Heruntergeladen
durch s
dcefv
wewv
(xef49338@eoopy
.com)

Name:	 MatrNr.:	
	 IVIAUINI	

Klausur: Grundlagen der Elektronik SS 14

Kurzfragen ohne Unterlagen (Bearbeitungszeit: 30 min)

- 1) Die Steilheit eines MOSFETs kann erhöht werden, wenn man ...
- 2) Um welche digitale Grundschaltung handelt es sich bei dem Bild rechts unten? Um welche Transistoren handelt es sich bei M₁ und M₂ (Funktionsprinzip, Details)? Stellen Sie die Wahrheitstabelle zur Schaltung auf:
- Welche der Aussagen zur Kapazität C einer pn-Diode mit abruptem Übergang, homogenen Dotierungen und Vorspannung U₀ zwischen p- und n-Bereich sind zutreffend?
- 4) Tragen Sie in die Strom-Spannungskennlinie eines pn-Übergangs die üblichen Arbeitspunkte in Form eines Kreuzes mit entsprechendem Buchstaben für folgende optoelektronischen Bauelemente ein:
- 5) Gegeben ist eine ideale Metall-Isolator-Halbleiter-Struktur (Bild a) mit gleichen Austrittsarbeiten von Halbleiter und Metall sowie in den Bildern c bis e die zugehörigen Bändermodelle für drei Arbeitspunkte. Um welchen Halbleitertyp handelt es sich?
 - Zeichnen Sie für niedrige Frequenzen den $C(U_y)$ -Verlauf in das Diagramm (Bild b). Markieren Sie die Arbeitspunkte der drei angegebenen Bändermodelle mit dem zugehörigen Buchstaben (c bis e) in der $C/C_i(U_y)$ -Kennlinie.
- 6) Gegeben ist das Bändermodell W(x) von p-dotiertem Si. Skizzieren Sie die Zustandsdichten der Elektronen im Leitungsband und der Löcher im Valenzband D(W) in parabolischer Näherung, sowie die Fermi-Verteilung f(W) und die Elektronen- und Löcherkonzentrationen im Leitungs- bzw. Valenzband n(W), p(W) in den vorbereiteten Koordinatensystemen.
- 7) Welche der Aussagen zu einem Halbleiter im thermodynamischen Gleichgewicht sind richtig?
- 8) Welche der Aussagen zu einem idealen pn-Übergang mit angelegter Spannung U sind zutreffend?
- Der schematische Querschnitt rechts zeigt zwei Transistoren einer CMOS-Schaltung, Ergänzen Sie jeweils den Kanaltyp und beschriften Sie in dem unteren Feld die markierte Schicht und das verwendete Material.
 - CMOS ist die Abkürzung für:
- 10) Skizzieren Sie in den vorbereiteten Diagrammen die örtlichen Verläufe der Raumladungsdichte ρ(x), und des elektrischen Feldes E(x) sowie das Bändermodell W(x) in der angedeuteten, idealen Metall-Oxid-p-Halbleiterstruktur für den Fall der Anreicherung. Beschriften Sie W_F, W_L, W_V sowie die angelegte Spannung U. Welches Vorzeichen muss dann die Spannung U zwischen Metall und Halbleiter aufweisen?

Name:....

Klausur: Grundlagen der Elektronik SS 14

Aufgaben ohne Unterlagen (Bearbeitungszeit: 2 Std.)

1) Die spezifische Leitfähigkeit $\sigma(T)$ eines reinen n-Halbleiters ($N_{\Lambda}=0$) soll in den zwei Temperaturbereichen (1) mit $T < T_1$ und (2) mit $T \ge T_1$ analysiert werden. Die effektiven Zustandsdichten $N_{\rm L}$ und $N_{\rm V}$ im Leitungs- und Valenzband sowie die Beweglichkeiten $\mu_{\rm n}$ und $\mu_{\rm p}$ der Elektronen und Löcher sollen bei $T=T_0=300$ K jeweils gleich groß sein und folgende Temperaturabhängigkeiten aufweisen:

$$N_{\rm L}(T)=N_{\rm V}(T)=N_0\left(\frac{T}{T_0}\right)^{3/2}$$
; für beide Bereiche (1) und (2)
$$\mu_{\rm p}(T)=\mu_{\rm n}(T)=\mu_{\rm 0}\;;\;\;im\;Bereich\;(1)$$

$$\mu_{\rm p}(T)=\mu_{\rm n}(T)=\mu_{\rm 0}\left(\frac{T_0}{T}\right)^{3/2}\;;\;\;im\;Bereich\;(2).$$

Es liegt vollständige Ionisation der Dotierstoffe ($N_D^+ = N_D = 10^{14}$ cm⁻³) vor, und der Halbleiter ist im thermodynamischen Gleichgewicht ($np = n_i^2$). Nutzen Sie:

$$n_i = \sqrt{N_L(T)N_V(T)} \exp\left(-\frac{W_G}{2kT}\right)$$
; $\sigma(T) = q[n(T)\mu_n(T) + p(T)\mu_p(T)]$

Ermitteln Sie ausgehend von Ladungsneutralität $(N_D^+ + p = N_A^- + n)$ unter Berücksichtigung der genannten Bedingungen eine quadratische Gleichung für n, die als weitere Parameter nur noch N_D und n_i enthält. Lösen Sie diese Gleichung, so dass sich für die Bereiche (1) und (2) näherungsweise ergibt:

$$p = N_D$$
; mit $2n_i/N_D \ll 1$; im Bereich (1)
 $p = n_i$; mit $2n_i/N_D \gg 1$; im Bereich (2)

- b) Leiten Sie nun die Temperaturabhängigkeiten n(T) in den Bereichen (1) und (2) explizit formelmäßig ab. Wie groß ist jeweils im Vergleich p(T)?
- c) Ermitteln Sie anschließend die Temperaturabhängigkeiten der spezifischen Leitfähigkeit σ (T) in den Bereichen (1) und (2). Die abgeleiteten Formeln sollen jeweils alle Temperaturabhängigkeiten explizit enthalten.
- d) Ordnen Sie die in der Tabelle gegebenen Werte für σ in Abhängigkeit von T den Temperaturbereichen (1) und (2) zu. Ergänzen Sie in der Tabelle auch die Werte von T₀/T.

1

3

Bahngebieten sind zu vernach-Spannungsabfälle über den 🦰 mungszonen (schraffiert) und ph Ladungsträgern in den Verar-Generation/Rekombination von J. stimmt werden. Thermische in Abb. 2 bei T = 300 K soll bemit Kollektor-Basis-Kurzschluss ristik Jo(Uob) des npn-Transistors Die Strom-Spannungs-Charakte-

 $kT = 26 \text{ meV}, q = 1,602 \cdot 10^{-19} \text{ As und } \epsilon = 10^{-12} \text{ As/Vcm sowie:}$ lässigen. Die Kontakte sind ideal ohmsch. Folgende Daten sind bekannt: $n_i = 10^9$ cm⁻³,

$k_{\rm nb} = 1000 {\rm cm}^2/{\rm Vs}$	/tpe = 150 cm²/Vs
$T^{up} = 100 \text{ hm}$	$T_{pe} = 1 \text{ tim}$
uri → = ⁰⁹ p	uri 005 = 0°p
$N^{VP} = 10_{10} \text{ cm}_{-2}$	$N_{De} = 10^{14} \text{ cm}^{-3}$
Basis	Kollektor
	$T^{up} = 100 \text{ hm}$ $Q^{p0} = 4 \text{ hm}$ $N^{vp} = 10_{10} \text{ cm}_{-3}$

w.,), Akzeptoren-Donatorenkonzentration MA/Np im p-/n-Gebiet) gilt allgemein: Am pn-Ubergang (mit dem Spannungspfeil von p nach n, Verarmungszone von -w, bis

$$w_{\mathrm{d}} N = \frac{1}{4} w_{\mathrm{d}} N : w_{\mathrm{d}} w_{\mathrm{d}} = \frac{1}{4} w_{\mathrm{d}} = \frac{$$

- neutralen Basis $d_b = x_2 \cdot x_2$ (Formeln) sowie zahlenmäßig für $U_{cb} = -0, 7 \text{ V}$. a) Berechnen Sie die Diffusionsspannungen $U_{\rm Deb}$ und $U_{\rm Deb}$ sowie die Ausdehnung der
- tration n_{bo}. Verlauf von nb in der neutralen Basis. Markieren Sie die Gleichgewichtskonzenneutralen Basis x_2 und x_3 für $U_{cb}=-0,7$ V (Formeln). Skizzieren Sie hierfür den Ermitteln Sie die Minoritätsladungsträgerkonzentration n_b an den Rändern der
- c) Stellen Sie eine Differentialgleichung (DGL) für den stationären Zustand von $n_b(x)$

