Formale Sprachen und Automaten Prof. Dr. Uwe Nestmann - 26. März 2019

Schriftlicher Test

Studierendenidentifikation:

NACHNAME	
VORNAME	
Matrikelnummer	
STUDIENGANG	□ Informatik Bachelor, □

Aufgabenübersicht:

AUFGABE	SEITE	Punkte	THEMENBEREICH	
1	3	20	MODELLE REGULÄRER SPRACHEN	
2	4	16	Untermengen-Konstruktion	
3	5	22	MINIMIERUNG EINES DFA	
4	6	17	Grenzen Regulärer Sprachen	
5	7	9	Modelle Kontextfreier Sprachen I	
6	8	16	Modelle Kontextfreier Sprachen II	

Zwei Punkte in diesem Test entsprechen einem Portfoliopunkt.

Korrektur:

AUFGABE	1	2	3	4	5	6	\sum
PUNKTE	20	16	22	17	9	16	100
ERREICHT							
Korrektor							
EINSICHT							

Aufgabe 1: Modelle Regulärer Sprachen

(20 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b\}$, die reguläre Sprache $A_1 \triangleq \{\ a(ab)^m x \mid m \in \mathbb{N} \land x \in \{\ aa, b^n a \mid n \in \mathbb{N}\ \}\ \}, \text{ die reguläre Grammatik}$ $G_2 \triangleq (\{\ S,\ T,\ U\ \},\ \Sigma,\ P_2,\ S) \text{ und der NFA } M_3 \triangleq (\{\ q_0,\ q_1,\ q_2\ \},\ \Sigma,\ \Delta_3,\ \{\ q_0\ \},\ \{\ q_2\ \}) \text{ mit:}$

$$P_2: \quad S \quad \to \quad bS \mid aT \mid a$$

$$T \quad \to \quad bU$$

$$U \quad \to \quad aT \mid a$$

$$\Delta_3:$$

a. (**, 5 Punkte) Gib einen NFA M_1 mit $L(M_1) = A_1$ an.

b. (**, 5 Punkte) *Gib* eine Typ-3 Grammatik G_1 mit $L(G_1) = A_1$ an.

c. (**, 3 Punkte) Gib die Ableitung des Wortes bbaba in G_2 an.

d. (***, 2 Punkte) $Gib L(G_2)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

e. (**, 3 Punkte) Gib eine Ableitung des Wortes bbaab in M_3 an, die zeigt, dass $bbaab \in L(M_3)$.

f. (***, 2 Punkte) $Gib L(M_3)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 2: Untermengen-Konstruktion

(16 Punkte)

Gegeben sei der NFA $M \triangleq (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \Sigma, \Delta, \{q_1, q_3\}, \{q_4\})$ mit $\Sigma = \{ a, b \} \text{ und } \Delta$:

a. (**, 13 Punkte) Berechne: Konstruiere nur mit Hilfe der Untermengen-Konstruktion den DFA M^\prime zum NFA M. Gib die bei der Untermengen-Konstruktion entstehende Tabelle sowie das Tupel des entstehenden Automaten M' an.

Hinweis: Es ist nicht nötig die Übergangsfunktion δ' von M' (graphisch) anzugeben.

b. (***, 3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 3: Minimierung eines DFA

(22 Punkte)

Gegeben sei der DFA $M \triangleq (Q, \Sigma, \delta, q_4, \{q_7\})$ mit $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$, $\Sigma = \{a, b\}$ und δ :

- a. (**, 1 Punkt) Gib an: Welche Zustände sind nicht erreichbar?
- b. (**, 9 Punkte) Gib an: Fülle die folgende Tabelle entsprechend des Table-Filling-Algorithmus zum Minimieren von DFAs mit Kreuzen (x) und Kreisen (o) aus. Hinweis: Bitte streiche zunächst alle Zeilen und Spalten für nicht erreichbare Zustände, falls es solche Zustände in M gibt. Die zweite Tabelle ist ein Ersatz für Verschreiber.

c. (**, 4 Punkte) Die Minimierung unterteilt Q in Äquivalenzklassen. Gib alle Äquivalenzklassen an, die sich aus der Tabelle ergeben.

