

המחלקה למדעי היסוד- מתמטיקה Department of Basic Sciences

חדו"א 2

תרגיל מספר 2 - טורי חזקות

.
$$\sum_{n=1}^{\infty} \frac{\left(x+1\right)^n}{3^n \cdot \sqrt{n}}$$
: תון טור חזקות

מצאו את תחום ההתכנסות של הטור. (כולל בדיקת הקצוות.)

$$\sum_{n=2}^{\infty} \frac{\left(x+1\right)^n}{\ln n}$$
 נתון הטור

מצאו את רדיוס ההתכנסות של הטור. מצאו את התחום המקסימלי שבו הטור מתכנס בההחלט. האם הטור מתבדר/ מתכנס בתנאי / מתכנס בהחלט בקצוות קטע ההיתכנסות ?

$$\sum_{n=1}^{\infty} \frac{(n+1)(x+2)^n}{n^2}$$
 נתון הטור

מצאו את תחום ההתכנסות של הטור. (כולל בדיקת הקצוות).

האם הטור מתבדר/ מתכנס בתנאי / מתכנס בהחלט בקצוות קטע ההיתכנסות!

שאלה 4

. $\sum_{n=2}^{\infty} \frac{1}{n^2 3^n} (2x+1)^n$: מצאו את רדיוס ההתכנסות / תחום ההתכנסות של טור החזקות הבא

שאלה 5

ידוע שטור החזקות
$$\sum_{n=1}^{\infty} \left(-1\right)^{n-1} \frac{x^n}{n}$$
 וסכומו שווה ל-

. 10⁻⁴ מצאו לא תעלה לא , וווו מצאו קירוב של וווו .
$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$

פתרו את השאלה בשתי דרכים:

א. בעזרת הערכה של השארית בצורת הערכה של

ב. בעזרת טור Leibnitz מתאים.

אלה 6 אאלה **
$$\sum_{n=0}^{\infty} \left(-1\right)^n \frac{\left(x-2\right)^n}{\left(n+1\right) \cdot 3^{n+1}}$$
 נתון הטור

מצאו את תחום ההתכנסות של הטור. (כולל בדיקת הקצוות). האם הטור מתבדר/ מתכנס בתנאי / מתכנס x=5 או שבור עבור את את את או או או x=5 או x=-1

1

<u>שאלה 7</u>

$$\sum_{n=0}^{\infty} \frac{(-1)^n \left(1+n+n!\right)}{(n+1)!}$$
 .2 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(2n-1)}$.1 : מצאו את הסכום של הטורים .1

שאלה 8

$$S(x) = \sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{n} + 1\right) x^n$$
 נתון הטור

א. מצאו את רדיוס ההתכנסות / תחום ההתכנסות של הטור

האם הטור מתבדר / מתכנס בתנאי / מתכנס בהחלט בקצוות קטע ההתכנסות !

. ב. מצאו את סכום הטור עבור כל |x| < 1 ששיך לתחום ההתכנסות.

. $\int\limits_{0}^{1/2}S(x)dx$ שמתכנס לאינטגרל Leibnitz ג. מצאו טור

9 אאלה **

$$S(x) = \sum_{n=1}^{\infty} \left(-1\right)^{n+1} \frac{1}{6^n n} x^n = \frac{1}{6} x - \frac{1}{72} x^2 + \frac{1}{648} x^3 - \dots$$
 נתון הטור

א. מצאו את רדיוס ההתכנסות / תחום ההתכנסות של הטור.

האם הטור מתבדר / מתכנס בתנאי / מתכנס בהחלט בקצוות קטע ההתכנסות ?

ב. מצאו את סכום הטור עבור כל x ששיך לתחום ההתכנסות.

$$\frac{1}{6\cdot 2} - \frac{1}{36\cdot 6} = \frac{17}{216}$$
 שמתכנס ל- $I = \int\limits_0^1 S(x) dx$ שמתכנס ל- Leibnitz אנ. מצאו טור

I מהווה קרוב של האינטגרל

שא<u>לה 10</u>

$$S(x) = \sum_{n=0}^{\infty} \left(1 - \frac{1}{n!}\right) \frac{x^n}{2^n}$$
 נתון הטור

א. מצאו את רדיוס ההתכנסות ותחום ההתכנסות של הטור.

