

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ

KATEDRA INFORMATYKI STOSOWANEJ

Praca dyplomowa magisterska

Opracowanie prototypu interfejsu dla gier wykorzystujących pętlę afektywną

Development of a prototype interface for games based on the affective loop

Autor: Kamil Osuch Kierunek studiów: Informatyka

Opiekun pracy: prof. dr hab. inż. Grzegorz Jacek Nalepa

Uprzedzony o odpowiedzialności karnej na podstawie art. 115 ust. 1 i 2 ustawy z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (t.j. Dz.U. z 2006 r. Nr 90, poz. 631 z późn. zm.): "Kto przywłaszcza sobie autorstwo albo wprowadza w błąd co do autorstwa całości lub części cudzego utworu albo artystycznego wykonania, podlega grzywnie, karze ograniczenia wolności albo pozbawienia wolności do lat 3. Tej samej karze podlega, kto rozpowszechnia bez podania nazwiska lub pseudonimu twórcy cudzy utwór w wersji oryginalnej albo w postaci opracowania, artystycznego wykonania albo publicznie zniekształca taki utwór, artystyczne wykonanie, fonogram, wideogram lub nadanie.", a także uprzedzony o odpowiedzialności dyscyplinarnej na podstawie art. 211 ust. 1 ustawy z dnia 27 lipca 2005 r. Prawo o szkolnictwie wyższym (t.j. Dz. U. z 2012 r. poz. 572, z późn. zm.): "Za naruszenie przepisów obowiązujących w uczelni oraz za czyny uchybiające godności studenta student ponosi odpowiedzialność dyscyplinarną przed komisją dyscyplinarną albo przed sądem koleżeńskim samorządu studenckiego, zwanym dalej «sądem koleżeńskim».", oświadczam, że niniejszą pracę dyplomową wykonałem(-am) osobiście i samodzielnie i że nie korzystałem(-am) ze źródeł innych niż wymienione w pracy.

Spis treści

_			_		
1.	Wst	ęp			
2.	Info	formatyka afektywna			
	2.1.	Pętla afektywna	9		
	2.2.	Modele emocji	9		
	2.3.	Gry z pętlą afektywną	9		
3.	Spec	yfikacja komponentów interfejsu do rozpoznawania emocji	11		
	3.1.	Platformy pomiarowe	11		
	3.2.	Możliwe modele rozpoznawania emocji	11		
	3.3.	Narzędzia do budowy gier	11		
		3.3.1. Godot	11		
		3.3.2. Unity	11		
		3.3.3. Unreal Engine	11		
4.	Arch	chitektura			
	4.1.	Założenia architektury sprzętowej	13		
	4.2.	Garmin HRM-Run	13		
	4.3.	BITalino Revolution Kit	13		
	4.4.	Dualshock 4	13		
5.	Mec	hanizm predykcji emocji	15		
	5.1.	Zbiory danych	15		
	5.2.	Przetworzenie danych	15		
	5.3.	Wybór modelu	15		
6.	Impl	lementacja	17		
	6.1.	Podstawowe założenia	17		
	6.2.	Implementacja gry	17		
	6.3.	Odczyt danych fizjologicznych i zmian emocji	17		
	6.4.	Domknięcie pętli afektywnej	17		
7.	Bada	ania	19		

6 SPIS TREŚCI

	7.1.	Procedura eksperymentu	19
	7.2.	Uczestnicy	19
	7.3.	Analiza wyników	19
8.	Podsumowanie		21
	8.1.	Wnioski	21
	8.2.	Propozycje przyszłych prac	21

1. Wstęp

W ciągu ostatnich lat pojęcie sztucznej inteligencji przestało być tylko fenomenem, który dla większości społeczeństwa istniał pod postacią filmów lub powieści dotyczących maszyn posiadających świadomość. Od tamtego momentu człowiek zaczął znajdować zastosowanie sztucznej inteligencji w coraz większej liczbie dziedzin. Od maszyn przetwarzających w sposób automatyczny ogromne ilości informacji, aż po systemy gromadzące dane dotyczące użytkowników i na ich podstawie generują reguły, dzięki którym możliwe jest znalezienie rozwiązań i porad dopasowanych do danego użytkownika.

Co jest w tym wszystkim najistotniejsze, to fakt, że człowiek otacza się sztuczną inteligencją, nawet tego nie zauważając. Systemy rekomendujące, dopasowujące produkty z każdej tematyki do preferencji użytkowników [1], urządzenia nasobne monitorujące nasz stan zdrowia dzięki pomiarom parametrów życiowych i zbieraniu informacji na temat naszych nawyków [2], czy coraz popularniejsze systemy autonomicznej jazdy [3]. Sztuczna inteligencja z dnia na dzień coraz bardziej wnika w każdy aspekt życia człowieka.

