Nazwa pliku zawierającego wyniki pracy (Excel (Word)):

Gxxxx-Kyy-Pz.xls (.doc)

Grupa	xxxx=311A	Komputer	<i>yy</i> =01	Projekt	<i>z</i> =1
	xxxx=311B		yy = 02		z=2
	xxxx=312A		yy = 03		z=3
	xxxx=312B		yy = 04		z=4
	xxxx=313A		<i>yy</i> =		z=5
	xxxx=313B	· •	yy = 15		<i>3</i> *

W przypadku grupy dwuosobowej wyniki należy umieścić na komputerze o **nieparzystym** numerze

ZAŁOŻENIA DOTYCZĄCE REALIZACJI PROJEKTU NR 3

Założenia dotyczące przygotowania danych:

Dane uczące: **50** obrazów (**5** klas po **10** obrazów)

- należy wybrać cztery litery z nazwiska studenta przeprowadzającego eksperyment oraz jedną cyfrę ("młodsza" cyfra w numerze komputera),
- dla każdego znaku (w przyp. liter rozważane są "duże" litery) należy przygotować –z wykorzystaniem programu Edytor obrazów (rozmiary obrazów 8x10 pikseli) 10 obrazów, w tym jeden będący "idealnym" reprezentantem danego znaku oraz dziewięć obrazów będących "lekko" zdeformowanymi (zmiana do 10% pikseli) wersjami obrazu "idealnego"; obrazy muszą rozciągać się w całej rozważanej matrycy pikselowej a nie tylko w jej części; jako etykietę danej klasy należy przyjąć znak rozważanej litery lub cyfry.

Dane testowe: nie będą wykorzystywane

Dane weryfikujące: 75 obrazów, w tym

- 25 obrazów z nałożonym szumem dla każdego "idealnego" reprezentanta danego znaku należy nałożyć na niego, kolejno, następujące poziomy szumu: 30%, 40%, 50%, 60%, 70% (5 znaków x 5 poziomów szumu daje 25 obrazów),
- 50 obrazów reprezentujących "przechodzenie" jednego ze znaków w kolejny, np. w przypadku znaków A, B, C, D (litery) oraz 1 (cyfra) należy skonstruować 10 obrazów reprezentujących kolejne fazy "przechodzenia" znaku A w B, następnie 10 obrazów dla znaku B przechodzącego w C, z kolei 10 dla znaku C przechodzącego w D, dalej 10 dla przejścia znaku D w 1 oraz 10 obrazów dla przejścia znaku 1 w A.

Przenoszenie danych z programu *Edytor obrazów* do programu *Neuronix*:

(niezależnie od wykorzystywania danych poza programem *Edytor obrazów*, należy wyniki uzyskiwane w tym programie zapisywać – co pewien czas – w pliku z rozszerzeniem .images, który można przetwarzać przy pomocy tego programu)

po przygotowaniu wszystkich 125 obrazów należy zapisać je w pliku tekstowym wykorzystując opcję Eksportuj → Obrazy do pliku danych numerycznych oraz wybierając jedną z trzech podopcji: obrazy w wierszach, obrazy w kolumnach lub obrazy w matrycach (należy samodzielnie wybrać tę podopcję, która będzie najdogodniejsza z punktu widzenia uzyskania danych w formacie, który – z kolei – bezpośrednio będzie można wykorzystać w programie Neuronix),

- z powyższego pliku tekstowego, 50 rekordów reprezentujących dane uczące należy przenieść do arkusza uczącego w programie *Neuronix*; następnie, ręcznie wprowadzić kody dla obiektów poszczególnych klas (kod '1 z 5'; jako nazwy wyjść należy przyjąć znaki rozważanych liter lub cyfry),
- pozostałe 75 rekordów w powyższym pliku tekstowym (reprezentujących dane weryfikujące) będzie wykorzystane w fazie uruchomienia sieci (po zakończeniu uczenia sieci) w celu sprawdzenia jakości jej funkcjonowania;
 - rekordy te należy przenieść do arkusza, z którym *Neuronix* 'zgłosi się' w fazie uruchomienia sieci:

w arkuszu tym – po danych weryfikujących – należy również umieścić **50** rekordów reprezentujących dane uczące;

po skompletowaniu powyższego arkusza (łącznie 125 rekordów) należy uzyskać odpowiedzi sieci a następnie umieścić je w 'Zestawieniu odpowiedzi sieci dla obrazów weryfikujących i uczących' (patrz poniżej).

