

Semestrální práce z předmětu $\mathrm{KIV}/\mathrm{BIT}$

IMPLEMENTACE ŠIFRY SAFER K-64

Jméno: Jakub Záruba

Osobní číslo: A13B0476P

E-mail: eflyax@students.zcu.cz

Datum: 30. dubna 2016

Obsah

1	1 O šifře SAFER	3
2	2 Popis algoritmů	4
	2.1 Šifrování	 4
	2.2 Produkce podklíčů	 6
3	3 Dešifrování	7
4	4 Závěr	8

1 O šifře SAFER

Šifra SAFER K-64 (Secure And FAST Encryption Routine, s 64bitovým klíčem), je bloková šifra s 64bitovým plaintextem. Šifra SAFER k-64 spadá do rodiny šifer SAFER, které navrhnul James Massey (jeden z návrhářů šifry IDEA). Poprvé byla publikována v roce 1993. Všechny algoritmy z rodiny SAFER jsou nepatentované a jsou k dispozici pro neomezené použití.

2 Popis algoritmů

Šifra používá r identických šifrovacích kol (rounds). Tato šifra standardně používá 6 rounds, počet může být volitelný. Maximum je však 10. Pro zadaný 64 bitový klíč se vytvoří 2r + 1 podklíčů, které mají také 64 bitů. 2 klíče se vždy použijí v jednom šifrovacím kole (2r) a poslední klíč (+1) se použije pro výstupní transformaci. Uživatelem zvolený vstup a klíč je dlouhý 8 bajtů (64 bitů).

2.1 Šifrování

- Vstup: r, 6 \leq r \leq 10 ; 64 bitový text M = m_1 ... m_{64} ; klíč K = k_1 ... k_{64}
- Výstup: 64 bitový šifrovaný text (blok) Y = $(Y_1, ..., Y_8)$
- 1. Výpočet podklíčů $K_1,\,\dots\,,\,K_8$, viz kapitola xyz
- 2. $(X_1, X_2, ... X_8) \leftarrow (m_1 ... m_8, m_9 ... m_{16}, ... m_{57} ... m_{64})$.
- 3. Pro i od 1 proveď akce: (XOR-addition, S-box, XOR-adittion, 3x lineární vrstvy)
- 4. (a) Pro j = 1,4,5,8: $X_j \leftarrow X_j \oplus K_{2i-1}|\mathbf{j}|$ Pro j = 2,3,6,7: $X_j \leftarrow X_j \boxplus K_{2i-1}|\mathbf{j}|$
 - (b) Pro j=1,4,5,8: $X_j \leftarrow S[X_j]$, Pro j=2,3,6,7: $X_j \leftarrow S_{inv}[X_j]$.
 - (c) Pro j=1,4,5,8: $X_j\leftarrow \mathbf{S}[X_j]\boxplus K_{2i}|\mathbf{j}|.$ Pro $\mathbf{j}=2,3,6,7$: $X_j\leftarrow X_j\oplus K_{2i}|\mathbf{j}|.$
 - (d) Pro j = 1,3,5,7: $(X_j, X_{j+1}) \leftarrow f(X_j, X_{j+1})$
 - (e) $(Y_1, Y_2) \leftarrow f(X_1, X_3), (Y_3, Y_4) \leftarrow f(X_5, X_7)$ $(Y_5, Y_6) \leftarrow f(X_2, X_4), (Y_7, Y_8) \leftarrow f(X_6, X_8)$ Pro j od 1 do 8 proveď: $X_j \leftarrow Y_j$
 - (f) $(Y_1, Y_2) \leftarrow f(X_1, X_3), (Y_3, Y_4) \leftarrow f(X_5, X_7)$ $(Y_5, Y_6) \leftarrow f(X_2, X_4), (Y_7, Y_8) \leftarrow f(X_6, X_8)$ Pro j od 1 do 8 proveď: $X_i \leftarrow Y_j$
- 5. Výstupní transformace:

Pro
$$j = 1,4,5,8$$
: $Y_j \leftarrow X_j \oplus K_{2r+1}|\mathbf{j}|$.

Pro
$$j=2,\!3,\!6,\!7:Y_j\leftarrow X_j \boxplus K_{2r+1}|\mathbf{j}|$$

Obrázek 1: Schéma šifrování

2.2 Produkce podklíčů

- Vstup: 64 bitový klíč K = $k_1 \dots k_{64}$; počet šifrovacích kol \boldsymbol{r}
- **Výstup:** 64 bitové podklíče $K_1,...K_{2r+1}$
- 1. Nechť $\mathbf{R}[i]$ představuje 8 bitové úložiště dat a nechť $B_i[j]$ představuje bajt j v B_i
- 2. $(R[1], R[2], ... R[8]) \leftarrow (k_1...k_8, k_9...k_{16}, ..., k_{57}...k_{64})$
- 3. Pro i od 2 do 2r+1 proveď:
 - (a) Pro j od 1 do 8 proveď: R[j] \leftarrow (R[j] \leftarrow 3)
 - (b) Pro j od 1 do 8 proveď: $K_i[j] \leftarrow \mathbb{R}[j] \boxplus B_i[j]$

2.3 Dešifrování

Proces dešifrování používá pro zadaný klíč K stejné hledání podklíčů, jako při šifrování. Proces začíná s se vstupní transformací s klíčem K_{2r+1} k výstupní transformaci. Veškeré modulární součty jsou nahrazeny modulárním odečítáním. Funkce f v lineárních vrstvách jsou nahrazeny jejich inverzními funkcemi:

```
\begin{array}{c} \text{def test ():} \\ & \text{a} = 1 \\ & \text{b} = 2 \\ & \text{return a} + \text{b} \end{array}
```

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

3 Závěr

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.