v 01.04 rootfinding: newtons method

aka newton-raphson. newtons is a variant of FPI.

to find root of f(x)=0, start with guess x_0 . draw tangent line at $f(x_0)$. ie, where $f'(x_0)$ intersects x-axis is the next iteration x_1 . ie,

$$tan heta = rac{f(x_0)}{x_0 - x_1} = f'(x_0) \Rightarrow x_1 = x_0 - rac{f(x_0)}{f'(x_0)}.$$

code, visual: newtons

given
$$f(x)=-rac{1}{2}x^2+x+1.5$$
.

```
1 # requires prior execution of fpi_expanded()
2 # repurposed bisection animation for newtons method
3
4 if __name__ == "__main__":
5
```

1 ani

✓ algorithm

newtons method

$$x_{i+1} = x_i - rac{f(x_i)}{f'(x_i)}, \quad i = 0, 1, 2, 3, \ldots$$
 $= g(x_i), \quad g(x) = x - rac{f(x)}{f'(x)}.$

function g(x)return x - f(x)/df(x)

✓ example 11

solve $f(x)=x^3+x-1$ using newtons.

$$f'(x) = 3x^2 + 1$$

$$\Rightarrow x_{i+1}=x_i-rac{x_i^3+x_i-1}{3x_i^2+1}$$

$$=rac{2x_i^3+1}{3x_i^2+1}, \quad ext{which looks strangely familiar...}$$

$$\Downarrow \quad x_0 = -0.7$$

$$x_1 = rac{2(-0.7)^3 + 1}{3(-0.7)^2 + 1} pprox 0.1271$$

$$x_2 = rac{2x_1^3 + 1}{3x_i^2 + 1} pprox 0.9577.$$

✓ code, example 11

1 # example 11 revisits example 01 # repurposed previous code

→

example 11 ~ example 01 w newtons. x0 = -0.7.

-	x[i]		"/e[i-1]^2
	 -0.70000000	•	
001	0.12712551	0.55520230	0.29055555
002	0.95767812	0.27535032	0.89327066

	003	0.73482779		0.05249999		0.69244945	
Ì	004	0.68459177	Ì	0.00226397	ĺ	0.82139415	ĺ
	005	0.68233217		0.00000437		0.85266556	
	006	0.68232780		0.00000000		0.85407850	

1 ani


```
1 if __name__ == "__main__":
2
3    f = lambda x : pow(x,3) + x - 1
4    df = lambda x : 3*pow(x,2) + 1
5
6    g = lambda x : x - f(x)/df(x) # newtons method
7
```

- ws = fpi_expanded(g,x=-0.7,tol=1e-4,worksheet=True iterations,root = ws[len(ws)-1] print(f"root {root} at {iterations} iterations.")

→ root 0.6823321742044841 at 5 iterations.

1 quadratic convergence

definition 10

let e_i denote error after step i of iterative method. iteration is quadratically convergent if

$$M=\lim_{i o\infty}rac{e_{i+1}}{e_i^2}<\infty.$$

theorem 11

let f be twice continuously differentiable and f(r)=0. if f'(r)
eq 0, then newtons is locally and quadratically convergent to r. error e_i at step i satisfies

$$\lim_{i o\infty}rac{e_{i+1}}{e_i^2}=M,\quad ext{where }M=rac{f''(r)}{2f'(r)}.$$

