

Universidade Federal de Santa Catarina

Centro Tecnológico

Sistemas Digitais

INE 5406

Aula 1-P

Introdução ao Fluxo de Projeto com ferramentas de EDA. Introdução à Linguagem VHDL. Descrição de um somador completo (full adder) em VHDL e síntese com o Quartus II.

Prof. José Luís Güntzel guntzel@inf.ufsc.br

Colaboração: Vinícius Livramento (Est. Docência 2010/1) vini@inf.ufsc.br

www.inf.ufsc.br/~guntzel/ine5406/ine5406.html

Número de Transistores Integrados

Processadores Intel (até 2004)

Microprocessor	Year of Introduction	Transistors
4004	1971	2,300
8008	1972	2,500
8080	1974	4,500
8086	1978	29,000
Intel286	1982	134,000
Intel386 [™] processor	1985	275,000
Intel486™ processor	1989	1,200,000
Intel® Pentium® processor	1993	3,100,000
Intel® Pentium® II processor	1997	7,500,000
Intel® Pentium® III processor	1999	9,500,000
Intel® Pentium® 4 processor	2000	42,000,000
Intel® Itanium® processor	2001	25,000,000
Intel® Itanium® 2 processor	2003	220,000,000
Intel® Itanium® 2 processor (9MB cache)	2004	592,000,000

Source: Intel Corporation.

http://www.intel.com/museum/archives/history_docs/mooreslaw.htm

A Lei de Moore

"The number of transistors incorporated in a chip will approximately double every 24 months."

Gordon Moore, Co-Founder Intel Co., 1965

Gordon E. Moore, Co-founder, Intel Corporation. Source: http://www.intel.com/museum/archives/history_docs/mooreslaw.htm

Em 1965, Gordon Moore (co-fundador da Intel) previu que o número de transistores integrados por chip dobraria a cada 24 meses.

Número de Transistores Integrados

Fonte: Rabaey; Chandrakasan; Nikolic, 2003

INE/CTC/UFSC Sistemas Digitais - semestre 2010/2 slide 1P.4

Prof. José Luís Güntzel

O "Gap" de Produtividade

Níveis de Abstração

Visões de Projeto

Descrição Estrutural

• Utiliza-se um conjunto de blocos e conexões que representam uma possível implementação do sistema eletrônico. Pode-se usar lingagem de descrição de hardware (HDL) ou esquemáticos (em papel ou usando algum editor de esquemático).

Descrição Comportamental

• Faz uso de texto em linguagem natural, HDL ou equações para descrever como o sistema eletrônico se comporta (i.e., funciona).

Descrição Física

• usada para implementaro sistema eletrônico. No caso de fabricação do chip com tecnologia CMOS, descrição das geometrias das máscaras que serão usadas no processo de litografia fina.

Níveis de Abstração de Sistemas Digitais

Nível de Transistores:

Transistores e materiais utilizados na fabricação do circuito integrado

Nível de Circuito Elétrico:

- Transistores,
- Resistores,
- Capacitores,
- Indutores e
- Fios.

Nível Lógico:

- Portas lógicas,
- Latches e
- Flip-flops.

Níveis de Abstração de Sistemas Digitais

Nível RT (Register Transfer):

- Unidades funcionais (somadores, subtratores, somadores /subtratores, multiplicadores etc)
- Rede de interconexão (fios, multiplexadores, decodificadores, barramentos, buffers tri-state)
- Registradores e blocos de memória RAM, ROM etc

Nível de Sistema:

- Processadores de uso genéricos (CPUs),
- Processadores para domínios específicos (ASIPs),
- Processadores específicos (ASICs),
- Barramentos,
- Memórias,
- Software embarcado.

Custo dos Circuitos Integrados

- 1. Custo Fixo ou Não-Recorrente (NRE)
- Independe do volume (quantidade de peças a serem produzidas), mas depende da complexidade do projeto
 - Tempo de Projeto (α complexidade, rigor dos requisitos, produtividade da equipe)
 - Produção das máscaras
 - Investimento em pesquisas...

2. Custo Variável ou Recorrente:

- Proporcional ao volume do produto e à área do chip
 - Processamento do silício, encapsulamento (packaging), teste

Custo dos Circuitos Integrados

Obs: Yield é o rendimento da fabricação

Custo do Die (Chip)

INE/CTC/UFSC Sistemas Digitais - semestre 2010/2 slide 1P.13 Prof. José Luís Güntzel

Síntese e Síntese Automática

Síntese:

Traduz uma dada descrição de um sistema eletrônico para uma nova descrição (sendo esta nova descrição em um nível inferior de abstração) por meio da adição de detalhes de implementação.

Síntese Automática:

Síntse realizada com o auxílio de ferramentas computacionais (atualmente referenciadas por ferramentas de **EDA-** *Electronic Design Automation*).

Histórico

- Criada sob encomenda do Departamento de Defesa dos EUA (DoD)
 - 1981: DoD patrocina encontro de especialistas para discutir métodos para projeto de CIs.
 - 1983: Definição dos requisitos da linguagem. DoD assina contrato com IBM + TI + Intermetrics para desenvolvimento da linguagem e ferrramentas.
- Padronizada pelo IEEE (*The Institute of Electrical and Electronics Engineers*)
 - Padrão IEEE 1076-1987 (primeiro padrão industrial)
 - Padrão IEEE 1164-1993 (introduz novos tipos de dados, tal como std logic e std logic vector)

Características

- O nome:
 - VHDL = VHSIC Hardware Description Language
 - VHSIC = Very High Speed Integrated Circuits
- A sintaxe: similar à linguagem Ada
- Objetivos iniciais:
 - Permitir a especificação de circuitos de forma não ambígua (modelagem).
 - Facilitar a documentação de circuitos complexos.
 - Servir de entrada para ferramentas computacionais de **simulação**.
- Objetivo contemporâneo:
 - Serve de entrada para ferramentas de síntese automática e de validação com métodos formais.

