## System I

# **Computational Operations & Units**

Haifeng Liu

Zhejiang University

#### **Overview**

- Addition
- Subtraction
- Arithmetic logic unit (ALU)
- Multiplication
- Division
- Floating number operations

#### **Overview**

- Addition
- Subtraction
- Arithmetic logic unit (ALU)
- Multiplication
- Division
- Floating number operations

#### **Iterative Combinational Circuits**

- Arithmetic functions
  - Operate on binary vectors
  - Use the same subfunction in each bit position
- Can design functional block for subfunction and repeat to obtain functional block for overall function
- *Cell* subfunction block
- Iterative array a array of interconnected cells
- An iterative array can be in a <u>single</u> dimension
   (1D) or <u>multiple</u> dimensions

#### 1-bit adder: Half-Adder

• A 2-input, 1-bit width binary adder that performs the following computations:

- A half adder adds two bits to produce a two-bit sum
- The sum is expressed as a <u>sum bit</u>, F and a <u>carry bit</u>, C
- The half adder can be specified as a truth table for F and  $C \Rightarrow - - -$



#### 1-bit adder: Full Adder

- A full adder is similar to a half adder, but includes a carry-in bit from lower stages.
- Like the half-adder, it computes a sum bit **F** and a carry bit

• For a carry-in (C<sub>in</sub>) of 1:

 $\mathbf{C}_{in}$ 

# Classic Designs: Full Adder (cont'd)

| Input |   |          | Output |                  |
|-------|---|----------|--------|------------------|
| A     | В | $C_{in}$ | F      | C <sub>out</sub> |
| 0     | 0 | 0        | 0      | 0                |
| 0     | 0 | 1        | 1      | 0                |
| 0     | 1 | 0        | 1      | 0                |
| 0     | 1 | 1        | 0      | 1                |
| 1     | 0 | 0        | 1      | 0                |
| 1     | 0 | 1        | 0      | 1                |
| 1     | 1 | 0        | 0      | 1                |
| 1     | 1 | 1        | 1      | 1                |



# Classic Designs: Full Adder (cont'd)



# Multibit Carry Propagate Adders (CPA)

- Types of CPA
  - Ripple-carry

(slow)

- Carry Skip
- Carry Select
- Carry-lookahead (fast)
- Prefix (fast)
- Faster adders require more hardware



# Ripple-Carry Adder (RCA)

- Chain 1-bit adders together
- Carry ripples through entire chain
- Disadvantage: slow



# **Ripple-Carry Adder Delay**

$$t_{ripple} = Nt_{FA}$$

 $t_{FA}$ : delay of a 1-bit full adder

#### **Carry Lookahead Adder**

$$P_{i} = A_{i} \oplus B_{i}$$

$$G_{i} = A_{i} B_{i}$$

$$S_{i} = P_{i} \oplus C_{i}$$

$$C_{i+1} = G_{i} + P_{i} C_{i}$$

- For a given i-bit binary adder,
  - If  $A_i = B_i = "1"$  and whatever  $C_i$  is, we have carry out as 1, that is  $C_{i+1} = 1$
  - If the output of half adder is 1 and we have carry in as 1, we have carry out as 1, that is  $C_{i+1} = 1$
- These two conditions of setting carry out as 1 is called *generate* (G<sub>i</sub>) and *propagate* (P<sub>i</sub>).



#### **Carry Lookahead Development**

- $C_{i+1} = G_i + P_i C_i$  can be removed from the cells and used to derive a set of carry equations spanning multiple cells.
- Beginning at the cell 0 with carry in  $C_0$ :

$$C_{1} = G_{0} + P_{0} C_{0}$$

$$C_{2} = G_{1} + P_{1} C_{1} = G_{1} + P_{1}(G_{0} + P_{0} C_{0})$$

$$= G_{1} + P_{1}G_{0} + P_{1}P_{0} C_{0}$$

$$C_{3} = G_{2} + P_{2} C_{2} = G_{2} + P_{2}(G_{1} + P_{1}G_{0} + P_{1}P_{0} C_{0})$$

$$= G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}P_{0} C_{0}$$

$$C_{4} = G_{3} + P_{3} C_{3}$$

$$= G_{3} + P_{3}G_{2} + P_{3}P_{2}G_{1} + P_{3}P_{2}P_{1}G_{0} + P_{3}P_{2}P_{1}P_{0} C_{0}$$

#### 4-Bit CLA



#### **Group Carry Lookahead Logic**

- Figure in the previous slide shows the implementation of these equations for four bits. This could be extended to more than four bits; in practice, due to limited gate fan-in, such extension is not feasible.
- $C_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0 C_0$
- Instead, the concept is extended another level by considering group generate  $(G_{0-3})$  and group propagate  $(P_{0-3})$  functions:

$$G_{0\sim3} = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 P_0 G_0$$
  
 $P_{0\sim3} = P_3 P_2 P_1 P_0$ 

Using these two equations:

$$C_4 = G_{0\sim3} + P_{0\sim3} C_0$$

 Thus, it is possible to have four 4-bit adders use one of the same carry lookahead circuit to speed up 16-bit addition

