Linear Discriminant Analysis for Bearing Fault Classification

Biswajit Sahoo

Linear Discriminant Analysis (LDA) is a classification technique that assumes a Gaussian distribution over variables for each class. Different means are chosen for different classes but same covariance matrix is chosen for all classes. Taking same covariance matrix for all classes is indeed a restricting assumption but it works well when this assumption is approximately satisfied and number of data points is less. Once Gaussians are fit for each class, posterior probability of a data point belonging to a particular class is determined by applying Bayes' rule. The parameters of the distribution are learnt form data.

We will add a detailed theory of LDA to this post at a later time. For the time being we direct the interested reader to this excellent book.

We will provide codes in R to show that LDA also works well for bearing fault classification. We will use package 'MASS' to implement LDA.

Description of data

Detailed discussion of how to prepare the data and its source can be found in this post. Here we will only mention about different classes of the data. There are 10 classes and data for each class are taken at a load of 1hp. The classes are:

- C1 : Ball defect (0.007 inch)
- C2 : Ball defect (0.014 inch)
- C3 : Ball defect (0.021 inch)
- C4: Inner race fault (0.007 inch)
- C5: Inner race fault (0.014 inch)
- C6: Inner race fault (0.021 inch)
- C7: Normal
- C8: Outer race fault (0.007 inch, data collected from 6 O'clock position)
- C9: Outer race fault (0.014 inch, 6 O'clock)
- C10: Outer race fault (0.021 inch, 6 O'clock)

Codes

```
library(reticulate)
use_condaenv("r-reticulate")
```

First download the data from here. Save the data in a folder and read it from that folder.

```
train_data = data_wav_energy[-index,]
test_data = data_wav_energy[index,]

# Shuffle data
train_data = train_data[sample(nrow(train_data)),]
test_data = test_data[sample(nrow(test_data)),]
```

It should be noted that for some of the deterministic techniques, shuffling of data is not required. But some other techniques like deep learning require the data to be shuffled for better training. So as a recipe we always shuffle data whether the method is deterministic or not. This doesn't hurt either for a deterministic technique.

```
technique.
lda_fit = lda(fault~., train_data)
pred_train = predict(lda_fit, newdata = train_data)
pred_test = predict(lda_fit, newdata = test_data)
# Confusion matrix
train_confu = table(train_data$fault, pred_train$class)
test_confu = table(test_data$fault, pred_test$class)
import seaborn as sns
import matplotlib.pyplot as plt
fault_type = ['C1','C2','C3','C4','C5','C6','C7','C8','C9','C10']
plt.figure(1,figsize=(18,8))
plt.subplot(121)
sns.heatmap(r.train_confu, annot= True,fmt = "d",
xticklabels=fault_type, yticklabels=fault_type, cmap = "Blues")
## <matplotlib.axes._subplots.AxesSubplot object at 0x0000000023CD8470>
plt.title('Training Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('True')
plt.subplot(122)
sns.heatmap(r.train_confu/155, annot= True,
xticklabels=fault_type, yticklabels=fault_type, cmap = "Blues")
## <matplotlib.axes._subplots.AxesSubplot object at 0x0000000025D032B0>
plt.title('Training Confusion Matrix (in %age)')
plt.xlabel('Predicted')
plt.ylabel('True')
plt.show()
```



```
plt.figure(2,figsize=(18,8))
plt.subplot(121)
sns.heatmap(r.test_confu, annot = True,
xticklabels=fault_type, yticklabels=fault_type, cmap = "Blues")
```

<matplotlib.axes._subplots.AxesSubplot object at 0x0000000026434BE0>

```
plt.title('Test Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('True')
plt.subplot(122)
sns.heatmap(r.test_confu/75, annot = True,
xticklabels=fault_type, yticklabels=fault_type, cmap = "Blues")
```

<matplotlib.axes._subplots.AxesSubplot object at 0x000000001E425710>

```
plt.title('Test Confusion Matrix (in %age)')
plt.xlabel('Predicted')
plt.ylabel('True')
plt.show()
```



```
overall_test_accuracy = sum(diag(test_confu))/750
sprintf("Overall Test Accuracy: %.4f", overall_test_accuracy*100)
```

[1] "Overall Test Accuracy: 88.2667"

We will see later that quadratic discriminant analysis gives much better results that this. So probably the assumption of using same covariance matrix for all classes is a bad one for this particular dataset.

To see results of other techniques applied to public condition monitoring datasets, visit this page.

Last updated: 7^{th} July, 2019