Exercices avec corrigé succinct du chapitre 3

(Remarque: les références ne sont pas gérées dans ce document, par contre les quelques?? qui apparaissent dans ce texte sont bien définis dans la version écran complète du chapitre 3)

Exercice III.1

- 1. Ecrire le problème de la régression linéaire comme un problème de moindres carrés : plus précisément on se donne une famille de points $(t_i,b_i)_{1\leq i\leq m}$ (les t_i étant distincts) et on cherche à faire passer une droite le plus près possible de ces points.
- 2. La question précédente conduit à une fonction de deux variables à minimiser. On admet que ce minimum est donné en annulant les deux dérivées partielles. Donner le système linéaire de deux équations à deux inconnues ainsi obtenu.

Solution:

1. Soit $y = \alpha + \beta t$, l'équation de la droite considérée. Le problème de régression linéaire s'écrit

$$\min_{(\alpha,\beta)\in\mathbb{R}^2} E(\alpha,\beta)$$

οù

$$E(\alpha,\beta) = \sum_{i=1}^{m} (\alpha + \beta t_i - b_i)^2.$$

La solution (α^*, β^*) donne les coefficients de la droite solution du problème de régression linéaire et elle vérifie

$$E(\alpha^*, \beta^*) = \min_{(\alpha, \beta) \in \mathbb{R}^2} E(\alpha, \beta).$$

2. Calculons les deux dérivées partielles

$$\begin{cases} \frac{\partial E}{\partial \alpha}(\alpha, \beta) = \sum_{i=1}^{m} 2(\alpha + \beta t_i - b_i) \\ \frac{\partial E}{\partial \beta}(\alpha, \beta) = \sum_{i=1}^{m} 2(\alpha + \beta t_i - b_i) t_i \end{cases}$$

La solution (α^*, β^*) du problème de régression linéaire est donc donnée par la solution des deux équations linéaires obtenues en regroupant les termes

$$\begin{cases} \alpha^* m + \beta^* \sum_{i=1}^m t_i = \sum_{i=1}^m b_i \\ \alpha^* \sum_{i=1}^m t_i + \beta^* \sum_{i=1}^m t_i^2 = \sum_{i=1}^m b_i t_i \end{cases}$$

Exercice III.2

On cherche à approcher les données $(t_i,b_i)_{1 \leq i \leq m}$ (les t_i étant distincts) à l'aide d'un polynôme de degré inférieur ou égal à n-1, on suppose $m \geq n$, on note

$$p(t) = \alpha_1 + \alpha_2 t + \ldots + \alpha_n t^{n-1}$$

et on cherche les coefficients $\alpha_1, \alpha_2, ..., \alpha_n$ qui minimisent

$$E(\alpha_1, \alpha_2, ..., \alpha_n) = \sum_{i=1}^{m} (p(t_i) - b_i)^2.$$

Ecrire le problème de moindres carrés sous forme matricielle. Montrer alors que la matrice A est bien de rang n. (On rappelle que la matrice carrée de Van der Monde V, $v_{ij} = t_i^{j-1}$, est inversible si tous les t_i sont distincts).

Solution: Soit

$$p(t) = \alpha_1 + \alpha_2 t + \ldots + \alpha_n t^{n-1}$$

un polynôme de degré n-1. Pour que ce polynôme approche les données $(t_i,b_i)_{i=1,...,m}$ le plus près possible, il doit minimiser la quantité suivante

$$E(\alpha_1, \alpha_2, \dots, \alpha_n) = \sum_{i=1}^m (p(t_i) - b_i)^2 = ||Ax - b||^2.$$

En effet on peut écrire

$$\begin{pmatrix} p(t_1) - b_1 \\ p(t_2) - b_2 \\ \dots \\ p(t_m) - b_m \end{pmatrix} = \begin{pmatrix} \alpha_1 + \alpha_2 t_1 + \dots + \alpha_n t_1^{n-1} - b_1 \\ \alpha_1 + \alpha_2 t_2 + \dots + \alpha_n t_2^{n-1} - b_2 \\ \dots \\ \alpha_1 + \alpha_2 t_m + \dots + \alpha_n t_m^{n-1} - b_m \end{pmatrix} = A \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_n \end{pmatrix} - \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix} = Ax - b,$$

où les matrices A et x sont définies par :

$$A = \begin{pmatrix} 1 & t_1 & \dots & t_1^{n-1} \\ 1 & t_2 & \dots & t_2^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & t_m & \dots & t_m^{n-1} \end{pmatrix}, x = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}.$$

Dans les données, les points t_i sont tous distincts, ce qui implique que la matrice V, constituée des n premières lignes de A est inversible, d'où la matrice A est de rang n.

Exercice III.3

Donner les équations normales du problème de moindres carrés associé à la régression linéaire. Montrer que l'on retrouve les équations de l'exercice ??.

