Name-Last Name:	Student ID:	
Hogattana University		Computer Engineering Denor

Hacettepe University	Computer Engineering Department
BBM234 Computer Organization	Instructor: Assoc. Prof. Dr. Suleyman TOSUN
Midterm Exam	Exam Date: 1.6.2016
Duration: 120 minutes	

Questions	1	2	3	4	Total
Marks	20	40	20	20	100
Earned					

Q1. You are given the following MIPS assembly code for a procedure called proc1.

proc1: add \$s1, \$0, \$0 add \$v0, \$0, \$0 \$a0, \$0, done count: beq andi \$s0, \$a0, 0x1 \$s0, \$0, shift addi \$s1, \$s1, 1 shift: \$a0, \$a0, 1 srl jal proc1 done: add \$v0, \$v0, \$s1 jr \$ra

(a) proc1 function does not successfully return when it is called from the main function. Fix the code so that it successfully returns. (Hint: You should modify one of the instructions.) [5]

(b) Using the corrected code, write the return value (\$v0) for given values of \$a0. Write your answer in decimal. [10]

a0 0x000F v0 v0

(c) Describe in words what proc1 does. [5]

Q2. Following parameters are given for byte addressable memories:

Capacity of virtual memory	8 pages
Capacity of main memory	2 pages
Capacity of cache	4 words
TLB access time	1 ns
Cache access time	50 ns

Page size	4 words
Block size	1 word
Word size	4 bytes
TLB/Cache associativity	2-way
Replacement type	LRU

Suppose the page table, TLB, and cache have the following data in them.

Page Table							
VPN	V	PPN					
7							
6 5 4 3 2							
5	1	0					
4							
3							
2	1	1					
1							
0							

	Cache						
		Way 1			Way 0		
	U	V	Tag	Data	V	Tag	Data
Set 1	1	1	11	D	1	10	C
Set 0	1	1	01	В	1	00	A

PN
I

Based on the above information, answer the following questions: [Each is 5 points.]

- (a) How many bits do we need to address the virtual memory?
- (b) How many bits do we need to address the main memory?

You are given the virtual address 0x24.

- (c) What is the physical address for this virtual address?
- (d) Is this memory access is a hit or miss on the cache? Why? Show your work.

(e) If it is hit, which data is accessed? (A,B,C,D?) If not, where do we bring the new data?

(f) After the memory access 0x24, is there any changes necessary on the TLB or cache? If yes, show the changes made on TLB and/or cache.

	Cache						
			Way 1	1	Way 0		
	U	V	Tag	Data	V	Tag	Data
Set 1	1	1	11	D	1	10	C
Set 0	1	1	01	В	1	00	A

TLB								
	Way 1 Way 0							
U	V	VPN	PPN	V	VPN	PPN		
1	1	010	1	1	101	0		

(g) What is the total access time of data?

(h) What is TLB and why is it used?

Q3. You have 32-bit Program Counter (PC), instruction memory, register file and a data memory.

(a) Give an example R-type instruction and write its machine code format, including the bit numbers. (You do not need to give the binary values. You can write the labels of each field of the format.) [5]

(b) Draw the single cycle microarchitecture for ONLY R-type instructions. You can use extra hardware blocks if necessary. You should clearly show the bit numbers. [15]

Q4. You are given the following MIPS code:

```
addi $t0, $0, 2
loop: beq $t0, $0, done
lw $s0, 0($a0)
lw $s1, 4($a0)
add $s0, $s0, $s1
sw $s0, 0($a0)
addi $t0, $t0, -1
addi $a0, $a0, 4
j loop
done:jr $ra
```

- a) How many cycles does it take to execute this code on a single-cycle processor? [3]
- b) How many cycles does it take to execute this code on a pipelined processor (with data hazard unit)? (If any NOPs necessary, write it on the above code.) [5]
- c) Suggest a modification for the code (without adding or deleting any instructions) so that new code takes less time to execute. Explain your changes. [4]
- d) In some cases, loop unrolling (writing the code sequentially instead of using loops) helps reduce the CPU time. Rewrite the above code without using any loops. You can use extra registers. Write your code in such a way that there is no stall or NOP penalty. Now, how many cycles does this code takes on pipelined processor? [8]