1 Properties of Antithetics

Theorem 1. Let p(x) be a distribution over \mathbb{R} and let $p(\zeta) = \prod_i^k p(x_i)$ be the distribution of k i.i.d. samples. Let $T: \mathbb{R}^k \to \mathbb{R}^l$ be a (l-dimensional) statistic of ζ . Let s(t) be the induced distribution of this statistic: $s(t) = \int_{\zeta} \delta_{T(\zeta) = t} p(\zeta) d\zeta$. Let $F: \mathbb{R}^l \to \mathbb{R}^l$ be a deterministic function such that s(F(t)) = s(t). We now construct a sample $\bar{\zeta}$ by: sampling $\zeta \sim p(\zeta)$, computing $\bar{t} = F(T(\zeta))$, sampling $\bar{\zeta} \sim p(\zeta|\bar{t})$ from the conditional given $T(\zeta) = \bar{t}$. This $\bar{\zeta}$ is distributed according to $p(\zeta)$ and, in particular, it's elements are i.i.d. according to p(x).

Proof. We begin by noting that:

$$p(\zeta) = \int_{t} p(\zeta|t)s(t) \tag{1}$$

By assumption,

$$s(\bar{t}) = s(F(t)) \tag{2}$$

$$= s(t). (3)$$

Thus.

$$p(\bar{\zeta}) = \int_{\bar{t}} p(\zeta|\bar{t})s(\bar{t}) \tag{4}$$

$$= \int_{t} p(\zeta|t)s(t) \tag{5}$$

$$= p(\zeta) \tag{6}$$

Thus $\bar{\zeta} \sim p(\zeta)$. Since $p(\zeta)$ is the distribution over i.i.d. samples from p(x), the resulting elements of $\bar{\zeta}$ are also i.i.d. from p(x).

We provide one example of a function F with the desired property.

Lemma 2. Let $F(t) = \text{CDF}(1 - \text{CDF}^{-1}(t))$ where CDF is the cumulative distribution function for s(t). Then s(F(t)) = s(t).

Proof. Let $X \sim \mathrm{U}(0,1)$. By definition, $\mathrm{CDF}(X)$ will be distributed as s(t). Trivially, $\mathrm{CDF}^{-1}(t) \sim \mathrm{U}(0,1)$ when $t \sim s(t)$, and so too is $1 - \mathrm{CDF}^{-1}(t)$. \square

Corollary 1. Let $\theta = \mathbb{E}_p[h(x)]$ be a function expectation of interest with respect to a distribution, $p(x), x \in \mathbb{R}$. Let $\hat{\theta}_1$ be an unbiased Monte Carlo estimate using i.i.d. samples $\zeta \sim p(\zeta)$. Let $\hat{\theta}_2$ be an "antithetic" estimate using samples $\bar{\zeta}$ generated as in Theorem 1. Then the following hold,

- $\hat{\theta}_2$ is unbiased estimate of θ
- $\hat{\theta}_3 = \frac{\hat{\theta}_1 + \hat{\theta}_2}{2}$ is unbiased estimate of θ

• Let $F = \text{CDF}(1 - \text{CDF}^{-1}(T))$. Then the first and second moments of ζ are anti-correlated to those of $\bar{\zeta}$

Proof. By Theorem 1, "antithetic" samples $\bar{\zeta} \sim p(\zeta)$ i.i.d., hence $\hat{\theta}_2$ is unbiased $(\hat{\theta}_2)$ is equivalent to $\hat{\theta}_1$. $\hat{\theta}_3$ is also unbiased as a linear combination of two unbiased estimators is itself unbiased. Anti-correlation of moments falls trivially from our choice of F.

Connection to Differentiable Antithetic Sampling In the paper, we proposed the following proposition,

Proposition 3. For any k > 2, $\mu \in \mathbb{R}$ and $\sigma^2 \in \mathbb{R}^+$, if $\eta \sim \mathcal{N}(\mu, \frac{\sigma^2}{k})$ and $\frac{(k-1)\delta^2}{\sigma^2} \sim \chi_{k-1}^2$, and $\bar{\eta} = f(\eta), \bar{\delta}^2 = g(\delta^2; \sigma^2)$ for some functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$, and $\epsilon = (\epsilon_1, ..., \epsilon_k) \sim \mathcal{N}(0, 1)$, then the "antithetic" samples $\zeta = (x_1, ..., x_k) = \text{MARSAGLIASAMPLE}(\epsilon, \bar{\eta}, \bar{\delta}^2, k)$ are independent normal variates sampled from $\mathcal{N}(\mu, \sigma^2)$ such that $\frac{1}{k} \sum_i^k x_i = \bar{\eta}$ and $\frac{1}{k} \sum_i^k (x_i - \bar{\eta})^2 = \bar{\delta}^2$.

