Corta guía para la realización de informes de laboratorio al estilo de artículos científicos.

J. A. Sánchez Monroy

Los informes de laboratorio son una oportunidad para ir adquiriendo la habilidad de producir escritos científicos, la cual es muy importante a lo largo de su tiempo como estudiante y más allá. Se recomienda al estudiante examinar en esté sentido artículos de revistas tipo *Physical Review, American Journal of Physics, European Journal of Physics, The Physics Teacher y Revista Mexicana de Física*.

Recomendaciones generales:

Apunte siempre a la claridad:

- Construya enunciados estructurados que fluyen de manera lógica.
- Sea muy cuidadoso en la elección del contenido. Piense detenidamente qué se debe incluir y a que audiencia se encuentra dirigido el "*artículo*".
- Mantenga un lenguaje claro, simple y preciso.
- Revisar la ortografía y la gramática.
- Sáquele provecho a los diagramas.
- Escriba en pasado y en voz pasiva. Ejemplos:
 - o "Se utilizó una rejilla de 300 mm y se tomaron los espectros".
 - o "El generador de funciones estaba conectado al osciloscopio, usando un cable coaxial..."
- Prepárese para escribir al menos dos borradores que luego corregirá.

Estructura general del artículo:

El informe de laboratorio debe tener los siguientes componentes:

- 1. **Título de la práctica:** En el caso de un artículo, sin ser muy largo, el título debería transmitir claramente de qué se trata el artículo.
- 2. Lista de autores: Una lista de todos los que hicieron una contribución sustancial al trabajo.
- 3. **Resumen:** Las personas examinan los resúmenes para decidir rápidamente si están interesados en el material contenido de un artículo. Son una breve sinopsis de lo que se ha hecho y qué método se utilizó. Se deben citar todos los resultados clave (y sus incertidumbres asociadas) y se deben establecer las principales conclusiones.

Se podría comenzar con una oración o dos que describan lo que investigó y por qué es importante. Luego, describe tus métodos en una a tres oraciones. Luego, describe tus resultados principales en dos o tres oraciones. Concluya el resumen con una oración o dos que expliquen el significado de los resultados en un contexto más amplio.

Esquemáticamente: Cuál es el tema (o la pregunta) y por qué es importante trabajar en él \rightarrow Qué hice y cómo lo hice \rightarrow Qué obtuve (los resultados más importante) \rightarrow Cómo contribuye esto al tema en general.

Notas: No cite referencias en el resumen.

El resumen es lo último que se hace en un informe.

4. **Introducción:** Esto debe comenzar con la *"motivación"*, que explica (con más detalle que el resumen) cuál es el área general del artículo y por qué es importante. A esto le sigue una declaración clara de las *"preguntas de investigación"*, es decir, la preguntas principales que se propuso responder. Luego una breve descripción de lo que se va a realizar¹.

Dentro de la introducción o en una sección aparte, llamada marco teórico, se debe incluir el modelo físico del sistema, en el cual se especifiquen y enumeren todas las ecuaciones que se van a necesitar². No es necesario derivar las fórmulas, a menos que esto tenga un valor excepcional aclaratorio o explicativo. En esta parte se pueden enunciar los **supuestos del modelo** (*los supuestos en los modelos, son una de las cosas más importantes del laboratorio*). Sea conciso, pero con suficiente información para que se puedan entender las secciones posteriores. Además, puede utilizar figuras para ayudar a explicar el modelo.

Una regla de estilo importante es: siempre comience una nueva sección con una oración, no con una ecuación, tabla, figura, etc.

- 5. **Método o procedimiento (Detalles experimentales):** Describa el montaje experimental y el método llevado a cabo para la toma de los datos. Detalle también las mediciones realizadas. Tenga en cuenta que el método es diferente del procedimiento de la guía de laboratorio, que a menudo se escribe como una serie de comandos o instrucciones. Considere las *incertidumbres* de su método, antes de reportar cualquier dato. Indique con qué precisión puede hacer cada medición.
- 6. **Resultados y análisis:** Presente claramente sus resultados y discuta lo que significan, incluyendo comparación cuantitativa con las expectativas y utilizando incertidumbres. Cheque cuidadosamente sus cálculos y resultados cuando estos últimos difieran de forma significativa a lo

¹ En la introducción restrínjase al tema de la práctica específica, no intente describir toda la física previa a lo que va a discutir, mencione tan rápido como pueda el contexto.

² Escriba solamente las ecuaciones que va a usar en la práctica. Si introduce símbolos, aclare a qué concepto físico corresponde.

esperado. Si tras esto cree que sus resultados son correctos, reconsidere entonces los supuestos del modelo. Los resultados deben presentarse preferiblemente en *tablas* y *gráficas* (usualmente se escoge una de las dos para presentar sus resultados).

Indicaciones para las tablas:

- a. De un título descriptivo a cada tabla.
- b. Anote en cada columna la correspondiente variable y la unidad en la cual se presenta el resultado.
- c. Numere las tablas para referenciarlas fácilmente dentro del texto.
- d. Si los números consignados en una tabla son muy pequeños o muy grandes, usar exponentes de diez para anotarlos (notación científica).

Indicaciones para las gráficas:

- a. De un título descriptivo a cada gráfica.
- b. Rotular claramente los ejes agregando las correspondientes unidades.
- c. El tamaño de la gráfica se debe elegir de manera que todo su contenido sea perfectamente legible (sin exagerar en el tamaño).
- d. Numerar la gráfica de tal manera que pueda ser fácilmente referenciada dentro del texto.
- e. Representar de diferente manera lo que son datos experimentales (puntos, o algún otro símbolo) e interpolaciones o curvas teóricas (líneas continuas usualmente).
- 7. Conclusiones: Aquí debe reforzar los hallazgos más importantes que se presentaron en los resultados y análisis, y discutir su significado más amplio. Puesto que las conclusiones son el producto del análisis deben tener conexión más o menos evidente con lo realizado. Por lo tanto, mencione la gráfica, la tabla o el lugar del texto de donde se puede inferir o toma la conclusión que enuncia. Intente escribir conclusiones con sentido y concisas, aunque sean pocas, en vez de muchas con ninguno, o con significado trivial. Las conclusiones típicas se refieren al valor y la incertidumbre de la cantidad medida, así como a que aproximaciones de su modelo inicial estaban justificadas y cuáles no. Pueden discutir también formas en que se podría mejorar el experimento, así como las vías adicionales que valdría la pena explorar. Evité hacer declaraciones personales.
- 8. **Apéndices:** Aquí, presenta detalles que son importantes, pero demasiado detallados para ser de interés para la mayoría de los lectores.
- 9. Referencias.

¿Qué tan largo debe ser el informe? El informe no debería tener más de 6 páginas.