CS M51A, Winter 2021, Assignment 4 (Total Mark: 90 points, 9%)

Due: Wed Feb 3rd, 10:00 AM Pacific Time Student Name: Student ID:

Note: You must complete the assignments entirely on your own, without discussing with others.

1. (a) (14 Points) Given the circuit below, complete the table below, determining the resistances for Q_1 to Q_6 and the final output Z. The transistors Q_1 to Q_6 should be High or Low (show by 'H' or 'L') resistance. The output Z may be 0, 1, float (show by –) or short (show by *).

							Q_6	
0	0	4	H	H	L	<u>L</u>	Н	1
0	1	L	4	H	L	H	L	0
1	0	H	L	L	H	L	1	,
1	1	H	L	4	H	Н	L H	

(b) (6 Points) Write sum of MINTERMS and product of MAXTERMS for Z.

2. (a) (4 Points) Write the sum of minterms and product of maxterms function for the following table.

$$\begin{array}{c|cccc} A & B & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$$

$$F = A'B = Zm(1)$$

 $F = (A+B)(A+B)(A+B) = TTM(0,2,3)$

(b) (6 Points) Implement F using PMOS and NMOS transistors. Use at most 6 transistors in total; only the signal itself can be used as input.

(c) (6 Points) Implement F using inverters and transmission gates; you may use logic 0, logic 1 or the signal itself as input.

* There is more than I correct answer

3. Consider the following system where the output Z has a load (L) of 4.

Gate	Fan-	Propagation Delays (ns)				
Type	in	t_{pLH}	t_{pHL}			
NOT	1	0.02 + 0.038L	0.05 + 0.017L			
NAND	2	0.05 + 0.038L	0.08 + 0.027L			
NOR	2	0.06 + 0.075L	0.07 + 0.016L			
AND	2	0.08 + 0.038L	0.09 + 0.027L			
OR	2	0.08 + 0.075L	0.09 + 0.016L			

(a) (8 Points) determine the low to high propagation delay $t_{pLH}(\underline{d}, z)$ of the output z.

$$OR2 \rightarrow AM02 \rightarrow NOR2 \rightarrow NOR2$$

$$LH \qquad LH \qquad HL \qquad LH$$

$$L=2 \qquad \qquad 1 \qquad \qquad 4$$

(b) (8 Points) determine the high to low propagation delay $t_{pHL}(b,z)$ of the output z.

4. Consider the following circuit, where /S1 and /S0 present complement (NOT) of S1 and S0, respectively.

(a) (2 Points) What is the value of output when S0=1, S1=0.

(b) (2 Points) What is the value of output when S0=1, S1=1.

(c) (8 Points) Write a sum of product expression for the output in terms of A,B,C,D,S0,S1.

[NOT THE ONLY SOLUTION]

5. Use transmission gates to implement the following logical expressions; you may use logic 0, logic 1, the signal itself or its complement as input, e.g. A, A', 0, 1 are all valid input of your design):

(d) (6 Points) F = ABC + DE

PMos passes a strong I and weak o NMos passes a strong o and weak I By using both, we can guarantee a strong signal will be passed through the gate.