Average Brightness

October 14, 2018

0.1 # Day and Night Image Classifier

The day/night image dataset consists of 200 RGB color images in two categories: day and night. There are equal numbers of each example: 100 day images and 100 night images.

We'd like to build a classifier that can accurately label these images as day or night, and that relies on finding distinguishing features between the two types of images!

Note: All images come from the AMOS dataset (Archive of Many Outdoor Scenes).

0.1.1 Import resources

Before you get started on the project code, import the libraries and resources that you'll need.

```
In [1]: import cv2 # computer vision library
    import helpers

import numpy as np
  import matplotlib.pyplot as plt
  import matplotlib.image as mpimg

%matplotlib inline
```

0.2 Training and Testing Data

The 200 day/night images are separated into training and testing datasets.

- 60% of these images are training images, for you to use as you create a classifier.
- 40% are test images, which will be used to test the accuracy of your classifier.

First, we set some variables to keep track of some where our images are stored:

image_dir_training: the directory where our training image data is stored image_dir_test: the directory where our test image data is stored $\,$

```
In [2]: # Image data directories
    image_dir_training = "day_night_images/training/"
    image_dir_test = "day_night_images/test/"
```

0.3 Load the datasets

These first few lines of code will load the training day/night images and store all of them in a variable, IMAGE_LIST. This list contains the images and their associated label ("day" or "night").

For example, the first image-label pair in IMAGE_LIST can be accessed by index: IMAGE_LIST[0][:].

0.4 Construct a STANDARDIZED_LIST of input images and output labels.

This function takes in a list of image-label pairs and outputs a **standardized** list of resized images and numerical labels.

0.5 Visualize the standardized data

Display a standardized image from STANDARDIZED_LIST.

```
In [5]: # Display a standardized image and its label

    # Select an image by index
    image_num = 0
    selected_image = STANDARDIZED_LIST[image_num][0]
    selected_label = STANDARDIZED_LIST[image_num][1]

# Display image and data about it
    plt.imshow(selected_image)
    print("Shape: "+str(selected_image.shape))
    print("Label [1 = day, 0 = night]: " + str(selected_label))

Shape: (600, 1100, 3)
Label [1 = day, 0 = night]: 1
```


1 Feature Extraction

Create a feature that represents the brightness in an image. We'll be extracting the **average brightness** using HSV colorspace. Specifically, we'll use the V channel (a measure of brightness), add up the pixel values in the V channel, then divide that sum by the area of the image to get the average Value of the image.

1.1 RGB to HSV conversion

Below, a test image is converted from RGB to HSV colorspace and each component is displayed in an image.

```
In [6]: # Convert and image to HSV colorspace
    # Visualize the individual color channels

image_num = 0
    test_im = STANDARDIZED_LIST[image_num][0]
    test_label = STANDARDIZED_LIST[image_num][1]

# Convert to HSV
hsv = cv2.cvtColor(test_im, cv2.COLOR_RGB2HSV)

# Print image label
print('Label: ' + str(test_label))

# HSV channels
h = hsv[:,:,0]
s = hsv[:,:,1]
```

```
v = hsv[:,:,2]

# Plot the original image and the three channels
f, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, figsize=(20,10))
ax1.set_title('Standardized image')
ax1.imshow(test_im)
ax2.set_title('H channel')
ax2.imshow(h, cmap='gray')
ax3.set_title('S channel')
ax3.imshow(s, cmap='gray')
ax4.set_title('V channel')
ax4.imshow(v, cmap='gray')
```

Out[6]: <matplotlib.image.AxesImage at 0x7fc65b1bac50>

1.1.1 Find the average brightness using the V channel

This function takes in a **standardized** RGB image and returns a feature (a single value) that represent the average level of brightness in the image. We'll use this value to classify the image as day or night.

```
In [8]: # Find the average Value or brightness of an image
    def avg_brightness(rgb_image):

    # Convert image to HSV
    hsv = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2HSV)

# Add up all the pixel values in the V channel
    sum_brightness = np.sum(hsv[:,:,2])

## TODO: Calculate the average brightness using the area of the image
    # and the sum calculated above
    area = 600*1100.0

avg = sum_brightness / area

return avg
```

```
In [9]: # Testing average brightness levels
    # Look at a number of different day and night images and think about
    # what average brightness value separates the two types of images

# As an example, a "night" image is loaded in and its avg brightness is displayed
    image_num = 190
    test_im = STANDARDIZED_LIST[image_num][0]

avg = avg_brightness(test_im)
    print('Avg brightness: ' + str(avg))
    plt.imshow(test_im)
```

Avg brightness: 71.7448015152

Out[9]: <matplotlib.image.AxesImage at 0x7fc65b086320>

In []: