.7 M				

(A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE AS . SPECTRA COMPARISON FOR CASE 8
(B) DIRECTIVITY ANGLE = 60 DEGREES

FIGURE A5 . SPECTRA COMPARISON FOR CASE 8 (C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE A5 . SPECTRA COMPARISON FOR CASE 8
(D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE A5 . SPECTRA COMPARISON FOR CASE 8
(E) DIRECTIVITY ANGLE = 150 DEGREES

					
FLOW PROPERTIES FOR CASE 15 NOZZLE MODEL 2					
FORWA	ARD FLIGHT VEI	_OCITY.VA :	= 0.0 M/	S	
TEMPERATURE VELOCITY MASS FLOW PT/PA					
PRIMARY	808.7	431.2	1 -5685	1.5300	
SECONDARY	907.0	653.1	1.8456	2.5000	
EQUIVALENT	861.8	551.2	3.4141		
REFERENCE RADIUS = 45.7 M					

FIGURE A6 . SPECTRA COMPARISON FOR CASE 15 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE A6 . SPECTRA COMPARISON FOR CASE 15 (B) DIRECTIVITY ANGLE = 60 DEGREES

FIGURE A6 - SPECTRA COMPARISON FOR CASE 15 (C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE A6 - SPECTRA COMPARISON FOR CASE 15
(D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE A6 . SPECTRA COMPARISON FOR CASE 15 (E) DIRECTIVITY ANGLE = 150 DEGREES

					
FLOW PROPERTIES FOR CASE 21 NOZZLE MODEL 2					
FORWE	RD FLIGHT VE	_OCITY.Va =	= 0.0 M/S	5	
TEMPERATURE VELOCITY MASS FLOW PT/PA					
PRIMARY		620.8		2.5000	
SECONDARY	708 • 1	637.9	2.6616	3.1900	
EQUIVALENT	763.6	629.5	5.2426		
REFERENCE RADIUS = 45.7 M					

FIGURE A7 . SPECTRA COMPARISON FOR CASE 21 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE A7 . SPECTRA COMPARISON FOR CASE 21 (B) DIRECTIVITY ANGLE = 60 DEGREES

FIGURE A7 . SPECTRA COMPARISON FOR CASE 21 (C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE A7 . SPECTRA COMPARISON FOR CASE 21 (D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE A7 • SPECTRA COMPARISON FOR CASE 21 (E) DIRECTIVITY ANGLE = 150 DEGREES

FLOW PROPERTIES FOR CASE 22 NOZZLE MODEL 2					
FORWARD FLIGHT VELOCITY.VA = 0.0 M/S TEMPERATURE VELOCITY MASS FLOW PT/PA					
T _T , DEG K V, M/S W, KG/S PRIMARY 829.2 624.2 2.3763 2.5000 SECONDARY 1099.2 865.3 2.7836 4.0400 EQUIVALENT 974.9 754.2 5.1600					
REFERENCE RADIUS = 45.7 M					

FIGURE A8 . SPECTRA COMPARISON FOR CASE 22 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE A8 - SPECTRA COMPARISON FOR CASE 22 (B) DIRECTIVITY ANGLE = 60 DEGREES

FIGURE A8 . SPECTRA COMPARISON FOR CASE 22 (C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE A8 • SPECTRA COMPARISON FOR CASE 22 (D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE A8 - SPECTRA COMPARISON FOR CASE 22
(E) DIRECTIVITY ANGLE = 150 DEGREES

					
FLOW PROPERTIES FOR CASE 23 NOZZLE MODEL 2					
FORW	FORWARD FLIGHT VELOCITY.VA = 0.0 M/S				
TEMPERATURE VELOCITY MASS FLOW PT/PA					
PRIMARY					
SECONDARY	1093.1	715.6	1 -6841		
EQUIVALENT	922.3	651.9	4.2927		
REFERENCE RADIUS = 45.7 M					

FIGURE A9 . SPECTRA COMPARISON FOR CASE 23 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE A9 . SPECTRA COMPARISON FOR CASE 23
(B) DIRECTIVITY ANGLE = 60 DEGREES

FIGURE A9 - SPECTRA COMPARISON FOR CASE 23
(C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE A9 . SPECTRA COMPARISON FOR CASE 23 (D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE A9 - SPECTRA COMPARISON FOR CASE 23
(E) DIRECTIVITY ANGLE = 150 DEGREES

