

Bereich Mathematik und Naturwissenschaften, Fakultät Mathematik, Institut für Algebra

Jun.-Prof. Friedrich Martin Schneider, Dr. Henri Mühle.

Wintersemester 2018/19

7. Übungsblatt zur Vorlesung "Diskrete Strukturen für Informatiker"

Teilbarkeit

- \overline{V} . Zeigen Sie, dass die Teilbarkeitsrelation auf $\mathbb N$ eine Ordnungsrelation ist.
- Ü37. Wie in der Vorlesung eingeführt, bezeichne $T(n) = \{a \in \mathbb{N} \mid a \text{ teilt } n\}$ die *Teilermenge* von n.
 - (a) Geben Sie die Teilermengen T(60) und T(550) explizit an, und zeichnen Sie jeweils ein Teilerdiagramm.
 - (b) Finden Sie eine bijektive Abbildung $f: T(60) \to T(550)$, sodass für alle $x, y \in T(60)$ gilt: $x \mid y$ genau dann wenn $f(x) \mid f(y)$.
- Ü38. Berechnen Sie mit Hilfe des Euklidischen Algorithmus' für jedes der nachstehenden Zahlenpaare (x,y) den größten gemeinsamen Teiler ggT(x,y), sowie eine Darstellung ggT(x,y) = ax + by mit $a,b \in \mathbb{N}$.
 - (i) x = 108, y = 42, (ii) x = 144, y = 89, (iii) x = 560, y = 126.
- Ü39. Beweisen Sie, dass $n^5 n$ für jede natürliche Zahl n durch fünf teilbar ist, einerseits durch vollständige Induktion, und andererseits durch geschickte Zerlegung in Faktoren.
- A40. Hausaufgabe, bitte vor Beginn der 8. Übung (oder im Lernraum) unter Angabe von Name, Matrikelnummer, Übungsgruppe und Übungsleiter abgeben. Für $i \in \{1, 2, 3, 4, 5, 6, 7\}$ bezeichne a_i die i-te Ziffer Ihrer Matrikelnummer. Erzeugen Sie zunächst die Zahlen $x = 100a_1 + 10a_2 + a_3$ und $y = 100a_5 + 10a_6 + a_7$.
 - (a) Bestimmen Sie die Teilermengen T(x) und T(y), und zeichnen Sie jeweils ein Teilerdiagramm.
 - (b) Berechnen Sie den größten gemeinsamen Teiler von x und y mittels des Euklidischen Algorithmus'. Geben Sie eine Darstellung ggT(x,y) = ax + by mit $a,b \in \mathbb{Z}$ an.
- H41. Für eine Menge $M \subseteq \mathbb{N}$ bezeichnen wir mit sup M das *Supremum* von M, also die kleinste Zahl $y \in \mathbb{N}$ die x < y für alle $x \in M$ erfüllt.
 - (a) Sei $M \subseteq \mathbb{N}_{>0}$ mit |M| = 6 und sup M = 14. Zeigen Sie, dass es zwei verschiedene, nichtleere Teilmengen $A, B \subseteq M$ gibt, sodass $\sum_{x \in A} x = \sum_{x \in B} x$ gilt.

(b) Sei $M \subseteq \mathbb{N}_{>0}$ mit |M| = 1008 und sup M = 2014. Zeigen Sie, dass es zwei verschiedene Zahlen $x, y \in M$ gibt, sodass entweder $x \mid y$ oder $y \mid x$ gilt.

<u>Hinweis:</u> Verwenden Sie das Schubfachprinzip.

H42. Wie viele gekürzte Brüche $\frac{a}{b}$ mit $0 < \frac{a}{b} \le 1$, b < 15, und $a, b \in \mathbb{N}$ gibt es?