Universidade Estadual de Campinas

ES827A - ROBÓTICA INDUSTRIAL TURMA A

Projeto Final - Dinâmica e cinemática do robô Puma560

Alunos:

Augusto Miranda Garcia 104627 Guilherme de Oliveira Souza 117093

> Professor responsável: Dr. Ely Carneiro Paiva

Sumário

1	Objetivo			2
2	Dinâmica			
	2.1	Simula	ações em malha aberta	2
	2.2	Simula	ações em malha aberta para análise da energia cinética	4
	2.3	Contro	ole em malha fechada	6
		2.3.1	Simulação 1	7
		2.3.2	Simulação 2	7
		2.3.3	Simulação 3	8
		2.3.4	Comentários	9
3	Cinemática			9
4	Que	estões		10

1 Objetivo

O objetivo desse relatório é apresentar o desenvolvimento dos conceitos apresentados em aula de robótica industrial nas atividades propostas para o projeto, sendo então concluído com questões sobre o assunto desenvolvido. É utilizado para tal o Robotics Toolbox, sendo usado o robô Puma560, já incluído na toolbox.

Figura 1: Robô Puma560.

2 Dinâmica

Para a modelagem dinâmica do robô seguiu-se o capítulo 6 da tese fornecida no roteiro do projeto, com a ressalva de ter-se evitado o uso do simulink, sendo ao invés feita a chamada do robô e montagem do sistema diretamente em código, que pode ser encontrado nos anexos. Além disso, foi evitado o uso de atrito seco, que deixa as simulações muito lentas para o propósito desse relatório. Após a montagem, foram feitos testes em malha aberta e análise do equilíbrio de energia cinética do robô.

2.1 Simulações em malha aberta

As simulações em malha aberta foram feitas baseadas nos ângulos fornecidos pela tese. Para tal, foi primeiramente encontrado o torque necessário para manter o robô parado na posição final q_f , resistindo a força da gravidade. Então, o mesmo torque foi aplicado diretamente sobre o robô para assim observar se o robô se direciona até a posição final a partir de uma posição inicial. A posição final escolhida foi:

$$q_f = [0, \pi/2, -\pi/2, 0, 0, 0]$$

E as posições iniciais simuladas foram, respectivamente:

$$\begin{aligned} q_{0a} = & [0, 0, 0, 0, 0, 0] \\ q_{0b} = & [0, \pi, -\pi/2, 0, 0, 0] \\ q_{0c} = & [0, \pi/2, -\pi/2, 0, 0, 0] \\ q_{0d} = & [0, \pi/2 + 0.05, -\pi/2, 0, 0, 0] \end{aligned}$$

Os respectivos movimentos estão demonstrados na figura 2 abaixo. Observe que, nas figuras 2a 2b e 2d, a posição q_2 (ou $q_f[2]$) não vai até a posição final $\pi/2$, indo ao invés para a posição $3\pi/2$. Ao verificar a posição do robô, notou-se que ela é equivalente a posição final do robô em $\pi/2$, podendo-se concluir de que não houve erros no fim para essa estabilização.

Figura 2: Simulação em malha aberta para as respectivas condições iniciais com o torque para a condição final q_f aplicado.

Observou-se também que houveram oscilações indesejáveis com a simulação em malha aberta, natural já que o sistema não possui uma realimentação. Mas no fim, o robô aparenta ser estável em malha aberta.

2.2 Simulações em malha aberta para análise da energia cinética

Para efetuar-se a análise da variação de energia cinética do sistema, foi seguido o procedimento apresentado na tese. Inicialmente, o robô é colocado em suas condição inicial, sendo então solto e deixado balançando livremente. No caso, é esperado que ele tenha um comportamento parecido com o de um pêndulo duplo, devido a suas características físicas. para este ensaio, foram estudadas duas variâncias no experimento, são elas uma variação da posição inicial e o experimento foi executado com e sem atrito viscoso.

Para gerar a curva da energia cinética é utilizada a equação a seguir:

$$K = \frac{1}{2}\dot{q}^T M(q)\dot{q}$$

Note que a matriz de inércia varia, como esperado, de acordo com a posição espacial atual do robô. As curvas de posição e variação da energia cinética para cada um dos casos definidos podem ser observadas nas figuras 3, 4, 5 e 6.

Ao se analisar as figuras 3 e 4, pode-se notar que o robô cai ao repouso e rapidamente se estabiliza na posição com menos energia cinética possível (braços do robô para baixo). A estabilização ocorre rapidamente devido ao atrito viscoso, em menos de dez segundos, e nao notou-se diferenças visíveis para a pequena variação da posição inicial. Isso ocorre pois o sistema é simples, com poucos graus de liberdades para esse caso, e consequentemente não muito caótico.

Figura 3: Simulação com atrito viscoso para posição inicial $q_0 = [0, 0, 0, 0, 0, 0]$.

