Practice Problem 9.7

Find the voltage v(t) in a circuit described by the integrodifferential equation

$$2\frac{dv}{dt} + 5v + 10 \int v \, dt = 50 \, \cos(5t - 30^\circ)$$

using the phasor approach.

Answer: $v(t) = 5.3 \cos(5t - 88^{\circ}) \text{ V}.$

Practice Problem 9.8

If voltage $\nu=10\,\cos{(100t+30^\circ)}\,V$ is applied to a 50 $\mu{\rm F}$ capacitor, calculate the current through the capacitor.

Answer: $50 \cos(100t + 120^{\circ}) \text{ mA}.$

Practice Problem 9.9

Refer to $\operatorname{\begin{tabular}{l} \end{table} \operatorname{Fig. 9.17}.$ Determine $v\left(t\right)$ and $i\left(t\right)$.

Figure 9.17
For Practice Prob. 9.9.

Answer: 8.944 $\sin(10t + 93.43^{\circ})$ V, 4.472 $\sin(10t + 3.43^{\circ})$ A.

Practice Problem 9.10

Determine the input impedance of the circuit in \Box Fig. 9.24 at $\omega = 10$ rad/s

Figure 9.24
For Practice Prob. 9.10.

Answer: $(149.52 - j195)\Omega$.

Practice Problem 9.11

Calculate v_o in the circuit of \square Fig. 9.27.

Figure 9.27
For Practice Prob. 9.11.

Answer: $v_o(t) = 35.36 \cos(10t - 105^\circ) \text{ V}.$

Note: Practice Problem 9.13 needs the knowledge of Vrms, which will be taught in Week 11.

Practice Problem 9.13

Design an RC circuit to provide a 90° lagging phase shift of the output voltage relative to the input voltage. If an ac voltage of 60 V rms is applied, what is the output voltage?

Answer: Figure 9.34 shows a typical design; 20 V rms.

Figure 9.34

For Practice Prob. 9.13.

Practice Problem 9.14

Refer to the *RL* circuit in Fig. 9.36. If 10 V is applied to the input, find the magnitude and the phase shift produced at 5 kHz. Specify whether the phase shift is leading or lagging.

Figure 9.36

For Practice Prob. 9.14.

Answer: 1.7161 V, 120.39°, lagging.