Algebra II

Mark

Chapter 7, recall

Ring is an **abelian** additive group with multiplication that's **associative** and **closed**, linked by **distribution**.

Division Ring: a ring with mult inverses

Zero Divisor: if there is another element so product is zero

Integral Domain: commutative ring with unit and no zero divisors.

Ideal: subring I such that ir and $ri \in I$ for all r in ring.

For I, J ideals,

IJ = set of finite sums of ij

principle ideal: ideal generated by one element using + and *

maximal ideal: ideal not contained in any other proper ideal.

prime ideal: ab in ideal, then a or b is.

P is prime $\iff R/P$ is an integral domain

see notes for proof.

M is maximal $\iff R/M$ is a field

R/M is field means no ideals; by lattice iso, no ideals between R and M

maximal ideal \rightarrow prime ideal

max ideal $\rightarrow R/P$ is a field. field is an integral domain.

Quadratic Fields and integer rings

Define a quadratic field as

$$\mathbb{Q}(\sqrt{D}) = \{a + b\sqrt{D} : a, b \in \mathbb{Q}\}\$$

for $D \in \mathbb{Q}$ and not divisible by a perfect square ('square-free').

can show this is a field using usual checks.

Inverses * involves a trick :

key: $(a + b\sqrt{D})(a - b\sqrt{D}) = a^2 - Db^2$

If a and b are not both zero, then, $a^2 - Db^2$ can't be zero.

(this would imply $D = \frac{a^2}{b}$, a contradiction) Thus,

$$(a+b\sqrt{D})\frac{a-b\sqrt{D}}{a^2-Db^2} = 1$$

For D = -1, $\mathbb{Z}[D]$ is $\mathbb{Z}[i]$, the set a + bi with integer coefficients, called the **Gaussian** Integers.

Define the quadratic ring of integers, Θ_D , in the quadratic field $\mathbb{Q}(\sqrt{D})$ as

$$\left\{ \begin{array}{l} \mathbb{Z}[\sqrt{D}], & \text{if } D = 2, 3 \bmod 4 \\ \mathbb{Z}[\frac{1+\sqrt{D}}{2}], & \text{if } D = 1 \bmod 4 \end{array} \right.$$

*note both $\mathbb{Z}[\sqrt{D}]$ and $\mathbb{Z}[\frac{1+\sqrt{D}}{2}]$ are subrings of the field $\mathbb{Q}(\sqrt{D})$.

The field norm N is a function from $\mathbb{Q}(\sqrt{D}) \to \mathbb{Q}$ defined

$$N(a+b\sqrt{D}) = (a+b\sqrt{D})(a-b\sqrt{D}) = a^2 - Db^2$$

(as noted above norm is never zero if both a and b are not zero)

For the ring of integers ("quadratic integer rings"), the norm is more genrally defined as

$$N(a+b\omega)=(a+b\omega)(a+b\bar{\omega})$$

where $\bar{\omega}$ is the Galois conjugate (-) is attached to \sqrt{D} .

Norm is **multiplicative**: $N(\alpha\beta) = N(\alpha)N(\beta)$.

a number in $\mathbb{Q}[\sqrt{D}]$ is an **algebraic integer** if it's the root of a monic polynomial with integer coefficients.

 α is a unit implies there exists β such that $\alpha\beta=1$.

An element α in the ring of integers is a **unit** if and only if $N(\alpha) = \pm 1$.

proof: \rightarrow) Suppose α is a unit. Then,

$$\alpha\beta = 1$$
, for some $\beta \in \Theta_D$

So,
$$N(\alpha\beta) = N(1) = 1$$
.

$$\leftarrow$$
) $\alpha \bar{\alpha} = \pm 1$, so either $\alpha \bar{\alpha} = 1$ or $\alpha(-\bar{\alpha}) = 1$.

e.g., for $\mathbb{Z}[i]$ (aka D=-1), the units are $\{\pm 1, \pm i\}$ as they are the only option satisfying $a^2+b^2=1$.

For rings, $A, B, AB = \{a_1b_1 + a_2b_2 + a_3b_2 + ...\}$ "finite sums of elements"

Ideal generated by a subset of R, A is denoted (A).

it's the "smallest ideal containing A"

Kernel of a ring homomorphism is set of elements mapping to 0 (additive id).

Kernel of ring hom is an ideal

For $s \in Kernel$, any $r \in R$, consider $\varphi(sr)$ still maps to kernel. hence ker is ideal

Exercises

1. What are the units of $\Theta_{-3} = \mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$?

$$\alpha = a + b \frac{1 + \sqrt{-3}}{2}$$
 is a unit \iff $N(\alpha) = a^2 + ab + b^2 = 1$

$$N(\alpha) = a^2 + ab + b^2 = 1$$

TRICK: complete the square!

$$(2a+b)^2 + 3b^2 = 4$$

only options for b are 0, 1, or -1.

units are $\{\pm 1, \pm \frac{1}{2}, \pm \frac{\sqrt{-3}}{2}\}.$

2. Prove $\mathbb{Z}[i]$ with $N(a+bi)=a^2+b^2$ is a Euclidean Domain.

We need to show Division Algo works.

For $\alpha, \beta \in \mathbb{Z}[i], (\beta \neq 0)$

$$\frac{\alpha}{\beta} = \frac{a+bi}{c+di} = \frac{a}{c^2+d^2} + \frac{bi}{c^2+d^2} = r + si \ (r, s \in \mathbb{Q})$$

Let p, q be the closest integers to r, s in turn. Then,

$$N((r+si) - (p+qi)) = (r-p)^2 + (s-q)^2 \le \frac{1}{2}$$

Then, we define Algo as

$$\alpha = (p + qi)\beta + R$$

Remains to show $N(R) < N(\beta)$.

Define some other variable $\theta = (r - p) + (s - q)i$, with $N(\theta) < \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$. Then,

$$N(R) = N(\theta)N(\beta) \le \frac{1}{2}N(\beta)$$

3. Find the ideal generated by (3 - i, 2 + 11i).

idea is to find the gcd using Euclidean Algo.

First,

$$\frac{2+11i}{3-i} = \frac{-1}{2} + \frac{7}{2}i.$$

Select closests integers p = -1, q = 3. Then remainder R is

$$= 2 + 11i - (-1 + 3i)(3 - i) = 2 + i.$$

We have

$$2 + 11i = (-1 + 3i)(3 - i) + (2 + i).$$

Next,

$$\frac{3-i}{2+i} = (1-i)$$

Thus,

$$3 - i = (1 - i)(2 + i) + 0.$$

Meaning, the gcd = 2 + i (last nonzero remainder).

Thus, ideal is ((2+i)).

4. Show $\mathbb{Z}[\sqrt{-5}]$ is not a Euclidean Domain.

idea is to show it's not a PID (hence not a Euclidean Domain).

Consider $I = (2, 1 + \sqrt{-5}).$

Suppose I is a principal ideal with generator α .

Then $2 = k_1 * \alpha$ and $1 + \sqrt{-5} = k_2 \alpha$.

Then, $N(\alpha)$ divides 4 and divides $6 \to N(\alpha) = 1$ or 2.

Case 1: $N(\alpha) = 2$

Then, $2 = a^2 + 5b^2$, which is impossible for $a, b \in \mathbb{Z}$.

Case 2: $N(\alpha) = 1$

...somehow contradiction

5. What are zero divisors of \mathbb{Z} ? What are units?

no zero divisors; units are ± 1 . So \mathbb{Z}^* $\{\pm 1\}$

Chapter 8: Euclidean Domains

Norm

For R an integral domain, a **norm** is a function N such that

$$N: R \to \mathbb{Z}_{>0}$$
 and $N(0) = 0$

A norm is a measure of size in R.

e.g., R = F[x], norm is generally the degree of the polynomial.

*possible for same integral domain to have more than one norm. Often, statements are with respect to a particular norm.

Eucliean Domain

A **Euclidean Domain** is an integral domain, R, with a division algorithm such that for any two elements $a, b \in R(b \neq 0)$, there exists $q, r \in R$ where

$$a = qb + r$$
 and $r = 0$ or $N(r) < N(b)$

q is the quotient and r is the remainder.

e.g., fields (with any norm), \mathbb{Z} with N(a) = |a|, F[x] with norm = degree of polynomial.

Every ideal in a Euclidean Domain is **principal**

proof: consider d in an ideal I, such that d has minimum norm in I. (exists by Well ordering principal)

- (1): $(d) \subset I$, by closure.
- (2): $I \subset (d)$, since for $a \in I$,

$$a = qd + r$$

with N(r) < N(a) (impossible) or r = 0. Thus, $a \in (d)$.

*useful to show NOT Euclidean Domain, if some ideal is not principal.

A Euclidean Domain allows for the use of the **Euclidean Algorithm**.

If
$$(a, b)$$
 (ideal generated by a, b) = (d) , then $d = gcd(a, b)$ because $d = ax + by$ by Euclidean Algo.

Principal Ideal Domains, PIDs

A **Principal Ideal Domain** is an integral domain where every ideal is principal.

Euclidean Domain \rightarrow PID

since every ideal in Euclidean Domain is principal

In a PID, irreducible \rightarrow prime.

For r irreducible, wwts (r) is a prime ideal.

Suppose $(r) \subset (m)$.

Then r = am for some a, then a is a unit or m is a unit since r is irreducible. a unit $\rightarrow (r) = (m)$

 $m \text{ unit } \rightarrow (m) = \text{entire ring.}$

Unique Factorization Domains, UFDs

For R an integral domain,

- $r \in R$ is **irreducible** if whenever, r = ab $(a, b \in R)$, a or b is a unit. (otherwise, r is **reducible**)
- $p \in R \ (\neq 0)$, is **prime** if (p) is a prime ideal. i.e., normal notion of prime p|ab, p|a or p|b (aka a or b in ideal).
- $a, b \in R$ are associate if a = ub for some unit $u \in R$.

prime element
$$\rightarrow$$
 irreducible

p, prime. If $ab = p \in (p)$, then $a \in (p)$ or $b \in (p)$.

Next, show a or b is a unit.

Note without loss of generality, $p = ab = prb \rightarrow rb = 1$, meaning b is a unit.

irreducible \neq prime: e.g., $2|(1+\sqrt{-5})(1-\sqrt{-5})$, but 2 does not divide $1+\sqrt{5}$.

above proves \rightarrow).

 \leftarrow) see previous page.

A Unique Factorization Domain is an integral domain in which for every $r \neq 0$ and not a unit:

- (1) r can be written as a **finite product** of irreducible elements.
- *not necessarily distinct.
- (2) above is **unique** up to associates.
- *any factorization has same number of products and elements are associates with elements of composition in (1).

easiest example is any field, since every element in a field is a unit (hence nothing to verify in order be a UFD).

examples of UFDs: \mathbb{Z} , $\mathbb{F}[x]$, $\mathbb{Z}[i]$.

 $\mathbb{Z}[i]$ showed it's a Euclidean Domain \to PID \to UFD. Similar proof for F[x]. $\mathbb{Z}[x]$ is a UFD, but not a PID.

 $\mathbb{Z}[\sqrt{-5}]$ is not a UFD

6 = 2 * 3, but also $6 = (1 + \sqrt{-5})(1 - \sqrt{-5})$. Each produc is made of irreducible terms.

Ascending Chain Condition (ACC), Notherian

A commutative ring with unit R is **Noetherian** if it satisfies ACC:

every increasing sequence of ideas:

$$I_1 \subset I_2 \subset ...$$

terminates, eventually.

Equivalent to say:

- 1. ACC
- 2. every nonempty collection of ideals has a maximal element
- 3. every ideal is finitely generated

proof

 $(1 \rightarrow 2)$ Suppose A is any nonempty collection of ideals.

If no maximal ideal I_n existed in the collection, we can construct an infinite chain, hence not ACC, a contradiction.

 $(2 \rightarrow 3)$ Let A be a nonempty collection of ideals with a maximal element, say I_0 .

Thus, for I_i in chain:

- (a) $I_0 \subset I_i$, since I_0 is maximal.
- (b) $I_i \subset I_0$, since unclear $(3 \to 1)$ Suppose $I_1 \subset I_2 \subset I_3 \subset ...$ is a chain of ideals

Then, ${}_{i}^{\infty}I_{i}$ is an ideal, say I.

Since, every ideal is finitely generated, so is I, meaning the chain terminates.

e.g.,
$$\mathbb{Z}[x_1, ..., x_n, ...]$$
 is Netherian.

 $(x_1) \subset (x_1, x_2) \subset \dots$ infinite.

PID is Netherian

since every ideal is generated by 1 element, by (3) above, PID is Netherian.

 $PID \rightarrow UFD$

proof:

IDEA: factor such as integers.

```
Suppose r \neq 0 in R, a PID.
Then we can factor r as r_1 * r_2....
Suppose a branch of the factorization continued, then we'd have a chain:
(r_1) \subset (r_2) \subset (r_3)
along the branch, which contradicts ACC (since PID has ACC).
Is this product unique?
Suppose r = p_1 p_2 ... p_n = q_1 q_2 ... q_m.
Then, p_1|q_1q_2...q_m, hence, p_1|q_i for some i.
Thus, q_i = p_1 k, but q_i is irreducible, hence p_1, q_i are associates.
Next repeat for p_2, to show n = m and all are associates.
                                In UFD, irreducible \iff prime.
   proof: \rightarrow) P is irreducible. If P|ab with a=p_1...p_n, b=p'_1...p'_m, then P is associate to
some p_i, hence divides a or b.
\leftarrow) true in general.
    Field is a ED, is a PID, is a UFD, is an Integral Domain.
(nicest to less)
GCD
An ideal is a gcd d of a, b if
(1) If (a) \subset (d) and (b) \subset (d) implies (a, b) \subset (d).
(2) If (a,b) \subset (c), then (d) \subset (c).
"gcd(a, b) is a generator for smallest principal ideal containing (a, b)"
    *(2) is a bit counterintuitive, careful.
    gcds exist in UFD
gcd(a, b) = min power of primes in a, b
    In PID, (a, b) = (d). (exists since PID is UFD).
(but no Euclidean Algo!)
    *gcd is not always a linear combo if not in PID.
e.g., \mathbb{Z}[x] (UFD not PID)
a = 2, b = x: gcd(2, x) = 1
but 1 \neq 2s + xt for any s, t.
```

Euclidean domain for gcd, is even better: linear combo and algo (euclidean) to find it!

Davenport-Hasse Norm

R has a **Davenport-Hasse** norm N if j:

For $a, b \neq 0$, $a \in (b)$ or N(as + bt) < N(b) for some s, t.

e.g., Euclidean Domain has a Davenport-Hasse norm, since N(R) = N(a - qb) < N(b).

Arithmetic, applying gcd

Recall, for integer rings θ_D : PID \iff UFD

D < 0: almost never a PID

D > 0: unknown when they're PID.

 θ_D has **no unique factorization** for elements; it does have unique factorization for ideals. (every ideal can be written as a product of prime ideals)

$$I = (a_1, ..., a_n) = r_1 a_1 + ... + r_n a_n$$
 (r in ring) "linear combos of generator elements"

For $J = (b_1, ..., b_m)$.

$$IJ = ra_1b_1 + \dots + ra_1b_m + ra_2b_1 + \dots + r_{a2}b_m$$

e.g.,
$$R = \mathbb{Z}[\sqrt{-5}]$$
, recall not PID.
 $P = (2, 1 + \sqrt{-5})$ we showed was not principal, BUT
 $P^2 = (2, 1 + \sqrt{-5})(2, 1 + \sqrt{-5})$
 $= (4, 2 + 2\sqrt{-5}, -4 + 2\sqrt{-5})$ by def of $P * P$ as linear combos
 $= (4, 2, 2\sqrt{-5}) = (2)$.

Irreducibles in Integer Rings

For π in integer ring, θ_D ,

If
$$N(\pi) = p$$
 (for p prime in \mathbb{Z}), π is **irreducible**

Suppose $N(\pi) = p$.

Then for $\pi = ab$, p = N(a)N(b)

 $\rightarrow N(a) = 1$ or N(b) = 1, meaning a or b is a unit.

What are the irreducible elements in $\mathbb{Z}[i]$?

look at $p \in \mathbb{Z}$ and see how they factor in $\mathbb{Z}[i]$. read and take notes on end of section 8.3

$$p$$
 factors in $\mathbb{Z}[i]$ into two irreducibles $\iff p = a^2 + b^2$ for $a, b \in \mathbb{Z}$

idea is to think about norm of elements factoring p

Use tool from Number Theory:

prime
$$p \in \mathbb{Z}$$
 divides $n^2 + 1 \iff p \cong 1 \mod 4$ or $p = 2$

look at elements of order 4 in $\mathbb{Z}/p\mathbb{Z}$ look at again

Fermat's Sum of Squares

$$p = a^2 + b^2 \iff p \cong 1 \mod 4 \text{ or } p = 2$$

Furthermore, the sum of squares representation is **unique** up to sign changes.

What are irreducibles in $\mathbb{Z}[i]$?

