SQL 101

Ethan Kent

Spoonflower

December 17, 2020

What is SQL?

- SQL is a programming language for interacting with relational databases.
- ▶ It stands for Structured Query Language.¹
- ▶ It was invented in 1974, and became a standard of ANSI and ISO in the late-1980s.
- Standards for SQL are now defined by ISO/IEC, though it appears that no actual SQL versions are compliant with all and only the ISO/IEC standards.

¹Or maybe it doesn't: "It's a common misconception that *SQL* stands for *structured query language*; it stands for S-Q-L and nothing else. Why? Because ISO says so." Chris Fehily, *SQL Database Programming* at loc'n 222 (2015 Kindle ed.)

What is a Relational Database?

- A database (imperfectly) implements a relational model of data, which is a mathematical model describing certain data structures and relationships.
- ▶ From an practical engineering perspective, a relational database has rows and columns, where each row is an entry in the database; and each column is a bit of data about that entry that matches the type required for that column.
- A relational database contrasts with NoSQL databases like MongoDB, in which users can insert free-form data that does not comprise rows of data in typed columns.

What's up with MySQL, PostgreSQL, Microsoft SQL Server, Oracle, IBM DB2, . . .

- ► The situation is similar to the existence of many programming languages aimed at the same problem domains.
- Some are open-source, some aren't.
- Some are more compliant with ISO/IEC standards (e.g. PostgreSQL); some are less so (e.g. SQLite).
- Some are part of ecosystems, are cloud-based/SaaS, etc. (e.g. Microsoft SQL Server, Amazon RDS, Google Cloud SQL).

Spreadsheet analogy

You've probably encountered this problem if you've used a spreadsheet to keep track of things. It starts out simple:

Person	Age
Ethan	39
Madigan	39
Belle	9
Milo	7
Clara	3

Spreadsheet analogy (cont'd)

Now we add a bit:

Person	Age	Favorite Dessert
Ethan	39	Oreo Cookies
Madigan	39	Klondike Bar
Belle	9	Mint Chip Ice Cream
Milo	7	Cookie Dough Ice Cream
Clara	3	Chocolate Ice Cream

Spreadsheet analogy (cont'd)

And now it turns out one person can't decide and has *two* favorites. We could do this:

Person	Age	Favorite Dessert
Ethan	39	Oreo Cookies, Mint Chip Ice Cream
Madigan	39	Klondike Bar
Belle	9	Mint Chip Ice Cream
Milo	7	Cookie Dough Ice Cream
Clara	3	Chocolate Ice Cream

Or maybe we try this:

Person	Age	Favorite Dessert #1	Favorite Dessert # 2
Ethan	39	Oreo Cookies	Mint Chip Ice Cream
Madigan	39	Klondike Bar	
Belle	9	Mint Chip Ice Cream	
Milo	7	Cookie Dough Ice Cream	
Clara	3	Chocolate Ice Cream	

Spreadsheet analogy (cont'd)

What's wrong with this?

- The comma-separated list is bad because—
 - We can't sort or group things together, and
 - The value has to be manipulated to be used.
- ▶ The use of additional columns is bad because—
 - We have to keep adding columns based on the data, so we're never sure we're done with the structure of the database; and
 - We are treating like things differently: columns mean the same thing, but are distinct.

Spreadsheet analogy (cont'd)

So we do this:

Person	Age	Favorite Dessert
Ethan	39	Oreo Cookies
Ethan	39	Mint Chip Ice Cream
Madigan	39	Klondike Bar
Belle	9	Mint Chip Ice Cream
Milo	7	Cookie Dough Ice Cream
Clara	3	Chocolate Ice Cream

Spreadsheet analogy (cont'd)

And now we want to have more detail about the desserts:

Person	Age	Favorite Dessert	Dessert Type
Ethan	39	Oreos	Cookie
Ethan	39	Mint Chip	Ice Cream
Madigan	39	Klondike Bar	Ice Cream Novelty
Belle	9	Mint Chip	Ice Cream
Milo	7	Cookie Dough	Ice Cream
Clara	3	Chocolate	Ice Cream

Spreadsheet analogy (cont'd)

At this point we might feel queasy:

- ► We're repeating ourselves—
 - Once we know the person is *Ethan*, we know we have a 39-year-old person.
 - Once we know the dessert is Mint Chip, we know we have an Ice Cream.
- We have have data about different stuff in the same place.

