

Лекция 6 Представление и описание

Курс «Компьютерное зрение»

Представление и описание

Введение

Представление и описание Связь между handcrafted и learned features

Банк фильтров Габора

Выделение признаков с помощью фильтра Габора

Learned features

Представление Прослеживание границы

Преобразование результатов сегментации в компактное представление:

- Пусть задана двоичная область R
- ➤ Начальной точки b0 левая верхняя точка=1
- ▶ Рассмотрим восьмерку соседей b0, двигаясь по часовой стрелке: b1 первая встретившаяся точка =1, а c1 точка фона, непосредственно ей предшествующая в указанном порядке обхода
- ightharpoonup Пусть b = b1 и c = c1
- ▶ Начиная с с и двигаясь по часовой стрелке,
 обозначим восьмерку соседей b через n1, n2,...,
 n8. Находим первую точку n_k=1
- $> b = n_k u c = n_{k-1}$
- ▶ Повторяем шаги 3 и 4 до тех пор, пока не получим, что b = b0 и следующая найденная точка границы — b1.

Процесс прослеживания границы

Результат прослеживания границы

Представление Цепные коды

Нумерация направлений для 4связного и 8-связного цепного кода

Дискретная граница с наложенной укрупненной сеткой дискретизации

Результат новой дискретизации

Представление границы 8-связным цепным кодом

Зашумленное изображение

Результат сглаживания

Пороговое разделение

8-связный цепной код Фримена для упрощенной границы:

Представление

Аппроксимация ломаной линией минимальной длины

Граница объекта

внутри цепочки элементов

стягивания границы

Темно-серый объект, граница которого заключена в сформированную цепочку элементов

Выпуклые (белые) и вогнутые (черные) вершины, найденные при обходе границы темно-серого объекта против часовой стрелки.

Вершины (черные точки), перенесенные в диагонально противоположные точки на внешней границе сформированной области

ΛΜД, полученные при использовании квадратных элементов размерами 2, 3, 4, 6, 8, 16 и 32 пикселей (206, 160, 127, 92, 66, 32 и 13 точек)

Представление Другие методы аппроксимации ломаной линией

Методы слияния:

- Применение кусочно-линейной аппроксимации критерия средней ошибки
- ➤ Объединение точек вдоль границы в одну прямую линию до тех пор, пока СКО точек от формируемой прямой <= заданного порога</p>

Исходная граница

Разбиение границы на участки с помощью угловых точек

Методы разбиения:

 отрезок последовательно разбивается на две части до тех пор, пока не начнет выполняться некоторый заданный критерий

Добавление вершин

Полученная ломаная

Представление Сигнатуры

Свести представление границы к одномерной функции, которую легче описать, чем исходную двумерную границу:

 Сигнатура – описание границы объекта с помощью одномерной функции, которое может строиться различными способами

Две двоичные области и их сигнатуры

Представление Сегменты границы

Цель:

- При декомпозиции уменьшается сложность границы
- > Упрощается процесс описания границы

Механизм:

Использование выпуклой оболочки и дефицита выпуклости

Совокупность сигнатур

Представление Остовы областей

Представление формы плоской области путем сведения ее к графу:

- Выделение остова (скелетонизация)
- Простейший алгоритм построения остова преобразование к главным осям, предложенного Блюмом
- Возможны отклики на незначительные выступы

Срединные оси трех областей простой формы

Бедренная кость человека с наложенным остовом области

Дескрипторы границ Некоторые простые дескрипторы

- Приближение длины общее число пикселей границы является грубым приближением ее длины
- Точное значение длины для цепного кода с единичными шагами дискретизации по обоим направлениям – сумма числа вертикальных, горизонтальных и умноженных на sqrt(2) диагональных составляющих
- > Диаметр границы
- > Эксцентриситетом границы
- Кривизна скорость изменения угла наклона

Дескрипторы границ Нумерация фигур

Все возможные фигуры порядков 4, 6 и 8.

Порядок 6

Цепной код: 0 3 2 1

0 0 3 2 2 1

Разность первого порядка: 3 3 3 3

3 0 3 3 0 3

Номер фигуры: 3 3 3 3

0 3 3 0 3 3

Цепной код: 0 0 3 3 2 2 1 1

Разность первого порядка: 3 0 3 0 3 0 3 0 3 1 3 3 0 3 0 3 0 3 0 0 3 3 0 0 3

Шаги построения номера фигуры

Цепной код: 0 0 0 0 3 0 0 3 2 2 3 2 2 2 1 2 1 1

Разность первого порядка: 3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0

Номер фигуры: 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3

Дескрипторы границ Фурье-дескрипторы

Сведение двумерной задачи к одномерной:

Пара координат может быть представлена как комплексное число

$$s(k) = x(k) + i y(k)$$

Дискретное преобразование Фурье – Фурье дескриптор

$$a(u) = \sum_{k=0}^{K-1} s(k) e^{-i2\pi uk/K}$$

> Восстановление границы

$$s(k) = \frac{1}{K} \sum_{u=0}^{K-1} a(u) e^{i2\pi uk/K}$$

Действительная ось

Результаты восстановления границы с использованием 1434, 286, 144, 72, 36, 18 и 8 Фурье-дескрипторов

Дискретная граница и ее представление в виде комплексной последовательности

Дескрипторы областей Некоторые простые дескрипторы

Дескрипторы:

- ➤ Площадь
- ➤ Периметр
- > Меры компактности
- > Коэффициент округлости
- Минимальное/максимальное/среднее значение яркости
- Учисло пикселей со значением яркости более заданного

Номер региона (сверху вниз)	Доля освещенной площади от всей освещенной площади		
1	0,204		
2	0,640		
3	0,049		
4	0,107		

Инфракрасные спутниковые изображения американского континента ночью

Дескрипторы областейТопологические дескрипторы

Область с двумя дырками

Область, состоящая из трех компонент связности

Инфракрасное изображение окрестностей г. Вашингтон

Изображение после порогового преобразования

Наиболее крупная компонента связности

Остов области

Дескрипторы областей Текстурные дескрипторы

Количественное представление текстурных признаков:

- > Статистические методы позволяют охарактеризовать текстуру области как гладкую, грубую, зернистую
- > Структурные методы занимаются изучением взаимного положения простейших составляющих изображения
- > Спектральные методы основаны на свойствах Фурье-спектра и используются прежде всего для обнаружения глобальной периодичности

Области с гладкой текстурой

текстурой

Области с грубой Области с периодичной текстурой

Текстурные дескрипторы Статистический подход – гистограммные характеристики

Гладкая текстура

Грубой текстура Периодичная текстура

Характеристики текстуры для областей изображений

Текстура	Среднее	Среднее Стандартное		Третий	Однород-	Энтро-
		отклонение	ровано)	момент	ность	пия
Гладкая	82,64	11,79	0,002	-0,105	0,026	5,434
Грубая	143,56	74,63	0,079	-0,151	0,005	7,783
Периодичная	99,72	33,73	0,017	0,750	0,013	6,674 17

Текстурные дескрипторы Статистический подход – матрицы сочетаемости

Значение дескрипторов для матриц сочетаемости

Нормированная	Дескрипторы					
матрица	Максимум	Koppe-	Кон-	Равно-	Одно-	Энтро-
сочетаемости	вероятности	ляция	траст	мерность	родность	пия
G_1/n_1	0,00006	-0,0005	10838	0,00002	0,0366	15,75
$\mathbf{G_2}/n_2$	0,01500	0,9650	570	0,01230	0,0824	6,43
\mathbf{G}_{3}/n_{3}	0,06860	0,8798	1356	0,00480	0,2048	13,58

Текстурные дескрипторы Структурный подход

Представление символа S => aS:

- Формирование текстурных образов из геометрических примитивов
- Из базовых элементов текстур можно иерархически формировать более сложные текстурные образы с помощью правил

Базовый элемент текстуры

Текстура, строящаяся применением прави∧а S → aS

Двумерная текстура, сгенерированная с помощью этого и других правил

•

Текстурные дескрипторы Спектральный подход

Свойства Фурье-спектра для описания текстур:

- Угловая координата выступающего пика спектра (в полярном представлении) указывает направление соответствующей текстурной составляющей
- Местоположение этих пиков на частотной плоскости дает основной пространственный период текстуры
- После устранения всех периодических составляющих путем фильтрации в изображении остаются только непериодические компоненты, которые могут описываться с помощью статистических методов

