METHODS OF INTEGRATION FOR SOLVING THE SOMMERFELD IDENTITY

Wissam Razouki CSE 3802

INTRODUCTION

The Problem

The Sommerfeld Identity is given in integral form as:

$$S = \int_{0}^{\infty} \frac{\alpha J_0(\alpha r)}{\sqrt{\alpha^2 - k^2}} d\alpha, \quad \text{where } k = \frac{2\pi f}{c}$$

Using two different methods of integration, we must:

- 1. Evaluate the integral for $f \in [10 \text{ kHz}, 100 \text{ kHz}]$ in steps of 2 kHz for r = 10000 m
- 2. Compare the results with the exact solution computed from $S = \frac{e^{-jkr}}{r}$
- 3. Repeat 1 and 2 for $f \in [500 \text{ kHz}, 2000 \text{ kHz}]$ in steps of 10 kHz for r = 1000 m

Methods Used

Reference method:

■ The exact solution

Experimental methods:

- Trapezoid method
- Ruffa's method

EXACT SOLUTIONS

The Exact Solution

Using the formula $S = \frac{e^{-jkr}}{r}$, it is possible to directly solve for the exact solutions to the Sommerfeld problem given the frequency and range.

- 1. For $f \in [10 \text{ kHz}, 100 \text{ kHz}]$ in steps of 2 kHz, and r = 10000 m, we expect a total of $\frac{100-10}{2} + 1 = 46$ data points
- 2. For $f \in [500 \text{ kHz}, 2000 \text{ kHz}]$ in steps of 10 kHz, and r = 1000 m, we expect a total of $\frac{2000-500}{10} + 1 = 151 \text{ data points}$

The solutions will be in the complex plane, so it is possible to plot them on a real vs. imaginary graph. The MATLAB graphs are given below.

Analysis

Looking at these graphs, we see that the number of points (marked as X's) is severely lower than what was calculated previously (46 and 151).

- This is because, at certain frequencies, the formula produces the same solutions. Thus, multiple X's are overlaid on top of each other
- We expect this to be different for our experimental methods due to error

EXPERIMENTAL METHODS AND SOLUTIONS

Trapezoid Method

The trapezoid method falls under the Newton-Cotes formulas for integration.

■ It uses sets of trapezoids to approximate the area under the curve. Thus, more trapezoids → a better approximation

For this method, I chose an integration limit of $N \in [0, 100]$ and a step size of n = 0.1, for a total of 1000 trapezoids.

The resulting solution plots (compared to the exact solutions) are given below (solutions are marked as X's)

Ruffa's Method

Ruffa's method is considered a method of exhaustion.

- A summation is built from solving the areas of triangles under the curve
- The triangles are used to approximate the integral. Similarly, more triangles \rightarrow a better approximation

Since the summation grows exponentially with the number of iterations, I chose a low value of N=15 iterations.

The resulting solution plots (compared to the exact solutions) are given below (solutions are marked as X's)

Method Verification

In order to test my implementations of the methods above, I first evaluated a definite integral similar in form to the Sommerfeld Identity:

$$\int_{1}^{100} \frac{\sin(x)}{\sqrt{x}}$$

The results are:

- Exact solution using MATLAB's integral (...) function = 0.5468
- Solution using the **trapezoid method** = 0.5421
- Solution using **Ruffa's method** = 0.5456

From these results, we see that both methods are implemented correctly

Handling Infinities and Singularities

The Sommerfeld Identity integral as given has two problems:

- 1. The upper bound goes to infinity
- 2. There is a singularity at $\alpha = k$

To avoid (1), I chose an upper bound of 100k for both methods

■ This causes the solutions to be less accurate, but shortens computation time to a reasonable amount

To avoid (2), I split the integral into two separate integrals (as given in the project description) and I avoid computing them where $\alpha = k$ (but not where $\alpha \approx k$)

Again, this results in less accuracy, but is a necessary change to avoid division by zero errors

ANALYSIS AND CONCLUSIONS

Error Analysis

In order to analyze the absolute error of a complex set of values, we can evaluate the magnitude of the distance between them.

The formula for doing so is:

$$||u-v||$$

We define u as the **complex experimental** solution, and v as the **complex reference** solution (i.e. the exact solution).

Plotting this error for the given frequency ranges results in the following graphs

Conclusions and Remarks

From the data we gathered, it is obvious that **Ruffa's method** worked much better than the trapezoid method. This can be attributed to a few things:

- More iterations were run using Ruffa's method
- The trapezoid method did not handle complex values well
- There was no error term associated with the trapezoid formula. This was done to make computation less heavy
- Loss of significance due to very small values

Regardless, neither methods had any major code-breaking issues, and the waveforms for the absolute error seem consistent for both methods.