OBJECTIVES:

- 1. Standardize an aqueous solution of potassium permanganate, KMnO₄.
- 2. Determine the amount of sodium oxalate, Na₂C₂O₄, in an impure solid sample.

BACKGROUND

A **Titration** is the analytical method of carefully adding one solution (the "titrant") into another solution (the "analyte") until all of the analyte is consumed by the ensuing reaction.

Titrations are used in 2 analytical scenarios:

- Standardization of the titrant In this case, the amount of analyte is known and the concentration of titrant is determined.
- Analysis of the analyte In this case, the concentration of the titrant is known and the amount of analyte is determined.

Oxidation-Reduction ("redox") reactions involve the simultaneous oxidation (loss of electrons) and reduction (gain of electrons) between reactants.

Potassium permanganate, $KMnO_4$, and sodium oxalate, $Na_2C_2O_4$, will undergo a redox reaction with each other in an acidic aqueous solution.

The balanced **net ionic equation** is:

$$16 \text{ H}^+ + 2 \text{ MnO}_4^- + 5 \text{ C}_2 \text{O}_4^{2^-} \rightarrow$$

 $2 \text{ Mn}^{2^+} + 10 \text{ CO}_2 + 8 \text{ H}_2 \text{O}$

The balanced molecular equation is:

$$8 \text{ H}_2\text{SO}_4 + 2 \text{ KMnO}_4 + 5 \text{ Na}_2\text{C}_2\text{O}_4 \rightarrow$$

$$2 \text{ MnSO}_4 + 10 \text{ CO}_2 + \text{ K}_2\text{SO}_4 + 5 \text{ Na}_2\text{SO}_4 + 8 \text{ H}_2\text{O}$$

In this experiment, an aqueous solution of potassium permanganate will be the titrant, and pure sodium oxalate will be used as the analyte.

PROCEDURE 1 – Preparation and Standardization of potassium permanganate titrant solution.

- 1. To a 500mL beaker or Erlenmyer flask ...
 - a. Add 100 mL 0.130 M $KMnO_4$
 - b. Add 200 mL DI water
 - c. Stir for a minute
 - d. Label as "TITRANT"

- 2. Prepare a 50 mL burette with titrant.
 - a. Rinse burette well with DI water
 - b. Set up burette in stand
 - c. Flush burette with about 10 mL of titrant
 - d. Fill burette with titrant (stay below the end of the funnel).
 - e. Be sure tip is filled.

- 3. To a 250 mL beaker ...
 - a. Add about 2 g of sodium oxalate. Record actual mass (Table 1)
 - Rinse any remaining sodium oxalate into the beaker with a few mL of DI water.

- 4. Add about 50 mL 3 M H₂SO₄
- 5. Gently heat and stir without boiling, until the sodium oxalate is entirely dissolved

6. Transfer the sodium oxalate solution to a 100 mL volumetric flask. Add 3 M H₂SO₄ until the total volume of the solution is 100 mL. Use a plastic eye dropper when you get close to the 100 mL line. Label this solution as "STANDARD".

7. Use a 10 mL graduated pipet to transfer 10 mL of the standard into a small Erlenmeyer flask. Heat the flask to about 70-90°C. **Do NOT boil**.

8. While the standard solution is still hot, titrate to a persistent faint pink end point. Record Vi and Vf (Table 1).

9. Repeat Steps 7 & 8 for a total of 3 good trials.

PROCEDURE 2 – Determination of the amount of sodium oxalate in an unknown sample.

	To a 250 mL Erlenmyer flask a. Add about 0.6 g of unknown. Record unknown sample # and mass (Table 2) b. Add about 20 mL of 3 M H ₂ SO ₄	
2.	Gently heat and stir without boiling,	
	until the sample is entirely dissolved.	
3.	Heat the flask to about 70-90°C. Do	
	NOT boil . Titrate to a persistent	
	faint pink end point. Record Vi and	
	Vf (Table 2)	
4.	Repeat Steps 1-3 for a total of 3	
	good trials.	

Table 1 – Standardization of KMnO₄ Titrant Solution (mass of pure Na₂C₂O₄ = _____g)

Trial	Vi	Vf	V = Vf - Vi	[KMnO ₄]
	(mL)	(mL)	(mL)	[KMnO ₄] (M)
1				
2				
3				
			Average =	
			Std. Dev. =	
			95% CI =	

Table 2 – Determination of weight % of Na₂C₂O₄ in unknown sample # _____

Trial	Mass of	Vi	Vf	V	Wt %
	unknown	(mL)	(mL)	(mL)	$Na_2C_2O_4$
	(g)				
1					
2					
3					
				Average =	
				Std. Dev. =	
				95% CI =	

CALCULATIONS

Part 1 – Standardization of KMnO₄ Titrant Solution

Part 2 – Determination of weight % of Na₂C₂O₄ in unknown sample

