Disponible a un clic de distancia y sin publicidad

Sí este material te es útil, ayúdanos a mantenerlo online

Suscribete

Comparte

Comenta

Este material está en línea porque creo que a alguien le puede ayudar. Lo desarrollo y sostengo con recursos propios. Ayúdame a continuar en mi locura de compartir el conocimiento.

Punto 1

Una compañía suministra bienes a tres clientes, y cada uno requiere 30 unidades. La compañía tiene dos almacenes. El almacén uno tiene 40 unidades disponibles y el almacén dos tiene 30 unidades disponibles. Los costos de enviar una unidad desde el almacén hasta el cliente se muestran en la siguiente tabla:

	Α						
DE	Cliente 1	Cliente 2	Cliente 3				
Almacén 1	\$15	\$35	\$25				
Almacén 2	\$10	\$50	\$40				

Hay una penalización por cada unidad de demanda no suministrada al cliente; con el cliente uno, se incurre en un costo de penalización de 90; con el cliente dos de \$80 y con el cliente tres \$110.

 a. Formule el problema de transporte equilibrado para minimizar la suma de los costos de envío y escasez. Resuelva el PL mediante el algoritmo simplex de transporte (Stepping Stone), para esto halle la solución básica inicial usando el método de la esquina noroeste.

$$x_{ij}$$
 = unidades a transportar del almacén i al cliente j

$$F.O.$$
 $Min Z = Costos de envio + costos de penalización$

$$Z = 15x_{11} + 35x_{12} + 25x_{13} + 10x_{21} + 50x_{22} + 40x_{23} + 90[30 - (x_{11} + x_{21})] + 80[30 - (x_{12} + x_{22})] + 110[30 - (x_{13} + x_{23})]$$

Sujeto a:

$$x_{11} + x_{21} \le 30$$

$$x_{12} + x_{22} \le 30$$

$$x_{13} + x_{23} \le 30$$

$$x_{11} + x_{12} + x_{13} \ge 40$$

$$x_{21} + x_{22} + x_{23} \ge 30$$

$$x_{ii} \ge 0$$

	15		35		25	40
	10		50		40	30
30		30		30		

			1	1
(omo la oterta v	, la demanda i	na san igilales	adicionamos i	ına planta ficticia
Como la orcita	y ia aciiialiaa i	no son igaaics,	adicionanios c	ina pianta neticia

	15		35		25	40
	10		50		40	30
	90		80		110	20
30		30		30		90

Asignación inicial de esquina noroeste

	15		35		25	40
30		10				
	10		50		40	30
		20		10		
	90		80		110	20
				20		
30		30 3		0	90	

Se tienen m+n-1 = 3+3-1=5 asignaciones.

Para las variables básicas se debe cumplir que

$$u_i + v_j = c_{ij}$$

Asumimos $u_1=0$ y se determinan todos los u_i y v_j faltantes

Para las variables no básicas se calcula

$$u_i + v_j - c_{ij}$$

	V1:	=15	V2=35		V3:	=25	
U1=0		15		35		25	40
					0		
U2=15		10		50		40	30
	+20		(-)		(+)		
U3=85		90		80		110	20
	+10		+40		(-)		
	3	0	3	30		0	90

Como se llega a un problema degenerado, se selecciona la celda 1,3 para asignar un valor de 0.

Siguiente asignación

	Clier	nte 1	Cliente 2		Clier	nte 3	
Planta		15		35		25	40
Α	30		10		0		
Planta		10		50		40	30
В					30		
Planta		90		80		110	20
Ficticia			20				
_	3	30		30 30		0	90

	V1	=15	V2	!=35	V3:	=25	
U1=0	(-)	15		35	(+)	25	40
U2=15	(+)	10		50	(-)	40	30
	20		-10				
U3=45		90		80		110	20
	-30				-40		
	30		30		30		90

Siguiente asignación

	Clier	nte 1	Cliente 2		Clier	nte 3	
Planta		15		35		25	40
Α	0		10		30		
Planta		10		50		40	30
В	30						
Planta		90		80		110	20
Ficticia			20				
	3	0	30		30		90

