Énoncés : V. Gritsenko Corrections : J.-F. Barraud

Anneaux de polynômes I

Exercice 1

- 1. Soit A un anneau quelconque. Alors l'anneau de polynômes A[x] n'est pas un corps.
- 2. Montrer que pour un anneau intègre A, les polynômes unitaires linéaires de A[x] sont irréductibles.
- 3. Décrire tous les polynômes irréductibles de $\mathbb{C}[x]$ et de $\mathbb{R}[x]$.
- 4. Démontrer que pour tout corps K, l'anneau de polynômes K[x] a une infinité de polynômes unitaires irréductibles.

Correction ▼ [002261]

Exercice 2

- 1. Montrer que l'idéal (x,n) où $n \in \mathbb{Z}$, n > 1 de l'anneau $\mathbb{Z}[x]$ n'est pas principal.
- 2. Soit A un anneau intègre. Montrer que A[x] est principal ssi A est un corps.

Correction ▼ [002262]

Exercice 3

Soit $f(x) \in A[x]$ un polynôme sur un anneau A. Supposons que $(x-1)|f(x^n)$. Montrer que $(x^n-1)|f(x^n)$.

Exercice 4

Pour $n, m \ge 2$, déterminer le reste de la division euclidienne du polynôme $(x-2)^m + (x-1)^n - 1$ par (x-1)(x-2) dans $\mathbb{Z}[x]$.

Correction ▼ [002264]

Exercice 5

- 1. Si K est un corps, montrer qu'un polynôme P de degré 2 ou 3 dans K[x] est irréductible si et seulement si il n'a pas de zéro dans K.
- 2. Trouver tous les polynômes irréductibles de degré 2, 3 à coefficients dans $\mathbb{Z}/2\mathbb{Z}$.
- 3. En utilisant la partie précédente, montrer que les polynômes $5x^3 + 8x^2 + 3x + 15$ et $x^5 + 2x^3 + 3x^2 6x 5$ sont irréductibles dans $\mathbb{Z}[x]$.
- 4. Décrire tous les polynômes irréductibles de degré 4 et 5 sur $\mathbb{Z}/2\mathbb{Z}$.

Correction ▼ [002265]

Exercice 6

- 1. Trouver tous les polynômes irréductibles de degré 2, 3 à coefficients dans le corps $\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z}$.
- 2. Décomposer les polynômes suivants en facteurs irréductibles dans $\mathbb{F}_3[x]$.

$$x^2 + x + 1$$
, $x^3 + x + 2$, $x^4 + x^3 + x + 1$.

Correction ▼ [002266]

Exercice 7

En utilisant les réductions mod 2 ou mod 3 montrer que les polynômes $x^5 - 6x^3 + 2x^2 - 4x + 5$, $7x^4 + 8x^3 + 11x^2 - 24x - 6$ sont irréductibles dans $\mathbb{Z}[x]$.

Correction ▼ [002267]

Exercice 8

Soient

$$f(x) = (x - a_1)(x - a_2) \dots (x - a_n) - 1, \quad g(x) = (x - a_1)^2 (x - a_2)^2 \dots (x - a_n)^2 + 1$$

où $a_1, \ldots a_n \in \mathbb{Z}$ soient deux à deux distincts. Montrer que f et g sont irréductibles dans $\mathbb{Q}[x]$.

Correction ▼ [002268]

Exercice 9

Soient $f,g \in \mathbb{Q}[x]$. Supposons que f soit irréductible et qu'il existe $\alpha \in \mathbb{C}$ tel que $f(\alpha) = g(\alpha) = 0$. Alors f divise g.

Correction ▼ [002269]

Exercice 10

Pour quel n, m dans \mathbb{Z} la fraction

$$\frac{11n + 2m}{18n + 5m}$$

est réductible?

Correction ▼ [002270]

Exercice 11

Trouver le pgcd $(x^n - 1, x^m - 1)$ dans $\mathbb{Z}[x]$.

Correction ▼ [002271]

Exercice 12

Trouver le pgcd(f,g) dans $\mathbb{Z}_2[x]$ et sa représentation linéaire fu+gv où $d,u,v\in\mathbb{Z}_2[x]$:

1.

$$f = x^5 + x^4 + 1,$$
 $g = x^4 + x^2 + 1;$

2.

$$f = x^5 + x^3 + x + 1,$$
 $g = x^4 + 1.$

Correction ▼ [002272]

Exercice 13

Trouver le pgcd(f,g) dans $\mathbb{Z}_3[x]$ et $\mathbb{Z}_5[x]$ de $f=x^4+1$, $g=x^3+x+1$.

