обучение по математика, физика, български и английски език, компютър

**雷**: 897 99 54 вечер, г-н Станев; Web страница: www.solema.hit.bg; E-mail: solema@gbg.bg

адрес: гр.София, ж.к. Надежда, бл. 335

# Намиране на елементи на триъгълник

#### Бележка:

Навсякъде в долните формули се използват следните означения: AB=c, AC=b, BC=a,  $\prec$ A= $\alpha$ ,  $\prec$ B= $\beta$ ,  $\prec$ C= $\gamma$ ,  $m_a$ ,  $m_b$ ,  $m_c$  — медиани към съответните страни;  $l_a$ ,  $l_b$ ,  $l_c$  — ъглополовящи към съответните страни;  $h_a$ ,  $h_b$ ,  $h_c$  — височини към съответните страни; r - радиуса на вписаната окръжност; r — периметър, r — лице.

## І. Средна отсечка в триъгълник

- ◆ Определение Отсечка, която съединява средите на две от страните на триъгълник (Фиг. 1).
- ♦ Теореми:
  - О Права, минаваща през средата на една от страните на триъгълник и е успоредна на втора страна, то тя минава през средата на третата страна (Фиг. 1), т.е.
    - (1): т. M среда на AC и  $MN \parallel AB$  следва, че т. N е среда на BC.



(2): MN – средна отсечка 
$$\Leftrightarrow MN = \frac{1}{2}AB$$

## Основна задача:

Зад. 1:На чертежа е даден  $\triangle$ ABC със страни BC = а, AC = b и AB = с. Да се намери периметъра на триъгълник с върхове средите на тези страни.

#### Решение:

• Точките M, N и P са среди съответно на стра-





ните AC, BC и AB, т.е. MN, MP и NP са средни отсечки в  $\Delta$ ABC.

- Togaba ot (2)  $\Rightarrow$  MN =  $\frac{1}{2}$  AB; MP =  $\frac{1}{2}$  BC; NP =  $\frac{1}{2}$  AC.
- $P_{\Delta MNP} = MN + MP + NP = \frac{1}{2}AB + \frac{1}{2}BC + \frac{1}{2}AC = \frac{1}{2}(AB + BC + AC) = \frac{1}{2}P_{\Delta ABC}$

# II. Връзка между страни и ъгли в триъгълник

• Косинусова теорема (Фиг. 2): (3):  $a^2 = b^2 + c^2 - 2b.c.cosα$ ;

$$b^2 = a^2 + c^2 - 2a.c.\cos\beta;$$
  
 $c^2 = a^2 + b^2 - 2a.b.\cos\gamma.$ 

♦ Синусова теорема (Фиг. 2):

(4): 
$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$



# III. Триъгълник вписан в окръжност или описан около окръжност

- ♦ Окръжност вписана в триъгълник:
  - ⊙ Ъглополовящите на вътрешните ъгли в триъгълник се пресичат в една точка – центъра О на вписаната в триъгълника окръжност (Фиг. 3).
  - Нека произволен ΔАВС има стани АВ=с, ВС=а и АС=b, и вписаната в него окръжност допира тези страни съответно в точките K, P, N (Фиг. 3). Ако означим: АК = AN = x, BK=BP=y, CP = CN = z и p полупериметъра на ΔАВС, то

(5): 
$$x = p - a$$
,  $y = p - b$ ,  $z = p - c$ .

Окръжност описана около триъгълник – Симетралите на трите страни на триъгълник се пресичат в една точка (точка О) – центъра на описаната около триъгълника окръжност.



обучение по математика, физика, български и английски език, компютър

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solema.hit.bg; E-mail: solema@gbg.bg

 SAB
 SAB

 SAB
 SAB

 SAB
 SAB

 SBC
 SAC

 В С
 SAB

 SAB
 C

 SAB
 SAB

 SBC
 SAC

 B
 SBC

 SAC
 B

 SBC
 SAC

 B
 SBC

 SAC
 SAC

 B
 SBC

 SAC
 SAC

 SBC<

В зависимост от вида на триъгълника центърът О на описаната около триъгълника окръжност е на различно место:

- О Ако ΔАВС е остроъгълен, т. О е вътрешна за триъгълника (Фиг. 4)
- О Ако ΔАВС е правоъгълен, т. О е среда на хипотенузата АВ (Фиг. 5).
- О Ако ΔАВС е тъпоъгълен, т. О е външна за триъгълника (Фиг. 6).
- ◆ Права на Ойлер За всеки произволен триъгълник, ортоцентърът Н, медицентърът М и центърът О на описаната окръжност (пресечната точка на симетралите на страните) лежат на една права, като НМ = 2МО.
- ◆ Формула на Ойлер (за намиране на разстоянието между центровете на вписаната и описаната окръжност на триъгълник): Ако с d отбележим разстоянието между центровете на вписаната и описаната окръжност на триъгълник, с R радиуса на описаната окръжност, а с г радиуса на вписаната окръжност, то

(4): 
$$d = \sqrt{R^2 - 2Rr} \ge 0$$
,

адрес: гр.София, ж.к. Надежда, бл. 335

като равенството се получава при равностранен триъгълник (защото тогава центровете на описаната и вписаната окръжност съвпадат).

## IV. Основни типове задачи:

Зад. 2:В окръжност с радиус 12, 5 cm е вписан равнобедрен триъгълник с височина към основата 16 cm. Намерете страните, косинусите на ъглите на триъгълника и определете видът на  $\Delta ABC$  според ъглите.

 $\underline{Peшениe:}$   $\Delta ABC$  – равнобедрен и CH – височина ⇒ CH – медиана, т.е. AC=BC=y, AH=BH=x

#### І Начин:

•  $\Delta ABC$  – описан около окръжност с радиус R и от Синусова теорема  $\Rightarrow$ 

$$\frac{BC}{\sin \alpha} = 2R \Rightarrow \frac{y}{\sin \alpha} = 2.12,5 \Rightarrow$$
(A):  $\sin \alpha = \frac{y}{25}$ ;

• От тригонометрична функция за правоъгълния  $\Delta AHC \Rightarrow (B)$ :  $\sin \alpha = \frac{CH}{AC} = \frac{16}{100}$ ;





- От Питагорова теорема за  $\triangle AHC \Rightarrow$   $AH^2 + CH^2 = AC^2 \Rightarrow x^2 + 16^2 = 20^2 \Rightarrow x = 12 \Rightarrow AB = 2x = 2.12 = 24 cm;$
- От Косинусова теорема за ΔABC  $\Rightarrow$  BC<sup>2</sup> = AB<sup>2</sup> + AC<sup>2</sup> 2AB.AC.cos α  $\Rightarrow$  cos α =  $\frac{AB^2 + AC^2 AC^2}{2AB \cdot AC} = \frac{24^2}{2 \cdot 24 \cdot 20} = \frac{3}{5}$ ;
- Намираме косинуса на ∢С:
  - O От Теорема за сбор на ъгли в  $\Delta ABC \Rightarrow \gamma = 180^0 2\alpha$ ); O  $\cos \gamma = \cos (180^0 - 2\alpha) = -\cos 2\alpha \stackrel{(\textit{Tp.} \phi. 5.2)}{=} - \left(2\cos^2 \alpha - 1\right) = -\left(\frac{2.3}{5} - 1\right) = -\frac{1}{5}$ ;
- От  $\cos \gamma = \frac{1}{5} < 0 \Rightarrow \gamma \in (90^0; 180^0)$ , т.е.  $\Delta ABC$  тыпоыгылен (с тып ыгыл при вырха C).

#### II Начин:

- $\triangle$ ABC равнобедрен и CH височина ⇒ т.О∈ CH, т.е. AO = CO = R, OH = CH CO =  $16 R = 16 12.5 \Rightarrow OH = 3.5;$
- От Питагорова теорема за  $\triangle AOH \Rightarrow AO^2 = AH^2 + OH^2 \Rightarrow 12.5^2 = x^2 + 3.5^2 \Rightarrow x = 12;$
- AB = 2x = 2.12 = 24 cm;
- От Питагорова теорема за  $\Delta AHC \Rightarrow$  $AC^2 = AH^2 + CH^2 \Rightarrow AC^2 = 12^2 + 16^2 \Rightarrow AC = 20 \text{ cm};$
- Намирането на косинусите на ъглите на триъгълника и определете видът на ΔABC според ъглите



#### продължава по същият начин, както и в I начин.

- **Зад. 3**: Нека  $A_1$ ,  $B_1$ ,  $C_1$  са петите на височините, спуснати от върховете A, B, C на остроъгълния  $\triangle ABC$  и  $\blacktriangleleft ABC = \beta$ ,  $\blacktriangleleft BAC = \alpha$ ,  $\blacktriangleleft ACB = \gamma$ . Да се докаже, че:
  - а) радиусът на описаната около  $\triangle ABC$  окръжност е равен на диаметъра на описаната около  $\triangle A_1B_1C_1$  окръжност;
  - б) радиусите OA, OB, OC на описаната около  $\triangle ABC$  окръжност са перпендикулярни съответно на страните  $B_1C_1,\,C_1A_1,\,A_1B_1$  на  $\triangle A_1B_1C_1;$

