Chapter 12 Non-parametric Test

Daxiang Na

2022-10-25

Contents

1	Questions:	1
	1.1 What is V in the returned result of wilcox.test	1
	1.2 What is the definition of T in psignrank?	1
2	Wilcoxon Signed Rank Test	2
3	Wilcoxon Rank-Sum test (also known as Mann-Whitney U test)	2

1 Questions:

1.1 What is V in the returned result of wilcox.test

1.2 What is the definition of T in psignrank?

In the psignrank document(https://www.rdocumentation.org/packages/stats/versions/3.6. 2/topics/SignRank), the the Wilcoxon signed rank statistic is "the sum of the ranks of the absolute values x[i] for which x[i] is positive". I am wondering if $T = T^+$ instead of $T = min(T^+, T^-)$? This appears to be correct when solving the example problem, where 2*(1 - psignrank(75.5, n=14)) = 0.135 but 2*psignrank(29.5, n=14) != 0.135

I therefore wonder if $T = T^+$ should be the definition of psignrank in R.

Another question regarding this topic: when testing the two-tailed hypothesis, when should we use 2*(1 - psignrank(T,n)) and 2*psignrank(T, n)? i.e. what is the mean for the wilcoxon signed rank distribution? Is it n(n+1)/4 as stated in the document?

2 Wilcoxon Signed Rank Test

- Only for paired sample.
- Evaluate the null hypothesis: $Z_T = (T \mu_T)/\sigma_T$
- Note:

$$\mu_T = 0$$

$$\sigma_T = \sqrt{\frac{n(n+1)(2n+1)}{6}}$$

• When n is large enough (n > 12), we get

$$Z_T \sim N(0,1)$$

- calculate the probability of getting Z_T when $\mu = 0$ is true.
- For two-sided test, follow what we do in the sampling distribution:
 - -2*p when z<0
 - -2*(1 p) when z > 0
- if n > 12, you can just apply CLT, the R code is: wilcox.test(before, after, paired = T, exact = F, correct = F). exact = determines if the statistics follow normal distribution (exact = F) or exact distribution (exact = T).
- If $n \leq 12$, we cannot use the normal approximation. In that case, we use psignrank(T,n) in R to calculate the exact distribution.
 - R requires $T = T^+$ for this to work correctly!

3 Wilcoxon Rank-Sum test (also known as Mann-Whitney U test)

- nonparametric analog to the two-sample t-test
- get W_1 and W_2
- $W = min(W_1, W_2)$
- $n_1 = \text{sample size with the } \underline{\text{smaller}} \text{ sum of ranks.}$
- $n_2 = \text{sample size with the } \underline{\text{larger}} \text{ sum of ranks.}$

$$\mu_W = \frac{n_1 \left(n_1 + n_2 + 1\right)}{2} \text{ and } \sigma_W = \sqrt{\frac{n_1 n_2 \left(n_1 + n_2 + 1\right)}{12}}$$

$$z_W = \frac{W - \mu_W}{\sigma_W}$$

- $z_W \sim N(0,1)$ when n_1 and n_2 are large enough (n1, n2 > 10).
 - $\ \mathrm{in} \ \mathrm{R:} \ \mathtt{wilcox.test(..., \ exact = F, \ correct = F, \ paired = F, \ alt = "")}$
- When n_1 and n_2 are very small (i.e. either is less than or equal to 10), we can use the exact distribution to calculate the p-values. In R: pwilcox(Wobs, n1, n2)
 - in this case, $W_{obs}=W-n_1(n_1+1)/2$ wilcox.test also works when exact = T
- correct: correct the data with continuity correction