 $1+i, p \cong 3mod4$ for prime in \mathbb{Z} , and $a \pm bi$ which form $p=a^2+b^2$ for $p \cong 1mod4$ (p prime) reread 8.3 end to understand proof

For
$$n = 2^k p_1^{a_1} p_2^{a_2} ... p_r^{a_r} q_1^{b_1} ... q_s^{b_s}$$
,

if p, q are distinct primes with

 $p_i \cong 1 \mod 4$ and $q_i \cong 4 \mod 4$, then n can be written as the sum of squares

*the number of representations of n as a sum of squares is $4(a_1 + 1)(a_2 + 1)...(a_r + 1)$. proof at end of 8.3

Exercises

- 1. Show $\mathbb{Z}[2i]$ is not a UFD find an element written as product of different irreducibles. 4 = 2 * 2 = 2i(-2i), all irreducible.
- 2. Is $p = (2, 1 + \sqrt{-5})$ a prime ideal in $\mathbb{Z}[\sqrt{-5}]$? consider quotient $\mathbb{Z}[\sqrt{-5}]/(2, 1 + \sqrt{-5})$. Is it an integral domain? note in quotient, $1 + \sqrt{-5} = \overline{0} \to \sqrt{-5} = \overline{-1}$. Thus, $a + b\sqrt{-5} = \overline{a b}$. So, $\mathbb{Z}[\sqrt{-5}]/(2, 1 + \sqrt{-5}) \cong \mathbb{Z}/(2)$ (by previous work). Thus, it is an integral domain.

Chapter 9: Polynomial Rings

Constructing $\mathbb Q$ from $\mathbb Z$

set: (a, b) with $a, b \in \mathbb{Z}$

equivalence: $(a,b) \equiv (c,d) \iff ad-bc=0$ can confirm operations are well-defined as

expected (based on representatives from equivalence class)

R UFD

Gauss's Lemma

$$p(x)$$
 reducible in $F[x] \implies p(x)$ reducible in $R[x]$

proof idea: use unique factorization in UFD

p(x) is irreducible in $R[x] \iff$ it is irreducible in F[x] Part by Gauss's other by looking at gcd of coefficients of p(x).

$$R \text{ is UFD} \iff R[x] \text{ is UFD}$$

proof from notes and in section 8.2

Irreducibility

If polynomial with integer coefficients has a **rational root** r/s, r divides constant term and s divides leading coefficient.

think about factoring

For I ideal,

If the image of p(x) is **irreducible** in R/I[x], then it's **irreducible** in R[x]

*careful: reducible in modulo doesn't imply reducible in ring.

content of $p(x) \in R[x]$, UFD = gcd of coefficients, "ideal generated by coef"

Roots of Polynomials

 $\mathbf{degree}\ \mathbf{n}$ polynomial has $\mathbf{n}\ \mathbf{roots}$ in F, a field.

*not true in rings: $x^2 - 1$ in $\mathbb{Z}/8\mathbb{Z}[x]$ has only 4 roots.

Eisentein's Irreducibility Criterion

p(x) is **irreducible** in $\mathbb{Z}[x]$ if

there is p, **prime dividing** all coefficients, but p^2 **doesn't divide** constant

More generally true for **integral domain** R: p(x) irreducible in R[x] if coefficients are elements of prime ideal P, but constant is not element of P^2 .

Exercises

1. Show $x^3 - 3x - 1$ is irreducible in $\mathbb{Z}[x]$. Since any rational root has to divide 1, the only candidates for roots are ± 1 . Neither is a root. So, polynomial is irreducible.

Chapter 10: Modules

Linear Algebra Revisted

Linear Transformation is a homomorphism $\varphi: V \to W$ both vector spaces:

- 1) $\varphi(V+W) = \varphi(V) + \varphi(W)$
- 2) $\varphi(\alpha V) = \alpha \varphi(V)$

 $T: V \to W$ a linear transformation can be written as a matrix: M_b^{ϵ} where b is a basis of V and ϵ is a basis of W.

Big Theorem: every vector space has a basis. (same number of elements as dimensionality of vector space)

$$Ker(T) = null space$$

Module

An R-module M is an **abelian group** with R, a ring, acting on M by:

- 1) r(m+n) = rm + rn
- 2) (r+s)m = rm + sm
- 3) (rs)m = r(sm)

*if R has unit, then additional requirement: 1m = m. Examples

- \bullet F-module is a vector space over F
- Z-module is an abelian group
- F[x]-module is a vectorspace V over field F with a linear transformation

^{*}note T depends on the basis chosen for V and W.

Quotient Modules

For any N, M R-modules with $N \subseteq M$,

M/N is a quotient

"all quotients are submodules"

why? 1. $N \subseteq M$ since N is abelian. so "+" makes sense

2. r(m+N) = rm + N just need to check it's well-defined.

Generators

Idea in general "blah" generated by $m_1, m_2, ..., m_n$ means the smallest "blah" stucture containing all m_i .

