实验二:数据选择器、加法器及其应用

实验成员:

实验目的:

- 1. 熟悉中规模集成电路数据选择器的工作原理和逻辑功能
- 2. 了解数据选择器的应用
- 3. 掌握组合逻辑电路的设计方法,理解半加器和全加器的逻辑功能
- 4. 掌握中规模集成电路加法器的工作原理及其逻辑功能

实验原理:

1. 数据选择器:

数据选择器又称多路选择器,是一个数据开关。它从 N 路源数据中选择一路送至输入端。如图所示为典型芯片及其功能表:

74LS153功能表

输入		输出
G	$A_1 A_0$	Y
1	× ×	0
0	0 0	D_0
0	0 1	\mathbf{D}_1
0	1 0	D_2 D_3
0	1 1	$\mathbf{D_3}$

2. 加法器:

在数字系统中,经常需要进行算术运算,逻辑操作及数字大小比较等操作,实现这些运算功能的电路是加法器。加法器是一种组合逻辑电路,主要功能

是实现二进制数的算术加法运算

1. 半加器:

半加器完成两个一位二进制数相加,若只考虑两个加数本身,而不考虑来自相邻低位的仅为,称为半加。实现半加运算功能的电路称为半加器。半加器的基本电路和逻辑表达式如下:

半加器真值表

A_i	B_i	S_i	C_{i}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S_i = A_i \oplus B_i$$
$$C_i = A_i B_i$$

2. 全加器:

两个多位数相加是每一位都是带进位相加,所以必须用全加器。这时只要依次将低位的进位输出接到高位的输入,就可构成多位加法器了。全加器是一种由被加数、加数和来自低位的进位数三者相加的运算器。基本功能是实现二进制加法。全加器的基本电路和逻辑表达式如下:

3. 串行进位加法器:

4. 并行加法器:

1. 进位链:

把 n 个加法器单元电路按一定方式互连起来,即构成 n 位的并行加法器。其由两部分组成: 1.并行成分,指两个操作数的所有位同时并行加入加法器运算; 2.链结构,即可以链接各个加法器。虽然操作数各位同时加入加法器进行运算,但并非所有位和数都同时产生,它存在进位的产生与传送问题,仅为的产生与传送称为进位链,它的结构是影响加法器速度的关键

2. 先行进位:

先行进位也称并行进位,指加法器各位的进位是各自独立且同时产生的,高一位的进位不依赖低位的进位产生与传送。并行加法器的任意一位进位

5. 超前进位并行加法器:

超前进位加法器构成的快速进位的四位全加器电路为 74LS283, 可实现两个四位二进制的全加。加进位输入 C_0 和进位输出 C_3 主要用来扩大加法器字长,作为组间行波进位之用。由于它采用超前进位方式, 所以进位传送速度快。超前进位并行加法器的基本电路如下:

实验内容:

1. 验证 4 选 1 数据选择器 74LS153 的逻辑功能并记录真值表。

C1`	A1	A 0	Y
1	X	X	0
0	0	0	D 0
0	0	1	D1
0	1	0	D2
0	1	1	D3

2. 验证 8 选 1 数据选择器 74LS151 的逻辑功能并记录真值表。

E`	A2	A1	A 0	Y
1	X	X	X	0
0	0	0	0	D0
0	0	0	1	D1
0	0	1	0	D2
0	0	1	1	D3
0	1	0	0	D4
0	1	0	1	D5
0	1	1	0	D6
0	1	1	1	D7

3. 用两个 8 选 1 数据选择器 74LS151 扩展成 16 选 1 数据选择器,实现逻辑函数 $\sum m(6,7,8,11,13)$,画出简图并记录真值表

用数据选择器来实现上述逻辑函数,实际上就是将 16 选 1 数据选择器的 D(6,7,8,11,13)管脚接 1,其余管脚全部接 0 即可。故可以得到逻辑图和真值表如下:

A3	A2	A1	A 0	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

4. 用一片 74LS283 实现并行四位全加,将A 置为 1001,B 置为 0000~1001,依 次计算 A+B 并记录结果表列。

В3	B2	B1	B 0	C	S3	S2	S1	S0
0	0	0	0	1	1	0	0	0
0	0	0	1	1	1	0	1	0
0	0	1	0	1	1	0	1	0
0	0	1	1	1	1	1	0	0
0	1	0	0	1	1	1	0	0
0	1	0	1	1	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	1	0	0	0	0	1
1	0	0	0	0	0	0	0	1
1	0	0	1	0	0	0	1	1

5. 用两片 74LS283 和必要的门电路实现两个 8421BCD 码求和运算, 结果仍为 8421BCD 码, 要求画出逻辑功能图。

首先要判断输入与输出,如下图所示::

输出: S'(个位: S₃S₂S₁S₀) C'(十位)

输出范围: 00~18 (S': 四位 C': 一位)

输入: A (A3A2A1A0) + B (B3B2B1B0)

输入范围: A:0~9 B:0~9

- 1、先用第一片283 (1) 实现A+B的 全加,得到 S
- 2、题目要求中的个位S'和S的关系

3、用第二片283(2)将S进行修止 得到个位S' 283 (2)

3. 第二片283 (2) 的A: 0000或0110
4. A3Ao直接接地,把A2A1值标为C'

283 (2)

5. C'和S的关系式如何处理

283 (1)

5. C'和S的关系式如何处理

283 (1)

C'=S3·S2+S3·S1

C'=S3·S2+S3·S1+C

电路图如图所示:

思考题:

用两片 74LS283 和必要的门电路实现一个带借位输入和借位输出的 8421BCD 码减法器,要求电路输出为原码。

首先,原码的加减法均位补码的加法,故 A-B 可转化为 AB 补码的加法。如果有借位的输入,相当于-1,相当于减数+1(B+1),也相当于 B 的补码-1,而 B 在转补码的时候是反码+1,故有借位输入可以视为补码-1,即取反码后不+1。有借位输出本质是得到减数为负数,即第五位符号位在补码加法运算后是 1 即有借位输出,但加法器本没有第五位,认为 A 的补码符号位是 0,B 的符号位的补码是 1,相加之后若有进位输出,符号位是 0,相当于无借位输出;若无进位输出,符号位是 1,相当于有借位输出,所以,最终可以设计出逻辑电路图如下:

