

SAR EVALUATION REPORT

For

VeryKool USA INC.

3636 Nobel Drive, Suite 325 San Diego, CA 92122

FCC ID: WA6RS90

Report Type: **Product Type:**

Mobile Phone Original Report

Sandy Wang **Test Engineer:** Sandy Wang

Report Number: RSZ120929001-20

Report Date: 2013-01-21

Alvin Huang **Reviewed By:** RF Leader

Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone

Prepared By:

Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP*, or any agency of the Federal Government.

^{*} This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk "★"

Attestation of Test Results					
	Company Name	VeryKool USA INC.			
	EUT Description	Mobile Phone			
EUT Information	FCC ID	WA6RS90			
	Model Number	RS90			
	Test Date	e 2013-01-04 to 2013-01-06			
Frequency	Ŋ	Max. SAR Level(s) Measured	Limit(W/Kg)		
Cellular Band		0.121 W/kg 1g Head SAR 0.479 W/kg 1g Body SAR			
PCS Band		0.057 W/kg 1g Head SAR 0.105W/kg 1g Body SAR			
WCDMA850		0.170 W/kg 1g Head SAR 0.253 W/kg 1g Body SAR	1. 6		
WCDMA1900		0.183 W/kg 1g Head SAR 0.183W/kg 1g Body SAR	1. 0		
WiFi(802.11b)	0.057 W/kg 1g Head SAR 0.081 W/kg 1g Body SAR				
Hot Spot		0.560 W/kg 1g Body SAR			
		: 2005 afety Levels with Respect to Human Exposure to Ra ds,3 kHz to 300 GHz.	dio Frequency		
	ANSI / IEEE C95.3: 2002 IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to SuchFields,100 kHz—300 GHz.				
Applicable Standards	OET BULLETIN 65 SUPPLEMENT C Evaluating Compliance with FCC Guidelines for Human Exposure To Radiofrequency Electromagnetic Fields				
		Practice for Determining the Peak Spatial-Average R) in the Human Head from Wireless Communication			

Report No: RSZ120929001-20

Note: This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in ANSI/IEEE Standards and has been tested in accordance with the measurement procedures specified in FCC OET 65 Supplement C and IEEE 1528-2003.

The results and statements contained in this report pertain only to the device(s) evaluated.

SAR Evaluation Report 2 of 158

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
EUT DESCRIPTION	5
TECHNICAL SPECIFICATION	
REFERENCE, STANDARDS, AND GUILDELINES	6
SAR LIMITS	7
FACILITIES AND ACCREDITATION	8
DESCRIPTION OF TEST SYSTEM	9
EQUIPMENT LIST AND CALIBRATION	16
EQUIPMENTS LIST & CALIBRATION INFORMATION	16
SAR MEASUREMENT SYSTEM VERIFICATION	17
Liquid Verification	17
SYSTEM ACCURACY VERIFICATION	
SAR SYSTEM VALIDATION DATA	
EUT TEST STRATEGY AND METHODOLOGY	
TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR	
EAR/TILT POSITION	
TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS	37
SAR EVALUATION PROCEDURE	
CONDUCTED OUTPUT POWER MEASUREMENT	
PROVISION APPLICABLE	
TEST PROCEDURE	
SAR MEASUREMENT RESULTS	
SAR TEST DATA	
EUT SCAN RESULTS	
APPENDIX A – MEASUREMENT UNCERTAINTY	109
APPENDIX B – PROBE CALIBRATION CERTIFICATES	
APPENDIX C – DIPOLE CALIBRATION CERTIFICATES	
APPENDIX D EUT TEST POSITION PHOTOS	
Liquid depth ≥ 15cm	
BODY-WORN-HEADSET FRONT SETUP PHOTO	
BODY-WORN-HEADSET BACK SETUP PHOTO	
BODY-LEFT SETUP PHOTO	
BODY-RIGHT SETUP PHOTOBODY-BOTTOM SETUP PHOTO	
LEFT HEAD TOUCH SETUP PHOTO	
LEFT HEAD TILT SETUP PHOTO	153
RIGHT HEAD TOUCH SETUP PHOTO	
RIGHT HEAD TILT SETUP PHOTO	154
APPENDIX E EUT PHOTOS	
EUT – FRONT SIDE VIEW	
EUT - BACK SIDE VIEW	
EUT – Top Side View EUT – Bottom Side View	
EUT – UNCOVERED VIEW	
APPENDIX F INFORMATIVE REFERENCES	158

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	RSZ120929001-20	Original Report	2013-01-21	

Report No: RSZ120929001-20

SAR Evaluation Report 4 of 158

EUT DESCRIPTION

This report has been prepared on behalf of VeryKool USA INC. and their product, FCC ID: WA6RS90, Model: RS90 or the EUT (Equipment under Test) as referred to in the rest of this report. The EUT is a Mobile Phone.

Report No: RSZ120929001-20

Technical Specification

Product Type	Portable
Exposure Category:	Population / Uncontrolled
Antenna Type(s):	Internal Antenna
Body-Worn Accessories:	Headset
Face-Head Accessories:	None
Multi-slot Class:	Class12
Operation Mode:	GSM Voice, GPRS Data, WCDMA, Bluetooth and WiFi
	Cellular Band: 824-849 MHz(TX); 869-894 MHz(RX)
	PCS Band: 1850-1910 MHz(TX); 1930-1990 MHz(RX)
Frequency Band:	WCDMA850: 824-849MHz(TX); 869-894MHz(RX)
Frequency band:	WCDMA1900: 1850-1910MHz(TX); 1930-1990MHz(RX)
	WiFi(802.11b/g) : 2412MHz-2462MHz
	Bluetooth: 2400MHz-2483.5MHz
	Cellular Band : 31.98dBm
	PCS Band: 29.20dBm
Conducted RF Power:	WCDMA850:22.39dBm
Conducted KF Fower:	WCDMA1900:22.96dBm
	WiFi(802.11b/g):18.05dBm
	Bluetooth: 1.384dBm
Dimensions (L*W*H):	140.0mm (L)× 75.0mm (W)× 10.0mm (H)
Weight:	196.0g
Power Source:	3.7 VDC /2050mAh Rechargeable Battery
Normal Operation:	Head and Body-worn

SAR Evaluation Report 5 of 158

REFERENCE, STANDARDS, AND GUILDELINES

FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

Report No: RSZ120929001-20

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

CE:

The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by EN62209-1 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass.

The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device.

SAR Evaluation Report 6 of 158

SAR Limits

FCC Limit (1g Tissue)

Report No: RSZ120929001-20

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

CE Limit (10g Tissue)

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 10 g of tissue)	2.0	10		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC) & 2 W/kg (CE) applied to the EUT.

SAR Evaluation Report 7 of 158

FACILITIES AND ACCREDITATION

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect data is located at 6/F, the 3rd Phase of WanLi Industrial Building, Shi Hua Road, Fu Tian Free Trade Zone, Shenzhen, Guangdong, P.R. of China

Report No: RSZ120929001-20

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2007070.htm

SAR Evaluation Report 8 of 158

DESCRIPTION OF TEST SYSTEM

These measurements were performed with ALSAS 10 Universal Integrated SAR Measurement system from APREL Laboratories.

ALSAS-10U System Description

ALSAS-10-U is fully compliant with the technical and scientific requirements of IEEE 1528, IEC 62209, CENELEC, ARIB, ACA, and the Federal Communications Commission. The system comprises of a six axes articulated robot which utilizes a dedicated controller. ALSAS-10U uses the latest methodologies. And FDTD modeling to provide a platform which is repeatable with minimum uncertainty.

Applications

Predefined measurement procedures compliant with the guidelines of CENELEC, IEEE, IEC, FCC, etc are utilized during the assessment for the device. Automatic detection for all SAR maxima are embedded within the core architecture for the system, ensuring that peak locations used for centering the zoom scan are within a 1mm resolution and a 0.05mm repeatable position. System operation range currently available up-to 6 GHz in simulated tissue.

Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm2 step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Report No: RSZ120929001-20

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the ALSAS-10U software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m3 is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 5x5x8 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 35mm in the Z axis.

SAR Evaluation Report 9 of 158

ALSAS-10U Interpolation and Extrapolation Uncertainty

The overall uncertainty for the methodology and algorithms the used during the SAR calculation was evaluated using the data from IEEE 1528 based on the example f3 algorithm:

Report No: RSZ120929001-20

$$f_3(x,y,z) = A \frac{a^2}{\frac{a^2}{4} + {x'}^2 + {y'}^2} \cdot \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2} \right)$$

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

SAR is assessed with a calibrated probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (in the Z Axis). The 5mm offset height has been selected so as to minimize any resultant boundary effect due to the probe being in close proximity to the phantom surface.

The following algorithm is an example of the function used by the system for linearization of the output from the probe when measuring complex modulation schemes.

$$V_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dcp_{i}}$$

SAR Evaluation Report 10 of 158

Isotropic E-Field Probe Specification

Calibration Method	Frequency Dependent Below 1 GHz Calibration in air performed in a TEM Cell Above 1 GHz Calibration in air performed in waveguide		
Sensitivity	$0.70 \ \mu V/(V/m)^2$ to $0.85 \ \mu V/(V/m)^2$		
Dynamic Range	0.0005 W/kg to 100 W/kg		
Isotropic Response	Better than 0.1 dB		
Diode Compression Point (DCP)	Calibration for Specific Frequency		
Probe Tip Diameter	< 2.9 mm		
Sensor Offset	1.56 (+/- 0.02 mm)		
Probe Length	289 mm		
Video Bandwidth	@ 500 Hz: 1 dB @ 1.02 kHz: 3 dB		
Boundary Effect	Less than 2.1% for distance greater than 0.58 mm		
Spatial Resolution	The spatial resolution uncertainty is less than 1.5% for 4.9mm diameter probe. The spatial resolution uncertainty is less than 1.0% for 2.5mm diameter probe		

Report No: RSZ120929001-20

Boundary Detection Unit and Probe Mounting Device

ALSAS-10U incorporates a boundary detection unit with a sensitivity of 0.05mm for detecting all types of surfaces. The robust design allows for detection during probe tilt (probe normalize) exercises, and utilizes a second stage emergency stop. The signal electronics are fed directly into the robot controller for high accuracy surface detection in lateral and axial detection modes (X, Y, & Z).

The probe is mounted directly onto the Boundary Detection unit for accurate tooling and displacement calculations controlled by the robot kinematics. The probe is connect to an isolated probe interconnect where the output stage of the probe is fed directly into the amplifier stage of the Daq-Paq.

Daq-Paq (Analog to Digital Electronics)

ALSAS-10U incorporates a fully calibrated Daq-Paq (analog to digital conversion system) which has a 4 channel input stage, sent via a 2 stage auto-set amplifier module. The input signal is amplified accordingly so as to offer a dynamic range from $5\mu V$ to 800mV. Integration of the fields measured is carried out at board level utilizing a Co-Processor which then sends the measured fields down into the main computational module in digitized form via an RS232 communications port. Probe linearity and duty cycle compensation is carried out within the main Daq-Paq module.

ADC	12 Bit	
Amplifier Range	e 20 mV to 200 mV and 150 mV to 800 mV	
Field Integration	Local Co-Processor utilizing proprietary integration algorithms	
Number of Input Channels	4 in total 3 dedicated and 1 spare	
Communication	Packet data via RS232	

SAR Evaluation Report 11 of 158

Axis Articulated Robot

ALSAS-10U utilizes a six axis articulated robot, which is controlled using a Pentium based real-time movement controller. The movement kinematics engine utilizes proprietary (Thermo CRS) interpolation and extrapolation algorithms, which allow full freedom of movement for each of the six joints within the working envelope. Utilization of joint 6 allows for full probe rotation with a tolerance better than 0.05mm around the central axis.

Report No: RSZ120929001-20

Robot/Controller Manufacturer	Thermo CRS	
Number of Axis Six independently controlled axis		
Positioning Repeatability	0.05 mm	
Controller Type	Single phase Pentium based C500C	
Robot Reach	710 mm	
Communication	RS232 and LAN compatible	

ALSAS Universal Workstation

ALSAS Universal workstation allows for repeatability and fast adaptability. It allows users to do calibration, testing and measurements using different types of phantoms with one set up, which significantly speeds up the measurement process.

Universal Device Positioner

The universal device positioner allows complete freedom of movement of the EUT. Developed to hold a EUT in a free-space scenario any additional loading attributable to the material used in the construction of the positioner has been eliminated. Repeatability has been enhanced through the linear scales which form the design used to indicate positioning for any given test scenario in all major axes. A 15° tilt indicator is included for the of aid cheek to tilt movements for head SAR analysis. Overall uncertainty for measurements have been reduced due to the design of the Universal device positioner, which allows positioning of a device in as near to a free-space scenario as possible, and by providing the means for complete repeatability.

SAR Evaluation Report 12 of 158

Report No: RSZ120929001-20

Phantom Types

The ALSAS-10U allows the integration of multiple phantom types. SAM Phantoms fully compliant with IEEE 1528, Universal Phantom, and Universal Flat.

APREL SAM Phantoms

The SAM phantoms developed using the IEEE SAM CAD file. They are fully compliant with the requirements for both IEEE 1528 and FCC Supplement C. Both the left and right SAM phantoms are interchangeable, transparent and include the IEEE 1528 grid with visible NF and MB lines.

SAR Evaluation Report 13 of 158

APREL Laboratories Universal Phantom

The Universal Phantom is used on the ALSAS-10U as a system validation phantom. The Universal Phantom has been fully validated both experimentally from 800MHz to 6GHz and numerically using XFDTD numerical software.

Report No: RSZ120929001-20

The shell thickness is 2mm overall, with a 4mm spacer located at the NF/MB intersection providing an overall thickness of 6mm in line with the requirements of IEEE-1528.

The design allows for fast and accurate measurements, of handsets, by allowing the conservative SAR to be evaluated at on frequency for both left and right head experiments in one measurement.

