

<110> Baker, Kevin Botstein, David Eaton, Dan Ferrara, Napoleone Filvaroff, Ellen Gerritsen, Mary Goddard, Audrey Godowski, Paul Grimaldi, Christopher Gurney, Austin Hillan, Kenneth Kljavin, Ivar Napier, Mary Roy, Margaret Tumas, Daniel Wood, William

- <120> SECRETED AND TRANSMEMBRANE POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE SAME
- <130> P2548P1C1
- <150> 60/067,411
- <151> December 3, 1997
- <150> 60/069,334
- <151> December 11, 1997
- <150> 60/069335
- <151> December 11, 1997
- <150> 60/069,278
- <151> December 11, 1997
- <150> 60/069,425
- <151> December 12, 1997
- <150> 60/069,696
- <151> December 16, 1997
- <150> 60/069,694
- <151> December 16, 1997
- <150> 60/069,702
- <151> December 16, 1997
- <150> 60/069,870
- <151> December 17, 1997
- <150> 60/069,873
- <151> December 17, 1997
- <150> 60/068,017
- <151> December 18, 1997
- <150> 60/070,440

- <151> January 5, 1998
- <150> 60/074,086
- <151> February 9, 1998
- <150> 60/074,092
- <151> February 9, 1998
- <150> 60/075,945
- <151> February 25, 1998
- <150> 60/112,850
- <151> December 16, 1998
- <150> 60/113,296
- <151> December 22, 1998
- <150> 60/146,222
- <151> July 28, 1999
- <150> PCT/US98/19330
- <151> September 16, 1998
- <150> PCT/US98/25108
- <151> December 1, 1998
- <150> 09/216,021
- <151> December 16, 1998
- <150> 09/218,517
- <151> December 22, 1998
- <150> 09/254,311
- <151> March 3, 1999
- <150> PCT/US99/12252
- <151> June 22, 1999
- <150> PCT/US99/21090
- <151> September 15, 1999
- <150> PCT/US99/28409
- <151> November 30, 1999
- <150> PCT/US99/28313
- <151> November 30, 1999
- <150> PCT/US99/28301
- <151> December1, 1999
- <150> PCT/US99/30095
- <151> December 16, 1999
- <150> PCT/US00/03565
- <151> February 11, 2000
- <150> PCT/US00/04414
- <151> February 22, 2000

- <150> PCT/US00/05841
- <151> March 2, 2000
- <150> PCT/US00/08439
- <151> March 30, 2000
- <150> PCT/US00/14042
- <151> May 22, 2000
- <150> PCT/US00/20710
- <151> July 28, 2000
- <150> PCT/US00/32678
- <151> December 1, 2000
- <150> PCT/US01/06520
- <151> February 28, 2001
- <160> 120
- <210> 1
- <211> 2454
- <212> DNA
- <213> Homo Sapien
- <400> 1
- ggactaatct gtgggagcag tttattccag tatcacccag ggtgcagcca 50 caccaggact gtgttgaagg gtgtttttt tcttttaaat gtaatacctc 100 ctcatctttt cttcttacac agtgtctgag aacatttaca ttatagataa 150 gtagtacatg gtggataact tctactttta ggaggactac tctcttctga 200 cagtcctaga ctggtcttct acactaagac accatgaagg agtatgtgct 250 cctattattc ctggctttgt gctctgccaa acccttcttt agcccttcac 300 acatcgcact gaagaatatg atgctgaagg atatggaaga cacagatgat 350 gatgatgatg atgatgatga tgatgatgat gatgaggaca actctctttt 400 tccaacaaga gagccaagaa gccatttttt tccatttgat ctgtttccaa 450 tgtgtccatt tggatgtcag tgctattcac gagttgtaca ttgctcagat 500 ttaggtttga cctcagtccc aaccaacatt ccatttgata ctcgaatgct 550 tgatcttcaa aacaataaaa ttaaggaaat caaagaaaat gattttaaag 600 gactcacttc actttatggt ctgatcctga acaacaacaa gctaacgaag 650 attcacccaa aagcctttct aaccacaaag aagttgcgaa ggctgtatct 700 gtcccacaat caactaagtg aaataccact taatcttccc aaatcattag 750 cagaactcag aattcatgaa aataaagtta agaaaataca aaaggacaca 800

aaattgtctc ttcaaatacg tatggactgg ataactctga gaaacacatc 2300 tagtataact gaataagcag agcatcaaat taaacagaca gaaaccgaaa 2350 gctctatata aatgctcaga gttctttatg tatttcttat tggcattcaa 2400 catatgtaaa atcagaaaac agggaaattt tcattaaaaa tattggtttg 2450 aaat 2454

<210> 2 <211> 379 <212> PRT <213> Homo Sapien

Lys Pro Phe Phe Ser Pro Ser His Ile Ala Leu Lys Asn Met Met 20 25 30

Asp Asp Asp Asp Glu Asp Asn Ser Leu Phe Pro Thr Arg Glu 50 55 60

Pro Arg Ser His Phe Phe Pro Phe Asp Leu Phe Pro Met Cys Pro 65 70 75

Phe Gly Cys Gln Cys Tyr Ser Arg Val Val His Cys Ser Asp Leu 80 85 90

Gly Leu Thr Ser Val Pro Thr Asn Ile Pro Phe Asp Thr Arg Met 95 100 105

Leu Asp Leu Gln Asn Asn Lys Ile Lys Glu Ile Lys Glu Asn Asp 110 115 120

Phe Lys Gly Leu Thr Ser Leu Tyr Gly Leu Ile Leu Asn Asn Asn 125 130 135

Lys Leu Thr Lys Ile His Pro Lys Ala Phe Leu Thr Thr Lys Lys 140 145 150

Leu Arg Arg Leu Tyr Leu Ser His Asn Gln Leu Ser Glu Ile Pro

Leu Asn Leu Pro Lys Ser Leu Ala Glu Leu Arg Ile His Glu Asn 170 175 180

Lys Val Lys Lys Ile Gln Lys Asp Thr Phe Lys Gly Met Asn Ala 185 190 195

Leu His Val Leu Glu Met Ser Ala Asn Pro Leu Asp Asn Asn Gly 200 205 210

tcccaagctg aacactcatt ctgc 24

- <210> 5
 <211> 50
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic Oligonucleotide Probe
 <400> 5
 gggtgacggt gttccatatc agaattgcag aagcaaaact gacctcagtt 50
 <210> 6
 <211> 3441
 <212> DNA
 <213> Homo Sapien
- <400> 6 cggacgcgtg ggcggacgcg tgggcccgcs gcaccgcccc cggcccggcc 50 cteegecete egeactegeg ecteecteee teegeceget ecegegeeet 100 cetecetece tectececag etgtecegtt egegteatge egageetece 150 ggccccgccg gccccgctgc tgctcctcgg gctgctgctg ctcggctccc 200 ggccggcccg cggcgccggc ccagagcccc ccgtgctgcc catccgttct 250 gagaaggagc cgctgcccgt tcggggagcg gcaggctgca ccttcggcgg 300 gaaggtctat gccttggacg agacgtggca cccggaccta gggcagccat 350 teggggtgat gegetgegtg etgtgegeet gegaggegee teagtggggt 400 cgccgtacca ggggccctgg cagggtcagc tgcaagaaca tcaaaccaga 450 gtgcccaacc ccggcctgtg ggcagccgcg ccagctgccg ggacactgct 500 gccagacctg cccccaggag cgcagcagtt cggagcggca gccgagcggc 550 ctgtccttcg agtatccgcg ggacccggag catcgcagtt atagcgaccg 600 cggggagcca ggcgctgagg agcgggcccg tggtgacggc cacacggact 650 tegtggeget getgaeaggg eegaggtege aggeggtgge aegageeega 700 gtetegetge tgegetetag ceteegette tetateteet acaggegget 750 ggaccgccct accaggatcc gcttctcaga ctccaatggc agtgtcctgt 800 ttgagcaccc tgcagccccc acccaagatg gcctggtctg tggggtgtgg 850 cgggcagtgc ctcggttgtc tctgcggctc cttagggcag aacagctgca 900 tgtggcactt gtgacactca ctcacccttc aggggaggtc tgggggcctc 950 tcatccggca ccgggccctg gctgcagaga ccttcagtgc catcctgact 1000 ctagaaggcc ccccacagca gggcgtaggg ggcatcaccc tgctcactct 1050

<210> 7

<211> 954

<212> PRT

<213> Homo Sapien

<400> 7

Met Pro Ser Leu Pro Ala Pro Pro Ala Pro Leu Leu Leu Gly
1 5 10 15

Leu Leu Leu Gly Ser Arg Pro Ala Arg Gly Ala Gly Pro Glu 20 25 30

Pro Pro Val Leu Pro Ile Arg Ser Glu Lys Glu Pro Leu Pro Val 35 40 45

Arg Gly Ala Ala Gly Cys Thr Phe Gly Gly Lys Val Tyr Ala Leu 50 55 60

Asp Glu Thr Trp His Pro Asp Leu Gly Gln Pro Phe Gly Val Met
65 70 75

				365					370					375
Leu	Gly	Glu	Leu	Gln 380	Met	Ala	Leu	Glu	Trp 385	Ala	Gly	Arg	Pro	Gly 390
Leu	Arg	Ile	Ser	Gly 395	His	Ile	Ala	Ala	Arg 400	Lys	Ser	Cys	Asp	Val 405
Leu	Gln	Ser	Val	Leu 410	Cys	Gly	Ala	Asp	Ala 415	Leu	Ile	Pro	Val	Gln 420
Thr	Gly	Ala	Ala	Gly 425	Ser	Ala	Ser	Leu	Thr 430	Leu	Leu	Gly	Asn	Gly 435
Ser	Leu	Ile	Tyr	Gln 440	Val	Gln	Val	Val	Gly 445	Thr	Ser	Ser	Glu	Val 450
Val	Ala	Met	Thr	Leu 455	Glu	Thr	Lys	Pro	Gln 460	Arg	Arg	Asp	Gln	Arg 465
Thr	Val	Leu	Cys	His 470	Met	Ala	Gly	Leu	Gln 475	Pro	Gly	Gly	His	Thr 480
Ala	Val	Gly	Ile	Cys 485	Pro	Gly	Leu	Gly	Ala 490	Arg	Gly	Ala	His	Met 495
Leu	Leu	Gln	Asn	Glu 500	Leu	Phe	Leu	Asn	Val 505	Gly	Thr	Lys	Asp	Phe 510
Pro	Asp	Gly	Glu	Leu 515	Arg	Gly	His	Val	Ala 520	Ala	Leu	Pro	Tyr	Cys 525
Gly	His	Ser	Ala	Arg 530	His	Asp	Thr	Leu	Pro 535	Val	Pro	Leu	Ala	Gly 540
Ala	Leu	Val	Leu	Pro 545	Pro	Val	Lys	Ser	Gln 550	Ala	Ala	Gly	His	Ala 555
Trp	Leu	Ser	Leu	Asp 560	Thr	His	Cys	His	Leu 565	His	Tyr	Glu	Val	Leu 570
Leu	Ala	Gly	Leu	Gly 575		Ser	Glu	Gln	Gly 580		Val	Thr	Ala	His 585
Leu	Leu	Gly	Pro	Pro 590		Thr	Pro	Gly	Pro 595		Arg	Leu	Leu	Lys 600
Gly	Phe	Tyr	Gly	Ser 605		Ala	Gln	Gly	Val 610		Lys	Asp	Leu	Glu 615
Pro	Glu	Leu	Leu	Arg 620		Leu	Ala	Lys	Gly 625		Ala	Ser	Leu	Met 630
Ile	Thr	Thr	Lys	Gly 635		Pro	Arg	Gly	Glu 640		Arg	Gly	Gln	Val 645
His	Ile	Ala	Asn	Gln 650		Glu	val	Gly	Gly 655		Arg	Leu	Glu	Ala 660


```
<210> 8
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide probe
<210> 9
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 9
cggacgcgtg gggcctgcgc acccagct 28
<210> 10
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 10
gccgctcccc gaacgggcag cggctccttc tcagaa 36
<210> 11
<211> 36
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 11
ggcgcacagc acgcagcgca tcaccccgaa tggctc 36
<210> 12
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
gtgctgccca tccgttctga gaagga 26
<210> 13
```

