Міністерство науки та освіти Україні Національний технічний університет України «Київський політехнічний інститут»

Розрахункова робота по курсу "КЛ-2"

Виконав

студент І-го курсу ФІОТ гр. IO-93 Білогородський Владислав Юрійович Керівник: Жабін В.І.

3MICT

Завдання та обгрунтування варіанту	5
1 Операція множення чисел	6
1.1 Перший спосіб множення	7
1.1.1 Теоретичне обгрунтування способу	7
1.1.2 Операційна схема	7
1.1.3 Змістовний мікроалгоритм	7
1.1.4 Таблиця станів регістрів	8
1.1.5 Функціональна схема пристрою	9
1.1.6 Закодований мікроалгоритм	9
1.1.7 Граф управляючого автомата	10
1.1.8 Обробка порядків	10
1.1.9 Форма подання результату в пам'ять	10
1.2 Другий спосіб множення	11
1.2.1 Теоретичне обгрунтування способу	11
1.2.2 Операційна схема	11
1.2.3 Змістовний мікроалгоритм	11
1.2.4 Таблиця станів регістрів	12
1.2.5 Функціональна схема пристрою	12
1.2.6 Закодований мікроалгоритм	13
1.2.7 Граф управляючого автомата	13
1.2.8 Обробка порядків	14
1.2.9 Форма подання результату в пам'ятті	15

1.3 Третій спосіб множення	16
1.3.1 Теоретичне обгрунтування способу	16
1.3.2 Операційна схема	16
1.3.3 Змістовний мікроалгоритм	16
1.3.4 Таблиця станів регістрів	17
1.3.5 Функціональна схема пристрою	18
1.3.6 Закодований мікроалгоритм	19
1.3.7 Граф управляючого автомата	19
1.3.8 Обробка порядків	20
1.3.9 Форма подання результату в пам'ятті	20
1.4 Четвертий спосіб множення	21
1.4.1 Теоретичне обґрунтування способу	21
1.4.2 Операційна схема	21
1.4.3 Змістовний мікроалгоритм	21
1.4.4 Таблиця станів регістрів	22
1.4.5 Функціональна схема пристрою	22
1.4.6 Закодований мікроалгоритм	23
1.4.7 Граф управляючого автомата	23
1.4.8 Обробка порядків	24
1.4.9 Форма подання результату в пам'ятті	24
2 Операція ділення чисел	25
2.1 Перший спосіб	25
2.1.1 Теоретичне обґрунтування способу	25
2.1.2 Операційна схема	25
2.1.3 Змістовний мікроалгоритм	26

	2.1.4 Таблиця станів регістрів	.26
	2.1.5 Функціональна схема пристрою	.27
	2.1.6 Закодований мікроалгоритм	.28
	2.1.7 Граф управляючого автомата	.28
	2.1.8 Обробка порядків	.28
	2.1.9 Форма подання результату в пам'ятті	.28
2.2 Др	ругий спосіб	29
	2.2.1 Теоретичне обгрунтування способу	29
	2.2.2 Операційна схема	.29
	2.2.3 Змістовний мікроалгоритм	30
	2.2.4 Таблиця станів регістрів	30
	2.2.5 Функціональна схема пристрою	.31
	2.2.6 Закодований мікроалгоритм	32
	2.2.7 Граф управляючого автомата	32
	2.2.8 Обробка порядків	33
	2.2.9 Форма подання результату в пам'ятті	33
3 Операція	додавання чисел	
	3.1 Теоретичне обґрунтування способу	34
	3.2 Операційна схема	34
	3.3 Змістовний мікроалгоритм	35
	3.4 Таблиця станів регістрів	35
	3.5 Функціональна схема пристрою	36
	3.6 Закодований мікроалгоритм	36
	3.7 Граф управляючого автомата	37
	3.8 Обробка порядків	37

	3.9 Форма подання результату в пам'ятті
4 Операція	додавання чисел
	4.1 Теоретичне обгрунтування способу
	4.2 Операційна схема
	4.3 Змістовний мікроалгоритм
	4.4 Таблиця станів регістрів
	4.5 Функціональна схема пристрою
	4.6 Закодований мікроалгоритм
	4.7 Граф управляючого автомата
	4.8 Обробка порядків
	4.9 Форма подання результату в пам'ятті
5 Синтез уг	правляючого автомата для операційного пристрою (дати назву пристрою)
	аблиця співвідношення управляючих входів операційного автомата і ців управляючого автомата
•••••	42
5.2 M	ікроалгоритм в термінах управляючого автомата
5.3 C	груктурна таблиця автомата43
5.4 Ci	интех функцій виходів і переходів
	ункціональна схема пристою (виходи управляючого автомата підключені одів операційного автомата)45

Завдання:

- 1) Числа X_2 і Y_2 в прямому коді записати у формі з плаваючою комою (з порядком і мантисою, а також з характеристикою та мантисою), як вони зберігаються у пам'яті. На порядок відвести 8 розрядів, на мантису 16 розрядів (з урахуванням знакових розрядів). (0,5)
- 2) Виконати 8 операцій з числами X_2 і Y_2 з плаваючою комою (чотири способи множення, два способи ділення, додавання та добування кореня з X_2). Номери операцій (для п.3) відповідають порядку переліку (наприклад, 6 ділення другим способом).

