Existing evaluation metrics

In the framework, the following metrics are currently implemented (notations below the table):

Metric	Input	Formula
ADE (marginal)	Trajectories	$\frac{1}{ P_{N_p} \sum\limits_{i=1}^{N_S}N_{A,i}}\sum\limits_{i=1}^{N_S}\frac{1}{N_{O,i}}\sum\limits_{p\in P_{N_p}}\sum\limits_{t\in T_{O,i}}\sum\limits_{j=1}^{N_{A,i}}\sqrt{D_{i,p,j}(t)}$
ADE (joint)	Trajectories	$\frac{1}{ P_{N_p} N_S} \sum_{i=1}^{N_S} \frac{1}{N_{O,i}} \sum_{p \in P_{N_p}} \sum_{t \in T_{O,i}} \sqrt{\frac{1}{N_{A,i}} \sum_{j=1}^{N_{A,i}} D_{i,p,j}(t)}$
min ADE (marginal)	Trajectories	$rac{1}{\sum\limits_{i=1}^{N_S} N_{A,i}} \sum\limits_{i=1}^{N_S} rac{1}{N_{O,i}} \sum\limits_{j=1}^{N_{A,i}} \min_{p \in P_{N_p}} \ \sum_{t \in T_{O,i}} \sqrt{D_{i,p,j}(t)}$
min ADE (joint)	Trajectories	$rac{1}{N_S} \sum_{i=1}^{N_S} rac{1}{N_{O,i}} {\min_{p \in P_{N_p}}} \sum_{t \in T_{O,i}} \sqrt{rac{1}{N_{A,i}} \sum_{j=1}^{N_{A,i}} D_{i,p,j}(t)}$
most likely ADE (marginal)	Trajectories	$rac{1}{\sum\limits_{i=1}^{N_S}N_{A,i}}\sum_{i=1}^{N_S}rac{1}{N_{O,i}}\sum_{j=1}^{N_{A,i}}\sum_{t\in T_{O,i}}\sqrt{D_{i,p_{i,j}^*,j}(t)}\;,\;\; ext{with}\;p_{i,j}^*=rg\min_{p\in P_{N_p}}\hat{L}_{i,p,j}$
most likely ADE (joint)	Trajectories	$rac{1}{N_S} \sum_{i=1}^{N_S} rac{1}{N_{O,i}} \sum_{t \in T_{O,i}} \sqrt{rac{1}{N_{A,i}} \sum_{j=1}^{N_{A,i}} D_{i,p_i^*,j}(t)} \;, \; ext{ with } p_i^* = rg \min_{p \in P_{N_p}} \hat{L}_{i,p}$
FDE (marginal)	Trajectories	$\frac{1}{ P_{N_p} \sum\limits_{i=1}^{N_S} N_{A,i}} \sum\limits_{i=1}^{N_S} \sum\limits_{p \in P_{N_p}} \sum\limits_{j=1}^{N_{A,i}} \sqrt{D_{i,p,j}(\max T_{O,i})}$
FDE (joint)	Trajectories	$rac{1}{ P_{N_p} N_S}\sum_{i=1}^{N_S}\sum_{p\in P_{N_p}}\sqrt{rac{1}{N_{A,i}}\sum_{j=1}^{N_{A,i}}D_{i,p,j}(\max T_{O,i})}$
min FDE (marginal)	Trajectories	$rac{1}{\sum\limits_{i=1}^{N_S} N_{A,i}} \sum\limits_{i=1}^{N_S} \sum\limits_{j=1}^{N_{A,i}} \min_{p \in P_{N_p}} \sqrt{D_{i,p,j}(\max T_{O,i})}$
min FDE (joint)	Trajectories	$rac{1}{N_S} \sum_{i=1}^{N_S} \min_{p \in P_{N_p}} \sqrt{rac{1}{N_{A,i}} \sum_{j=1}^{N_{A,i}} D_{i,p,j}(\max T_{O,i})}$
Brier min FDE (marginal)	Trajectories	$rac{1}{N_S top \sum_{i=1}^{N_S} N_{A,i}} \sum_{i=1}^{N_S} \sum_{j=1}^{N_{A,i}} \left(1 - rac{\exp(\hat{L}_{i,p^*_{i,j},j})}{\sum\limits_{p=1}^{ P_{N_p} } \exp(\hat{L}_{i,p,j})} ight)^2 \sqrt{D_{i,p^*_{i,j},j}(\max T_{O,i})} \;, \; ext{ with } p^*_{i,j} = rg \min_{p \in P_{N_p}} \;.$