- <211> 22
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 13
 gcagggtgct caaacaggac ac 22
 <210> 14
 <211> 3231
 <212> DNA
 <213> Homo Sapien
- <400> 14 ggcggagcag ccctagccgc caccgtcgct ctcgcagctc tcgtcgccac 50 tgccaccgcc gccgccgtca ctgcgtcctg gctccggctc ccgcgccctc 100 ceggeeggee atgeageece geegegeeca ggegeeggt gegeagetge 150 tgcccgcgct ggccctgctg ctgctgctgc tcggagcggg gccccgaggc 200 agetecetgg ccaaceeggt geeegeegeg ceettgtetg egeeegggee 250 gtgcgccgcg cagccctgcc ggaatggggg tgtgtgcacc tcgcgccctg 300 ageeggaeee geageaeeeg geeeeegeeg gegageetgg etacagetge 350 acctgccccg ccgggatctc cggcgccaac tgccagcttg ttgcagatcc 400 ttgtgccagc aaccettgtc accatggcaa ctgcagcagc agcagcagca 450 gcagcagcga tggctacctc tgcatttgca atgaaggcta tgaaggtccc 500 aactgtgaac aggcacttcc cagtctccca gccactggct ggaccgaatc 550 catggcaccc cgacagette ageetgttee tgetacteag gageetgaca 600 aaatcctgcc tcgctctcag gcaacggtga cactgcctac ctggcagccg 650 aaaacagggc agaaagttgt agaaatgaaa tgggatcaag tggaggtgat 700 cccagatatt gcctgtggga atgccagttc taacagctct gcgggtggcc 750 gcctggtatc ctttgaagtg ccacagaaca cctcagtcaa gattcggcaa 800 gatgccactg cctcactgat tttgctctgg aaggtcacgg ccacaggatt 850 ccaacagtgc tecetcatag atggacgaag tgtgaceece ettcaggett 900 cagggggact ggtcctcctg gaggagatgc tcgccttggg gaataatcac 950 tttattggtt ttgtgaatga ttctgtgact aagtctattg tggctttgcg 1000 cttaactctg gtggtgaagg tcagcacctg tgtgccgggg gagagtcacg 1050

caaatgactt ggagtgttca ggaaaaggaa aatgcaccac gaagccgtca 1100 gaggcaactt tttcctgtac ctgtgaggag cagtacgtgg gtactttctg 1150 tgaagaatac gatgcttgcc agaggaaacc ttgccaaaac aacgcgagct 1200 gtattgatgc aaatgaaaag caagatggga gcaatttcac ctgtgtttgc 1250 cttcctggtt atactggaga gctttgccag tccaagattg attactgcat 1300 cctagaccca tgcagaaatg gagcaacatg catttccagt ctcagtggat 1350 tcacctgcca gtgtccagaa ggatacttcg gatctgcttg tgaagaaaag 1400 gtggacccct gcgcctcgtc tccgtgccag aacaacggca cctgctatgt 1450 ggacggggta cactttacct gcaactgcag cccgggcttc acagggccga 1500 cctgtgccca gcttattgac ttctgtgccc tcagcccctg tgctcatggc 1550 acgtgccgca gcgtgggcac cagctacaaa tgcctctgtg atccaggtta 1600 ccatggcctc tactgtgagg aggaatataa tgagtgcctc tccgctccat 1650 gcctgaatgc agccacctgc agggacctcg ttaatggcta tgagtgtgtg 1700 tgcctggcag aatacaaagg aacacactgt gaattgtaca aggatccctg 1750 cgctaacgtc agctgtctga acggagccac ctgtgacagc gacggcctga 1800 atggcacgtg catctgtgca cccgggttta caggtgaaga gtgcgacatt 1850 gacataaatg aatgtgacag taacccctgc caccatggtg ggagctgcct 1900 ggaccagece aatggttata actgccaetg ceegeatggt tgggtgggag 1950 caaactgtga gatccacctc caatggaagt ccgggcacat ggcggagagc 2000 ctcaccaaca tgccacggca ctccctctac atcatcattg gagccctctg 2050 egtggeette ateettatge tgateateet gategtgggg atttgeegea 2100 teageegeat tgaataceag ggttetteea ggeeageeta tgaggagtte 2150 tacaactgcc gcagcatcga cagcgagttc agcaatgcca ttgcatccat 2200 ccggcatgcc aggtttggaa agaaatcccg gcctgcaatg tatgatgtga 2250 gccccatcgc ctatgaagat tacagtcctg atgacaaacc cttggtcaca 2300 ctgattaaaa ctaaagattt gtaatctttt tttggattat ttttcaaaaa 2350 gatgagatac tacactcatt taaatatttt taagaaaata aaaagcttaa 2400 gaaatttaaa atgctagctg ctcaagagtt ttcagtagaa tatttaagaa 2450 ctaattttct gcagctttta gtttggaaaa aatattttaa aaacaaaatt 2500

tgtgaaacct atagacgatg ttttaatgta ccttcagctc tctaaactgt 2550 gtgcttctac tagtgtgtgc tcttttcact gtagacacta tcaccgagacc 2600 cagattaatt tctgtggttg ttacagaata agtctaatca aggagaagtt 2650 tctgtttgac gtttgagtgc cggctttctg agtagagtta ggaaaaccac 2700 gtaacgtagc atatgatgta taatagagta tacccgttac ttaaaaagaa 2750 gtctgaaatg ttcgttttgt ggaaaagaaa ctagttaaat ttactattcc 2800 taacccgaat gaaattagcc tttgccttat tctgtgcatg ggtaagtaac 2850 ttatttctgc actgtttgt tgaactttgt ggaaacattc tttcgagttt 2900 gttttgtca tttcgtaac agtcgtcgaa ctaggcctca aaaacatacg 2950 taacgaaaag gcctagcgag gcaaattctg attgattga atctatatt 3000 tctttaaaa agtcaagggt tctatattgt gagtaaatta aatttacatt 3050 tgagttgtt gttgctaaga ggtagtaaat gtaagagag actggtcct 3150 tcagtagtga gtattctca tagtgcagct ttatttatct ccaggatgtt 3150 tcaaccatat tgaataaatg tgatcaagtc cttctgattc ttgctaattt 3200 ccaaccatat tgaataaatg tgatcaagtc a 3231

<210> 15

<211> 737

<212> PRT

<213> Homo Sapien

<400> 15

Met Gln Pro Arg Arg Ala Gln Ala Pro Gly Ala Gln Leu Leu Pro
1 5 10 15

Ala Leu Ala Leu Leu Leu Leu Leu Gly Ala Gly Pro Arg Gly
20 25 30

Ser Ser Leu Ala Asn Pro Val Pro Ala Ala Pro Leu Ser Ala Pro 35 40 45

Gly Pro Cys Ala Ala Gln Pro Cys Arg Asn Gly Gly Val Cys Thr 50 55 60

Ser Arg Pro Glu Pro Asp Pro Gln His Pro Ala Pro Ala Gly Glu 65 70 75

Pro Gly Tyr Ser Cys Thr Cys Pro Ala Gly Ile Ser Gly Ala Asn 80 85 90

Cys Gln Leu Val Ala Asp Pro Cys Ala Ser Asn Pro Cys His His 95 100 105

Gly Asn Cys Ser Ser Ser Ser Ser Ser Ser Asp Gly Tyr Leu

	110					115					120
Cys Ile Cys	Asn Glu 125	_	Tyr	Glu	Gly	Pro 130	Asn	Cys	Glu	Gln	Ala 135
Leu Pro Ser	Leu Pro		Thr	Gly	Trp	Thr 145	Glu	Ser	Met	Ala	Pro 150
Arg Gln Leu	Gln Pro		Pro	Ala	Thr	Gln 160	Glu	Pro	Asp	Lys	Ile 165
Leu Pro Arg	Ser Gln 170		Thr	Val-	Thr	Leu 175	Pro	Thr	Trp	Gln	Pro 180
Lys Thr Gly	Gln Lys 185		Val	Glu	Met	Lys 190	Trp	Asp	Gln	Val	Glu 195
Val Ile Pro	Asp Ile		Cys	Gly	Asn	Ala 205	Ser	Ser	Asn	Ser	Ser 210
Ala Gly Gly	Arg Lev 215		Ser	Phe	Glu	Val 220	Pro	Gln	Asn	Thr	Ser 225
Val Lys Ile	Arg Glr 230	_	Ala	Thr	Ala	Ser 235	Leu	Ile	Leu	Leu	Trp 240
Lys Val Thr	Ala Thi 245		Phe	Gln	Gln	Cys 250	Ser	Leu	Ile	Asp	Gly 255
Arg Ser Val	Thr Pro		Gln	Ala	Ser	Gly 265	Gly	Leu	Val	Leu	Leu 270
Glu Glu Met	Leu Ala 275		Gly	Asn	Asn	His 280	Phe	Ile	Gly	Phe	Val 285
Asn Asp Ser	Val Thi	-	Ser	Ile	Val	Ala 295	Leu	Arg	Leu	Thr	Leu 300
Val Val Lys	Val Ser 305		Cys	Val	Pro	Gly 310	Glu	Ser	His	Ala	Asn 315
Asp Leu Glu	Cys Ser		Lys	Gly	Lys	Cys 325	Thr	Thr	Lys	Pro	Ser 330
Glu Ala Thr	Phe Ser	-	Thr	Cys	Glu	Glu 340	Gln	Tyr	Val	Gly	Thr 345
Phe Cys Glu	Glu Tyr 350		Ala	Cys	Gln	Arg 355	Lys	Pro	Cys	Gln	Asn 360
Asn Ala Ser	Cys Ile 365	_	Ala	Asn	Glu	Lys 370	Gln	Asp	Gly	Ser	Asn 375
Phe Thr Cys	Val Cys 380		Pro	Gly	Tyr	Thr 385	Gly	Glu	Leu	Cys	Gln 390
Ser Lys Ile	Asp Tyr		Ile	Leu	Asp	Pro 400	Cys	Arg	Asn	Gly	Ala 405

695 700 705

Ser Arg Pro Ala Met Tyr Asp Val Ser Pro Ile Ala Tyr Glu Asp 710 715 720

Tyr Ser Pro Asp Asp Lys Pro Leu Val Thr Leu Ile Lys Thr Lys
725 730 735

Asp Leu

<210> 16

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 16

tgtaaaacga cggccagtta aatagacctg caattattaa tct 43

<210> 17

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 17

caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41

<210> 18

<211> 508

<212> DNA

<213> Homo Sapien

<400> 18

acgaaagtgt gaccccctt tcaggctttc agggggactg gtcctcctgg 100
aggagatgct cgccttgggg aataatcact ttattggttt tgtgaatgat 150
tctgtgacta agtctattgt ggctttgcgc ttaactctgg tggtgaaggt 200
cagcacctgt gtgccggggg agagtcacgc aaatgacttg gagtgttcag 250
gaaaaggaaa atgcaccacg aagccgtcag aggcaacttt ttcctgtacc 300
tgtgaggagc agtacgtggg tactttctgt gaagaatacg atgcttgcca 350
gaggaaacct tgccaaaaca acgcgagctg tattgatgca aatgaaaagc 400
aagatgggag caatttcacc tgtgtttgcc ttcctggtta tactggagag 450
ctttgccaac cgaactgaga ttggagcgaa cgacctacac cgaactgaga 500

```
taggggag 508
<210> 19
<211> 508
<212> DNA
<213> Homo Sapien
<400> 19
 ctctggaagg tcacggccac aggattccaa cagtgctccc tcatagatgg 50
 acgaaagtgt gaccccctt tcaggctttc agggggactg gtcctcctgg 100
 aggagatgct cgccttgggg aataatcact ttattggttt tgtgaatgat 150
 tetgtgaeta agtetattgt ggetttgege ttaaetetgg tggtgaaggt 200
 cagcacctgt gtgccggggg agagtcacgc aaatgacttg gagtgttcag 250
 gaaaaggaaa atgcaccacg aagccgtcag aggcaacttt ttcctgtacc 300
 tgtgaggagc agtacgtggg tactttctgt gaagaatacg atgcttgcca 350
 gaggaaacct tgccaaaaca acgcgagctg tattgatgca aatgaaaagc 400
 aagatgggag caatttcacc tgtgtttgcc ttcctggtta tactggagag 450
 ctttgccaac cgaactgaga ttggagcgaa cgacctacac cgaactgaga 500
 taggggag 508
<210> 20
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
 <400> 20
 ctctggaagg tcacggccac agg 23
 <210> 21
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 21
 ctcagttcgg ttggcaaagc tctc 24
 <210> 22
 <211> 69
 <212> DNA
 <213> Artificial Sequence
 <220>
```


<400> 22
cagtgctccc tcatagatgg acgaaagtgt gacccccctt tcaggcgaga 50
gctttgccaa ccgaactga 69

<210> 23 <211> 1520

<212> DNA

<213> Homo Sapien

<400> 23 getgagtetg etgeteetge tgetgetget ceageetgta acetgtgeet 50 acaccacgec aggeeecece agageeetea eeaegetggg egeeeeeaga 100 geccaeacea tgeegggeae etaegeteee tegaeeaeae teagtagtee 150 cagcacccag ggcctgcaag agcaggcacg ggccctgatg cgggacttcc 200 cgctcgtgga cggccacaac gacctgcccc tggtcctaag gcaggtttac 250 cagaaagggc tacaggatgt taacctgcgc aatttcagct acggccagac 300 cagcctggac aggcttagag atggcctcgt gggcgcccag ttctggtcag 350 cetatgtgcc atgccagacc caggaccggg atgccctgcg cetcaccctg 400 gagcagattg acctcatacg ccgcatgtgt gcctcctatt ctgagctgga 450 gcttgtgacc tcggctaaag ctctgaacga cactcagaaa ttggcctgcc 500 tcatcggtgt agagggtggc cactcgctgg acaatagcct ctccatctta 550 cgtaccttct acatgctggg agtgcgctac ctgacgctca cccacacctg 600 caacacaccc tgggcagaga gctccgctaa gggcgtccac tccttctaca 650 acaacatcag cgggctgact gactttggtg agaaggtggt ggcagaaatg 700 aaccgcctgg gcatgatggt agacttatcc catgtctcag atgctgtggc 750 acggcgggcc ctggaagtgt cacaggcacc tgtgatcttc tcccactcgg 800 ctgcccgggg tgtgtgcaac agtgctcgga atgttcctga tgacatcctg 850 cagcttctga agaagaacgg tggcgtcgtg atggtgtctt tgtccatggg 900 agtaatacag tgcaacccat cagccaatgt gtccactgtg gcagatcact 950 tcgaccacat caaggctgtc attggatcca agttcatcgg gattggtgga 1000 gattatgatg gggccggcaa attccctcag gggctggaag acgtgtccac 1050 atacccggtc ctgatagagg agttgctgag tcgtggctgg agtgaggaag 1100 agetteaggg tgteettegt ggaaacetge tgegggtett cagacaagtg 1150 gaaaaggtac aggaagaaa caaatggcaa agccccttgg aggacaagtt 1200 cccggatgag cagctgagca gttcctgcca ctccgacctc tcacgtctgc 1250 gtcagagaca gagtctgact tcaggccagg aactcactga gattcccata 1300 cactggacag ccaagttacc agccaagtgg tcagtctcag agtcctcccc 1350 ccacatggcc ccagtccttg cagttgtggc caccttccca gtccttattc 1400 tgtggctctg atgacccagt tagtcctgcc agatgtcact gtagcaagcc 1450 acagacaccc cacaaagttc ccctgttgtg caggcacaaa tatttcctga 1500 aataaatgtt ttggacatag 1520

