3. Modeling

KUBIG 학술부

데이터 탐색(전처리) 후 알맞은 모델을 정한다.

모델을 학습시킨다. 데이터를 가장 잘 설명하는 모델을 찾는다.

Index

1. 여러가지 모델의 종류

: Linear Base Model, Classification, Ensemble, Clustering, Neural Network

2. Loss Function

3. Optimization

: Gradient Descent Algorithm, Newton-Raphson's Method

1. 여러가지 모델의 종류

1.1. Linear Base Model

Y와 x의 선형적 관계를 기반으로 하는 모델. Simple Model

1.1.1. Linear Regression

1.1.2. Generalized Linear Model

1.1.3. Penalized Linear Model

1.1.1. Linear Regression

$$y_i = \alpha + \beta x_i + \varepsilon_i$$
.

"Simple Model"

- 해석이 쉽다.
- 가정과 제약이 많다.

EX) '오차항이 정규분포를 따른다.' '예측 변수 x끼리 선형적으로 독립이다.'

1.1.2. Generalized Linear Model (GLM)

"오차항이 정규분포를 따르지 않는 경우를 포함하는 선형 모형의 확장"

• Logistic Regression : y가 이항반응 변수일 때

$$p(\mathbf{x}) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$
 : 범위의 문제 발생
$$\ln \frac{p(\mathbf{x})}{1 - p(\mathbf{x})} = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

$$p(\mathbf{x}) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p)}} = \frac{1}{1 + e^{-\beta \mathbf{x}}} \,, \quad 0 < p(\mathbf{x}) < 1$$

1.1.3. Penalized Linear Model

Penalty가 부여된 선형 모델

Overfitting 방지

(Overfitting: 학습 데이터를 설명하는데 너무 집중한 나머지, 실제 데이터에는 예측력이 떨어지는 현상. bias는 작은데, 예측치들 간 variance는 큰 현상.)

- Ridge Regression : 가중치(계수)들의 값을 감소시킴.
- Lasso Regression: 변수선택 기능이 있음.
- Elastic Net: Ridge와 Lasso의 혼합형 모델

1.2. Classification

Y가 범주형 변수일 때, 이를 분류하는 모델.

1.2.2. Decision Tree

1.2.3. Support Vector Machine

1.2.1. K-nn (nearest neighbor)

● 어떤 데이터 포인트의 종류를 결정할 때, 그 점에서 가장 가까운 것이 무엇이냐를 중심으로 결정.

K: 주변의 개수

1.2.2. Decision Tree

● 질문에 질문을 이어 데이터를 분류해 나가는 기법.

아래 단계로 내려갈수록 동질적이어야 함.

1.2.3. Support Vector Machine (SVM)

(1) Linear SVM

● 데이터를 선형적인 분류 경계면으로 분류. 특히, 분류 경계면 중에서도 margin을 최대화하는 분류경계면을 찾는 기법.

(margin: 분류 경계면과 가장 가까운 점들과 분류 경계면 사이의 거리)

● 데이터를 선형적으로 분리할 수 없을 때는?

1.2.3. Support Vector Machine (SVM)

(2) Kenelized SVM

● 데이터를 선형적으로 분리할 수 있도록 고차원의 feature space로 변환시킨다.

1.3. Ensemble

▶ 자료로부터 여러 개의 예측 모형을 만든 후 예측 모형들을 종합하여 하나의 최종 예측 모형을 만드는 방법

1.3.1. Bagging

1.3.2. Random Forest

1.3.3. Boosting

1.3.1. Bagging

● 표본 데이터로부터 세부 표본들을 랜덤 추출한 다음에, 각 세부 표본에 대해 모델을 생성하고, 각 모델의 결과를 다수결 또는 평균을 통해 최종 결과를 예측하는 방법.

1.3.2. Random Forest

- 다수의 Decision Tree를 결합.
- Bagging의 개념에 착안하여 만들어졌지만, 차이점이 존재한다!
 - randomness를 표본 추출 뿐만 아니라 feature 선택에도 부여하였다는 것.
 - → 그리하여, tree들의 이질성 강화, 상관성 감소.

Random Forest Simplified

1.3.3. Boosting

● 직렬적인 구성.

● 이전 시행의 결과가 다음 시행으로 이어짐.

Bagging

● 병렬적인 구성.

● 각 시행(bag)마다 독립적으로 모델을 구성.

Boosting의 종류: Ada Boost, Gradient Boost, XG Boost

1.3.3.1. Ada Boost

● 간단하고 성능이 떨어지는 모델(weak learner)들이 상호보완하도록 단계적으로 학습해서, 최종적으로는 성능을 매우 높이는 원리.

1.3.3.2. Gradient Boosting

- Gradient Descent Algorithm을 사용해서 Ada Boost의 성능을 개선시킴.
- 이전 모델에서 발생한 오차를 Loss function으로 표현해서, Gradient Descent 알고리즘을 통해 오차를 최소화하는 방향으로 다음 모델을 구성.

1.3.3.3. XG Boost

● Gradient Boosting 대비 속도와 성능의 비약적인 향상.

● 시스템 자원을 효율적으로 활용.

1.4. Clustering

비슷한 데이터 포인트들을 하나의 큰 cluster로 묶어서 여러가지 cluster로 나타내는 방법.

1.4.1. Hierarchical Clustering

1.4.2. K-means

1.4.3. DBSCAN

1.4.1. Hierarchical Clustering

● 하나의 cluster가 다른 cluster를 포함하는 구조로 cluster들을 형성하는 기법. EX) '동물' 이라는 cluster 안에, '개'라는 cluster 안에, '웰시코기'라는 데이터 포인트.

1.4.2. K-Means

- 비계층적 Clustering.
- 거리를 기반으로 cluster 형성. 군집 내 점들 간의 거리는 최소화, 군집 간의 거리를 최대화.
- ★ K: cluster의 개수 (사전에 지정해야 하는 hyperparameter)

1.4.3. DBSCAN

- 비계층적 Clustering.
- 밀도를 기반(Density-Based)으로 cluster 형성. 밀도가 높은 곳에 군집을 형성하고, 밀도가 낮은 부분은 noise로 취급.
- Outlier에 취약하지 않다는 장점이 있음.

1.5. Neural Network

● 입력층, hidden layer, 출력층의 구조. hidden layer의 개수가 2개 이상일 때가 Deep Neural Network, 즉 딥러닝.

2. Loss Function (Cost Function)

● Loss Function : 모델이 데이터를 얼마나 설명을 못하는지, 모델의 예측치와 실제 값 간의 차이가 얼마나 있는지를 수학적으로 계산한 함수.

$$loss(f) = (y - \hat{y})^2$$

- Cost Function = $\frac{1}{m}\sum_{i=1}^{m} Loss Function^{(i)}$
- EX) Linear Regression: MSE, Logistic Regression: Cross Entropy

3. Optimization

● Optimization: Cost Function을 최소화하는 모수(parameter)들의 조합을 찾는 문제.

3.1. Gradient Descent Algorithm

3.2. Newton Raphson's Method

3.1. Gradient Descent Algorithm

Gradient Descent Algorithm: <u>기울기가 0인 부분을</u> 찾아가는 알고리즘.
 (Cost function을 최소화하는 지점)

3.2. Newton Raphson's Method

● Newton Raphson's Method: 간단하고 수렴 속도가 빨라서, f(x)=0의 근사해를 찾기 유용한 방법.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \quad (\because f'(x_n) \neq 0)$$

X의 값을 지속적으로 갱신하는 아이디어가 Gradient Descent Algorithm과 유사.