Causal Compatibility Inequalities Admitting of Quantum Violations in the Triangle Scenario

T.C. Fraser^{1,2}

 1 Perimeter Institute for Theoretical Physics Ontario, Canada 2 University of Waterloo Ontario, Canada

Phys 437 Oral Report, Jan. 2017

Quantum/Classical Discrepancies

Quantum Mechanics can do stuff that Classical Mechanics can't!

- Quantum Information/Communication
 - Quantum Key Distribution (QKD)
- Quantum Algorithms/Computation
 - Shor's Algorithm, Quantum Simulated Annealing, String Matching, . . .
 - Polynomial or even exponential advantage
 - http://math.nist.gov/quantum/zoo/
- Quantum Foundations
 - Derivation of Bell inequalities
 - Abandoning local hidden variable theories (LHVs)

Important to determine *precisely* where quantum/classical differ, but how?

Notation & Jargon

Given a set of observations, are they *compatible* with a given classical model?

Causal Structure *G*

(classical model)

$$\mathcal{G} = (\mathcal{N}, \mathcal{E})$$

 ${\mathcal E}$: causal influence

 \mathcal{N} : random variables

 \mathcal{N}_O : observable variables

 \mathcal{N}_L : latent variables

$$\mathcal{N} = \mathcal{N}_O \cup \mathcal{N}_L$$

Marginal Model $P^{\mathcal{M}}$ (set of observations)

 ${\mathcal M}:$ marginal scenario

$$\mathcal{M} = \{ V \mid V \subseteq \mathcal{N}_O \}$$

$$P^{\mathcal{M}} = \{ P_V \mid V \in \mathcal{M} \}$$

Causal Compatibility

Question: Can your model \mathcal{G} explain the observation $P^{\mathcal{M}}$?

Question: Is $P^{\mathcal{M}}$ compatible with \mathcal{G} ?

Answer: If $P^{\mathcal{M}}$ is to be compatible with \mathcal{G} then:

1 $P^{\mathcal{M}}$ must admit a joint distribution $P_{\mathcal{N}}$:

$$P_V = \sum_{\mathcal{N} \setminus V} P_{\mathcal{N}}$$

2 P_N must obey Markov conditions (independence given parents):

$$P_{\mathcal{N}} = \prod_{n \in \mathcal{N}} P_{n \mid \mathsf{Pa}_{\mathcal{G}}(n)}$$

Inequalities

Task: Determine if $P^{\mathcal{M}}$ is compatible or incompatible with \mathcal{G}

Tool: A casual compatibility inequality I is an inequality satisfied by all compatible $P^{\mathcal{M}}$

- Inequalities *I* are **extremely useful**:
- \blacksquare If $P^{\mathcal{M}}$ satisfies all such constraints I, then it is compatible with \mathcal{G}
- lacksquare If $P^{\mathcal{M}}$ violates any constraint I, then it is incompatible with \mathcal{G}
- Inequalities act as measures of non-classicality
- I identifies fundamentally new resources or quantum advantages!

Case Study: The Triangle Scenario

Classical (Compatible) Distributions for Triangle Scenario

$$P_{ABC} = \sum_{X,Y,Z} P_{A|X,Y} P_{B|Y,Z} P_{C|Z,X} P_X P_Y P_Z$$

Quantum Distributions for Triangle Scenario

$$P_{ABC} = \text{Tr}[\Pi^{\mathsf{T}} \rho_{AB} \otimes \rho_{BC} \otimes \rho_{CA} \Pi M_A \otimes M_B \otimes M_C]$$

Why Triangle Scenario?

- The TS could be home to brand new entanglement resources which could lead to new technologies and fundamental physics, albeit very difficult to find
- In Branciard_2012 it was noted that characterizing quantum non-classicality in TS remained an open problem and that identifying compatibility inequalities seemed challenging
- In Fritz_2012 Fritz demonstrated that TS is the smallest correlation scenario in which quantum non-classicality is manifest (proof without inequalities)
- In Henson_2014 TS was classified as an interesting causal structure: conditional independence relations are not a sufficient characterization of compatibility (there are none)
- Several other authors (see Steudel_2010 Chaves_2014 Inflation . . .) have been unable to find inequalities with quantum violations

Deriving Inequalities

- Two necessary components to compatibility: joint distribution, Markov separability
- It is possible to cast Markov separability problem into a joint distribution problem (at least partially)!
- Inflation Technique?? developed by E. Wolfe, R. Spekkens, T. Fritz provides tools for solving compatibility problem
- Definite Extension Procedure developed by myself, E. Wolfe and others allows one to derive inequalities for **very large** causal structures

Causal Compatibility Inequalities

$$\leq \\ 2P_{ABC}(203)P_{C}(0) + 2P_{ABC}(303)P_{C}(0) + P_{ABC}(003)P_{C}(0) + P_{ABC}(013)P_{C}(0) + \\ P_{ABC}(020)P_{C}(2) + P_{ABC}(022)P_{C}(2) + P_{ABC}(023)P_{C}(0) + P_{ABC}(023)P_{C}(2) + \\ P_{ABC}(030)P_{C}(2) + P_{ABC}(031)P_{C}(2) + P_{ABC}(032)P_{C}(2) + P_{ABC}(033)P_{C}(0) + \\ P_{ABC}(033)P_{C}(2) + P_{ABC}(103)P_{C}(0) + P_{ABC}(113)P_{C}(0) + P_{ABC}(123)P_{C}(0) + \\ P_{ABC}(133)P_{C}(0) + P_{ABC}(200)P_{C}(0) + P_{ABC}(200)P_{C}(1) + P_{ABC}(200)P_{C}(2) + \\ P_{ABC}(200)P_{C}(3) + P_{ABC}(201)P_{C}(0) + P_{ABC}(201)P_{C}(1) + P_{ABC}(201)P_{C}(2) + \\ P_{ABC}(201)P_{C}(3) + P_{ABC}(203)P_{C}(1) + P_{ABC}(203)P_{C}(2) + P_{ABC}(203)P_{C}(3) + \\ P_{ABC}(213)P_{C}(0) + P_{ABC}(223)P_{C}(0) + P_{ABC}(300)P_{C}(0) + P_{ABC}(300)P_{C}(1) + \\ P_{ABC}(300)P_{C}(2) + P_{ABC}(301)P_{C}(3) + P_{ABC}(301)P_{C}(0) + P_{ABC}(303)P_{C}(1) + \\ P_{ABC}(301)P_{C}(2) + P_{ABC}(301)P_{C}(3) + P_{ABC}(302)P_{C}(1) + P_{ABC}(303)P_{C}(1) + \\ P_{ABC}(303)P_{C}(2) + P_{ABC}(301)P_{C}(3) + P_{ABC}(303)P_{C}(1) + P_{ABC}(303)P_{C}(0) + \\ P_{ABC}(303)P_{C}(2) + P_{ABC}(303)P_{C}(3) + P_{ABC}(303)P_{C}(1) + P_{ABC}(303)P_{C}(0) + \\ P_{ABC}(303)P_{C}(2) + P_{ABC}(303)P_{C}(3) + P_{ABC}(303)P_{C}(3) + P_{ABC}(303)P_{C}(0) + \\ P_{ABC}(303)P_{C}(2) + P_{ABC}(303)P_{C}(3) + P_{ABC}(303)P_{C}(3) + P_{ABC}(303)P_{C}(3) + P_{ABC}(303)P_{C}(3) + \\ P_{ABC}(303)P_{C}(2) + P_{ABC}(303)P_{C}(3) + P_{ABC}(3$$

 $P_{ABC}(000)P_{C}(3)$

Causal Compatibility Inequalities (Simplified)

$$\begin{split} P_{ABC}(000)P_{C}(3) + P_{ABC}(021)P_{C}(2) + P_{ABC}(202) + P_{ABC}(302) + \\ P_{ABC}(233)P_{C}(0) + P_{AC}(33)P_{C}(0) \\ \leq \\ P_{ABC}(303)P_{C}(0) + P_{ABC}(313)P_{C}(0) + P_{ABC}(302)P_{C}(1) + \\ P_{AB}(02)P_{C}(2) + P_{AB}(03)P_{C}(2) + P_{AB}(20) + P_{AB}(30) + P_{C}(3)P_{C}(0) \end{split}$$

