Question 5

1

For a given message m, we can forge a signature under the public key (A, \mathbf{t}) using the following procedure:

- 1. Sample $\mathbf{y} \leftarrow \chi_y$
- 2. Compute $\mathbf{w} \leftarrow A\mathbf{y}$
- 3. Compute $c \leftarrow H(\mathbf{w}, \mathbf{t})$
- 4. Give $(A, \mathbf{w} + c\mathbf{t})$ to the module-ISIS $(k, l, q, p(x), \gamma_1 np\tau)$ solver, which returns some \mathbf{z}
- 5. Output $\sigma = (\mathbf{w}, c, \mathbf{z})$

 σ is a valid forgery because **z** as a solution to the module-ISIS $(k, l, q, p(x), \gamma_1 - np\tau)$ problem satisfies the verification conditions:

- 1. $\|\mathbf{z}\|_{\infty} \leq \gamma_1 np\tau$
- 2. $A\mathbf{z} = \mathbf{w} + c\mathbf{t}$

 $\mathbf{2}$

The key recovery attack is as follows:

- 1. Sample some random message m
- 2. Query the signature of m, which is $(\mathbf{w}, c, \mathbf{z})$
- 3. Give (A, \mathbf{w}) to module-ISIS $(k, l, q, p(x), \gamma_1)$ solver, which returns some \mathbf{y}
- 4. Compute $\mathbf{s} = c^{-1}(\mathbf{z} \mathbf{y})$. \mathbf{s} is the secret key

This procesure works because for the queried signature to be valid, it must satisfy $\mathbf{z} = \mathbf{y} + c\mathbf{s}$, meaning that if we can recover \mathbf{y} , then we can recover \mathbf{s} . In this instance, a valid \mathbf{y} is recovered using the solver on $A\mathbf{y} = \mathbf{w}$.