front

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. $a\sqrt[n]{b} = \sqrt[n]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Inhaltsverzeichnis

fro	ront		
	Differentialrechnung 1.1 Ableitungen	1 1	
Aı	nhang	10	
\mathbf{Sc}	chlussteil	11	

Kapitel 1

Differentialrechnung

1.1 Ableitungen

def: Die Ableitung f'(x) einer Funktion gibt die Steigung dieser an einer Stelle x zurück:

Abbildung 1.1: Ableitungen-1.pdf Seite 1

$$Steigung = \frac{\Delta y}{\Delta x} \tag{1.1}$$

Wie können wir die Steigung bestimmen?

Abbildung 1.2: Ableitungen-1.pdf Seite 2

Steigung von f(x):

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 Differential quotient

Beispiel:

$$f(x) = x^2 (1.2)$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \tag{1.3}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - (x)^2}{h} \tag{1.4}$$

$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h} \quad | \text{ Binomische Formel}$$
 (1.5)

$$= \lim_{h \to 0} \frac{2xh + h^2}{h} \quad | x^2 - x^2 = 0 \tag{1.6}$$

$$= \lim_{h \to 0} \frac{h \cdot (2x+h)}{h} \quad | \ h \text{ ausklammern}$$
 (1.7)

$$= \lim_{h \to 0} \frac{\cancel{h} \cdot (2x+h)}{\cancel{h}} \quad | h \text{ kürzen}$$
 (1.8)

$$=\lim_{h\to 0}(2x+h)\tag{1.9}$$

$$=2x+0 \quad | h=0 \text{ einsetzen} \tag{1.10}$$

$$\Rightarrow f'(x) = 2x \tag{1.11}$$

$$f(x) = x^2 \Rightarrow f'(x) = 2x \tag{1.12}$$

Da das sehr aufwendig ist, gibt es einfachere Regeln um Ableitungen zu bestimmen: Ableitungsregel:

 $1.\ Potenzregel:$

$$f(x) = ax^n \quad , \ n \in \mathbb{R} \setminus \{0\}$$
 (1.13)

$$\Rightarrow f'(x) = n \cdot ax^{n-1}$$
 | "vom Exponenten fällt ein *n* vorne dran" (1.14)

Abbildung 1.3: Ableitungen-1.pdf Seite 4

Abbildung 1.4: Ableitungen-1.pdf Seite 5

Abbildung 1.5: Ableitungen-1.pdf Seite 6

Abbildung 1.6: Ableitungen-1.pdf Seite 7

Abbildung 1.7: Ableitungen-1.pdf Seite 8

Tabellenverzeichnis

Abbildungsverzeichnis

1.1	.1 Ableitungen-1.pdf Seite 1	
1.2	.2 Ableitungen-1.pdf Seite 2	
1.3	.3 Ableitungen-1.pdf Seite 4	
1.4	.4 Ableitungen-1.pdf Seite 5	
1.5	.5 Ableitungen-1.pdf Seite 6	
1.6	.6 Ableitungen-1.pdf Seite 7	
1.7	.7 Ableitungen-1.pdf Seite 8	

Anhang

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. $a\sqrt[n]{b} = \sqrt[n]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Schlussteil

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. $a\sqrt[n]{b} = \sqrt[n]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin \vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.