Correction ▼ [002273]

Exercice 14

Trouver le pgcd(f,g) dans $\mathbb{Z}[x]$ de $f = x^4 + x^3 - 3x^2 - 4x - 1$ et $g = x^3 + x^2 - x - 1$.

Correction ▼ [002274]

Exercice 15

Montrer que f est irréductible dans $\mathbb{Q}[x]$:

1.
$$f = x^4 - 8x^3 + 12x^2 - 6x + 2$$
;

2.
$$f = x^5 - 12x^3 + 36x - 12$$
;

3.
$$f = x^4 - x^3 + 2x + 1$$
;

4. $f = x^{p-1} + \cdots + x + 1$, où p est premier.

Correction ▼ [002275]

Exercice 16

Soient $A = \mathbb{Z}[\sqrt{-3}]$ et K son corps de fractions. Montrer que $x^2 - x + 1$ est irréductible dans A[x] sans pour autant être irréductible dans K[x]. Expliquer la contradiction apparente avec le corollaire du lemme de Gauss.

Correction ▼ [002276]

Exercice 17

Soit $P \in \mathbb{Z}[x]$.

- 1. Supposons que P(0), P(1) soient impairs. Montrer que P n'a pas de racine dans \mathbb{Z} . (*Indication*: Utiliser la réduction modulo 2.)
- 2. Soit $n \in \mathbb{N}$ tel qu'aucun des entiers $P(0), \dots, P(n-1)$ ne soit divisible par n. Montrer que P n'a pas de racine dans \mathbb{Z} .

Correction ▼ [002277]

Exercice 18

- 1. Soit $P \in \mathbb{Z}[x]$. Soit $\frac{a}{b}$ sa racine rationnelle : $P(\frac{a}{b}) = 0$, pgcd(a,b) = 1. Montrer que $\forall k \in \mathbb{Z} \ (a bk)$ divise P(k).
- 2. Quelles racines rationnelles ont les polynômes $f(x) = x^3 6x^2 + 15x 14$ et $g(x) = 2x^3 + 3x^2 + 6x 4$?

Correction ▼ [002278]

Exercice 19

- 1. Soient $P \in \mathbb{Z}[x]$, $n \in \mathbb{N}$, m = P(n). Montrer que $\forall k \in \mathbb{Z}$ $m \mid P(n + km)$.
- 2. En déduire qu'il n'existe aucun polynôme $P \in \mathbb{Z}[x]$, non constant, tel que, pour tout $n \in \mathbb{Z}$, P(n) soit un nombre premier.

Correction ▼ [002279]

Correction de l'exercice 1 A

- 1. Le polynôme X n'est jamais inversible dans A[X]. Si A n'est pas intègre, comme $A \subset A[X]$, A[X] ne l'est pas non plus et ne peut pas être un corps. Si A est intègre et si X = PQ, alors $\deg(P) + \deg(Q) = 1$ donc P ou Q est une constante. Supposons par exemple que ce soit P. P|X donc P|1 donc P est inversible, et $Q \sim X$.
- 2. Soit P = X + a un polynôme unitaire linéaire de A[X]. Supposons que $P = P_1P_2$. Comme A estintègre, on a $\deg(P_1) + \deg(P_2) = 1$, donc P_1 ou P_2 est une constante. Supposons que ce soit P_1 . Alors $P_1|1$ et $P_1|a$. En particulier, P_1 est inversible, et donc $P_2 \sim P$.
- 3. Les polynômes irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1 (théorème de Gauss). Les irréductibles de $\mathbb{R}[X]$ sont les polynômes de degré 1 et les polynômes de degré 2 sans racine réelles. En effet, soit $P \in \mathbb{R}[X]$. P se factorise sur $\mathbb{C}[X]$ sous la forme $P = a \prod (X \lambda_i)^{v_i}$ (avec $i \neq j \Rightarrow \lambda_i \neq \lambda_j$). Comme cette factorisation est unique, et que $P = \overline{P}$, on en déduit que si λ_i est racine de P avec multiplicité v_i , alors il en va de même pour $\overline{\lambda_i}$. Ainsi, on obtient une factorisation de P dans $\mathbb{R}[X]$: $P = a \prod_{\lambda_i \in \mathbb{R}} (X \lambda_i)^{v_i} \prod (X^2 2\operatorname{Re}(\lambda_i)X + |\lambda_i|^2)^{v_i}$. P est donc irréductible ssi P est de la forme $P = a(X \lambda)$ avec $\lambda \in \mathbb{R}$ ou $P = a(X^2 2\operatorname{Re}(\lambda_i)X + |\lambda_i|^2)$ avec $\lambda \notin \mathbb{R}$.
- 4. Supposons que K[X] ait un nombre fini de polynômes unitaires irréductibles P_1, \ldots, P_k . Soit alors $P = \prod_{i=1}^k P_i + 1$. Comme K est un corps, les irréductibles sont de degré au moins 1, et donc P n'est pas l'un des P_i . Comme P est unitaire, P n'est pas irréductible. En particulier, l'un au moins des P_i divise P. Supposons par exemple que ce soit $P_1 : \exists Q \in K[X], P = P_1Q$. Alors $P_1(Q - \prod_{i=2}^k P_i) = 1$. Donc P_1 est inversible, ce qui est faux.

