1. Gradient, Divergence, and Curl

Gradient (f\nabla f)

- The gradient of a scalar function f(x,y,z)f(x, y, z) is given by: $f=(\partial f \partial x, \partial f \partial y, \partial f \partial z) \cdot f = \left(\frac{f}{x,y} \right) \cdot f = \left(\frac{f}{x,y} \right) \cdot f = \left(\frac{f}{y} \right)$
- Represents the direction and rate of the fastest increase of ff.

Divergence (F\nabla \cdot \mathbf{F})

- The divergence of a vector field $F=(P,Q,R)\setminus F=(P,Q,R)$ is given by: $F=\partial P\partial x+\partial Q\partial y+\partial R\partial z \cdot F=\partial P\partial x+\partial Q\partial y+\partial Q\partial$
- Measures the rate at which a vector field spreads out from a point.

Curl (×F\nabla \times \mathbf{F})

- The curl of a vector field $F=(P,Q,R) \setminus F=(P,Q,R)$ is given by: $\times F=(\partial R \partial y \partial Q \partial z, \partial P \partial z \partial R \partial x, \partial Q \partial x \partial P \partial y) \setminus F=\left(\frac{partial Q}{partial Q} \right) \frac{Q}{partial Q}$ where $F=(P,Q,R) \setminus F=(P,Q,R)$ is given by: $\times F=(P,Q,R) \setminus F=($
- Represents the rotational tendency of a vector field.

2. Directional Derivatives

- The directional derivative of a scalar function f(x,y,z)f(x,y,z) in the direction of a unit vector $u \rightarrow \{u\}$ is given by: Duf= f uD \mathbf{u} f = \nabla f \cdot \mathbf{u}
- Measures the rate of change of ff in the direction of u\mathbf{u}.

3. Irrotational and Solenoidal Vector Fields

Irrotational Vector Field

- A vector field F\mathbf{F} is irrotational if \times F=0\nabla \times \mathbf{F} = 0.
- Implies the existence of a scalar potential function ϕ is such that $F = \phi \mathbb{F} = \alpha \phi$.

Solenoidal Vector Field

- A vector field $F\setminus F$ is solenoidal if $F=0\setminus A\setminus F$.
- Implies that the field has no divergence (incompressible flow).

4. Theorems

Gauss Divergence Theorem

- Relates the flux of a vector field through a closed surface to the volume integral of its divergence.
 SF dS=JV(F)dV\oint_S \mathbf{F} \cdot d\mathbf{S} = \int_V (\nabla \cdot \mathbf{F}) dV
- Converts a surface integral into a volume integral.

Stokes' Theorem

- Relates the circulation of a vector field around a closed curve to the surface integral of its curl. CF $dr=\int S(xF) dS \cdot C \cdot G(xF) dS \cdot G(xF$
- Converts a line integral into a surface integral.

Properties (Statements Only)

• Gradient, divergence, and curl operators are linear.

- The curl of a gradient field is always zero: \times f=0\nabla \times \nabla f = 0. The divergence of a curl field is always zero: $(\times F)$ =0\nabla \cdot (\nabla \times \mathbf{F}) = 0. Gauss and Stokes' theorems provide fundamental connections between different types of integrals in vector calculus.

This cheat sheet provides a quick reference for key vector calculus concepts.