TECHNICAL REPORT

ISO/TR 25104

First edition 2008-02-01

Intelligent transport systems — System architecture, taxonomy, terminology and data modelling — Training requirements for ITS architecture

Systèmes intelligents de transport — Architecture, taxinomie, terminologie et modélisation de données, relatives aux systèmes — Exigences de formation pour une architecture ITS

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

COPYRIGHT PROTECTED DOCUMENT

© ISO 2008

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents Page

Forewo	ordi	v
Introdu	uction	v
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Symbols and abbreviated terms	2
5 5.1 5.2 5.3 5.4 5.5 5.6 5.7	Subjects for education and training	3 3 4 4 5
6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12	Example curricula for training related to ITS architecture and ITS standards	55667788899
Bibliog	graphy1	0

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

In exceptional circumstances, when a technical committee has collected data of a different kind from that which is normally published as an International Standard ("state of the art", for example), it may decide by a simple majority vote of its participating members to publish a Technical Report. A Technical Report is entirely informative in nature and does not have to be reviewed until the data it provides are considered to be no longer valid or useful.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/TR 25104 was prepared by Technical Committee ISO/TC 204, Intelligent transport systems.

Introduction

The objective of this Technical Report is to propose generic training requirements for the skills required to understand and develop architectural models for Intelligent Transport Systems (ITS).

This Technical Report has been prepared to assist organizations in developing the knowledge and skills of their own staff and those of allied organizations such a suppliers and customers, and to assist academic institutions to develop curriculum and syllabus.

The approach taken is the proposal of a taxonomy of the knowledge elements of ITS architectural theory and practice. This approach has been widely used in other fields where it is often entitled as the "Body of Knowledge" (BOK), for example the software engineering BOK or SWEBOK.

Intelligent transport systems — System architecture, taxonomy, terminology and data modelling — Training requirements for ITS architecture

1 Scope

This Technical Report discusses the development for generic education and training requirements for the teaching of ITS architecture, and the acquisition of skills to interpret and develop ITS architectures.

This Technical Report provides suggestions to those planning education and/or training courses associated with ITS system architecture as to the subjects that should be studied.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 14813-1, Intelligent transport systems — Reference model architecture(s) for the ITS sector — Part 1: ITS service domains, service groups and services

ISO/TR 14813-2, Transport information and control systems — Reference model architecture(s) for the TICS sector — Part 2: Core TICS reference architecture

ISO/IEC 19501, Information technology — Open Distributed Processing — Unified Modeling Language (UML) Version 1.4.2

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

architecture

set of concepts and rules describing the interrelationship between entities in the entire system, independent of the hardware and software environment, reference [1] and described through a series of views that may be at varying levels of generality/specificity, abstraction/concretion, totality/component and so on

3.2

system architecture (Intelligent transport)

framework for ITS deployments

NOTE It is a single, high-level description of the major elements or objects and the interconnections amongst them. It provides the framework around which the interfaces, specifications and detailed system designs can be defined. An architecture is not a product design, nor a detailed specification for physical deployment, reference [1].

3.3

business case

structured proposal for business improvement that functions as a decision package for decision-makers

The business case should explain why a project is required for the business and what the product or service is going to be. It should include an outline of the "Return on Investment" (ROI), or a cost/benefit analysis for the project, the project's product and performance characteristics, major project risks and the opportunities.

The business case addresses, at a high level, the business needs that the project seeks to meet. It includes the reasons for the project, the expected business benefits, the options considered (with reasons for rejecting or carrying forward each option), the expected costs of the project, a GAP analysis and the expected risks.

