5. Bd-Capture Workflow

Cob Staines

2025-04-04

Table of contents

M	otivation
R	
	Setup
	Data discovery and pulling
	Point to support tables
	Join capture with support tables
	Join bd_qpcr_results with capture
	Join with environmental observations
	filtering
	collect (pull) these data
	explore taxa
	identify collaborators

This tutorial is available as a .qmd on Github.

Motivation

- Refresh ourselves on how to connect, browse, join, pull, and organize data
- Demonstrate linking data from different datasets

R

Let's run through another realistic data scenario:

Suppose we want to explore a hypothesis that temperature is related to Bd load. Let's collect data from the RIBBiTR database to use in testing our hypothesis.

Setup

```
# minimal packages for RIBBiTR DB data discovery
librarian::shelf(tidyverse, dbplyr, RPostgres, DBI, RIBBiTR-BII/ribbitrrr)

# establish database connection
dbcon <- hopToDB("ribbitr")

Connecting to 'ribbitr'... Success!

# load table metadata
mdt <- tbl(dbcon, Id("public", "all_tables")) %>%
    filter(table_schema == "survey_data") %>%
    collect()

# load column metadata
mdc <- tbl(dbcon, Id("survey_data", "metadata_columns")) %>%
    filter(table_schema == "survey_data") %>%
    collect()
```

Data discovery and pulling

Looking at the database schema, we determine that the observation tables of interest are: 'bd_qpcr_results", "capture", and "environmental". Let's creat pointers to these tables plus the related supporting tables:

Point to support tables

```
# pointers for all tables of interest
db_bdqpcr = tbl(dbcon, Id("survey_data", "bd_qpcr_results"))
db_sample = tbl(dbcon, Id("survey_data", "sample"))
db_capture = tbl(dbcon, Id("survey_data", "capture"))
db_env = tbl(dbcon, Id("survey_data", "environmental"))
db_survey = tbl(dbcon, Id("survey_data", "survey"))
db_visit = tbl(dbcon, Id("survey_data", "visit"))
db_site = tbl(dbcon, Id("survey_data", "site"))
db_region = tbl(dbcon, Id("survey_data", "region"))
db_country = tbl(dbcon, Id("survey_data", "country"))

# we may also want these lookup tables
```

```
db lab = tbl(dbcon, Id("survey data", "lab"))
db_taxa = tbl(dbcon, Id("survey_data", "taxonomy"))
```

Join capture with support tables

[10] "sex"

[13] "photo"

[19] "capture_utme"

we can also see which columns come from specified tables, for context colnames(db_capture)

```
[1] "taxon_capture"
                              "time_of_capture"
                                                       "capture_transect_m"
 [4] "microhabitat_type"
                              "body_temp_c"
                                                       "substrate_temp_c"
 [7] "svl mm"
                              "body mass g"
                                                       "life stage"
                              "capture_animal_state"
[10] "sex"
                                                       "comments_capture"
[13] "photo"
                              "photo_id"
                                                       "microhabitat_detailed"
[16] "body_and_bag_mass_g"
                              "bag mass g"
                                                       "marked"
[19] "capture_utme"
                                                       "capture_type"
                              "capture_utmn"
[22] "observer_capture"
                              "bag id"
                                                       "processor"
[25] "cmr_id"
                              "microhabitat_notes"
                                                       "tail_length_mm"
[28] "bucket"
                              "inside_outside_serdp"
                                                       "temp_gun"
[31] "clearcut"
                              "number_of_mites"
                                                       "flir"
                                                       "survey_id"
[34] "tad_stage"
                              "capture_id"
[37] "microhabitat_wet"
                              "capture_utm_zone"
                                                       "capture_latitude"
[40] "capture_longitude"
# left join supporting tables
db_capture_country = db_capture %>%
  left_join(db_survey, by = "survey_id") %>%
 left_join(db_visit, by = "visit_id") %>%
 left_join(db_site, by = "site_id") %>%
 left_join(db_region, by = "region_id") %>%
 left join(db country, by = "country id")
# see what columns are available
colnames(db_capture_country)
 [1] "taxon_capture"
                              "time_of_capture"
                                                       "capture_transect_m"
 [4] "microhabitat_type"
                                                       "substrate_temp_c"
                              "body_temp_c"
 [7] "svl_mm"
```

```
"body_mass_g"
                                                       "life_stage"
                              "capture_animal_state"
                                                       "comments_capture"
                              "photo_id"
                                                       "microhabitat detailed"
[16] "body_and_bag_mass_g"
                                                       "marked"
                              "bag_mass_g"
                              "capture_utmn"
                                                       "capture type"
```

```
[22] "observer_capture"
                              "bag_id"
                                                        "processor"
[25] "cmr id"
                              "microhabitat notes"
                                                        "tail_length_mm"
[28] "bucket"
                              "inside_outside_serdp"
                                                        "temp_gun"
[31] "clearcut"
                              "number of mites"
                                                        "flir"
[34] "tad_stage"
                              "capture_id"
                                                        "survey_id"
[37] "microhabitat_wet"
                              "capture_utm_zone"
                                                        "capture_latitude"
[40] "capture_longitude"
                              "start_time"
                                                        "end_time"
[43] "detection_type"
                                                        "observers_survey"
                              "duration_minutes"
[46] "comments_survey"
                              "description"
                                                        "survey_quality"
[49] "transect"
                                                        "visit_id"
                              "number_observers"
[52] "start_timestamp_utc"
                              "end_timestamp_utc"
                                                        "date"
[55] "time_of_day"
                              "campaign"
                                                        "visit_status"
[58] "comments visit"
                              "site id"
                                                        "visit lab"
                              "site"
[61] "project"
                                                        "site_utm_zone"
[64] "site_utme"
                              "site utmn"
                                                        "area sqr m"
[67] "site_code"
                              "site_elevation_m"
                                                        "depth_m"
[70] "topo"
                              "wilderness"
                                                        "site_comments"
[73] "region_id"
                              "site_name_alt"
                                                        "site_latitude"
[76] "site_longitude"
                              "geographic_area"
                                                        "geographic_area_type"
[79] "region"
                              "country_id"
                                                        "time_zone"
[82] "country"
                              "iso_country_code"
```