Figura 4: Simulação com atrito viscoso para posição inicial $q_0 = [0, 1e - 6, 0, 0, 0, 0]$.

Ao ser retirado o atrito do sistema, ele passa a se mover livremente, já que não há dissipação de energia, e fica oscilando entre seus graus de liberdade, como pode ser observado nas figuras 5 e 6. A energia cinética, como esperado para esse caso, varia bastante. Também não se observou grandes mudanças com a pequena variação das condições iniciais neste caso.

Figura 5: Simulação sem atrito viscoso para posição inicial $q_0 = [0, 0, 0, 0, 0, 0]$.

Figura 6: Simulação com atrito viscoso para posição inicial $q_0 = [0, 1e - 6, 0, 0, 0, 0]$.

2.3 Controle em malha fechada

Para o controle em malha fechada, foi aplicado um controle PD com compensação a gravidade, como sugerido pela tese. Pode ser provado que, com a compensação da gravidade, pode-se tratar cada uma das juntas como um sistema SISO, e como tal cada uma das juntas recebe um controlador PD separadamente. Isso pode ser expresso como uma matriz diagonal das constantes de controle do sistema.

Para desenvolver o controle do robô, segue-se então o seguinte modelo, que já inclui a compensação da gravidade:

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q} = -K_p\tilde{q} - K_d\dot{q}$$

Foi então desenvolvido o código em Matlab respectivo a equação acima, e executada simulações de controle posicional para três posições diferentes, com diferentes configurações iniciais, apresentadas nas seções a seguir. O controlador PD utilizado foi o mesmo utilizado na tese, já que assim como apresentado não há a necessidade de ajustar seus valores, pois não são decisivos para manter o sistema assintoticamente estável. Os respectivos valores para as constantes estão apresentados a seguir.

$$K_p = \begin{pmatrix} 50 & 0 & 0 & 0 & 0 & 0 \\ 0 & 50 & 0 & 0 & 0 & 0 \\ 0 & 0 & 50 & 0 & 0 & 0 \\ 0 & 0 & 0 & 50 & 0 & 0 \\ 0 & 0 & 0 & 0 & 50 & 0 \\ 0 & 0 & 0 & 0 & 0 & 60 \end{pmatrix}$$

$$K_d = \begin{pmatrix} 20 & 0 & 0 & 0 & 0 & 0 \\ 0 & 20 & 0 & 0 & 0 & 0 \\ 0 & 0 & 20 & 0 & 0 & 0 \\ 0 & 0 & 0 & 20 & 0 & 0 \\ 0 & 0 & 0 & 0 & 20 & 0 \\ 0 & 0 & 0 & 0 & 0 & 22 \end{pmatrix}$$

2.3.1 Simulação 1

$$\begin{split} q_{init} = & [0, 0, 0, 0, 0, 0]^T \\ \dot{q}_{init} = & [0, 0, 0, 0, 0, 0]^T \\ q_{ref} = & [\pi/2, 0, -\pi/2, \pi, \pi/2, -\pi]^T \end{split}$$

Os resultados da simulação podem ser vistos na figura 7.

(a) Resposta em malha fechada da posição, simu- (b) Sinal de controle (torque) em malha fechada, lação 1 simulação 1

Figura 7: Respostas da simulação 1 em malha fechada.

2.3.2 Simulação 2

$$\begin{aligned} q_{init} = & [0, \pi, \pi/2, 0, 0, 0]^T \\ \dot{q}_{init} = & [0, 0, 0, 0, 0, 0]^T \\ q_{ref} = & [\pi, 0, 0, \pi, -\pi/2, 0]^T \end{aligned}$$

Os resultados da simulação podem ser vistos na figura 8.

(a) Resposta em malha fechada da posição, simu- (b) Sinal de controle (torque) em malha fechada, lação 2 simulação 2

Figura 8: Respostas da simulação 2 em malha fechada.

2.3.3 Simulação 3

$$\begin{aligned} q_{init} = & [0, \pi/2, -\pi/2, 0, 0, 0]^T \\ \dot{q}_{init} = & [0, 0, 0, 0, 0, 0]^T \\ q_{ref} = & [-\pi, \pi, -\pi, -\pi, -\pi/2, \pi]^T \end{aligned}$$

Os resultados da simulação podem ser vistos na figura 9.

(a) Resposta em malha fechada da posição, simu- (b) Sinal de controle (torque) em malha fechada, lação 3 simulação 3

Figura 9: Respostas da simulação 3 em malha fechada.

2.3.4 Comentários

Todas as referências passadas foram seguidas em menos de 2.5 segundos. A estabilidade assintótica também é visível, e pode-se observar que não há oscilações, que são normalmente indesejadas ao se trabalhar com robôs em geral. Como a compensação à gravidade já está incluída na equação correspondente, o torque tende a zero após chegar a posição correta.