Certificate for Fritz Distribution

$$\begin{split} P(110)P(223) + P(110)P(233) + P(110)P(323) + P(110)P(333) &\leq \\ 2P(020)P(213) + 2P(023)P(210) + 2P(023)P(310) + 2P(030)P(213) + \\ 2P(033)P(210) + 2P(033)P(310) + 2P(120)P(213) + 2P(123)P(210) + \\ 2P(123)P(310) + 2P(130)P(213) + 2P(132)P(311) + 2P(133)P(210) + \\ &\qquad \qquad + \cdots \quad 324 \text{ more terms } \cdots + \\ P(320)P(323) + P(320)P(333) + P(323)P(330) + P(330)P(333) \end{split}$$

Note: P(abc) shorthand for $P_{ABC}(abc)$

Certificate for Fritz Distribution (Full)

P(110)P(223) + P(110)P(233) + P(110)P(323) + P(110)P(333)

≤

2P(020)P(213) + 2P(023)P(210) + 2P(023)P(310) + 2P(030)P(213) + 2P(030)P(213) + 2P(033)P(210) + 2P(120)P(213) + 2P(123)P(210) + 2P(123)P(310) + 2P(130)P(213) + 2P(123)P(310) + 2P(123)P(3102P(132)P(311) + 2P(133)P(210) + 2P(133)P(310) + P(000)P(003) + P(000)P(003) + P(000)P(023) + P(000)P(033) + P(000)P(103) + P(000)P(113) + P(000)P(123) + P(000)P(023) + PP(000)P(133) + P(000)P(203) + P(000)P(213) + P(000)P(223) + P(003)P(010) + P(003)P(020) + P(003)P(030) + P(003)P(100) + P(003)P(110) + P(003)P(120) + P(00P(003)P(130) + P(003)P(200) + P(003)P(210) + P(003)P(220) + P(003)P(230) + P(003)P(300) + P(003)P(310) + P(003)P(320) + P(003)P(330) + P(010)P(013) + P(010)P(010) + P(01P(010)P(023) + P(010)P(033) + P(010)P(103) + P(010)P(103) + P(010)P(113) + P(010)P(123) + P(010)P(123) + P(010)P(203) + P(010)P(213) + P(010)P(223) + P(010)P(203) + P(01P(013)P(030) + P(013)P(100) + P(013)P(110) + P(013)P(120) + P(013)P(130) + P(013)P(200) + P(013)P(210) + P(013)P(220) + P(013)P(230) + P(013)P(300) + P(01P(013)P(310) + P(013)P(320) + P(013)P(330) + P(020)P(023) + P(020)P(033) + P(020)P(103) + P(020)P(113) + P(020)P(123) + P(020)P(133) + P(020)P(123) + P(02P(020)P(210) + P(020)P(211) + P(020)P(212) + P(020)P(223) + P(020)P(233) + P(020)P(310) + P(020)P(311) + P(020)P(312) + P(020)P(313) + P(021)P(210) + P(020)P(210) + P(02P(021)P(211) + P(021)P(212) + P(021)P(213) + P(021)P(310) + P(021)P(311) + P(021)P(312) + P(021)P(313) + P(022)P(210) + P(022)P(212) + P(022)P(213) + P(021)P(213) + P(02P(022)P(310) + P(022)P(311) + P(022)P(312) + P(022)P(313) + P(023)P(030) + P(023)P(100) + P(023)P(110) + P(023)P(120) + P(023)P(130) + P(02P(023)P(211) + P(023)P(212) + P(023)P(213) + P(023)P(220) + P(023)P(230) + P(023)P(300) + P(023)P(311) + P(023)P(312) + P(023)P(313) + P(023)P(312) + P(023)P(313) + P(02P(023)P(330) + P(030)P(033) + P(030)P(103) + P(030)P(113) + P(030)P(123) + P(030)P(133) + P(030)P(203) + P(030)P(210) + P(030)P(211) + P(030)P(212) + P(030)P(213) + P(03P(030)P(223) + P(030)P(233) + P(030)P(310) + P(030)P(311) + P(030)P(312) + P(030)P(313) + P(031)P(210) + P(031)P(211) + P(031)P(212) + P(031)P(213) + P(03P(031)P(310) + P(031)P(311) + P(031)P(312) + P(031)P(313) + P(032)P(210) + P(032)P(212) + P(032)P(213) + P(032)P(310) + P(032)P(311) + P(032)P(312) + P(03P(032)P(313) + P(033)P(100) + P(033)P(110) + P(033)P(120) + P(033)P(130) + P(033)P(200) + P(033)P(211) + P(033)P(212) + P(033)P(213) + P(03P(033)P(230) + P(033)P(300) + P(033)P(311) + P(033)P(312) + P(033)P(313) + P(033)P(320) + P(033)P(330) + P(100)P(103) + P(100)P(113) + P(10P(100)P(133) + P(100)P(203) + P(100)P(213) + P(100)P(223) + P(103)P(110) + P(103)P(120) + P(103)P(130) + P(103)P(200) + P(103)P(210) + P(10P(103)P(230) + P(103)P(300) + P(103)P(310) + P(103)P(320) + P(103)P(320) + P(110)P(113) + P(110)P(123) + P(110)P(133) + P(110)P(203) + P(110)P(213) + P(11P(110)P(223) + P(113)P(120) + P(113)P(130) + P(113)P(200) + P(113)P(210) + P(113)P(220) + P(113)P(230) + P(113)P(300) + P(113)P(310) + P(113)P(310) + P(113)P(310) + P(113)P(310) + P(313)P(310) + P(31P(113)P(330) + P(120)P(123) + P(120)P(133) + P(120)P(203) + P(120)P(210) + P(120)P(211) + P(120)P(212) + P(120)P(223) + P(120)P(233) + P(120)P(310) + P(12P(120)P(311) + P(120)P(312) + P(120)P(313) + P(121)P(210) + P(121)P(211) + P(121)P(212) + P(121)P(213) + P(121)P(310) + P(121)P(311) + P(121)P(312) + P(12P(121)P(313) + P(122)P(210) + P(122)P(212) + P(122)P(213) + P(122)P(310) + P(122)P(311) + P(122)P(312) + P(122)P(313) + P(123)P(130) + P(12P(123)P(211) + P(123)P(212) + P(123)P(213) + P(123)P(220) + P(123)P(230) + P(123)P(300) + P(123)P(311) + P(123)P(312) + P(123)P(313) + P(123)P(313) + P(123)P(312) + P(123)P(313) + P(12P(123)P(330) + P(130)P(133) + P(130)P(203) + P(130)P(210) + P(130)P(211) + P(130)P(212) + P(130)P(223) + P(130)P(233) + P(130)P(310) + P(130)P(311) + P(130)P(310) + P(13P(130)P(312) + P(130)P(313) + P(131)P(210) + P(131)P(211) + P(131)P(212) + P(131)P(213) + P(131)P(310) + P(131)P(311) + P(131)P(312) + P(131)P(313) + P(131)P(31) + P(131)P(31) + P(131)P(31) + P(131)P(31) + P(131)P(P(132)P(201) + P(132)P(210) + P(132)P(211) + P(132)P(212) + P(132)P(213) + P(132)P(301) + P(132)P(310) + P(132)P(312) + P(132)P(313) + P(133)P(200) + P(132)P(310) + P(13P(133)P(211) + P(133)P(212) + P(133)P(213) + P(133)P(220) + P(133)P(230) + P(133)P(310) + P(133)P(311) + P(133)P(312) + P(133)P(313) + P(13P(133)P(330) + P(200)P(203) + P(200)P(213) + P(200)P(223) + P(200)P(233) + P(200)P(303) + P(200)P(313) + P(200)P(323) + P(200)P(333) + P(20P(203)P(220) + P(203)P(230) + P(203)P(300) + P(203)P(310) + P(203)P(320) + P(203)P(330) + P(210)P(213) + P(210)P(223) + P(210)P(233) + P(210)P(23) + PP(210)P(313) + P(210)P(323) + P(210)P(333) + P(213)P(220) + P(213)P(230) + P(213)P(300) + P(213)P(310) + P(213)P(320) + P(213)P(330) + P(213)P(320) + P(21P(220)P(233) + P(220)P(303) + P(220)P(313) + P(220)P(323) + P(220)P(333) + P(223)P(20) + P(223)P(300) + P(223)P(310) + P(223)P(320) + P(223P(230)P(233) + P(230)P(303) + P(230)P(313) + P(230)P(323) + P(230)P(333) + P(233)P(300) + P(233)P(310) + P(233)P(320) + P(233)P(330) + P(230)P(330) + P(230)P(30) + P(230)PP(300)P(313) + P(300)P(323) + P(300)P(333) + P(300)P(330) + P(303)P(320) + P(303)P(320) + P(310)P(313) + P(310)P(323) + P(310)P(333) + P(310)P(323) + P(31P(313)P(330) + P(320)P(323) + P(320)P(333) + P(323)P(330) + P(330)P(333)

