State Space Reduction For Parity Automata

Andreas Tollkötter Supervisor: Dr. Christof Löding

January 11, 2019

Overview

We establish the notion of **merger functions**. Using that definition, we present three of our newly developed heuristic techniques to reduce the number of states in deterministic parity automata.

Overview

We establish the notion of **merger functions**. Using that definition, we present three of our newly developed heuristic techniques to reduce the number of states in deterministic parity automata.

- 1. Deterministic Parity Automata
- 2. Why do we need heuristic reduction?
- 3. Merger functions as a framework
- 4. Delayed Simulation
- 5. Congruence Path Refinement
- 6. Labeled SCC Filter

Table Of Contents

- Deterministic Parity Automata
- 2 Why do we need heuristic reduction?
- Merger functions as a framework
- 4 Delayed Simulation
- 5 Congruence Path Refinement
- 6 Labeled SCC Filter

ω -automata

 ω -words are words of one-sided infinite length: $\alpha \in \Sigma^{\omega} \Leftrightarrow \alpha : \mathbb{N} \to \Sigma$ a^{ω} , $aa(ba)^{\omega}$, $(abc)^{\omega}$

 ω -automata are finite transition structures that describe a language $L(\mathcal{A})\subseteq \Sigma^\omega$ $\{a^nb^\omega\mid n\in\mathbb{N}\}$

Deterministic parity automata (DPA):

- ► State set Q
- Alphabet Σ
- ▶ Transition function $\delta: Q \times \Sigma \rightarrow Q$
- ▶ Priority function $c: Q \rightarrow \mathbb{N}$

An ω -word α starting in a state $q_0 \in Q$ induces a run $q_0q_1q_2...$ The DPA accepts α iff the **smallest** priority that occurs infinitely often in the sequence $c(q_0)c(q_1)c(q_2)...$ is **even**.

Table Of Contents

- Deterministic Parity Automata
- 2 Why do we need heuristic reduction?
- Merger functions as a framework
- 4 Delayed Simulation
- 5 Congruence Path Refinement
- 6 Labeled SCC Filter

Why do we need heuristic reduction?

Goal: Reduce number of states in the automaton to ease run time of follow up algorithms.

Minimization Problem: Given an automaton \mathcal{A} , what is the smallest number of states required to recognize the same language as \mathcal{A} ? For deterministic finite automata (on finite words): Minimization is solvable in $\mathcal{O}(n \log n)$.

For DPAs: Minimization is NP-hard. []

Moore Minimization

A DPA can be interpreted as a Moore automaton with c being the output function.

Theorem.

Deterministic Moore automata can be minimized in log-linear time.

Idea: Compute equivalence \equiv_M with $p \equiv_M q$ iff

 $\forall w \in \Sigma^* : c(\delta^*(p,w)) = c(\delta^*(q,w))$. Build the quotient automaton w.r.t.

 \equiv_M .

The same algorithm can be used to reduce DPAs but will not give minimal DPAs in general.

Table Of Contents

- Deterministic Parity Automata
- 2 Why do we need heuristic reduction?
- Merger functions as a framework
- 4 Delayed Simulation
- 5 Congruence Path Refinement
- 6 Labeled SCC Filter

Merger functions

Definition.

Let $\mathcal{A} = (Q, \Sigma, \delta, c)$ be a DPA. A **merger function** is a function $\mu: D \to 2^Q \setminus \{\emptyset\}$ such that

- all sets in D are pairwise disjoint
- ▶ for all $X \in D$, $\mu(X) \cap (U \setminus X) = \emptyset$, where $U = \bigcup D$

$$\mu(M) = C$$

Merge all states in $M \subseteq Q$ into any one representative of $C \subseteq Q$.

For a congruence relation \sim , the quotient automaton is defined by state set $Q_{\sim} = \{[q]_{\sim} \mid q \in Q\}$.

This is captured by the merger function $\mu_{\div}: Q_{\sim} \to 2^Q, \kappa \mapsto \kappa$.

Table Of Contents

- Deterministic Parity Automata
- 2 Why do we need heuristic reduction?
- Merger functions as a framework
- 4 Delayed Simulation
- 5 Congruence Path Refinement
- 6 Labeled SCC Filter

Delayed Simulation

Definition.

 $p \equiv_{de} q$ iff for all $w \in \Sigma^*$, every run that starts in $\delta^*(p, w)$ or $\delta^*(q, w)$ eventually sees a priority of at most min $\{c(\delta^*(p, w)), c(\delta^*(q, w))\}$.

Definition.

Let $\mathfrak{C}_{\sf de}=\{[q]_{\equiv_{\sf de}}\mid q\in Q\}$ be the set of $\equiv_{\sf de}$ -equivalence classes. Define the **delayed simulation merger** as

$$\mu_{\mathsf{de}}: \mathfrak{C}_{\mathsf{de}} \to 2^{\mathbf{Q}}, \kappa \mapsto \{q \in \kappa \mid c(q) = \min c(\kappa)\}.$$

Theorem.

Merging states according to μ_{de} preserves language.

Computing Delayed Simulation

We define a deterministic Büchi automaton \mathcal{G}_{de} such that $p \equiv_{de} q$ iff both $L(\mathcal{G}_{de}, q_{de}^0(p,q))$ and $L(\mathcal{G}_{de}, q_{de}^0(q,p))$ are universal, i.e. Σ^ω . This automaton uses the state set $Q_{de} = Q \times Q \times (c(Q) \cup \{\checkmark\})$. Computing states of universal language in a DBA requires linear time.

Theorem.

 \equiv_{de} can be computed in $\mathcal{O}(n^2k)$.

Delayed Simulation Automaton

```
\mathcal{G}_{\mathsf{de}} = (Q_{\mathsf{de}}, \Sigma, \delta_{\mathsf{de}}, F_{\mathsf{de}})
States are Q_{\mathsf{de}} = Q \times Q \times (c(Q) \cup \{\checkmark\}).
```

The first two components are a "simulation" of the original DPA. The third component are the so called "obligations".

Transitions δ_{de} .

The first two components mimic the transitions of \mathcal{A} . The third component is defined by $\gamma: Q_{\mathsf{de}} \times \Sigma \to c(Q) \cup \{\checkmark\}$. (next slide) Accepting states are $F_{\mathsf{de}} = Q \times Q \times \{\checkmark\}$.

Delayed Simulation Automaton: γ

```
Let 0 \le_{\checkmark} 1 \le_{\checkmark} 2 \le_{\checkmark} \cdots \le_{\checkmark} \checkmark. For p, q \in Q, k \in c(Q) \cup \{\checkmark\}, a \in \Sigma, set \gamma((p, q, k), a) = \gamma'(\delta^*(p, a), \delta^*(q, a), k), where \gamma' is defined as follows: If any of the following is true, then \gamma'(i, j, k) = \checkmark.
```

- ightharpoonup i is odd, j is even, and $i \leq_{\checkmark} k$
- ightharpoonup i is odd, j is even, and $j \leq_{\checkmark} k$
- ▶ *i* is odd, *j* is odd, $j \ge i$, and $i \le_{\checkmark} k$
- ▶ *i* is even, *j* is even, $j \le i$, and $j \le_{\checkmark} k$

Otherwise,
$$\gamma'(i,j,k) = \min_{\leq_{\checkmark}} \{i,j,k\}.$$

 $q_{de}^{0}(p,q) = (p,q,\gamma'(c(p),c(q),\checkmark)).$

Delayed Simulation Automaton

A DPA with 5 states. We want to check whether $q_0 \equiv_{de} q_1$ is true.

Delayed Simulation Automaton

Efficiency

Delayed Simulation state reduction on a DPA with $|\Sigma|=2$ that was created by nbautils from an NBA.

