Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 4

Aufgabe 4.1 (3+1 Punkte)

Gegeben sei das Alphabet $A = \{(,)\}$. Wir definieren für $i \in \mathbb{N}_0$ die formalen Sprachen $L_i \subseteq A^*$ wie folgt:

- $L_0 = \{\epsilon\}$
- $\forall i \in \mathbb{N}_0 : L_{i+1} = \{\epsilon\} \cup L_i \cdot L_i \cup \{(\} \cdot L_i \cdot \{)\}$

Die formale Sprache $L \subseteq A^*$ erfülle $L = \{\epsilon\} \cup L \cdot L \cup \{(\} \cdot L \cdot \{)\}.$

a) Beweisen Sie (durch vollständige Induktion): $\forall i \in \mathbb{N}_0 : L_i \subseteq L$.

Induktionsanfang: $i = 0 : L_0 = \{\epsilon\} \subseteq \{\epsilon\} \cup L \cdot L \cup \{(\} \cdot L \cdot \{)\} = L \sqrt{.}$

Induktionsvoraussetzung: Für ein festes, aber beliebiges $i \in \mathbb{N}_0$ gilt: $L_i \subseteq L$.

Induktionsschluss: Wir zeigen, dass dann auch $L_{i+1} \subseteq L$ gelten muss.

Sei $w \in L_{i+1}$. Dann gilt: $w = \epsilon \vee \exists w_1, w_2 \in L_i : w = w_1 \cdot w_2 \vee \exists w' \in L_i : w = (w')$.

- 1. Fall: $w = \epsilon$. Dann gilt $w \in L_0 \subseteq L$ nach Induktionsanfang.
- 2. Fall: $\exists w_1, w_2 \in L_i : w = w_1 \cdot w_2$: Nach Induktionsvoraussetzung gilt $w_1, w_2 \in L \Rightarrow w_1 \cdot w_2 \in L \cdot L \Rightarrow w \in L \cdot L \subseteq \{\epsilon\} \cup L \cdot L \cup \{(\} \cdot L \cdot \{)\} = L$.
- 3. Fall: $\exists w' \in L_i : w = (w')$: Nach Induktionsvoraussetzung gilt $w' \in L \Rightarrow (w') \in \{(\} \cdot L \cdot \{)\} \Rightarrow w \in \{(\} \cdot L \cdot \{)\} \subseteq \{\epsilon\} \cup L \cdot L \cup \{(\} \cdot L \cdot \{)\} = L$.

Damit gilt in jedem Fall $w \in L$, und die Behauptung ist gezeigt.

b) Zeigen Sie: $\bigcup_{i=0}^{\infty} L_i \subseteq L$

Sei $w \in \bigcup_{i=0}^{\infty} L_i$ beliebig. Dann gibt es ein $i \in \mathbb{N}_0$, so dass $w \in L_i$ gilt. Nach Teilaufgabe a) gilt $\forall i \in \mathbb{N}_0 : L_i \subseteq L$.

Also folgt $w \in L$, und die Behauptung ist bewiesen.

Aufgabe 4.2 (3+3 Punkte)

Sei M eine Menge und $\diamond: M \times M \to M$ eine assoziative Operation auf M. Weiterhin habe M ein neutrales Element e bezüglich \diamond , d.h. für alle $a \in M$ gilt: $a \diamond e = e \diamond a = a$. Wir definieren für alle $a \in M$: $a^0 = e$ und $\forall i \in \mathbb{N}_0$: $a^{i+1} = a^i \diamond a$.

a) Beweisen Sie (durch vollständige Induktion): $\forall i, j \in \mathbb{N}_0 : a^i \diamond a^j = a^{i+j}$.

Sei $i \in \mathbb{N}_0$ beliebig.

Induktionsanfang: j = 0: $a^i \diamond a^j = a^i \diamond a^0 = a^i \diamond e = a^i = a^{i+0}$. $\sqrt{}$

Induktionsvoraussetzung: Für ein festes, aber beliebiges $j \in \mathbb{N}_0$ gilt: $a^i \diamond a^j = a^{i+j}$.

Induktionsschritt: Wir zeigen, dass dann auch $a^i \diamond a^{j+1} = a^{i+j+1}$ gilt.

$$a^{i} \diamond a^{j+1} = a^{i} \diamond (a^{j} \diamond a) = (a^{i} \diamond a^{j}) \diamond a \stackrel{IV}{=} a^{i+j} \diamond a = a^{i+j+1}$$

Damit ist die Behauptung gezeigt.

