ISYE 6669 Deterministic Optimization

Homework 14 April 25th, 2021

1.

a)

If
$$x_1 = 1$$
, then $\sum_{t=2}^{T} x_t \le \frac{T-1}{2}$

Which translates to:

$$\sum_{t=2}^{T} x_t \le M(1-x_1) + \left(\frac{T-1}{2}\right) x_1$$

b)

When you consider the absolute value in this case, we know our condition changes to $2x_1 - x_2 - x_3 \ge 2$ OR $-(2x_1 - x_2 - x) \ge 2$. When letting $z \in \{0, 1\}$, which = 0 if $2x_1 - x_2 - x_3 \ge 0$ and 1 otherwise. We can deduce the following:

$$2x_1 - x_2 - x_3 \ge 2y - M(1 - y)$$

$$2x_1 - x_2 - x_3 \le -2(1 - y) + My$$

 $M \ge 6$ based on the max of $|2x_1 - x_2 - x_3| = (3, 0, 0)$ and $y \in \{0, 1\}$

c) When introducing a binary variable $y \in \{0,1\}$. If $x_1 + x_2 \le 10$, then y = 1, and y = 0 when $2x_1 - x_2 \ge 5$. Therefore we can deduce the constraints from taking the union of all the different permutations of the binary values:

$$y = 1$$
, then $x_1 + x_2 \le 10y + M(1 - y)$ and $2x_1 - x_2 \le 4y + M(1 - y)$ otherwise, $x_1 + x_2 \ge 11(1 - y) - My$ and $2x_1 - x_2 \ge 5y(1 - y) - My$

such that $x_1, x_2 \in [0, 10]$

2.

 d_{ii} : Dose disposed for cell j per unit intensity at position i

 x_i : intensity of the radiation at position $i \forall 1,..., 100$ positions

 y_i : sum of dosages for cell j for all beam positions i

z: binary to indicate if cell j gets at least 75 units $\{0,1\}$

- •minimize the total dose deposited on all normal cells
- •the dose deposited on each cancerous cell should be at least 70 units
- •at least 90% of the cancerous cells should each get a dose deposition of at least 75 units
- •the dose deposited on each normal cell should not exceed 25 units

$$min \sum_{j=1001}^{5000} \sum_{i=1}^{100} x_i d_{ij}$$

s. t.
$$\sum_{i=1}^{100} x_i d_{ij} = y_j \qquad \forall j = 1 \text{ to } 1000$$

$$y_j \ge 70 + 5z_j \ \forall j = 1 \ to \ 1000$$

$$\sum_{j=1}^{1000} z_j \ge 900$$

$$\sum_{j=1001}^{5000} x_i d_{ij} \le 25 \ \forall j = 1001 \ to \ 5000$$

$$x_i \ge 0 \ \forall \ 1 \ to \ 100, \ y_j \ge 0, \ z_j \in \{0,1\} \ \forall j \ = \ 1 \ to \ 1000$$

3.

- (a) Is this tree for a minimization or a maximization problem?
- (b) Which nodes do you still need to branch from? Why?
- (c) Which nodes do you not need to branch from? Why?
- (d) What is the gap between the best solution and the best bound found so far?
- (e) In what order were the three integer solutions found in the branchand-bound process?

Figure 1: Branch-Bound Tree

- a) maxamization
- b) We still need to branch from node 9 because it's the higher of the two fractional values for nodes 9 and 10.
- c) We do not need to branch from nodes 4, 5 and 7 because we've reached an integer solution therefore do not need to continue, and a stopping condition also exists at 8 since it's infeasible. In addition to 10, due to the rules of LB.
- d) 0.4
- e) The traversed order would be 7, 4, then 5.