Design and Analysis of Algorithms

Presented by Dr. Li Ning

Shenzhen Institutes of Advanced Technology, Chinese Academy of Science Shenzhen, China

Turing Machines

- 1 Finite State Machines
- 2 Turing Machines
- 3 Nondeterministic Turing Machines
- 4 Solve NP Problem with A Certifier
- 5 Undecidability: Halting Problem

States: the static configurations of a system

Actions: the input symbols

Transitions: the mappings from (state, action) to state

Automatic machine, also called **automata**: the next state of the system is totally determined by the current state and the transition to perform.

state: bottom-left

States: the static configurations of a system

Actions: the input symbols

Transitions: the mappings from (state, action) to state

Automatic machine, also called **automata**: the next state of the system is totally determined by the current state and the transition to perform.

action: move up

States: the static configurations of a system

Actions: the input symbols

Transitions: the mappings from (state, action) to state

Automatic machine, also called **automata**: the next state of the system is totally determined by the current state and the transition to perform.

state: top-left

States: the static configurations of a system

Actions: the input symbols

Transitions: the mappings from (state, action) to state

Automatic machine, also called **automata**: the next state of the system is totally determined by the current state and the transition to perform.

action: move right

States: the static configurations of a system

Actions: the input symbols

Transitions: the mappings from (state, action) to state

Automatic machine, also called **automata**: the next state of the system is totally determined by the current state and the transition to perform.

state: top-right

States: the static configurations of a system

Actions: the input symbols

Transitions: the mappings from (state, action) to state

Automatic machine, also called **automata**: the next state of the system is totally determined by the current state and the transition to perform.

action: move down

States: the static configurations of a system

Actions: the input symbols

Transitions: the mappings from (state, action) to state

Automatic machine, also called **automata**: the next state of the system is totally determined by the current state and the transition to perform.

state: bottom-right

Diagram of Automatic Machines

q_0	bottom-left	q_1	top-left
q ₂	top-right	q ₃	bottom-right

0	up	1	down
2	left	3	right

bottom-left; move up

Finite State Machine, also called Finite Automata

- states
 - start state
 - accepting state
- transitions
- at a time, the machine is in **one** state
- handle the input symbols one by one
- decide if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q ₃	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in one state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q ₃	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q_3	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q ₃	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q ₃	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q_3	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q_3	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q_3	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q ₃	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q ₃	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q_3	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q_3	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q_3	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in one state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left	
q_2	top-right	q ₃	bottom-right	

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q ₃	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in one state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q_3	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q_3	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q_3	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q_3	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q ₃	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q_3	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q_3	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q_3	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q_3	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left
q_2	top-right	q ₃	bottom-right

0	up	1	down
2	left	3	right

- at a time, the machine is in **one** state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

q_0	bottom-left	q_1	top-left	
q_2	top-right	q ₃	bottom-right	

0	up	1	down
2	left	3	right

- at a time, the machine is in one state
- handle the input symbols one by one
- **decide** if the machine stops at the accepting state

Input: a finite sequence of **symbols** from Σ .

Lanuage of the automata: the set of inputs that stops at the **accepting** state(s).

$$\mathcal{L}(D) = \{ w \in \Sigma^* | \text{autumata } D \text{ accepts } w \}$$

Deterministic FSM: for each state-symbol pair (q_i, s) , $s \in \Sigma$

- there is one transition
- there is only one transition

Is the diagram valid?

Is the diagram valid? No! What is the transition for $(q_1, 0)$?

Is the diagram valid?

Is the diagram valid?

No! What is the transition for $(q_0, 0)$?

