TABLE SIV COMPARISON RESULTS OF THE COMPARED ALGORITHMS ON $\frac{1000-D}{1000-D}$ CEC'2010 FUNCTIONS WITH $\frac{3\times10^6}{1000-D}$ FITNESS EVALUATIONS.

Fineston Osaber												
Section Sect	Function	Quality	DHLSO	CSO	SL-PSO	MOS	MA-SW-Chains	DMS-L-PSO	CCPSO2	DECC-G	MLCC	DECC-DG
Fig. Sign		Median	2.93E-22	4.40E-12	7.90E-18	0.00E+00	8.23E-21	1.61E+07	7.80E-01	3.53E-07	1.66E-14	1.42E+02
State		Mean	3.13E-22	4.50E-12	8.73E-18	1.94E-15	9.75E-20	1.63E+07	2.96E+00	3.54E-07	8.65E-13	1.88E+04
Powder Section Secti	F_1											
Modala 985Fe02 733Fe48 398Fe03 2478Fe03 247	F_1 F_2 F_3 F_4 F_5 F_6 F_7 F_8 F_9 F_{10} F_{11} F_{12} F_{13} F_{14} F_{15}		-									
Fig. Mean 435E-02 742E-03 135E-03 245E-02 5.45E-03 5.45E-03 2.35E-03 2.35E-03 137E-03 137E-0			9.85E+02									
Fig. Sid 4,396-01 2,866-02 1,128-03 1,188-03 1,288-1	_											
Position Superior	F_2											
Median 2,895-14 2,555-09 1,465-13 9,425-13 1,565-01 1,165-03 1,145-03 1,066-10	_		4.37L+01									
Mean 2767-14 2067-09 188F-00 149F-13 1.12F-12 1.56F-01 4.51F-03 1.10F-00 2.10F-07 1.00F-01 1.00F-			2 80E 14									
Sign 238-15 2026-10 3305-01 3355-15 5.738-13 1.088-01 1.066-03 3355-01 1.128-06 3026-01 Real	_											
Poulse	F_2											
Median 437F+11 726F+11 304F+11 832F+11 273F+11 432F+12 246F+13 178F+13 522F+13 522F+15 522F+	-3		2.38E-13	2.02E-10			5./3E-13				1.12E-00	
Mean 440F+11 725F+11 299F+11 815F+11 274F+11 442F+11 170F+12 814F+12			- 4 27E : 11									
Part												
Postular	F_{\star}											
Median 1.914-07 2.008-06 3.291-07 4.916-08 3.541-07 9.251-07 3.761-08 5.201-08 5.111-08 5.251-08 Sold 3.251-06 1.791-06 6.211-06 5.251-07 6.691-06 9.041-06 1.381-08 6.481-07 1.071-08 2.151-07 Foliate Mean 2.001-09 8.211-07 2.081-01 3.081-07 3.081-07 3.081-07 Foliate Mean 2.001-09 8.211-07 2.081-01 3.081-07	- 4		1.10E+11									
Mean 1,221-647 2,866-406 3,178-697 3,486-408 3,421-697 9,248-697 3,4145-608 2,698-608 1,558-608 1,558-608 1,558-608 1,588-60												
Part												
Postule Pos	F_{-}											
Median 4,00E-09 8,23E-07 2,15E-01 1,97E-07 1,41E-05 3,78E-01 1,79E-07 1,71E-07 1,63E-01 1,63E-01 1,79E-07 1,63E-01 1,79E-07 1,63E-01 1,79E-07	1 5	Std	3.43E+06	1.79E+06								
Mean September		p-value	-									
Post		Median	4.00E-09	8.23E-07	2.15E+01	1.97E+07	7.58E-09	3.66E+01	1.97E+07	4.71E+06	1.97E+07	1.64E+01
P-value	E	Mean	5.20E-01	8.21E-07	2.08E+01	1.97E+07	1.41E+05	3.78E+01	1.71E+07	5.00E+06	1.78E+07	1.63E+01
P-value - 7,39E-02 179E-11 179E-11 1,79E-11	r ₆	Std	7.46E-01	2.68E-08		1.44E+05		1.21E+01	5.20E+06	1.03E+06	4.37E+06	3.45E-01
Median 122E+01 2.04E+04 4.06E+04 3.47E+06 2.06E+06 5.07E+08 1.15E+08 2.02E+07 Stid 2.59E+03 3.86E+03 5.06E+04 2.47E+08 4.02E+00 3.02E+17 3.07E+17 3.07E	L											1.79E-11 ⁺
Media			1.22E+01									
Post												
Post	F_7											1.26E+04
Median 2.34E-07 3.87E-07 7.43E-06 4.40E+06 4.06E+06 2.02E+07 2.00E+07 2.00E+07 2.00E+07 2.00E+07 2.00E+07 2.00E+07 3.00E+07 3.00E+07 2.00E+07 3.00E+07	1											3.16E-10 ⁺
Median 2,348+07 3,878+07 7,818+06 6,088+06 1,158+07 2,038+07 3,028+07			2.34E+07									
Post	_F											
Postule Post	F_8											
Median 4,33E+07 7,05E+07 3,22E+07 2,11E+07 3,07E+07 2,08E+07 1,14E+08 4,35E+08 2,48E+08 5,52E+07 Median 4,36E+07 7,03E+07 3,07E+07 3,07E+07 2,08E+07 1,02E+01 3,02E+11			2.102103									
Mean AsōE+07 7.03E+07 3.03E+07 3.07E+07 3.07E+07 2.08E+07 1.02E+08 4.40E+08 2.43E+08 6.45E+06 p-value - 3.02E+11* 3.05E+09 3.02E+11*			/ 33E±07									
Sud												
Possible	F_{o}											
Median 8.89E+02 9.59E+03 2.60E+03 6.00E+03 1.33E+03 5.09E+03 5.40E+03 1.02E+04 4.24E+03 4.49E+03 4.49E+03 4.24E+03 5.00E+01 3.06E+01			4.20L±00									
Mean 8.91E+02 9.06E+03 2.55E+03 6.06E+03 1.33E+03 4.24E+03 4.24E+03 4.49E+03 1.9E+02 1.76E+02 1.76E+02 2.11E+02 2.11E+02 3.01E-11 3.0			8 80E+03									
Part												
P-value	F_{10}											
$F_{11} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	10		3.00E+01									
Mean S.80E+00 4.02E+08 2.32E+01 1.98E+02 2.59E+00 1.98E+02 2.59E+01 1.98E+02 1.02E+01 2.30E+11 3.02E+11 3.			OO									
Product												
P-value	F_{11}											
$F_{12} = \begin{bmatrix} \text{Median} & 1.24E + 04 & 4.23E + 05 & 1.31E + 04 & 2.41E + 04 & 6.34E + 04 & 2.38E + 01 & 3.39E + 04 & 9.55E + 03 & 2.84E + 03 \\ \text{Median} & 1.26E + 04 & 3.78E + 02 & 3.47E + 02 & 8.48E + 02 & 1.00E + 04 & 9.88E + 00 & 1.9E + 04 & 9.55E + 03 & 1.57E + 04 & 1.08E + 03 \\ \text{Median} & 7.32E + 02 & 5.47E + 02 & 8.48E + 02 & 4.94E + 02 & 8.48E + 02 & 1.03E + 05 & 1.30E + 11 & 3.02E + 12 & 3.02E + 1$	- 11		5.40E+00									
$F_{12} = \begin{array}{c c c c c c c c c c c c c c c c c c c $			- 1 0 4 E 0 4									
Product												
$F_{13} = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$	F_{12}											
$F_{13} = \begin{bmatrix} \text{Median} & 7.28E+02 & 5.47E+02 & 8.48E+02 & 4.94E+02 \\ \text{Nean} & 7.35E+02 & 6.29E+02 & 9.59E+02 & 5.24E+02 \\ \text{Std} & 1.93E+02 & 2.32E+02 & 3.74E+02 & 1.54E+02 \\ \text{P-value} & - & 1.17E+02 & 2.57E+02 & 1.34E+03 & 1.22E+02 \\ \text{Nedian} & 1.25E+08 & 2.52E+08 & 8.45E+07 & 5.10E+07 & 1.68E+08 \\ \text{Nean} & 1.24E+08 & 2.49E+08 & 8.41E+07 & 5.36E+07 & 1.70E+08 \\ \text{Nean} & 1.24E+08 & 2.49E+08 & 8.41E+07 & 5.36E+07 & 1.70E+08 \\ \text{Nean} & 1.24E+08 & 2.49E+08 & 8.41E+07 & 5.36E+07 & 1.70E+08 & 1.19E+07 & 3.06E+08 & 9.78E+08 & 5.70E+08 & 3.42E+08 \\ \text{p-value} & - & 3.02E+11 & 3.02E+11 & 3.02E+11 & 3.02E+11 & 3.02E+11 \\ \text{Median} & 1.84E+02 & 1.01E+04 & 1.12E+04 & 1.28E+04 & 2.68E+03 & 1.04E+04 & 1.24E+04 & 8.67E+03 & 5.86E+03 \\ \text{Nean} & 8.33E+02 & 1.01E+04 & 1.12E+04 & 1.28E+04 & 2.68E+03 & 1.04E+04 & 1.28E+04 & 3.02E+11 & 3.02E+11 \\ \text{Nean} & 8.33E+02 & 1.01E+04 & 1.12E+04 & 1.28E+04 & 2.68E+03 & 1.04E+04 & 1.28E+04 & 3.66E+03 & 3.46E+02 & 1.35E+03 & 3.46E+02 & 2.07E+03 & 1.05E+02 \\ \text{Nedian} & 3.70E+00 & 5.75E+08 & 2.21E+01 & 3.97E+02 & 5.94E+01 & 3.07E+11 & 3.07E+11 & 3.07E+11 \\ \text{Median} & 3.70E+00 & 5.75E+08 & 2.21E+01 & 3.97E+02 & 5.94E+01 & 3.17E+02 & 3.97E+02 & 6.06E+03 & 3.17E+02 & 3.07E+11 & 3.07E+11 & 3.07E+11 \\ \text{Median} & 3.70E+00 & 5.89E+08 & 2.51E+01 & 3.97E+02 & 5.94E+01 & 3.17E+02 & 3.07E+11 & 3.07E+11 & 3.07E+11 \\ \text{Nedian} & 9.05E+04 & 2.02E+06 & 8.92E+04 & 3.51E+03 & 3.07E+02 & 3.07E+02 & 3.07E+11 & 3.07E+11 & 3.07E+11 \\ \text{Nedian} & 2.92E+03 & 3.53E+03 & 1.55E+05 & 1.58E+04 & 6.25E+05 & 1.07E+05 & 1.07E+05 & 3.07E+11 & 3.07E+11$	1 12		1.46E+03									
$F_{13} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			-									
Std												
$F_{14} = \begin{bmatrix} \text{P-value} \\ \text{Median} \\ \text{I.25E+08} \\ \text{I.25E+08} \\ \text{Median} \\ \text{I.25E+08} \\ \text{I.25E+08} \\ \text{I.25E+08} \\ \text{I.25E+09} \\ I.25E+$	\boldsymbol{E}	Mean						1.05E+05		5.96E+03		6.27E+03
$F_{14} = \begin{bmatrix} \text{Median} & 1.25 \pm 08 & 2.52 \pm 08 & 8.45 \pm 0.7 & 5.10 \pm 0.07 & 1.70 \pm 0.08 & 1.25 \pm 0.07 & 3.42 \pm 0.08 & 9.72 \pm 0.08 & 3.42 \pm 0.08 \\ \text{Nd} & 1.34 \pm 0.08 & 2.49 \pm 0.08 & 8.41 \pm 0.07 & 5.36 \pm 0.07 & 1.70 \pm 0.08 & 1.25 \pm 0.07 & 3.06 \pm 0.08 & 9.78 \pm 0.08 & 5.70 \pm 0.08 & 3.42 \pm 0.08 \\ \text{Nd} & 7.38 \pm 0.06 & 1.53 \pm 0.07 & 6.31 \pm 0.06 & 1.23 \pm 0.07 & 1.20 \pm 0.07 & 1.62 \pm 0.06 & 1.19 \pm 0.08 & 7.52 \pm 0.07 & 5.00 \pm 0.07 & 2.42 \pm 0.07 \\ \text{Median} & 8.40 \pm 0.02 & 1.01 \pm 0.04 & 1.12 \pm 0.04 & 1.28 \pm 0.04 & 2.68 \pm 0.03 & 5.48 \pm 0.03 & 1.04 \pm 0.04 & 1.24 \pm 0.04 & 8.67 \pm 0.03 & 5.86 \pm 0.03 \\ \text{Mean} & 8.33 \pm 0.02 & 1.01 \pm 0.04 & 1.12 \pm 0.04 & 1.29 \pm 0.04 & 2.68 \pm 0.03 & 5.54 \pm 0.03 & 1.08 \pm 0.04 & 1.23 \pm 0.04 & 8.07 \pm 0.03 & 8.00 \pm 0.03 & 5.86 \pm 0.03 \\ \text{Nd} & 4.31 \pm 0.1 & 5.23 \pm 0.1 & 8.65 \pm 0.1 & 4.85 \pm 0.2 & 1.50 \pm 0.02 & 1.35 \pm 0.03 & 8.24 \pm 0.02 & 2.07 \pm 0.03 & 1.05 \pm 0.02 \\ \text{Nd} & 4.31 \pm 0.1 & 5.23 \pm 0.1 & 8.65 \pm 0.1 & 4.85 \pm 0.2 & 1.50 \pm 0.02 & 1.35 \pm 0.03 & 8.24 \pm 0.02 & 2.07 \pm 0.03 & 1.05 \pm 0.02 \\ \text{Nd} & 4.31 \pm 0.1 & 5.23 \pm 0.1 & 3.01 \pm 0.11 & $	1'13	Std	1.93E+02	2.32E+02	3.74E+02	1.54E+02			1.72E+02	4.16E+03	4.70E+03	3.65E+03
Mean		p-value	-	1.17E-02	2.51E-02 ⁺	1.34E-05	1.22E-02 ⁺	3.02E-11 ⁺	7.39E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺
Product Prod		Median							3.42E+08			
$F_{15} = \begin{bmatrix} \text{p-value} & - & 3.02E-11^* \\ \text{Median} & 8.40E+02 & 1.01E+04 & 1.12E+04 & 1.28E+04 & 2.68E+03 & 5.48E+03 & 1.04E+04 & 1.28E+04 & 8.67E+03 & 5.86E+03 \\ \text{Std} & 4.31E+01 & 5.23E+01 & 8.65E+01 & 4.85E+02 & 1.50E+02 & 3.46E+02 & 1.35E+03 & 8.24E+02 & 2.07E+03 & 1.05E+02 \\ \text{p-value} & - & 3.01E-11^* & 3.0$	\boldsymbol{E}											
$F_{15} = \begin{bmatrix} \text{p-value} & - & 3.02E-11^* \\ \text{Median} & 8.40E+02 & 1.01E+04 & 1.12E+04 & 1.28E+04 & 2.68E+03 & 5.48E+03 & 1.04E+04 & 1.28E+04 & 8.67E+03 & 5.86E+03 \\ \text{Std} & 4.31E+01 & 5.23E+01 & 8.65E+01 & 4.85E+02 & 1.50E+02 & 3.46E+02 & 1.35E+03 & 8.24E+02 & 2.07E+03 & 1.05E+02 \\ \text{p-value} & - & 3.01E-11^* & 3.0$	1'14	Std	7.38E+06	1.53E+07	6.31E+06	1.23E+07	1.29E+07		1.19E+08	7.52E+07	5.50E+07	2.42E+07
Median	L	p-value	-	3.02E-11 ⁺		3.02E-11	3.02E-11 ⁺	3.02E-11 ⁻	4.50E-11 ⁺	3.02E-11 ⁺		3.02E-11 ⁺
F										1.24E+04		
$F_{16} \begin{tabular}{ l c c c c c c c c c c c c c c c c c c $	E	Mean	8.33E+02	1.01E+04	1.12E+04	1.29E+04		5.54E+03	1.08E+04			
$F_{16} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	r_{15}			5.23E+01	8.65E+01	4.85E+02	1.50E+02	3.46E+02	1.35E+03			
$F_{16} \begin{array}{c} \text{Median} \\ \text{Mean} \\ \text{4.25E+00} \\ \text{5.89E-08} \\ \text{2.51E+01} \\ \text{3.97E+02} \\ \text{2.51E+01} \\ \text{3.97E+02} \\ \text{3.97E+02} \\ \text{5.94E+01} \\ \text{3.96E+02} \\ \text{5.94E+01} \\ \text{3.96E+02} \\ \text{3.96E+01} \\ \text{3.96E+01} \\ \text{3.02E-11}^* \\ 3.02$	L		-	3.01E-11 ⁺		3.01E-11 ⁺						
$F_{16} \begin{array}{c} \text{Mean} \\ \text{Std} \\ \text{2.41E+00} \\ \text{Std} \\ \text{2.41E+00} \\ \text{5.61E-09} \\ \text{1.16E+01} \\ \text{3.95E-01} \\ \text{3.95E-01} \\ \text{3.95E-01} \\ \text{3.95E-01} \\ \text{3.95E-01} \\ \text{3.77E+02} \\ \text{3.95E-01} \\ \text{3.95E-01} \\ \text{3.02E-11^+} \\ 3.02E-11^+$			3.70E+00									
$F_{16} = \begin{bmatrix} \text{Std} \\ \text{p-value} \end{bmatrix} = \begin{bmatrix} 2.41\text{E}+00 \\ \text{p-value} \end{bmatrix} = \begin{bmatrix} 5.61\text{E}-09 \\ \text{3}.02\text{E}-11^{\circ} \end{bmatrix} = \begin{bmatrix} 3.95\text{E}-01 \\ \text{3}.02\text{E}-11^{\circ} \end{bmatrix} = \begin{bmatrix} 3.02\text{E}-11^{\circ} \\ \text{3}.00\text{E}-11^{\circ} \end{bmatrix} = \begin{bmatrix} 3.02\text{E}-11^{\circ} \\ \text{3}.00\text{E}-11^{\circ} \end{bmatrix} = \begin{bmatrix} 3.02\text{E}-11^{\circ} \\ \text{3}.02\text{E}-11^{\circ} \end{bmatrix} = \begin{bmatrix} 3.02$	E		4.25E+00									
$F_{17} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	r_{16}		2.41E+00									
$F_{17} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			_									
$F_{17} \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$			9.02E+04									
$F_{18} \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$F_{18} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F_{17}											
$F_{18} \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-									
$F_{18} \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.29E+03									
$F_{18} \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$F_{19} \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	F_{18}											
$F_{19} \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$			-						2.13E-04 ⁺			
$F_{19} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		1.79F±06									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	l _											
$F_{20} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	F_{19}											
$F_{20} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1		J.JUL⊤04									
$F_{20} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-		1.85F±03									
F20 Std 1.90E+02 1.49E+02 2.59E+02 1.37E+02 1.47E+02 1.40E+01 1.79E+02 8.25E+02 2.26E+02 6.97E+09 p-value - 4.50E-11 ⁻ 1.91E-01 ⁻ 8.15E-11 ⁻ 9.92E-11 ⁻ 3.02E-11 ⁻ 1.64E-05 ⁺ 3.02E-11 ⁺ 1.56E-08 ⁺ 3.02E-11 ⁺	l _											
p-value - 4.50E-11 1.91E-01 8.15E-11 9.92E-11 3.02E-11 1.64E-05 3.02E-11 1.56E-08 3.02E-11 3.02E-11	F_{20}											
	20											
WILL - 13/0/1 12/4/4 12/0/0 11/0/3 13/0/1 10/2/2 19/1/0 19/1/0 16/3/1												
	W/I	1/1		13/0/1	12/4/4	12/0/0	11/0/3	13/0/1	10/2/2	17/1/0	19/1/0	10/3/1

TABLE SV COMPARISON RESULTS OF THE COMPARED ALGORITHMS ON 1000-D CEC'2013 FUNCTIONS WITH 3×10^6 FITNESS EVALUATIONS.

Function	Quality	DHLSO	CSO	SL-PSO	MA-SW-Chains	DMS-L-PSO	CCPSO2	DECC-G	MLCC	DECC-DG
Tunetion	Median	3.86E-22	7.78E-12	1.04E-17	7.90E-21	1.97E+09	2.79E+01	2.06E-06	9.07E-14	6.03E+02
-	Mean	3.99E-22	7.71E-12	1.09E-17	1.19E-20	1.98E+09	4.11E+01	3.14E-06	8.60E-10	6.42E+03
F_1	Std	1.32E-22	1.31E-12	2.50E-18	1.11E-20	1.27E+08	3.14E+01	4.27E-06	4.38E-09	1.81E+04
	p-value	-	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺				
	Median	1.14E+03	8.55E+03	2.13E+03	6.85E+02	8.61E+03	3.48E+01	1.30E+03	3.57E+00	1.28E+04
r	Mean	1.14E+03	8.55E+03	2.13E+03	6.97E+02	8.65E+03	3.50E+01	1.31E+03	3.82E+00	1.27E+04
F_2	Std	5.78E+01	2.65E+02	1.36E+02	5.51E+01	4.88E+02	4.85E+00	3.63E+01	1.73E+00	7.20E+02
	p-value	-	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11	3.02E-11 ⁺	3.02E-11	7.38E-11 ⁺	3.02E-11	3.02E-11 ⁺
	Median	2.16E+01	2.16E+01	2.16E+01	2.03E+01	2.08E+01	2.00E+01	2.02E+01	2.00E+01	2.14E+01
E	Mean	2.16E+01	2.16E+01	2.16E+01	2.03E+01	2.08E+01	2.00E+01	2.02E+01	2.00E+01	2.14E+01
F_3	Std	4.07E-03	6.15E-03	1.45E-02	4.36E-02	1.66E-01	1.25E-04	6.18E-03	2.76E-04	1.45E-02
	p-value	-	3.67E-01=	3.08E-08 ⁺	3.02E-11 ⁻	3.02E-11 ⁻	2.19E-11	3.02E-11	3.02E-11 ⁻	3.02E-11 ⁻
	Median	6.34E+09	1.28E+10	4.54E+09	5.19E+09	2.97E+11	3.20E+10	2.00E+11	1.99E+11	7.33E+10
F_4	Mean	6.68E+09	1.32E+10	4.35E+09	5.13E+09	2.93E+11	3.49E+10	2.35E+11	2.34E+11	7.70E+10
1.4	Std	1.68E+09	2.54E+09	9.48E+08	1.33E+09	7.25E+10	2.17E+10	1.22E+11	1.26E+11	2.82E+10
	p-value	-	1.09E-10 ⁺	2.02E-08	5.56E-04 ⁻	3.02E-11 ⁺	1.01E-08 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺
	Median	6.60E+05	6.04E+05	8.23E+05	1.74E+06	3.92E+06	1.30E+07	8.44E+06	1.17E+07	5.81E+06
F_5	Mean	7.00E+05	5.91E+05	8.41E+05	1.76E+06	3.95E+06	1.40E+07	8.26E+06	1.27E+07	5.78E+06
1 5	Std	1.28E+05	1.07E+05	1.75E+05	3.26E+05	5.82E+05	4.81E+06	1.14E+06	3.46E+06	3.83E+05
	p-value	-	1.95E-03	4.46E-04 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺
	Median	1.06E+06	1.06E+06	1.06E+06	1.05E+06	9.98E+05	1.05E+06	1.06E+06	1.05E+06	1.06E+06
F_6	Mean	1.06E+06	1.06E+06	1.06E+06	1.05E+06	1.00E+06	1.05E+06	1.06E+06	1.05E+06	1.06E+06
