Solution 7

- **A.** Let $\{X_n, n = 0, 1, 2, ...\}$ be a branching process with offspring distribution $f_j = 1/4, j = 0, 1, 2, 3$.
 - 1. Write down an expression for the offspring pgf, F(s).
 - 2. Prove that the offspring mean $\mu = 1.5$ and find the offspring variance σ^2 (either by differentiating F(s), or from first principles).
 - 3. Write down the mean and variance of X_n with $X_0 = 1$.
 - 4. Calculate the probability of the event $\{X_1 > 0, X_2 = 0\}$.
 - 5. What is the value of the extinction probability, q, if $X_0 = 1$?
 - 6. What is the value of the extinction probability if $X_0 = 2$?
 - 7. What is the *exact* value of the extinction probability if X_0 has the distribution $P(X_0 = 0) = 1/4$, $P(X_0 = 1) = 1/2$, $P(X_0 = 2) = 1/4$?

Solution:

- 1. $F(s) = (1 + s + s^2 + s^3)/4$.
- 2. $\mu = (1+2+3)/4 = 1.5$. $E(X^2) = (1+4+9)/4 = 3.5$ so $\sigma^2 = var(X) = 5/4$.
- 3. $E(X_n) = \mu^n$, and since $\mu \neq 1$, $var(X_n) = \frac{\sigma^2 \mu^{n-1} (\mu^n 1)}{\mu 1} = \frac{5}{2} \left(\frac{3}{2}\right)^{n-1} \left(\left(\frac{3}{2}\right)^n 1\right)$.
- 4. (Assume $X_0 = 1$)

$$P(X_1 > 0, X_2 = 0) = P(X_1 = 1, X_2 = 0) + P(X_1 = 2, X_2 = 0) + P(X_1 = 3, X_2 = 0)$$

= $\frac{1}{4} \left(\frac{1}{4} + \left(\frac{1}{4} \right)^2 + \left(\frac{1}{4} \right)^3 \right)$.

- 5. F(s) = s gives $s^3 + s^2 3s + 1 = 0$ and since s = 1 is always a root we get $s^2 + 2s 1 = 0$ with roots $-1 \pm \frac{\sqrt{8}}{2}$. So the extinction probability is $q = \sqrt{2} 1 = 0.4142$ to 4 d.p.
- 6. Now extinction involves the extinction of two independent branching processes each with a single ancestor so extinction probability is $q^2 = 3 2\sqrt{2} = 0.1716$.
- 7. $\frac{1}{4} + \frac{1}{2}q + \frac{1}{4}q^2 = \frac{1}{2}$.
- **B.** Let $\{X_n, n \geq 0\}$ be a branching process and assume $X_0 = 1$.
 - 1. Suppose the offspring ξ_{10} has the pgf $F(s) = Es^{\xi_{10}} = \frac{1}{2}(1+s)$. Find the offspring distribution, the extinction probability and the average population size at the n-th generation.

2. (**Adv**) Show that, for r = 1, 2, ...,

$$E(X_{n+r} | X_n = k) = \mu^r k$$
, where $\mu = EX_1$. (1)

(Hint: By induction to r and note that $\{X_n, n \geq 0\}$ is a MC)

Solution 1. (a) $f_0 = P(\xi_{10} = 0) = F(0) = 1/2$, $f_1 = P(\xi_{10} = 1) = F'(0) = 1/2$, and $f_k = 0, k \ge 2$.

- (b) $\mu = \sum_{k=0}^{\infty} k f_k = 1 \times \frac{1}{2} = 1/2$. Since 1/2 < 1, the distinction prob $q \equiv 1$.
- (c) $EX_n = \mu^n = (1/2)^n$.
- 2. **Proof.** Step 1. Prove that the result holds true for r = 1 and all $n \ge 1$ and all k. In fact,

$$E(X_{n+1} \mid X_n = k) = E\left[\sum_{j=1}^{X_n} \xi_{jn} I_{(X_n \ge 1)} \mid X_n = k\right]$$
$$= E\left(\sum_{j=1}^k \xi_{jn}\right) = kE\xi_{10} = k \mu.$$

Step 2. Suppose that (1) holds true for r = m and all $n \ge 1$ and all k. We prove (1) still holds true for r = m + 1 and all $n \ge 1$ and all k. Indeed,

$$E(X_{n+m+1} \mid X_n = k) = \sum_{i=0}^{\infty} i P(X_{n+m+1} = i, X_n = k) / P(X_n = k)$$

$$= \sum_{i=0}^{\infty} \sum_{l=0}^{\infty} i P(X_{n+m+1} = i, X_n = k, X_{n+1} = l) / P(X_n = k)$$

$$= \sum_{i=0}^{\infty} \sum_{l=0}^{\infty} i P(X_{n+m+1} = i \mid X_n = k, X_{n+1} = l) P(X_{n+1} = l \mid X_n = k)$$

$$= \sum_{i=0}^{\infty} \sum_{l=0}^{\infty} i P(X_{n+m+1} = i \mid X_{n+1} = l) P(X_{n+1} = l \mid X_n = k)$$

$$= \sum_{l=0}^{\infty} E(X_{n+m+1} \mid X_{n+1} = l) P(X_{n+1} = l \mid X_n = k)$$

$$= \sum_{l=0}^{\infty} \mu^m l P(X_{n+1} = l \mid X_n = k) \quad \text{(by induction)}$$

$$= \mu^m E(X_{n+1} \mid X_n = k) = \mu^{m+1} k.$$

This implies the result holds true for r = m + 1.