Московский физико-технический институт

Лабораторная работа по общей физике N 4.2

Исследование энергетического спектра β -частиц и определение их максимальной энергии при помощи магнитного спектрометра

Выполнила студентка Б01-907 Юлия Прохорова

Содержание

1.	Цель работы	2
2.	Оборудование	2
3.	Теория	2
4.	Экспериментальная установка	2
5.	Ход работы	3
6.	Обработка результатов	5
7.	Вывод	6
8.	Литература	6

1. Цель работы

С помощью магнитного спектрометра исследовать энергетический спектр β -частиц при распаде ядер ^{137}Cs и определение их максимальной энергии.

2. Оборудование

Магнитный спектрометр с короткой линзой, высоковольтный и низковольтный выпрямители, форвакуумный насос и вакууметр, ЭВМ.

3. Теория

Бета-распадом называется самопроизвольное превращение ядер, при котором их массовое число не меняется, а заряд увеличивается или уменьшается на единицу. В нашем случае имеем дело с электронным распадом:

$$_{Z}^{A}X \rightarrow _{Z+1}^{A}X + e^{-} + \tilde{\nu}$$

Освобождающаяся энергия делится между электроном и антинейтрино, дочернему ядру достается очень мало.

Вид спектра β -частиц показан на рис.1. $W(p_e)dp_e$ - вероятность того, что β -частица получит импульс в интервале $(p_e,\ p_e+dp_e)$.

Рис. 1: Форма спектра β -частиц при разрешенных переходах

Вероятность β -распада пропорциональна фазовому объему в векторном пространстве имупульсов электронов и антинейтрино. Интервалу $(p_e, p_e + dp_e)$ соответсввет шаровой слой объема $4\pi p_e^2 dp_e$. В пространстве импульсов, уносимых антинейтрино, выделятеся шаровой слой площадью $4\pi p_{\nu}^2$, значит:

$$W(p_e)dp_e \propto p_e^2 p_\nu^2 dp_e \tag{1}$$

Выразим в этом соотношении $p_{
u}$ через p_e . Масса антинейтрино равна нулю,

$$p_{\nu} = E_{\nu}/c = (T_{max} - T_e)/c$$
 (2)

 E_{ν} - кинетическая энергия антинейтрино, T_{max} - масимально возможная кнетическая энергия электрона. T_e - фактическая энергия электрона. Подставляя 2 в 1 получим:

$$W(p_e)dp_e \propto p_e^2 (T_{max} - T_e)^2 dp_e \tag{3}$$

Кинетическая энергия электрона и его импульс связаны:

$$T_e = \sqrt{p_e^2 c^2 + m_e^2 c^4} - m_e c^2 \tag{4}$$

Отсюда:

$$T_{max} - T_e = c(\sqrt{p_{max}^2 + m_e^2 c^2} - \sqrt{p_e^2 + m_e^2 c^2})$$
 (5)

Уравнение (5) описывает спектр как широкий колокол (рис.1)

Дочерние ядра нередко бывают возбужденными, поэтому они могут излучать γ -квант или передавать избыток электрону на внутренней оболочке. Такие излучаемые электроны называются **конверсионными**. На спектре (рис.1) видна монохроматическая линия, ширина которой обусловлена лишь разрешающей способностью спектрометра.

4. Экспериментальная установка

Энергию частиц определяют с помощью β -спектрометра. В работе используется магнитный спеткрометр с "короткой линзой сцинтиллятором и Φ ЭУ. По расчету, тонкая катушка эквивалент на линзе:

$$\frac{1}{f} \propto \frac{I^2}{p_c^2} \tag{6}$$

При заданной силе тоув на входное окно счетчика фокусируются электоны с определенным значением импульса. Импульс сфокусированих электонов пропорционален величине тока I:

Рис. 2: Схема β -спектрометра с короткой магнитной линзой

Рис. 3: Блок-схема измерительного комлпекса

$$p_e = k \cdot I \tag{7}$$

Константа прибора к определяется по известной конверсионной линии.

Линза обладает абберацией, поэтому установлены кольцевые диафрагмы, ограничивающие углы вылетов электронов. Также установлен свинцовый фильтр, сдерживающий γ -кванты и электроны, летящие прямо. Величина Δp_e - разрешающая способность.

Рассмотрим связь между числом частиц, регистрируемых установкой, и функцией $W(p_e)$, определяемой формулой (3):

$$N(p_e) \approx W(p_e) \Delta p_e \tag{8}$$

Фокус линзы зависит от импульса, частицы проходят мимо при больших Δf , продиффиренцируем (6)

$$\Delta p_e = \frac{1}{2} \frac{\Delta f}{f} p_e \tag{9}$$

Таким образом, ширина интервала Δp_e пропорциональна импульсу. Подставим (9) в (8):

$$N(p_e) = C \cdot W(p_e)p_e \tag{10}$$

где С - некоторая константа.

Давление в спектрометре поддерживается на уровне 0.1 Торр и измеряется вакууметром. Откачка освществляется форвакуумным насосом. Высокое напряжение на ФЭУ подается от стабилизированного выпрямителя.

