

Procesadores de lenguajes

Ejercicios del Tema 4

EJERCICIO 5.7

La siguiente gramática representa la sintaxis de la instrucción de asignación de un lenguaje basado en conjuntos:

$$Asig \rightarrow id \ igual \ Expr \ pyc$$
 $Expr \rightarrow Base$
 $Expr \rightarrow Expr \ union \ Base$
 $Expr \rightarrow Expr \ interseccion \ Base$
 $Base \rightarrow Ilave_ab \ Elem \ Ilave_ce$
 $Base \rightarrow par_ab \ Expr \ par_ce$
 $Elem \rightarrow num$
 $Elem \rightarrow Elem \ coma \ num$

A continuación se muestra un ejemplo de una cadena de entrada para esta gramática:

$$A = \{1, 2\} \cup (\{3, 4, 5\} \cap \{3, 5\});$$

- (a) Describa los estados y transiciones del autómata reconocedor de prefijos viables.
- (b) Construya la tabla de análisis SLR de la gramática planteada.

SOLUCION:

(a) Describa los estados y transiciones del autómata reconocedor de prefijos viables

Estado	Elementos	Transiciones					
0	$X \rightarrow * Asig$ $Asig \rightarrow * id igual Expr pyc$	$Asig \to 1$ $id \to 2$					
1	$X \rightarrow Asig *$						
2	$Asig \rightarrow id * igual Expr pyc$	igual → 3					

Estado	Elementos	Transiciones
3	$Asig \rightarrow id igual * Expr pyc$ $Expr \rightarrow * Base$ $Expr \rightarrow * Expr union Base$ $Expr \rightarrow * Expr intersection Base$ $Base \rightarrow * Ilave_ab Elem Ilave_ce$ $Base \rightarrow * par_ab Expr par_ce$	$Expr \rightarrow 4$ $Base \rightarrow 5$ $Ilave_ab \rightarrow 6$ $par_ab \rightarrow 7$
4	$Asig \rightarrow id igual Expr * pyc$ $Expr \rightarrow Expr * union Base$ $Expr \rightarrow Expr * interseccion Base$	pyc → 8 union → 9 interseccion → 10
5	$Expr \rightarrow Base *$	
6	$Base \rightarrow Ilave_ab * Elem Ilave_ce$ $Elem \rightarrow * num$ $Elem \rightarrow * Elem coma num$	<i>Elem</i> → 11 num → 12
7	$Base ightharpoonup par_ab * Expr par_ce$ $Expr ightharpoonup * Base$ $Expr ightharpoonup * Expr union Base$ $Expr ightharpoonup * Expr intersection Base$ $Base ightharpoonup * Ilave_ab Elem Ilave_ce$ $Base ightharpoonup * par_ab Expr par_ce$	$Expr \rightarrow 13$ $Base \rightarrow 5$ $Ilave_ab \rightarrow 6$ $par_ab \rightarrow 7$
8	$Asig \rightarrow id igual Expr pyc*$	
9	$Expr \rightarrow Expr$ union * Base $Base \rightarrow *$ llave_ab $Elem$ llave_ce $Base \rightarrow *$ par_ab $Expr$ par_ce	$Base \rightarrow 14$ Ilave_ab $\rightarrow 6$ par_ab $\rightarrow 7$
10	$Expr \rightarrow Expr$ intersection * Base $Base \rightarrow *$ llave_ab $Elem$ llave_ce $Base \rightarrow *$ par_ab $Expr$ par_ce	$Base \rightarrow 15$ Ilave_ab $\rightarrow 6$ par_ab $\rightarrow 7$
11	$Base$ → Ilave_ab $Elem$ * Ilave_ce $Elem$ → $Elem$ * coma num	llave_ce → 16 coma → 17
12	Elem → num *	
13	$Base \rightarrow par_ab \ Expr * par_ce$ $Expr \rightarrow Expr * union \ Base$ $Expr \rightarrow Expr * intersection \ Base$	$\begin{array}{c} \textbf{par_ce} \rightarrow 18 \\ \textbf{union} \rightarrow 9 \\ \textbf{interseccion} \rightarrow 10 \end{array}$
14	Expr → Expr union Base *	
15	$Expr \rightarrow Expr$ intersection $Base *$	
16	$Base \rightarrow Ilave_ab \ Elem \ Ilave_ce *$	
17	Elem → Elem coma * num	num → 19
18	$Base \rightarrow par_ab \ Expr \ par_ce *$	
19	Elem → Elem coma num *	

```
(b)
Siguientes(Asig) = { $ }
Siguientes(Expr) = { pyc, union, interseccion, par_ce }
Siguientes(Base) = { pyc, union, interseccion, par_ce }
Siguientes(Elem) = { llava_ce, coma }
```