# **Group Carry Lookahead Logic (Cont.)**

- $C_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0 = G_{0\sim 3} + P_{0\sim 3}C_0$
- $C_8 = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 + P_7P_6P_5P_4C_4 = G_{4\sim7} + P_{4\sim7}C_4$
- $C_{12} = G_{11} + P_{11}G_{10} + P_{11}P_{10}G_9 + P_{11}P_{10}P_9G_8 + P_{11}P_9G_9G_8 + P_{11}P_9G_9 +$
- $C_{16} = G_{15} + P_{15}G_{14} + P_{15}P_{14}G_{13} + P_{15}P_{14}P_{13}G_{12} + P_{15}P_{14}P_{13}G_{12} + P_{15}P_{14}P_{13}P_{12}C_{12} = G_{12\sim15} + P_{12\sim15}C_{12}$

# **Group Carry Lookahead Logic (Cont.)**

$$C_4 = G_{0 \sim 3} + P_{0 \sim 3} C_0$$

$$\mathbf{C}_{8} = \mathbf{G}_{4\sim7} + \mathbf{P}_{4\sim7} \mathbf{C}_{4}$$

$$\mathbf{C}_{12} = \mathbf{G}_{8\sim11} + \mathbf{P}_{8\sim11} \mathbf{C}_{8}$$

$$\mathbf{C}_{16} = \mathbf{G}_{12 \sim 15} + \mathbf{P}_{12 \sim 15} \mathbf{C}_{12}$$

$$\mathbf{C}_1 = \mathbf{G}_0 + \mathbf{P}_0 \; \mathbf{C}_0$$

$$\mathbf{C}_2 = \mathbf{G}_1 + \mathbf{P}_1 \ \mathbf{C}_1$$

$$\mathbf{C}_3 = \mathbf{G}_2 + \mathbf{P}_2 \ \mathbf{C}_2$$

$$\mathbf{C_4} = \mathbf{G_3} + \mathbf{P_3} \ \mathbf{C_3}$$

#### **Carry Lookahead Example**

- Specifications: 3
  - 16-bit CLA
  - Delays:
    - NOT = 1
    - $\blacksquare$  XOR = Isolated AND = 3
    - $\bullet$  AND-OR = 2
- Longest Delays:
  - Ripple carry adder\* =  $3 + 15 \times 2 + 3 = 36$
  - $CLA = 3 + 3 \times 2 + 3 = 12$

#### Carry skip adder

- Accelerating the carry by skipping the interior blocks
- Optimal speed with no-equal distribution of block length



#### Carry skip adder



Fig. 7.1 Converting a 16-bit ripple-carry adder into a simple carry-skip adder with 4-bit skip blocks.

#### Carry select adder (CSA)



# **Carry select adder**

Carry selection by nibbles



#### **Prefix Adder**

• Computes carry in (C<sub>i-1</sub>) for each column, then computes sum:

$$S_i = (A_i \oplus B_i) \oplus C_{i-1}$$

- Computes G and P for 1-, 2-, 4-, 8-bit blocks, etc.
   until all G<sub>i</sub> (carry in) known
- log<sub>2</sub>N stages

# Prefix Adder (cont'd)

- Carry in either *generated* in a column or *propagated* from a previous column.
- Column -1 holds C<sub>in</sub>, so

$$G_{-1} = C_{in}, P_{-1} = 0$$

• Carry in to column i == carry out of column i-1:

$$C_{i-1} = G_{i-1:-1}$$

G<sub>i-1:-1</sub>: generate signal spanning columns i-1 to -1

Sum equation:

$$S_i = (A_i \oplus B_i) \oplus G_{i-1:-1}$$

■ **Goal**: Quickly compute  $G_{0:-1}$ ,  $G_{1:-1}$ ,  $G_{2:-1}$ ,  $G_{3:-1}$ ,  $G_{4:-1}$ ,  $G_{5:-1}$ , ... (called *prefixes*)

# Prefix Adder (cont'd)

Generate and propagate signals for a block spanning bits i:j:

$$G_{i:j} = G_{i:k} + P_{i:k} G_{k-1:j}$$

$$P_{i:j} = P_{i:k} P_{k-1:j}$$

- In words:
  - Generate: block i:j will generate a carry if:
    - upper part (i:k) generates a carry or
    - upper part propagates a carry generated in lower part (k-1:j)
  - **Propagate**: block i:j will propagate a carry if *both* the upper and lower parts propagate the carry







#### **Prefix Adder Schematic**



#### **Prefix Adder Delay**

$$t_{PA} = t_{pg} + log_2 N(t_{pg\_prefix}) + t_{XOR}$$

 $t_{pg}$ : delay to produce  $P_iG_i$  (AND or OR gate)

 $t_{pg\_prefix}$ : delay of black prefix cell (AND-OR gate)

#### **Overview**

- Addition
- Subtraction
- Arithmetic logic unit (ALU)
- Multiplication
- Division
- Floating number operations

#### **Unsigned Subtraction**

- For n-digit, <u>unsigned</u> numbers M and N, find M N in base 2:
  - Add the 2's complement of the subtrahend N to the minuend M:

$$M + (2^n - N) = M - N + 2^n$$

- If  $M \ge N$ , the sum produces end carry  $r^n$  which is discarded; from above, M N remains.
- If M < N, the sum does not produce an end carry and, from above, is equal to 2<sup>n</sup> − (N − M), the 2's complement of (N − M).
- To obtain the result -(N-M), take the 2's complement of the sum and place a-to its left.

# **Unsigned 2's Complement Subtraction Example 1**

• Find  $01010100_2 - 01000011_2$ 

• The carry of 1 indicates that no correction of the result is required.

