Reading: Review what you learned from your Linear Algebra classes, the lecture note, and Section 12.8.5 and 12.8.6 in *Foundations of Data Science* by Blum, Hopcroft, and Kannan. Review vector norms, matrix norms, orthogonality, projections, and eigenvalues.

1. (a) Let M be the matrix of data points

$$M = \begin{bmatrix} 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ 4 & 16 \end{bmatrix}.$$

What are M^TM and MM^T ?

- (b) Prove that if A is any matrix, then A^TA and AA^T are symmetric. (Recall that a matrix S is symmetric if $S = S^T$.)
- 2. Recall that a matrix $A \in \mathbb{R}^{m \times n}$, $m \ge n$, is said to have full rank if its columns are linearly independent, i.e., for \mathbf{a}_j the jth column of A, $c_1\mathbf{a}_1 + \ldots + c_n\mathbf{a}_n = 0 \Longrightarrow c_1 = \ldots = c_n = 0$. Show that A has full rank if and only if no two distinct vectors are mapped to the same vector.
- 3. Sketch the unit circle $\{\boldsymbol{x}, \|\boldsymbol{x}\|_p = 1\}$ in \mathbb{R}^2 and \mathbb{R}^3 for p = 1, 2, and ∞ .
- 4. (a) Write the definition of the vector norm $\|\boldsymbol{x}\|_2$.
 - (b) Show that if Q is an orthogonal matrix, then $||Q\mathbf{x}||_2 = ||\mathbf{x}||_2$.

(c) Let
$$\boldsymbol{x} = \begin{bmatrix} 1 \\ 2 \\ 2 \\ -1 \end{bmatrix}$$
 and

Without calculating Qx directly, what is the value of $||Qx||_2$?

- 5. If \boldsymbol{u} and \boldsymbol{v} are vectors in \mathbb{R}^m , the matrix $A = I + \boldsymbol{u}\boldsymbol{v}^T$ is know as a rank-one perturbation of the identity. Show that if A is nonsingular, then its inverse has the form $A^{-1} = I + \alpha \boldsymbol{u}\boldsymbol{v}^T$ for some scalar α , and give an expression for α . For what \boldsymbol{u} and \boldsymbol{v} is A singular? If it is singular, what is Null(A)?
- 6. Given \boldsymbol{u} and \boldsymbol{v} in \mathbb{R}^n , show that if $E = \boldsymbol{u}\boldsymbol{v}^T$, then $||E||_2 = ||\boldsymbol{u}||_2||\boldsymbol{v}||_2$. Is the same true for the Frobenius norm, i.e., $||E||_F = ||\boldsymbol{u}||_F||\boldsymbol{v}||_F$? Prove it or give a counterexample.
- 7. Consider the matrix

$$A = \begin{bmatrix} -2 & 3 & 2 \\ -4 & 5 & 1 \\ 1 & -2 & 4 \end{bmatrix}.$$

What are the ℓ^1 , ℓ^2 , ℓ^∞ , and Frobenius norms of A?

- 8. Given $A \in \mathbb{R}^{m \times n}$ with $m \ge n$, show that $A^T A$ is nonsingular if and only if A has full rank.
- 9. What is the vector $\boldsymbol{x} \in \mathbb{R}^2$ that achieves the maximum ℓ^1 -norm subject to $\|\boldsymbol{x}\|_2 = 1$?
- 10. Given $A \in \mathbb{R}^{m \times p}$ and $B \in \mathbb{R}^{p \times n}$, show the following.
 - (a) $||AB||_2 \le ||A||_2 ||B||_2$.
 - (b) $||AB||_F^2 \le ||A||_F^2 ||B||_F^2$.