FLOW PROPERTIES FOR CASE 26 NOZZLE MODEL 2				
FORWARD FLIGHT VELOCITY, V _A = 0.0 M/S TEMPERATURE VELOCITY MASS FLOW P _T /P _A T _T , DEG K V, M/S W, KG/S				
PRIMARY	1077.0			1.5400
SECONDARY	1082.6	792.4	2.1849	3.1900
EQUIVALENT 1080.4 681.5 3.5511				
REFERENCE RADIUS = 45.7 M				

(A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE A10. SPECTRA COMPARISON FOR CASE 26
(B) DIRECTIVITY ANGLE = 60 DEGREES

FIGURE A10. SPECTRA COMPARISON FOR CASE 26
(C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE A10. SPECTRA COMPARISON FOR CASE 26
(D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE A10. SPECTRA COMPARISON FOR CASE 26
(E) DIRECTIVITY ANGLE = 150 DEGREES

[FLOW PROPERTIES FOR CASE 32				
	NOZZLI	E MODEL 3		ļ	
FORWE	RD FLIGHT VE	LOCITY,VA:	= 0.0 M/S	5	
	TEMPERATURE VELOCITY MASS FLOW PT/PA				
	T _T , DEG K	V, M/S	W. KG/S		
PRIMARY	389.2	299.0	1.8225	1.5300	
SECONDARY	702.0	318.8	1.0890	1.3000	
EQUIVALENT 506.2 306.4 2.9116					
necessarios nontuo un o u					
	REFERENCE RADIUS = 45.7 M				

FIGURE A11. SPECTRA COMPARISON FOR CASE 32 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE A11. SPECTRA COMPARISON FOR CASE 32
(B) DIRECTIVITY ANGLE = 60 DEGREES

FIGURE A11. SPECTRA COMPARISON FOR CASE 32
(C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE A11. SPECTRA COMPARISON FOR CASE 32 (D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE A11. SPECTRA COMPARISON FOR CASE 32 (E) DIRECTIVITY ANGLE = 150 DEGREES

FORWARD FLIGHT VELOCITY.VA = 0.0 M/S
TEMPERATURE VELOCITY MASS FLOW PT/PA TT. DEG K V. M/S W. KG/S PRIMARY 843.7 441.6 1.2296 1.5300 SECONDARY 1079.8 858.9 3.4141 4.0600 EQUIVALENT 1017.3 748.4 4.6438 REFERENCE RADIUS = 45.7 M

FIGURE A12. SPECTRA COMPARISON FOR CASE 33 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE A12. SPECTRA COMPARISON FOR CASE 33
(B) DIRECTIVITY ANGLE = 60 DEGREES

FIGURE A12. SPECTRA COMPARISON FOR CASE 33 (C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE A12. SPECTRA COMPARISON FOR CASE 33 (D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE A12. SPECTRA COMPARISON FOR CASE 33 (E) DIRECTIVITY ANGLE = 150 DEGREES

FLOW PROPERTIES FOR CASE 34 NOZZLE MODEL 4				
FORWARD FLIGHT VELOCITY.V _A = 0.0 M/S TEMPERATURE VELOCITY MASS FLOW PT/PA TT. DEG K V. M/S W. KG/S				
PRIMARY 282.2 293.8 4.7391 1.7820				
SECONDARY	543.3	449.2	2.4838	2.0480
EQUIVALENT 372.0 347.2 7.2230				
REFERENCE RADIUS = 45.7 M				

FIGURE A13. SPECTRA COMPARISON FOR CASE 34 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE A13: SPECTRA COMPARISON FOR CASE 34
(B) DIRECTIVITY ANGLE = 60 DEGREES

FIGURE A13. SPECTRA COMPARISON FOR CASE 34
(C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE A13. SPECTRA COMPARISON FOR CASE 34 (D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE A13. SPECTRA COMPARISON FOR CASE 34
(E) DIRECTIVITY ANGLE = 150 DEGREES

FLOW PROPERTIES FOR CASE 38 NOZZLE MODEL 4				
FORWE PRIMARY SECONDARY EQUIVALENT		VELOCITY V. M/S 424.5 845.5 670.9	MASS FLOW W. KG/S 2.3219 3.2758 5.5977	1.5090

FIGURE A14. SPECTRA COMPARISON FOR CASE 38 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE A14. SPECTRA COMPARISON FOR CASE 38
(B) DIRECTIVITY ANGLE = 60 DEGREES