	V1:	=15	V2=35		V3:	=25	
U1=0		15		35		25	40
U2=-5		10		50		40	30
			-20		-20		
U3=45		90		80		110	20
	-30				-40		
	3	30		30		30	

Como todos los valores son negativos, el tablero es óptimo

La asignación final es:

	Clier	nte 1	Cliente 2		Clier	nte 3	
Planta		15		35		25	40
Α	0		10		30		
Planta		10		50		40	30
В	30						
Planta		90		80		110	20
Ficticia			20				
	30		30		30		90

El costo de la asignación es 3.000

b. Suponga que podrían comprarse unidades extra y enviarse a cualquier almacén por un costo de \$100 por unidad, y que se debe satisfacer toda la demanda de los clientes. Formule el problema de transporte equilibrado para minimizar la suma de los costos. Resuelva el PL mediante el algoritmo simplex de transporte (Stepping Stone), para esto halle la solución básica inicial usando el método del costo mínimo.

$$x_{ij}$$
 = unidades a transportar del almacén i al cliente j

$$F.O.$$
 $Min Z = Costos de envio + costos de penalización$

$$Z = 15x_{11} + 35x_{12} + 25x_{13} + 10x_{21} + 50x_{22} + 40x_{23} + 100[30 - (x_{11} + x_{21})] + 100[30 - (x_{12} + x_{22})] + 100[30 - (x_{13} + x_{23})]$$

Sujeto a:

$$x_{11} + x_{21} \le 30$$

$$x_{12} + x_{22} \le 30$$

$$x_{13} + x_{23} \le 30$$

$$x_{11} + x_{12} + x_{13} \ge 40$$

$$x_{21} + x_{22} + x_{23} \ge 30$$

$$x_{ij} \ge 0$$

Usando la asignación por costo mínimo se tiene

	Clier	nte 1	Cliente 2		Clie	nte 3	
Planta		15		35		25	40
Α			10		30		
Planta		10		50		40	30
В	30				0		
Planta		100		100		100	20
Ficticia			20				
	3	30		30		30	

	V1	=-5	V2	!=35	V3:	=25	
U1=0		15		35		25	40
	-20						
U2=15		10		50		40	30
			0				
U3=65		100		100		100	20
	-40				-10		
	3	30		30	3	90	

Como todos los valores son cero o negativos, el tablero es óptimo. La asignación es

	Clier	nte 1	Clie	nte 2	Clier	nte 3	
Planta		15		35		25	40
Α			10		30		
Planta		10		50		40	30
В	30						
Planta		100		100		100	20
Ficticia			20				
	3	0	;	30	3	0	90

Los costos valen 3.400.

Punto 2

Steelco fabrica tres tipos de acero en diferentes plantas. El tiempo requerido para fabricar una tonelada de acero (sin importar el tipo de acero) y los costos en cada planta, se ilustran en la siguiente tabla:

		Costo (\$)								
Planta	Acero 1	(minutos)								
1	60	40	28	20						
2	50	30	30	16						
3	43	20	20	15						

Cada semana deben producirse 100 toneladas de cada tipo de acero. Cada planta está abierta 40 horas por semana.

a. Formule un problema de transporte que al ser resuelto minimice el costo de satisfacer los requerimientos semanales de la compañía.

$$x_{ij}$$
 = toneladas de acero producida en la planta i del tipo j

$$F.O.\ Min\ Z = Costos\ de\ producción$$

$$Z = 60x_{11} + 40x_{12} + 28x_{13} + 50x_{21} + 30x_{22} + 30x_{23} + 43x_{11} + 20x_{12} + 20x_{13}$$

Producir 1 tonelada en 20min implica 3 toneladas por hora. Si está abierta durante 40 horas, se producen 120 Ton