4 Symbols and abbreviated terms

AASHTO American Association of State Highway and Transportation Officials

ANSI American National Standards Institute

APTA American Public Transportation Association

APEC Asia Pacific Economic Cooperation

ARIB Association of Radio Industries and Businesses (Japan)

ARINC Air Radio Incorporated

ASTM American Society for Testing and Materials

BCA Benefit cost analysis

CEN Comité européen de normalisation

CEPT Conférence européenne des administrations des postes et des télécommunications

European Telecommunications Standards Institute

EU European Union

FCC Federal Communications Commission (USA)

GAP good/average/poor

ICT Information and Communications Technology

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

ITE Institute of Transportation Engineers

ITS Intelligent Transport Systems

ITU International Telecommunications Union

ITU-T International Telecommunications Union — Telecommunications

ITU-R International telecommunications Union — Radio

NEMA National Electrical Manufacturers Association

OASIS Organization for the Advancement of Structured Information Standards

OMG Object Management Group

ROI Return on Investment

SAE Society of Automotive Engineers

TE&A Test, Evaluation & Acceptance

TIA Telecommunications Industries Association

Transport Information & Control Systems (old name for Intelligent Transport Systems)

UN/CEFACT United Nations Centre for Trade Facilitation and Electronic Business

USDoT United States Department of Transport

W3C World Wide Web Consortium

WG1 Working group 1 (of TC 204)

5 Subjects for education and training

5.1 Background information

This Technical Report arose from work by WG1 on the elaboration of ITS Architecture standards and their application. It appeared that the successful uptake of relevant standards and practices would be dependent partly on the effectiveness of the education, training and organizational development related to ITS architecture.

The education and training requirements identified are those which have occurred within the development activities of the ISO TC204 WG1. A list of references is provided in the Bibliography. See References [6] to [17].

5.2 What are "Intelligent Transport Systems"?

Intelligent Transport Systems have been described in a variety of ways including this from the ITS Handbook:

"ITS embraces a broad range of information technologies (IT), satellite and communications-based information, control and digital technologies. Collectively, these offer new possibilities for solving what seem to be intractable problems of congestion, traffic accidents, inefficient logistics, and the environmental impact of surface transportation" (see Reference [1]).

5.3 "User Needs" and "Fundamental Services" requiring ITS

ISO 14813-1 characterizes the ITS sector as comprising 12 "ITS service domains". These are:

- <u>Traveller information</u> Provision of both static and dynamic information about the transport network to users, including modal options and transfers.
- <u>Traffic management and operations</u> Management of the movement of vehicles, travellers and pedestrians throughout the road transport network.
- Vehicle Services Enhancement of safety, security and efficiency in vehicle operations, by warnings and assistance to users or control vehicle operations.
- <u>Freight transport</u> Management of commercial vehicle operations; freight and fleet management; activities that expedite the authorization process for cargo at national and jurisdictional boundaries and expedite cross-modal transfers for authorized cargo.

ISO/TR 25104:2008(E)

- <u>Public transport</u> Operation of public transport services and the provision of operational information to the operator and user, including multimodal aspects.
- Emergency Services delivered in response to incidents that are categorized as emergencies.
- Transport-related electronic payment Transactions and reservations for transport-related services.
- Road transport related personal safety Protection of transport users including pedestrians and vulnerable users.
- Weather and environmental conditions monitoring Activities that monitor and notify weather and environmental conditions.
- <u>Disaster response management and coordination</u> Road transport-based activities in response to natural disasters, civil disturbances or terror attacks.
- <u>National security</u> Activities that directly protect or mitigate physical or operational harm to persons and facilities due to natural disasters, civil disturbances or terror attacks.
- <u>ITS data management</u> Collation, management and supply of ITS data to legitimate interested parties.

Within these domains, ISO/TR 14813-1 identifies some 123 specific service types, or "fundamental services". (This list of services is dynamic and will change over time).

Each of the ITS services has associated with it, one or more use cases and actors as shown in ISO/TR 14813-2.

5.4 Systems architectures for ITS

In common with all other forms of complex ICT, there is a need for an overall view of the extent and purposes of the systems and networks employed in ITS. This is accomplished by means of so-called systems architecture, comprising the top-level functional and physical system frameworks. These systems architectures can be most easily developed from a generic form, commonly called a reference or framework architecture.

