MNIST extended dataset을 이용한 CNN 모델 최적화 및 분석

최종발표(5조)

20192650 한수호 20180543 강구현 20192572 김민규 20192651 홍준기

2024.06.12

프로젝트 개요

MNIST extended dataset을 이용한 CNN 모델 최적화 및 분석

프로젝트 목표

자체 설계한 모델과 기존 CNN 기반 모델의 정확도를 비교 분석하여 최적의 모델을 선정하고, EMNIST 데이터셋에 학습시켜 이미지 분류(Image Classification) 작업을 수행

프로젝트 수행

- CNN 기반의 기존 모델들과 자체적으로 설계한 모델을 비교
- 선정한 모델의 **옵티마이저(Optimizer), 활성화 함수, 잔차 블록(Residual Block)의 수, 학습률**을 조정하는 **Ablation** 형태의 실험을 계획하여 진행
- **EMNIST byClass**, byMerge, Balanced 데이터셋에 각각 학습시킨 모델을 세 가지 데이터셋에 학습하여 결과를 분석

프로젝트 개요

프로젝트 역할 분담

- 한수호: Ours 모델 설계/학습 후 분석/개선, 결과 분석, 발표
- 강구현: Baseline 모델 학습 후 결과 분석, Ours 모델 설계/학습
- 김민규: Baseline 모델 분석/개선, Ours 모델 개선, 보고서 작성
- 홍준기: 데이터셋 분석, Ours 모델 결과 분석, 보고서/발표 준비

프로젝트 수행 과정

데이터셋 분석

자체 모델 설계

하이퍼파라미터 튜닝

결과 분석

EMNIST byClass

가장 클래스 개수가 많고 클래스 불균형이 존재

이미지 특성

28*28 pixel, gray-scale

픽셀값(0~255)

클래스 구성

0~9, a-z, A-Z (62개 클래스)

클래스 불균형

J: 1,896, Y: 2,365

1: 38,374, 7: 35,754

Our 모델 비교

Model / Result	loss	accuracy(%)	Training Time(s)	params
WaveMix-Lite-128/7	-	<u>88.43</u>	-	9.6M
LeNet-5	0.3691	86.58	<u>272.90</u>	<u>64k</u>
ResNet-50	0.3282	87.76	3086.12	25.73M
Our Model(CNN)	0.3734	86.25	324.04	0.27M

Our 모델 설계

Baseline 모델(LeNet5, ResNet-50), Our 모델: 합성곱 층만 사용한 모델

-> **새로운 모델** 설계: ResNet의 잔차 연결(Residual Connection)을 차용

Loss ftn: Cross Entropy Loss

callbacks

EarlyStopping

validation loss가 일정 epoch동안 감소하지 않을 때 학습을 중단

- ReduceLROnPlateau

validation loss가 일정 epoch동안 감소하지 않을 때 학습률을 절반으로 감소

ModelCheckpoint

모델의 중간점을 저장하는 콜백

하이퍼파라미터 변경

목적

EMNIST: 다양한 필기체와 복잡한 패턴, 비선형성, 노이즈 및 클래스 불균형 -> 하이퍼파라미터를 튜닝하여 모델의 성능을 향상

변경한 하이퍼파라미터

옵티마이저(Optimizer), 활성화 함수(Activation Function), 잔차 블록의 개수, 학습률

학습 조건

Epoch:50, batch_size: 500

옵티마이저(Optimizer)

Optimizer	Test Loss	Test Accuracy(%)	Training Time(s)
SGD	0.3396	87.17	1277.04
SGD(Nestrov)	0.3338	87.38	1286.94
Adagrad	0.3779	86.21	1289.94
RMSprop	0.3140	88.26	503.07
Adam	0.3086	88.35	605.06
Adamax	0.3062	88.43	775.57
Nadam	0.3082	88.44	784.48

Nesterov Accelerated Gradient

활성화 함수(Activation Function)

Activation Function	Test Loss	Test Accuracy(%)	Training Time(s)
ReLU	0.3328	87.20	242.82
Leaky ReLU	0.3321	87.40	244.90
eLU	0.3289	87.47	246.59
SeLU	0.3384	87.24	245.21
Sigmoid	0.4001	85.20	242.76

Activation Function	Test Loss	Test Accuracy(%)	Training Time(s)
tanh	0.3395	87.20	244.21
softmax	0.5600	83.41	273.51
softsign	0.3476	87.02	243.27
swish	0.3163	87.91	286.79
GeLU	0.3163	87.85	321.97

잔차 블록의 개수

# of Residual Blocks	Test Loss	Test Accuracy(%)	Training Time(s)
1 block	0.3190	88.24	1108.55
2 blocks	0.3136	88.37	1413.16
3 blocks	0.3264	88.37	1672.99
4 blocks	0.3303	88.30	1863.36

학습률(1차)

Learning Rate	Test Loss	Test Accuracy(%)	Training Time(s)
1e-2	0.3223	88.02	652.85
1e-3	0.3120	88.33	758.32
1e-4	0.3071	88.32	1382.78
1e-5	0.3328	87.38	1618.95
1e-6	0.4499	84.48	1634.89

학습률(2차)

Learning Rate	Test Loss	Test Accuracy(%)	Training Time(s)
1e-4	0.3071	88.32	1382.78
2e-4	0.3067	88.41	1005.71
3e-4	0.3092	88.37	932.36
4e-4	0.3090	88.26	803.46
5e-4	0.3091	88.28	709.32

