

BL0940 datasheet

BL0940 免校准计量芯片 数据手册

版本更新说明

版本	日期	内容	修订人
V1.0	2018/09/07	创建	廖康,HCJ
V1.1	2019/12/25	勘误	廖康,HCJ

内置时钟免校准计量芯片

目录

版ス	本更新说	5明		2
1	产品简	5述		5
	1.1	功能	と 简介	5
	1.2	主要	5特点	5
	1.3	系统	充框图	6
	1.4	封装	長与管脚描述	7
	1.5	寄存	序器列表	8
	1.6	特殊	卡 寄存器说明	9
	1.	.6.1	用户模式选择寄存器	9
	1.	.6.2	温度模式控制寄存器	10
	1.7	性能	b指标	11
	1.	.7.1	电参数性能	11
	1.	.7.2	极限范围	12
2	功能描	古述		13
	2.1	电流	瓦电压瞬态波形计量	13
	2.2	有功	力功率	14
	2.3	有功	力功率偏置校准	14
	2.4	有功	力功率的防潜动	15
	2.5	电能	长计量	16
	2.6	电流	流电压有效值	17
	2.7	电流	危电压有效值偏置校准	18
	2.8	漏电	旦/ 过流检测	18
	2.9	相角	自计算	20
	2.10	过零	₹检测	21

内置时钟免校准计量芯片

	2.11	温度	ぎ计量	22
3	通讯接口	1		24
	3.1	SPI.		24
	3.1.	1	工作模式	24
	3.1.2	2	帧结构	25
	3.1.3	3	写入操作时序	25
	3.1.4	4	读出操作时序	26
	3.1.	5	SPI 接口的容错机制	26
	3.2	UAR	T	27
	3.2.	1	概述	27
	3.2.2	2	描述	27
	3.2.3	3	每个字节格式	27
	3.2.4	4	写入时序	27
	3.2.	5	读取时序	28
	3.2.0	6	数据包发送模式	29
	3.2.	7	UART 接口的保护机制	30
1	±+/±:			20

1 产品简述

1.1 功能简介

BL0940 是一颗内置时钟免校准电能计量芯片,适用于单相多功能电能表、智能插座、智能家电、电动自行车充电桩等应用,具有较高的性价比。

BL0940集成了 2 路高精度 Sigma-Delta ADC,参考电压,电源管理等模拟电路模块,以及处理有功功率、电流电压有效值等电参数的数字信号处理电路。

BL0940 能够测量电流、电压有效值、有功功率、有功电能量等参数,可输出快速电流有效值(用于漏电监控或过流保护),以及温度检测,波形输出等功能,通过 UART/SPI 接口输出数据,能够充分满足智能插座、智能家电、单相多功能电能表、电动自行车充电桩及用电信息大数据采集等领域的需要。

BL0940 具有专利防潜动设计,配合合理的外部硬件设计,可确保在无电流时噪声功率不被计入电能脉冲。

1.2 主要特点

- 两路独立的 Sigma-Delta ADC,一路电流和一路电压。
- 电流有效值范围(10mA~35A)@1mohm
- 有功电能(1w~7700w)@1mohm@220V
- 可输出电流、电压有效值,快速电流有效值,有功功率,电流电压波形相角
- 批次出厂增益误差小于 1%,外围元件满足一定条件下可以免校准
- 电流通道具备漏电/过流监控功能,监控阈值及响应时间可设置
- 电压过零信号输出
- 内置波形寄存器,可输出波形数据用于负载类型分析
- 集成温度传感器,满足产品本身过温监控、大电流节点预设温度报警、环境温度测量等需求
- 集成 SPI(最快速率支持 900KHz)/UART(4800bps)通信方式
- 电源掉电监测,低于 2.7V 时,芯片进入复位状态
- 内置 1.218V 参考电压源
- 内置振荡电路,时钟约 4MHz
- 芯片单工作电源 3.3V, 低功耗 10mW (典型值)
- TSSOP14 封装

1.3 系统框图

图 1

1.4 封装与管脚描述

图 2

管脚描述(TSSOP14)

