

Date: 25-01-2019

Sub: SR BIPC(CHAINA & ELITE)

Time: 3 Hrs **NEET GRAND TEST - 1** Max. Marks: 720

MPORTANT INSTRUCTIONS:

- The Test is of 3 Hours Duration.
- The Test consists of 180 Questions. The Maximum Marks are 720.
- There are Four parts in the question paper consisting of Physics, Chemistry, Botany and
 - For each correct answer 4 Marks and each incorrect answer -1 Mark.

PHYSICS

- Two resistors of resistance $R_1 = (100 \pm 3)\Omega$ and $R_2 = (200 \pm 4)\Omega$ are connected in parallel. The 1. equivalent resistance of the parallel combination is
 - 1) $(66.7 \pm 1.8) \Omega$
- 2) $(66.7 \pm 4.0)\Omega$
- 3) $(66.7 \pm 3.0)\Omega$
- 4. $(66.7 \pm 7.0) \Omega$
- A body is projected vertically downward from A, the top of the tower reach the ground in t_1 2. seconds. If it is projected upward with same velocity, it reaches the ground in t_2 seconds. At what time will it reach the ground if it is dropped from *A*?
 - 1) $\sqrt{t_1/t_2}$
- 2) $\sqrt{t_2/t_1}$

- $4)t_1t_2$
- A projectile can have the same range R for two angles of projection. It t₁ and t₂ be the times of flight 3. in the two cases, then the product of two times of flight becomes
 - 1) $t_1t_2 \propto R^2$
- 2) $t_1 t_2 \propto R$

- 3) $t_1 t_2 \propto \frac{1}{R}$
- 4) $t_1 t_2 \propto \frac{1}{R^2}$
- 4. Two masses of 10 kg and 20 kg respectively are tied together by a massless spring. A force of 200 N is applied on a 20 kg mass as shown in figure. At the instant shown, the acceleration of 10 kg mass is 12 m/s², the acceleration of 20 kg mass is

- 1)Zero
- $2)10 \text{ m/s}^2$

- 5. Two identical balls A and B are released from the positions show in figure. They collide elastically on horizontal position MN. The ratio of the heights attained by A and B after collision will be (neglect friction)

- 1) 1:4
- 2) 2:1

- 3) 4:13
- 4) 2:5
- A vehicle of mass m is moving on a rough horizontal road with momentum P. If the coefficient of 6. friction between the tyres and the road be μ , the stopping distance is
 - 1) $\frac{P}{2\mu mg}$

- 3) $\frac{P}{2\mu m^2 g}$ 4) $\frac{P^2}{2\mu m^2 g}$

Two masses $m_1 = 1 \text{kg}$ and $m_2 = 2 \text{kg}$ are connected by a light inextensible string and suspended by means of a weightless pulley as shown in the figure. Assuming that both the masses start from rest, the distance travelled by the center of mass in two seconds is (Take $g = 10 \text{ m s}^{-2}$)

- 1) $\frac{20}{9}m$

- 3) $\frac{2}{3}m$ 4) $\frac{1}{3}m$
- Wheel of radius 20 cm has four forces applied to it as shown in fig. Then, the torque produced by these forces about O is

- 1)5.4 Nm anticlockwise
- 3)1.8 Nm anticlockwise

- 2)1.8 Nm clockwise
- 4)5.4 Nm clockwise
- A cubical block of side a is moving with velocity v on a horizontal smooth plane as shown in figure. If 9. hits a ridge at point O. The angular speed of the block after it hits O is

- 1)3v/(4a)
- 2)3v/(2a)

- 3) $\sqrt{3v}/\sqrt{2a}$
- 4)Zero
- A uniform disc of radius R lies in the x-y plane, with its centre at origin. Its moment of inertia about 10. z-axis is equal to its moment of inertia about line y=x+c. The value of c will be

- 1) $-\frac{R}{2}$

- 3) $\frac{+R}{4}$
- 4) R

11.	A small body of superdense material, whose mass is twice the mass of the earth but whose size is
	very small compared to the size of the earth, starts from rest at a height H<< R above the earth's
	surface, and reaches the earth's surface in time t. Then t is equal to

1) $\sqrt{2H/g}$

2) $\sqrt{H/g}$

3) $\sqrt{2H/3g}$

4) $\sqrt{4H/3g}$

12. A particle of mass M is situated at the centre of spherical shell of mass M and radius a. The magnitude of the gravitational potential at a point situated at a/2 distance from the centre will be

1) $\frac{2GM}{a}$

2) $\frac{3GM}{a}$

3) $\frac{4GM}{a}$

4) $\frac{GM}{I}$

The pressure applied from all directions on a cube is P. How much its temperature should be raised 13. to maintain the original volume? The volume elasticity of the cube is β and the coefficient of volume expansion is α

3) $\frac{P\beta}{\alpha}$

4) $\frac{\alpha\beta}{R}$

14. The minimum horizontal acceleration of the container so that the pressure at the point A of the container becomes atmospheric is (The tank is of sufficient height)

1) $\frac{3}{2}g$

15. The emission spectrum of a black body at two difference temperature are shown by curves P and Q (as shown in figure). The ratio of the areas under the two curves P and Q will be

2)4:9

3)81:256

4)16:81

The ratio of the densities of the two bodies is 3:4 and the ratio of specific heat is 4:3. Find the ratio of 16. their thermal capacities for unit volume

1) 1:2

2) 1:1

- 3) 2:3
- One mole of an ideal gas undergoes a process $P = P_0 \left[1 + \left(\frac{2V_0}{V} \right)^2 \right]^{-1}$, where P_0 , V_0 are constants. 17.