SAR Evaluation Report 14 of 158

Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Report No: RSZ120929001-20

Ingredients	Frequency (MHz)									
(% by weight)	45	0	83	35	91	15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (Nacl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (s/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Recommended Tissue Dielectric Parameters for Head and Body

Frequency	Head '	Tissue	Body Tissue		
(MHz)	Er	O' (S/m)	£r	O' (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800-2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	

SAR Evaluation Report 15 of 158

EQUIPMENT LIST AND CALIBRATION

Equipments List & Calibration Information

Equipment	Model	Calibration Date	S/N
CRS F3 robot	ALS-F3	N/A	RAF0805352
CRS F3 Software	ALS-F3-SW	N/A	N/A
CRS C500C controller	ALS-C500	N/A	RCF0805379
Probe mounting device & Boundary Detection Sensor System	ALS-PMDPS-3	N/A	120-00270
Universal Work Station	ALS-UWS	N/A	100-00157
Data Acquisition Package	ALS-DAQ-PAQ-3	2012-05-13	110-00212
Miniature E-Field Probe	ALS-E-020	2012-08-09	500-00283
Dipole, 835MHz	ALS-D-835-S-2	2011-08-25	180-00558
Dipole, 1900MHz	ALS-D-1900-S-2	2011-08-25	210-00710
Dipole,2450MHz	ALS-D-2450-S-2	2011-08-25	220-00758
Dipole Spacer	ALS-DS-U	N/A	250-00907
Device holder/Positioner	ALS-H-E-SET-2	N/A	170-00510
Left ear SAM phantom	ALS-P-SAM-L	N/A	130-00311
Right ear SAM phantom	ALS-P-SAM-R	N/A	140-00359
UniPhantom	ALS-P-UP-1	N/A	150-00413
Simulated Tissue 835 MHz Head	ALS-TS-835-H	Each Time	270-01002
Simulated Tissue 835 MHz Body	ALS-TS-835-B	Each Time	270-02101
Simulated Tissue 1900 MHz Head	ALS-TS-1900-H	Each Time	295-01103
Simulated Tissue 1900 MHz Body	ALS-TS-1900-B	Each Time	295-02102
Simulated Tissue 2450 MHz Head	ALS-TS-2450-H	Each Time	290-01108
Simulated Tissue 2450 MHz Body	ALS-TS-2450-B	Each Time	290-01109
Power Amplifier	5S1G4	N/A	71377
Synthesized Sweeper	HP 8341B	2012-05-17	2624A00116
UNIVERSAL RADIO COMMUNICATION TESTER	CMU 200	2011-12-16	1100.0008.02
EMI Test Receiver	ESCI	2012-08-08	101122

Report No: RSZ120929001-20

SAR Evaluation Report 16 of 158

SAR MEASUREMENT SYSTEM VERIFICATION

Liquid Verification

Liquid Verification Setup Block Diagram

SAR Evaluation Report 17 of 158

Frequency	Liquid	Liquid Parameter		Target Value		Delta (%)		Tolerance
1	Type	$\epsilon_{\rm r}$	O'(S/m)	ε _r	O'(S/m)	$\Delta \epsilon_{ m r}$	ΔO (S/m)	(%)
824.2	Head	41.60	0.90	41.50	0.90	0.241	0.000	±5
024.2	Body	55.24	0.95	55.20	0.97	0.072	-2.060	±5
826.4	Head	41.48	0.90	41.50	0.90	-0.050	0.000	±5
820.4	Body	55.25	0.96	55.20	0.97	0.091	-1.030	±5
836.6	Head	41.54	0.92	41.50	0.90	0.120	2.222	±5
830.0	Body	55.31	0.97	55.20	0.97	0.199	0.000	±5
846.6	Head	41.40	0.93	41.50	0.90	-0.240	3.333	±5
840.0	Body	55.38	0.99	55.20	0.97	0.326	2.062	±5
848.8	Head	41.32	0.93	41.50	0.90	-0.43	3.333	±5
848.8	Body	55.39	0.99	55.20	0.97	0.344	2.062	±5
1850.2	Head	40.24	1.39	40.00	1.40	0.600	-0.710	±5
1830.2	Body	53.89	1.48	53.30	1.52	1.107	-2.630	±5
1852.4	Head	40.24	1.38	40.00	1.40	0.600	-1.430	±5
1832.4	Body	53.84	1.48	53.30	1.52	1.013	-2.630	±5
1880.0	Head	40.25	1.41	40.00	1.40	0.625	0.714	±5
1880.0	Body	53.64	1.52	53.30	1.52	0.638	0.000	±5
1907.6	Head	40.25	1.42	40.00	1.40	0.625	1.429	±5
1907.0	Body	53.61	1.54	53.30	1.52	0.582	1.316	±5
1909.8	Head	40.25	1.42	40.00	1.40	0.625	1.429	±5
1909.8	Body	53.72	1.53	53.30	1.52	0.788	0.658	±5
2412.0	Head	40.22	1.80	39.20	1.80	2.628	0.000	±5
2412.0	Body	53.22	1.94	52.70	1.95	0.987	-0.720	±5
2427.0	Head	40.28	1.83	39.20	1.80	2.628	1.667	±5
2437.0	Body	53.03	1.98	52.70	1.95	0.626	1.538	±5
2462.0	Head	40.39	1.84	39.20	1.80	3.036	2.222	±5
2462.0	Body	52.86	2.01	52.70	1.95	0.304	3.077	±5

Report No: RSZ120929001-20

Please refer to the following tables.

SAR Evaluation Report 18 of 158

^{*}Liquid Verification was performed on 2013-01-04

85	50 MHz Head		850 MHz Body				
Frequency (MHz)	e'	e''	Frequency (MHz)	e'	e''		
824.0	41.595126	19.684648	824.0	55.235276	20.818705		
824.5	41.564097	19.685202	824.5	55.238414	20.718216		
825.0	41.547437	19.685756	825.0	55.241547	20.730734		
825.5	41.442297	19.686314	825.5	55.244694	20.743168		
826.0	41.460655	19.686865	826.0	55.247828	20.878232		
826.5	41.482548	19.687418	826.5	55.250966	20.941961		
827.0	41.459035	19.687972	827.0	55.254104	20.856463		
827.5	41.506356	19.688526	827.5	55.257242	20.734596		
828.0	41.525962	19.689083	828.0	55.260383	20.769158		
828.5	41.532388	19.689635	828.5	55.263518	20.726581		
829.0	41.583319	19.690188	829.0	55.266656	20.830736		
829.5	41.531812	19.690743	829.5	55.269794	20.773565		
830.0	41.568181	19.691297	830.0	55.272932	20.651462		
830.5	41.528209	19.691851	830.5	55.276071	20.715851		
831.0	41.501207	19.692405	831.0	55.279208	20.701025		
831.5	41.520762	19.692959	831.5	55.282346	20.908449		
832.0	41.482582	19.693513	832.0	55.285484	20.886113		
832.5	41.457404	19.694067	832.5	55.288622	20.662812		
833.0	41.497944	19.694621	833.0	55.291760	20.596176		
833.5	41.529359	19.695175	833.5	55.294898	20.707643		
834.0	41.526784	19.695729	834.0	55.298035	20.859541		
834.5	41.525364	19.696285	834.5	55.301173	20.752462		
835.0	41.550193	19.696838	835.0	55.304311	20.695921		
835.5	41.551193	19.697693	835.5	55.307449	20.943628		
836.0	41.554793	19.698548	836.0	55.310587	20.950551		
836.5	41.539825	19.699403	836.5	55.313725	20.808358		
837.0	41.526622	19.700259	837.0	55.316863	20.635441		
837.5	41.520829	19.701117	837.5	55.320001	20.671707		
838.0	41.544002	19.701969	838.0	55.323139	20.95599		
838.5	41.502532	19.702826	838.5	55.326277	20.971194		
839.0	41.492463	19.703684	839.0	55.329415	20.893206		
839.5	41.494933	19.704535	839.5	55.332553	20.828164		
840.0	41.506100	19.705394	840.0	55.335691	20.895307		
840.5	41.495362	19.706245	840.5	55.338829	20.940671		
841.0	41.478634	19.707101	841.0	55.341967	20.895799		
841.5	41.508076	19.707956	841.5	55.345105	20.832536		
842.0	41.509778	19.708811	842.0	55.348243	21.008376		
842.5	41.513474	19.709666	842.5	55.351381	20.976889		
843.0	41.507569	19.700488	843.0	55.354519	20.937287		
843.5	41.431272	19.701339	843.5	55.357657	20.892798		
844.0	41.507524	19.702195	844.0	55.360795	20.910456		
844.5	41.461815	19.703049	844.5	55.363933	20.936363		
845.0	41.387833	19.703908	845.0	55.367071	20.845781		
845.5	41.403135	19.704763	845.5	55.370209	20.792167		
846.0	41.357718	19.725691	846.0	55.373347	20.965168		
846.5	41.398657	19.726546	846.5	55.376485	21.026572		
847.0	41.378926	19.727402	847.0	55.379623	20.975431		
847.5	41.382112	19.728257	847.5	55.382761	20.895732		
848.0	41.355712	19.729112	848.0	55.385899	20.985889		
848.5	41.340164	19.758628	848.5	55.389037	21.063973		
849.0	41.321428	19.759483	849.0	55.392175	21.064155		

SAR Evaluation Report 19 of 158

	1900 MHz Head			1900 MHz Body				
Frequency (MHz)	e'	e''	Frequency (MHz)	e'	e''			
1850.0	40.237741	13.487749	1850.0	53.889828	14.408266			
1851.2	40.239968	13.457773	1851.2	53.821747	14.365683			
1852.4	40.240221	13.425054	1852.4	53.840591	14.366787			
1853.6	40.240467	13.448425	1853.6	53.817174	14.343062			
1854.8	40.240716	13.442381	1854.8	53.720012	14.362543			
1856.0	40.240964	13.366494	1856.0	53.823033	14.398964			
1857.2	40.241214	13.506352	1857.2	53.816204	14.424949			
1858.4	40.241465	13.402554	1858.4	53.798218	14.346165			
1859.6	40.241713	13.456491	1859.6	53.779889	14.340508			
1860.8	40.241962	13.457811	1860.8	53.675681	14.393304			
1862.0	40.242211	13.474353	1862.0	53.703356	14.220507			
1863.2	40.242461	13.496783	1863.2	53.649337	14.233312			
1864.4	40.242684	13.531771	1864.4	53.684089	14.250395			
1865.6	40.242958	13.526344	1865.6	53.690562	14.221431			
1866.8	40.243208	13.515157	1866.8	53.765572	14.212124			
1868.0	40.243506	13.533664	1868.0	53.834016	14.228073			
1869.2	40.243705	13.594424	1869.2	53.843078	14.250499			
1870.4	40.243957	13.587165	1870.4	53.756576	14.301952			
1871.6	40.244204	13.561095	1871.6	53.698956	14.302659			
1872.8	40.244453	13.591152	1872.8	53.737392	14.331649			
1874.0	40.244702	13.533803	1874.0	53.663855	14.339958			
1875.2	40.244952	13.567866	1875.2	53.727018	14.403215			
1876.4	40.245211	13.565833	1876.4	53.630133	14.325996			
1877.6	40.245452	13.630333	1877.6	53.732416	14.406037			
1878.8	40.245699	13.525936	1878.8	53.760203	14.537873			
1880.0	40.245948	13.471159	1880.0	53.642524	14.556828			
1881.2	40.246197	13.519899	1881.2	53.600764	14.553864			
1882.4	40.246448	13.542497	1882.4	53.696306	14.525242			
1883.6	40.246696	13.511274	1883.6	53.661807	14.481265			
1884.8	40.246945	13.511848	1884.8	53.686704	14.504006			
1886.0	40.247194	13.511174	1886.0	53.721915	14.436201			
1887.2	40.247444	13.506321	1887.2	53.702692	14.412366			
1888.4	40.247694	13.501403	1888.4	53.792467	14.446675			
1889.6	40.247942	13.496624	1889.6	53.722958	14.451287			
1890.8	40.248191	13.491777	1890.8	53.768633	14.508116			
1892.0	40.248445	13.486933	1892.0	53.756597	14.304299			
1893.2	40.248689	13.482083	1893.2	53.729049	14.265222			
1894.4	40.248941	13.477236	1894.4	53.701687	14.314302			
1895.6	40.249187	13.472389	1895.6	53.694535	14.648103			
1896.8	40.249437	13.467542	1896.8	53.684436	14.646212			
1898.0	40.249686	13.462695	1898.0	53.684766	14.626774			
1899.2	40.249936	13.457848	1899.2	53.761767	14.627211			
1900.4	40.250186	13.453001	1900.4	53.726683	14.525867			
1901.6	40.250434	13.448154	1901.6	53.730166	14.615213			
1902.8	40.250704	13.443307	1902.8	53.699257	14.575235			
1904.0	40.250931	13.438469	1904.0	53.780968	14.544052			
1905.2	40.251181	13.433613	1905.2	53.692725	14.512573			
1906.4	40.251441	13.428766	1906.4	53.682637	14.437507			
1907.6	40.251679	13.423919	1907.6	53.608317	14.554298			
1908.8	40.251928	13.419072	1908.8	53.692597	14.489726			
1910.0	40.252179	13.414225	1910.0	53.719124	14.453348			

SAR Evaluation Report 20 of 158

2411 40.226123 13.465817 2411 53.231112 14 2412 40.224125 13.466015 2412 53.222101 14 2413 40.222127 13.466213 2413 53.213091 14 2414 40.223126 13.466411 2414 53.204082 14 2415 40.224125 13.466609 2415 53.195077 14 2416 40.225124 13.466807 2416 53.186068 14 2417 40.226123 13.467005 2417 53.177053 14 2418 40.227122 13.467203 2418 53.168045 14 2419 40.231118 13.467401 2419 53.159036 14 2420 40.235114 13.467599 2420 53.150041 14 2421 40.239111 13.467797 2421 53.141010 14	e'' 1.396699 1.403696 1.408698 1.413695 1.418698 1.423703 1.428698 1.433698
2411 40.226123 13.465817 2411 53.231112 14 2412 40.224125 13.466015 2412 53.222101 14 2413 40.222127 13.466213 2413 53.213091 14 2414 40.223126 13.466411 2414 53.204082 14 2415 40.224125 13.466609 2415 53.195077 14 2416 40.225124 13.466807 2416 53.186068 14 2417 40.226123 13.467005 2417 53.177053 14 2418 40.227122 13.467203 2418 53.168045 14 2419 40.231118 13.467401 2419 53.159036 14 2420 40.235114 13.467599 2420 53.150041 14 2421 40.239111 13.467797 2421 53.141010 14	1.403696 4.408698 4.413695 4.418698 4.423703 4.428698 4.433698
2412 40.224125 13.466015 2412 53.222101 14 2413 40.222127 13.466213 2413 53.213091 14 2414 40.223126 13.466411 2414 53.204082 14 2415 40.224125 13.466609 2415 53.195077 14 2416 40.225124 13.466807 2416 53.186068 14 2417 40.226123 13.467005 2417 53.177053 14 2418 40.227122 13.467203 2418 53.168045 14 2419 40.231118 13.467401 2419 53.159036 14 2420 40.235114 13.467599 2420 53.150041 14 2421 40.239111 13.467797 2421 53.141010 14	4.408698 4.413695 4.418698 4.423703 4.428698 4.433698
2413 40.222127 13.466213 2413 53.213091 14 2414 40.223126 13.466411 2414 53.204082 14 2415 40.224125 13.466609 2415 53.195077 14 2416 40.225124 13.466807 2416 53.186068 14 2417 40.226123 13.467005 2417 53.177053 14 2418 40.227122 13.467203 2418 53.168045 14 2419 40.231118 13.467401 2419 53.159036 14 2420 40.235114 13.467599 2420 53.150041 14 2421 40.239111 13.467797 2421 53.141010 14	4.413695 4.418698 4.423703 4.428698 4.433698
2414 40.223126 13.466411 2414 53.204082 14 2415 40.224125 13.466609 2415 53.195077 14 2416 40.225124 13.466807 2416 53.186068 14 2417 40.226123 13.467005 2417 53.177053 14 2418 40.227122 13.467203 2418 53.168045 14 2419 40.231118 13.467401 2419 53.159036 14 2420 40.235114 13.467599 2420 53.150041 14 2421 40.239111 13.467797 2421 53.141010 14	4.418698 4.423703 4.428698 4.433698
2415 40.224125 13.466609 2415 53.195077 14 2416 40.225124 13.466807 2416 53.186068 14 2417 40.226123 13.467005 2417 53.177053 14 2418 40.227122 13.467203 2418 53.168045 14 2419 40.231118 13.467401 2419 53.159036 14 2420 40.235114 13.467599 2420 53.150041 14 2421 40.239111 13.467797 2421 53.141010 14	4.423703 4.428698 4.433698
2416 40.225124 13.466807 2416 53.186068 14 2417 40.226123 13.467005 2417 53.177053 14 2418 40.227122 13.467203 2418 53.168045 14 2419 40.231118 13.467401 2419 53.159036 14 2420 40.235114 13.467599 2420 53.150041 14 2421 40.239111 13.467797 2421 53.141010 14	4.428698 4.433698
2417 40.226123 13.467005 2417 53.177053 14 2418 40.227122 13.467203 2418 53.168045 14 2419 40.231118 13.467401 2419 53.159036 14 2420 40.235114 13.467599 2420 53.150041 14 2421 40.239111 13.467797 2421 53.141010 14	1.433698
2418 40.227122 13.467203 2418 53.168045 14 2419 40.231118 13.467401 2419 53.159036 14 2420 40.235114 13.467599 2420 53.150041 14 2421 40.239111 13.467797 2421 53.141010 14	
2419 40.231118 13.467401 2419 53.159036 14 2420 40.235114 13.467599 2420 53.150041 14 2421 40.239111 13.467797 2421 53.141010 14	
2420 40.235114 13.467599 2420 53.150041 14 2421 40.239111 13.467797 2421 53.141010 14	1.438697
2421 40.239111 13.467797 2421 53.141010 14	1.443695
	1.448702
	1.473698
	4.480701
	1.487698
	1.494697
	4.501698
	4.508697
	4.515696
	4.522703
	1.529698
	4.536695
	4.543695
	4.550697
	4.557702 4.564697
	4.571697
	4.578702
	4.585701
	4.592701
	4.599697
	1.606696
	4.613695
	4.617694
2443 40.305044 13.472153 2443 52.986838 14	4.621697
2444 40.310039 13.472351 2444 52.979830 14	1.625724
2445 40.315034 13.472549 2445 52.972822 14	4.629699
	1.633698
	1.637696
	4.641696
	4.645697
	4.649696
	1.653695
	4.657696
	4.661701
	1.665696 1.660606
	4.669696 1.673703
	4.673703 4.677696
	4.681701
	4.685696
	4.689699
	1.693694
	4.681634

SAR Evaluation Report 21 of 158

System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

Report No: RSZ120929001-20

System Verification Setup Block Diagram

Probe and dipole antenna List and Detail

Manufa cturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
APREL	Probe	ALS-E-020	500-00283	2012-08-09	2013-08-08	
APREL	Dipole antenna(835MHz)	ALS-D-835-S-2	180-00558	2011-08-25	2014-08-24	
APREL	Dipole antenna(1900MHz)	ALS-D-1900-S-2	210-00710	2011-08-25	2014-08-24	
APREL	Dipole antenna(2450MHz)	ALS-D-2450-S-2	220-00758	2011-08-25	2014-08-24	

System Accuracy Check Results

Date	Frequency Band	Liquid Type	Measured SAR (W/Kg)		Target Value (W/Kg)	Delta (%)	Tolerance (%)
	825	Head	1g	9.819	9.590	2.388	±10
	833	Body	1g	10.328	9.684	6.650	±10
	1900	Head	1g	41.204	39.648	3.925	±10
		Body	1g	40.614	39.769	2.125	±10
	2450	Head	1g	53.419	52.667	1.427	±10
		Body	1g	49.879	52.561	-5.103	±10

^{*}All SAR values are normalized to 1 Watt forward power.

