Lista 9

Zadanie 1. Niech $\langle \cdot, \cdot \rangle$ będzie standardowym iloczynem skalarnym na \mathbb{R}^n , tj. dla wektorów $\vec{v} = [v_1, v_2, \dots, v_n]^T$, $\vec{u} = [u_1, u_2, \dots, u_n]^T$

$$\langle \vec{u}, \vec{v} \rangle = \sum_{i=1}^{n} u_i v_i$$
.

Pokaż, że

$$\left[\langle \vec{u}, \vec{v} \rangle \right] = u^T v .$$

(Formalnie $\langle \vec{u}, \vec{v} \rangle$ jest liczbą, a $u^T v$ macierzą, ale staramy się ignorować takie drobnostki.)

Wywnioskuj z tego, że dla dowolnej macierzy M zachodzi

$$\langle \vec{u}, M \vec{v} \rangle = \langle M^T \vec{u}, \vec{v} \rangle$$
.

Zadanie 2. Niech M będzie macierzą symetryczną (tj. $M=M^T$) wymiaru $n\times n$ a $\langle\cdot,\cdot\rangle$ będzie standardowym iloczynem skalarnym na \mathbb{R}^n . Pokaż, że

$$\langle u, Mv \rangle = \langle Mu, v \rangle$$

(możesz skorzystać z Zadania 1).

Wywnioskuj z tego, że jeśli $\lambda \neq \lambda'$ są różnymi wartościami własnymi macierzy symetrycznej M o wektorach własnych \vec{v} oraz \vec{v}' , to $\langle \vec{v}, \vec{v}' \rangle = 0$, tj. \vec{v} i \vec{v}' są prostopadłe.

Zadanie 3. Niech $\langle \cdot, \cdot \rangle$ będzie standardowym iloczynem skalarnym na \mathbb{F}^n (nie zakładamy, że \mathbb{F} to \mathbb{R} albo \mathbb{C} , może to być też ciało skończone).

Definiujemy dopełnienie ortogonalne dowolnego $U \subseteq \mathbb{F}^n$ tak jak poprzednio, tj.

$$U^{\perp} = \{ \vec{v} \in \mathbb{F}^n \ : \ \forall \vec{u} \in U \ \langle \vec{u}, \vec{v} \rangle = 0 \} \ .$$

Pokaż, że

$$U^{\perp} \leq \mathbb{F}^n$$
.

Ponadto, dla podprzestrzeni $\mathbb{W} \leq \mathbb{F}^n$ pokaż, że

$$\dim \mathbb{W}^{\perp} = n - \dim \mathbb{W} .$$

W tym celu dla ustalonej bazy $\vec{v}_1, \dots, \vec{v}_k$ przestrzeni \mathbb{W} określmy macierz M jako $M = [\vec{v}_1 | \dots | \vec{v}_k]$ i rozpatrzmy przekształcenie liniowe

$$\vec{v} \mapsto M^T \vec{v}$$
.

Wywnioskuj z tego, że

$$(\mathbb{W}^{\perp})^{\perp} = \mathbb{W} .$$

Wskazówka: Vie można korzystać z własności baz ortogonalnych, bo ich tu może nie być.

Zadanie 4. Rozpatrzmy przestrzeń liniową wielomianów o współczynnikach rzeczywistych stopnia najwyżej 3. Zdefiniujmy iloczyn skalarny jako

$$\langle p, q \rangle = \int_{-1}^{1} p(x)q(x) \, \mathrm{d}x$$
.

Oblicz iloczyny skalarne $\langle x^i, x^j \rangle$ dla $0 \le i \le j \le 3$.

Zadanie 5. Niech $\mathbb V$ będzie przestrzenią liniową z iloczynem skalarnym. Udowodnij, że dla zbioru wektorów $U \subseteq V$ zachodzi

$$U^{\perp} = (\text{LIN}(U))^{\perp} \quad \text{oraz} \quad (U^{\perp})^{\perp} = \text{LIN}(U) .$$

Zadanie 6. Udowodnij, że w przestrzeni $\mathbb V$ nad $\mathbb R$ z iloczynem skalarnym dla dowolnej pary wektorów $\vec u, \vec v$ zachodzi

$$||\vec{u}|| = ||\vec{v}|| \iff (\vec{u} - \vec{v}) \perp (\vec{u} + \vec{v})$$
.

Zapewne znasz ten fakt jako "przekątne rombu są do siebie prostopadłe".

