Total No.	. of Questions : 8] SEAT No	· :
P 3284	[То	tal No. of Pages : 2
	[5353] - 157	
	T.E. (E&TC)	
	ANTENNA AND WAVE PROPAGATION	ON
	(2012 Pattern)	
Time: 27	½ Hours]	[Max. Marks :70
Instructi	ions to the candidates:	
	1) Attempt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q	8.
	2) Figures to the right indicate full marks.	
Q1) a) Calculate the skip distance for flat earth with MUF of 10MI reflected from a height of 300km where maximum value		lue of refractive
	index (n) is 0.9.	[8]
b)	Explain the following characteristics of wireless channel	el [6]
	i) coherence band width ii) coherence time and	l
	iii) fading.	
c)	Derive vector potential A for an magnetic current source OR	ce J. [6]
Q2) a)	What is pointing vector? What is its significance? Deri for pointing vector?	ve an expression
b)	Write a short note on structure of atmosphere.	[6]
a)	A loss loss half ways dipole entenne of $(73 \pm i42.5)$ (h	oving directional

- c) A lossless half wave dipole antenna of $(73 + j42.5)\Omega$ having directional gain of 1.15 dB is driven from 10 V, 50Ω generator. Determine electric field intensity at a distance 10km in a plane perpendicular to the antenna. [8]
- Q3) a) Derive the equation for input impedance and directivity of half wave dipole.[8]
 - b) Show the current distribution on small dipole and derive the equation for its input impedance. [8]

- Find the radiation efficiency of a single turn and eight —turn small circular *Q4*) a) loop at f = 100MHz. The radius of the loop is $\lambda/25$, the radius of the wire is $10^{-4} \lambda$ and the turns are spaced $4 \times 10^{-4} \lambda$ apart. Assume the wire is copper with a conductivity of 5.7×10^7 (S/m) and antenna is radiating into free space. [10]
 - b) Give the comparison of far fields of small loop and short dipole. [6]
- A broadside array of identical antennas consists of 8 isotropic radiators **Q5**) a) separated by distance $\lambda/2$. Find radiation field in a plane containing the line of array showing direction of maxima and null.
 - Derive antenna array factor for N-element linear array taking the centre b) element as reference for N is odd and even. [8]

OR

- Draw and explain the radiation pattern of an endfire array. *Q6*) a) [8]
 - Design a broadside Dolph Tchbyschev array of 10 elements with half b) wave spacing (d) between the elements and with a major to minor lobe ratio of 26 dB. Calculate the excitation coefficient. [8]
- Q7) Explain the following antennas with its structural details dimensions, radiation pattern, diagram, specifications, features and applications. [18]
 - Micro strip antenna a)
 - Lens antenna b)
 - Whip antenna c)

- Explain the working of Super turnstile antenna in detail. *08*) a)
 - Aple o With the help of suitable diagram explain the operating principle of [10] b)
 - Rhombic antenna i)
 - ii) Slot antenna.