Student Robotics Risk Assessment Form

May 14, 2016

Activity being assessed: Student Robotics Kickstart

Persons at risk: Competitors, Team Leaders, Blueshirts

Location: Multiple Locations

Assessor's name: Andrew Busse

Responsible Persons: Sam Phippen (SC - Events); Rich Barlow (SC - Engineering);

Date of assessment:

1 Risks

The following risks have been considered for the Student Robotics Kickstart event. Further description of the meaning of risk ratings (presented in this section as $L \times S$) can be found in the next section.

As this activity is being run at multiple locations, local events will release an appendix to this assessment containing additional risks and control measures, and the building / area risk assessments. The event coordinator will also carry out a Point of Work Risk Assessment on the morning of the event, defining any additional risks that present themselves.

Hazard	Control Measures	Responsible Person	Risk
			Rating
Injury while using manual tools (Screw-	Student Robotics Blueshirts will supervise all	SC - Events	1
drivers, Wire Snippers)	use of tools and materials in the hacking ses-		
	sions		
Interaction with robots: electric shock,	No exposed voltages above ELV (120V DC,	SC - Engineering	2
minor injury	50V AC) present on any boards, no stored		
	energy above 5J (save the batteries – see be-		
	low)		
	All electronic boards undergo a full system	SC - Engineering	
	check before delivery, and are delivered in		
	suitably robust cases designed to contain		
	component failures		
	Documentation related to kit usage (at	SC - Engineering	
	https://www.studentrobotics.org/docs)		
	must be clear, up to date, and reviewed once		
	per year		
	Boards must remain in their cases.	Team Leader	
	Wiring to be inspected by SQEP before	SC - Engineering, SC	
	robots switched on: Polarities are correct, no	- Events	
	exposed / frayed wire strands, colour coding		
	is respected, wiring is kept tidy		

Hazard	Control Measures	Responsible Person	Risk
			Rating
Trip Hazard from trailing extension	Extension leads taped down and inspected	SC - Events	1
leads	regularly, kept away from walkways where		
	reasonably practicable		
Misuse of batteries	Charging to be performed in the	SC - Engineering, SC	4
	exact manner described in https:	- Events	
	//www.studentrobotics.org/docs/kit/		
	batteries. This will be done under direct		
	supervision of SQEP		
	Chargers and batteries tested, charging bags	SC - Engineering	
	inspected before being delivered to teams		
	Documentation related to battery usage (at	SC - Engineering	
	the above link) must be clear, up to date,		
	and reviewed once per year		
	SQEP Blueshirts to quickly and safely dis-	SC - Events, SC - En-	
	pose of any battery displaying signs of	gineering	
	swelling, damage or other abnormality		
Allergies to fibres in Charging Bags	Use gloves (any type) to minimise contact be-	Team Leader	1
	tween fibres and hand, if persons are known		
	to be allergic to glass fibres.		

2 Assessment Guidance

The risk ratings of the risks in the previous section are calculated by multiplying L, the likelihood rating, by S, the severity rating.

Likelihood	Likelihood rating	
Very unlikely	1	
Unlikely	2	
Likely	3	
Fairly likely	4	
Very likely	5	

Severity	Severity rating
First Aid injury/illness	1
Minor injury/illness	2
'3 day' injury/illness	3
Major injury/illness	4
Fatality/disabling injury	5

The following should be used to rate the risk and plan corrective action:

Risk Rating	Category	Tolerability	Comments
1–2	Very Low	Acceptable	No further action is necessary other than to ensure that the controls are
			maintained.
3-4	Low	Acceptable	No additional controls are required unless they can be implemented at very
			low cost (in terms of time, money and effort).
5–7	Medium	Tolerable	Consideration should be given as to whether the risks can be lowered, where
			applicable, to a tolerable level, and preferably acceptable level, but the costs
			of additional risk reduction measures should be taken into account. The risk
			reduction measures should be implemented within a defined time period.
8-14	High	Tolerable	Substantial efforts should be made to reduce the risk. Risk reduction mea-
			sures should be implemented urgently within a defined time period and it
			might be necessary to consider suspending or restricting the activity, or to
			apply interim risk control measures, until this has been completed. Consid-
			erable resources might have to be allocated to additional control measures.
15 and above	Very High	Unacceptable	Substantial improvements in risk control are necessary, so that risk is reduced
			to a tolerable or acceptable level.