Heart Disease Analysis and Prediction

In this notebook, we'll analyze the heart.csv dataset and build a predictive model for heart disease. The dataset contains various patient features that we'll explore to understand their relationship with heart disease.

Riyasdeen Abdul Hakkim (n01708860)

1. Import Required Libraries

First, let's import the necessary libraries for our analysis.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.preprocessing import StandardScaler

# For better visualizations
import matplotlib as mpl
mpl.rcParams['figure.figsize'] = (10, 6)
plt.style.use('ggplot')
```

2. Load and Explore the Dataset

Let's load the dataset and perform initial exploratory data analysis.

```
In [40]: # Load the dataset
df = pd.read_csv('heart.csv')

# Display basic information about the dataset
print("Dataset Information:")
print(f"Number of samples: {df.shape[0]}")
print(f"Number of features: {df.shape[1] - 1}") # Excluding the target variable
print("\nFirst few rows:")
df.head()
```

```
Dataset Information:
Number of samples: 918
Number of features: 11
First few rows:
```

Out[40]:		Age	Sex	ChestPainType	RestingBP	Cholesterol	FastingBS	RestingECG	MaxHR	Exer
	0	40	М	ATA	140	289	0	Normal	172	
	1	49	F	NAP	160	180	0	Normal	156	
	2	37	М	ATA	130	283	0	ST	98	
	3	48	F	ASY	138	214	0	Normal	108	
	4	54	М	NAP	150	195	0	Normal	122	
In [41]:	# Check for missing values print("Missing values in each column:") df.isnull().sum()									
Missing values in each column:										
Out[41]:	Age Se:			0 0						

ChestPainType RestingBP 0 Cholesterol 0 0 FastingBS RestingECG 0 MaxHR 0 ExerciseAngina 0 0 01dpeak ST_Slope 0 HeartDisease 0 dtype: int64

Out[42]:		Age	RestingBP	Cholesterol	FastingBS	MaxHR	Oldpeak	HeartDisea
	count	918.000000	918.000000	918.000000	918.000000	918.000000	918.000000	918.0000
	mean	53.510893	132.396514	198.799564	0.233115	136.809368	0.887364	0.5533
	std	9.432617	18.514154	109.384145	0.423046	25.460334	1.066570	0.4974
	min	28.000000	0.000000	0.000000	0.000000	60.000000	-2.600000	0.0000
	25%	47.000000	120.000000	173.250000	0.000000	120.000000	0.000000	0.0000
	50%	54.000000	130.000000	223.000000	0.000000	138.000000	0.600000	1.0000
	75%	60.000000	140.000000	267.000000	0.000000	156.000000	1.500000	1.0000
	max	77.000000	200.000000	603.000000	1.000000	202.000000	6.200000	1.0000

3. Categorical Features Analysis

Let's explore the categorical features in our dataset to better understand their distributions.

```
In [43]: # Display categorical feature distributions
for col in ['Sex', 'ChestPainType', 'FastingBS', 'RestingECG', 'ExerciseAngina', 'S
    print(f"\n{col} distribution:")
    print(df[col].value_counts())
    print("Percentage:")
    percentage = df[col].value_counts(normalize=True) * 100
    print(percentage.map("{:.2f}%".format))
```

```
Sex distribution:
Sex
Μ
    725
F
    193
Name: count, dtype: int64
Percentage:
Sex
    78.98%
    21.02%
Name: proportion, dtype: object
ChestPainType distribution:
ChestPainType
ASY
     496
NAP
      203
ATA
      173
TA
       46
Name: count, dtype: int64
Percentage:
ChestPainType
ASY 54.03%
NAP 22.11%
ATA 18.85%
     5.01%
Name: proportion, dtype: object
FastingBS distribution:
FastingBS
    704
    214
Name: count, dtype: int64
Percentage:
FastingBS
0
    76.69%
1
    23.31%
Name: proportion, dtype: object
RestingECG distribution:
RestingECG
Normal 552
LVH 188
         178
Name: count, dtype: int64
Percentage:
RestingECG
Normal 60.13%
      20.48%
LVH
        19.39%
Name: proportion, dtype: object
ExerciseAngina distribution:
ExerciseAngina
N
    547
    371
Name: count, dtype: int64
Percentage:
```

