МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ) ФИЗТЕХ-ШКОЛА ЭЛЕКТРОНИКИ, ФОТОНИКИ И МОЛЕКУЛЯРНОЙ ФИЗИКИ

Лабораторная работа № 4.7.3

Изучение поляризованного света

выполнили студенты 2 курса группы Б04-006 Белостоцкий Артемий Вовк Дмитрий

Цель работы

Ознакомление с методами получения и анализа поляризованного света

В работе используются

- оптическая скамья с осветителем
- зеленый светофильтр
- два поляроида
- черное зеркало
- полированная эбонитовая пластинка
- стопа стеклянных пластинок
- слюдявые пластинки разной толщины
- пластинки в 1/4 и 1/2 длины волн
- пластинка чувствительного оттенка

Теоретические сведения

Естественный и поляризованный свет

Как известно, световые волны поперечны: электрический вектор ${\bf E}$ и магнитный вектор ${\bf H}$ (или ${\bf B}$) взаимно перпендикулярны и располагаются в плоскости, перпендикулярной направлению распространения волны (лучу ${\bf S}$). Во всякой данной точке пространства ориентация пары векторов ${\bf E}$ и ${\bf H}$ в плоскости, перпендикулярной лучу ${\bf S}$, может, вообще говоря, изменяться со временем.В зависимости от характера такого изменения различают естественный и поляризованный свет.

При помощи специальных приспособлений (поляризаторов), о которых речь будет идти дальше, естественный свет может быть превращен в линейно поляризованный. В линейно поляризованной световой волне пара векторов **E** и **H** не изменяет с течением времени своей ориентации.

Наиболее общим типом поляризации является эллиптическая поляризация. В эллиптически поляризованной световой волне конец вектора **E** (в данной точке пространства) описывает некоторый эллипс.

При теоретическом рассмотрении различных типов поляризации часто бывает удобно проектировать вектор $\mathbf E$ в некоторой точке пространства на два взаимно перпендикулярных направления (рис. 1). В том случае, когда исходная волна была поляризованной, E_x и E_y когерентны между собой и могут быть записаны в виде

Рис. 1: Представление световой волны в виде двух линейно поляризованных волн

$$E_x = E_{x0}\cos(kz - \omega t),$$

$$E_y = E_{y0}\cos(kz - \omega t - \varphi),$$
(1)

где амплитуды E_{x0} , E_{y0} , волновой вектор k, частота ω и сдвиг фаз φ не зависят от времени. Формулы (1) описывают монохроматический свет. Немонохроматический свет может быть представлен суммой выражений типа (1) с различными значениями частоты ω .

В плоскости $z=z_0$ вектор **E** волны (1) вращается против часовой стрелки (при наблюдении навстречу волне), если $0<\varphi<\pi$. В этом случае говорят о левой эллиптической поляризации волны. Если же $\pi<\varphi<2\pi$, вращение вектора **E** происходит по часовой стрелке, и волна имеет правую эллиптическую поляризацию

Методы получения линейно поляризованного света

Для получения линейно поляризованного света применяются специальные оптические приспособления— поляризаторы. Направление колебаний электрического вектора в волне, прошедшей через поляризатор, называется разрешенным направлением поляризатора.

Всякий поляризатор может быть использован для исследования поляризованного света, т. е. в качестве анализатора. Интенсивность I линейно поляризованного света после прохождения через анализатор зависит от угла, образованного плоскостью колебаний с разрешенным направлением анализатора:

$$I = I_0 \cos^2 \alpha \tag{2}$$

Соотношение (2) носит название закона Малюса.

Пластинка чувствительного оттенка

Рис. 2: Пластинка чувствительного оттенка

Выше предполагалось известным, какому из двух главных направлений пластинки в четверть длины волны соответствует большая скорость распространения света. Установить это можно различными способами, например с помощью пластинки чувствительного оттенка (так называют пластинку в λ для зелёной спектральной компоненты, $\lambda = 560$ нм).

Если пластинка чувствительного оттенка помещена между скрещенными поляроидами и главные направления пластинки не параллельны направлениям разрешённых колебаний поляроидов, то при освещении белым светом пластинка кажется окрашенной в лилово-красный

цвет. Это объясняется тем, что зелёная компонента линейно поляризованного света при прохождении пластинки не меняет поляризации и задерживается вторым поляроидом. Для красной и фиолетовой компонент пластинка создаёт сдвиг фаз, несколько отличный от 2π . На выходе из пластинки красная и фиолетовая компоненты оказываются поэтому эллиптически поляризованными и частично проходят через второй поляроид. Таким образом, в известном смысле наблюдаемый в указанном опыте цвет пластинки дополнителен к зелёному.

