Package 'BioMedR'

June 11, 2017
Type Package
Version 1.0.0
Date 2017-03-28
Title Generating Various Molecular Representations for Chemicals, Proteins, DNAs/RNAs and Their Interactions
Description The BioMedR package offers an R/Bioconductor package generating various molecular representations for chemicals, proteins, DNAs/RNAs and their interactions.
Author Min-feng Zhu <wind2zhu@163.com>, Jie Dong <biomed@csu.edu.cn>, Dong-sheng Cao <oriental-cds@163.com></oriental-cds@163.com></biomed@csu.edu.cn></wind2zhu@163.com>
Maintainer Min-feng Zhu <wind2zhu@163.com></wind2zhu@163.com>
License Artistic-2.0
SystemRequirements Java JDK 1.8 or higher
<pre>URL https://github.com/wind22zhu/BioMedR</pre>
BugReports https://github.com/wind22zhu/BioMedR/issues
LazyData yes
Imports RCurl, rjson, rcdk (>= 3.3.2), foreach, doParallel, Biostrings, GOSemSim, ChemmineR, fmcsR, pls, randomForest, utils, stats, graphics, methods, org.Hs.eg.db, ChemmineOB
Suggests RUnit, BiocGenerics
biocViews Software, DataImport, DataRepresentation, FeatureExtraction, Cheminformatics, BiomedicalInformatics, Proteomics, GO, GraphAndNetwork, SystemsBiology
NeedsCompilation no
R topics documented:
BioMedR-package AA2DACOR AA3DMoRSE AAACF AABLOSUM100 AABLOSUM45 AABLOSUM50

2

AABLOSUM62
AABLOSUM80
AABurden
AAConn
AAConst
AACPSA
AADescAll
AAEdgeAdj
AAEigIdx
AAFGC
AAGeom
AAGETAWAY
AAindex
AAInfo
AAMetaInfo
AAMOE2D
AAMOE3D
AAMolProp
AAPAM120
AAPAM250
AAPAM30
AAPAM40
AAPAM70
AARandic
AARDF
AATopo
AATopoChg
AAWalk
AAWHIM
acc
apfp
atomprop
Autocorrelation
bcl
BMgetDNAGenBank
calcDrugFPSim
calcDrugMCSSim
calcParProtGOSim
calcParProtSeqSim
calcTwoProtGOSim
calcTwoProtSeqSim
checkDNA
checkProt
clusterCMP
clusterJP
clusterMDS
connectivity
Constitutional
convAPtoFP
convSDFtoAP
extrDNADAC

extrDNADACC
extrDNADCC
extrDNAIncDiv
extrDNAkmer
extrDNAPseDNC
extrDNAPseKNC
extrDNATAC
extrDNATACC
extrDNATCC
extrDrugAIO
extrDrugAP
extrDrugBCUT
extrDrugCPSA
extrDrugEstate
extrDrugEstateComplete
extrDrugExtended
extrDrugExtendedComplete
extrDrugGraph
extrDrugGraphComplete
extrDrugHybridization
extrDrugHybridizationComplete
extrDrugHybridizationRatio
extrDrugIPMolecularLearning
extrDrugKappaShapeIndices
extrDrugKierHallSmarts
extrDrugKR
extrDrugKRComplete
extrDrugMACCS
extrDrugMACCSComplete
extrDrugMannholdLogP
extrDrugOBFP2
extrDrugOBFP3
extrDrugOBFP4
extrDrugPubChem
extrDrugPubChemComplete
extrDrugShortestPath
extrDrugShortestPathComplete
extrDrugStandard
extrDrugStandardComplete
extrDrugWHIM
extrPCMBLOSUM
extrPCMDescScales
extrPCMFAScales
extrPCMMDSScales
extrPCMPropScales
extrPCMScaleGap
extrPCMScales
extrProtAAC
extrProtAPAAC
extrProtCTDC
extrProtCTDCClass
avtrProtCTDD 103

161

Index

extrProtCTDDClass
extrProtCTDT
extrProtCTDTClass
extrProtCTriad
extrProtCTriadClass
extrProtDC
extrProtFPGap
extrProtGeary
extrProtMoran
extrProtMoreauBroto
extrProtPAAC
extrProtPSSM
extrProtPSSMAcc
extrProtPSSMFeature
extrProtQSO
extrProtSOCN
extrProtTC
geometric
getCPI
getDrug
getProt
make_kmer_index
NNeighbors
OptAA3d
parGOSim
parSeqSim
plotStructure
pls.cv
property
readFASTA
readMolFromSDF
readMolFromSmi
readPDB
revchars
rf.cv
rf.fs
sdfbcl
searchDrug
segProt
topology
twoGOSim
twoSeqSim
twoseqsiii

AA2DACOR 5

BioMedR-package	Toolkit for Compound-Protein Interaction in Drug Discovery
BioMedR-package	Toolkit for Compound-Protein Interaction in Drug Discovery

Description

The BioMedR package offers an R/Bioconductor package emphasizing the comprehensive integration of bioinformatics and chemoinformatics into a molecular informatics platform for drug discovery.

Details

The comprehensive user guide could be opened with vignette('BioMedR'), which explains the functionalities included in this package in detail. The BioMedR package is developed by Computational Biology and Drug Design (CBDD) Group, Central South University (http://cbdd.csu.edu.cn/).

Package: BioMedR Type: Package Version: Release 3 License: Artistic-2.0

Note

Bug reports and feature requests should be sent to https://github.com/wind22zhu/BioMedR/issues.

Author(s)

Minfeng Zhu <<wind2zhu@163.com.com>> Dongsheng Cao <<oriental-cds@163.com>>

Examples

NULL

AA2DACOR	2D Autocorrelations Descriptors for 20 Amino Acids calculated by
	Dragon

Description

2D Autocorrelations Descriptors for 20 Amino Acids calculated by Dragon

Usage

data(AA2DACOR)

Details

This dataset includes the 2D autocorrelations descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

6 AAACF

Examples

data(AA2DACOR)

AA3DMoRSE

3D-MoRSE Descriptors for 20 Amino Acids calculated by Dragon

Description

3D-MoRSE Descriptors for 20 Amino Acids calculated by Dragon

Usage

data(AA3DMoRSE)

Details

This dataset includes the 3D-MoRSE descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AA3DMoRSE)

AAACF

Atom-Centred Fragments Descriptors for 20 Amino Acids calculated by Dragon

Description

Atom-Centred Fragments Descriptors for 20 Amino Acids calculated by Dragon

Usage

data(AAACF)

Details

This dataset includes the atom-centred fragments descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AAACF)

AABLOSUM100 7

AABLOSUM100

BLOSUM100 Matrix for 20 Amino Acids

Description

BLOSUM100 Matrix for 20 Amino Acids

Usage

data(AABLOSUM100)

Details

BLOSUM100 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package of Bioconductor.

Examples

data(AABLOSUM100)

AABLOSUM45

BLOSUM45 Matrix for 20 Amino Acids

Description

BLOSUM45 Matrix for 20 Amino Acids

Usage

data(AABLOSUM45)

Details

BLOSUM45 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package of Bioconductor.

Examples

data(AABLOSUM45)

8 AABLOSUM62

AABLOSUM50

BLOSUM50 Matrix for 20 Amino Acids

Description

BLOSUM50 Matrix for 20 Amino Acids

Usage

data(AABLOSUM50)

Details

BLOSUM50 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package of Bioconductor.

Examples

data(AABLOSUM50)

AABLOSUM62

BLOSUM62 Matrix for 20 Amino Acids

Description

BLOSUM62 Matrix for 20 Amino Acids

Usage

data(AABLOSUM62)

Details

BLOSUM62 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package of Bioconductor.

Examples

data(AABLOSUM62)

AABLOSUM80 9

AABLOSUM80

BLOSUM80 Matrix for 20 Amino Acids

Description

BLOSUM80 Matrix for 20 Amino Acids

Usage

data(AABLOSUM80)

Details

BLOSUM80 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package of Bioconductor.

Examples

data(AABLOSUM80)

AABurden

Burden Eigenvalues Descriptors for 20 Amino Acids calculated by Dragon

Description

Burden Eigenvalues Descriptors for 20 Amino Acids calculated by Dragon

Usage

data(AABurden)

Details

This dataset includes the Burden eigenvalues descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AABurden)

10 AAConst

AAConn Connectivity Indices Descriptors for 20 Amino Acids calculated by Dragon

Description

Connectivity Indices Descriptors for 20 Amino Acids calculated by Dragon

Usage

data(AAConn)

Details

This dataset includes the connectivity indices descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AAConn)

AAConst

Constitutional Descriptors for 20 Amino Acids calculated by Dragon

Description

Constitutional Descriptors for 20 Amino Acids calculated by Dragon

Usage

data(AAConst)

Details

This dataset includes the constitutional descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AAConst)

AACPSA 11

AACPSA

CPSA Descriptors for 20 Amino Acids calculated by Discovery Studio

Description

CPSA Descriptors for 20 Amino Acids calculated by Discovery Studio

Usage

data(AACPSA)

Details

This dataset includes the CPSA descriptors of the 20 amino acids calculated by Discovery Studio (version 2.5) used for scales extraction in this package. All amino acid molecules had also been optimized with MOE 2011.10 (semiempirical AM1) before calculating these CPSA descriptors. The SDF file containing the information of the optimized amino acid molecules is included in this package. See OptAA3d for more information.

Examples

data(AACPSA)

AADescAll

All 2D Descriptors for 20 Amino Acids calculated by Dragon

Description

All 2D Descriptors for 20 Amino Acids calculated by Dragon

Usage

data(AADescAll)

Details

This dataset includes all the 2D descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AADescAll)

12 AAEigIdx

AAEdgeAdj	Edge Adjacency Indices Descriptors for 20 Amino Acids calculated by Dragon

Description

Edge Adjacency Indices Descriptors for 20 Amino Acids calculated by Dragon

Usage

```
data(AAEdgeAdj)
```

Details

This dataset includes the edge adjacency indices descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

Examples

```
data(AAEdgeAdj)
```

AA	۱E:	iσ	Τd	lχ

Eigenvalue-Based Indices Descriptors for 20 Amino Acids calculated by Dragon

Description

Eigenvalue-Based Indices Descriptors for 20 Amino Acids calculated by Dragon

Usage

```
data(AAEigIdx)
```

Details

This dataset includes the eigenvalue-based indices descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

```
data(AAEigIdx)
```

AAFGC 13

AAFGC

Functional Group Counts Descriptors for 20 Amino Acids calculated by Dragon

Description

Functional Group Counts Descriptors for 20 Amino Acids calculated by Dragon

Usage

data(AAFGC)

Details

This dataset includes the functional group counts descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AAFGC)

AAGeom

Geometrical Descriptors for 20 Amino Acids calculated by Dragon

Description

Geometrical Descriptors for 20 Amino Acids calculated by Dragon

Usage

data(AAGeom)

Details

This dataset includes the geometrical descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AAGeom)

14 AAindex

AAGETAWAY

GETAWAY Descriptors for 20 Amino Acids calculated by Dragon

Description

GETAWAY Descriptors for 20 Amino Acids calculated by Dragon

Usage

data(AAGETAWAY)

Details

This dataset includes the GETAWAY descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AAGETAWAY)

AAindex

AAindex Data of 544 Physicochemical and Biological Properties for 20 Amino Acids

Description

AAindex Data of 544 Physicochemical and Biological Properties for 20 Amino Acids

Usage

data(AAindex)

Details

The data was extracted from the AAindex1 database ver 9.1 (ftp://ftp.genome.jp/pub/db/community/aaindex/aaindex1) as of Nov. 2012 (Data Last Modified 2006-08-14).

With this data, users could investigate each property's accession number and other details. Visit http://www.genome.jp/dbget/aaindex.html for more information.

Examples

data(AAindex)

AAInfo 15

AAInfo Inform Drage	ation Indices Descriptors for 20 Amino Acids	calculated by
---------------------	--	---------------

Description

Information Indices Descriptors for 20 Amino Acids calculated by Dragon

Usage

```
data(AAInfo)
```

Details

This dataset includes the information indices descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AAInfo)

AAMetaInfo

Meta Information for the 20 Amino Acids

Description

Meta Information for the 20 Amino Acids

Usage

```
data(AAMetaInfo)
```

Details

This dataset includes the meta information of the 20 amino acids used for the 2D and 3D descriptor calculation in this package. Each column represents:

- AAName Amino Acid Name
- Short One-Letter Representation
- $\bullet \ \ \text{Abbreviation Three-Letter Representation}$
- mol SMILE Representation
- PUBCHEM_COMPOUND_CID PubChem CID for the Amino Acid
- PUBCHEM_LINK PubChem Link for the Amino Acid

```
data(AAMetaInfo)
```

16 AAMOE3D

AAMOE2D

2D Descriptors for 20 Amino Acids calculated by MOE 2011.10

Description

2D Descriptors for 20 Amino Acids calculated by MOE 2011.10

Usage

data(AAMOE2D)

Details

This dataset includes the 2D descriptors of the 20 amino acids calculated by MOE 2011.10 used for scales extraction in this package.

Examples

data(AAMOE2D)

AAMOE3D

3D Descriptors for 20 Amino Acids calculated by MOE 2011.10

Description

3D Descriptors for 20 Amino Acids calculated by MOE 2011.10

Usage

data(AAMOE3D)

Details

This dataset includes the 3D descriptors of the 20 amino acids calculated by MOE 2011.10 used for scales extraction in this package. All amino acid molecules had also been optimized with MOE (semiempirical AM1) before calculating these 3D descriptors. The SDF file containing the information of the optimized amino acid molecules is included in this package. See OptAA3d for more information.

Examples

data(AAMOE3D)

AAMolProp 17

AAMolProp Molecular Properties Descriptors for 20 Amino Acids calculated by Dragon

Description

Molecular Properties Descriptors for 20 Amino Acids calculated by Dragon

Usage

data(AAMolProp)

Details

This dataset includes the molecular properties descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AAMolProp)

AAPAM120

PAM120 Matrix for 20 Amino Acids

Description

PAM120 Matrix for 20 Amino Acids

Usage

data(AAPAM120)

Details

PAM120 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package of Bioconductor.

Examples

data(AAPAM120)

18 *AAPAM30*

AAPAM250

PAM250 Matrix for 20 Amino Acids

Description

PAM250 Matrix for 20 Amino Acids

Usage

data(AAPAM250)

Details

PAM250 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package of Bioconductor.

Examples

data(AAPAM250)

AAPAM30

PAM30 Matrix for 20 Amino Acids

Description

PAM30 Matrix for 20 Amino Acids

Usage

data(AAPAM30)

Details

PAM30 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package of Bioconductor.

Examples

data(AAPAM30)

AAPAM40 19

AAPAM40

PAM40 Matrix for 20 Amino Acids

Description

PAM40 Matrix for 20 Amino Acids

Usage

data(AAPAM40)

Details

PAM40 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package of Bioconductor.

Examples

data(AAPAM40)

AAPAM70

PAM70 Matrix for 20 Amino Acids

Description

PAM70 Matrix for 20 Amino Acids

Usage

data(AAPAM70)

Details

PAM70 Matrix for the 20 amino acids. The matrix was extracted from the Biostrings package of Bioconductor.

Examples

data(AAPAM70)

20 AARDF

AARandic

Randic Molecular Profiles Descriptors for 20 Amino Acids calculated by Dragon

Description

Randic Molecular Profiles Descriptors for 20 Amino Acids calculated by Dragon

Usage

```
data(AARandic)
```

Details

This dataset includes the Randic molecular profiles descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

Examples

```
data(AARandic)
```

AARDF

RDF Descriptors for 20 Amino Acids calculated by Dragon

Description

RDF Descriptors for 20 Amino Acids calculated by Dragon

Usage

```
data(AARDF)
```

Details

This dataset includes the RDF descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

```
data(AARDF)
```

AATopo 21

AATopo

Topological Descriptors for 20 Amino Acids calculated by Dragon

Description

Topological Descriptors for 20 Amino Acids calculated by Dragon

Usage

```
data(AATopo)
```

Details

This dataset includes the topological descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AATopo)

AATopoChg

Topological Charge Indices Descriptors for 20 Amino Acids calculated by Dragon

Description

Topological Charge Indices Descriptors for 20 Amino Acids calculated by Dragon

Usage

```
data(AATopoChg)
```

Details

This dataset includes the topological charge indices descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

```
data(AATopoChg)
```

22 AAWHIM

AAWalk Walk and Path Counts Descriptors for 20 Amino Acids calculated by Dragon

Description

Walk and Path Counts Descriptors for 20 Amino Acids calculated by Dragon

Usage

data(AAWalk)

Details

This dataset includes the walk and path counts descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AAWalk)

AAWHIM

WHIM Descriptors for 20 Amino Acids calculated by Dragon

Description

WHIM Descriptors for 20 Amino Acids calculated by Dragon

Usage

data(AAWHIM)

Details

This dataset includes the WHIM descriptors of the 20 amino acids calculated by Dragon (version 5.4) used for scales extraction in this package.

Examples

data(AAWHIM)

acc 23

acc	Auto Cross Covariance (ACC) for Generating Scales-Based Descriptors of the Same Length
	tors of the Same Length

Description

Auto Cross Covariance (ACC) for Generating Scales-Based Descriptors of the Same Length

Usage

```
acc(mat, lag)
```

Arguments

mat A p * n matrix. Each row represents one scale (total p scales), each column

represents one amino acid position (total n amino acids).

lag The lag parameter. Must be less than the amino acids.

Details

This function calculates the auto covariance and auto cross covariance for generating scale-based descriptors of the same length.

Value

A length lag * p^2 named vector, the element names are constructed by: the scales index (crossed scales index) and lag index.

Note

To know more details about auto cross covariance, see the references.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

References

Wold, S., Jonsson, J., Sj\"orstr\"om, M., Sandberg, M., & R\"annar, S. (1993). DNA and peptide sequences and chemical processes multivariately modelled by principal component analysis and partial least-squares projections to latent structures. *Analytica chimica acta*, 277(2), 239–253.

Sj\"ostr\"om, M., R\"annar, S., & Wieslander, A. (1995). Polypeptide sequence property relationships in *Escherichia coli* based on auto cross covariances. *Chemometrics and intelligent laboratory systems*, 29(2), 295–305.

See Also

See extrPCMScales for generalized scales-based descriptors. For more details, see extrPCMDescScales and extrPCMPropScales.

24 atomprop

Examples

```
p = 8  # p is the scales number
n = 200  # n is the amino acid number
lag = 7  # the lag paramter
mat = matrix(rnorm(p * n), nrow = p, ncol = n)
acc(mat, lag)
```

apfp

Frequent Atom Pairs

Description

Frequent Atom Pairs

Usage

```
data(apfp)
```

Details

Object stores 4096 most frequent atom pairs generated from DrugBank compounds.

Examples

```
data(apfp)
```

atomprop

Standard atomic weights

Description

Standard atomic weights

Usage

```
data(atomprop)
```

Details

Data frame with atom names, symbols, standard atomic weights, group number and period number.

```
data(atomprop)
```

Autocorrelation 25

Autocorrelation Calculatial Cha	es the Moreau-Broto Autocorrelation Descriptors using Par- ges
---------------------------------	---

Description

Calculates the Moreau-Broto Autocorrelation Descriptors using Partial Charges Calculates the Moreau-Broto Autocorrelation Descriptors using Atomic Weight Calculates the Moreau-Broto Autocorrelation Descriptors using Polarizability

Usage

```
extrDrugAutocorrelationcharge(molecules, silent = TRUE)
extrDrugAutocorrelationMass(molecules, silent = TRUE)
extrDrugAutocorrelationPolarizability(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

Calculates the ATS autocorrelation descriptor, where the weight equal to the charges.

Calculates the ATS autocorrelation descriptor, where the weight equal to the scaled atomic mass.

Calculates the ATS autocorrelation descriptor using polarizability.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This function returns 5 columns named ATSc1, ATSc2, ATSc3, ATSc4, ATSc5.

 $extrDrugAutocorrelation Mass: This function returns 5 columns named \verb|ATSm1|, \verb|ATSm2|, \verb|ATSm3|, \verb|ATSm4|, \verb|ATSm5|.$

extrDrugAutocorrelationPolarizability: This function returns 5 columns named ATSp1, ATSp2, ATSp3, ATSp4, ATSp5.

Author(s)

```
\label{lem:min-feng} Min-feng\ Zhu <<\!\!wind2zhu@163.com\!\!>>,\ Nan\ Xiao <\!\!http://r2s.name\!\!>>
```

References

Moreau, Gilles, and Pierre Broto. The autocorrelation of a topological structure: a new molecular descriptor. Nouv. J. Chim 4 (1980): 359-360.

26 BMgetDNAGenBank

Examples

```
# Calculates the Moreau-Broto Autocorrelation Descriptors using Partial Charges
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugAutocorrelationcharge(mol)
head(dat)
# Calculates the Moreau-Broto Autocorrelation Descriptors using Atomic Weight
dat = extrDrugAutocorrelationMass(mol)
head(dat)
# Calculates the Moreau-Broto Autocorrelation Descriptors using Polarizability
dat = extrDrugAutocorrelationPolarizability(mol)
head(dat)
```

bcl

2D descriptors of bcl2

Description

2D descriptors of bcl2

Usage

data(bcl)

Details

object stores 380 molecules and 160 2D descriptors

Examples

data(bcl)

 ${\tt BMgetDNAGenBank}$

Get DNA/RNA Sequences from Genbank by GI ID

Description

Get DNA/RNA Sequences from Genbank by GI ID

Usage

BMgetDNAGenBank(id)

Arguments

 id

A character vector, as the GI ID(s).

Details

This function get DNA/RNA sequences from Genbank by GI ID(s).

calcDrugFPSim 27

Value

A list, each component contains one of the DNA/RNA sequences.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>
```

See Also

See readFASTA for reading FASTA format files.

Examples

```
# Network latency may slow down this example # Only test this when your connection is fast enough ids = c(2, 11) BMgetDNAGenBank(ids)
```

calcDrugFPSim

Calculate Drug Molecule Similarity Derived by Molecular Fingerprints

Description

Calculate Drug Molecule Similarity Derived by Molecular Fingerprints

Usage

```
calcDrugFPSim(fp1, fp2, fptype = c("compact", "complete"),
  metric = c("tanimoto", "euclidean", "cosine", "dice", "hamming"))
```

Arguments

fp1	The first molecule's fingerprints, could be extracted by extractDrugMACCS(),
	extractDrugMACCSComplete() etc.
fp2	The second molecule's fingerprints.
fptype	The fingerprint type, must be one of "compact" or "complete".
metric	The similarity metric, one of "tanimoto", "euclidean", "cosine", "dice"
	and "hamming".

Details

This function calculate drug molecule fingerprints similarity. Define a as the features of object A, b is the features of object B, c is the number of common features to A and B:

```
• Tanimoto: aka Jaccard - c/a + b + c
```

- Euclidean: $\sqrt{(a+b)}$
- Dice: aka Sorensen, Czekanowski, Hodgkin-Richards c/0.5[(a+c)+(b+c)]
- Cosine: aka Ochiai, Carbo $c/\sqrt{((a+c)(b+c))}$
- Hamming: aka Manhattan, taxi-cab, city-block distance (a + b)

28 calcDrugMCSSim

Value

The numeric similarity value.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

References

Gasteiger, Johann, and Thomas Engel, eds. Chemoinformatics. Wiley.com, 2006.

Examples

```
mols = readMolFromSDF(system.file('compseq/tyrphostin.sdf', package = 'BioMedR'))
fp1 = extrDrugEstate(mols[[1]])
fp2 = extrDrugEstate(mols[[2]])
calcDrugFPSim(fp1, fp2, fptype = 'compact', metric = 'tanimoto')
```

calcDrugMCSSim

Calculate Drug Molecule Similarity Derived by Maximum Common Substructure Search

Description

Calculate Drug Molecule Similarity Derived by Maximum Common Substructure Search

Usage

```
calcDrugMCSSim(mol1, mol2, type = c("smile", "sdf"), plot = FALSE, al = 0,
  au = 0, bl = 0, bu = 0, matching.mode = "static", ...)
```

Arguments

mol1	The first molecule. R character string object containing the molecule. See examples.
mol2	The second molecule. R character string object containing the molecule. See examples.
type	The input molecule format, 'smile' or 'sdf'.
plot	Logical. Should we plot the two molecules and their maximum common substructure?
al	Lower bound for the number of atom mismatches. Default is 0.
au	Upper bound for the number of atom mismatches. Default is 0.
bl	Lower bound for the number of bond mismatches. Default is 0.
bu	Upper bound for the number of bond mismatches. Default is 0.
matching.mode	Three modes for bond matching are supported: 'static', 'aromatic', and 'ring'.
• • •	Other graphical parameters

calcParProtGOSim 29

Details

This function calculate drug molecule similarity derived by maximum common substructure search. The maximum common substructure search algorithm is provided by the fmcsR package.

Value

A list containing the detail MCS information and similarity values. The numeric similarity value includes Tanimoto coefficient and overlap coefficient.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

References

Wang, Y., Backman, T. W., Horan, K., & Girke, T. (2013). fmcsR: mismatch tolerant maximum common substructure searching in R. Bioinformatics, 29(21), 2792–2794.

Examples

```
mol1 = 'CC(C)CCCCCC(=0)NCC1=CC(=C(C=C1)0)OC'
mol2 = 'O=C(NCc1cc(OC)c(O)cc1)CCCC/C=C/C(C)C'
sim1 = calcDrugMCSSim(mol1, mol2, type = 'smile')
print(sim1[[2]]) # Tanimoto Coefficient
```

calcParProtGOSim

Protein Sequence Similarity Calculation based on Gene Ontology (GO) Similarity

Description

Protein Sequence Similarity Calculation based on Gene Ontology (GO) Similarity

Usage

```
calcParProtGOSim(golist, type = c("go", "gene"), ont = "MF",
  organism = "human", measure = "Resnik", combine = "BMA")
```

Arguments

golist	A character vector, each component contains a character vector of GO terms or one Entrez Gene ID.
type	Input type of golist, 'go' for GO Terms, 'gene' for gene ID.
ont	Default is 'MF', could be one of 'MF', 'BP', or 'CC' subontologies.
organism	Default is 'human', could be one of 'anopheles', 'arabidopsis', 'bovine', 'canine', 'chicken', 'chimp', 'coelicolor', 'ecolik12', 'ecsakai', 'fly', 'human', 'malaria', 'mouse', 'pig', 'rat', 'rhesus', 'worm', 'xenopus', 'yeast' or 'zebrafish'.
measure	Default is 'Resnik', could be one of 'Resnik', 'Lin', 'Rel', 'Jiang' or 'Wang'.
combine	Default is 'BMA', could be one of 'max', 'average', 'rcmax' or 'BMA' for combining semantic similarity scores of multiple GO terms associated with protein.

30 calcParProtSeqSim

Details

This function calculates protein sequence similarity based on Gene Ontology (GO) similarity.

Value

A n x n similarity matrix.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

See Also

See calcTwoProtGOSim for calculating the GO semantic similarity between two groups of GO terms or two Entrez gene IDs. See calcParProtSeqSim for paralleled protein similarity calculation based on sequence alignment.

Examples

```
# by GO Terms
go1 = c('GO:0005215', 'GO:0005488', 'GO:0005515', 'GO:0005625', 'GO:0005802', 'GO:0005905') # AP4B1
go2 = c('GO:0005515', 'GO:0005634', 'GO:0005681', 'GO:0008380', 'GO:0031202') # BCAS2
go3 = c('GO:0003735', 'GO:0005622', 'GO:0005840', 'GO:0006412') # PDE4DIP
glist = list(go1, go2, go3)
gsimmat1 = calcParProtGOSim(glist, type = 'go', ont = 'CC')
print(gsimmat1)

# by Entrez gene id
genelist = list(c('150', '151', '152', '1814', '1815', '1816'))
gsimmat2 = calcParProtGOSim(genelist, type = 'gene')
print(gsimmat2)
```

 ${\tt calcParProtSeqSim}$

Parallellized Protein Sequence Similarity Calculation based on Sequence Alignment

Description

Parallellized Protein Sequence Similarity Calculation based on Sequence Alignment

Usage

```
calcParProtSeqSim(protlist, cores = 2, type = "local",
  submat = "BLOSUM62")
```

calcTwoProtGOSim 31

Arguments

protlist	A length n list containing n protein sequences, each component of the list is a character string, storing one protein sequence. Unknown sequences should be represented as ''.
cores	Integer. The number of CPU cores to use for parallel execution, default is 2. Users could use the detectCores() function in the parallel package to see how many cores they could use.
type	Type of alignment, default is 'local', could be 'global' or 'local', where 'global' represents Needleman-Wunsch global alignment; 'local' represents Smith-Waterman local alignment.
submat	Substitution matrix, default is 'BLOSUM62', could be one of 'BLOSUM45', 'BLOSUM50', 'BLOSUM62', 'BLOSUM80', 'BLOSUM100', 'PAM30', 'PAM40', 'PAM70', 'PAM120', 'PAM250'.

Details

This function implemented the parallellized version for calculating protein sequence similarity based on sequence alignment.

Value

A n x n similarity matrix.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

See Also

See calcTwoProtSeqSim for protein sequence alignment for two protein sequences. See calcParProtGOSim for protein similarity calculation based on Gene Ontology (GO) semantic similarity.

Examples

```
s1 = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
s2 = readFASTA(system.file('protseq/P08218.fasta', package = 'BioMedR'))[[1]]
s3 = readFASTA(system.file('protseq/P10323.fasta', package = 'BioMedR'))[[1]]
s4 = readFASTA(system.file('protseq/P20160.fasta', package = 'BioMedR'))[[1]]
s5 = readFASTA(system.file('protseq/Q9NZP8.fasta', package = 'BioMedR'))[[1]]
plist = list(s1, s2, s3, s4, s5)
psimmat = calcParProtSeqSim(plist, cores = 2, type = 'local', submat = 'BLOSUM62')
calcTwoProtGOSim

Protein Similarity Calculation based on Gene Ontology (GO) Similar-
```

Description

Protein Similarity Calculation based on Gene Ontology (GO) Similarity

32 calcTwoProtGOSim

Usage

```
calcTwoProtGOSim(id1, id2, type = c("go", "gene"), ont = "MF",
  organism = "human", measure = "Resnik", combine = "BMA")
```

Arguments

id1	A character vector. length > 1: each element is a GO term; length = 1: the Entrez Gene ID.
id2	A character vector. length > 1: each element is a GO term; length = 1: the Entrez Gene ID.
type	Input type of id1 and id2, 'go' for GO Terms, 'gene' for gene ID.
ont	Default is 'MF', could be one of 'MF', 'BP', or 'CC' subontologies.
organism	Default is 'human', could be one of 'anopheles', 'arabidopsis', 'bovine', 'canine', 'chicken', 'chimp', 'coelicolor', 'ecolik12', 'ecsakai', 'fly', 'human', 'malaria', 'mouse', 'pig', 'rat', 'rhesus', 'worm', 'xenopus', 'yeast' or 'zebrafish'.
measure	Default is 'Resnik', could be one of 'Resnik', 'Lin', 'Rel', 'Jiang' or 'Wang'.
combine	Default is 'BMA', could be one of 'max', 'average', 'rcmax' or 'BMA' for combining semantic similarity scores of multiple GO terms associated with protein.