- 6	Std	8.28E+02	1.10E+03	1.48E+03	7.00E+03	5.20E+03	5.24E+03	1.84E+03	4.13E+03	1.07E+03
	p-value	-	1.10E-01=	3.01E-01=	3.01E-11	3.01E-11	3.01E-11	1.32E-04 ⁺	3.01E-11	9.26E-04 ⁺
	Median	1.33E+06	5.26E+06	1.40E+06	2.98E+06	1.22E+09	1.29E+08	1.04E+09	1.15E+09	4.25E+08
F_7	Mean	1.60E+06	5.88E+06	1.63E+06	2.91E+06	1.37E+09	4.15E+08	1.04E+09	1.43E+09	4.78E+08
,	Std	8.38E+05	2.58E+06	7.05E+05	1.30E+06	7.64E+08	9.38E+08	4.48E+08	1.07E+09	1.92E+08
	p-value	- 1.12E - 1.4	8.99E-11 ⁺	5.11E-01 ⁺	3.83E-05 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺
	Median	1.16E+14 1.20E+14	2.85E+14 2.60E+14	9.97E+13	1.26E+14 1.28E+14	1.68E+14 2.79E+14	8.16E+14	7.90E+15 7.50E+15	8.18E+15 9.59E+15	2.89E+15 3.57E+15
F_8	Mean Std	3.35E+13	5.87E+13	1.03E+14 3.62E+13	3.44E+13	5.09E+14	1.18E+15 9.99E+14	7.30E+13 3.18E+15	9.39E+13 6.18E+15	3.37E+13 1.85E+15
	p-value	3.33E+13	2.37E-10 ⁺	3.78E-02	3.44E+13 4.04E-01=	3.83E-06 ⁺	9.99E+14 3.02E-11 ⁺	3.16E+13 3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺
	Median	1.26E+08	5.79E+07	7.94E+07	1.07E+08	3.50E+08	3.63E+09	5.86E+08	8.85E+08	4.95E+08
	Mean	1.20E+08 1.30E+08	6.06E+07	8.25E+07	1.09E+08	3.60E+08	3.76E+09	5.96E+08	9.55E+08	4.90E+08
F_9	Std	3.97E+07	1.60E+07	2.03E+07	1.96E+07	4.61E+07	1.02E+09	9.76E+07	2.92E+08	3.18E+07
	p-value	3.57E+07	3.16E-10	7.60E-07	2.32E-02	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺
	Median	9.40E+07	9.40E+07	9.36E+07	9.34E+07	9.11E+07	9.29E+07	9.30E+07	9.27E+07	9.45E+07
	Mean	9.40E+07	9.40E+07	9.25E+07	9.34E+07	9.17E+07	9.30E+07	9.29E+07	9.27E+07	9.45E+07
F_{10}	Std	2.11E+05	1.51E+05	1.67E+06	3.55E+05	1.06E+06	7.01E+05	6.16E+05	6.07E+05	2.46E+05
	p-value	-	3.40E-01=	3.77E-04	1.61E-10	3.02E-11	3.01E-07	3.82E-10	7.39E-11	2.39E-08 ⁺
	Median	9.29E+11	9.35E+11	9.35E+11	4.79E+08	9.44E+10	9.38E+11	1.26E+11	1.90E+11	3.81E+10
-	Mean	9.30E+11	9.30E+11	9.33E+11	9.59E+08	1.05E+11	9.37E+11	1.28E+11	2.28E+11	4.83E+10
F_{11}	Std	9.50E+09	1.03E+10	1.46E+10	1.68E+09	7.53E+10	1.53E+10	7.15E+10	1.53E+11	4.33E+10
	p-value	-	8.88E-01=	8.30E-01=	3.02E-11	3.02E-11	2.71E-02 ⁺	3.02E-11	3.02E-11	3.02E-11
	Median	1.79E+03	1.04E+03	1.75E+03	1.34E+03	5.22E+04	2.10E+03	4.19E+03	2.36E+03	1.68E+11
I.	Mean	1.79E+03	1.07E+03	1.78E+03	1.33E+03	6.99E+04	2.10E+03	4.35E+03	2.49E+03	1.71E+11
F_{12}	Std	1.39E+02	7.78E+01	1.74E+02	1.00E+02	5.52E+04	1.78E+02	7.83E+02	7.51E+02	2.24E+10
	p-value	-	3.02E-11 ⁻	5.30E-01=	5.49E-11 ⁻	3.02E-11 ⁺	2.83E-08 ⁺	3.02E-11 ⁺	6.70E-11 ⁺	3.02E-11 ⁺
	Median	2.70E+08	6.28E+08	4.59E+08	9.72E+08	1.32E+10	3.21E+09	8.67E+09	9.94E+09	2.08E+10
E	Mean	3.35E+08	6.67E+08	4.65E+08	1.04E+09	1.34E+10	4.02E+09	9.35E+09	1.06E+10	2.05E+10
F_{13}	Std	1.71E+08	2.45E+08	2.35E+08	3.28E+08	6.58E+09	2.31E+09	2.78E+09	3.73E+09	5.53E+09
	p-value	-	1.73E-07 ⁺	2.15E-02 ⁺	9.92E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺
	Median	1.03E+08	3.15E+09	1.50E+08	5.11E+09	2.21E+11	5.98E+10	1.28E+11	2.06E+11	1.56E+10
F_{14}	Mean	1.72E+08	3.62E+09	3.28E+08	6.53E+09	2.46E+11	9.10E+10	1.42E+11	2.21E+11	1.92E+10
1 14	Std	1.38E+08	1.44E+09	5.17E+08	5.70E+09	1.26E+11	8.53E+10	5.86E+10	8.54E+10	1.44E+10
	p-value	-	3.02E-11 ⁺	1.15E-01=	3.69E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺
	Median	4.45E+06	7.72E+07	5.88E+07	7.95E+06	1.54E+07	2.72E+06	1.13E+07	1.57E+07	9.52E+06
F_{15}	Mean	4.48E+06	7.87E+07	5.86E+07	8.48E+06	1.57E+07	4.75E+06	1.16E+07	1.61E+07	9.90E+06
1 15	Std	3.32E+05	6.50E+06	6.11E+06	2.25E+06	3.45E+06	5.07E+06	1.26E+06	1.90E+06	2.30E+06
	p-value	-	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	2.38E-03 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺
w/l	/t	-	8/3/4	7/4/4	6/8/1	11/4/0	11/4/0	12/3/0	10/5/0	13/2/0

TABLE SVI COMPARISON RESULTS OF THE COMPARED ALGORITHMS ON 200-D CEC'2010 FUNCTIONS WITH 6×10^5 FITNESS EVALUATIONS.

Function	Quality	DHLSO	CSO	SL-PSO	MOS	MA-SW-Chains	DMS-L-PSO	CCPSO2	DECC-G	MLCC	DECC-DG
	Median	0.00E+00	6.33E-17	2.40E-21	0.00E+00	4.25E-22	4.80E+05	6.34E+01	9.73E-13	3.31E-19	2.14E-21
F_1	Mean	0.00E+00	6.45E-17	2.41E-21	0.00E+00	6.73E-22	4.67E+05	2.44E+02	1.02E-12	3.88E-18	2.43E-21
1 1	Std	0.00E+00	2.18E-17 1.21E-12 ⁺	2.07E-22 1.21E-12 ⁺	0.00E+00 NaN=	5.11E-22 1.21E-12 +	5.88E+04 1.21E-12 +	4.58E+02	4.32E-13 1.21E-12 ⁺	9.37E-18 1.21E-12 ⁺	1.73E-21
	p-value Median	1.02E+02	9.81E+02	3.43E+02	0.00E+00	4.97E+00	5.93E+02	1.21E-12 ⁺ 1.45E+00	3.15E+01	7.35E-12	1.21E-12 ⁺ 2.12E+02
F	Mean	1.00E+02	9.70E+02	3.29E+02	9.56E-03	7.56E+00	5.96E+02	1.86E+00	3.22E+01	1.08E-11	2.11E+02
F_{1} F_{1} F_{2} F_{3} F_{4} F_{5} F_{6} F_{6} F_{7} F_{8} F_{10} F_{10} F_{11} F_{12} F_{13} F_{14} F_{15} F_{15} F_{16} F_{17} F_{18} F_{19} F_{19} F_{19} F_{19} F_{11} F_{12} F_{13} F_{14} F_{15} F_{15} F_{15} F_{16} F_{17} F_{17} F_{18} F_{19}	Std	1.13E+01	1.10E+02	3.73E+01	5.24E-02	6.40E+00	5.03E+01	1.10E+00	5.29E+00	7.75E-12	1.53E+01
	p-value	-	3.00E-11 ⁺	3.00E-11 ⁺	4.08E-12	2.89E-11	3.00E-11 ⁺	3.00E-11	3.00E-11	3.00E-11	3.00E-11 ⁺
	Median	1.47E-14	1.91E-11	5.02E-14 4.99E-14	3.24E-14	2.18E-14	4.13E+00	9.70E-03	1.38E-07	5.33E-14	2.33E+00
F_3	Mean Std	1.45E-14 6.49E-16	1.89E-11 2.75E-12	1.30E-15	3.62E-14 6.32E-15	2.40E-14 3.43E-15	4.13E+00 2.94E-01	1.12E-02 6.71E-03	1.37E-07 5.71E-08	3.04E-13 7.68E-13	2.38E+00 3.29E-01
	p-value	- -	1.72E-12 ⁺	4.29E-14 ⁺	8.40E-13 ⁺	5.44E-13 ⁺	1.72E-12 ⁺	1.72E-12 ⁺	1.72E-12 ⁺	1.66E-12 ⁺	1.72E-12 ⁺
	Median	1.59E+12	2.05E+12	1.37E+12	1.20E+12	1.61E+12	2.85E+11	3.59E+12	9.25E+12	5.51E+12	4.16E+13
F_{\star}	Mean	1.72E+12	1.99E+12	1.46E+12	1.21E+12	1.57E+12	2.79E+11	4.05E+12	9.76E+12	5.66E+12	4.31E+13
1 4	Std	4.08E+11	3.67E+11 5.08E-03 ⁺	4.04E+11 3.67E-03	4.25E+11 2.60E-05	3.53E+11 3.33E-01=	5.94E+10 3.02E-11	1.62E+12 2.03E-09+	3.31E+12 3.02E-11 ⁺	1.65E+12 4.98E-11 ⁺	9.55E+12 3.02E-11 ⁺
	p-value Median	1.59E+07	3.05E+08	3.07E-03 3.25E+08	4.86E+08	1.16E+08	8.86E+07	4.34E+08	2.83E+08	2.74E+08	2.51E+08
E	Mean	2.39E+07	3.03E+08	3.23E+08	4.72E+08	1.09E+08	9.00E+07	4.36E+08	2.80E+08	3.06E+08	2.50E+08
r_5	Std	4.46E+07	8.87E+06	1.37E+07	6.44E+07	3.78E+07	8.72E+06	1.33E+08	3.78E+07	1.31E+08	2.40E+07
	p-value	-	3.01E-11 ⁺	3.01E-11 ⁺	3.01E-11 ⁺	5.56E-10 ⁺	5.56E-10 ⁺	4.96E-11 ⁺	5.48E-11 ⁺	1.20E-10 ⁺	1.46E-10 ⁺
	Median Mean	4.14E-09 2.00E+00	1.67E-07 1.67E-07	2.11E+01 2.10E+01	1.98E+07 1.97E+07	7.55E-09 2.31E+05	2.18E+01 2.18E+01	1.98E+07 1.80E+07	2.29E+06 2.32E+06	4.70E+06 9.34E+06	1.42E+00 1.43E+00
F_6	Std	5.29E+00	6.55E-09	1.51E-01	1.97E+07 1.29E+05	4.98E+05	9.16E-02	4.83E+06	3.33E+05	8.10E+06	2.37E-01
	p-value	3.27E100	1.95E-03	3.02E-11 ⁺	3.02E-11 ⁺	1.06E-02 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	4.60E-05
	Median	4.13E+04	3.23E+05	3.57E+05	4.65E+08	5.00E+04	6.03E+05	1.69E+07	9.59E+07	1.22E+05	1.27E+10
F_{σ}	Mean	4.29E+04	3.33E+05	3.71E+05	5.48E+08	4.92E+04	6.08E+05	4.30E+08	1.41E+08	1.45E+05	1.19E+10
1 7	Std p-value	3.01E+04	1.09E+05 3.02E-11 ⁺	8.21E+04 3.02E-11 ⁺	4.43E+08 3.02E-11 ⁺	2.17E+04 1.96E-01=	4.28E+04 3.02E-11 ⁺	1.01E+09 3.02E-11 ⁺	1.50E+08 3.02E-11 ⁺	1.16E+05 1.73E-07 ⁺	2.02E+09 3.02E-11 ⁺
	Median	3.73E+07	4.25E+07	3.17E+07	2.73E+06	4.27E+07	1.63E+07	7.68E+07	3.71E+07	4.87E+06	1.04E+08
	Mean	4.15E+07	4.25E+07	4.38E+07	8.95E+06	6.92E+07	1.67E+07	7.34E+07	4.07E+07	1.18E+07	1.10E+08
F_8	Std	1.62E+07	9.50E+04	3.35E+07	1.47E+07	8.93E+07	2.18E+06	5.46E+07	4.74E+07	1.36E+07	2.02E+07
	p-value	-	8.48E-09+	6.28E-06 ⁺	6.53E-08	8.88E-01=	3.02E-11	4.84E-02 ⁺	4.83E-01=	3.02E-11	2.61E-10 ⁺
