SEQUENCE LISTING

400

والمتعالج المنافية والمتعاد

(1) ENERAL COFORMATION:

(i) APPLICANT: Reyes, Gregory R
Yarbough, Patrice O
Bradley, Daniel W
Krawczynski, Krzysztof Z

Tam, Albert Fry, Kirk E

- (ii) TITLE OF INVENTION: DNA Sequences of Enterically Transmitted Non-A/Non-B Hepatitis Viral Agent
- (iii) NUMBER OF SEQUENCES: 20
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Dehlinger & Associates
 - (B) STREET: 350 Cambridge Avenue, Suite 250
 - (C) CITY: Palo Alto
 - (D) STATE: CA
 - (E) COUNTRY: USA
 - (F) ZIP: 94306
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 09/128,275
 - (B) FILING DATE: 03-AUG-1998
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/279,823
 - (B) FILING DATE: 25-JUL-1994
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/681,078
 - (B) FILING DATE: 05-APR-1991
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/505,888
 - (B) FILING DATE: 05-APR-1990
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/420,921
 - (B) FILING DATE: 13-OCT-1989
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/367,486
 - (B) FILING DATE: 16-JUN-1989
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/336,672
 - (B) FILING DATE: 11-APR-1989
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/208,997
 - (B) FILING DATE: 17-JUN-1988

(viii)) ATTORNEY/AGENT INFORMATION: (A) NAME: Petithory, Joanne R. (B) REGISTRATION NUMBER: 42,995 (C) REFERENCE/DOCKET NUMBER: 4600-0183.24	
(ix)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (650) 324-0880 (B) TELEFAX: (650) 324-0960	
(2) INFO	ORMATION FOR SEQ ID NO:1:	-
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 1295 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
· (ii)	MOLECULE TYPE: DNA	
(iii)	HYPOTHETICAL: NO	
(iv)	ANTI-SENSE: NO	
(vi)	ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: 1.33 kb EcoRI insert of ET1.1, forward sequence	
(ix)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 11293	
(ix)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 21294	
(ix)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 31295	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:1:	
AGACCTGT	CC CTGTTGCAGC TGTTCTACCA CCCTGCCCCG AGCTCGAACA GGGCCTTCTC	60
TACCTGCC	CC AGGAGCTCAC CACCTGTGAT AGTGTCGTAA CATTTGAATT AACAGACATT	120
GTGCACTG	CC GCATGGCCGC CCCGAGCCAG CGCAAGGCCG TGCTGTCCAC ACTCGTGGGC	180
CGCTACGG	CG GTCGCACAAA GCTCTACAAT GCTTCCCACT CTGATGTTCG CGACTCTCTC	240
GCCCGTTT	TA TCCCGGCCAT TGGCCCCGTA CAGGTTACAA CTTGTGAATT GTACGAGCTA	300
GTGGAGGC	CA TGGTCGAGAA GGGCCAGGAT GGCTCCGCCG TCCTTGAGCT TGATCTTTGC	360
AACCGTGA	CG TGTCCAGGAT CACCTTCTTC CAGAAAGATT GTAACAAGTT CACCACAGGT	420

480

540

600

GAGACCATTG CCCATGGTAA AGTGGGCCAG GGCATCTCGG CCTGGAGCAA GACCTTCTGC

GCCCTCTTG GCCCTTGGTT CCGCGCTATT GAGAAGGCTA TTCTGGCCCT GCTCCCTCAG

GGTGTGTTTT ACGGTGATGC CTTTGATGAC ACCGTCTTCT CGGCGGCTGT GGCCGCAGCA

AAGGCATCCA	TGGTGTTTGA	GAATGACTTT	TCTGAGTTTG	ACTCCACCCA	GAATAACTTT	660
TCTCTGGGTC	TAGAGTGTGC	TATTATGGAG	GAGTGTGGGA	TGCCGCAGTG	GCTCATCCGC	720
CTGTATCACC	TTATAAGGTC	TGCGTGGATC	TTGCAGGCCC	CGAAGGAGTC	TCTGCGAGGG	¹ 78C
TTTTGGAAGA	AACACTCCGG	TGAGCCCGGC	ACTCTTCTAT	GGAATACTGT	CTGGAATATG	· 840
GCCGTTATTA	CCCACTGTTA	TGACTTCCGC	GATTTTCAGG	TGGCTGCCTT	TAAAGGTGAT	900
GATTCGATAG	TGCTTTGCAG	TGAGTATCGT	CAGAGTCCAG	GAGCTGCTGT	CCTGATCGCC	960
GGCTGTGGCT	TGAAGTTGAA	GGTAGATTTC	CGCCCGATCG	GTTTGTATGC	AGGTGTTGTG	1020
GTGGCCCCCG	GCCTTGGCGC	GCTCCCTGAT	GTTGTGCGCT	TCGCCGGCCG	GCTTACCGAG	1080
AAGAATTGGG	GCCCTGGCCC	TGAGCGGGCG	GAGCAGCTCC	GCCTCGCTGT	TAGTGATTTC	1140
CTCCGCAAGC	TCACGAATGT	AGCTCAGATG	TGTGTGGATG	TTGTTTCCCG	TGTTTATGGG	1200
GTTTCCCCTG	GACTCGTTCA	TAACCTGATT	GGCATGCTAC	AGGCTGTTGC	TGATGGCAAG	1260
GCACATTTCA	CTGAGTCAGT	AAAACCAGTG	CTCGA			1295

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 431 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- Arg Pro Val Pro Val Ala Ala Val Leu Pro Pro Cys Pro Glu Leu Glu 1 , 5 10 15
- Gln Gly Leu Tyr Leu Pro Gln Glu Leu Thr Thr Cys Asp Ser Val 20 25 30
- Val Thr Phe Glu Leu Thr Asp Ile Val His Cys Arg Met Ala Ala Pro 35 40 45
- Ser Gln Arg Lys Ala Val Leu Ser Thr Leu Val Gly Arg Tyr Gly Gly 50 55 60
- Arg Thr Lys Leu Tyr Asn Ala Ser His Ser Asp Val Arg Asp Ser Leu 65 70 75 80
- Ala Arg Phe Ile Pro Ala Ile Gly Pro Val Gln Val Thr Thr Cys Glu 85 90 95
- Leu Tyr Glu Leu Val Glu Ala Met Val Glu Lys Gly Gln Asp Gly Ser 100 105 110
- Ala Val Leu Glu Leu Asp Leu Cys Asn Arg Asp Val Ser Arg Ile Thr 115 120 125
- Phe Phe Gln Lys Asp Cys Asn Lys Phe Thr Thr Gly Glu Thr Ile Ala 130 135 140

His Gly Lys Val Gly Gln Gly Ile Ser Ala Trp Ser Lys Thr Phe Cys Ala Leu Phe Gly Pro Trp Phe Arg Ala Ile Glu Lys Ala Ile Leu Ala Leu Leu Pro Gln Gly Val Phe Tyr Gly Asp Ala Phe Asp Asp Thr Val Phe Ser Ala Ala Val Ala Ala Ala Lys Ala Ser Met Val Phe Glu Asn Asp Phe Ser Glu Phe Asp Ser Thr Gln Asn Asn Phe Ser Leu Gly Leu Glu Cys Ala Ile Met Glu Glu Cys Gly Met Pro Gln Trp Leu Ile Arg 235 Leu Tyr His Leu Ile Arg Ser Ala Trp Ile Leu Gln Ala Pro Lys Glu Ser Leu Arg Gly Phe Trp Lys Lys His Ser Gly Glu Pro Gly Thr Leu Leu Trp Asn Thr Val Trp Asn Met Ala Val Ile Thr His Cys Tyr Asp 280 Phe Arg Asp Phe Gln Val Ala Ala Phe Lys Gly Asp Asp Ser Ile Val Leu Cys Ser Glu Tyr Arg Gln Ser Pro Gly Ala Ala Val Leu Ile Ala 310 Gly Cys Gly Leu Lys Leu Lys Val Asp Phe Arg Pro Ile Gly Leu Tyr Ala Gly Val Val Ala Pro Gly Leu Gly Ala Leu Pro Asp Val Val Arg Phe Ala Gly Arg Leu Thr Glu Lys Asn Trp Gly Pro Gly Pro Glu Arg Ala Glu Gln Leu Arg Leu Ala Val Ser Asp Phe Leu Arg Lys Leu Thr Asn Val Ala Gln Met Cys Val Asp Val Val Ser Arg Val Tyr Gly 390 Val Ser Pro Gly Leu Val His Asn Leu Ile Gly Met Leu Gln Ala Val Ala Asp Gly Lys Ala His Phe Thr Glu Ser Val Lys Pro Val Leu

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(ii)	MOLECULE TYPE: DNA	
(iii)	HYPOTHETICAL: NO	
(iv)	ANTI-SENSE: NO	
(vi)	ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: linker - top (5') sequence	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:3:	
GGAATTCG	CG GCCGCTCG	18
(2) INFO	RMATION FOR SEQ ID NO:4:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA	
(iii)	HYPOTHETICAL: NO	
(iv)	ANTI-SENSE: NO	
(vi)	ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: linker - bottom (3') sequence	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:4:	
CGAGCGGCC	CG CGAATTCCTT	20
(2) INFOR	RMATION FOR SEQ ID NO:5:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 1295 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA	
(iii)	HYPOTHETICAL: NO	
(iv)	ANTI-SENSE: NO	
(vi)	ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: 1.33 kb EcoRI insert of ET1.1, reverse sequence	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:5:	
TCGAGCACT	G GTTTTACTGA CTCAGTGAAA TGTGCCTTGC CATCAGCAAC AGCCTGTAGC	60
ATGCCAATC	A GGTTATGAAC GAGTCCAGGG GAAACCCCAT AAACACGGGA AACAACATCC	120

