	Metrics
	Regression: MSE: $\frac{1}{n_s} \sum_{i} (Y_i - f(X_i))^2 \rightarrow loss \rightarrow Metric$
	MAE: $\frac{1}{n_s} \sum_i Y_i - f(x_i) $
	Classification: $A ccracy: \perp \sum Y_i == f(x_i): \# instances that$
	Recall & Precision
	Consider a situation where one of the classes is different
	in significance, e.g. entangled states vs non-entangled states. Fake news vs else
	For instance, we may be interested in predicting fake news
	than getting both classes right. DACC may not be the right metric.
-	One class has a larger population. 0.1 vs 0.9 Then
	- Ace is not a good metric.

Confusion Matrix:	Predicted D Predicted 1
For a binary classification problem	
we can draw this table for a	B
predictive model.	
	nterested in
class 1 (e.g. it is less fre	quent).
Consider the following situations:	
* It is critical that if we guess cla	SS 1.
it is the right/precise guess.	B+C Should be Digh.
	-> Precision
* It is important that we detect	B Should be B+D high.
all the instances in class 1.	B+D high. Detection rate.
	- Recally Delection rate.
* We want to have both to	
Some extent.	
£1.	Scare

How to optimize for a certain metric?

Consider a logistic reg. Classifier

Typically we optimize for acc and $f(x) \geq 1/2$ to class.

But to improve the precision (For class 1) we can set $f(x) \ge 0.5 + 8$

Or if we want to detect all the instances of class 1, we can get it to $f(x) \ge 0.5 - 8$

$$\frac{P}{\beta} = \frac{P \cdot R}{\beta^2 P + R} (1 + \beta^2)$$
Also look at
$$\frac{P}{P + R} = \frac{P \cdot R}{P + R}$$
Precision-Recall curve
$$\frac{P}{P + R} = \frac{P \cdot R}{P + R}$$
Avc a

High Bias

High Variance.

How do you guess these models do in each category? Higher orders Quadratic Lihear High LowVery high Out-Sample
-accuracy Close to (in-sample) High close to in-sample In-Sample Out-sample Complexity This give a notion of where to stop.