Problemstellung

Rebecca Seelos, Alexander Lüngen, Joshua

28. August 2019

Gegeben

- ▶ Maße der Hertplatte
- Anfangstemperatur
- Randtemperatur
- Wärmezufuhr

Gesucht

- Wärmeverteilung
- ▶ Wärmeentwicklung über Zeit
- Zeit bis zu einer bestimmten Temperatur

Teilaufgaben

Finden einer geeigneten ...

- ... Methodik zum Lösen von Gleichungen
- ... Parallelisierungsmethode
- Programmiersprache zur Implementierung

Gauß-Seidel Verfahren - Motivation

Im Rahmen der Finitien Elemente Methode müssen häufig Gleichungen gelöst werden:

- → WelcheGleichungen?
- ightarrow Gauß Seidel Verfahren

Iteratives Verfahren um lineare Gleichungen näherungsweise zu lösen

Problemstellung

Gauß-Seidel Verfahren - Anwendung

1. Gegeben das Gleichungssystem:

2. Wähle Startvektor:

$$x^0 \in \mathbb{R}^n$$

3. Iteriere über Vektoreinträge einen Schritt mit der Vorschrift:

$$orall k = 0, 1, \dots; \quad \forall j = 1, .., n:$$
 $\mathbf{x}_{j}^{k+1} = \frac{1}{a_{j,j}} \left(b_{j} - \sum_{i=1}^{j-1} a_{j,i} \mathbf{x}_{i}^{k+1} - \sum_{i=j+1}^{n} a_{j,i} \mathbf{x}_{i}^{k} \right)$

Parallelisierungsmethoden

Parallelisierung des Gauss-Seidel-Verfahrens

- 1. Wavefront
- 2. Diamondtiling
- 3. Jacobi-Iteration

Parallelisierungsmethoden - Wavefront

Problem: - unregelmäßiger Parallelisierungsgrad
Optimierungsmöglichkeit: - Freigabe von zuvor berechneten
elementen für den nächsten Schritt

Parallelisierungsmethoden - Diamondtiling

Abbildung: Quelle: Vorlesung "Software Engineering für moderne parallele Plattformen", Foliensatz "2.Entwurf"

Parallelisierungsmethoden - Jacobi-Iteration

Verändern der Rechenvorschrift von Gauß-Seidel-Verfahren Neue Rechenvorschrift:

$$x^{k+1} = \frac{1}{a_{i,i}()}$$

Problemstellung

Datenabhängigkeit nur im gleichen Zeitschritt Wähle optimal bzgl. Speicher vs. Parallelisierungsgrad

OpenMP

Beispiele aus dem Praktikum: Numerische Berechnung von π , Mandelbrot, Gauss-Seidel Die Vorteile sind:

- einfach in existierenden Code zu integrieren mit entsprechenden '#pragma'
- mit dem gcc compiler zu nutzen

OpenMP Nachteile

Problemstellung

- ► Korrekte Anwendung wichtig
- verleitet eventuell dazu Dinge zu einfach zu sehen

Beispiel: Gauß-Seidel

Implementierung	l,h	T(1)	T(n)(parallel)	S(n)
OMP naiv	I=5, h=1/32	1.42	1.154	1.231
OMP naiv	I=6; h=1/64	37.216s	26.884s	1.384
OMP Jacobi	I=5, h=1/3	-	1.475s	0.963
OMP Jacobi	l=6, h=1/64	-	6.394s	5.82

CUDA

Problemstellung

Vorteile:

- Nutzung der GPU (von NVIDIA)
- gut bei hoher Datenparallelität

Nachteile:

- bedarf Einarbeitung
- nvcc compiler, verschiedene Versionen von Grafikkarten, manchmal nicht kompatibel - angewiesen auf Hardware
- overhead

Beispiel: Vector inkrementieren

Zeit mit OpenMP auf CPU: 488.875 ms

	Speedup		
blocksize	Time	N = 10^8	
4	141.23ms	3.49	
32	18.020ms	27.74	

Beispiel: Gauß-Seidel

Implementierung	l,h	T(1)	T(n)	S(n)
OMP naiv	I=5, h=1/32	1.42s	1.154s	1.231
OMP naiv	l=6; h=1/64	37.216s	26.884s	1.384
OMP Jacobi	l=5, h=1/3	-	1.475s	0.963
OMP Jacobi	l=6, h=1/64	-	6.394s	5.82
CUDA Jacobi	I=5, h=1/32	-	1.055s	1.346
CUDA Jacobi	l=6, h=1/64	-	1.318s	28.237

Finite-Differenzen-Methode

$\frac{1}{h^2}$	(4 -1 -1 4 -1 -1 4 -1 -1 4 -1 -1 -1 -1 -1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 -1 -1 -1 4 -1 -1 4 -1 -1 4 -1	$ \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \\ u_8 \\ u_9 \\ u_{10} \\ u_{11} \\ u_{112} \\ u_{13} \\ u_{14} \\ u_{15} \\ \end{pmatrix} =$	f_9 f_{10} f_{11} f_{12} f_{13} f_{14} f_{15}
			-1 -1	$\begin{pmatrix} -1 & 4 & -1 \\ & -1 & 4 \end{pmatrix}$	$\begin{pmatrix} u_{15} \\ u_{16} \end{pmatrix}$	$\begin{pmatrix} f_{15} \\ f_{16} \end{pmatrix}$

Krylow-Unterraumverfahren & GMRES

Problemstellung

- ▶ iterative Verfahren zum Lösen großer, dünnbesetzter Gleichungssysteme
- GMRES = Generalized minimal residual method
- Begrenzte Anzahl der Schritte bis zum Konvergenz
- Residuum abschätzen um Operationen zu sparen

Vergleich GMRES - Gauss-Seidel-Verfahren

Problemstellung

-	Gauss-Seidel(s)	GMRES(s)	Speedup
l=5; h=1/32	0.488	0.025	19.52
l=6; h=1/64	0.960	0.135	7.11
l=7; h=1/128	8.856	1.300	6.812

LU-Zerlegung

- Weitere Verbesserungen durch Vorkonditionierung
- $A = (L * U)^{-1}$
- GMRES konvergiert schneller

Problemstellung

- $-\triangle u(x, y, t_n) = \frac{f(x,y) u'(x,y,t_n)}{2}, (x,y) \in \Omega = (0,1)^2,$ $n \in N \setminus 0$:
- ▶ $u(x, y, t_n) = 20, (x, y) \in \Gamma, n \in N$;
- $u(x, y, t_0) = 20, (x, y) \in \Omega$;
- f(x,y) ist stetig, $(x,y) \in \Omega$.

Zeitschritt

$$u'(t_n) = f + a * \triangle u(t_n)$$

$$mit \triangle u(t_n) = \frac{4*u_{i,j}(t_n) - u_{i-1,j}(t_n) - u_{i+1,j}(t_n) - u_{i,j-1}(t_n) - u_{i,j+1}(t_n)}{h^2}$$

$$u(t_{n+1}) = u(t_n) + h_t * u'(t_n)$$

$$A * u(t_n) = \frac{h_s^2}{a} * (f - \frac{u(t_n) - u(t_{n-1})}{h_t})$$

Implementierung

- OpenMp
- Vorkonditioniert
- GMRES (mit Residuumschätzung)

Ergebnisse

Ausblick

- Simulation weiter verschnellern (CUDA GPU)
- ▶ Beliebige Hertplattenformen zulassen (zB. Kreis)
- ▶ Mit der Simulation optimieren (Abbruchbedingung anpassen?)

Problemstellung

Danke für Ihre Aufmerksamkeit!