Rémi Emonet

2016-12-13

Université Jean Monnet – Saint Étienne Laboratoire Hubert Curien

Disclaimer

Some notations are atypical.

I will, almost surely, skip sections.

Don't hesitate to ask questions lives.

CE by seefit (Flick

- Unsupervised Representation Learning
- Notations and problem formulation
- Probabilistic (graphical) models
- Auto-encoders
- Generative Adversarial Networks
 - adversarial examples and training
 - GANs
- Focus on ...
 - optimization
 - space and time convolutions
 - depth, breadth/width
 - semantics
 - sequential/temporal aspects
 - recent GANs
- Wrap up

- Unsupervised Representation Learning
- Notations and problem formulation
- Probabilistic (graphical) models
- Auto-encoders
- Generative Adversarial Networks
 - adversarial examples and training
 - GANs
- Focus on ...
 - optimization
 - space and time convolutions
 - depth, breadth/width
 - semantics
 - sequential/temporal aspects
 - recent GANs
- Wrap up

Representation Learning at Hubert Curien

Unsupervised (Representation) Learning

- No labels available
- Learning intermediate features or representations
- Task agnostic
- Related to (data) density estimation
- Related to compression

Example: motif mining in videos / temporal data

• Key points: structure? compression? density estimation?

- Unsupervised Representation Learning
- Notations and problem formulation
- Probabilistic (graphical) models
- Auto-encoders
- Generative Adversarial Networks
 - adversarial examples and training
 - GANs
- Focus on ...
 - optimization
 - space and time convolutions
 - depth, breadth/width
 - semantics
 - sequential/temporal aspects
 - recent GANs
- Wrap up

Notations and problem formulation

Notations and Problem Formulation

- Notations
 - x: data (observations)
 - y: value to predict (for supervised cases)
 - *z* : unknown, unobserved latent information
 - lacksquare θ (or W): model parameters
- Unsupervised learning
 - lacksquare only x is given
 - need to find the parameters (θ, W)
 - lacktriangle may want to further infer the latent variables (z)

- Unsupervised Representation Learning
- Notations and problem formulation
- Probabilistic (graphical) models
- Auto-encoders
- Generative Adversarial Networks
 - adversarial examples and training
 - GANs
- Focus on ...
 - optimization
 - space and time convolutions
 - depth, breadth/width
 - semantics
 - sequential/temporal aspects
 - recent GANs
- Wrap up

Probabilistic (graphical) models

Generative Model, Parameters, Latent Vars...

Observations / Data

- Supposition, we have a mixture of 3 gaussians
- Challenge
 - gaussians have unknown parameters
 - which point belongs to which component is not observable

Probabilistic Modeling: principle

- Adopting a generative approach
 - think about how the world generated the data
 - describe it in a "generative model"
- Formalize your assumptions about the observations (data)
 - choose/design a model
 - a model formulates how some unknown variables that are "responsible" for the observations (data)
 - set some priors on the unknown variables
- Naming convention: different types of unknowns
 - parameters: unknown global parameters of the model
 - latent variables: unknown observation-specific variables
- With a mixture of Gaussians
 - parameters: mean and covariances (and weight) of all Gaussians
 - latent variables: which Gaussian each data points comes from

Probabilistic Model Learning

- The model is generative
 - lacktriangle describes how the data (x) gets generated
 - "forward model"
 - lacksquare the probability of the observations: p(x| heta)
- Finding the unknowns (parameters, latent var.) is challenging
 - reversing the generative process
 - lacksquare finding (or maximizing) p(heta|x) or p(heta,z|x) or p(z|x, heta)
 - high dimensional parameter/latent spaces
 - highly non-convex functions

M1 - PCA: intuition

M1: PCA

- Principle Component Analysis (eigen-*)
 - dimensionality reduction
 - capture the maximum amount of data variance
- PCA probabilistic view
 - observations come from a single low-dimensional gaussian distribution
 - ... and are transformed with a linear transformation (rotation + scale),
 - ... and have added noise noisy
- Over-generic graphical representation
 - \blacksquare θ is linear transformation
 - lacksquare data points x depend on heta
 - no explicit latent variables Ø
- ullet Inference problem: f
 - dedicated algorithms
 (covariance matrix eigenvalues, iterative methods, ...)

M2 - Topic Modeling: matrix factorization

- Probabilistic Latent Semantic Analysis (PLSA)
 - matrix decomposition
 - non-negative
 - probabilistic formulation

$$lacksquare p(w|d) = \sum_{z} p(w|z) imes p(z|d)$$

 $lacksquare ext{or } x^i = heta^T \cdot \overset{ au}{z^i} ext{ (for a document } i)$

		document			topic
		d1	d2	d3	#1 #2
		2	2	2	o ? ? document
0		1	0	0	d1 d2 d3
word		1	0	1	<u> </u>
>	\bigcirc	1	1	1	$= \bigcirc ? ? \times \bigcirc #2 ? ?$
	,	0	1	1	O ? ?
V	0	0	1	0	? ?

M2: Topic Models

- LDA, topic models ...
 - Latent Dirichlet Allocation
 - mixture of discrete distributions (categorical/multinomial)
- Bayesian formulation of
 - LSA, LSI (Latent Semantic Indexing)
- Probabilistic formulation of
 - NMF (non-negative matrix factorization)
- $ullet \ x^i = heta^T \cdot z^i \ ext{(for a document } i) \ extcolor{10}$
- Learning/Inference, f
 - Gibbs sampling
 - EM: expectation maximization
 - variational inference

- Unsupervised Representation Learning
- Notations and problem formulation
- Probabilistic (graphical) models
- Auto-encoders
- Generative Adversarial Networks
 - adversarial examples and training
 - GANs
- Focus on ...
 - optimization
 - space and time convolutions
 - depth, breadth/width
 - semantics
 - sequential/temporal aspects
 - recent GANs
- Wrap up

Auto-encoders (not yet)

Feed-forward Neural Networks (supervised)

- Supervised learning (regression, classification, ...)
 - lacktriangle the x are given
 - lacktriangle the corresponding labels y are given
- Building blocks of "neural nets"
 - a neuron computes a weighted sum of its inputs
 - lacksquare the sum is followed by an "activation" σ
 - lacktriangle weights are learned (W)

$$lacksquare f^o(x^i,W) = \sigma\left(\sum_d W_{o,d} imes x_d^i
ight) = \sigma\left(W_{o,.}^T\cdot x^i
ight)$$

- Define a network architecture (class of functions)
 - number and dimension of layers
 - activation functions (sigmoid, tanh, ReLU, ...)
 - ... actually any composition of differentiable functions
- Learning with stochastic gradient descent (SGD) and variants

M3: Autoencoders

LABORATOIRE HUBERT CURIEN

- Idea: use a feed-forward approach
 - ... for unsupervised learning (no labels)
 - to learn a compact data representation
- Principle 🖉
 - try to predict the input form the input
 - have a latent bottleneck: limited model capacity
 - **encoder** f: from the input x to the latent z
 - **decoder** g: from the latent z to the input x
- ullet Learning principles of f and g
 - lacksquare mean square reconstruction error: $\|g(f(x))-x\|^2$
 - SGD (like any neural net)
 - lacktriangle sparsifying regularization: sparse activations (z,f(x))
 - add noise to the input (denoizing autoencoders)

- Unsupervised Representation Learning
- Notations and problem formulation
- Probabilistic (graphical) models
- Auto-encoders
- Generative Adversarial Networks
 - adversarial examples and training
 - GANs
- Focus on ...
 - optimization
 - space and time convolutions
 - depth, breadth/width
 - semantics
 - sequential/temporal aspects
 - recent GANs
- Wrap up

Generative Adversarial Networks

Adversarial Examples (Goodfellow, 2014)

- In high dimensional spaces
 - a huge part of the input space is never seen / irrelevant
 - models are easy to fool
 - models are wrongly calibrated (bad confidence estimation)
- Goal
 - build machine learning methods robust to adversarial examples
 - (relation to anomaly detection)
- Idea of adversarial training
 - generate adversarial examples automatically
 - train also using these examples

M4: Generative Adversarial Networks

LABORATOIRE HUBERT CURIEN

- Principle: train two networks
 - lacksquare G: to generate samples from noise
 - $lackbox{1}{lackbox{1}}{lackbox{1}{lackbox{1}}{lackbox{1}}{lackbox{1}}{lackbox{1}}{lackbox{1}}{lackbox{1}}{lackbox{1}}{lackbox{1}}}}}}}}}}}}}} } } } } \label{to}$
 - lacksquare NB: G will try to fool D
- Elements Ø
 - x: a training sample (real)
 - \blacksquare z: a random point in a latent space
 - \tilde{x} : a generated sample (fake)
 - y: a binary "fake" (0) or "real" (1) value
- GAN is a minimax game
 - lacksquare $\min_{G} \max_{D} V(D,G)$
 - $lackbox{ }V(D,G)=egin{array}{c}\mathbb{E}_x[log(D(x))]+\mathbb{E}_z[log(1-D(G(z)))] \end{array}$

GAN Target

LABORATOIRE HUBERT CURIEN

- GAN optimization is a minimax
 - $\bullet \min_{G} \max_{D} V(D,G)$
 - $lacksquare V(D,G) = \mathbb{E}_x[log(D(x))] + \mathbb{E}_z[log(1-D(G(z)))]$
 - lacksquare find a G that minimizes the accuracy of the **best** D
- Equilibrium and best strategies
 - lacksquare D ideally computes $D(x) = rac{p_{data}(x)}{p_{data}(x) + p_{gen}(x)}$
 - lacksquare thus G should ideally fit $p_{data}(x)$
 - lacksquare ... G samples for $p_{data}(x)$
- Optimization in practice
 - lacksquare alternate optimization of G and D
 - warning: min max is not max min
 - saddle point finding (hot topic)

Example of GAN-generated Digits

• DCGAN, Radford et al., 2015/2016

Example of GAN-generated Images

- Unsupervised Representation Learning
- Notations and problem formulation
- Probabilistic (graphical) models
- Auto-encoders
- Generative Adversarial Networks
 - adversarial examples and training
 - GANs
- Focus on ...
 - optimization
 - space and time convolutions
 - depth, breadth/width
 - semantics
 - sequential/temporal aspects
 - recent GANs
- Wrap up

How is all This Optimized

- Probabilistic models Ø
 - Gibbs sampling
 - Expectation Maximization
 - Variational Inference
 - Black-box variational inference (e.g., Edward)
- Deep models (composition of differentiable function)
 - using "back-propagation" (chain rule)
 - (S)GD
 - SGD with momentum
 - SGD with adaptation: RMSProp, ADAM, ...
 - batch normalization trick
 - link: other tricks for learning GANs
 - are local minima any good?
 - link: which optimizer?

- Unsupervised Representation Learning
- Notations and problem formulation
- Probabilistic (graphical) models
- Auto-encoders
- Generative Adversarial Networks
 - adversarial examples and training
 - GANs
- Focus on ...
 - optimization
 - space and time convolutions
 - depth, breadth/width
 - semantics
 - sequential/temporal aspects
 - recent GANs
- Wrap up

Convolution Models

- Extensions of topic models
 - replace topic with motifs (with temporal structure)
 - PLSM, HDLSM (Emonet et al., 2014)
- Convolutional Neural Networks
 - most of Christian's talk (ConvNets)
 - pixelRNN, ...

- Unsupervised Representation Learning
- Notations and problem formulation
- Probabilistic (graphical) models
- Auto-encoders
- Generative Adversarial Networks
 - adversarial examples and training
 - GANs
- Focus on ...
 - optimization
 - space and time convolutions
 - depth, breadth/width
 - semantics
 - sequential/temporal aspects
 - recent GANs
- Wrap up

Depth in Unsupervised Learning

- Neural Network depth = Hierarchical probabilistic models
- Neural Networks
 - "deep learning"
 - adding layers
 - handling depth with ReLU
 - handling depth with "ResNets", Residual Networks (Deep residual learning for image recognition, He et al. 2015)
- Hierarchical probabilistic models
 - Topic Models (LDA, Blei, Ng, Jordan, 2003)
 - Deep exponential families (Ranganath et al., 2015)
 - Deep Gaussian Processes (Damianou, Lawrence, 2013)

- Unsupervised Representation Learning
- Notations and problem formulation
- Probabilistic (graphical) models
- Auto-encoders
- Generative Adversarial Networks
 - adversarial examples and training
 - GANs
- Focus on ...
 - optimization
 - space and time convolutions
 - depth, breadth/width
 - semantics
 - sequential/temporal aspects
 - recent GANs
- Wrap up

Width in Unsupervised Learning

- Width
 - Topic model: number of topics
 - Autoencoder: number of neurons in the hidden layer
 - GAN: size of z
- Non-parametric approaches, HDP, HDLSM (Emonet et al., 2014)
- Gaussian process as an infinitely wide NN layer (Damianou, Lawrence, 2013)
 - universal function approximator
- Autoencoders with group sparsity (Bascol et al., 2016)
 - allow for many hidden units
 - penalize the use of too many of them

- Unsupervised Representation Learning
- Notations and problem formulation
- Probabilistic (graphical) models
- Auto-encoders
- Generative Adversarial Networks
 - adversarial examples and training
 - GANs
- Focus on ...
 - optimization
 - space and time convolutions
 - depth, breadth/width
 - semantics
 - sequential/temporal aspects
 - recent GANs
- Wrap up

Semantics in Unsupervised Learning

- Probabilistic models
 - inference is difficult
 - consider the "explains away" principle
 - lead to better interpretability (meaningful z)
- Simpler feed-forward model
 - independent processing
 - inhibitory feedback is difficult
- Bascol et al, 2016 ...
 - group-sparsity on filters
 - local activation inhibition
 - global activation entropy maximization
 - AdaReLU: activation function that zeroes low-energy points

- Unsupervised Representation Learning
- Notations and problem formulation
- Probabilistic (graphical) models
- Auto-encoders
- Generative Adversarial Networks
 - adversarial examples and training
 - GANs
- Focus on ...
 - optimization
 - space and time convolutions
 - depth, breadth/width
 - semantics
 - sequential/temporal aspects
 - recent GANs
- Wrap up

Sequential and Temporal Modeling

- cf. Christian Wolf's talk
- HMM, CRF =?= RNN
- LSTM =?= HSMM

- Unsupervised Representation Learning
- Notations and problem formulation
- Probabilistic (graphical) models
- Auto-encoders
- Generative Adversarial Networks
 - adversarial examples and training
 - GANs
- Focus on ...
 - optimization
 - space and time convolutions
 - depth, breadth/width
 - semantics
 - sequential/temporal aspects
 - recent GANs
- Wrap up

Recent GAN Works

M5: BiGAN, ALI (2016)

M6: InfoGAN (2016)

LABORATOIRE HUBERT CURIEN

- GAN noise (z)
 - is unstructured
 - lacksquare can be partly ignored by G
- InfoGAN idea and principle
 - lacksquare part of the noise is a code c
 - lacksquare enforce high mutual information between c and ilde x
 - lacksquare in practice, predict c from $ilde{x}$
 - lacksquare use a coder Q
- Structure in the code
 - Cartesian product of anything
 - (categorical, continuous, ...)

InfoGAN: some results

(a) Varying c_1 on InfoGAN (Digit type)

(b) Varying c_1 on regular GAN (No clear meaning)

- (c) Varying c_2 from -2 to 2 on InfoGAN (Rotation)
- (d) Varying c_3 from -2 to 2 on InfoGAN (Width)

*GAN as a Modeling Tool

- Conditional GANs and variants (2016)
 - the GAN process is conditioned on some data
 - e.g., image generation condition on a semantic mask
 - e.g., image conditioned on a text sentence
 - e.g., audio conditioned on a text sentence
 - e.g., image conditioned on class and keypoints
 - **...**
- Very complex (and operational) setups

Ex: Learning What and Where to Draw

Ex: Learning What and Where to Draw

Scott Reed et al.

this tiny bird has a long, slim, pointed beak with flecks of yellow, green, and gray feathers. this fat bird is a light pink and light grey. the beak is short and the wings are long. a small bird has a dark black eye, a light white superciliary, and a gray side.

- Unsupervised Representation Learning
- Notations and problem formulation
- Probabilistic (graphical) models
- Auto-encoders
- Generative Adversarial Networks
 - adversarial examples and training
 - GANs
- Focus on ...
 - optimization
 - space and time convolutions
 - depth, breadth/width
 - semantics
 - sequential/temporal aspects
 - recent GANs
- Wrap up

Attributions

govan riverside

GorissenM