Изображения объектов со случайным и упорядоченным расположением

20

Главные компоненты для описания Математические предпосылки

- ▶ Вектор-столбец RGB-пикселя реализация случайной величины
- > Характеризуется вектором матожидания и ковариационная матрица и их оценками

$$\mathbf{m}_{\mathbf{x}} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{x}_{k} \quad \mathbf{m}_{\mathbf{x}} = E\{\mathbf{x}\} \quad \mathbf{C}_{\mathbf{x}} = E\{(\mathbf{x} - \mathbf{m}_{\mathbf{x}})(\mathbf{x} - \mathbf{m}_{\mathbf{x}})^{T}\} \quad \mathbf{C}_{\mathbf{x}} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{x}_{k} \mathbf{x}_{k}^{T} - \mathbf{m}_{\mathbf{x}} \mathbf{m}_{\mathbf{x}}^{T}$$
 реобразование Хотеллинга на основе матрицы

собственных векторов

$$y = A(x - m_x)$$

- > Ковариационная матрица преобразованной совокупности векторов – диагональная
- ➤ Любой вектор x может быть восстановлен по у:

$$\mathbf{x} = \mathbf{A}^T \mathbf{y} + \mathbf{m}_{\mathbf{x}}$$

Выбирая k собственных векторов, которым соответствуют наибольшие собственные значения А можно минимизировать средний квадрат ошибки х и х~

Приведение к главным компонентам

Главные компоненты для описания

Описание изображений

Компоненты мультиспектрального изображения

Восстановление мультиспектрального изображения по 2м главным компонентам

Шесть изображений главных компонент, построенных из векторов

1401

МФТИ

Представление Реляционные дескрипторы

Простая ступенчатая структура и ее закодированный вид

Процесс прослеживания границы

Кодирование границы области с помощью направленных отрезков

Абстрактные непроизводные

элементы

Операции над элементами

Конкретный набор непроизводных элементов

Шаги построения некоторой структуры

a+b

 ${d + [c + (\sim d)]} * [(a + b) * c]$

Вейвлеты/кратномасштабная обработка Предпосылки

Преобразование Фурье – частотная информация Вейвлет-преобразование – изменение частот и временная (пространственная) локализация

Кратномасштабная обработка – представление и описание сигнала в различным масштабах с различным разрешением

Обычное изображение и локальные гистограммы отдельных его фрагментов

МФТИ

Вейвлеты/кратномасштабная обработка Пирамиды изображений

Понижающая дискретизация (строки и столбцы) Блок-схема простой Фильтр Приближение системы формирования уровня j - 1приближения пирамид приближения и Повышающая дискретизация (строки и столбцы) ошибок предсказания Интерполяция Предсказание Входное Ошибка изображение предсказания уровня *ј* уровня *ј*

Пирамиды приближений/ошибок и их гистограммы

МФТИ

Дискретное вейвлет-

Вейвлеты/кратномасштабная обработка

Преобразование Хаара

Базисные функции Хаара – простейшая система ортонормированных вейвлетов

Свойства дискретного вейвлет-преобразования:

- За исключением уменьшенного субизображения в левом верхнем углу, гистограммы остальных субизображений весьма похожи и содержат много значений элементов вблизи нуля
- Субизображения могут быть использованы для получения как грубых, так и точных приближений оригинального изображения
- Возможно точное восстановление исходного изображения

Несколько различных приближений размерами 64×64, 128×128 и 256×256, которые могут быть получены на основе исходного

Вейвлеты/кратномасштабная обработка

Двумерное вейвлет-преобразование

Исходное изображение

Двухмасштабное БВП

Одномасштабное БВГ

Трехмасштабное БВП

Резюме

- > Общие принципы представления и описания изображений
- > Прослеживание границы
- > Дескрипторы границ
- > Дескрипторы областей
- > Главные компоненты для описания изображений
- > Реляционные дескрипторы
- > Вейвлеты и кратномасштабная обработка

Спасибо за внимание!

Колокольников Георгий Андреевич

Telegram: @Georg_Bell

E-mail: geokolok5@gmail.com

Caйт: https://github.com/GeorgBell

Использованные материалы:

- ▶ Гонсалес Р., Вудс Р. Цифровая обработка изображений. М.: Техносфера, 2012. 1104 с. ISBN 978-5-94836-331-8.2.
- > Kypc лекций cs231n «Convolutional Neural Networks for Visual Recognition» (http://cs231n.stanford.edu).
- > Kypc лекций HSE «Deep Learning in Computer Vision» (https://www.coursera.org/learn/deep-learning-in-computer-vision)