Лекция 4

Криптосистемы с открытым ключом, кодирующие слова произвольной длины

(Конспект: К. Ушаков)

4.1 Семантическая надежность и неразличимость

В прошлой лекции мы научились кодировать ровно один бит. Теперь нам хочется закодировать более одного бита, ибо мы породили большой ключ, а с его помощью закодировали всего один бит, что обидно. К сожалению, когда мы давали определение криптосистемы, мы определяли e и d как схемы, которые построены по параметру надежности, а про длину кодового слова ничего не знают. Так что если мы хотим получить криптосистему, которая кодирует слова произвольной длины, то мы должны добавить к ней два полиномиальных по времени детерминированных (т.е. случайная строка будет для них одним из параметров) алгоритма E и D, которые будут заниматься тем, что применять e и d к сообщениям произвольной длины:

$$E(m, e, r_e),$$

$$D(d, r_d)$$
.

(Старое определение для однобитовых сообщений получится, если положить E(m,e,r)=e(m,r) и D(c,d,r)=d(c,r).)

Замечание 4.1. Можно было бы поступить иначе: можно было бы генератор заставить получать на вход security parameter и длину сообщения, тогда генератор выдавал бы схемы не для кодирования одного бита, а для кодирования сообщения определенной длины. Это было бы красиво, но неудобно.

Для криптосистемы, кодирующей один бит, было понятное определение того, что значит, что ее взламывают (отличают 0 от 1 с хорошей вероятностью). Для криптосистем, которые кодируют слова произвольной длины, имеется два определения: semantic security (на вид — более сильное) и indistinguishability (с ним проще работать).

Определение 4.1 (Semantic Security). Криптосистема называется семантически надежной, если $\forall h \ \forall f \ \forall C_S \ \forall p \ \exists \widetilde{C_S} \ \forall M_S$

$$\Pr\{C_S(E(m, e, r_e), e, f(m)) = h(m)\} \le \Pr\{\widetilde{C}_S(e, f(m)) = h(m)\} + \frac{1}{p(n)},$$

где f и h — полиномиально вычислимые функции, M_S , C_S и $\widetilde{C_S}$ — некоторые «противники» (заданные схемами полиномиального размера), а p — многочлен. Здесь все желающие (включая f и h) получают на вход также 1^n и $1^{|m|}$, но мы этого не пишем, чтобы не загромождать обозначения. Сообщения генерируются как $M_S(1^n)$. Вероятность берется по r_g , r_e и M_S .

Определение 4.2 (Indistinguishability). Криптосистема называется *неразличимой*, если для любого генератора пар сообщений M_I и любого «противника» C_I (заданных схемами полиномиального размера), а также для любого многочлена p

$$\Pr\{C_I(E(e, m_i, r_e), e, 1^n, m_0, m_1) = i\} < \frac{1}{p(n)} + \frac{1}{2},$$

где (m_0,m_1) генерируется как $M_I(1^n)$. Вероятность берется по $r_g,\,r_e,\,i\in\{0,1\}$ и случайным битам M_I .

Теорема 4.1. Определения семантической надежности и неразличимости равносильны.

Доказательство. Сложная сторона ↑.

Идея: пусть есть функция, которую мы умеем угадывать (от противного), тогда построим два такие сообщения m_0 и m_1 , что $h(m_0) \neq h(m_1)$ и C_I , использующий наш вычислитель функции h, с хорошей вероятностью различает эти сообщения (M_I ровно эту пару и будет порождать).

Пусть у нас есть C_S , такой что $C_S(...,m)=h(m)$ с хорошей вероятностью. Сначала определим M_I : он всегда генерирует пару сообщений (m_0,m_1) (существование подходящих нам m_0 и m_1 мы докажем позже). Различающий же C_I будет работать следующим образом: выдавать 0, если $C_S(\ldots,f(m_0),m)=h(m_0)$ (обратите внимание, что здесь C_S опять получает на вход $f(m_0)$, а не f(m), это позволяет зашить $f(m_0)$ в схему C_I раз и навсегда для данного n); и равновероятно 0 или 1, если $C_S(m)$ выдал что-то другое. Обозначим $p_k(x)=\Pr\{C_S(\ldots,f(x),x)=k\}$, $q_k(x)=\Pr\{C_S(\ldots,f(m_0),x)=k\}$ и $h_i=h(m_i)$.

 $\Pr\{\text{успеха } C_I\} =$

$$\Pr\{\text{дали }m_0\}\cdot \left(p_{h_0}(m_0)+\frac{1}{2}(1-p_{h_0}(m_0))\right)+\Pr\{\text{дали }m_1\}\cdot \left(\frac{1}{2}(1-q_{h_0}(m_1))\right)=\frac{1}{2}(1+p_{h_0}(m_0)-q_{h_0}(m_1))$$

Докажем, что действительно существуют m_0 и m_1 , для которых вероятность успеха будет больше, чем $\frac{1}{\text{poly}(n)} + \frac{1}{2}$.

