LOGIC-04

- 2.1 Propositions and logical operations, Truth tables
- 2.2 Equivalence, Implications
- 2.3 Laws of logic, Normal Forms
- 2.4 Predicates and Quantifiers
- 2.5 Mathematical Induction

LOGIC

- •Study of the logic <u>relationships</u> between <u>objects</u> and
- Basis of all mathematical reasoning and all automated reasoning

Introduction: PL?

- In Propositional Logic, the objects are called propositions
- Definition: A proposition is a <u>statement</u> that is either <u>true</u> or <u>false</u>, but not both
- We usually denote a proposition by a letter: p,
 q, r, s, ...

Introduction: Proposition

- Definition: The value of a proposition is called its <u>truth value</u>; denoted by
 - T or 1 if it is true or
 - F or 0 if it is false
- Opinions, interrogative, and imperative are not propositions
- Truth table

*p*0
1

Propositions: Examples

The following are propositions

 Today is Monday 	1
-------------------------------------	---

- The grass is wet
- It is raining

The following are not propositions

- C++ is the best languageOpinion
- When is the pretest?
 Interrogative
- Do your homeworkImperative

Logical operations

- Connectives are used to create a compound proposition from two or more propositions
- Negation (e.g., \neg a, \sim a, or \bar{a})
- AND or logical Conjunction (denoted ∧)
- OR or logical Disjunction (denoted ∨)
- XOR or exclusive or (denoted ⊕)
- Imply on (denoted \Rightarrow or \rightarrow)
- Biconditional (denoted ⇔ or ↔) IFF

We define the meaning (semantics) of the logical connectives using truth tables

Precedence of Logical Operators

- As in arithmetic, an ordering is imposed on the use of logical operators in compound propositions
- However, it is preferable to use parentheses to disambiguate operators and facilitate readability

$$\neg p \lor q \land \neg r \equiv (\neg p) \lor (q \land (\neg r))$$

- To avoid unnecessary parenthesis, the following precedence hold:
 - 1. Negation (\neg)
 - Conjunction (∧)
 - 3. Disjunction (\vee)
 - 4. Implication (\rightarrow)
 - 5. Biconditional (\leftrightarrow)

Logical Connective: Negation

- $\neg p$, the negation of a proposition p, is also a proposition
- Examples:
 - Today is not Monday
 - It is not the case that today is Monday, etc.

Truth table

p	¬ p
0	1
1	0

Logical Connective: Logical AND

- The logical connective And is true only when both of the propositions are true. It is also called a <u>conjunction</u>
- Examples
 - It is raining and it is warm
 - (2+3=5) and (1<2)
- Truth table

p	q	pvd
T	T	T
T	F	F
F	T	F
F	F	F

Logical Connective: Logical OR

- The logical <u>disjunction</u>, or logical OR, is true if one or both of the propositions are true.
- Examples
 - It is raining or it is the second lecture
 - $-(2+2=5) \lor (1<2)$
 - You may have cake or ice cream
- Truth table

p	q	pvq
T	T	T
T	F	T
F	T	T
F	F	F

Logical Connective: Exclusive Or

- The exclusive OR, or XOR, of two propositions is true when exactly one of the propositions is true and the other one is false
- Example
 - The circuit is either ON or OFF but not both
- Truth table

p	q	peq
T	T	F
T	F	T
F	T	T
F	F	F

Logical Connective: Biconditional (1)

• **Definition:** The biconditional $p \leftrightarrow q$ is the proposition that is true when p and q have the same truth values. It is false otherwise.

Truth table

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

Logical Connective: Biconditional (2)

- The biconditional $p \leftrightarrow q$ can be equivalently read as
 - -p if and only if q
 - p is a necessary and sufficient condition for q
 - if p then q, and conversely
 - -p iff q (Note typo in textbook, page 9, line 3)
- Examples
 - -x>0 if and only if x^2 is positive
 - The alarm goes off iff a burglar breaks in
 - You may have pudding iff you eat your meat

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

Examples:

- (i) An integer is even if and only if it is divisible by 2.
- (ii) A right angled triangle is isosceles if and only if the other two angles are each equal to forty-five degrees.
- (iii) Two lines are parallel if and only if they have the same slope

Logical Connective: Implication (1)

Definition: Let p and q be two propositions.

The implication $p \rightarrow q$ is a relationship between two propositions in which the second is a logical consequence of the first

- -p is called the hypothesis(If I give you 1 million \$)
- q is called the conclusion, consequence(then you will become a millionaire)

Note that this is logically equivalent to ¬p∨q

Logical Connective: Implication

- The implication of $p \rightarrow q$ can be also read as
 - If p then q
 - p implies q
 - If p, q
 - -p only if q
 - -q if p
 - -q when p
 - -q whenever p
 - -q follows from p
 - -p is a sufficient condition for q (p is sufficient for q)
 - -q is a necessary condition for p (q is necessary for p)

Logical Connective: Implication

Examples

- If you buy you air ticket in advance, it is cheaper.
- If x is an integer, then $x^2 \ge 0$.
- If it rains, then grass gets wet.
- If 2+2=5, then all unicorns are pink.