Spreadsheet analogy (cont'd)

Repeating ourselves is more than an inconvenience. Consider this:

Person	Age	Favorite Dessert	Dessert Type
Ethan	39	Oreos	Cookie
Ethan	38	Mint Chip	Ice Cream
Madigan	39	Klondike Bar	Ice Cream Novelty
Belle	9	Mint Chip	Candy Bar
Milo	7	Cookie Dough	Ice Cream
Clara	3	Chocolate	Ice Cream

- Are these two desserts with the same name ("Mint Chip")?
- ► Are there two *Ethans*?
- Are there mistakes?
- ► If there are mistakes, is Ethan 38 or 39? Is Mint Chip an Ice Cream or a Candy Bar?

Spreadsheet analogy (cont'd)

So let's split things into different tables. And let's use some arbitrary, unique "ID"s, so we can talk about a particular row without having to use some of the data (that could change):

ID	Person	Age
1	Ethan	39
2	Madigan	39
3	Belle	9
4	Milo	7
5	Clara	3

ID	Dessert	Dessert Type
1 2	Oreos	Cookies Ice Cream
3	Mint Chip Klondike Bar	Ice Cream Ice Cream Novelty
4	Cookie Dough	Ice cream
5	Chocolate	Ice Cream

But now how can we show the relationship between these? Wait, did I just say *relationship*? As in *relational database*? Holy cow.

Spreadsheet analogy (cont'd)

ID	Person	Age
1	Ethan	39
2	Madigan	39
3	Belle	9
4	Milo	7
5	Clara	3

ID	Dessert	Dessert Type
1	Oreos	Cookies
2	Mint Chip	Ice Cream
3	Klondike Bar	Ice Cream Novelty
4	Cookie Dough	Ice cream
5	Chocolate	Ice Cream

Person ID	Dessert ID
1	1
1	2
2	3
3	2
4	4
5	5

Spreadsheet analogy (cont'd)

Did you notice the error that will bite us later? Cookie Dough is an "Ice cream," not an "Ice Cream." Let's fix that:

ID	Person	Age
1	Ethan	39
2	Madigan	39
3	Belle	9
4	Milo	7
5	Clara	3

ID	Desert Type
1	Cookie
2	Ice Cream
3	Ice Cream Novelty

ID	Dessert	Dessert Type ID
1	Oreos	1
2	Mint Chip	2
3	Klondike Bar	3
4	Cookie Dough	2
5	Chocolate	2

Person ID	Dessert ID
1	1
1	2
2	3
3	2
4	4
5	5

Spreadsheet analogy (cont'd)

What does any of this have to do with anything? Well, you've just seen examples of:

- ► Relational database design
- Foreign keys
- Primary keys
- Composite primary keys
- Join tables
- First and Third Normal Form

Primary keys

ID	Person	Age
1	Ethan	39
2	Madigan	39
3	Belle	9
4	Milo	7
5	Clara	3

ID	Desert Type
1	Cookie
2	Ice Cream
3	Ice Cream Novelty

ID	Dessert	Dessert Type ID
1	Oreos	1
2	Mint Chip	2
3	Klondike Bar	3
4	Cookie Dough	2
5	Chocolate	2

Person ID	Dessert ID
1	1
1	2
2	3
3	2
4	4
5	5

Foreign keys

ID	Dessert	Dessert Type ID
1	Oreos	1
2	Mint Chip	2
3	Klondike Bar	3
4	Cookie Dough	2
5	Chocolate	2

Person ID	Dessert ID
1	1
1	2
2	3
3	2
4	4
5	5

Composite primary keys

Person ID	Dessert ID
1	1
1	2
2	3
3	2
4	4
5	5

Join tables

Person ID	Dessert ID
1	1
1	2
2	3
3 4	2
4	4
5	5

First Normal Form

Don't do either of these things (columns must be "atomic" and there mustn't be "repeating groups"):

