MATH 135 Winter 2020: Midterm Examination

Q01. Let P and Q be logical statements.

(a) Complete the following truth table:

P	Q	$Q \Longrightarrow P$	$P \wedge (Q \implies P)$	$(Q \Rightarrow P) \iff [P \land (Q \Rightarrow P)]$	$P \lor Q$
\overline{T}	T	T	T	T	T
T	$\mid F \mid$	T	T	T	T
F	$\mid T \mid$	F	F	T	T
F	$\mid F \mid$	T	F	F	F

(b) Are the expressions $(Q \Longrightarrow P) \iff [P \land (Q \Longrightarrow P)]$ and $P \lor Q$ logically equivalent? Circle one of the options below. No justification required.

Equivalent Not equivalent

Q02. Let x and y be real numbers. Consider the following implication S:

If x is rational, then y is rational or xy is irrational

(a) State the hypothesis of S.

x is rational

(b) State the conclusion of S.

y is rational or xy is irrational

(c) State the converse of S.

If y is rational or xy is irrational, then x is rational

(d) State the contrapositive of S.

If y is irrational and xy is rational, then x is irrational

(e) State the negation of S in a form that does not contain an implication.

x and xy are irrational but y is rational

(f) Indicate whether the statement $\forall x, y \in R$, S is true or false by circling one of the options below. Then either prove or disprove the statement.

Circle the correct answer: True False

Proof. We will prove by the contrapositive. Consider the hypothesis. Because multiplying any real number by an irrational number produces an irrational number, we can never have y be irrational but xy be rational.

Therefore, the contrapositive is vacuously true.

Q03. Let $A = \{2k : k \in \mathbb{Z}\}$ and $B = \{2m + 1 : m \in \mathbb{Z}\}$. In (a) and (b), indicate whether each statement is true or false by circling one of the options. Then either prove or disprove the statement.

(a) $\forall a \in A, \exists b \in B, a + b = 7$ True False

Proof. Let a be an element of A, that is, an even integer. Then, there exists a k such that a = 2k.

Select b = -2k + 7. This is equal to 2(-k + 3) + 1, where -k + 3 is an integer. It follows that $b \in B$.

Now,
$$a+b=2k-2k+7=7$$
, as desired.

(b) $\exists b \in B, \forall a \in A, a+b=7$ True False

Proof. Consider the negation:

$$\forall b \in B, \exists a \in A, a+b \neq 7.$$

Let b be an element of B, that is, an odd integer. Then, there exists an m such that b = 2m + 1.

If m = 3, so b = 7, then select a = 2 (i.e. 2k where k = 1) and notice $a + b = 9 \neq 7$. If $m \neq 3$, so $b \neq 7$ then select a = 0 (i.e. 2k where k = 0). In this case, $a + b = b \neq 7$. Therefore, since the negation is true, the original statement is false.

Q04.

(a) Prove that for all integers a, if $a \nmid 1$, then $a \nmid 9$ or $a \nmid 17$.

Proof. Consider the contrapositive: if $a \mid 9$ and $a \mid 17$, then $a \mid 1$.

Let a be an integer that divides both 9 and 17. Then, a also divides the integer combination 9(2) - 17(1) = 1, as desired.

Because the contrapositive is true, the original statement is also true. \Box

(b) Prove that for all integers a, b, and c, if $a \mid (b+c)$, then $a^2 \nmid (2b+3c)$ or $a \mid c$.

Proof. Let a, b, and c be integers.

Consider the negation, that $a \mid (b+c)$, $a^2 \mid (2b+3c)$, and $a \nmid c$. Suppose for a contradiction that the negation is true.

Clearly, $a \mid a^2$, so by TD, $a \mid (2b+3c)$. But we have $a \mid (b+c)$, so this means that by DIC, $a \mid ((2b+3c)-2(b+c))$. This is just $a \mid c$, which is a contradiction.

Therefore, the negation is false, so the original statement must be true.

Q05. Let a, b, and c be odd integers. Prove that there does not exist a right triangle with side lengths a, b, and c.

Proof. Suppose for a contradiction that such a right triangle exists.

Then, there exist a, b, and c such that $a^2 + b^2 = c^2$. Since they are odd, we may write a, b, and c as 2r + 1, 2s + 1, and 2t + 1, respectively.

$$a^{2} + b^{2} = c^{2}$$

$$(2r+1)^{2} + (2s+1)^{2} = (2t+1)^{2}$$

$$4r^{2} + 4r + 1 + 4s^{2} + 4s + 1 = 4t^{2} + 4t + 1$$

$$2(2r^{2} + 2r + 2s^{2} + 2s + 1) = 2(2t^{2} + 2t) + 1$$

Since $2r^2 + 2r + 2s^2 + 2s + 1$ and $2t^2 + 2t$ are both integers, the left-hand side represents an even integer and the right-hand side represents an odd integer. There are no integers that are both even and odd, so this is a contradiction.

Therefore, there is no right triangle with three odd side lengths. \Box

Q06. Let a be an integer. Prove that if $4 \mid a(a+x)$ for all integers x, then $4 \mid a$.

Proof. Let a be an integer such that $4 \mid a(a+x)$ for all integers x.

