定义 3.2.10. 对任意布尔代数 \mathcal{B} ,它的子集 $G \subseteq B$ 如果满足:对任意 $n \in \omega$,任意 $g_1, \dots, g_n \in G$,它们的积不为 0,即, $g_1 \cdot g_2 \cdots g_{n-1} \cdot g_n > 0$,并且 $g_1 \cdot g_2 \cdots g_{n-1} \cdot g_n \in G$,就称 G 有有穷交性质。

练习 3.2.11. 如果 $G \subseteq B$ 有有穷交性质, $a \in B$,则 $G \cup \{a\}$ 或 $G \cup \{-a\}$ 有 有穷交性质。

引理 3.2.12. 令 B 是布尔代数, $G \subseteq B$ 有有穷交性质,则

$$F = \{b \in B \mid \exists g \in G(g \le b)\}\tag{3.2}$$

是B上的滤,称为G生成的滤。

练习 3.2.13. 如果 F 是由 G 生成的滤,则 F 是包含 G 的最小的滤,即, $G \subseteq F$ 并且如果 $F' \supseteq G$ 也是滤,则 $F \subseteq F'$ 。

注记 3.2.14. 由于 $\{a\}$ 总是有有穷交性质,所以,对任意 $a \in B$, $\{a\}$ 生成 \mathcal{B} 上的一个滤。由单点集生成的滤称为主滤。

定义 3.2.15. 令 \mathcal{B} 为布尔代数, $F \subseteq B$ 是滤。如果对任意的 $b \in B$,b 和 -b 有且只有一个属于 F,就称 F 是 \mathcal{B} 上的超滤。

由单点集生成的主滤一定是超滤,请尝试以下联系:

练习 3.2.16. 假设 $G \subseteq B$ 为非空子集, F 是由 G 生成的滤,则以下命题等价:

- (1) G 是单点集;
- (2) F 是超滤;
- (3) F 是主超滤。

在偏序集的意义上,超滤也是极大滤。

引理 3.2.17. \Diamond \mathcal{B} 是布尔代数, F 是 \mathcal{B} 上的滤。以下命题等价:

(1) F 是超滤;

- (2) F 是极大滤: 不存在滤 F' 使得 $F \subsetneq F'$ 。
- (3) F 是素的: 对任意 $a,b \in B$, 如果 $a+b \in F$, 则 $a \in F$ 或者 $b \in F$ 。 证明. (1)⇒(2). 反设 F 不是极大滤,F' 是 F 的真扩张。令 $b \in F - F'$ 。由于 $b \notin F$ 而 F 是超滤,所以 $-b \in F \subseteq F'$,这样 $b \cap (-b) = 0 \in F'$,矛盾。
- (2) \Rightarrow (3). 首先,我们验证,如果 F 是极大滤,而 $a \notin F$,则至少存在一个 $c \in F$, $c \cdot a = 0$: 否则, $F \cup \{a\}$ 有有穷交性质,因而生成一个滤 F',它是 F 的真扩张。

现在假设 a,b 都不属于 F, 令 $c_1,c_2 \in F$ 见证这一点,即 $c_1 \cdot a = c_2 \cdot b = 0$ 。 所以 $c_1 \cdot c_2 \cdot (a+b) = 0$ 。由于 $c_1 \cdot c_2 \in F$,所以 $a+b \notin F$ 。

(3)⇒(1). 对任意 $b \in B$, 如果 $b \notin F$, 因为 $b + (-b) = 1 \in F$, 所以由 (3), $-b \in F$ 。

练习 3.2.18. 如果 $a \neq b$,则存在超滤 U, $a \in U$ 但 $b \notin U$ 。

练习 3.2.19. 令 F 是 \mathcal{B} 上的滤,令 ({0,1},+,·,-,0,1) 为两个元素的布尔代数。定义 $f: \mathcal{B} \to \{0,1\}$ 为

$$f(b) = \begin{cases} 1, & b \in F; \\ 0, & b \notin F. \end{cases}$$
 (3.3)

即,f 是 F 的特征函数。证明: F 是超滤当且仅当 f 是布尔代数 \mathcal{B} 到 $\{0,1\}$ 的同态映射。

定理 3.2.20 (超滤存在定理). 布尔代数 \mathcal{B} 上的任意滤 F , 都存在 \mathcal{B} 上的超滤 U 使得 $F\subseteq U$ 。

证明. 令 $\mathcal{F} = \{U \mid U \neq \mathcal{B} \perp \text{的滤并且} F \subseteq U\}$ 。 \mathcal{F} 在关系 \subseteq 下是一个偏序集,并且它的每个链都有上界。根据佐恩引理, \mathcal{F} 有极大元 U。显然,U 是极大滤,因而是超滤,而且 $F \subseteq U$ 。

定义 3.2.21. 今后我们用 $Ult(\mathcal{B})$ 表示布尔代数 \mathcal{B} 上所有超滤的集合,以下定义的函数 $f: \mathcal{B} \to \mathcal{P}(Ult(\mathcal{B}))$ 称为斯通映射:

$$f(b) = \{ U \in \text{Ult}(\mathcal{B}) \mid b \in U \}. \tag{3.4}$$

定理 3.2.22 (斯通表示定理). 对任意布尔代数 \mathcal{B} , 存在集合 X , \mathcal{B} 同构于 $\mathcal{P}(X)$ 的一个子代数。

证明. 令 $X = \text{Ult}(\mathcal{B})$, $f : B \to \mathcal{P}(X)$ 为斯通映射。我们证明 f 是嵌入,这样 f[B] 就是 $\mathcal{P}(X)$ 的子代数,并且与 \mathcal{B} 同构。

由于 0 不属于任何滤而 1 属于任何滤,所以 $f(0) = \emptyset$, $f(1) = \mathcal{P}(X)$ 。如果 $a \cdot b \in U$,则一定有 $a \in U$ 并且 $b \in U$,反之亦然,所以 $f(a \cdot b) = f(a) \cap f(b)$ 。 另外,任意超滤 U 都是素的,所以 $a + b \in U$ 当且仅当 $a \in U$ 或者 $b \in U$,所以 $f(a + b) = f(a) \cup f(b)$ 。 这就验证了 f 是同态。

