

Development of learning workflows for smart synbio design

Ran Duan

AIMS

Developing machine learning tools linked to experimental protocols at the Learn stage of the Synbio Design/Build/Test/Learn pipeline.

TRANING SET:

TF-based biosensors

Sequence reaction scoring

Chemical solubility and sequence thermostability

Synbio parts: RBS, promoters and etc.

Sequential Neural Networks

Tuning Initialization Parameters

Solubility prediction

Batch-size: 1144; Epochs: 500	Random Initialization with no bias	Random Initialization	He Initialization
Time (average in 3 folds)	59 us/step	69 us/ step	71 us/ step
R-square (average in 3 folds)	0.9456	0.9307	0.9344
Q-square (average in 3 folds)	0.6164	0.6022	0.6435

0

0

100

Training Performance

Loss on Training and Validation Data

200

300

Epochs

400

500

Coeff_determination on Training and Validation Data

Linear Regression

- Observation and prediction values in testing set
- Observation and prediction values in training set

Accuracy Comparison

Estimating the aqueous solubility	General Solubility Equation	Multiple Linear Regression	Our End-to-end Neural Network
Input Features	LogP and melting point (Tm)	LogPoctanol, molecular weight, proportion of heavy atoms in aromatic systems, and number of rotatable bonds and etc. (5-8 of their measured values)	SMILES format chemicals
Training Set	2874 compounds in "Small", "Medium" and "Large" size	2874 compounds in "Small", "Medium" and "Large" size	1144 compounds ("Small" - "Large") in 3-folds cross validation
R-square	0.69	0.67	0.64

Uversal Approximation Theorem

Delaney, J. S. (2004). ESOL: estimating aqueous solubility directly from molecular structure. *Journal of chemical information and computer sciences*, *44*(3), 1000-1005.

Biosensor prediction

5,9H

InChl

>Mes35 MRIKNSGILLLAAILLESCOKKRVED >Mes38 MAKIIGIDLGTINSCVAIMEGNTIKV >Mes49

Sequences

Fasta format

Chemicals

SMILES format

THANK YOU

Ran Duan

University of Manchester MSc Bioinformatics and Systems Biology ran.duan-5@postgrad.manchester.ac.uk

Functional API

Accuracy (3-folds cross validation)