SAR Evaluation Report 22 of 158

SAR SYSTEM VALIDATION DATA

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

Report No: RSZ120929001-20

System Performance Check 835 MHz Head Liquid

Dipole 835 MHz; Type: ALS-D-835-S-2; S/N: 180-00558

Product Data

Device Name : Dipole 835 MHz
Serial No. : 180-00558
Type : Dipole

Model : ALS-D-835-S-2

Frequency Band : 835

Max. Transmit Pwr : 1 W

Drift Time : 3 min(s)

Power Drift-Start : 10.208 W/kg

Power Drift-Finish : 10.414W/kg

Power Drift (%) : 2.017

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default

Location : Center Description : Default

Phantom Data

Tissue Data

Type : Head Serial No. : 270-01002 Frequency : 835.0 MHz Last Calib. Date : 04-Jan-2013 Temperature : 20.00 °C Ambient Temp. : 21.00 °C Humidity : 56.00 RH% **Epsilon** : 41.55 F/m Sigma : 0.91 S/m : 1000.00 kg/cu. m Density

Probe Data

Name : E-Field Model : E-020

Type : E-Field Triangle Serial No. : 500-00283 Last Calib. Date : 09-Aug-2012

Frequency Band : 835 Duty Cycle Factor : 1 Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete Tissue Temp. : 21.00 °C Ambient Temp. : 21.00 °C

Area Scan : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

SAR Evaluation Report 23 of 158

1 gram SAR value : 9.819 W/kg 10 gram SAR value : 5.951 W/kg Area Scan Peak SAR : 10.731 W/kg Zoom Scan Peak SAR : 16.082 W/kg

835 MHz System Validation with Head Tissue

SAR Evaluation Report 24 of 158

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

Report No: RSZ120929001-20

System Performance Check 835MHz Body Liquid

Dipole 835 MHz; Type: ALS-D-835-S-2; S/N: 180-00558

Product Data

Device Name : Dipole 835 MHz Serial No. : 180-00558 Type : Dipole

Model : ALS-D-835-S-2

Frequency Band : 835

Max. Transmit Pwr : 1 W

Drift Time : 3 min(s)

Power Drift-Start : 10.633 W/kg

Power Drift-Finish : 10.419W/kg

Power Drift (%) : -1.997

Phantom Data

Name : APREL-Uni Type : Uni-Phantom Size (mm) : 280 x 280 x 200 Serial No. : System Default

Location : Center Description : Default

Phantom Data

Tissue Data

Type : Body : 270-02101 Serial No. Frequency : 835.0 MHz Last Calib. Date : 04-Jan-2013 : 20.00 °C Temperature Ambient Temp. : 21.00 °C : 56.00 RH% Humidity : 55.30 F/m Epsilon Sigma : 0.96 S/m Density : 1000.00 kg/cu. m

Probe Data

Name : E-Field Model : E-020

Type : E-Field Triangle Serial No. : 500-00283 Last Calib. Date : 09-Aug-2012

Frequency Band : 835 Duty Cycle Factor : 1 Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2 Compression Point : 95.00 mV

Compression Point : 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete Tissue Temp. : 21.00 °C Ambient Temp. : 21.00 °C

Area Scan : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

SAR Evaluation Report 25 of 158

1 gram SAR value : 10.328 W/kg 10 gram SAR value : 6.193 W/kg Area Scan Peak SAR : 11.756 W/kg Zoom Scan Peak SAR : 17.044 W/kg

835 MHz System Validation with Body Tissue

SAR Evaluation Report 26 of 158

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

Report No: RSZ120929001-20

System Performance Check 1900 MHz Head Liquid

Dipole 1900 MHz; Type: ALS-D-1900-S-2; S/N: 210-00710

Product Data

Device Name : Dipole 1900MHz
Serial No. : 210-00710
Type : Dipole

Model : ALS-D-1900-S-2

Frequency Band : 1900

Max. Transmit Pwr : 1 W

Drift Time : 3 min(s)

Power Drift-Start : 41.205 W/kg

Power Drift-Finish : 40.414 W/kg

Power Drift (%) : -2.139

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default

Location : Center Description : Default

Tissue Data

Type : Head : 295-01103 Serial No. : 1900.00 MHz Frequency Last Calib. Date : 04-Jan-2013 : 20.00 °C Temperature Ambient Temp. : 21.00 °C : 56.00 RH% Humidity : 40.25 F/m Epsilon Sigma : 1.42 S/m

Density : 1000.00 kg/cu. M

Probe Data

Name : E-Field Model : E-020

Type : E-Field Triangle Serial No. : 500-00283 Last Calib. Date : 09-Aug-2012

Frequency Band : 1900 Duty Cycle Factor : 1 Conversion Factor : 5.20

Probe Sensitivity : 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete Tissue Temp. : 20.00 °C Ambient Temp. : 20.00 °C

Area Scan : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

SAR Evaluation Report 27 of 158

1 gram SAR value : 41.204 W/kg 10 gram SAR value : 22.187 W/kg Area Scan Peak SAR : 43.177 W/kg Zoom Scan Peak SAR : 86.156 W/kg

1900 MHz System Validation with Head Tissue

SAR Evaluation Report 28 of 158

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

Report No: RSZ120929001-20

System Performance Check 1900 Body Liquid

Dipole 1900 MHz; Type: ALS-D-1900-S-2; S/N: 210-00710

Product Data

Device Name : Dipole 1900MHz
Serial No. : 210-00710
Type : Dipole

Model : ALS-D-1900-S-2

Frequency Band : 1900

Max. Transmit Pwr : 1 W

Drift Time : 3 min(s)

Power Drift-Start : 40.621 W/kg

Power Drift-Finish : 41.361 W/kg

Power Drift (%) : 1.528

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default

Location : Center Description : Default

Tissue Data

: Body Type Serial No. : 295-02102 : 1900.00 MHz Frequency Last Calib. Date : 04-Jan-2013 : 20.00 °C Temperature Ambient Temp. : 21.00 °C : 56.00 RH% Humidity : 53.73 F/m Epsilon Sigma : 1.53 S/m Density : 1000.00 kg/cu. m

Probe Data

Name : E-Field Model : E-020

Type : E-Field Triangle Serial No. : 500-00283 Last Calib. Date : 09-Aug-2012

Frequency Band : 1900 Duty Cycle Factor : 1 Conversion Factor : 5.0

Probe Sensitivity : 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete Tissue Temp. : 20.00 °C Ambient Temp. : 21.00 °C

Area Scan : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

SAR Evaluation Report 29 of 158

1 gram SAR value : 40.614 W/kg 10 gram SAR value : 21.988 W/kg Area Scan Peak SAR : 41.345 W/kg Zoom Scan Peak SAR : 92.646 W/kg

1900 MHz System Validation with Body Tissue

SAR Evaluation Report 30 of 158

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

System Performance Check 2450 MHz Head Liquid

Dipole 2450 MHz; Type: ALS-D-2450-S-2; S/N: 220-00758

Product Data

: Dipole 2450MHz Device Name Serial No. : 220-00758 : Dipole Type

: ALS-D-2450-S-2 Model

: 2450 Frequency Band Max. Transmit Pwr : 1 W Drift Time : 3 min(s) Power Drift-Start : 51.220 W/kg : 50.142 W/kg Power Drift-Finish : -1.998 Power Drift (%)

Phantom Data

Name : APREL-Uni Type : Uni-Phantom Size (mm) 280 x 280 x 200 Serial No. : System Default

Location : Center Description : Default

Tissue Data

Type : Head Serial No. : 290-01109 Frequency : 2450.00 MHz Last Calib. Date : 04-Jan-2013 : 20.00 °C Temperature Ambient Temp. : 21.00 °C : 50.00 RH% Humidity : 40.34 F/m Epsilon Sigma : 1.83 S/m Density : 1000.00 kg/cu. M

Probe Data

Name : E-Field Model : E-020

: E-Field Triangle Type : 500-00283 Serial No. Last Calib. Date : 09-Aug-2012 : 2450

Frequency Band : 1 Duty Cycle Factor Conversion Factor : 4.3

 $\mu V/(V/m)^2$ Probe Sensitivity : 1.20 1.20 1.20

: 95.00 mV Compression Point Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete Tissue Temp. : 20.00°C : 20.00 °C Ambient Temp.

Area Scan : 8x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

SAR Evaluation Report 31 of 158 1 gram SAR value : 53.419 W/kg 10 gram SAR value : 25.077 W/kg Area Scan Peak SAR : 54.757 W/kg Zoom Scan Peak SAR : 99.204 W/kg

2450 MHz System Validation with Head Tissue

SAR Evaluation Report 32 of 158

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

Report No: RSZ120929001-20

System Performance Check 2450 MHz Body Liquid

Dipole 2450 MHz; Type: ALS-D-2450-S-2; S/N: 220-00758

Product Data

Device Name : Dipole 2450MHz Serial No. : 220-00758 Type : Dipole

Model : ALS-D-2450-S-2

Frequency Band : 2450

Max. Transmit Pwr
Drift Time : 3 min(s)

Power Drift-Start : 50.155 W/kg

Power Drift-Finish
Power Drift (%) : -2.109

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default

Location : Center Description : Default

Tissue Data

Type : BODY Serial No. : 290-01109 : 2450.00 MHz Frequency Last Calib. Date : 04-Jan-2013 Temperature : 20.00 °C Ambient Temp. : 21.00 °C : 50.00 RH% Humidity : 52.94 F/m Epsilon Sigma : 2.00 S/m Density : 1000.00 kg/cu. M

Probe Data

Name : E-Field Model : E-020

Type : E-Field Triangle
Serial No. : 500-00283
Last Calib. Date : 09-Aug-2012
Frequency Band : 2450

Frequency Band : 245 Duty Cycle Factor : 1 Conversion Factor : 4.3

Probe Sensitivity : 1.20 1.20 $\mu V/(V/m)^2$

Compression Point : 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete Tissue Temp. : 20.00 °C Ambient Temp. : 20.00 °C

Area Scan : 8x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

SAR Evaluation Report 33 of 158

1 gram SAR value : 49.879 W/kg 10 gram SAR value : 24.936 W/kg Area Scan Peak SAR : 54.757 W/kg Zoom Scan Peak SAR : 100.054 W/kg

2450 MHz System Validation with Body Tissue

SAR Evaluation Report 34 of 158

EUT TEST STRATEGY AND METHODOLOGY

Test Positions for Device Operating Next to a Person's Ear

This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper ½ of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth

A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:

Report No: RSZ120929001-20

SAR Evaluation Report 35 of 158

Cheek/Touch Position

The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom.

This test position is established:

• When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.

Report No: RSZ120929001-20

o (or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

Cheek / Touch Position

Ear/Tilt Position

With the handset aligned in the "Cheek/Touch Position":

- 1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.
- 2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point isby 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

SAR Evaluation Report 36 of 158

If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

Ear /Tilt 15° Position

Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

SAR Evaluation Report 37 of 158

SAR Evaluation Procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.

Report No: RSZ120929001-20

- Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or EUT and the horizontal grid spacing was 10 mm x 10 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- Step 3: Around this point, a volume of 35 mm x 35 mm x 35 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
 - 1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages.

All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

SAR Evaluation Report 38 of 158

CONDUCTED OUTPUT POWER MEASUREMENT

Provision Applicable

The measured peak output power should be greater and within 5% than EMI measurement.

Test Procedure

The RF output of the transmitter was connected to the input of the EMI Test Receiver through sufficient attenuation.

Report No: RSZ120929001-20

WiFi

Test Results:

GSM

Band	Frequency	Conducted Output Power				
Danu	(MHz)	GSM (dBm)	GSM (W)			
	824.2	31.98	1.578			
Cellular	836.6	31.86	1.535			
	848.8	31.41	1.384			
	1850.2	29.14	0.820			
PCS	1880.0	29.20	0.832			
	1909.8	29.06	0.805			

SAR Evaluation Report 39 of 158

GPRS

Band	Channel Frequenc		RF Output Power (dBm)					
Danu	No.	(MHz)	1 slot	2 slot	3 slots	4 slots		
	128	824.2	31.95	30.12	28.55	27.06		
Cellular	190	836.6	31.85	30.13	28.50	26.77		
	251	848.8	31.66	30.04	28.37	26.67		
	512	1850.2	29.13	27.50	25.87	24.27		
PCS	661	1880.0	29.46	27.88	26.16	24.66		
	810	1909.8	29.28	27.78	26.05	24.56		

EGPRS

Mode	Channel No.	Frequency	RF Output Power (dBm)					
Mode	Channel No.	(MHz)	1 slot	2 slots	3 slots	4 slots		
	128	824.2	26.99	24.79	23.27	21.72		
Cellular	190	836.6	26.94	24.75	23.22	21.70		
	251	848.8	26.84	24.59	23.09	21.54		
	512	1850.2	25.93	25.31	25.29	24.72		
PCS	661	1880.0	26.25	25.58	25.52	24.96		
	810	1909.8	26.29	25.61	25.54	25.00		

For SAR, the time based average power is relevant, the difference in between depends on the duty cycle of the TDMA signal.

Number of Time slot	1	2	3	4
Duty Cycle	1:8	1:4	1:2.66	1:2
Time based Ave. power compared to slotted Ave. power	-9 dB	-6 dB	-4.25 dB	-3 dB
Crest Factor	8	4	2.66	2

SAR Evaluation Report 40 of 158

The time based average power

Report No: RSZ120929001-20

GPRS

Band	Channel No.	Frequency	Time based average Power (dBm)					
Danu	Chamlei No.	(MHz)	1 slot	2 slot	3 slots	4 slots		
	128	824.2	22.95	24.12	24.30	24.06		
Cellular	190	836.6	22.85	24.13	24.25	23.77		
	251	848.8	22.66	24.04	24.12	23.67		
	512	1850.2	20.13	21.50	21.62	21.27		
PCS	661	1880.0	20.46	21.88	21.91	21.66		
	810	1909.8	20.28	21.78	21.80	21.56		

EGPRS

Band	Channel No.	Frequency	Time based average Power (dBm)					
Danu	Channel No.	(MHz)	1 slot	2 slots	3 slots	4 slots		
	128	824.2	17.99	18.79	19.02	18.72		
Cellular	190	836.6	17.94	18.75	18.97	18.70		
	251	848.8	17.84	18.59	18.84	18.54		
	512	1850.2	16.93	19.31	21.04	21.72		
PCS	661	1880.0	17.25	19.58	21.27	21.96		
	810	1909.8	17.29	19.61	21.29	22.00		

Note:

- 1. Rohde & Schwarz Radio Communication Tester (CMU200) was used for the measurement of GSM peak and average output power for active timeslots.
- 2. For GSM voice, 1 timeslot has been activated with power level 5 (850 MHz band) and 0 (1900 MHz band).
- 3. For GPRS, 1, 2, 3 and 4 timeslots has been activated separately with power level 5(850 MHz band) and 0(1900 MHz band).
- 4. For EGPRS, 1, 2, 3 and 4 timeslots has been activated separately with power level 8(850 MHz band) and 2(1900 MHz band).
- 5. The maximum average output power of the GPRS mode is more than 2 dB higher than EGPRS mode measured in the same frequency band, according to IEEE1528, GPRS mode SAR is required.

SAR Evaluation Report 41 of 158

WCDMA-Release 99:

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification. The EUT has a nominal maximum output power of 24dBm (+1.7/-3.7).

Report No: RSZ120929001-20

	Loopback Mode	Test Mode 1
WCDMA	Rel99 RMC	12.2kbps RMC
General Settings	Power Control Algorithm	Algorithm2
	βс /βd	8/15

Results (12.2kbps RMC)

Band	Frequency	Channel NO.	Conducted Output Power		
Danu	(MHz)	Channel NO.	(dBm)	(Watt)	
	826.4	4132	22.27	0.169	
WCDMA 850	836.6	4183	22.39	0.173	
	846.6	4233	22.23	0.167	
	1852.4	9262	22.44	0.175	
WCDMA 1900	1880.0	9400	22.18	0.165	
	1907.6	9538	22.96	0.198	

SAR Evaluation Report 42 of 158

WCDMA HSDPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

Report No: RSZ120929001-20

	Mode	HSDPA	HSDPA	HSDPA	HSDPA	
	Subset	1	2	3	4	
	Loopback Mode	Test Mode 1				
	Rel99 RMC	12.2kbps RM	MC			
	HSDPA FRC	H-Set1				
	Power Control Algorithm	Algorithm2				
WCDMA	$eta {f c}$	2/15	12/15	15/15	15/15	
General Settings	β d	15/15	15/15 15/15		4/15	
Settings	βd (SF)	64				
	$\beta c/\beta d$	2/15	12/15	15/8	15/4	
	βhs	4/15	24/15	30/15	30/15	
	MPR(dB)	0	0	0.5	0.5	
	D_{ACK}	8				
	$\mathrm{D}_{\mathrm{NAK}}$	8				
HSDPA	$\mathrm{D}_{\mathrm{CQI}}$	8				
Specific	Ack-Nack repetition factor	3				
Settings	CQI Feedback	4ms				
	CQI Repetition Factor	2				
	Ahs= β hs/ β c	30/15		·		

Results (HSDPA)

Band	Frequency	equency Channel NO.		Conducted Output Power					
Dana	(MHz)	Chamber 100.	Subset 1	Subset 2	Subset 3	Subset 4			
	826.4	4132	22.20	21.94	22.04	21.57			
WCDMA 850	836.6	4183	22.17	22.05	21.96	21.61			
	846.6	4233	21.78	21.63	21.74	21.89			
	1852.4	9262	22.38	22.25	21.99	22.04			
WCDMA 1900	1880.0	9400	21.83	22.13	22.45	22.32			
	1907.6	9538	22.54	22.68	22.27	22.39			

SAR Evaluation Report 43 of 158

WCDMA HSUPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

Report No: RSZ120929001-20

	Mode	HSUPA	HSUPA	HSUPA	HSUPA	HSUPA	
	Subset	1	2	3	4	5	
	Loopback Mode	Test Mode 1					
	Rel99 RMC	12.2kbps RMC					
	HSDPA FRC	H-Set1	10.10				
	HSUPA Test	HSUPA I	Loopback				
	Power Control Algorithm	Algorithm	-				
WCDMA	βc	11/15	6/15	15/15	2/15	15/15	
General	β d	15/15	15/15	9/15	15/15	0	
Settings	βec	209/225	12/15	30/15	2/15	5/15	
	β c / β d	11/15	6/15	15/9	2/15	-	
	βhs	22/15	12/15	30/15	4/15	5/15	
	CM(dB)	1.0	3.0	2.0	3.0	1.0	
	MPR(dB)	0	2	1	2	0	
	DACK	8					
	DNAK	8					
HSDPA	DCQI	8					
Specific	Ack-Nack repetition factor	3					
Settings	CQI Feedback	4ms					
	CQI Repetition Factor	2					
	Ahs= βhs/βc	30/15					
	DE-DPCCH	6	8	8	5	7	
	DHARQ	0	0	0	0	0	
	AG Index	20	12	15	17	21	
	ETFCI	75	67	92	71	81	
	Associated Max UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9	
HSUPA Specific Settings	Reference E_FCls	E-TFCI 11 E E-TFCI PO 4 E-TFCI 67 E-TFCI PO 18 E-TFCI 71 E-TFCI PO23 E-TFCI 75 E-TFCI PO26 E-TFCI 81 E-TFCI PO 27		E-TFCI 11 E-TFCI PO4 E-TFCI 92 E-TFCI PO 18	E-TFCI 11 E-TFCI PC E-TFCI 67 E-TFCI 71 E-TFCI PC E-TFCI 75 E-TFCI PC E-TFCI PC	0 4 0 18 023 026	

SAR Evaluation Report 44 of 158

Results (HSUPA)

Band	Frequency	Channel	Conducted Output Power					
Danu	(MHz)	NO.	Subset 1	Subset 2	Subset 3	Subset 4	Subset 5	
	826.4	4132	22.20	22.09	21.92	22.02	21.55	
WCDMA 850	836.6	4 183	22.33	22.06	22.03	21.94	21.59	
	846.6	4 233	22.21	21.67	21.61	21.72	21.87	
	1852.4	9 262	22.42	22.27	22.23	21.97	22.02	
WCDMA 1900	1880.0	9 400	22.08	21.72	22.11	22.43	22.30	
	1907.6	9 538	22.81	22.43	22.66	22.25	22.37	

Report No: RSZ120929001-20

Note:

- 1. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement Channel) Configured in Test Loop Model 1.
- 2. KDB 941225 D01-Body SAR is not required for HSDPA when the maximum average output of each RF channel with HSDPA active is less than $\frac{1}{4}$ dB higher than measured without HSDPA using 12.2kbps RMC or the maximum SAR for 12.2kbps RMC is < 75% of SAR limit.
- 3. KDB 941225 D01-Body SAR is not required for HSUPA when the maximum average output of each RF channel with HSUPA active is less than $\frac{1}{4}$ dB higher than measured without HSUPA using 12.2kbps RMC and the maximum SAR for 12.2kbps RMC is < 75% of SAR limit.

SAR Evaluation Report 45 of 158

WiFi

Band	Frequency	Conducted Output Power				
Danu	(MHz)	(dBm)	(Watt)			
	2412	17.70	0.059			
802.11b	2437	17.72	0.059			
	2462	18.05	0.064			
	2412	17.02	0.050			
802.11g	2437	17.39	0.055			
	2462	17.66	0.058			
	2412	16.76	0.047			
802.11n20	2437	16.97	0.050			
	2462	17.15	0.052			

Note:

- 1. The output power was tested under data rate 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n-20.
- 2. KDB248227-SAR is not required for 802.11g/n channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

Bluetooth

Mode	Channel frequency (MHz)	Reading power (dBm)	Power output (mw)	Limit (mw)
	(Low)2402	1.047	1.273	1000
BDR(GFSK)	(Middle)2441	0.993	1.257	1000
	(High)2480	0.916	1.235	1000
	(Low)2402	1.285	1.344	1000
EDR(4-DQPSK)	(Middle)2441	1.225	1.326	1000
	(High)2480	1.138	1.300	1000
	(Low)2402	1.384	1.375	1000
EDR-8DPSK	(Middle)2441	1.306	1.351	1000
	(High)2480	1.236	1.329	1000

Note:

According to the appendix A of FCC KDB 447498 D01 General RF Exposure Guidance v05 generic portable criteria, the exclusion thresholds for 2450 MHz is 10 mW. So SAR test is not required for Bluetooth.

SAR Evaluation Report 46 of 158

SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

SAR Test Data

Environmental Conditions

Temperature:	21-22° C
Relative Humidity:	50-53%
ATM Pressure:	1001-1002 mbar

^{*} Testing was performed by Sandy Wang on 2013-01-04 to 2013-01-06

Cellular Band:

EUT	Frequency	(MHz)	Test	Antenna	Phantom	Power Drift	FCC 1g SAF	R (W/Kg)
Position	Channel	MHz	Mode	Type	Type	(%)	Measurement	Limit
	128(Low)	824.2	GSM	Integral	SAM	-2.329	0.121	1.6
Left Head Cheek	190(Middle)	836.6	GSM	Integral	SAM	/	/	1.6
	251(High)	848.8	GSM	Integral	SAM	/	/	1.6
	128(Low)	824.2	GSM	Integral	SAM	-2.027	0.093	1.6
Left Head Tilt	190(Middle)	836.6	GSM	Integral	SAM	/	/	1.6
	251(High)	848.8	GSM	Integral	SAM	/	/	1.6
	128(Low)	824.2	GSM	Integral	SAM	-1.185	0.115	1.6
Right Head Cheek	190(Middle)	836.6	GSM	Integral	SAM	/	/	1.6
	251(High)	848.8	GSM	Integral	SAM	/	/	1.6
	128(Low)	824.2	GSM	Integral	SAM	-1.419	0.101	1.6
Right Head Tilt	190(Middle)	836.6	GSM	Integral	SAM	/	/	1.6
	251(High)	848.8	GSM	Integral	SAM	/	/	1.6
	128(Low)	824.2	GSM	Integral	Universal	-0.592	0.176	1.6
Body-Front-Headset (10mm)	190(Middle)	836.6	GSM	Integral	Universal	/	/	1.6
(10mm)	251(High)	848.8	GSM	Integral	Universal	/	/	1.6
	128(Low)	824.2	GSM	Integral	Universal	-2.224	0.309	1.6
Body-Back-Headset (10mm)	190(Middle)	836.6	GSM	Integral	Universal	/	/	1.6
(= ======)	251(High)	848.8	GSM	Integral	Universal	/	/	1.6

Report No: RSZ120929001-20

Note:

1. When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional.

SAR Evaluation Report 47 of 158

PCS Band:

EUT	Frequency (MHz)		Test Mode	Antenna	Phantom	Power Drift	FCC 1g SA	R (W/Kg)
Position	Channel	MHz	Test Mode	Type	Type	(%)	Measurement	Limit
	512(Low)	1850.2	GSM	Integral	SAM	/	/	1.6
Left Head Cheek	661(Middle)	1880.0	GSM	Integral	SAM	-1.557	0.057	1.6
	810(High)	1909.8	GSM	Integral	SAM	/	/	1.6
	512(Low)	1850.2	GSM	Integral	SAM	/	/	1.6
Left Head Tilt	661(Middle)	1880.0	GSM	Integral	SAM	-1.828	0.005	1.6
	810(High)	1909.8	GSM	Integral	SAM	/	/	1.6
	512(Low)	1850.2	GSM	Integral	SAM	/	/	1.6
Right Head Cheek	661(Middle)	1880.0	GSM	Integral	SAM	-1.330	0.053	1.6
	810(High)	1909.8	GSM	Integral	SAM	/	/	1.6
	512(Low)	1850.2	GSM	Integral	SAM	/	/	1.6
Right Head Tilt	661(Middle)	1880.0	GSM	Integral	SAM	1.023	0.008	1.6
	810(High)	1909.8	GSM	Integral	SAM	/	/	1.6
D 1 D . W 1 .	512(Low)	1850.2	GSM	Integral	Universal	/	/	1.6
Body-Front-Headset (10mm)	661(Middle)	1880.0	GSM	Integral	Universal	-1.019	0.048	1.6
(1011111)	810(High)	1909.8	GSM	Integral	Universal	/	/	1.6
D 1 D 1 H 1	512(Low)	1850.2	GSM	Integral	Universal	/	/	1.6
Body-Back-Headset (10mm)	661(Middle)	1880.0	GSM	Integral	Universal	-1.525	0.077	1.6
(= =====)	810(High)	1909.8	GSM	Integral	Universal	/	/	1.6

Report No: RSZ120929001-20

Note:

- 1. When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional.
- 2. The EUT transmit and receive through the same GSM antenna while testing SAR.

SAR Evaluation Report 48 of 158

WCDMA850

EUT	Frequency	Frequency (MHz)		Antenna	Phantom	Power Drift	FCC 1g SA	AR (W/Kg)
Position	Channel	MHz	Test Mode	Type	Type	(%)	Measurement	Limit
	4132(Low)	826.4	WCDMA850	Integral	SAM	/	/	1.6
Left Head Cheek	4183(Middle)	836.6	WCDMA850	Integral	SAM	-1.185	0.158	1.6
	4233(High)	846.6	WCDMA850	Integral	SAM	/	/	1.6
	4132(Low)	826.4	WCDMA850	Integral	SAM	/	/	1.6
Left Head Tilt	4183(Middle)	836.6	WCDMA850	Integral	SAM	-1.324	0.083	1.6
	4233(High)	846.6	WCDMA850	Integral	SAM	/	/	1.6
	4132(Low)	826.4	WCDMA850	Integral	SAM	/	/	1.6
Right Head Cheek	4183(Middle)	836.6	WCDMA850	Integral	SAM	-0.779	0.170	1.6
	4233(High)	846.6	WCDMA850	Integral	SAM	/	/	1.6
	4132(Low)	826.4	WCDMA850	Integral	SAM	/	/	1.6
Right Head Tilt	4183(Middle)	836.6	WCDMA850	Integral	SAM	-1.198	0.079	1.6
	4233(High)	846.6	WCDMA850	Integral	SAM	/	/	1.6

Report No: RSZ120929001-20

Note:

1. When the 1-g SAR is \leq 0.8W/kg, testing for other channels are optional.

WCDMA1900

EUT	Frequency (MHz)		Test Mode	Antenna	Phantom	Power Drift	FCC 1g SA	AR (W/Kg)
Position	Channel	MHz	Test Wioue	Type	Type	(%)	Measurement	Limit
	9262(Low)	1852.4	WCDMA1900	Integral	SAM	/	/	1.6
Left Head Cheek	9400(Middle)	1880.0	WCDMA1900	Integral	SAM	/	/	1.6
	9538(High)	1907.6	WCDMA1900	Integral	SAM	-1.592	0.183	1.6
	9262(Low)	1852.4	WCDMA1900	Integral	SAM	/	/	1.6
Left Head Tilt	9400(Middle)	1880.0	WCDMA1900	Integral	SAM	/	/	1.6
	9538(High)	1907.6	WCDMA1900	Integral	SAM	-2.377	0.012	1.6
	9262(Low)	1852.4	WCDMA1900	Integral	SAM	/	/	1.6
Right Head Cheek	9400(Middle)	1880.0	WCDMA1900	Integral	SAM	/	/	1.6
	9538(High)	1907.6	WCDMA1900	Integral	SAM	-2.051	0.172	1.6
	9262(Low)	1852.4	WCDMA1900	Integral	SAM	/	/	1.6
Right Head Tilt	9400(Middle)	1880.0	WCDMA1900	Integral	SAM	/	/	1.6
	9538(High)	1907.6	WCDMA1900	Integral	SAM	-1.133	0.017	1.6

Note:

- 1. When the 1-g SAR is \leq 0.8W/kg, testing for other channels are optional.
- 2. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement Channel) Configured in Test Loop Mode.

