XV TALLER IMARPE-IFOP SOBRE EVALUACION CONJUNTA DEL STOCK DE ANCHOVETA DEL SUR DE PERU Y NORTE DE CHILE

INTRODUCCIÓN

GRUPO DE TRABAJO

CONDICIONES OCEANOGRÁFICAS

PESQUERÍA

DINÁMICA POBLACIONAL BASADA EN CRUCEROS

PARÁMETROS DE HISTORIA DE VIDA

MODELOS DE EVALUACION DE STOCK

La siguiente evaluación de stock de Anchoveta del Sur del Perú y Norte de Chile fue actualizada hasta diciembre del 2017 y realizada por los integrantes del Instituto del Mar del Perú (IMARPE) y el Instituto de Fomento Pesquero (IFOP) participantes en el XV Taller de Evaluación Conjunta del Stock de Anchoveta del Sur de Perú y Norte de Chile. Este informe presenta las tres hipótesis de stock trabajada durante el taller, las cuales difieren principalmente en los parámetros de crecimiento individual y el número de desoves y reclutamientos al año.

Stock

Esta evaluación se enfoca en el stock de Anchoveta del Sur del Perú y Norte de Chile (SPNC), el cual ocupa la zona que comprende desde

Información breve sobre el stock con referencias bibliograficas.

Datos y Evaluación

Para la evaluación se empleó la plataforma Stock Synthesis (SS versión 3.24s) e incluye datos de la pesquería y de prospecciones científicas desde 1984 hasta el 2017. Los modelos presentados estan a resolución semetral (Semestre 1: Enero a Junio, Semestre 2: Julio a Diciembre). Las capturas y muestreos biométricos fueron separados en dos flotas: la flota que opera sobre la porción del stock en aguas peruanas (Flota peruana) y la flota que opera sobre la porción del stock en aguas chilenas (Flota chilena). La selectividad se modeló separadamente para ambas flotas utilizando una curva logística.

Se emplearon además cinco índices de abundancia provenientes de cruceros científicos:

- Crucero de Evaluación de Recursos Pelágicos (Perú)
- Crucero de Biomasa Desovante (Chile)
- Otros

Table 1: Descripción de los datos empleados en los modelos de evaluación.

Datos	Descripción
Fish_Per	Datos provenientes de la flota pesquera que opera en aguas peruanas.
Fish_Chi	Datos provenientes de la flota pesquera que opera en aguas chilenas.
SurAdu_Per	Datos provenientes de las prospecciones científicas realizadas por Perú. Solo considera la porción adulta del stock.
SurJuv_Per	Datos provenientes de las prospecciones científicas realizadas por Perú. Solo considera la porción juvenil del stock.
SurJuv_Chi	Datos provenientes de las prospecciones científicas realizadas por Chile. Solo considera la porción juvenil del stock.
SurBio_Chi	Datos provenientes de las prospecciones científicas realizadas por Chile. Solo considera la porción adulta del stock.

Figure 1: Serie temporal de datos empleados por los modelos de evaluación.

Figure 2: Desembarques realizados por la flota peruana y chilena desde 1984.

Table 2: Descripción de los modelos de evaluación empleados.

Modelo	Descripción
Modelo A	Se asume un periodo de desove y dos reclutamientos al año. $K=1.55.\ Linf=17.41.\ M=1.6.$
Modelo B	Se asume un periodo de desove y un reclutamiento al año. $K=0.85.\ Linf=18.26.\ M=1.$
Modelo C	Se asume un periodo de desove y dos reclutamientos al año. $K=0.85.\ Linf=18.26.\ M=1.$

Figure 3: Estructura de tallas de las capturas de la flota peruana y chilena desde 1984.

La capturabilidad para cada índice de abundancia fue estimado y asumido a ser directamente proporcional a la biomasa de la porción de la población correspondiente.

.. mas..

Modelo A

Modelo B

Table 3: Parámetros estimados por el Modelo B.

Parametro	Valor estimado	Fase	Valor inicial	Desv est.
$\overline{\mathrm{SR}_{-}\mathrm{LN}(\mathrm{R0})}$	19.136	1	13.530	0.060
SR_sigmaR	0.377	3	0.400	0.056
LnQ_base_3_SurAdu_Per	-0.711	2	0.076	0.132
LnQ_base_4_SurJuv_Per	-6.893	2	0.076	0.104
LnQ_base_5_SurJuv_Chi	-3.286	2	0.076	0.120
LnQ_base_6_SurBio_Chi	-0.788	2	0.076	0.133
SizeSel_1P_1_Fish_Per	12.120	4	12.000	1.817
SizeSel_1P_2_Fish_Per	3.052	4	1.200	0.660
SizeSel_2P_1_Fish_Chi	11.500	4	12.000	145.341
SizeSel_2P_2_Fish_Chi	2.131	4	1.200	0.315

Parametro	Valor estimado	Fase	Valor inicial	Desv est.
SizeSel_1P_1_Fish_Per_BLK1repl_1984	7.480	4	12.000	2.914
SizeSel_1P_1_Fish_Per_BLK1repl_1989	14.782	4	12.000	0.815
SizeSel_1P_1_Fish_Per_BLK1repl_1994	12.783	4	12.000	1.488
SizeSel_1P_1_Fish_Per_BLK1repl_1996	15.159	4	12.000	1.227
SizeSel_1P_1_Fish_Per_BLK1repl_1998	7.311	4	12.000	4.129
SizeSel_1P_1_Fish_Per_BLK1repl_2001	10.940	4	12.000	1.634
SizeSel_1P_1_Fish_Per_BLK1repl_2008	11.200	4	12.000	1.218
SizeSel_1P_1_Fish_Per_BLK1repl_2014	7.304	4	12.000	2.221
SizeSel_2P_1_Fish_Chi_BLK2repl_1984	6.456	4	12.000	4.034
SizeSel_2P_1_Fish_Chi_BLK2repl_1987	7.467	4	12.000	2.473
SizeSel_2P_1_Fish_Chi_BLK2repl_1991	14.283	4	12.000	0.447
SizeSel 2P 1 Fish Chi BLK2repl 1998	11.911	4	12.000	1.655
SizeSel 2P 1 Fish Chi BLK2repl 2001	14.697	4	10.000	0.351
SizeSel 2P 1 Fish Chi BLK2repl 2009	13.912	4	10.000	0.393
SizeSel_2P_1_Fish_Chi_BLK2repl_2015	7.390	4	10.000	3.797

Figure 4: Biomasa total, biomasa desovante, desvíos de reclutamiento y mortalidad por pesca obtenidos por el modelo de evaluación B.

Modelo C

Biomasa desovante y reclutamiento

El reclutamiento fue usando la relación stock-reclutamiento de Beverton-Holt con un sigma R = 0.75. El stepness fue estimado (mas detalles sobre las salidas de ssb y reclutamiento)

Anexar figuras time series de salidas de ssb y reclutas y algunas tablas

Biomasa del stock

Estado del stock, principalmente para el ultimo año....

Anexas figuras time series de total biomass..

Problemas no resuelvos y principales incertidumbres

Podemos mencionar lo del crecimiento individual, resolucion temporal etc...

CONCLUSIONES

RECOMENDACIONES

REFERENCIAS BIBLIOGRÁFICAS

ANEXOS