Sujeto a:

$$x_{11} + x_{21} + x_{31} \le 100$$

$$x_{12} + x_{22} + x_{32} \le 100$$

$$x_{13} + x_{23} + x_{33} \le 100$$

$$x_{11} + x_{12} + x_{13} \ge 120$$

$$x_{21} + x_{22} + x_{23} \ge 150$$

$$x_{31} + x_{32} + x_{33} \ge 160$$

$$x_{ij} \ge 0$$

	Ace	ro 1	Ace	ero 2	Ace	ro 3	
Planta		60		40		28	120
1							
Planta		50		30		30	150
2							
Planta		43		20		20	160
3							
	100		1	100		00	

Como la oferta y la demanda no son iguales se anexa un tipo de acero ficticio

	Acero 1	Acero 2	Acero 3		
Planta	60	40	28	0	120
1					
Planta	50	30	30	0	150
2					
Planta	43	20	20	0	160
3					
	100	100	100	130	430

b. Determine la asignación óptima de producción. Use como método de solución inicial el método del costo mínimo

	Ace	ro 1	Ace	ero 2	Ace	ro 3	Acero Fic	ticio	
Planta		60		40		28		0	120
1	100		20						
Planta		50		30		30		0	150
2			20		•		130		
Planta		43		20		20		0	160
3			60		100				
	1	00	100		100		13	30	430

	V2	L=60	V2	2=40	V3	=40	V4=	:10	
U1=0		60	(-)	40	(+)	28		0	120
					12		10		
U2=-10		50		30		30		0	150
	0				0				
U3=-20		43	(+)	20	(-)	20		0	160
	-3						-10		
	1	L 00	100		100		13	30	430

Nueva asignación

	Ace	ro 1	Ace	ero 2	Ace	ro 3	Acero Fic	ticio	
Planta		60		40		28		0	120
1	100				20				
Planta		50		30		30		0	150
2			20				130		
Planta		43		20		20		0	160
3			80		80				
	1	00	1	.00	10	00	13	30	430

	V	1=60	V2	2=28	V3	=28	V4=	=-2	
U1=0	(-)	60		40	(+)	28		0	120
			-12				-2		
U2=2	(+)	50	(-)	30		30		0	150
	12				0				
U3=-8		43	(+)	20	(-)	20		0	160
	9						-10		
		100	1	.00	100		13	30	430

Nueva asignación

	Ace	ro 1	Ace	ero 2	Ace	ro 3	Acero Fic	ticio	
Planta		60		40		28		0	120
1	80				40				
Planta		50		30		30		0	150
2	20						130		
Planta		43		20		20		0	160
3			100		60				
	10	00	1	.00	10	00	13	30	430

	V1	=60	V2	2=28	V3:	=28	V4=	:10	
U1=0	(-)	60		40		28	(+)	0	120
			-12				10		
U2=-10	(+)	50		30		30	(-)	0	150
			-12		-12				
U3=-8		43		20		20		0	160
	9						-18		
	1	00	1	.00	100		13	30	430

Nueva asignación

	Ace	ro 1	Ace	ero 2	Ace	ro 3	Acero Fic	ticio	
Planta		60		40		28		0	120
1					40		80		
Planta		50		30		30		0	150
2	100						50		
Planta		43		20		20		0	160
3			100		60				
	1	100		100		100		30	430

	V1:	=50	V2	!=28	V3:	=28	V4:	=0	
U1=0		60		40		28		0	120
	-10		-12						
U2=0		50		30		30		0	150
			-2		-2				
U3=-8		43		20		20		0	160
	-1				•		-8		
	10	00	1	.00	10	00	13	0	430

Como todas las cifras son negativas el tablero es óptimo

		. /	,		
Δςια	รทว	ดเดท	\sim	ptima	ì
-	sı ıa		•	ρ_{titte}	ı

	Ace	ro 1	Ace	ero 2	Ace	ro 3	Acero Fig	ticio	
Planta		60		40		28		0	120
1					40		80		
Planta		50		30		30		0	150
2	100						50		
Planta		43		20		20		0	160
3			100		60				
	10	00	1	.00	10	00	13	30	430

Valor de la función objetivo

$$40 \cdot 28 + 80 \cdot 0 + 100 \cdot 50 + 50 \cdot 0 + 100 \cdot 20 + 60 \cdot 20 = 9320$$

