

Problem Statement

- Textual entailment recognition decides whether the meaning of one text is entailed from another.
 TE has a three classifications over sentence pairs:
 - ♦ Entailment: texts support each other
 - ♦ Neutral: texts unrelated to each other
 - ♦ Contradiction: texts oppose each other
- ♦ We are to implement a machine learning model for this task.

```
mirror object to mirror
mirror_mod.mirror_object
 peration == "MIRROR_X":
irror_mod.use_x = True
mirror_mod.use_y = False
 irror_mod.use_z = False
 _operation == "MIRROR_Y"
 Irror_mod.use_x = False
 !Tror_mod.use_y = True
 lrror_mod.use_z = False
  operation == "MIRROR Z"
  rror_mod.use_x = False
  rror_mod.use_y = False
  rror_mod.use_z = True
  melection at the end -add
   ob.select= 1
   er ob.select=1
   ntext.scene.objects.action
  "Selected" + str(modified
   rror ob.select = 0
  bpy.context.selected_obj
  hta.objects[one.name].sel
  int("please select exaction
  --- OPERATOR CLASSES ----
     X mirror to the selected
    vpes.Operator):
   ject.mirror_mirror_x"
  ext.active_object is not
```

Relevant Topics

- ♦ Natural Language Inference
- ♦ Word Embeddings (GloVe, Word2Vec, BERT)
- ♦ Attention Model
- ♦ RNN and LSTM Mechanism
- Dataset Analysis

SNLI: 530k sentence pairs

Human-written sentence pairs manually labelled, by Stanford.

MultiNLI: 433k sentence pairs

Crowd-sourced sentence pairs with more cross-genre generalization than SNLI.

Datasets

SciTail: 27k sentence pairs

Created from MCQ science exams, where each question answer pair is labelled as entailment.

SICK: 10k sentence pairs

Datasets of sentences describing photographs were used as a basis for SICK.

Implementation Specifics

Implementation 1: Bowman Model

- 300D 840B GloVe used to create embedding layer.
- Summation layer: maxLen number of tokens summed to give a 100D representation of both premise and hypothesis.
- Concatenation layer: appends hypothesis to premise creating a 200D vector.
- 200D vector passed through fully connected layers, tanh activation, and dropouts.
- Final fully connected layer: softmax activation over 3 labels.

Results

	Training	Validation	Test
SNLI	74%	77%	76%
MultiNLI	65.39%	67.23%	65.74%
SciTail	87.88%	70.68%	71.62%
SICK	88.21%	70.84%	70.49%

Implementation 2: LSTM Model

- ♦ 300D 840B GloVe used to create embedding layer.
- LSTM layer: both premise and hypothesis sent to LSTM with an output of 100D vectors.
- Concatenation layer: appends hypothesis to premise creating a 200D vector.
- 200D vector passed through fully connected layers, tanh activation, and dropouts.
- Final fully connected
 layer: softmax activation over 3 labels.

Results

	Training	Validation	Test
SNLI	75.8%	78.21%	77.3%
MultiNLI	67.41%	65.98%	65.76%
SciTail	83.77%	72.83%	74.58%
SICK	95.66%	73.14%	72.65%

Implementation 3: Two LSTMs Model

- Word2Vec used instead of GloVe.
- 300D embeddings sent to fully connected layer by tanh activation, output is 100D vectors.
- First LSTM inputs premise, returns final internal states.
- These states used to initialize second LSTM, which inputs hypothesis.
- 100D output of hypothesis LSTM fed into fully connected layer with tanh activation, followed by another fully connected layer with softmax over 3 labels.

Results

	Training	Validation	Test
SNLI	81%	80%	80.13%
MultiNLI	70.29%	68.65%	67.47%
SciTail	97.97%	70.53%	74.58%
SICK	98.60%	58.79%	60.57%

Test accuracies across models

		Summation	LSTM	2LSTM
	SNLI	76%	77.3%	80.13%
	MultiNLI	65.74%	65.76%	67.47%
	SciTail	71.62%	74.58%	74.58%
	SICK	70.49%	72.65%	60.57%

Any Questions?