To be, or not to be

Edge Computing Version

```
Abhishek Verma (av2783)
Ishita Jaisia (ij2056)
Utkarsh Kumar (uk2012)
```

Introduction

- In edge computing, computing is done at the location or close to the data source, minimizing the need for data to be processed in the remote data center.
- Wireless communication technology has enabled transmission of computation tasks from wireless devices to nearby access points.
- Deploying computation servers at these access points (rather than remote data centers) bridges the gap between edge devices and edge server.
- Applications include online gaming, AR/VR, smart utility grid analysis, safety monitoring of oil rigs, streaming video optimization, drone-enabled crop management, etc.

Problem Statement

Previous Work

- This offloading problem is NP-hard because of exponential time complexity.
- Different low-complexity algorithms solve the binary computation offloading problem.
- One such algorithm based on game theory requires multiple communications per task between the edge server and the device.
- However, almost no algorithm overcomes the trade-off between time delay and optimal solution.

Our Contribution

- Design (and implementation) of a deep learning algorithm: given an input task and its characteristics, outputs a binary offloading decision.
- Compare the performance of this algorithm with baselines including the exponential algorithm.
- Profile the training time and inference time on bare-metal machines, VMs and Kubernetes cluster.

System Model

Cost	Computing on edge server	Computing on local device
Energy (electricity) cost	energy to upload task + energy to perform computation on edge server	energy to perform computation on local device
Time delay	time to upload task + edge server computation time	local device computation time

Algorithm

Experimental Assumptions

Number of Wireless device	3
Number of tasks per device	3
Local computation time of mobile devices	4.75 x 10 ⁻⁷ s/bit
Processing energy consumption	3.25 x 10 ⁻⁷ J/bit
Uplink bandwidth limit	150 Mbps
Weight of the energy consumption at edge server (α)	1.5 x 10 ⁻⁷ J/bit
Weight of time delay (eta)	1 J/bit

Experimental Setup

- We compare the performance of the algorithm with baseline models on the NYU HPC cluster.
- Profile the training time and inference time on bare-metal machines, VMs and Kubernetes cluster.

NYU HPC

Model Name: Intel(R) Xeon(R) Platinum 8268 CPU

CPU Frequency: 2.90 GHz

Number of CPUs: 4
Threads Per Core: 1

Local

Model Name: 11th Gen Intel(R) Core(TM)

i5-1135G7

CPU Frequency: 2.40 GHz

Number of CPUs: 8 Threads Per Core: 2

IBM VM

Model Name:Intel Xeon Processor (Cascadelake)

CPU Frequency: 2.40 GHz

Number of CPUs: 4
Threads Per Core: 2

Kubernetes

Model Name: Intel Xeon Processor (Cascadelake)

CPU Frequency: 2.40 GHz

Number of CPUs: 4 Threads Per Core: 2

Algorithm Performance Evaluation

Algorithm performance for different number of DNNs

Algorithm performance with different memory size

Algorithm Performance Evaluation

Average Energy Cost vs Joules/bit required to transfer data from edge device to server

Average Energy Cost vs Joules/bit required for computation

Cross-Platform Training Time

Cross-Platform Inference Time

[15 edge devices, 3 tasks per device]

Conclusion and Future Work

- The proposed algorithm can generate near-optimal offloading decisions in less than one second.
- Scalability with respect to number of DNNs can be increased by training and inference in parallel.
- 3. Profiling the inference algorithm on edge devices with minimal computation power will lead to more insightful results.
- 4. Running the algorithm on edge simulation frameworks will validate the real-life usefulness of the algorithm.

Thoughts

- 1. Apart from the resource usage, profiling an algorithm on its assumptions is always useful and can lead to interesting insights.
- 2. Kubeflow is cool! You don't need to write yaml(s) for every single job. You can just run jupyter notebooks on the Kubeflow K8 cluster.
- 3. Installing utilities and libraries on vanilla VM is an arduous task.
- It was a challenge to come up with a cost function for the DNNs as it involved researching about various costs associated with edge computing.