Punto No 3

Tres ciudades se abastecen de electricidad de tres centrales eléctricas con capacidades de 25, 40 y 30 Mega-Watts (MW). Las demandas máximas en las tres ciudades se estiman en 30, 35 y 25 MW. El precio por MW en las tres ciudades de muestra en la siguiente tabla:

			Ciudad	
	_	1	2	3
g	1	\$600	\$700	\$400
Planta	2	\$320	\$300	\$350
Д	3	\$500	\$480	\$450

Durante el mes de agosto hay un aumento del 20% en la demanda de cada ciudad, que se puede satisfacer comprando electricidad a otra red, a una tasa elevada de \$1000 por MW. Sin embargo, la red no está conectada con la ciudad 3. La empresa desea determinar al plan más económico para distribuir y comprar energía adicional durante el mes de agosto.

a. Formule el programa lineal asociado.

$$x_{ij} = MW$$
 de la planta i a la ciudad j

$$F.O.\ Min\ Z = Costos\ de\ transporte$$

$$Z = 600x_{11} + 700x_{12} + 400x_{13} + 320x_{21} + 300x_{22} + 350x_{23} + 500x_{31} + 480x_{32} + 450x_{33} + 1000x_{41} + 1000x_{42} + 0x_{43}$$

Sujeto a:

$$x_{11} + x_{21} + x_{31} + x_{41} = 36$$

$$x_{12} + x_{22} + x_{32} + x_{42} = 42$$

$$x_{13} + x_{23} + x_{33} + x_{43} = 30$$

$$x_{11} + x_{12} + x_{13} = 25$$

$$x_{21} + x_{22} + x_{23} = 40$$

$$x_{31} + x_{32} + x_{33} = 30$$

$$x_{41} + x_{42} = 13$$

$$x_{ij} \ge 0$$

b. Usando el complemento Solver ® de Excel determine el plan de envíos óptimo.

Según Solver, el plan de envíos es:

	Ciudad	Ciudad	Ciudad	
	1	2	3	
Planta 1	0	0	25	25
Planta 2	0	40	0	40
Planta 3	23	2	5	30
Compra	13	0	0	13
	36	42	30	

Punto 4

Fred administra la granja de su familia. Para completar varios alimentos que se cultivan en la granja, Fred también cría cerdos para la venta y desea determinar las cantidades de los distintos tipos de alimentos disponibles, maíz, nutrimento y alfalfa, que debe dar a cada cerdo. Como éstos se comerán cualquier mezcla de estos alimentos, el objetivo es determinar cuál de ellas cumple con ciertos requisitos nutritivos a un costo mínimo. En la siguiente tabla se presentan las unidades de cada tipo de ingrediente nutritivo básico que contiene 1 kilogramo de cada tipo de alimento, junto con los requisitos de nutrición diarios y los costos de los alimentos:

Ingrediente	Maíz	Nutrimento	Alfalfa	Requerimiento mínimo
	(nutriente/kg)	(nutriente/kg)	(nutriente/kg)	(nutriente/día)
Nutriente				
Carbohidratos	90	20	40	200
Proteínas	30	80	60	180
Vitaminas	10	20	60	150
Costo (USD/Kg)	84	72	60	

a. Formule un programa lineal que represente el objetivo y condiciones estipuladas, resuelva el problema planteado usando el complemento Solver ® de Excel.

$$x_1 = kg de maíz$$

$$x_2 = kg \ de \ Nutrimento$$

$$x_3 = kg \ de \ Alfalfa$$

$$F. \ 0: Min \ Z = 84x_1 + 72x_2 + 60x_3$$

Sujeto a

$$90x_1 + 20x_2 + 40x_3 \ge 200$$
$$30x_1 + 80x_2 + 60x_3 \ge 180$$
$$10x_1 + 20x_2 + 60x_3 \ge 150$$

FO

b. Genere e interprete el informe de análisis de sensibilidad.

