1. 확률, 확률분포

	$C_1 \subset S$ 에서 C_1 를 새로운 표본 공간으로 설정 \Rightarrow $C_2 \subset S$ 에 대해
	1. $P(C_2 C_1) = P(C_1 \cap C_2 C_1) = \frac{P(C_1 \cap C_2)}{P(C_1)} \Leftrightarrow P(C_1 \cap C_2) = P(C_2 C_1) P(C_1)$
조건부	2. Bayes (C_i 는 상호 배반=disjoint, S 의 partition)
확률	1) Law of total prob: $P(A) = \sum P(A \cap C_i) = \sum P(A \mid C_i) P(C_i)$
	2) Bayes' theorem: $P(C_i \mid A) = \frac{P(A \cap C_i)}{P(A)} = \frac{P(A \cap C_i)}{\sum P(A \cap C_i)} = \frac{P(A \mid C_i) P(C_i)}{\sum P(A \mid C_i) P(C_i)}$
독립성	① $P(C_i)$: C_i 사전확률 (prior)
	② <i>P(C_i</i> <i>A</i>): <i>C_i</i> 사후확률 (posterior) ← 표본 A에서 관찰된 <i>C_i</i>
	3) 독립성: $P(A \cap B \cap C) = P(A)P(B)P(C)$ 이면 A,B,C는 statistically independent
	1. Prob mass function; PMF (discrete) \rightarrow CDF of PMF: $F(x) = P((-\infty, x]) = \sum_{(-\infty, x]} p(x)$
	*변환: $p_y(y) = p_X(w(y))$; 1-on-1 function $x = w(y)$
	2. Prob density function; PDF (continuous) >0
	1) $F(x) = \int_{-\infty}^{x} f(t)dt \Leftrightarrow 2 \frac{d}{dx}F(x) = f(x)$ (F\(\begin{center} f \text{ \text{!}} \text{ \text{CDF}} \\ \text{ \text{ \text{!}}} \\ \text{ \text{!}} \\ \te
확률	3) $P[(a,b)] = \int_a^b f(x)dx = F(b) - F(a)$
변수	*변환: X가 pdf f_X on S_X & Y가 pdf f_Y on S_Y ; 1-on-1 $w(y) = x$
	$\Rightarrow f_Y(y) = f_x(w(y)) dx/dy $ $\Leftrightarrow f_Y(y) = f_x(w(y))$ abs (J) (Jacobian: $J = w'(y) / J = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix}$ 가는 행렬식
	* Support(받침): PDF ≠ 0인 space // *CDF는 유일 for PDF, PMF
	1. 조건: $E(X)$ 존재 \Leftrightarrow ① 연속 pdf 존재 ② $\int_{-\infty}^{\infty} x f(x) dx < \infty$ (이산 pmf 존재 \rightarrow $\sum x_i p_i(x) < \infty$)
	2. 기대값: 1) $E(X) = \int_{-\infty}^{\infty} x f(x) dx$ 2) $E(X) = \sum x_i p(x_i)$
	3. $y = g(x)$: 1) $E(g(x)) = \int_{-\infty}^{\infty} g(x)f(x)dx$ & $E(g(x)) = \sum g(x_i)p(x_i)$
	2) $E(k_1g_1(x) + k_2g_2(x)) = k_1E(g_1(x)) + k_2E(g_2(x))$
	1. 평균: $\mu = E(X)$
	2. 분산: $\sigma^2 = Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2 = M''(0) - M'(0)^2$ *Var $(aX + b) = a^2 Var(X)$
	3. 적률생성함수 (MGF) *조건: t ∈ (-h, h) for ∀ h > 0 ← 0을 포함하는 개구간에서 mgf 존재
기대값	1) $M(t) = E(e^{tX}) \rightarrow M_X(0)^{(r)} = E(X^r)$ *분포의 r차 moment
,	① $M(0)^{(r)} = \frac{d^r}{dt_r^r} \int_{-\infty}^{\infty} e^{tx} f(x) dx \big _{t=0} = \int_{-\infty}^{\infty} \frac{d^r}{dt_r^r} e^{tx} f(x) dx \big _{t=0} = \int_{-\infty}^{\infty} x^r e^{tx} f(x) dx \big _{t=0} = \int_{-\infty}^{\infty} x^r f(x) dx = E(X^r)$
	2) 성질 ① MGF의 유일성: $M_x(t) = M_y(t) \Leftrightarrow X = Y$ (pdf 동일)
	$ ② M_{X+\alpha}(t) = e^{\alpha t} M_X(t) \qquad \qquad : M_{X+\alpha}(t) = E(e^{t(x+\alpha)}) = e^{\alpha t} E(e^{tx}) = e^{\alpha t} M_X(t) $
	$ \exists M_{\alpha X}(t) = M_X(\alpha t) \qquad \qquad : M_{\alpha X}(t) = E(e^{t(\alpha X)}) = E(e^{(\alpha t)X}) = M_X(\alpha t) $
	$ (4) M_{aX+b}(t) = e^{bt} M_X(at) $
	⑤ $M_Y(t) = \prod M_{X_i}(k_i t)$, $t < \min(h_i) $ (for $Y = \sum k_i X_i$, Xi는 모두 독립)
	⑥ $M_Y(t) = [M(t)^n]$ (for $Y = \sum X_i$, X_i 는 iid 확률변수)
	1. $E(X^m)$ 이 존재하면 \Rightarrow $E(X^k)$ 존재 for $k \le m$
	*증명: $E(X^k) = \int_{-\infty}^{\infty} x ^k f(x) dx = \int_{ x \le 1} x ^k f(x) dx + \int_{ x \ge 1} x ^k f(x) dx \le \int_{ x \le 1} f(x) dx + \int_{ x \ge 1} x ^m f(x) dx$
중요한	$\leq \int_{-\infty}^{\infty} f(x) dx + \int_{-\infty}^{\infty} x ^m f(x) dx \leq 1 + E(X^m)$: 유한함
부등식	2. Markov: $P[u(X) \ge c] \le E[u(X)]/c$ (for $u(X) \ge 0$, $c>0$; $E[u(X)]$ 존재)
TOH	*증명: $E[u(x)] = \int_{-\infty}^{\infty} u(x)f(x)dx \ge \int_{u(x)\ge c} u(x)f(x)dx \ge c \int_{u(x)\ge c} f(x)dx = c P[u(x)\ge c]$
	3. Chevyshev: $P(X - \mu \ge k\sigma) \le 1/k^2$ (for k>0; X가 μ,σ^2 (유한) 가짐)
	*증명: Markov에서 $u(X)=(X-\mu)^2,\;c=k^2\sigma^2$

2-1. 이변량분포

	1) Joint CDF: $F(x, y) = P[\{X \le x\} \cap \{Y \le y\}]$ * $\mathbf{X} = (X, Y)^T \in D$; Random vector \mathbf{X}					
	$ *P((a_1,a_2] \times (b_1,b_2]) = F(a_2,b_2) - F(a_1,b_2) - F(a_2,b_1) + F(a_1,b_1) = \int_{b_1}^{b_2} \int_{a_1}^{a_2} f(x,y) dx dy $					
	2) Joint PMF: $\sum_{y} \sum_{x} p(x, y) = 1$					
	3) Joint PDF: $F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(x,y) dy dx$ $\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1 \right)$					
이변수	$\Leftrightarrow \frac{\partial^2(F)}{\partial x \partial y} = f(x, y)$					
	/ 6x6y 4) Marginal dist: 한 변수의 효과만 봄; 다른 변수는 (-∞, ∞) 전부 포괄					
	* $F_X(x) = P(\{X \le x\}) = P(\{X \le x\} \cap \{-\infty < Y < \infty\})$					
	① PMF of x: $F_X(x) = \sum_{(-\infty,x]} \{ \sum_{y \in (-\infty,\infty)} p(x,y) \} \rightarrow p_X(x) = \sum_{y \in (-\infty,\infty)} p(x,y) $					
	②PDF of x: $F_x(x) = \int_{-\infty}^x \{ \int_{-\infty}^{\infty} f(x, y) dy \} dx \implies f_x(x) = \int_{-\infty}^{\infty} f(x, y) dy$					
	$^*E(g(X,Y))$ 존재 조건 \Leftrightarrow $E(g(X,Y)) < \infty$					
이변수	기대값: $E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dxdy$ (이산형: $E(g(X,Y)) = \sum \sum g(x,y) p(x,y)$					
_	1) $E(k_1g_1 + k_2g_2) = k_1E(g_1) + k_2E(g_2)$ 2) $E(\mathbf{X}) = [E(X)E(Y)]^{\mathrm{T}} = \left[\int_{-\infty}^{\infty} x f_x(x) dx \int_{-\infty}^{\infty} y f_y(y) dy\right]^{\mathrm{T}}$					
기대값	3) $M(t_1, t_2) = E(\exp(t_1X + t_2Y))$ > $\mathbf{t} = (t_1, t_2)^T$ 에 대해 $M(\mathbf{t}) = E(\exp(\mathbf{t}^T\mathbf{X}))$					
	$E(X^kY^m) = \frac{\partial^{k+m}}{\partial t_1^k \partial t_2^m} M(0,0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^k y^m \exp(t_1 x + t_2 y) f(x,y) dxdy$					
	*변환 조건: 1) $\mathbf{X}=(X_1,X_2)$ 의 받침 S 2) S \rightarrow T 사상하는 일대일대응: $y_1=u_1(x_1,x_2)$ & $y_2=u_2(x_1,x_2)$					
	3) T \rightarrow S 사상하는 위 대응 역: $x_1=w_1(y_1,y_2)$ & $x_2=w_2(y_1,y_2)$					
이변수	1. 이산형 변환: $p_{\mathbf{Y}}(y_1,y_2)=p_{\mathbf{X}}[w_1(y_1,y_2),w_2(y_1,y_2)]$ for $(y_1,y_2)\in T$ & 나머지 pmf 0					
변환	* X_1 , $X_2 \rightarrow$ Y로만 변환 시, dummy 변수를 하나 더 만들어 Y_2 로 지정해주고 marginal Y dist를 구함					
	2. 연속형 변환: $f_{\mathbf{Y}}(y_1, y_2) = f_{\mathbf{X}}[w_1(y_1, y_2), w_2(y_1, y_2)]$ for $(y_1, y_2) \in T$ & 나머지 pdf 0					
	* MGF 이용 변환: $E(\exp(tY)) = E(\exp(t(X_1 + X_2)))$ > MGF 유일성으로 Y 의 PMF/PDF 구함					
	1. 조건부 PMF: $p_{2 1}(x_2 x_1) = \frac{p(x_1, x_2)}{p_1(x_1)}$ 2. 조건부 PDF: $f_{2 1}(x_2 x_1) = \frac{f(x_1, x_2)}{f_1(x_1)}$ (f_1 는 $f_{1,2}$ 의 marginal 분포)					
	2. 조건부 PDF: $f_{2 1}(x_2 x_1) = \frac{f(x_1, x_2)}{f_1(x_1)} / f_1(x_1)$ (f_1 는 $f_{1,2}$ 의 marginal 분포)					
	1) $P(a < Y < b \mid X = x) = \int_a^b f_{Y\mid X}(y\mid x) dy$ & $P(c < X < d\mid Y = y) = \int_c^d f_{X\mid Y}(x\mid y) dx$					
	2) $P(-\infty < Y < \infty X = x) = \int_{-\infty}^{\infty} f_{Y X}(y x) dy = \int_{-\infty}^{\infty} \frac{f(x,y)}{f_X(x)} dy = \frac{1}{f_X(x)} \int_{-\infty}^{\infty} f(x,y) dy = 1$					
조건부	3) 조건부 기대값: $E[u(Y) x] = \int_{-\infty}^{\infty} u(y) f_{Y X}(y x) dy$ > x의 함수					
	① 조건부 평균: $E(Y x) = \int_{-\infty}^{\infty} y f_{Y X}(y x) dy$ ② 조건부 분산: $Var(Y x) = E(Y^2 x) - [E(Y x)]^2$					
	* 정리: μ_Y 추정 \longleftarrow $E(Y X)$ 이 Y 보다 더 신뢰도 높음 (Rao & Blackwell)					
	1) $E[E(Y X)] = E(Y)$ 2) $Var(E(Y X)) \le Var(Y)$ * Y 분산 유한					
	* 증명: $E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) dy dx = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} y f_{Y X}(y x) dy \right] f_X(x) dx = \int_{-\infty}^{\infty} E(Y X) f_X(x) dx = E(E(Y X))$					
공분산	1.공분산: $Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - E(X)E(Y)$ *독립이면 $Cov(X,Y) = 0 \Leftrightarrow E(XY) = E(X)E(Y)$					
/	2.상관계수: $\rho = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{\sigma_{XY}}{(\sigma_X \sigma_Y)}$ $(-1 \le \rho \le 1)$ $\Rightarrow y = a + bx \ (b > 0)$ 에 ρ 의 강도로 집중 $(0 < \rho \le 1)$					
상관 계소	3.선형조건부평균: $E(Y X) = a + bx$ \Rightarrow $E(Y X) = \mu_y + \rho \frac{\sigma_y}{\sigma_x} (X - \mu_x) & E(\text{Var}(Y X)) = \sigma_y^2 (1 - \rho^2)$					
계수	*회귀분석 모회귀계수 $\beta = \rho(\sigma_y/\sigma_x) = \text{Cov}(X,Y)/Var(X)$; *X,Y 분산 유한					
	*정의: $f(x,y) = f_x(x)f_y(y) \Leftrightarrow X,Y$ 는 독립 $[x \in (a,b) \& y \in (c,d)]$ (받침이 수평/수직선 box에 존재해야 함)					
	1. 조건부 증명: $f_y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_{-\infty}^{\infty} f_{y x}(y x) f_x(x) dx = f_{y x}(y x) \int_{-\infty}^{\infty} f_x(x) dx = f_{y x}(y x)$					
	2. 동치류 1) f(x y) = f (x) f (y)					
	1) $f(x,y) = f_x(x) f_y(y)$ 2) $F(x,y) = F_x(x) F_y(y)$ *증명: $\partial^2 F / \partial x \partial y = f_x(x) f_y(y)$					
독립	3) $P(a < X < b, c < Y < d) = P(a < X < b) P(c < Y < d)$					
	*증명: $P(a < X < b, c < Y < d) = F(b, d) - F(a, d) - F(b, c) + F(a, c) = [F_x(b) - F_x(a)][F_y(d) - F_y(c)]$					
	4) $E[u(X)v(Y)] = E[u(X)]E[v(Y)] \Rightarrow E(XY) = E(X)E(Y) \Leftrightarrow Cov(X,Y) = 0$					
	5) $M(t_1, t_2) = M(t_1, 0) M(0, t_2)$ *\$\forall H(t_1, t_2) = E(e^{t_1 X} + t_2 Y) = E(e^{t_2 Y}) = M(t_1, 0) M(0, t_2)					
	* $M(t_1,0)$ 는 \mathbf{x} 에 대한 marginal 분포의 MGF					
	V-1/ " " -					

2-2. 다변량분포

2-2. 다	ひでで生
	* $\mathbf{x} = (x_1, x_2, \cdots, x_p)^T = (X_1(c), X_2(c), \cdots, X_p(c))^T$ for 확률 실험 $c \in C$
	1. 결합 확률 함수들
	1) Joint CDF: $F(\mathbf{x}) = P[\{X_1 \le x_1\} \cap \{X_2 \le x_2\} \cap \dots \cap \{X_p \le x_p\}]$
	2) Joint PMF $F(\mathbf{x}) = \sum_{w_1 \le x_1} \cdots \sum_{w_p \le x_p} p(w_1, \cdots, w_p)$
	3) Joint PDF: $F(\mathbf{x}) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \cdots \int_{-\infty}^{x_p} f(x_1, \dots, x_p) dx_p \cdots dx_1$ $\left(\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_p) dx_p \cdots dx_1 = 1\right)$
	$\Leftrightarrow \frac{\partial^{p} \{F(\mathbf{x})\}}{\partial x_{1} \cdots \partial x_{p}} = f(\mathbf{x})$
	2. Marginal/Conditional
	1) $f_1(x_1) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_p) dx_2 \cdots dx_p$
	$ \Rightarrow f_{2,\cdots,p 1}(x_2,\cdots,x_p x_1) = \frac{f(\mathbf{x})}{f_1(x_1)} $
다변수	2) $f_{2,4,5}(x_2, x_4, x_5) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\mathbf{x}) dx_1 dx_3 dx_6 \leftarrow \mathbf{x} = (x_1, x_2, x_3, x_4, x_5, x_6)^T$
	$ \Rightarrow f_{1,3,6 \mid 2.4.5}(x_1, x_3, x_6 \mid x_2, x_4, x_5) = \frac{f(\mathbf{x})}{f_{2,4.5}(x_2, x_4, x_5)} $
	3. 기대값
	1) $E(u(\mathbf{x})) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} u(x_1, \cdots, x_p) dx_1 \cdots dx_p$ (존재성: ${}^{\exists}E(u(\mathbf{x}))$) *이산: $E(u(\mathbf{x})) = \sum_{x_1} \cdots \sum_{x_p} u(x_1, \cdots, x_p)$
	2) $E(\sum k_i Y_i) = \sum k_i E(Y_i)$
	3) $E[u(X_2, \dots, X_p) x_1] = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} u(x_2, \dots, x_p) f_{2, \dots, p \mid 1}(x_2, \dots, x_p \mid x_1) dx_2 \dots dx_p$
	4. 독립: $E(\prod u_i(X_i)) = \prod E(u_i(X_i))$ 등 동치류 (f, F, P, E, M)
	* iid (independent and identically distributed): 여러 확률 변수가 서로 독립 & 동일한 분포
	5. 변환: X 의 받침 S에 대해, X \Leftrightarrow Y가 일대일이 되는 S_1, \cdots, S_k 의 부분 공간 상 각각의 야코비안 J_i 정의
	$g(\mathbf{y}) = \sum_{i=1}^{k} J_{i} f[w_{1i}(\mathbf{x}), \dots, w_{pi}(\mathbf{x})]$
	$g(\mathbf{y}) = \sum_{i=1}^{n} [y_{i1}(\mathbf{x}), y_{i1}(\mathbf{x})]$
	* Random matrix $\mathbf{W} = [W_{ij}], \ W_{ij} \ (1 \le i \le m, \ 1 \le j \le n)$
	1. $E(\mathbf{W}) = [E(W_{ij})]$ (일렬로 배열하여 mn x 1의 벡터로 생각)
	1) E[AW + BV] = A E[W] + B E[V] (A,B: k x m 상수 행렬, W,V: m x n 확률 행렬)
	2) $E[\mathbf{AWB}] = \mathbf{A} E(\mathbf{W}) \mathbf{B}$ (A: k x m, W: m x n, B: n x l)
	2. 분산-공분산 행렬 (Variance-Covariance matrix) * $\mathbf{X} = \left(X_1, X_2, \cdots, X_p\right)^{\mathrm{T}}$; 모든 VCM는 양의 반정부호(psd)
	1) 정의: $Cov(\mathbf{X}) = E[(\mathbf{X} - \mathbf{\mu})(\mathbf{X} - \mathbf{\mu})^{\mathrm{T}}] = [\sigma_{ij}] (\mathbf{\mu} = E(\mathbf{X}))$
	$\rightarrow \sigma_i^2 = \operatorname{Var}(X_i) \& \sigma_{ij} = \operatorname{Cov}(X_i, X_j)$
	2) 정리 ① $Cov(\mathbf{X}) = E(\mathbf{X}\mathbf{X}^{\mathrm{T}}) - \mu\mu^{\mathrm{T}}$ $(\sigma_i^2 < \infty)$
	② $Cov(\mathbf{AX}) = \mathbf{A}Cov(\mathbf{X})\mathbf{A}^{\mathrm{T}} \qquad (\sigma_i^2 < \infty, \ A: m \times p)$
	3. MGF: $M(\mathbf{t}) = E[\exp(\mathbf{t}^T \mathbf{X})] = E[\prod_{i=1}^p \exp(t_i X_i)]$ (*X _i 독립→ $M(\mathbf{t}) = M(t_1, \dots, 0) \dots M(0, \dots, t_p) = \prod_{i=1}^p E[\exp(t_i X_i)]$
Random	1) $M_{\mathbf{Y}}(\mathbf{t}) = \prod M_{\mathbf{X}_i}(\mathbf{t})$ $(\mathbf{Y} = \sum \mathbf{X}_i, \ \ \ \mathbf{X}_i \in \mathbb{R}^n$ 은 독립)
matrix	2) $M_{\mathbf{Y}}(\mathbf{t}) = e^{\mathbf{b}^T t} M_{\mathbf{X}}(\mathbf{A}^T \mathbf{t}) (\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{b}; \mathbf{A}: m \times p; \mathbf{t} \in \mathbb{R}^m; \mathbf{b} \in \mathbb{R}^m)$
THE COLOR	3. 선형결합: $T = \sum_{i=1}^{n} a_i X_i$, $W = \sum_{i=1}^{m} b_i Y_i$
	1) $E(T) = \sum_{i=1}^{n} a_i E(X_i)$ (* $E[X_i] < \infty$)
	2) $\operatorname{Cov}(T, W) = \sum \sum a_i b_j \operatorname{Cov}(X_i, Y_j) (*E[X_i^2] < \infty, E[Y_{ij}^2] < \infty)$
	① $Var(T) = Cov(T, T) = \sum_{i=1}^{n} a_i^2 Var(X_i) + 2 \sum_{i < j} a_i b_j Cov(X_i, X_j)$ (* $E[X_i^2] < \infty$)
	② $Var(T)=\mathrm{Cov}(T,T)=\sum_{i=1}^{n}a_{i}^{2}\mathrm{Var}(X_{i})$ (* X_{1},\cdots,X_{n} 이 유한 분산, 독립)
	3) 표본 추정량: X_1, \cdots, X_n 이 μ, σ^2 가지는 iid 확률변수
	① 표본평균: $\bar{X}=\frac{\sum_{i=1}^{n}X_{i}}{n}$ & 표본분산: $S^{2}=\frac{\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}}{n-1}=\frac{\sum X_{i}^{2}-n\bar{X}^{2}}{n-1}$
	② $E(\overline{X}) = \sum_{i=1}^{n} E(X_i)/n = n\mu/n = \mu$ & $Var(\overline{X}) = \sum_{i=1}^{n} \left(\frac{1}{n}\right)^2 Var(X_i) = n\left(\frac{1}{n}\right)^2 \sigma^2 = \sigma^2/n$
	(n) $ (n) $ $ (n)$
	n-1
	$(ar{X},~S^2$ 는 독립 by Student's정리)

