MANIFOLD LEARNING

INTRODUCTION

Jairo Cugliari

Master Informatique Parcours Data Mining

Organisation pédagogique

Organisation

O Chaque séance : 1h CM + 2h Lab

Responsable

○ Jairo Cugliari (Jairo.Cugliari@univ-lyon2.fr)

MCC

- O Projet / Cours / Dossier en groupes (50%)
- O Examen individuel (avec ordinateur 50%)

Bibliographie

Book

- C. Bishop, *Pattern Recognition and Machine Learning*), 2007.
- T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2009.

E-learning

- o statweb.stanford.edu/~tibs/ElemStatLearn/
- Andrew Ng's course at Standford

Supervised learning

- Data
 - Response variables : $Y = (Y_1, ..., Y_m)^T$
 - Explicative variables : $X = (X_1, ..., X_p)^T$
- $(y_i, x_i), i = 1, ..., n$ with $x_i = (x_{i1}, ..., x_{ip})^T$
- Loss function : $L(y, \hat{y})$ (learn from errors)
- From a probabilist point of view

$$P(X,Y) = P(Y|X)P(X)$$

where the target is P(Y|X).

Available solutions depend on the size of p.

Unsupervised learning

- Data
 - Lack of response variable
 - $X = (X_1, ..., X_p)^T$
- \cap *n* observations $\{x_i, i = 1, ..., n\}$ in dimension *p*
- How can we learn out of our errors ?
- \bigcirc From a probabilistic point of view the interest is on P(X).

The solutions depend on the size p.

Goals of unsupervised learning

- Clustering: discover "clumps" of points
- Embedding: discover lowdimensional manifold or surface near which the data lives.
- Density Estimation. Find a function f such f(X) approximates the probability density of X, p(X), as well as possible.
- Finding good explanations (hidden causes)of the data;

Example 1: Density estimation

Old Faithful Geyser Data: waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA.

Data : 272 obs × 2 va	rs
---	----

Methods to analyze this data : summaries, plots, smth cleverer?

	eruptions ‡	waiting ‡
1	3.600	79
2	1.800	54
3	3.333	74
4	2.283	62
5	4.533	85
6	2.883	55
7	4.700	88
8	3.600	85

Example 2 : Principal Components Analysis (PCA)

MNIST Handwritten Digits

- 658 Handwritten digits from ZIP US postal mail described by a 256 features
- Each image (16 × 16 8-bit gray scale) is 1 digit.
- After an SVD on the centred data matrix, we retain the projected points over the first two principal components.

Only linear relationships are taken into consideration.

Example 3 : Clustering

 Data: 86 distilleries, 14 variables (taste scores), gps location of distilleries

The Irish Whiskey Still David Wilkie (1840)

Curse of dimensionality (Bellman, 1961)

Empty space phenomenon:

- When the dimension increases, the volume of the space increases so fast that the available data become sparse.
- Ontain a needed to support a reliable result often grows exponentially with p.

Data is ubiquitous I

- LHC: 150M sensor sampling at 40M/sec. In one second over 600M collisions but 100 are of interest (<0.001%).
- Astronomy: photometric observations of 500M objects and spectra of 1M objects. (Sloan Digital Sky Survey)
- Remote Imagery: Satellite /
 Hyperspectral, e.g. resolve the
 earth surface to 1 meter accuracy;
 automatically discover natural
 resources

Data is ubiquitous II

- Web-based services: clickstreams are being tracked and sold
- Biotech Data: human genome, protein function and cell function (genomics to proteomics to ...?)
- Financial Data : high frequency financial data

The Manifold Hypothesis

We saw that:

- Data is ubiquitous and comes with lots of descriptors
- In high dimensions we suffer from the curse of dimensionality

We need then something to circumvent the curse. A popular choice is to assume that **data are aligned on a low dimensional** manifold embedded on large host spaces.

Lectures

- O Lecture 1: Low-Dimensional Data: density estimation
- Lecture 2: High-Dimensional Data (The manifold hypothesis)
- Lecture 3 : Dimensionality Estimation
- Lecture 4: Metric Preservation (Metrics, MDS, Sammon's nonlinear mapping)
- Lecture 5: Distance Preservation (Geodesic distance, ISOMAP)
- Lecture 6 : Fixed-grid Topology Preservation (SOM)
- Lecture 7 : Data-driven Topology Preservation (LLE)