Unidad 4: Relaciones Álgebra y Geometría Analítica I (R-111) Licenciatura en Ciencias de la Computación

Iker M. Canut 2020

1. Definiciones

Dados dos conjuntos A y B, un **par ordenado** es un objeto de la forma (a, b) donde $a \in A y b \in B$. Si (a, b) y (c, d) son dos pares ordenados, $(a, b) = (c, d) \iff a = c \land b = d$.

Dados dos conjuntos A y B, llamaremos **producto cartesiano**, $A \times B$, al conjunto formado por los pares ordenados (a, b) tales que $a \in A \land b \in B$. Es decir: $A \times B = \{(a, b) : a \in A, b \in B\}$.

Recordando que $(A = B \iff A \subseteq B \land B \subseteq A)$, sean A, B, C conjuntos, entonces:

- $A \times (B \cap C) = (A \times B) \cap (A \times C)$ ⊆) Sea $(x,y) \in A \times (B \cap C) \Rightarrow x \in A \land y \in B \land y \in C$. Por definición de producto cartesiano, $(x,y) \in A \times B \land (x,y) \in A \times C$. Por lo tanto, $(x,y) \in A \times B \cap A \times C : A \times (B \cap C) \subseteq A \times B \cap A \times C$. ⊇) Sea $(x,y) \in (A \times B) \cap (A \times C) \Rightarrow x \in A \land y \in B \land y \in C : y \in B \cap C$. Por definición de producto cartesiano, $(x,y) \in A \times (B \cap C) : (A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$.
- $A \times (B \cup C) = (A \times B) \cup (A \times C)$ ⊆) Sea $(x,y) \in A \times (B \cup C) \Rightarrow x \in A \land (y \in B \lor y \in C)$. Por definición de producto cartesiano, $(x,y) \in A \times B \lor (x,y) \in A \times C$. Por lo tanto, $(x,y) \in A \times B \cup A \times C$ ∴ $A \times (B \cup C) \subseteq A \times B \cup A \times C$. ⊇) Sea $(x,y) \in (A \times B) \cup (A \times C) \Rightarrow x \in A \land (y \in B \lor y \in C)$ ∴ $y \in B \cup C$. Por definición de producto cartesiano, $(x,y) \in A \times (B \cup C)$ ∴ $(A \times B) \cup (A \times C) \subseteq A \times (B \cup C)$.
- $A \times (B C) = (A \times B) (A \times C)$ ⊆) Sea $(x,y) \in A \times (B - C) \Rightarrow x \in A \land y \in (B - C) \Rightarrow x \in A \land y \in B \land y \not\in C \Rightarrow$ $(x \in A \land y \in B) \land (x \in A \land y \not\in C)$ que por definición de producto cartesiano, llegamos a que $(x,y) \in A \times B \land (x,y) \not\in A \times C \therefore (x,y) \in (A \times B) - (A \times C) \therefore A \times (B - C) \subseteq (A \times B) - (A \times C)$. ⊇) Sea $(x,y) \in (A \times B) - (A \times C) \Rightarrow (x,y) \in A \times B \land (x,y) \not\in A \times C$. Es decir, $x \in A \land y \in B \land (x \not\in A \lor y \not\in C) \Rightarrow x \in A \land y \in B \land y \not\in C \Rightarrow x \in A \land y \in B - C$. Por definición de producto cartesiano, tenemos que $(x,y) \in A \times (B - C)$.
- $A \times B \subseteq C \times D \iff A \subseteq C \land B \subseteq D$ ⇒) Sea $(x,y) \in A \times B \Rightarrow (x,y) \in C \times D$. Es decir, $x \in A \land y \in B \Rightarrow x \in C \land y \in D$. Luego, $[x \in A \Rightarrow x \in C] \land [y \in B \Rightarrow y \in D] \therefore A \times B \subseteq C \times D \Rightarrow A \subseteq C \land B \subseteq D$ $\iff A \subseteq C \land B \subseteq D$, entonces $x \in A \Rightarrow x \in C \land y \in B \Rightarrow y \in D$. Sea $(x,y) \in A \times B$, $x \in A \land y \in B$ ∴ $x \in C \land y \in D$ y de esta manera $(x,y) \in C \times D$, i.e $A \subseteq C \land B \subseteq D \Rightarrow A \times B \subseteq C \times D$

Una **relación** de un conjunto A en un conjunto B es un subconjunto R de $A \times B$. Si $(a,b) \in R$, se dice que a está relacionado con b por R, y se nota aRb.

Sea $R \subseteq A \times B$, $X \subseteq A$, $Y \subseteq B$

- El **dominio** de R es: $Dom(R) = \{a \in A : (a,b) \in R, \text{ para algún } b \in B\}$
- La **imagen** de R es: $Im(R) = \{b \in B : (a, b) \in R, \text{ para algún } a \in A\}$
- El conjunto imagen de X por R es: $R(X) = \{b \in B : (a, b) \in R, \text{ para algún } a \in X\}$
- El conjunto preimagen de Y por R es: $R^{-1}(Y) = \{a \in A : (a,b) \in R, \text{ para algún } b \in Y\}$
- La inversa de $R, R^{-1}: B \to A$ definida por: $R^{-1} = \{(x, y): (y, x) \in R\}$

Nota: Sea $R \subseteq A \times B, x \in A, X \subseteq A$, notar que:

- $R^{-1}(x)$ es la preimagen del elemento x por R.
- $R^{-1}(X)$ es la preimagen del subconjunto X por R.
- R^{-1} es la relación inversa de R.

Sea
$$R \subseteq A \times B$$
, entonces $(R^{-1})^{-1} = R$ $(R^{-1})^{-1} = \{(x,y): (y,x) \in \{(y,x): (x,y) \in R\}\} = \{(x,y): (x,y) \in R\} = R$

Sea $R \subseteq A \times B$ y $S \subseteq B \times C$, la relación **composición** de R en S, notada como $S \circ R$, es una relación de A en C definida por $x(S \circ R)y \iff \exists u \in B : xRu \wedge uSy$

$$S \circ R = \{(x,y) \in A \times C : (x,u) \in R \land (u,y) \in S, \text{ para algun } u \in B\}$$

- $T \circ (S \circ R) = (T \circ S) \circ R$ $\subseteq) \ \forall (x,w) \in [(T \circ S) \circ R] \Rightarrow (x,y) \in R \land (y,w) \in (T \circ S) \Rightarrow (x,y) \in R \land [(y,z) \in S \land (z,w) \in T]$ $\Rightarrow [(x,y) \in R \land (y,z) \in S] \land (z,w) \in T \Rightarrow (x,z) \in (S \circ R) \land (z,w) \in T \Rightarrow (x,w) \in T \circ (S \circ R)$ $\supseteq) \ \forall (x,w) \in [T \circ (S \circ R)] \Rightarrow (x,z) \in (S \circ R) \land (z,w) \in T \Rightarrow [(x,y) \in R \land (y,z) \in S] \land (z,w) \in T$ $\Rightarrow (x,y) \in R \land [(y,z) \in S \land (z,w) \in T] \Rightarrow (x,y) \in R \land (y,w) \in (T \circ S) \Rightarrow (x,w) \in (T \circ S) \circ R$ ■
- $\begin{array}{l} \bullet \quad (S \circ R)^{-1} = R^{-1} \circ S^{-1} \\ \subseteq) \ \forall (x,z) \in (S \circ R)^{-1} \Rightarrow (z,x) \in (S \circ R) \Rightarrow (z,y) \in R \wedge (y,x) \in S \Rightarrow (y,z) \in R^{-1} \wedge (x,y) \in S^{-1} \\ \Rightarrow (x,y) \in S^{-1} \wedge (y,z) \in R^{-1} \Rightarrow (x,z) \in R^{-1} \circ S^{-1} \\ \supseteq) \ \forall (x,z) \in R^{-1} \circ S^{-1} \Rightarrow (x,y) \in S^{-1} \wedge (y,z) \in R^{-1} \Rightarrow (y,x) \in S \wedge (z,y) \in R \\ \Rightarrow (z,y) \in R \wedge (y,x) \in S \Rightarrow (z,x) \in S \circ R \Rightarrow (x,z) \in (S \circ R)^{-1} \end{array}$

Cabe aclarar que la composición de funciones no es conmutativa.

2. Relaciones en un conjunto

Sea $R \subseteq A \times A$, y $a, b, c \in A$, se dice que R es:

- Reflexiva: si $(a, a) \in R \ \forall a \in A$
- Simétrica: si $(a, b) \in R \Rightarrow (b, a \in A)$
- Antisimétrica: $(a,b) \in R \land a \neq b \Rightarrow (b,a) \notin R$, equivalentemente, $(a,b) \in R \land (b,a) \in R \Rightarrow a = b$
- Transitiva: si $(a,b) \in R \land (b,c) \in R \Rightarrow (a,c) \in R$

3. Relaciones de Orden

Una relación R en A es una relación de orden si es reflexiva, antisimétrica y transitiva (R.A.T.)

Si $(a, b) \in R$, se dice que a es **anterior** a b y se nota $a \prec b$.

Al par (A, R) o (A, \prec) se lo llama **conjunto ordenado**.

Sea (A, \prec) , dos elementos distintos $x, y \in A$ son **comparables** si $x \prec y$ o si $y \prec x$. Un conjunto ordenado es **totalmente ordenado** si todo par de elementos es comparable, y se dice que es un **orden total**.

Sea (A, R) un conjunto parcialmente ordenado, decimos que es un **retículo** si dados $x, y \in A$, existen en A el sup $\{x, y\}$ y el ínf $\{x, y\}$.

Sea (A, \prec) , y $B \subseteq A$, el **orden inducido** por R en B es $R_B = R \cap (B \times B)$, es decir, sea $x, y \in B$, $xR_By \iff xRy$. (B, S) es un **subconjunto ordenado** de (A, R) si $B \subseteq A$ y $S = R_B$.

Ademas, si R_B es un orden total en B, (B, R_B) se llama subconjunto ordenado de (A, R) o **cadena**.

