诚信保证

本人知晓我校考场规则和违纪处分条例的有关规定,保证

遵守考场规则	,诚实做人.	本人签字:	
--------	--------	-------	--

7 ==	•	
細石	•	

西北工业大学考试试题(卷)

2013 - 2014 学年 第 1 学期

<u>开课学院:理学院</u> 学 时:32

课程:计算方法 考试时间:2小时

期:2013年11月22日 <u>考试形式:闭卷(B卷)</u>L

成	
绩	
班	
号	
学	
号学号	
姓名	
名	

题号	_	=	四四	五	六	七	八	总分
分数								

一.(7分)用 LU 直接分解(紧凑格式)法求解线性代数方程组

$$\begin{pmatrix} 1 & 1 & 2 & 3 \\ 0 & 2 & 1 & 2 \\ 1 & -1 & 2 & 2 \\ 2 & 2 & 5 & 9 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 3 \\ 7 \end{pmatrix}.$$

解:

二. (8 分) 设有求解初值问题 $y' = f(x, y)$, y	$y(x_0) = y_0 $	如下数值方法
$y_{n+1} = ay_{n-1} + by_n + ch$	$inf(x_n, y_n)$	$n = 0, 1, 2, \dots$
讨论参数 a , b , c 取多少时能使该方法成为二部截断误差 . 解:	- 阶方法,并求	该二阶方法的主局
西北工业大学命题专用纸	共 8 页	第 2 页

三.(10 分)针对方程 $(x-2)e^x = 1$,(1)确定有根区间 $[a,b]$;(2)用简单
迭代法构造一个迭代格式,使之对任意初始 $x_0 \in [a,b]$ 都收敛($[a,b]$ 为有根
区间);(3)用所构造的格式计算根的近似值,要求 $ x_k - x_{k-1} < 10^{-3}$ (最终结
果小数点后保留三位). 解:

四. (10 分) 对方程组
$$\begin{pmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}$$

- (1)用 Jacobi 迭代法求解时是否对任意初始向量都收敛?为什么?
- (2) 取初始向量 $\mathbf{x} = (0,0,0)^T$,用 Jacobi 迭代法求近似解 $\mathbf{x}^{(k+1)}$,要求

$$\left|x_i^{(k+1)} - x_i^{(k)}\right| < 10^{-3} \quad (i = 1, 2, 3)$$
.

解:

五. (10 分) 用复化 Simpson 公式求 $\int_1^2 \ln x dx$ 的近似值时,若要求结果具有四位
有效数字 ,(1)至少应在区间[1,2]上取多少个节点(端点计算在内)?(2)根据已求得的节点个数,用复化 Simpson 公式计算上述积分.解:

六(10分)已知函数 $f(x)$ 满足 $f(0)=0$, $f'(0)=0$, $f''(0)=0$, $f(1)=1$,
$f^{\prime}(1)=1$, 试构造满足上述条件的插值多项式 $H_{_4}(x)$ (要求化简), 并要求
给出其插值余项 . 解:
10T •

七.(5分×6=30分)计算填空题(答案后面必须写出主要的计算依据).

1. $\partial x^* = 2.4538 \, \exists x$ 的具有五位有效数字的近似值,用近似值 x^* 计算函 数值 $f(x) = x^4$ 的相对误差限约为_____% (最终结果小 数点后保留四位).

依据:

2. 设关于节点 $\{x_i\}_{i=0}^n$ 的 Lagrange 插值基函数为 $\{l_i(x)\}_{i=0}^n$,则有

$$\sum_{i=0}^{n} x_i^3 l_i(3.5) = \underline{\qquad} \quad (n \ge 3).$$

依据:

3. 已知试验数据为

X	0	1	2	3
f(x)	1	2	4	5

则形如 y = a + bx 的拟合曲线是

依据:

4. 设有常微分方程初值问题 $\begin{cases} y' = -2y - 4x, & 0 < x \le 0.2 \\ y(0) = 2 \end{cases}$, 取步长

h=0.1 ,用 Euler-梯形预估校正公式可求得 $y(0.1) \approx$ ______

依据:

5. 取初始向量 $\mathbf{V}^{(0)} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$,用乘幂法迭代两步求矩阵

$$\mathbf{A} = egin{pmatrix} 4 & 3 & 0 \ 5 & 2 & 0 \ 3 & 0 & 1 \end{pmatrix}$$
按模最大的特征值 λ_1 时,其近似值 $\lambda_1^{(2)} = \frac{V_1^{(2)}}{V_1^{(1)}} = \frac{V_1^{(2)}}{V_1^{(1)}}$

_____($V_{\scriptscriptstyle 1}^{\scriptscriptstyle (k)}$ 为第 $_{k}$ 次迭代向量的第一个分量).

依据:

6. 当步长 $h \leq$ ______时,显式 Euler 公式求解初值问题

$$\begin{cases} y' + 20y = 0, x > 1 \\ y(1) = 1 \end{cases}$$
 是绝对稳定的.

依据:

八. (3分×5=15分)填空题

- 1. 设 $\sqrt{2} \approx 1.414$, 迭代过程 $y_{n+1} = y_n + 0.1\sqrt{2}$ 是否稳定?
- 2. 矛盾方程组 $\begin{cases} x_1+x_2=1\\ x_1-x_2=1 \end{cases} = \begin{cases} 2x_1+2x_2=2\\ x_1-x_2=1 \end{cases}$ 的最小二乘解是否相 $\begin{cases} x_1+2x_2=-1\\ x_1+2x_2=-1 \end{cases}$

同?_____ (相同或不相同).

- 3. 求方程 $x = \cos x$ 的根的 Newton 迭代格式为______
- 4. 设 $f(x) = bx^2 + a$,则二阶差商 f[1,2,3] =______.
- 5. 数值求积公式 $\int_0^1 f(x)dx \approx \frac{1}{4}f(0) + \frac{3}{4}f(\frac{2}{3})$ 的代数精确度为______.