Лабораторная работа №5

Научное программирование

Колчева Юлия Вячеславовна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	18
5	Список литературы	19

List of Tables

List of Figures

3.1	Вывод данных	7
3.2	График	8
3.3	Матрица А	9
3.4	Вычисление формул	10
3.5	Решение системы	10
3.6	Код графиков	11
3.7	График параболы	11
3.8	График с помощью встроенной функции	12
3.9	Домик	12
3.10	Код для переворота	13
3.11	Переворот	14
3.12	Код для отражения	15
3.13	Отражение	16
3.14	Код для расширения	16
3.15	Расширение	17

1 Цель работы

Изучение языка Octave, знакомство со способами работы с графиками

2 Задание

Разобраться со спецификой языка и выполнить операции.

- 1. Подгонка полиномиальной кривой
- 2. Матричные преобразования: а. Вращение б. Отражение относительно кривой в. Дилатация

3 Выполнение лабораторной работы

Для начала работы с программой включим журналирование сессии командой diary on. Затем приступим к выполнению первого этапа - подгонке полиномиальной кривой. Для начала заданим матрицу D и разложим её на два вектора (рис. 3.1)

Figure 3.1: Вывод данных

Построим получившиеся значение на графике (рис. 3.2)

Figure 3.2: График

Построим уравнение вида у = $ax^2 + bx + c$ Для начала покажем как создать матрицу A (рис. 3.3)

```
1
          1 1
          1 1
     1
     1
          1
               1
     1
          1
               1
 >> A(:,1) = xdata .^ 2
A =
           1 1
1 1
1 1
      4
     9 1
16 1
25 1
36 1
                   1
>> A(:,2) = xdata
A =
          1 1
2 1
3 1
4 1
5 1
6 1
      1
4
      9
     16
     25
36
```

Figure 3.3: Матрица А

И значения, которые мы будем использовать (рис. 3.4)

```
>> A'*A
 ans =
    2275
            441
           91 21
21 6
     441
      91
 >> A'*ydata
 ans =
    28
    11
| | >> B = A'*A
 B =
    2275
     441
            91
                   21
      91
             21
 >> B(:,4) = A'*ydata
    2275
            441
     441
            91
                   21
                          28
      91
             21
```

Figure 3.4: Вычисление формул

Решим задачу методом Гаусса (рис. 3.5)

```
>> B_res = rref(B)
B res =
      0000 0 0 -0.8929
0 1.0000 0 5.6500
0 0 1.0000 -4.4000
   1.0000
>> a1 = B_res(1,4)
a1 = -0.8929
>> a2 = B_{res}(2,4)
a2 = 5.6500
>> a3 = B res(3,4)
a3 = -4.4000
>> x = lenspace(0,7,50);
error: 'lenspace' undefined near line 1, column 5
>> x = linspace(0,7,50);
>> y = a1 * x .^2 + a2 * x + a3
 Columns 1 through 5:
  -4.400000 -3.611079 -2.858601 -2.142566 -1.462974
```

Figure 3.5: Решение системы

Построим соответствующий график параболы. Процесс подгонки может быть автоматизирован встроенными функциями Octave. Для этого мы можем исполь-

зовать встроенную функцию для подгонки полинома polyfit. На скриншоте показан сначала код для паработы, а затем для втсроенной фунции (рис. 3.6)

```
>> plot(xdata, ydata, 'o', x,y, 'linewidth', 2)
>> grid on;
>> legend('data values', 'least-squares parabola')
>> title('y = -0.89286 x^2 + 5.65 x - 4.4')
>> P = polyfit(xdata, ydata, 2)
  -0.8929 5.6500 -4.4000
>> y = polyval(P,xdata)
    0.3571
    3.3286
    4.5143
    3.9143
   1.5286
  -2.6429
>> plot(xdata,ydata,'o-',xdata,y,'+-')
>> grid on ;
>> legend('original data', 'polyfit data')
>> D = [ 1 1 3 3 2 1 3; 2 0 0 2 3 2 2]
D =
```

Figure 3.6: Код графиков

Из предыдущего кода получились такие графики (рис. 3.7) (рис. 3.8)

Figure 3.7: График параболы

Figure 3.8: График с помощью встроенной функции

Приступим к разделу матричных преобразований. Для начала нарисуем простой домик, с которым будем работать (рис. 3.9)

Figure 3.9: Домик

Повернём его на 90 и на 225 градусов. Вращения могут быть получены с использованием умножения на специальную матрицу. Вначале переведём угол в радианы. (рис. 3.10)

```
>> theta1 = 90*pi/180
theta1 = 1.5708
>> R1 = [cos(theta1) -sin(theta1); sin(theta1) cos(theta1)]
R1 =

6.1230e-17   -1.0000e+00
1.0000e+00   6.1230e-17
>> RD1 = R1*D
RD1 =

Columns 1 through 4:

-2.0000e+00   6.1230e-17   1.8369e-16  -2.0000e+00
1.0000e+00   1.0000e+00   3.0000e+00   3.0000e+00

Columns 5 through 7:

-3.0000e+00   -2.0000e+00   -2.0000e+00
2.0000e+00   1.0000e+00   3.0000e+00
>> x1 = RD1(1,:)
x1 =

Columns 1 through 4:
-2.0000e+00   6.1230e-17   1.8369e-16  -2.0000e+00
Columns 5 through 7:
```

Figure 3.10: Код для переворота

Для второго отражения выполняем те же самые действия. В итоге получаем такой рисунок (рис. 3.11)

Figure 3.11: Переворот

Теперь приступим к отражению. Отразим граф дома относительно прямой у = x. Зададим матрицу отражения и нарисуем график. (рис. 3.12)

```
>> R = [0 1; 1 0]
R =
   0
        1
   1 0
>> RD = R * D
RD =
   2 \quad 0 \quad 0 \quad 2 \quad 3 \quad 2 \quad 2
           3 3 2 1 3
   1
      1
>> x1 = RD(1,:)
x1 =
   2 0 0 2 3 2 2
>> y1 = RD(2,:)
y1 =
   1 1 3 3 2 1 3
>> plot(x,y,'o-',x1,y1,'o-')
>> axis([-1 4 -1 4], 'equal');
>> axis([-1 5 -1 5], 'equal');
>> grid on;
>> legend( 'original' , 'reflected' )
```

Figure 3.12: Код для отражения

Получаем график (рис. 3.13)

Figure 3.13: Отражение

И последнее - расширение. Увеличим граф в два раза. Заданим матрицу Т и умножим на неё. (рис. 3.14)

```
>> T = [2 0, 0 2]
T =
      0 0 2
>> T = [2 0; 0 2]
    2
        0
        2
>> TD = T*D
        2 6
               6 4 2
                              6
            0
                 4
>> x1 = TD(1,:); y1 = TD(2,:);
>> plot(x,y,'o-', x1, y1,'o-')
>> axis([-1 7 -1 7], 'equal');
>> grid on;
>> legend('original', 'expanded')
```

Figure 3.14: Код для расширения

Получаем график (рис. 3.15)

Figure 3.15: Расширение

На этом лабораторная работа закончена.

4 Выводы

Познакомилась со способами работы с графиками.

5 Список литературы

Лабораторная работа №5

Лабораторная работа № 5. Введение в работу с Octave [Электронный ресурс].

 $2019. URL: https://esystem.rudn.ru/pluginfile.php/2372906/mod_resource/content/2/README.pdf$