Графики

Милёхин Александр НПМмд-02-21

Цель работы

Научиться строить различные виды графиков: параметрические, неявных функций, в полярных координатах. Обучиться работе с комплексными числами, изображать их на координатной плоскости.

Параметрические графики

Включим журналирование. Построим график трёх периодов циклоиды радиуса 2. Для этого определим параметр как вектор в некотором

диапазоне, затем вычислим х и у. C:\Users\alexm Командное окно volved.html Read https://www.octave.org/bugs.html to learn how to sub mit bug reports. For information about changes from previous versions, typ e 'news'. >> diary on >> t = linspace (0.6*pi.50); >> x = r * (t - sin(t)):>> y = r * (1 - cos(t));>> plot(x, y) >> axis('equal'); >> axis([0 12*pi 0 4]) >> savefig cycloid.pdf >> print -dpdf cycloid.pdf >> print -dpng cycloid.png Командное окно Редактор

Figure 1: Команды для построения графика

Параметрические графики

Получим график циклоиды.

Figure 2: График циклоиды

Полярные координаты

Графики в полярных координатах строятся аналогичным образом. Построим улитку Паскаля.

Figure 3: Построение графика в полярных координатах

Figure 4: Улитка Паскаля

Полярные координаты

Построим данный график в полярных осях.

Figure 5: Реализация улитки Паскаля в полярных осях

Figure 6: График улитки Паскаля в полярных осях

Графики неявных функций

Построим неявно определённую функцию с помощью ezplot. Используя лямбда-функцию зададим график.

Figure 7: Реализация неявно определенной функции

Figure 8: График неявно определенной функции

Графики неявных функций

Найдём уравнение касательной к некоторой окружности. Сначала построим круг, используя лямбда-функцию. Далее по правилу дифференцирования найдём уравнение касательной и изобразим ее на графике.

Figure 9: Построение касательной к окружности

Figure 10: График касательной к окружности

Комплексные числа

Зададим два комплексных числа и запишем основные арифметические операции с ними: сложение, вычитание, умножение, деление. Построим

графики в комплексной плоскости командой compass.

Figure 11: Действия с комплексными числами

Figure 12: Построение графиков в комплексной плоскости

Комплексные числа

Figure 13: Графики в комплексной плоскости

Комплексные числа

Иногда мы можем получить странные результаты вывода программы. При вычислении корня третьей степени из -8, мы ожидаем ответ -2, но получаем другое число. Это объясняется тем, что Octave возвращает тот ответ, у которого меньший аргумент. Для того, чтобы получить -2, мы должны использовать команду nthroot.

Figure 14: Извлечение кубического корня из отрицательного числа

Специальные функции

Построим гамма-функцию $\Gamma(x+1)$ и n! на одном графике.

Figure 15: Построение гамма функции и факториала

Figure 16: Изображение гаммафункции и факториала

Специальные функции

Разделив область значения на отдельные интервалы, можно ввести команды и убрать артефакты вычислений.

Figure 17: Разделение на интервалы

Figure 18: График гамма-функции и факториала после устранения артефактов

Результаты лабораторной работы

Я научился строить в Octave различные виды графиков: параметрические, неявных функций, в полярных координатах. Также поработал с комплексными числами, научился изображать их на координатной плоскости; построил гамма-функцию и график факториала.

Спасибо за внимание