Logical Connective: Implication Truth Table

p: It is raining,

q: I am wet

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Let p denote :Peter is rich, q denote :Peter is happy.

Write symbolic form for the following

- 1. Peter is poor but happy
- 2. $\sim p \wedge q$
- 3. Peter is neither rich nor happy
- 4. $\sim p \land \sim q$
- 5. Peter is either rich or unhappy
- 6. $p \lor \sim q$

Write the following statements in symbolic form:

p: I will study discrete structures.

q: I will go to a movie.

r: I am in a good mood.

- 1. If I am not in a good mood, then I will go to a movie.
- 2. I will not go to a movie and I will study discrete structures.
- 3. I will go to a movie only if I will not study discrete structures.
- 4. I will not study discrete structures, then I am not in a good mood.

p: I will study discrete structures.

q: I will go to a movie.

r: I am in a good mood.

Write the following statements in symbolic form:

- If I am not in a good mood, then I will go to a movie.
- $\sim r \rightarrow q$
- I will not go to a movie and I will study discrete structures.
- ~qΛp
- I will go to a movie only if I will not study discrete structures.
- $\sim p \rightarrow q$
- I will not study discrete structures, then I am not in a good mood.
- $\sim p \rightarrow \sim r$

Write logical/conditional propositions

- 1. There is an error in the program or the data is wrong.
- 2. If Peter works hard then he will pass the exam.
- 3. Farmers will face hardship if the dry spell continues.
- 4. Unless I reach the station on time, I will miss the train.

Converse, Inverse, Contrapositive

- Consider the proposition $p \rightarrow q$ (Conditional If..... then)
 - Its <u>converse</u> is the proposition $q \rightarrow p$
 - Its <u>contrapositive</u> is the proposition $\neg q \rightarrow \neg p$
 - Its <u>inverse</u> is the proposition $\neg p \rightarrow \neg q$

- State the converse, inverse and contrapositive of the following.
- (i) If it is cold then he wears hat.
- Let p: It is cold , q: He wears hat.
- Converse $(q \rightarrow p)$: If he wears hat then it is cold.
- Contrapositive $(^{\sim}q \rightarrow ^{\sim}p)$: If he does not wear hat, then it is not cold.
- Inverse $(\sim p \rightarrow \sim q)$: If it is not cold then he does not wear hat.
- (ii) If integer is multiple of 2, then it is even.
- Converse $(q \rightarrow p)$: If integer is even, then it is multiple of 2.
- Inverse $(\sim p \rightarrow \sim q)$: If integer is not multiple of 2 then it is not even.
- Contrapositive ($^{\sim}q \rightarrow ^{\sim}p$): If integer is not even, then it is not multiple of 2.

1. Consider

P:You stay in Mumbai;

Q: You stay in Taj

Determine Converse, Contrapositive and Inverse for "If you stay in Mumbai, you stay in Taj"

2. Write down the English sentences for converse and contrapositive of: "If 250 is divisible by 4 then 250 is an even number" Let 'a' be the proposition 'high speed driving is dangerous' and 'b' be the proposition 'Rajesh was a wise man.'

Write down the meaning of the following proposition.

- 1. a∧b
- 2. ~a∧b
- 3. $(a \wedge b) \vee (\sim a \wedge \sim b)$
- Soln.:
- 1. $a \land b$: High speed driving is dangerous and Rajesh was a wise man.
- 2. $\sim a \land b$: High speed driving is not dangerous and Rajesh is a wise man.
- (a ∧ b) ∨ (~ a ∧ ~ b): High speed driving is dangerous and Rajesh was a wise man or neither high speed driving is dangerous nor Rajesh is a wise man.

 Express the proposition 'Either my program runs and it contains no bugs, or my program contains bugs' in symbolic form.

Soln.:

Let p : My program runs.

q : My program contains bugs.

• The proposition can be written in symbolic form as,

$$(p \land \sim q) \lor q$$

How can this English sentence be translated into a logical expression?

"You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old."

- Soln: Let q: You can ride the roller coaster.
- r : You are under 4 feet tall.
- s: You are older than 16 years old.
- The sentence can be translated into:
- $(r \land \neg s) \rightarrow \neg q$

Usefulness of Logic

- Logic is more precise than natural language
 - You may have cake or ice cream.
 - Can I have both?
 - If you buy your air ticket in advance, it is cheaper.
 - Are there or not cheap last-minute tickets?
- For this reason, logic is used for hardware and software specification
 - Given a set of logic statements,
 - One can decide whether or not they are <u>satisfiable</u> (i.e., consistent),
 although this is a costly process...