管脚号	符号	说明
1	VDD	电源 (+3.3V)
2	VT	外部温度传感器信号输入
3, 4	IP1, IN1	电流通道的模拟输入,管脚的最大差分电压±50mV(35mV rms)
5, 6	VP, VN	电压信号输入端,最大差分电压±100mV(70mV rms)
7	GND	芯片地
8	ZX	电压过零指示
9	CF	电能脉冲输出,复用功能见 MODE 寄存器说明
10	SEL	UART/SPI 通信模式选择(0: UART 1: SPI),内部有下拉电阻,
		悬空即为 0 电平(UART),管脚直接接到 VDD 即为高电平(SPI)
11	SCLK	SPI 方式时钟输入; UART 通信模式时,悬空即可
12	RX/SDI	UART/SPI 复用管脚,UART RX/SPI DIN
13	TX/SDO	UART/SPI 复用管脚,UART TX/SPI DOUT,需要外部上拉电阻
14	VPP	保留,悬空即可

1.5 寄存器列表

地址	名称	外部 读/写	内部 读/写	位宽	默认值	描述			
		•	ŀ	电参量器	寄存器 (只读	ŧ)			
0x00	I_FAST_RMS	R	W	24	0x000000	电流快速有效值寄存器,无符号			
0x01	I_WAVE	R	W	24	0x000000	电流波形寄存器,有符号			
0x03	V_WAVE	R	W	24	0x000000	电压波形寄存器,有符号			
0x04	I_RMS	R	W	24	0x000000	电流有效值寄存器,无符号			
0x06	V_RMS	R	W	24	0x000000	电压有效值寄存器,无符号			
0x08	WATT	R	W	24	0x000000	有功功率寄存器,有符号			
0x0A	CF_CNT	R	W	24	0x000000	有功电能脉冲计数,无符号			
0x0C	CORNER	R	W	16	0x0000	电流电压波形相角寄存器			
0x0E	TPS1	R	W	10	0x000	内部温度检测寄存器,无符号			
0x0F	TPS2	R	W	10	0x000	外部温度检测寄存器,无符号			
	用户操作寄存器 (读写)								
0x10	I_FAST_RMS_ CTRL	R/W	R	16	0xFFFF	电流快速有效值控制寄存器			
0x13	I_RMSOS	R/W	R	8	0x00	电流有效值小信号校正寄存器			
0x15	WATTOS	R/W	R	8	0x00	功率小信号校正寄存器			
0x17	WA_CREEP	R/W	R	8	0x0B	有功功率防潜寄存器			
0x18	MODE	R/W	R	16	0x0000	用户模式选择寄存器			
0x19	SOFT_RESET	R/W	R	24	0x000000	写入 0x5A5A5A 时,用户区寄存器复位			
0x1A	USR_WRPROT	R/W	R	8	0x00	用户写保护设置寄存器。写入 0x55 后,用 户操作寄存器可以写入;写入其他值,用 户操作寄存器区域不可写入			
0x1B	TPS_CTRL	R/W	R	16	0x07FF	温度模式控制寄存器			
0x1C	TPS2_A	R/W	R	8	0x0000	外部温度传感器增益系数校正寄存器			
0x1D	TPS2_B	R/W	R	8	0x0000	外部温度传感器偏移系数校正寄存器			

1.6 特殊寄存器说明

1.6.1 用户模式选择寄存器

0x18	MODE		工作模式寄存器			
No.	name	default value description				
[7:0]	reserved	0b00000000	保留			
8	RMS UPDATE SEL	0b0	有效值寄存器刷新时间选	0: 400ms		
0	VM9_OLDVIE_9EF	Odo	择选择	1: 800ms		
9	VC EDEU CEI	0b0	交流电频率选择	0: 50Hz		
9	AC_FREQ_SEL	000	义	1: 60Hz		
[11:10]	reserved	0b00	保留			
				0: 保留		
12	CF UNABLE	0b0	CF 管脚输出功能选择	1: 过流报警功能		
12	CF_UNABLE	Odo	CI 目 附 们 山 为 化处计	TPS_CTRL[14]配置		
				有效		
[15:13]	reserved	0b000	保留			

1.6.2 温度模式控制寄存器

0x1B	TPS_CTRL	温度模式控制寄存	存器					
No.	name	default value	description					
			[15] 测温开关, 默认 0b0, 开	0: 开启				
			启测温	1: 关闭				
				0: 温度报警开启				
			[14] 报警开关,默认 0b0,	1: 电流通道过流/漏电报警				
		0x07FF		开启				
	TPS_CTRL			00: 自动测温				
			[13:12]测温选择, 默认 0b00	01: 同 00				
0x1B			自动测温	10: 内部测温				
				11: 外部测温				
				00: 50ms				
			[11:10]测温时间间隔选择,	01: 100ms				
			默认 0b01 100ms	10: 200ms				
				11: 400ms				
			[9:0]外部测温报警阀值设	TPS2 寄存器值大于等于报				
			置,默认设置 0x3FF,不报警	警值,产生报警				

