BUT System for CHiME-6 Challenge

K. Žmolíková, M. Kocour, F. Landini, K. Beneš, M. Karafiát, H. K. Vydana, A. Lozano-Diez, O. Plchot, M. K. Baskar, J. Švec, L. Mošner, V. Malenovský, L. Burget, B. Yusuf, O. Novotný, F. Grézl, I. Szöke, J. Černocký

Outline

Challenge description

Dataset and task Baseline system Results

Our system

Overall results
Diarization
Acoustic model and data
Language model
Fusion
End-to-end diarization
End-to-end ASR

- What other teams did
- Retrospective and future

Dataset

- 20 real dinner parties
- each party has four speakers (friends), very natural conversations
- each party about 2 hours, 3 stages (kitchen, dining room, living room)
- about 20 % of overlap
- six 4-channel microphone arrays (Kinects) and binaural microphones
- 40 hours of training data
- fully transcribed

Task

Track1

- ASR on distant microphones
- oracle segmentation
- no external data allowed
- speaker-id provided for each segment, task is to transcribe this speaker (even when there are other overlapping speakers)

Track2

- ASR + diarization on distant microphones (segmentation for test data not given)
- VoxCeleb data allowed
- task is to provide 4 long transcriptions of the entire session, these are then matched to the speakers in oracle way and scored

Baseline system

Track1

- WPE + Guided source separation as front-end
- Kaldi ASR: TDNNf + LF-MMI, data augmentation, data cleaning, i-vector speaker adaptation
- 3-gram Kneser-Ney language model
- WER: 51.8 % for dev, 51.3 % for eval

Track2

- WPE + BeamformIt as front-end
- SAD: 5-layer TDNN with statistics pooling
- Diarization: agglomerative hierarchical clustering on x-vectors
- ASR system same as Track1
- DER: 63.42 % for dev, 68.20 % for eval
- WER: 84.25 % for dev, 77.94 % for eval

Baseline: GSS

Results: Track1

Results: Track2

Outline

Challenge description

Dataset and task Baseline system Results

Our system

Overall results
Diarization
Acoustic model and data
Language model
Fusion
End-to-end diarization
End-to-end ASR

- What other teams did
- Retrospective and future

Overall results

Track 1

Track 2

Diarization

- x-vector clustering based on Bayesian hidden Markov model and variational Bayes inference (VBx)¹ (Diez et al. 2019)
- states corresponding to speakers, PLDA as state distribution
- x-vector extractor, SAD and PLDA from baseline
- x-vectors extracted every 0.25 seconds

	Development		Evalu	ation
	DER	JER	DER	JER
Baseline VBx	63.42 51.67	70.83 53.20	00.20	,

https://github.com/BUTSpeechFIT/VBx

| Diarization

		Develo	pment			Evalu	uation	
	DER	Miss	FA	SpkErr	DER	Miss	FA	SpkErr
Baseline AHC VBx	63.42 63.16 51.67	_ 26.02 26.02	- 10.80 10.80	- 26.35 14.85	68.20 73.09 75.81	23.16 23.16	_ 20.78 20.79	29.15 31.86
Oracle VAD AHC Oracle VAD VBx	52.40 47.29	25.60 25.60	0.01 0.03	26.80 21.66	51.91 59.44	21.75 21.75	0.02 0.06	30.14 37.63

	Silence	1 Speaker	Overlap
Development	1.07h (24.0%)	2.04h (45.7%)	0.97h (21.7%)
Evaluation	1.74h (33.4%)	2.52h (48.4%)	0.78h (15.0%)

Diarization + Enhancement

- enhancement by GSS with VBx diarization as guidance (Boeddeker et al. 2018)
- diarization reran on each of enhanced recordings and results combined

	Development			
	DER	JER		
Baseline	63.42	70.83		
VBx	51.67	53.20		
VBx on GSS	51.44	48.45		

Diarization + Enhancement

- enhancement by GSS with VBx diarization as guidance (Boeddeker et al. 2018)
- diarization reran on each of enhanced recordings and results combined

	Development		Evalu	iation
	DER	JER	DER	JER
Baseline	63.42	70.83	68.20	72.54
VBx	51.67	53.20	75.11	71.77
VBx on GSS	51.44	48.45	80.57	66.33

Acoustic model: Training data

enhanced	training data after GSS
Worn (L)	left microphone from worn data
Worn (S)	both microphones (stereo) from worn data
WornRVB	reverberated worn data with artificial RIRs
250k non-overlapped	250k utterances from kinects, only parts with 1 speaker

		Size (h)	Track 1	Track 2
1	Worn (L) + enhanced	200	48.94	-
2	Worn (S) + enhanced	300	47.85	59.29
3	(2) + WornRVB	1050	47.57	59.22
4	(3) + 250k non-overlapped	1330	47.31	59.02

similar conclusions in (Zorila et al. 2019)

Acoustic model: Architecture and training

Improvements:

- CNN-TDNNf > TDNNf
- sequence-discriminative training on top of LF-MMI

	Track1	Track2
TDNNf	49.37	60.64
TDNN-LSTM	49.95	61.62
CNN-TDNNf	47.85	59.29
CNN-TDNNf + sMBR	47.32	58.82

- trained on Worn (S) + enhanced
- Track 2 uses VBx + GSS diarization

Acoustic model: Others

Improvements:

- semi-supervised training on VoxCeleb (system trained on CHiME used as teacher)
- i-vectors clean-up speaker vector: i-vector extracted from entire session non-overlapped vector: i-vector extracted from non-overlapped parts of the session