Zadanie 7 (Macierz Grama). Zdefiniujmy macierz Grama układu wektorów $\{\vec{v}_1, \dots, \vec{v}_k\}$ w przestrzeni \mathbb{V} wymiaru k z iloczynem skalarnym jako

$$G(\{\vec{v}_1,\ldots,\vec{v}_k\}) = (\langle \vec{v}_i,\vec{v}_j\rangle)_{i,j=1,\ldots,k}.$$

Niech $B = b_1, \ldots, b_k$ będzie bazą ortonormalną \mathbb{V} . Zdefiniujmy macierz $A = [(\vec{v}_1)_B \mid (\vec{v}_2)_B \mid \ldots \mid (\vec{v}_k)_B]$, tj. macierz, której j-ta kolumna to wektor z \mathbb{R}^n będący wyrażeniem \vec{v}_j w bazie B. Pokaż, że

$$G(\{\vec{v}_1,\ldots,\vec{v}_k\})=A^TA.$$

Korzystając z tej reprezentacji udowodnij, że

- $\det(G(\{\vec{v}_1,\ldots,\vec{v}_k\}))$ jest nieujemny
- $\det(G(\{\vec{v}_1,\ldots,\vec{v}_k\}))=0$ wtedy i tylko wtedy, gdy $\{\vec{v}_1,\ldots,\vec{v}_k\}$ jest liniowo zależny.

Komentarz: Założenie, że wymiar przestrzeni i liczba wektorów w układzie są takie sama nie jest potrzebne, ale ułatwia rachunki.

Zadanie 8. Niech $B = \vec{v}_1, \dots, \vec{v}_n$ będzie bazą ortonormalną \mathbb{V} a $\vec{v} \in \mathbb{V}$ dowolnym wektorem w \mathbb{V} . Pokaż, że jeśli $(\vec{v})_B = (\alpha_1, \dots, \alpha_n)^T$ to

$$||\vec{v}|| = \sqrt{\sum_{i=1}^{n} \alpha_i^2} .$$

Zadanie 9 (Nierówność Bessela; równość Parsevala). Niech $\{\vec{e}_1,\ldots,\vec{e}_k\}$ będą układem ortonormalnym, tj.:

- $\forall i \langle \vec{e_i}, \vec{e_i} \rangle = 1;$
- $\forall i \neq j \langle \vec{e_i}, \vec{e_j} \rangle = 0.$

(Nie zakładamy, że jest baza).

Pokaż, że dla dowolnego wektora v:

$$\sum_{i=1}^{k} |\langle \vec{e_i}, v \rangle|^2 \le ||\vec{v}||^2.$$

Co więcej, $\{\vec{e}_1,\ldots,\vec{e}_k\}$ jest bazą wtedy i tylko wtedy, gdy dla każdego \vec{v} zachodzi równość.

Zadanie 10. Niech \mathbb{V} będzie przestrzenią liniową z iloczynem skalarnym nad ciałem \mathbb{R} , zaś $\mathbb{V}_1, \mathbb{V}_2 \leq \mathbb{V}$ jej podprzestrzeniami (z tym samym iloczynem skalarnym). Pokaż, że:

- $\mathbb{V}_1 \leq \mathbb{V}_2 \iff \mathbb{V}_1^{\perp} \geq \mathbb{V}_2^{\perp}$,
- $(\mathbb{V}_1 + \mathbb{V}_2)^{\perp} = \mathbb{V}_1^{\perp} \cap \mathbb{V}_2^{\perp}$,
- $\bullet \ (\mathbb{V}_1 \cap \mathbb{V}_2)^{\perp} = \mathbb{V}_1^{\perp} + \mathbb{V}_2^{\perp}.$

Zadanie 11 (* nie liczy się do podstawy; w sumie łatwe, ale coś musi mieć gwiazdkę...). Niech $\mathbb V$ będzie przestrzenią liniową nad $\mathbb R$ a $\langle\cdot,\cdot\rangle$ będzie iloczynem skalarnym na tej przestrzeni. Niech $B=\vec b_1,\ldots,\vec b_n$ będzie bazą ortonormalną $\mathbb V$ a $P:\mathbb V\to\mathbb V$ rzutem prostopadłym na podprzestrzeń jednowymiarową $\mathbb W\leq\mathbb V$.

Pokaż, że suma kwadratów długości rzutów prostopadłych wektorów z B na $\mathbb W$ wynosi 1, tj.:

$$\sum_{i=1}^{n} \|P\vec{b}_i\|^2 = 1 .$$

Wskazówka: Wyraż rzut przez bazę ortonormalną W.