MC9S12C32 Device User Guide V01.14

Original Release Date: 25 JUL 2001 Revised: 07 FEBRUARY 2003

Revision History

Version Number		Effective Date	Author	Description of Changes	
0.1	25.JUL.01	25.JUL.01		Original Version	
V00.02	01 AUG 01	01 AUG 01	Corrected subscripted pin names. Corrected MOD to MODC in pin list table Corrected TIM Module address range Removed detailed XTAL, EXTAL pin descriptions (part of CRG) Moved TPM Module base address Moved TPM vector addresses Various minor corrections		
V00.03	07 AUG 2001	07 AUG 2001		Updated device name. Updated 80-pin package pinout as of Prod. Prop. Rev. 0.7 Added non_cust tags. Added App. A eletricals: ATD, NVM, CRG, CAN, SPI, EXT. Added App. B. Minor cleanup.	
V00.04	19 SEP 2001	19 SEP 2001		Replaced TPM with PWM Minor corrections	
V00.05	24SEP 2001	11 OCT 2001		Reset pin description, Reset interrupt description. Added PWM emergency shutdown to DUG features list Modified recommended PCB Layout for 52 LQFP Added PWM shutdown vector, deleted 2 incorrect vector sources Changed "STAR12" references to "HCS12"	
V00.06	24SEP 2001	09 NOV 2001		Changed MSCAN interrupt enable names. Added mechanical package informationor 48LQFP and 52LQFP Updated user guide version references in Preface Added ROMONE pin description Moved non bonded pin initialization info from PIM to user guide. Corrected typos	
V00.07	08 JAN 2002	08 JAN 2002		Added power domain map to I/O pin list Changed PortP KWU interrupt vector to \$FF8E	
V00.08	24 JAN 2002	24 JAN 2002		Enhanced PortP6, ROMON signal description Corrected revision date	
V01.00	08 MAR 2002	08 MAR 2002		Updated block user guide version references Included 3V ATD range electricals Revised output driver strengths. Updated power consumption/dissipation and thermal properties	
V01.01	22 MAR 2002	22 MAR 2002	Updated Flash electricals, removed NDA labels		
V01.02	13 MAY 2002	13 MAY 2002	Updated Flash W/E spec.		
V01.03	10 JUN 2002	10 JUN 2002		Added 3.3V range I/O parameters	
V01.04	14 JUN 2002	15 JUN 2002		Preface Section Table corrections	
V01.05	21 JUN 2002	21 JUN 2002		Changed 5V range to 5V+/-10% in electrical parameter tables Added ATD 8-bit resolution accuracy parameters Added general comment for range 3.6V to 4.5V	

Version Number	Revision Date	Effective Date	Author	Description of Changes			
V01.06	09 JULY 2002	09 JULY 2002		Updated SPI electrical parameters Corrected interrupt enable register/bit names			
V01.07	25JULY 2002	25JULY 2002		Included register map listing in overview. Added parameter classification column to electrical parameter tables.			
V01.08	01 AUG. 2002	01 AUG. 2002		Created new Printed Circuit Board Section. Updated formats			
V01.09	24 SEP 2002	24 SEP. 2002		Corrected register name errors in memory map summary			
V01.10	10 OCT 2002	10 OCT 2002		Corrected PK7 reference to PP6 Included OSC user guide reference			
V01.11	04 NOV 2002	04 NOV 2002	Removed incorrect reference to RESET pin pullup. Corrected 3V+/- 10% to 3.3V +/- 10% in exp.bus timing table. Added VREG electricals to appendix.				
V01.12	19 DEC 2002	19 DEC 2002		Corrected INITEE register contents Corrected WAIT current in electrical parameters Changed recommended VREG capacitor values			
V01.13	23 JAN 2003	23 JAN 2003	Changed ROMONE pin references to ROMCTL Preface Table 0-2 updates Added BDM alternate clock clarification Corrected footnote in PLL electrical parameter table Corrections to detailed register map. Enhanced section 4.3.3 "Unsecuring the microcontroller" Updated Part ID Table				
V01.14	07 FEB 2003	07 FEB 2003		Corrected PE[1:0] Pull specification in signal property table Enhanced description of Partnumber encoding in preface			

Table of Contents

Secti	ion i introduction	
1.1	Overview	. 17
1.2	Features	. 17
1.3	Modes of Operation	. 19
1.4	Block Diagram	. 20
1.5	Device Memory Map	. 21
1.6	Detailed Register Map	. 23
1.7	Part ID Assignments	. 39
Secti	ion 2 Signal Description	
2.1	Device Pinout	40
2.2	Signal Properties Summary	43
2.2.1	Pin Initialization for 48 & 52 Pin LQFP bond-out versions	. 44
2.3	Detailed Signal Descriptions	44
2.3.1	EXTAL, XTAL — Oscillator Pins	. 44
2.3.2	RESET — External Reset Pin	45
2.3.3	TEST / VPP — Test Pin	
2.3.4	XFC — PLL Loop Filter Pin	45
2.3.5	BKGD / TAGHI / MODC — Background Debug, Tag High & Mode Pin	
2.3.6	PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins	
2.3.7	PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins	
2.3.8	PE7 / NOACC / XCLKS — Port E I/O Pin 7	
2.3.9	PE6 / MODB / IPIPE1 — Port E I/O Pin 6	
2.3.10		
2.3.11		
2.3.12		
2.3.13	• •	
2.3.14		
2.3.15		
2.3.16		
2.3.17		
2.3.18		
2.3.19	PP[5:0] / KWP[5:0] / PW[5:0] — Port P I/O Pins [5:0]	. 49

Device U	ser Guide — 9S12C32DGV 1/D V01.14 Semiconductor, Inc.
2.3.20	PJ[7:6] / KWJ[7:6] — Port J I/O Pins [7:6]
2.3.21	PM5 / SCK — Port M I/O Pin 5
2.3.22	PM4 / MOSI — Port M I/O Pin 4
2.3.23	PM3 / SS — Port M I/O Pin 350
2.3.24	PM2 / MISO — Port M I/O Pin 2
2.3.25	PM1 / TXCAN — Port M I/O Pin 1
2.3.26	PM0 / RXCAN — Port M I/O Pin 050
2.3.27	PS[3:2] — Port S I/O Pins [3:2]
2.3.28	PS1 / TXD — Port S I/O Pin 1
2.3.29	PS0 / RXD — Port S I/O Pin 0
2.3.30	PPT[7:5] / IOC[7:5] — Port T I/O Pins [7:5]
2.3.31	PT[4:0] / IOC[4:0] / PW[4:0]— Port T I/O Pins [4:0]
2.4 F	Power Supply Pins
2.4.1	VDDX,VSSX — Power & Ground Pins for I/O Drivers51
2.4.2 51	VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator
2.4.3	VDD1, VDD2, VSS1, VSS2 — Core Power Pins51
2.4.4	VDDA, VSSA — Power Supply Pins for ATD and VREG51
2.4.5	VRH, VRL — ATD Reference Voltage Input Pins51
2.4.6	VDDPLL, VSSPLL — Power Supply Pins for PLL
Sectio	n 3 System Clock Description
Sectio	n 4 Modes of Operation
4.1	Overview
4.2	Chip Configuration Summary
4.3	Security54
4.3.1	Securing the Microcontroller
4.3.2	Operation of the Secured Microcontroller
4.3.3	Unsecuring the Microcontroller55
4.4 L	ow Power Modes
4.4.1	Stop
4.4.2	Pseudo Stop56
4.4.3	Wait
4.4.4	Run56

Section 5 Resets and Interrupts

Freescale Semiconductor, Inc. 9S12C32DGV1/D V01.14 5.1 5.2 5.2.1 5.3 5.3.1 5.3.2 **Section 6 HCS12 Core Block Description** 6.1 6.1.1 6.1.2 Section 7 Voltage Regulator (VREG) Block Description 7.1 7.1.1 7.1.2 **Section 8 Recommended Printed Circuit Board Layout** Section 9 Clock Reset Generator (CRG) Block Description 9.1 9.1.1 Section 10 Oscillator (OSC) Block Description **Section 11 Timer (TIM) Block Description** Section 12 Analog to Digital Converter (ATD) Block Description 12.1.1 Section 13 Serial Communications Interface (SCI) Block Description Section 14 Serial Peripheral Interface (SPI) Block Description **Section 15 Flash EEPROM 32K Block Description**

Section 16 RAM Block Description

Device User Guide — 9S12C32DGV1/D V01.14 Semiconductor, Inc.

Section 17 Pulse Width Modulator (PWM) Block Description

Section 18 MSCAN Block Description

Section 19 Port Integration Module (PIM) Block Description

Appendix A Electrical Characteristics

A.1	General	69
A.1.1	Parameter Classification	69
A.1.2	Power Supply	69
A.1.3	Pins	70
A.1.4	Current Injection	70
A.1.5	Absolute Maximum Ratings	71
A.1.6	ESD Protection and Latch-up Immunity	72
A.1.7	Operating Conditions	72
A.1.8	Power Dissipation and Thermal Characteristics	73
A.1.9	I/O Characteristics	75
A.1.10	Supply Currents	78
Appe	endix B Electrical Specifications	
B.1	Voltage Regulator Operating Conditions	81
B.2	Chip Power-up and LVI/LVR graphical explanation	82
B.3	Output Loads	83
B.3.1	Resistive Loads	83
B.3.2	Capacitive Loads	83
B.4	ATD Characteristics	85
B.4.1	ATD Operating Characteristics In 5V Range	85
B.4.2	ATD Operating Characteristics In 3.3V Range	85
B.4.3	Factors influencing accuracy	86
B.4.4	ATD accuracy (5V Range)	88
B.4.5	ATD accuracy (3.3V Range)	88
B.5	NVM, Flash and EEPROM	91
B.5.1	NVM timing	91
B.5.2	NVM Reliability	92
B.6	Reset, Oscillator and PLL	95
B.6.1	Startup	95

D.4

B.6.2 B.6.3 **B.7 B.8 Appendix C Electrical Specifications** C.1 C.2 C.3 C.3.1 **Appendix D Package Information** D.1 D.2 D.3

Freescale Semiconductor, Inc. 9S12C32DGV1/D V01.14

List of Figures

Figure 0-1	Order Partnumber Coding
Figure 1-1	MC9S12C32 Block Diagram
Figure 1-2	MC9S12C32 Memory Map22
Figure 2-1	Pin Assignments in 80 QFP for MC9S12C32
Figure 2-2	Pin assignments in 52 LQFP for MC9S12C3241
Figure 2-3	Pin Assignments in 48 LQFP for MC9S12C32
Figure 2-4	PLL Loop Filter Connections
Figure 2-5	Colpitts Oscillator Connections (PE7=1)
Figure 2-6	Pierce Oscillator Connections (PE7=0)
Figure 2-7	External Clock Connections (PE7=0)
Figure 3-1	Clock Connections53
Figure 8-1	Recommended PCB Layout (48 LQFP)62
Figure 8-2	Recommended PCB Layout (52 LQFP)
Figure 8-3	Recommended PCB Layout (80 QFP)64
Figure B-1	Voltage Regulator - Chip Power-up and Voltage Drops (not scaled) 82
Figure B-2	ATD Accuracy Definitions
Figure B-3	Basic PLL functional diagram 97
Figure B-4	Jitter Definitions
Figure B-5	Maximum bus clock jitter approximation
Figure C-1	SPI Master Timing (CPHA=0)
Figure C-2	SPI Master Timing (CPHA=1)
Figure C-3	SPI Slave Timing (CPHA=0)
Figure C-4	SPI Slave Timing (CPHA=1)
Figure C-5	General External Bus Timing
Figure D-1	80-pin QFP Mechanical Dimensions (case no. 841B)
Figure D-2	52-pin LQFP Mechanical Dimensions (case no. 848D-03)
Figure D-3	48-pin LQFP Mechanical Dimensions (case no.932-03 ISSUE F) 114

List of Tables

Table 0-1 Derivative Differences
Table 0-2 Partnumber Coding Example15
Table 0-3 Document References
Table 1-1 Device Memory Map
\$0000 - \$000F MEBI map 1 of 3 (Core User Guide) 23
\$0010 - \$0014 MMC map 1 of 4 (Core User Guide) 23
\$0018 - \$0018 Miscellaneous Peripherals (Device User Guide) 24
\$0019 - \$0019 VREG3V3 (Voltage Regulator) 24
\$0015 - \$0016 INT map 1 of 2 (Core User Guide) 24
\$0017 - \$0017MMC map 2 of 4 (Core User Guide) 24
\$001A - \$001B Miscellaneous Peripherals (Device User Guide) 24
\$001C - \$001D MMC map 3 of 4 (Core User Guide, Device User Guide) 25
\$001E - \$001E MEBI map 2 of 3 (Core User Guide) 25
\$001F - \$001F INT map 2 of 2 (Core User Guide) 25
\$0020 - \$002F DBG (including BKP) map 1 of 1 (Core User Guide) 25
\$0030 - \$0031 MMC map 4 of 4 (Core User Guide) 26
\$0032 - \$0033 MEBI map 3 of 3 (Core User Guide) 26
\$0034 - \$003F CRG (Clock and Reset Generator) 26
\$0040 - \$006F TIM (Timer 16 Bit 8 Channels) 27
\$0070 - \$007F Reserved 29
\$0080 - \$009F ATD (Analog to Digital Converter 10 Bit 8 Channel) 29
\$00A0 - \$00C7 Reserved 30
\$00D0 - \$00D7 Reserved 31
\$00C8 - \$00CF SCI (Asynchronous Serial Interface) 31
\$00D8 - \$00DF SPI (Serial Peripheral Interface) 31
\$00E0 - \$00FF PWM (Pulse Width Modulator) 32
\$0100 - \$010F Flash Control Register (fts32k) 33
\$0110 - \$013F Reserved 34
\$0140 - \$017F CAN (Motorola Scalable CAN - MSCAN) 34
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout 35
\$0180 - \$023F Reserved 36
\$0240 - \$027F PIM (Port Interface Module) 36
\$0280 - \$03FF Reserved space 39

Device User Guide — 9S12C32DGV1/D V01.14 Semiconductor, Inc.

Table 1-3	Assigned Part ID Numbers3	39
Table 1-4	Memory size registers	39
Table 2-1	Signal Properties	ŀ3
Table 2-2	MC9S12C32 Power and Ground Connection Summary	52
Table 4-1	Mode Selection	54
Table 4-2	Clock Selection Based on PE7	54
Table 5-1	Interrupt Vector Locations	56
Table 5-2	Reset Summary	58
Table 8-1	Recommended External Component Values6	31
Table A-1	Absolute Maximum Ratings	7 1
Table A-2	ESD and Latch-up Test Conditions	'2
Table A-3	ESD and Latch-Up Protection Characteristics	'2
Table A-4	Operating Conditions	7 3
Table A-5	Thermal Package Characteristics	'5
Table A-6	5V I/O Characteristics	' 6
Table A-7	3.3V I/O Characteristics	
Table A-8	Supply Current Characteristics	7 9
Table B-1	-Voltage Regulator Electrical Parameters8	31
Table B-2	Voltage Regulator - Capacitive Loads	33
Table B-3	ATD Operating Characteristics	35
Table B-4	ATD Operating Characteristics	36
Table B-5	ATD Electrical Characteristics	37
Table B-6	ATD Conversion Performance	38
Table B-7	ATD Conversion Performance	
Table B-8	NVM Timing Characteristics)2
Table B-9	NVM Reliability Characteristics)3
Table B-10	Startup Characteristics) 5
Table B-11	Oscillator Characteristics	96
Table B-12	PLL Characteristics)()
Table B-13	MSCAN Wake-up Pulse Characteristics10)1
Table C-1	Measurement Conditions10)3
Table C-2	SPI Master Mode Timing Characteristics)4
Table C-3	SPI Slave Mode Timing Characteristics)6
Table C-4	Expanded Bus Timing Characteristics (5V Range))8
Table C-5	Expanded Bus Timing Characteristics (3.3V Range))9

Preface

The Device User Guide provides information about the MC9S12C32 device made up of standard HCS12 blocks and the HCS12 processor core. This document is part of the customer documentation. A complete set of device manuals also includes the HCS12 Core User Guide and all the individual Block User Guides of the implemented modules. In a effort to reduce redundancy all module specific information is located only in the respective Block User Guide. If applicable, special implementation details of the module are given in the block description sections of this document

Table 0-1 Derivative Differences

Generic device	MC9S12C32	MC9S12C32	MC9S12C32
Part Numbers	MC9S12C32	MC9S12C32	MC9S12C32
Package	80QFP	52LQFP	48LQFP
Mask set	L45J	L45J	L45J
Temp. Options	M, V, C	M, V, C	M, V, C

Notes: C: $T_A = 85^{\circ}C$, f = 25MHz. V: $T_A = 105^{\circ}C$, f = 25MHz. M: $T_A = 125^{\circ}C$, f = 25MHz

Figure 0-1 Order Partnumber Coding

Table 0-2 Partnumber Coding Example

48LQFP	MC9S12C32CFA25	1L45J	Temp. option "C", package option "48LQFP", speed option "25MHz"
52LQFP	MC9S12C32MPB25	1L45J	Temp. option "M", package option "52LQFP", speed option "25MHz"
80QFP	MC9S12C32CFU25	1L45J	Temp. option "C", package option "80QFP", speed option "25MHz"

Device User Guide — 9S12C32DGV7/D V01.14 Semiconductor, Inc.

Table 0-3 Document References

User Guide	Version	Document Order Number
HCS12 Core User Guide (CPU, Interrupt, Mapping , Exp.Bus, BDM, Debug)	1.5	HCS12COREUG/D
Analog To Digital Converter: 10 Bit 8 Channel (ATD_10B8C) Block User Guide	V02	S12ATD10B8CV2
Clock and Reset Generator (CRG) Block User Guide	V04	S12CRGV4
Serial Communications Interface (SCI) Block User Guide	V02	S12SCIV2
Serial Peripheral Interface (SPI) Block User Guide	V03	S12SPIV3
Motorola Scalable CAN (MSCAN) Block User Guide	V02	S12MSCANV2
Voltage Regulator (VREG_3V3) Block User Guide	V02	S12VREG3V3V1
(Port Integration Module) PIM_9C32 Block User Guide	V01	S12C32PIMV1
32Kbyte Flash EEPROM (FTS32K) Block User Guide	V01	S12FTS32KV1
Pulse Width Modulator: 8 bit, 6 channel (PWM_8B6C) Block User Guide	V01	S12PWM8B6V1
Timer : 16 bit, 8 channel (TIM_16B8C) Block User Guide	V01	S12TIM16B8CV1
Oscillator (OSC) Block User Guide	V02	S12OSCV2/D

Terminology

Acronyms and Abbreviations
Now or invented terms, symbols, and notations
New or invented terms, symbols, and notations

Section 1 Introduction

1.1 Overview

The MC9S12C32 is a 48/52/80 pin Flash-based Industrial/Automotive network control MCU, comprised of standard on-chip peripherals including a 16-bit central processing unit (HCS12 CPU), 32K bytes of Flash EEPROM, 2K bytes of RAM, an asynchronous serial communications interface (SCI), a serial peripheral interface (SPI), an 8-channel 16-bit timer module (TIM), a 6-channel 8-bit Pulse Width Modulator (PWM), an 8-channel, 10-bit analog-to-digital converter (ADC) and a CAN 2.0 A, B software compatible module (MSCAN). Furthermore, an on chip bandgap based voltage regulator (VREG) generates the internal digital supply voltage (VDD) for a 3 V to 5.5V external supply range. The MC9S12C32 has full 16-bit data paths throughout. The inclusion of a PLL circuit allows power consumption and performance to be adjusted to suit operational requirements. A total of 50 I/O port pins and 2 input pins are available in the 80 pin package version. Furthermore, up to 12 I/O port bits are available with Wake-Up capability from STOP or WAIT mode.

1.2 Features

- 16-bit HCS12 CORE
 - HCS12 CPU
 - i. Upward compatible with M68HC11 instruction set
 - ii. Interrupt stacking and programmer's model identical to M68HC11
 - iii. Instruction queue
 - iv. Enhanced indexed addressing
 - MMC (memory map and interface)
 - INT (interrupt control)
 - BDM (background debug mode)
 - DBG12 (enhanced debug12 module, backwardly compatible with BKP breakpoint module)
 - MEBI: Multiplexed Expansion Bus Interface (available only in 80 pin package version)
- Wake-up interrupt inputs
 - Up to 12-port bits available for wake up interrupt function with digital filtering
- Memory
 - 32K Byte Flash EEPROM (erasable in 512-byte sectors)
 - 2K Byte RAM
- Analog-to-Digital Converters
 - One 8-channel module with 10-bit resolution.
 - External conversion trigger capability

Device User Guide — 9S12C32DGV 7/D V01.14 Semiconductor, Inc.