1.7 性能指标

1.7.1 电参数性能

(VDD=3.3V, GND=0V, 片上基准电压源, 内置晶振, 25℃, 电能通过 CF 输出进行测量)

测量项目	符号	测量条件	最小	典型	最大	単位
电源 VDD	VDD		3. 0		3.6	V
功耗	Iop	VDD=3.3V		3		mA
测量范围		4000:1 输入动				
侧里化团		态范围				
 有功电能测量精度		35A~100mA 输				
(大信号)		入@ 1mohm 采样		0.2		%
		电阻				
有功电能测量精度		100mA~50mA 输				
(小信号)		入@ 1mohm 采样		0.4		%
(1.10.1)		电阻				
有功电能测量精度		50mA~10mA 输				
(微小信号)		入@ 1mohm 采样		0.6		%
()A T III J /		电阻				
有效值测量精度		35A~100mA 输				
(大信号)		入@ 1mohm 采样		0.2		%
COCIE 37		电阻				
有效值测量精度		100mA~50mA 输				
(小信号)		入@ 1mohm 采样		2		%
() IH ()		电阻				
有效值测量精度		50mA~10mA 输				
(微小信号)		入@ 1mohm 采样		6		%
(10) 4 IEI 4 /		电阻				
快速有效值响应时间	50Hz	可设置为周波/	10		40	mS
	60Hz	半周波	8. 3		33	mS
过零信号输出延时				571		uS
通道间相角引起测量误	PF08err	相位超前 37			0.5	%
差 (容性)		(PF=0.8)				
通道间相角引起测量误	PF05err	相位滞后 60			0. 5	%
差(感性)		(PF=0.5)				
AC 电源抑制 (输出频	ACPSRR	IP/N=100mV			0. 1	%
率幅度变化)		-,				
DC 电源抑制 (输出频	DCPSRR	VP/N=100mV			0. 1	%
率幅度变化)						

测量项目	符号	测量条件	最小	典型	最大	单位
模拟输入电平(电流)		电流差分输入 (峰值)			50	mV
模拟输入电平(电压)		电压差分输入 (峰值)			200	mV
模拟输入阻抗				370		kΩ
SEL 下拉电阻		SEL (下拉)		56. 9		kΩ
模拟输入带宽		(-3dB)		3. 5		kHz
内部电压基准	Vref			1. 218		V
逻辑输入高电平		VDD=3. $3V \pm 5\%$	2.6			V
逻辑输入低电平		VDD=3. $3V \pm 5\%$			0.8	V
逻辑输出高电平		VDD=3.3V±5% IOH=5mA	VDD-0. 5			V
逻辑输出低电平		VDD=3.3V±5% IOL=5mA			0. 5	V

1.7.2 极限范围

(T = 25 °C)

项目	符号	极值	单位
电源电压 VDD	VDD	-0. 3 [∼] +4	V
模拟输入电压(相对于 GND)	IP1、VP	-4 [∼] +4	V
数字输入电压(相对于 GND)	UART_SEL, RX/SDI	-0.3 [∼] VDD+0.3	V
数字输出电压(相对于 GND)	CF, TX/SDO	-0.3 [∼] VDD+0.3	V
工作温度	Topr	−40 [~] +85	$^{\circ}$
贮藏温度	Tstr	−55 [~] +150	$^{\circ}$

2 功能描述

BL0940 主要分为模拟信号处理和数字信号处理两块,模拟部分主要包括两通道 PGA、两通道 Sigma-Delta ADC、内置时钟(internal clock)、上下电监测(Power on/reset)、温度检测(temperature sensor)、LDO 等相关模拟模块,数字部分为数字信号处理模块(DSP)。

2.1 电流电压瞬态波形计量

图 4

如上图所示,电流和电压分别通过模拟模块放大器(PGA)和高精度的模数转换(ADC)得到两路 1bit PDM 给数字模块,数字模块经过降采样滤波器(SINC3)、高通滤波器(HPF)、通道偏置校正等模块,得到需要的电流波形数据和电压波形数据(I_WAVE,V_WAVE)。