(D) TOPOLOGY: linear

ACACACATCT	GAGCTACATT	CGTGAGCTTG	CGGAGGAAAT	CACTAACAGC	GAGGCGGAGC	180
TGCTCCGCCC	GCTCAGGGCC	AGGGCCCCAA	TTCTTCTCGG	TAAGCCGGCC	GGCGAAGCGC	240
ACAACATCAG	GGAGCGCCC	AAGGCCGGGG	GCCACCACAA	CACCTGCATA	CAAACCGATC	300
GGGCGGÄAAT	CTACCTTCAA	CTTCAAGCCA	CAGCCGGCGA	TCAGGACAGC	AGCTCCTGGA	360
CTCTGACGAT	ACTCACTGCA	AAGCACTATC	GAATCATCAC	CTTTAAAGGC	AGCCACCTGA	420
AAATCGCGGA	AGTCATAACA	GTGGGTAATA	ACGGCCATAT	TCCAGACAGT	ATTCCATAGA	480
AGAGTGCCGG	GCTCACCGGA	GTGTTTCTTC	CAAAACCCTC	GCAGAGACTC	CTTCGGGGCC	540
TGCAAGATCC	ACGCAGACCT	TATAAGGTGA	TACAGGCGGA	TGAGCCACTG	CGGCATCCCA	600
CACTCCTCCA	TAATAGCACA	CTCTAGACCC	AGAGAAAAGT	TATTCTGGGT	GGAGTCAAAC	660
TCAGAAAAGT	CATTCTCAAA	CACCATGGAT	GCCTTTGCTG	CGGCCACAGC	CGCCGAGAAG	720
ACGGTGTCAT	CAAAGGCATC	ACCGTAAAAC	ACACCCTGAG	GGAGCAGGGC	CAGAATAGCC	780
TTCTCAATAG	CGCGGAACCA	AGGGCCAAAG	AGGGCGCAGA	AGGTCTTGCT	CCAGGCCGAG	840
ATGCCCTGGC	CCACTTTACC	ATGGGCAATG	GTCTCACCTG	TGGTGAACTT	GTTACAATCT	900
TTCTGGAAGA	AGGTGATCCT	GGACACGTCA	CGGTTGCAAA	GATCAAGCTC	AAGGACGGCG	960
GAGCCATCCT	GGCCCTTCTC	GACCATGGCC	TCCACTAGCT	CGTACAATTC	ACAAGTTGTA	1020
ACCTGTACGG	GGCCAATGGC	CGGGATAAAA	CGGGCGAGAG	AGTCGCGAAC	ATCAGAGTGG	1080
GAAGCATTGT	AGAGCTTTGT	GCGACCGCCG	TAGCGGCCCA	CGAGTGTGGA	CAGCACGGCC	1140
TTGCGCTGGC	TCGGGGCGGC	CATGCGGCAG	TGCACAATGT	CTGTTAATTC	AAATGTTACG	1200
ACACTATCAC	AGGTGGTGAG	CTCCTGGGGC	AGGTAGAGAA	GGCCCTGTTC	GAGCTCGGGG	1260
CAGGGTGGTA	GAACAGCTGC	AACAGGGACA	GGTCT			1295

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7195 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: HEV Burma strain
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 28..5106

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 5147..7126

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 5106..5474

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

AGGCAGACCA	CATATGTGGT	CGATGCCATG	GAGGCCCATC	AGTTTATTA	GCTCCTGGC	60
ATCACTACTO	CTATTGAGCA	GGCTGCTCTA	GCAGCGGCCA	ACTCTGCCCT	GGCGAATGCT	120
GTGGTAGTTA	GGCCTTTTCI	' CTCTCACCAG	CAGATTGAGA	TCCTCATTAA	CCTAATGCAA	180
CCTCGCCAGC	TTGTTTTCCG	CCCCGAGGTT	TTCTGGAATC	ATCCCATCCA	GCGTGTCATC	240
CATAACGAGO	TGGAGCTTTA	CTGCCGCGCC	CGCTCCGGCC	GCTGTCTTGA	AATTGGCGCC	300
CATCCCCGCT	' CAATAAATGA	TAATCCTAAT	GTGGTCCACC	GCTGCTTCCT	CCGCCCTGTT	360
GGGCGTGATG	TTCAGCGCTG	GTATACTGCT	CCCACTCGCG	GGCCGGCTGC	TAATTGCCGG	420
CGTTCCGCGC	TGCGCGGGCT	TCCCGCTGCT	GACCGCACTT	ACTGCCTCGA	CGGGTTTTCT	480
GGCTGTAACT	TTCCCGCCGA	GACTGGCATC	GCCCTCTACT	CCCTTCATGA	TATGTCACCA	540
TCTGATGTCG	CCGAGGCCAT	GTTCCGCCAT	GGTATGACGC	GGCTCTATGC	CGCCCTCCAT	600
CTTCCGCCTG	AGGTCCTGCT	GCCCCTGGC	ACATATCGCA	CCGCATCGTA	TTTGCTAATT	660
CATGACGGTA	GGCGCGTTGT	GGTGACGTAT	GAGGGTGATA	CTAGTGCTGG	TTACAACCAC	720
GATGTCTCCA	ACTTGCGCTC	CTGGATTAGA	ACCACCAAGG	TTACCGGAGA	CCATCCCCTC	780
GTTATCGAGC	GGGTTAGGGC	CATTGGCTGC	CACTTTGTTC	TCTTGCTCAC	GGCAGCCCCG	840
GAGCCATCAC	CTATGCCTTA	TGTTCCTTAC	CCCCGGTCTA	CCGAGGTCTA	TGTCCGATCG	900
ATCTTCGGCC	CGGGTGGCAC	CCCTTCCTTA	TTCCCAACCT	CATGCTCCAC	TAAGTCGACC	960
TTCCATGCTG	TCCCTGCCCA	TATTTGGGAC	CGTCTTATGC	TGTTCGGGGC	CACCTTGGAT	1020
GACCAAGCCT	TTTGCTGCTC	CCGTTTAATG	ACCTACCTTC	GCGGCATTAG	CTACAAGGTC	1080
ACTGTTGGTA	CCCTTGTGGC	TAATGAAGGC	TGGAATGCCT	CTGAGGACGC	CCTCACAGCT	1140
GTTATCACTG	CCGCCTACCT	TACCATTTGC	CACCAGCGGT	ATCTCCGCAC	CCAGGCTATA	1200
TCCAAGGGGA	TGCGTCGTCT	GGAACGGGAG	CATGCCCAGA	AGTTTATAAC	ACGCCTCTAC	1260
AGCTGGCTCT	TCGAGAAGTC	CGGCCGTGAT	TACATCCCTG	GCCGTCAGTT	GGAGTTCTAC	1320
GCCCAGTGCA	GGCGCTGGCT	CTCCGCCGGC	TTTCATCTTG	ATCCACGGGT	GTTGGTTTTT	1380
GACGAGTCGG	CCCCTGCCA	TTGTAGGACC	GCGATCCGTA	AGGCGCTCTC	AAAGTTTTGC	1440
TGCTTCATGA	AGTGGCTTGG	TCAGGAGTGC	ACCTGCTTCC	TTCAGCCTGC	AGAAGGCGCC	1500
GTCGGCGACC	AGGGTCATGA	TAATGAAGCC	TATGAGGGGT	CCGATGTTGA	CCCTGCTGAG	1560

TCCGCCATTA	GTGACATATC	TGGGTCCTAT	GTCGTCCCTG	GCACTGCCCT	CCAACCGCTC	1620
TACCAGGCCC	TCGATCTCCC	CGCTGAGATT	GTGGCTCGCG	CGGGCCGGCT	GACCGCCACA	1680
GTAAAGGTCT	CCCAGGTCGA	TGGGCGGATC	GATTGCGAGA	CCCTTCTTGG	TAACAAAACC	1740
TTTCGCACGT	CGTTCGTTGA	CGGGGCGGTC	TTAGAGACCA	ATGGCCCAGA	GCGCCACAAT	1800
CTCTCCTTCG	ATGCCAGTCA	GAGCACTATG	GCCGCTGGCC	CTTTCAGTCT	CACCTATGCC	1860
GCCTCTGCAG	CTGGGCTGGA	GGTGCGCTAT	GTTGCTGCCG	GGCTTGACCA	TCGGGCGGTT	1920
TTTGCCCCCG	GTGTTTCACC	CCGGTCAGCC	CCCGGCGAGG	TTACCGCCTT	CTGCTCTGCC	1980
CTATACAGGT	TTAACCGTGA	GGCCCAGCGC	CATTCGCTGA	TCGGTAACTT	ATGGTTCCAT	2040
CCTGAGGGAC	TCATTGGCCT	CTTCGCCCCG	TTTTCGCCCG	GGCATGTTTG	GGAGTCGGCT	2100
AATCCATTCT	GTGGCGAGAG	CACACTTTAC	ACCCGTACTT	GGTCGGAGGT	TGATGCCGTC	2160
TCTAGTCCAG	CCCGGCCTGA	CTTAGGTTTT	ATGTCTGAGC	CTTCTATACC	TAGTAGGGCC	2220
GCCACGCCTA	CCCTGGCGGC	CCCTCTACCC	CCCCTGCAC	CGGACCCTTC	CCCCCTCCC	2280
TCTGCCCCGG	CGCTTGCTGA	GCCGGCTTCT	GGCGCTACCG	CCGGGGCCCC	GGCCATAACT	2340
CACCAGACGG	CCCGGCACCG	CCGCCTGCTC	TTCACCTACC	CGGATGGCTC	TAAGGTATTC	. 2400
GCCGGCTCGC	TGTTCGAGTC	GACATGCACG	TGGCTCGTTA	ACGCGTCTAA	TGTTGACCAC	2460
CGCCCTGGCG	GCGGGCTTTG	CCATGCATTT	TACCAAAGGT	ACCCCGCCTC	CTTTGATGCT	2520
GCCTCTTTTG	TGATGCGCGA	CGGCGCGGCC	GCGTACACAC	TAACCCCCCG	GCCAATAATT	2580
CACGCTGTCG	CCCCTGATTA	TAGGTTGGAA	CATAACCCAA	AGAGGCTTGA	GGCTGCTTAT	2640
CGGGAAACTT	GCTCCCGCCT	CGGCACCGCT	GCATACCCGC	TCCTCGGGAC	CGGCATATAC	2700
CAGGTGCCGA	TCGGCCCCAG	TTTTGACGCC	TGGGAGCGGA	ACCACCGCCC	CGGGGATGAG	2760
TTGTACCTTC	CTGAGCTTGC	TGCCAGATGG	TTTGAGGCCA	ATAGGCCGAC	CCGCCCGACT	2820
ÇTCACTATAA	CTGAGGATGT	TGCACGGACA	GCGAATCTGG	CCATCGAGCT	TGACTCAGCC	2880
ACAGATGTCG	GCCGGGCCTG	TGCCGGCTGT	CGGGTCACCC	CCGGCGTTGT	TCAGTACCAG	2940
TTTACTGCAG	GTGTGCCTGG	ATCCGGCAAG	TCCCGCTCTA	TCACCCAAGC	CGATGTGGAC	3000
GTTGTCGTGG	TCCCGACGCG	TGAGTTGCGT	AATGCCTGGC	GCCGTCGCGG	CTTTGCTGCT	3060
TTTACCCCGC	ATACTGCCGC	CAGAGTCACC	CAGGGGCGCC	GGGTTGTCAT	TGATGAGGCT	3120
CCATCCCTCC	CCCCTCACCT	GCTGCTGCTC	CACATGCAGC	GGGCCGCCAC	CGTCCACCTT	3180
CTTGGCGACC	CGAACCAGAT	CCCAGCCATC	GACTTTGAGC	ACGCTGGGCT	CGTCCCCGCC	3240
ATCAGGCCCG	ACTTAGGCCC	CACCTCCTGG	TGGCATGTTA	CCCATCGCTG	GCCTGCGGAT	3300
GTATGCGAGC	TCATCCGTGG	TGCATACCCC	ATGATCCAGA	CCACTAGCCG	GGTTCTCCGT	3360
TCGTTGTTCT	GGGGTGAGCC	TGCCGTCGGG	CAGAAACTAG	TGTTCACCCA	GGCGGCCAAG	3420