Terminology:

Tautology, Contradictions, Contingencies

Definitions

- A compound proposition that is always **true**, no matter what the truth values of the propositions that occur in it is called a <u>TAUTOLOGY</u>
- A compound proposition that is always **false** is called a <u>CONTRADICTION</u>
- A proposition that is neither a tautology nor a contradiction is a
 CONTINGENCY

Examples

- A simple tautology is $p \vee \neg p$
- A simple contradiction is $p \land \neg p$

Truth Tables

- Truth tables are used to show/define the relationships between the truth values of
 - the individual propositions and
 - the compound propositions based on them

р	q	p∧q	p∨q	p⊕q	p⇒q	p⇔q
0	0	0	0	0	1	1
0	1	0	1	1	1	0
1	0	0	1	1	0	0
1	1	1	1	0	1	1

Logical Equivalences: Example 1

- Are the propositions $(p \rightarrow q)$ and $(\neg p \lor q)$ logically equivalent?
- To find out, we construct the truth tables for each:

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

р	q	$p{ ightarrow}q$	$\neg p$	$\neg p \lor q$
0	0			
0	1			
1	0			
1	1			

 The two columns in the truth table are identical, thus we conclude that

$$(p \rightarrow q) \equiv (\neg p \lor q)$$

Logical Equivalences: Example 1

- Are the propositions $(p \rightarrow q)$ and $(\neg p \lor q)$ logically equivalent?
- To find out, we construct the truth tables for each:

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

р	q	$p{ ightarrow}q$	$\neg p$	$\neg p \lor q$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	1	0	1

 The two columns in the truth table are identical, thus we conclude that

$$(p \to q) \equiv (\neg p \lor q)$$

Constructing Truth Tables

• Construct the truth table for the following compound proposition $\sim P \wedge (P \rightarrow Q)$

P	Q	$\sim P$	P o Q	$\sim P \wedge (P \rightarrow Q)$
T	Т			
T	F			
F	Т			
F	F			

Constructing Truth Tables

• Construct the truth table for the following compound proposition $\sim P \wedge (P \rightarrow Q)$

$$\sim P \wedge (P \rightarrow Q)$$
.

P	Q	$\sim P$	$P \rightarrow Q$	$\sim P \wedge (P \rightarrow Q)$
Т	Т	F	Т	F
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

. Show that $(P \to Q) \lor (Q \to P)$ is a tautology.

P	Q	P o Q	Q o P	$(P \rightarrow Q) \lor (Q \rightarrow P)$
T	Т			
Т	F			
F	Т			
F	F			

. Show that $(P \to Q) \lor (Q \to P)$ is a tautology.

P	Q	$P \rightarrow Q$	$Q \rightarrow P$	$(P \rightarrow Q) \lor (Q \rightarrow P)$
Т	Т	Т	Т	Т
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	Т	Т

Prove $(AVB)\Lambda[(\neg A)\Lambda(\neg B)]$ is a contradiction

Prove $(AVB)\Lambda(\neg A)$ a contingency

• Construct a truth table for $(P \rightarrow Q) \land (Q \rightarrow R)$.

P	Q	R	P o Q	$Q \to R$	$(P \rightarrow Q) \land (Q \rightarrow R)$
Т	Т	T			
Т	Т	F			
Τ	F	Т			
Τ	F	F			
F	Т	Т			
F	Т	F			
F	F	Т			
F	F	F			

• Construct a truth table for $(P \rightarrow Q) \land (Q \rightarrow R)$.

P	Q	R	P o Q	$Q \rightarrow R$	$(P \rightarrow Q) \land (Q \rightarrow R)$
Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F
Т	F	Т	F	Т	F
Т	F	F	F	Т	F
F	Т	Т	Т	Т	Т
F	Т	F	Т	F	F
F	F	Т	Т	Т	Т
F	F	F	Т	Т	Т

Logical Equivalences: Exercise 25 from Rosen

• Show that $(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$

p	q	r	$p \rightarrow r$	$q \rightarrow r$	$(p \rightarrow r) \lor (q \rightarrow r)$	p∧q	$(p \land q) \rightarrow r$

LAWS OF LOGIC

Commutative laws

$$p \land q \Leftrightarrow q \land p$$

 $p \lor q \Leftrightarrow q \lor p$

Associative laws

$$p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r$$

 $p \vee (q \vee r) \Leftrightarrow (p \vee q) \vee r$

Inverse laws

$$p \land \neg p \Leftrightarrow F$$

 $p \lor \neg p \Leftrightarrow T$

Laws of Logic

Distributive laws

$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$

$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$

Idempotent laws

$$p \land p \Leftrightarrow p$$

$$p \lor p \Leftrightarrow p$$

Identity laws

$$p \wedge T \Leftrightarrow p$$

$$p \vee F \Leftrightarrow p$$

Laws of Logic

Domination laws

$$p \wedge F \Leftrightarrow F$$

$$p V T \Leftrightarrow T$$

Absorption law

$$p \land (p \lor q) \Leftrightarrow p$$

$$p \lor (p \land q) \Leftrightarrow p$$

De Morgan Law:

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Table of Logical Equivalences

Commutative	$p \wedge q \iff q \wedge p$	$p \lor q \iff q$
Associative	$(p \wedge q) \wedge r \iff p \wedge (q \wedge r)$	$(p \lor q) \lor r \iff p$
Distributive	$p \wedge (q \vee r) \iff (p \wedge q) \vee (p \wedge r)$	$p\vee (q\wedge r)\iff (p\vee$
Identity	$p \wedge T \iff p$	$p \vee F \iff$
Negation	$p \vee \sim p \iff T$	$p \wedge \sim p \iff$
Double Negative	$\sim (\sim p) \iff p$	
Idempotent	$p \wedge p \iff p$	$p \lor p \iff$
Universal Bound	$p \lor T \iff T$	$p \wedge F \iff$
De Morgan's	$\sim (p \wedge q) \iff (\sim p) \vee (\sim q)$	$\sim (p \lor q) \iff (\sim p)$
Absorption	$p \lor (p \land q) \iff p$	$p \wedge (p \vee q) \iff$
Conditional	$(p \implies q) \iff (\sim p \vee q)$	$\sim (p \implies q) \iff$

