Problem

 $\langle M,w\rangle|_{\text{Let X = \{}}$ Let X = { \tag{ M is a single-tape TM that never modifies the portion of the tape that contains the input w}. Is X decidable? Prove your answer.

Step-by-step solution

Step 1 of 1

X is un-decidable which can be proof by reducibility. Reduce X from $D_{TM} = \{ < M, w > | \text{Turing machine } M \text{ accepts } w \}$

Assume W be a Turing machine which decides X. Use Turing machine W to create Turing machine S which decides D_{TM} .

1. TM S: on input $\langle M, w \rangle$

2. TM
$$M_{\text{new}}$$
: on input $\langle M, w \rangle$

- 3. The right end of the input mark with symbol $^{\mbox{\$}\not\in\Gamma_{M}}.$
- 4. Copy the string which comes after \$. This parts of input denotes as w^*
- 5. Simulate M on w'.
- 6. If M accepts, then write all strings written in first cell of input tape, accept
- 7. Else reject.
- 8. TM $\it W$: on input ${}^{<}M_{\it new}, w>$
- 9. When Waccepts, then accept, else reject.

When M does not accept w, then M_{new} will not go to left of \$. The Turing machine M_{new} writes something on the original input when M accept w

It is shown above that $M_{\scriptscriptstyle{NeW}}$ modifies whenever ${\it M}$ accepts the input ${\it w}$. Hence, $D_{\scriptscriptstyle{TM}}$ has a contradiction.

Comments (3)