Diagrama de Hasse: se dibuja como un grafo, y convenimos que no se dibujan las flechas correspondientes a (a, a), ni la flecha (a, c) cuando $a \prec b$ y $b \prec c$.

Sea (A, \prec) y $B \subseteq A$:

- $a \in A$ es minimal si $\forall x \in A : x \prec a$, se tiene que x = a.
- $a \in A$ es maximal si $\forall x \in A : a \prec x$, se tiene que x = a.
- $a \in A$ es **mínimo** si $a \prec x \forall x \in A$
- $a \in A$ es máximo si $x \prec a \forall x \in A$
- $a \in A$ es **cota inferior** para B si $a \prec x \ \forall x \in B$. Una cota inferior 'a es el **ínfimo** de B si $a \prec a'$ para toda cota inferior de B.
- $a \in A$ es **cota superior** para B si $x \prec a \ \forall x \in B$. Una cota superior 'a es el **supremo** de B si $a' \prec a$ para toda cota inferior de B.

Un conjunto puede tener más de un minimal o maximal, pero si tiene máximo, mínimo, supremo o ínfimo, estos es único. Además, si tiene alguna cota se dice que está **acotado**.

4. Relaciones de Equivalencia

Una relación R en A es de equivalencia si es **reflexiva**, **simétrica** y **transitiva** (R.S.T.)

Si $(a, b) \in R$, se dice que a es equivalente a b y se nota $a \sim b$.

Dada una relación de equivalencia R en un conjunto A y $a \in A$, el conjunto R(a) se llama clase de equivalencia de a y se nota [a].

$$[a] = \{x \in A : (a, x) \in \mathbb{R}\}$$

Observemos que como es simétrica, $[a] = \{x \in A : (x, a) \in \mathbb{R}\}$ tambien vale. Todo elemento $x \in [a]$ se dice que es un **representante** de esa clase de equivalencia.

- $[a] \neq \emptyset$ Sabemos que $a \in [a]$ ya que es reflexiva, luego $[a] \neq \emptyset$
- $\bullet (a,b) \in R \iff [a] = [b]$
 - ⇒) ⊆) $x \in [a] \Rightarrow (a, x) \in R \Rightarrow (x, a) \in R$ (por simetría). Por H) $(a, b) \in R \Rightarrow (x, b) \in R$ (por transitividad) ∴ $x \in [b]$.

$$\supseteq$$
) $x \in [b] \Rightarrow (b, x) \in R \Rightarrow (x, b) \in R$. Como $(b, a) \in R \Rightarrow (x, a) \in R : x \in [a]$

- \Leftarrow) Sean $a, b \in A : [a] = [b]$ luego $a \in [b] : (a, b) \in R$
- $(a,b) \notin R \iff [a] \cap [b] = \emptyset$
 - \Rightarrow) $(a,b) \notin R \Rightarrow [a] \cap [b] = \emptyset$ es equivalente a $[a] \cap [b] \neq \emptyset \Rightarrow (a,b) \in R$. Si existe $x \in [a] \cap [b]$, luego $(a,x) \in R \land (b,x) \in R \Rightarrow (a,x) \in R \land (x,b) \in R \therefore (a,b) \in R$
 - $(a) \cap [b] = \emptyset \Rightarrow (a,b) \notin R$ es equivalente a $(a,b) \in R \Rightarrow [a] \cap [b] \neq \emptyset$. Y por el punto anterior, sabemos que [a] = [b]. Y particularmente $a \in [a] \cap [b]$

Es decir, todo elemento de A pertenece a alguna clase y dos clases de equivalencia, o bien son iguales o son conjuntos disjuntos.

Una partición P de un conjunto A es una colección de conjuntos no vacios $\{X_1, X_2, ...\}$ tales que:

- $i \neq j \Rightarrow X_i \cap X_i = \emptyset$,
- $\forall a \in A, \exists X_i \in P : a \in X_i$

Sea P una partición de $A \neq \emptyset$, existe una única relación de equivalencia en A cuyas clases de equivalencia son los elementos de P.

Dem/ Se define una relación R en A tal que $(x,y) \in R \iff$ existe $X_i \in P$ tal que $x,y \in X_i$, i.e. Sea $P = \{A_1, A_2, ..., A_n\}$ una partición de A, se define $R = \{(x,y) : x \in A_i, y \in A_i, A_i \in P\}$. Luego,

- R es reflexiva, como $A \neq \emptyset$, existe $x \in A$. Y como P es una partición de $A, x \in A_i, A_i \in P$
- R es simétrica pues xRy, $x \in A_i \land y \in A_i$, y por lo tanto yRx.
- R es transitiva, si $xRy \wedge yRz$, entonces $x \in A_i \wedge y \in A_i$ y también $y \in A_j \wedge z \in A_j$. Y como $y \in A_i \wedge y \in A_j \Rightarrow A_i = A_j : x \in A_i \wedge z \in A_i$, de donde xRz.

Sea R una relación de equivalencia en A, llamamos **conjunto cociente** de A por R, y lo notamos $A|_R$ al conjunto cuyos elementos son las clases de equivalencia de A definidadas por R:

$$A|_R = \{[a] : a \in A\}$$