Ì	Ŷ							
		l						Bereich
0,4	0,1	2,0	⊅ 0'0	20,0	20,0	20,0	20,0	(I/Ωcm)
599	225	450	320	320	310	300	790	T(K)

Daten sind gegeben: $q = 1.6 \cdot 10^{-19}$ C; $k = 8.62 \cdot 10^{-5}$ eV/K. standsdichte M₀ und die Ubergangstemperatur T₁ Tormel- und zahlenmäßig. Folgende aus der Auftragung den Bandabstand W_{G} , die Beweglichkeit μ_0 , die effektive Zubeiden charakteristischen Temperaturabhängigkeiten im Diagramm. Bestimmen Sie Achsenbeschriftung (Skalierung und Einheit). Markieren und bezeichnen Sie die Tragen Sie die Werte für σ (7) nun in das Diagramm unten ein. Ergänzen Sie die

$$\frac{\mathrm{d}n_{\mathrm{b}}}{\mathrm{d}t} = \frac{1}{\mathrm{q}} \frac{\mathrm{d}J_{\mathrm{n}}}{\mathrm{d}x} - \frac{n_{\mathrm{b}} - n_{\mathrm{b}0}}{\tau_{\mathrm{n}}} \text{ mit } L_{\mathrm{n}} = \sqrt{D_{\mathrm{n}}\tau_{\mathrm{n}}}$$

d) Lösen Sie die DGL mit den Randbedingungen aus b) in Abhängigkeit von $U_{\rm eb}$ und dem Ansatz

$$n_{\rm b} = A \cdot \sinh \left(\frac{x_3 - x}{L_{\rm nb}} \right) + B \cdot \sinh \left(\frac{x - x_2}{L_{\rm nb}} \right) + n_{\rm b0}$$
.

- e) Berechnen Sie die Minoritätsladungsträger-Stromdichte an den Rändern der neutralen Basis $J_n(x_2)$ und $J_n(x_3)$ (Formeln und Werte) und den Basistransportfaktor $\beta_T = J_n(x_3)/J_n(x_2)$ (Formel und Wert)? Diskutieren Sie das Ergebnis.
- Analysieren Sie die Schaltung in <u>Abb. 3a</u>. Der Transistor ist durch das Kennlinienfeld in <u>Abb. 3 b</u> charakterisiert. Folgende Betriebsparameter sind gegeben: U_B = 18 V, U_{ds} = 11 V, U_{Bs} = -1,5 V, U_S = 4 V, I_E = -25 μA, R_G = 80 kΩ, R_L = 2 kΩ.

- a) Welcher Transistortyp liegt vor? Zeichnen Sie das Gleichstromersatzschaltbild. Tragen Sie die Arbeitspunkte (AP) und die Arbeitsgerade (AG) in das Kennlinienfeld (Abb. 3b) ein. Lesen Sie $I_{\rm d}$ ab, und ermitteln Sie $U_{\rm g}$ sowie die Widerstände R_1 , $R_{\rm S}$ und $R_{\rm D}$.
- b) Führen Sie eine Wechselstromanalyse durch. Welcher Schaltungstyp liegt vor? Zeichnen Sie hierzu die Ersatzschaltung unter Verwendung des Kleinsignal-Ersatzschaltbildes für den Transistor (Abb. 3c). Die Kondensatoren stellen hierbei Kurzschlüsse dar.

c) Ermitteln Sie aus dem Kennlinienfeld (Abb. 3b) im AP die Ersatzschaltbild-Parameter $g_m = |\Delta I_d/\Delta U_{gs}|_{AP}$ und $r_d = |\Delta U_{ds}/\Delta I_d|_{AP}$. Bestimmen Sie aus b) mit Hilfe der in a) ermittelten Werte den Eingangswiderstand $R_e = u_e/i_e$, die Leerlaufspannungsverstärkung $v_{uL} = u_s/u_e$ ($i_s = 0$), die Spannungsverstärkung $v_u = u_s/u_G$ ($i_s \neq 0$), die Stromverstärkung $v_i = i_s/i_e$ und den Ausgangswiderstand $R_a = u_s/i_a$ ($u_G = 0$) der Schaltung formel- und zahlenmäßig.