# **Unsigned 2's Complement Subtraction Example 2**

• Find  $01000011_2 - 01010100_2$ 

- The carry of 0 indicates that a correction of the result is required.
- Result = -(00010001)

# Signed 2's Complement Arithmetic Examples

Signed binary addition using 2s complement

$$+6 00000110 -6 11111010 +6 00000110 -6 11111010  $+13 00001101 +13 00001101 -13 11110011 -13 11110011  $+19 00010011 +7 000000111 -7 11111001 -19 11101101$$$$

Signed binary subtraction using 2s complement

#### 4-Bit Binary Adder-Subtractors



- When S=0: Addition (A+B)
- When S=1: Subtraction (A+2's complement of B)
- Can be used to add/subtract unsigned numbers and signed 2's complement numbers

#### Addition/Subtraction

- Both can be handled by using 2's complement representation
- Can achieve a unified implementation
  - Addition vs. subtraction
  - Unsigned vs. signed





- Corner cases shall be considered
  - Some important flags

#### **Carry & Overflow**

- Carry is important when...
  - Adding or subtracting unsigned integers
  - Indicates that the unsigned sum is out of range
  - Either < 0 or > maximum unsigned n-bit value
- Overflow is important when...
  - Adding or subtracting signed integers
  - Indicates that the signed sum is out of range
- Overflow occurs when?

#### **Signed Overflow**

- With two's complement and a 4-bit adder, for example, the largest representable decimal number is +7, and the smallest is -8.
- What if you try to compute 4 + 5, or (-4) + (-5)?

- We cannot just include the carry out to produce a five-digit result, as for unsigned addition. If we did, (-4) + (-5) would result in +23!
- Also, unlike the case with unsigned numbers, the carry out cannot be used to detect overflow, by itself
  - In the example on the left, the carry out is 0 but there is overflow.
  - Conversely, there are situations where the carry out is 1 but there is no overflow.

# **How to Detect Signed Overflow?**

The impact of carry and overflow

| Expression        | Result   | Carry? | Overflow? | Correct Result? |
|-------------------|----------|--------|-----------|-----------------|
| 0100(+4)+0010(+2) | 0110(+6) | No     | No        | Yes             |
| 0100(+4)+0110(+6) | 1010(-6) | No     | Yes       | No              |
| 1100(-4)+1110(-2) | 1010(-6) | Yes    | No        | Yes             |
| 1100(-4)+1010(-6) | 0110(+6) | Yes    | Yes       | No              |

Examples of four signed additions

The easiest way to detect signed overflow is to look at all the sign bits.

#### **Detecting Signed Overflow**

- Overflow occurs only in the two situations:
  - Adding two positive numbers and the sum is negative
  - Adding two negative numbers and the sum is positive
  - Can happen because of the fixed number of sum bits
- Overflow cannot occur if you add a positive number to a negative number. Do you see why?
- In two's complement addition/subtraction
  - If the two numbers have the same sign bit and the sum/difference has a different sign bit, then overflow
  - Or, if the carry out flags of the sign bit and the highest value bit are different

#### **Overflow Detection**

- For unsigned number
  - Add
    - The carry of 1 indicates overflow
  - Subtraction
    - The carry of 1 indicates that no correction of the result is required
    - The carry of 0 indicates that a correction of the result is required

- For signed number
  - $V = C_n \oplus C_{n-1}$

#### **Important Flags**

- Zero flag (ZF)
  - ZF = 1 means the result is 0
  - Valid for both unsigned and signed operations
- Sign flag (SF/NF)
  - The sign of the result, i.e.,  $S_{n-1}$
  - Valid for signed operations
- Carry/borrow flag (CF)
  - If CF = 1
    - Carry for addition, i.e., C<sub>out</sub>
    - Borrow for subtraction, i.e., ~C<sub>out</sub>
  - Valid for unsigned operations
- Overflow flag (OF)
  - Valid for signed operations

# **Adders with Flags**

ZF, SF, CF and OF



#### **Overview**

- Addition
- Subtraction
- Arithmetic logic unit (ALU)
- Multiplication
- Division
- Floating number operations

#### What is ALU?

- An arithmetic-logic unit, or ALU, performs many different arithmetic and logic operations. The ALU is the "heart" of a processor—you could say that everything else in the CPU is there to support the ALU.
- Two methods constitute the ALU
  - extended the adder
  - Parallel redundant select



#### A Simple Example: 1-Bit ALU with 3 OPs

| F <sub>1:0</sub> | Function |
|------------------|----------|
| 00               | A & B    |
| 01               | A B      |
| 10               | A + B    |
| 11               | not used |



```
module ALU(
  input [3:0] a, b,
  input [1:0] aluop,
  input cin,
  output [3:0] f,
  output OF, SF, ZF, CF,
  output cout
  wire [3:0] sum;
  CLA FLAGS(a, b, cin, sum, OF, SF, ZF,
CF, cout);
  always @(*) begin
    case(aluop)
       2'b00: f = a \& b;
       2'b01: f = a | b;
       2'b10: f = sum;
       default: f = 0;
    endcase
  end
endmodule
```

#### N-Bit ALU with 8 OPs



Zero

RES

Overflow

# Set Less Than (SLT) Example

- Configure 32-bit ALU for SLT operation: A = 25 and B = 32
  - A < B, so Y should be 32bit representation of 1 (0x00000001)
  - slt rd,rs,rt
  - If rs < rt, rd=1, else rd=0
  - For rd, all bits = 0 except the least significant
  - Subtraction (rs rt), if the result is negative → rs < rt
  - Use of sign bit as indicator



Set Less Than (SI Binyert

- Configure 32-bit ALU for SLT operation: A = 25 and B = 32
  - A < B, so Y should be 32bit representation of 1 (0x00000001)
  - $F_{2:0} = 111$ 
    - $F_2 = 1$  (adder acts as subtracter), so 25 32 = -7
    - -7 has 1 in the most significant bit  $(S_{31} = 1)$
    - $F_{1:0} = 11$  multiplexer selects  $Y = S_{31}$  (zero extended) = 0x00000001.



