Deep Learning

Tecniche predittive per l'insorgenza di Alzheimer

Laureando: Luca Masiero

Relatore: Loris Nanni

Facoltà di Ingegneria Informatica 15 Luglio 2019

Una risonanza magnetica?

Reti neurali artificiali

Le **reti neurali artificiali** sono un *modello computazionale* con una *struttura* gerarchica, organizzata per livelli.

Una rete neurale è composta da un livello di *input*, uno o più livelli intermedi (*hidden layers*) e un livello di *output*.

Transfer Learning

Il *Transfer Learning* è un processo che consiste nell'affinamento di un modello (di rete neurale) precedentemente addestrato.

TRAINING FROM SCRATCH

TRANSFER LEARNING

I tempi di calcolo si riducono a pochi minuti o ad alcune ore anziché a giorni interi.

AlexNet: struttura

AlexNet è costituita da 5 Convolution layers e da 3 Fully Connected layers.

Nel Convolution layer si applica un filtro digitale fatto scorrere sulle diverse posizioni dell'input: per ogni posizione viene generato come output un prodotto scalare tra la maschera e la porzione coperta dall'input.

Nel *Fully Connected layer* ciascun neurone è connesso a tutti i neuroni del layer precedente: la sua funzione è quella di effettuare un raggruppamento delle informazioni per la classificazione finale.

Metodo 1

- 1. Definizione della rete
- 2. Istanziazione dei parametri modificabili
- 3. Caricamento e concatenazione dei dataset
 - 4. 3-Fold Cross-Validation

IMG = mriToCNN(IMG, siz, axis)

Input:

Output:

Asse x

	${f TP}$	10	3	0
	TN	28	30	42
: [\mathbf{FP}	14	6	0
Ì	$\mathbf{F}\mathbf{N}$	8	21	18
	accuracy	0.6333	0.5500	0.7000

AverageAccuracy = 0.6278

Asse y

	\mathbf{TP}	6	5	12
,	TN	36	35	25
	\mathbf{FP}	6	1	17
	$\mathbf{F}\mathbf{N}$	12	19	6
	accuracy	0.7000	0.6667	0.6167

AverageAccuracy = 0.6611

Asse z

TP	12	12	12
TN	30	31	23
FP	12	5	19
FN	6	12	6
accuracy	0.7000	0.7167	0.5833

AverageAccuracy = 0.6667

Metodo 2

 $totSlicesInvolved = (2^k + 1 + gap) \times nPictures - gap$

IMG = mriToCNN(IMG, siz, axis, nPictures, gap, k)

Input:

Output:

TP

Asse x

	TP	11	51	8
	TN	62	23	58
,	\mathbf{FP}	4	13	2
	FN	13	3	22
	accuracy	0.8111	0.8222	0.7333

AverageAccuracy = 0.7889

		L
4		Г
Asse	u	

\mathbf{TP}	22	39	15
TN	42	29	47
\mathbf{FP}	24	7	13
FN	2	15	15
accuracy	0.7111	0.7556	0.6889

AverageAccuracy = 0.7185

gap	gap	

	TN	47	28	52
Asse z	\mathbf{FP}	19	8	8
	FN	12	12	21
	accuracy	0.6556	0.7778	0.6778

12

AverageAccuracy = 0.7037

Metodo 3

Input:

Output:

1. CN vs AD

TP	4	6	3
TN	7	6	9
\mathbf{FP}	4	0	1
FN	0	3	2
accuracy	0.7333	0.8000	0.8000

AverageAccuracy = 0.7778

2. CN vs MCIc

TP	2	2	1
TN	7	7	5
FP	1	1	3
FN	1	2	3
accuracy	0.8182	0.7500	0.5000

AverageAccuracy = 0.6894

3. MCInc vs MCIc

TP	0	2	0
TN	7	4	6
FP	0	2	1
FN	3	2	3
accuracy	0.7000	0.6000	0.6000

AverageAccuracy = 0.6333

x-axis

Conclusioni

Obiettivo: Riconoscimento, con la maggior percentuale di accuracy possibile, di un soggetto malato di Alzheimer.

Futuro dell'Intelligenza Artificiale, disciplina che si sta velocemente imponendo come fondamentale nelle nostre vite.

Sfide future: diagnosi precoce e conseguente cura di una malattia ancora per poco inaffrontabile.