Continual/Incremental/Lifelong Learning

Lei LIU

25/08/2021

Outline

Introduction

Background Algorithms

Learning from Uncertainty

Preliminaries Experiment

Learning from Fisher Information

Fisher Information

 ${\sf Experiments}$

Background

- Static models require restarting the training process each time new data becomes available.
- ▶ It is intractable due to storage constraints or privacy issues in real world.
- Human can learn new knowledge without catastrophic forgetting by rehearsal.
- How to gradually extend acquired knowledge from an infinite stream of data?

Parameter-Level Algorithms

These two papers tried to reduce the changes of the model parameters, which is more related to the old tasks.

- Ebrahimi, Sayna, et al. "Uncertainty-guided Continual Learning with Bayesian Neural Networks." International Conference on Learning Representations. 2019.
- Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." Proceedings of the national academy of sciences 114.13 (2017): 3521-3526.

Preliminaries

- $\triangleright \mathcal{D} = (x, y)$ is a training set.
- $\triangleright x \in \mathbb{R}^n$ is a set of observed variables.
- ightharpoonup P(y|x,w) is a probabilistic model.
- w is a set of latent variables as model parameters.
- BNN aims to model the following distribution for prediction:

$$P(Y^*|X^*,\mathcal{D}) = \int P(Y^*|X^*,\mathcal{W})P(\mathcal{W}|\mathcal{D})d\mathcal{W}$$
where
$$P(\mathcal{W}|\mathcal{D}) = \frac{P(\mathcal{W})P(\mathcal{D}|\mathcal{W})}{P(\mathcal{D})}$$
(1)

 $ightharpoonup P(W|\mathcal{D})$ is intractable.

Variational Bayes-by-backprop

▶ Use a latent variable θ to control the distribution of $q(w|\theta)$, which can be approximated to $p(w|\mathcal{D})$

$$\begin{split} \theta^* &= \arg\min_{\theta} D_{\mathrm{KL}}[q(\mathbf{w} \mid \theta) \| P(\mathbf{w} \mid \mathcal{D})] \\ &= \arg\min_{\theta} \int q(\mathbf{w} \mid \theta) \log \frac{q(\mathbf{w} \mid \theta)}{P(\mathbf{w}) P(\mathcal{D} \mid \mathbf{w})} d\mathbf{w} \\ &= \arg\min_{\theta} D_{\mathrm{KL}}[q(\mathbf{w} \mid \theta) \| P(\mathbf{w})] - \mathbb{E}_{q(\mathbf{w} \mid \theta)}[\log P(\mathcal{D} \mid \mathbf{w})] \end{split}$$

$$\tag{2}$$

To solve the expectation value, use Monte Carlo Method:

$$\mathcal{L} = \sum_{i} \log q (w_i \mid \theta_i) - \sum_{i} \log P (w_i) - \sum_{j} \log P (y_j \mid w, x_j)$$
(3)

Learning from Uncertainty

- ▶ When learning on the new data, preserve the important parameters.
- By scaling the learning rate of each parameter:

$$\alpha \leftarrow \alpha/\Omega \tag{4}$$

where Ω is the importance of the parameter.

ho $\Omega=1/\sigma$ yields the highest accuracy, where σ is the standard deviation.

Class incremental task

▶ Dataset: 2/5-Split MNIST

μ	ρ	Importance $\boldsymbol{\Omega}$	BWT (%)	ACC (%)
х	-	$1/\sigma$	0.00	99.2
-	\mathbf{x}	$1/\sigma$	-0.04	98.7
X	X	$1/\sigma$	-0.02	98.0
X	-	$ \mu /\sigma$	-0.03	98.4
-	X		-0.52	98.7
\mathbf{x}	X	$ \mu /\sigma$	-0.32	98.8
	x - x x	x - x x x x x - x	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Figure 1: Variants of learning rate regularization and importance measurement on 2-Split MNIST.

Class incremental task

Method	BWT	ACC
VCL-Vadam†	-	99.17
VCL-GNG†	-	96.50
VCL	-0.56	98.20
IMM	-11.20	88.54
EWC	-4.20	95.78
HAT	0.00	99.59
ORD-FT	-9.18	90.60
ORD-FE	0.00	98.54
BBB-FT	-6.45	93.42
BBB-FE	0.00	98.76
UCB-P (Ours)	-0.72	99.32
UCB (Ours)	0.00	99.63

Figure 2: 5-Split MNIST, 5 tasks.

Elastic weight consolidation (EWC)

 \bullet $\theta_{A,i}^*$ is the *i*-th parameter learned from the task A.

$$\mathcal{L}(\theta) = \mathcal{L}_{B}(\theta) + \sum_{i} \frac{\lambda}{2} F_{i} \left(\theta_{i} - \theta_{A,i}^{*}\right)^{2}$$
 (5)

where F_i is the fisher information.

Fisher Information

- $ightharpoonup X_i, \cdot, X_n \sim f(X; \theta)$
- The likelihood function is

$$L(X;\theta) = \prod_{i=1}^{n} f(X_i;\theta)$$
 (6)

Maximum Likelihood Estimate(MLE):

$$S(X;\theta) = \sum_{i=1}^{n} \frac{\partial \log f(X_i;\theta)}{\partial \theta}$$
 (7)

Standard Definition of fisher information:

$$I(\theta) = E\left[S(X;\theta)^2\right] - E\left[S(X;\theta)\right]^2 = Var[S(X;\theta)]. \tag{8}$$

Fisher Information

Two variant definitions:

- $ightharpoonup E[S(X;\theta)] = 0$
- ▶ $I(\theta) = E\left[S(X;\theta)^2\right] = -E\left[\frac{\partial^2}{\partial \theta^2} \log L(X;\theta)\right]$ (second moment and second order derivation)
- Fisher information is increasing along with the data scale.
- Second order derivation can reflect the convexity of the likelihood function. Thus fisher information can measure the estimation ability.

Fisher information

Figure 3: Second order derivation.

Experiments

Figure 4: Performance on MNIST.

Summary

- ▶ Relationship between parameters and tasks.
- Rehearsal old data of the old task.