#### **Various Use of Shifters**

- Logical shifter: shifts value to left or right and fills empty spaces with 0's
  - 11001 >> 2 = 00110
  - 11001 << 2 = 00100
- Arithmetic shifter: same as logical shifter, but on right shift, fills empty spaces with the old most significant bit (MSB).
  - 11001 >>> 2 = 11110
  - 11001 <<< 2 = 00100
- Rotator: rotates bits in a circle, such that bits shifted off one end are shifted into the other end
  - 11001 ROR 2 = 01110
  - 11001 ROL 2 = 00111

#### Shifters as Multipliers and Dividers

- $A \ll N = A \times 2^N$ 
  - E.g.,  $00001 << 2 = 00100 (1 \times 2^2 = 4)$
  - E.g.,  $11101 << 2 = 10100 (-3 \times 2^2 = -12)$
- $A >>> N = A \div 2^N$ 
  - E.g.,  $01000 >>> 2 = 00010 (8 \div 2^2 = 2)$
  - E.g.,  $10000 >>> 2 = 11100 (-16 \div 2^2 = -4)$

#### Recall the Design of A Shifter

- Bidirectional shift registers with parallel load
  - Data from Bus B can be transferred to the register in parallel and then shifted to the right, the left, or not at all.
  - A clock pulse loads the output of Bus B into the shift register, and a second clock pulse performs the shift.
  - Finally, a third clock pulse transfers the data from the shift register to the selected destination register.
- Alternatively, the transfer from a source register to a destination register can be done using *only one clock pulse* if the shifter is implemented *as a combinational circuit* 
  - Because of the faster operation that results from the use of one clock pulse instead of three, this is the preferred method.
  - In a combinational shifter, the signals propagate through the gates without the need for a clock pulse.
  - Hence, the only clock needed for a shift in the datapath is for loading the data from Bus H into the selected destination register.

#### Shifter Design as A Combinational Circuit



# 4-Bit Barrel Shifter (ROL)

#### **Function Table for 4-Bit Barrel Shifter**

| Se             | elect          |                       | Ou             | tput           |                |                        |
|----------------|----------------|-----------------------|----------------|----------------|----------------|------------------------|
| S <sub>1</sub> | S <sub>0</sub> | <b>Y</b> <sub>3</sub> | Y <sub>2</sub> | Υ <sub>1</sub> | Y <sub>0</sub> | Operation              |
| 0              | 0              | $D_3$                 | D,             | $D_1$          | $D_0$          | No rotation            |
| 0              | 1              | $D_{2}$               | $D_1$          | $D_0$          | $D_3$          | Rotate one position    |
| 1              | 0              | $D_1$                 | $D_0$          | $D_3$          | $D_2$          | Rotate two positions   |
| 1              | 1              | $D_0^{-}$             | $D_3$          | $D_2^{\circ}$  | $D_1^2$        | Rotate three positions |



#### **Overview**

- Addition
- Subtraction
- Arithmetic logic unit (ALU)
- Multiplication
- Division
- Floating number operations

#### Multiplication

- More complicated than addition
  - A straightforward implementation will involve shifts and adds
- More complex operation can lead to
  - More area (on silicon) and/or
  - More time (multiple cycles or longer clock cycle time)
- Let's begin from a simple, straightforward method

#### Decimal vs. Binary Multiplication

- Partial products formed by multiplying a single digit of the multiplier with multiplicand
- Shifted partial products summed to form result



#### **Unsigned Multiplication: 4-bit X 4-bit**

# <u>Multiplication</u> $a_3b_3$ $a_2b_3$ $a_1b_3$ $a_0b_3$ $a_1b_0+a_0b_1a_0b_0 \leftarrow Product$

#### **Unsigned Multiplication: M-bit X N-bit**

$$A = a_{m-1} \dots a_1 a_0 \quad B = b_{n-1} \dots b_1 b_0$$

$$a = \sum_{i=0}^{m-1} a_i 2^i \quad b = \sum_{j=0}^{n-1} b_j 2^j$$

$$p = ab = (\sum_{i=0}^{m-1} a_i 2^i)(\sum_{j=0}^{n-1} b_j 2^j) = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} (a_i b_j) 2^{i+j} = \sum_{k=0}^{m+m+1} p_k 2^k$$

$$a_{m-1} \quad a_{m-2} \quad \dots \quad a_1 \quad a_0 = A$$

$$x) \quad b_{n-1} \quad \dots \quad b_1 \quad b_0 = B$$

$$a_{m-1}b_1 \quad a_{m-2}b_1 \quad \dots \quad a_1b_1 \quad a_0b_1$$

$$\vdots \quad \vdots \quad \vdots$$

$$+) \quad a_{m-1}b_{n-1} \quad a_{m-2}b_{n-1} \quad \dots \quad a_1b_{n-1} \quad a_0b_{n-1}$$

$$p_{m+n-1} \quad p_{m+n-2} \quad p_{m+n-3} \quad \dots \quad p_{n-1} \quad \dots \quad p_1 \quad p_0 = P$$

