Quiz 4 EECE4040 Fall 2022

Due Feb 7 at 11:59pm

Points 10

Questions 10

Available Feb 7 at 10am - Feb 7 at 11:59pm about 14 hours

Time Limit 15 Minutes

This quiz was locked Feb 7 at 11:59pm.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	13 minutes	7 out of 10

Score for this quiz: **7** out of 10 Submitted Feb 7 at 10:58pm This attempt took 13 minutes.

 $n+2n^2+3n^3+\cdots+100n^{100}$ is a polynomial of degree n with highest degree term $100n^{100}$

Therefore correct answer is $\sim 100 n^{100}$

Question 2

1 / 1 pts

$$1^{100} + 2^{100} + 3^{100} + \cdots + n^{100} \sim$$

- $0.01n^{101}$
- $\frac{n^{100}}{100}$
- $0.00n^{100}$
- n^{100}

Correct!

$$1^k + 2^k + 3^k + \dots + n^k \ \sim rac{n^{k+1}}{k+1}$$

substituting k = 100 we obtain

$$1^{100} + 2^{100} + 3^{100} + \dots + n^{100} \sim rac{n^{101}}{101}$$

Question 3

1 / 1 pts

 $\log n!$ has order

Correct!

- $\log n$
- $n^2 \log n$
- $(\log n)^2$

Question 4

1 / 1 pts

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots + \frac{1}{n^2 - 1} + \frac{1}{n^2}$$

Correct!

- \bigcirc $\sim 2 \ln n$
- $\sim \ln n$
- $\sim 4 \ln n$
- $0 \sim n \ln n$
- \circ $\sim \log_2 n$

$$1 + rac{1}{2} + rac{1}{3} + \cdots + rac{1}{n} + \cdots + rac{1}{n^2-1} + rac{1}{n^2} \sim \ln n^2 \sim 2 \ln n$$

Question 5

1 / 1 pts

An algorithm has polynomial time means

Correct!

Correct!

- \bigcirc $W\left(n
 ight) \in O\left(n^{k}
 ight)$ for some constant k
- $\bigcirc \ B\left(n
 ight) \in O\left(n^{k}
 ight) \ ext{ for some constant } k$
- $\bigcirc \ A\left(n
 ight) \in \Theta \left(n^{k}
 ight)$ for some constant k
- $\bigcirc W(n)$ is a polynomial
- $\bigcirc \ W\left(n
 ight) \in \Theta\left(n^{k}
 ight)$ for some constant k

Question 6	1 / 1 pts
Which algorithm is not in-place?	
Mergesort	
○ Insertion Sort	
Bubble Sort	
Selection Sort	
Quicksort	

Question 7 1 / 1 pts

The recurrence relation for the worst-case complexity of Mergesort, assuming n is a power of 2, is given by

$$\bigcirc W(n) = W\left(\frac{n}{2}\right) + 1, \quad W(1) = 0$$

$$\bigcirc W\left(n
ight) =2W\left(n-1
ight) +1,\ W\left(1
ight) =\ 0$$

$$\bigcirc W(n) = W\left(\frac{n}{2}\right) + n - 1, \quad W(1) = 0$$

$$\bigcirc W(n) = 2W\left(rac{n}{2}
ight) + \log_2 n, \ \ W(1) = 0$$

Correct!

$$extstyle W\left(n
ight)=2W\left(rac{n}{2}
ight)+n-1, \ \ W\left(1
ight)=\ 0$$

Question 8 $1/1 \, \text{pts}$ The worst-case complexity of Quicksort has order $n \log n$ $n^2 \log n$ $(\log n)^2$ n^2

Question 9 0 / 1 pts

A node in a complete binary tree implemented using an array has index 100. The indices of the parent, left child, right child are respectively

orrect Answer

Correct!

- 0 49, 201, 202
- 0 101, 102, 103

ou Answered

9, 200, 201

0 101, 201, 202

0 50, 201, 202

For index I the indices of the parent, left-child, right-child are given by $\lfloor \frac{(I-1)}{2} \rfloor, \ 2I+1, \ 2I+2$

Substituting I = 100 we obtain

$$\lfloor \frac{(100-1)}{2} \rfloor \ = 49, \ 2 \times 100 + 1 \ = \ 201, \ 2 \times 100 + 2 \ = \ 202$$

	Question 10	0 / 1 pts
	The copy constructor and destructor in C++ can be implement respective traversals	using the
	Inorder and Preorder	
	Preorder and Inorder	
	O Postorder and Preorder	
ou Answered	■ Inorder and Postorder	
orrect Answer	Preorder and Postorder	

Quiz Score: 7 out of 10