- One 1M bit per second, CAN 2.0 A, B software compatible modules
 - Five receive and three transmit buffers
 - Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit
 - Four separate interrupt channels for Rx, Tx, error and wake-up
 - Low-pass filter wake-up function
 - Loop-back for self test operation
- Timer Module (TIM)
 - 8-Channel Timer
 - Each Channel Configurable as either Input Capture or Output Compare
 - Simple PWM Mode
 - Modulo Reset of Timer Counter
 - 16-Bit Pulse Accumulator
 - External Event Counting
 - Gated Time Accumulation
- 6 PWM channels
 - Programmable period and duty cycle
 - 8-bit 6-channel or 16-bit 3-channel
 - Separate control for each pulse width and duty cycle
 - Center-aligned or left-aligned outputs
 - Programmable clock select logic with a wide range of frequencies
 - Fast emergency shutdown input
- Serial interfaces
 - One asynchronous serial communications interface (SCI)
 - One synchronous serial peripheral interface (SPI)
- CRG (Clock Reset Generator Module)
 - Windowed COP watchdog,
 - Real time interrupt,
 - Clock monitor,
 - Pierce or low current Colpitts oscillator
 - Phase-locked loop clock frequency multiplier
 - Limp home mode in absence of external clock
 - Low power 0.5 to 16 MHz crystal oscillator reference clock

- Operating frequency
 - 25MHz Bus Speed
- Internal 2.5V Regulator
 - Supports an input voltage range from 2.97V to 5.5V
 - Low power mode capability
 - Includes low voltage reset (LVR) circuitry
 - Includes low voltage interrupt (LVI) circuitry
- 48-Pin LQFP, 52-Pin LQFP or 80-Pin QFP package
 - Up to 58 I/O lines with 5V input and drive capability (80 pin package)
 - Up to 2 dedicated 5V input only lines (IRQ, XIRQ)
 - 5V 8 A/D converter inputs and 5V I/O
- Development support
 - Single-wire background debugTM mode (BDM)
 - On-chip hardware breakpoints
 - Enhanced DBG12 debug features

1.3 Modes of Operation

User modes (Expanded modes are only available in the 80 pin package version).

- Mormal and Emulation Operating Modes
 - Normal Single-Chip Mode
 - Normal Expanded Wide Mode
 - Normal Expanded Narrow Mode
 - Emulation Expanded Wide Mode
 - Emulation Expanded Narrow Mode
- Special Operating Modes
 - Special Single-Chip Mode with active Background Debug Mode
 - Special Test Mode (Motorola use only)
 - Special Peripheral Mode (Motorola use only)

Low power modes

- Stop Mode
- Pseudo Stop Mode
- Wait Mode

Device User Guide — 9S12C32DGV1/D V01:14 Semiconductor, Inc.

1.4 Block Diagram

VSSR→ **VDDA** ATD VDDR→ VSSA **VSSA** VDDX→ VRH VRH VSSX→ Voltage Regulator **VRL** VRL AN0 **←**PAD0 AN1 **←**►PAD1 AN2 **←**PAD2 DDRAD PTAD AN3 →PAD3 32K Byte Flash EEPROM VDD2→ AN4 PAD4 VSS2→ AN5 <>PAD5 VDD1—▶ AN6 **←**►PAD6 2K Byte RAM VSS1-AN7 **←**PAD7 BKGD ←► MODC Debug12 Module IOC0 HCS12 IOC1 CPU <->PT1 MUX IOC2 XFC◀ **←**PT2 IOC3 VDDPLL→ **←≻**PT3 Timer DDR Clock and F VSSPLL→ Reset Generation IOC4 Module **←**PT4 PLL IOC5 **←**►PT5 EXTAL—► COP Watchdog Module IOC6 XTAL-Clock Monitor **←≻**PT6 IOC7 **RESET**→ Periodic Interrupt PE0→ **XIRQ** PW0 ĪRQ PW1 PE1—➤ Keypad Interrupt → PP1 System PW2 PE2<> R/\overline{W} **←**PP2 Integration Module **PWM** DDRP PE3<> LSTRB/TAGLO PW3 PTP → PP3 Module Ы PW4 PE4▼➤ **ECLK** <>> PP4 (SIM) PE5<→ MODA/IPIPE0 PW5 **←**PP5 MODB/IPIPE1 PE6<→ <>PP6 PE7<→ NOACC/XCLKS ←>PP7 Key Int TEST/VPP→ <-> P.J6 E Multiplexed Address/Data Bus RXD SCI **DDRS** TXD **←≻**PS1 **←≻** PS2 **DDRA DDRB** +►PS3 PTA PTB **RXCAN ←**PM0 **MSCAN TXCAN ←**PM1 PB4★**PB3**★**PB3**★**P** DDRM PTM MISO **←**PM2 SS → PM3 SPI MOS **←**PM4 ADDR15 R
ADDR13 R
ADDR12 R
ADDR11 R
ADDR10 R
ADDR3 R
ADDR8 R ADDR7 ADDR6 ADDR5 ADDR4 ADDR3 SCK PM5 Miltiblexed Para 13. Miltiplexed Para 14. Para 14. Para 14. Para 16. Para 1 DATA7 DATA6 DATA5 DATA4 DATA3 Signals shown in **Bold** are not available on the 52 or 48 Pin Package Signals shown in **Bold Italic** are available in the 52, but not the 48 Pin Package Internal Logic 2.5V I/O Driver 5V VDDX VSSX **PLL 2.5V** A/D Converter 5V VRL is bonded internally to VSSA for 52 and 48 Pin packages VDDPLL VDDA VSSPLL VSSA Voltage Regulator 5V & I/O VDDR VSSR

Figure 1-1 MC9S12C32 Block Diagram

1.5 Device Memory Map

and **Figure 1-2** show the device memory map of the MC9S12C32 after reset.

Table 1-1 Device Memory Map

Address	Module	Size
\$000 - \$017	CORE (Ports A, B, E, Modes, Inits, Test)	24
\$018	Reserved	1
\$019	Voltage Regulator (VREG)	1
\$01A - \$01B	Device ID register	2
\$01C - \$01F	CORE (MEMSIZ, IRQ, HPRIO)	4
\$020 - \$02F	CORE (DBG)	16
\$030 - \$033	CORE (PPAGE ¹)	4
\$034 - \$03F	Clock and Reset Generator (CRG)	12
\$040 - \$06F	Standard Timer Module16-bit 8-channels (TIM)	48
\$070 - \$07F	Reserved	16
\$080 - \$09F	Analog to Digital Convert (ATD)	32
\$0A0 - \$0C7	Reserved	40
\$0C8 - \$0CF	Serial Communications Interface (SCI)	8
\$0D0 - \$0D7	Reserved	8
\$0D8 - \$0DF	Serial Peripheral Interface (SPI)	8
\$0E0 - \$0FF	Pulse Width Modulator 8-bit 6 channels (PWM)	32
\$100 - \$10F	Flash Control Register	16
\$110 - \$13F	Reserved	48
\$140 - \$17F	Motorola Scalable CAN (MSCAN)	64
\$180 - \$23F	Reserved	192
\$240 - \$27F	Port Integration Module (PIM)	64
\$280 - \$3FF	Reserved	384
\$0800 - \$0FFF	2K RAM Array	2048
\$8000 - \$FFFF	32K Fixed Flash EEPROM Array	32768

NOTES:

1. External memory paging is not supported on this device (6.1.1 PPAGE).

Device User Guide — 9S12C32DGV1/D V01.14 Semiconductor, Inc.

Figure 1-2 MC9S12C32 Memory Map

NOTE: The same Flash block is visible at reset in both \$4000-\$7FFF and \$8000-\$BFFF ranges

NOTE: Expanded Modes are only available in the 80 pin QFP package version

1.6 Detailed Register Map

through show the detailed register map of the MC9S12C32

\$0000 - \$000F

MEBI map 1 of 3 (Core User Guide)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0000	PORTA	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0001	PORTB	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0002	DDRA	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0003	DDRB	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0004	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0005	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0006	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0007	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0008	PORTE	Read: Write:	Bit 7	6	5	4	3	2	Bit 1	Bit 0
\$0009	DDRE	Read: Write:	Bit 7	6	5	4	3	Bit 2	0	0
\$000A	PEAR	Read: Write:	NOACCE	0	PIPOE	NECLK	LSTRE	RDWE	0	0
\$000B	MODE	Read: Write:	MODC	MODB	MODA	0	IVIS	0	EMK	EME
\$000C	PUCR	Read: Write:	PUPKE	0	0	PUPEE	0	0	PUPBE	PUPAE
\$000D	RDRIV	Read: Write:	RDPK	0	0	RDPE	0	0	RDPB	RDPA
\$000E	EBICTL	Read: Write:	0	0	0	0	0	0	0	ESTR
\$000F	Reserved	Read: Write:	0	0	0	0	0	0	0	0

\$0010 - \$0014

MMC map 1 of 4 (Core User Guide)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0010	INITRM	Read:	RAM15	RAM14	RAM13	RAM12	RAM11	0	0	RAMHAL
φυστυ	IINI I IXIVI	Write:	IVAIVITS	IVAIVIT	INAMIO	INAMIZ	INAMITI			INAMINAL
\$0011	INITRG	Read:	0	REG14	REG13	REG12	REG11	0	0	0
φυστι	INTING	Write:		NEG 14	REGIS	REGIZ	REGII			
Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

Device User Guide — 9S12C32DGV1/D V01.14 Semiconductor, Inc.

\$0010 - \$0014

MMC map 1 of 4 (Core User Guide)

Name	Address
INITEE	\$0012
MISC	\$0013
Reserved	\$0014

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	EE15	EE14	EE13	EE12	EE11	0	0	EEON
Write:	LLIJ	LL 14	LLIS	LL 12				LLON
Read:	0	0	0	0	EXSTR1	EXSTR0	ROMHM	ROMON
Write:					LASTINI	LXSTRU	IXOIVII IIVI	IVOIVIOIN
Read:	0	0	0	0	0	0	0	0
Write:								

\$0015 - \$0016

INT map 1 of 2 (Core User Guide)

Address	Name
\$0015	ITCR
\$0016	ITEST

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	0	0	0	WRINT	ADR3	ADR2	ADR1	ADR0
Write:				VVIXIINI	ADNO	ADNZ	ADNI	ADRU
Read:	INTE	INTC	INTA	INT8	INT6	INT4	INT2	INT0
Write:			114174				11112	11110

\$0017 - \$0017

MMC map 2 of 4 (Core User Guide)

Address	Name
\$0017	Reserved

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	0	0	0	0	0	0	0	0
Write:								

\$0018 - \$0018

Miscellaneous Peripherals (Device User Guide)

Address	Name
\$0018	Reserved

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	0	0	0	0	0	0	0	0
Write:								

\$0019 - \$0019

VREG3V3 (Voltage Regulator)

Address	Name
\$0019	VREGCTRL

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	0	0	0	0	0	LVDS	LVIE	LVIF
Write:							LVIL	LVII

\$001A - \$001B

Miscellaneous Peripherals (Device User Guide)

Address	Name
\$001A	PARTIDH
\$001B	PARTIDL

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	ID15	ID14	ID13	ID12	ID11	ID10	ID9	ID8
Write:								
Read:	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
Write:								

\$001C - \$001D

MMC map 3 of 4 (Core User Guide, Device User Guide)

Address	Name		Bit 7
\$001C	MEMSIZ0	Read:	reg_sw(
φ001C	MEMBIZO	Write:	
\$001D	MEMSIZ1	Read:	rom_sw
סוטטוט	MEMOLI		

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	reg_sw0	eg_sw0 0 eep_s		eep_sw0	0	ram_sw2	ram_sw1	ram_sw0
Write:								
Read:	rom_sw1	rom_sw0	0	0	0	0	pag_sw1	pag_sw0
Write:								

\$001E - \$001E

MEBI map 2 of 3 (Core User Guide)

Address	Name
\$001E	INTCR

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	IRQE	E IRQEN	0	0	0	0	0	0
Write:	IIVQL	IIIQLII						

\$001F - \$001F

INT map 2 of 2 (Core User Guide)

Address	Name
\$001F	HPRIO

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	PSEL7	PSEL6	PSEL5	PSEL4	PSEL3	PSEL2	PSEL1	0
Write:	POELI	PSELO	POELO	POEL4	POELO	POELZ	POELI	

\$0020 - \$002F

DBG (including BKP) map 1 of 1 (Core User Guide)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	DBGC1	read				-		0		
\$0020	-	write	DBGEN	ARM	TRGSEL	BEGIN	DBGBRK		CAPI	MOD
# 0004	DBGSC	read	AF	BF	CF	0				
\$0021	-	write			TRG					
\$0022	DBGTBH	read	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
φυυΖΖ	-	write								
\$0023	DBGTBL	read	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ψ0020	-	write								
\$0024	DBGCNT	read	TBF	0			CN	1T		
Ψ0021	-	write								
\$0025	DBGCCX	read	PAG	SEL			EXT	CMP		
	-	write								
\$0026	DBGCCH	read write	Bit 15	14	13	12	11	10	9	Bit 8
\$0027	DBGCCL -	read write	Bit 7	6	5	4	3	2	1	Bit 0
\$0028	DBGC2 BKPCT0	read write	BKABEN	FULL	BDM	TAGAB	BKCEN	TAGC	RWCEN	RWC
\$0029	DBGC3 BKPCT1	read write	ВКАМВН	BKAMBL	ВКВМВН	BKBMBL	RWAEN	RWA	RWBEN	RWB
\$002A	DBGCAX BKP0X	read write	PAG	SEL	EXTCMP					
\$002B	DBGCAH BKP0H	read write	Bit 15	14	13	12	11	10	9	Bit 8

Device User Guide — 9S12C32DGV77D V01.14 Semiconductor, Inc.

\$0020 - \$002F

DBG (including BKP) map 1 of 1 (Core User Guide)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
\$002C	DBGCAL BKP0L	read write	Bit 7	6	5	4	3	2	1	Bit 0	
\$002D	DBGCBX BKP1X	read write	PAGSEL		EXTCMP						
\$002E	DBGCBH BKP1H	read write	Bit 15	14	13	12	11	10	9	Bit 8	
\$002F	DBGCBL BKP1L	read write	Bit 7	6	5	4	3	2	1	Bit 0	

\$0030 - \$0031

MMC map 4 of 4 (Core User Guide)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0030	PPAGE	Read:	0	0	0 PIX5	PIX4	PIX3	PIX2	PIX1	PIX0
	PPAGE	Write:				F1A4				
\$0031	Reserved	Read:	0	0	0	0	0	0	0	0
		Write:								

\$0032 - \$0033

MEBI map 3 of 3 (Core User Guide)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0032	Reserved	Read:	0	0	0	0	0	0	0	0
φ0032	Reserved	Write:								
\$0033	Reserved	Read:	0	0	0	0	0	0	0	0

\$0034 - \$003F

CRG (Clock and Reset Generator)

		_								
Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0034	SYNR	Read:	0	0	SYN5	SYN4	SYN3	SYN2	SYN1	SYN0
Ф 0034	STINK	Write:			STNS	31114	STINS	STINZ	STIVI	STNU
\$0035	REFDV	Read:	0	0	0	0	REFDV3	REFDV2	REFDV1	REFDV0
\$0033	KELDV	Write:					KELD/3	KELDAZ	KELDAI	KELDAO
¢ሰስንፍ	CTFLG	Read:	TOUT7	TOUT6	TOUT5	TOUT4	TOUT3	TOUT2	TOUT1	TOUT0
\$0036	TEST ONLY	Write:								
¢0027	CRGFLG	Read:	RTIF	PROF	0	LOCKIF	LOCK	TRACK	SCMIF	SCM
\$0037	CRGFLG	Write:	KHF	PROF		LOCKIF			SCIVIIE	
\$0038	CRGINT	Read:	RTIE	0	0	LOCKIE	0	0	SCMIE	0
φυυσο	CKGINI	Write:	KIIE			LOCKIE			SCIVILE	
\$0039	CLKSEL	Read:	PLLSEL	PSTP	SYSWAI	ROAWAI	PLLWAI	CWAI	RTIWAI	COPWAI
φυσσο	CLNGLL	Write:	FLLOLL	7317	31300	NOAWAI	FLLVVAI	OWA	KIIWAI	COFWAI
\$003A	PLLCTL	Read:	CME	PLLON	AUTO	ACQ	0	PRE	PCE	SCME
φυυσΑ	FLLCIL	Write:	CIVIE	PLLON	KUTU	KUQ		FNE		SCIVIE
\$003B	RTICTL	Read:	0	RTR6	RTR5	RTR4	RTR3	RTR2	RTR1	RTR0
φυυδΕ	KIIGIL	Write:		IXTINO	KINO	1\11\4	KINO	NINZ	IXIIXI	KIKU
\$003C	COPCTL	Read:	WCOP	RSBCK	0	0	0	CR2	CR1	CR0
φυυσυ	COFCIL	Write:	WCOP	NODUK				UI\Z		CIVU_
ΨΟΟΟΟ	301 01L	Write:	******	ROBOR				OINZ	Oiti	0110

\$0034 - \$003F

CRG (Clock and Reset Generator)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$003D	FORBYP	Read:	RTIBYP	COPBYP	0	PLLBYP	0	0	FCM	0
φοσοΒ	TEST ONLY	Write:	TO TO	001 511					' 0	
\$003E	CTCTL	Read:	TCTL7	TCTL6	TCTL5	TCTL4	TCLT3	TCTL2	TCTL1	TCTL0
φ003⊑	TEST ONLY	Write:								
\$003F	ARMCOP	Read:	0	0	0	0	0	0	0	0
φυυδη	ANIVICOP	Write:	Bit 7	6	5	4	3	2	1	Bit 0

¢Λ	040	- \$0	UEE
.DU	V4V	00	UUL

\$0040 -	\$006F		TIM (Ti	mer 16 l	Bit 8 Ch	annels)				
Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0040	TIOS	Read: Write:	IOS7	IOS6	IOS5	IOS4	IOS3	IOS2	IOS1	IOS0
\$0041	CFORC	Read:	0	0	0	0	0	0	0	0
φυυ4 Ι	CFORC	Write:	FOC7	FOC6	FOC5	FOC4	FOC3	FOC2	FOC1	FOC0
\$0042	OC7M	Read: Write:	OC7M7	OC7M6	OC7M5	OC7M4	OC7M3	OC7M2	OC7M1	ОС7М0
\$0043	OC7D	Read: Write:	OC7D7	OC7D6	OC7D5	OC7D4	OC7D3	OC7D2	OC7D1	OC7D0
\$0044	TCNT (hi)	Read:	Bit 15	14	13	12	11	10	9	Bit 8
ΨΟΟΤΤ	10111 (111)	Write:								
\$0045	TCNT (lo)	Read:	Bit 7	6	5	4	3	2	1	Bit 0
400.0	()	Write:								
\$0046	TSCR1	Read: Write:	TEN	TSWAI	TSFRZ	TFFCA	0	0	0	0
\$0047	TTOV	Read: Write:	TOV7	TOV6	TOV5	TOV4	TOV3	TOV2	TOV1	TOV0
\$0048	TCTL1	Read: Write:	OM7	OL7	OM6	OL6	OM5	OL5	OM4	OL4
\$0049	TCTL2	Read: Write:	OM3	OL3	OM2	OL2	OM1	OL1	OM0	OL0
\$004A	TCTL3	Read: Write:	EDG7B	EDG7A	EDG6B	EDG6A	EDG5B	EDG5A	EDG4B	EDG4A
\$004B	TCTL4	Read: Write:	EDG3B	EDG3A	EDG2B	EDG2A	EDG1B	EDG1A	EDG0B	EDG0A
\$004C	TIE	Read: Write:	C7I	C6I	C5I	C4I	C3I	C2I	C1I	COI
\$004D	TSCR2	Read:	TOI	0	0	0	TCRE	PR2	PR1	PR0
ψ004D	TOCKE	Write:	101				TONE	FIXZ	ГІХІ	FIXU
\$004E	TFLG1	Read: Write:	C7F	C6F	C5F	C4F	C3F	C2F	C1F	C0F
\$004F	TFLG2	Read:	TOF	0	0	0	0	0	0	0
φυυ 4 ι	IFLGZ	Write:	101							
\$0050	TC0 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0051	TC0 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0

Device User Guide — 9S12C32DGV77D V01.14 Semiconductor, Inc.