#### **Straightforward Algorithm**

```
01010010 (multiplicand)
x 01101101 (multiplier)

01010010
000000000
01010010|
01010010|
01010010|
01010010|
01010010|
01010010|
01010010|
01010010|
```

# **Implementation 1**





# **Example of Implementation 1**

Let's do 0010 x 0110 (2 x 6), unsigned

| lto voti o v | Implementation 1                                   |            |              |           |  |  |
|--------------|----------------------------------------------------|------------|--------------|-----------|--|--|
| Iteration    | Step                                               | Multiplier | Multiplicand | Product   |  |  |
| 0            | initial values                                     | 0110       | 0000 0010    | 0000 0000 |  |  |
|              | 1: <mark>0</mark> -> no op                         | 0110       | 0000 0010    | 0000 0000 |  |  |
| 1            | 2: Multiplier shift right/ Multiplicand shift left | 011        | 0000 0100    | 0000 0000 |  |  |
| 2            | 1: 1 -> product = product + multiplicand           | 011        | 0000 0100    | 0000 0100 |  |  |
| 2            | 2: Multiplier shift right/ Multiplicand shift left | 01         | 0000 1000    | 0000 0100 |  |  |
| 3            | 1: 1 -> product = product + multiplicand           | 01         | 0000 1000    | 0000 1100 |  |  |
| 3            | 2: Multiplier shift right/ Multiplicand shift left | 0          | 0001 0000    | 0000 1100 |  |  |
| 4            | 1: 0 -> no op                                      | 0          | 0001 0000    | 0000 1100 |  |  |
|              | 2: Multiplier shift right/Multiplicand shift left  |            | 0010 0000    |           |  |  |

#### **Drawbacks**

- The ALU is twice as wide as necessary
- The multiplicand register takes twice as many bits as needed
- The product register won't need 2n bits till the last step
  - Being filled
- The multiplier register is being emptied during the process

# **Implementation 2**



# **Example of Implementation 2**

Let's do 0010 x 0110 (2 x 6), unsigned

| Iteration | <u>Implementation 2</u>                        |                  |              |                       |  |  |
|-----------|------------------------------------------------|------------------|--------------|-----------------------|--|--|
| iteration | Step                                           | Multiplier       | Multiplicand | Product               |  |  |
| 0         | initial values                                 | 0110             | 0010         | 0000 <sub>××××</sub>  |  |  |
|           | 1: 0 -> no op                                  | 0110             | 0010         | 0000 ***              |  |  |
| 1         | 2: Multiplier shift right/ Product shift right | <sub>×</sub> 011 | 0010         | 0000 0 <sub>×××</sub> |  |  |
| 2         | 1: 1 -> product = product + multiplicand       | <sub>×</sub> 011 | 0010         | 0010 0 <sub>×××</sub> |  |  |
|           | 2: Multiplier shift right/ Product shift right | ** <b>01</b>     | 0010         | 0001 00 <sub>××</sub> |  |  |
|           | 1: 1 -> product = product + multiplicand       | ×× <b>01</b>     | 0010         | 0011 00 <sub>××</sub> |  |  |
| 3         | 2: Multiplier shift right/ Product shift right | •xx×             | 0010         | 0001 100 <sub>×</sub> |  |  |
|           | 1: 0 -> no op                                  | 0 <sub>×××</sub> | 0010         | 0001 100 <sub>×</sub> |  |  |
| 4         | 2: Multiplier shift right/ Product shift right | xxxx             | 0010         | 0000 1100             |  |  |

# Implementation 3



# **Example of Implementation 3**

Let's do 0010 x 0110 (2 x 6), unsigned

| Iteration | Implementation 3                               |                  |              |                    |  |  |
|-----------|------------------------------------------------|------------------|--------------|--------------------|--|--|
| iteration | Step                                           | Multiplier       | Multiplicand | Product Multiplier |  |  |
| 0         | initial values                                 | 0110             | 0010         | 0000 0110          |  |  |
| 4         | 1: 0 -> no op                                  | 0110             | 0010         | 0000 0110          |  |  |
| 1         | 2: Multiplier shift right/ Product shift right | <sub>×</sub> 011 | 0010         | 0000 0011          |  |  |
| •         | 1: 1 -> product = product + multiplicand       | <sub>×</sub> 011 | 0010         | 0010 0011          |  |  |
| 2         | 2: Multiplier shift right/ Product shift right | ×× <b>01</b>     | 0010         | 0001 0001          |  |  |
| •         | 1: 1 -> product = product + multiplicand       | ×× <b>01</b>     | 0010         | 0011 0001          |  |  |
| 3         | 2: Multiplier shift right/ Product shift right | ×× <b>00</b>     | 0010         | 0001 1000          |  |  |
| 4         | 1: 0 -> no op                                  | v×× 0            | 0010         | 0001 1000          |  |  |
| 4         | 2: Multiplier shift right/ Product shift right | ××××             | 0010         | 0000 1100          |  |  |

# Signed Multiplication

- Basic approach:
  - Store the signs of the operands
  - Convert signed numbers to unsigned numbers (most significant bit (MSB) = 0)
  - Perform multiplication
  - If sign bits of operands are equal sign bit = 0, else sign bit = 1
- Improved method:

Booth's Algorithm

Assumption: addition and subtraction are available

#### **Principle -- Decomposable multiplication**

■ Assumes:  $Z=y\times101111100$  Z=y(10000000+1111100+100-100)  $=y(1\times2^7+1000000-100)$   $=y(1\times2^7+1\times2^6-2^2)$   $=y(1\times2^7+1\times2^6+0\times2^5+0\times2^4+0\times2^3+0\times2^2+0\times2^1+0\times2^0-1\times2^2)$   $=y(1\times2^7+1\times2^6+0\times2^5+0\times2^4+0\times2^3+0\times2^2-1\times2^2+0\times2^1+0\times2^0)$   $=y\times2^7+y\times1\times2^6+0\times2^5+0\times2^4+0\times2^3+0\times2^2-y\times2^2+0\times2^1+0\times2^0)$  $=y\times2^7+y\times1\times2^6+0\times2^5+0\times2^4+0\times2^3+0\times2^2-y\times2^2+0\times2^1+0\times2^0)$ 

#### **Booth's Algorithm**

- Idea: If you have a sequence of '1's
  - subtract at first '1' in multiplier
  - shift for the sequence of '1's
  - add where prior step had last '1'



- Result:
  - Possibly less additions and more shifts
  - Faster, if shifts are faster than additions

# **Booth's Algorithm**

| Current<br>bit | Bit to<br>right | Explanation            | Example                    | Operation |
|----------------|-----------------|------------------------|----------------------------|-----------|
| 1              | 0               | Begins run of '1'      | 00001111000                | Subtract  |
| 1              | 1               | Middle of run of '1'   | 00001111000                | Nothing   |
| 0              | 1               | End of a run of '1'    | 000 <mark>01</mark> 111000 | Add       |
| 0              | 0               | Middle of a run of '0' | 00001111000                | Nothing   |

# **Example 1 of Booth's Algorithm**

Let's do 0010 x 1101 (2 x -3)

| Itavatia  | Implementation 3                       |              |             |  |  |
|-----------|----------------------------------------|--------------|-------------|--|--|
| Iteration | Step                                   | Multiplicand | Product     |  |  |
| 0         | initial values                         | 0010         | 0000 1101 0 |  |  |
|           | 10 -> product = product – multiplicand | 0010         | 1110 1101 0 |  |  |
| 1         | shift right                            |              | 1111 0110 1 |  |  |
|           | 01 -> product = product + multiplicand | 0010         | 0001 0110 1 |  |  |
| 2         | shift right                            |              | 0000 1011 0 |  |  |
| 2         | 10 -> product = product – multiplicand | 0010         | 1110 1011 0 |  |  |
| 3         | shift right                            |              | 1111 0101 1 |  |  |
|           | 11 -> no op                            | 0010         | 1111 0101 1 |  |  |
| 4         | shift right                            |              | 1111 1010 1 |  |  |

#### **Example 2 of Booth's Algorithm**

- Negative multiplicand:
  - $-6 \times 6 = -36$
  - 1010 x 0110, 0110 in Booth's encoding is +0-0
  - Hence:

| 1111 1010 | x 0        | 0000 0000       |
|-----------|------------|-----------------|
| 1111 0100 | x -1       | 0000 1100       |
| 1110 1000 | x 0        | 0000 0000       |
| 1101 0000 | x +1       | 1101 0000       |
|           | Final Sum: | 1101 1100 (-36) |

## **Example 3 of Booth's Algorithm**

- Negative multiplier:
  - $-6 \times -2 = 12$
  - 1010 x 1110, 1110 in Booth's encoding is 00-0
  - Hence:

| 1111 1010 | x 0        | 0000 0000      |
|-----------|------------|----------------|
| 1111 0100 | x -1       | 0000 1100      |
| 1110 1000 | x 0        | 0000 0000      |
| 1101 0000 | x 0        | 0000 0000      |
|           | Final Sum: | 0000 1100 (12) |

## **Summary**

Benefit: Reducing the number of partial products

Take away: Booth encoding

#### **Exercise**

Unsigned Multiplication: x=5, y=3

Signed Multiplication: x=5, y=-7

## Yet Another Option: Array Multiplier



Adding all partial products simultaneously using an array of basic cells



## 4 x 4 Array Multiplier





## **16-bit Array Multiplier**



Conceptually straightforward

Fairly expensive hardware, integer multiplies relatively rare

Most used in array address calc: replace with shifts

#### **Overview**

- Addition
- Subtraction
- Arithmetic logic unit (ALU)
- Multiplication
- Division
- Floating number operations

## **Unsigned Division**

• Again, back to  $3^{rd}$  grade  $(74 \div 8 = 9 \text{ rem } 2)$ 

|         |   |   |   |   |   |   |   | 1 | 0 | 0 | 1 | Quotient  |
|---------|---|---|---|---|---|---|---|---|---|---|---|-----------|
| Divisor | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | Dividend  |
|         |   |   |   | - | 1 | 0 | 0 | 0 |   |   |   |           |
|         |   |   |   |   |   |   |   | 1 | 0 |   |   |           |
|         |   |   |   |   |   |   |   | 1 | 0 | 1 |   |           |
|         |   |   |   |   |   |   |   | 1 | 0 | 1 | 0 |           |
|         |   |   |   |   |   |   | - | 1 | 0 | 0 | 0 |           |
|         |   |   |   |   |   |   |   |   |   | 1 | 0 | Remainder |

## **Unsigned Division**

- How does hardware know if division fits?
  - Condition: if remainder ≥ divisor
  - Use subtraction: (remainder divisor)  $\geq 0$
- OK, so if it fits, what do we do?
  - Remainder<sub>n+1</sub> = Remainder<sub>n</sub> divisor
- What if it doesn't fit?
  - Have to restore original remainder
- Called restoring division

