Assignment WebWork4-Definition_of_Rings due 02/12/2024 at 11:59pm EST

Problem 1. (6 points)

Which of the following rings have no non-zero zero divisors?

- a. $\mathbb{Z}_{24}[x]$ [?/Yes/No]
- b. $\mathbb{Z}_4[x]$ [?/Yes/No]
- c. $M_2(\mathbb{Q})$ [?/Yes/No]
- d. $\mathbb{Z}_{11}[x]$ [?/Yes/No]
- e. $\mathbb{Z}_3[x]$ [?/Yes/No]

Problem 2. (6 points)

For each of the following maps, say whether or not it is a Ring Homomorphism (using our class's definition of a ring Homomorphism, not the book's!).

- a. $\mathbb{Z}_8 \times \mathbb{Z}_8 \to \mathbb{Z}_8$ $([n]_8, [m]_8) \mapsto [m]_8$ [?/Yes/No]
- b. $\mathbb{R}[x] \to \mathbb{R}$ $f(x) \mapsto f(\pi)$ [?/Yes/No]
- c. $\mathbb{Z}_2 \to \mathbb{Z}_2 \times \mathbb{Z}_3$ $_2 \mapsto ([n]_2, [0]_3)$ [?/Yes/No]
- d. $\mathbb{Z}_3 \to \mathbb{Z}_2 \times \mathbb{Z}_3$ $_3 \mapsto ([1]_2, [n]_3)$ [?/Yes/No]
- e. The inclusion of $\{[0]_6, [3]_6\}$ in \mathbb{Z}_6 [?/Yes/No]

Problem 3. (1 point)

Which of the following are ring homomorphisms? Answer Yes if it is and No otherwise.

- 1. $\phi: \mathbb{Z}_7 \to \mathbb{Z}_{28}$ such that $\phi([c]_7) = [c]_{28}$ [?/Yes/No]
- 2. $\phi: \mathbb{Z}_{54} \to \mathbb{Z}_6$ such that $\phi([c]_{54}) = [c]_6$ [?/Yes/No]
- 3. $\phi: \mathbb{Z}_3 \to \mathbb{Z}_3[x]$ such that $\phi([c]_3) = [c]_3$ [?/Yes/No]
- 4. $\phi: \mathbb{Z}_{24}[x] \to \mathbb{Z}_{24}$ such that $\phi(f) = [f(2)]_{24}$ [?/Yes/No]
- 5. $\phi: \mathbb{Z}[x] \to \mathbb{Z}$ such that $\phi(f) = [f(2)]_8$ [?/Yes/No]
- 6. $\phi : \mathbb{Z}_{10} \to \mathbb{Z}_{10}[x]$ such that $\phi([c]_{10}) = [c]_{10}x$ [?/Yes/No]

Problem 4. (9 points)

Recall that a reduced fraction is a fraction a/b where gcd(a,b) = 1. It is a fact that

 $\mathbb{Z}_{(7)} := \{ \text{ all reduced fractions whose denominators are powers of 7} \}$ (including the zero-th power)

is a subring of \mathbb{Q} , the ring of rational numbers.

For this problem we require that ring homomorphisms take the multiplicative identity to the multiplicative identity.

- (a) Determine the number of ring homomorphisms $\mathbb{Z}_{(7)} \to \mathbb{Z}_7$.
- (b) Determine the number of ring homomorphisms $\mathbb{Z}_7 \to \mathbb{Z}_{(7)}$.

Solution: Solution:

Note that 1/7 is a non-zero element in the ring $\mathbb{Z}_{(7)}$, and $\mathbb{1}_{\mathbb{Z}_{(7)}} = (1/7) \times 7$. So if $f: \mathbb{Z}_{(7)} \to \mathbb{Z}_7$ is a ring homomorphism that takes the multiplicative identity to the multiplicative identity, then $\mathbb{1}_{\mathbb{Z}_7} = f(1/7)f(7)$.

