

Trabalhando com funções novas a partir das antigas....

Atividade 1:

Questão 1: Utilizando o GeoGebra, faça os gráficos das funções $y_1 = f(x)$, para $f(x) = x^2$ (em azul) e $y_2 = f(x) + c$, para c = 0 (em vermelho). Repare que neste caso as duas funções coincidem. Varie o valor da constante c para observar o efeito geométrico ocorrido no gráfico de y_1 .

Teste a sua conclusão com outras funções.

- (a) Altere a definição da função f(x). Experimente, por exemplo, $f(x) = x^3$, $f(x) = \cos(x)$, f(x) = |x| (a função módulo é definida no programa pelo comando abs(x))
- (b) Faça c =0, -2, -1, 1, 2, 3.
- (c) Observe o efeito geométrico que ocorre no gráfico de $y_1 = f(x)$.

Conclua:

Como é possível obter o gráfico de $y_2 = f(x) + c$ a partir do gráfico de $y_1 = f(x)$?

Questão 2: Faça os gráficos das funções $y_1 = f(x)$, para $f(x) = x^2$ (em azul) e $y_2 = f(x + c)$, para c = 0. (em vermelho). Repare que neste caso as duas funções coincidem. Varie o valor da constante c para observar o efeito geométrico ocorrido no gráfico de y_1 .

Teste a sua conclusão com outras funções.

- (a) Altere a definição da função f(x). Experimente, por exemplo, $f(x) = x^3$, $f(x) = \cos(x)$, f(x) = |x|
- (b) Faça c =0, -2, -1, 1, 2, 3.
- (c) Observe o efeito geométrico que ocorre no gráfico de $y_1 = f(x)$.

Conclua:

Como é possível obter o gráfico de $y_2 = f(x + c)$ a partir do gráfico de $y_1 = f(x)$?

Questão 3: Responda:

- (a) Como é possível obter o gráfico de $y = x^2 1$ a partir do gráfico de $y = x^2$?
- (b) Como é possível obter o gráfico de $y = (x-5)^2$ a partir do gráfico de $y = x^2$?
- (c) Como é possível obter o gráfico de $y = x^2 2x + 3$ a partir do gráfico de $y = x^2$?

Atividade 2:

Questão 1: Utilizando o GeoGebra, faça o gráfico da função $y_1 = f(x)$, para $f(x) = x^2$ (em azul) e $y_2 = a$ f(x), para a = 1 (em vermelho). Repare que neste caso as funções y_1 e y_2 coincidem. Faça a = -1 e descreva a transformação geométrica ocorrida no gráfico de y_1 .

Teste a sua conclusão com outras funções:.

- (a) Altere a definição da função f(x). Tente, por exemplo, $f(x) = x^3$, $f(x) = \cos(x)$, f(x) = |x|.
- (b) Faça a = -1.
- (c) Observe o efeito geométrico que ocorre no gráfico de y_1 (em azul).

Conclua: Como é possível obter o gráfico de $y_2 = -f(x)$ a partir do gráfico de $y_1 = f(x)$?

Questão 2: Com o GeoGebra construa o gráfico da função $y_1 = f(x)$, para $f(x) = x^2 - 5x + 6$ (em azul) e de $y_2 = f(ax)$, para a = 1 (em vermelho). Repare que neste caso as funções coincidem. Faça a = -1 e descreva a transformação geométrica ocorrida no gráfico de y_1 .

Teste a sua conclusão com outras funções.

- (a) Faça a = -1.
- (c) Observe o efeito geométrico que ocorre no gráfico de $y_1 = f(x)$ (em vermelho).

Conclua:

Como é possível obter o gráfico de $y_2 = f(-x)$ a partir do gráfico de $y_1 = f(x)$?

Teste a sua conclusão com outras funções.

- (a) Escolha a função f(x) = |x|.
- (b) Faça a = -1.
- (c) Observe o que acontece com o gráfico de $y_2 = f(-x)$.
- (d) Repita os itens anteriores para a função f(x) = cos(x). Você pode explicar o que está acontecendo?

Conclua: Qual a característica especial que os gráficos dessas funções apresentam?

Questão 3:

- (a) A partir do gráfico da função $y = x^3 3 x^2$ redefina esta função de maneira que que o gráfico da nova função possa ser obtido a partir de uma reflexão, do gráfico original, em relação ao eixo x.
- (b) Em seguida, redefina a função obtida no item anterior para refletir o seu gráfico, em relação ao eixo y. A partir dos itens (a) e (b), aplicados em sequência, obtemos uma reflexão em relação ao eixo x, seguida de uma reflexão em relação ao eixo y.
- (c) Redefina a função $y = x^3 3x^2$ de maneira que o gráfico da nova função possa ser obtido a partir de uma reflexão do gráfico original, em relação ao eixo y.
- (d) Em seguida, redefina a função obtida no item anterior para refletir o seu gráfico, em relação ao eixo x. A partir dos

itens (c) e (d), aplicados em sequência, obtemos uma reflexão em relação ao eixo y, seguida de uma reflexão em relação ao eixo x.