S0052 TC1 (hi) Read: Write: S0054 TC2 (hi) Read: Write: Write: S0055 TC2 (hi) Read: Write: S0055 TC2 (hi) Write: S0056 TC3 (hi) Write: S0056 TC3 (hi) Write: S0056 TC3 (hi) Write: S0057 TC3 (lo) Read: Write: S0057 TC3 (lo) Read: Write: S0058 TC4 (hi) Read: Write: S0059 TC4 (hi) Write: S0059 TC4 (hi) Write: S0059 TC5 (hi) Write: S0058 TC5 (hi) Write: S0058 TC5 (hi) Write: S0058 TC5 (hi) Write: S0059 TC5 (hi) Write: S0059 TC5 (hi) Write: S0059 TC5 (hi) Read: Write: S0059 TC5 (hi) Write: S0059 TC5 (hi) Read: Write: S0059 TC5 (hi) Write: S0059 TC5 (hi) Read: Write: S0059 TC5 (hi) Read: Write: S0059 TC5 (hi) Write: S0059 TC5 (hi) Read: Write: S0059 TC5 (hi) Write: S0059 TC5 (hi) Read: Write: S0059 TC5 (hi) Read: S0059 TC5 (hi) Read: S0059 TC5 (hi) Read: S0059 TC5 (hi) Read: S0059 TC5 (hi) Write: S0059 TC5 (hi) Read: S0059 TC5 (hi) TC5 (Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
South Sout	\$0052	TC1 (hi)		Bit 15	14	13	12	11	10	9	Bit 8
South Total Write String Stri	\$0053	TC1 (lo)		Bit 7	6	5	4	3	2	1	Bit 0
South Sout	\$0054	TC2 (hi)	Write:	Bit 15	14	13	12	11	10	9	Bit 8
South Sout	\$0055	TC2 (lo)		Bit 7	6	5	4	3	2	1	Bit 0
South Color Write South Sout	\$0056	TC3 (hi)	Write:	Bit 15	14	13	12	11	10	9	Bit 8
South Sout	\$0057	TC3 (lo)	Write:	Bit 7	6	5	4	3	2	1	Bit 0
SOUSE TC5 (hi) Write: Bit 7 6 5 4 3 2 1 Bit 0	\$0058	TC4 (hi)	Write:	Bit 15	14	13	12	11	10	9	Bit 8
South Color Write: Str 15	\$0059	TC4 (lo)	Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$005C TC6 (hi) Write: \$005C TC6 (hi) Read: Write: \$005D TC6 (lo) Write: \$005D TC6 (lo) Write: \$005D TC7 (hi) Write: \$005E TC7 (hi) Read: Write: \$005F TC7 (lo) Read: Write: \$006D PACTL Read: Write: \$006D PACTL Write: \$006D	\$005A	TC5 (hi)	Write:	Bit 15	14	13	12	11	10	9	Bit 8
Subsect Tota (hi) Write: Bit 15 14 13 12 11 10 9 Bit 8	\$005B	TC5 (lo)	Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$005E TC7 (hi) Write: \$005E TC7 (hi) Write: \$005F TC7 (lo) Read: Write: \$0060 PACTL Write: \$0061 PAFLG Read: Write: \$0062 PACNT (hi) Write: \$0063 PACNT (lo) Read: Write: \$0064 Reserved Write: \$0066 Reserved Write: \$0066 Reserved Write: \$0066 Reserved Write: \$0066 Reserved Write: \$0067 Reserved Read: O O O O O O O O O O O O O O O O O O O	\$005C	TC6 (hi)	Write:	Bit 15	14	13	12	11	10	9	Bit 8
Source Cor (III) Write: Sit 15 14 13 12 11 10 9 Sit 8	\$005D	TC6 (lo)	Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0060 PACTL Read: 0 PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAI \$0061 PAFLG Read: Write: Bit 15 PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAIF \$0062 PACNT (hi) Read: Write: Bit 15 PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAIF \$0063 PACNT (lo) Read: Write: Bit 15 PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAIF \$0064 Reserved Bit 15 PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAIF \$0065 PACNT (lo) Read: Write: Bit 15 PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAIF \$0066 Reserved Write: Bit 15 PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAIF \$0067 Reserved PACNT (hi) PAOVI PAIF \$0068 Reserved Read: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$005E	TC7 (hi)	Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0060 PACTL Write: \$0061 PAFLG Read:	\$005F	TC7 (lo)	Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0061 PAFLG Write: \$0062 PACNT (hi) Read: Write: \$0063 PACNT (lo) Read: Write: \$0064 Reserved Read: Write: \$0065 Reserved Write: \$0066 Reserved Write: \$0066 Reserved Read: O O O O O O O O O O O O O O O O O O O	\$0060	PACTL	Write:							PAOVI	PAI
\$0062 PACNT (In) Write: Substitute of the property of the p	\$0061	PAFLG		0	0	0	0	0	0	PAOVF	PAIF
\$0063 PACNT (IO) Write: Bit 7 6 5 4 3 2 1 Bit 0 \$0064 Reserved Read: 0 0 0 0 0 0 0 0 0 0 Write: Street Write: St	\$0062	PACNT (hi)	Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0064 Reserved Write: \$0065 Reserved Read: 0 <	\$0063	PACNT (Io)	I	Bit 7	6					1	
\$0066 Reserved Write: \$0066 Reserved Write: \$0067 Reserved Read: \$0068 Reserved Read: \$0069 Reserved Read: \$0069 Reserved Read: \$0060 Read: \$	\$0064	Reserved		0	0	0	0	0	0	0	0
\$0066 Reserved Write: \$0067 Reserved Write: \$0068 Reserved Read: \$0069 Reserved Read: \$0069 Reserved Read: \$0060 Read	\$0065	Reserved		0	0	0	0	0	0	0	0
\$0067 Reserved Write: \$0068 Reserved Read: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$0066	Reserved		0	0	0	0	0	0	0	0
\$0068 Reserved Write: Read: 0 0 0 0 0 0 0 0	\$0067	Reserved		0	0	0	0	0	0	0	0
\$0069 Reserved Read: 0 0 0 0 0 0 0 0	\$0068	Reserved		0	0	0	0	0	0	0	0
	\$0069	Reserved		0	0	0	0	0	0	0	0

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$006A	Reserved	Read:	0	0	0	0	0	0	0	0
φυυσΑ	Reserveu	Write:								
\$006B	Reserved	Read:	0	0	0	0	0	0	0	0
ΦΟΟΟΡ	Reserveu	Write:								
¢006C	Decembed	Read:	0	0	0	0	0	0	0	0
\$006C	Reserved	Write:								
\$006D	Reserved	Read:	0	0	0	0	0	0	0	0
φυσου	Reserveu	Write:								
\$006E	Reserved	Read:	0	0	0	0	0	0	0	0
Φ000 ⊏	Reserved	Write:								
¢006E	Dogoryad	Read:	0	0	0	0	0	0	0	0
\$006F	Reserved	Write:								
		•		-		-	-		-	

\$0070 - \$007F

\$0070 - \$007F Reserved

Reserved

Read:	0	0	0	0	0	0	0	0
Write:								

\$0080 - \$009F

ATD (Analog to Digital Converter 10 Bit 8 Channel)

		Г								
Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0080	ATDCTL0	Read:	0	0	0	0	0	0	0	0
ψοσοσ	AIDOILO	Write:								
¢0004	ATDCTL1	Read:	0	0	0	0	0	0	0	0
\$0081	AIDCILI	Write:								
# 0000	ATROTIO	Read:	ADDII		A\A/A I	ETDIOLE	ETDIOD	ETDIO	4001	ASCIF
\$0082	ATDCTL2	Write:	ADPU	AFFC	AWAI	ETRIGLE	ETRIGP	ETRIG	ASCIE	
		Read:	0			222	2.0			
\$0083	ATDCTL3	Write:		S8C	S4C	S2C	S1C	FIFO	FRZ1	FRZ0
		Read:								
\$0084	ATDCTL4	Write:	SRES8	SMP1	SMP0	PRS4	PRS3	PRS2	PRS1	PRS0
		Read:					0			
\$0085	ATDCTL5	Write:	DJM	DSGN	SCAN	MULT	U	CC	CB	CA
		+		0			0	000	004	000
\$0086	ATDSTAT0	Read:	SCF	0	ETORF	FIFOR	0	CC2	CC1	CC0
		Write:						•		
\$008B	Reserved	Read:	0	0	0	0	0	0	0	0
4000 2		Write:								
\$0088	ATDTEST0	Read:	0	0	0	0	0	0	0	0
φοσσσ	711111111111111111111111111111111111111	Write:								
\$0089	ATDTEST1	Read:	0	0	0	0	0	0	0	sc
\$0009	AIDIESII	Write:								30
ФООО A	Danamad	Read:	0	0	0	0	0	0	0	0
\$008A	Reserved	Write:								
A	4TD 0T4T :	Read:	CCF7	CCF6	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0
\$008B	ATDSTAT1	Write:								
	_	Read:	0	0	0	0	0	0	0	0
\$008C	Reserved	Write:	Ů				,	J	,	
		vviile. [

Device User Guide — 9S12C32DGV7/D V01.14 Semiconductor, Inc.

\$0080 - \$009F

ATD (Analog to Digital Converter 10 Bit 8 Channel)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$008D	ATDDIEN	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$008E	Reserved	Read:	0	0	0	0	0	0	0	0
ψ000 <u>L</u>	110001100	Write:	D:47	0		4	2	0	4	DITO
\$008F	PORTAD0	Read: Write:	Bit7	6	5	4	3	2	1	BIT 0
\$0090	ATDDR0H	Read: Write:	Bit15	14	13	12	11	10	9	Bit8
\$0091	ATDDR0L	Read: Write:	Bit7	Bit6	0	0	0	0	0	0
\$0092	ATDDR1H	Read: Write:	Bit15	14	13	12	11	10	9	Bit8
\$0093	ATDDR1L	Read: Write:	Bit7	Bit6	0	0	0	0	0	0
\$0094	ATDDR2H	Read: Write:	Bit15	14	13	12	11	10	9	Bit8
\$0095	ATDDR2L	Read: Write:	Bit7	Bit6	0	0	0	0	0	0
\$0096	ATDDR3H	Read: Write:	Bit15	14	13	12	11	10	9	Bit8
\$0097	ATDDR3L	Read: Write:	Bit7	Bit6	0	0	0	0	0	0
\$0098	ATDDR4H	Read:	Bit15	14	13	12	11	10	9	Bit8
\$0099	ATDDR4L	Write: Read:	Bit7	Bit6	0	0	0	0	0	0
\$009A	ATDDR5H	Write: Read:	Bit15	14	13	12	11	10	9	Bit8
\$009B	ATDDR5L	Write: Read:	Bit7	Bit6	0	0	0	0	0	0
\$009C	ATDDR6H	Write: Read:	Bit15	14	13	12	11	10	9	Bit8
\$009D	ATDDR6L	Write: Read:	Bit7	Bit6	0	0	0	0	0	0
		Write: Read:	Bit15	14	13	12	11	10	9	Bit8
\$009E	ATDDR7H	Write:								20
\$009F	ATDDR7L	Read: Write:	Bit7	Bit6	0	0	0	0	0	0

\$00A0 - \$00C7

\$00A0 - \$00C7 Reserved Reserved

Read:	0	0	0	0	0	0	0	0
Write:								

\$00C8 - \$00CF

SCI (Asynchronous Serial Interface)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00C8	SCIBDH	Read:	0	0	0	SBR12	SBR11	SBR10	SBR9	SBR8
φυυ C δ	SCIDDIT	Write:				ODNIZ	SDKII	SDK10	SDNS	SDIVO
\$00C9	SCIBDL	Read:	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0
\$00C9	SCIBDL	Write:	SDICI	SDRO	SDNS	SDN4	SDNS	SDNZ	SDKI	SBRU
\$00CA	SCICR1	Read:	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	DE	PT
φυυCA	SCICKI	Write:	LUUPS	SCISWAI	KOKU	IVI	WAKE	ILI	PE	PI
\$00CB	SCICR2	Read:	TIF	TOIL	DIE	шЕ	TE	RE	RWU	SBK
φυυσο	SCICKZ	Write:	TIE	TCIE	RIE	ILIE	10	KE	RVVU	SDN
#0000	SCISR1	Read:	TDRE	TC	RDRF	IDLE	OR	NF	FE	PF
\$00CC	SCISKI	Write:								
#000D	COLODO	Read:	0	0	0	0	0	DDIAA	TYDID	RAF
\$00CD	SCISR2	Write:						BRK13	TXDIR	
₽ 00 C E	CCIDDIII	Read:	R8	то	0	0	0	0	0	0
\$00CE	SCIDRH	Write:		T8						
¢00CF	CCIDDI	Read:	R7	R6	R5	R4	R3	R2	R1	R0
\$00CF	SCIDRL	Write:	T7	T6	T5	T4	T3	T2	T1	T0
		,								

\$00D0 - \$00D7

\$00D0 - \$00D7 Reserved

Reserved

Read:	0	0	0	0	0	0	0	0
Write:								

\$00D8 - \$00DF

SPI (Serial Peripheral Interface)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00D8	SPICR1	Read: Write:	SPIE	SPE	SPTIE	MSTR	CPOL	СРНА	SSOE	LSBFE
\$00D9	SPICR2	Read: Write:	0	0	0	MODFEN	BIDIROE	0	SPISWAI	SPC0
\$00DA	SPIBR	Read: Write:	0	SPPR2	SPPR1	SPPR0	0	SPR2	SPR1	SPR0
\$00DB	SPISR	Read: Write:	SPIF	0	SPTEF	MODF	0	0	0	0
\$00DC	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$00DD	SPIDR	Read: Write:	Bit7	6	5	4	3	2	1	Bit0
\$00DE	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$00DF	Reserved	Read: Write:	0	0	0	0	0	0	0	0

Device User Guide — 9S12C32DGV77D V01.14 Semiconductor, Inc.

\$00E0	- \$00FF		PWM (I	Pulse W	idth Mo	dulator)			
Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00E0	PWME	Read:	0	0	PWME5	PWME4	PWME3	PWME2	PWME1	PWME0
ΨΟΟΕΟ	FVVIVIL	Write:			FVVIVILO	F VVIVIL4	FVVIVILO	FVVIVILZ	F VVIVI∟ I	L AAINITO
\$00E1	PWMPOL	Read:	0	0	PPOL5	PPOL4	PPOL3	PPOL2	PPOL1	PPOL0
ΨΟΟΕΙ	1 771111 02	Write:			11020	11021	11020	11022		11020
\$00E2	PWMCLK	Read:	0	0	PCLK5	PCLK4	PCLK3	PCLK2	PCLK1	PCLK0
400		Write:	-					. 02.12	. 02	
\$00E3	PWMPRCLK	Read:	0	PCKB2	PCKB1	PCKB0	0	PCKA2	PCKA1	PCKA0
		Write:	0							
\$00E4	PWMCAE	Read: Write:	0	0	CAE5	CAE4	CAE3	CAE2	CAE1	CAE0
		Read:	0						0	0
\$00E5	PWMCTL	Write:	U	CON45	CON23	CON01	PSWAI	PFRZ	U	U
	PWMTST	Read:	0	0	0	0	0	0	0	0
\$00E6	Test Only	Write:	0							0
	·	Read:	0	0	0	0	0	0	0	0
\$00E7	PWMPRSC	Write:								
****	D14/14001 4	Read:			_		_			Dir o
\$00E8	PWMSCLA	Write:	Bit 7	6	5	4	3	2	1	Bit 0
Ф0050	DWA ACCU D	Read:	D': 7	_	-	4	_		4	D'' 0
\$00E9	PWMSCLB	Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00EA	PWMSCNTA	Read:	0	0	0	0	0	0	0	0
φυσΕΑ	FWWSCNIA	Write:								
\$00EB	PWMSCNTB	Read:	0	0	0	0	0	0	0	0
ΨUULD	1 WWOON1D	Write:								
\$00EC	PWMCNT0	Read:	Bit 7	6	5	4	3	2	1	Bit 0
Ψ0020		Write:	0	0	0	0	0	0	0	0
\$00ED	PWMCNT1	Read:	Bit 7	6	5	4	3	2	1	Bit 0
*		Write:	0	0	0	0	0	0	0	0
\$00EE	PWMCNT2	Read:	Bit 7	6	5	4	3	2	1	Bit 0
·		Write:	0	0	0	0	0	0	0	0
\$00EF	PWMCNT3	Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Write:	0	0	0	0	0	0	0	0
\$00F0	PWMCNT4	Read: Write:	Bit 7	6	5 0	4	0	0	1	Bit 0
		Read:	0 Bit 7	0 6	5	0 4	3	2	0	0 Bit 0
\$00F1	PWMCNT5	Write:	0	0	0	0	0	0	0	0
		Read:	U	0	0	0	0	0	U	0
\$00F2	PWMPER0	Write:	Bit 7	6	5	4	3	2	1	Bit 0
		Read:								
\$00F3	PWMPER1	Write:	Bit 7	6	5	4	3	2	1	Bit 0
		Read:								
\$00F4	PWMPER2	Write:	Bit 7	6	5	4	3	2	1	Bit 0
		Read:								
\$00F5	PWMPER3	Write:	Bit 7	6	5	4	3	2	1	Bit 0
ACC -	D) 4 /4 12 E2 :	Read:	D: -	_	_		_	_		D'/ C
\$00F6	PWMPER4	Write:	Bit 7	6	5	4	3	2	1	Bit 0

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00F7	PWMPER5	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00F8	PWMDTY0	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00F9	PWMDTY1	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00FA	PWMDTY2	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00FB	PWMDTY3	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00FC	PWMDTY4	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00FD	PWMDTY5	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$00FE	Reserved	Read:	0	0	0	0	0	0	0	0
ψ001 L	1 COCI VEG	Write:								
\$00FF	Reserved	Read:	0	0	0	0	0	0	0	0
ψοσιι	NOSCIVEU	Write:								

\$0100 - \$010F

Flash Control Register (fts32k)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0100	FCLKDIV	Read: Write:	FDIVLD	PRDIV8	FDIV5	FDIV4	FDIV3	FDIV2	FDIV1	FDIV0
\$0101	FSEC	Read:	KEYEN1	KEYEN0	NV5	NV4	NV3	NV2	SEC1	SEC0
φυτυτ	FSEC	Write:								
\$0102	FTSTMOD	Read:	0	0	0	WRALL	0	0	0	0
ψΟ102	TTOTWOD	Write:	0	0	0					0
\$0103	FCNFG	Read:	CBEIE	CCIE	KEYACC	0	0	0	BKSEL1	BKSEL0
ψΟ100	101110	Write:	ODLIL	OOIL	INE IAOO				DIVOLLI	DIVOLEG
\$0104	FPROT	Read:	FPOPEN	NV6	FPHDIS	FPHS1	FPHS0	FPLDIS	FPLS1	FPLS0
φοιοι	111101	Write:	11 01 211		1111010	111101		112010		
\$0105	FSTAT	Read:	CBEIF	CCIF	PVIOL	ACCERR	0	BLANK	0	0
Ψ0.00	. •	Write:								
\$0106	FCMD	Read:	0	CMDB6	CMDB5	0	0	CMDB2	0	CMDB0
φοισσ	1 OIVID	Write:						ONIDDE		
\$0107	Reserved for	Read:	0	0	0	0	0	0	0	0
φυτυτ	Factory Test	Write:								
\$0108	Reserved for	1	_		_				_	
	1 COCI VCG IOI	Read:	0	0	0	0	0	0	0	0
ψυτου	Factory Test	Read: Write:	0	0	0	0	0	0	0	0
			0	0	0	0	0	0	0	0
\$0109	Factory Test	Write:								
\$0109	Factory Test Reserved for	Write: Read:								
	Factory Test Reserved for Factory Test	Write: Read: Write:	0	0	0	0	0	0	0	0
\$0109	Factory Test Reserved for Factory Test Reserved for	Write: Read: Write: Read:	0	0	0	0	0	0	0	0

Device User Guide — 9S12C32DGV7/D V01.14 Semiconductor, Inc.

\$0100 - \$010F

Flash Control Register (fts32k)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$010C	\$010C Reserved	Read:	0	0	0	0	0	0	0	0
ψοτο ο ποσοίνου	Write:									
\$010D	Reserved	Read:	0	0	0	0	0	0	0	0
\$010D Res	Reserved	Write:								
\$010E	Descried	Read:	0	0	0	0	0	0	0	0
\$010 ⊏	Reserved	Write:								
¢040E	Doggrund	Read:	0	0	0	0	0	0	0	0
\$010F	Reserved	Write:								

\$0110 - \$013F

\$0110 - \$003F Reserved Reserved

Read:	0	0	0	0	0	0	0	0
Write:								

\$0140 - \$017F

CAN (Motorola Scalable CAN - MSCAN)

		Г								
Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0140	CANCTL0	Read:	RXFRM	RXACT	CSWAI	SYNCH	TIME	WUPE	SLPRQ	INITRQ
,		Write:								
\$0141	CANCTL1	Read:	CANE	CLKSRC	LOOPB	LISTEN	0	WUPM	SLPAK	INITAK
		Write:								
\$0142	CANBTR0	Read:	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0
		Write:								
\$0143	CANBTR1	Read: Write:	SAMP	TSEG22	TSEG21	TSEG20	TSEG13	TSEG12	TSEG11	TSEG10
		Read:			RSTAT1	RSTAT0	TSTAT1	TSTAT0		
\$0144	CANRFLG	Write:	WUPIF	CSCIF	NOIAII	NOIAIU	ISIAII	ISIAIU	OVRIF	RXF
		Read:								
\$0145	CANRIER	Write:	WUPIE	CSCIE	RSTATE1	RSTATE0	TSTATE1	TSTATE0	OVRIE	RXFIE
		Read:	0	0	0	0	0			
\$0146	CANTFLG	Write:						TXE2	TXE1	TXE0
00447	OANTIED	Read:	0	0	0	0	0	TVEIE	T)/E1E4	T)/EIE0
\$0147	CANTIER	Write:						TXEIE2	TXEIE1	TXEIE0
CO440	CANTARO	Read:	0	0	0	0	0	ADTDOO	ADTDO4	ADTDOO
\$0148	CANTARQ	Write:						ABTRQ2	ABTRQ1	ABTRQ0
\$0149	CANTAAK	Read:	0	0	0	0	0	ABTAK2	ABTAK1	ABTAK0
φ01 4 9	CANTAAR	Write:								
\$014A	CANTBSEL	Read:	0	0	0	0	0	TX2	TX1	TX0
ψ01+Λ	CANTEGEL	Write:						17/2	IXI	170
\$014B	CANIDAC	Read:	0	0	IDAM1	IDAM0	0	IDHIT2	IDHIT1	IDHIT0
Ψ014D	OANDAO	Write:				IDAIVIO				
\$014C	Reserved	Read:	0	0	0	0	0	0	0	0
ΨΟΙΤΟ	ROSCIVOU	Write:								
\$014D	Reserved	Read:	0	0	0	0	0	0	0	0
ΨΟΙΉΟ	110001100	Write:								

