Team name: Contribution title

First Author $^{1[0000-1111-2222-3333]}$, Second Author $^{2,3[1111-2222-3333-4444]}$, and Third Author $^{3[2222-3333-4444-5555]}$

 Princeton University, Princeton NJ 08544, USA
 Springer Heidelberg, Tiergartenstr. 17, 69121 Heidelberg, Germany lncs@springer.com

http://www.springer.com/gp/computer-science/lncs

ABC Institute, Rupert-Karls-University Heidelberg, Heidelberg, Germany
{abc,lncs}@uni-heidelberg.de

Abstract. The abstract should briefly summarize the contents of your algorithm in 150–250 words.

Keywords: autoPET challenge · Second keyword · Another keyword.

1 Introduction

Please provide a brief background about the challenge and the conducted task.

2 Methods

Please describe in detail your submitted algorithm following the suggested subsections. In addition please fill out Table 1.

2.1 Data

Training data Please report which datasets were used for training (including the ones provided by the challenge).

Validation data Please report which datasets were used for validation.

- 2.2 Data pre-processing
- 2.3 Algorithm/model
- 2.4 Data post-processing

2.5 Training and test parameters

Please report the training parameters (learning rate, batch size, optimizer, scheduler, ...), training data augmentations and the test parameters (test time augmentation, ...).

2.6 Github repository

Link to Github repository:

3 Results

Please report the results for performing a 5-fold cross-validation split on your training data. If you use the provided autoPET training data, please refer to the "splits final.json" file.

4 Discussion

5 Conclusion

Acknowledgments. A bold run-in heading in small font size at the end of the paper is used for general acknowledgments, for example: This study was funded by X (grant number Y).

Disclosure of Interests. It is now necessary to declare any competing interests or to specifically state that the authors have no competing interests. Please place the statement with a bold run-in heading in small font size beneath the (optional) acknowledgments⁴, for example: The authors have no competing interests to declare that are relevant to the content of this article. Or: Author A has received research grants from Company W. Author B has received a speaker honorarium from Company X and owns stock in Company Y. Author C is a member of committee Z.

References

- 1. Author, F.: Article title. Journal 2(5), 99–110 (2016)
- 2. Author, F., Author, S.: Title of a proceedings paper. In: Editor, F., Editor, S. (eds.) CONFERENCE 2016, LNCS, vol. 9999, pp. 1–13. Springer, Heidelberg (2016). https://doi.org/10.10007/1234567890
- 3. Author, F., Author, S., Author, T.: Book title. 2nd edn. Publisher, Location (1999)
- Author, A.-B.: Contribution title. In: 9th International Proceedings on Proceedings, pp. 1–2. Publisher, Location (2010)
- $5.\ \ LNCS\ Homepage,\ http://www.springer.com/lncs,\ last\ accessed\ 2023/10/25$

⁴ If EquinOCS, our proceedings submission system, is used, then the disclaimer can be provided directly in the system.

Table 1. Algorithm details

Team name	algorithm name (as submitted on grand-challenge)	data pre-processing	data post- processing	training data augmentation
autoPET organizers	$nnunet_baseline$	Normalization	-	Random Brightness, Random Gamma, Random Rotation
autoPET organizers	interactive _baseline	Normalization		Flipping, Random Rotation
test time augmentation	ensembling (e.g. cross-validation, model ensemble,)	standardized framework? (e.g. nnUNet, MONAI,)	network architecture (e.g. UNet (3D))	loss
-	-	nnUNet v1 (3D)	UNet (3D)	DSC + CE
training data	data/model dimensionality and size (e.g. 2D: 128x128, 3D: 128x192x160,)	models (public available or own	GPU hardware for training	
1014 FDG + 597 PSMA PET-CT of autoPET	3D: 128x192x160	-	1x Nvidia V100	