ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ

Εργασία 3

ΠΑΝΤΕΛΕΗΜΩΝ ΠΡΩΙΟΣ

ice18390023 7ο Εξάμηνο ice18390023@uniwa.gr

Τμήμα Τρίτης 9:00-13:00

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΉΣ ATTIKΗΣ UNIVERSITY OF WEST ATTICA

Υπεύθυνοι καθηγητές

ΠΑΡΙΣ ΜΑΣΤΟΡΟΚΩΣΤΑΣ

Τμήμα Μηχανικών και Πληροφορικής Υπολογιστών 22 Ιανουαρίου 2022

Περιεχόμενα

1	Σύνολο δεδομένων του Enron		
	1.1	Δενδόγραμμα για διαφορετικούς δεσμούς και δείκτες ομοιότητας	1
2	Διαμ	ιεριστική συσταδοποίηση με k-means	4
	2.1	Διαχωριστική συσταδοποίηση για το σύνολο δεδομένων Iris	4
	2.2	Διαχωριστική συσταδοποίηση για το σύνολο δεδομένων xV	15
K	ώδικ	ι ες	
	1.1	Script συσταδοποίησης των email του Enron	2
	2.1	Script συσταδοποίησης με k-means για διάφορους μεθόδους στα δεδομένα Iris	14
	2.2	Script συσταδοποίησης με k-means για διάφορους μεθόδους στα δεδομένα xV	17
K	ατάλ	λογος σχημάτων	
	1.1	Απλός δεσμός με ομοιότητα jaccard	1
	1.2	Απλός δεσμός με ομοιότητα cosine	2
	1.3	Μέσος δεσμός με ομοιότητα cosine	2
	2.1	Διαχωρισμός συστάδων με euclidean για την τρίτη και τέταρτη στήλη	5
	2.2	Διαχωρισμός συστάδων με cityblock για την τρίτη και τέταρτη στήλη	5
	2.3	Διαχωρισμός συστάδων με cosine για την τρίτη και τέταρτη στήλη	6
	2.4	Διαχωρισμός συστάδων με correlation για την τρίτη και τέταρτη στήλη	6
	2.5	Διαχωρισμός συστάδων με euclidean για την πρώτη και δεύτερη στήλη	7
	2.6	Διαχωρισμός συστάδων με cityblock για την πρώτη και δεύτερη στήλη	7
	2.7	Διαχωρισμός συστάδων με cosine για την πρώτη και δεύτερη στήλη	8
	2.8	Διαχωρισμός συστάδων με correlation για την πρώτη και δεύτερη στήλη	8
	2.9	Διαχωρισμός συστάδων με euclidean για την πρώτη έως και την τέταρτη στήλη	9
	2.10	Διαχωρισμός συστάδων με cityblock για την πρώτη έως και την τέταρτη στήλη	9
	2.11	Διαχωρισμός συστάδων με cosine για την πρώτη έως και την τέταρτη στήλη	10
	2.12	Διαχωρισμός συστάδων με correlation για την πρώτη έως και την τέταρτη στήλη	10
	2.13	Διαχωρισμός συστάδων με euclidean για την πρώτη έως και την τρίτη στήλη	11
		Διαχωρισμός συστάδων με cityblock για την πρώτη έως και την τρίτη στήλη	11
	2.15	Διαχωρισμός συστάδων με cosine για την πρώτη έως και την τρίτη στήλη	12
	2.16	Διαχωρισμός συστάδων με correlation για την πρώτη έως και την τρίτη στήλη	12
	2.17	Διαχωρισμός συστάδων με euclidean για την δεύτερη έως και την τέταρτη στήλη	13
	2.18	Διαχωρισμός συστάδων με cityblock για την δεύτερη έως και την τέταρτη στήλη	13
	2.19	Διαχωρισμός συστάδων με cosine για την δεύτερη έως και την τέταρτη στήλη	14
	2.20	Διαχωρισμός συστάδων με correlation για την δεύτερη έως και την τέταρτη	
		στήλη	14
	2.21	Διαχωρισμός συστάδων με βάση τις πρώτες δύο στήλες	16
	2.22	Διαγωρισμός συστάδων με βάση όλες τις στήλες	16

ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ		
2.23 Διαχωρισμός συστάδων με βάση τις στήλες 296 και 305	17	

1 Σύνολο δεδομένων του Enron

Στην ακόλουθη ενότητα, θα γίνει συσταδοποίηση στο σύνολο δεδομένων των email του Enron.

