KSU Quals — Algebra

2015 June—2021 August

Contents

1	2021 August	3
2	2021 June	4
3	2020 August	5
4	2020 June	6
5	2019 August	7
6	2019 June	8
7	2018 August	9
8	2018 June	10
9	2017 August	11
10	2017 June	12
11	2016 August	13
12	2016 June	14
13	2016 January	15
14	2015 August	16
15	2015 June	17
16	Sample	18

1 2021 August

- 1. Prove that S_4 is generated by (1234) and (1243).
- 2. Let G be a group of order 30, and let P and Q be its Sylow subgroups of orders 5 and 3 respectively. Show that either P or Q is normal. Deduce that G contains a cyclic subgroup of order 15.
- 3. Let R be a commutative ring with identity $1 \neq 0$. Show that an ideal M in R is maximal if and only if the quotient ring R/M is a field.
- 4. Let $M \subset \mathbb{C}[x,y]$ be the module over the ring $\mathbb{C}[x,y]$ consisting of all polynomials that are sums of monomials of degree least 3. For example, the polynomial $xy^2 + 2x^2y^3 y^{10}$ is in M, but the polynomial $x + 2x^2y^3 y^{10}$ is not in M since the degree of the monomial x is 1. Find a finite set of generators for M.
- 5. Let F be the splitting field of $x^5 + 1$ over \mathbb{Q} . Show that F is a Galois extension of \mathbb{Q} and find $\operatorname{Gal}(F/\mathbb{Q})$.
- 6. Let $U \subset V \subset W$ be vector spaces over a field F with $\dim U = 1$, $\dim V = 2$, $\dim W = 3$. Let $T: W \to W$ be a linear transformation such that $T(W) \subset U$ and T(V) = 0. Find the Jordan Normal Form of T assuming $T \neq 0$.

2 2021 June

- 1. Let G be any group. Prove that the map from G to itself defined by $g \mapsto g^{-1}$ is a homomorphism if and only if G is abelian.
- 2. Show that if H and K are subgroups of a group, then HK is a subgroup if and only if HK = KH.
- 3. Let R be the quadratic integer ring $\mathbb{Z}[\sqrt{-5}]$. Recall that two elements a and b of a commutative ring are associate if a=bc where c is an invertible element. Prove that $2,3,1+\sqrt{-5},1-\sqrt{-5}$ are irreducibles in R, no two of which are associate in R, and that $6=2\cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$ are two distinct factorizations of 6 into irreducibles in R.
- 4. Let R be the subset of the ring of 2×2 matrices with integer coefficients that consists of all matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with even b, c. Let $M = \mathbb{Z} \times \mathbb{Z}$ viewed as a module over R with the standard linear action:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}.$$

Is M a cyclic module? If yes, provide a generator, if no, prove it is not.

- 5. Let $E \subset F$ be a Galois extension with Galois group $S_3 \times \mathbb{Z}_3$.
 - a) Find the number of distinct fields K with $E \subset K \subset F$ such that $E \subset K$ is an extension of degree 3.
 - b) Find the number of distinct fields K with $E \subset K \subset F$ such that $E \subset K$ is a Galois extension of degree 3.
- 6. Let A be a complex $n \times n$ matrix such that $A^2 = \text{Id.}$
 - a) Prove that A is diagonalizable.
 - b) Describe all possibilities for the characteristic polynomial of A.

3 2020 August

- 1. Let $J = J_n(0)$ be the Jordan block matrix $n \times n$ with eigenvalue 0. Find the Jordan canonical form of J^2 . (**Hint:** consider odd and even cases separately.)
- 2. Describe all groups of order 9 up to isomorphism. For one of these groups exhibit two non-commuting automorphisms.
- 3. Let G be a group. By a maximal proper subgroup of G we mean a subgroup $M \subset G$ such that $M \neq G$ and the only subgroups of G containing M are M and G.
 - a) Describe all the maximal subgroups of the dihedral group of order 10.
 - b) Show that if a maximal subgroup $M \subset G$ is normal, then the index of M in G is finite and prime.
- 4. Let K be the splitting field of the polynomial $x^4 x^2 1$ over \mathbb{Q} . Compute the Galois group of the extension K/\mathbb{Q} .
- 5. Recall that an R-module N is called Noetherian if for any growing tower of submodules

$$L_1 \subset L_2 \subset \cdots \subset L_k \subset \cdots \subset M$$

there exists a positive integer n such that $L_n = L_{n+1} = \dots$

Let R be a commutative ring with identity, M be an R-module, and $f: M \to M$ be a surjective R-module homomorphism.

