

Medidas **Informais de qualidade de um esquema** relacional

Semántica dos atributos das relações

Mais fácil explicar a semántica de uma relação melhor o projeto do esquema relacional. O que significa que não se pode (deve) combinar os atributos de múltiplos tipos de entidades ou tipos de associações numa relação.

Um esquema simplificado do banco de dados relacional EMPRESA.

EMPREGADO

ENOME	SNN	DATANASC	ENDERECO	DNUMERO
Smith,John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4
Narayan, Remesh K.	666884444	1962-09-15	975 Fire Oak, Humble, TX	5
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1

DEPARTAMENTO

DNOME	DNUMERO	DGERSSN
Pesquisa	5	333445555
Administração	4	987654321
Diretoria	1	888665555

TRABALHA EM

SNN	PNUMERO	HORAS
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	null

DEPT_LOCALIZACOES

DNUMERO	DLOCALIZACAO
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

PROJETO

PNOME P	NUMERO	PLOCALIZACAO	DNUM
ProdutoX	1	Bellaire	5
ProdutoY	2	Sugarland	5
ProdutoZ	3	Houston	5
Automação	10	Stafford	4
Reorganização	20	Houston	1
NovosBenefício	s 30	Stafford	4

Redução de valores redundantes nas tuplas.

Anomalias de atualização:

- inserção

- exclusão
- atualização

valores nulos en tuplas

10% empregados têm salas — Não necessário ter na relação empregado, o atributo Nro_SALA - melhor EMP_SALA(SNN, NRO_SALA)

Tuplas "Spurius"

Junções sem perda de informação emp_locs (ename, plocation) emp-proj 1 (ssn, pnumber, hours, pname, plocatión)

por emp-proj

Dois esquemas de relações que sofrem anomalias de atualização

Exemplo de estado para EMP_DEPT e EMP_PROJ resultantes da aplicação do NATURAL JOIN nas relações da Figura 10.2. Elas podem ser armazenadas como relações básicas por razões de desempenho.

EMP_DEPT	•			,	redundância	1
ENOME	SSN	DATANASC	ENDERECO	DNUMERO	DNOME	DGERSSN
Smith,John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Pesquisa	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Pesquisa	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administracao	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administracao	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Pesquisa	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Pesquisa	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administracao	987654321
Borg,James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Sede Administrativa	888665555

EMP_PROJ /		re	dundância	redui	ndância
SSN	PNUMERO	HORAS	ENOME	PNOME	PLOCALIZACAO
123456789	1	32.5	Smith,John B.	ProdutoX	Bellaire
123456789	2	7.5	Smith, John B.	ProdutoY	Sugarland
666884444	3	40.0	Narayan, Ramesh K.	ProdutoZ	Houston
453453453	1	20.0	English, Joyce A.	ProdutoX	Bellaire
453453453	2	20.0	English, Joyce A.	ProdutoY	Sugarland
333445555	2	10.0	Wong, Franklin T.	ProdutoY	Sugarland
333445555	3	10.0	Wong, Franklin T.	ProdutoZ	Houston
333445555	10	10.0	Wong, Franklin T.	Automação	Stafford
333445555	20	10.0	Wong, Franklin T.	Reorganização	Houston
999887777	30	30.0	Zelaya, Alicia J.	NovosBenefícios	Stafford
999887777	10	10.0	Zelaya, Alicia J.	Automação	Stafford
987987987	10	35.0	Jabbar, Ahmad V.	Automação	Stafford
987987987	30	5.0	Jabbar, Ahmad V.	Novos benefícios	Stafford
987654321	30	20.0	Wallace, Jennifer S.	Novos benefícios	Stafford
987654321	20	15.0	Wallace, Jennifer S.	Reorganização	Houston
888665555	20	null	Borg,James E.	Reorganização	Houston

Projeto particularmente pobre para a relação EMP_PROJ . (a) Os dois esquemas de relações EMP_LOCS e EMP_PROJ1. (b) O resultado da projeção de EMP_PROJ, da .4, para as relações EMP_LOCS e EMP_PROJ1