Correction de l'exercice 2 A

- 1. Supposons (X,n) principal dans $\mathbb{Z}[X]:(X,n)=(P_0)$. Alors $P_0|n$ donc $P_0\in\mathbb{Z}$, et $P_0|X$ donc $P_0=\pm 1$. Ainsi $(P_0)=\mathbb{Z}[X]$. Or (X,n) est l'ensemble des polynômes dont le terme constant est un multiple de n: en effet, si $P\in (X,n)$, $\exists A,B\in\mathbb{Z}[X], P=AX+Bn$ donc le terme constant de P est un multiple de n. Réciproquement, si le terme constant de $P=\sum p_iX^i$ est un multiple de n, $p_0=p_0'n$, alors $P=X(\sum_{i>1}p_iX^i)+p_0'n\in (X,n)$. Ainsi, $1\notin (X,n)$. Donc (X,n) n'est pas principal.
- 2. Si A[X] est principal, soit $a \in A \setminus \{0\}$, et I = (X, a). A[X] étant principal, $\exists P_0 \in A[X], I = (P_0)$. Alors $P_0|a$ donc $P_0 \in A$, et $P_0|X$ donc $P_0|1$ et P_0 est inversible. On en déduit que I = A[X]. En particulier $1 \in I$: $\exists U, V \in A[X], XU + aV = 1$. Le terme constant de XU + aV est multiple de a et vaut 1. a est donc inversible.
 - Si A est un corps, on dispose de la division euclidienne. Soit I un idéal de A[X]. Soit P_0 un élément de $I \setminus \{0\}$ de degré minimal. Soit $P \in I$. $\exists ! (Q,R) \in A[X]^2, P = P_0Q + R$ et $\deg(R) < \deg(P)$. Comme $R = P P_0Q$, on a $R \in I$, et comme $\deg(R) < \deg(P_0)$, on a R = 0. Ainsi $P \in (P_0)$. On a donc $I \subset (P_0) \subset I$.

Correction de l'exercice 3 A

Notons $f(x^n) = P(x-1)$. Alors $f(1) = 0 \cdot P(1) = 0$ et donc (x-1)|f. Notons f = Q(x-1). On a alors $f(x^n) = Q(x^n)(x^n-1)$. (x^n-1) divise bien f.

Correction de l'exercice 4 A

Notons (Q,R) le quotient et le reste de cette division euclidienne : $(x-2)^m + (x-1)^n - 1 = Q(x-2)(x-1) + R$ avec $\deg(R) \le 1$. Notons R = ax + b. En évaluant en 1, on obtient $(-1)^m - 1 = a + b$, et en évaluant en 2, 2a + b = 0. On en déduit b = -2a et $a = 1 - (-1)^m$, soit $R = (1 - (-1)^m)(x-2)$.

Correction de l'exercice 5

1. Soit P un polynôme de degré d = 2 ou 3 de K[X].

Si P a une racine $a \in K$, alors (X - a)|P, et P n'est pas irréductible.

Réciproquement, si P = AB avec $A, B \in K[X]$ et $A, B \notin K[X]^{\times} = K \setminus \{0\}$, alors $\deg(A) \geq 1$, $\deg(B) \geq 1$, et $\deg(A) + \deg(B) = d = 2$ ou 3, donc l'un au moins des deux polynômes A et B est de degré 1. On peut supposer que c'est A. Notons A = aX + b. Alors $(X + a^{-1}b)|P$, et $-a^{-1}b$ est racine de P.

Finalement P a une racine ssi P n'est pas irréductible.

2. Irréductibles de degré 2 de $\mathbb{Z}/2\mathbb{Z}$: Soit $P = aX^2 + bX + c$ un polynôme de degré 2. $a \neq 0$ donc a = 1.

P irréductible $\Leftrightarrow P$ n'a pas de racine

$$\Leftrightarrow \begin{cases} P(0) & \neq 0 \\ P(1) & \neq 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} P(0) & = 1 \\ P(1) & = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} c & = 1 \\ 1+b+1 & = 1 \end{cases}$$

$$\Leftrightarrow P = X^2 + X + 1$$

Ainsi, il y a un seul irréductible de degré 2, c'est $I_2 = X^2 + X + 1$.