- a) Prove that if in addition M is Noetherian then f is an isomorphism.
- b) Provide an example of R, M and f, where M is not Noetherian over R and f is not an isomorphism.
- 6. Describe all zero-divisors and all units in the quotient rings
 - a) $R := \mathbb{Q}[x]/(x^2 1)$,
 - b) $S := \mathbb{Q}[x]/(x^2 + 1)$.

4 2020 June

- 1. Prove or disprove the following: a group is abelian if and only if every one of its subgroups is normal.
- 2. Describe all groups of order 55 up to isomorphism.
- 3. Let $R = \mathbb{Z}[\sqrt{-6}]$.
 - a) Show that 2 and $\sqrt{-6}$ are irreducibles in R. Hint: use the norm.
 - b) Show that R is not a Unique Factorization Domain (hence not a P.I.D.)
 - c) Give an explicit ideal in R which is not principal.
- 4. Let R be a Principal Ideal Domain, $p \in R$ be a prime, and $a \in R \setminus \{0\}$ be a non-zero element. Let n be the maximal integer such that a is divisible by p^n . Consider the R-modules M := R/(a) and

$$p^k M := \{ c \in M \mid \exists b \in M, \ c = p^k b \}$$

for non-negative integers k. Prove that

$$p^k M = \begin{cases} (p^k)/(a) & k < n, \\ (p^n)/(a) & k \ge n \end{cases}$$

5. Find the Jordan Canonical Form of the matrix

$$M = \begin{pmatrix} 1 & -1 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Does there exist a matrix L with the same characteristic and minimal polynomials as M, but not similar to M?

- 6. Let n be a positive integer, $p_n := x^4 + n$, and E_n be the splitting field of p_n over \mathbb{Q} .
 - a) Find all positive integers n such that p_n is irreducible over \mathbb{Q} .
 - b) Show that E_n coincides with the splitting field of $x^n 4n$ for all positive integers n.
 - c) Find all positive integers n such that $[E_n : \mathbb{Q}] = 4$.

5 2019 August

- 1. a) Let p be a prime number. Show that the dihedral group D_{2p} with 2p elements has exactly one non-trivial normal subgroup.
 - b) Show that if n is not prime, then D_{2n} has more than one non-trivial normal subgroup.
- 2. Suppose G is a group of order 45 containing an element of order 9. Prove that G is a cyclic group.
- 3. Let R be a commutative ring with identity. Suppose P, I_1, I_2, \ldots, I_n are ideals in R with P a prime ideal. Prove that if $I_1I_2\cdots I_n\subseteq P$ then $I_j\subseteq P$ for some $1\leq j\leq n$.
- 4. Let V be an n-dimensional vector space over \mathbb{C} with basis $\{e_1, \ldots, e_n\}$ and $S: V \to V$ a linear operator defined by the property $S(e_i) = e_{i+1}$ for $1 \le i \le n-1$ and $S(e_n) = e_1$.
 - a) What are the characteristic and minimal polynomials of S?
 - b) What is the Jordan canonical form of S?
- 5. Let R be a PID, and M a finitely generated R-module. Recall that the torsion submodule of M is

$$Tor(M) = \{m \in M : \text{there is a nonzero } r \in R \text{ such that } rm = 0\}$$

- a) Show that if $\operatorname{Hom}(M,R)=0$, then M is a torsion module (i.e., $M=\operatorname{Tor}(M)$).
- b) Prove that there is an R-module isomorphism

$$\operatorname{Hom}(M,R)\cong \frac{M}{\operatorname{Tor}(M)}$$

- 6. Let F be a field of characteristic zero, and $f(x) \in F[x]$ an irreducible polynomial of degree 4.
 - a) What are the possible degrees of the splitting field of f(x)? Explain your response.
 - b) Let K be a splitting field of f(x) such that K is a quadratic extension of the intermediate field E which is not Galois over F. Suppose also that every non-trivial intermediate field has even degree over F. What is the Galois group of K over F?

