Teoria Sygnałów w zadaniach Tomasz Grajek, Krzysztof Wegner

Politechnika Poznańska Wydział Elektroniki i Telekomunikacji

Katedra Telekomunikacji Multimedialnej i Mikroelektroniki

pl. M. Skłodowskiej-Curie 5 60-965 Poznań

www.et.put.poznan.pl www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 Wszelkie prawa zastrzeżone Wydrukowano w Polsce

Książka współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

Zadanie 1. Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku oraz narysuj jego widmo amplitudowe i fazowe

W pierwszej kolejności opiszmy sygnał za pomocą sygnałów elementarnych:

$$f(t) = A \cdot \delta(t - t_0) - A \cdot \delta(t + t_0) \tag{1}$$

Transformatę Fouriera obliczamy ze wzoru:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (2)

Podstawiamy do wzoru na transformatę wzór naszej funkcji

$$\begin{split} F(\jmath\omega) &= \int_{-\infty}^{\infty} f(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} \left(A \cdot \delta(t - t_0) - A \cdot \delta(t + t_0) \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} A \cdot \delta(t - t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt - \int_{-\infty}^{\infty} A \cdot \delta(t + t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= A \cdot \int_{-\infty}^{\infty} \delta(t - t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt - A \cdot \int_{-\infty}^{\infty} \delta(t + t_0) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \left\{ \int_{-\infty}^{\infty} \delta(t - t_0) \cdot f(t) \cdot dt = f(t_0) \right\} \\ &= A \cdot e^{-\jmath \cdot \omega \cdot t_0} - A \cdot e^{-\jmath \cdot \omega \cdot (-t_0)} \\ &= A \cdot e^{-\jmath \cdot \omega \cdot t_0} - A \cdot e^{\jmath \cdot \omega \cdot t_0} \\ &= A \cdot \left(e^{-\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right) \\ &= A \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right) \\ &= -A \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right) \\ &= -A \cdot \left(e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0} \right) \\ &= \left\{ \sin(x) = \frac{e^{\jmath \cdot \omega \cdot t_0} - e^{-\jmath \cdot \omega \cdot t_0}}{2 \cdot \jmath} \right\} \\ &= -2 \cdot \jmath \cdot A \cdot \sin(\omega \cdot t_0) \end{split}$$

Transformata sygnału $f(t) = A \cdot \delta(t - t_0) - A \cdot \delta(t + t_0)$ to $F(\jmath \omega) = -2 \cdot \jmath \cdot A \cdot \sin(\omega \cdot t_0)$ Narysujmy widmo sygnału $f(t) = A \cdot \delta(t - t_0) - A \cdot \delta(t + t_0)$ czyli:

$$F(j\omega) = -2 \cdot j \cdot A \cdot \sin(\omega \cdot t_0) \tag{3}$$

Widmo amplitudowe obliczamy ze wzoru:

$$M(\omega) = |F(j \cdot \omega)| \tag{4}$$

Widmo fazowe obliczamy ze wzoru:

$$\Phi(\omega) = arctg(\frac{Im\{F(j \cdot \omega)\}}{Re\{F(j \cdot \omega)\}})$$
(5)