\$0140 - \$017F CAN (Motorola Scalable CAN - MSCAN)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Φ044 Γ	CANDVEDD	Read:	RXERR7	RXERR6	RXERR5	RXERR4	RXERR3	RXERR2	RXERR1	RXERR0
\$014E	CANRXERR	Write:								
\$014F	CANTXERR	Read:	TXERR7	TXERR6	TXERR5	TXERR4	TXERR3	TXERR2	TXERR1	TXERR0
φ014Γ	CANTAERR	Write:								
\$0150 -	CANIDAR0 -	Read:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$0153	CANIDAR3	Write:	ACI	400	ACO	704	403	ACZ	K	ACU
\$0154 -	CANIDMR0 -	Read:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$0157	CANIDMR3	Write:	\(\text{IVI}\)	AIVIO	AIVIO	∧ivi 4	ZIVIO	AIVIZ	\(\text{IVIII}\)	AIVIO
\$0158 -	CANIDAR4 -	Read:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0
\$015B	CANIDAR7	Write:	ACI	ζ0	703	704	20	AUZ	ζ)	700
\$015C -	CANIDMR4 -	Read:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
\$015F	CANIDMR7	Write:	AIVIT	Aivio	Aivio	AIVI4	Aivio	AIVIZ	AIVII	AIVIU
\$0160 -	CANRXFG	Read:		F	OREGROU	ND RECEIV	E BUFFER :	see Table 1 .	-2	
\$016F	CANKAFG	Write:								
\$0170 -	CANTXFG	Read:		FC	DECEOUN	D TRANSM	IT BUFFER	saa Tahla 1	-2	
\$017F	CANTAIG	Write:		1 0	/KEGKOOK	D HAMOW	II DOLLEN	SEE IADIE	ı - &	

Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout

									•	
Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Extended ID	Read:	ID28	ID27	ID26	ID25	ID24	ID23	ID22	ID21
\$xxx0	Standard ID	Read:	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3
	CANxRIDR0	Write:								
	Extended ID	Read:	ID20	ID19	ID18	SRR=1	IDE=1	ID17	ID16	ID15
\$xxx1	Standard ID	Read:	ID2	ID1	ID0	RTR	IDE=0			
	CANxRIDR1	Write:								
	Extended ID	Read:	ID14	ID13	ID12	ID11	ID10	ID9	ID8	ID7
\$xxx2	Standard ID	Read:								
	CANxRIDR2	Write:								
	Extended ID	Read:	ID6	ID5	ID4	ID3	ID2	ID1	ID0	RTR
\$xxx3	Standard ID	Read:								
	CANxRIDR3	Write:								
\$xxx4-	CANxRDSR0 -	Read:	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
\$xxxB	CANxRDSR7	Write:								
¢vvvC	CANDADID	Read:					DLC3	DLC2	DLC1	DLC0
\$xxxC	CANRxDLR	Write:								
¢vvvD	Reserved	Read:								
\$xxxD	Reserveu	Write:								
\$xxxE	CANxRTSRH	Read:	TSR15	TSR14	TSR13	TSR12	TSR11	TSR10	TSR9	TSR8
φλλλ⊏	CANANTONIT	Write:								
\$xxxF	CANxRTSRL	Read:	TSR7	TSR6	TSR5	TSR4	TSR3	TSR2	TSR1	TSR0
φλλλΓ	CANARIGRE	Write:								
	Extended ID	Read:	ID28	ID27	ID26	ID25	ID24	ID23	ID22	ID21
\$xx10	CANxTIDR0	Write:	1020	IDZI	1020	IDZJ	IDZ4	IDZJ	IDZZ	IDZI
ΨΛΛΙΟ	Standard ID	Read:	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3
		Write:	טוטו	פטו	100	וטו	וטטו	כטו	104	103

\$0240 - \$027F

Device User Guide — 9S12C32DGV7/D V01.14 Semiconductor, Inc.

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$xx11	Extended ID CANxTIDR1	Read: Write:	ID20	ID19	ID18	SRR=1	IDE=1	ID17	ID16	ID15
φλλΙΙ	Standard ID	Read: Write:	ID2	ID1	ID0	RTR	IDE=0			
\$xx12	Extended ID CANxTIDR2	Read: Write:	ID14	ID13	ID12	ID11	ID10	ID9	ID8	ID7
ΨΛΛΙΖ	Standard ID	Read: Write:								
\$xx13	Extended ID CANxTIDR3	Read: Write:	ID6	ID5	ID4	ID3	ID2	ID1	ID0	RTR
ΨΑΑΤΟ	Standard ID	Read: Write:								
\$xx14- \$xx1B	CANxTDSR0 - CANxTDSR7	Read: Write:	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
\$xx1C	CANxTDLR	Read: Write:					DLC3	DLC2	DLC1	DLC0
\$xx1D	CONxTTBPR	Read: Write:	PRIO7	PRIO6	PRIO5	PRIO4	PRIO3	PRIO2	PRIO1	PRIO0
\$xx1E	CANxTTSRH	Read:	TSR15	TSR14	TSR13	TSR12	TSR11	TSR10	TSR9	TSR8
\$xx1F	CANxTTSRL	Write: Read: Write:	TSR7	TSR6	TSR5	TSR4	TSR3	TSR2	TSR1	TSR0
40400	40005		_	_						

PIM (Port Interface Module)

Read: PTT7 PTT2 PTT0 \$0240 PTT PTT6 PTT5 PTT4 PTT3 PTT1 Write: PTIT7 PTIT6 PTIT5 PTIT4 PTIT3 PTIT2 PTIT1 PTIT0 Read: \$0241 PTIT Write: Read: DDRT7 DDRT5 DDRT4 DDRT2 \$0242 **DDRT** DDRT7 DDRT3 DDRT1 DDRT0 Write: Read: RDRT7 \$0243 **RDRT** RDRT6 RDRT5 RDRT4 RDRT3 RDRT2 RDRT1 RDRT0 Write: Read: PERT6 \$0244 PERT7 **PERT** PERT5 PERT4 PERT3 PERT2 PERT1 PERT0 Write: Read: **PPST** PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPST0 \$0245 Write: Read: 0 0 0 0 0 0 0 0 \$0246 Reserved Write: Read: 0 0 0 MODRR4|MODRR3|MODRR2|MODRR1|MODRR0 \$0247 **MODRR** Write:

0

0

PTS3

PTS2

PTS1

PTS0

0

Read:

Write:

PTS

\$0248

0

		Read:	0	0	0	0	PTIS3	PTIS2	PTIS1	PTIS0
\$0249	PTIS	Write:	0	0	0	0	F1100	F1132	FIIST	P1130
COO 4 A	DDDC	Read:	0	0	0	0	DDDCo	DDDCo	DDDC4	DDDCo
\$024A	DDRS	Write:					DDRS3	DDRS2	DDRS1	DDRS0
\$024B	RDRS	Read:	0	0	0	0	RDRS3	RDRS2	RDRS1	RDRS0
•		Write: Read:	0	0	0	0				
\$024C	PERS	Write:	0	0	0	0	PERS3	PERS2	PERS1	PERS0
#004D	DDCC	Read:	0	0	0	0	DDCCa	DDCCo	DDCC4	DDCCO
\$024D	PPSS	Write:					PPSS3	PPSS2	PPSS1	PPSS0
\$024E	WOMS	Read:	0	0	0	0	WOMS3	WOMS2	WOMS1	WOMS0
		Write: Read:	0	0	0	0	0	0	0	0
\$024F	Reserved	Write:	0	0	0	0	0	0	U	U
<u>Ф</u> 0050	DTM	Read:	0	0	DTME	DTMA	DTMO	DTMO	DTM4	DTMO
\$0250	PTM	Write:			PTM5	PTM4	PTM3	PTM2	PTM1	PTM0
\$0251	PTIM	Read:	0	0	PTIM5	PTIM4	PTIM3	PTIM2	PTIM1	PTIM0
		Write: Read:	0	0						
\$0252	DDRM	Write:	0	0	DDRM5	DDRM4	DDRM3	DDRM2	DDRM1	DDRM0
	DDDM	Read:	0	0	DDDME	DDDM4	DDDMO	DDDMO	DDDM	DDDMO
\$0253	RDRM	Write:			RDRM5	RDRM4	RDRM3	RDRM2	RDRM1	RDRM0
\$0254	PERM	Read:	0	0	PERM5	PERM4	PERM3	PERM2	PERM1	PERM0
		Write: Read:	0	0						
\$0255	PPSM	Write:	0	0	PPSM5	PPSM4	PPSM3	PPSM2	PPSM1	PPSM0
Ф ООБО	VAVONANA	Read:	0	0	MOMME	IMONANA.	MOMMO	MOMM	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	VA/ONANAO
\$0256	WOMM	Write:			WOMM5	WOMM4	WOMM3	WOMM2	WOMM1	WOMM0
\$0257	Reserved	Read:	0	0	0	0	0	0	0	0
		Write:								
\$0258	PTP	Read: Write:	PTP7	PTP6	PTP5	PTP4	PTP3	PTP2	PTP1	PTP0
# 0050	DTID	Read:	PTIP7	PTIP6	PTIP5	PTIP4	PTIP3	PTIP2	PTIP1	PTIP0
\$0259	PTIP	Write:								
\$025A	DDRP	Read:	DDRP7	DDRP7	DDRP5	DDRP4	DDRP3	DDRP2	DDRP1	DDRP0
• • •		Write:								_
\$025B	RDRP	Read: Write:	RDRP7	RDRP6	RDRP5	RDRP4	RDRP3	RDRP2	RDRP1	RDRP0
00050	DEDD	Read:	DEDD7	DEDDO	DEDDE	DEDD4	DEDDO	DEDDO	DEDD4	DEDDO
\$025C	PERP	Write:	PERP7	PERP6	PERP5	PERP4	PERP3	PERP2	PERP1	PERP0
\$025D	PPSP	Read:	PPSP7	PPSP6	PPSP5	PPSP4	PPSP3	PPSP2	PPSP1	PPSS0
+ 		Write:							- · · ·	
\$025E	PIEP	Read: Write:	PIEP7	PIEP6	PIEP5	PIEP4	PIEP3	PIEP2	PIEP1	PIEP0
		Read:	D	5 -	D.		5 -			D. === =
\$025F	PIFP	Write:	PIFP7	PIFP6	PIFP5	PIFP4	PIFP3	PIFP2	PIFP1	PIFP0
\$0260	Reserved	Read:	0	0	0	0	0	0	0	0
ψυΖυυ	1 (COO) VCG	Write:								

Device User Guide — 9S12C32DGV77D V01.14 Semiconductor, Inc.

\$0261	Reserved	Read:	0	0	0	0	0	0	0	0
φο2οτ	1 COOT VCG	Write:	0	0	0	0	0	0	0	0
\$0262	Reserved	Read: Write:	0	0	0	0	0	0	0	0
		Read:	0	0	0	0	0	0	0	0
\$0263	Reserved	Write:								
\$0264	Reserved	Read:	0	0	0	0	0	0	0	0
ψ0204	i veder ved	Write:								
\$0265	Reserved	Read:	0	0	0	0	0	0	0	0
·		Write:	0	0	0	0	0	0	0	0
\$0266	Reserved	Read: Write:	0	0	0	0	0	0	0	0
		Read:	0	0	0	0	0	0	0	0
\$0267	Reserved	Write:								
\$0268	PTJ	Read:	PTJ7	PTJ6	0	0	0	0	0	0
φυ200	FIJ	Write:								
\$0269	PTIJ	Read:	PTIJ7	PTIJ6	0	0	0	0	0	0
·		Write:			0	0	0	0	0	0
\$026A	DDRJ	Read: Write:	DDRJ7	DDRJ7	0	0	U	0	0	U
4000D	DDD I	Read:	DDD 17	DDD 10	0	0	0	0	0	0
\$026B	RDRJ	Write:	RDRJ7	RDRJ6						
\$026C	PERJ	Read:	PERJ7	PERJ6	0	0	0	0	0	0
40200		Write:		. =. 100	0	0	0	0	0	0
\$026D	PPSJ	Read: Write:	PPSJ7	PPSJ6	0	0	0	0	0	0
		Read:			0	0	0	0	0	0
\$026E	PIEJ	Write:	PIEJ7	PIEJ6						
\$026F	PIFJ	Read:	PIFJ7	PIFJ6	0	0	0	0	0	0
ψ020I ======	FILO	Write:	FIIJI	F II 30						
\$0270	PTAD	Read: Write:	PTAD7	PTAD6	PTAD5	PTAD4	PTAD3	PTAD2	PTAD1	PTAD0
00074	DTIAD	Read:	PTIAD7	PTIAD6	PTIAD5	PTIAD4	PTIAD3	PTIAD2	PTIAD1	PTIJ7
\$0271	PTIAD	Write:								
\$0272	DDRAD	Read: Write:	DDRAD7	DDRAD6	DDRAD5	DDRAD4	DDRAD3	DDRAD2	DDRAD1	DDRAD0
# 0070		Read:	DDD 4.5.=	DDC 4.5.5	DDC 4 D =	DDD 4.5.	DDC 4.5.5	DDD 4.5.5	DDC 45 :	DDD 4.5.5
\$0273	RDRAD	Write:	RDRAD7	RDRAD6	RDRAD5	RDRAD4	RDRAD3	RDRAD2	RDRAD1	RDRAD0
\$0274	PERAD	Read: Write:	PERAD7	PERAD6	PERAD5	PERAD4	PERAD3	PERAD2	PERAD1	PERAD0
\$027E	DDGVD	Read:	PPSAD7	DDCADe	PPSAD5	PPSAD4	DDCAD3	PPSAD2	PPSAD1	DDCADA
\$0275	PPSAD	Write:		PPSAD6	FFSADS		PPSAD3		FFSAUT	PPSAD0
\$0276-	Reserved	Read:	0	0	0	0	0	0	0	0
\$027F		Write:								

\$0280 - \$03FF

Reserved space

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0280 - \$2FF	Reserved	Read:	0	0	0	0	0	0	0	0
- \$2FF	Reserved	Write:								
\$0300 - \$03FF	Unimplemented	Read:	0	0	0	0	0	0	0	0
\$03FF	Onliniplemented	Write:								

1.7 Part ID Assignments

The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses \$001A and \$001B after reset). The read-only value is a unique part ID for each revision of the chip. **Table 1-3** shows the assigned part ID number.

Table 1-3 Assigned Part ID Numbers

Device	Mask Set Number	Part ID ¹
MC9S12C32	0L45J	\$3300
MC9S12C32	1L45J ²	\$3300

NOTES:

1. The coding is as follows:

Bit 15-12: Major family identifier

Bit 11-8: Minor family identifier

Bit 7-4: Major mask set revision number including FAB transfers

Bit 3-0: Minor - non full - mask set revision

2. Both Masksets 0L45J and 1L45J use the same Part ID number.

The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses \$001C and \$001D after reset). **Table 1-4** shows the read-only values of these registers. Refer to section Module Mapping and Control (MMC) of HCS12 Core User Guide for further details.

Table 1-4 Memory size registers

Register name	Value ¹
MEMSIZ0	\$00
MEMSIZ1	\$80

NOTES:

1. Since no paging is supported on the MC9S12C32, only a 64K range is accessible.

Device User Guide — 9S12C32DGV1/D V01:14 Semiconductor, Inc.

Section 2 Signal Description

2.1 Device Pinout

Signals shown in **Bold** are not available on the 52 or 48 Pin Package Signals shown in **Bold Italic** are available in the 52, but not the 48 Pin Package

Figure 2-1 Pin Assignments in 80 QFP for MC9S12C32

Figure 2-2 Pin assignments in 52 LQFP for MC9S12C32

^{*} Signals shown in *Bold italic* are not available on the 48 Pin Package

Figure 2-3 Pin Assignments in 48 LQFP for MC9S12C32

2.2 Signal Properties Summary

Table 2-1 Signal Properties

Table 2-1 Signal Properties											
Pin Name			Power		al Pull istor	Description					
Function 1	Function 2	Function 3	Domain	CTRL	Reset State	Description					
EXTAL	_	_	VDDPLL	NA	NA	Oscillator pins					
XTAL	_	_	VDDPLL	NA	NA	Oscillator piris					
RESET	_	_	VDDX	None	None	External reset pin					
XFC	_	_	VDDPLL	NA	NA	PLL loop filter pin					
TEST	VPP	_	VSSX	NA	NA	Test pin only					
BKGD	MODC	TAGHI	VDDX	Up	Up	Background debug, mode pin, tag signal high					
PE7	NOACC	XCLKS	VDDX	PUCR	Up	Port E I/O pin, access, clock select					
PE6	IPIPE1	MODB	VDDX		RESET w: Down	Port E I/O pin and pipe status					
PE5	IPIPE0	MODA	VDDX		RESET w: Down	Port E I/O pin and pipe status					
PE4	ECLK	_	VDDX	PUCR	Up	Port E I/O pin, bus clock output					
PE3	LSTRB	TAGLO	VDDX	PUCR	Up	Port E I/O pin, low strobe, tag signal low					
PE2	R/W	_	VDDX	PUCR	Up	Port E I/O pin, R/W in expanded modes					
PE1	ĪRQ	_	VDDX	PUCR	Up	Port E input, external interrupt pin					
PE0	XIRQ	_	VDDX	PUCR	Up	Port E input, non-maskable interrupt pin					
PA[7:3]	ADDR[15:1/ DATA[15:1]	_	VDDX	PUCR	Disabled	Port A I/O pin & multiplexed address/data					
PA[2:1]	ADDR[10:9/ DATA[10:9]	_	VDDX	PUCR	Disabled	Port A I/O pin & multiplexed address/data					
PA[0]	ADDR[8]/ DATA[8]	_	VDDX	PUCR	Disabled	Port A I/O pin & multiplexed address/data					
PB[7:5]	ADDR[7:5]/ DATA[7:5]	_	VDDX	PUCR	Disabled	Port B I/O pin & multiplexed address/data					
PB[4]	ADDR[4]/ DATA[4]	_	VDDX	PUCR	Disabled	Port B I/O pin & multiplexed address/data					
PB[3:0]	ADDR[3:0]/ DATA[3:0]	_	VDDX	PUCR	Disabled	Port B I/O pin & multiplexed address/data					
PAD[7:0]	AN[7:0]	_	VDDA	PERAD/P PSAD	Disabled	Port AD I/O pins and ATD inputs					
PP[7]	KWP[7]	_	VDDX	PERP/ PPSP	Disabled	Port P I/O Pins and keypad wake-up					
PP[6]	KWP[6]	ROMCTL	VDDX	PERP/ PPSP	Disabled	Port P I/O Pins, keypad wake-up and ROMON enable.					
PP[5]	KWP[5]	PW5	VDDX	PERP/ PPSP	Disabled	Port P I/O Pin, keypad wake-up, PW5 output					
PP[4:3]	KWP[4:3]	PW[4:3]	VDDX	PERP/ PPSP	Disabled	Port P I/O Pin, keypad wake-up, PWM output					
PP[2:0]	KWP[2:0]	PW[2:0]	VDDX	PERP/ PPSP	Disabled	Port P I/O Pins, keypad wake-up, PWM outputs					
PJ[7:6]	KWJ[7:6]		VDDX	PERJ/ PPSJ	Disabled	Port J I/O Pins and keypad wake-up					

Device User Guide — 9S12C32DGV1/D V01.14 Semiconductor, Inc.

Pin Name	Pin Name	Pin Name	Power		al Pull istor	- Description
Function 1	Function 2	Function 3	Domain	CTRL	Reset State	Description
PM5	SCK	_	VDDX	PERM/ PPSM	Disabled	Port M I/O Pin and SPI SCK signal
PM4	MOSI	_	VDDX	PERM/ PPSM	Disabled	Port M I/O Pin and SPI MOSI signal
РМ3	SS	_	VDDX	PERM/ PPSM	Disabled	Port M I/O Pin and SPI SS signal
PM2	MISO	_	VDDX	PERM/ PPSM	Disabled	Port M I/O Pin and SPI MISO signal
PM1	TXCAN	_	VDDX	PERM/ PPSM	Disabled	Port M I/O Pin and CAN transmit signal
PM0	RXCAN	_	VDDX	PERM/ PPSM	Disabled	Port M I/O Pin and CAN receive signal
PS[3:2]	_	_	VDDX	PERS/ PPSS	Up	Port S I/O Pins
PS1	TXD	_	VDDX	PERS/ PPSS	Up	Port S I/O Pin and SCI transmit signal
PS0	RXD	_	VDDX	PERS/ PPSS	Up	Port S I/O Pin and SCI receive signal
PT[7:5]	IOC[7:5]	_	VDDX	PERT/ PPST	Disabled	Port T I/O Pins shared with timer (TIM)
PT[4:0]	IOC[4:0]	PW[4:0]	VDDX	PERT/ PPST	Disabled	Port T I/O Pins shared with timer and PWM

2.2.1 Pin Initialization for 48 & 52 Pin LQFP bond-out versions

Not Bonded Pins If the port pins are not bonded out in the chosen package the user should initialize the registers to be inputs with enabled pull resistance to avoid excess current consumption. This applies to the following pins:

(48LQFP): Port A[7:1], Port B[7:5], Port B[3:0], PortE[6,5,3,2], Port P[7:6], PortP[4:0], PortS[3:2]

(52LQFP): Port A[7:3], Port B[7:5], Port B[3:0], PortE[6,5,3,2], Port P[7:6], PortP[2:0], Port J[7:6], PortS[3:2]

2.3 Detailed Signal Descriptions

2.3.1 EXTAL, XTAL — Oscillator Pins

EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived from the EXTAL input frequency. XTAL is the crystal output.

2.3.2 RESET — External Reset Pin

RESET is an active low bidirectional control signal that acts as an input to initialize the MCU to a known start-up state. It also acts as an open-drain output to indicate that an internal failure has been detected in either the clock monitor or COP watchdog circuit. External circuitry connected to the RESET pin should not include a large capacitance that would interfere with the ability of this signal to rise to a valid logic one within 32 ECLK cycles after the low drive is released. Upon detection of any reset, an internal circuit drives the RESET pin low and a clocked reset sequence controls when the MCU can begin normal processing.

2.3.3 TEST / VPP — Test Pin

This pin is reserved for test and must be tied to VSS in all applications.

2.3.4 XFC — PLL Loop Filter Pin

Dedicated pin used to create the PLL loop filter. See CRG BUG for more detailed information.PLL loop filter. Please ask your Motorola representative for the interactive application note to compute PLL loop filter elements. Any current leakage on this pin must be avoided.

Figure 2-4 PLL Loop Filter Connections

2.3.5 BKGD / TAGHI / MODC — Background Debug, Tag High & Mode Pin

The BKGD / TAGHI / MODC pin is used as a pseudo-open-drain pin for the background debug communication. In MCU expanded modes of operation when instruction tagging is on, an input low on this pin during the falling edge of E-clock tags the high half of the instruction word being read into the instruction queue. It is also used as a MCU operating mode select pin at the rising edge during reset, when the state of this pin is latched to the MODC bit.

Device User Guide — 9S12C32DGV1/D V01:14 Semiconductor, Inc.

2.3.6 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins

PA7-PA0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus. PA[7:1] pins are not available in the 48 package version. PA[7:3] are not available in the 52 pin package version.

2.3.7 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins

PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus. PB[7:5] and PB[3:0] pins are not available in the 48 nor 52 pin package version.

2.3.8 PE7 / NOACC / XCLKS — Port E I/O Pin 7

PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC signal, when enabled, is used to indicate that the current bus cycle is an unused or "free" cycle. This signal will assert when the CPU is not using the bus. The XCLKS is an input signal which controls whether a crystal in combination with the internal Colpitts (low power) oscillator is used or whether Pierce oscillator/external clock circuitry is used. The state of thispin is latched at the rising edge of RESET. If the input is a logic low the EXTAL pin is configured for an external clock drive or a Pierce Oscillator. If input is a logic high a Colpitts oscillator circuit is configured on EXTAL and XTAL. Since this pin is an input with a pull-up device during reset, if the pin is left floating, the default configuration is a Colpitts oscillator circuit on EXTAL and XTAL.

^{*} Due to the nature of a translated ground Colpitts oscillator a DC voltage bias is applied to the crystal

Figure 2-5 Colpitts Oscillator Connections (PE7=1)

[.]Please contact the crystal manufacturer for crystal DC

Figure 2-6 Pierce Oscillator Connections (PE7=0)

^{*} Rs can be zero (shorted) when use with higher frequency crystals. Refer to manufacturer's data.

Figure 2-7 External Clock Connections (PE7=0)

2.3.9 PE6 / MODB / IPIPE1 — Port E I/O Pin 6

PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is shared with the instruction queue tracking signal IPIPE1. This pin is an input with a pull-down device which is only active when RESET is low. PE[6] is not available in the 48 / 52 pin package versions.

Device User Guide — 9S12C32DGV1/D V01:14 Semiconductor, Inc.

2.3.10 PE5 / MODA / IPIPE0 — Port E I/O Pin 5

PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the instruction queue tracking signal IPIPE0. This pin is an input with a pull-down device which is only active when RESET is low. This pin is not available in the 48 / 52 pin package versions.

2.3.11 PE4 / ECLK— Port E I/O Pin [4] / E-Clock Output

ECLK is the output connection for the internal bus clock. It is used to demultiplex the address and data in expanded modes and is used as a timing reference. ECLK frequency is equal to 1/2 the crystal frequency out of reset. The ECLK pin is initially configured as ECLK output with stretch in all expanded modes. The E clock output function depends upon the settings of the NECLK bit in the PEAR register, the IVIS bit in the MODE register and the ESTR bit in the EBICTL register. All clocks, including the E clock, are halted when the MCU is in STOP mode. It is possible to configure the MCU to interface to slow external memory. ECLK can be stretched for such accesses. Reference the MISC register (EXSTR[1:0] bits) for more information. In normal expanded narrow mode, the E clock is available for use in external select decode logic or as a constant speed clock for use in the external application system.

2.3.12 PE3 / LSTRB — Port E I/O Pin [3] / Low-Byte Strobe (LSTRB)

In all modes this pin can be used as a general-purpose I/O and is an input with an active pull-up out of reset. If the strobe function is required, it should be enabled by setting the LSTRE bit in the PEAR register. This signal is used in write operations. Therefore external low byte writes will not be possible until this function is enabled. This pin is also used as TAGLO in Special Expanded modes and is multiplexed with the LSTRB function. This pin is not available in the 48 / 52 pin package versions.

2.3.13 PE2 / R/\overline{W} — Port E I/O Pin [2] / Read/ \overline{W} rite

In all modes this pin can be used as a general-purpose I/O and is an input with an active pull-up out of reset. If the read/write function is required it should be enabled by setting the RDWE bit in the PEAR register. External writes will not be possible until enabled. This pin is not available in the 48 / 52 pin package versions.

2.3.14 PE1 / IRQ — Port E input Pin [1] / Maskable Interrupt Pin

The \overline{IRQ} input provides a means of applying asynchronous interrupt requests to the MCU. Either falling edge-sensitive triggering or level-sensitive triggering is program selectable (INTCR register). \overline{IRQ} is always enabled and configured to level-sensitive triggering out of reset. It can be disabled by clearing IRQEN bit (INTCR register). When the MCU is reset the \overline{IRQ} function is masked in the condition code register. This pin is always an input and can always be read. There is an active pull-up on this pin while in reset and immediately out of reset. The pull-up can be turned off by clearing PUPEE in the PUCR register.

Freescale Semiconductor, Inc. Device User Guide — 9S12C32DGV1/D V01.14

2.3.15 PE0 / XIRQ — Port E input Pin [0] / Non Maskable Interrupt Pin

The $\overline{\text{XIRQ}}$ input provides a means of requesting a non maskable interrupt after reset initialization. During reset, the X bit in the condition code register (CCR) is set and any interrupt is masked until MCU software enables it. Because the $\overline{\text{XIRQ}}$ input is level sensitive, it can be connected to a multiple-source wired-OR network. This pin is always an input and can always be read. There is an active pull-up on this pin while in reset and immediately out of reset. The pull-up can be turned off by clearing PUPEE in the PUCR register.

2.3.16 PAD[7:0] / AN[7:0] — Port AD I/O Pins [7:0]

PAD7-PAD0 are general purpose I/O pins and also analog inputs for the analog to digital converter.

2.3.17 PP[7] / KWP[7] — Port P I/O Pin [7]

PP7 is a general purpose input or output pin, shared with the keypad interrupt function. When configured as an input, it can generate interrupts causing the MCU to exit STOP or WAIT mode. This pin is not available in the 48 / 52 pin package versions.

2.3.18 PP[6] / KWP[6]/ROMCTL — Port P I/O Pin [6]

PP6 is a general purpose input or output pin, shared with the keypad interrupt function. When configured as an input, it can generate interrupts causing the MCU to exit STOP or WAIT mode. This pin is not available in the 48 / 52 pin package versions. During MCU expanded modes of operation, this pin is used to enable the Flash EEPROM memory in the memory map (ROMCTL). At the rising edge of RESET, the state of this pin is latched to the ROMON bit.

PP6=1 in emulation modes equates to ROMON =0 (ROM space externally mapped) PP6=0 in expanded modes equates to ROMON =0 (ROM space externally mapped)

2.3.19 PP[5:0] / KWP[5:0] / PW[5:0] — Port P I/O Pins [5:0]

PP[5:0] are general purpose input or output pins, shared with the keypad interrupt function. When configured as inputs, they can generate interrupts causing the MCU to exit STOP or WAIT mode. PP[5:0] are also shared with the PWM output signals, PW[5:0]. Pins PP[2:0] are only available in the 80 pin package version. Pins PP[4:3] are only available in the 52 and 80 pin package version.

2.3.20 PJ[7:6] / KWJ[7:6] — Port J I/O Pins [7:6]

PJ[7:6] are general purpose input or output pins, shared with the keypad interrupt function. When configured as inputs, they can generate interrupts causing the MCU to exit STOP or WAIT mode. These pins are not available in the 48 pin package version nor in the 52 pin package version.

Device User Guide — 9S12C32DGV1/D V01:14 Semiconductor, Inc.

2.3.21 PM5 / SCK — Port M I/O Pin 5

PM5 is a general purpose input or output pin and also the serial clock pin SCK for the Serial Peripheral Interface (SPI).

2.3.22 PM4 / MOSI — Port M I/O Pin 4

PM4 is a general purpose input or output pin and also the master output (during master mode) or slave input (during slave mode) pin for the Serial Peripheral Interface (SPI).

2.3.23 PM3 / SS — Port M I/O Pin 3

PM3 is a general purpose input or output pin and also the slave select pin \overline{SS} for the Serial Peripheral Interface (SPI).

2.3.24 PM2 / MISO — Port M I/O Pin 2

PM2 is a general purpose input or output pin and also the master input (during master mode) or slave output (during slave mode) pin for the Serial Peripheral Interface (SPI).

2.3.25 PM1 / TXCAN — Port M I/O Pin 1

PM1 is a general purpose input or output pin and the transmit pin TXCAN of the CAN module.

2.3.26 PM0 / RXCAN — Port M I/O Pin 0

PM0 is a general purpose input or output pin and the receive pin RXCAN of the CAN module.

2.3.27 PS[3:2] — Port S I/O Pins [3:2]

PS3 and PS2 are general purpose input or output pins. These pins are not available in the 48 / 52 pin package versions.

2.3.28 PS1 / TXD — Port S I/O Pin 1

PS1 is a general purpose input or output pin and the transmit pin TXD of Serial Communication Interface (SCI).

2.3.29 PS0 / RXD — Port S I/O Pin 0

PS0 is a general purpose input or output pin and the receive pin RXD of Serial Communication Interface (SCI).

2.3.30 PPT[7:5] / IOC[7:5] — Port T I/O Pins [7:5]

PT7-PT5 are general purpose input or output pins. They can also be configured as the timer system input capture or output compare pins IOC7-IOC5.

2.3.31 PT[4:0] / IOC[4:0] / PW[4:0]— Port T I/O Pins [4:0]

PT4-PT0 are general purpose input or output pins. They can also be configured as the timer system input capture or output compare pins IOC4-IOC0 or as the PWM outputs PW[4:0]/

2.4 Power Supply Pins

2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers

External power and ground for I/O drivers. Bypass requirements depend on how heavily the MCU pins are loaded.

2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator

External power and ground for I/O drivers and input to the internal voltage regulator. Bypass requirements depend on how heavily the MCU pins are loaded.

2.4.3 VDD1, VDD2, VSS1, VSS2 — Core Power Pins

Power is supplied to the MCU through VDD and VSS. This 2.5V supply is derived from the internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned off, if VDDR is tied to ground.

2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG

VDDA, VSSA are the power supply and ground input pins for the voltage regulator and the analog to digital converter. .

2.4.5 VRH, VRL — ATD Reference Voltage Input Pins

VRH and VRL are the reference voltage input pins for the analog to digital converter.

2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL

Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the supply voltage to the Oscillator and PLL to be bypassed independently. This 2.5V voltage is generated by the internal voltage regulator.

Device User Guide — 9S12C32DGV7/D V01.14 Semiconductor, Inc.

Table 2-2 MC9S12C32 Power and Ground Connection Summary

Mnemonic	Nominal Voltage	Description
VDD1 VDD2	2.5 V	Internal power and ground generated by internal regulator. These also allow an external source to supply the core VDD/VSS voltages and bypass
VSS1 VSS2	0V	the internal voltage regulator. In the 48 and 52 LQFP packages VDD2 and VSS2 are not available.
VDDR	5.0 V	External power and ground, supply to internal voltage regulator.
VSSR	0 V	
VDDX	5.0 V	External power and ground, supply to pin drivers.
VSSX	0 V	- External power and ground, supply to pill drivers.
VDDA	5.0 V	Operating voltage and ground for the analog-to-digital converters and the
VSSA	0 V	reference for the internal voltage regulator, allows the supply voltage to the A/D to be bypassed independently.
VRH	5.0 V	Reference voltage low for the ATD converter.
VRL	0 V	In the 48 and 52 LQFP packages VRL is bonded to VSSA.
VDDPLL	2.5 V	Provides operating voltage and ground for the Phased-Locked Loop. This
VSSPLL	0 V	allows the supply voltage to the PLL to be bypassed independently. Internal power and ground generated by internal regulator.

NOTE:All VSS pins must be connected together in the application. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on MCU pin load.

Section 3 System Clock Description

The Clock and Reset Generator provides the internal clock signals for the core and all peripheral modules. **Figure 3-1** shows the clock connections from the CRG to all modules. Consult the CRG Block User Guide for details on clock generation.

Figure 3-1 Clock Connections

Section 4 Modes of Operation

4.1 Overview

Eight possible modes determine the operating configuration of the MC9S12C32. Each mode has an associated default memory map and external bus configuration controlled by a further pin.

Three low power modes exist for the device.

4.2 Chip Configuration Summary

The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during reset. The MODC, MODB, and MODA bits in the MODE register show the current operating mode and provide limited mode switching during operation. The states of the MODC, MODB, and MODA pins are latched into these bits on the rising edge of the reset signal. The ROMCTL signal allows the setting of the ROMON bit in the MISC register thus controlling whether the internal Flash is visible in the memory map. ROMON = 1 mean the Flash is visible in the memory map. The state of the ROMCTL pin is latched into the ROMON bit in the MISC register on the rising edge of the reset signal.

Device User Guide — 9S12C32DGV7/D V01.14 Semiconductor, Inc.

Table 4-1 Mode Selection

BKGD = MODC	PE6 = MODB	PE5 = MODA	PP6 = ROMCTL	ROMON Bit	Mode Description
0	0	0	х	1	Special Single Chip, BDM allowed and ACTIVE. BDM is allowed in all other modes but a serial command is required to make BDM active.
0	0	1	0	1	Emulation Expanded Narrow, BDM allowed
	U	!	1	0	- Emulation Expanded Narrow, Bowl allowed
0	1	0	Х	0	Special Test (Expanded Wide), BDM allowed
0	1 1	1 1	0	1	Emulation Expanded Wide, BDM allowed
	Į.		1	0	- Emulation Expanded Wide, Bolvi allowed
1	0	0	Х	1	Normal Single Chip, BDM allowed
1	0	1	0	0	Normal Expanded Narrow, BDM allowed
'	U	'	1	1	- Normal Expanded Narrow, BDM allowed
1	1	0	Х	1	Peripheral; BDM allowed but bus operations would cause bus conflicts (must not be used)
1	1	1	0	0	Normal Expanded Wide, BDM allowed
ļ	<u> </u>	ļ ļ	1	1	TNOTHIAI Expanded vilde, BDIVI allowed

For further explanation on the modes refer to the Core User Guide.

Table 4-2 Clock Selection Based on PE7

PE7 = XCLKS	Description
1	Colpitts Oscillator selected
0	Pierce Oscillator/external clock selected

4.3 Security

The device will make available a security feature preventing the unauthorized read and write of the memory contents. This feature allows:

- Protection of the contents of FLASH,
- Operation in single-chip mode,
- Operation from external memory with internal FLASH disabled.

The user must be reminded that part of the security must lie with the user's code. An extreme example would be user's code that dumps the contents of the internal program. This code would defeat the purpose of security. At the same time the user may also wish to put a back door in the user's program. An example of this is the user downloads a key through the SCI which allows access to a programming routine that updates parameters.

4.3.1 Securing the Microcontroller

Once the user has programmed the FLASH, the part can be secured by programming the security bits located in the FLASH module. These non-volatile bits will keep the part secured through resetting the part and through powering down the part.

The security byte resides in a portion of the Flash array.

Check the Flash Block User Guide for more details on the security configuration.

4.3.2 Operation of the Secured Microcontroller

4.3.2.1 Normal Single Chip Mode

This will be the most common usage of the secured part. Everything will appear the same as if the part was not secured with the exception of BDM operation. The BDM operation will be blocked.

4.3.2.2 Executing from External Memory

The user may wish to execute from external space with a secured microcontroller. This is accomplished by resetting directly into expanded mode. The internal FLASH will be disabled. BDM operations will be blocked.

4.3.3 Unsecuring the Microcontroller

In order to unsecure the microcontroller, the internal FLASH must be erased. This can be done through an external program in expanded mode or via a sequence of BDM commands. Unsecuring is also possible via the Backdoor Key Access. Refer to Flash Block Guide for details.

Once the user has erased the FLASH, the part can be reset into special single chip mode. This invokes a program that verifies the erasure of the internal FLASH. Once this program completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally done through the BDM, but the user could also change to expanded mode (by writing the mode bits through the BDM) and jumping to an external program (again through BDM commands). Note that if the part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be secured again.

4.4 Low Power Modes

The microcontroller features three main low power modes. Consult the respective Block User Guide for information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of information about the clock system is the Clock and Reset Generator User Guide (CRG).

4.4.1 Stop

Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static mode. Wake up from this mode can be done via reset or external interrupts.

Device User Guide — 9S12C32DGV1/D V01:14 Semiconductor, Inc.

4.4.2 Pseudo Stop

This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are turned off. This mode consumes more current than the full STOP mode, but the wake up time from this mode is significantly shorter.

4.4.3 Wait

This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute instructions. The internal CPU signals (address and databus) will be fully static. All peripherals stay active. For further power consumption the peripherals can individually turn off their local clocks.

4.4.4 Run

Although this is not a low power mode, unused peripheral modules should not be enabled in order to save power.

Section 5 Resets and Interrupts

5.1 Overview

Consult the Exception Processing section of the HCS12 Core User Guide for information on resets and interrupts.

5.2 Vectors

5.2.1 Vector Table

Table 5-1 lists interrupt sources and vectors in default order of priority.

Table 5-1 Interrupt Vector Locations

Vector Address	Interrupt Source		Local Enable	HPRIO Value to Elevate
\$FFFE, \$FFFF	External Reset, Power On Reset or Low Voltage Reset (see CRG Flags Register to determine reset source)	None	None	-
\$FFFC, \$FFFD	Clock Monitor fail reset	None	COPCTL (CME, FCME)	_
\$FFFA, \$FFFB	COP failure reset	None	COP rate select	_
\$FFF8, \$FFF9	Unimplemented instruction trap	None	None	_
\$FFF6, \$FFF7	SWI	None	None	_
\$FFF4, \$FFF5	XIRQ	X-Bit	None	_
\$FFF2, \$FFF3	IRQ	I-Bit	INTCR (IRQEN)	\$F2
\$FFF0, \$FFF1	Real Time Interrupt	I-Bit	CRGINT (RTIE)	\$F0

\$FFEE, \$FFEF	Standard Timer channel 0	I-Bit	TIE (C0I)	\$EE		
\$FFEC, \$FFED	Standard Timer channel 1	I-Bit	TIE (C1I)	\$EC		
\$FFEA, \$FFEB	Standard Timer channel 2	I-Bit	TIE (C2I)	\$EA		
\$FFE8, \$FFE9	Standard Timer channel 3	I-Bit	TIE (C3I)	\$E8		
\$FFE6, \$FFE7	Standard Timer channel 4	I-Bit	TIE (C4I)	\$E6		
\$FFE4, \$FFE5	Standard Timer channel 5	I-Bit	TIE (C5I)	\$E4		
\$FFE2, \$FFE3	Standard Timer channel 6	I-Bit	TIE (C6I)	\$E2		
\$FFE0, \$FFE1	Standard Timer channel 7	I-Bit	TIE (C7I)	\$E0		
\$FFDE, \$FFDF	Standard Timer overflow	I-Bit	TMSK2 (TOI)	\$DE		
\$FFDC, \$FFDD	Pulse accumulator A overflow	I-Bit	PACTL (PAOVI)	\$DC		
\$FFDA, \$FFDB	Pulse accumulator input edge	I-Bit	PACTL (PAI)	\$DA		
\$FFD8, \$FFD9	SPI	I-Bit	SPICR1 (SPIE, SPTIE)	\$D8		
\$FFD6, \$FFD7	SCI	I-Bit	SCICR2 (TIE, TCIE, RIE, ILIE)	\$D6		
\$FFD4, \$FFD5		Rese	erved			
\$FFD2, \$FFD3	ATD	I-Bit	ATDCTL2 (ASCIE)	\$D2		
\$FFD0, \$FFD1		Rese	erved			
\$FFCE, \$FFCF	Port J	I-Bit	PIEP (PIEP7-6)	\$CE		
\$FFCC, \$FFCD		Rese	erved			
\$FFCA, \$FFCB		Rese	erved			
\$FFC8, \$FFC9		Rese	erved			
\$FFC6, \$FFC7	CRG PLL lock	I-Bit	PLLCR (LOCKIE)	\$C6		
\$FFC4, \$FFC5	CRG Self Clock Mode	I-Bit	PLLCR (SCMIE)	\$C4		
\$FFBA to \$FFC3		Rese	erved			
\$FFB8, \$FFB9	FLASH	I-Bit	FCNFG (CCIE, CBEIE)	\$B8		
\$FFB6, \$FFB7	CAN wake-up	I-Bit	CANRIER (WUPIE)	\$B6		
\$FFB4, \$FFB5	CAN errors	I-Bit	CANRIER (CSCIE, OVRIE)	\$B4		
\$FFB2, \$FFB3	CAN receive	I-Bit	CANRIER (RXFIE)	\$B2		
\$FFB0, \$FFB1	CAN transmit	I-Bit	CANTIER (TXEIE[2:0])	\$B0		
\$FF90 to \$FFAF		Rese	erved			
\$FF8E, \$FF8F	Port P	I-Bit	PIEP (PIEP7-0)	\$8E		
\$FF8C, \$FF8D	PWM Emergency Shutdown	I-Bit	PWMSDN(PWMIE)	\$8C		
\$FF8A, \$FF8B	VREG LVI	I-Bit	CTRL0 (LVIE)	\$8A		
\$FF80 to \$FF89	Reserved					

5.3 Resets

Resets are a subset of the interrupts featured in **Table 5-1**. The different sources capable of generating a system reset are summarized in **Table 5-2**. When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the respective module Block User Guides for register reset states

Device User Guide — 9S12C32DGV1/D V01:14 Semiconductor, Inc.

5.3.1 Reset Summary Table

Table 5-2	Reset	Summary
-----------	-------	---------

Reset	Priority	Source	Vector
Power-on Reset	1	CRG Module	\$FFFE, \$FFFF
External Reset	1	RESET pin	\$FFFE, \$FFFF
Low Voltage Reset	1	VREG Module	\$FFFE, \$FFFF
Clock Monitor Reset	2	CRG Module	\$FFFC, \$FFFD
COP Watchdog Reset	3	CRG Module	\$FFFA, \$FFFB

5.3.2 Effects of Reset

When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the respective module Block User Guides for register reset states. Refer to the HCS12 Core User Guides for mode dependent pin configuration of port A, B and E out of reset.

Refer to the PIM Block User Guide for reset configurations of all peripheral module ports.

Refer to for locations of the memories depending on the operating mode after reset.

The RAM array is not automatically initialized out of reset.

Refer to **Table 1-1** for locations of the memories depending on the operating mode after reset.

NOTE: For devices assembled in 48-pin or 52-pin LQFP packages all non-bonded out pins

should be configured as outputs after reset in order to avoid current drawn from floating inputs. Refer to **Table 2-1** for affected pins.

Section 6 HCS12 Core Block Description

Consult the HCS12 Core User Guide for information about the HCS12 core modules, i.e. central processing unit (CPU), interrupt module (INT), module mapping control module (MMC), multiplexed external bus interface (MEBI), debug12 module (DBG12) and background debug mode module (BDM).

6.1 Device-specific information

6.1.1 PPAGE

External paging is not supported on this device. In order to access the 16K Flash Block1 in the address range \$8000-\$BFFF the PPAGE register must be loaded with a valid value for this range. Valid PPAGE values for Flash Block1 visibility in the \$8000-\$BFFF range are PPAGE=\$00, \$02...\$38, \$3A, \$3C, \$3E.

Flash Block1 is also visible in the \$4000-\$7FFF range if ROMHM is cleared.

Flash Block2 is visible in the \$8000-\$BFFF range with PPAGE=\$01,\$03,\$05,\$07....\$39,\$3B,\$3D,\$3F.

Flash Block2 is always visible in the range \$C000-\$FFFF if ROMON is set.

6.1.2 BDM alternate clock

The BDM section of S12 Core User Guide reference to alternate clock is equivalent to oscillator clock.

Section 7 Voltage Regulator (VREG) Block Description

Consult the VREG Block User Guide for information about the dual output linear voltage regulator.

7.1 Device-specific information

The VREG is part of the IPBus domain.

7.1.1 VREGEN

VREGEN is connected internally to VDDR.

7.1.2 VDD1, VDD2, VSS1, VSS2

In the 80 pin QFP package version, both internal VDD and VSS of the 2.5V domain are bonded out on 2 sides of the device as two pin pairs (VDD1, VSS1 & VDD2, VSS2). VDD1 and VDD2 are connected together internally. VSS1 and VSS2 are connected together internally.

The extra pin pair enables systems using the 80 pin package to employ better supply routing and further decoupling.

Section 8 Recommended Printed Circuit Board Layout

The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the MCU itself. The following rules must be observed:

- Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the corresponding pins (C1 C6).
- Central point of the ground star should be the VSSR pin.
- Use low ohmic low inductance connections between VSS1, VSS2 and VSSR.
- VSSPLL must be directly connected to VSSR.
- Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7, C8, C11 and Q1 as small as possible.

Device User Guide — 9S12C32DGV17D V01.14 Semiconductor, Inc.

- Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the connection area to the MCU.
- Central power input should be fed in at the VDDA/VSSA pins.

Table 8-1 Recommended External Component Values

Component	Purpose	Туре	Value	
C1	VDD1 filter cap	ceramic X7R	220nF, ¹ 470nF	
C2	VDD2 filter cap (80 QFP only)	ceramic X7R	220nF	
C3	VDDA filter cap	ceramic X7R	100nF	
C4	VDDR filter cap	X7R/tantalum	>=100nF	
C5	VDDPLL filter cap	ceramic X7R	100nF	
C6	VDDX filter cap	X7R/tantalum	>=100nF	
C7	OSC load cap	See PLL specification chapter		
C8	OSC load cap			
C9	PLL loop filter cap	See PLL specification chapter		
C10	PLL loop filter cap			
C11	DC cutoff cap	Colpitts mode only, if recommended by quartz manufacturer		
R1	PLL loop filter res	See PLL Specification chapter		
Q1	Quartz			

NOTES:

^{1.} In 48LQFP and 52LQFP package versions, VDD2 is not available. Thus 470nF must be connected to VDD1.

Note:

Oscillator in

Device User Guide — 9S12C32DGV77D V01.14 Semiconductor, Inc.

VSSA C3 VSSX VDDA VDDR • \VDDPLL Colpitts mode.

Figure 8-1 Recommended PCB Layout (48 LQFP)

Figure 8-2 Recommended PCB Layout (52 LQFP)

NOTE: Oscillator in Colpitts mode.

Device User Guide — 9S12C32DGV77D V01.14 Semiconductor, Inc.

Figure 8-3 Recommended PCB Layout (80 QFP)

NOTE: Oscillator in Colpitts mode.

Section 9 Clock Reset Generator (CRG) Block Description

Consult the CRG Block User Guide for information about the Clock and Reset Generator module.

9.1 Device-specific information

The CRG is part of the IPBus domain.

The Low Voltage Reset feature uses the low voltage reset signal from the VREG module as an input to the CRG module. When the regulator output voltage supply to the internal chip logic falls below a specified threshold the LVR signal from the VREG module causes the CRG module to generate a reset. Consult the VREG Block User Guide for voltage level specifications.

9.1.1 XCLKS

The XCLKS input signal is active low (see 2.3.8 PE7 / NOACC / XCLKS — Port E I/O Pin 7).

Section 10 Oscillator (OSC) Block Description

Consult the OSC Block User Guide for information about the Oscillator module.

Section 11 Timer (TIM) Block Description

Consult the TIM 16B8C Block User Guide for information about the Timer module.

The TIM is part of the IPBus domain.

Section 12 Analog to Digital Converter (ATD) Block Description

12.1 Device-specific information

The ATD is part of the IPBus domain.

12.1.1 VRL (voltage reference low)

In the 48 and 52 pin package versions, the VRL pad is bonded internally to the VSSA pin.

Consult the ATD 10B8C Block User Guide for further information about the A/D Converter module.

Device User Guide — 9S12C32DGV77D V01:14 Semiconductor, Inc.

Section 13 Serial Communications Interface (SCI) Block Description

Consult the SCI Block User Guide for information about the Serial Communications Interface module. The SCI is part of the IPBus domain.

Section 14 Serial Peripheral Interface (SPI) Block Description

Consult the SPI Block User Guide for information about the Serial Peripheral Interface module. The SPI is part of the IPBus domain.

Section 15 Flash EEPROM 32K Block Description

Consult the FTS32K Block User Guide for information about the Flash module.

The Flash is part of the HCS12 Bus domain.

Section 16 RAM Block Description

This module supports single-cycle misaligned word accesses without wait states.

Consult the SRAM2K Block User Guide for information about the RAM Module

The RAM is part of the HCS12 Bus domain.

Section 17 Pulse Width Modulator (PWM) Block Description

Only channels [5:0] of the PWM are implemented on the MC9S12C32.

Consult the PWM_8B6C Block User Guide for information about the Pulse Width Modulator Module.

The PWM is part of the IPBus domain.

Section 18 MSCAN Block Description

Consult the MSCAN Block User Guide for information about the Motorola Scalable CAN Module.

The MSCAN is part of the IPBus domain.

Section 19 Port Integration Module (PIM) Block Description

Consult the PIM_9C32 Block User Guide for information about the Port Integration Module. The PIM is part of the IPBus domain.

Appendix A Electrical Characteristics

A.1 General

NOTE: The electrical characteristics given in this section are preliminary and should be

used as a guide only. Values cannot be guaranteed by Motorola and are subject to

change without notice.

NOTE: The part is specified and tested over the 5V and 3.3V ranges. For the intermediate

range, generally the electrical specifications for the 3.3V range apply, but the part

is not tested in production test in the intermediate range.

This supplement contains the most accurate electrical information for the MC9S12C32 microcontroller available at the time of publication. The information should be considered **PRELIMINARY** and is subject to change.

This introduction is intended to give an overview on several common topics like power supply, current injection etc.

A.1.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate.

NOTE: This classification will be added at a later release of the specification

- P: Those parameters are guaranteed during production testing on each individual device.
- C: Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. They are regularly verified by production monitors.
- T: Those parameters are achieved by design characterization on a small sample size from typical devices. All values shown in the typical column are within this category.
- D: Those parameters are derived mainly from simulations.

A.1.2 Power Supply

The MC9S12C32 utilizes several pins to supply power to the I/O ports, A/D converter, oscillator and PLL as well as the digital core.

The VDDA, VSSA pair supplies the A/D converter.

The VDDX, VSSX pair supplies the I/O pins

The VDDR, VSSR pair supplies the internal voltage regulator.

VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic.

VDDPLL, VSSPLL supply the oscillator and the PLL.

Device User Guide — 9S12C32DGV7/D V01.14 Semiconductor, Inc.

VSS1 and VSS2 are internally connected by metal.

VDD1 and VDD2 are internally connected by metal.

VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD protection.

NOTE:

In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5

is used for either VSSA, VSSR and VSSX unless otherwise noted.

IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR pins

VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and

VSSPLL.

IDD is used for the sum of the currents flowing into VDD1 and VDD2.

A.1.3 Pins

There are four groups of functional pins.

A.1.3.1 5V I/O pins

Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog inputs, BKGD pin and the RESET inputs. The internal structure of all those pins is identical, however some of the functionality may be disabled. E.g. pull-up and pull-down resistors may be disabled permanently.

A.1.3.2 Analog Reference

This class is made up by the two VRH and VRL pins. In 48 and 52 pin package versions the VRL pad is bonded to the VSSA pin.

A.1.3.3 Oscillator

The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied by VDDPLL.

A.1.3.4 TEST

This pin is used for production testing only.

A.1.4 Current Injection

Power supply must maintain regulation within operating V_{DD5} or V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD5}$) is greater than I_{DD5} , the injection current may flow out of VDD5 and could result in external power supply going out of regulation. Insure external VDD5 load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is very low which would reduce overall power consumption.

A.1.5 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the device.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either V_{SS5} or V_{DD5}).

Table A-1 Absolute Maximum Ratings

Num	Rating	Symbol	Min	Max	Unit
1	I/O, Regulator and Analog Supply Voltage	V_{DD5}	-0.3	6.5	V
2	Digital Logic Supply Voltage ¹	V _{DD}	-0.3	3.0	V
3	PLL Supply Voltage ¹	V _{DDPLL}	-0.3	3.0	V
4	Voltage difference VDDX to VDDR and VDDA	Δ_{VDDX}	-0.3	0.3	V
5	Voltage difference VSSX to VSSR and VSSA	Δ_{VSSX}	-0.3	0.3	V
6	Digital I/O Input Voltage	V _{IN}	-0.3	6.5	V
7	Analog Reference	V _{RH} , V _{RL}	-0.3	6.5	V
8	XFC, EXTAL, XTAL inputs	V _{ILV}	-0.3	3.0	V
9	TEST input	V _{TEST}	-0.3	10.0	V
10	Instantaneous Maximum Current Single pin limit for all digital I/O pins ²	I _D	-25	+25	mA
11	Instantaneous Maximum Current Single pin limit for XFC, EXTAL, XTAL ³	I _{DL}	-25	+25	mA
12	Instantaneous Maximum Current Single pin limit for TEST ⁴	I _{DT}	-0.25	0	mA
13	Operating Temperature Range (packaged)	T _A	- 40	125	°C
14	Operating Temperature Range (junction)	TJ	- 40	140	°C
15	Storage Temperature Range	T _{stg}	– 65	155	°C

NOTES:

- 1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute maximum ratings apply when the device is powered from an external source.

- All digital I/O pins are internally clamped to V_{SSX} and V_{DDX}, V_{SSR} and V_{DDR} or V_{SSA} and V_{DDA}.
 These pins are internally clamped to V_{SSPLL} and V_{DDPLL}
 This pin is clamped low to V_{SSPLL}, but not clamped high. This pin must be tied low in applications.

Device User Guide — 9S12C32DGV1/D V01.14 Semiconductor, Inc.

A.1.6 ESD Protection and Latch-up Immunity

All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model.

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Table A-2 ESD and Latch-up Test Conditions

Model	Description	Symbol	Value	Unit
Human Body	Series Resistance	R1	1500	Ohm
	Storage Capacitance	С	100	pF
	Number of Pulse per pin positive negative	-	- 3 3	
Machine	Series Resistance	R1	0	Ohm
	Storage Capacitance	С	200	pF
	Number of Pulse per pin positive negative	-	- 3 3	
Latch up	Minimum input voltage limit		-2.5	V
Latch-up	Maximum input voltage limit		7.5	V

Table A-3 ESD and Latch-Up Protection Characteristics

Num	С	Rating	Symbol	Min	Max	Unit
1	С	Human Body Model (HBM)	V _{HBM}	2000	-	V
2	С	Machine Model (MM)	V _{MM}	200	-	V
3	С	Charge Device Model (CDM)	V _{CDM}	500	-	V
4	С	Latch-up Current at 125°C positive negative	I _{LAT}	+100 -100	-	mA
5	С	Latch-up Current at 27°C positive negative	I _{LAT}	+200 -200	-	mA

A.1.7 Operating Conditions

This chapter describes the operating conditions of the device. Unless otherwise noted those conditions apply to all the following data.

NOTE: Instead of specifying ambient temperature all parameters are specified for the more meaningful silicon junction temperature. For power dissipation calculations refer to Section A.1.8 Power Dissipation and Thermal Characteristics.

Table A-4 Operating Conditions

Rating	Symbol	Min	Тур	Max	Unit
I/O, Regulator and Analog Supply Voltage	V_{DD5}	2.97	5	5.5	V
Digital Logic Supply Voltage ¹	V _{DD}	2.25	2.5	2.75	V
PLL Supply Voltage ¹	V _{DDPLL}	2.25	2.5	2.75	V
Voltage Difference VDDX to VDDA	Δ_{VDDX}	-0.1	0	0.1	V
Voltage Difference VSSX to VSSR and VSSA	Δ_{VSSX}	-0.1	0	0.1	V
Oscillator	f _{osc}	0.5	-	16	MHz
Bus Frequency	f _{bus}	0.5	-	25	MHz
Operating Junction Temperature Range	T _J	-40	-	140	°C

NOTES:

A.1.8 Power Dissipation and Thermal Characteristics

Power dissipation and thermal characteristics are closely related. The user must assure that the maximum operating junction temperature is not exceeded. The average chip-junction temperature (T_J) in ${}^{\circ}C$ can be obtained from:

$$T_{I} = T_{A} + (P_{D} \bullet \Theta_{IA})$$

 $T_J = Junction Temperature, [°C]$

 T_{Δ} = Ambient Temperature, [°C]

P_D = Total Chip Power Dissipation, [W]

 Θ_{JA} = Package Thermal Resistance, [°C/W]

The total power dissipation can be calculated from:

$$P_D = P_{INT} + P_{IO}$$

P_{INT} = Chip Internal Power Dissipation, [W]

Two cases with internal voltage regulator enabled and disabled must be considered:

1. Internal Voltage Regulator disabled

^{1.} The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. .

Device User Guide — 9S12C32DGV1/D V01:14 Semiconductor, Inc.

$$P_{INT} = I_{DD} \cdot V_{DD} + I_{DDPLL} \cdot V_{DDPLL} + I_{DDA} \cdot V_{DDA}$$

$$P_{IO} = \sum_{i} R_{DSON} \cdot I_{IO_{i}}^{2}$$

Which is the sum of all output currents on I/O ports associated with VDDX and VDDM.

For R_{DSON} is valid:

$$R_{DSON} = \frac{V_{OL}}{I_{OL}}$$
; for outputs driven low

respectively

$$R_{DSON} = \frac{V_{DD5} - V_{OH}}{I_{OH}}$$
; for outputs driven high

2. Internal voltage regulator enabled

 I_{DDR} is the current shown in **Table A-8** and not the overall current flowing into VDDR, which additionally contains the current flowing into the external loads with output high.

$$P_{IO} = \sum_{i} R_{DSON} \cdot I_{IO_i}^2$$

Freescale Semiconductor, Inc. Device User Guide — 9S12C32DGV1/D V01.14

Which is the sum of all output currents on I/O ports associated with VDDX and VDDR.

Table A-5 Thermal Package Characteristics¹

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Т	Thermal Resistance LQFP48, single layer PCB ²	θ_{JA}	-	-	69	°C/W
2	Т	Thermal Resistance LQFP48, double sided PCB with 2 internal planes ³	$\theta_{\sf JA}$	-	-	53	°C/W
3	Т	Junction to Board LQFP48	$\theta_{\sf JB}$			30	°C/W
4	Т	Junction to Case LQFP48	$\theta_{\sf JC}$			20	°C/W
5	Т	Junction to Package Top LQFP48	Ψ_{JT}			4	°C/W
6	Т	Thermal Resistance LQFP52, single sided PCB	θ_{JA}	-	-	65	°C/W
7	Т	Thermal Resistance LQFP52, double sided PCB with 2 internal planes	θ_{JA}	-	-	49	°C/W
8	Т	Junction to Board LQFP52	θ_{JB}			31	°C/W
9	Т	Junction to Case LQFP52	θ _{JC}			17	°C/W
10	Т	Junction to Package Top LQFP52	Ψ_{JT}			3	°C/W
11	Т	Thermal Resistance QFP 80, single sided PCB	θ_{JA}	-	-	52	°C/W
12	Т	Thermal Resistance QFP 80, double sided PCB with 2 internal planes	θ_{JA}	-	-	42	°C/W
13	Т	Junction to Board QFP80	$\theta_{\sf JB}$			28	°C/W
14	Т	Junction to Case QFP80	$\theta_{\sf JC}$			18	°C/W
15	Т	Junction to Package Top QFP80	Ψ_{JT}			4	°C/W

NOTES:

- The values for thermal resistance are achieved by package simulations
 PC Board according to EIA/JEDEC Standard 51-2
 PC Board according to EIA/JEDEC Standard 51-7

A.1.9 I/O Characteristics

This section describes the characteristics of all I/O pins. All parameters are not always applicable, e.g. not all pins feature pull up/down resistances.

Device User Guide — 9S12C32DGV77D V01.14 Semiconductor, Inc.

Table A-6 5V I/O Characteristics

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	Input High Voltage	V _{IH}	0.65*V _{DD5}	-	-	V
	Т	Input High Voltage	V _{IH}	-	-	VDD5 + 0.3	V
2	Р	Input Low Voltage	V _{IL}	-	-	0.35*V _{DD5}	V
	Т	Input Low Voltage	V _{IL}	VSS5 - 0.3	-	-	V
3	С	Input Hysteresis	V _{HYS}		250		mV
4	Р	Input Leakage Current (pins in high ohmic input mode) ¹ V _{in} = V _{DD5} or V _{SS5}	I _{in}	-2.5	-	2.5	μΑ
5	С	Output High Voltage (pins in output mode) Partial Drive IOH = -2mA	V _{OH}	V _{DD5} – 0.8	-	-	V
6	Р	Output High Voltage (pins in output mode) Full Drive IOH = -10mA	V _{OH}	V _{DD5} – 0.8	-	-	V
7	С	Output Low Voltage (pins in output mode) Partial Drive IOL = +2mA	V _{OL}	-	-	0.8	V
8	Р	Output Low Voltage (pins in output mode) Full Drive I _{OL} = +10mA	V _{OL}	-	-	0.8	V
9	Р	Internal Pull Up Device Current, tested at V _{IL} Max.	I _{PUL}	-	-	-130	μΑ
10	С	Internal Pull Up Device Current, tested at V _{IH} Min.	I _{PUH}	-10	-	-	μА
11	Р	Internal Pull Down Device Current, tested at V _{IH} Min.	I _{PDH}	-	-	130	μА
12	С	Internal Pull Down Device Current, tested at V _{IL} Max.	I _{PDL}	10	-	-	μΑ
13	D	Input Capacitance	C _{in}		7	-	pF
14	Т	Injection current ² Single Pin limit Total Device Limit. Sum of all injected currents	I _{ICS}	-2.5 -25	-	2.5 25	mA
15	Р	Port P, J Interrupt Input Pulse filtered ³	t _{PIGN}			3	μs
16	Р	Port P, J Interrupt Input Pulse passed ⁽³⁾	t _{PVAL}	10			μs

NOTES:

- 1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for each 8 C to 12 C in the temperature range from 50 C to 125 C.
- 2. Refer to Section A.1.4 Current Injection, for more details
- 3. Parameter only applies in STOP or Pseudo STOP mode.

Table A-7 3.3V I/O Characteristics

		VDDX=3.3V +/-10%, Termperature from -40°C to +	1	1		Mari	11:4
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	Input High Voltage	V _{IH}	0.65*V _{DD5}	-	-	V
	Т	Input High Voltage	V _{IH}	-	-	VDD5 + 0.3	V
2	Р	Input Low Voltage	V _{IL}	-	-	0.35*V _{DD5}	V
	Т	Input Low Voltage	V _{IL}	VSS5 - 0.3	-	-	V
3	С	Input Hysteresis	V _{HYS}		250		mV
4	Р	Input Leakage Current (pins in high ohmic input mode) ¹ $V_{in} = V_{DD5}$ or V_{SS5}	I _{in}	-2.5	-	2.5	μА
5	С	Output High Voltage (pins in output mode) Partial Drive $I_{OH} = -0.75$ mA	V _{OH}	V _{DD5} – 0.4	-	-	V
6	Р	Output High Voltage (pins in output mode) Full Drive I _{OH} = -4.5mA	V _{OH}	V _{DD5} – 0.4	-	-	V
7	С	Output Low Voltage (pins in output mode) Partial Drive I _{OL} = +0.9mA	V _{OL}	-	-	0.4	V
8	Р	Output Low Voltage (pins in output mode) Full Drive I _{OL} = +5.5mA	V _{OL}	-	-	0.4	V
9	Р	Internal Pull Up Device Current, tested at V _{IL} Max.	I _{PUL}	-	-	-60	μΑ
10	С	Internal Pull Up Device Current, tested at V _{IH} Min.	I _{PUH}	-6	-	-	μΑ
11	Р	Internal Pull Down Device Current, tested at V _{IH} Min.	I _{PDH}	-	-	60	μΑ
12	С	Internal Pull Down Device Current, tested at V _{IL} Max.	I _{PDL}	6	-	-	μΑ
11	D	Input Capacitance	C _{in}		7	-	pF
12	Т	Injection current ² Single Pin limit Total Device Limit. Sum of all injected currents	I _{ICS}	-2.5 -25	-	2.5 25	mA
13	Р	Port P, J Interrupt Input Pulse filtered ³	t _{PIGN}			3	μs
14	Р	Port P, J Interrupt Input Pulse passed ⁽³⁾	t _{PVAL}	10			μs
	1	I .		I .		1	

NOTES:

- 1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for each 8 C to 12 C in the temperature range from 50 C to 125 C.
- 2. Refer to Section A.1.4 Current Injection, for more details
- 3. Parameter only applies in STOP or Pseudo STOP mode.

Device User Guide — 9S12C32DGV1/D V01.14 Semiconductor, Inc.

A.1.10 Supply Currents

This section describes the current consumption characteristics of the device as well as the conditions for the measurements.

A.1.10.1 Measurement Conditions

All measurements are without output loads. Unless otherwise noted the currents are measured in single chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator.

A.1.10.2 Additional Remarks

In expanded modes the currents flowing in the system are highly dependent on the load at the address, data and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be given. A very good estimate is to take the single chip currents and add the currents due to the external loads.

Table A-8 Supply Current Characteristics

С	onditio	ns are shown in Table A-4 with internal regula	tor enabled	unless	otherw	ise note	ed
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	Run Supply Current Single Chip	I _{DD5}			40	mA
2	P P C	Wait Supply current All modules enabled VDDR<4.9V, only RTI enabled² VDDR>4.9V, only RTI enabled	I _{DDW}		3.5 2.5	30 8	mA
3	C P C P C P	Pseudo Stop Current (RTI and COP disabled) ²³ -40°C 27°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C "M" Temp Option 140°C	I _{DDPS} 1		340 360 500 550 590 720 780 1100	450 1450 1900 4500	μΑ
4	00000	Pseudo Stop Current (RTI and COP enabled) ^{2 3} -40°C 27°C 85°C 105°C 125°C	I _{DDPS} ⁽¹⁾		540 700 750 880 1300		μΑ
5	C P C P C P	Stop Current ³ -40°C 27°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C "M" Temp Option 140°C	I _{DDS} 1		10 20 100 140 170 300 350 520	80 1000 1400 4000	μА

NOTES:

- 1. STOP current measured in production test at increased junction temperature, hence for Temp Option "C" the test is carried out at 100°C although the Temperature specification is 85°C. Similarly for "v" and "M" options the temperature used in test lies 15°C above the temperature option specification.
- 2 PH off
- 3. At those low power dissipation levels $T_J = T_A$ can be assumed

Appendix B Electrical Specifications

B.1 Voltage Regulator Operating Conditions

Table B-1 -Voltage Regulator Electrical Parameters

Nu m	С	Characteristic	Symbol	Min	Typical	Max	Unit
1	Р	Input Voltages	V _{VDDR,A}	2.97	_	5.5	V
2	Р	Regulator Current Reduced Power Mode Shutdown Mode	I _{REG}		20 12	50 40	μΑ μΑ
3	Р	Output Voltage Core Full Performance Mode Reduced Power Mode Shutdown Mode	V_{DD}	2.35 1.6 —	2.5 2.5 —1	2.75 2.75 —	V V V
4	Р	Output Voltage PLL Full Performance Mode Reduced Power Mode ² Reduced Power Mode ³ Shutdown Mode	V_{DDPLL}	2.35 2.0 1.6 —	2.5 2.5 2.5 —4	2.75 2.75 2.75 —	V V V
5	Р	Low Voltage Interrupt ⁵ Assert Level Deassert Level	V _{LVIA} V _{LVID}	4.30 4.42	4.53 4.65	4.77 4.89	V
6	Р	Low Voltage Reset ⁶ Assert Level	V _{LVRA}	2.25	_	_	V
7	С	Power-on Reset ⁷ Assert Level Deassert Level	V _{PORA} V _{PORD}	0.97 —		 2.05	V V

NOTES:

- 1. High Impedance Output
- 2. Current IDDPLL = 1mA (Colpitts Oscillator)
- 3. Current IDDPLL = 3mA (Pierce Oscillator)
- 4. High Impedance Output
- Monitors V_{DDA}, active only in Full Performance Mode. Indicates I/O & ADC performance degradation due to low supply voltage.
- 6. Monitors V_{DD}, active only in Full Performance Mode. MCU is monitored by the POR in RPM (see Figure B-1)
- 7. Monitors V_{DD}. Active in all modes.

NOTE: The electrical characteristics given in this section are preliminary and should be used as a guide only. Values in this section cannot be guaranteed by Motorola and are subject to change without notice.

Device User Guide — 9S12C32DGV7/D V01.14 Semiconductor, Inc.

B.2 Chip Power-up and LVI/LVR graphical explanation

B.2.0.1 POR

The release level V_{PORR} and the assert level V_{PORA} are derived from the V_{DD} Supply. They are also valid if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check are started. If after a time t_{CQOUT} no valid oscillation is detected, the MCU will start using the internal self clock. The fastest startup time possible is given by n_{uposc} .

B.2.0.2 LVR

The release level V_{LVRR} and the assert level V_{LVRA} are derived from the V_{DD} Supply. They are also valid if the device is powered externally. After releasing the LVR reset the oscillator and the clock quality check are started. If after a time t_{CQOUT} no valid oscillation is detected, the MCU will start using the internal self clock. The fastest startup time possible is given by n_{uposc} .

Voltage regulator sub modules LVI (low voltage interrupt), POR (power-on reset) and LVR (low voltage reset) handle chip power-up or drops of the supply voltage. Their function is described in **Figure B-1**.

V VLVID VLVIA VLVIA VDD VLVRA VLVIA LVI enabled LVI disabled due to LVR LVR

Figure B-1 Voltage Regulator - Chip Power-up and Voltage Drops (not scaled)

Freescale Semiconductor, Inc. Device User Guide — 9S12C32DGV1/D V01.14

B.3 Output Loads

B.3.1 Resistive Loads

The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits allows no external DC loads.

B.3.2 Capacitive Loads

The capacitive loads are specified in **Table B-2**. Ceramic capacitors with X7R dielectricum are required.

Table B-2 Voltage Regulator - Capacitive Loads

Num	Characteristic	Symbol	Min	Typical	Max	Unit
1	VDD external capacitive load	C _{DDext}	440	440	12000	nF
2	VDDPLL external capacitive load	C _{DDPLLext}	90	220	5000	nF

B.4 ATD Characteristics

This section describes the characteristics of the analog to digital converter.

VRL is not available as a separate pin in the 48 and 52 pin versions. In this case the internal VRL pad is bonded to the VSSA pin.

The ATD is specified and tested for both the 3.3V and 5V range. For ranges between 3.3V and 5V the ATD accuracy is generally the same as in the 3.3V range but is not tested in this range in production test.

B.4.1 ATD Operating Characteristics In 5V Range

The **Table B-3** shows conditions under which the ATD operates.

The following constraints exist to obtain full-scale, full range results:

VSSA \leq VRL \leq VIN \leq VRH \leq VDDA. This constraint exists since the sample buffer amplifier can not drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively be clipped.

Table B-3 ATD Operating Characteristics

Condit	ions ar	e shown in Table A-4 unless otherwise noted. Supply \	oltage 5V-10	% <= V _{DDA} <=	5V+10%	1	
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	D	Reference Potential Low High	VRL VRH	VSSA VDDA/2		VDDA/2 VDDA	> >
2	С	Differential Reference Voltage ¹	VRH-VRL	4.75	5.0	5.25	V
3	D	ATD Clock Frequency	f _{ATDCLK}	0.5		2.0	MHz
4	D	ATD 10-Bit Conversion Period Clock Cycles ² Conv, Time at 2.0MHz ATD Clock f _{ATDCLK}		14 7		28 14	Cycles μs
5	D	ATD 8-Bit Conversion Period Clock Cycles ² Conv, Time at 2.0MHz ATD Clock f _{ATDCLK}	N _{CONV10} T _{CONV10}	12 6		26 13	Cycles μs
5	D	Recovery Time (V _{DDA} =5.0 Volts)	t _{REC}			20	μs
6	Р	Reference Supply current	I _{REF}			0.375	mA

NOTES:

- 1. Full accuracy is not guaranteed when differential voltage is less than 4.75V
- 2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample period of 16 ATD clocks.

B.4.2 ATD Operating Characteristics In 3.3V Range

The **Table B-3** shows conditions under which the ATD operates.

The following constraints exist to obtain full-scale, full range results:

 $V_{SSA} \le V_{RL} \le V_{IN} \le V_{RH} \le V_{DDA}$. This constraint exists since the sample buffer amplifier can not drive

Device User Guide — 9S12C32DGV 7/D V01:14 Semiconductor, Inc.

beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively be clipped

Table B-4 ATD Operating Characteristics

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	D	Reference Potential Low High	V _{RL} V _{RH}	V _{SSA} V _{DDA} /2		V _{DDA} /2 V _{DDA}	V
2	С	Differential Reference Voltage	$V_{RH}-V_{RL}$	3.0	3.3	3.6	V
3	D	ATD Clock Frequency	f _{ATDCLK}	0.5		2.0	MHz
4	D	ATD 10-Bit Conversion Period Clock Cycles ¹ Conv, Time at 2.0MHz ATD Clock f _{ATDCLK}	N _{CONV10} T _{CONV10}	14 7		28 14	Cycles µs
5	D	ATD 8-Bit Conversion Period Clock Cycles ¹ Conv, Time at 2.0MHz ATD Clock f _{ATDCLK}	N _{CONV8} T _{CONV8}	12 6		26 13	Cycles µs
6	D	Recovery Time (V _{DDA} =3.3 Volts)	t _{REC}			20	μs
7	Р	Reference Supply current	I _{REF}			0.250	mA

NOTES:

B.4.3 Factors influencing accuracy

Three factors - source resistance, source capacitance and current injection - have an influenceon the accuracy of the ATD.

B.4.3.1 Source Resistance:

Due to the input pin leakage current as specified in **Table A-6** in conjunction with the source resistance there will be a voltage drop from the signal source to the ATD input. The maximum source resistance R_S specifies results in an error of less than 1/2 LSB (2.5 mV) at the maximum leakage current. If device or operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source resistance is allowable.

B.4.3.2 Source capacitance

When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input voltage \leq 1LSB, then the external filter capacitor, $C_f \geq$ 1024 * $(C_{INS}$ - $C_{INN})$.

^{1.} The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample period of 16 ATD clocks.

B.4.3.3 Current injection

There are two cases to consider.

- 1. A current is injected into the channel being converted. The channel being stressed has conversion values of \$3FF (\$FF in 8-bit mode) for analog inputs greater than VRH and \$000 for values less than VRL unless the current is higher than specified as disruptive conditions.
- 2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy of the conversion depending on the source resistance.
 - The additional input voltage error on the converted channel can be calculated as $V_{ERR} = K * R_S * I_{INJ}$, with I_{INJ} being the sum of the currents injected into the two pins adjacent to the converted channel.

Table B-5 ATD Electrical Characteristics

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	С	Max input Source Resistance	R _S	-	-	1	ΚΩ
2	Т	Total Input Capacitance Non Sampling Sampling	C _{INN} C _{INS}			10 15	pF
3	С	Disruptive Analog Input Current	I _{NA}	-2.5		2.5	mA
4	С	Coupling Ratio positive current injection	K _p			10 ⁻⁴	A/A
5	С	Coupling Ratio negative current injection	K _n			10 ⁻²	A/A

Device User Guide — 9S12C32DGV1/D V01:14 Semiconductor, Inc.

B.4.4 ATD accuracy (5V Range)

Table B-6 specifies the ATD conversion performance excluding any errors due to current injection, input capacitance and source resistance.

Table B-6 ATD Conversion Performance

Conditions are shown in Table A-4 unless otherwise noted

 $V_{REF} = V_{RH} - V_{RL} = 5.12V$. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV

 $f_{ATDCLK} = 2.0MHz$

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	10-Bit Resolution	LSB		5		mV
2	Р	10-Bit Differential Nonlinearity	DNL	-1		1	Counts
3	Р	10-Bit Integral Nonlinearity	INL	-2		2	Counts
4	Р	10-Bit Absolute Error ¹	AE	-2.5		2.5	Counts
5	Р	8-Bit Resolution	LSB		20		mV
6	Р	8-Bit Differential Nonlinearity	DNL	-0.5		0.5	Counts
7	Р	8-Bit Integral Nonlinearity	INL	-1.0	±0.5	1.0	Counts
8	Р	8-Bit Absolute Error ¹	AE	-1.5	±1	1.5	Counts

NOTES:

B.4.5 ATD accuracy (3.3V Range)

Table B-6 specifies the ATD conversion performance excluding any errors due to current injection, input capacitance and source resistance.

Table B-7 ATD Conversion Performance

Conditions are shown in **Table A-4** unless otherwise noted

 $V_{REF} = V_{RH} - V_{RL} = 3.328V$. Resulting to one 8 bit count = 13mV and one 10 bit count = 3.25mV

 $f_{ATDCLK} = 2.0MHz$

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	10-Bit Resolution	LSB		3.25		mV
2	Р	10-Bit Differential Nonlinearity	DNL	-1.5		1.5	Counts
3	Р	10-Bit Integral Nonlinearity	INL	-3.5	±1.5	3.5	Counts
4	Р	10-Bit Absolute Error ¹	AE	-5	±2.5	5	Counts
5	Р	8-Bit Resolution	LSB		13		mV
6	Р	8-Bit Differential Nonlinearity	DNL	-0.5		0.5	Counts
7	Р	8-Bit Integral Nonlinearity	INL	-1.5	±1	1.5	Counts
8	Р	8-Bit Absolute Error ¹	AE	-2.0	±1.5	2.0	Counts

NOTES:

^{1.} These values include quantization error which is inherently 1/2 count for any A/D converter.

^{1.} These values include the quantization error which is inherently 1/2 count for any A/D converter.

For the following definitions see also **Figure B-2**.

Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.

$$DNL(i) = \frac{V_i - V_{i-1}}{1LSB} - 1$$

The Integral Non-Linearity (INL) is defined as the sum of all DNLs:

$$INL(n) = \sum_{i=1}^{n} DNL(i) = \frac{V_n - V_0}{1LSB} - n$$

Figure B-2 ATD Accuracy Definitions

NOTE: Figure B-2 shows only definitions, for specification values refer to Table B-6.

B.5 NVM, Flash and EEPROM

B.5.1 NVM timing

The time base for all NVM program or erase operations is derived from the oscillator. A minimum oscillator frequency f_{NVMOSC} is required for performing program or erase operations. The NVM modules do not have any means to monitor the frequency and will not prevent program or erase operation at frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at a lower frequency a full program or erase transition is not assured.

The Flash program and erase operations are timed using a clock derived from the oscillator using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within the limits specified as f_{NVMOP}.

The minimum program and erase times shown in **Table B-8** are calculated for maximum f_{NVMOP} and maximum f_{bus} . The maximum times are calculated for minimum f_{NVMOP} and a f_{bus} of 2MHz.

B.5.1.1 Single Word Programming

The programming time for single word programming is dependant on the bus frequency as a well as on the frequency f'_{NVMOP} and can be calculated according to the following formula.

$$t_{swpgm} = 9 \cdot \frac{1}{f_{NVMOP}} + 25 \cdot \frac{1}{f_{bus}}$$

B.5.1.2 Burst Programming

This applies only to the Flash where up to 32 words in a row can be programmed consecutively using burst programming by keeping the command pipeline filled. The time to program a consecutive word can be calculated as:

$$t_{bwpgm} = 4 \cdot \frac{1}{f_{NVMOP}} + 9 \cdot \frac{1}{f_{bus}}$$

The time to program a whole row is:

$$t_{brpgm} = t_{swpgm} + 31 \cdot t_{bwpgm}$$

Burst programming is more than 2 times faster than single word programming.

B.5.1.3 Sector Erase

Erasing a 512 byte Flash sector takes:

$$t_{era} \approx 4000 \cdot \frac{1}{f_{NVMOP}}$$

Device User Guide — 9S12C32DGV1/D V01:14 Semiconductor, Inc.

The setup times can be ignored for this operation.

B.5.1.4 Mass Erase

Erasing a NVM block takes:

$$t_{mass} \approx 20000 \cdot \frac{1}{f_{NVMOP}}$$

The setup times can be ignored for this operation.

Table B-8 NVM Timing Characteristics

Conditio	ns ar	e shown in Table A-4 unless otherwise noted					
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	D	External Oscillator Clock	f _{NVMOSC}	0.5		50 ¹	MHz
2	D	Bus frequency for Programming or Erase Operations	f _{NVMBUS}	1			MHz
3	D	Operating Frequency	f _{NVMOP}	150		200	kHz
4	Р	Single Word Programming Time	t _{swpgm}	46 ²		74.5 ³	μs
5	D	Flash Burst Programming consecutive word	t _{bwpgm}	20.4 ²		31 ³	μs
6	D	Flash Burst Programming Time for 32 Words	t _{brpgm}	678.4 ²		1035.5 ³	μs
7	Р	Sector Erase Time	t _{era}	20 ⁴		26.7 ³	ms
8	Р	Mass Erase Time	t _{mass}	100 ⁴		133 ³	ms
9	D	Blank Check Time Flash per block	t check	11 ⁵		32778 ⁶	t _{cyc}

NOTES:

- 1. Restrictions for oscillator in crystal mode apply!
- 2. Minimum Programming times are achieved under maximum NVM operating frequency f_{NVMOP} and maximum bus frequency f_{bus} .
- 3. Maximum Erase and Programming times are achieved under particular combinations of f _{NVMOP} and bus frequency f bus . Refer to formulae in Sections A.3.1.1 A.3.1.4 for guidance.
- 4. Minimum Erase times are achieved under maximum NVM operating frequency f NVMOP.
- 5. Minimum time, if first word in the array is not blank
- 6. Maximum time to complete check on an erased block.

B.5.2 NVM Reliability

The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process monitors and burn-in to screen early life failures.

The failure rates for data retention and program/erase cycling are specified at <2ppm defects over lifetime at the operating conditions noted.

A program/erase cycle is specified as two transitions of the cell value from erased \rightarrow programmed \rightarrow erased, $1 \rightarrow 0 \rightarrow 1$.

NOTE: All values shown in **Table B-9** are target values and subject to further extensive characterization.

Table B-9 NVM Reliability Characteristics

Conditio	Conditions are shown in Table A-4 unless otherwise noted								
Num	С	Rating	Symbol	Min	Тур	Max	Unit		
1	С	Data Retention at an average junction temperature of $T_{Javg} = 85^{\circ}C$	t _{NVMRET}	15			Years		
2	С	Flash number of Program/Erase cycles	n _{FLPE}	10,000			Cycles		

B.6 Reset, Oscillator and PLL

This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and Phase-Locked-Loop (PLL).

B.6.1 Startup

Table B-10 summarizes several startup characteristics explained in this section. Detailed description of the startup behavior can be found in the Clock and Reset Generator (CRG) Block User Guide.

Table B-10 Startup Characteristics

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Т	POR release level	V _{PORR}			2.07	V
2	Т	POR assert level	V _{PORA}	0.97			V
3	D	Reset input pulse width, minimum input time	PW _{RSTL}	2			t _{osc}
4	D	Startup from Reset	n _{RST}	192		196	n _{osc}
5	D	Interrupt pulse width, IRQ edge-sensitive mode	PW _{IRQ}	20			ns
6	D	Wait recovery startup time	t _{WRS}			14	t _{cyc}

B.6.1.1 SRAM Data Retention

Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset the PORF bit in the CRG Flags Register has not been set.