	Median	6.72E+06 6.74E+06	8.13E+06 8.49E+06	6.84E+06 6.71E+06	3.10E+06 3.07E+06	5.99E+06 5.86E+06	2.78E+06 2.87E+06	1.55E+07 1.59E+07	3.76E+07 3.83E+07	1.71E+07 1.69E+07	1.57E+07 1.71E+07
F_9	Mean Std	1.20E+06	1.57E+06	1.48E+06	5.86E+05	1.04E+06	3.96E+05	2.78E+06	1.03E+07	4.31E+06	4.76E+06
	p-value	-	2.13E-05 ⁺	7.51E-01=	3.02E-11	6.67E-03	3.02E-11	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺
	Median	9.25E+01	1.53E+03	1.68E+03	1.03E+03	1.48E+02	6.58E+02	8.03E+02	1.29E+03	4.73E+02	6.38E+02
F_{10}	Mean	9.36E+01	1.52E+03	1.64E+03	1.03E+03	1.50E+02	6.46E+02	8.18E+02	1.29E+03	4.99E+02	6.41E+02
- 10	Std p-value	8.40E+00	4.16E+01 3.01E-11 ⁺	2.45E+02 3.01E-11 ⁺	1.09E+02 3.01E-11 ⁺	2.34E+01 9.88E-11 ⁺	5.98E+01 3.01E-11 ⁺	1.84E+02 3.01E-11 ⁺	5.96E+01 3.01E-11 ⁺	1.29E+02 3.01E-11 ⁺	2.38E+01 3.01E-11 ⁺
	Median	2.26E-14	7.86E-11	6.60E+00	3.95E+01	1.16E+00	2.29E+01	3.94E+01	3.28E+00	4.56E+00	8.02E-11
E	Mean	2.25E-14	8.17E-11	9.29E+00	3.89E+01	1.20E+00	2.28E+01	3.27E+01	3.35E+00	7.22E+00	2.27E-01
r ₁₁	Std	1.14E-15	1.06E-11	7.87E+00	1.79E+00	1.09E+00	7.28E-01	1.19E+01	7.61E-01	8.43E+00	4.21E-01
	p-value	- 0.07E+01	3.16E-12 ⁺	3.16E-12 ⁺	3.16E-12 ⁺	2.95E-12 ⁺	3.16E-12 ⁺	3.16E-12 ⁺	3.16E-12 ⁺	3.15E-12 ⁺	3.15E-12 ⁺
	Median Mean	9.97E+01 1.02E+02	3.23E+03 3.22E+03	4.25E+03 7.58E+03	1.70E+03 1.88E+03	7.85E+02 9.29E+02	7.49E-01 9.51E-01	7.28E+03 8.25E+03	1.81E+03 2.08E+03	9.34E+02 9.77E+02	1.25E+03 1.28E+03
F_{12}	Std	3.45E+01	6.93E+02	1.04E+04	1.06E+03	4.55E+02	4.83E-01	3.84E+03	9.57E+02	3.63E+02	2.52E+02
	p-value	ı	3.02E-11 ⁺	3.02E-11 ⁺	3.34E-11 ⁺	3.02E-11 ⁺	3.02E-11	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺
	Median	8.39E+01	8.91E+01	8.46E+01	4.40E+01	1.37E+02	7.32E+01	2.81E+02	4.31E+02	2.90E+02	9.79E+03
F_{13}	Mean Std	9.30E+01	9.53E+01 1.82E+01	1.37E+02 1.04E+02	4.52E+01 2.23E+01	1.69E+02 1.17E+02	1.31E+02 9.62E+01	2.84E+02 6.83E+01	6.85E+02 1.01E+03	3.52E+02 2.21E+02	9.85E+03 1.57E+03
13	p-value	2.20E+01	9.79E-05 ⁺	7.73E-01	2.23E+01 2.92E-09	2.68E-06 ⁺	9.62E+01 1.54E-01=	3.34E-11 ⁺	6.72E-10 ⁺	6.72E-10 ⁺	3.02E-11 ⁺
	Median	2.02E+07	3.52E+07	2.04E+07	4.98E+06	2.10E+07	1.49E+06	3.51E+07	9.94E+07	4.00E+07	5.73E+07
F	Mean	2.03E+07	3.51E+07	2.01E+07	5.01E+06	2.06E+07	1.54E+06	3.52E+07	9.93E+07	3.91E+07	5.73E+07
1 14	Std	2.60E+06	4.81E+06	3.23E+06	8.33E+05	2.12E+06	2.68E+05	6.13E+06	1.80E+07	7.05E+06	1.07E+07
	p-value Median	- 1.70E+03	3.02E-11 ⁺ 1.76E+03	8.77E-01= 1.93E+03	3.02E-11 ⁻ 2.36E+03	3.95E-01= 3.38E+02	3.02E-11 ⁻ 6.74E+02	6.70E-11 ⁺ 1.79E+03	3.02E-11 ⁺ 2.00E+03	3.34E-11 ⁺ 1.01E+03	3.02E-11 ⁺ 1.17E+03
77	Mean	1.69E+03	1.75E+03	1.93E+03	2.33E+03	3.37E+02	6.70E+02	1.87E+03	2.00E+03 2.02E+03	1.01E+03	1.17E+03 1.17E+03
r ₁₅	Std	6.70E+01	2.44E+01	3.61E+01	1.42E+02	2.62E+01	5.44E+01	3.82E+02	9.96E+01	2.17E+02	4.02E+01
	p-value	2.025.11	1.70E-08 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11	3.02E-11	2.01E-01=	3.02E-11 ⁺	3.69E-11	3.02E-11
	Median Mean	3.02E-14 2.94E-14	7.52E-11 7.89E-11	9.53E-01 1.97E+00	7.92E+01 7.92E+01	4.26E+02 4.26E+02	3.26E+01 3.26E+01	7.90E+01 7.65E+01	9.20E+00 1.01E+01	8.93E+00 1.58E+01	3.52E-11 3.64E-11
F_{16}	Std	2.94E-14 1.53E-15	1.05E-11	3.37E+00	2.04E-01	4.26E+02 5.04E-01	2.63E+00	6.08E+00	3.57E+00	2.14E+01	7.93E-12
	p-value	ı	7.57E-12 ⁺	7.42E-12 ⁺	7.57E-12 ⁺	7.57E-12 ⁺	7.57E-12 ⁺	7.57E-12 ⁺	7.57E-12 ⁺	7.57E-12 ⁺	7.57E-12 ⁺
	Median	4.80E+03	1.11E+05	5.10E+04	1.74E+03	2.73E+04	4.38E+00	1.95E+04	1.29E+04	1.23E+04	7.88E+03
F_{17}	Mean	4.81E+03	1.14E+05	5.31E+04	1.89E+03	2.86E+04	4.15E+00	2.07E+04	1.35E+04	1.23E+04	7.87E+03
- 1/	Std p-value	8.69E+02	1.70E+04 3.02E-11 ⁺	1.12E+04 3.02E-11 ⁺	8.75E+02 1.33E-10	8.02E+03 3.02E-11 ⁺	1.61E+00 3.02E-11	5.90E+03 3.02E-11 ⁺	2.41E+03 3.02E-11 ⁺	2.07E+03 3.02E-11 ⁺	1.04E+03 4.98E-11 ⁺
	Median	1.77E+02	1.82E+02	3.09E+02	9.88E+01	2.99E+02	1.10E+02	5.66E+02	1.28E+03	4.06E+02	6.46E+02
E	Mean	1.87E+02	1.94E+02	3.46E+02	1.01E+02	3.28E+02	1.44E+02	6.09E+02	1.68E+03	4.90E+02	6.44E+02
r 18	Std	3.00E+01	2.48E+01	1.45E+02	4.12E+01	1.64E+02	8.11E+01	1.55E+02	1.64E+03	2.09E+02	8.92E+01
	p-value Modian	4 04E+04	4.35E-05 ⁺	1.25E-07 ⁺	5.00E-09	8.84E-07 ⁺	3.37E-05	3.02E-11 ⁺	3.02E-11 ⁺	3.69E-11 ⁺	3.02E-11 ⁺
_	Median Mean	4.04E+04 4.11E+04	3.62E+05 3.58E+05	3.38E+05 3.43E+05	2.10E+03 2.30E+03	1.04E+04 1.07E+04	1.89E+04 1.77E+04	9.53E+04 9.67E+04	3.54E+04 3.58E+04	4.86E+04 4.83E+04	9.37E+04 9.50E+04
F_{19}	Std	5.09E+03	2.82E+04	5.34E+04	9.74E+02	1.99E+03	5.24E+03	1.92E+04	6.63E+03	5.12E+03	9.49E+03
	p-value	ı	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11	3.02E-11-	3.02E-11	3.02E-11 ⁺	7.70E-04	5.09E-06 ⁺	3.02E-11 ⁺
	Median	1.88E+02	1.92E+02	2.86E+02	1.06E+01	3.15E+02	1.65E+02	5.17E+02	5.81E+02	3.66E+02	3.63E+02
F_{20}	Mean Std	2.82E+02	2.39E+02	3.62E+02 2.32E+02	3.09E+01 3.93E+01	3.44E+02 1.20E+02	1.65E+02 1.72E+00	5.23E+02	6.37E+02 1.99E+02	3.52E+02 8.24E+01	3.57E+02 6.32E+01
20	p-value	1.98E+02 -	1.58E+02 2.71E-02	6.10E-03 ⁺	3.93E+01 3.02E-11	1.20E+02 1.78E-04 ⁺	3.02E-11	1.11E+02 1.47E-07 ⁺	1.99E+02 4.31E-08 ⁺	9.21E-05 ⁺	6.32E+01 1.34E-05 +
w/l		-	18/2/0	16/1/3	9/10/1	12/4/4	9/10/1	18/1/1	17/2/1	17/3/0	18/2/0

TABLE SVII

COMPARISON RESULTS OF THE COMPARED ALGORITHMS ON 500-D CEC'2010 FUNCTIONS WITH 1.5×10⁶ FITNESS EVALUATIONS.

Function	Quality	DHLSO	CSO	SL-PSO	MOS	MA-SW-Chains	DMS-L-PSO	CCPSO2	DECC-G	MLCC	DECC-DG
	Median	0.00E+00	2.41E-17	4.63E-19	0.00E+00	1.92E-21	4.72E+06	4.09E+00	1.52E-17	2.62E-19	1.22E-07
F_1	Mean	0.00E+00	2.52E-17	4.61E-19	0.00E+00	2.79E-21	4.70E+06	7.24E+00	1.68E-17	5.98E-17	2.37E-07
1 1	Std	0.00E+00	7.46E-18	2.99E-20	0.00E+00	3.71E-21	5.87E+05	1.12E+01	9.42E-18	2.19E-16	3.33E-07
	p-value Median	4.01E+02	1.21E-12 ⁺ 2.78E+03	1.21E-12 ⁺ 1.09E+03	NaN= 8.63E-11	1.21E-12 ⁺ 3.23E+01	1.21E-12 ⁺ 2.24E+03	1.21E-12 ⁺ 9.19E-01	1.21E-12 ⁺ 1.16E-02	4.57E-12 ⁺ 2.53E-11	1.21E-12 ⁺ 1.32E+03
E	Mean	4.05E+02	2.77E+03	1.08E+03	6.29E-01	4.39E+01	2.25E+03	1.04E+00	8.03E-02	3.17E-11	1.32E+03
F_2	Std	2.80E+01	3.40E+02	9.01E+01	2.22E+00	3.64E+01	1.80E+02	4.92E-01	2.52E-01	2.22E-11	7.65E+01
	p-value	- 2.10E-14	3.02E-11 ⁺	3.02E-11 ⁺	2.63E-11	3.02E-11 ⁻	3.02E-11 ⁺	3.02E-11	3.02E-11	3.02E-11	3.02E-11 ⁺
	Median Mean	2.18E-14 2.16E-14	8.42E-12 8.37E-12	1.20E+00 1.06E+00	7.86E-14 7.77E-14	5.02E-14 5.20E-14	1.02E+01 1.02E+01	1.69E-03 2.08E-03	9.40E-10 9.00E-10	1.78E-13 1.98E-12	1.04E+01 1.03E+01
F_3	Std	6.49E-16	1.34E-12	5.54E-01	3.22E-15	6.65E-15	1.78E-01	1.52E-03	3.21E-10	6.50E-12	8.63E-01
	p-value	-	1.72E-12 ⁺	1.71E-12 ⁺	8.79E-13 ⁺	1.15E-12 ⁺	1.72E-12 ⁺	1.72E-12 ⁺	1.72E-12 ⁺	1.69E-12 ⁺	1.72E-12 ⁺
	Median	1.35E+12	1.67E+12	1.12E+12	1.49E+12	1.05E+12	2.93E+11	4.00E+12	2.55E+13	1.06E+13	1.86E+13
F_4	Mean Std	1.29E+12 3.64E+11	1.73E+12 3.68E+11	1.13E+12 2.94E+11	1.52E+12 3.43E+11	1.10E+12 2.30E+11	3.00E+11 6.47E+10	4.40E+12 2.09E+12	2.58E+13 6.54E+12	1.08E+13 3.94E+12	1.83E+13 3.91E+12
7	p-value	3.04E+11	1.41E-04 ⁺	4.84E-02	3.43E+11 3.39E-02 ⁺	3.92E-02-	3.02E-11	4.08E-11 ⁺	3.02E-11 ⁺	3.94E+12 3.02E-11 ⁺	3.91E+12 3.02E-11 ⁺
	Median	1.75E+07	2.90E+08	6.25E+07	5.02E+08	4.63E+07	7.96E+07	4.87E+08	2.26E+08	4.42E+08	1.95E+08
F_5	Mean	1.71E+07	2.88E+08	1.54E+08	5.18E+08	4.57E+07	7.95E+07	5.00E+08	2.45E+08	4.30E+08	1.93E+08
1 5	Std	2.92E+06	8.87E+06	1.34E+08	7.89E+07	7.60E+06	1.11E+07	1.59E+08	8.05E+07	1.04E+08 3.01E-11 ⁺	2.49E+07
	p-value Median	2.04E+00	3.01E-11 ⁺ 2.38E-07	6.05E-11 ⁺ 2.14E+01	3.01E-11 ⁺ 1.98E+07	3.01E-11 ⁺ 1.11E-08	3.01E-11 ⁺ 2.15E+01	3.01E-11 ⁺ 1.98E+07	3.01E-11 ⁺ 5.13E+06	1.98E+07	3.01E-11 ⁺ 9.01E+00