1.1 Δενδόγραμμα για διαφορετικούς δεσμούς και δείκτες ομοιότητας

Το script 1.1, κάνει συσταδοποίηση της δεύτερης και τρίτης στήλης των δεδομένων με:

- απλό δεσμό και ομοιότητα jaccard
- απλό δεσμό και ομοιότητα cosine
- μέσο δεσμό και ομοιότητα cosine

και εμφανίζει το δενδρόγραμμα για κάθε ένα από αυτά.

Είναι εμφανές σε ποίο επίπεδο θα γίνει η διαφοροποίηση σε κάθε ένα από τα τρία δενδρογράμματα. Ωστόσο, στο τρίτο δενδρόγραμμα (εικ. 1.3), αντί για τρεις συστάδες θα μπορούσαν να υπάρχουν τέσσερις. Επίσης, η μέθοδος που φαίνεται πως χωρίζει καλύτερα τα δεδομένα που έχουν περισσότερα κοινά, είναι με τον μέσο δεσμό και την ομοιότητα cosine.

Σχήμα 1.1: Απλός δεσμός με ομοιότητα jaccard

Σχήμα 1.2: Απλός δεσμός με ομοιότητα cosine

Σχήμα 1.3: Μέσος δεσμός με ομοιότητα cosine

```
load('enron100.mat')

d = pdist(en2(1:100,2:3),'jaccard');

Z = linkage(d); % single

[H,T] = dendrogram(Z,'ColorThreshold', 'default');
```

```
%print('images/single_jaccard','-djpeg')

figure

d = pdist(en2(1:100,2:3),'cosine');

Z = linkage(d); % single

[H,T] = dendrogram(Z,'ColorThreshold', 'default');

xtickangle(60);

%print('images/single_cosine','-djpeg')

figure

d = pdist(en2(1:100,2:3),'cosine');

Z = linkage(d, 'average');

[H,T] = dendrogram(Z,'ColorThreshold', 'default');

xtickangle(60);

%print('images/average_cosine','-djpeg')
```

Κώδικας 1.1: Script συσταδοποίησης των email του Enron

2 Διαμεριστική συσταδοποίηση με k-means

Σε αυτήν την ενότητα, θα γίνει συσταδοποίηση με k-means για διάφορες μεθόδους στα δεδομένα Iris και xV.

2.1 Διαχωριστική συσταδοποίηση για το σύνολο δεδομένων Iris

Στο script 2.1, υπολογίζεται ο k-means με τους εξής διαφορετικούς τρόπους υπολογισμού:

- Euclidean
- cityBlock
- cosine
- correlation

για κάθε ένα από τους εξής συνδιασμούς στηλών των δεδομένων Iris:

- τρίτη και τέταρτη
- πρώτη και δεύτερη
- πρώτη, δεύτερη, τρίτη και τέταρτη
- πρώτη, δεύτερη και τρίτη
- δεύτερη, τρίτη και τέταρτη

Από όλες τις διαφορετικές συσταδοποιήσεις, αυτή που φαίνεται να είναι η ποίο αποτελεσματική είναι η Euclidean και η CityBlock. Αυτό μπορούμε να το διακρίνουμε καλύτερα κάνοντας plot το IDX που είναι η πρώτη τιμή από τις δύο όπου επιστρέφει η kmeans. Ποίο συγκεκριμένα, εφόσον ξέρουμε ότι είναι χωρισμένα ανά 50, είναι φυσιολογικό να έχει γίνει η συσταδοποίηση αντίστοιχα στα πρώτα 50, στα επόμενα 50 και στα τελευταία 50 στοιχεία των δεδομένων.

