The Selection

Algorithm: Design & Analysis
[7]

In the last class...

- Heap Structure and Patial Order Tree Property
- The Strategy of Heapsort
- Keep the Partial Order Tree Property after the maximal element is removed
- Constructing the Heap
- Complexity of Heapsort
- Accelerated Heapsort

The Selection

- Finding max and min
- Finding the second largest key
- Adversary argument and lower bound
- Selection Problem Median
- A Linear Time Selection Algorithm
- Analysis of Selection Algorithm
- A Lower Bound for Finding the Median

The Selection Problem

Problem:

- Suppose E is an array containing n elements with keys from some linearly order set, and let k be an integer such that $1 \le k \le n$. The selection problem is to find an element with the kth smallest key in E.
- A Special Case
 - Find the max/min k=n or k=1

Lower Bound of Finding the Max

- For any algorithm \mathcal{A} that can compare and copy numbers exclusively, in the worst case, \mathcal{A} can't do fewer than n-1 comparisons to find the largest entry in an array with n entries.
 - Proof: an array with *n* distinct entries is assumed. We can exclude a specific entry from being the largest entry only after it is determined to be "loser" to at least one entry. So, *n*-1 entries must be "losers" in comparisons done by the algorithm. However, each comparison has only one loser, so at least *n*-1 comparisons must be done.

Decision Tree and Lower Bound

Since the decision tree for the selection problem must have at least n leaves, the height of the tree is at least $\lceil \lg n \rceil$. It's not a good lower bound.

There are more than n leaves! In fact, 2^{n-1} leaves at least.

Finding max and min

- The strategy
 - Pair up the keys, and do n/2 comparisons(if n odd, having E[n] uncompared);
 - Doing findMax for larger key set and findMin for small key set respectively (if n odd, E[n] included in both sets)
- Number of comparisons
 - For even n: n/2+2(n/2-1)=3n/2-2
 - For odd n: (n-1)/2+2((n-1)/2+1-1)= 3n/2-2

Unit of Information

- That x is max can only be known when it is sure that every key other than x has lost some comparison.
- That y is min can only be known when it is sure that every key other than y has win some comparison.
- Each win or loss is counted as one unit of information, then *any* algorithm must have at least 2*n*-2 units of information to be sure of specifying the *max* and *min*.

Adversary Strategy

Status of keys x and y			Units of new
Compared by an algorithm	Adversary response	New status	information
N,N	<i>x</i> > <i>y</i>	W,L	2
W,N or WL,N	x>y	W,L or WL,L	1
L,N	x < y	L,W	1
W,W	x>y	W,WL	1
L,L	x>y	WL,L	1
W,L or WL,L or W,WL	<i>x</i> > <i>y</i>	No change	0
WL,WL	Consistent with	No change	0
	Assigned values		

The principle: let the key win if it never lose, or, let the key lose if it never win, and change one value if necessary

Lower Bound by Adversary Strategy

- Construct a input to force *the* algorithm to do more comparisons as possible, that is, to give away as few as possible units of new information with each comparison.
- It can be achieved that 2 units of new information are given away only when the status is N,N.
- It is *always* possible to give adversary response for other status so that at most one new unit of information is given away, *without any inconsistencies*.
- So, the *Lower Bound* is n/2+n-2(for even n)

An Example Using Adversary

		χ	. 1	χ	. 2	χ	. 3	χ	4	χ	, 5	λ	î ₆
Con	nparison	S	V	S	V	S	V	S	V	S	V	S	V
	$x_{1,}x_{2}$			is the		N	*	N	*	N	*	N	*
į	x_{1},x_{5}	1/1/		hich no, Ma					Par age 44	T CONTRACTOR OF THE PARTY OF TH	5		
,	x_{3}, x_{4}			, , , , ,	3	W	15	L		x , x_4 is one w			
,	x_3, x_6					W	15		never			L	12
,	x_3,x_1	WL	S 0	C_{∞}						is Min			
,	x ₂ ,x ₄			WL	10			I					-
	x_5x_6	1e								WL	• 5	L	3
,	χ_{6},χ_{4}			,				L	2			WL	3

Raising/lowering the value according to strategy

Finding the Second-Largest Key

- Using FindMax twice is a solution with 2n-3 comparisons.
- For a better algorithm, the idea is to collect some useful information from the first FindMax to decrease the number of comparisons in the second FindMax.
- Useful information: the key which lost to a key other than max cannot be the second-Largest key.
- The worst case for twice *FindMax* is "No information".(x₁ is Max)

Second Largest Key by Tournament

Analysis of Finding the Second

- Any algorithm that finds *secondLargest* must also find *max* before. (*n*-1)
- The *secondLargest* can only be in those which lose directly to *max*.
- On its path along which bubbling up to the root of tournament tree, max beat $\lceil \lg n \rceil$ keys at most.
- Pick up secondLargest. ($\lceil \lg n \rceil 1$)
- $n+\lceil \lg n \rceil-2$

Lower Bound by Adversary

Theorem

- Any algorithm (that works by comparing keys) to find the second largest in a set of n keys must do at least $n+\lceil \lg n \rceil-2$ comparisons in the worst case.
- Proof

There is an adversary strategy that can force any algorithm that finds secondLargest to compare max to $\lceil \lg n \rceil$ distinct keys.

Weighted Key

Note: for one comparison, the weight increasing is no more than doubled.