Party Symmetric Inequality

$$\begin{split} 2[P(001)P(333)]_3 + 2[P(010)P(323)]_3 + 6[P(000)P(323)]_3 + 6[P(000)P(333)]_1 \\ \leq \end{split}$$

$$\begin{split} 12[P(031)P(302)]_6 + 12[P(033)P(303)]_6 + 12[P(103)P(130)]_6 + 12[P(203)P(230)]_6 + \\ &\quad + \cdots \quad 126 \text{ more terms } \cdots + \\ 6[P(101)P(130)]_6 + 6[P(103)P(310)]_6 + 6[P(113)P(130)]_6 + 6[P(113)P(230)]_6 + \\ 6[P(113)P(330)]_3 + 6[P(122)P(330)]_6 + 6[P(130)P(313)]_6 + 6[P(132)P(303)]_6 + \\ 6[P(133)P(303)]_6 + 6[P(133)P(320)]_6 + 6[P(200)P(203)]_6 + 6[P(201)P(230)]_6 + \\ 6[P(203)P(231)]_6 + 6[P(223)P(300)]_6 + 8[P(003)P(320)]_6 + 8[P(032)P(300)]_6 \end{split}$$

Note: $[P(113)P(330)]_3$ shorthand sum over permutations:

$$P(113)P(330) + P(131)P(303) + P(311)P(033)$$

Party Symmetric Inequality (Full)

 $2[P(001)P(333)]_3 + 2[P(010)P(323)]_3 + 6[P(000)P(323)]_3 + 6[P(000)P(333)]_1 \\$

3

 $12[P(031)P(302)]_6 + 12[P(033)P(303)]_6 + 12[P(103)P(130)]_6 + 12[P(203)P(230)]_6 + 12[P(203)P(330)]_6 + 2[P(001)P(320)]_6 + 2[P(002)P(221)]_3 + 2[P(003)P(211)]_6 + 2[P(003)P(30)]_6 + 2[P(003)P(30)]_6$ $2[P(003)P(331)]_3 + 2[P(011)P(211)]_3 + 2[P(012)P(322)]_6 + 2[P(013)P(313)]_6 + 2[P(013)P(332)]_6 + 2[P(020)P(111)]_3 + 2[P(020)P(211)]_6 + 2[P(021)P(212)]_6 + 2[P(020)P(211)]_6 + 2[P($ $2[P(022)P(211)]_3 + 2[P(022)P(212)]_6 + 2[P(022)P(322)]_3 + 2[P(023)P(232)]_6 + 2[P(030)P(212)]_3 + 2[P(031)P(231)]_6 + 2[P(032)P(331)]_6 + 2[P(033)P(333)]_3 + 2[P(032)P(32)]_6 + 2[P$ $2[P(101)P(131)]_3 + 2[P(101)P(132)]_6 + 2[P(102)P(131)]_6 + 2[P(102)P(132)]_6 + 2[P(102)P(133)]_6 + 2[P(110)P(133)]_6 + 2[P(110)P(132)]_6 + 2[P(110)P(122)]_6 + 2[P($ $2[P(110)P(223)]_3 + 2[P(112)P(331)]_3 + 2[P(120)P(122)]_6 + 2[P(121)P(201)]_6 + 2[P(122)P(200)]_3 + 2[P(122)P(202)]_6 + 2[P(122)P(210)]_6 + 2[P($ $2[P(130)P(232)]_6 + 2[P(130)P(233)]_6 + 2[P(131)P(201)]_6 + 2[P(131)P(202)]_3 + 2[P(131)P(313)]_3 + 2[P(133)P(200)]_3 + 2[P(133)P(201)]_6 + 2[P(133)P(201)]_6 + 2[P(133)P(201)]_6 + 2[P(133)P(201)]_6 + 2[P(131)P(202)]_7 + 2[P($ $2[P(133)P(212)]_6 + 2[P(133)P(300)]_3 + 2[P(202)P(231)]_6 + 2[P(210)P(222)]_6 + 2[P(220)P(222)]_3 + 2[P(220)P(313)]_6 + 2[P(221)P(313)]_6 + 2[P(222)P(313)]_6 + 2[P($ $2[P(223)P(331)]_3 + 2[P(230)P(312)]_6 + 2[P(231)P(313)]_6 + 2[P(232)P(320)]_6 + 2[P(302)P(322)]_6 + 2[P(320)P(323)]_6 + 2[P(330)P(332)]_3 + 3[P(000)P(003)]_3 + 2[P(320)P(320)]_6 + 2[P(320)P(320)P(320)]_6 + 2[P(320)P(320)P(320)]_6 + 2[P(320)P(320)P(320)P(320)_6 + 2[P(320)P(320)P(320)_6 + 2[P(320)P(320)P(320)_6 + 2[P(320)P(3$ $3[P(010)P(301)]_6 + 4[P(001)P(131)]_6 + 4[P(002)P(020)]_6 + 4[P(002)P(133)]_6 + 4[P(002)P(323)]_6 + 4[P(010)P(123)]_6 + 4[P(013)P(212)]_6 + 4[P(013)P(312)]_6 + 4[P($ $4[P(023)P(221)]_6 + 4[P(023)P(222)]_6 + 4[P(023)P(322)]_6 + 4[P(031)P(211)]_6 + 4[P(032)P(321)]_6 + 4[P(100)P(123)]_6 + 4[P(100)P(232)]_6 + 4[P(100)P(313)]_6 + 4[P($ $4[P(112)P(310)]_6 + 4[P(122)P(203)]_6 + 4[P(122)P(302)]_6 + 4[P(130)P(222)]_6 + 4[P(130)P(223)]_6 + 4[P(222)P(310)]_6 + 4[P(223)P(320)]_6 + 4[P(231)P(310)]_6 + 4[P(32)P(310)]_6 + 4[P$ $4[P(312)P(330)]_6 + 6[P(001)P(031)]_6 + 6[P(001)P(033)]_6 + 6[P(002)P(300)]_6 + 6[P(002)P(330)]_3 + 6[P(003)P(032)]_6 + 6[P(003)P(131)]_6 + 6[P(003)P(132)]_6 + 6[P(003)P(032)]_6 + 6[P($ $6[P(011)P(300)]_3 + 6[P(011)P(320)]_6 + 6[P(012)P(200)]_6 + 6[P(012)P(301)]_6 + 6[P(013)P(030)]_6 + 6[P(013)P(10)]_6 + 6[P(013)P(120)]_6 + 6[P(012)P(120)]_6 + 6[P(012)P(120)]_6 + 6[P(012)P(120)]_6 + 6[P(0$ $6[P(020)P(102)]_6 + 6[P(020)P(103)]_6 + 6[P(020)P(123)]_6 + 6[P(020)P(202)]_3 + 6[P(020)P(203)]_6 + 6[P(020)P(311)]_6 + 6[P(020)P(322)]_6 + 6[P($ $6[P(022)P(303)]_6 + 6[P(030)P(033)]_6 + 6[P(030)P(101)]_3 + 6[P(030)P(133)]_6 + 6[P(030)P(202)]_3 + 6[P(030)P(303)]_3 + 6[P(030)P(303)]_6 + 6[P($ $6[P(032)P(310)]_6 + 6[P(033)P(101)]_6 + 6[P(033)P(130)]_6 + 6[P(033)P(200)]_3 + 6[P(033)P(212)]_6 + 6[P(033)P(220)]_6 + 6[P(033)P(222)]_3 + 6[P(033)P(230)]_6 + 6[P(030)P(230)]_6 + 6[P($ $6[P(033)P(322)]_3 + 6[P(100)P(203)]_6 + 6[P(101)P(130)]_6 + 6[P(103)P(310)]_6 + 6[P(113)P(130)]_6 + 6[P(113)P(230)]_6 + 6[P(113)P(330)]_3 + 6[P(122)P(330)]_6 + 6[P(113)P(320)]_6 + 6[P(112)P(320)]_6 + 6[P(112)P(320)]_6 + 6[P(112)P(320)]_6 + 6[P(112)P(320)]_6 + 6[P($ $6[P(130)P(313)]_6 + 6[P(132)P(303)]_6 + 6[P(133)P(303)]_6 + 6[P(133)P(302)]_6 + 6[P(200)P(203)]_6 + 6[P(201)P(230)]_6 + 6[P(203)P(231)]_6 + 6[P(203)P(302)]_6 + 6[P(202)P(302)]_6 + 6[P(202)P(302)]_6 + 6[P(202)P(302)]_6 + 6[P($ $8[P(003)P(320)]_6 + 8[P(032)P(300)]_6$