B) 
$$\frac{HA_1}{AA_1} = \cot g\beta \cot g\gamma; \frac{HB_1}{BB_1} = \cot g\gamma \cot g\alpha \frac{HC_1}{CC_1} = \cot g\alpha \cot g\beta;$$

$$\Gamma \frac{HC_1}{CH} = \frac{\cos\alpha\cos\beta}{\cos\gamma}; \frac{HA_1}{AH} = \frac{\cos\beta\cos\gamma}{\cos\alpha}; \frac{HB_1}{BH} = \frac{\cos\alpha\cos\gamma}{\cos\beta}.$$

#### Решение:

- а) Нека R и  $R_1$  са радиуси на описаните около  $\Delta ABC$  и  $\Delta A_1B_1C_1$  окръжности.
  - Намираме В<sub>1</sub>С<sub>1</sub> по един начин:

$$\begin{array}{c}
om \Delta A A_1 C \Rightarrow \frac{CA_1}{AC} = \cos \gamma \\
om \Delta B C B_1 \Rightarrow \frac{CB_1}{BC} = \cos \gamma
\end{array} \right\} \Rightarrow (A): \frac{CA_1}{AC} = \frac{CB_1}{BC} = \cos \gamma$$

- О  $\Delta A_1B_1C \sim \Delta ABC$  (по II признак, защото (A) е изпълнено и  $\gamma$  общ ъгъл)  $\Rightarrow$   $\ll B_1A_1C = \ll BAC = \alpha$ .
- О По подобен начин се доказва, че  $\Delta A_1C_1A \sim \Delta ABC$  ⇒  $\angle BA_1C_1 = \angle BAC = \alpha$ .
- OT  $\Delta A_1 B_1 C_1 \Rightarrow \langle B_1 A_1 C_1 = 180^0 (\langle A_1 B_1 A_1 C_1 + \langle B_1 A_1 C_1 \rangle) = 180^0 2\alpha$ .
- О От Синусова теорема за  $\Delta A_1 B_1 C_1 \Rightarrow \frac{B_1 C_1}{\sin\left(180^0 2\alpha\right)} = 2R_1$ , т.е.
  - (B):  $B_1C_1 = 2R_1 \sin 2\alpha$ .
- Намираме  $B_1C_1$  по друг начин:
  - 0 От Синусова теорема за  $\triangle ABC \Rightarrow \frac{BC}{\sin \alpha} = 2R \Rightarrow BC = 2R.\sin \alpha$ .
  - $\circ$  По горе доказахме, че  $\Delta A_1 B_1 C \sim \Delta ABC$  с коефициент на подобие  $\cos \gamma$ . По подобен начин се доказва, че  $\Delta B_1 C_1 A \sim \Delta ABC$  с коефициент на подобие

$$\cos \alpha$$
, т.е.  $\frac{B_1C_1}{BC} = \cos \alpha \Rightarrow B_1C_1 = BC \cos \alpha = 2R \sin \alpha \cos \alpha$  и от (ТрФ. 5.1)  $\Rightarrow$  (C):  $B_1C_1 = R \sin 2\alpha$ .

- О Заместваме (C) в (B)  $\Rightarrow$  R sin  $2\alpha = 2R_1 \sin 2\alpha \Rightarrow R = 2R_1 = 2d_1$ .
- б) На чертежа т. О център на описаната около  $\Delta ABC$  окръжност k. През т. С построяваме права q допирателна до k  $\Rightarrow$  OC  $\perp$  q.
  - Доказваме, че  $A_1B_1 \parallel q$ :

$$\circ$$
 ∢ВАС – вписан  $\Rightarrow$    
∢ВАС=  $\stackrel{1}{\text{BC}} \Rightarrow \alpha = \stackrel{1}{\text{BC}}$ 

о ∢ВСР – периферен ⇒

∢ВСР= 
$$\frac{1}{2}$$
  $\stackrel{\frown}{BC}$  ⇒∢ВСР= $\alpha$ , но ∢В $_1$ А $_1$ С= $\alpha$  (по д-во)

$$\Rightarrow \sphericalangle B_1A_1C = \sphericalangle BCP = \alpha, \text{ t.e. } A_1B_1 \parallel q$$