<210> 24 <211> 433 <212> PRT <213> Homo Sapien

<400> 24

Met
1Pro
GlyGlyThr
TysAla
SPro
SerSer
ThrThr
Thr
Thr
ThrLeu
MetSer
ArgPro
Asp
Asp
Asp
Asp
AspThrGlnGlyLeu
AspGlnAla
AspArg
Asp
AspLeu
Asp
AspLeu
Asp
AspLeu
Asp
AspLeu
Asp
ArgLeu
Arg
ArgLeu
Arg
AspLeu
Arg
AspLeu
Arg
Asp
AspLeu
Arg
Asp
AspLeu
Arg
Asp
AspGlyLeu
Arg
Arg
Arg
Arg
AspMetCysAla
AspSer
AlaThr
AspLeu
AspGlu
Asp
AspLeu
Arg
Asp
AspLeu
Arg
Arg
Arg
Arg
AspMetCysAla
AspSer
AlaThr
AspLeu
AspLeu
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg
Arg

Ala Leu Asn Asp Thr Gln Lys Leu Ala Cys Leu Ile Gly Val Glu

Gly Gly His Ser Leu Asp Asn Ser Leu Ser Ile Leu Arg Thr Phe


```
<400> 25
agttctggtc agcctatgtg cc 22
<210> 26
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 26
 cgtgatggtg tctttgtcca tggg 24
<210> 27
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 27
 ctccaccaat cccgatgaac ttgg 24
<210> 28
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
 <400> 28
 gagcagattg acctcatacg ccgcatgtgt gcctcctatt ctgagctgga 50
 <210> 29
 <211> 1416
 <212> DNA
 <213> Homo Sapien
 <400> 29
  aaaacctata aatattccgg attattcata ccgtcccacc atcgggcgcg 50
  gatecgegge egegaattet aaaccaacat geegggeace tacgeteeet 100
  cgaccacact cagtagtece ageacceagg geetgeaaga geaggeaegg 150
  gccctgatgc gggacttccc gctcgtggac ggccacaacg acctgcccct 200
  ggtcctaagg caggtttacc agaaagggct acaggatgtt aacctgcgca 250
  atttcagcta eggecagace ageetggaca ggettagaga tggeetegtg 300
  ggcgcccagt tctggtcagc ctatgtgcca tgccagaccc aggaccggga 350
  tgccctgcgc ctcaccctgg agcagattga cctcatacgc cgcatgtgtg 400
```

cetectatte tgagetggag ettgtgaeet eggetaaage tetgaacgae 450 actcagaaat tggcctgcct catcggtgta gagggtggcc actcgctgga 500 caatageete tecatettae gtaeetteta catgetggga gtgegetaee 550 tgacgctcac ccacacctgc aacacacct gggcagagag ctccgctaag 600 ggcgtccact ccttctacaa caacatcagc gggctgactg actttggtga 650 gaaggtggtg gcagaaatga accgcctggg catgatggta gacttatccc 700 atgtctcaga tgctgtggca cggcgggccc tggaagtgtc acaggcacct 750 gtgatcttct cccactcggc tgcccggggt gtgtgcaaca gtgctcggaa 800 tgttcctgat gacatcctgc agcttctgaa gaagaacggt ggcgtcgtga 850 tggtgtcttt gtccatggga gtaatacagt gcaacccatc agccaatgtg 900 tecaetgtgg cagateaett egaecaeate aaggetgtea ttggateeaa 950 gttcatcggg attggtggag attatgatgg ggccggcaaa ttccctcagg 1000 ggctggaaga cgtgtccaca tacccggtcc tgatagagga gttgctgagt 1050 cgtggctgga gtgaggaaga gcttcagggt gtccttcgtg gaaacctgct 1100 gcgggtcttc agacaagtgg aaaaggtaca ggaagaaaac aaatggcaaa 1150 gccccttgga ggacaagttc ccggatgagc agctgagcag ttcctgccac 1200 tecgaeetet eaegtetgeg teagagaeag agtetgaett eaggeeagga 1250 actcactgag attcccatac actggacagc caagttacca gccaagtggt 1300 cagteteaga gteeteece caecetgaca aaacteacae atgeecaeeg 1350 tgcccagcac ctgaactcct ggggggaccg tcagtcttcc tcttcccccc 1400 aaaacccaag gacacc 1416

<210> 30

<211> 446

<212> PRT

<213> Homo Sapien

<400> 30

Met Pro Gly Thr Tyr Ala Pro Ser Thr Thr Leu Ser Ser Pro Ser 1

Thr Gln Gly Leu Gln Glu Gln Ala Arg Ala Leu Met Arg Asp Phe

Pro Leu Val Asp Gly His Asn Asp Leu Pro Leu Val Leu Arg Gln 40 35

Val Tyr Gln Lys Gly Leu Gln Asp Val Asn Leu Arg Asn Phe Ser

			•	50					55					60
Tyr	Gly	Gln	Thr	Ser 65	Leu	Asp	Arg	Leu	Arg 70	Asp	Gly	Leu	Val	Gly 75
Ala	Gln	Phe	Trp	Ser 80	Ala	Tyr	Val	Pro	Cys 85	Gln	Thr	Gln	Asp	Arg 90
Asp	Ala	Leu	Arg	Leu 95	Thr	Leu	Glu	Gln	Ile 100	Asp	Leu	Ile	Arg	Arg 105
Met	Cys	Ala	Ser	Tyr 110	Ser	Glu	Leu	Glu	Leu 115	Val	Thr	Ser	Ala	Lys 120
Ala	Leu	Asn	Asp	Thr 125	Gln	Lys	Leu	Ala	Cys 130	Leu	Ile	Gly	Val	Glu 135
Gly	Gly	His	Ser	Leu 140	Asp	Asn	Ser	Leu	Ser 145	Ile	Leu	Arg	Thr	Phe 150
Tyr	Met	Leu	Gly	Val 155	Arg	Tyr	Leu	Thr	Leu 160	Thr	His	Thr	Cys	Asn 165
Thr	Pro	Trp	Ala	Glu 170	Ser	Ser	Ala	Lys	Gly 175	Val	His	Ser	Phe	Tyr 180
Asn	Asn	Ile	Ser	Gly 185		Thr	Asp	Phe	Gly 190	Glu	Lys	Val	Val	Ala 195
Glu	Met	Asn	Arg	Leu 200		Met	Met	Val	Asp 205	Leu	Ser	His	Val	Ser 210
Asp	Ala	Val	Ala	Arg 215		Ala	Leu	Glu	Val 220	Ser	Gln	Ala	Pro	Val 225
Ile	Phe	Ser	His	Ser 230		Ala	Arg	Gly	Val 235	Cys	Asn	Ser	Ala	Arg 240
Asn	Val	Pro	Asp	Asp 245		Leu	Gln	Leu	Leu 250	Lys	Lys	Asn	Gly	Gly 255
Val	Val	. Met	. Val	Ser 260		Ser	Met	Gly	Val 265	Ile	Gln	Cys	Asn	270
Ser	Ala	a Ası	ı Val	. Ser 275		· Val	Ala	a Asp	His 280	Phe	Asp	His	Ile	Lys 285
Ala	a Val	llle	e Gly	/ Sei 290		s Phe	e Ile	e Gly	/ Ile 295	e Gly	Gly	Asp	туг	300
Gly	/ Ala	a Gly	y Lys	305		Glr	ı Gly	/ Let	1 Glu 310	ı Asp	Val	. Sei	Thi	Tyr 315
Pro	o Val	l Le	u Ile	e Glu 320		ı Lev	ı Lev	ı Sei	2 Arg	g Gly 5	/ Trp	Sei	Glu	330
Glu	ı Lev	ı Gl	n Gly	y Val 33!		ı Arg	g Gly	y Ası	1 Let 34	ı Lev	ı Arg	y Val	L Phe	a Arg

<210> 31 <211> 1790 <212> DNA <213> Homo Sapien

<400> 31 cgcccagcga cgtgcgggcg gcctggcccg cgccctcccg cgcccggcct 50 gegteeegeg eeetgegeea eegeegeega geegeageee geegegegee 100 eceggeageg eeggeeceat geeegeegge egeegggee eegeegeeca 150 atecgegegg eggeegeege egttgetgee eetgetgetg etgetetgeg 200 teetegggge geegegagee ggateaggag eecacacage tgtgateagt 250 ceccaggate ecaegettet categgetee teeetgetgg ceaectgete 300 agtgcacgga gacccaccag gagccaccgc cgagggcctc tactggaccc 350 teaacgggcg ccgcctgccc cctgagctct cccgtgtact caacgcctcc 400 acettggete tggecetgge caacetcaat gggtecagge ageggteggg 450 ggacaacete gtgtgccacg ceegtgaegg cageateetg getggeteet 500 geetetatgt tggeetgeee eeagagaaac eegteaacat eagetgetgg 550 tecaagaaca tgaaggaett gaeetgeege tggaegeeag gggeeeaegg 600 ggagacette etceacacea actaetecet caagtacaag ettaggtggt 650 atggccagga caacacatgt gaggagtacc acacagtggg gccccactcc 700 tgccacatcc ccaaggacct ggctctcttt acgccctatg agatctgggt 750 ggaggccacc aaccgcctgg gctctgcccg ctccgatgta ctcacgctgg 800 atatectgga tgtggtgaee aeggaeeeee egeeegaegt geaegtgage 850 cgcgtcgggg gcctggagga ccagctgagc gtgcgctggg tgtcgccacc 900 cgccctcaag gatttcctct ttcaagccaa ataccagatc cgctaccgag 950 tggaggacag tgtggactgg aaggtggtgg acgatgtgag caaccagacc 1000 teetgeegee tggeeggeet gaaaceegge acegtgtaet tegtgeaagt 1050 gegetgeaac ecetttggea tetatggete caagaaagee gggatetgga 1100 gtgagtggag ccaccccaca gccgcctcca ctccccgcag tgagcgcccg 1150 ggcccgggcg gcggggcgtg cgaaccgcgg ggcggagagc cgagctcggg 1200 geeggtgegg egegagetea ageagtteet gggetggete aagaageaeg 1250 cgtactgctc caacctcagc ttccgcctct acgaccagtg gcgagcctgg 1300 atgcagaagt cgcacaagac ccgcaaccag gacgagggga tcctgccctc 1350 gggcagacgg ggcacggcga gaggtcctgc cagataagct gtaggggctc 1400 aggccaccct ccctgccacg tggagacgca gaggccgaac ccaaactggg 1450 gccacctctg taccctcact tcagggcacc tgagccaccc tcagcaggag 1500 ctggggtggc ccctgagctc caacggccat aacagctctg actcccacgt 1550 gaggccacct ttgggtgcac cccagtgggt gtgtgtgtgt gtgtgagggt 1600 tggttgagtt gcctagaacc cctgccaggg ctgggggtga gaaggggagt 1650 cattactccc cattacctag ggcccctcca aaagagtcct tttaaataaa 1700 tgagctattt aggtgctgtg attgtgaaaa aaaaaaaaa aaaaaaaaa 1750 aaaaaaaaaa aaaaaaaaa aaaaaaaaaa 1790

- <210> 32
- <211> 422
- <212> PRT
- <213> Homo Sapien
- <400> 32
- Met Pro Ala Gly Arg Arg Gly Pro Ala Ala Gln Ser Ala Arg Arg
- Pro Pro Pro Leu Leu Pro Leu Leu Leu Leu Cys Val Leu Gly 20
- Ala Pro Arg Ala Gly Ser Gly Ala His Thr Ala Val Ile Ser Pro
- Gln Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Leu Ala Thr Cys