* Bernoulli experiment: 성공/실패로 서로 배반인 확률 실험 * Bernoulli trial: 베르누이 실험을 독립적으로 반복 (성공 확률 p 동일) * Bernoulli distribution의 유도: X(성공)=1, X(실패)=0 \Rightarrow PMF: $p(x)=p^x(1-p)^{1-x}$ _* $\mu=p,~\sigma^2=p(1-p)$ * Binomial distribution (이항분포): n회 반복한 베르누이 시행에서 성공한 총 횟수 분포 1. PMF: $p(x) = \binom{n}{x} p^x (1-p)^{n-x} \sim b(n,p)$ $(x = 0,1,\dots,n)$ 2. MGF: $M(t) = \sum e^{tx} p(x) = [(1-p) + (pe^t)]^n \quad (t \in \mathbb{R})$ 3. $7|\text{CHZ}(1)| \mu = np$ $*\mu = M'(0) = n[(1-p) + pe^t]^{n-1}(pe^t)|_{t=0} = np$ $*\sigma^2 = np(1-p) \qquad *\sigma^2 = M''(0) - \left(M'(0)\right)^2 = n(n-1)p^2 + np - (np)^2 = np(1-p)$ 4. 가법성: $Y = \sum X_i, X_i \sim B(n_i, \mathbf{p}) \rightarrow Y \sim B(\sum n_i, \mathbf{p})$ (증명) $M_Y(t) = \prod M_{X_i}(t) = \prod [(1-p) + (pe^t)]^{n_i} = [(1-p) + (pe^t)]^{\sum n_i}$ * p(x)가 성공확률(= 평균) p인 Bernoulli분포 $\leftrightarrow X \sim B(1,p)$ $\rightarrow Y = \sum_{i=1}^{20} X_i \ (iid)$ 에 대해 p(y)는 20회 시행 중 평균 20p회 성공하는 Bernoulli $\leftrightarrow Y \sim B(20,p)$ 이항 분포 * Multinomial distribution (다항분포) 1. PMF: $p(x_1, \dots, x_{k-1}) = \frac{n!}{(x_1)! \dots (x_k)!} (p_1)^{x_1} \dots (p_k)^{x_k} \implies p_k = 1 - \sum_{i=1}^{k-1} p_i \& x_k = n - \sum_{i=1}^{k-1} x_i$ 2. MGF: $M(t_1, \dots, t_{k-1}) = (p_1 e^{t_1} + \dots + p_{k-1} e^{t_{k-1}} + p_k)^n$ * R codes 1) dbinom (k,n,p): P(X=k) 2) pbinom (k,n,p): $P(X \le k)$ * Negative binomial distribution (음이항분포): X번 실패 후 r번 성공 (베르누이 시행) *r번 성공시 나감 1. PMF: $p(x) = {x+r-1 \choose r-1} p^r (1-p)^x$ 2. MGF: $M(t) = p^r [1-(1-p)e^t]^{-r}$ (e^t < 1/(1-p)) $\Leftrightarrow [\text{이항:x+(r-1)번 중 (r-1)번 성공] x [p]} \qquad *\binom{-n}{k} = (-n)(-n-1)\cdots(-n-k+1)/k! = (-1)^k \binom{n+k-1}{k}$ * Geometric distribution (기하 분포): X번 실패 후 처음 성공 (베르누이 시행) <code-block> r=1인 음이항분포</code> 2. MGF: $M(t) = p[1 - (1 - p)e^t]^{-1}$ 1. PMF: $p(x) = p(1-p)^x$ * Hypergeometric distribution (초기하분포) 1. PMF: $p(x) = \frac{\binom{D}{x}\binom{N-D}{n-x}}{\binom{N}{N}}$ *N개 중 D개가 성공 & 비복원추출: n번 시행 → x번 성공 확률 2. 기대값: 1) $\mu=n\left(\frac{N}{N}\right)$ 2) $\sigma^2=n\left(\frac{N}{N}\right)\left(1-\frac{N}{N}\right)\left(\frac{N-n}{N-1}\right)$ N>>n이면 이항분포로 근사 가능 * Poisson process: 일정한 구간 (시간, 공간)에서 독립적으로 발생하는 event를 생성하는 과정 (**비기억성**) * Poisson postulate: 짧은 구간 h (h->0)에 대해 1) $g(1,h) = \lambda h + o(h)$ * g(x,w)는 구간 길이 w 내에 x회 발생 확률 2) $\sum_{x=2}^{\infty} g(x,h) = o(h)$ (≒미소 구간 h에 둘 이상은 본질적 불가) * $\lim_{h \to 0} o(h)/h = 0$ (little-o) 2. 기댓값: $\mu = \sigma^2 = \lambda w$ (λ : 단위 길이당 발생률, w. 주어진 영역 크기) Poisson 3. MGF: $M(t) = e^{\mu(e^t - 1)}$ $(t \in \mathbb{R})$ 분포 4. 가법성: $Y = \sum X_i$, $X_i \sim Poi(m_i) \rightarrow Y \sim Poi(\sum m_i)$ (증명) $M_Y(t) = \prod M_{X_i}(t) = \prod e^{m_i(e^t-1)} = e^{(\sum m_i)(e^t-1)}$ * p(x)가 주어진 100초당 평균 μ 회 발생 Poisson $\leftrightarrow X \sim Poi(\mu)$ $\rightarrow Y = \sum_{i=1}^{20} X_i \ (iid)$ 에 대해 p(y)는 주어진 20×100 초당 평균 20μ 회 발생 Poisson $\leftrightarrow Y \sim \text{Poi}(20\mu)$ * 이항분포 $b(n,p) \stackrel{D}{ o}$ 푸아송분포 $(\mu=np)$ (MGF의 극한으로 분포수렴 증명)

* R codes 1) dpois (k,m): P(X=k) 2) ppois (k,m): $P(X \le k)$

3-2. 주요 분포: 감마 연관 분포

	* 감마함수: $\Gamma(\alpha) = \int_0^\infty y^{\alpha-1} e^{-y} dy (\alpha > 0)$
	* $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$ \rightarrow $\Gamma(n) = (n - 1)!$ for 자연수 n * $\Gamma(1) = 1$, $\Gamma(1/2) = \sqrt{\pi}$
	* 스털링 근사: $\Gamma(k+1) \approx \sqrt{2\pi k} \left(\frac{k}{\rho}\right)^k$
	*Gamma distribution (감마분포): α (∈ ℝ) 번째 Poisson event 발생까지 걸리는 대기 시간
	1. PDF: $f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-x/\beta} \sim \Gamma(\alpha,\beta) \ (0 \le x < \infty)$ (감마함수 식에 $y = x/\beta$ 대입; $\alpha > 0 & \beta > 0$)
Γ 분포	2. 기댓값: 1) $\mu = \alpha \beta$, 2) $\sigma^2 = \alpha \beta^2$
	3. MGF: $M(t) = 1/(1 - \beta t)^{\alpha}$ (t < 1/ β)
	4. 가법성: $Y = \sum X_i, X_i \sim \Gamma(\alpha_i, \beta)$ $\rightarrow Y \sim \Gamma(\sum \alpha_i, \beta)$
	(증명) $M_Y(t) = \prod M_{X_i}(t) = \prod (1-\beta t)^{-\alpha_i} = (1-\beta t)^{-\sum \alpha_i}$
	5. 스칼라배: $X \sim \Gamma(\alpha, \beta) \Rightarrow kX \sim \Gamma(\alpha, k\beta)$ (*증명: 야코비안 변수변환)
	6. 유도: k번 Poisson event 발생까지 시간을 T_i 로 분할 $ ightharpoonup$ 각 $T_i \sim \Gamma(1, \frac{1}{\lambda})$ $ ightharpoonup Y = \sum_{i=1}^k T_i \sim \Gamma(k, \frac{1}{\lambda})$
	(*Erlang 분포: 자연수 k인 감마 분포)
	* R codes 1) dgamma (x,shape=a,scale=b): f(X=x) 2) pgamma (x, shape=a, scale=b): P(X≤x)
	* Exponential distribution (지수분포): 1번째 Poisson event 발생까지 대기 시간 = $\Gamma(1,eta)$
T. A	1. PDF: $f(x) = \frac{1}{\beta} e^{-x/\beta}$ 2. 기댓값: 1) $\mu = \beta$, 2) $\sigma^2 = \beta^2$
지수	7 3. 유도: W가 첫 번째 Poisson event 까지 걸린 시간
분포	→ w시간 내 푸아송 사건 없을 확률: $P(W>w) = \frac{e^{-\lambda w}(\lambda w)^0}{0!} = e^{-\lambda w} \Leftrightarrow P(0 < W < w) = 1 - e^{-\lambda w}$
	$f(w) = \lambda e^{-\lambda w} \qquad (\beta = 1/\lambda)$
	*CL: annual aliabethysica /オクロス 日立、JOE gOI [[制 、2(c) 取/ つ)
	*Chi-square distribution (카이제곱 분포): 자유도 r에 대해, $\chi^2(r) = \Gamma(\frac{r}{2}, 2)$
	1. PDF: $f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{\frac{r}{2}}}x^{\frac{r}{2}-1}e^{-\frac{x}{2}} \sim \chi^2(r) (0 \le x < \infty)$
v ² 브ㅍ	
χ² 분포	1. PDF: $f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{(\frac{r}{2})}} x^{(\frac{r}{2})-1} e^{-\frac{x}{2}} \sim \chi^2(r) \ (0 \le x < \infty)$
χ² 분포	1. PDF: $f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{(\frac{r}{2})}} x^{(\frac{r}{2})-1} e^{-\frac{x}{2}} \sim \chi^2(r) (0 \le x < \infty)$ 2. 기댓값: 1) $\mu = r$, 2) $\sigma^2 = 2r$ 3. MGF: $M(t) = 1/(1-2t)^{r/2} (t < 1/2)$
χ² 분포	1. PDF: $f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{\frac{r}{2}}} x^{\frac{r}{2}-1} e^{-\frac{x}{2}} \sim \chi^2(r) (0 \le x < \infty)$ 2. 기댓값: 1) $\mu = r$, 2) $\sigma^2 = 2r$ 3. MGF: $M(t) = 1/(1-2t)^{r/2} (t < 1/2)$ 4. $E(X^k) = 2^k \frac{\Gamma(\frac{r}{2}+k)}{\Gamma(\frac{r}{2})}$, $k > -\frac{r}{2}$
	1. PDF: $f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{(\frac{r}{2})}} x^{(\frac{r}{2})-1} e^{-\frac{x}{2}} \sim \chi^2(r) (0 \le x < \infty)$ 2. 기댓값: 1) $\mu = r$, 2) $\sigma^2 = 2r$ 3. MGF: $M(t) = 1/(1-2t)^{r/2} (t < 1/2)$ 4. $E(X^k) = 2^k \frac{\Gamma(\frac{r}{2}+k)}{\Gamma(\frac{r}{2})}$, $k > -\frac{r}{2}$ 5. 가법성 (corollary): $Y = \sum X_i$, $X_i \sim \chi^2(r_i) \Rightarrow Y \sim \chi^2(\sum r_i)$ * R codes 1) dchisq (x,r): $f(X=x)$ 2) pchisq (x,r): $P(X \le x)$ *베타학수: $R(\alpha, \beta) = \int_0^1 v^{\alpha-1}(1-v)^{\beta-1} dv (\alpha > 0, \beta > 0)$
	1. PDF: $f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{(\frac{r}{2})}} x^{(\frac{r}{2})-1} e^{-\frac{x}{2}} \sim \chi^2(r) (0 \le x < \infty)$ 2. 기댓값: 1) $\mu = r$, 2) $\sigma^2 = 2r$ 3. MGF: $M(t) = 1/(1-2t)^{r/2} (t < 1/2)$ 4. $E(X^k) = 2^k \frac{\Gamma(\frac{r}{2}+k)}{\Gamma(\frac{r}{2})}$, $k > -\frac{r}{2}$ 5. 가법성 (corollary): $Y = \sum X_i$, $X_i \sim \chi^2(r_i) \Rightarrow Y \sim \chi^2(\sum r_i)$ * R codes 1) dchisq (x,r): $f(X=x)$ 2) pchisq (x,r): $P(X \le x)$ *베타학수: $R(\alpha, \beta) = \int_0^1 v^{\alpha-1}(1-v)^{\beta-1} dv (\alpha > 0, \beta > 0)$
	1. PDF: $f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{(\frac{r}{2})}} x^{(\frac{r}{2})-1} e^{-\frac{x}{2}} \sim \chi^2(r) \ (0 \le x < \infty)$ 2. 기댓값: 1) $\mu = r$, 2) $\sigma^2 = 2r$ 3. MGF: $M(t) = 1/(1-2t)^{r/2} \ (t < 1/2)$ 4. $E(X^k) = 2^k \frac{\Gamma(\frac{r}{2}+k)}{\Gamma(\frac{r}{2})}$, $k > -\frac{r}{2}$ 5. 가법성 (corollary): $Y = \sum X_i, \ X_i \sim \chi^2(r_i) \Rightarrow Y \sim \chi^2(\sum r_i)$ * R codes 1) dchisq (x,r): $f(X=x)$ 2) pchisq (x,r): $P(X \le x)$ *베타함수: $B(\alpha,\beta) = \int_0^1 y^{\alpha-1} (1-y)^{\beta-1} dy \ (\alpha > 0,\beta > 0)$ ① $B(\alpha,\beta) = B(\beta,\alpha)$, ② $B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$ * 결합 PDF: $h(x_1,x_2) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} x_1^{\alpha-1} x_2^{\beta-1} e^{-(x_1+x_2)}$; $0 \le x_1 < \infty, 0 \le x_2 < \infty$ (X ₁ , X ₂ 독립)
	1. PDF: $f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{(\frac{r}{2})}} x^{(\frac{r}{2})-1} e^{-\frac{x}{2}} \sim \chi^2(r) \ (0 \le x < \infty)$ 2. 기댓값: 1) $\mu = r$, 2) $\sigma^2 = 2r$ 3. MGF: $M(t) = 1/(1-2t)^{r/2} \ (t < 1/2)$ 4. $E(X^k) = 2^k \frac{\Gamma(\frac{r}{2}+k)}{\Gamma(\frac{r}{2})}$, $k > -\frac{r}{2}$ 5. 가법성 (corollary): $Y = \sum X_i$, $X_i \sim \chi^2(r_i) \Rightarrow Y \sim \chi^2(\sum r_i)$ * R codes 1) dchisq (x,r): $f(X=x)$ 2) pchisq (x,r): $P(X \le x)$ *베타함수: $B(\alpha,\beta) = \int_0^1 y^{\alpha-1} (1-y)^{\beta-1} dy \ (\alpha > 0,\beta > 0)$ ① $B(\alpha,\beta) = B(\beta,\alpha)$, ② $B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$ * 결합 PDF: $h(x_1,x_2) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} x_1^{\alpha-1} x_2^{\beta-1} e^{-(x_1+x_2)}$; $0 \le x_1 < \infty$, $0 \le x_2 < \infty$ (X ₁ , X ₂ 독립) * $Y_1 = X_1/(X_1 + X_2)$ & $Y_2 = X_1 + X_2$ $\Rightarrow Y_1$ 이 대한 marginal distribution 0 beta(α,β)
	1. PDF: $f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{(\frac{r}{2})}} x^{(\frac{r}{2})-1} e^{-\frac{x}{2}} \sim \chi^2(r) \ (0 \le x < \infty)$ 2. 기댓값: 1) $\mu = r$, 2) $\sigma^2 = 2r$ 3. MGF: $M(t) = 1/(1-2t)^{r/2} \ (t < 1/2)$ 4. $E(X^k) = 2^k \frac{\Gamma(\frac{r}{2}+k)}{\Gamma(\frac{r}{2})}$, $k > -\frac{r}{2}$ 5. 가법성 (corollary): $Y = \sum X_i, \ X_i \sim \chi^2(r_i) \Rightarrow Y \sim \chi^2(\sum r_i)$ * R codes 1) dchisq (x,r): $f(X=x)$ 2) pchisq (x,r): $P(X \le x)$ *베타함수: $B(\alpha,\beta) = \int_0^1 y^{\alpha-1} (1-y)^{\beta-1} dy \ (\alpha > 0,\beta > 0)$ ① $B(\alpha,\beta) = B(\beta,\alpha)$, ② $B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$ * 결합 PDF: $h(x_1,x_2) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} x_1^{\alpha-1} x_2^{\beta-1} e^{-(x_1+x_2)}$; $0 \le x_1 < \infty, 0 \le x_2 < \infty$ (X ₁ , X ₂ 독립)
	1. PDF: $f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{(\frac{r}{2})}} x^{(\frac{r}{2})-1} e^{-\frac{x}{2}} \sim \chi^2(r) \ (0 \le x < \infty)$ 2. 기댓값: 1) $\mu = r$, 2) $\sigma^2 = 2r$ 3. MGF: $M(t) = 1/(1-2t)^{r/2} \ (t < 1/2)$ 4. $E(X^k) = 2^k \frac{\Gamma(\frac{r}{2}+k)}{\Gamma(\frac{r}{2})}$, $k > -\frac{r}{2}$ 5. 가법성 (corollary): $Y = \sum X_i$, $X_i \sim \chi^2(r_i) \Rightarrow Y \sim \chi^2(\sum r_i)$ * R codes 1) dchisq (x,r): $f(X=x)$ 2) pchisq (x,r): $P(X \le x)$ *베타함수: $B(\alpha,\beta) = \int_0^1 y^{\alpha-1} (1-y)^{\beta-1} dy \ (\alpha > 0,\beta > 0)$ ① $B(\alpha,\beta) = B(\beta,\alpha)$, ② $B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$ * 결합 PDF: $h(x_1,x_2) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} x_1^{\alpha-1} x_2^{\beta-1} e^{-(x_1+x_2)}$; $0 \le x_1 < \infty$, $0 \le x_2 < \infty$ (X ₁ , X ₂ 독립) * $Y_1 = X_1/(X_1 + X_2)$ & $Y_2 = X_1 + X_2$ $\Rightarrow Y_1$ 이 대한 marginal distribution 0 beta(α,β)
	1. PDF: $f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{(\frac{r}{2})}} x^{(\frac{r}{2})-1} e^{-\frac{x}{2}} \sim \chi^2(r) (0 \le x < \infty)$ 2. 기댓값: 1) $\mu = r$, 2) $\sigma^2 = 2r$ 3. MGF: $M(t) = 1/(1-2t)^{r/2}$ $(t < 1/2)$ 4. $E(X^k) = 2^k \frac{\Gamma(\frac{r}{2}+k)}{\Gamma(\frac{r}{2})}$, $k > -\frac{r}{2}$ 5. 가법성 (corollary): $Y = \sum X_i$, $X_i \sim \chi^2(r_i) \rightarrow Y \sim \chi^2(\sum r_i)$ * R codes 1) dchisq (x,r): $f(X=x)$ 2) pchisq (x,r): $P(X \le x)$ *베타함수: $B(\alpha,\beta) = \int_0^1 y^{\alpha-1}(1-y)^{\beta-1}dy (\alpha > 0,\beta > 0)$ ① $B(\alpha,\beta) = B(\beta,\alpha)$, ② $B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$ * 결합 PDF: $h(x_1,x_2) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} x_1^{\alpha-1} x_2^{\beta-1} e^{-(x_1+x_2)}$; $0 \le x_1 < \infty$, $0 \le x_2 < \infty$ (X ₁ , X ₂ 독립) * $Y_1 = X_1/(X_1 + X_2)$ & $Y_2 = X_1 + X_2 \rightarrow Y_1$ 에 대한 marginal distribution $0 = 0$ beta(α,β) 1. PDF: $f(x) = \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1} (0 < x < 1)$
β 분포	1. PDF: $f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{(\frac{r}{2})}} x^{(\frac{r}{2})-1} e^{-\frac{x}{2}} \sim \chi^2(r) (0 \le x < \infty)$ 2. 기댓값: 1) $\mu = r$, 2) $\sigma^2 = 2r$ 3. MGF: $M(t) = 1/(1-2t)^{r/2} (t < 1/2)$ 4. $E(X^k) = 2^k \frac{\Gamma(\frac{r}{2}+k)}{\Gamma(\frac{r}{2})}$, $k > -\frac{r}{2}$ 5. 가법성 (corollary): $Y = \sum X_i, X_i \sim \chi^2(r_i) \Rightarrow Y \sim \chi^2(\sum r_i)$ * R codes 1) dchisq (x,r) : $f(X=x)$ 2) pchisq (x,r) : $P(X \le x)$ *베타함수: $B(\alpha,\beta) = \int_0^1 y^{\alpha-1}(1-y)^{\beta-1}dy (\alpha > 0,\beta > 0)$ ① $B(\alpha,\beta) = B(\beta,\alpha)$, ② $B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$ * 결합 PDF: $h(x_1,x_2) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)} x_1^{\alpha-1} x_2^{\beta-1} e^{-(x_1+x_2)}$; $0 \le x_1 < \infty, 0 \le x_2 < \infty (X_1, X_2 \le 1)$ * $Y_1 = X_1/(X_1 + X_2) \otimes Y_2 = X_1 + X_2 \Rightarrow Y_1$ 에 대한 marginal distribution $Y_1 = X_1 + X_2 \Rightarrow Y_1$ 에 대한 marginal distribution $Y_2 = X_1 + X_2 \Rightarrow Y_1 \Rightarrow Y_1 = X_1 + X_2 \Rightarrow Y_1 $
β 분포 Dirichlet 분포	1. PDF: $f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{(\frac{r}{2})}}x^{(\frac{r}{2})-1}e^{-\frac{x}{2}} \sim \chi^2(r) \ (0 \le x < \infty)$ 2. 기댓값: 1) $\mu = r$, 2) $\sigma^2 = 2r$ 3. MGF: $M(t) = 1/(1-2t)^{r/2} \ (t < 1/2)$ 4. $E(X^k) = 2^k \frac{\Gamma(\frac{r}{2}+k)}{\Gamma(\frac{r}{2})}$, $k > -\frac{r}{2}$ 5. 가법성 (corollary): $Y = \sum X_i$, $X_i \sim \chi^2(r_i) \Rightarrow Y \sim \chi^2(\sum r_i)$ * R codes 1) dchisq (x,r): $f(X=x)$ 2) pchisq (x,r): $P(X \le x)$ *베타함수: $B(\alpha,\beta) = \int_0^1 y^{\alpha-1}(1-y)^{\beta-1}dy \ (\alpha > 0,\beta > 0)$ ① $B(\alpha,\beta) = B(\beta,\alpha)$, ② $B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$ * 결합 PDF: $h(x_1,x_2) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)}x_1^{\alpha-1}x_2^{\beta-1}e^{-(x_1+x_2)}$; $0 \le x_1 < \infty, 0 \le x_2 < \infty$ (X ₁ , X ₂ 독립) * $Y_1 = X_1/(X_1+X_2)$ & $Y_2 = X_1+X_2 \Rightarrow Y_1$ 에 대한 marginal distribution $Y_1 = X_1/(X_1+X_2)$ & $Y_2 = X_1+X_2 \Rightarrow Y_1$ 에 대한 marginal distribution $Y_1 = X_1/(X_1+X_2)$ & $Y_2 = X_1+X_2 \Rightarrow Y_1$ 이 대한 marginal distribution $Y_1 = X_1/(X_1+X_2)$ & $Y_2 = X_1+X_2 \Rightarrow Y_1$ 0 대한 marginal distribution $Y_1 = X_1/(X_1+X_2)$ & $Y_2 = X_1+X_2 \Rightarrow Y_1$ 1 대한 marginal distribution $Y_1 = X_1/(X_1+X_2)$ & $Y_2 = X_1+X_2 \Rightarrow Y_1/(X_1+X_2)$ & $Y_1 = X_1/(X_1+X_2)$ & $Y_2 = X_1+X_2 \Rightarrow Y_1/(X_1+X_2)$ & $Y_1 = X_1/(X_1+X_2)$ & $Y_2 = X_1+X_2 \Rightarrow Y_1/(X_1+X_2)$ & $Y_1 = X_1/(X_1+X_2)$ & $Y_2 = X_1+X_2 \Rightarrow Y_1/(X_1+X_2)$ & $Y_1 = X_1/(X_1+X_2)$ & $Y_2 = X_1+X_2 \Rightarrow Y_1/(X_1+X_2)$ & $Y_1 = X_1/(X_1+X_2)$ & $Y_1 = X_1/(X_1+X_$

*표준정규분포: $I = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right) dz \rightarrow 0 < \exp\left(-\frac{z^2}{2}\right) < \exp(-|z|+1)$ 유계 $\left(\int_{-\infty}^{\infty} e^{-|z|+1} dz = 2e\right)$

*정규분포: $X = \sigma Z + \mu$ 로 변수 변환 $f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left\{ -\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right\}$

*Bell shape 분포: location 모수 (μ), scale 모수 (σ²) vs. 감마분포 등: shape 모수 (α), scale 모수 (β)

*표준 정규 분포 N(0, 12)

1. PDF:
$$\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right) \quad (-\infty < z < \infty)$$

2. MGF:
$$M(t) = \exp\left(\frac{1}{2}t^2\right)$$
, $t \in \mathbb{R}$

3. 기대값:
$$E(Z) = 0$$
, $Var(Z) = 1$

2. MGF:
$$M(t) = \exp\left(\frac{1}{2}t^2\right)$$
, $t \in \mathbb{R}$ 3. 기대값: $E(Z) = 0$, $Var(Z) = 1$
4. $E(Z^k) = \frac{k!}{2^{\frac{k}{2}}\left(\frac{k}{2}\right)!}$ (k가 짝수), $E(Z^k) = 0$ (k가 홀수) * $M(t) = \exp\left(\frac{1}{2}t^2\right) = \sum_{m=0}^{\infty} \left(\frac{t^2}{2}\right)^m/m!$

1. PDF:
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\} \quad (-\infty < x < \infty , \ \sigma > 0)$$

2. MGF:
$$M(t) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$$
, $t \in \mathbb{R}$ 3. 기대값: $E(Z) = \mu$, $Var(Z) = \sigma^2$

3. 기대값:
$$E(Z) = \mu$$
, $Var(Z) = \sigma^2$

4.
$$E(X^k) = E[(\sigma Z + \mu)^k] = \sum_{j=0}^k {k \choose j} \sigma^j E(Z^j) \mu^{k-j}$$

5. 가법성: $Y = \sum a_i X_i$, $X_i \sim N(\mu_i, \sigma_i^2)$ $\rightarrow Y \sim N[\sum (a_i \mu_i), \sum (a_i \sigma_i)^2]$

(증명)
$$M_Y(t) = \prod M_{a_i X_i}(t) = \prod M_{X_i}(a_i t) = \prod \exp\left(\mu_i(a_i t) + \frac{1}{2}\sigma_i^2(a_i t)^2\right) = \exp\left((\sum a_i \mu_i)t + \frac{1}{2}(\sum a_i^2 \sigma_i^2)t^2\right)$$

6. Corollary: $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$, $X_i \sim N(\mu, \sigma^2)$ (iid) $\rightarrow \bar{X} \sim N(\mu, \sigma^2/n)$

* 정리: $Z^2 \sim \chi^2(1)$

정규

분포

pf)
$$W = Z^2$$
일 때, $F(x) = P(W \le x) = P(Z^2 \le x) = P(-\sqrt{x} \le Z \le \sqrt{x})$, $x \ge 0$

$$\Rightarrow y = \sqrt{w}$$
 변환 시, $F(x) = 2\int_0^{\sqrt{x}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right) dy = \int_0^x \frac{1}{\sqrt{2\pi}\sqrt{w}} \exp\left(-\frac{w}{2}\right) dw$

$$\Rightarrow f(x) = \frac{1}{\sqrt{2\pi}} x^{-\frac{1}{2}} e^{-\frac{x}{2}} = \frac{1}{\Gamma(\frac{1}{2}) 2^{1/2}} x^{\frac{1}{2} - 1} e^{-\frac{x}{2}} \sim \chi^2(1) \quad (0 \le x < \infty)$$

* 따름 정리: $Y = \sum_{i=1}^{n} Z_i^2 \sim \chi^2(n)$ _ (가법성 of χ^2 using MGF; for iid Z \sim N(0,12))

* Contaminated normal distribution: 대부분 $Z \sim N(0,1^2)$, 일부 outlier $\sim N(0,\sigma_c^2)$ (오염 비율: ϵ)

1)
$$W = KZ + (1 - K) \sigma_c Z$$
 for $K = \begin{cases} 1 & \stackrel{\text{확률 } 1 - \varepsilon}{0} \\ 0 & \stackrel{\text{₹ } \#}{\varepsilon} \end{cases}$ (Z, K는 독립)

$$F_W(w) = P(W \le w) = P(W \le w, I = 1) + P(W \le w, I = 0) = P(Z \le w)(1 - \varepsilon) + P\left(Z \le \frac{w}{\varepsilon}\right)\varepsilon = (1 - \varepsilon)\Phi(w) + \varepsilon \Phi(\frac{w}{\sigma})$$

① PDF:
$$f_W(w) = (1 - \varepsilon)\phi(w) + \frac{\varepsilon}{\sigma_c}\phi\left(\frac{w}{\sigma_c}\right)$$
 ② $E(W) = 0$, $Var(W) = 1 + \varepsilon(\sigma_c^2 - 1)$

②
$$E(W) = 0$$
, $Var(W) = 1 + \varepsilon(\sigma_c^2 - 1)$

2)
$$X = a + bW \ (b > 0)$$

① PDF:
$$f_X(x) = (1 - \varepsilon)\phi\left(\frac{x-a}{b}\right) + \frac{\varepsilon}{\sigma_c}\phi\left(\frac{x-a}{b\sigma_c}\right)$$
 ② $E(W) = a$, $Var(W) = b^2[1 + \varepsilon(\sigma_c^2 - 1)]$

②
$$E(W) = a$$
, $Var(W) = b^2[1 + \varepsilon(\sigma_c^2 - 1)]$

* R codes 1)
$$dnorm(x,a,b)$$
: $f(X=x)$

2) pnorm (x,a,b):
$$P(X \le x)$$

3-3. 주요 분포: 정규 분포

```
* \mathbf{Z} \sim N_n(\mathbf{0}, \mathbf{I_n}) / \mathbf{z} = (Z_1, \dots, Z_n)^T \in \mathbb{R}^p \sim \text{iid } N(0,1)
                                          1) PDF: f_{\mathbf{Z}}(\mathbf{z}) = \left(\frac{1}{2\pi}\right)^{p/2} \exp\left(-\frac{1}{2}\mathbf{z}^T\mathbf{z}\right) pf) f_{\mathbf{Z}}(\mathbf{z}) = \prod_{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z_i^2\right) = \left(\frac{1}{2\pi}\right)^{n/2} \exp\left(-\frac{1}{2}\sum_{i}z_i^2\right)
                                          2) \text{MGF: } M_{\mathbf{Z}}(\mathbf{t}) = \exp\left(\frac{1}{2}\mathbf{t}^T\mathbf{t}\right) \ (\mathbf{t} \in \mathbb{R}^p) \quad \text{pf) } M_{\mathbf{Z}}(\mathbf{t}) = E\{\exp(\mathbf{t}^T\mathbf{Z})\} = E\{\prod \exp(t_iZ_i)\} = \prod E\{\exp(t_iZ_i)\} = \exp\left(\frac{1}{2}\sum t_i^2\right) = \exp\left(\frac{1}2\sum t_i^
                                           3) 기대값: E[\mathbf{Z}] = \mathbf{0}, Cov[\mathbf{Z}] = \mathbf{I}_n
                                           * \mathbf{X} \sim N_n(\mathbf{\mu}, \mathbf{\Sigma}) / Cov[\mathbf{X}] = \mathbf{\Sigma}가 psd (양반정치)
                                                                                                                                                                                                                                                                                                         <유도> ∑가 psd & 대칭 → EVD 가능
                                           ⇔ p개의 의존관계인 정규분포 확률변수의 결합 분포
                                                                                                                                                                                                                                                                                                        \Sigma = \Gamma^T \Lambda \Gamma (\Lambda = \text{diag}(\lambda_1, \dots, \lambda_p); \lambda_1 \ge \dots \ge \lambda_p)
                                           0) 변환: X = \Sigma^{1/2} Z + \mu \ \& \ Z = \Sigma^{-1/2} (X - \mu)
                                                                                                                                                                                                                                                                                                        \Sigma^{1/2} = \Gamma^T \Lambda^{1/2} \Gamma, \Sigma^{-1/2} = \Gamma^T \Lambda^{-1/2} \Gamma (if \Sigma is pd)
                                          1) PDF: f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{p}{2}} |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \mathbf{\mu})^T (\mathbf{\Sigma}^{-1}) (\mathbf{x} - \mathbf{\mu}) \right\}
                                                                                                                                                                                                                                                                                                        E[\mathbf{X}] = E[\mathbf{\Sigma}^{1/2} \mathbf{Z}] + \mathbf{\mu} = \mathbf{\Sigma}^{1/2} E[\mathbf{Z}] + \mathbf{\mu} = \mathbf{\mu}
                                                                                                                                                                                                                                                                                                        Cov[\mathbf{X}] = E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T] = E[(\boldsymbol{\Sigma}^{1/2} \mathbf{Z})(\boldsymbol{\Sigma}^{1/2} \mathbf{Z})^T]
                                                                                                                                                                                                                                                                                                        = \left(\Sigma^{\frac{1}{2}}\right) E(\mathbf{Z}\mathbf{Z}^T) \left(\Sigma^{\frac{1}{2}}\right) = \Sigma \quad *E[\mathbf{Z}\mathbf{Z}^T] = \text{Cov}(\mathbf{Z}) + \mathbf{0} = \mathbf{I}_p
                                         2) MGF: M_{\mathbf{X}}(\mathbf{t}) = \exp\left\{\mathbf{t}^{T}\boldsymbol{\mu} + \frac{1}{2}\mathbf{t}^{T}(\boldsymbol{\Sigma})\mathbf{t}\right\}, (\mathbf{t} \in \mathbb{R}^{p})
                                          3) 기대값: E[X] = \mu, Cov[X] = \Sigma
                                                                                                                            * \mathbf{X} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma}); \mathbf{A}: \mathbf{m} \times \mathbf{p}, \mathbf{b} \in \mathbb{R}^{\mathbf{m}}
                                           1-1. Theorem
                                                                                                                                                                                                                                                                                                          <MGF 유도>
                                                   Y = AX + b \rightarrow Y \sim N_m(A\mu + b, A\Sigma A^T) (MGF로 증명)
                                                                                                                                                                                                                                                                                                        M_{\mathbf{X}}(t) = \exp(\mathbf{t}^T \mathbf{\mu}) M_{\mathbf{Z}}\{(\mathbf{\Sigma}^{\frac{1}{2}})^T \mathbf{t}\}
                                                                                                                                                                                                                                                                                                         = \exp(\mathbf{t}^T \boldsymbol{\mu}) \exp\{(1/2)[(\boldsymbol{\Sigma}^{1/2})^T \mathbf{t}]^T [(\boldsymbol{\Sigma}^{1/2})^T \mathbf{t}]\}
                                          1-2. Corollary (m개 변수에 대한 주변 분포)
                                                                                                                                                                                                                                                                                                        = \exp(\mathbf{t}^T \boldsymbol{\mu}) \exp[(1/2)\mathbf{t}^T (\boldsymbol{\Sigma}^{1/2})^T (\boldsymbol{\Sigma}^{1/2}) \mathbf{t}] = e^{\mathbf{t}^T \boldsymbol{\mu} + \frac{1}{2} \mathbf{t}^T (\boldsymbol{\Sigma}) \mathbf{t}}
                                                    *\mathbf{X} \to \mathbf{X_1} \in \mathbb{R}^m, \mathbf{X_2} \in \mathbb{R}^q (\mathbf{p} = \mathbf{m} + \mathbf{q}) 분할
                                                   -X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}, \ \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \ \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}
다변량
                                                    - \mathbf{A} = [\mathbf{I}_m \quad \mathbf{0}_{mq}] \rightarrow \mathbf{X}_1 = \mathbf{A}\mathbf{X}
                                          \begin{array}{c} \bullet \quad X \sim N_p(\mu, \Sigma) \rightarrow X_1 \sim N_m(\mu_1, \Sigma_{11}) \\ (\because A\mu = \mu_1, \quad A\Sigma A^T = \begin{bmatrix} I_m & O_{mq} \end{bmatrix} \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \begin{bmatrix} I_m \\ O_{mq} \end{bmatrix} = \Sigma_{11}) \end{array} 
    정규
    분포
                                         2. 주변분포 독립성: X<sub>1</sub>,X<sub>2</sub> 독립 ⇔ Σ<sub>12</sub> = Σ<sub>21</sub> =
                                              pf) M_{X_1,X_2}(\mathbf{t}_1,\mathbf{t}_2) = \exp\left\{ \begin{bmatrix} \mathbf{t}_1 & \mathbf{t}_2 \end{bmatrix} \begin{bmatrix} \mathbf{\mu}_1 \\ \mathbf{\mu}_2 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \mathbf{t}_1 & \mathbf{t}_2 \end{bmatrix} \begin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{t}_1 \\ \mathbf{t}_2 \end{bmatrix} \right\}
                                           M_{X_1}(\mathbf{t}_1)M_{X_2}(\mathbf{t}_2) = \exp\{\mathbf{t}_1\mu_1 + \mathbf{t}_2\mu_2 + \frac{1}{2}(\mathbf{t}_1^T\Sigma_{11}\mathbf{t}_1 + \mathbf{t}_2^T\Sigma_{22}\mathbf{t}_2)\} \quad \therefore M_{X_1,X_2}(\mathbf{t}_1,\mathbf{t}_2) = M_{X_1}(\mathbf{t}_1)M_{X_2}(\mathbf{t}_2) \iff \Sigma_{12} = \Sigma_{21} = \mathbf{0}
                                           3. 조건부 분포: X_1|X_2 \sim N_m(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(X_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}) (Σ는 양정치)
                                              \text{pf) } \mathbf{W} = \mathbf{X}_1 - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \mathbf{X}_2 \rightarrow \begin{bmatrix} \mathbf{W} \\ \mathbf{X}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{\text{m}} & -\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \\ \mathbf{0}_{\text{qm}} & \mathbf{I}_q \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} \quad (\mathbf{A} = \begin{bmatrix} \mathbf{I}_{\text{m}} & -\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \\ \mathbf{0}_{\text{qm}} & \mathbf{I}_q \end{bmatrix}) 
 \begin{bmatrix} \mathbf{W} \\ \mathbf{X}_2 \end{bmatrix} \sim N_p(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T); \quad \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T = \begin{bmatrix} \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} & \mathbf{0}_{\text{mq}} \\ \mathbf{0}_{\text{qm}} & \boldsymbol{\Sigma}_{22} \end{bmatrix} \quad \boldsymbol{\bigstar} \quad \mathbf{W}, \; \mathbf{X}_2 \quad \boldsymbol{\Xi} \boldsymbol{\Xi} \boldsymbol{\Xi} 
                                                             \mathbf{W} | \mathbf{X}_{2} = \mathbf{W} \sim N_{m} (\mathbf{\mu}_{1} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\mu}_{1}^{\mathsf{T}}, \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21}) \rightarrow \mathcal{X}_{1} | \mathbf{X}_{2} \sim N_{m} (\mathbf{\mu}_{1} + \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} (\mathbf{X}_{2} - \mathbf{\mu}_{2}), \ \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21}) 
                                           4. 카이 제곱: W = (\mathbf{X} - \mathbf{\mu})^T (\mathbf{\Sigma}^{-1}) (\mathbf{X} - \mathbf{\mu}) = \mathbf{Z}^T \mathbf{Z} \sim \gamma^2(p) (Σ는 양정치)
                                            pf) W = \mathbf{Z}^T \mathbf{Z} = \sum_{i=1}^p Z_i^2 \sim \chi^2(p) * 가법성 of \chi^2 using MGF; for iid Z \sim N(0,1^2) \Rightarrow \sum_{i=1}^p [(X_i - \mu_i)/\sigma_i]^2 \sim \chi^2(p)
                                          * Bivariate normal distribution (이변량 정규 분포)
                                          1) 기댓값: \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}, \sigma_{12} = \rho \sigma_1 \sigma_2
                                          2) PDF: f(x, y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[ \left(\frac{x-\mu_1}{\sigma_1}\right)^2 + \left(\frac{y-\mu_2}{\sigma_2}\right)^2 - 2\rho\left(\frac{x-\mu_1}{\sigma_1}\right) \left(\frac{y-\mu_2}{\sigma_2}\right) \right] \right\}
                                          3) 조건부 분포: Y|X \sim N[\mu_2 + \rho \frac{\sigma_2}{\sigma}(x - \mu_1), \sigma_2^2(1 - \rho^2)]
                                          \mathbf{Y} = \mathbf{\Gamma}\mathbf{X} = (\mathbf{PC_1}, \mathbf{PC_2}, \cdots, \mathbf{PC_n})^T \rightarrow \mathbf{PC_1} = \mathbf{v_1}^T \mathbf{X} (\mathbf{v_1}: Cov(\mathbf{X}) = \mathbf{\Sigma} \supseteq \lambda_1 \text{ 대응 고유벡터})
                                              pf)\mathbf{Y} \sim N_p(\mathbf{\Gamma} \mathbf{\mu}, \mathbf{\Gamma} \mathbf{\Sigma} \mathbf{\Gamma}^T) = N_p(\mathbf{\Gamma} \mathbf{\mu}, \mathbf{\Lambda}) \rightarrow TV(\mathbf{X}) = \sum \sigma_i^2 = tr(\mathbf{\Sigma}) = tr(\mathbf{\Lambda}) = \sum \lambda_i = TV(\mathbf{Y})
                                                         어떤 \|\mathbf{a}\|^2 = 1, \mathbf{a} = \sum_{i=1}^p a_i \mathbf{v}_i 에 대해 \mathbf{a}^T \mathbf{v}_1 = a_i
    PCA
    기본
                                                         \therefore Y_1 = \mathbf{v}_1^T \mathbf{X} (고유벡터 \mathbf{v}_1으로 총 데이터 X 사영): 총분산 \sum \lambda_i 중 최대 분산 \lambda_1 을 설명하는 \mathbf{PC_1}
                                                        \rightarrow \mathbf{X} = \mathbf{\Gamma}^{\mathsf{T}}\mathbf{Y} 에서 X_k = (v_{1k})\mathbf{PC_1} + (v_{2k})\mathbf{PC_2} + \cdots (각 \mathbf{v_{ik}}는 \mathbf{X_k}의 \mathbf{PC_i}에 대한 \mathbf{PC} score)
```

3-4. 주요 분포: t-분포, F-분포

3-5. 혼합 분포

- 2) 베이지안 추론: $h(x) = \int_{\theta} g(\theta) f(x|\theta) d\theta$; $g(\theta)$: Conjugate prior, h(x): 무조건부
- ① $X|\theta \sim N(0, 1/\theta)$, $\theta \sim \Gamma(r/2, 2/r) \rightarrow X \sim t(r)$ ② 이항분포 (p모름) → 베타분포 $\beta(p)$ 로 추출 $\int_0^1 p(x|p)g(p)dp$

	* 표본 → 1)	분포 f(x), p(x)의 추론	// 2) θ 추론	← f(x), p(x)는 알고 있	.음 (Xi: 확률변수	, x _i : 실현값)
	1. 확률 표본 (Random sample): $iid[X_1,\cdots,X_n]$						
	2. 통계량 (Statistic): $T = T(X_1, \dots, X_n)$ (표본에 대한 함수)						
	$ ightharpoonup heta \in \Omega$ 에 대한 추정량이면 T : 점추정량 (point estimator), 실현값 t : 점추정값 (point estimate)						
	3. 불편추정 령	량 (Unbiased	estimator):	$E(T)=\theta$	$[E(\bar{X}) = \mu, E(S^2) = \sigma^2$?]	
	4. Maximum	ı likelihood es	stimator (m	nle)			
표본	1) 가능도 함수: $L(\theta) = \prod_{i=1}^n f(x_i; \theta)$						
/	2) 로그우도 함수: $l(\theta) = \sum_{i=1}^{n} \ln f(x_i, \theta)$						
통계량	지수 l(β)	$=\sum_{i=1}^n \ln \frac{1}{\beta} e^{-\frac{x_i}{\beta}}$	$= -\frac{1}{\beta} \sum x_i$	$a_i - n \ln \beta = -n$	$\left(\frac{1}{\beta}\bar{X} + \ln\beta\right) \to \frac{\partial l}{\partial\beta} = r$	$n\left(\frac{\overline{X}}{\beta^2} - \frac{1}{\beta}\right) \to \hat{\beta} = \overline{X}$	(also 불편)
	이항 $l(p)$	$=\sum_{i=1}^n \ln p^{x_i}(1-$	$-p)^{1-x_i}=n$	$\bar{X} \ln p + (n - n)$	\bar{X}) ln(1-p) $\rightarrow \frac{\partial l}{\partial p} = n$	$\overline{\left(\frac{\overline{X}}{p} - \frac{1 - \overline{X}}{1 - p}\right)} \to \hat{p} =$	$ar{X}$ (also 불편)
					$\nabla l(\mu, \sigma) = \left[\frac{1}{\sigma} \sum_{i} \left(\frac{x_i}{\sigma}\right)\right]$		
		4			LU — • U	σ^{-1} , $\sigma^{-1}\sigma^{3}\Delta^{(n)}$,,]
		$\rightarrow \hat{\mu} = X , \hat{\sigma}^2$	$=\frac{1}{n}\sum_{i=1}^{n}(X_i-$	$-\bar{X})^2 = \frac{n-1}{n}S^2$	2		
	1) Pivot 확률	를변수: (추정량·	-모수)/표준 <i>:</i>	오차			
CLT	2) 중심극한정	됩리: $Z_n = \frac{\bar{X} - R}{\sigma / \sqrt{2}}$	$\stackrel{u}{=} \stackrel{D}{\to} N(0,1)$	↔ 근사적으	.로 <i>N</i> (0,1)에 수렴		
	*신뢰구간: 5	교수 <i>θ</i> 가 추정	- 량 θ에서 얼	마나 벗어났는	-가?		
	1. 신뢰구간:	$1-\alpha=P_{\theta}[\theta$	$\in (\hat{\theta}_L, \hat{\theta}_U)]$	\rightarrow 100(1- α)%	% 신뢰구간 (같은 신	!뢰계수 → 구간 길여	기 최소화)
	*해석: 모수 θ 가 추정량 $(\widehat{\theta}_L,\widehat{\theta}_U)$ 구간에 있는 사건 $\sim B(1,1-\alpha)$ (95% CI: θ 가 $(\widehat{\theta}_L,\widehat{\theta}_U)$ 에 평균 19회/20회)						평균 19회/20회)
	2. 평균 신뢰 구간 $(\mathbf{z}_{\alpha/2}$: 상위 $\alpha/2$ 에서 z 값) $\Leftrightarrow (\mathbf{z}_{\alpha/2} = \xi_{1-\alpha/2} \leftrightarrow F(\mathbf{z}_{\alpha/2}) = F(\xi_{1-\alpha/2}) = 1 - \alpha/2)$						
	상황	가정	Pivot	statistic	μ의 100(1	1-α)% CI	
	대표본	평균 μ	$Z = \frac{\bar{X} - \mu}{2}$	~N(0.1)	$1 - \alpha \approx P\left(-\mathbf{z}_{\alpha/2}\right)$	$\leq \frac{\bar{X} - \mu}{\bar{X}} \leq Z$	
	(= 1/ == /	분산 σ²	$S - S/\sqrt{n}$		$L_{\alpha/2}$	S/\sqrt{n} $Z_{\alpha/2}$	
	t-구간		$\bar{X} - \mu$				
			m p	(16 4)		$\bar{X} - \mu$	
		$X_i \sim N(\mu, \sigma^2)$	$T = \frac{1}{S/\sqrt{n}}$	(df = n - 1)	$1 - \alpha = P\left(-\boldsymbol{t}_{\alpha/2, n-1}\right)$	$<\frac{\bar{X}-\mu}{S/\sqrt{n}}< t_{\alpha/2,n-1}$	
	(정확)		3/\(\pi\)			3/ (11 /	
신뢰	(정확) 3. 평균 차이	(X − Y) 신뢰	^{3/ \ \ \} 구간 * E	$E(\bar{X} - \bar{Y}) = \mu_1$	$-\mu_2, \ \operatorname{Var}(\bar{X} - \bar{Y}) = (\sigma_1^2)$	$f/n_1) + (\sigma_2^2/n_2)$	7
신뢰 구간	(정확) 3. 평균 차이 상황	$(\overline{X}-\overline{Y})$ 신뢰	3/ Vii 구간 * E	$E(\bar{X} - \bar{Y}) = \mu_1$ Pive	$-\mu_2, \ \operatorname{Var}(\bar{X} - \bar{Y}) = (\sigma_1^2)$ ot statistic	3/ (11 /	고
	(정확) 3. 평균 차이 상황 대표본	$(\overline{X}-\overline{Y})$ 신뢰 가정 평균 $\mu_1-\mu_2$	³⁷	$E(\overline{X} - \overline{Y}) = \mu_1 - \overline{Y}$ Pive	$-\mu_2, \ \operatorname{Var}(\bar{X} - \bar{Y}) = (\sigma_1^2)$ ot statistic $-(\mu_1 - \mu_2) \sim N(0.1)$	$f/n_1) + (\sigma_2^2/n_2)$	고
	(정확) 3. 평균 차이 상황	$(\overline{X}-\overline{Y})$ 신뢰	³⁷	$E(\overline{X} - \overline{Y}) = \mu_1 - \frac{Pive}{\sqrt{(S_1^2/n_1)}}$ $Z = \frac{(\overline{X} - \overline{Y}) - \frac{\overline{Y}}{\sqrt{(S_1^2/n_1)}}$	$-\mu_2, \ \operatorname{Var}(\bar{X} - \bar{Y}) = (\sigma_1^2)$ ot statistic $-(\mu_1 - \mu_2) \sim N(0,1)$ $+(S_2^2/n_2)$	デ/n ₁) + (σ_2^2/n_2) 유도/비	고
	(정확) 3. 평균 차이 상황 대표본	$(\overline{X}-\overline{Y})$ 신뢰 가정 평균 $\mu_1-\mu_2$ 분산 (σ_1^2/n_1)	³⁷	$E(\overline{X} - \overline{Y}) = \mu_1 - \frac{Pive}{\sqrt{(S_1^2/n_1)}}$ $Z = \frac{(\overline{X} - \overline{Y}) - \frac{\overline{Y}}{\sqrt{(S_1^2/n_1)}}$	$-\mu_2, \ \operatorname{Var}(\bar{X} - \bar{Y}) = (\sigma_1^2)$ ot statistic $-(\mu_1 - \mu_2) \sim N(0,1)$ $+(S_2^2/n_2)$	$\frac{S/\sqrt{n}}{(n_1) + (\sigma_2^2/n_2)}$ 유도/비 $\frac{1) E(S_p^2) = \sigma^2}{2) (n_1 - 1) S_1^2/\sigma^2 \sim \gamma}$	$\chi^2(n_1-1)$
	(정확) 3. 평균 차이 상황 대표본 (근사;CLT)	$(\overline{X}-\overline{Y})$ 신뢰 가정 평균 $\mu_1-\mu_2$ 분산 (σ_1^2/n_1) $X_i{\sim}N(\mu_1,\sigma^2)$	³⁷	$E(\bar{X} - \bar{Y}) = \mu_1 - \frac{Pive}{\sqrt{(S_1^2/n_1)}}$ $Z = \frac{(\bar{X} - \bar{Y}) - \frac{(\bar{X} - \bar{Y})}{\sqrt{(S_1^2/n_1)}}$ $T = \frac{(\bar{X} - \bar{I})}{S_p\sqrt{(1)}}$ $(df = n_1 + n_2)$	$-\mu_{2}, \ \operatorname{Var}(\bar{X} - \bar{Y}) = (\sigma_{1}^{2})$ ot statistic $-(\mu_{1} - \mu_{2}) \sim N(0,1)$ $+(S_{2}^{2}/n_{2})$ $\overline{Y}) - (\mu_{1} - \mu_{2})$ $\overline{Y}) - (\mu_{1} - \mu_{2})$ $-(D_{1} + (1/n_{2}))$ $-(D_{2} + (1/n_{2}))$ $-(D_{3} + (1/n_{2}))$ $-(D_{4} + (1/n_{2}))$ $-(D_{4} + (1/n_{2}))$ $-(D_{4} + (1/n_{2}))$ $-(D_{4} + (1/n_{2}))$	$\frac{S/\sqrt{n}}{(n_1) + (\sigma_2^2/n_2)}$ 유도/비 $\frac{1) E(S_p^2) = \sigma^2}{2) (n_1 - 1) S_1^2/\sigma^2 \sim N_1 + n_2 - 2) S_p^2 \sim N_1$	$\frac{\chi^2(n_1-1)}{\chi^2(n_1+n_2-2)}$
	(정확) 3. 평균 차이 상황 대표본 (근사;CLT) t-통계량	$(\overline{X}-\overline{Y})$ 신뢰 가정 평균 $\mu_1-\mu_2$ 분산 (σ_1^2/n_1)	³⁷	$E(\bar{X} - \bar{Y}) = \mu_1 - \frac{Pive}{\sqrt{(S_1^2/n_1)}}$ $Z = \frac{(\bar{X} - \bar{Y}) - \frac{(\bar{X} - \bar{Y})}{\sqrt{(S_1^2/n_1)}}$ $T = \frac{(\bar{X} - \bar{I})}{S_p\sqrt{(1)}}$ $(df = n_1 + n_2)$	$-\mu_{2}, \ \operatorname{Var}(\bar{X} - \bar{Y}) = (\sigma_{1}^{2})$ ot statistic $-(\mu_{1} - \mu_{2}) \sim N(0,1)$ $+(S_{2}^{2}/n_{2})$ $\overline{Y}) - (\mu_{1} - \mu_{2})$ $\overline{/(n_{1})} + (1/n_{2})$	$\frac{S/\sqrt{n}}{(n_1) + (\sigma_2^2/n_2)}$ 유도/비 $\frac{1) E(S_p^2) = \sigma^2}{2) (n_1 - 1) S_1^2/\sigma^2 \sim \gamma}$	$\frac{\chi^2(n_1-1)}{\chi^2(n_1+n_2-2)}$
	(정확) 3. 평균 차이 상황 대표본 (근사;CLT) t-통계량 정규성 (등분산)	$(\overline{X}-\overline{Y})$ 신뢰 가정 평균 $\mu_1-\mu_2$ 분산 (σ_1^2/n_1) $X_i{\sim}N(\mu_1,\sigma^2)$	³⁷	$E(\bar{X} - \bar{Y}) = \mu_1 - \frac{Pive}{\sqrt{(S_1^2/n_1)}}$ $Z = \frac{(\bar{X} - \bar{Y}) - \frac{\bar{X}}{\sqrt{(S_1^2/n_1)}}$ $T = \frac{(\bar{X} - \bar{I})}{S_p\sqrt{(\bar{I})}}$ $(df = n_1 + n_2)$ $S_p^2 = \frac{(n_1 - 1)}{(n_1 - 1)}$	$-\mu_{2}, \ \operatorname{Var}(\bar{X} - \bar{Y}) = (\sigma_{1}^{2})$ ot statistic $-(\mu_{1} - \mu_{2}) \sim N(0,1)$ $+(S_{2}^{2}/n_{2})$ $\overline{Y}) - (\mu_{1} - \mu_{2})$ $\overline{Y}) - (\mu_{1} - \mu_{2})$ $-2)$ $S_{1}^{2} + (n_{2} - 1)S_{2}^{2}$ $1) + (n_{2} - 1)$		$\chi^{2}(n_{1}-1)$ $\chi^{2}(n_{1}+n_{2}-2)$
	(정확) 3. 평균 차이 상황 대표본 (근사;CLT) t-통계량 정규성 (등분산) t-통계량	$(\overline{X}-\overline{Y})$ 신뢰 가장 평균 $\mu_1-\mu_2$ 분산 (σ_1^2/n_1) $X_i{\sim}N(\mu_1,\sigma^2)$ $Y_i{\sim}N(\mu_2,\sigma^2)$	구간 * E	$E(\bar{X} - \bar{Y}) = \mu_1 - \frac{Pive}{\sqrt{(S_1^2/n_1)}}$ $Z = \frac{(\bar{X} - \bar{Y}) - \frac{\bar{X}}{\sqrt{(S_1^2/n_1)}}$ $T = \frac{(\bar{X} - \bar{I})}{S_p\sqrt{(\bar{I})}}$ $(df = n_1 + n_2)$ $S_p^2 = \frac{(n_1 - 1)}{(n_1 - 1)}$	$-\mu_{2}, \ \operatorname{Var}(\bar{X} - \bar{Y}) = (\sigma_{1}^{2})$ ot statistic $-(\mu_{1} - \mu_{2}) \sim N(0,1)$ $+(S_{2}^{2}/n_{2})$ $\overline{Y}) - (\mu_{1} - \mu_{2})$ $\overline{Y}) - (\mu_{1} - \mu_{2})$ $-2)$ $S_{1}^{2} + (n_{2} - 1)S_{2}^{2}$ $1) + (n_{2} - 1)$		$\chi^{2}(n_{1}-1)$ $\chi^{2}(n_{1}+n_{2}-2)$
	(정확) 3. 평균 차이 상황 대표본 (근사;CLT) t-통계량 정규성 (등분산) t-통계량 정규성	$(\overline{X}-\overline{Y})$ 신뢰 가정 평균 $\mu_1-\mu_2$ 분산 (σ_1^2/n_1) $X_i{\sim}N(\mu_1,\sigma^2)$	구간 * E	$E(\bar{X} - \bar{Y}) = \mu_1 - \frac{Pive}{\sqrt{(S_1^2/n_1)}}$ $Z = \frac{(\bar{X} - \bar{Y}) - \frac{\bar{X}}{\sqrt{(S_1^2/n_1)}}}{\sqrt{(S_1^2/n_1)}}$ $T = \frac{(\bar{X} - \bar{Y})}{S_p \sqrt{(1)}}$ $(df = n_1 + n_2)$ $S_p^2 = \frac{(n_1 - 1)}{(n_1 - 1)}$ $T = \frac{(\bar{X} - \bar{Y})}{\sqrt{(S_1^2/n_1)}}$	$-\mu_{2}, \ \operatorname{Var}(\bar{X} - \bar{Y}) = (\sigma_{1}^{2})$ ot statistic $-(\mu_{1} - \mu_{2}) \sim N(0,1)$ $+(S_{2}^{2}/n_{2})$ $\overline{Y}) - (\mu_{1} - \mu_{2})$ $-2)$ $S_{1}^{2} + (n_{2} - 1)S_{2}^{2}$ $1) + (n_{2} - 1)$ $-\overline{Y}) - (\mu_{1} - \mu_{2})$ $-\overline{Y}) - (\mu_{1} - \mu_{2})$ $-\overline{Y}) - (\mu_{1} - \mu_{2})$ $-\overline{Y}$		$\frac{\chi^{2}(n_{1}-1)}{\chi^{2}(n_{1}+n_{2}-2)}$
	(정확) 3. 평균 차이 상황 대표본 (근사;CLT) t-통계량 정규성 (등분산) t-통계량	$(\overline{X}-\overline{Y})$ 신뢰 가장 평균 $\mu_1-\mu_2$ 분산 (σ_1^2/n_1) $X_i{\sim}N(\mu_1,\sigma^2)$ $Y_i{\sim}N(\mu_2,\sigma^2)$	구간 * E	$E(\bar{X} - \bar{Y}) = \mu_1 - \frac{Pive}{\sqrt{(S_1^2/n_1)}}$ $Z = \frac{(\bar{X} - \bar{Y}) - \frac{\bar{X}}{\sqrt{(S_1^2/n_1)}}}{\sqrt{(S_1^2/n_1)}}$ $T = \frac{(\bar{X} - \bar{Y})}{S_p \sqrt{(1)}}$ $(df = n_1 + n_2)$ $S_p^2 = \frac{(n_1 - 1)}{(n_1 - 1)}$ $T = \frac{(\bar{X} - \bar{Y})}{\sqrt{(S_1^2/n_1)}}$	$-\mu_{2}, \ \operatorname{Var}(\bar{X} - \bar{Y}) = (\sigma_{1}^{2})$ ot statistic $-(\mu_{1} - \mu_{2}) \sim N(0,1)$ $+(S_{2}^{2}/n_{2})$ $\overline{Y}) - (\mu_{1} - \mu_{2})$ $\overline{Y}) - (\mu_{1} - \mu_{2})$ $-2)$ $S_{1}^{2} + (n_{2} - 1)S_{2}^{2}$ $1) + (n_{2} - 1)$	$\frac{S/\sqrt{n}}{(n_1) + (\sigma_2^2/n_2)}$ 유도/비 $\frac{1) E(S_p^2) = \sigma^2}{2) (n_1 - 1) S_1^2/\sigma^2 \sim N_1 + n_2 - 2) S_p^2 \sim N_1$	$\frac{\chi^{2}(n_{1}-1)}{\chi^{2}(n_{1}+n_{2}-2)}$

4. 비율 차이 (극한 표준정규분포; CLT)

1) 가정: $X \sim b(1, p_1)$, $Y \sim b(1, p_2) \rightarrow \hat{p}_1 = \bar{X}$, $\hat{p}_2 = \bar{Y}$

$$E(\hat{p}_1) = p_1, Var(\hat{p}_1) = p_1(1 - p_1)/n_1$$

상황	가정	Pivot statistic
대표본 (근사;CLT)	평균 $p_1 - p_2$ 분산 $\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}$	$Z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}} \sim N(0,1)$

5. 이산형 모수

- 1) $F_T(T;\theta)$: 통계량 T의 cdf; θ 에 대해 단조 감소 \rightarrow 신뢰 구간: $F_T(T_{n-1};\theta)=1-\alpha_2,\ F_T(T_n;\bar{\theta})=\alpha_1$
- 2) **Bisection algorithm**: 순감소 $g(x) = d \in g([a, b]) \to 1)$ if $g\{(a + b)/2\} > d \to 구간 [(a + b)/2, b]$ 재설정

\rightarrow 2) if $g\{(a+b)/2\} < d \rightarrow $ 구간 $[a, (a+b)/2]$ 재설정

신되	
구간	

→ 2) if g{(a + b)/2} < a → 구신 [a, (a + b)/2]				
상황	조건	유도		
	$X \sim b(1, p)$	① 하한: pbinom(17, 30, 0.4)=0.9787, pbinom(17,30,0.45)=0.9286		
	$n = 30, \bar{x} = 0.60$	→ pbinom(17, 30, 0.434) ≈ 0.95		
Binomial	_	② 상 한: pbinom(18, 30, 0.7)=0.1593, pbinom(18,30,0.8)=0.0094		
	$T = n\bar{X} \sim b(30, p)$	→ pbinom(18, 30, 0.747) ≈ 0.05		
	$(T_{n-1} = 17, T_n = 18)$	∴ p 의 90% CI: [0.434, 0.747]		
	$X \sim Poi(\mu)$	① 하한: ppois(124, 25 x 4)=0.9912, ppois(124, 25 x 4.4)=0.9145		
	$n = 25, \bar{x} = 5$	→ ppois(124, 25 x 4.287) ≈ 0.95		
Poisson	_	② 상 한: ppois(125, 25 x 5.5)=0.1330, ppois(125, 25 x 6)=0.0204		
	$T = n\bar{X} \sim \text{Poi}(25\mu)$	→ ppois(125, 25 x 5.8) ≈ 0.05		
	$(T_{n-1} = 124, T_n = 125)$	∴ μ의 90% CI: [4.287 , 5.8]		

*정의: $(Y_1 < \dots < Y_n) \leftarrow [X_1, \dots, X_n]$ 재배열

*강점: 분포에 종속되지 않음.

 $1. \operatorname{\mathbf{PDF}} : g(y_1, \cdots, y_n) = \operatorname{\mathbf{n}} ! \ f(y_1) \cdots f(y_n) \quad (\text{on } a < y_1 < \cdots < y_n < b) \qquad \text{pf) } g(y_1, \cdots, y_n) = \sum_{i=1}^{n!} |J_i| f(y_1) \cdots f(y_n)$

1. PDF:
$$g(y_1, \dots, y_n) = n! f(y_1) \dots f(y_n)$$
 (on $a < y_1 < \dots < y_n < b$) pf) $g(y_1, \dots, y_n) = \sum_{i=1}^{n!} |J_i| f(y_1) \dots f(y_n)$
2. Marginal PDF 1) $g_k(y_k) = \frac{n!}{(k-1)! (n-k)! (1)!} [F(y_k)]^{k-1} [1 - F(y_k)]^{n-k} f(y_k)$
pf) $g_k(y_k) = \int_a^{y_k} \dots \int_a^{y_2} \int_{y_k}^b \dots \int_{y_{n-1}}^b n! f(y_1) \dots f(y_n) dy_n \dots dy_{k+1} dy_1 \dots dy_{k-1} \quad (y_n \to y_{k+1}; y_1 \to y_{k-1})$
2) $g_{ii}(y_i, y_i) = \frac{n!}{(k-1)! (k-1)! (k-1)! (k-1)! (k-1)! (k-1)! (k-1)!} [F(y_i)]^{i-1} [F(y_i) - F(y_i)]^{j-i-1} [1 - F(y_i)]^{n-j} f(y_i) f(y_i)$

2)
$$g_{ij}(y_i, y_j) = \frac{n!}{(i-1)! (j-i-1)! (n-j)! (1)! (1)!} [F(y_i)]^{i-1} [F(y_j) - F(y_i)]^{j-i-1} [1 - F(y_j)]^{n-j} f(y_i) f(y_j)$$

3. Quantile (분위수): $\operatorname{cdf} F(\xi_p) = p \leftrightarrow \xi_p = F^{-1}(p), \quad k = \operatorname{floor}[p(n+1)]$

순서 통계량

- - 1) $F(Y_k)$ 는 $\frac{k}{n+1}$ 의 불편추정량: $E(F(Y_k)) = \int_a^b F(y_k)g_k(y_k)dy_k = \int_0^1 \frac{n!}{(k-1)!(n-k)!}z^k(1-z)^{n-k}dz = \frac{k}{n+1}$
 - 2) Quartile: 1분위수 ($\mathbf{Q}_1 = Y_{[0.25(n+1)]}$) \Leftrightarrow 중위수 ($\mathbf{Q}_2 = Y_{[0.5(n+1)]}$) \Leftrightarrow 3분위수 ($\mathbf{Q}_3 = Y_{[0.75(n+1)]}$) *중위수: 홀수→중간값 Y_{(n+1)/2} / 짝수→ (Y_(n/2) + Y_{(n/2)+1})/2
 - → Box plot: $h = 1.5(Q_3 Q_1)$, $LF = Q_1 h$, $UF = Q_3 + h$ (LF, UF 바깥: 이상값; 정규분포상 P≤0.007)
 - 3) **Q-Q plot**: 표본의 순서통계량 $(Y_1,Y_2,\cdots,Y_{50})\Leftrightarrow$ 이론적 분위수 $(Z_{0.02},Z_{0.04},\cdots,Z_{1.00})$ \leftarrow any 분포
 - 4) 신뢰구간: $1 \alpha = P(Y_i < \xi_p < Y_j) = \sum_{w=i}^{j-1} \binom{n}{w} p^w (1-p)^{n-w} \leftarrow p = F(\xi_p)$ (중위수: p = 1/2)

- 1) 가설 정의: $H_0: \theta \in \omega_0$ (Null) vs. $H_1: \theta \in \omega_1$ (alternative) $\leftarrow X \sim f(x; \theta)$ 에 대해 $\theta \in \Omega = (\omega_0 \cup \omega_1)$, 분할
- 2) 가설 검정: 표본 $(X_1,\cdots,X_n)\in C\to H_1$ 채택 (기각역 $C\subset D=\mathrm{span}\{(X_1,\cdots,X_n)\}$) 표본 $(X_1,\cdots,X_n)\notin C\to H_0$ 유지
- 3) 유의 수준: $\alpha = \max_{\theta \in \omega_0} P_{\theta}[(X_1, \cdots, X_n) \in C]$ (복합귀무가설에 대해 모든 null 모수 \rightarrow 기각역에 속할 확률 최대) * 1종 오류: H_0 참, but 기각 \rightarrow H_1 채택 (=FP) \therefore 유의수준(α): 1종 오류 범할 최대 확률
- - ① 2종 오류: H_0 거짓, but 유지 \rightarrow H_0 유지 (=FN) \therefore β : 2종 오류 범할 확률 (under given $\theta \in \omega_1$)
 - ② 검정력: H₀ 거짓 → 알맞게 H₁ 채택 (TP)
- 5) P-값: 1) Upper tail: P-값= $P_{H_0}(X \ge x_{obs}) = 1 F_{H_0}(x_{obs})$
 - 2) Lower tail: P-값= $P_{H_0}(X \le x_{obs}) = F_{H_0}(x_{obs})$
 - 3) 2-sided: P-값= $2 \times P_{H_0}(X \ge |x_{obs}|) = 2[1 F_{H_0}(|x_{obs}|)]$ (X=0 좌우 대칭)
 - \rightarrow $X=F^{-1}(U)$ (단조 증가) 정리의 역에 의해 P-값 ~ unif(0,1) under 귀무가설 H_0

예시	분포	가설	유도
단일 이항 단측	$X_i \sim B(1,p)$	$H_0: p = p_0$ $H_1: p < p_0$	*표본통계량: $S = \sum_{i=1}^{n} X_i \sim B(n, p)$ 1) 기각역 설정: 귀무가설 하에서 $S \sim B(n, p_0) \rightarrow \alpha = P_{p_0}[S \leq k]$ → $0.11 = P_{p_0}[S \leq 11]$ $(n = 20, p_0 = 0.7)$ 2) 검정력 함수: $\gamma(p) = P_p[S \leq 11]$ (단조 감소 of p) ∴ $H_0: p \geq p_0$ 로 확장 ← $\max_{p \geq p_0} P_p[S \leq k] = P_{p_0}[S \leq k]$ (단조성)
	대표본에서 $\frac{1}{\sqrt{\hat{p}}}$	$\frac{\widehat{p}-p_0}{(1-\widehat{p})/n} \approx \frac{1}{\sqrt{1-\widehat{p}}}$	$\frac{\widehat{p} - p_0}{\sqrt{p(1-p)/n}} \stackrel{D}{\rightarrow} N(0,1)$
	대표본		$*$ 표본통계량: $\frac{\overline{X} - \mu}{S/\sqrt{n}} \approx \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\rightarrow} N(0, 1)$
대표본 단측 (Upper)	후 oer) $X_i \sim \mathbf{PN}$ 분포 \mathbf{PN} P	$H_0: \mu = \mu_0$ $H_1: \mu > \mu_0$	1) 기각역 설정: $\alpha = P_{\mu_0} \left[\frac{\overline{X} - \mu_0}{S / \sqrt{n}} \ge z_{\alpha} \right] \approx 1 - \Phi(z_{\alpha})$ 2) 검정력 함수: $\gamma(\mu) = P_{\mu} \left[\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \ge z_{\alpha} \right] = P_{\mu} \left[\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \ge \frac{\mu_0 - \mu}{\sigma / \sqrt{n}} + z_{\alpha} \right]$ $\approx 1 - \Phi\left(\frac{\sqrt{n}(\mu_0 - \mu)}{\sigma} + z_{\alpha} \right) = \Phi\left(\frac{\sqrt{n}(\mu - \mu_0)}{\sigma} - z_{\alpha} \right) \text{ (단조 증가 of } \mu)$ * Power 증가: n↑, 효과크기 $(\mu - \mu_0)$ ↑, α ↑ & σ ↓
대표본 단측 (Lower)		$H_0: \mu = \mu_0$ $H_1: \mu < \mu_0$	1) 기각역 설정: $\alpha = P_{\mu_0} \left[\frac{\overline{X} - \mu_0}{S/\sqrt{n}} \le -z_{\alpha} \right] \approx \Phi(z_{\alpha})$ 2) 검정력 함수: $\gamma(\mu) = P_{\mu} \left[\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \le -z_{\alpha} \right] = P_{\mu} \left[\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le \frac{\mu_0 - \mu}{\sigma/\sqrt{n}} - z_{\alpha} \right]$ $\approx \Phi\left(\frac{\sqrt{n}(\mu_0 - \mu)}{\sigma} - z_{\alpha} \right) = \Phi\left(-\frac{\sqrt{n}(\mu - \mu_0)}{\sigma} - z_{\alpha} \right) \text{ (단조 감소 of } \mu)$ * Power 증가: $\mathbf{n} \uparrow$, 효과크기 $(\mu - \mu_0) \uparrow$, $\alpha \uparrow$ & S \downarrow
대표본 양측		$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$	1) 기각역 설정: $\alpha = P_{\mu_0} \left[\left \frac{\bar{X} - \mu_0}{S / \sqrt{n}} \right \ge z_{\alpha/2} \right] \leftarrow ($ 양축 동일 배분) 2) 검정력 함수: $\gamma(\mu) = P_{\mu} \left[\left \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \right \ge z_{\alpha/2} \right]$ $\approx \Phi \left(\frac{\sqrt{n}(\mu - \mu_0)}{\sigma} - z_{\alpha} \right) + \Phi \left(-\frac{\sqrt{n}(\mu - \mu_0)}{\sigma} - z_{\alpha} \right) ($ U자 함수 of μ) $ \Rightarrow (\mu_0) $ 에서 최소값)
t-검정 정규성	$X_i \sim N(\mu, \sigma^2)$	$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$	* 표본통계량: $T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$ * t-분포는 N(0,1) 보다 누워 있음 \rightarrow "보수적" // 정규성 하 "정확"
2-표본 t-검정	$X_i \sim N(\mu_1, \sigma^2)$ $Y_i \sim N(\mu_2, \sigma^2)$ (정규,등분산)	$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$	$*$ 표본통계량: $T=rac{(ar{X}-ar{Y})-0}{S_p\sqrt{(1/n_1)+(1/n_2)}}\sim t(n_1+n_2-2)$ $* T \geq t_{0.025,n_1+n_2-2}$ 이면 H_0 기각

가설 검정

	자유도: n(확률표본)-n(미지수 or 제약)				
	2	1. 상황: X	$X_1 \sim b(n, p_1), X_2 = n - X_1, p_2 = 1 - p_1 \implies Y = \frac{X_1 - np_1}{\sqrt{np_1(1 - p_1)}} \stackrel{D}{\rightarrow} N(0, 1); Q_1 = Y^2 \stackrel{D}{\rightarrow} \chi^2(1)$		
	cells	2. 검정통	계량: $Q_1 = \frac{(X_1 - np_1)^2}{np_1(1 - p_1)} = \frac{(X_1 - np_1)^2}{np_1} + \frac{(X_1 - np_1)^2}{n(1 - p_1)} = \frac{(X_1 - np_1)^2}{np_1} + \frac{(X_2 - np_2)^2}{np_2} \stackrel{D}{\rightarrow} \chi^2(1)$		
			k항; n회 다항분포 $(p_k = 1 - \sum_{i=1}^{k-1} p_i \& x_k = n - \sum_{i=1}^{k-1} x_i)$		
		2. 검정통	계량: $Q_{k-1} = \sum_{i=1}^k \frac{(X_i - np_i)^2}{np_i} \xrightarrow{D} \chi^2(k-1)$ \iff $(k-1)$ 개 알면 나머지 1개 앎		
	k	저하드	1) 귀무가설: H_0 : $p_1 = p_{1,0}$, $p_2 = p_{2,0}$, \cdots , $p_k = p_{k,0}$		
	cells	검정	2) 검정통계량: $Q_{k-1} = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i} = \sum_{i=1}^{k} \frac{\left(X_i - np_{i,0}\right)^2}{np_{i,0}} \xrightarrow{D} \chi^2(k-1)$ (귀무가설하)		
		_	<예시> 정규분포 모수 추정 $N(\mu,\sigma^2)$		
			1) 상황: 실수구간 \rightarrow k등분 (A_1, \dots, A_k) ; $\boldsymbol{p_i} = \int_{A_i} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}(y-\boldsymbol{\mu})^2/\sigma^2\right] dy$		
		추정량	np_i		
Pearson χ² 검정	r x c cells	동질성 검정	1) 상황: 2개의 k항 다항분포 *각 모수: $(n_1, p_{11}, p_{21}, \cdots, p_{k1}), (n_2, p_{12}, p_{22}, \cdots, p_{k2})$ $\Rightarrow \sum_{j=1}^{2} \sum_{i=1}^{k} \frac{\left(X_{ij} - n_{j}p_{ij}\right)^{2}}{n_{j}p_{ij}} \xrightarrow{D} \left[\chi^{2}(k-1) + \chi^{2}(k-1)\right] = \chi^{2}(2k-2)$ 2) 귀무가설: H_{0} : $p_{11} = p_{12}, p_{21} = p_{22}, \cdots, p_{k1} = p_{k2}$ (둘은 구간 별 비율이 동일) $\Rightarrow p_{m1} = p_{m2}$ 의 MLE: $\frac{X_{m1} + X_{m2}}{n_{m1} + n_{m2}}$ (총 $k-1$ 개 점추정값 필요) 3) 검정통계량: $\sum_{j=1}^{2} \sum_{i=1}^{k} \frac{\left[X_{ij} - n_{j}\left(\frac{X_{i1} + X_{i2}}{n_{i1} + n_{i2}}\right)\right]^{2}}{n_{j}\left(\frac{X_{i1} + X_{i2}}{n_{i1} + n_{i2}}\right)} \xrightarrow{D} \chi^{2}(k-1)$ (귀무가설 하)		
			1) 상황: 확률실험 n회 결과 \to 가로 (A) a항 / 세로 (B) b항 두 종류 범주 로 구분		
			$\Rightarrow Q_{ab-1} = \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{(ab-1)}{np_{ij}} \rightarrow \chi^{2}(ab-1)$ 2) 귀무가설: H_{0} : $P(A_{i} \cap B_{j}) = P(A_{i})P(B_{j})$ for all (i, j) (속성 A, B는 독립)		
			$X_{i*} - \sum_{j=1}^{b} X_{ij}$ [초 (2. 1) 나 (b. 1)개 저夫저가 되어		
	<i>*</i> 비중심	카이제곱	남 분포: H₀ 외의 카이제곱 분포 (검정력 계산)		

	* 몬테카를로 생성: 특정 "Known" 표본/분포 → 관측값 생성 (Resampling, Bayesian 등에서 중요)				
	1. 균등분포 (Uniform distribution): unif(a, b); pdf = 1/(b − a) ← R codes: runif(횟수)				
		$X = F^{-1}($	U)는 $cdf F(X)$ 따름 \Leftrightarrow 역: $Z = F(X) \sim unif(0,1)$		
		지수	$F(x) = 1 - e^{-x/\beta}, \qquad (x > 0)$ $\therefore X = F^{-1}(U) = -\beta \ln(1 - U)$ 는 지수분포 생성		
			$m = \lambda w \rightarrow T_i \sim \exp(1/\lambda)$ 에 대해 $[X = k] \Leftrightarrow \sum_{i=1}^k T_i \le w \& \sum_{i=1}^{k+1} T_i > w$		
			* 구간 w 동안 난수로 T_i 생성 \rightarrow 횟수 카운트 (초기 $X = 0, T = 0$)		
	unif(0,1)⇔CDF	푸아송	1) $\Delta T = -(1/\lambda) \ln(1 - U)$		
	"관측치 생성"		2) $T \leftarrow T + \Delta T$ 3) if $T \le w$: $X \leftarrow X + 1$		
			elif T > w: return X		
		정규	<box &="" (1958)="" muller="">\rightarrow 일반화: Marsaglia & Bray (1964)$X_1 = (-2 \ln Y_1)^{1/2} \cos(2\pi Y_2)$; $X_2 = (-2 \ln Y_1)^{1/2} \sin(2\pi Y_2) \leftarrow Y_1, Y_2 \sim \text{unif}(0,1)$</box>		
		분포	$f(X_1, X_2) = J g(Y_1, Y_2) = \frac{1}{2\pi} \exp\left[-\frac{1}{2}(x_1^2 + x_2^2)\right]$		
		$V = E^{-1}$			
			(U) 를 closed form 계산 불가. $\Leftarrow g(x)$ 이용: ①Easy ② $f(x)$ 유사 ③ $\frac{f(x)}{g(x)} \le k$ (유계)		
)	y) & U 생성 (Y)		
		② $U \le \frac{f(Y)}{kg(Y)} \le 1$ 이면 X = Y, 아니면 ①로 돌아가 재 생성 \Rightarrow 조금 더 넓은 $kg(x)$ 로 근사			
		(f(x) =	$cf_1(x)$ 와 $g(x)=dg_1(x)$ 적당히 상수배 하여 k 무시 가능)		
Monte Carlo	채택-기각 (A-R)		$Y_i \sim \Gamma(1,1)$ $\rightarrow X = \sum_{i=1}^{\alpha} Y_i \sim \Gamma(\alpha,1)$ (α 정수: CDF 생성 쉬움)		
Carlo	알고리즘 (어려운 CDF)	감마 CDF ① X~Γ(a	$X \sim \Gamma(\alpha, 1) \rightarrow \beta X \sim \Gamma(\alpha, \beta) \ (\alpha \ \text{실수} \rightarrow \textbf{문제!})$		
			$ \begin{array}{c c} \text{DF} & & & & \\ f(x) & & & & \\ \end{array} $		
		(α, ρ)	$2\frac{f(x)}{g(x)} = b^{-[\alpha]}x^{\alpha-[\alpha]}e^{-(1-b)x} \le b^{-[\alpha]}\left\{\frac{\alpha-[\alpha]}{(1-b)e}\right\}^{\alpha-[\alpha]} \text{ (by } x \neq 0 \text{ if } 0$		
			③ 위식을 b 로 미분 $\Rightarrow \frac{f(x)}{g(x)} \le ([\alpha]/\alpha)^{-[\alpha]} \left\{ \frac{\alpha - [\alpha]}{(1 - [\alpha]/\alpha)e} \right\}^{\alpha - [\alpha]} = M$		
		정규 CD	① Y~Cauchy (역 CDF 알려짐) → X~N(0,1)		
		N(0, 1)			
		$W \sim N(0,1)$	$\stackrel{(2)}{\sim} W \sim N(0, \sigma_c^2) (\varepsilon: 0.25, \sigma_c = 25) \qquad \leftarrow W = Z \text{ or } \sigma_c Z; E(W) = 0$		
	Monte Carlo		* 추정 알고리즘 (N: 시뮬레이션 수)		
	t-검정	* 가설: <i>F</i>	$H_0: \mu = 0$, $H_1: \mu > 0$ 1) $n = 20$ 표본 생성 $\leftarrow X$ (오염 정규; μ 모름) 분포		
	(오염된 정규)	1) $n = 1$	1.700		
		7 0.03,	19 = 1.729 3) 유의수준 실험적 추정량: $\hat{\alpha}=I/N$ $(I:T>t_{0.05,10}$ 도수) SE = $\sqrt{\hat{\alpha}(1-\hat{\alpha})/N}$ 예시) $\hat{\alpha}=0.0412\pm0.0039$		
		 적분가능	$g(x)$ 의 closed form 역도함수 (\approx 부정적분) 존재X \Rightarrow 수치적 적분		
	Monte Carlo		$x = (b-a) \int_{a}^{b} g(x) \left(\frac{1}{b-a}\right) dx = (\mathbf{b} - \mathbf{a}) \mathbf{E}[\mathbf{g}(\mathbf{X})] \iff X \sim \text{unif}(a,b)$		
	전문 -	1	n n		
		$\therefore \overline{Y} = \frac{1}{n} \sum_{i=1}^{n} \overline{Y}_{i}$	$\sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} (b-a)g(X_i)$ 는 정적분의 unbiased estimator $\Leftarrow X_i \sim \text{unif}(a,b)$		
		L=	=1		

	비교	1) 중심극한정리: 표본 통계량 (θ̂) 의 pivotal statistic이 극한 정규분포따름 → 모수 θ 추정								
		2) 몬테카를로 기법: X의 known 분포 (CDF)→ 균등분포 난수추출기로 관측값 X = F ⁻¹ (U) 생성								
		3) 부트스트랩: X 의 unknown 분포 \rightarrow 표본 $(X_1, \cdots X_n)$ 의 EDF $(\hat{F}_n) \rightarrow$ 무작위 추출로 X_i^* 생성								
		$\hat{\theta}^*$ 의 분포 \rightarrow $\hat{\theta}$ 의 신뢰구간 추정 \rightarrow θ 의 근사적 신뢰구간								
		일반적인 통계적 추론에서는 estimator → parameter를 추정함.								
		Standard error는 estimator의 자체적인 변동성 (표준편차) (e.g. $SE(\bar{X}) = \sqrt{Var(\bar{X})} = \sigma/\sqrt{n}$)								
		Estimated SE는 SE에 unknown parameter가 들어가 있을 때, 다른 estimator를 이용 (S/√n)								
		*문제: ①일반적인 확률변수 Y에 대해 분포 (PDF, CDF)를 알기 어렵고								
		문제. ① 물건 국건 목 물건 무 가에 대해 문포 (FDF, CDF)을 될거 어렵고 2 통계량 q(Y)의 S.E.를 σ/\sqrt{n} 처럼 정확한 수식으로 알아낼 수 있는 경우는 많지 않음.								
		In Real World Bootstrap World								
		1. Assume F is known 1. F is unknown, only have a sample data								
		$egin{pmatrix} oldsymbol{F} \end{pmatrix}$ set, forming a EDF $oldsymbol{\widehat{F}}$.								
		2. Sampling from F, and form a statistic M a statistic M $(x_1,, x_n^*)$ 2. Sampling with replacement from \widehat{F} , and form a statistic $\widehat{M} = g(\widehat{F})$.								
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
		M = g(F) for estimating $M = g(F)$. But we cannot								
		$Var(M) = Var(g(F))$ Traditional Theorem or $Var(\widehat{M}) = Var(g(\widehat{F}))$ 4. Can approximation $Var(\widehat{M})$ by								
	원리	Bootstrap Simulation, obtain a S^2 .								
Boot-		$Var(M) = Var(g(F))$ 5. S^2 can always approximate $Var(\widehat{M})$. But still need to satisfy required conditions, $Var(\widehat{M})$ will approximate $Var(M)$.								
strap 기본		EDF $\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} I(x_i \le x)$ \Leftrightarrow $(x$ 보다 작은 표본내 실현값 수 $)$ / n \Leftrightarrow PMF는 $\frac{1}{n}$ (for every x_i)								
112		" [=1 Statistical functional (통계적 범함수): 모수가 [분포함수]의 함수로 표현됨. (평균,분산,중위수,백분위수,etc)								
		e.g. $E(X) = \int x f dx = \int x dF$, $Var(X) = \int x^2 dF - (\int x dF)^2$								
		Plug-in principle: $\hat{\theta} = g(\hat{F}) = \int r(x)d\hat{F} \leftrightarrow \theta = g(F) = \int r(x)dF$ (전자는 후자의 plug-in estimate)								
		Form an EDF Draw and calculate Statistic B times Get B Statistic Summarize								
		Original sample $x_1,, x_n$ draw $x_1^*,, x_n^*$ from \widehat{F} compute $\widehat{M}_1 = g(x_1^*,, x_n^*)$ \widehat{M}_1								
		$\begin{bmatrix} \operatorname{Put} 1/n & \text{for each} \\ \operatorname{each} = > \\ \operatorname{sampling with} \\ \operatorname{replacementn} \end{bmatrix} \text{ draw } x_1^*, \dots, x_n^* & \text{from } \widehat{F} \\ \operatorname{compute} \widehat{M}_2 = g(x_1^*, \dots, x_n^*) \end{bmatrix} $								
		$ \begin{array}{cccc} & & & & & & & \\ & & & & & & \\ & & & & &$								
		$\widehat{\widehat{F}} \qquad \qquad \operatorname{draw} x_1^*, \dots, x_n^* \text{ from } \widehat{F} \\ \operatorname{compute} \widehat{M}_B = g(x_1^*, \dots, x_n^*) $ $\widehat{M}_B \qquad \qquad \widehat{S}^2 = \frac{1}{B} \sum_{j=1}^B (\widehat{M}_j)^2 - \left(\frac{1}{B} \sum_{j=1}^B \widehat{M}_j\right)^2$								
		This is estimated Var(\widehat{M})								
		2. Variance of \widehat{M} with EDF \widehat{F}								
		$s^{2} = \frac{1}{B} \sum_{j=1}^{B} (\widehat{M}_{j})^{2} - \left(\frac{1}{B} \sum_{j=1}^{B} \widehat{M}_{j}\right)^{2} \approx \text{Var}(\widehat{M}; \widehat{F}) \approx Var(M; F)$								
		1.Bootstrap Variance Estimation 1.Simulation Error 3.Variance of M with true F								
	1번 simulation error는 결국 큰 수의 법칙에 의해 확률 수렴하므로 B↑으로 최소화 가능									
		2번 approximation error는 \hat{F} 이 F 에 근사 $(n \uparrow)$ 하면 최소화 $(n \uparrow)$ 면 자연스럽게 $\hat{M} \stackrel{P}{\to} M$ 성질도)								

	모평 균 추정	$E(X_i^*) = \sum_{j=1}^n \frac{1}{n} X_j = \bar{X}, \qquad \text{Var}(X_i^*) = \sum_{j=1}^n \frac{1}{n} (X_j - \bar{X})^2 = \frac{n}{n-1} S^2$ $E(\bar{X}_j^*) = \bar{X}, \text{Var}(\bar{X}_j^*) = \frac{S^2}{n-1}$ B회 시뮬레이션 평균 $\frac{1}{B} \sum_{i=1}^B \bar{X}_j^* \stackrel{P}{\to} E(\bar{X}_j^*) = \bar{X} \stackrel{P}{\to} \mu, \text{분산 } \frac{1}{B} \sum_{i=1}^B (\bar{X}_j^*)^2 - \left(\frac{1}{B} \sum_{i=1}^B \bar{X}_j^*\right)^2 \stackrel{P}{\to} \text{Var}(\bar{X}_j^*) = \frac{S^2}{n-1} \stackrel{P}{\to} \frac{\sigma^2}{n}$ $ \rightarrow \text{B 회 부트스트랩 } \bar{X} \text{ 신뢰구간 (비모수적 counting)} \approx \left[\bar{X} - z_{\alpha/2} \frac{S^2}{n}, \; \bar{X} + z_{\alpha/2} \frac{S^2}{n}\right] \approx [\mu \text{ OLT 신뢰 구간]}$ $ - \text{ 위의 정규가정을 통한 } z_{\alpha/2} \text{ 근사는 책 참고 4.9.1를 참조}$						
Boot-			도 크게 다르지 않음.($ar{X}$ 처럼 precise한 분산식이 존재하지 않으면 시뮬레이션	효과↑)				
strap			가 다른 모수에 종속되지 않게 pivot화하면 부트스트랩 정확성 향상 가능	,				
양								
	strap 검정	<2표본 평균> 2 Ho: µo = µo	3. 상황: 1) 검정통계량: $V = \bar{Y} - \bar{X}$ 2) $\hat{p} = P_{H_0}[V \ge \bar{y} - \bar{x}]$ 2. H_0 가정 \Rightarrow 표본 합침 $(\mathbf{n} = \mathbf{n}_1 + \mathbf{n}_2) \Rightarrow$ 복원으로 $\left(\mathbf{X}_i^*, \mathbf{n}_1 \mathcal{H}\right), \left(\mathbf{Y}_i^*, \mathbf{n}_2 \mathcal{H}\right)$ 추출 3. Empirical P-value 산출: $\hat{p} = I/B$ $(I: \{\bar{y}_i^* - \bar{x}_i^* > \bar{y} - \bar{x}\})$ * 부연: H_0 가정 했기 때문에 생성값 $(\bar{y}_i^* - x_i^*)$ 은 H_0 하 통계량임.					
	통합 표본 (n=n₁+n₂)에서 비복원으로 추출된 x,y 모든 가능한 표본→ 검정							

5. 일치성 / 극한분포 ("통계학적 수렴")

1. Markov: $P[u(X) \ge c] \le E[u(X)]/c$ (for u(X)≥0, c>0; E[u(X)]존재) *증명: $E[u(x)] = \int_{-\infty}^{\infty} u(x)f(x)dx \ge \int_{u(x)\ge c} u(x)f(x)dx \ge c \int_{u(x)\ge c} f(x)dx = c P[u(x)\ge c]$ 중요한 부등식 2. Chevyshev: $P(|X - \mu| \ge k\sigma) \le 1/k^2$ (for k>0; X가 $\mu,\sigma^2(유한)$ 가짐) *증명: Markov에서 $u(X) = (X - \mu)^2$, $c = k^2 \sigma^2$ 1. 정의: $X_n \stackrel{P}{\to} X \Leftrightarrow \forall \epsilon > 0$, $\lim_{n \to \infty} P[|X_n - X| \ge \epsilon] = 0 \iff \lim_{n \to \infty} P[|X_n - X| < \epsilon] = 1$ "함수열의 수렴" $(X_n \stackrel{r}{\rightarrow} a$, if X가 상수 a \rightarrow "퇴화확률변수, p(a)=1, 나머지 0") 2. 대수의 약법칙: $iid \{X_n\} \sim \left(\overline{\mathbf{B}}\overline{\mathbf{D}}: \mu, 분산: \sigma^2 < \infty\right), \ \overline{X}_n \stackrel{P}{\to} \mu$ *증명: By Chevyshev's ineq, $P(|\overline{X}_n - \mu| \ge \epsilon) \le \sigma^2/(n\epsilon^2) \to 0$ (when $n \to \infty$) 3. 정리 정리 증명 $*X_n \xrightarrow{P} X_1 Y_n \xrightarrow{P} Y$ ①P는 집합오염에 단조 (=공간 커지면 확률 커짐); 삼각부등식 선형 $\left(\mathbf{1} \cdot (X_n + Y_n) \stackrel{r}{\rightarrow} (X + Y) \right)$ $P[|(X_n+Y_n)-(X-Y)|\geq\epsilon]\leq P[|X_n-X|+|Y_n-Y|\geq\epsilon]$ $\leq P[|X_n - X| \geq \epsilon/2] + P[|Y_n - Y| \geq \epsilon/2]$ $(2) aX_n \stackrel{P}{\rightarrow} aX$ | * 받침 상 연속 *g*(x) ① $|g(x) - g(a)| \ge \epsilon \Rightarrow |x - a| \ge \delta \ (\epsilon > 0, \delta > 0)$ 확률 $\therefore P[|g(X_n) - g(a)| \ge \epsilon] \le P[|X_n - a| \ge \delta]$ 함수 $3X_n \xrightarrow{P} a \Rightarrow g(X_n) \xrightarrow{P} g(a)$ 수렴 4. **일치성**: $T_n \stackrel{P}{\to} \theta$ 면 $\Leftrightarrow T_n$ 은 θ 의 **일치 추정량** * $F(x;\theta)$ 에서 추출한 $iid \{X_1, \cdots, X_n\}$ 의 통계량 T_n 분산 추정량 ① $S_n^2 \xrightarrow{P} \sigma^2$ (일치 & 불편) ② $S_{mle}^2 = \frac{n-1}{n} S_n^2 \xrightarrow{P} \sigma^2$ (일치 & MLE) $X_1, \dots, X_n \sim \text{unif } (0, \theta), \qquad Y_n = \max\{X_1, \dots, X_n\}$ $|\bar{X}_n$ 은 $\theta/2$ 의 일치 추정량 $\Rightarrow 2\bar{X}_n$ 은 θ 의 일치 추정량 1. 정의: $X_n \xrightarrow{\nu} X \Leftrightarrow \forall x \in \{F_X 연속 점\}, \lim_{n \to \infty} F_n(x) = F(x), (F: X = cdf, F_n: X_n = cdf)$ 2. t분포 \Rightarrow z분포 $(n \rightarrow \infty)$ $(2) \lim_{n \to \infty} F_n(t) = \lim_{n \to \infty} \int_{-\infty}^t f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} f_n(x) dx = \int_{-\infty}^t \lim_{n \to \infty} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi} \Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\left(\frac{n+1}{2}\right)} dx = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = \Phi(t)$ 분포 $\begin{array}{ccc} \hline & X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{D} X \end{array}$ https://freshrimpsushi.tistory.com/175?category=696570 수렴 $(2) X_n \xrightarrow{P} b \Leftrightarrow X_n \xrightarrow{D} b$ $(3) X_n \xrightarrow{D} X \& (A_n \xrightarrow{P} a, B_n \xrightarrow{P} b)$ if 분포수렴 $\Rightarrow \lim_{n \to \infty} P[|X_n - b| \le \epsilon] = \lim_{n \to \infty} F_{X_n}(b + \epsilon) - F_{X_n}(b - \epsilon) = 1 - 0 = 0$ <Slutsky 정리> e.g. $P_n - Q_n \stackrel{P}{\rightarrow} 0$, $Q_n \stackrel{D}{\rightarrow} X \Rightarrow P_n = (P_n - Q_n) + Q_n \stackrel{D}{\rightarrow} X$ $\Rightarrow A_n + B_n X_n \stackrel{D}{\rightarrow} a + bX$ * 받침 상 연속 *q(x)* $Z_n \xrightarrow{D} Z \Rightarrow Z_n^2 \xrightarrow{D} \chi^2(1)$ $\textcircled{4} X_n \overset{D}{\rightarrow} X \Rightarrow g(X_n) \overset{D}{\rightarrow} g(X)$ $Y_n \sim b(n, p) \Rightarrow \lim_{n \to \infty} M_n(t) = \lim_{n \to \infty} E(e^{tY_n}) = \lim_{n \to \infty} [(1 - p) + (pe^t)]^n = e^{\mu(e^t - 1)}$ $(5) X_n \overset{D}{\to} X \Leftrightarrow \lim_{n\to\infty} M_n(t) = M(t)$

 \therefore 이항분포 $b(n,p) \stackrel{D}{\rightarrow}$ 푸아송분포 $(\mu = np)$

5. 일치성 / 극한분포 ("통계학적 수렴")

	$\sqrt{n}(X_n - \theta) \stackrel{D}{\rightarrow} N(0, \sigma^2)$ 이고, $g(x)$ 가 θ 에서 미분 가능 & $g'(\theta) \neq 0$ 이면									
Δ-	$\sqrt{n}(g(X_n))$	$(1-g(heta)) \stackrel{D}{ ightarrow} N(0,g'(heta)^2\sigma^2$) [Δ -method를 잘 이용하면 모수에 종속되지 않는 통계량 분산 만듦]								
방법		러 정리에 의해 $g(X_n) = g(\theta) + g'(\theta)(X_n - \theta) + o(X_n - \theta)$ 이므로								
		$(1-g(\theta)) = \sqrt{n}g'(\theta)(X_n - \theta) + o(\sqrt{n} X_n - \theta) \xrightarrow{P} \sqrt{n}g'(\theta)(X_n - \theta) \xrightarrow{D} N(0, g'(\theta)^2 \sigma^2)$ $(1-g(\theta)) = \sqrt{n}g'(\theta)(X_n - \theta) + o(\sqrt{n} X_n - \theta) \xrightarrow{P} \sqrt{n}g'(\theta)(X_n - \theta) \xrightarrow{D} N(0, g'(\theta)^2 \sigma^2)$								
	(중간에 little-o를 0으로 확률수렴 시키는 전개는 확률 유계인 Y_n 에 대해 $o(Y_n) \stackrel{P}{\to} 0$ 임을 이용)									
	1. 중심극한정리: $\mathbf{Z}_{n} = \frac{\overline{X} - \mu}{\underline{\sigma}/\sqrt{n}} \xrightarrow{D} \mathbf{N}(0, 1) \leftarrow \operatorname{iid} X_{i} \sim (평균: \mu, 분산: \sigma^{2})$									
	2. 대표본 추론 통계량: $\frac{\overline{X} - \mu}{S/\sqrt{n}} \stackrel{D}{\to} N(0, 1) \because S \stackrel{P}{\to} \sigma \Leftrightarrow \frac{S}{\sigma} \stackrel{P}{\to} 1$, CLT & Slutsky에 의해 $\left(\frac{\sigma}{S}\right) \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \stackrel{D}{\to} N(0, 1)$									
	2. 증명: MGF 이용 (특성함수 $\varphi(t)=E(e^{itx})$ 이용해야 더 정확함)									
7 J.	$m(t) \coloneqq E$	$ \begin{bmatrix} e^{t(X-\mu)} \end{bmatrix} = e^{-\mu t} M(t) \implies m(0) = 1, \ m'(0) = E(X-\mu) = 0, \ m''(0) = E[(X-\mu)^2] + m'(0)^2 = \sigma^2 $								
중심 극한		리에 의해 $m(t) = m(0) + m'(0)t + \frac{1}{2}m''(\xi)t^2 = 1 + \frac{1}{2}m''(\xi)t^2 = 1 + \frac{1}{2}\sigma^2t^2 + \frac{1}{2}(m''(\xi) - \sigma^2)t^2$, $\xi \in [-t, t]$								
정리	$M(t;n) \coloneqq$	$(t;n) := E(e^{tZ_n}) = E\left(\exp\left(t\frac{(1/n)\sum X_i - \mu}{\sigma/\sqrt{n}}\right)\right) = E\left(\exp\left(t\frac{\sum_{i=1}^n (X_i - \mu)}{\sigma\sqrt{n}}\right)\right) = \prod_{i=1}^n E\left(\exp\left(t\frac{X_i - \mu}{\sigma\sqrt{n}}\right)\right)$								
(CLT)	=	$= \left[E\left(\exp\left(\frac{t(X-\mu)}{\sigma\sqrt{n}} \right) \right) \right]^n = \left[m\left(\frac{t}{\sigma\sqrt{n}} \right) \right]^n, -h < \frac{t}{\sigma\sqrt{n}} < h$								
	M(t;n) =	$M(t;n) = \left[m\left(\frac{t}{\sigma\sqrt{n}}\right)\right]^n = \left\{1 + \frac{t^2}{2n} + \frac{[m''(\xi) - \sigma^2]t^2}{2n\sigma^2}\right\}^n, \qquad \xi \in \left[-\frac{t}{\sigma\sqrt{n}}, \frac{t}{\sigma\sqrt{n}}\right]$								
	$\therefore \lim_{n\to\infty} M($	$ \lim_{n \to \infty} M(t; n) = \lim_{n \to \infty} \left\{ 1 + \frac{t^2}{2n} + \frac{[m''(\xi) - \sigma^2]t^2}{2n\sigma^2} \right\}^n = \lim_{n \to \infty} \left(1 + \frac{t^2}{2n} \right)^n = \exp\left(\frac{1}{2}t^2\right) \because \lim_{n \to \infty} [m''(\xi) - \sigma^2] = 0 (\because \xi \to 0) $								
	$Z_n \stackrel{ ext{ol}}{=} \text{mgf}$	$M(t;n)$ 의 $n \to \infty$ 극한값은 $N(0,1)$ 의 mgf $\exp\left(\frac{1}{2}t^2\right) \Rightarrow \therefore \mathbf{Z}_n \stackrel{\mathbf{D}}{\to} \mathbf{N}(0,1)$								
		1) 확률수렴: $\{X_n\} \in \mathbb{R}^p$ 일 때, 벡터의 각 성분이 수렴하는 경우가 전체 벡터의 수렴과 동치이다.								
	. — —	즉, $\mathbf{X_n} \stackrel{P}{\to} \mathbf{X} \iff X_{nj} \stackrel{P}{\to} X_j \text{ (모든 } j = 1, \cdots, p \text{에서 성립)}$								
	다변량	2) 분포수렴: $\mathbf{X_n} \xrightarrow{\mathbf{D}} \mathbf{X} \iff \forall \mathbf{x} \in \{F(\mathbf{x}) \text{ 연속 점}\}, \lim_{\mathbf{n} \to \infty} F_n(\mathbf{x}) = F(\mathbf{x}), \left(F: \mathbf{X} \supseteq \operatorname{cdf}, F_n: \mathbf{X_n} \supseteq \operatorname{cdf}\right)$								
	확장	① $\mathbf{X_n} \xrightarrow{D} \mathbf{X} \Rightarrow g(\mathbf{X_n}) \xrightarrow{D} g(\mathbf{X})$ (corollary: $g(\mathbf{x}) = x_j$ 로 두면 분포수렴이 주변 (marginal) 수렴 수반								
다변량		$\{X_n\}$ ∈ \mathbb{R}^p 인 평균 μ , 공분산행렬 Σ 인 iid 확률벡터열								
분포	다변량	① 표본평균벡터: $\bar{\mathbf{X}}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i = \left(\bar{X}_1, \cdots, \bar{X}_p\right)^T$								
확장	표본	② 표본공분산행렬: $S_j^2 = \frac{1}{n-1} \sum_{i=1}^n (X_{ij} - \bar{X}_j)^2$, $S_{jk} = \frac{1}{n-1} \sum_{i=1}^n (X_{ij} - \bar{X}_j)(X_{ik} - \bar{X}_k)$; $p \times p$ 행렬								
		$\therefore \overline{X}_n \stackrel{P}{\to} \mu$, $S_n \stackrel{P}{\to} \Sigma$ (4차 적률 유한할 때 대수 약법칙)								
	CLT	$\therefore \overline{\mathbf{X}}_n \stackrel{P}{\to} \mu, \ \mathbf{S}_n \stackrel{P}{\to} \Sigma (4$ 차 적률 유한할 때 대수 약법칙) $\mathbf{Y}_n = \sqrt{n}(\overline{\mathbf{X}}_n - \mu) \stackrel{D}{\to} N_p(0, \mathbf{\Sigma}) \iff \text{근사적으로} \overline{\mathbf{X}}_n \sim N_p\left(\mathbf{\mu}, \frac{1}{\mathbf{n}}\mathbf{\Sigma}\right)$								
		$\sqrt{n}(\mathbf{X_n} - \mathbf{\mu_0}) \overset{D}{\to} N_p(0, \mathbf{\Sigma})$ (g는 $\mathbb{R}^p \to \mathbb{R}^k$ 로의 변환 $(k \le p)$; 미분행렬 $\mathbf{B} = \begin{bmatrix} \frac{\partial g_i}{\partial x_j} \end{bmatrix}$ 이 연속, $\mathbf{B} \neq 0$ in $\mathbf{\mu_0}$ 근방								
		$\sqrt{n}(\mathbf{g}(\mathbf{X}_{\mathbf{n}}) - \mathbf{g}(\mathbf{\mu}_{0})) \stackrel{D}{\rightarrow} N_{p}(0, \mathbf{B}_{0} \mathbf{\Sigma} \mathbf{B}_{0}^{T}) \mathbf{B}_{0} = \mathbf{B}(\mathbf{\mu}_{0})$								

6. 최대가능도방법 (Maximum Likelihood Methods)

		(R0), (R1) 하에서 $\lim_{n\to\infty} P_{\theta_0}[L(\theta_0, \mathbf{X}) > L(\theta, \mathbf{X})] = 1 (\forall \theta \neq \theta_0)$					
		$pf)\frac{1}{n}\sum_{i=1}^{n}\ln\left[\frac{f(X_{i};\theta)}{f(X_{i};\theta_{0})}\right]^{P}_{\rightarrow}E_{\theta_{0}}\left(\ln\left[\frac{f(X_{1};\theta)}{f(X_{1};\theta_{0})}\right]\right)<\ln E_{\theta_{0}}\left[\frac{f(X_{1};\theta)}{f(X_{1};\theta_{0})}\right]\text{by 대수의 법칙, 젠센 부등식}$					
	MLE 핵심	$E_{\theta_0}\left[\frac{f(X_1;\theta)}{f(X_1;\theta_0)}\right] = \int \frac{f(x;\theta)}{f(x;\theta_0)} f(x;\theta_0) dx = 1 (R1 공통 받침 하에서)$					
MLE		$\therefore \frac{1}{n} \sum_{i=1}^{n} \ln \left[\frac{f(X_i; \theta)}{f(X_i; \theta_0)} \right] < 0 \Leftrightarrow L(\theta_0, \mathbf{X}) > L(\theta, \mathbf{X})$					
		$:$ 근사적으로 <u>참값 θ_0에서 우도함수 $L(\theta,X)$가 최대</u> 가 된다. $(\hat{\theta} = \operatorname{Argmax}[L(\theta)] \stackrel{P}{\to} \theta_0)$					
(R0)~(R2)		$\eta = g(\theta) \Leftrightarrow \widehat{\eta} = g(\widehat{\theta})$					
	불변성	pf) ① $g \in 1$ 대1 함수: $\max L(\theta) = \max L(g^{-1}(\eta))$ 이므로 $\hat{\theta} = g^{-1}(\hat{\eta})$ 에서 우도 최대화					
		② $g \notin 1$ 대1 함수: $g^{-1}(\eta) \coloneqq \{\theta : g(\theta) = \eta\}$ 새로 정의 $\rightarrow \hat{\theta} \in g^{-1}(\hat{\eta})$ 에서 우도최대화					
	추정	*추정방정식 (estimating equation; EE): $\partial l(\theta)/\partial \theta = 0$					
	방정식	$(R0)$ ~ $(R2)$ 하에서 $\partial l(\theta)/\partial \theta=0$ 는 $\hat{\theta}\overset{P}{\to}\theta_0$ 인 $\hat{\theta}$ 를 가짐					
		(Corollary: EE가 유일해를 가지면 그 해는 $\hat{\theta} \stackrel{P}{\to} \theta_0$)					
		① Score 함수 $s(\theta) = \frac{\partial \ln f}{\partial \theta}$					
		② Fisher information $I(\theta) = \text{Var}\left(\frac{\partial \ln f}{\partial \theta}\right) = \text{E}\left[\left(\frac{\partial \ln f}{\partial \theta}\right)^2\right] = -\text{E}\left[\frac{\partial^2 \ln f}{\partial \theta^2}\right]$					
		$1 = \int_{-\infty}^{\infty} f dx \rightarrow 양변 \theta$ 로 i) 한번 미분 ii) 두번 미분 하면					
	스코어	i) $0 = \int_{-\infty}^{\infty} (\partial f/\partial \theta) dx = \int_{-\infty}^{\infty} \frac{(\partial f/\partial \theta)}{f} f dx = \int_{-\infty}^{\infty} \left(\frac{\partial \ln f}{\partial \theta}\right) f dx \qquad \therefore E\left(\frac{\partial \ln f}{\partial \theta}\right) = 0$					
	함수 &	$ \begin{vmatrix} i & j & j & j & j & j & j & j & j & j & $					
	피셔정!	$ \frac{11}{100} \frac{1}{100} \frac$					
		① Score 함수 $s_n(\theta) = \frac{\partial l}{\partial \theta} = \frac{\partial \ln L}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \ln f(X_i; \theta)}{\partial \theta}$					
		② Fisher 정보 $I_n(\theta) = \operatorname{Var}\left(\frac{\partial l}{\partial \theta}\right) = \operatorname{Var}\left(\frac{\partial \ln L}{\partial \theta}\right) = n I(\theta)$					
		① $\mathbf{Var}(T) \ge \frac{[\partial E(T)/\partial \theta]^2}{nI(\theta)}$ for 임의의 통계량 $T = g(X_1, \dots, X_n)$					
Cramér	Cramé						
Rao Bound	Rao	$r-\frac{2 \operatorname{Var}(T) \ge \frac{1}{nI(\theta)} \text{for 불편추정량 } T \ (\because E(T) = \theta)}{pf) E(T) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} [T] f(x_1; \theta) \cdots f(x_n; \theta) dx_1 \cdots dx_n}$					
(R0)~(R4)	Bound (CRB)						
(110)		$\Leftrightarrow \partial E(T)/\partial \theta = E(TZ) = E(T)E(Z) + \rho \ \sigma_T \sigma_Z = \rho \sqrt{\text{Var}(T)} \sqrt{nI(\theta)} \therefore \rho^2 \le 1 \Leftrightarrow \text{Var}(T) \ge \frac{[\partial E(T)/\partial \theta]^2}{nI(\theta)}$					
		*효율성: 통계량 T의 효율성은 CRB(T)/Var(T)					
	효율성	* ARE (근사 상대효율성) = $e(T,W) = \frac{\sqrt{\gamma}}{Var(T)}$ (if $T \to \theta_0, W \to \theta_0$ 이며 둘다 성규근사 될 때)					
		① 정규 근사: $\sqrt{n}(\hat{\theta} - \theta_0) \stackrel{D}{\rightarrow} N\left(0, \frac{1}{I(\theta_0)}\right)$ for 유한 피셔정보 $I(\theta_0)$ * pf) $l'(\hat{\theta}) = \theta_0$ 테일러 전개					
		▲ MIF이 그사 전구 시리 구가 구하 스 이으					
	MLE オユユ						
	でガピノ (R0)~(R	(5) ② Δ방법: $\sqrt{n}(g(\hat{\theta}) - g(\theta_0)) \stackrel{D}{\rightarrow} N\left(0, \frac{g'(\theta_0)^2}{I(\theta_0)}\right)$ $(g(x) \land \theta)$ 에서 미분 가능 & $g'(\theta) \neq 0$ 이면)					
		③ 정규 근사: $\hat{\theta} - \theta_0 = \frac{1}{nI(\theta_0)} \sum_{i=1}^n \frac{\partial \ln f(X_i; \theta_0)}{\partial \theta} + \frac{R_n}{\sqrt{n}} = -\frac{l'(\theta_0)}{l''(\theta_0)} + \frac{R_n}{\sqrt{n}} \left(R_n \stackrel{P}{\to} 0\right)$					
	MLE Newtor	# # # # # # # # # # # # # # # # # # #					

6. 최대가능도방법 (Maximum Likelihood Methods)								
0. ⊒q=11°1	전개 우도비 검정 Wald 검정	대mum Likelihood Methods) $\begin{aligned} \mathbf{P}\mathbf{\Sigma} & II \ (\mathbf{L}\mathbf{R}) : \mathbf{\Lambda} = \frac{L(\theta_0)}{L(\widehat{\boldsymbol{\theta}})} & (\mathbf{\Lambda} \leq \mathbf{c} \ OMM \ I)^{2} I \\ -\frac{1}{n} l''(\theta_0) \overset{P}{\to} I(\theta_0) , & \frac{l'(\theta_0)}{\sqrt{n}} = \sqrt{n} (\widehat{\boldsymbol{\theta}} - \theta_0) I(\theta_0) + R_n \ O = \mathbf{E} \\ l(\widehat{\boldsymbol{\theta}}) & = l(\theta_0) + (\widehat{\boldsymbol{\theta}} - \theta_0) l'(\theta_0) + \frac{1}{2} (\widehat{\boldsymbol{\theta}} - \theta_0) l''(\theta_n^*) \ O = \mathbb{E} \\ -2 \ln \mathbf{\Lambda} & = 2 [l(\widehat{\boldsymbol{\theta}}) - l(\theta_0)] = \left[\sqrt{n I(\theta_0)} (\widehat{\boldsymbol{\theta}} - \theta_0) \right]^2 + R_n^* \left(R_n^* \overset{P}{\to} 0 \right) \\ & \therefore -2 \ln \mathbf{\Lambda} \overset{D}{\to} \chi^2(1) \Leftarrow \sqrt{n I(\theta_0)} (\widehat{\boldsymbol{\theta}} - \theta_0) \overset{D}{\to} N(0, 1) \\ \chi_L^2 & = -2 \ln \mathbf{\Lambda} \\ \chi_W^2 & = \left[\sqrt{n I(\widehat{\boldsymbol{\theta}})} (\widehat{\boldsymbol{\theta}} - \theta_0) \right]^2 \end{aligned}$ $\chi^2 \geq \chi_\alpha^2(1) \ OMM \ C \overset{\triangle}{\to} \ CMS \ I \ CMS $						
	Score 검정	$\chi_R^2 = \left(\frac{l'(\theta_0)}{\sqrt{nl(\theta_0)}}\right)^2 $ $(H_0: \theta = \theta_0, H_1: \theta \neq \theta_0)$						
최대 가능도 검정 (ML tests)	test statistic v test statistic f long time to r Today, for mo	Wald Test Wald Test Wald Test Wald Test Wald Test Wald Test Diving relationship Wald ≥ LR ≥ score (Johnston and DiNardo 1997 p. 150). That is, the Wald will always be greater than the LR test statistic, which will, in turn, always be greater than the rom the score test. When computing power was much more limited, and many models took a un, being able to approximate the LR test using a single model was a fairly major advantage, set of the models researchers are likely to want to compare, computational time is not an issue, really recommend running the likelihood ratio test in most situations. This is not to say that one use the Wald or score tests. For example, the Wald test is commonly used to perform multiple						

degree of freedom tests on sets of dummy variables used to model categorical predictor variables in regression (for more information see our webbooks on Regression with Stata, SPSS, and SAS, specifically Chapter 3 - Regression with Categorical Predictors.) The advantage of the score test is that it can be used to search for omitted variables when the number of candidate variables is large.

정칙 조건

Regularity

conditions

(R0): pdf $f(x;\theta)$ 는 서로 distinct 하다. i.e. $\theta_1 \neq \theta_2 \Rightarrow f(x_i;\theta_1) \neq f(x_i;\theta_2)$

(R1): pdf $f(x;\theta)$ 는 모든 θ 에 대해 공통된 support를 갖는다. (θ 에 의존적이지 않다.)

(R2): θ_0 (참값) $\in \Omega$

(R3): pdf $f(x;\theta)$ 는 θ 로 두 번 미분 가능

(R4): $\int f(x;\theta)dx$ 는 θ 로 두 번 미분 가능

(R5): pdf $f(x;\theta)$ 는 θ 로 세 번 미분 가능, 모든 θ 에 대해 $|\partial^3 \ln f/\partial \theta^3| \le M(x)$ $\left(E_{\theta_0}[M(X)] < \infty\right) in \theta_0$ 근방 $\forall x \in \mathbb{R}$

6. 최대가능도방법 (Maximum Likelihood Methods)

