

Project 3: Logical Database Design

Database Planning and Requirement Analysis Event Management System: OccasionOrganizer

By

Group ID: 15

Miss Chommakorn	Sontesadisai	6488189
Miss Nattanicha	Sinsawet	6488190
Miss Ravikarn	Jarungjitvittawas	6488210

To

Asst. Prof. Dr. Charnyote Pluempitiwiriyawej

A Report Submitted in Partial Fulfillment of the Requirements for

ITCS413 Database Design

Faculty of Information and Communication Technology
Mahidol University

Last Updated: March 11, 2024

Table of Content

Project 3: Logical Database Design		
•	ER diagram	1
•	Relation schemas and Integrity constraints	3

Project 3: Logical Database Design

ER diagram

List of Changed ERD

- 1. Change the relationship between the attendee entity and the ticket entity from mandatory to optional. And add the relationship name named own.
- 2. Change the relationship between the concert entity and the ticket entity from one-to-one to one-to-many.
- 3. Change the relationship between the concert entity and the location entity. From mandatory to optional
- 4. Change the relationship between the sponsor and concert entity name from is_sponsor to supportBy.
- 5. Change the relationship between the admin and the concert entity. Swap one-to-many to many-to-one
- 6. Change the relationship between the artist and the concert entity from mandatory to optional.
- 7. Add the mandatory to the concert entity and equipment entity.

Relation schemas and integrity constraints

• Relation Schema

- Attributes which are bold and underlined are the Primary Keys
- Attributes which are Italic are the Foreign Keys
- <u>Attributes</u> which are bold, italic and underlined are both Primary Keys and Foreign Keys

• Attendee attendee_id name email username password Ticket serial_number start_time end_time attendee_id concert_id ticket_id price date gate zone seat • Concert concert_id concert_name start_time end_time sponsor_id sponsor_detail location_id equipment_id artist_id date amount sponsor_name Location location_name location_address location_id Admin first_name last_name concert_id admin_id password username • Artist full_name contact_details location_id artist_id genre Equipment equipment_id equipment _name equipment_type status • Equip equipment_id concert_id location_id cost_planned cost_actual quantity

Integrity constraints

Table: Attendee

 Primary Key Constraint: attendee_id ensures that each attendee has a unique identifier.

Table: Ticket

o Primary Key Constraint: ticket_id uniquely identifies each ticket.

 Foreign Key Constraint: attendee_id references the attendee_id in the Attendee table, ensuring tickets are tied to attendees.

Foreign Key Constraint: concert_id references the concert_id in the Concert table,
 connecting tickets to specific concerts.

Table: Concert

o Primary Key Constraint: concert id serves as a unique identifier for each concert.

 Foreign Key Constraint: sponsor_id references sponsor_id in the Sponsor table, associating sponsors with concerts.

Foreign Key Constraint: location_id references location_id in the Location table,
 tying concerts to specific venues.

 Foreign Key Constraint: equipment_id references equipment_id in the Equipment table, linking concerts with the equipment used.

 Foreign Key Constraint: artist_id references artist_id in the Artist table, connecting concerts to the performing artists.

Table: Location

Primary Key Constraint: location_ID uniquely identifies each location.

Table: Admin

Primary Key Constraint: admin_ID is the unique identifier for each admin.

Foreign Key Constraint: concert_id references the concert_id in the Concert table,
 connecting admins to specific concerts.

Table: Artist

- o Primary Key Constraint: artist_id is the unique identifier for each artist.
- Foreign Key Constraint: location_id references the location_id in the Location table, linking artists to specific locations.

Table: Equipment

 Primary Key Constraint: equipment_id uniquely identifies each piece of equipment.

Table: Equip

- Composite Primary Key Constraint: The combination of equipment_id and concert_id uniquely identifies each record in the Equip table.
- Foreign Key Constraint: equipment_id references equipment_id in the Equipment table, ensuring only valid equipment is allocated.
- Foreign Key Constraint: concert_id references concert_id in the Concert table,
 tying equipment to specific concerts.
- Foreign Key Constraint: location_id references location_id in the Location table,
 associating the equipment with a specific location.

• Additional Considerations for Integrity Constraints:

- Not Null Constraint: It's essential to ensure that critical columns like name, email, username, and password in the Attendee table cannot be left empty. This guarantees that every attendee record is complete and usable.
- Unique Constraint: This constraint is crucial for columns like email in the Attendee table to prevent duplicate entries. Every attendee should have a unique email address to ensure proper identification and communication.
- Check Constraint: This constraint should be applied to columns that need to contain values within a certain range. For instance, the amount in the Sponsor table should always be a positive number to accurately reflect the financial contributions.
- Data Type Constraint: This ensures that the data entered into each field matches the
 expected data type. For example, the email fields should only contain valid email
 addresses. This helps to maintain data accuracy and integrity.