TYPE YOUR NAME HERE

HW 9: 2.25-2.31

M328K

February 16th, 2012

2.37 Theorem. If r_1, r_2, \ldots, r_m are natural numbers and each one is congruent:	to 1
modulo 4, then the product $r_1r_2\cdots r_m$ is also congruent to 1 modulo 4.	
<i>Proof.</i> Type your proof here!	
2.38 Theorem (Infinitude of $4k + 3$ Primes Theorem). There are infinitely mapping numbers that are congruent to 3 modulo 4.	any
Proof. Type your proof here!	
2.41 Exercise. Use polynomial long division to compute $(x^m - 1) \div (x - 1)$.	
Solution. Type your solution here!	