ONE-LOOP RENORMALIZATION

In this section we study the renormalization of holomorphically translation invariant field theories on \mathbb{C}^d for any $d \geq 1$. We start with a classical interacting holomorphic theory on \mathbb{C}^d and consider one-loop homotopy RG flow from some finite scale ϵ to scale L. That is, we consider the sum over graphs of genus zero and one where at each vertex we place the holomorphic interaction. To obtain a prequantization of a classical theory one must make sense of the $\epsilon o 0$ limit of this construction. In general, this involves introducing a family of counterterms. Our main result is that for a holomorphic theory no such counterterms are required, and one obtains a well-defined $\epsilon \to 0$ limit.

We can write the fields of a holomorphic theory on \mathbb{C}^d as

$$\mathcal{E} = \left(\Omega^{0,*}(\mathbb{C}^d, V), \bar{\partial} + Q^{hol}\right)$$

where V is a graded holomorphic vector bundle and Q^{hol} is a holomorphic differential operator. Since the theory is holomorphically translation invariant we have an identification $\Omega^{0,*}(\mathbb{C}^d,V)\cong$

 $\Omega^{0,*}(\mathbb{C}^d) \otimes_{\mathbb{C}} V_0$ where V_0 is the fiber of V over $0 \in \mathbb{C}^d$. Further, we can write the (-1)-shifted symplectic structure defining the classical BV theory in the form

$$\omega(\alpha \otimes v, \beta \otimes w) = (v, w)_{V_0} \int d^d z (\alpha \wedge \beta)$$

where $(-,-)_{V_0}$ is a degree (d-1)-shifted BW: check pairing on the finite dimensional vector space V_0 .

0.1. Holomorphic gauge fixing. To begin the process of renormalization we must fix the data of a gauge fixing operator. A gauge fixing operator is an operator on fields

$$Q^{GF}: \mathcal{E} \to \mathcal{E}[1]$$

of cohomological degree -1 such that $[Q,Q^{GF}]$ is a generalized Laplacian on \mathcal{E} where Q is the linearized BRST operator. For a full definition of this see Definition ?? ??.

For holomorphic theories there is a convenient choice for a gauge fixing operator. To construct it we fix the standard flat metric on \mathbb{C}^d . Doing this, we let $\bar{\partial}^*$ be the adjoint of the operator $\bar{\partial}$. Using the coordinates on $(z_1, ..., z_d) \in \mathbb{C}^d$ we can write this operator as

$$\bar{\partial}^* = \sum_{i=1}^d \frac{\partial}{\partial (\mathrm{d}\bar{z}_i)} \frac{\partial}{\partial z_i}.$$

Equivalently $\frac{\partial}{\partial(\mathrm{d}z_i)}$ is equal to contraction with the anti-holomorphic vector field $\frac{\partial}{\partial z_i}$. The operator $\bar{\partial}^*$ extends to the complex of fields via the formula

$$Q^{GF} = \bar{\partial}^* \otimes \mathrm{id}_V : \Omega^{0,*}(X, V) \to \Omega^{0,*-1}(X, V),$$

We claim that this is a gauge fixing operator for our holomorphic theory. Indeed, since Q^{hol} is a translation invariant holomorphic differential operator we have

$$[\bar{\partial} + Q^{hol}, Q^{GF}] = [\bar{\partial}, \bar{\partial}^*] \otimes \mathrm{id}_V.$$

The operator $[\bar{\partial}, \bar{\partial}^*]$ is simply the Dolbeualt Laplacian on \mathbb{C}^d , which is certainly a generalized Laplacian. In coordinates it is

$$[\bar{\partial}, \bar{\partial}^*] = -\sum_{i=1}^d \frac{\partial}{\partial \bar{z}_i} \frac{\partial}{\partial z_i}$$