Irréductibles de degré 3 de $\mathbb{Z}/2\mathbb{Z}$: Soit $P=aX^3+bX^2+cX+d$ un polynôme de degré 2. $a\neq 0$ donc a=1.

P irréductible $\Leftrightarrow P$ n'a pas de racine

$$\Leftrightarrow \begin{cases} d &= 1\\ 1+b+c+1 &= 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} d &= 1\\ (b,c) &= (1,0) \text{ ou } (b,c) = (0,1) \end{cases}$$

$$\Leftrightarrow P = X^3 + X + 1 \text{ ou } P = X^3 + X^2 + 1$$

Ainsi, il y a deux irréductibles de degré 3 dans $\mathbb{Z}/3\mathbb{Z}[X]$: $I_3 = X^3 + X + 1$ et $I_3' = X^3 + X^2 + 1$.

3. Soit $P = 5X^3 + 8X^2 + 3X + 15 \in \mathbb{Z}[X]$. Soient A et B deux polynômes tels que P = AB. L'application $\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}, n \mapsto \bar{n}$ induit une application $\mathbb{Z}[X] \to \mathbb{Z}/2\mathbb{Z}[X], P = \sum a_i X^i \mapsto \bar{P} = \sum \bar{a_i} X^i$. Cette application est compatible avec les opérations : en particulier $\overline{AB} = \bar{A}\bar{B}$ (pourquoi?). Ainsi on a : $\bar{P} = \bar{A}\bar{B}$. Or $\bar{P} = X^3 + X + 1$ est irréductible, donc (quitte à échanger les rôles de A et B on peut supposer que) $\bar{A} = 1$ et $\bar{B} = X^3 + X + 1$. On en déduit que B est au moins de degré 3, d'où degA = 0. $A \in \mathbb{Z}$ et $A \mid P$, donc $A \mid S$, $A \mid S$, $A \mid S$, at $A \mid S$. On en déduit que $A = \pm 1$. Finalement, $A = \pm 1$ et $B \sim P$. $A \mid S$ est donc irréductible dans $\mathbb{Z}[X]$.

Soit $P = X^5 + 2X^3 + 3X^2 - 6x - 5 \in \mathbb{Z}[X]$. Soient A et B deux polynômes tels que P = AB. On a comme précédemment : $\bar{P} = \bar{A}\bar{B}$ où $\bar{P} = X^5 + X^2 + 1$. \bar{P} n'a pas de racine dans $\mathbb{Z}/2\mathbb{Z}$, donc si \bar{P} est réductible, il doit être le produit d'un irréductible de degré 2 et d'un irréductible de degré 3. Or $\bar{P} \neq I_2I_3$ et $\bar{P} \neq I_2I_3'$ (faire le calcul !), donc \bar{P} est irréductible. Le même raisonnement montre alors que P est irréductible dans $\mathbb{Z}[X]$.

4. Un polynôme de degré 4 est réductible ssi il a une racine ou est le produit de deux irréductibles de degré

5

2. Soit $P = \sum_{i=0}^4 a_i X^i \in \mathbb{Z}/2\mathbb{Z}[X]$, avec $a_4 = 1$.

$$P \text{ irréductible} \Leftrightarrow \begin{cases} P(0) \neq 0 \\ P(1) \neq 0 \\ P \neq I_2^2 \end{cases}$$

$$\Leftrightarrow \begin{cases} a_0 = 1 \\ 1 + a_3 + a_2 + a_1 + 1 = 1 \\ P \neq I_2^2 \end{cases}$$

$$\Leftrightarrow P \in \{X^4 + X^3 + 1, X^4 + X + 1, X^4 + X^3 + X^2 + X + 1\}$$

Un polynôme de degré 5 est irréductible ssi il n'a pas de racine et l'est pas le produit d'un irréductible de degré 2 et d'un irréductible de degré 3. Tous calculs fait, on obtient la liste suivante : $\{X^5 + X^2 + 1, X^5 + X^3 + 1, X^5 + X^4 + X^3 + X^2 + 1, X^5 + X^4 + X^3 + X + 1, X^5 + X^4 + X^2 + X + 1, X^5 + X^3 + X^2 + X + 1, X^5 + X^4 +$

Correction de l'exercice 6 ▲

1. On raisonne exactement comme pour l'exercice 5. On peut réduire un peu les discussions en remarquant que puisqu'on est sur un corps, on peut se contenter de chercher les irréductibles *unitaires* : on obtient les autres en multipliant les irréductibles unitaires par les inversibles, soit ± 1 .

Les irréductibles de degré 2 sont caractérisés par $P(0) \neq 0$, $P(1) \neq 0$ et $P(-1) \neq 0$. On obtient finalement la liste suivante : $\{X^2+1, X^2-X-1, -X^2-1, -X^2+X+1\}$.

Sans commentaire, on obtient la liste suivante pour les irréductibles de degré 3 de $\mathbb{Z}/3\mathbb{Z}[X]$: $\{\pm(X^3+X^2-X+1), \pm(X^3-X^2+X+1), \pm(X^3-X^2+X+1), \pm(X^3-X^2+X-1), \pm(X^3-X^2-X-1), \pm(X^3+X^2-1), \pm(X^3-X-1), \pm(X^3-X-1),$

2.
$$X^2 + X + 1 = (X - 1)^2$$

 $X^3 + X + 2 = (X + 1)(X^2 - X + 2)$
 $X^4 + X^3 + X + 1 = (X + 1)(X^3 + 1) = (X + 1)^4$

Correction de l'exercice 7 ▲

On raisonne comme pour l'exercice 5. Soit $P = X^5 - 6X^3 + 2X^2 - 4X + 5$, A, B deux polynômes tels que P = AB. En considérant la réduction modulo 2, on a $\bar{P} = X^5 + 1$ donc la décomposition en facteurs irréductibles est $\bar{P} = (X+1)(X^4 + X^3 + X^2 + X + 1)$. Comme P est unitaire, A et B le sont aussi, et la réduction modulo 2 préserve donc le degré de A et B. On en déduit que si $\bar{A} = X + 1$, alors A est de degré 1.

La réduction modulo 3 de P devrait donc avoir une racine. Mais $P \mod 3 = X^5 - X^2 - X - 1$ n'a pas de racine dans $\mathbb{Z}/3\mathbb{Z}$. On en déduit que dans la réduction modulo 2, la factorisation $\bar{P} = {}^{\dot{}}\bar{A}\bar{B}$ est triviale ($\bar{A} = 1$ et $\bar{B} = \bar{P}$ ou le contraire), puis que la factorisation P = AB elle même est triviale ($A = \pm 1$ et $B = \mp P$ ou le contraire). Ainsi, P est irréductible dans $\mathbb{Z}[X]$.

Pour $P = 7X^4 + 8X^3 + 11X^2 - 24X - 455$, on procède de la même façon. Si P = AB, comme 7 est premier, l'un des polynômes A ou B a pour coefficient dominant ± 7 et l'autre ∓ 1 . On en déduit que les réductions modulo 2 ou 3 préservent le degré de A et de B. Les décompositions en facteurs irréductibles sont les suivantes : $P \mod 2 = (X^2 + X + 1)^2$ et $P \mod 3 = (X - 1)(X^3 - X - 1)$. Si la factorisation P = AB est non triviale, alors les réductions modulo 2 de A et B sont de degré 2, et donc deg $(A) = \deg(B) = 2$. Mais la décomposition modulo 3 impose que ces degrés soient 1 et 3. La factorisation P = AB est donc nécessairement triviale, et P est donc irréductible.

Correction de l'exercice 8 ▲

Commençons par montrer que ces polynômes sont irréductibles sur \mathbb{Z} .

-Le cas de $f = \prod_{i=1}^{n} (X - a_i) - 1$ Soit $P, Q \in \mathbb{Z}[X]$ tels que f = PQ. On peut supposer sans perte de généralité que P et Q ont des coefficients dominants positifs (i.e. sont unitaires).

On a : $\forall i, f(a_i) = P(a_i)Q(a_i) = -1$ donc

$$P(a_i) = \pm 1$$
 et $Q(a_i) = \mp 1$

Soit $I = \{i, P(a_i) = -1\}$ et $J = \{1, \dots, n\} \setminus I$. On notera |I| et |J| le nombre d'éléments de I et J. Supposons $I \neq \emptyset$ et $J \neq \emptyset$: Alors $\prod_{i \in I} (X - a_i) | (P + 1)$ et $\prod_{i \in J} (X - a_i) | (Q + 1)$. Ainsi $\deg(P + 1) \geq |I|$ et $\deg(Q + 1) \geq |J| = n - |I|$, et comme $\deg(P) + \deg(Q) = n$, on en déduit que $\deg(P) = |I|$ et $\deg(Q) = |J|$, puis que (puisque P et Q sont unitaires):

$$P = \prod_{i \in I} (X - a_i) - 1$$
 et $Q = \prod_{i \in J} (X - a_i) - 1$.

Ainsi $f = \prod_{k \in I \cup J} (X - a_k) - 1 = (\prod_{i \in I} (X - a_i) - 1)(\prod_{j \in J} (X - a_j) - 1) = f - (\prod_{i \in I} (X - a_i) + \prod_{j \in J} (X - a_j) - 2),$ donc $\prod_{i \in I} (X - a_i) + \prod_{j \in J} (X - a_j) - 2 = 0_{\mathbb{Z}[X]}$, ce qui est faux.

Ainsi $I = \emptyset$ ou $J = \emptyset$. On peut supposer sans perte de généralité que $I = \emptyset$. Alors $\forall i \in \{1, ..., n\}, Q(a_i) = -1$. Donc les a_i sont tous racine de Q + 1. Comme $\deg(Q + 1) \le n$ et $Q + 1 \ne 0$, on en déduit que Q = f, et P = 1. f est donc bien irréductible dans $\mathbb{Z}[X]$.

-Le cas de $g = \prod_{i=1}^n (X - a_i)^2 + 1$. Supposons que g = PQ, avec $P, Q \in \mathbb{Z}[X]$. On a $g(a_i) = 1 = P(a_i)Q(a_i)$, donc $P(a_i) = Q(a_i) = \pm 1$.

Comme g n'a pas de racine réelle, il en va de même de P et Q, qui sont donc de signe constant (théorème des valeurs intermédiaires pour les fonctions continues sur \mathbb{R} !). On peut donc supposer sans perte de généralité que P et Q sont positifs.

Alors $P(a_i) = Q(a_i) = 1$. Ainsi, tous les a_i sont racines de P-1 et de Q-1. On a donc $\prod_{i=1}^n (X-a_i)|P-1$ et $\prod_{i=1}^n (X-a_i)|Q-1$.

En particulier, si $P-1 \neq 0$ et $Q-1 \neq 0$, $\deg(P) \geq n$ et $\deg(Q) = 2n - \deg(P) \geq n$. Ainsi $\deg(P) = \deg(Q) = n$. Comme en plus P et Q sont unitaires, on en déduit que

$$P-1 = \prod_{i=1}^{n} (X - a_i)$$
 et $Q-1 = \prod_{i=1}^{n} (X - a_i)$.

On devrait donc avoir $(\prod_{i=1}^n (X-a_i)+1)^2=\prod_{i=1}^n (X-a_i)^2+1$, ce qui est faux $(\prod_{i=1}^n (X-a_i)\neq 0_{\mathbb{Z}[X]})$! Ainsi P-1=0 ou Q-1=0, et on en déduit bien que g est irréductible dans $\mathbb{Z}[X]$.

Irréductibilité dans $\mathbb{Q}[X]$ On a le lemme suivant :

Si $P \in \mathbb{Z}[X]$ est unitaire et irréductible dans $\mathbb{Z}[X]$, alors il l'est aussi dans $\mathbb{Q}[X]$.

L'ingrédient de base de la démonstration est la notion de *contenu* d'un polynôme $P \in \mathbb{Z}[X]$: c'est le pgcd de ses coefficients, souvent noté c(P). Il satisfait la relation suivante :

$$c(PQ) = c(P)c(Q)$$
.

Supposons que P = QR, avec $Q, R \in \mathbb{Q}[X]$, Q et R unitaires. En réduisant tous leurs coefficients de au même dénominateur, on peut mettre Q et R sous la forme :

$$Q = \frac{1}{a}Q_1 \qquad \text{et} \qquad R = \frac{1}{b}R_1$$

avec $a, b \in \mathbb{Z}$, $Q_1, R_1 \in \mathbb{Z}[X]$ et $c(Q_1) = 1$, $c(R_1) = 1$.

Alors $abP = Q_1R_1$, donc $c(abP) = c(Q_1)c(R_1) = 1$. Comme ab|c(abP), on a $ab = \pm 1$, et en fait $P, Q \in \mathbb{Z}[X]$.

Correction de l'exercice 9 \(\text{\(\)}

f est irréductible, donc si f, ne divise pas g, alors f et g sont premiers entre eux. Ainsi, $\exists u, v \in \mathbb{Q}[X], uf + vg = 1$. En évaluant en α , on obtient $u(\alpha) \cdot 0 + v(\alpha) \cdot 0 = 1$ ce qui est impossible!

Correction de l'exercice 10 ▲

Supposons que la fraction soit réductible. Alors, il existe $p,q,d \in \mathbb{Z}$ tels que

$$\begin{cases} 11n + 2m = pd \\ 18n + 5m = qd \end{cases}$$

On en déduit que

$$\begin{cases} 19n &= 5pd - 2qd \\ 19m &= -18pd + 1qd \end{cases}$$

En particulier, d|19n et d|19m. Si $d \neq 19$, on a pgcd $(n,m) \neq 1$. Si d = 19, alors

$$\begin{cases}
n = 5p - 2q \\
m = -18p + 1q
\end{cases}$$
(1)

Réciproquement, si $pgcd(n,m) \neq 1$ ou si n,m sont de la forme donnée par (1), alors la fraction est réductible.