האם הטור מתבדר / מתכנס בתנאי / מתכנס בהחלט בקצוות קטע ההתכנסות ?

0 < x < 2ב. מצאו את סכום הטור עבור כל

$$\int\limits_0^1 S(x) dx$$
 ג. מצאו טור מספרי שמתכנס לאינטגרל

צאלה 11

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n+1} = 1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} \dots$$
 נתון הטור

א. מצאו את רדיוס ההתכנסות / תחום ההתכנסות של הטור.

האם הטור מתבדר / מתכנס בתנאי / מתכנס בהחלט בקצוות קטע ההתכנסות ?

 $0 < \left| x \right| < 1$ לכל, $\frac{\ln(1+x)}{x}$ לכל שסכום הטור שווה ל-

$$\left| \int_{0}^{1} \frac{\ln(1+x)}{x} dx - \frac{31}{36} \right| < 0.0625$$
 ע. בדקו ש-

12 אאלה **

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \cdot \frac{x^{n+1}}{(n+1)} = x - \frac{x^2}{2! \cdot 2} + \frac{x^3}{4! \cdot 3} - \frac{x^4}{6! \cdot 4} \pm \dots$$
 עתון הטור

א. מצאו את רדיוס ההתכנסות / תחום ההתכנסות של הטור.

.
$$x>0$$
 לכל , $f(x)=\int\limits_0^x\cos(\sqrt{t})dt$ לכל - ב. הוכיחו שסכום הטור שווה ל-

$$\int_{0}^{1} \cos(\sqrt{t}) dt - \frac{55}{72} \le \frac{1}{6! \cdot 4} = \frac{1}{2880}$$
 -ע. הוכיחו ש

 $1\over 2880$ והשגיאה לא עולה על האינטגרל $\int\limits_0^1\cos(\sqrt{t})dt$ מהווה קירוב של האינטגרל מהווה $I=rac{55}{72}$

13 שאלה **

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{2n+1} = 1 - \frac{x}{3} + \frac{x^2}{5} - \frac{x^3}{7} \dots$$
 נתון הטור

א. מצאו את רדיוס ההתכנסות / תחום ההתכנסות של הטור.

האם הטור מתבדר / מתכנס בתנאי / מתכנס בהחלט בקצוות קטע ההתכנסות ?

$$0 < x \le 1$$
 לכל , $\frac{\arctan \sqrt{x}}{\sqrt{x}}$ לכל פווה הטור שווה ל-

$$\left| \int_{0}^{1} \frac{\arctan \sqrt{x}}{\sqrt{x}} dx - \frac{76}{105} \right| < 0.1111...$$
 ג. בדקו האם

<u>שאלה 14</u>

. $\sum_{n=0}^{\infty} \frac{(2x+1)^n}{\sqrt{3n+1}}$: א. מצאו את תחום ההתכנסות של טור החזקות הבא

חקרו את ההתנהגות של הטור בקצוות של תחום ההתכנסות.

$$(a_n)_{n\geq 0}$$
 ב. נסמן מספרים ממשים . $-1 < x < 0$ לכל , $f(x) = \sum_{n=0}^{\infty} \frac{(2x+1)^n}{\sqrt{3n+1}}$ ב. נסמן

.
$$f'(x) = \sum_{n=0}^{\infty} a_n \left(x + \frac{1}{2} \right)^n$$
 כך שהנגזרת של $f(x)$ שווה ל-

שאלה 15

נתון הטור חזקות הבא:

$$(x \in [-1,1]]$$
 מרכל $x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$

$$\sum_{n=1}^{\infty} (-1)^n 2n \left(\frac{1}{3}\right)^{2n-1}$$
 ושב את הסכום של הטור הבא:

****התרגילים המסומנים עם 2 כוכביות הם ללימוד עצמי.