

Cheatsheet

Properties of Tian Xiao

Logical Statements

Basic Operators: and (Λ) , or (V), not (\sim)

Laws of Logical Equivalence

- 01. Commutative Laws: $p \times q \equiv q \times p$
- 02. Associative Laws: $(p \times q) \times r \equiv p \times (q \times r)$
- 03. Distribution Laws: $p \land (q \lor r)$; $p \lor (q \land r)$
- 04. Identity Laws: $p \land \mathbf{True} \equiv p$; $p \lor \mathbf{False} \equiv p$
- 05. Negation Laws: $p \land \sim p \equiv \mathbf{False}$; $p \lor \sim p \equiv \mathbf{True}$
- 06. Double Negative Laws: $\sim (\sim p) \equiv p$
- 07. Idempotent Laws: $p \land p \equiv p$; $p \lor p \equiv p$
- 08. Universal Bound Laws: $p \land False \equiv False$; $p \lor True \equiv True$
- 09. De Morgan's Laws: $\sim (p \land q) \equiv \sim p \lor \sim q; \sim (p \lor q) \equiv \sim p \land \sim q$
- 10. Absorption Laws: $p \lor (p \land q) \equiv p$; $p \land (p \lor q) \equiv p$
- 11. Negation of True/False: ~True ≡ False; ~False ≡ True

Conditional Statements

- 01. Implication Law: $p \rightarrow q \equiv \sim p \vee q$
- 02. Contrapositive: $\sim q \rightarrow \sim p \equiv p \rightarrow q$
- 03. Converse: $q \rightarrow p$
- 04. Inverse: $\sim p \rightarrow \sim q$

Rules of Inference

Modus Ponens
$p \rightarrow q$
p
• q

Modus	Tollens
р –	<i>→ q</i>

Modus Tollens
$p \rightarrow q$
~q
• ~p

Generalisation
$$p$$
• $p \lor q$

Contradiction
$\sim p \rightarrow \mathbf{False}$
• p

Quantitative Operators: ∃! (there exists one and only one)

Quantitative Statements

- 01. Negation: $\forall \rightarrow \exists$; $P(x) \rightarrow \sim P(x)$
- 02. Contrapositive: $\forall x \in D, \sim O(x) \rightarrow \sim P(x)$
- 03. Converse: $\forall x \in D, O(x) \rightarrow P(x)$
- 04. Inverse: $\forall x \in D, \sim P(x) \rightarrow \sim O(x)$

Universal Instantiation

$\forall x \in D, P(x)$
$a \in D$
• <i>P</i> (<i>a</i>)

Rule + Universal Instantiation = Universal Rule

Definition of Numbers

- 01. Even: $\exists k \in \mathbb{Z}$ such that x = 2k
- 02. Odd: $\exists k \in \mathbb{Z}$ such that x = 2k + 1
- 03. Prime: $\forall r, s \in \mathbb{Z}^+$, $n = rs \Rightarrow (r = 1, s = n)$ or (r = n, s = 1)
- 04. Composite: $\exists r, s \in \mathbb{Z}+, (n=rs)$ and $(1 \le r, s \le n)$
- 05. Rational: $\exists p, q \in \mathbb{Z}, r = \frac{p}{q}$ and $q \neq 0$
- 06. Divisible: $\exists k \in \mathbb{Z}, n = dk$

Proof by Contradiction

The contrapositive of $P(x) \to O(x)$ is $\sim O(x) \to \sim P(x)$.

- 1. Prove the contrapositive statement through a direct proof.
 - 1.1. Suppose $x \in \mathbf{D}$ such that O(x) is **False**.
 - 1.2. Show that P(x) is **False**.
- 2. Therefore, the original statement $P(x) \rightarrow O(x)$ is **True**.

Sets and Functions

Set Concepts

- 01. Equal Sets: $A = B \Leftrightarrow x \in A \leftrightarrow x \in B$
- 02. Subset: $A \subseteq B \Leftrightarrow \forall x, x \in A \rightarrow x \in B$
- 03. Finite Set: |S| = n, where n is called cardinality
- 04. Power Set: P(A) is the set of all subsets of A
- 05. Cartesian Product: $A \times B = \{(a, b) \mid a \in A, b \in B\}$

Set Operations

- 01. Union: $A \cup B = \{x \mid (x \in A) \lor (x \in B)\}$
- 02. Intersection: $A \cap B = \{x \mid (x \in A) \land (x \in B)\}$
- 03. Compliment: $B A = B \setminus A = B \cap \overline{A}$
- 04. Complement: $\overline{A} = U A$
- 05. Disjoint: $A \cap B = \emptyset$

Set Identities

- 01. Commutative Laws: $A \times B \equiv B \times A$
- 02. Associative Laws: $(A \times B) \times C \equiv A \times (B \times C)$
- 03. Distribution Laws: $A \cap (B \cup C)$; $A \cup (B \cap C)$

- 04. Identity Laws: $A \cap U = A$; $A \cup \emptyset = A$
- 05. Negation Laws: $A \cap \overline{A} = \emptyset$: $A \cup \overline{A} = U$
- 06. Double Negative Laws: $\overline{(A)} = A$
- 07. Idempotent Laws: $A \cap A = A$; $A \cup A = A$
- 08. Universal Bound Laws: $A \cap \emptyset = \emptyset$; $A \cup U = U$
- 09. De Morgan's Laws: $\overline{A \cap B} = \overline{A \cup B}$; $\overline{A \cup B} = \overline{A \cap B}$
- 10. Absorption Laws: $A \cup (A \cap B) = A$; $A \cap (A \cup B) = A$
- 11. Negation of True/False: $\overline{U} = \emptyset$; $\overline{\emptyset} = U$

Function Concepts

01. $f: X \to Y$ is injective iff

$$\forall a, b \in X, f(a) = f(b) \Rightarrow a = b$$

02. $f: X \to Y$ is surjective iff

- 03. Bijective: 1-1 + onto
- 04. Inverse Functions: Let
- $f: X \to Y$ be a bijection. Then its inverse $g: Y \to X$:
- $\forall v \in Y, g(v) = x \Leftrightarrow f(x) = v$
- 05. Image: $f(X) = \{f(x) \mid x \in X\}$
- 06. Preimage: $f^{-1}(Y) = \{x \in X \mid f(x) \in Y\}$

Induction

Mathematical Induction

- 1. For each $n \in D$, let P(n) be the proposition $\langle XXX \rangle$.
- 2. (Base step) P(1) is true because $\langle RRR \rangle$.
- 3. (Induction step)
 - 3.1. Let $k \in D$ such that P(k) is true, i.e. $\langle XXX \rangle$.
 - 3.2. <YYY>

- 3.n. Thus P(k + 1) is true.
- 4. Hence $\forall n \in D$, P(n) is true by Mathematical Induction.

Strong Induction

- 1. For each $n \in D$, let P(n) be the proposition $\langle XXX \rangle$.
- 2. (Base step) P(1) is true because $\langle RRR \rangle$.
- 3. (Induction step)
 - 3.1. Let $k \in D$ such that P(1), ..., P(k) is true, i.e. $\langle XXX \rangle$. 3.2. <YYY>

- 3.n. Thus P(k + 1) is true.
- 4. Hence $\forall n \in D$, P(n) is true by Strong Induction.