proof

1. local convergence

note that newtons method is a particular form of FPI where

$$g(x) = x - rac{f(x)}{f'(x)},$$

$$g'(x) = 1 - rac{f'(x)^2 - f(x)f''(x)}{f'(x)^2} = rac{f(x)f''(x)}{f'(x)^2}.$$

g'(r)=0 so locally convergent by theorem 06. \checkmark

2. quadratic convergence

derive newtons method with taylors formula. at i steps,

$$f(r) = f(x_i) + (r - x_i)f'(x_i) + \frac{(r - x_i)^2}{2}f''(c_i)$$
 $\Downarrow c_i ext{ between } x_i, r$
 $0 = f(x_i) + (r - x_i)f'(x_i) + \frac{(r - x_i)^2}{2}f''(c_i)$
 \Downarrow
 $-\frac{f(x_i)}{f'(x_i)} = r - x_i + \frac{(r - x_i)^2}{2}\frac{f''(c_i)}{f'(x_i)}, \quad f'(x_i) \neq 0$
 \Downarrow
 $x_i - \frac{f(x_i)}{f'(x_i)} - r = \frac{(r - x_i)^2}{2}\frac{f''(c_i)}{f'(x_i)}$
 $\Downarrow e_i = |x_i - r|$
 $x_{i+1} - r = e_i^2 \frac{f''(c_i)}{f'(x_i)}$
 \Downarrow
 $e_{i+1} = e_i^2 \frac{f''(c_i)}{f'(x_i)}$

bc c_i is between x_i, r , it converges to r as x_i converges to r and

$$\lim_{i o\infty}rac{e_{i+1}}{e_i^2}=\left|rac{f''(r)}{2f'(r)}
ight|,$$

ie,

$$e_{i+1}pprox Me_i^2, \quad M=\left|rac{f''(r)}{2f'(r)}
ight|, \ \ f'(r)
eq 0.$$

compare with linearly convergent methods with $e_{i+1} \approx Se_i$, where S = |g'(r)| for FPI and $S = \frac{1}{2}$ for bisection. while S is critical for linearly convergent methods, M is less critical bc of the division by the square of the previous error.

example 11, revisited

f'''(x)=6x and at $x_cpprox 0.6823$, Mpprox 0.85 which agrees with error ratio of displayed with iteration.

example 6, revisited

let a be positive and consider roots of $f(x)=x^2-a$ using newtons method.

$$egin{aligned} x_{i+1} &= x_i - rac{f(x_i)}{f'(x_i)} = x_i - rac{x_i^2 - a}{2x_i} \ &= rac{x_i^2 + a}{2x_i} = rac{x_i + rac{a}{x_i}}{2}. \quad \checkmark \quad ext{babylonia!} \end{aligned}$$

wrt convergence,

$$f'(\sqrt{a}) = 2\sqrt{a}, \ f''(\sqrt{a}) = 2$$

 ψ quadratically convergent bc $f'(\sqrt{a}) = 2\sqrt{a} \neq 0$

$$e_{i+}pprox Me_i^2, \quad M=rac{f''(r)}{2f'(r)}=rac{2}{2\cdot 2\sqrt{a}}=rac{1}{2\sqrt{a}}.$$

2 linear convergence

✓ example 12

find root of $f(x)=x^2$ using newtons method.

obviously r=0, but

$$egin{aligned} x_{i+1} &= x_i - rac{f(x_i)}{f'(x_i)} \ &= x_i - rac{x_i^2}{2x_i} \ &= rac{x_i}{2}. \end{aligned}$$

which gets you linear convergence of $S=\frac{1}{2}. \quad \downarrow$ see?

```
1 # example 12 # mod example 11
2
3 if __name__ == "__main__":
```

→

example 12. $\times 0 = 1$.

	i	x[i]	e[i]	"/e[i-1]
	000	1.00000000	1.00000000	
ĺ	001	0.50000000	0.50000000	0.50000000
ĺ	002	0.25000000	0.25000000	0.50000000
	003	0.12500000	0.12500000	0.50000000
ĺ	004	0.06250000	0.06250000	0.50000000
	005	0.03125000	0.03125000	0.50000000
ĺ	022	0.00000024	0.00000024	0.50000000
	023	0.00000012	0.00000012	0.50000000
	024	0.00000006	0.0000006	0.50000000
ĺ	025	0.00000003	0.00000003	0.50000000
	026	0.00000001	0.00000001	0.50000000

example 13

find root of $f(x) = x^m$ using newtons method.

again, only roor r=0 and

▼ theorem 12

assume (m+1)-times continuously differentiable function f on [a,b] has multiplicity m root at r. then newtons is locally convergent to r and error e_i at step i satisfies

$$\lim_{i o\infty}rac{e_{i+1}}{e_i}=S,\quad S=rac{m-1}{m}.$$

example 14

find multiplicity of root r=0 of $f(x)=\sin x+x^2\cos x-x^2-x$ and estimate iterations required using newtons method with convergence of six decimal places beginning with $x_0=1$.

