Delayed Response Time

$$\dot{v}(t) = a_{mic}(t - T_r)$$

Typical
$$T_r = 1s$$
.

Estimation Error

Gap s

$$s^{est} = s + e^{V_s \omega_s(t)}$$

Typical
$$V_s = 10\%$$
, $\omega_s(t)$ is determined by a Wiener process.

Speed of leading vehicle v_l

$$v_l^{est} = v_l - s\sigma_r \omega_l(t)$$

Typical σ_r on the order of $0.01s^{-1}$, $\omega_l(t)$ is determined by a Wiener process.

Discrete Wiener process

$$\omega_i = e^{-\Delta t/\tilde{\tau}}\omega_{i-1} + \sqrt{\frac{2\Delta t}{\tilde{\tau}}} * \eta_i$$

$$\eta_i \in \mathcal{N}(0,1), \, \boldsymbol{\omega}_0 = \boldsymbol{\eta}_0$$