Phan Ngọc Hạnh Nhi MSSV: 2131209002

Assignment 1

a) Draw the logic diagram of the circuit:

b) Derive the state table:

Present State		Input	Next State		Output
Α	В	Υ	Α	В	Z
0	0	0	0	1	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	0	0	0
1	1	0	0	1	0
1	1	1	1	0	0

c) Derive the state diagram:

d) Simulate the circuit with initial state AB = 00 and input sequence Y = 0100:

Assignment 2

a) Draw the logic diagram of the circuit:

The circuit has 4 states A, B, C and D, one input X and one output Y.

Present State	X	Next State	Υ
Α	0	В	1
Α	1	Α	1
В	0	В	0
В	1	С	0
С	0	D	0
С	1	С	0
D	0	D	0
D	1	Α	0

b) State assignment with using binary codes

Four states: Using 2 flip-flops State assignment: A: 00 B: 01 C: 10 D:11

Present State	Х	Next State	Υ
00	0	01	1
00	1	00	1
01	0	01	0
01	1	10	0
10	0	11	0
10	1	10	0
11	0	11	0
11	1	00	0

Using 2 flip-flops named A and B:

Present S	tate	Х	Next State	. /	Υ	
Α	В		A	В		
0	0	0	0	1	1	
0	0	1	0	0	1	
0	1	0	0	1	0	
0	1	1	1	0	0	
1	0	0	1	1	0	
1	0	1	1	0	0	
1	1	0	1	1	0	
1	1	1	0	0	0	
			\bigcup_{D_A}	\bigvee_{D_B}		

c) Draw the logic diagram of the circuit

- Input equation for the FF A: DA

D _A	BX					
		00	01	11	10	
Α	0			1		
	1	1	1		1	

$$D_A = A\bar{B} + A\bar{X} + \bar{A}BX$$

- Input equation for the FF B: DB

D _A	BX						
		00 01 11 10					
Α	0	1			1		
	1	1			1		

- Input equation for the output: Y

Y			ВХ		
		00	01	11	10
Α	0	1	1		
	1				

$$Y = \bar{A}\bar{B}$$

d) Simulate the circuit and check the output with initial state AB=00 and input sequence X=0100

Assignment 3

$$D_A = XA + \overline{X}\overline{Y}, \ D_B = XB + \overline{X}A, \ Z = \overline{X}B$$

a) Draw the logic diagram of the circuit:

b) Derive the state table:

Presen	it state	Inj	put	Next state		Output
A	В	X	Y	DA	DB	Z
0	0	0	0	1	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	1	0	1
0	1	0	1	0	0	1
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	1	1	0

1	0	0	1	0	1	0
1	0	1	0	1	0	0
1	0	1	1	1	0	0
1	1	0	0	1	1	1
1	1	0	1	0	1	1
1	1	1	0	1	1	0
1	1	1	1	1	1	0

c) Derive the state diagram:

d) Simulate the circuit:

- Initial state: 00

- Input sequence: (Given by you)

- Check the output Z with the state table

Assignment 4

a) The input equations are:

$$\bullet \quad DA = B$$

•
$$DB = (X \oplus A)$$

•
$$Y = (X \bigoplus A) \bigoplus B$$

b) Derive the state table:

Present state		Input	Next state		Output
A	В	X	DA	DB	Y
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	1	0	1
0	1	1	1	1	0
1	0	0	0	1	1
1	0	1	0	0	0
1	1	0	1	1	0
1	1	1	1	0	1

c) Derive the state diagram:

Assignment 5

a) Derive the state table:

Present state		Input	Next	state
A	В	X	DA	DB
0	0	0	0	0
0	0	1	1	0
0	1	0	0	1
0	1	1	0	0
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	1

b) Derive the state diagram:

c) Simplify the function as much as possible:

- Input equation for the FF A: D_A

DA			BX				
		00	01	11	10		
A 0 1		1					
	1	1	1		1		

$$DA = AX' + B'X$$

- Input equation for the FF B: D_B

DB		BX			
		00	01	11	10
A	0				1
	1		1	1	1

$$D_B = AX + BX$$

d) Draw the logic diagram of the circuit:

e) Simulate the circuit and check the output:

