FINANCIAL DECISION MODELS

PROJECTS OVERVIEW – D1

PROJECT INTRODUCTION

Projects to address real-world-scale problems in:

- Marketable securities, or
- Entity-level projects.

Approach can be either

- Design a product, or
- Perform a consultant-style research project.

Projects may be:

- ◆ Generated by you (and approved by instructor)
- Drawn from below list of examples.

Logistics:

- Two or three person teams.
- **♦** Deliverables
 - Slide deck (Consulting Report or Product Pitch)
 Specific details to follow.
 - Verbal presentation of deck.
 - Excel, Python code, Database.
 - ◆ Due ~ Wednesday 12/5.

EXAMPLE PROJECT IDEAS

Marketable Securities Examples

- Risk Hedging (Product)
 For any S&P 500 security,
 - ◆ Find the best set of 2-5 ETFs to hedge with (monthly or quarterly)
 - ◆ Report selected ETFs, projected performance, costs.

For this you need to (among other things):

- ◆ Establish a set of 20-50 ETFs to use as hedging candidates.
- ◆ Establish a database of closing prices of the ETFs and an example subset of S&P 500 stocks.

◆ Trade Sourcing (Consulting)

For any ETF with large, liquid options market

- ◆ Search ETF's closing prices for (say) bouncing around a two-year low, based on 10-day moving average.
- Find deep out of the money puts to sell.
 (Maybe use put spread to insure against big losses).
- Estimate probabilities of negative gains and returns.
- Establish a risk-reward policy for these types of trades.
- ◆ Determine how many puts to trade per \$100K in account, in accordance with probabilities and risk-reward policy.

Example securities:

◆ VXX, TLT

Multi-period Portfolio Optimization (Product)
 Consider a portfolio of the SPY +/- Several S&P 500 Sector ETFs.
 Create a product that aims to outperform the S&P 500 (based on a measure of gain or return over multiple periods and downside risk of same).

Methodology:

◆ Use economic sector reports and other data to determine which sector ETFs to buy/sell at certain times to outperform the S&P 500.

Entity-Level Project Examples

- Purchase Evaluation of "fixer-upper" Entity for Private Equity Firm.
 For a potential target firm (firm to potentially be purchased by PE firm):
 - ◆ Assume plan is:

 Purchase, optimize capital structure and operations, sell in 5-6 years.
 - Perform ratio analysis against better-performing comps.
 - ◆ Estimate multiple-at-exit (ie: Price/FCF, Price/EBITDA, etc) after company has been improved (from ratio analysis of better-performing companies).
 - ◆ Determine optimum capital structure (from algorithm learned in class).
 - Determine achievable operational improvements to EBITDA (from ratio analysis with comps).

- Determine key drivers of Free Cash Flows and model these as random variables (from sensitivity analysis and historical performance).
- Prepare Random Variable, DCF valuation of the entity, as it would be modified by the PE firm.
- ◆ Make a Go-NoGo recommendation.

- Financial Plan (Consulting)
 - ◆ Details provided verbally

- ◆ Financial Data Analytics (Big Data)
 - ◆ See Bank of America Example
 - ♦ Involves:
 - ◆ Several datasets.
 - Querying, Stats and Probability.
 - ◆ SQL or SQL-like features of Python.

Coding-Intensive Examples (Entity-Level or Marketable Securities)

- Creating general purpose *Python* code for Pro-forma models.
 - Read historical statements from CSV or online data source.
 - ◆ Perform analysis of "% of Sales" projections for each relevent account.
 - User provides:
 - ◆ Rules for certain account projections (instead of % of sales). (cash maintained at 5% sales, etc).
 - ◆ Item to solve for in final projected period.
 - ◆ How many periods of detailed projections to include.
 - ◆ Code outputs:
 - key ending account values
 - ratio analysis of all projected periods.

FINANCIAL DECISION MODELS – PROJECTS

PAGE 10

- Creating general purpose *Python c*ode for entity-valuation models.
 - Read historical statements from CSV or online data source.
 - Analyze "% of Sales" projections for each relevant account.
 - User provides:
 - ◆ Rules for certain account projections (cash maintained at 5% sales, etc).
 - ◆ Terminal value method to apply.
 - Rocc (opportunity cost of capital).
 - ◆ How many periods of detailed projections to include.
 - Code determines:
 - Optimal capital structure.
 - ◆ Key drivers of Free Cash Flows.
 - RV distributions for these drivers.
 - Probability distribution of NPV/E with current and optimal Capitalization ratios.

(NPV/E = NPV per dollar of equity funds invested).

FINANCIAL DECISION MODELS - PROJECTS

- Automating *Excel* Solutions of "Simulation Brute-Force Optimization"
 Problems
 - ◆ Use VBA, data-tables to produce results elegantly in Excel.