Для обробки мантис кожної операції, подати:

- 2.1) теоретичне обґрунтування способу; (0,2)
- 2.2) операційну схему; (0,2)
- (0,2) змістовний мікроалгоритм; (0,2)
- 2.4) таблицю станів регістрів (лічильника), довжина яких забезпечує одержання 15 основних розрядів мантиси результату; (1,5)
 - 2.5) функціональну схему з відображенням управляючих сигналів; (0.5)
- 2.6) закодований мікроалгоритм (мікрооперації замінюються управл. сигналами); (0.3)
 - 2.7) граф управляючого автомата Мура з кодами вершин; (0,5)
 - 2.8) обробку порядків (показати у довільній формі); (0,5)
 - 2.9) форму запису нормалізованого результату з плаваючою комою в пам'ять. (0,1) Операцію додавання до етапу нормалізації результату можна проілюструвати у довільній формі. Вказані пункти виконати для етапу нормалізації результату з урахуванням можливого нулевого результату.
- 3) Для операції з номером $x_3x_2x_1$ побудувати управляючий автомат Мура на тригерах (тип вибрати самостійно) і елементах булевого базису. (1,5)

Обгрунтування варіанту

9301=10010001010111

 X_2 =-11111011,01111 Y_2 = +11111,0110001111

Запис чисел Х2 і У2

 $X_{2\Pi K}$ = 1.11111011,1100100 $Y_{2\Pi K}$ = 0.11111,0111100001

 $P_X = 8_{10} = 1000_2$

		10																					
3н								M								3н				P			
1	1	1	1	1	1	0	1	1	0	0	0	1	1	1	1	0	0	0	0	1	0	0	0

 $C_x = 8 - 2^7 = -120 = 10001000$

3н								M											(7)			
1	1	1	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	0	1	0	0	0

 $P_v = 5_{10} = 101_2$

_			. 0																					
	3н								M								3н				P			
	0	1	1	1	1	1	0	1	1	0	0	0	1	1	1	1	0	0	0	0	0	1	0	1

 $C_y = 5 - 2^7 = -123 = 10000101$

	3н								M											(
Ī	0	1	1	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	0	0	1	0	1

1 Операції множення чисел

1.1 Перший спосіб множення

1.1.1 Вираз $Z = X \odot Y = Yx_12^{-1} + Yx_22^{-2} + \ldots + Yx_i2^{-i} + \ldots + Yx_n2^{-n}$ можна подати у вигляді:

 $Z_i = (Z_{i-1} + Yx_{n-i+1})2^{-1}$ з початковими значеннями i = 1, $Z_0 = 0$, причому $Z_n = Z = Y*X$. У розглянутому способі множення здійснюється з молодших розрядів множника, сума часткових добутків зсувається вправо, а множене залишається нерухомим.

1.1.2 Операційна схема:

Рис. 1.1 – Операційна схема множення I способом

1.1.3 Змістовний мікроалгоритм:

Рис. 1.2 – Мікроалгоритм множення І способом

1.1.4

Таблиця станів регістрів: Табл. 2.1 – Таблиця станів регістрів для множення I способом

	0111101100101001	1110101111100001		0000
	111101100101011			-1
15	+111110110001111	1101011111000011		0001
	01111000110001001	110101111100001 1		0001
14	+ <u>111110110001111</u> 1111000110001001			-1
1 /		1010111110000111		0010
	1110011111110101 0111001111111010	10101111000011 1		-1 0010
13	+111110110001111			
	0110101001100110	01011110000111 1		0011
	1101010011001100			-1
12	+111110110001111			
	0101011100111101	10111100001111 1		0100
11	10101110011111			-1
11	+111110110001111	01111000011111 1		0101
10	00110000111011000	011110000111111		0110
	01100001110110001	11110000111111 0		0110
9	+111110110001111 1100001110110001			-1
0	0100011000100010	11100001111110 1		0111
	1000110001000101	111000011111101		-1
8	+111110110001111			
				1000
7	0000111010110110	11000011111101 1		-1
				1001
6	0001110101101101	100001111111011 0		-1
				1010
5	0011101011011011	000011111101100		-1
	0111010110110110	00011111101100 0		1011
	1101101110111010			-1
4	+111110110001111			
	0110110111011	00111111011000 1		1100
)	110110110001111			-1
3	+111110110001111	01111110110001 1		1101
	01011110001010110	011111110110001 1		1101
2	+111110110001111 1011110001010110			-1
2		1111110111000111		
	00111110110001111	111111101100011 1		1110
1	0111110110001111			-1
1	+111110110001111	111110110001111	111110111110001	1111
ΠC	000000000000000000000000000000000000000	RG2 111110110001111	111110111100001	1111
No No	RG1	RG2	RG3	CT

