Compressed sensing

Anastasiia Storozhenko

May 15, 2025

Outline:

- 1. Introducing the problem
- 2. Minimal number of measurements for 0-norm?
- 3. From 0-norm to 1-norm + questions to answer
- 4. When l_1 -minimization solves the l_0 -minimization problem (null space property)
- 5. Number of measurements with log + my plots
- 6. Phase transition + my plots
- 7. Conclusion

1 Introduction

We want to recover the sparse vector $\mathbf{x} \in \mathbb{K}^N$ knowing the vector of m measurements $\mathbf{y} \in \mathbb{K}^m$ and the measurement matrix $\mathbf{A} \in M_{m \times N}(\mathbb{K})$ with m < N.

Applications

2 Studying the l_0 -minimization

We are looking for the sparsest solution of the underdetermined system of equations $\mathbf{A}\mathbf{x} = \mathbf{y}$. One way to approach this is to solve the corresponding l_0 -minimization problem.

Definition 2.1 The support of a vector $\mathbf{x} \in \mathbb{K}^N$ is the set of indices of its nonzero entries:

$$supp(\mathbf{x}) = \{ j \in [1, N] \mid x_j \neq 0 \}.$$

Definition 2.2 We define $\|\mathbf{x}\|_0$ as the cardinality of supp(\mathbf{x}). We say that the vector \mathbf{x} is s-sparse if $\|\mathbf{x}\|_0 \leq s$.

Note that $\|\cdot\|_0$ is not an actual norm, nor is it a semi-norm. Now we can formalize the problem in the following form:

minimize
$$||x||_0$$
 subject to $\mathbf{A}\mathbf{x} = \mathbf{y}$. (1)

Definition 2.3 s-sparse

Minimal number of measurements (2s)

NP-hardness

3 Convex alternatives

 $\left\|\cdot\right\|_p$: (preferably with pictures of unit balls)

- 0 : non-convex, NP, bad
- p > 1: convex, but doesn't solve the problem in general
- p = 1: convex, solves the problem, good

basis pursuit:

minimize
$$||x||_1$$
 subject to $\mathbf{A}\mathbf{x} = \mathbf{y}$ (2)

Other algorithms from chapter 3?

4 Studying the l_1 -minimization

When does it solve the problem $2? \rightarrow \text{chapter } 4$

Definition 4.1 Null-space property

Stability and robustness?

5 Number of measurements for l_1 -minimization

Proposition 3.10 from The Convex Geometry of Linear Inverse Problems. My plots

6 Transition phase

Leaving on the Edge paper