Μη-Αριθμήσιμα Σύνολα, Διαγωνιοποίηση

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου

Επιμέλεια διαφανειών: Δ. Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Αριθμήσιμα Σύνολα

- Σύνολο πεπερασμένο αν έχει πεπερασμένο πληθικό αριθμό, διαφορετικά άπειρο.
- Cantor, 1873: Σύγκριση μεγεθών άπειρων συνόλων.
- **Ισάριθμα** σύνολα Α και Β:
 - Υπάρχει 1-1 και επί συνάρτηση (αντιστοιχία) $f: A \to B$. Υπάρχει τέλειο ταίριασμα μεταξύ στοιχείων A και στοιχείων B. Π.χ. {1, 2, 3, 4}, {A, B, Γ, Δ}: (1, A), (2, B), (3, Γ), (4, Δ).
- Πεπερασμένο σύνολο Α:
 - Ισάριθμο του {1, ..., n}, για κάποιο φυσικό n ≥ 1.
 Το n είναι ο πληθικός αριθμός του συνόλου Α.
- Αριθμήσιμο σύνολο Α: πεπερασμένο ή ισάριθμο του Ν.
 - Υπάρχει τέλειο ταίριασμα στοιχείων Α με φυσικούς αριθμούς.
 Με {1, ..., |A|} αν Α πεπερασμένο, με Ν αν Α άπειρο.

Αριθμήσιμα Σύνολα

Παραδείγματα αριθμήσιμων συνόλων:

Σύνολο θετικών ζυγών αριθμών: αριθμός i στο βήμα i/2, ή f(i) = i/2.

$$lacksquare$$
 Σύνολο ακεραίων αριθμών: $f(i) = egin{cases} 1 & lpha v \ i = 0 \ 2i + 1 \ lpha v \ i \ lpha e$ τιχός $2|i|$ αν i αρνητιχός

Ένωση πεπερασμένου πλήθους αριθμήσιμων συνόλων.
 Π.χ. ένωση k άπειρων (ξένων μεταξύ τους) συνόλων: {1, ..., k} × N

$$f(i,j) = j k + i, i \in \{1, \dots, k\}, j \in \mathbb{N}$$

Αριθμήσιμα Σύνολα

- Παραδείγματα αριθμήσιμων συνόλων:
 - Ένωση αριθμήσιμα άπειρου πλήθους αριθμήσιμων συνόλων, π.χ. Ν×Ν

$$f(i,j) = \frac{1}{2}[(i+j)^2 + 3i + j]$$

(Μη-)Αριθμήσιμα Σύνολα

- Άλλα παραδείγματα αριθμήσιμων συνόλων:
 - Σύνολο ρητών (κλασματικών) αριθμών Q
 - □ Παρόμοια με το N×N.
 - Σύνολο συμβολοσειρών (πεπερασμένου, αλλά απεριόριστου, μήκους) με γράμματα της Ελληνικής γλώσσας.
 - Λεξικογραφική διάταξη.
- Υπάρχουν μη-αριθμήσιμα σύνολα;
 - Πραγματικοί αριθμοί R, διαστήματα πραγματικών, π.χ. [0, 1].
 - Δυναμοσύνολα (αριθμήσιμα) ἀπειρων συνόλων, π.χ. 2^N.
- □ Πως **αποδεικνύουμε** ότι ένα σύνολο είναι μη-αριθμήσιμο;
 - Cantor: αποδεικτική τεχνική της διαγωνιοποίησης το 1891.
 - Σημαντικότατες εφαρμογές, μεταξύ άλλων στη Θεωρία Υπολογισμού και στην Υπολογιστική Πολυπλοκότητα.

Μη-Αριθμήσιμα Σύνολα

- □ Το 2^N είναι μη-αριθμήσιμο.
 - □ Έστω ότι 2^N αριθμήσιμο, άρα ισάριθμο του N.
 - 'Άρα υπάρχει αντιστοιχία μελών του 2^N με φυσικούς στο N.
 - Με βάση αυτή, απαριθμούμε S_0 , S_1 , S_2 , S_3 , ..., όλα τα υποσύνολα φυσικών / στοιχεία του 2^N .
 - 'Εστω το σύνολο φυσικών D = { k ∈ N : k ∉ S_k }
 - Σε ποια θέση εμφανίζεται το D στην απαρίθμηση;
 - □ D ≠ S₀ γιατί 0 ανήκει μόνο σε ένα από τα D και S₀.
 - \square \forall m, D \neq S_m γιατί m ανήκει μόνο σε ένα από τα D και S_m. Τα D και S_m «διαφωνούν» στο στοιχείο m.
 - Άτοπο: το D δεν εμφανίζεται πουθενά στην απαρίθμηση!
 - Άρα το 2^N δεν είναι αριθμήσιμο.

Διαγωνιοποίηση

- lacktriangle Έστω αριθμήσιμο σύνολο Α και (διμελής σχέση) $R\subseteq A imes A$
 - **Α**ριθμήσιμο: θεωρούμε ότι $A = \{a_1, a_2, a_3, ...\}$
- \square Για κάθε $\mathbf{a_k} \in \mathsf{A}$, γραμμή k της R : $R(a_k) = \{a_j \in A : (a_k, a_j) \in R\}$
- lacksquare Συμπλήρωμα διαγωνίου $D=\{a_j\in A:(a_j,a_j)
 ot\in R\}$
- D είναι διαφορετικό από κάθε γραμμή k.
 - \blacksquare Διαφέρει από $R(a_1)$ στο a_1 , από $R(a_2)$ στο a_2 , κοκ.

	a_1	a_2	a_3	a_4	a_5
$R(a_1)$	×		×		×
$R(a_2)$			×	×	×
$R(a_3)$		×		×	
$R(a_4)$	×			×	×
$R(a_5)$		×	×		

$$R(a_1) = \{a_1, a_3, a_5\}$$
 $R(a_2) = \{a_3, a_4, a_5\}$
 $R(a_3) = \{a_2, a_4\}$
 $R(a_4) = \{a_1, a_4, a_5\}$
 $R(a_5) = \{a_2, a_3\}$
 $D = \{a_2, a_3, a_5\}$

Υπόθεση του Συνεχούς

- Cantor διατύπωσε και προσπάθησε να αποδείξει την Υπόθεση του Συνεχούς (Continuum Hypothesis):
 - Δεν υπάρχει σύνολο με πληθικό αριθμό ανάμεσα στο N και στο R.
- Gödel (1937) ἐδειξε ὁτι υπόθεση είναι συμβατή με τα αξιώματα της συνολοθεωρίας (άρα δεν υπάρχει αντιπαράδειγμα).
- Cohen (1963) έδειξε ότι ἀρνηση της υπόθεσης είναι συμβατή με τα αξιώματα της συνολοθεωρίας (άρα δεν υπάρχει απόδειξη).
- Υπόθεση του Συνεχούς δεν μπορεί ούτε να αποδειχθεί ούτε να καταρριφθεί!

Μη Υπολογισιμότητα

- □ Πρόβλημα Τερματισμού (Halting Problem):
 - Μηχανή Turing που με είσοδο μηχανή Turing M και «δεδομένα» w, αποφαίνεται αν M(w) τερματίζει.
- A. Turing: Πρόβλημα Τερματισμού δεν είναι επιλύσιμο.
- □ Θ.δ.ο. δεν υπάρχει πρόγραμμα Τ που με είσοδο πρόγραμμα Π
 και δεδομένα Δ, αποφασίζει αν Π(Δ) τερματίζει.
 - Π(Δ): εκτέλεση προγράμματος Π με είσοδο αρχείο δεδομένων Δ.