Quantifiers

- Predicates Quantifier is used to quantify the variable of predicates
- An assertion that contains one or more variable is called a predicate
- X+3= 5, x+y >=10.....etc,
- these statements are not propositions since they do not have truth value, but if values assigned can become true or false

Eg : x is a city in India -------
$$P(x)$$

x is the father of y ------- $P(x, y)$
 $x + y > = z$ is denoted by ----- $P(x, y, z)$

- There are two types of quantifier in predicate logic -
- Universal Quantifier and Existential Quantifier

Universal quantifier "for all, for every, for each " is "∀",

Existential quantifier" there exists " is "]"

Note – \forall a \exists b P(x,y) \neq \exists a \forall b P(x,y)

Quantifier

If M(x) is "x is man"

C(x) is "x is clever"

Translate the following statements into English.

- (i) $\exists x (M(x) \rightarrow C(x))$
- (ii) $\forall x (M(x) \land C(x))$

•Soln.:

- •(i) There exists a man who is clever.
- •(ii) For all men x is man and x is clever.

Write the following two propositions in symbols.

Let p(x,y) denote the predicate 'y = x + 1'.

(i)'For every number x there is a number y such that y = x + 1.'

(ii) There is a number y such that, for every number x, y = x + 1.

Write the following two propositions in symbols.

Let p(x,y) denote the predicate 'y = x + 1'.

(i)'For every number x there is a number y such that y = x + 1.'

$$\forall x \exists y P(x, y)$$

(ii) There is a number y such that, for every number x, y = x + 1.

$$\exists y \forall x P(x,y)$$

Write English sentences for the following

- 1. $\forall x \exists y R(x,y)$
- $2. \exists x \forall y R(x,y)$
- $3. \forall x (~Q(x))$
- 4. $\exists x (P(x))$
- 5. $\forall x P(x)$ where
- P(x): x is even
- Q(x) : x is prime nos
- R(x, y): x + y is even

NORMAL FORMS (complex form of variables)

Conjunctive Normal Form- CNF

```
- Expression (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)
Eg: (A \lor B) \land (A \lor C) \land (B \lor C \lor D)
```

Disjunctive Normal Form- DNF

```
- Expression (x_1 \land x_2 \land x_3) \lor (\neg x_1 \land \neg x_2 \land \neg x_3)
Eg: (A \land B) \lor (A \land C) \lor (B \land C \land D)
```

Disjunctive Normal Form

- A disjunction of conjunctions where every variable or its negation is represented once in each conjunction (a minterm)
 - each minterm appears only once

Example: DNF of $p \oplus q$ is $(p \land \neg q) \lor (\neg p \land q)$.

Truth Table

_ p	q	p⊕q	$(p \land \neg q) \lor (\neg p \land q)$
Т	Т	F	F
T	F	T	T
F	$ \mathcal{T} $	\mathcal{T}	
F	F	F	F

Method to construct DNF

- 1. Construct a truth table for the proposition.
- 2. Use the rows of the truth table where the proposition is

True to construct minterms.

- If the variable is true, use the propositional variable in the minterm
- If a variable is false, use the negation of the variable in the minterm

1. Connect the minterms with \vee 's.

How to find the DNF of $(p \lor q) \rightarrow \neg r$

р	q	r	(p ∨ q)	│	(p ∨ q)–	→¬r		
Т	Т	Т	Т	F	F	р	- q	$p \rightarrow q$
T	T	F	T	T	T	T	Γ F	T
Т	F	Т	Т	F	F	F '	Γ	F T
T	F	F	T	T	T	F 1	F	T
F	Т	Т	Т	F	F			
F	T	F	T	T	T			
F	F	T	F	F	T			
F	F	F	F	T	T			
$(p \lor q) \rightarrow \neg r \Leftrightarrow (p \land q \land \neg r) \lor (p \land \neg q \land \neg r) \lor$								

 $(\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r)$

How to find the DNF of $(p \lor q) \rightarrow \neg r$

$$(p \lor q) \rightarrow \neg r \Leftrightarrow (p \land q \land \neg r) \lor (p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r)$$

Q2. Find Conjunctive Normal Form $(p \Leftrightarrow q) \Rightarrow (\neg p \land r)$

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Conjunctive Normal Form $(p \Leftrightarrow q) \Rightarrow (\neg p \land r)$

Truth table:

p	q	r	$p \Leftrightarrow q$	$\neg p \wedge r$	$(p \Leftrightarrow q) \Rightarrow (\neg p \land r)$
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	1
0	1	1	0	1	1
1	0	0	0	0	1
1	0	1	0	0	1
1	1	0	1	0	0
1	1	1	1	0	0

Solution: (full) conjunctive normal form (FCNF) of the formula is $(p \lor q \lor r) \land (\neg p \lor \neg q \lor r) \land (\neg p \lor \neg q \lor \neg r)$

