

Genomic Data Processing and Machine Learning Workflows using Spark

Epinomics

Anupama Joshi

Matei Negulescu

Epinomics

A platform that drives **personalized medicine** by leveraging big data analytics and proprietary **epigenomic** technology.

What is Epigenomics?

Instructions encoded within non-coding sequence

Typical Genomic data

- Typical genomic sequencing data contains the protein letters
 ATCG .
- Most research work focuses on variation from standard genome sequences.

Epigenomic Data

Fragment Data

Single fragment where DNA was accessible during the experiment.

Peaks Data

Aggregated regions of the genome where DNA was accessible during the experiment.

chr1	713701	714600	peak.1	899	+
chr1	804976	805650	peak.2	674	+

Genomic Data Growth

Stephens, et al., Big Data: Astronomical or Genomical? (2015)

Data @ Epinomics

Goal: A Map of Human Health

Assessing data quality

Finding patterns in the data

- Clusters of similar data
- Significant differences between groups
- Finding unique fingerprints

Actionable Insight

Diagnostics, new drugs, dosage, safety

Unsupervised Patterns of Accessibility

Process and
Consolidate Peaks

Store Peaks/Sample

Clustering Samples based on Peaks

Find Differences between Sample Groups

Peaks Processing

Each sample will have between 150K to 200K peaks
A typical biological experiment can have between 10 to 200 samples.
Consolidate and process overlapping peaks

Source -: http://bedtools.readthedocs.io/

A typical experiment will have between 300K to 600k overlapping peaks. (depending on dataset and sequencing depth)

Peaks Processing

Merges overlapping peaks of two genomic ranges vectors using GraphX library

Nodes are peaks and edges are overlaps

- Map all genomic ranges to Tuples where key is seq name and strand and genomic range
- All genomic ranges are grouped by key from step above which gives us in next step all sequences with seqname and strand filtered (String, Iterable<GRanges>)
- Include sorting Iterable<GRanges> by start position in order to implement algorithm, which will help merging ranges
- 4. Merge CT peaks in the way:
 - a. If overlap ratio is >75 then join them into new gene:
 Overlap ratio is calculated for two genomic gRange with same seqname and strand like:

ratio = overlap_width/width if overlap more than 75% then new gRange is created with range:

```
new IRanges(math.min(_coordinates._start, grange._coordinates._start),
math.max(_coordinates._end, grange._coordinates._end)),
```

5. Empty ranges are removed (where end=start-1)

```
val graph = Graph(jointPeaks,
edges).partitionBy(PartitionStrategy.EdgePartition1D)
  val peakRatio = sc.broadcast(cutoffRatio)
  val subgraphs = graph.connectedComponents().vertices
  jointPeaks.join(subgraphs)
    .map(item => item._2.swap)
    .redyceByKey()__
    .map(item => { ....
```


Unsupervised Learning

Unsupervised Learning

Supervised Learning – Cell composition

Epigenome of each cell-type is unique fingerprint

Mixed sample's signature can be deconvolved into pure cell type signals

Corces et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution

Supervised Learning – Cell composition

Cell type signature Number of reads at specific sites

Sample signature

Number of reads at specific sites

Supervised Learning – Cell composition

Cell-type specific Regions

Reference Regions

Count Fragments in
 → these regions per
 Sample

Clinical sample with mixed cells

Deconvolve to describe Cell-type composition

Composition of Cells in Sample

Counting Reads within Windows

Counting Reads within Windows

Counting Reads – Range joins

Building a Personalized Medicine Workflow

Conclusion

Epinomics is building a map of human health through epigenomics.

ML pipelines combine Spark processing with traditional computing and algorithms.

Spark helps to process tens of TB of genomic data for personalized medicine applications.

Thank You.

Anupama Joshi – <u>anupama.joshi@gmail.com</u> Matei Negulescu – <u>mnegules@uwaterloo.ca</u>