CLAIMS

Anti-flea and anti-tick collar or other external device for a pet, in particular a cat or dog, made of a matrix in which is incorporated from 0.1 to 40% by weight, relative to the collar, of a substance which is active against fleas and ticks, this active substance being formed of at least one compound corresponding to formula (I) below:

10

5

R₂ R₁ R₁ R₁ R₁ R₁₃ (I)

15

25

30

20 in which:

 R_1 is CN or meth/vl or a halogen atom;

 R_2 is $S(0)_nR_3$ or 4,5-dicyanoimidazol-2-yl or haloal-kyl;

 R_3 is alkyl or haloalkyl;

 R_4 represents a hydrogen or halogen atom; or a radical NR_5R_6 , $S(O)_mR_7$, $C(O)R_7$, $C(O)O-R_7$, alkyl, haloalkyl or OR_8 or a radical $-N=C(R_9)(R_{10})$;

 R_5 and R_6 /independently represent a hydrogen atom or an alkyl, haloalkyl, C(0) alkyl, alkoxycarbonyl or $S(0)_rCF_3$ radical; or R_5 and R_6 may together form a divalent alkylene radical which may be interrupted by one or two divalent hetero atoms, such as oxygen or sulphur;

To the state of th

R₇ represents an alkyl or haloalky radical;

R₈ represents an alkyl or haloa/kyl radical or a hydrogen atom;

 R_9 represents an alkyl radical or a hydrogen atom; R_{10} represents a phenyl or heteroaryl group optionally substituted with one or more halogen atoms or groups such as OH, -O-alkyl, -S-alkyl, cyano or alkyl;

 R_{11} and R_{12} represent, independently of each other, a hydrogen or halogen atom, or CN or NO_2 ;

 R_{13} represents a halogen atom or a haloalkyl, haloalkoxy, $S(0)_qCF_3$ or SF_5 group;

m, n, q and r represent, independently of each other, an integer equal to 0, 1 or 2;

X represents a trivalent nitrogen atom or a radical $C-R_{12}$, the other three valency positions of the carbon atom forming part of the aromatic ring;

with the proviso that when R_1 is methyl, either R_3 is haloalkyl, R_4 is NH_2 , R_{11} is Cl, R_{13} is CF_3 and X is N; or R_2 is 4,5-dicyanoimidazol-2-yl, R_4 is Cl, R_{11} is Cl, R_{13} is CF_3 and X is =C-Cl;

this collar or other external device being designed to ensure more than 6 months of efficacy against fleas and more than 3 months of efficacy against ticks, the efficacy preferably being maintained for several weeks even if the collar or other external device is taken off or lost or if there is a variation in the release of the compound (I) by the matrix.

2. Collar according to claim 1, characterized in that the compound of formula (I) is such that:

 R_1 is CN or methyl; //

 R_2 is $S(0)_n R_3$;

R₃ is alkyl or haloalkyl;

 R_4 represents a hydrogen or halogen atom; or a

15

10

5

20

25

15

20

25

radical NR_5R_6 , $S(O)_mR_7$, $C(O)R_7$, alkyl, haloalkyl or OR_8 or a radical $-N=C(R_9)(R_{10})$;

 R_5 and R_6 independently represent a hydrogen atom or an alkyl, haloalkyl, C(O) alkyl or S(O) $_rCF_3$ radical; or R_5 and R_6 may together form a divalent alkylene radical which may be interrupted by one or two divalent hetero atoms, such as oxygen or sulphur;

 R_7 represents an alkyl or/haloalkyl radical;

 R_8 represents an alkyl ϕ r haloalkyl radical or a hydrogen atom;

 R_9 represents an alkyl/radical or a hydrogen atom; R_{10} represents a phenyl or heteroaryl group optionally substituted with one or more halogen atoms or groups such as OH, -O-alkyl, -S-alkyl, cyano or alkyl;

 R_{11} and R_{12} represent, independently of each other, a hydrogen or halogen atom;

 R_{13} represents halogen atom or a haloalkyl, haloalkoxy, $S(O)_qC_{F_3}$ or SF_5 group;

m, n, q and r represent, independently of each other, an integer equal to 0, 1 or 2;

X represents a trivalent nitrogen atom or a radical $C-R_{12}$, the other three valency positions of the carbon atom forming part of the aromatic ring;

with the proviso that when R_1 is methyl, then R_3 is haloalkyl, R_4 is NH_2 , R_{11} is Cl, R_{13} is CF_3 and X is N.

- 3. Collar according to claim 2, wherein the compound of formula (I) is such that R_1 is CN.
- 4. Collar according to claim 2, wherein the compound of formula (I) is such that R_{13} is haloalkyl.
- 30 5. Collar according to claim 4, wherein the compound of formula (I) is such that R_{13} is CF_3 .
 - 6. Collar according to claim 2, wherein the compound of formula (I) is such that R_2 is $S(O)_nR_3$.