CCCGCCAACO	CCGGCTCAGT	GACGGTCCAC	GAGGCGCAGG	GCGCTACCTA	CACGGAGACC	3480
ACTATTATTO	CCACAGCAGA	TGCCCGGGGC	CTTATTCAGT	CGTCTCGGGC	TCATGCCATT	3540
GTTGCTCTGA	CGCGCCACAC	TGAGAAGTGC	GTCATCATTG	ACGCACCAGG	CCTGCTTCGC	3600
GAGGTGGGCA	TCTCCGATGC	: AATCGTTAAT	' AACTTTTTCC	TCGCTGGTGG	CGAAATTGGT	3660
CACCAGCGCC	CATCAGTTAT	TCCCCGTGGC	AACCCTGACG	CCAATGTTGA	CACCCTGGCT	3720
GCCTTCCCGC	CGTCTTGCCA	GATTAGTGCC	TTCCATCAGT	TGGCTGAGGA	GCTTGGCCAC	3780
AGACCTGTCC	CTGTTGCAGC	TGTTCTACCA	CCCTGCCCCG	AGCTCGAACA	GGGCCTTCTC	3840
TACCTGCCCC	AGGAGCTCAC	CACCTGTGAT	AGTGTCGTAA	CATTTGAATT	AACAGACATT	3900
GTGCACTGCC	GCATGGCCGC	CCCGAGCCAG	CGCAAGGCCG	TGCTGTCCAC	ACTCGTGGGC	3960
CGCTACGGCG	GTCGCACAAA	GCTCTACAAT	GCTTCCCACT	CTGATGTTCG	CGACTCTCTC	4020
GCCCGTTTTA	TCCCGGCCAT	TGGCCCCGTA	CAGGTTACAA	CTTGTGAATT	GTACGAGCTA	4080
GTGGAGGCCA	TGGTCGAGAA	GGGCCAGGAT	GGCTCCGCCG	TCCTTGAGCT	TGATCTTTGC	4140
AACCGTGACG	TGTCCAGGAT	CACCTTCTTC	CAGAAAGATT	GTAACAAGTT	CACCACAGGT	4200
GAGACCATTG	CCCATGGTAA	AGTGGGCCAG	GGCATCTCGG	CCTGGAGCAA	GACCTTCTGC	4260
GCCCTCTTTG	GCCCTTGGTT	CCGCGCTATT	GAGAAGGCTA	TTCTGGCCCT	GCTCCCTCAG	4320
GGTGTGTTTT	ACGGTGATGC	CTTTGATGAC	ACCGTCTTCT	CGGCGGCTGT	GGCCGCAGCA	4380
AAGGCATCCA	TGGTGTTTGA	GAATGACTTT	TCTGAGTTTG	ACTCCACCCA	GAATAACTTT	4440
TCTCTGGGTC	TAGAGTGTGC	TATTATGGAG	GAGTGTGGGA	TGCCGCAGTG	GCTCATCCGC	4500
CTGTATCACC	TTATAAGGTC	TGCGTGGATC	TTGCAGGCCC	CGAAGGAGTC	TCTGCGAGGG	4560
TTTTGGAAGA	AACACTCCGG	TGAGCCCGGC	ACTCTTCTAT	GGAATACTGT	CTGGAATATG	4620
GCCGTTATTA	CCCACTGTTA	TGACTTCCGC	GATTTTCAGG	TGGCTGCCTT	TAAAGGTGAT	4680
GATTCGATAG	TGCTTTGCAG	TGAGTATCGT	CAGAGTCCAG	GAGCTGCTGT	CCTGATCGCC	4740
GGCTGTGGCT	TGAAGTTGAA	GGTAGATTTC	CGCCCGATCG	GTTTGTATGC	AGGTGTTGTG	4800
GTGGCCCCCG	GCCTTGGCGC	GCTCCCTGAT	GTTGTGCGCT	TCGCCGGCCG	GCTTACCGAG	4860
AAGAATTGGG	GCCCTGGCCC	TGAGCGGGCG	GAGCAGCTCC	GCCTCGCTGT	TAGTGATTTC	4920
CTCCGCAAGC	TCACGAATGT	AGCTCAGATG	TGTGTGGATG	TTGTTTCCCG	TGTTTATGGG	4980
GTTTCCCCTG	GACTCGTTCA	TAACCTGATT	GGCATGCTAC	AGGCTGTTGC	TGATGGCAAG	5040
GCACATTTCA	CTGAGTCAGT	AAAACCAGTG	CTCGACTTGA	CAAATTCAAT	CTTGTGTCGG	5100
GTGGAATGAA	TAACATGTCT	TTTGCTGCGC	CCATGGGTTC	GCGACCATGC	GCCCTCGGCC	5160
TATTTTGTTG	CTGCTCCTCA	TGTTTTTGCC	TATGCTGCCC	GCGCCACCGC	CCGGTCAGCC	5220
GTCTGGCCGC	CGTCGTGGGC	GGCGCAGCGG	CGGTTCCGGC	GGTGGTTTCT	GGGGTGACCG	5280

GGTTGATTCT CAGCCCTTCG CAATCCCCTA TATTCATCCA ACCAACCCCT TCGCCCCCGA	5340
TGTCACCGCT GCGGCCGGG CTGGACCTCG TGTTCGCCAA CCCGCCCGAC CACTCGGCTC	5400
CGCTTGGCGT GACCAGGCCC AGCGCCCCGC CGTTGCCTCA CGTCGTAGAC CTACCACAGC	5460
TGGGGCCGCG CCGCTAACCG CGGTCGCTCC GGCCCATGAC ACCCCGCCAG TGCCTGATGT	5520
CGACTCCCGC GGCGCCATCT TGCGCCGGCA GTATAACCTA TCAACATCTC CCCTTACCTC	5580
TTCCGTGGCC ACCGGCACTA ACCTGGTTCT TTATGCCGCC CCTCTTAGTC CGCTTTTACC	5640
CCTTCAGGAC GGCACCAATA CCCATATAAT GGCCACGGAA GCTTCTAATT ATGCCCAGTA	5700
CCGGGTTGCC CGTGCCACAA TCCGTTACCG CCCGCTGGTC CCCAATGCTG TCGGCGGTTA	5760
CGCCATCTCC ATCTCATTCT GGCCACAGAC CACCACCACC CCGACGTCCG TTGATATGAA	5820
TTCAATAACC TCGACGGATG TTCGTATTTT AGTCCAGCCC GGCATAGCCT CTGAGCTTGT	5880
GATCCCAAGT GAGCGCCTAC ACTATCGTAA CCAAGGCTGG CGCTCCGTCG AGACCTCTGG	5940
GGTGGCTGAG GAGGAGGCTA CCTCTGGTCT TGTTATGCTT TGCATACATG GCTCACTCGT	6000
AAATTCCTAT ACTAATACAC CCTATACCGG TGCCCTCGGG CTGTTGGACT TTGCCCTTGA	6060
GCTTGAGTTT CGCAACCTTA CCCCCGGTAA CACCAATACG CGGGTCTCCC GTTATTCCAG	6120
CACTGCTCGC CACCGCCTTC GTCGCGGTGC GGACGGGACT GCCGAGCTCA CCACCACGGC	6180
TGCTACCCGC TTTATGAAGG ACCTCTATTT TACTAGTACT AATGGTGTCG GTGAGATCGG	6240
CCGCGGGATA GCCCTCACCC TGTTCAACCT TGCTGACACT CTGCTTGGCG GCCTGCCGAC	6300
AGAATTGATT TCGTCGGCTG GTGGCCAGCT GTTCTACTCC CGTCCCGTTG TCTCAGCCAA	6360
TGGCGAGCCG ACTGTTAAGT TGTATACATC TGTAGAGAAT GCTCAGCAGG ATAAGGGTAT	6420
TGCAATCCCG CATGACATTG ACCTCGGAGA ATCTCGTGTG GTTATTCAGG ATTATGATAA	6480
CCAACATGAA CAAGATCGGC CGACGCCTTC TCCAGCCCCA TCGCGCCCTT TCTCTGTCCT	6540
TCGAGCTAAT GATGTGCTTT GGCTCTCTCT CACCGCTGCC GAGTATGACC AGTCCACTTA	6600
TGGCTCTTCG ACTGGCCCAG TTTATGTTTC TGACTCTGTG ACCTTGGTTA ATGTTGCGAC	6660
CGGCGCGCAG GCCGTTGCCC GGTCGCTCGA TTGGACCAAG GTCACACTTG ACGGTCGCCC	6720
CCTCTCCACC ATCCAGCAGT ACTCGAAGAC CTTCTTTGTC CTGCCGCTCC GCGGTAAGCT	6780
CTCTTTCTGG GAGGCAGGCA CAACTAAAGC CGGGTACCCT TATAATTATA ACACCACTGC	6840
TAGCGACCAA CTGCTTGTCG AGAATGCCGC CGGGCACCGG GTCGCTATTT CCACTTACAC	6900
CACTAGCCTG GGTGCTGGTC CCGTCTCCAT TTCTGCGGTT GCCGTTTTAG CCCCCCACTC	6960
TGCGCTAGCA TTGCTTGAGG ATACCTTGGA CTACCCTGCC CGCGCCCATA CTTTTGATGA	7020
TTTCTGCCCA GAGTGCCGCC CCCTTGGCCT TCAGGGCTGC GCTTTCCAGT CTACTGTCGC	7080
TGAGCTTCAG CGCCTTAAGA TGAAGGTGGG TAAAACTCGG GAGTTGTAGT TTATTTGCTT	7140