最后,假设 $a \neq b$,不妨设 $a \cdot (-b) = c \neq 0$,则 $c \cdot b = 0$ 。令 U_c 和 U_b 分别为 c 和 b 生成的超滤,则 $c \notin U_b$ 且 $b \notin U_c$ 。但是 $a \in U_c$,所以 $f(a) \neq f(b)$ 。所以 f 是一个嵌入。

定义 3.2.23. \Diamond (P, <) 是偏序集,

- (1) 如果 $D \subseteq P$ 满足:对任意 $p \in P$,总存在 $d \in D$ 使得 $p \le d$,就称 D 是 P 的稠密子集。
- (2) 如果 \mathcal{D} 是 P 的稠密子集的族,F 是 P 上的超滤,如果对任意 $D \in \mathcal{D}$,如果 $F \cap D \neq \emptyset$,则就称 F 是 \mathcal{D} -脱殊的。

定义 3.2.24. 令 \mathcal{B} 是布尔代数, U 是 \mathcal{B} 上的超滤:

- (1) 令 $D \subseteq B$ 并且 $\sum D$ 存在。我们称 U 是D-完全的 ,或者称 U 保持 $\sum D$,如果 $\sum D \in U$ 蕴涵存在 $d \in D$, $d \in U$ 。
- (2) 如果 \mathcal{D} 是 \mathcal{B} 的子集的族,对任意 $\mathcal{D} \in \mathcal{D}$, $\sum \mathcal{D}$ 都存在。我们称 \mathcal{U} 是 \mathcal{D} -完全的,如果对任意 $\mathcal{D} \in \mathcal{D}$, \mathcal{U} 都是 \mathcal{D} -完全的。

练习 3.2.25. 定义3.2.24中的 (1) 可以替换为以下条件: $D \subseteq U$ 蕴涵 $\prod D \in U$ 。 **练习 3.2.26.** 对于任意偏序集 (P, \leq) ,我们也可以定义相应的概念:

(1) 如果 $D \subseteq P$ 满足: 对任意 $p \in P$,总存在 $d \in D$ 使得 $d \leq p$,就称 D 是 P 的稠密子集。

(2) 如果 \mathcal{D} 是 P 的稠密子集的族,U 是 P 上的超滤,如果对任意 $D \in \mathcal{D}$, $U \cap D \neq \emptyset$,就称 U 是 \mathcal{D} -脱殊的。

证明:如果将 \mathcal{D} 看做偏序集,U 是 \mathcal{D} -完全的当且仅当 U 是 \mathcal{D} -脱殊的。

引理 3.2.27 (Rasiowa-Sikorski 引理). 令 \mathcal{B} 为布尔代数, \mathcal{D} 是 \mathcal{B} 的子集的族, 并且 \mathcal{D} 是可数的,则存在 \mathcal{B} 上的滤 \mathcal{U} , \mathcal{U} 是 \mathcal{D} -完全的。

证明. 令 $\{D_0, D_1, \dots\}$ 为 \mathcal{D} 的一个枚举。我们如下递归定义 $G = \{g_0, g_1, \dots\} \subseteq B - \{0\}$:

- (1) $g_0 = 1$;
- (2) 假设 g_n 已定义,如果 $g_n \cdot \sum D_n = 0$,则令 $g_{n+1} = g_n$;否则,一定存在 $d \in D_n$, $g_n \cdot d > 0$,任取这样的一个 $d_n \in D$,令 $g_{n+1} = g_n \cdot d_n$ 。对任意 $g_i \in G$,都有 $g_{i+1} \leq g_i$,所以 G 有有穷交性质。最后,令 U 为 G 生成的超滤。我们以下证明 U 是 \mathcal{D} -完全的。

对任意 $D_n \in \mathcal{D}$,如果 $\sum D_n \in U$,则 $g_n \cdot \sum D_n > 0$,所以存在 $d_n \in D$, $g_{n+1} = g_n \cdot d_n$ 。由于 $g_{n+1} \in U$ 并且 $g_{n+1} \leq d_n$,所以 $d_n \in U$ 。

注记 3.2.28. 引理**??**中,要求 \mathfrak{D} 是可数的这一点是必须的。如果 \mathfrak{D} 不可数,相应的命题在 ZFC 中不可证明,虽然它与 ZFC 是一致的。

定义 3.2.29. 令 *3* 为布尔代数,

- (1) $C \subseteq \mathcal{B}$ 称为反链,如果对任意 $a,b \in C$, $a \cdot b = 0$ 。
- (2) 多满足可数链性质当且仅当它的反链是至多可数的。
- (3) Martin 公理: 令 \mathcal{B} 为布尔代数,满足可数链性质。 \mathcal{D} 是 \mathcal{B} 的子集的族, $|\mathcal{D}| < 2^{\aleph_0}$,并且对任意 $\mathcal{D} \in \mathcal{D}$, $\sum \mathcal{D}$ 存在,则存在 \mathcal{B} 上的滤超滤 U, U 是 \mathcal{D} -完全的。

注记 3.2.30. 显然,由引理3.2.27,ZFC + CH 蕴涵 Martin 公理。Martin 公理在 ZFC 中不可证,但 ZFC + ¬CH + MA 是一致的。如果 CH 不成立,则马丁公理可以统一回答一些有关 \aleph_0 与 2^{\aleph_0} 之间的那些基数的问题。例如,如果 CH 不成立,我们可以问以下问题:

- 1. 如果 $\omega \leq \kappa < 2^{\omega}$, 是否 $2^{\kappa} = 2^{\omega}$?
- 2. 如果 $\omega < \kappa < 2^{\omega}$, κ 个零测集的并是否还是零测集?
- 3. If $\omega \leq \kappa < 2^{\omega}$, κ 个第一纲集的并是否还是第一纲集?

