OPTIMIZATION. HOMEWORK 4

OSCAR DALMAU

- (1) Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = (x-a)^4$, where a is a constant. Suppose that we apply Newton's method to the problem of minimizing f.
 - (a) Write down the update equation for Newton's method applied to the problem.
 - (b) Let $y^{(k)} = |x^{(k)} a|$ where $x^{(k)}$ is the k-th iterate in Newton's method. Show that the sequence $\{y^{(k)}\}$ satisfies $y^{(k+1)} = \frac{2}{3}y^{(k)}$.
 - (c) Show that $x^{(k)} \to a$ for any initial guess $x^{(0)}$.
 - (d) Which is the order of convergence of the sequence $\{x^{(k)}\}$.
 - (e) Does the previous convergence order contradict the theorem about the convergence order of Newton's method? Explain.
- (2) Implement the following methods: cubic interpolation, Barzilai-Borwein and Zhang-Hager. Apply the previous implementations to the following functions and compare the results with respect to: number of iterations, norm of the gradient $\|\nabla f(\boldsymbol{x}_k)\|$ and the error $|f(\boldsymbol{x}_k) f(\boldsymbol{x}^*)|$.
 - Rosembrock function, for n = 100

$$f(\boldsymbol{x}) = \sum_{i=1}^{n-1} \left[100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2 \right]$$

$$\boldsymbol{x}^0 = \left[-1.2, 1, 1, \dots, 1, -1.2, 1 \right]^T$$

$$\boldsymbol{x}^* = \left[1, 1, \dots, 1, 1 \right]^T$$

$$f(\boldsymbol{x}^*) = 0$$

• Wood function

$$f(\boldsymbol{x}) = 100(x_1^2 - x_2)^2 + (x_1 - 1)^2 + (x_3 - 1)^2 + 90(x_3^2 - x_4)^2 + 10.1[(x_2 - 1)^2 + (x_4 - 1)^2] + 19.8(x_2 - 1)(x_4 - 1)$$

$$\boldsymbol{x}^0 = [-3, -1, -3, -1]^T$$

$$\boldsymbol{x}^* = [1, 1, 1, 1]^T$$

$$f(\boldsymbol{x}^*) = 0$$

(3) The dataset mnist.pkl.gz can be read using

import gzip, pickle
with gzip.open('mnist.pkl.gz', 'rb') as f:
 u = pickle._Unpickler(f)

```
u.encoding = 'latin1'
train_set, val_set, test_set = u.load()
```

print(train_set[0].shape, train_set[1].shape)
print(val_set[0].shape, val_set[1].shape)
print(test_set[0].shape, test_set[1].shape)

- train_set[0] is a matrix of size (50000, 784) where n = 50000 is the number of observations and each row represents an observation $\mathbf{x}_i \in \mathbb{R}^{784}$
- train_set[1] is a vector of size (50000) where each entry $y_i \in \{0, 1, \dots, 9\}$

Select from train_set[0] and train_set[1] the set of observations $\mathcal{S} = \{(\boldsymbol{x}_i, y_i)\}$ with $\boldsymbol{x}_i \in \mathbb{R}^{784}$ and $y_i \in \{0, 1\}$ and estimate the parameters $\hat{\boldsymbol{\beta}}$, $\hat{\beta}_0$ that maximizes the function

(1)
$$h(\boldsymbol{\beta}, \beta_0) = \sum_{i=1}^n y_i \log \pi_i + (1 - y_i) \log(1 - \pi_i)$$

(2)
$$\pi_i := \pi_i(\boldsymbol{\beta}, \beta_0) = \frac{1}{1 + \exp(-\boldsymbol{x}_i^T \boldsymbol{\beta} - \beta_0)}$$

using the set S. Select one optimization method implemented in the homework for computing $\hat{\beta}$, $\hat{\beta}_0$.

Select from test_set[0] and test_set[1] the set $\mathcal{T} = \{(\boldsymbol{x}_i, y_i)\}$ such that $\boldsymbol{x}_i \in \mathbb{R}^{784}$ and $y_i \in \{0, 1\}$ and compute the error

error =
$$\frac{1}{|\mathcal{T}|} \sum_{(\boldsymbol{x}_i, y_i) \in \mathcal{T}} |\mathbf{1}_{\pi_i(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\beta}}_0) > 0.5}(\boldsymbol{x}_i) - y_i|$$

where $|\mathcal{T}|$ represents the number of elements of the set \mathcal{T} .

Comments:

• Each row x_i of train_set[0] and/or test_set[0] can be shown as an image as follows:

```
import matplotlib.pyplot as plt
idx = 1 # index of the image
im = train_set[0][idx].reshape(28, -1)
plt.imshow(im, cmap=plt.cm.gray)
print('Label: ', train_set[1][idx])
```

- The equations (1)-(2) correspond to the log-likelihood of the logistic regression model for two-class classification.
- Eq. (2) can be interpreted as the probability of x_i to belong to class 1.