Korszerű vizsgálati módszerek labor jegyzőkönyv

Röntgendiffrakció

Csörnyei Géza

Eötvös Loránd Tudományegyetem Fizika BSc III. évfolyam

'C' mérőcsoport

Mérés dátuma: 2018.04.12.

Mérés vezetője: Heczel Anita

1. Bevezető

A laborgyakorlat során a röntgendiffrakciós mérés menetével, valamint az ahhoz használt eszközökkel ismerkedhettünk meg. A gyakorlat során a pordiffrakciós mérések alapján meghatároztuk a FeAl rácstípusát a reflexiók indexelésének segítségével, majd meghatároztuk egy mechanikai ötvözéssel előállított Al(Mg) ötvözet Mg tartalmát, meghatároztuk egy ismeretlen fázist és annak szemcseméretét, valamint meghatároztuk egy adott Si minta pordiffrakciós méréséből annak rácsparaméterét.

2. Mérés kiértékelése

2.1. Rácstípus meghatározása

A laborgyakorlat során az első feladatunk egy már korábbról rendelkezésre álló, FeAl minta pordiffrakciós méréséből történő rácstípus meghatározás volt. A rácstípus meghatározását a reflexiók indexelésével tudjuk elvégezni, mely az 1 . ábrán látható.

1. ábra. A beütésszám a szóródási szög kétszeresének függvényében a FeAl minta esetén

A diffraktogramról csúcsok helyeit leolvasva ki tudjuk számolni a z azokhoz tartozó rácssíktávolságokat a Bragg-egyenlet segítségével, amely

$$2d_{hkl} \cdot \sin \Theta = \lambda$$
,

ahol d_{hkl} a $\{hkl\}$ indexekkel jellemzett síksereghez tartozó rácssíktávolság, λ a röntgenfotonok hullámhossza, Θ pedig a szóródás szöge. A hullámhossz itt a réz $K\alpha$ vonalainak súlyozott hullámhossza, 0.15418 nm volt. A mérés során feltételeztük, hogy egy köbös kristályrácsról van szó, azonban ezen belül a típusát nem ismertük. Köbös kristályrács esetén a következő összefüggés igaz a rácssíktávolságokra:

$$\frac{1}{d_{hkl}^2} = \frac{1}{a^2}(h^2 + k^2 + l^2) = \frac{N}{a^2},$$

ahol a a rács rácsállandója. A diffraktogramról leolvasható szögek segítségével ki tudjuk számolni, mely N értékek esetére jelennek meg diffrakciós csúcsok, és ez alapján pedig különböző táblázatok segítségével ki tudjuk keresni, milyen az adott anyag rácsszerkezete. A rácssíktávolságok számolása és az indexeknek történő megfeleltettetése után az alábbi táblázatot kaptuk (1):

2Θ[°]	d_{hkl} [nm]	$\frac{1}{d_{hkl}^2} \left[\frac{1}{\text{nm}^2} \right]$	N
30.68	0.291	11.776	1
43.97	0.206	23.583	2
54.68	0.168	35.493	3
63.97	0.146	47.213	4
72.67	0.130	59.073	5
81.02	0.119	70.973	6
97.12	0.103	94.563	8
105.31	0.097	106.349	9
113.87	0.092	118.181	10
123.10	0.087	130.080	11
133.20	0.084	141.728	12

1. táblázat. A rácstípus meghatározásához leolvasott Bragg-szögek és a számolt rácsparaméterek, azok reciprok négyzetei, valamint a laborban kapott táblázat alapján az egyes szögekhez rendelt N értékek.

A kapott értékekből látszik, hogy csak az N=7 eset nem látszott a felvételen (természetesen ez egyik köbösben sincs benne, mert nem áll elő három négyzetszám összegeként), viszont rajta kívül az összes többi jelen volt. Ez alapján kijelenthető, hogy a FeAl rácsszerkezete egyszerű köbös.

2.2. Ötvözőkoncentráció meghatározása

Ezen feladat során egy mechanikai ötvözéssel előállított Al(Mg) ötvözet Mg tartalmát kellett meghatároznunk. A számítási folyamat eleje megegyezett az első feladatéval: egy diffraktogramról leolvastuk a Bragg-szögeket, majd kiszámítottuk ezekhez a rácssík távolságokat. A mérés során ismertnek tekinthettük az egyes csúcsokhoz tartozó indexeket, így minden d_{hkl} esetére az ismert N-ekkel ki tudtuk számolni a megfelelő a_{hkl} rácsparaméter értékeket. A rácsparaméter értékek és a hozzájuk tartozó Bragg-szögek között az alábbi kapcsolat áll fenn (Nelson-Riley formula):

$$a_{hkl} = a_0 - D \cdot \cos\Theta \cdot \left(\operatorname{ctg}\Theta + \frac{\cos\Theta}{\Theta}\right)$$

Az ötvözőkoncentráció meghatározásához számunkra az a_0 érték a fontos, ugyanis ebből egy a laborban kapott kalibrációs egyenes segítségével ki tudjuk majd számolni a Mg atomszázalékát a mintában. A minta diffraktogramja a 2. ábrán látható.

