Kann man jedes (einfache) Polygon triangulieren?

Meisters "Zwei-Ohren-Theorem":

Jedes einfache Polygon P mit mindestens 4 Vertizes hat mindestens zwei "Ohren", d.h. Dreiecke aus drei benachbarten Vertizes, die vollständig in P liegen

Meisters, G.H. Polygons have ears. American Mathematical Monthly. June/July 1975, 648-651.

Kann man jedes Polygon triangulieren?

Trivialer Algorithmus: "Ohren abschneiden":

Konvexen Vertex vi finden, Nachbarn vi+1, vi-1 bestimmen, Sicherstellen, dass kein weiterer Vertex v im Dreieck (vi, vi+1, vi-1) liegt

Komplexität?

Geht's besser?

Kann man jedes Polygon triangulieren?

Konvexe Polygone: trivial

Beliebige einfache Polygone?

Kann man jedes Polygon triangulieren?

[DeBerg, Overmars: Computational Geometry]

Hier nur grobe Beweisskizze für den Nachweis der Komplexität

Beliebige Polygone: In monotone Polygone aufteilen, (nicht ganz trivial) dann diese triangulieren

Komplexität der Zerlegung: O(n log(n))

VL Computational Geometry Prof. M. Fischer, HS München

Kann man jedes Polygon triangulieren?

[DeBerg, Overmars: Computational Geometry]

Monotone Polygone:

Vertizes monoton in einer Dimension,

Jede Linie senkrecht zu dieser

schneidet das Polygon

0, 1, 2 mal oder in einer Kante

(keine "unzusammenhängende"

Aufteilung)

Kann man jedes Polygon triangulieren?

[DeBerg, Overmars: Computational Geometry]

Monotone Polygone:

Vertizes monoton in einer Dimension,

Jede Linie senkrecht zu dieser

schneidet das Polygon

0, 1, 2 mal oder in einer Kante (keine "unzusammenhängende"

Aufteilung)

Triangulierung: (Von oben oder unten)

- mit Dreieck aus den ersten drei Punkten beginnen,

- jeweils nächsten Punkt der Sortierung zur letzten Kante hinzufügen

VL Computational Geometry Prof. M. Fischer, HS München y-axis

Kann man jedes Polygon triangulieren?

[DeBerg, Overmars: Computational Geometry]

Triangulierung: (Von oben oder unten)

- mit Dreieck aus den ersten drei Punkten beginnen,
- jeweils nächsten Punkt der Sortierung zur letzten Kante hinzufügen
- Stack für nicht verarbeitbare Punkte
- Komplexität O(n)!

VL Computational Geometry Prof. M. Fischer, HS München v-axis

Kann man jedes Polygon triangulieren?

[DeBerg, Overmars: Computational Geometry]

Zerlegen in monotone Polygone: O(n log(n))

Monotones Polygon triangulieren: O(n)

Summe: $O(n \log(n))$

VL Computational Geometry Prof. M. Fischer, HS München

Pseudocode (der Vollständigkeit halber)

[DeBerg, Overmars: Computational Geometry]

Algorithm TriangulateMonotonePolygon(P)

Input. A strictly y-monotone polygon \mathcal{P} stored in a doubly-connected edge list \mathcal{D} .

Output. A triangulation of \mathcal{P} stored in the doubly-connected edge list \mathcal{D} .

- 1. Merge the vertices on the left chain and the vertices on the right chain of \mathcal{P} into one sequence, sorted on decreasing y-coordinate. If two vertices have the same y-coordinate, then the leftmost one comes first. Let u_1, \ldots, u_n denote the sorted sequence.
- 2. Initialize an empty stack S, and push u_1 and u_2 onto it.
- 3. for $j \leftarrow 3$ to n-1
- 4. **do if** u_i and the vertex on top of S are on different chains
- 5. **then** Pop all vertices from S.
- 6. Insert into \mathcal{D} a diagonal from u_j to each popped vertex, except the last one.
- 7. Push u_{j-1} and u_j onto S.
- 8. **else** Pop one vertex from S.
- 9. Pop the other vertices from S as long as the diagonals from u_j to them are inside P. Insert these diagonals into D. Push the last vertex that has been popped back onto S.
- 10. Push u_j onto S.
- 11. Add diagonals from u_n to all stack vertices except the first and the last one.

Flächeninhalt eines Dreiecks???

$$F = \frac{1}{2} |a| \cdot |h| = \frac{1}{2} |a| \cdot |b| \cdot \sin(\theta)$$

Kreuzprodukt !!! (2D: Einbettung in 3D)

$$F = \frac{1}{2} |a \times b|$$

oder mit ccw und Betrag

$$F = \frac{1}{2} |ccw(p_1, p_2, p_3)|$$

oder mit Rücksicht auf cw,ccw

 $F = \frac{1}{2} ccw(p_1, p_2, p_3)$ (positiv, wenn ccw; negativ, wenn cw)

oder mit $p_1 = 0$:

$$F = \frac{1}{2} ccw(0, a, b) = \frac{1}{2} (a_x b_y - a_y b_x)$$

Flächeninhalt eines Polygons???

Flächeninhalt eines Polygons???

Gaußsche Trapezformel

• Trapeze mit positiven und negativen Flächeninhalten

$$A = \sum_{i=1}^{n} (y_i + y_{i+1})/2 \cdot (x_i - x_{i+1})$$

VL Computational Geometry Prof. M. Fischer, HS München

Flächeninhalt eines Polygons???

Flächeninhalt eines Polygons???

Gaußsche Dreiecksformel: Analog mit Dreiecken (0,P_n,P_{n+1})

$$A = \sum_{i=1}^{n} (y_{i+1}x_i - y_i x_{i+1})/2$$

$$= \sum_{i=1}^{n} (y_i x_{i-1} - y_i x_{i+1})/2$$

$$= \sum_{i=1}^{n} y_i (x_{i-1} - x_{i+1})/2$$

Volumen in 3D???

Analogie: Dreieck → Tetraeder, Polygon → Polyeder

Volumen eines Tetraeders?

Erstmal Volumen Spat

Spatprodukt: $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ bzw. $det(\mathbf{a}, \mathbf{b}, \mathbf{c})$

$$V = \det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$

positiv, falls a,b,c ccw negativ sonst.

Volumen in 3D???

Volumen eines triangulierten Polyeders analog zu Polygonen!!!

 Aufsummieren der positiven und negativen Beiträge pro Dreieck (bzw. jeweils erzeugtem Tetraeder)

VL Computational Geometry Prof. M. Fischer, HS München

Modellierung, 2D und 3D

Kurzer Überblick über die Methoden, wie Objekt-Modelle in 2D und 3D dargestellt werden

Referenz:

http://ocw.mit.edu/courses/mechanical-engineering/2-158j-computational-geometry-spring-2003/lecture-notes/ Lehrveranstaltungen 1, 14, 15

Zwei verbreitete Methoden

- Vektordarstellung
- Rasterdarstellung
 - Vollständig (Pixelbild)
 - Quad-Trees(analog Octtrees,dazu später)

Zwei verbreitete Methoden

- Vektordarstellung
- Rasterdarstellung

Umwandlung Vektor \rightarrow Raster:

Rasterung (z.B. in Grafikkarten, zur Darstellung,...)

Umwandlung Raster → Vektor:

Vektorisierung

- häufig manuell,
- Verfolgen von Kanten, bis Linearisierungsfehler zu groß, dann neue Kante

Überblick

- Dekompositions-Modelle (decomposition models)
 - Raumunterteilung
- Konstruktive Modelle (*constructive models*)
 - Darstellung von Körpern durch Boolsche Operationen auf Primitiven
- Oberflächen-Modelle (boundary models)
 - Polyedermodelle aus Flächen (faces), Kanten (edges) und Ecken (vertices)

Raumunterteilung: Vollständige Aufzählung (exhaustive enumeration)

- Regelmäßige Raum-Unterteilung
- Volumenelemente (voxel): nicht überlappende Einheitswürfel, 3D-Rasterung

Datenstruktur: Boolesche Werte (Vom Objekt belegt, nicht belegt) in einem 3D-Array

Verwendung: Weltmodelle, medizinische Daten

- Schnelle Zugriffe,
- Modifikation aufwändig
- Hoher Speicherbedarf

VL Computational Geometry Prof. M. Fischer, HS München

Raumunterteilung: Octrees

- Geringerer Speicherbedarf als 3D-Rasterung
- Approximatives Modell
- Rotationen sehr problematisch

(c)

VL Computational Geometry Prof. M. Fischer, HS München

Raumunterteilung: Zellzerlegung

- Problemangepasste Voxel, anders als Würfel
- Verwendung: Meist Finite Element Methoden, Physikalische Simulation

Konstruktive Modelle: *Constructive solid geometry* (CSG)
Basis der internen Darstellung von Objekten bei vielen CAD-Systemen
Operationen auf Volumen-Primitiven (Quader, Zylinder, Kugel, Kegel,...):

- Boolsche Operationen (Durchschnitt, Vereinigung, ...)
- Skalierung
- Translation
- Rotation

VL Computational Geometry Prof. M. Fischer, HS München

Oberflächenmodelle: Boundary representation (B-Rep)

Objekte werden durch ihre Oberflächenelemente

- Facetten, Flächen (faces)
- Kanten (*edges*)
- Ecken (*vertices*)

dargestellt

Oberflächenmodelle: Boundary representation (B-Rep)

Erforderlich:

- Geometrieinformation:
 - Position der Ecken (vertices)
- Topologieinformation
 - Aus welchen Ecken besteht eine Kante
 - Aus welchen Kanten besteht eine Facette
 - Aus welchen Facetten besteht ein Objekt (Shell)
 - Welche Facetten stoßen an welcher Kante zusammen
 - Welche Facetten stoßen an welcher Ecke zusammen

Winged Edge Datenstruktur Beispiel Tetraeder

VL Computational Geometry Prof. M. Fischer, HS München

Winged Edge Datenstruktur

Beispiel Tetraeder

Winged Edge Datenstruktur

VL Computational Geometry Prof. M. Fischer, HS München

Winged Edge Datenstruktur

Vollständige Information über eine Kante

Winged Edge Datenstruktur

Vollständige Information über eine Kante

Winged Edge Datenstruktur Beispiel Tetraeder

V1

edge	V[1]	V[2]	f[1]	f[2]	CW[1]	CCW[1]	CW[2]	CCW[2]
e_1	V_1	V_4	f_2	f_4	e_4	e_3	e_2	e_6
e_2	V_3	V_1	f_3	f_4	e_3	e_5	e_6	e_1
e_3	V_1	V_2	f_3	f_2	e_5	e_2	e_1	e_4
e_4	V_2	V_4	f_1	f_2	e_6	e_5	e_3	e_1
e_5	V_2	V_3	f_3	f_1	e_2	e_3	e_4	e_6
e_6	V_4	V_3	f_1	f_4	e_5	e_4	e_1	e_2

VL Computational Geometry

Prof. M. Fischer, HS München