17214548 Yuyan Sun 17214650 Yuxuan Liang 17214676 Youwei Song

1. Motivation

The expansion of the shopping malls' scale leads to two problems:

- ☐ For customers:
 - Difficult to find the target shop
- ☐ For malls:
 - Difficult to decide marketing strategies

Given information about:

- Shop information
- ☐ GPS location of the customer
- ☐ Surrounding environment information, such as WIFI

The target of our project:

☐ Accurately determine the shop where the customer is currently located

				Shop		
Shop 1	Shop	Shop			4	
1	2	3		Sł	op 5	
In such a big shopping mall, do you know which shop I am in?						Shop 6
Shop 10	Sh	Shop 9			Shop 7	

Challenges:

- ☐ Loss of shop information
- ☐ GPS is not suitable for indoor location
- ☐ Incomplete environment information

2. Problem definition

Data from 97 shopping malls

2017.08.01 2017.08.20 2017.08.31 Test set (451608) Training set (596967)

Input:

(row_id, user_id, mall_id, time_stamp, longitude, latitude, wifi infos)

Output: shop_id

3. Feature extraction methods

The wifi_infos of one row is as follows: b_34366982|-82|false;b_37756289|-53|false;...

- ☐ Convert wifi infos to WIFI features
- ☐ WIFI features dimensionality reduction ☐ Creating new feature (can reduce 3000+ WIFI to 500+)
- ☐ WIFI signal strength transformation ☐ Creating new feature 'busy'

- - 'weekend'

4. Algorithms

The proposed algorithm: Bagging-RXL

5. Experiments

- ☐ WIFI dimensionality reduction can help extract stable WIFI from all the WIFI.
- ☐ When features 'weekend' and 'busy' are added to the model, the accuracy improves.
- Our proposed Bagging-RXL algorithm outperforms other algorithms.