Memory of The Machine

Finite state machine:

- the number of states are finite.
- can FSM remember the last performed transition?

q_0	left-0	q_1	left-1
q_2	right-0	q ₃	right-1

0	stay	1	switch
---	------	---	--------

Memory of The Machine

Finite state machine:

- the number of states are finite.
- can FSM remember the last performed transition?
- infinite memory?

q_0	left-0	q_1	left-1
q_2	right-0	q ₃	right-1

0	stay	1	switch

Turing Machines

Turing Machines

Turing machine: finite state machine + infinite tape

- input is written in the tape
- a tape head
 - start from the cell containing the first symbol of input
 - can move right or left along the tape
 - can read and write on a single memory cell

Alphabets

A Turing machine has two alphabets

- Input alphabet Σ : symbols in the inputs
- Tape alphabet Γ : symbols in the tape; always contains the blank symbol \square .

Guarantee: $\Sigma \subseteq \Gamma$; and $\square \notin \Sigma$

Initially,

- input is written in the tape
- ullet the other cells are left blank \Box
- head is positioned at the start of the input

Turing machine processes the input in steps. In each step

• read the symbol in the tape cell under the tape head

- read the symbol in the tape cell under the tape head
- write a symbol to the tape cell under the tape head

- read the symbol in the tape cell under the tape head
- write a symbol to the tape cell under the tape head
- change the state of FSM

- read the symbol in the tape cell under the tape head
- write a symbol to the tape cell under the tape head
- change the state of FSM
- move the head to the left or to the right

Transitions

Transition has form $x \to y, D$, which means "upon reading x, replace it with symbol y, and move the tape head in direction D", where $D = \{L, R\}$.

When to finish? Turing machine does not stop processing the input when they finish reading it. It gives the result when arriving at

- accept state; or
- reject state

OR it may never stop.

Language of a Turing machine M is defined as

$$\mathcal{L}(M) = \{w \in \Sigma^* | \text{Turing machine } M \text{ accepts } w\}$$

Consider language $\mathcal{L} = \{0^n 1^n | n \in \mathbb{N}\}$. How might we build a Turing machine M, such that

$$\mathcal{L}(M) = \mathcal{L}$$

Construct
$$M$$
 s.t. $\mathcal{L}(M) = \mathcal{L} = \{0^n 1^n | n \in \mathbb{N}\}.$

Let $\epsilon \in \Sigma$ be the empty string, and we know

- $\epsilon \in \mathcal{L}$
- $0w1 \in \mathcal{L} \Leftrightarrow w \in \mathcal{L}$
- $1w \notin \mathcal{L}$
- $w0 \notin \mathcal{L}$

Language Recognization

Problem: given a sequence of :-separated words

 $w_1: w_2: \ldots : w_{2n}$, extract the words

 W_1 : W_3 : . . . : W_{2n-1}

|--|

Problem: given a sequence of :-separated words

 $w_1: w_2: \ldots : w_{2n}$, extract the words

1
1

Problem: given a sequence of :-separated words

 $w_1: w_2: \ldots: w_{2n}$, extract the words

	<u> </u>							
	0	:	0		1			
					1	0		

Problem: given a sequence of :-separated words

 $w_1: w_2: \ldots: w_{2n}$, extract the words

Problem: given a sequence of :-separated words

 $w_1: w_2: \ldots: w_{2n}$, extract the words

 W_1 : W_3 : ...: W_{2n-1}

	:	0	1	0	
			1	0	

Problem: given a sequence of :-separated words

 $w_1: w_2: \ldots: w_{2n}$, extract the words

Problem: given a sequence of :-separated words

 $w_1: w_2: \ldots: w_{2n}$, extract the words

 W_1 : W_3 : ...: W_{2n-1}

Problem: given a sequence of :-separated words

 $w_1: w_2: \ldots: w_{2n}$, extract the words

Nondeterministic Turing Machines

Nondeterminism

Determinism: in face of the context and the choices, to find the best one, try with every choices or some choices.

Nondeterminism: in face of the same context and the choices, make a **guess** and go with the guessed choice.