Details

This function calculates the Gene Ontology (GO) similarity between two groups of GO terms or two Entrez gene IDs.

Value

A n x n matrix.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

See Also

See calcParProtGOSim for protein similarity calculation based on Gene Ontology (GO) semantic similarity. See calcParProtSeqSim for paralleled protein similarity calculation based on sequence alignment.

```
# by GO terms
go1 = c("GO:0004022", "GO:0004024", "GO:0004023")
go2 = c("GO:0009055", "GO:0020037")
gsim1 = calcTwoProtGOSim(go1, go2, type = 'go', ont = 'MF', measure = 'Wang')
print(gsim1)
# by Entrez gene id
gene1 = '241'
```

calcTwoProtSeqSim 33

```
gene2 = '251'
gsim2 = calcTwoProtGOSim(gene1, gene2, type = 'gene', ont = 'CC', measure = 'Lin')
print(gsim2)
```

calcTwoProtSeqSim

Protein Sequence Alignment for Two Protein Sequences

Description

Protein Sequence Alignment for Two Protein Sequences

Usage

```
calcTwoProtSeqSim(seq1, seq2, type = "local", submat = "BLOSUM62")
```

Arguments

seq1	A character string, containing one protein sequence.
seq2	A character string, containing another protein sequence.
type	Type of alignment, default is 'local', could be 'global' or 'local', where 'global' represents Needleman-Wunsch global alignment; 'local' represents Smith-Waterman local alignment.
submat	Substitution matrix, default is 'BLOSUM62', could be one of 'BLOSUM45', 'BLOSUM50', 'BLOSUM62', 'BLOSUM80', 'BLOSUM100', 'PAM30', 'PAM40', 'PAM70', 'PAM120', 'PAM250'.

Details

This function implements the sequence alignment between two protein sequences.

Value

An Biostrings object containing the scores and other alignment information.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <a href="http://r2s.name">http://r2s.name</a>
```

See Also

See calcParProtSeqSim for paralleled pairwise protein similarity calculation based on sequence alignment. See calcTwoProtGOSim for calculating the GO semantic similarity between two groups of GO terms or two Entrez gene IDs.

```
s1 = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
s2 = readFASTA(system.file('protseq/P10323.fasta', package = 'BioMedR'))[[1]]
seqalign = calcTwoProtSeqSim(s1, s2)
summary(seqalign)
```

34 checkProt

checkDNA

Check if the DNA sequence are in the 4 default types

Description

Check if the DNA sequence are in the 4 default types

Usage

```
checkDNA(x)
```

Arguments

Χ

A character vector, as the input DNA sequence.

Details

This function checks if the DNA sequence types are in the 4.

Value

Logical. TRUE if all of the DNA types of the sequence are within the 4 default types.

The result character vector

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

Examples

```
x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
checkDNA(x) # TRUE
checkDNA(paste(x, 'Z', sep = '')) # FALSE
```

checkProt

Check if the protein sequence's amino acid types are the 20 default types

Description

Check if the protein sequence's amino acid types are the 20 default types

Usage

```
checkProt(x)
```

Arguments

Χ

A character vector, as the input protein sequence.

clusterCMP 35

Details

This function checks if the protein sequence's amino acid types are the 20 default types.

Value

Logical. TRUE if all of the amino acid types of the sequence are within the 20 default types.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

Examples

clusterCMP

cluster compounds using a descriptor database

Description

'clusterCMP' uses structural compound descriptors and clusters the compounds based on their pairwise distances. clusterCMP uses single linkage to measure distance between clusters when it merges clusters. It accepts both a single cutoff and a cutoff vector. By using a cutoff vector, it can generate results similar to hierarchical clustering after tree cutting.

Usage

```
clusterCMP(db, cutoff, is.similarity = TRUE, save.distances = FALSE,
  use.distances = NULL, quiet = FALSE, ...)
```

Arguments

db	The desciptor database
cutoff	The clustering cutoff. Can be a single value or a vector. The cutoff gives the maximum distance between two compounds in order to group them in the same cluster.
is.similarity	Set when the cutoff supplied is a similarity cutoff. This cutoff is the minimum similarity value between two compounds such that they will be grouped in the same cluster.
save.distances	whether to save distance for future clustering. See details below.
use.distances	Supply pre-computed distance matrix.
quiet	Whether to suppress the progress information.
	Further arguments to be passed to similarity.

36 clusterCMP

Details

clusterCMP will compute distances on the fly if use.distances is not set. Furthermore, if save.distances is not set, the distance values computed will never be stored and any distance between two compounds is guaranteed not to be computed twice. Using this method, clusterCMP can deal with large databases when a distance matrix in memory is not feasible. The speed of the clustering function should be slowed when using a transient distance calculation. When save.distances is set, clusterCMP will be forced to compute the distance matrix and save it in memory before the clustering. This is useful when additional clusterings are required in the future without re-computed the distance matrix. Set save.distances to TRUE if you only want to force the clustering to use this 2-step approach; otherwise, set it to the filename under which you want the distance matrix to be saved. After you save it, when you need to reuse the distance matrix, you can 'load' it, and supply it to clusterCMP via the use.distances argument. clusterCMP supports a vector of several cutoffs. When you have multiple cutoffs, clusterCMP still guarantees that pairwise distances will never be recomputed, and no copy of distances is kept in memory. It is guaranteed to be as fast as calling clusterCMP with a single cutoff that results in the longest processing time, plus some small overhead linear in processing time.

Value

Returns a data.frame. Besides a variable giving compound ID, each of the other variables in the data frame will either give the cluster IDs of compounds under some clustering cutoff, or the size of clusters that the compounds belong to. When N cutoffs are given, in total 2*N+1 variables will be generated, with N of them giving the cluster ID of each compound under each of the N cutoffs, and the other N of them giving the cluster size under each of the N cutoffs. The rows are sorted by cluster sizes.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

References

•••

See Also

See clusterStat for generate statistics on sizes of clusters.

```
data(sdfbcl)
apbcl <- convSDFtoAP(sdfbcl)
fpbcl <- convAPtoFP(apbcl)
clusters <- clusterCMP(db = apbcl, cutoff = c(0.5, 0.85))
clusters2 <- clusterCMP(fpbcl, cutoff = c(0.5, 0.7), method = "Tversky")
clusters <- clusterCMP(apbcl, cutoff = 0.65, save.distances = "distmat.rda")
load("distmat.rda")
clusters <- clusterCMP(apbcl, cutoff = 0.60, use.distances = distmat)</pre>
```

clusterJP 37

_ 7	١.				тг	١
(. l	ı U.	IS.	t e	r	JF	•

Jarvis-Patrick Clustering

Description

Jarvis-Patrick Clustering

Usage

```
clusterJP(nnm, k, mode = "a1a2b", linkage = "single")
```

Arguments

nnm A nearest neighbor table, as produced by nearestNeighbors.

k Minimum number of nearest neighbors two rows (items) in the nearest neighbor

table need to have in common to join them into the same cluster.

mode If mode = "a1a2b" (default), the clustering is run with both requirements (a)

and (b); if mode = "a1b" then (a) is relaxed to a unidirectional requirement; and if mode = "b" then only requirement (b) is used. The size of the clusters generated by the different methods increases in this order: "a1a2b" < "a1b" < "b". The run time of method "a1a2b" follows a close to linear relationship, while it is nearly quadratic for the much more exhaustive method "b". Only methods "a1a2b" and "a1b" are suitable for clustering very large data sets (e.g. >50,000

items) in a reasonable amount of time.

linkage Can be one of "single", "average", or "complete", for single linkage, average

linkage and complete linkage merge requirements, respectively. In the context of Jarvis-Patrick, average linkage means that at least half of the pairs between the clusters under consideration must pass the merge requirement. Similarly, for complete linkage, all pairs must pass the merge requirement. Single linkage is the normal case for Jarvis-Patrick and just means that at least one pair must meet

the requirement.

Details

Function to perform Jarvis-Patrick clustering. The algorithm requires a nearest neighbor table, which consists of neighbors for each item in the dataset. This information is then used to join items into clusters with the following requirements: (a) they are contained in each other's neighbor list (b) they share at least k nearest neighbors. The nearest neighbor table can be computed with NNeighbors. For standard Jarvis-Patrick clustering, this function takes the number of neighbors to keep for each item.

Value

Depending on the setting under the type argument, the function returns the clustering result in a named vector or a nearest neighbor table as matrix.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

38 clusterMDS

References

Jarvis RA, Patrick EA (1973) Clustering Using a Similarity Measure Based on Shared Near Neighbors. IEEE Transactions on Computers, C22, 1025-1034. URLs: http://davide.eynard.it/teaching/2012_PAMI/JP.pdf, http://www.btluke.com/jpclust.html, http://www.daylight.com/dayhtml/doc/cluster/index.pdf

See Also

see NNeighbors for nearest neighbors

Examples

```
data(sdfbcl)
apbcl <- convSDFtoAP(sdfbcl)
fpbcl <- convAPtoFP(apbcl)
clusterJP(NNeighbors(apbcl, numNbrs = 6), k = 5, mode = "a1a2b")
clusterJP(NNeighbors(fpbcl, numNbrs = 6), k = 5, mode = "a1b")
clusterJP(NNeighbors(apbcl, cutoff = 0.6), k = 2, mode = 'b')</pre>
```

clusterMDS

visualize clustering result using multi-dimensional scaling

Description

'clusterMDS' takes clustering result returned by 'clusterCMP' and generate multi-dimensional scaling plot for visualization purpose.

Usage

```
clusterMDS(db, cls, size.cutoff, distmat = NULL, color.vector = NULL,
    cluster.result = 1, dimensions = 2, quiet = FALSE,
    highlight.compounds = NULL, highlight.color = NULL)
```

Arguments

db The desciptor database
cls The clustering result returned by 'clusterCMP'.

size.cutoff The cutoff size for clusters considered in this visualization. Clusters of size

smaller than the cutoff will not be considered.

distmat A distance matrix that corresponds to the 'db'. If not provided, it will be com-

puted on-the-fly in an efficient manner.

color . vector Colors to be used in the plot. If the number of colors in the vector is not enough

for the plot, colors will be reused. If not provided, color will be generated and

randomly sampled from 'rainbow'.

cluster.result Used to select the clustering result if multiple clustering results are present in

'cls'.

dimensions Dimensionality to be used in visualization. See details.

quiet Whether to supress the progress bar.

highlight.compounds

A vector of compound IDs, corresponding to compounds to be highlighted in the plot. A highlighted compound is represented as a filled circle.

clusterMDS 39

highlight.color

Color used for highlighted compounds. If not set, a highlighted compounds will have the same color as that used for other compounds in the same cluster.

Details

'clusterMDS' internally calls the 'cmdscale' function to generate a set of points in 2-D for the compounds in selected clusters. Note that for compounds in clusters smaller than the cutoff size, they will not be considered in this calculation - their entries in 'distmat' will be discarded if 'distmat' is provided, and distances involving them will not be computed if 'distmat' is not provided. To determine the value for 'size.cutoff', you can use 'cluster.sizestat' to see the size distribution of clusters. Because 'clusterCMP' function allows you to perform multiple clustering processes simultaneously with different cutoff values, the 'cls' parameter may point to a data frame containing multiple clustering results. The user can use 'cluster.result' to specify which result to use. By default, this is set to 1, and the first clustering result will be used in visualization. Whatever the value is, in interactive mode (described below), all clustering result will be displayed when a compound is selected in the interactive plot. If the colors provided in 'color.vector' are not enough to distinguish clusters by colors, the function will silently reuse the colors, resulting multiple clusters colored in the same color. By default, 'dimensions' is set to 2, and the built-in 'plot' function will be used for plotting. If you need to do 3-Dimensional plotting, set 'dimensions' to 3, and pass the returned value to 3D plot utilities, such as 'scatterplot3d' or 'rggobi'. This package does not perform 3D plot on its own.

Value

This function returns a data frame of MDS coordinates and clustering result. This value can be passed to 3D plot utilities such as 'scatterplot3d' and 'rggobi'.

The last column of the output gives whether the compounds have been clicked in the interactive mode.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

References

•••

See Also

See clusterCMP for cluster compounds using a descriptor database.

```
data(sdfbcl)
apbcl = convSDFtoAP(sdfbcl)
clusters <- clusterCMP(apbcl, cutoff = c(0.5, 0.4))
clusterMDS(apbcl, clusters, size.cutoff = 2, quiet = TRUE)</pre>
```

40 clusterStat

clusterStat

generate statistics on sizes of clusters

Description

'cluster.sizestat' is used to do simple statistics on sizes of clusters generated by 'clusterCMP'. It will return a dataframe which maps a cluster size to the number of clusters with that size. It is often used along with 'cluster.visualize'.

Usage

```
clusterStat(cls, cluster.result = 1)
```

Arguments

cls The clustering result returned by 'clusterCMP'.

cluster.result If multiple cutoff values are used in clustering process, this argument tells which cutoff value is to be considered here.

Details

'cluster.sizestat' depends on the format that is returned by 'clusterCMP' - it will treat the first column as the indecies, and the second column as the cluster sizes of effective clustering. Because of this, when multiple cutoffs are used when 'clusterCMP' is called, 'cluster.sizestat' will only consider the clustering result of the first cutoff. If you want to work on an alternative cutoff, you have to manually reorder/remove columns.

Value

Returns A data frame of two columns.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>
```

References

•••

```
data(sdfbcl)
apbcl <- convSDFtoAP(sdfbcl)

cluster <- clusterCMP(db = apbcl, cutoff = c(0.65, 0.5))
clusterStat(cluster[, c(1, 2, 3)])
clusterStat(cluster[, c(1, 4, 5)])</pre>
```

connectivity 41

connectivity Calculate the Kier and Hall Chi Chain Indices of Orders 3, 4, 5, 6 and 7

Description

Calculate the Kier and Hall Chi Chain Indices of Orders 3, 4, 5, 6 and 7 Evaluates the Kier and Hall Chi cluster indices of orders 3, 4, 5 and 6 the Kier and Hall Chi Path Cluster Indices of Orders 4, 5 and 6 Calculate the Kier and Hall Chi Path Indices of Orders 0 to 7

Usage

```
extrDrugChiChain(molecules, silent = TRUE)
extrDrugChiCluster(molecules, silent = TRUE)
extrDrugChiPathCluster(molecules, silent = TRUE)
extrDrugChiPath(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

Evaluates chi chain descriptors. The code currently evluates the simple and valence chi chain descriptors of orders 3, 4, 5, 6 and 7. It utilizes the graph isomorphism code of the CDK to find fragments matching SMILES strings representing the fragments corresponding to each type of chain.

Evaluates chi cluster descriptors. It utilizes the graph isomorphism code of the CDK to find fragments matching SMILES strings representing the fragments corresponding to each type of chain.

Evaluates chi path cluster descriptors. The code currently evluates the simple and valence chi chain descriptors of orders 4, 5 and 6. It utilizes the graph isomorphism code of the CDK to find fragments matching SMILES strings representing the fragments corresponding to each type of chain.

Evaluates chi path descriptors. This function utilizes the graph isomorphism code of the CDK to find fragments matching SMILES strings representing the fragments corresponding to each type of chain.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This function returns 10 columns, in the following order:

- SCH. 3 Simple chain, order 3
- SCH. 4 Simple chain, order 4
- SCH.5 Simple chain, order 5

42 connectivity

- SCH. 6 Simple chain, order 6
- SCH.7 Simple chain, order 7
- VCH. 3 Valence chain, order 3
- VCH. 4 Valence chain, order 4
- VCH.5 Valence chain, order 5
- VCH. 6 Valence chain, order 6
- VCH.7 Valence chain, order 7

extrDrugChiCluster: This function returns 8 columns, the order and names of the columns returned is:

- SC.3 Simple cluster, order 3
- SC.4 Simple cluster, order 4
- SC.5 Simple cluster, order 5
- SC.6 Simple cluster, order 6
- VC.3 Valence cluster, order 3
- VC.4 Valence cluster, order 4
- VC.5 Valence cluster, order 5
- VC.6 Valence cluster, order 6

extrDrugChiPathCluster: This function returns 6 columns named SPC.4, SPC.5, SPC.6, VPC.4, VPC.5, VPC.6:

- SPC. 4 Simple path cluster, order 4
- SPC.5 Simple path cluster, order 5
- SPC.6 Simple path cluster, order 6
- VPC.4 Valence path cluster, order 4
- VPC.5 Valence path cluster, order 5
- VPC.6 Valence path cluster, order 6

extrDrugChiPath: This function returns 16 columns, The order and names of the columns returned is:

- SP.0, SP.1, ..., SP.7 Simple path, orders 0 to 7
- VP.0, VP.1, ..., VP.7 Valence path, orders 0 to 7

Note

These descriptors are calculated using graph isomorphism to identify the various fragments. As a result calculations may be slow. In addition, recent versions of Molconn-Z use simplified fragment definitions (i.e., rings without branches etc.) whereas these descriptors use the older more complex fragment definitions.

These descriptors are calculated using graph isomorphism to identify the various fragments. As a result calculations may be slow. In addition, recent versions of Molconn-Z use simplified fragment definitions (i.e., rings without branches etc.) whereas these descriptors use the older more complex fragment definitions.

extrDrugChiPathCluster: These descriptors are calculated using graph isomorphism to identify the various fragments. As a result calculations may be slow. In addition, recent versions of Molconn-Z

Constitutional 43

use simplified fragment definitions (i.e., rings without branches etc.) whereas these descriptors use the older more complex fragment definitions.

extrDrugChiPath: These descriptors are calculated using graph isomorphism to identify the various fragments. As a result calculations may be slow. In addition, recent versions of Molconn-Z use simplified fragment definitions (i.e., rings without branches etc.) whereas these descriptors use the older more complex fragment definitions.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

Examples

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
# Calculate the Kier and Hall Chi Chain Indices of Orders 3, 4, 5, 6 and 7
dat = extrDrugChiChain(mol)
head(dat)
# Evaluates the Kier and Hall Chi cluster indices of orders 3, 4, 5 and 6
dat = extrDrugChiCluster(mol)
head(dat)
# Calculate the Kier and Hall Chi Path Cluster Indices of Orders 4, 5 and 6
dat = extrDrugChiPathCluster(mol)
head(dat)
# Calculate the Kier and Hall Chi Path Indices of Orders 0 to 7
dat = extrDrugChiPath(mol)
head(dat)
```

Constitutional

Calculates the Number of Amino Acids Descriptor

Description

Calculates the Number of Amino Acids Descriptor

Calculates the Number of Aromatic Atoms Descriptor

Calculates the Number of Aromatic Bonds Descriptor

Calculates the Number of Atom Descriptor

Calculates the Descriptor Based on the Number of Bonds of a Certain Bond Order

Descriptor that Calculates the Number of Atoms in the Largest Chain

Descriptor that Calculates the Number of Atoms in the Largest Pi Chain

Descriptor that Calculates the Number of Atoms in the Longest Aliphatic Chain

Descriptor that Calculates the Number of Nonrotatable Bonds on A Molecule

Usage

```
extrDrugAminoAcidCount(molecules, silent = TRUE)
extrDrugAromaticAtomsCount(molecules, silent = TRUE)
extrDrugAromaticBondsCount(molecules, silent = TRUE)
```

44 Constitutional

```
extrDrugAtomCount(molecules, silent = TRUE)

extrDrugBondCount(molecules, silent = TRUE)

extrDrugLargestChain(molecules, silent = TRUE)

extrDrugLargestPiSystem(molecules, silent = TRUE)

extrDrugLongestAliphaticChain(molecules, silent = TRUE)

extrDrugRotatableBondsCount(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

Calculates the number of each amino acids (total 20 types) found in the molecues.

Calculates the number of aromatic atoms of a molecule.

Calculates the number of aromatic bonds of a molecule.

Calculates the number of atoms of a certain element type in a molecule. By default it returns the count of all atoms.

Calculates the descriptor based on the number of bonds of a certain bond order.

This descriptor calculates the number of atoms in the largest chain. Note that a chain exists if there are two or more atoms. Thus single atom molecules will return 0.

This descriptor calculates the number of atoms in the largest pi chain.

This descriptor calculates the number of atoms in the longest aliphatic chain.

The number of rotatable bonds is given by the SMARTS specified by Daylight on SMARTS tutorial (http://www.daylight.com/dayhtml_tutorials/languages/smarts/smarts_examples.html#EXMPL)

Value

A data frame, each row represents one of the molecules, each column represents one feature. This function returns 20 columns named nA, nR, nN, nD, nC, nF, nQ, nE, nG, nH, nI, nP, nL nK, nM, nS, nT, nY, nV, nW.

A data frame, each row represents one of the molecules, each column represents one feature. This function returns one column named naAromAtom.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

convAPtoFP 45

Examples

```
# Calculates the Number of Amino Acids Descriptor
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugAminoAcidCount(mol)
head(dat)
# Calculates the Number of Aromatic Atoms Descriptor
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugAromaticAtomsCount(mol)
head(dat)
# Calculates the Number of Aromatic Bonds Descriptor
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugAromaticBondsCount(mol)
head(dat)
# Calculates the Number of Atom Descriptor
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugAtomCount(mol)
head(dat)
# Calculates the Descriptor Based on the Number of Bonds of a
# Certain Bond Order
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugBondCount(mol)
head(dat)
# Descriptor that Calculates the Number of Atoms in the Largest Chain
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugLargestChain(mol)
head(dat)
# Descriptor that Calculates the Number of Atoms in the Largest Pi Chain
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugLargestPiSystem(mol)
# Descriptor that Calculates the Number of Atoms in the Longest Aliphatic Chain
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugLongestAliphaticChain(mol)
head(dat)
# Descriptor that Calculates the Number of Nonrotatable Bonds on A Molecule
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugRotatableBondsCount(mol)
head(dat)
```

convAPtoFP

Fingerprints from descriptor vectors

Description

Fingerprints from descriptor vectors

46 convSDFtoAP

Usage

```
convAPtoFP(x, descnames = 1024)
```

Arguments

x Object of classe APset or list of vectors

descriptor set to consider for fingerprint encoding. If a single value from 1-

4096 is provided then the function uses the corresponding number of the most frequent atom pairs stored in the apfp data set provided by the package. Alternatively, one can provide here any custom atom pair selection in form of a

character vector.

Details

Generates fingerprints from descriptor vectors such as atom pairs stored in APset or list containers. The obtained fingerprints can be used for structure similarity comparisons, searching and clustering. Due to their compact size, computations on fingerprints are often more time and memory efficient than on their much more complex atom pair counterparts.

Value

A FPset

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

See Also

See convSDFtoAP for Atom pair library.

Examples

```
data(sdfbcl)
apbcl = convSDFtoAP(sdfbcl)
fpbcl = convAPtoFP(apbcl)
```

convSDFtoAP

Atom pair library

Description

Atom pair library

Usage

```
convSDFtoAP(sdfset, type = "AP", uniquePairs = TRUE)
```

extrDNADAC 47

Arguments

sdfset Objects of classes SDFset or SDF

type if type="AP", the function returns APset/AP objects; if type="character", it

returns the result as a character vector of length one. The latter is useful for

storing AP data in tabular files.

uniquePairs When the same atom pair occurs more than once in a single compound, should

the names be unique or not? Setting this to true will take slightly longer to

compute.

Details

Creates from a SDFset a searchable atom pair library that is stored in a container of class APset.

Value

APset if input is SDFset
AP if input is SDF

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>,

Examples

```
data(sdfbcl)
apset <- convSDFtoAP(sdfbcl)</pre>
```

extrDNADAC

The Dinucleotide-based Auto Covariance Descriptor

Description

The Dinucleotide-based Auto Covariance Descriptor

Usage

```
extrDNADAC(x, index = c("Twist", "Tilt"), nlag = 2, normalization = FALSE,
  customprops = NULL, allprop = FALSE)
```

Arguments

x the input data, which should be a list or file type.

index the physicochemical indices, it should be a list and there are 38 different physic-

ochemical indices (Table 1), which the users can choose.

nlag an integer larger than or equal to 0 and less than or equal to L-2 (L means the

length of the shortest DNA sequence in the dataset). It represents the distance

between two dinucleotides.

48 extrDNADACC

normaliztion	with this option, the final feature vector will be normalized based on the total occurrences of all kmers. Therefore, the elements in the feature vectors represent the frequencies of kmers. The default value of this parameter is False.
customprops	the users can use their own indices to generate the feature vector. It should be a dict, the key is dinucleotide (string), and its corresponding value is a list type.
allprop	all the 38 physicochemical indices will be employed to generate the feature vector. Its default value is False.

Details

This function calculates the dinucleotide-based auto covariance descriptor

Value

A vector

Note

if the user defined physicochemical indices have not been normalized, it should be normalized.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

References

Dong Q, Zhou S, Guan J. A new taxonomy-based protein fold recognition approach based on autocross-covariance transformation. *Bioinformatics*, 2009, 25(20): 2655-2662.

See Also

See extrDNADCC and extrDNADACC

Examples

```
x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
extrDNADAC(x)
```

extrDNADACC

The Dinucleotide-based Auto-cross Covariance Descriptor

Description

The Dinucleotide-based Auto-cross Covariance Descriptor

Usage

```
extrDNADACC(x, index = c("Twist", "Tilt"), nlag = 2, normalization = FALSE,
  customprops = NULL, allprop = FALSE)
```

extrDNADACC 49

Arguments

X	the input data, which should be a list or file type.
index	the physicochemical indices, it should be a list and there are 38 different physicochemical indices (Table 1), which the users can choose.
nlag	an integer larger than or equal to 0 and less than or equal to L-2 (L means the length of the shortest DNA sequence in the dataset). It represents the distance between two dinucleotides.
normaliztion	with this option, the final feature vector will be normalized based on the total occurrences of all kmers. Therefore, the elements in the feature vectors represent the frequencies of kmers. The default value of this parameter is False.
customprops	the users can use their own indices to generate the feature vector. It should be a dict, the key is dinucleotide (string), and its corresponding value is a list type.
allprop	all the 38 physicochemical indices will be employed to generate the feature vector. Its default value is False.

Details

This function calculates the dinucleotide-based auto-cross covariance descriptor

Value

A vector

Note

if the user defined physicochemical indices have not been normalized, it should be normalized.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

References

Dong Q, Zhou S, Guan J. A new taxonomy-based protein fold recognition approach based on autocross-covariance transformation. *Bioinformatics*, 2009, 25(20): 2655-2662.

See Also

See extrDNADAC and extrDNADCC

```
x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
extrDNADACC(x)
```

50 extrDNADCC

extrDNADCC	The Dinucleotide-based Cross Covariance Descriptor
EX CI DIVADCE	The Dinucleoniue-bused Cross Covariance Descriptor

Description

The Dinucleotide-based Cross Covariance Descriptor

Usage

```
extrDNADCC(x, index = c("Twist", "Tilt"), nlag = 2, normalization = FALSE,
  customprops = NULL, allprop = FALSE)
```

Arguments

x	the input data, which should be a list or file type.
index	the physicochemical indices, it should be a list and there are 38 different physicochemical indices (Table 1), which the users can choose.
nlag	an integer larger than or equal to 0 and less than or equal to L -2 (L means the length of the shortest DNA sequence in the dataset). It represents the distance between two dinucleotides.
normaliztion	with this option, the final feature vector will be normalized based on the total occurrences of all kmers. Therefore, the elements in the feature vectors represent the frequencies of kmers. The default value of this parameter is False.
customprops	the users can use their own indices to generate the feature vector. It should be a dict, the key is dinucleotide (string), and its corresponding value is a list type.
allprop	all the 38 physicochemical indices will be employed to generate the feature vector. Its default value is False.

Details

This function calculates the dinucleotide-based cross covariance descriptor

Value

A vector

Note

if the user defined physicochemical indices have not been normalized, it should be normalized.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

References

Dong Q, Zhou S, Guan J. A new taxonomy-based protein fold recognition approach based on autocross-covariance transformation. *Bioinformatics*, 2009, 25(20): 2655-2662.

extrDNAIncDiv 51

See Also

See extrDNADAC and extrDNADACC

Examples

```
x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
extrDNADCC(x)
```

extrDNAIncDiv

The Increment Of Diversity Descriptors

Description

The Increment Of Diversity Descriptors

Usage

```
extrDNAIncDiv(k = 6, x, pos, neg, upto = TRUE)
```

Arguments

K	the k value of kmer, it should be an integer larger than 0,the default value is 6.
X	the input data, which should be a list or file type.
pos	the positive source data, which should be a or type.
neg	the negative source data, which should be or type.

upto generate all the kmers: 1mer, 2mer, ..., kmer. The output feature vector is the combination of all these kmers. The default value of this parameter is True

Details

This function calculates the The Basic Kmer Descriptor

Value

if upto is True, A length k * 2 named vector, k is the k value of kmer; if upto is False, A length 2 named vector

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

References

Chen W, Luo L, Zhang L. The organization of nucleosomes around splice sites. *Nucleic acids research*, 2010, 38(9): 2788-2798. Liu G, Liu J, Cui X, et al. Sequence-dependent prediction of recombination hotspots in Saccharomyces cerevisiae. *Journal of theoretical biology*, 2012, 293: 49-54.

See Also

See extrDNAkmer

52 extrDNAkmer

Examples

```
pos = readFASTA(system.file('dnaseq/pos.fasta', package = 'BioMedR')) neg = readFASTA(system.file('dnaseq/neg.fasta', package = 'BioMedR')) x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC' extrDNAIncDiv(k = 6, x, pos, neg)
```

extrDNAkmer

The Basic Kmer Descriptor

Description

The Basic Kmer Descriptor

Usage