Предположим противное, т.е. пусть для всех пар (m_0, m_1) вероятность успеха мала:

$$p_{h_0}(m_0) - q_{h_0}(m_1) < \frac{1}{\text{poly}(n)}.$$

Просуммируем по всем возможным m_0 и m_1 (с весами, соответствующими вероятностям сообщений согласно M_S), используя сокращение $p(x) = \Pr\{M_S(1^n) = x\}$:

$$\sum_{m_0, m_1} p(m_0) p(m_1) (p_{h_0}(m_0) - q_{h_0}(m_1)) =$$

$$= \left(\sum_{x} p(x) p_{h(x)}(x) - \sum_{m_1, m_2} p(m_0) p(m_1) q_{h(m_0)}(m_1) \right).$$

Перепишем второе слагаемое: пусть $H_k = \{x | h(x) = k\}$, тогда второе слагаемое равно

$$\sum_{k} \sum_{m_0 \in H_k} \sum_{m_1} p(m_0) p(m_1) q_k(m_1) = \dots$$

(из под суммы по m_1 можно вынести $p(m_0)$, а из под суммы по m_0 можно вынести сумму по m_1)

... =
$$\sum_{k} \left(\left(\sum_{m_1} p(m_1) q_k(m_1) \right) \sum_{m_0 \in H_k} p(m_0) \right) = \sum_{k} \left(\mu_k \left(\sum_{m_1} p(m_1) q_k(m_1) \right) \right),$$

где $\mu_k = \Pr\{M_S(1^n) \in H_k\}$. Таким образом, после преобразования второго слагаемого наша разность принимает вид

$$\sum_{x} p(x)p_{h(x)}(x) - \sum_{k} \left(\mu_k \left(\sum_{m_1} p(m_1)q_k(m_1) \right) \right)$$

Первое слагаемое — вероятность того, что старый взломщик правильно угадывает h. А второе слагаемое — вероятность того, что следующий самоуверенный (работающий без зашифрованного сообщения) взломщик угадывает h: он берет случайное сообщение, шифрует его, запускает старого вломщика C_S (используя $f(m_0)$ в аргументе!) и выдает ответ. Разность двух этих вероятностей меньше $\frac{1}{\text{poly}(n)}$, а мы предполагали, что C_S взламывает нашу криптосистему... противоречие!

↓ Легкая сторона.

Пусть есть противник, который умеет различать закодированые слова m_0 и m_1 (вообще говоря, это случайные переменные, порожденные M_I , но мы выберем именно ту пару, на которой вероятность различить максимальна). Мы научимся угадывать функцию h: $h(m_i)=i$, а что в других точках — несущественно, ибо мы будем генерировать только m_i . Есть взломщик C_I , построим по нему C_S . Наш новый взломщик, естественно, будет запускать старого, но ему еще надо дать на вход пару (m_0, m_1) . Это не проблема: пару мы зашьем в нового взломщика (благо он — схема). Ломать он будет с вероятностью $\frac{1}{2} + \frac{1}{\text{poly}(n)}$. Но нам надо, чтобы разность его вероятности и вероятности «самоуверенного» взломщика была $\frac{1}{\text{poly}(n)}$. А какова же вероятность взлома для самоуверенного взломщика? На вход он никакой информации об $i \in \{0,1\}$ не получает, т.е. ему надо угадать исход эксперимента подбрасывания симметричной монеты, так что вероятность его успешной работы — $\frac{1}{2}$.

4.2 Генераторы псевдослучайных чисел

Определение 4.3. $G: \{0,1\}^k \to \{0,1\}^{f(k)}$, где f(k) > k, называется f(k)-генератором псевдослучайных чисел (f(k)-РRG), если для любого полиномиального по времени вероятностного алгоритма A, для любого многочлена p выполняется

$$|\Pr\{A(G(x)) = 1\} - \Pr\{A(y) = 1\}| < \frac{1}{p(k)},$$

где вероятность берется по случайным числам A и по равномерно распределенным $x \in \{0,1\}^k$ и $y \in \{0,1\}^{f(k)}$.

Существование PRG эквивалентно существованию owf. В следующей лекции мы это (частично) докажем. А воспользуемся уже сейчас следующим вариантом этого утверждения (докажем его на следующей лекции).

Утверждение 4.1. Если g- oдносторонняя перестановка (т.е. инъ-ективная owf), сохраняющая длину, <math>B- ee mpyдный бит, то

$$G(x) = \left(g^{f(k)-k}(x), B(x), B(g(x)), ..., B(g^{f(k)-k-1}(x))\right)$$

является f(k)-генератором.

Построим криптосистему для кодирования более одного бита. Пусть g — кодирующая функция tdpf, B — ее трудный бит. Пусть

$$E(b_1 \dots b_m, g, r) = (g^m(r), B(r) \oplus b_1, B(g(r)) \oplus b_2, \dots),$$

где $b_1 ldots b_m$ — сообщение, r — случайные биты. Заметим, что длина зашифрованного сообщения O(m+n), где n — параметр надежности¹. Как мы раскодируем? Есть g, значит мы можем узнать r, т.е. мы сможем узнать $B(\ldots(r))$, после чего мы возьмем XOR с кодом и получим исходное сообщение.

Почему то, что получилось, — надежная криптосистема? Предположим, что это не так. Вспомним определение неразличимости. Кто-то умеет различать коды двух разных сообщений u и v. Это означает, что одно из них (пусть u) можно отличить от случайного сообщения.

Упражнение 4.1. Вообще-то неразличимость у нас определялась не как разница вероятностей, а как выбор из двух поданных на вход сообщений; как последнюю фразу превратить в строгое доказательство?

Тогда мы сможем отличить выход генератора из утверждения 4.1 от случайных чисел: в первом случае мы, воспользовавшись данным нам выходом генератора, зашифруем u; во втором случае при попытке зашифровать u мы получим код случайного сообщения.

K сожалению, u придётся зашить в эту схему сведения, поэтому данная схема является надёжной (против булевых схем), если исходное tdpf было надёжным $npomus\ булевых\ cxem$.

 $^{^1\}dots$ или O(m+p(n)), если tdpf разрешается работать на строках длины, отличной от n.