GALOIS THEORY 2019: HW 3 SOLUTIONS

For assessment: Problems 1, 2, 3 Due by noon Tuesday, week 7 of the term

- 1. (a) Let $L: \mathbb{Q}$ be a splitting field extension for $f(X) = (X^2 2)(X^2 + 7)$.
 - (i) Determine the degree of the extension $L:\mathbb{Q}$, justifying your answer.
 - (ii) Describe the Galois group $Gal(L : \mathbb{Q})$ (that is, give generators and relations for the Galois group).

Solutions: [This is from the 2015 exam.] (i) We have $L=\mathbb{Q}(\sqrt{2},\sqrt{-7})$. The polynomials X^2-2 and X^2+7 are both irreducible over \mathbb{Q} (by Eisenstein's Criterion with p=2 and p=7 they are irreducible over \mathbb{Z} , and then by Gauss' Lemma they are irreducible over \mathbb{Q}). The roots of X^2-2 are $\pm\sqrt{2}$, and so $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$. Over $\mathbb{Q}(\sqrt{2})$, if X^2+7 is reducible then it has a linear factor in $\mathbb{Q}(\sqrt{2})[X]$ which means that $\sqrt{-7}\in\mathbb{Q}(\sqrt{2})$. But $\mathbb{Q}(\sqrt{2})\subseteq\mathbb{R}$ and $\sqrt{-7}\notin\mathbb{R}$, so X^2+7 must be irreduible over $\mathbb{Q}(\sqrt{2})$. Thus $[\mathbb{Q}(\sqrt{2},\sqrt{-7}):\mathbb{Q}(\sqrt{2})]=2$ and (by the Tower Law) $[\mathbb{Q}(\sqrt{2},\sqrt{-7}):\mathbb{Q}]=4$.

(ii) $Gal(L:\mathbb{Q})$ is generated by the \mathbb{Q} -homomorphisms σ, τ where $\sigma(\sqrt{2}) = -\sqrt{2}$, $\sigma(\sqrt{-7}) = \sqrt{-7}$, $\tau(\sqrt{2}) = -\sqrt{2}$, $\tau(\sqrt{-7}) = \sqrt{-7}$. So $\sigma^2 = 1 = \tau^2$, $\sigma\tau = \tau\sigma$, and $Gal(L:\mathbb{Q}) = \{1, \sigma, \tau, \sigma\tau\}$. We can also present this group as follows:

$$Gal(L:\mathbb{Q}) \simeq \langle \sigma, \tau : \sigma^2 = 1 = \tau^2, \ \sigma\tau = \tau\sigma \rangle$$

 $\simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$

- (b) Let $K : \mathbb{Q}$ be a splitting field extension for $g(X) = X^4 5$.
 - (i) Show that $[K:\mathbb{Q}]=8$.
 - (ii) Describe the Galois group $Gal(K : \mathbb{Q})$.

Solutions: Let $\alpha = \sqrt[4]{5} \in \mathbb{R}_+$, and let $i = e^{2\pi i/4}$. The roots of g are $\pm \alpha, \pm i\alpha$. Thus with $L = \mathbb{Q}(\alpha, i), L : \mathbb{Q}$ is a splitting field for g. [Note that all roots of g lie in $\mathbb{Q}(\alpha, i)$; also, i is the quotient of two roots of g so $\mathbb{Q}(\alpha, i)$ is contained in a splitting field for g.]

(i) By Eisenstein's Criterion (with p=5), g is irreducible over \mathbb{Z} , and so by Gauss' Lemma, g is irreducible over \mathbb{Q} . Hence $[\mathbb{Q}(\alpha):\mathbb{Q}]=\deg \mathrm{m}_{\alpha}(\mathbb{Q})=4$. We know that i is a root of X^2+1 , so $\deg \mathrm{m}_i(\mathbb{Q}(\alpha))\leq 2$. If $\deg \mathrm{m}_i(\mathbb{Q}(\alpha))=1$ then $i\in\mathbb{Q}(\alpha)$, but $\mathbb{Q}(\alpha)\subseteq\mathbb{R}$ and $i\notin\mathbb{R}$. Hence $[K:\mathbb{Q}(\alpha)]=\deg \mathrm{m}_i(\mathbb{Q}(\alpha))=2$ and so (by the Tower Law) $[K:\mathbb{Q}]=8$.

