Wine Quality Classification Using Weka

Darshan Pathak

01

Classification

What is Classification

Classification in Machine Learning aims to determine which category an observation by understanding the relationship between the dependent and independent variables.

Classification algorithm can learn to predict whether a given email is spam or not span

Working of Classification Algorithms

Classification algorithms sort data into predefined categories based on patterns they learn from labeled examples. They use features (data attributes) to create a model during training, and then apply this model to predict the classes of new, unseen data.

Types of Classification

Binary Classification

Multi-Class Classification

Imbalanced Classification

02

Case Study

Let's learn with help of

Wine Quality Case Study Using Weka Software

What is WEKA Software

- Waikato Environment for Knowledge Analysis
- Collection of machine learning algorithms and data processing tools implemented in Java
- Used for the process of experimental data mining
 - Preparation of input data
 - Statistical evaluation of learning schemes
 - Visualization of input data and the result

1. Install Weka

2. Load Data

Wine Quality Dataset

7.900000

7.300000

7.800000

7.500000

0.600000

0.650000

0.580000

0.500000

0.060000

0.000000

0.020000

0.360000

1.600000

1.200000

2.000000

6.100000

0.069000

0.065000

0.073000

0.071000

**	.: Wine Quality Dataset :. ************************************											
	V1	V2	V3	V4	V 5	V6	V7	V 8	V 9	V10	V11	Class
0	7.400000	0.700000	0.000000	1.900000	0.076000	11.000000	34.000000	0.997800	3.510000	0.560000	9.400000	b'3'
1	7.800000	0.880000	0.000000	2.600000	0.098000	25.000000	67.000000	0.996800	3.200000	0.680000	9.800000	b'3'
2	7.800000	0.760000	0.040000	2.300000	0.092000	15.000000	54.000000	0.997000	3.260000	0.650000	9.800000	b'3'
3	11.200000	0.280000	0.560000	1.900000	0.075000	17.000000	60.000000	0.998000	3.160000	0.580000	9.800000	b'4'
4	7.400000	0.700000	0.000000	1.900000	0.076000	11.000000	34.000000	0.997800	3.510000	0.560000	9.400000	b'3'
5	7.400000	0.660000	0.000000	1.800000	0.075000	13.000000	40.000000	0.997800	3.510000	0.560000	9.400000	b'3'

15.000000

15.000000

9.000000

17.000000

0.996400

0.994600

0.996800

0.997800

21.000000

18.000000

102.000000

3.300000

3.390000

3.360000

3.350000

0.460000

0.470000

0.570000

0.800000

b'3'

b'5'

b'5'

b'3'

9.400000

10.000000

9.500000

10.500000

3. Visualize

4. Select J48 Classifier

5. Evaluate Result

Summary

Classification

Kappa statistic	0.3952
Mean absolute error	0.1359
Root mean squared error	0.3332
Relative absolute error	63.3475 %
Root relative squared error	101.8207 %
Total Number of Instances	1599

61.4%

982 Instances

Classifier - J48

- Decision tree classifier
- Recursively splits based on attribute
- Select features to create decision nodes and branches.
- Emphasizes information gain.
- Effective for categorical data.

Incorrectly Classified

38.5%

617 Instances

	 TP Rate	Proportion of actual positive instances correctly identified.			
	 FP Rate	Proportion of actual negative instances incorrectly classified as positive.			
	Precision	The accuracy of positive predictions, representing the ratio of true positives to the total predicted positives.			
Evaluation Metrics	 Recall	The model's ability to correctly identify all actual positive instances.			
	 F-Measure	Combines precision and recall into a single metric, balancing both aspects of classification performance.			
	 МСС	Matthews Correlation Coefficient considers true & false +tives/-tives to assess classification quality			
	 ROC Area	Measures the model's ability to distinguish between classes			
	 PRC Area	Quantifies the model's precision-recall trade-off			

Detailed Accuracy By Class

TP Rate	FP Rate	Precision	Recall	F- Measure	МСС	ROC Area	PRC Area	Class
0.1	0.006	0.091	0.1	0.095	0.089	0.541	0.026	1
0.113	0.032	0.107	0.113	0.11	0.079	0.526	0.047	2
0.711	0.237	0.689	0.711	0.7	0.472	0.76	0.652	3
0.614	0.259	0.612	0.614	0.613	0.355	0.706	0.579	4
0.497	0.056	0.559	0.497	0.527	0.465	0.789	0.418	5
0	0.008	0	0	0	-0.009	0.611	0.022	6
0.614	0.213	0.611	0.614	0.612	0.403	0.732	0.563	Weighted Avg.

Confusion Matrix

	а	b	С	d	е	f	
а	1	3	2	3	1	0	a = 1
b	4	6	24	16	3	0	b = 2
С	2	24	484	154	17	0	c = 3
d	3	19	169	392	50	5	d = 4
е	1	4	23	65	99	7	e = 5
f	0	0	0	11	7	0	f = 6

A confusion matrix is a compact table summarizing the performance of a classification model, detailing true positive, true negative, false positive, and false negative predictions for each class, aiding in model evaluation and error analysis.

03

Conclusion

This presentation on wine quality classification using the J48 algorithm in Weka highlights the significance of classification in machine learning, specifically exploring the Weka software and its application to the Wine Quality dataset. The detailed accuracy metrics and confusion matrix provide valuable insights into model performance, aiding in informed decision-making using classification in Data Mining

Thank You