Table Of Contents

- Deterministic Parity Automata
- 2 Why do we need heuristic reduction?
- Merger functions as a framework
- 4 Delayed Simulation
- 5 Congruence Path Refinement
- 6 Labeled SCC Filter

Congruence Path Refinement

Definition.

Let \sim be a congruence relation and let $\lambda \subseteq Q$ be an equivalence class of \sim .

We define $L_{\lambda \leftarrow} \subseteq \Sigma^*$ as the set of all words such that the induced run from a state in λ moves back to λ exactly once and ends there.

The **path refinement** equivalence $\equiv_{\mathsf{PR}}^{\lambda}$ is the largest relation such that if $p \equiv_{\mathsf{PR}}^{\lambda} q$, then for all $w \in L_{\lambda \hookleftarrow}$, $\delta^*(p,w) \equiv_{\mathsf{PR}}^{\lambda} \delta^*(q,w)$ and the smallest priority seen when reading w is the same from p and from q.

Path Refinement Relation

Potential choices for λ are the equivalence classes of \equiv_L : $\{q_0, q_1\}, \{q_2, q_4\}, \text{ or } \{q_3\}.$

Path Refinement Merger

Definition.

Let $\mathfrak{C}^\lambda_{\sf PR}=\{[q]_{\equiv^\lambda_{\sf PR}}\mid q\in Q\}$ be the set of $\equiv^\lambda_{\sf PR}$ -equivalence classes. Define the **path refinement merger** as

$$\mu_{\mathsf{PR}}^{\lambda}: \mathfrak{C}^{\lambda}_{\mathsf{PR}} \to 2^{Q}, \kappa \mapsto \{q \in \kappa \mid c(q) = \min c(\kappa)\}.$$

Theorem.

If all states in λ are pairwise language equivalent, merging states according to μ_{PR}^{λ} preserves language.

Computing Path Refinement

Definition.

Define the **visit graph** DPA $\mathcal{A}_{\text{visit}}^{\lambda} = (Q_{\text{visit}}^{\lambda}, \Sigma, \delta_{\text{visit}}^{\lambda}, c_{\text{visit}}^{\lambda}).$

$$\delta_{\mathsf{visit}}^{\lambda}((q,k,k'),a) = \begin{cases} (q',\min\{k,c(q')\},-1) & \text{if } q' \notin \lambda \\ (q',c(q'),\min\{k,c(q')\}) & \text{if } q' \in \lambda \end{cases}, \text{ where } q' = \delta(q,a).$$

States consist of three components $q \in Q \times c(Q) \times (c(Q) \cup \{-1\})$.

The first component "simulates" the original automaton ${\mathcal A}.$

The second component tracks the minimal priority seen on one run from λ to λ .

The third component is required to distinguish the different priorities.

Computing Path Refinement

Moore equivalence in $\mathcal{A}_{\mathrm{visit}}^{\lambda}$ corresponds to path refinement equivalence in $\mathcal{A}.$

Theorem.

$$p \equiv_{PR}^{\lambda} q \text{ iff } (p, c(p), \max c(Q)) \equiv_{M} (q, c(q), \max c(Q)).$$

Theorem.

 \equiv_{PR}^{λ} can be computed in $\mathcal{O}(k^2 n \log n)$.

Visit Graph

Potential choices for λ are the equivalence classes of \equiv_L : $\{q_0, q_1\}, \{q_2, q_4\}, \text{ or } \{q_3\}.$

Visit Graph

$$\mathcal{A}_{\mathsf{visit}}^{\{q_2,q_4\}}$$

Efficiency

Path Refinement state reduction on a DPA with $|\Sigma|=2$ that was created by nbautils from an NBA.

