Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

CUNY Graduate Center/Hunter College

Friday April 24th 2015

Motivation Behind Quantum Info Science

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

- When quantum information is received, the text must be read out.
- Applications to quantum cryptography.
- Quantum Simulations.

Quantum State Discrimination: 2 pure states

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

Two non-orthogonal pure states can be represented in 2D

Figure: 2 pure states,

$$|\psi_1\rangle = \cos\theta \, |0\rangle + \sin\theta \, |1\rangle \qquad |\psi_2\rangle = \cos\theta \, |0\rangle - \sin\theta \, |1\rangle$$

Quantum State Discrimination: 2 pure states

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

• Two detectors Π_1 and Π_2 which unambiguously detect the two pure states. The detectors span the Hilbert space:

$$\Pi_1 + \Pi_2 = I \tag{1}$$

• Π_i only clicks for $|\psi_i\rangle$ $i=1,\,2$, such that $\Pi_i\,|\psi_j\rangle=0$, $i\neq j$

$$\langle \psi_1 | (\Pi_1 + \Pi_2) | \psi_1 \rangle = \langle \psi_1 | \psi_1 \rangle$$

 $p_1 = 1$

• Similarly it can be shown that $p_2=1$. However multiplying Eq. (1) l.h.s by $\langle \psi_1|$ and r.h.s by $|\psi_2\rangle$:

$$\langle \psi_1 | (\Pi_1 + \Pi_2) | \psi_2 \rangle = \langle \psi_1 | \psi_2 \rangle$$

$$0 = \langle \psi_1 | \psi_2 \rangle$$

Unambiguous Discrimination

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

 Unambiguous State Discrimination is still possible if a third detector is added:

$$\Pi_1 + \Pi_2 + \Pi_0 = I \tag{2}$$

• The condition $\Pi_i |\psi_j\rangle = 0$ still holds. Multiplying 2 by $\langle \psi_i|$ from l.h.s and $|\psi_i\rangle$:

$$\langle \psi_i | (\Pi_1 + \Pi_2 + \Pi_0) | \psi_i \rangle = \langle \psi_i | \psi_i \rangle,$$

 $p_i + q_i = 1,$

where: p_i rate of successfully identifying the state, q_i failure rate.

• The task is to minimize the average failure rate: $Q = \eta_1 q_1 + \eta_2 q_2$, η_i the prior rates of input states.

Unambiguous Discrimination

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

Figure: UD with three detectors

• The optimum Q is found to be: $Q_0^{IDP}=2\sqrt{\eta_1\eta_2}s$

Minimum Error

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

• The detectors can make a mistake, but are not allowed to abstain from giving an answer.

$$\Pi_1 + \Pi_2 = I \tag{3}$$

Multiplying Eq. (3) by $\langle \psi_i |$ from l.h.s and r.h.s by $|\psi_i \rangle$: $\langle \psi_i | (\Pi_1 + \Pi_2) | \psi_i \rangle = \langle \psi_i | \psi_i \rangle \Rightarrow p_i + r_i = 1$

- r_i error rate, q_i failure rate.
- Minimize the average error rate[1]: $P_E^{min} = \eta_1 r_1 + \eta_2 r_2 = \frac{1}{2} \left[1 \sqrt{1 4\eta_1 \eta_2 s} \right]$

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Figure: ME

Fixed Rate of Inconclusive Outcomes (FRIO)

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

Figure: FRIO: Error rate interpolates between 0, for failure rate $Q=Q_0$, and the Helstrom P_E for zero failure rate Q=0. The graph has prior probabilities $\eta_1=0.3,\ \eta_2=0.7$ and overlap s=0.2.

FRIO

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

The error rate in the Helstrom bound can be lowered if we relax a constrained and allow for some FRIO.

Bagan et al [2] solved the problem by defining: $I-\Pi_0\equiv\Omega$, then eliminating it by mult. l.h.s by $\Omega^{-1/2}$ and r.h.s by $\Omega^{-1/2}$

$$\Pi_1 + \Pi_2 = \Omega
\tilde{\Pi}_1 + \tilde{\Pi}_2 = I$$
(4)

where $\tilde{\Pi}_i \equiv \Omega^{-1/2} \Pi_i \, \Omega^{-1/2}$. The optimization to Eq. (4) is that of Helstrom with new normalized prior probabilities and normalized states:

$$\begin{split} \tilde{P}_E &= \frac{1}{2} \left[1 - \sqrt{1 - 4 \tilde{\eta}_1 \tilde{\eta}_2 |\langle \tilde{\psi}_1 | \tilde{\psi}_2 \rangle|^2} \right] \\ P_E^{min} &= \frac{1}{2} \left\{ (1 - Q) - \sqrt{(1 - Q)^2 - (Q_0 - Q)^2} \right\} \end{split}$$

Implementation of FRIO

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

Figure: Six-port interferometer

Choosing the basis of our Hilbert space: $a_1^\dagger\,|000\rangle=|100\rangle\equiv|1\rangle$ $a_2^\dagger\,|000\rangle=|010\rangle\equiv|2\rangle$.

Two non-orthogonal input states can be expressed as:

$$|\psi_1\rangle_{in} = |1\rangle, \ |\psi_2\rangle_{in} = \cos\theta|1\rangle + \sin\theta|2\rangle.$$

Unitary

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

In Schrodinger picture the input and output states are related by: $U\left|in\right>=\left|out\right>$.

$$U|1\rangle = \sqrt{p_1}|1\rangle + \sqrt{r_1}|2\rangle + \sqrt{q_1}|3\rangle$$

$$U(\cos\theta|1\rangle + \sin\theta|2\rangle) = \sqrt{r_2}|1\rangle + \sqrt{p_2}|2\rangle + \sqrt{q_2}|3\rangle$$

 $\begin{array}{ll} \text{where } p_i + q_i + r_i = 1. \\ \text{First column:} & \text{Second Column} \\ \langle 1|U|1\rangle = U_{11} = \sqrt{p_1} & U_{12} = \frac{\sqrt{r_2} - \sqrt{p_1}\cos\theta}{\sin\theta} \\ \langle 1|U|1\rangle = U_{11} = \sqrt{p_1} & U_{22} = \frac{\sqrt{p_2} - \sqrt{r_1}\cos\theta}{\sin\theta} \\ \langle 2|U|1\rangle = U_{21} = \sqrt{q_1}, & U_{32} = \frac{\sqrt{q_2} - \sqrt{q_1}\cos\theta}{\sin\theta} \end{array}$

Third Column calculated from unitary condition $U^{\dagger}U=I$.

Unitary

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

$$U = \begin{pmatrix} \sqrt{p_1} & \frac{\sqrt{r_2} - \sqrt{p_1} \cos \theta}{\sin \theta} & -\frac{\sqrt{\sin^2 \theta - p_1 - r_2 + 2\sqrt{p_1 r_2} \cos \theta}}{\sin \theta} \\ \sqrt{r_1} & \frac{\sqrt{p_2} - \sqrt{r_1} \cos \theta}{\sin \theta} & -\frac{\sqrt{\sin^2 \theta - r_1 - p_2 + 2\sqrt{p_2 r_1} \cos \theta}}{\sin \theta} \\ \sqrt{q_1} & \frac{\sqrt{q_2} - \sqrt{q_1} \cos \theta}{\sin \theta} & +\frac{\sqrt{\sin^2 \theta - q_1 - q_2 + 2\sqrt{q_1 q_2} \cos \theta}}{\sin \theta} \end{pmatrix}.$$

$$(5)$$

The coefficients r_i and p_i however are not determined in the Bagan solution. We solve the FRIO problem using Neumark setup.

Unitary

State Discrimination and Quantum Cloning: Optimization and Implementation

Quantum

Andi Shehu

$$U|1\rangle = \sqrt{p_1}|1\rangle + \sqrt{r_1}|2\rangle + \sqrt{q_1}|3\rangle$$
$$U(\cos\theta|1\rangle + \sin\theta|2\rangle) = \sqrt{r_2}|1\rangle + \sqrt{p_2}|2\rangle + \sqrt{q_2}|3\rangle$$

Optimization starts with six parameters $p_1, r_1, q_1, r_2, p_2, q_2$. The unitary condition $p_i + r_i + q_i = 1 \Rightarrow p_i = 1 - r_i - q_i$, reduces the problem into 4 independent variables The constraint from the inner product:

$$s = \sqrt{p_1 r_2} + \sqrt{p_2 r_1} + \sqrt{q_1 q_2}$$

= $\sqrt{r_2 (1 - r_1 - q_1)} + \sqrt{r_1 (1 - r_2 - q_2)} + \sqrt{q_1 q_2}$ (6)

eliminates one more variable, three independent variables left. The fixed average failure $Q=\eta_1q_1+\eta_2q_2$ further reduces the problem into two independent variables. Minimizing the average error rate $P_E=\eta_1r_1+\eta_2r_2$ subject to

Solution to Lagrange Multipliers

State Discrimination and Quantum Cloning: Optimization and Implementation

Quantum

Andi Shehu

To minimize $P_E(r_1, r_2)$:

- Set $dF_{(r_1,r_2,\lambda)}/dr_i$ to zero and solve for $r_i(\lambda)$
- Substitute $r_i(\lambda)$ into the constraint ??
 - Solve for λ
 - Substitute λ into $r_i(\lambda)$
 - Substitute $r_i(\lambda)$ into $P_E(r_1, r_2)$
- Optimize $P_E(r_1, r_2)$

$$r_{i} = \frac{1}{2} \left[\left(1 - \frac{Q}{2\eta_{i}} \right) - \frac{\left(1 - \frac{Q}{2\eta_{i}} \right) (1 - Q) - \frac{1}{2\eta_{i}} (Q_{o} - Q)^{2}}{\sqrt{(1 - Q)^{2} - (Q - Q_{o})^{2}}} \right],$$

$$(7)$$

$$p_{i} = \frac{1}{2} \left[\left(1 - \frac{Q}{2\eta_{i}} \right) + \frac{\left(1 - \frac{Q}{2\eta_{i}} \right) (1 - Q) - \frac{1}{2\eta_{i}} (Q_{o} - Q)^{2}}{\sqrt{(1 - Q)^{2} - (Q - Q_{o})^{2}}} \right].$$

Reck-Zeilinger Algorithm

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

- Any discrete finite-dimensional unitary operator can be can be constructed in the lab using optical devices.
- Following the Reck-Zeilinger algorithm the unitary calculated in (5) can be decomposed in terms of three beam splitters $U = M_1 M_2 M_3$ where: [3].

$$M_{1} = \begin{pmatrix} \sin \omega_{1} & \cos \omega_{1} & 0 \\ \cos \omega_{1} & -\sin \omega_{1} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$M_{2} = \begin{pmatrix} \sin \omega_{2} & 0 & \cos \omega_{2} \\ 0 & 1 & 0 \\ \cos \omega_{2} & 0 & -\sin \omega_{2} \end{pmatrix}$$

$$M_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sin \omega_{3} & \cos \omega_{3} \\ 0 & \cos \omega_{3} & -\sin \omega_{3} \end{pmatrix}.$$

Reck-Zeilinger Algorithm

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

The reflective and transmittance coefficients are calculated and expressed in terms of η_i , s, and FRIO Q.

$$\cos \omega_1 = \sqrt{\frac{r_1}{1 - Q/2\eta_1}} , \quad \sin \omega_1 = \sqrt{\frac{p_1}{1 - Q/2\eta_1}}$$

$$\cos \omega_2 = \sqrt{Q/2\eta_1}, \quad \sin \omega_2 = \sqrt{1 - Q/2\eta_1}$$

$$\cos \omega_3 = -\frac{\sqrt{Q/2\eta_2} - \frac{Q_o}{2\eta_1} \sqrt{Q/2\eta_2}}{\sqrt{(1 - Q/2\eta_1)(1 - Q_o^2/4\eta_1\eta_2)}}$$

$$\sin \omega_3 = \frac{\sqrt{1 - Q_o^2/4\eta_1\eta_2 - Q/(2\eta_1\eta_2) + QQ_o/(2\eta_1\eta_2)}}{\sqrt{(1 - Q/2\eta_1)(1 - Q_o^2/4\eta_1\eta_2)}}$$
 r_2 and r_3 are explicitly given in (7) and (8)

 r_i and p_i are explicitly given in (7) and (8).

Quantum Cloning

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

A different approach to state discrimination: Clone the states first then perform a measurement:

Given a state from a set of non-orthogonal quantum states $\{\ket{\psi_1}, \ket{\psi_2}\}$ make a large number of copies:

$$U |\psi_1\rangle |i\rangle^{N-1} = |\psi_1\rangle |\psi_1\rangle \dots |\psi_1\rangle = |\psi_1\rangle^{N}$$

$$U |\psi_2\rangle |i\rangle^{N-1} = |\psi_2\rangle |\psi_2\rangle \dots |\psi_2\rangle = |\psi_2\rangle^{N}$$

Now perform a measurement scheme: ME or UD

$$P_E = \frac{1}{2} \left[1 - \sqrt{1 - 4\eta_1 \eta_2 s^{2N}} \right]$$
 , $Q = 2\sqrt{\eta_1 \eta_2} s^N$

In the asymptotic limit the error rate and the failure rate reduce to zero

No-Cloning Theorem

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

It was shown by Wootters, Zurek [4] and Dieks [5] that deterministic quantum cloning is not possible. Imagine a unitary operator which would copy the state $|\psi_i\rangle$ into $|0\rangle$:

$$U|\psi_1\rangle|0\rangle = |\psi_1\rangle|\psi_1\rangle$$

$$U|\psi_2\rangle|0\rangle = |\psi_2\rangle|\psi_2\rangle \tag{9}$$

Inner product: $\langle \psi_2 | \psi_1 \rangle \langle 0 | 0 \rangle = |\langle \psi_2 | \psi_1 \rangle|^2 \Rightarrow s = s^2$. The condition can be satisfied only if s = 0, states are orthogonal, or s = 1, the two states are the same.

Beyond the no-cloning theorem

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

- M.Hillery and V. Bužek make approximate clones [6, 7, 8]!
- Two main quantum cloning machines (QCM): Universal and State Dependent
- Universal QCM: independent of the input
- State Dependent QCM: Probabilistic or Deterministic.
- Deterministic SD-QCM: produce approximate clones on demand while optimizing the fidelity between clones and input states.
- Probabilistic SD-QCM: produce exact clones with some rate of abstention.

Probabilistic SD-QCM

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

Given a pair non-orthogonal quantum states $\{|\psi_1\rangle,\,|\psi_2\rangle\}$ a probabilistic QCM produces $\{|\psi_1\rangle|\psi_1\rangle,\,|\psi_2\rangle|\psi_2\rangle\}$

$$\begin{array}{lcl} U|\psi_1\rangle|i\rangle & = & \sqrt{p_1}|\psi_1\rangle|\psi_1\rangle\,|1\rangle + \sqrt{q_1}|\Phi\rangle\,|0\rangle\,, \\ U|\psi_2\rangle|i\rangle & = & \sqrt{p_2}|\psi_2\rangle|\psi_2\rangle|1\rangle + \sqrt{q_2}|\Phi\rangle\,|0\rangle\,, \end{array}$$

$$p_i + q_i = 1.$$

Constraint from scalar product: $s = \sqrt{p_1 p_2} s^2 + \sqrt{q_1 q_2}$. Solution to equal priors [9]: $s = p s^2 + q \Rightarrow q = \frac{s}{1+s}$

State Separation

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

Probabilistic cloning as a special case of state separation

$$U|\psi_1\rangle|i\rangle = \sqrt{p_1}|\phi_1\rangle|\alpha\rangle + \sqrt{q_1}|\Phi\rangle|0\rangle,$$

$$U|\psi_2\rangle|i\rangle = \sqrt{p_2}|\phi_2\rangle|\alpha\rangle + \sqrt{q_2}|\Phi\rangle|0\rangle,$$
 (10)

The constraint: $s = \sqrt{p_1p_2}s' + \sqrt{q_1q_2}$. (1 to 2 exact cloning is equivalent to setting $s' = s^2$)

Optimize the average failure rate $Q = \eta_1 q_1 + \eta_2 q_2$, failure rate to separate the input states.

Figure: The input states $\{|\psi_1\rangle, |\psi_2\rangle\}$ are separated into a pair of

Geometric solution to state separation

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

Figure: Unitarity curves $s = \sqrt{p_1 p_2} \, s^{'} + \sqrt{q_1 q_2}$ the optimal straight segment $Q = \eta_1 q_1 + \eta_2 q_2$ and its normal vector (η_1, η_2) .