Если между скрещенными поляроидами поместить пластинку чувствительного оттенка (λ) и пластинку в $\lambda/4$ так, чтобы их главные направления совпадали, цвет пластинки изменится. Если у пластинки чувствительного оттенка и пластинки в $\lambda/4$ совпадут главные направления, соответствующие большей скорости распространения, то разность хода между E_x и E_y для зелёного света составит уже $5\lambda/4$. Это соответствует разности хода в λ для света с большей длиной волны, т. е. для «более красного» света. При освещении этих пластинок (напомним, что они расположены между скрещенными поляроидами) белым

светом теперь погасится не зелёная, а красная часть спектра, и проходящий свет будет казаться зеленовато-голубым. Если же главные направления, соответствующие большей скорости распространения, у пластинки чувствительного оттенка и у пластинки в $\lambda/4$ окажутся перпендикулярными, то проходящий свет приобретёт оранжево-желтую окраску (погасится фиолетово-голубая часть спектра).

Изменение цвета позволяет, таким образом, определить, какое из главных направлений пластинки в $\lambda/4$ соответствует большей скорости распространения.

Ход работы

Определение разрешенных направлений поляроидов

Рис. 3: Определение разрешенного направления поляроида

Разместим на оптической скамье осветитель S, поляроид P_1 и черное зеркало. Поворачивая поляроид вокруг направления луча, добьемся наименьшей яркости пятна и, вращением зеркала вокруг вертикальной оси снова добьемся минимальной интенсивности отраженного луча. Запишем отчет по лимбу поляроида P_1 , соответствующий найденному разрешенному направлению.

Разрешенное направление второго поляроида определим скрестив поляроиды: после поляроида с известной поляризацией поставим второй поляроид и, глядя навстречу лучу,

вращением второго поляроида добьемся минимальной яркости луча. Показания лимба занесем в Таблицу 1.

Таблица 1: Разрешенные направления поляризаторов

,	1 1	
	Поляризатор 1	Поляризатор 2
α , °	348	35

Определение угла Брюстера для эбонита

Вместо черного зеркала поставим эбонитовую пластину.

Установим направление разрешенных колебаний поляроида P_1 горизонтально и найдем угол поворота эбонита $\varphi_{\rm B}$, при котором интенсивность отраженного луча минимальна. По углу поворота определим показатель преломления эбонита

$$n = \tan(\varphi_{\rm B}) = \tan(56) \approx 1,48$$

Повторим измерения, добавив зеленый светофильтр

$$n = \tan(\varphi_{\rm B}) = \tan(55) \approx 1,43$$

Исследование стопы

Поставим стопу стеклянных пластин вместо эбонитового зеркала и подберем для нее такое положение, при котором свет падает на стопу под углом Брюстера.

Осветим стопу неполяризованным светом и, рассматривая через поляроиды отраженный и преломленный свет определим ориентацию вектора ${\bf E}$.

При наблюдении отраженного света, получили, что поляризация горизонтальная, а для преломленного света поляризация вертикальная.

Определение главных плоскостей двоякопреломляющих пластин

Поставим кристаллическую пластинку между скрещенными поляроидами P_1 и P_2

Вращая пластинку вокруг направления луча и наблюдая за интенсивностью света, проходящего сквозь второй поляроид, определим, при каком условии главные направления пластинки совпадают с разрешёнными направлениями поляроидов. Повторите опыт для второй пластинки. Полученные данные занесем в Таблицу 2.

1 1 1	
пластинка 1	пластинка 2
Глав напр, °	Глав напр, °
280	222
190	131
100	42
10	312

Таблица 2: Определение главных направлений

Выделение пластин $\lambda/2$ и $\lambda/4$

Поставим между скрещенными поляроидами пластинку чувствительного оттенка (λ для зелёного света), имеющую вид стрелки.

Уберем зелёный фильтр и поставим между скрещенными поляроидами пластинку λ (стрелка под углом 45 °к разрешённым направлениям поляроидов).

Добавим к схеме пластинку $\lambda/4$, главные направления которой совпадают с главными направлениями пластинки λ и ориентированы под углом 45 °к разрешенным направлениям скрещенных поляроидов. При повороте рейтера со стрелкой на 180 °вокруг вертикальной оси цвет стрелки меняется от зелёно-голубого до оранжево-жёлтого.

В первом случае быстрые оси пластин совпадают, а во втором – медленные

Интерференция поляризованных лучей

Расположим между скрещенными поляроидами мозаичную слюдяную пластинку.

Вращая пластинку, будем наблюдать за изменениями цвета в отдельном квадратике. В результате вращения пластинки интенсивность света, проходящего через пластинку изменяется от 0 до максимума 4 раза за один оборот.

Теперь будем вращать второй поляроид, не двигая пластинки. В результате, наблюдаем изменение цветов пластинок, причем в каких-то квадратах изменение интенсивности света происходит синфазно, а в других в противофазе.

Рис. 4

Рис. 5

Выводы

1.В результате работы мы ознакомились с методами получения и анализа поляризованного света