A system architecture comprises one or more technology-independent viewpoints that each concentrate on a specific aspect of the future deployment, e.g. logical (functional) viewpoints, physical viewpoints, communications viewpoints, organizational viewpoints.

NOTE Early system architectures used to give the title "architecture" to these viewpoints, which caused a certain amount of confusion.

From the geographical point of view, architectures may be defined at regional, national and international levels.

The benefit of using an architectural approach is long-term, with potential problems and issues being able to be identified early in the ITS deployment lifecycle, and hence being much cheaper to resolve than they would be if not identified until later, *c.f.* the 10:100:1 000 rule for the cost of fixing software faults throughout the software lifecycle. Being technology-independent, an ITS architecture can have a long life-time, though it will need to be maintained at regular intervals to ensure that it still covers the services that are required.

5.5 Standardization for ITS

Standardization is a natural consequence of using ITS architectures, with the (need for) standards being identified easily from the various viewpoints, in particular the "communications" viewpoints.

5.6 Interoperability is important and achievable

Interoperability has been defined by the ITS standards technical committee (TC204) as follows:

The ability of systems to provide services to and accept services from other systems and to use the services so exchanged to enable them to operate effectively together.

Interoperability is increasingly being recognised as more than attending only to interfaces, embracing:

- user interfaces, documentation and training of users, i.e., operators and maintainers;
- protocol and message compatibility;
- compatible information models such that related meanings of data structures are consistent;
- semantic interoperability that ensures that the interpretation of the information that has been defined for compatibility and interoperability is also consistent and predictable to all involved parties.

5.7 Systems engineering for ITS

The key to the effective definition of requirements, analysis, design and specification of ITS is a systems engineering process that goes further than the traditional building or project services subcontract. Systems engineering is critical to success and cost-effectiveness of complex systems projects and ITS is no exception to that principle. This is increasingly recognised in such publications as the recently published guidebook from the USDoT^[3].

Advice can also be obtained from the "International Council of Systems Engineering" (http://www.incose.org/).

6 Example curricula for training related to ITS architecture and ITS standards

6.1 Prerequisite training

- 1.01 Introduction to architecture modelling
- 1.02 Unified modelling language (ISO/IEC 19501)
 - 1.02.1 UML modelling tools
- 1.03 Process oriented modelling
 - 1.03.1 Process oriented modelling tools
- 1.03 ISO TC204 tools for modelling

6.2 Introduction to ITS

- 2.01 Introduction to ITS
- 2.02 ITS terminology
- 2.03 ITS services
- 2.04 ITS business models
- 2.05 ITS requirements and use cases
- 2.06 Transport efficiency and ITS

ISO/TR 25104:2008(E)

2.07		Sustainability and ITS					
2.08		ITS lifecycle					
2.09		ITS and multimodality					
2.10		ITS systems engineering					
2.11		ITS and interoperability					
2.12		System criticality, scalability					
2.13		Certification					
6.3	ΙΤ	S technology					
3.01		Information and communications technology (ICT) for ITS					
3.02		Actor systems for ITS					
3.03		ITS system interfaces					
_	_	3.03.1 in-vehicle					
_	_	3.03.2 infrastructure–vehicle					
_	_	3.03.3 vehicle–vehicle					
_	_	3.03.4 infrastructure–infrastructure					
3.04		Sensor systems for ITS					
3.05		User interfaces					
3.06		Spatial systems and navigation					
3.07		Standardization – relevant standards currently in development					
3.08		ITS simulation tools					
3.09		ITS technology in evolution					
6.4	ΙΤ	S theory					
4.01		Use of abstraction					
4.02		ITS systems architecture – description and business case					
4.03		ITS information modelling (general)					
4.04		ITS "fundamental" services (service domains, service groups and services)					
4.05		Information modelling in ITS using object oriented techniques					
4.06		Information modelling in ITS using process oriented techniques					
4.07		Data fusion for ITS					
4 08		Identification of people, vehicles and goods					

