

Seminar Technische Informatik

Top 10 algorithms in data mining

Stephan Mielke, 22.01.2015

Technische

Universität

Inhalt

Data Mining

- Top 10 algorithms in data mining
- Clustering
- Klassifikation
- Assoziation

Neue Algorithmen

Einleitung - Der Weltraum unendliche Weiten ...

Abbildung 1: Hubble Ultra Deep Field[1]

Einleitung - Einsatz von DM in der Astronomie

- Klassifizierung von Sternen mit Knn¹
- Manuelle Klassifizierung unmöglich [2]
- Pro Bild mehre 10000 Objekte
- Kepler z.B. hat 13.2m Objekte erkannt
- Benutzung von Klassifizierungsalgorithmen aus DM
- Je Objekt 9 Attribute (8 Isophotenformen, Leuchtkraft)
- Ausgabewert "stellary"
 - 0.0 0.1 Galaxie
 - 0.9 1.0 Stern

¹k-nearest neighbor

Einleitung - Einsatz von DM in der Astronomie

- Klassifizierung von Sternen mit Knn¹
- Manuelle Klassifizierung unmöglich [2]
- Pro Bild mehre 10000 Objekte
- Kepler z.B. hat 13.2m Objekte erkannt
- Benutzung von Klassifizierungsalgorithmen aus DM

Name	Erkennung
Random Forest	82,89%
Decision Tree	82, 89% 80, 68% 75.82%
Artificial Neural Network	75.82%
Support Vector Machines	37, 82%

Tabelle 1: Erkennungsraten der Algorithmen Stern / Galaxie[3]

¹k-nearest neighbor

Überblick

Data Mining

- Top 10 algorithms in data mining
- Clustering
- Klassifikation
- Assoziation
- Neue Algorithmen

Data Mining - Einleitung[2]

- Gehört zum Gebiet des KDD (Knowledge Discovery in Databases)
- Idee: Wissen durch Daten
- Einsatz in der Forschung, Vermarktung, Medizin, (Wetter)-Vorhersagen, Betrugsaufklärung usw.

Definition nach Fayyad[4]

Knowledge Discovery in Databases describes the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data.

Data Mining - Einordnung

Abbildung 2: KDD nach Fayyad[4]

Data Mining - Top 10 algorithms in data mining

Data Mining

- Top 10 algorithms in data mining
- Clustering
- Klassifikation
- Assoziation

Data Mining - Top 10 algorithms in data mining[5]

- Anlass: IEEE International Conference on Data Mining
- Datum: Dezember 2006
- Erstellung: Jeder ACM KDD Innovation Award oder IEEE ICDM Research Contributions Award Preisträger nominierte 10 Algorithmen
- Nur Nominierte mit ≥ 50 Referenzierungen in Google Scholar
- http://www.cs.uvm.edu/~icdm/algorithms/CandidateList.shtml
- Per Abstimmung finden der Top 10
- Das Paper: Top 10 algorithms in data mining [5]

Data Mining - Top 10 algorithms in data mining[5]

- 1. C4.5 und ähnliche
- 2. k-means
- 3. Suport Vector Machines
- 4. Apriori
- 5. EM Algorithm

- 6. PageRank
- 7. AdaBoost
- k-nearest neighbor
- Naive Bayes
- 10. CART

Data Mining - Clustering

Data Mining

- Top 10 algorithms in data mining
- Clustering
- Klassifikation
- Assoziation

Data Mining - Clustering - Einleitung[2]

- Einordnung von Objekten in unbekannten Klassen
- Finden der Funktion die Objekte gruppiert
- Ähnlichkeit von Objekten durch eine Distanzfunktion ermitteln

Data Mining - Clustering - Cluster[6]

- Formen: sehr unterschiedlich
- Flach oder Hierarchisch
- Anzahl von Clustern:
 - Festgelegte Anzahl von k-Clustern
 - Anzahl hängt von der Qualitätsgüte der Cluster ab
- Qualitätsgüte: nicht zu klein oder groß
- Hard oder Soft Clustering
- Keine großen "Lücken " zwischen den Daten
- Cluster durch Heuristiken sonst zu großer Aufwand

- Menge von Objekten $O = \{o_1, o_2, \dots, o_n\}$
- Jedes Objekt hat A_i Aattribute
- Attributarten:
 - Kategorische Attribute
 - Nummerische Attribute
- Es muss gelten 1.-3., für Metrik 4.:

$$dist(o_1, o_2) = d \in R^{n \geqslant 0} \tag{1}$$

$$dist(o_1, o_2) = 0 \text{ genau dann wenn } o_1 = o_2$$
 (2)

$$dist(o_1, o_2) = dist(o_2, o_1) \text{ (Symmetrie)}$$
(3)

$$dist(o_1, o_3) \leq dist(o_1, o_2) + dist(o_2, o_3)$$
 (4)

■ Manchmal auch Ähnlichkeitsfunktion genannt ⇒ Interpretation anders herum.

