List of univariate probability distributions

Maximilian L. Greißl

September 24, 2021

Contents

1		Discrete distributions 2			
	1.1	Discrete uniform (n) distribution			
	1.2	Bernoulli (p) distribution			
	1.3	Hypergeometric (M,N,n) distribution			
	1.4	Binomial (n,p) distribution			
	1.5	Geometric (p) distribution			
	1.6	$Poisson(\lambda)$ distribution			
2 Continous distributions					
	2.1	Continous uniform (a,b) distribution			
		$Normal(\mu, \sigma^2)$ distribution			
	2.3	$Gamma(\lambda,p)$ distribution			
	2.4	$\operatorname{Beta}(p,q)$ distribution			
	2.5	Chi-square (n) distribution			
	2.6	Exponential(α) distribution			
	2.7	Fisher (m,n) distribution			
	2.8	Student's (n) distribution			

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 4.0 International" license.

1 Discrete distributions

This list gives an overview of the most popular univariate probability distributions and their most important properties.

In the following, let K and X denote appropriately distributed discrete and continous random variables, respectively.

1.1 Discrete uniform(n) distribution

Mass function	Distribution function
$f\left(k\right) = \frac{1}{n}$	$P\left(\left\{K \le k\right\}\right) = \frac{\left \left\{i : k_i \le k\right\}\right }{n}$
Mean	Variance
$E\left[K\right] = \frac{1}{n} \sum_{i=0}^{n} k_i$	$\operatorname{Var}(K) = \frac{1}{n} \left(\sum_{i=0}^{n} k_i^2 - \frac{1}{n} \left(\sum_{i=0}^{n} k_i \right)^2 \right)$

1.2 Bernoulli(p) distribution

Mass function		Distribution function	
$f(k) = \begin{cases} p & \text{for } k \\ 1 - p & \text{for } k \end{cases}$ $\operatorname{supp} f(k) = \{0, 1\}$		$P\left(\{K \le k\right.$	$ \begin{cases} 0 & \text{for } k < 0 \\ 1 - p & \text{for } 0 \le k < 1 \\ 1 & \text{for } k \ge 1 \end{cases} $
Mean	Vari	ance	Fisher Information
$E\left[K\right]=p$	$\operatorname{Var}\left(K ight) =$	$=p\left(1-p ight)$	$\mathcal{I}\left(\theta\right) = \frac{1}{\theta\left(1 - \theta\right)}$
Moment-generating fun	action	Characteristic function	
$M_X(t) = (1 - p + p \exp(-t))$	p(t)	$\varphi_X(t) = (1 - p + p \exp(it))$	

1.3 Hypergeometric (M,N,n) distribution

1.4 Binomial(n,p) distribution

Mass function

$$f(k) = \binom{n}{k} p^k \left(1 - p\right)^{n-k}$$

 $supp f(k) = \{0, .., n\}$

Distribution function

$$P\left(\left\{K \le k\right\}\right) = \sum_{i=0}^{\lfloor k \rfloor} \binom{n}{i} p^{i} \left(1 - p\right)^{n-i}$$

Mean

E[K] = np

Variance

Var(K) = np(1-p)

Fisher Information

 $\mathcal{I}\left(\theta\right) = \frac{n}{\theta\left(1-\theta\right)} \text{ for fixed } n$

Moment-generating function

 $M_X(t) = (1 - p + p \exp(t))^n$

Characteristic function

$$\varphi_X(t) = (1 - p + p \exp(it))^n$$

Maximum Likelihood Estimator

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} k_i$$

 $\bullet \ Bin\left(m,p\right) +Bin\left(n,p\right) =Bin\left(m+n,p\right) \ ^{1}$

Where e.g. Bin(n,p) represents a random variable with Bin(n,p)-distribution, not the distribution itself.

1.5 Geometric (p) distribution

Mass function

$$f(k) = p(1-p)^{k-1}$$

Distribution function

$$P\left(\left\{K \le k\right\}\right) = 1 - (1 - p)^{\lfloor k \rfloor}$$

 $\operatorname{supp} f\left(k\right) = \mathbb{N}$

Mean

$$E\left[K\right]=\frac{1}{p}$$

Variance

$$\operatorname{Var}(K) = \frac{1}{p^2} - \frac{1}{p}$$

Fisher Information

$$\mathcal{I}\left(\theta\right) = \frac{1}{\theta^2} + \frac{1}{\left(1 - \theta\right)^2 \theta}$$

Moment-generating function

$$M_X(t) = \frac{p \exp(t)}{1 - (1 - p) \exp(t)}$$

Characteristic function

$$\varphi_X(t) = \frac{p \exp(it)}{1 - (1 - p) \exp(it)}$$

Maximum Likelihood Estimator

$$\hat{p} = \frac{n}{\sum_{i=1}^{n} k_i}$$

• $P(K \ge k + t \mid K \ge k) = P(K \ge t)$ (Memorylessness)

