Modern Algebra

content

1	Gro	oup Theory	2
	1.1	Semi-Group and Group	2
		1.1.1 Difinition of Groop	2
		1.1.2 Property of Group	3
	1.2	Subgroup	3
	1.3	Homomorphism and Isomorphism	4
	1.4	Cyclic Group	4
		1.4.1 Difinition and Property of Cyclic Group	4
		1.4.2 Residue Class Group	5

2

1 Group Theory

1.1 Semi-Group and Group

1.1.1 Difinition of Groop

Suppose $\mathbb{S}\neq\emptyset$, difine an algebraic operation called mutiplication , marked as \cdot , and this operation satisfies closure and associtive law , then (\mathbb{S},\cdot) is a **semi-group**

Closure:

$$\forall a, b \in \mathbb{S} , a \cdot b \in \mathbb{S}$$

Associative Law:

$$\forall a, b, c \in \mathbb{S}$$
, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

for a semi-group $G(\mathbb{S}, \cdot)$, if it satisfies

$$\exists e \in G , \forall a \in G \Rightarrow e \cdot a = a$$

and

$$\forall a \in G , \exists b \in G \Rightarrow b \cdot a = e$$

it is a group, and e is a left identity element, b is a left inverse element

Generally if G is a **group** it will satisfies

- (1)G satisfies closure
- (2)G satisfies associative law
- (3)there is a identity element in G
- (4)there is an inverse element for each element in G

If a group G satisfies law of communication , G is a Abelain Group

law of communication:

$$\forall a, b \in \mathbb{S} \implies a \cdot b = b \cdot a$$

3

1.1.2 Property of Group

The number of elements in G expresses the order of G, marked as |G|, if $|G|=\infty$, G is a infinite group, if $|G|<\infty$, G is a finite group

For $G(\mathbb{S}, \cdot)$, $a \in G$

$$\overbrace{a \cdot a \cdot \cdots a}^{n} = a^{n}$$

For $G(\mathbb{S}, +)$, $a \in G$

$$\overbrace{a+a+\cdots+a}^{n}=na$$

 $\forall G$, G is a group, then G satisfies Cancellation law

$$ax = ax' \Leftrightarrow x = x'$$

Note: if G is not a Abelian group , left cancellation law is satisfied does not mean right cancellation law is satisfied

If a set $G \neq \emptyset$ and the operation in G satisfies closure and associative law ,then

if G is a group $\Leftrightarrow \forall a, b \in G$, ax = b and ya = b have solution

Corollary:

If a set $G \neq \emptyset$ and the operation in G satisfies closure and associative law and G is a group $\Leftrightarrow G$ satisfies cancellation law

1.2 Subgroup

if $H\subset G$ and H with the operation in G is also form a group , H is a ${f subgroup}$ of G

if e is an identity element in G, then e is also an identity element in H if $a{\in}\ H$, $a^{-1}\in G$ and it is a inverse element of a, then $a^{-1}\in H$

if $H \in G$, and $H \neq \emptyset$, H is a subgroup of $G \Leftrightarrow$

$$\forall a,b \in H \ , \ ab \in H$$

$$\forall a \in H , a^{-1} \in H$$

Corollary:

(1) if $H \subset G$, and $H \neq \emptyset$, H is a subgroup of $G \Leftrightarrow$

$$\forall a, b \in H , ab^{-1} \in H$$

(2) if $H \subset G$, $H \neq \emptyset$ and $|H| < \infty$, H is a subgroup of $G \Leftrightarrow$

$$\forall a, b \in H , ab \in H$$

1.3 Homomorphism and Isomorphism

Suppose $G(\mathbb{S}, \cdot)$ and $G'(\mathbb{S}', \odot)$, $\exists f : \mathbb{S} \to \mathbb{S}'$, $\forall a, b \in \mathbb{S}$, let

$$f(a \cdot b) = f(a) \odot f(b)$$

then this f is **homomorphic mapping**, G and G' are homomorphic if f is a bijection, f is also a **isomorphic mapping**, G and ceG' are isomorphic

if G = G', f is self-homomorphic or self-isomorphic mapping

1.4 Cyclic Group

1.4.1 Difinition and Property of Cyclic Group

if $\exists g \in G$ and $G = \{\cdots g^{-1}, g^0, g^1, \cdots\}$, G is a cyclic group , g is a generator of G

if G is a cyclic group and $|G|=n\Rightarrow G=\{g^0,g^1,\cdots,g^{n-1}\}$ if $\exists d>0$, let $g^d=e$, d_{min} is the order of g, marked as |g|

Theorem:

- (1) if G is a cyclic group and $|G|=n \Rightarrow \forall g \in G$, |g|=n
- (2) if |g|=n, $g^d=e \Rightarrow n \mid d$

1 GROUP THEORY

5

(3) if
$$|g|=n \Rightarrow |a^k| = \frac{n}{(n,k)}$$

(4) if
$$|G|=n$$
, $\forall H \subset G \Rightarrow |H| \in \mathcal{D}(n)$

Prove:

1.4.2 Residue Class Group

$$\mathbb{S} = \{\overline{0}, \overline{1}, \cdots \overline{p-1}\}$$

is a residue system mod p , if p is a prime , then $\mathbb S$ and \cdot or + form a cyclic group , marked as $G(\mathbb S,\,\cdot\,)$ or $G(\mathbb S,+)$, |G|=p

Prove:

(1) closure:

$$:: \mathbb{Z} \subset \mathbb{S}$$

$$\mathbb{Z}\times\mathbb{Z}\subset\mathbb{Z}$$

$$\therefore \forall a, b \in \mathbb{S} , ab \in \mathbb{S}$$

(2) associative law:

obviously

(3) identity element:

$$e = \overline{1}$$

(4) inverse element:

$$\because \forall a \in \mathbb{S}, (a, p) = 1$$

$$\therefore \exists u,v \in \mathbb{Z}$$

let
$$up + va = 1$$

$$\therefore va \equiv 1 \pmod{p}$$