Nature de séries

Exercice 1 ★★★

Étudier la nature de la série de terme général $u_n = \frac{a^n 2^{\sqrt{n}}}{2^{\sqrt{n}} + b^n}$ où a, b > 0.

Exercice 2 ***

Soit (u_n) une suite réelle strictement positive. On pose $S_n = \sum_{p=0}^n u_p$. Comparer la nature des séries $\sum_{n\in\mathbb{N}} u_n$ et $\sum_{n\in\mathbb{N}} \frac{u_n}{S_n}$.

Exercice 3 ***

Critère de Raabe-Duhamel

- **1.** Soient (u_n) et (v_n) de suites de réels strictement positifs vérifiant $\frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}$ à partir d'un certain rang. Montrer que $u_n = \mathcal{O}(v_n)$.
- 2. Soit (u_n) une suite de réels strictement positifs telle que

$$\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right)$$

- **a.** On suppose $\alpha>1$. A l'aide d'une comparaison avec une série de Riemann, montrer que $\sum_{n\in\mathbb{N}}u_n$ converge.
- **b.** On suppose $\alpha < 1$. Montrer que $\sum_{n \in \mathbb{N}} u_n$ diverge.
- **c.** On suppose $\alpha = 1$. Montrer à l'aide d'exemples qu'on ne peut rien conclure en général.
- 3. Application. Déterminer la nature de la série de terme général

$$u_n = \frac{2 \times 4 \times \dots \times (2n)}{3 \times 5 \times \dots \times (2n+1)}$$

Exercice 4 ★★

Déterminer la nature des séries suivantes.

1.
$$\sum_{n \in \mathbb{N}^*} \left(\tan \left(\frac{1}{n} \right) - \frac{1}{n} \right).$$

3.
$$\sum_{n \in \mathbb{N}^*} \ln \left(\cos \left(\frac{1}{\sqrt{n}} \right) \right).$$

2.
$$\sum_{n \in \mathbb{N}^*} (\sqrt[n]{3} - \sqrt[n]{2}).$$

4.
$$\sum_{n \in \mathbb{N}^*} \left(\operatorname{ch} \left(\frac{1}{\sqrt{3n}} \right) - \operatorname{sh} \left(\frac{1}{\sqrt{n}} \right) \sqrt{n} \right)$$
.

Exercice 5 ★

Convergence de la série $\sum \frac{1}{\binom{2n}{n}}$.

Exercice 6 ***

Déterminer la nature de la série de terme général

$$u_n = e^{an^2} \left(1 - \frac{a}{n} \right)^{n^3}$$

Exercice 7 ★★

Séries de Bertrand

Soit $(\alpha, \beta) \in \mathbb{R}^2$. On pose $u_n = \frac{1}{n^{\alpha}(\ln n)^{\beta}}$ pour $n \in \mathbb{N} \setminus \{0, 1\}$ et on s'intéresse à la convergence de la série $\sum_{n \geq 2} u_n$.

- **1.** On suppose $\alpha > 1$. Montrer que $\sum_{n \ge 2} u_n$ converge.
- **2.** On suppose $\alpha < 1$. Montrer que $\sum_{n \ge 2} u_n$ diverge.
- 3. On suppose $\alpha = 1$ et $\beta \le 0$. Montrer que $\sum_{n>2} u_n$ diverge.
- **4.** On suppose $\alpha=1$ et $\beta>0$. Déterminer la nature de $\sum_{n\geq 2}u_n$ suivant la valeur de β via une comparaison à une intégrale.

Exercice 8 ***

Règle de Cauchy

Soit (u_n) une suite de réels positifs. On suppose que la suite de terme général $\sqrt[n]{u_n}$ admet une limite $\ell \in \mathbb{R}_+ \cup \{+\infty\}$.

- 1. Montrer que si $\ell < 1$, la série $\sum u_n$ converge.
- 2. Montrer que si $\ell > 1$, la série $\sum u_n$ diverge.
- 3. Montrer à l'aide de deux exemples qu'on ne peut conclure dans le cas $\ell=1$.

Exercice 9 ★★

Soient $f: \mathbb{R} \to \mathbb{R}$ k-lipschitzienne avec k < 1 et (x_n) une suite telle que $x_{n+1} = f(x_n)$ pour tout $n \in \mathbb{N}$.