```
extrDNAkmer(x, k = 2, upto = FALSE, normalize = FALSE, reverse = FALSE)
```

Arguments

X	the input data, which should be a list or file type.
k	the k value of kmer, it should be an integer larger than 0.
upto	generate all the kmers: 1mer, 2mer,, kmer. The output feature vector is the combination of all these kmers. The default value of this parameter is False.
normalize	with this option, the final feature vector will be normalized based on the total occurrences of all kmers. Therefore, the elements in the feature vectors represent the frequencies of kmers. The default value of this parameter is False.
reverse	make reverse complements into a single feature, The default value of this parameter is False. if reverse is True, this method returns the reverse compliment

Details

This function calculates the basic kmer descriptor

kmer feature vector.

Value

A vector

Note

if the parameters normalize and upto are both True, and then the feature vector is the combination of all these normalized kmers, e.g. the combination of normalized 1-kmer and normalized 2-kmer when k=2, normalize=True, upto=True.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

extrDNAPseDNC 53

References

Noble W S, Kuehn S, Thurman R, et al. Predicting the in vivo signature of human gene regulatory sequences. *Bioinformatics*, 2005, 21 Suppl 1, i338-343. Lee D, Karchin R, Beer M A. Discriminative prediction of mammalian enhancers from DNA sequence. *Genome research*. 2005, 21, 2167-2180.

See Also

See make_kmer_index

Examples

```
x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
extrDNAkmer(x)
```

extrDNAPseDNC

The Pseudo Dinucleotide Composition Descriptor

Description

The Pseudo Dinucleotide Composition Descriptor

Usage

```
extrDNAPseDNC(x, lambda = 3, w = 0.05, normalize = FALSE,
    customprops = NULL)
```

Arguments

x the input data, which should be a list or file type.

lambda an integer larger than or equal to 0 and less than or equal to L-2 (L means the

length of the shortest sequence in the dataset). It represents the highest counted rank (or tier) of the correlation along a DNA sequence. Its default value is 3.

w the weight factor ranged from 0 to 1. Its default value is 0.05.

normalize with this option, the final feature vector will be normalized based on the total

occurrences of all kmers. Therefore, the elements in the feature vectors represent

the frequencies of kmers. The default value of this parameter is False.

customprops the users can use their own indices to generate the feature vector. It should be a

dict, the key is dinucleotide (string), and its corresponding value is a list type.

Details

This function calculates the pseudo dinucleotide composition Descriptor

Value

A vector

Note

if the user defined physicochemical indices have not been normalized, it should be normalized.

54 extrDNAPseKNC

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

References

Chen W, Feng P M, Lin H, et al. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. *Nucleic acids research*, 2013: gks1450.

See Also

See extrDNAPseKNC

Examples

```
x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
extrDNAPseDNC(x)
```

extrDNAPseKNC

The Pseudo K-tupler Composition Descriptor

Description

The Pseudo K-tupler Composition Descriptor

Usage

```
extrDNAPseKNC(x, lambda = 1, k = 3, normalize = FALSE, w = 0.5, customprops = NULL)
```

Arguments

X	the input data,	which should be	a list or file type.
---	-----------------	-----------------	----------------------

1ambda an integer larger than or equal to 0 and less than or equal to L-2 (L means the

length of the shortest sequence in the dataset). It represents the highest counted

rank (or tier) of the correlation along a DNA sequence. Its default value is 3.

k an integer larger than 0 represents the k-tuple. Its default value is 3.

normalize with this option, the final feature vector will be normalized based on the total

occurrences of all kmers. Therefore, the elements in the feature vectors represent

the frequencies of kmers. The default value of this parameter is False.

w the weight factor ranged from 0 to 1. Its default value is 0.05.

customprops the users can use their own indices to generate the feature vector. It should be a

dict, the key is dinucleotide (string), and its corresponding value is a list type.

Details

This function calculates the pseudo k-tupler composition Descriptor

Value

A vector

extrDNATAC 55

Note

if the user defined physicochemical indices have not been normalized, it should be normalized.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

References

Guo S H, Deng E Z, Xu L Q, et al. iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. *Bioinformatics*, 2014: btu083.

See Also

See extrDNAPseDNC

Examples

```
x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
extrDNAPseKNC(x)
```

extrDNATAC

The Trinucleotide-based Auto Covariance Descriptor

Description

The Trinucleotide-based Auto Covariance Descriptor

Usage

```
extrDNATAC(x, index = c("Dnase I", "Nucleosome"), nlag = 2,
normaliztion = FALSE, customprops = NULL, allprop = FALSE)
```

Arguments

X	the input data, which should be a list or file type.
index	the physicochemical indices, it should be a list and there are 12 different physicochemical indices (Table 2), which the users can choose.
nlag	an integer larger than or equal to 0 and less than or equal to L -2 (L means the length of the shortest DNA sequence in the dataset). It represents the distance between two dinucleotides.
normaliztion	with this option, the final feature vector will be normalized based on the total occurrences of all kmers. Therefore, the elements in the feature vectors represent the frequencies of kmers. The default value of this parameter is False.
customprops	the users can use their own indices to generate the feature vector. It should be a dict, the key is dinucleotide (string), and its corresponding value is a list type.
allprop	all the 12 physicochemical indices will be employed to generate the feature vector. Its default value is False.

56 extrDNATACC

Details

This function calculates the trinucleotide-based auto covariance Descriptor

Value

A vector

Note

if the user defined physicochemical indices have not been normalized, it should be normalized.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>
```

See Also

See extrDNATCC and extrDNATACC

Examples

```
x = x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
extrDNATAC(x)
```

extrDNATACC

The Trinucleotide-based Auto-cross Covariance Descriptor

Description

The Trinucleotide-based Auto-cross Covariance Descriptor

Usage

```
extrDNATACC(x, index = c("Dnase I", "Nucleosome"), nlag = 2,
normaliztion = FALSE, customprops = NULL, allprop = FALSE)
```

Arguments

X	the input data, which should be a list or file type.
index	the physicochemical indices, it should be a list and there are 12 different physicochemical indices (Table 2), which the users can choose.
nlag	an integer larger than or equal to 0 and less than or equal to L-2 (L means the length of the shortest DNA sequence in the dataset). It represents the distance between two dinucleotides.
normaliztion	with this option, the final feature vector will be normalized based on the total occurrences of all kmers. Therefore, the elements in the feature vectors represent the frequencies of kmers. The default value of this parameter is False.
customprops	the users can use their own indices to generate the feature vector. It should be a dict, the key is dinucleotide (string), and its corresponding value is a list type.
allprop	all the 12 physicochemical indices will be employed to generate the feature vector. Its default value is False.

extrDNATCC 57

Details

This function calculates the trinucleotide-based auto-cross covariance descriptor

Value

A vector

Note

if the user defined physicochemical indices have not been normalized, it should be normalized.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

See Also

See extrDNATAC and extrDNATCC

Examples

```
x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
extrDNATACC(x)
```

extrDNATCC

The Trinucleotide-based Cross Covariance Descriptor

Description

The Trinucleotide-based Cross Covariance Descriptor

Usage

```
extrDNATCC(x, index = c("Dnase I", "Nucleosome"), nlag = 2,
  customprops = NULL, normalization = FALSE)
```

Arguments

X	the input data, which should be a list or file type.
index	the physicochemical indices, it should be a list and there are 12 different physicochemical indices (Table 2), which the users can choose.
nlag	an integer larger than or equal to 0 and less than or equal to L -2 (L means the length of the shortest DNA sequence in the dataset). It represents the distance between two dinucleotides.
customprops	the users can use their own indices to generate the feature vector. It should be a dict, the key is dinucleotide (string), and its corresponding value is a list type.
normaliztion	with this option, the final feature vector will be normalized based on the total occurrences of all kmers. Therefore, the elements in the feature vectors represent the frequencies of kmers. The default value of this parameter is False.

58 extrDrugAIO

Details

This function calculates the trinucleotide-based cross covariance Descriptor

Value

A vector

Note

if the user defined physicochemical indices have not been normalized, it should be normalized.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

See Also

See extrDNATAC and extrDNATACC

Examples

```
x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
extrDNATCC(x)
```

extrDrugAI0

Calculates All the Molecular Descriptors in the BioMedR Package at Once

Description

Calculates All the Molecular Descriptors in the BioMedR Package at Once

Usage

```
extrDrugAIO(molecules, silent = TRUE, warn = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

warn Logical. Whether the warning about some descriptors need the 3D coordinates

should be shown or not after the calculation, default is TRUE.

Details

This function calculates all the molecular descriptors in the BioMedR package at once.

Value

A data frame, each row represents one of the molecules, each column represents one descriptor. Currently, this function returns total 293 descriptors composed of 48 descriptor types.

extrDrugAP 59

Note

Note that we need 3-D coordinates of the molecules to calculate some of the descriptors, if not provided, these descriptors values will be NA.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

Examples

```
# Load 20 small molecules that have 3D coordinates
sdf = system.file('sysdata/test.sdf', package = 'BioMedR')
mol = readMolFromSDF(sdf)
dat = extrDrugAIO(mol, warn = FALSE)
```

extrDrugAP

Calculate the Atom Pair Fingerprints

Description

Calculate the Atom Pair Fingerprints

Usage

```
extrDrugAP(x, descnames = 1024)
```

Arguments

V

Object of classe APset or list of vectors

descnames

Descriptor set to consider for fingerprint encoding. If a single value from 1-4096 is provided then the function uses the corresponding number of the most frequent atom pairs stored in the apfp data set provided by the package. Alternatively, one can provide here any custom atom pair selection in form of a character vector.

Details

Generates fingerprints from descriptor vectors such as atom pairs stored in APset or list containers. The obtained fingerprints can be used for structure similarity comparisons, searching and clustering. Due to their compact size, computations on fingerprints are often more time and memory efficient than on their much more complex atom pair counterparts.

Value

matrix or character vectors

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>,

60 extrDrugBCUT

Examples

```
data(sdfbcl)
apbcl <- convSDFtoAP(sdfbcl)
mol <- extrDrugAP(x = apbcl, descnames = 1024)</pre>
```

extrDrugBCUT

BCUT - Eigenvalue Based Descriptor

Description

BCUT - Eigenvalue Based Descriptor

Usage

```
extrDrugBCUT(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

Eigenvalue based descriptor noted for its utility in chemical diversity. Described by Pearlman et al. The descriptor is based on a weighted version of the Burden matrix which takes into account both the connectivity as well as atomic properties of a molecule. The weights are a variety of atom properties placed along the diagonal of the Burden matrix. Currently three weighting schemes are employed:

- Atomic Weight
- Partial Charge (Gasteiger Marsilli)
- Polarizability (Kang et al.)

Value

A data frame, each row represents one of the molecules, each column represents one feature. This function returns 6 columns:

```
• BCUTw-11, BCUTw-21 ... - n high lowest atom weighted BCUTS
```

- BCUTw-1h, BCUTw-2h ... n low highest atom weighted BCUTS
- BCUTc-11, BCUTc-21 ... n high lowest partial charge weighted BCUTS
- BCUTc-1h, BCUTc-2h ... n low highest partial charge weighted BCUTS
- BCUTp-11, BCUTp-21 ... n high lowest polarizability weighted BCUTS
- BCUTp-1h, BCUTp-2h ... n low highest polarizability weighted BCUTS

extrDrugCPSA 61

Note

By default, the descriptor will return the highest and lowest eigenvalues for the three classes of descriptor in a single ArrayList (in the order shown above). However it is also possible to supply a parameter list indicating how many of the highest and lowest eigenvalues (for each class of descriptor) are required. The descriptor works with the hydrogen depleted molecule.

A side effect of specifying the number of highest and lowest eigenvalues is that it is possible to get two copies of all the eigenvalues. That is, if a molecule has 5 heavy atoms, then specifying the 5 highest eigenvalues returns all of them, and specifying the 5 lowest eigenvalues returns all of them, resulting in two copies of all the eigenvalues.

Note that it is possible to specify an arbitrarily large number of eigenvalues to be returned. However if the number (i.e., nhigh or nlow) is larger than the number of heavy atoms, the remaining eignevalues will be NaN.

Given the above description, if the aim is to gt all the eigenvalues for a molecule, you should set nlow to 0 and specify the number of heavy atoms (or some large number) for nhigh (or vice versa).

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

References

Pearlman, R.S. and Smith, K.M., Metric Validation and the Receptor-Relevant Subspace Concept, J. Chem. Inf. Comput. Sci., 1999, 39:28-35.

Burden, F.R., Molecular identification number for substructure searches, J. Chem. Inf. Comput. Sci., 1989, 29:225-227.

Burden, F.R., Chemically Intuitive Molecular Index, Quant. Struct. -Act. Relat., 1997, 16:309-314

Kang, Y.K. and Jhon, M.S., Additivity of Atomic Static Polarizabilities and Dispersion Coefficients, Theoretica Chimica Acta, 1982, 61:41-48

Examples

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugBCUT(mol)
head(dat)
```

extrDrugCPSA

A Variety of Descriptors Combining Surface Area and Partial Charge Information

Description

A Variety of Descriptors Combining Surface Area and Partial Charge Information

Usage

```
extrDrugCPSA(molecules, silent = TRUE)
```

62 extrDrugCPSA

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

Calculates 29 Charged Partial Surface Area (CPSA) descriptors. The CPSA's were developed by Stanton et al.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This function returns 29 columns:

- PPSA.1 partial positive surface area sum of surface area on positive parts of molecule
- PPSA. 2 partial positive surface area * total positive charge on the molecule
- PPSA. 3 charge weighted partial positive surface area
- PNSA.1 partial negative surface area sum of surface area on negative parts of molecule
- PNSA. 2 partial negative surface area * total negative charge on the molecule
- PNSA. 3 charge weighted partial negative surface area
- DPSA.1 difference of PPSA.1 and PNSA.1
- DPSA. 2 difference of FPSA.2 and PNSA.2
- DPSA. 3 difference of PPSA.3 and PNSA.3
- FPSA.1 PPSA.1 / total molecular surface area
- FFSA. 2 PPSA.2 / total molecular surface area
- $\bullet\,$ FPSA.3 PPSA.3 / total molecular surface area
- FNSA.1 PNSA.1 / total molecular surface area
- FNSA. 2 PNSA. 2 / total molecular surface area
- FNSA.3 PNSA.3 / total molecular surface area
- $\bullet\,$ WPSA.1 PPSA.1 * total molecular surface area / $1000\,$
- WPSA. 2 PPSA. 2 * total molecular surface area /1000
- WPSA.3 PPSA.3 * total molecular surface area / 1000
- WNSA.1 PNSA.1 * total molecular surface area /1000
- WNSA.2 PNSA.2 * total molecular surface area / 1000
- WNSA. 3 PNSA. 3 * total molecular surface area / 1000
- RPCG relative positive charge most positive charge / total positive charge
- RNCG relative negative charge most negative charge / total negative charge
- RPCS relative positive charge surface area most positive surface area * RPCG
- RNCS relative negative charge surface area most negative surface area * RNCG
- THSA sum of solvent accessible surface areas of atoms with absolute value of partial charges less than 0.2
- TPSA sum of solvent accessible surface areas of atoms with absolute value of partial charges greater than or equal 0.2
- RHSA THSA / total molecular surface area
- RPSA TPSA / total molecular surface area

extrDrugEstate 63

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

References

Stanton, D.T. and Jurs, P.C., Development and Use of Charged Partial Surface Area Structural Descriptors in Computer Assissted Quantitative Structure Property Relationship Studies, Analytical Chemistry, 1990, 62:2323.2329.

Examples

```
sdf = system.file('sysdata/test.sdf', package = 'BioMedR')
mol = readMolFromSDF(sdf)
dat = extrDrugCPSA(mol)
head(dat)
```

extrDrugEstate

Calculate the E-State Molecular Fingerprints (in Compact Format)

Description

Calculate the E-State Molecular Fingerprints (in Compact Format)

Usage

```
extrDrugEstate(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

79 bit fingerprints corresponding to the E-State atom types described by Hall and Kier.

Value

A list, each component represents one of the molecules, each element in the component represents the index of which element in the fingerprint is 1. Each component's name is the length of the fingerprints.

Author(s)

```
\label{lem:min-feng} Min-feng\ Zhu << wind2 zhu@163.com>>,\ Nan\ Xiao < http://r2s.name>
```

See Also

```
extrDrugE stateComplete\\
```

Examples

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
fp = extrDrugEstate(mol)
head(fp)
```

extrDrugEstateComplete

Calculate the E-State Molecular Fingerprints (in Complete Format)

Description

Calculate the E-State Molecular Fingerprints (in Complete Format)

Usage

```
extrDrugEstateComplete(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

79 bit fingerprints corresponding to the E-State atom types described by Hall and Kier.

Value

An integer vector or a matrix. Each row represents one molecule, the columns represent the finger-prints.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

See Also

extrDrugEstate

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
fp = extrDrugEstateComplete(mol)
dim(fp)
```

extrDrugExtended 65

extrDrugExtended Calculate the Extended Molecular Fingerprints (in Compact Format)
--

Description

Calculate the Extended Molecular Fingerprints (in Compact Format)

Usage

```
extrDrugExtended(molecules, depth = 6, size = 1024, silent = TRUE)
```

Arguments

molecules	Parsed molucule object.
depth	The search depth. Default is 6.
size	The length of the fingerprint bit string. Default is 1024.
silent	Logical. Whether the calculating process should be shown or not, default is TRUE.

Details

Calculate the extended molecular fingerprints. Considers paths of a given length, similar to the standard type, but takes rings and atomic properties into account into account. This is hashed fingerprints, with a default length of 1024.

Value

A list, each component represents one of the molecules, each element in the component represents the index of which element in the fingerprint is 1. Each component's name is the length of the fingerprints.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <a href="http://r2s.name">http://r2s.name</a>
```

See Also

extrDrugExtendedComplete

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
fp = extrDrugExtended(mol)
head(fp)
```

extrDrugExtendedComplete

Calculate the Extended Molecular Fingerprints (in Complete Format)

Description

Calculate the Extended Molecular Fingerprints (in Complete Format)

Usage

```
extrDrugExtendedComplete(molecules, depth = 6, size = 1024, silent = TRUE)
```

Arguments

molecules

Parsed molucule object.

depth

The search depth. Default is 6.

size

The length of the fingerprint bit string. Default is 1024.

silent

Logical. Whether the calculating process should be shown or not, default is TRUE.

Details

Calculate the extended molecular fingerprints. Considers paths of a given length, similar to the standard type, but takes rings and atomic properties into account into account. This is hashed fingerprints, with a default length of 1024.

Value

An integer vector or a matrix. Each row represents one molecule, the columns represent the finger-prints.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <a href="http://r2s.name">http://r2s.name</a>
```

See Also

extrDrugExtended

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
fp = extrDrugExtendedComplete(mol)
dim(fp)
```

extrDrugGraph 67

extrDrugGraph	Calculate the Graph Molecular Fingerprints (in Compact Format)

Description

Calculate the Graph Molecular Fingerprints (in Compact Format)

Usage

```
extrDrugGraph(molecules, depth = 6, size = 1024, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

depth The search depth. Default is 6.

size The length of the fingerprint bit string. Default is 1024.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

Calculate the graph molecular fingerprints. Similar to the standard type by simply considers connectivity. This is hashed fingerprints, with a default length of 1024.

Value

A list, each component represents one of the molecules, each element in the component represents the index of which element in the fingerprint is 1. Each component's name is the length of the fingerprints.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

See Also

```
extrDrugGraphComplete\\
```

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
fp = extrDrugGraph(mol)
head(fp)
```

extrDrugGraphComplete Calculate the Graph Molecular Fingerprints (in Complete Format)

Description

Calculate the Graph Molecular Fingerprints (in Complete Format)

Usage

```
extrDrugGraphComplete(molecules, depth = 6, size = 1024, silent = TRUE)
```

Arguments

molecules	Parsed molucule object.
depth	The search depth. Default is 6.
size	The length of the fingerprint bit string. Default is 1024.
silent	Logical. Whether the calculating process should be shown or not, default is

Details

Calculate the graph molecular fingerprints. Similar to the standard type by simply considers connectivity. This is hashed fingerprints, with a default length of 1024.

Value

An integer vector or a matrix. Each row represents one molecule, the columns represent the finger-prints.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <a href="http://r2s.name">http://r2s.name</a>
```

See Also

```
extrDrugGraph
```

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
fp = extrDrugGraphComplete(mol)
dim(fp)
```

extrDrugHybridization

extrDrugHybridization Calculate the Hybridization Molecular Fingerprints (in Compact Format)

Description

Calculate the Hybridization Molecular Fingerprints (in Compact Format)

Usage

```
extrDrugHybridization(molecules, depth = 6, size = 1024, silent = TRUE)
```

Arguments

molecules	Parsed molucule object.
depth	The search depth. Default is 6.
size	The length of the fingerprint bit string. Default is 1024.
silent	Logical. Whether the calculating process should be shown or not, default is TRUE.

Details

Calculate the hybridization molecular fingerprints. Similar to the standard type, but only consider hybridization state. This is hashed fingerprints, with a default length of 1024.

Value

A list, each component represents one of the molecules, each element in the component represents the index of which element in the fingerprint is 1. Each component's name is the length of the fingerprints.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <a href="http://r2s.name">http://r2s.name</a>
```

See Also

extrDrugHybridizationComplete

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
fp = extrDrugHybridization(mol)
head(fp)
```

 ${\tt extrDrugHybridizationComplete}$

Calculate the Hybridization Molecular Fingerprints (in Complete Format)

Description

Calculate the Hybridization Molecular Fingerprints (in Complete Format)

Usage

```
extrDrugHybridizationComplete(molecules, depth = 6, size = 1024,
  silent = TRUE)
```

Arguments

molecules Parsed molucule object. The search depth. Default is 6. depth The length of the fingerprint bit string. Default is 1024. size silent

Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

Calculate the hybridization molecular fingerprints. Similar to the standard type, but only consider hybridization state. This is hashed fingerprints, with a default length of 1024.

Value

An integer vector or a matrix. Each row represents one molecule, the columns represent the fingerprints.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

See Also

extrDrugHybridization

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
fp = extrDrugHybridizationComplete(mol)
dim(fp)
```

extrDrugHybridizationRatio

Descriptor that Characterizing Molecular Complexity in Terms of Carbon Hybridization States

Description

Descriptor that Characterizing Molecular Complexity in Terms of Carbon Hybridization States

Usage

```
extrDrugHybridizationRatio(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

This descriptor calculates the fraction of sp3 carbons to sp2 carbons. Note that it only considers carbon atoms and rather than use a simple ratio it reports the value of Nsp3/(Nsp3 + Nsp2). The original form of the descriptor (i.e., simple ratio) has been used to characterize molecular complexity, especially in the are of natural products, which usually have a high value of the sp3 to sp2 ratio.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This function returns one column named HybRatio.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugHybridizationRatio(mol)
head(dat)
```

extrDrugIPMolecularLearning

Calculates the Descriptor that Evaluates the Ionization Potential

Description

Calculates the Descriptor that Evaluates the Ionization Potential

Usage

```
extrDrugIPMolecularLearning(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

Calculate the ionization potential of a molecule. The descriptor assumes that explicit hydrogens have been added to the molecules.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This function returns one column named MolIP.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

Examples

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugIPMolecularLearning(mol)
head(dat)
```

extrDrugKappaShapeIndices

Descriptor that Calculates Kier and Hall Kappa Molecular Shape Indices

Description

Descriptor that Calculates Kier and Hall Kappa Molecular Shape Indices

Usage

```
extrDrugKappaShapeIndices(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

Kier and Hall Kappa molecular shape indices compare the molecular graph with minimal and maximal molecular graphs; see http://www.chemcomp.com/Journal_of_CCG/Features/descr.htm# KH for details: "they are intended to capture different aspects of molecular shape. Note that hydrogens are ignored. In the following description, n denotes the number of atoms in the hydrogen suppressed graph, m is the number of bonds in the hydrogen suppressed graph. Also, let p2 denote the number of paths of length 2 and let p3 denote the number of paths of length 3".

Value

A data frame, each row represents one of the molecules, each column represents one feature. This function returns 3 columns named Kier1, Kier2 and Kier3:

- Kier1 First kappa shape index
- Kier2 Second kappa shape index
- Kier3 Third kappa shape index

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

Examples

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugKappaShapeIndices(mol)
head(dat)
```

extrDrugKierHallSmarts

Descriptor that Counts the Number of Occurrences of the E-State Fragments

Description

Descriptor that Counts the Number of Occurrences of the E-State Fragments

Usage

```
extrDrugKierHallSmarts(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

A fragment count descriptor that uses e-state fragments. Traditionally the e-state descriptors identify the relevant fragments and then evaluate the actual e-state value. However it has been shown in Butina et al. that simply using the counts of the e-state fragments can lead to QSAR models that exhibit similar performance to those built using the actual e-state indices.

Atom typing and aromaticity perception should be performed prior to calling this descriptor. The atom type definitions are taken from Hall et al. The SMARTS definitions were obtained from RDKit.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This function returns 79 columns:

```
ID
        Name
                                  Pattern
0
       khs.sLi
                                [LiD1]-*
1
      khs.ssBe
                              [BeD2](-*)-*
2
     khs.ssssBe
                          [BeD4](-*)(-*)(-*)-*
3
      khs.ssBH
                              [BD2H](-*)-*
      khs.sssB
4
                             [BD3](-*)(-*)-*
5
      khs.ssssB
                           [BD4](-*)(-*)(-*)-*
6
      khs.sCH3
                                [CD1H3]-*
7
      khs.dCH2
                                [CD1H2]=*
      khs.ssCH2
8
                              [CD2H2](-*)-*
9
       khs.tCH
                                [CD1H]#*
10
      khs.dsCH
                              [CD2H](=*)-*
11
      khs.aaCH
                             [C,c;D2H](:*):*
12
      khs.sssCH
                            [CD3H](-*)(-*)-*
13
       khs.ddC
                              [CD2H0](=*)=*
14
       khs.tsC
                              [CD2H0](#*)-*
                            [CD3H0](=*)(-*)-*
15
      khs.dssC
16
      khs.aasC
                          [C,c;D3H0](:*)(:*)-*
17
      khs.aaaC
                          [C,c;D3H0](:*)(:*):*
18
      khs.ssssC
                         [CD4H0](-*)(-*)(-*)-*
      khs.sNH3
19
                                [ND1H3]-*
      khs.sNH2
20
                                [ND1H2]-*
21
      khs.ssNH2
                              [ND2H2](-*)-*
       khs.dNH
22
                                [ND1H]=*
23
      khs.ssNH
                              [ND2H](-*)-*
      khs.aaNH
                             [N,nD2H](:*):*
24
25
       khs.tN
                                [ND1H0]#*
26
      khs.sssNH
                            [ND3H](-*)(-*)-*
27
       khs.dsN
                              [ND2H0](=*)-*
28
       khs.aaN
                             [N, nD2H0](:*):*
29
      khs.sssN
                            [ND3H0](-*)(-*)-*
30
      khs.ddsN
                    [ND3H0](~[OD1H0])(~[OD1H0])-,:*
31
      khs.aasN
                         [N,nD3H0](:*)(:*)-,:*
32
      khs.ssssN
                         [ND4H0](-*)(-*)(-*)-*
33
       khs.sOH
                                [OD1H]-*
34
       khs.d0
                                [OD1H0]=*
35
       khs.ss0
                              [OD2H0](-*)-*
36
       khs.aa0
                             [0,oD2H0](:*):*
```

```
37
       khs.sF
                                [FD1]-*
     khs.sSiH3
38
                              [SiD1H3]-*
39
    khs.ssSiH2
                            [SiD2H2](-*)-*
40
    khs.sssSiH
                          [SiD3H1](-*)(-*)-*
41
    khs.ssssSi
                        [SiD4H0](-*)(-*)(-*)-*
     khs.sPH2
42
                               [PD1H2]-*
      khs.ssPH
43
                             [PD2H1](-*)-*
     khs.sssP
44
                           [PD3H0](-*)(-*)-*
45
     khs.dsssP
                         [PD4H0](=*)(-*)(-*)-*
46
    khs.sssssP
                      [PD5H0](-*)(-*)(-*)-*
      khs.sSH
                               [SD1H1]-*
47
      khs.dS
                               [SD1H0]=*
48
49
      khs.ssS
                             [SD2H0](-*)-*
      khs.aaS
50
                            [S,sD2H0](:*):*
51
      khs.dssS
                           [SD3H0](=*)(-*)-*
     khs.ddssS
                  [SD4H0](~[OD1H0])(~[OD1H0])(-*)-*
52
53
      khs.sCl
                               [ClD1]-*
54
     khs.sGeH3
                             [GeD1H3](-*)
55
    khs.ssGeH2
                            [GeD2H2](-*)-*
56
    khs.sssGeH
                          [GeD3H1](-*)(-*)-*
    khs.ssssGe
                        [GeD4H0](-*)(-*)(-*)-*
57
58
     khs.sAsH2
                              [AsD1H2]-*
     khs.ssAsH
59
                            [AsD2H1](-*)-*
60
     khs.sssAs
                          [AsD3H0](-*)(-*)-*
61
    khs.sssdAs
                        [AsD4H0](=*)(-*)(-*)-*
    khs.sssssAs
                      [AsD5H0](-*)(-*)(-*)(-*)-*
62
     khs.sSeH
                              [SeD1H1]-*
63
64
      khs.dSe
                              [SeD1H0]=*
      khs.ssSe
65
                            [SeD2H0](-*)-*
      khs.aaSe
66
                            [SeD2H0](:*):*
67
     khs.dssSe
                          [SeD3H0](=*)(-*)-*
68
    khs.ddssSe
                        [SeD4H0](=*)(=*)(-*)-*
      khs.sBr
69
                               [BrD1]-∗
70
     khs.sSnH3
                              [SnD1H3]-*
71
    khs.ssSnH2
                            [SnD2H2](-*)-*
72
    khs.sssSnH
                          [SnD3H1](-*)(-*)-*
73
    khs.ssssSn
                        [SnD4H0](-*)(-*)(-*)-*
       khs.sI
74
                                [ID1]-*
75
     khs.sPbH3
                              [PbD1H3]-*
76
    khs.ssPbH2
                            [PbD2H2](-*)-*
77
    khs.sssPbH
                          [PbD3H1](-*)(-*)-*
78
    khs.ssssPb
                        [PbD4H0](-*)(-*)-*
```

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

References

Butina, D., Performance of Kier-Hall E-state Descriptors in Quantitative Structure Activity Relationship (QSAR) Studies of Multifunctional Molecules, Molecules, 2004, 9:1004-1009.

Hall, L.H. and Kier, L.B., Electrotopological State Indices for Atom Types: A Novel Combination

76 extrDrugKR

of Electronic, Topological, and Valence State Information, Journal of Chemical Information and Computer Science, 1995, 35:1039-1045.

Examples

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugKierHallSmarts(mol)
head(dat)
```

extrDrugKR

Calculate the KR (Klekota and Roth) Molecular Fingerprints (in Compact Format)

Description

Calculate the KR (Klekota and Roth) Molecular Fingerprints (in Compact Format)

Usage

```
extrDrugKR(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

Calculate the 4860 bit fingerprint defined by Klekota and Roth.

Value

A list, each component represents one of the molecules, each element in the component represents the index of which element in the fingerprint is 1. Each component's name is the length of the fingerprints.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

See Also

```
extrDrugKRComplete
```

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
fp = extrDrugKR(mol)
head(fp)
```

extrDrugKRComplete 77

extrDrugKRComplete	Calculate the KR (Klekota and Roth) Molecular Fingerprints (in Com-
	plete Format)

Description

Calculate the KR (Klekota and Roth) Molecular Fingerprints (in Complete Format)

Usage

```
extrDrugKRComplete(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

Calculate the 4860 bit fingerprint defined by Klekota and Roth.

Value

An integer vector or a matrix. Each row represents one molecule, the columns represent the finger-prints.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

See Also

```
extrDrugKR
```

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
fp = extrDrugKRComplete(mol)
dim(fp)
```

78 extrDrugMACCS

extrDrugMACCS

Calculate the MACCS Molecular Fingerprints (in Compact Format)

Description

Calculate the MACCS Molecular Fingerprints (in Compact Format)

Usage

```
extrDrugMACCS(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

The popular 166 bit MACCS keys described by MDL.

Value

A list, each component represents one of the molecules, each element in the component represents the index of which element in the fingerprint is 1. Each component's name is the length of the fingerprints.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

See Also

```
extrDrugMACCSComplete\\
```

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
fp = extrDrugMACCS(mol)
head(fp)
```

extrDrugMACCSComplete Calculate the MACCS Molecular Fingerprints (in Complete Format)

Description

Calculate the MACCS Molecular Fingerprints (in Complete Format)

Usage

```
extrDrugMACCSComplete(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

The popular 166 bit MACCS keys described by MDL.

Value

An integer vector or a matrix. Each row represents one molecule, the columns represent the finger-prints.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

See Also

```
extrDrugMACCS
```

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
fp = extrDrugMACCSComplete(mol)
dim(fp)
```

 $\begin{tabular}{ll} \textbf{extrDrugMannholdLogP} & \textit{Descriptor that Calculates the LogP Based on a Simple Equation Using the Number of Carbons and Hetero Atoms} \\ \end{tabular}$

Description

Descriptor that Calculates the LogP Based on a Simple Equation Using the Number of Carbons and Hetero Atoms

Usage

```
extrDrugMannholdLogP(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

This descriptor calculates the LogP based on a simple equation using the number of carbons and hetero atoms. The implemented equation was proposed in Mannhold et al.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This function returns one column named MLogP.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

References

Mannhold, R., Poda, G. I., Ostermann, C., & Tetko, I. V. (2009). Calculation of molecular lipophilicity: State-of-the-art and comparison of log P methods on more than 96,000 compounds. Journal of pharmaceutical sciences, 98(3), 861-893.