Σχήμα 2.1: Διαχωρισμός συστάδων με euclidean για την τρίτη και τέταρτη στήλη

Σχήμα 2.2: Διαχωρισμός συστάδων με cityblock για την τρίτη και τέταρτη στήλη

Σχήμα 2.3: Διαχωρισμός συστάδων με cosine για την τρίτη και τέταρτη στήλη

Σχήμα 2.4: Διαχωρισμός συστάδων με correlation για την τρίτη και τέταρτη στήλη

Σχήμα 2.5: Διαχωρισμός συστάδων με euclidean για την πρώτη και δεύτερη στήλη

Σχήμα 2.6: Διαχωρισμός συστάδων με cityblock για την πρώτη και δεύτερη στήλη

Σχήμα 2.7: Διαχωρισμός συστάδων με cosine για την πρώτη και δεύτερη στήλη

Σχήμα 2.8: Διαχωρισμός συστάδων με correlation για την πρώτη και δεύτερη στήλη

Σχήμα 2.9: Διαχωρισμός συστάδων με euclidean για την πρώτη έως και την τέταρτη στήλη

Σχήμα 2.10: Διαχωρισμός συστάδων με cityblock για την πρώτη έως και την τέταρτη στήλη

Σχήμα 2.11: Διαχωρισμός συστάδων με cosine για την πρώτη έως και την τέταρτη στήλη

Σχήμα 2.12: Διαχωρισμός συστάδων με correlation για την πρώτη έως και την τέταρτη στήλη

Σχήμα 2.13: Διαχωρισμός συστάδων με euclidean για την πρώτη έως και την τρίτη στήλη

Σχήμα 2.14: Διαχωρισμός συστάδων με cityblock για την πρώτη έως και την τρίτη στήλη

Σχήμα 2.15: Διαχωρισμός συστάδων με cosine για την πρώτη έως και την τρίτη στήλη

Σχήμα 2.16: Διαχωρισμός συστάδων με correlation για την πρώτη έως και την τρίτη στήλη

Σχήμα 2.17: Διαχωρισμός συστάδων με euclidean για την δεύτερη έως και την τέταρτη στήλη

Σχήμα 2.18: Διαχωρισμός συστάδων με cityblock για την δεύτερη έως και την τέταρτη στήλη

Σχήμα 2.19: Διαχωρισμός συστάδων με cosine για την δεύτερη έως και την τέταρτη στήλη

Σχήμα 2.20: Διαχωρισμός συστάδων με correlation για την δεύτερη έως και την τέταρτη στήλη

```
7 k = 3;
9 for j =1:length(combinations)
     X = iris(:,[combinations(j,1):combinations(j,2)]);
     for i = 1:length(method)
        [IDX, C] = kmeans(X,k, 'distance', method(i));
13
14
        figure
        plot(IDX,'o')
16
18
        figure
        for z=1:k
19
          plot( X(IDX==z,1), X(IDX==z,2),...
20
             'LineStyle', 'none',...
21
             'Marker','.',...
              'color',plotColors{z},...
             'MarkerSize',12)
24
          hold on
        end
26
27
        title(method(i));
28
        plot(C(:,1),C(:,2),'kx', 'MarkerSize', 12, 'LineWidth', 2)
30
        plot(C(:,1),C(:,2),'ko', 'MarkerSize', 12, 'LineWidth', 2)
31
        legend('C1','C2','C3','Centroids','Location','NW')
32
          filename = strcat('images/iris/comb(',...
34
             num2str(combinations(j,1),'%d'), ',',...
35 %
             num2str(combinations(j,2),'%d'), ')_',...
36 %
37 %
             method{i});
          print(filename,'-djpeg')
     end
39
40 end
```

Κώδικας 2.1: Script συσταδοποίησης με k-means για διάφορους μεθόδους στα δεδομένα Iris

2.2 Διαχωριστική συσταδοποίηση για το σύνολο δεδομένων xV

Στην εικόνα 2.21, η συσταδοποίηση που έχει γίνει είναι αποδεκτή. Ωστόσο, οπτικά φαίνεται πως υπάρχει καλύτερος διαχωρισμός συσταδοποίησης για τα C1 και C3.

