Lecture Notes for Machine Learning in Python

Professor Eric Larson Week One, Lecture Two

Class Logistics and Agenda

- Canvas Access?
- In-Class Assignments for Distance?
- Participation for Distance?
- Anaconda Installs?
- Agenda:
 - Numpy
 - Data Quality
 - Attributes Representation
 - documents
 - The Pandas eco-system
 - loading and manipulating attributes

Demo

Jupyter Notebooks and Numpy

Data Quality

Review of Feature Data

Data Quality Problems

- Noise and outliers
 - remove if you know its noise/outlier
- Missing values
 - replace or ignore
- Duplicate data
 - clean entries or merge

Missing Values

- Reasons for missing values
 - Information is **not collected** (e.g., people decline to give their age and weight)
 - Attributes may **not be applicable** to all cases (e.g., annual income for children)
 - UCI ML Repository: 90% of repositories have missing data

HOW?

- Handling missing values
 - Eliminate Data Obiects
 - Impute Missing Values
 - Ignore the Missing Value During Analysis
 - Replace with all possible values (talk about later)

Stats: mean median mode

Imputation

- When is it probably fine to impute missing data:
 - (A) When there is not much missing data
 - (B) When the missing feature is mostly predictable from another feature
 - (C) When there is not much missing data for each subgroup of the data
 - (D) When it is the class you want to predict

Split-Impute-Combine

TID	Pregnant	ВМІ	Age	Diabetes	
1	Υ	33.6	41-50	positive	
2	Ν	26.6	31-40	negative	
3	Υ	23.3	?	positive	
4	Ν	28.1	21-30	negative	
5	Ν	43.1	31-40	positive	
6	Υ	25.6	21-30	negative	
7	Υ	31.0	21-30	positive	
8	Υ	35.3	?	negative	
9	N	30.5	51-60	positive	
10	Υ	37.6	51-60	positive	

split: pregnant

split: BMI > 32

TID	Pregnant	ВМІ	Age	Diabetes	
1	Υ	>32	41-50	positive	
8	Υ	>32	?	negative	
10	Υ	>32	51-60	positive	

Mode: none, can't impute

TID	Pregnant	ВМІ	Age	Diabetes	
3	Υ	<32	?	positive	
6	Υ	<32	21-30	negative	
7	Υ	<32	21-30	positive	

Mode: 21-30

Data Representation

Feature Type Representation

	Attribute	Representation Transformation	Comments	
ete	Nominal	Any permutation of values one hot encoding	If all employee ID numbers were reassigned, would it make any difference?	
Discrete	Ordinal	An order preserving change of values, i.e., new_value = f(old_value) where f is a monotonic function. integer	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.	
Continuous	Interval	new_value =a * old_value + b where a and b are constants float	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).	
Co	Ratio	new_value = a * old_value float	Length can be measured in meters or feet. section 4: sq	

Data Tables as Variable Representations

<u>w</u>
\overline{Q}
<u>ത</u>

TID	Pregnant	BMI	Age	Eye Color	Diabetes	
1	Y	33.6	41-50	brown	positive	
2	N	26.6	31-40	hazel	negative	
3	Y	23.3	31-40	blue	positive	
4	N	28.1	21-30	brown	inconclusive	
5	N	43.1	31-40	blue	positive	
6	Y	25.6	21-30	hazel	negative	

6

41

section 4: screen

Data Tables as Variable Representations

	D)
	\overline{C}	<u> </u>
ī	π	3
ſ		_

	_	
	Q	
	$\overline{\mathbb{Q}}$	
(Ť	
	$\overline{\sigma}$	
	$\tilde{\Box}$	
	$\stackrel{\sim}{=}$	
	Ψ	
	=	

TID	Pregnant	ВМІ	Age	Eye Color	Diabetes	
1	Υ	33.6	41-50	brown	positive	
2	Ν	26.6	31-40	hazel	negative	
3	Υ	23.3	31-40	blue	positive	
4	Ν	28.1	21-30	brown	inconclusive	
5	Ν	43.1	31-40	blue	positive	
6	Υ	25.6	21-30	hazel	negative	

TID	Binary	Float	Ordinal	Ordinal Object	
1	1	33.6	2	hash(0)	1
2	0	26.6	1	hash(1)	0
3	1	23.3	1	hash(2)	1
4	0	28.1	0	hash(0)	2
5	0	43.1	1	1 hash(2)	
6	1	25.6	0	hash(1)	O sec

42

section 4: screen

Bag of words model

TID	Pregnant	BMI Chart Notes Diabetes		Diabetes
1	Υ	33.6	Complaints of fatigue wh	positive
2	N	26.6	Sleeplessness and some	negative
3	Y	23.3	First saw signs of rash o	positive
4	N	28.1	Came in to see Dr. Steve	inconclusive
5	N	43.1	First diagnosis for hospit	positive
6	Y	25.6	N/A	negative

Vocabulary

TID	Sleep	Fatigue	Weight	Rash	First	Sight
1	0	1	0	0	2	0
2	1	1	0	0 Imbor of	1	1 rences
3	1	1	0	2	1	1

Bag of Words

section 4: screen

Feature Hashing

what happens when we get more words?

TID	Slee	Fati	Wei	Ras	First	Sigh	Why	Fox	Bro	Lazy	Dog	Etc	Stev
1	0	1	0	0	2	0	0	0	0	1	0	2	0
2	1	1	0	0	1	1	0	0	4	0	1	3	0
3	1	1	0	2	1	1	1	0	1	0	0	1	0

or we could have a hashing function, h(x) = y

TID	h(x)=1	h(x)=2	h(x)=3	h(x)=4	h(x)=5	h(x)=6
1	0	1	0	1	2	0
2	1	1	4	0	2	1
3	2	1	1	2	1	1

multiple words mapped to one feature (want to minimize collisions)

Term-Frequency, Inverse-Document-Frequency

Given a vocabulary of words:

TID	Slee	Fati	Wei	Ras	First	Sigh	Why	Fox	Bro	Lazy	Dog	Etc	Stev
1	0	0.05	0	0	0.34	0	0	0	0	1	0	0.86	0
2	0.1	0.05	0	0	0.12	0.25	0	0	1.21	0	1	1.02	0
3	0.1	0.05	0	0.27	0.12	0.25	0.02	0	0.45	0	0	0.1	0

term frequency

$$tf(t,d) = f_{td}, t \in T \text{ and } d \in D$$

inverse document frequency: normalize occurrences

$$idf(t,d) = log \frac{|D|}{|n_t|}$$
, where $n_t = d \in D$ with $t \in d$

$$tf\text{-}idf(t,d) = tf(t,d) \cdot idf(t,d)$$

$$tf\text{-}idf(t,d) = tf(t,d) \cdot (1+idf(t,d))$$
 smoothed

15

TF-IDF

- The tf-idf value can never be greater than one.
 - (A) true
 - (B) false
 - (C) it depends on IDF normalization

Demo

Sklearn and Pandas

TF-IDF

DataFrames

Loading

Indexing

Imputing

Other Tutorials:

http://vimeo.com/59324550

http://pandas.pydata.org/pandas-docs/version/0.15.2/tutorials.html

For Next Lecture

- Before next class:
 - install seaborn
 - install plotly
 - mess with pandas and look at additional tutorials
- Next Week: Data Visualization