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1693 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met Glu Ala His Gln Phe Ile Lys Ala Pro Gly Ile Thr Thr Ala Ile
1 5 10 15

Glu Gln Ala Ala Leu Ala Ala Ala Asn Ser Ala Leu Ala Asn Ala Val 20 25 30

Val Val Arg Pro Phe Leu Ser His Gln Gln Ile Glu Ile Leu Ile Asn 35 40 45

Leu Met Gln Pro Arg Gln Leu Val Phe Arg Pro Glu Val Phe Trp Asn 50 55 60

His Pro Ile Gln Arg Val Ile His Asn Glu Leu Glu Leu Tyr Cys Arg 65 70 . 75 80

Ala Arg Ser Gly Arg Cys Leu Glu Ile Gly Ala His Pro Arg Ser Ile
85 90 95

Asn Asp Asn Pro Asn Val Val His Arg Cys Phe Leu Arg Pro Val Gly
100 105 110

Arg Asp Val Gln Arg Trp Tyr Thr Ala Pro Thr Arg Gly Pro Ala Ala 115 120 125

Asn Cys Arg Arg Ser Ala Leu Arg Gly Leu Pro Ala Ala Asp Arg Thr 130 135 140

Tyr Cys Leu Asp Gly Phe Ser Gly Cys Asn Phe Pro Ala Glu Thr Gly 145 150 155 160

Ile Ala Leu Tyr Ser Leu His Asp Met Ser Pro Ser Asp Val Ala Glu 165 170 175

Ala Met Phe Arg His Gly Met Thr Arg Leu Tyr Ala Ala Leu His Leu 180 185 190

Pro Pro Glu Val Leu Leu Pro Pro Gly Thr Tyr Arg Thr Ala Ser Tyr 195 200 205

Leu Leu Ile His Asp Gly Arg Arg Val Val Thr Tyr Glu Gly Asp 210 215 220

Thr Ser Ala Gly Tyr Asn His Asp Val Ser Asn Leu Arg Ser Trp Ile 225 230 235 240

Arg Thr Thr Lys Val Thr Gly Asp His Pro Leu Val Ile Glu Arg Val

Arg	, Ala	Ile	Gly 260	_	His	Phe	Val	Leu 265		Leu	Thr	Ala	Ala 270		Glu
Pro	Ser	Pro 275	Met	Pro	Tyr	Val	Pro 280	Tyr	Pro	Arg	Ser	Thr 285		Val	Туз
Val	Arg 290		Ile	Phe	Gly	Pro 295	Gly	Gly	Thr	Pro	Ser 300	Leu	Phe	Pro	Thi
Ser 305	Cys	Ser	Thr	Lys	Ser 310	Thr	Phe	His	Ala	Val 315	Pro	Ala	His	Ile	Trp 320
Asp	Arg	Leu	Met	Leu 325	Phe	Gly	Ala	Thr	Leu 330	Asp	Asp	Gln	Ala	Phe 335	Cys
Cys	Ser	Arg	Leu 340	Met	Thr	Tyr	Leu	Arg 345	Gly	Ile	Ser	Tyr	Lys 350	Val	Thr
Val	Gly	Thr 355	Leu	Val	Ala	Asn	Glu 360	Gly	Trp	Asn	Ala	Ser 365	Glu	Asp	Ala
Leu	Thr 370	Ala	Val	Ile	Thr	Ala 375	Ala	Tyr	Leu	Thr	Ile 380	Cys	His	Gln	Arg
Tyr 385	Leu	Arg	Thr	Gln	Ala 390	Ile	Ser	Lys	Gly	Met 395	Arg	Arg	Leu	Glu	Arg 400
Glu	His	Ala	Gln	Lys 405	Phe	Ile	Thr	Arg	Leu 410	Tyr	Ser	Trp	Leu	Phe 415	Glu
Lys	Ser	Gly	Arg 420	Asp	Tyr	Ile	Pro	Gly 425	Arg	Gln	Leu	Glu	Phe 430	Tyr	Ala
Gln	Cys	Arg 435	Arg	Trp	Leu	Ser	Ala 440	Gly	Phe	His	Leu	Asp 445	Pro	Arg	Val
Leu	Val 450	Phe	Asp	Glu	Ser	Ala 455	Pro	Cys	His	Cys	Arg 460	Thr	Ala	Ile	Arg
Lys 465	Ala	Leu	Ser	Lys	Phe 470	Cys	Cys	Phe	Met	Lys 475	Trp	Leu	Gly	Gln	Glu 480
Cys	Thr	Cys	Phe	Leu 485	Gln	Pro	Ala	Glu	Gly 490	Ala	Val	Gly	Asp	Gln 495	Gly
His	Asp	Asn	Glu 500	Ala	Tyr	Glu	Gly	Ser 5.05	Asp	Val	Asp	Pro	Ala 510	Glu	Ser
Ala	Ile	Ser 515	Asp	Ile	Ser	Gly	Ser 520	Tyr	Val	Val	Pro	Gly 525	Thr	Ala	Leu
Gln	Pro 530	Leu	Tyr	Gln	Ala	Leu 535	Asp	Leu	Pro	Ala	Glu 540	Ile	Val	Ala	Arg
Ala 545	Gly	Arg	Leu	Thr	Ala 550	Thr	Val	Lys	Val	Ser 555	Gln	Val	Asp	Gly	Arg 560
Ile	Asp	Cys	Glu	Thr 565	Leu	Leu	Gly	Asn	Lys 570	Thr	Phe	Arg	Thr	Ser 575	Phe

Val Asp Gly Ala Val Leu Glu Thr Asn Gly Pro Glu Arg His Asn Leu 585 Ser Phe Asp Ala Ser Gln Ser Thr Met Ala Ala Gly Pro Phe Ser Leu Thr Tyr Ala Ala Ser Ala Ala Gly Leu Glu Val Arg Tyr Val Ala Ala 615 Gly Leu Asp His Arg Ala Val Phe Ala Pro Gly Val Ser Pro Arg Ser Ala Pro Gly Glu Val Thr Ala Phe Cys Ser Ala Leu Tyr Arg Phe Asn 650 Arg Glu Ala Gln Arg His Ser Leu Ile Gly Asn Leu Trp Phe His Pro Glu Gly Leu Ile Gly Leu Phe Ala Pro Phe Ser Pro Gly His Val Trp Glu Ser Ala Asn Pro Phe Cys Gly Glu Ser Thr Leu Tyr Thr Arg Thr Trp Ser Glu Val Asp Ala Val Ser Ser Pro Ala Arg Pro Asp Leu Gly Phe Met Ser Glu Pro Ser Ile Pro Ser Arg Ala Ala Thr Pro Thr Leu Ala Ala Pro Leu Pro Pro Pro Ala Pro Asp Pro Ser Pro Pro Pro Ser Ala Pro Ala Leu Ala Glu Pro Ala Ser Gly Ala Thr Ala Gly Ala Pro Ala Ile Thr His Gln Thr Ala Arg His Arg Arg Leu Leu Phe Thr Tyr Pro Asp Gly Ser Lys Val Phe Ala Gly Ser Leu Phe Glu Ser Thr Cys 790 Thr Trp Leu Val Asn Ala Ser Asn Val Asp His Arg Pro Gly Gly Gly Leu Cys His Ala Phe Tyr Gln Arg Tyr Pro Ala Ser Phe Asp Ala Ala Ser Phe Val Met Arg Asp Gly Ala Ala Ala Tyr Thr Leu Thr Pro Arg Pro Ile Ile His Ala Val Ala Pro Asp Tyr Arg Leu Glu His Asn Pro 860 Lys Arg Leu Glu Ala Ala Tyr Arg Glu Thr Cys Ser Arg Leu Gly Thr 865 Ala Ala Tyr Pro Leu Leu Gly Thr Gly Ile Tyr Gln Val Pro Ile Gly 890 Pro Ser Phe Asp Ala Trp Glu Arg Asn His Arg Pro Gly Asp Glu Leu 905

- Tyr Leu Pro Glu Leu Ala Ala Arg Trp Phe Glu Ala Asn Arg Pro Thr 915 920 925
- Arg Pro Thr Leu Thr Ile Thr Glu Asp Val Ala Arg Thr Ala Asn Leu 930 935 940
- Ala Ile Glu Leu Asp Ser Ala Thr Asp Val Gly Arg Ala Cys Ala Gly 945 950 955 960
- Cys Arg Val Thr Pro Gly Val Val Gln Tyr Gln Phe Thr Ala Gly Val 965 970 975
- Pro Gly Ser Gly Lys Ser Arg Ser Ile Thr Gln Ala Asp Val Asp Val 980 985 990
- Val Val Pro Thr Arg Glu Leu Arg Asn Ala Trp Arg Arg Gly 995 1000 1005
- Phe Ala Ala Phe Thr Pro His Thr Ala Ala Arg Val Thr Gln Gly Arg 1010 1015 1020
- Arg Val Val Ile Asp Glu Ala Pro Ser Leu Pro Pro His Leu Leu 1025 1030 1035 1040
- Leu His Met Gln Arg Ala Ala Thr Val His Leu Leu Gly Asp Pro Asn 1045 1050 1055
- Gln Ile Pro Ala Ile Asp Phe Glu His Ala Gly Leu Val Pro Ala Ile 1060 1065 1070
- Arg Pro Asp Leu Gly Pro Thr Ser Trp Trp His Val Thr His Arg Trp 1075 1080 1085
- Pro Ala Asp Val Cys Glu Leu Ile Arg Gly Ala Tyr Pro Met Ile Gln 1090 1095 1100
- Thr Thr Ser Arg Val Leu Arg Ser Leu Phe Trp Gly Glu Pro Ala Val 1105 1110 1115 1120
- Gly Gln Lys Leu Val Phe Thr Gln Ala Ala Lys Pro Ala Asn Pro Gly 1125 1130 1135
- Ser Val Thr Val His Glu Ala Gln Gly Ala Thr Tyr Thr Glu Thr Thr 1140 1145 1150
- Ile Ile Ala Thr Ala Asp Ala Arg Gly Leu Ile Gln Ser Ser Arg Ala 1155 1160 1165
- His Ala Ile Val Ala Leu Thr Arg His Thr Glu Lys Cys Val Ile Ile 1170 1175 1180
- Asp Ala Pro Gly Leu Leu Arg Glu Val Gly Ile Ser Asp Ala Ile Val 1185 1190 1195 1200
- Asn Asn Phe Phe Leu Ala Gly Gly Glu Ile Gly His Gln Arg Pro Ser 1205 1210 1215
- Val Ile Pro Arg Gly Asn Pro Asp Ala Asn Val Asp Thr Leu Ala Ala 1220 1225 1230
- Phe Pro Pro Ser Cys Gln Ile Ser Ala Phe His Gln Leu Ala Glu Glu

