

INTRODUCTION TO COMPUTER SCIENCE

- ASSIGNMENT 1 - GROUP 1

Instructor: Mehmet Amaç Güvensan

Irem ATILGAN

17061036

11.11.2018

Question 1: Design an algorithm which gives the output of a function f(x,n).

$$f(x,n) = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{x^{2n+1}}{(2n+1)!}$$

Answer:

(Akış şemasına START ile başladık ve STOP ile bitirdik. Akış bitmeden önce ise sonucumuzu yazdırdık.)

EXPLANATION OF FLOWCHART

- 1- İlk adımda <u>sum</u> ve <u>count</u> adında iki değişkene 0 değeri atadık.
- 2- Kullanıcıdan <u>x</u> ve <u>n</u> adında iki değişken tanımlamasını istedik ve sayıları aldık
- 3- "num" değişkenimize 1 değerini atadık ve <u>2*n+1</u>' e kadar ikişer ikişer artması için yeni bir döngü açtık. Bu sayede x'in kuvvetini ve faktoriyeli, 1'den başlayarak n' e bağlı olarak 2*n+1 olacak şekilde sürdürebiliyoruz.
- 4- Burada <u>count</u> sayacımıza bakarak sayı sıralamada <u>tek numaralıysa</u> (ör: 1,3,5..) <u>faktoriyele</u>
 -1 <u>değerini, çift numaralı ise 1 değerini atarız</u>. Bu sayede sayılar <u>+,-,+.. şeklinde</u> ilerler.
- 5- Döngü her yeniden başladığında x'in aldığımız kuvvetini sıfırlayabilmek için <u>pow</u> adında bir değişken tanımlar ve x'in değerini atarız.
- 6- Yeni kurduğumuz döngüde x'in istenen kuvvetini ve num değerinin değerine bağlı olarak faktoriyeli hesaplarız.
- 7- Burada hesapladığımız <u>kuvvet ve faktoriyeli birbirine böler</u> ve yeni bir <u>a</u> değişkenine atarız.

 Daha sonra "sum" dediğimiz ve toplamları biriktirdiğimiz değişkene bu bölümün sonucunu ekleriz.

ANALYSIS OF FLOWCHART

x = 2, n = 2

					_	
num	count	fact	pow	i	а	sum
1	0	1	2	2		0
	1				2	2
3	1	-1	2	2		2
			4	3		
	2	-6	8	4	-8/6	4/6
5	2	1	2	2		4/6
		2	4	3		
		6	8	4		
		24	16	5		
		120	32	6	32/120	112/120

Question 2: Design an algorithm which finds the minimum and maximum 4-digit cube number. (Output: Minimum 4-digit number Maximum 4-digit number)

Answer:

EXPLANATION OF FLOWCHART

- 1- İlk olarak bir <u>num</u> ve <u>cube</u> değişkeni belirler ve bazı değerler atarız. "cube" a değer vermemizin sebebi ise <u>while</u> döngüsüne sokabilmektir.
- 2- num'un başlangıç değerinden başlayarak küpünü alır ve bunu cube değişkenine atarız. Bu işlem bittikten sonra da <u>num</u> değerini 1 arttırırız. cube değeri 1000'i geçtiği anda ise değeri bir yerde saklayabilmek için <u>min</u> değişkenine atarız.
- 3- Son döngüde ise cube değerini 9000'i geçtiği anda <u>max</u> değişkenine atarız. Burada eğer 9000 yerine 10000 yazmış olsaydık sonuç, <u>10000'den büyük en küçük kübik sayıyı</u> verecekti. Kübik sayıların arasındaki farkın büyük olduğunu düşünerek, 9000'den büyük en küçük sayıyı bulmak istedik.
- 4- Akış diyagramını bitirmeden önce ise <u>max</u> ve <u>min</u> değişkenlerimizi ekrana yazdırırız ve daha sonra diyagramı sonlandırırız.