Point estimation

1 Poisson process with unknown background

We come back to the example seen in class: $\gamma\gamma \to \gamma\gamma$ from ATLAS (Nature Phys. 13 (2017) no. 9, 852-858).

- D = 13 observed events
- $B = 2.6 \pm 0.7$ background events (Poisson distributed, estimated from a control sample)

The unknowns are the expected background count b and the expected signal count s. The expected event count is d = b + s.

- 1. Write the likelihood $\mathcal{L}(D|s,b)$.
- 2. What is the MLE \hat{s}_{MLE} ? Draw the profile likelihood $-2 \ln \mathcal{L}_{\text{prof}}(D|s)$ (e.g. using a TGraph, or with any other tool).
- 3. Draw the (marginalised) posterior for s, for each of the following priors for s (and a flat prior for b). You will perform the marginalisation using the MCMC method, also drawing the Markov chain in one of the cases.
 - (a) using a flat prior in $[0, +\infty[$
 - (b) using Jeffrey's prior for a Poisson process without background
 - (c) using Jeffrey's prior for a Poisson process with background?
- 4. Estimate credible intervals at 68% confidence level using the three cases above.
- 5. **Profile likelihood scan.** On the same graph, draw:
 - (a) The 2D likelihood scan in s and b, as a coloured histogram;
 - (b) The contour corresponding to $2\Delta \ln \mathcal{L} = 1$;
 - (c) The profile likelihood "path" $\hat{\hat{b}}(s)$.
- 6. Estimate the approximate 68% confidence level interval using the profile likelihood scan. Compare to the Bayesian credible intervals.

2 Straight line tracking

We consider a tracking detector without magnetic field (particle trajectories are straight lines y = a + bx). The detector is made of 2 tracking stations, each with 3 layers, situated at $x_{11} = 10$, $x_{12} = 11$, $x_{13} = 12$; $x_{21} = 20$, $x_{22} = 21$, $x_{23} = 22$ (distances in mm). We want to measure a, the impact parameter of the particle with respect to the origin, while we are not interested in b (it is a "nuisance parameter"). Each layer has a resolution of 1 mm: in other words, each measurement y_i is a random variable with a Gaussian distribution of mean $a + bx_i$ and variance 1.

In the following we assume the true values of a and b to be $a_0 = 3 \text{ mm}$ and $b_0 = 0.1$. The measured values are $y_{11} = 4.0$, $y_{12} = 3.8$, $y_{13} = 3.6$, $y_{21} = 5.2$, $y_{22} = 4.9$, $y_{23} = 4.8 \text{ mm}$.

- 1. Give the expression for the ML estimates \hat{a}_{MLE} and \hat{b}_{MLE} . What is the corresponding covariance matrix? Compare the numerical value of $V(\hat{a})$ when only the 3 layers of the first station are used, or those of the second station, or all 2 stations.
- 2. Draw $-2 \ln \mathcal{L}(a, \hat{b})$ as a function of a for the 3 first layers, the 3 last layers, and the 6 layers. Draw them together with the profile likelihood $-2 \ln \mathcal{L}_{\text{prof}}(a) = -2 \ln \mathcal{L}(a, \hat{b}(a))$. You can use TGraph for instance.
- 3. An independent measurement adds the information that $\langle b \rangle = 0.1$, with a precision $\sigma_b = 0.05$. How to account for this information in the likelihood? Repeat the previous question (likelihood drawing) with the new likelihood.
- 4. **Data combination.** Use the BLUE method to combine the estimates $\hat{a}_{\text{MLE},1}$ and $\hat{a}_{\text{MLE},2}$. You will combine the measurement for a, considering the uncertainty on a coming from b as correlated between the two stations.

Technical tools

See https://root.cern.ch/doc/master/

TGraph

```
import ROOT
from array import array
x = [1,2]
y = [3,4]
```

```
g = ROOT.TGraph(len(x), array('d',x), array('d',y))
 c1 = ROOT.TCanvas()
 g.Draw("AL")
 c1.Draw()
• TH1F
 import ROOT
 h = ROOT.TH1F("h","1D histo",10,0,10)
 for i in range(0,100):
    h.Fill(ROOT.gRandom.Uniform(10))
 c1 = ROOT.TCanvas()
 h.Draw()
 c1.Draw()
TH2F
 import ROOT
 h2 = ROOT.TH2F("h2","2D histo",10,0,10,10,0,10)
 for i in range(0,100):
    h2.Fill(ROOT.gRandom.Uniform(10),ROOT.gRandom.Uniform(10))
 c1 = ROOT.TCanvas()
 h2.Draw("COLZ")
 c1.Draw()
• numpy arrays
 import numpy
 a = [0,1,2,3]
 \# sum of the elements of a
 numpy.sum(a)
 \# sample mean
 numpy.mean(a)
 # sample variance
 numpy.var(a)
• Numerical minimisation: scipy.optimize.fmin
 from scipy import optimize
 def f(x,*args):
    a = x
```

b = args[0]

```
return (a-b)**2

x0 = 1
b0 = 1.234
xmin = optimize.fmin(f,x0,args=(b0,),disp=False)
print(xmin)
```