Przenoszenie danych (w postaci graficznej – pliki BMP) z programu *Edytor obrazów* do programów *Excel, Word,* itp.:

uruchomienie opcji Eksportuj → Miniatury obrazów do plików BMP spowoduje automatyczny zapis we wskazanym katalogu tylu plików BMP ile obrazów zostało przygotowanych w Edytorze obrazów; nazwy poszczególnych plików BMP zawierają numery odpowiadających im obrazów z Edytora obrazów.

Ustawienia parametrów w fazie uczenia sieci:

- ZPWU = 100% (ZPWU = Zadany Procent Wzorców Uczących),
- Mieszanie wzorców = włączone,
- TU=0.1 a następnie TU=0.01 (TU = Tolerancja Uczenia),
- struktura sieci bez warstw ukrytych;
 jeśli system z taką strukturą nie jest w stanie nauczyć się rozważanych danych wprowadzić warstwe ukryta z 5-cioma neuronami;

jeśli powyższy system nie sprawdza się – wprowadzić warstwę ukrytą z **10**-cioma neuronami, następnie z **15**-toma neuronami, itd.,

ze względu na duży rozmiar sieci oraz relację pomiędzy liczbą wag a liczbą danych uczących – nie ma sensu stosować sieci z dwoma warstwami ukrytymi.

Powyższe eksperymenty uczenia sieci należy powtórzyć dla tych samych obrazów ale przedstawionych w matrycach **12x15 pikseli** (dotychczasowe eksperymenty były przeprowadzone dla obrazów w matrycach 8x10 pikseli).

Należy przeanalizować uzyskane wyniki pod kątem wpływu wartości tolerancji uczenia oraz rozdzielczości matrycy pikselowej obrazów na dokładność funkcjonowania sieci neuronowej.

${\bf `Zestawienie\ odpowiedzi\ sieci\ dla\ obraz\'ow\ weryfikujących\ i\ uczących'- przykładowy\ fragment}$

		8x10									12x15									
Obraz	TU=0.1					TU=0.01				TU=0.1					TU=0.01					
	Α	С	Н	T	1	Α	С	Н	T	1	Α	С	Н	T	1	A	С	Н	T	1
	0,78	0,18	0,34	0,18	-0,01	0,79	0,07	0,06	0,02	-0,02	0,63	0,14	0,02	0,04	-0,01	0,79	0,14	0,05	0,01	-0,01
	0,57	-0,37	-0,2	0,03	0,13	0,81	0,04	0,03	0,01	0,04	0,5	-0,03	0,21	0	0,17	0,55	0,18	0,18	0,18	0
	0,38	-0,4	-0,33	0,11	-0,07	0,77	0,03	0,02	0,11	0,01	0,51	0,01	0,27	0,08	-0,01	0,62	-0,13	0	0,56	0,01
	0,57	0,09	0,17	0,16	0,15	0,76	0,08	0,06	0,03	0,02	0,29	-0,06	0,41	0,07	0,16	0,31	-0,26	0,29	0,73	0,02
	0,25	-0,13	0,13	0,18	0,12	0,71	0,13	0,1	0,04	0	0,26	0,25	0,13	0,07	0,15	0,15	0,59	0,22	0,11	0,01
	0,2	0,8	0,16	0,2	-0,11	0,08	0,78	0,04	0,08	-0,02	0	0,62	0	0,11	0,12	0,01	0,85	0,01	0,04	-0,02
	-0,03	0,35	-0,17	0,42	0,02	0,24	0,66	0,06	0,08	-0,01	-0,04	0,64	0,04	0,09	0,12	0	0,82	0,05	0,07	-0,02