Define a statistic $T=[\bar{\eta},\bar{\delta}^2]$, and function F=[f,g]. Marsaglia's algorithm (or Pullin's, Cheng's) can be seen as a method for sampling from $p(\zeta|t)$ for a fixed statistic t. In Proposition 3, we first sample $t \sim s(T(\zeta))$ where $\zeta \sim \mathcal{N}(\mu, \sigma^2)$. Then, we choose "antithetic" statistics using

$$f = \text{GAUSSIANCDF}(1 - \text{GAUSSIANCDF}^{-1}(\eta))$$
 (7)

$$g = \frac{\sigma^2}{(k-1)} \text{CHiSquaredCDF}(1 - \text{CHiSquaredCDF}^{-1}(\frac{(k-1)\delta^2}{\sigma^2}))$$
 (8)

such that s(F(t)) = s(t) by symmetry in U(0,1). By Theorem 1, antithetic samples $\bar{\zeta}$ are distributed as ζ is. In practice, we use both ζ and $\bar{\zeta}$ for stochastic estimation, as anti-correlated moments provide empirical benefits.

2 Properties of Marsaglia's Algorithm

Theorem 4. Let $\epsilon = (\epsilon_1, ..., \epsilon_{k-1}) \sim \mathcal{N}(0, 1)$ auxiliary variables. Let η, δ be known variables. Then $\zeta = (x_1, ..., x_k) = \text{MARSAGLIASAMPLE}(\epsilon, \eta, \delta^2, k)$ are uniform samples from the sphere

$$S = \{(x_1, ..., x_k) | \sum_{i=1}^{k} x_i = k\eta, \sum_{i=1}^{k} (x_i - \eta)^2 = k\delta^2 \}$$

Proof. S is the intersection of a hyperplane and the surface of a k-sphere: the surface of a (k-1)-sphere. Marsaglia uses the following to sample from S:

Let $z=(z_1,...,z_{k-1})$ be a sample drawn uniformly from the unit (k-1)sphere centered at the origin. (In practice, set $z_i=\epsilon_i/\sqrt{\sum_j^k \epsilon_j^2}$.) Let

$$\zeta = rzB + \eta v \tag{9}$$

where v = (1, 1, ..., 1) and choose B to be a (k - 1) by k matrix whose rows form an orthonormal basis with the null space of v. By definition, $BB^t = I$ and $Bv^t = 0$ where I is the identity matrix. We note the following consequence:

$$\zeta v^t = (rzB + \eta v)v^t \tag{10}$$

$$= rzBv^t + \eta vv^t \tag{11}$$

$$= 0 + \eta v v^t \tag{12}$$

$$=k\eta\tag{13}$$

$$(\zeta - \eta v)(\zeta - \eta v)^t = (rzB + \eta v - \eta v)(rzB + \eta v - \eta v)^t \tag{14}$$

$$= (rzB)(rzB)^t \tag{15}$$

$$= r^2 z B B^t z^t \tag{16}$$

$$=r^2zz^t\tag{17}$$

$$=r^2\tag{18}$$

Eqn. 13, 18 exactly match the constraints defined in S. So $\zeta \in S$. Further ζ is uniformly distributed in S as z is uniform over the (k-1)-sphere. \square

Theorem 5. Let $\zeta = (x_1, ..., x_k) \sim p(\zeta)$ be a random vector of i.i.d. Gaussians $\mathcal{N}(\mu, \sigma^2)$. Let $\eta = \frac{1}{k} \sum_{i=1}^{k} x_i$ and $\delta^2 = \frac{1}{k} \sum_{i=1}^{k} (x_i - \eta)^2$. Then $\eta \sim \mathcal{N}(\mu, \frac{\sigma^2}{k})$ and $\frac{(k-1)\delta^2}{\sigma^2} \sim \chi_{k-1}^2$ and η, δ^2 are independent random variables.