采集到的负载电流和电压波形数据以 7.8k 的速率更新,每个采样数据为 24bit 有符号数,并分别存入波形寄存器(I_WAVE,V_WAVE), SPI 速率配置大于 375Kbps,可连续读取一个通道的波形值。

注:寄存器为 24bit,不足位数,高位补零。

地址	名称	外部	↑部 内部 位宽 默认值		料 1. 估	描述
FE-711.	石你	读/写	读/写	114.5亿		1出处
0x01	I_WAVE	R	W	24	0x000000	电流波形寄存器
0x03	V_WAVE	R	W	24	0x000000	电压波形寄存器

2.2 有功功率

图 5

地址	名称	外部	内部	位宽	默认值	描述	
五百月1	1	读/写	读/写	14.见		田心	
0x08	WATT	R	W	24	0x000000	有功功率寄存器	

有功功率计算公式: WATT =
$$\frac{4046*I(A)*V(V)*COS(\phi)}{Vref^2}$$

其中,I(A),V(V)为通道管脚输入信号的有效值(mV), φ 为 I(A)、V(V)交流信号的相位夹角,Vref 为内置基准电压,典型值为 1.218V;

该寄存器表示当前有功功率是正功还是负功,Bit[23]为符号位,Bit[23]=0,当前功率为正功,Bit[23]=1,当前功率为负功,补码形式。

2.3 有功功率偏置校准

BL0940 包含了一个 8 位的有功功率校正寄存器(WATTOS),缺省值为 00H。以 2 的补码形式的数据来来消除电能计量时的有功功率的偏差。Bit[7]为符号位,这里的偏差可能是源于板级噪声或串扰。偏差校正可以使有功功率寄存器中的值在无负载情况下接近 0。

地址	名称	外部	内部	位宽	默认值	描述
표면제.	一	读/写	读/写	7.2.见		1田/匹
0x15	WATTOS	R/W	R	8	0x00	功率小信号校正寄存器

$$WATTOS = \frac{WATT - WATTO}{8 \times 3.05172}$$

WATT 是校正之后的有功功率,WATTO 是校正之前的有功功率。

2.4 有功功率的防潜动

BL0940 具有专利功率防潜功能,保证无电流输入的时候板级噪声功率不会累积电量。

有功防潜动阈值寄存器(WA_CREEP),为 8bit 无符号数,缺省为 0BH。该值与有功功率寄存器值对应关系见下面公式,当输入有功功率信号绝对值小于这个值时,输出有功功率设为 0。这可以使在无负载情况下,即使有小的噪声信号,输出到有功功率寄存器中的值为 0,电能不累积。

地址	名称	外部	内部	位宽	默认值	描述
地址	石你	读/写	读/写	14.见	쳈以徂	1田处
0x17	WA_CREEP	R/W	R	8	0x0B	有功功率防潜寄存器

可以根据功率寄存器 A WATT 的值设置 WA CREEP,他们的对应关系

WA_CREEP =
$$\frac{WATT}{3.0517578125*8}$$

注: 当前通道处于防潜状态时,该通道的电流有效值不测量,也切除到 0。

2.5 电能计量

BL0940 提供电能脉冲计量,有功瞬时功率通过一段时间的积分,可获得有功能量,并可进一步输出校验脉冲 CF,CF_CNT 寄存器保存输出电能脉冲 CF 的个数,具体如下图所示。

图 6

地址	名称	外部	内部	位宽	默认值	描述
1만세.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	读/写	读/写	714. 万亿	纵队阻	1田灯
0x0A	CF_CNT	R	W	24	0x000000	有功电能脉冲计数,无符号

有功电能脉冲计数对应用电量,也可通过 I/O 中断从 CF 引脚直接对脉冲个数进行计数, CF 的周期小于 180ms 时,为 50%占空比的脉冲,大于等于 180ms 时,高电平固定脉宽 90ms。

注: CFA CNT 寄存器是电能脉冲代数和累积方式,即正功加,负功减。

每个 CF 脉冲的累积时间
$$t_{\text{CF}} = \frac{1638.4*256}{WATT}$$

其中WATT 为对应的有功功率寄存器值(WATT)。

2.6 电流电压有效值

两个通道的有效值,如下图,经过平方电路(X^2)、低通滤波器(LPF_RMS)、开根电路(ROOT),得到有效值的瞬时值 RMS_t ,再经过平均得到两个通道的平均值(I_RMS 和 V_RMS)。

