Proves d'accés a la Universitat. Curs 2008-2009

Matemàtiques

Sèrie 4

Responeu a TRES de les quatre questions i resoleu UN dels dos problemes següents. En les respostes, expliqueu sempre què és el que voleu fer i per què.

Cada qüestió val 2 punts, i el problema, 4 punts.

Podeu utilitzar calculadora, però no es poden fer servir calculadores o altres aparells que portin informació emmagatzemada o que puguin transmetre o rebre informació.

QÜESTIONS

- 1. Donats el punt P = (1, 2, 3) i la recta $r : \frac{x-1}{2} = \frac{y+2}{3} = \frac{z-5}{-1}$:
 - a) Trobeu l'equació cartesiana (és a dir, de la forma Ax + By + Cz + D = 0) del pla π que passa per P i és perpendicular a la recta r.
 - **b**) Trobeu el punt de tall entre la recta r i el pla π . [1 punt per cada apartat]

2. Siguin
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 i $B = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

- *a*) Comproveu que la inversa de A és A^2 .
- **b**) Comproveu també que $A^{518} = B$.

[1 punt per cada apartat]

- 3. Considereu la funció $f(x) = \frac{x(a-x)}{a^3}$, amb a > 0.
 - *a*) Trobeu els punts de tall de la funció f(x) amb l'eix OX.
 - **b**) Comproveu que l'àrea del recinte limitat per la gràfica de la funció f(x) i l'eix d'abscisses no depèn del valor del paràmetre a.

[0,5 punts per l'apartat a; 1,5 punts per l'apartat b]

4. En la resolució pel mètode de Gauss d'un sistema de tres equacions amb tres incògnites ens hem trobat amb la matriu següent:

$$\begin{pmatrix}
3 & -5 & 2 & | & -5 \\
0 & 0 & 0 & | & 0 \\
0 & 3 & -6 & | & 6
\end{pmatrix}$$

- a) Expliqueu, raonadament, quin és el caràcter del sistema inicial.
- b) Si és compatible, trobeu-ne la solució.

[1 punt per cada apartat]

PROBLEMES

5. La gràfica de la funció $f(x) = \frac{3+x}{x}$, des de x = 1 fins a x = 4, és la següent:

- *a*) Calculeu l'equació de les rectes tangents a aquesta funció en els punts d'abscissa x = 1 i x = 3.
- **b**) Dibuixeu el recinte limitat per la gràfica de la funció i les dues rectes tangents que heu calculat.
- c) Trobeu els vèrtexs d'aquest recinte.
- d) Calculeu la superficie del recinte damunt dit.

[1 punt per l'apartat a; 0,5 punts per l'apartat b; 1 punt per l'apartat c; 1,5 punts per l'apartat d]

6. Siguin *r* i *s* dues rectes de l'espai les equacions respectives de les quals, que depenen d'un paràmetre real *b*, són les següents:

$$r: \begin{cases} bx + y + 3z = 1 \\ x + 2y + 5z = 1 \end{cases}, \ s: \frac{x}{1} = \frac{y - b}{b + 1} = \frac{z + 1}{-1}$$

- *a*) Trobeu el punt de tall de la recta r amb el pla d'equació x = 0 i el punt de tall de la recta s amb aquest mateix pla.
- \boldsymbol{b}) Calculeu un vector director per a cada una de les dues rectes.
- c) Estudieu la posició relativa de les dues rectes en funció del paràmetre b.

[1 punt per l'apartat a; 1 punt per l'apartat b; 2 punts per l'apartat c]

Proves d'accés a la Universitat. Curs 2008-2009

Matemàtiques

Sèrie 3

Responeu a TRES de les quatre questions i resoleu UN dels dos problemes següents. En les respostes, expliqueu sempre què és el que voleu fer i per què.

Cada qüestió val 2 punts, i el problema, 4 punts.

Podeu utilitzar calculadora, però no es poden fer servir calculadores o altres aparells que portin informació emmagatzemada o que puguin transmetre o rebre informació.

QÜESTIONS

1. Considereu la matriu $A = \begin{pmatrix} 1 & 2 \\ a & b \\ b & a^2 \end{pmatrix}$. Trobeu els valors dels paràmetres a i b perquè

la matriu tingui rang 1.

[2 punts]

- 2. Considereu les corbes $y = 4x x^2$ i $y = x^2 6$.
 - a) Trobeu-ne els punts d'intersecció.
 - **b**) Representeu les dues corbes en una mateixa gràfica, on es vegi clarament el recinte que limiten entre elles.
 - c) Trobeu l'àrea d'aquest recinte limitat per les dues corbes.

[0,5 punts per l'apartat a; 0,5 punts per l'apartat b; 1 punt per l'apartat c]

- 3. Donat el sistema $\begin{cases} x + py = p \\ px + y = p \end{cases}$:
 - a) Discutiu-ne el caràcter en funció del paràmetre p.
 - **b**) Resoleu-lo quan p = 2.

[1,5 punts per l'apartat a; 0,5 punts per l'apartat b]

- **4.** Donats el pla π : x + 2y z = 0 i el punt P = (3, 2, 1):
 - a) Calculeu l'equació contínua de la recta r que passa per P i és perpendicular a π .
 - **b**) Calculeu el punt simètric del punt P respecte del pla π .

[1 punt per cada apartat]

PROBLEMES

- 5. Sigui la funció $f(x) = a + \frac{4}{x} + \frac{b}{x^2}$.
 - a) Calculeu els valors de a i b, sabent que la recta 2x + 3y = 14 és tangent a la gràfica de la funció f(x) en el punt d'abscissa x = 3.

Per a la resta d'apartats, considereu que a = -3 i que b = 4.

- \boldsymbol{b}) Trobeu els intervals de creixement i de decreixement de la funció f(x). Trobeu i classifiqueu els extrems relatius que té la funció.
- c) Calculeu els punts de tall de la funció f(x) amb l'eix OX.
- *d*) Trobeu l'àrea del recinte limitat per la gràfica de la funció f(x), l'eix OX i les rectes x = 1 i x = 3.

[1 punt per l'apartat a; 1 punt per l'apartat b; 0,5 punts per l'apartat c; 1,5 punts per l'apartat d]

- **6.** Siguin P = (3 2a, b, -4), Q = (a 1, 2 + b, 0) i R = (3, -2, -2) tres punts de l'espai \mathbb{R}^3 .
 - a) Calculeu el valor dels paràmetres a i b per als quals aquests tres punts estiguin alineats.
 - b) Trobeu l'equació contínua de la recta que els conté quan estan alineats.
 - c) Quan b = 0, trobeu els valors del paràmetre a perquè la distància entre els punts P i Q sigui la mateixa que la distància entre els punts P i R.
 - d) Si b = 0, calculeu el valor del paràmetre a perquè els punts P, Q i R determinin un triangle equilàter.

[1 punt per cada apartat]