Modelowanie horyzontów zdarzeń czarnych dziur przy użyciu metryki Schwarzschilda: Rozwiązania analityczne i numeryczne

Aleksandra Niedziela

Weronika Jakimowicz

Contents

4 TT' ('		c	_
I Historia o i	newnwm	totonie	- '4
1. 1115tO11a 0	PCWIIII	TOTOTHE	

Historia o pewnym fotonie

Foton poruszający się w przestrzeni kosmicznej nie jest pod wpływem zewnętrznych sił. Jest cząsteczką, na której prędkość nie wpływają zewnętrzne (ani wewnętrzne) siły, więc jego przyśpieszenie przez całą podróż przez czasoprzestrzeń wokół badanej czarnej dziury pozostaje równe 0.

Oznaczmy przez BH rozmaitość opisującą czasoprzestrzeń wokół rozważanej czarnej dziury Schwarzschilda, która zazwyczaj ma postać

$$BH = \mathbb{R} \times (0, +\infty) \times S^2$$

Wówczas podróż fotonu jest opisywana przez krzywą

$$\gamma:I\to \mathrm{BH}$$

gdzie I jest pewnym odcinkiem. Wiemy, że $\frac{d^2\gamma}{dt^2}=0$, czyli wydaje się, iż dostajemy proste równania różniczkowe opisujące zachowanie funkcji czterowymiarowej.

Niestety, metryka zadana na BH mówi nam, że przestrzeń wokół czarnej dziury nie jest do końca taka jak przestrzeń \mathbb{R}^4 . Jest ona nieco zakrzywiona i to właśnie to zakrzywienie czasoprzestrzeni będzie wpływać na obserwowane przez nas zakrzywienie trasy fotona.