Quadrati, lati e diagonali

Per assurdo supponiamo che

$$\sqrt{2} = \frac{\rho}{9}$$

allora abbiamo

da cui

$$\sqrt{2}q = \rho$$

$$2q^2 \rho^2$$

mo
$$\sqrt{2} = \frac{\rho}{q} \quad \text{con} \quad \rho, q \in \mathbb{IN} \quad \beta = 2$$

$$\sqrt{2} = \rho$$

$$\frac{1}{2}$$
 $\frac{2m_1+1}{2}$ $\frac{2m_2}{2}$ $\frac{2m_k}{2}$

Assioma di Archimede

Assioma di Archimede.

Per ogni $a \in \mathbb{R}$ esiste $k \in \mathbb{N}$ tale che

Osservazione. Se x è un numero reale tale che

$$x \ge 0$$
 e $x < \varepsilon$ per ogni $\varepsilon > 0$

allora x = 0.

Principio di Cantor

Principio degli intervalli incapsulati (Cantor).

Sia $\{I_n\}$, con $n \in \mathbb{N}$, una collezione di intervalli non vuoti, chiusi e limitati di \mathbb{R} tali che $I_{n+1} \subseteq I_n$ per ogni indice n, allora

$$\begin{array}{c|c}
\hline
 & I_{n+1} & \mathbb{R} \\
\hline
 & I_{n} = [a_{n}, b_{n}] = \{a_{n} \leqslant x \leqslant b_{n}\} \leq \mathbb{R}
\end{array}$$

Principio di Cantor

Principio degli intervalli incapsulati (Cantor).

Sia $\{I_n\}$, con $n \in \mathbb{N}$, uno collezione di intervalli non vuoti, chiusi e limitati di \mathbb{R} tali che $I_{n+1} \subseteq I_n$ per ogni indice n, allora

$$\int_{n \in \mathbb{N}} I_n \neq 0$$

$$\int_{\mathbb{M}} = \left[\sqrt{2} - \xi_n \right] \sqrt{2} + \xi_n \right]$$

$$\frac{1}{n} = \left[\sqrt{2} - \xi_n \right] \sqrt{2} + \xi_n \right]$$

$$\frac{1}{n} = \xi_n > 0$$

$$\int_{\mathbb{M}} \int_{\mathbb{M}} |p - \sqrt{2}| < \frac{1}{n} \quad \forall n$$

$$\int_{\mathbb{M}} |p - \sqrt{2}| < \frac{1}{n} \quad \forall n$$

$$\int_{\mathbb{M}} |p - \sqrt{2}| < \frac{1}{n} \quad \forall n$$

$$\int_{\mathbb{M}} |p - \sqrt{2}| < \frac{1}{n} \quad \forall n$$

$$\int_{\mathbb{M}} |p - \sqrt{2}| < \frac{1}{n} \quad \forall n$$

$$\int_{\mathbb{M}} |p - \sqrt{2}| < \frac{1}{n} \quad \forall n$$

$$\int_{\mathbb{M}} |p - \sqrt{2}| < \frac{1}{n} \quad \forall n$$

$$\int_{\mathbb{M}} |p - \sqrt{2}| < \frac{1}{n} \quad \forall n$$

$$\int_{\mathbb{M}} |p - \sqrt{2}| < \frac{1}{n} \quad \forall n$$

$$\int_{\mathbb{M}} |p - \sqrt{2}| < \frac{1}{n} \quad \forall n$$

Ordinamento e distanza

Ordinamento tra punti della retta.

$$x \le y$$
 se e solo se $y - x \ge 0$

Ordinamento e distanza

Ordinamento tra punti della retta.

$$x \le y$$
 se e solo se $y - x \ge 0$

Distanza tra punti della retta.

$$d(x,y) = |x - y| = \begin{cases} x - y & \text{se } x \ge y \\ y - x & \text{se } x \le y \end{cases}$$

Si ricordi che $|x| = \max\{x, -x\}$.

Disuguaglianza triangolare

Disuguaglianza triangolare.

Per ogni $x, y \in \mathbb{R}$ vale che

|x-y| = |x|+|y|

Insiemi limitati e non

$$(\alpha, +\infty) = \{x \in \mathbb{R} : x > \alpha\}$$

$$(-\infty, \alpha) = \{x \in \mathbb{R} : x < \alpha\}$$

$$(-\infty, \alpha] = \{x \in \mathbb{R} : x \leq \alpha\}$$

$$[\alpha, +\infty) = \{x \in \mathbb{R} : x \geq \alpha\}$$

Definizione. Un insieme $A \subseteq \mathbb{R}$ si dice limitato se esiste M > 0 tale che per ogni $x \in A$ si ha $|x| \le M$.

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto chiameremo maggiorante di A un elemento $\Lambda \in \mathbb{R}$ tale che $\Lambda \geq a$ per ogni $a \in A$.

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e superiormente limitato chiameremo **estremo superiore** di A il più piccolo dei maggioranti, tale numero reale verrà indicato $\sup(A)$

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e superiormente limitato chiameremo **estremo superiore** di A il più piccolo dei maggioranti, tale numero reale verrà indicato $\sup(A)$

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e inferiormente limitato chiameremo **estremo inferiore** di A il più grande dei minoranti, tale numero reale verrà indicato $\inf(A)$

Osservazione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e inferiormente limitato e sia $\inf(A)$ il suo estremo inferiore, allora

 $\forall a \in A \quad a \ge \inf(A)$

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e superiormente limitato se $\sup(A) \in A$ allora chiameremo tale numero reale massimo di A e lo indicheremo con $\max(A)$.

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e superiormente limitato se $\sup(A) \in A$ allora chiameremo tale numero reale massimo di A e lo indicheremo con $\max(A)$.

Definizione. Dato un insieme $A \subseteq \mathbb{R}$ non vuoto e inferiormente limitato se $\inf(A) \in A$ allora chiameremo tale numero reale minimo di A e lo indicheremo con $\min(A)$.

Reali, razionali e numeri macchina...

Teorema. Per ogni $a \in \mathbb{R}$ e per ogni $\varepsilon > 0$ esiste $q \in \mathbb{Q}$ tale che

$$|a-q|<\varepsilon$$