3. Aufgabe: Asynchronmaschine (ASM)

- 3.1 Nennen Sie zwei Möglichkeiten, um das Anlaufmoment einer Asynchronmaschine zu erhöhen.
 [2 P]
- 3.2 Eine Käfigläufer-Asynchronmaschine besitzt laut Typenschild eine Nenndrehzahl von 1450 min⁻¹. Im Betrieb weist die Asynchronmaschine eine Drehzahl von 1480 min⁻¹ auf. Ist dieser Betrieb dauerhaft zulässig? Begründen Sie Ihre Antwort.

Zum Antreiben eines Lüfters wird eine Kurzschlussläufer-Asynchronmaschine in Sternschaltung an einem 400V/50Hz-Drehstromnetz betrieben. Von der Asynchronmaschine sind für den Betrieb im Nennpunkt folgende Daten bekannt:

mech. Leistung : $P_{\text{mech,N}}$ = 5 kW Drehzahl : n_{N} = 735 min⁻¹

Leistungsfaktor

 $\cos \varphi_N$

0,82

Der Statorwiderstand sowie Eisen-, Reibungs- und Zusatzverluste sind vernachlässigbar (vereinfachtes Ersatzschaltbild).

3.3 Welche Polpaarzahl p besitzt die Maschine?

[5 P]

[1 P]

den Schlupf s_N

3.4 Bestimmen Sie für den Nennpunkt:

die Luftspaltleistung $P_{\delta,\mathsf{N}}$

den Wirkungsgrad ղ_N

den Strangstrom I_{s,N}

das Drehmoment M_N

3.Teil: Grundlagen der Leistungselektronik

Aufgabe 1: Tiefsetzsteller [13 P]

Gehen Sie von idealen Bedingungen aus (ideale Bauteile, idealer Stromübergang von einem auf das andere Ventil), $C \rightarrow \infty$. Fertigen Sie die Zeichnungen sauber und nach Maßstab an, beschriften Sie die

 $U_d = 800 \text{ V}$

 $U_L = 300 \text{ V}$

 $R = 10 \Omega$

Taktfrequenz $f_T = 20 \text{ kHz}$

Der IGBT ist zu Beginn jeder Periode für die Einschaltdauer $T_{\rm ein}$ leitend, danach sperrt er für die restliche Periodendauer.

Glättungskondensator C → ∞

- 1.1. Wie groß muss die Einschaltdauer T_{ein} sein, wenn die Ausgangsspannung

 U_L = 300 V betragen soll. Wie groß ist der Strom I_L? (Der Strom i_L lückt nicht)
- Wie groß muss die Induktivität L sein, damit der Steller gerade nicht lückt?
- 1.3. Zeichnen Sie die zeitlichen Verläufe der Spannung u_L und des Stroms i_E entsprechend der zuvor erhaltenen Ergebnisse. Kennzeichnen Sie U_L, I_L, T und T_{ein}. Benutzen Sie die bereitgestellten Diagramme (1.3a) und (1.3b).

Annahme: Die Induktivität beträgt nun 137,5 µH und U_L soll 250 V betragen, U_d und R bleiben unverändert.

1.4. Wie groß muss die Taktfrequenz gewählt werden, um den Steller nichtlückend zu betreiben? Begründen Sie die Antwort.

œ