1.1.5 Функціональна схема:

Рис. 1.3 – Функціональна схема з відображенням управляючих сигналів 1.1.6 Закодований мікроалгоритм:

Рис. 1.4 – Закодований мікроалгоритм множення I способом

1.1.7 Граф управляючого автомата Мура:

Рис. 1.5 – Граф автомата на I спосіб множення

1.1.8 Обробка порядку результату:

$$P = P_x + P_y = 1000 + 101 = 1101$$

1.1.9 Запис результату в пам'ять

3н								M							
1	1	1	1	1	0	1	1	0	0	1	0	1	0	0	1

3н				P			
0	0	0	0	1	1	0	1

1.2 Другий спосіб множення:

1.2.1 Вираз $Z = XY = Yx_12^{-1} + Yx_22^{-2} + ... + Yx_i2^{-i} + ... + Yx_n2^{-n}$ можна подати у вигляді:

$$Z = ((...((0+Y2^{-n}x_n)+Y2^{-n+1}x_{n-1})+...+Y2^{-1}x_1)$$

Очевидно, що процес множення може бути зведений до п-кратного виконання циклу:

$$Z_i = Z_{i-1} + Y_i X_{n-i+1}, Y_i = 2Y_{i-1}$$
, з початковими значеннями $i = 1, Z_0 = 0, Y_0 = Y2^{-n}$.

У розглянутому способі множення здійснюється з молодших розрядів, множене зсувається вліво, а сума часткових добутків залишається нерухомою.

1.2.2 Операційна схема:

Рис. 1.6 Операційна схема II способу множення

1.2.3 Змістовний мікроалгоритм:

Рис. 1.7 Мікроалгоритм множення II способом

1.2.4 Таблиця станів регістрів:

Табл. 1.2 – Таблиця станів регістрів при множенні II способом

№	RG1	RG3	RG2
ПС	000000000000000000000000000000000000000	00000000000000111110110001111	11111011000111 1
1	+00000000000000111110110001111		
	000000000000000111110110001111	000000000000001111101100011110	01111101100011 1
2	+00000000000001111101100011110	00000000000011111011000111100	00111110110001 1
	000000000000010111100010101101		
3	+00000000000011111011000111100	000000000001111101100011111000	00011111011000 1
	00000000000110110111011101001		
4	+0000000000111110110001111000	00000000001111101100011110000	00001111101100 0
	00000000001110101101101100001		
5		00000000011111011000111100000	00000111110110 0
6		000000000111110110001111000000	00000011111011 0
7		000000001111101100011110000000	00000001111101 1
8	+00000001111101100011110000000		
	00000010001100010001011100001	0000000111110110001111100000000	00000000111110 1
9	+00000011111011000111100000000		
	000000110000111011000111100001	0000001111101100011111000000000	00000000011111 0
10		000001111101100011110000000000	00000000001111 1
11	+00001111101100011111000000000000000000		
	00001010111100111101101111100001	0000111110110001111000000000000	00000000000111 1
12	+00011111011000111100000000000000000000		
	0001101010011001100101111100001	00011111011000111110000000000000	00000000000011 1
13	+00111110110001111100000000000000000000		
	00111001111111101010101111100001	00111110110001111000000000000000	00000000000001 1
14	+01111101100011110000000000000000000000		
	0111100011000100110101111100001	011111011000111110000000000000000	000000000000000 1
15	+11111011000111100000000000000000000000		
	1111011001010011110101111100001	1111101100011111000000000000000000	000000000000000

1.2.5 Функціональна схема:

Рис. 1.8 – Функціональна схема з відображенням управляючих сигналів

1.2.6 Закодований мікроалгоритм:

Рис. 1.9 – Закодований мікроалгоритм для множення II способом

1.2.7 Граф управляючого автомата Мура:

Рис. 1.10 – Граф автомата регулювання управляючих сигналів

1.2.8 Обробка порядку результату: $P = P_x + P_y = 1000 + 101 = 1101$ 1.2.9 Запис результату

$$P = P_x + P_v = 1000 + 101 = 1101$$

3н								M							
1	1	1	1	1	0	1	1	0	0	1	0	1	0	0	1

3н				P			
0	0	0	0	1	1	0	1

1.3 Третій спосіб множення:

1.3.1 Вираз $Z = XY = Yx_12^{-1} + Yx_22^{-2} + ... + Yx_i2^{-i} + ... + Yx_n2^{-n}$ можна подати у вигляді:

$$Z = ((...((0+Y2^{-n}x_1)2+Y2^{-n}x_2)2+...+Y2^{-n}x_i)2+...+Y2^{-n}x_n)$$

Суму часткових добутків у і-му циклі можна одержати за виразом:

$$Z_i = 2Z_{i-1} + Y2^{-n}x_i$$
, з початковими значеннями $i=1$, $Z_0 = 0$.

У розглянутому способі множення здійснюється зі старших розрядів множника, сума часткових добутків зсувається вліво, а множене нерухоме.

1.3.2 Операційна схема:

Рис. 1.11 – Операційна схема пристрою для множення III способом

1.3.3 Змістовний мікроалгоритм:

Рис. 1.12 – Мікроалгоритм множення III способом

1.3.4

Таблиця станів регістрів: Табл. 1.3 Таблиця станів регістрів при множенні III способом

No	RG2	RG1	RG3	CT
ПС	1 11110110001111	00000000000000000	111110110001111	1111
1		+111110110001111		
	111110110001111	0111110110001111		
	1 11101100011110	1111101100011110		1110
2		+111110110001111		
	111101100011111	0111100010101101		
	1 11011000111110	1111000101011010		1101
3		+111110110001111		
	111011000111111	0110111011101001		
	1 10110001111110	1101110111010010		1100
4		+111110110001111		
	110110001111111	0101101101100001		
	1 011000111111110	1011011011000010		1011
5		+111110110001111		
	101100011111111	0011010001010001		
	0 110001111111110	0110100010100010		1010
6	1 100011111111100	1101000101000100		1001
7		+111110110001111		
	110001111111101	0100111011010011		
	1 000111111111010	1001110110100110		1000
8		+111110110001111		
	1000111111111011	0001101100110101		
	0 001111111110110	0011011001101010		0111
9	0 011111111101100	0110110011010100		0110
10	0 111111111011000	1101100110101000		0101
11	1 111111110110001	1011001101010000		0100
12		+111110110001111		
	1111111110110010	0011000011011111		
	1 11111101100100	0110000110111110		0011
13		+111110110001111		
	1111111101100100	11011111101001101		
	1 11111011001001	1011111010011010		0010
14		+111110110001111		
	111111011001010	0011110000101001		
	1 11110110010100	0111100001010010		0001
15		+111110110001111		
	111110110010100	11110101111100001		
	111101100101001	11101011111000010		0000

1.3.5 Функціональна схема:

Рис. 1.13 Функціональна схема множення III способом

1.3.6 Закодований мікроалгоритм:

Рис. 1.14 – Закодований мікроалгоритм для множення III способом

1.3.7 Граф управляючого автомата Мура:

Рис. 1.15 – Граф управляючого автомата

1.3.8 Обробка порядку результату: $P = P_x + P_y = 1000 + 101 = 1101$ 1.3.9 Запис периш —

$$P = P_x + P_v = 1000 + 101 = 1101$$

3н		M													
1	1	1	1	1	0	1	1	0	0	1	0	1	0	0	1

3н				P			
0	0	0	0	1	1	0	1

1.4 Множення IV-им способом:

1.4.1 Вираз $Z = XY = Yx_12^{-1} + Yx_22^{-2} + ... + Yx_i2^{-i} + ... + Yx_n2^{-n}$ можна подати у вигляді:

$$Z = ((...((0+Y2^{-1}x_1)+Y2^{-2}x_2)+...+Y2^{-i}x_i)+...+Y2^{-n}x_n$$

У цьому випадку процес множення може бути зведений до п-кратного виконання циклу

$$Z_i = Z_{i-1} + Y_{i-1}x_i$$
, $Y_i = Y_{i-1}2^{-1}$, з початковими значеннями $i=1$, $Y_0 = Y2^{-1}$, $Z_0 = 0$.

У розглянутому способі множення здійснюється зі старших розрядів множника, сума часткових добутків залишається нерухомою, а множене зсувається вправо.

1.4.2 Операційна схема:

1.4.3

Рис. 1.16 – Операційна схема пристрою множення IV способом Змістовний мікроалгоритм:

Рис. 1.17 – Мікроалгоритм множення IV способом

1.4.4 Таблиця станів регістрів:

Табл. 1.4 – Таблиця станів регістрів для множення IV способом

$N_{\underline{0}}$	RG1	RG3	RG2
ПС	000000000000000000000000000000000000000	111110110001111000000000000000000	1 11110110001111
1	+11111011000111100000000000000000000000		
	011111011000111100000000000000000	011111011000111110000000000000000	1 11101100011110
2	+01111101100011110000000000000000000000		
	1011110001010110100000000000000000	001111101100011111000000000000000	1 11011000111100
3	+00111110110001111100000000000000000000		
	110110111011101001000000000000000	0001111101100011110000000000000	1 10110001111000
4	+00011111011000111100000000000000000000		
	11101011011011000010000000000000	0000111110110001111100000000000	1 01100011110000
5	+00000111110111100100000000000000000000		
	1111001101000101000100000000000	0000011111011000111110000000000	0 11000111100000
6		000000111110110001111000000000	1 10001111000000
7	+000000111110110001111000000000		
	1111010100111011010011000000000	0000000111110110001111100000000	1 00011110000000
8	+000000011111011000111100000000		
	1111011000110110011010100000000	0000000011111011000111110000000	000111100000000
9		000000001111101100011111000000	
10		000000000111110110001111100000	
11		00000000001111101100011110000	111100000000000
12	+00000000001111101100011110000	00000000000111110110001111000	1 110000000000000
	11110110010001100001101111110000		
13	+00000000000111110110001111000	00000000000011111011000111100	1 100000000000000
	11110110010011011111101001101000		
14	+00000000000011111011000111100	00000000000001111101100011110	1000000000000000
	1111011001010001111000010100100		
15	+00000000000001111101100011110		
	1111011001010011110101111000010	00000000000000111110110001111	000000000000000

1.4.5 Функціональна схема:

Рис. 1.18 Функціональна схема з відображенням управляючих сигналів

1.4.6 Закодований мікроалгоритм:

Рис. 1.19 – Закодований мікроалгоритм для множення IV способом

1.4.7 Граф управляючого автомата Мура:

Рис. 1.20 – Граф автомата мура для множення IV способом

 $P = P_x + P_y = 1000 + 101 = 1101$ 1.4.9 Запис периш —

$$P = P_x + P_v = 1000 + 101 = 1101$$

3н		M													
1	1	1	1	1	0	1	1	0	0	1	0	1	0	0	1

3н				P			
0	0	0	0	1	1	0	1

2 Операція ділення чисел

2.1 Ділення першим способом

- 2.1.1 Під час ділення за першим способом здійснюється зсув вліво залишку при нерухомому дільнику, такий спосіб називається діленням із зсувом залишку. Черговий залишок формується в регістрі RG2 (у вихідному стані в цьому регістрі записане ділене X). Ділене Y знаходиться в регістрі RG1. Результат формується в регістрі RG3 за (n+1) циклів. Алгоритм ділення зводиться до виконання наступних дій:
 - 1) Одержати різницю $R_0 = X-Y$. Якщо $R_0 \ge 0$, то цифра частки Z_0 , що має вагу 2^0 , дорівнює 1, а за $R_0 < 0$ дорівнює 0. Різниця R_0 є залишком.
 - 2) Подвоїти залишок (тобто одержати значення $2R_i$).
 - 3) За $2R_i < 0$ додати Y, в зворотному випадку, якщо $2R_0 \ge 0$, відняти Y. Якщо знову отриманий залишок $R_{i+1} \ge 0$, то $Z_{i+1} = 1$, інакше $Z_{i+1} = 0$.
 - 4) Повторити дії, описані в пунктах 2 та 3, (n-1) раз.

2.1.2 Операційна схема:

Рис. 2.1 – Операційна схема ділення I способом

2.1.3 Функціональний мікроалгоритм:

Рис. 2.2 Мікроалгоритм ділення I способом

2.1.4 Таблиця станів регістрів:

Табл. 2.1 – Таблиця станів регістрів при діленні І способом

		трів при діленні і сп	
No	RGZ	RGX	RGY
ПС	0000000000000000	00111110110001111	0011111101111100100
1	0000000000000001	0 1111101100011110	
		+11000001001110001	
		00111110110001111	
2	000000000000011	0 1111101100011110	
		+11000001001110001	
		00111110110001111	
3	000000000000111	0 1111101100011110	
		+11000001001110001	
		00111110110001111	
4	00000000001111	0 1111101100011110	
		+11000001001110001	
		00111110110001111	
5	000000000011111	0 1111101100011110	
		+11000001001110001	
		00111110110001111	
6	000000000111111	0 1111101100011110	
		+ <u>11000001001110001</u>	
		00111110110001111	
7	000000001111111	0 1111101100011110	
		$+\underline{11000001001110001}$	

			1
		00111110110001111	
8	000000011111111	0 1111101100011110	
		+11000001001110001	
		00111110110001111	
9	000000111111111	0 1111101100011110	
		+11000001001110001	
		00111110110001111	
10	000001111111111	0 1111101100011110	
		+11000001001110001	
		00111110110001111	
11	000011111111111	0 1111101100011110	
		+11000001001110001	
		00111110110001111	
12	0001111111111111	0 111111011000111110	
		+11000001001110001	
		00111110110001111	
13	0011111111111111	0 1111101100011110	
		+11000001001110001	
		00111110110001111	
14	0111111111111111	0 1111101100011110	
		+11000001001110001	
		00111110110001111	
15	1111111111111111	0 1111101100011110	
		+ <u>11000001001110001</u>	
		00111110110001111	

2.1.5 Функціональна схема:

Рис. 2.3 Функціональна схема для ділення I способом

2.1.6 Закодований мікроалгоритм:

Рис. 2.4 — Закодований мікроалгоритм для ділення I способом 2.1.7 Граф управляючого автомата Мура:

Рис. 2.5 Граф автомата для ділення I способом

2.1.8 Обробка порядку результату:

$$P = P_y - P_x = 1000-101 = 11$$

2.1.9 Запис результату Z=X/Y в пам'ять:

		1 3													
3н		M													
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3н				P											
0	0	0	0	0	0	1	1								

2.2 Ділення ІІ-им способом

- 2.2.1 Під час ділення другим способом, який називається діленням із зсувом дільника, збільшується розрядність регістрів RG1, RG3 і суматора SM. В цьому випадку процеси додавання-віднімання і зсуву можуть бути сполучені в часі. Цифра результату формується на виході суматора SM(p).
 - Алгоритм ділення зводиться до виконання наступних дій:
 - 1) Одержати різницю $R_0 = X-Y$. Якщо $R_0 \ge 0$, то цифра частки Z_0 , що має вагу Z^0 , дорівнює 1, а за $R_0 < 0$ дорівнює 0. Різниця R_0 є залишком.
 - 2) Зменшити вдвічі дільник.
 - 3) За $R_i < 0$ додати Y, в зворотному випадку, якщо $R_0 \ge 0$, відняти Y. Якщо знову отриманий залишок $R_{i+1} \ge 0$, то $Z_{i+1} = 1$, інакше $Z_{i+1} = 0$.
 - 4) Повторити дії, описані в пунктах 2 та 3, (n-1) раз.
- 2.2.2 Операційна схема:

Рис. 2.6 Операційна схема ділення II способом

2.2.3 Функціональний мікроалгоритм:

Рис. 2.7 – Мікроалгоритм ділення II способом

2.2.4 Таблиця станів регістрів:

Табл. 2.2 Таблиця станів регістрів ділення II способом

No	RGZ	RGX	RGY
ПС	0000000000000001	0 11111011000111110000000000000000	00111110110001111000000000000000
1		+11000001001110001000000000000000000000	
	000000000000011	0 01111101100011111000000000000000	00011111011000111110000000000000
2		+ 1110000010011100010000000000000000000	
	000000000000111	0 0011111011000111100000000000000	0000111110110001111100000000000
3		+1111000001001110001000000000000000000	
	000000000001111	0 000111110110001111000000000000	0000011111011000111110000000000
4		+11111000001001110001000000000000000000	
	000000000011111	0 000011111011000111110000000000	0000001111101100011111000000000
5		+11111100000100111000100000000000000000	
	000000000111111	0 00000111110110001111000000000	0000000111110110001111100000000
6		+111111100000100111000100000000	
	000000001111111	0 00000011111011000111100000000	000000001111101100011110000000
7		+1111111110000010011100010000000	
	000000011111111	0 00000001111101100011110000000	00000000111110110001111000000
8		+1111111111000001001110001000000	
	000000111111111	0 00000000111110110001111000000	00000000011111011000111100000
9		$+ \underline{111111111111000001001111000100000}$	
	0000011111111111	0 00000000011111011000111100000	00000000001111101100011110000
10		$+ \underline{11111111111110000010011100010000}$	
	0000111111111111	0 00000000001111101100011110000	000000000001111101100011111000
11		$+ \underline{11111111111111000001001110001000}$	

	0001111111111111	0 00000000000111110110001111000	00000000000011111011000111100
12		+11111111111111000001001111000100	
	0011111111111111	0 00000000000011111011000111100	000000000000001111101100011110
13		+1111111111111110000010011100010	
	0111111111111111	0 00000000000001111101100011110	000000000000000111110110001111
14		+111111111111111110000010011110001	
	111111111111111	0 00000000000000111110110001111	000000000000000011111011000111

2.2.5 Функціональна схема:

Рис. 2.8 – Функціональна схема з відображенням управляючих сигналів

2.2.6 Закодований мікроалгоритм:

Рис. 2.9 Закодований мікроалгоритм для ділення II способом 2.2.7 Граф управляючого автомата Мура:

Рис. 2.10 Граф управляючого автомата для ділення II способом

 $P=P_y$ - $P_x=1000$ -101=11 2.2.9 Запис результату Z=Y/X в пам'ять:

$$P = P_v - P_x = 1000-101 = 11$$

		 •		•	ull	110	P	$\mathcal{I}_{\mathcal{I}}$.	110	- u -	<i>J</i> -	
						M						
H												

Н			P	

3 Додавання чисел

1)
$$P_x > P_y$$
, отже $P_z = P_x = 0.0001000$;

2) Вирівнюємо порядки

Λ	$M_{\rm y}$
11	00.111110110001111
10	00.011111011000111
01	00.001111101100011
00	00.000111110110001

3) Перетворимо в ДК та підсумуванням:

$$\begin{array}{l} _{+}P_{x}{=}\ 11.000001001110001 \\ \underline{P_{y}{=}\ 00.000111110110001} \\ P_{z}{=}\ 11.001001000100010 \end{array}$$

4) Перетворимо результат назад в ПК:

$$P_z = 11.110110111011110$$

Решту 9 пунктів виконаємо для нормалізації:

3.1 В машинах підсумування і віднімання кодів виконується на суматорах. Віднімання замінюється на додавання за правилом: один операнд змінює знак.

Прямий код не застосовується для підсумування.

В арифметичному пристрої знаковий розряд подвоюється, щоб не було переповнення розрядної сітки.

Перед підсумування необхідно виконати вирівнювання порядків операндів. Після цього здійснюється підсумування мантис операндів на суматорі за участі суматора переносу.

3.2 Операційна схема:

Рис. 3.1 – Операційна схема нормалізації при додаванні

3.3 Функціональний мікроалгоритм:

Рис. 3.2 – Мікроалгоритм додавання

3.4 Таблиця станів регістрів:

Табл. 3.1 Таблиця станів регістрів при додаванні

No	RZ	PZ	CT
ПС	1110110111011110	00001000	1111

3.5 Функціональна схема:

Рис. 3.3 – Функціональна схема з відображенням управляючих сигналів для додавання

3.6 Закодований мікроалгоритм:

Рис. 3.4 – Закодований мікроалгоритм для додавання

3.7 Граф управляючого автомата Мура:

Рис. 3.5 Граф автомата управління пристроєм додавання 3.8 Обробка порядку результату входить в саму схему.

3.93апис результату Z=Y+X в пам'ять:

3н		•						M							
1	1	1	0	1	1	0	1	1	1	0	1	1	1	1	0

3н				P			
0	0	0	0	1	0	0	0

4 Добування кореня

4.1 Розглянемо метод обчислення функції $Y = \sqrt{X}$ за послідовного введення коду аргументу X зі старших розрядів. Такий метод дозволяє виконувати процеси введення аргументу та обчислення функції у режимі суміщення.

Будемо вважати, що значення аргументу подане нормалізованим п–розрядним числом у позиційній системі числення з основою 2.

Процес обчислення квадратного кореня зводиться до послідовного виконання п кроків. Перед початком обчислення $X_0 = Y_0 = R_0 = 0$. На кожному і-му кроці (і є (1,n)) цифру у_і визначають відповідно системі:

$$y_i = \begin{cases} 0, \text{якщо } R_{i-1} < N \\ 1, \text{якщо } N_i < R_{i-1} < N_2 \\ 2, \text{якщо } R_{i-1} \ge N_2 \end{cases}$$

Значення Y_i та R_i – за формулами:

$$\begin{split} Y_i &= Y_{i\text{-}1} + y_i 2^{\text{-}1} \\ R_i &= 2 R_{i\text{-}1} + x_i 2^{\text{-}1} - Y_{i\text{-}1} y_i \text{-} y_i^{\text{-}2} 2^{\text{-}i\text{-}1} \end{split}$$

При цьому формула обчислення Y_i забезпечує автоматичне перетворення коду результату з надлишкової системи числення в не надлишкову, якщо операцію додавання виконувати в не надлишковій системі числення.

Процес обчислення квадратного кореня за запропонованим алгоритмом закінчується безпосередньо після введення останнього розряду коду аргументу. Це дозволяє зменшити час обчислення в тих випадках, коли швидкість надходження чергових розрядів аргументу визначається зовнішніми стосовно операційного блоку факторами.

4.2 Операційна схема:

Рис. 4.1 Операційна схема пристрою для добування кореня

4.3 Функціональний мікроалгоритм:

Рис. 4.2 Мікроалгоритм добування кореня

4.4 Таблиця станів регістрів:

Табл. 4.1 Таблиця станів регістрів пристрою для добування кореня

№	CT	RZ	RR	RX
ПС	1111	0000000000000000	000000000000000000	111110110001111
П3	1111	0000000000000000	00000000000000011	111011000111100
1			+111111111111111111	
			000000000000000010	
	1110	000000000000001	00000000000001011	101100011110000
2			+11111111111111111111111111111111111111	
			00000000000000110	
	1101	000000000000011	00000000000011010	110001111000000
3			+111111111111110011	
			00000000000001101	
	1100	000000000000111	00000000000110111	000111100000000
4			+111111111111100011	
			00000000000011010	
	1011	000000000001111	00000000001101000	011110000000000
5			+111111111111000011	
			00000000000101011	
	1010	000000000011111	00000000010101101	111000000000000
6			+111111111110000011	