6 2019 June

- 1. Suppose G is a finite abelian group and there is no non-trivial isomorphism $\psi: G \to G$ which has order 2. Prove that G is either the trivial group $\{1\}$ or isomorphic to $\mathbb{Z}/2\mathbb{Z}$.
- 2. Suppose V is an n-dimensional vector space over F with $n \ge 1$ and $T: V \to V$ is a linear operator with $\ker(T) = \operatorname{im}(T)$.
 - a) Show $\dim V$ is even.
 - b) Find the characteristic polynomial of T.
 - c) Find the minimal polynomial of T.
 - d) what is the Jordan normal form of T? Explain your answer.
- 3. Let R be a PID with I and J ideals in R. Prove that $IJ = I \cap J$ if and only if I + J = R.
- 4. Let R be a commutative ring with unit and M an R-module.
 - a) For $m \in M$, define the annihilator $\operatorname{Ann}_R(m)$ of m as the subset

$$\{r \in R : rm = 0\}$$

Prove that $Ann_R(m)$ is an ideal in R.

- b) Suppose M is generated by m as an R-module. If $\operatorname{Ann}_R(m)$ is a maximal ideal show that M has no non-trivial submodules.
- 5. Let F be a field, f(x) the polynomial $x^4 + 1 \in F[x]$ and K its splitting field.
 - a) Prove that f(x) is separable if and only if the characteristic of F does not equal 2.
 - b) Prove that $[K:F] \leq 4$.
- 6. Prove that $\mathbb{Q}(i,\sqrt{2})$ over \mathbb{Q} is a Galois extension and find its Galois group.

7 2018 August

- 1. Consider two permutations in S_{100} : let $\sigma = (1\ 2)$ be the transposition exchanging 1 and 2 and let $\tau = (2\ 3\ \dots\ 100)$ be the cycle that sends 2 to 3, 3 to 4, etc. and 100 to 2.
 - a) Where does τ^{20} send 18?
 - b) Find all permutations that you get by conjugating σ by powers of τ .
- 2. a) Let I be the ideal in $\mathbb{R}[x]$ generated by $x^3 + 2x^2 + x$ and $x^3 + 3x^2 + 3x + 1$. Can this ideal be generated by one element?
 - b) Is I a prime ideal?
- 3. Let I and J be ideals in a PID R. Suppose M=R/I and N=R/J. Show that if $\operatorname{Hom}(M,N)=0$ then the ideal

$$I + J = \{a + b : a \in I, b \in J\}$$

coincides with the ring R.

- 4. Let U, V, and W be complex vector spaces. Let $A: U \to V$ and $B: V \to W$ be linear transformations. Given that the dimension of the kernel of A is 2, the dimension of the kernel of BA is 3, and the dimension of V is 4, list all the possibilities for the rank of BA.
- 5. Show that if two complex matrices are similar, then they have the same characteristic polynomial.
- 6. Let $F \subset E$ be a Galois extension of fields with the Galois group D_8 (the dihedral group with 8 elements). Find the number of distinct fields K such that $F \subset K \subset E$ and K is an Galois extension of F of index 4. Justify your answer.

8 2018 June

- 1. Let a group G with 35 elements act on a set X with 18 elements. Prove that there is an element $x \in X$ whose stabilizer is G.
- 2. a) Let G be a finite abelian group. Show that the following are equivalent:
 - i. G is not cyclic.
 - ii. There is a prime number q such that there are more than q-1 elements of order q in G.
 - b) Let p be prime. Show that the multiplicative group of units in \mathbb{Z}_p is cyclic.
 - c) Is it true that the multiplicative group of units in \mathbb{Z}_n is cyclic for any n? Prove it or provide a counterexample.
- 3. a) Is $\mathbb{Z}[x,y]$ a Euclidean domain? Prove your answer.
 - b) Is $\mathbb{Z}[x,y]$ a principal ideal domain? Prove your answer.
 - c) Is $\mathbb{Z}[x,y]$ a unique factorization domain? You don't have to prove your answer.
- 4. Consider the ring $R = \mathbb{C}[x]$. Denote by $M = \mathbb{C}[x,y]/(x^2+y^2)$. Then M is a module over R with the module structure given by multiplication modulo $x^2 + y^2$. Show that M is finitely generated over R and find a finite set of generators.
- 5. Let A be an $n \times n$ matrix of a complex linear transformation such that $A^2 = A$. Prove that A is diagonalizable.
- 6. Let p, q be prime numbers. Let E be the field with p^q elements and let $F \subset E$ be the field with p elements.
 - a) Find the index [E:F].
 - b) Let α be any element of E that does not lie in F. Prove that the degree of the minimal polynomial of α is q.
 - c) Prove that E/F is a Galois extension and find its Galois group.

¹The exam forgot to include this condition.

9 2017 August

- 1. For G a group, we say that $g \in G$ is an involution if $g^2 = e$ where e is the identity element. Suppose G is a finite group such that all elements of G are involutions.
 - a) Prove that $|G| = 2^k$ for some integer $k \ge 0$.
 - b) Prove that G is commutative.
- 2. Let I and J be ideals of R. We write

$$I + J = \{i + j : i \in I, j \in J\},\$$

and

$$I * J = \{ij : i \in I, j \in J\}.$$

- a) Is I + J necessarily an ideal of R? Prove or provide a counterexample.
- b) Is I * J necessarily an ideal of R? Prove or provide a counterexmple.
- 3. Let $A:V\to V$ be a linear transformation of a finite-dimensional vector space V satisfying the property $A^2=A$.
 - a) Prove that $\operatorname{Im} A \cap \ker A = \{0\}.$
 - b) Prove that $V = \operatorname{Im} A \oplus \ker A$.
 - c) Suppose dim V = n and rank A = k. What is the Jordan form of A?
- 4. Provide an example of three fields $F \subset E \subset L$ such that E/F and L/E are Galois, but L/F is not.

Hint: One can use subfields of the splitting field of $x^4 + 2$ for this problem.

5. Let R be a ring with identity and let M be a left R-module. Recall that the *annihilator* of M in R is

$$\operatorname{ann}_{R}(M) := \{ r \in R : \forall m \in M, rm = 0 \}.$$

- a) Prove that $\operatorname{ann}_R(M)$ is a two-sided ideal of R.
- b) Note that an abelian group is a \mathbb{Z} -module. How many possibilties, up to isomorphism, are there for an abelian group M of order 400 with $\operatorname{ann}_{\mathbb{Z}}(M)$ the ideal generated by $20 \in \mathbb{Z}$?
- 6. a) How many distinct actions of the group \mathbb{Z} are there on the set $\{1, 2, 3, 4\}$?
 - b) How many distinct **transitive** group actions of \mathbb{Z} are there on the set $\{1, 2, 3, 4\}$? (Recall that an action of a group G on a set X is *transitive* if for every $x \in X$ we have $\{gx : g \in G\} = X$.)

10 2017 June

- 1. Let F be a field, and consider the ring F[x] of polynomials in one variable with coefficients in F.
 - a) Show that F[x] is a vector space of infinite dimension over F.
 - b) Construct a linear transformation $\phi: F[x] \to F[x]$ which is injective, but not surjective.
 - c) Construct a linear transformation $\psi: F[x] \to F[x]$ which is surjective, but not injective.
- 2. a) Let K/F be a field extension, and M and N be square matrices over F. Show that M and N are similar over F if and only if they are similar over K.

Hint: What do you know about the Rational Canonical Form?

b) Let M be a square matrix over \mathbb{R} . Show that M is similar to its transpose.

Hint: Use Part (a), with $K = \mathbb{C}$ and the Jordan Canonical Form.

3. Let p be a positive prime integer. Consider the set

$$G := \{ \theta \in \mathbb{C} : \exists n \in \mathbb{Z}_{>0}, \theta^{p^n} = 1 \}$$

- a) Show that G is an infinite group under multiplication.
- b) Show that every proper subgroup of G is finite.
- 4. Let $N \triangleleft G$ be a normal subgroup of a group G, and let P < N be a Sylow subgroup of N for some prime number p. Show that $G = N_G(P)N$, i.e. that any element $g \in G$ can be written as a product g = hn, where $n \in N$ and h is such that $h^{-1}Ph = P$.

Hint: Given a $g \in G$, what can one say about the conjugate subgroup $g^{-1}Pg$? Where does it lie?

- 5. a) Show that the polynomials $x^4 + 2$ and $x^4 8$ have the same splitting field $K \subset \mathbb{C}$ over \mathbb{Q} .
 - b) Find $[K : \mathbb{Q}]$ and compute the Galois group G of the extension.

Hint: Use that G is a subgroup of S_4 .