But since f is a ring homomorphism,

$$f(7) = 7f(1_{\mathbb{Z}_{(7)}}) = 7 \times 1_{\mathbb{Z}_7} = 0_{\mathbb{Z}_7}.$$

Combine these two and we arrive at a contradition, so f does not exist.

Next, suppose $g: \mathbb{Z}_7 \to \mathbb{Z}_{(7)}$ is a ring homomorphism that takes the multiplicative identity to the multiplicative identity. Then $0_{\mathbb{Z}_7} = 7 \times 1_{\mathbb{Z}_7}$, so $0_{\mathbb{Z}_{(7)}} = g(7 \times 1_{\mathbb{Z}_7}) = 7 \times g(1_{\mathbb{Z}_7}) = 7 \times 1_{\mathbb{Z}_{(7)}}$, a contradiction. So g does not exist.

1

Problem 5. (9 points)

Determine the number of possible ring homomorphisms for each pair of rings:

- (a) $\mathbb{Z}_{13} \to \mathbb{Z}_{13}$: _____
- (b) $\mathbb{Z}_{80} \to \mathbb{Z}_{16}$: _____
- (c) $\mathbb{Z}_{127} \to \mathbb{Z}_{21}$: _____

Note: Recall that ring homomorphisms take the multiplicative identity to multiplicative identity.

Solution: Solution:

If $f: \mathbb{Z}_m \to \mathbb{Z}_n$ is a ring homomorphism then

$$(**) f(a1_{\mathbb{Z}_m}) = af(1_{\mathbb{Z}_m})$$
$$= a1_{\mathbb{Z}_n}$$

Since every element of \mathbb{Z}_m is of the form $a1_{\mathbb{Z}_m}$ for some integer a, the requirement

(*) a ring homomorphism $f:A\to B$ takes 1_A to 1_B means that for any integers m,n there is at most one ring homomorphism from \mathbb{Z}_m to \mathbb{Z}_n . On the other hand, by properties of ring homomorphisms we get

$$0_{\mathbb{Z}_n} = f(0_{\mathbb{Z}_m})$$

$$= f(m1_{\mathbb{Z}_m})$$

$$= mf(1_{\mathbb{Z}_m})$$

$$= m1_{\mathbb{Z}_m}$$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

so in order for f to be a ring homomorphism we need n to divide m. And if n does divide m, we check that (**) does satisfy the definition of ring homomorphisms. Actually – and this is important – there are two things to check:

- (A) f is well-defined, and
- (B) f satisfies the conditions related to addition and multiplication.
- (A) is important and often neglected: Recall that elements of \mathbb{Z}_m are congruence classes, so every element has infinitely many representatives. Specificially,

a and a' represent the same congruence class in \mathbb{Z}_m

$$\Leftrightarrow \qquad \qquad a' \equiv a \pmod{m}$$

$$\Leftrightarrow \qquad \qquad m \text{ divides } (a'-a) \pmod{@@}$$

Now, by (**) we have

$$f(a'1_{\mathbb{Z}_m}) = a'1_{\mathbb{Z}_n}.$$

In order for the right side to represent the same congruence class in \mathbb{Z}_n , we need

$$a' \equiv a \pmod{n}$$
.

Equivalently,

$$n$$
 divides $(a'-a)$.

If n divides m then this follows from (@@), and so f is well-defined.

Compared to the above, (B) is easy to check. For example:

$$f(a1_{\mathbb{Z}_{m}} + b1_{\mathbb{Z}_{m}}) = f((a+b)1_{\mathbb{Z}_{m}})$$

$$= (a+b)f(1_{\mathbb{Z}_{m}})$$

$$= (a+b)1_{\mathbb{Z}_{n}}$$

$$= a1_{\mathbb{Z}_{n}} + b1_{\mathbb{Z}_{n}}$$

$$= af(1_{\mathbb{Z}_{m}}) + bf(1_{\mathbb{Z}_{m}})$$

$$= f(a1_{\mathbb{Z}_{m}}) + f(b1_{\mathbb{Z}_{m}})$$

The condition for multiplication is checked similarly.