

"Ao contrário, continuou Tweedledee, se foi assim, poderia ser; e se fosse assim, seria; mas como não é, então não é. Isso é Lógico" (Lewis Carroll, Through the Looking-glass: And what Alice Found There, 1875).

Latches

Paulo Ricardo Lisboa de Almeida

Relembrando

Circuito combinacional: não possui memória. A saída depende exclusivamente da entrada.

Combinacional versus Sequencial

Circuito combinacional: não possui memória. A saída depende exclusivamente da entrada.

Circuito sequencial: possuem memória interna. A saída depende da entrada e do estado da memória.

Exemplo

Exemplo

Α	X_{t}	X _{t+1}
0	0	
0	1	
1	0	
1	1	

Exemplo

Α	X _t	X _{t+1}	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Faça você mesmo

Faça o diagrama de temporização para a saída X.

Faça você mesmo

Faça o diagrama de temporização para a saída X.

Feedback

Circuitos sequenciais geralmente apresentam algum tipo de feedback (retroalimentação)

Latches

Latch: Circuito básico de memória.

Circuito sequencial.

Tipo de **Multivibrador biestável**.

Possuem dois estados estáveis.

0 ou 1.

Diagrama geral de um Latch.

Duas saídas:

Saída normal Q, e a saída invertida $\overline{\mathbb{Q}}$.

Duas saídas:

Saída normal Q, e a saída invertida \overline{Q} .

Quando Q=1 e \overline{Q} =0 o lach está em **set**.

Ao inserir entradas que fazem com que Q=1 estamos **setando** o latch.

-anglicismo

Duas saídas:

Saída normal Q, e a saída invertida $\overline{\mathbb{Q}}$.

Quando Q=1 e \overline{Q} =0 o lach está em **set**.

Ao inserir entradas que fazem com que Q=1 estamos **setando** o latch.

Quando Q=0 e \overline{Q} =1 o latch está em **reset**.

Ao inserir entradas que fazem com que Q=0 estamos **resetando** (*resetting*) o latch.

Latch S R

Latch **S**et **R**eset.

Tipo de latch com duas entradas.

Uma **S** e uma **R**.

Construído com NANDs ou NORs.

Latch com NANDs

Construído com duas portas NAND ligadas com feedback.

Set e reset normalmente estão em **nível lógico alto (1).**

Exceto quando desejamos trocar o estado do latch.

Setando o Latch

O **set** é feito através de um **pulso de nível lógico baixo (0)** na entrada **S**et.

Reset é mantido em alto.

Temos dois comportamentos.

Um caso Q fosse O antes do pulso.

Um caso Q fosse 1 antes do pulso.

Caso Q fosse O antes do pulso

Entre t_n e t_1 enviamos um pulso de nível baixo em set.

O NAND-1 recebe O do set, e 1 de $\overline{\mathbb{Q}}$, logo Q=1.

O NAND-2 recebe 1 do RESET e 1 de Q, logo $\overline{\mathbb{Q}}$ =0.

Após t_1 o nível em set volta para alto.

O NAND-1 recebe 1 do set, e 0 de $\overline{\mathbb{Q}}$, logo \mathbb{Q} =1.

O NAND-2 recebe 1 do RESET e 1 de Q, logo $\overline{\mathbb{Q}}$ =0.

Faça você mesmo

Faça a mesma análise anterior, mas agora considere que o estado do latch era Q = 1 antes do pulso.

Caso Q fosse 1 antes do pulso

Entre t_n e t_1 enviamos um pulso de nível baixo em set.

O NAND-1 recebe O do set, e 1 de $\overline{\mathbb{Q}}$, logo Q permanece em 1.

O NAND-2 recebe 1 do RESET e 1 de Q, logo $\overline{\mathbb{Q}}$ permanece em 0.

Após t_1 o nível em set volta para alto.

O NAND-1 recebe 1 do set, e 0 de $\overline{\mathbb{Q}}$, logo \mathbb{Q} =1.

O NAND-2 recebe 1 do RESET e 1 de Q, logo $\overline{\mathbb{Q}}$ =0.

Resetando o Latch

O reset é feito através de um **pulso de nível lógico baixo (0)** na entrada **R**eset.

Set é mantido em alto.

Temos dois comportamentos.

Um caso Q fosse O antes do pulso.

Um caso Q fosse 1 antes do pulso.

Caso Q fosse O antes do pulso

Entre t_0 e t_1 enviamos um pulso de nível baixo em **R**eset.