- c) How many subfields $E \subset K$ such that [K : E] = 2 exist? Identify all of them.
- 6. Let R be a commutative ring with 1. Denote

$$I := \{ r \in R : \exists n \in \mathbb{Z}_{>0}, \ r^n = 0 \}.$$

- a) Show that I is an ideal.
- b) Show that if I is maximal, then for every $x \in R$ either $x \in I$ or x is a unit.

11 2016 August

- 1. Let R = k[x, y] be the ring of polynomials in two variables over a field k. Consider the ideal I = (x, y). View it as a module over R.
 - a) Check that the map $F: \mathbb{R}^2 \to I$ given by $F: (f,g) \mapsto xf + yg$ is a homomorphism of modules.
 - b) Check that F is surjective and that ker F is isomorphic to R as an R-module.
- 2. Let $I \subset \mathbb{C}[x]$ be the ideal generated by $x^3 + x^2 2x$. Consider the factor space $V = \mathbb{C}[x]/I$.
 - a) Find the dimension and a basis of V as a vector space over \mathbb{C} .
 - b) Consider the operation $\varphi: V \to V$ given by multiplication by x. Compute the matrix of φ in the basis constructed in the previous part. What are the rank and nullity of φ ?
 - c) Determine the eigenvalues of the operator φ .
- 3. Recall, that the center Z of a group G is defined by

$$Z := \{c \in G : \forall g \in G, cg = gc\}$$

- a) Prove that Z is a subgroup of G.
- b) Consider the action of G on itself by conjugation, i.e. an element $g \in G$ acts on an element $h \in G$ by $h \mapsto g^{-1}hg$.
 - Show that an element of $h \in G$ belongs to Z if and only if the G-orbit of h under the conjugation action consists of one element.
- c) Suppose that G is of order p^k , where p is a prime number. Show that the center Z contains more than one element.

Hint: use the Class Equation or the orbits of the conjugation action, and divisibility by p.

- 4. Let H be a normal subgroup of a group G of index 4. Show that there are either exactly 3 or exactly 5 subgroups of G containing H (including G and H themselves).
- 5. Let E be the splitting field of $f(x) := x^4 + 7$ over \mathbb{Q} .
 - a) Find all zeros of f(x) in \mathbb{C} . (Hint: Use de Moivre's formula.)
 - b) Prove that $\sqrt[4]{28} \in E$, $\sqrt[4]{28}i \in E$, and then that $i \in E$.
 - c) Show that $\mathbb{Q}(\sqrt[4]{28})$ is a subfield of E of degree 4 over \mathbb{Q} .
 - d) Show that $E = \mathbb{Q}(\sqrt[4]{28}, i)$, $[E : \mathbb{Q}] = 8$, and find a basis for E over \mathbb{Q} .
- 6. Let R be a commutative ring with unity and I, J be ideals in R such that I+J=R. (Recall $I+J=\{a+b:a\in I,b\in J\}$.) Prove that

$$R/(I \cap J) \simeq R/I \times R/J$$
.

12 2016 June

- 1. a) Let H and K be normal subgroups of a finite group G. Suppose that $H \cap K = \{1\}$ and the order of G equals the product of orders of H and K. Show that $G \simeq H \times K$.
 - b) Let p and q be positive prime integers, such that p < q and $p \nmid q 1$. Show that all groups of order pq are isomorphic to each other. Hint: use Sylow's theorems and part a).
- 2. a) Consider the field $\mathbb{Q}(\sqrt[3]{-3})$. Show that this field is NOT a normal extension of \mathbb{Q} . (Here $\sqrt[3]{-3}$ is the real cubic root of -3.)
 - b) Let F be the Galois closure of the field $\mathbb{Q}(\sqrt[3]{-3})$. Show that F is isomorphic to $\mathbb{Q}[x]/(x^6+3)$. Hint: we know that $\sqrt[3]{-3} \in F$. Use the geometry of complex numbers to show that also $\sqrt{-3} \in F$, and use it to deduce that $\sqrt[6]{-3} \in F$.
- 3. Let k[x, y] be the ring of polynomials in two variables, where k is a field of characteristic not equal to 2. Consider the ideal $I = (x^2 y, x^2 + y + 2)$.
 - a) Assume that -1 is a square in k. Show that $I = I_+ \cap I_- = I_+I_-$, where $I_+ = (x + \sqrt{-1}, y + 1)$, $I_- = (x \sqrt{-1}, y + 1)$. Is I a prime ideal? Provide a proof.
 - b) Assume that -1 is NOT a square in k. Show that I is a maximal ideal in k[x,y]. Show that K := k[x,y]/I is a field and is isomorphic to $k[x]/(x^2+1)$.
- 4. Let $M \in M_{n \times m}(k)$ be an $n \times m$ matrix with entries from a field k. Define the row rank of M as the dimension of the subspace in k^m spanned by the rows of M, and the column rank of M as the dimension of the subspace in k^n spanned by the columns of M. Show that these ranks are equal.
- 5. Let A be a linear transformation of a complex 4-dimensional vector space, such that A is NOT diagonalizable, and it satisfies the property $A^3 = A^2$.
 - a) What eigenvalues might A have?
 - b) What Jordan blocks can the Jordan canonical form of A have?
 - c) What Jordan canonical form might A have?

