SOLUTION ARCHITECTURE

DATE	25-10-2023
TEAM ID	4.1
PROJECT NAME	NETWORK ANOMALY DETECTION

MENTOR: P MANOJ

Team Members:

C DEVAKI NANDAN REDDY

S NIHAL AHMED

Designing a solution architecture for network anomaly detection involves defining the components and their interactions to effectively identify and respond to anomalies in a network.

1. Data Sources:

- Ingress points for network data, including routers, switches, firewalls, and servers.
- External data sources like threat intelligence feeds and cloud services.

2. Data Ingestion Layer:

- Data collection from various sources in real-time or batch modes.
- Protocols and connectors for data retrieval.

3. **Data Processing and Transformation:**

- Preprocessing of raw data, including cleaning, normalization, and format conversion.
- Feature extraction to prepare data for analysis.

4. Data Storage:

- A scalable and reliable storage system for raw and processed data.
- Long-term storage for historical data for trend analysis.

5. **Machine Learning Models:**

- Implementing machine learning models for anomaly detection.
- Training, updating, and optimizing models with historical and real-time data.

6. Rules Engine:

- Define custom rules and thresholds for specific anomalies or behaviors.
- Rules can complement machine learning for fine-tuning detection.

7. Real-time Monitoring Layer:

- Continuous monitoring of network traffic and events.
- Integration with data analysis components.

8. Alerting and Notification:

- Generate alerts when anomalies are detected.
- Notifications to relevant teams or individuals.

9. Incident Response:

- Automated or manual incident response workflows.
- Actions such as isolating affected systems, capturing data, and analyzing the nature of anomalies.

10. User Interface:

- A web-based or desktop interface for administrators and analysts.
- Visualization of network activity and detected anomalies.

11. APIs and Integration:

 APIs for integrating with other security tools and systems, such as SIEM and ticketing systems.

12. Reporting and Forensics:

- Reporting tools for generating incident reports and compliance documentation.
- Data forensics capabilities for post-incident analysis.

13. Scalability and High Availability:

• Architect for scalability and redundancy to handle increasing data volumes and ensure system availability.

14. Security and Access Control:

- Implement robust security measures to protect the anomaly detection system from threats.
- Access control for authorized personnel only.

15. Compliance and Audit Trail:

- Ensure the solution complies with relevant regulatory requirements.
- Maintain an audit trail for tracking system changes and activities.

16. Feedback Loop:

 Mechanism for collecting feedback on detected anomalies to improve the system over time.

17. Cloud Integration (Optional):

• If applicable, integration with cloud services for network data analysis.

18. **Performance Monitoring:**

• Monitoring of system performance and resource utilization.

19. Training and Documentation:

• Training materials and documentation for administrators and analysts.

20. Maintenance and Updates:

• Plan for system maintenance, updates, and patch management.

The Anomaly Detection solution...

Figure 1 - Anomaly Detection component architecture