1235 1240 1245

Leu Gly His Arg Pro Val Pro Val Ala Ala Val Leu Pro Pro Cys Pro 1250 1255 1260

Glu Leu Glu Gln Gly Leu Leu Tyr Leu Pro Gln Glu Leu Thr Thr Cys 1265 1270 1275 1280

Asp Ser Val Val Thr Phe Glu Leu Thr Asp Ile Val His Cys Arg Met 1285 1290 1295

Ala Ala Pro Ser Gln Arg Lys Ala Val Leu Ser Thr Leu Val Gly Arg 1300 1305 1310

Tyr Gly Gly Arg Thr Lys Leu Tyr Asn Ala Ser His Ser Asp Val Arg 1315 1320 1325

Asp Ser Leu Ala Arg Phe Ile Pro Ala Ile Gly Pro Val Gln Val Thr 1330 1335 1340

Thr Cys Glu Leu Tyr Glu Leu Val Glu Ala Met Val Glu Lys Gly Gln 1345 1350 1355 1360

Asp Gly Ser Ala Val Leu Glu Leu Asp Leu Cys Asn Arg Asp Val Ser 1365 1370 1375

Arg Ile Thr Phe Phe Gln Lys Asp Cys Asn Lys Phe Thr Thr Gly Glu 1380 1385 1390

Thr Ile Ala His Gly Lys Val Gly Gln Gly Ile Ser Ala Trp Ser Lys 1395 1400 1405

Thr Phe Cys Ala Leu Phe Gly Pro Trp Phe Arg Ala Ile Glu Lys Ala 1410 1415 1420

Ile Leu Ala Leu Leu Pro Gln Gly Val Phe Tyr Gly Asp Ala Phe Asp 1425 1430 1435 1440

Asp Thr Val Phe Ser Ala Ala Val Ala Ala Ala Lys Ala Ser Met Val 1445 1450 1455

Phe Glu Asn Asp Phe Ser Glu Phe Asp Ser Thr Gln Asn Asn Phe Ser 1460 1465 1470

Leu Gly Leu Glu Cys Ala Ile Met Glu Glu Cys Gly Met Pro Gln Trp 1475 1480 1485

Leu Ile Arg Leu Tyr His Leu Ile Arg Ser Ala Trp Ile Leu Gln Ala 1490 1495 1500

Pro Lys Glu Ser Leu Arg Gly Phe Trp Lys Lys His Ser Gly Glu Pro 1505 1510 1515 1520

Gly Thr Leu Leu Trp Asn Thr Val Trp Asn Met Ala Val Ile Thr His 1525 1530 1535

Cys Tyr Asp Phe Arg Asp Phe Gln Val Ala Ala Phe Lys Gly Asp Asp 1540 1545 1550

Ser Ile Val Leu Cys Ser Glu Tyr Arg Gln Ser Pro Gly Ala Ala Val 1555 1560 1565

- Leu Ile Ala Gly Cys Gly Leu Lys Leu Lys Val Asp Phe Arg Pro Ile 1570 1575 1580
- Gly Leu Tyr Ala Gly Val Val Val Pro Gly Leu Gly Ala Leu Pro 1585 1590 1595 1600
- Asp Val Val Arg Phe Ala Gly Arg Leu Thr Glu Lys Asn Trp Gly Pro 1605 1610 1615
- Gly Pro Glu Arg Ala Glu Gln Leu Arg Leu Ala Val Ser Asp Phe Leu 1620 1625 1630
- Arg Lys Leu Thr Asn Val Ala Gln Met Cys Val Asp Val Val Ser Arg 1635 1640 1645
- Val Tyr Gly Val Ser Pro Gly Leu Val His Asn Leu Ile Gly Met Leu 1650 1660
- Gln Ala Val Ala Asp Gly Lys Ala His Phe Thr Glu Ser Val Lys Pro 1665 1670 1675 1680
- Val Leu Asp Leu Thr Asn Ser Ile Leu Cys Arg Val Glu 1685 1690
- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 660 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
- Met Arg Pro Arg Pro Ile Leu Leu Leu Leu Met Phe Leu Pro Met

 1 5 10 15
- Leu Pro Ala Pro Pro Gly Gln Pro Ser Gly Arg Arg Arg Gly Arg 20 25 30
- Arg Ser Gly Gly Ser Gly Gly Gly Phe Trp Gly Asp Arg Val Asp Ser 35 40 .
- Gln Pro Phe Ala Ile Pro Tyr Ile His Pro Thr Asn Pro Phe Ala Pro 50 55 60
- Asp Val Thr Ala Ala Ala Gly Ala Gly Pro Arg Val Arg Gln Pro Ala 65 70 75 80
- Arg Pro Leu Gly Ser Ala Trp Arg Asp Gln Ala Gln Arg Pro Ala Val 85 90 95
- Ala Ser Arg Arg Pro Thr Thr Ala Gly Ala Ala Pro Leu Thr Ala
 100 105 110
- Val Ala Pro Ala His Asp Thr Pro Pro Val Pro Asp Val Asp Ser Arg 115 120 125
- Gly Ala Ile Leu Arg Arg Gln Tyr Asn Leu Ser Thr Ser Pro Leu Thr 130 135 140

Ser Ser Val Ala Thr Gly Thr Asn Leu Val Leu Tyr Ala Ala Pro Leu 150 Ser Pro Leu Leu Pro Leu Gln Asp Gly Thr Asn Thr His Ile Met Ala 170 165 Thr Glu Ala Ser Asn Tyr Ala Gln Tyr Arg Val Ala Arg Ala Thr Ile Arg Tyr Arg Pro Leu Val Pro Asn Ala Val Gly Gly Tyr Ala Ile Ser 200 Ile Ser Phe Trp Pro Gln Thr Thr Thr Thr Pro Thr Ser Val Asp Met 215 Asn Ser Ile Thr Ser Thr Asp Val Arg Ile Leu Val Gln Pro Gly Ile 230 Ala Ser Glu Leu Val Ile Pro Ser Glu Arg Leu His Tyr Arg Asn Gln Gly Trp Arg Ser Val Glu Thr Ser Gly Val Ala Glu Glu Glu Ala Thr Ser Gly Leu Val Met Leu Cys Ile His Gly Ser Leu Val Asn Ser Tyr Thr Asn Thr Pro Tyr Thr Gly Ala Leu Gly Leu Leu Asp Phe Ala Leu 295 Glu Leu Glu Phe Arg Asn Leu Thr Pro Gly Asn Thr Asn Thr Arg Val Ser Arg Tyr Ser Ser Thr Ala Arg His Arg Leu Arg Arg Gly Ala Asp Gly Thr Ala Glu Leu Thr Thr Ala Ala Thr Arg Phe Met Lys Asp Leu Tyr Phe Thr Ser Thr Asn Gly Val Gly Glu Ile Gly Arg Gly Ile 360 Ala Leu Thr Leu Phe Asn Leu Ala Asp Thr Leu Leu Gly Gly Leu Pro 375 Thr Glu Leu Ile Ser Ser Ala Gly Gly Gln Leu Phe Tyr Ser Arg Pro Val Val Ser Ala Asn Gly Glu Pro Thr Val Lys Leu Tyr Thr Ser Val 410 Glu Asn Ala Gln Gln Asp Lys Gly Ile Ala Ile Pro His Asp Ile Asp Leu Gly Glu Ser Arg Val Val Ile Gln Asp Tyr Asp Asn Gln His Glu Gln Asp Arg Pro Thr Pro Ser Pro Ala Pro Ser Arg Pro Phe Ser Val 455 450

Leu Arg Ala Asn Asp Val Leu Trp Leu Ser Leu Thr Ala Ala Glu Tyr 465 470 475 480

Asp Gln Ser Thr Tyr Gly Ser Ser Thr Gly Pro Val Tyr Val Ser Asp 485 490 495

Ser Val Thr Leu Val Asn Val Ala Thr Gly Ala Gln Ala Val Ala Arg 500 505 510

Ser Leu Asp Trp Thr Lys Val Thr Leu Asp Gly Arg Pro Leu Ser Thr 515 520 525

Ile Gln Gln Tyr Ser Lys Thr Phe Phe Val Leu Pro Leu Arg Gly Lys 530 540

Leu Ser Phe Trp Glu Ala Gly Thr Thr Lys Ala Gly Tyr Pro Tyr Asn 545 550 555 560

Tyr Asn Thr Thr Ala Ser Asp Gln Leu Leu Val Glu Asn Ala Ala Gly
565 570 575

His Arg Val Ala Ile Ser Thr Tyr Thr Thr Ser Leu Gly Ala Gly Pro 580 585 590

Val Ser Ile Ser Ala Val Ala Val Leu Ala Pro His Ser Ala Leu Ala 595 600 605

Leu Leu Glu Asp Thr Leu Asp Tyr Pro Ala Arg Ala His Thr Phe Asp 610 615 620

Asp Phe Cys Pro Glu Cys Arg Pro Leu Gly Leu Gln Gly Cys Ala Phe 625 630 635 640

Gln Ser Thr Val Ala Glu Leu Gln Arg Leu Lys Met Lys Val Gly Lys 645 650 655

Thr Arg Glu Leu 660

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 123 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Asn Asn Met Ser Phe Ala Ala Pro Met Gly Ser Arg Pro Cys Ala 1 5 10 15

