FIG. 1A

FIG. 1B

FIG. 1C

FIG. 2

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 11

FIG. 12

$$Me$$
 $N-C-c=c$
 Me
 Me

FIG. 13

D2/mm		0			0	0	L	•	. C.				0
D1/mm	C		20	5 0		0 0 1	2.0		2.0	20	2.0	-10	-30
	EXAMPLE /-/		1-2	EXAMME 1-3	EXAMPLE 1-4		EXAMPLE 1-5	FX4HULF	4 11 1 1 to the state of the st	EXAMPLE 1-7	EXAMPLE. 1-8	COMPARATIVE EXAMPLE 1-1	COMPRESSIVE EXMINE 1-2

FIG. 14

				$\neg \vdash$	1	1	1	1	1					
	14/01/	ESTIMATION) C			IRREGULAR DENSITY	IAREQUAR DENSITY FROM CENTER TO	
IMAGE			TRIMMED IMAGE)	C			C		C	SHEAR AT TOP		
DEGREE SLOPE	(C.	29000	THICKIES		_L.	3.57	3.400	0.3//	0.2 um	0.3 um	0.3 um	8.2 µm	9.1 µ III	
THICKNESS)	DISTRIBUTION		1-1 0.15 0.45 1.23 SLOPEIN AXIAL DIRECTION	SLOPE IN AXIAL DIRECTION	SLOPE WAXAL DIRECTION	0. 28 SLOVE IN AXIAL DIRECTION	No stope	NO SLOPE	NO SLOPE	NO SLOPE	SLOPE IN AXIAL DIRECTION	SCOPE IN AXML DIRECTION	
 R (LLM) K. & HIN.	1. & 141/1.		50mm 170mm 290mm	1.23	0.53	0, 22	0.28	0.23	0.25	0.28	0.25	2.3 s	3.1	
DIFFERENCE R (Lum) BETWEEN MAX, & MIN.		WCF FP	DISTANCE FROM TOP	170mm	0.45	0.33	0.09 0.33	0.08 0.15	0, 09 0, 12 0, 23	0, 12 0, 19	0.33	1. 29 0. 75	0.73	0, 22 1, 58
DIA BEN		DIST	50mm	0. 15	0.11	0.08	0.08	0,09	0, 12	0.43	1.29	0. 13	0, 22	
				1-1	1-2	/-3	7-1		9-1	1-1		. (um) .	2	
				EXAMME	EXAMPLE 1-2 0.11 0.33	EXALIDE	EXAMPLE	EXAMPLE 1-5	EXAMPLE 1-6	EXAMPLE	EXATINE	EXAMPLE 1-1	CONTINE FXAMPLE 1-2	

FIG. 15

	IMAGE ESTIMATION				-	Procession of the Police	LIGHT I REGIOLAR DENISTOR AT POTTERY	<u> </u>	_	LIGHT REPORTED RESTLY AT BOTTOM	LIGHT (REGISTED DENSITY AT BITTON	1 Washington Commence	Mottos 1-4/1/20	UGHT IRKBULAR BENSTT AT BOTTOM	HEAUT IRREQUEAL DENSITY	FROM TOP TO CENTER
				IRMINED IMAGE	С		O	4. 6 µ m SHEAR AT TOP		0	С	С			C)
	DEGREG OF SLOPE	(50mm ~)	47174	THICKNESS	5.2 µm	0 7	1. 0 4 m		0 1	1. J C .2	2.2 4 回	2.3 4 国	. 0	コンプは	2. 7 um	
	THICKNESS	DISTRIBUTION			U. 55 2. 16 SLOPE IN AXIAL DIRECTION	SLOPE IN ANAL DIRECTION		SLOPE IN ANIAL DIRECTION	SLOPE IN AXIAL DIRECTION	N/C /2 /2 /2	No xore	NO KOPE	No scope		NOSTOPE	
	R(um)	do TOP	1290mm		2.16	1.62	-	7. 38	1.55	1 73	7	0.25	0.28		0.53	1
	DITTEPEN CE R (AM) BETWEEN MAX. & HIM.	DISTANCE FROM TOP	50mm 170mm 290mm	1 0 1	0.35 0.55	0.44 0.57	0 47 0 69		3 0.57	0. 44 0 5A		9 0.73	3 0, 33		1. 2	
	08	3/0	201					十	0.53		1	· [1.73		c .2	
Market Communication of the Co		W		FXAIPLE "		EXM11/16 2-2	EXAMPLE 2-3	EXAMBIE	לאונים ליל	EXAMPLE 2-5	EXAMPLE 21	O v Carrier	Example 2-9	FXATTOL 1 G		

FIG. 16

				7.E											
167	1) 51	ESTIMATION		HACFTONE IMAGE		0	0	C)	0	0	C		
74/	IMAGE			TRIMINED IMMEE	C)	0				0	0	C)
NEGREE OF	350/1	(50mm~)	1 THE CH	THICKNESS	2.9 Lm	2 1	0. 1 /L III	2.8 年回	9.9 m		日776.0	0.7 и ш	0.6 д ш	0.7 и ш	-
OS DIVIOLEE	ないのメンバル	DISTRIBUTION			SLOPE IN AXIAL DIRECTION	0, 49 SLOPE IN AXIAL DIRECTOR!	(0 0° 181 0 0 18 3 18 10 100 100 100 100 100 100 100 100 1	Serve in the line lines (194)	SLOPE IN AXIAL DIRECTION	NO SLOPE	Alo scope	Jane and	No stape	No scope	
Cam)		DISTANCE FROM TOP	290mm		1. 23	0, 49	0 99 0	0. 64	0.28	0.3	0 00	C3 (0)	0.3	0.25	
RENCE /	DIFFERENCE R (Am) BETWEEN MAX & MIN.		50mm 170mm 290m	0	U. 10 0. 23	0. 11 0. 22	0 11 0 17	5	0. 12 0. 12	0.09 0.16	0.99	-	V. 38 V. 35	0, 43 0, 37	
O/FF		prsta	50mm	4.0	V. 15	0. 11	0, 11		0.12	0.09	0,1	0 0	ر. در د. در	0.43	
				7		3-2	3		3-4	5-6	9-6	2		80-80	
				EXAMPLE		EXAMME 3-2	EXPLACE	Z X W W Z		EXAMIC	EXAMOLE	" - YOUNG	1	EXAMPLE	