Nondeterministic Turing Machine (NTM)

Nondeterministic Turing machine

- finite state machine
- infinite tape
- tape head: read, write, move (L/R)
- for a given state-symbol pair, there can be more than one transitions

Nondeterministic Turing Machine (NTM)

Nondeterministic Turing machine

- finite state machine
- infinite tape
- tape head: read, write, move (L/R)
- for a given state-symbol pair, there can be more than one transitions

Nondeterministic Turing Machine (NTM)

Nondeterministic Turing machine

- finite state machine
- infinite tape
- tape head: read, write, move (L/R)
- for a given state-symbol pair, there can be more than one transitions

Nondeterministic Turing Machine

Language of a nondeterministic Turing machine M is defined $\mathcal{L}(M) = \{w \in \Sigma^* | M \text{ can make a series of choices to accept } w\}$

NTM: make a choice

- choice 1: make another choice
 - choice 1.1
 - ② choice ...
- 2 choice 2: make another choice
 - choice 2.1
 - choice . . .
- 3 choice ...

NTM: make a choice

- choice 1: make another choice
 - choice 1.1
 - ② choice . . .
- 2 choice 2: make another choice
 - choice 2.1
 - 2 choice . . .
- 3 choice ...

NTM: make a choice

- choice 1: make another choice
 - choice 1.1
 - choice . . .
- 2 choice 2: make another choice
 - choice 2.1
 - ② choice . . .
- 3 choice ...

NTM: make a choice

- choice 1: make another choice
 - choice 1.1
 - choice . . .
- 2 choice 2: make another choice
 - choice 2.1
 - ② choice . . .
- 3 choice ...

NTM: make a choice

- choice 1: make another choice
 - choice 1.1
 - choice . . .
- 2 choice 2: make another choice
 - choice 2.1
 - ② choice . . .
- 3 choice ...

NTM: make a choice

- choice 1: make another choice
 - choice 1.1
 - choice . . .
- 2 choice 2: make another choice
 - choice 2.1
 - ② choice . . .
- 3 choice ...

NTM: make a choice

- choice 1: make another choice
 - choice 1.1
 - choice . . .
- 2 choice 2: make another choice
 - choice 2.1
 - ② choice . . .
- 3 choice ...

Proof: A Series of Choices

Language of a nondeterministic Turing machine M is defined

$$\mathcal{L}(M) = \{w \in \Sigma^* | M \text{ can make a series of choices to accept } w\}$$

Claim: For any NTM N, there is a DTM D such that

$$\mathcal{L}(D) = \mathcal{L}(N)$$

To prove $w \in \mathcal{L}(N) = \mathcal{L}(D)$

- DTM: try a lot of cases, if not all
- NTM: much easier given a series of good choices

Example: Composite Number

Problem: given a positive integer a, decide if $a = b \cdot c$, with

- $b \in \mathbb{Z}^+$, 1 < b < a
- ullet $c \in \mathbb{Z}^+$, 1 < c < a

TM

NTM

Decision Problems

Decision problem: answer yes or no.

Example

- given x, y and z, decide if x + y = z.
- given a number x, decide if x is prime.

P v.s. NP

P: the problem that can be decided (accept or reject) by **DTM** in polynomial time.

NP: the problem that can be decided (accept or reject) by **NTM** in polynomial time, **given a series of choices**.

P v.s. NP

P: the problem that can be decided (accept or reject) by **DTM** in polynomial time.

NP: the problem that can be decided (accept or reject) by **NTM** in polynomial time, **given a series of choices**.

 $P \subseteq NP!$

Solve NP Problem with A Certifier

P v.s. NP

P: the problem that can be decided by **DTM** in polynomial time.

NP: the problem that can be decided by **NTM** in polynomial time, **given a series of choices**.

Certification: a series of choices.

P v.s. NP

P: the instances can be solved by a polynomial-time algorithm.

NP: any instance can be checked by a polynomial-time certifier.

Certifier: given an instance α and a certification t, check if $\alpha \in \mathcal{L}$ can be proved by t.

Problem: given a graph G = (V, E), and $s, t \in V$, decide if there is a path from s to t, with at most k hops.

Certifier: $C(\alpha, t)$

$$t$$
: $s - B - C - t$

NTM

Problem: given a graph G = (V, E), and $s, t \in V$, decide if there is a path from s to t, with at most k hops.

Certifier: $C(\alpha, t)$

$$t$$
: $s - A - D - t$

NTM

Problem: given an integer a, decide if $a = b \cdot c$, such that

- $b \in \mathbb{Z}, 1 < b < a$
- $c \in \mathbb{Z}, 1 < c < a$

```
Algorithm: C(a, b)
```

```
if b \le 1 or b \ge a then return false;
if a\%b = 0 then
return true;
end
else
return false;
```

Undecidability: Halting Problem

Undecidable Problems

Undecidable problem can not be decided by a Turing machine.

The Halting Problem

Problem: given a program \mathcal{P} and an input instance α , can we decide if $\mathcal{P}(\alpha)$ halts (finally)?

- ullet Program ${\cal P}$, input α
 - $\mathcal{P}(\alpha)$ return 0 if $\alpha \in \mathbb{Z}$ and $\alpha \leq 0$;
 - $\mathcal{P}(\alpha)$ return 1 if $\alpha \in \mathbb{Z}$ and $\alpha > 0$;
 - $\mathcal{P}(\alpha)$ loops forever (for thinking) if $\alpha \notin \mathbb{Z}$;
- $HM(\mathcal{P}, \alpha)$
 - yes, if $\alpha \in \mathbb{Z}$
 - no, if $\alpha \notin \mathbb{Z}$

The Halting Machine

- **Assume** we have program $HM(\cdot, \cdot)$, for any \mathcal{P} and α ,
 - $\mathsf{HM}(\mathcal{P}, \alpha) = \mathsf{yes} \; \mathsf{if} \; \mathcal{P}(\alpha) \; \mathsf{halts}$
 - $\mathsf{HM}(\mathcal{P}, \alpha) = \mathsf{no} \ \mathsf{if} \ \mathcal{P}(\alpha) \ \mathsf{does} \ \mathsf{not} \ \mathsf{halt}$

The Halting Machine

- **Assume** we have program $HM(\cdot, \cdot)$, for any \mathcal{P} and α ,
 - $\mathsf{HM}(\mathcal{P}, \alpha) = \mathsf{yes} \; \mathsf{if} \; \mathcal{P}(\alpha) \; \mathsf{halts}$
 - $\mathsf{HM}(\mathcal{P}, \alpha) = \mathsf{no} \; \mathsf{if} \; \mathcal{P}(\alpha) \; \mathsf{does} \; \mathsf{not} \; \mathsf{halt}$
- Then construct $CM(\cdot)$, such that
 - CM(P) loops forever if HM(P, P) says yes.
 - \bullet $\mathsf{CM}(\mathcal{P})$ halts immediately if $\mathsf{HM}(\mathcal{P},\,\mathcal{P})$ says no.

The Halting Machine

- **Assume** we have program $HM(\cdot, \cdot)$, for any \mathcal{P} and α ,
 - $\mathsf{HM}(\mathcal{P}, \alpha) = \mathsf{yes} \; \mathsf{if} \; \mathcal{P}(\alpha) \; \mathsf{halts}$
 - $\mathsf{HM}(\mathcal{P}, \alpha) = \mathsf{no} \; \mathsf{if} \; \mathcal{P}(\alpha) \; \mathsf{does} \; \mathsf{not} \; \mathsf{halt}$
- Then construct $CM(\cdot)$, such that
 - CM(P) loops forever if HM(P, P) says yes.
 - CM(P) halts immediately if HM(P, P) says no.
- Does CM(CM) halt?
 - CM(CM) halts? HM(CM, CM) says yes, and thus CM(CM) loops forever.
 - CM(CM) does not halt? HM(CM, CM) says no, and thus CM(CM) halts.

THANK YOU