	Track1	Track2
CNN-TDNNf + sMBR (1) + VoxCeleb	47.32 46.80	58.82 57.92
(1) + speaker + online i-vector (1) + non-overlapped + online i-vector	46.63 46.47	58.46

Language model

- LSTM language model, BrnoLM toolkit²
- rescoring of 3000-best hypothesis
- hidden state of LSTM carried over segments to include context
- regularization:
 - dropout 0.5
 - randomly replacing input tokens with rate 0.3

	Perplexity	WER (%)
baseline	157.7	48.24
+ LSTM	152.1	46.94
+ across-segment	136.5	46.61
+ input corruption	131.1	46.08

²https://github.com/BUTSpeechFIT/BrnoLM

Fusion

- ROVER fusion over different acoustic models (enhancement and diarization the same in all)
- max(scorea, scoreb) is chosen as the confidence score
- Conf. values were calibrated using simple logistic regression but no gains reflected in %WER
- 7 systems fused for Track1, 8 systems fused in Track2

Towards end-to-end diarization

- transformer-based system (encoder part), with PIT objective (Fujita et al. 2019)
- overlaps allowed

Towards end-to-end diarization

- transformer-based system (encoder part), with PIT objective (Fujita et al. 2019)
- overlaps allowed
- mismatch between training annotations and "new RTTMs"

Method	Data	Del 1min	VoxCeleb pretrain	DER (%) Old RTTMs	DER (%) New RTTMs
Baseline VBx	- -	- -	- -	59.87 50.83	63.25 51.67
E2E E2E E2E	CH1 CH1 CH1	× × ✓	× ✓	70.3 64.6 63.6	80.6 73.9 71.7
E2E E2E	mix WPE+mix	<i>J</i>	<i>J</i>	63.5 62.4	71.7 70.9

VoxCeleb pretrain

"conversations" of 2 speakers simulated from VoxCeleb data

Del 1min

omitting first minute with introductions

Towards end-to-end ASR

Acoustic model (Training data) (Architecture) (Target units)	Dev-worn	Dev-enhanced
LSTM (worn+enhanced) (5enc-1dec-320H)(char)	60.19	66.51
Transformer (worn) (6enc-6dec-256H-4heads)(char)	66.06	73.39
Transformer (worn-data+enhanced) (12enc-6dec-256H-4heads)(char)	64.66	68.70
Transformer APC-Pre-training(voxcelb)+(worn+enhanced) (12enc-6dec-256H-4heads)(char)	61.60	66.7

Outline

Challenge description

Dataset and task Baseline system Results

Our system

Overall results
Diarization
Acoustic model and data
Language model
Fusion
End-to-end diarization
End-to-end ASR

- What other teams did
- Retrospective and future

USTC system (Track1 winners)

- a bit unclear where improvements are coming from ⁽³⁾
- post-processing of GSS outputs with a neural network (+2%)
- data augmentation (worn + GSS + volume and speed pertrubation + SpecAugment)
- acoustic model architectures (ResNet-TDNNF-Dialation)

STC system (Track2 winners)

- TS-VAD!!!
- Wide residual networks for x-vectors + 10% DER/JER
- Spectral clustering of x-vectors +5-10% DER/JER
- GSS
 - increasing context, iterations, of mics, +1%
 - Using soft activity from TS-VAD, +3%
- SpecAugment +1%
- AM with multi-stride and multi-stream attention +2%
- Quite nice improvements from LM (+2%)

Other highlights

- SpecAugment in many systems, seems to give a good improvement
- generally many different AM architectures (Resnets, Attention), also bigger
- no real break-throughs on separation
- STC also had a paper with end-to-end ASR with reasonable results

Outline

Challenge description

Dataset and tasl Baseline system Results

Our system

Overall results
Diarization
Acoustic model and data
Language model
Fusion
End-to-end diarization
End-to-end ASR

- What other teams did
- Retrospective and future

Retrospective

What went good

- many people interested and experimenting
- connected different parts of the group
- beaten (strong) baseline and good diarization
- interesting research threads started
- managed to co-operate distantly

What to improve

- earlier start?
- avoid the rushed ending
- have more tools ready to use
- keep better track of current outputs / to-dos

Future

- research opportunities
 - Igi denoising / RIR estimation
 - Alicia end-to-end diarization
 - Hari end-to-end ASR
 - Katka speech separation
 - KarelB ASR-aware language model
 - Fede multichannel VBx
- implementing good stuff from other teams
 - different acoustic model architectures
 - TS-VAD
 - x-vector / diarization improvements (Resnet, angular margin softmax)
 - SpecAugment
- making of nice simple unified recipe

References

Christoph Boeddeker et al. "Front-end processing for the CHiME-5 dinner party scenario". In: CHiME5 Workshop, Hyderabad, India. 2018.

Mireia Sánchez Diez et al. "Analysis of Speaker Diarization based on Bayesian HMM with Eigenvoice Priors". In: IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 28.1 (2019), pp. 355–368. ISSN: 2329-9290. DOI: 10.1109/TASLP.2019.2955293. URL: https://www.fit.vut.cz/research/publication/12139.

Yusuke Fujita et al. End-to-End Neural Speaker Diarization with Permutation-Free Objectives. 2019. arXiv: 1909.05952 [eess.AS].

Catalin Zorila et al. "An Investigation into the Effectiveness of Enhancement in ASR Training and Test for CHiME-5 Dinner Party Transcription". In: arXiv preprint arXiv:1909.12208 (2019).