L11 Logistic Regression

Prof. Xun Jiao

Before Class

- Midterm/Test Mar. 14
- HW3: Group project on predicting beer rating using scikit-learn
 - Find your team (2-3 people)
 - Write the python code, using scikit learning library
 - Predict beer rating based on
 - Features you select
 - ML methods you select
 - Parameters you select
 - Submit
 - A link of your Google Colab Python code (remember the sharing setting)
 - A report (1 page) document your features, ML method, and accuracy
 - Training/Testing Data
 - Use the train_test_split() in Scikit-Learn

Review

- Linear regression
- Gradient descent
- Feature Design

Review

Outline

- Classification Overview
- Logistic regression
 - Hypothesis representation
 - Decision boundary
 - Cost function

Classification

- Email: Spam/not spam
- Diagnose: sick/not sick
- Transaction: fraud/not fraud
- Image: cat/not cat
- Tumor: Malignant/benign

$$f(\text{data}) \stackrel{?}{\rightarrow} \text{labels}$$
 {1, ..., N}

If we apply linear regression: $X\theta=y$

If we apply linear regression: $X\theta=y$

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0"

If we apply linear regression: $X\theta=y$

Linear regression does not work well in classification problem.

Another problem

Classification:
$$y = 0$$
 or 1

$$h_{\theta}(x)$$
 can be > 1 or < 0

Logistic Regression:
$$0 \le h_{\theta}(x) \le 1$$

Classification algorithm!

Hypothesis Representation

$$0 \le h_{m{ heta}}(m{x}) \le 1$$

$$h_{m{ heta}}(m{x}) = g^{\intercal} m{x}$$

$$h_{m{ heta}}(m{x}) = g(m{ heta}^{\intercal} m{x})$$

$$g(z) = \frac{1}{1 + 1 + 2}$$

Logistic / Sigmoid Function

Interpretation of Logistic Regression

The probability of positive prediction

$$h_{\boldsymbol{\theta}}(\boldsymbol{x})$$
 = estimated $p(y=1 \mid \boldsymbol{x}; \boldsymbol{\theta})$

Example: Cancer diagnosis from tumor size

$$m{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ ext{tumorSize} \end{bmatrix}$$
 $h_{m{ heta}}(m{x}) = 0.7$

→ Tell patient that 70% chance of tumor being malignant

Note that:
$$p(y = 0 | x; \theta) + p(y = 1 | x; \theta) = 1$$

Therefore,
$$p(y=0 \mid \boldsymbol{x}; \boldsymbol{\theta}) = 1 - p(y=1 \mid \boldsymbol{x}; \boldsymbol{\theta})$$

Logistic / Sigmoid Function

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g\left(\boldsymbol{\theta}^{\intercal} \boldsymbol{x}\right)$$

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

If
$$g(z) >= 0.5$$
, predict $y = ? \rightarrow \theta^T x = ??$
If $g(z) < 0.5$, predict $y = ? \rightarrow \theta^T x = ??$

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g\left(\boldsymbol{\theta}^{\intercal} \boldsymbol{x}\right)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

 $m{ heta}^{\mathsf{T}} m{x}$ should be large <u>negative</u> values for negative instances

 $m{ heta}^{\mathsf{T}} m{x}$ should be large <u>positive</u> values for positive instances

Assume a threshold and...

- Predict y = 1 if $h_{\theta}(x) \ge 0.5$
- Predict y = 0 if $h_{\theta}(x) < 0.5$

Decision Boundary

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

Draw a line (decision boundary).

Non-linear decision boundaries

Derive the decision boundary for me?

How do we find theta?

• Given
$$\left\{\left(m{x}^{(1)},y^{(1)}\right),\left(m{x}^{(2)},y^{(2)}\right),\ldots,\left(m{x}^{(n)},y^{(n)}\right)\right\}$$
 where $m{x}^{(i)}\in\mathbb{R}^d,\;y^{(i)}\in\{0,1\}$

• Model:
$$h_{m{ heta}}(m{x}) = g\left(m{ heta}^{\intercal}m{x}
ight)$$

$$g(z) = \frac{1}{1+e^{-z}}$$

$$oldsymbol{ heta} = \left[egin{array}{c|c} heta_0 \ heta_1 \ dots \ heta_d \end{array}
ight] \qquad oldsymbol{x}^\intercal = \left[egin{array}{c|c} 1 & x_1 & \dots & x_d \end{array}
ight]$$