Problem Set 5

Ryan Coyne

October 2, 2023

- 1. (a) $\forall z \in U, \exists x \in S, \exists y \in T, z = x + y$
 - (b) $\forall x \in S, \forall y \in T, \exists z \in S, z = xy$
 - (c) $\forall x \in S, \exists y \in T, \ y > x$
- 2. (a) True
 - (b) True
 - (c) False
 - (d) True
 - (e) True
 - (f) False
 - (g) True
- 3. Option (d) implies that $(\sim P(x)) \implies Q(x)$ is false for some $x \in \mathbb{Q}$. The others do not.
- 4. (a) For all circles, C_1 , in \mathcal{A} there is at least one circle, C_2 , in \mathcal{B} , such that C_1 and C_2 have exactly two points in common.
 - (b) $\exists C_1 \in \mathcal{A}, \forall C_2 \in \mathcal{B}, \sim P(C_1, C_2).$
 - (c) There exists a circle, C_1 , in \mathcal{A} , such that there is no circle, C_2 , in \mathcal{B} , for which C_1 and C_2 share exactly two points.
 - (d) The statement in (a) is true. The statements in (b) and (c) are false.

- 5. (a) This is true. If two lines are perpendicular, all angles between them are 90°. Since ℓ_1 and ℓ_2 are perpendicular to ℓ_3 , the angles between ℓ_1 and ℓ_3 and the angles between ℓ_2 and ℓ_3 will all be 90°. Thus, the corresponding angles will be congruent, and by the corresponding angles theorem, ℓ_1 and ℓ_2 are parallel.
 - (b) This is true. Two lines are parallel if they never intersect. Any third line that does intersect ℓ_1 is parallel to ℓ_1 , and if that line also doesn't intersect ℓ_2 it is parallel to ℓ_2 . Since ℓ_1 and ℓ_2 are parallel to the same line, they are parallel by the parallel transitive theorem.
 - (c) This is true by the corresponding angles theorem.
 - (d) This is false. Parallel lines do not cover the entire space that they exist in.
- 6. $\forall a, b, c \in S, a+b+c=0 \implies abc < 0$, where $S = \{x | x = 2k+1, k \in \mathbb{Z}\}$. Let a = 2k+1, b = 2l+1, c = 2m+1, where $k, l, m \in \mathbb{Z}$. a+b+c=2k+1+2l+1+2m+1= 2(k+l+m+1)+1

Therefore $\forall a, b, c \in S$, $a + b + c \neq 0$. Thus, the implication is true for all $a, b, c \in S$ since the premise is always false.

7. Prove:
$$\forall k \in \mathbb{Z}, \exists x \in \mathbb{Z}, x = 2k \implies \exists l \in \mathbb{Z}, 7x - 3 = 2l + 1.$$
 $7x - 3 = 7(2k) - 3$
 $= 2(7k) - 3$
 $= 2(7k - 2) + 1$
Let $l = 7k - 2$.
Therefore, $7x - 3 = 2l + 1$.
Prove: $\forall l \in \mathbb{Z}, \exists x \in \mathbb{Z}, 7x - 3 = 2l + 1 \implies \exists k \in \mathbb{Z}, x = 2k.$
 $7x - 3 = 2l - 1$
 $7x = 2l + 2$
 $x = \frac{2}{7}(l + 1)$
Since $x \in \mathbb{Z}$, it follows that $\frac{l+1}{7} \in \mathbb{Z}$.
Let $k = (l + 1)/7$.

Therefore x = 2k.

8. Prove: $\forall k \in \mathbb{Z}, \exists x \in \mathbb{Z}, 3x - 1 = 2k \implies \exists l \in \mathbb{Z}, 5x + 2 = 2l + 1.$ Suppose x is even.

$$x = 2m, m \in \mathbb{Z}.$$

$$6m - 1 = 2k.$$

 $m = \frac{1}{3}k - \frac{1}{6}\#$. Therefore, x must be odd.

$$x = 2m + 1$$

$$5(2m+1) + 2 = 2l + 1$$

$$10m + 7 = 2l + 1$$

$$2(5m+3) + 1 = 2l + 1$$

Therefore, if 3x - 1 is even, 5x + 2 must be odd.

Prove: $\forall l \in \mathbb{Z}, \exists x \in \mathbb{Z}, 5x + 2 = 2l + 1 \implies \exists k \in \mathbb{Z}, 3x - 1 = 2k$.

Suppose x is even.

$$x = 2m, m \in \mathbb{Z}$$

$$5(2m) + 2 = 2l + 1$$

$$10m + 2 = 2l + 1$$

 $m = \frac{1}{5}l + \frac{1}{10}\#$. Therefore, x is odd.

$$x = 2m + 1$$

$$3(2m+1) - 1 = 2k$$

$$6m + 2 = 2k$$

$$2(3m+1) = 2k$$

Therefore, if 5x + 2 is odd, 3x - 1 must be even.