${ m CIS}~3223~{ m Homework}~1$

Name: Parth Patel

Dr Anthony Hughes

Temple ID (last 4 digits: 5761

1 (12 pts) Complete the following table by writing "T"for true or "F "for false in each box. No justification required.

f	g	f = O(g)	$f = \Omega(g)$	$f = \Theta(g)$
$n \log n$	$5n\log 10n$	Т	Т	Т
$n^{4/5}$	$n^{2/3}$	F	Т	F
$\log 5n$	$\log 2n$	Т	Т	Т
$n^{1.03}$	$n\log^3 n$	F	T	F
$(\log n)^2$	\sqrt{n}	Т	F	F
$\sum_{i=1}^{n} i^k$	n^k	F	Τ	F
$n2^n$	3^n	T	F	F
$\log n)^{\log n}$	$2^{\log n^2}$	F	T	F

2 (2 pts) Give as good big $-\Theta$ estimate for each of the following functions.

(a)
$$f(n) = (n! + n5^n)(n + \log(n^7 + 1))$$

 $\Theta(n!)$ $\Theta(n)$

$$\Theta(n\cdot n!)$$

(b)
$$f(n) = (n^3 + 4n^2)(n\sqrt{n} + 1000)(n + (\log n)^3)$$

 $\Theta(n\sqrt{3})$ $\Theta(n\sqrt{n})$ $\Theta(n)$

$$\Theta(n^5 \cdot \sqrt{n})$$

$$egin{array}{ll} 3 & (2 ext{ pts}) ext{ Evaluate} & egin{pmatrix} 1 & 1 \ 1 & 0 \end{pmatrix}^{14} \\ egin{pmatrix} \left(egin{matrix} 1 & 1 \ 1 & 0 \end{matrix}
ight)^k = egin{pmatrix} F_{k+1} & F_k \ F_k & F_{k-1} \end{matrix} ext{ for } n \geq 1 ext{ where } F_0 = 0 \end{array}$$

Let F_n be the *n*-th Fibonacci number.

4 (4 pts) Use strong induction to prove the following:

$$F_n \le 1.7F_{n-1}, \quad n \ge 4$$

Base cases: Show true for n = 4 and 5:

$$n = 4$$
: $n = 5$: $lhs = F_4 = 3$ $lhs = 5$ $rhs = 1.7F_3 = 3.4$ $rhs = 5.1$

Inductive case: Assume true for $n = s, s \in \{4, 5, ... k\}, k \ge 5$,

Show true for n = k + 1:

lhs =
$$F_{k+1} = F_k + F_{k-1}$$

rhs = $1.7F_{k+1-1} = 1.7F_k$

$$ext{lhs} = F_k + F_{k-1} \stackrel{ ext{IH}}{\leq} 1.7 F_{k-1} + 1.7_{k-2} = 1.7 (F_{k-1} + F_{k-2}) = \boxed{1.7 F_k} = ext{rhs}$$
 $\implies ext{lhs} < ext{rhs}$

Therefore $\forall n \geq 5, \ F_n \leq 1.7F_{n-1}$

Why do we need to start with n = 4 (table useful)?

We must start with n=4 since the formula $(F_n \leq 1.7F_{n-1})$ does not hold for any n<4 .

(Bonus. 1 point) Give a pair better than (1.7, 4). ($\underline{1.667}$, $\underline{4}$) NOTE: This is based on zero based indexing. This means that $F_0=0, F_1=1$