Find DNF of
$$(\sim p \rightarrow r) \land (p \Leftrightarrow q)$$

Find CNF of
$$(p \Rightarrow q) \Rightarrow r$$

$(p \land \neg q) \lor q \Leftrightarrow p \lor q$

$$(p \land \neg q) \lor q$$

$$\Leftrightarrow$$
 q V (p \land ¬q)

$$\Leftrightarrow$$
 (qVp) \land (q V¬q)

$$\Leftrightarrow$$
 (qVp) \wedge T

$$\Leftrightarrow qVp$$

Left-Hand Statement

Commutative

Distributive

Negation

Identity

Commutative

Prove: $p \rightarrow p \lor q$ is a tautology

$$p \rightarrow p \vee q$$

$$\Leftrightarrow \neg p \lor (p \lor q)$$

$$\Leftrightarrow$$
 (¬p V p) V q

$$\Leftrightarrow$$
 (p V ¬p) V q

$$\Leftrightarrow$$
 T \vee q

$$\Leftrightarrow$$
 q V T

$$\Leftrightarrow$$
T

Implication Equivalence

Associative

Commutative

Negation

Commutative

Domination

Use Logical Equivalences to prove that

$$[(p \land \neg(\neg p \lor q)) \lor (p \land q)] \rightarrow p \text{ is a tautology.}$$

Proof:
$$[(p \land \neg(\neg p \lor q)) \lor (p \land q)] \rightarrow p$$

$$\equiv [(p \land (\neg(\neg p) \land \neg q)) \lor (p \land q)] \rightarrow p$$

$$\equiv [(p \land (p \land \neg q)) \lor (p \land q)] \rightarrow p$$

$$\equiv [((p \land p) \land \neg q) \lor (p \land q)] \rightarrow p$$

$$\equiv [(p \land \neg q) \lor (p \land q)] \rightarrow p$$

$$\equiv [p \land (\neg q \lor q)] \rightarrow p$$

$$\equiv [p \land (q \lor \neg q)] \rightarrow p$$

$$\equiv [p \land T] \rightarrow p$$

$$\equiv p \rightarrow p$$

$$\equiv \neg p \lor p$$

$$\equiv p \vee \neg p$$

$$\equiv T$$

De Morgan's law

Double Negation law

Associative law

Idempotent law

Distributive law

Commutative law

Negation law

Identity law

Equivalence of Implication

Commutative law

Negation law

Table of Logical Equivalences

Commutative	$p \wedge q \iff q \wedge p$	$p \lor q \iff q \lor p$
Associative	$(p \wedge q) \wedge r \iff p \wedge (q \wedge r)$	$(p \vee q) \vee r \iff p \vee (q \vee r)$
Distributive	$p \wedge (q \vee r) \iff (p \wedge q) \vee (p \wedge r)$	$p \vee (q \wedge r) \iff (p \vee q) \wedge (p \vee r)$
Identity	$p \wedge T \iff p$	$p \lor F \iff p$
Negation	$p \lor \sim p \iff T$	$p \land \sim p \iff F$
Double Negative	$\sim (\sim p) \iff p$	
Idempotent	$p \wedge p \iff p$	$p \lor p \iff p$
Universal Bound	$p \lor T \iff T$	$p \wedge F \iff F$
De Morgan's	$\sim (p \wedge q) \iff (\sim p) \vee (\sim q)$	$\sim (p \vee q) \iff (\sim p) \wedge (\sim q)$
Absorption	$p \vee (p \wedge q) \iff p$	$p \wedge (p \vee q) \iff p$
Conditional	$(p \implies q) \iff (\sim p \vee q)$	$\sim (p \implies q) \iff (p \land \sim q)$

Example 8:

 $p \to q$ and $\sim p \vee q$ are logically equivalent. (Implication).

Solution:

p	q	$p \rightarrow q$	~ p	~ p ∨ q
T	Т	T	F	T
Т	F	F	F	F
F	Т	T	T	T
· ·	F	T	Т	T

Similarly, we have the next example, in which the biconditional can also be eliminated.

$$P \leftrightarrow Q = (P \rightarrow Q) \land (Q \rightarrow P)$$

_(p \ q) and -p v - q are logically equivalent (De Morgans laws)

solution :

Consider the truth tables.

p	q	$p \wedge q$	$\sim (p \wedge q)$	
T	Т	T	V	
T	F	F	T	
F	T F		T	
F	F	F	T	

p	4	- p	- 4	
T	T	p	*	¥
T	p	P	T	T
ľ	T	T	F.	T
F	F	T	T	T

The last columns in both the tables are identical. Hence - (p A q) and - p v - q are logically quivalent

The DeMorgan's Law can be expressed as : If it is not the case that p and q are both true, then hat is the same as saying that at least one of p or q is false.

