Essentials of the probability and statistics part of $$\operatorname{MAD}$$

Jonas Peters University of Copenhagen

November 30, 2018

These "essentials" should not be thought of as lecture notes. Instead, they contain a collection of the most important definitions and results that are presented in the lecture. All explanations, examples, proofs and remarks are missing. In this sense, reading these notes would not compensate for missing some lectures.

This symbol¹ denotes that there are some measure theoretic foundations that we skip. The interested students are welcome to look into such comments, but they are not important for this course, and can thus be ignored.

All information can be found in several textbooks. In particular, I recommend the one accompanying this course: Dimitri P. Bertsekas and John N. Tsitsiklis: "Introduction to Probability", 2nd Edition, Athena Scientific.

Finally, there might be typos in these notes, so please tell me if you find some.

Jonas Peters

Copenhagen, November 2018

¹The picture is taken from http://howtobike.info/images/CyclocrossBike.png, 14.09.2016, 3:41pm UTC+01:00, with the kind permission from Matthew Schoolfield.

Chapter 2

Continuous Random Variables

Definition 2.1 Let X be a random variable. If there exists an integrable function $f: \mathbb{R} \to \mathbb{R}_{\geq 0}$ such that¹

$$\forall A \subseteq \mathbb{R}$$
 $\mathbb{P}(X \in A) = \int_A f(x) \, dx$,

we call X a continuous random variable and f its probability density function (pdf).

Remark 2.2 If X is a continuous random variable with pdf f, the cdf F is continuous and satisfies

$$F'=f$$
.

Remark 2.3 You can repeat all definitions from Chapter 1 (see MASD) by replacing sums with integrals.

Definition 2.4 Let X be a random variable. We define the *median* m of X to be a value that satisfies

$$\mathbb{P}(X \le m) \ge \frac{1}{2}$$
 and $\mathbb{P}(X \ge m) \ge \frac{1}{2}$.

It is not necessarily unique. If X is a continuous random variable, we can take any value m with F(m) = 1/2. If F is strictly monotonically increasing, m is unique.

Definition 2.5 Some important pdfs have names. They can be found in Table 2.1.

Lemma 2.6 Let $X \sim \mathcal{N}(\mu, \sigma^2)$, i.e., X has the pdf

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

Then,

$$\mathbb{E}X = \mu$$
 and $\operatorname{var}(X) = \sigma^2$.

¹ Correct would be "for all Borel-measurable sets A"

Pareto	beta	chi squared	student t	exponential	Gaussian	uniform	name
please check	please check	please check	R	$\mathbb{R}_{\geq 0}$	Ħ	[a,b]	X takes values in
			please check	$f(x) = \lambda \exp(-\lambda x)$ if $x \ge 0$, zero otherwise	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$	$f(x) = \frac{1}{b-a}$ if $a \le x \le b$, zero otherwise	pdf
			$X \sim t_n$	$X \sim \mathcal{E}xp(\lambda)$	$X \sim \mathcal{N}(\mu, \sigma)$	$X \sim \mathcal{U}([a,b])$	shorthand

Table 2.1: Some important pdfs (probability density functions) with names.

Lemma 2.7 [NOT DISCUSSED IN CLASS] Let $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$ be independent. Then, for all $\alpha, \beta \in \mathbb{R}$,

$$X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$
$$\alpha X \sim \mathcal{N}(\alpha \mu_1, \alpha^2 \sigma_1^2)$$
$$X + \beta \sim \mathcal{N}(\mu_1 + \beta, \sigma_1^2).$$

Chapter 3

Statistics

Estimators

Definition 3.1 Let X_1, \ldots, X_n be i.i.d. with distribution P_{θ_0} for some $\theta_0 \in \mathbb{R}$. Then an estimator for θ is a function

$$\hat{\theta}_n: \mathbb{R}^n \to \mathbb{R}$$
.

Definition 3.2 Let X_1, \ldots, X_n be i.i.d. with distribution P_{θ_0} for some $\theta_0 \in \mathbb{R}$ and let $\hat{\theta}_n$ be an estimator for θ . Then, $\hat{\theta}_n(X_1, \ldots, X_n)$ is a random variable (sometimes, we simply write $\hat{\theta}_n$ instead of $\hat{\theta}_n(X_1, \ldots, X_n)$). We define the bias, variance and mean squared error as follows.

BIAS
$$(\hat{\theta}_n) := \mathbb{E}\hat{\theta}_n(X_1, \dots, X_n) - \theta_0$$

$$Var(\hat{\theta}_n) := var\left(\hat{\theta}_n(X_1, \dots, X_n)\right)$$

$$MSE(\hat{\theta}_n) := \mathbb{E}\left(\hat{\theta}_n(X_1, \dots, X_n) - \theta_0\right)^2$$

The smaller, the better!

Definition 3.3 Let X_1, \ldots, X_n be an i.i.d. sequence of continuous random variables with pdf f_{θ} . Then, the joint pdf

$$f_{\theta}^{\text{joint}}(x_1,\ldots,x_n) = f_{\theta}(x_1)\cdot\ldots\cdot f_{\theta}(x_n)$$

is called the *likelihood*. The estimator

$$\hat{\theta}_n^{\mathrm{ML}}(x_1,\ldots,x_n) := \underset{\theta}{\operatorname{argmax}} \ f_{\theta}^{\mathrm{joint}}(x_1,\ldots,x_n) = \underset{\theta}{\operatorname{argmax}} \ f_{\theta}(x_1)\cdot\ldots\cdot f_{\theta}(x_n)$$

is called the maximum likelihood estimator (MLE) for θ . This definition works analogously for discrete random variables if you replace the pdfs f_{θ} with pmfs p_{θ} .