Proof. This is a known property of Gaussian distributions. Reference *Statistics:* An introductory analysis or any introductory statistics textbook. \Box

Theorem 6. Let $\zeta = (x_1, ..., x_k)$ be a random vector of i.i.d. Gaussians $\mathcal{N}(\mu, \sigma^2)$. Let $\eta = \frac{1}{k} \sum_{i=1}^k x_i = \text{and } \delta^2 = \frac{1}{k} \sum_{i=1}^k (x_i - \eta)^2$ and $T = [\eta, \delta^2]$. Let $p(\zeta, T(\zeta)) = p(\zeta, \eta, \delta^2)$ denote their joint distribution.

Then, the conditional density is of the form

$$p(\zeta|\eta = \eta, \delta^2 = \delta^2) = \begin{cases} & a \text{ if } \zeta \in S\\ & 0 \text{ if } \zeta \notin S. \end{cases}$$
 (19)

where $S = \{(x_1,...,x_k) | \sum_i x_i = k\eta, \sum_i (x_i - \eta)^2 = k\delta^2\}, \ 0 < a < 1 \ is \ a \ constant.$

Proof.

Intuition: Level sets of a multivariate isotropic Gaussian density function are spheres. The event we are conditioning on is a sphere.

Formal Proof: Let $f(x_1,...,x_k) = (2\pi\sigma^2)^{-k/2}e^{(-\sum_i(x_i-\mu)^2/(2\sigma^2))}$ denote a Gaussian density. Note the following derivation:

$$\sum_{i=1}^{k} (x_i - \mu)^2 = \sum_{i} (x_i - \eta)^2 + 2(\eta - \mu) \sum_{i} (x_i - \eta) + k(\eta - \mu)^2$$
 (20)

$$= \sum_{i} (x_i - \eta)^2 + k(\eta - \mu)^2$$

$$= r^2 + k(\eta - \mu)^2$$
(21)

$$= r^2 + k(\eta - \mu)^2 \tag{22}$$

This implies $f(x_1,...,x_k)$ is equal for any $(x_1,...,x_k) \in S$. Thus, the conditional distribution $p(\zeta|\zeta \in S)$ is the uniform distribution over S for any μ, σ .

Finally, proof of the corollary from the paper:

Corollary 2. For any k > 2, $\mu \in \mathbb{R}$ and $\sigma^2 \in \mathbb{R}^+$, if $\eta \sim \mathcal{N}(\mu, \frac{\sigma^2}{k})$ and $\frac{(k-1)\delta^2}{\sigma^2} \sim \chi_{k-1}^2$ and $\epsilon = (\epsilon_1, ..., \epsilon_{k-1}) \sim \mathcal{N}(0,1)$, then the generated samples $\zeta' = \text{MARSAGLIASAMPLE}(\epsilon, \eta, \delta^2, k)$ are independent normal variates sampled from $\mathcal{N}(\mu, \sigma^2)$.

Proof. Let $\zeta=(x_1,...,x_k)$ be a random vector of i.i.d. Gaussians $\mathcal{N}(\mu,\sigma^2)$. Compute $\eta=\frac{1}{k}\sum_i^k x_i=$ and $\delta^2=\frac{1}{k}\sum_i^k (x_i-\eta)^2$ and $T=[\eta,\delta^2]$. Let $p(\zeta,T(\zeta))=p(\zeta,\eta,\delta^2)$ denote their joint distribution. Factoring

$$p(\zeta,\eta,\delta^2) = p(\eta,\delta^2) p(\zeta \mid \eta,\delta^2)$$

, it is clear that we can sample from the joint by first sampling $\eta, \delta^2 \sim p(\eta, \delta^2)$ and then $\zeta' \sim p(\zeta \mid \eta = \eta, \delta^2 = \delta^2)$. From Theorem 5, we know $p(\eta, \delta^2)$ analytically and from Theorem 6 we know $p(\zeta \mid \eta, \delta^2)$ is a uniform distribution over the sphere. By assumption, η, δ^2 are sampled independently from the correct marginal distributions from Theorem 5. Then, from Theorem 4, we know MarsagliaSample($\epsilon, \eta, \delta^2, k$) samples from the correct conditional density (i.e. from S). Thus, samples ζ' from MARSAGLIASAMPLE will have the same distribution as ζ , namely i.i.d. Gaussian.