Change in temperature of the gas when volume is changed from V=V₀ to V=2V₀ is
1) $\frac{4}{5} \frac{P_0 V_0}{nR}$ 2) $\frac{3}{4} \frac{P_0 V_0}{nR}$ 3) $\frac{2}{7} \frac{P_0 V_0}{nR}$ 4) $\frac{9}{7} \frac{P_0 V_0}{nR}$

1) $\frac{4}{5} \frac{P_0 V_0}{nR}$

1)20 kJ

2) 30 kJ

3) 40 kJ

4) 60 kJ

One mole of an ideal gas undergoes a process in which $T = T_0 + aV^3$, where T_0 and 'a' are positive 19. constants and V is molar volume. The volume for which pressure will be minimum is

$$1) \left(\frac{T_0}{2a}\right)^{1/2}$$

 $2) \left(\frac{T_0}{3a}\right)^{1/3}$

 $3) \left(\frac{a}{2T_0}\right)^{2/3}$

The period of oscillation of a simple pendulum of length l suspended from the roof of the vehicle 20. which moves down without friction on an inclined plane of inclination α , is given by

1)
$$\pi \sqrt{\frac{l}{g \cos \alpha}}$$

1) $\pi \sqrt{\frac{l}{g \cos \alpha}}$ 2) $\frac{1}{2\pi} \sqrt{\frac{l}{g \cos \alpha}}$

3) $2\pi \sqrt{\frac{l}{g\cos\alpha}}$ 4) $\frac{1}{\pi} \sqrt{\frac{l}{2g\cos\alpha}}$

A police car moving at 22 m/s, chases a motorcyclist. The police man sounds his horn at 176 Hz, 21. while both of them move towards a stationary siren of frequency 165 Hz. Calculate the speed of the motorcycle, if it is given that he does not observes any beats(velocity of sound = 330m/sec)

Police Car

22 m/s(176Hz)

Motorcycle

Stationary siren(165 Hz)

1) 33 m/s

2) 22 m/s

3)Zero

4) 11 m/s

22. The fundamental frequency of a closed pipe is 220 Hz. If 1/4 of the pipe is filled with water, the frequency of the first overtone of the pipe now is

1)220 Hz

2) 440 Hz

3) 880 Hz

4) 1760 Hz

23. Six changes are placed at the vertices of a regular hexagon as shown in the figure. The electric field on the line passing through point O and perpendicular to the plane of the figure as a function of distance x from point O is

1)0

2) $\frac{Qa}{\pi \epsilon_0 x^3}$

3) $\frac{2Qa}{\pi\varepsilon_0 x^3}$

A uniformly changed and infinitely long line having a liner charge density ' λ ' is placed at a normal 24. distance y from a point O. Consider a sphere of radius R with O as centre and R > y. Electric flux through the surface of the sphere is

1)Zero

2) $\frac{2\lambda R}{\varepsilon_0}$

- 3) $\frac{2\lambda\sqrt{R^2-y^2}}{\varepsilon_0}$ 4) $\frac{\lambda\sqrt{R^2-y^2}}{\varepsilon_0}$
- 25. The charge on 4 μF capacitor in the given circuit is(in μ C)

1)12

2) 24

- 3) 36
- 4)32
- In the circuit show in figure the reading of ammeter is the same with both switches open as with both 26. closed. Then find the resistance R.(ammeter is ideal)

 $1)550\Omega$

 $2)400\Omega$

 $3)350\Omega$

 $4)600\Omega$

A wire of resistance $12 \Omega \,\mathrm{m}^{-1}$ is bent to form a complete circle of radius 10 cm. The resistance 27. between its two diametrically opposite points. A and B as shown in the figures is

 $1)0.6\,\pi\Omega$

 $2)3\Omega$

 $3)6 \pi\Omega$

 $4)6\Omega$

- 28. A long straight wire along the z-axis carries a current I in the negative z direction. The magnetic vector field \vec{B} at a point having coordinates (x,y) in the z = 0 plane is
- $2) \frac{\mu_0 I\left(x\hat{i} + y\hat{j}\right)}{2\pi\left(x^2 + y^2\right)}$
- 3) $\frac{\mu_0 I(\hat{xj} + \hat{yi})}{2\pi(x^2 + y^2)}$ 4) $\frac{\mu_0 I(\hat{xi} \hat{yj})}{2\pi(x^2 + y^2)}$