ALTERNATIVELY: We can realise K as $\mathbb{Q}(\alpha, i\alpha)$, and follow essentially the above procedure with $i\alpha$ in place of i.

(ii) We can construct the elements of $G = Gal(K : \mathbb{Q})$ by first extending the identity map on \mathbb{Q} to a homomorphism $\sigma : \mathbb{Q}(\alpha) \to K$ by mapping α to another root of g [this gives us 4 choices]. Then we extend σ to a homomorphism $\tau : K \to K$ by mapping i to $\pm i$ [or by mapping $i\alpha$ to $\pm i\alpha$]. Let $\varphi, \psi : K \to K$ be the \mathbb{Q} -homomorphisms

from K into K where $\varphi(\alpha)=i\alpha,\ \varphi(i)=i,\ \psi(\alpha)=\alpha,\ \psi(i)=-i.$ [Note that as $K:\mathbb{Q}$ is an algebraic extension, by Theorem 3.4, $\varphi,\psi\in Aut(L)$.] So we have $\varphi(i\alpha)=\varphi(i)\varphi(\alpha)=-\alpha,\ \varphi(-\alpha)=-\varphi(\alpha)=-\alpha,\ \varphi(-i\alpha)=-\varphi(i\alpha)=\alpha.$ Also, $\psi(i\alpha)=\psi(i)\psi(\alpha)=-i\alpha,\ \psi(-i\alpha)=-\psi(i)\psi(\alpha)=i\alpha,\ \psi(-\alpha)=-\psi(\alpha)=-\alpha.$ As well, we have $\varphi\psi(\alpha)=\varphi(\alpha)=i\alpha,\ \varphi\psi(i)=\varphi(-i)=-\varphi(i)=-i,\ \psi\varphi^3(\alpha)=\psi(-i\alpha)=-\psi(i)\psi(\alpha)=i\alpha,\ \psi\varphi^3(i)=\psi(i)=-i.$ Hence

$$Gal(K:\mathbb{Q}) \simeq \langle \varphi, \psi : \varphi^4 = 1 = \psi^2, \ \varphi \psi = \psi \varphi^3 \ \rangle.$$

[Note that since $K:\mathbb{Q}$ is a splitting field for g, each element of $Gal(K:\mathbb{Q})$ corresponds to a permutation of the roots of g. We can associate φ with the permutation

$$(\alpha i\alpha - \alpha - i\alpha),$$

and we can associate ψ with the permutation

$$(i\alpha - i\alpha).$$

Using these permuations to represent φ and ψ , we can discern the relation $\varphi\psi = \psi\varphi^3$.]

- 2. Suppose that L: K is a normal extension with $K \subseteq L \subseteq \overline{L}$ where \overline{L} is an algebraic closure of L.
 - (a) Suppose $\tau: L \to \overline{L}$ is a K-homomorphism. Show that $\tau(L) = L$
 - (b) Suppose M: K is a normal extension so that $K \subseteq M \subseteq L$ and $\tau \in Gal(L:K)$. Show that $\tau(M) = M$. (Suggestion: use (a).)

Solutions: (a) [This is Proposition 6.1.] Take $\alpha \in L$. Since L : K is a normal extension, it is an algebraic extension and hence $m_{\alpha}(K)$ exists. Let $f = m_{\alpha}(K)$. So $f(\alpha) = 0$ and hence [by Proposition 3.1]

$$0 = \tau(f(\alpha)) = f(\tau(\alpha)).$$

Since L:K is a nomal extension and f is an irreducible polynomial with a root α in L, we know that f must split over L. We see above that $\tau(\alpha)$ is a root of f, so $\tau(\alpha) \in L$. This argument holds for all $\alpha \in L$, and hence $\tau(L) \subseteq L$. Then by Theorem 3.4, we have $\tau(L) = L$.