1.6 Poisson(λ) distribution

Mass function

$$f(k) = \frac{\lambda^k}{k!} \exp(-\lambda)$$

 $P\left(\left\{K \leq k\right\}\right) = \sum_{i=0}^{\lfloor k \rfloor} \frac{\lambda^i}{i!} \exp\left(-\lambda\right)$

Distribution function

 $\operatorname{supp} f(k) = \mathbb{N}_0$

Poisson(A)-distribution CDF

1.00

0.75

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0

Mean

$$E[K] = \lambda$$

Variance

$$Var(K) = \lambda$$

Fisher Information

$$\mathcal{I}\left(\theta\right) = \frac{1}{\theta}$$

Moment-generating function

$$M_X(t) = \exp(\lambda \exp(t) - 1)$$

Characteristic function

$$\varphi_X(t) = \exp(\lambda \exp(it) - 1)$$

Maximum Likelihood Estimator

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} k_i$$

- $P(\alpha) + P(\beta) = P(\alpha + \beta)$
- Bin(n,p) = P(np) as $n \to \infty, p \to 0$

$\mathbf{2}$ Continous distributions

Continous uniform(a,b) distribution 2.1

Density

$$f\left(x\right) = \begin{cases} \frac{1}{b-a} & \text{for } k \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$

Distribution function

$$F(x) = \begin{cases} 0 & \text{for } x \le a \\ \frac{x-a}{b-a} & \text{for } a < x \le b \\ 1 & \text{for } x > b \end{cases}$$

 $\operatorname{supp} f\left(x\right) = \left[a, b\right]$

Mean

$$E\left[X\right] = \frac{1}{2}\left(a+b\right)$$

Variance

$$\operatorname{Var}\left(X\right) = \frac{1}{12} \left(b - a\right)^{2}$$

Moment-generating function

$$M_X(t) = \frac{\exp(tb) - 1}{tb}$$
 for $a = 0$

Characteristic function

$$\varphi_X(t) = \frac{\exp(itb) - 1}{itb}$$
 for $a = 0$

Maximum Likelihood Estimator

$$\hat{b} = max\{x_1, ..., x_n\} \text{ for } a = 0$$

Normal(μ, σ^2) distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{(t-\mu)^{2}}{2\sigma^{2}}\right) dt$$

Distribution function

$\operatorname{supp} f\left(x\right) = \mathbb{R}$

Mean

$$E\left[X\right] = \mu$$

Variance

$$\operatorname{Var}(X) = \sigma^2$$

Fisher Information

$$\mathcal{I}\left(\mu,\sigma^{2}\right) = \begin{pmatrix} \frac{1}{\sigma^{2}} & 0\\ 0 & \frac{1}{2\sigma^{4}} \end{pmatrix}$$

Moment-generating function

$$M_X(t) = \exp\left(t\mu + \frac{1}{2}\sigma_2 t^2\right)$$

Characteristic function

$$\varphi_X(t) = \exp\left(it\mu + \frac{1}{2}\sigma_2 t^2\right)$$

Order	Raw moment
2	$\mu^2 + \sigma_2$
3	$\mu_3 + 3\mu\sigma_2$
4	$\mu_4 + 6\mu_2\sigma_2 + 3\mu_4$
5	$\mu_5 + 10\mu_3\sigma_2 + 15\mu\sigma_4$

Maximum Likelihood Estimator

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x_n})^2$

Confidence intervals with confidence level $(1 - \alpha)$

$$\mu \in \left[\hat{\mu} - \tau_{n-1} \left(1 - \frac{\alpha}{2}\right) \sqrt{\frac{\hat{\sigma}^2}{n}}, \hat{\mu} + \tau_{n-1} \left(1 - \frac{\alpha}{2}\right) \sqrt{\frac{\hat{\sigma}^2}{n}}\right] \quad \sigma^2 \in \left[\frac{(n-1)\hat{\sigma}^2}{\chi_{n-1}^2 \left(1 - \frac{\alpha}{2}\right)}, \frac{(n-1)\hat{\sigma}^2}{\chi_{n-1}^2 \left(\frac{\alpha}{2}\right)}\right]$$

•
$$N(\mu_1, \sigma_1^2) + N(\mu_2, \sigma_2^2) = N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

2.3 Gamma(λ,p) distribution

The Gamma-function $\Gamma:(0,\infty)\to\mathbb{R}$ is defined by

$$\Gamma\left(x\right) = \int_{0}^{\infty} t^{x-1} \exp\left(-t\right) dt.$$

It has the following useful properties

- $\Gamma(x+1) = x\Gamma(x) \forall x > 0$,
- $\Gamma(n+1) = n! \forall n \in \mathbb{N},$
- $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

$$f(x) = \frac{\lambda^{p}}{\Gamma(p)} x^{p-1} \exp(-\lambda x)$$

$\operatorname{supp} f(x) = \mathbb{R}_0^+$

Distribution function

$$F\left(x\right) = \begin{cases} 0 & \text{for } x \leq 0\\ \frac{\lambda^{p}}{\Gamma\left(p\right)} \int_{0}^{x} t^{p-1} \exp\left(-\lambda t\right) dt & \text{for } x > 0 \end{cases}$$

Mean

$$E\left[X\right] = \frac{p}{\lambda}$$

Variance

$$\operatorname{Var}(X) = \frac{p}{\lambda^2}$$

Fisher Information

$$\mathcal{I}(\lambda, p) = \begin{pmatrix} \frac{d^2}{dp^2} \log \left(\Gamma\left(p\right)\right) & -\frac{1}{\lambda} \\ -\frac{1}{\lambda} & \frac{p}{\lambda^2} \end{pmatrix}$$

Moment-generating function

$$M_X(t) = \left(1 - \frac{t}{\lambda}\right)^{-p}$$

Characteristic function

$$\varphi_X(t) = \left(1 - \frac{it}{\lambda}\right)^{-p}$$

Maximum Likelihood Estimator

$$\hat{\lambda} = \frac{p}{\sum_{i=1}^{n} x_i}$$

- $\Gamma(\lambda, p) + \Gamma(\lambda, q) = \Gamma(\lambda, p + q)$
- $\Gamma(\lambda, 1) = Exp(\lambda)$

2.4 Beta(p,q) distribution

The Beta-function $B:(0,\infty)\times(0,\infty)\to\mathbb{R}^2$ is defined by

$$B\left(q,p\right) = \frac{\Gamma\left(q\right)\Gamma\left(p\right)}{\Gamma\left(q+p\right)}.$$

•
$$B(p,q) = \frac{\Gamma(\lambda,p)}{\Gamma(\lambda,p) + \Gamma(\lambda,q)}$$

²The function has no closed-form expression.

2.5Chi-square(n) distribution

Density

$$f\left(x\right) = \frac{1}{2^{\frac{n}{2}}\Gamma\left(\frac{n}{2}\right)}x^{\frac{n}{2}-1}\exp\left(-\frac{x}{2}\right)$$

Distribution function

$$F(x) = \begin{cases} 0 & \text{for } x \le 0\\ 1 - \frac{\gamma(\frac{n}{2}, \frac{x}{2})}{\Gamma(\frac{n}{2})} & \text{for } x > 0 \end{cases}$$

 $\operatorname{supp} f\left(x\right) = \mathbb{R}_0^+$

Mean

$$E[X] = n$$

Variance

$$Var(X) = 2n$$

Moment-generating function

$$M_X(t) = \left(1 - 2t\right)^{-\frac{n}{2}}$$

Characteristic function

$$\varphi_X(t) = (1 - 2it)^{-\frac{n}{2}}$$

•
$$\chi^{2}(k) + \chi^{2}(l) = \chi^{2}(k+l)$$

•
$$\chi^2(n) = N(n, 2n)$$
 as $n \to \infty$

•
$$\chi^2(n) = \Gamma\left(\frac{1}{2}, \frac{n}{2}\right)$$

Exponential(α) distribution

Density

$$f(x) = \begin{cases} \alpha \exp(-\alpha x) & \text{for } x \ge 0\\ 0 & \text{for } x < 0 \end{cases}$$

Distribution function

$$F\left(x\right) = \begin{cases} 1 - \exp\left(-\alpha x\right) & \text{ for } x \ge 0 \\ 0 & \text{ for } x < 0 \end{cases}$$

 $\operatorname{supp} f\left(x\right) = \mathbb{R}_0^+$

Mean

$$E\left[X\right]=\frac{1}{\alpha}$$

Variance

$$\mathrm{Var}\left(X\right) = \frac{1}{\alpha^2}$$

Fisher Information

$$\mathcal{I}\left(\theta\right) = \frac{1}{\theta^2}$$

Moment-generating function

$$M_X\left(t\right) = \frac{\alpha}{\alpha - t}$$

Characteristic function

$$\varphi_X\left(t\right) = \frac{\alpha}{\alpha - it}$$

Maximum Likelihood Estimator

$$\hat{\alpha} = \frac{n}{\sum_{i=1}^{n} x_i}$$

• $P(X \ge x + t \mid X \ge x) = P(X \ge t)$ (Memorylessness)

2.7 Fisher(m,n) distribution

2.8 Student's(n) distribution

•
$$\tau(n) = N(0,1)$$
 as $n \to \infty$