29.	When a proton is released from rest in a room, it starts with an initial acceleration a_0 towards west . When it is projected towards north with a speed $\ v_0$ it moves with an initial acceleration $3a_0$ toward west. The electric and magnetic fields in the room are
	1) $\frac{ma_0}{e}$ west, $\frac{2ma}{eV_0}$ up 2) $\frac{ma_0}{e}$ west, $\frac{2ma_0}{eV_0}$ down
	3) $\frac{ma_0}{e}east$, $\frac{3ma_0}{eV_0}up$ 4) $\frac{ma_0}{e}east$, $\frac{3ma_0}{eV_0}down$
30.	A thin rectangular magnet suspended freely has a period of oscillation equal to T. Now it is broken into two equal halves (each having half of the original length) and one piece is made to oscillate
	freely in the same field. If its period of oscillation is T, then ratio $\frac{T'}{T}$ is
	1) $\frac{1}{4}$ 2) $\frac{1}{2\sqrt{2}}$ 3) $\frac{1}{2}$ 4)2
31.	A conducting circular loop is placed in a uniform magnetic field of induction B tesla with its plane normal to the field of induction B tesla with is plane normal to the field. Now , radius of the loop starts shrinking at the rate (dr/dt). Then the induced e.m.f at the instant when the radius is r is
	1) $\pi r B \left(\frac{dr}{dt}\right)$ 2) $2\pi r B \left(\frac{dr}{dt}\right)$ 3) $\pi r^2 B \left(\frac{dr}{dt}\right)$ 4) $\frac{\pi B r^2}{2} \left(\frac{dr}{dt}\right)$
32.	The r.m.s current in an AC circuit is 2A. If the wattles current be $\sqrt{3}A$, what is the power factor?
	1) $\frac{1}{\sqrt{3}}$ 2) $\frac{1}{\sqrt{2}}$ 3) $\frac{1}{2}$ 4) $\frac{1}{3}$
33.	A point object O is placed at a distance of 20 cm from a convex lens of focal length 10 cm as shown in figure. At what distance x from the lens should a concave mirror of focal length 60 cm, be placed so that final image coincides with the object?
	O 20 cm x
	1)10 cm 2) 40 cm 3) 20 cm
34.	4) final image can never coincide with the object in the given conditions An object is placed at a distance of 40 cm from a concave mirror of focal length 15 cm. If the object
	is displaced through a distance of 20 cm towards the mirror, the displacement of the image will be 1)36 cm towards the mirror 2)30 cm away from the mirror
35.	3)30 cm towards from the mirror 4)36 cm away from the mirror In an astronomical telescope in normal adjustment a straight black line of length L is drawn on inside
. JJ.	part of objective lens. The eyepiece forms a real image of this line. The length of this image is <i>l</i> . The magnification of the telescope is
	1) $\frac{L}{l}$ 2) $\frac{L}{l}+1$ 3) $\frac{L}{l}-1$ 4) $\frac{L+l}{L-l}$

36. Which of the following is not due to total internal reflection 1)Difference between apparent and real depth of a pond

2)Mirage on not summer days 3)Brilliance of diamond 4) Working of optical fibre

In a Young's double slit experiment, I_0 is the intensity at the central maximum and β is the fringe 37. width. The intensity at a point P distance x from the centre will be

4) $\frac{I_0}{4}\cos^2\frac{\pi x}{\beta}$ 1) $I_0 \cos \frac{\pi x}{\beta}$ $2) 4I_0 \cos^2 \frac{\pi x}{\beta}$ 3) $I_0 \cos^2 \frac{\pi x}{\beta}$

38.	Two polaroids are placed in the path of unpolaroised beam of intensity I ₀ such that no light is emitted
	from the second Polaroid. If a third Polaroid whose polarization axis makes an angle θ with the
	polarization axis of first Polaroid, is placed between these polaroids then the intensity of light
	emerging from the last polaroids will be

$$1) \left(\frac{I_0}{8}\right) \sin^2 2\theta$$

$$2)\left(\frac{I_0}{4}\right)\sin^2 2\theta$$

3)
$$\left(\frac{I_0}{2}\right)\cos^2\theta$$
 4) $I_0\cos^4\theta$

4)
$$I_0 \cos^4 \theta$$

39. An electron of mass m and a photon have same energy E. The ratio of de-Broglie wavelengths associated with them is

1)
$$\frac{1}{C} \left(\frac{E}{2m}\right)^{\frac{1}{2}}$$
 2) $\left(\frac{E}{2m}\right)^{\frac{1}{2}}$

$$2) \left(\frac{E}{2m}\right)^{\frac{1}{2}}$$

3)
$$C(2mE)^{\frac{1}{2}}$$
 4) $\frac{1}{C}(\frac{2m}{E})^{\frac{1}{2}}$

$$4) \ \frac{1}{C} \left(\frac{2m}{E}\right)^{\frac{1}{2}}$$

40. In a photoemissive cell with executing wavelength λ , the fastest electron has speed v. If the exciting wavelength is changed to $3\lambda/4$, the speed of the fastest emitted electron will be