O NAND-2 recebe O do RESET e O de Q, logo $\overline{\mathbb{Q}}$ permanece em 1.

O NAND-1 recebe 1 do set, e 1 de $\overline{\mathbb{Q}}$, logo \mathbb{Q} permanece em 0.

Após t_1 o nível em reset volta para alto.

O NAND-2 recebe 1 do RESET e O de Q, logo $\overline{\mathbb{Q}}$ permanece em 1.

O NAND-1 recebe 1 do set, e 1 de $\overline{\mathbb{Q}}$, logo \mathbb{Q} permanece em 0.

Faça você mesmo

Faça a mesma análise anterior, mas agora considere que o estado do latch era Q = 1 antes do pulso.

Caso Q fosse 1 antes do pulso

Entre t_n e t_1 enviamos um pulso de nível baixo em **R**eset.

O NAND-2 recebe O do RESET e 1 de Q, logo \overline{Q} = 1.

O NAND-1 recebe 1 do set, e 1 de \overline{Q} , logo Q = 0.

Após t_1 o nível em reset volta para alto.

O NAND-2 recebe 1 do RESET e 0 de Q, logo $\overline{\mathbb{Q}}$ permanece em 1.

O NAND-1 recebe 1 do set, e 1 de $\overline{\mathbb{Q}}$, logo \mathbb{Q} permanece em 0.

Set e Reset simultâneos

Durante o pulso, $Q=\overline{Q}=1$.

Uma situação absurda!

Após o fim do pulso, o resultado vai depender de quem retorna para alto antes (set ou reset).

Se ambos voltam para alto "ao mesmo tempo", não podemos predizer o resultado.

De forma geral, enviar um nível lógico baixo para set e reset ao mesmo tempo nos levará a **comportamentos indesejados e/ou imprevisíveis!**

Latch com NAND - Resumo

Set	Reset	Output
1	1	No change
0	1	Q = 1
1	0	Q = 0
0	0	Invalid *

^{*}Produces $Q = \overline{Q} = 1$.

Latch com NAND

Como **S**et e **R**eset devem estar em 1 para manter o lach estável, o latch NAND geralmente é representado com S e R negados.

Faça você mesmo

Faça o diagrama de temporização para o Latch.

Considere que Q está inicialmente em 0.

Como será o sinal em Q?

Como será o sinal em $\overline{\mathbb{Q}}$?

o —— ...

Faça você mesmo

Faça o diagrama de temporização para o Latch.

Considere que Q está inicialmente em 0.

Como será o sinal em Q?

Como será o sinal em $\overline{\mathbb{Q}}$?

Latch com NOR

Podemos seguir um raciocínio similar ao utilizado com NANDs para construir um latch com NORs.

Uma das diferenças principais é que set e reset ficam em nível lógico baixo.

Um nível lógico alto é enviado somente quando desejamos enviar um **S**et/**R**eset.

Energizando

Ao energizar um latch, não podemos afirmar se Q=0 ou Q=1.

Depende de fatores como:

Atrasos de propagação do circuito;

Capacitâncias parasitas.

Se o latch precisa ser iniciado em determinado estado, como podemos proceder?

Energizando

Ao energizar um latch, não podemos afirmar se Q=0 ou Q=1.

Depende de fatores como:

Atrasos de propagação do circuito;

Capacitâncias parasitas.

Se o latch precisa ser iniciado em determinado estado, como podemos proceder?

Aciona-se o seu **S**et ou **R**eset ao energizar o latch.

Dependendo se desejamos que o estado inicial seja 0 ou 1.

Exercícios

1. Faça a mesma análise realizada para o latch NAND no latch de NORs.

Preencha a tabela a seguir com a saída esperada em Q em caso de Set/Reset.

Compare seus resultados com Tocci et al (2017).

Set	Reset	Output	•	S Q	-
0	0				
1	0			LATCH	
0	1				
1	1	Invalid*	•	R Q	•

2. Considere o diagrama de temporização a seguir para as entradas **S**et e **R**eset de um Latch NOR. Considerando que Q está inicialmente em 0, como será o sinal em Q e \overline{Q} ?

Referências

Ronald J. Tocci, Gregory L. Moss, Neal S. Widmer. Sistemas digitais. 10a ed. 2017.

Thomas Floyd. Sistemas Digitais: Fundamentos e Aplicações. 2009.

Licença

Esta obra está licenciada com uma Licença <u>Creative Commons Atribuição 4.0 Internacional.</u>