- 7. Collar according to claim 6, wherein n=1 and R_3 is chosen among the group consisting of $CF_{3,}$ methyl, ethyl.
- 8. Collar according to claim 6, wherein n = 0 and R_3 is CF_3
 - 9. Collar according to claim 2 wherein the compound of formula (I) is such that X is $C-R_{12}$, R_{12} being a halogen atom.
- 10. Collar according to chaim 2, wherein the compound of formula (I) is chosen from those in which R_1 is CN, R_3 is haloalkyl, R_4 is VH, R_{11} and R_{12} are, independently of each other, a halogen atom, and/or R_{13} is haloalkyl.
- 11. Collar according to claim 2, wherein the compound of formula (I) is chosen among the group consisting of compound A:
 - 1-[2,6-Cl₂4-CF₃phenyl]3-CN4-[SO-CF₃]5-NH₂pyrazole and its derivatives with n=0 and R₃ is CF₃, and n=1 and R₃ is ethyl
- 20 12. Collar according to claim 2, wherein the collar comprises from 1 to 15% active substance.
 - 12. Collar according to claim 2, wherein the collar comprises from 1.25 to 10% active substance.
- 2)3. The salmost of the collar according to claim 2, wherein the collar comprises from 2 to 6% active substance.
 - comprises from 2 to 6% active substance.

 14. Collar according to claim 2, wherein the collar comprises from 2.5 to 5% active substance.

 15. The collar according to claim 11, wherein the collar collar according to claim 11, wherein the collar
 - comprises from 1.25 to 10% active substance.
- 30 16. Collar according to claim 11, wherein the collar comprises from 2 to 6% active spostance.
 - 17. Collar according to claim 11, wherein the collar comprises from 2.5 to 5% active substance.

The Estimal Sevice

Collar according to Claim 11, wherein the efficacy is maintained when the collar or external device is taken off or lost, over a period ranging from 2 to 3months against fleas and from 1 to 2 months against

Collar according to claim 11, wherein it comprises a concentration of active substance which ensures effective protection against fleas for a period longer than or equal_to 12 or 18 months.

10

179

ording to claim 11, wherein it comprises a concentration of active substance which ensures effective protection against ticks for a period longer than or equal to 12 or 15 months.

Method for eliminating fleas and ticks from pets, in particular cats and dogs, In which one attaches to the pets at least one collar or other external device which comprises a compound orresponding to formula (I) below:

20

10

Rin (I)

25

30 in which:

 R_1 is CN or methyl or a halogen atom;

 R_2 is $(0)_n R_3$ or 4,5-dicyanoimidazol-2-yl or haloal-

kyl;

M 3 5

R₃ is alkyl or haloalkyl;

 R_4 represents a hydrogen or halogen atom; or a radical NR_5R_6 , $S(O)_mR_7$, $C(O)R_7$, $C(O)O-R_7$, alkyl, haloalkyl or OR_8 or a radical $-N=C(R_9)$ (R_{10}) ;

 R_5 and R_6 independently represent a hydrogen atom or an alkyl, haloalkyl, C(O) alkyl, alkoxycarbonyl or $S(O)_rCF_3$ radical; or R_5 and R_6 may together form a divalent alkylene radical which may be interrupted by one or two divalent hetero atoms, such as oxygen or sulphur;

R, represents an alkyl or haloalkyl radical;

 R_8 represents an alkyl or haloalkyl radical or a hydrogen atom;

 R_9 represents an alkyl radical or a hydrogen atom; R_{10} represents a phenyl or heteroaryl group optionally substituted with one or more halogen atoms or groups such as OH, O-alkyl, -S-alkyl, cyano or alkyl;

 R_{11} and R_{12} represent, independently of each other, a hydrogen or halogen atom, or optionally CN or NO_2 ;

 R_{13} represents a halogen atom or a haloalkyl, haloalkoxy, S(O) or SF_5 group;

m, n, q and r represent, independently of each other, an integer equal to 0, 1 or 2;

X represents a trivalent nitrogen atom or a radical $C-R_{12}$, the other three valency positions of the carbonatom forming part of the aromatic ring;

with the proviso that when R_1 is methyl, either R_3 is haloalkyl, R_4 is NH_2 , R_{11} is Cl, R_{13} is CF_3 and X is N; or R_2 is 4,5-dicyanoimidazol-2-yl, R_4 is Cl, R_{11} is Cl, R_{13} is CF_3 and X is =C-Cl;

which method ensuring prevention and treating fleas and ticks to a high degree of efficacy and over a period exceeding 6 months against fleas and 3 months against ticks, the efficacy preferably being maintained over

15

10

20

25

10

15

several weeks even if the collar or external device is taken off or if there is a variation in the release of the compound (I) by the collar or external device.

