Problem B Yet another Number Sequence

Input: standard input
Output: standard output
Time Limit: 3 seconds

Let's define another number sequence, given by the following function:

$$f(0) = a$$

 $f(1) = b$
 $f(n) = f(n-1) + f(n-2), n > 1$

When $\mathbf{a} = \mathbf{0}$ and $\mathbf{b} = \mathbf{1}$, this sequence gives the Fibonacci Sequence. Changing the values of \mathbf{a} and \mathbf{b} , you can get many different sequences. Given the values of \mathbf{a} , \mathbf{b} , you have to find the last \mathbf{m} digits of $\mathbf{f}(\mathbf{n})$.

Input

The first line gives the number of test cases, which is less than 10001. Each test case consists of a single line containing the integers **a b n m**. The values of **a** and **b** range in [0,100], value of **n** ranges in [0, 1000000000] and value of **m** ranges in [1, 4].

Output

For each test case, print the last **m** digits of **f(n)**. However, you should **NOT** print any leading zero.

Sample Input	Output for Sample Input
4	89
0 1 11 3	4296
0 1 42 4	7711
0 1 22 4	946
0 1 21 4	

Problem setter: Sadrul Habib Chowdhury

Special Thanks: Derek Kisman, Member of Elite Problem Setters' Panel