ELECTRÓNICA ANALÓGICA. 2º CURSO ING. TELECOMUNICACIÓN EXAMEN PARCIAL. JUNIO 2005

- 1. En el circuito de la figura, $|V_t| = 1 \text{ V}$, k'W/L = 1 mA/V, $\beta(\delta h_{fe}) = 100$, $V_{BE} = 0.7 \text{ V}$ en activa y la magnitud de la tensión Early para todos los transistores mostrados es 100 V. La señal de la fuente V_s es una sinusoidal pura sin componente de continua.
 - a. Calcule el voltaje de continua de la salida y en la base de Q₃.
 - b. Identifique el amplificador básico, indicando las etapas que lo forman y la red de realimentación. Indique el tipo de realimentación.
 - c. Calcule la ganancia del amplificador básico con los efectos de carga de la red de realimentación, A; el factor de realimentación β ; la ganancia del amplificador realimentado A_f ; la resistencia de entrada del amplificador realimentado R_{if} ; y su resistencia de salida R_{of}
 - d. Identifique la clase de la etapa de salida. Si en la salida se tiene una señal V_o =8 sen ω t V, calcule la potencia disipada en la carga, P_L y la eficiencia de potencia η .

- 2. Se desea un filtro paso bajo Butterworth con ganancia unidad que presente una atenuación máxima del 1 % a 100 Hz y una atenuación mínima del 90 % a 450 Hz.
 - a. Calcule el orden del filtro y la frecuencia de corte.
 - b. Diseñe el circuito con la topología de Sallen y Key.
- 3. Para el circuito de la figura halle la ganancia de lazo $L(s) = A\beta(s) = A\ V^{+}(s)/V_{o}(s)$, $L(j\omega)$, la frecuencia para fase nula de la ganancia de lazo y R_{2}/R_{1} para oscilación. Diseñe el circuito para una frecuencia de oscilación de 1 kHz.

