Отримання випадкових величин з заданим законом розподілу

3 використанням вбудованого генератора псевдовипадкових чисел на jтому кроці одержується число: $0 < r_j < 1$.

Одержання чисел з експонеційним законом розподілу (задано λ):

$$R_i = -\frac{1}{\lambda} \cdot \ln r_j$$

Одержання чисел за законом Ерланга k-го порядку (задано λ):

$$R_i = -\frac{1}{\lambda \cdot k} \cdot \sum_{h=0}^{k-1} \ln r_{j+h}$$

Одержання чисел за нормальним розподілом (задано m та σ):

$$R_i = \sigma \cdot Y_i + m$$

де Y_{i} – число з нормованим нормальним розподілом

Нормальний (12):
$$Y_i = \sum_{h=0}^{h+11} r_{j+h} - 6$$

Нормальний (6):
$$Y_i = \sqrt{2} \cdot (\sum_{h=0}^{h+5} r_{j+h} - 3)$$

Нормальний (2):
$$Y_i = \sqrt{-2 \cdot \ln r_j} \cdot \sin(2 \cdot \pi \cdot r_{j+1})$$

Одержання чисел за розподілом Релея (задано β): $R_i = \beta \cdot \sqrt{2} \cdot \sqrt{-\ln r_i}$

Загальна формула одержання числа R_i з законом розподілу f(x)

$$r_i = \int_{0}^{R_i} f(x) \cdot dx$$

Одержання чисел за законом Сімпсона (задано a,m): потрібно для кожного r_j знайти R_j таке, що площа фігури від —а до R_j дорівнює r_j . Наприклад: m=3, a=2, $r_j=0.4$ $d_j \cdot \xi = 0.4 \cdot 2 \rightarrow d_j = 1.79 \rightarrow R_j = m-a+d=2.79$

Одержання чисел за рівномірним 2-ступеневим (задано $a,b,c,h_2/h_1$)

Лабораторна робота 2 IO - 3_ Сгенерувати 5000 значень випадкової величини з заданим законом розподілу, обчислити математичне очікування і середньоквадратичне відхилення.

	Прізвище студента	Закон розподілу	Залік
1	Topabuje	Нормальний (12)_	
2	Copryitio	Нормальний (6)	
3	Моженень	Біноміальний Рамско	
4	lonation	Нормальний (2)	
5	Epyre	Сімпсона	
6	Pliaheuro	Нормальний (12)	
7	HIKITIM	Експоненційний Лежин	
8	Pebane	Рівномірний 4-ступ. Высь	
9	Буписо	Сімпсона	
10	Picherea	Рівномірний 2-ступ.	
11	Popos	Нормальний (12) <i>Д +</i>	
12	Marab	Експоненційний	
13	Benieb	Нормальний (6)	
14	Dos polacocekuis	Рівномірний 2-ступінч.	
15	Philipp	Ерланга <i>k</i> -порядка	
16	1936 eccer	Нормальний (2)	
17	Timoneo	Рівномірний 3-ступінч./	
18	Тарханенко	Рілея	
19	Byudapoba	Сімпсона (
20	Брондогиян	Біномиальний	
21	Jarobac	Нормальний (12)	
22	Ligraci	Біноміальний	
23	Penceolo	Рівномірний 3-ступінч.	
24	Прий мак	Експоненційний	
25	Mecray reck	Нормальний (6)	
26	Расовеноко	Рілея С4	
27	MITTAKERO	Сімпсона	
28	Явгие немий	Біноміальний	
29	Musso	Нормальний (12)	
30	Маркань	Рівномірний 2-ступ. 🚑	
31	Huncko	Біноміальний В	
32	Reyxno	Сімпсона	
33	Hacipirelle	Нормальний (6)	

Значення функції Лапласа Ф(х)