Table Of Contents

- Deterministic Parity Automata
- 2 Why do we need heuristic reduction?
- Merger functions as a framework
- 4 Delayed Simulation
- 5 Congruence Path Refinement
- 6 Labeled SCC Filter

Labeled SCC Filter

Definition.

Define $\equiv_M^{\leq k}$ as the Moore equivalence that considers all priorities **greater** than k to be equal.

$$p \equiv_M^{\leq k} q$$
 iff for all $w \in \Sigma^*$: $c(\delta^*(p, w)) = c(\delta^*(q, w))$ or $k < c(\delta^*(p, w)), c(\delta^*(q, w)).$

Definition.

Let \sim be an equivalence relation and $k \in \mathbb{N}$. We define the LSF relation $p \equiv_{\mathsf{LSF}}^{k,\sim} q$ iff $p \sim q$ and $p \equiv_M^{\leq k} q$.

LSF Relation

Equivalence classes of $\equiv_{\mathsf{LSF}}^{1,\equiv_L}$: $\{q_0\}$, $\{q_1,q_3\}$, and $\{q_2,q_4\}$.

LSF Merger

From the DPA A, we remove all states which have priority less or equal to k and call the resulting (possibly incomplete) DPA A_k .

We choose some total preorder \leq_k on the states of \mathcal{A}_k such that p being reachable from q in \mathcal{A}_k implies $q \leq_k p$, and $p \leq_k q \leq_k p$ is only true if p and q are in the same SCC in \mathcal{A}_k . (\leq_k is a total preorder that is a minimal extension of reachability.)

In focus are the set of states that are \leq_k -maximal among a given set $P\subseteq Q$. These are all states in one SCC of \mathcal{A}_k such that no other states in P are reachable.

LSF Merger

Definition.

Let $\mathfrak{C}_{\mathsf{LSF}}^{k,\sim}$ be the set of equivalence classes in $\equiv_{\mathsf{LSF}}^{k,\sim}$ and let κ be such an equivalence class. Define

$$C_{\kappa}^{k} = \{ r \in \kappa \mid c(r) > k \text{ and } r \text{ is } \leq_{k} \text{-maximal among } \kappa \}$$

and $M_{\kappa}^k = \kappa \setminus C_{\kappa}^k$.

Definition.

Define the LSF merger function

$$\mu_{\mathsf{LSF}}^{k,\sim}:\{\mathit{M}_{\kappa}^{k}\mid\kappa\in\mathfrak{C}_{\mathsf{LSF}}^{k,\sim}\}\rightarrow2^{\mathit{Q}},\mathit{M}_{\kappa}^{k}\mapsto\mathit{C}_{\kappa}^{k}$$

Theorem.

If \sim implies language equivalence, merging states according to $\mu_{LSF}^{k,\sim}$ preserves language.

LSF example

Equivalence classes of $\equiv_{\mathsf{LSF}}^{1,\equiv_{\mathsf{L}}}$: $\{q_0\}$, $\{q_1,q_3\}$, and $\{q_2,q_4\}$.

LSF example

 A_1 variant of the automaton.

Possible order: $q_1 \simeq_1 q_2 \prec_1 q_3 \simeq_1 q_4$. q_3 is the only \preceq_1 -maximal element in $\{q_1, q_3\}$. q_4 is the only \preceq_1 -maximal element in $\{q_2, q_4\}$. $\mu_{\mathsf{LSF}}^{1,\equiv_L}(\{q_1\}) = \{q_3\}$ $\mu_{\mathsf{LSF}}^{1,\equiv_L}(\{q_2\}) = \{q_4\}$

LSF example

After the merge:

Computing LSF

The definition provides a straight-forward computation: $\equiv_M^{\leq k}$ is only a slight variation of the normal Moore equivalence and \leq_k can be computed with a topological sorting on the SCCs of \mathcal{A}_k .

Theorem.

 $\mu_{LSF}^{k,\sim}$ can be computed in $\mathcal{O}(n \log n)$.

Efficiency