```
smi = system.file('vignettedata/FDAMDD.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugMannholdLogP(mol)
head(dat)
```

extrDrugOBFP2 81

extrDrugOBFP2

Calculate the FP2 Molecular Fingerprints

Description

Calculate the FP2 Molecular Fingerprints

Usage

```
extrDrugOBFP2(molecules, type = c("smile", "sdf"))
```

Arguments

molecules R character string object containing the molecules. See the example section for

details.

type 'smile' or 'sdf'.

Details

Calculate the 1024 bit FP2 fingerprints provided by OpenBabel.

Value

A matrix. Each row represents one molecule, the columns represent the fingerprints.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <a href="http://r2s.name">http://r2s.name</a>
```

Examples

extrDrugOBFP3

Calculate the FP3 Molecular Fingerprints

Description

Calculate the FP3 Molecular Fingerprints

Usage

```
extrDrugOBFP3(molecules, type = c("smile", "sdf"))
```

82 extrDrugOBFP4

Arguments

molecules R character string object containing the molecules. See the example section for

details.

type 'smile' or 'sdf'.

Details

Calculate the 64 bit FP3 fingerprints provided by OpenBabel.

Value

A matrix. Each row represents one molecule, the columns represent the fingerprints.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <a href="http://r2s.name">http://r2s.name</a>>
```

Examples

extrDrugOBFP4

Calculate the FP4 Molecular Fingerprints

Description

Calculate the FP4 Molecular Fingerprints

Usage

```
extrDrugOBFP4(molecules, type = c("smile", "sdf"))
```

Arguments

molecules R character string object containing the molecules. See the example section for

details

type 'smile' or 'sdf'.

Details

Calculate the 512 bit FP4 fingerprints provided by OpenBabel.

Value

A matrix. Each row represents one molecule, the columns represent the fingerprints.

extrDrugPubChem 83

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

Examples

extrDrugPubChem

Calculate the PubChem Molecular Fingerprints (in Compact Format)

Description

Calculate the PubChem Molecular Fingerprints (in Compact Format)

Usage

```
extrDrugPubChem(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

Calculate the 881 bit fingerprints defined by PubChem.

Value

A list, each component represents one of the molecules, each element in the component represents the index of which element in the fingerprint is 1. Each component's name is the length of the fingerprints.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <a href="http://r2s.name">http://r2s.name</a>
```

See Also

```
extrDrugPubChemComplete\\
```

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
fp = extrDrugPubChem(mol)
head(fp)
```

extrDrugPubChemComplete

Calculate the PubChem Molecular Fingerprints (in Complete Format)

Description

Calculate the PubChem Molecular Fingerprints (in Complete Format)

Usage

```
extrDrugPubChemComplete(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

Calculate the 881 bit fingerprints defined by PubChem.

Value

An integer vector or a matrix. Each row represents one molecule, the columns represent the finger-prints.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <a href="http://r2s.name">http://r2s.name</a>
```

See Also

extrDrugPubChem

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
fp = extrDrugPubChemComplete(mol)
dim(fp)
```

extrDrugShortestPath 85

 ${\it extr} {\it DrugShortestPath} \quad {\it Calculate the Shortest Path Molecular Fingerprints (in Compact Format)}$

Description

Calculate the Shortest Path Molecular Fingerprints (in Compact Format)

Usage

```
extrDrugShortestPath(molecules, depth = 6, size = 1024, silent = TRUE)
```

Arguments

molecules	Parsed molucule object.
depth	The search depth. Default is 6.
size	The length of the fingerprint bit string. Default is 1024.
silent	Logical. Whether the calculating process should be shown or not, default is TRUE.

Details

Calculate the fingerprint based on the shortest paths between pairs of atoms and takes into account ring systems, charges etc.

Value

A list, each component represents one of the molecules, each element in the component represents the index of which element in the fingerprint is 1. Each component's name is the length of the fingerprints.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <a href="http://r2s.name">http://r2s.name</a>
```

See Also

extrDrugShortestPathComplete

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
fp = extrDrugShortestPath(mol)
head(fp)
```

 ${\tt extrDrugShortestPathComplete}$

Calculate the Shortest Path Molecular Fingerprints (in Complete Format)

Description

Calculate the Shortest Path Molecular Fingerprints (in Complete Format)

Usage

```
extrDrugShortestPathComplete(molecules, depth = 6, size = 1024,
    silent = TRUE)
```

Arguments

molecules	Parsed molucule object.
depth	The search depth. Default is 6.
size	The length of the fingerprint bit string. Default is 1024.
silent	Logical. Whether the calculating process should be shown or not, default is TRUE.

Details

Calculate the fingerprint based on the shortest paths between pairs of atoms and takes into account ring systems, charges etc.

Value

An integer vector or a matrix. Each row represents one molecule, the columns represent the finger-prints.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

See Also

extrDrugShortestPath

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
fp = extrDrugShortestPathComplete(mol)
dim(fp)
```

extrDrugStandard 87

Description

Calculate the Standard Molecular Fingerprints (in Compact Format)

Usage

```
extrDrugStandard(molecules, depth = 6, size = 1024, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

depth The search depth. Default is 6.

size The length of the fingerprint bit string. Default is 1024.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

Calculate the standard molecular fingerprints. Considers paths of a given length. This is hashed fingerprints, with a default length of 1024.

Value

A list, each component represents one of the molecules, each element in the component represents the index of which element in the fingerprint is 1. Each component's name is the length of the fingerprints.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

See Also

```
extrDrugStandardComplete\\
```

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
fp = extrDrugStandard(mol)
head(fp)
```

extrDrugStandardComplete

Calculate the Standard Molecular Fingerprints (in Complete Format)

Description

Calculate the Standard Molecular Fingerprints (in Complete Format)

Usage

```
extrDrugStandardComplete(molecules, depth = 6, size = 1024, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

depth The search depth. Default is 6.

size The length of the fingerprint bit string. Default is 1024.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

Calculate the standard molecular fingerprints. Considers paths of a given length. This is hashed fingerprints, with a default length of 1024.

Value

An integer vector or a matrix. Each row represents one molecule, the columns represent the finger-prints.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

See Also

extrDrugStandard

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
fp = extrDrugStandardComplete(mol)
dim(fp)
```

extrDrugWHIM 89

extrDrugWHIM	Calculate Holistic Descriptors Described by Todeschini et al.
--------------	---

Description

Calculate Holistic Descriptors Described by Todeschini et al.

Usage

```
extrDrugWHIM(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

Holistic descriptors described by Todeschini et al, the descriptors are based on a number of atom weightings. There are six different possible weightings:

- · unit weights
- · atomic masses
- van der Waals volumes
- Mulliken atomic electronegativites
- atomic polarizabilities
- · E-state values described by Kier and Hall

Currently weighting schemes 1, 2, 3, 4 and 5 are implemented. The weight values are taken from Todeschini et al. and as a result 19 elements are considered. For each weighting scheme we can obtain

- 11 directional WHIM descriptors (lambda1 .. 3, nu1 .. 2, gamma1 .. 3, eta1 .. 3)
- 6 non-directional WHIM descriptors (T, A, V, K, G, D)

Though Todeschini et al. mentions that for planar molecules only 8 directional WHIM descriptors are required the current code will return all 11.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This function returns 17 columns:

- Wlambda1
- Wlambda2
- wlambda3
- Wnu1
- Wnu2

90 extrDrugWHIM

- Wgamma1
- Wgamma2
- Wgamma3
- Weta1
- Weta2
- Weta3
- WT
- WA
- WV
- WK
- WG
- WD

Each name will have a suffix of the form . X where X indicates the weighting scheme used. Possible values of X are

- unity
- mass
- volume
- eneg
- polar

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

References

Todeschini, R. and Gramatica, P., New 3D Molecular Descriptors: The WHIM theory and QAR Applications, Persepectives in Drug Discovery and Design, 1998, ?:355-380.

```
sdf = system.file('sysdata/test.sdf', package = 'BioMedR')
mol = readMolFromSDF(sdf)
dat = extrDrugWHIM(mol)
head(dat)
```

extrPCMBLOSUM 91

extrPCMBLOSUM	Generalized BLOSUM and PAM Matrix-Derived Descriptors	

Description

Generalized BLOSUM and PAM Matrix-Derived Descriptors

Usage

```
extrPCMBLOSUM(x, submat = "AABLOSUM62", k, lag, scale = TRUE,
    silent = TRUE)
```

Arguments

X	A character vector, as the input protein sequence.
submat	Substitution matrix for the 20 amino acids. Should be one of AABLOSUM45, AABLOSUM50, AABLOSUM62, AABLOSUM80, AABLOSUM100, AAPAM30, AAPAM40, AAPAM70, AAPAM120, AAPAM250. Default is 'AABLOSUM62'.
k	Integer. The number of selected scales (i.e. the first k scales) derived by the substitution matrix. This could be selected according to the printed relative importance values.
lag	The lag parameter. Must be less than the amino acids.
scale	Logical. Should we auto-scale the substitution matrix (submat) before doing eigen decomposition? Default is TRUE.
silent	Logical. Whether we print the relative importance of each scales (diagnal value of the eigen decomposition result matrix B) or not. Default is TRUE.

Details

This function calculates the generalized BLOSUM matrix-derived descriptors. For users' convenience, BioMedR provides the BLOSUM45, BLOSUM50, BLOSUM62, BLOSUM80, BLOSUM100, PAM30, PAM40, PAM70, PAM120, and PAM250 matrices for the 20 amino acids to select.

Value

A length lag * p^2 named vector, p is the number of scales selected.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

References

Georgiev, A. G. (2009). Interpretable numerical descriptors of amino acid space. Journal of Computational Biology, 16(5), 703–723.

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
blosum = extrPCMBLOSUM(x, submat = 'AABLOSUM62', k = 5, lag = 7, scale = TRUE, silent = FALSE)
```

92 extrPCMDescScales

		_	_
avtr	PCMDe	عددد	റചിച

Scales-Based Descriptors with 20+ classes of Molecular Descriptors

Description

Scales-Based Descriptors with 20+ classes of Molecular Descriptors

Usage

```
extrPCMDescScales(x, propmat, index = NULL, pc, lag, scale = TRUE,
    silent = TRUE)
```

Arguments

x	A character vector, as the input protein sequence.
propmat	The matrix containing the descriptor set for the amino acids, which could be chosen from AAMOE2D, AAMOE3D, AACPSA, AADescAll, AA2DACOR, AA3DMORSE, AAACF, AABurden, AAConn, AAConst, AAEdgeAdj, AAEigIdx, AAFGC, AAGeom, AAGETAWAY, AAInfo, AAMolProp, AARandic, AARDF, AATopo, AATopoChg, AAWalk, AAWHIM.
index	Integer vector or character vector. Specify which molecular descriptors to select from one of these descriptor sets by specify the numerical or character index of the molecular descriptors in the descriptor set. Default is NULL, means selecting all the molecular descriptors in this descriptor set.
рс	Integer. The maximum dimension of the space which the data are to be represented in. Must be no greater than the number of AA properties provided.
lag	The lag parameter. Must be less than the amino acids.
scale	Logical. Should we auto-scale the property matrix (propmat) before doing MDS? Default is TRUE.
silent	Logical. Whether we print the standard deviation, proportion of variance and the cumulative proportion of the selected principal components or not. Default is TRUE.

Details

This function calculates the scales-based descriptors with molecular descriptors sets calculated by Dragon, Discovery Studio and MOE. Users could specify which molecular descriptors to select from one of these descriptor sets by specify the numerical or character index of the molecular descriptors in the descriptor set.

Value

A length lag * p^2 named vector, p is the number of scales selected.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

See Also

See extrPCMScales for generalized AA-descriptor based scales descriptors.

extrPCMFAScales 93

Examples

extrPCMFAScales

Generalized Scales-Based Descriptors derived by Factor Analysis

Description

Generalized Scales-Based Descriptors derived by Factor Analysis

Usage

```
extrPCMFAScales(x, propmat, factors, scores = "regression", lag,
    scale = TRUE, silent = TRUE)
```

Arguments

X	A character vector, as the input protein sequence.
propmat	A matrix containing the properties for the amino acids. Each row represent one amino acid type, each column represents one property. Note that the one-letter row names must be provided for we need them to seek the properties for each AA type.
factors	Integer. The number of factors to be fitted. Must be no greater than the number of AA properties provided.
scores	Type of scores to produce. The default is "regression", which gives Thompson's scores, "Bartlett" given Bartlett's weighted least-squares scores.
lag	The lag parameter. Must be less than the amino acids number in the protein sequence.
scale	Logical. Should we auto-scale the property matrix (propmat) before doing Factor Analysis? Default is TRUE.
silent	Logical. Whether we print the SS loadings, proportion of variance and the cumulative proportion of the selected factors or not. Default is TRUE.

Details

This function calculates the generalized scales-based descriptors derived by Factor Analysis (FA). Users could provide customized amino acid property matrices.

Value

A length lag * p^2 named vector, p is the number of scales (factors) selected.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

94 extrPCMMDSScales

References

Atchley, W. R., Zhao, J., Fernandes, A. D., & Druke, T. (2005). Solving the protein sequence metric problem. Proceedings of the National Academy of Sciences of the United States of America, 102(18), 6395-6400.

Examples

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
data(AATopo)
tprops = AATopo[, c(37:41, 43:47)] # select a set of topological descriptors
fa = extrPCMFAScales(x, propmat = tprops, factors = 5, lag = 7, silent = FALSE)
```

extrPCMMDSScales

Generalized Scales-Based Descriptors derived by Multidimensional Scaling

Description

Generalized Scales-Based Descriptors derived by Multidimensional Scaling

Usage

```
extrPCMMDSScales(x, propmat, k, lag, scale = TRUE, silent = TRUE)
```

Arguments

x	A character vector, as the input protein sequence.
propmat	A matrix containing the properties for the amino acids. Each row represent one amino acid type, each column represents one property. Note that the one-letter row names must be provided for we need them to seek the properties for each AA type.
k	Integer. The maximum dimension of the space which the data are to be represented in. Must be no greater than the number of AA properties provided.
lag	The lag parameter. Must be less than the amino acids.
scale	Logical. Should we auto-scale the property matrix (propmat) before doing MDS? Default is TRUE.
silent	Logical. Whether we print the k eigenvalues computed during the scaling process or not. Default is TRUE.

Details

This function calculates the generalized scales-based descriptors derived by Multidimensional Scaling (MDS). Users could provide customized amino acid property matrices.

Value

A length lag * p^2 named vector, p is the number of scales (dimensionality) selected.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

extrPCMPropScales 95

References

Venkatarajan, M. S., & Braun, W. (2001). New quantitative descriptors of amino acids based on multidimensional scaling of a large number of physical-chemical properties. Molecular modeling annual, 7(12), 445–453.

See Also

See extrPCMScales for generalized scales-based descriptors derived by Principal Components Analysis.

Examples

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]] data(AATopo) tprops = AATopo[, c(37:41, 43:47)] # select a set of topological descriptors mds = extrPCMMDSScales(x, propmat = tprops, k = 5, lag = 7, silent = FALSE)
```

extrPCMPropScales

Generalized AA-Properties Based Scales Descriptors

Description

Generalized AA-Properties Based Scales Descriptors

Usage

```
extrPCMPropScales(x, index = NULL, pc, lag, scale = TRUE, silent = TRUE)
```

Arguments

x	A character vector, as the input protein sequence.
index	Integer vector or character vector. Specify which AAindex properties to select from the AAindex database by specify the numerical or character index of the properties in the AAindex database. Default is NULL, means selecting all the AA properties in the AAindex database.
рс	Integer. Use the first pc principal components as the scales. Must be no greater than the number of AA properties provided.
lag	The lag parameter. Must be less than the amino acids.
scale	Logical. Should we auto-scale the property matrix before PCA? Default is TRUE.
silent	Logical. Whether we print the standard deviation, proportion of variance and the cumulative proportion of the selected principal components or not. Default is TRUE.

Details

This function calculates the generalized amino acid properties based scales descriptors. Users could specify which AAindex properties to select from the AAindex database by specify the numerical or character index of the properties in the AAindex database.

96 extrPCMScaleGap

Value

A length lag * p^2 named vector, p is the number of scales (principal components) selected.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <a href="http://r2s.name">http://r2s.name</a>
```

See Also

See extrPCMScales for generalized scales-based descriptors.

Examples

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
propscales = extrPCMPropScales(x, index = c(160:165, 258:296), pc = 5, lag = 7, silent = FALSE)
```

extrPCMScaleGap Scales-Based Descriptors derived by Principal Components Analysis (with Gap Support)

Description

Scales-Based Descriptors derived by Principal Components Analysis (with Gap Support)

Usage

```
extrPCMScaleGap(x, propmat, pc, lag, scale = TRUE, silent = TRUE)
```

Arguments

Х	A character vector, as the input protein sequence. Use '-' to represent gaps in the sequence.
propmat	A matrix containing the properties for the amino acids. Each row represent one amino acid type, each column represents one property. Note that the one-letter row names must be provided for we need them to seek the properties for each AA type.
рс	Integer. Use the first pc principal components as the scales. Must be no greater than the number of AA properties provided.
lag	The lag parameter. Must be less than the amino acids.
scale	Logical. Should we auto-scale the property matrix (propmat) before PCA? Default is TRUE.
silent	Logical. Whether we print the standard deviation, proportion of variance and the cumulative proportion of the selected principal components or not. Default is TRUE.

Details

This function calculates scales-based descriptors derived by Principal Components Analysis (PCA), with gap support. Users could provide customized amino acid property matrices. This function implements the core computation procedure needed for the scales-based descriptors derived by AA-Properties (AAindex) and scales-based descriptors derived by 20+ classes of 2D and 3D molecular descriptors (Topological, WHIM, VHSE, etc.) in the BioMedR package.

extrPCMScales 97

Value

A length lag * p^2 named vector, p is the number of scales (principal components) selected.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://nanx.me>
```

See Also

See extrProtFPGap for amino acid property based scales descriptors (protein fingerprint) with gap support.

Examples

```
# amino acid sequence with gaps
x = readFASTA(system.file('protseq/align.fasta', package = 'BioMedR'))$`IXI_235`
data(AAindex)
AAidxmat = t(na.omit(as.matrix(AAindex[, 7:26])))
scales = extrPCMScaleGap(x, propmat = AAidxmat, pc = 5, lag = 7, silent = FALSE)
```

extrPCMScales

Generalized Scales-Based Descriptors derived by Principal Components Analysis

Description

Generalized Scales-Based Descriptors derived by Principal Components Analysis

Usage

```
extrPCMScales(x, propmat, pc, lag, scale = TRUE, silent = TRUE)
```

Arguments

x	A character vector, as the input protein sequence.
propmat	A matrix containing the properties for the amino acids. Each row represent one amino acid type, each column represents one property. Note that the one-letter row names must be provided for we need them to seek the properties for each AA type.
рс	Integer. Use the first pc principal components as the scales. Must be no greater than the number of AA properties provided.
lag	The lag parameter. Must be less than the amino acids.
scale	Logical. Should we auto-scale the property matrix (propmat) before PCA? Default is TRUE.
silent	Logical. Whether we print the standard deviation, proportion of variance and the cumulative proportion of the selected principal components or not. Default is TRUE.

98 extrProtAAC

Details

This function calculates the generalized scales-based descriptors derived by Principal Components Analysis (PCA). Users could provide customized amino acid property matrices. This function implements the core computation procedure needed for the generalized scales-based descriptors derived by AA-Properties (AAindex) and generalized scales-based descriptors derived by 20+ classes of 2D and 3D molecular descriptors (Topological, WHIM, VHSE, etc.) in the protr package.

Value

A length lag * p^2 named vector, p is the number of scales (principal components) selected.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

See Also

See extrPCMDescScales for generalized AA property based scales descriptors, and extrPCMPropScales for (19 classes) AA descriptor based scales descriptors.

Examples

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
data(AAindex)
AAidxmat = t(na.omit(as.matrix(AAindex[, 7:26])))
scales = extrPCMScales(x, propmat = AAidxmat, pc = 5, lag = 7, silent = FALSE)
```

extrProtAAC

Amino Acid Composition Descriptor

Description

Amino Acid Composition Descriptor

Usage

```
extrProtAAC(x)
```

Arguments

Х

A character vector, as the input protein sequence.

Details

This function calculates the Amino Acid Composition descriptor (Dim: 20).

Value

A length 20 named vector

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

extrProtAPAAC 99

References

M. Bhasin, G. P. S. Raghava. Classification of Nuclear Receptors Based on Amino Acid Composition and Dipeptide Composition. *Journal of Biological Chemistry*, 2004, 279, 23262.

See Also

See extrProtDC and extrProtTC for Dipeptide Composition and Tripeptide Composition descriptors.

Examples

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]] extrProtAAC(x)
```

extrProtAPAAC

Amphiphilic Pseudo Amino Acid Composition Descriptor

Description

Amphiphilic Pseudo Amino Acid Composition Descriptor

Usage

```
extrProtAPAAC(x, props = c("Hydrophobicity", "Hydrophilicity"), lambda = 30,
  w = 0.05, customprops = NULL)
```

Arguments

x A character vector, as the input protein sequence.

props A character vector, specifying the properties used. 2 properties are used by

default, as listed below:

'Hydrophobicity' Hydrophobicity value of the 20 amino acids 'Hydrophilicity' Hydrophilicity value of the 20 amino acids

1ambda The lambda parameter for the APAAC descriptors, default is 30.

w The weighting factor, default is 0.05.

customprops A n x 21 named data frame contains n customize property. Each row con-

tains one property. The column order for different amino acid types is 'AccNo', 'A', 'R', 'N', 'D', 'C', 'E', 'Q', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V', and the columns should also be *exactly* named like this. The AccNo column contains the properties' names. Then users should explicitly specify these properties with these names in the argument props. See the examples below for a demonstration. The default value for customprops is NULL.

Details

This function calculates the Amphiphilic Pseudo Amino Acid Composition (APAAC) descriptor (Dim: 20 + (n * lambda), n is the number of properties selected, default is 80).

Value

A length 20 + n * lambda named vector, n is the number of properties selected.

100 extrProtAPAAC

Note

Note the default 20 * 2 prop values have been already independently given in the function. Users could also specify other (up to 544) properties with the Accession Number in the AAindex data, with or without the default three properties, which means users should explicitly specify the properties to use.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

References

Kuo-Chen Chou. Prediction of Protein Cellular Attributes Using Pseudo-Amino Acid Composition. *PROTEINS: Structure, Function, and Genetics*, 2001, 43: 246-255.

 $Type\ 2\ pseudo\ amino\ acid\ composition.\ http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/type2.\ htm$

Kuo-Chen Chou. Using Amphiphilic Pseudo Amino Acid Composition to Predict Enzyme Subfamily Classes. *Bioinformatics*, 2005, 21, 10-19.

```
JACS, 1962, 84: 4240-4246. (C. Tanford). (The hydrophobicity data)
```

PNAS, 1981, 78:3824-3828 (T.P.Hopp & K.R.Woods). (The hydrophilicity data)

See Also

See extrProtPAAC for pseudo amino acid composition descriptor.

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
extrProtAPAAC(x)
myprops = data.frame(AccNo = c("MyProp1", "MyProp2", "MyProp3"),
                     A = c(0.62, -0.5, 15), R = c(-2.53, 3, 101),
                     N = c(-0.78, 0.2, 58), D = c(-0.9,
                                                             3, 59),
                                   -1, 47), E = c(-0.74, 3, 73),
                     C = c(0.29,
                     Q = c(-0.85, 0.2, 72), G = c(0.48,
                                                             0, 1),
                     H = c(-0.4, -0.5, 82), I = c(1.38, -1.8, 57),
                     L = c(1.06, -1.8, 57), K = c(-1.5,
                                                             3, 73),
                     M = c(0.64, -1.3, 75), F = c(1.19, -2.5, 91),
                     P = c(0.12,
                                  0, 42), S = c(-0.18, 0.3, 31),
                     T = c(-0.05, -0.4, 45), W = c(0.81, -3.4, 130),
                     Y = c(0.26, -2.3, 107), V = c(1.08, -1.5, 43))
# Use 2 default properties, 4 properties in the AAindex database,
# and 3 cutomized properties
extrProtAPAAC(x, customprops = myprops,
                 props = c('Hydrophobicity', 'Hydrophilicity',
                           'CIDH920105', 'BHAR880101', 'CHAM820101', 'CHAM820102',
                           'MyProp1', 'MyProp2', 'MyProp3'))
```

extrProtCTDC 101

extrProtCTDC

CTD Descriptors - Composition

Description

CTD Descriptors - Composition

Usage

```
extrProtCTDC(x)
```

Arguments

Х

A character vector, as the input protein sequence.

Details

This function calculates the Composition descriptor of the CTD descriptors (Dim: 21).

Value

A length 21 named vector

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

References

Inna Dubchak, Ilya Muchink, Stephen R. Holbrook and Sung-Hou Kim. Prediction of protein folding class using global description of amino acid sequence. *Proceedings of the National Academy of Sciences*. USA, 1995, 92, 8700-8704.

Inna Dubchak, Ilya Muchink, Christopher Mayor, Igor Dralyuk and Sung-Hou Kim. Recognition of a Protein Fold in the Context of the SCOP classification. *Proteins: Structure, Function and Genetics*, 1999, 35, 401-407.

See Also

See extrProtCTDT and extrProtCTDD for Transition and Distribution of the CTD descriptors.

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]] extrProtCTDC(x)
```

102 extrProtCTDCClass

extrProtCTDCClass	CTD Descriptors - Composition (with Customized Amino Acid Classification Support)
-------------------	---

Description

CTD Descriptors - Composition (with Customized Amino Acid Classification Support)

Usage

```
extrProtCTDCClass(x, aagroup1, aagroup2, aagroup3)
```

Arguments

Х	A character vector, as the input protein sequence.
aagroup1	A named list which contains the first group of customized amino acid classification. See example below.
aagroup2	A named list which contains the second group of customized amino acid classification. See example below.
aagroup3	A named list which contains the third group of customized amino acid classification. See example below.

Details

This function calculates the Composition descriptor of the CTD descriptors, with customized amino acid classification support.

Value

A length k * 3 named vector, k is the number of amino acid properties used.

Note

For this descriptor type, users need to intelligently evaluate the underlying details of the descriptors provided, instead of using this function with their data blindly. It would be wise to use some negative and positive control comparisons where relevant to help guide interpretation of the results.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://nanx.me>

References

Inna Dubchak, Ilya Muchink, Stephen R. Holbrook and Sung-Hou Kim. Prediction of protein folding class using global description of amino acid sequence. *Proceedings of the National Academy of Sciences*. USA, 1995, 92, 8700-8704.

Inna Dubchak, Ilya Muchink, Christopher Mayor, Igor Dralyuk and Sung-Hou Kim. Recognition of a Protein Fold in the Context of the SCOP classification. *Proteins: Structure, Function and Genetics*, 1999, 35, 401-407.

extrProtCTDD 103

See Also

See extrProtCTDTClass and extrProtCTDDClass for Transition and Distribution of the CTD descriptors with customized amino acid classification support.

Examples

extrProtCTDD

CTD Descriptors - Distribution

Description

CTD Descriptors - Distribution

Usage

```
extrProtCTDD(x)
```

Arguments

Х

A character vector, as the input protein sequence.

Details

This function calculates the Distribution descriptor of the CTD descriptors (Dim: 105).

Value

A length 105 named vector

104 extrProtCTDDClass

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

References

Inna Dubchak, Ilya Muchink, Stephen R. Holbrook and Sung-Hou Kim. Prediction of protein folding class using global description of amino acid sequence. *Proceedings of the National Academy of Sciences*. USA, 1995, 92, 8700-8704.

Inna Dubchak, Ilya Muchink, Christopher Mayor, Igor Dralyuk and Sung-Hou Kim. Recognition of a Protein Fold in the Context of the SCOP classification. *Proteins: Structure, Function and Genetics*, 1999, 35, 401-407.

See Also

See extrProtCTDC and extrProtCTDT for Composition and Transition of the CTD descriptors.

Examples

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
extrProtCTDD(x)
```

Description

CTD Descriptors - Distribution (with Customized Amino Acid Classification Support)

Usage

```
extrProtCTDDClass(x, aagroup1, aagroup2, aagroup3)
```

Arguments

X	A character vector, as the input protein sequence.
aagroup1	A named list which contains the first group of customized amino acid classification. See example below.
aagroup2	A named list which contains the second group of customized amino acid classification. See example below.
aagroup3	A named list which contains the third group of customized amino acid classification. See example below.

