IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2017**

EEE/EIE PART II: MEng, BEng and ACGI

Corrected Copy

COMMUNICATION SYSTEMS

Monday, 5 June 10:00 am

Time allowed: 2:00 hours

Q 3a (iv) correction

There are THREE questions on this paper.

Answer ALL questions. Q1 carries 40% of the marks. Questions 2 and 3 carry equal marks (30% each).

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s):

D. Gunduz

Second Marker(s): J.A. Barria

EXAM QUESTIONS

Information for Students

Pair		
Number	x(t)	X(f)
1.	$\Pi\left(\frac{t}{\tau}\right)$	$ au\sin au f$
2.	2W sinc 2Wt	$\Pi\left(\frac{f}{2W}\right)$
3.	$\Lambda\left(\frac{t}{\tau}\right)$	$ au\sin^2 au f$
4.	$\exp(-\alpha t)u(t), \alpha > 0$	$\frac{1}{\alpha + j2\pi f}$
5.	$t\exp(-\alpha t)u(t), \alpha > 0$	$\frac{1}{(\alpha+j2\pi f)^2}$
6.	$\exp(-\alpha t), \alpha > 0$	$\frac{2\alpha}{\alpha^2 + (2\pi f)^2}$
7.	$e^{-\pi(t/\tau)^2}$	Te-π(ft) ²
8.	$\delta(t)$	1 1
9.	1	$\delta(f)$
10.	$\delta(t-t_0)$	$\exp(-j2\pi f t_0)$
11.	$\exp(j2\pi f_0 t)$	$\delta(f-f_0)$
12.	$\cos 2\pi f_0 t$	$\frac{1}{2}\delta(f-f_0) + \frac{1}{2}\delta(f+f_0)$
13.	$\sin 2\pi f_0 t$	$\frac{\frac{1}{2}\delta(f - f_0) + \frac{1}{2}\delta(f + f_0)}{\frac{1}{2j}\delta(f - f_0) - \frac{1}{2j}\delta(f + f_0)}$
14.	u(t)	$(j2\pi f)^{-1} + \frac{1}{2}\delta(f)$
15.	sgn t	$(j\pi f)^{-1}$
16.	$\frac{1}{\pi t}$	$-j \operatorname{sgn}(f)$
17.	$\hat{x}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(\lambda)}{t - \lambda} d\lambda$	$-j \operatorname{sgn}(f)X(f)$
18.	$\sum_{m=-\infty}^{\infty} \delta(t-mT_s)$	$f_s \sum_{m=-\infty}^{\infty} \delta(f - mf_s),$
		$f_s = T_s^{-1}$

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

$$\tan(\frac{\pi}{2} - x) = \cot x$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x} = \frac{2\cot x}{\cot^2 x - 1} = \frac{2}{\cot x - \tan x}$$

$$\tan \frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{1 + \cos x}} = \frac{\sin x}{1 + \cos x} = \frac{1 - \cos x}{\sin x}$$

$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$$

$$\cos x \sin y = \frac{1}{2} [\sin(x+y) - \sin(x-y)]$$

$$\sin x \sin y = \frac{1}{2} [\cos(x+y) - \cos(x+y)]$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

$$\sin x + \sin y = 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$$

$$\sin x - \sin y = 2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}$$

$$\cos x + \cos y = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$$

$$\cos x - \cos y = -2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$$

Name	of Th	COPORT

Name of Theorem		
 Superposition (a₁ and a₂ arbitrary constants) 	$a_1 x_1(t) + a_2 x_2(t)$	$a_1 X_1(f) + a_2 X_2(f)$
2. Time delay	$x(t=t_0)$	$X(f)e^{-j2\pi j i_0}$
3a. Scale change	x(at)	$ a ^{-1}X\left(\frac{f}{a}\right)$
b. Time reversal	x(-t)	X(-f) = X * (f)
4. Duality	X(t)	x(-f)
5a. Frequency translation	$x(t)e^{i\omega_{i}t}$	$X(f-f_0)$
b. Modulation	$x(t)\cos \omega_0 t$	$\frac{1}{2}X(f-f_0) + \frac{1}{2}X(f+f_0)$
6. Differentiation	$\frac{d^n x(t)}{dt^n}$	$(j2\pi f)^n X(f)$
7. Integration	$\int_{-\pi}^{t} x(t') dt'$	$(j2\pi f)^{-1}X(f) + \frac{1}{2}X(0)\delta(f)$
8. Convolution	$\int_{-\infty}^{\infty} x_1(t-t')x_2(t') dt'$	
	V — %	$X_1(f)X_2(f)$
	$= \int_{-\infty}^{\infty} x_1(t') x_2(t-t') dt'$	
9. Multiplication	$x_1(t)x_2(t)$	$\int_{-\infty}^{\infty} X_1(f-f')X_2(f') df'$
		$= \int_{-\infty}^{\infty} X_1(f') X_2(f - f') df'$