Learning Rate	Test Loss	Test Accuracy(%)	Training Time(s)
6e-4	0.3109	88.37	808.81
7e-4	0.3098	88.24	673.69
8e-4	0.3106	88.26	704.26
9e-4	0.3107	88.22	669.50
1e-3	0.3100	88.22	671.94

결과 분석

Model / Result	loss	accuracy(%)	Training Time(s)	params
WaveMix-Lite-128/7	-	<u>88.43</u>	-	9.6M
LeNet-5	0.3691	86.58	<u>272.90</u>	<u>64k</u>
ResNet-50	0.3282	87.76	3086.12	25.73M
Our Model(CNN)	0.3734	86.25	324.04	0.27M
Our Model(Res) (fine-tuned)	<u>0.3076</u>	88.27	811.98	1.77M

결과 분석 - Confusion Matrix

{0, O}, {1, i, l}, {9, g, q} 등 비슷한 형태의 숫자와 알파벳들에 대한 예측이 어려움

결과 분석 - Confusion Matrix

숫자(0~9)

알파벳(a-z, A-Z)

결과 분석 - Confusion Matrix

대문자와 소문자의 구별이 어려운 것을 확인

결과 분석 - 학습 데이터셋, 테스트 데이터셋 변경

Accuracy(%) / F1 Score		Tested Dataset			
/ Inferen	ice Time(s)	byClass	byMerge	Balanced	
	byClass	88.27 / 0.8756 / 28.20	92.08 / 0.9167 / 22.81	90.53 / 0.9005 / 2.63	
Trained Dataset	byMerge	92.03 / 0.9150 / 22.75	91.42 / 0.9103 / 24.05	90.30 / 0.8992 / 3.46	
	Balanced	86.53 / 0.8643 / 23.13	86.44 / 0.8655 / 20.53	86.99 / 0.8679 / 3.62	

결과 분석 - Confusion Matrix

Lesson Learned

문제점 분석 - class_weight

TensorFlow의 class_weight를 도입

-> 각 클래스에 다른 가중치를 부여함으로써 소수 클래스의 학습을 강화

가중치 부여가 과도하게 이루어져 소수 클래스에 대한 과적합 발생

$$L = \frac{1}{n} \sum_{i=1}^{n} w_i L_i$$

Lesson Learned

문제점 분석 - focal loss

Focal Loss(
$$p_t$$
) = $-\alpha_t(1 - p_t)\gamma log(p_t)$

클래스 불균형을 해결하고 어려운 예제에 더 많은 가중치를 부여하는 focal loss

-> 모델이나 하이퍼파라미터 설정이 focal loss의 장점을 충분히 활용하기에 적합하지 않았을

가능성

	Train Lo	SS		1.000 -	Train	Accuracy
		- Cro	ss Entropy Loss			— Cross Entropy Loss
0.8		- Foc	al_g=0.5_a=0.15			Focal_g=0.5_a=0.15
			al_g=0.75_a=0.15	0.975		Focal_g=0.75_a=0.15
			al_g=1_a=0.15	20000000		— Focal_g=1_a=0.15
0.7		- Foc	al_g=0.5_a=0.25			Focal_g=0.5_a=0.25
		- Foc	al_g=0.75_a=0.25	0.950		
		- Foc	al_g=1_a=0.25	***************************************		Focal_g=1_a=0.25
0.6		- Foc	al_g=0.5_a=0.35			Focal_g=0.5_a=0.35
		- Foc	al_g=0.75_a=0.35	0.925		Focal_g=0.75_a=0.35
0.5 -		Foc	al_g=1_a=0.35			Focal_g=1_a=0.35
1				acy		
0.4				0.900 -		
.4				∢		
				0.875		
0.3		_				
				0.850		
0.2						
				0.825		
0.1				0.825		
				0.800		
0.0						

Loss Function	accuracy(%)	Training Time(s)
Cross Entropy Loss	88.34	1149.58
Focal Loss beta=1	87.88	1629.38
Focal Loss beta=2	86.97	1642.57
Focal Loss beta=3	86.80	1614.12

Lesson Learned

프로젝트의 의의

- 인공신경망 수업에서 **배운 내용**에 대한 **깊은 이해**
- **문제를 해결하는 데에 적합한 방법을 찾는 것**에 대한 방안
 - 데이터 전처리 단계에서의 샘플링 기법이나 추가적인 정규화 기법을 도입
- 협력과 논의를 통한 효과적인 학습

References

MNIST: Cohen, G., Afshar, S., Tapson, J., & Van Schaik, A. (2017, May). EMNIST: Extending MNIST to handwritten letters. In 2017 international joint conference on neural networks (IJCNN) (pp. 2921-2926). IEEE.

LeNet: LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

ResNet: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

ResNet50: Zhang, L., Bian, Y., Jiang, P., & Zhang, F. (2023). A transfer residual neural network based on ResNet-50 for detection of steel surface defects. Applied Sciences, 13(9), 5260.

Convolution Layer: O'shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458.

Wavemix: Jeevan, P., & Sethi, A. (2022). Wavemix: resource-efficient token mixing for images. arXiv preprint arXiv:2203.03689.

Swish: Fatima, A., & Pethe, A. (2022). Periodic analysis of resistive random access memory (RRAM)-based swish activation function. SN Computer Science, 3(3), 202.

