Architetture dei Sistemi di Elaborazione 02GOLOV [M-Z]

Delivery date: 31/10/2019

Laboratory 2

Expected delivery of lab_02.zip must include: program 2.s and program 3.s

- This file, filled with information and possibly compiled in a pdf format.

Please, configure the winMIPS64 simulator with the *Base Configuration* provided in the following:

- Code address bus: 12
- Data address bus: 12
- Pipelined FP arithmetic unit (latency): 6 stages
- Pipelined multiplier unit (latency): 8 stages
- divider unit (latency): not pipelined unit,
 24 clock cycles
- Forwarding is enabled
- Branch prediction is disabled
- Branch delay slot is disabled
- Integer ALU: 1 clock cycle
- Data memory: 1 clock cycle
- Branch delay slot: 1 clock cycle.

1) Write an assembly program (**program_2.s**) for the *winMIPS64* architecture described before able to implement the following piece of code described at high-level:

```
for (i = 0; i < 30; i++){
 v5[i] = (v1[i]*v2[i]) + v3[i];
 v6[i] =(v3[i]*v4[i])/v5[i]:
}
```

Assume that the vectors v1[], v2[], v3[], and v4[] are allocated previously in memory and contains 30 double precision floating point values; **assume that v5[] will not contain 0 values**. Additionally, the vectors v5[], v6[] are empty vectors also allocated in memory.

- a. Using the simulator and the *Base Configuration*, compute how many clock cycles take the program to execute.
- 2) Using the WinMIPS64 simulator, validate experimentally the Amdahl's law, defined as follows:

follows:
$$speedup_{overall} = \frac{execution time_{old}}{execution time_{new}} = \frac{1}{(1 - fraction_{enhanced}) + \frac{fraction_{enhanced}}{speedup_{enhanced}}}$$

- a. Using the program developed before: program 2.s
- b. Modify the processor architectural parameters related with multicycle instructions (Menu-Configure-Architecture) in the following way:

- 1) Configuration 1
 - Starting from the *Base Configuration*, change only the FP addition latency to 3
- 2) Configuration 2
 - Starting from the *Base Configuration*, change only the Multiplier latency to 4
- 3) Configuration 1
 - Starting from the *Base Configuration*, change only the division latency to 12

Compute by hand (using the Amdahl's Law) and using the simulator the speed-up for any one of the previous processor configurations. Compare the obtained results and complete the following table.

Table 1: program 2.s speed-up computed by hand and by simulation

Proc. Config. Speed-up comp.	Base config. [c.c.]	Config. 1	Config. 2	Config. 3
By hand	<u>1415</u>	1.041	1.081	1.45
By simulation	<mark>1415</mark>	1.032	1.067	1.30

3) Write an assembly program (**program_3.s**) for the winMIPS64 architecture able to compute the hamming distance between two consecutive elements of a data array X[] previously allocated in memory (the array X contains 30 8-bit elements). Given two consecutive elements X[i] and X[i+1], the Hamming distance is defined as the number of bits set to 1 in (X[i] ^ X[i+1]).

If the Hamming distance is:

- even, the variable even counter must be incremented
- odd, the variable odd counter must be incremented

These two variables are allocated in memory and initially empty.

- 4) Considering the following winMIPS64 architecture:
 - Code address bus: 12
 - Data address bus: 12
 - Pipelined FP arithmetic unit (latency): 4 stages
 - Pipelined multiplier unit (latency): 8 stages
 - divider unit (latency): not pipelined unit, 12 clock cycles
 - Forwarding is enabled
 - Branch prediction is disabled
 - Branch delay slot is disabled
 - Integer ALU: 1 clock cycle
 - Data memory: 1 clock cycle
 - Branch delay slot: 1 clock cycle.

a. calculate by hand, how many clock cycles take the program to execute?

Ī	Number o	of clock cycles:	1448	

b. compute the same calculation using the winMIPS64 simulator.

Number of clock cycles:	1478 e 652
-------------------------	------------

Compare the results obtained in the points 4.a and 4.b., and provide some explanation in the case the results are different.

Eventual explanation:

Ho considerato il peggior caso per calcolare il numero di cicli: considerando che ogni elemento del vettore sia pari a 255, quindi che la funzione "counter_ones" si ripeta ogni volta per 8 volte. Si ottiene 1448 6+30*[5+8*4+1+4+3+2+1]+1+1=48*30+8=1448.

Ho riportato nel numero di clock sia il valore con un vettore contente solo 255 (1478) e sia un valore calcolato da un vettore casuale (652)