Problem 1

- a. Maximum of 2 (diagonal), -4 (vertical) and -11 (horizontal)
- b. 2

- d. (i) 4
 - (ii) ttcag taca-

Problem 2

- a. 5
- b. h a t e a s t

		h	a	t
	0 _	→ -4 <u></u>	→ -8 -	→ -12
e	-4 🗸	² -1 =	-5	3 -9
a	-8	-5	⁴ 4 ×	$\rightarrow 0$
S	-12 V	<u>→</u> -9 🗸	40	4 3
t	-16 √	<u></u> -13 ₩	V -4	4 5

Note: For problems 3 and 4, (a) and (b) should have read as follows:

- a. What is the optimal semi-global alignment score?
- b. What is the optimal semi-global alignment?

I apologize if this caused any confusion. As a result, I will only look at your dynamic programming matrix and you will not be graded on your answers to (a) and (b)

Problem 3

a. 11

b. - a c a c t a c - c

		t	a	c	c
	0 \	0 \	0	0 <	0
a	0 \	-1	² 5 ₁ =	→ 1	-1
С	0 \	-1	1 ^V	¹ 10 ₁	6
a	0 \	-1	4	6	9
С	0	-1	4	9	11

Problem 4

a. 5 points

b. tataca-ag

		С	a	a	g
	0 <	0	0	0	0
t	0	² -1	→ -1 <	→ -1	-1
a	0	→ -1	4	<u> 4</u> −	$\rightarrow 0$
t	0	⁴ -1 ∖	√ 0 <	3	3
a	0	-1	4	²⁴ 5	2

Problem 5

		t	О	e
	0	0	0	0
S	0 \	0	0	0
t	0	5/	$\rightarrow 1$	0
e	0	1 ^V	4_	³ 6
р	0	0	0	1 3
S	0	0	0	0

Alignment is: t - e t o e

Note: for *local* alignment, traceback begins with the highest scoring value <u>anywhere</u> in the matrix, and stops at 0. For example, the optimal local alignment score between *toer* and *steps* is also 6 and yields the same alignment as above.

		t	0	e	r
	0	0	0	0	0
S	0 \	0	0	0	0
t	0	³ 51 <	$\rightarrow 1$	0	0
e	0	1 🔻	4	4 16 +	$\rightarrow 2$
р	0	0	0	√ 2 \	15
S	0	0	0	0	YV 1