De Morgan's

$$\sim (p \land q) \iff (\sim p) \lor (\sim q)$$

$$\sim (p \land q) \iff (\sim p) \lor (\sim q) \qquad \sim (p \lor q) \iff (\sim p) \land (\sim q)$$

```
nample 14
  Use the laws of logic to show that
  [(p \rightarrow q) \land \neg q] \rightarrow \neg p is a tautology.
wlution:
 We have,
 [(p \rightarrow q) \land \neg q] \rightarrow \neg p
                  \equiv -[(-p \vee q) \wedge -q] \vee -p
                                                                            - Implication law
                  \equiv -[-q \wedge (\sim p \vee q)] \vee \sim p
                                                                            - Commutative law
                                                                             - Distributive law
                  \equiv -[(-q \land -p) \lor (-q \land q)] \lor -p
                                                                             - Commutative law
                  \equiv \sim [(-q \land \sim p) \lor (q \land \sim q)] \lor \sim p
                                                                             - Complement law
                  \equiv -[(-q \land -p) \lor F] \lor -p
                                                                              - Identity law
                  \equiv \sim (\sim q \land \sim p) \lor \sim p
                                                                              - First demorgan's law
                  \equiv (--q \lor --p) \lor -p
                                                                               - Complement law
                  \equiv (q \lor p) \lor \sim p
                                                                               - Associative law
                  \equiv q \vee (p \vee \sim p)
                                                                                - Inverse law
                  \equiv q \vee T
                                                                                - Identity law
```

 $(p \to q) \land \neg q] \to \neg p \text{ is a tautology}.$

Example 1

Given the truth value of P and Q as T and those of R and S as F, find the truth value of the following.

$$[P \land (Q \land R)] \lor \sim [(P \lor Q) \lor (R \lor S)]$$

(May 99, May 2000)

Solution:

We substitute the given truth values in the expression and it reduces to

$$[T \land (T \land F)] \lor \sim [(T \lor T) \lor (F \lor F)]$$

$$\equiv [T \land F] \lor \sim [T \lor F]$$

$$\equiv F \lor \sim (T)$$

$$\equiv F \lor F$$

$$\equiv F$$

Hence the truth value of the above expression is false.

Obtain CNF $(p \land q) \lor (p \land \neg q)$ $(p \land q) \lor (p \land \neg q)$ $\equiv ((p \land q) \lor p) \land ((p \land q) \lor \neg q)$...Distributive Law $\equiv ((p \lor p) \land (q \lor p)) \land ((p \lor \neg q) \land (q \lor \neg q))$

Obtain DNF
$$\sim$$
(p \rightarrow (q \wedge r))
Solution:-(p \wedge \sim q) \vee (p \wedge \sim r)

Mathematical Induction

Statement of the principle of mathematical induction :

Let P(n) be a statement involving a natural number n.

- If P(n) is true for $n = n_0$ and
- Assuming P(k) is true, $(k \ge n_0)$ we prove P(k + 1) is also true, then P(n) is true for all natural numbers $n \ge n_0$
- Step (1) is called as the Basis of induction.
- Step (2) is called as the Induction step.

The assumption that P(n) is true for n = k is called as the Induction hypothesis.

Fig. 2.1: The principle of induction

Use **MATHEMATICAL INDUCTION** to prove that

$$1 + 2 + 3 + ... + n = n(n + 1) / 2$$
 for all positive integers n.

Let the statement P (n) be 1 + 2 + 3 + ... + n = n (n + 1) / 2....(A)

STEP 1. Basis: We first show that p (1) is true.

Left Side = 1Right Side = 1(1 + 1) / 2 = 1

Both sides of the statement are equal hence p (1) is true.

STEP 2-Inductive step: We now assume that p (k) is true 1 + 2 + 3 + ... + k = k(k + 1) / 2....(1)

STEP 3:Inductive hypothesis, Show that p (k + 1) is true by adding k + 1 to both sides of the above statement

The last statement may be written as

1 + 2 + 3 + ... + k + (k + 1) = (k + 1)(k + 2) / 2 Which is the statement p(k + 1).

Exercises- Prove each of the following by Mathematical Induction

For n positive integers n, solve the following

Prove that for any positive integer number n , $n^3 + 2n$ is divisible by 3

```
Statement P (n) is defined by n^3 + 2 n is divisible by 3
STEP 1: We first show that p (1) is true. Let n = 1 and calculate n^3 + 2n
   1^3 + 2(1) = 3
   3 is divisible by 3
hence p (1) is true.
STEP 2: We now assume that p (k) is true
   k^3 + 2 k is divisible by 3
   is equivalent to
   k^3 + 2 k = 3 M, where M is a positive integer.
We now consider the algebraic expression (k + 1)^3 + 2(k + 1); expand it and group like
                                    (Note: (k+1)^3 = k^3 + 3k^2 + 3k + 1)
   terms
   (k + 1)^3 + 2(k + 1) = k^3 + 3k^2 + 5k + 3
```

Hence $(k + 1)^3 + 2(k + 1)$ is also divisible by 3 and therefore statement P(k + 1) is true.

 $= [k^3 + 2k] + [3k^2 + 3k + 3]$

 $= 3 M + 3 [k^2 + k + 1] = 3 [M + k^2 + k + 1]$

• Prove that $5^n - 1$ is divisble by 4 for all n > 1

Prove that 5 ⁿ -1 is divisble by 4 for all n>=1

$$5^{1}-1=4$$
; P(1) is true

5 k -1 assume to be true

$$= 5^{k+1} - 1$$

$$=5^{k}*5-5+4$$

$$5(5^k-1)+4$$

Statement of the principle of mathematical induction:

Let P(n) be a statement involving a natural number n.

