Name:

Score: 0 / 20 points (0%)

Chapter 6 Review Quiz

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- 1. The process when an acid reacts with water is known as:
 - a. dissociation
 - b. acidification.
 - c. ionisation.
 - d. neutralisation.

ANSWER: C

The acid is a covalent molecular substance, so when it reacts with water ions are formed. This reaction is called ionisation.

POINTS: 0 / 1 **FEEDBACK:**

REF: 152

23 —

- 2. The process when a base reacts with water is known as:
 - a. dissociation.
 - b. acidification.
 - c. ionisation.
 - d. neutralisation.

ANSWER: A

An inorganic base is an ionic substance, so when a base dissolves in water it dissociates into a cation and anion.

0 / 1

FEEDBACK:

POINTS:

REF: 152

3. Which of the following acids are weak acids?

HCl CH₃COOH HF H₂SO₄

- a. HCl, CH₃COOH and H₂SO₄
- b. HCl and H₂SO₄
- c. CH₃COOH and HF.
- d. CH₃COOH and H₂SO₄

ANSWER: C

HCl and H₂SO₄ are strong acids while CH₃COOH and HF are weak acids.

POINTS: 0 / 1 **FEEDBACK: REF:** 152

- 4. Which of the following statements is correct?
 - a. All molecules in strong acids will dissociate.
 - b. All molecules in a strong base will dissociate.
 - c. All molecules in a strong base will ionise.
 - d. All molecules in a weak base will dissociate.

ANSWER: B

Acids ionise and bases dissociate. Strong means all molecules dissociate.

POINTS: 0 / 1 FEEDBACK: REF: 152

 ∞ —

- 5. Which of the following statements regarding the concentration and strength of solutions is correct?
 - a. A weak acid will produce more ions than a strong acid of the same concentration.
 - b. A dilute solution has more solute than solvent.
 - c. A concentrated strong acid will contain more ions than a dilute strong acid.
 - d. Weak acids are more dilute than strong acids.

ANSWER: C

A strong acid will produce more ions than a weak acid and a concentrated solution has more ions than a dilute solution.

POINTS: 0 / 1
FEEDBACK:
REF: 152

6. In the reaction:

$$NH_3 + H_2O f NH_4^+ + OH^-$$

- a. NH₃ is an acid.
- b. H₂O is an acid.
- c. NH₄⁺ is a base.
- d. neither NH₃ nor H₂O are bases.

ANSWER: B

H₂O is an acid because it donates a proton to NH₃.

POINTS: 0/1
FEEDBACK:
REF: 153

7. In the reaction:

$$CO_3^{2-} + H_2O fOH^- + HCO_3^-$$

- a. CO_3^{2-} is an acid.
- b. OH⁻ is a conjugate base.
- c. H₂O is a base.
- d. HCO_3^- is a conjugate base.

ANSWER: B

H₂O is acting as an acid donating a proton thus producing its conjugate base

 OH^- .

POINTS: 0 / 1 **FEEDBACK:**

REF: 153

X

8. Which acid—conjugate base pair is correct?

- a. H_3O^+, H_2O
- b. HSO_4^- , H_2SO_4
- c. OH⁻, H₂O
- d. SO_4^{2-}, H_2SO_4

ANSWER: A

When H₃O⁺ donates a proton, it produces the conjugate base H₂O is the result.

POINTS: 0 / 1

FEEDBACK:

REF: 157

- 9. Which of the following is not a polyprotic acid?
 - a. H_2SO_4
 - b. CH₃COOH
 - c. H₂CO₃
 - d. H_3PO_4

ANSWER: B

CH₃COOH has only one proton, which can be donated.

POINTS: 0/1

FEEDBACK:

REF: 157

- ____ 10. In pure water, the value of the ionic product, $K_{\rm w}$ is numerically equal to:
 - a. $[H_3O^+][OH^-]/[H_2O]$
 - b. [H₂O] / [OH⁻] [H₃O⁺]
 - c. $[H_3O^+]^2$
 - d. $[H_3O^+][OH^-]^2$

ANSWER: C

 $K_{\rm w} = [{\rm H}_{\rm 3}{\rm O}^+] [{\rm OH}^-]$ and in pure water $[{\rm H}_{\rm 3}{\rm O}^+] = [{\rm OH}^-]$

POINTS: 0/1

FEEDBACK:

REF: 159

- 11. The concentration of hydrogen ions in a 2 mol L^{-1} solution of NaOH is:
 - a. $2 \text{ mol } L^{-1}$
 - b. $5 \text{ mol } L^{-1}$
 - c. $2 \times 10^{-15} \text{ mol L}^{-1}$
 - d. $5 \times 10^{-15} \text{ mol L}^{-1}$

ANSWER: D

NaOH is a strong base so $[OH^{-}] = 2 \text{ mol } L^{-1}$, so $[H^{+}] = 10^{-14}/2$

POINTS: 0 /

FEEDBACK:

REF: 160

- _ 12. What is the pH of a 1.2 mol L^{-1} solution of HNO₃?
 - a. 1.2
 - b. 0.079
 - c. -0.079
 - d. -1.2