Fritz Distribution

Fritz Distribution

$$= \frac{1}{32} (2 - \sqrt{2})$$
 $= \frac{1}{32} (2 + \sqrt{2})$

$$\blacksquare = \frac{1}{32} \left(2 + \sqrt{2} \right)$$

Maximal Violation

Maximum Violation of I_0 (V_F = 1.501)

Relative Violation:
$$V_F = \frac{\min_P\{I(P)\}}{I(P_F)}$$

Maximal Violation Symmetric

Maximum Violation of I_2 (V_F = 2.61)

Relative Violation:
$$V_F = \frac{\min_P\{I(P)\}}{I(P_F)}$$

Uniform Noise

$$\mathcal{U}_{\varepsilon}(P) = (1 - \varepsilon)P + \varepsilon \mathcal{U}$$

Uniform Distribution

Robust to Noise Zoomed

Conclusions

- Quantum/Classical difference can be observed in the triangle scenario
- Successful demonstration of the inflation technique
- Developed new algorithmic tools to find such inequalities
- New measures of non-classicality which lead to new quantum mechanical resources

References I

Appendix A: Optional Slides

Notation

Question: Which marginal models $P^{\mathcal{M}}$ are compatible with a causal structure \mathcal{G} ?

 \blacksquare Marginal model $P^{\mathcal{M}}$ is collection of probability distributions

$$P^{\mathcal{M}} = \{P_{V_1}, \dots, P_{V_k}\}$$

lacktriangle Marginal scenario $\mathcal{M} = \{V_1, \dots, V_k\}$

$$V \in \mathcal{M}, V' \subseteq V \implies V' \in \mathcal{M}$$

- Joint random variables $\mathcal{J} = \bigcup_i V_i = \{v_1, \dots, v_n\}$
- \blacksquare Causal Structure $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ is a directed acyclic graph (DAG)
- lacktriangle Nodes classified into latent nodes \mathcal{N}_L and observed nodes \mathcal{N}_O

Graph Theory

Let $n, m \in \mathcal{N}$ be nodes of the graph \mathcal{G} .

- parents of n: $Pa_{\mathcal{G}}(n) \equiv \{m \mid m \to n\}$
- children of n: $\mathsf{Ch}_{\mathcal{G}}(n) \equiv \{m \mid n \to m\}$
- lacksquare ancestry of n: $\operatorname{An}_{\mathcal{G}}(n) \equiv \bigcup_{i \in \mathbb{W}} \operatorname{Pa}_{\mathcal{G}}^i(n)$

$$\mathsf{Pa}^0_{\mathcal{G}}(n) = n \qquad \mathsf{Pa}^i_{\mathcal{G}}(n) \equiv \mathsf{Pa}_{\mathcal{G}}\Big(\mathsf{Pa}^{i-1}_{\mathcal{G}}(n)\Big)$$

Notation extends to sets of nodes $N \subseteq \mathcal{N}$,

- lacksquare parents of N: $\operatorname{Pa}_{\mathcal{G}}(N) \equiv \bigcup_{n \in N} \operatorname{Pa}_{\mathcal{G}}(n)$
- children of N: $\mathsf{Ch}_{\mathcal{G}}(N) \equiv \bigcup_{n \in N} \mathsf{Ch}_{\mathcal{G}}(n)$
- lacksquare ancestry of N: $\operatorname{An}_{\mathcal{G}}(N) \equiv \bigcup_{n \in N} \operatorname{An}_{\mathcal{G}}(n)$

An induced subgraph of $\mathcal{G}=(\mathcal{N},\mathcal{E})$ due to $N\subseteq\mathcal{N}$

$$\mathsf{Sub}_{\mathcal{G}}(N) = (N, \{e \in \mathcal{E} \mid e \subseteq N\})$$

Causal Compatibility

Question: Which marginal models $P^{\mathcal{M}}$ are compatible with a causal structure \mathcal{G} ?

Answer: $P^{\mathcal{M}}$ is compatible with \mathcal{G} if there exists a set of casual parameters

$$\left\{P_{n\mid \mathsf{Pa}_{\mathcal{G}}(n)}\mid n\in\mathcal{N}\right\}$$

Such that for each $V \in \mathcal{M}$, P_V can be recovered:

$$P_V = \sum_{\mathcal{N} \setminus V} P_{\mathcal{N}}$$

Inequality: A casual compatibility inequality I is an inequality over $P^{\mathcal{M}}$ that is satisfied by all compatible $P^{\mathcal{M}}$

Deriving Inequalities

Two necessary components to compatibility:

- **1** Marginal problem: $\forall V \in \mathcal{M} : P_V = \sum_{\mathcal{N} \setminus V} P_{\mathcal{N}}$
 - Is the marginal model contextual or non-contextual?
 - 3 distinct ways to tackle this problem
 - 1 Convex hull, Polytope projection, Fourier-Motzkin
 - 2 Possibilistic Hardy Inequalities (Hypergraph transversals)
 - 3 Linear Program Feasibility/Infeasibility
- 2 Markov Separation: $P_{\mathcal{N}} = \prod_{n \in \mathcal{N}} P_{n|\mathsf{Pa}_{\mathcal{G}}(n)}$
 - Much harder to determine since latent nodes \mathcal{N}_O have unspecified behaviour
 - It is possible to turn Markov Separation problem into a Marginal problem (at least partially)

Inflation Technique

Developed by Wolfe, Spekkens, and Fritz Inflation

Definition

An inflation of a causal structure \mathcal{G} is another causal structure \mathcal{G}' such that:

$$\forall n' \in \mathcal{N}', n' \sim n \in \mathcal{N} : \mathsf{AnSub}_{\mathcal{G}'}(n') \sim \mathsf{AnSub}_{\mathcal{G}}(n)$$

Where $\mathsf{AnSub}_{\mathcal{G}}(n)$ denotes the ancestral sub-graph of n in \mathcal{G}

$$\mathsf{AnSub}_{\mathcal{G}}(n) = \mathsf{Sub}_{\mathcal{G}}\big(\mathsf{An}_{\mathcal{G}}(n)\big)$$

And '∼' is a copy-index equivalence relation

$$A_1 \sim A_2 \sim A \not\sim B_1 \sim B_2 \sim B$$

Inflation Lemma

If one has obtained \mathcal{G} , inflation \mathcal{G}' and *compatible* marginal distribution P_N where $N\subseteq\mathcal{N}$, then:

 \blacksquare There exists causal parameters $\left\{P_{n|\mathsf{Pa}_{\mathcal{G}}(n)}\mid n\in\mathcal{N}\right\}$ such that

$$P_N = \prod_{n \in N} P_{n|\mathsf{Pa}_{\mathcal{G}}(n)}$$

- $\ \ \, \mathsf{AnSub}_{\mathcal{G}'}(n') \sim \mathsf{AnSub}_{\mathcal{G}}(n) \implies \mathsf{Pa}_{\mathcal{G}'}(n') \sim \mathsf{Pa}_{\mathcal{G}}(n)$
- 3 Construct inflated causal parameters

$$\forall n' \in \mathcal{N}' : P_{n'|\mathsf{Pa}_{\mathcal{C}'}(n')} \equiv P_{n|\mathsf{Pa}_{\mathcal{G}}(n)}$$

4 Obtain *compatible* marginal distributions over any $N' \subseteq \mathcal{N}'$

$$P_{N'} = \prod_{n' \in N'} P_{n'|\mathsf{Pa}_{\mathcal{G}'}(n')}$$

Inflation Lemma Cont'd

- Inflation procedure holds for any $N \in \mathcal{N}, N' \in \mathcal{N}'$ where $\mathsf{AnSub}_{\mathcal{G}'}(N) \sim \mathsf{AnSub}_{\mathcal{G}'}(N')$
- lacksquare Define injectable sets of \mathcal{G}' and images of the injectable of \mathcal{G}

$$\begin{split} \operatorname{Inj}_{\mathcal{G}}(\mathcal{G}') &\equiv \left\{ N' \subseteq \mathcal{N}' \mid \exists N \subseteq \mathcal{N} : \operatorname{AnSub}_{\mathcal{G}}(N) \sim \operatorname{AnSub}_{\mathcal{G}'}(N') \right\} \\ \operatorname{ImInj}_{\mathcal{G}}(\mathcal{G}') &\equiv \left\{ N \subseteq \mathcal{N} \mid \exists N' \subseteq \mathcal{N}' : \operatorname{AnSub}_{\mathcal{G}}(N) \sim \operatorname{AnSub}_{\mathcal{G}'}(N') \right\} \end{split}$$