1)
$$v\left(\frac{3}{4}\right)^{1}$$

2)
$$v\left(\frac{4}{3}\right)^{1/2}$$

3)
$$< v \left(\frac{4}{3}\right)^{1/2}$$
 4) $> v \left(\frac{4}{3}\right)^{1/2}$

$$4) > v \left(\frac{4}{3}\right)^{1/2}$$

When the electron in the hydrogen atom jumps from 2^{nd} orbit to 1^{st} orbit, the wavelength of radiation emitted is λ . When the electrons jump from 3^{rd} orbit to 1^{st} orbit, the wavelength of emitted radiation 41. would be

1)
$$\frac{27}{32}\lambda$$

2)
$$\frac{32}{27}\lambda$$

3)
$$\frac{2}{3}\lambda$$

4)
$$\frac{3}{2}$$

A radioactive nucleus undergoes a series of decays according to the scheme 42.

$$A \xrightarrow{\alpha} A_1 \xrightarrow{\beta} A_2 \xrightarrow{\alpha} A_3 \xrightarrow{\gamma} A_4$$

If the mass number and atomic number of A are 180 and 72 respectively, then what are these number for A_4 ?

1)172 and 69

2)174 and 70

3)176 and 69

4)176 and 70

43. In a common emitter (CE) amplifier having a voltage gain G, the transistor used has transconductance 0.03 mho and current gain 25. If the above transistor is replaced with another one with transconductance 0.02 mho and current gain 20, the voltage gain will be

1)
$$\frac{2}{3}G$$

respectively

2)1.5 G

4) $\frac{5}{4}G$

The given graph represents V - I characteristic for a semiconductor device. 44.

Which of the following statement is correct?

- 1)It is V I characteristic for solar cell where point A represents open circuit voltage and point B short circuit current
- 2) It is for a solar cell and points A and B represent open circuit voltage and current, respectively 3)It is for a photodiode and points A and B represent open circuit voltage and current, respectively 4)It is for an LED and points A and B represents open circuit voltage and short circuit current

87.	Which among the following is peroxo acid of sulph i)H ₂ SO ₃ ii)H ₂ SO ₅	ur? iii)H ₂ S ₂ O ₈	iv)H ₂ SO ₄
	1) Only i 2) Only ii	3)Both ii and iii	4)Only iv
88.	Which of the following shows maximum +8 oxidat	<i>'</i>	., ey 1.
	1)Re 2) Os	3)W	4)Ir
89.	Assign the hybridization, shape and magnetic mon	,	.,
	1)sp ³ , tetrahedral, 1.73 B.M.	2)dsp ² ,square planar,	1.73 B.M.
	3)sp ³ , tetrahedral, 2.44 B.M.	4)dsp ² ,square planar,	
90.	Which of the following can exhibit geometrical iso		
	1) $[MnBr_4]^{2-}$ 2) $[Pt(NH_3)_3Cl]^+$		$4)[Fe(H_2O)_5NOS]^{2+}$
	72 373 1	, [(3,2 23	,
	BOTAN		
91.	Which of the following is not a stem modification?		
	1) Pitcher of Nepenthes	2) Thorns of Citrus	
	3) Tendrils of Cucumber	4) Flattened structure	e of <i>Opuntia</i>
92.	Nucellar embryo is		
	1) Apomictic, diploid	2) Amphimictic, dipl	
	3) Amphimictic, haploid	4) Apomictic, haploid	d
93.	Siphonogamy in tracheophytes		
	1) brings pollen grains together		
	2) eliminates dependence on water		
	3) carries sperms		
0.4	4) protects embryo		
94.	The best defined function of manganese is		
	1) synthesis of auxins		
	2) activates the enzymes of N_2 metabolism		
	3) activates the enzymes of photosynthesis and resp	orration	
0.5	4) involvement in photolysis of water		
95.	There are 450 nucleotides on m-RNA including ini		nation codon. How many
	charged t RNA's will come to site of protein synth		4) 440
06	1) 450 2) 150	3) 149	4) 449
96.	Pentose sugar occurs in	2) ATD and DNA	4) DNIA DNIA and ATD
07	1) RNA and DNA 2) RNA, and ATP	3) ATP and DNA	4) RNA, DNA and ATP
97.	Products formed due to break down of glucose in d	3) ethyl alcohol	1) all the above
98.	1) CO ₂ , H ₂ O 2) lactic acid Bonds in DNA that are broken by endonuclease and	, ,	4) all the above
90.		3) ester, ester	= -
99.	1) ester, hydrogen 2) hydrogen, ester Common features of heart wood and sap wood incl	,	4) peptide, ester
<i>77</i> .	1) presence of tannin and resin deposition	2) resistance to micro	has
	3) presence of dead tissues	4) conduction of water	
100.	Alleles of a character are found on	i) conduction of wall	or and innocats
100.	1) same chromosomes	2) homologous chron	nosomes
	3) heterologous chromosome	4) 2 (or) 3	HODOHIOD
101.	A genetically engineered bacterium used successfu	, , ,	of oil snills is a species of
101.	1) Trichoderma 2) Pseudomonas	3) Bacillus	4) Monascus
	COOH 2) I seudomonas	5) Buchins	1) Monuscus
102.	$H - C - NH_2$ is structure of an amino acid		
102.			
	R		
	Based on different 'R' group the following amino a	ocids are formed. Selec	et the correct amino acid
	according to different 'R' group:	ioras are rormou, poloc	the correct armine acid
	1) $R \rightarrow H$ (alanine)	2) $R \rightarrow CH_3(glycine)$)
	3) $R \rightarrow CH_2OH$ (serine)	4) $R \rightarrow CH_3CH_2COC$	
	, · ·2 (- (·)