- b) Nennen Sie zwei Stellen in der Vorlesung, an der dieses Ergebnis anwendbar ist. Geben Sie jeweils M, e und \diamond an.
 - Potenz von Wörtern: $M = A^*, e = \epsilon, \diamond = \cdot (\text{Konkatenation}).$
 - Potenz von Sprachen: $M = \{B \mid B \subseteq A^*\}, e = \{\epsilon\}, \diamond = \cdot \text{(Konkatenation von Mengen)}.$
 - Reflexiv-transitive Hülle von Relationen: $M = \{R \mid R \subseteq A \times A\}, e = Id_A, \diamond = \circ.$

Aufgabe 4.3 (2+3+2+2 Punkte)

Gegeben sei die Grammatik $G = (\{S\}, \{\mathtt{a},\mathtt{b}\}, S, \{S \to \mathtt{a}S\mathtt{b} \mid \mathtt{a}S \mid \mathtt{a}\}).$

a) Geben Sie eine mathematisch präzise Beschreibung der Sprache L(G) an, die sich nicht auf G oder eine andere Grammatik bezieht.

$$L(G) = \{ \mathbf{a}^n \mathbf{b}^m \mid n, m \in \mathbb{N}_0 \land n > m \}$$

b) Zeigen Sie: $\forall w \in \{a, b, S\}^* : (S \Rightarrow^* w) \Rightarrow N_S(w) + N_a(w) > N_b(w)$. (Hinweis: Für ein Zeichen x wurde N_x auf Übungsblatt 3 definiert.)

Induktion über die Ableitungslänge: $S \Rightarrow^i w$

Induktions
anfang:
$$i=0:(S\Rightarrow^0w)\Rightarrow w=S$$
 $\Rightarrow N_S(w)=1 \land N_a(w)=N_b(w)=0 \Rightarrow N_S(w)+N_a(w)>N_b(w).$ \checkmark

Induktionsvoraussetzung: Für ein festes, aber beliebiges $j \in \mathbb{N}_0$ gilt: $(S \Rightarrow^i w) \Rightarrow N_S(w) + N_a(w) > N_b(w)$.

Induktionsschluss: Wir zeigen, dass dann auch gilt:

$$(S \Rightarrow^{i+1} w') \Rightarrow N_S(w') + N_a(w') > N_b(w').$$

$$(S \Rightarrow^{i+1} w') \Rightarrow (\exists w \in \{\mathtt{a},\mathtt{b},S\}^* : S \Rightarrow^i w \Rightarrow w').$$

Dies bedeutet, es gibt Wörter $w_1, w_2 \in \{a, b, S\}^* : w = w_1 S w_2 \text{ und } w' \in \{w_1 a S b w_2, w_1 a S w_2, w_1 a w_2\}.$

Nach Induktionsvoraussetzung gilt $N_S(w_1Sw_2) + N_a(w_1Sw_2) > N_b(w_1Sw_2)$, und damit $N_S(w_1w_2) + 1 + N_a(w_1w_2) > N_b(w_1w_2)$.

- 1. Fall: $w = w_1 a S b w_2$: $N_S(w) + N_a(w) = N_S(w_1 a S b w_2) + N_a(w_1 a S b w_2) = N_S(w_1 w_2) + 1 + N_a(w_1 w_2) + 1 > N_b(w_1 w_2) + 1 = N_b(w_1 a S b w_2).$
- 2. Fall: $w = w_1 a S w_2$: $N_S(w) + N_a(w) = N_S(w_1 a S w_2) + N_a(w_1 a S w_2) = N_S(w_1 w_2) + 1 + N_a(w_1 w_2) + 1 > N_b(w_1 w_2) + 1 > N_b(w_1 w_2) = N_b(w_1 a S w_2).$
- 3. Fall: $w = w_1 a w_2$: $N_S(w) + N_a(w) = N_S(w_1 a w_2) + N_a(w_1 a w_2) = N_S(w_1 w_2) + N_a(w_1 w_2) + 1 \stackrel{IV}{>} N_b(w_1 w_2) = N_b(w_1 a w_2).$

Damit ist die Behauptung bewiesen.

c) Gegeben seien Wörter $w_1, w_2 \in \{a, b\}^*$ mit $S \Rightarrow^* w_1 S w_2$. Welche Möglichkeiten gibt es für w_1 ? Welche Möglichkeiten gibt es für w_2 ? In welcher Beziehung stehen die Wörter w_1 und w_2 ? (Ohne Beweise.)

$$w_1 \in \{a^n \mid n \in \mathbb{N}_0\}, w_2 \in \{b^n \mid n \in \mathbb{N}_0\}, |w_1| \ge |w_2|.$$

d) Geben Sie ein Wort $w \in L(G)$ an, für das es zwei verschiedene Ableitungsbäume aus S gibt. Geben Sie zwei verschiedene Ableitungsbäume von w an.

w = aaab

