Lecture 9

Multiple Linear Regression III

Reading: Chapter 12

STAT 8020 Statistical Methods II September 9, 2019

> Whitney Huang Clemson University

Notes

Agenda

Review: General Linear Test

Review: Multicollinearity

N	otes	

Review: General Linear Test

- Comparison of a "full model" and "reduced model" that involves a subset of full model predictors
- ullet Consider a full model with k predictors and reduced model with ℓ predictors ($\ell < k$)
- Test statistic: $F^* = \frac{\text{SSE}(R) \text{SSE}(F)/(k-\ell)}{\text{SSE}(F)/(n-k-1)} \Rightarrow \text{Testing } H_0$ that the regression coefficients for the extra variables are all zero
 - $\bullet \ \, \text{Example 1:} \, X_1, X_2, \cdots, X_{p-1} \, \, \text{vs. intercept only} \Rightarrow \\ \text{Overall F test}$
 - Example 2: X_j , $1 \le j \le p-1$ vs. intercept only \Rightarrow t
 - Example 3: X_1, X_2, X_3, X_4 vs. $X_1, X_3 \Rightarrow H_0: \beta_2 = \beta_4 = 0$

Multiple Linear Regression III	
CLEMS#1	ļ
Review: General Linear Test	

Notes			

Species Diversity on the Galapagos Islands Revisited: Full Model

Species Diversity on the Galapagos Islands Revisited: Reduced Model

Perform a General Linear Test

- $H_0: eta_{ ext{Area}} = eta_{ ext{Nearest}} = eta_{ ext{Scruz}}$ vs. $H_a:$ at least one of the three coefficients eq 0
- $F^* = \frac{(100003 89231)/(5-2)}{89231/(30-5-1)} = 0.9657$
- P-value: P[F > 0.9657] = 0.425, where $F \sim F(3, 24)$
- > anova(reduced, full)
 Analysis of Variance Table

Multiple Linear Regression III
CLEMS#N
Review: General Linear Test

Notes			
			_
Notes			
			_
			_
			_
			_
Notes			
10100			
			_
			_
	 		_

Multicollinearity

Multicollinearity is a phenomenon of high inter-correlations among the predictor variables

- Numerical issue \Rightarrow the matrix X^TX is nearly singular
- Statistical issue
 - β's are not well estimated
 - Spurious regression coefficient estimates
 - R² and predicted values are usually OK

Example

Consider a two predictor model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

We can show

$$\hat{\beta}_{1|2} = \frac{\hat{\beta}_1 - \sqrt{\frac{\hat{\sigma}_Y^2}{\hat{\sigma}_{X_1}^2}} r_{X_1,X_2} r_{Y,X_2}}{1 - r_{X_1,X_2}^2},$$

where $\hat{\beta}_{1|2}$ is the estimated partial regression coefficient for X_1 and $\hat{\beta}_1$ is the estimate for β_1 when fitting a simple linear regression model $Y \sim X_1$

Notes

Notes

...

An Simulated Example

Suppose the true relationship between response Y and predictors (X_1,X_2) is

$$Y = 4 + 0.8X_1 + 0.6X_2 + \varepsilon,$$

where $\varepsilon\sim N(0,1)$ and X_1 and X_2 are positively correlated with $\rho=0.95.$ Let's fit the following models:

- Model 1: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$
- Model 2: $Y = \beta_0 + \beta_1 X_1 + \varepsilon^1$
- Model 3: $Y = \beta_0 + \beta_2 X_2 + \varepsilon^2$

Multiple Linear Regression III
CLEMS N
Review: Multicollinearity

Notes

Scatter Plot: X_1 vs. X_2

Notes

Model 1 Fit

Call:
lm(formula = Y ~ X1 + X2)
Residuals:
 Min 10 Mediar

Min 1Q Median 3Q Max -1.91369 -0.73658 0.05475 0.87080 1.55150

Coefficients:

Estimate Std. Error t value Pr(>|t1)
(Intercept) 4.0710 0.1778 22.898 < 2e-16 ***
X1 2.2429 0.7187 3.121 0.00426 **
X2 -0.8339 0.7093 -1.176 0.24997
--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9569 on 27 degrees of freedom Multiple R-squared: 0.673, Adjusted R-squared: 0.6488 F-statistic: 27.78 on 2 and 27 DF, p-value: 2.798e-07

Notes

Review: General Linear Test Review: Multicollinearity

9.11

Model 2 Fit

Notes			

Model 3 Fit

```
Call:
lm(formula = Y ~ X2)

Residuals:
    Min    1Q Median    3Q Max
-2.2584 -0.7398 -0.3568    0.8795    2.0826

Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept)    3.9882    0.2014    19.80    < 2e-16 ***
X2          1.2973    0.2195    5.91    2.33e-06 ***
---
Signif. codes:    0 '***'    0.001 '**'    0.01 '*'    0.05 '.'    0.1 ' ' 1

Residual standard error:    1.096 on 28 degrees of freedom
```

Residual standard error: 1.096 on 28 degrees of freedom Multiple R-squared: 0.555, Adjusted R-squared: 0.5391 F-statistic: 34.92 on 1 and 28 DF, p-value: 2.335e-06

Notes			
Notes			
Notes			