Quiz #3

- Due Apr 21 at 11:59pm
- Points 10
- Questions 10
- Available Apr 19 at 12:01am Apr 21 at 11:59pm
- Time Limit 60 Minutes

Instructions

Welcome to the Week #3 quiz!

This is due Sunday night at 23:59. Canvas is very unforgiving, so don't push it.

Remember that this is open-notes. Good luck!

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	5 minutes	9 out of 10

(!) Correct answers will be available on Apr 22 at 12:01am.

Score for this quiz: 9 out of 10 Submitted Apr 21 at 9:52pm

This attempt took 5 minutes.

Ougoti

Question 1

1 / 1 pts

Why did "Moore's Law of Clock Speed" stop happening a few years ago?

- Because Moore's Law of Transistor Density stopped holding then too
- Because it would have resulted in way too much power consumption and require too much heat dissipation
- Because CPU clocks could no longer be made to run that fast
- Because connection lines on CPU chips could no longer be made that thin

Question 2

1 / 1 pts

The difference between L1 and L2 cache is

- L1 is smaller and faster than L2
- L2 has two banks of memory, L1 only has one

Nothing they are two terms for the same thing
L1 is larger and slower than L2
Question 3
1 / 1 pts Why is there a photo of a carton of eggs in the Cache notes?
Because caches are easily broken
Andy Warhol would have appreciated it this way
Bringing home a dozen eggs when you only need 2 today is like the need for cache
No logical reason it looks cool
Question 4
1 / 1 pts
Caches are at their very best when your code takes advantage of
Singular and Temporary coherence
Spatial and Temporal coherence
Spatial and Temporary coherence
Singular and Temporal coherence
Question 5
1 / 1 pts When adding up the elements of a 2D array in C or C++, it is faster to add the
elements:
Horizontally (i.e., across the rows) first
Vetically (i.e., down the columns) first
It makes no speed difference either way
Question 6
1 / 1 pts
In towns of 20 bit /4 byto) floating point growbons the size of a cooke line in
In terms of 32-bit (4-byte) floating-point numbers, the size of a cache line is:
8 floating-point numbers 8 floating-point numbers
8 floating-point numbers

:
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 / 1 pts
MESI stands for:
Modified-Exclusive-Shared-Instructions
Multicore-Exclusive-Shared-Invalid
Nothing, it is someone's name
Modified-Exclusive-Shared-Invalid
Modified-Exterior-Shared-Invalid
Modified-Exclusive-Single-Invalid
Question 8
1 / 1 pts False Sharing happens because:
More than two threads are trying to read from the same cache line
Two threads are not sharing the same cache line, but should be
Two threads are reading from the same cache line
One thread is accessing the same cache line that another thread is writing to
IncorrectQuestion 9
0 / 1 pts
Intel recently achieved a remarkably-high CPU clock speed by:
Running the CPU outside
Cooling the chip with four fans
Cooling the chip with liquid nitrogen
Cooling the chip with liquid helium
Question 10
1/1 pts When performing a matrix multiply:
When performing a matrix multiply:
The order of the i-j-k for-loops makes a slight difference in performance
The order of the i-j-k for-loops makes a big difference in performance
The order of the i-j-k for-loops makes no difference in performance The order of the i-j-k for-loops makes no difference in performance
Quiz Score: 9 out of 10

Quiz Score: 9 0