Большое домашнее задание 3 Отчет

Чубий Савва Андреевич, БПИ233

· Изменения кодовой базы ——

— Параллелизм —

- Написан ThreadPool (см. файлы ThreadPool.hpp и ThreadPool.cpp)
- Распараллелены все обходы матрицы.

Это сделано в два этапа:

• Написан метод void Fluid::forall(const F& f) (см. файл Fluid.hpp), который принимает функцию вида void f(size_t x, size_t y) и выполняет её в нескольких потоках для каждой клетки вида $\{(x,y)\in\mathbb{N}^2\ \big|\ 0\leq x< n\land 0\leq y< m\}$.

Причем, обход матрицы сделан в таком порядке, что, если функция f модифицирует только клетку (x,y) и её соседей $(x\pm 1,y\pm 1)$, то два потока никогда не будут одновременно оперировать над одной и той же клеткой, а значит дополнительные средства синхронизации (такие как std::mutex или std::atomic) не требуются, что дополнительно ускоряет алгоритм.

• Meтод forall использован в соответствующих местах программы

—— He-мультипоточные оптимизации ——

- Использована статическая реализация Матрицы (из ДЗ 2)
- Реализованы «правильные» сравнения вещественных чисел, а именно, сравнения вида lhs == rhs заменены на boolean::eq(lhs, rhs), где функция еq объявлена следующим образом:

```
namespace boolean {
   template<typename T, typename U>
   bool eq(T lhs, U rhs) {
      return is_zero(lhs - rhs);
   }

   template<typename T>
   bool is_zero(T v) {
      return std::abs(v) < eps;
   }
}</pre>
```

• Ускорен поиск по массиву deltas. Так как значения массива deltas заранее известны, и их количество крайне ограничено, то линейный поиск был заменен на несколько if-oв.

—— Другое (не оптимизации) ——

• Добавлен аргумент командной строки --threads=N

——— Замеры ———

№ конфиг.	Кол-во потоков	Наличие не-мультипоточных оптимизаций	Коммит	Время (секунды)	Ускорение ¹
1	1	Нет	4e93e5d	31.4	1.000
2	8	Нет	4e93e5d	13.2	2.379
3	1	Есть	b97f64e	15.8	1.987
4	8	Есть	b97f64e	10.5	2.990

Вывод: как видно из замеров, и параллелизм, и не-мультипоточные оптимизации дают значительное ускорение.

Параметры устройства

CPU:	Intel(R) Pentium(R) Gold G5400 CPU @ 3.70GHz	
RAM:	8 GB	

<u>Тест</u>

- Флаги компиляции:
 - -DSIZES=S(36, 84),S(36, 85)
 - -DTYPES=FIXED(32, 16)
 - -g0
 - -02
 - -DNDEBUG
 - -std=gnu++20
- Аргументы командной строки:
 - --p-type=FIXED(32, 16)
 - --v-type=FIXED(32, 16)
 - --v-flow-type=FIXED(32, 16)
 - --ticks=400
 - --threads=*количество тредов*
 - --quiet=true
 - data_heavy.in
- Используется тест из условия:

¹Относительно первого замера

```
// N, M
36 84
// Field
#
#
                    #
                    #
                    #
#....#
                    #
#....#
#....#
      #
#....#
                    #
#....#
                    #
#....#
#....#
#.....#
                    #
#......#
#......#
                    #
#.....#
                    #
#.....#
                    #
#.....#
#.....#
#.....#
#.....#
#.....#
#.....#
                    #
#
#
                    #
// G
0.1
// Rho
0.1
. 1000
```