			0000000000110000	
	1001	000000000111111	00000000011000011	1000000000000000
7			+111111111100000011	
			111111111111000110	
	1000	000000001111110	111111111100011010	000000000000000
8			+00000000111111011	
			00000000100010101	
	0111	000000011111101	00000010001010100	000000000000000
9			+111111110000001011	
			00000000001011111	
	0110	000000111111011	00000000101111100	000000000000000
10			+11111100000010011	
			111111100110001111	
	0101	0000011111110110	11110011000111100	000000000000000
11			+000001111111011011	
			11111011000010111	
	0100	0000111111101100	11101100001011100	000000000000000
12			+000011111110110011	
			1111111000000011111	
	0011	0001111111011000	11110000000111100	000000000000000
13			+000111111101100011	
			00001111110011111	
	0010	0011111110110001	0011111110011111100	000000000000000
14			+11000000100111011	
			111111111110110111	
	0001	0111111101100010	111111111011011100	000000000000000
15			+01111110110001011	
			011111110001100111	
	0000	1111111011000101	11111000110011100	0000000000000000

4.5 Функціональна схема:

Рис. 4.3 Функціональна схема добування кореня

4.6 Закодований мікроалгоритм:

Рис. 4.4 Закодований мікроалгоритм добування кореня.

4.7Граф управляючого автомата Мура:

Рис. 4.5 Граф Автомата регулювання пристрою добування кореня

4.8 Обробка порядку результату:

 $P = P_x/2 = 1000/10 = 0100$

4.9 Запис результату $Z = \sqrt{X}$ в пам'ять:

		<u> </u>														
	3н		M													
	0	1	1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1													
	3н				P											
Ī	0	0	0	0	0	1	() (0							

5 Синтез управляючого автомата для операційного пристрою добування кореня.

5.1 Таблиця співвідношення управляючих входів операційного автомата і виходів управляючого автомата

Кодування мікрооп	ерацій
MO	Позначення
WX, WCT, CLRR, CLRZ	Y1
SLR, SLX	Y2
S	Y3
WR	Y4
SLZ, decCT	Y5

5.2 Мікроалгоритм в термінах управляючого автомата

Рис. 5.1 – Закодований алгоритм в термінах управляючого автомата

5.3 Структурна таблиця автомата

Табл. 5.1 – Структурна таблиця автомата

		Старі	į	Нові			Bxe	оди			Тригери					
	Q3	Q2	Q1	Q3	Q2	Q1	X1	X2	Y1	Y2	Y3	Y4	Y5	T3	T2	T1
$Z1 \rightarrow Z2$	0	0	0	0	0	1	ı	-	0	0	0	0	0	0	0	1
$Z2\rightarrow Z3$	0	0	1	0	1	1	0	-	1	1	0	0	0	0	1	0
$Z2\rightarrow Z4$	0	0	1	0	1	0	1	-	1	1	0	0	0	0	1	1
Z3→Z5	0	1	1	1	1	0	-	-	0	0	1	1	0	1	0	1
Z5→Z3	1	1	0	0	1	1	0	0	0	1	0	0	1	1	0	1
Z4→Z5	0	1	0	1	1	0	1	-	0	0	0	1	0	1	0	0
Z5→Z4	1	1	0	0	1	0	1	0	0	1	0	0	1	1	0	0
Z5→Z6	1	1	0	1	1	1	ı	1	0	1	0	0	1	0	0	1

5.4 Синтез функцій виходів і переходів

Мінімізація виходів:

Рис. 5.2 – Мінімізація функцій Y методом діаграм Вейча

$$Y_1 = \overline{Q_2}Q_1$$

$$Y_2 = \overline{Q_2}Q_1 \lor Q_3$$

$$Y_3 = \overline{Q_2}Q_1$$

$$Y_4 = \overline{Q_3}Q_2$$

$$Y_5 = \overline{Q_3}$$

Мінімізація функцій тригерів:

Рис. 5.3 – Діграми Вейча для мінімізації функцій тригерів

$$\begin{split} &T_3 = \overline{Q_3} Q_2 \vee \overline{X_2} Q_2 \\ &T_2 = Q_1 \overline{Q_2} \\ &T_1 = Q_1 Q_2 \vee X_2 Q_3 \vee \overline{X_1} Q_3 \overline{Q_1} \vee \overline{Q_2} \overline{Q_1} \vee X_1 \overline{Q_2} \end{split}$$

5.5 Функціональна схема пристою (виходи управляючого автомата підключені до входів операційного автомата) $Y3 = Q2\overline{Q1}$