4.09	The different types and uses of LLS Architectures
4.10	ITS systems analysis and design
6.5	Architecture aspects of ITS service provision
5.01	Traveller information systems
5.02	Traffic management and operations
5.03	Vehicle services
5.04	Freight services
5.05	Public transport
5.06	Emergency
5.07	Transport related electronic payment
5.08	Road transport related personal safety
5.09	Weather and environmental conditions monitoring
5.10	Disaster response management and coordination
5.11	National security
6.6	Technology aspects of ITS service provision (as they relate to system architecture)
6.01	Telecommunications for ITS – wireless networks, wired networks, optical systems
6.02	Information metadata standards
6.03	Location based services
6.04	Common Object Request Broker Architecture (CORBA)
6.05	Extensible Mark-up language (XML) in ITS standards, systems and services
6.06	Web services in ITS standards, systems and services
6.07	Internet Protocol (IP) for ITS
6.08	Abstract Syntax Notation No. 1 [ASN.1] in ITS standards, systems and services
6.08	Abstract Syntax Notation No. 1 [ASN.1] in ITS standards, systems and services Generic data registry standards
6.08 6.09	Generic data registry standards
6.08 6.09 6.10	Generic data registry standards Generic IT user interfaces
6.08 6.09 6.10	Generic data registry standards Generic IT user interfaces Identification technology standards

6.7	National and regional architecture development					
7.01	The different roles and uses of national/regional architectures					
7.02	Japan – National ITS architecture					
7.03	USA – National ITS architecture					
7.04	European Union (EU) – ITS architecture framework					
7.05	Other national ITS architecture					
6.8	Strategies to use standards in ITS					
8.01	ITS requirements, analysis, design and delivery					
8.02	Systems engineering for ITS					
8.03	Business case and benefit-cost analysis (BCA) for ITS					
8.04	Use case requirements specification for ITS					
8.05	User test, evaluation and acceptance (TE&A) of ITS					
8.06	ITS software development and integration					
8.07	ITS data collection and analysis					
8.08	Simulation and modelling for ITS					
8.09	Device certification					
8.10	Security and privacy (protection of ITS assets and personal data)	Security and privacy (protection of ITS assets and personal data)				
8.11	Verification and validation of functionality of ITS capabilities deployed against requirements					
8.12	The role of industry consortia					
6.9	The process of standards development for ITS					
9.01	International Organisation for Standardization (ISO)					
9.02	International Telecommunications Union (ITU)					
_	 9.02.1 International Telecommunications Union – Telecommunications (ITU-T) 					
_	 9.02.2 International Telecommunications Union – Radio-communications (ITU-R) 					
9.03	International Electrotechnical Commission (IEC)					
9.04	Internet Engineering Task Force (IETF)					
9.05	World Wide Web Consortium (W3C)					
9.06	United Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT)					
9.07	European Telecommunications Standards Institute (ETSI)					
9.08	Comité européen de normalisation (CEN)					

6.10 National standards development organizations (SDO) for ITS

- 10.01 US National Standards
 - 10.01.1 American National Standards Institute (ANSI)
 - 10.01.2 Society of Automotive Engineers (SAE)
 - 10.01.3 Air Radio Incorporated (ARINC)
 - 10.01.4 American Society for Testing and Materials (ASTM)
 - 10.01.5 American Public Transportation Association (APTA)
 - 10.01.6 Institute of Electrical and Electronics Engineers (IEEE)
 - 10.01.7 National Electrical Manufacturers Association (NEMA)
 - 10.01.8 American Association of State Highway and Transportation Officials (AASHTO)
 - 10.01.9 Institute of Transportation Engineers (ITE)
 - 10.01.10 Telecommunications Industries Association (TIA)
- 10.02 Japan National Standards
 - 10.02.1 Association of Radio Industries and Businesses (ARIB)
- 10.03 National standards organization in country hosting training

6.11 Other organizations relevant to ITS standards

- 11.01 Conférence européenne des administrations des postes et des télécommunications (CEPT)
- 11.02 Federal Communications Commission (FCC)
- 11.03 Asia Pacific Economic Cooperation (APEC)
- 11.04 Object Management Group (OMG)
- 11.05 Organization for the Advancement of Structured Information Standards (OASIS)
- 11.06 ODG OCIT Developer Group

