Nonconvex Optimization

GD for linear networks

Axel Böhm

January 24, 2022

- 2 Theory
- 3 GD for linear networks
- 4 Matrix completion

•00

may get stuck in a local minimum and miss the global minimum

Gradient Descent in the nonconvex world II

Even if there is a unique local minimum (equal to the global minimum), we

- may get stuck in a saddle point;
- run off to infinity;
- possibly encounter other bad behaviors.

Gradient Descent in the nonconvex world III

- Often, we observe good behavior in practice.
- Theoretical explanations many times missing.
- Under favorable conditions, we sometimes can say something useful about the behavior of GD.

Smooth (but not necessarily convex) functions

Recall: A differentiable $f: \mathbb{R}^d \to \mathbb{R}$ is *L*-smooth over a convex set X if

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2, \quad \forall x, y \in X.$$

Bounded Hessians ⇒ smooth

Lemma

Let $f: \mathbb{R}^d \to \mathbb{R}$ be twice differentiable and

$$\|\nabla^2 f(x)\| \le L$$

where $\|\cdot\|$ is spectral norm. Then f is L-smooth

Examples:

- \diamond all quadratic functions $f(x) = x^T A x + b^T x + c$
- $\diamond f(x) = \sin(x)$ (many global minima)

Gradient descent on smooth functions

Will prove: $\|\nabla f(x_k)\|^2 \to 0 \dots$... at the same rate as $f(x_k) - f(x^*) \rightarrow 0$ in the convex case.

 $\diamond f(x_k) - f(x^*)$ itself may not converge to 0 in the nonconvex case:

GD for linear networks

What does $\|\nabla f(x_k)\|^2 \to 0$ mean?

- \diamond May or may not mean convergence to a critical point $\nabla f(y^*) = 0$
- o critical point might not be even local minimum

Gradient descent on smooth (not necessarily convex) functions

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be L-smooth with a global minimum x^* . Choosing stepsize $\alpha := \frac{1}{L}$ gradient descent yields

$$\frac{1}{K} \sum_{k=0}^{K-1} \|\nabla f(x_k)\|^2 \leq \frac{2L}{K} (f(x_0) - f(x^*)).$$

In particular, same bound hold for "best" iterate

$$\min_{0 \le k \le K-1} \|\nabla f(x_k)\|^2 \le \frac{2L}{K} (f(x_0) - f(x^*))$$

and (prove this — see exercises)

$$\lim_{k\to\infty}\|\nabla f(x_k)\|^2=0.$$

Gradient descent on smooth functions II: Proof

Smoothness gives:

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2.$$

Use $y = x_{k+1}$ and $x = x_k$ to obtain

$$f(x_{k+1}) \leq f(x_k) + \langle \nabla f(x_k), -\alpha \nabla f(x_k) \rangle + \frac{L\alpha^2}{2} ||\nabla f(x_k)||^2.$$

to obtain sufficient decrease:

$$f(x_{k+1}) \le f(x_k) - \frac{1}{2I} \|\nabla f(x_k)\|^2.$$

Proof II

Sufficient decrease:

$$\frac{1}{2L} \|\nabla f(x_k)\|^2 \le f(x_k) - f(x_{k+1}).$$

Sum up from $k = 0, 1, \dots, K - 1$ to get

$$\frac{1}{2L}\sum_{k=0}^{K-1}\|\nabla f(x_k)\|^2 \leq f(x_0) - f(x_k) \leq f(x_0) - f(x^*).$$

Multiply by 2L/K to get the statement of the theorem.

No overshooting

Under the smoothness assumption and appropriate stepsize $\alpha \leq 1/L$, GD cannot pass a critical point:

Trajectory Analysis

Even if the "landscape" (graph) of a nonconvex function has local minima, saddle points, and flat parts, gradient descent may avoid them and still converge to a global minimum.

GD for linear networks

•0000000000000

For this, one needs a good starting point and some theoretical understanding of what happens when we start there — this is trajectory analysis.

Linear models with several outputs

Recall: Learning linear models

- \diamond *n* inputs x_1, \ldots, x_n , where each input $x_i \in \mathbb{R}^d$
- \diamond *n* outputs $y_1, \ldots, y_n \in \mathbb{R}$
- Hypothesis (after centering / no bias):

$$y_i \approx w^T x_i$$

for a weight vector $w = (w_1, ..., w_d) \in \mathbb{R}^d$ to be learned.

Now more than one output value:

- \diamond *n* outputs y_1, \ldots, y_n , where each output $y_i \in \mathbb{R}^m$
- Hypothesis:

$$y_i \approx Wx_i$$

for a weight matrix $W \in \mathbb{R}^{m \times d}$ to be learned.

Minimizing the least squares error

Compute

$$W^* = \underset{W \in \mathbb{R}^{m \times d}}{\operatorname{arg \, min}} \sum_{i=1}^n \|Wx_i - y_i\|^2.$$

- $\diamond X \in \mathbb{R}^{d \times n}$: matrix whose columns are the x_i
- $\diamond \ Y \in \mathbb{R}^{m \times n}$: matrix whose columns are the y_i

Then, equivalently

$$W^* = \underset{W \in \mathbb{R}^{m \times d}}{\operatorname{arg\,min}} \ \|Wx - y\|_F^2.$$

where $||A||_F = \sqrt{\sum_{i,j} a_{i,j}}$ is the Frobenius norm of a matrix A.

Frobenius norm of A = Euclidean norm of vec(A) ("flattening" of A).