Conclua:

- (a) Como é possível descrever, geometricamente esta dupla reflexão?
- (b) Como é possível obter o gráfico de $y_2 = -f(-x)$ a partir do gráfico de $y_1 = f(x)$?

Questão 4: Já vimos que o gráfico de $y_2 = -f(-x)$ pode ser obtido a partir do gráfico de $y_1 = f(x)$ por meio de uma reflexão em torno do eixo y seguida de uma reflexão em relação ao eixo x, ou vice-versa. Faça o gráfico da função $y_1 = f(x)$, para $f(x) = x^3$ e de $y_2 = b$ f(a x), para a = 1 e b = 1. (Repare que neste caso as funções coincidem). Faça a = -1 e, em seguida b = -1 e tente explicar o que está ocorrendo.

Teste a sua conclusão com outras funções.

- (a) Estude a função f(x) = sen(x).
- (b) Faça a = -1 e b = -1
- (c) Observe o que acontece com o gráfico de $y_2 = -f(-x)$.
- (d) Repita os itens anteriores para a função $f(x) = x^5$. Você pode explicar o que está acontecendo?

Conclua:

Qual a característica especial que os gráficos dessas funções apresentam? Confira a sua resposta, pressionando o botão correspondente, na cena ao lado.

Atividade 3:

Questão 1: Faça os gráficos das funções $y_1 = f(x)$, para $f(x) = x^3 - 4x$ (em azul) e $y_2 = c$ f(x), para c = 1 (em vermelho). Repare que neste caso as duas funções coincidem. Varie o valor da constante c (c > 0) para observar o efeito geométrico ocorrido no gráfico de y_1 .

Teste a sua conclusão com outras funções.

- (a) Altere a definição da função f(x). Experimente, por exemplo, $f(x) = 4x^4 3x^3$, $f(x) = \cos(x)$, f(x) = |x|
- (b) Faça c =1, 2, 3, 1/2, 1/3, 1/10.
- (c) Observe o efeito geométrico que ocorre no gráfico de $y_1 = f(x)$.

Conclua:

Como é possível obter o gráfico de $y_2 = c f(x)$ a partir do gráfico de $y_1 = f(x)$?

Questão 2: Faça os gráficos das funções $y_1 = f(x)$, para $f(x) = x^3 - 4x$ (em azul) e $y_2 = f(c x)$, para c = 1 (em vermelho). Repare que neste caso as duas funções coincidem. Varie o valor da constante c para observar o efeito geométrico ocorrido no gráfico de y_1 .

Teste a sua conclusão com outras funções.

- (a) Altere a definição da função f(x). Experimente, por exemplo, $f(x) = x^4 3x^3$, $f(x) = \cos(x)$, f(x) = |x|
- (b) Faça c =1, 2, 3, 1/2, 1/3, 1/10.
- (c) Observe o efeito geométrico que ocorre no gráfico de $y_1 = f(x)$.

Conclua:

Como é possível obter o gráfico de $y_2 = f(c x)$ a partir do gráfico de $y_1 = f(x)$?

Questão 3:

- (a) No gráfico da função $y = a\cos(bx)$, modifique o valor das constantes a e b para obter o gráfico da função $y_1 = \cos x$ dilatado por um fator de escala igual a dois, na direção vertical.
- (b) Repita o exercício anterior, para obter o gráfico da função $y_1 = \cos(x)$ dilatado na horizontal, por um fator de escala igual a dois.
- (c) Repita o exercício anterior, para obter o gráfico da função $y_1 = \cos(x)$ comprimido por um fator de escala igual a dois, na direção vertical e por um fator de escala igual a três, na direção horizontal.

Questão 4:

- (a) Como é possível obter o gráfico de $y = 2 \operatorname{sen}(x)$ a partir do gráfico de $y = \operatorname{sen}(x)$?
- (b) Como é possível obter o gráfico de y = sen(2x) a partir do gráfico de y = sen(x)?
- (c) Como é possível obter o gráfico de y = 1/3 sen(x/3) a partir do gráfico de y = sen(x)?

Atividade 4:

Faça um resumo das conclusões obtidas quando você desenvolveu as atividades propostas e responda **O que você pode concluir sobre Transformações de Funções?**

Bom trabalho!!