- Assigning a weight w(x) to each key. The initial values are all 1.
- Adversary rules:

Case	Adversary reply	Updating of weights
w(x)>w(y)	x>y	w(x)=w(x)+w(y); w(y)=0
w(x)=w(y)>0	<i>x>y</i>	w(x):=w(x)+w(y); w(y):=0
w(y)>w(x)	<i>y>x</i>	w(y):=w(x)+w(y); w(x):=0
w(x)=w(y)=0	Consistent with previous replies	No change

Zero=Loss

Lower Bound by Adversary: Details

- Note: the sum of weights is always n.
- Let x is max, then x is the only nonzero weighted key, that is w(x)=n.
- By the adversary rules:

$$w_k(x) \le 2w_{k-1}(x)$$

Let *K* be the number of comparisons *x* wins against previously undefeated keys:

$$n = w_{K}(x) \le 2^{K} w_{0}(x) = 2^{K}$$

■ So, $K \ge \lceil \lg n \rceil$

Tracking the Losers to MAX

Finding the Median: the Strategy

- Obervation: If we can partition the problem set of keys into 2 subsets: S1, S2, such that any key in S1 is smaller that that of S2, then the median must located in the set with more elements.
- Divide-and-Conquer: only one subset is needed to be processed recursively.

Adjusting the Rank

- The rank of the median (of the original set) in the subset considered can be evaluated easily.
- An example
 - Let *n*=255
 - The rank of median we want is 128
 - Assuming $|S_1|=96$, $|S_2|=159$
 - Then, the original median is in S_2 , and the new rank is 128-96=32

Partitioning: Larger and Smaller

Dividing the array to be considered into two subsets: "small" and "large", the one with more elements will be processed recursively.

Selection: the Algorithm

- Input: S, a set of n keys; and k, an integer such that $1 \le k \le n$.
- Output: The *k*th smallest key in *S*.
- Note: Median selection is only a special case of the algorithm, with $k=\lceil n/2 \rceil$.
- Procedure
- Element select(SetOfElements S, int k)
 - if $(|S| \le 5)$ return direct solution; else
 - Constructing the subsets S_1 and S_2 ;
 - Processing one of S_1 , S_2 with more elements, recursively.

There is the same question with quicksort-imbalanced partition

Partition Improved: the Strategy

All the elements are put in groups of 5

Constructing the Partition

- Find the m^* , the median of medians of all the groups of 5, as illustrated previously.
- Compare each key in sections A and D to m*, and
 - Let $S_1 = C \cup \{x | x \in A \cup D \text{ and } x < m^*\}$
 - Let $S_2 = B \cup \{x | x \in A \cup D \text{ and } x > m^*\}$

 (m^*) is to be used as the pivot for the partition)

Divide and Conquer

```
if (k=|S_1|+1)

return m^*;

else if (k \le |S_1|)

return select(S_1,k); //recursion

else

return select(S_2,k-|S_1|-1); //recursion
```

Counting the Number of Comparisons

- For simplicity:
 - Assuming n=5(2r+1) for all calls of *select*.

$$W(n) \le 6\left(\frac{n}{5}\right) + W\left(\frac{n}{5}\right) + 4r + W(7r + 2)$$

The extreme case: all the elements in $A \cup D$ in one subset.

Finding the median in every group of 5

Finding the median of the medians

Comparing all the elements in $A \cup D$ with m^*

Note: r is about n/10, and 0.7n+2 is about 0.7n, so

$$W(n) \le 1.6n + W(0.2n) + W(0.7n)$$

Worst Case Complexity of Select

Note: Row sums is a decreasing geometric series, so $W(n) \in \Theta(n)$

Relation to Median

Observation: Any algorithm of selection must know the relation of every element to the *median*.

Crucial Comparison

- A crucial comparison establishes the relation of some *x* to the median.
- Definition (for a comparison involving a key x)
 - Crucial comparison for x: the first comparison where x>y, for some $y\ge$ median, or x<y for some $y\le$ median
 - Non-crucial comparison: the comparison between *x* and *y* where *x*>median and *y*<median

Adversary for Lower Bound

- Status of the key during the running of the Algorithm:
 - L: Has been assigned a value *larger* than median
 - S: Has been assigned a value *smaller* than median
 - N: Has not yet been in a comparison
- Adversary rule:

Comparands	Adversary's action
N,N	one L , the another S
<i>L</i> , <i>N</i> or <i>N</i> , <i>L</i>	change N to S
<i>S</i> , <i>N</i> or <i>N</i> , <i>S</i>	change N to L
(In all	other cases, just keep consistency)

Notes on the Adversary Arguments

- All actions explicitly specified above make the comparisons un-crucial.
- At least, (n-1)/2 L or S can be assigned freely.
- If there are already (n-1)/2 S, a value larger than median must be assigned to the new key, and if there are already (n-1)/2 L, a value smaller than median must be assigned to the new key. The last assigned value is the median.
- So, an adversary can force the algorithm to do (n-1)/2 uncrucial comparisons at least(In the case that the algorithm start out by doing (n-1)/2 comparisons involving two N.

Lower Bound for Selection Problem

Theorem: Any algorithm to find the median of n keys(for odd n) by comparison of keys must do at least 3n/2-3/2 comparisons in the worst case.

Argument:

- There must be done n-1 crucial comparisons at least.
- An adversary can force the algorithm to perform as many as (*n*-1)/2 uncrucial comparisons. (Note: the algorithm can always start out by doing (*n*-1)/2 comparisons involving 2 *N*-keys, so, only (n-1)/2 *L* or *S* left for the adversary to assign freely as the adversary rule.

Home Assignment

- 5.2
- 5.4
- **5.6**
- **5.8**
- 5.12-14
- **5.17**