Minimizing the least squares error II

$$W^* = \underset{W \in \mathbb{R}^{m \times d}}{\operatorname{arg \, min}} \ \|WX - Y\|_F^2$$

- ⋄ global minimum of a convex quadratic function f(W).
- \diamond To find W^* , solve $\nabla f(W) = 0$ (system of linear equations)
- ♦ ⇔ training a linear neural network with one layer under least squares loss.

$$\mathbf{x} \mapsto \mathbf{y} = W_3 W_2 W_1 \mathbf{x}$$

Not more expressive:

$$x \mapsto W_3 W_2 W_1 x \Leftrightarrow x \mapsto W x$$
, for $W := W_3 W_2 W_1$

Training deep linear neural networks

With ℓ layers:

$$W^* = \mathop{\mathsf{arg\,min}}_{W_1, W_2, \dots, W_\ell} \| W_1 W_2 \cdots W_\ell X - Y \|_F^2$$

Nonconvex function for $\ell > 1$.

Playground to understand why training deep neural networks with gradient descent works.

Here: all matrices are 1×1 , $W_i = x_i$, X = 1, Y = 1, $\ell = d$ $\Rightarrow f : \mathbb{R}^d \to \mathbb{R}$,

$$f(x) := rac{1}{2} \left(\prod_{j=1}^d x_j - 1
ight)^2.$$

Toy example in our simple playground

A simple nonconvex function

Nonconvex level sets: $f(x) = \frac{1}{2} \left(\prod_j x_j \right)$.

Dimensions is fixed so we ignore it.

Gradient and critical points

$$abla f(x) = \left(\prod_j x_j\right) \left(\prod_{j \neq 1} x_j, \cdots, \prod_{j \neq d} x_j\right).$$

Critical points $(\nabla f(x) = 0)$ are either:

- \diamond global minima: if $\prod_j x_j = 1$
 - ightharpoonup d=2: hyperbola
- ⋄ saddle point: if at least two of x_i are zero
 - d = 2: only the origin (0,0)

Negative gradient directions

Convergence analysis: Overview

Convergence of GD holds for any d>1 and from anywhere in

$$X = \{x : x > 0, \prod_{i} x_{i} \le 1\}.$$

 f is not smooth over X. But is smooth along the trajectory: For suitable L we still get

$$f(x_{k+1}) = f(x_k) - \frac{1}{2L} \|\nabla f(x_k)\|^2.$$
 (SD)

- \diamond saddle points have (at least two) zero entries \Rightarrow function value $\geq 1/2$.
- \diamond any starting point $x_0 \in X$ has $f(x_0) < 1/2$
- cannot converge to saddle points through (SD)

Still does not imply convergence to global minimum:

 \diamond Sublevel sets are unbounded: GD can run off to ∞

Convergence analysis: Overview II

Introduction

For x > 0, $\prod_i x_i \ge 1$, we can also show convergence: \Rightarrow convergence anywhere in the interior of the positive orthant $\{x: x > 0\}$. For this, recall that

GD for linear networks

00000000000000

$$abla f(x) = \left(\prod_j x_j\right) \left(\prod_{j \neq 1} x_j, \cdots, \prod_{j \neq d} x_j\right).$$

- \diamond since $\prod_i x_i \geq 1$ then $\nabla f(x) \geq 0$
- \diamond which implies that $x_1 \leq x_0$ (componentwise)
- \diamond iterates remain in a bounded set \Rightarrow smoothness on this set

Definition

Let x > 0 (componentwise), and let $c \ge 1$. x is called c-balanced if $x_i < cx_i$ for all 1 < i, j < d.

GD for linear networks

000000000000

Theorem

Let $c \ge 1$ and $\delta > 0$ such that $x^0 > 0$ is c-balanced with $\delta \le \prod_i x_i^0 < 1$. Choosing the stepsize

$$\gamma = \frac{1}{3dc^2}$$

gradient descent satisfies

$$f(x^k) \le \left(1 - \frac{\delta^2}{3c^4}\right)^k f(x^0).$$

Discussion

- ♦ Error converges to 0 exponentially fast.
- \diamond But there's a catch: Consider $x^0 = (1/2, \dots, 1/2)$. Then $\delta \leq \prod_i x_i^0 = 2^{-d}$
- Decrease in function value per step by factor

$$\left(1-\frac{1}{34^d}\right).$$

GD for linear networks

0000000000000

- Contraction coefficient depends exponentially bad on dimension
- \diamond polynomial runtime: must start at distance $\mathcal{O}(1/\sqrt{d})$ from optimality.

Matrix completion

is the problem of recovering a low rank $(r \ll d)$ matrix $M \in \mathbb{R}^{d \times d}$ from partially observed entries:

GD for linear networks

Application: Netflix problem

$$\min_{X \in \mathbb{R}^{d imes d}} \operatorname{\mathsf{rank}}(X)$$
 subject to $X_{i,j} = M_{i,j}, \quad orall i, j \in \Omega$

But rank is not continuous...

Convex matrix completion

Typically convex reformulations are considered via the Nuclear norm (sum of singular values)

$$\min_{X\in\mathbb{R}^{d imes d}}\|X\|_*:=\sum_j \sigma_j(X)$$
 subject to $X_{i,j}=M_{i,j}, \quad orall i,j\in \Omega$

GD for linear networks

- strong theoretical guarantees
- can be expensive
 - \triangleright $\mathcal{O}(d^3)$ running time
 - $\triangleright \mathcal{O}(d^2)$ memory.

Nonconvex matrix completion

Can be cast in the bilinear $X \approx UV^T$ form which gives:

$$\min_{U,V\in\mathbb{R}^{d\times r}}\sum_{i,j\in\Omega}\|(UV^T)_{i,j}-M_{i,j}\|^2.$$

- many global minima
- \diamond if $UV^T = M$ then $(UQ)(VQ)^T = M$ for any orthonormal matrix Q orthonormal: $QQ^T = Id$

No spurious local minima!

Can often be efficiently solved by GD or alternating minimization.