Solutions to Bruce Hansen's Econometrics

Tirthankar Chakravarty

 $\mathrm{May}\ 2,\ 2015$

Contents

1	Introduction	•
2	Conditional Expectations and Projections	4
3	The Algebra of Least Squares	(

Revision History

RevisionDateAuthor(s)Description1.001-05-2015TCcreated

Chapter 1

Introduction

No exercises in this chapter.

Chapter 2

Conditional Expectations and Projections

Problem 1: Find \mathbb{E} (\mathbb{E} (\mathbb{E} (\mathbb{E} ($Y \mid X_1, X_2, X_3$) | X_1, X_2) | X_1).

Solution: By the law of iterated expectations:

$$\mathbb{E}\left(\mathbb{E}\left(Y\mid X_{1},X_{2},X_{3}\right)\mid X_{1},X_{2}\right)=\mathbb{E}\left(Y\mid X_{1},X_{2}\right)$$

and

$$\mathbb{E}\left(\mathbb{E}\left(Y\mid X_{1},X_{2}\right)\mid X_{1}\right)=\mathbb{E}\left(Y\mid X_{1}\right)$$

Problem 2: If $\mathbb{E}(Y \mid X) = a + bX$, find $\mathbb{E}(YX)$ in terms of the moments of X.

Solution: We know that:

$$\mathbb{E}(YX) = \mathbb{E}(\mathbb{E}(Y \mid X)X)$$
 by LIE
= $\mathbb{E}(aX + bX^2)$
= $a\mu_X + b(\sigma_X^2 - \mu_X^2)$

Problem 3: Prove Theorem 2.8.1.4 (Properties of the CEF error). If $\mathbb{E}(|Y|) < \infty$, then for any function $h(\boldsymbol{X})$ such that $\mathbb{E}(|h(\boldsymbol{X})\varepsilon|) < \infty$, $\mathbb{E}(h(\boldsymbol{X})\varepsilon) = 0$. **Solution:** Since $\mathbb{E}(|h(\boldsymbol{X})\varepsilon|) < \infty$, $h(\boldsymbol{X})\varepsilon$ is integrable, and by the conditioning theorem,

$$\mathbb{E}\left(h(\boldsymbol{X})\boldsymbol{\varepsilon}\right) = \mathbb{E}\left(h(\boldsymbol{X})\mathbb{E}\left(\boldsymbol{\varepsilon}\mid\boldsymbol{X}\right)\right)$$

but by the mean independence of the errors, $\mathbb{E}\left(\varepsilon \mid \boldsymbol{X}\right) = 0$, so

Problem 4: Suppose that $X, Y \in \{0, 1\}$ and the joint PDF is

Find $\mathbb{E}(Y \mid X)$, $\mathbb{E}(Y^2 \mid X)$, $\mathbb{V}(Y \mid X)$ for X = 0 and X = 1. Solution:

$$\mathbb{E}(Y \mid X = 0) = 0 \times 0.1 + 1 \times 0.4$$

$$= 0.4$$

$$= \mathbb{E}(Y^2 \mid X = 0)$$

$$\mathbb{E}(Y \mid X = 1) = 0 \times 0.2 + 1 \times 0.3$$

$$= 0.3$$

$$= \mathbb{E}(Y^2 \mid X = 1)$$

$$\mathbb{V}(Y \mid X = 0) = \mathbb{E}(Y^2 \mid X = 0) - (\mathbb{E}(Y \mid X = 0))^2$$

$$= 0.24$$

$$\mathbb{V}(Y \mid X = 1) = \mathbb{E}(Y^2 \mid X = 1) - (\mathbb{E}(Y \mid X = 1))^2$$

$$= 0.21$$

Problem 5: Show that $\sigma^2(\boldsymbol{X})$ is the best predictor of ε^2 given \boldsymbol{X} :

• Write down the MSE of a predictor $h(\boldsymbol{X})$ for ε^2 .

- What does it mean to be predicting ε^2 ?
- Show that $\sigma^2(X)$ minimizes the MSE and is thus the best prediction.

Solution: The MSE of any function h for ε^2 is

$$\mathbb{E}\left(\varepsilon^2 - h(\boldsymbol{X})\right)^2$$

We say we are predicting ε^2 if we are attempting to estimate its value given the information in the observables X, using the function estimate of h.

Chapter 3

The Algebra of Least Squares