- **1.** Montrer que $|x_{n+1} x_n| \le k^n |x_1 x_0|$.
- 2. En considérant la série $\sum_{n\in\mathbb{N}} x_{n+1} x_n$, montrer que la suite (x_n) converge.
- ${\bf 3.}\,$ En déduire que f admet un unique point fixe.

Exercice 10 ★★★

CCINP (ou CCP) PC 2021

On pose pour tout entier $n \ge 2$,

$$u_n = \prod_{k=2}^n \left(2 - e^{\frac{1}{k}}\right)$$

et pour tout entier $n \ge 3$,

$$v_n = \ln\left(\frac{nu_n}{(n-1)u_{n-1}}\right)$$

Montrer que la série $\sum_{n\geq 2} v_n$ converge, puis que la série $\sum_{n\geq 3} u_n$ diverge.

Exercice 11 ★★★

CCINP (ou CCP) MP 2021

1. Montrer que pour tout $n \in \mathbb{N}^*$, il existe un unique $u_n \in [0,1]$ tel que

$$\int_{u_n}^1 \frac{e^t}{t} \, \mathrm{d}t = n$$

On pourra considérer la fonction $x \mapsto \int_{x}^{1} \frac{e^{t}}{t} dt$.

- **2.** Étudier la monotonie de (u_n) et sa limite.
- **3.** On pose $v_n = n + \ln u_n$. Montrer que (v_n) converge et exprimer sa limite sous forme d'une intégrale.
- **4.** Quelle est la nature de la série $\sum u_n$?

Exercice 12 ★★★

Banque Mines-Ponts MP 2021

Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite réelle telle que :

$$a_1 = 1$$
 et $\forall n \ge 2$, $a_n = 2a_{\lfloor \frac{n}{2} \rfloor}$

Montrer que (a_n) est définie, puis que la série $\sum_{n\in\mathbb{N}^*}\frac{1}{a_n^2}$ converge et calculer sa somme.

Calculs de sommes

Exercice 13 ★★

Montrer la convergence et calculer la somme de la série $\sum_{n\geq 0} \frac{n}{n^4+n^2+1}$.

Exercice 14 ***

Soit $p \in \mathbb{N} \setminus \{0, 1\}$. Convergence de la série $\sum_{n \in \mathbb{N}} \frac{1}{\binom{n+p}{n}}$ et calcul de la somme.

Exercice 15 ★★★

Taylor-Lagrange

A l'aide de l'inégalité de Taylor-Lagrange prouver la convergence et déterminer la somme des séries suivantes

- 1. $\sum_{n\geq 0} \frac{x^n}{n!}$ pour $x \in \mathbb{R}$;
- 2. $\sum_{n \in \mathbb{N}} \frac{(-1)^n x^{2n}}{(2n)!}$ et $\sum_{n \in \mathbb{N}} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ pour $x \in \mathbb{R}$.
- 3. $\sum_{n>1} \frac{(-1)^{n-1}x^n}{n}$ pour $x \in [0,1]$.

Exercice 16 ★★

En remarquant que $\frac{1}{k} = \int_0^1 t^{k-1} \, \mathrm{d}t$, montrer la convergence de la série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^{n-1}}{n}$ et déterminer sa somme.

Exercice 17 ★★★

X (non PC/PSI) MP 2021

On pose $u_n = \sum_{k=1}^n k^2$ pour tout $n \in \mathbb{N}^*$. Calculer $\sum_{n=1}^{+\infty} \frac{1}{u_n}$.

Exercice 18 ★★★

CCINP (ou CCP) MP 2021

- 1. Donner la définition de la convergence d'une série puis montrer que si $\sum u_n$ converge alors la suite (u_n) tend vers 0.
- 2. Soit (u_n) une suite décroissante telle que $\sum u_n$ converge.
 - **a.** On suppose que $\lim_{n\to\infty} nu_n = \lambda \in \mathbb{R} \cup \{-\infty; +\infty\}$. Montrer que $\lambda = 0$.
 - **b.** Montrer que $\lim_{n\to\infty} nu_n = 0$.
 - c. Montrer que la série $\sum n(u_n-u_{n+1})$ converge puis montrer que $\sum_{n=1}^{\infty}u_n=\sum_{n=0}^{\infty}n(u_n-u_{n+1})$.

Exercice 19 **

CCINP (ou CCP) PSI 2019

Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{\pi/4} (\tan(x))^n dx$.