- 103. Select the mis-match:
 - 1) Perigynous flower Plum
 - 3) Hypogynous flower Cucumber
- 2) Epigynous flower Guava
- 4) Superior ovary China rose
- Diagnostic character of the angiospermic family to which *Petunia* belongs are all, except 104.
 - 1) gamopetalous corolla

2) swollen placenta with single ovule 4) endospermic seeds

- 3) axile placentation
- Splicesomes are not found in cells of 1) plants

105.

2) fungi

3) bacteria

- 4) animals
- Select the right option in which the events (A,B,C,D and E) in life of general reproduction are 106. correctly identified.

- 1)A-Gametogensis, B- Zygote formation, C-Fertilization, D-Gametic transfer,
- E-Embryogenesis
- 2)A-Gametogenesis, B-Gamete transfer, C-Fertilization, D-Embryogenesis,
- E-Zygote formation
- 3)A-Gamete transfer, B-Gametogenesis, C_Fertilization, D-Zygote formation,
- E-Embryogenesis
- 4)A-Gametogenesis, B-Gamete transfer, C-Fertilization, D-Zygote formation,
- E-Embryogenesis
- 107. When PS-I is excited with the light of wavelength greater then 680nm, photophosphorylation occurs due to cyclic flow of electrons, results in synthesis of
 - 1) NADPH + H⁺ and ATP 2) only NADPH + H⁺ 3) only ATP 4) NADH and ATP
- 108. Study the following diagram:

In the above diagram identify the cells with high water potential and low DPD respectively

1) epidermal cell and pericycle

- 2) pericycle and epidermal cell
- 3) epidermal cell and epidermal cell
- 4) pericycle and pericycle
- 109. Which one of the cellular part is **correctly** described?
 - 1) Cristae----Folding of inner membrane of chloroplast
 - 2) Golgi Complex--- Site for formation of glycoproteins and glycolipids actively
 - 3) R E R----Involved in cells synthesizing steroid hormones
 - 4) Centriole--- Peripheral fibril (microtubule) is a doublet

110.	Living mechanical tissue is absent in									
	1) Ficus 2) Hibiscus	3) Sun flower 4) Maize								
111.	Transgenic papaya is resistant to disease cau									
	1) a prokaryotic	2) a unicellular eukaryote								
	3) an infectious acellular particle	4) a protozoan								
112.	Select the mis-match from the following:									
	1) Sac fungus – Neurospora	2) Smut fungi – <i>Puccinia</i>								
110	3) Imperfect fungus – <i>Trichoderma</i> 4) Club fungus – <i>Lycoperdon</i>									
113.	Which of the following is wrongly matche	<u>e</u>								
	<u>Crop</u> <u>Variety</u> 1) Brassica Pusa Swarnim White	Resistant to								
	 Brassica Pusa Swarnim White Chilli Pusa Sadabahar 	Leaf curl								
	3) Flat bean Pusa Gaurav Aphio									
	, <u>*</u>	t and Fruit borer								
114.	Which of the following is not found in all s									
111.	1) Alternation of generation	2) Double fertilization								
	3) Ovule converting into a seed	4) Dependent gametophytic generation								
115.	,	types of non-parental phenotypes and total kinds of								
	genotypes are formed respectively?	The state of the s								
	1) Phenotypes 4, genotypes 16	2) Phenotypes 9, genotypes 4								
	3) Phenotypes 2, genotypes 9	4) Phenotypes 4, genotypes 2								
116.	Brassicaceae resembles Liliaceae in									
	1) having same number of microsporophyl									
	2) having same number of megasporophyll									
	3) having same number of ovarian cavities	in a flower								
	4) more than one option is correct									
117.	Secondary succession									
	1) does not follow any sequential steps	2) never predictable and is always slow								
110	3) occurs in area which never had any vege	etation 4) is faster than primary succession								
118.	Frame shift mutation occurs when 1) base is substituted	2) base is deleted/added								
	3) anticodons are absent	4) transversion takes place								
119.	The biocatalyst ribozyme is synthesized by	· · · · · · · · · · · · · · · · · · ·								
11).	1) Transcription	2) Reverse transcription								
	3) Replication	4)Translation								
120.	A safe place for laying eggs act as floral re	,								
	1) Yucca 2) Amorphophallus	3) <i>Ficus</i> 4) All of these								
121.	, , , , , , , , , , , , , , , , , , ,	coloured colonies present in chromogenic substrate								
	containing medium indicate									
	1) transformed but non-recombinant	2) transformed but recombinant								
	3) non transformed but recombinant	4) non-transformed but non-recombinant								
122.	In which of the following phases each chro									
	1) Prophase, Metaphase -II	2) Prophase, Anaphase-II								
100	3) Telophase, Anaphase-I	4) Metaphase, Anaphase								
123.	A column of water within xylem vessels of t	all trees does not break under its weight because of								
	1) positive root pressure	2) capillarity of water								
	3) tensile strength of water	4) lignification of xylem vessels								
124.	Which of the following cells lack RubisCC	enzyme?								
	1) Mesophyll cells of CAM plants	2) Bundle sheath cells of C ₄ plants								
	3) Mesophyll cells of C ₃ plants	4) Mesophyll cells of C ₄ plants								
125.	α -ketoglutaric acid + NH ⁺ ₄ + NADPH \rightarrow .									
	Choose the correct word for the blank and	correct name of the process from the following options:								

126.	 Aspartate, transamination Glutamate, reductive amination Which of the following is used as quick referral sy 						2) Glutamine, transamination 4) Asparagine, reductive amination setem in taxonomic studies?				
120.	1) Keys		uick iciciiai sy		Ianuals	inc su		onographs			
127.	Statement - Statement -	(S-I): Fro		of cros	-	eful in designing chromosome maps e directly proportional of the distance between					
	genes 1) Both S- I	and S -I	I are co	rrect		2) S-	- I is cor	rect bu	t S -II is	incorrect	
	3) S- I is inc				ct	,			II are inc		
128.	Wall less pr					,					
	1) Chlamydd	omonas a	and <i>Chl</i>	orella		2) <i>N</i>	<i>Vostoc</i> ar	nd Anai	baena		
	3) Paramoe			oa –		4) D	iatoms a	ınd Din	oflagella	ates	
129.	Match the fo	ollowing	:								
	$\underline{\text{List} - I}$					T) 3.4	<u>List</u>				
	A) Pinus								etophyte		
	B) Cycas	***					Ionoecio Dioeciou				
	C) Sphagnu. D) Marchan					111) 1			us sporo	nhyte	
	The correct		z•				1 V) L	rioccio	us sporo	phyte	
	A	В	 C	D		A	В	C	D		
	1) II	III	I	IV	2)	II	IV	I	III		
	3) II	III	IV	I	4)	II	I	IV	III		
130.		_	_		is typical of						
	1) plant orga			lls in cu			any high			4) all the above	
131.				ively p	romote root hai	ir formation and shoot formation are					
	1) Auxin ar	•					uxin and	_			
122	3) Ethylene	-	Kinin			4) Ethylene and gibberellins					
132.	Read the fol	_	sium ve	scular (cambium of die	of roo	t interfa	scicula	r cambin	ım cork cambium	
						ot root, interfascicular cambium, cork cambium, above meristems are formed by de-differentiation?					
	1) 1	2) 4	111011510	110. 110	3) 3		4) 2	aro .		y de differentiation.	
133.	In angiosper	,	ne 4 mic	rospore	· ·	covered by a layer which is formed by					
	1) callose	2) cel	lulose	_	3) sporopolle						
134.	Functioning			d on							
	1) Allosterio					2) Non-competitive inhibition					
125	3) Competit			· · DNI	A 1 1	4) End product inhibition					
135.	wno sugges RNA?	ited an in	itermea	iate Kin	A molecule wo	ouia be	ald be needed to read the codons on messenger				
	1) M.Niren	hero		2) H (G Khorana		3) Cr	rick	4) Ko	ornberg	
	1) 1111111111	10015		2) 11.	ZOOLO	GY	3) 61	ick	1) 110	moerg	
136.	What is con	nmon to	viner. v	ulture a		<u> </u>					
150.	1) Homiothe		, ipei, ,	anaro a	na dorpini.	2)4 (chamber	ed hear	t		
	3) Bicephali					4)Internal fertilization					
137.	_		ing pair	s are co	rrectly matched	1?					
	A. Crocodil		_	S		B. <i>Pleurobrachia</i> – Comb plates					
	C. Obelia –		is			D. Psittacula –Air sacs					
	1) Only A and B						2) A, C and D				
120	3) B, C and			C 41	C 11 '	4) O	nly B an	id D			
138.	Select the co				_						
	1) Mutation				nd directional						
					election are the	two ke	ev conce	nts of I	_amarcki	ian theory of	
	evolution	D 2220011	110			o ne	. , 501100	r 01 1			
		of Darw	vin on p	opulatio	ons influenced	Thoma	as Malth	us			

