Page 132, Exercises 12 and 26

Exercise 12

Let G be a group. Prove that the mapping α (g) = $g^{-1} \forall g \in G$ is an automorphism if and only if G is Abelian.

 \longrightarrow

Let α (g) = g⁻¹ \forall g \in G be an automorphism and let g, h \in G. Notice:

$$\alpha(gh) = \alpha(g)\alpha(h)$$

$$(gh)^{-1} = g^{-1}h^{-1}$$

$$h^{-1}g^{-1} = g^{-1}h^{-1}$$

$$gh^{-1}g^{-1} = h^{-1}$$

$$gh^{-1} = h^{-1}g$$

$$hgh^{-1} = g$$

$$hq = qh$$

 \longleftarrow

Let G be an abelian group and define α (g) = g⁻¹ \forall g \in G

Let $g, h \in G : h \neq g$.

Notice:

 α (h) = h⁻¹ and α (g) = g⁻¹.

Since each inverse is unique, $h^{-1} \neq g^{-1}$

Hence, α is 1-1.

Let $g \in g : g \neq e$

G is a group $\Rightarrow \exists g^{-1} \in G : gg^{-1} = e$.

Thus, $\alpha(g^{-1}) = (g^{-1})^{-1} = g$

Hence, G is onto.

Let $g, h \in G$.

Notice:
$$\alpha$$
 (gh) = (gh)⁻¹ = h⁻¹g⁻¹ = g⁻¹h⁻¹ = α (g) α (h).

Hence, α is OP.

Since α is 1-1, onto, and OP, α is an automorphism.

Exercise 26

Suppose that $\phi: \mathbb{Z}_{20} \longrightarrow \mathbb{Z}_{20}$ is an automorphism and $\phi(5) = 5$. What are the possibilities for $\phi(x)$?

Recall: ϕ is an automorphism if it's 1-1, onto, and OP: $\phi(x * y) = \phi(x) \cdot \phi(y)$

Here are some:

 $\phi(x) = x$ (i.e. mapping the generator, 1, to the "new" generator, 1)

 $\phi(x) = -x$ (i.e. mapping the generator, 1, to -1)

Example:

$$\phi(3) + \phi(4) = 17 + 16 = 33 \implies 13$$

$$\phi(3+4) = \phi(7) = 13$$

I think that $\phi(x) = 3x$, 7x, 11x, 13x, 17x, and 19x all work as well.