Leu Gly Leu Phe Cys Cys Cys Ser Ser Cys Phe Cys Leu Cys Cys Pro
20 25 30

Arg His Arg Pro Val Ser Arg Leu Ala Ala Val Val Gly Gly Ala Ala 35 40

Ala Val Pro Ala Val Val Ser Gly Val Thr Gly Leu Ile Leu Ser Pro 50 55 60

Ser Gln Ser Pro Ile Phe Ile Gln Pro Thr Pro Ser Pro Pro Met Ser 65 70 75 80

Pro Leu Arg Pro Gly Leu Asp Leu Val Phe Ala Asn Pro Pro Asp His
85 90 95

Ser Ala Pro Leu Gly Val Thr Arg Pro Ser Ala Pro Pro Leu Pro His 100 105 110

Val Val Asp Leu Pro Gln Leu Gly Pro Arg Arg 115 120

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7171 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: Composite Mexico strain
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GCCATGGAGG	CCCACCAGTT	CATTAAGGCT	CCTGGCATCA	CTACTGCTAT	TGAGCAAGCA	60
GCTCTAGCAG	CGGCCAACTC	CGCCCTTGCG	AATGCTGTGG	TGGTCCGGCC	TTTCCTTTCC	120
CATCAGCAGG	TTGAGATCCT	TATAAATCTC	ATGCAACCTC	GGCAGCTGGT	GTTTCGTCCT	180
GAGGTTTTTT	GGAATCACCC	GATTCAACGT	GTTATACATA	ATGAGCTTGA	GCAGTATTGC	240
CGTGCTCGCT	CGGGTCGCTG	CCTTGAGATT	GGAGCCCACC	CACGCTCCAT	TAATGATAAT	300
CCTAATGTCC	TCCATCGCTG	CTTTCTCCAC	CCCGTCGGCC	GGGATGTTCA	GCGCTGGTAC	360
ACAGCCCCGA	CTAGGGGACC	TGCGGCGAAC	TGTCGCCGCT	CGGCACTTCG	TGGTCTGCCA	420
CCAGCCGACC	GCACTTACTG	TTTTGATGGC	TTTGCCGGCT	GCCGTTTTGC	CGCCGAGACT	480
GGTGTGGCTC	TCTATTCTCT	CCATGACTTG	CAGCCGGCTG	ATGTTGCCGA	GGCGATGGCT	540
CGCCACGGCA	TGACCCGCCT	TTATGCAGCT	TTCCACTTGC	CTCCAGAGGT	GCTCCTGCCT	[:] 600
CCTGGCACCT	ACCGGACATC	ATCCTACTTG	CTGATCCACG	ATGGTAAGCG	CGCGGTTGTC	660
ACTTATGAGG	GTGACACTAG	CGCCGGTTAC	AATCATGATG	TTGCCACCCT	CCGCACATGG	720
ATCAGGACAA	CTAAGGTTGT	GGGTGAACAC	CCTTTGGTGA	TCGAGCGGGT	GCGGGGTATT	780
GGCTGTCACT	TTGTGTTGTT	GATCACTGCG	GCCCCTGAGC	CCTCCCCGAT	GCCCTACGTT	840
CCTTACCCGC	GTTCGACGGA	GGTCTATGTC	CGGTCTATCT	TTGGGCCCGG	CGGGTCCCCG	900

TCGCTGTTCC	CGACCGCTTG	TGCTGTCAAG	TCCACTTTTC	ACGCCGTCCC	CACGCACATC	960
TGGGACCGTC	TCATGCTCTT	TGGGGCCACC	CTCGACGACC	AGGCCTTTTG	CTGCTCCAGG	1020
CTTATGACGT	ACCTTCGTGG	CATTAGCTAT	AAGGTAACTG	TGGGTGCCCT	GGTCGCTAAT	1080
GAAGGCTGGA	ATGCCACCGA	GGATGCGCTC	ACTGCAGTTA	TTACGGCGGC	TTACCTCACA	1140
ATATGTCATC	AGCGTTATTT	GCGGACCCAG	GCGATTTCTA	AGGGCATGCG	CCGGCTTGAG	1200
CTTGAACATG	CTCAGAAATT	TATTTCACGC	CTCTACAGCT	GGCTATTTGA	GAAGTCAGGT	1260
CGTGATTACA	TCCCAGGCCG	CCAGCTGCAG	TTCTACGCTC	AGTGCCGCCG	CTGGTTATCT	1320
GCCGGGTTCC	ATCTCGACCC	CCGCACCTTA	GTTTTTGATG	AGTCAGTGCC	TTGTAGCTGC	1380
CGAACCACCA	TCCGGCGGAT	CGCTGGAAAA	TTTTGCTGTT	TTATGAAGTG	GCTCGGTCAG	1440
GAGTGTTCTT	GTTTCCTCCA	GCCCGCCGAG	GGGCTGGCGG	GCGACCAAGG	TCATGACAAT	1500
GAGGCCTATG	AAGGCTCTGA	TGTTGATACT	GCTGAGCCTG	CCACCCTAGA	CATTACAGGC	1560
TCATACATCG	TGGATGGTCG	GTCTCTGCAA	ACTGTCTATC	AAGCTCTCGA	CCTGCCAGCT	1620
GACCTGGTAG	CTCGCGCAGC	CCGACTGTCT	GCTACAGTTA	CTGTTACTGA	AACCTCTGGC	1680
CGTCTGGATT	GCCAAACAAT	GATCGGCAAT	AAGACTTTTC	TCACTACCTT	TGTTGATGGG	1740
GCACGCCTTG	AGGTTAACGG	GCCTGAGCAG	CTTAACCTCT	CTTTTGACAG	CCAGCAGTGT	1800
AGTATGGCAG	CCGGCCCGTT	TTGCCTCACC	TATGCTGCCG	TAGATGGCGG	GCTGGAAGTT	1860
CATTTTTCCA	CCGCTGGCCT	CGAGAGCCGT	GTTGTTTTCC	CCCCTGGTAA	TGCCCCGACT	1920
GCCCGCCGA	GTGAGGTCAC	CGCCTTCTGC	TCAGCTCTTT	ATAGGCACAA	CCGGCAGAGC	1980
CAGCGCCAGT	CGGTTATTGG	TAGTTTGTGG	CTGCACCCTG	AAGGTTTGCT	CGGCCTGTTC	2040
CCGCCCTTTT	CACCCGGGCA	TGAGTGGCGG	TCTGCTAACC	CATTTTGCGG	CGAGAGCACG	2100
CTCTACACCC	GCACTTGGTC	CACAATTACA	GACACACCCT	TAACTGTCGG	GCTAATTTCC	2160
GGTCATTTGG	ATGCTGCTCC	CCACTCGGGG	GGGCCACCTG	CTACTGCCAC	AGGCCCTGCT	2220
GTAGGCTCGT	CTGACTCTCC	AGACCCTGAC	CCGCTACCTG	ATGTTACAGA	TGGCTCACGC	2280
CCCTCTGGGG	CCCGTCCGGC	TGGCCCCAAC	CCGAATGGCG	TTCCGCAGCG	CCGCTTACTA	2340
CACACCTACC	CTGACGGCGC	TAAGATCTAT	GTCGGCTCCA	TTTTCGAGTC	TGAGTGCACC	2400
TGGCTTGTCA	ACGCATCTAA,	CGCCGGCCAC	CGCCCTGGTG	GCGGGCTTTG	TCATGCTTTT	2460
TTTCAGCGTT	ACCCTGATTC	GTTTGACGCC	ACCAAGTTTG	TGATGCGTGA	TGGTCTTGCC	2520
GCGTATACCC	TTACACCCCG	GCCGATCATT	CATGCGGTGG	CCCCGGACTA	TCGATTGGAA	2580
CATAACCCCA	AGAGGCTCGA	GGCTGCCTAC	CGCGAGACTT	GCGCCCGCCG	AGGCACTGCT	2640
GCCTATCCAC	TCTTAGGCGC	TGGCATTTAC	CAGGTGCCTG	TTAGTTTGAG	TTTTGATGCC	2700
TGGGAGCGGA	ACCACCGCCC	GTTTGACGAG	CTTTACCTAA	CAGAGCTGGC	GGCTCGGTGG	2760