ANSWER: C

 $pH = -log[H^+] = -log(1.2) = -0.079$

POINTS: 0/1

FEEDBACK:

REF:

- 13. The concentration of hydroxide ions in a solution of pH 5.4 is:
 - a. $2.51 \times 10^{-9} \text{ mol } L^{-1}$
 - b. $3.98 \times 10^{-6} \text{ mol L}^{-1}$
 - c. $5.4 \times 10^{-6} \text{ mol } L^{-1}$
 - d. $2.51 \times 10^5 \text{ mol L}^{-1}$

ANSWER: A

$$pH = 5.4$$
, $pOH = 14 - 5.4 = 8.6$ so $[OH^{-}] = 10^{-8.6} = 2.51 \times 10^{-9}$ mol L^{-1}

POINTS: 0 /

FEEDBACK: REF: 162

- _ 14. The percentage ionisation of a 0.1 mol L^{-1} solution of acetic acid that has a pH of 2.876 is:
 - a. 1.33%
 - b. 3.4%
 - c. 10.0%
 - d. 28.76%

ANSWER: A

 $[CH₃COOH] = 0.1 \text{ mol } L^{-1},$

 $[H^+] = 10^{-2.876} = 1.33 \times 10^{-3} = [CH_3COO^-],$

% ionisation = [CH₃COO⁻] \times 100/[CH₃COOH] = 1.33 \times 10⁻³ \times 100/0.1 =

1.33%

POINTS: 0 / 1

FEEDBACK:

REF: 170

- _ 15. Which of the following statements regarding the ionisation of acids is true?
 - a. A weak acid will have a large magnitude of K_a because a high percentage of the molecules will ionise.
 - b. A strong acid will have a large magnitude of K_a because a high percentage of the molecules will ionise.
 - c. A weak acid will have a small magnitude of K_a because a high percentage of the molecules will ionise.
 - d. A strong acid will have a small magnitude of K_a because a low percentage of the molecules will ionise.

ANSWER: E

A strong acid ionises completely so K_a will be large.

POINTS: 0 / 1 **FEEDBACK:**

REF: 167

- _ 16. Which of the following is not true when determining the K_a of monoprotic weak acids?
 - a. The concentration of H₃O⁺ from the self-ionisation of water must be included.
 - b. The amount of acid that ionises is so small that it is ignored.
 - c. The concentration of the cation and anion formed in the ionisation are the same.
 - d. The concentration of the acid is on the bottom of the fraction.

ANSWER: A

The concentration of H_3O^+ from the self-ionisation of water will be small so can be ignored.

POINTS: (

165 **REF:**

 $\underline{}$ 17. In an experiment, 0.100 mol L⁻¹ solutions of each of the following acids were prepared. Which acid solution would have the highest pH?

- a. HF
- $K_a = 7.6 \times 10^{-4}$
- b. CH_3COOH $K_a = 1.7 \times 10^{-5}$
- c. HCN
- $K_{\rm a} = 6.3 \times 10^{-10}$
- d. HCOOH $K_a = 2 \times 10^{-4}$

ANSWER: \mathbf{C}

> The smaller the K_a the less the acid ionises, so fewer H⁺ ions are present in solution.

POINTS:

0 / 1

FEEDBACK:

REF:

165

 $_$ 18. In an experiment, 50 mL of 1.0 mol L^{-1} solutions of each of the following acids were prepared.

$$pK_a = 1.95$$

HCOOH $pK_a = 3.74$ HOI

$$pK_a = 10.64$$

Which acid would require the greatest volume of $1.0 \text{ mol } L^{-1}$ to neutralise it?

- a. HClO₂
- b. HCOOH
- c. HOI
- d. The four acids would require the same volume of NaOH.

ANSWER: D

> All three acids are monoprotic and the same concentration. As a neutralisation reaction goes to completion all three acid would require the same volume of base.

POINTS:

0 / 1

FEEDBACK:

REF: 172

19. Listed below are the K_b of four organic bases.

$$C_2H_5NH_2$$
 $K_b = 4.3 \times 10^{-4}$

$$C_9H_7N$$
 $K_b = 2.5 \times 10^{-9}$

$$(C_2H_5)_3N$$
 $K_b = 5.2 \times 10^{-4}$

$$C_{18}H_{21}O_3N$$
 $K_b = 8.9 \times 10^{-7}$

The strongest acid in the list below is:

- a. $C_2H_5NH_3^+$
- b. C₉H₇NH⁺
- c. $(C_2H_5)_3NH^+$
- d. $C_{18}H_{21}O_3NH^+$

ANSWER: В

The weaker the base the stronger the conjugate acid.

POINTS:

FEEDBACK:

REF: 173

X

20. Which of the following compounds is a basic salt?

- a. NaOH
- b. CH₃COONa
- c. NH₄Cl
- d. NaNO₃

ANSWER: C

This salt is formed from the reaction of a weak acid and strong base so will be

basic.

POINTS:

0 / 1

FEEDBACK:

REF:

181