Ser	Val	His	Gly	Asp 65	Pro	Pro	Gly	Ala	Thr 70	Ala	Glu	Gly	Leu	Tyr 75
Trp	Thr	Leu	Asn	Gly 80	Arg	Arg	Leu	Pro	Pro 85	Glu	Leu	Ser	Arg	Val 90
Leu	Asn	Ala	Ser	Thr 95	Leu	Ala	Leu	Ala	Leu 100	Ala	Asn	Leu	Asn	Gly 105
Ser	Arg	Gln	Arg	Ser 110	Gly	Asp	Asn	Leu	Val 115	Cys	His	Ala	Arg	Asp 120
Gly	Ser	Ile	Leu	Ala 125	Gly	Ser	Cys	Leu	Tyr 130	Val	Gly	Leu	Pro	Pro 135
Glu	Lys	Pro	Val	Asn 140	Ile	Ser	Cys	Trp	Ser 145	Lys	Asn	Met	Lys	Asp 150
Leu	Thr	Cys	Arg	Trp 155	Thr	Pro	Gly	Ala	His 160	Gly	Glu	Thr	Phe	Leu 165
His	Thr	Asn	Tyr	Ser 170	Leu	Lys	Tyr	Lys	Leu 175	Arg	Trp	Tyr	Gly	Gln 180
Asp	Asn	Thr	Cys	Glu 185	Glu	Tyr	His	Thr	Val 190	Gly	Pro	His	Ser	Cys 195
His	Ile	Pro	Lys	Asp 200	Leu	Ala	Leu	Phe	Thr 205	Pro	Tyr	Glu	Ile	Trp 210
Val	Glu	Ala	Thr	Asn 215	Arg	Leu	Gly	Ser	Ala 220	Arg	Ser	Asp	Val	Leu 225
Thr	Leu	Asp	Ile	Leu 230	Asp	Val	Val	Thr	Thr 235		Pro	Pro	Pro	Asp 240
Val	His	Val	Ser	Arg 245	Val	Gly	Gly	Leu	Glu 250		Gln	Leu	Ser	Val 255
Arg	Trp	Val	Ser	Pro 260		Ala	Leu	Lys	Asp 265		Leu	Phe	Gln	Ala 270
Lys	Tyr	Gln	Ile	Arg 275		Arg	Val	Glu	Asp 280		· Val	Asp	Trp	Lys 285
Val	Val	Asp	Asp	Val 290		Asn	Gln	Thr	Ser 295		Arg	Leu	Ala	Gly 300
Leu	Lys	Pro	Gly	Thr 305		Tyr	Phe	Val	Glr 310		. Arg	Cys	: Asn	Pro 315
Phe	Gly	Ile	Tyr	Gly 320		Lys	. Lys	Ala	Gly 325		Trp	Ser	Glu	330
Ser	His	Pro	Thr	Ala 335		Ser	Thr	Pro	340		Glu	a Arg	g Pro	Gly 345
Pro	Gly	Gly	Gly	Ala	Cys	Glu	Pro	Arg	Gly	/ Gly	/ Glu	ı Pro	Ser	Ser

ű
ű
rija Ita
uğus Ess
Ш
Ū
<u>o</u> t
9
Ф
Ш
LE

		350					355					360
	Gly Pro Val P	Arg Arg 365	Glu	Leu	Lys	Gln	Phe 370	Leu	Gly	Trp	Leu	Lys 375
	Lys His Ala 7	Tyr Cys 380	Ser	Asn	Leu	Ser	Phe 385	Arg	Leu	Tyr	Asp	Gln 390
	Trp Arg Ala	Trp Met 395	Gln	Lys	Ser	His	Lys 400	Thr	Arg	Asn	Gln	Asp 405
	Glu Gly Ile	Leu Pro 410	Ser	Gly	Arg	Arg	Gly 415	Thr	Ala	Arg	Gly	Pro 420
	Ala Arg											
	<210> 33 <211> 23 <212> DNA <213> Artific	ial Seq	uenc	e								
	<220> <223> Synthet	ic olig	onuc	leot	ide	prob	e					
	<400> 33 cccgcccgac g	tgcacgt	ga g	cc 2	:3							
	<210> 34 <211> 23 <212> DNA <213> Artific	cial Seq	uenc	:e								
	<220> <223> Synthet	cic olig	jonuc	leot	ide	prob	ре					
9	<400> 34 tgagccagcc	caggaact	gc t	tg 2	23							
	<210> 35 <211> 50 <212> DNA <213> Artific	cial Sec	quen	ce								
	<220> <223> Synthe	tic oli	gonu	cleo	tide	pro	be					
	<400> 35 caagtgcgct	gcaaccc	ctt	tggc	atct	at g	gctc	caag	a aa	gccg	ggat	50
	<210> 36 <211> 1771 <212> DNA <213> Homo S	apien										
	<400> 36 cccacgcgtc		gtt	agat	cgag	ca a	ccct	ctaa	a ag	cagt	ttag	50

agtggtaaaa aaaaaaaaa acacaccaaa cgctcgcagc cacaaaaggg 100 atgaaatttc ttctggacat cctcctgctt ctcccgttac tgatcgtctg 150 ctccctagag tccttcgtga agctttttat tcctaagagg agaaaatcag 200 tcaccggcga aatcgtgctg attacaggag ctgggcatgg aattgggaga 250 ctgactgcct atgaatttgc taaacttaaa agcaagctgg ttctctggga 300 tataaataag catggactgg aggaaacagc tgccaaatgc aagggactgg 350 gtgccaaggt tcataccttt gtggtagact gcagcaaccg agaagatatt 400 tacagctctg caaagaaggt gaaggcagaa attggagatg ttagtatttt 450 agtaaataat gctggtgtag tctatacatc agatttgttt gctacacaag 500 atcctcagat tgaaaagact tttgaagtta atgtacttgc acatttctgg 550 actacaaagg catttettee tgeaatgaeg aagaataace atggeeatat 600 tgtcactgtg gcttcggcag ctggacatgt ctcggtcccc ttcttactgg 650 cttactgttc aagcaagttt gctgctgttg gatttcataa aactttgaca 700 gatgaactgg ctgccttaca aataactgga gtcaaaacaa catgtctgtg 750 tectaattte gtaaacaetg getteateaa aaateeaagt acaagtttgg 800 gacccactct ggaacctgag gaagtggtaa acaggctgat gcatgggatt 850 ctgactgagc agaagatgat ttttattcca tcttctatag cttttttaac 900 aacattggaa aggatccttc ctgagcgttt cctggcagtt ttaaaacgaa 950 aaatcagtgt taagtttgat gcagttattg gatataaaat gaaagcgcaa 1000 taagcaccta gttttctgaa aactgattta ccaggtttag gttgatgtca 1050 tctaatagtg ccagaatttt aatgtttgaa cttctgtttt ttctaattat 1100 ccccatttct tcaatatcat ttttgaggct ttggcagtct tcatttacta 1150 ccacttgttc tttagccaaa agctgattac atatgatata aacagagaaa 1200 tacctttaga ggtgacttta aggaaaatga agaaaaagaa ccaaaatgac 1250 tttattaaaa taatttccaa gattatttgt ggctcacctg aaggctttgc 1300 aaaatttgta ccataaccgt ttatttaaca tatattttta tttttgattg 1350 cacttaaatt ttgtataatt tgtgtttctt tttctgttct acataaaatc 1400 agaaacttca agctctctaa ataaaatgaa ggactatatc tagtggtatt 1450 tcacaatgaa tatcatgaac tctcaatggg taggtttcat cctacccatt 1500

<210> 37

<211> 300

<212> PRT

<213> Homo Sapien

<400> 37

Met Lys Phe Leu Leu Asp Ile Leu Leu Leu Leu Pro Leu Leu Ile 1 5 10 15

Val Cys Ser Leu Glu Ser Phe Val Lys Leu Phe Ile Pro Lys Arg 20 25 30

Arg Lys Ser Val Thr Gly Glu Ile Val Leu Ile Thr Gly Ala Gly
35 40 45

His Gly Ile Gly Arg Leu Thr Ala Tyr Glu Phe Ala Lys Leu Lys
50 55 60

Ser Lys Leu Val Leu Trp Asp Ile Asn Lys His Gly Leu Glu Glu
65 70 75

Thr Ala Ala Lys Cys Lys Gly Leu Gly Ala Lys Val His Thr Phe 80 85 90

Val Val Asp Cys Ser Asn Arg Glu Asp Ile Tyr Ser Ser Ala Lys 95 100 105

Lys Val Lys Ala Glu Ile Gly Asp Val Ser Ile Leu Val Asn Asn 110 115 120

Ala Gly Val Val Tyr Thr Ser Asp Leu Phe Ala Thr Gln Asp Pro 125 130 135

Gln Ile Glu Lys Thr Phe Glu Val Asn Val Leu Ala His Phe Trp 140 145 150

Thr Thr Lys Ala Phe Leu Pro Ala Met Thr Lys Asn Asn His Gly
155 160 160

His Ile Val Thr Val Ala Ser Ala Ala Gly His Val Ser Val Pro 170 175 180

Phe Leu Leu Ala Tyr Cys Ser Ser Lys Phe Ala Ala Val Gly Phe 185 190 195

His Lys Thr Leu Thr Asp Glu Leu Ala Ala Leu Gln Ile Thr Gly

		200	205		210									
	Val Lys Thr Thr	Cys Leu Cys 215	Pro Asn Phe V	al Asn Thr	Gly Phe 225									
	Ile Lys Asn Pro	Ser Thr Ser 230	Leu Gly Pro T	hr Leu Glu	Pro Glu 240									
	Glu Val Val Asn	Arg Leu Met 245	His Gly Ile I 250	eu Thr Glu	Gln Lys 255									
	Met Ile Phe Ile	Pro Ser Ser 260	Ile Ala Phe I 265	eu Thr Thr	Leu Glu 270									
	Arg Ile Leu Pro	Glu Arg Phe 275	Leu Ala Val I 280	Leu Lys Arg	Lys Ile 285									
	Ser Val Lys Phe	e Asp Ala Val 290	Ile Gly Tyr 1 295	Lys Met Lys	Ala Gln 300									
	<210> 38 <211> 23 <212> DNA <213> Artificial Sequence													
	<220> <223> Synthetic oligonucleotide probe													
T T	<400> 38 ggtgaaggca gaaattggag atg 23													
ngguatage eszni	<210> 39 <211> 24 <212> DNA <213> Artificial Sequence													
	<220> <223> Synthetic oligonucleotide probe													
	<400> 39 atcccatgca tcagcctgtt tacc 24													
	<210> 40 <211> 48 <212> DNA <213> Artificial Sequence													
	<220> <223> Synthetic													
	caag atcctc	ag 48												
	<210> 41 <211> 1377 <212> DNA <213> Homo Sapa	ien												

<400> 41 gactagttct cttggagtct gggaggagga aagcggagcc ggcagggagc 50 gaaccaggac tggggtgacg gcagggcagg gggcgcctgg ccggggagaa 100 gcgcggggc tggagcacca ccaactggag ggtccggagt agcgagcgcc 150 ccgaaggagg ccatcgggga gccgggaggg gggactgcga gaggaccccg 200 gcgtccgggc tcccggtgcc agcgctatga ggccactcct cgtcctgctg 250 ctcctgggcc tggcggccgg ctcgcccca ctggacgaca acaagatccc 300 cagcetetge eeggggeace eeggeettee aggeaegeeg ggeeaceatg 350 gcagccaggg cttgccgggc cgcgatggcc gcgacggccg cgacggcgcg 400 cccggggctc cgggagagaa aggcgagggc gggaggccgg gactgccggg 450 acctegaggg gacceeggge egegaggaga ggegggaece geggggeeca 500 cegggeetge eggggagtge teggtgeete egegateege etteagegee 550 aagegeteeg agageegggt geeteegeeg tetgaegeac cettgeeett 600 cgaccgcgtg ctggtgaacg agcagggaca ttacgacgcc gtcaccggca 650 agttcacctg ccaggtgcct ggggtctact acttcgccgt ccatgccacc 700 gtctaccggg ccagcctgca gtttgatctg gtgaagaatg gcgaatccat 750 tgcctctttc ttccagtttt tcggggggtg gcccaagcca gcctcgctct 800 cgggggggc catggtgagg ctggagcctg aggaccaagt gtgggtgcag 850 gtgggtgtgg gtgactacat tggcatctat gccagcatca agacagacag 900 caccttetee ggatttetgg tgtacteega etggeacage teeceagtet 950 ttgcttagtg cccactgcaa agtgagctca tgctctcact cctagaagga 1000 gggtgtgagg ctgacaacca ggtcatccag gagggctggc ccccctggaa 1050 tattgtgaat gactagggag gtggggtaga gcactctccg tcctgctgct 1100 ggcaaggaat gggaacagtg gctgtctgcg atcaggtctg gcagcatggg 1150 gcagtggctg gatttctgcc caagaccaga ggagtgtgct gtgctggcaa 1200 gtgtaagtcc cccagttgct ctggtccagg agcccacggt ggggtgctct 1250 etteetggte etetgettet etggateete eecaceeet eetgeteetg 1300 gggccggccc ttttctcaga gatcactcaa taaacctaag aaccctcata 1350 aaaaaaaaa aaaaaaaa 1377

<210> 42

35

```
<212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 43
    tacaggccca gtcaggacca gggg 24
   <210> 44
   <211> 18
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 44
    agccagcctc gctctcgg 18
   <210> 45
   <211> 18
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
Ū
   <400> 45
    gtctgcgatc aggtctgg 18
    <210> 46
    <211> 20
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 46
     gaaagaggca atggattcgc 20
    <210> 47
    <211> 24
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 47
     gacttacact tgccagcaca gcac 24
    <210> 48
    <211> 45
    <212> DNA
    <213> Artificial Sequence
```

