OCTAL BUFFER/LINE DRIVERS WITH 3-STATE OUTPUTS(NONINVERTED)

DESCRIPTION

The M74LS244P is a semiconductor integrated circuit containing 2 blocks of buffers with 3-state non-inverted output and common output controlling input for all 4 discrete circuits.

FEATURES

- Low input load factor (pnp input)
- Hysteresis provided (= 400mV typical)
- High breakdown input voltage (V₁≥15V)
- Output control input having same phase for 2 circuits
- · High fan-out, 3-state output $(I_{OL} = 24mA, I_{OH} = -15mA)$
- Wide operating temperature range (T_a = -20 ~ +75°C)

APPLICATION

General purpose, for use in industrial and consumer equipment.

FUNCTIONAL DESCRIPTION

The use of pnp transistors in the input circuit has enabled the achievement of small input load factor. With hysteresis characteristics, the buffer has a 3-state noninverted output with high noise margin.

When output control input \overline{OC} is low, the output Y is low if input A is low and Y is high if A is high. When OC is high, all of Y1, Y2, Y3, and Y4 are in the highimpedance state, irrespective of the status of A.

By connecting 100 with 200, it becomes possible to control the output of all 8 circuits simultaneously. Output can be terminated by a load resistor of 133Ω or over.

For standard characteristics, see M74LS241P.

FUNCTION TABLE (Note 1)

Α	ōc	Υ
L	L	L
н	L	Н
Х	Н	Z

Note 1: Z : high-impedance X: irrelevant

OCTAL BUFFER/LINE DRIVERS WITH 3-STATE OUTPUTS(NONINVERTED)

ABSOLUTE MAXIMUM RATINGS ($T_a = -20 - +75^{\circ}C$, unless otherwise noted)

Parameter	Conditions	Limits	Unit
Supply voltage		-0.5~+7	V
		-0.5~+15	V
	Off-state	-0.5~+5.5	V
		-20-+75	℃
		-65~+150	°C
	Parameter Supply voltage Input voltage Output voltage Operating free-air ambient temperature range Storage temperature range	Supply voltage Input voltage Output voltage Operating free-air ambient temperature range	Supply voltage

RECOMMENDED OPERATING CONDITIONS ($Ta = -20 \sim +75^{\circ}C$, unless otherwise noted)

				Limits			
Symbol	Parameter		Min	Тур	Max	Unit	
Voc	Supply voltage		4.75	5	5.25	V	
		V _{OH} ≥2.4V			-3	mA	
ЮН	High-level output current	V _{OH} ≧ 2 V			- 15	mΑ	
loL	Low-level output current	V _{OL} ≤0.4V			12	mA	
		V _{OL} ≦0.5V			24	mA	

ELECTRICAL GHARACTERISTICS ($Ta = -20 - +75^{\circ}C$, unless otherwise noted)

I		Parameter Test conditions		Limits			Unit
Symbol	Parameter			Min	Тур∗	Max	Onit
VIH	High-level input voltage			2			V
VII	Low-level input voltage					0.8	
V _{T+} -V _{T-}	Hysteresis	V _{CC} =4.75V		0.2	0.4		V
V _{IC}	Input clamp voltage	V _{CC} =4.75V, I _{IC} =-	-18mA			1.5	V
		V _{CC} =4.75V V _I =0	.8V, I _{OH} =-3mA	2.4	3.4		V
V _{OH}	High-level output voltage	$V_1=2V$ $V_1=0$.5V, I _{OH} = -15mA	2			V
		V _{CC} =4.75V	I _{OL} =12mA		0.25	0.4	V
VoL	V _{OL} Low-level output voltage	V1=0.8V, V1=2V	IOL=24mA		0.35	0.5	V
lozh	Off-state high-level output current	V _{CC} =5.25V, V _I =2V	/, V ₀ =2.7V			20	μΑ
lozh	Off-state low-level output current	V _{CC} =5.25V, V _I =2V, V _O =0.4V				-20	μΑ
-026		V _{CC} =5.25V, V ₁ =2.	7V			20	μΑ
liн	High-level input current	V _{CC} =5.25V, V _I =10	V			0.1	mA
1 _{1L}	Low-level input current	V _{CC} =5.25V, V _I =0.	4V			-0.2	mA
los	Short-circuit output current (Note 2)	V _{CC} =5.25V, V _O =0	v	- 40		-225	mA
I CCH	Supply current, all outputs high	$V_{CC} = 5.25V, V_1 = 0V, V_1 = 4.5V$			17	27	mA
ICCL	Supply current, all outputs low	V _{CC} =5.25V, V _I = 0 V			27	46	mA
locz	Supply current, all outputs off	V _{CC} =5.25V, V _I =4.5V			32	54	mA

^{* :} All typical values are at V_{CC} = 5V, Ta = 25°C.

SWITCHING CHARACTERISTICS ($V_{CC} = 5V$, $T_a = 25^{\circ}C$, unless otherwise noted)

		Test conditions	Limits			Unit
Symbol	Parameter		Min	Тур	Max	Oilit
t _{PLH}	Low-to-high-level, high-to-low-level output propagation	C _L = 45pF		8	18	ns
t _{PHL}	time, from input A to output Y	(Note 3)		9	18	ns
tpzH	Output enable time to high-level	$R_L=667\Omega$, $C_L=45pF$ (Note 3)		15	30	ns
t _{PZL}	Output enable time to low-level	R _L =667Ω, C _L =45pF (Note 3)		12	40	ns
t _{PLZ}	Output disable time from low-level	$R_L=667\Omega$, $C_L=5$ pF (Note 3)		11	25	ns
t _{PHZ}	Output disable time from high-level	$R_L=667\Omega$, $C_L=5$ pF (Note 3)		12	18	ns

Note 2: All measurements should be done quickly, and not more than one output should be shorted at a time.

OCTAL BUFFER/LINE DRIVERS WITH 3-STATE OUTPUTS(NONINVERTED)

Note 3: Measurement circuit

Symbol	SW1	9W2
t pzh	Open	Closed
t PZL	Closed	Open
tpLZ	Closed	Closed
t PHZ	Closed	Closed

- (1) The pulse generator (PG) has the following characteristics: PRR = 1MHz, t_r = 6ns, t_f = 6ns, t_w = 500ns, V_P = 3 $V_{P,P}$, Z_O = 50Ω
- (2) All diodes are switching diodes (t_{rr} ≤ 4ns)
- (3) C_L includes probe and jig capacitance.

TIMING DIAGRAM (Reference level = 1.3V)

MITSUBISHI LSTTLs **PACKAGE OUTLINES**

MITSUBISHI {DGTL LOGIC} D7E D 6249827 0013561 3