FIGURE A14. SPECTRA COMPARISON FOR CASE 38 (C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE A14. SPECTRA COMPARISON FOR CASE 38 (D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE A14. SPECTRA COMPARISON FOR CASE 38
(E) DIRECTIVITY ANGLE = 150 DEGREES

					
FLOW PROPERTIES FOR CASE 43 NOZZLE MODEL 4					
FORWE	ARD FLIGHT VEL	_OCITY.V _B :	= 0.0 M/S	5	
TEMPERATURE VELOCITY MASS FLOW PT/PA					
PRIMARY	·				
SECONDARY	648.8	606.8	3.5239	3.1790	
EQUIVALENT 442.8 430.6 8.2408					
REFERENCE RADIUS = 45.7 M					

FIGURE A15. SPECTRA COMPARISON FOR CASE 43 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE A15. SPECTRA COMPARISON FOR CASE 43 (B) DIRECTIVITY ANGLE = 60 DEGREES

FIGURE A15. SPECTRA COMPARISON FOR CASE 43
(C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE A15. SPECTRA COMPARISON FOR CASE 43
(D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE A15. SPECTRA COMPARISON FOR CASE 43
(E) DIRECTIVITY ANGLE = 150 DEGREES

	FLOW PROPERTIES FOR CASE 48				
	NOZZLI	E MODEL 4		:	
Forus	and the tour un	COLTY	0.0.47		
FURWE	IRD FLIGHT VE	• •			
TEMPERATURE VELOCITY MASS FLOW PT/PA					
	TT. DEG K V. M/S W. KG/S				
PRIMARY	806.6	609.2	3.8269	2.4610	
SECONDARY	953.8	757 • 4	3.1098	3.4010	
EQUIVALENT 872.6 675.7 6.9367					
REFERENCE RADIUS = 45.7 M					

FIGURE A16. SPECTRA COMPARISON FOR CASE 48 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE A16. SPECTRA COMPARISON FOR CASE 48
(B) DIRECTIVITY ANGLE = 60 DEGREES

FIGURE A16. SPECTRA COMPARISON FOR CASE 48
(C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE A16. SPECTRA COMPARISON FOR CASE 48 (D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE A16. SPECTRA COMPARISON FOR CASE 48
(E) DIRECTIVITY ANGLE = 150 DEGREES

APPENDIX B

Typical Wind Tunnel Case

Spectral Distributions

FLOW PROPERTIES FOR CASE 1 NOZZLE MODEL 2				
FORWARD FLIGHT VELOCITY VA = 101.4 M/S TEMPERATURE VELOCITY MASS FLOW PT/PA TT, DEG K V, M/S W, KG/S				
PRIMARY	392.6		•3900	1.5300
SECONDARY	388.7	470.6	. 6486	3.2070
EQUIVALENT	390.1	406.6	1.0387	
REFERENCE RADIUS = 45.7 M				

FIGURE B1 - SPECTRA COMPARISON FOR CASE 1 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE B1 - SPECTRA COMPARISON FOR CASE 1
(B) DIRECTIVITY ANGLE = 70 DEGREES

FIGURE B1 - SPECTRA COMPARISON FOR CASE 1
(C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE B1 - SPECTRA COMPARISON FOR CASE 1
(D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE B1 - SPECTRA COMPARISON FOR CASE 1
(E) DIRECTIVITY ANGLE = 150 DEGREES

FLOW PROPERTIES FOR CASE 5 NOZZLE MODEL 2				
FORWARD FLIGHT VELOCITY.V _A = 31.0 M/S				
TEMPERATURE VELOCITY MASS FLOW PT/PA				
PRIMARY	402.0	304.8	·4173	1.5330
SECONDARY	692.6	630.3	. 4898	3.2010
EQUIVALENT 558.9 480.5 .9071				
REFERENCE RADIUS = 45.7 M				

FIGURE B2 - SPECTRA COMPARISON FOR CASE 5 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE B2 - SPECTRA COMPARISON FOR CASE 5
(B) DIRECTIVITY ANGLE = 70 DEGREES

FIGURE B2 . SPECTRA COMPARISON FOR CASE 5
(C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE B2 - SPECTRA COMPARISON FOR CASE 5
(D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE B2 . SPECTRA COMPARISON FOR CASE 5
(E) DIRECTIVITY ANGLE = 150 DEGREES

