Шимопина Попина ИУ5-61Б

Задача №3. Для заданного набора данных произведите масштабирование данных (для одного признака) и преобразование категориальных признаков в количественные двумя способами (label encoding, one hot encoding) для одного признака. Какие методы Вы использовали для решения задачи и почему? Для студентов групп ИУ5-61Б, ИУ5Ц-81Б - для пары произвольных колонок данных построить график "Диаграмма рассеяния".

Импортируем библиотеки

```
In [1]:
```

```
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
from sklearn.preprocessing import StandardScaler, LabelEncoder, OneHotEncoder
```

Импортируем данные

```
In [2]:
```

```
df = pd.read_csv("states_all_extended.csv")
df.head()
```

Out[2]:

	PRIMARY_KEY	STATE	YEAR	ENROLL	TOTAL_REVENUE	FEDERAL_REVENUE	STATE_REVENUE	LOCAL_REVENUE	TOTAL_EXPE
0	1992_ALABAMA	ALABAMA	1992	NaN	2678885.0	304177.0	1659028.0	715680.0	2
1	1992_ALASKA	ALASKA	1992	NaN	1049591.0	106780.0	720711.0	222100.0	
2	1992_ARIZONA	ARIZONA	1992	NaN	3258079.0	297888.0	1369815.0	1590376.0	3
3	1992_ARKANSAS	ARKANSAS	1992	NaN	1711959.0	178571.0	958785.0	574603.0	1
4	1992_CALIFORNIA	CALIFORNIA	1992	NaN	26260025.0	2072470.0	16546514.0	7641041.0	27

5 rows × 266 columns

```
In [3]:
```

df.shape

Out[3]:

(1715, 266)

In [4]:

```
df.isnull().sum()
```

Out[4]:

```
PRIMARY_KEY
                           0
STATE
                           0
YEAR
                           0
ENROLL
                         491
TOTAL REVENUE
                         440
G08_AM_A_MATHEMATICS
                        1655
G08_HP_A_READING
                        1701
G08_HP_A_MATHEMATICS
                        1702
G08_TR_A_READING
                        1574
G08_TR_A_MATHEMATICS
                        1570
Length: 266, dtype: int64
```

In [5]:

```
print(df.columns)
```

Удаляем из названий колонок лишние пробелы если они есть

```
In [6]:
```

Масштабируем данные из колонок TOTAL_EXPENDITURE и TOTAL_REVENUE

In [7]:

```
plt.hist(df['TOTAL_EXPENDITURE'])
plt.show()
```


In [8]:

```
plt.hist(df['TOTAL_REVENUE'])
plt.show()
```


In [9]:

```
scaler = StandardScaler()
df['Scaled TOTAL_EXPENDITURE'] = scaler.fit_transform(df['TOTAL_EXPENDITURE'].values.reshape(-1, 1))
df['Scaled TOTAL_REVENUE'] = scaler.fit_transform(df['TOTAL_REVENUE'].values.reshape(-1, 1))
```

In [10]:

```
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
axs[0].hist(df['TOTAL_EXPENDITURE'])
axs[0].set_title('Исходный признак')
axs[1].hist(df['Scaled TOTAL_EXPENDITURE'])
axs[1].set_title('Масштабированный признак')
plt.show()
```


In [11]:

```
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
axs[0].hist(df['TOTAL_REVENUE'])
axs[0].set_title('Исходный признак')
axs[1].hist(df['Scaled TOTAL_REVENUE'])
axs[1].set_title('Масштабированный признак')
plt.show()
```


In [12]:

df.head()

Out[12]:

	PRIMARY_KEY	STATE	YEAR	ENROLL	TOTAL_REVENUE	FEDERAL_REVENUE	STATE_REVENUE	LOCAL_REVENUE	TOTAL_EXPE	
0	1992_ALABAMA	ALABAMA	1992	NaN	2678885.0	304177.0	1659028.0	715680.0	2	
1	1992_ALASKA	ALASKA	1992	NaN	1049591.0	106780.0	720711.0	222100.0		
2	1992_ARIZONA	ARIZONA	1992	NaN	3258079.0	297888.0	1369815.0	1590376.0	3	
3	1992_ARKANSAS	ARKANSAS	1992	NaN	1711959.0	178571.0	958785.0	574603.0	1	
4	1992_CALIFORNIA	CALIFORNIA	1992	NaN	26260025.0	2072470.0	16546514.0	7641041.0	27	
5 rows × 268 columns										

Label Encoder

In [13]:

```
le = LabelEncoder()
df['LE'] = le.fit_transform(df['STATE'])
```

In [14]:

```
le.classes_
```

Out[14]:

One Hot Encoder

```
In [15]:
```

```
ohe = OneHotEncoder()
ohe_data = ohe.fit_transform(pd.DataFrame(df['STATE']).values)
ohe_frame = pd.DataFrame(ohe_data.toarray(),
columns=ohe.categories_)
ohe_frame
```

Out[15]:

	ALABAMA	ALASKA	ARIZONA	ARKANSAS	CALIFORNIA	COLORADO	CONNECTICUT	DELAWARE	DISTRICT_OF_COLUMBIA	DODEA
0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
1710	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1711	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1712	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1713	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1714	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

1715 rows × 53 columns

In [16]:

df = pd.concat([df, ohe_frame], axis=1, join='inner')

In [17]:

df.head()

Out[17]:

	PRIMARY_KEY	STATE	YEAR	ENROLL	TOTAL_REVENUE	FEDERAL_REVENUE	STATE_REVENUE	LOCAL_REVENUE	TOTAL_EXPE
0	1992_ALABAMA	ALABAMA	1992	NaN	2678885.0	304177.0	1659028.0	715680.0	2
1	1992_ALASKA	ALASKA	1992	NaN	1049591.0	106780.0	720711.0	222100.0	
2	1992_ARIZONA	ARIZONA	1992	NaN	3258079.0	297888.0	1369815.0	1590376.0	3
3	1992_ARKANSAS	ARKANSAS	1992	NaN	1711959.0	178571.0	958785.0	574603.0	1
4	1992 CALIFORNIA	CALIFORNIA	1992	NaN	26260025.0	2072470.0	16546514.0	7641041.0	27

5 rows × 322 columns

localhost:8888/notebooks/rk1.ipynb#

Строим график "Диаграмма рассеяния" для колонок Scaled TOTAL_REVENUE и Scaled TOTAL_EXPENDITURE

In [18]:

```
plt.scatter(df['Scaled TOTAL_REVENUE'], df['Scaled TOTAL_EXPENDITURE'])
plt.xlabel('Scaled TOTAL_REVENUE')
plt.ylabel('Scaled TOTAL_EXPENDITURE')
plt.show()
```


In [19]:

```
df.head(10).to_numpy()
```

Out[19]:

Вывод

Для масштабирования данных я использовала метод StandardScaler, потому что он хорошо работает с нормально распределенными данными и не изменяет форму распределения данных.

Label Encoding преобразует категориальные значения в числовые, что упрощает работу с ними в алгоритмах машинного обучения, но может привести к некорректным результатам из-за создания линейной зависимости между категориями. One-Hot Encoding создает новые бинарные признаки для каждой категории, избегая проблемы линейной зависимости, но приводит к увеличению размерности данных.

In []: