Artificial Intelligence

For HEDSPI Project

Lecturer 5 - Advanced search methods

Lecturers:

HUST

Dr. Le Thanh Huong Dr. Tran Duc Khanh Dr. Hai V. Pham

ı

Outline

- Memory-bounded heuristic search
- Hill-climbing search
- Simulated annealing search

Memory-bounded heuristic search

- Some solutions to A* space problems (maintain completeness and optimality)
 - □ Iterative-deepening A* (IDA*)
 - Here cutoff information is the f-cost (g+h) instead of depth
 - Recursive best-first search(RBFS)
 - Recursive algorithm that attempts to mimic standard best-first search with linear space.
 - □ (simple) Memory-bounded A* ((S)MA*)
 - Drop the worst-leaf node when memory is full

'

Iterative Deeping A*

- Iterative Deeping version of A*
 - use threshold as depth bound
 - To find solution under the threshold of *f*(.)
 - □ increase threshold as minimum of *f*(.) of
 - previous cycle
- Still admissible
- same order of node expansion
- Storage Efficient practical
 - □ but suffers for the real-valued f(.)
 - large number of iterations

Recursive best-first search

- A variation of Depth-first search
- Keep track of *f*-value of the best alternative path
- Unwind if f-value of all children exceed its best alternative
- When unwind, store f-value of best child as its f-value
- When needed, the parent regenerate its children again.

Recursive best-first search

function RECURSIVE-BEST-FIRST-SEARCH(*problem*) return a solution or failure return RBFS(*problem*,MAKE-NODE(INITIAL-STATE[*problem*]),∞)

function RBFS (*problem, node, f_limit*) **return** a solution or failure and a new *f-cost* limit

if GOAL-TEST[problem](STATE[node]) then return node successors \leftarrow EXPAND(node, problem)

if successors is empty then return failure, ∞

for each s in successors do

 $f[s] \leftarrow \max(g(s) + h(s), f[node])$

repeat

best \leftarrow the lowest f-value node in successors if $f[best] > f_limit$ then return failure, f[best]alternative \leftarrow the second lowest f-value among successors result, $f[best] \leftarrow \mathsf{RBFS}(problem, best, \min(f_limit, alternative))$ if $result \neq failure$ then return result

Recursive best-first search

- Keeps track of the f-value of the best-alternative path available.
 - If current f-values exceeds this alternative f-value then backtrack to alternative path.
 - Upon backtracking change f-value to best f-value of its children.
 - Re-expansion of this result is thus still possible.

Recursive best-first search, ex.

- Path until Rumnicu Vilcea is already expanded
- Above node; *f*-limit for every recursive call is shown on top.
- Below node: f(n)
- The path is followed until Pitesti which has a *f*-value worse than the *f-limit*.

Recursive best-first search, ex.

- Unwind recursion and store best f-value for current best leaf Pitesti
 result, f [best] ← RBFS(problem, best, min(f_limit, alternative))
- best is now Fagaras. Call RBFS for new best
 best value is now 450

Recursive best-first search, ex.

- Unwind recursion and store best f-value for current best leaf Fagaras
 result, f [best] ← RBFS(problem, best, min(f_limit, alternative))
- best is now Rimnicu Viclea (again). Call RBFS for new best
 - Subtree is again expanded.
 - □ Best *alternative* subtree is now through Timisoara.
- Solution is found since because 447 > 417.

RBFS evaluation

- RBFS is a bit more efficient than IDA*
 - Still excessive node generation (mind changes)
- Like A*, optimal if h(n) is admissible
- Space complexity is O(bd).
 - □ IDA* retains only one single number (the current f-cost limit)
- Time complexity difficult to characterize
- IDA* and RBFS suffer from *too little* memory.

(simplified) memory-bounded A*

- Use all available memory.
 - I.e. expand best leafs until available memory is full
 - □ When full, SMA* drops worst leaf node (highest *f*-value)
 - Like RBFS, we remember the best descendant in the branch we delete
- What if all leafs have the same *f*-value?
 - Same node could be selected for expansion and deletion.
 - SMA* solves this by expanding newest best leaf and deleting oldest worst leaf.
- The deleted node is regenerated when all other candidates look worse than the node.
- SMA* is complete if solution is reachable, optimal if optimal solution is reachable.
- Time can still be exponential.

1.5

Local search algorithms

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution
- State space = set of "complete" configurations
- Find configuration satisfying constraints, e.g., n-queens
- In such cases, we can use local search algorithms
- Local search= use single current state and move to neighboring states.
- Advantages:
 - Use very little memory
 - □ Find often reasonable solutions in large or infinite state spaces.
- Are also useful for pure optimization problems.
 - □ Find best state according to some *objective function*.

Hill-climbing search

- Simple, general idea:
 - Start wherever
 - Always choose the best neighbor
 - If no neighbors have better scores than current, quit
- Hill climbing does not look ahead of the immediate neighbors of the current state.
- Hill-climbing chooses randomly among the set of best successors, if there is more than one.
- Some problem spaces are great for hill climbing and others are terrible.

Hill-climbing search

function HILL-CLIMBING(problem) return a state that is a local maximum

input: problem, a problem

local variables: current, a node.

neighbor, a node.

 $\textit{current} \leftarrow \mathsf{MAKE}\text{-}\mathsf{NODE}(\mathsf{INITIAL}\text{-}\mathsf{STATE}[\textit{problem}])$

loop do

 $neighbor \leftarrow$ a highest valued successor of current if VALUE [neighbor] < VALUE[current] then return STATE[current] $current \leftarrow neighbor$

Hill-climbing variations

- Stochastic hill-climbing
 - Random selection among the uphill moves.
 - □ The selection probability can vary with the steepness of the uphill move.
- First-choice hill-climbing
 - Stochastic hill climbing by generating successors randomly until a better one is found.
- Random-restart hill-climbing
 - Tries to avoid getting stuck in local maxima.
 - □ If at first you don't succeed, try, try again...

. .

Simulated Annealing

- Simulates slow cooling of annealing process
- Applied for combinatorial optimization problem by S. Kirkpatric ('83)
- What is annealing?
 - Process of slowly cooling down a compound or a substance
 - □ Slow cooling let the substance flow around → thermodynamic equilibrium
 - Molecules get optimum conformation

Simulated annealing

gradually decrease shaking to make sure the ball escape from local minima and fall into the global minimum

25

Simulated annealing

- Escape local maxima by allowing "bad" moves.
 - Idea: but gradually decrease their size and frequency.
- Origin; metallurgical annealing
- Implement:
 - Randomly select a move instead of selecting best move
 - Accept a bad move with probability less than 1 (p<1)
 - p decreases by time
- If T decreases slowly enough, best state is reached.
- Applied for VLSI layout, airline scheduling, etc.

Simulated annealing function SIMULATED-ANNEALING(problem, schedule) return a solution state input: problem, a problem schedule, a mapping from time to temperature local variables: current, a node: next, a node. T, a "temperature" controlling the probability of downward steps *current* ← MAKE-NODE(INITIAL-STATE[*problem*]) Similar to hill climbing, for t ← 1 to ∞ do but a random move $T \leftarrow schedule[t]$ instead of best move if T = 0 then return current *next* ← a randomly selected successor of *current* $\Delta E \leftarrow VALUE[next] - VALUE[current]$ case of improvement, make the move if $\Delta E > 0$ then $current \leftarrow next$ **else** *current* \leftarrow *next* only with probability $e^{\Delta E/T}$ What's the probability when: $T \rightarrow \inf$? Otherwise, choose the move with What's the probability when: $T \rightarrow 0$? probability that decreases exponentially What's the probability when: $\Delta=0$? with the "badness" of the move. What's the probability when: $\Delta \rightarrow -\infty$?

Simulated Annealing parameters

- Temperature T
 - Used to determine the probability
 - □ High T : large changes
 - Low T : small changes
- Cooling Schedule
 - $\ \ \square$ Determines rate at which the temperature T is lowered
 - Lowers T slowly enough, the algorithm will find a global optimum
- In the beginning, aggressive for searching alternatives, become conservative when time goes by

Simulated Annealing Cooling Schedule

- if Ti is reduced too fast, poor quality
- if Tt >= T(0) / log(1+t) Geman
 - System will converge to minimun configuration
- Tt = k/1+t Szu
- Tt = a T(t-1) where a is in between 0.8 and 0.99

Tips for Simulated Annealing

- To avoid of entrainment in local minima
 - Annealing schedule : by trial and error
 - Choice of initial temperature
 - How many iterations are performed at each temperature
 - How much the temperature is decremented at each step as cooling proceeds
- Difficulties
 - Determination of parameters
 - □ If cooling is too slow →Too much time to get solution
 - □ If cooling is too rapid → Solution may not be the global optimum

Properties of simulated annealing

Theoretical guarantee:

E(x)

- \Box Stationary distribution: p(x)
- $p(x) \alpha e^{-kT}$
- □ If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?
- Sounds like magic, but :
 - □ The more downhill steps you need to escape, the less likely you are to every make them all in a row
 - People think hard about *ridge operators* which let you jump around the space in better ways