3 Cinemática

Foi feita uma simulação em Matlab em que o robô desenha duas elipses, uma no plano XY e outra no plano ZY. As coordenadas desenhadas estão apresentadas a seguir. O movimento resultante do robô pode ser visto na simulação mandada em anexo a esse relatório. A trajetória final seguida pode ser vista na figura 10.

$$r_x = 0.5$$

$$r_y = 0.7$$

$$z = -0.5$$

$$Elipse_1 = [r_x * cos(\theta), r_y * sin(\theta), z]$$

$$x = 0.5$$

$$r_y = 0.5$$

$$r_z = 0.25$$

$$Elipse_2 = [x, r_y * sin(\theta), r_z * cos(\theta)]$$

Figura 10: Trajetória das elipses seguidas pelo robô.

4 Questões

Questão 1

Q: Por que no item 1.5 acima, os torques finais obtidos são nulos? O torque final não deveria ser igual ao torque de compensação da força da gravidade?

R: No item 1.5 a gravidade foi desconsiderada e, por isso, o torque final obtido é nulo, já que no estado final não há gravidade a ser compensada.

Questão 2

 \mathbf{Q} : No item 1.4 foi indicado um comando Matlab para se obter a matriz de massa/inércia no espaço das juntas M(q). Como você faria para obter essa matriz de massa utilizando o método de Newton-Euler além de manipulação simbólica? Veja os apêndices B e C da

mesma tese acima. Essa matriz corresponde a matriz M(q) da equação geral da dinâmica de um robô, como dado abaixo, onde τ é o vetor de torques nas juntas.

$$\tau = M(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q)$$

 \mathbf{R} : Usando o método de Newton-Euler, é possível obter τ em função dos parâmetros cinéticos do robô:

$$\tau(\ddot{q},\dot{q},q)$$

Com isso, fixando um valor q qualquer, fazendo $\dot{q} = \vec{0}$, $\ddot{q} = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^T$ e substituindo a expresão de τ na equação geral da dinâmica, chega-se em:

$$\tau(\ddot{q}, \vec{0}, q) = M(q)\ddot{q} + C(q, \vec{0})\vec{0} + g(q)$$

$$\begin{bmatrix} \tau_1 \\ \tau_2 \\ \vdots \\ \tau_N \end{bmatrix} = \begin{bmatrix} M_{11} \\ M_{21} \\ \vdots \\ M_{N1} \end{bmatrix} + \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_N \end{bmatrix}$$

com τ_i e g_i conhecidos. Desse modo, pode-se obter os valores de M_{i1} . Usando o mesmo processo para $\ddot{q} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \end{bmatrix}^T$, obtém-se os valores de M_{i2} . Assim, repetindo o processo para todas as N colunas, consegue-se deduzir todos os elementos da matriz $M_{N\times N}$.

Questão 3

 \mathbf{Q} : Por que é que essa matriz de massa M(q) não é do tipo da matriz de massa abaixo de um corpo rígido, que é uma matriz 6x6 com uma matriz diagonal M e outra matriz de inércia do corpo J?

$$\bar{M} = \begin{pmatrix} M & 0 \\ 0 & J \end{pmatrix}$$

 \mathbf{R} : Como o robô não se trata de um corpo rígido, mas sim de um corpo com várias partes móveis ligadas através de juntas, a matriz M não apresenta o mesmo formato observado no caso de corpos rígidos. Os elementos M_{ij} fora da diagonal representam as inércias de acoplamento, que relacionam a aceleração na junta i com o torque na junta j.

O efeito descrito no parágrafo anterior é representado na equação geral da dinâmica do robô:

$$\tau = M(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q)$$

Levando em consideração somente o efeito no torque devido às acelerações das juntas:

$$\begin{bmatrix} \tau_1 \\ \tau_2 \\ \vdots \\ \tau_N \end{bmatrix} = \begin{bmatrix} M_{11} & M_{12} & \dots & M_{1N} \\ M_{21} & M_{22} & \dots & M_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ M_{N1} & M_{N2} & \dots & M_{NN} \end{bmatrix} \cdot \begin{bmatrix} \ddot{q}_1 \\ \ddot{q}_2 \\ \vdots \\ \ddot{q}_N \end{bmatrix}$$

Pode-se perceber que o efeito da i-ésima junta nos torques é dado por:

$$\begin{bmatrix} \tau_1 \\ \tau_2 \\ \vdots \\ \tau_N \end{bmatrix} = \begin{bmatrix} M_{1i} \\ M_{2i} \\ \vdots \\ M_{Ni} \end{bmatrix} \cdot \ddot{q}_i$$

O elemento M_{ii} representa a inércia no atuador da junta i; os outros representam o efeito do torque das juntas na aceleração da i-ésima junta.