图 7

地址	名称	外部	内部	位宽	默认值	描述
地址	石你	读/写	读/写	14.5亿	秋八徂	抽处
0x04	I_RMS	R	W	24	0x000000	电流有效值寄存器,无符号
0x06	V_RMS	R	W	24	0x000000	电压有效值寄存器,无符号

0x18	MODE		工作模式寄存器		
No.	name	default value	desc	ription	
8	RMS_UPDATE_SEL	0b0	有效值寄存器刷新时 间设置	0: 400ms 1: 800ms	

设置 MODE[8].RMS_UPDAT_SEL,可选择有效值平均刷新时间是 400ms 或 800ms,默认 400ms。

当通道处于防潜状态时, 该电流通道的有效值为零。

电流有效值转换公式: I_RMS =
$$\frac{324004*I(A)}{Vref}$$

电压有效值转换公式:
$$V_RMS = \frac{79931*V(V)}{Vref}$$

Vref是参考电压,典型值是 1.218V。

注: I(A)是 IP1, IN1 管脚间的输入信号 (mV), V(V)是 VP 管脚的输入信号(mV)。

2.7 电流电压有效值偏置校准

BL0940 包含一个 8 位有效值偏置寄存器(I_RMSOS),缺省值为 00H,以 2 的补码形式的数据来调整有效值计算中出现的偏差。Bit[7]为符号位,这种偏差可能来源于输入噪声,偏差校正可以使有效值寄存器中的值在无负载情况下接近 0。

地址	名称	外部	内部	位宽	默认值	描述
地址	石柳	读/写	读/写	14.5亿		1世处
0x13	I_RMSOS	R/W	R	8	0x00	电流有效值小信号校正寄存器

校准公式: RMSOS = $\frac{RMS^2 - RMS0^2}{9.3132 \times 2^{15}}$

这里 RMSO 为未进行校正之前有效值, RMS 是校正之后的有效值。

2.8漏电/过流检测

BL0940 有快速有效值寄存器,可检测半周波或周波有效值。该功能可用于漏电或过流检测。漏电波形 L_WAVE 的来源参见通道波形框图。I_WAVE_F 取绝对值后进行半周波或周波时间累加,由 FAST_RMS_CTRL[15]选择,默认值 1 选择周波累加,响应时间最长 40ms(50Hz)或 33mS(60Hz),注意半周波累加时 x_FAST_RMS 寄存器的跳动比较大。要区分 50Hz 和 60Hz 的半周波时间(AC_FREQ_SEL)。

图 8

Shanghai Belling Corp., Ltd.

内置时钟免校准计量芯片

地址	名称	外部	内部	位宽	默认值	描述
九田川	石 你	读/写	读/写	14.见		细处
0x10	I_FAST_RMS_CTRL	R/W	R	16	0xFFFF	电流快速有效值控制寄存器

通过 I_FAST_RMS_CTRL 快速有效值控制寄存器,可选择刷新时间为半周波或周波,并设定快速有效值阈值(即漏电或过流阈值)。

0x10	MODE		快速有效值寄存器	
No.	name	default value	description	
0x10	I_FAST_RMS_CTRL	0xFFFF	[15]电流快速有效值寄存器刷新时间	0: 半周波 1: 周波
			[14:0]电流快速有效值阈值	

0x18	MODE	工作模式寄存器				
No.	name	default value		description		
g	VC EDEO CEI	0b0	交流电频率选择	0: 50Hz		
9	AC_FREQ_SEL	000	文孤电频举起拜	1: 60Hz		

通过 MODE[9]设置交流电频率。

地址	名称	外部	内部	位宽	默认值	描述
地址	石 你	读/写	读/写	14.见		田处
0x00	I_FAST_RMS	R	W	24	0x000000	电流快速有效值,无符号

按照周波或者半周波刷新 24 位无符号快速有效值寄存器,取 FAST_RMS 寄存器的 Bit[23:9]与漏电/过流阀值 FAST_RMS_CTRL [14:0]比较,若大于等于设置的阀值,则漏电/过流报警输出指示管脚输出高电平。

漏电/过流报警输出指示引脚为 CF, 需先设置 MODE[12]=1, 再设置 TPS_CTRL[14]=1。

0x18	MODE	工作模式寄存器			
No.	name	default value		description	
12	CF_UNABLE	0ь0	CF 管脚输出选择	0: 电能脉冲 MODE[11]配置有效 1: 测温/漏电报警 TPS[14]配置有效	

