$$|I(\rho) - 2\pi u(\mathbf{p})| \le \int_0^{2\pi} |u(\mathbf{q}(\theta)) - u(\mathbf{p})| d\theta \le 2\pi.$$

31. Si $\mathbf{p} = (p_1, p_2)$, parametrizar $\partial B_{\rho}(\mathbf{p})$ por $\rho \mapsto (p_1 + \rho \cos \theta, p_2 + \rho \sin \theta)$, entonces $I(\rho) = \int_0^{2\pi} u(p_1 + \rho \cos \theta, p_2 + \rho \sin \theta) \, d\theta$. Diferenciando bajo el signo de integral se obtiene

$$\frac{dI}{d\rho} = \int_0^{2\pi} \nabla u \cdot (\cos \theta, \sin \theta) \, d\theta = \int_0^{2\pi} \nabla u \cdot \mathbf{n} \, d\theta$$
$$= \frac{1}{\rho} \int_{\partial B_{\rho}} \frac{\partial u}{\partial \mathbf{n}} \, ds = \frac{1}{\rho} \iint_{B_{\rho}} \nabla^2 u \, dA$$

(la última igualdad utiliza el Ejercicio 30).

33. Usando el Ejercicio 32,

$$\iint_{B_R} u \, dA = \int_0^R \int_0^{2\pi} u[\mathbf{p} + \rho(\cos\theta, \sin\theta)] \rho \, d\theta \, d\rho$$
$$= \int_0^R \left(\int_{\partial B_\rho} u \, ds \right) d\rho$$
$$= \int_0^R 2\pi \rho u(\mathbf{p}) \, d\rho = \pi R^2 u(\mathbf{p}).$$

35. Supongamos que u es subarmónica. Enunciamos las afirmaciones correspondientes al Ejercicio 34(a) y (b). El argumento para las funciones superarmónicas es similar, con las desigualdades invertidas.

Supongamos que $\nabla^2 u \geq 0$ y $u(\mathbf{p}) \geq u(\mathbf{q})$ para todo \mathbf{q} en $B_R(\mathbf{p})$. Por el Ejercicio 31, $I'(\rho) \geq 0$ para $0 < \rho \leq R$, y el Ejercicio 32 demuestra que $2\pi u(\mathbf{p}) \leq I(\rho) \leq I(R)$ para $0 < \rho \leq R$. Si $u(\mathbf{q}) < u(\mathbf{p})$ para algún $\mathbf{q} = \mathbf{p} + \rho(\cos\theta_0, \sin\theta_0) \in B_R(\mathbf{p})$, entonces, por continuidad, existe un arco $[\theta_0 - \delta, \theta_0 + \delta]$ en $\partial B_{\rho}(\mathbf{p})$ donde $u < u(\mathbf{p}) - d$ para algún d > 0. Esto quiere decir que

$$2\pi u(\mathbf{p}) \le I(\rho) = \frac{1}{\rho} \int_0^{2\pi} u[\mathbf{p} + \rho(\cos\theta, \sin\theta)] \rho \, d\theta$$
$$\le (2\pi - 2\delta)u(\mathbf{p}) + 2\delta[u(\mathbf{p}) - d]$$
$$\le 2\pi u(\mathbf{p}) - 2\delta d.$$

Esta contradicción demuestra que debemos tener $u(\mathbf{q}) = u(\mathbf{p})$ para todo \mathbf{q} en $B_B(\mathbf{p})$.

Si el máximo en \mathbf{p} es absoluto para D, el último párrafo demuestra que $u(\mathbf{x}) = u(\mathbf{p})$ para todo \mathbf{x} en algún disco alrededor de \mathbf{p} . Si $\mathbf{c} : [0,1) \to D$ es una trayectoria desde \mathbf{p} hasta \mathbf{q} , entonces $u(\mathbf{c}(t)) = u(\mathbf{p})$ para todo t en algún intervalo [0,b). Sea b_0 el mayor $b \in [0,1]$ tal que

 $u(\mathbf{c}(t)) = u(\mathbf{p})$ para todo $t \in [0, b)$. (Estrictamente hablando, esto requiere la noción de supremo disponible en un buen texto sobre cálculo). Dado que u es continua, $u(\mathbf{c}(b_0)) = u(\mathbf{p})$. Si $b_0 \neq 1$, entonces el último párrafo se aplicaría en $\mathbf{c}(b_0)$ y u es constante e igual a $u(\mathbf{p})$ en un disco alrededor de $\mathbf{c}(b_0)$. En particular, existe un $\delta > 0$ tal que $u(\mathbf{c}(t)) = u(\mathbf{c}(b_0)) = u(\mathbf{p})$ en $[0, b_0 + \delta)$. Esto contradice que b_0 sea el máximo, de modo que tenemos que $b_0 = 1$. Es decir, $\mathbf{c}(\mathbf{q}) = \mathbf{c}(\mathbf{p})$. Dado que \mathbf{q} era un punto arbitrario en D, u es constante en D.

37. Suponemos que $\nabla^2 u_1 = 0$ y $\nabla^2 u_2 = 0$ son dos soluciones. Sea $\phi = u_1 - u_2$. Entonces $\nabla^2 \phi = 0$ y $\phi(x) = 0$ para todo $x \in \partial D$. Consideramos la integral $\iint_D \phi \nabla^2 \phi \ dA = -\iint_D \nabla \phi \cdot \nabla \phi \ dA$. Por tanto, $\iint_D \nabla \phi \cdot \nabla \phi \ dA = 0$, que implica que $\nabla \phi = \mathbf{0}$, y por tanto ϕ es una función constante y tiene que ser idénticamente cero.

Sección 8.2

$$\mathbf{1.} \ \, \gamma(t) = \left\{ \begin{array}{ll} (3t-1,1,-6t+4), & t \in [0,1] \\ (2,2t-1,-6t+4), & t \in [1,2] \\ (-3t+8,3,10t-28), \, t \in [2,3] \\ (-1,-2t+9,2t-4), \, t \in [3,4] \end{array} \right.$$

$$\Phi(u,v) = (u,v,5-2u-3v), u \in [-1,2], v \in [1,3].$$

- **3.** 0 (Nota: **F** es un campo gradiente).
- **5.** *π*.
- **7.** 52.
- **9.** -2π .
- **11.** Cada una de las integrales en el teorema de Stokes es cero.
- **13.** 0.
- **15.** $-4\pi/\sqrt{3}$.
- **17.** 0.
- **19.** $\pm 2\pi$.
- **21.** Utilizando la ley de Faraday, $\iint_S [\nabla \times \mathbf{E} + \partial \mathbf{H}/\partial t] \cdot d\mathbf{S} = 0$ para cualquier superficie S. Si el integrando fuera un vector no nulo en algún punto, entonces por continuidad, la integral sobre algún disco pequeño centrado en dicho punto y perpendicular a dicho vector sería distinta de cero.