EMP_PROJ1

SSN	PNUMERO	HORAS	PNOME	PLOCALIZACAO
	primária (p.k.)	,		

(b) EMP_LOCS

ENOME	PLOCALIZACAO	
Smith, John B.	Bellaire	
Smith, John B.	Sugarland	
Narayan, Ramesh K.	Houston	
English, Joyce A.	Bellaire	
English, Joyce A.	Sugarland	
Wong, Franklin T.	Sugarland	
Wong, Franklin T.	Houston	
Wong, Franklin T.	Stafford	
Zelaya, Alicia J.	Stafford	
Jabbar, Ahmad V.	Stafford	
Wallace, Jennifer S.	Stafford	
Wallace, Jennifer S.	Houston	
Borg, James E.	Houston	

EMP_PROJ1

SSN	PNUMERO	HORAS	PNOME	PLOCALIZACAO
123456789	1	32.5	Produto X	Bellaire
123456789	2	7.5	Produto Y	Sugarland
666884444	3	40.0	Produto Z	Houston
453453453	1	20.0	Produto X	Bellaire
453453453	2	20.0	Produto Y	Sugarland
333445555	2	10.0	Produto Y	Sugarland
333445555	3	10.0	Produto Z	Houston
333445555	10	10.0	Automação	Stafford
333445555	20	10.0	Reorganização	Houston
999887777	30	30.0	Novos benefícios	Stafford
999887777	10	10.0	Automação	Stafford
987987987	10	35.0	Automação	Stafford
987987987	30	5.0	NovosBenefícios	Stafford
987654321	30	20.0	NovosBenefícios	Stafford
987654321	20	15.0	Reorganização	Houston
888665555	20	null	Reorganização	Houston

Resultado da aplicação de NATURAL JOIN nas tuplas acima da linha pontilhada de EMP_PROJ1 e EMP_LOCS da Figura 10.5. As tuplas ilegítimas geradas estão marcadas com asteriscos.

	NSS	PNÚMERO	HORAS	PNOME	<u>PLOCALIZAÇÃO</u>	ENAME
	123456789	1	32.5	ProdutoX	Bellaire	John Smith
*	123456789	1	32.5	ProdutoX	Bellaire	Joyce English
	123456789	2	7.5	ProdutoY	Sugarland	John Smith
*	123456789	2	7.5	ProdutoY	Sugarland	Joyce English
*	123456789	2	7.5	ProdutoY	Sugarland	Franklin Wong
	666884444	3	40.0	ProdutoZ	Houston	Ramesh Narayan
*	666884444	3	40.0	ProdutoZ	Houston	Franklin Wong
*	453453453	1	20.0	ProdutoX	Bellaire	John Smith
	453453453	1	20.0	ProdutoX	Bellaire	Joyce English
*	453453453	2	20.0	ProdutoY	Sugarland	John Smith
	453453453	2	20.0	ProdutoY	Sugarland	Joyce English
*	453453453	2	20.0	ProdutoY	Sugarland	Franklin Wong
*	333445555	2	10.0	ProdutoY	Sugarland	John Smith
*	333445555	2	10.0	ProdutoY	Sugarland	Joyce English
	333445555	2	10.0	ProdutoY	Sugarland	Franklin Wong
*	333445555	3	10.0	ProdutoZ	Houston	Ramesh Narayan
	333445555	3	10.0	ProdutoZ	Houston	Franklin Wong
	333445555	10	10.0	Automação	Stafford	Franklin Wong
*	333445555	20	10.0	Reorganização	Houston	Ramesh Narayan
	333445555	20	10.0	Reorganização	Houston	Franklin Wong

<u>NORMALIZAÇÃO</u>

- identificadores ou chaves candidatas
- CHAVE
- consistência e inserção, remoção anormais.

Temos um conjunto de dados coletados a partir de entrevistas ao usuário.

¿Cómo escolher as relações apropriadas no esquema relacional ? ¿Cómo escolher os tipos de registros e enlaces no modelo de rede ?

Projeto ascendente = Análise de relatórios ou dados --> Relações
Os problemas estão relacionados com o fato de um valor de um atributo numa relação - determina completamente o valor de outro atributo.

Exemplo:

Temos dados de CONSTRUTOR ESTILO Y PREÇO que formam uma relação.

CASAS: <CONSTRUTOR, ESTILO, PRECIO>

CONSTRUCTOR	ESTILO	PREÇO
WEW Ltda ,	Colonial	8,500.00
S e A S.A	Bangaló	1,500.00
M e M Ltda	Colonial	8,500.00
S e A S.A	Rústico	1,400.00
S e A S.A	Colonial	8,500.00
M e M Ltda	Rústico	1,400.00

Propriedades indesejáveis ?

<u>Introduzido por Codd no seu artigo inicial 1970.</u>

1972 Foram expostos com detalhes: As 2a e 3a. FN

1974 FNBC

1977 Fagin estabelece. 4a. FN

1979 Fagin estabelece 5a FN

Processo passo a passo reversível, de mudar uma determinada relação por sucessivas coleções de relações, as quais tenham progressivamente relações mais simples e regulares (conceito inicial)

Este processo segue: Forma não normalizada 1a FN → 2a FN → 3a FN → FNBC → 4a FN → 5a FN

OBJETIVO

Evitar anomalías de inserção, atualização e remoção.

UTILIZAÇÃO

Como ferramenta de projeto Como validação do modelo conceitual

Dois processos diferentes para chegar num esquema relacional normalizado

- Decomposição
- Síntese

<u>Normalização</u>

1A FN—— Definição do modelo relacional Novos modelos NF não seguem esta regra— OBJETOS COMPLEXOS

Exemplo

Anomalias da relação→ **NOTAS_FISCAIS 2**.

Atualização — atualização da unidade de um material, o que acontecee ?

Remoção — O que acontece se REMOVEMOS A ÚNICA NOTA FISCAL que CONTEM AS INFORMAÇÕES DE UM MATERIAL ???

NOTAS FISCAIS 1 ({Código, Quantidade, Unidade, Descrição, Valor_Unitário, Valor_Total}, Total da Nota, Vend, Ped, Cond, Peso_Liq, Destinatário, Endereço, CEP, Munic, Data de emissão, CGC CPF Destinatário, Número da Nota,

CGC_CPF_Destinatário, Número da Nota, VALOR_ICMS (IGV), Data_de_Saída)

1a FN

NOTAS_FISCAIS 2 <u>Código</u>, Quantidade, Unidade, Descrição, Valor_Unitário, Valor_Total, Total da Nota, Vend, Ped, Cond, Peso-Liq, Destinatário, Endereço, CEP, Munic, Data de emissão, CGC_CPF_Destinatário, Número da Nota, VALOR_ICMS (IGV), Data_de_Saída)

PROBLEMAS

No há independência de dados Redundância

FUNÇÃO

Se A e B são dois conjuntos, f é uma função de A em B sse \forall x \in A, \exists um único y \in B

Exercícios

DEPENDÊNCIA FUNCIONAL

Seja R uma relação e sejam A e B atributos ou conjuntos de atributos de R.

A determina B ou B depende funcionalmente de A) a cada valor de A corresponde um único valor de B.

f mudaa con o tempo. Exemplo. (No caso de Notas fiscais 2)

Código → **Unidade**

Código 🗡 Quantidade (várias notas)

Código → Preço unitário Quando ?

[Código, Número _ Nota] Preço _ total

(Código, Quantidade) Destinatário

AXIOMATIZAÇÃO DAS DEPENDÊNCIAS FUNCIONAIS

Como gerar novas DFs a partir das existentes ?

Seja a seguinte relação :

R (A1, ..., Am, B1, ..., Bj, ..., Bn, C1, ..., Ch)

1. REFLEXIVA

(A1,, Am) → Ai, i=1, ..., m DEPENDÊNCIA TRIVIAL

2. UNIÃO E PROJEÇÃO

3. TRANSITIVIDADE

(A1,, Am)
$$\rightarrow$$
 (B1,...., Bn) e (B1,...., Bn) \rightarrow (C1,....Ch) (A1,, Am) \rightarrow (C1,....Ch)

A partir de 1 e 3 é possível deduzir a regra de decomposição Se X \to Y e Z \subseteq Y \Longrightarrow X \longrightarrow Z Ejemplos

- **1**. (Número da Nota, Código) → Código
- 2. Código → Unidade Código → Código → Codigo →
- 3. Número da Nota → CGC_CPF_Destinatário CGC_CPF_Destinatário → Endereço Número da Nota → Endereço

DEPENDÊNCIA FUNCIONAL COMPLETA

A é dependente funcional completo de (X, Y)

(Código, Número da Nota) — Quantidade

DEPENDÊNCIA FUNCIONAL PARCIAL

$$(X,Y) \longrightarrow A \longrightarrow X \longrightarrow A \quad \text{ou}$$
 $Y \longrightarrow A$

A é dependente funcional parcial de (X, Y)

(Código, Numero da Nota) → Descrição

O fato de existir DFs parciais - Mistura de informação dos dados que a representam

2da FORMA FORMAL

RELAÇÃO em 1a FN +

Todas as colunas e conjunto de colunas que não fazem parte de chaves da relação devem ser dependentes funcionais completos das chaves.

Def. Do livro: "Um esquema de relação R está na 2FN se cada atributo não primário A de R não for parcialmente dependente de nenhuma chave de R"

Para obter uma relação na 2<u>a</u> FN é preciso remover as dependências parciais de atributos em relação às CHAVES.

DECOMPOSIÇÃO DA RELAÇÃO EM OUTRAS RELAÇÕES PRESERVANDO AS DEPENDÊNCIAS FUNCIONAIS DAS COLUNAS INVOLUCRADAS

No caso das Notas fiscais 2 temos: apenas a seguinte DF TOTAL.

(Utilizando regra 2 > :

(Código, Número da Nota) → (Quantidade, Preço_Total) As DFs Parciais com relação à CHAVE:

Código → (Unidade, Descrição, Preço_Unitário)

Número da nota → (Total da Nota, Vend, Pend, Cond, Peso-liq,
Destinatário, Endereço, CEP, Munic, Data da emisión,
CGC_CPF_Destinatário, Valor, ICMS, Data_Saída)

As relações geradas ——

2da FN

It<u>em_Nota (Código, Número_da_Nota, Quantidade,</u>
Preço_Total)

Material (Código, Unidade, Descrição, Cod, Preço_Unitário)

Notas 3 (Número_da Nota, Total_da_Nota, Vend, Pend, Cond,

Peso_Liquido, Destinatário, Endereço, CEP, Munic, Data_da_Emissão,
CGC CPF_Destinatário, Valor_IGV_ICMS, Data_de_Saída)

ANOMALIAS DAS RELAÇÕES NA 2<u>a</u> FN.

INSERÇÃO ••• O que deve ser feito para a inclusão de um novo cliente ???

ELIMINAÇÃO O que acontece se a única Nota fiscal de um cliente for removida ???

Confusão dos dados dos clientes com os dados da NOTA FISCAL

Dependência de Dados

DEPENDÊNCIA FUNCIONAL TRANSITIVA.

Seja R (A, B, C, . . .) A
$$\longrightarrow$$
 C \longrightarrow A \longrightarrow B \longrightarrow C B \longrightarrow A (B não é nem uma chave candidata nem um sub. de qualq, chave)

C é dependente funcional transitivo de A. Exemplo.

Número da Nota — CGC_CPF_Destinatário.

CGC_CPF_Destinatário — Destinatário

CGC_CPF_Destinatário — Número da NOTA*

Número da NOTA — Destinatário

- * (o mesmo cliente pode fazer mais de uma compra)
- DUAS CLASSES de DFs (da CHAVE e outros atrib.)
 UMA RELAÇÃO que não tem DFs transitivas automaticamente está em 2a FN

3ra FORMA NORMAL

RELAÇÃO em 1° FN +

Qualquer coluna fora de qualquer CHAVE <u>NÃO</u> é dependente transitiva destas (estando por tanto na 2da FN)

Def. Do livro: "Um esquema de relação R está na 3 FN sempre que uma dependência funcional não trivial X A for determinada em R, qualquer (a) X é uma superchave de R; ou (b) A é um atributo primário de R.

Exemplo.

Má decomposição.

