

Subject Name TAFL	Subject Code	KCS-402
Date of Handover: 08/05/23	Max Marks	
Date of Submission:21/05/23		

Practice Set-2

Q.n	Question					
0		d CO				
a.	 i) Design a DFA which accepts the set of strings over alphabet Σ = { 1, 2, 3, 4 } such that string when interpreted as decimal numbers, sum of their digits are divisible by 5 ii) Design a DFA to accept the language L over {a, b} such that L = { aⁿ b^m : n, m >= 1, n + m is even } 					
b.	 i) Find a deterministic finite accepter that recognizes the set of all strings on Σ = { a, b } starting with the prefix "ab". ii) Construct the transition graph for a FA which accepts a language L over Σ = { 0, 1 } in which every strings start with 0 and ends with 1. 	[CO1]				
c.	Find dfa's for the following language over $\Sigma = \{ a, b \}$	[CO1]				
	$L = \{ w : n_a(w) \text{ mod } 3 > n_b(w) \text{ mod } 3 \}$					
d.	i) Construct a nfa with three states that accepts the language { ab, abc }*	[CO1]				
	ii) Design an nfa with no more than five states for the set $\{abab^n : n \ge 0\} \cup \{aba^n : n \ge 0\}$					
	iii) Convert the following nfa into equivalent deterministic machine.					
	$0 \qquad 1 \qquad q_0 \qquad q_1 \qquad q_2 \qquad q_2 \qquad q_2 \qquad q_2 \qquad q_3 \qquad q_4 \qquad q_4 \qquad q_5 \qquad q_6 \qquad q_6 \qquad q_6 \qquad q_6 \qquad q_7 \qquad q_8 \qquad q_$					
e.	i) Convert the following nfa into equivalent dfa	[CO1]				

States $\setminus \Sigma$	a	b
$ ightarrow q_0$	q_0, q_1	q_2
$\mathbf{q_1}$	q_0	q_1
q_2		q_0, q_1

[CO1] Minimize the states in the dfa depicted in the following diagram g. i)

ABES Engineering College, Ghaziabad

ABES Engineering College, Ghaziabad Department of Computer Science & Engineering-Data Science

i.							[CO1]
	i) Design a moore machine to generate 1's complement of given binary number						
		ii)	Design a mealy machine to generate 1's complement of given binary number				
		Design a moore and mealy machine for a binary input sequence such that if it has a substring "101" the machine outputs 'A' if input has substring "110" it outputs 'B' otherwise it outputs 'C'					
	Const	truct o m	inimum state automation eq	uivalant to	givan automatan		[601]
j.	Colls	iruct a iii	States \ Σ	a a	b		[CO1]
			$ ightarrow q_0$	q_0	q_3		
			$\mathbf{q_1}$	q_2	q_5		
			\mathbf{q}_2	q_3	q_4		
			\mathbf{q}_3	q_0	q_5		
			\mathbf{q}_{4}	q_0	q_6		
			q 5	q_1	q ₄		
			$\left(q_{6}\right)$	q_1	q_3		