- (b) Since L:K is a normal extension, it is an algebraic extension. Thus for any $\alpha \in L$, α is algebraic over K and hence is algebraic over M. So L:M is an algebraic extension, and thus [by Proposition 4.9], \overline{L} is an algebraic closure of M. With $\sigma = \tau_{|M|}$ (the restriction of τ to M), we have that σ is a K-homomorphism taking M into \overline{M} . Thus by (a), $\sigma(M) = M$, and hence $\tau(M) = M$.
- 3. Suppose that L: K is a splitting field extension for f where f is a monic, separable, irreducible element of K[t] with deg f prime. Suppose that M is a field so that $K \subseteq M \subseteq L$ and M: K is a normal extension. The goal is to show that f is irreducible over M.

- (a) For the sake of contradiction, suppose that $f = f_1 \cdots f_d$ where d > 1 and f_1, \ldots, f_d are monic, irreducible elements of M[t]. Show that for each integer k with $1 < k \le d$, we have $\deg f_k = \deg f_1$. (Suggestion: first use Gal(L:K) to show that for $1 < k \le d$, $\deg f_1 = \deg f_k$; in doing this, you may want to use Problem 1.)
- (b) Show that the hypothesis of (a) leads to a contradiction (and hence f is irreducible over M). (Suggestion: first explain why M contains no root of f.)

Solutions: [Without the above suggestions, this is essentially a problem from the 2016 exam.]

(a) As L:K is a splitting field extension for f and $f=f_1\cdots f_d$, we know f_1,\ldots,f_d each split over L. Fix k with $1< k \leq d$ and take $\alpha,\beta\in L$ so that α is a root of f_1 and β is a root of f_k . Since f_1,f_k are monic and irreducible over M, we have $f_1=m_\alpha(M)$ and $f_k=m_\beta(M)$. Also, both α and β are roots of f, and thus by Corollary 3.7, there is some $\tau\in Gal(L:K)$ so that $\tau(\alpha)=\beta$. By Problem 1(b), we know that $\tau(M)=M$ and so $\tau(f_1)\in M[t]$. Also, f_1 is monic so $\tau(f_1)$ is monic; since τ_M is an automorphism of M, Proposition 1.4 gives us that $\tau(f_1)=\tau_M(f_1)$ is irreducible over M. We have

$$0 = \tau(f_1(\alpha)) = \tau(f)(\tau(\alpha)) = \tau(f)(\beta),$$

and hence $\tau(f_1) = m_{\beta}(M)$, meaning that $\tau(f_1) = f_k$. Thus deg $f_k = \deg \tau(f_1) = \deg f_1$.

(b) Since M:K is a normal extension, either f has no root in M or f splits over M. If f splits over M then M:K is a splitting field of f; but L:K is a splitting field of f with $K \subseteq M \subseteq L$. Thus f cannot split over M, so f has no root in M.

Suppose the hypothesis of (a) holds. Then deg $f = \deg f_1 + \cdots + f_d$, and since deg $f_1 = \deg f_k$ for each k with $1 < k \le d$, we have deg $f = d \cdot \deg f_1$. Also, since f has no root in M, neither does f_1 , so deg $f_1 > 1$. [Recall that if $g \in M[t]$ is monic with degree 1, then $g = t - \gamma$ where $\gamma \in M$.] Hence deg f is the product of two integers greater than 1, contradicting the assumption that deg f is prime.

