Exercise 1. Answer the following prompts, little to no explanation needed:

- i) Consider the a geometric sequence (a_n) with initial condition $c = \frac{1}{3}$ and common ratio $r = \frac{-1}{2}$.
 - Write an expression for the **general term** of a_n .

A geometric sequence is of the form cr^n so this one is $a_n = (1/3)(-1/2)^n$.

• What is the **value** of a_2 ?

$$a_2 = (1/3)(-1/2)^2 = 1/12.$$

• Is this sequence monotonic?

No, $a_0 = 1/3$, $a_1 = -1/6$ and $a_2 = 1/12$. $a_0 > a_1$ and $a_1 < a_2$ so neither increasing nor decreasing.

• What is the **limit** of this sequence? [**Hint**: If $\lim_{n\to\infty} |a_n| = 0$ then $\lim_{n\to\infty} a_n = 0$.]

The limit of the sequence $|a_n| = 1/(3 \cdot 2^n)$ is zero. By the hint, a_n must also converge to zero.

• What can you say about the behavior of the series $\sum_{n=0}^{\infty} a_n$? Is it **convergent or divergent**?

 a_n is geometric with common ratio r = (-1/2), then $|r| = \frac{1}{2} < 1$ so this series must converge.

- ii) Consider the sequence whose general term is $b_n = \frac{2n}{3n+1}$ for n = 0,1,2,...
 - Write the values of b_0 , b_1 , b_2 and b_3 .

$$b_0 = 0$$
, $b_1 = 1/2$, $b_2 = 4/7$ and $b_3 = 3/5$.

• Is this sequence monotonic? **Increasing or decreasing**?

Observing that 0 < 1/2 < 4/7 < 3/5, it's possible to infer that the sequence is monotonically increasing.

• Is this sequence **bounded**? Above, below or neither?

It is bounded below by 0 and above by 1.

• What is the **limit** of this sequence as $n \to \infty$?

 $\frac{2x}{3x+1} \xrightarrow[x\to\infty]{\infty} \frac{\infty}{\infty}$, so by L'Hôpital, this function converges to $\frac{2}{3}$. Thus $b_n \to \frac{2}{3}$.

• What can you say about the behavior of the series $\sum_{n=0}^{\infty} b_n$? Is it **convergent or divergent**?

As $b_n \rightarrow \frac{2}{3} \neq 0$ it follows that the series is divergent.