72

Microsoft Excel 16.0 Informe de sensibilidad

84

Hoja de cálculo: [Taller_transporte_simplex.xlsx]Punto 4

Informe creado: 17/05/2021 5:10:49 p.m.

Celdas de variables

		Final	Reducido	Objetivo	Permisible	Permisible
Celda	Nombre	Valor	Coste	Coeficiente	Aumentar	Reducir
\$C\$5	x1	1,142857143	0	84	51	37,2
\$D\$5	x2	0	17,71428571	72	1E+30	17,71428571
\$E\$5	x3	2,428571429	0	60	11,27272727	22,66666667

Restricciones

	Final	Sombra	Restricción Lado	Permisible	Permisible
Celda Nombre	Valor	Precio	derecho	Aumentar	Reducir
\$F\$7	200	0,771428571	200	25	80
\$F\$8	180	0,485714286	180	120	6
\$F\$9	157,1428571	0	150	7,142857143	1E+30

El valor X1 es 1.14 y su coeficiente puede aumentar 51 y disminuir 37.2 sin alterar el punto óptimo

El valor de X2 es 0 y su coeficiente puede aumentar lo que sea y disminuir 17.7 sin alterar el punto óptimo

El valor de X3 es 2.42 y su coeficiente puede aumentar 11.27 y disminuir 22.66 sin alterar el punto óptimo

Si se aumenta una unidad del recurso 1 se mejorará la función objetivo en 0.77 unidades (requerimientos de carbohidratos)

Si se aumenta una unidad del recurso 2 se mejorará la función objetivo en 0.48 unidades (requerimientos de proteínas)

Se cumplen sobradamente los requerimientos de vitaminas

Punto 5

La compañía Gem de Vivian elabora dos tipos de joyas: el tipo 1 y el tipo 2. Las joyas del tipo 1 constan de 2 rubíes y de 4 diamantes. Una joya tipo 1 se vende en 10 dólares y cuesta 5 dólares producirla. Las joyas tipo 2 tienen 1 rubí y 1 diamante. Una joya tipo 2 se vende en 6 dólares y cuesta 4 dólares producirla. Se dispone de un total de 30 rubíes y 50 diamantes. Es posible vender todas las joyas que se elaboran, pero las consideraciones mercadotécnicas señalan que se produzcan por lo menos 11 joyas del tipo 1. Sea X1 la cantidad de joyas tipo uno a elaborar y X2 la cantidad de joyas tipo 2 a elaborar. Suponga que Vivian quiere maximizar la utilidad. Utilice la información que proporciona Solver ® para contestar las preguntas siguientes:

Se quiere maximizar utilidades = ingresos - costos

$$x_1 = unidades de joyas tipo 1$$

 $x_2 = unidades de joyas tipo 2$
 $F. O: Max Z = 5x_1 + 2x_2$

Sujeto a

$$2x_1 + 1x_2 \le 30$$

$$4x_1 + 1x_2 \le 50$$

$$x_1 \ge 11$$

$$x_i \ge 0$$

$$5 \qquad 2$$

$$x1 \qquad x2$$

$$11 \qquad 6$$
F.O=67

^-	/-		
11	6		
F.O=67			
2	1	28 <=	30
4	1	50 <=	50
1	0	11 >=	11

Se deben producir 11 joyas tipo 1 y 6 Joyas tipo 2 para obtener utilidades de \$ 67

a. ¿Cuál sería la utilidad de Vivian si tuviera disponibles 46 diamantes?

Si la restricción cambió, el punto óptimo cambia a 11 joyas tipo 1 y 2 Joyas tipo 2 con utilidades de \$59

b. ¿Si las joyas tipo 2 se vendieran a solo 5,50 dólares, ¿Cuál sería la nueva solución óptima para el problema?

Se deben producir 11 joyas tipo 1 y 6 Joyas tipo 2 para obtener utilidades de \$ 64

c. ¿Cuál sería la utilidad de Vivian si se tuvieran que fabricar por lo menos 12 joyas del tipo 1?

Se deben producir 12 joyas tipo 1 y 2 Joyas tipo 2 para obtener utilidades de \$ 64