Laboratorio de Análisis Aplicado Método BFGS

1 Introducción

Sean $B \in \mathbb{R}^{n \times n}$ simétrica y definida positiva, y $s, y \in \mathbb{R}^n$, $s, y \neq 0$. Se desea una matriz simétrica y definida positiva, B_+ tal que

$$B_{+}s = y. (1)$$

La ecuación (1) se conoce como la ecuación de la secante.

Broyden, Fletcher, Goldfarb y Shanno en 1970 proponen la siguiente deducción: Sea L el factor de Cholesky de B y considere

$$L_{+} = L + \frac{(y - Lv)v^{T}}{v^{T}v},$$

donde

$$v = \left(\frac{y^T s}{s^T B s}\right)^{1/2} L s.$$

La matriz L_+ es no-singular, entonces la matriz

$$B_+ = L_+ L_+^T,$$

es simétrica y definida positiva.

Es decir

$$B_{+} = B + \frac{yy^{T}}{y^{T}s} - \frac{Bss^{T}B}{s^{T}Bs},$$
 (2)

la cual se conoce como la actualización BFGS. Notemos que B_{+} satisface la ecuación de la secante (1).

2 Método BFGS

Sea $f: \mathbb{R}^n \to \mathbb{R}$ dos veces continuamente diferenciable. Se requiere encontrar un mínimo local de f por el método de Newton con la dificultad que $\nabla^2 f(x)$ es costosa de aproximar. La idea es aproximar la matriz hessiana

por medio de la actualización (2).

Método BFGS

Sean $x_0 \in \mathcal{R}^n$, $B_0 \in \mathcal{R}^{nxn}$ simétrica y definida positiva, $tol \in (0, 1), k \leftarrow 0$.

Mientras $\|\nabla f(x_k)\| > tol$

- 1. Calcula la dirección p_k resolviendo el sistema lineal $B_k p = -\nabla f(x_k)$.
- 2. $x_{k+1} = x_k + \alpha_k p_k$ donde α_k satisface las condiciones de Wolfe.
- 3. $s_k = x_{k+1} x_k, \ y_k = \nabla f(x_{k+1}) \nabla f(x_k)$
- 4. Calcule B_{k+1} por la fórmula (2)
- 5. $k \leftarrow k+1$

En general $B_0 = \nabla f(x_0)$ o λI donde $\lambda > 0$

3 Problemas

Programe el método BFGS en MATLAB y pruébelo con la función $f(x_1, x_2) = (x_1-2)^4 + (x_1-2)^2 x_2^2 + (x_2+1)^2$ que tiene el único mínimo en $x_* = (2, -1)^T$. Inicie con $x_0 = (1, 1)^T$ y $B_0 = \nabla^2 f(x_0)$.