By definition, the heat kernel is the dual BW: check factor Pick a basis $\{e_i\}$ of V_0 and let

$$\mathbf{C}_{V_0} = \sum_{i,j} \omega_{ij} (e_i \otimes e_j) \in V_0 \otimes V_0$$

be the quadratic Casimir. Here, (ω_{ij}) is the inverse matrix to the pairing $(-,-)_{V_0}$. The regularized heat kernel then takes the form

$$K_{\epsilon}(z,w) = K^{an}(z,w) \cdot \mathbf{C}_{V_0}$$

Lemma 0.1. *If* Γ *is a tree then* $\lim_{\epsilon \to 0} W_{\Gamma}(P_{\epsilon < L}, I)$ *exists.*

0.2. One-loop weights.

Definition 0.2. Let ϵ , L > 0. In addition, fix the following data.

- (1) An integer $k \ge 1$ that will be the number of vertices of the graph.
- (2) For each $\alpha = 1, ..., k$ a sequence of integers

$$\vec{n}^{\alpha}=(n_1^{\alpha},\ldots,n_d^{\alpha}).$$

We denote by $(\vec{n}) = (n_i^j)$ the corresponding $d \times k$ matrix of integers.

(3) A smooth compactly supported function $\Phi \in C_c^{\infty}((\mathbb{C}^d)^k) = C_c^{\infty}(\mathbb{C}^{dk})$.

The analytic weight associated to the triple $(k, (\vec{n}), \Phi)$ is

$$(1) W_{k,(\vec{n})}^{\Phi}(\epsilon,L) = \int_{(z^1,\dots,z^k)\in(\mathbb{C}^d)^k} \prod_{\alpha=1}^k \mathrm{d}^d z^{\alpha} \Phi(z^1,\dots,z^{\alpha}) \prod_{\alpha=1}^k \left(\frac{\partial}{\partial z^i}\right)^{\vec{n}^{\alpha}} P_{\epsilon< L}^{an}(z^i,z^{i+1}).$$

In the above expression, we use the convention that $z^{k+1} = z^1$.

We will refer to the collection of data $(k,(\vec{n}),\Phi)$ in the definition as wheel data. The motivation for this is that the weight $W^{\Phi}_{k,(\vec{n})}(\epsilon,L)$ is the analytic part of the full weight $W_{\Gamma}(P_{\epsilon < L},I)$ where Γ is a wheel with k vertices.

We have reduced the proof of Theorem $\ref{thm:proof.pdf}$ to showing that the $\epsilon \to 0$ limit of the analytic weight $W^{\Phi}_{k,(\vec{n})}(\epsilon,L)$ exists for any tripe of wheel data $(k,(\vec{n}),\Phi)$. To do this, there are two steps. First, we show a vanishing result that says when $k \geq d$ the weights vanish for purely algebraic reasons. The second part is the most technical aspect of the chapter where we show that for k > d the weights have nice asymptotic behavior as a function of ϵ .

Lemma 0.3. Let $(k, (\vec{n}), \Phi)$ be a triple of wheel data. If the number of vertices k satisfies $k \leq d$ then

$$W_{k,(\vec{n})}^{\Phi}(\epsilon,L)=0$$

for any ϵ , L > 0.

Proof. In the integral expression for the weight (1) there is the following factor involving the product over the edges of the propagators:

(2)
$$\prod_{\alpha=1}^{k} \left(\frac{\partial}{\partial z^{i}} \right)^{\vec{n}^{\alpha}} P_{\epsilon < L}^{an}(z^{i}, z^{i+1}).$$

We will show that this expression is identically zero. To simplify the expression we first make the following change of coordinates on \mathbb{C}^{dk} :

$$(3) w^i = z^{\alpha+1} - z^{\alpha} \quad , \quad 1 \le \alpha < k$$

$$(4) w^k = z^k.$$

Introduce the following operators

$$\eta^{lpha} = \sum_{i=1}^d ar{w}_i^{lpha} rac{\partial}{\partial (\mathrm{d}ar{w}_i^{lpha})}$$

acting on differential forms on \mathbb{C}^{dk} . The operator η^{α} lowers the anti-holomorphic Dolbuealt type by one : $\eta:(p,q)\to(p,q-1)$. Equivalently, η^{α} is contraction with the anti-holomorphic Euler vector field $w_i^{\alpha}\partial/\partial w_i^{\alpha}$.

Once we do this, we see that the expression (2) can be written as

$$\left(\left(\sum_{\alpha=1}^{k-1}\eta^{\alpha}\right)\prod_{i=1}^{d}\left(\sum_{\alpha=1}^{k-1}\mathrm{d}\bar{w}_{i}^{\alpha}\right)\right)\prod_{\alpha=1}^{k-1}\left(\eta^{\alpha}\prod_{i=1}^{d}\mathrm{d}\bar{w}_{i}^{\alpha}\right).$$

Note that only the variables \bar{w}_i^{α} for $i=1,\ldots,d$ and $\alpha=1,\ldots,k-1$ appear. Thus we can consider it as a form on $\mathbb{C}^{d(k-1)}$. As such a form it is of Dolbeualt type (0,(d-1)+(k-1)(d-1))=(0,(d-1)k). If k< d then clearly (d-1)k>d(k-1) so the form has greater degree than the dimension of the manifold and hence it vanishes.

The case left to consider is when k = d. In this case, the expression in (2) can be written as

(5)
$$\left(\left(\sum_{\alpha=1}^{d-1}\eta^{\alpha}\right)\prod_{i=1}^{d}\left(\sum_{\alpha=1}^{d-1}d\bar{w}_{i}^{\alpha}\right)\right)\prod_{\alpha=1}^{d-1}\left(\eta^{\alpha}\prod_{i=1}^{d}d\bar{w}_{i}^{\alpha}\right).$$

Again, since only the variables \bar{w}_i^{α} for $i=1,\ldots,d$ and $\alpha=1,\ldots,d-1$ appear, we can view this as a differential form on $\mathbb{C}^{d(d-1)}$. Furthermore, it is a form of type (0,d(d-1)). For any vector field X on $\mathbb{C}^{d(d-1)}$ the interior derivative i_X is a graded derivation. Suppose ω_1,ω_2 are two (0,*) forms on $\mathbb{C}^{d(d-1)}$ such that the sum of their degrees is equal to d^2 . Then, $\omega_1 \iota_X \omega_2$ is a top form for any vector field on $\mathbb{C}^{d(d-1)}$. Since $\omega_1 \omega_2 = 0$ for form type reasons, we conclude that $\omega_1 \iota_X \omega_2 = \pm (i_X \omega_1) \omega_2$ with sign depending on the dimension d. Applied to the vector field $\bar{z}_i^1 \partial / \partial \bar{w}_i^1$ in ([?]) we see that the expression can be written (up to a sign) as

$$\eta^1 \left(\sum_{\alpha=1}^{d-1} \eta^\alpha \prod_{i=1}^d \left(\sum_{\alpha=1}^{d-1} \mathrm{d} \bar{w}_i^\alpha \right) \right) \left(\prod_{i=1}^d \mathrm{d} \bar{w}_i^1 \right) \prod_{\alpha=2}^{d-1} \left(\eta^\alpha \prod_{i=1}^d \mathrm{d} \bar{w}_i^\alpha \right).$$

Repeating this, for $\alpha = 2, ..., k-1$ we can write this expression (up to a sign) as

$$\left(\eta_{k-1}\cdots\eta_2\eta_1\sum_{\alpha=1}^{k-1}\eta^\alpha\prod_{i=1}^d\left(\sum_{\alpha=1}^{k-1}\mathrm{d}\bar{w}_i^\alpha\right)\right)\prod_{\alpha=1}^{k-1}\prod_{i=1}^d\mathrm{d}\bar{w}_i^\alpha$$

The expression inside the parentheses is zero since each term in the sum over α involves a term like $\eta^{\beta}\eta^{\beta}=0$. This completes the proof for k=d.