$$f(x) = \sin x + x^2 \cos x - x^2 - x$$
 $f'(x) = \cos x + 2x \cos x - x^2 \sin x - 2x - 1$
 $f''(x) = -\sin x + 2 \cos x - 4x \sin x - x^2 \cos x - 2$
 $f'''(x) = -\cos x - 6 \sin x - 6x \cos x + x^2 \sin x$
 $\psi \quad r = 0$
 $f(r) = f'(r) = f''(r) = 0, \quad f'''(r) = -1 \quad \Rightarrow \quad m = 3 \text{ and}$

 \downarrow by theorem 12, with linear convergence

$$S=rac{m-1}{m}=rac{2}{3} \quad \Rightarrow \quad e_{i+1}pprox rac{2}{3}\,e_i.$$
 $x_0=1 \quad \Rightarrow \quad e_0=1$

 \Downarrow

$$\left(\frac{2}{3}\right)^n < 0.5 imes 10^{-6}$$

$$n > rac{log_{10}\left(0.5
ight) - 6}{log_{10}\left(rac{2}{3}
ight)} pprox 35.78 \quad
ightarrow \quad 36 ext{ iterations}.$$

✓ code, example 14

```
1 # example 14 # mod example 12
2
3 if __name__ == "__main__":
4
```

example 14. x0 = 1.

i	x[i]	e[i]	"/e[i-1]
000 001 002 003 004	1.00000000 0.72159024 0.52137095 0.37530831 0.26836349 0.19026161	1.00000000 0.72159024 0.52137095 0.37530831 0.26836349 0.19026161	0.72159024 0.72159024 0.72253049 0.71984890 0.71504809

```
| 031 | 0.00000622 | 0.00000622 | 0.66667262 |
| 032 | 0.00000414 | 0.00000414 | 0.66666644 |
| 033 | 0.00000276 | 0.00000276 | 0.66665531 |
| 034 | 0.00000184 | 0.00000184 | 0.66668266 |
| 035 | 0.00000123 | 0.00000123 | 0.66667984 |
```

theorem 13

if (m+1)-times continuously differentiable function f on [a,b] has multiplicity m>1 root at r, then **modified newtons method**

$$x_{i+1} = x_i - rac{m\,f(x_i)}{f'(x_i)}$$

converges locally and quadratically to r.

ie, if multiplicity known, newtons can be improved.

- example 14, revisited

```
1 # example 14 with modified newtons
2
3 if __name__ == "__main__":
4
```

⇒•

example 14. $\times 0 = 1$.

and then the conflict with machine precision wins bc its the machine. another reminder to mind the machine.

ie, backwards error is driven near ϵ_{mach} but forward error x_i is several orders of magnitude larger.

3 more fail

example 15

apply newtons method to $f(x)=4x^4-6x^2-rac{11}{4}$ with $x_0=rac{1}{2}$.

the function has roots bc it is continuous and negative at x=0 and goes to $+\infty$ for large positive and negative x.

$$x_{i+1} = x_i - rac{4x_i^4 - 6x_i^2 - rac{11}{4}}{16x_i^3 - 12x_i}.$$

however, $x_1=-rac{1}{2}$ \mapsto $x_2=-rac{1}{2}$ \mapsto lol.

thats worth some code.

```
1 # example 15 # repurposed example 11
2
3 if __name__ == "__main__":
```

→▼

example 15 ~ newton fails. x0 = 0.5.

i	x[i]	e[i]	"/e[i-1]^2
000	0.50000000	0.86676040	
001	-0.50000000	1.86676040	2.48479439
002	0.50000000	0.86676040	0.24872641
003	-0.50000000	1.86676040	2.48479439
004	0.50000000	0.86676040	0.24872641
005	-0.50000000	1.86676040	2.48479439

in addition to examples 14 and 15, if $f'(x_i)=0$. also, iterations unto infinity or mimicry of an rng. however, theorems 11 and 12 guarantee a neighborhood of initial guesses surrounding each root for which convergence to that root is assured.