- If P(n) is true for $n = n_0$ and
- Assuming P(k) is true, $(k \ge n_0)$ we prove P(k + 1) is also true, then P(n) is true for all natural numbers $n \ge n_0$
- Step (1) is called as the Basis of induction.
- Step (2) is called as the Induction step.

The assumption that P(n) is true for n = k is called as the Induction hypothesis.

Fig. 2.1: The principle of induction

Ex. 1: Prove by induction:

$$1 + 2 + 3 + ... + n = \frac{n (n + 1)}{2}$$
 for all natural number values of n.

Soln.: Let P(n) be the statement:

$$1 + 2 + 3 + ... + n = \frac{n (n + 1)}{2}$$

(i) Basis of induction:

for
$$n = 1$$
,

$$P(1): 1 = \frac{1(2)}{2} = 1$$

Hence P(1) is true.

(ii) Induction step:

Assume P(k) is true,

$$1 + 2 + 3 + ... + n = \frac{n(n + 1)}{2}$$

$$P(k): 1 + 2 + 3 + ... + k = \frac{k(k+1)}{2}$$
 ...(i)

(This assumption is called the induction hypothesis)

Prove P(k + 1) is also true.

$$P(k + 1): 1 + 2 + 3 + ... + k + (k + 1)$$

$$= \frac{(k + 1)[(k + 1) + 1]}{2} ...(ii)$$

$$= \frac{(k + 1)(k + 2)}{2}$$

Using equation (i)

$$\frac{\frac{k(k+1)}{2} + (k+1)}{2} = \frac{\frac{(k+1)(k+2)}{2}}{\frac{(k+1)(k+2)}{2}} = \frac{\frac{(k+1)(k+2)}{2}}{2}$$

Hence assuming P(k) is true, P(k + 1) is also ture. Therefore P(n) is true for all natural number values of n.

Prove that
$$\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{3n+1}$$
Solution:

Let P (n) be the statement:
$$\frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{3n+1}$$
(i) Basis of induction:

For $n = 1$ P(1): $\frac{1}{1.4} = \frac{1}{4}$

Hence P(1) is true.

(ii) Induction step :

Assume P(k) is true, and prove P(k + I) is also true.

P(k):
$$\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3k-2)(3k+1)} = \frac{k}{3k+1}$$

$$P(k+1): \frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3k-2)(3k+1)} + \frac{1}{(3(k+1)-2)(3(k+1)+1)} = \frac{k+1}{3(k+1)+1}$$

Using induction hypotheis (i),

Hence assuming P(k) is true, P(k + 1) is also true. Therefore P(n) is true for all $n \ge 1$.

Show that $1^3 + 2^3 + 3^3 + ... + n^3 = (1 + 2 + ... + n)^2$

Show that $1^3 + 2^3 + 3^3 + ... + n^3 = (1 + 2 + ... + n)^2$

Soln.:

Let
$$P(n)$$
: $1^3 + 2^3 + 3^3 + ... + n^3 = (1 + 2 + ... + n)^2$

(i) Basis of induction :

For $n = 1(1)^3 = (1)^2$ which is true \therefore P(1) is true.

(ii) Induction step:

Assume P(k) is true i.e.,

$$1^3 + 2^3 + 3^3 + ... + k^3 = (1 + 2 + ... + k)^2$$
 ...(i)

To prove that P(k + 1) is true i.e.;

$$\begin{array}{lll} 1^3+2^3+3^3+...+(k+1)^3&=&[1+2+...+(k+1)\,]^2\\ &L.H.S.&=&1^3+2^3+3^3+...k^3+(k+1)^3\\ &=&[1^3+2^3+3^3+...k^3]+(k+1)^3\\ &=&(1+2+...+k)^2+(k+1)^3&...\text{by induction hypothesis, From Equation (i)}\\ &=&\left[\frac{k(k+1)}{2}\right]^2+(k+1)^3&...\left[\text{Recall that }1+2+...+k\right.\\ &=&\frac{k(k+1)}{2}\right]\\ &=&\frac{k^2(k+1)^2}{4}+(k+1)^3\\ &=&(k+1)^2\left[\frac{k^2}{4}+(k+1)\right] \end{array}$$

$$= (k+1)^{2} \left[\frac{k^{2} + 4k + 4}{4} \right]$$

$$= \frac{(k+1)^{2} (k+2)^{2}}{4} = \left[\frac{(k+1) (k+2)}{2} \right]^{2}$$

$$= [1+2+...+(k+1)]^{2}$$

L.H.S = R.H.S.

Therefore P(n) is true.