- Datensätze $x = (x_1, ..., x_n)$ mit nummerischen Attributen x_i
- Datensätze $x = (x_1, ..., x_n)$ mit kategorischen Attributen x_i
- Endliche Mengen $x = \{x_1, \ldots, x_n\}$

- Datensätze $x = (x_1, ..., x_n)$ mit nummerischen Attributen x_i
 - Euklidische-Distanz: $dist(x, y) = \sqrt{(x_1 y_1)^2 + ... + (x_n y_n)^2}$
 - Manhattan-Distanz: $dist(x, y) = |x_1 y_1| + \ldots + |x_n y_n|$
 - Maximum-Metrik: $dist(x, y) = max(|x_1 y_1| + ... + |x_n y_n|)$
 - Alg. L_p -Metrik: $dist(x, y) = \sqrt[p]{\sum_{i=1}^d (x_i y_i)^p}$
- Datensätze $x = (x_1, ..., x_n)$ mit kategorischen Attributen x_i
- Endliche Mengen $x = \{x_1, \ldots, x_n\}$

- Datensätze $x = (x_1, ..., x_n)$ mit nummerischen Attributen x_i
- Datensätze $x = (x_1, ..., x_n)$ mit kategorischen Attributen x_i
 - Summe der Unterschiede

•
$$dist(x, y) = \sum_{i=1}^{a} \delta(x_i, y_i)$$

$$\bullet \ \delta(x_i, y_i) = \begin{cases} 0 \text{ wenn } (x_i = y_i) \\ 1 \text{ wenn } (x_i \neq y_i) \end{cases}$$

■ Endliche Mengen $x = \{x_1, \ldots, x_n\}$

- Datensätze $x = (x_1, ..., x_n)$ mit nummerischen Attributen x_i
- Datensätze $x = (x_1, ..., x_n)$ mit kategorischen Attributen x_i
- Endliche Mengen $x = \{x_1, \dots, x_n\}$ Anteil verschiedener: $dist(x, y) = \frac{|x \cup y| - |x \cap y|}{|x \cup y|}$

Data Mining - Clustering - Beispiel[2]

- Clustering von Web-Sessions zur Bestimmung von Benutzergruppen
- Datenquelle: Logfile eines Webservers
- Eintrag: IP, User-ID, Timestamp, URL, ...
- Einträge werden nach Session gruppiert, nach einem Zeitfenster
- Session: IP, User-ID, Liste von URLs
- URLs werden geclustert, z.B.: Distanzfunktion für endliche Mengen
- Wissen:
 - Benutzergruppen / Benutzerprofilen, für Marketingstrategien
 - URLs sind durch Interessen verbunden, Optimierung für Zugriffsgewohnheiten
- Ein Sozialmediabutton kann auch die nötigen Informationen liefern.

- Hartes Flaches Clustering
- Bekannte Anzahl von k Clustern
- Daten als Vektoren
- Idee: Minimiert den Abstand vom Clusterzentrum zu den Daten
- Cluster ist Definiert als:
 - $A = \{d_1, \ldots, d_m\}$, A ist ein Cluster und d_i Element
 - Zentrum ist: $\mu(A) = \frac{1}{m} \sum_{i=1}^{m} d_i$
- Qualität: gut wenn RSS(...) minimal ist
 - Cluster: RSS $(A) = \sum_{i=1}^{m} \|d_i \mu(A)\|^2$
 - Gesamt: RSS $(A_1, \ldots, A_k) = \sum_{i=1}^k \text{RSS}(A_j)$

Der *k*-means Algorithmus (Lloyd's Algorithmus)

- 1. Selektiere zufällig k Schwerpunkte als Startwert
- 2. Erstelle k leere Cluster
- 3. Weise jedem Cluser einen Schwerpunkt zu
- Weise jedem Datenvektor den den Cluster mit dem n\u00e4chstem Schwerpunkt zu
- Berechne den Schwerpunkt jedes Clusters neu
- 6. Teste ob die Qualität des Clusterings ausreicht, sonst gehe zu 2.