		JHanc	7111171 4	7	7 101171	aca T			
0,00	0,0000	0,52	0,1985	1,04	0,3508	1,56	0,4406	2,16	0,4846
0,01	0,0040	0,53	0,2019	1,05	0,3531	1,57	0,4418	2,18	0,4854
0,02	0,0080	0,54	0,2054	1,06	0,3554	1,58	0,4429	2,20	0,4861
0,03	0,0120	0,55	0,2088	1,07	0,3577	1,59	0,4441	2,22	0,4868
0,04	0,0160	0,56	0,2123	1,08	0,3599	1,60	0,4452	2,24	0,4875
0,05	0,0199	0,57	0,2157	1,09	0,3621	1,61	0,4463	2,26	0,4881
0,06	0,0239	0,58	0,2190	1,10	0,3643	1,62	0,4474	2,28	0,4887
0,07	0,0279	0,59	0,2224	1,11	0,3665	1,63	0,4484	2,30	0,4893
0,08	0,0319	0,60	0,2257	1,12	0,3686	1,64	0,4495	2,32	0,4898
0,09	0,0359	0,61	0,2291	1,13	0,3708	1,65	0,4505	2,34	0,4904
0,10	0,0398	0,62	0,2324	1,14	0,3729	1,66	0,4515	2,36	0,4909
0,11	0,0438	0,63	0,2357	1,15	0,3749	1,67	0,4525	2,38	0,4913
0,12	0,0478	0,64	0,2389	1,16	0,3770	1,68	0,4535	2,40	0,4918
0,13	0,0517	0,65	0,2422	1,17	0,3790	1,69	0,4545	2,42	0,4922
0,14	0,0557	0,66	0,2454	1,18	0,3810	1,70	0,4554	2,44	0,4927
0,15	0,0596	0,67	0,2486	1,19	0,3830	1,71	0,4564	2,46	0,4931
0,16	0,0636	0,68	0,2517	1,20	0,3849	1,72	0,4573	2,48	0,4934
0,10	0,0675	0,69	0,2549	1,21	0,3869	1,73	0,4582	2,50	0,4938
0,17	0,0073	0,70	0,2580	1,22	0,3888	1,74	0,4591	2,52	0,4941
0,18	0,0753	0,70	0,2611	1,23	0,3808	1,75	0,4599	2,54	0,4945
0,19	0,0793	0,71	0,2611	1,23	0,3907	1,76	0,4599	2,54	0,4948
	0,0793	0,72	0,2673		0,3923	1,77	0,4616		0,4948
0,21			0,2073	1,25				2,58	0,4951
0,22	0,0871	0,74		1,26	0,3962	1,78	0,4625	2,60	
0,23	0,0910	0,75	0,2734	1,27	0,3980	1,79	0,4633	2,62	0,4956
0,24	0,0948	0,76	0,2764	1,28	0,3997	1,80	0,4641	2,64	0,4959
0,25	0,0987	0,77	0,2794	1,29	0,4015	1,81	0,4649	2,66	0,4961
0,26	0,1026	0,78	0,2823	1,30	0,4032	1,82	0,4656	2,68	0,4963
0,27	0,1064	0,79	0,2852	1,31	0,4049	1,83	0,4664	2,70	0,4965
0,28	0,1103	0,80	0,2881	1,32	0,4066	1,84	0,4671	2,72	0,4967
0,29	0,1141	0,81	0,2910	1,33	0,4082	1,85	0,4678	2,74	0,4969
0,30	0,1179	0,82	0,2939	1,34	0,4099	1,86	0,4686	2,76	0,4971
0,31	0,1217	0,83	0,2967	1,35	0,4115	1,87	0,4693	2,78	0,4973
0,32	0,1255	0,84	0,2995	1,36	0,4131	1,88	0,4699	2,80	0,4974
0,33	0,1293	0,85	0,3023	1,37	0,4147	1,89	0,4706	2,82	0,4976
0,34	0,1331	0,86	0,3051	1,38	0,4162	1,90	0,4713	2,84	0,4977
0,35	0,1368	0,87	0,3078	1,39	0,4177	1,91	0,4719	2,86	0,4979
0,36	0,1406	0,88	0,3106	1,40	0,4192	1,92	0,4726	2,88	0,4980
0,37	0,1443	0,89	0,3133	1,41	0,4207	1,93	0,4732	2,90	0,4981
0,38	0,1480	0,90	0,3159	1,42	0,4222	1,94	0,4738	2,92	0,4982
0,39	0,1517	0,91	0,3186	1,43	0,4236	1,95	0,4744	2,94	0,4984
0,40	0,1554	0,92	0,3212	1,44	0,4251	1,96	0,4750	2,96	0,4985
0,41	0,1591	0,93	0,3238	1,45	0,4265	1,97	0,4756	2,98	0,4986
0,42	0,1628	0,94	0,3264	1,46	0,4279	1,98	0,4761	3,00	0,49865
0,43	0,1664	0,95	0,3289	1,47	0,4292	1,99	0,4767	3,20	0,49931
0,44	0,1700	0,96	0,3315	1,48	0,4306	2,00	0,4772	3,40	0,49966
0,45	0,1736	0,97	0,3340	1,49	0,4319	2,01	0,4778	3,60	0,499841
0,46	0,1772	0,98	0,3365	1,50	0,4332	2,02	0,4783	3,80	0,499928
0,47	0,1808	0,99	0,3389	1,51	0,4345	2,03	0,4788	4,00	0,499968
0,48	0,1844	1,00	0,3413	1,52	0,4357	2,04	0,4793	4,50	0,499997
0,49	0,1879	1,01	0,3438	1,53	0,4370	2,05	0,4798	5,00	0,4999997
0,50	0,1915	1,02	0,3461	1,54	0,4382	2,06	0,4803		
0,51	0,1950	1,03	0,3485	1,55	0,4394	2,07	0,4808		

Alea jacta est