EXPERIMENT

Objective:

To determine the iron content of a given ferrous ammonium sulphate [FeSO₄ $(NH_4)_2.6H_2O$] solution by titrating it against N/50 $K_2Cr_2O_7$ solution using potassium ferricyanide K_3 [Fe(CN)₆ as an external indicator.

Apparatus and Chemical required:

Solution of ferrous ammonium sulphate (FAS) or Mohr's salt, K₂Cr₂O₇ solution, K₃ [Fe(CN)₆ distilled water, burette, Pipette, conical flask, diluted sulphuric acid.

Theory:

Acidic K₂Cr₂O₇ is a strong oxidizing agent. When it is added to FAS solution containing dil. H₂SO₄. Only FeSO₄ is oxidized and (NH₄)₂SO₄ remain unchanged.

$$6Fe^{2+} + 14H^{+} + Cr_{2}O_{7}^{2-} \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_{2}O$$

$$3Fe^{2+} + 2[Fe(CN)_{6}]^{3-} \longrightarrow Fe_{3}[Fe(CN)_{6}]_{2}$$
[Ferro- ferricyanide]
Dark-blue color

The end point is detected when the yellow color of the indicator does not change

Procedure:

Pipette out 10 ml. FAS + 2ml of dil. $H_2SO_4 \rightarrow$ titrate it against $K_2Cr_2O_7$ from burette \rightarrow take a drop of this solution and place it on the external indicator on a piece of paper observe the color change \rightarrow repeat the above step till the end point reaches \rightarrow note the reading \rightarrow repeat the same for 5 times.

Observation:

S.No.	Volume of K ₂ Cr ₂ O ₇ used (ml)
1.	
2.	
3.	
4.	
5.	

Calculation:

Volume of FAS taken = 10 ml.

Normality of potassium dichromate taken = 1/50 N

Volume of potassium dichromate used = V ml.

NFAS \times 10 = N/50 \times V

Strength of FAS (S) = $N_{FAS} \times 392.16$ gm/lit.

Thus, Iron content = $S \times 56/392.16$ gm.

Result:

The strength of FAS is = gm/lit.

The iron content is = gm.

Precautions:

- (1) Burette should be vertical throughout the experiment.
- (2) The reaction mixture should continuously be shaken during titration.
- (3) Glass ware should be washed and dried before doing the experiment.