Introduction to MPI

Thomas Hauser, thomas.hauser@colorado.edu University of Colorado Boulder

Research Computing @ CU Boulder

Outline

- Background
- Message Passing Interface
- Communicator
- Collective operations

Research Computing @ CU Boulde

Introduction to MPI - USGS

Message passing

- Most natural and efficient paradigm for distributed-memory systems
- Two-sided, send and receive communication between processes
- Efficiently portable to shared-memory or almost any other parallel architecture:
 - "assembly language of parallel computing" due to universality and detailed, low-level control of parallelism

Research Computing @ CU Boulder

Introduction to MPI - USG

2/9/16

More on message passing

- Provides natural synchronization among processes (through blocking receives, for example), so explicit synchronization of memory access is unnecessary
- Sometimes deemed tedious and low-level, but thinking about locality promotes
 - good performance,
 - scalability,
 - portability
- Dominant paradigm for developing portable and scalable applications for massively parallel systems

Research Computing @ CU Boulder

Introduction to MPI - USGS

Programming a distributed-memory computer

- MPI (Message Passing Interface) also PVM (Parallel Virtual Machine) and others
- Message passing standard, universally adopted
 library of communication routines
 callable from C, C++, Fortran, (Python)
- 125+ functions—we will use small subset may be possible to improve performance with more

Research Computing @ CU Boulder

Introduction to MPI - USG:

2/9/16

MPI standard

- MPI has been developed in three major stagesMPI 1 1994
 - MPI 2 1996
 - MPI 3 2012
- MPI Forum http://www.mpi-forum.org/docs/docs.html
- MPI Standard http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
- Using MPI and Using Advanced MPI http://www.mcs.anl.gov/research/projects/mpi/usingmpi/
- Online MPI tutorial http://mpitutorial.com/beginner-mpi-tutorial/

Research Computing @ CU Boulder

Introduction to MPI - USGS

MPI-1

- Features of MPI-1 include
 - Point-to-point communication
 - Collective communication process
 - Groups and communication domains
 - Virtual process topologies
 - Environmental management and inquiry
 - Profiling interface bindings for Fortran and C

Research Computing @ CU Boulde

Introduction to MPI - USG:

2/9/16

MPI-2

- Additional features of MPI-2 include:
 - Dynamic process management input/output
 - One-sided operations for remote memory access (update or interrogate)
 - Memory access bindings for C++
 - Parallel I/O

Research Computing @ CU Boulder

Introduction to MPI - USGS

MPI-3

- Non-blocking collectives
- New one-sided communication operations
- Fortran 2008 bindings

Research Computing @ CU Boulder

Introduction to MPI - USG

2/9/16

MPI Implementations

- MPICH
 - ftp://ftp.mcs.anl.gov/pub/mpi
- OpenMPI
 - http://www.open-mpi.org
- Intel MPI
 - https://software.intel.com/en-us/intel-mpi-library
- SGI
- Cray
- IBM

Research Computing @ CU Boulder

Introduction to MPI - USGS

Programming Models Single Program Data Multiple Data (SPMD) Same program runs on each process. Multiple Programs Multiple Data Data Data Data (MPMD) Different programs runs on each process. Program

Compiling MPI Programs

Wrapper scripts for the compiler

mpifc -o a.out a.f90

- Automatically sets
 - Include path
 - Library path
 - Links the MPI library

Research Computing @ CU Boulder

Introduction to MPI - USGS

0/0/40

MPI programs use SPMD model

- · Same program runs on each process
- Build executable and link with MPI library
- User determines number of processes and on which processors they will run

Research Computing @ CU Boulde

Introduction to MPI - USG:

2/9/16

Execution

- You can run a MPI program with the following commands
 - mpiexec -n 48 ./a.out
- With SLURM
 - srun –N 4 –ntasks-per-node=12 ./a.out

Research Computing @ CU Boulde

Introduction to MPI - USGS

Programming in MPI

use mpi #include "mpi.h"

int ierr;

call MPI_init(ierr) ierr = MPI_Init(&argc, &argv);

.

call MPI_Finalize(ierr) ierr = MPI_Finalize();

C returns error codes as function values, Fortran requires arguments (ierr)

Research Computing @ CU Boulder

Introduction to MPI - USG

2/9/16

MPI Communicator

- · A collection of processors of an MPI program
- Used as a parameter for most MPI calls.
- Processors with in a communicator have a number
 - Rank: 0 to n-1
- MPI_COMM_WORLD
 - · Contains all processors of your program run
- You can create new communicators that are subsets
 - All even processors
 - The first processor
 - All but the first processor

Research Computing @ CU Boulder

Introduction to MPI - USGS

Programming in MPI

```
use mpi
integer ierr

call MPI_init(ierr)
call MPI_COMM_RANK( MPI_COMM_WORLD, id, ierr )
call MPI_COMM_SIZE( MPI_COMM_WORLD, nprocs, ierr )
.
.
.
call MPI_Finalize(ierr)

Determine process id or rank (here = id)
And number of processes (here = nprocs)
```

Determine the processor running on

ierr = MPI_Get_processor_name(proc_name, &length);

Research Computing @ CU Boulder

Introduction to MPI - USGS

MPI Scientific Hello world

- Write a Scientific hello world program
 - Compute: exp(rank)
- Output should be:
 - Hello from process %d on node %s
 - Exp(%d) = %f
 - Number of mpi processes = %d

Research Computing @ CU Boulder

Introduction to MPI - USG

2/9/16

Collective communication

- Other
 - MPI_Barrier()
- One-To-All
 - MPI_Bcast(), MPI_Scatter(), MPI_Scatterv()
- All-To-One
 - MPI_Gather(), MPI_Gatherv(), MPI_Reduce()
- All-To-All
 - MPI_Allgather(), MPI_Allgatherv(), MPI_Allreduce()

Research Computing @ CU Boulde

Introduction to MPI - USGS

Reduction operations

Operation Description MPI_MAX maximum MPI_MIN minimum MPI_SUM sum MPI_PROD product MPI_LAND logical and MPI_BAND bit-wise and MPI_LOR logical or MPI_BOR bit-wise or MPI LXOR logical xor MPI BXOR bitwise xor

MPI_MINLOC computes a global minimum and an index attached to the minimum value -- can be used to determine the rank of the process containing the minimum value MPI_MAXLOC computes a global maximum and an index attached to the rank of the process containing the minimum value

Research Computing @ CU Boulder

Introduction to MPI - USO