SAR Evaluation Report 49 of 158

WiFi (802.11b)

EUT	Frequency (Frequency (MHz)		Antenna	Phantom	Power Drift	FCC 10g SA	AR (W/Kg)
Position	Channel NO.	MHz	Mode	Type	Type	(%)	Measurement	Limit
	1	2412.0	802.11b	Integral	SAM	/	/	1.6
Left Head Cheek	6	2437.0	802.11b	Integral	SAM	/	/	1.6
	11	2462.0	802.11b	Integral	SAM	-1.227	0.057	1.6
	1	2412.0	802.11b	Integral	SAM	/	/	1.6
Left Head Tilt	6	2437.0	802.11b	Integral	SAM	/	/	1.6
	11	2462.0	802.11b	Integral	SAM	-2.215	0.039	1.6
	1	2412.0	802.11b	Integral	SAM	/	/	1.6
Right Head Cheek	6	2437.0	802.11b	Integral	SAM	/	/	1.6
	11	2462.0	802.11b	Integral	SAM	-1.226	0.052	1.6
Right Head Tilt	1	2412.0	802.11b	Integral	SAM	/	/	1.6
	6	2437.0	802.11b	Integral	SAM	/	/	1.6
	11	2462.0	802.11b	Integral	SAM	-1.872	0.033	1.6

Report No: RSZ120929001-20

Note:

- 1. When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional. 2. The SAR testing is conducted with 100% duty cycle factor. 3. The output power was tested under data rate 1Mbps for 802.11b.

SAR Evaluation Report 50 of 158

Mobile Hot-Spot Test Result

The DUT is capable of functioning as a WiFi to Cellular Mobile hotspot. Additional SAR testing was performed according to KDB 941225 D06. Testing was performed with a separation of 1cm between the DUT and the flat phantom. The DUT was positioned for SAR tests with the front and back surfaces facing the phantom, and also with the edges facing the phantom in which the transmitting antenna is <2.5 cm from the edge. Each transmit band was utilized for SAR testing. The tested mode has been selected within each band that exhibits the highest time average output power.

Report No: RSZ120929001-20

Hot spot-GPRS (Frequency Band: 835MHz)

EUT	Frequenc	ey (MHz)	Test	Antenna	Phantom	Power Drift	FCC 1g SAR	R (W/Kg)
Position	Channel	MHz	Mode	Type	Type	(%)	Measurement	Limit
	128	824.2	GPRS	Integral	Universal	-1.422	0.224	1.6
Body-Front	190	836.6	GPRS	Integral	Universal	/	/	1.6
(10mm)	251	848.8	GPRS	Integral	Universal	/	/	1.6
Body-Back (10mm)	128	824.2	GPRS	Integral	Universal	-3.636	0.479	1.6
	190	836.6	GPRS	Integral	Universal	/	/	1.6
	251	848.8	GPRS	Integral	Universal	/	/	1.6
D - 1 - 1 - 0	128	824.2	GPRS	Integral	Universal	-1.658	0.065	1.6
Body-Left (10mm)	190	836.6	GPRS	Integral	Universal	/	/	1.6
	251	848.8	GPRS	Integral	Universal	/	/	1.6
D - 4 - Di -1.4	128	824.2	GPRS	Integral	Universal	-1.034	0.056	1.6
Body-Right (10mm	190	836.6	GPRS	Integral	Universal	/	/	1.6
(3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,	251	848.8	GPRS	Integral	Universal	/	/	1.6
	128	824.2	GPRS	Integral	Universal	-1.698	0.025	1.6
Body-Bottom	190	836.6	GPRS	Integral	Universal	/	/	1.6
(10mm)	251	848.8	GPRS	Integral	Universal	/	/	1.6

Note:

1 .When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional.

SAR Evaluation Report 51 of 158

Hot spot-GPRS (Frequency Band: 1900MHz)

EUT	Frequenc	cy (MHz)	Test	Antenna	Phantom	Power Drift	FCC 1g SAF	R (W/Kg)
Position	Channel	MHz	Mode	Туре	Type	(%)	Measurement	Limit
	512	1850.2	GPRS	Integral	Universal	/	/	1.6
Body-Front	661	1880.0	GPRS	Integral	Universal	-4.468	0.087	1.6
(10mm)	810	1909.8	GPRS	Integral	Universal	/	/	1.6
D 1 D 1	512	1850.2	GPRS	Integral	Universal	/	/	1.6
Body-Back (10mm)	661	1880.0	GPRS	Integral	Universal	-1.190	0.105	1.6
(1011111)	810	1909.8	GPRS	Integral	Universal	/	/	1.6
D 1 I 0	512	1850.2	GPRS	Integral	Universal	/	/	1.6
Body-Left (10mm)	661	1880.0	GPRS	Integral	Universal	-2.825	0.001	1.6
(1011111)	810	1909.8	GPRS	Integral	Universal	/	/	1.6
D I D' I	512	1850.2	GPRS	Integral	Universal	/	/	1.6
Body-Right (10mm	661	1880.0	GPRS	Integral	Universal	-1.682	0.001	1.6
(10111111	810	1909.8	GPRS	Integral	Universal	/	/	1.6
	512	1850.2	GPRS	Integral	Universal	/	/	1.6
Body-Bottom	661	1880.0	GPRS	Integral	Universal	-2.987	0.047	1.6
(10mm)	810	1909.8	GPRS	Integral	Universal	/	/	1.6

Report No: RSZ120929001-20

Note:

- 1 .When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional.
- 2. The EUT is a Capability Class B mobile phone which can be attached to both GPRS and GSM services.
- 3. The Multi-slot Classes of EUT is Class 12 which has maximum 4 Downlink slots and 2 Uplink slots, the maximum active slots is 5, when perform the multiple slots scan, 2DL+3UL is the worse case.
- 4. The EUT transmit and receive through the same GSM antenna while testing SAR.

SAR Evaluation Report 52 of 158

Hot spot-WCDMA850

EUT	Frequency	(MHz)	Test	Antenna	Phantom	Power Drift	FCC 1g SAR	(W/Kg)
Position	Channel	MHz	Mode	Type	Type	(%)	Measurement	Limit
	4132(Low)	826.4	WCDMA850	Integral	Universal	/	/	1.6
	4183(Middle)	836.6	WCDMA850	Integral	Universal	-1.005	0.146	1.6
(10mm)	4233(High)	846.6	WCDMA850	Integral	Universal	/	/	1.6
Dody Dool-	4132(Low)	826.4	WCDMA850	Integral	Universal	/	/	1.6
Body-Back (10mm)	4183(Middle)	836.6	WCDMA850	Integral	Universal	-1.896	0.253	1.6
(1011111)	4233(High)	846.6	WCDMA850	Integral	Universal	/	/	1.6
D - 1 - 1 - 0	4132(Low)	826.4	WCDMA850	Integral	Universal	/	/	1.6
Body-Left (10mm)	4183(Middle)	836.6	WCDMA850	Integral	Universal	-0.194	0.046	1.6
()	4233(High)	846.6	WCDMA850	Integral	Universal	/	/	1.6
D 1 D' 14	4132(Low)	826.4	WCDMA850	Integral	Universal	/	/	1.6
Body-Right (10mm	4183(Middle)	836.6	WCDMA850	Integral	Universal	-1.156	0.039	1.6
(3,4,1,1,1)	4233(High)	846.6	WCDMA850	Integral	Universal	/	/	1.6
	4132(Low)	826.4	WCDMA850	Integral	Universal	/	/	1.6
Body-Bottom	4183(Middle)	836.6	WCDMA850	Integral	Universal	-1.726	0.020	1.6
(10mm)	4233(High)	846.6	WCDMA850	Integral	Universal	/	/	1.6

Report No: RSZ120929001-20

WCDMA1900

EUT	Frequency	(MHz)	Test	Antenna	Phantom	Power Drift	FCC 1g SAR	(W/Kg)
Position	Channel	MHz	Mode	Type	Type	(%)	Measurement	Limit
	9262(Low)	1852.4	WCDMA1900	Integral	Universal	/	/	1.6
	9400(Middle)	1880.0	WCDMA1900	Integral	Universal	/	/	1.6
(10mm)	9538(High)	1907.6	WCDMA1900	Integral	Universal	-3.671	0.112	1.6
Rody Rook	9262(Low)	1852.4	WCDMA1900	Integral	Universal	/	/	1.6
Body-Back (10mm)	9400(Middle)	1880.0	WCDMA1900	Integral	Universal	/	/	1.6
(1011111)	9538(High)	1907.6	WCDMA1900	Integral	Universal	-1.562	0.183	1.6
D - 1 - 1 - 0	9262(Low)	1852.4	WCDMA1900	Integral	Universal	/	/	1.6
Body-Left (10mm)	9400(Middle)	1880.0	WCDMA1900	Integral	Universal	/	/	1.6
(9538(High)	1907.6	WCDMA1900	Integral	Universal	-2.861	0.001	1.6
D - 1- D:-14	9262(Low)	1852.4	WCDMA1900	Integral	Universal	/	/	1.6
Body-Right (10mm	9400(Middle)	1880.0	WCDMA1900	Integral	Universal	/	/	1.6
(9538(High)	1907.6	WCDMA1900	Integral	Universal	-3.226	0.001	1.6
	9262(Low)	1852.4	WCDMA1900	Integral	Universal	/	/	1.6
Body-Bottom	9400(Middle)	1880.0	WCDMA1900	Integral	Universal	/	/	1.6
(10mm)	9538(High)	1907.6	WCDMA1900	Integral	Universal	-0.891	0.070	1.6

Note:

- 1. When the 1-g SAR is \leq 0.8W/kg, testing for other channels are optional.
- 2. The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement Channel) Configured in Test Loop Mode.

SAR Evaluation Report 53 of 158

Hot Spot-WiFi

EUT	Frequency (MHz)		Test	Antenna	Phantom	Power Drift	FCC 1g SAR (W/Kg)	
Position	Channel	MHz	Mode	Type	Type	(%)	Measurement	Limit
	1	2412	802.11b	Integral	Universal	/	/	1.6
Body-Front	6	2437	802.11b	Integral	Universal	/	/	1.6
(10mm)	11	2462	802.11b	Integral	Universal	-1.216	0.052	1.6
D 1 D 1	1	2412	802.11b	Integral	Universal	/	/	1.6
Body-Back (10mm)	6	2437	802.11b	Integral	Universal	/	/	1.6
(1011111)	11	2462	802.11b	Integral	Universal	-1.408	0.081	1.6
D. L. I. A	1	2412	802.11b	Integral	Universal	/	/	1.6
Body-Left (10mm)	6	2437	802.11b	Integral	Universal	/	/	1.6
(1011111)	11	2462	802.11b	Integral	Universal	-2.417	0.001	1.6
D - 4 D - 1-4	1	2412	802.11b	Integral	Universal	/	/	1.6
Body-Right (10mm)	6	2437	802.11b	Integral	Universal	/	/	1.6
(*******)	11	2462	802.11b	Integral	Universal	-2.582	0.043	1.6
Dad. Ter	1	2412	802.11b	Integral	Universal	/	/	1.6
Body-Top (10mm	6	2437	802.11b	Integral	Universal		/	1.6
(1011111	11	2462	802.11b	Integral	Universal	-1.251	0.029	1.6

Report No: RSZ120929001-20

Note:

- 1. When the 1-g SAR is \leq 0.8W/Kg, testing for other channels are optional.
- 2. The SAR testing is conducted with 100% duty cycle factor.
- 3. The output power was tested under data rate 1Mbps for 802.11b.

SAR Evaluation Report 54 of 158

SAR SIMULTANEOUS TRANSMISSION DESCRIPTION

KDB 447498D01 General RF Exposure Guidance v05 KDB 648474 D04 SAR Handsets Multi Xmiter and Ant v01

Stand-alone and simultaneous SAR evaluation for a cell phone with multiple transmitters is base on the antennas distance of each radio.

WiFi & BT and GSM Antenna Location:

Report No: RSZ120929001-20

Antenna Information:

Description of Simultaneous	Antennas Distance		
Transmitter Combination	Scenario Supported for Supported? Mobile Hot Spot		(mm)
GSM + GPRS	×	×	0.0mm
GSM+ WCDMA	×	×	0.0mm
GSM + WiFi	√	×	113.0 mm
GPRS + WCDMA	×	×	0.0mm
GPRS + WiFi	√	\checkmark	113.0 mm
WCDMA + WiFi	√ √	V	113.0 mm

SAR Evaluation Report 55 of 158

Standalone SAR test exclusion considerations:

Head Position:

Mode	Frequency (MHz)	P _{avg} (dBm)	P _{avg} (mW)	Threshold (1-g)	Distance (mm)	SAR Test Exclusion
GSM850	835	22.98	198.609	16	5	No
PCS1900	1900	20.20	104.713	11	5	No
WCDMA850	850	22.39	173.380	16	5	No
WCDMA1900	1900	22.96	197.697	11	5	No
WiFi	2450	18.05	63.826	10	5	No

Report No: RSZ120929001-20

Body Position:

Mode	Frequency (MHz)	P _{avg} (dBm)	P _{avg} (mW)	Threshold (1-g)	Distance (mm)	SAR Test Exclusion
GSM850	835	24.30	269.153	33	10	No
PCS1900	1900	21.91	155.239	22	10	No
WCDMA850	850	22.39	173.380	33	10	No
WCDMA1900	1900	22.96	197.697	22	10	No
WiFi	2450	18.05	63.826	19	10	No

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where

- 1. f(GHz) is the RF channel transmit frequency in GHz.
- 2. Power and distance are rounded to the nearest mW and mm before calculation.
- 3. The result is rounded to one decimal place for comparison.

SAR Evaluation Report 56 of 158

Simultaneous SAR test exclusion considerations:

GSM with WiFi:

M. J.	D'4'	Reported	SAR (W/kg)	ΣSAR
Mode	Position	GSM	WiFi	< 1.6W/kg
	Left Head Cheek	0.121	0.057	0.178
	Left Head Tile	0.093	0.039	0.132
GSM850	Right Head Cheek	0.115	0.052	0.167
GSW1850	Right Head Tilt	0.101	0.033	0.134
	Body Front	0.176	0.052	0.228
	Body Back	0.309	0.081	0.390
	Left Head Cheek	0.158	0.057	0.215
	Left Head Tile	0.083	0.039	0.122
WCDMA 850	Right Head Cheek	0.170	0.052	0.222
WCDMA 830	Right Head Tilt	0.079	0.033	0.112
	Body Front	0.146	0.052	0.198
	Body Back	0.253	0.081	0.334
	Left Head Cheek	0.057	0.057	0.114
	Left Head Tile	0.005	0.039	0.044
PCS1900	Right Head Cheek	0.053	0.052	0.105
PCS1900	Right Head Tilt	0.008	0.033	0.041
	Body Front	0.048	0.052	0.100
	Body Back	0.077	0.081	0.158
	Left Head Cheek	0.183	0.057	0.240
	Left Head Tile	0.012	0.039	0.051
WCDMA	Right Head Cheek	0.172	0.052	0.224
1900	Right Head Tilt	0.017	0.033	0.050
	Body Front	0.112	0.052	0.164
	Body Back	0.183	0.081	0.264

Report No: RSZ120929001-20

SAR Evaluation Report 57 of 158

GSM with Bluetooth:

M	D '/'	Reported	SAR (W/kg)	ΣSAR
Mode	Position	GSM	Bluetooth	< 1.6W/kg
	Left Head Cheek	0.121		0.178
	Left Head Tile	0.093	0.057	0.150
GSM850	Right Head Cheek	0.115	0.037	0.172
USIMOSU	Right Head Tilt	0.101		0.158
	Body Front	0.176	0.029	0.205
	Body Back	0.309	0.029	0.338
	Left Head Cheek	0.158		0.215
	Left Head Tile	0.083	0.057	0.140
WCDMA 850	Right Head Cheek	0.170	0.037	0.227
WCDMA 830	Right Head Tilt	0.079		0.136
	Body Front	0.146	0.029	0.175
	Body Back	0.253	0.029	0.282
	Left Head Cheek	0.057		0.114
	Left Head Tile	0.005	0.057	0.062
PCS1900	Right Head Cheek	0.053	0.037	0.110
FCS1900	Right Head Tilt	0.008		0.065
	Body Front	0.048	0.029	0.077
	Body Back	0.077	0.029	0.106
	Left Head Cheek	0.183		0.240
	Left Head Tile	0.012	0.057	0.069
WCDMA	Right Head Cheek	ht Head Cheek 0.172		0.229
1900	Right Head Tilt	0.017		0.074
	Body Front	0.112	0.029	0.141
	Body Back	0.183	0.029	0.212

Report No: RSZ120929001-20

Mode	Frequency (GHz)	Distance (mm)	P _{avg} (dBm)	P _{avg} (mW)	Estimated 1-g (W/kg)	
Bluetooth Head	2.45	5	1.384	1.375	0.057	
Bluetooth Body	2.45	10	1.384	1.375	0.029	

SAR Evaluation Report 58 of 158

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances ≤ 50 mm;

Report No: RSZ120929001-20

where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion

Conclusion:

ΣSAR < 1.6 W/kg therefore simultaneous transmission SAR with Volume Scans is **not** required.

