

#### **Lecture 17 – Ultrasound Imaging**

#### This lecture will cover: (CH4.8-4.13)

- Ultrasound signal acquisition and processing
- Clinical diagnostic scanning modes
  - A (amplitude) mode
  - M (motion) mode
  - ➤ B (Brightness) mode
- Imaging characteristics
- 3D/4D ultrasound
- Ultrasound Tomography
- Endoscopic Ultrasound
- Elastography
- EM wave induced imaging

# Ultrasound signal





Original time signal



#### **Spectrum**



## Ultrasound Signal Processing



- > Filtering noise deduction
- ➤ Envelope peaks from interfaces
- > Amplification enhancement
- > Other processing steps









#### > A (amplitude) mode:

a one-dimensional "line image" which is a plot of amplitude vs time



**Fig.** Use of A-mode ultrasound scanning to measure the corneal thickness of the eye. A single line of high frequency ultrasound is used, and the one-dimensional signal plot is shown on the right. The double headed arrow represents the thickness of the cornea..



#### > M (motion) mode:

a continuous series of A-mode lines and display them as a function of time.



**Fig.** M-mode data acquisition. The transducer is placed above the heart and sends out a single line of ultrasound. An A-mode scan is recorded, and as soon as the last echo has been acquired, the A mode scan is repeated. The horizontal time-axis increments for each scan, and therefore a time-series of one-dimensional scans is built up. A straight line represents a structure that is stationary, whereas the front of the heart shows large changes in position.



#### B (Brightness) mode:

- most commonly used in clinical diagnosis
- a 2D image through a cross-section of tissue;
- 3D imaging can be performed by multi-dimensional arrays



**Fig.** Two-dimensional B-mode scans of (left) 19 week fetus in the womb, and (centre) foetal brain. (right) Three dimensional foetal image using a two-dimensional array and mechanical steering.



#### Compound scanning

- Acquire an ultrasound image from multiple angles and combine the images together;
- Reduce the speckles caused by scattering;
- Present the irregular curvatures without influence of structures parallel to the beam;
- Reduce other artifacts such as acoustic enhancement and shadowing;





**Fig.** Comparison of a carotid artery bifurcation acquired using a conventional B-mode scan on the left, and a compound scan with nine different orientations on the right.

#### Image characteristics



#### Signal-to-noise

- The intensity of transmitted pulse;
- The operating frequency of transducer: higher frequency, lower SNR;
- The type of focusing: the higher focusing, the higher SNR at focal area, but lower SNR outside of depth-of-focus;
- Noise sources: speckles from scattering and clutters from side lobes, grating lobes, multi-path reverberation and tissue motion;

#### > Spatial resolution

- Lateral resolution: focusing and frequency, pitch of array transducer.
- Axial resolution: ½ wavelength of ultrasound pulse, therefore higher damping, frequency provide better resolution
- > Contrast-to-noise: similar to SNR

## 3D/4D Imaging



- Used in fetal, cardiac, transrectal and intra-vascular applications;
- Referring to the volume rendering of ultrasound data;
- Generating methods:
  - Freehand
  - Mechanically,
  - Endoprobe
  - 2D matrix array transducer



## Portable 3D Ultrasound Imaging







*Monitor* displays the reconstruction result

in real time

**Scanner** was used to transmit 2D frames continuously to the host computer by the WI-FI connection

(II) Sensor was installed about 10cm behind the scanner

(III) Hub was used to deliver tracking data to the host computer wirelessly via a RF/USB module (IV)

(I) Source generates the electromagnetic (EM) field to track sensor

Fig. Portable 3D ultrasound imaging system

#### 3D Reconstruction







# 3D Ultrasound Imaging







#### **Ultrasound Tomography**



- Circular scanning using the ring system;
- Currently most used for breast cancer;
- More complex algorithm based on wave equation and inverse problem;







Top: Coronal UST sound speed images for six different patients. Bottom: Corresponding fat subtracted contrast-enhanced MR images

#### **Endoscopic Ultrasound**



#### Endoscopic Ultrasound (EUS, 内窥镜超声)

- a minimally invasive procedure to assessing digestive (gastrointestinal) and lung diseases;
- high-frequency ultrasound
- detailed images of the lining and walls of digestive tract and chest, nearby organs such as the pancreas and liver, and lymph nodes;
- ➤ combined with fine-needle aspiration (细针抽吸活检)

### Elastography



#### Elasticity Imaging (Elastography, 弹性成像)

- Mapping the elastic properties and stiffness of soft tissue;
- Ultrasound elastographic techniques
  - Quasistatic elastography / strain imaging;
  - Acoustic radiation force impulse imaging (ARFI)
  - Shear-wave elasticity imaging (SWEI)



**Fig.** An ARFI image of a thyroid nodule in the right thyroid lobe. The shear wave speed inside the box is 6.24 m/s, which is reflective of a high stiffness. Histology revealed papillary carcinoma.



**Fig.** Manual compression (quasistatic) elastography of invasive ductal carcinoma, a breast cancer.

#### A. Abductor digitimi minimi



#### B. First dorsal interosseous



1 cm

**Fig.** Supersonic shear imaging of the stiffness during contraction of the hand muscles abductor digiti minimi (A) and first dorsal interosseous (B). The scale is in kPa of shear modulus.

## EM wave induced imaging



- ➤ Audible sound could be created by illuminating an intermittent beam of sunlight onto a rubber sheet. --- by A. G. Bell in 1880
- Hybrid imaging techniques: electromagnetic-to-acoustic energy conversion
- Radio, microwave (Thermoacoustic, TA), terahertz, optical (Photoacoustic, PA)



## EM wave induced imaging



- ➤ Using microwave to image biological samples was proposed by T. Bowen in 1981, microwaveinduced thermoacoustic imaging (TAI);
- Using Laser to image biological tissues from 1980s, photoacoustic imaging
- Incident electromagnetic wave intensity must be modulated or usually in the form of a pulse;
- ➤ EM energy absorption is closely associated with physiological properties of tissues.



## Thermoacoustic Imaging





 Imaging algorithm: back-projection, delay and sum, compressive sensing



Data processing and imaging



Thermoacoustic image



#### Advantages:

• Pulse width:  $ns - \mu s$ 

• Frequency: below 10

• Peak power: kW

GHz

- Non-ionizing and noninvasive
- High contrast (microwave imaging)
- High resolution ~mm (ultrasound imaging)
- Low cost and compact
- Easy imaging procedure (<10% acoustic heterogeneity)

#### Applications:

- Breast cancer, brain cancer, prostate cancer
- Foreign body, renal calculi, explosive
- Temperature monitoring

## Photoacoustic imaging





## Photoacoustic imaging











- >> Pulsed light illumination
- >> Transit light absorption
- >> Heating
- >> thermoelastic expansion
- >> acoustic emission



#### Representative implementations





### PAT in different imaging scales





#### Benchmark table



| Imaging modality   | Optical imaging                              | Ultrasound imaging                    | PA imaging                                   |
|--------------------|----------------------------------------------|---------------------------------------|----------------------------------------------|
| Contrast           | Optical scattering and absorption            | Mechanical impedance                  | Optical absorption                           |
| Spatial resolution | Optical diffraction limit (sub um)           | Ultrasound diffraction limit (sub mm) | Scalable (sub um ~ sub mm)                   |
| Imaging depth      | < 1 mm                                       | > 1 cm                                | > 1 cm                                       |
| Applications       | Anatomical, functional and molecular imaging | Anatomical imaging                    | Anatomical, functional and molecular imaging |