Sub-module generated by $m_1, m_2, ..., m_n \in M$ is

$$Rm_1, +... + Rm_n$$

since closure is over addition and scalar mult, both captured above by linear combo cyclic R-module if generated by a single element.

submodule

N is a sub-module of a module M if for $n_1, n_2 \in N$,

- 1. $n_1 + n_2 \in N$ "closure +"
- 2. $rm_1 \in N$ "scalar closure"

Homomorphisms

 $\varphi: M \to N$

R-module homomorphism φ is what you'd expect:

 $\varphi(x+y) = \varphi(x) + \varphi(y)$ and $\varphi(rx) = r\varphi(x)$.

 $\operatorname{Ker}(\varphi)$ and $\operatorname{Image}(\varphi)$ are both submodules (in M, N in turn)

Isomorphism Theorems

- $M/\operatorname{Ker}\varphi \cong \operatorname{Image}(\varphi)$
- $A + B/B \cong A/A \cap B$
- $(M/N)/(M'/N) \cong M/M'$ for $N \subseteq M' \subseteq M$

and lattice bien sur.

Cyclic Modules

a module M is cyclic means there exists $m \in M$ such that R * m = M.

an element a of M is **torsion-free** if $ra \neq 0$ for any $r \in R$. (a is **torsion** element if there is some r such that ra = 0)

Natural Map for Cyclic Modules (over PIDs)

 $\varphi: R \to M$ by $r \to rm$ where m is generator.

 $Ker(\varphi) = left ideal in R$, call it I. Then,

$$R/I \cong M$$

by first iso theorem. idea: M = R * m, so it's isomorphic to left cosets of R: R/(r). *idea: nicer ring, yields nicer r-module M.

"annihilator" of M in $R = \{r \in R : rm = 0 \text{ for all } m\}$

Chapter 12: Modules over PID

A \mathbb{Z} -module is an **abelian group**.

Thus,

$$\mathbb{Z}$$
-module = $\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z} \dots$

by FTFGAG

Any $n\mathbb{Z}$ is an **ideal** of \mathbb{Z} (the ideals are precisely $n\mathbb{Z}$).

The idea is to **generalize** the above by replacing \mathbb{Z} with any PID, R.

in context of linear algebra

for vectors space V with a linear transformation A, we find a **different basis**. This means we find B such that $B = P^{-1}AP$ for some matrix P. This allows us to write transformation in **unique forms**:

- Jordan Canonical Form: as close to a diagonal matrix as possible
 - requires eigenvalues to be in field F.
- Rational Canonical Form: similar but doesn't require eigenvalues to be in F.

^{*}torsion module implies every element is a torsion element.

1 Fundamental Theorem of Finitely Generated Modules

(FTFGM) over PIDs

recall, PID = integral domain (commutative ring with unit and no zero divisors) where every ideal is principal.

For,

R = PID

M = finitely generated R-module.

There are two ways of **uniquely** decomposing a finitely generated module M:

1. Invariant Factor way:

$$M = \underbrace{R \oplus \cdots \oplus R}_{\text{rank r}} \oplus \underbrace{R/(r_1) \oplus \cdots \oplus R/(r_n)}_{invariant factors}$$

where $r_1|r_2|\dots|r_n$.

2. Elementary Divisor way:

$$M = \underbrace{R \oplus \cdots \oplus R}_{\text{rank r}} \oplus \underbrace{R/(p_1^s) \oplus \cdots \oplus R/(p_n^s)}_{elementary divisors}$$

where $p_1, p_2 \dots$ are prime elements (not necessarily distinct).

*recall: $p \in R$ is **prime** if (p) is a **prime ideal** (ab in $(p) \implies$ a or b in (p)); implies traditional def: $p|ab \implies p|ap|b$.

*recall: $A \oplus B = \{(a, b) : a \in A, b \in B\}.$

proof after Chineses Remainder and Noetherian R-modules

Note: Fundamental TFG Modules \implies FTFGAG.

Chinese Remainder Theorem for R-modules

Let R be commutative with 1.

For A, B comaximal ideals in R,

$$A \cap B = AB$$
 and $R/AB \cong R/A \oplus R/B$

comaximal means A + B = R " sum gives entire ring." proof in notes

Noetherian R-Modules

M is a Noetherian R-Module is equivalent to any of the following:

- \bullet M satisfies ACC on R-submodules
- Every R-submodule is finitely generated
- Every collection of submodules has a maximal element

(eerily similar to Noetherian ring)

M is Noetherian $\iff M''$ and M' = M/M'' are Noetherian "submodules and quotients of Noetherian are Noetherian" proof

Torsion

For R integral domain and M an R-module,

$$Tor(M) = \{x \in M : rx = 0 \text{ for some r } \in R\}$$

*M is torsion free if Tor(M) = 0

Annihilator of M is the ideal of R such that

$$Ann(N) = \{r \in R : rn = 0 \text{ for all } n \in N\}$$

2 Rational Canonical Form

Eigenvalue

The **eigenspace** of a linear transformation T is

$$\{v \in V : T(v) = Av = \lambda v\}$$

The characteristic polynomial of T, denoted $Ch_A(x)$ is det(xI - A). often written A - xI, but above produces a nice monic polynomial.

degree n of $Ch_A(x)$ is the **dimension of V**.