Join bd_qpcr_results with capture

```
# link bd results and capture
db_bd_country = db_bdqpcr %>%
  left_join(db_sample, by = "sample_id") %>%
  left_join(db_capture, by = "capture_id") %>%
  left_join(db_survey, by = "survey_id") %>%
  left_join(db_visit, by = "visit_id") %>%
  left_join(db_site, by = "site_id") %>%
  left_join(db_region, by = "region_id") %>%
  left_join(db_region, by = "region_id") %>%
  filter(!is.na(capture_id))

# or, more simply
db_bd_country = db_bdqpcr %>%
  inner_join(db_sample, by = "sample_id") %>%
  inner_join(db_capture_country, by = "capture_id")
colnames(db_bd_country)
```

```
[1] "result_id" "sample_id"
```

[3]	"sample_name_bd"	"detected"
	"replicate"	"replicate_count"
	"replicate_detected"	"average_ct"
	"average_target_quant"	"total_qpcr_volume_uL"
	"qpcr_dilution_factor"	"volume_template_dna_uL
	"extract_volume_uL"	"target_quant_per_swab"
	"average_its1_copies_per_swab"	"swab_type"
	"standard_target_type"	"standard"
	"master_mix"	"extraction_plate_name"
	- "extraction_date"	"extraction_kit"
	"extraction_lab"	"qpcr_plate_name"
	"qpcr_well"	"qpcr_plate_run"
	"qpcr_date"	"qpcr_machine"
	"qpcr_lab"	"comments_qpcr"
	"sample_name"	"sample_type"
	"capture_id"	"sample_name_conflict"
	"taxon_capture"	"time_of_capture"
[37]		"microhabitat_type"
[39]	"body_temp_c"	"substrate_temp_c"
[41]	"svl_mm"	"body_mass_g"
[43]	"life_stage"	"sex"
[45]	"capture_animal_state"	"comments_capture"
[47]	"photo"	"photo_id"
[49]	"microhabitat_detailed"	"body_and_bag_mass_g"
[51]	"bag_mass_g"	"marked"
[53]	"capture_utme"	"capture_utmn"
[55]	"capture_type"	"observer_capture"
[57]	"bag_id"	"processor"
[59]	"cmr_id"	"microhabitat_notes"
	"tail_length_mm"	"bucket"
	"inside_outside_serdp"	"temp_gun"
	"clearcut"	"number_of_mites"
	"flir"	"tad_stage"
	"survey_id"	"microhabitat_wet"
	"capture_utm_zone"	"capture_latitude"
	"capture_longitude"	"start_time"
	"end_time"	"detection_type"
	"duration_minutes"	"observers_survey"
	"comments_survey"	"description"
	"survey_quality"	"transect"
	"number_observers"	"visit_id"
	"start_timestamp_utc"	"end_timestamp_utc"
	"date"	"time_of_day"
	"campaign"	"visit_status"
[91]	"comments_visit"	"site_id"

```
[93] "visit_lab"
                                       "project"
 [95] "site"
                                       "site_utm_zone"
 [97] "site_utme"
                                       "site_utmn"
 [99] "area_sqr_m"
                                       "site code"
                                       "depth_m"
[101] "site_elevation_m"
[103] "topo"
                                       "wilderness"
[105] "site_comments"
                                       "region_id"
[107] "site_name_alt"
                                       "site_latitude"
[109] "site_longitude"
                                       "geographic_area"
[111] "geographic_area_type"
                                       "region"
[113] "country_id"
                                       "time_zone"
[115] "country"
                                       "iso_country_code"
```