T.	Mean	1.74E+00	2.38E-07	2.13E+01	1.98E+07	3.42E+05	2.15E+01	1.88E+07	5.18E+06	1.84E+07	9.07E+00
F_6	Std	9.85E-01	1.15E-08	1.19E-01	1.14E+05	5.49E+05	1.16E-01	3.18E+06	9.99E+05	4.16E+06	8.73E-01
	p-value	- 7.04E-02	9.50E-06	3.01E-11 ⁺	3.01E-11 ⁺	4.37E-01=	3.01E-11 ⁺				
	Median Mean	7.04E+03 1.48E+04	4.95E+03 5.16E+03	9.54E+04 1.03E+05	1.15E+08 1.43E+08	3.64E+01 4.11E+01	1.70E+06 1.71E+06	2.77E+07 7.18E+08	6.09E+08 7.23E+08	8.46E+05 1.73E+06	2.64E+08 2.61E+08
F_7	Std	1.48E+04 1.66E+04	1.37E+03	4.53E+04	9.42E+07	1.85E+01	5.19E+04	1.02E+09	3.69E+08	2.38E+06	2.01E+08 9.95E+07
<u> </u>	p-value	-	3.79E-01=	1.33E-10 ⁺	3.02E-11 ⁺	6.52E-09	3.02E-11 ⁺				
	Median	2.66E+07	3.89E+07	2.22E+07	3.04E+06	6.77E+06	1.68E+07	2.10E+07	7.57E+07	6.36E+07	3.88E+07
F_8	Mean	2.66E+07	3.89E+07	2.59E+07	6.45E+06	2.15E+07	1.75E+07	4.80E+07	9.03E+07	5.41E+07	4.97E+07
- 0	Std p-value	2.59E+05	1.03E+05 3.02E-11 ⁺	1.22E+07 1.07E-07	7.70E+06 3.02E-11	2.79E+07 7.96E-03 ⁻	2.16E+06 3.02E-11	4.34E+07 3.79E-01=	1.53E+08 9.51E-06 ⁺	2.40E+07 6.77E-05 ⁺	2.10E+07 5.49E-11 ⁺
	Median	1.57E+07	2.52E+07	1.67E+07	7.41E+06	1.28E+07	5.73E+06	3.92E+07	1.93E+08	5.65E+07	2.16E+07
F_9	Mean	1.55E+07	2.55E+07	1.76E+07	8.00E+06	1.28E+07	5.70E+06	4.38E+07	2.00E+08	5.57E+07	2.21E+07
1.9	Std	2.26E+06	3.53E+06	3.66E+06	1.56E+06	1.33E+06	7.76E+05	1.47E+07	2.94E+07	8.36E+06	3.88E+06
	p-value Median	3.78E+02	3.69E-11 ⁺ 4.56E+03	4.51E-02 ⁺ 4.99E+03	4.98E-11 ⁻ 2.93E+03	2.00E-06 ⁻ 4.82E+02	3.02E-11 ⁻ 2.07E+03	3.02E-11 ⁺ 2.34E+03	3.02E-11 ⁺ 3.57E+03	3.02E-11 ⁺ 1.97E+03	1.84E+03
T-	Mean	3.79E+02	4.56E+03	4.25E+03	2.96E+03	4.88E+02	2.12E+03	2.37E+03	3.47E+03	2.10E+03	1.85E+03
F_{10}	Std	2.27E+01	5.29E+01	1.55E+03	1.88E+02	6.31E+01	2.15E+02	4.48E+02	4.88E+02	5.26E+02	6.03E+01
	p-value	-	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	5.07E-10 ⁺	3.02E-11 ⁺				
	Median Mean	7.02E-14 1.29E+00	9.72E-11 1.02E-10	2.16E+01 2.23E+01	9.91E+01 9.86E+01	4.35E+00 4.58E+00	6.38E+01 6.38E+01	9.90E+01 9.89E+01	1.41E+01 1.43E+01	9.89E+01 9.81E+01	3.74E+00 3.66E+00
F_{11}	Std	3.85E+00	2.43E-11	5.33E+00	2.73E+00	1.59E+00	2.52E+00	3.44E-01	8.11E-01	2.85E+00	5.08E-01
	p-value	-	1.91E-03	3.36E-11 ⁺	2.75E-11 ⁺	7.90E-09 ⁺	2.75E-11 ⁺	2.75E-11 ⁺	5.13E-10 ⁺	2.75E-11 ⁺	7.90E-09+
	Median	1.25E+03	7.26E+04	4.38E+04	5.28E+03	1.67E+04	1.27E+01	1.83E+04	1.80E+04	1.21E+04	1.21E+03
F_{12}	Mean	1.26E+03	7.10E+04	5.62E+04	5.40E+03	1.71E+04	1.13E+01	1.84E+04	1.87E+04	1.19E+04	1.26E+03
12	Std p-value	2.64E+02	1.25E+04 3.02E-11 ⁺	2.87E+04 3.02E-11 ⁺	1.56E+03 3.02E-11 ⁺	4.73E+03 3.02E-11 ⁺	3.89E+00 3.02E-11	3.45E+03 3.02E-11 ⁺	3.41E+03 3.02E-11 ⁺	2.40E+03 3.02E-11 ⁺	2.47E+02 8.88E-01=
	Median	2.63E+02	2.30E+02	3.71E+02	1.99E+02	4.39E+02	1.50E+03	7.31E+02	8.14E+02	7.40E+02	4.66E+05
F_{13}	Mean	2.92E+02	3.17E+02	6.61E+02	1.98E+02	4.69E+02	2.52E+03	7.14E+02	3.12E+03	1.62E+03	4.62E+05
1 13	Std	1.05E+02	1.79E+02	1.22E+03	8.80E+01	2.27E+02	3.11E+03	1.29E+02	4.98E+03	2.09E+03	4.92E+04
	p-value Median	4.34E+07	9.59E-01= 9.85E+07	3.18E-03 ⁺ 4.82E+07	9.51E-06 ⁻ 1.46E+07	2.60E-05 ⁺ 7.04E+07	3.69E-11 ⁺ 4.30E+06	1.33E-10 ⁺ 1.12E+08	1.21E-10 ⁺ 4.13E+08	1.21E-10 ⁺ 1.48E+08	3.02E-11 ⁺ 1.70E+08
T-	Mean	4.34E+07 4.41E+07	9.83E+07 1.00E+08	4.82E+07 4.92E+07	1.46E+07 1.45E+07	6.97E+07	4.22E+06	1.12E+08 1.24E+08	4.13E+08 4.19E+08	1.48E+08 1.51E+08	1.70E+08 1.71E+08
F_{14}	Std	4.35E+06	1.06E+07	5.53E+06	1.95E+06	5.44E+06	7.25E+05	4.69E+07	4.52E+07	1.88E+07	1.70E+07
	p-value	- 4 775 00	3.02E-11 ⁺	3.99E-04 ⁺	3.02E-11	3.02E-11 ⁺	3.02E-11	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺
	Median Mean	4.77E+03 4.78E+03	4.92E+03 4.91E+03	5.42E+03 5.42E+03	6.58E+03 6.47E+03	1.11E+03 1.11E+03	2.26E+03 2.28E+03	4.92E+03 5.06E+03	4.63E+03 4.42E+03	4.22E+03 4.18E+03	2.94E+03 2.94E+03
F_{15}	Std	5.84E+01	4.91E+03 4.55E+01	5.42E+03 5.37E+01	3.38E+02	7.39E+01	1.60E+02	6.37E+02	1.51E+03	9.95E+02	4.90E+01
	p-value	-	2.61E-10 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11	3.02E-11	7.73E-02=	1.00E+00=	1.33E-02	3.02E-11
	Median	8.62E-14	1.09E-10	2.03E+01	1.99E+02	1.38E+01	1.19E+02	1.98E+02	2.57E+01	1.98E+02	1.28E-13
F_{16}	Mean	6.71E-01	1.06E-10	2.30E+01	1.98E+02	1.33E+01	1.19E+02	1.98E+02	2.54E+01	1.73E+02	1.28E-13
- 10	Std p-value	9.83E-01	2.25E-11 7.68E-02=	1.53E+01 1.25E-10 +	1.92E+00 2.82E-11 ⁺	5.96E+00 7.64E-11 ⁺	3.37E+00 2.82E-11 ⁺	2.10E+00 2.82E-11 ⁺	1.76E+00 2.82E-11 ⁺	5.63E+01 2.82E-11 ⁺	7.88E-15 7.63E-02=
	Median	2.26E+04	7.08E-02 7.38E+05	1.14E+05	1.37E+04	4.37E+04	2.12E+01	6.62E+04	6.67E+04	6.76E+04	2.09E+04
F	Mean	2.26E+04	7.45E+05	1.21E+05	1.41E+04	4.53E+04	2.04E+01	6.74E+04	6.88E+04	6.73E+04	2.15E+04
F_{17}	Std	2.30E+03	7.55E+04	3.26E+04	4.58E+03	6.11E+03	3.02E+00	1.77E+04	8.25E+03	9.33E+03	2.21E+03
	p-value Modian	- 6 00E : 02	3.02E-11 ⁺	3.02E-11 ⁺	3.20E-09-	3.02E-11 ⁺	3.02E-11 ⁻	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	8.24E-02=
-	Median Mean	6.98E+02 7.78E+02	6.74E+02 8.45E+02	1.10E+03 1.41E+03	4.45E+02 4.37E+02	9.23E+02 1.14E+03	3.37E+03 4.06E+03	1.44E+03 1.42E+03	1.61E+04 1.59E+04	1.31E+03 2.57E+03	1.10E+06 1.20E+06
F_{18}	Std	2.78E+02	4.32E+02	1.41E+03 1.20E+03	1.39E+02	5.14E+03	2.94E+03	1.42E+03 1.42E+02	9.70E+03	3.17E+03	4.63E+05
	p-value	-	9.47E-01=	1.64E-05 ⁺	1.31E-08	7.70E-04 ⁺	3.65E-08 ⁺	1.29E-09 ⁺	3.02E-11 ⁺	7.77E-09 ⁺	3.02E-11 ⁺
	Median	5.81E+05	2.86E+06	1.67E+06	1.52E+05	1.20E+05	4.45E+05	4.75E+05	2.17E+05	3.96E+05	5.51E+05
F_{19}	Mean Std	5.85E+05 5.00E+04	2.89E+06 2.28E+05	1.68E+06 2.58E+05	1.61E+05 2.79E+04	1.21E+05 1.10E+04	4.39E+05 4.02E+04	4.77E+05 4.39E+04	2.19E+05 2.08E+04	3.97E+05 3.41E+04	5.56E+05 3.23E+04
17	p-value	J.UUE+U4	2.28E+05 3.02E-11 ⁺	2.58E+05 3.02E-11 ⁺	2.79E+04 3.02E-11	3.02E-11	4.02E+04 3.02E-11	4.39E+04 2.23E-09	2.08E+04 3.02E-11	3.41E+04 3.02E-11	3.23E+04 1.76E-02
	Median	7.51E+02	4.91E+02	7.19E+02	7.40E+01	7.18E+02	4.63E+02	1.09E+03	1.36E+03	9.70E+02	1.62E+10
F	Mean	7.63E+02	5.49E+02	7.38E+02	1.04E+02	7.11E+02	4.65E+02	1.09E+03	1.63E+03	9.53E+02	1.60E+10
F_{20}	Std	1.42E+02	8.90E+01	1.19E+02	1.44E+02	8.47E+01	3.66E+00	1.55E+02	1.00E+03	1.32E+02	2.92E+09
. /	p-value	-	1.70E-08-	4.20E-01=	6.07E-11	1.96E-01=	3.02E-11	1.01E-08 ⁺	7.39E-11 ⁺	4.12E-06 ⁺	3.02E-11 ⁺
w/	I/Ī	-	13/3/4	17/2/1	10/9/1	11/7/2	11/9/0	16/2/2	17/2/1	17/3/0	15/2/3

 $\begin{tabular}{l} TABLE~SVIII\\ COMPARISON~RESULTS~OF~THE~COMPARED~ALGORITHMS~ON~800-$D~CEC'2010~FUNCTIONS~WITH~2.4\times10^6~FITNESS~EVALUATIONS. \end{tabular}$

Median 3815-23 6378-12 3678-12 3668-18 0.005-00 4.358-21 1.125-07 3578-07 35111-14 9.448-01 Fr. Mend 5.05-10 3028-11 3028-	Function	Quality	DHLSO	CSO	SL-PSO	MOS	MA-SW-Chains	DMS-L-PSO	CCPSO2	DECC-G	MLCC	DECC-DG
Section Color Co					3.60E-18							
Nestina Oslike	F_1											
Median 091602 5978-03 1678-03 26661-4 2508-02 4.366-03 2218-00 1.148-03 2268-09 3068-03 5088	1		1.43E-23									
Footbase			6.91E+02			2.66E-14						3.06E+03
Note	F_{2}											
Median 218.1-14 342.6-19 1506.100 1186.13 94.661-14 1.375-01 31.75-01 31.75-00 5.661-01 1.516-01 5.661-01	1 2		3.66E+01									
Heat 2.591-14 3.466-69 1.596-00 1.181-13 1.546-13 1.378-01 3.178-03 3.787-01 2.706-07 3.561-05 4.378-01 2.706-07 3.561-05 4.378-01 2.706-07 3.561-05 4.378-01 2.706-07 3.561-05 4.378-01 2.706-07 3.561-05 4.378-01 2.706-07 3.561-05 4.378-01 2.706-07 3.561-05 4.378-01 3.778-10 3.078-01 3.			2.18E-14									
Poulse	E											
Median 689611 9436-11 4.136-11 7.436-11 3.966-11 4.876-11 1.706-12 2.116-13 2.126-13 2.486-13 2.646-12 1.866-13 4.066-13 4.066-13 2.246-13 2.2	1'3		2.53E-15									