Hence,

```
Show that n^3 + 2n is divisible by 3 for all n \ge 1.
solution:
      Basis of Induction: Since it is given that, for all n ≥ 1, Let n = 1.
    (1)^3 + 2(1) = 1 + 2 = 3
  3 is divisible by 3.
```

(ii) Induction step : Assuming that for n = k, it is true i.e. $k^3 + 2k$ is divisible by 3 We will prove it for n = k + 1 $(k+1)^3 + 2(k+1) = k^3 + 3k^2(1) + 3k(1)^2 + 1^3 + 2k + 2$ $= k^{1} + 3k^{2} + 3k + 1 + 2k + 2$ $= k^3 + 3k^2 + 5k + 3$ $= k^3 + 2k + 3k + 3k^2 + 3$ $= k^3 + 2k + 3k^2 + 3k + 3$ $= k^2 + 2k + 3(k^2 + k + 1)$ $-(k^3+2k)+3(k^2+k+1)$

Note that, since $(k^3 + 2k)$ is divisible by 3 by induction hypothesis (i), and 3 $(k^2 + k + 1)$ is divisible by 3. Each term is divisible by 3, we can say $n^3 + 2n$ is divisible by 3. Example 13:

Prove by mathematical in

Prove by induction that n² + n is an even number, for every natural number n.

solution :

Let P(n) n2 + n is an even number

(i) Basis of induction :

For n = 1

 $p(1) \cdot (1)^2 + (1)$ i.e. 2 is an even number

.. P(1) is true.

(ii) Induction step :

Assume P(k) is true i.e. $(k^2 + k)$ is an even number, and prove P(k + 1) is also true.

$$P(k+1) : (k+1)^{2} + (k+1)$$

$$= k^{2} + 2k + 1 + k + 1$$

$$= (k^{2} + k) + 2(k+1)$$

Now $(k^2 + k)$ is even, by the induction hypothesis, and 2(k + 1) is even.

- .. The sum $(k^2 + k) + 2(k + 1)$ is even
- .. By induction, k2 + k is an even number, for every natural number n.

```
Example 15;
    Prove that 8^n - 3^n is a multiple of 5 by mathematical induction n \ge 1.
                                                                                               (Dec 96)
Solution:
   Let P(n): 8^n - 3^n is a multiple of 5
   (i) Basis of induction :
   For n = 1
       P(1):8^1-3^1=5 which is divisible by 5
      P(1) is true
  (ii) Induction step :
   Assume P(k) is true i.e. (8^k - 3^k) is a multiple of 5, and prove P(k + 1) is also true.
            P(k+1) : 8^{k+1} - 3^{k+1}
                       = 8^k \cdot 8 - 3^k \cdot 3
                        = 8^{k} \cdot 8 - 3^{k} \cdot 8 + 3^{k} \cdot 5
                        = 8(8^k - 3^k) + 3^k \cdot 5
  Now 8(8^k - 3^k) is a multiple of 5 by induction hypothesis and 3^k. 5 is already a multiple of 5.
  Hence 8^n - 3^n is a multiple of 5, for n \ge 1.
```

Example 1: Obtain the DNF of the form $(p \rightarrow q) \wedge (\sim p \wedge q)$ Solution: $p \rightarrow q \equiv \sim p \vee q$ (Elimination of biconditional) Hence $(p \rightarrow q) \land (\neg p \land q)$ $\equiv (\sim p \vee q) \wedge (\sim p \wedge q)$ $\equiv (\sim p \land \sim p \land q) \lor (q \land \sim p \land q)$ $\equiv (\sim p \land q) \lor (q \land \sim p)$ (by using the distributive laws, idempotence laws and commutative laws)

```
Example 2:
       Obtain the DNF of (p \land (p \rightarrow q)) \rightarrow q
Solution: (p \land (p \rightarrow q)) \rightarrow q
                              \equiv \sim q \vee (p \wedge (\sim p \vee q))
                              \equiv \sim q \vee ((p \land \sim p) \vee (p \land q))
                             \equiv \neg q \lor F \lor (p \land q)
                             \equiv \neg q \lor (p \land q) \dots (p \land \neg p \equiv contradiction)
```

```
Johnin the DNF of the form
         p \land (p \rightarrow q)
                 p \wedge (p \rightarrow q) = p \wedge (\sim p \vee q)
solution:
                                      = (p \land \sim p) \lor (p \land q)
                                      = F \vee (p \wedge q)
                                         (p A q)
```

3.13.2 Conjunctive Normal Form (CNF):

An expression of 'n' variables x1, x2, ..., xn is said to be a 'maxterm,' if it is of the form

$$x_1 \vee x_2 \vee x_3 \vee ... \vee x_n$$

An expression is said to be in conjunctive normal form if it is a meet of masterns.

Example:
$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$$

Note that a CNF is a tautology if and only if every fundmental disjunction contained in it is a unfolgy.

Example 1:

Obtain the CNF of the form

$$(-p \rightarrow r) \wedge (p \leftrightarrow q)$$

Solution: $(-p \rightarrow r) \land (p \leftrightarrow q)$

$$= (-p \rightarrow r) \wedge (p \leftrightarrow q))$$

$$= (-p \rightarrow r) \wedge ((p \rightarrow q) \wedge (q \rightarrow p))$$

$$= (-(-p) \wedge t) \vee ((-p \wedge d) \vee (-d \wedge b))$$

$$= (-(-p \to t) \vee ((-p \wedge d) \vee (-d \wedge b))$$

$$= (p \lor r) \land (-p \lor q) \land (-q \lor p)$$