Lemma 0.4. Let $(k, (\vec{n}), \Phi)$ be a triple of wheel data such that k > d. Then the $\epsilon \to 0$ limit of the analytic weight

$$\lim_{\epsilon \to 0} W^{\Phi}_{k,(\vec{n})}(\epsilon, L)$$

exists.

Proof. We will bound the absolute value of the weight in Equation (1) and show that it has a well-defined $\epsilon \to 0$ limit. First, consider the change of coordinates as in Equations (3),(4). The weight can be written as

(6)

$$\int_{w^k \in \mathbb{C}^d} d^d w^k \int_{(w_1, \dots, w_{k-1}) \in (\mathbb{C}^d)^{k-1}} \left(\prod_{\alpha=1}^{k-1} d^d w^\alpha \right) \Phi(w^1, \dots, w^k) \left(\prod_{\alpha=1}^{k-1} \left(\frac{\partial}{\partial w^\alpha} \right)^{\vec{n}^\alpha} P_{\epsilon < L}^{an}(w^\alpha) \right) \sum_{\alpha=1}^{k-1} \left(\frac{\partial}{\partial w^\alpha} \right)^{\vec{n}^k} P^{an} \left(\sum_{\alpha=1}^{k-1} w^\alpha \right).$$

For $\alpha = 1, \dots, k-1$ the notation

$$P_{\epsilon < L}^{an}(w^{\alpha}) = \int_{t_{\alpha} = \epsilon}^{L} \frac{\mathrm{d}t_{\alpha}}{4\pi t_{\alpha}} \bar{\delta}^* BW : FINISH$$

makes sense since $P^{an}_{\epsilon < L}(z^{\alpha}, z^{\alpha+1})$ is only a function of $w^{\alpha} = z^{\alpha+1} - z^{\alpha}$. Similarly $P^{an}_{\epsilon < L}(z^{k+1}, z^1)$ is a function of

$$z^k - z^1 = \sum_{\alpha=1}^{k-1} w^{\alpha}.$$

Expanding out the propagators the weight takes the form

$$\begin{split} & \int_{w^k \in \mathbb{C}^d} \mathrm{d}^{2d} w^k \int_{(w_1, \dots, w_{k-1}) \in (\mathbb{C}^d)^{k-1}} \left(\prod_{\alpha = 1}^{k-1} \mathrm{d}^{2d} w^\alpha \right) \Phi(w^1, \dots, w^k) \int_{(t_1, \dots, t_k) \in [\varepsilon, L]^k} \prod_{\alpha = 1}^k \frac{\mathrm{d} t_\alpha}{4\pi t_\alpha} \\ & \times \sum_{i_1, \dots, i_{k-1} = 1}^d \left(\frac{\bar{w}_{i_1}^1}{t_1} \frac{(\bar{w}^1)^{n^1}}{t^{|n^1|}} \right) \cdots \left(\frac{\bar{w}_{i_{k-1}}^{k-1}}{t_{k-1}} \frac{(\bar{w}^{k-1})^{n^{k-1}}}{t^{|n^{k-1}|}} \right) \left(\sum_{\alpha = 1}^{k-1} \frac{\bar{w}_{i_k}^\alpha}{t_k} \cdot \frac{1}{t^{|n^k|}} \left(\sum_{\alpha = 1}^{k-1} \bar{w}^\alpha \right)^{n^k} \right) \\ & \times \exp\left(- \sum_{\alpha = 1}^{k-1} \frac{|w^\alpha|^2}{t_\alpha} - \frac{1}{t_k} \left| \sum_{\alpha = 1}^{k-1} w^\alpha \right|^2 \right) \end{split}$$

The notation used above warrants some explanation. Recall, for each α the vector of integers is defined as $n^{\alpha} = (n_1^{\alpha}, \dots, n_d^{\alpha})$. We use the notation

$$(\bar{w}^{\alpha})^{n^{\alpha}} = \bar{w}_1^{n_1^{\alpha}} \cdots \bar{w}_d^{n_d^{\alpha}}.$$