Evaluations for Simultaneous SAR:

Evaluations for Simultaneous SAR, Mobile Hot Spot Positions									
	Stand Alone 1-g SAR (W/Kg)					$\sum 1$ -g SAR (W/Kg)			
Test Position	GSM 850	WCDMA 850	GSM 1900	WCDMA 1900	WiFi	GSM 850+WiFi	WCDMA 850 +WiFi	GSM 1900+WiFi	WCDMA 1900+WiFi
Body-Front (1.0cm)	0.224	0.146	0.087	0.112	0.052	0.276	0.198	0.139	0.164
Body-Back (1.0cm)	0.479	0.253	0.105	0.183	0.081	0.560	0.334	0.186	0.264
Body-Left (1.0cm)	0.065	0.046	0.001	0.001	0.001	0.066	0.047	0.002	0.002
Body-Right (1.0cm)	0.056	0.039	0.001	0.001	0.043	0.099	0.082	0.044	0.044
Body-Bottom (1.0cm)	0.025	0.020	0.047	0.070	/	/	/	/	/

Note:

1. If the sum of the 1g SAR measured for the simultaneously transmitting antennas is less than the SAR limit, SAR measurement for simultaneous transmission is not required.

SAR Evaluation Report 59 of 158

EUT SCAN RESULTS

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

Left Head Cheek (824.2 MHz Low Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.015 W/kg Power Drift-Finish : 0.015W/kg Power Drift (%) : -2.329

Tissue Data

 Type
 : Head

 Frequency
 : 824.20 MHz

 Epsilon
 : 41.60 F/m

 Sigma
 : 0.90 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 835
Duty Cycle Factor : 8
Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.121 W/kg 10 gram SAR value : 0.080 W/kg Area Scan Peak SAR : 0.132 W/kg Zoom Scan Peak SAR : 0.270 W/kg

Plot 1#

Report No: RSZ120929001-20

SAR Evaluation Report 60 of 158

Left Head Tilt (824.2 MHz Low Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.008 W/kg Power Drift-Finish : 0.008 W/kg Power Drift (%) : -2.027

Tissue Data

 Type
 : Head

 Frequency
 : 824.20 MHz

 Epsilon
 : 41.60 F/m

 Sigma
 : 0.90 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 835
Duty Cycle Factor : 8
Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.093 W/kg 10 gram SAR value : 0.052 W/kg Area Scan Peak SAR : 0.100 W/kg Zoom Scan Peak SAR : 0.280 W/kg

Plot 2#

Report No: RSZ120929001-20

SAR Evaluation Report 61 of 158

Right Head Cheek (824.2 MHz Low Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.016 W/kg Power Drift-Finish : 0.016 W/kg Power Drift (%) : -1.185

Tissue Data

 Type
 : Head

 Frequency
 : 824.20 MHz

 Epsilon
 : 41.60 F/m

 Sigma
 : 0.90 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 835
Duty Cycle Factor : 8
Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.115 W/kg 10 gram SAR value : 0.073 W/kg Area Scan Peak SAR : 0.128 W/kg Zoom Scan Peak SAR : 0.254 W/kg

Plot 3#

Report No: RSZ120929001-20

SAR Evaluation Report 62 of 158

Right Head Tilt (824.2 MHz Low Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.006 W/kg Power Drift-Finish : 0.006 W/kg Power Drift (%) : -1.419

Tissue Data

 Type
 : Head

 Frequency
 : 824.20 MHz

 Epsilon
 : 41.60 F/m

 Sigma
 : 0.90 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 835
Duty Cycle Factor : 8
Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.101 W/kg 10 gram SAR value : 0.058 W/kg Area Scan Peak SAR : 0.112 W/kg Zoom Scan Peak SAR : 0.297 W/kg

Plot 4#

Report No: RSZ120929001-20

SAR Evaluation Report 63 of 158

Body-worn Front-Headset (824.2 MHz Low Channel)

Measurement Data

Test mode : GSM Crest Factor : 8

Scan Type: : Complete

Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.176 W/kg Power Drift-Finish : 0.175 W/kg Power Drift (%) : -0.592

Tissue Data

 Type
 : Body

 Frequency
 : 824.20 MHz

 Epsilon
 : 55.24 F/m

 Sigma
 : 0.95 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 835
Duty Cycle Factor : 8
Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.176 W/kg 10 gram SAR value : 0.119 W/kg Area Scan Peak SAR : 0.203 W/kg Zoom Scan Peak SAR : 0.350 W/kg

Plot 5#

Report No: RSZ120929001-20

SAR Evaluation Report 64 of 158

Body-worn Back-Headset (824.2 MHz Low Channel)

Measurement Data

Test mode : GSM Crest Factor : 8

Scan Type: : Complete

Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.319 W/kg Power Drift-Finish : 0.312 W/kg Power Drift (%) : -2.224

Tissue Data

 Type
 : Body

 Frequency
 : 824.20 MHz

 Epsilon
 : 55.24 F/m

 Sigma
 : 0.95 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 835
Duty Cycle Factor : 8
Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.309 W/kg 10 gram SAR value : 0.426 W/kg Area Scan Peak SAR : 0.323 W/kg Zoom Scan Peak SAR : 0.580 W/kg

Plot 6#

Report No: RSZ120929001-20

SAR Evaluation Report 65 of 158

Report No: RSZ120929001-20

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

Left Head Cheek (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.007 W/kg Power Drift-Finish : 0.007 W/kg Power Drift (%) : -1.557

Tissue Data

Type : Head

Frequency : 1880.00 MHz
Epsilon : 40.25 F/m
Sigma : 1.41 S/m
Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 1900
Duty Cycle Factor : 8
Conversion Factor : 5.2

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.057 W/kg 10 gram SAR value : 0.039 W/kg Area Scan Peak SAR : 0.061 W/kg Zoom Scan Peak SAR : 0.160 W/kg

Plot 7#

SAR Evaluation Report 66 of 158

Left Head Tilt (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.002 W/kg Power Drift-Finish : 0.002 W/kg Power Drift (%) : -1.828

Tissue Data

Type : Head

 Frequency
 : 1880.00 MHz

 Epsilon
 : 40.25 F/m

 Sigma
 : 1.41 S/m

 Density
 : 1000.00 kg/cu. M

Probe Data

Serial No. : 500-00283
Frequency Band : 1900
Duty Cycle Factor : 8
Conversion Factor : 5.2

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.005 W/kg 10 gram SAR value : 0.002 W/kg Area Scan Peak SAR : 0.008 W/kg Zoom Scan Peak SAR : 0.010 W/kg

Plot 8#

Report No: RSZ120929001-20

SAR Evaluation Report 67 of 158

Right Head Cheek (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GSM
Crest Factor : 8
Scan Type : Complete

Area Scan : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.005 W/kg Power Drift-Finish : 0.005W/kg Power Drift (%) : -1.330

Tissue Data

Type : Head

Frequency : 1880.00 MHz
Epsilon : 40.25 F/m
Sigma : 1.41 S/m
Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 8 Conversion Factor : 5.2

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.053 W/kg 10 gram SAR value : 0.030 W/kg Area Scan Peak SAR : 0.058 W/kg Zoom Scan Peak SAR : 0.132 W/kg

Plot 9#

Report No: RSZ120929001-20

SAR Evaluation Report 68 of 158

Right Head Tilt (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GSM Crest Factor : 8

Scan Type : Complete

Area Scan : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.003 W/kg Power Drift-Finish : 0.003 W/kg Power Drift (%) : 1.023

Tissue Data

Type : Head

Frequency : 1880.00 MHz
Epsilon : 40.25 F/m
Sigma : 1.41 S/m
Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 8 Conversion Factor : 5.2

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.008 W/kg 10 gram SAR value : 0.003 W/kg Area Scan Peak SAR : 0.010 W/kg Zoom Scan Peak SAR : 0.015 W/kg

Plot 10#

Report No: RSZ120929001-20

SAR Evaluation Report 69 of 158

Body-worn Front-Headset (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GSM Crest Factor : 8 Scan Type : Comp

Scan Type : Complete Area Scan : 8x11x1 : Measurement

Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.021 W/kg Power Drift-Finish : 0.021 W/kg Power Drift (%) : -1.019

Tissue Data

Type : Body

Frequency : 1880.00 MHz
Epsilon : 53.64 F/m
Sigma : 1.52 S/m
Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 8 Conversion Factor : 5.0

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.048 W/kg 10 gram SAR value : 0.018 W/kg Area Scan Peak SAR : 0.050 W/kg Zoom Scan Peak SAR : 0.060 W/kg

Plot 11#

Report No: RSZ120929001-20

SAR Evaluation Report 70 of 158

Body- worn Back- Headset (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GSM Crest Factor : 8

Scan Type : Complete

Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.047 W/kg Power Drift-Finish : 0.046 W/kg Power Drift (%) : -1.525

Tissue Data

Type : Body

Frequency : 1880.00 MHz
Epsilon : 53.64 F/m
Sigma : 1.52 S/m
Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 8 Conversion Factor : 5.0

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.077 W/kg 10 gram SAR value : 0.043 W/kg Area Scan Peak SAR : 0.108 W/kg Zoom Scan Peak SAR : 0.400 W/kg

Plot 12#

Report No: RSZ120929001-20

SAR Evaluation Report 71 of 158

Report No: RSZ120929001-20

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

WCDMA850; Left Head Cheek (836.6 MHz Middle Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.024 W/kg Power Drift-Finish : 0.024 W/kg Power Drift (%) : -1.185

Tissue Data

 Type
 : Head

 Frequency
 : 836.60 MHz

 Epsilon
 : 41.54 F/m

 Sigma
 : 0.92 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 1 Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.158 W/kg 10 gram SAR value : 0.110 W/kg Area Scan Peak SAR : 0.172 W/kg Zoom Scan Peak SAR : 0.210 W/kg

Plot 13#

SAR Evaluation Report 72 of 158

WCDMA850; Left Head Tilt (836.6 MHz Middle Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.022 W/kg Power Drift-Finish : 0.022 W/kg Power Drift (%) : -1.324

Tissue Data

 Type
 : Head

 Frequency
 : 836.60 MHz

 Epsilon
 : 41.54 F/m

 Sigma
 : 0.92 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 1 Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.083 W/kg 10 gram SAR value : 0.050 W/kg Area Scan Peak SAR : 0.091 W/kg Zoom Scan Peak SAR : 0.110 W/kg

Plot 14#

Report No: RSZ120929001-20

SAR Evaluation Report 73 of 158

WCDMA850; Right Head Cheek (836.6 MHz Middle Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.020 W/kg Power Drift-Finish : 0.020 W/kg Power Drift (%) : -0.779

Tissue Data

 Type
 : Head

 Frequency
 : 836.60 MHz

 Epsilon
 : 41.54 F/m

 Sigma
 : 0.92 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 835
Duty Cycle Factor : 1
Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.170 W/kg 10 gram SAR value : 0.102 W/kg Area Scan Peak SAR : 0.176 W/kg Zoom Scan Peak SAR : 0.255 W/kg

Plot 15#

Report No: RSZ120929001-20

SAR Evaluation Report 74 of 158

WCDMA850; Right Head Tilt (836.6 MHz Middle Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.018 W/kg Power Drift-Finish : 0.018 W/kg Power Drift (%) : -1.198

Tissue Data

 Type
 : Head

 Frequency
 : 836.60 MHz

 Epsilon
 : 41.54 F/m

 Sigma
 : 0.92 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 835
Duty Cycle Factor : 1
Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.079 W/kg 10 gram SAR value : 0.043 W/kg Area Scan Peak SAR : 0.087 W/kg Zoom Scan Peak SAR : 0.125 W/kg

Plot 16#

Report No: RSZ120929001-20

SAR Evaluation Report 75 of 158

Report No: RSZ120929001-20

WCDMA1900; Left Head Cheek (1909.8 MHz High Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.015 W/kg Power Drift-Finish : 0.015 W/kg Power Drift (%) : -1.592

Tissue Data

 Type
 : Head

 Frequency
 : 1909.8 MHz

 Epsilon
 : 40.25 F/m

 Sigma
 : 1.42 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 1 Conversion Factor : 5.2

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.183 W/kg 10 gram SAR value : 0.120 W/kg Area Scan Peak SAR : 0.195 W/kg Zoom Scan Peak SAR : 0.455 W/kg

Plot 17#

SAR Evaluation Report 76 of 158

Report No: RSZ120929001-20

WCDMA1900; Left Head Tit (1909.8 MHz High Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.004 W/kg Power Drift-Finish : 0.004 W/kg Power Drift (%) : -2.377

Tissue Data

 Type
 : Head

 Frequency
 : 1909.8 MHz

 Epsilon
 : 40.25 F/m

 Sigma
 : 1.42 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 1900
Duty Cycle Factor : 1
Conversion Factor : 5.2

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.012 W/kg 10 gram SAR value : 0.008 W/kg Area Scan Peak SAR : 0.018 W/kg Zoom Scan Peak SAR : 0.020 W/kg

Plot 18#

SAR Evaluation Report 77 of 158

Report No: RSZ120929001-20

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

WCDMA1900; Right Head Cheek (1909.8 MHz High Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.020 W/kg Power Drift-Finish : 0.020 W/kg Power Drift (%) : -2.051

Tissue Data

 Type
 : Head

 Frequency
 : 1909.8 MHz

 Epsilon
 : 40.25 F/m

 Sigma
 : 1.42 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 1 Conversion Factor : 5.2

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.172 W/kg 10 gram SAR value : 0.135 W/kg Area Scan Peak SAR : 0.181 W/kg Zoom Scan Peak SAR : 0.430 W/kg

Plot 19#

SAR Evaluation Report 78 of 158

WCDMA1900; Right Head Tilt (1909.8 MHz High Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 11x8x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.006 W/kg Power Drift-Finish : 0.006 W/kg Power Drift (%) : -1.133

Tissue Data

 Type
 : Head

 Frequency
 : 1909.8 MHz

 Epsilon
 : 40.25 F/m

 Sigma
 : 1.42 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 1 Conversion Factor : 5.2

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

 1 gram SAR value
 : 0.017 W/kg

 10 gram SAR value
 : 0.011 W/kg

 Area Scan Peak SAR
 : 0.018 W/kg

 Zoom Scan Peak SAR
 : 0.025 W/kg

Plot 20#

Report No: RSZ120929001-20

SAR Evaluation Report 79 of 158

Left Head Cheek (2462 MHz High Channel)

Measurement Data

Crest Factor

: Complete

Scan Type Area Scan : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.007 W/kg Power Drift-Finish : 0.007 W/kg : -1.227 Power Drift (%)

Tissue Data

Type : Head

Frequency : 2462.00 MHz Epsilon : 40.39 F/m Sigma : 1.84 S/m Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 2450 Duty Cycle Factor : 1 Conversion Factor : 4.3

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)2$

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.057 W/kg 10 gram SAR value : 0.024 W/kg Area Scan Peak SAR : 0.059 W/kg Zoom Scan Peak SAR : 0.120 W/kg

Plot 21#

Report No: RSZ120929001-20

SAR Evaluation Report 80 of 158

Report No: RSZ120929001-20

Left Head Tilt (2462 MHz High Channel)

