Institut für Regelungstechnik

TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG

Prof. Dr.-Ing. M. Maurer

Prof. Dr.-Ing. W. Schumacher Prof. em. Dr.-Ing. W. Leonhard

Hans-Sommer-Str. 66 38106 Braunschweig Tel. (0531) 391-3836

Klausuraufgaben		Grur	ndlagen der	17.02.2010		
Name:		Vorname:				
MatrNr.:			Studiengang:			
E-Mail	(optional):					
1:	2:	3:	4:	5:	6:	7:
Summe:					Note:	

Alle Lösungen müssen nachvollziehbar bzw. begründet sein.

Für jede Aufgabe ein neues Blatt verwenden.

Keine Rückseiten beschreiben.

Keine Blei- oder Rotstifte verwenden.

Zugelassene Hilfsmittel:

• Handschriftliche Formelsammlung, zwei Seiten DIN-A4, doppelseitig beschrieben.

Einverständniserklärung

Ich erkläre mich einverstanden, dass meine Note mit Matrikelnummer im Institut für Regelungstechnik ausgehängt wird.

Datum, Unterschift

1 Gleichstromnetzwerk

Das gegebene Gleichstromnetzwerk bestehe aus einer Stromquelle I_0 , einer Spannungsquelle U_0 , sowie 5 Widerständen, von denen 4 in einer Brückenschaltung angeordnet sind. Die Klemmen A und B seien zunächst unbeschaltet (Leerlauf).

a) Berechnen Sie mit Hilfe des Superpositionsprinzips den Strom I_4 (7 Punkte).

Zwischen den Klemmen A und B wird nun ein Lastwiderstand R_L angeschlossen.

b) Bestimmen Sie allgemein den Wert von R_3 in Abhängigkeit der anderen Widerstände, so dass durch R_L kein Strom fließt. (7 Punkte).

Es seien folgende Werte gegeben: $R_1=6R,\,R_2=2R,\,R_4=R,\,R_5=R,\,R_L=3R$

- c) Welchen Wert nimmt R_3 unter den nun geltenden Bedingungen an? (1 Punkt)
- d) Es seien folgende Zahlenwerte gegeben: $R = 30\Omega$, $U_0 = 30V$, $I_0 = 14A$. Welche Leistung wird an R_4 in diesem Fall umgesetzt? (3 Punkte)

2 Gleichstromnetzwerk

Gegeben ist obiges Gleichstromnetzwerk mit den Spannungsquellen U_1 , U_2 und der Stromquelle I_0 . Die Klemmen A und B seien zunächst nicht beschaltet (Leerlauf).

- a) Berechnen Sie mit Hilfe des Maschenstromverfahrens allgemein die Leerlaufspannung bezüglich der Klemmen A und B. Vereinfachen Sie dazu das Netzwerk auf 3 Maschen (11 Punkte).
- b) Berechnen und skizzieren Sie bezüglich der Klemmen A und B die Ersatzsspannungsquelle mit der Quelle U_{ers} und dem Innenwiderstand R_i (7 Punkte).

Nun werde an das Netzwerk zwischen den Klemmen A und B ein Lastwiderstand R_L angeklemmt.

- c) Das Netzwerk soll mit maximalem Wirkungsgrad betrieben werden. Wie nennt sich dieser Betriebszustand? Leiten Sie die erforderliche Bedingung her, sodass die im Lastwiderstand umgesetzte Leistung P_{RL} maximal wird. (5 Punkte)
- d) Geben Sie den für diesen Betriebszustand maximal möglichen Wirkungsgrad η_{max} an und begründen Sie ihre Antwort. (2 Punkte)

Nun wird an das Netzwerk an den Klemmen A-B ein sogenanntes R-2R-Netzwerk angeschlossen. Das R-2R-Netzwerk hat die allgemeine Form:

Wir betrachten es für n=1.

e) Welchen Wert muss R annehmen, damit der in c) gewünschte Betriebszustand erfüllt wird? (2 Punkte)

3 Kondensatornetzwerk

An dem gegebenen kapazitiven Spannungsteiler C_1 , C_2 , der über die Gleichspannungsquelle U_0 versorgt wird, wird die Spannung U_2 gemessen. Die Schalter S1 und S2 sind geöffnet.

Gegeben: $C_1 = 100nF$

a) Bei einer Quellenspannung von $U_0 = 100V$ soll die Messspannung $U_2 = 10V$ betragen. Berechnen Sie den notwendigen Wert der Kapazität C_2 allgemein und zahlenmäßig. (3 Punkte)

Der kapazitive Teiler wird zur Bestimmung einer unbekannten ladungsfreien Kapazität C_x eingesetzt. Die Bestimmung soll unabhängig von der Quellenspannung U_0 sein. Dazu wird die Spannung U_2 vor und nach dem Schließen des Schalters S_1 gemessen.

Verwenden Sie folgende Bezeichnungen:

- Messwert bei offenem Schalter: U_{20}
- Messwert bei geschlossenem Schalter: U_{2x}
- b) Stellen Sie die Gleichung zur Bestimmung von C_x in Abhängigkeit von C_1 , C_2 , U_{20} und U_{2x} auf. (4 Punkte)
- c) Berechnen Sie C_x für folgende Zahlenwerte: $U_{20} = 9V$, $U_{2x} = 3V$ (1 Punkt)

Für die Messung in c) sind die Ladungen auf den Kapazitäten zu berechnen:

- d) Q_1 und Q_2 bei geöffnetem Schalter S_1 . (2 Punkte)
- e) Q_1^* und Q_2^* und Q_x bei geschlossenem Schalter S_1 . (3 Punkte)
- f) Der Schalter S_1 wird nun wieder geöffnet und danach C_x durch Schließen des Schalters S_2 über den Widerstand R entladen. Leiten Sie die Entladefunktion des Kondensators $u_c(t) = U_{2x}(e^{-\frac{1}{RC}t})$ her und skizzieren Sie den Verlauf. (7 Punkte)
- g) Welchen Wert muss R annehmen, damit die Spannung an C_x sich nach 1s halbiert hat? Stellen Sie zunächst die Gleichung in allgemeiner Form für R auf und ermitteln Sie dann den Zahlenwert. (3 Punkte) Hinweis:

$$\frac{1}{\ln(0,5)} \approx -1,44$$

4 Kondensator

Die gegebene Kondensatoranordnung besteht aus drei kreisförmigen Metallplatten mit dem Radius r und trägt die Ladung Q.

Zwischen den Platten 1 und 2 befindet sich ein homogenes Dielektrikum mit $\epsilon_{r1} = const.$ Das Material zwischen den Platten 2 und 3 hat eine von x abhängige Dielektrizitätszahl ϵ_{r2} nach folgender Funktion:

$$\epsilon_{r2} = \frac{\epsilon_{r1}}{2} \left(1 + \frac{2(x-a)}{a} \right)$$

a) Bestimmen Sie allgemein den Verlauf der elektrischen Feldstärken E_1 und E_2 zwischen den Plattenpaaren. Drücken Sie E_2 als Funktion von x und E_1 aus. (5 Punkte)

Gegeben sind folgende Zahlenwerte:

$$Q = 20nC, \ a = 2cm, \ r = 6cm, \ \epsilon_{r1} = 4, \ \epsilon_0 = \frac{10^{-9}}{36\pi} \frac{As}{Vm}$$

b) Berechnen Sie zahlenmäßig den Verlauf E(x) für x=0, x=a und x=2a und skizzieren Sie den Verlauf maßstäblich. (5 Punkte)

Folgende Größen sind zahlenmäßig zu berechnen:

c) Die Teilspannungen U_{12} und U_{23} sowie die Gesamtspannung U_{13} über der Anordnung. (7 Punkte)

Hinweis:

$$\int \frac{1}{ax+b} dx = \frac{1}{a} ln(ax+b)$$

$$ln(3) \approx 1, 1$$

5 Elektromagnetismus

Zwei parallele Leiter der Länge l=100m, die entsprechend der Abbildung senkrecht zur x-y-Ebene im Abstand von 4a verlaufen, werden zeitgleich von den Strömen I_1 und I_2 in angegebener Richtung durchflossen.

Gegeben: $\mu_0 = 4\pi \cdot 10^{-7} \frac{Vs}{Am}, \; I_1 = 10A, \; I_2 = 20A, \; a = 10^{-2}m$

- a) Berechnen Sie die Beträge der Kräfte $\overrightarrow{F_1}$ und $\overrightarrow{F_2}$ allgemein und zahlenmäßig. (4 Punkte)
- b) Ziehen sich die Leiter an oder stoßen sie sich ab? Begründen Sie Ihre Antwort (z.B. mit einer Skizze). (2 Punkte)

Im Punkt P, der senkrecht im Abstand 3a über dem Leiter 2 liegt, soll nun die resultierende Feldstärke $\overrightarrow{H_p}$ bestimmt werden.

- c) Zeichnen Sie in einer Skizze qualitativ die Richtung des $\overrightarrow{H_p}$ -Vektors ein. (3 Punkte)
- d) Berechnen Sie den Betrag der x- bzw y-Komponente von $\overrightarrow{H_p}$ (H_{px}, H_{py}) . (9 Punkte)

Die Anordnung soll um einen zu Leiter 1 und 2 parallelen dritten Leiter so erweitert werden, dass der Punkt P feldfrei wird.

