Βάσεις και διάσταση

Ορισμός

Έστω $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ ένα υποσύνολο διανυσματικού χώρου V. Το S λέγεται **βάση** του V αν

- **1** Span $\{v_1, v_2, ..., v_m\} = V$
- ② Τα $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ είναι γραμμικά ανεξάρτητα.

Οι βάσεις λειτουργούν ως συστήματα συντεταγμένων.

MAΣ029

Έστω
$$\mathbf{e}_1=\begin{pmatrix}1\\0\\\vdots\\0\end{pmatrix}$$
, $\mathbf{e}_2=\begin{pmatrix}0\\1\\\vdots\\0\end{pmatrix}$, ..., $\mathbf{e}_n=\begin{pmatrix}0\\0\\\vdots\\1\end{pmatrix}$. Το σύνολο $\{\mathbf{e}_1,\mathbf{e}_2,\ldots,\mathbf{e}_n\}$ είναι βάση του \mathbb{R}^n και ονομάζεται **κανονική βάση**.

Σ. Δημόπουλος ΜΑΣ029 2 /

Τα διανύσματα
$$\mathbf{v}_1=\begin{pmatrix}1\\2\\1\end{pmatrix}$$
, $\mathbf{v}_2=\begin{pmatrix}2\\9\\0\end{pmatrix}$, $\mathbf{v}_3=\begin{pmatrix}3\\3\\4\end{pmatrix}$ αποτελούν βάση του \mathbb{R}^3 .

Σ. Δημόπουλος ΜΑΣ029 3 /

Εφόσον μια βάση παράγει ολόκληρο τον διανυσματικό χώρο V, κάθε διάνυσμα του V γράφεται ως γραμμικός συνδυασμός των στοιχείων της βάσης.

Θεώρημα

 $Av\ S=\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_m\}$ είναι βάση του διανυσματικού χώρου V τότε κάθε $\mathbf{b}\in V$ γράφεται με μοναδικό τρόπο ως

$$\mathbf{b} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \ldots + \lambda_m \mathbf{v}_m$$

για κάποια $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}$.

Τα $\lambda_1, \lambda_2, \ldots, \lambda_m$ ονομάζονται **συντεταγμένες** του **b** ως προς την βάση S.

Σ. Δημόπουλος ΜΑΣ029 4 /

Απόδειξη

Σ. Δημόπουλος ΜΑΣ029 5

Να βρεθούν οι συντεταγμένες του
$$\mathbf{b} = \begin{pmatrix} 5 \\ -1 \\ 9 \end{pmatrix}$$
 ως προς την βάση

$$\left\{ \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 2\\9\\0 \end{pmatrix}, \begin{pmatrix} 3\\3\\4 \end{pmatrix} \right\}.$$

Σ. Δημόπουλος ΜΑΣ029 6 /

Θεώρημα

Έστω $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ βάση ενός διανυσματικού χώρου V.

- Κάθε υποσύνολο του V με περισσότερα από m διανύσματα είναι γραμμικά εξαρτημένο.
- Κάθε υποσύνολο του V με λιγότερα από m διανύσματα δεν παράγει τον χώρο V.

Συνεπώς, κάθε βάση έχει το ίδιο πλήθος στοιχείων.

Ορισμός

Το πλήθος στοιχείων μιας οποιασδήποτε βάση ενός διανυσματικού χώρου V ονομάζεται διάσταση του V και συμβολίζεται με $\dim(V)$.

MAΣ029

 $\dim(\mathbb{R}^n) = n$

Σ. Δημόπουλος ΜΑΣ029

Aν τα $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ είναι γραμμικά ανεξάρτητα, τότε $\dim(\operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}) = n$.

Σ. Δημόπουλος ΜΑΣ029 9 /

Έστω
$$A = \begin{pmatrix} 3 & 2 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{pmatrix}$$
. Να βρεθεί η διάσταση του μηδενικού χώρου του A , δηλαδή το $\dim(\operatorname{Nul}(A))$.

Σ. Δημόπουλος ΜΑΣ029 10 / 1