Time Series to observe DAILY temperature variations

Daily temperature prediction using RNN

Moving from predictive Machine Learning classifier to Unpredictive Neural Nets, we use Sequential Recurrent Neural Net (RNN) in the notebook below.

You need to ensure that you have the right environment installed on top of your python3 to run Keras and Tensorflow. Two libraries needed to successfully run (RNN).

Just like in the other models, we begin by loading all necessary libraries and paths to read the "pickles" as well as store image for the graph towards the end of our code. The pickles are read and the data is fed into an RNN model. Finally, we have two graphs showing the DT results vs. the fitted model as well as predicted results vs. actuals and test data

Here we are importing the train and test Data from pickle files created through the EDA file

```
In [274]: import warnings
    warnings.filterwarnings('ignore')

%run helper_functions.py
%matplotlib inline
```

Create a folder for every run of the RNN to store images

```
In [275]: city='Miami' # New_York Atlanta Boston Dallas Houston Miami
    analysis_type = 'Enhanced_Signals' # Basic, Inc_Signals, Enhanced_Signals'

In [276]: EXPERIMENT_DIR, EXPERIMENT_ID = create_results_perrun()
    print("Path of the results directory", EXPERIMENT_DIR )

    Path of the results directory ../experiment_results/RUN-54

In [277]: #EXPERIMENT_DIR = '../experiment_results/RUN-37'
    #EXPERIMENT_ID = 3'

In [278]: X_train = pd.read_pickle(f'(PICKLE_PATH)/X_train_(city)_{analysis_type}.pkl')
    Y_train = pd.read_pickle(f'(PICKLE_PATH)/Y_train_(city)_{analysis_type}.pkl')

    X_test = pd.read_pickle(f'(PICKLE_PATH)/X_test_{city}_{analysis_type}.pkl')
    Y_test = pd.read_pickle(f'(PICKLE_PATH)/Y_test_{city}_{analysis_type}.pkl')
    print("Shape of Training Dataset ", X_train.shape)
    print("Shape of Training Dataset (399, 17)
    Shape of Testing Dataset (199, 17)
    Shape of Testing Dataset (199, 17)
```

```
In [279]: # Function to fit a seauential rnn with loss estimate being mean squared error
      def train model(X train, y train, X test, y test, epochs):
         model = Sequential(
           Γ
              Dense(10, activation="relu", input shape=(X train.shape[1],)),
              Dense(10, activation="relu"),
              Dense(10, activation="relu"),
              Dense(1, activation="linear")
           1
         model.compile(optimizer=Adam(lr=0.001), loss="mean squared error")
         history = model.fit(X train, y train, epochs=epochs, shuffle=False)
         return model, history
In [280]: # Function to fit a sequential rnn with epochs = 50
      epochs = 50
      model encoded, encoded hist = train model(
         X train,
         Y train,
         X test,
         Y test,
         epochs=epochs
      Epoch 1/50
      Epoch 2/50
      Epoch 3/50
      Epoch 4/50
      1399/1399 [============ ] - 0s 84us/step - loss: 45.1367
      Epoch 5/50
      Epoch 6/50
      Epoch 7/50
      Epoch 8/50
      Epoch 9/50
      Epoch 10/50
      4300 /4300 F
                                 1 0 70 / ± 1 6 4600
In [281]: # Run the model on the training dataset
      Y train pred = model encoded.predict(X train)
      # Calculate mean squared error for the predicted values
      mse train = mean squared error(Y train, model encoded.predict(X train))
      print('Mean Squared Error for the training dataset: %.3f' % mse train)
```

Mean Squared Error for the training dataset: 3.901

```
In [282]: # Run the model on the testing dataset
    Y_test_pred = model_encoded.predict(X_test)
    # Calculate mean squared error for the test vs predicted values
    mse_test = mean_squared_error(Y_test, model_encoded.predict(X_test))
    print('Mean Squared Error for the testing dataset: %.3f' % mse_test)

Mean Squared Error for the testing dataset: 2.013

In [283]: # Creating a dataframe for predicted/fitted values
    future_forecast = pd.DataFrame(Y_test_pred,index = Y_test.index,columns=['Fitted'])

# Concatenate the predicted/fitted values with actual values to display graphs
    predictions = pd.concat([Y_test,future_forecast],axis=1)
    predictions.columns = ["Actual","Fitted"]

# Displaying few of the predicted values
    predictions.head(10)
```

Out[283]:

	Actual	Fitted
datetime		
2017-07-31	26.192917	29.396700
2017-08-01	26.835000	28.911028
2017-08-02	27.449583	28.666040
2017-08-03	30.198333	28.672266
2017-08-04	30.380000	29.811632
2017-08-05	30.513333	29.973490
2017-08-06	30.326667	29.948656
2017-08-07	30.024583	29.224321
2017-08-08	30.094583	28.931959
2017-08-09	30.160833	29.316683

A -4..-1

```
In [284]: city = city.replace('_',' ')
# Plotting the daily predicted temperature vs Actual Temperature - RNN
fig = charter_helper_fitted(f"Daily Predicted Temperature using RNN for {city} using {analysis_type}", predictions)
iplot(fig)

py.image.save_as(fig, f'{EXPERIMENT_DIR}/Daily_actual_vs_predict.png')
```

Daily Predicted Temperature using RNN for Miami using Enhanced_Signals

Export to plot.ly »

Daily Predicted Temperature using RNN for Miami using Enhanced Signals

Export to plot.ly »

In [287]: results.tail(1) Out[287]: RUN ID DATETIME MODEL NAME CITY FEATURE TYPE HOST MACHINE MODEL PARAMETERS MODEL RESULTS MEAN SQUARED ERROR {'epochs': 50, 'Info': {'features': ['temperature lag1', 2018-08-14 DESKTOP-54 53 RNN Miami Enhanced Signals 2.01286 20:40:54.336628 KN40C32 {'feature set type': 'E... temperature... In [288]: results = pd.read pickle('../pickles/results.pkl') results Out[288]: RUN_ID DATETIME MODEL_NAME CITY FEATURE TYPE HOST MACHINE MODEL_PARAMETERS MODEL_RESULTS MEAN_SQUARED_ERROR {'features': DECISION DESKTOP-2018-08-14 New {'max depth': 8, 'Info': 5.799872 0 Basic ['temperature lag1', TREE York KN40C32 19:41:45.275297 {'feature set type': ... 'temperature... {'features': 2018-08-14 **DECISION** DESKTOP-{'max depth': 8, 'Info': 8.436149 1 2 Atlanta Basic ['temperature lag1'. TREE KN40C32 19:42:13.654060 {'feature set type': ... 'temperature... {'features': DESKTOP-2018-08-14 **DECISION** {'max depth': 8, 'Info': ['temperature lag1', 2 3 Boston Basic 16 504857 19:42:23.328525 TREE KN40C32 {'feature set type': ... 'temperature... {'features':

DESKTOP-

DESKTOP-

DESKTOP-

KN40C32

KN40C32

Basic

Basic

{'max_depth': 8. 'Info':

{'feature set type': ...

{'max_depth': 8, 'Info':

{'feature set type': ...

{'max_denth' 8 'Info'.

['temperature lag1',

['temperature lag1',

'temperature...

'temperature...
{'features':

12.523335

7.705077

In []:

3

5

2018-08-14

2018-08-14

2018-08-14

19:42:30.715058

19:42:41.506483

DECISION

DECISION

DECISION

TREE

TRFF

Dallas

Houston