201-SH3-AB - Exercises #14: Differential Equations

Part I:

(1) Given $f''(x) = 30x^4 + 12x$; f'(0) = 5; f(0) = -7, find f(x).

(2) Given $f''(x) = 24x^2 - 18x$; f'(-1) = 2; f(1) = 4, find f(x).

(3) Given $f''(x) = 60\sqrt{x} - 48x$; f'(1) = 25; f(4) = 30, find f(x).

(4) Find the cost function given $\frac{dC}{dx} = 5x - \frac{1}{x}$ and 10 units cost \$94.20.

(5) Find the cost function given $\frac{dC}{dx} = \frac{1}{x} + 2x$ and 7 units cost \$58.40.

(6) Find the demand function at x = 90 given $\frac{dR}{dx} = x^2 - 2x + 3$.

(7) Find the profit function at x = 100 given that $\frac{dP}{dx} = 2x + 20$ and profit on 20 items is \$50.

(8) Given $\frac{dy}{dt} = \frac{\sqrt{t^3} - t}{\sqrt{t^3}}$, find the function y that satisfies the condition y(9) = 4.

(9) Given $\frac{dy}{dx} = 2x^{-2} + 3x^{-1} - 1$, find the function y that satisfies the condition y(1) = 0.

(10) Given $f''(x) = 18x - 6x^2$, find the function f(x) that satisfies the conditions f'(1) = 20 and f(1) = 15.

(11) Given $\frac{dy}{dt} = \frac{\sqrt[3]{t^2} - 4}{\sqrt[3]{t^2}}$, find the function y that satisfies the condition y(-8) = 4.

(12) Given $\frac{dy}{dx} = 4x^{-3} + 5x^{-1} + 3$, Find the function y that satisfies the condition y(1) = 3.

(13) Given $f''(x) = 12x^2 - 6x$, find the function f(x) that satisfies the conditions f'(1) = 8 and f(-1) = 5.

(14) Find the average cost function given that the marginal cost is $0.3x^2 + 6x + 100$ and that 10 units cost \$3000.

(15) Find the demand function given that the marginal revenue is $9x^2 + 0.1x + 500$ and that the revenue from 10 units is \$8500.

(16) Find the cost function given that the marginal cost is $12x^2 + 20e^{2x}$ and that the fixed costs are \$1000.

(17) Find the demand function at x = 16 units given that the marginal revenue is $6\sqrt{x} + 8x + 500$.

Part II: Show that the function y is a particular solution of the given differential equation.

(18)
$$y = e^{x/2}$$
, $2y'' + 5y' - 3y = 0$

(21)
$$y = x^2(5+3\ln(x)), \quad xy'-2y = 3x^2$$

(19)
$$y = x^3 - \frac{5}{2}x$$
, $x\frac{dy}{dx} - 3y = 5x$

(20)
$$y = 4 + 8xe^x - 3e^x$$
, $y'' - 2y' + y - 4 = 0$

(22)
$$y = 2e^{\frac{x^4}{4}}, \quad \frac{dy}{dx} = x^3y$$

Part III: Solve the following initial value problems.

(23)
$$y' = y\sin(x), \quad y(0) = 1$$

(26)
$$y' = y^2(2x+1), \quad y(-1) = \frac{1}{5}$$

(24)
$$y' = y^2 \cos(x)$$
, $y(0) = 1$

(25)
$$\frac{dy}{dx} = 3x^2y$$
, $y(0) = 4$

(27)
$$\frac{dy}{dx} = e^{x+2} \cdot y^2$$
, $y(-2) = -\frac{1}{2}$

(28)
$$y' = 6x^2(y-2), \quad y(2) = 3$$

$$(29) \ y' = 3e^{x-y}, \quad y(0) = 2$$

$$(30)\ y'=4xy,\quad y(2)=1,\quad y>0$$

(31)
$$y' = \frac{2x^2}{y}$$
, $y(1) = 2$, $y > 0$

(32)
$$y' = \frac{3x^2}{\sqrt{y}}, \quad y(1) = 9$$

(33)
$$xy' = \frac{4x^2}{y}$$
, $y(1) = 2$, $y > 0$

(34)
$$y' = \frac{y}{\sqrt{x}}, \quad y(4) = 1, \quad y > 0$$

(35)
$$y' = 2\sqrt{y}e^{3x}$$
, $y(0) = \frac{4}{9}$

(36)
$$y' = 3xy - 2x$$
, $y(0) = 1$, $y > 0$

(37)
$$y' = 2xy + 3x^2y$$
, $y(2) = 1$, $y > 0$

(38)
$$y' = 2x^2y + 2x^2$$
, $y(0) = 0$, $y > -1$

(39)
$$y' = \frac{xy}{x^2 + 1}$$
, $y(0) = 3$, $y > 0$

ANSWERS:

(1)
$$f(x) = x^6 + 2x^3 + 5x - 7$$

(2)
$$f(x) = 2x^4 - 3x^3 + 19x - 14$$

(3)
$$f(x) = 16x^{5/2} - 8x^3 + 9x - 6$$

(4)
$$C = \frac{5}{2}x^2 - \ln|x| - 153.50$$

(5)
$$C = \ln|x| + x^2 + 7.45$$

(6)
$$p(90) = $2613$$

(7)
$$P(100) = \$11250$$

(8)
$$y = t - 2\sqrt{t} + 1$$

(9)
$$y = 3 \ln|x| - x - \frac{2}{x} + 3$$

(10)
$$f(x) = -\frac{1}{2}x^4 + 3x^3 + 13x - \frac{1}{2}$$

(11)
$$y = t - 12\sqrt[3]{t} - 12$$

(12)
$$y = 5 \ln|x| + 3x - \frac{2}{x^2} + 2$$
 (28) $y = e^{2x^3 - 16} + 2$

$$(13) \quad f(x) = x^4 - x^3 + 7x + 10$$

(14)
$$\overline{C} = 0.1x^2 + 3x + 100 + \frac{1600}{x}$$

$$(15) \quad p = 3x^2 + 0.05x + 500 + \frac{495}{x}$$

(16)
$$C = 4x^3 + 10e^{2x} + 990$$

(17)
$$p(16) = $580$$

(23)
$$y = e^{1-\cos(x)}$$

(24)
$$y = \frac{1}{1 - \sin(x)}$$

(25)
$$y = 4e^{x^3}$$

$$(26) \ \ y = \frac{-1}{x^2 + x - 5}$$

$$(27) \ \ y = \frac{-1}{e^{x+2} + 1}$$

$$(28) \ \ y = e^{2x^3 - 16} + 2$$

(29)
$$y = \ln (3e^x + e^2 - 3)$$

(30)
$$y = e^{2x^2 - 8}$$

(31)
$$y = \sqrt{\frac{4}{3}x^3 + \frac{8}{3}}$$

(32)
$$y = \left(\frac{3}{2}x^3 + \frac{51}{2}\right)^{2/3}$$

(33)
$$y = 2|x|$$

(34)
$$y = e^{2\sqrt{x}-4}$$

(35)
$$y = \left(\frac{1}{3}e^{3x} + \frac{1}{3}\right)^2$$

(36)
$$y = \frac{2}{3} + \frac{1}{3}e^{3x^2/2}$$

$$(37) \ y = e^{x^3 + x^2 - 12}$$

(38)
$$y = e^{(2/3)x^3} - 1$$

(39)
$$y = 3\sqrt{x^2 + 1}$$