Mean 7,12F+11 9,73F+11 4,29F+11 3,16F+11 4,06F+11 5,06F+11 5,06F+12 5,06F+12 5,06F+12 5,06F+12 5,06F+13 5,			- 6 80F±11									
A												
Median 1.391+07 3.491+06 3.548+07 5.058+08 3.588+07 7.568+07 4.666+08 1.888+07 7.278+07 1.888+07 Statistic 1.368+06 1.568+06 7.348+07 6.348+07 6.498+09 7.488+07 9.278+07 1.838+07 For Statistic 1.368+08 3.058+08 3.288+07 7.368+08 3.888+07 7.278+07 1.838+07 For Mean 1.558+01 8.268+07 2.148+01 1.988+07 2.588+05 2.138+01 1.848+07 3.748+06 1.998+07 1.848+07 For Mean 1.558+01 8.268+07 2.148+01 1.988+07 2.588+05 2.138+01 1.848+07 3.748+06 1.998+07 1.448+01 For Mean 1.358+01 8.268+07 2.148+01 1.488+07 5.328+12 5.228+	F_4			1.79E+11	1.89E+11	3.17E+11	8.77E+10	8.04E+10	1.01E+12	8.98E+12	3.64E+12	8.93E+11
Median 1.28E-07 3.36E-06 5.96E-07 6.34E-07			- 1.20E+07									
Post	_											
Median 4,000-09 8,28E-07 2,14E+01 1,98E-07 1,11E-08 2,13E-01 1,98E-07 3,74E-06 1,90E-07 1,44E-01 1,70E-01	F_5											
Media			-									
Post												
P-value 4.24E-07 5.21E-12 5.22E-12 5.22	F_6											
Median 3.88E+01 2.58E+04 4.77E+04 1.64E+08 4.44E+00 2.71E+06 3.70E+06 3.70E+06 4.93E+07 1.32E+07 1.40E+08 2.71E+06 3.70E+06 3.70E+07			-		5.21E-12 ⁺	5.22E-12 ⁺			5.22E-12 ⁺			
Post					4.77E+04	1.64E+08			1.92E+07			
Postular	F_{7}											
Median S.34E-07 6.41E-07 3.57E-07 7.74E-07 2.48E-08 1.93E-07 1.33E-08 3.93E-07 4.26E-07 9.08E-07	,		3.31E+03									
Product										3.93E+07		
Devalue - - - - - - - - -	F_{\circ}											
Median 3,54E-07 5,07E-07 2,48E-07 1,28E-07 2,17E+07 1,30E-07 7,84E-07 3,05E-08 1,82E-08 4,91E-07 9,72E-08 1,91E-07 1,30E-07 1,30E-07 3,05E-08 1,82E-08 4,99E-07 3,05E-08 1,84E-08 4,99E-07 7,25E-06 1,83E-06 1,43E-06 2,44E-07 3,05E-07	- 8		5.16E+0/									
Mean 3,56E+07 2,53E+07 1,30E+07 2,18E+07 1,34E+07 2,25E+06 1,34E+07 3,54E+07 3,			3.54E+07		2.48E+07							
P-value	F.	Mean	3.56E+07	5.67E+07	2.53E+07	1.30E+07	2.18E+07	1.31E+07	7.29E+07	3.05E+08	1.84E+08	4.99E+07
Median G.20E+02 7.50E+03 2.52E+03 4.83E+03 9.43E+02 3.67E+03 3.91E+03 8.03E+03 2.99E+03 8.39E+03 8.06E+01 Std 2.91E+01 5.25E+01 3.13E+03 2.49E+02 8.00E+01 4.09E+02 6.10E+02 2.38E+02 1.07E+03 1.16E+02 7.07E+03 1.16E+04 1.07E+03 1.07E	1'9		3.19E+06									
Mean 6.19E+02 7.50E+03 4.54E+03 4.83E+03 8.09E+01 4.09E+02 4.09E+02 3.02E+11 3.			6 20F±02									
Std 2-91E+01 5.26E+01 3.13E+03 2.49E+02 8.00E+01 4.09E+02 6.10E+02 2.38E+02 1.07E+03 1.16E+02 1.07E+03 1.16E+02 1.07E+03 1.16E+02 1.07E+03 1.16E+02 1.07E+03 1.16E+02 1.07E+03 1.16E+02 1.07E+03 1.07E+03 1.07E+11 1.07E+04 1.0												
$F_{11} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	F_{10}		2.91E+01	5.26E+01	3.13E+03				6.10E+02	2.38E+02		
Mean 5.72E-01 4.59E-08 2.32E+00 1.59E-02 7.64E+00 2.50E+00 2.63E+00 2.			- 1 27E 12									
Product	-											
$F_{12} = \begin{bmatrix} \text{Median } & 8.85\text{E} + 03 & 2.50\text{E} + 05 & 3.05\text{E} + 04 & 1.42\text{E} + 04 & 4.22\text{E} + 04 & 1.66\text{E} + 04 & 1.66$	F_{11}											
$F_{12} = \begin{array}{c} \text{Mean} & 8.97\text{E}-03 & 2.51\text{E}+05 \\ \text{Std} & 1.01\text{E}+03 & 3.01\text{E}+04 & 1.47\text{E}+04 & 7.01\text{E}+04 & 1.02\text{E}+04 \\ \text{P-value} & 3.02\text{E}-11' & 3.02\text{E}-1$			-									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$F_{13} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	F_{12}											
Mean 6.73E+02 7.15E+02 1.91E+03 4.19E+02 4.17E+02 9.98E+03 1.70E+02 4.57E+03 3.08E+03 3.08E+04 4.81E+04 1.00E-03* 3.00E-11* 1.00E+08 3.00E-11* 1.00E+08* 3.00E-11* 1.00E+08* 3.00E-11* 1.00E+08* 3.00E-11* 1.00E+08* 3.00E-11* 1.00E+08* 3.00E+08* 3.00E+09*		p-value	-	3.02E-11 ⁺	1.46E-10+	1.60E-07 ⁺	3.02E-11 ⁺	3.02E-11	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11
Std 3.00E+02 4.02E+02 4.53E+03 1.20E+04 4.17E+02 9.98E+03 1.70E+02 4.57E+03 3.59E+03 3.81E+04 2.98E+04 2.02E+08 6.82E+07 2.42E+07 1.43E+08 7.63E+06 2.46E+08 7.68E+08 4.41E+08 2.69E+08 4.3E+08 2.69E+08 4.41E+08 2.69E+08 4.41E+08 2.69E+08 3.02E+11 3.02												
$F_{14} = \begin{bmatrix} P-value & 8.88E-01^{l} & 1.91E-01^{l} & 1.41E-04 & 1.00E-03^{*} & 3.02E-11^{*} & 1.60E-07^{*} & 4.50E-11^{*} & 1.46E-10^{*} & 3.02E-11^{*} \\ Median & 1.01E+08 & 2.02E+08 & 6.82E+07 & 2.42E+07 & 1.43E+08 & 7.63E+06 & 2.46E+08 & 7.69E+08 & 4.43E+08 & 2.69E+08 \\ Std & 6.21E+06 & 1.27E+07 & 7.80E+06 & 5.55E+06 & 1.09E+07 & 7.35E+06 & 2.18E+08 & 7.69E+08 & 4.43E+08 & 2.69E+08 \\ Std & 6.21E+06 & 1.27E+07 & 7.80E+06 & 5.55E+06 & 1.09E+07 & 1.49E+06 & 7.36E+07 & 7.01E+07 & 3.53E+07 & 2.24E+07 \\ P-value & - & 3.02E-11^{*} \\ Median & 6.03E+02 & 7.93E+03 & 8.94E+03 & 1.03E+04 & 1.98E+03 & 4.09E+03 & 8.38E+03 & 9.93E+03 & 7.64E+03 & 4.69E+03 \\ Std & 3.03E+01 & 5.39E+01 & 9.01E+01 & 3.02E+11^{*} & 3.02E-11^{*} & 3.02$	F_{13}											
$F_{14} = \begin{bmatrix} \text{Median} & 1.01 \text{E+08} & 2.02 \text{E+08} & 6.82 \text{E+07} & 2.42 \text{E+07} \\ \text{Mean} & 1.01 \text{E+08} & 2.04 \text{E+08} & 6.90 \text{E+07} & 2.55 \text{E+07} \\ \text{Std} & 6.21 \text{E+06} & 1.27 \text{E+07} & 7.80 \text{E+06} & 5.55 \text{E+06} \\ \text{D-value} & - & 3.02 \text{E+11} & 3.02 \text{E+11} & 3.02 \text{E+11} \\ \text{Sub} & 6.03 \text{E+02} & 7.93 \text{E+03} & 3.02 \text{E+11} \\ \text{Median} & 6.03 \text{E+02} & 7.92 \text{E+03} & 3.94 \text{E+103} & 1.03 \text{E+04} \\ \text{Mean} & 6.08 \text{E+02} & 7.92 \text{E+03} & 3.92 \text{E+11} \\ \text{Sub} & 3.02 \text{E+11} & 3.02 \text{E+11} & 3.02 \text{E+11} \\ \text{Mean} & 6.08 \text{E+02} & 7.92 \text{E+03} & 8.95 \text{E+03} & 1.03 \text{E+04} & 1.97 \text{E+03} \\ \text{Sub} & 3.30 \text{E+01} & 3.02 \text{E+11} & 3.02 \text{E+11} \\ \text{Sub} & 3.02 \text{E+11} & 3.02 \text{E+11} & 3.02 \text{E+11} \\ \text{Sub} & 3.02 \text{E+11} & 3.02 \text{E+11} & 3.02 \text{E+11} \\ \text{Sub} & 3.02 \text{E+11} & 3.02 \text{E+11} & 3.02 \text{E+11} \\ \text{Sub} & 3.02 \text{E+11} & 3.02 \text{E+11} \\ \text{Median} & 1.65 \text{E+13} & 6.05 \text{E+08} & 2.45 \text{E+01} & 3.18 \text{E+02} \\ \text{Sub} & 3.18 \text{E+02} & 3.15 \text{E+01} & 3.57 \text{E+00} \\ \text{Sub} & 3.79 \text{E+01} & 3.79 \text{E+01} & 3.127 \text{E+01} \\ \text{Sub} & 3.79 \text{E+01} & 3.27 \text{E+01} & 3.02 \text{E+11} \\ \text{Sub} & 3.79 \text{E+01} & 3.79 \text{E+01} & 3.02 \text{E+11} \\ \text{Mean} & 6.79 \text{E+04} & 1.66 \text{E+06} & 9.63 \text{E+04} & 7.99 \text{E+04} \\ \text{Mean} & 6.79 \text{E+04} & 1.66 \text{E+06} & 9.63 \text{E+04} & 7.99 \text{E+04} \\ \text{Mean} & 3.03 \text{E+01} & 2.32 \text{E+01} & 3.02 \text{E+11} \\ \text{Sub} & 3.03 \text{E+01} & 3.02 \text{E+11} \\ \text{Sub} & 3.03 \text{E+01} & 3.02 \text{E+11} & 3.02 \text{E+11} \\ \text{Sub} & 3.03 \text{E+01} & 3.02 \text{E+11} \\ \text{Sub} & 3.03 \text{E+01} & 3.02 \text{E+11} \\ \text{Median} & 1.67 \text{E+06} & 9.63 \text{E+04} & 3.18 \text{E+02} \\ \text{Sub} & 3.10 \text{E+01} & 3.02 \text{E+11} \\ \text{Sub} & 3.79 \text{E+00} & 5.32 \text{E+01} & 3.17 \text{E+02} \\ \text{Sub} & 3.79 \text{E+01} & 3.79 \text{E+01} \\ \text{Sub} & 3.39 \text{E+03} & 3.09 \text{E+11} & 3.02 \text{E+11} \\ \text{Sub} & 3.39 \text{E+03} & 3.09 \text{E+11} & 3.02 \text{E+11} \\ \text{Sub} & 3.03 \text{E+10} & 3.02 \text{E+11} \\ \text{Sub} & 3.03 \text{E+10} & 3.02 \text{E+11} \\ \text{Sub} & 3.03 \text{E+10} & 3.02 \text{E+11} $	10		- -									