Provide proofs.

6. Let R be a principal ideal domain and let $I \subset R$ be a non-zero ideal in R. Prove that I is isomorphic to R as an R-module.

13 2016 January

- 1. *G* is a group of order $351 = 3^3 \cdot 13$.
 - (i) What are the orders of the Sylow subgroups of G? Must G have a subgroup of order 9?
 - (ii) Show that G is not simple.
 - (iii) Suppose that the order of G is 351 and G is cyclic. How many subgroups does G have?
- 2. Suppose that G and H are groups and $\phi: G \to H$ is a surjective group homomorphism.
 - (i) Prove that K, the kernel of ϕ , is a normal subgroup of G.
 - (ii) Prove the first isomorphism theorem, that is $G/K \simeq H$.
 - (iii) Suppose that B_i is a normal subgroup of A_i for i = 1, ..., n. Prove that

$$(A_1 \times \cdots \times A_n)/(B_1 \times \cdots \times B_n) \simeq A_1/B_1 \times \cdots \times A_n/B_n.$$

- 3. Let K be the splitting field of $f(x) = x^3 5$ over \mathbb{Q} and G its Galois group.
 - (i) Find $[K:\mathbb{Q}]$.
 - (ii) Describe the elements of G.
 - (iii) Find the proper subgroups of G and the corresponding subfields of K under the Galois correspondence.
- 4. Suppose that V is an n-dimensional vector space V over a field F, and W is an m-dimensional subspace of V.
 - (i) Prove that a basis for W can be extended to a base for V.
 - (ii) Prove that V/W is an F-vector space of dimension n-m.
- 5. Suppose that R is a commutative ring with unity.
 - (i) Prove that the ideal in R[x] generated by x is a prime ideal iff R is an integral domain.
 - (ii) Prove that $\mathbb{Q}[x]$ is a principal ideal domain. Give a generator for the ideal generated by two polynomials $x^2 4x + 3$ and $x^2 9$.
 - (iii) Show that $\mathbb{Z}[x]$ is not a principal ideal domain.
- 6. Let A be a linear transformation of a complex finite-dimensional vector space satisfying the property $A^2 = A$.
 - (i) Prove that $\operatorname{Im} A \cap \operatorname{Ker} A = \{0\}.$
 - (ii) Prove that $V = \operatorname{Im} A \oplus \operatorname{Ker} A$.
 - (iii) Describe how the Jordan canonical form for A looks like.

14 2015 August

- 1. Let H and K be subgroups of a group G and let $HK = \{hk : h \in H, k \in K\}$.
 - (i) Prove that if HK = KH then HK is a subgroup of G.
 - (ii) Prove that if $H, K \triangleleft G$ and $H \cap K = \{1\}$ then $hk = kh \quad \forall h \in H, \ k \in K$ and $HK \simeq H \times K$.
- 2. Prove that a group of order $132 = 2^2 \cdot 3 \cdot 11$ is not simple.
- 3. Let R be a commutative ring with unity.
 - (i) Prove that R is a field iff the only ideals of R are $\{0\}$ and R.
 - (ii) Prove that (x) is a maximal ideal in the polynomial ring R[x] iff R is a field.
- 4. Let K be the splitting field of $f(x) = x^4 3$ over \mathbb{Q} .
 - (i) Find $[K : \mathbb{Q}]$ and $[K : \mathbb{Q}(\sqrt{3})]$.
 - (ii) Find the group of automorphisms of K that fix $\mathbb{Q}(\sqrt{3})$. Find its proper subgroups and the corresponding fields between $\mathbb{Q}(\sqrt{3})$ and K under the Galois correspondence.
- 5. Suppose that V and W are finite dimensional F-vector spaces and $T: V \to W$ a linear transformation.
 - (i) Prove that the kernel Ker(T) and image T(V) are subspaces of V and W respectively.
 - (ii) State and prove the relationship (rank-nullity theorem) between the dimensions.
- 6. Let R be an integral domain and M a unital (unitary) left R-module. For a submodule N of M or ideal I of R define the annihilator