Μη Υπολογισιμότητα

- Εστω πρόγραμμα Τ: Τ(Π, Δ) = NAI ανν Π(Δ) τερματίζει.
 - Πρόγραμμα Π και δεδομένα Δ δίνονται στο Τ ως αρχεία
 Π (αρχείο σε γλώσσα C) και Δ (οποιοδήποτε αρχείο κειμένου).
 - Δεδομένα μπορεί αρχείο σε γλώσσα C, και αρχείο περιγραφής Π.
 Τ(Π, Π): ελέγχει αν Π(Π) τερματίζει.
- □ Ορίζουμε πρόγραμμα D με είσοδο εκτελέσιμο αρχείο Π, D(Π):
 if T(Π, Π) = NAI then loop forever else halt
 - D(Π) **τερματίζει** ανν Π(Π) **δεν** τερματίζει.
- Τι παράγει η κλήση D(D);
 - Av D(D) τερματίζει, T(D, D) = NAI, και D(D) δεν τερματίζει!
 - Av D(D) δεν τερματίζει, T(D, D) = OXI, και D(D) τερματίζει!
- Αντίφαση, άρα δεν υπάρχει τέτοιο πρόγραμμα!

Διαγωνιοποίηση

- Προγράμματα (αρχεία σε C) είναι αριθμήσιμα:
 - Π1, Π2, Π3, ... μια απαρίθμησή τους.
- Έστω ότι υπάρχει πρόγραμμα Τ που για προγράμματα Π_i , Π_j , $T(\Pi_i, \Pi_i) = NAI ανν <math>\Pi_i(\Pi_i)$ τερματίζει.
 - Πρόγραμμα D που $\forall \Pi_i$, D(Π_i) τερματίζει ανν Π_i (Π_i) **δεν** τερματίζει.
 - D εμφανίζεται στην απαρίθμηση: (D, Π_i) ∈ H ανν (Π_i , Π_i) \notin H.
- \square Σχέση Η: $(\Pi_i, \Pi_j) \in H$ ανν $\Pi_i(\Pi_i)$ τερματίζει.
 - (D, D) ανήκει στην Η;

	Π_1	П2	П ₃	П ₄	•••	Ď	• • •
Π_1	Т	Δ	Δ	H		+	
П2	۲	Δ	4	۲	• • •	4	• • •
П ₃	Δ	Т	Δ	Δ		T	
Π ₄	۲	Δ	۲	۲		۲	
•			•		•••		
Ď	Δ	Т	Ţ	Δ		?	
:			•				

Παράδοξο του Russell

$$S = \{A$$
 σύνολο: $A \not\in A\}$

- Κατά κανόνα, σύνολα δεν είναι στοιχεία του εαυτού τους,
 π.χ. Ν δεν είναι ακέραιος, ανθρωπότητα δεν είναι άνθρωπος.
- Αλλά π.χ. σύνολο ιδεών μπορεί να θεωρηθεί ιδέα.
- \square Eival το S στοιχείο του εαυτού του; Δηλ. S \in S;
 - Aν $S \in S$, τότε $S \notin S$. Aν $S \notin S$, τότε $S \in S$. Αντίφαση!
- Υπάρχει κουρέας σε χωριό που ξυρίζει οποιονδήποτε δεν ξυρίζεται μόνος του.
 - S(x, y): «x ξυρίζει y». $\exists x \forall y (S(x,y) \leftrightarrow \neg S(y,y))$
 - Μη ικανοποιήσιμη δήλωση! (Ποιός ξυρίζει τον κουρέα;)

Παράδοξο του Russel

- Ανάγκη για αξιωματική θεμελίωση της Θεωρίας Συνόλων και των Μαθηματικών.
 - Σημαντικές ανακαλύψεις και επίδραση στη (μαθηματική) σκέψη.
- Ορισμός συνόλου με χαρακτηριστική ιδιότητα αναφέρεται σε συγκεκριμένο σύμπαν U.

$$S = \{ A \in U : A \not\in A \}$$

- Av S ∈ S, τότε S ∉ S.
- Av S ∉ S, τότε S ∉ U ἡ S ∈ S. Άρα S ∉ S.