P-14					6.82E+07	2.42E+07	1.43E+08		2.46E+08			
P-value	F_{14}											
Median M	14		0.21E+00		7.80E+00 3.02E-11							
$F_{16} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Median		7.93E+03	8.94E+03	1.03E+04	1.98E+03	4.09E+03	8.38E+03	9.93E+03	7.64E+03	4.69E+03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F_{15}									9.87E+03		
$F_{16} \begin{array}{c} \text{Median} & 1.65\text{E}-13 & 6.05\text{E}-08 & 2.54\text{E}+01 & 3.18\text{E}+02 & 3.15\text{E}+01 \\ \text{Mean} & 8.40\text{E}-01 & 6.10\text{E}-08 & 2.45\text{E}+01 & 3.18\text{E}+02 \\ \text{Std} & 1.13\text{E}+00 & 5.18\text{E}-09 & 1.13\text{E}+01 & 3.27\text{E}-01 \\ \text{p-value} & - & 3.79\text{E}-01^{2} & 2.94\text{E}-11^{2} & 2.94\text{E}-11^{2} \\ \text{p-value} & - & 3.79\text{E}-01^{2} & 2.94\text{E}-11^{2} & 2.94\text{E}-11^{2} \\ \text{p-value} & - & 3.79\text{E}-01^{2} & 2.94\text{E}-11^{2} & 2.94\text{E}-11^{2} \\ \text{p-value} & - & 3.79\text{E}-01^{2} & 2.94\text{E}-11^{2} & 2.94\text{E}-11^{2} \\ \text{Median} & 6.74\text{E}+04 & 1.66\text{E}+06 & 9.18\text{E}+04 & 7.99\text{E}+04 \\ \text{Mean} & 6.79\text{E}+04 & 1.67\text{E}+06 & 9.63\text{E}+04 & 1.30\text{E}+05 \\ \text{Std} & 3.93\text{E}+03 & 1.00\text{E}+05 & 2.00\text{E}+04 & 2.30\text{E}+05 \\ \text{p-value} & - & 3.02\text{E}-11^{2} & 2.23\text{E}-09^{2} & 1.70\text{E}-02^{2} \\ \text{Median} & 1.81\text{E}+03 & 1.16\text{E}+03 & 1.90\text{E}+03 & 1.25\text{E}+03 \\ \text{Std} & 6.09\text{E}+02 & 4.92\text{E}+02 & 6.62\text{E}+03 & 2.01\text{E}+03 \\ \text{Std} & 6.09\text{E}+02 & 4.92\text{E}+02 & 6.62\text{E}+03 & 2.01\text{E}+03 \\ \text{P-value} & - & 8.15\text{E}-05 & 2.64\text{E}-01^{2} & 1.49\text{E}-04^{2} \\ \text{P-value} & - & 8.15\text{E}-05 & 2.64\text{E}-01^{2} & 1.49\text{E}-04^{2} \\ \text{Median} & 1.17\text{E}+06 & 6.36\text{E}+06 & 3.74\text{E}+06 & 3.29\text{E}+03 & 2.01\text{E}+03 \\ \text{P-value} & - & 8.15\text{E}-05 & 2.64\text{E}-01^{2} & 1.49\text{E}-04^{2} \\ \text{Median} & 1.17\text{E}+06 & 6.36\text{E}+06 & 3.74\text{E}+06 \\ \text{P-value} & - & 8.15\text{E}-05 & 2.64\text{E}-01^{2} & 1.49\text{E}-04^{2} \\ \text{Mean} & 1.17\text{E}+06 & 6.36\text{E}+06 & 3.74\text{E}+06 \\ \text{Mean} & 1.17\text{E}+06 & 6.36\text{E}+06 & 3.74\text{E}+06 \\ \text{Std} & 6.36\text{E}+04 & 4.06\text{E}+05 & 3.29\text{E}+05 \\ \text{Std} & 6.36\text{E}+04 & 4.06\text{E}+05 & 3.29\text{E}+05 \\ \text{Mean} & 1.17\text{E}+06 & 6.31\text{E}+06 & 3.16\text{E}+05 & 3.29\text{E}+05 \\ \text{Std} & 6.36\text{E}+04 & 4.06\text{E}+05 & 3.29\text{E}+05 \\ \text{Std} & 6.36\text{E}+04 & 3.02\text{E}+11^{2} & 1.61\text{E}+05 \\ \text{Std} & 6.36\text{E}+03 & 3.02\text{E}+11^{2} & 1.61\text{E}+05 \\ \text{Std} & 6.36\text{E}+03 & 3.02\text{E}+11^{2} & 1.61\text{E}+05 \\ \text{Std} & 6.36\text{E}+03 & 1.03\text{E}+03 & 1.03\text{E}+03 & 1.09\text{E}+03 \\ \text{Mean} & 1.32\text{E}+03 & 3.02\text{E}+11^{2} & 3.02\text{E}+11^{2} & 3.02\text{E}+11^{2} \\ \text{Median} & 1.32\text{E}+03 & 3.62$	- 13		5.50E+01									
$F_{16} \begin{array}{c} \text{Mean} \\ \text{Std} \\ \text{I.13E+00} \\ \text{Std} \\ \text{I.13E+00} \\ \text{I.13E+00} \\ \text{S.18E-09} \\ \text{I.13E+01} \\ \text{I.16E+03} \\ \text{I.16E+03} \\ \text{I.16E+03} \\ \text{I.19E+04} \\ \text{I.16E+03} \\ \text{I.19E+04} \\ \text{I.19E+04} \\ \text{I.17E+06} \\ \text{I.19E+03} \\ \text{I.17E+06} \\ $			1.65E-13									
$F_{18} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F_{*} .	Mean	8.40E-01	6.10E-08	2.45E+01	3.18E+02	3.10E+01	2.38E+02	3.17E+02	5.32E+01	2.93E+02	5.81E-12
$F_{17} = \begin{bmatrix} \text{Median} & 6.74\text{E} + 04 & 1.66\text{E} + 06 & 9.18\text{E} + 04 & 7.99\text{E} + 04 & 6.49\text{E} + 04 & 3.62\text{E} + 01 & 1.10\text{E} + 05 & 2.17\text{E} + 05 & 2.53\text{E} + 05 & 3.04\text{E} + 04 \\ \text{Mean} & 6.79\text{E} + 04 & 1.67\text{E} + 06 & 9.63\text{E} + 04 & 1.30\text{E} + 05 & 6.46\text{E} + 04 \\ \text{Std} & 3.93\text{E} + 03 & 1.00\text{E} + 05 & 2.30\text{E} + 04 & 2.30\text{E} + 05 \\ \text{p-value} & - & \textbf{3.02}\text{E} - 11^+ & \textbf{2.23}\text{E} - 09^+ & 1.70\text{E} - 02^+ & 1.41\text{E} - 01^- \\ \text{Median} & 1.81\text{E} + 03 & 1.16\text{E} + 03 & 1.90\text{E} + 03 & 1.25\text{E} + 03 & 1.05\text{E} + 03 & 1.05\text{E} + 04 \\ \text{Std} & 6.09\text{E} + 02 & 1.37\text{E} + 03 & 1.90\text{E} + 03 & 1.25\text{E} + 03 & 1.05\text{E} + 03 & 1.58\text{E} + 04 & 5.25\text{E} + 03 & 1.06\text{E} + 09 \\ \text{Std} & 6.09\text{E} + 02 & 4.92\text{E} + 02 & 6.62\text{E} + 02 & 3.44\text{E} + 03 & 5.07\text{E} + 02 & 4.06\text{E} + 03 & 3.02\text{E} - 11^+ & \textbf{3.02}\text{E} - 11^+ \\ \text{Median} & 1.17\text{E} + 06 & 6.36\text{E} + 06 & 3.74\text{E} + 06 & 8.10\text{E} + 05 & 3.26\text{E} + 05 & 1.30\text{E} + 06 & 1.06\text{E} + 06 & 7.97\text{E} + 05 & 1.39\text{E} + 06 & 1.24\text{E} + 06 \\ \text{Std} & 5.63\text{E} + 04 & 4.06\text{E} + 05 & 6.28\text{E} + 05 & 1.45\text{E} + 05 & 2.38\text{E} + 04 & 1.08\text{E} + 05 & 3.02\text{E} - 11^+ & \textbf{3.02}\text{E} - 11^+ \\ \text{Median} & 1.32\text{E} + 03 & 3.02\text{E} - 11^+ & 3.02\text{E} - 11^+ & \textbf{5.77}\text{E} - 03^+ & \textbf{3.02}\text{E} - 11^+ & \textbf{3.02}\text{E} - 11^+ \\ \text{Median} & 1.17\text{E} + 06 & 6.36\text{E} + 06 & 3.74\text{E} + 06 & 8.10\text{E} + 05 & 3.26\text{E} + 05 & 1.30\text{E} + 06 & 1.06\text{E} + 06 & 7.97\text{E} + 05 & 1.39\text{E} + 06 & 1.24\text{E} + 06 & 1.2$	1 16		1.13E+00		1.13E+01	3.27E-01	1.34E+01	3.57E+00	5.18E-01	5.77E+00		
$F_{17} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			6.74E+04					3.62E+01		2.17E+05	2.53E+05	
$F_{18} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E											
$F_{18} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	r ₁₇			1.00E+05	2.00E+04	2.30E+05	7.78E+03	7.84E+00	3.77E+04	1.81E+04	2.76E+04	2.61E+03
$F_{18} \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 91E+02									
$F_{19} \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$											7.46E+03	
$F_{19} = \begin{bmatrix} \text{Median} & 1.17\text{E} + 06 & 6.36\text{E} + 06 & 3.74\text{E} + 06 & 8.10\text{E} + 05 & 3.26\text{E} + 05 & 1.30\text{E} + 06 & 1.06\text{E} + 06 & 7.94\text{E} + 05 & 1.38\text{E} + 06 & 1.24\text{E} + 106 & 1.24\text{E} + 1$	F_{18}								2.66E+02	1.15E+04	4.95E+03	
$F_{19} \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$			1 175 04							3.02E-11 ⁺		
$F_{20} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	_										1.38E+06 1.39F±06	
$F_{20} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	F_{19}			4.06E+05	6.28E+05						8.96E+04	
$F_{20} \begin{array}{ c c c c c c c c c c c c c c c c c c c$		p-value	-	3.02E-11 ⁺	3.02E-11 ⁺	1.61E-10	3.02E-11 ⁻	1.56E-08 ⁺	1.36E-07	3.02E-11	1.46E-10 ⁺	3.01E-04 ⁺
F 20 Std 2.49E+02 1.82E+02 2.04E+02 1.76E+02 1.19E+02 3.30E+01 2.19E+02 4.78E+02 5.32E+02 1.12E+09 p-value - 8.10E-10 ⁻ 8.07E-01 ⁻ 1.07E-07 ⁻ 4.44E-07 ⁻ 3.02E-11 ⁻ 4.12E-06 ⁺ 3.02E-11 ⁺ 3.50E-09 ⁺ 3.02E-11 ⁺				7.87E+02								
p-value - 8.10E-10 8.07E-01 1.07E-07 4.44E-07 3.02E-11 4.12E-06 3.02E-11 3.50E-09 3.02E-11	F_{20}											3.03E+09 1.12E+09
		p-value									3.50E-09 ⁺	
	w/l	l/t	-	13/4/3	13/4/3	12/6/2	12/6/2	13/7/0	18/2/0	18/1/1	18/1/1	17/2/1

TABLE SIX COMPARISON RESULTS OF THE COMPARED ALGORITHMS ON 2000-D CEC'2010 FUNCTIONS WITH 6×10^6 FITNESS EVALUATIONS.