Person	Favorite Dessert	
Ethan Madigan Belle	Oreos, Mint Chip Klondike Bar Mint Chip	
Milo	Cookie Dough	

Person	Favorite Dessert #1	Favorite Dessert # 2
Ethan Madigan Belle Milo	Oreos Klondike Bar Mint Chip Cookie Dough	Mint Chip

Third Normal Form

Don't do this:

- ▶ If we know *Ethan*, then we automatically know *39*; and
- ▶ If we know *Mint Chip*, then we automatically know *Ice Cream*:²

Person	Age	Favorite Dessert	Dessert Type
Ethan	39	Oreos	Cookie
Ethan	39	Mint Chip	Ice Cream
Madigan	39	Klondike Bar	Ice Cream Novelty
Belle	9	Mint Chip	Ice Cream
Milo	7	Cookie Dough	Ice Cream
Clara	3	Chocolate	Ice Cream

²In First and Second Normal Forms and no "transitive dependencies."

Second Normal Form has to do with composite primary keys, but it's impossible with the tables we've looked at so far.

Create some tables

```
CREATE TABLE people (
   id SERIAL NOT NULL,
   name TEXT NOT NULL UNIQUE,
   age INTEGER NOT NULL,
   PRIMARY KEY (id)
);

CREATE TABLE dessert_types (
   id SERIAL NOT NULL,
   name TEXT NOT NULL UNIQUE,
   PRIMARY KEY (id)
);
```

Create some more tables

```
CREATE TABLE desserts (
  id SERIAL NOT NULL,
  name TEXT NOT NULL UNIQUE,
  dessert_type_id INTEGER NOT NULL,
  PRIMARY KEY (id),
  FOREIGN KEY (dessert_type_id)
    REFERENCES dessert_types(id)
);
CREATE TABLE people_desserts (
  person_id INTEGER NOT NULL,
  dessert_id INTEGER NOT NULL,
  PRIMARY KEY (person_id , dessert_id),
  FOREIGN KEY (person_id) REFERENCES people(id),
 FOREIGN KEY (dessert_id) REFERENCES desserts(id)
```

Insert some data

```
INSERT INTO people (name, age) VALUES
  ('Ethan', 39),
  ('Madigan', 39),
  ('Belle', 9),
  ('Milo', 7),
  ('Clara', 3);

INSERT INTO dessert_types (name) VALUES
  ('Cookie'),
  ('Ice Cream'),
  ('Ice Cream Novelty');
```

Now what?

Queries!

```
INSERT INTO desserts (name, dessert_type_id) VALUES
  ('Oreos',
    (SELECT id FROM dessert_types
    WHERE name = 'Cookie')),
  ('Mint Chip',
    (SELECT id FROM dessert_types
    WHERE name = 'Ice Cream')),
  ('Klondike Bar',
    (SELECT id FROM dessert_types
    WHERE name = 'Ice Cream Novelty')),
  ('Cookie Dough',
    (SELECT id FROM dessert_types
    WHERE name = 'Ice Cream')),
  ('Chocolate',
    (SELECT id FROM dessert_types
    WHERE name = 'Ice Cream'));
```

Not very DRY. How about a CTE?

```
WITH
  cookie_id AS
    (SELECT id FROM dessert_types
     WHERE dessert_type = 'Cookie'),
  ice cream id AS
    (SELECT id FROM dessert_types
     WHERE dessert_type = 'Ice Cream'),
  ice_cream_novelty_id AS
    (SELECT id FROM dessert_types
     WHERE dessert_type = 'Ice Cream Novelty')
INSERT INTO desserts (dessert_name, dessert_type_id) VALUES
  ('Oreos', (SELECT id FROM cookie_id)),
  ('Mint Chip', (SELECT id FROM ice_cream_id)),
  ('Klondike Bar', (SELECT id FROM ice_cream_novelty_id)),
  ('Cookie Dough', (SELECT id FROM ice_cream_id)),
  ('Chocolate', (SELECT id FROM ice_cream_id));
```

Not very DRY. How about a CTE?

Not with MySQL though.