Est.	id	=	;	num	U	\cap	{	}	()	,	\$	A	Ex	В	El
0	d2												1			
1												OK				
2		d3														
3							d6		d7					4	5	
4			d8		d9	d10										
5			R2		R2	R2				R2						
6				d12												11
7							d6		d7					13	5	
8												R1				
9							d6		d7						14	
10							d6		d7						15	
11								d16			d17					
12								R7			R7					
13					d9	d10				d18						
14			R3		R3	R3				R3						
15			R4		R4	R4				R4						
16			R5		R5	R5				R5						
17				d19												
18			R6		R6	R6				R6						
19								R8			R8					

EJERCICIO 5.17

La siguiente gramática permite describir expresiones vectoriales formadas por dos operaciones: la suma de vectores y el producto de un escalar por un vector.

```
Expr 
ightharpoonup Factor
Expr 
ightharpoonup Expr plus Factor
Expr 
ightharpoonup Expr minus Factor
Factor 
ightharpoonup num prod Factor
Factor 
ightharpoonup lipar Expr rpar
```

- (a) Construya el autómata reconocedor de prefijos viables de la gramática anterior
- (b) Construya la tabla de análisis SLR de la gramática planteada. Utilice para ello la tabla incluida en la última página.
- (c) Realice la traza para el siguiente ejemplo

SOLUCIÓN:

(a)

Estado	Elementes	Transisiones
Estado	Elementos	Transiciones
0	$X \rightarrow *Expr$ $Expr \rightarrow *Factor$ $Expr \rightarrow *Expr$ plus Factor $Expr \rightarrow *Expr$ minus Factor	$Expr \to 1$ $Factor \to 2$
	$Factor \rightarrow *$ vector $Factor \rightarrow *$ num prod $Factor$ $Factor \rightarrow *$ lpar $Expr$ rpar	vector $\rightarrow 3$ num $\rightarrow 4$ Ipar $\rightarrow 5$
1	$X \rightarrow Expr *$ $Expr \rightarrow Expr * plus Factor$ $Expr \rightarrow Expr * minus Factor$	plus $\rightarrow 6$ minus $\rightarrow 7$
2	<i>Expr</i> → <i>Factor</i> *	
3	Factor → vector *	
4	Factor → num * prod Factor	prod → 8
5	$Factor \rightarrow lpar * Expr rpar$ $Expr \rightarrow * Factor$ $Expr \rightarrow * Expr plus Factor$	$Expr \rightarrow 9$ $Factor \rightarrow 2$
	Expr ightharpoonup *Expr minus $FactorFactor ightharpoonup * num prod FactorFactor ightharpoonup * lpar Expr$ rpar	vector $\rightarrow 3$ num $\rightarrow 4$ lpar $\rightarrow 5$
6	Expr ightharpoonup Expr plus * Factor Factor $ ightharpoonup *$ vector Factor $ ightharpoonup *$ num prod Factor Factor $ ightharpoonup *$ lpar Expr rpar	Factor → 10 vector → 3 num → 4 Ipar → 5
7	Expr ightharpoonup Expr minus * Factor Factor $ ightharpoonup *$ vector Factor $ ightharpoonup *$ num prod Factor Factor $ ightharpoonup *$ lpar Expr rpar	Factor → 11 vector → 3 num → 4 Ipar → 5
8	$Factor \rightarrow$ num prod * $Factor$ $Factor \rightarrow$ * vector $Factor \rightarrow$ * num prod $Factor$ $Factor \rightarrow$ * lpar $Expr$ rpar	Factor → 12 vector → 3 num → 4 Ipar → 5
9	$Factor \rightarrow lpar \ Expr * rpar$ $Expr \rightarrow Expr * plus \ Factor$ $Expr \rightarrow Expr * minus \ Factor$	rpar $\rightarrow 13$ plus $\rightarrow 6$ minus $\rightarrow 7$
10	$Expr \rightarrow Expr$ plus $Factor *$	
11	$Expr \rightarrow Expr$ minus $Factor *$	

Estado	Elementos	Transiciones
12	Factor → num prod Factor *	
13	Factor → Ipar Expr rpar *	

(b)
Siguientes(Expr) = { \$, plus, minus, rpar }
Siguientes(Factor) = { \$, plus, minus, rpar }

Estado	plus	minus	num	prod	lpar	rpar	vector	\$	Expr	Factor
0			d4		d5		d3		1	2
1	d6	d7						OK		
2	r1	r1				r1		r1		
3	r4	r4				r4		r4		
4				d8						
5			d4		d5		d3		9	2
6			d4		d5		d3			10
7			d4		d5		d3			11
8			d4		d5		d3			12
9	d6	d7				d13				
10	r2	r2				r2		r2		
11	r3	r3				r3		r3		
12	r5	r5				r5		r5		
13	r6	r6				r6		r6		