5. Statistical model Statistical model: definition

Start of transcript. Skip to the end.

So let's talk about a statistical model.

Here I said, you know, I want to replace
my PDF by a particular statistical model,
which was

in this case a Poisson model.

A model just means something which is like slightly simpler than what reality actually

is, but hopefully captures most of it. Well, that would be a good model.

视频

下载视频文件

字幕

下载 SubRip (.srt) file

下载 Text (.txt) file

A Basic Statistical Model: Sample space

1/1 point (graded)

You have a coin that either lands heads, which you denote by 1, or tails, which you denote by 0. Let X be a random variable representing this coin flip, with an (unknown) distribution. You run a **statistical experiment** consisting of n iid tosses of the coin and record your data set as $X_1, X_2, X_3, \ldots X_n$.

(It makes sense to assume the coin tosses X_1, \ldots, X_n as identically distributed, since we always toss the same coin; and as independent, since these tosses do not affect each other.)

We now construct a **statistical model** $(E,\{P_{ heta}\}_{ heta\in\Theta})$ associated with this experiment, where

E is a sample space for X, i.e. a set that contains all possible outcomes of X,

 $\{\mathbb{P}_{\theta}\}_{\theta\in\Theta}$ is a family of probability distributions on E,

 Θ is a parameter set, i.e. a set consisting of some possible values of θ .

What is the **smallest sample space** for X? We can use this as the sample space E in our statistical model. (Below, [0,1] denotes the closed interval between E and E and E and E and E are the sample space E in our statistical model.

● {0,1} ✓

0 [0,1]

 \mathbb{R}

$ullet$ \mathbb{R}^2
Solution:
Here the coin is either heads (denoted by 1) or tails (denoted by 0), so $\{0,1\}$ is the smallest sample space of X . The remaining choices are valid, but not the smallest, sample spaces of X .
提交 你已经尝试了1次(总共可以尝试2次)
Answers are displayed within the problem
A Basic Statistical Model: Family of distributions and Parameter set
2/2 points (graded) Continuing from the previous problem, which of the following is the smallest family of probability distributions that the distribution of X belongs to? We can use this family as $\{\mathbb{P}_{ heta}\}_{ heta\in\Theta}$ in our statistical model.
● Bernoulli ✔
Poisson
Binomial
The distribution of X is a member of the family with some unknown parameter $ heta$. According to the information given about the experiment, which of the following represents the set of all possible values of the parameter $ heta$? We can use this set as the parameter set Θ in our statistical model.
$ullet$ $\{0,1\}$
$ullet$ $\{0,1/2,1\}$
◎ [0,1] ✔

Solution:

- 1. Since the (smallest) sample space of X is $\{0,1\}$, X follows a Bernoulli distribution.
- 2. The first and second choices, $\{0,1\}$ and $\{0,1/2,1\}$, place too many restrictions on the distribution of X. Also, be sure to not confuse the space where the parameter θ lives with the sample space, where the random variable X lives! The fourth choice, \mathbb{R} , allows for values of θ that do not make sense according to modeling X as $\operatorname{Ber}(\theta)$. For example, there is no such thing as $\operatorname{Ber}(-1/2)$.

We are not given any assumptions on the distribution of the coin, so we need to allow θ to take all possible values that make sense according to our modeling assumption. Since θ represents the probability that X=1, we must have $0 \le \theta \le 1$. Hence, the third choice, [0,1], is correct.

Using this problem and the previous one, we can construct the statistical model $(\{0,1\},\{\operatorname{Ber}(\theta)\}_{\theta\in[0,1]})$ for the distribution of the RV X representing the outcome of the coin flip.

提交

你已经尝试了1次(总共可以尝试3次)

1 Answers are displayed within the problem

主题: Unit 2 Foundation of Inference:Lecture 3: Parametric Statistical Models / 5. Statistical model

显示讨论

认证证书是什么?

© 保留所有权利