Project: Predictive Analytics Capstone

Task 1: Determine Store Formats for Existing Stores

1. What is the optimal number of store formats? How did you arrive at that number?

Fig: Adjusted Rand Indices and Calinski-Harabasz Indices

The optimal number of store formats is 3 when both the indices registered the highest median value, based on the Adjusted Rand and Calinski-Harabasz indices above.

2. How many stores fall into each store format?

uster Information:					
Cluster	Size	Ave Distance	Max Distance	Separation	
1	23	2.320539	3.55145	1.874243	
2	29	2.540086	4.475132	2.118708	
3	33	2.115045	4.9262	1.702843	

Fig: Cluster information

Cluster 1 has 23 stores, cluster 2 has 29 stores while cluster 3 has 33 stores.

3. Based on the results of the clustering model, what is one way that the clusters differ from one another?

- i) Compared to the other 2, Cluster 1 stores have highest medial total sales.
- ii) Its range of total sales and most of other categorical sales are also the largest.
- iii) Due to more compact range Cluster 3 stores are the most similar in terms of sales due to more compact range.
- iv) Cluster 1 stores sold more General Merchandise in terms of percentage while Cluster 2 stores sold more Produce.

4. Please provide a Tableau visualization (saved as a Tableau Public file) that shows the location of the stores, uses color to show cluster, and size to show total sales.

Task 2: Formats for New Stores

1. What methodology did you use to predict the best store format for the new stores? Why did you choose that methodology? (Remember to Use a 20% validation sample with Random Seed = 3 to test differences in models.)

Boosted Model is chosen despite having same accuracy as Forest Model due to higher F1 value. Comparison matrix of Decision Tree, Forest Model and Boosted Model is shown below in the model comparison report.

Model Comparison Report

Fit and error measures						
Model	Accuracy	F1	Accuracy_1	Accuracy_2	Accuracy_3	
DT	0.7059	0.7327	0.6000	0.6667	0.8333	
FM	0.8235	0.8251	0.7500	0.8000	0.8750	
DT FM BM	0.8235	0.8543	0.8000	0.6667	1.0000	

Model: model names in the current comparison.

Accuracy: overall accuracy, number of correct predictions of all classes divided by total sample number.

Accuracy_[class name]: accuracy of Class [class name], number of samples that are correctly predicted

to be Class [class name] divided by number of samples predited to be Class [class name]

AUC: area under the ROC curve, only available for two-class classification.

F1: F1 score, precision * recall / (precision + recall)

Confusion matrix of BM						
	Actual_1	Actual_2	Actual_3			
Predicted_1	4	0	1			
Predicted_2	0	4	2			
Predicted_3	0	0	6			

Confusion matrix of DT						
	Actual_1	Actual_2	Actual_3			
Predicted_1	3	0	2			
Predicted_2	0	4	2			
Predicted_3	1	0	5			

Confusion matrix of FM						
	Actual_1	Actual_2	Actual_3			
Predicted_1	3	0	1			
Predicted_2	0	4	1			
Predicted_3	1	0	7			

Fig: Model comparison report

2. What format do each of the 10 new stores fall into? Please fill in the table below.

Store Number	Segment
S0086	1
S0087	2
S0088	3
S0089	2
S0090	2
S0091	1
S0092	2
S0093	1
S0094	2
S0095	2

Task 3: Predicting Produce Sales

1. What type of ETS or ARIMA model did you use for each forecast? Use ETS(a,m,n) or ARIMA(ar, i, ma) notation. How did you come to that decision?

ARIMA(0,1,2)(0,1,0) is used as seasonal difference and seasonal first difference were performed. There is a lag-2.

- i) For ETS model **ETS**(M,N,M) with no dampening is used.
- ii) The seasonality shows increasing trend and should be applied multiplicatively.
- iii) The trend is not clear and nothing should be applied.
- iv) Its error is irregular and should be applied multiplicatively.

- i) ETS model's accuracy is higher when compared to ARIMA model.
- ii) A holdout sample of 6 months data is used.
- iii) ETS has a higher AIC at 1,283 while ARIMA's AIC is 859.
- iv) ETS's RMSE of 1,020,597 is lower than ARIMA's 1,429,296.
- v) ETS's MASE is 0.45 compared to ARIMA's 0.53.

Fig: In-sample error

Fig: Accuracy Measures

As we can see, RMSE value of ETS Model is less than that of ARIMA Model which shows less deviation in values. Also, MASE value of ETS is less than that of ARIMA which also makes it a better model since MASE is used to compare difference models (not based on scale).

With 80% & 95% confidence level interval, graph and table below shows actual and forecast value.

Forecasts from ETS

Period	Sub_Period	forecast	forecast_high_95	forecast_high_80	forecast_low_80	forecast_low_95
2016	1	21539936.007499	23479964.557336	22808452.492932	20271419.522066	19599907.457663
2016	2	20413770.60136	22357792.702597	21684898.329698	19142642.873021	18469748.500122
2016	3	24325953.097628	26761721.213559	25918616.262307	22733289.932948	21890184.981697
2016	4	22993466.348585	25403233.826166	24569128.609653	21417804.087517	20583698.871004
2016	5	26691951.419156	29608731.673669	28599131.515834	24784771.322478	23775171.164643
2016	6	26989964.010552	30055322.497686	28994294.191682	24985633.829422	23924605.523418
2016	7	26948630.764764	30120930.290185	29022885.932332	24874375.597196	23776331.239343
2016	8	24091579.349106	27023985.64738	26008976.766614	22174181.931598	21159173.050832
2016	9	20523492.408643	23101144.398226	22208928.451722	18838056.365564	17945840.419059
2016	10	20011748.6686	22600389.955254	21704370.226808	18319127.110391	17423107.381946
2016	11	21177435.485839	23994279.191514	23019270.585553	19335600.386124	18360591.780163
2016	12	20855799.10961	23704077.778174	22718188.42676	18993409.79246	18007520.441046

2. Please provide a table of your forecasts for existing and new stores. Also, provide visualization of your forecasts that includes historical data, existing stores forecasts, and new stores forecasts.

Table below shows the forecast sales for existing stores and new stores.

- i) New store sales is obtained by using **ETS(M,N,M)** analysis with all the 3 individual cluster to obtain the average sales per store.
- ii) The average sales value (x3 cluster 1, x6 cluster 2, x1 cluster 3) are added up produce New Store Sales.

Year	Month	New Store Sales	Existing Store Sales
2016	1	2,626,198	21,539,936
2016	2	2,529,186	20,413,771
2016	3	2,940,264	24,325,953
2016	4	2,774,135	22,993,466
2016	5	3,165,320	26,691,951
2016	6	3,203,286	26,989,964
2016	7	3,244,464	26,948,631
2016	8	2,871,488	24,091,579
2016	9	2,552,418	20,523,492
2016	10	2,482,837	20,011,749
2016	11	2,597,780	21,177,435
2016	12	2,591,815	20,855,799

Fig: Above chart shows the historical and forecast sales for existing stores and new stores

Tableau Profile

https://public.tableau.com/profile/sanchit.thacker#!/vizhome/Task3_200/Task3