```
ExerciseAngina
N 59.59%
Υ
    40.41%
Name: proportion, dtype: object
ST_Slope distribution:
ST_Slope
Flat 460
       395
Up
Down
       63
Name: count, dtype: int64
Percentage:
ST_Slope
Flat
       50.11%
Up
     43.03%
       6.86%
Down
Name: proportion, dtype: object
HeartDisease distribution:
HeartDisease
    508
1
    410
Name: count, dtype: int64
Percentage:
HeartDisease
1 55.34%
    44.66%
Name: proportion, dtype: object
```

4. Visualizing the Data

Now, let's create visualizations to better understand the relationships between different features and heart disease.

```
In [44]: # Create a directory for visualizations if needed
import os
    os.makedirs('visualizations', exist_ok=True)

# Heart Disease Distribution
    plt.figure(figsize=(10, 6))
    sns.countplot(x='HeartDisease', data=df)
    plt.title('Heart Disease Distribution', fontsize=16)
    plt.xlabel('Heart Disease (1 = Yes, 0 = No)', fontsize=12)
    plt.ylabel('Count', fontsize=12)
    plt.xticks([0, 1], ['No Heart Disease', 'Heart Disease'])
    for i in plt.gca().containers:
        plt.gca().bar_label(i)
    plt.tight_layout()
    plt.savefig('visualizations/heart_disease_distribution.png')
    plt.show()
```

Heart Disease Distribution

Heart Disease (1 = Yes, 0 = No)

```
In [45]: # Age distribution by heart disease
plt.figure(figsize=(10, 6))
sns.histplot(data=df, x='Age', hue='HeartDisease', multiple='stack', bins=20)
plt.title('Age Distribution by Heart Disease Status', fontsize=16)
plt.xlabel('Age', fontsize=12)
plt.ylabel('Count', fontsize=12)
plt.legend(labels=['No Heart Disease', 'Heart Disease'])
plt.tight_layout()
plt.savefig('visualizations/age_distribution.png')
plt.show()
```



```
In [46]: # Chest pain type by heart disease
         plt.figure(figsize=(12, 6))
         sns.countplot(x='ChestPainType', hue='HeartDisease', data=df)
         plt.title('Chest Pain Type vs Heart Disease', fontsize=16)
         plt.xlabel('Chest Pain Type', fontsize=12)
         plt.ylabel('Count', fontsize=12)
         plt.legend(labels=['No Heart Disease', 'Heart Disease'])
         for i in plt.gca().containers:
             plt.gca().bar_label(i)
         plt.tight_layout()
         plt.savefig('visualizations/chest_pain_by_heart_disease.png')
         plt.show()
         # Create a breakdown of ChestPainType
         print("Types of Chest Pain:")
         print("ASY: Asymptomatic")
         print("ATA: Atypical Angina")
         print("NAP: Non-Anginal Pain")
         print("TA: Typical Angina")
```


Types of Chest Pain:
ASY: Asymptomatic
ATA: Atypical Angina
NAP: Non-Anginal Pain
TA: Typical Angina

```
In [47]: # Sex vs Heart Disease
plt.figure(figsize=(10, 6))
sns.countplot(x='Sex', hue='HeartDisease', data=df)
plt.title('Gender vs Heart Disease', fontsize=16)
plt.xlabel('Sex', fontsize=12)
plt.ylabel('Count', fontsize=12)
plt.xticks([0, 1], ['Female', 'Male'])
plt.legend(labels=['No Heart Disease', 'Heart Disease'])
for i in plt.gca().containers:
    plt.gca().bar_label(i)
plt.tight_layout()
```

