SOLUTIONS FOR PROBLEM SET 5 CS 373: THEORY OF COMPUTATION

Assigned: February 21, 2013 Due on: February 28, 2013

Problem 1. [Category: Proof] Let $C = \{1^k x \mid x \in \{0,1\}^*, k \ge 1, \text{ and } x \text{ contains at most } k \text{ 1s}\}$. Using the pumping lemma, prove that C is not regular. [10 points]

Solution: Let (for contradiction) C be a regular language with p as the pumping lemma constant. Consider the string $w = 1^p 01^p$. Observe that $w \in C$. Let x, y, z be any division of w such that w = xyz, |y| > 0 and $|xy| \le p$. Thus, we can assume that $x = 1^i$, $y = 1^j$, and $z = 1^k 01^p$, where i + j + k = p, and j > 0. Consider $w' = xy^0z = 1^{i+k}01^p$. Since w' has < p 1s before the first 0, and so the number of 1s after the first 0 cannot be more that p-1. But w' has p 1s after the first 0 and so $w' \notin C$. Thus, C does not satisfy the pumping lemma and hence is not regular.

Problem 2. [Category: Comprehension+Design] Let $L = \mathbf{L}(1^*0(00 \cup 01 \cup 1)(0 \cup 1)^*)$.

- 1. List all the equivalence classes of \equiv_L . Prove that your answer is correct. [5 points]
- 2. Draw the minimum state DFA M^L accepting L. [5 points]

Solution:

1. There are 4 equivalence classes for \equiv_L .

$$E_1 = \mathbf{L}(1^*)$$

$$E_2 = \mathbf{L}(1^*0)$$

$$E_3 = \mathbf{L}(1^*00)$$

$$E_4 = \mathbf{L}(1^*0(00 \cup 01 \cup 1)(0 \cup 1)^*)$$

Observe that $E_1 \cup E_2 \cup E_3 \cup E_4 = \{0,1\}^*$ and for any $i,j \in \{1,2,3,4\}$ with $i \neq j$, $E_i \cap E_j = \emptyset$. Thus, if we prove that each E_i is an equivalence class, then this is an exhaustive list of all the equivalence classes. Note, that an equivalence class is a set E such that for every $x, y \in E$, we have $x \equiv_L y$, and for every $z \notin E$, $x \not\equiv_L z$. So this is what we will prove for each E_i .

- Case E_1 : Let $x, y \in E_1$. Without loss of generality, we can take $x = 1^i$ and $y = 1^j$ for $i, j \ge 0$. Now $xw = 1^i w \in L$ iff $w \in \mathbf{L}(1^*0(00 \cup 01 \cup 1)(1 \cup 0)^*)$ iff $1^j w = yw \in L$. Now consider $z \notin E_1$; we will consider each case depending on whether z belongs to E_2 , E_3 or E_4 . If $z \in E_2$, then $z \in L$ but $x \in L$ and $x \in L$ and $x \in L$ but $x \in L$ but
- Case E_2 : Let $x, y \in E_2$. Without loss of generality, we can take $x = 1^i 0$ and $y = 1^j 0$ for $i, j \ge 0$. Now $xw = 1^i 0w \in L$ iff $w \in \mathbf{L}((00 \cup 01 \cup 1)(1 \cup 0)^*)$ iff $1^j 0w = yw \in L$. Now consider $z \notin E_2$; we don't need to consider the case of $z \in E_1$ because we already established that in the previous case. If $z \in E_3$ then again $z0 \in L$ and x0, y0 are not in L. Finally, if $z \in E_4$ then $z\epsilon \in L$ but $x, y \notin L$.
- Case E_3 : Let $x, y \in E_3$. Without loss of generality, we can take $x = 1^i00$ and $y = 1^j00$ for $i, j \geq 0$. Now $xw = 1^i00w \in L$ iff $w \in \mathbf{L}((0 \cup 1)(1 \cup 0)^*)$ iff $1^j00w = yw \in L$. Now consider $z \notin E_2$; we don't need to consider the case of $z \in E_1 \cup E_2$ because we already established that in the previous parts. If $z \in E_4$ then again $z \in L$ and $x, y \notin L$.

- Case E_4 : Let $x, y \in E_4$. Now $xw \in L$ iff $w \in \mathbf{L}((1 \cup 0)^*)$ iff $yw \in L$. The previous parts have already established that if $z \notin E_4$ then $x \not\equiv_L z$.
- 2. The automaton M^L has as states the equivalence classes E_1, E_2, E_3, E_4 . Since $\epsilon \in E_1, E_1$ is the initial state, and since $E_4 = L$, E_4 is the only final state. The automaton can be drawn as follows.

Problem 3. [Category: Comprehension+Proof] For a language $L \subseteq \Sigma^*$, define an equivalence \simeq_L on Σ^* as follows

$$x \simeq_L y \text{ iff } \forall z. \ zx \in L \leftrightarrow zy \in L$$

Notice that this is a slightly different equivalence than \equiv_L defined in Lecture 11. Prove that L is regular iff \simeq_L has finitely many equivalence classes. *Hint:* Can you see a connection between \simeq_L and \equiv_{L^R} , where L^R refers to the reverse of L? [10 points]

Solution: For a string $x \in \Sigma^*$, let $x^R \in \Sigma^*$ denote the reverse of string x. For a language $L \subseteq \Sigma^*$, let $L^R = \{x^R \mid x \in L\}$, be the "reverse" of language L. The crux of the proof is the following observation: $x \simeq_L y$ iff $x^R \equiv_L y^R$. This can be shown as follows.

$$\begin{array}{ll} x \simeq_L y & \text{iff} & \forall z.zx \in L \leftrightarrow zy \in L \\ & \text{iff} & \forall z.(zx)^R \in L^R \leftrightarrow (zy)^R \in L^R \\ & \text{iff} & \forall z^R.x^Rz^R \in L^R \leftrightarrow y^Rz^R \in L^R \\ & \text{iff} & x^R \equiv_{L^R} y^R \end{array}$$

Now this means that $[x]_{\simeq_L} = ([x^R]_{\equiv_{L^R}})^R$. Thus, $\#(\simeq_L) = \#(\equiv_{L^R})$.

We can use the Myhill-Nerode theorem and previous observations about closure properties to complete the proof. Observe that $(L^R)^R = L$, and we showed in Homework 4 Problem 2, that if L is regular L^R is regular. Therefore, we have L is regular if and only if L^R is regular. The following sequence of observations then completes the proof. L is regular if and only if L^R is regular if and only if L^R has finitely many equivalence classes (Myhill-Neorde theorem) if and only if L^R has finitely many equivalence classes (since $L^R = L^R = L^R$