Calculus I The algebra behind derivatives

Todor Milev

2019

Outline

Understanding computations with derivatives

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0: https://creativecommons.org/licenses/by/3.0/us/and the links therein.

Rules of differentiation.

We studied the basic rules of differentiation.

- f(g(x))' = f'(g(x))g'(x) (Chain rule).
- (f * g)' = f'g + fg' (Product rule).
- (f+g)' = f' + g' (Sum rule).
- x' = 1.
- (c)' = 0 if c is a constant (Constant derivative rule).

We studied additional differentiation rules.

- $(e^x)' = e^x$ (Exponent derivative rule).
- $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$ (Quotient rule).
- $(x^r)' = rx^{r-1}$, *r*-arbitrary real number (Power rule).
- $(\ln x)' = \frac{1}{x}$ (Logarithm derivative rule).
- $\bullet (\sin X)' = \cos X, (\cos X)' = -\sin X$

We derived the first set of rules by directly computing limits. The second set of rules can be derived from the first set algebraically.

Let c be a constant. Derive the constant multiple rule

$$(cf)'=cf'$$

using the product rule (fg)' = f'g + fg' and the constant derivative rule (c)' = 0.

$$(cf)' = (c)'f + cf' = 0f + cf' = cf'$$

as desired.

Let *n*-positive integer. Derive the positive integer power rules

$$(x^2)' = 2x,$$
 $(x^3)' = 3x^2,$ $(x^4)' = 4x^3,$...

using the rule (x)' = 1 and the product rule.

$$(x)' = 1$$

$$(x^{2})' = (x \cdot x)' = x'x + xx' = x + x = 2x$$

$$(x^{3})' = (x \cdot x^{2})' = x'x^{2} + x(x^{2})' = x^{2} + x(2x) = x^{2} + 2x^{2} = 3x^{2}$$

$$(x^{4})' = (x \cdot x^{3})' = x'x^{3} + x(x^{3})' = x^{3} + x(3x^{2}) = x^{3} + 3x^{3} = 4x^{3}$$

$$\vdots$$

$$(x^{n})' = \cdots = nx^{n-1}$$

$$(x^{n+1})' = (x \cdot x^{n})' = x'x^{n} + x(x^{n})' = x^{n} + x(nx^{n-1}) = (n+1)x^{n}$$

$$\vdots$$

Let *n* be a positive integer. Derive the negative integer power rule

$$(x^{-n})' = \left(\frac{1}{x^n}\right)' = -nx^{-n-1} = -\frac{n}{x^{n+1}}$$

using the product rule, the constant derivative rule and the power rule for positive integers.

For positive integer q, derive the power rule $\left(x^{\frac{1}{q}}\right)' = \frac{1}{q}x^{\frac{1}{q}-1}$ using the rule (x)' = 1, the chain rule and the integer power rule $\frac{d}{du}(u^q) = qu^{q-1}$.

$$\begin{cases} \frac{d}{dx} \\ \text{Set } u = x^{\frac{1}{q}} \end{cases}$$

divide by $qx^{\frac{q-1}{q}}$ as desired

Derive the quotient rules

$$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

using the chain rule, the negative power rule and the product rule.

$$\left(\frac{1}{g}\right)' = \frac{d}{dg}\left(\frac{1}{g}\right)g' = -\frac{1}{g^2}g'$$

$$\left(\frac{f}{g}\right)' = \left(f\frac{1}{g}\right)' = f'\frac{1}{g} + f\left(\frac{1}{g}\right)' = \frac{f'}{g} + f\left(-\frac{g'}{g^2}\right)$$

$$= \frac{f'g - fg'}{g^2}$$

as desired

as desired

Derive the exponent rule $(e^x)' = e^x$ using the Calc II formula below, the infinite (both sides uniformly convergent) sum rule $(f_1 + f_2 + f_3 + \dots)' = f_1' + f_2' + f_3' + \dots$ and the power rule $(x^n)' = nx^{n-1}$.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots,$$

where $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$. We have that

$$\frac{n}{n!} = \frac{n}{1 \cdot 2 \cdot \cdots \cdot (n-1) \cdot n} = \frac{1}{1 \cdot 2 \cdot \cdots \cdot (n-1)} = \frac{1}{(n-1)!}.$$

$$(e^{x})' = \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots\right)'$$

$$= (1)' + (x)' + \frac{(x^{2})'}{2!} + \frac{(x^{3})'}{3!} + \dots + \frac{(x^{n})'}{n!} + \dots$$

$$= 0 + 1 + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \dots + \frac{nx^{n-1}}{n!} + \dots$$

$$= 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} + \dots = e^{x}$$

as desired.

Derive the logarithm derivative rules

$$(\ln x)' = \frac{1}{x} (\log_a x)' = \frac{1}{x \ln a}$$

using the chain rule, the exponent derivative rule $(e^x)' = e^x$, the rule (x)' = 1 and the constant multiple rule (cf)' = cf'.

$$e^{\ln x} = x$$

$$e^{u} = x$$

$$\frac{d}{du}(e^{u})u' = (x)'$$

$$e^{u}u' = 1$$

$$e^{\ln x}(\ln x)' = 1$$

$$x(\ln x)' = 1$$

$$(\ln x)' = \frac{1}{x}$$

$$(\log_{a} x)' = (\frac{\ln x}{\ln a})' = \frac{(\ln x)'}{\ln a} = \frac{1}{x \ln a}$$
as desired

Derive the power rule

$$(x^r)'=rx^{r-1}, x>0$$

using the chain rule, the the rule $(e^x)' = e^x$, the constant multiple derivative rule and the logarithm derivative rule $(\ln x)' = \frac{1}{x}$.

$$(x^{r})' = \left((e^{\ln x})^{r} \right)' = \left(e^{r \ln x} \right)'$$

$$= (e^{u})' = \frac{d}{du} (e^{u}) u' = e^{u} u' =$$

$$= e^{r \ln x} (r \ln x)' = \left(e^{\ln x} \right)^{r} r (\ln x)'$$

$$= x^{r} r \frac{1}{x} = r x^{r-1}$$
 | as desired

Derive the sine and cosine rules

$$(\sin x)' = \cos x (\cos x)' = -\sin x$$

using Euler's formula, the exponent derivative rule, the chain rule, the sum rule and the constant multiple rule. Assume all rules are valid over the complex numbers $\mathbb C$.

$$e^{ix} = \cos x + i \sin x \qquad \left| \frac{d}{dx} \left(e^{ix} \right) \right| = \frac{d}{dx} \left(\cos x + i \sin x \right)$$

$$e^{ix} (ix)' = (\cos x)' + i (\sin x)'$$

$$ie^{ix} = (\cos x)' + i (\sin x)'$$

$$i^2 \sin x + i \cos x = i (\cos x + i \sin x) = (\cos x)' + i (\sin x)'$$

$$-\sin x + i \cos x = (\cos x)' + i (\sin x)'$$

Compare real part and coefficients of i to get the desired equalities.