0x1E	TPS_CTRL	温度模式控制寄存器				
No.	name	default value		description		
				0: 温度报警开启		
14	ALERT_CTRL	0b0	报警开关	1: 过流/漏电报警开启		

由于快速有效值是周波或半周波更新的,所以中断响应时间最长为2个周波或2个半周波。

2.9 相角计算

BL0940 可用于相角测量,电流分别与电压的相间角 CORNER 指示无功象限。计算通过电流和电压的正向过零时间差得到,电流正向过零时更新到寄存器 CORNER,寄存器是 16 位无符号数。

图 9

地址	夕 45	外部	内部	冶金	₩4.71.7字	描述	
꼬만게	名称	读/写	读/写	位宽	默认值		
0x0C	CORNER	R	W	16	0x0000	电流电压波形相角寄存器	

图 10

相角换算公式: $2*pi*CORNER*\frac{f_c}{f_0}$ 单位是弧度

其中, f_c 是交流信号源的测量频率,默认是 50Hz, f_0 是采样频率,典型值是 1MHz

2.10 过零检测

BL0940 提供电压过零检测,由引脚 ZX 直接输出过零信号,ZX 为零表示波形正半周,ZX 为 1 表示波形负半周。与实际输入信号的时延 570us 。

图 11

2.11 温度计量

BL0940 提供内部测温和片外测温。

外部测温时,可选输出报警指示,当报警功能打开,CF管脚选择输出报警信号,当TPS2大于等于报警阀值时,CF管脚输出高电平,温度指示报警。当温度值低于报警值或者关闭报警功能时退出报警指示。

0x1B	TPS_CTRL		温度模式控制寄存器	
No.	name	default value	description	on
			[15] 测温开关, 默认 0b0, 开	0: 开启
			启测温	1: 关闭
				0: 温度报警开启
			[14] 报警开关,默认 0b0,	1: 电流通道过流/
				漏电报警开启
				00: 自动测温
			[13:12]测温选择, 默认 0b00	01: 同 00
0x1B	TPS_CTRL	0x07FF	自动测温	10: 内部测温
				11: 外部测温
				00: 50ms
			[11:10]测温时间间隔选择,	01: 100ms
			默认 0b01 100ms	10: 200ms
				11: 400ms
			[9:0] 外部测温报警阀值设	
			置,默认设置 0x3FF	

先设置 MODE[12]=1,再设置 TPS_CTRL[14]=0,可开启 CF 管脚输出外部温度报警指示。

0x18	MODE		工作模式寄存器				
No.	name	default value	default value description				
12	CF_UNABLE	0ь0	CF 管脚输出选择	0: 电能脉冲 MODE[11]配置有效 1: 测温报警 TPS[14]配置有效			

外部和内部测温读数分别存于 TPS1 和 TPS2 两个寄存器中。

地址	名称	外部	内部	位宽	默认值	描述
프네	有你	读/写	读/写	11. Ju	拟八旦	抽处
0x0E	TPS1	R	W	10	0x0000	内部温度值寄存器,无符号
0x0F	TPS2	R	W	10	0x0000	外部温度值寄存器,无符号

内部测温公式: Tx=(170/448)(TB/2-32)-45

TB 是 TPS1 寄存器值。

外部测试温度采用 SAR ADC,就是 VT 管脚最大输入信号为 VDD/2(V),TPS2 寄存器为对应的 D 采样值,满刻度 1024,

地址	名称	外部	内部	位宽	默认值	描述
地址	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	读/写	读/写	江见	쳈以阻	1世/2
0x1C	TPS2_A	R/W	R	8	0x00	外部温度传感器增益系数 A 校正寄存器
0x1D	TPS2_B	R/W	R	8	0x00	外部温度传感器偏置系数 B 校正寄存器

3 通讯接口

寄存器数据均按3字节(24bit)发送,不足3字节的寄存器数据,未使用位补0,凑足3字节发送。

3.1 **SPI**

- 通过管脚 UART SEL 选择,与 UART 复用
- 从模式
- 半双工通讯,通讯率可配,最大通讯速率 900khz
- 8-bit 数据传输, MSB 在前, LSB 在后
- 固定一种时钟极性/相位(CPOL=0, CPHA=1)

3.1.1 工作模式

主设备工作在 Mode1: CPOL=0, CPHA=1,即空闲态时,SCLK 处于低电平,数据发送是在第 1 个边沿,也就是 SCLK 由低电平到高电平的跳变,所以数据采样是在下降沿,数据发送是在上升沿。