Ο διαχωρισμός με βάση όλες τις στήλες (εικ. 2.22) δεν είχε θεμιτό αποτέλεσμα και η συσταδοποίηση που υπάρχει δεν είναι ικανοποιητική.

Τέλος, η συσταδοποίηση με βάση τις στήλες 296 και 305 (εικ. 2.23), δεν είναι καθόλου εμφανές ο διαχωρισμός. Ενδεχομένως, να ήταν καλύτερος ο διαχωρισμός αν ο κεντροειδής του C3 ήταν δεξιότερα και του C1 ποίο ψηλά και δεξιά, δηλαδή κοντά στο σημείο (0.2, 0.2).

Είναι εμφανές, πως η καλύτερη συσταδοποίηση έγινε με τα δύο πρώτα χαρακτηριστικά (εικ. 2.21) όπου επέστρεψε οπτικά των καλύτερο διαχωρισμό.

Σχήμα 2.21: Διαχωρισμός συστάδων με βάση τις πρώτες δύο στήλες

Σχήμα 2.22: Διαχωρισμός συστάδων με βάση όλες τις στήλες

Σχήμα 2.23: Διαχωρισμός συστάδων με βάση τις στήλες 296 και 305

```
load('xV.mat')
 notNaN = \sim isnan(xV);
 _{4} xV(~notNaN) = 0;
 6 k = 3;
 7 plotArgs = {'r', 'b', 'c'};
  X = xV(:,1:2);
   [IDX, C] = kmeans(X,k);
11
12
13 figure
14 for j=1:k
     plot( X(IDX==j,1), X(IDX==j,2),...
        'LineStyle','none',...
        'Marker','.',...
        'color',plotArgs{j},...
18
        'MarkerSize',12)
19
     hold on
20
   end
   plot(C(:,1),C(:,2),'kx', 'MarkerSize', 12, 'LineWidth', 2)
   plot(C(:,1),C(:,2),'ko', 'MarkerSize', 12, 'LineWidth', 2)
  legend('C1','C2','C3','Centroids','Location','NW')
  % print('images/xV/comb(1,2)_sqEuclidean','-djpeg')
27
```

```
^{29} X = xV;
[IDX, C] = kmeans(X,k);
31
33 figure
34 for j=1:k
     plot( X(IDX==j,1), X(IDX==j,2),...
        'LineStyle','none',...
        'Marker','.',...
37
        'color',plotArgs{j},...
38
        'MarkerSize',12)
     hold on
40
41
42
<sup>43</sup> plot(C(:,1),C(:,2),'kx', 'MarkerSize', 12, 'LineWidth', 2)
44 plot(C(:,1),C(:,2),'ko', 'MarkerSize', 12, 'LineWidth', 2)
45 legend('C1','C2','C3','Centroids','Location','NW')
   % print('images/xV/comb(all)_sqEuclidean','-djpeg')
50 X = [xV(:,296),xV(:,305)];
[IDX, C] = kmeans(X,k);
53
54 figure
55 for j=1:k
     plot( X(IDX==j,1), X(IDX==j,2),...
        'LineStyle', 'none',...
57
        'Marker','.',...
58
        'color',plotArgs{j},...
        'MarkerSize',12)
60
     hold on
61
62 end
64 plot(C(:,1),C(:,2),'kx', 'MarkerSize', 12, 'LineWidth', 2)
65 plot(C(:,1),C(:,2),'ko', 'MarkerSize', 12, 'LineWidth', 2)
66 legend('C1','C2','C3','Centroids','Location','NW')
68 % print('images/xV/comb(296,305)_sqEuclidean','-djpeg')
```

Κώδικας 2.2: Script συσταδοποίησης με k-means για διάφορους μεθόδους στα δεδομένα xV