- <220>
 <223> Synthetic oligonucleotide probe
- <400> 48
 ggagcaccac caactggagg gtccggagta gcgagcgccc cgaag 45
- <210> 49
- <211> 1876
- <212> DNA
- <213> Homo Sapien
- <400> 49 ctcttttgtc caccagccca gcctgactcc tggagattgt gaatagctcc 50 atccagcctg agaaacaagc cgggtggctg agccaggctg tgcacggagc 100 acctgacggg cccaacagac ccatgctgca tccagagacc tcccctggcc 150 gggggcatct cctggctgtg ctcctggccc tccttggcac cacctgggca 200 gaggtgtggc caccccagct gcaggagcag gctccgatgg ccggagccct 250 gaacaggaag gagagtttct tgctcctctc cctgcacaac cgcctgcgca 300 gctgggtcca gccccctgcg gctgacatgc ggaggctgga ctggagtgac 350 agectggeec aactggetea agecagggea gecetetgtg gaateceaac 400 cccgagcctg gcatccggcc tgtggcgcac cctgcaagtg ggctggaaca 450 tgcagctgct gcccgcgggc ttggcgtcct ttgttgaagt ggtcagccta 500 tggtttgcag aggggcagcg gtacagccac gcggcaggag agtgtgctcg 550 caacgccacc tgcacccact acacgcagct cgtgtgggcc acctcaagcc 600 agetgggetg tgggeggeac etgtgetetg caggecagae agegatagaa 650 geetttgtet gtgeetaete eeeeggagge aactgggagg teaaegggaa 700 gacaatcatc ccctataaga agggtgcctg gtgttcgctc tgcacagcca 750 gtgtctcagg ctgcttcaaa gcctgggacc atgcaggggg gctctgtgag 800 gtccccagga atccttgtcg catgagctgc cagaaccatg gacgtctcaa 850 catcagcacc tgccactgcc actgtccccc tggctacacg ggcagatact 900 gccaagtgag gtgcagcctg cagtgtgtgc acggccggtt ccgggaggag 950 gagtgctcgt gcgtctgtga catcggctac gggggagccc agtgtgccac 1000 caaggtgcat tttcccttcc acacctgtga cctgaggatc gacggagact 1050 gcttcatggt gtcttcagag gcagacacct attacagagc caggatgaaa 1100

tgtcagagga aaggcggggt gctggcccag atcaagagcc agaaagtgca 1150

ggacatcctc gccttctatc tgggccgct ggagaccacc aacgagtga 1200 ctgacagtga cttcgagacc aggaacttct ggatcgggct cacctacaag 1250 accgccaagg actccttccg ctgggccaca ggggagcacc aggccttcac 1300 cagttttgcc tttgggcagc ctgacaacca cgggctggtg tgggctgagtg 1350 ctgccatggg gtttggcaac tgcgtggagc tgcaggcttc agctgccttc 1400 aactggaacg accagcgtg caaaacccga aaccgttaca tctgccagtt 1450 tgcccaggag cacatctccc ggtggggccc agggtcctga ggcctgacca 1500 catggctcc tcgcctgccc tgggagcacc ggctctgat acctgctgc 1550 ccacctgtct ggaacaaggg ccaggttaag accacatgcc tcatgtccaa 1600 agaggtctca gaccttgcac aatgccagaa gttgggcag agtgagtgt agaagaagct ggggcccttc 1700 gcctgcttt gattgggaag atgggctca attagatggc gaaggagagg 1750 acaccgcag tggtccaaaa aggctgctct cttccacctg gcccagaccc 1800 tgtggggcag cggagctcc ctgtggcatg aacccacgg ggtattaaat 1850 tatgaatcag ctgaaaaaaa aaaaaa 1876

<210> 50

<211> 455

<212> PRT

<213> Homo Sapien

<400> 50

Met Leu His Pro Glu Thr Ser Pro Gly Arg Gly His Leu Leu Ala 1 5 10 15

Val Leu Leu Ala Leu Leu Gly Thr Thr Trp Ala Glu Val Trp Pro 20 25 30

Pro Gln Leu Gln Glu Gln Ala Pro Met Ala Gly Ala Leu Asn Arg 35 40 45

Lys Glu Ser Phe Leu Leu Leu Ser Leu His Asn Arg Leu Arg Ser 50 55 60

Trp Val Gln Pro Pro Ala Ala Asp Met Arg Arg Leu Asp Trp Ser
65 70 75

Asp Ser Leu Ala Gln Leu Ala Gln Ala Arg Ala Ala Leu Cys Gly 80 85 90

Ile Pro Thr Pro Ser Leu Ala Ser Gly Leu Trp Arg Thr Leu Gln
95 100 105

Val Gly Trp Asn Met Gln Leu Leu Pro Ala Gly Leu Ala Ser Phe

	110		115	120
Val Glu Val Val	Ser Leu '	Trp Phe Ala	Glu Gly Gln Ar 130	rg Tyr Ser 135
His Ala Ala Gly	Glu Cys	Ala Arg Asn	Ala Thr Cys Th	nr His Tyr 150
Thr Gln Leu Val	Trp Ala 155	Thr Ser Ser	Gln Leu Gly Cy 160	ys Gly Arg 165
His Leu Cys Ser	Ala Gly 170	Gln Thr Ala	Ile Glu Ala Pl 175	he Val Cys 180
Ala Tyr Ser Pro	Gly Gly 185	Asn Trp Glu	Val Asn Gly L 190	ys Thr Ile 195
Ile Pro Tyr Lys	Lys Gly 200	Ala Trp Cys	Ser Leu Cys T 205	hr Ala Ser 210
Val Ser Gly Cys	Phe Lys 215	Ala Trp Asp	His Ala Gly G 220	ly Leu Cys 225
Glu Val Pro Arg	Asn Pro 230	Cys Arg Met	Ser Cys Gln A 235	sn His Gly 240
Arg Leu Asn Ile	e Ser Thr 245	Cys His Cys	s His Cys Pro F 250	Pro Gly Tyr 255
Thr Gly Arg Ty	r Cys Gln 260	Val Arg Cys	S Ser Leu Gln (265	Cys Val His 270
Gly Arg Phe Arg	g Glu Glu 275	Glu Cys Se	r Cys Val Cys <i>I</i> 280	Asp Ile Gly 285
Tyr Gly Gly Al	a Gln Cys 290	Ala Thr Ly	s Val His Phe 1 295	Pro Phe His 300
Thr Cys Asp Le	u Arg Ile 305	Asp Gly As	p Cys Phe Met 3 310	Val Ser Ser 315
Glu Ala Asp Th	r Tyr Tyr 320	Arg Ala Ar	g Met Lys Cys 325	Gln Arg Lys 330
Gly Gly Val Le	u Ala Glr 335	n Ile Lys Se	r Gln Lys Val 340	Gln Asp Ile 345
Leu Ala Phe Ty	r Leu Gly 350	y Arg Leu Gl	u Thr Thr Asn 355	Glu Val Thr 360
Asp Ser Asp Ph	ne Glu Thi 365	r Arg Asn Ph	e Trp Ile Gly 370	Leu Thr Tyr 375
Lys Thr Ala Ly	s Asp Sei 380	r Phe Arg Ti	p Ala Thr Gly 385	Glu His Gln 390
Ala Phe Thr Se	er Phe Ala 395	a Phe Gly Gl	ln Pro Asp Asn 400	His Gly Leu 405

Val Trp Leu Ser Ala Ala Met Gly Phe Gly Asn Cys Val Glu Leu Gln Ala Ser Ala Ala Phe Asn Trp Asn Asp Gln Arg Cys Lys Thr Arg Asn Arg Tyr Ile Cys Gln Phe Ala Gln Glu His Ile Ser Arg Trp Gly Pro Gly Ser <210> 51 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 51 aggaacttct ggatcgggct cacc 24 <210> 52 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 52 gggtctgggc caggtggaag agag 24 <210> 53 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe gccaaggact cetteegetg ggccacaggg gagcaccagg cette 45 <210> 54 <211> 2331 <212> DNA <213> Homo Sapien <400> 54 eggacgegtg ggetgggege tgcaaagegt gteecegegg gteecegage 50 gtcccgcgcc ctcgccccgc catgctcctg ctgctggggc tgtgcctggg 100

gctgtccctg tgtgtggggt cgcaggaaga ggcgcagagc tggggccact 150

cttcggagca ggatggactc agggtcccga ggcaagtcag actgttgcag 200

- <210> 55
- <211> 694
- <212> PRT
- <213> Homo Sapien
- <400> 55
- Met Leu Leu Leu Gly Leu Cys Leu Gly Leu Ser Leu Cys Val 1 5 10 15
- Gly Ser Gln Glu Glu Ala Gln Ser Trp Gly His Ser Ser Glu Gln $20 \\ 25 \\ 30$
- Asp Gly Leu Arg Val Pro Arg Gln Val Arg Leu Leu Gln Arg Leu
 35 40 45
- Lys Thr Lys Pro Leu Met Thr Glu Phe Ser Val Lys Ser Thr Ile 50 55 60
- Ile Ser Arg Tyr Ala Phe Thr Thr Val Ser Cys Arg Met Leu Asn
 65 70 75
- Arg Ala Ser Glu Asp Gln Asp Ile Glu Phe Gln Met Gln Ile Pro 80 85 90
- Ala Ala Ala Phe Ile Thr Asn Phe Thr Met Leu Ile Gly Asp Lys 95 100 105
- Val Tyr Gln Gly Glu Ile Thr Glu Arg Glu Lys Lys Ser Gly Asp 110 115 120

				410					415					420
Asn	Asn	Thr	Arg	Glu 425	Ala	Ala	Arg	Gly	Gln 430	Val	Cys	Ile	Phe	Thr 435
Ile	Gly	Ile	Gly	Asn 440	Asp	Val	Asp	Phe	Arg 445	Leu	Leu	Glu	Lys	Leu 450
Ser	Leu	Glu	Asn	Cys 455	Gly	Leu	Thr	Arg	Arg 460	Val	His	Glu	Glu	Glu 465
Asp	Ala	Gly	Ser	Gln 470	Leu	Ile	Gly	Phe	Tyr 475	Asp	Glu	Ile	Arg	Thr 480
Pro	Leu	Leu	Ser	Asp 485	Ile	Arg	Ile	Asp	Tyr 490	Pro	Pro	Ser	Ser	Val 495
Val	Gln	Ala	Thr	Lys 500	Thr	Leu	Phe	Pro	Asn 505	Tyr	Phe	Asn	Gly	Ser 510
Glu	Ile	Ile	Ile	Ala 515	Gly	Lys	Leu	Val	Asp 520	Arg	Lys	Leu	Asp	His 525
Leu	His	Val	Glu	Val 530		Ala	Ser	Asn	Ser 535	Lys	Lys	Phe	Ile	Ile 540
Leu	Lys	Thr	Asp	Val 545		Val	Arg	Pro	Gln 550		Ala	Gly	Lys	Asp 555
Val	Thr	Gly	Ser	Pro 560		Pro	Gly	Gly	Asp 565	Gly	Glu	Gly	Asp	Thr 570
Asn	His	Ile	e Glu	Arg 575		Trp	Ser	Tyr	Leu 580		Thr	Lys	Glu	Leu 585
Leu	Ser	Ser	Trp	Leu 590		Ser	qaA	Asp	Glu 595		Glu	Lys	Glu	Arg 600
Leu	Arg	Glr	n Arg	Ala 605		Ala	Leu	Ala	Val 610		Tyr	Arg	Phe	Leu 615
Thr	Pro) Phe	e Thr	Ser 620		Lys	Leu	ı Arç	Gly 625	Pro	Val	Pro	Arg	Met 630
Asp	Gly	, Le	ı Glu	1 Glu 635		His	Gly	/ Met	Ser 640		a Ala	Met	Gly	Pro 645
Glu	ı Pro	va:	l Val	l Glr 650		val	Arg	g Gly	/ Ala	a Gly	/ Thr	Glr	Pro	Gly 660
Pro	Let	ı Le	u Lys	s Lys 669) Asr	ı Sei	r Val	1 Lys		s Lys	Glr	a Asr	1 Lys 675
Thi	c Lys	з Гу	s Ar	g His 68		y Arg	g Asp	o Gly	y Va 68	l Pho	e Pro	Lev	ı His	690
Le	ı Gly	y I1	e Ar	g										

```
<210> 56
    <211> 24
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 56
    gtgggaacca aactccggca gacc 24
    <210> 57
    <211> 18
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 57
cacatcgage gtctctgg 18
    <210> 58
    <211> 24
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
M
    <400> 58
ageogeteet teteeggtte ateg 24
<210> 59
    <211> 48
     <212> DNA
     <213> Artificial Sequence
     <223> Synthetic oligonucleotide probe
     <400> 59
     tggaaggacc acttgatatc agtcactcca gacagcatca gggatggg 48
     <210> 60
     <211> 1413
     <212> DNA
     <213> Homo Sapien
     <400> 60
      cggacgcgtg gggtgcccga catggcgagt gtagtgctgc cgagcggatc 50
      ccagtgtgcg gcggcagcgg cggcggcggc gcctcccggg ctccggcttc 100
      tgctgttgct cttctccgcc gcggcactga tccccacagg tgatgggcag 150
      aatctgttta cgaaagacgt gacagtgatc gagggagagg ttgcgaccat 200
```