- **1.** Calculer la limite de I_n lorsque n tend vers $+\infty$.
- **2.** Pour $n \in \mathbb{N}$, calculer $I_n + I_{n+2}$.
- 3. En déduire $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$.
- **4.** Montrer que la série $\sum_{n\geq 0} (-1)^n I_n$ converge et calculer sa somme.

Comparaison série/intégrale

Exercice 20 ★★

Déterminer un équivalent de la somme partielle de la série $\sum_{n\geq 1}\frac{1}{n^{\alpha}}$ lorsque $\alpha\leq 1$.

Déterminer un équivalent du reste de la série $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ lorsque $\alpha > 1$.

Exercice 21 ★★

Pour $n \in \mathbb{N}$, on pose $u_n = \ln(n!)$.

- 1. Par une comparaison à une intégrale montrer que $u_n \sim n \ln n$.
- 2. Déterminer la nature de la série $\sum_{n\geq 2} \frac{1}{u_n^2}$.
- 3. Montrer que la fonction $f: x \mapsto \frac{1}{x \ln x}$ est décroissante sur]1, + ∞ [.
- **4.** A l'aide d'une comparaison à une intégrale, déterminer la nature de la série $\sum_{n\geq 2} \frac{1}{u_n}$.

Séries alternées

Exercice 22 ★★★

Série des restes de la série harmonique alternée

- 1. Montrer que la série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^n}{n}$ converge.
- **2.** On pose $R_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k}$ pour $n \in \mathbb{N}$. Montrer que la série $\sum_{n \in \mathbb{N}} R_n$ converge.

Exercice 23 ***

Pour $n \in \mathbb{N}^*$, on pose $b_n = \sum_{k=1}^n (-1)^k \sqrt{k}$.

- 1. Déterminer un équivalent de b_n .
- 2. Montrer que $(b_n + b_{n+1})$ converge vers une limite strictement négative.
- 3. Déterminer la nature de $\sum_{n\geq 1} \frac{1}{b_n}$.

Exercice 24 ★★

D'après Mines-Télécom MP 2016

Soit (v_n) une suite telle que $v_n = \frac{\cos(v_{n-1})}{n}$ pour tout $n \in \mathbb{N}^*$.

- 1. Déterminer la limite puis un équivalent de v_n . En déduire la nature de la série $\sum_{n\in\mathbb{N}^*}v_n$.
- 2. Montrer que la série $\sum \frac{(-1)^n}{n}$ converge.
- 3. En déduire la nature de la série $\sum_{n\in\mathbb{N}} (-1)^n v_n$.

Exercice 25 ★★★

Banque Mines-Ponts MP 2021

Pour $n\in\mathbb{N}$, on pose $u_n=\cos\left(n^2\pi\ln\left(\frac{n}{n+1}\right)\right)$. Déterminer la nature de la série $\sum u_n$.

Exercice 26 ★★★

Déterminer la nature de la série $\sum_{n\in\mathbb{N}}\sin\left(\pi\sqrt{n^2+1}\right)$.

Exercice 27 ***

Déterminer la nature de la série $\sum \frac{(-1)^n}{\sqrt{n} + (-1)^n}$.

Exercice 28 **

CCINP (ou CCP) PC 2019

On pose $a_n = \frac{(-1)^n}{\sqrt{n}}$ pour tout entier $n \ge 2$.

- 1. Nature de $\sum_{n\geq 2} \ln(1+a_n).$
- 2. Déterminer $\lim_{n \to +\infty} \left(\prod_{k=2}^{n} (1 + a_k) \right)$.

Exercice 29 ★★★

CCINP (ou CCP) PSI 2019

- **1.** Montrer que l'équation $x^n + x\sqrt{n} 1 = 0$ a une unique solution dans [0, 1], notée u_n , pour $n \in \mathbb{N}^*$.
- **2.** Montrer que la suite (u_n) a pour limite 0.
- 3. Quelle est la nature de la série $\sum u_n$?
- **4.** Quelle est la nature de la série $\sum (-1)^n u_n$?

Sommation de relations de comparaison

Exercice 30 ★★

Soit (u_n) une suite réelle de limite ℓ non nulle.

- 1. Montrer que la suite de terme général $\frac{1}{n} \sum_{k=1}^{n} u_k$ converge vers ℓ .
- 2. Déterminer la limite de la suite de terme général $\frac{1}{n^2} \sum_{k=1}^{n} k u_k$.