- Características: Síntese a Partir de VHDL
 - Descrições VHDL no nível RT são 100% sintetizáveis
 - Síntese a partir de descrições VHDL comportamentais dependem:
 - Das construções VHDL utilizadas no código.
 - Da ferramenta de síntese utilizada.

Primeiros Conceitos

Uma descrição VHDL é dividida em duas partes fundamentais:

- 1) Entidade (Entity) Descreve a interface do sistema digital descrito com o mundo externo. Apresenta a definição dos pinos de entrada e saída.
- 2) Arquitetura (Architecture) Descreve o comportamento ou a estrutura do sistema digital. Define como a função do sistema é realizada.

Exemplo: um Full Adder

LIBRARY ieee; USE ieee.std_logic_1164.all;

ENTITY somador1bit IS

PORT (cin, a, b : IN STD_LOGIC;

s, cout : OUT STD_LOGIC);

END somador1bit;

ARCHITECTURE comportamento OF somador1bit IS BEGIN

s <= a XOR b XOR cin;
cout <= (a AND b) OR (a AND cin) OR (b AND cin);
END comportamento;</pre>

Alguns Tipos de Dados em VHDL

tipo	valores	comentário
boolean	{false, true}	Nativa da linguagem
bit	{0,1}	Nativa da linguagem
std_logic	$\{0, 1, -, Z\}$	Implementada no pacote std_logic_1164
std_logic_vector	$\{0, 1, -, Z\}$	Implementada no pacote std_logic_1164;
		Vetor de std_logic

Fluxo de Projeto para FPGAs

Experimento 1: descrição/compilação e simulação de um SC

Organizando o Ambiente de Trabalho no Computador

1. Na pasta Meus_documentos, criar uma pasta com o seu nome (p. ex., "Paulo"). Na pasta "Paulo", criar uma pasta com nome de "somador1bit".

Obs: jamais crie seus projetos na mesma pasta onde o Quartus II ou o ModelSim estão instalados!

Experimento 1: descrição/compilação e simulação de um SC

Invocando o Quartus II e Criando um Projeto

- Invocar o Quartus II (a partir do ícone na área de trabalho, ou a partir do "Iniciar->Programas" do windows, sub-menu "Altera").
- 3 Na janela "Get Started With Quartus II Software", selecionar "Create New Project"
- 4 Clicar em "Next".
- 5 Selecionar o caminho para a pasta criada no passo 1 (clicando no botão identificado com "...").
- 6 Na caixa de diálogo identificada por "What is the name of this project", escrever "somador1bit".
- 7 Clicar em "Next". Clicar em "Next" novamente.
- Na caixa de diálogo "Device Family", selecionar "Cyclone II". Na lista identificada por "Available Devices", selecionar EP2C35F672C6. Clicar em "Next". (Ver próximo slide.)

Experimento 1: descrição/compilação e simulação de um SC

Selecionar "Cyclone II"

Selecionar "EP2C35F672C6"

Após, clicar em "Next"

- Experimento 1: descrição/compilação e simulação de um SC Invocando o Quartus II e Criando um Projeto (cont.)
 - 9. Na caixa de diálogo "Simulation", selecionar "ModelSim-Altera". Clicar em Next.
 - 10. Clicar em "Finish". (Ver próximo slide.)

Experimento 1: descrição/compilação e simulação de um SC

Após, clicar em "Next"

Experimento 1: descrição/compilação e simulação de um SC

Criando um Arquivo VHDL

- 11. No menu "File" (canto superior esquerdo da janela do Quartus II), selecionar "New". Selecionar "VHDL File" e clicar em "OK".
- 12. Copiar o arquivo VHDL do slide 1P.19 (usar copy-paste).
- 13. No menu "File" (canto superior esquerdo da janela do Quartus II), selecionar "Save as". Certificar-se que o nome do arquivo seja igual ao nome da entidade (neste caso, "somador1bit"). Clicar em "OK".

Obs: este projeto terá apenas um arquivo VHDL. Porém, projetos mais complexos podem ter diversos arquivos VHDL. Neste caso, cada arquivo VHDL deverá ser editado e salvo e será importante certificar-se de que todos os arquivos foram incluídos no projeto. Para isso, deve-se clicar na opção "Project" do menu superior do Quartus e selecional "Add/Remove Files in Project...".

Experimento 1: descrição/compilação e simulação de um SC

Compilando um Projeto

- 14. No menu "Processing" (aba superior da janela do Quartus II), selecionar "Start Comoilation". (Ou clicar no triângulo roxo, na aba superior).
- 15. Aguardar a mensagem "Full Compilation was Successfull" (*warnings* são normais) ou a mensagem de erros (quando houver erros no VHDL).
- 16. Anotar os seguintes dados mostrados na janela "Compilation Report Flow Summary":
 - Total combinational functions:
 - Dedicated logic elements:
- 17. Anotar os seguintes dados mostrados na janela "Message" (procurar pela linha que inicia por "Longest tpd from ..."):
 - tpd:
 - Source pin
 - Destination pin:

Experimento 1: descrição/compilação e simulação de um SC

Preparação dos Estímulos para a Simulação

Solução trivial (ingênua): Transformar a tabela-verdade em formas de onda

cin	а	b	cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Observações:

- 1. Preencher a mão as waveforms (formas de onda) esperadas para as saídas para confrontá-la com o resultado da simulação.
- 2.T deve ser maior que "longest tpd" reportado pelo Quartus II.