2. ábra. A beütésszám a szóródási szög kétszeresének függvényében a Al(Mg) minta esetén

A leolvasott és számolt értékeket a 2 . táblázat tartalmazza. Az egyszerűség érdekében a táblázatban bevezettük az

$$F(\Theta) = \cos\Theta \cdot \left(\operatorname{ctg}\Theta + \frac{\cos\Theta}{\Theta}\right)$$

jelölést.

N	2Θ[°]	$F(\Theta)$	d_{hkl} [nm]	a_{hkl} [nm]
3	38.37	5.379	0.2346	0.4063
4	44.48	4.471	0.2037	0.4074
8	64.83	2.589	0.1438	0.4068
11	77.81	1.8563	0.1228	0.4071
12	82.01	1.6636	0.1175	0.4070
16	98.50	1.0582	0.1018	0.4070
19	111.10	0.7181	0.0935	0.4075
20	115.83	0.6121	0.0910	0.4069
24	135.96	0.2701	0.0832	0.4074

2. táblázat. Az ötvözőkoncentráció meghatározásához szükséges mennyiségek táblázata

Amennyiben a táblázatban szereplő a_{hkl} és $F(\Theta)$ adatokra egyenest illesztünk, akkor fentiek értelmében meg tudjuk határozni az a_0 rácsparamétert. Az egyenesillesztés a 3. ábrán látható.

Az illesztett egyenes egyenletéből megkapható a rácsparaméter értéke, amely

$$a_0 = (0.407269 \pm 1.713 \cdot 10^{-4}) \text{ nm}.$$

Ezen érték és a 4 . ábrán látható kalibrációs egyenes egyenletével meghatározhatjuk az ötvözetben levő ötvözőanyag atomszázalékát.

3. ábra. A rácsparaméter meghatározásához készített egyenesillesztés

4. ábra. Az ötvözőanyag atomszázalék és a rácsparaméter közötti arányosság. A kalibrációnak nyilvánvalóan nincs értelme negatív atomszázalék értékekre, csupán a jobb láthatóság miatt ábrázoltam azon tartományon is

A kalibrációs egyenes egyenlete:

$$y(x) = (2288.701 \pm 22.120) \cdot x - (926.592 \pm 8.981).$$

Ha ezen egyenletbe behelyettesítjük az általunk kapott rácsparamétert, akkor megkapjuk a keresett atomszázalékot. A behelyettesítés után kapott érték:

$$M_{at} = (5.525 \pm 0.076)\%,$$

ahol a hibát az illesztésekből származó relatív hibák terjedésével számoltam az alábbi képlet szerint, amelyben m és b a kalibrációs egyenes meredeksége és tengelymetszete:

$$\Delta M_{at} = M_{at} \sqrt{\left(\frac{\Delta a_0}{a_0}\right)^2 + \left(\frac{\Delta m}{m}\right)^2 + \left(\frac{\Delta b}{b}\right)^2}.$$

Mivel ismertek az alumínium és a magnézium moláris tömegei (M_{Al} =26.98 $\frac{\rm g}{\rm mol}$ és M_{Mg} =24.31 $\frac{\rm g}{\rm mol}$), ezért ezt az atomi százalékot át tudjuk váltani súlyszázalékra is, az alábbi képlet segítségével:

$$M_s = \frac{M_{at} \cdot M_{Mg}}{M_{at} \cdot M_{Mg} + (100 - M_{at}) \cdot M_{Al}}.$$

Ez alapján az ötvözőanyag súlyszázaléka az ötvözetben

$$M_s = (5.006 \pm 0.069)\%,$$

ahol a hibát a relatív hiba terjedésével, jelen esetben megmaradásával számoltam.

2.3. Ismeretlen fázis azonosítása

Ebben a feladatban a laborban rendelkezésünkre álló adatbázisok (ICDD) segít-ségével azonosítanunk kellett egy ismeretlen fázist a mért diffraktogram alapján. A kapott diffraktogram a 5 . ábrán látható.

5. ábra. A beütésszám a szóródási szög kétszeresének függvényében a ismeretlen minta esetén

A fent már többször is használt módon kiszámoltuk az rácssík távolságokat az egyes reflexiós csúcsok esetére. Az adatbázisban történő kereséshez a három legnagyobb intenzitású csúcsot használtuk, de szükség esetén a több csúcsot is hozzávehettünk volna, ha kevesebb esetén lett volna még átfedés az egyes anyagok között. A számolt értékek a 3 . táblázatban vannak felsorolva.

2Θ [°]	d_{hkl} [nm]
43.81	0.2065
75.29	0.1262
91.44	0.1076
119.41	0.0892
140.68	0.0818

3. táblázat. Ismeretlen anyaghoz számolt rácssíktávolságok

Az adatbázisban található adatokkal történő összevetésből azt az eredményt kaptuk, hogy az ismeretlen anyag gyémánt volt.