## Implementation 1





## **Example of Implementation 1**

#### • Let's do $7 \div 2$

| Iteration | Step                                      | Quotient | Divisor   | Remainder |
|-----------|-------------------------------------------|----------|-----------|-----------|
| 0         | Initial values                            | 0000     | 0010 0000 | 0000 0111 |
|           | 1: Rem=Rem-Div                            | 0000     | 0010 0000 | 1110 0111 |
| 1         | 2b: Rem<0=>+Div, sll Q, Q <sub>0</sub> =0 | 0000     | 0010 0000 | 0000 0111 |
|           | 3: Shift Div right                        | 0000     | 0001 0000 | 0000 0111 |
|           | 1: Rem=Rem-Div                            | 0000     | 0001 0000 | 1111 0111 |
| 2         | 2b: Rem<0=>+Div, sll Q, Q <sub>0</sub> =0 | 0000     | 0001 0000 | 0000 0111 |
|           | 3: Shift Div right                        | 0000     | 0000 1000 | 0000 0111 |
|           | 1: Rem=Rem-Div                            | 0000     | 0000 1000 | 1111 1111 |
| 3         | 2b: Rem<0=>+Div, sll Q, Q <sub>0</sub> =0 | 0000     | 0000 1000 | 0000 0111 |
|           | 3: Shift Div right                        | 0000     | 0000 0100 | 0000 0111 |
| 4         | 1: Rem=Rem-Div                            | 0000     | 0000 0100 | 0000 0011 |
|           | 2a: Rem≥0=> sll Q, Q <sub>0</sub> =1      | 0001     | 0000 0100 | 0000 0011 |
|           | 3: Shift Div right                        | 0001     | 0000 0010 | 0000 0011 |
| 5         | 1: Rem=Rem-Div                            | 0001     | 0000 0010 | 0000 0001 |
|           | 2a: Rem≥0=> sll Q, Q <sub>0</sub> =1      | 0011     | 0000 0010 | 0000 0001 |
|           | 3: Shift Div right                        | 0011     | 0000 0001 | 0000 0001 |

## **Division Improvements**

- Skip first subtract
  - Can't shift '1' into quotient anyway
  - Hence shift first, then subtract
    - Undo extra shift at end
- Hardware similar to multiplier
  - Can store quotient in remainder register
  - Only need 32-bit ALU
    - Shift remainder left vs. divisor right

## **Implementation 2**





# **Restoring Division**

| Iteration | Divisor | Divide algorithm                                  |           |  |  |  |
|-----------|---------|---------------------------------------------------|-----------|--|--|--|
|           |         | Step                                              | Remainder |  |  |  |
| 0         | 0010    | Initial values                                    | 0000 0111 |  |  |  |
|           | 0010    | Shift Rem left 1                                  | 0000 1110 |  |  |  |
| 1         | 0010    | 2: Rem = Rem - Div                                | 1110 1110 |  |  |  |
| 1         | 0010    | 3b: Rem $< 0 \Rightarrow$ + Div, sll R, R0 = 0    | 0001 1100 |  |  |  |
| 2         | 0010    | 2: Rem = Rem - Div                                | 1111 1100 |  |  |  |
|           | 0010    | 3b: Rem $< 0 \Rightarrow$ + Div, sll R, R0 = 0    | 0011 1000 |  |  |  |
| 3         | 0010    | 2: Rem = Rem - Div                                | 0001 1000 |  |  |  |
|           | 0010    | 3a: Rem $\geq 0 \Rightarrow \text{sll R}, R0 = 1$ | 0011 0001 |  |  |  |
| 4         | 0010    | 2: Rem = Rem - Div                                | 0001 0001 |  |  |  |
|           | 0010    | 3a: Rem $\ge 0 \Rightarrow \text{sll R}, R0 = 1$  | 0010 0011 |  |  |  |
| Done      | 0010    | shift left half of Rem right 1                    | 0001 0011 |  |  |  |

## **Further Improvements**

- Division still takes:
  - 2 ALU cycles per bit position
    - 1 to check for divisibility (subtract)
    - One to restore (if needed)
- Can reduce to 1 cycle per bit
  - Called non-restoring division
  - Avoids restore of remainder when test fails

## **Non-Restoring Division**

Consider remainder to be restored:

$$R_i = 2 \times R_{i-1} - d < 0$$

- Since R<sub>i</sub> is negative, we must restore it, right?
- Well, maybe not. Consider next step i+1:

$$R_{i+1} = 2 \times (R_i) - d = 2 \times (R_i - d) + d$$

- Hence, we can compute R<sub>i+1</sub> by not restoring R<sub>i</sub>, and adding d instead of subtracting d
  - Same value for  $R_{i+1}$  results
- Throughput of 1 bit per cycle

# **Non-Restoring Division**

| Iteration | Step                            | Divisor | Remainder        |
|-----------|---------------------------------|---------|------------------|
| 0         | Initial values                  | 0010    | 0000 0111        |
|           | Shift rem left 1                | 0010    | 0000 1110        |
| 1         | 2: Rem = Rem - Div              | 0010    | <b>1110</b> 1110 |
|           | 3b: Rem $< 0$ (add next), sll 0 | 0010    | 1101 1100        |
| 2         | 2: Rem = Rem + Div              | 0010    | <b>1111</b> 1100 |
|           | 3b: Rem $< 0$ (add next), sll 0 | 0010    | 1111 1000        |
| 3         | 2: Rem = Rem + Div              | 0010    | 0001 1000        |
|           | 3a: Rem $> 0$ (sub next), sll 1 | 0010    | 0011 0001        |
| 4         | Rem = Rem - Div                 | 0010    | 0001 0001        |
|           | Rem > 0 (sub next), sll 1       | 0010    | 0010 0011        |
|           | Shift Rem right by 1            | 0010    | 0001 0011        |