Correction de l'exercice 11 A

Soit $d = \operatorname{pgcd}(m, n)$. Notons n = dn' et m = dm'. Alors $X^n - 1 = (\overline{X^d})^{n'} - 1$. Or $(Y - 1)|Y^{n'} - 1$ donc $(X^d - 1)|(X^n - 1)$. De même, $(X^d - 1)|(X^m - 1)$, et donc $(X^d - 1)|\operatorname{pgcd}(X^n - 1, X^m - 1)$.

Par ailleurs, soit $D = \operatorname{pgcd}(X^n - 1, X^m - 1)$. Les racines de D dans $\mathbb C$ sont des racines à la fois n-ième et m-ième de 1, qui sont touts simples : elles sont donc de la forme $\omega = e^{i2\pi\alpha}$ où $\alpha = \frac{k}{n} = \frac{k'}{m}$. Ainsi km' = k'n'. On a $\operatorname{pgcd}(m',n') = 1$, donc par le théorème de Gauss, on en déduit que k' est un multiple de m', soit $\frac{k'}{m} = \frac{k''}{d}$, et ω est donc une racine d-ième de 1. On en déduit que $D|X^d - 1$, et finalement :

$$pgcd(X^{n}-1,X^{m}-1) = X^{pgcd(m,n)}-1.$$

Correction de l'exercice 12 ▲

Utiliser l'algorithme d'Euclide. (on travaille dans $\mathbb{Z}/2\mathbb{Z}$).

$$x^{5} + x^{4} + 1 = (x^{4} + x^{2} + 1)(x + 1) + x^{3} + x^{2} + x$$
$$x^{4} + x^{2} + 1 = (x^{3} + x^{2} + x)(x + 1) + x^{2} + x + 1$$
$$x^{3} + x^{2} + x = (x^{2} + x + 1)x + 0$$

Donc $\operatorname{pgcd}(x^5 + x^4 + 1, x^4 + x^2 + 1) = x^2 + x + 1$, et

$$x^{2} + x + 1 = (x^{4} + x^{2} + 1) + (x^{3} + x^{2} + x)(x + 1)$$

$$= (x^{4} + x^{2} + 1) + ((x^{5} + x^{4} + 1) + (x^{4} + x^{2} + 1)(x + 1))(x + 1)$$

$$= (x^{4} + x^{2} + 1)(1 + (x + 1)^{2}) + (x^{5} + x^{4} + 1)(x + 1)$$

$$= (x^{4} + x^{2} + 1)(x^{2}) + (x^{5} + x^{4} + 1)(x + 1)$$

De même, $pgcd(x^5 + x^3 + x + 1, x^4 + 1) = x^3 + 1$ et $x^3 + 1 = (x^5 + x^3 + x + 1) + (x^4 + 1)x$.

Correction de l'exercice 13 ▲

Dans $\mathbb{Z}/3\mathbb{Z}$: $pgcd(x^4+1, x^3+x+1) = x^2+x-1$.

Dans $\mathbb{Z}/5\mathbb{Z}$: pgcd $(x^4 + 1, x^3 + x + 1) = 1$.

Correction de l'exercice 14 ▲

Sur $\mathbb{Z}[X]$, pgcd $(x^4 + x^3 - 3x^2 - 4x - 1, x^3 + x^2 - x - 1) = 1$.

Correction de l'exercice 15 ▲

- 1. P est primitif, 2 divise tous les coefficients de P sauf le dominant, et 4 ne divise pas le terme constant : d'après le critère d'Eisenstein, on en déduit que P est irréductible dans $\mathbb{Z}[x]$ (puis dans $\mathbb{Q}[x]$ car il est unitaire...).
- 2. On peut appliquer le même critère, avec 3 cette fois.
- 3. f est primitif, et sa réduction modulo 2 est irréductible. Donc f est irréductible dans $\mathbb{Z}[x]$.
- 4. $f(x+1) = \sum_{k=1}^{p} C_p^k x^{k-1}$. Or $p|\frac{p!}{k!(p-k)!}$ (car p apparaît au numérateur, tandis que tous les facteurs du dénominateur sont < p; comme p est premier, ils sont donc premiers avec p). De plus $C_p^1 = p$, donc p^2 ne divise pas le terme constant de f(x+1). D'après le critère d'Eisenstein, f(x+1) est irréductible, et donc f aussi.