5. Ход работы

- 1) Включаем пересчетный прибор, высоковольтный выпрямитель и вакууметр. Откачиваем давление форвакуумным насосом.
- 2) Включаем рабочее напряжение на ФЭУ.
- 3) Убеждаемся, что спектрометр корректно работает, для этого увеличиваем ток в катушке, мы должны наблюдать силный рост счетов с повышением тока.
- 4) Проведем измерения в интервале от 0.1 до $3.7\mathrm{A}$ с шагом $0.1\mathrm{A}$, каждое измерение длительностью $t=100\mathrm{c}$.
- 5) Измерим фоновый счет спектрометра при отсутствующем и максимальном токе в линзе. Составим линейную зависимость.
- 6) Занесем данные в таблицу 1 и произведем необходимые рассчеты.

Таблица 1: Данные

N₀	I, A	N, 1/c	Nf(I)	N-Nf, 1/c	р_e, кэB/c	Т_е, кэB
1	0.100	1.410	1.344	0.066	31.672	0.982
2	0.200	1.230	1.329	-0.099	63.344	3.919
3	0.300	1.540	1.313	0.227	95.016	8.775
4	0.400	1.510	1.298	0.212	126.688	15.499
5	0.500	1.560	1.282	0.278	158.359	24.020
6	0.600	1.799	1.266	0.533	190.031	34.254
7	0.700	2.079	1.251	0.828	221.703	46.105
8	0.800	2.509	1.235	1.274	253.375	59.472
9	0.900	2.879	1.220	1.659	285.047	74.253
10	1.000	3.749	1.204	2.545	316.719	90.342
11	1.100	4.639	1.188	3.451	348.391	107.637
12	1.200	5.558	1.173	4.385	380.062	126.040
13	1.300	6.638	1.157	5.481	411.734	145.458
14	1.400	7.508	1.141	6.367	443.406	165.803
15	1.500	9.087	1.126	7.961	475.078	186.993
16	1.600	9.277	1.110	8.167	506.750	208.954
17	1.700	9.407	1.095	8.312	538.422	231.619
18	1.800	10.597	1.079	9.518	570.094	254.923
19	1.900	10.097	1.063	9.034	601.766	278.810
20	2.000	10.837	1.048	9.789	633.438	303.230
21	2.100	10.297	1.032	9.265	665.109	328.135
22	2.200	9.937	1.017	8.920	696.781	353.484
23	2.300	9.237	1.001	8.236	728.453	379.238
24	2.400	7.258	0.985	6.273	760.125	405.363
25	2.500	6.548	0.970	5.578	791.797	431.829
26	2.600	5.378	0.954	4.424	823.469	458.608
27	2.700	4.039	0.939	3.100	855.141	485.673
28	2.800	3.399	0.923	2.476	886.812	513.004
29	2.900	3.629	0.907	2.722	918.484	540.578
30	3.000	5.458	0.892	4.566	950.156	568.377
31	3.050	7.618	0.884	6.734	965.992	582.356
32	3.100	10.117	0.876	9.241	981.828	596.384
33	3.150	12.676	0.868	11.808	997.664	610.461
34	3.200	14.686	0.860	13.826	1013.500	624.585
35	3.250	14.446	0.853	13.593	1029.336	638.753
36	3.300		0.845	12.141	1045.172	652.964
37	3.350	10.617	0.837	9.780	1061.008	667.216
38	3.400	8.967	0.829	8.138	1076.844	681.508
39	3.450	6.948	0.821	6.127	1092.680	695.839
40	3.500	4.789	0.814	3.975	1108.516	710.208
41	3.600	2.229	0.798	1.431	1140.188	739.051
42	3.700	1.510	0.782	0.728	1171.859	768.028

6. Обработка результатов

1) Построим график остчетов от тока в катушке.

Рис. 4: N(I)

 По значению $p_{\text{конв}}\cdot c=1013,5$ кэ В по формуле (7) определим константу прибора $k\approx 316,7$ Построим графики N(T) и $N(p_e)$

Рис. 5

Рис. 6

2) Определим T_{max} с помощью графика Ферми. Подставим в (3) значение $W(p_e)$ из (10) и разделим на Δp_e :

$$\sqrt{N(p_e)} / p^{3/2} \propto T_{max} - T \tag{11}$$

Рис. 7: График Ферми

По графику определим значение $T_{max} = 604.18 \pm 13.44$ эВ (2.22%)

7. Вывод

В ходе работы было исследовано явление β -распада ^{137}Cs . В спектр попали электроны, образованные в паре с антинейтрино при распаде, так же конверсионные электроны, испускаемые возбужденными вторичными ядрами. С помощью графика Φ ерми $\sqrt{N(p_e)}~/~p^{3/2} \propto T_{max} - T$ было определено максимальное значение кинетической энергии $T_{max} = 604.18 \pm 13.44$ эВ (2.22%).

8. Литература

Игошин Ф.Ф., Самарский Ю.А., Ципенюк Ю.М. - Лабораторный практикум по общей физике: Учеб. пособие для вузов. Т. 3 Квантовая физика.