Problemas de integración.

1. Consideramos la función $f(x) = x^2$ definida en el intervalo [0,2]. Usando una sucesión de particiones $(P_n)_n$ con nodos equiespaciados, calcular la suma inferior y superior $L(f,P_n)$ y $U(f,P_n)$ y demostrar que $\lim_{n\to\infty} L(f,P_n) = \lim_{n\to\infty} U(f,P_n)$. Deducir que f es integrable en el intervalo [0,2] y hallar el valor de la integral $\int_0^2 f$.

Indicación:
$$\sum_{i=1}^{J_0} i^2 = \frac{1}{6}n(n+1)(2n+1).$$

- 2. Consideramos la función $f(x) = 2^x$ definida en el intervalo [0,5]. Usando una sucesión de particiones $(P_n)_n$ con nodos equiespaciados, calcular la suma inferior y superior $L(f,P_n)$ y $U(f,P_n)$ y demostrar que $\lim_{n\to\infty} L(f,P_n) = \lim_{n\to\infty} U(f,P_n)$. Deducir que f es integrable en el intervalo [0,5] y hallar el valor de la integral $\int_0^2 f$.
- 3. a) Demostrar que, si g(x) = 0 para $0 \le x \le \frac{1}{2}$ y g(x) = 1 para $\frac{1}{2} < x \le 1$, entonces $\int_0^1 g = \frac{1}{2}$. b) ¿Es válida la conclusión si se cambia el valor de g en el punto $\frac{1}{2}$ por 7?
- 4. Sea I = [a, b] un intervalo cerrado. Sean $f, g : I \longrightarrow \mathbb{R}$ tales que difieren sólo en un número finito de puntos. Provar que f es integrable si, y sólo si, lo es g y que se cumple $\int_a^b f = \int_a^b g$.
- 5. Sigui I=[a,b] un intervalo cerrado y $f:I\longrightarrow\mathbb{R}$ continua. Supongamos que, para cualquier función integrable $g:I\longrightarrow\mathbb{R}$, el producto $f\cdot g$ es integrable $\int_a^b f\cdot g=0$. Demostrar que f(x)=0 para todo $x\in I$.