Details

This function calculates the Distribution descriptor of the CTD descriptors, with customized amino acid classification support.

Value

A length k * 15 named vector, k is the number of amino acid properties used.

extrProtCTDDClass 105

Note

For this descriptor type, users need to intelligently evaluate the underlying details of the descriptors provided, instead of using this function with their data blindly. It would be wise to use some negative and positive control comparisons where relevant to help guide interpretation of the results.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://nanx.me>

References

Inna Dubchak, Ilya Muchink, Stephen R. Holbrook and Sung-Hou Kim. Prediction of protein folding class using global description of amino acid sequence. *Proceedings of the National Academy of Sciences*. USA, 1995, 92, 8700-8704.

Inna Dubchak, Ilya Muchink, Christopher Mayor, Igor Dralyuk and Sung-Hou Kim. Recognition of a Protein Fold in the Context of the SCOP classification. *Proteins: Structure, Function and Genetics*, 1999, 35, 401-407.

See Also

See extrProtCTDCClass and extrProtCTDTClass for Composition and Transition of the CTD descriptors with customized amino acid classification support.

106 extrProtCTDT

extrProtCTDT

CTD Descriptors - Transition

Description

CTD Descriptors - Transition

Usage

```
extrProtCTDT(x)
```

Arguments

Χ

A character vector, as the input protein sequence.

Details

This function calculates the Transition descriptor of the CTD descriptors (Dim: 21).

Value

A length 21 named vector

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

References

Inna Dubchak, Ilya Muchink, Stephen R. Holbrook and Sung-Hou Kim. Prediction of protein folding class using global description of amino acid sequence. *Proceedings of the National Academy of Sciences*. USA, 1995, 92, 8700-8704.

Inna Dubchak, Ilya Muchink, Christopher Mayor, Igor Dralyuk and Sung-Hou Kim. Recognition of a Protein Fold in the Context of the SCOP classification. *Proteins: Structure, Function and Genetics*, 1999, 35, 401-407.

See Also

See extrProtCTDC and extrProtCTDD for Composition and Distribution of the CTD descriptors.

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]] extrProtCTDT(x)
```

extrProtCTDTClass 107

extrProtCTDTClass	assifi-
-------------------	---------

Description

CTD Descriptors - Transition (with Customized Amino Acid Classification Support)

Usage

```
extrProtCTDTClass(x, aagroup1, aagroup2, aagroup3)
```

Arguments

x	A character vector, as the input protein sequence.
aagroup1	A named list which contains the first group of customized amino acid classification. See example below.
aagroup2	A named list which contains the second group of customized amino acid classification. See example below.
aagroup3	A named list which contains the third group of customized amino acid classification. See example below.

Details

This function calculates the Transition descriptor of the CTD descriptors, with customized amino acid classification support.

Value

A length k * 3 named vector, k is the number of amino acid properties used.

Note

For this descriptor type, users need to intelligently evaluate the underlying details of the descriptors provided, instead of using this function with their data blindly. It would be wise to use some negative and positive control comparisons where relevant to help guide interpretation of the results.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://nanx.me>

References

Inna Dubchak, Ilya Muchink, Stephen R. Holbrook and Sung-Hou Kim. Prediction of protein folding class using global description of amino acid sequence. *Proceedings of the National Academy of Sciences*. USA, 1995, 92, 8700-8704.

Inna Dubchak, Ilya Muchink, Christopher Mayor, Igor Dralyuk and Sung-Hou Kim. Recognition of a Protein Fold in the Context of the SCOP classification. *Proteins: Structure, Function and Genetics*, 1999, 35, 401-407.

108 extrProtCTriad

See Also

See extrProtCTDCClass and extrProtCTDDClass for Composition and Distribution of the CTD descriptors with customized amino acid classification support.

Examples

extrProtCTriad

Conjoint Triad Descriptor

Description

Conjoint Triad Descriptor

Usage

```
extrProtCTriad(x)
```

Arguments

Х

A character vector, as the input protein sequence.

Details

This function calculates the Conjoint Triad descriptor (Dim: 343).

Value

A length 343 named vector

extrProtCTriadClass 109

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

References

J.W. Shen, J. Zhang, X.M. Luo, W.L. Zhu, K.Q. Yu, K.X. Chen, Y.X. Li, H.L. Jiang. Predicting Protein-protein Interactions Based Only on Sequences Information. *Proceedings of the National Academy of Sciences*. 007, 104, 4337–4341.

Examples

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]] extrProtCTriad(x)
```

 ${\tt extrProtCTriadClass}$

Conjoint Triad Descriptor (with Customized Amino Acid Classification Support)

Description

Conjoint Triad Descriptor (with Customized Amino Acid Classification Support)

Usage

```
extrProtCTriadClass(x, aaclass)
```

Arguments

x A character vector, as the input protein sequence.

aaclass A list containing the customized amino acid classification. See example below.

Details

This function calculates the Conjoint Triad descriptor, with customized amino acid classification support.

Value

A length k^3 named vector, where k is the number of customized classes of the amino acids.

Note

For this descriptor type, users need to intelligently evaluate the underlying details of the descriptors provided, instead of using this function with their data blindly. It would be wise to use some negative and positive control comparisons where relevant to help guide interpretation of the results.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://nanx.me>

110 extrProtDC

References

J.W. Shen, J. Zhang, X.M. Luo, W.L. Zhu, K.Q. Yu, K.X. Chen, Y.X. Li, H.L. Jiang. Predicting Protein-protein Interactions Based Only on Sequences Information. *Proceedings of the National Academy of Sciences*. 007, 104, 4337–4341.

Examples

extrProtDC

Dipeptide Composition Descriptor

Description

Dipeptide Composition Descriptor

Usage

```
extrProtDC(x)
```

Arguments

Х

A character vector, as the input protein sequence.

Details

This function calculates the Dipeptide Composition descriptor (Dim: 400).

Value

A length 400 named vector

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

References

M. Bhasin, G. P. S. Raghava. Classification of Nuclear Receptors Based on Amino Acid Composition and Dipeptide Composition. *Journal of Biological Chemistry*, 2004, 279, 23262.

See Also

See extrProtTC for tripeptide composition descriptors.

extrProtFPGap 111

Examples

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
extrProtDC(x)
```

extrProtFPGap	Amino Acid Properties Based Scales Descriptors (Protein Fingerprint)
	with Gap Support

Description

Amino Acid Properties Based Scales Descriptors (Protein Fingerprint) with Gap Support

Usage

```
extrProtFPGap(x, index = NULL, pc, lag, scale = TRUE, silent = TRUE)
```

Arguments

х	A character vector, as the input protein sequence. Use '-' to represent gaps in the sequence.
index	Integer vector or character vector. Specify which AAindex properties to select from the AAindex database by specify the numerical or character index of the properties in the AAindex database. Default is NULL, means selecting all the AA properties in the AAindex database.
рс	Integer. Use the first pc principal components as the scales. Must be no greater than the number of AA properties provided.
lag	The lag parameter. Must be less than the amino acids.
scale	Logical. Should we auto-scale the property matrix before PCA? Default is TRUE.
silent	Logical. Whether we print the standard deviation, proportion of variance and the cumulative proportion of the selected principal components or not. Default is TRUE.

Details

This function calculates amino acid properties based scales descriptors (protein fingerprint) with gap support. Users could specify which AAindex properties to select from the AAindex database by specify the numerical or character index of the properties in the AAindex database.

Value

A length lag * p^2 named vector, p is the number of scales (principal components) selected.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

```
# amino acid sequence with gaps
x = readFASTA(system.file('protseq/align.fasta', package = 'BioMedR'))$`IXI_235`
fp = extrProtFPGap(x, index = c(160:165, 258:296), pc = 5, lag = 7, silent = FALSE)
```

112 extrProtGeary

extrProtGeary

Geary Autocorrelation Descriptor

Description

Geary Autocorrelation Descriptor

Usage

```
extrProtGeary(x, props = c("CIDH920105", "BHAR880101", "CHAM820101", "CHAM820102", "CHOC760101", "BIGC670101", "CHAM810101", "DAYM780201"), nlag = 30L, customprops = NULL)
```

Arguments

Χ

A character vector, as the input protein sequence.

props

A character vector, specifying the Accession Number of the target properties. 8 properties are used by default, as listed below:

AccNo. CIDH920105 Normalized average hydrophobicity scales (Cid et al., 1992)

AccNo. BHAR880101 Average flexibility indices (Bhaskaran-Ponnuswamy, 1988)

AccNo. CHAM820101 Polarizability parameter (Charton-Charton, 1982)

AccNo. CHAM820102 Free energy of solution in water, kcal/mole (Charton-Charton, 1982)

AccNo. CHOC760101 Residue accessible surface area in tripeptide (Chothia, 1976)

AccNo. BIGC670101 Residue volume (Bigelow, 1967)

AccNo. CHAM810101 Steric parameter (Charton, 1981)

AccNo. DAYM780201 Relative mutability (Dayhoff et al., 1978b)

nlag

Maximum value of the lag parameter. Default is 30.

customprops

A n x 21 named data frame contains n customize property. Each row contains one property. The column order for different amino acid types is 'AccNo', 'A', 'R', 'N', 'D', 'C', 'E', 'Q', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V', and the columns should also be *exactly* named like this. The AccNo column contains the properties' names. Then users should explicitly specify these properties with these names in the argument props. See the examples below for a demonstration. The default value for customprops is NULL.

Details

This function calculates the Geary autocorrelation descriptor (Dim: length(props) * nlag).

Value

A length nlag named vector

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

extrProtMoran 113

References

AAindex: Amino acid index database. http://www.genome.ad.jp/dbget/aaindex.html

Feng, Z.P. and Zhang, C.T. (2000) Prediction of membrane protein types based on the hydrophobic index of amino acids. *Journal of Protein Chemistry*, 19, 269-275.

Horne, D.S. (1988) Prediction of protein helix content from an autocorrelation analysis of sequence hydrophobicities. *Biopolymers*, 27, 451-477.

Sokal, R.R. and Thomson, B.A. (2006) Population structure inferred by local spatial autocorrelation: an Usage from an Amerindian tribal population. *American Journal of Physical Anthropology*, 129, 121-131.

See Also

See extrProtMoreauBroto and extrProtMoran for Moreau-Broto autocorrelation descriptors and Moran autocorrelation descriptors.

Examples

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
extrProtGeary(x)
myprops = data.frame(AccNo = c("MyProp1", "MyProp2", "MyProp3"),
                    A = c(0.62, -0.5, 15), R = c(-2.53, 3, 101),
                    N = c(-0.78, 0.2, 58), D = c(-0.9, 3, 59),
                                  -1, 47), E = c(-0.74, 3, 73),
                    C = c(0.29,
                    Q = c(-0.85, 0.2, 72), G = c(0.48,
                    H = c(-0.4, -0.5, 82), I = c(1.38, -1.8, 57),
                    L = c(1.06, -1.8, 57), K = c(-1.5,
                                                           3, 73),
                    M = c(0.64, -1.3, 75), F = c(1.19, -2.5, 91),
                    P = c(0.12, 0, 42), S = c(-0.18, 0.3, 31),
                    T = c(-0.05, -0.4, 45), W = c(0.81, -3.4, 130),
                    Y = c(0.26, -2.3, 107), V = c(1.08, -1.5, 43))
# Use 4 properties in the AAindex database, and 3 cutomized properties
extrProtGeary(x, customprops = myprops,
                props = c('CIDH920105', 'BHAR880101',
                          'CHAM820101', 'CHAM820102',
                          'MyProp1', 'MyProp2', 'MyProp3'))
```

extrProtMoran

Moran Autocorrelation Descriptor

Description

Moran Autocorrelation Descriptor

Usage

```
extrProtMoran(x, props = c("CIDH920105", "BHAR880101", "CHAM820101", "CHAM820102", "CHOC760101", "BIGC670101", "CHAM810101", "DAYM780201"), nlag = 30L, customprops = NULL)
```

114 extrProtMoran

Arguments

x A character vector, as the input protein sequence.

props A character vector, specifying the Accession Number of the target properties. 8

properties are used by default, as listed below:

AccNo. CIDH920105 Normalized average hydrophobicity scales (Cid et al., 1992)

AccNo. BHAR880101 Average flexibility indices (Bhaskaran-Ponnuswamy, 1988)

AccNo. CHAM820101 Polarizability parameter (Charton-Charton, 1982)

AccNo. CHAM820102 Free energy of solution in water, kcal/mole (Charton-Charton, 1982)

AccNo. CHOC760101 Residue accessible surface area in tripeptide (Chothia, 1976)

AccNo. BIGC670101 Residue volume (Bigelow, 1967) AccNo. CHAM810101 Steric parameter (Charton, 1981)

AccNo. DAYM780201 Relative mutability (Dayhoff et al., 1978b)

nlag Maximum value of the lag parameter. Default is 30.

customprops A n x 21 named data frame contains n customize property. Each row con-

tains one property. The column order for different amino acid types is 'AccNo', 'A', 'R', 'N', 'D', 'C', 'E', 'Q', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V', and the columns should also be *exactly* named like this. The AccNo column contains the properties' names. Then users should explicitly specify these properties with these names in the argument props. See the examples below for a demonstration. The default value for customprops is NULL.

Details

This function calculates the Moran autocorrelation descriptor (Dim: length(props) * nlag).

Value

A length nlag named vector

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

References

AAindex: Amino acid index database. http://www.genome.ad.jp/dbget/aaindex.html

Feng, Z.P. and Zhang, C.T. (2000) Prediction of membrane protein types based on the hydrophobic index of amino acids. *Journal of Protein Chemistry*, 19, 269-275.

Horne, D.S. (1988) Prediction of protein helix content from an autocorrelation analysis of sequence hydrophobicities. *Biopolymers*, 27, 451-477.

Sokal, R.R. and Thomson, B.A. (2006) Population structure inferred by local spatial autocorrelation: an Usage from an Amerindian tribal population. *American Journal of Physical Anthropology*, 129, 121-131.

See Also

See extrProtMoreauBroto and extrProtGeary for Moreau-Broto autocorrelation descriptors and Geary autocorrelation descriptors.

extrProtMoreauBroto 115

Examples

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
extrProtMoran(x)
myprops = data.frame(AccNo = c("MyProp1", "MyProp2", "MyProp3"),
                    A = c(0.62, -0.5, 15), R = c(-2.53, 3, 101),
                    N = c(-0.78, 0.2, 58), D = c(-0.9,
                                  -1, 47), E = c(-0.74, 3, 73),
                    C = c(0.29,
                    Q = c(-0.85, 0.2, 72), G = c(0.48,
                    H = c(-0.4, -0.5, 82), I = c(1.38, -1.8, 57),
                    L = c(1.06, -1.8, 57), K = c(-1.5,
                    M = c(0.64, -1.3, 75), F = c(1.19, -2.5, 91),
                    P = c(0.12,
                                   0, 42), S = c(-0.18, 0.3, 31),
                    T = c(-0.05, -0.4, 45), W = c(0.81, -3.4, 130),
                    Y = c(0.26, -2.3, 107), V = c(1.08, -1.5, 43))
# Use 4 properties in the AAindex database, and 3 cutomized properties
extrProtMoran(x, customprops = myprops,
                props = c('CIDH920105', 'BHAR880101',
                          'CHAM820101', 'CHAM820102',
                          'MyProp1', 'MyProp2', 'MyProp3'))
```

extrProtMoreauBroto

Normalized Moreau-Broto Autocorrelation Descriptor

Description

Normalized Moreau-Broto Autocorrelation Descriptor

Usage

```
extrProtMoreauBroto(x, props = c("CIDH920105", "BHAR880101", "CHAM820101", "CHAM820102", "CHOC760101", "BIGC670101", "CHAM810101", "DAYM780201"), nlag = 30L, customprops = NULL)
```

Arguments

Χ

A character vector, as the input protein sequence.

props

A character vector, specifying the Accession Number of the target properties. 8 properties are used by default, as listed below:

AccNo. CIDH920105 Normalized average hydrophobicity scales (Cid et al., 1992)

AccNo. BHAR880101 Average flexibility indices (Bhaskaran-Ponnuswamy, 1988)

AccNo. CHAM820101 Polarizability parameter (Charton-Charton, 1982)

AccNo. CHAM820102 Free energy of solution in water, kcal/mole (Charton-Charton, 1982)

AccNo. CHOC760101 Residue accessible surface area in tripeptide (Chothia, 1976)

AccNo. BIGC670101 Residue volume (Bigelow, 1967)

AccNo. CHAM810101 Steric parameter (Charton, 1981)

AccNo. DAYM780201 Relative mutability (Dayhoff et al., 1978b)

116 extrProtMoreauBroto

nlag

Maximum value of the lag parameter. Default is 30.

customprops

A n x 21 named data frame contains n customize property. Each row contains one property. The column order for different amino acid types is 'AccNo', 'A', 'R', 'N', 'D', 'C', 'E', 'Q', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V', and the columns should also be *exactly* named like this. The AccNo column contains the properties' names. Then users should explicitly specify these properties with these names in the argument props. See the examples below for a demonstration. The default value for customprops is NULL.

Details

This function calculates the normalized Moreau-Broto autocorrelation descriptor (Dim: length(props) * nlag).

Value

A length nlag named vector

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

References

AAindex: Amino acid index database. http://www.genome.ad.jp/dbget/aaindex.html

Feng, Z.P. and Zhang, C.T. (2000) Prediction of membrane protein types based on the hydrophobic index of amino acids. *Journal of Protein Chemistry*, 19, 269-275.

Horne, D.S. (1988) Prediction of protein helix content from an autocorrelation analysis of sequence hydrophobicities. *Biopolymers*, 27, 451-477.

Sokal, R.R. and Thomson, B.A. (2006) Population structure inferred by local spatial autocorrelation: an Usage from an Amerindian tribal population. *American Journal of Physical Anthropology*, 129, 121-131.

See Also

See extrProtMoran and extrProtGeary for Moran autocorrelation descriptors and Geary autocorrelation descriptors.

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
extrProtMoreauBroto(x)
myprops = data.frame(AccNo = c("MyProp1", "MyProp2", "MyProp3"),
                    A = c(0.62, -0.5, 15), R = c(-2.53,
                    N = c(-0.78, 0.2, 58), D = c(-0.9,
                                                           3, 59),
                                  -1, 47), E = c(-0.74,
                    C = c(0.29,
                                                           3, 73),
                    Q = c(-0.85, 0.2, 72), G = c(0.48,
                                                           0, 1),
                    H = c(-0.4, -0.5, 82), I = c(1.38, -1.8, 57),
                    L = c(1.06, -1.8, 57), K = c(-1.5,
                                                           3, 73),
                    M = c(0.64, -1.3, 75), F = c(1.19, -2.5, 91),
                    P = c(0.12,
                                  0, 42), S = c(-0.18, 0.3, 31),
                    T = c(-0.05, -0.4, 45), W = c(0.81, -3.4, 130),
                    Y = c(0.26, -2.3, 107), V = c(1.08, -1.5, 43))
```

extrProtPAAC 117

extrProtPAAC

Pseudo Amino Acid Composition Descriptor

Description

Pseudo Amino Acid Composition Descriptor

Usage

```
extrProtPAAC(x, props = c("Hydrophobicity", "Hydrophilicity",
   "SideChainMass"), lambda = 30, w = 0.05, customprops = NULL)
```

Arguments

x A character vector, as the input protein sequence.

props A character vector, specifying the properties used. 3 properties are used by

default, as listed below:

'Hydrophobicity' Hydrophobicity value of the 20 amino acids 'Hydrophilicity' Hydrophilicity value of the 20 amino acids 'SideChainMass' Side-chain mass of the 20 amino acids

lambda The lambda parameter for the PAAC descriptors, default is 30.

w The weighting factor, default is 0.05.

customprops A n x 21 named data frame contains n customize property. Each row con-

tains one property. The column order for different amino acid types is 'AccNo', 'A', 'R', 'N', 'D', 'C', 'E', 'Q', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V', and the columns should also be *exactly* named like this. The AccNo column contains the properties' names. Then users should explicitly specify these properties with these names in the argument props. See the examples below for a demonstration. The default value for customprops is NULL.

Details

This function calculates the Pseudo Amino Acid Composition (PAAC) descriptor (Dim: 20 + lambda, default is 50).

Value

A length 20 + lambda named vector

Note

Note the default 20 * 3 prop values have been already independently given in the function. Users could also specify other (up to 544) properties with the Accession Number in the AAindex data, with or without the default three properties, which means users should explicitly specify the properties to use.

118 extrProtPAAC

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

References

Kuo-Chen Chou. Prediction of Protein Cellular Attributes Using Pseudo-Amino Acid Composition. *PROTEINS: Structure, Function, and Genetics*, 2001, 43: 246-255.

Type 1 pseudo amino acid composition. http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/type1.

Kuo-Chen Chou. Using Amphiphilic Pseudo Amino Acid Composition to Predict Enzyme Subfamily Classes. *Bioinformatics*, 2005, 21, 10-19.

JACS, 1962, 84: 4240-4246. (C. Tanford). (The hydrophobicity data)

PNAS, 1981, 78:3824-3828 (T.P.Hopp & K.R.Woods). (The hydrophilicity data)

CRC Handbook of Chemistry and Physics, 66th ed., CRC Press, Boca Raton, Florida (1985). (The side-chain mass data)

R.M.C. Dawson, D.C. Elliott, W.H. Elliott, K.M. Jones, Data for Biochemical Research 3rd ed., Clarendon Press Oxford (1986). (The side-chain mass data)

See Also

See extrProtAPAAC for amphiphilic pseudo amino acid composition descriptor.

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
extrProtPAAC(x)
myprops = data.frame(AccNo = c("MyProp1", "MyProp2", "MyProp3"),
                    A = c(0.62, -0.5, 15), R = c(-2.53, 3, 101),
                    N = c(-0.78, 0.2, 58), D = c(-0.9,
                                                           3, 59),
                    C = c(0.29,
                                 -1, 47), E = c(-0.74, 3, 73),
                    C = C(0.29, -1, 47), E - C(-0.77, -1)

Q = C(-0.85, 0.2, 72), G = C(0.48, -1)
                                                           0, 1),
                    H = c(-0.4, -0.5, 82), I = c(1.38, -1.8, 57),
                    L = c(1.06, -1.8, 57), K = c(-1.5,
                                                           3, 73),
                    M = c(0.64, -1.3, 75), F = c(1.19, -2.5, 91),
                    Y = c(0.26, -2.3, 107), V = c(1.08, -1.5, 43))
# Use 3 default properties, 4 properties in the AAindex database,
# and 3 cutomized properties
extrProtPAAC(x, customprops = myprops,
               props = c('Hydrophobicity', 'Hydrophilicity', 'SideChainMass',
                          'CIDH920105', 'BHAR880101',
                         'CHAM820101', 'CHAM820102',
                         'MyProp1', 'MyProp2', 'MyProp3'))
```

extrProtPSSM 119

extrProtPSSM	Compute PSSM (Position-Specific Scoring Matrix) for given protein sequence

Description

Compute PSSM (Position-Specific Scoring Matrix) for given protein sequence

Usage

```
extrProtPSSM(seq, start.pos = 1L, end.pos = nchar(seq),
   psiblast.path = NULL, makeblastdb.path = NULL, database.path = NULL,
   iter = 5, silent = TRUE, evalue = 10L, word.size = NULL,
   gapopen = NULL, gapextend = NULL, matrix = "BLOSUM62",
   threshold = NULL, seg = "no", soft.masking = FALSE,
   culling.limit = NULL, best.hit.overhang = NULL,
   best.hit.score.edge = NULL, xdrop.ungap = NULL, xdrop.gap = NULL,
   xdrop.gap.final = NULL, window.size = NULL, gap.trigger = 22L,
   num.threads = 1L, pseudocount = 0L, inclusion.ethresh = 0.002)
```

Arguments

seq	Character vector, as the input protein sequence.
start.pos	Optional integer denoting the start position of the fragment window. Default is 1, i.e. the first amino acid of the given sequence.
end.pos	Optional integer denoting the end position of the fragment window. Default is nchar(seq), i.e. the last amino acid of the given sequence.
psiblast.path	Character string indicating the path of the psiblast program. If NCBI Blast+ was previously installed in the operation system, the path will be automatically detected.
makeblastdb.pat	th
	Character string indicating the path of the makeblastdb program. If NCBI Blast+ was previously installed in the system, the path will be automatically detected.
database.path	Character string indicating the path of a reference database (a FASTA file).
iter	Number of iterations to perform for PSI-Blast.
silent	Logical. Whether the PSI-Blast running output should be shown or not (May not work on some Windows versions and PSI-Blast versions), default is TRUE.
evalue	Expectation value (E) threshold for saving hits. Default is 10.
word.size	Word size for wordfinder algorithm. An integer >= 2.
gapopen	Integer. Cost to open a gap.
gapextend	Integer. Cost to extend a gap.
matrix	Character string. The scoring matrix name (default is 'BLOSUM62').
threshold	Minimum word score such that the word is added to the BLAST lookup table. A real value $>= 0$.
seg	Character string. Filter query sequence with SEG ('yes', 'window locut hicut',

or 'no' to disable) Default is 'no'.

120 extrProtPSSM

soft.masking Logical. Apply filtering locations as soft masks? Default is FALSE.

culling.limit An integer \geq 0. If the query range of a hit is enveloped by that of at least this

many higher-scoring hits, delete the hit. Incompatible with best.hit.overhang

and best_hit_score_edge.

best.hit.overhang

Best Hit algorithm overhang value (A real value >= 0 and =< 0.5, recommended value: 0.1). Incompatible with culling_limit.

best.hit.score.edge

Best Hit algorithm score edge value (A real value >=0 and =< 0.5, recommended

value: 0.1). Incompatible with culling_limit.

xdrop.ungap X-dropoff value (in bits) for ungapped extensions.

xdrop.gap X-dropoff value (in bits) for preliminary gapped extensions.

xdrop.gap.final

X-dropoff value (in bits) for final gapped alignment.

window.size An integer >= 0. Multiple hits window size, To specify 1-hit algorithm, use 0.

gap. trigger Number of bits to trigger gapping. Default is 22.

num. threads Integer. Number of threads (CPUs) to use in the BLAST search. Default is 1.

pseudocount Integer. Pseudo-count value used when constructing PSSM. Default is 0.

inclusion.ethresh

E-value inclusion threshold for pairwise alignments. Default is 0.002.

Details

This function calculates the PSSM (Position-Specific Scoring Matrix) derived by PSI-Blast for given protein sequence or peptides. For given protein sequences or peptides, PSSM represents the log-likelihood of the substitution of the 20 types of amino acids at that position in the sequence. Note that the output value is not normalized.

Value

The original PSSM, a numeric matrix which has end.pos - start.pos + 1 columns and 20 named rows.

Note

The function requires the makeblastdb and psiblast programs to be properly installed in the operation system or their paths provided.

The two command-line programs are included in the NCBI-BLAST+ software package. To install NCBI Blast+, just open the NCBI FTP site using web browser or FTP software: ftp://anonymous@ftp.ncbi.nlm.nih.gov:21/blast/executables/blast+/LATEST/ then download the executable version of BLAST+ according to your operation system, and compile or install the downloaded source code or executable program.

Ubuntu/Debian users can directly use the command sudo apt-get install ncbi-blast+ to install NCBI Blast+. For OS X users, download ncbi-blast- dmg then install. For Windows users, download ncbi-blast- exe then install.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

extrProtPSSMAcc 121

References

Altschul, Stephen F., et al. "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs." *Nucleic acids research* 25.17 (1997): 3389–3402.

Ye, Xugang, Guoli Wang, and Stephen F. Altschul. "An assessment of substitution scores for protein profile-profile comparison." *Bioinformatics* 27.24 (2011): 3356–3363.

Rangwala, Huzefa, and George Karypis. "Profile-based direct kernels for remote homology detection and fold recognition." *Bioinformatics* 21.23 (2005): 4239–4247.

See Also

extrProtPSSMFeature extrProtPSSMAcc

Examples

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
dbpath = tempfile('tempdb', fileext = '.fasta')
invisible(file.copy(from = system.file('protseq/Plasminogen.fasta', package = 'BioMedR'), to = dbpath))
pssmmat = extrProtPSSM(seq = x, database.path = dbpath)
dim(pssmmat) # 20 x 562 (P00750: length 562, 20 Amino Acids)
```

extrProtPSSMAcc

Profile-based protein representation derived by PSSM (Position-Specific Scoring Matrix) and auto cross covariance

Description

Profile-based protein representation derived by PSSM (Position-Specific Scoring Matrix) and auto cross covariance

Usage

```
extrProtPSSMAcc(pssmmat, lag)
```

Arguments

pssmmat The PSSM computed by extrProtPSSM.

lag The lag parameter. Must be less than the number of amino acids in the sequence

(i.e. the number of columns in the PSSM matrix).

Details

This function calculates the feature vector based on the PSSM by running PSI-Blast and auto cross covariance tranformation.

Value

A length lag * 20^2 named numeric vector, the element names are derived by the amino acid name abbreviation (crossed amino acid name abbreviation) and lag index.

122 extrProtPSSMFeature

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

References

Wold, S., Jonsson, J., Sj\"orstr\"om, M., Sandberg, M., & R\"annar, S. (1993). DNA and peptide sequences and chemical processes multivariately modelled by principal component analysis and partial least-squares projections to latent structures. *Analytica chimica acta*, 277(2), 239–253.