Join with environmental observations

Aggregate and join at the visit level

colnames(db_env)

```
"survey_id"
 [1] "environmental_id"
 [3] "wind speed m s"
                                     "air temp c"
 [5] "water_temp_c"
                                     "p h"
 [7] "tds_ppm"
                                     "wind"
 [9] "sky"
                                     "air time"
[11] "water_time"
                                     "sample_loccation_desctiption"
[13] "dissolved_o2_percent"
                                     "salinity_ppt"
[15] "cloud_cover_percent"
                                     "precip"
[17] "soil_moisture_m3_m3"
                                     "wind_speed_scale"
                                     "precipitation_last_48 h"
[19] "precipitation_during_visit"
[21] "temperature_last_48_h"
                                     "weather_condition_notes"
[23] "relative_humidity_percent"
                                     "wind_speed_min_m_s"
[25] "wind_speed_max_m_s"
                                     "air_temp_c_drop"
[27] "densiometer_d1_num_covered"
                                     "d1_n"
[29] "d1_s"
                                     "d1_e"
                                     "d1_percent_cover"
[31] "d1_w"
[33] "densiometer d2 num covered"
                                     "d2 n"
[35] "d2 s"
                                     "d2 e"
                                     "d2_percent_cover"
[37] "d2 w"
[39] "depth_of_water_from_d2_cm"
                                     "vegetation_cover_percent"
[41] "vegetation_notes"
                                     "secchi_depth_cm"
                                     "fish"
[43] "conductivity_us_cm"
[45] "comments environmental"
                                     "environmental utmn"
[47] "environmental_utme"
                                     "environmental_utm_zone"
[49] "environmental_elevation_m"
                                     "environmental_latitude"
```

[51] "environmental_longitude" "air_pressure_mbar"

```
db_env_visit = db_env %>%
  left_join(db_survey, by = "survey_id") %>%
  left_join(db_visit, by = "visit_id") %>%
  group_by(visit_id) %>%
  summarise(env_n = n(),
            air_temp_c_mean = mean(air_temp_c, na.rm = TRUE),
            water_temp_c_mean = mean(water_temp_c, na.rm = TRUE))
db_bd_env = db_bd_country %>%
  left_join(db_env_visit, by = "visit_id") %>%
  select(sample_name_bd,
         detected,
         average_target_quant,
         taxon_capture,
         svl_mm,
         body_mass_g,
         life_stage,
         substrate_temp_c,
         air_temp_c_mean,
         water_temp_c_mean,
         env_n,
         microhabitat_type,
         time_of_capture,
         date,
         site,
         region,
         country,
         visit_lab,
         extraction_lab,
         qpcr_lab)
```

filtering

```
db_filtered = db_bd_env %>%
  filter(life_stage == "adult",
         !is.na(substrate_temp_c))
db_filtered %>%
  count()
           SQL [?? x 1]
# Source:
# Database: postgres [cob_reads@ribbitr.c6p56tuocn5n.us-west-1.rds.amazonaws.com:5432/ribbi
  <int64>
    8711
1
# count by region/country
summary_bd_region = db_filtered %>%
  group_by(country, region) %>%
  count() %>%
  collect() %>%
  arrange(country, region)
# count by year
summary_bd_year = db_filtered %>%
  mutate(year = year(date)) %>%
  group_by(year) %>%
  count() %>%
  collect() %>%
  arrange(year)
```

collect (pull) these data

```
data_final = db_filtered %>%
  collect()
```

explore taxa

```
taxa_relevant = db_filtered %>%
  group_by(taxon_capture) %>%
  summarise(taxa_count = n()) %>%
  left_join(db_taxa, by = c("taxon_capture" = "taxon_id")) %>%
  collect() %>%
```

```
arrange(desc(taxa_count))

taxa_final = taxa_relevant %>%
  filter(taxa_count >= 50)

data_final = db_filtered %>%
  filter(taxon_capture %in% taxa_final$taxon_capture) %>%
  collect()
```

identify collaborators