图 12

帧结构 3.1.2

在通信模式下, 先发送 8bit 识别字节(0x58) 或(0xA8), (0x58)是读操作识别字节, (0xA8)是写操作 识别字节,然后再发送寄存器地址字节,决定访问寄存器的地址(请参见 BL0940 寄存器列表)。下图 分别示出读出和写入操作的数据传送顺序。一帧数据传送完成, BL0940 重新进入通信模式。每次读/ 写操作所需的 SCLK 的脉冲个数均为 48 位。

帧结构有两种,分别说明如下:

1) 写操作帧

写操作帧	0xA8	ADDR[7:0]	DATA_H[7:0]	DATA_M[7:0]	DATA_L[7:0]	CHECKSUM[7:0]
------	------	-----------	-------------	-------------	-------------	---------------

其中校验和字节 CHECKSUM 为((0xA8 + ADDR + DATA H + DATA M + DATA L)& 0xFF)再按位取反。

2) 读操作帧

	0x58	ADDR[7:0]					
返回数据			DATA H[7:0]	DATA M[7:0]	DATA [[7:0]	CHECKSUM[7.0]	

返回数据

)+ A A ++

	DHIM_H[1.0]	DMIM_M[1.0]	DMIN_L[1.0]	CHECKSOM[1.0]
•				

其中校验和字节 CHECKSUM=((0x58 + ADDR + DATA_H + DATA_M+ DATA_L) & 0xFF) 再按位取反。 注意:数据为固定3字节(高字节在前,低字节在后,数据有效字节不足3字节的,无效位补0)

写入操作时序 3.1.3

串行写入顺序按下述方式进行。帧识别字节{0xA8},表示数据通信操作为写入数据。ADDR为需要 写入数据的寄存器地址, MCU 将需要写入 BL0940 的数据位在 SCLK 的下沿之前准备好, 在 SCLK 的该时 钟的下沿开始移入寄存器数据。寄存器数据的所有其余位也在该 SCLK 的下沿进行左移移位操作 (图 13)。

图 13

3.1.4 读出操作时序

在对 BL0940 进行数据读出操作期间,在 SCLK 的上升沿,BL0940 将相应的数据位移出到 SDO 逻辑输出管脚,在接下来的 SCLK 为 1 的时间内,SDO 数值保持不变,即在下一个下降沿时,外部设备可以对 SDO 值进行采样。在进行数据读出操作时 MCU 必须先发送读命令帧。

图 14

当 BL0940 处于通信模式时,帧识别字节{0x58},表示数据通信操作为读出数据。然后紧跟的字节 ADDR 是待读出目标寄存器的地址。BL0940 接收完寄存器地址后在 SCLK 的上升沿开始移出寄存器中的 数据(图 14)。寄存器数据的所有其余位在随后的 SCLK 上升沿被移出。因此,在下降沿,外部设备可以对 SPI 的输出数据进行采样操作。一旦读出操作结束,串行接口便重新进入通信模式。这时,SDO 输出在最后一个 SCLK 信号的下降沿进入高阻状态。

3.1.5 SPI 接口的容错机制

SPI 接口的软复位功能,通过 SPI 接口下发 6 个字节的 0xFF,可单独对 SPI 接口进行复位。

3.2 UART

3.2.1 概述

BL0940 可采用 UART 通信方式。UART 接口仅需两个低速光耦,就能实现隔离通信。

固定波特率 4800bps, N, 8, 1.5, 工作在从模式, 半双工通信。

3.2.2 描述

UART 端口设置: 通信波特率为 4800bps, 无校验, 停止位 1.5;

3.2.3 每个字节格式

起始位低电平持续时间 t1=208us;

有效数据位时间持续 t2=208*8=1664us

停止位高电平持续时间 t3=208us+104us

3.2.4 写入时序

主机 UART 写数据时序如下图所示,主机先发送命令字节(0xA8),然后发送需要写入数据的寄存器字节(ADDR),接下来依次发送数据字节(低字节在前,高字节在后,数据有效字节不足 3 字节的,无效位补 0),最后校验和字节。

(0xA8)为写操作的帧识别字节, ADDR 为写操作对应的 BL0940 的内部寄存器地址。

CHECKSUM 字节为((0xA8+ADDR+Data_L+Data_M+Data_H)& 0xFF)再按位取反。

3.2.5 读取时序

主机 UART 读数据时序如下图所示,主机先发送命令字节(0x58),然后发送需要读取的寄存器地址字节(ADDR),接下来 BL0940 依次发送数据字节(低字节在前,高字节在后,数据有效字节不足 3字节的,无效位补 0),最后校验和字节。