Furthermore, $|n^{\alpha}| = n_1^{\alpha} + \dots + n_d^{\alpha}$. Each factor of the form $\frac{\bar{w}_{i\alpha}^{\alpha}}{t_{\alpha}}$ comes from the application of the operator $\frac{\partial}{\partial z_i}$ in $\bar{\partial}^*$ applied to the propagator. The factor $\frac{(\bar{w}^{\alpha})^{n^{\alpha}}}{t^{|n^{\alpha}|}}$ comes from applying the operator $\left(\frac{\partial}{\partial w}\right)^{n^{\alpha}}$ to the propagator. Note that $\bar{\partial}^*$ commutes with any translation invariant holomorphic differential operator, so it doesn't matter which order we do this.

To bound this integral we will recognize each of the factors

$$rac{ar{w}^{lpha}_{i_{lpha}}}{t_{lpha}}rac{(ar{w}^{lpha})^{n^{lpha}}}{t^{|n^{lpha}|}}$$

as coming from the application of a certain holomorphic differential operator to the exponential in the last line. We will then integrate by parts to obtain a simple Gaussian integral which will give us the necessary bounds in the t-variables. Let us denote this Gaussian factor by

$$E(w,t) := \exp\left(-\sum_{\alpha=1}^{k-1} \frac{|w^{\alpha}|^2}{t_{\alpha}} - \frac{1}{t_k} \left|\sum_{\alpha=1}^{k-1} w^{\alpha}\right|^2\right)$$

For each α , i_{α} introduce the $t = (t_1, \dots, t_k)$ -dependent holomorphic differential operator

$$D_{\alpha,i_{\alpha}}(t) := \left(\frac{\partial}{\partial w_{i_{\alpha}}^{\alpha}} - \sum_{\beta=1}^{k-1} \frac{t_{\beta}}{t_{1} + \dots + t_{k}} \frac{\partial}{\partial w_{i_{\alpha}}^{\beta}}\right) \prod_{j=1}^{d} \left(\frac{\partial}{\partial w_{j}^{\alpha}} - \sum_{\beta=1}^{k-1} \frac{t_{\beta}}{t_{1} + \dots + t_{k}} \frac{\partial}{\partial w_{j}^{\beta}}\right)^{n_{j}^{\alpha}}.$$

The following lemma is an immediate calculation

Lemma 0.5. One has

$$D_{\alpha,i_{\alpha}}E(w,t) = \frac{\bar{w}_{i_{\alpha}}^{\alpha}}{t_{\alpha}} \frac{(\bar{w}^{\alpha})^{n^{\alpha}}}{t^{|n^{\alpha}|}} E(w,t).$$

Note that all of the $D_{\alpha,i_{\alpha}}$ operators mutually commute. Thus, we can integrate by parts iteratively to obtain the following expression for the weight:

$$\pm \int_{w^{k} \in \mathbb{C}^{d}} d^{2d}w^{k} \int_{(w_{1},...,w_{k-1}) \in (\mathbb{C}^{d})^{k-1}} \left(\prod_{\alpha=1}^{k-1} d^{2d}w^{\alpha} \right) \int_{(t_{1},...,t_{k}) \in [\epsilon,L]^{k}} \prod_{\alpha=1}^{k} \frac{dt_{\alpha}}{4\pi t_{\alpha}}$$

$$\times \left(\sum_{i_{1},...,i_{d}} D_{1,i_{1}} \cdots D_{k-1,i_{k-1}} \sum_{\alpha=1}^{k-1} D_{\alpha,i_{k}} \Phi(w^{1},...,w^{k}) \right) \times \exp \left(-\sum_{\alpha=1}^{k-1} \frac{|w^{\alpha}|^{2}}{t_{\alpha}} - \frac{1}{t_{k}} \left| \sum_{\alpha=1}^{k-1} w^{\alpha} \right|^{2} \right).$$

Now, since $t_{\alpha}/\sum_{\beta}t_{\beta}<1$ for each α we have the following bound for the operators $D_{\alpha,i_{\alpha}}$: