第八章 多元函数微分学

1. 考虑二元函数 f(x, y) 的下面四条性质:

	③ $f(x,y)$ 在点 (x_0,y) 在点 (x_0,y) 在点 (x_0,y)	y_0) 处两个偏导数都 y_0) 处可微; y_0) 处两个偏导数都 无性质 P 推出性质 Q ,	存在.	
2.	二元函数 $z = x^3 - y$	$y^3 + 3x^2 + 3y^2 - 9x$	的极大值点是().	
	(A) $(1,0)$	(B) $(-3,2)$	(C) $(-3,0)$	(D) $(1,2)$
3.	设 $z = \sin(xy)$, 则 $\frac{\partial}{\partial x}$			
	$(\mathbf{A}) \ y \sin(x \ y)$	$\mathbf{(B)} - y\sin(xy)$	(C) $y \cos(x y)$	$\mathbf{(D)} - y\cos(xy)$
4.	如果 $f_x'(x_0, y_0) = f_y'$	$(x_0, y_0) = 0$,则二元函	数 $z = f(x, y)$ 在点 (x ₀ , y ₀)处().
	(A) 一定连续		(B) 一定偏导数存在	Ē
	(C) 一定可微		(D) 一定有极值	
5 .	设 $z = xe^{xy}$, 则 $\frac{\partial z}{\partial x}$	等于().		
	$(A) x y e^{xy}$	(B) e^{xy}	(C) $x^2 e^{xy}$	(D) $(1 + xy)e^{xy}$
6.	设 $z = \arctan \frac{y}{x}$, 则	$\frac{\partial z}{\partial x}$ 等于 ().		
	$(\mathbf{A}) - \frac{y}{x^2 + y^2}$	$(B) \frac{y}{x^2 + y^2}$	$(\mathbf{C}) \; \frac{x}{x^2 + y^2}$	$(D) - \frac{x}{x^2 + y^2}$

(C) 充要条件

(D) 无关条件

7. 函数 f(x,y) 在点 (x_0,y_0) 连续是 f(x,y) 在点 (x_0,y_0) 偏导数存在的 ().

(B) 必要条件

(A) 充分条件

- **8.** 函数 $f(x,y) = x^2 y^2$ 在其定义域上 (
 - (A) 有极大值无极小值

(B) 无极大值有极小值

(C) 有极大值有极小值

- (D) 无极大值无极小值
- **9.** [另附] 函数 f(x,y) = xy 在其定义域上().
 - (A) 有极大值无极小值

(B) 无极大值有极小值

(C) 有极大值有极小值

- (D) 无极大值无极小值
- **10**. 设 $z = \sqrt{\ln(xy)}$, 则 $\frac{\partial z}{\partial x}$ 等于 ().
- (A) $\frac{1}{x\sqrt{\ln(x\,v)}}$ (B) $\frac{1}{2y\sqrt{\ln(x\,v)}}$ (C) $\frac{1}{2x\sqrt{\ln(x\,v)}}$ (D) $\frac{1}{2\sqrt{\ln(x\,v)}}$
- 11. 设 $z = x^2 e^y + y^2 \sin x$,则 $dz|_{(\pi,0)} =$ ______
- 12. 设二元函数 $z = \int_{1}^{xy} \ln t \, dt$,则 $\frac{\partial^2 z}{\partial x \partial y} =$ ______.
- **13.** 设 $f(x,y) = \frac{x}{v^2}$, 则 $df(x,y)|_{x=1,y=1} =$ ______.
- **14.** 设 z = f(3x 2y, xy), 且 f(u, v) 可微,则全微分 dz =
- 15. 设 $z = f(x \ln y, y x)$, 且 f 具有一阶连续偏导数,则全微分 $dz = \underline{\hspace{1cm}}$
- **16.** 已知函数 $z = \ln(1 + x^2 y^2)$, 则 $dz|_{(1,1)} =$
- **17.** 函数 $z = x^2 y + \frac{x}{y}$ 的全微分 dz =______.
- **18.** 设函数 $z = e^x \sin y$, 则 $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \underline{\qquad}$.
- **19.** 函数 $z = \sqrt{1 x^2} + \sqrt{y^2 1}$ 的定义域是
- **20.** 求二元函数 $z = 3x^2 4xy + 5y^2 2x 6y + 1$ 的极值.

参考答案: 函数 z 在点 (1,1) 处取极小值 z(1,1)=-3.

21.
$$\[\mathcal{U} \] x + 2y + z - 2\sqrt{xyz} = 0 \], \[\mathring{\mathcal{R}} \] \frac{\partial z}{\partial x}, \[\frac{\partial z}{\partial y}. \]$$

参考答案:
$$\frac{\partial z}{\partial x} = \frac{yz - \sqrt{xyz}}{\sqrt{xyz} - xy}; \frac{\partial z}{\partial y} = \frac{xz - 2\sqrt{xyz}}{\sqrt{xyz} - xy}.$$

22. 设函数
$$z = f(x, y)$$
 由方程 $e^z = xyz$ 所确定,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 及 $\frac{\partial^2 z}{\partial x \partial y}$

参考答案:
$$\frac{\partial z}{\partial x} \frac{yz}{e^z - xy} = \frac{z}{x(z-1)}$$
, $\frac{\partial z}{\partial y} = \frac{xz}{e^z - xy} = \frac{z}{y(z-1)}$, $\frac{\partial^2 z}{\partial x \partial y} = \frac{-z}{xy(z-1)^3}$.

23. 求二元函数
$$f(x,y) = xy$$
 在附加条件 $x + y = 1$ 下的极大值.

