中国科学技术大学2019-2020学年秋季学期 数学分析A1 期中考试试卷

考试时间: 2019年11月9日下午2:30—4:30

		1 1 2.00 4.00	
姓名:	学号:		_ 得分:
一、(10分)			得分
设实数4属于开区间(-1	., 1). 请用 $\epsilon-N$ 语言证明	$\lim_{n\to\infty}q^n=0$	
	0.000		
二、(10分)			得分
请用 $\epsilon - \delta$ 语言证明 \lim_x	$\rightarrow 3 (x^2 + 4x) = 21.$		
三、(10分)			得分
设μ为正常数. 请问函数由.	$\mathcal{L}f(x) = \begin{cases} x ^{1+\mu} \cos \frac{1}{x}, \\ 0, \end{cases}$	$x \neq 0$, 是否 $x = 0$,	在x = 0处可导? 并说明理
四、(共30分,每题6分)要求	完整解答过程.		得分
			14 11
(1). 求函数极限 lim _{x→+∞} (,		
(2). 设函数 $f(x) > 0$ 且在			二阶导数;
(3). 求数列极限 $\lim_{n\to\infty}$	$\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdots\left(1-\frac{1}{3^2}\right)$	$\left(1-\frac{1}{n^2}\right)$.	
(4). 求数列极限 lim _{n→∞} (c	,		
(5). 求函数极限 lim cos	$\frac{(\sin x) - \cos x}{x^4}.$		
金 (8分)			得分
设函数 $f(x)$ 在 $[a,b]$ 上连续	, 对于任意的x ₁ ,x ₂ ∈ [d	1, b]满足:	
	$ f(x_1)-f(x_2) \leq (x$	$(1-x_2)^2$.	
证明: f(x)在[a,b]上是常值函	数。		

六、(8分)

设函数f(x)在[0,1]内连续,(0,1)上可导,且f(1)=2f(0). 证明:存在 $\xi\in(0,1)$ 使得

七、(8分)

设函数f在(0,1)上连续.证明:f在(0,1)上一致连续当且仅当 $f(0^+)$ 与 $f(1^-)$ 都存在且有限。

八、(8分)

设函数f(x)在(a,b)上二阶可导,且存在 $\xi \in (a,b)$ 使得 $f''(\xi) \neq 0$. 证明: 在区间(a,b)中可以找出两个值 x_1 和 x_2 满足

 $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi).$

九、(8分)

称形如g(x) = ax + b(其中a, b)常数)的函数为一次函数. 证明: 定义在区间I上的函数f为 凸函数的充分必要条件是: 对于任意I的内部的点 x_0 , 存在一次函数g使得在I上 $g \leq f$ 巨成立并且 $f(x_0) = g(x_0)$.

附加题、(12分)

得分

称实数x为函数 $f: \mathbb{R} \to \mathbb{R}$ 的可去不连续点,是指f在x处的极限存在有限但不等于f(x). 称 $|f(x) - \lim_{y \to x} f(y)|$ 为f的可去不连续点x的避跃.

A1. 设x为f的可去不连续点,且其跳跃大丁等丁某个正数 δ . 证明: 存在x的邻域 U_x 使得对于任意 $y, z \in U_x - \{x\}$ 都有

$$|f(y)-f(z)|<\delta/8, |f(y)-f(x)|>\delta/2.$$

A2. 在A1的设定下,证明:除了x之外,在 U_x 中不存在其他跳跃 $\geq \delta$ 的可去不连续点.

A3. 证明f的可去不连续点全体为至多可数集合.