Differentiation Rule of Leibnitz Let $F(z) = \int_{a(z)}^{b(z)} f(x, z) dx$. Then we have

$$\frac{dF(z)}{dz} = \frac{db(z)}{dz}f(b(z), z) - \frac{da(z)}{dz}f(a(z), z) + \int_{a(z)}^{b(z)} \frac{\partial f(x, z)}{\partial z} dx$$

Joint Gaussian density

The joint probability density function (pdf) of two correlated Gaussian random variables X and Y is given by

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_X)^2}{\sigma_X^2} - \frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} + \frac{(y-\mu_Y)^2}{\sigma_Y^2}\right]}.$$

where $\mu_X = E[X]$, $\mu_Y = E[Y]$ are the mean values, σ_X and σ_Y are the standard deviation of X and Y, respectively, and ρ is the correlation coefficient defined as

$$\rho = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}.$$

[2]

ii) Write down the definitions of baseband and passband signals.

[2]

iii) The spectrum of three signals x(t), y(t), and z(t) are depicted below. Which of these (there may be multiple) may represent a real baseband signal? Explain your answer.

[3]

iv) Consider a binary frequency shift keying (FSK) communication system, in which bit 0 is transmitted with signal $A\cos(2\pi f_0 t)$ and bit 1 is transmitted with signal $A\cos(2\pi f_1 t)$.

Draw the diagram of a coherent FSK receiver for this system, and explain the function of each component of the receiver.

[5]

- b) State whether each of the following statements are true or false, and discuss your answer:
 - i) $R_X(t,s) = \sin(t+s)$ cannot be the autocorrelation function of a random process.

[2]

ii) If the input to a linear time-invariant (LTI) system is wide sense stationary, so is the output.

[2]

iii) Let $\Phi(x)$ denote the cumulative distribution function of a standard Gaussian random variable, and $Q(x) \triangleq \frac{1}{\sqrt{2\pi}} \int_x^{\infty} e^{-t^2/2} dt$. The following relation between these two functions hold for any real x:

$$\Phi(x) + Q(x) = 1.$$

[2]

Consider two independent Gaussian random variables X and Y. Suppose X has a mean value of -2 and variance 2, i.e., $X \sim \mathcal{N}(-2,2)$, while Y has a mean value of 1 and variance 3, i.e., $Y \sim \mathcal{N}(1,3)$.

Express the following probabilities in terms of the Q function.

i)
$$P\{-5 < X < 2\}$$
. [2]

ii)
$$P\{X^2 - 2X > 3\}$$
. [3]

iii)
$$P\{X \cdot Y - Y + 3X < 3\}.$$
 [4]

iv)
$$P\left\{\frac{X+2}{\sqrt{2}} > \frac{Y-1}{\sqrt{3}}\right\}$$
. [3]

d) Assume that X(t) is a real wide sense stationary (WSS) random process whose power spectral density (PSD) is given as follows:

$$S_X(f) = \frac{2\alpha}{\alpha^2 + (2\pi f)^2} + \frac{1}{2} \left[\delta(f - \frac{1}{4}) + \delta(f + \frac{1}{4}) \right] + 3\delta(f)$$

for some $\alpha > 0$.

- i) What is the second moment of the random variable X(1) X(-1)?

 (Hint: Second moment of a random variable Y is given by $E[Y^2]$.) [5]
- ii) What is the second moment of the following random variable?

$$X(2) + X(0) - X(-2)$$

[5]

2. a) Consider the random process

$$X(t) = Y(t)\cos(2\pi f_{\varepsilon}t) - Z(t)\sin(2\pi f_{\varepsilon}t),$$

where Y(t) and Z(t) are two independent random processes.