cagttgccaa gtcaataaga gtgacgactc tgtgattcag ctactgaatc 250 ccaacaggca gaccatttat ttcagggact tcaggccttt gaaggacagc 300 aggtttcagt tgctgaattt ttctagcagt gaactcaaag tatcattgac 350 aaacgtctca atttctgatg aaggaagata cttttgccag ctctataccg 400 atcccccaca ggaaagttac accaccatca cagtcctggt cccaccacgt 450 aatctgatga tcgatatcca gaaagacact gcggtggaag gtgaggagat 500 tgaagtcaac tgcactgcta tggccagcaa gccagccacg actatcaggt 550 ggttcaaagg gaacacagag ctaaaaggca aatcggaggt ggaagagtgg 600 tcagacatgt acactgtgac cagtcagctg atgctgaagg tgcacaagga 650 ggacgatggg gtcccagtga tctgccaggt ggagcaccct gcggtcactg 700 gaaacctgca gacccagcgg tatctagaag tacagtataa gcctcaagtg 750 cacattcaga tgacttatcc tctacaaggc ttaacccggg aaggggacgc 800 gcttgagtta acatgtgaag ccatcgggaa gccccagcct gtgatggtaa 850 cttgggtgag agtcgatgat gaaatgcctc aacacgccgt actgtctggg 900 cccaacctgt tcatcaataa cctaaacaaa acagataatg gtacataccg 950 ctgtgaagct tcaaacatag tggggaaagc tcactcggat tatatgctgt 1000 atgtatacga tecececaca actatecete eteceacaac aaccaceace 1050 accaccacca ccaccaccac caccatcctt accatcatca cagattcccg 1100 agcaggtgaa gaaggctcga tcagggcagt ggatcatgcc gtgatcggtg 1150 gegtegtgge ggtggtggtg ttegecatge tgtgettget cateattetg 1200 gggcgctatt ttgccagaca taaaggtaca tacttcactc atgaagccaa 1250 aggagccgat gacgcagcag acgcagacac agctataatc aatgcagaag 1300 gaggacagaa caactccgaa gaaaagaaag agtacttcat ctagatcagc 1350 ctttttgttt caatgaggtg tccaactggc cctatttaga tgataaagag 1400 acagtgatat tgg 1413

<210> 61

<211> 440

<212> PRT

<213> Homo Sapien

<400> 61

Met Ala Ser Val Val Leu Pro Ser Gly Ser Gln Cys Ala Ala Ala 1 5 10 15

Ala	Ala	Ala	Ala	Ala 20	Pro	Pro	Gly	Leu	Arg 25	Leu	Leu	Leu	Leu	Leu 30
Phe	Ser	Ala	Ala	Ala 35	Leu	Ile	Pro	Thr	Gly 40	Asp	Gly	Gln	Asn	Leu 45
Phe	Thr	Lys	Asp	Val 50	Thr	Val	Ile	Glu	Gly 55	Glu	Val	Ala	Thr	Ile 60
Ser	Cys	Gln	Val	Asn 65	Lys	Ser	Asp	Asp	Ser 70	Val	Ile	Gln	Leu	Leu 75
Asn	Pro	Asn	Arg	Gln 80	Thr	Ile	Tyr	Phe	Arg 85	Asp	Phe	Arg	Pro	Leu 90
Lys	Asp	Ser	Arg	Phe 95	Gln	Leu	Leu	Asn	Phe 100	Ser	Ser	Ser	Glu	Leu 105
Lys	Val	Ser	Leu	Thr 110	Asn	Val	Ser	Ile	Ser 115	Asp	Glu	Gly	Arg	Tyr 120
Phe	Cys	Glr	Leu	Tyr 125		Asp	Pro	Pro	Gln 130	Glu	Ser	Tyr	Thr	Thr 135
Ile	Thr	Val	Leu	Val 140		Pro	Arg	Asn	Leu 145	Met	Ile	Asp	Ile	Gln 150
Lys	Asp	Thi	c Ala	Val		Gly	Glu	Glu	Ile 160	Glu	Val	Asn	Cys	Thr 165
Ala	Met	Ala	a Ser	Lys 170	Pro	Ala	Thr	Thr	Ile 175	Arg	Trp	Phe	Lys	Gly 180
Asn	Thr	: Gl	ı Lev	Lys 185	Gly	. Lys	Ser	Glu	Val 190	Glu	Glu	Trp	Ser	Asp 195
Met	туз	Th	r Val	Thr 200		Gln	Leu	. Met	Leu 205	Lys	Val	His	. Lys	Glu 210
Asp	Asp	Gl	y Val	l Pro 215		Il€	. Cys	s Glr	val 220	Glu	His	Pro) Ala	Val 225
Thi	Gly	y As	n Lei	ı Glr 230		Glr	n Arg	д Туі	235	Glu S	ı Val	Glr	туг	Lys 240
Pro	o Gli	n Va	l Hi	5 Ile 249		n Met	Thi	с Туз	250	Leu)	ı Glr	ı Gly	y Lev	1 Thr 255
Arg	g Gl	u Gl	y As	p Ala 26		ı Glu	ı Lei	u Thi	r Cys 265	s Glu	ı Ala	a Ile	e Gly	y Lys 270
Pro	o Gl	n Pr	o Va	1 Me		l Th	r Trj	p Va	1 Arg 286	y Val	l Ası	p As	p Gl	Met 285
Pro	o Gl	n Hi	s Al	a Va 29	l Le	u Se	r Gl	y Pr	o Ası 29	n Lei 5	ı Ph	e Il	e Asi	n Asn 300
Le	u As	n Ly	s Th	r As	p As	n Gl	y Th	r Ty	r Ar	g Cy:	s Gl	u Al	a Se	r Asn

				305					310					315
Ile	Val	Gly	ГÀ̀г	Ala 320	His	Ser	Asp	Tyr	Met 325	Leu	Tyr	Val	Tyr	Asp 330
Pro	Pro	Thr	Thr	Ile 335	Pro	Pro	Pro	Thr	Thr 340	Thr	Thr	Thr	Thr	Thr 345
Thr	Thr	Thr	Thr	Thr 350	Thr	Ile	Leu	Thr	Ile 355	Ile	Thr	Asp	Ser	Arg 360
Ala	Gly	Glu	Glu	Gly 365	Ser	Ile	Arg	Ala	Val 370	Asp	His	Ala	Val	Ile 375
Gly	Gly	Val	Val	Ala 380	Val	Val	Val	Phe	Ala 385	Met	Leu	Cys	Leu	Leu 390
Ile	Ile	Leu	Gly	Arg 395	Tyr	Phe	Ala	Arg	His 400	Lys	Gly	Thr	Tyr	Phe 405
Thr	His	Glu	Ala	Lys 410	Gly	Ala	Asp	Asp	Ala 415	Ala	Asp	Ala	Asp	Thr 420
Ala	Ile	Ile	Asn	Ala 425		Gly	Gly	Gln	Asn 430	Asn	Ser	Glu	Glu	Lys 435
Lys	Glu	Tyr	Phe	Ile 440										
<210: <211: <212: <213	> 24 > DN	A	.cial	Seg	uenc	e								
<220 <223		nthe	etic	olig	jonuc	leot	ide	prob	e					
<400 ggc			gttg	jctct	tc t	ccg	24							
<210 <211 <212 <213	> 20 > DN) IA	icial	Sec	quenc	ce								
<220 <223		nthe	etic	olig	gonuc	cleot	ide	prob	e					
<400 gta			acca	agtca	agc 2	20								
<210 <211 <212 <213	> 20 > Di	O AN	icia:	l Sed	quen	ce								
<220 <223		ynth	etic	oli	gonu	cleo	tide	prol	oe -					

<400> 64 atcatcacag attcccgagc 20 <210> 65 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 65 ttcaatctcc tcaccttcca ccgc 24 <210> 66 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 66 atagetgtgt etgegtetge tgeg 24 <210> 67 <211> 50 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe egeggeactg atccccacag gtgatgggca gaatetgttt acgaaagacg 50 <210> 68 <211> 2555 <212> DNA <213> Homo Sapien <400> 68 ggggcgggtg gacgcggact cgaacgcagt tgcttcggga cccaggaccc 50 cctcgggccc gacccgccag gaaagactga ggccgcggcc tgccccgccc 100 ggctccctgc gccgccgccg cctcccggga cagaagatgt gctccagggt 150 ccctctgctg ctgccgctgc tcctgctact ggccctgggg cctggggtgc 200 agggetgeec atceggetge cagtgeagee agecacagae agtettetge 250 actgcccgcc aggggaccac ggtgccccga gacgtgccac ccgacacggt 300 ggggctgtac gtctttgaga acggcatcac catgctcgac gcaagcagct 350 ttgccggcct gccgggcctg cagctcctgg acctgtcaca gaaccagatc 400

<210> 69

<211> 598

<212> PRT

<213> Homo Sapien

<400> 69

Met Cys Ser Arg Val Pro Leu Leu Leu Pro Leu Leu Leu Leu 1 5 10 15

Ala Leu Gly Pro Gly Val Gln Gly Cys Pro Ser Gly Cys Gln Cys 20 25 30

Ser Gln Pro Gln Thr Val Phe Cys Thr Ala Arg Gln Gly Thr Thr
35 40 45

Val Pro Arg Asp Val Pro Pro Asp Thr Val Gly Leu Tyr Val Phe
50 55 60

Glu Asn Gly Ile Thr Met Leu Asp Ala Ser Ser Phe Ala Gly Leu
65 70 75

Pro Gly Leu Gln Leu Leu Asp Leu Ser Gln Asn Gln Ile Ala Ser

Leu Arg Leu Pro Arg Leu Leu Leu Leu Asp Leu Ser His Asn Ser

Leu Leu Ala Leu Glu Pro Gly Ile Leu Asp Thr Ala Asn Val Glu

				110					115					120
Ala	Leu	Arg	Leu	Ala 125	Gly	Leu	Gly	Leu	Gln 130	Gln	Leu	Asp	Glu	Gly 135
Leu	Phe	Ser	Arg	Leu 140	Arg	Asn	Leu	His	Asp 145	Leu	Asp	Val	Ser	Asp 150
Asn	Gln	Leu	Glu	Arg 155	Val	Pro	Pro	Val	Ile 160	Arg	Gly	Leu	Arg	Gly 165
Leu	Thr	Arg	Leu	Arg 170	Leu	Ala	Gly	Asn	Thr 175	Arg	Ile	Ala	Gln	Leu 180
Arg	Pro	Glu	Asp	Leu 185	Ala	Gly	Leu	Ala	Ala 190	Leu	Gln	Glu	Leu	Asp 195
Val	Ser	Asn	Leu	Ser 200	Leu	Gln	Ala	Leu	Pro 205	Gly	Asp	Leu	Ser	Gly 210
Leu	Phe	Pro	Arg	Leu 215	Arg	Leu	Leu	Ala	Ala 220	Ala	Arg	Asn	Pro	Phe 225
Asn	Cys	Val	. Cys	Pro 230		Ser	Trp	Phe	Gly 235	Pro	Trp	Val	Arg	Glu 240
Ser	His	Va]	Thr	Leu 245		Ser	Pro	Glu	Glu 250	Thr	Arg	Cys	His	Phe 255
Pro	Pro	Lys	s Asn	Ala 260		Arg	Leu	Leu	Leu 265	Glu	Leu	Asp	туг	Ala 270
Asp	Phe	e Gly	y Cys	275		Thr	Thr	Thr	Thr 280	Ala	Thr	Val	Pro	Thr 285
Thr	: Arg	g Pro	o Val	. Val		g Glu	n Pro	Thr	Ala 295	Leu S	Ser	Sei	s Ser	Leu 300
Ala	Pro	Th:	r Trp	Let 305	i Ser	Pro	Th:	Ala	310	o Ala	Thi	Glu	ı Alá	315
Sei	r Pro	o Pr	o Sei	Thi 320		a Pro	pro	Thi	7 Va 32	l Gly 5	/ Pro	va:	l Pro	330
Pro	Gl:	n As	р Су:	s Pro 335	o Pro	Sei	r Thi	r Cys	s Let 34	ı Asr O	n Gly	/ Gl	y Th	r Cys 345
Hi	s Le	u Gl	y Th	r Arg	g Hi: O	s Hi	s Le	ı Ala	a Cy:	s Lei 5	і Су:	s Pr	o Gl	u Gly 360
Ph	e Th	r Gl	y Le	u Ty:		s Gl	u Se:	r Gl	n Me 37	t Gly O	y Gli	n Gl	y Th	r Arg 375
Pr	o Se	r Pr	o Th	r Pr		l Th	r Pr	o Ar	g Pr 38	o Pro	o Ar	g Se	r Le	u Thi 390
Le	u Gl	y Il	le Gl	u Pr 39		l Se	r Pr	o Th	r Se 40	r Le	u Ar	g Va	1 G1	y Let 409

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 70

ccctccactg ccccaccgac tg 22

<210> 71

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

```
<400> 71
cggttctggg gacgttaggg ctcg 24
<210> 72
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 72
ctgcccaccg tccacctgcc tcaat 25
<210> 73
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 73
 aggactgccc accgtccacc tgcctcaatg ggggcacatg ccacc 45
<210> 74
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 74
 acgcaaagcc ctacatctaa gccagagaga gacagggcag ctggg 45
<210> 75
<211> 1077
<212> DNA
<213> Homo Sapien
<400> 75
 ggcactagga caacettett ecettetgea ecaetgeeeg taccettace 50
 cgccccgcca cctccttgct accccactct tgaaaccaca gctgttggca 100
 gggtccccag ctcatgccag cctcatctcc tttcttgcta gcccccaaag 150
 ggcctccagg caacatgggg ggcccagtca gagagccggc actctcagtt 200
 gccctctggt tgagttgggg ggcagctctg ggggccgtgg cttgtgccat 250
 ggctctgctg acccaacaaa cagagctgca gagcctcagg agagaggtga 300
 gccggctgca ggggacagga ggcccctccc agaatgggga agggtatccc 350
 tggcagagtc tcccggagca gagttccgat gccctggaag cctgggagaa 400
```


<210> 76

<211> 250

<212> PRT

<213> Homo Sapien

<400> 76

Met Pro Ala Ser Ser Pro Phe Leu Leu Ala Pro Lys Gly Pro Pro 1 5 10 15

Gly Asn Met Gly Gly Pro Val Arg Glu Pro Ala Leu Ser Val Ala 20 25 30

Leu Trp Leu Ser Trp Gly Ala Ala Leu Gly Ala Val Ala Cys Ala 35 40 45

Met Ala Leu Leu Thr Gln Gln Thr Glu Leu Gln Ser Leu Arg Arg 50 55 60

Glu Val Ser Arg Leu Gln Gly Thr Gly Gly Pro Ser Gln Asn Gly 65 70 75

Glu Gly Tyr Pro Trp Gln Ser Leu Pro Glu Gln Ser Ser Asp Ala 80 85 90

Leu Glu Ala Trp Glu Asn Gly Glu Arg Ser Arg Lys Arg Arg Ala 95 100 105

Val Leu Thr Gln Lys Gln Lys Lys Gln His Ser Val Leu His Leu 110 115 120

Val Pro Ile Asn Ala Thr Ser Lys Asp Asp Ser Asp Val Thr Glu Val Met Trp Gln Pro Ala Leu Arg Arg Gly Arg Gly Leu Gln Ala 140 Gln Gly Tyr Gly Val Arg Ile Gln Asp Ala Gly Val Tyr Leu Leu 155 Tyr Ser Gln Val Leu Phe Gln Asp Val Thr Phe Thr Met Gly Gln 170 Val Val Ser Arg Glu Gly Gln Gly Arg Gln Glu Thr Leu Phe Arg Cys Ile Arg Ser Met Pro Ser His Pro Asp Arg Ala Tyr Asn Ser 200 Cys Tyr Ser Ala Gly Val Phe His Leu His Gln Gly Asp Ile Leu 220 Ser Val Ile Ile Pro Arg Ala Arg Ala Lys Leu Asn Leu Ser Pro His Gly Thr Phe Leu Gly Phe Val Lys Leu 245

- <210> 77
- <211> 2849
- <212> DNA
- <213> Homo Sapien

<400> 77 cactttctcc ctctcttcct ttactttcga gaaaccgcgc ttccgcttct 50 ggtcgcagag acctcggaga ccgcgccggg gagacggagg tgctgtgggt 100 gggggggacc tgtggctgct cgtaccgccc cccaccctcc tcttctgcac 150 tgccgtcctc cggaagacct tttcccctgc tctgtttcct tcaccgagtc 200 tgtgcatcgc cccggacctg gccgggagga ggcttggccg gcgggagatg 250 ctctaggggc ggcgcgggag gagcggccgg cgggacggag ggcccggcag 300 gaagatgggc teeegtggac agggactett getggegtac tgeetgetee 350 ttgcctttgc ctctggcctg gtcctgagtc gtgtgcccca tgtccagggg 400 gaacagcagg agtgggaggg gactgaggag ctgccgtcgc ctccggacca 450 tgccgagagg gctgaagaac aacatgaaaa atacaggccc agtcaggacc 500 aggggctccc tgcttcccgg tgcttgcgct gctgtgaccc cggtacctcc 550 atqtacccgg cgaccgccgt gccccagatc aacatcacta tcttgaaagg 600

ggagaagggt gaccgcggag atcgaggcct ccaagggaaa tatggcaaaa 650

caggeteage aggggeeagg ggeeacaetg gaceeaaagg geagaaggge 700 tccatggggg cccctgggga gcggtgcaag agccactacg ccgccttttc 750 ggtgggccgg aagaagccca tgcacagcaa ccactactac cagacggtga 800 tettegacae ggagttegtg aacetetaeg accaetteaa catgtteaee 850 ggcaagttct actgctacgt gcccggcctc tacttcttca gcctcaacgt 900 gcacacctgg aaccagaagg agacctacct gcacatcatg aagaacgagg 950 aggaggtggt gatettgtte gegeaggtgg gegaeegeag cateatgeaa 1000 agccagagcc tgatgctgga gctgcgagag caggaccagg tgtgggtacg 1050 cctctacaag ggcgaacgtg agaacgccat cttcagcgag gagctggaca 1100 cctacatcac cttcagtggc tacctggtca agcacgccac cgagccctag 1150 ctggccggcc acctcctttc ctctcgccac cttccacccc tgcgctgtgc 1200 tgaccccacc gcctcttccc cgatccctgg actccgactc cctggctttg 1250 gcattcagtg agacgccctg cacacacaga aagccaaagc gatcggtgct 1300 cccagatccc gcagcctctg gagagagctg acggcagatg aaatcaccag 1350 ggeggggeac cegegagaac cetetgggac etteegegge cetetetgea 1400 cacateetea agtgaeeeeg caeggegaga egegggtgge ggeagggegt 1450 cccagggtgc ggcaccgcgg ctccagtcct tggaaataat taggcaaatt 1500 ctaaaggtct caaaaggagc aaagtaaacc gtggaggaca aagaaaaggg 1550 ttgttatttt tgtctttcca gccagcctgc tggctcccaa gagagaggcc 1600 ttttcagttg agactctgct taagagaaga tccaaagtta aagctctggg 1650 gtcaggggag gggccggggg caggaaacta cctctggctt aattctttta 1700 agccacgtag gaactttctt gagggatagg tggaccctga catccctgtg 1750 geettgeeca agggetetge tggtetttet gagteacage tgegaggtga 1800 tgggggctgg ggccccaggc gtcagcctcc cagagggaca gctgagcccc 1850 ctgccttggc tccaggttgg tagaagcagc cgaagggctc ctgacagtgg 1900 ccagggaccc ctgggtcccc caggcctgca gatgtttcta tgaggggcag 1950 ageteettgg tacateeatg tgtggetetg etecaceeet gtgeeaeeee 2000 agagecetgg ggggtggtet ceatgeetge caecetggea teggetttet 2050 gtgccgcctc ccacacaaat cagccccaga aggccccggg gccttggctt 2100 tgggctaagc atcaccgctt ccacgtgtgt tgtgttggtt ggcagcaagg 2200 ctgatccaga ccccttctge ccccactgce ctcatccagg cctctgacca 2250 gtagcctgag aggggctttt tctaggcttc agagcagggg agagctggaa 2300 ggggctagaa agctcccgct tgtctgttc tcaggctcct gtgagcctca 2350 gtcctgagac cagagtcaag aggaagtaca cgtcccaatc acccgtgtca 2400 ggattcactc tcaggagct ggtggcagga gaggcaatag cccctgtggc 2450 aattgcagga ccagctggag cagggttgcg gtgtctccac ggtgctctcg 2500 ccctgccat ggccaccca gactctgatc tccaggaacc ccatagccc 2550 tctccacct accccatgtt gatgcccagg gtgccccaaac cccactgg 2600 ggccccaaa cccccgctgc ctctcttcct tccccccacc cccacctgg 2650 ttttgactaa tcctgctcc ctctctggc ctctctccc ccccacct ggcagctcg ggatctggg ctctccac ggatcccaaaccca gactctgacc ccacactgg 2650 tctccacctc accccatgtt gatgcccagg ctctctccac ccccacctgg 2650 tctccacctc accccatgtt gatgcccagg ctctctccac ccccacctgg 2650 tccccaaacc ccccactgc ctctctcct tccccccacc cccacctgg 2650 tccccaaacc ccccactgc ctctctcct tcccccacc ggatcccaccc 2750 gagttgctg gggcgtgcc ggaagcagag cgccacactc gctgaagcc 2750 gagttgctgt gggcgtgccc ggaagcagag cgccacactc gctgcttaag 2800 ctccccagc tctttccaga aaacattaaa ctcagaattg tgtttcaa 2849

- <210> 78
- <211> 281
- <212> PRT
- <213> Homo Sapien
- <400> 78
- Met Gly Ser Arg Gly Gln Gly Leu Leu Leu Ala Tyr Cys Leu Leu 1 5 10 15
- Leu Ala Phe Ala Ser Gly Leu Val Leu Ser Arg Val Pro His Val 20 25 30
- Gln Gly Glu Gln Gln Glu Trp Glu Gly Thr Glu Glu Leu Pro Ser 35 40 45
- Pro Pro Asp His Ala Glu Arg Ala Glu Glu Gln His Glu Lys Tyr
 50 55 60
- Arg Pro Ser Gln Asp Gln Gly Leu Pro Ala Ser Arg Cys Leu Arg
 65 70 75
- Cys Cys Asp Pro Gly Thr Ser Met Tyr Pro Ala Thr Ala Val Pro 80 85 90
- Gln Ile Asn Ile Thr Ile Leu Lys Gly Glu Lys Gly Asp Arg Gly 95 100 105
- Asp Arg Gly Leu Gln Gly Lys Tyr Gly Lys Thr Gly Ser Ala Gly

				110					115					120
Ala	Arg	Gly	His	Thr 125	Gly	Pro	Lys	Gly	Gln 130	Lys	Gly	Ser	Met	Gly 135
Ala	Pro	Gly	Glu	Arg 140	Cys	Lys	Ser	His	Tyr 145	Ala	Ala	Phe	Ser	Val 150
Gly	Arg	Lys	Lys	Pro 155	Met	His	Ser	Asn	His 160	Tyr	Tyr	Gln	Thr	Val 165
Ile	Phe	Asp	Thr	Glu 170	Phe	Val	Asn	Leu	Tyr 175	Asp	His	Phe	Asn	Met 180
Phe	Thr	Gly	Lys	Phe 185	Tyr	Cys	Tyr	Val	Pro 190	Gly	Leu	Tyr	Phe	Phe 195
Ser	Leu	Asn	Val	His 200	Thr	Trp	Asn	Gln	Lys 205	Glu	Thr	Tyr	Leu	His 210
Ile	Met	Lys	Asn	Glu 215	Glu	Glu	Val	Val	Ile 220	Leu	Phe	Ala	Gln	Val 225
Gly	Asp	Arg	Ser	Ile 230	Met	Gln	Ser	Gln	Ser 235	Leu	Met	Leu	Glu	Leu 240
Arg	Glu	Gln	Asp	Gln 245	Val	Trp	Val	Arg	Leu 250	Tyr	Lys	Gly	Glu	Arg 255
Glu	Asn	Ala	Ile	Phe 260	Ser	Glu	Glu	Leu	Asp 265	Thr	Tyr	Ile	Thr	Phe 270
Ser	Gly	Tyr	Leu	Val 275	Lys	His	Ala	Thr	Glu 280	Pro				
<210: <211: <212: <213	> 24 > DN		cial	Seq	uenc	e								
<220		4- l		_1:_		7	: a.	nvah	_					
<223	-	ntne	tic	orig	onuc	Teor	ıae	prob	e					
<400 tac		cca ·	gtca	ggac	ca g	9 99	24							
<210														
<211 <212		Δ												
<213			cial	Seq	uenc	е								
<220 <223		nthe	tic	olig	onuc	leot	ide	prob	e					
<400	> 80													
ctg	aaga	agt	agag	gccg	gg c	acg	24							
<210	> 81													