TTTGAATCCA ACCGCCCGG TCAGCCCACG TTGAACATAA CTGAGGATAC CGCCCGTGCG 2820 GCCAACCTGG CCCTGGAGCT TGACTCCGGG AGTGAAGTAG GCCGCGCATG TGCCGGGTGT 2880 AAAGTCGAGC CTGGCGTTGT GCGGTATCAG TTTACAGCCG GTGTCCCCGG CTCTGGCAAG 2940 TCAAAGTCCG TGCAACAGGC GGATGTGGAT GTTGTTGTTG TGCCCACTCG CGAGCTTCGG 3000 AACGCTTGGC GGCGCCGGGG CTTTGCGGCA TTCACTCCGC ACACTGCGGC CCGTGTCACT 3060 AGCGGCCGTA GGGTTGTCAT TGATGAGGCC CCTTCGCTCC CCCCACACTT GCTGCTTTTA 3120 CATATGCAGC GTGCTGCATC TGTGCACCTC CTTGGGGACC CGAATCAGAT CCCCGCCATA 3180 GATTTTGAGC ACACCGGTCT GATTCCAGCA ATACGGCCGG AGTTGGTCCC GACTTCATGG 3240 TGGCATGTCA CCCACCGTTG CCCTGCAGAT GTCTGTGAGT TAGTCCGTGG TGCTTACCCT 3300 AAAATCCAGA CTACAAGTAA GGTGCTCCGT TCCCTTTTCT GGGGAGAGCC AGCTGTCGGC 3360 CAGAAGCTAG TGTTCACACA GGCTGCTAAG GCCGCGCACC CCGGATCTAT AACGGTCCAT 3420 GAGGCCCAGG GTGCCACTTT TACCACTACA ACTATAATTG CAACTGCAGA TGCCCGTGGC 3480 CTCATACAGT CCTCCCGGGC TCACGCTATA GTTGCTCTCA CTAGGCATAC TGAAAAATGT 3540 GTTATACTTG ACTCTCCGG CCTGTTGCGT GAGGTGGGTA TCTCAGATGC CATTGTTAAT 3600 AATTTCTTCC TTTCGGGTGG CGAGGTTGGT CACCAGAGAC CATCGGTCAT TCCGCGAGGC 3660 AACCCTGACC GCAATGTTGA CGTGCTTGCG GCGTTTCCAC CTTCATGCCA AATAAGCGCC 3720 TTCCATCAGC TTGCTGAGGA GCTGGGCCAC CGGCCGCGC CGGTGGCGGC TGTGCTACCT 3780 CCCTGCCCTG AGCTTGAGCA GGGCCTTCTC TATCTGCCAC AGGAGCTAGC CTCCTGTGAC 3840 AGTGTTGTGA CATTTGAGCT AACTGACATT GTGCACTGCC GCATGGCGGC CCCTAGCCAA 3900 AGGAAAGCTG TTTTGTCCAC GCTGGTAGGC CGGTATGGCA GACGCACAAG GCTTTATGAT 3960 GCGGGTCACA CCGATGTCCG CGCCTCCCTT GCGCGCTTTA TTCCCACTCT CGGGCGGGTT 4.020 ACTGCCACCA CCTGTGAACT CTTTGAGCTT GTAGAGGCGA TGGTGGAGAA GGGCCAAGAC 4080 GGTTCAGCCG TCCTCGAGTT GGATTTGTGC AGCCGAGATG TCTCCCGCAT AACCTTTTTC 4140 CAGAAGGATT GTAACAAGTT CACGACCGGC GAGACAATTG CGCATGGCAA AGTCGGTCAG 4200 GGTATCTTCC GCTGGAGTAA GACGTTTTGT GCCCTGTTTG GCCCCTGGTT CCGTGCGATT 4260 GAGAAGGCTA TTCTATCCCT TTTACCACAA GCTGTGTTCT ACGGGGATGC TTATGACGAC 4320 TCAGTATTCT CTGCTGCCGT GGCTGGCGCC AGCCATGCCA TGGTGTTTGA AAATGATTTT 4380 TCTGAGTTTG ACTCGACTCA GAATAACTTT TCCCTAGGTC TTGAGTGCGC CATTATGGAA 4440 GAGTGTGGTA TGCCCCAGTG GCTTGTCAGG TTGTACCATG CCGTCCGGTC GGCGTGGATC 4500 CTGCAGGCCC CAAAAGAGTC TTTGAGAGGG TTCTGGAAGA AGCATTCTGG TGAGCCGGGC 4560 AGCTTGCTCT GGAATACGGT GTGGAACATG GCAATCATTG CCCATTGCTA TGAGTTCCGG 4620

GACCTCCAGG TTGCCGCCTT CAAGGGCGAC GACTCGGTCG TCCTCTGTAG TGAATACCGC 4680 CAGAGCCCAG GCGCCGGTTC GCTTATAGCA GGCTGTGGTT TGAAGTTGAA GGCTGACTTC 4740 CGGCCGATTG GGCTGTATGC CGGGGTTGTC GTCGCCCCGG GGCTCGGGGC CCTACCCGAT 4800 GTCGTTCGAT TCGCCGGACG GCTTTCGGAG AAGAACTGGG GGCCTGATCC GGAGCGGCCA 4860 GAGCAGCTCC GCCTCGCCGT GCAGGATTTC CTCCGTAGGT TAACGAATGT GGCCCAGATT 4920 TGTGTTGAGG TGGTGTCTAG AGTTTACGGG GTTTCCCCGG GTCTGGTTCA TAACCTGATA 4980 GGCATGCTCC AGACTATTGG TGATGGTAAG GCGCATTTTA CAGAGTCTGT TAAGCCTATA 5040 CTTGACCTTA CACACTCAAT TATGCACCGG TCTGAATGAA TAACATGTGG TTTGCTGCGC 5100 CCATGGGTTC GCCACCATGC GCCCTAGGCC TCTTTTGCTG TTGTTCCTCT TGTTTCTGCC 5160 TATGTTGCCC GCGCCACCGA CCGGTCAGCC GTCTGGCCGC CGTCGTGGGC GGCGCAGCGG 5220 CGGTACCGGC GGTGGTTTCT GGGGTGACCG GGTTGATTCT CAGCCCTTCG CAATCCCCTA 5280 TATTCATCCA ACCAACCCT TTGCCCCAGA CGTTGCCGCT GCGTCCGGGT CTGGACCTCG 5340 CCTTCGCCAA CCAGCCCGGC CACTTGGCTC CACTTGGCGA GATCAGGCCC AGCGCCCCTC 5400 CGCTGCCTCC CGTCGCCGAC CTGCCACAGC CGGGGCTGCG GCGCTGACGG CTGTGGCGCC 5460 TGCCCATGAC ACCTCACCG TCCCGGACGT TGATTCTCGC GGTGCAATTC TACGCCGCCA 5520 GTATAATTTG TCTACTTCAC CCCTGACATC CTCTGTGGCC TCTGGCACTA ATTTAGTCCT 5580 GTATGCAGCC CCCCTTAATC CGCCTCTGCC GCTGCAGGAC GGTACTAATA CTCACATTAT 5640 GGCCACAGAG GCCTCCAATT ATGCACAGTA CCGGGTTGCC CGCGCTACTA TCCGTTACCG 5700 GCCCCTAGTG CCTAATGCAG TTGGAGGCTA TGCTATATCC ATTTCTTTCT GGCCTCAAAC 5760 AACCACACC CCTACATCTG TTGACATGAA TTCCATTACT TCCACTGATG TCAGGATTCT 5820 TGTTCAACCT GGCATAGCAT CTGAATTGGT CATCCCAAGC GAGCGCCTTC ACTACCGCAA 5880 TCAAGGTTGG CGCTCGGTTG AGACATCTGG TGTTGCTGAG GAGGAAGCCA CCTCCGGTCT 5940 TGTCATGTTA TGCATACATG GCTCTCCAGT TAACTCCTAT ACCAATACCC CTTATACCGG 6000 TGCCCTTGGC TTACTGGACT TTGCCTTAGA GCTTGAGTTT CGCAATCTCA CCACCTGTAA 6060 CACCAATACA CGTGTGTCCC GTTACTCCAG CACTGCTCGT CACTCCGCCC GAGGGGCCGA 6120 CGGGACTGCG GAGCTGACCA CAACTGCAGC CACCAGGTTC ATGAAAGATC TCCACTTTAC 6180 CGGCCTTAAT GGGGTAGGTG AAGTCGGCCG CGGGATAGCT CTAACATTAC TTAACCTTGC 6240 TGACACGCTC CTCGGCGGGC TCCCGACAGA ATTAATTTCG TCGGCTGGCG GGCAACTGTT 6300 TTATTCCCGC CCGGTTGTCT CAGCCAATGG CGAGCCAACC GTGAAGCTCT ATACATCAGT 6360 GGAGAATGCT CAGCAGGATA AGGGTGTTGC TATCCCCCAC GATATCGATC TTGGTGATTC 6420 GCGTGTGGTC ATTCAGGATT ATGACAACCA GCATGAGCAG GATCGGCCCA CCCCGTCGCC 6480

TGCGCCATCT	CGGCCTTTTT	CTGTTCTCCG	AGCAAATGAT	GTACTTTGGC	TGTCCCTCAC	6540
TGCAGCCGAG	TATGACCAGT	CCACTTACGG	GTCGTCAACT	GGCCCGGTTT	ATATCTCGGA	6600
CAGCGTGACT	TTGGTGAATG	TTGCGACTGG	CGCGCAGGCC	GTAGCCCGAT	CGCTTGACTG	6660
GTCCAAAGTC	ACCCTCGACG	GGCGGCCCCT	CCCGACTGTT	GAGCAATATT	CCAAGACATT	6720
CTTTGTGCTC	CCCCTTCGTG	GCAAGCTCTC	CTTTTGGGAG	GCCGGCACAA	CAAAAGCAGG	6780
TTATCCTTAT	AATTATAATA	CTACTGCTAG	TGACCAGATT	CTGATTGAAA	ATGCTGCCGG	6840
CCATCGGGTC	GCCATTTCAA	CCTATACCAC	CAGGCTTGGG	GCCGGTCCGG	TCGCCATTTC	6900
TGCGGCCGCG	GTTTTGGCTC	CACGCTCCGC	CCTGGCTCTG	CTGGAGGATA	CTTTTGATTA	6960
TCCGGGGCGG	GCGCACACAT	TTGATGACTT	CTGCCCTGAA	TGCCGCGCTT	TAGGCCTCCA	7020
GGGTTGTGCT	TTCCAGTCAA	CTGTCGCTGA	GCTCCAGCGC	CTTAAAGTTA	AGGTGGGTAA	7080
AACTCGGGAG	TTGTAGTTTA	TTTGGCTGTG	CCCACCTACT	TATATCTGCT	GATTTCCTTT	7140
ATTTCCTTTT	TCTCGGTCCC	GCGCTCCCTG	A			7171

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1575 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: T: Mexican strain
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GTTGCGTGAG	GTGGGTATCT	CAGATGCCAT	TGTTAATAAT	TTCTTCCTTT	CGGGTGGCGA	60
GGTTGGTCAC	CAGAGACCAT	CGGTCATTCC	GCGAGGCAAC	CCTGACCGCA	ATGTTGACGT	120
GCTTGCGGCG	TTTCCACCTT	CATGCCAAAT	AAGCGCCTTC	CATCAGCTTG	CTGAGGAGCT	180
GGGCCACCGG	CCGGCGCCGG	TGGCGGCTGT	GCTACCTCCC	TGCCCTGAGC	TTGAGCAGGG	240
CCTTCTCTAT	CTGCCACAGG	AGCTAGCCTC	CTGTGACAGT	GTTGTGACAT	TTGAGCTAAC	300
TGACATTGTG	CACTGCCGCA	TGGCGGCCCC	TAGCCAAAGG	AAAGCTGTTT	TGTCCACGCT	360
GGTAGGCCGG	TATGGCAGAC	GCACAAGGCT	TTATGATGCG	GGTCACACCG	ATGTCCGCGC	420
CTCCCTTGCG	CGCTTTATTC	CCACTCTCGG	GCGGGTTACT	GCCACCACCT	GTGAACTCTT	480
TGAGCTTGTA	GAGGCGATGG	TGGAGAAGGG	CCAAGACGGT	TCAGCCGTCC	TCGAGTTGGA	540

