Today's Agenda

Extending the OLS Regression using Dataset 1

- Dummy predictors
- Categorical predictors
- Transforming the variables
- Transforming the model

Justin Leinaweaver (Spring 2022)

Transforming the Variables

	GDP (millions)
Bachelors (%)	23,271.42
(,	(14,124.28)
Intercept	-335,020.10
	(460,391.60)
Observations	50
Adjusted R ²	0.03
Residual Std. Error	528,114.80 (df = 48)
F Statistic	2.71 (df = 1; 48)
Note:	*p<0.05

Transforming the Variables

	GDP (billions)
Bachelors (%)	23.27
,	(14.12)
Intercept	-335.02
•	(460.39)
Observations	50
Adjusted R ²	0.03
Residual Std. Error	528.11 (df = 48)
F Statistic	2.71 (df = 1; 48)
Note:	*p<0.05

	GDP (millions)	(billions)	(10 billion)	(100 billion)
	(1)	(2)	(3)	(4)
Bachelors (%)	23,271.42	23.27	2.33	0.23
	(14,124.28)	(14.12)	(1.41)	(0.14)
Intercept	-335,020.10	-335.02	-33.50	-3.35
•	(460,391.60)	(460.39)	(46.04)	(4.60)
Observations	50	50	50	50
Adjusted R ²	0.03	0.03	0.03	0.03
Residual Std. Error ($df = 48$)	528,114.80	528.11	52.81	5.28
F Statistic (df = 1; $\stackrel{?}{48}$)	2.71	2.71	2.71	2.71
Note:				*n/0.05

Note:

*p<0.05

Transformation 1: Shift the Decimal Point

Transformation 1: Shift the Decimal Point

36 / 50 (72 %) are below the zero line.

Aim is 50%-50%

- Create a new variable: "log GDP"
 - Excel function for the natural log is = LN()
 - GDP in Dataset 1 is in millions so you have to convert it to dollars first!
 - = LN(GDP * 1e6)
- Practice: Regress log GDP on bachelors

			_				
	(billions) (1)	(log) (2)				•	_
Bachelors (%)	23.27 (14.12)	0.05 (0.03)	28 -		•		
Intercept	-335.02 (460.39)	24.42* (0.91)	(GDB) Bol 26				•
Observations	50	50	-	•	• .	•	
Adjusted R ²	0.03	0.06	25 -		• •	• •	
Residual Std. Error ($df = 48$)	528.11	1.04				•	
F Statistic (df = 1; 48)	2.71	3.86	24 20	25	30	35	
Note:		*p<0.05	_		Bachelor	s Degree (%	á)

Above the line = 14 (28%)Below the line = 36 (72%)

Above the line = 27 (54%)Below the line = 23 (46%)

The natural log scale = multiplying by e

- *e* is Euler's Number (2.718282...)
- Typically written as $log_e X$ or In X

Transform back to linear scale using eX

GDP for State X = \$5,000 or 8.5 (In)

- log_e 5,000 pprox 8.5
- $e^{8.5} \approx 5,000$
- Excel function is = EXP()

- e^{24} is approximately \$26 billion
- e^{29} is approximately \$3.9 trillion

- $e^{24} \approx 26 billion
- $e^{25} \approx 72 billion

One unit on the LN scale:

• value x e

General rule of thumb:

value x 3

	(log GDP)
Bachelors (%)	0.05* (0.03)
	(0.03)
Constant	24.42*
	(0.91)
Observations	50
Adjusted R ²	0.06
Residual Std. Error	1.04 (df = 48)
F Statistic	3.86* (df = 1; 48)
Note:	*p<0.06

In (Outcome) = Intercept + Coefficient * (Predictor)

	(log GDP)
Bachelors (%)	0.05*
	(0.03)
Constant	24.42*
	(0.91)
Observations	50
Adjusted R ²	0.06
Residual Std. Error	1.04 (df = 48)
F Statistic	3.86* (df = 1; 48)
Note:	*p<0.06

In (GDP) = 24.42 + 0.05 * (Bachelors)

	(log GDP)
Bachelors (%)	0.05*
	(0.03)
Constant	24.42*
	(0.91)
Observations	50
Adjusted R ²	0.06
Residual Std. Error	1.04 (df = 48)
F Statistic	$3.86^* (df = 1; 48)$
Note:	*p<0.06

In (GDP) =
$$24.42 + 0.05 * 32.16 = 26.03$$

	(log GDP)
Bachelors (%)	0.05* (0.03)
Constant	24.42* (0.91)
Observations	50
Adjusted R ²	0.06
Residual Std. Error	1.04 (df = 48)
F Statistic	3.86* (df = 1; 48)
Note:	*p<0.06

 $GDP = 26.03 (In) = e^{26.03} = 201.7 Billion USD$

$$In(Outcome) = Intercept + Coefficient * (Predictor)$$

$$Outcome = e^{Intercept + Coefficient*(Predictor)}$$

Practice

Dataset 2: Do wealthier countries live longer?

- Regress life expectancy on GDP
- Regress life expectancy on log(GDP)

	Life Expectancy		
	(1)	(2)	
GDP	0.00*		
	(0.00)		
log(GDP)		1.65*	
		(0.22)	
Constant	72.19*	32.07*	
	(0.57)	(5.50)	
Observations	173	173	
Adjusted R ²	0.03	0.24	
Residual Std. Error ($df = 171$)	7.29	6.47	
F Statistic (df = 1; 171)	6.53*	54.61*	
Note:		*p<0.05	