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 81

cccggtgctt gcgctgctgt gaccccggta cctccatgta cccgg 45

<210> 82

<211> 2284

<212> DNA

<213> Homo Sapien

<400> 82

geggageate egetgeggte etegeegaga eeeeegegeg gattegeegg 50 teetteeege gggegegaca gagetgteet egeacetgga tggeageagg 100 ggcgccgggg tcctctcgac gccagagaga aatctcatca tctgtgcagc 150 cttcttaaag caaactaaga ccagagggag gattatcctt gacctttgaa 200 gaccaaaact aaactgaaat ttaaaatgtt cttcggggga gaagggagct 250 tgacttacac tttggtaata atttgcttcc tgacactaag gctgtctgct 300 agtcagaatt gcctcaaaaa gagtctagaa gatgttgtca ttgacatcca 350 gtcatctctt tctaagggaa tcagaggcaa tgagcccgta tatacttcaa 400 ctcaagaaga ctgcattaat tcttgctgtt caacaaaaaa catatcaggg 450 gacaaagcat gtaacttgat gatcttcgac actcgaaaaa cagctagaca 500 acccaactgc tacctatttt tctgtcccaa cgaggaagcc tgtccattga 550 aaccagcaaa aggacttatg agttacagga taattacaga ttttccatct 600 ttgaccagaa atttgccaag ccaagagtta ccccaggaag attctctctt 650 acatggccaa ttttcacaag cagtcactcc cctagcccat catcacacag 700 attattcaaa geccaeegat ateteatgga gagacaeact tteteagaag 750 tttggatcct cagatcacct ggagaaacta tttaagatgg atgaagcaag 800 tgcccagctc cttgcttata aggaaaaagg ccattctcag agttcacaat 850 tttcctctga tcaagaaata gctcatctgc tgcctgaaaa tgtgagtgcg 900 ctcccagcta cggtggcagt tgcttctcca cataccacct cggctactcc 950 aaagcccgcc accettctac ccaccaatgc ttcagtgaca ccttctggga 1000 cttcccagcc acagctggcc accacagctc cacctgtaac cactgtcact 1050

teteageete ecaegaeeet eatttetaea gtttttaeae gggetgegge 1100 tacactccaa gcaatggcta caacagcagt tctgactacc acctttcagg 1150 cacctacgga ctcgaaaggc agcttagaaa ccataccgtt tacagaaatc 1200 tccaacttaa ctttgaacac agggaatgtg tataacccta ctgcactttc 1250 tatgtcaaat gtggagtctt ccactatgaa taaaactgct tcctgggaag 1300 gtagggaggc cagtccaggc agttcctccc agggcagtgt tccagaaaat 1350 cagtacggcc ttccatttga aaaatggctt cttatcgggt ccctgctctt 1400 tggtgtcctg ttcctggtga taggcctcgt cctcctgggt agaatccttt 1450 cggaatcact ccgcaggaaa cgttactcaa gactggatta tttgatcaat 1500 gggatctatg tggacatcta aggatggaac tcggtgtctc ttaattcatt 1550 tagtaaccag aagcccaaat gcaatgagtt tctgctgact tgctagtctt 1600 agcaggaggt tgtattttga agacaggaaa atgccccctt ctgctttcct 1650 ttttttttt ggagacagag tcttgctctg ttgcccaggc tggagtgcag 1700 tagcacgate teggetetea eegeaacete egteteetgg gttcaagega 1750 ttctcctgcc tcagcctcct aagtatctgg gattacaggc atgtgccacc 1800 acacctgggt gatttttgta tttttagtag agacggggtt tcaccatgtt 1850 ggtcaggctg gtctcaaact cctgacctag tgatccaccc tcctcggcct 1900 cccaaagtgc tgggattaca ggcatgagcc accacagctg gcccccttct 1950 gttttatgtt tggtttttga gaaggaatga agtgggaacc aaattaggta 2000 attttgggta atctgtctct aaaatattag ctaaaaacaa agctctatgt 2050 aaagtaataa agtataattg ccatataaat ttcaaaattc aactggcttt 2100 tatgcaaaga aacaggttag gacatctagg ttccaattca ttcacattct 2150 tggttccaga taaaatcaac tgtttatatc aatttctaat ggatttgctt 2200 ttctttttat atggattcct ttaaaactta ttccagatgt agttccttcc 2250 aattaaatat ttgaataaat cttttgttac tcaa 2284

<210> 83

<211> 431

<212> PRT

<213> Homo Sapien

<400> 83
Met Phe Phe Gly Gly Glu Gly Ser Leu Thr Tyr Thr Leu Val Ile
1 10 15

Val Phe Thr Arg Ala Ala Ala Thr Leu Gln Ala Met Ala Thr Thr

Ala Val Leu Thr Thr Thr Phe Gln Ala Pro Thr Asp Ser Lys Gly

cgggtccctg ctctttgg 18

				305					310					315
Ser 1	Leu	Glu	Thr	Ile 320	Pro	Phe	Thr	Glu	Ile 325	Ser	Asn	Leu	Thr	Leu 330
Asn 1	Thr	Gly	Asn	Val 335	Tyr	Asn	Pro	Thr	Ala 340	Leu	Ser	Met	Ser	Asn 345
Val (Glu	Ser	Ser	Thr 350	Met	Asn	Lys	Thr	Ala 355	Ser	Trp	Glu	Gly	Arg 360
Glu <i>i</i>	Ala	Ser	Pro	Gly 365	Ser	Ser	Ser	Gln	Gly 370	Ser	Val	Pro	Glu	Asn 375
Gln 1	Гуr	Gly	Leu	Pro 380	Phe	Glu	Lys	Trp	Leu 385	Leu	Ile	Gly	Ser	Leu 390
Leu l	Phe	Gly	Val	Leu 395	Phe	Leu	Val	Ile	Gly 400	Leu	Val	Leu	Leu	Gly 405
Arg :	Ile	Leu	Ser	Glu 410	Ser	Leu	Arg	Arg	Lys 415	Arg	Tyr	Ser	Arg	Leu 420
Asp '	Гуr	Leu	Ile	Asn 425	Gly	Ile	туг	Val	Asp 430	Ile				
<210><211><212><213>	30 DN		cial	Sequ	uence	9								
<220> <223>	Syr	nthet	ic o	oligo	onuc]	leot:	ide p	probe	9					
<400> aggga		att a	atcci	ttgad	cc tt	ttgaa	agac	2 30						
<210><211><212><213>	18 DN		cial	Sequ	ience	.								
<220> <223>	Syr	nthet	cic o	oligo	onuc!	leot:	ide p	probe	e					
<400> gaage		gtg d	ccag	gctc	18									
<210><211><212><212><213>	18 DNA		cial	Sequ	uence	2								
<220> <223>	Syr	nthet	cic o	oligo	onuc:	leot	ide p	probe	e					
<400>	86													


```
<210> 87
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 87
 caccgtagct gggagcgcac tcac 24
<210> 88
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 88
 agtgtaagtc aagctccc 18
<210> 89
<211> 49
<212> DNA
 <213> Artificial Sequence
 <223> Synthetic oligonucleotide probe
 <400> 89
 gcttcctgac actaaggctg tctgctagtc agaattgcct caaaaagag 49
 <210> 90
 <211> 957
 <212> DNA
 <213> Homo Sapien
 <400> 90
  cctggaagat gcgcccattg gctggtggcc tgctcaaggt ggtgttcgtg 50
  gtettegeet eettgtgtge etggtatteg gggtaeetge tegeagaget 100
  cattccagat gcacccctgt ccagtgctgc ctatagcatc cgcagcatcg 150
  gggagaggcc tgtcctcaaa gctccagtcc ccaaaaggca aaaatgtgac 200
  cactggactc cctgcccatc tgacacctat gcctacaggt tactcagcgg 250
  aggtggcaga agcaagtacg ccaaaatctg ctttgaggat aacctactta 300
  tgggagaaca gctgggaaat gttgccagag gaataaacat tgccattgtc 350
  aactatgtaa ctgggaatgt gacagcaaca cgatgttttg atatgtatga 400
  aggcgataac tctggaccga tgacaaagtt tattcagagt gctgctccaa 450
  aatccctgct cttcatggtg acctatgacg acggaagcac aagactgaat 500
```


aacgatgcca agaatgccat agaagcactt ggaagtaaag aaatcaggaa 550 catgaaattc aggtctagct gggtatttat tgcagcaaaa ggcttggaac 600 tecetteega aatteagaga gaaaagatea accaetetga tgetaagaae 650 aacagatatt ctggctggcc tgcagagatc cagatagaag gctgcatacc 700 caaagaacga agctgacact gcagggtcct gagtaaatgt gttctgtata 750 aacaaatgca gctggaatcg ctcaagaatc ttatttttct aaatccaaca 800 gcccatattt gatgagtatt ttgggtttgt tgtaaaccaa tgaacatttg 850 ctagttgtat caaatcttgg tacgcagtat ttttatacca gtattttatg 900 tagtgaagat gtcaattagc aggaaactaa aatgaatgga aattcttaaa 950 aaaaaaa 957

<210> 91

<211> 235

<212> PRT

<213> Homo Sapien

<400> 91

Met Arg Pro Leu Ala Gly Gly Leu Leu Lys Val Val Phe Val Val

Phe Ala Ser Leu Cys Ala Trp Tyr Ser Gly Tyr Leu Leu Ala Glu

Leu Ile Pro Asp Ala Pro Leu Ser Ser Ala Ala Tyr Ser Ile Arg

Ser Ile Gly Glu Arg Pro Val Leu Lys Ala Pro Val Pro Lys Arg

Gln Lys Cys Asp His Trp Thr Pro Cys Pro Ser Asp Thr Tyr Ala

Tyr Arg Leu Leu Ser Gly Gly Gly Arg Ser Lys Tyr Ala Lys Ile

Cys Phe Glu Asp Asn Leu Leu Met Gly Glu Gln Leu Gly Asn Val 95

Ala Arg Gly Ile Asn Ile Ala Ile Val Asn Tyr Val Thr Gly Asn

Val Thr Ala Thr Arg Cys Phe Asp Met Tyr Glu Gly Asp Asn Ser 130

Gly Pro Met Thr Lys Phe Ile Gln Ser Ala Ala Pro Lys Ser Leu 145

Leu Phe Met Val Thr Tyr Asp Asp Gly Ser Thr Arg Leu Asn Asn 165 160

Asp Ala Lys Asn Ala Ile Glu Ala Leu Gly Ser Lys Glu Ile Arg Asn Met Lys Phe Arg Ser Ser Trp Val Phe Ile Ala Ala Lys Gly 190 Leu Glu Leu Pro Ser Glu Ile Gln Arg Glu Lys Ile Asn His Ser Asp Ala Lys Asn Asn Arg Tyr Ser Gly Trp Pro Ala Glu Ile Gln 220 215 Ile Glu Gly Cys Ile Pro Lys Glu Arg Ser 230 <210> 92 <211> 20 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe Ф <400> 92 aatgtgacca ctggactccc 20 <210> 93 Ø <211> 18 <212> DNA <213> Artificial Sequence <220> BJI <223> Synthetic oligonucleotide probe <400> 93 aggettggaa eteeette 18 <210> 94 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 94 aagattettg agegatteea getg 24 <210> 95 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe aatccctgct cttcatggtg acctatgacg acggaagcac aagactg 47

<210> 96 <211> 21 <212> DNA

> <210> 101 <211> 19 <212> DNA


```
<213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 96
    ctcaagaagc acgcgtactg c 21
    <210> 97
    <211> 25
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 97
     ccaacctcag cttccgcctc tacga 25
<210> 98
    <211> 18
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
<400> 98
     catccagget egecactg 18
    <210> 99
    <211> 20
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 99
     tggcaaggaa tgggaacagt 20
    <210> 100
    <211> 25
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 100
     atgctgccag acctgatcgc agaca 25
```



```
<213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 101
    gggcagaaat ccagccact 19
   <210> 102
   <211> 18
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 102
    cccttcgcct gcttttga 18
   <210> 103
   <211> 27
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 103
    gccatctaat tgaagcccat cttccca 27
<210> 104
    <211> 19
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 104
     ctggcggtgt cctctcctt 19
    <210> 105
    <211> 21
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 105
     cctcggtctc ctcatctgtg a 21
    <210> 106
    <211> 20
    <212> DNA
    <213> Artificial Sequence
     <220>
```


- <223> Synthetic oligonucleotide probe
 <400> 106
 tggcccagct gacgagccct 20
- <210> 107
- <211> 21
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 107
 - ctcataggca ctcggttctg g 21
- <210> 108
- <211> 19
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 108
- tggctcccag cttggaaga 19
- <210> 109
- <211> 30
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 109
- cagetettgg etgtetecag tatgtaceca 30
- <210> 110
- <211> 21
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 110
- gatgcctctg ttcctgcaca t 21
- <210> 111
- <211> 48
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 111

ggattctaat acgactcact atagggctgc ccgcaacccc ttcaactg 48

- <210> 112
- <211> 48
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 112
- ctatgaaatt aaccctcact aaagggaccg cagctgggtg accgtgta 48
- <210> 113
- <211> 43
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 113
- ggattctaat acgactcact atagggccgc cccgccacct cct 43
- <210> 114
- <211> 48
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 114
- ctatgaaatt aaccctcact aaagggactc gagacaccac ctgaccca 48
- <210> 115
- <211> 48
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 115
- ggattctaat acgactcact atagggccca aggaaggcag gagactct 48
- <210> 116
- <211> 48
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic Oligonucleotide probe
- <400> 116
- ctatgaaatt aaccctcact aaagggacta gggggtggga atgaaaag 48
- <210> 117


```
<211> 48
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Synthetic oligonucleotide probe
     <400> 117
      ggattctaat acgactcact atagggcccc cctgagctct cccgtgta 48
     <210> 118
     <211> 48
     <212> DNA
     <213> Artificial Sequence
     <223> Synthetic oligonucleotide probe
     <400> 118
      ctatgaaatt aaccetcact aaagggaagg ctcgccactg gtcgtaga 48
<210> 119
     <211> 48
     <212> DNA
     <213> Artificial Sequence
     <220>
    <223> Synthetic oligonucleotide probe
T
    <400> 119
ggattctaat acgactcact atagggcaag gagccgggac ccaggaga 48
    <210> 120
    <211> 47
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 120
     ctatgaaatt aaccetcact aaagggaggg ggceettggt getgagt 47
```

71