Exercice 31 ★★★

Centrale-Supélec MP 2019

Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite de réels strictement positifs telle que

$$\lim_{n \to \infty} a_n (a_1^2 + a_2^2 + \dots + a_n^2) = 1$$

- 1. Montrer que la suite (a_n) converge vers 0 et que $\sum_{n\in\mathbb{N}^*} a_n^2$ diverge.
- 2. On note $S_n = \sum_{k=1}^n a_k^2$. Monter que

$$\lim_{n \to \infty} \int_{\mathbf{S}_{n-1}}^{\mathbf{S}_n} t^2 \, \mathrm{d}t = 1$$

3. Monter que $a_n \sim \frac{1}{\sqrt[n]{3n}}$.

Exercice 32 ★★★

Soit (u_n) la suite définie par $u_0 \in \left[0, \frac{\pi}{2}\right]$ et la relation de récurrence $u_{n+1} = \sin(u_n)$.

- 1. Déterminer la limite de la suite (u_n) .
- **2.** Déterminer $\alpha \in \mathbb{R}$ tel que la suite de terme général $u_{n+1}^{\alpha} u_n^{\alpha}$ converge vers un réel non nul.
- **3.** En déduire un équivalent de u_n .

Exercice 33 ★★★

Banque Mines-Ponts MP 2021

1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique. Montrer que :

$$\lim_{n \to +\infty} u_n = \ell \implies \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} u_k = \ell$$

2. Soient a > 0, $\lambda > 0$, $\alpha > 1$ et $f: [0, a] \rightarrow [0, a]$ continue admettant un développement asymptotique en 0 de la forme :

$$f(x) = x - \lambda x^{\alpha} + o(x^{\alpha})$$

- **a.** Montrer qu'il existe $\varepsilon > 0$ tel que 0 soit le seul point fixe de f dans $[0, \varepsilon]$.
- **b.** On définit $(u_n)_{n\in\mathbb{N}}$ telle que $u_0\in[0,\varepsilon]$ et $\forall n\in\mathbb{N},\ u_{n+1}=f(u_n)$. Montrer que (u_n) converge vers 0.
- c. Trouver un équivalent de $f(x)^{1-\alpha} x^{1-\alpha}$ quand x tend vers 0.
- **d.** En déduire un équivalent de u_n quand n tend vers $+\infty$.
- **e.** Appliquer aux fonctions $x \mapsto \sin x$ et $x \mapsto \ln(1+x)$.

Exercice 34 ★★

On pose $S_n = \sum_{k=1}^n \frac{1}{k^2 + \sqrt{k}}$ pour $n \in \mathbb{N}^*$. Montrer qu'il existe $C \in \mathbb{R}$ tel que

$$S_n = C - \frac{1}{n} + o\left(\frac{1}{n}\right)$$

Exercice 35 ★★★

On pose $S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$.

- **1.** Montrer qu'il existe $C \in \mathbb{R}$ tel que $S_n = 2\sqrt{n} + C + o(1)$.
- 2. Déterminer un équivalent de $S_n 2\sqrt{n} C$.

Produit de Cauchy

Exercice 36 ***

Pour $n \in \mathbb{N}^*$, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$.

1. Montrer que pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} \binom{n}{k} = H_n$$

2. En déduire que

$$e \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n \cdot n!} = \sum_{n=1}^{+\infty} \frac{H_n}{n!}$$

Exercice 37 ★★

Soit a et b deux complexes distrincts de module strictement inférieur à 1. Montrer que

$$\sum_{n=0}^{+\infty} \frac{a^{n+1} - b^{n+1}}{a - b} = \frac{1}{1 - a} \cdot \frac{1}{1 - b}$$

Familles sommables

Exercice 38 ***

Montrer qu'il n'existe pas d'application continue $f: \mathbb{R} \to \mathbb{R}$ telle que $f(\mathbb{Q}) \subset \mathbb{R} \setminus \mathbb{Q}$ et $f(\mathbb{R} \setminus \mathbb{Q}) \subset \mathbb{Q}$.

Exercice 39 ***

On dit qu'un nombre complexe est un *entier algébrique* s'il est racine d'un polynôme unitaire à coefficients entiers. Montrer que l'ensemble des entiers algébriques est dénombrable.

Exercice 40 ★

Soit A un ensemble. Montrer que les propositions suivantes sont équivalentes.

