Algoritmi e Strutture Dati (12/10/2021)

- * Ordinamento
 - altri alporatmi
 - −r limite inference Q (m log m)
 - ordinamento in tempo cimeare
 - * definitione

INPUT: $Q_{1,-1}$ am seque mza di Interi OUTPUT: $Q_{1,-1}$, and per mu tazio nu t.c. $i \leq j \Rightarrow Q_i \leq Q_j$

- × Insertion Sort ~ in orementale ~ complementa' (m²)
- * Merge Sozt
 - divide et impero
 - companità (m log m)
- * Complemita' in spazio?
 - * Insurtion sort

spozi O(1) "im boco"

- * Merge Sort: imdidiamo con m = # elem. ovray
 - * merge : (m)
 - * marge sort $M^{MS}(m) = mox \left\{ M^{MS}\left(\frac{m}{L^2L}\right), M^{MS}\left(\frac{m}{2}\right), \bigoplus(m) \right\}$

ESERCIZIO 1: Marge Fort com allocazione statica dell'array di supporto

Morgesort (A, m)
alboa B[1..m]
Morgesort Rec (A, B, 1, m)

ESERCIZIO 2: Evitore la capia delle due parti ordinate delle quali foru

ESERCIZIO 3: Hungs 5024 im Coco

* Heap Sort

~ complemite O (m logm)

→ (m 6000

Lo struttura dati heap (code com priorità)

* Alberi

ingo: oiromid : oiromid

ordinati: se bimari figlio ex e figlio dx

altra binario compreto:

-> ogmi modo mom foglia har due figli

-a gmi cammino radice - foglio ha la Sena lunghezza

$$\sum_{i=0}^{h} 2^{i} = x$$

$$2x = 2 \sum_{i=0}^{h} 2^{i} = \sum_{i=0}^{h} 2^{i+1}$$

$$= \sum_{j=1}^{h+1} 2^{j} = x - 2^{0} + 2^{h+1}$$

$$\mathcal{X} = -2^{\circ} + 2^{h+1}$$
$$= 2^{h+1} - 1$$

alburo bimario quasi completi ogni civello completo, tromne eventualm. Plultimo con foglie tutte a sx

* Heap: olbero bimorio ordinato quasi campleto

- A[1] ē bodice

Figlio amistro A[zi] figlio dustro A[zi+1]

poremt A[Li/z]

A. length, A. size ? spazio accupato dalla heap

* Mox Heap

è umo heap

- ogmi elemento è > discendenti

equivalentemento

→ gmi elements è < degli antemati

Esemplo:

3 8 7 5 7 4 10 14 3 6 1 2 14111

* Come si ottieme un max-heap?

2 ossuzvazione

openicom mo s obom oba mo arudos mo a-

 $\frac{\text{defilipation in }}{4} \quad h_{\tau} \qquad h_{\bar{\tau}} \quad \hat{h}_{\bar{\tau}} \quad \hat{h}_{\bar{\tau$

 $h \leqslant h_T$

(hr)

$$M = 2^{(h_7-1)+1} - 1 + 1$$

$$= 2^{h_7}$$

$$T(m) = T\left(\frac{2}{3}m\right) + C$$

$$\uparrow \qquad \uparrow$$

$$0 = 1 \quad b = \frac{3}{2} \qquad f(m) = C$$

moster theorem

$$f(m) = c$$
 $m^{-0.00} = m^{0.00} = 1$

CASO S

$$T(m) = \bigoplus (m_{ij}^{ij} \cdot k_{ij}^{i} \cdot k_{ij}^{i})$$

$$= \bigoplus (k_{ij}^{i} \cdot k_{ij}^{i} \cdot k_{ij}^{i} \cdot k_{ij}^{i})$$