Heruntergeladen durch sdcefv wewv (xef49338@eoopy.com)

1 & 56660 = (3) mg = (3) mg = 15' 1 (32) = + Das du / + = + Das all - + Das da / + Das da / + Les it (1) 1 - (1) 1 D=8 = con = con + (160) June 8 = (8) A) = - 1/4 - 1/4 - 1/4 C= -and - and and b alt b = and = 0 (3 =970 = 4 (1/2) -/ An "u = 1/2) 9U : "9U < (12) -) cha "u = (5) 9U (9) 3 = 30 1 35 | 1 (30 1 - 200 1)35 | 30 = 50 bm $\frac{(a + b)^{2}}{(a + b)^{2}} = \frac{ab}{ab} = \frac{ab}{ab}$ 19 17/2 = (3/N) 12/4 = (3/N) 1/4 = 426/1 19 28 0 = (3/10) 2 to - (3/

 $\frac{(3,0)}{(3,0)} \frac{(3,0)}{(3,0)} \frac{(3,0)}{(3,0)} = \frac{1}{(3,0)} \frac{1}{(3,0)} = \frac{$ (部) change on to = (部) change (計) an ar (計) ar to = (1) (2) (h) (5) $(\mathcal{D} \mathcal{H} = (\mathcal{T})_{A} \mathcal{H} = \frac{(\mathcal{D}_{A} \mathcal{H})}{(\mathcal{T})_{A}} - \bigoplus \mathcal{T}_{A} \left(\frac{\mathcal{L}}{1545} - \right) \mathcal{L}_{A}^{5/2} \left(\frac{\mathcal{L}}{\sqrt{3}} \right)_{A} \mathcal{H} = \mathcal{H}_{A} \mathcal{L}_{A}^{5/2} \left(\frac{\mathcal{L}}{\sqrt{3}} \right)_{A} \mathcal{H}_{A} = \mathcal{H}_{A}^{5/2} \left(\frac{\mathcal{L}}{\sqrt{3}} \right)_{A} \mathcal{H}_{A}^$ $\left(\frac{1}{142} - \frac{1}{1}\right)^{2} \frac{1}{N} = \left(\frac{1}{142} - \frac{1}{1}\right)^{2} \frac{1}{N} = \left(\frac{1}{142} - \frac{1}{1}\right)^{2} \frac{1}{N} = \left(\frac{1}{1}\right)^{2} \frac{1}{N} = \left(\frac{1}$ $A = AV = \frac{1}{6N} = \frac{1}{6N} = 7 + 2 \text{ temperatural to } A = \frac{1}{6N} = \frac{$ $1U = \frac{972}{57702} * \left(\frac{97}{102} + r \right) \frac{2}{57} = \left(\frac{9}{2} \frac{1}{107} \right) + r \frac{2}{57} \approx U \cdot (2)$ $\frac{\sqrt{N}}{\sqrt{N}} + V = \frac{\sqrt{N}}{\sqrt{N}} + C = \frac{\sqrt{N}}{\sqrt{N}} = \frac{N}$ $= \frac{\sqrt{2}}{\sqrt{2}} \left[\sqrt{1 + \sqrt{1 + \left(\frac{\sqrt{2}N_{\perp}}{2} \right)^{2}}} \right]$ $\frac{2N}{2N} + 1 + \frac{2N}{2} + \frac{2N}{2} = \frac{2N}{2} + \frac{2N}{2} = \frac{2N}{2N} + \frac{2N}{2} = \frac{2N}{2N} = \frac{2N}$ 0=214-5N4-14 - 4=24+6N-N + N = N + N = N =

The light
$$R_1 = \frac{lig}{Lg} = \frac{25V}{425uA} = 4cc \ln \Omega$$

The light $R_2 = \frac{lig}{425uA} = \frac{25V}{425uA} = 4cc \ln \Omega$

The light $R_3 = \frac{lig}{Lg} + \frac{24V}{60uA} = \frac{25V}{60uA} = \frac{3V}{60uA} = \frac{3V}{60$

7 = 1 = 1 + Roju my / Me/Ry = 9 m Tal R1 = 1 10/6