- (i) A est dénombrable;
- (ii) il existe une injection de A dans un ensemble dénombrable;
- (iii) il existe une surjection d'un ensemble dénombrable sur A.

Exercice 41 ★

La famille $\left(\frac{1}{x^2}\right)_{x\in\mathbb{Q}\cap[1,+\infty[}$ est-elle sommable?

Exercice 42 ***

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite réelle. On pose

$$\forall n \in \mathbb{N}^*, \ v_n = \frac{1}{n} \sum_{k=1}^n u_k$$

- 1. Montrer que $(n+1)v_n^2 (n-1)v_{n-1}^2 \le 2u_nv_n$ pour tout entier $n \ge 2$.
- 2. On suppose que la série $\sum u_n^2$ converge.
 - **a.** Montrer que la série $\sum v_n^2$ converge et que

$$\sum_{n=1}^{+\infty} v_n^2 \le 4 \sum_{n=1}^{+\infty} u_n^2$$

b. En déduire la sommabilité de la famille $\left(\frac{u_m u_n}{m+n}\right)_{(m,n)\in(\mathbb{N}^*)^2}$.

Exercice 43 ★★★

Banque Mines-Ponts MP 2018

- **1.** Pour $n \in \mathbb{Z}$, calculer $\int_0^{2\pi} te^{-int} dt$.
- **2.** Soient I une partie finie de \mathbb{N}^* , $(a_n)_{n\in\mathbb{I}}$ et $(b_n)_{n\in\mathbb{I}}$ deux suites finies de réels positifs. Montrer que

$$\sum_{(n,m)\in\mathbb{I}^2} \frac{a_n b_m}{n+m} \le \pi \sqrt{\sum_{n\in\mathbb{I}} a_n^2 \sum_{n\in\mathbb{I}} b_n^2}$$

3. Soient $(a_n)_{n\in\mathbb{N}^*}$ et $(b_n)_{n\in\mathbb{N}^*}$ deux suites réelles telles que les familles $(a_n^2)_{n\in\mathbb{N}^*}$ et $(b_n^2)_{n\in\mathbb{N}^*}$ soient sommables. Montrer que $\left(\frac{a_nb_m}{n+m}\right)_{(n,m)\in(\mathbb{N}^*)^2}$ est sommable et que

$$\sum_{(n,m)\in(\mathbb{N}^*)^2} \frac{a_n b_m}{n+m} \le \pi \sqrt{\sum_{n\in\mathbb{N}^*} a_n^2 \sum_{n\in\mathbb{N}^*} b_n^2}$$

Exercice 44 ***

Montrer que la famille $\left(\frac{1}{mn(m+n+2)}\right)_{(m,n)\in(\mathbb{N}^*)^2}$ est sommable et calculer sa somme.

Exercice 45 ★★

Montrer que la famille $\left(\frac{1}{(p+q^2)(p+q^2+1)}\right)_{(p,q)\in\mathbb{N}\times\mathbb{N}^*}$ est sommable et calculer sa somme.

Exercice 46 ***

Soit $\alpha \in \mathbb{R}$. Montrez que pour certaines valeurs de α que l'on précisera

$$\sum_{n=0}^{+\infty} \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} = \sum_{p=1}^{+\infty} \frac{1}{p^{\alpha-1}}$$

Exercice 47 ★★★

On note $\tau(n)$ le nombre de diviseurs positifs d'un entier $n \in \mathbb{N}^*$. Montrer que pour tout $z \in \mathbb{C}$ tel que |z| < 1,

$$\sum_{n=1}^{+\infty} \frac{z^n}{1-z^n} = \sum_{n=1}^{+\infty} \tau(n)z^n$$

Exercice 48 ***

Soit $z\in\mathbb{C}$ tel que |z|<1. Montrer la convergence et déterminer la somme de la série $\sum_{n\in\mathbb{N}}\frac{z^{2^n}}{1-z^{2^{n+1}}}.$

Exercice 49 ★★

Montrer que la famille $\left(\frac{1}{(m+n)^{\alpha}}\right)_{(m,n)\in(\mathbb{N}^*)^2}$ est sommable si et seulement si $\alpha>2$.

Exercice 50 ★★

Calculer

$$S = \sum_{n=0}^{+\infty} \sum_{k=n+1}^{+\infty} \frac{1}{k!}$$