The set of eigenvalues is precisely the set of roots of the characteristic polynomial. (at most n eigenvalues)

Minimal Polynomial

The unique monic polynomial, $m_A(x)$, of smallest degree such that $m_A(A) = 0$. -can also think of $m_A(x)$ as generator of Ann(V) in F[x]

The minimal polynomial is the **largest invariant factor** (all invariant factors divide $m_A(x)$).

3 Jordan Canonical Form

Jordan form is as **close** as possible to a **diagonal matrix** (often simpler matrix than rational form).

To obtain the JCF, we use the **elementary divisor form** of the fundamental theorem. Suppose for an F[x]-module of V with invariant factors $a_1(x)|a_2(x)|\dots|a_m(x)$, all monic polynomials. Then, the **elementary divisors** are powers of $(x - \lambda)^k$ (under the assumption the field F contains all eigenvalues of A).

The k x k elementary Jordan matrix with eigenvalue λ is

$$\begin{bmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & 0 \dots & 0 \\ \dots & & & & \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & \lambda \end{bmatrix}$$

Jordan Canonical Form is a block diagonal matrix (square matrices along diagonal, zero elsewhere) with Jordan Blocks (above) along the diagonal.

unique up to permuting the Jordan Blocks.

Theorem if A contains all eigenvalues, then A is **similar to** a matrix in Jordan Canonical Form (JCF = $P^{-1}AP$ for some P).

A similar to JCF $\iff m_A(x)$ has no repeated roots

Exercises

1. What are the submodules of $\mathbb{R}[x]$ for $V = \mathbb{R}^2$ and T: rotation (counterclockwise) by $\pi/4$?

possibilities are dimension 0: point at center

dimension 1: lines thorugh the center

dimension 2: entire plane

dimension 1 is not closed when rotating a point by $\pi/4$. So, 0 and whole thing are only submodules.

2. How about for S: rotation by π ? 0, lines through the origin, and whole plane

- 3. Is $M = \text{set } \mathbb{R}^2$ with T: rotation by π inside $\mathbb{R}[t]$ -module cyclic? No, think polynomial $a + bt + ct^2$ acts by multiplication where tv = T(v). Span of v, tv, t^2v, t^3v doesn't yield all of \mathbb{R}^2 .
- 4. How about with T: rotation by $\pi/4$? yes!, $v = (1, 0, then T^2(v) = (0, 1)$ which spans all of \mathbb{R}^2 .

Chapter 13: Field Extensions

Goal: if a(x) has no roots in F, how do we enlarge F so a(x) has a root?

an element c is **algebraic** over F if it is the root of some nonzero polynomial in F[x].(else it's **transcendental**)

recall: F[x] is a ring, a particularly nice ring: Euclidean Domain. Thus, every ideal in F[x] is principal since F[x] is a Euclidean Domain, hence a PID

Extensions as a Map over Polynomials

Consider

$$\varphi_c: F[x] \to F$$
 by $a(x) \to a(c)$

 φ_c is a homomorphism!

- $Ker(\varphi)$ is an **ideal**, so it must be principal
 - it's generated by the minimum* polynomial of c
- Image(φ): turns out to be a field!
 - it's the **smallest field** containing F and c; call it F(c).
 - Image(φ) $\cong \frac{F[x]}{\langle m(x) \rangle}$

*the **minimum polynomial** p(x) of c over F is the polynomial of lowest degree in F[x] such that p(c) = 0 (note by making p(x) monic, we can ensure it's unique).

Any homomorphism $\varphi: F_1 \to F_2$ between fields is an **isomorphism** (or 0 map).

Extensions as Vector Spaces

For $F \subseteq K$, K can be thought of as a vector space over F.

The degree of K is denoted [K:F].

It turns out $F(c) = span\{1, c, ..., c^{n-1}\}$ where n is the degree of the **minimal polynomial**.

proof: take any $a(c) \in F(c)$, then a(x) = q(x)m(x) + r(x).

Evaluate at c, then a(c) = 0 + r(c) where r(c) has degree in.