- Но по построение OC  $\perp$  q  $\Rightarrow$  A<sub>1</sub>B<sub>1</sub>  $\perp$  OC.
- По подобен начин доказваме, че  $A_1C_1 \perp OB$  и  $B_1C_1 \perp OA$
- в) Нека AB = с.
- Намираме НА<sub>1</sub>:

о От Тригонометрична функция за 
$$\Delta ABA_1 \Rightarrow \frac{BA_1}{AB} = \cos \beta \Rightarrow BA_1 = \cos \beta.$$

$$O$$
 Oτ  $\Delta BCB_1 \Rightarrow ∢B_1BC = 90^0 - γ$ .

$$O \text{ OT } \Delta \text{HBA}_1 \Longrightarrow \langle \text{BHA}_1 = 90^0 - (90^0 - \gamma) = \gamma.$$

0 От Тригонометрична функция за 
$$\Delta {
m HBA_1} \Rightarrow {HA_1 \over BA_1} = \cot g \ \gamma \Rightarrow$$

 $HA_1 = c \cos \beta \cot \gamma$ .

• Намираме AA1: От Тригонометрична функция за  $\Delta ABA_1 \Rightarrow \frac{AA_1}{AB} = \sin \beta \Rightarrow$ 

$$AA_1 = c \sin \beta$$

- $\frac{HA_1}{AA_1} = \frac{c \cos \beta \cot g \gamma}{c \sin \beta} \Rightarrow \frac{HA_1}{AA_1} = \cot g \beta \cot g \gamma$
- По подобен начин доказваме и другите две равенства.

обучение по математика, физика, български и английски език, компютър

адрес: гр.София, ж.к. Надежда, бл. 335

🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solema.hit.bg ; E-mail: solema@gbg.bg

- г) Ще докажем равенството  $\frac{HA_1}{A_1} = \frac{\cos \beta \cos \gamma}{A_1}$ . Другите равенства се доказват по подобен начин.
  - Намираме ВН по един начин:
    - $\circ$  Във в) доказахме, че  $\prec$ ВНА<sub>1</sub> =  $\gamma$ .
    - 0 От Тригонометрична функция за  $\Delta {\rm HBA_1} \Rightarrow {{\it HA_1}\over{\it RH}} = \cos \gamma \Rightarrow$

$$(D): BH = \frac{HA_1}{\cos \gamma}.$$

• Намираме ВН по други начин:

O OT 
$$\triangle ABA_1 \Rightarrow \langle BAA_1 = 90^0 - \beta BAA_1 \rangle$$

O OT 
$$\triangle ABB_1 \Rightarrow \langle ABB_1 = 90^0 - \alpha.$$

 $\circ$  От Синусова теорема за  $\triangle ABH \Rightarrow \frac{BH}{\sin(90^{\circ} - \beta)} = \frac{AH}{\sin(90^{\circ} - \alpha)}$ , но

$$\sin (90^0 - \beta) = \cos \beta$$
 и  $\sin (90^0 - \alpha) = \cos \alpha \Rightarrow \frac{BH}{\cos \beta} = \frac{AH}{\cos \alpha} \Rightarrow$ 

$$(E): BH = \frac{AH \cos \beta}{\cos \alpha}$$

- OT (D)  $\nu$  (E)  $\Rightarrow \frac{HA_1}{\cos \gamma} = \frac{AH\cos \beta}{\cos \alpha} \Rightarrow \frac{HA_1}{AH} = \frac{\cos \beta \cos \gamma}{\cos \alpha}$
- Зад. 4: (УАСГ, 2009) Ъглите при върховете А, В и С на остроъгълен дАВС са съответно α, β и у. Окръжност с диаметър АВ пресича страните ВС и АС съответно в точките А<sub>1</sub>, и В<sub>1</sub> Докажете, че:
  - а) Триъгълниците ABC и  $A_1B_1C_1$  са подобни, и  $A_1B_1 = AB \cos \gamma$ ;
  - б)  $\underline{MA} = \cot g \alpha$ , където M е пресечната точка на правите AB и  $A_1B_1$ ;  $MB \cot g\beta$
  - в)  $\frac{HC_1}{=} \frac{\cos \alpha \cos \beta}{\cos \beta}$ , ако  $CC_1$  ( $C_1 \in AB$ ) е височина в  $\Delta ABC$ , а H е неговият ортоцентър.