Convergence of Estimators

Definition 3.4 Let $X_1, X_2, ...$ be a sequence of random variables and X another random variable. Let F_n and F denote the cdfs of X_n and X, respectively. We say

• X_n converges to X in probability and write $X_n \stackrel{\mathbb{P}}{\to} X$ if for all $\varepsilon > 0$,

$$\mathbb{P}(|X_n - X| > \varepsilon) \to 0 \quad \text{for } n \to \infty.$$

• X_n converges to X in distribution and write $X_n \stackrel{\mathcal{L}}{\to} X$ if

$$F_n(x) \to F(x)$$
 for $n \to \infty$,

for all x, at which F is continuous.

Proposition 3.5 We have

$$X_n \stackrel{\mathbb{P}}{\to} X \Rightarrow X_n \stackrel{\mathcal{L}}{\to} X.$$

In general, the converse does not hold. For any constant $c \in \mathbb{R}$, however, we have

$$X_n \stackrel{\mathcal{L}}{\to} c \Rightarrow X_n \stackrel{\mathbb{P}}{\to} c.$$

Definition 3.6 Let $\hat{\theta}_n$ be an estimator for θ_0 . We call $\hat{\theta}_n$ consistent if

$$\hat{\theta}_n(X_1,\ldots,X_n) \stackrel{\mathbb{P}}{\to} \theta_0.$$

Lemma 3.7 [Chebyshef Inequality] Let X be a random variable with finite mean and variance. Then

$$\mathbb{P}\left(|X - \mathbb{E}X| > k\sqrt{\operatorname{var}(X)}\right) \le \frac{1}{k^2}.$$

Equivalently, we have

$$\mathbb{P}(|X - \mathbb{E}X| > \varepsilon) \le \frac{\operatorname{var}(X)}{\varepsilon^2}.$$

Theorem 3.8 [Weak law of large numbers] Let $X_1, X_2, ...$ be an i.i.d. sequence of random variables with finite mean and finite variance. The sample mean is a consistent estimator for the true mean, that is

$$\bar{X} := \bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \stackrel{\mathbb{P}}{\to} \mathbb{E} X_1.$$

Theorem 3.9 [Central Limit Theorem] Let X_1, X_2, \ldots be an i.i.d. sequence of random variables with finite mean and finite variance. Then,

$$\sqrt{n} \frac{\frac{1}{n} \sum_{i=1}^{n} X_i - \mathbb{E} X_1}{\sqrt{\operatorname{var}(X_1)}} \xrightarrow{\mathcal{L}} Z,$$

where $Z \sim \mathcal{N}(0,1)$.

Confidence Intervals

Definition 3.10 Let X_1, \ldots, X_n be i.i.d. with distribution that depends on θ . If $a = a(X_1, \ldots, X_n)$ and $b = b(X_1, \ldots, X_n)$ satisfy

$$\mathbb{P}(a < \theta < b) > 1 - \alpha,$$

the interval [a, b] is called a $(1 - \alpha)$ -confidence interval for θ .

Definition 3.11 Let X be a random variable. The r-quantile of X is the number x, such that

$$\mathbb{P}(X < x) \le r$$
 and $\mathbb{P}(X > x) \le 1 - r$.

This number x is sometimes denoted by ... $\frac{\text{in general}}{q_r} \begin{vmatrix} X \sim \mathcal{N}(0,1) & X \sim t_n \\ z_r & t_{n;r} \end{vmatrix}$.

Hypothesis Testing

Definition 3.12 Let X_1, \ldots, X_n be i.i.d. random variables. Let H_0 be a hypothesis about their distribution and let $0 < \alpha < 1$. A function

$$d: \mathbb{R}^n \to \{H_0, H_1\}$$

is called a statistical test for H_0 if

$$\mathbb{P}_{H_0}(d=H_1) \le \alpha.$$

There are two errors:

- type I error: H_0 is correct but $d = H_1$.
- type II error: H_0 is false but $d = H_0$.

That is, a statistical test bounds the probability of making a type I error. The value $\mathbb{P}_{H_0}(d=H_1)$ is called the *size* of the test, and α the *significance level*.

Often, the decision function has the form

$$d(x_1, \dots, x_n) := \begin{cases} H_0 & \text{if } T(x_1, \dots, x_n) \notin \mathcal{R} \\ H_1 & \text{if } T(x_1, \dots, x_n) \in \mathcal{R} \end{cases}$$

for a so-called test statistic $T: \mathbb{R}^n \to \mathbb{R}$ and rejection region $\mathcal{R} \subseteq \mathbb{R}$.

Remark 3.13 Since statistical tests only bound the type I error, H_0 and H_1 should always be chosen such that the type I error is the "worse error", that is the error which is more important to avoid.

- **Remark 3.14** Performing a statistical test contains the following six steps (the example shows a so-called "two-sided one-sample z-test"):
 - 1. Write down a model for the data, $\frac{1}{2}$

e.g.
$$X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2 = 3)$$
.

2. Write down the hypotheses,

e.g.
$$H_0: \mu = 2$$
 and $H_1: \mu \neq 2$.

- 3. Write down a test statistic T and its distribution under H_0 , e.g. $T = \sqrt{n}(\bar{X} 2)/\sqrt{3}$; under H_0 we have: $T \sim \mathcal{N}(0, 1)$.
- 4. Write down a significance level,

e.g.
$$\alpha = 0.05$$
.

5. Compute the rejection region,

e.g.
$$\mathcal{R} = (-\infty, z_{0.025}] \cup [z_{0.975}, \infty) = (-\infty, -1.96] \cup [1.96, \infty).$$

6. Compute the test statistic from the data and report the test result, e.g. $T = 0.42 \notin \mathcal{R}$, i.e. H_0 is not rejected.