unction	Quality	DHLSO	CSO 2.57F.11	SL-PSO	MOS	MA-SW-Chains	DMS-L-PSO	CCPSO2	DECC-G	MLCC 3.01F.16	DECC-L
	Median	1.73E-20	2.57E-11 2.63E-11	1.43E+08	0.00E+00	7.19E-20	2.03E+07	4.11E+00 2.81E+01	2.38E-09	3.01E-16	3.28E+0
F_1	Mean Std	1.75E-20 8.86E-22	2.53E-11 2.53E-12	1.40E+08 2.89E+07	3.09E-16 1.68E-15	1.01E-19 8.20E-20	2.16E+07 3.00E+06	5.09E+01	2.39E-09 4.62E-10	2.04E-15 8.41E-15	5.48E+0 5.59E+0
-	p-value	- 0.00E 22	3.02E-11 ⁺	3.02E-11 ⁺	7.50E-06 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-1
	Median	1.38E+03	5.20E+03	4.13E+03	3.72E-09	1.79E+03	1.36E+04	2.59E+01	2.30E+03	6.73E+00	1.22E+0
F_2	Mean	1.40E+03	5.31E+03	4.15E+03	1.79E+00	1.90E+03	1.37E+04	2.80E+01	2.30E+03	7.08E+00	1.22E+0
1 2	Std	5.17E+01	8.14E+02	1.75E+02	7.53E+00	3.20E+02	1.22E+03	8.99E+00	5.66E+01	3.32E+00	3.19E+0
	p-value Median	3.95E-14	3.02E-11 ⁺ 3.46E-09	3.02E-11 ⁺ 6.30E+00	3.01E-11 ⁻ 4.21E-13	3.02E-11 ⁺ 1.38E-08	3.02E-11 ⁺ 1.94E+01	3.02E-11 ⁻ 1.80E-02	3.02E-11 ⁺ 1.23E+00	3.02E-11 ⁻ 9.24E-13	3.02E-1 1.90E+0
_	Mean	3.93E-14 3.94E-14	3.46E-09	6.34E+00	5.84E-12	2.80E-08	1.94E+01 1.95E+01	1.78E-02	1.23E+00 1.23E+00	7.94E-02	1.90E+0
F_3	Std	6.49E-16	1.83E-10	3.24E-01	2.87E-11	6.45E-08	1.13E-01	7.77E-03	1.11E-01	3.02E-01	8.24E-0
	p-value	-	1.72E-12 ⁺	1.72E-12 ⁺	1.71E-12 ⁺	1.72E-12 ⁺	1.72E-12 ⁺	1.72E-12 ⁺	1.72E-12 ⁺	1.72E-12 ⁺	1.72E-1
	Median	3.80E+11	6.25E+11	2.32E+12	8.77E+11	2.91E+11	7.31E+11	1.88E+12	1.79E+13	1.89E+13	1.34E+
F_4	Mean	3.62E+11	6.29E+11	2.32E+12	8.90E+11	2.97E+11	7.34E+11	2.00E+12	1.94E+13	1.95E+13	1.35E+
- 4	Std	7.02E+10	8.73E+10 3.34E-11 ⁺	3.97E+11 3.02E-11 ⁺	2.34E+11 3.02E-11 ⁺	8.19E+10 1.95E-03 ⁻	8.13E+10 3.02E-11 ⁺	9.79E+11 3.02E-11 ⁺	6.32E+12 3.02E-11 ⁺	6.50E+12 3.02E-11 ⁺	3.34E+ 3.02E-1
	p-value Median	6.97E+06	4.98E+06	1.89E+07	4.62E+08	3.36E+07	9.85E+07	4.71E+08	2.27E+08	4.51E+08	1.49E+
	Mean	6.00E+06	4.62E+06	2.02E+07	4.69E+08	3.36E+07	9.64E+07	4.43E+08	2.73E+08	4.34E+08	1.51E+
F_5	Std	1.74E+06	1.54E+06	5.90E+06	6.20E+07	5.01E+06	1.19E+07	1.15E+08	1.08E+08	8.06E+07	2.62E +
	p-value	-	3.14E-02	3.00E-11+	3.01E-11 ⁺	3.01E-11 ⁺	3.01E-11 ⁺	3.01E-11 ⁺	3.01E-11 ⁺	3.01E-11 ⁺	3.01E-1
	Median	4.00E-09	2.16E-06	1.99E+01	1.97E+07	7.78E-06	1.94E+07	1.97E+07	8.85E+06	1.97E+07	1.94E+
F_6	Mean	4.00E-09	2.15E-06 4.66E-08	1.99E+01	1.96E+07	1.88E+05 5.10E+05	1.93E+07 2.29E+05	1.62E+07	9.30E+06	1.96E+07 4.34E+05	1.94E+
U	Std p-value	8.24E-14	3.00E-11 ⁺	2.33E-02 3.00E-11 ⁺	3.41E+05 3.00E-11 ⁺	3.10E+03 3.00E-11 ⁺	3.00E-11 ⁺	5.87E+06 3.00E-11 ⁺	3.84E+06 3.00E-11 ⁺	3.00E-11 ⁺	1.41E-0 3.00E-1
	Median	1.29E+01	3.39E+04	2.22E+08	4.40E+08	3.29E+01	6.93E+06	2.95E+06	1.29E+09	2.33E+08	1.64E+
E	Mean	1.17E+01	3.64E+04	2.45E+08	5.48E+08	3.67E+01	6.95E+06	1.20E+08	1.43E+09	3.09E+08	1.96E+
F_7	Std	5.74E+00	1.07E+04	1.05E+08	4.43E+08	1.56E+01	1.75E+05	3.20E+08	8.79E+08	2.32E+08	1.69E+
	p-value		3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	2.15E-10 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-1
	Median	2.61E+07	3.78E+07	4.81E+07	4.33E+07	2.37E+07	4.02E+07	1.23E+08	3.23E+07	3.65E+07	6.91E+
F_8	Mean Std	3.15E+07 2.11E+07	3.78E+07 6.02E+04	6.82E+07 3.49E+07	4.18E+07 3.33E+07	7.25E+08 1.77E+09	5.07E+07 2.61E+07	1.11E+08 5.27E+07	2.45E+07 1.43E+07	3.04E+07 1.19E+07	4.83E+ 3.13E+
0	p-value	2.11E±07	8.48E-09 ⁺	3.49E+07 3.20E-09 ⁺	4.12E-01=	8.65E-01=	5.46E-09 ⁺	5.60E-07 ⁺	4.29E-01=	1.06E-03	9.47E-(
	Median	1.05E+08	1.66E+08	1.61E+09	7.79E+07	7.49E+07	4.66E+07	1.56E+08	9.57E+08	5.07E+08	2.69E+
F_{9}	Mean	1.06E+08	1.67E+08	1.60E+09	7.40E+07	7.43E+07	4.33E+07	2.11E+08	9.68E+08	5.05E+08	2.76E+
1'9	Std	6.93E+06	7.57E+06	1.10E+08	2.31E+07	4.33E+06	1.04E+07	1.09E+08	6.63E+07	3.21E+07	5.02E+
	p-value	- 1.16F : 02	3.02E-11 ⁺	3.02E-11 ⁺	5.57E-10	3.02E-11	3.02E-11	7.39E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-1
	Median Mean	1.16E+03 1.16E+03	1.85E+04 1.85E+04	4.15E+03 4.27E+03	1.26E+04 1.25E+04	3.78E+03 3.75E+03	1.36E+04 1.43E+04	1.04E+04 1.06E+04	6.61E+03 6.58E+03	9.06E+03 8.71E+03	1.16E+ 1.16E+
F_{10}	Std	5.00E+01	1.61E+02	3.62E+02	2.88E+02	1.47E+02	1.78E+03	1.43E+03	1.87E+02	2.48E+03	2.91E+
-	p-value	- -	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-1
	Median	5.69E-13	1.21E-07	1.05E+02	3.97E+02	1.86E+01	3.82E+02	3.97E+02	6.83E+01	3.96E+02	1.78E+
F_{11}	Mean	5.72E-13	1.19E-07	1.06E+02	3.94E+02	1.81E+01	3.79E+02	3.97E+02	6.81E+01	3.96E+02	1.78E+
1.11	Std	2.10E-14	7.22E-09	9.55E+00	5.65E+00	5.58E+00	6.06E+00	4.67E-01	3.05E+00	8.02E-01	3.34E-
	p-value Median	1.13E+05	2.98E-11 ⁺ 4.41E+05	2.98E-11 ⁺ 1.37E+06	2.98E-11 ⁺ 1.16E+06	2.98E-11 ⁺ 2.46E+05	2.98E-11 ⁺ 1.33E+02	2.98E-11 ⁺	2.98E-11 ⁺ 3.28E+05	2.98E-11 ⁺	2.98E- 1
_	Mean	1.13E+05 1.12E+05	4.41E+03 4.39E+05	1.37E+06 1.38E+06	1.10E+06 1.00E+06	2.46E+05 2.43E+05	1.33E+02 1.20E+02	6.31E+04 8.01E+04	3.28E+03 3.29E+05	1.95E+05 1.94E+05	1.23E+ 1.26E+
F_{12}	Std	5.91E+03	1.21E+04	7.82E+04	4.88E+05	2.72E+04	3.78E+01	3.91E+04	2.11E+04	1.31E+04	1.80E+
	p-value	-	3.02E-11 ⁺	3.02E-11 ⁺	8.89E-10 ⁺	3.02E-11 ⁺	3.02E-11	5.55E-02=	3.02E-11 ⁺	3.02E-11 ⁺	8.15E-0
	Median	1.43E+03	1.53E+03	1.07E+07	1.60E+03	2.91E+03	3.11E+06	2.97E+03	1.95E+04	6.14E+03	1.87E+
F_{13}	Mean	1.48E+03	1.79E+03	1.07E+07	3.35E+03	2.99E+03	3.10E+06	3.19E+03	2.12E+04	8.82E+03	1.92E+
1 13	Std	3.13E+02	7.28E+02	2.53E+06	4.27E+03	8.43E+02	7.98E+04	8.37E+02	1.11E+04	6.44E+03	6.06E+
	p-value Median	2.89E+08	1.33E-01= 5.19E+08	3.02E-11 ⁺ 3.21E+09	6.97E-03 ⁺ 3.31E+08	1.78E-10 ⁺ 6.83E+08	3.02E-11 ⁺ 2.73E+07	3.02E-11 ⁺ 6.44E+08	3.02E-11 ⁺ 1.99E+09	3.02E-11 ⁺ 1.06E+09	3.02E- 1 6.38E+
_	Mean	2.89E+08		3.21E+09 3.35E+09	5.87E+08	6.87E+08	2.73E+07 2.70E+07		2.00E+09	1.06E+09 1.06E+09	6.42E+
F_{14}	Std	9.71E+06		5.69E+08	6.82E+08	3.32E+07	3.72E+06	3.24E+08	9.91E+07	5.07E+07	3.13E+
	p-value	-	3.02E-11 ⁺	3.02E-11 ⁺	1.58E-04 ⁺	3.02E-11 ⁺	3.02E-11 ⁻	4.80E-07 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-1
	Median	2.06E+04	2.02E+04	4.67E+03	2.63E+04	6.30E+03	1.42E+04	2.13E+04	1.16E+04	1.88E+04	1.17E+
F_{15}	Mean	2.06E+04	2.02E+04	4.86E+03	2.64E+04	6.31E+03	1.48E+04	2.19E+04	1.36E+04	1.84E+04	1.17E+
. 13	Std p-value	7.63E+01	8.04E+01 3.02E-11	5.25E+02 3.02E-11	3.92E+02 3.02E-11 ⁺	1.64E+02 3.02E-11	1.73E+03 3.02E-11	2.51E+03 3.78E-02 ⁺	5.20E+03 1.11E-06	4.84E+03 1.30E-01=	1.25E+ 3.02E-
	Median	8.79E-01	1.66E-07	3.02E-11 3.15E+02	7.94E+02	1.82E+02	7.62E+02	7.93E+02	1.59E+02	7.92E+02	9.65E-
E	Mean	8.51E-01	1.66E-07	3.17E+02	7.94E+02	1.85E+02	7.61E+02	7.93E+02	1.58E+02	7.88E+02	9.70E-
F_{16}	Std	9.79E-01	8.99E-09	1.32E+01	8.15E-01	2.59E+01	1.49E+01	6.70E-01	1.33E+01	2.14E+01	4.50E-
	p-value	-	6.63E-01=	2.99E-11 ⁺	2.99E-11 ⁺	2.99E-11 ⁺	2.99E-11 ⁺	2.99E-11 ⁺	2.99E-11 ⁺	2.99E-11 ⁺	6.63E-0
	Median	5.86E+05	2.60E+06	2.56E+06	3.56E+06	1.79E+05	2.71E+02	2.50E+05	8.77E+05	7.03E+05	8.57E+
F_{17}	Mean Std	5.83E+05 1.54E+04	2.62E+06 1.04E+05	2.62E+06 2.49E+05	3.50E+06 1.41E+05	2.95E+05 2.29E+05	1.83E+02 1.23E+02	2.61E+05 1.34E+05	8.79E+05 3.91E+04	7.03E+05 3.58E+04	8.61E+ 3.58E+
1/	p-value	1.34E+04 -	3.02E-11 ⁺	3.02E-11 ⁺	3.02E-11 ⁺	6.77E-05	3.02E-11	3.02E-11	3.91E+04 3.02E-11 ⁺	3.02E-11 ⁺	3.02E-
	Median	5.04E+03	4.77E+03	2.14E+09	4.15E+03	6.66E+03	6.78E+04	6.46E+03	5.55E+04	1.74E+04	7.02E+
$_{E}$	Mean	5.31E+03	5.22E+03	2.23E+09	7.16E+03	6.64E+03	6.99E+04	7.02E+03	5.48E+04	1.92E+04	6.79E+
F_{18}	Std	1.42E+03	2.34E+03	3.59E+08	6.56E+03	1.14E+03	1.45E+04	2.72E+03	1.43E+04	8.81E+03	9.67E+
	p-value	-	2.46E-01=	3.02E-11 ⁺	2.17E-01=	9.03E-04 ⁺	3.02E-11 ⁺	6.20E-04 ⁺	3.02E-11 ⁺	3.34E-11 ⁺	3.02E-1
	Median	2.77E+07	3.01E+07	1.04E+07	1.08E+07	2.03E+06	8.97E+06	4.41E+06	3.61E+06	6.08E+06	5.30E+
F_{19}	Mean Std	2.78E+07 1.53E+06	2.98E+07 1.70E+06	1.05E+07 5.27E+05	1.07E+07 1.02E+06	2.02E+06 7.88E+04	8.90E+06 7.84E+05	4.51E+06 3.40E+05	3.60E+06 1.24E+05	6.02E+06 3.12E+05	5.28E+ 2.10E+
r_{19}	p-value	1.55E+00	5.61E-05 ⁺	3.02E-11	3.02E+06	7.88E+04 3.02E-11	3.02E-11	3.40E+05 3.02E-11	3.02E-11	3.12E+05 3.02E-11	2.10E+ 3.02E-1
- 19	Pianuc	2.78E+03	2.09E+03	2.41E+09	2.95E+03	2.67E+03	3.26E+03	4.41E+03	8.16E+03	4.98E+03	1.65E+
- 19	Median										1.65E+
	Median Mean	2.79E+03	2.19E+03	2.54E+09	2.95E+03	2.73E+03	3.39E+03	4.50E+03	8.36E+03	4.94E+03	
F_{20}			2.19E+03 2.51E+02 7.12E-09	2.54E+09 5.03E+08 3.02E-11 ⁺	2.95E+03 1.55E+02 4.23E-03 ⁺	2.73E+03 1.89E+02 3.33E-01=	3.39E+03 4.80E+02 1.47E-07 +	4.50E+03 5.25E+02 3.02E-11 ⁺	8.36E+03 6.49E+02 3.02E-11 ⁺	4.94E+03 4.86E+02 3.02E-11 ⁺	1.37E+ 3.02E-1