Variants of GMRES minimizing the ℓ_1 or ℓ_{∞} norms of the residual

Roland Herzog

June 21, 2017

We consider the problem of solving Ax = b for some non-singular matrix $A \in \mathbb{R}^{n \times n}$. Let $r_0 = b - Ax_0$ be the initial residual and consider the Arnoldi process (with respect to the Euclidean inner product) generating the basis vectors $\{v_j\}$, starting with $v_1 = r_0/\|r_0\|_2$. These basis vectors span the Krylov subspace $\mathcal{K}_k(A; r_0) = \operatorname{span}\{r_0, A r_0, \dots, A^{k-1}r_0\}$.

1 The ℓ_1 Problem

In each iteration consider the problem

Minimize
$$||r_0 - AV_k u||_1$$
, $u \in \mathbb{R}^k$. (1)

This can be recast as the linear program (LP)

Minimize
$$e^{\top}t$$
, $(u,t) \in \mathbb{R}^k \times \mathbb{R}^n$
s.t. $-t \le r_0 - AV_k u \le t$. (2)

The corresponding dual problem (written as a minimization problem, i.e., with negative objective) is

Minimize
$$r_0^\top z$$
, $z \in \mathbb{R}^n$
s.t. $||z||_{\infty} \le 1$ (3)
and $V_k^\top A^\top z = 0$.

Notice that from iteration to iteration the number of variables in (2) grows by one, while in (3) the number of equality constraints grows by one. **TODO: add relation between primal and dual solutions.**

1.1 LP Solver

Let us consider a (primal) simplex method for (2). To this end, recast (2) in normal form:

Minimize
$$e^{\top}t$$
, $(t, s^{+}, s^{-}, u^{+}, u^{-}) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{k} \times \mathbb{R}^{k}$
s.t. $t - s^{+} + AV_{k}u^{+} - AV_{k}u^{-} = r_{0}$
and $-t + s^{-} + AV_{k}u^{+} - AV_{k}u^{-} = r_{0}$
as well as $t, s^{+}, s^{-}, u^{+}, u^{-} \geq 0$ (4)

We thus have |B| = 2n basic variables and |N| = n + 2k non-basic variables. Notice that when (t, s^{\pm}, u^{\pm}) is feasible at iteration k, then simply replacing u^{\pm} by $\binom{u^{\pm}}{0}$ will be feasible at iteration k+1 (with the same basis).

Let us describe what a simplex step for (4) looks like in order to be able to subsequently rewrite it directly into a step for problem (2). So let B be a basis and N be the corresponding non-basis.

• Pricing

Determine the reduced cost

$$\Delta := c - \begin{bmatrix} I & -I & 0 & AV_k & -AV_k \\ -I & 0 & I & AV_k & -AV_k \end{bmatrix}^\top \begin{bmatrix} I & -I & 0 & AV_k & -AV_k \\ -I & 0 & I & AV_k & -AV_k \end{bmatrix}_{(:,B)}^{-\top} c_B.$$

If $\Delta \geq 0$, then the current iterate is an optimal solution of (4). Otherwise choose a non-basic index $k \in N$ such that $\Delta_k < 0$.

• Determination of Step Direction

The step direction

$$d_B := \begin{bmatrix} I & -I & 0 & AV_k & -AV_k \\ -I & 0 & I & AV_k & -AV_k \end{bmatrix}_{(:,B)}^{-1} \begin{bmatrix} I & -I & 0 & AV_k & -AV_k \\ -I & 0 & I & AV_k & -AV_k \end{bmatrix}_{(:,k)}$$

describes how the basic variables are changing.

• Ratio Test

Evaluate

$$\frac{t_i}{d_i}, \quad \frac{s_i^+}{d_i}, \quad \frac{s_i^-}{d_i}, \quad \frac{u_i^+}{d_i}, \quad \frac{u_i^-}{d_i}$$

for all respective basic indices such that $d_i > 0$. If none exist, stop with problem unbounded (cannot happen).

• Basis Update

Update t^+, s^{\pm}, u^{\pm} according to direction d_B on the basic variables etc. Update the basic and non-basic indices B and N.

2 The ℓ_{∞} Problem

In each iteration consider the problem

Minimize
$$||r_0 - AV_k u||_{\infty}$$
, $u \in \mathbb{R}^k$. (5)

This can be recast as the linear program (LP)

Minimize
$$t$$
, $(u,t) \in \mathbb{R}^k \times \mathbb{R}^1$
s.t. $-t e \le r_0 - AV_k u \le t e$ (6)

The corresponding dual problem (written as a minimization problem, i.e., with negative objective) is

Minimize
$$r_0^{\top} z$$
, $z \in \mathbb{R}^n$
s.t. $||z||_1 \le 1$
and $V_k^{\top} A^{\top} z = 0$. (7)

Notice that from iteration to iteration the number of variables in (6) grows by one, while in (7) the number of equality constraints grows by one. **TODO: add relation between primal and dual solutions.**

2.1 LP Solver

Let us consider a (primal) simplex method for (6). To this end, recast (6) in normal form:

Minimize
$$t$$
, $(t, s^+, s^-, u^+, u^-) \in \mathbb{R}^1 \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^k \times \mathbb{R}^k$
s.t. $te - s^+ + AV_k u^+ - AV_k u^- = r_0$
and $-te + s^- + AV_k u^+ - AV_k u^- = r_0$
as well as $t, s^+, s^-, u^+, u^- > 0$ (8)

We thus have |B| = 2n basic variables and |N| = n + k + 1 non-basic variables. Notice that when (t, s^{\pm}, u^{\pm}) is feasible at iteration k, then simply replacing u^{\pm} by $\begin{pmatrix} u_0^{\pm} \end{pmatrix}$ will be feasible at iteration k + 1 (with the same basis).

Let us describe what a simplex step for (8) looks like in order to be able to subsequently rewrite it directly into a step for problem (6). So let B be a basis and N be the corresponding non-basis.

• Pricing

Determine the reduced cost

$$\Delta := c - \begin{bmatrix} e & -I & 0 & AV_k & -AV_k \\ -e & 0 & I & AV_k & -AV_k \end{bmatrix}^\top \begin{bmatrix} e & -I & 0 & AV_k & -AV_k \\ -e & 0 & I & AV_k & -AV_k \end{bmatrix}_{(:,B)}^{-\top} c_B.$$

If $\Delta \geq 0$, then the current iterate is an optimal solution of (8). Otherwise choose a non-basic index $k \in N$ such that $\Delta_k < 0$.

• Determination of Step Direction

The step direction

$$d_B := \begin{bmatrix} e & -I & 0 & AV_k & -AV_k \\ -e & 0 & I & AV_k & -AV_k \end{bmatrix}_{(:,B)}^{-1} \begin{bmatrix} e & -I & 0 & AV_k & -AV_k \\ -e & 0 & I & AV_k & -AV_k \end{bmatrix}_{(:,k)}$$

describes how the basic variables are changing.

• Ratio Test

Evaluate

$$\frac{t_i}{d_i}$$
, $\frac{s_i^+}{d_i}$, $\frac{s_i^-}{d_i}$, $\frac{u_i^+}{d_i}$, $\frac{u_i^-}{d_i}$

for all respective basic indices such that $d_i > 0$. If none exist, stop with problem unbounded (cannot happen).

• Basis Update

Update t^+, s^{\pm}, u^{\pm} according to direction d_B on the basic variables etc. Update the basic and non-basic indices B and N.

References