139.	Which one of the following not a matching pair of a 1)Mammary gland- <i>Ornithorhynchus</i> 3)Ventral nerve cord – <i>Periplaneta</i>	2) Muscular pharynx – Anchylostoma					
140.	The type of antibodies that are involved in allergy						
1./.1	1)IgE 2)IgA Which are of the following is a water calable vitar	3)IgI		tad dafi	:.:	4)IgG	
141.	Which one of the following is a water-soluble vitan 1)Niacin – Pellagra		tinol – X		•		
	3)Tocopherol – Sterility		oflavin-	-			
142.	Inbreeding depression is overcome by employing	4) IX II)011a v 111-	D CIT 0	CII		
142.	1)Out crossing	2)Cro	oss breed	ling			
	3)Inter specific hybridization		e breedi	_			
143.	Which one of the following is correct pertaining to			_	of mar	n	
1 .5.	1)Ovary is covered by stroma which encloses thin	-		,,500111	01 11141	•	
	2)Enlarged end of penis is called foreskin	op min					
	3)Isthmus is the last part of oviduct						
	4)External thin membrane of uterus is myometrium	l					
144.	During the propagation of a nerve impulse, the action	on pot	ential ini	tiated b	y the		
	1)K ⁺ ions from intracellular fluid to extracellular fl	uid					
	2) Na ⁺ ions from extracellular fluid to intracellular	fluid					
	3) K ⁺ ions from extracellular fluid to intracellular fl						
	4) Na ⁺ ions from intracellular fluid to extracellular	fluid					
145.	Read the following						
	A)Rich in nitrogen		oist envi				
	C)Anerobiosis	,	ch in lig	nın and	chitin		
	Which of the above factors cause faster rate of deco	-			4) A G	0 D	
1.46	1)A&C 2)A&D	3)B&	CD		4)A&	ХВ	
146.	'Sea horse' is	al nam	100				
	1)Poikilothermic sauropsidan with 10 pairs of crani 2)Non tetrapodan anamniote with operculum	ai nei	ves				
	3)Homeothermic feathered bird without clavicle						
	4)Tetrapodan poikilothermic reptile with 4 chamber	red he	art				
147.	Connell's field experiments with different species of			pport th	ne princ	ciple of	
	1) competitive exclusion		mpetitiv	-	-	This of	
	3) resource partitioning	4) mutualism					
148.	Match the items in column I with those in column I	I and o	choose th	ne corre	ect opti	on from the codes	
	given below				•		
	<u>Column –I</u>	Colu	<u>mn – II</u>				
	A)Thylacine	i)Rus					
	B)Dodo	ii)Af					
	C)Steller's sea cow		auritius				
	D)Quagga	ıv)Aı	ıstralia	ъ	C	Б	
	A B C D 1) iii iv i ii	2)	A :	B 	C ii	D :	
	1) iii iv i ii 3) iv i iii ii	2) 4)	iv iv	iii iii	ii	i ii	
149.	Amniocentesis is a technique	4)	1V	111	1	11	
147.	1) by which the essential amino acids in the body ca	an he e	estimated	1			
	2) by which any chromosomal anomalies in the foe						
	3) in which the sex of the foetus can be reversed		200 0000				
	4) that can be used for correcting genetic disorders	of the	foetus				

150. The diagram shows an antibody molecule. Identify A to D.

	A	В	C	D
1)	Antigen binding site	Heavy Chain	Light Chain	F _c end
2)	F _c end	Light Chain	Heavy Chain	Paratope
3)	Epitope	Paratope	F _c end	Fab end
4)	F _{ab} end	Light Chain	Heavy Chain	F _c end

- 151. In which of the following oral contraceptive pills are incorrectly described
 - 1)They are very effective with lesser side effects
 - 2) They alter the quality of cervical mucus
 - 3)They are well accepted by the females
 - 4) They inhibit formation of primary follicles
- 152. Statement – I: Placenta can act as an endocrine tissue

Statement – II: Placenta produces hCG, somatomammotropin, oestrogens, progesterone, etc

- 1)Both I and II statement are correct
- 2)Both I and II statement are wrong
- 3)Statement I wrong but II is correct
- 4)Statement I is correct but statement II is wrong
- In sperm cell energy source for swimming is confined to 153.
 - 1)Tail
- 2)Head
- 3)Middle piece
- 4)1 and 3
- The density of a population in a given habitat during a given period, fluctuates due to changes in four 154. basic process. On this basis fill up A and B boxes in the given diagram with correct options

- 1) A = Natality + Immigration, B = Mortality + Emigration
- 2) A = Natality + Mortality, B = Immigration + Emigration
- 3) A = Birth rate + Death rate, B = Migration + Emigration
- 4) A = Natality + Emigration, B = Mortality + Immigration
- 155. Read the following statements and choose the correct answer

