Recurrent reconstruction network enables real-time and high-resolution PRF thermometry for LITT

Yuancheng Jiang¹, Ziyi Pan¹, Kai Zhang², Meng Han³, Wenbo Liu³, Guangzhi Wang⁴, and Hua Guo¹

¹ Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
² Beijing Tiantan Hospital, Capital Medical University, Beijing, China
³ Sinovation Medical, Beijing, China
4 School of Biomedical Engineering, Tsinghua University, Beijing, China

Introduction

LITT is used for brain disease treatment, with PRF shift-based thermometry usually employed for temperature monitoring.

Recent LITT calls for PRF thermometry with:

- large volume coverage
- high spatiotemporal resolution
- real-time reconstruction

Needs acceleration!

Real

conformable ablation

0

Introduction-Acceleration

Parallel Imaging

- Uniform undersampling.
- GRAPPA or SENSE for reconstruction.

Pros:

- simple implementation
- widely-used

Cons:

limited acceleration factor

Improved acceleration

- Fast acquisition using CS, EPI, spiral, etc.
- Specialized reconstruction methods (AscLR, dTV, etc.)

Pros:

high acceleration factor

Cons:

low reconstruction speed

Deep learning

- Usually CS acquisition
- Deep learning reconstruction (CRNN, MoDL, etc.)

Pros:

- high acceleration factor
- high reconstruction speed

Cons:

low generalizability

Methods-Overview

Acquisition

- 2D multi-echo GRE
- Compressed-Sensing (CS) Undersampling

CS mask

Reconstruction

- Recurrent Reconstruction Network (RRN).
- RRN is trained on in vivo PRF data.

image example

Experiments

- Retrospectively undersampling experiments.
- Prospectively undersampling experiments.

Methods-RRN

Network architecture

Inside each RRN block

Residual Block:

 $oldsymbol{x}_t^{(n)}$: reconstructed image

* n = 0 means zero-filled reconstruction

Methods-Data and experiments

Data acquisition

PRF thermometry data from 18 patients during LITT.

Data set	Size
Training set	14
Validation set	1
Test set	3

Network training

- 8 × CS-undersampled
- Reconstruction by RRN
- L2 loss

Retrospective experiments

- Retrospectively 8 × CSundersampling on the test set.
- Reconstruction by AscLR, dTV, CRNN and RRN.

Prospective experiments

- Prospectively 8 × CS-undersampling for MR acquisition during heating.
- Resolution = 1.8 mm isotropic, 12 slices, 4.8 s/frame.
- Optic sensor for temperature ground-truth.

Retrospective: Magnitude SSIM curve

Results

Retrospective: Temperature reconstruction

Retrospective: Temperature reconstruction

Results

Retrospective: Overall reconstruction

Results

Prospective: Temperature reconstruction

Discussion and Conclusion

We propose RRN for high-resolution, large-coverage, real-time MR thermometry.

RRN is effective in both retrospective and prospective experiments.

More prospective experiments need to be done in the future.

Acknowledgement

