RegMods Assignment

Summary

Manual transmission better for MPG (miles per gallon) than automatic transmission. We did a multivariate regression to improve estimate of transmission types on MPG.

Data Processing

```
data(mtcars)
mtcars$cyl <- as.factor(mtcars$cyl)</pre>
mtcars$vs <- as.factor(mtcars$vs)</pre>
mtcars$gear <- factor(mtcars$gear)</pre>
mtcars$carb <- factor(mtcars$carb)</pre>
mtcars$am <- factor(mtcars$am,labels=c('Automatic','Manual'))</pre>
str(mtcars)
## 'data.frame':
                    32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : Factor w/ 3 levels "4", "6", "8": 2 2 1 2 3 2 3 1 1 2 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : Factor w/ 2 levels "0", "1": 1 1 2 2 1 2 1 2 2 2 ...
## $ am : Factor w/ 2 levels "Automatic", "Manual": 2 2 2 1 1 1 1 1 1 1 ...
## $ gear: Factor w/ 3 levels "3","4","5": 2 2 2 1 1 1 1 2 2 2 ...
## $ carb: Factor w/ 6 levels "1","2","3","4",..: 4 4 1 1 2 1 4 2 2 4 ...
```

EDA

Do a boxplot to examine car transmission types on mpg. We can say there is increase in mpg for manual transmission vs automatic transmission. Also, plot histogram to check for normal curve.

Histogram of Miles per Ga MPG by Transmission Ty

Hypotheses Testing

Seems that mean MPG of manual transmission cars is 7.24 MPGs higher than that of automatic transmission cars. We need to check whether this is a significant difference. Set alpha-value at 0.5 and run a t-test to find out.

```
autoData <- mtcars[mtcars$am == "Automatic",]
manualData <- mtcars[mtcars$am == "Manual",]
t.test(autoData$mpg, manualData$mpg)

##
## Welch Two Sample t-test
##
## data: autoData$mpg and manualData$mpg
## t = -3.7671, df = 18.332, p-value = 0.001374
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.280194 -3.209684
## sample estimates:
## mean of x mean of y
## 17.14737 24.39231</pre>
```

pairs(mtcars)


```
data(mtcars)
sort(cor(mtcars)[1,])
##
                                disp
                                             hp
                                                       carb
           wt
                     cyl
                                                                  qsec
  -0.8676594 -0.8521620 -0.8475514 -0.7761684 -0.5509251
                                                             0.4186840
##
         gear
                      am
                                  ٧S
                                           drat
                                                        mpg
   0.4802848 0.5998324 0.6640389
                                    0.6811719
                                                1.0000000
```

Based on pairwise correlation of variables with mpg, we see that there is little linear correlation between mpg and the variables qsec, gear, and carb.

Model building and selection

Model1 explains variation less (adjusted R Square: 0.3385) compared to Model2 (adjusted R Square: 0.8066). However, Model1's am variable give lower p-value (less than 0.05) whereas no variable in the model2 gives lower p-value than 0.05 (due to overfitting). Therefore, we use the step method to iterate over the variables and obtain the best model.

```
model1 <- lm(mpg~am, data = mtcars)
summary(model1)</pre>
```

```
##
## Call:
## lm(formula = mpg ~ am, data = mtcars)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -9.3923 -3.0923 -0.2974 3.2439 9.5077
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
                            1.125 15.247 1.13e-15 ***
## (Intercept)
                17.147
                                    4.106 0.000285 ***
## am
                  7.245
                            1.764
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
model2 <- lm(mpg~., data = mtcars)
summary(model2)
##
## Call:
## lm(formula = mpg ~ ., data = mtcars)
##
## Residuals:
##
      Min
               10 Median
                               30
                                      Max
## -3.4506 -1.6044 -0.1196 1.2193 4.6271
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.30337
                         18.71788
                                   0.657
                                            0.5181
                                            0.9161
              -0.11144
                          1.04502
                                  -0.107
## cyl
## disp
               0.01334
                          0.01786
                                   0.747
                                            0.4635
## hp
              -0.02148
                        0.02177 -0.987
                                            0.3350
## drat
               0.78711
                         1.63537
                                   0.481
                                            0.6353
## wt
              -3.71530
                        1.89441
                                  -1.961
                                            0.0633
                        0.73084
## qsec
               0.82104
                                   1.123
                                            0.2739
## vs
               0.31776
                        2.10451
                                   0.151
                                            0.8814
               2.52023
## am
                          2.05665
                                   1.225
                                            0.2340
               0.65541
                         1.49326
                                   0.439
                                            0.6652
## gear
## carb
              -0.19942
                          0.82875 -0.241
                                            0.8122
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.65 on 21 degrees of freedom
## Multiple R-squared: 0.869, Adjusted R-squared: 0.8066
## F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07
```

```
best <- step(model2, direction = "both", trace = FALSE)</pre>
summary(best)
##
## Call:
## lm(formula = mpg ~ wt + qsec + am, data = mtcars)
##
## Residuals:
       Min
               1Q Median
                                 3Q
                                         Max
## -3.4811 -1.5555 -0.7257 1.4110 4.6610
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.6178 6.9596 1.382 0.177915
               -3.9165 0.7112 -5.507 6.95e-06 ***
1.2259 0.2887 4.247 0.000216 ***
2.9358 1.4109 2.081 0.046716 *
## wt
## qsec
## am
## Signif. codes: 0 '***' 0.001 '**' 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.459 on 28 degrees of freedom
## Multiple R-squared: 0.8497, Adjusted R-squared: 0.8336
## F-statistic: 52.75 on 3 and 28 DF, p-value: 1.21e-11
```

Residual diagnostics

Residual are normally distributed and homoskedastic. So, we can report the estimates from our report.

```
par(mfrow = c(2,2))
plot(best)
```