Method according to claim 21, wherein the com-22. pound of formula (I) is such that:

R₁ is CN or methyl;

 R_2 is $S(0)_0 R_3$;

 R_3 is alkyl or haloalkyl;

R₄ represents a hydrogen or halogen atom; or a radical NR_5R_6 , $S(O)_mR_7$, $C(O)R_7$, alkyl, haloalkyl or OR_8 or a radical $-N=C(R_9)(R_{10})$;

 R_5 and R_6 independently represent a hydrogen atom or an alkyl, haloalkyl, C(0)alkyl or %(0)_rCF₃ radical; or R₅ and R₆ may together form a divalent alkylene radical which may be interrupted by one/or two divalent hetero atoms, such as oxygen or sulphur;

 R_7 represents an alkyl or haloalkyl radical;

R₈ represents an alkyl for haloalkyl radical or a hydrogen atom;

R, represents an all adical or a hydrogen atom; R_{10} represents a phen or heteroaryl group optionally substituted with one or more halogen atoms or groups such as OH, -O-a/kyl, -S-alkyl, cyano or alkyl;

 R_{11} and R_{12} represent, independently of each other, a hydrogen or halogen/atom;

 R_{13} represents/a halogen atom or a haloalkyl, haloalkoxy, $S(O)_qCF_3$ or SF_5 group;

m, n, q and r represent, independently of each other, an intege/ equal to 0, 1 or 2;

X represents a trivalent nitrogen atom or a radical C-R₁₂, the other three valency positions of the carbon atom forming/part of the aromatic ring;

with the proviso that when R_1 is methyl, then R_3 is

20

25

- haloalkyl, R_4 is NH_2 , R_{11} is Cl, R_{13} is CF_3 and R_{13} is R_{13} is R_{13} .
- 23. Method according to claim 22, wherein the compound of formula (I) is such that R_1 is CN.
- 24. Method according to claim 22, wherein the compound of formula (I) is such that R_{13} is haloalkyl.
- 25. Method according to claim 22, wherein the compound of formula (I) is such that R_{13} is CF_3 .
- 26. Method according to claims 22, wherein the compound of formula (I) is such that R_2 is $S(0)_nR_3$.
- 10 27. Method according to claim 26, wherein n=1 and R_3 is chosen among the group consisting of CF_3 , methyl, ethyl.
 - 28. Method according to claim 26, wherein n=0 and R_3 is CF_3 .
- 15 29. Method according to claim 22, wherein the compound of formula (I) is such that X is $C-R_{12}$, R_{12} being a halogen atom.
 - 30. Method according to claim 22, wherein the compound of formula (I) is such that R_1 is CN, R_3 is haloal-
- kyl, R_4 is NH_2 , R_1 and R_{12} are, independently of each other, a halogen atom, and/or R_{13} is haloalkyl.
 - 31. Method according to claim 22, wherein the compound of formula (I) is chosen among the group consisting of compound A:
- 25 $1-[2,6-Cl_24-CF_3phenyl]3-CN4-[SO-CF_3]5-NH_2pyrazole$
 - \mathcal{O} and its derivatives with n=0 and R₃ is CF₃, and n=1 and R₃ is ethyl.
- 32. Method/according to claim 22, wherein the comcon Centralion
 pound of formula (I) is present in a proportion of from
 1 to 15% by weight.
 - A compound of formula (I) is present in a proportion of from 1.25 to 10%.

BBB

wherein the com-Method according to claim 22, pound of formula (I) is present in a properti by weight to 6% Method according to claim 22, wherein the com-5 α pound of formula (I) is present in a pro-2.5 to 5% by weight. Method according to claim 31, o pound of formula (I) is present in a pr 1.25 to 10%. Method according to claim 31, wherein the comopound of formula (I) is present in a 2_to 6% by weight. Method according to claim 21, \mathcal{C} pound of formula (I)/is present in a 15 2.5 to 5% by weight/ 39. Method according to claim 31, wherein the efficacy is greater than 95% against fleas. Method according to claim 31, wherein the efficacy is greater than 98% or 99% against fleas. Method according to claim 31, wherein the effica-20 cy is greater tham 80% against ticks a Method according to claim 31, wherein the efficacy is greater than 90% against ticks. 🚜 Method according to claim 31, wherein the long-25 lasting efficacy is longer than or equal to 12 months /(e, against fleas. Method according to claim 31, wherein the longa lasting efficacy is longer than or equal to 18 months /7 against fleas. 30 ll 0 45. Method according to claim 31, wherein the longs lpha lasting efficacy is longer than or equal to 12 months 18 against ticks.

Method according to claim 31, wherein the Along-

B

W.

ľU

The front conf

الله ا

c d

A lasting efficacy is longer than or equal to 15 months 19 22 against ticks.

Method according to claim 1, wherein the efficacy is maintained when the eellar or external device is
taken off or lost, over a period ranging from 2 to 3
months against fleas and from 1 to 2 months against
ticks.