See Also

extrProtPSSM extrProtPSSMFeature

Examples

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
dbpath = tempfile('tempdb', fileext = '.fasta')
invisible(file.copy(from = system.file('protseq/Plasminogen.fasta', package = 'BioMedR'), to = dbpath))
pssmmat = extrProtPSSM(seq = x, database.path = dbpath)
pssmacc = extrProtPSSMAcc(pssmmat, lag = 3)
tail(pssmacc)
```

 ${\tt extrProtPSSMFeature}$

Profile-based protein representation derived by PSSM (Position-Specific Scoring Matrix)

Description

Profile-based protein representation derived by PSSM (Position-Specific Scoring Matrix)

Usage

```
extrProtPSSMFeature(pssmmat)
```

Arguments

pssmmat

The PSSM computed by extrProtPSSM.

Details

This function calculates the profile-based protein representation derived by PSSM. The feature vector is based on the PSSM computed by extrProtPSSM. For a given sequence, The PSSM feature represents the log-likelihood of the substitution of the 20 types of amino acids at that position in the sequence. Each PSSM feature value in the vector represents the degree of conservation of a given amino acid type. The value is normalized to interval (0, 1) by the transformation $1/(1+e^{-(x)})$.

Value

A numeric vector which has 20 x N named elements, where N is the size of the window (number of rows of the PSSM).

extrProtQSO 123

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

References

Ye, Xugang, Guoli Wang, and Stephen F. Altschul. "An assessment of substitution scores for protein profile-profile comparison." *Bioinformatics* 27.24 (2011): 3356–3363.

Rangwala, Huzefa, and George Karypis. "Profile-based direct kernels for remote homology detection and fold recognition." *Bioinformatics* 21.23 (2005): 4239–4247.

See Also

```
extrProtPSSM extrProtPSSMAcc
```

Examples

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
dbpath = tempfile('tempdb', fileext = '.fasta')
invisible(file.copy(from = system.file('protseq/Plasminogen.fasta', package = 'BioMedR'), to = dbpath))
pssmmat = extractProtPSSM(seq = x, database.path = dbpath)
pssmfeature = extrProtPSSMFeature(pssmmat)
head(pssmfeature)
```

extrProtQS0

 ${\it Quasi-Sequence-Order~(QSO)~Descriptor}$

Description

```
Quasi-Sequence-Order (QSO) Descriptor
```

Usage

```
extrProtQSO(x, nlag = 30, w = 0.1)
```

Arguments

x A character vector, as the input protein sequence.

nlag The maximum lag, defualt is 30.
w The weighting factor, default is 0.1.

Details

This function calculates the Quasi-Sequence-Order (QSO) descriptor (Dim: 20 + 20 + (2 * nlag), default is 100).

Value

```
A length 20 + 20 + (2 * nlag) named vector
```

124 extrProtSOCN

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

References

Kuo-Chen Chou. Prediction of Protein Subcellar Locations by Incorporating Quasi-Sequence-Order Effect. *Biochemical and Biophysical Research Communications*, 2000, 278, 477-483.

Kuo-Chen Chou and Yu-Dong Cai. Prediction of Protein Sucellular Locations by GO-FunD-PseAA Predictor. *Biochemical and Biophysical Research Communications*, 2004, 320, 1236-1239.

Gisbert Schneider and Paul Wrede. The Rational Design of Amino Acid Sequences by Artifical Neural Networks and Simulated Molecular Evolution: Do Novo Design of an Idealized Leader Cleavge Site. *Biophys Journal*, 1994, 66, 335-344.

See Also

See extrProtSOCN for sequence-order-coupling numbers.

Examples

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
extrProtQSO(x)
```

extrProtSOCN

Sequence-Order-Coupling Numbers

Description

Sequence-Order-Coupling Numbers

Usage

```
extrProtSOCN(x, nlag = 30)
```

Arguments

x A character vector, as the input protein sequence.

nlag The maximum lag, defualt is 30.

Details

This function calculates the Sequence-Order-Coupling Numbers (Dim: nlag * 2, default is 60).

Value

```
A length nlag * 2 named vector
```

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

extrProtTC 125

References

Kuo-Chen Chou. Prediction of Protein Subcellar Locations by Incorporating Quasi-Sequence-Order Effect. *Biochemical and Biophysical Research Communications*, 2000, 278, 477-483.

Kuo-Chen Chou and Yu-Dong Cai. Prediction of Protein Sucellular Locations by GO-FunD-PseAA Predictor. *Biochemical and Biophysical Research Communications*, 2004, 320, 1236-1239.

Gisbert Schneider and Paul Wrede. The Rational Design of Amino Acid Sequences by Artifical Neural Networks and Simulated Molecular Evolution: Do Novo Design of an Idealized Leader Cleavge Site. *Biophys Journal*, 1994, 66, 335-344.

See Also

See extrProtQSO for quasi-sequence-order descriptors.

Examples

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]] extrProtSOCN(x)
```

extrProtTC

Tripeptide Composition Descriptor

Description

Tripeptide Composition Descriptor

Usage

```
extrProtTC(x)
```

Arguments

Х

A character vector, as the input protein sequence.

Details

This function calculates the Tripeptide Composition descriptor (Dim: 8000).

Value

A length 8000 named vector

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

References

M. Bhasin, G. P. S. Raghava. Classification of Nuclear Receptors Based on Amino Acid Composition and Dipeptide Composition. *Journal of Biological Chemistry*, 2004, 279, 23262.

126 geometric

See Also

See extrProtDC for dipeptide composition descriptors.

Examples

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
extrProtTC(x)
```

geometric

Descriptor Characterizing the Mass Distribution of the Molecule.

Description

Descriptor Characterizing the Mass Distribution of the Molecule.

Calculates the Ratio of Length to Breadth Descriptor

Descriptor that Calculates the Principal Moments of Inertia and Ratios of the Principal Moments

Usage

```
extrDrugGravitationalIndex(molecules, silent = TRUE)
extrDrugLengthOverBreadth(molecules, silent = TRUE)
extrDrugMomentOfInertia(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

Descriptor characterizing the mass distribution of the molecule described by Katritzky et al. For modelling purposes the value of the descriptor is calculated both with and without H atoms. Furthermore the square and cube roots of the descriptor are also generated as described by Wessel et al.

Calculates the Ratio of Length to Breadth, as a result ti does not perform any orientation and only considers the X & Y extents for a series of rotations about the Z axis (in 10 degree increments).

A descriptor that calculates the moment of inertia and radius of gyration. Moment of inertia (MI) values characterize the mass distribution of a molecule. Related to the MI values, ratios of the MI values along the three principal axes are also well know modeling variables. This descriptor calculates the MI values along the X, Y and Z axes as well as the ratio's X/Y, X/Z and Y/Z. Finally it also calculates the radius of gyration of the molecule.

geometric 127

Value

A data frame, each row represents one of the molecules, each column represents one feature. This function returns 9 columns:

- GRAV. 1 gravitational index of heavy atoms
- GRAV. 2 square root of gravitational index of heavy atoms
- GRAV. 3 cube root of gravitational index of heavy atoms
- GRAVH. 1 gravitational index hydrogens included
- GRAVH. 2 square root of hydrogen-included gravitational index
- GRAVH. 3 cube root of hydrogen-included gravitational index
- GRAV. 4 grav1 for all pairs of atoms (not just bonded pairs)
- GRAV. 5 grav2 for all pairs of atoms (not just bonded pairs)
- GRAV. 6 grav3 for all pairs of atoms (not just bonded pairs)

extrDrugLengthOverBreadth: This function returns two columns named LOBMAX and LOBMIN:

- LOBMAX The maximum L/B ratio;
- LOBMIN The L/B ratio for the rotation that results in the minimum area (defined by the product of the X & Y extents for that orientation).

extrDrugMomentOfInertia: This function returns 7 columns named MOMI.X, MOMI.Y, MOMI.Z, MOMI.XY, MOMI.XZ, MOMI.YZ, MOMI.R:

- MOMI.X MI along X axis
- MOMI.Y MI along Y axis
- MOMI.Z MI along Z axis
- MOMI.XY X/Y
- MOMI.XZ X/Z
- MOMI.YZ Y/Z
- MOMI.R Radius of gyration

One important aspect of the algorithm is that if the eigenvalues of the MI tensor are below 1e-3, then the ratio's are set to a default of 1000.

Note

extrDrugLengthOverBreadth: The descriptor assumes that the atoms have been configured.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

References

Katritzky, A.R. and Mu, L. and Lobanov, V.S. and Karelson, M., Correlation of Boiling Points With Molecular Structure. 1. A Training Set of 298 Diverse Organics and a Test Set of 9 Simple Inorganics, J. Phys. Chem., 1996, 100:10400-10407.

Wessel, M.D. and Jurs, P.C. and Tolan, J.W. and Muskal, S.M., Prediction of Human Intestinal Absorption of Drug Compounds From Molecular Structure, Journal of Chemical Information and Computer Sciences, 1998, 38:726-735.

128 getCPI

Examples

```
sdf = system.file('sysdata/test.sdf', package = 'BioMedR')
mol = readMolFromSDF(sdf)
# Descriptor Characterizing the Mass Distribution of the Molecule
dat = extrDrugGravitationalIndex(mol)
head(dat)
# Calculates the Ratio of Length to Breadth Descriptor
dat = extrDrugLengthOverBreadth(mol)
head(dat)
# Descriptor that Calculates the Principal Moments of
# Inertia and Ratios of the Principal Moments
dat = extrDrugMomentOfInertia(mol)
head(dat)
```

getCPI

Generating Interaction Descriptors

Description

Generating Interaction Descriptors

Usage

```
getCPI(drugmat, protmat, type = c("combine", "tensorprod"))
getPPI(protmat1, protmat2, type = c("combine", "tensorprod", "entrywise"))
getDDI(DNAmat1, DNAmat2, type = c("combine", "tensorprod", "entrywise"))
getDPI(DNAmat, protmat, type = c("combine", "tensorprod"))
getCCI(drugmat1, drugmat2, type = c("combine", "tensorprod", "entrywise"))
getCDI(drugmat, DNAmat, type = c("combine", "tensorprod"))
```

Arguments

drugmat	The compound descriptor matrix.
protmat	The protein descriptor matrix.
type	The interaction type, one or more of "combine", "tensorprod", and "entrywise".
protmat1	The first protein descriptor matrix, must have the same ncol with protmat2.
protmat2	The second protein descriptor matrix, must have the same ncol with protmat1.
DNAmat1	The first DNA descriptor matrix, must have the same ncol with DNAmat2.
DNAmat2	The second DNA descriptor matrix, must have the same ncol with DNAmat1.
DNAmat	The DNA descriptor matrix.
drugmat1	The first compound descriptor matrix, must have the same ncol with drugmat2.
drugmat2	The second compound descriptor matrix, must have the same ncol with drugmat1.

getDrug 129

Details

This function calculates the interaction descriptors by three types of interaction:

- combine combine the two descriptor matrix, result has (p1 + p2) columns
- tensorprod calculate column-by-column (pseudo)-tensor product type interactions, result has (p1 * p2) columns
- entrywise calculate entrywise product and entrywise sum of the two matrices, then combine them, result has (p + p) columns

Value

A matrix containing the interaction descriptors

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

Examples

```
x = matrix(1:10, ncol = 2)
y = matrix(1:15, ncol = 3)
# getCPI
getCPI(x, y, 'combine')
# getCDI
getCDI(x, y, 'tensorprod')
# getDPI
getDPI(x, y, type = c('combine', 'tensorprod'))
getDPI(x, y, type = c('tensorprod', 'combine'))
x = matrix(1:10, ncol = 2)
y = matrix(5:14, ncol = 2)
# getPPI
getPPI(x, y, type = 'combine')
getPPI(x, y, type = 'tensorprod')
# getDDI
getDDI(x, y, type = 'entrywise')
getDDI(x, y, type = c('combine', 'tensorprod'))
# getCCI
getCCI(x, y, type = c('combine', 'entrywise'))
getCCI(x, y, type = c('entrywise', 'tensorprod'))
getCCI(x, y, type = c('combine', 'entrywise', 'tensorprod'))
```

getDrug

Retrieve Drug Molecules in MOL and SMILES Format from Databases

Description

Retrieve Drug Molecules in MOL and SMILES Format from Databases(BMgetDrug)
Retrieve Drug Molecules in MOL and Smi Format from the PubChem Database(BMgetDrug...PubChem)
Retrieve Drug Molecules in MOL and Smi Format from the ChEMBL Database(BMgetDrug...ChEMBL)
Retrieve Drug Molecules in InChI Format from the CAS Database(BMDrugMolCAS)

130 getDrug

Retrieve Drug Molecules in MOL and Smi Format from the KEGG Database(BMgetDrug...KEGG)

Retrieve Drug Molecules in MOL and Smi Format from the DrugBank Database(BMgetDrug...DrugBank)

Usage

```
BMgetDrug(id, from = c("pubchem", "chembl", "cas", "kegg", "drugbank"),
    type = c("mol", "smile"), parallel = 5)

BMgetDrugMolPubChem(id, parallel = 5)

BMgetDrugSmiPubChem(id, parallel = 5)

BMgetDrugMolChEMBL(id, parallel = 5)

BMgetDrugSmiChEMBL(id, parallel = 5)

BMDrugMolCAS(id, parallel = 5)

BMgetDrugMolKEGG(id, parallel = 5)

BMgetDrugSmiKEGG(id, parallel = 5)

BMgetDrugSmiKEGG(id, parallel = 5)

BMgetDrugSmiDrugBank(id, parallel = 5)
```

Arguments

id A character vector, as the drug ID(s).

from The database, one of 'pubchem', 'chembl', 'cas', 'kegg', 'drugbank'.

type The returned molecule format, mol or smile.

parallel An integer, the parallel parameter, indicates how many process the user would

like to use for retrieving the data (using RCurl), default is 5. For regular cases,

we recommend a number less than 20.

Details

This function retrieves drug molecules in MOL and SMILES format from five databases.

This function retrieves drug molecules in MOL format from the PubChem database.

This function retrieves drug molecules in MOL format from the ChEMBL database.

This function retrieves drug molecules in InChI format from the CAS database. CAS database only provides InChI data, so here we return the molecule in InChI format, users could convert them to SMILES format using Open Babel (http://openbabel.org/) or other third-party tools.

This function retrieves drug molecules in MOL format from the KEGG database.

This function retrieves drug molecules in MOL format from the DrugBank database.

Value

A length of id character vector, each element containing the corresponding drug molecule.

getProt 131

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

See Also

See BMgetProt for retrieving protein sequences from three databases.

```
# BMgetDrug
id = c('DB00859', 'DB00860')
BMgetDrug(id, 'drugbank', 'smile')
# BMgetDrugMolPubChem
id = c('7847562', '7847563') # Penicillamine
BMgetDrugMolPubChem(id)
# BMgetDrugsmiPubChem
id = c('7847562', '7847563') # Penicillamine
BMgetDrugSmiPubChem(id)
# BMgetDrugMolChEMBL
id = 'CHEMBL1430' # Penicillamine
BMgetDrugMolChEMBL(id)
# BMgetDrugSmiChEMBL
id = 'CHEMBL1430' # Penicillamine
BMgetDrugSmiChEMBL(id)
# BMDrugMolCAS
id = '52-67-5' # Penicillamine
BMDrugMolCAS(id)
# BMgetDrugMolKEGG
id = 'D00496' # Penicillamine
BMgetDrugMolKEGG(id)
# BMgetDrugSmiKEGG
id = 'D00496' # Penicillamine
BMgetDrugSmiKEGG(id)
# BMgetDrugMolDrugBank
id = 'DB00859' # Penicillamine
BMgetDrugMolDrugBank(id)
# BMgetDrugSmiDrugBank
id = 'DB00859' # Penicillamine
BMgetDrugSmiDrugBank(id)
```

132 getProt

Description

Retrieve Protein Sequence in various Formats from Databases(BMgetDrug)

Retrieve Protein Sequence (FASTA Format) from the UniProt Database(BMgetProt...UinProt)

Retrieve Protein Sequence (FASTA Format) from the KEGG Database(BMgetProt...KEGG)

Retrieve Protein Sequence (PDB Format) from RCSB PDB(BMgetProt...RCSBPDB)

Usage

```
BMgetProt(id, from = c("uniprot", "kegg", "pdb"), type = c("fasta", "pdb",
    "aaseq"), parallel = 5)

BMgetProtFASTAUinProt(id, parallel = 5)

BMgetProtSeqUniProt(id, parallel = 5)

BMgetProtFASTAKEGG(id, parallel = 5)

BMgetProtSeqKEGG(id, parallel = 5)

BMgetProtPDBRCSBPDB(id, parallel = 5)

BMgetProtSeqRCSBPDB(id, parallel = 5)
```

Arguments

id A character vector, as the protein ID(s).

from The database, one of 'uniprot', 'kegg', 'pdb'.

type The returned protein format, one of fasta, pdb, aaseq.

parallel An integer, the parallel parameter, indicates how many process the user would

like to use for retrieving the data (using RCurl), default is 5. For regular cases,

we recommend a number less than 20.

Details

This function retrieves protein sequence in various formats from three databases.

This function retrieves protein sequences (FASTA format) from the UniProt database.

This function retrieves protein sequences (FASTA format) from the KEGG database.

This function retrieves protein sequences (PDB format) from RCSB PDB.

Value

A length of id character list, each element containing the corresponding protein sequence(s) or file(s).

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

make_kmer_index 133

References

```
UniProt. http://www.uniprot.org/
UniProt REST API Documentation. http://www.uniprot.org/faq/28
UniProt. http://www.uniprot.org/
UniProt REST API Documentation. http://www.uniprot.org/faq/28
```

See Also

See BMgetDrug for retrieving drug molecules from five databases.

Examples

```
# BMgetProt
id = c('P00750', 'P00751', 'P00752')
BMgetProt(id, from = 'uniprot', type = 'aaseq')
# BMgetProtFASTAUinProt
id = c('P00750', 'P00751', 'P00752')
BMgetProtFASTAUinProt(id)
# BMgetProtSeqUniProt
id = c('P00750', 'P00751', 'P00752')
BMgetProtSeqUniProt(id)
# BMgetProtFASTAKEGG
id = c('hsa:10161', 'hsa:10162')
BMgetProtFASTAKEGG(id)
# BMgetProtSeqKEG
id = c('hsa:10161', 'hsa:10162')
BMgetProtSeqKEGG(id)
# BMgetProtPDBRCSBPDB
id = c('4HHB', '4FF9')
BMgetProtPDBRCSBPDB(id)
# BMgetProtSeqRCSBPDB
id = c('4HHB', '4FF9')
BMgetProtSeqRCSBPDB(id)
```

make_kmer_index

Calculate The Basic Kmer Feature Vector

Description

Calculate The Basic Kmer Feature Vector

Usage

```
make_kmer_index(k, alphabet = "ACGT")
```

NNeighbors NNeighbors

Arguments

k the k value of kmer, it should be an integer larger than 0.

alphabet the

Details

This function calculate the basic kmer feature vector.

Value

The result character vector

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

See Also

See extrDNAkmer

Examples

```
make_kmer_index(2, alphabet = "ACGT")
```

NNeighbors

Nearest Neighbors

Description

Nearest Neighbors

Usage

```
NNeighbors(x, numNbrs = NULL, cutoff = NULL, ...)
```

Arguments

x Either an FPset or an APset.

numNbrs Number of neighbors to find for each item. If not enough neighbors can be found

the matrix will be padded with NA.

cutoff The minimum similarity value an item must have to another item in order to

be included in that items neighbor list. This parameter takes precedence over

numNbrs. This parameter allows to obtain tighter clustering results.

... These parameters will be passed into the distance function used

Details

Computes the nearest neighbors of descriptors in an FPset or APset object for use with the <code>jarvisPatrick</code> clustering function. Only one of numNbrs or cutoff should be given, cutoff will take precedence if both are given. If numNbrs is given, then that many neighbors will be returned for each item in the set. If cutoff is given, then, for each item X, every neighbor that has a similarity value greater than or equal to the cutoff will be returned in the neighbor list for X.

OptAA3d 135

Value

The return value is a list with the following components:

• indexes - index values of nearest neighbors, for each item. If cutoff is used, this will be a list of lists, otherwise it will be a matrix

- names The names of each item in the set, as returned by cid
- similarities The similarity values of each neighbor to the item for that row. This will also be either a list of lists or a matrix, depending on whether or not cutoff was used. Each similarity values corresponds to the id number in the same position in the indexes entry

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>
```

See Also

```
See clusterJP for Jarvis-Patrick Clustering
```

Examples

```
data(sdfbcl)
apbcl = convSDFtoAP(sdfbcl)
nnm = NNeighbors(apbcl, cutoff = 0.5)
```

OptAA3d

OptAA3d.sdf - 20 Amino Acids Optimized with MOE 2011.10 (Semiempirical AM1)

Description

```
OptAA3d.sdf - 20 Amino Acids Optimized with MOE 2011.10 (Semiempirical AM1)
```

Details

```
OptAA3d.sdf - 20 Amino Acids Optimized with MOE 2011.10 (Semiempirical AM1)
```

```
# This operation requires the rcdk package
# require(rcdk)
# optaa3d = load.molecules(system.file('sysdata/OptAA3d.sdf', package = 'Rcpi'))
# view.molecule.2d(optaa3d[[1]]) # view the first AA
```

parGOSim

parGOSim	Protein/DNA Sequence Similarity Calculation based on Gene Ontology (GO) Similarity

Description

Protein/DNA Sequence Similarity Calculation based on Gene Ontology (GO) Similarity

Usage

```
parGOSim(golist, type = c("go", "gene"), ont = "MF", organism = "human",
  measure = "Resnik", combine = "BMA")
```

Arguments

golist	A character vector, each component contains a character vector of GO terms or one Entrez Gene ID.
type	Input type of golist, 'go' for GO Terms, 'gene' for gene ID.
ont	Default is 'MF', could be one of 'MF', 'BP', or 'CC' subontologies.
organism	Default is 'human', could be one of 'anopheles', 'arabidopsis', 'bovine', 'canine', 'chicken', 'chimp', 'coelicolor', 'ecolik12', 'ecsakai', 'fly', 'human', 'malaria', 'mouse', 'pig', 'rat', 'rhesus', 'worm', 'xenopus', 'yeast' or 'zebrafish'.
measure	Default is 'Resnik', could be one of 'Resnik', 'Lin', 'Rel', 'Jiang' or 'Wang'.
combine	Default is 'BMA', could be one of 'max', 'average', 'rcmax' or 'BMA' for combining semantic similarity scores of multiple GO terms associated with protein.

Details

This function calculates protein/DNA sequence similarity based on Gene Ontology (GO) similarity.

Value

A n x n similarity matrix.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://nanx.me>
```

See Also

See twoGOSim for calculating the GO semantic similarity between two groups of GO terms or two Entrez gene IDs. See parSeqSim for paralleled protein/DNA similarity calculation based on Smith-Waterman local alignment.

parSeqSim 137

Examples

```
# Be careful when testing this since it involves GO similarity computation
       # and might produce unpredictable results in some environments
       require(GOSemSim)
       require(org.Hs.eg.db)
       # by GO Terms
       \texttt{go1} = \texttt{c('G0:0005215', 'G0:0005488', 'G0:0005515', 'G0:0005625', 'G0:0005802', 'G0:0005905')} \quad \# \; \texttt{AP4B1} 
       \verb"go2" = \verb"c('G0:0005515', 'G0:0005634', 'G0:0005681', 'G0:0008380', 'G0:0031202') # BCAS2 | BCAS2 
      go3 = c('GO:0003735', 'GO:0005622', 'GO:0005840', 'GO:0006412') # PDE4DIP
      glist = list(go1, go2, go3)
      gsimmat1 = parGOSim(glist, type = 'go', ont = 'CC')
      print(gsimmat1)
       # by Entrez gene id
      genelist = list(c('150', '151', '152', '1814', '1815', '1816'))
      gsimmat2 = parGOSim(genelist, type = 'gene')
      print(gsimmat2)
parSeqSim
                                                                                            Parallellized Protein/DVA Sequence Similarity Calculation based on
```

Description

Parallellized Protein/DNA Sequence Similarity Calculation based on Sequence Alignment

Usage

```
parSeqSim(protlist, cores = 2, type = "local", submat = "BLOSUM62")
```

Sequence Alignment

Arguments

protlist	A length n list containing n protein sequences, each component of the list is a character string, storing one protein sequence. Unknown sequences should be represented as ''.
cores	Integer. The number of CPU cores to use for parallel execution, default is 2. Users could use the detectCores() function in the parallel package to see how many cores they could use.
type	Type of alignment, default is 'local', could be 'global' or 'local', where 'global' represents Needleman-Wunsch global alignment; 'local' represents Smith-Waterman local alignment.
submat	Substitution matrix, default is 'BLOSUM62', could be one of 'BLOSUM45', 'BLOSUM50', 'BLOSUM62', 'BLOSUM80', 'BLOSUM100', 'PAM30', 'PAM40', 'PAM70', 'PAM120', 'PAM250'.

Details

This function implemented the parallellized version for calculating protein/DNA sequence similarity based on sequence alignment.

138 plotStructure

Value

A n x n similarity matrix.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://nanx.me>
```

See Also

See twoSeqSim for protein sequence alignment for two protein/DNA sequences. See parGOSim for protein/DNA similarity calculation based on Gene Ontology (GO) semantic similarity.

Examples

```
# Be careful when testing this since it involves parallelisation
# and might produce unpredictable results in some environments
require(Biostrings)
require(foreach)
require(doParallel)
s1 = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
s2 = readFASTA(system.file('protseq/P08218.fasta', package = 'BioMedR'))[[1]]
s3 = readFASTA(system.file('protseq/P10323.fasta', package = 'BioMedR'))[[1]]
s4 = readFASTA(system.file('protseq/P20160.fasta', package = 'BioMedR'))[[1]]
s5 = readFASTA(system.file('protseq/Q9NZP8.fasta', package = 'BioMedR'))[[1]]
plist = list(s1, s2, s3, s4, s5)
psimmat = parSeqSim(plist, cores = 2, type = 'local', submat = 'BLOSUM62')
print(psimmat)
s11 = readFASTA(system.file('dnaseq/hs.fasta', package = 'BioMedR'))[[1]]
s21 = readFASTA(system.file('dnaseq/hs.fasta', package = 'BioMedR'))[[2]]
s31 = readFASTA(system.file('dnaseq/hs.fasta', package = 'BioMedR'))[[3]]
s41 = readFASTA(system.file('dnaseq/hs.fasta', package = 'BioMedR'))[[4]]
s51 = readFASTA(system.file('dnaseq/hs.fasta', package = 'BioMedR'))[[5]]
plist1 = list(s11, s21, s31, s41, s51)
psimmat1 = parSeqSim(plist1, cores = 2, type = 'local', submat = 'BLOSUM62')
print(psimmat1)
```

plotStructure

Plots compound structure(s) for molecules stored in SDF and SDFset containers

Description

Plots compound structure(s) for molecules stored in SDF and SDFset containers.

Usage

```
plotStructure(sdf, atomcex = 1.2, atomnum = FALSE,
  no_print_atoms = c("C"), noHbonds = TRUE, bondspacer = 0.12,
  colbonds = NULL, bondcol = "red", ...)
```

plotStructure 139

Arguments

sdf	Object of class SDF
atomcex	Font size for atom labels
atomnum	If TRUE, then the atom numbers are included in the plot. They are the position numbers of each atom in the atom block of an SDF. $ \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}$
no_print_atoms	Excludes specified atoms from being plotted.
noHbonds	If TRUE, then the C-hydrogens and their bonds - explicitly defined in an SDF - are excluded from the plot.
bondspacer	Numeric value specifying the plotting distance for double/triple bonds.
colbonds	Highlighting of subgraphs in main structure by providing a numeric vector of atom numbers, here position index in atom block. The bonds of connected atoms will be plotted in the color provided under bondcol.
bondcol	A character or numeric vector of length one to specify the color to use for substructure highlighting under colbonds.

Details

The function plotStructure depicts a single 2D compound structure based on the XY-coordinates specified in the atom block of an SDF. The functions depend on the availability of the XY-coordinates in the source SD file and only 2D (not 3D) representations are plotted correctly.

Value

Prints summary of SDF/SDFset to screen and plots their structures to graphics device.

Arguments to be passed to/from other methods.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>
```

References

•••

pls.cv

pls.cv	The Cross-Validation of Classification and Regression models using Partial Least Squares

Description

The Cross-Validation of Classification and Regression models using Partial Least Squares

Usage

```
pls.cv(xtr, ytr, cv.fold = 5, maxcomp = NULL)
```

Arguments

xtr	A data frame or a matrix of predictors.
ytr	A response vector. If a factor, classification is assumed, otherwise regression is assumed.
cv.fold	The fold, the defalut is 5.
maxcomp	Maximum number of components included within the models, if not specified, default is the variable (column) numbers in x.

Details

This function performs k-fold cross validation for partial least squares regression and classification.

Value

the retrun a list containing four components:

- plspred the predicted values of the input data based on cross-validation
- Error error for all samples
- RMSECV Root Mean Square Error for cross-validation
- Q2 R2 for cross-validation

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>
```

See Also

See rf. cv for the Cross-Validation of Classification and Regression models using Random Forest

```
training = read.csv(system.file('sysdata/training2.csv', package = 'BioMedR'), header = TRUE)
y = training[, 1]
x = training[, -1]
pls.tr <- pls.cv(x, y)</pre>
```

property 141

property	Calculates Atom Additive logP and Molar Refractivity Values Descrip-
	tor

Description

Calculates Atom Additive logP and Molar Refractivity Values Descriptor

Calculates the Sum of the Atomic Polarizabilities Descriptor

Calculates the Descriptor that Describes the Sum of the Absolute Value of the Difference between Atomic Polarizabilities of All Bonded Atoms in the Molecule

Descriptor that Calculates the Number of Hydrogen Bond Acceptors

Descriptor that Calculates the Number of Hydrogen Bond Donors

Descriptor that Calculates the Number Failures of the Lipinski's Rule Of Five

Descriptor of Topological Polar Surface Area Based on Fragment Contributions (TPSA)

Descriptor that Calculates the Total Weight of Atoms

Descriptor that Calculates the Prediction of logP Based on the Atom-Type Method Called XLogP

Usage

```
extrDrugALOGP(molecules, silent = TRUE)
extrDrugApol(molecules, silent = TRUE)
extrDrugBPol(molecules, silent = TRUE)
extrDrugHBondAcceptorCount(molecules, silent = TRUE)
extrDrugHBondDonorCount(molecules, silent = TRUE)
extrDrugRuleOfFive(molecules, silent = TRUE)
extrDrugTPSA(molecules, silent = TRUE)
extrDrugUeight(molecules, silent = TRUE)
extrDrugUeight(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

Calculates ALOGP (Ghose-Crippen LogKow) and the Ghose-Crippen molar refractivity as described by Ghose, A.K. and Crippen, G.M. Note the underlying code in CDK assumes that aromaticity has been detected before evaluating this descriptor. The code also expects that the molecule

142 property

will have hydrogens explicitly set. For SD files, this is usually not a problem since hydrogens are explicit. But for the case of molecules obtained from SMILES, hydrogens must be made explicit.

Calculates the sum of the atomic polarizabilities (including implicit hydrogens) descriptor. Polarizabilities are taken from http://www.sunysccc.edu/academic/mst/ptable/p-table2.htm.