假设 Martin 公理,则以上问题的答案都为"是"。

前面已经提到,任何滤都对有穷交封闭,而对偶地,任何理想都对有穷 并封闭。但是,也有一些滤(理想)对更大的交(并)封闭,于是我们引入以 下概念。

定义 3.2.31. 对任意无穷基数 κ , 如果集合 S 上的滤 F 满足: 如果 $F' \subseteq F$ 且 $|F'| < \kappa$, 则 $\bigcap F' \in F$, 就称 F 是 κ -完全的。

对任意无穷基数 κ , 如果集合 S 上的理想 I 满足: 如果 $I' \subseteq I$ 且 $|I'| < \kappa$,则 $\bigcup I' \in I$,就称 I 是 κ -完全的。

对任意无穷基数 κ , κ -完全滤和 κ -完全理想是对偶概念。

注记 3.2.32. 任何滤和理想都是 ℵ₀-完全的;历史上,ℵ₁-完全的滤和理想又称 为σ-完全的。这里需要注意:可数完全的滤是对有穷交封闭的,ℵ₁-完全的滤 才对可数交封闭。

练习 3.2.33. 令 *X* 为任意集合。

- (1) 如果 X 是可数集合,则 $\mathcal{P}(X)$ 上的所有 \aleph_1 -完全滤都是主滤。
- (2) 如果 X 不可数,则 $\{G \subset X \mid |G| \leq \aleph_0\}$ 是 $X 上 \aleph_1$ -完全的理想;
- (3) 更一般地,如果 $\kappa > \aleph_1$ 是正则的,而 $|X| \ge \kappa$,则 $\{G \subset S \mid |G| < \kappa\}$ 是 κ -完全的理想;
- (4) [0,1] 区间上测度为 1 的集合构成的滤 F 是 \aleph_1 -完全的,但不是 $(2^{\aleph_0})^+$ -完全的。

3.3 无界闭集

本节我们讨论一类特殊的滤,它在现代集合论中扮演着十分重要的角色。 **定义 3.3.1.** 令 α 为极限序数, α 的子集 $C \subset \alpha$ 如果满足:

- 1. C 在 α 中无界,即 $\sup C = \alpha$,或等价地,对任意 $\beta < \alpha$,存在 $\xi \in C$, $\beta < \xi$;
- 2. C 在 α 中是闭的,即,对任意极限序数 $\gamma < \alpha$,如果 $\sup(C \cap \gamma) = \gamma$,则 $\gamma \in C$ 。

就称 C 是 α 的无界闭集。

注记 3.3.2. 假设 C 是极限序数 α 的子集,如果 γ 是 C 某一子集的上确界并且 $\gamma < \alpha$,则称 γ 是 C 的极限点。因此,C 在 α 中是闭集当且仅当 C 的极限点都属于 C。

练习 3.3.3. 回忆拓扑的概念。对任意非空的序数集合 X,令

 $B = \{(\xi, \eta) \mid \xi, \eta \in X\} \cup \{\xi \cap X \mid \xi \in X\} \cup \{X - (\xi + 1) \mid \xi \in X\} \cup \{X\}$ (3.5)

为拓扑基,则由 \mathcal{B} 生成的拓扑称为 X 上的**序拓扑**。证明:定义中的闭集与 α 上序拓扑中闭集的意义一致。

以下讨论无界闭集的一些基本性质。

引理 3.3.4. 假设 α 是极限序数, 并且 $cf(\alpha) > \omega$, 则:

- (1) α 是 α 上的无界闭集。
- (2) 任取 $\beta < \alpha$,则集合 $\{\delta < \alpha \mid \delta > \beta\}$ 是 α 上的无界闭集。
- (3) 集合 $X = \{\beta < \alpha \mid \beta \}$ 是极限序数} 是 α 上的无界闭集。
- (4) 如果 X 在 α 中无界,则 $X' = \{ \gamma \in X \mid \gamma < \alpha \land \gamma \not\in X \text{ 的极限点} \}$ 是 α 上的无界闭集。

证明.(1),(2) 留给读者。

(3) X 显然是闭集。为证 X 是无界的,任取 $\xi \in \alpha$,定义序列

$$\xi = \xi_0, \xi_1, \cdots, \xi_n, \cdots \quad (n \in \omega)$$

其中 ξ_{n+1} 是严格大于 ξ_n 并且属于 α 的最小序数。令 η 为以上序列的极限,则 $\eta > \xi$ 并且属于X。

(4) X' 是无界的可用类似(3)中的方法证明: 任取 $\xi \in \alpha$,定义严格 递增的序列 $\langle \xi_n \rangle_{n \in \omega}$,其中每个 $\xi_n \in X$ 。这个序列的极限 η 是 X 的极限点,所以属于 X' 并且大于 ξ 。为证明 X' 是闭集,任取 $\eta < \alpha$ 是 X' 的极限点,即, $\sup(X'\cap\eta)=\eta$,则对任意 $\sigma < \eta$,存在 X 的极限点 $\xi < \eta$ 使得 $\sigma +1 < \xi$ 。由极限点的定义,存在 $\mu \in X \cap \xi$,使得 $\sigma < \mu$,所以 $\sup(X\cap\eta)=\eta$,即 η 也是 X 的极限点,故 $\eta \in X'$ 。

引理 3.3.5. 如果 α 是极限序数并且 $cf(\alpha) > \omega$,而 $f: \alpha \to \alpha$ 是严格递增的,并且是连续的,即对任意极限 $\beta < \alpha$, $f(\beta) = \bigcup_{\gamma < \beta} f(\gamma)$,则:

- (1) f 的值域是 α 的无界闭集;
- (2) 反之,如果 α 是还是正则的,则 α 中的每个无界闭集C 都是这样一个函数的值域。

证明. 对于 (1): f 是严格递增的,所以它的值域在 α 中无界; f 是连续的,所以它的值域是闭集。

对于(2),令 τ 为无界闭集 C 的序型, $f:\tau\to C$ 是关于序数上 < 关系的同构,则 f 显然是严格递增和连续的。由于 C 是无界的,而 α 是正则的,所以 $\tau \geq \mathrm{cf}(\alpha) = \alpha$ 。又由于对任意 $\eta < \tau$, $\eta \leq f(\eta)$,所以 $\tau \leq \sup f(\eta) = \alpha$ 。

注记 3.3.6. 我们在定义2.1.35中定义了类函数的连续性,如果将 ◎ 看作一个"极限序数",则有类似引理3.3.5结果:

假设 $F: \mathbb{O} \to \mathbb{O}$ 是严格递增的连续函数,则 F 的"值域"作为子类在 \mathbb{O} 中是闭的,并且是无界的。反之亦然:如果 $\mathcal{C} \subseteq \mathbb{O}$ 是一个无界的闭的类,则存在 $F: \mathbb{O} \to \mathbb{O}$, \mathcal{C} 是 F 的"值域"。

命题 3.3.7. 假设 α 是极限序数,且 $cf(\alpha) > \omega$,则对任意 $\gamma < cf(\alpha)$,如果 $\langle C_{\xi} \rangle_{\xi < \gamma}$ 是无界闭集的序列,则 $\bigcap_{\xi < \gamma} C_{\xi}$ 也是 α 的无界闭集。

证明. 假设 $\gamma = 2$,只需证明 $C_1 \cap C_2$ 是无界闭集。闭集的交显然是闭集,所以只需证明 $C_1 \cap C_2$ 在 α 中无界。任取 $\delta < \kappa$,则存在 $\xi \in C_1$, $\eta \in C_2$ (不妨设 $\xi < \eta$)使得 $\delta < \xi < \eta$,构造无穷序列:

$$\xi_0 < \eta_0 < \xi_1 < \eta_1 < \xi_2 < \eta_2 < \cdots$$

其中 $\xi_0 = \xi$, $\eta_0 = \eta$ 且对任意 $n \in \omega$, $\xi_n \in C_1$, $\eta_n \in C_2$ 。令 μ 是这个序列的极限,则 $\sup(C_1 \cap \mu) = \mu$ 且 $\sup(C_2 \cap \mu) = \mu$,因此 $\mu \in C_1 \cap C_2$,并且 $\delta < \mu$ 。如果 γ 是后继序数,则凭借归纳假设,用 $\gamma = 2$ 的方法容易证明。

假设 γ 是极限序数,令 $D = \bigcap_{\xi < \gamma} C_{\xi}$,D 显然是闭集,以下证明它是无界的。注意到,对任意 $\eta < \gamma$,如果 $D_{\eta} = \bigcap \{C_{\xi} \mid \xi < \eta\}$,则 D_{η} 是无界闭集且 $D = \bigcap_{\eta < \gamma} D_{\eta}$,并且 $\eta < \eta' < \gamma$ 蕴涵 $D_{\eta} \supset D_{\eta'}$ 。任取 $\mu < \alpha$,构造序数的序列:

$$\xi_0 < \xi_1 < \cdots < \xi_\eta < \cdots$$

其中 $\xi_0 > \mu$ 且对每一 $\eta < \gamma$, $\xi_\eta \in D_\eta$ 使得 ξ_η 是大于 $\sup\{\xi_\alpha \mid \alpha < \eta\}$ 的最小序数。因为 α 是正则的,因此以上序列是合理的。取 $\xi = \sup\{\xi_\eta \mid \eta < \gamma\}$ 。显然对任意 $\eta < \gamma$, $\xi \in D_\eta$,所以 $\xi \in D$ 且 $\mu < \xi$ 。

由此,我们可以定义:

定义 3.3.8. 对任意共尾数大于 ω 的极限序数 α ,

$$F_{CB}(\alpha) = \{ X \subseteq \alpha \mid \exists C (C \neq \alpha) \in \mathbb{R} \} \} + (C \subseteq X) \}, \qquad (3.6)$$

是一个滤,这个滤称为 α 上的无界闭滤。

推论 3.3.9. 如果 κ 是不可数正则基数,则 κ 上的无界闭滤是 κ -完全的。

虽然不可数正则基数 κ 上的无界闭滤是 κ 完全的,但是可以找到一个长度为 κ 的无界闭集的序列,它的交为空集(见习题 3.4.6)。

定义 3.3.10. 对任意序数 α , $\langle X_{\xi} | \xi < \alpha \rangle$ 是 α 子集的序列,

(1) X_ξ 的对角线交定义为:

(2) X_ξ 的对角线并定义为:

$$\nabla X_{\xi} = \{ \eta < \alpha \mid \eta \in \bigcup_{\xi < \eta} X_{\xi} \}$$
(3.8)

注记 3.3.11. 如果令 $Y_{\xi} = \{ \eta \in X_{\xi} \mid \eta > \xi \}$,则 $\Delta_{\xi < \alpha} X_{\xi} = \Delta_{\xi < \alpha} Y_{\xi}$ 。同时, $\Delta_{\xi < \alpha} X_{\xi} = \bigcap_{\xi < \alpha} (X_{\xi} \cup \{ \eta \mid \eta \leq \xi \})$ (见习题 3.4.7、3.4.8)。另外,在不致引起 混淆的情况下,我们常将 $\Delta_{\xi < \alpha} X_{\xi}$ 简记为 ΔX_{ξ} 。对于 $\nabla_{\xi < \alpha} X_{\xi}$,也类似。

命题 3.3.12. 对任意不可数正则基数 κ ,以及 κ 上的无界闭集的序列 $\langle X_{\gamma} \mid \gamma < \kappa \rangle$, $\Delta_{\gamma < \kappa} X_{\gamma}$ 是无界闭集。即, $F_{CB}(\kappa)$ 关于对角线交封闭。

证明. 令 C_{γ} 为 $\bigcap_{\xi<\gamma} X_{\xi}$, 则 $\Delta X_{\gamma} = \Delta C_{\gamma}$ 。而我们有:

$$C_0 \supset C_1 \supset \cdots \supset C_{\gamma} \supset \cdots \quad (\gamma < \kappa).$$

令 $C=\Delta C_{\gamma}$ 。为证 C 是闭集,取 η 是 C 的极限点。我们需要证明 $\eta\in C$,即,对任意 $\xi<\eta$, $\eta\in C_{\xi}$ 。为此定义 $X=\{\nu\in C\mid \xi<\nu<\eta\}$,则 $X\subset C_{\xi}$;根据定理3.3.9, C_{ξ} 是无界闭集,所以 $\eta=\sup X\in C_{\xi}$,因此 $\eta\in C$ 。

为证 C 无界,取 $\mu < \kappa$ 。如下定义序列 $\langle \beta_n \mid n < \omega \rangle$:令 $\beta_0 > \mu$ 且 $\beta_0 \in C_0$,对每一 n,令 $\beta_{n+1} > \beta_n$ 且 $\beta_{n+1} \in C_{\beta_n}$ 。由于 C_{β_n} 是无界的,所以 这样的 β_{n+1} 总能找到。同时注意到

$$C_{\beta_0}\supset C_{\beta_1}\supset C_{\beta_2}\supset\ldots$$

所以对任意 m > n, $\beta_m \in C_{\beta_n}$ 。以下证明 $\beta = \sup\{\beta_n \mid n < \omega\} \in C$ 。为此,只需证明对任意 $\xi < \beta$,都有 $\beta \in C_{\xi}$ 。而如果 $\xi < \beta$,则存在 n, $\xi < \beta_n$ 。而对每一 m > n, $\beta_m \in C_{\beta_n} \subset C_{\xi}$ 。由于 C_{ξ} 是闭集,故 $\beta \in C_{\xi}$ 。所以 $\beta \in C$,C是无界的。

推论 3.3.13. 对任意不可数正则基数 κ ,如果 $f:\kappa\to\kappa$ 是函数,则集合

$$D = \{ \alpha < \kappa \mid \forall \beta < \alpha (f(\beta) < \alpha) \}$$
 (3.9)

是无界闭集。

证明. 对任意 $\alpha < \kappa$,定义 $C_{\alpha} = \{\beta < \kappa \mid f(\alpha) < \beta\}$,则 C_{α} 是无界闭集。显然, $D = \bigwedge C_{\alpha}$,所以是无界闭集。

若 α 是极限序数,并且 $\mathrm{cf}(\alpha) > \omega$,则 α 上的无界闭滤 $F_{CB}(\alpha)$ 包含了 α 的"大子集",与其对偶的"小子集"的族是 $I = \{X \subseteq \kappa \mid \kappa - X \in F_{CB}\}$ 。有时候我们需要刻画"不小的"子集的族,即不属于 I 的那些子集,这等价于说 $\kappa - X$ 不以一个无界闭集为子集,即 X 与任何无界闭集相交不空。

定义 3.3.14. 令 α 为任意极限序数, 并且 cf(α) > ω ,

- (1) 如果 $S \subseteq \alpha$ 满足对任意 α 的无界闭集 C 都有 $S \cap C \neq \emptyset$,就称 S 是 α 上的平稳集 1 。
- (2) $I_{NS}(\alpha) = \{X \subseteq \alpha \mid \exists C(C \notin \alpha) \in A \in A \in A \in C = \emptyset\}$ 称为 α 上的非平稳理想。

引理 3.3.15. 假设 α 是极限序数, $cf(\alpha) > \omega$,

- (1) α 上的无界闭集都是平稳集,若 S 是平稳集且 $S \subseteq T \subseteq \alpha$,则 T 是平稳集。
 - (2) α上的平稳集都是无界的。
 - (3) 存在 α 上无界子集T, 但T不是平稳集。

证明. (1) 由命题3.3.7,任意两个无界闭集相交不空。

- (2) 假设 S 是平稳集,任取 $\beta < \alpha$, $\{\gamma < \alpha \mid \beta < \gamma\}$ 是 α 上的无界闭集,它与 S 相交非空,这个交集中的任何序数都大于 β 。
- (3) 令 $T = \{\alpha + 1 \mid \alpha < \kappa\}$ 是无界的,但不是 κ 上的平稳集,因为 κ 中的所有极限序数构成的无界闭集与它相交为空。

¹Stationary Set 有很多不同的译法,例如"稳定集"、"驻集",新出的《数学大词典》中译为"荟萃集"。

练习 3.3.16. 假设 α 是极限序数, $cf(\alpha) > \omega$,

- (1) 对任意 $\gamma < \alpha$,如果 $D = \{X_{\xi} \mid \xi < \gamma\}$ 为非平稳集的族,则 $\bigcup D$ 也是非平稳集。因此,如果 κ 是不可数正则基数,则 κ 上的非平稳理想是 κ -完全的。
- (2) S 和 α S 都是 α 上的平稳集当且仅当 S 不以任何无界闭集为子集。

命题 3.3.17. 假设 α 是极限序数, $cf(\alpha) > \omega$, 而 $\lambda < cf(\alpha)$ 是正则的, 定义

$$E_{\lambda}^{\alpha} = \{ \beta < \alpha \mid \mathrm{cf}(\beta) = \lambda \}. \tag{3.10}$$

则 E_{λ}^{α} 是 α 上的平稳集。

证明. 任取 α 上的无界闭集 C, 递归定义 C 上的长度为 λ 的严格递增的序列

$$\alpha_0 < \alpha_1 < \ldots < \alpha_{\xi} < \ldots < \ldots \qquad (\xi < \lambda). \tag{3.11}$$

 λ 是正则的, λ < cf(α),以及 C 在 α 中无界保证我们可以得到这样的序列。令此序列的上确界为 δ ,则由于 C 是闭集, $\delta \in C$,又因为 cf(δ) = λ ,所以 $\delta \in E^{\alpha}_{\lambda}$ 。

注记 3.3.18. 当 $\alpha > \aleph_1$ 时,根据以上命题3.3.17, E^{α}_{ω} 和 $E^{\alpha}_{\omega_1}$ 是不相交的平稳子集,因此, E^{α}_{ω} 和 $\kappa - E^{\alpha}_{\omega}$ 都不是无界闭集,所以 α 上的无界闭滤不是超滤。如果 $\alpha = \aleph_1$,要证明 α 上的无界闭滤不是超滤就需要选择公理,而且这种对选择公理的依赖是必须的,因为命题" \aleph_1 上的无界闭滤是超滤"与 **ZF** 是一致的。

命题 3.3.19. 对任意不可数正则基数 κ ,如果 $\langle X_{\xi} | \xi < \kappa \rangle$ 是非平稳集的序列,则 $\nabla_{\xi < \kappa} X_{\xi}$ 仍是非平稳集。即, $I_{NS}(\kappa)$ 关于对角线并封闭。

证明. 对任意 X_{ξ} ,存在 C_{ξ} 使得 $X_{\xi} \cap C_{\xi} = \emptyset$,令 $C = \triangle C_{\xi}$,则 C 是无界闭集(命题3.3.12)。令 $X = \nabla X_{\xi}$,显然 $X \cap C = \emptyset$ 。

在本节剩下的部分,我们证明索洛维(Robert Solovay)的一个重要结论。 首先证明一个重要的定理——福道尔(Géza Fodor)定理,除了在索洛维定理 中需要用到,它还有很多应用。 定义 3.3.20. 定义在序数的集合 S 上的函数 f 如果满足对任意非 0 的 $\alpha \in S$, 都有 $f(\alpha) < \alpha$, 就称 f 是退缩的。

定理 3.3.21 (福道尔). 任取不可数正则基数 κ ,平稳集 $S \subseteq \kappa$,如果 f 是定义在 S 上的退缩函数,则存在平稳集 $T \subseteq S$ 和序数 $\gamma < \kappa$ 使得对任意 $\alpha \in T$, $f(\alpha) = \gamma$ 。

证明. 反设对任意 $\gamma < \kappa$,集合 $A_{\gamma} = \{\alpha \in S \mid f(\alpha) = \gamma\}$ 都不是平稳集。对每 一 $\gamma < \kappa$,存在无界闭集 C_{γ} , $A_{\gamma} \cap C_{\gamma} = \emptyset$,即对任意 $\alpha \in S \cap C_{\gamma}$, $f(\alpha) \neq \gamma$ 。 令 $C = \Delta_{\gamma < \kappa} C_{\gamma}$,即 $\alpha \in C$ 当且仅当对任意 $\gamma < \alpha$, $\alpha \in C_{\gamma}$,也就是说,对任意 $\gamma < \alpha$, $\gamma \in C_{\gamma}$,这意味着对任意 $\gamma \in C_{\gamma}$,也就是说,对闭集,所以 $\gamma \in C_{\gamma}$ 和,这意味着对任意 $\gamma \in C_{\gamma}$ 和,有 $\gamma \in C_{\gamma}$ 和,这意味着对任意 $\gamma \in C_{\gamma}$ 和,

引理 3.3.22. 令 S 是不可数正则基数 κ 上的平稳集。定义 $T \subset S$ 为:

$$T = \{\alpha \in S \mid \mathrm{cf}(\alpha) = \omega \vee (\mathrm{cf}(\alpha) > \omega \wedge S \cap \alpha \, \text{不是}\alpha \, \text{上的平稳集})\} \tag{3.12}$$
 则 $T \in \mathcal{K}$ 上的平稳集。

证明. 任取 κ 上的无界闭集 C ,我们证明 $C \cap T$ 不空。注意到,C 的所有极限点的集合 $C' = \{\xi < \kappa \mid \xi \neq 0 \land \sup(C \cap \xi) = \xi\}$ 也是无界闭集(引理3.3.4)。取 $\mu = \min(C' \cap S)$,如果 $\mathrm{cf}(\mu) = \omega$,则 $\mu \in T$ 。如果 $\mathrm{cf}(\mu)$ 不可数,注意 μ 是 C 的极限点,还是根据引理3.3.4, $C' \cap \mu$ 是 μ 上的无界闭集,由于 μ 是 $C' \cap S$ 的最小元,所以 $(C' \cap \mu) \cap (S \cap \mu) = \emptyset$,即 $(S \cap \mu)$ 不是 μ 上的平稳集, $\mu \in T$ 。

引理 3.3.23. 令 κ 是不可数正则基数, $K = \{ \gamma < \kappa \mid \gamma \in \Lambda \}$ 是极限序数}, $S \subseteq K$ 是 κ 上的平稳集。如果对任意 $\alpha \in S$, f_{α} 是 α 中递增的共尾序列,并且是连续的,则以下二者必有一真:

(1) 存在 $\eta < \kappa$, 对任意 $\xi < \kappa$

$$S_{\xi} = \{ \alpha \in S \mid \eta \in \text{dom}(f_{\alpha}) \land f_{\alpha}(\eta) \ge \xi \}$$
 (3.13)

是κ上的平稳集;

(2) 存在 κ 上的无界闭集 C , 对任意 γ , $\alpha \in C \cap S$, $\gamma < \alpha$ 蕴涵 $\gamma = f_{\alpha}(\gamma)$ 。

证明. 假设(1)不成立,即对任意 $\eta < \kappa$,存在 $\xi_{\eta} < \kappa$ 和无界闭集 C_{η} 使得 $C_{\eta} \cap S_{\xi_{\eta}} = \emptyset$ 。这实际定义了一个函数 $g: \kappa \to \kappa$ 使得 $g(\eta) = \xi_{\eta}$ 。令

$$C = \{ \xi \in \bigwedge_{\eta < \kappa} C_{\eta} \mid g[\xi] \subseteq \xi \land \xi 是极限的 \}$$
 (3.14)

容易看出,如果令 $D = \{ \xi < \kappa \mid g[\xi] \subseteq \xi \}$,则 $C = \Delta_{\eta < \kappa} C_{\eta} \cap D \cap K$ 。由习题3.4.16,D 是无界闭集,所以显然 C 是无界闭集。

考虑 $\alpha, \gamma \in C \cap S$,并且 $\gamma < \alpha$ 。由于 $\alpha \in \Delta_{\eta < \kappa} C_{\eta}$,因此对任意 $\eta < \alpha$, $\alpha \in C_{\eta}$,故 $\alpha \notin S_{\xi_{\eta}}$ (因为 $C_{\eta} \cap S_{\xi_{\eta}} = \emptyset$)。根据 $S_{\xi_{\eta}}$ 的定义,对任意 $\eta \in \gamma \cap \text{dom}(f_{\alpha})$, $f_{\alpha}(\eta) < \xi_{\eta}$ 。而且,由于 $\gamma \in D$,所以 $g[\gamma] \subseteq \gamma$,所以 $\xi_{\eta} < \gamma$ 。如果 $\text{dom}(f_{\alpha}) \subseteq \gamma$,那 $\text{ran}(f_{\alpha}) \subseteq \gamma$ 就在 α 中有界,与假设矛盾,所以一定是 $\gamma \in \text{dom}(f_{\alpha})$ 。

由于 γ 是极限的而 f_{α} 是连续的,所以 $f_{\alpha}(\gamma) = \sup\{f_{\alpha}(\xi) \mid \xi < \gamma\} \leq \gamma$,而 f_{α} 是递增的蕴涵 $f_{\alpha}(\gamma) \geq \gamma$ 。综上, $f_{\alpha}(\gamma) = \gamma$,(2)成立。

定理 3.3.24 (索洛维). 对任意不可数的正则基数 κ , κ 上的任一平稳集都是 κ 个互不相交的平稳集的并。

证明. 假设 $S \in \kappa$ 上的平稳集。定义 $T \subseteq S$ 为:

$$T = \{\alpha \in S \mid \mathrm{cf}(\alpha) = \omega \lor (\mathrm{cf}(\alpha) > \omega \land S \cap \alpha$$
 不是 α 上的平稳集) \ (3.15)

根据引理3.3.22,T 是平稳集。不难看出,我们只需证明 T 可以划分为 κ 个不相交的平稳集。

任取 $\alpha \in T$ 。如果 $cf(\alpha) > \omega$,则由定义, $S \cap \alpha$ 不是 α 上的平稳集。因此,根据引理 3.3.5(2),存在一个连续递增的共尾序列 f_{α} ,其值域 C_{α} 是 α 中的无界闭集,并且与 $S \cap \alpha$ 相交为空,所以 $C_{\alpha} \cap T = \emptyset$ 。如果 $cf(\alpha) = \omega$,令 $g_{\alpha} : \omega \to \alpha$ 为严格递增的共尾序列,并且定义 $f_{\alpha}(n) = g_{\alpha}(n) + 1$,则 f_{α} 的值域 C_{α} 与 T 相交为空。这样,我们证明了对任意 $\alpha \in T$,存在 α 中的连续递增的无界序列 f_{α} ,其值域与 T 相交为空。

令 C 是与 T 相交不空的无界闭集,则 $C \cap T$ 是平稳集,如果存在 $\alpha, \gamma \in C \cap T$,使得 $\gamma < \alpha$ 并且 $f_{\alpha}(\gamma) = \gamma$,则 ran $f_{\alpha} \cap T \neq \emptyset$,矛盾,因此引理3.3.23中的(2)不成立。所以存在 $\eta < \kappa$,使得对任意 $\xi < \kappa$,引理3.3.23(1)中定义的 S_{ξ} 是平稳集。对任意 $\alpha \in T$,我们定义

$$f(\alpha) = \begin{cases} f_{\alpha}(\eta), & \stackrel{\text{Z}}{=} \eta \in \text{dom}(f_{\alpha}); \\ 0, & \text{否则}. \end{cases}$$
 (3.16)

对任意非零的 $\xi \in \kappa$,集合 $T_{\xi} = \{\alpha \in T \mid f(\alpha) \geq \xi\} = \{\alpha \in T \mid \eta \in \text{dom}(f_{\alpha}) \land f_{\alpha}(\eta) \geq \xi\}$,所以是平稳集。

这样,我们定义了一个函数 $f: T \to \kappa$,并注意到它是退缩的。对任意 $\xi \in \kappa$,由于 $T_{\xi} \subseteq T$ 是平稳集,所以根据福道尔定理,存在一个 $\gamma_{\xi} < \kappa$,使 得 $f^{-1}[\{\gamma_{\xi}\}] \cap T_{\xi}$ 是平稳集。因为对任意 $\alpha \in T_{\xi}$, $f(\alpha) \geq \xi$, 所以 $\gamma_{\xi} > \xi$,即 $\{\gamma_{\xi} \mid \xi < \kappa\}$ 在 κ 中无界又由于对任意 $\gamma_{1}, \gamma_{2} < \kappa$, $f^{-1}[\{\gamma_{1}\}] \cap f^{-1}[\{\gamma_{2}\}] = \emptyset$, 所以 $\{f^{-1}[\{\gamma_{\xi}\}] \cap T_{\xi} \mid \xi < \kappa\}$ 是 κ 个互不相交的平稳集的族。

3.4 习题

- **3.4.1.** 如果 \mathcal{F} 是 S 上的滤构成的一个 ⊆-链,则 $\bigcup \mathcal{F}$ 是 S 上的滤。
- **3.4.2.** 如果 F 是非主超滤,则任意 $X \in F$ 都是无穷的。因此任何非主超滤必是弗雷歇滤的扩张。
- **3.4.3.** 如果 F 是 S 上的滤,而 $F' = \{X \subseteq S \mid S X \not\in F\}$,则 $F \subseteq F'$,并且 F = F' 当且仅当 F 是超滤。

3.4.4. 假设 *X* ⊂ *S* , 证明:

- (1) 如果 $F \in S$ 上的滤且 $X \in F$,则 $F \cap \mathcal{P}(X)$ 是 X 上的滤;
- (2) 如果 $F \neq S$ 上的超滤且 $X \in F$, 则 $F \cap \mathcal{P}(X) \neq X$ 上的超滤;
- (3) 如果 $F \in X$ 上的滤,则 F 能扩张为 S 上的超滤。

3.4.5. 假设 S 是无穷的,则

- (1) 存在 S 上的超滤 F , 对任意 $X \in F$, |X| = |S| 。这样的滤称为 S 上的均匀超滤(uniform ultrafilter);
- (2) $\{F \mid F \neq S \text{ L}$ 的均匀超滤 $\} = \{F \mid F \neq S \text{ L}$ 的非主超滤 $\}$ 当且仅当 S 是可数的。
- **3.4.6.** 令 κ 为不可数正则基数,举出一个例子,使得 $X = \{C_{\alpha} \mid \alpha < \kappa\}$ 是 κ 上的无界闭集的族,而 $\bigcap X = \emptyset$,但是 $\Delta_{\alpha < \kappa} C_{\alpha} = \kappa$ 。
- **3.4.7.** 如果令 $Y_{\alpha} = \{ \xi \in X_{\alpha} \mid \xi > \alpha \}, \ \bigcup \Delta_{\alpha < \kappa} X_{\alpha} = \Delta_{\alpha < \kappa} Y_{\alpha} \circ A_{\alpha} \}$
- **3.4.8.** $\bigwedge_{\alpha < \kappa} X_{\alpha} = \bigcap_{\alpha < \kappa} (X_{\alpha} \cup \{\xi \mid \xi \leq \alpha\})_{\circ}$
- **3.4.9.** 证明不存在 ω 上非主超滤 F 使得 F 对对角线交封闭。
- **3.4.10.** 如果 S 是无穷的, F 是 S 上的超滤, 则以下命题等价:
 - (1) *F* 是非主滤;
 - (2) $\{X \subseteq S \mid S X$ 是有穷的 $\}$ ⊆ F;
 - (3) F 的元素都是无穷的。
- **3.4.11.** 如果 S 是无穷的,则 S 上的任何非主超滤都不是 $|S|^+$ 完全的。所以 ω 上的任何非主超滤都不是 σ -完全的。
- **3.4.12.** 如果 $F \in S$ 上的非主超滤, 并且是 |S|-完全的, 则 F 是均匀超滤。
- **3.4.13.** 一个不可数基数 κ 是可测的当且仅当 κ 上存在 κ 完全的非主超滤。证明任何可测基数都是不可达基数,即,都是正则和强极限的。
- **3.4.14.** 如果 F 是 S 上的滤,并且令 $\mu = \sup\{\kappa \mid F \in \kappa \in \mathbb{R}\}$,则 μ 是正则基数,并且 F 是 μ -完全的。
- **3.4.15.** 假设 S 是无穷的,F 是 S 上的超滤。证明 F 是 κ -完全的当且仅当对任意 $\tau < \kappa$ 和任意划分 $\langle X_{\xi} \mid \xi < \tau \rangle$,总存在 $X_{\xi} \in F$ 。
- **3.4.16.** 如果 $\alpha > \aleph_0$ 是正则基数,并且 $f : \alpha \to \alpha$ 是函数,则集合 $C = \{\beta < \alpha \mid f[\beta] \subseteq \beta\}$ 是 α 上的无界闭集。

- **3.4.17.** 假设 α 为极限序数,则:
 - (1) α 上存在一个序型为 $cf(\alpha)$ 的无界闭集。
- (2) 如果 A 是一集极限序数,则用选择公理可以证明:存在序列 $\langle C_{\alpha} \rangle_{\alpha \in A}$ 满足: C_{α} 是 α 上的序型为 $\mathrm{cf}(\alpha)$ 的无界闭集。
- **3.4.18.** $\{\alpha < \omega_1 \mid \omega^{\alpha} = \alpha\}$ 是 ω_1 上的无界闭集。
- **3.4.19.** κ 上的无界闭集都是平稳集。
- **3.4.20.** 令 κ 为不可数正则基数, $S \subseteq \kappa$, 证明以下命题等价:
 - (1) *S* 是平稳集;
- (2) 对任意递减函数 $f:S\to\kappa$,存在序数 $\alpha<\kappa$,使得 $f^{-1}[\alpha]$ 在 κ 中无界。
- **3.4.21.** 如果 κ 是不可达基数(它当然是不可数正则的),则集合 $\{\lambda < \kappa \mid \lambda \in \mathbb{R} \}$ 是强极限基数} 是 κ 上的无界闭集。
- **3.4.22.** 如果 κ 是最小的不可达基数,则集合 $\{\lambda < \kappa \mid \lambda$ 是强极限的奇异基数} 是 κ 上的无界闭集。
- **3.4.23.** 假设 κ 是第 α 个不可达基数,而 $\alpha < \kappa$,证明 $X = \{\lambda < \kappa \mid \lambda$ 是正则的} 不是 κ 上的平稳集。
- **3.4.24.** 一个无穷基数 κ 是**马洛基数** (Mahlo cardinal) 当且仅当 κ 是不可达的并且 $\{\lambda < \kappa \mid \lambda$ 是正则基数 $\}$ 是 κ 上的平稳集。如果 κ 是马洛基数,则 $\{\lambda < \kappa \mid \lambda$ 是不可达基数 $\}$ 是 κ 上的平稳集,因此 κ 是第 κ 个不可达基数。
- **3.4.25.** 如果 $\kappa = \min\{\lambda \mid \lambda \in \mathbb{A} \land \mathbb{A} \land \mathbb{A} \}$,证明 $\kappa \in \mathbb{A} \land \mathbb{A}$
- **3.4.26.** 如果 κ 是马洛基数,则集合 $\{\lambda < \kappa \mid \lambda$ 是第 λ 个不可达基数} 在 κ 中无界。