6.12 Other architecture related issues

- 12.01 Evaluation of ITS proposals and risk assessment
- 12.02 ITS institutional issues
- 12.03 ITS systems integration Complexity

Bibliography

References

- [1] MILES, D.J.C. and CHEN, D.K., ITS Handbook.2nd Edition, PIARC, 2004
- [2] PPK, National Reference Architecture for Intelligent Transport Systems, ITS Australia, 1999
- [3] Department of Transportation, Office of Operations HOTM, Room 3404, 400, Seventh Street S.W., Washington, DC 20590;
 - Toll-free Help Line 866-367-7487, www.ops.FHWA.dot.gov, Publication No. FHWA-HOP-07-069EDL-14340, January 2007, http://ops.fhwa.dot.gov/publications/seitsguide/index.htm
- [4] WILLIAMS and SKINNER, Intelligent Transport Systems Standards, Artech House, 2007
- [5] IEEE 1471-2000, Recommended Practice for Architectural Description of Software-Intensive Systems, IEEE, 2000
- [6] ISO/TR 14813-3, Transport information and control systems Reference model architecture(s) for the TICS sector Part 3: Example elaboration
- [7] ISO/TR 14813-4, Transport information and control systems Reference model architecture(s) for the TICS sector Part 4: Reference model tutorial
- [8] ISO/TR 14813-5, Transport information and control systems Reference model architecture(s) for the TICS sector Part 5: Requirements for architecture description in TICS standards
- [9] ISO 14813-6, Transport information and control systems Reference model architecture(s) for the TICS sector Part 6: Data presentation in ASN.1
- [10] ISO 14817, Transport information and control systems Requirements for an ITS/TICS central Data Registry and ITS/TICS Data Dictionaries
- [11] ISO/TR 17452, Intelligent transport systems Using UML for defining and documenting ITS/TICS interfaces
- [12] ISO/TR 24098, Intelligent transport systems System architecture, taxonomy and terminology Procedures for developing ITS deployment plans utilizing ITS system architecture
- [13] ISO/TR 24529, Intelligent transport systems Systems architecture Use of unified modelling language (UML) in ITS International Standards and deliverables
- [14] ISO 24531, Intelligent transport systems System architecture, taxonomy and terminology Using XML in ITS standards, data registries and data dictionaries
- [15] ISO/TR 24532, Intelligent transport systems Systems architecture, taxonomy and terminology Using CORBA (Common Object Request Broker Architecture) in ITS standards, data registries and data dictionaries
- [16] ISO/TR 25100, Intelligent transport systems Systems architecture Harmonization of ITS data concepts
- [17] ISO/TR 28682, A joint APEC-ISO study of progress to develop and deploy ITS Standards

Other contacts

- United Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT) http://www.unece.org/cefact/about.htm
- American Public Transportation Association (APTA) http://www.apta.com
- Institute of Electrical and Electronics Engineers (IEEE) http://www.ieee.org
- National Electrical Manufacturers Association (NEMA) http://www.nema.org
- The U.S. DOT: ITS Professional Capacity Building (PCB) Program (provides comprehensive, accessible, and flexible ITS learning for the transportation industry. By using its resources, public agencies can build and sustain a capable and technically proficient ITS workforce and transportation professionals can develop their knowledge, skills and abilities while furthering their career paths) http://www.pcb.its.dot.gov/default.asp
- CITE: The purpose of the Consortium for ITS Training and Education (CITE) is to create an integrated advanced transportation training and education programme. The programme, based on a consortium of universities, is open to anyone pursuing a career in advanced transportation. Instruction offered through CITE may include graduate and undergraduate level courses, as well as skill-based training and technology transfer. In addition to its educational responsibilities, CITE will facilitate networking and communication among universities and other CITE members. http://www.citeconsortium.org