Brier min FDE (joint)	Trajectories	$rac{1}{N_S} \sum_{i=1}^{N_S} \left(1 - rac{\exp(\hat{L}_{i,p_i^*})}{\sum\limits_{p=1}^{ PN_p } \exp(\hat{L}_{i,p})} ight)^2 \sqrt{rac{1}{N_{A,i}} \sum_{j=1}^{N_{A,i}} D_{i,p_i^*,j}(\max T_{O,i})} \;, \; ext{ with } p_i^* = rg \min_{p \in P_{N_p}} rac{1}{N_{A,i}} \sum_{j=1}^{N_{A,i}} D_{i,p_i^*,j}(\max T_{O,i}) \;, \; ext{ with } p_i^* = rg \min_{p \in P_{N_p}} rac{1}{N_{A,i}} \sum_{j=1}^{N_{A,i}} D_{i,p_i^*,j}(\max T_{O,i}) \;, \; ext{ with } p_i^* = arg \min_{p \in P_{N_p}} \left(\frac{1}{N_{A,i}} \sum_{j=1}^{N_{A,i}} D_{i,p_i^*,j}(\max T_{O,i}) \right) \;.$
most likely FDE (marginal)	Trajectories	$rac{1}{\sum\limits_{i=1}^{N_S} N_{A,i}} \sum\limits_{i=1}^{N_S} \sum\limits_{j=1}^{N_{A,i}} \sqrt{D_{i,p_{i,j}^*,j}(\max T_{O,i})} \;,\;\; ext{with } p_{i,j}^* = \mathop{arg ext{min}}\limits_{p \in P_{N_p}} \hat{L}_{i,p,j}$
most likely FDE (joint)	Trajectories	$rac{1}{N_S} \sum_{i=1}^{N_S} \sqrt{rac{1}{N_{A,i}} \sum_{j=1}^{N_{A,i}} D_{i,p_i^*,j}(\max T_{O,i})} \;, \; ext{ with } p_i^* = rg \min_{p \in P_{N_p}} \hat{L}_{i,p}$
NLL (marginal)	Trajectories	$-rac{1}{\sum\limits_{i=1}^{N_S}N_{A,i}}\sum\limits_{i=1}^{N_S}\sum\limits_{j=1}^{N_{A,i}}L_{i,j}$
NLL (joint)	Trajectories	$-\frac{1}{N_S}\sum_{i=1}^{N_S}L_i$
ECE (marginal)	Trajectories	$\left rac{1}{201} \sum_{k=0}^{200} \left \left(rac{1}{\sum_{i=1}^{N_S} N_{A,i}} \left \left\{ i,j rac{1}{ P_{N_p} } \Big \left\{ p \in P_{N_p} \hat{L}_{i,p,j} > L_{i,j} ight\} ight > rac{k}{200} ight\} ight ight) + rac{k}{200} ight\} ight $
ECE (joint)	Trajectories	$\frac{1}{201} \sum_{k=0}^{200} \left \left(\frac{1}{N_S} \left \left\{ i \frac{1}{ P_{N_p} } \Big \left\{ p \in P_{N_p} \hat{L}_{i,p} > L_i \right\} \right > \frac{k}{200} \right\} \right \right) + \frac{k}{200} - $
Miss rate (marginal)	Trajectories	$rac{1}{\sum\limits_{i=1}^{N_S}N_{A,i}}\sum\limits_{i=1}^{N_S}\sum\limits_{j=1}^{N_{A,i}}egin{cases} 1 & \sqrt{D_{i,p,j}(\max T_{O,i})} > 2orall p \in P_{N_p} \ 0 & ext{otherwise} \end{cases}$
Miss rate (joint)	Trajectories	$rac{1}{N_S}\sum_{i=1}^{N_S} \max_{j \in \{1,,N_{A,i}\}} egin{cases} 1 & \sqrt{D_{i,p,j}(\max T_{O,i})} > 2 orall p \in P_{N_p} \ 0 & ext{otherwise} \end{cases}$
Collision rate (marginal)	Trajectories	Needs to be rewritten, but should evaluate collision rate against GT of other agents
Collision rate (joint)	Trajectories	Needs to be rewritten, but should evaluate collision rate against predicted futures of oth available, otherwise against GT
Area under Curve (AUC)	Classifications	$\frac{1}{N_S}\sum_k\frac{\left(\sum\limits_{i=1}^{N_S}r_{i,k}p_{i,k}\right)-\frac{1}{2}N_k(N_k+1)}{N_S-N_k}\;,$ where likelihood rank $r_{i,k}$ fulfills $r_{i_1,k}>r_{i_2,k}\Rightarrow\frac{\hat{p}_{i_1,k}}{\hat{p}_{i_1,k}+\max_{\hat{k}\neq k}\hat{p}_{i_1,\hat{k}}}\geq\frac{\hat{p}_{i_2,k}}{\hat{p}_{i_2,k}+\max_{\hat{k}\neq k}\hat{p}_{i_2,\hat{k}}}\;,\;\;\text{with}\;N_k=\sum_{i=1}^{N_S}p_i$