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

Parametrize the unitary constraint: $s = \sqrt{p_1 p_2} s' + \sqrt{q_1 q_2}$ using $p_1 p_1 = t^2$, $q_1 q_2 = z^2$. The condition becomes:

$$z = s - s't$$
, $0 \le t, z \le 1$, $0 \le s' \le s$.

From the first equation

$$t^2=(1-q_1)(1-q_2)=1+z^2-q_1-q_2.$$
 We now solve for q_1 (similarly for q_2) and obtain

$$q_{1,2} = \frac{1+z^2-t^2 \pm \sqrt{(1+z^2-t^2)^2-4z^2}}{2}.$$

• The condition $Q = \eta_1 q_1 + \eta_2 q_2$ becomes $2Q = 1 + z^2 - t^2 \pm (\eta_1 - \eta_2) \sqrt{(1 + z^2 - t^2)^2 - 4z^2}$. Solve for z^2

for
$$z^2$$

$$z^2 = \frac{2\eta_1\eta_2(1+\tau) - 1 + Q + \sqrt{(1-4\eta_1\eta_2)[(1-Q)^2 - 4}}{2\eta_1\eta_2}$$

$$\equiv \zeta(\tau)$$

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

The derivative $d\zeta/d\tau$ is immediate. We find that the extrema is located at

$$t_{\min} = \begin{cases} \sqrt{\left(1 - \frac{Q}{2\eta_1}\right)\left(1 - \frac{Q}{2\eta_2}\right)}, & \text{if} \quad 0 \leq Q \leq 2\eta_1 \\ 0, & \text{if} \quad 2\eta_1 < Q \leq 1. \end{cases}$$

The corresponding values of z are

$$z_{\min} = \left\{ egin{array}{ll} rac{Q}{2\sqrt{\eta_1\eta_2}}, & ext{if} & 0 \leq Q \leq 2\eta_1 \ \\ \sqrt{rac{Q-\eta_1}{\eta_2}}, & ext{if} & 2\eta_1 < Q \leq 1. \end{array}
ight.$$

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Andi Shehu

$$s'(t) = -\frac{dz}{dt} = -\frac{t\zeta'(t^2)}{\sqrt{\zeta(t^2)}}, \quad t_{\min} \le t \le 1 - Q,$$

and next ii. define

$$s(t) = z + ts'(t) = \sqrt{\zeta(t^2)} + ts'(t), \qquad t_{\min} \le t \le 1 - Q.$$

where

$$\zeta'(t^2) = 1 - \frac{\sqrt{1 - 4\eta_1\eta_2}}{\sqrt{(1 - Q)^2 - 4\eta_1\eta_2t^2}}$$

For $s < z_{\rm min}$ it is always possible to separate the initial states, i.e., $|\psi_1\rangle$ and $|\psi_2\rangle$ can be made orthogonal. We note that the condition $s=z_{\rm min}$ is equivalent to the unambiguous discrimination result

$$Q = 2\sqrt{\eta_1 \eta_2} s$$
, $Q = \eta_1 + \eta_2 s^2$.

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

Figure: s vs. s' for variant fixed Q. The plot is for $\eta_1=0.1$. As η_1 approaches 1/2 the curves approach a straight line. The difference is more noticeable for very small values of η_1 .

Conclusion

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

- Optical implementation to FRIO using a optical fibers, beam splitters and mirrors.
- The implementation scheme is readily realizable in a lab, all coefficients of beam splitters are explicitly calculated.
- Full geometric and parametric solution to state separation.
- Probabilistic exact cloning as a special case to state separation.

Quantum State Discrimination and Quantum Cloning: Optimization and Implementation

- Carl W. Helstrom.
 - Quantum detection and estimation theory.
 - Journal of Statistical Physics, 1(2):231–252, 1969.
- E. Bagan, R. Muñoz Tapia, G. a. Olivares-Rentería, and J. a. Bergou.
 - Optimal discrimination of quantum states with a fixed rate of inconclusive outcomes.
 - Physical Review A Atomic, Molecular, and Optical Physics, 86(4):1–5, 2012.
- Michael Reck and Anton Zeilinger.
 Experimental realization of any discrete unitary operator, 1994.
- W. K. Wootters and W. H. Zurek.
 A single quantum cannot be cloned, 1982.