FLOW PROPERTIES FOR CASE 8 NOZZLE MODEL 2				
FORWE	ARD FLIGHT VE	• •		
TEMPERATURE VELOCITY MASS FLOW PT/PA TT, DEG K V, M/S W, KG/S				
PRIMARY	394.2	301.7	•4173	1.5330
SECONDARY	703.7	573.3	.3524	2.5030
EQUIVALENT	535.9	426.0	.7697	ļ
REFERENCE RADIUS = 45.7 M				

FIGURE B3 . SPECTRA COMPARISON FOR CASE 8 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE B3 . SPECTRA COMPARISON FOR CASE 8
(B) DIRECTIVITY ANGLE = 70 DEGREES

FIGURE B3 . SPECTRA COMPARISON FOR CASE 8
(C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE B3 . SPECTRA COMPARISON FOR CASE 8 (D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE B3 - SPECTRA COMPARISON FOR CASE 8
(E) DIRECTIVITY ANGLE = 150 DEGREES

					
FLOW PROPERTIES FOR CASE 9 NOZZLE MODEL 2					
FORWA	RD FLIGHT VEL	_OCITY.Va =	= 129.5 M/S	3	
	TEMPERATURE VELOCITY MASS FLOW PT/PA				
PRIMARY	388.7	295.3	-3810	1.5140	
SECONDARY	705.9	637.6	. 4127	3.2120	
EQUIVALENT	553.6	473.3	-7937	·	
REFERENCE RADIUS = 45.7 M					

FIGURE B4 - SPECTRA COMPARISON FOR CASE 9
(A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE B4 - SPECTRA COMPARISON FOR CASE 9
(B) DIRECTIVITY ANGLE = 70 DEGREES

FIGURE B4 - SPECTRA COMPARISON FOR CASE 9
(C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE B4 . SPECTRA COMPARISON FOR CASE 9
(D) DIRECTIVITY ANGLE = 120 DEGREES

FLOW PROPERTIES FOR CASE 13 NOZZLE MODEL 4						
FORWARD FLIGHT VELOCITY.VA = 61.5 M/S TEMPERATURE VELOCITY MASS FLOW PT/PA						
PRIMARY SECONDARY EQUIVALENT	SECONDARY 698.1 633.3 .5851 3.2030					
REFERENCE RADIUS = 45.7 M						

FIGURE B5 - SPECTRA COMPARISON FOR CASE 13 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE B5 - SPECTRA COMPARISON FOR CASE 13
(B) DIRECTIVITY ANGLE = 70 DEGREES

FIGURE B5 - SPECTRA COMPARISON FOR CASE 13
(C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE B5 - SPECTRA COMPARISON FOR CASE 13
(D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE B5 - SPECTRA COMPARISON FOR CASE 13
(E) DIRECTIVITY ANGLE = 150 DEGREES

						
FLOW PROPERTIES FOR CASE 14						
	NOZZLI	E MODEL 4				
Fonus	DD 51 +011+			_		
FORWE	IRD FLIGHT VE	LOCITY.VA:	= 61.2 M/	S		
	TEMPERATURE VELOCITY MASS FLOW PT/PA					
nntuany	•					
PRIMARY	395.3	299.3	-3311	1.5190		
SECONDARY	708.7	575.7	•4535	2.5060		
EQUIVALENT 576.5 459.1 .7847						
REFERENCE RADIUS = 45.7 M						

FIGURE B6 - SPECTRA COMPARISON FOR CASE 14 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE B6 - SPECTRA COMPARISON FOR CASE 14
(B) DIRECTIVITY ANGLE = 70 DEGREES

FIGURE B6 - SPECTRA COMPARISON FOR CASE 14
(C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE B6 - SPECTRA COMPARISON FOR CASE 14
(D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE B6 - SPECTRA COMPARISON FOR CASE 14
(E) DIRECTIVITY ANGLE = 150 DEGREES

FLOW PROPERTIES FOR CASE 18 NOZZLE MODEL 4					
FORWARD FLIGHT VELOCITY. $V_A = 103.6 \text{ M/S}$ TEMPERATURE VELOCITY MASS FLOW P_T/P_A T_T , DEG K V, M/S W, KG/S PRIMARY 402.0 304.1 $.3039$ 1.5300					
SECONDARY EQUIVALENT	702.6 592.5	635.5 514.2	-5261 -8300	3.2060	
REFERENCE RADIUS = 45.7 M					

FIGURE B7 - SPECTRA COMPARISON FOR CASE 18 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE B7 . SPECTRA COMPARISON FOR CASE 18
(B) DIRECTIVITY ANGLE = 70 DEGREES