. 4-1/-18-28-B (Maximum Exemicos Methods)									
	추가됨. (기존 정칙의 다변량 확장)								
	맨위 "MLE 핵심" 정리는 벡터 $\mathbf{\theta} = \left[\theta_1, \cdots, \theta_p\right]^T \in \mathbb{R}^p$ 에 대해서도 똑같이 성립함. $\Leftrightarrow \nabla l(\mathbf{\theta}) = 0$ 으								
			1 TJ LJ SF	$\nabla \ln f(X; \boldsymbol{\theta}) = \left(\frac{\partial \ln f(X; \boldsymbol{\theta})}{\partial \theta_1}, \dots, \frac{\partial \ln f(X; \boldsymbol{\theta})}{\partial \theta_p}\right]^T$					
		피셔정보량		피셔 정보량: $\mathbf{I}(\mathbf{\theta}) = \operatorname{Cov}(\nabla \ln f(X; \mathbf{\theta})) = -E \left[\frac{\partial^2}{\partial \theta_j \partial \theta_k} \ln f \right]_{jk} = E \left[\left(\frac{\partial \ln f}{\partial \theta_j} \right) \left(\frac{\partial \ln f}{\partial \theta_k} \right) \right]_{jk}$					
	다중	피시	셔정보량 표본 n	$\nabla l = \nabla \ln L = \sum_{i=1}^{n} \nabla \ln f$					
	모수 추정	(표는 II 확장)		피셔 정보량: $\mathbf{I_n}(\mathbf{\theta}) = \operatorname{Cov}(\nabla l) = \operatorname{Cov}(\nabla \ln L) = n\mathbf{I}(\mathbf{\theta})$					
		CRB		$Var(T_j) \ge \frac{1}{n} [\mathbf{I}^{-1}(\boldsymbol{\theta})]_{jj} (T_j \to \theta_j)$ 불편 추정량)					
		정규근사		$\sqrt{n}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \stackrel{\mathrm{D}}{\rightarrow} N_p(\boldsymbol{0}, \mathbf{I}^{-1}(\boldsymbol{\theta}_0)) \Rightarrow \sqrt{n}(\widehat{\boldsymbol{\theta}}_j - \boldsymbol{\theta}_j) \stackrel{\mathrm{D}}{\rightarrow} N(\boldsymbol{0}, [\mathbf{I}^{-1}(\boldsymbol{\theta}_0)]_{jj})$					
				$\sqrt{n}(\mathbf{g}(\hat{\boldsymbol{\theta}}) - \mathbf{g}(\boldsymbol{\theta}_0)) \stackrel{D}{\rightarrow} N_p(0, \mathbf{B}[\mathbf{I}^{-1}(\boldsymbol{\theta}_0)]\mathbf{B}^T)$					
			\방법 -	$(\mathbf{g} \vdash \mathbb{R}^p \to \mathbb{R}^k \text{ 로의 변환 } (k \leq p); 미분행렬 \mathbf{B} = \begin{bmatrix} \frac{\partial g_i}{\partial \theta_j} \end{bmatrix}$ 이 연속, $\mathbf{B} \neq 0$ in $\mathbf{\theta_0}$ 근방)					
			-	$m{\omega}, \pmb{H_1} : \pmb{\theta} \in (\pmb{\omega^c} \cap \pmb{\Omega})$ 실 전체 모수 공간; $\pmb{\omega}$: p-q차원 귀무가설 모수공간 (q: 제약된 모수 개수)					
		기		$LR): \Lambda = \frac{L(\widehat{\omega})}{L(\widehat{\Omega})} = \max_{\substack{\theta \in \omega \\ \theta \in \Omega}} L(\theta)$					
		몬		. 001					
			$\chi_L^2 = -2 \ln \Lambda \stackrel{D}{\rightarrow} \chi^2(q)$ (Wald, Score 검정통계량도 가능)						
				$H_0: \mu = \mu_0, H_1: \mu \neq \mu_0 \{X_n\} \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ $\begin{pmatrix} 1 & \sum_{i=1}^{n} (X_i - \bar{X})^2 \end{pmatrix} \qquad 1 \qquad (n)$					
				$L(\widehat{\Omega}) = \frac{1}{(2\pi\widehat{\sigma}^2)^{n/2}} \exp\left\{-\frac{1}{2} \sum_{i=1}^n \frac{(X_i - \bar{X})^2}{\frac{1}{n} (\sum_{i=1}^n (X_i - \bar{X})^2)}\right\} = \frac{1}{(2\pi\widehat{\sigma})^{n/2}} \exp\left(-\frac{n}{2}\right)$					
다중모수	다중		정규 μ	$L(\widehat{\omega}) = \frac{1}{(2\pi\widehat{\sigma}_0^2)^{n/2}} \exp\left(-\frac{n}{2}\right) \qquad \widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 , \qquad \widehat{\sigma}_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu_0)^2$					
			F*	$\left(\frac{1}{\Lambda}\right)^{\frac{2}{n}} = \left(\frac{L(\widehat{\Omega})}{L(\widehat{\omega})}\right)^{\frac{2}{n}} = \frac{\sum_{i=1}^{n} (X_i - \mu_0)^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2} = 1 + \frac{n(\bar{X} - \mu_0)^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2} = 1 + \frac{1}{n-1} \left\{\frac{(\bar{X} - \mu_0)}{S/\sqrt{n}}\right\}^2$					
				$\left(\frac{1}{\Lambda}\right)^{\frac{2}{n}} \ge c' \iff T \ge c^* = \sqrt{(c'-1)(n-1)} \qquad \therefore 양측 t검정과 동치$					
				$H_0: p_1 = p_2, \ H_1: p_1 \neq p_2$ (유력후보1 vs 유력후보2 vs 나머지 군소후보)					
	모수 검정			3항 베르누이 $(X_{i1}, X_{i2}) \sim p_1^{x_1} p_2^{x_2} (1 - p_1 - p_2)^{1 - x_1 - x_2} (X_{i1}, X_{i2}) \in \{(0,0), (0,1), (1,0)\}$					
	6.6	예	II	$\hat{p}_{j} = \frac{\sum_{i=1}^{n} X_{ij}}{n} \text{for } j = 1,2 \qquad \left(\pm \underbrace{\Xi : \{(X_{n1}, X_{n2})\}} \right)$					
		시	다항	$\begin{array}{ c c c c c }\hline & n & & & & & & & & & & & & & & & \\ \hline LR & & \frac{1}{\Lambda} = \left(\frac{2\hat{p}_1}{\hat{p}_1 + \hat{p}_2}\right)^{n\hat{p}_1} \left(\frac{2\hat{p}_2}{\hat{p}_1 + \hat{p}_2}\right)^{n\hat{p}_2}, & & & & & & & & & & & \\ \hline & & & & & & &$					
			р	$\begin{bmatrix} \hat{p}_1 \\ \hat{p}_2 \end{bmatrix} \stackrel{\text{a}}{\sim} N_2 \begin{pmatrix} p_1 \\ p_2 \end{bmatrix}, \frac{1}{n} \begin{bmatrix} p_1 (1 - p_1) & -p_1 p_2 \\ -p_1 p_2 & p_2 (1 - p_2) \end{bmatrix} $					
			•	$W = \hat{p}_1 - \hat{p}_2 = g\left(\begin{vmatrix} p_1 \\ \hat{p} \end{vmatrix}\right), \Delta$ 방법에서 $\mathbf{B} = \begin{vmatrix} \frac{\partial g_i}{\partial \mathbf{n}} \end{vmatrix} = [1, -1]$					
				Wald $Var(W) = \frac{1}{n} \mathbf{B} \mathbf{I}^{-1} \mathbf{B}^{T} = \frac{p_1 + p_2 - (p_1 - p_2)^2}{n^2}$					
			2표본	$H_0: p_1 = p_2, \ H_1: p_1 \neq p_2, \{X_{n1}\} \stackrel{\text{iid}}{\sim} B(1, p_1), \ \{Y_{n2}\} \stackrel{\text{iid}}{\sim} B(1, p_2)$ $\hat{p}_1 \stackrel{\text{a}}{\sim} N\left(p_1, \frac{p_1(1 - p_1)}{n_1}\right), \ \hat{p}_2 \stackrel{\text{a}}{\sim} N\left(p_2, \frac{p_2(1 - p_2)}{n_2}\right), \ \text{Cov}(\hat{p}_1, \hat{p}_2) = 0$					
			이항						
			р	Wald $\hat{p}_1 - \hat{p}_2 \stackrel{\text{a}}{\sim} N\left(p_1 - p_2, \frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}\right) \& Slutsky (\hat{p}_1 \stackrel{\mathbf{P}}{\to} p_1, \hat{p}_2 \stackrel{\mathbf{P}}{\to} p_2)$					
				⇒ 근사 Z 검정 or 카이제곱					

7. 충분성 (Sufficiency) - 통계량의 성질

02	(= 1	ency) - 중계정의 정말							
	통계량	① 점추정: $\boldsymbol{\theta} \in \Omega$ 에 대한 추정량 $\hat{\boldsymbol{\theta}}$ *통계량 (Statistic): $T = T(X_1, \cdots, X_n)$ (표본에 대한 함수)							
		② 95% CI: $0.95 = P_{\theta}[\theta \in (\hat{\theta}_L, \hat{\theta}_U)]$ * $\theta \in (\hat{\theta}_L, \hat{\theta}_U)$ 인 베르누이 사건 ~ $B(1, 0.95)$							
		1) 일치추정량: $T_n \stackrel{P}{\rightarrow} \theta$ 면 $\Leftrightarrow T_n$ 은 θ 의 일치 추정량							
		2) 불편추정량: $E(T) = \theta \Leftrightarrow T \leftarrow \theta$ 의 불편 추정량 (bias = 0)							
	성질	① MVUE: 분산 최소인 불편추정량 (UE) → 유일 ② CRB: Var(T) ≥ 1/{nI(θ)}							
		3) MLE: $\hat{\theta} = \operatorname{Argmax}[L(\theta)] = \operatorname{Argmax}[\prod_{i=1}^{n} f(x_i, \theta)]$							
E 3131		① MLE는 근사적으로 효율적 ② $\hat{\boldsymbol{\theta}} \stackrel{a}{\sim} \boldsymbol{N} \left(\boldsymbol{\theta_0}, \frac{1}{n I(\boldsymbol{\theta_0})} \right) \Rightarrow \operatorname{Z} \operatorname{or} \chi^2 $ 화 하면 Wald statistic							
통계량		4) $ARE(T_1, T_2) = \frac{Var(T_2)}{Var(T_1)}$							
Review	Bias	1) bias $(\widehat{\theta}) = E(\widehat{\theta} - \theta) = E(\widehat{\theta}) - \theta$ * bias $(g(\widehat{\theta})) = E(g(\widehat{\theta}) - g(\theta))$							
	MSE	2) Mean square error (MSE): $mse(\hat{\theta}) = E\{(\hat{\theta} - \theta)^2\} = Var(\hat{\theta}) + \{bias(\hat{\theta})\}^2$							
		3) Mean absolute error (MAE): $mse(\widehat{\theta}) = E\{ \widehat{\theta} - \theta \}$							
	적률	r차 표본적률 $\stackrel{P}{\to}$ r차 모적률 (\bigstar 연립하여 모수 추정량 구함; 일반적으로 비선호) ex) $\{X_i\}^{\text{iid}}$ Gamma (k,θ)							
	ァ _르 추정법	$ \mathbf{x}_i _{\infty} = \sum_{i=1}^n X_i = \hat{k}\hat{\theta}, m_2 = \frac{\sum_{i=1}^n X_i^2}{n} = \hat{k}(\hat{\theta})^2 + (\hat{k}\hat{\theta})^2$							
	(MoM)								
	, ,	$\hat{\theta} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n\bar{X}} = \left(\frac{n-1}{n}\right) \frac{S^2}{\bar{X}} = \frac{S_{mle}^2}{\bar{X}}, \qquad \hat{k} = \frac{n(\bar{X})^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2} = \left(\frac{n}{n-1}\right) \frac{\bar{X}}{\bar{S}^2} = \frac{\bar{X}^2}{S_{mle}^2}$							
		$Y=u(X_1,\cdots,X_n)$ 에 대해 $X y$ 가 θ 와 무관함 \Leftrightarrow Y가 θ 에 대한 모든 정보 다 포함 $(e.g.Y=\Sigma_{i=1}^nX_i)$							
	정의	$\frac{\prod_{i=1}^{n} f(x_i, \theta)}{f_Y(y; \theta)} = H(x_1, \dots, x_n) (f_Y: Y \supseteq pdf)$							
		n n							
	Neyma Fishe	$ Y \cap \theta \preceq SS \Leftrightarrow Y \cap G(x_i, \theta) = f_Y(y; \theta) H(x_1, \dots, x_n) = g(y; \theta) h(x_1, \dots, x_n) (\exists \exists \exists g, n \subseteq \mathbf{C} \cap G(x_i, \dots, x_n))$							
		$ heta$ 의 충분통계량 Y_1 , 불편추정량 Y_2 에 대해, 새로운 불편추정량 $oldsymbol{arphi}(oldsymbol{y_1}) = oldsymbol{E}(oldsymbol{Y_2} oldsymbol{y_1})$							
	Rao	$E(\varphi(Y_1)) = E[E(Y_2 Y_1)] = E(Y_2) = \theta \qquad 2) \operatorname{Var}(\varphi(Y_1)) = \operatorname{Var}(E(Y_2 Y_1)) \le \operatorname{Var}(Y_2)$							
	Blackw	vell \therefore New $UE \varphi(y_1) = E(Y_2 y_1)$ 는 Old UEY_2 보다 분산이 작다. *실전: $E(\varphi(Y_1)) = \theta$ 인 $\varphi(y_1)$ 찾기							
		① 통계량 Y 는 complete (완비) if 모든 θ 에서 $E(h(Y)) = 0 \Rightarrow h(t) = 0$ 만 가능함							
	Lehma	② 레만-셰페: CSS인 Y_1 으로 Rao-Blackwellization $\Rightarrow \varphi(y_1) = E(Y_2 y_1)$ 는 유일한 $MVUE$ of θ							
	Schef	pf) CSS인 Y ₁ 에 대해 불편추정량 $\varphi(Y_1),\psi(Y_1)$ 존재 $\Rightarrow E(\varphi(Y_1)-\psi(Y_1))=\theta-\theta=0$							
		완비족 $\{f_{Y_1}(y;\theta):\theta\in\Omega\}$ 에 대해 위 등식은 $\varphi(Y_1)=\psi(Y_1)$ 에서만 성립 (더 이상 분산 못 줄임)							
		$f(x;\theta) = \exp[n(\theta)T(x) + H(x) - A(n(\theta))] (x \in S) \qquad (n = n(\theta)) = \text{자연 모수})$							
	지수	*정칙: 1) S가 θ 에 종속 X. 2) $n(\theta)$ 연속. 3) (연속이면) $H(x)$ 연속 in $\{K'(x) \neq 0\}$							
충분성	Expone	① 지수족: 이산 (포아송, 이항, 기하, 음이항, 다항 등)/ 연속 (감마, 베타, 정규 등)							
	Fami	② $Y = \sum_{i=1}^{n} T(x) \stackrel{\vdash}{\leftarrow} \theta$ CSS ③ $E(T(X)) = A'(\eta), Var(T(X)) = A''(\eta)$							
		$\mathbf{V} - (\mathbf{V} \dots \mathbf{V})^T \in \mathbb{R}^m \otimes \mathbf{A} - (\mathbf{A} \dots \mathbf{A}) \in \mathbb{R}^p$ 에 대해 (일바전으로 $\mathbf{m} - \mathbf{n}$)							
	결합	$\frac{n}{n}$							
	충분통제	Ţ Ţ							
	(다중모	*순서통계량 $\mathbf{Y} = (Y_1, \cdots, Y_n)^T$; $Y_1 < \cdots < Y_n \rightarrow \mathbf{P}$ 모든 연속분포의 결합충분통계량							
		$A=a(X_1,\cdots,X_n)$ 가 $ heta$ 와 무관 $ ext{ex})$ 정규분포 iid의 $ extbf{S}^2$: $m{\mu}$ 에 대해 ancillary							
	보조통	기 Basu 정리: $\{Y \to \theta \ \supseteq \ CSS\} \ \& \ \{Z \to \theta \ \supseteq \ ancillary\} \Leftrightarrow \{Y \to Z \succeq \mathbf{독립}\} \mathrm{ex}) \ \overline{X} \perp S^2, \{X_i\}^{\mathrm{iid}} N(\mu, \sigma^2)$							
	(Ancilla	기 3							
	(AllCilla	② 척도불변 : $Z = u(\theta W_1, \dots, \theta W_n) = u(W_1, \dots, W_n)$ ex) $X_1/(X_1 + X_2)$, $X_1^2/\sum_1^n X_i^2$, min $\{X_i\}$ / max $\{X_i\}$							
		③위치척도불변: $Z = u(\theta_1 W_1 + \theta_2, \dots, \theta_1 W_n + \theta_2) = u(W_1, \dots, W_n)$ ex) $(X_i - \bar{X})/S^2$							
		$L(\theta;x_1,\cdots,x_n)=\prod_{i=1}^n f(x_i,\theta)=f_Y(y;\theta)\ H(x_1,\cdots,x_n)$ → L 과 f_Y 동시에 극대화 by θ							
	MLE	① $MLE \hat{\theta}$ 이 유일 $\Leftrightarrow \hat{\theta}$ 는 충분통계량 Y의 함수 $: \hat{\theta} = \operatorname{argmax} (L(\theta, \mathbf{x})) = \operatorname{argmax} (f_Y(y; \theta))$							
		② $MLE \ \hat{\theta}$ 가 충분통계량 $\Leftrightarrow \ \hat{\theta}$ 는 최소 충분통계량 (MSS) *최소충분:reduced from 다른 충분통계량							

7. 충분성 (Sufficiency) - 통계량의 성질

-									
$f(x;\theta) = \exp[\eta(\theta)T(x) + H(x) - A(\eta(\theta))] (x \in S) \qquad (\eta = \eta(\theta) 는 자연 모수)$							모수)		
	지수족	*정칙: 1) S 가 θ 에 종속 X , 2) $\eta(\theta)$ 연속, 3) (연속이면) $H(x)$ 연속 in $\{K'(x) \neq 0\}$							
	~117	① 지수족: 이산 (포아송, 이항, 기하, 음이항, 다항 등)/ 연속 (감마, 베타, 정규 등)							
		② $Y = \sum_{i=1}^{n} T(x) \vdash \theta \circlearrowleft \mathbf{CSS}$ ③ $E(T(X)) = A'(\eta), Var(T(X)) = A''(\eta)$							
		1변수 1모수			$H(\theta)T(x) + H(x) - A(r)$				
		1변수 다중	· 동모수	$f(x; \mathbf{\theta}) = \exp[\mathbf{\eta}($	$\mathbf{\Theta})\cdot\mathbf{T}(x)+H(x)-A(x)$	(η)]			
	다변량	다변량 다중모수		$f(\mathbf{x}; \mathbf{\theta}) = \exp[\mathbf{\eta}($	$\mathbf{\theta})\cdot \mathbf{T}(\mathbf{x}) + H(\mathbf{x}) - A(\mathbf{x})$	(η)]			
	확장			$\nabla A(\mathbf{\eta}) = E[\mathbf{T}(\mathbf{x})]$	$ H[A(\mathbf{\eta})] = Cov(\mathbf{T}(\mathbf{x}))$))			
		기대값		$\nabla A(\mathbf{\eta_{mle}}) = \frac{1}{n} \sum_{i=1}^{n}$	$T(\mathbf{x}_i)$				
		분포	모수 (θ 자연모수 η	역모수	T(x)	$A(\mathbf{\eta})$		
		베르누이			1		$ln(1+e^{\mu})$		
		ΛΙ⊅L	p	$\ln \frac{p}{1-p}$	$1+e^{-\eta}$	x	1 (4 + 11)		
		이항		- P	* logistic function		$n\ln(1+e^{\mu})$		
		푸아송	m	$\ln m$	e^{η}	x	e^{η}		
		음이항(r)	p	ln(1-p)	$1-e^{\eta}$	x	$-r\ln(1-e^{\mu})$		
지수족 확장		다항(n)	$\begin{bmatrix} p_1 \\ \vdots \\ p_{k-1} \end{bmatrix}$	$\begin{bmatrix} \ln \frac{p_1}{p_k} \\ \vdots \\ \ln \frac{p_{k-1}}{p_k} \end{bmatrix}$	$\begin{bmatrix} \exp(\eta_1) \\ 1 + \sum_{j=1}^{k-1} \exp(\eta_j) \\ \vdots \\ \exp(\eta_{k-1}) \\ 1 + \sum_{j=1}^{k-1} \exp(\eta_j) \end{bmatrix}$	$\begin{bmatrix} x_1 \\ \vdots \\ x_{k-1} \end{bmatrix}$	$n\ln(1+\sum_{j=1}^{k-1}\exp(\eta_j))$		
	예시				* softmax function $p_k = 1 - \sum_{j=1}^{k-1} p_j$, n	a = 0 ovp(a	1) = 1		
		감마	$\begin{bmatrix} lpha \ eta \end{bmatrix}$	$\begin{bmatrix} \alpha - 1 \\ -\frac{1}{\beta} \end{bmatrix}$	$\begin{bmatrix} p_k = 1 - \sum_{j=1} p_j, & r \\ \hline \begin{bmatrix} \eta_1 + 1 \\ -\frac{1}{\eta_2} \end{bmatrix} \end{bmatrix}$	$ \frac{\int_{R} = 0, \exp(R)}{\left[\ln x \atop x \right]} $	$\int_{R} \int_{R} \int_{R$		
		지수	β	$-\frac{1}{\beta}$	$-\frac{1}{\eta}$	х	$-\ln(-\eta)$		
		카이제곱	ν	$\frac{\nu}{2}-1$	$2(\eta + 1)$	$\ln x$	$\ln \Gamma(\eta+1) + (\eta+1) \ln 2$		
			베타	$\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$	$\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$	$\begin{bmatrix} \eta_1 \\ \eta_2 \end{bmatrix}$	$\begin{bmatrix} \ln x \\ \ln(1-x) \end{bmatrix}$	$\ln B(\alpha, \beta) = \ln \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$	
		정규 기지 σ^2	μ	$\frac{\mu}{\sigma^2}$	$\sigma^2\eta$	x	$rac{1}{2}\sigma^2\eta^2$		
		정규 미지 σ^2	$\begin{bmatrix} \mu \\ \sigma^2 \end{bmatrix}$	$\begin{bmatrix} \frac{\mu}{\sigma^2} \\ -\frac{1}{2\sigma^2} \end{bmatrix}$	$\begin{bmatrix} -\frac{\eta_1}{2\eta_2} \\ -\frac{1}{2\eta_2} \end{bmatrix}$	$\begin{bmatrix} x \\ x^2 \end{bmatrix}$	$-\frac{\eta_1^2}{4\eta_2} - \frac{1}{2}\ln(-2\eta_2)$		
			다변량 정규	$\begin{bmatrix} \mu \\ \Sigma \end{bmatrix}$	$\begin{bmatrix} \boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} \\ -\frac{1}{2}\boldsymbol{\Sigma}^{-1} \end{bmatrix}$	$\begin{bmatrix} -\frac{1}{2}\boldsymbol{\eta}_2^{-1}\boldsymbol{\eta}_1 \\ -\frac{1}{2}\boldsymbol{\eta}_2^{-1} \end{bmatrix}$	$\begin{bmatrix} \mathbf{x} \\ \mathbf{x} \mathbf{x}^T \end{bmatrix}$	$-\frac{1}{4} \mathbf{\eta}_1^T \mathbf{\eta}_2^{-1} \mathbf{\eta}_1 - \frac{1}{2} \ln -2 \mathbf{\eta}_2 $	