(0x58)为读操作的帧识别字节, ADDR 为读操作对应的 BL0940 的内部寄存器地址。

CHECKSUM 字节为((0x58+ADDR+Data_L+Data_M+Data_H)& 0xFF)再按位取反。时序说明:

	说明	Min	Туре	Max	Unit
t1	MCU 发送字节间的间隔时间	0		20	mS
t2	读操作时 MCU 发送寄存器地址结束到 BL0940 发送字节的间隔时间		72		uS
t3	帧间隔时间	0.5			uS
t4	BL0940 发送字节之间的间隔时间		116		uS

3.2.6数据包发送模式

通过命令"(0x58) + 0xAA", BL0940 会返回一个全电参数数据包。返回的数据包共 35 个字节,4800bps 用时 77ms。具体格式为:包头(1byte head)→电流快速有效值(3byte I_FAST_RMS)→电流有效值(3byte I_RMS)→保留(3byte)→电压有效值(3byte V_RMS)→保留(3byte)→功率值(3byte WATT)→保留(3byte)→脉冲计数值(3byte CF_CNT)→保留(3byte)→内部温度计量值(2byte TPS1 + 1byte 0)→外部温度传感器测量值(2byte TPS2 + 1byte 0)→校验和值(1byte CHECKSUM)。

全电参数包格式:

名称	字节序 号	内容	名称	字节序 号	内容
包头	0	Head (0x55)		19	保留
	1	I_FAST_RMS_I	保留	20	保留
I_FAST_RMS	2	I_FAST_RMS_m		21	保留
	3	I_FAST_RMS_h		22	CF_CNT_I
	4	I_RMS_l	CFA_CNT	23	CF_CNT_m
I_RMS	5	I_RMS_m		24	CF_CNT_h
	6	I_RMS_h		25	保留
	7	保留	保留	26	保留
保留	8	保留		27	保留
	9	保留		28	TPS1_l
	10	V_RMS_l	TPS1	29	TPS1_m
V_RMS	11	V_RMS_m		30	0x00
	12	V_RMS_h		31	TPS2_I
	13	保留	TPS2	32	TPS2_m
保留	14	保留		33	0x00
	15	保留	checksum	34	checksum
	16	WATT_I			
WATT	17	WATT_m			
	18	WATT_h			

checksum= ((0x58 + 0x55 + data1 I + data1 m + data1 h +......) & 0xff) 再按位取反

3.2.7 UART 接口的保护机制

BL0940 的 UART 通信提供超时保护机制,如果字节与字节之间的间隔时间超过 18.5mS,则 UART 接口自动复位。

如果帧识别字节错误或 CHECKSUM 字节错误,则该帧数据放弃。

UART 模块复位: RX 管脚低电平超过 6.65mS 后拉高, UART 模块复位。

4 封装

湿敏等级 MSL 3 质保期 两年 包装方式 TSSOP14编带包装 最小包装 3000

SYMBOL	MILLIMETER					
STMBOL	MIN	NOM	MAX			
A	_	_	1.20			
A1	0.05	_	0.15			
A2	0.90	1.00	1.05			
A3	0.39	0.44	0.49			
b	0.20	_	0.28			
b1	0.19	0.22	0.25			
c	0.13	_	0.17			
c1	0.12	0.13	0.14			
D	4.90	5.00	5.10			
E1	4.30	4.40	4.50			
E	6.20	6.40	6.60			
e	-	0.65BSC	1			
L	0.45	0.60	0.75			
L1	1.00BSC					
θ	0	_	8°			

共同尺寸

外观	尺寸(mm)
Е	1.75 ± 0.1
F	5.5 \pm 0.1
P2	2.0 ± 0.05
D	$1.5^{+0.1}_{0}$
D1	$1.5^{+0.1}_{0}$
P0	4.0 ± 0.1
R	0.5TYP
10P0	40.0 ± 0.20

口袋尺寸

W	12.0 ± 0.1
Р	8.0 ± 0.1
AO	6.8 ± 0.1
В0	5. 4 ± 0.1
KO	1.3 ± 0.1
t	0.3 ± 0.05
K1	1.7 ± 0.1
A1	3.8 ± 0.2
A2	4.4 ± 0.2
θ	3° TYP