ECE	Classifications	Look at the corresponding python file for a definition.
TNR-PR	Gap acceptance classifications (for 't0_type': 'crit')	$\frac{1}{ \{i p_{i,k=accepted} = 0\} } \sum_{i} \begin{cases} 1 & p_{i,k=accepted} = 0 \land \hat{p}_{i,k=accepted} > \min_{\hat{i} \in \{\hat{i} p_{i,k=accepted} = 1\}} j \\ 0 & otherwise \end{cases}$

Here, the following notation is used:

- N_S : Number of samples in the dataset.
- i: Index for those samples.
- For trajectory based metrics, the following notation is used:
 - $\circ~N_{A,i}$: The number of evaluated agents in each sample.
 - $\circ \ j$: Index for those agents.
 - $\circ P$: Set of indicators to different, randomly predicted trajectories (with P = self.data_set.num_samples_path_pred).
 - $\circ P_{N_p}$: A random subset of P with $|P_{N_p}|=N_p$. In the respective metrics, N_p is set by using 'num_preds' = $< N_p >$ when defining the respective kwargs dictionary in the simulations.py file.
 - \circ p: Index for those predictions.
 - $\circ~T_{O.i}$: The output timesteps for trajectories, with length $N_{O.i}$.
 - t: Value of those timesteps.
 - $\circ \ x_{i,j}(t)$, $y_{i,j}(t)$: Recorded positions of an agent.
 - $\hat{x}_{i,p,j}(t)$, $\hat{y}_{i,p,j}(t)$: Predicted positions of an agent. We can then define the following shortcuts for squared distances: $D_{i,p,j}(t)=(x_{i,j}(t)-\hat{x}_{i,p,j}(t))^2+(y_{i,j}(t)-\hat{y}_{i,p,j}(t))^2$
 - P_{KDE} : A probability density function trained over predicted samples (from P, not P_{N_p}). We can then define the following log likelihoods:
 - For marginal metrics, we have:

$$egin{aligned} L_{i,j} &= \ln \left(P_{KDE,i,j} \left(\left\{ \left\{ x_{i,j}(t), y_{i,j}(t)
ight\} \mid orall \ t \in T_{O,i}
ight\}
ight)
ight) \ \hat{L}_{i,p,j} &= \ln \left(P_{KDE,i,j} \left(\left\{ \left\{ \hat{x}_{i,p,j}(t), \hat{y}_{i,p,j}(t)
ight\} \mid orall \ t \in T_{O,i}
ight\}
ight) \end{aligned}$$

• For joint metrics, we have:

$$egin{aligned} L_i &= \ln\left(P_{KDE,i}\left(\left\{\left\{\left\{x_{i,j}(t), y_{i,j}(t)\right\} \mid orall \ t \in T_{O,i}
ight\} \mid orall \ j \in \left\{1,...,N_{A,i}
ight\}
ight)
ight) \ \hat{L}_{i,p} &= \ln\left(P_{KDE,i}\left(\left\{\left\{\hat{x}_{i,p,j}(t), \hat{y}_{i,p,j}(t)
ight\} \mid orall \ t \in T_{O,i}
ight\} \mid orall \ j \in \left\{1,...,N_{A,i}
ight\}
ight)
ight) \end{aligned}$$

- For classification based metrics, the following notation is used:
 - $\circ~N_B$: Number of potentially classifiable behaviors.
 - \circ k: Index for those behaviors.
 - $\circ \ p_{i,k}$, $\hat{p}_{i,k}$: The actual and predicted likelihood of behavior k in smaple i.