Jednym z elementów, który odgrywa ważną rolę w życiu człowieka, a który coraz mocniej oparty jest o sztuczną inteligencję, są gry komputerowe. Choć początkowo były one traktowane wyłącznie jako rozrywka, to dziś coraz częściej są określane nawet jako pewna forma nauki konkretnych umiejętności [4]. Przykładem mogą być tutaj gatunek gier strategicznych, które uczą taktyki i zarządzania, a także gry logiczne pozwalające na rozwój logicznego myślenia. Warto tutaj wspomnieć także o grach poważnych [5], które nie skupiają się na aspektach rozrywkowych, a bardziej są formą edukacji i szkoleń przedstawionych w formie interaktywnej symulacji.

Pojęciem, które jest coraz szerzej widoczne w kontekście sztucznej inteligencji związanej przede wszystkim z tematyką komunikacji człowiek-komputer jest informatyka afektywna. Chociaż samo pojęcie istnieje już od ponad 20 lat [6], to dopiero w ciągu kilku ostatnich badania w tej tematyce stały się popularne [7]. Początkowo główną ideą tej dziedziny były systemy zbierające i analizujące dane na temat stanów emocjonalnych użytkowników. Ponieważ emocje nie mogą być kontrolowane poprzez działania człowieka, a jednocześnie można je opisać między innymi przy pomocy zmian fizjologicznych w ludzkim ciele, wykorzystanie informatyki afektywnej w systemach inteligentnych takich jak aplikacje rekomendujące czy systemy badające stan zdrowotny użytkowników pozwala na zwiększenie ich skuteczności działania.

W podobny sposób powstała próba powiązania dziedziny informatyki afektywnej z grami komputerowymi, tworząc nowy rodzaj gier, nazywanych grami afektywnymi. Główną ich ideą jest pomiar stanów

emocjonalnych wywoływanych na użytkowniku w trakcie rozgrywki oraz dostosowywanie gry w czasie rzeczywistym do odczytanych reakcji gracza, tak aby zwiększyć doznania płynące z gry [8]. Dzięki temu każda gra może zostać w pewien sposób spersonalizowana na podstawie indywidualnych cech użytkownika.

Celem pracy jest opracowanie prototypu dwuczęściowego interfejsu umożliwiającego pomiar sygnałów pozwalających na określenie zmian stanów emocjonalnych gracza. Interfejs ma posłużyć do opracowania prototypów gier zawierających pętlę afektywną. W skład interfejsu będą wchodzić:

- zbiór urządzeń umożliwiających pomiary sygnałów wykorzystanych do określenia zmian emocji gracza
- moduł przygotowany w środowisku do tworzenia gier, który na podstawie zgromadzonych z urządzeń pomiarowych sygnałów będzie określał stan emocjonalny i zachowania użytkownika

Ważnym elementem pracy jest stworzenie gry zawierającej pętlę afektywną [9], która będzie wykorzystywała przygotowany interfejs. Po wykryciu zachowań oraz zmian stanów emocjonalnych użytkownika, stan gry jest aktualizowany.

Niniejsza praca składa się z 8 rozdziałów. W rozdziale 2 zostały przedstawione podstawy teoretyczne dotyczące informatyki afektywnej. Szczególny nacisk położono na tematykę gier afektywnych, przedstawiając wybrane istniejące rozwiązania, problemy i kierunki badań z tego zakresu. Rozdział 3 zawiera przedstawienie oraz analizę dostępnych sprzętowych platform pomiarowych, możliwych mechanizmów wnioskowania oraz narzędzi wykorzystywanych do budowy gier komputerowych. Ważnym elementem jest przedstawienie wad i zalet każdego z rozwiązań w kontekście tematyki pracy. Rozdział 4 jest podsumowaniem analizy platform sprzetowych z poprzedniego rozdziału. Przedstawione tu zostały podstawowe założenia, jakie powinny być spełnione przez wybraną grupę urządzeń pomiarowych, a także definiuje sprzęt wybrany podczas końcowej implementacji. W rozdziale 5 opisany został proces budowy modelu do rozpoznawania emocji. Omówione zostały wybrane zbiory danych, sposób ich przetwarzania, oraz budowa i wybór końcowego modelu na podstawie działania z dostępnymi danymi. Rozdział 6 jest jedną z najistotniejszych części pracy. Przedstawiono w nim proces implementacji utworzonej gry komputerowej z petla afektywną. Skupiono się na opisie interfejsu łączącego rozwiązania wybrane w poprzednich rozdziałach i sposobie jego wykorzystania wewnątrz gry. Następnie przedstawione zostały mechaniki pokazujące, w jaki sposób przygotowany moduł może wpłynąć na rozgrywkę tak, by sprzężenie zwrotne mogło zostać zamknięte. W rozdziale 7 opisany został sposób ewaluacji stworzonego rozwiązania oraz charakterystyka i proces przeprowadzonych eksperymentów. Ostatni rozdział stanowi podsumowanie niniejszej pracy. Zawiera wnioski dotyczące przygotowanego projektu, jego mocne i słabe strony. Opisane zostały także możliwe kierunki dalszego rozwoju projektu.

