PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 5 (Feb 21 – Feb 28)

- 1 (5+5+5+10+15) Which of the following field extensions are normal? Justify your answers.
 - 1) $\mathbb{Q}(i):\mathbb{Q}$
 - 2) $\mathbb{Q}(2^{1/4}):\mathbb{Q}$
 - 3) $\mathbb{Q}(2^{1/4},i):\mathbb{Q}$
 - 4) $\mathbb{Q}(2^{1/4}, i, \sqrt{5}) : \mathbb{Q}$
 - 5) $\mathbb{Q}(3^{1/3}, i, \sqrt{3}) : \mathbb{Q}.$
- **2** (15) Let $\psi: L \to M$ be a homomorphism, suppose that L is algebraically closed. Prove that $\psi(L)$ is algebraically closed.
- **3** (20) Let L:K be a field extension. Then \overline{K} is isomorphic to \overline{L} . In addition, if $K\subset L\subseteq \overline{L}$, then $\overline{K}=\overline{L}$.
- 4 (15) Let K-L be a normal extension, $K\subseteq L\subseteq \overline{K}$. Then for any K-homomorphism $\tau:L\to \overline{K}$ one has $\tau(L)=L$.
- **5** (25) Put $K = \mathbb{F}_2(t)$ and consider $L = K(t^{1/3})$. Prove that the extension L: K is algebraic but not normal.