Correction de l'exercice 16 ▲

Soit $P = x^2 - x + 1$. Si P a une factorisation non triviale, P est divisible par un polynôme de degré 1, et comme P est unitaire, ce diviseur peut être choisi unitaire : on en déduit que P a une racine. On calcule $P(a+bi\sqrt{3}) = (a^2 - 3b^2 - a + 1) + (2ab - b)i\sqrt{3}$. Comme $1/2 \notin A = \mathbb{Z}[i\sqrt{3}]$, $2a - 1 \neq 0$, donc si $P(a+bi\sqrt{3}) = 0$, alors b = 0, et P(a) = 0. Mais $x^2 - x + 1$ est primitif et se réduction modulo 2 est irréductible, donc il est irréductible sur $\mathbb{Z}[x]$. En particulier il n'a pas de racine dans \mathbb{Z} . On en déduit que P n'a pas de racine sur A, et est donc irréductible.

Soit $K = \operatorname{frac}(A) = \mathbb{Q}[i\sqrt{3}]$. On a $P(\frac{1+i\sqrt{3}}{2}) = 0$ donc P a une racine dans K, donc P est réductible sur K.

Correction de l'exercice 17 ▲

Si P a une racine α dans \mathbb{Z} , alors $P(\alpha)=0$, et en considérant la réduction modulo n, $\bar{P}(\bar{\alpha})=0$, donc \bar{P} a une racine dans $\mathbb{Z}/n\mathbb{Z}$ pour tout n.

- 1. Si P(0) et P(1) sont impairs, $\bar{P}(\bar{0}) = \bar{1}$ et $\bar{P}(\bar{1}) = \bar{1}$, donc \bar{P} n'a pas de racine sur $\mathbb{Z}/2\mathbb{Z}$. Donc P n'a pas de racine sur \mathbb{Z} .
- 2. Si n ne divise aucun des $P(0), \dots, P(n-1)$, alors $\bar{P}(\bar{0}) \neq 0, \dots, \bar{P}(\overline{n-1}) \neq 0$, donc \bar{P} n'a pas de racine sur $\mathbb{Z}/n\mathbb{Z}$. Donc P n'a pas de racine sur \mathbb{Z} .

Correction de l'exercice 18

- 1. $(X \frac{a}{b})|P$ donc $\exists Q \in \mathbb{Q}[x], P = (x \frac{a}{b})Q = (bx a)\frac{Q}{b}$. En réduisant tous les coefficients de Q au même dénominateur, on peut mettre Q sous la forme : $Q = \frac{1}{m}Q_1$, avec $Q_1 \in \mathbb{Z}[X]$ primitif. Alors $bdP = (bx a)Q_1$. En considérant les contenus de ces polynômes, on a $c(bx a) = \operatorname{pgcd}(a, b) = 1$, $c(Q_1) = 1$ donc c(bdP) = bd c(P) = 1. Ainsi $bd = \pm 1$, et (bx a)|P.
- 2. On considère par exemple les cas k = 0, ..., 3. (Pour k = 2, on constate que P(2) = 0: on peut diviser P par (X 2) et déterminer les trois racines complexes de P...). On obtient que

(*)
$$a|14$$
 $(k=0)$,
(**) $(a-b)|4$ $(k=1)$,
(***) $(a-3b)|2^35$ $(k=3)$.

Au passage On peut remarquer que si $\alpha \le 0$, $P(\alpha) < 0$, donc on peut supposer a > 0 et b > 0.

- Si a = 1: (**) ⇒ $b \in \{2,3,5\}$. Aucune de ces possibilités n'est compatible avec (***).
- Si a = 2: (**) ⇒ $b \in \{1,3,4,6\}$. Comme pgcd(a,b) = 1, 4et 6 sont exclus. 3 n'est pas compatible avec (***). Pour 2, on vérifie que P(2) = 0.
- Si a = 7: (**) ⇒ $b \in \{3,5,9,11\}$. Mais aucune de ces solution ne convient.
- Si a = 14: (**) ⇒ $b \in \{10, 12, 16, 18\}$ mais pgcd(a, b) = 1 exclu toutes ces possibilités.

Finalement, 2 est la seule racine rationnelle de P.

Correction de l'exercice 19 ▲

- 1. Notons $P = \sum_{i=0}^{d} a_i X^i$. Dans le calcul de P(n+km), en développant tous les termes $(n+km)^i$ à l'aide du binôme, on obtient que $P(n+km) = \sum_{0 \le j \le i \le d} a_i C_i^j n^j (km)^{i-j} = P(n) + mN$ où $N = \sum_{0 \le j < i \le d} a_i C_i^j n^j (km)^{i-j} 1 \in \mathbb{Z}$. Donc $m \mid P(n+km)$.
- 2. Supposons qu'un tel polynôme existe : soit m = P(0). $\forall k \in \mathbb{Z}, m | P(km)$. Comme P(km) est premier, on en déduit que $P(km) = \pm m$. Ceci est en contradiction avec $\lim_{k \to +\infty} P(km) = \pm \infty$.