Задача 3 (семинар 21.03.2016)

Нам дана последовательность a[1..n]. Обозначим len_i — длина НВП префикса a[1..i] заканчивающейся в a_i , num_i — число таких НВП.

$$len_0 = 0, num_0 = 1$$
$$len_i = 1 + \max_{\substack{j < i \\ a_j < a_i}} (len_j)$$

 num_i — число j < i, таких что $a_j < a_i$ и $len_j + 1 = len_i$

Будем считать len и num используя дерево Фенвика, причём обрабатывать индексы мы будем в порядке возрастания a_i . Заведём два массива maxlen и sumnum:

$$maxlen_i = \max_{f(i) \le j \le i} (len_j)$$

$$sumnum_i = \sum_{\substack{f(i) \le j \le i \\ len_j = maxlen_i}} (num_j)$$

Пересчитывать maxlen и sumnum мы будем следующим образом: пусть у нас обновился len_i , тогда для $\mathrm{Bcex}\ j$, таких что $f(j) \leq i \leq j$ мы увеличиваем $sumnum_j$ на num_i если $maxlen_j = len_i$, в противном случае обновляем $maxlen_j$ и присваиваем $sumnum_j = 1$.

Теперь введём ещё два массива, \overline{len}_i — длина НВП суффикса a[i..n], начинающейся в a_i , \overline{num}_i — число таких НВП. Считаем их аналогично.

Обозначим за lcs_i число НВП длины l проходящих через a_i .

$$lcs_i = num_i \cdot \sum_{\substack{i < j \\ a_i < a_j \\ len_i + \overline{len}_j = l}} \overline{num}_j$$

Заметим, что для всех j>i $len_i+\overline{len}_j\leq l$ Таким образом, через a_i проходит хотя бы одна НВП $\iff l-len_i=\max_{\substack{i< j\\a_i< a_j}}(\overline{len}_j)$

Будем считать lcs используя дерево Фенвика. Опять же заведём два массива \overline{maxlen} и \overline{sumnum} . Обрабатывать индексы мы будем в порядке убывания a_i . Итак, обрабатываем индекс i. Вначале обновим \overline{len}_i и \overline{num}_i , аналогично тому, как мы это делали для len_i и num_i . Далее, нас интересует выражение $\sum_{len_i+\overline{len}_i=l} \overline{num}_j$ на суффиксе a[i+1..n]. В дереве Фенвика

каждый суффикс разбивается на $O(\log n)$ непересекающихся отрезков. Пробежимся по этим отрезкам и если $len_i + \overline{maxlen_j} = l$, то прибавим к текущей сумме $\overline{sumnum_j}$.

Итак, мы посчитали lcs_i , осталось только решить, какие же элементы у нас хорошие. Из предыдущей задачи мы нашли общее число НВП длины l, обозначим её all. Тогда позиция i — хорошая $\iff lcs_i = all$.