Measurement Data

Crest Factor

: Complete

Scan Type Area Scan : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.004 W/kg Power Drift-Finish : 0.004 W/kg : -2.215 Power Drift (%)

Tissue Data

Type : Head

Frequency : 2462.00 MHz Epsilon : 40.39 F/m Sigma : 1.84 S/m Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 : 2450 Frequency Band : 1 Duty Cycle Factor Conversion Factor : 4.3

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)2$

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.039 W/kg 10 gram SAR value : 0.018 W/kg Area Scan Peak SAR : 0.043 W/kg Zoom Scan Peak SAR : 0.071 W/kg

Plot 22#

SAR Evaluation Report 81 of 158

Right Head Cheek (2462 MHz High Channel)

Measurement Data

Crest Factor

: Complete

Scan Type Area Scan : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.005 W/kg Power Drift-Finish : 0.005 W/kg Power Drift (%) : -1.226

Tissue Data

Type : Head

Frequency : 2462.00 MHz Epsilon : 40.39 F/m Sigma : 1.84 S/m Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 2450 Duty Cycle Factor : 1 Conversion Factor : 4.3

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)2$

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.052 W/kg 10 gram SAR value : 0.020 W/kg Area Scan Peak SAR : 0.056 W/kg Zoom Scan Peak SAR : 0.105 W/kg

Plot 23#

Report No: RSZ120929001-20

SAR Evaluation Report 82 of 158

Right Head Tilt (2462 MHz High Channel)

Measurement Data

Crest Factor

: Complete

Scan Type Area Scan : 11x8x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.002 W/kg Power Drift-Finish : 0.002 W/kg : -1.872 Power Drift (%)

Tissue Data

Type : Head

Frequency : 2462.00 MHz Epsilon : 40.39 F/m Sigma : 1.84 S/m Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 2450 Duty Cycle Factor : 1 Conversion Factor : 4.3

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)2$

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.033 W/kg 10 gram SAR value : 0.015 W/kg : 0.036 W/kg Area Scan Peak SAR Zoom Scan Peak SAR : 0.065 W/kg

Plot 24#

Report No: RSZ120929001-20

SAR Evaluation Report 83 of 158

Hot Spot: Body-worn-Front (824.2 MHz Low Channel)

Measurement Data

Test mode : GPRS Crest Factor : 2.66 Scan Type : : Complete

Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.214 W/kg Power Drift-Finish : 0.211 W/kg Power Drift (%) : -1.422

Tissue Data

 Type
 : Body

 Frequency
 : 824.20 MHz

 Epsilon
 : 55.24 F/m

 Sigma
 : 0.95 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 2.66 Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.224 W/kg 10 gram SAR value : 0.125 W/kg Area Scan Peak SAR : 0.243 W/kg Zoom Scan Peak SAR : 0.290 W/kg

Plot 25#

Report No: RSZ120929001-20

SAR Evaluation Report 84 of 158

Hot Spot: Body-worn-Back (824.2 MHz Low Channel)

Measurement Data

Test mode : GPRS Crest Factor : 2.66 Scan Type : : Complete

Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.399 W/kg Power Drift-Finish : 0.385 W/kg Power Drift (%) : -3.636

Tissue Data

 Type
 : Body

 Frequency
 : 824.20 MHz

 Epsilon
 : 55.24 F/m

 Sigma
 : 0.95 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 2.66 Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.479 W/kg 10 gram SAR value : 0.300 W/kg Area Scan Peak SAR : 0.523 W/kg Zoom Scan Peak SAR : 0.660 W/kg

Plot 26#

SAR Evaluation Report 85 of 158

Hot Spot: Body-worn-Left (824.2 MHz Low Channel)

Measurement Data

Test mode : GPRS Crest Factor : 2.66 Scan Type : : Complete

Area Scan : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.058 W/kg Power Drift-Finish : 0.057 W/kg Power Drift (%) : -1.658

Tissue Data

 Type
 : Body

 Frequency
 : 824.20 MHz

 Epsilon
 : 55.24 F/m

 Sigma
 : 0.95 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 2.66 Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.065 W/kg 10 gram SAR value : 0.032 W/kg Area Scan Peak SAR : 0.071 W/kg Zoom Scan Peak SAR : 0.158 W/kg

Plot 27#

Report No: RSZ120929001-20

SAR Evaluation Report 86 of 158

Hot Spot: Body-worn-Right (824.2 MHz Low Channel)

Measurement Data

Test mode : GPRS Crest Factor : 2.66 Scan Type : : Complete

Area Scan : 7x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.050 W/kg Power Drift-Finish : 0.049 W/kg Power Drift (%) : -1.034

Tissue Data

 Type
 : Body

 Frequency
 : 824.20 MHz

 Epsilon
 : 55.24 F/m

 Sigma
 : 0.95 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 2.66 Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.056 W/kg 10 gram SAR value : 0.037 W/kg Area Scan Peak SAR : 0.063 W/kg Zoom Scan Peak SAR : 0.125 W/kg

Plot 28#

Report No: RSZ120929001-20

SAR Evaluation Report 87 of 158

Hot Spot: Body-worn-Bottom (824.2 MHz Low Channel)

Measurement Data

Test mode : GPRS Crest Factor : 2.66 Scan Type : : Complete

Area Scan : 7x10x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.015 W/kg Power Drift-Finish : 0.015 W/kg Power Drift (%) : -1.698

Tissue Data

 Type
 : Body

 Frequency
 : 824.20 MHz

 Epsilon
 : 55.24 F/m

 Sigma
 : 0.95 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 835 Duty Cycle Factor : 2.66 Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.025 W/kg 10 gram SAR value : 0.013 W/kg Area Scan Peak SAR : 0.028 W/kg Zoom Scan Peak SAR : 0.057 W/kg

Plot 29#

Report No: RSZ120929001-20

SAR Evaluation Report 88 of 158

Hot Spot: Body- worn Front (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GPRS Crest Factor : 2.66 Scan Type : Complete

Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.103 W/kg Power Drift-Finish : 0.098 W/kg Power Drift (%) : -4.468

Tissue Data

Type : Body

 Frequency
 : 1880.00 MHz

 Epsilon
 : 53.64 F/m

 Sigma
 : 1.52 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 2.66 Conversion Factor : 5.0

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.087 W/kg 10 gram SAR value : 0.041 W/kg Area Scan Peak SAR : 0.100 W/kg Zoom Scan Peak SAR : 0.220 W/kg

Plot 30#

Report No: RSZ120929001-20

SAR Evaluation Report 89 of 158

Hot Spot: Body- worn Back (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GPRS
Crest Factor : 2.66
Scan Type : Complete

Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.085 W/kg Power Drift-Finish : 0.084 W/kg Power Drift (%) : -1.190

Tissue Data

Type : Body

Frequency : 1880.00 MHz
Epsilon : 53.64 F/m
Sigma : 1.52 S/m
Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 2.66 Conversion Factor : 5.0

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.105 W/kg 10 gram SAR value : 0.045 W/kg Area Scan Peak SAR : 0.126 W/kg Zoom Scan Peak SAR : 0.250 W/kg

Plot 31#

SAR Evaluation Report 90 of 158

Hot Spot: Body- worn-Left (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GPRS Crest Factor : 2.66 Scan Type : Complete

Area Scan : 7x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.001 W/kg Power Drift-Finish : 0.001 W/kg Power Drift (%) : -2.825

Tissue Data

Type : Body

Frequency : 1880.00 MHz
Epsilon : 53.64 F/m
Sigma : 1.52 S/m
Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 2.66 Conversion Factor : 5.0

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.001 W/kg 10 gram SAR value : 0.001 W/kg Area Scan Peak SAR : 0.001 W/kg Zoom Scan Peak SAR : 0.001 W/kg

Plot 32#

Report No: RSZ120929001-20

SAR Evaluation Report 91 of 158

Hot Spot: Body- worn-Right (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GPRS Crest Factor : 2.66 Scan Type : Complete

Area Scan : 7x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.001 W/kg Power Drift-Finish : 0.001 W/kg Power Drift (%) : -1.682

Tissue Data

Type : Body

Frequency : 1880.00 MHz
Epsilon : 53.64 F/m
Sigma : 1.52 S/m
Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 2.66 Conversion Factor : 5.0

Probe Sensitivity : 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.001 W/kg 10 gram SAR value : 0.001 W/kg Area Scan Peak SAR : 0.001 W/kg Zoom Scan Peak SAR : 0.001 W/kg

Plot 33#

Report No: RSZ120929001-20

SAR Evaluation Report 92 of 158

Hot Spot: Body- worn-Bottom (1880.0 MHz Middle Channel)

Measurement Data

Test mode : GPRS Crest Factor : 2.66 Scan Type : Complete

Area Scan : 7x10x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.032 W/kg Power Drift-Finish : 0.031 W/kg Power Drift (%) : -2.987

Tissue Data

Type : Body

 Frequency
 : 1880.00 MHz

 Epsilon
 : 53.64 F/m

 Sigma
 : 1.52 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 2.66 Conversion Factor : 5.0

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.047 W/kg 10 gram SAR value : 0.015 W/kg Area Scan Peak SAR : 0.055 W/kg Zoom Scan Peak SAR : 0.160 W/kg

Plot 34#

Report No: RSZ120929001-20

SAR Evaluation Report 93 of 158

WCDMA850; Body-worn-Front (836.6 MHz Middle Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 8x11x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.129 W/kg Power Drift-Finish : 0.128 W/kg Power Drift (%) : -1.005

Tissue Data

 Type
 : Body

 Frequency
 : 836.60 MHz

 Epsilon
 : 55.31 F/m

 Sigma
 : 0.97 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 850
Duty Cycle Factor : 1
Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.146 W/kg 10 gram SAR value : 0.083 W/kg Area Scan Peak SAR : 0.157 W/kg Zoom Scan Peak SAR : 0.210 W/kg

Plot 35#

Report No: RSZ120929001-20

SAR Evaluation Report 94 of 158

WCDMA850; Body-worn-Back (836.6 MHz Middle Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 8x11x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.215 W/kg Power Drift-Finish : 0.211 W/kg Power Drift (%) : -1.896

Tissue Data

 Type
 : Body

 Frequency
 : 836.60 MHz

 Epsilon
 : 55.31 F/m

 Sigma
 : 0.97 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 850
Duty Cycle Factor : 1
Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.253 W/kg 10 gram SAR value : 0.165 W/kg Area Scan Peak SAR : 0.272 W/kg Zoom Scan Peak SAR : 0.360 W/kg

Plot 36#

SAR Evaluation Report 95 of 158

WCDMA850; Body-worn-Left (836.6 MHz Middle Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 8x11x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.038 W/kg Power Drift-Finish : 0.037 W/kg Power Drift (%) : -0.194

Tissue Data

 Type
 : Body

 Frequency
 : 836.60 MHz

 Epsilon
 : 55.31 F/m

 Sigma
 : 0.97 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 850 Duty Cycle Factor : 1 Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.046 W/kg 10 gram SAR value : 0.025 W/kg Area Scan Peak SAR : 0.051 W/kg Zoom Scan Peak SAR : 0.070 W/kg

Plot 37#

Report No: RSZ120929001-20

SAR Evaluation Report 96 of 158

WCDMA850; Body-worn-Right (836.6 MHz Middle Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 8x11x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.034 W/kg Power Drift-Finish : 0.034W/kg Power Drift (%) : -1.156

Tissue Data

 Type
 : Body

 Frequency
 : 836.60 MHz

 Epsilon
 : 55.31 F/m

 Sigma
 : 0.97 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 850
Duty Cycle Factor : 1
Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.039 W/kg 10 gram SAR value : 0.016 W/kg Area Scan Peak SAR : 0.045 W/kg Zoom Scan Peak SAR : 0.080 W/kg

Plot 38#

SAR Evaluation Report 97 of 158

WCDMA850; Body-worn-Bottom (836.6 MHz Middle Channel)

Measurement Data

Test mode : WCDMA850

Crest Factor : 1

Scan Type : Complete

Area Scan : 8x11x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.015 W/kg Power Drift-Finish : 0.015 W/kg Power Drift (%) : -1.726

Tissue Data

 Type
 : Body

 Frequency
 : 836.60 MHz

 Epsilon
 : 55.31 F/m

 Sigma
 : 0.97 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283
Frequency Band : 850
Duty Cycle Factor : 1
Conversion Factor : 6.6

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.020 W/kg 10 gram SAR value : 0.011 W/kg Area Scan Peak SAR : 0.022 W/kg Zoom Scan Peak SAR : 0.037 W/kg

Plot 39#

SAR Evaluation Report 98 of 158

WCDMA1900; Body-worn-Front (1909.8 MHz High Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 8x11x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.085 W/kg Power Drift-Finish : 0.082 W/kg Power Drift (%) : -3.671

Tissue Data

Type : Body

 Frequency
 : 1909.80 MHz

 Epsilon
 : 53.72 F/m

 Sigma
 : 1.53 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 1 Conversion Factor : 5.0

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.112 W/kg 10 gram SAR value : 0.049 W/kg Area Scan Peak SAR : 0.124 W/kg Zoom Scan Peak SAR : 0.210 W/kg

Plot 40#

SAR Evaluation Report 99 of 158

WCDMA1900; Body-worn-Back (1909.8 MHz High Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 8x11x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.130 W/kg Power Drift-Finish : 0.128 W/kg Power Drift (%) : -1.562

Tissue Data

Type : Body

Frequency : 1909.80 MHz
Epsilon : 53.72 F/m
Sigma : 1.53 S/m
Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 1 Conversion Factor : 5.0

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)2$

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.183 W/kg 10 gram SAR value : 0.084 W/kg Area Scan Peak SAR : 0.202 W/kg Zoom Scan Peak SAR : 0.370 W/kg

Plot 41#

SAR Evaluation Report 100 of 158

WCDMA1900; Body-worn-Left (1909.8 MHz High Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 8x11x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.001 W/kg Power Drift-Finish : 0.001 W/kg Power Drift (%) : -2.861

Tissue Data

Type : Body

 Frequency
 : 1909.80 MHz

 Epsilon
 : 53.72 F/m

 Sigma
 : 1.53 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 1 Conversion Factor : 5.0

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)2$

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.001 W/kg 10 gram SAR value : 0.001 W/kg Area Scan Peak SAR : 0.001 W/kg Zoom Scan Peak SAR : 0.001 W/kg

Plot 42#

SAR Evaluation Report 101 of 158

WCDMA1900; Body-worn-Right (1909.8 MHz High Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 8x11x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.001 W/kg Power Drift-Finish : 0.001 W/kg Power Drift (%) : -3.226

Tissue Data

Type : Body

Frequency : 1909.80 MHz
Epsilon : 53.72 F/m
Sigma : 1.53 S/m
Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 1 Conversion Factor : 5.0

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

 1 gram SAR value
 : 0.001 W/kg

 10 gram SAR value
 : 0.001 W/kg

 Area Scan Peak SAR
 : 0.001 W/kg

 Zoom Scan Peak SAR
 : 0.001 W/kg

Plot 43#

SAR Evaluation Report 102 of 158

WCDMA1900; Body-worn-Bottom (1909.8 MHz High Channel)

Measurement Data

Test mode : WCDMA1900

Crest Factor : 1

Scan Type : Complete

Area Scan : 7x11x1: Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7: Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.052 W/kg Power Drift-Finish : 0.052 W/kg Power Drift (%) : -0.891

Tissue Data

Type : Body

 Frequency
 : 1909.80 MHz

 Epsilon
 : 53.72 F/m

 Sigma
 : 1.53 S/m

 Density
 : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 1900 Duty Cycle Factor : 1 Conversion Factor : 5.0

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)$ 2

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.070 W/kg 10 gram SAR value : 0.038 W/kg Area Scan Peak SAR : 0.073 W/kg Zoom Scan Peak SAR : 0.260 W/kg

Plot 44#

SAR Evaluation Report 103 of 158

Hot Spot: 802.11b; Body-Worn-Front (2462 MHz Channel 11)

Measurement Data

Crest Factor

: Complete

Scan Type Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.039 W/kg Power Drift-Finish : 0.039 W/kg Power Drift (%) : -1.216