This descriptor calculates the sum of the absolute value of the difference between atomic polarizabilities of all bonded atoms in the molecule (including implicit hydrogens) with polarizabilities taken from http://www.sunysccc.edu/academic/mst/ptable/p-table2.htm. This descriptor assumes 2-centered bonds.

This descriptor calculates the number of hydrogen bond acceptors using a slightly simplified version of the PHACIR atom types. The following groups are counted as hydrogen bond acceptors: any oxygen where the formal charge of the oxygen is non-positive (i.e. formal charge <= 0) except

- 1. an aromatic ether oxygen (i.e. an ether oxygen that is adjacent to at least one aromatic carbon)
- 2. an oxygen that is adjacent to a nitrogen

and any nitrogen where the formal charge of the nitrogen is non-positive (i.e. formal charge <= 0) except a nitrogen that is adjacent to an oxygen.

This descriptor calculates the number of hydrogen bond donors using a slightly simplified version of the PHACIR atom types (http://www.chemie.uni-erlangen.de/model2001/abstracts/rester.html). The following groups are counted as hydrogen bond donors:

- Any-OH where the formal charge of the oxygen is non-negative (i.e. formal charge >= 0)
- Any-NH where the formal charge of the nitrogen is non-negative (i.e. formal charge >= 0)

This descriptor calculates the number failures of the Lipinski's Rule Of Five: http://en.wikipedia.org/wiki/Lipinski%27s_Rule_of_Five.

Calculate the descriptor of topological polar surface area based on fragment contributions (TPSA).

This descriptor calculates the molecular weight.

Prediction of logP based on the atom-type method called XLogP.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This function returns three columns named ALogP, ALogp2 and AMR.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

References

Ghose, A.K. and Crippen, G.M., Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure-activity relationships. I. Partition coefficients as a measure of hydrophobicity, Journal of Computational Chemistry, 1986, 7:565-577.

Ghose, A.K. and Crippen, G.M., Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions, Journal of Chemical Information and Computer Science, 1987, 27:21-35.

Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of medicinal chemistry, 43(20), 3714-3717.

property 143

Wang, R., Fu, Y., and Lai, L., A New Atom-Additive Method for Calculating Partition Coefficients, Journal of Chemical Information and Computer Sciences, 1997, 37:615-621.

Wang, R., Gao, Y., and Lai, L., Calculating partition coefficient by atom-additive method, Perspectives in Drug Discovery and Design, 2000, 19:47-66.

```
# Calculates Atom Additive logP and Molar Refractivity Values Descriptor
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugALOGP(mol)
head(dat)
# Calculates the Sum of the Atomic Polarizabilities Descriptor
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugApol(mol)
head(dat)
# the Sum of the Absolute Value of the Difference between Atomic
# Polarizabilities of All Bonded Atoms in the Molecule
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugBPol(mol)
head(dat)
# Calculates the Number of Hydrogen Bond Acceptors
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugHBondAcceptorCount(mol)
head(dat)
# Calculates the Number of Hydrogen Bond Donors
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugHBondDonorCount(mol)
head(dat)
# Calculates the Number Failures of the Lipinski's Rule Of Five
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugRuleOfFive(mol)
head(dat)
# Descriptor of Topological Polar Surface Area Based on
# Fragment Contributions (TPSA)
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugTPSA(mol)
head(dat)
# Calculates the Total Weight of Atoms
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugWeight(mol)
head(dat)
# Calculates the Prediction of logP
# Based on the Atom-Type Method Called XLogP
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugLogP(mol)
head(dat)
```

144 readFASTA

read		r = r
i eau	II A.	o i A

Read Protein/DNA Sequences in FASTA Format

Description

Read Protein/DNA Sequences in FASTA Format

Usage

```
readFASTA(file = system.file("protseq/P00750.fasta", package = "BioMedR"),
  legacy.mode = TRUE, seqonly = FALSE)
```

Arguments

file The name of the file which the sequences in fasta format are to be read from. If

it does not contain an absolute or relative path, the file name is relative to the current working directory, getwd. The default here is to read the P00750.fasta file which is present in the protseq directory of the BioMedR package.

legacy.mode If set to TRUE, lines starting with a semicolon ';' are ignored. Default value is

TRUE.

seqonly If set to TRUE, only sequences as returned without attempt to modify them or to

get their names and annotations (execution time is divided approximately by a

factor 3). Default value is FALSE.

Details

This function reads protein sequences in FASTA format.

Value

The result character vector

Note

Note that any different sets of instances (chunklets), e.g. 1, 3, 7 and 4, 6, might belong to the same class and might belong to different classes.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

References

Pearson, W.R. and Lipman, D.J. (1988) Improved tools for biological sequence comparison. *Proceedings of the National Academy of Sciences of the United States of America*, **85**: 2444-2448

See Also

See readPDB for reading protein sequences in PDB format.

```
P00750 = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))
```

readMolFromSDF 145

readMolFromSDF	Read Molecules from SDF Files and Return Parsed Java Molecular Object
	Object

Description

Read Molecules from SDF Files and Return Parsed Java Molecular Object

Usage

```
readMolFromSDF(sdffile)
```

Arguments

sdffile

Character vector, containing SDF file location(s).

Details

This function reads molecules from SDF files and return parsed Java molecular object needed by extrDrug... functions.

Value

A list, containing parsed Java molecular object.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <a href="http://r2s.name">http://r2s.name</a>
```

See Also

See readMolFromSmi for reading molecules by SMILES string and returning parsed Java molecular object.

146 readMolFromSmi

readMolFromSmi	Read Molecules from SMILES Files and Return Parsed Java Molecu-
	lar Object or Plain Text List

Description

Read Molecules from SMILES Files and Return Parsed Java Molecular Object or Plain Text List

Usage

```
readMolFromSmi(smifile, type = c("mol", "text"))
```

Arguments

smifile Character vector, containing SMILES file location(s).

type 'mol' or 'text'. 'mol' returns parsed Java molecular object, used for 'text'

returns (plain-text) character string list. For common molecular descriptors and fingerprints, use 'mol'. For descriptors and fingerprints calculated by OpenBa-

bel, i.e. functions named extrDrugOB...(), use 'text'.

Details

This function reads molecules from SMILES strings and return parsed Java molecular object or plain text list needed by extrDrug...() functions.

Value

A list, containing parsed Java molecular object or character strings.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <a href="http://r2s.name">http://r2s.name</a>
```

See Also

See readMolFromSDF for reading molecules from SDF files and returning parsed Java molecular object.

```
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol1 = readMolFromSmi(smi, type = 'mol')
mol2 = readMolFromSmi(smi, type = 'text')
```

readPDB 147

readPDB

Read Protein Sequences in PDB Format

Description

Read Protein Sequences in PDB Format

Usage

```
readPDB(file = system.file("protseq/4HHB.pdb", package = "BioMedR"))
```

Arguments

file

The name of the file which the sequences in PDB format are to be read from. If it does not contain an absolute or relative path, the file name is relative to the current working directory, getwd. The default here is to read the 4HHB.PDB file which is present in the protseq directory of the BioMedR package.

Details

This function reads protein sequences in PDB (Protein Data Bank) format, and return the amino acid sequences represented by single-letter code.

Value

A character vector, representing the amino acid sequence of the single-letter code.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

References

```
Protein Data Bank Contents Guide: Atomic Coordinate Entry Format Description, Version 3.30. Accessed 2013-06-26. ftp://ftp.wwpdb.org/pub/pdb/doc/format_descriptions/Format_v33_Letter.pdf
```

See Also

See readFASTA for reading protein sequences in FASTA format.

```
Seq1atp = readPDB(system.file('protseq/1atp.pdb', package = 'BioMedR'))
Seq1atp
```

rf.cv

revchars

The Reverse chars

Description

The Reverse chars

Usage

revchars(x)

Arguments

Χ

the input data, which should be a string.

Details

This function calculates Reverse chars

Value

A vector

Note

if the user defined physicochemical indices have not been normalized, it should be normalized.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

Examples

```
x = 'GACTGAACTGCACTTTGGTTTCATATTATTTGCTC'
revchars(x)
```

rf.cv

The Cross-Validation of Classification and Regression models using Random Forest

Description

The Cross-Validation of Classification and Regression models using Random Forest

Usage

```
rf.cv(xtr, ytr, cv.fold = 5, type = "regression", trees = 500,
    mtrysize = 10)
```

rf.cv 149

Arguments

xtr A data frame or a matrix of predictors.

ytr A response vector. If a factor, classification is assumed, otherwise regression is

assumed.

cv. fold The fold, the defalut is 5.

type method type.

trees Number of trees to grow. This should not be set to too small a number, to ensure

that every input row gets predicted at least a few times.

mtrysize Number of variables randomly sampled as candidates at each split. Note that

the default values are different for classification (sqrt(p) where p is number of

variables in xtr) and regression (p/3)

Details

rf.cv implements Breiman's random forest algorithm for classification and regression. here we use it to make a k-fold cross-validation

Value

if type is regression, the retrun a list containing four components:

- RFpred the predicted values of the input data based on cross-validation
- Error error for all samples
- RMSECV Root Mean Square Error for cross-validation
- Q2 R2 for cross-validation

if type is classification, the retrun a list containing four components:

- table confusion matrix
- · ACC accuracy
- · SE sensitivity
- · SP specifivity
- F1 a measure of a test's accuracy.
- MCC Mathews correlation coefficient
- RFPred the predicted values
- prob the predicted probability values

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

References

Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32.

See Also

See pls.cv for the Cross-Validation of Classification and Regression models using PLS

rf.fs

Examples

```
training = read.csv(system.file('sysdata/training2.csv', package = 'BioMedR'), header = TRUE)
y = training[, 1]
x = training[, -1]
rf.tr <- rf.cv(x, y)</pre>
```

rf.fs

Random Forest Cross-Valdidation for feature selection

Description

Random Forest Cross-Valdidation for feature selection

Usage

```
rf.fs(trainx, trainy, cv.fold = 5, scale = "log", step = 0.5,
  mtry = function(p) max(1, floor(sqrt(p))), recursive = FALSE)
```

Arguments

trainx	matrix or data frame containing columns of predictor variables
trainy	vector of response, must have length equal to the number of rows in trainx
cv.fold	The fold, the defalut is 5.
scale	If "log", reduce a fixed proportion (step) of variables at each step, otherwise reduce step variables at a time
step	If log=TRUE, the fraction of variables to remove at each step, else remove this many variables at a time
mtry	A function of number of remaining predictor variables to use as the mtry parameter in the randomForest call
recursive	Whether variable importance is (re-)assessed at each step of variable reduction

Details

This function shows the cross-validated prediction performance of models with sequentially reduced number of predictors (ranked by variable importance) via a nested cross-validation procedure.

Value

A list with the following three components::

- n.var vector of number of variables used at each step
- error.cv corresponding vector of error rates or MSEs at each step
- res list of n.var components, each containing the feature importance values from the cross-validation

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>

sdfbcl 151

References

Svetnik, V., Liaw, A., Tong, C. and Wang, T., Application of Breiman's Random Forest to Modeling Structure-Activity Relationships of Pharmaceutical Molecules, MCS 2004, Roli, F. and Windeatt, T. (Eds.) pp. 334-343.

See Also

See rf. cv for the Cross-Validation of Classification and Regression models using Random Forest

Examples

```
training = read.csv(system.file('sysdata/training1.csv', package = 'BioMedR'), header = TRUE)
y = training[, 1]
x = training[, -1]
result = rf.fs(x, y)
```

sdfbcl

SD file in SDFset object

Description

SD file in SDFset object

Usage

```
data(sdfbcl)
```

Details

SDFset object for the 50 SDF.

Examples

```
data(sdfbcl)
```

searchDrug

Parallelized Drug Molecule Similarity Search by Molecular Fingerprints Similarity or Maximum Common Substructure Search

Description

Parallelized Drug Molecule Similarity Search by Molecular Fingerprints Similarity or Maximum Common Substructure Search

Usage

```
searchDrug(mol, moldb, cores = 2, method = c("fp", "mcs"),
  fptype = c("standard", "extended", "graph", "hybrid", "maccs", "estate",
  "pubchem", "kr", "shortestpath", "fp2", "fp3", "fp4"), fpsim = c("tanimoto",
  "euclidean", "cosine", "dice", "hamming"), mcssim = c("tanimoto",
  "overlap"), ...)
```

152 searchDrug

Arguments

mol	The query molecule. The location of a sdf file containing one molecule.
moldb	The molecule database. The location of a sdf file containing all the molecules to be searched with.
cores	Integer. The number of CPU cores to use for parallel search, default is 2. Users could use the detectCores() function in the parallel package to see how many cores they could use.
method	'fp' or 'mcs'. Search by molecular fingerprints or by maximum common substructure searching.
fptype	The fingerprint type, only available when method = 'fp'. BioMedR supports 13 types of fingerprints, including 'standard', 'extended', 'graph', 'hybrid', 'maccs', 'estate', 'pubchem', 'kr', 'shortestpath', 'fp2', 'fp3', 'fp4'.
fpsim	Similarity measure type for fingerprint, only available when method = 'fp'. Including 'tanimoto', 'euclidean', 'cosine', 'dice' and 'hamming'. See calcDrugFPSim for details.
mcssim	Similarity measure type for maximum common substructure search, only available when method = 'mcs'. Including 'tanimoto' and 'overlap'.
	Other possible parameter for maximum common substructure search, see calcDrugMCSSim for available options.

Details

This function does compound similarity search derived by various molecular fingerprints with various similarity measures or derived by maximum common substructure search. This function runs for a query compound against a set of molecules.

Value

Named numerical vector. With the decreasing similarity value of the molecules in the database.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>
```

```
mol = system.file('compseq/example.sdf', package = 'BioMedR')
# DrugBank ID DB00530: Erlotinib
moldb = system.file('compseq/bcl.sdf', package = 'BioMedR')
# Database composed by searching 'tyrphostin' in PubChem and filtered by Lipinski's Rule of Five
searchDrug(mol, moldb, cores = 4, method = 'fp', fptype = 'maccs', fpsim = 'hamming')
searchDrug(mol, moldb, cores = 4, method = 'fp', fptype = 'fp2', fpsim = 'tanimoto')
searchDrug(mol, moldb, cores = 4, method = 'mcs', mcssim = 'tanimoto')
```

segProt 153

0	g	Pr	ot

Protein Sequence Segmentation

Description

Protein Sequence Segmentation

Usage

```
\begin{split} \text{segProt}(x, \text{ aa = c("A", "R", "N", "D", "C", "E", "Q", "G", "H", "I", "L", "K", "M", "F", "P", "S", "T", "W", "Y", "V"), $k = 7) \end{split}
```

Arguments

```
A character vector, as the input protein sequence.
Χ
```

A character, the amino acid type. one of 'A', 'R', 'N', 'D', 'C', 'E', 'Q', 'G', aa 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V'.

k A positive integer, specifys the window size (half of the window), default is 7.

Details

This function extracts the segmentations from the protein sequence.

Value

A named list, each component contains one of the segmentations (a character string), names of the list components are the positions of the specified amino acid in the sequence.

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

Examples

```
x = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
segProt(x, aa = 'R', k = 5)
```

topology Topological Descriptor Characterizing the Carbon Connectivity in Terms of Hybridization

Description

Topological Descriptor Characterizing the Carbon Connectivity in Terms of Hybridization

Calculates the Eccentric Connectivity Index Descriptor

Calculates the FMF Descriptor

Calculate Complexity of a System

Calculate Molecular Distance Edge (MDE) Descriptors for C, N and O

Descriptor that Calculates the Petitjean Number of a Molecule

Descriptor that Calculates the Petitjean Shape Indices

Descriptor that Calculates the Volume of A Molecule

Descriptor that Calculates the Vertex Adjacency Information of A Molecule

Descriptor that Calculates the Weighted Path (Molecular ID)

Descriptor that Calculates Wiener Path Number and Wiener Polarity Number

Descriptor that Calculates the Sum of the Squared Atom Degrees of All Heavy Atoms

Usage

```
extrDrugCarbonTypes(molecules, silent = TRUE)
extrDrugECI(molecules, silent = TRUE)
extrDrugFMF(molecules, silent = TRUE)
extrDrugFragmentComplexity(molecules, silent = TRUE)
extrDrugMDE(molecules, silent = TRUE)
extrDrugPetitjeanNumber(molecules, silent = TRUE)
extrDrugPetitjeanShapeIndex(molecules, silent = TRUE)
extrDrugVABC(molecules, silent = TRUE)
extrDrugVAdjMa(molecules, silent = TRUE)
extrDrugWeightedPath(molecules, silent = TRUE)
extrDrugWeightedPath(molecules, silent = TRUE)
extrDrugWeightedPath(molecules, silent = TRUE)
extrDrugWeightedPath(molecules, silent = TRUE)
```

Arguments

molecules Parsed molucule object.

silent Logical. Whether the calculating process should be shown or not, default is

TRUE.

Details

Calculates the carbon connectivity in terms of hybridization. The function calculates 9 descriptors in the following order:

- C1SP1 triply hound carbon bound to one other carbon
- C2SP1 triply bound carbon bound to two other carbons
- · C1SP2 doubly hound carbon bound to one other carbon
- C2SP2 doubly bound carbon bound to two other carbons
- C3SP2 doubly bound carbon bound to three other carbons
- C1SP3 singly bound carbon bound to one other carbon
- C2SP3 singly bound carbon bound to two other carbons
- C3SP3 singly bound carbon bound to three other carbons
- C4SP3 singly bound carbon bound to four other carbons

Eccentric Connectivity Index (ECI) is a topological descriptor combining distance and adjacency information. This descriptor is described by Sharma et al. and has been shown to correlate well with a number of physical properties. The descriptor is also reported to have good discriminatory ability. The eccentric connectivity index for a hydrogen supressed molecular graph is given by

$$x_i^c = \sum_{i=1}^n E(i)V(i)$$

where E(i) is the eccentricity of the i-th atom (path length from the i-th atom to the atom farthest from it) and V(i) is the vertex degree of the i-th atom.

Calculates the FMF descriptor characterizing molecular complexity in terms of its Murcko framework. This descriptor is the ratio of heavy atoms in the framework to the total number of heavy atoms in the molecule. By definition, acyclic molecules which have no frameworks, will have a value of 0. Note that the authors consider an isolated ring system to be a framework (even though there is no linker).

This descriptor calculates the complexity of a system. The complexity is defined in Nilakantan, R. et al. as:

$$C = abs(B^2 - A^2 + A) + \frac{H}{100}$$

where C is complexity, A is the number of non-hydrogen atoms, B is the number of bonds and H is the number of heteroatoms.

This descriptor calculates the 10 molecular distance edge (MDE) descriptor described in Liu, S., Cao, C., & Li, Z, and in addition it calculates variants where O and N are considered.

This descriptor calculates the Petitjean number of a molecule. According to the Petitjean definition, the eccentricity of a vertex corresponds to the distance from that vertex to the most remote vertex in the graph.

The distance is obtained from the distance matrix as the count of edges between the two vertices. If r(i) is the largest matrix entry in row i of the distance matrix D, then the radius is defined as the smallest of the r(i). The graph diameter D is defined as the largest vertex eccentricity in the graph. (http://www.edusoft-lc.com/molconn/manuals/400/chaptwo.html)

The topological and geometric shape indices described Petitjean and Bath et al. respectively. Both measure the anisotropy in a molecule.

This descriptor calculates the volume of a molecule.

Vertex adjacency information (magnitude): $1 + \log_2^m$ where m is the number of heavy-heavy bonds. If m is zero, then \emptyset is returned.

This descriptor calculates the weighted path (molecular ID) described by Randic, characterizing molecular branching. Five descriptors are calculated, based on the implementation in the ADAPT software package. Note that the descriptor is based on identifying all paths between pairs of atoms and so is NP-hard. This means that it can take some time for large, complex molecules.

This descriptor calculates the Wiener numbers, including the Wiener Path number and the Wiener Polarity Number. Wiener path number: half the sum of all the distance matrix entries; Wiener polarity number: half the sum of all the distance matrix entries with a value of 3.

Zagreb index: the sum of the squares of atom degree over all heavy atoms i.

Value

A data frame, each row represents one of the molecules, each column represents one feature. This function returns 9 columns named C1SP1, C2SP1, C1SP2, C2SP2, C3SP2, C1SP3, C2SP3, C3SP3 and C4SP3.

WTPT WTPT.1, WTPT.2, WTPT.3, WTPT.4, WTPT.5:

- WTPT.1 molecular ID
- WTPT. 2 molecular ID / number of atoms
- WTPT. 3 sum of path lengths starting from heteroatoms
- WTPT. 4 sum of path lengths starting from oxygens
- WTPT.5 sum of path lengths starting from nitrogens

Author(s)

Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://r2s.name>

References

Sharma, V. and Goswami, R. and Madan, A.K. (1997), Eccentric Connectivity Index: A Novel Highly Discriminating Topological Descriptor for Structure-Property and Structure-Activity Studies, Journal of Chemical Information and Computer Sciences, 37:273-282

Yang, Y., Chen, H., Nilsson, I., Muresan, S., & Engkvist, O. (2010). Investigation of the relationship between topology and selectivity for druglike molecules. Journal of medicinal chemistry, 53(21), 7709-7714.

Nilakantan, R. and Nunn, D.S. and Greenblatt, L. and Walker, G. and Haraki, K. and Mobilio, D., A family of ring system-based structural fragments for use in structure-activity studies: database mining and recursive partitioning., Journal of chemical information and modeling, 2006, 46:1069-1077

Liu, S., Cao, C., & Li, Z. (1998). Approach to estimation and prediction for normal boiling point (NBP) of alkanes based on a novel molecular distance-edge (MDE) vector, lambda. Journal of chemical information and computer sciences, 38(3), 387-394.

Petitjean, M., Applications of the radius-diameter diagram to the classification of topological and geometrical shapes of chemical compounds, Journal of Chemical Information and Computer Science, 1992, 32:331-337

Bath, P.A. and Poirette, A.R. and Willet, P. and Allen, F.H., The Extent of the Relationship between the Graph-Theoretical and the Geometrical Shape Coefficients of Chemical Compounds, Journal of Chemical Information and Computer Science, 1995, 35:714-716.

Randic, M., On molecular identification numbers (1984). Journal of Chemical Information and Computer Science, 24:164-175.

Wiener, H. (1947). Structural determination of paraffin boiling points. Journal of the American Chemical Society, 69(1), 17-20.

```
# Topological Descriptor Characterizing the Carbon Connectivity
# in Terms of Hybridization
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugCarbonTypes(mol)
head(dat)
# Calculates the Eccentric Connectivity Index Descriptor
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugECI(mol)
head(dat)
# Calculates the FMF Descriptor
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugFMF(mol)
head(dat)
# Calculate Complexity of a System
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugFragmentComplexity(mol)
head(dat)
\# Calculate Molecular Distance Edge (MDE) Descriptors for C, N and O
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugMDE(mol)
head(dat)
# Calculates the Petitjean Number of a Molecule
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugPetitjeanNumber(mol)
head(dat)
# Calculates the Petitjean Shape Indices
sdf = system.file('sysdata/test.sdf', package = 'BioMedR')
mol = readMolFromSDF(sdf)
dat = extrDrugPetitjeanShapeIndex(mol)
head(dat)
# Calculates the Volume of A Molecule
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugVABC(mol)
head(dat)
# Calculates the Vertex Adjacency Information of A Molecule
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugVAdjMa(mol)
head(dat)
# Calculates the Weighted Path (Molecular ID)
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugWeightedPath(mol)
```

158 twoGOSim

```
head(dat)
# Calculates Wiener Path Number and Wiener Polarity Number
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugWienerNumbers(mol)
head(dat)
# Calculates the Sum of the Squared Atom Degrees
# of All Heavy Atoms
smi = system.file('vignettedata/test.smi', package = 'BioMedR')
mol = readMolFromSmi(smi, type = 'mol')
dat = extrDrugZagrebIndex(mol)
head(dat)
```

twoGOSim

Protein/DNA Similarity Calculation based on Gene Ontology (GO) Similarity

Description

Protein/DNA Similarity Calculation based on Gene Ontology (GO) Similarity

Usage

```
twoGOSim(id1, id2, type = c("go", "gene"), ont = "MF", organism = "human",
  measure = "Resnik", combine = "BMA")
```

Arguments

id1	A character vector. length > 1: each element is a GO term; length = 1: the Entrez Gene ID.
id2	A character vector. length > 1: each element is a GO term; length = 1: the Entrez Gene ID.
type	Input type of id1 and id2, 'go' for GO Terms, 'gene' for gene ID.
ont	Default is 'MF', could be one of 'MF', 'BP', or 'CC' subontologies.
organism	Default is 'human', could be one of 'anopheles', 'arabidopsis', 'bovine', 'canine', 'chicken', 'chimp', 'coelicolor', 'ecolik12', 'ecsakai', 'fly', 'human', 'malaria', 'mouse', 'pig', 'rat', 'rhesus', 'worm', 'xenopus', 'yeast' or 'zebrafish'.
measure	Default is 'Resnik', could be one of 'Resnik', 'Lin', 'Rel', 'Jiang' or 'Wang'.
combine	Default is 'BMA', could be one of 'max', 'average', 'rcmax' or 'BMA' for combining semantic similarity scores of multiple GO terms associated with protein.

Details

This function calculates the Gene Ontology (GO) similarity between two groups of GO terms or two Entrez gene IDs.

twoSeqSim 159

Value

A n x n matrix.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://nanx.me>
```

See Also

See parGOSim for protein similarity calculation based on Gene Ontology (GO) semantic similarity. See parSeqSim for paralleled protein/DNA similarity calculation based on Smith-Waterman local alignment.

Examples

```
# Be careful when testing this since it involves GO similarity computation
# and might produce unpredictable results in some environments

require(GOSemSim)
require(org.Hs.eg.db)

# by GO terms
go1 = c("GO:0004022", "GO:0004024", "GO:0004023")
go2 = c("GO:0009055", "GO:0020037")
gsim1 = twoGOSim(go1, go2, type = 'go', ont = 'MF', measure = 'Wang')
print(gsim1)

# by Entrez gene id
gene1 = '241'
gene2 = '251'
gsim2 = twoGOSim(gene1, gene2, type = 'gene', ont = 'BP', measure = 'Lin')
print(gsim2)
```

twoSeqSim

Protein/DNA Sequence Alignment for Two Protein Sequences

Description

Protein/DNA Sequence Alignment for Two Protein Sequences

Usage

```
twoSeqSim(seq1, seq2, type = "local", submat = "BLOSUM62")
```

Arguments

seq1	A character string, containing one protein sequence.
seq2	A character string, containing another protein sequence.
type	Type of alignment, default is 'local', could be 'global' or 'local', where 'global' represents Needleman-Wunsch global alignment; 'local' represents Smith-Waterman local alignment.

160 twoSeqSim

```
submat Substitution matrix, default is 'BLOSUM62', could be one of 'BLOSUM45', 'BLOSUM50', 'BLOSUM62', 'BLOSUM80', 'BLOSUM100', 'PAM30', 'PAM40', 'PAM70', 'PAM120', 'PAM250'.
```

Details

This function implements the sequence alignment between two protein/DNA sequences.

Value

An Biostrings object containing the scores and other alignment information.

