Отчет по Лабораторной работе №4

Шапошникова Айталина НПИбд-02-18¹

3 March, 2021 Moscow, Russian Federation

¹RUDN University, Moscow, Russian Federation

Цель работы

Изучить модель гармонических колебаний, а также построить фазовый портрет для трех случав.

Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев

- 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы $\ddot{x}+7x=0$
- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы $\ddot{x}+2\dot{x}+6x=0$
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы $\ddot{x}+5\dot{x}+x=|\cos(3t)|$

На интервале от 0 до 25 (шаг 0.05) с начальными условиями $x_0=-1$, $y_0=-1$

Выполнение лабораторной работы

Постановка задачи

Уравнение свободных колебаний гармонического осциллятора имеет следующий вид: $\ddot{x}+2\gamma\dot{x}+\omega_0^2x=0$,

где x – переменная, описывающая состояние системы (смещение грузика, заряд конденсатора и т.д.), γ – параметр, характеризующий потери энергии (трение в механической системе, сопротивление в контуре), ω – собственная частота колебаний, t – время.

Обозначим начальные условия: $x_0=-1$, $y_0=-1$. Интервал на котором будет решаться задача: от 0 до 25 (шаг 0.05). ω – собственная частота колебаний: 7, 6, 1. γ – параметр, характеризующий потери энергии: 0, 2, 5.

Построение модели

На языке Python написали программу для численного решения задачи, используя шаблон из методических материалов. Туда включаем:

- 1. Начальные условия
- 2. Правую часть уравнения f(t)
- 3. Вектор начальных условий x(t0) = x0
- 4. Интервал на котором будет решаться задача
- Преображение уравнение второго порядка в уравнение первого порядка
- 6. Решение дифференциального уравнения
- 7. Построение фазового портрета

Фазовый портрет

Figure 1: Колебания гармонического осциллятора без затуханий и без действий внешней силы

Фазовый портрет

Figure 2: Колебания гармонического осциллятора с затуханием и без действий внешней силы

Figure 3: Колебания гармонического осциллятора с затуханием и под действием внешней силы

Вывод

После выполнения Лабораторной работы №4 мы изучили модель гармонических колебаний, а также построить фазовый портрет для трех случав.