Solution : La matrice A du problème de régression linéaire s'écrit (voir la correction de l'exercice ??):

$$A = \begin{pmatrix} 1 & t_1 \\ 1 & t_2 \\ \dots & \dots \\ 1 & t_m \end{pmatrix}.$$

Les équations normales sont

$$A^T A \hat{x} = A^T b$$

ce qui donne en effectuant les produits matriciels

$$\begin{pmatrix} m & \sum_{i=1}^m t_i \\ \sum_{i=1}^m t_i & \sum_{i=1}^m t_i^2 \end{pmatrix} \hat{x} = \begin{pmatrix} \sum_{i=1}^m b_i \\ \sum_{i=1}^m t_i b_i \end{pmatrix}.$$

On retrouve bien ainsi le système de deux équations à deux inconnues de l'exercice ??.

Exercice III.4

Soit $b \in \mathbb{R}^n$, montrer que

$$b^T z = 0, \forall z \in \mathbb{R}^n \iff b = 0.$$

Solution : L'implication \Leftarrow est évidente puisque l'on multiplie 0 par le vecteur z.

Supposons maintenant que

$$b^T z = 0, \forall z \in \mathbb{R}^n,$$

alors cette égalité étant vraie pour tout z l'est en particulier pour z = b, ce qui donne

$$b^T b = ||b||^2 = 0.$$

Or la norme d'un vecteur est nulle si et seulement si ce vecteur est nul, ce qui donne

$$b = 0$$
.

Exercice III.5

Ecrire l'algorithme de l'orthogononalisation de Schmidt, donnée dans le document ??.

Solution: Cet algorithme est très simple et suppose connues des fonctions telles que norme, produit scalaire . . . ce qui est le cas de Scilab.

1:
$$E_1 = B_1/\|B_1\|$$

2: **pour** $k = 2, \ldots, n$ **faire**

3:
$$\widetilde{E}_k = B_k - \sum_{j=1}^{k-1} \langle B_k, E_j \rangle E_j$$

4:
$$E_k = \widetilde{E}_k / \|\widetilde{E}_k\|$$

5: fin pour

Exercice III.6

Soit $E \in \mathcal{M}_{mn}$, une matrice dont les colonnes sont des vecteurs orthonormés de \mathbb{R}^n , montrer que $E^T E = I$

Solution: On a donc

$$\langle E_i, E_i \rangle = 1, \langle E_i, E_j \rangle = 0 \text{ pour } i \neq j,$$

ou ce qui est équivalent

$$E_i^T E_i = 1, E_i^T E_j = 0$$
 pour $i \neq j$.

Les termes de la matrice (carrée) $C = E^T E$ sont donc

$$c_{ii} = E_i^T E_i = 1, \ c_{ij} = E_i^T E_j = 0 \text{ pour } i \neq j,$$

C est donc la matrice identité.

Exercice III.7

On applique l'orthogonalisation de Schmidt (voir le document ??), sur les n colonnes $A_1, A_2, ..., A_n$ d'une matrice $A \in \mathcal{M}_{m,n}$ de rang n $(m \geq n)$, on obtient les vecteurs $E_1, E_2, ..., E_n$ qui seront les colonnes d'une matrice E.

1. Montrer que les colonnes A_k de A peuvent s'écrire

$$A_k = \sum_{j=1}^k \alpha_{jk} E_j$$

sans expliciter les scalaires α_{jk} .

2. En déduire que A = ET, où T est une matrice triangulaire supérieure inversible.

Solution:

1. Reprenons l'algorithme d'orthogonalisation de Schmidt, alors

$$E_1 = A_1/||A_1|| \Rightarrow A_1 = \alpha_{11}E_1,$$

puis

$$\widetilde{E}_2 = A_2 - \langle A_1, E_1 \rangle E_1 \text{ et } E_2 = \widetilde{E}_2 / \|\widetilde{E}_2\| \Rightarrow A_2 = \langle A_1, E_1 \rangle E_1 + \|\widetilde{E}_2\| E_2,$$

ce qui donne

$$A_2 = \alpha_{12} E_1 + \alpha_{22} E_2.$$

De manière générale

$$\widetilde{E}_k = A_k - \sum_{j=1}^{k-1} \langle A_k, E_j \rangle E_j \text{ et } E_k = \widetilde{E}_k / \|\widetilde{E}_k\| \quad \Rightarrow \quad A_k = \sum_{j=1}^{k-1} \langle A_k, E_j \rangle E_j + \|\widetilde{E}_k\| E_k,$$

ce qui donne

$$A_k = \sum_{j=1}^k \alpha_{jk} E_j.$$

2. Considérons le produit C = ET de deux matrices, $E \in \mathcal{M}_{m,n}$ et $T \in \mathcal{M}_{n,n}$, alors

$$c_{ik} = \sum_{j=1}^{n} e_{ij} t_{jk}.$$

On peut aussi considérer c_{ik} comme le ième élément de la kième colonne de C. Alors cette colonne est donnée par

$$C_k = ET_k = \sum_{j=1}^n t_{jk} E_j.$$

Si l'on compare avec le résultat de la question précédente:

$$A_k = \sum_{j=1}^k \alpha_{jk} E_j,$$

on voit que $t_{jk} = \alpha_{jk}$ pour j = 1, ..., k et que $t_{jk} = 0$ pour j = k+1, ..., n, ce qui correspond à une matrice triangulaires supérieure

$$T = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ 0 & \alpha_{22} & \dots & \alpha_{2n} \\ 0 & \dots & \vdots & \dots & 0 \\ 0 & \dots & \dots & \alpha_{nn} \end{pmatrix}$$

La matrice T est inversible car $\alpha_{ii} = \|\widetilde{E}_i\|$.