Furthermore,

$$[E:F] = [E:K][K:F]$$

*when [E:F] = n, [K:F] = m with gcd(n,m) = 1, [EK:F] = nm.

Any polynomial of degree n in F[x] has **n roots** in an extension of F.

proof idea: the extension is $\frac{F[x]}{(p(x))}$, where p(x) is the irreducible polynomial in F. This extension is a field by the work above, where a root c of p(x) exists

If both a, b are roots of some irreducible $p(x) \in F[x]$, then

$$F(a) = \frac{F[x]}{(p(x))} = F(b)$$

implying a, b are algebraically indistinguishable!

 α algebraic over F $\iff F(\alpha)/F$ is finite degree extension.

 α,β algebraic: carries over sums, products, division: $\alpha+\beta$ algebraic etc.

algebraic closure of a filed, say \mathbb{Q} , denoted $\overline{\mathbb{Q}}$, is \mathbb{Q} plus all algebraic elements in \mathbb{Q} . Every element of a **finite** field is algebraic

Take $F \subseteq K$ and $c \in K$ (deg k =n), then $1, c, \ldots, c^n$ is a linearly dependent set. Thus, $a_0 + a_1c + a_2c^2 + \cdots + a_nc^n = 0$ for some $a_i \in F$.

Characteristic of a field

The smallest number n such that $\underbrace{1 + \dots 1}_{} = 0$

(else ch(F) = 0, if no finite n exists, e.g. \mathbb{Q})

Note ch(F) must be **zero** or **prime** (if not prime, then ab = 0, implying a=0 or b=0, a contradiction of requirement for ch to be smallest!)

so finite fileds must have **prime order!**

Splitting Fields

For $f(x) \in F[x]$, K is called a **splitting field** for f(x) if

- f(x) has all its roots in K(f(x)) splits into linar factors in K(x)
- it's the smallest such extensions (no subextension of K contains all roots of f(x))

a polynomial is called **separable** if it has distinct roots in some splitting field. (if polynomial a repeated root, it's **inseparable**)

$$f(x)$$
 has distinct roots \iff $(f(x), d/dx f(x)) = 1$

 α is a root of $f'(x) \iff$ is a multiple root of f(x), thus minimal polynomial divides both f and f', meaning $\gcd \neq 1\square$

Splitting fields are unique

proof: division algo and induction by looking at map between two splitting fields to show they're iso

What's the degree of K over F ([K:F])?

Suppose $\alpha_1, \ldots, \alpha_n$ are the roots of f(x). Then, $F(\alpha_1)/F \leq n$, $(\alpha_1, \alpha_2)/F \leq n-1$, etc. Since, degree of extensions are multiplicative, $[K:F] \leq n!$.

For K_1, K_2 extensions of F of degrees n and m,

$$[K_1K_2:F] = nm$$
 (if (n, m) = 1)

Roots of Unity reminder

The nth **roots of unity** in a field are elements a_i such that $a_i^n = 1$. the roots of unity divide a unit circle into arcs of equal length.

a is a **primitive nth root** of unity if n is the **smallest** integer such that $a^n = 1$.

Cyclotomic Fields

For any field F, $F(\zeta_n)$ is called a **cylotomic field** for ζ_n the nth root of unity. The field is **cylic**!

Exercises

- 1. What is $(1 + \sqrt[3]{2})^{-1}$ in $\mathbb{Q}(\sqrt[3]{2})$?
 - 1. min poly is $p(x) = x^3 2$, since $\sqrt[3]{2}$ is a root and p(x) is irreducible by Eisenstein.
 - 2. Thus, $\mathbb{Q}[x]/p(x) = \mathbb{Q}(\sqrt[3]{2})$.
 - 3. Inside field, p(x) is zero.

idea: use euclidean algo to find $a(x)(1+x) + b(x)(x^3-2) = 1$. evaluate a(x) at α to find inverse of $(1+\alpha)$, since right term goes to zero!

- 2. What is $[\mathbb{Q}(\sqrt[n]{2}) : \mathbb{Q}]$? min poly: $x^n - 2$, so degree of extension is n.
- 3. What's the degree of the splitting field for $(x^2-2)(x^2-3)$? It's the degree of $\mathbb{Q}(\sqrt{2},\sqrt{3})$ over \mathbb{Q} , which by previous work is 4.
- 4. What's the degree of $\mathbb{Q}(\sqrt[4]{2}, \sqrt{2})$? it equal to the degree of $\mathbb{Q}(\sqrt[4]{2})$

left off at Cyclotomic Polynomials