#### Решение:

a)

- Четириъгълник АВА<sub>1</sub>В<sub>1</sub> вписан в окръжност  $\Rightarrow \langle BAA_1 + \langle BA_1B_1 =$  $180^{0} \Rightarrow \langle BA_{1}B_{1} = 180^{0} - \alpha :$ 
  - $\angle CA_1B_1 + \angle BA_1B_1 = 180^0 \Rightarrow \angle CA_1B_1$  $= 180^{0} - (180^{0} - \alpha) = \alpha$ :
- ΔABC ~ ΔA<sub>1</sub>B<sub>1</sub>C (по I признак, защото ∢С – обш. ∢ВАС = ∢СА₁В₁ =  $\alpha$  – по доказателство)  $\Rightarrow$







- OT  $\triangle MAB_1 \Rightarrow \angle AMB_1 = 180^0 (\angle MB_1A + \angle MAB_1) = 180^0 (180^0 \alpha + \beta) \Rightarrow$  $\angle AMB_1 = \alpha - \beta$ :
- От Синусова теорема за  $\Delta MAB_1 \Rightarrow \frac{MA}{\sin \beta} = \frac{AB_1}{\sin(\alpha \beta)} \Rightarrow (C)$ :  $MA = \frac{AB_1 \sin \beta}{\sin(\alpha \beta)}$ ;
- Изразяваме АВ<sub>1</sub> чрез МВ:
  - о От Синусова теорема за  $\Delta MB_1B \Rightarrow$  $\frac{MB}{\sin(90^{\circ} + \beta)} = \frac{BB_1}{\sin(\alpha - \beta)} \Rightarrow (D) : \frac{MB}{\cos\beta} = \frac{BB_1}{\sin(\alpha - \beta)};$

0 От правоъгълния 
$$\triangle ABB_1 \Rightarrow \frac{BB_1}{AB_1} = tg\alpha \Rightarrow BB_1 = AB_1 tg \alpha;$$

O Заместваме в (D) 
$$\Rightarrow \frac{MB}{\cos \beta} = \frac{AB_1 tg \alpha}{\sin(\alpha - \beta)} \Rightarrow AB_1 = \frac{MB \sin(\alpha - \beta)}{\cos \beta tg \alpha};$$

#### обучение по математика, физика, български и английски език, компютър

адрес: гр.София, ж.к. Надежда, бл. 335

**2**: 897 99 54 вечер, г-н Станев; Web страница: <u>www.solema.hit.bg</u>; E-mail: <u>solema@gbg.bg</u>

Заместваме в (С) ⇒

$$MA = \frac{MB\sin(\alpha - \beta)\sin\beta}{\cos\beta tg\alpha\sin(\alpha - \beta)} = \frac{MB\sin\beta}{\cos\beta tg\alpha} \Rightarrow \frac{MA}{MB} = \frac{1}{\frac{\cos\beta}{\sin\beta}} \frac{1}{\cot g\alpha} \Rightarrow \frac{MA}{MB} = \frac{\cot g\alpha}{\cot g\beta};$$

- в) От правоъгълния  $\Delta C_1 BC \Rightarrow \langle C_1 CB = 90^0 \beta;$ 
  - От правоъгълния  $\Delta B_1BC \Rightarrow \langle B_1BC = 90^0 \gamma \rangle$ ;
  - Ot ΔABB<sub>1</sub> ⇒  $\angle$ ABB<sub>1</sub> = 90<sup>0</sup> − α. Toraba ot ΔBHC<sub>1</sub> ⇒  $\angle$ C<sub>1</sub>HB = 90<sup>0</sup> −  $\angle$ C<sub>1</sub>BH = 90<sup>0</sup> − (90<sup>0</sup> − α) ⇒  $\angle$ C<sub>1</sub>HB = α;
  - От Синусова теорема за  $\Delta BHC \Rightarrow$

$$\frac{BH}{\sin(90^{\circ} - \beta)} = \frac{CH}{\sin(90^{\circ} - \gamma)} \Rightarrow (E): BH = \frac{CH\cos\beta}{\cos\gamma};$$

- От правоъгълния  $\Delta C_1 HB \Rightarrow \frac{C_1 H}{BH} = \cos \alpha \Rightarrow BH = \frac{C_1 H}{\cos \alpha};$
- Заместваме в (E)  $\Rightarrow \frac{C_1 H}{\cos \alpha} = \frac{CH \cos \beta}{\cos \gamma} \Rightarrow \frac{C_1 H}{CH} = \frac{\cos \alpha \cos \beta}{\cos \gamma}$

**Зад.** 5: Страните на триъгълник са a = 4 cm, b = 13 cm, c = 15 cm. Намерете:

- а) косинусите на ъглите в триъгълника;
- б) височините в триъгълника;
- в) радиуса на описаната около триъгълника окръжност;
- г) радиусът на описаната около триъгълник ABL окръжност, където т. L е център на вписаната в  $\Delta ABC$  окръжност.

<u>Решение:</u> а) От Косинусова теорема за ΔABC и от (1)  $\Rightarrow$   $a^2 = b^2 + c^2 - 2b.c.\cos\alpha$  $\Rightarrow 4^2 = 13^2 + 15^2 - 2.13.15\cos\alpha \Rightarrow \cos\alpha = \frac{63}{3}$ 

$$\Rightarrow$$
 4<sup>2</sup> = 13<sup>2</sup> + 15<sup>2</sup> - 2.13.15.cos α  $\Rightarrow$  cos α =  $\frac{63}{65}$ 

- $\cos \beta = \frac{c^2 + a^2 b^2}{2 a c} = \frac{15^2 + 4^2 13^2}{2.4.15} = \frac{3}{5}$
- $\cos \gamma = \frac{b^2 + a^2 c^2}{2 a b} = \frac{13^2 + 4^2 15^2}{2.4.13} = -\frac{5}{13}$ ;



- б)  $15^2 > 13^2 + 4^2 \Rightarrow \gamma > 90^0$ , т.е. височините АН и BD са извън триъгълника.
  - Намираме височината АН:

о От Основното тригонометрично равенство следва, че  $\sin^2\beta = 1 - \cos^2\beta = 1 - \frac{9}{25}$ 

$$\Rightarrow \sin \beta = \frac{4}{5};$$

O OT 
$$\triangle$$
ABH ( $\angle$ H = 90°)  $\Rightarrow$  sin  $\beta = \frac{AH}{AB} \Rightarrow \frac{4}{5} = \frac{AH}{15} \Rightarrow AH = 12 \ cm$ .

• По подобен начин намираме височините BD и CP:

$$O \sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \left(\frac{63}{65}\right)^2 \Rightarrow \sin \alpha = \frac{16}{65};$$

○ OT 
$$\triangle ABD$$
 ( $\angle D = 90^{\circ}$ )  $\Rightarrow \sin \alpha = \frac{BD}{AB} \Rightarrow \frac{16}{65} = \frac{BD}{15} \Rightarrow BD = \frac{48}{13} cm$ ;

O OT 
$$\triangle APC \ ( \blacktriangleleft P = 90^{\circ} ) \Rightarrow \sin \alpha = \frac{CP}{AC} \Rightarrow \frac{16}{65} = \frac{CP}{13} \Rightarrow CP = \frac{16}{5} \ cm$$

в) От Синусова теорема за  $\triangle ABC \Rightarrow \frac{AC}{\sin \beta} = 2R \Rightarrow \frac{13}{\frac{4}{5}} = 2R \Rightarrow R = \frac{65}{8} cm$ .

г) Нека  $AA_1$  и  $BB_1$  са ъглополовящи тогава т. L е център на вписаната в  $\Delta ABC$  окръжност.

• От Основна задача следва, че щом AA<sub>1</sub> и BB<sub>1</sub> са ъглополовящи, то

$$\angle ALB = \mathbf{x} = 90^0 + \frac{\gamma}{2};$$

• 
$$\sin x = \sin\left(90^{\circ} + \frac{\gamma}{2}\right) = \cos\frac{\gamma}{2}$$
;



$$\cos\frac{\gamma}{2} = \sqrt{\frac{1 + \cos\gamma}{2}} = \sqrt{\frac{1 - \frac{5}{13}}{2}} = \sqrt{\frac{4}{13}} = \frac{2}{\sqrt{13}} \Rightarrow \cos\frac{\gamma}{2} = \frac{2}{\sqrt{13}};$$

• От Синусова теорема за  $\triangle ABL \Rightarrow \frac{AB}{\sin x} = 2R_1 \Rightarrow R_1 = \frac{15}{2 \cdot \frac{2}{\sqrt{13}}} \Rightarrow R_1 = \frac{15\sqrt{13}}{4}$ .