```
plt.savefig('visualizations/sex_by_heart_disease.png')
plt.show()
```



```
In [49]: # Max Heart Rate by Heart Disease
plt.figure(figsize=(10, 6))
sns.boxplot(x='HeartDisease', y='MaxHR', data=df)
plt.title('Maximum Heart Rate by Heart Disease Status', fontsize=16)
plt.xlabel('Heart Disease', fontsize=12)
plt.ylabel('Maximum Heart Rate', fontsize=12)
plt.xticks([0, 1], ['No Heart Disease', 'Heart Disease'])
plt.tight_layout()
plt.savefig('visualizations/maxhr_by_heart_disease.png')
plt.show()
```

Maximum Heart Rate by Heart Disease Status


```
In [50]: # Correlation Matrix
plt.figure(figsize=(14, 10))
numeric_df = df.select_dtypes(include=[np.number])
corr = numeric_df.corr()
mask = np.triu(np.ones_like(corr, dtype=bool))
sns.heatmap(corr, annot=True, mask=mask, cmap='coolwarm', fmt='.2f', linewidths=0.5
plt.title('Correlation Matrix of Numerical Features', fontsize=16)
plt.tight_layout()
plt.savefig('visualizations/correlation_matrix.png')
plt.show()
```


5. Building a Predictive Model

Now, let's build a logistic regression model to predict heart disease based on the features we've explored.

```
In [51]: # Prepare the data
X = df.drop('HeartDisease', axis=1)
y = df['HeartDisease']

# Convert categorical variables to dummy variables
X = pd.get_dummies(X, drop_first=True)

# Display the features after encoding
print(f"Features after one-hot encoding: {X.shape[1]}")
X.head()
```

Features after one-hot encoding: 15

```
Out[51]:
             Age RestingBP Cholesterol FastingBS MaxHR Oldpeak Sex_M ChestPainType_ATA
         0
              40
                        140
                                    289
                                                0
                                                       172
                                                                0.0
                                                                       True
                                                                                          True
                        160
                                    180
                                                0
                                                       156
                                                                1.0
          1
              49
                                                                       False
                                                                                         False
         2
              37
                        130
                                    283
                                                0
                                                       98
                                                                0.0
                                                                       True
                                                                                          True
                                                       108
         3
              48
                        138
                                    214
                                                0
                                                                1.5
                                                                       False
                                                                                         False
                        150
                                    195
                                                0
                                                       122
                                                                0.0
                                                                                         False
              54
                                                                       True
In [52]: # Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
         print(f"Training set shape: {X_train.shape}")
         print(f"Testing set shape: {X_test.shape}")
         # Scale the features
         scaler = StandardScaler()
         X_train_scaled = scaler.fit_transform(X_train)
         X_test_scaled = scaler.transform(X_test)
        Training set shape: (734, 15)
        Testing set shape: (184, 15)
In [53]: # Train the logistic regression model
         model = LogisticRegression(max iter=1000)
         model.fit(X_train_scaled, y_train)
         # Make predictions
         y_pred = model.predict(X_test_scaled)
         y_pred_prob = model.predict_proba(X_test_scaled)[:, 1]
         # Evaluate the model
         print("Model Evaluation:")
         print(f"Accuracy: {accuracy_score(y_test, y_pred):.4f}")
         print("\nClassification Report:")
         print(classification_report(y_test, y_pred))
        Model Evaluation:
        Accuracy: 0.8533
        Classification Report:
                      precision
                                  recall f1-score support
                   0
                            0.80
                                      0.87
                                                0.83
                                                            77
                   1
                            0.90
                                      0.84
                                                0.87
                                                            107
                                                0.85
                                                            184
            accuracy
           macro avg
                           0.85
                                      0.86
                                                0.85
                                                            184
        weighted avg
                           0.86
                                      0.85
                                                0.85
                                                            184
In [54]: # Confusion Matrix
         plt.figure(figsize=(8, 6))
```