B.6.1.2 External Reset

When external reset is asserted for a time greater than PW_{RSTL} the CRG module generates an internal reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an oscillation before reset.

B.6.1.3 Stop Recovery

Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR is performed before releasing the clocks to the system.

B.6.1.4 Pseudo Stop and Wait Recovery

The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in both modes. The controller can be woken up by internal or external interrupts. After t_{wrs} the CPU starts fetching the interrupt vector.

Device User Guide — 9S12C32DGV1/D V01:14 Semiconductor, Inc.

B.6.2 Oscillator

The device features an internal Colpitts oscillator. By asserting the \overline{XCLKS} input during reset this oscillator can be bypassed allowing the input of a square wave. Before asserting the oscillator to the internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP or oscillator fail. t_{CQOUT} specifies the maximum time before switching to the internal self clock mode in case no proper oscillation is detected. The quality monitor also determines the minimum oscillator start-up time t_{UPOSC} . The device features a clock monitor. A time-out is asserted if the frequency of the incoming clock signal is below the Clock Monitor FailureAssert Frequency t_{CMFA} .

Table B-11 Oscillator Characteristics

Conditio	ns are s	nown in Table A-4 unless otherwise noted					
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1a	С	Crystal oscillator range (Colpitts)	fosc	0.5		16	MHz
1b	С	Crystal oscillator range (Pierce) 1(4)	fosc	0.5		40	MHz
2	Р	Startup Current	i _{osc}	100			μА
3	С	Oscillator start-up time (Colpitts)	t _{UPOSC}		8 ²	100 ³	ms
4	D	Clock Quality check time-out	t _{CQOUT}	0.45		2.5	S
5	Р	Clock Monitor Failure Assert Frequency	f _{CMFA}	50	100	200	KHz
6	Р	External square wave input frequency ⁴	f _{EXT}	0.5		50	MHz
7	D	External square wave pulse width low	t _{EXTL}	9.5			ns
8	D	External square wave pulse width high	t _{EXTH}	9.5			ns
9	D	External square wave rise time	t _{EXTR}			1	ns
10	D	External square wave fall time	t _{EXTF}			1	ns
11	D	Input Capacitance (EXTAL, XTAL pins)	C _{IN}		7		pF
12	С	DC Operating Bias in Colpitts Configuration on EXTAL Pin	V _{DCBIAS}		1.1		V

NOTES:

- 1. Depending on the crystal a damping series resistor might be necessary
- 2. $f_{osc} = 4MHz$, C = 22pF.
- 3. Maximum value is for extreme cases using high Q, low frequency crystals
- 4. XCLKS =0 during reset

B.6.3 Phase Locked Loop

The oscillator provides the reference clock for the PLL. The PLL's Voltage Controlled Oscillator (VCO) is also the system clock source in self clock mode.

B.6.3.1 XFC Component Selection

This section describes the selection of the XFC components to achieve a good filter characteristics.

Freescale Semiconductor, Inc. Device User Guide — 9S12C32DGV1/D V01.14

Figure B-3 Basic PLL functional diagram

The following procedure can be used to calculate the resistance and capacitance values using typical values for K_1 , f_1 and i_{ch} from **Table B-12**.

The grey boxes show the calculation for $f_{VCO} = 50 MHz$ and $f_{ref} = 1 MHz$. E.g., these frequencies are used for $f_{OSC} = 4 MHz$ and a 25MHz bus clock.

The VCO Gain at the desired VCO frequency is approximated by:

$$K_V = K_1 \cdot e^{\frac{(f_1 - f_{vco})}{K_1 \cdot 1V}} -100 \cdot e^{\frac{(60 - 50)}{-100}} = -90.48MHz/V$$

The phase detector relationship is given by:

$$K_{\Phi} = -|i_{ch}| \cdot K_{V}$$
 = 316.7Hz/ Ω

i_{ch} is the current in tracking mode.

The loop bandwidth f_C should be chosen to fulfill the Gardner's stability criteria by <u>at least</u> a factor of 10, typical values are 50. $\zeta = 0.9$ ensures a good transient response.

$$f_{C} < \frac{2 \cdot \zeta \cdot f_{ref}}{\pi \cdot \left(\zeta + \sqrt{1 + \zeta^{2}}\right)} \frac{1}{10} \rightarrow f_{C} < \frac{f_{ref}}{4 \cdot 10}; (\zeta = 0.9)$$

$$f_{C} < 25kHz$$

Device User Guide — 9S12C32DGV1/D V01:14 Semiconductor, Inc.

And finally the frequency relationship is defined as

$$n = \frac{f_{VCO}}{f_{ref}} = 2 \cdot (synr + 1) = 50$$

With the above values the resistance can be calculated. The example is shown for a loop bandwidth $f_C=10kHz$:

$$R = \frac{2 \cdot \pi \cdot n \cdot f_{C}}{K_{\Phi}} = 2 \pi^{*} 50^{*} 10 \text{kHz} / (316.7 \text{Hz}/\Omega) = 9.9 \text{k}\Omega = \sim 10 \text{k}\Omega$$

The capacitance C_s can now be calculated as:

$$C_s = \frac{2 \cdot \zeta^2}{\pi \cdot f_C \cdot R} \approx \frac{0.516}{f_C \cdot R}; (\zeta = 0.9)$$
 = 5.19nF =~ 4.7nF

The capacitance C_p should be chosen in the range of:

$$C_s/20 \le C_p \le C_s/10$$
 $C_p = 470pF$

B.6.3.2 Jitter Information

The basic functionality of the PLL is shown in **Figure B-3**. With each transition of the clock f_{cmp} , the deviation from the reference clock f_{ref} is measured and input voltage to the VCO is adjusted accordingly. The adjustment is done continuously with no abrupt changes in the clock output frequency. Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock jitter. This jitter affects the real minimum and maximum clock periods as illustrated in **Figure B-4**.

Figure B-4 Jitter Definitions

The relative deviation of t_{nom} is at its maximum for one clock period, and decreases towards zero for larger number of clock periods (N).

Defining the jitter as:

$$J(N) = \max \left(\left| 1 - \frac{t_{max}(N)}{N \cdot t_{nom}} \right|, \left| 1 - \frac{t_{min}(N)}{N \cdot t_{nom}} \right| \right)$$

For N < 100, the following equation is a good fit for the maximum jitter:

$$J(N) = \frac{j_1}{\sqrt{N}} + j_2$$

Figure B-5 Maximum bus clock jitter approximation

Device User Guide — 9S12C32DGV77D V01.14 Semiconductor, Inc.

This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the effect of the jitter to a large extent.

Table B-12 PLL Characteristics

Condit	ions	s are shown in Table A-4 unless otherwise noted					
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	Self Clock Mode frequency	f _{SCM}	1		5.5	MHz
2	D	VCO locking range	f _{VCO}	8		50	MHz
3	D	Lock Detector transition from Acquisition to Tracking mode	∆ _{trk}	3		4	% ¹
4	D	Lock Detection	Δ _{Lock}	0		1.5	% ⁽¹⁾
5	D	Un-Lock Detection	$ \Delta_{unl} $	0.5		2.5	% ⁽¹⁾
6	D	Lock Detector transition from Tracking to Acquisition mode	Δ _{unt}	6		8	% ⁽¹⁾
7	С	PLLON Total Stabilization delay (Auto Mode) ²	t _{stab}		0.5		ms
8	D	PLLON Acquisition mode stabilization delay (2)	t _{acq}		0.3		ms
9	D	PLLON Tracking mode stabilization delay (2)	t _{al}		0.2		ms
10	D	Fitting parameter VCO loop gain	K ₁		-100		MHz/V
11	D	Fitting parameter VCO loop frequency	f ₁		60		MHz
12	D	Charge pump current acquisition mode	i _{ch}		38.5		μА
13	D	Charge pump current tracking mode	i _{ch}		3.5		μА
14	С	Jitter fit parameter 1 ⁽²⁾	j ₁			1.1	%
15	С	Jitter fit parameter 2 ⁽²⁾	j ₂			0.13	%

NOTES:

- 1. % deviation from target frequency
- 2. f_{OSC} = 4MHz, f_{BUS} = 25MHz equivalent f_{VCO} = 50MHz: REFDV = #\$03, SYNR = #\$018, Cs = 4.7nF, Cp = 470pF, Rs = 10K Ω .

B.7 MSCAN

Table B-13 MSCAN Wake-up Pulse Characteristics

Condit	Conditions are shown in Table A-4 unless otherwise noted							
Num	С	Rating	Symbol	Min	Тур	Max		
1	Р	MSCAN Wake-up dominant pulse filtered	t _{WUP}			2		
2	Р	MSCAN Wake-up dominant pulse pass	t _{WUP}	5				

B.8 SPI

Appendix C Electrical Specifications

This section provides electrical parametrics and ratings for the SPI.

In **Table C-1** the measurement conditions are listed.

Table C-1 Measurement Conditions

Description	Value	Unit
Drive mode	full drive mode	_
Load capacitance C _{LOAD} , on all outputs	50	pF
Thresholds for delay measurement points	(20% / 80%) VDDX	V

C.1 Master Mode

In **Figure C-1** the timing diagram for master mode with transmission format CPHA=0 is depicted.

Figure C-1 SPI Master Timing (CPHA=0)

In Figure C-2 the timing diagram for master mode with transmission format CPHA=1 is depicted.

Device User Guide — 9S12C32DGV7/D V01.14 Semiconductor, Inc.

Figure C-2 SPI Master Timing (CPHA=1)

In **Table C-2** the timing characteristics for master mode are listed.

Table C-2 SPI Master Mode Timing Characteristics

Num	С	Characteristic	Symbol				Unit
Nulli		Cital acteristic	Syllibol	Min	Тур	Max	Onit
1	Р	SCK Frequency	f _{sck}	1/2048	_	1/2	f _{bus}
1	Р	SCK Period	t _{sck}	2	_	2048	t _{bus}
2	D	Enable Lead Time	t _{lead}	_	1/2	_	t _{sck}
3	D	Enable Lag Time	t _{lag}	_	1/2	_	t _{sck}
4	D	Clock (SCK) High or Low Time	t _{wsck}	_	1/2	_	t _{sck}
5	D	Data Setup Time (Inputs)	t _{su}	8	_	_	ns
6	D	Data Hold Time (Inputs)	t _{hi}	8	_	_	ns
9	D	Data Valid after SCK Edge	t _{vsck}	_	_	30	ns
10	D	Data Valid after SS fall (CPHA=0)	t _{vss}	_	_	15	ns
11	D	Data Hold Time (Outputs)	t _{ho}	20	_	_	ns
12	D	Rise and Fall Time Inputs	t _{rfi}	_	_	8	ns
13	D	Rise and Fall Time Outputs	t _{rfo}	_	_	8	ns

C.2 Slave Mode

In Figure C-3 the timing diagram for slave mode with transmission format CPHA=0 is depicted.

Figure C-3 SPI Slave Timing (CPHA=0)

In Figure C-4 the timing diagram for slave mode with transmission format CPHA=1 is depicted.

Device User Guide — 9S12C32DGV77D V01.14 Semiconductor, Inc.

Figure C-4 SPI Slave Timing (CPHA=1)

In **Table C-3** the timing characteristics for slave mode are listed.

Table C-3 SPI Slave Mode Timing Characteristics

Num	C	Characteristic	Symbol				Unit
Num		Characteristic	Syllibol	Min	Тур	Max	Oilit
1	Р	SCK Frequency	f _{sck}	DC	_	1/4	f _{bus}
1	Р	SCK Period	t _{sck}	4	_	∞	t _{bus}
2	D	Enable Lead Time	t _{lead}	4	_	_	t _{bus}
3	D	Enable Lag Time	t _{lag}	4	_	_	t _{bus}
4	D	Clock (SCK) High or Low Time	t _{wsck}	4	_	_	t _{bus}
5	D	Data Setup Time (Inputs)	t _{su}	8	_	_	ns
6	D	Data Hold Time (Inputs)	t _{hi}	8	_	_	ns
7	D	Slave Access Time (time to data active)	t _a	_	_	20	ns
8	D	Slave MISO Disable Time	t _{dis}	_	_	22	ns
9	D	Data Valid after SCK Edge	t _{vsck}	_	_	30 + t _{bus} ¹	ns
10	D	Data Valid after SS fall	t _{vss}	_	_	30 + t _{bus} ¹	ns
11	D	Data Hold Time (Outputs)	t _{ho}	20	_	_	ns
12	D	Rise and Fall Time Inputs	t _{rfi}	_	_	8	ns
13	D	Rise and Fall Time Outputs	t _{rfo}	_	_	8	ns

NOTES:

^{1.} t_{bus} added due to internal synchronization delay

C.3 External Bus Timing

A timing diagram of the external multiplexed-bus is illustrated in **Figure C-5** with the actual timing values shown on table **Table C-4**. All major bus signals are included in the diagram. While both a data write and data read cycle are shown, only one or the other would occur on a particular bus cycle.

C.3.1 General Muxed Bus Timing

The expanded bus timings are highly dependent on the load conditions. The timing parameters shown assume a balanced load across all outputs.

Device User Guide — 9S12C32DGV17D V01.14 Semiconductor, Inc.

Table C-4 Expanded Bus Timing Characteristics (5V Range)

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	Frequency of operation (E-clock)	f _o	0		25.0	MHz
2	Р	Cycle time	t _{cyc}	40			ns
3	D	Pulse width, E low	PW _{EL}	19			ns
4	D	Pulse width, E high ¹	PW _{EH}	19			ns
5	D	Address delay time	t _{AD}			8	ns
6	D	Address valid time to E rise (PW _{EL} -t _{AD})	t _{AV}	11			ns
7	D	Muxed address hold time	t _{MAH}	2			ns
8	D	Address hold to data valid	t _{AHDS}	7			ns
9	D	Data hold to address	t _{DHA}	2			ns
10	D	Read data setup time	t _{DSR}	13			ns
11	D	Read data hold time	t _{DHR}	0			ns
12	D	Write data delay time	t _{DDW}			7	ns
13	D	Write data hold time	t _{DHW}	2			ns
14	D	Write data setup time ⁽¹⁾ (PW _{EH} -t _{DDW})	t _{DSW}	12			ns
15	D	Address access time ⁽¹⁾ (t _{cyc} -t _{AD} -t _{DSR})	t _{ACCA}	19			ns
16	D	E high access time ⁽¹⁾ (PW _{EH} -t _{DSR})	t _{ACCE}	6			ns
17	D	Read/write delay time	t _{RWD}			7	ns
18	D	Read/write valid time to E rise (PW _{EL} -t _{RWD})	t _{RWV}	14			ns
19	D	Read/write hold time	t _{RWH}	2			ns
20	D	Low strobe delay time	t _{LSD}			7	ns
21	D	Low strobe valid time to E rise (PW _{EL} -t _{LSD})	t _{LSV}	14			ns
22	D	Low strobe hold time	t _{LSH}	2			ns
23	D	NOACC strobe delay time	t _{NOD}			7	ns
24	D	NOACC valid time to E rise (PW _{EL} -t _{LSD})	t _{NOV}	14			ns
25	D	NOACC hold time	t _{NOH}	2			ns
26	D	IPIPO[1:0] delay time	t _{P0D}	2		7	ns
27	D	IPIPO[1:0] valid time to E rise (PW _{EL} -t _{P0D})	t _{P0V}	11			ns
28	D	IPIPO[1:0] delay time ⁽¹⁾ (PW _{EH} -t _{P1V})	t _{P1D}	2		25	ns
29	D	IPIPO[1:0] valid time to E fall	t _{P1V}	11			ns

NOTES

1. Affected by clock stretch: add N x t_{cyc} where N=0,1,2 or 3, depending on the number of clock stretches.

Table C-5 Expanded Bus Timing Characteristics (3.3V Range) Conditions are VDDX=3.3V+/-10%, Junction Temperature -40°C to +140°C, C_{LOAD} = 50pF

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	Frequency of operation (E-clock)	f _o	0		16.0	MHz
2	Р	Cycle time	t _{cyc}	62.5			ns
3	D	Pulse width, E low	PW _{EL}	30			ns
4	D	Pulse width, E high ¹	PW _{EH}	30			ns
5	D	Address delay time	t _{AD}			16	ns
6	D	Address valid time to E rise (PW _{EL} -t _{AD})	t _{AV}	16			ns
7	D	Muxed address hold time	t _{MAH}	2			ns
8	D	Address hold to data valid	t _{AHDS}	7			ns
9	D	Data hold to address	t _{DHA}	2			ns
10	D	Read data setup time	t _{DSR}	15			ns
11	D	Read data hold time	t _{DHR}	0			ns
12	D	Write data delay time	t _{DDW}			15	ns
13	D	Write data hold time	t _{DHW}	2			ns
14	D	Write data setup time ⁽¹⁾ (PW _{EH} -t _{DDW})	t _{DSW}	15			ns
15	D	Address access time ⁽¹⁾	t _{ACCA}	29			ns
16	D	E high access time ⁽¹⁾ (PW _{EH} ^{-t} _{DSR})	t _{ACCE}	15			ns
17	D	Read/write delay time	t _{RWD}			14	ns
18	D	Read/write valid time to E rise (PW _{EL} -t _{RWD})	t _{RWV}	16			ns
19	D	Read/write hold time	t _{RWH}	2			ns
20	D	Low strobe delay time	t _{LSD}			14	ns
21	D	Low strobe valid time to E rise (PW _{EL} -t _{LSD})	t _{LSV}	16			ns
22	D	Low strobe hold time	t _{LSH}	2			ns
23	D	NOACC strobe delay time	t _{NOD}			14	ns
24	D	NOACC valid time to E rise (PW _{EL} -t _{LSD})	t _{NOV}	16			ns
25	D	NOACC hold time	t _{NOH}	2			ns
26	D	IPIPO[1:0] delay time	t _{P0D}	2		14	ns
27	D	IPIPO[1:0] valid time to E rise (PW _{EL} -t _{P0D})	t _{P0V}	16			ns
28	D	IPIPO[1:0] delay time ⁽¹⁾	t _{P1D}	2		25	ns
29	D	IPIPO[1:0] valid time to E fall	t _{P1V}	11			ns

NOTES:

1. Affected by clock stretch: add N x t_{cyc} where N=0,1,2 or 3, depending on the number of clock stretches.

This section provides the physical dimensions of the MC9S12C32 packages 48LQFP, 52LQFP, 80QFP.

Freescale Semiconductor, Inc. 9S12C32DGV1/D V01.14

D.2 80-pin QFP package

Figure D-1 80-pin QFP Mechanical Dimensions (case no. 841B)

D.3 52-pin LQFP package

SECTION AB-AB ROTATED 90 ° CLOCKWISE

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER DATUM PLANE -1 IS LOCATED AT BOTTOM OF LEAD AND IS CONICIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
 DATUMS -1, -M AND -N TO BE DETERMINED AT DATUM PLANE -1.

- DATUM PLANE -HDIMENSIONS S AND V TO BE DETERMINED AT
 SEATING PLANE -TDIMENSIONS A AND B DO NOT INCLUDE MOLD
 PROTRUSION. ALLOWABLE PROTRUSION IS 0.25
 (0.010) PER SIDE. DIMENSIONS A AND B DO
 INCLUDE MOLD MISMATCH AND ARE
 DETERMINED AT DATUM PLANE -HDIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. DAMBAR PROTRUSION SHALL NOT
 CAUSE THE LEAD WIDTH TO EXCEED 0.46 (0.018).
 MINIMUM SPACE BETWEEN PROTRUSION AND
 ADJACENT LEAD OR PROTRUSION 0.07 (0.003).

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	10.00 BSC		0.394 BSC	
A1	5.00 BSC		0.197 BSC	
В	10.00 BSC		0.394 BSC	
B1	5.00 BSC		0.197 BSC	
С	I	1.70	-	0.067
C1	0.05	0.20	0.002	0.008
C2	1.30	1.50	0.051	0.059
D	0.20	0.40	0.008	0.016
Е	0.45	0.75	0.018	0.030
F	0.22	0.35	0.009	0.014
O	0.65 BSC		0.026 BSC	
_	0.07	0.20	0.003	0.008
Κ	0.50 REF		0.020 REF	
R1	0.08	0.20	0.003	0.008
S	12.00 BSC		0.472 BSC	
S1	6.00 BSC		0.236 BSC	
U	0.09	0.16	0.004	0.006
٧	12.00 BSC		0.472 BSC	
V1	6.00 BSC		0.236 BSC	
W	0.20 REF		0.008 REF	
Z	1.00 REF		0.039 REF	
θ	00	7°	00	7°
θ1	0°		0°	
θ2	12° REF		12° REF	
θ3	12° REF		12° REF	

Figure D-2 52-pin LQFP Mechanical Dimensions (case no. 848D-03)

Device User Guide — 9S12C32DGV7/D V01.14 Semiconductor, Inc.

D.4 48-pin LQFP package

Figure D-3 48-pin LQFP Mechanical Dimensions (case no.932-03 ISSUE F)

Device User Guide End Sheet

Device User Guide — 9S12C32DGV 1/D V01:14 Semiconductor, Inc.

Home Page:

www.freescale.com

email:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 (800) 521-6274 480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH **Technical Information Center** Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 2666 8080 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. **Technical Information Center** 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 (800) 441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

RoHS-compliant and/or Pb- free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale.s Environmental Products program, go to http://www.freescale.com/epp.

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

