

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕ′	Г «Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по Лабораторной работе №18

по курсу «Функциональное и логическое программирование» на тему: «Формирование и модификация списков на Prolog»

Студент _	ИУ7-63Б (Группа)	(Подпись, дата)	Миронов Г. А. (И. О. Фамилия)
Преподава	атель	(Подпись, дата)	Толпинская Н. Б. (И. О. Фамилия)

1 Практическая часть

Задание 17: Используя хвостовую рекурсию, разработать, комментируя аргументы, эффективную программу, позволяющую:

- сформировать список из элементов числового списка, больших заданного значения;
- сформировать список из элементов, стоящих на нечетных позициях исходного списка (нумерация от 0);
- удалить заданный элемент из списка (один или все вхождения);
- преобразовать список в множество (можно использовать ранее разработанные процедуры).

Убедиться в правильности результатов

Для одного из вариантов **ВОПРОСА** и одного из заданий составить таблицу, отражающую конкретный порядок работы системы.

Т.к. резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: вершина – сверху! Новый шаг надо начинать с нового состояния резольвенты! Для каждого запуска алгоритма унификации, требуется указать № выбранного правила и дальнейшие действия – и почему.

Листинг 1.1 – Реализация программы для задания 1

```
domains
2
       list = integer*.
3
4
   predicates
       f(list, integer, list).
5
6
7
   clauses
8
       f([H|T], El, [H|Res]) :-
9
           H > El, !,
10
           f(T, El, Res).
11
       f([_|T], El, Res) :-
12
13
            f(T, El, Res).
14
       f([], _, []) :- !.
15
16
   goal
17
       f([3, 6, 0, -1, 4], 3, R).
```

Листинг 1.2 – Реализация программы для задания 2

```
1
   domains
2
       list = integer*.
3
4
   predicates
5
       odd(list, list).
6
7
   clauses
       odd([\_, H|T], [H|Res]) :- odd(T, Res).
8
9
       odd([_], []) :- !.
       odd([],[]) :- !.
10
11
12
   goal
13
       odd([0, 1, 2, 3, 4, 5, 7], Result).
```

Листинг 1.3 – Реализация программы для задания 3

```
1
   domains
2
       list = integer*.
3
4
   predicates
       del(integer, list, list).
5
6
       createSet(list, list).
7
8
   clauses
9
       del(El, [El|T], Res) :-
10
            del(El, T, Res).
11
12
       del(El, [H|T], [H|Res]) :-
13
            del(El, T, Res), !.
14
15
       del(_, [], []).
16
17
       createSet([H|T], [H|Res]) :-
18
            del(H, T, Tmp),
19
            createSet(Tmp, Res), !.
       createSet([], []).
20
21
22
23
   goal
24
       del(3, [4, 3, 1, 2, 3], Res).
25
       % createSet([1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 3, 2, 6], Res).
```

В Таблице 1.1 представлен порядок поиска ответа на вопрос 1.

Таблица 1.1 – Порядок формирования результата для 1-го вопроса

IIIar	Шаг Сравниваемые термы;	Дальнейшие	Резольвента	Подстановка
	результаты	действия		
	f([3, 6, 0, -1, 4], 3, R).	Прямой ход	3>3	H=3
\leftarrow	и $f([H T], El, [H Res])$			T = [6, 0, -1, 4]
			f([6, 0, -1, 4], 3, Res)	$\mathbb{E} \mathbb{I} = 3$
	3>3	Откат		H=3
2			f([6, 0, -1, 4], 3, Res)	T = [6, 0, -1, 4]
				$\mathrm{El}=3$
	f([3, 6, 0, -1, 4], 3, R).	Прямой ход	f([6, 0, -1, 4], 3, R)	T = [6, 0, -1, 4]
က	и f([_ T], El, [H Res])			$\mathrm{El}=3$
	f([6, 0, -1, 4], 3, R).	Прямой ход	6 > 3	9 = H
4	и f([H T], El, [H Res])			$\mathrm{T} = [0, \text{-}1, 4]$
			f([0, -1, 4], 3, Res)	$\mathbb{E} \mathbb{I} = 3$
	6 > 3 HO 3	Прямой ход		9 = H
25			f([0, -1, 4], 3, Res)	$\mathrm{T} = [0, \text{-}1, 4]$
				$\mathbb{E} \mathbb{I} = 3$
	! IO 3	Прямой ход	f([0, -1, 4], 3, Res)	9 = H
9				$\mathrm{T} = [0, \text{-}1, 4]$
				$\mathrm{El}=3$
			Продолжение на следующей странице	ующей странице

Таблица 1.1 – продолжение

Подстановка	:	$\mathrm{Res} = [6, 4]$	$\mathrm{Res} = [6,4]$			Конец таблицы
Резольвента	:					
Дальнейшие		Прямой ход	Завершение	1 подст.	в рез-те	
Цаг Сравниваемые термы; Дальнейшие результаты действия		f([], 3, []) ^I				
Шаг	:	18	19			

2 Контрольный вопросы

2.1 Что такое рекурсия?

Рекурсия – это ссылка на описываемый объект при описании объекта.

2.2 Как организуется хвостовая рекурсия в Prolog?

- рекурсивный вызов единственен и расположен в конце тела правила;
- не должно быть возможности сделать откат до вычисления рекурсивного вызова.

2.3 Как организовать выход из рекурсии в Prolog?

С помощью отсечения

2.4 Какое первое состояние резольвенты?

Заданный вопрос (goal).

2.5 В каких пределах программы переменные уни-кальны?

Именованная переменная уникальна в рамках предложения, в котором она используется. Анонимные переменные всегда уникальны.

2.6 В какой момент, и каким способом системе удается получить доступ к голове списка?

Получить голову или хвост списка можно при унификации списка с $[H|T],\ H$ – голова списка, T – хвост списка.

2.7 Каково назначение и результат использования алгоритма унификации?

Унификация — механизм логического вывода. Результат — подстановка.

2.8 Как формируется новое состояние резольвенты?

Преобразования резольвенты выполняются с помощью редукции. Редукцией цели G с помощью программы P называется замена цели G телом того правила из P, заголовок которого унифицируется с целью. Новая резольвента образуется в два этапа:

- в текущей резольвенте выбирается одна из подцелей и для неё выполняется редукция;
- к полученной конъюнкции целей применяется подстановка, полученная как наибольший общий унификатор цели и заголовка сопоставленного с ней правила.

2.9 Как применяется подстановка, полученная с помощью алгоритма унификации? Как глубоко?

Подстановка применяется к целям в резольвенте путем замены текущей переменной на соответствующий терм. В результате применения подстановки некоторые переменные конкретизируются значениями, которые (значения) могут и будут далее использованы при доказательстве истинности тела выбранного правила.

2.10 В каких случаях запускается механизм отката?

Механизм отката запустится в случае неудачи алгоритма унификации.

2.11 Когда останавливается работа системы?

Работа системы останавливается, когда найдены все возможные ответы на вопрос.

2.12 Как это определяется на формальном уровне?

Когда в резольвенте находится исходный вопрос, для которого пройдена вся БЗ.