- i) Find the conditions on Y(t) and Z(t) under which the mean of X(t) is shift-invariant, i.e., E[X(t)] does not depend on t. [4]
- ii) Assume that both Y(t) and Z(t) are zero-mean processes, i.e., E[Y(t)] = E[Z(t)] = 0, $\forall t$.

Find the conditions on Y(t) and Z(t) under which X(t) is a wide sense stationary (WSS) process.

iii) Assume that both Y(t) and Z(t) are zero-mean WSS processes, and their autocorrelation functions are identical, i.e.,

E[Y(t)] = E[Z(t)] = 0, $\forall t$, and $R_Y(\tau) = R_Z(\tau)$, $\forall \tau$. If the power spectral density (PSD) of Y(t) is $S_Y(f)$, find the PSD of X(t) in terms of $S_Y(f)$.

iv) Assume that both Y(t) and Z(t) are zero-mean white Gaussian noise processes with PSD $N_o/2$.

What is the PSD of X(t)? Is X(t) strict sense stationary?

- b) Consider a binary communication system. When a 0 is transmitted, probability of error is p_0 ; while when a 1 is transmitted, probability of error is p_1 .
 - i) Assuming that bit 0 is transmitted with probability q_0 , if the decoder outputs 1, what is the probability of the input being 0? Express this probability in terms of q_0 , p_0 and p_1 .
 - ii) Consider using (7,4) Hamming code to communicate over this channel. The generator matrix of this code is given by

Remember that the codeword for any 4-bit message $\mathbf{u} = [u_1 \ u_2 \ u_3 \ u_4]$ is generated by $\mathbf{x} = \mathbf{u} \cdot \mathbf{G}$.

If we transmit message $\mathbf{u} = [0\ 0\ 0\ 0]$ using this code, what is the probability of an error at the receiver? If $p_0 = 10^{-3}$ and $p_1 = 10^{-1}$, find the approximate value of this block error probability.

iii) Assume that $p_0 = p_1 = 10^{-3}$. What is the average error probability if the 4-bit message sequences are generated as independent outcomes of a Bernoulli distribution, such that $Pr(u_i = 1) = 0.3$, for i = 1, ..., 4. For example, $Pr\{u = [0111]\} = 0.7 \times 0.3^3$.

[6]

[3]

[3]

[3]

[6]

[5]

3. a) Consider a binary communication system, where bit "0" is transmitted with a pulse of amplitude 0, and bit "1" is transmitted with a pulse of amplitude A. The channel is an additive Laplacian noise channel: For an input signal X, where $X \in \{0,A\}$, the output Y is given by

$$Y = X + W$$
,

where W is the zero-mean additive noise component, which is independent of X and has the following probability density function (pdf):

$$f_W(w) = \frac{1}{2b}e^{-\frac{|w|}{b}}.$$

Assume that the detection threshold at the receiver is $T \in (0,A)$; that is, if $Y \ge T$, the transmitted bit is estimated as 1, while if Y < T, it is estimated as 0.

- Given that a bit 0 was sent, derive the error probability P_{e0} in terms of T and b.
- ii) Given that a bit 1 was sent, derive the error probability P_{e1} in terms of A, T and b. [3]
- iii) If a bit 0 is sent with probability p_0 and a bit 1 is sent with probability p_1 , write down the total error probability P_e in terms of p_1 , P_{e0} and P_{e1} .
- iv) Assume $p_1 = 2/3$, A = 2 and $b = 1/\ln 2$. Find the detection threshold T that minimizes P_e , in terms of A.

 What is the corresponding error probability?
- b) Consider a language which has only 3 letters in its alphabet: {x,y,z}. This language has 6 words in total: {xxx,xyz,yyy,yzx,zzz,zxy}. We take a sufficiently long book written in this language, and choose a random word. The probabilities of different words are given as follows:

Word	xxx	xyz	ууу	yzx	ZZZ	zxy
Probability	0.3	0.25	0.2	0.15	0.05	0.05

- i) What is the word entropy of this language; that is, if W is the random variable denoting the randomly chosen word, what is H(W)? [2]
- ii) If you choose a random letter from the book, what is the probability of encountering each letter? What is the entropy of the randomly chosen letter? [3]
- iii) Among i) and ii) above, which one has a higher entropy per letter?

 Explain why the two numbers are different?

 [3]
- iv) Consider removing the last letter of each word. What is the word entropy of this new language? What would be the advantages/ disadvantages of this new language compared to the original one? [4]

[3]

[2]