参考答案:
$$f\left(\frac{1}{2}, \frac{1}{2}\right) = \frac{1}{4}$$
.

24. 设函数
$$z = f(x, y)$$
 由方程 $e^z = x^3 y^2 + z$ 所确定, 求 $\frac{\partial^2 z}{\partial x \partial y}$

参考答案:
$$\frac{\partial^2 z}{\partial x \partial y} = \frac{6x^2y(e^z-1)^2 - 6x^5y^3e^z}{(e^z-1)^3}$$
.

25. 设二元函数
$$f(x,y) = 3x + 4y - ax^2 - 2ay^2 - 2bxy$$
, 试讨论参数 a,b 满足什么条件时, $f(x,y)$ 有唯一极大值, 或有唯一极小值.

参考答案: 当
$$b^2 < 2a^2$$
 且 $a > 0$ 时, $f(x, y)$ 有唯一极大值; 当 $b^2 < 2a^2$ 且 $a < 0$ 时, $f(x, y)$ 有唯一极小值.

26. 已知
$$f$$
 具有二阶连续偏导数,且 $z = f(x^2 - y^2, xy)$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x^2}$

参考答案:
$$\frac{\partial z}{\partial x} = 2x f_u + y f_v = 2x f_1' + y f_2'$$
, $\frac{\partial^2 z}{\partial x^2} = 2f_1' + 4x^2 f_{11}'' + 4x y f_{12}'' + y^2 f_{22}''$.

27.
$$\ \mathcal{U} x^3 + y - xyz^5 = 0, \ \vec{x} \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}.$$

参考答案:
$$\frac{\partial z}{\partial x} = \frac{3x^2 - yz^5}{5xyz^4}$$
; $\frac{\partial z}{\partial y} = \frac{1 - xz^5}{5xyz^4}$.

28. 已知直角三角形斜边长为 *l*, 试求两条直角边等于何值时, 直角三角形的周长最大?

参考答案:
$$x = y = \frac{\sqrt{2}}{x}l$$
 时, $(x + y + l)_{\text{max}} = (\sqrt{2} + 1)l$.

29. 已知
$$f$$
 具有二阶连续偏导数,且 $z = f(xy, \frac{y}{x})$,求 $\frac{\partial^2 z}{\partial x \partial y}$.

参考答案:
$$f_1' + xyf_{11}'' - \frac{1}{x^2}f_2' - \frac{y}{x^3}f_{22}''$$
.

30. 设函数
$$z = f(x, y)$$
 由方程 $x^2 + y^2 + z^2 - 4z = 0$ 所确定, 求 $\frac{\partial^2 z}{\partial x^2}$.

参考答案:
$$\frac{\partial^2 z}{\partial x^2} = \frac{(2-z)^2 + x^2}{(2-z)^3}$$
.

31. 求抛物线
$$y = x^2$$
 和直线 $x - y - 2 = 0$ 之间的最短距离.

参考答案:
$$\frac{7\sqrt{2}}{8}$$
.

32. 设
$$z = \arctan(xy)$$
, 求 $\frac{\partial^2 z}{\partial x \partial y}$.

参考答案:
$$\frac{\partial z}{\partial x} = \frac{y}{1+x^2y^2}$$
, $\frac{\partial^2 z}{\partial x \partial y} = \frac{1-x^2y^2}{\left(1+x^2y^2\right)^2}$.

33. [另附] 设
$$z = \arctan(\frac{y}{x})$$
, 求 $\frac{\partial^2 z}{\partial x \partial y}$.

参考答案:
$$\frac{\partial z}{\partial x} = -\frac{y}{x^2 + y^2}, \frac{\partial^2 z}{\partial x \partial y} = \frac{y^2 - x^2}{(x^2 + y^2)^2}.$$

34. 设
$$z = z(x, y)$$
 由方程 $\frac{y}{z} = \ln \frac{z}{x}$ 所确定, 求 dz.

参考答案:
$$dz = \frac{z^2}{y+z} \left(\frac{1}{x} dx + \frac{1}{z} dy \right).$$

35. 已知求函数
$$z = \ln(y + \sqrt{x^2 + y^2})$$
, 求 $\frac{\partial^2 z}{\partial y^2}$.

参考答案:
$$\frac{\partial^2 z}{\partial y^2} = -\frac{y}{\sqrt{(x^2 + y^2)^3}}$$
.

36. 设二元函数 F(x,y) 在 (x_0,y_0) 某邻域内具有二阶连续的偏导数,且

$$F(x_0, y_0) = 0$$
, $F_x(x_0, y_0) = 0$, $F_{xx}(x_0, y_0) \cdot F_y(x_0, y_0) \neq 0$.

证明: 由方程 F(x,y) = 0 在 (x_0, y_0) 某邻域内确定的隐函数 y = y(x) 在点 $x = x_0$ 处取得极值.

参考答案: 略.

37. 设 $z = f[x + \varphi(y)]$, 其中 f 二次可导, φ 可导, 证明 $\frac{\partial z}{\partial x} \cdot \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial^2 z}{\partial x^2}$.

参考答案: 略.

38. 设 y = f(x, t), 而 t 是由方程 F(x, y, t) = 0 所确定的 x, y 的函数, 其中 f, F 都具有一阶连续偏导数, 试证

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\partial f}{\partial x} \cdot \frac{\partial F}{\partial t} - \frac{\partial f}{\partial t} \cdot \frac{\partial F}{\partial x}}{\frac{\partial f}{\partial t} \cdot \frac{\partial F}{\partial y} + \frac{\partial F}{\partial t}}.$$

参考答案: 略