Tissue Data

Type : Body Frequency : 2462 MHz Epsilon : 52.86 F/m Sigma : 2.01 S/m Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 2450 Duty Cycle Factor : 1 Conversion Factor : 4.3

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)2$

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.052 W/kg 10 gram SAR value : 0.030 W/kg Area Scan Peak SAR : 0.057 W/kg Zoom Scan Peak SAR : 0.086 W/kg

Plot 45#

SAR Evaluation Report 104 of 158

Hot Spot: 802.11b; Body-Worn-Back (2462 MHz Channel 11)

Measurement Data

Crest Factor

: Complete

Scan Type Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.072 W/kg Power Drift-Finish : 0.071 W/kg : -1.408 Power Drift (%)

Tissue Data

Type : Body Frequency : 2462 MHz Epsilon : 52.86 F/m Sigma : 2.01 S/m Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 : 2450 Frequency Band Duty Cycle Factor : 1 Conversion Factor : 4.3

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)2$

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.081 W/kg 10 gram SAR value : 0.053 W/kg : 0.092 W/kg Area Scan Peak SAR Zoom Scan Peak SAR : 0.120 W/kg

Plot 46#

105 of 158 SAR Evaluation Report

Hot Spot: 802.11b; Body-Worn-Left (2462 MHz Channel 11)

Measurement Data

Crest Factor

: Complete

Scan Type Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.001 W/kg Power Drift-Finish : 0.001 W/kg Power Drift (%) : -2.417

Tissue Data

Type : Body Frequency : 2462 MHz Epsilon : 52.86 F/m Sigma : 2.01 S/m Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 2450 Duty Cycle Factor : 1 Conversion Factor : 4.3

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)2$

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.001 W/kg 10 gram SAR value : 0.001 W/kg Area Scan Peak SAR : 0.001 W/kg Zoom Scan Peak SAR : 0.001 W/kg

Plot 47#

106 of 158 SAR Evaluation Report

Hot Spot: 802.11b; Body-Worn-Right (2462 MHz Channel 11)

Measurement Data

Crest Factor

: Complete

Scan Type Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.021 W/kg Power Drift-Finish : 0.021 W/kg Power Drift (%) : -2.582

Tissue Data

Type : Body Frequency : 2462 MHz Epsilon : 52.86 F/m Sigma : 2.01 S/m Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 2450 Duty Cycle Factor : 1 Conversion Factor : 4.3

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)2$

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.043 W/kg 10 gram SAR value : 0.021 W/kg Area Scan Peak SAR : 0.052 W/kg Zoom Scan Peak SAR : 0.094 W/kg

Plot 48#

107 of 158 SAR Evaluation Report

Report No: RSZ120929001-20

Test Laboratory: Bay Area Compliance Lab Corp. (Shenzhen)

Hot Spot: 802.11b; Body-Worn-Top (2462 MHz Channel 11)

Measurement Data

Crest Factor

: Complete

Scan Type Area Scan : 8x11x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.019 W/kg Power Drift-Finish : 0.019 W/kg Power Drift (%) : -1.251

Tissue Data

Type : Body Frequency : 2462 MHz Epsilon : 52.86 F/m Sigma : 2.01 S/m Density : 1000.00 kg/cu. m

Probe Data

Serial No. : 500-00283 Frequency Band : 2450 Duty Cycle Factor : 1 Conversion Factor : 4.3

Probe Sensitivity : 1.20 1.20 1.20 $\mu V/(V/m)2$

Compression Point : 95.00 mV Offset : 1.56 mm

1 gram SAR value : 0.029 W/kg 10 gram SAR value : 0.011 W/kg Area Scan Peak SAR : 0.031 W/kg Zoom Scan Peak SAR : 0.050 W/kg

Plot 49#

SAR Evaluation Report 108 of 158 The uncertainty budget has been determined for the measurement system and is given in the following Table.

Report No: RSZ120929001-20

Measurement Uncertainty for 300MHz to 3GHz

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i ¹ (1-g)	c _i ¹ (10-g)	Standard Uncertainty (1-g) %	Standard Uncertainty (10-g) %			
Measurement System										
Probe Calibration	3.5	normal	1	1	1	3.5	3.5			
Axial Isotropy	3.7	rectangular	$\sqrt{3}$	$(1-cp)^{1/2}$	$(1-cp)^1$	1.5	1.5			
Hemispherical Isotropy	10.9	rectangular	$\sqrt{3}$	√ср	√ср	4.4	4.4			
Boundary Effect	1.0	rectangular	$\sqrt{3}$	1	1	0.6	0.6			
Linearity	4.7	rectangular	$\sqrt{3}$	1	1	2.7	2.7			
Detection Limit	1.0	rectangular	$\sqrt{3}$	1	1	0.6	0.6			
Readout Electronics	1.0	normal	1	1	1	1.0	1.0			
Response Time	0.8	rectangular	$\sqrt{3}$	1	1	0.5	0.5			
Integration Time	1.7	rectangular	$\sqrt{3}$	1	1	1.0	1.0			
RF Ambient Condition -Noise	0.006	rectangular	$\sqrt{3}$	1	1	0.003	0.003			
RF Ambient Condition - Reflections	3.0	rectangular	$\sqrt{3}$	1	1	1.7	1.7			
Probe Positioner Mech. Restrictions	0.4	rectangular	$\sqrt{3}$	1	1	0.2	0.2			
		Res	triction							
Probe Positioning with respect to Phantom Shell	2.9	rectangular	$\sqrt{3}$	1	1	1.7	1.7			
Extrapolation and Integration	3.7	rectangular	$\sqrt{3}$	1	1	2.1	2.1			
Test Sample Positioning	0.023	normal	1	1	1	0.023	0.023			
Device Holder Uncertainty	6.215	normal	1	1	1	6.215	6.215			
Drift of Output Power	4.627	rectangular	$\sqrt{3}$	1	1	2.67	2.67			
		Phantor	m and Setu	ıp						
Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	$\sqrt{3}$	1	1	2.0	2.0			
Liquid Conductivity(target)	5.0	rectangular	$\sqrt{3}$	0.7	0.5	2.0	1.4			
Liquid Conductivity(meas.)	1.938	normal	1	0.7	0.5	1.36	0.97			
Liquid Permittivity(target)	5.0	rectangular	$\sqrt{3}$	0.6	0.5	1.7	1.4			
Liquid Permittivity(meas.)	3.093	normal	1	0.6	0.5	1.86	1.55			
Combined Uncertainty		RSS				10.78	10.55			
Expanded uncertainty (coverage factor=2)		Normal(k=2)				21.56	21.10			

SAR Evaluation Report 109 of 158

APPENDIX B – PROBE CALIBRATION CERTIFICATES

NCL CALIBRATION LABORATORIES

Report No: RSZ120929001-20

Calibration File No.: 1427-1430

Client .: BACL Lab

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe
Record of Calibration
Head and Body
Manufacturer: APREL Laboratories

Model No.: E-020 Serial No.: 500-00283

Calibration Procedure: D01-032-E020-V2, D22-012-Tissue, D28-002-Dipole

Project No: BACL-5673

Calibrated: 8th August 2012 Released on: 9th August 2012

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

Art Brennan, Quality Manager

NCL CALIBRATION LABORATORIES

Suite 102, 303 Terry Fox Dr. OTTAWA, ONTARIO CANADA K2K 3J1 Division of APREL Lab. TEL: (613) 435-8300 FAX: (613) 435-8306

SAR Evaluation Report 110 of 158

Division of APREL Inc.

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the references listed below. Calibration is performed using accepted methodologies as per the references listed below. Probes are calibrated for air, and tissue and the values reported are the results from the physical quantification of the probe through meteorgical practices.

Report No: RSZ120929001-20

Calibration Method

Probes are calibrated using the following methods.

<1000MHz

TEM Cell for sensitivity in air

Standard phantom using temperature transfer method for sensitivity in tissue

>1000MHz

Waveguide* method to determine sensitivity in air and tissue

*Waveguide is numerically (simulation) assessed to determine the field distribution and power

The boundary effect for the probe is assessed using a standard flat phantom where the probe output is compared against a numerically simulated series of data points

References

- IEEE Standard 1528 (2003) including Amendment 1
 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- o EN 62209-1 (2006)
 - Human Exposure to RF Fields from hand-held and body-mounted wireless communication devices Human models. instrumentation, and procedures-Part 1: Procedure to measure the Specific Absorption Rate (SAR) for hand-held mobile wireless devices
- IEC 62209-2 Ed. 1.0 (2010-03)
 Human exposure to RF fields from hand-held and body-mounted wireless devices Human models, instrumentation, and procedures - Part 2: specific absorption rate (SAR) for wireless communication devices (30 MHz - 6 GHz)
- TP-D01-032-E020-V2 E-Field probe calibration procedure
- o D22-012-Tissue dielectric tissue calibration procedure
- D28-002-Dipole procedure for validation of SAR system using a dipole
- IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Page 2 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

SAR Evaluation Report 111 of 158

Division of APREL Inc.

Conditions

Probe 500-00283 was a recalibration with the exception frequency of 450 MHz .which was a new calibration

Ambient Temperature of the Laboratory: 22 °C +/- 1.5 °C Temperature of the Tissue: 21 °C +/- 1.5 °C Relative Humidity: < 60%

Primary Measurement Standards

Instrument	Serial Number	Cal due date
Power meter Anritsu MA2408A	90025437	Nov.4, 2012
Power Sensor Anritsu MA2481D	103555	Nov 4, 2012
Attenuator HP 8495A (70dB)	1944A10711	Sept. 14, 2012
Network Analyzer Anritsu MT8801C	MB11855	Feb. 8, 2013

Secondary Measurement Standards

Signal Generator Agilent E4438C -506 MY55182336 June 7, 2013

Attestation

The below named signatories have conducted the calibration and review of the data which is presented in this calibration report.

We the undersigned attest that to the best of our knowledge the calibration of this subject has been accurately conducted and that all information contained within the results pages have been reviewed for accuracy.

Art Brennan, Quality Manager

Dan Brooks, Test Engineer

Page 3 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

SAR Evaluation Report 112 of 158

Division of APREL Inc.

Probe Summary

Probe Type: E-Field Probe E020

Report No: RSZ120929001-20

Serial Number: 500-00283

Frequency: As presented on page 5

Sensor Offset: 1.56

Sensor Length: 2.5

Tip Enclosure: Composite*

Tip Diameter: < 2.9 mm

Tip Length: 55 mm

Total Length: 289 mm

*Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Air

Diode Compression Point: 95 mV

SAR Evaluation Report 113 of 158

Page 4 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

Division of APREL Inc.

Calibration for Tissue (Head H, Body B)

Frequency	Tissue Type	Measured Epsilon	Measured Sigma	Calibration Uncertainty	Tolerance Uncertainty for 5%*	Conversion Factor
450 H	<mark>Head</mark>	<mark>43.98</mark>	0.9	<mark>3.5</mark>	<mark>3.4</mark>	<mark>6</mark>
450 B	<mark>Body</mark>	<mark>57.07</mark>	0.92	<mark>3.5</mark>	<mark>3.4</mark>	<mark>6</mark>
750 H	Head	X	X	X	X	X
750 B	Body	X	Х	X	X	X
835 H	<mark>Head</mark>	<mark>42.35</mark>	<mark>0.938</mark>	3.5	<mark>3.4</mark>	<mark>6.6</mark>
835 B	<mark>Body</mark>	<mark>56.65</mark>	<mark>1.018</mark>	3.5	<mark>3.4</mark>	<mark>6.6</mark>
900 H	<mark>Head</mark>	<mark>41.35</mark>	<mark>0.98</mark>	3.5	<mark>3.4</mark>	<mark>6</mark>
900 B	<mark>Body</mark>	<mark>56.08</mark>	1.05	3.5	<mark>3.4</mark>	<mark>6</mark>
1450 H	Head	X	X	X	X	X
1450 B	Body	Х	X	X	X	X
1500 H	Head	Х	X	X	X	X
1500 B	Body	X	X	X	X	X
1640 H	Head	X	X	X	X	X
1640 B	Body	X	X	X	X	X
1750 H	Head	X	X	X	X	X
1750 B	Body	X	X	X	X	X
1800 H	Head	Х	Х	X	X	X
1800 B	Body	X	X	X	X	X
1900 H	<mark>Head</mark>	<mark>38.72</mark>	1.35	<mark>3.5</mark>	<mark>2.7</mark>	<mark>5.2</mark>
1900 B	Body	<mark>51.62</mark>	<mark>1.48</mark>	<mark>3.5</mark>	<mark>2.7</mark>	<mark>5</mark>
2000 H	Head	X	X	X	X	X
2000 B	Body	Х	X	X	X	X
2100 H	Head	X	X	X	X	X
2100 B	Body	Х	X	X	Х	X
2300 H	Head	Х	Х	X	X	X
2300 B	Body	Х	X	X	Х	X
2450 H	<mark>Head</mark>	<mark>38.06</mark>	1.87	3.5	<mark>3.5</mark>	<mark>4.9</mark>
2450B	<mark>Body</mark>	<mark>50.22</mark>	<mark>2.03</mark>	<mark>3.5</mark>	<mark>3.5</mark>	<mark>4.3</mark>
2600 H	Head	Х	X	X	Х	X
2600 B	Body	X	X	X	X	X
3000 H	Head	X	X	X	X	X
3000 B	Body	X	X	X	X	X
3600 H	Head	X	Х	X	X	X
3600 B	Body	Х	X	Х	Х	X
5200 H	Head	X	X	Х	Х	X
5200 B	Body	Х	Х	Х	X	X
5600 H	Head	Х	X	Х	Х	X
5600 B	Body	Х	Х	Х	Х	Х
5800 H	Head	Х	Х	Х	Х	X
5800 B	Body	Х	X	X	Х	Х

Page 5 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

SAR Evaluation Report 114 of 158

Division of APREL Inc.

Boundary Effect:

Uncertainty resulting from the boundary effect is less than 2.1% for the distance between the tip of the probe and the tissue boundary, when less than 0.58mm.

Report No: RSZ120929001-20

Spatial Resolution:

The spatial resolution uncertainty is less than 1.5% for 4.9mm diameter probe. The spatial resolution uncertainty is less than 1.0% for 2.5mm diameter probe.

DAQ-PAQ Contribution

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 $M\Omega$.

Boundary Effect:

For a distance of 0.58mm the worst case evaluated uncertainty (increase in the probe sensitivity) is less than 2.1%.

NOTES:

*The maximum deviation from the centre frequency when comparing the lower to upper range is listed.

Page 6 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

SAR Evaluation Report 115 of 158

Division of APREL Inc.

Receiving Pattern Air

SAR Evaluation Report 116 of 158

Page 7 of 10
This page has been reviewed for content and attested to on Page 2 of this document.

NCL Calibration Laboratories Division of APREL Inc.

Isotropy Error Air

Isotropicity Tissue:

0.10 dB

Page 8 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

SAR Evaluation Report 117 of 158

Division of APREL Inc.

Dynamic Range

Page 9 of 10
This page has been reviewed for content and attested to on Page 2 of this document.

SAR Evaluation Report 118 of 158

Division of APREL Inc.

Video Bandwidth

Probe Frequency Characteristics

Report No: RSZ120929001-20

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2012.

Page 10 of 10

This page has been reviewed for content and attested to on Page 2 of this document.

SAR Evaluation Report 119 of 158

APPENDIX C – DIPOLE CALIBRATION CERTIFICATES

NCL CALIBRATION LABORATORIES

Report No: RSZ120929001-20

Calibration File No: DC-1327 Project Number: BAC-dipole-cal-5618

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole(Head and Body)

Manufacturer: APREL Laboratories
Part number: ALS-D-835-S-2
Frequency: 835 MHz
Serial No: 180-00558

Customer: Bay Area Compliance Laboratory

Calibrated: 25th August 2011 Released on: 25th August 2011

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

Suite 102, 303 Terry Fox Dr. Kanata, ONTARIO CANADA K2K 3J1 Division of APREL Lab. TEL: (613) 435-8300 FAX: (613)435-8306

SAR Evaluation Report 120 of 158