2. Informatyka afektywna

Czym jest affective computing https://affect.media.mit.edu/pdfs/95.picard.pdf

2.1. Pętla afektywna

https://www.researchgate.net/publication/220962601_Affective_Loop_Experiences_-_What_Are_ They/link/0deec530769158251e000000/download Co to jest petla afektywna, jaki jest schemat petli

2.2. Modele emocji

Jakie mogą być modele, model russela, affective grid

2.3. Gry z pętlą afektywną

Jakie mogą być mechaniki (krótko), przykłady takich gier (proste - gry z wyborem wpływającym na rozgrywkę, złożone - Nevermind, Bring to Light)

https://www.researchgate.net/profile/Eva_Hudlicka/publication/228622615_Affective_computing_
for_game_design/links/02bfe50e1936ab5b93000000/Affective-computing-for-game-design.pdf/
https://www.gamesradar.com/horror-game-nevermind-uses-biometrics-sense-your-fear/
https://store.steampowered.com/app/636720/Bring_to_Light/

3. Specyfikacja komponentów interfejsu do rozpoznawania emocji

3.1. Platformy pomiarowe

Krótko o platformach (bitalino, empatica, cheststrapy), możliwościach

3.2. Możliwe modele rozpoznawania emocji

Opis modeli predykcji (random forest, extra trees, SVM, sieci neuronowe), krótko

3.3. Narzędzia do budowy gier

- 3.3.1. Godot
- 3.3.2. Unity
- 3.3.3. Unreal Engine

4. Architektura

4.1. Założenia architektury sprzętowej

Prostota w obsłudze, wygoda użytkownika

4.2. Garmin HRM-Run

Krótko o urządzeniu, co odczytujemy, dlaczego to a nie n.p. BITalino

4.3. BITalino Revolution Kit

Krótko o urządzeniu i możliwościach, dlaczego tylko EMG (elektrody, nadmiar kabli, ogólne wady i zalety)

4.4. Dualshock 4

krótko o urządzeniu, wykorzystanie akcelerometru do odczytu pobudzenia gracza

14 4.4. Dualshock 4

5. Mechanizm predykcji emocji

5.1. Zbiory danych

Jakie datasety, krótki opis

5.2. Przetworzenie danych

Opis preprocessingu, wykorzystane cechy

5.3. Wybór modelu

Ewaluacja w hyperopt, statystyki skuteczności, ostateczny wybór modelu

5.3. Wybór modelu

6. Implementacja

6.1. Podstawowe założenia

Krótki opis gry i podstawowych mechanik

6.2. Implementacja gry

Opis gry, które elementy za co odpowiadają

6.3. Odczyt danych fizjologicznych i zmian emocji

Opis elementów do odczytu emocji i EMG, odczyty z cheststrapa, komunikacja z serwerem

6.4. Domknięcie pętli afektywnej

Mechaniki, reakcja na konkretne emocje i odczyty z EMG, jak działa wersja bez emocji

7. Badania

7.1. Procedura eksperymentu

W jaki sposób przebiegał eksperyment

7.2. Uczestnicy

Opis uczestników, wiek, płeć, ewentualny stan zdrowotny

7.3. Analiza wyników

Jakie emocje były odczuwane i jak często, czy uczestnicy byli zainteresowani interfejsem, działaniem samej gry, czy zauważali mechaniki w zależności od odczuwanych emocji

20 7.3. Analiza wyników

8. Podsumowanie

- 8.1. Wnioski
- 8.2. Propozycje przyszłych prac

Bibliografia

- [1] Carlos A. Gomez-Uribe i Neil Hunt. "The Netflix Recommender System: Algorithms, Business Value, and Innovation". W: *ACM Trans. Manage. Inf. Syst.* 6.4 (grud. 2015), 13:1–13:19. ISSN: 2158-656X. DOI: 10.1145/2843948.
- [2] O. Amft. "How Wearable Computing Is Shaping Digital Health". W: *IEEE Pervasive Computing* 17.1 (2018), s. 92–98. ISSN: 1536-1268. DOI: 10.1109/MPRV.2018.011591067.
- [3] M. Dikmen i C. Burns. "Trust in autonomous vehicles: The case of Tesla Autopilot and Summon". W: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2017, s. 1093–1098. DOI: 10.1109/SMC.2017.8122757.
- [4] Sebastian Oberdörfer i Marc Erich Latoschik. "Develop your strengths by gaming: towards an inventory of gamificationable skills". W: *INFORMATIK 2013 Informatik angepasst an Mensch, Organisation und Umwelt*. Red. Matthias Horbach. Bonn: Gesellschaft für Informatik e.V., 2013, s. 2346–2357.
- [5] David R. Michael i Sandra L. Chen. "Serious Games: Games That Educate, Train, and Inform". W: (sty. 2006).
- [6] Rosalind W. Picard. *Affective Computing*. Cambridge, MA, USA: MIT Press, 1997. ISBN: 0-262-16170-2.
- [7] Gartner Inc. Hype Cycle for Emerging Technologies, 2018. Spraw. tech. 2018.
- [8] I. Kotsia, S. Zafeiriou i S. Fotopoulos. "Affective Gaming: A Comprehensive Survey". W: 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2013, s. 663–670. DOI: 10.1109/CVPRW.2013.100.
- [9] Kristina Höök. "Affective Loop Experiences What Are They?" W: czer. 2008, s. 1–12. DOI: 10.1007/978-3-540-68504-3_1.