обучение по математика, физика, български и английски език, компютър

адрес: гр.София, ж.к. Надежда, бл. 335 🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solema.hit.bg ; E-mail: solema@gbg.bg

## V. Задачи за упражнение:

#### Тестови задачи:

1. (Матура, 2010): За триъгълника на чертежа е дадено, че  $\sin \alpha : \sin \beta = \sqrt{2} : 2$ . За дължините на страните а и b е изпълнено:



A) a = 2b:

Б) 
$$a = \sqrt{2} b$$
;

B)  $a = \frac{\sqrt{2}}{2}b$ ;  $\Gamma$ )  $a = \frac{1}{2}b$ .

$$\Gamma) a = \frac{1}{2}b.$$

2. (Матура, 2010): Триъгълникът ABC е със страна BC = 6 и  $\prec$ BAC = 150 $^{\circ}$ . Дължината на окръжността, описана около триъгълника е:

A)  $6\pi$ :

- Б) 12π:
- B)  $\frac{6\sqrt{3}}{2}\pi$ ;
- 3. (Матура, 2010): Радиусът на описаната около  $\triangle$ ABC окръжност е 17 $\sqrt{2}$  и  $\cos \angle BAC = -\frac{4}{\sqrt{17}}$ . Дължината на страната BC е равна на:

A)  $8\sqrt{34}$ :

- Б)  $4\sqrt{34}$ ; В)  $2\sqrt{34}$
- $\Gamma$ )  $\sqrt{34}$ .
- 4. (Матура, 2011): За триъгълника на чертежа отношението  $a^2 : b^2$  е равно на:



- B)  $\sqrt{2}$ : 3:
- 5. (TУ, 2011): Ако страните на триъгълник са 12 cm, 15 cm и 18 cm, то косинусът на ъгъла срещу най-голямата страна е:
- $B) \frac{1}{8};$   $B) \frac{1}{4};$

- 6. (Матура, 2010): Триъгълник ABC има страни AB = 7, BC = 3 и  $\angle$ ACB =  $60^{\circ}$ . Вилът на ДАВС е:
  - А) остроъгълен;
- Б) правоъгълен;
- В) тъпоъгълен;
- Г)неопределен.

7. (Матура, 2010): В  $\triangle$ ABC AC = 6 cm и AB = 9 cm. Ако точка P  $\in$  AB е такава, че AP = 4 cm и  $CP = \frac{8}{2}$  cm, то дължината на страната BC е

равна на:

- A) 4 cm:
- Б) 5 cm:
- B) 6 cm;
- Γ) 8 cm.
- 8. (Матура, 2011): Триъгълникът  $\triangle$ ABC има страни AB = 7 cm, BC = 3 cm и AC = 5 cm. Мярката на ∢АСВ е:
  - A)  $45^{\circ}$ ;
- Б)  $60^{\circ}$ :
- B)  $120^{0}$ .

- $\Gamma$ ) 135<sup>0</sup>
- (ТУ, 2012): Даден е триъгълник със страни 11 cm, 24 cm и 31 cm. Най-големият ъгъл в този триъгълник има големина:
  - A)  $45^{\circ}$ :
- Б)  $60^{\circ}$ :
- B)  $90^{\circ}$ :
- $\Gamma$ ) 120<sup>0</sup>:
- $\Pi$ ) 135 $^{0}$ .
- 10. (Матура, 2010): В  $\triangle$ ABC  $\angle$ BAC = 60°, а AB = 3 cm. Ако радиусът на описаната около триъгълника окръжност е  $\frac{7\sqrt{3}}{3}$  cm, дължината на страната AC е равна на:
  - A) 5 cm;
- Б) 7 cm:
- $\Gamma$ )  $\sqrt{79}$  cm.
- 11. (ТУ, 2010): Ако за ъглите  $\alpha$  и  $\beta$  на триъгълник е изпълнено равенството  $\sin \alpha$  +  $\sin \beta = \cos \alpha + \sin \beta$ , то третият ъгъл у на триъгълника е равен на:
  - A)  $60^{\circ}$ :
- B)  $30^{\circ}$ :
- $\Gamma$ ) 120<sup>0</sup>:
- $\Pi$ ) 135 $^{0}$ .
- 12. (ТУ, 2010): В равнобедрен ДАВС (АС = ВС) ъгълът при основата е а. Ако височината към основата е с 5 cm по-голяма от радиуса на вписаната в  $\Delta ABC$  окръжност, то дължината на този радиус в ст е:
  - A)  $5\cos\alpha$ ;