The statement must be true for all integers x, and -a+1 is an integer, so we may let x=-a+1. Then, $4 \mid a(a-a+1)$, which is just $4 \mid a$.

Q07.

(a) Determine the coefficient of x^4 in the expansion of $\left(2x^{14} + \frac{1}{x^3}\right)^{10}$

Solution. Apply the binomial theorem:

$$\left(2x^{14} + \frac{1}{x^3}\right)^{10} = \sum_{k=0}^{10} {10 \choose k} (2x^{14})^k \left(\frac{1}{x^3}\right)^{10-k}$$
$$= \sum_{k=0}^{10} {10 \choose k} 2^k x^{14k} x^{-3(10-k)}$$
$$= \sum_{k=0}^{10} {10 \choose k} 2^k x^{17k-30}$$

The exponent on x will be 4 when 17k-30=4, that is, k=2. Here, the coefficient is $\binom{10}{2}2^2=45\cdot 4=180$.

(b) Evaluate the sum $\sum_{i=0}^{n} \binom{n}{i} \frac{3^{2i} 5^{n-i}}{2^{3i}}$

Solution. Rearrange terms to match the binomial theorem and apply it:

$$\begin{split} \sum_{i=0}^{n} \binom{n}{i} \frac{3^{2i} 5^{n-i}}{2^{3i}} &= \sum_{i=0}^{n} \binom{n}{i} \frac{(3^2)^i}{(2^3)^i} 5^{n-i} \\ &= \sum_{i=0}^{n} \binom{n}{i} \left(\frac{9}{8}\right)^i 5^{n-i} \\ &= \left(\frac{9}{8} + 5\right)^n \\ &= \left(\frac{49}{8}\right)^n \end{split}$$

or, expressed similarly to the original, $\frac{7^{2n}}{2^{3n}}$

Q08.

(a) Let A, B, and C be sets. Prove that if $A - B \subseteq C$, then $A - (B \cup C) = \emptyset$.

Proof. Let A, B, and C be sets such that $A - B \subseteq C$. Let a be an element of A.

Suppose for a contradiction that a is in neither B nor C. Then, because $a \notin B$, it is in A-B. However, $A-B \subseteq C$, so $a \in C$. This is a contradiction.

Therefore, a is in either B or C, that is, it is in $B \cup C$. Thus, since all elements of A are in $B \cup C$, the set difference is the empty set.

(b) Consider the sets

$$A = \{n \in \mathbb{N} : n \ge 2\}, \quad B = \{a \in A : 3 \mid (2a+1)\}, \quad C = \{(2k+5)^2 : k \in \mathbb{Z}\}.$$

Prove that $B \cap C \neq \emptyset$.

Proof. It suffices to show the existence of an element of $B \cup C$. We propose x = 49 and prove it.

Clearly, $49 \ge 2$, so $x \in A$. Also, 2x + 1 = 99, a multiple of 3. Therefore, $x \in B$.

Let k=1, which is an integer. Then, $(2k+5)^2=7^2=49$. Therefore, $x\in C$.

Since x is an element in both B and C, it is in their intersection. As we have proven that the size of $B \cup C$ is at least 1, it is not the empty set.

Q09. The Fibonacci sequence is defined by $f_0 = 0$, $f_1 = 1$, and $f_n = f_{n-1} + f_{n-2}$ for all integers $n \ge 2$. Prove that for every non-negative integer n,

$$\sum_{i=0}^{n} f_i^2 = f_n f_{n+1}.$$

Proof. Let P(n) be the statement that $\sum_{i=0}^{n} f_i^2 = f_n f_{n-1}$. We will prove by induction.

For the base case P(0), notice that

$$\sum_{i=0}^{0} f_i^2 = f_0^2 = 0 = 0 \cdot 1 = f_0 f_1$$

Now, suppose that for an arbitrary non-negative integer k, P(k-1) holds. Then,

$$\sum_{i=0}^{k} f_i^2 = f_k^2 + \sum_{i=0}^{k-1} f_i^2$$

$$= f_k^2 + f_{k-1} f_k$$

$$= f_k (f_k + f_{k-1})$$

$$= f_k f_{k+1}$$
 by inductive hypothesis

which is exactly P(k).

Therefore, by induction, P(n) holds for all non-negative integers.

Q10. Prove that for all $n \in \mathbb{N}$, there exist non-negative integers a and b such that $3 \nmid b$ and $n = 3^a b$.

Proof. We will strongly induct the statement P(n), that a and b exist such that $3 \nmid b$ and $n = 3^a b$, on n.

For the base cases P(1) and P(2), let a=0 and b=n. Then, $3 \nmid n$ and $3^ab=b=n$. For the base case P(3), let a=1 and b=1. Then, $3 \nmid 1$ and $3^ab=3$.

Let $m \ge 4$ be an arbitrary integer. Suppose that for all integers n < m, P(n) holds.

If $3 \mid m$, then there exists an integer k such that m = 3k we use the fact that P(k) holds. This ensures that there exist a_0 and b_0 such that $3^{a_0}b_0 = k$. Rearranging,

$$3^{a_0}b_0 = k$$

 $3^{a_0}b_0 = \frac{m}{3}$
 $m = 3^{a_0+1}b_0$

which, with $a = a_0 + 1$ and $b = b_0$, is exactly what we need to show to prove P(m).