Statement (A): A considerable amount of NPP is utilized by plants in respiration

Statement(B): The annual NPP of the whole biosphere is approximately 170 billion tons of organic matter

1) Both A and B are correct

2) Only A is correct

3) Only B is correct

- 4) Both A and B are incorrect
- How many of the given statements are wrong? 156.
 - A. The rate of diffusion of gas at the respiratory membrane depends upon its solubility as well as on the thickness of membrane
 - B. Total volume of air accommodated in the lungs at the end of a forced inspiration is total lungs
 - C. CO₂ is carried by hemoglobin as corboxyhemoglobin
 - D.Carbonic anhydrase is an enzyme which is present in both RBC and plasma
 - 1)One
- 2) Two
- 3)Three
- 4) Four

157. Following is a diagrammatic representation of endocrine gland. The hormone that transport through the part which is labeled as 'A'

1)Oxytosin 2)ADH 3)Somatostatin 4)Somatotropin

158. Which of the following is function of catecholamines

1)Pupilary construction 2)Glycogenesis

3)Hypoglycemia 4)Tachycardia

159. Troponin is distributed at regular intervals on the

1) Actin 2)Complex regulatory protein

3) Tropomyosin 4) Heavy mero myosin

160. In man the number of true ribs is

1)Equal to the thoracic vertebrae 2)More than the facial bones

3)Less than false ribs 4)Seven pairs

161. Following is a diagrammatic representation of a nephron. The correct combination related to the labeled structures A, B, C and D are:

	A	В	C	D
1	Absent in cortical nephrons	Descending limb	Ascending limb	Present in cortical nephrons
2	Bowman's capsule	Site of facultative reabsoption	Ascending limb	Reduced in Juxta medullary nephrons
3	Ultrafiltrate	Present in medulla	Ascending limb	Vasa recta
4	Glomerulus	Present in cortex	Present in medulla	Highly developed in cortical nephrons

170.	O. Cannabinoids are 1)taken by inhalation and oral ingestion												
	2)extracted from Papaver somniferum												
		3)obtained from 'coca' plant											
	4)not used in doping												
171.	Which one of			; is a auto	oimmun	e disorc	ler						
	1)Down's syn					2)Typ		ever					
	3)Osteoporosis				4)Psoi								
172.	enzyme defici	ency?		was tried	l on a 4	4 years old girl in 1990 to treat which of the following							
	1)Cytosine deaminase					2)Glutamate trihydrogenase4)Adenosine deaminase							
1.70	3)Tyrosine de												
173.	Which of the 1 1) β – galacte	sidase		ombinant	protein	2) Alp	ha – la	actalbu	min	iysema'	,		
	3) $\alpha - 1 - ant$					4) Ade	enosin	e deam	inase				
174.	Exsitu conserv	vation											
	I)Zoos			ed banks		III)Tis	sue cu	lture		IV)S	anctuar	y	
	Choose the correct option												
	1)I & II only		2)II a	and III or	ıly	3)I &	IV onl	У		4)I,I	I and III		
175.	Read the follo												
	A)Sympatheti	c nerve	es					athetic	nerves				
	C)Adrenalin D)Noradrenalin												
	Which of the	above			diac out		1.0	ı		1).0	1 4	1.0	
176	1)A,C and D	•		ly A&C		3)A,B	and C			4)Or	ıly A an	d D	
176.	Read the follo	_						.4::41	4 £1	h loo4a			
	1)Dense irregi					-		it witho	ut mbro	Diasts			
	2)Cartilage an 3)Areolar tissi							c conne	octive ti	20110			
	4)Adipose is a							s comic	ctive ti	ssuc			
177.	Sita's father h	• •						what is t	he char	ce that	her cons	will have	
1//.	the disease	us core	ui oiiii	a, out nei	. Husban	id does	not, v	viiat is t	ine chai	ice that	ner som	wiii iiave	
	1)0%		2)25	%		3)50%	1			4)10	0%		
178.	Match the foll	owing	2)23	70		3)3070	,			1)10	0 70		
170.	<u>List – I</u>					<u>List</u> –	П						
	A)Cri-du-chat							18 th pa	air				
	B)Patau syndr					ii)5P syndrome							
	C)Edward syr					iii)Allosomal recessive							
	D)Thalassenia					iv)Abnormal Hb							
						v)Tris	omy o	f 13 th p	air				
	The correct n	natch is	s:				-						
	A	В	C	D				A	В	C	D		
	1) iii	i	iv	V			2)	i	iii	iv	V		
	3) ii	V	I	iv			4)	ii	iv	i	V		
179.	A woman with								up. The	mother	of both	are of O	
	blood group.	The pro		-	blood g	group in							
100	1)3/16		2)4/1		• .	, ,	3) 1/2			4)1/1	16		
180.		Vlanage		_	was inti	troduced in India during				4) 1000			
	1)1970s		2)19	bUs			3)199	J US		4)19	8US		

***** ALL THE BEST *****