FIGURE B7 - SPECTRA COMPARISON FOR CASE 18
(C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE B7 - SPECTRA COMPARISON FOR CASE 18 (D) DIRECTIVITY ANGLE = 120 DEGREES

FIGURE B7 - SPECTRA COMPARISON FOR CASE 18 (E) DIRECTIVITY ANGLE = 150 DEGREES

FLOW PROPERTIES FOR CASE 20						
		E MODEL 4				
	NOLLE	- 1100000				
FORWE	RD FLIGHT VEL	_OCITY,VA =	= 129.8 M/	S		
	TEMPERATURE	VELOCITY	MASS FLOW			
	TT. DEG K	V, M/S	W. KG/S			
PRIMARY	388.7	297.7	-2993	1.5250		
SECONDARY	709.2	576.3	•3900	2.5110		
EQUIVALENT	570.0	455.4	-6894	:		
REFERENCE RADIUS = 45.7 M						

FIGURE B8 - SPECTRA COMPARISON FOR CASE 20 (A) FLOW PROPERTIES AND DIRECTIVITY PLOT

FIGURE B8 . SPECTRA COMPARISON FOR CASE 20 (B) DIRECTIVITY ANGLE = 70 DEGREES

FIGURE B8 - SPECTRA COMPARISON FOR CASE 20 (C) DIRECTIVITY ANGLE = 90 DEGREES

FIGURE B8 - SPECTRA COMPARISON FOR CASE 20 (D) DIRECTIVITY ANGLE = 120 DEGREES

*U.S. GOVERNMENT PRINTING OFFICE: 1979 - 635-004/31

	•		
•			
	÷		

1. Report No. NASA CR-3176	2. Gevernment Accession	n No. 		nt's Catalog No.
4. Title and Subtitle	. N. taa lawala a	e Caannul	5. Report	
A Method for Predicting th	r Coamnu	octobe	er 1979	
Jets With Inverted Veloci	ty Profiles		6. Perform	ning Organization Code
7. Author(s) James W. Russell			8. Perform	ning Organization Report No.
odiles H. Russerr			10. Work	Unit No.
9. Performing Organization Name and Address	·			
Kentron International, In		11.		
Hampton Technical Center				ct or Grant No. 13500
Hampton, Virginia 23666				
Hampton, Triginia 2222			13. Type o	of Report and Period Covered
12. Sponsoring Agency Name and Address			Contr	actor Report
National Aeronautics and Washington, DC 20546	Space Administrat	ion	14. Army I	Project No.
15. Supplementary Notes				
Langley Technical Monitor	: William E. Zor	umski		
Topical Report				
16. Abstract				
This report presents a method for predicting the noise characteristics of a coannular jet exhaust nozzle with an inverted velocity profile. The method equates the coannular jet to a single stream equivalent jet with the same mass flow, energy, and thrust. The acoustic characteristics of the coannular jet are then related to the acoustic characteristics of the single jet. The method also includes forward flight effects by incorporating a forward velocity expone a Doppler amplification factor, and a Strouhal frequency shift.				
This prediction method was evaluated against model test data including 48 static cases and 22 wind tunnel cases. For the static cases and the low forward velocity wind tunnel cases the spectral mean square pressure correlation coefficients were generally greater than 90 percent and the spectral sound pressure lev standard deviations were generally less than 3 dB. Also the correlation coefficiend and standard deviation were not affected by changes in equivalent jet velocity.				
The prediction method is limited to equivalent jet velocities which range from 0.85 to 2.5 times the local ambient speed of sound. The outer to inner stream nozzle exit area ratio should not be less than 0.4 or greater than 2.5. The outer to inner stream velocity ratio should not be less than 1.0. The prediction method is designed for obtaining free field unattenuated source noise levels.				
		10 Dietributi	ion Statement	
17. Key Words (Suggested by Author(s)) Jet Noise	ļ	וס, טואנוזטעני	ion Statement	
Noise Prediction Variable Cycle Engine		Unclassified - Unlimited Subject Category 71		
, a. (ab.c o) 0.0 2.15.115				
19. Security Classif. (of this report)	20. Security Classif, (of this	nane)	21. No. of Pages	22. Price*
Unclassified	Unclassified	h-201	154	\$8.00
Uniciass i i ied	unciassified		1.54	40.00

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business
Penalty for Private Use, \$300

THIRD-CLASS BULK RATE

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return