

ISFAHAN UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF MATHEMATICAL SCIENCES

Applied Linear Algebra Assignment #4

Due Date: 14 Tir 1400

- 1. Assume that $A, B, C \in \mathbb{R}^{n \times n}$ with B invertible, and $A = BCB^{-1}$. Prove that $\det(A) = \det(C)$.
- 2. Show that if *A* is a 3×5 matrix, then $det(A^T A) = 0$. Note: you can't distribute the det, because *A* and A^T are not square!
- 3. Consider the system of linear equations

$$\begin{cases} kx + y + z = 1\\ x + ky + z = 1\\ x + y + kz = 1 \end{cases}$$

For what value(s) of k does this system have

- (i) a unique solution?
- (ii) no solution?
- (iii) infinitely many solutions?
- 4. a) Find square matrices A, B such that $det(A+B) \neq det(A) + det(B)$.
 - b) What possible determinant values does an orthogonal matrix have?
- 5. Let *A* and *B* be n×n matrices. If A + B is invertible, show that $A(A + B)^{-1}B = B(A + B)^{-1}A$.
- 6. Let *A* be an $n \times n$ matrix. If AB = BA for all invertible matrices *B*, show that A = cI for some scalar *c*.
- 7. a) Let trace(A) be the sum of all diagonal entries of the matrix A. For matrices $A_{m \times n}$ and $B_{n \times m}$, prove that trace(AB) = trace(BA).
 - b) Prove that for every $n \times n$ matrix A, the equation $AX XA = I_{n \times n}$ has no solution.
- 8. Let $A: \mathbb{R}^l \to \mathbb{R}^k$ and $B: \mathbb{R}^k \to \mathbb{R}^l$. Prove that

 $rank(A) + rank(B) - l \le rank(AB) \le min\{rank(A), rank(B)\}.$