Abbildung 3: Ersten 3 Phasen, k = 2

Abbildung 4: Phase 4, Zuordnung nur Beispielhaft

Abbildung 5: Phase 5, Schwerpunkte sind nur Beispielhaft

Abbildung 6: Phase 6 und noch mal von Phase 2 an

Data Mining

- Top 10 algorithms in data mining
- Clustering
- Klassifikation
- Assoziation

Data Mining - Klassifikation - Einleitung[2]

- Einordnung von Objekten in bekannten Klassen
- Trainingsdaten für Klassen ⇒ Klassen bekannt
- Finden der Funktion die Objekte möglichst genau zuordnet
- Teilaufgaben:
 - Zuordnung zu einer Klasse
 - Generierung von Wissen

Data Mining - Klassifikation - Training[2]

- Menge von Objekten $O = \{o_1, o_2, \dots, o_n\}$
- Klasse $c_i \in C = \{c_1, c_2, ..., c_n\}$ für jedes Objekt ist Bekannt
- Jedes Objekt hat A_i Klassifizierung-Aattribute
- Attributarten:
 - Kategorische Attribute
 - Nummerische Attribute

Data Mining - Klassifikation - Beispiel[2]

Trainingsdaten:

ID	Alter	Autotyp	Risikoklasse
1	23	Familie	Hoch
2	17	Sport	Hoch
3	43	Sport Sport	Hoch
4	68	Familie	Niedrig
5	32	LKW	Niedrig

Tabelle 2: Beispiele aus dem Buch[2]

Data Mining - Klassifikation - Beispiel[2]

Trainingsdaten:

ID	Alter	Autotyp	Risikoklasse
1	23	Familie	Hoch
2	17	Sport	Hoch
3	43	Sport Sport	Hoch
4	68	Familie	Niedrig
5	32	LKW	Niedrig

Tabelle 2: Beispiele aus dem Buch[2]

Das gesuchte Wissen

Data Mining - Klassifikation - Gesuchtes Wissen[2]

- Formen:
 - Entscheidungsbaum
 - Funktion
 - Vektor im Koordinatensystem
- Anwendung immer dann, wenn die Klassen bekannt ist
 - Unterscheidung von Stern / Galaxie
 - Sterne Einordnen
 - Zuordnung von Risikogruppen
 - Medizinforschung
 - . . .

- Annahmen:
 - Nur zwei Klassen
 - Jedes Objekt ist ein Vektor im Koordinatensystem
- Ziel: Hyperplane² die den Raum teilt
- Training: Hyperplane mit maximalem Abstand zu allen Trainingsvektoren
- Training: Hyperplane Begrenzungsobjekte sind Supportvektoren
- Differenzfunktion $\delta(o_1, o_2)$ ist ähnlich zum Clustering

²Hyperebene

Abbildung 7: Gesucht: die richtige Hyperplane

Abbildung 8: Gefunden: die richtige Hyperplane

Abbildung 9: Einordnung: mit der richtige Hyperplane

Abbildung 10: Training: ungünstige Daten

Mehrere Klassen:

- One-versus-all
- One-versus-one

Overfitting

- Zu viele Trainingsdaten für eine Eigenschaft
- Lösungen
 - Cross-validation
 - Regularization

Abbildung 11: Overfitting: zu nahe

Data Mining - Assoziation

Data Mining

- Top 10 algorithms in data mining
- Clustering
- Klassifikation
- Assoziation

Überblick

- Data Mining
 - Top 10 algorithms in data mining
 - Clustering
 - Klassifikation
 - Assoziation
- Neue Algorithmen

Diskursion

Gibt es Fragen?

Danke

Vielen Dank für Ihre Aufmerksamkeit und Ihr Interesse.

Literatur I

- [1] S. B. S. NASA, ESA and the HUDF Team. (2004) Hubble ultra deep field. [Online]. Available: http://imgsrc.hubblesite.org/hu/db/images/hs-2004-07-a-pdf.pdf
- [2] M. Ester and J. Sander, Knowledge discovery in databases: Techniken und Anwendungen. Springer Heidelberg, 2000, vol. 2, no. 4.
- [3] P. J. O'Keefe, M. G. Gowanlock, S. M. McConnell, and D. R. Patton, "Star-galaxy classification using data mining techniques with considerations for unbalanced datasets," in *Astronomical Data Analysis Software and Systems XVIII*, vol. 411, 2009, p. 318.

Literatur II

- [4] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, "From data mining to knowledge discovery in databases," *AI magazine*, vol. 17, no. 3, p. 37, 1996.
- [5] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip *et al.*, "Top 10 algorithms in data mining," *Knowledge and Information Systems*, vol. 14, no. 1, pp. 1–37, 2008.
- [6] W.-T. Balke, "Data warehousing and data mining techniques," University Lecture, 2014.