TTTGTGCAGC	CGAGATGTCT	CCCGCATAAC	CTTTTTCCAG	AAGGATTGTA	ACAAGTTCAC	600
GACCGGCGAG	ACAATTGCGC	ATGGCAAAGT	CGGTCAGGGT	ATCTTCCGCT	GGAGTAAGAC	660
CTTTTGTGCC	CTGTTTGGCC	CCTGGTTCCG	TGCGATTGAG	AAGGCTATTC	TATCCCTTTT	720
ACCACAAGCT	GTGTTCTACG	GGGATGCTTA	TGACGACTCA	GTATTCTCTG	CTGCCGTGGC	780
TGGCGCCAGC	CATGCCATGG	TGTTTGAAAA	TGATTTTTCT	GAGTTTGACT	CGACTCAGAA	840
TAACTTTTCC	CTAGGTCTTG	AGTGCGCCAT	TATGGAAGAG	TGTGGTATGC	CCCAGTGGCT	900
TGTCAGGTTG	TACCATGCCG	TCCGGTCGGC	GTGGATCCTG	CAGGCCCCAA	AAGAGTCTTT	960
GAGAGGGTTC	TGGAAGAAGC	ATTCTGGTGA	GCCGGGCACG	TTGCTCTGGA	ATACGGTGTG	1020
GAACATGGCA	ATCATTGCCC	ATTGCTATGA	GTTCCGGGAC	CTCCAGGTTG	CCGCCTTCAA	1080
GGGCGACGAC	TCGGTCGTCC	TCTGTAGTGA	ATACCGCCAG	AGCCCAGGCG	CCGGTTCGCT	1140
TATAGCAGGC	TGTGGTTTGA	AGTTGAAGGC	TGACTTCCGG	CCGATTGGGC	TGTATGCCGG	.1200
GGTTGTCGTC	GCCCCGGGGC	TCGGGGCCCT	ACCCGATGTC	GTTCGATTCG	CCGGACGGCT	1260
TTCGGAGAAG	AACTGGGGGC	CTGATCCGGA	GCGGGCAGAG	CAGCTCCGCC	TCGCCGTGCA	1320
GGATTTCCTC	CGTAGGTTAA	CGAATGTGGC	CCAGATTTGT	GTTGAGGTGG	TGTCTAGAGT	:1380
TTACGGGGTT	TCCCCGGGTC	TGGTTCATAA	CCTGATAGGC	ATGCTCCAGA	CTATTGGTGA	1440
TGGTAAGGCG	CATTTTACAG	AGTCTGTTAA	GCCTATACTT	GACCTTACAC	ACTCAATTAT	1500
GCACCGGTCT	GAATGAATAA	CATGTGGTTT	GCTGCGCCCA	TGGGTTCGCC	ACCATGCGCC	1560
CTAGGCCTCT	TTTGC					1575

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 874 base pairs(B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: Tashkent strain
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

CGGGCCCCGT	ACAGGTCACA	ACCTGTGAGT	TGTACGAGCT	AGTGGAGGCC	ATGGTCGAGA	60
AAGGCCAGGA	TGGCTCCGCC	GTCCTTGAGC	TCGATCTCTG	CAACCGTGAC	GTGTCCAGGA	120
TCACCTTTTT	CCAGAAAGAT	TGCAATAAGT	TCACCACGGG	AGAGACCATC	GCCCATGGTA	180

AAGTGGGCCA GGGCATTTCG GCCTGGAGTA AGACCTTCTG TGCCCTTTTC GGCCCCTGGT	240
TCCGTGCTAT TGAGAAGGCT ATTCTGGCCC TGCTCCCTCA GGGTGTGTTT TATGGGGATG	300
CCTTTGATGA CACCGTCTTC TCGGCGCGTG TGGCCGCAGC AAAGGCGTCC ATGGTGTTTG	360
AGAATGACTT TTCTGAGTTT GACTCCACCC AGAATAATTT TTCCCTGGGC CTAGAGTGTG	420
CTATTATGGA GAAGTGTGGG ATGCCGAAGT GGCTCATCCG CTTGTACCAC CTTATAAGGT	480
CTGCGTGGAT CCTGCAGGCC CCGAAGGAGT CCCTGCGAGG GTGTTGGAAG AAACACTCCG	540
GTGAGCCCGG CACTCTTCTA TGGAATACTG TCTGGAACAT GGCCGTTATC ACCCATTGTT	600
ACGATTTCCG CGATTTGCAG GTGGCTGCCT TTAAAGGTGA TGATTCGATA GTGCTTTGCA	660
GTGAGTACCG TCAGAGTCCA GGGGCTGCTG TCCTGATTGC TGGCTGTGGC TTAAAGCTGA	720
AGGTGGGTTT CCGTCCGATT GGTTTGTATG CAGGTGTTGT GGTGACCCCC GGCCTTGGCG	780
CGCTTCCCGA CGTCGTGCGC TTGTCCGGCC GGCTTACTGA GAAGAATTGG GGCCCTGGCC	840
CTGAGCGGCC GGAGCAGCTC CGCCTTGCTG TGCG	874
(2) INFORMATION FOR SEQ ID NO:13:	•
(A) LENGTH: 449 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA to mRNA	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
<pre>(vi) ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: Clone 406.4-2 cDNA</pre>	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2100	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
C GCC AAC CAG CCC GGC CAC TTG GCT CCA CTT GGC GAG ATC AGG CCC Ala Asn Gln Pro Gly His Leu Ala Pro Leu Gly Glu Ile Arg Pro 1 5 10 15	46
AGC GCC CCT CCG CTG CCT CCC GTC GCC GAC CTG CCA CAG CCG GGG CTG Ser Ala Pro Pro Leu Pro Pro Val Ala Asp Leu Pro Gln Pro Gly Leu 20 25 30	94
CGG CGC TGACGGCTGT GGCGCCTGCC CATGACACCT CACCCGTCCC GGACGTTGAT	150

TCTCGCGGTG CAATTCTACG CCGCCAGTAT AATTTGTCTA CTTCACCCCT GACATCCTCT

GTGGCCTCTG GCACTAATTT AGTCCTGTAT GCAGCCCCCC TTAATCCGCC TCTGCCGCTG	270
CAGGACGGTA CTAATACTCA CATTATGGCC ACAGAGGCCT CCAATTATGC ACAGTACCGG	330
GTTGCCCGCG CTACTATCCG TTACCGGCCC CTAGTGCCTA ATGCAGTTGG AGGCTATGCT	390
ATATCCATTT CTTTCTGGCC TCAAACAACC ACAACCCCTA CATCTGTTGA CATGAATTC	449
(2) INFORMATION FOR SEQ ID NO:14:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 33 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
Ala Asn Gln Pro Gly His Leu Ala Pro Leu Gly Glu Ile Arg Pro Ser 1 5 10 15	
Ala Pro Pro Leu Pro Pro Val Ala Asp Leu Pro Gln Pro Gly Leu Arg 20 25 30	
Arg	
(2) INFORMATION FOR SEQ ID NO:15:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 130 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA to mRNA	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
<pre>(vi) ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: Clone 406.3-2</pre>	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 5130	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
GGAT ACT TTT GAT TAT CCG GGG CGG GCG CAC ACA TTT GAT GAC TTC TGC Thr Phe Asp Tyr Pro Gly Arg Ala His Thr Phe Asp Asp Phe Cys 1 5 10 15	49
CCT GAA TGC CGC GCT TTA GGC CTC CAG GGT TGT GCT TTC CAG TCA ACT Pro Glu Cys Arg Ala Leu Gly Leu Gln Gly Cys Ala Phe Gln Ser Thr 20 25 30	97
GTC GCT GAG CTC CAG CGC CTT AAA GTT AAG GTT	130

 J_{\pm}

Val Ala Glu Leu Gln Arg Leu Lys Val Lys Val
35 40

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Thr Phe Asp Tyr Pro Gly Arg Ala His Thr Phe Asp Asp Phe Cys Pro 1 5 10 15

Glu Cys Arg Ala Leu Gly Leu Gln Gly Cys Ala Phe Gln Ser Thr Val 20 25 30

Ala Glu Leu Gln Arg Leu Lys Val Lys Val
35

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: 406.4-2 epitope Mexican strain
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Ala Asn Gln Pro Gly His Leu Ala Pro Leu Gly Glu Ile Arg Pro Ser $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ala Pro Pro Leu Pro Pro Val Ala Asp Leu Pro Gln Pro Gly Leu Arg 20 25 30

Arg

- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown

- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 (C) INDIVIDUAL ISOLATE: 406.4-2 epitope Burma strain
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Ala Asn Pro Pro Asp His Ser Ala Pro Leu Gly Val Thr Arg Pro Ser 1 5 10 15

Ala Pro Pro Leu Pro His Val Val Asp Leu Pro Gln Leu Gly Pro Arg 20 25 30

Arg

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (C) INDIVIDUAL ISOLATE: 406.3-2 epitope Mexican strain
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Thr Phe Asp Tyr Pro Gly Arg Ala His Thr Phe Asp Asp Phe Cys Pro 1 10 15

Glu Cys Arg Ala Leu Gly Leu Gln Gly Cys Ala Phe Gln Ser Thr Val $20 \hspace{1cm} 25 \hspace{1cm} 30$

Ala Glu Leu Gln Arg Leu Lys Val Lys Val 35 40

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 (C) INDIVIDUAL ISOLATE: 406.3-2 epitope Burma strain
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Thr Leu Asp Tyr Pro Ala Arg Ala His Thr Phe Asp Asp Phe Cys Pro 1 10 15

Glu Cys Arg Pro Leu Gly Leu Gln Gly Cys Ala Phe Gln Ser Thr Val 20 25 30

Ala Glu Leu Gln Arg Leu Lys Met Lys Val 35 40