- For $N' \in \operatorname{Inj}_{\mathcal{G}}(\mathcal{G}')$ there is a unique $N \subseteq \mathcal{N}$ such that $\operatorname{AnSub}_{\mathcal{G}}(N) \sim \operatorname{AnSub}_{\mathcal{G}'}(N')$
- For $N \in \mathsf{Inj}_{\mathcal{G}}(\mathcal{G})$ there can *exist many* $N' \subseteq \mathcal{N}'$ such that $\mathsf{AnSub}_{\mathcal{G}}(N) \sim \mathsf{AnSub}_{\mathcal{G}'}(N')$

Inflation Lemma Cont'd

Lemma

The Inflation Lemma: Inflation Given a particular inflation \mathcal{G}' of \mathcal{G} , if a marginal model $\{P_N \mid N \in \mathrm{Imlnj}_{\mathcal{G}}(\mathcal{G}')\}$ is compatible with \mathcal{G} then all marginal models $\{P_{N'} \mid N' \in \mathrm{Inj}_{\mathcal{G}}(\mathcal{G}')\}$ are compatible with \mathcal{G}' provided that $P_N = P_{N'}$ for all instances where $N \sim N'$.

Corollary

Any causal compatibility inequality I' constraining the injectable sets $\operatorname{Inj}_{\mathcal{G}}(\mathcal{G}')$ can be deflated into a causal compatibility inequality I constraining the images of the injectable sets $\operatorname{ImInj}_{\mathcal{G}}(\mathcal{G}')$.

Pre-injectable Sets

- lacktriangledown d-separation relations + inflation = polynomial inequalities over $\mathcal G$
- $\hbox{\bf Restrict focus to sets N' that are partitioned into N_1',N_2' d-separated by empty set \emptyset }$
- A pre-injectable set N':

$$\begin{split} N' &= \coprod_i N_i' \quad \forall i: N_i' \in \mathsf{Inj}_{\mathcal{G}}(\mathcal{G}') \\ \forall i, j: N_i' \perp N_j' \iff \mathsf{An}_{\mathcal{G}'}(N_i') \cap \mathsf{An}_{\mathcal{G}'}\Big(N_j'\Big) = \emptyset \end{split}$$

lacksquare Only need to consider maximal pre-injectable sets $\mathsf{PreInj}_{\mathcal{G}}(\mathcal{G}')$

Network Permutation Matrix

- States and measurements in the Triangle Scenario are not aligned
- Without Π , P_{ABC} would be separable
- Required to align B's measurement over $\operatorname{Tr}_{A,C}(\rho_{AB}\otimes\rho_{BC})$
- \blacksquare Π is a $2^6 \times 2^6$ matrix
- Shifts one qubit to the left

$$\Pi \equiv \sum_{|q_i\rangle \in \{|0\rangle, |1\rangle\}} |q_2 q_3 q_4 q_5 q_6 q_1\rangle \langle q_1 q_2 q_3 q_4 q_5 q_6|$$

Outcomes and Events

Definition

Each variable v has finite set of outcomes O_v .

Each set of variables V has finite set of events $\mathcal{E}(V)$:

$$\mathcal{E}(V) \equiv \{s : V \to O_V \mid \forall v \in V, s(v) \in O_v\}$$

Definition

The set of events over the joint variables $\mathcal{E}(\mathcal{J})$ are termed the joint events.

Definition

The set of events over the marginal contexts are the marginal events

$$\mathcal{E}(\mathcal{M}) \equiv \coprod_{V \in \mathcal{M}} \mathcal{E}(V)$$

Distribution Vectors

Definition

The joint distribution vector $\mathcal{P}^{\mathcal{J}}$

$$\mathcal{P}_j^{\mathcal{J}} = P_{\mathcal{J}}(j) \quad \forall j \in \mathcal{E}(\mathcal{J})$$

Definition

The marginal distribution vector $\mathcal{P}^{\mathcal{M}}$

$$\mathcal{P}_m^{\mathcal{M}} = P_{\mathcal{D}(m)}(m) \quad \forall m \in \mathcal{E}(\mathcal{M}), \mathcal{D}(m) \in \mathcal{M}$$

Can now write complete marginal problem as matrix multiplication:

$$\forall V \in \mathcal{M} : P_V = \sum_{\mathcal{J} \setminus V} P_{\mathcal{J}} \iff \mathcal{P}^{\mathcal{M}} = M \cdot \mathcal{P}^{\mathcal{J}}$$

Incidence Matrix

- Incidence matrix M is a bit-wise matrix
- Row-indexed by marginal events $m \in \mathcal{E}(\mathcal{M})$
- Column-indexed by joint events $j \in \mathcal{E}(\mathcal{J})$

$$M_{m,j} = \begin{cases} 1 & m = j|_{\mathcal{D}(m)} \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{split} \#\mathsf{Columns} &= |\mathcal{E}(\mathcal{J})| = \prod_{v \in \mathcal{J}} |O_v| \\ \#\mathsf{Rows} &= |\mathcal{E}(\mathcal{M})| = \sum_{V \in \mathcal{M}} \prod_{v \in V} |O_v| \end{split}$$

Causal Symmetry

Desirable to find compatibility inequality I such that

$$\forall \varphi \in \mathsf{Perm}(A,B,C) : \varphi[I] = I$$

- Compatibility is independent of variable labels $I, \mathcal{G} \to \varphi[I], \varphi[\mathcal{G}]$
- $\blacksquare \ \operatorname{Need} \ \varphi[\mathcal{G}] = \mathcal{G} \ \operatorname{to} \ \operatorname{find} \ \operatorname{new} \ \varphi[I]$

Definition

The causal symmetry group of causal structure G:

$$\operatorname{Aut}(\mathcal{G}) = \{ \varphi \in \operatorname{Perm}(\mathcal{N}) \mid \varphi[\mathcal{G}] = \mathcal{G} \}$$

Strictly speaking, one needs to preserve observable nodes:

$$\operatorname{Aut}_{\mathcal{N}_O}(\mathcal{G}) = \{ \varphi \in \operatorname{Aut}(\mathcal{G}) \mid \varphi[\mathcal{N}_O] = \mathcal{N}_O \}$$

Causal Symmetry and Inflation

- Causal symmetry group for G' is no good!
- Not possible to deflate inequality if it's not in terms of injectable sets

Definition

The restricted causal symmetry group Φ of \mathcal{G}' :

$$\Phi = \mathsf{Aut}_{\mathsf{PreInj}_{\mathcal{G}}(\mathcal{G}')}(\mathcal{G}')$$

Restricted Causal Symmetry of Large Inflation

 $lack \Phi$ for the large inflation is an order 48 group with 4 generators

Symmetric Incidence

■ Group orbits through repeated action of $\varphi \in \Phi$ on $m \in \mathcal{E}(\mathcal{M})$ and $j \in \mathcal{E}(\mathcal{J})$

$$\begin{split} \Phi[m] &\equiv \{\varphi[m] \mid \varphi \in \Phi\} \\ \Phi[j] &\equiv \{\varphi[j] \mid \varphi \in \Phi\} \end{split}$$

• Construct symmetric incidence matrix $\Phi[M]$

$$\begin{split} \Phi[M]_{\Phi[m],\Phi[j]} &= \sum_{m' \in \Phi[m]} \sum_{j' \in \Phi[j]} M_{m',j'} \\ \Phi[M] &= \Lambda_{\Phi[\mathcal{E}(\mathcal{M})]} \cdot M \cdot \Lambda_{\Phi[\mathcal{E}(\mathcal{J})]} \end{split}$$

- ullet $\Phi[M]$ not a bit-wise matrix like M
- For large inflation M is $16,896 \times 16,777,216$
- \blacksquare For large inflation $\Phi[M]$ is $450\times358, 120$

Symmetric Inequalities

- Certificate inequalities are curated/constructed to witness violation of particular distribution
- Above inequality not the best candidate to search for non-locality different than Fritz distribution
- \blacksquare Perhaps one could obtain inequality that does not assign special preference to C
- Desirable to find compatibility inequality I such that

$$\forall \varphi \in \mathsf{Perm}(A,B,C) : \varphi[I] = I$$

Symmetrized Fritz

- More non-local yet not quantum-accessible
- Quantum-accessible distributions form non-context set

Parameterizing POVMs

■ Each party (A, B, C) is assigned a projective-operator valued measure (POVM) (M_A, M_B, M_C)

$$\forall |\psi\rangle \in \mathcal{H}^d : \langle \psi | M_\chi | \psi \rangle \ge 0 \quad M_\chi = M_\chi^\dagger$$

■ *n*-outcome measurement

$$M_{\chi} = \{M_{\chi,1}, \dots, M_{\chi,n}\} \quad \sum_{i=1}^{n} M_{\chi,i} = 1$$

- For n=2 outcomes, a parameterization exists by constraining the eigenvalues of $M_{\chi,i}$; for n>2 not aware of anything
- Warrants consideration of projective-valued measures (PVMs)

Cholesky Parameterization of States

- Each latent resource $\rho \in (\rho_{AB}, \rho_{BC}, \rho_{CA})$ modeled as bipartite qubit state acting on $\mathcal{H}^{d/2} \otimes \mathcal{H}^{d/2}$
- $\blacksquare \ d \times d$ positive semi-definite (PSD) hermitian matrices with unitary trace
- \blacksquare Cholesky Parametrization allows one to write any hermitian PSD as $\rho=T^\dagger T$
- For d = 4:

$$T = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ \lambda_2 + i\lambda_3 & \lambda_4 & 0 & 0 \\ \lambda_5 + i\lambda_6 & \lambda_7 + i\lambda_8 & \lambda_9 & 0 \\ \lambda_{10} + i\lambda_{11} & \lambda_{12} + i\lambda_{13} & \lambda_{14} + i\lambda_{15} & \lambda_{16} \end{bmatrix}$$

- lacksquare d^2 real-valued parameters
- Normalized $ho = T^\dagger T/{
 m Tr} \left(T^\dagger T\right)$ adds degeneracy

Appendix B: Local Minima Concerns

Results

- Finding global minimum is tricky
- Difficult to converge to violation
- Noisy seed (Gaussian noise):

$$\lambda_{(0)} = \lambda_{(F)} + \delta \lambda$$
 $\delta \lambda_i \sim \mathcal{N} \left(\mu = 0, \sigma^2 = (2\pi 10^{\chi})^2 \right)$

Uniform seed:

$$\lambda_{(0),i} \sim \mathcal{U}([0,2\pi])$$

Fritz Local Minima

Fritz Local Minima Zoomed

Max Entangled vs. Max Violating (???)

Max Entangled vs. Max Violating (???)

Section C: Inflation Technique

Demonstrating Inflation Technique

$$\forall n' \in \mathcal{N}', n' \sim n \in \mathcal{N} : \mathsf{AnSub}_{\mathcal{G}'}(n') \sim \mathsf{AnSub}_{\mathcal{G}}(n)$$

Demonstrating Inflation Technique

 $\mathsf{AnSub}_{\mathcal{G}}(A) \sim \mathsf{AnSub}_{\mathcal{G}'}(A_1)$

Demonstrating Inflation Technique

 $\mathsf{AnSub}_{\mathcal{G}}(C) \sim \mathsf{AnSub}_{\mathcal{G}'}(C_2)$

Some Inflations of the Triangle Scenario

What are Injectable Sets?

 $\mathsf{AnSub}_{\mathcal{G}}(A,C) \sim \mathsf{AnSub}_{\mathcal{G}'}(A_2,C_1)$

What are Injectable Sets?

 $?? \not\sim \mathsf{AnSub}_{\mathcal{G}'}(B_1, B_2)$

What are Injectable Sets?

 $?? \not\sim \mathsf{AnSub}_{\mathcal{G}'}(B_2, C_2)$

Injectable Sets Defined

The injectable sets in \mathcal{G}' :

$$\mathsf{Inj}_{\mathcal{G}}(\mathcal{G}') \equiv \{N' \subseteq \mathcal{N}' \mid \exists N \subseteq \mathcal{N} : \mathsf{AnSub}_{\mathcal{G}}(N) \sim \mathsf{AnSub}_{\mathcal{G}'}(N')\}$$

The images of the injectable sets in G:

$$\mathsf{ImInj}_{\mathcal{G}}(\mathcal{G}') \equiv \{N \subseteq \mathcal{N} \mid \exists N' \subseteq \mathcal{N}' : \mathsf{AnSub}_{\mathcal{G}}(N) \sim \mathsf{AnSub}_{\mathcal{G}'}(N')\}$$

What makes injectable sets useful?

Inflation Lemma

Lemma (Inflation Lemma)

$$\begin{aligned} & \textit{Given } \mathcal{G} = (\mathcal{N}, \mathcal{E}) \textit{ and inflation } \mathcal{G}' = (\mathcal{N}', \mathcal{E}') : \\ & \underbrace{\left\{P_N \mid N \in \mathsf{ImInj}_{\mathcal{G}}(\mathcal{G}')\right\}}_{\textit{compatible with } \mathcal{G}} \longrightarrow \left\{P_n \mid_{\mathsf{Pa}_{\mathcal{G}}(n)} \mid n \in \mathcal{N}\right\} \\ & \underbrace{\left\{P_{N'} \mid N' \in \mathsf{Inj}_{\mathcal{G}}(\mathcal{G}')\right\}}_{\textit{compatible with } \mathcal{G}'} \longleftarrow \left\{P_{n' \mid \mathsf{Pa}_{\mathcal{G}'}(n')} \mid n' \in \mathcal{N}'\right\} \end{aligned}$$

Perfect Correlation Is Incompatible

Perfect Correlation

$$\blacksquare = \frac{1}{2}$$

$$P_{ABC}(abc) = \frac{[000] + [111]}{2}$$

$$P_{ABC}(abc) = \begin{cases} \frac{1}{2} & a = b = c \\ 0 & \text{otherwise} \end{cases}$$

Compatibility Inequality

$$P_A(0)P_B(1) \le P_{BC}(10) + P_{AC}(01)$$

Witnesses Perfect Correlation

$$\left(\frac{1}{2}\right)^2 \not \le 0 + 0$$

Deriving Compatibility Inequalities

$$\mathcal{M} = \{\{A_1, B_1\}, \{B_1, C_1\}, \{A_1, C_1\}\}$$

$$P^{\mathcal{M}} = \{P_{A_1B_1}, P_{B_1C_1}, P_{A_1C_1}\}$$
 Compatibility requires:
$$\exists P_{\mathcal{I}} = P_{A_1B_1C_1}$$

$$P_{A_1B_1} = \sum_{C_1} P_{\mathcal{J}} \qquad P_{B_1C_1} = \sum_{A_1} P_{\mathcal{J}} \qquad P_{A_1C_1} = \sum_{B_1} P_{\mathcal{J}}$$

Deriving Compatibility Inequalities Cont'd

$$\mathcal{P}_{A_1B_1} = \sum_{C_1} P_{\mathcal{J}} \qquad P_{B_1C_1} = \sum_{A_1} P_{\mathcal{J}} \qquad P_{A_1C_1} = \sum_{B_1} P_{\mathcal{J}}$$

$$\mathcal{P}^{\mathcal{M}} = M \cdot \mathcal{P}^{\mathcal{J}}$$

$$\mathcal{P}^{\mathcal{M}} = M \cdot \mathcal{P}^{\mathcal{J}}$$

$$\mathcal{P}^{\mathcal{M}} = \begin{bmatrix} P_{A_1B_1}(00) \\ P_{A_1B_1}(01) \\ P_{A_1B_1}(11) \\ P_{B_1C_1}(00) \\ P_{B_1C_1}(01) \\ P_{B_1C_1}(11) \\ P_{A_1B_1C_1}(00) \\ P_{A_1B_1C_1}(01) \\ P_{A_1B_1C_1}(01) \\ P_{A_1B_1C_1}(101) \\ P_{A_1B_1C_1}(101) \\ P_{A_1B_1C_1}(110) \\ P_{A_1B_1C_1}(111) \\ P_{A_1B_1C_1}(111) \end{pmatrix}$$

$$\mathcal{P}^{\mathcal{J}} = \begin{pmatrix} P_{A_1B_1C_1}(000) \\ P_{A_1B_1C_1}(001) \\ P_{A_1B_1C_1}(011) \\ P_{A_1B_1C_1}(101) \\ P_{A_1B_1C_1}(110) \\ P_{A_1B_1C_1}(111) \end{pmatrix}$$

Incidence Example

$$M = \begin{pmatrix} (A_1,B_1,C_1) = & (0,0,0) & (0,0,1) & (0,1,0) & (0,1,1) & (1,0,0) & (1,0,1) & (1,1,0) & (1,1,1) \\ (A_1=0,B_1=0) & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ (A_1=1,B_1=0) & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ (A_1=1,B_1=1) & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ (B_1=0,C_1=0) & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ (B_1=1,C_1=0) & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ (B_1=1,C_1=1) & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ (A_1=0,C_1=1) & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ (A_1=0,C_1=1) & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ (A_1=0,C_1=1) & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ (A_1=1,C_1=0) & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ (A_1=1,C_1=1) & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ (A_1=1,C_1=1) & 0 & 0 & 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

$$\mathcal{P}^{\mathcal{M}} = M \cdot \mathcal{P}^{\mathcal{J}}$$

Marginal Linear Program

Marginal LP:

Dual Marginal LP:

minimize: $\emptyset \cdot x$ subject to: $\mathcal{P}^{\mathcal{J}} \succ 0$

minimize: $y \cdot \mathcal{P}^{\mathcal{M}}$

Subject to: $\mathcal{P}^{\mathcal{C}} \succeq 0$ $M \cdot \mathcal{P}^{\mathcal{J}} = \mathcal{P}^{\mathcal{M}}$

 $\text{subject to: } y\cdot M\succeq 0$

lacksquare If $\mathcal{P}^{\mathcal{J}}$ exists, then:

$$y \cdot M \cdot \mathcal{P}^{\mathcal{J}} = y \cdot \mathcal{P}^{\mathcal{M}} \ge 0$$

■ If not, then *y* is an infeasibility certificate which generates infeasibility inequality:

$$y \cdot \mathcal{P}^{\mathcal{M}} \ge 0$$

■ Most linear programing toolkits return certificates (*Mosek*, *Gurobi*, *CPLEX*, *cvxr*/*cvxopt*.)

$$P_{A_1B_1}(01) \le P_{B_1C_1}(10) + P_{A_1C_1}(01)$$

Can not deflate inequality!

$$\operatorname{Inj}_{\mathcal{G}}(\mathcal{G}') = \begin{cases} \{A_1, C_1\} \\ \{B_1, C_1\} \\ \{A_1\} \\ \{B_1\} \\ \{C_1\} \end{cases}$$

 $\{A_1, B_1\} \not\in \mathsf{Inj}_{\mathcal{G}}(\mathcal{G}')$

$$P_{A_1B_1}(01) \le P_{B_1C_1}(10) + P_{A_1C_1}(01)$$

However!

$$\mathsf{AnSub}_{\mathcal{G}'}(A_1) \cap \mathsf{AnSub}_{\mathcal{G}'}(B_1) = \emptyset \iff A_1 \perp B_1$$

Inflation Gives Polynomial Inequalities

- Deflation only holds when inequality constrains probabilities $P_{N'}, N' \in \mathsf{Inj}_{\mathcal{G}}(\mathcal{G}')$
- **Linear inequality** for \mathcal{G}'

■ Polynomial inequality for *G*!

Pre-injectable Sets

A pre-injectable set N' is:

$$N' = \coprod_{i} N'_{i} \quad \forall i : N'_{i} \in \mathsf{Inj}_{\mathcal{G}}(\mathcal{G}')$$

$$\forall i, j : N_i' \perp N_j' \iff \mathsf{An}_{\mathcal{G}'}(N_i') \cap \mathsf{An}_{\mathcal{G}'}(N_j') = \emptyset$$

Only need to consider maximal pre-injectable sets denoted $\operatorname{PreInj}_{\mathcal{G}}(\mathcal{G}')$

Appendix D: Quantum Non-classicality From Inflation

Triangle Scenario As Bell Scenario

Fritz Distribution

Fritz Distribution

$$= \frac{1}{32} (2 - \sqrt{2})$$
 $= \frac{1}{32} (2 + \sqrt{2})$

Fritz Distribution Bit-Measurements

Fritz Distribution

$$= \frac{1}{32} (2 - \sqrt{2})$$
 $= \frac{1}{32} (2 + \sqrt{2})$

Quantum Implementation of Fritz Distribution

States:

$$\rho_{AB} = \left| \Phi^+ \right\rangle \left\langle \Phi^+ \right| \quad \rho_{BC} = \rho_{CA} = \frac{|00\rangle \langle 00| + |11\rangle \langle 11|}{2}$$
$$\left| \Phi^+ \right\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

Measurements:

$$\begin{split} M_A &= \{|0\psi_1\rangle\langle 0\psi_1|, |0\psi_5\rangle\langle 0\psi_5|, |1\psi_3\rangle\langle 1\psi_3|, |1\psi_7\rangle\langle 1\psi_7|\}\\ M_B &= \{|\psi_60\rangle\langle \psi_60|, |\psi_20\rangle\langle \psi_20|, |\psi_01\rangle\langle \psi_01|, |\psi_41\rangle\langle \psi_41|\}\\ M_C &= \{|00\rangle\langle 00|, |10\rangle\langle 10|, |01\rangle\langle 01|, |11\rangle\langle 11|\} \end{split}$$

 \blacksquare Shorthand: $|\psi_n\rangle=\frac{1}{\sqrt{2}}\Big(|0\rangle+e^{in/4}|1\rangle\Big)$

Fritz Distribution Violating CHSH

- \blacksquare C 's outcome acts as measurement "setting" for A, B; independent of ρ_{AB}
- Correlation between right bits

$$\langle A_r B_r \rangle = P_{A_r B_r}(00) + P_{A_r B_r}(11) - P_{A_r B_r}(01) - P_{A_r B_r}(10)$$

 $\langle A_r B_r | C = 0, 1, 2 \rangle = \frac{1}{\sqrt{2}} \quad \langle A_r B_r | C = 3 \rangle = -\frac{1}{\sqrt{2}}$

Gives CHSH violation

$$\langle A_r B_r | C = 0 \rangle + \langle A_r B_r | C = 1 \rangle + \langle A_r B_r | C = 2 \rangle - \langle A_r B_r | C = 3 \rangle$$

$$= 3 \left(\frac{1}{\sqrt{2}} \right) - \left(-\frac{1}{\sqrt{2}} \right)$$

$$= 2\sqrt{2} \nleq 2$$

Notes on Fritz Distribution

- $lue{}$ Incompatibility proof contingent on perfect correlation between C and pseudo-settings
- Proof not robust to noise

Problem (2.17 in **Fritz_2012**)

Find an example of non-classical quantum correlations in TS together with a proof of its non-classicality which does not hinge on Bell's Theorem.

"...would be helpful to have inequalities..."

Large Inflation

Large Inflation Pre-injectable Sets

Maximal Pre-injectable Sets

$$\{A_1, B_1, C_1, A_4, B_4, C_4\}$$

$$\{A_1, B_2, C_3, A_4, B_3, C_2\}$$

$$\{A_2, B_3, C_1, A_3, B_2, C_4\}$$

$$\{A_2, B_4, C_3, A_3, B_1, C_2\}$$

$$\{A_1, B_3, C_4\}$$

$$\{A_1, B_4, C_2\}$$

$$\{A_2, B_1, C_4\}$$

$$\{A_2, B_2, C_2\}$$

$$\{A_3, B_3, C_3\}$$

$$\{A_3, B_4, C_1\}$$

$$\{A_4, B_1, C_3\}$$

$$\{A_4, B_2, C_1\}$$

Ancestral Independences

$$\{A_1, B_1, C_1\} \perp \{A_4, B_4, C_4\}$$

$$\{A_1, B_2, C_3\} \perp \{A_4, B_3, C_2\}$$

$$\{A_2, B_3, C_1\} \perp \{A_3, B_2, C_4\}$$

$$\{A_2, B_4, C_3\} \perp \{A_3, B_1, C_2\}$$

$$\{A_1\} \perp \{B_3\} \perp \{C_4\}$$

$$\{A_1\} \perp \{B_4\} \perp \{C_2\}$$

$$\{A_2\} \perp \{B_1\} \perp \{C_4\}$$

$$\{A_2\} \perp \{B_2\} \perp \{C_2\}$$

$$\{A_3\} \perp \{B_3\} \perp \{C_3\}$$

$$\{A_3\} \perp \{B_4\} \perp \{C_1\}$$

$$\{A_4\} \perp \{B_1\} \perp \{C_3\}$$

$$\{A_4\} \perp \{B_2\} \perp \{C_1\}$$

Large Inflation Incidence

 \blacksquare Joint variables are all of the observable nodes $\mathcal{N}_O'=\mathcal{J}$

$$\mathcal{J} = \{A_1, A_2, A_3, A_4, B_1, B_2, B_3, B_4, C_1, C_2, C_3, C_4\}$$

- $\begin{tabular}{ll} \bf Marginal scenario is composed of pre-injectable sets \\ {\cal M} = {\sf PreInj}_{{\cal G}}({\cal G}') \\ \end{tabular}$
- Inequalities violated by Fritz distribution are inherently 4-outcome
- Incidence matrix M is very large $\sim 2.25 {\rm Gb}$
 - $\# Columns = 4^{12} = 16,777,216$
 - #Rows = $4 \times 4^6 + 8 \times 4^3 = 16,896$
 - $\blacksquare \ \# \mathsf{Non-zero} \ \mathsf{Entries} = 201, 326, 592$

Appendix F: Maximal Violations & Noise

Numerical Optimization

Minimize objective function $f(\lambda) \in \mathbb{R}$:

- **1** Real-valued parameters $\lambda = (\lambda_0, \dots, \lambda_n)$
- 2 Quantum states/measurements $ho_{AB},
 ho_{BC},
 ho_{CA}, M_A, M_B, M_C$

$$P_{ABC}(abc) = \text{Tr}[\Pi^{\mathsf{T}} \rho_{AB} \otimes \rho_{BC} \otimes \rho_{CA} \Pi M_{A,a} \otimes M_{B,b} \otimes M_{C,c}]$$

- 3 Distribution P_{ABC}
- 4 Plug into inequality I in homogeneous form $I(P_{ABC}) \geq 0$
- **5** Output is objective value $I(P_{ABC})$

Numerical Optimization Methods

■ Numerical minimization of $f(\lambda)$

$$f(\lambda_{(k+1)}) = \lambda_{(k)} - \gamma_{(k)} \nabla f(\lambda_{(k)})$$

- Non-convex, non-linear, smooth/continuous
- Gradient Descent, BFGS Method, Nelder-Mead simplex method
- Stochastic methods: simulated annealing, basin-hopping

Quantum Model On Triangle Scenario

$$P_{ABC}(abc) = \text{Tr}[\Pi^{\mathsf{T}} \rho_{AB} \otimes \rho_{BC} \otimes \rho_{CA} \Pi M_{A,a} \otimes M_{B,b} \otimes M_{C,c}]$$

- Each latent resource $\rho \in (\rho_{AB}, \rho_{BC}, \rho_{CA})$ modeled as bipartite **qubit** state acting on $\mathcal{H}^2 \otimes \mathcal{H}^2$
- Each party (A, B, C) is assigned 4-outcome PVM set (M_A, M_B, M_C)
- lacksquare Parameterized using unitary transformations $U\in\mathcal{U}(4)$

Parameterizing Unitary Group

Spengler_2010_Unitary parameterization of $\mathcal{U}(d)$

$$\lambda = \begin{pmatrix} \lambda_{1,1} & \cdots & \lambda_{1,d} \\ \vdots & \ddots & \vdots \\ \lambda_{d,1} & \cdots & \lambda_{d,d} \end{pmatrix}$$

$$U = \left[\prod_{m=1}^{d-1} \left(\prod_{n=m+1}^{d} R_{m,n} R P_{n,m}\right)\right] \cdot \left[\prod_{l=1}^{d} G P_{l}\right]$$

- Global Phase Terms: $GP_l = \exp(iP_l\lambda_{l,l})$
- Relative Phase Terms: $RP_{n,m} = \exp(iP_n\lambda_{n,m})$
- Rotation Terms: $R_{m,n} = \exp(i\sigma_{m,n}\lambda_{m,n})$
- Projection Operators: $P_l = |l\rangle\langle l|$
- Anti-symmetric σ -matrices: $\sigma_{m,n} = -i|m\rangle\langle n| + i|n\rangle\langle m|$
- Parameters $\lambda_{n,m} \in [0,2\pi]$

Parameterizing Unitary Group Cont'd

- **E**ach parameter $\lambda_{n,m}$ has physical interpretation
- Degeneracies are easily eliminated such as global phase

$$\forall l = 1, \dots, d : \lambda_{l,l} = 0 \implies GP_l = 1$$

 \blacksquare Parameterize $U\in \mathcal{U}(d)$ up to global phase denoted $\tilde{U}\in \mathcal{U}(d)$

$$\tilde{U} = \prod_{m=1}^{d} \left(\prod_{n=m+1}^{d} R_{m,n} R P_{n,m} \right)$$

Computationally efficient (no matrix exponentials)

$$GP_{l} = \mathbb{1} + P_{l} \left(e^{i\lambda_{l,l}} - 1 \right)$$

$$RP_{n,m} = \mathbb{1} + P_{n} \left(e^{i\lambda_{n,m}} - 1 \right)$$

$$R_{m,n} = \mathbb{1} + (|m\rangle\langle m| + |n\rangle\langle n|)(\cos\lambda_{n,m} - 1)$$

$$+ (|m\rangle\langle n| - |n\rangle\langle m|)\sin\lambda_{n,m}$$

Parameterizing PVMs

Each part is assigned d element projective-valued measures (PVMs) acting on \mathcal{H}^d ,

$$M = \{M_1, \dots, M_d\} \qquad \sum_{i=1}^d M_i = 1$$
$$\forall i : \forall |\psi\rangle \in \mathcal{H}^d : \langle \psi | M_i | \psi \rangle \ge 0 \quad M_i = M_i^{\dagger}$$

lacktriangle Unitary transform maps M to computational basis

$$\{|m_1\rangle,\ldots,|m_d\rangle\}=\{U|1\rangle,\ldots,U|d\rangle\}$$

 $M_i M_i = \delta_{ij} M_i \quad M_i = |m_i\rangle\langle m_i|$

- \blacksquare Global phase irrelevant: \tilde{U} requires d(d-1) real-valued parameters
- PVMs are computationally more efficient than POVMs

$$P_{ABC}(abc) = \langle m_{A,a} m_{B,b} m_{C,c} | \Pi^{\mathsf{T}} \rho_{AB} \otimes \rho_{BC} \otimes \rho_{CA} \Pi | m_{A,a} m_{B,b} m_{C,c} \rangle$$

Parameterizing States

■ Exploit spectral decomposition

$$\rho = \sum_{i=1}^{d} p_i |\psi_i\rangle\langle\psi_i| \qquad p_i \ge 0, \sum_i p_i = 1$$

lacksquare Unitary transform maps $\{|\psi_i
angle\}$ to computational basis

$$\{|\psi_1\rangle,\ldots,|\psi_d\rangle\}=\{U|1\rangle,\ldots,U|d\rangle\}$$

- \blacksquare Global phase irrelevant again \tilde{U} requires d(d-1) real-valued parameters
- Eigenvalues $\{p_i\}$ parameterized using hyper-spherical coordinates: d-1 real-valued parameters

Maximal Violation

Maximum Violation of I_0 (V_F = 1.501)

Relative Violation:
$$V_F = \frac{\min_P\{I(P)\}}{I(P_F)}$$

Maximal Violation Symmetric

Maximum Violation of I_2 (V_F = 2.61)

Relative Violation:
$$V_F = \frac{\min_P\{I(P)\}}{I(P_F)}$$

Max Entangled vs. Max Violating

Maximally Violating Distributions

- Able to out-perform violation provided by Fritz distribution
- Maximally-violating states are not maximally-entangled;
 similar to detection loop-hole example of Methot_2006
- Both symmetric and asymmetric inequalities exhibit same qualitative features

Uniform Noise

$$\mathcal{U}_{\varepsilon}(P) = (1 - \varepsilon)P + \varepsilon \mathcal{U}$$

Uniform Distribution

Robust to Noise

Robust to Noise Zoomed

Noisy Non-locality

Noisy Yet Non-Local Fritz Distribution

$$= 0.00133$$

Conclusions

- Inflation technique capable of producing polynomial inequalities with quantum/classical witnesses
- 2 Fritz witness-able by party-symmetric inequalities
- Maximally violating distributions require non-maximally entangled states

Unanswered Questions

- Do these new non-local distributions suggest new quantum resources in the triangle scenario?
- 2 Can any non-local quantum correlations in the triangle scenario satisfy CHSH inequalities (under Fritz type coarse graining)?
- 3 Which inequalities are most robust to noise? Facets?