Math 123

Homework #10

Chapter 10, 1 and 4

1. For each of the following systems, identify all points that lie in either an ω - or an α - limit set

(a)
$$r' = r - r^2, \theta' = 1$$

We have no equilibria except at origin

$$r'=0$$
 when $r=r^2$,

so
$$r=1$$

The unit circle is a periodic solution

when r > 1:

$$r^2 > r \implies r - r^2 < 0$$
, so $r' < 0$

which means solutions that begin outside the unit disk radially decrease until they get to r=1,

when r < 1:

$$r^2 < r \implies r - r^2 > 0$$
, so $r' > 0$

so solutions inside the unit disk radially increase until r=1

so we have that all solutions tend towards the unit circle (periodic solution)

 ω -limit of all solutions is the periodic solution at the unit circle

if solutions start on the unit circle, their α -limits are also the periodic solution on the unit circle

The lpha limit for solutions that start outside of the unit disk: ∞ since when moving backwards, r'>0

the lpha limit for solutions that start inside of the unit disk: origin, since r' < 0 when $r < 1 \implies r \to 0$

(b)
$$r' = r^3 - 3r^2 + 2r, \theta' = 1$$

again, no equilibria except at origin

$$r'=0$$
 when $r^3-3r^2+2r=0$

so
$$r(r^2 - 3r + 2) = 0 \equiv r(r - 2)(r - 1) = 0$$

so at r = 1, r = 2 we have periodic solutions

for ω -limits:

if
$$0 < r < 1$$
:

$$(r-2)(r-1) > 0$$
, so $r' > 0$

so solutions that begin inside the unit circle tend towards the unit circle

if 1 < r < 2

$$r-2 < 0$$
, but $r-1 > 0$

so r' < 0, so all solutions that begin inside the circle of radius 2 tend towards the unit circle

if r > 2, r' > 0, so solutions tend towards infinity

When we go backwards in time:

solutions that begin inside the unit circle tend towards origin

solutions that begin outside the unit circle but inside the circle with radius 2 tend towards the circle of radius 2

solutions that begin outside the circle of radius 2 tend towards the circle of radius 2

(c)
$$r' = \sin r$$
, $\theta = -1$

r'=0 whenever $r=\pi+2\pi k$ or $r=2\pi k$ for some nonnegative integer k

the only equilibrium solution is at origin

we have periodic solutions at $\pi + 2\pi k$ and $2\pi k$ for any nonnegative integer k

if
$$2\pi k < r < \pi + 2\pi k$$
,

so solutions that start in this annulus all tend towards the circle with radius $\pi+2\pi k$

if
$$\pi + 2\pi k < r < 2\pi(k+1)$$

so solutions that begin in this annulus tend towards $\pi + 2\pi k$

 ω limits are the circles of radius $\pi+2\pi k$

going backwards in time

all solutions tend to some circle with radius $2\pi k$

lpha limits are the circles of radius $2\pi k$ and origin

(d)
$$x' = \sin x \sin y$$
, $y' = -\cos x \cos y$

$$x' = 0$$
:

x=0 mod 2π or y=0 mod 2π or $x=\pi$ mod 2π of $y=\pi$ mod 2π

likewise, y'=0 whenever x or y equal $\pi/2 \mod 2\pi$ or $3\pi/2 \mod 2\pi$

we have equilibrium at

$$(0, \pi/2)$$
, $(0, 3\pi/2)$, $(\pi, \pi/2)$, $(\pi, 3\pi/2)$

$$(\pi/2,0)$$
, $(\pi/2,\pi)$, $(3\pi/2,0)$, $(3\pi/2,\pi)$

(adding $2\pi k$ for any $k\in\mathbb{Z}$)

equilibrium points are their own ω , α sets

x' < 0

 $0 < x < \pi$ AND $\pi < y < 2\pi$

Or

 $\pi < x < 2\pi$ AND $0 < y < \pi$

x' > 0

 $0 < x < \pi$ AND $\pi < y < 2\pi$

Or

 $\pi < x < 2\pi$ AND $\pi < y < 2\pi$

(mod 2π)

y' < 0

 $-\pi/2 < x < \pi/2$ AND $-\pi/2 < y < \pi/2$

OR

 $\pi/2 < x < 3\pi/2$ and $\pi/2 < y < 3\pi/2$

y' > 0

 $-\pi/2 < x < \pi/2$ AND $\pi/2 < y < 3\pi/2$

OR

 $\pi/2 < x < 3\pi/2$ AND $-\pi/2 < y < \pi/2$

 $(\text{mod } 2\pi)$

 $(0,\pi/2)$ is a source (α)

 $(0,3\pi/2)$ is a sink (ω)

 $(\pi,\pi/2)$ is a sink (ω)

 $(\pi, 3\pi/2)$ is a source (α)

 $(\pi/2,0)$ is a saddle (ω and α)

solutions tend towards it from the northwest or the southeast

 $(\pi/2,\pi)$ is a saddle (ω and α)

solutions tend towards it from the northeast or the southwest

 $(3\pi/2,0)$ is a saddle (ω and α)

solutions tend towards it from the northeast or the southwest

 $(3\pi/2,\pi)$ is a saddle (ω and α)

solutions tend towards it *from* the northwest or the southeast