# Technical Solutions to Evaluation Fairness in Algorithms

Team 7: Kristy Guo, Barbara Liang, Jingjing Lu, Chiebuka Onwuzurike, Qiqi Tang

# Team



# Introduction



• "only 53% of organizations have a leader who is responsible for the ethics of Al systems"



• "majority of consumers are more frightened (52%) about the future impact of Al on society than excited"

- · Create a safe environment for users
- Increase acceptance

# Is it ethical to use algorithms to predict crimes?



#### Case

- Between 1980 -2014 there were 190,282 unsolved crimes
- A model that could predict the race and sex of a perpetrator based on the victim description and case facts would be extremely useful
- Given the purpose of the model it is import the model is accurate and unbiased

#### Variables

'Agency Name', 'Agency Type', 'City', 'State', 'Year',
'Month', 'Crime Type', 'Victim Sex', 'Victim Age',
'Victim Race', 'Victim Ethnicity', 'Relationship',
'Weapon', 'Victim Count', 'Perpetrator Count', 'Record Source'





F1 Score: 96.05%



# Is the model Unbiased (Fair)?



# Confusion Matrix

|                  | Predicted: positive (privileged) | Predicted: negative (unprivileged) |
|------------------|----------------------------------|------------------------------------|
| Actual: positive | True Positive                    | False Negative                     |
| (privileged)     | (TPR privileged)                 | (FPR privileged)                   |
| Actual: negative | False Positive                   | True Negative                      |
| (unprivileged)   | (FPR unprivileged)               | (TPR unprivileged)                 |

# Statistical Parity Difference

#### Method 1

Statistical Parity Difference suggest a predictor is unbiased (bias(X,S,D)) or fair if the absolute difference between the prediction (Y) of privileged (D) and unprivileged group is lower than a certain threshold ( $\varepsilon$ )

 $bias_h(X, S, D) = Pr(Y = 1 | D = unprivileged) - Pr(Y = 1 | D = privileged)$ 

$$bias_h(X, S, D)$$
 <  $\varepsilon$ 

Is a good metric when statistical power is large and when there aren't that many underlying cofounders



# Equal Opportunity Difference

|                  | Predicted: positive<br>(privileged) | Predicted: negative (unprivileged) |
|------------------|-------------------------------------|------------------------------------|
| Actual: positive | True Positive                       | False Negative                     |
| (privileged)     | (TPR privileged)                    | (FPR privileged)                   |
| Actual: negative | False Positive                      | True Negative                      |
| (unprivileged)   | (FPR unprivileged)                  | (TPR unprivileged)                 |

Method 2

# $TPR_{D=unprivileged} - TPR_{D=privileged}$

#### Situation when it is a good metric

- Ideal value: O
- Fairness: between -0.1 and 0.1

#### Situation when it is a bad metric

- $EOD < O \longrightarrow privileged$
- EOD > 0 unprivileged

### Average Absolute Odds Difference

- Is concerned with the whole confusion matrix.
- Average odds difference = 0
  - No bias
- Advantages : comprehensive
- Disadvantages: cumbersome

$$\frac{1}{2} \quad \left[ \left| FPR_D = unprivileged - FPR_D = privileged \right| + \left| TPR_D = unprivileged - TPR_D = privileged \right| \right]$$

|                                 | Predicted: positive (privileged)     | Predicted: negative (unprivileged)  |
|---------------------------------|--------------------------------------|-------------------------------------|
| Actual: positive (privileged)   | True Positive<br>(TPR privileged)    | False Negative<br>(FPR privileged)  |
| Actual: negative (unprivileged) | False Positive<br>(FPR unprivileged) | True Negative<br>(TPR unprivileged) |

## Disparate Impact

#### Method 4

Formula:

$$\frac{Pr(Y = 1|D = unprivileged)}{Pr(Y = 1|D = privileged)}$$

Disparate impact checks discrimination that is unintentional.

#### Situation when the metric is good:

- Employment: reaction test
- Possible bias against older applicants (the protected class)

#### Situation when the metric is bad:

- Employment: employers have business reasons to justify reaction test.
- Trade-off between costs and fairness

#### Theil Index

#### Method 5

The Theil index measures an entropic "distance" the population is away from the "ideal" egalitarian state of everyone having some defined standard.

- Value of O represents perfect equality
- · Calculate Theil Index for gender
- Widely used to measure economic inequalities
- US Census Bureau uses to measure Income inequality



How to evaluate if our model/dataset are bias?

\$\frac{1}{\sqrt{1}} \introducing 5 metrics

Could see more standards for fairness

2 How to mitigate bias?

| Post-Processing                                       | In-Processing                                                                                           | Pre-Processing                                                                                                                 | Data Collection                                       |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Change thresholds     Trade off accuracy for fairness | <ul> <li>Adversarial training</li> <li>Regularize for fairness</li> <li>Constrain to be fair</li> </ul> | <ul> <li>Modify labels</li> <li>Modify input data</li> <li>Modify label/data pairs</li> <li>Weight label/data pairs</li> </ul> | Identify lack of examples     or variates and collect |