- Б)  $5\sin \alpha$ ; B)  $\frac{5}{2}$ ;  $\Gamma$ )  $\frac{5\sqrt{3}}{2}$ ; Д)  $5 \text{tg } \alpha$ .
- 13. (Матура, 2011): Даден е ∆ABC, за който  $AB = 10\sqrt{2}$  и  $\angle ACB = 135^{\circ}$ . Разстоянието от центъра на описаната около триъгълника окръжност до страната АВ е равно на:
  - A)  $2\sqrt{2}$ :
- Б)  $3\sqrt{2}$ :
- B)  $4\sqrt{2}$ :
- $\Gamma$ ) 5 $\sqrt{2}$ .
- 14. (Матура, 2011): Триъгълникът АВС е равнобедрен. Ако са дадени АС = ВС = b и ∢АСВ = у, то радиусът на описаната около триъгълника окръжност е:

обучение по математика, физика, български и английски език, компютър

адрес: гр.София, ж.к. Надежда, бл. 335 🖀: 897 99 54 вечер, г-н Станев; Web cтраница: www.solema.hit.bg ; E-mail: solema@gbg.bg

- A)  $\frac{b}{2\cos\frac{\gamma}{2}}$
- $b.\cos\frac{\gamma}{2};$
- B) b.cos γ;
- $\Gamma) \frac{b}{2\sin\frac{\gamma}{2}}$
- 15. (ТУ, 2012): Ако радиусът на вписаната в равностранния  $\Delta ABC$  окръжност е  $3\sqrt{3}$  сm, то страната на триъгълника има дължина:
  - A) 12 cm;
- Б) 18 cm;
- B) 30 cm;
- Γ) 36 cm;
- Д) 40 cm.
- 16. (Матура, 2012) Даден е  $\triangle$ ABC, за който AC = 3cm, BC = 6cm и ∢ACB=120 $^{0}$ . Дължината на ъглополовящата CL (L  $\in$  AB) е:
  - A) 2 cm;
- Б) 3 cm;
- B)  $2\sqrt{3}$  cm;
- $\Gamma$ )  $2\sqrt{7}$  cm.
- 17. (Матура, 2012) В  $\triangle$ ABC ∢A =  $50^{0}$ , а tg≺B =  $\sqrt{3}$ . Мярката на ≺C е равна на:
  - A)  $10^{0}$ ;
- $Б) 60^0$ ;
- B) 70°;
- $\Gamma$ ) 110<sup>0</sup>.
- 18. (Матура, 2012): За начертания равнобедрен  $\triangle ABC\ AC = BC = b$ , а  $\prec BAC = 2\alpha$ . Вписаната в  $\triangle ABC$  окръжност се допира до AC в точка Т. Отсечката CT е равна на:
  - A) b  $\sin 2 \alpha$ ;
- Б)  $2b \sin^2 \alpha$ ;
- B)  $2b \cos^2 \alpha$ ;
- $\Gamma$ ) b cos  $\alpha$ .
- 19. (Матура, 2012) Даден е  $\triangle$ ABC със страни AB = 4 cm, BC =  $2\sqrt{3}$  и AC =  $2\sqrt{13}$  cm. Мярката на ≪ABC е равна на:
  - A)  $150^{\circ}$ :
- Б) 120<sup>0</sup>;
- B)  $60^{\circ}$ ;

- $\Gamma$ ) 30<sup>0</sup>.
- 20. (Матура, 2012): За  $\triangle$ ABC на чертежа  $\prec$ BAC = 33 $^{0}$ ,  $\prec$ ACB = 87 $^{0}$  и радиусът на описаната около триъгълника окръжност е  $\sqrt{6}$ . Страната AC е равна на:
  - A)  $\sqrt{6}$ ;
- Б)  $\frac{\sqrt{2}}{8}$
- B)  $2\sqrt{3}$ ;
- $\Gamma$ )  $3\sqrt{2}$ .
- 21. (ТУ, 2010): Ако две от страните на триъгълник са с дължини 2 cm и 4 cm, а ъгълът между тях е  $60^{0}$ , то триъгълникът е:
  - А) остроъгълен;
- Б) правоъгълен;
- В) тъпоъгълен;

- Г) равнобедрен;
- Д) равностранен.
- ,

#### Задачи за подробно решаване:

## Синусова теорема. Косинусова теорема

Следват 40 задачи групирани по сложност. Част от тях са давани на конкурсни изпити или на матури.

За съжаление те са авторски и не се разпространяват свободно. Използват се за подготовка на кандидат-студенти с учител от Учебен център "СОЛЕМА".

Учебен център "СОЛЕМА" подготвя ученици за кандидатстване във всички университети, а така също и за кандидатстване след 7 клас.

За цените и всичко свързано с подготовката на кандидатстудентите и учениците кандидатстващи след 7 клас по математика и физика, виж www.solemabg.com раздел "За нас".