$$\operatorname{Ann}_R(N) = \{ a \in R : an = 0 \quad \forall n \in N \}, \quad \mathscr{A}nn_M(I) = \{ m \in M : cm = 0 \quad \forall c \in I \}.$$

- i) Prove that $Ann_R(N)$ is an ideal of R and $\mathcal{A}nn_M(I)$ is a submodule of M.
- ii) If M is a free R-module what is $Ann_R(N)$ and $\mathcal{A}nn_M(I)$?
- iii) For the \mathbb{Z} -module $M = \mathbb{Z}_{12} \times \mathbb{Z}_{15} \times \mathbb{Z}_{50}$ what is $\operatorname{Ann}_{\mathbb{Z}}(M)$? What is $\mathscr{A}nn_{M}(3\mathbb{Z})$? (Here \mathbb{Z}_n denotes the integers mod n and the module action on M is just r(a, b, c) = (ra, rb, rc).)

15 2015 June

- 1. Let G be a group of order $245 = 5 \cdot 7^2$.
 - (i) How many Sylow subgroups does G have?
 - (ii) How many different abelian G are there up to isomorphism?
 - (iii) Can G be non-abelian? Explain.
- 2. Prove Cayley's Theorem; namely that any group of order n is isomorphic to a subgroup of the permutation group S_n .
- 3. Let K be the splitting field of $f(x) = (x^2 2)(x^2 + 3)$ over $\mathbb Q$ and G its Galois group.
 - (i) Find $[K : \mathbb{Q}]$ and identify G.
 - (ii) Find the proper subgroups of G and the corresponding subfields of K under the Galois correspondence.
- 4. Suppose that U and W are finite dimensional subspaces of an F-vector space V. Prove that

$$\dim_F(U+W) = \dim_F U + \dim_F W - \dim_F (U \cap W).$$

- 5. Suppose that R is a commutative ring with unity and I is an ideal of R.
 - (i) Prove that R/I is a field iff I is a maximal ideal.
 - (ii) Is $\mathbb{Z}_5[x]/(x^2+1)$ a field?
- 6. Find the Jordan canonical form for $A = \begin{bmatrix} -1 & 0 & 9 \\ 7 & 6 & -25 \\ 1 & 1 & -2 \end{bmatrix}$ over \mathbb{C} . Are there 3×3 matrices

with the same eigenvalues as A which are not similar to A over \mathbb{C} ? Give the Jordan canonical form for each similarity class.

16 Sample

1. Recall that the *centralizer* of a subgroup H of a group G is the set

$$C_c(H) = \{ g \in G \mid \forall h \in H \ ghg^{-1} = h \}.$$

- a) Prove that if H is normal in G then $C_c(H)$ is normal in G.
- b) Assume H is normal. Prove that $G/C_c(H)$ is isomorphic to a subgroup of Aut(H), the group of automorphisms of H.
- 2. Let T be an invertible linear operator on a finite-dimensional vector space. Prove that T^{-1} is diagonalizable if and only if T is diagonalizable.
- 3. Let $M_{n\times n}(\mathbb{F})$ denote the ring of $n\times n$ matrices with entries in a field \mathbb{F} . Prove that this ring has no two-sided ideals except $M_{n\times n}(\mathbb{F})$ and $\{0\}$.
- 4. Find the splitting field and Galois group of $f(x) = (x^4 4)$ and identify the intermediate fields corresponding to its subgroups.
- 5. Prove that if G is a group of order p^n , where p is a prime number, then the center of G, Z(G), cannot equal $\{e\}$. Hint: use the class equation.
- 6. Let I be a non-zero ideal of a commutative ring R with identity. Prove that I is a free R-module if and only if I = Ra for some $a \in R$ that is not a zero divisor.