0 (31)

問題6-1 K,LはCの部分体であるとし、L/Kは有限次拡大であるとする。

このとき、L/KかGalois拡大であることと次の条件(分が同値であることを示せ、

(4) 任意のdelについて, dのK上でのすべての共役元がしに含まれる.

解答例

(4) ⇒(2) き示す、

(4) ⇒ L/K は Galois 拡大を示える。

前回やるた /単拡大定理より, このような θ を とれる.

(4)の条件にかける dとして、L=K(0) をかたす $0 \in L$ をとると、

(4) より Oのすべての共役元はしに含まれる、これより、L/KはGalois 拡大である。 (以下の(2)が示された。)

注 以下の条件は有限次拡大(操数0) L/Kか Galois 拡大であることを特徴付ける Ψ 互いに同値な条件になっている、L=K(0)と仮定する。「K上の」 \Leftrightarrow Ψ a e K, Ψ (a)=a

- (1) LのK上での任意の共役体はLに等しい、 (K上での任意の体の同型 9: L () C について 9(L) = L.) { Q(また) C で くろい Q(また) C で くろい せんし
- (2) <u>日の K 上での共役元</u> はすべてした含まれる。 (日の K 上での最小多項式の根がすべてした含まれる。)
- (3) ある F(X) e K(X) か存在して, Lは F(X)のK上での最小分解体になる、 (Lは Kに F(X)のすべての根を付けかえてできる体になる)

L/KがGalois拡大 => (4) を示ろう. $f(A) \longmapsto \overline{f(x)} \longmapsto f(\beta) \longmapsto f(\beta)$ $\int K(a) \Rightarrow K(x)/(F_a(x)) \Rightarrow K(\beta) \hookrightarrow \mathbb{C}$ L/KはGalois拡大であるとし、任意にdelをとる。 B∈CはK上でのdの任意の共役元であるとする、人(Fa(x)はdのK上での最小多項式) (B 12 Fa(x) 9 FB) (4) を示すためには BELを示せばよい. このとき、K上の体同型 $\varphi: K(d) \hookrightarrow \mathbb{C}, f(d) \mapsto f(\beta) (f(d) \in K(X))$ が存在する、 もしも $K(\alpha) = L ならは" L/Kからalois拡大であることより、<math>L = \varphi(L) = \varphi(K(\alpha)) = K(\beta) \ni \beta$ 、 $K(A) \subseteq L \vee G$ 定可3、单拡大定理上1),L = K(A)(Y), $Y \in L \vee B \mid T \mid S$ 、 りの $K(\alpha)$ 上での最小多項式を $F(\alpha) = \sum a_{\lambda} x^{\lambda} \in K(\alpha)[\alpha], a_{\lambda} \in K(\alpha) と書く、$ $G(x) = \sum \varphi(Q_x) \chi^{\lambda} \in \varphi(K[d])[\chi] = K(\beta)[\chi] とかき、 <math>G(x)$ の根 多 $\in \mathbb{C}$ を 任意にとる、 このとき、K上の体の同型 $\tilde{\varphi}$: L \hookrightarrow C を $\tilde{\varphi}(\Sigma_{a_i}\eta_i) = \sum_{i} \gamma(a_i)$ 第 $(a_i \in K(a))$ と作れる: $L = K(\alpha)(\eta) \xrightarrow{\sim} K(\alpha)[x]/(F(x)) \xrightarrow{\sim} K(\beta)[x]/(G(x)) \xrightarrow{\sim} K(\beta)(\eta) \xrightarrow{\sim} C$ $\sum c_{\lambda} \eta^{\lambda} \mapsto \overline{\sum c_{\lambda} \chi^{\lambda}} \longmapsto \overline{\sum \varphi(c_{\lambda}) \chi^{\lambda}} \longmapsto \sum \varphi(c_{\lambda}) \xi^{\lambda} \mapsto \overline{\sum \varphi(c_{\lambda}) \xi^{\lambda}}$ L/Kか Galoù 拡大であることより、 $L=\widetilde{\varphi}(L)=K(\beta)(\mathfrak{z}) \ni \beta$ 、 これで(4)か示された、

問題6-2 M/K は体の拡大であるとし、L1,しはこの中間体であるとする。 このとき、L1/K, L2/Kが有限次拡大でらば、(L11/L2)/Kも(L1/L2)/Kも有限次拡大になり、 [L11/L2: K] ≦ min{[L1: K], [L2: K]}, [L1/L2: K] ≦ [L1: K] [L2: K] となることを示せ、 ここで L1/L2 は L1としこの両方を含むMの最小の部分体を表す。

