UC San Diego

DSC 102 Systems for Scalable Analytics

Spring 2024

Haojian Jin

Now for the course structure ...

DSC 102 will get you thinking about the <u>fundamentals of</u> <u>systems for scalable analytics</u>

- 1. "Systems": What resources does a computer have? How to store and efficiently compute over large data? What is cloud?
- 2. "Scalability": How to scale and parallelize data-intensive computations?
- 3. For "Analytics":
 - 1. Source: Data acquisition & preparation for ML
 - 2. **Build**: Model selection & deep learning systems
 - 3. **Deploying** ML models
- 4. Hands-on experience with scalable analytics tools

Data Systems Concerns in ML

```
Key concerns in ML:
```

Accardow do "ML Systems" relate to ML?

Runtime efficiency (sometimes)

```
Additional key practical concerns in ML Systems:
ML Systems : ML : Computer Systems : TCS
Long-standing
concerns in the
Manageability

Developability

ME Systems:

Value of the concerns in t
```

Q. CERTAIN destroises Innée de le l'innée de le company de la laison de la company de

Conceptual System Stack Analogy

	Relational DB Systems	ML Systems
Theory	First-Order Logic Complexity Theory	Learning Theory Optimization Theory
Program Formalism	Relational Algebra	Tensor Algebra Gradient Descent
Program Specification	SQL	TensorFlow? Scikit-learn?
Program Modification	Query Optimization	???
Execution Primitives	Parallel Relational Operator Dataflows	Depends on ML Algorithm

Hardware

CPU, GPU, FPGA, NVM, RDMA, etc.

Real-World ML: Pareto Surfaces

Q: Suppose you are given ad click-through prediction models A, B, C, and D with accuracies of 95%, 85%, 90%, and 85%, respectively. Which one will you pick?

- Real-world ML users must grapple with multi-dimensional *Pareto* surfaces: accuracy, monetary cost, training time, scalability, inference latency, tool availability, interpretability, fairness, etc.
- Multi-objective optimization criteria set by application needs / business policies.

Learning Outcomes of this course

- Explain the basic principles of the memory hierarchy, parallelism paradigms, scalable data systems, and cloud computing.
- Identify the abstract data access patterns of, and opportunities for parallelism and efficiency gains in, data processing and ML algorithms at scale.
- Outline how to use cluster and cloud services, dataflow ("Big Data") programming with MapReduce and Spark, and ML tools at scale.
- Apply the above programming skills to create end-to-end pipelines for data preparation, feature engineering, and model selection on large-scale datasets.
- Reason critically about practical tradeoffs between accuracy, runtimes, scalability, usability, and total cost.

Tentative Course Schedule

Suggested Textbooks

Aka "CompOrg Book" Aka "Comet Book"

Aka "Cow Book"

Aka "Spark Book"

Aka "MLSys Book"

(Free PDFs available online; also check out our library)

Why so many textbooks?!

1. Computer systems are about carefully layering levels of abstraction.

- 2. Analytics/ML Systems is a recent/emerging area of research.
- 3. Also, DSC 102 is the first UG course of its kind in the world!

Tentative Course Schedule

Week	Topic				
1-2		Basics of Machine Resources: Computer Organization			
Systems Principles		Basics of Machine Resources: Operating Systems			
		Basics of Cloud Computing			
4-5	Parallel and Scalable Data Processing: Parallelism Basics				
6	Midterm Exam on TBD				
6-7	Parallel and Scalable Data Processing: Scalable Data Access				
7-8	Parallel and Scalable Data Processing: Data Parallelism				
9	Dataflow Systems				
10		ML Model Building Systems			
11	Final Exam on Dec 15				

UC San Diego

DSC 102 Systems for Scalable Analytics

Topic 1: Basics of Machine Resources

Part 1: Computer Organization

Ch. 1, 2.1-2.3, 2.12, 4.1, and 5.1-5.5 of CompOrg Book

Q: What is a computer?

A programmable electronic device that can store, retrieve, and process digital data.

Outline

- ---
- Basics of Computer Organization
 - Digital Representation of Data
 - Processors and Memory Hierarchy
- Basics of Operating Systems
 - Process Management: Virtualization; Concurrency
 - Filesystem and Data Files
 - Main Memory Management
- Persistent Data Storage

Parts of a Computer

Hardware:

The electronic machinery (wires, circuits, transistors, capacitors, devices, etc.)

Software:

Programs (instructions) and data

Key Parts of Computer Hardware

- Processor (CPU, GPU, etc.)
 - Hardware to orchestrate and execute instructions to manipulate data as specified by a program
- Main Memory (aka Dynamic Random Access Memory)
 - Hardware to store data and programs that allows very fast location/retrieval; byte-level addressing scheme
- Disk (aka secondary/persistent storage)
 - Similar to memory but persistent, slower, and higher capacity / cost ratio; various addressing schemes
- Network interface controller (NIC)
 - Hardware to send data to / retrieve data over network of interconnected computers/devices

Abstract Computer Parts and Data

Key Aspects of Software

Instruction

- A command understood by hardware; finite vocabulary for a processor: Instruction Set Architecture (ISA); bridge between hardware and software
- Program (aka code)
 - A collection of instructions for hardware to execute
- Programming Language (PL)
 - A human-readable formal language to write programs; at a much higher level of abstraction than ISA
- Application Programming Interface (API)
 - A set of functions ("interface") exposed by a program/set of programs for use by humans/other programs

Data

Digital representation of *information* that is stored, processed, displayed, retrieved, or sent by a program

Main Kinds of Software

Firmware

Read-only programs "baked into" a device to offer basic hardware control functionalities

Operating System (OS)

- Collection of interrelated programs that work as an intermediary platform/service to enable application software to use hardware more effectively/easily
- Examples: Linux, Windows, MacOS, etc.

Application Software

- A program or a collection of interrelated programs to manipulate data, typically designed for human use
- Examples: Excel, Chrome, PostgreSQL, etc.

Outline

- Basics of Computer Organization
 - Digital Representation of Data
 - Processors and Memory Hierarchy
- Basics of Operating Systems
 - Process Management: Virtualization; Concurrency
 - Filesystem and Data Files
 - Main Memory Management
- Persistent Data Storage

Q: But why bother learning such low-level computer sciencey stuff in Data Science?

Luxury of "Statisticians"/"Analysts" of Yore

- Methods: Sufficed to learn just math/stats, maybe some SQL
- Types: Mostly tabular (relational), maybe some time series
- Scale: Mostly small (KBs to few GBs)
- Tools: Simple GUIs for both analysis and deployment; maybe an R-like console

Reality of Today's "Data Scientists"

Data acquisition

Data preparation

Training & Inference

Model Selection

Serving Monitoring

Why bother with these in Data Science?

- Basics of Computer Organization
 - Digital Representation of Data
 - Processors and Memory Hierarchy
- Basics of Operating Systems
 - Process Management: Virtualization; Concurrency
 - Filesystem and Data Files
 - Main Memory Management
- Persistent Data Storage

You will face myriad and new data types

Compute hardware is evolving fast

You will need to use new methods on evolving data file formats on clusters / cloud

Storage hardware is evolving fast