Računarska grafika (20ER7002)

2D i 3D Pogled (viewing)

Predavanja

2D pogled

 2D pogled predstavlja proces računarskog predstavljanja objekata iz 2D sveta na nekom od izlaznih grafičkih uređaja (štampač, ekran, ploter,...)

Lokalne koordinate

 Lokalne koordinate su koordinate objekta (modela).

Svetski koordinatni sistem

- Lokalne koordinate treba transformisati u svetske (prirodne) koordinate. Svetski (prirodni) koordinatni sistem opisuje relativnu poziciju i orijentaciju svih objekata na sceni.
- Za transformaciju iz lokalnog u svetski koordinatni sistem se koriste elementarne 2D transformacije.

Prozor u svetskom koordinatnom sistemu

- Prozor (window) u svetskom koordinatnom sistemu određuje pravougaonu oblast iz svetskog koordinatnog sistema koja će se prikazati na izlaznom uređaju.
- Zaslon (viewport) oblast u koordinatama uređaja (device) gde će se prikazati objekti.

Koordinate pogleda

Koordinate pogleda opisuju poziciju i orijentaciju svakog objekta u odnosu na zadati prozor. Vrši se isecanje (clipping) objekata koji su van prozora.

Normalizovane koordinate uređaja

Local (Model) Coordinates

Normalizovane koordinate opisuju virtuelni uređaj.

Ovo se radi zbog kompatibilnosti sa različitim izlaznim

uređajima.

Definisanje zaslona

 Zaslon (viewport) predstavlja pravougaonu oblast u normalizovanim koordinatama u koju se preslikava prozor iz svetskog koordinatnog sistema.

Koordinate uređaja

Koordinate uređaja (DC – device coordinates)
 predstavljaju koordinate konkretnog izlaznog uređaja i
 zavise od aspekta i rezolucije uređaja.

Svetske koordinate → pogled

(x₀,y₀) – pomeraj prozora u svetskim koordinatama

$$P' = P \cdot T(-x_0, -y_0)$$

Svetske koordinate → pogled

 θ – ugao rotacije pogleda

$$P' = P \cdot T(-x_0, -y_0) \cdot R(-\theta)$$

Koordinate pogleda → normalizovane koordinate

W × H – dimenzije prozora u svetskim koord.

w × h – dimenzije zaslona u NDC

(u₀,v₀) – donji levi ugao zaslona u NDC

$$P' = P \cdot S(w/W, h/H) \cdot T(u_0, v_0)$$

Normalizovane koordinate → koordinate uređaja

$$P' = P \cdot S(c, r)$$

c – broj kolona (*cols*) r – broj vrsta (*rows*)

Aspekt

Aspekt definiše odnos širine i visine slike.

$$aspect = w/h$$

Transformacija prozora u zaslon

 Obično GAPI obezbeđuju funkciju za transformaciju prozora u zaslon (Window-to-Viewport transformation).

```
glViewport(i, j, rows, cols);
gluOrtho2D(x, y, x + w, y + h);
```


$$P' = P \cdot T(-x_0, -y_0) \cdot S(w/W, h/H) \cdot T(u_0, v_0)$$

Implementacija 2D pogleda

$$P' = P \cdot T(-x_0, -y_0) \cdot R(-\theta) \cdot S(w/W, h/H) \cdot T(u_0, v_0) \cdot S(c, r)$$

3D pogled

 3D pogled predstavlja proces računarskog predstavljanja objekata iz 3D sveta na nekom od izlaznih grafičkih uređaja (štampač, ekran, ploter,...)

3D pogled – analogija sa fotografisanjem

- Osnovni elementi i kod klasičnog i kod kompjuterskog pristupa posmatranju objekata u principu su isti. Tako postoje objekti, posmatrač, projektori i ravan projekcije.
- Postoji analogija između računarskog posmatranja objekata i fotografisanja.

Implementacija 3D pogleda

Svetske koordinate → projektovane koordinate

- 1. Definisanje 3-D prozora, ili volumena pogleda.
- 2. Transformisanje u koordinate pogleda.
- 3. Transformisanje volumena pogleda u kanonički volumen.
- 3. Isecanje u odnosu na kanonički volumen.
- 4. Primena projekcije i dobijanje projektovanih koordinata.

Svetske koordinate → koordinate pogleda

$$P' = P \cdot T(-x_0, -y_{0,} -z_0) \cdot R_y(\theta) \cdot R_x(\varphi) \cdot R_z(\alpha)$$

Određivanje volumena pogleda

Paralelna projekcija

Određivanje volumena pogleda

Ugao pogleda (FOV - field of view)

Standardna sočiva

- 48.24 mm ekvivalent ljudskog vida
- širokougaona sočiva (obuhvataju veću scenu umanjuju prikaz) <50mm
 - ≥ 35 mm i 28 mm standardna širokougaona sočiva
 - 10-15 mm − "riblje oko" (sferno sočivo), velika distorzija
- telefoto sočiva (uvećavaju prikaz, približavaju udaljene objekte) >50mm

Koristiti FOV u opsegu:

30-60°,

za realne scene, da ne bi došlo do distorzije.

Sočivo	FOV.
SOCIVO	FOV
15 mm	100.389
20 mm	83.974
24 mm	73.74
28 mm	65.47
35 mm	54.432
50 mm	39.598
85 mm	23.913
135 mm	15.189
200 mm	10.286

Primer korišćenja različitih sočiva

10mm Lens (fov = 122°)

35mm Lens (fov = 54°)

20mm Lens (fov = 84°)

200mm Lens (fov = 10°)

Kanonički volumen

Paralelna projekcija

Kanonički volumen

Perspektivna projekcija

Isecanje (clipping)

Proširenje Cohen-Sutherland-ovog algoritma za isecanje u kanoničkom volumenu

Svakoj oblasti se pridružuje 6-bitni položajni kod (outcode): b₅b₄b₃b₂b₁b₀, gde svaki bit označava jednu oblast:

 b_5 – iznad volumena, y > 1

 b_4 – ispod volumena, y < -1

 b_3 – desno od volumena, x > 1

 b_2 – levo od volumena, x < -1

 b_1 – ispred volumena, z > 1

 b_0 – iza volumena, z < -1

Paralelna projekcija

Proširenje Cohen-Sutherland-ovog algoritma za isecanje u kanoničkom volumenu

Svakoj oblasti se pridružuje 6-bitni položajni kod (outcode): b₅b₄b₃b₂b₁b₀, gde svaki bit označava jednu oblast:

 b_5 – iznad volumena, y > z

b₄ – ispod volumena, y < -z

 b_3 – desno od volumena, x > z

 b_2 – levo od volumena, x < -z

 b_1 – ispred volumena, z > -1

 b_0 – iza volumena, z < - z_{max}

Perspektivna projekcija

Proširenje Cohen-Sutherland-ovog algoritma za isecanje u kanoničkom volumenu

- Linija se trivijalno prihvata ako obe krajnje tačke imaju kodove 0.
- Linija se trivijalno odbacuje ako obe krajnje tačke posle AND operacije imaju kod <> 0.

 U ostalim slučajevima se traži presek linije i volumena.

PITANJA