Hinweis: Die Namen der Klassen in der Form $[q_0]$ genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[q_0] = \{\ldots\}$, angegeben werden.

d. (**, 5 Punkte) Gib den minimierten DFA M' an.

e. (***, 3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Matrikelnummer: _	Name:	

Aufgabe 4: Grenzen Regulärer Sprachen

(17 Punkte)

Gegeben sei das Alphabet $\Sigma \triangleq \{a, b, c, d\}$.

a. **(***, 11 Punkte)** Beweise nur mit Hilfe des Pumping Lemma, dass die Sprache $A_1 \triangleq \left\{ a^j b^k c^l d^m \mid j, k, l, m \in \mathbb{N} \land ((j \mod 2 = 1 \land k > l) \lor (j \mod 2 = 0 \land l < m)) \right\}$ nicht regulär ist.

b. **(***, 6 Punkte)** Gib alle Myhill-Nerode Äquivalenzklassen für die Sprache $A_2 \triangleq \{ xy \mid x \in \{ a, b, c \}^+ \land y \in \{ b, c, d \}^+ \land |x|_a \ge |y|_d \ge 1 \}$ an. Hinweis: Die Namen der Klassen in der Form [b] genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[\ldots] = \ldots$, angegeben werden.

Matrikelnummer: _	Name:
viau ikemummer. –	Ivalile

Aufgabe 5: Modelle Kontextfreier Sprachen I

(9 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{\ a,\ b,\ c\ \}$ und die kontextfreie Sprache

$$A \triangleq \left\{ xbc^n \mid n \in \mathbb{N}^+ \land x \in \{ a, ba \}^+ \land |x|_b = n \right\}$$

a. (**, 4 Punkte) Gib eine Typ-2 Grammatik G mit L(G)=A an.

b. (**, 5 Punkte) Gib einen PDA M mit $\mathcal{L}_{\mathrm{End}}(M) = \mathcal{L}_{\mathrm{Kel}}(M) = A$ an.

Aufgabe 6: Modelle Kontextfreier Sprachen II

(16 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b, c\}$ und der PDA $M \triangleq (\{q_0, q_1, q_2, q_3\}, \Sigma, \{\Box, +, \bullet\}, \Box, \Delta, q_0, \{q_3\})$ mit Δ :

a. (*, 3 Punkte) Gib eine Ableitung von caab in M an, die zeigt, dass $caab \in L_{End}(M)$.

b. (***, 2,5 Punkte) $Gib \ L_{\rm End}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

c. (*, 3,5 Punkte) Gib eine Ableitung von bccacb in M an, die zeigt, dass $bccacb \in L_{Kel}(M)$.

d. (***, 3 Punkte) $Gib \ L_{Kel}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

e. (**, 4 Punkte) Beweise nur mit Hilfe von Abschlusseigenschaften, dass die Sprache $A \triangleq \{ a^n b^{n+1} \mid n \in \mathbb{N}^+ \}$ nicht regulär ist.

Hinweis: Es darf ohne Beweis benutzt werden, dass L(e) für einen regulären Ausdruck e regulär und $B \triangleq \{ a^n b^n \mid n \in \mathbb{N} \}$ nicht regulär aber kontextfrei ist. Sprachen L(e) für reguläre Ausdrücke e sowie Operationen auf Mengen müssen nicht berechnet oder umgeformt werden.

Matrikelnummer:	Name:	
Auf dieser Seite löse ic	n einen Teil der Aufgabe <u> </u> :	
Teilaufgabe:		

Matrikelnummer: _	Name:	
Auf dieser Seite lös	se ich einen Teil der Aufgabe — :	
	se ich enten der Aufgabe	
Teilaufgabe:		