```
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False)
plt.title('Confusion Matrix', fontsize=16)
plt.ylabel('Actual', fontsize=12)
plt.xlabel('Predicted', fontsize=12)
plt.xticks([0.5, 1.5], ['No Heart Disease', 'Heart Disease'])
plt.yticks([0.5, 1.5], ['No Heart Disease', 'Heart Disease'])
plt.tight_layout()
plt.savefig('visualizations/confusion_matrix.png')
plt.show()
```

Confusion Matrix 10 17 90 No Heart Disease Predicted Heart Disease

```
In [55]: # ROC Curve
plt.figure(figsize=(8, 6))
fpr, tpr, _ = roc_curve(y_test, y_pred_prob)
auc = roc_auc_score(y_test, y_pred_prob)
plt.plot(fpr, tpr, label=f'AUC = {auc:.4f}')
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate', fontsize=12)
plt.ylabel('True Positive Rate', fontsize=12)
plt.title('ROC Curve', fontsize=16)
plt.legend()
plt.tight_layout()
plt.savefig('visualizations/roc_curve.png')
plt.show()
```



```
# Feature importance
In [56]:
         coefficients = pd.DataFrame(
             {'Feature': X.columns, 'Coefficient': model.coef_[0]}
         coefficients = coefficients.sort_values('Coefficient', ascending=False)
         plt.figure(figsize=(12, 10))
         sns.barplot(x='Coefficient', y='Feature', data=coefficients)
         plt.title('Feature Importance for Heart Disease Prediction', fontsize=16)
         plt.xlabel('Coefficient Value (Impact on Prediction)', fontsize=12)
         plt.ylabel('Feature', fontsize=12)
         plt.axvline(x=0, color='gray', linestyle='--')
         plt.tight_layout()
         plt.savefig('visualizations/feature_importance.png')
         plt.show()
         # Top positive features (increasing likelihood of heart disease)
         print("Top features that increase heart disease likelihood:")
         print(coefficients.head(10))
         # Top negative features (decreasing likelihood of heart disease)
         print("\nTop features that decrease heart disease likelihood:")
         print(coefficients.tail(10))
```


Top features that increase heart disease likelihood:

	Feature	Coefficient
13	ST_Slope_Flat	0.656132
6	Sex_M	0.540404
12	ExerciseAngina_Y	0.536653
5	Oldpeak	0.488339
3	FastingBS	0.427477
0	Age	0.138996
1	RestingBP	0.032761
10	RestingECG_Normal	-0.101987
4	MaxHR	-0.102167
11	RestingECG ST	-0.180196

Top features that decrease heart disease likelihood:

Feature	Coefficient
Age	0.138996
RestingBP	0.032761
RestingECG_Normal	-0.101987
MaxHR	-0.102167
RestingECG_ST	-0.180196
ChestPainType_TA	-0.231396
Cholesterol	-0.522455
ST_Slope_Up	-0.545914
ChestPainType_ATA	-0.573845
ChestPainType_NAP	-0.625306
	Age RestingBP RestingECG_Normal MaxHR RestingECG_ST ChestPainType_TA Cholesterol ST_Slope_Up ChestPainType_ATA

6. Conclusions and Next Steps

Key Findings:

- 1. The model achieved good performance with an accuracy score and AUC indicating strong predictive power.
- 2. Certain chest pain types, particularly Asymptomatic (ASY), are strong indicators of heart disease.
- 3. ST slope patterns show a clear relationship with heart disease diagnosis.
- 4. Age and sex play important roles in heart disease risk, with men generally showing higher risk.
- 5. Maximum heart rate tends to be lower in patients with heart disease.

Clinical Implications:

- The model can help in early identification of high-risk patients.
- The feature importance analysis provides insights into which factors clinicians should pay special attention to.

Thank You