通信电路 第三周作业 Cadence 报告

刘开济

2019010973

1 用有源电路实现 Butterworth Low Pass Filter

首先考察原形滤波器如下图:

图 1: 原形低通滤波器

记 R_S 上电压为 V_1 ,输出电压为 V_2 ,并记源电压为 V_s ,则不难得到积分电路方程:

$$V_1 = \frac{1}{s(\frac{L}{R^2}R)}(V_s - V_1 - V_2) \tag{1}$$

$$V_2 = \frac{1}{sCR}(V_1 - V_2) \tag{2}$$

由积分电路方程不难设计如下电路:

图 2: 有源低通滤波器

初始设置取 OPA 电压增益 $A_v=1000000$,输入电阻 $r_{in}=1M\Omega$,输入电阻 $r_{out}=1\Omega$,单位增益频点 $f_{unity\ gain}=1MHz$ 。这里我们要说明,对于单极点运放,有 $f_{unity\ gain}=\frac{1}{R_nC_n}$ 。有仿真图像如下:

图 3: 初始仿真图像

分别考察 $f_1 = 3kHz$ 与 $f_2 = 35kHz$,不难验证满足需求。现在我们改变一些参量,观察其幅频特性的变化。

(a) 电压增益 $A_v=10$

(b) 电压增益 $A_v = 1000G$

图 4: 修改电压增益后的幅频特性

(a) 单位增益频点 $f_{unity\ gain} = 100 Hz$

(b) 单位增益频点 $f_{unity\ gain} = 100 GHz$

图 5: 修改单位增益频点后的幅频特性

(a) 输入电阻 $r_i=10\Omega$

(b) 输入电阻 $r_i = 100G\Omega$

图 6: 修改输入电阻后的幅频特性

(a) 输出电阻 $r_o=1k\Omega$

(b) 输入电阻 $r_o = 1G\Omega$

图 7: 修改输出电阻后的幅频特性

2 CS、CD、CG、cascode 放大器电压增益分析

(a) CS 组态放大器

(b) CG 组态放大器

(c) CD 组态放大器

(d) cascode 放大器

图 8: 四种基本放大器

(a) CS 组态放大器直流工作点

(c) CD 组态放大器直流工作点

(b) CG 组态放大器直流工作点

(d) cascode 放大器直流工作点

图 9: 四种基本放大器直流工作点分析

(a) CS 组态放大器交流增益

(c) CD 组态放大器交流增益

(d) cascode 放大器交流增益

图 10: 四种基本放大器交流增益分析