TTIC 31230 Fundamentals of Deep Learning

SGD Problems.

Problem 1. Reformulating Momentum as a Running Average. Consider the following running update equation.

$$y_0 = 0$$

$$y_t = \left(1 - \frac{1}{N}\right) y_{t-1} + x_t$$

(a) Assume that y_t converges to a limit, i.e., that $\lim_{t\to\infty} y_t$ exists. If the input sequence is constant with $x_t=c$ for all $t\geq 1$, what is $\lim_{t\to\infty} y_t$? Give a derivation of your answer (Hint: you do not need to compute a closed form solution for y_t).

Solution:

The limit y_{∞} must satisfy

$$y_{\infty} = \left(1 - \frac{1}{N}\right)y_{\infty} + c$$

giving $y_{\infty} = Nc$.

(b) y_t is a running average of what quantity?

Solution: The update can be rewritten as

$$y_t = \left(1 - \frac{1}{N}\right) y_{t-1} + \frac{1}{N}(Nx_t)$$

so y_t is the running average of Nx_t .

(c) Express y_t as a function of μ_t where μ_t is defined by

$$\mu_0 = 0$$

$$\mu_t = \left(1 - \frac{1}{N}\right)\mu_{t-1} + \frac{1}{N}x_t$$

Solution: y_t is the running average of Nx_t which equals N times the running average of x_t so we have

$$y_t = N\mu_t$$

Problem 2. Bias Correction Consider the following update equation for computing y_1, \ldots, y_t from x_1, \ldots, x_t .

$$y_t = \left(1 - \frac{1}{\min(t, N)}\right) y_{t-1} + \frac{1}{\min(t, N)} x_t$$

If $x_t = c$ for all $t \ge 1$ give a closed form solution for y_t .

Solution: For t = 1 we get $y_1 = x_1 = c$. We then get that y_{t+1} is a convex combination of y_t and x_t which maintains the invariant that $y_t = c$.

Problem 3. Batch Size Coupling to RMSProp and Adam. Consider the following for-loop representation of a batch of matrix-vector products.

for
$$b, i, j \ y[b, j] += W[j, i]x[b, i]$$

(a) Write the for-loop representation of back-propagation to W grad following the convention that parameter gradients are averaged over the batch.

Solution:

for
$$b, i, j$$
 w.grad $[j, i] += \frac{1}{B} y.\text{grad}[b, j]x[b, i]$

(b) Write a for-loop representation for computing $W.\operatorname{grad}[b,i,j]$ where this is the derivative of loss with respect to W[i,j] for batch element b.

Solution:

for
$$b, i, j$$
 w.grad $[b, j, i] += \frac{1}{B} y.\text{grad}[b, j]x[b, i]$

(c) Consider

$$W.\operatorname{grad2}[j,i] = \frac{1}{B} \sum_{b} W.\operatorname{grad}[b,j,i]^2$$

Is it possible to compute $W.\operatorname{grad}[j,i]$ from $W.\operatorname{grad}[j,i]$? Explain your answer.

Solution: No. W.grad2[j,i] is the average over the batch of the of the square of the gradient. The average value does not determine the average square value — the average value does not determine the variance.

(d) Explain how your answer to (c) is related to batch size scaling of RMSProp and Adam.

Solution: Adam and RMSProp both compute a running average of $\hat{g}[i]^2$ defined by

$$s_{t+1}[i] = \left(1 - \frac{1}{N_s}\right)s_t + \frac{1}{N_s}\hat{g}[i]^2$$

At batch sized greater than 1 this fails to take into account the variance of the gradiants within the batch. This implies that $s_t[i]$ will be reduced as the batch size increases and in the limit of large batches $s_t[i]$ will converge to the mean squared rather than the second moment.