Exercice III.8

- 1. Montrer que si Q est une matrice orthogonale, alors Q^T est orthogonale.
- 2. Montrer que si Q est orthogonale, alors ||Qy|| = ||y|| pour tout vecteur y de \mathbb{R}^n .

Solution:

1. On a

$$Q$$
 orthogonale $\Leftrightarrow Q^{-1} = Q^T \Leftrightarrow (Q^T)^{-1} = Q \Leftrightarrow Q^T$ orthogonale.

2. On va démontrer le résultat pour le carré de l'expression, ce qui est équivalent pour des réels positifs. Dans ces équivalences, on utilise le fait que $Q^TQ = I$.

$$||Qy||^2 = (Qy)^T Qy = y^T Q^T Qy = y^T y = ||y||^2$$

Exercice III.9

On veut effectuer une régression linéaire sur les points suivants: (-1,0.5), (0.5,1), (2,2.5). Appliquer la méthode "QR" pour résoudre ce problème et utiliser SCILAB, en particulier la procédure "qr", pour faire les calculs.

Solution : La matrice A et le vecteur b correspondants à ce problème sont

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 0.5 \\ 1 & 2 \end{pmatrix} , b = \begin{pmatrix} 0.5 \\ 1 \\ 2.5 \end{pmatrix} .$$

Les étapes du calcul sont alors les suivantes:

- calcul de la décomposition QR par "qr" ce qui donne A=QR, où $R=\left(\begin{array}{c}\widetilde{R}\\0\end{array}\right)$,
- calcul de $Q^T b = \begin{pmatrix} c \\ d \end{pmatrix}$,
- résolution de $\widetilde{R}x = c$, ce qui donne $x = \begin{pmatrix} 1 \\ 0.666667 \end{pmatrix}$
- calcul de l'erreur $||d||^2 = 0.1666667$.

Exercice III.10

Soit A une matrice $m \times n$ de rang $n \leq m$. Soient Q une matrice orthogonale et \widetilde{R} une matrice carrée triangulaire supérieure telles que $A = Q \begin{pmatrix} \widetilde{R} \\ 0 \end{pmatrix}$.

Montrer que, si χ_2 désigne le conditionnement calculé à partir de la norme matricielle subordonnée à la norme 2,

$$\chi_2(\widetilde{R}) = \sqrt{\chi_2(A^T A)}.$$

Solution : Revoyez le lien entre la norme $\|.\|_2$ et le rayon spectral vu au chapitre 2.

$$(\chi_2(\widetilde{R}))^2 = \|\widetilde{R}\|_2^2 \|\widetilde{R}^{-1}\|_2^2 = \rho(\widetilde{R}^T \widetilde{R}) \rho((\widetilde{R}^{-1})^T \widetilde{R}^{-1}).$$

On remarque que $A^TA=R^TQ^TQR=R^TR=\widetilde{R}^T\widetilde{R}$ donc

$$\chi_2(A^T A) = \chi_2(\widetilde{R}^T \widetilde{R}) = \|\widetilde{R}^T \widetilde{R}\|_2 \|\|(\widetilde{R}^T \widetilde{R})^{-1}\|_2,$$

or $\widetilde{R}^T\widetilde{R}$ et son inverse sont des matrices symétriques, toujours dans le chapitre 2, on a montré

$$||R^T R||_2 = \rho(R^T R),$$

on a donc également

$$\|(\widetilde{R}^T \widetilde{R})^{-1}\|_2 = \rho((\widetilde{R}^T \widetilde{R})^{-1}) = \rho(\widetilde{R}^{-1} (\widetilde{R}^T)^{-1}) = \rho((\widetilde{R}^T)^{-1} \widetilde{R}^{-1})$$

On a utilisé le résultat montré dans le chapitre $2: \rho(AB) = \rho(BA)$ on sait d'autre part que $(\widetilde{R}^T)^{-1} = (\widetilde{R}^{-1})^T$, ce qui permet de terminer la démonstration.

Ce résultat est important car dans le cas des équations normales on est conduit à résoudre un système dont la matrice est A^TA , dans le cas de la factorisation QR on est amené à résoudre un système dont la matrice est \widetilde{R} , comme vous le savez le conditionnement est toujours supérieur à 1 donc la matrice \widetilde{R} a un conditionnement plus faible que la matrice A^TA , ce qui est intéressant numériquement.