## What About Signed Division?

- The simplest solution is to remember the signs of the divisor and dividend and then negate the quotient if the signs disagree.
- However,  $(-7) \div 2 = ?$ 
  - $(+7) \div (-2) = ?$
  - $(-7) \div (-2) = ?$
- The correctly signed division algorithm *negates the quotient if the signs of the operands are opposite and makes the sign of the nonzero remainder match the dividend.*

#### **Overview**

- Addition
- Subtraction
- Arithmetic logic unit (ALU)
- Multiplication
- Division
- Floating number operations

## Floating point addition

Example in decimal: system precision 4 digits
What is 9.999 • 10<sup>1</sup> + 1.610 • 10<sup>-1</sup>?

Aligning the two numbers

$$9.999 \cdot 10^{1}$$

 $0.01610 \cdot 10^1 \rightarrow 0.016 \cdot 10^1$  Truncation

Addition

Normalization

$$1.0015 \cdot 10^2$$

Rounding

$$1.002 \cdot 10^2$$

## Floating point addition steps

- Alignment
- The proper digits have to be added
- Addition of significands
- Normalization of the result
- Rounding

## Example y=0.5+(-0.4375) in binary

- $0.5_{10} = 1.000_2 \times 2^{-1}$
- $-0.4375_2 = -1.110_2 \times 2^{-2}$
- Step1:The fraction with lesser exponent is shifted right until matches  $-1.110_2 \times 2^{-2} \rightarrow -0.111_2 \times 2^{-1}$
- Step2: Add the significands

$$1.000_{2} \times 2^{-1}$$
+) -  $0.111_{2} \times 2^{-1}$ 

$$0.001_2 \times 2^{-1}$$

• Step3: Normalize the sum and checking for overflow or underflow

$$0.001_2 \times 2^{-1} \rightarrow 0.010_2 \times 2^{-2} \rightarrow 0.100_2 \times 2^{-3} \rightarrow 1.000_2 \times 2^{-4}$$

Step4: Round the sum

$$1.000_2 \times 2^{-4} = 0.0625_{10}$$

## **Algorithm**

- Normalize Significands
- Add Significands
- Normalize the sum
- Over/underflow
- Rounding
- Normalization



#### FP Adder Hardware



#### **FP Adder Hardware**

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
  - Much longer than integer operations
  - Slower clock would penalize all instructions
- FP adder usually takes several cycles
  - Can be pipelined

## Floating-Point Multiplication

- Consider a 4-digit decimal example
  - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
  - For biased exponents, subtract bias from sum
  - New exponent = 10 + -5 = 5
- 2. Multiply significands
  - $1.110 \times 9.200 = 10.212 \implies 10.212 \times 10^5$
- 3. Normalize result & check for over/underflow
  - $1.0212 \times 10^6$
- 4. Round and renormalize if necessary
  - $1.021 \times 10^6$
- 5. Determine sign of result from signs of operands
  - $\bullet$  +1.021 × 10<sup>6</sup>

## Floating Point Multiplication

Composition of number from different parts

$$(s1 \cdot 2^{e1}) \cdot (s2 \cdot 2^{e2}) = (s1 \cdot s2) \cdot 2^{e1+e2}$$

Example

- Both significands are  $1 \rightarrow \text{product} = 1 \rightarrow \text{Sign} = 1$
- Add the exponents, bias = 127

10000010

+10000011

110000101

Correction: 110000101-011111111=10000110=134=127+3+4

## Multiplication

- Add exponents
- Multiply the significands
- Normalize
- Over- underflow
- Rounding
- Sign



# multiplying the numbers $0.5_{ten}$ and $-0.4375_{ten}$ $\rightarrow 1.000_{two}$ x $2^{-1}$ by $-1.110_{two}$ x $2^{-2}$

- Step1:Adding the exponents without bias or using the biased
  - -1 + (-2)=-3

• 
$$(-1 + 127) + (-2 + 127) - 127 = (-1 - 2) + (127 + 127 - 127)$$
  
=-3+127 = 124

Step 2. Multiplying the significands

- Step 3. normalize
  - $127 \ge -3 \ge -126$ , no overflow or underflow.
- Step 4. Rounding
  - $1.110_{two} x2^{-3}$
- Step 5. sign
  - $-1.110_{\text{two}} \text{x} 2^{-3} = -0.21875_{\text{ten}}$

## **FP Multiplier Hardware**



#### **FP Arithmetic Hardware**

- FP multiplier is of similar complexity to FP adder
  - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
  - Addition, subtraction, multiplication, division, reciprocal, square-root
  - FP ↔ integer conversion
- Operations usually takes several cycles
  - Can be pipelined

#### **Division-- Brief**

- Subtraction of exponents
- Division of the significands
- Normalization
- Rounding
- Sign

#### Parallelism and Computer Arithmetic: Associativity

- x + (y+z) = (x + y) + z?
  - $x = -1.5_{ten} \times 10^{38}$ ,  $y = 1.5_{ten} \times 10^{38}$ , and z = 1.0

  - (x+y) + z = 1.0

# **END**