Author(s)

```
Min-feng Zhu <<wind2zhu@163.com>>, Nan Xiao <http://nanx.me>
```

See Also

See parSeqSim for paralleled pairwise protein similarity calculation based on sequence alignment. See twoGOSim for calculating the GO semantic similarity between two groups of GO terms or two Entrez gene IDs.

```
# Be careful when testing this since it involves sequence alignment
# and might produce unpredictable results in some environments

require(Biostrings)

s1 = readFASTA(system.file('protseq/P00750.fasta', package = 'BioMedR'))[[1]]
s2 = readFASTA(system.file('protseq/P10323.fasta', package = 'BioMedR'))[[1]]
seqalign = twoSeqSim(s1, s2)
summary(seqalign)
s11 = readFASTA(system.file('dnaseq/hs.fasta', package = 'BioMedR'))[[1]]
s21 = readFASTA(system.file('dnaseq/hs.fasta', package = 'BioMedR'))[[2]]
seqalign1 = twoSeqSim(s11, s21)
summary(seqalign1)
```

Index

*Topic AA2DACOR	AAM0E3D, 16
AA2DACOR, 5	*Topic AAMetaInfo
*Topic AA3DMoRSE	AAMetaInfo, 15
AA3DMoRSE, 6	*Topic AAMolProp
*Topic AAACF	AAMolProp, 17
AAACF, 6	*Topic AAPAM120
*Topic AABLOSUM100	AAPAM120, 17
AABLOSUM100, 7	*Topic AAPAM250
*Topic AABLOSUM45	AAPAM250, 18
AABLOSUM45, 7	*Topic AAPAM30
*Topic AABLOSUM50	AAPAM30, 18
AABLOSUM50, 8	*Topic AAPAM40
*Topic AABLOSUM62	AAPAM40, 19
AABLOSUM62, 8	*Topic AAPAM70
*Topic AABLOSUM80	AAPAM70, 19
AABLOSUM80, 9	*Topic AARDF
*Topic AABurden	AARDF, 20
AABurden, 9	*Topic AARandic
*Topic AACPSA	AARandic, 20
AACPSA, 11	*Topic AATopoChg
*Topic AAConn	AATopoChg, 21
AAConn, 10	*Topic AATopo
*Topic AAConst	AATopo, 21
AAConst, 10	*Topic AAWHIM
*Topic AAC	AAWHIM, 22
extrProtAAC,98	*Topic AAWalk
*Topic AADescAll	AAWalk, 22
AADescAll, 11	*Topic AAindex
*Topic AAEdgeAdj	AAindex, 14
AAEdgeAdj, 12	extrPCMPropScales, 95
*Topic AAEigIdx	extrProtFPGap, 111
AAEigIdx, 12	*Topic ALOGP
*Topic AAFGC	property, 141
AAFGC, 13	*Topic APAAC
*Topic AAGETAWAY	extrProtAPAAC, 99
AAGETAWAY, 14	*Topic Acceptor
*Topic AAGeom	property, 141
AAGeom, 13	*Topic Acid
*Topic AAInfo	Constitutional, 43
AAInfo, 15	extrProtAAC, 98
*Topic AAMOE2D	extrProtPAAC, 117
AAMOE2D, 16	OptAA3d, 135
*Topic AAMOE3D	*Topic Adjacency

topology, 153	*Topic BMgetDrugSmiKEGG
*Topic Alignment	getDrug, 129
extrProtPSSM, 119	*Topic BMgetDrugSmiPubChem
extrProtPSSMAcc, 121	getDrug, 129
extrProtPSSMFeature, 122	*Topic BMgetDrug
*Topic Aliphatic	getDrug, 129
Constitutional, 43	*Topic BMgetProtFASTAKEGG
*Topic Amino	getProt, 131
Constitutional, 43	*Topic BMgetProtFASTAUinProt
extrProtAAC,98	getProt, 131
extrProtPAAC, 117	*Topic BMgetProtPDBRCSBPDB
OptAA3d, 135	getProt, 131
*Topic Amphiphilic	*Topic BMgetProtSeqKEGG
extrProtAPAAC, 99	getProt, 131
*Topic Analysis	*Topic BMgetProtSeqRCSBPDB
extrPCMFAScales, 93	getProt, 131
extrPCMScales, 97	*Topic BMgetProtSeqUniProt
*Topic Apol	getProt, 131
property, 141	*Topic BMgetProt
*Topic Area	getProt, 131
property, 141	*Topic BPol
*Topic Aromatic	property, 141
Constitutional, 43	*Topic BioMedR
*Topic Atoms	BioMedR-package, 5
Constitutional, 43	readFASTA, 144
*Topic Atom	readPDB, 147
Constitutional, 43	*Topic Blast
*Topic Autocorrelation	extrProtPSSM, 119
Autocorrelation, 25	extrProtPSSMAcc, 121
*Topic BCUT	extrProtPSSMFeature, 122
extrDrugBCUT, 60	*Topic Bonds
*Topic BLOSUM	Constitutional, 43
AABLOSUM100, 7	*Topic Bond
AABLOSUM45, 7	Constitutional, 43
AABLOSUM50, 8	property, 141
AABLOSUM62, 8	*Topic Breadth
AABLOSUM80, 9	geometric, 126
extrPCMBLOSUM, 91	*Topic Broto
*Topic BMDrugMolCAS	extrProtMoreauBroto, 115
getDrug, 129	*Topic CAS
*Topic BMgetDrugMolChEMBL	getDrug, 129
getDrug, 129	*Topic CPSA
*Topic BMgetDrugMolDrugBank	extrDrugCPSA, 61
getDrug, 129	*Topic CTDC
*Topic BMgetDrugMolKEGG	extrProtCTDC, 101
getDrug, 129	*Topic CTDD
*Topic BMgetDrugMolPubChem	extrProtCTDD, 103
getDrug, 129	*Topic CTDT
*Topic BMgetDrugSmiChEMBL	extrProtCTDT, 106
getDrug, 129	*Topic CTD
*Topic BMgetDrugSmiDrugBank	extrProtCTDC, 101
getDrug, 129	extrProtCTDCClass, 102

extrProtCTDD, 103	extrDNADCC, 50
extrProtCTDDClass, 104	*Topic DC
extrProtCTDT, 106	extrProtDC, 110
extrProtCTDTClass, 107	*Topic Dice
*Topic CTriad	calcDrugFPSim, 27
extrProtCTriad, 108	*Topic Dipeptide
*Topic Carbon	extrProtDC, 110
topology, 153	*Topic Distance
*Topic ChEMBL	topology, 153
getDrug, 129	*Topic Donor
*Topic Chain	property, 141
connectivity, 41	*Topic DrugBank
Constitutional, 43	getDrug, 129
*Topic Charge	*Topic Drug
	1 0
Autocorrelation, 25	calcDrugFPSim, 27
*Topic Chi	calcDrugMCSSim, 28
connectivity, 41	searchDrug, 151
*Topic Cluster	*Topic Eccentric
connectivity, 41	topology, 153
*Topic Common	*Topic Edge
calcDrugMCSSim, 28	topology, 153
*Topic Complexity	*Topic Euclidean
topology, 153	calcDrugFPSim, 27
*Topic Components	*Topic FASTA
extrPCMScales, 97	readFASTA, 144
*Topic Composition	*Topic FMF
extrProtAAC, 98	topology, 153
extrProtAPAAC, 99	*Topic Factor
extrProtCTDC, 101	extrPCMFAScales, 93
extrProtCTDCClass, 102	*Topic Five
extrProtCTDD, 103	property, 141
extrProtCTDDClass, 104	*Topic Fragment
extrProtDC, 110	topology, 153
extrProtPAAC, 117	*Topic GO
extrProtTC, 125	calcParProtGOSim, 29
*Topic Conjoint	calcTwoProtGOSim, 31
extrProtCTriad, 108	parGOSim, 136
extrProtCTriadClass, 109	twoGOSim, 158
*Topic Connectivity	*Topic Geary
topology, 153	extrProtGeary, 112
*Topic Cosine	*Topic Genbank
-	-
calcDrugFPSim, 27	BMgetDNAGenBank, 26
*Topic Count	*Topic Gene
Constitutional, 43	calcParProtGOSim, 29
property, 141	calcTwoProtGOSim, 31
*Topic Coupling	*Topic Geometric
extrProtSOCN, 124	topology, 153
*Topic DACC	*Topic Gravitational
extrDNADACC, 48	geometric, 126
*Topic DAC	*Topic HBond
extrDNADAC, 47	property, 141
*Topic DCC	*Topic Hall

extrDrugKierHallSmarts, 73	geometric, 126
*Topic Hamming	*Topic Moran
calcDrugFPSim, 27	extrProtMoran, 113
*Topic Hybridization	*Topic Moreau-Broto
extrDrugHybridizationRatio,71	extrProtMoreauBroto, 115
*Topic Index	*Topic MoreauBroto
geometric, 126	extrProtMoreauBroto, 115
topology, 153	*Topic Moreau
*Topic Indices	extrProtMoreauBroto, 115
extrDrugKappaShapeIndices, 72	*Topic Multidimensional
*Topic Inertia	extrPCMMDSScales, 94
geometric, 126	*Topic NNeighbors
*Topic Ionization	NNeighbors, 134
extrDrugIPMolecularLearning, 72	*Topic Needleman-Wunsch
*Topic KEGG	calcParProtSeqSim, 30
getDrug, 129	calcTwoProtSeqSim, 33
getProt, 131	*Topic Neighbors
*Topic Kappa	NNeighbors, 134
extrDrugKappaShapeIndices, 72	*Topic Numbers
*Topic Kier	topology, 153
extrDrugKierHallSmarts, 73	*Topic Number
*Topic Largest	extrProtSOCN, 124
Constitutional, 43	*Topic Ontology
*Topic Length	calcParProtGOSim, 29
geometric, 126	calcTwoProtGOSim, 31
*Topic Lipinski	parGOSim, 136
property, 141	twoGOSim, 158
*Topic LogP	*Topic OptAA3d
extrDrugMannholdLogP, 80	OptAA3d, 135
*Topic Longest	*Topic Order
Constitutional, 43	extrProtQS0, 123
*Topic MCS	extrProtQSO, 123
calcDrugMCSSim, 28	*Topic PAAC
searchDrug, 151	extrProtPAAC, 117
*Topic MDE	*Topic PAM
topology, 153	*10pic 1 A1V1 AAPAM120, 17
*Topic MOL	
	AAPAM20, 18
readMolFromSDF, 145	AAPAM40, 10
readMolFromSmi, 146	AAPAM70, 10
*Topic Magnitude	AAPAM70, 19
topology, 153	*Topic PCA
*Topic Mannhold	extrPCMScaleGap, 96
extrDrugMannholdLogP, 80	extrPCMScales, 97
*Topic Mass	*Topic PCM
Autocorrelation, 25	extrPCMBLOSUM, 91
*Topic Maximum	extrPCMDescScales, 92
calcDrugMCSSim, 28	extrPCMFAScales, 93
*Topic Molecular	extrPCMMDSScales, 94
topology, 153	extrPCMScaleGap, 96
*Topic Molecule	extrPCMScales, 97
searchDrug, 151	*Topic PDB
*Topic Moment	getProt, 131

readPDB, 147	*Topic Sequence
*Topic PSSM	extrProtQSO, 123
extrProtPSSM, 119	extrProtSOCN, 124
extrProtPSSMAcc, 121	*Topic Shape
extrProtPSSMFeature, 122	extrDrugKappaShapeIndices, 72
*Topic Path	topology, 153
connectivity, 41	*Topic Similarity
topology, 153	calcDrugFPSim, 27
*Topic Petitjean	calcDrugMCSSim, 28
topology, 153	searchDrug, 151
*Topic Pi	*Topic Smarts
Constitutional, 43	extrDrugKierHallSmarts, 73
*Topic Polarizability	*Topic Smith-Waterman
Autocorrelation, 25	calcParProtSeqSim, 30
property, 141	calcTwoProtSeqSim, 33
*Topic Polar	*Topic Structure
•	plotStructure, 138
property, 141	
*Topic Potential	*Topic Substructure
extrDrugIPMolecularLearning, 72	calcDrugMCSSim, 28
*Topic Principal	*Topic Surface
extrPCMScales, 97	property, 141
*Topic PseDNC	*Topic TACC
extrDNAPseDNC, 53	extrDNATACC, 56
*Topic PseKNC	*Topic TAC
extrDNAPseKNC, 54	extrDNATAC, 55
*Topic Pseudo	*Topic TCC
extrProtAPAAC, 99	extrDNATCC, 57
extrProtPAAC, 117	*Topic TC
*Topic PubChem	extrProtTC, 125
getDrug, 129	*Topic Tanimoto
*Topic QSO	calcDrugFPSim, 27
extrProtQSO, 123	*Topic Topological
*Topic Quasi-Sequence-Order	property, 141
extrProtQSO, 123	*Topic Transition
*Topic Quasi	extrProtCTDT, 106
extrProtQSO, 123	extrProtCTDTClass, 107
*Topic Ratio	*Topic Triad
extrDrugHybridizationRatio,71	extrProtCTriad, 108
*Topic Rotatable	extrProtCTriadClass, 109
Constitutional, 43	*Topic Tripeptide
*Topic Rule	extrProtTC, 125
property, 141	*Topic Types
*Topic SDF	topology, 153
readMolFromSDF, 145	*Topic UniProt
*Topic SMILES	getProt, 131
•	<u> </u>
readMolFromSmi, 146	*Topic VABC
*Topic SOCN	topology, 153
extrProtSOCN, 124	*Topic Vertex
*Topic Scaling	topology, 153
extrPCMMDSScales, 94	*Topic Volume
*Topic Search	topology, 153
searchDrug, 151	*Topic WHIM

extrDrugWHIM, 89	checkProt, 34
*Topic Weighted	*Topic clusterCMP
topology, 153	clusterCMP, 35
*Topic Weight	*Topic clusterJP
property, 141	clusterJP, 37
*Topic Wiener	*Topic clusterMDS
topology, 153	clusterMDS, 38
*Topic XLogP	*Topic clusterStat
property, 141	clusterStat, 40
*Topic Zagreb	*Topic cluster
topology, 153	clusterCMP, 35
*Topic aaindex	clusterMDS, 38
AAindex, 14	*Topic compounds
*Topic acc	clusterCMP, 35
acc, 23	*Topic convAPtoFP
*Topic acid	convAPtoFP, 45
checkProt, 34	*Topic convSDFtoAP
segProt, 153	convSDFtoAP, 46
*Topic alignment	*Topic covariance
calcParProtSeqSim, 30	acc, 23
calcTwoProtSeqSim, 33	*Topic cross
parSeqSim, 137	acc, 23
twoSeqSim, 159	*Topic datasets
*Topic amino	AABLOSUM100, 7
checkProt, 34	AABLOSUM45, 7
segProt, 153	AABLOSUM50, 8
*Topic apfp	AABLOSUM62, 8
apfp, 24	AABLOSUM80, 9
*Topic atomprop	AAindex, 14
atomprop, 24	AAPAM120, 17
*Topic autocorrelation	AAPAM250, 18
extrProtGeary, 112	AAPAM30, 18
extrProtMoran, 113	AAPAM40, 19
extrProtMoreauBroto, 115	AAPAM70, 19
*Topic auto	bcl, 26
acc, 23	sdfbc1, 151
*Topic bcl	*Topic descriptor
bc1, 26	extrPCMPropScales, 95
*Topic calcDrugFPSim	*Topic diversity
calcDrugFPSim, 27	extrDNAIncDiv, 51
*Topic calcDrugMCSSim	*Topic extrDrugAIO
calcDrugMCSSim, 28	extrDrugAIO, 58
*Topic calcParProtGOSim	*Topic extrDrugALOGP
calcParProtGOSim, 29	property, 141
*Topic calcParProtSeqSim	• • •
	*Topic extrDrugAP
<pre>calcParProtSeqSim, 30 *Topic calcTwoProtGOSim</pre>	extrDrugAP, 59 *Topic extrDrugAminoAcidCount
•	*Topic extrDrugAmmoAcidCount Constitutional, 43
calcTwoProtGOSim, 31	
*Topic calcTwoProtSeqSim	*Topic extrDrugApol
calcTwoProtSeqSim, 33	property, 141
*Topic check	*Topic extrDrugAromaticAtom-
checkDNA, 34	sCount

Constitutional, 43	*Topic extrDrugHBondAcceptor-
*Topic extrDrugAromaticBond-	Count
sCount	property, 141
Constitutional, 43	*Topic extrDrugHBondDonorCount
*Topic extrDrugAtomCount	property, 141
Constitutional, 43	*Topic extrDrugHybridizationCom-
*Topic extrDrugAutocorrelationMass	plete
Autocorrelation, 25	extr ${ t DrugHybridizationComplete}, 70$
*Topic extrDrugAutocorrelationPo-	*Topic extrDrugHybridizationRatio
larizability	extr ${\tt DrugHybridizationRatio}, 71$
Autocorrelation, 25	*Topic extrDrugHybridization
*Topic extrDrugAutocorrelation-	extrDrugHybridization, 69
charge	*Topic extrDrugIPMolecularLearning
Autocorrelation, 25	extrDrugIPMolecularLearning, 72
*Topic extrDrugBCUT	*Topic extrDrugKRComplete
extrDrugBCUT, 60	extrDrugKRComplete,77
*Topic extrDrugBPol	*Topic extrDrugKR
property, 141	extrDrugKR, 76
*Topic extrDrugBondCount	*Topic extrDrugKappaShapeIndices
Constitutional, 43	extrDrugKappaShapeIndices, 72
*Topic extrDrugCPSA	*Topic extrDrugKierHallSmarts
extrDrugCPSA, 61	extrDrugKierHallSmarts, 73
*Topic extrDrugCarbonTypes	*Topic extrDrugLargestChain
topology, 153	Constitutional, 43
*Topic extrDrugChiChain	*Topic extrDrugLargestPiSystem
connectivity, 41	Constitutional, 43
*Topic extrDrugChiCluster	*Topic extrDrugLengthOverBreadth
connectivity, 41	geometric, 126
*Topic extrDrugChiPathCluster	*Topic extrDrugLogP
connectivity, 41	property, 141
*Topic extrDrugChiPath	*Topic extrDrugLongestAliphatic-
connectivity, 41	Chain
*Topic extrDrugECI	Constitutional, 43
topology, 153	*Topic extrDrugMACCSComplete
*Topic extrDrugEstateComplete	extrDrugMACCSComplete, 79
extrDrugEstateComplete, 64	*Topic extrDrugMACCS
*Topic extrDrugEstate	extrDrugMACCS, 78
extrDrugEstate, 63	*Topic extrDrugMDE
*Topic extrDrugExtendedComplete	topology, 153
extrDrugExtendedComplete,66	*Topic extrDrugMannholdLogP
*Topic extrDrugExtended	extrDrugMannholdLogP, 80
extrDrugExtended, 65	*Topic extrDrugMomentOfInertia
*Topic extrDrugFMF	geometric, 126
topology, 153	*Topic extrDrugOBFP2
*Topic extrDrugFragmentComplexity	extrDrugOBFP2, 81
topology, 153	*Topic extrDrugOBFP3
*Topic extrDrugGraphComplete	extrDrugOBFP3, 81
extrDrugGraphComplete,68	*Topic extrDrugOBFP4
*Topic extrDrugGraph	extrDrugOBFP4,82
extrDrugGraph, 67	*Topic extrDrugPetitjeanNumber
*Topic extrDrugGravitationalIndex	topology, 153
geometric, 126	*Topic extrDrugPetitjeanShapeIndex

topology, 153	extrProtCTDC, 101
*Topic extrDrugPubChemComplete	*Topic extrProtCTDD
extrDrugPubChemComplete, 84	extrProtCTDD, 103
*Topic extrDrugPubChem	*Topic extrProtCTDT
extrDrugPubChem, 83	extrProtCTDT, 106
*Topic extrDrugRotatableBond-	*Topic extrProtCTriad
sCount	extrProtCTriad, 108
Constitutional, 43	*Topic extrProtDC
*Topic extrDrugRuleOfFive	extrProtDC, 110
property, 141	*Topic extrProtGeary
*Topic extrDrugShortestPathCom-	extrProtGeary, 112
plete	*Topic extrProtMoran
extrDrugShortestPathComplete, 86	extrProtMoran, 113
*Topic extrDrugShortestPath	*Topic extrProtMoreauBroto
extrDrugShortestPath, 85	extrProtMoreauBroto, 115
*Topic extrDrugStandardComplete	*Topic extrProtPAAC
extrDrugStandardComplete, 88	extrProtPAAC, 117
*Topic extrDrugStandard	*Topic extrProtQSO
extrDrugStandard, 87	extrProtQSO, 123
*Topic extrDrugTPSA	*Topic extrProtSOCN
property, 141	extrProtSOCN, 124
*Topic extrDrugVABC	*Topic extrProtTC
topology, 153	extrProtTC, 125
*Topic extrDrugVAdjMa	*Topic extract
topology, 153	extrDNADAC, 47
*Topic extrDrugWHIM	extrDNADACC, 48
extrDrugWHIM, 89	extrDNADCC, 50
*Topic extrDrugWeightedPath	extrDNAIncDiv, 51
topology, 153	extrDNAkmer, 52
*Topic extrDrugWeight	extrDNAPseDNC, 53
property, 141	extrDNAPseKNC, 54
*Topic extrDrugWienerNumbers	extrDNATAC, 55
topology, 153	extrDNATACC, 56
*Topic extrDrugZagrebIndex	extrDNATCC, 57
topology, 153	extrPCMBLOSUM, 91
*Topic extrPCMBLOSUM	extrPCMDescScales, 92
extrPCMBLOSUM, 91	extrPCMFAScales, 93
*Topic extrPCMDescScales	extrPCMMDSScales,94
extrPCMDescScales, 92	extrPCMPropScales, 95
*Topic extrPCMFAScales	extrPCMScaleGap, 96
extrPCMFAScales, 93	extrPCMScales, 97
*Topic extrPCMMDSScales	extrProtAAC, 98
extrPCMMDSScales, 94	extrProtAPAAC, 99
*Topic extrPCMPropScales	extrProtCTDC, 101
extrPCMPropScales, 95	extrProtCTDCClass, 102
*Topic extrPCMScales	extrProtCTDD, 103
extrPCMScales, 97	extrProtCTDDClass, 104
*Topic extrProtACC	extrProtCTDT, 106
extrProtAAC, 98	extrProtCTDTClass, 107
*Topic extrProtAPAAC	extrProtCTriad, 108
extrProtAPAAC, 99	extrProtCTriadClass, 109
*Topic extrProtCTDC	extrProtDC, 110

extrProtFPGap, 111	*Topic parallel
extrProtGeary, 112	calcParProtSeqSim, 30
extrProtMoran, 113	calcTwoProtSeqSim, 33
extrProtMoreauBroto, 115	parSeqSim, 137
extrProtPAAC, 117	twoSeqSim, 159
extrProtPSSM, 119	*Topic plot
extrProtPSSMAcc, 121	plotStructure, 138
extrProtPSSMFeature, 122	*Topic pls.cv
extrProtQSO, 123	pls.cv, 140
extrProtSOCN, 124	*Topic protein
extrProtTC, 125	checkProt, 34
revchars, 148	segProt, 153
*Topic gap	*Topic readFASTA
extrPCMScaleGap, 96	readFASTA, 144
extrProtFPGap, 111	*Topic readMolFromSDF
*Topic getCCI	readMolFromSDF, 145
getCPI, 128	*Topic readMolFromSmi
*Topic getCDI	readMolFromSmi, 146
getCPI, 128	*Topic readPDB
*Topic getCPI	readPDB, 147
getCPI, 128	*Topic reverse_chars
*Topic getDDI	revchars, 148
getCPI, 128	*Topic rf.cv
*Topic getDPI	rf.cv, 148
getCPI, 128	*Topic rf.fs
*Topic getDrug	rf.fs, 150
getDrug, 129	*Topic scales
*Topic getPPI	extrPCMDescScales, 92
getCPI, 128	extrPCMMDSScales, 94
*Topic getProt	extrPCMPropScales, 95
getProt, 131	extrPCMScaleGap, 96
*Topic global	extrPCMScales, 97
calcParProtSeqSim, 30	extrProtFPGap, 111
<pre>calcTwoProtSeqSim, 33</pre>	*Topic sdfbcl
*Topic increment	sdfbcl, 151
extrDNAIncDiv, 51	*Topic sdf
*Topic index	sdfbcl, 151
<pre>make_kmer_index, 133</pre>	*Topic searchDrug
*Topic interaction	searchDrug, 151
getCPI, 128	*Topic segmentation
*Topic kmer	segProt, 153
extrDNAkmer, 52	*Topic segment
make_kmer_index, 133	segProt, 153
*Topic local	*Topic seg
calcParProtSeqSim, 30	segProt, 153
calcTwoProtSeqSim, 33	*Topic sequence
*Topic nearest	calcParProtSeqSim, 30
NNeighbors, 134	calcTwoProtSeqSim, 33
*Topic normalized	checkProt, 34
extrProtMoreauBroto, 115	segProt, 153
*Topic of	*Topic similarity
extrDNAIncDiv, 51	calcParProtGOSim, 29

calcParProtSeqSim, 30	bc1, 26
<pre>calcTwoProtGOSim, 31</pre>	BioMedR (BioMedR-package), 5
<pre>calcTwoProtSeqSim, 33</pre>	BioMedR-package, 5
parGOSim, 136	BMDrugMolCAS (getDrug), 129
parSeqSim, 137	BMgetDNAGenBank, 26
twoGOSim, 158	BMgetDrug, 133
twoSeqSim, 159	BMgetDrug (getDrug), 129
*Topic the	BMgetDrugMolChEMBL (getDrug), 129
extrDNAIncDiv, 51	BMgetDrugMolDrugBank (getDrug), 129
*Topic type	BMgetDrugMolKEGG(getDrug), 129
checkProt, 34	BMgetDrugMolPubChem (getDrug), 129
*Topic visualize	BMgetDrugSmiChEMBL (getDrug), 129
clusterMDS, 38	BMgetDrugSmiDrugBank (getDrug), 129
0240 0011120, 20	BMgetDrugSmiKEGG (getDrug), 129
AA2DACOR, 5	BMgetDrugSmiPubChem (getDrug), 129
AA3DMoRSE, 6	BMgetProt, 131
AAACF, 6	BMgetProt (getProt), 131
AABLOSUM100, 7	BMgetProtFASTAKEGG (getProt), 131
AABLOSUM45, 7	
AABLOSUM50, 8	BMgetProtFASTAUinProt (getProt), 131
AABLOSUM62, 8	BMgetProtPDBRCSBPDB (getProt), 131
AABLOSUM80, 9	BMgetProtSeqKEGG (getProt), 131
AABurden, 9	BMgetProtSeqRCSBPDB (getProt), 131
AAConn, 10	BMgetProtSeqUniProt (getProt), 131
AAConst, 10	ooloDmusEDS;m 27
	calcDrugFPSim, 27
AACPSA, 11	calcDrugMCSSim, 28
AADescAll, 11	calcParProtGOSim, 29, 31, 32
AAEdgeAdj, 12	calcParProtSeqSim, 30, 30, 32, 33
AAEigIdx, 12	calcTwoProtGOSim, 30, 31, 33
AAFGC, 13	calcTwoProtSeqSim, 33
AAGETAWAY 14	checkDNA, 34
AAGETAWAY, 14	checkProt, 34
AAindex, 14, 100, 117	clusterCMP, 35, 39
AAInfo, 15	clusterJP, 37, 135
AAMetaInfo, 15	clusterMDS, 38
AAMOE2D, 16	clusterStat, 36, 40
AAMOE3D, 16	connectivity, 41
AAMolProp, 17	Constitutional, 43
AAPAM120, 17	convAPtoFP, 45
AAPAM250, 18	convSDFtoAP, 46, 46
AAPAM30, 18	
AAPAM40, 19	extrDNADAC, 47, 49, 51
AAPAM70, 19	extrDNADACC, 48, 48, 51
AARandic, 20	extrDNADCC, 48, 49, 50
AARDF, 20	extrDNAIncDiv, 51
AATopo, 21	extrDNAkmer, <i>51</i> , <i>52</i> , <i>134</i>
AATopoChg, 21	extrDNAPseDNC, 53, 55
AAWalk, 22	extrDNAPseKNC, 54, 54
AAWHIM, 22	extrDNATAC, 55, 57, 58
acc, 23	extrDNATACC, <i>56</i> , <i>56</i> , <i>58</i>
apfp, 24	extrDNATCC, <i>56</i> , <i>57</i> , <i>57</i>
atomprop, 24	extrDrugAIO,58
Autocorrelation, 25	extrDrugALOGP (property), 141

extrDrugAminoAcidCount (Constitutional) 42	extrDrugLengthOverBreadth(geometric),
(Constitutional), 43 extrDrugAP, 59	126
	extrDrugLogP (property), 141
extrDrugApol (property), 141	extrDrugLongestAliphaticChain (Constitutional), 43
extrDrugAromaticAtomsCount (Constitutional), 43	extrDrugMACCS, 78, 79
	_
extrDrugAromaticBondsCount (Constitutional) 43	extrDrugMACCSComplete, 78, 79
(Constitutional), 43 extrDrugAtomCount (Constitutional), 43	extrDrugMannholdLogP, 80
	extrDrugMDE (topology), 153
extrDrugAutocorrelationcharge (Autocorrelation), 25	extrDrugMomentOfInertia (geometric), 126
extrDrugAutocorrelationMass	extrDrugOBFP2, 81
(Autocorrelation), 25	extrDrugOBFP3, 81
	extrDrugOBFP4, 82
extrDrugAutocorrelationPolarizability	extrDrugPetitjeanNumber (topology), 153
(Autocorrelation), 25	extrDrugPetitjeanShapeIndex (topology), 153
extrDrugBCUT, 60 extrDrugBondCount (Constitutional), 43	
•	extrDrugPubChem, 83, 84
extrDrugBPol (property), 141	extrDrugPubChemComplete, 83, 84
extrDrugCarbonTypes (topology), 153	extrDrugRotatableBondsCount
extrDrugChiChain (connectivity), 41	(Constitutional), 43
extrDrugChiCluster (connectivity), 41	extrDrugRuleOfFive (property), 141
extrDrugChiPath (connectivity), 41	extrDrugShortestPath, 85, 86
extrDrugChiPathCluster(connectivity), 41	extrDrugShortestPathComplete, 85, 86
	extrDrugStandard, 87, 88
extrDrugCPSA, 61	extrDrugStandardComplete, 87, 88
extrDrugECI (topology), 153	extrDrugTPSA (property), 141
extrDrugEstate, 63, 64	extrDrugVAdiMo (topology), 153
extrDrugEstateComplete, 63, 64	extrDrugVAdjMa (topology), 153
extrDrugExtended, 65, 66	extrDrugWeight (property), 141
extrDrugExtendedComplete, 65, 66	extrDrugWeightedPath(topology), 153
extrDrugFMF (topology), 153	extrDrugWHIM, 89
extrDrugFragmentComplexity(topology),	extrDrugWienerNumbers (topology), 153
153	extrDrugZagrebIndex (topology), 153
extrDrugGraph, 67, 68	extrPCMBLOSUM, 91
extrDrugGraphComplete, 67, 68	extrPCMDescScales, 23, 92, 98
extrDrugGravitationalIndex (geometric),	extrPCMMPSScales, 93
126	extrPCMMDsScales, 94
extrDrugHBondAcceptorCount (property), 141	extrPCMPropScales, 23, 95, 98
	extrPCMScaleGap, 96
extrDrugHBondDonorCount (property), 141	extrPCMScales, 23, 92, 95, 96, 97
extrDrugHybridization, 69, 70	extrProtAAC, 98
extrDrugHybridizationComplete, 69, 70	extrProtAPAAC, 99, 118
extrDrugHybridizationRatio, 71	extrProtCTDC, 101, 104, 106
extrDrugIPMolecularLearning, 72	extrProtCTDCClass, 102, 105, 108
extrDrugKappaShapeIndices, 72	extrProtCTDD, 101, 103, 106
extrDrugKierHallSmarts, 73	extrProtCTDDClass, 103, 104, 108
extrDrugKR, 76, 77	extrProtCTDT, 101, 104, 106
extrDrugKRComplete, 76, 77	extrProtCTDTClass, 103, 105, 107
extrDrugLargestChain (Constitutional),	extrProtCTriad, 108
43	extrProtCTriadClass, 109
extrDrugLargestPiSystem (Constitutional) 43	extrProtEC ap 07 111
(Constitutional), 43	extrProtFPGap, 97, 111

```
extrProtGeary, 112, 114, 116
extrProtMoran, 113, 113, 116
extrProtMoreauBroto, 113, 114, 115
extrProtPAAC, 100, 117
extrProtPSSM, 119, 121–123
extrProtPSSMAcc, 121, 121, 123
extrProtPSSMFeature, 121, 122, 122
extrProtQS0, 123, 125
extrProtSOCN, 124, 124
extrProtTC, 99, 110, 125
geometric, 126
getCCI (getCPI), 128
getCDI (getCPI), 128
getCPI, 128
getDDI (getCPI), 128
getDPI (getCPI), 128
getDrug, 129
getPPI (getCPI), 128
getProt, 131
getwd, 144, 147
IncDiv (extrDNAIncDiv), 51
jarvisPatrick, 134
make_kmer_index, 53, 133
nearestNeighbors, 37
NNeighbors, 37, 38, 134
OptAA3d, 11, 16, 135
parGOSim, 136, 138, 159
parSeqSim, 136, 137, 159, 160
plotStructure, 138
pls.cv, 140, 149
property, 141
readFASTA, 27, 144, 147
readMolFromSDF, 145, 146
readMolFromSmi, 145, 146
readPDB, 144, 147
revchars, 148
rf.cv, 140, 148, 151
rf.fs, 150
sdfbcl, 151
searchDrug, 151
{\tt segProt}, 153
topology, 153
twoGOSim, 136, 158, 160
{\tt twoSeqSim},\, {\tt 159}
```