A decomposição de Notas_Fiscais 3 poderia ser feita:

Destinatário1 (CGC_CPF_Destinatário, Destinatário)

Destinatário2 (CGC_CPF_Destinatário, Endereço)

etc.

```
2da FN
Item Nota (Código, Número da Nota, Quantidade,
            Preço_Total)
           (Código, Unidade, Descrição, Preço_Unitário)
Material
           (Número da Nota, Total da Nota, Vend, Pend, Cond,
Notas 3
                    Peso Liquido, Destinatário, Endereço, CEP, Munic,
                     Data da Emissão, CGC CPF Destinatário,
                         Valor IGV ICMS, Data de Saída)
3ra FN =
Destinatário (CGC CPF Destinatário, Destinatário, Endereço,
             CEP, Munic)
Notas 4 (Número da Nota, Total da Nota, Vend, Pend, Cond,
        Peso_Liquido, Valor_IGV_ICMS, Data_de_Saída,
         CGC CPF Destinatário
```

Suponha que no lugar de Notas Fiscais 4, existisse:

(outro casso de má decomposição)

Notas Fiscais5 <u>(Número da Nota, CGC_CPF_Destinatário, Destinatário)</u>

Duas decomposições seriam possíveis:

Notas Fiscais6 (Número da Nota, CGC_CPF_Destinatário)

Destinatário6 (Número da Nota, Destinatário)

OU

Notas Fiscais7 (Número da Nota, CGC_CPF_Destinatário)

Destinatário7 (CGC_CPF_Destinatário, Destinatário)

melhor

Reconstitución sem perda de informações

CASO PATOLÓGICO

Seja uma relação que:

- 1. Tem várias CHAVES candidatos; onde
- 2. essas CHAVES candidatas são compostas e
- 3. Supõe-se que existem pelo menos um atributo em comum.

EXEMPLO

Seja a seguinte relação:

Notas8 (Código, Número da Nota, Descrição, Quantidade)

e em cada Nota a Descrição aparece uma única vez.

Esta em 3a FN ?

Anomalías de NOTAS 8

Eliminação de uma NOTA, onde aparece por única vez uma descrição de um material. — PERDA DE INFORMAÇÃO

FORMA NORMAL DE BOYCE - CODD

Se
$$A \longrightarrow B$$
Então $A \longrightarrow C$
 $A \longrightarrow D$
 $A \longrightarrow E$
 $A \longrightarrow \dots$
Isto é,
Se $(A \longrightarrow B)$ y $(A \longrightarrow C)$ y $(A \longrightarrow D)$...
Então A é $CHAVE$ de R

Se uma relação esta na FNBC --- esta na 3a FN

Normalização na 2FN e na 3FN. (a) Normalização EMP_PROJ em relações na 2FN. (b) Normalização EMP_DEPT em relações na 3FN.

Normalização na 2FN e na 3FN.

- (a) A relação LOTES com dependências funcionais DF1 e DF4.
- (b) Decomposição para as relações na 2FN LOTES1 e LOTES2.
- (c) Decomposição de LOTES1 para as relações na 3FN LOTES1A e LOTES1B.
- (d) Resumo do processo de normalização de LOTES.

Forma normal de Boyce-Codd. (a) Normalização BCNF de LOTES1A com a dependência funcional DF2 eliminada na decomposição. (b) Uma relação A esquemática com DFs; ela está na 3FN, mas não na BCNF.

Uma relação ENSINA que está na 3FN, mas não BCFN

ENSINA

ALUNO	CURSO	INSTRUTOR
Narayan	Banco de dados	Mark
Smith	Banco de dados	Navathe
Smith	Sistemas operacionais	Ammar
Smith	Teoria	Schulman
Wallace	Banco de dados	Mark
Wallace	Sistemas operacionais	Ahamad
Wong	Banco de dados	Omiecinski
Zelaya	Banco de dados	Navathe

DF1: $\{ALUNO, CURSO\} \longrightarrow INSTRUTOR$

DF2: INSTRUTOR → CURSO

Três formas de decompor:

- {<u>ALUNO, INSTRUTOR</u>} e {<u>ALUNO, CURSO</u>}
- {CURSO, <u>INSTRUTOR</u>} e {<u>CURSO</u>, <u>ALUNO</u>}
- {<u>INSTRUTOR</u>, CURSO} e {<u>INSTRUTOR</u>, <u>ALUNO</u>}

Qual é a decomposição desejável??