- e) Skizzieren Sie die möglichen Anordnungen mit zugehöriger Stromrichtung für den Leiter 3. (2 Punkte)
- f) Ermitteln Sie allgemein den erforderlichen Abstand b des Leiters 3 vom Punkt P als Funktion von H_p und I_3 . (1 Punkt)

6 Magnetischer Kreis

Der Eisenkern des magnetischen Kreises hat die konstante Permeabilität μ_r und eine quadratische Querschnittsfläche. In die Spule N_1 fließt der Gleichstrom I_1 in der vorgegebenen Richtung, die Richtung des Stromes I_2 in der Spule N_2 ist nicht bekannt. An den Luftspalten tritt keine Streuung auf.

a) Zeichnen Sie das vollständige Ersatzschaltbild des magnetischen Kreises und geben Sie die Gleichungen für alle Komponenten an. Verwenden Sie zur Berechnung die gepunktete Mittellinie. (11 Punkte)

Es gelte von hier an zur Vereinfachung $l/2 >> \delta_1, \delta_2, \delta_3$.

- b) Vereinfachen Sie die Gleichungen aus a) unter obiger Annahme und geben Sie die magnetischen Widerstände in den Eisenanteilen als Vielfache von R_{fe} an. R_{fe} beschreibe dabei allgemein den Widerstand des Eisenkerns auf der Länge l. (3 Punkte)
- c) Die Spule N_2 wird im Leerlauf betrieben (keine Quellen oder Verbraucher angeschlossen). Welche Spannung U_{i12} wird in der Spule N_2 nach Abklingen der Einschwingvorgänge induziert? Begründen Sie Ihre Antwort. (1 Punkt)

Die in Luftspalt δ_3 wirkende Kraft soll zu Null gemacht werden.

- d) Stellen Sie in einer Skizze des Schenkels mit der Wicklung N_2 die erforderliche Richtung des Stromes I_2 durch die Spule N_2 sowie die Richtung des Flusses Φ_2 durch den Schenkel dar. (2 Punkte)
- e) Gegeben sind:

$$\Theta_2 = 3\Theta_1, \ \delta_2 = 4\delta_1, \ \mu_r = 600, \ l = 100mm$$

Berechnen Sie für den oben genannten Fall, dass die Kraft im Luftspalt δ_3 gleich Null ist, die Luftspaltbreiten δ_1 und δ_2 . (9 Punkte)

7 Komplexe Wechselstromrechnung

Gegeben:

$$\underline{U}_0 = 10V \cdot e^{j0}, R_2 = 25\Omega, C = 130nF, f = \frac{500}{\pi}kHz.$$

Eine Wechselspannungsquelle \underline{U}_0 wird über ein Anpassungsnetzwerk (L, R_1, C) mit einem Widerstand R_2 belastet. Bei gegebener Kapazität C sollen die Elemente L und R_1 so dimensioniert werden, dass die Anpassung zwischen \underline{U}_0 und \underline{U}_{R2} ohne Spannungsverlust erfolgt und die Spannung \underline{U}_{R2} eine Phasendrehung von 90° nacheilend zu \underline{U}_0 hat. Der Schalter S ist geschlossen.

- a) Zeichnen Sie das vollständige Zeigerdiagramm mit allen Strömen und Spannungen unter Berücksichtigung der oben genannten Randbedingungen. Geben Sie die Beträge der Größen \underline{I}_1 , \underline{U}_L , \underline{U}_{R1} sowie den Phasenwinkel zwischen \underline{U}_0 , und \underline{I}_1 an. (Maßstab: $1V \cong 1cm$, $0, 1A \cong 1cm$) (11 Punkte)
- b) Durch ein zur Spannungsquelle \underline{U}_0 parallel geschaltetes Bauelement soll der Phasenwinkel zwischen \underline{U}_0 und \underline{I}_1 zu 0° kompensiert werden. Bestimmen Sie die Art und Größe des erforderlichen Bauelements. (7 Punkte)

Verwenden Sie unabhängig von den Aufgabenteilen a) und b) folgende Werte zur weiteren Berechnung:

$$|\underline{U}_{R1}|=7,8V,\,|\underline{U}_L|=40V,\,|\underline{I}_1|=1,3A$$

- c) Bestimmen Sie die erforderlichen Werte für R_1 und L. Geben Sie die Induktivität vollständig gekürzt in μH an. (3 Punkte)
- d) Im Stromkreis nach Aufgabenteil b) wird nun der Schalter S geöffnet. Leiten Sie die Gleichung zur Bestimmung der Resonanzfrequenz her und bestimmen Sie die Resonanzfrequenz ω_0 des Schwingkreises zahlenmäßig. Um welchen Typ Schwingkreis handelt es sich? Wird die Resonanzfrequenz gesperrt oder durchgelassen? (6 Punkte)