Decision Matrix

<u>Aa</u> Valg	■ Beskrivelse	≡ Column	≡ Dato
Hvilket metode skal vi velge for å analysysere dataserien?	Vi har tre kategorier: Statistisk modelering (Guassian mixture model, K- means clustering, random forest), temporal feature modeling (LSTM, RNN) og spatial feature modeling (CNN, DNN)		
Snevre inn scope på antall kategorier	Etter samtale med veileder så fant vi ut at 1300 kategorier kan være litt stort for to masterstudenter, og at det kan være lurt å snevre inn dette antallet for å få et mer overkommelig problem for en masteroppgave. Problemet er at mange kategorier antageligvis korrelerer en del med hverandre, og ved å se på hver enkelt invidiuelt så får vi ikke det hele bildet. I en perfekt verden så burde vi gjort en covarians analyse av alle kategoriene og laget "clusters" med de kategoriene som korrelerer med hverandre.		@September 27, 2021
Spissing av oppgaven mot anomaly detection	Vi stod mellom cluster analysis og, anomaly detection. I dialog med veileder og prisguiden gikk vi for anomaly detection fordi: A. Det gav mye utbytte for prisguiden. De får stort utbytte av å finne ut av en trend tidlig, istedenfor 1.5 mnd etter det har tatt av. B. Veileder virket gira		@August 31, 2021
Vi bestemte at vi bruker ARIMA som baseline	Sammen med Anders bestemete vi at vi bruker ARIMA som baseline. Vi må fortsatt gjøre research for å bygge et argument for dette		@October 11, 2021

Decision Matrix 1

<u>Aa</u> Valg	■ Beskrivelse	≡ Column	Ē Dato
Går bort ifra anomaly detection over til anomaly prediction	Anders mente at bare ren anomaly detection er et lite spennende problem som alt har blitt løst. Det er mye mer spennende å prøve å spå et anomaly, og når det kommer prøve å si noe om hvordan det vil utvikle seg.		@October 11, 2021
Velger metode CNN autoencoder LSTM	Dette er noe som ikke er blitt prøvd på innen vårt domene. Det virker kult TODO skriv emr		@October 11, 2021
Vi la inn e- commerce og sales i search termer.	Vi fant ut at vi hadde veldig få papers som gikk på time series prediction generelt, spesielt innenfor domene vårt. E-commerce og salg tidsserier kan tenkes at følger samme distrubisjon som vårt dataset, med trender, perioder og mye støy.		@October 25, 2021
Changed problem P to be more generic	Fjernet "in user click events" fra problemet, da det eksluderer veldig mange problemstillinger	Structured Literature Review	@November 1, 2021

Decision Matrix 2