A vizsgált anyag beazonosítása után a krisztallitméret meghatározását kaptuk feladatul, melyhez a diffraktogramon látható első csúcsot vettük alapul. A csúcsok azon tulajdonsága, melyből a szemcseméretre következtetni lehet, a kiszélesedésük. Ennek két fő okozója van: az egyik instrumentális eredetű, a másik a szemcsemérettől függ. Alapesetben fellépne a rácshibák miatti vonalkiszélesedés hatása is, azonban ez a Bragg-szöggel arányosan nő (míg a szemcseméret hatása azzal fordítottan arányos), így amennyiben a legkisebb szöghöz tartozó csúcsot tekintjük, akkor a rácshibák okozta kiszélesedés elhanyagolható lesz a másik kettő mellett. Ezáltal a szemcsemérethez köthető vonalkiszélesedés az alábbi alakban adható meg:

$$\beta_f = \sqrt{\beta^2 - \beta_i^2},$$

ahol β az integrális vonalkiszélesedés, melyet a labor számítógépére telepített Origin nevű programmal határoztunk meg, valamint β_i az instrumentális vonalkiszélesedés, amely megegyezne az integrális vonalkiszélesedéssel egy kellően kis szemcsékből álló, nagy méretű, közel hibátlan kristály esetén. A kapott mérés esetében $\beta_i = 0.1^\circ$ és $\beta = (0.27019 \pm 0.020)^\circ$ voltak, ahol a hiba a szögfelbontás és a program pontossága alapján volt becsülhető. Ebből a szemcseméret következtében keletkezett vonalkiszélesedés paramétere:

$$\beta_f = (0.251 \pm 0.018)^{\circ} = (4.381 \pm 0.324) \cdot 10^{-3} \text{ rad.}$$

A térfogattal súlyozott szemcseméret az [1]-ben olvasottak alapján a következő képletből származtatható:

$$\langle x \rangle_{vol} = \frac{4\lambda}{3\beta_f \cos \Theta}.$$

Ebben az esetben a számítás hibáját az alábbi formula adja a relatív hibák terjedésének megfelelően:

$$\Delta < x >_{vol} = < x >_{vol} \sqrt{\left(\sin\Theta\frac{\Delta\Theta}{\Theta}\right)^2 + \left(\frac{\Delta\beta_f}{\beta_f}\right)^2}.$$

Ez alapján a számolt szemcseméret:

$$\langle x \rangle_{vol} = (50.591 \pm 3.628)$$
 nm.

2.4. A TA minta rácsparaméterének meghatározása

Az előzőekhez hasonló módon, ezen minta esetében is a diffraktogram kiértékelésével és a rácssíktávolságok kiszámolásával kezdtem a számításaimat. A mintához tartozó diffraktogram a 6 . ábrán látható.

6. ábra. A beütésszám a szóródási szög kétszeresének függvényében a Ta minta esetén

A számított értékeket a mintához kapott ICDD adatlapról leolvasott adatokkal kiegészítve az alábbi táblázat tartalmazza.

N	2Θ[°]	$F(\Theta)$	d_{hkl} [nm]	a_{hkl} [nm]
2	38.67	5.378	0.2346	0.3318
4	55.80	3.273	0.1647	0.3295
6	69.84	2.278	0.1347	0.3298
8	82.56	1.640	0.1168	0.3305
10	95.17	1.164	0.1044	0.3302
12	107.94	0.795	0.0953	0.3302
14	121.59	0.4971	0.0883	0.3304
16	137.87	0.2458	0.0826	0.3304

A rácsparaméter számítását itt is a Nelson-Riley törvény segítségével végeztem. A már korábban bemutatott összefüggés alapján egyenest illesztettem a számolt adatokra, melyet a 7 . ábrán ábrázoltam.

7. ábra. A rácsparaméter meghatározásához készített egyenesillesztés

Az illesztett egyenes egyenlete

$$a_{hkl} = (0.33005 \pm 0.0003) \text{ nm } + (1.6760 \pm 1.4020) \cdot 10^{-4} \text{ nm} \cdot F(\Theta),$$

amelyből tehát a keresett rácsparaméter értéke

$$a_0 = (0.33005 \pm 0.0003)$$
 nm,

ami közelítőleg megegyezik a kapott adatlapon olvasható $a_{0,\mathrm{adatlap}} = 0.33058$ nm értékkel.

3. Diszkusszió

Mérésünk során betekintést nyertünk a röntgendiffrakció mérésének módszertanába, valamint több ezen módszerrel végzett mérést is kiértékeltünk és az általunk kapott eredmények a mérés és kiértékelés pontosságán belül megegyeznek a korábbi mérésekből származó, az ICDD adatlapokon megtalálható értékekkel. Megjegyzendő, hogy a kiértékelés hibáját főként a csúcsok helyzetének közelítő meghatározása volt, amennyiben ezen pozíciómeghatározást nem leolvasással, hanem csúcsot és a hátteret leíró valamilyen függvény illesztésével végeznénk, úgy a kapott eredmények pontosabbak lehetnének.

Hivatkozások

[1]: Méréshez kiadott jegyzet: http://atomfizika.elte.hu/kvml/docs/korszeruosszefuzott.pdf