4. Suppose K is a field, $S \subseteq K[t]$. Suppose that L:K is a splitting field extension for S with $K \subseteq L$, and that M:K is a splitting field extension for S relative to the embedding $\varphi:K \to M$. Assume $L \subseteq \overline{L}, M \subseteq \overline{M}$. Set

$$A = \{ \alpha \in \overline{L} : f(\alpha) = 0 \text{ for some nonconstant } f \in S \},$$

and

$$B = \{ \beta \in \overline{M} : \varphi(f)(\beta) = 0 \text{ for some nonconstant } f \in S \}.$$

(So L = K(A) and M = F(B) where $F = \varphi(K)$.)

- (a) Explain why there is an isomorphism $\psi : \overline{L} \to \overline{M}$ that extends φ .
- (b) Show that $\psi(A) = B$.

- (c) Conclude that $\psi(K(A)) \simeq F(B)$ (and hence $L \simeq M$ since K(A) = L and F(B) = M). [Note that the argument used in the proof of Theorem 5.4 shows that [L:K] = [M:K].] Solutions: [This is a proof of Theorem 5.5.]
- (a) Since $\overline{L}:K$ is an algebraic extension, $\varphi:K\to M\subseteq\overline{M}$ can be extended to a homomorphism $\psi:\overline{L}:\to\overline{M}$. Since \overline{L} is algebraically closed, so is $\psi(\overline{L})$. Since $\overline{M}:K$ is an algebraic extension, so is $\overline{M}:\overline{L}$ [with the homomorphism ψ]; hence $\overline{M}:\psi(\overline{L})$ is an algebraic extension. Since $\psi(\overline{L})$ is algebraically closed, the only algebraic extension of $\psi(\overline{L})$ is $\psi(\overline{L})$. Hence $\overline{M}=\psi(\overline{L})$. Thus ψ is surjective. Since \overline{L} is a field, ψ is necessarily injective. Since ψ is a homomorphism, this shows that ψ is an isomorphism. [Note: $\overline{L}:K$ and $\overline{M}:K$ are both algebraic closures of K, so \overline{L} and \overline{M} are isomorphic via some isomorphism $\psi:\overline{L}\to\overline{M}$. But this does not show that ψ extends φ .]
- (b) Using that $\psi(\overline{L}) = \overline{M}$ and that ψ is an isomorphism extending φ , we have that

$$\psi(A) = \{ \psi(\alpha) \in \overline{M} : \ f(\alpha) = 0 \text{ for some nonzero } f \in S \}$$

$$= \{ \psi(\alpha) \in \overline{M} : \ \psi(f(\alpha)) = 0 \text{ for some nonzero } f \in S \}$$

$$= \{ \psi(\alpha) \in \overline{M} : \ \varphi(f)(\psi(\alpha)) = 0 \text{ for some nonzero } f \in S \}$$

$$= \{ \beta \in \overline{M} : \ \varphi(f)(\beta) = 0 \text{ for some nonzero } f \in S \}$$

$$= B.$$

(c) We know that $\psi(K) = \varphi(K) = F$, and $\psi(A) = B$. We claim this means $\psi(K(A)) = F(B)$: An element $\gamma \in K(A)$ is of the form

$$\gamma = \sum_{k=1}^{m} c_k \alpha_k^{r_k}$$

where $c_k \in K$, $\alpha_k \in A$, $m, r_k \in \mathbb{Z}$ with $m \geq 1$. Thus

$$\psi(\gamma) = \sum_{k=1}^{m} \varphi(c_k) \beta_k^{r_k}$$

where $\beta_k = \psi(\alpha_k) \in \psi(A) = B$. Thus $\psi(\gamma) \in B$, so $\psi(A) \subseteq B$.

Since ψ is an isomorphism, (b) shows that $\psi^{-1}(B) = A$, and an argument virtually identical to the above argument shows that $\psi^{-1}(F(B)) \subseteq K(A)$. Hence $\psi(K(A)) = F(B)$. Since ψ is an injective homomorphism, we have $K(A) \simeq F(B)$.