

CIS 4496 INDIVIDUAL LEARNINGS NLP DISASTER TWEETS

Arun Agarwal

Business Problem

- Twitter: important communication channel in times of emergency
- Ubiquitousness of smartphones → anyone to announce an emergency at any time
 - Disaster Relief Organizations and News Agencies need to programmatically monitor
 Twitter
- Problem: Twitter isn't all credible
 - Slang, metaphors, homonyms, source
 - A human may understand but what about a machine?

- "Getting Started" Competition
 - NLP and Preprocessing
- Competition Goal: build ML model to distinguish between real and fake disaster tweets
- Personal Goal: Learn NLP preprocessing techniques

On plus side LOOK AT THE SKY LAST NIGHT IT WAS ABLAZE

12:43 AM · Aug 6, 2015 · Twitter for Android

Data

- Data gathered by Figure-Eight Website and uploaded to Appen as pre-labeled dataset
- 10,000 hand-classified tweets
- 3 files: train, test, sample_submission

id: identifier for each tweet

text: the tweet

keyword: keyword from tweet (many blank)

location: location sent from (many blank)

target: disaster (1) or not (0)

Workflow

Preprocessing Steps

- Found list of abbreviations online
- Lowercase everything
- Remove emojis and special characters
- Remove punctuation (EDA decision)
- Expand contractions
- Remove URLs (EDA decision)
- Replace slang, informal abbreviations, and acronyms
- Manually cleaning (typos, hashtags, usernames)
- Find and manually deal with mislabeled samples
 - Remove duplicate instances
- Remove additional whitespace at end

EDA – Missing Values

Distributions of missing values for each column in training and test datasets

EDA – Target Distributions (Sample)

Distributions of two of created features, broken down by target variable and by training/test set

Baseline Model > Final Model

- **NOTE**: did not get score for test data for initial models because was running code locally while still in preprocessing phase
 - Since data came from same source, it is fine

Baseline Model (Tutorial):

- No preprocessing
- Count Vectorizer
- Linear Model (Ridge Classifier)
 - No Parameter Tuning
- 3-Fold Cross Validation
 F1 Scores: 0.594, 0.565,
 0.641 → 0.60

Second Model (Logistic Regression):

- Some preprocessing
- Features Created as Input to Model
 - Instead of text
- Logistic Regression Model
 - No Parameter Tuning

F1 Score: 0.546

Final Model (DL):

- All preprocessing
- Tokenization (FullTokenizer)
- 2-Fold StratifiedKFold
- Features Created not Inputted
- BERT Model Implementation from TensorFlow
 - L = 12 hidden layers
 - H = 768 hidden size
 - A = 12 attention heads
 - Uncased inputs

F1 Score: 0.812

Performance Evaluation

- Performance measured using F1 Score
- Two month rolling window for submissions
- Best Scores in mid 80s
- 311th/1228 → ~25th percentile
- Test set labels publicly available, so perfect submissions on leaderboard
 - Doesn't really matter though because this competition has no prizes
- Only one leaderboard (no separation between private and public)

$$F_1 = 2*rac{precision*recall}{precision+recall}$$

$$precision = rac{TP}{TP + FP}$$

$$recall = rac{TP}{TP + FN}$$

Charts of Validation Accuracy, Precision, Recall, and F1 for 2 Folds Over 10 Epochs (Left) and Charts of Train and Validation Loss for 2 Folds Over 10 Epochs (Right)

Challenges

- Time
 - 2-3 hours/week
- Runtime Limits
 - Kaggle: TPU overflow
 - GPU worked?
 - CPU: running would have to be overnight and would sometime time-out
 - Hard to experiment with different approaches
 - Back Translation
 - Feature Creation
 - Other Dataset Versions
 - Different Deep Learning Models

Learnings

- Various ways to preprocess and think about text data
- New ideas on how EDA can help us learn the data and how to preprocess it
 - Checking missing value distributions for each column and target distributions in train and test → data from same source
 - Location column → realization that can't be auto-generated (user-input) → too unique/not helpful
 - Meta features distributions → realization that are real disasters are written with more formal language/longer words and less typos

References

twitter twitte

- NLP Disaster Tweet Data Source
- NLP Disaster Tweet Kaggle Competition
- Gunes Evitan Kaggle Competitor Code
- Previous Group GitHub
- Transformers Modeling BERT
- How To Train a BERT Model Towards Data Science
- GitHub NLP Tokenization Code
- My GitHub Repository