QUARTA FORMA NORMAL

RELAÇÃO NÃO - NORMALIZADA

Livros 1 <u>(Número_de_ chama</u>da, {Autores}, Titulo, {Assuntos}, Nome_ Editora, Cidade_Editora, Ano)

Para 1a. FN

Livros 2 (Número_de_chamada, Autor, Assunto, Titulo, Nome_Editora, Cidade_Editora, Ano)

Como:

Livros 3 (Número_de_chamada, Título, Nome_Editora, Cidade_Editora, Ano)

Livros 4 (Número_de_chamada, Autor, Assunto)

Livros 4

NUMERO DE LLAMADAS	AUTOR	ASUNTO
1	AU 1	AS 1
1	AU 1	AS 2
1	AU 2	AS 1
1	AU 2	AS 2
2	AU 1	AS 3
2	AU 1	AS 4
2	AU 1	AS 1
2	AU 3	AS 3
2	AU 3	AS 4
2	AU 3	AS 1

É necessário representar todas as possíveis combinações de autores e assuntos. Para cada livro se repete a informação de quais são seus autores para cada assunto.

Outra forma Livro 5

Maior custo

de recuperação

NUMERO DE LLAMADAS	AUTOR	ASUNTO
1	AU 1	AS 1
1	AU 2	AS 2
2	AU 1	AS 3
2	AU3	AS 4
2	AU 3	AS 5

Número_de_chamada determina vários valores de autor e vários valores de assunto.

A dependência multivalorada.

NUMERO DE	ASUNTO
LLAMADAS	
1	AS 1
1	AS 2
2	AS3
2	AS 4
2	AS 5

NUMERO DE LLAMADAS	AUTOR
1	AU 1
1	AU 2
2	AU 1
2	AU3

Dependência Multivalorada

Uma dependência multivalorada: $X \longrightarrow Y$ especificada no esquema de relação R, no qual X e Y são ambos subconjuntos de R, especifica a seguinte restrição para qualquer estado r de R: se duas tuplas t1 e t2 existirem em r tal que t1[X] = t2{X}, então duas tuplas t3 e t4 também devem existir em r com as seguintes propriedades, onde usamos Z para denotar (R - (XUY)):

```
t3[X] = t4[X] = t1[X] = t2[X]
```

$$t3[Y] = t1[Y] e t4[Y] = t2[Y]$$

$$t3[Z] = t2[Z] = t4[Z] = t1[Z]$$

Sempre que X → Y implica X → Z

4FN

Não devem existir dependências multivaloradas não triviais, o mesmo que as dependências funcionais que violam la FNBC. (nenhuma redundância).

Def: Um esquema de relação R está em 4FN em relação a um conjunto F de dependências (que inclui dependências funcionais e multivaloradas indesejáveis) se, para cada dependência multivalorada não trivial X ——Y em F+, X for uma superchave de R.

DEPENDÊNCIA DE JUNÇÃO

Problemas com perdas de junção na descomposição em mais de duas relações !!

5ta forma normal trata estes problemas.

Estes casos ocorren raramente e são difíceis de tratar na prática.

Uma dependência de junção, DJ (R1, R2, ..., Rn), sobre uma relação R, especifica uma restrição sobre as instâncias de R. A restrição define que toda instância de R deveria ter uma decomposição R1, R2,, Rn cuja junção não tem perdas de informação.

*
$$(\pi < R1 > (r), \pi < R2 > (r),, \pi < Rn > (r)) = r.$$
 MVD = DJ onde = n = 2

A quarta e a quinta formas normais. (a) A relação EMP com duas DMVs: ENOME→PNOME e ENOME→DNOME. (b) A decomposição da relação EMP em duas relações na 4FN EMP_PROJETOS e EMP_DEPENDENTES. (c) A relação FORNECE sem DMV está na 4FN, mas não na 5FN se ela possuir a DJ(R1, R2, R3). (d) A decomposição da relação FORNECE nas relações da 5FN R1, R2, R3.

(a) **EMP**

ENOME	PNOME	DNOME
Smith	×	John
Smith	Y	Anna
Smith	×	Anna
Smith	Y	John

(b) EMP PROJETOS

10000	
ENOME	PNOME
Smith	×
Smith	Y

EMP_DEPENDENTES

ENOME	DNOME
Smith	John
Smith	Anna

(c) FORNECE

FNOME	NOMEPECA	NOMEPROJ
Smith	Parafuso	ProjX
Smith	Porca	ProjY
Adamsky	Prego	ProjY
Walton	Porca	ProjZ
Adamsky	Prego	ProjX
Adamsky	Parafuso	ProjX
Smith	Parafuso	ProjY

(d) R1

FNOME	NOMEPECA
Smith	Parafuso
Smith	Porca
Adamsky	Parafuso
Walton	Porca
Adamsky	Prego

R2

FNOME	NOMEPRO
Smith	ProjX
Smith	ProjY
Adamsky	ProjY
Walton	ProjZ
Adamsky	ProjX

R3

NOMEPECA	NOMEPROJ
Parafuso	ProjX
Porca	ProjY
Parafuso	ProjY
Porca	ProjZ
Prego	ProiX

Quinta forma normal 5NF

(project-join normal form)

Uma relação R esta na 5NF comn relação a um conjunto F de dependências funcionais, multivalorados e de junção se para toda dependência de junção não trivial DJ (R1, R2,, Rn) de F+ (implicadas por F), todo Ri é uma superchave de R.

Exemplo: Suponha a relação FORNECE e a seguinte restrição sempre se aplica "cada vez que um fornecedor f fornece uma peça p, e um projeto j usa uma peça p, e o fornecedor f fornecer pelo menos uma peça para o projeto j, então o fornecedor f também estará fornecendo a peça p para o projeto j"

FORNECE

FORNECE

FNOME	NOMEPECA	NOMEPROJ
Smith	Parafuso	ProjX
Smith	Porca	ProjY
Adamsky	Prego	ProjY
Walton	Porca	ProjZ
Adamsky	Prego	ProjX
Adamsky	Parafuso	ProjX
Smith	Parafuso	ProjY

R1	R2	R3

FNOME	NOMEPECA	FNOME	NOMEPROJ	NOMEPECA	NOMEPROJ
Smith	Parafuso	Smith	ProjX	Parafuso	ProjX
Smith	Porca	Smith	ProjY	Porca	ProjY
Adamsky	Parafuso	Adamsky	ProjY	Parafuso	ProjY
Walton	Porca	Walton	ProjZ	Porca	ProjZ
Adamsky	Prego	Adamsky	ProjX	Prego	ProjX

A junção natural de duas quaisquer dessas relações produz tuplas espurias, o que não acontece se é aplicada a junção às três relações.

Exercícios

Quadra → Construtor

Construtor → Estilo

Construtor, Quadra → Preço

Está em 2FN?

Em 3FN?

Como normalizar?

Exercícios

R (Nome, Salário, Dept, Gerente, Projeto, Data)

Nome → Salário

Nome → Dept

Nome → Gerente

Dept → Gerente

(Nome, Projeto) → Data

Está em 2FN?

Em 3FN?

Como normalizar?

Outro Exemplo.

SKILL-USED

EMP-NO	SKILL-NO	PROJ-NAME,
38	27	GAMMA
38	51	GAMMA
38	27	DELTA
38	3	DELTA
		<u> </u>

(a)

SKILL-AVAILABLE

EMP-NO	SKILL-NO	PROJ-NAME
14	22	ALPHA
14	22	BETA
14	35	ALPHA
14	35	BETA

EMP-SKILL

EMP-NO	SKILL-NO	E
14	22	
14	35	

MP-PROJ EI

EMP-NO	PROJ-NAME
14	ALPHA
14	BETA

(b)

Figure 4. Nondecomposable and decomposable ternary relationships expressed as relations. (a) 4NF relation (nondecomposable); (b) 3NF relation decomposable to 4NF relations.