解答例 [Li:K]=m<0, [Li:K]=n<0と依定する、

[1] $[L_{1} \cap L_{2} : K] \leq \min\{m, n\} \notin \mathbb{R} \times \mathbb{R}$. $L_{1} \cap L_{2} \subset L_{1} \notin \mathbb{R}$, $[L_{1} \cap L_{2} : K] = \dim_{K} L_{1} \cap L_{2} \leq \dim_{K} L_{1} = m$. $L_{1} \cap L_{2} \subset L_{2} \notin \mathbb{R}$, $[L_{1} \cap L_{2} : K] = \dim_{K} L_{1} \cap L_{2} \leq \dim_{K} L_{2} = n$. $\mathfrak{P} \nearrow \mathbb{R}$, $[L_{1} \cap L_{2} : K] \leq \min\{m, n\}$.

```
[LILI:K] & mn と示るう
単拡大定理より、K上代数的なある B∈L1 か存在して、L1=K(B)となる、
                                                                       f(\theta) \longleftrightarrow f(0)
 任意の\beta \in L_1 = K(\theta)はあるf(x) \in K[x]によって\beta = f(\theta)と表わされ、
f(x) \in L_2[x]でもあるので\beta = f(0) \in L_2(0) となり、 L_2(0) は L_1 と L_2 の両 すと 含む、
ゆ之に, Li Li の最小社より, Li Li C Li(B)
   これで、し、し、こし、(8)となることか示された、
                                                                       G(x) | FA(x)
 F_{\mathbf{A}}(\mathbf{x}) \in K[\mathbf{x}] を 8 の K 上での最小多項式とすると、<math>F_{\mathbf{B}}(\mathbf{x}) \in L_{\mathbf{A}}(\mathbf{x})でかっF_{\mathbf{B}}(\mathbf{0}) = 0となるので、
            [L1L2:L2] = [L2(0):L2] = (19 L2上での最小多項式の次数) L2(0) × L2(1)/(G(x))
                      \leq \deg F_{\theta}(x) = [K(\theta):K] = [L_1:K].
ゆえに、
   [L_1L_2:K] = [L_1L_2:L_2][L_2:K] \leq [L_1:K][L_2:K] = mn.
```

問題 6-3 K, L1, L2 は Cの部分体であるとする、

L1/KとL2/Kが有限次Galois 拡大ならば、

Lin Li/Kと LiLz/Kも有限次 Gabis 拡大になることを示せ、

ここでしたしなしなとしての両方を含むしの最小の部分体を表す、

解答例 Lin Li/Kと Li Li/Kが有限次拡大になることは問題6-2の解答例で示した。

1 LinLa/KがGalois拡大になることを示える.

deLInLzを任意にとる.

ネ=1,2について、レン/KがGalois拡大であることと

問題b-1の結果とdelikより、dのすべてのK上での共役元はしばに含まれる。

ゆシに、dのすべてのK上での共役元はLINLに含まれる

したかって,問題6-1の科果より, LINL2/KはGalois拡大である.

□ L1L2/KかGalois 拡大になることを示るう、

 L_1L_2 の任意の元 Y は、あるd,,..., dreL1, β_1 ,..., $\beta_s \in L_2$ と $f(x_1,...,x_r,y_1,...,y_s)$ が存在して、 $Y = f(d_1,...,d_r,\beta_1,...,\beta_s)$ と表される、

このとき、K上の体同型中: Lily OCについて、 そのLk上への制限がK上の体同型になることと、Lk/KがGdnis拡大であることより、

 $\varphi(\gamma) = f(\varphi(\alpha_1), ..., \varphi(\alpha_r), \varphi(\beta_1), ..., \varphi(\beta_s)) \in L_1 L_2.$

これでし、L1/KがGalois 拡大であることがわかった、

(注)上で 9(L1L2) C L1 L2 かで示せており、 L1 L2 と 9(L1 L2)の K上でのベクトル空間として)の次元は有限次元で等いので 9(L1 L2)=L1 L2、

問題 6-4 以下の体の打	なたか Galois 拡大であるか	いどうかを判定せよ、	
(1) Q(IZ)/Q,	(2) Q(³ √3)/Q,	(3) Q(4/7)/Q,	
$(4) Q(\sqrt{2}, \sqrt{3})/Q,$	(5) Q(3/3, 1-3)/Q,	(6) Q(457, J-1)/Q,	
(7) Q(43,43)/Q(43),	(8) Q(47, Fi)/Q(F	ā),	
解答例 (1), (4), (5), (8) $= -1 + \sqrt{-3}$	o), (7), (8) は Galois 拡大 , i= √1 とおく.	た"か", (1), (3) はえうではる	۶۱۱,
		~重要 (狙, ω), Q(4万,√-1) はそれ	7 nd
$\chi^2 - \lambda$, $\chi^2 - 10 \chi^2$	+1 ~3 - 3	47 00 1	-N -
最小分解体なので Qの	Galois 拡大である。	-11-13-1 スートの (d) 上 7-1-13-13-13-13-13-13-13-13-13-13-13-13-1	の有限が
$M(_{3}13^{1}, 1_{-3}) = M(_{3}13^{1})$	$\omega = \omega(313, \omega 33, \omega^2 3\sqrt{3})$) は Galois抗大をF(x) e K[x]のす	根をすべて人に
$Q(\sqrt{-3}) = Q(\omega) + \tau^{\alpha} \circ \chi^{3}$	-3の最小分解体なので	Q(J-3)=Q(W)の Galois 拡大	である、なことに
$Q(^4J7, J7) = Q(^4J7,$	入) = Q(457, 入约7, 一约7, ·	- 入行)1は	1,7
Q(Fi) = Q(i) 上でのX4_	7の最小分解体なので	·Q(Fi)=Q(i)のGalois抜大	てかある、
重要	1月の共役元 W 野も含まる	こいので QのGaloir 拡大でしる	ない、
重要 {Q(3√3) は Q上での3 Q(4√7) は Q上での4	汀の共役元人切を含まる	inので見のGalois 抗大では	ない. 🛘