Miller-Rabin Primality test

Miller – Rabin primality test is based on two properties. First property states that there are no nontrivial square roots modulo prime.

Let us understand the significance of this first property. 1 and -1 always satisfy the equation $a^2 \equiv 1 \pmod{n}$, for any n. So they are called trivial square roots of $1 \pmod{n}$. But, in case of congruences modulo theory, it is possible to have square roots other than 1 or -1. For example, if n = 8, $a^2 \equiv 1 \pmod{8}$ has 1, 3, 5, 7 as solutions ≤ 7 . 1, 3, 5, 7 satisfy $a^2 \equiv 1 \pmod{8}$, because, $1^2 = 1 \equiv 1 \pmod{8}$, $3^2 = 9 \equiv 1 \pmod{8}$, $5^2 = 25 \equiv 1 \pmod{8}$, and $7^2 = 49 \equiv 1 \pmod{8}$. So, this equation has 4 square roots namely 1, 3, 5, 7, each $mod\ 8$, two of them different from 1 or $-1 \pmod{8}$. On the other hand, if n = 5, $a^2 \equiv 1 \pmod{5}$ is satisfied only by 1 and 4. This means, there are no nontrivial square roots for modulo 5. Let us state and prove this property.

Property 1: Square roots of $1 \pmod{p}$; p prime:

Statement: For $1 \le a \le p-1$, with p prime, $a^2 \equiv 1 \pmod{p}$, iff $a = \pm 1 \pmod{p}$, that is, a = 1 or p-1.

Proof: If, $a^2 \equiv 1 \pmod{p}$, then $(a^2 - 1) \equiv 0 \pmod{p}$, that is, $((a + 1)(a - 1)) \equiv 0 \pmod{p}$. Therefore, $p \mid ((a + 1)(a - 1))$, giving $p \mid (a + 1)$ or $p \mid (a - 1)$ as p is prime. Thus, $(a + 1) \equiv 0 \pmod{p}$ or $(a - 1) \equiv 0 \pmod{p}$. So, $a \equiv -1 \pmod{p}$ or $a \equiv 1 \pmod{p}$, which can be written as $a \equiv \pm 1 \pmod{p}$.

Conversely, let $a \equiv \pm 1 \pmod{p}$, that is, $a \equiv 1 \pmod{p}$ or $a \equiv -1 \pmod{p}$. This gives, p|(a-1) or p|(a+1). So, $p|((a+1)(a-1)) \Rightarrow p|(a^2-1)$. This can be written as $(a^2-1) \equiv 0 \pmod{p}$. $a^2 \equiv 1 \pmod{p}$. This proves the property 1.

Second property states that sequence of successive square roots of $a^{p-1} \equiv 1 \pmod{p}$; p prime has all 1's or the first element which is different from 1 in the sequence is $-1 \pmod{p}$, that is p-1. Miller-Rabin Primality test makes use of this property. Let us state and prove this property.

Property 2: Sequence of successive square roots of $a^{p-1} \equiv 1 \pmod{p}$; p prime:

Statement: Let p be prime and odd, 2^s be the largest power of 2 which divides (p-1), with $p-1=2^s\cdot q$ (q is odd). Let 1< a< p-1. Then, either every element of the sequence: a^{p-1} , $a^{(p-1)/2}$, $a^{(p-1)/4}$,..., a^q is $1 \pmod p$ is 1 or the first element which is different from 1 in the sequence is $-1 \pmod p$, that is p-1.

Proof: As p is prime and odd, p is ≥ 3 . So, p-1 is even. 2^s be the largest number power of 2 which divides p-1, we can say that $p-1=2^s \cdot q$, where q is odd. Now, consider the sequence $a^{p-1}, a^{(p-1)/2}, a^{(p-1)/4}, \ldots, a^q$, that is, $a^{2^s \cdot q}, a^{2^{s-1} \cdot q}, a^{2^{s-2} \cdot q}, \ldots, a^q$. The first number in the sequence is a^{p-1} and each successive number in this sequence is square root of the preceding number. p being prime, by Fermat's theorem, (https://www.savitagandhi.com/articles/fermats-little-theorem) $a^{p-1} \equiv 1 \pmod{p}$. As first element in the sequence is a^{p-1} , it is $1 \pmod{p}$. By property 1: $Square\ roots\ of\ 1 \pmod{p}$; $p\ prime$), the only square roots of $1 \pmod{p}$ are $\pm 1 \pmod{p}$. Next element being square root of the preceding element is $\pm 1 \pmod{p}$, (as long as preceding element is 1), that is either $1 \pmod{p}$ or $-1 \pmod{p}$. So, every element of the sequence: $a^{p-1}, a^{(p-1)/2}, a^{(p-1)/4}, \ldots, a^q$ is either $1 \pmod{p}$, that is is 1, or the first element which is different from 1 in the sequence is $-1 \pmod{p}$, that is p-1. Let us have one illustration.

Example 1: Determine sequence of successive square roots of $a^{p-1} \equiv 1 \pmod{p}$; p prime with p = 17 and a = 2.

Solution: p-1=16, expressing 16 as $2^s \cdot q$, with q odd gives, $16=2^4 \cdot 1$, here s=4, q=1. The sequence is 2^{16} , 2^8 , 2^4 , 2^2 , 2^1 . The backward sequence is 2^1 , 2^2 , 2^4 , 2^8 , 2^{16} . For convenience, let us calculate backwards:

$$2^{1} = 2 \equiv 2 \pmod{17}, \ 2^{2} = 4 \equiv 4 \pmod{17}$$
 $2^{4} = (2^{2})^{2} = 4^{2} = 16 \equiv 16 \pmod{17} \equiv -1 \pmod{17}$
 $2^{8} = (2^{4})^{2} = 16^{2} \equiv (-1)^{2} \pmod{17} \equiv 1 \pmod{17}$
 $2^{16} = (2^{8})^{2} \equiv (1)^{2} \pmod{17} \equiv 1 \pmod{17}$

So the sequence is 1, 1, -1, 4, 2 confirming first element in the sequence to be different from 1 as -1.

For more illustrations and Miller Rabin test and the algorithm, one may refer book: (section 4.6.2: Miller-Rabin primality test).