

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO ACADÊMICO DO AGRESTE NÚCLEO DE TECNOLOGIA Eng. Civil e Eng. de Produção

CÁLCULO NUMÉRICO - CIVL0092/PROD0013 - 2017.2

TRABALHO 5

Desenvolva os algoritmos e implemente os programas no MATLAB/OCTAVE/Scilab/etc. para resolver os exercícios abaixo. <u>NÃO USE</u> as funções próprias do MATLAB/OCTAVE/Scilab/etc. relacionadas com a interpolação polinomial.

Exercício 1 Determinar o polinômio de quarto grau da função $f(x) = \sqrt{2x} \operatorname{sen}(5\pi x)$ no intervalo [0,1], utilizando os seguintes pontos de interpolação x = (0,15; 0,4; 0,5; 0,6; 0,75; 0,95), com os métodos:

- 1.a) polinômio interpolador padrão (matriz de Vandermonde);
- 1.b) polinômio interpolador de Lagrange;
- **1.c)** polinômio interpolador de Newton;
- **1.d**) estimar o valor máximo do erro na interpolação polinômio;
- **1.c**) que polinômio interpolador apresenta os melhores resultados.

Exercício 2 Considerando os dados

Х	1,4	2,0	2,7	3,2	4,2	4,9
f(x)	2	8	14	19	4	-5

Calcule f(3,8) usando:

- 2.a) polinômios interpoladores de Newton de primeiro grau;
- **2.b**) polinômios interpoladores de Newton de segundo grau;
- 2.c) polinômios interpoladores de Newton de terceiro grau;
- **2.d)** ajuste por curvas splines lineares;
- 2.e) ajuste por curvas splines quadráticas;
- **2.f**) ajuste por curvas splines cúbicas;
- 2.g) estimar o valor máximo do erro na interpolação polinomial (2.a), (2.b) e (2.c);

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO ACADÊMICO DO AGRESTE NÚCLEO DE TECNOLOGIA Eng. Civil e Eng. de Produção

2.h) faça o gráfico dos polinômios obtidos nos itens (2.a) até (2.f). Que interpolação apresenta os melhores resultados.

Escolha a sequencia de pontos para fazer sua estimativa de modo a atingir a melhor acurácia possível.

Exercício 3 Desenvolva um algoritmo e implemente um programa no MATLAB/Octave/Scilab /etc. que interpole usando os polinômios de Lagrange. A função deve ter o formato YLag = PoliLagrange(x, y, XLag), onde o argumento de entrada x e y são as coordenadas dos pontos pertencente ao conjunto de dados fornecidos e XLag é a coordenada x do ponto a ser interpolado. O argumento de saída YLag é o valor interpolado de y em XLag.

Exercício 4 Desenvolva um algoritmo e implemente um programa no MATLAB/Octave/Scilab /etc. que interpole usando a forma de Newton. A função deve ter o formato YLag = PoliNewton (x, y, XLag), onde o argumento de entrada $x \in y$ são as coordenadas dos pontos pertencente ao conjunto de dados fornecidos e XLag é a coordenada x do ponto a ser interpolado. O argumento de saída YLag é o valor interpolado de y em XLag.

Exercício 5 Com base no seguinte conjunto de dados

x_i	0.2	0.3	0.6	0.9	1.1	1.3	1.4	1.6
y_i	0.050446	0.098426	0.33277	0.72660	1.0972	1.5697	1.8487	2.5015

Estime os valores da função nos pontos x = 0.25 e 1,35, usando:

5.a) o programa *PoliLagrange* desenvolvido no exercício 3;

5.b) o programa *PoliNewton* desenvolvido no exercício 4;

5.c) resolver com as funções do MATLAB/OCTAVE/Scilab/etc. o ajuste de curvas e a interpolação. Justificar a escolha e comparar com o as respostas obtidas no (5.a) e (5.b).

Exercício 6 Considere a função dada pela tabela:

х	1	2	3	4	5
f(x)	-2	0	2	5	4

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO ACADÊMICO DO AGRESTE NÚCLEO DE TECNOLOGIA Eng. Civil e Eng. de Produção

Determinar o polinômio de interpolação usando:

7.a) a fórmula de Newton;

7.b) a fórmula de Newton-Gregory.

Qual são as vantagens do polinômio de interpolação de Newton-Gregory?

O trabalho deverá ser realizado em grupos de **2 alunos**, não deve superar as **15 páginas** e o formato do mesmo deve seguir o modelo dado no site:

http://www.amcaonline.org.ar/twiki/bin/view/AMCA/AmcaStyle

A nota do trabalho levará em conta: (a) desenvolvimento do tema, (b) apresentação escrita do trabalho e (c) implementações computacionais. O trabalho deveram ser de sua própria autoria e não serão avaliados os trabalhos copiados de fontes existentes na literatura ou de semestres passados. O trabalho por grupo deve ser remitido por e-mail em formato digital (*.pdf) para bonogustavo@gmail.com com o assunto "T5_CN_EC/EP_NomeAluno1_ NomeAluno2". A versão impressa deverá ser entregue unicamente no horário da disciplina de Cálculo Numérico. O trabalho em formato digital deve ser identificado como T5_CN_NomeAluno1_NomeAluno2.pdf. e não deve superar os 1,50 MB.

O PRAZO DE ENTREGA do trabalho é 1 de Novembro de 2017.