

CS431.N21 – Deep Learning and Applications

Analysis of FCN for Semantic Segmentation

Trần Thái Bảo – 20520410 Lê Đoàn Phúc Minh – 20520243 Nguyễn Duy Đạt – 20520435 Trần Hữu Khoa – 20520222

Introduction

Image Segmentation is a broad part of Computer Vision, in image segmentation we classify every pixel of the image into one of the classes.

Semantic segmentation

Instance segmentation

Fully Convolutional Networks (FCN)

Most of us may familar with CNNs in Image Classification

Architecture of a CNN model

CNN - From Image Classification to Semantic Segmentation

What if...?

convolution

convolution

CNN - From Image Classification to Semantic Segmentation

convolution

Convolution Matrices are used to extract spatial features

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

Convolution Layer

0	0	0	0	0	0	
0	156	155	156	158	158	
0	153	154	157	159	159	
0	149	151	155	158	159	
0	146	146	149	153	158	
0	145	143	143	148	158	

0	0	0	0	0	0	
0	167	166	167	169	169	
0	164	165	168	170	170	
0	160	162	166	169	170	
0	156	156	159	163	168	
0	155	153	153	158	168	

0	0	0	0	0	0	
0	163	162	163	165	165	
0	160	161	164	166	166	
0	156	158	162	165	166	
0	155	155	158	162	167	
0	154	152	152	157	167	

Input Channel #1 (Red)

Input Channel #2 (Green)

Input Channel #3 (Blue)

-1	-1	1
0	1	-1
0	1	1

Kernel Channel #1

Kernel Channel #2

Kernel Channel #3

Bias = 1

Output							
-25							
				-40			

DeConvolution is a technique to upsample the image by using Convolution Matrices.

		10	12	17	20
10	20	15	17	22	25
30	40	25	27	32	35
		30	32	37	40

Nearest Neighbor

Bi-Linear Interpolation

Problems with these upscaling techniques?

They do not learn from data

DeConvolution - Procedure

- **Step 1:** Apply the transformation to input (Add 0-cells between rows and cols)
- Step 2: Do convolution to input with given padding and stride informations

Stride 2, No Padding

DeConvolution – Other examples

Stride 1, No Padding

DeConvolution – Other examples

Stride 2, Padding

DeConvolution – Other examples

Stride 2, Padding

Architecture of FCN (32s/16s/8s)

Comparison between FCNs

COMPARISON ON PASCAL VOC 2011

U-Net

U-Net is a convolutional neural network originally developed for segmenting biomedical images. When visualized its architecture looks like the letter U and hence the name U-Net.

Unet's architecture is made up of two parts:

- The left path: contracting path
- The right path: expansive path

- Contracting path: capture context
- Expansive path: aid in precise localization

- With Unet in segmentation, we need to reconstruct the image from the feature vector created by CNN.
- We convert feature map into a vector and reconstruct an image from this vector.
- Unet has no any fully connected layers. The features are connected by the right path, so it don't need fully connected network.

- Medical imaging
- Object detection
- Traffic control systems
- Machine vision
- Content-based image retrieval

Experiments

- The comparison about total parameters among the types of models

- The comparison of loss and accuracy

- The comparison of loss convergence speed

- The comparison of accuracy convergence speed

- The comparison of all convergences

Comparison the predictions

- The comparison of predictions

Comparison the feature maps

- The comparison of feature maps

Unet & FCN Demo:

https://colab.research.google.com/drive/1iisL6plYsJCXE21KPNvDZD5uQucmX1tt?usp=sharing

https://colab.research.google.com/drive/1e_55b_8aiam9h_P-NPuNkQXZL_LZGsZq

https://colab.research.google.com/drive/1DGWbaS2lQcp1tAXizUQHVPsr MmkCvL2U?usp=sharing

<u>Squeeze U-Net: A Memory and Energy Efficient Image Segmentation Network (thecvf.com)</u>

[1505.04597] U-Net: Convolutional Networks for Biomedical Image Segmentation (arxiv.org)