

Documento de Casos de Uso Core-MUSA

Universidade Estadual de Feira de Santana

**Build 1** 



# Histórico de Revisões

| Date       | Descrição              | Autor(s)         |
|------------|------------------------|------------------|
|            | Concepção do documento | • bezourokq;     |
| 08/10/2014 |                        | • wsbittencourt; |
|            |                        | • fmbboaventura; |



# **SUMÁRIO**

| 1 | Intr              | Introdução                          |   |  |  |
|---|-------------------|-------------------------------------|---|--|--|
|   | 1.1               | Objetivo                            | 3 |  |  |
|   | 1.2               | Visão Geral do Documento            | 3 |  |  |
|   | 1.3               | Representação Simbólica             | 3 |  |  |
|   | 1.4               | Definições, Acrônimos e Abreviações | 4 |  |  |
| 2 | Atores do Sistema |                                     |   |  |  |
| 3 | Cas               | os de Usos                          | 4 |  |  |
|   | 3.1               | [UC 001] Execução de instruções     | 4 |  |  |
|   |                   | 3.1.1 Fluxo Principal de Eventos    | 5 |  |  |



# 1. Introdução

## 1.1. Objetivo

#### 1.2. Visão Geral do Documento

- Sessão 2: lista todos os possíveis atores do sistema.
- Sessão 3: relata a lista dos casos de uso do projeto.

## 1.3. Representação Simbólica

A Figura ?? ilustra a simbologia utilizada para representar operações que devem ser realizadas pelo sistema. A Figura 2 ilustra as duas simbologias utilizadas para representar os Atores do sistema. Um ator, dentro do escopo desta descrição, pode ser identificado como um módulo *top level*, ou como um elemento de entrada e saída (botões, sensores, displays, etc).



Figura 1: Exemplo de Caso de Uso.

A simbologia usual para representação de um Ator é apresentada na Figura 2a, no entanto, para representar módulos incorporados que outrora deveriam utilizar a mesma simbologia, utiliza-se a representação ilustrada nas Figuras 2b e 2c, definida por convenção. Este elemento, em geral, está associado aos módulos do sistema, ou IP-cores de terceiros incorporados ao mesmo. Esta simbologia ainda foi divida, tendo em vista representar instâncias únicas (Figura 2c), ou múltiplas (Figura 2b) de um determinado componente.



Figura 2: Simbologia utilizada na implementação dos Casos de Uso.

O projetista responsável por interpretar os diagramas não deve confundir-se no momento de interpretar as simbologias de atores. A representação alternativa, não implica que o módulo será instanciado no subsistema em questão, mas sim que os recursos providos por este *core* são necessários para garantir o seu funcionamento.



## 1.4. Definições, Acrônimos e Abreviações

| Termo | Descrição               |
|-------|-------------------------|
| UC    | Caso de Uso             |
| SB    | Sub-fluxo               |
| FS    | Fluxo Secundário        |
| NFR   | Requisito Não Funcional |
| FR    | Requisito Funcional     |
| ВТ    | Botão Direcional        |

### 2. Atores do Sistema



Controlador - Unidade que controla a execução das operações.

ALU - Unidade Lógica e Aritmética.

#### 3. Casos de Usos

Esta sessão apresenta o conjunto de UC realizados para a implementação do projeto *Core MUSA* (Núcleo de processamento de instruções do processador de propósito geral MUSA). As sessões a seguir foram divididas e nomeada utilizando a nomenclatura abreviada [UC (NÚMERO DO UC)] seguido de uma breve descrição em forma de título.

## 3.1. [UC 001] Execução de instruções

O controlador é responsável por decodificar instrução, solicitar operações na ALU e por fim garantir o armazenamento dos resultados de operações no banco registradores.

### Atores

**Controlador** – Unidade que controla a execução das operações.

**ALU** – Unidade Lógica e Aritmética.

## Pré-condições

- Atender aos requisitos funcionais [FR01 e FR02];
- Leitura do PC;
- Realizar operações lógicas e aritméticas na ALU;



# Pós-condições

• Os resultados devem ser expressos nos registradores.

# Diagrama de Caso de Uso



# 3.1.1. Fluxo Principal de Eventos

- P1. Acesso ao PC;
- P2. Leitura da instrução apontada por PC;
- P3. Acesso aos respectivos registradores;
- P4. Executa operações;
- P5. Atualiza registradores;
- P6. Atualiza valor do PC;