EE224 Course Project

22b1219: Abhineet Agarwal

22b3958: Garima Gopalani

22b3966: Mrunali Banapatre

22b0305: Mitul Tandon

ADD

- 1. Fetch instruction and IP update. (S_1)
- 2. Understand and operand fetch. (S_2)
- $3.\quad \mathsf{Add}. \tag{S_3}$
- 4. Update result onto Register (S_4)
- 1. Fetch instruction and IP update. (S_1)

Fetch	Controls
-------	----------

IP —> Memory Address	Mem-Read
Memory Data —> IR	ADD 00_00
IP —> ALU-A	IR-W
+2> ALU-B	IP-W
ALU-C -> IP	

2. Understand and operand fetch. (S₂)

Fetch Controls

IR ₉₋₁₁ —>RF-A ₁	T₁-W
IR ₆₋₈ —> RF-A ₂	T ₂ -W
$RF-D_1 \longrightarrow T_1$	
RF-D ₂ > T ₂	

3. Add. (S₃)

Fetch Controls

T ₁ —>ALU-A	ADD 00_00
T ₂ > ALU-B	T ₃ -W
ALU-C —> T ₃	

4. Update result onto Register. (S₄)

T ₃ —>RF-D ₃	RF-W
IR ₃₋₅ > RF-A ₃	

SUB

- 1. Fetch instruction and IP update. (S₅)
- 2. Understand and operand fetch. (S_6)
- 3. Subtract. (S_7)
- 4. Update result onto Register (S_8)
- 1. Fetch instruction and IP update. (S₅)

Fetch Controls

. 5.5	001111.010
IP —> Memory Address	Mem-Read
Memory Data —> IR	ADD 00_00
IP —> ALU-A	IR-W
+2 —> ALU-B	IP-W
ALU-C> IP	

2. Understand and operand fetch. (S₆)

Fetch Controls

IR ₉₋₁₁ —>RF-A ₁	T₁-W
IR ₆₋₈ —> RF-A ₂	T ₂ -W
$RF-D_1 \longrightarrow T_1$	
RF-D ₂ > T ₂	

3. Subtract. (S₇)

Fetch Controls

T ₁ —>ALU-A	SUB 00_10
T ₂ > ALU-B	T ₃ -W
ALU-C —> T ₃	

4. Update result onto Register. (S₈)

T ₃ —>RF-D ₃	RF-W
IR ₃₋₅ > RF-A ₃	

MUL

- 1. Fetch instruction and IP update. (S_9)
- 2. Understand and operand fetch. (S_{10})
- 3. Multiply. (S_{11})
- 4. Update result onto Register (S_{12})
- 1. Fetch instruction and IP update. (S_9)

Fetch Controls

IP —> Memory Address	Mem-Read
Memory Data —> IR	ADD 00_00
IP —> ALU-A	IR-W
+2> ALU-B	IP-W
ALU-C -> IP	

2. Understand and operand fetch. (S_{10})

Fetch Controls

IR ₉₋₁₁ —>RF-A ₁	T₁-W
IR ₆₋₈ —> RF-A ₂	T ₂ -W
$RF-D_1 \longrightarrow T_1$	
RF-D ₂ > T ₂	

3. Multiply. (S_{11})

Fetch Controls

T ₁ —>ALU-A	MUL 00_11
T ₂ > ALU-B	T ₃ -W
ALU-C —> T ₃	

4. Update result onto Register. (S₁₂)

T ₃ —>RF-D ₃	RF-W
IR ₃₋₅ > RF-A ₃	

ADI

1.	Fetch instruction and IP update. (S ₁₃)	
2.	Understand and operand fetch. (S ₁₄)	
3.	Execute	(S ₁₅)

1. Fetch instruction and IP update. (S_{13})

4. Update result onto Register

Fetch	Controlo
Ferch	Controls

 (S_{16})

1 61611	00111010
IP —> Memory Address	Mem-Read
Memory Data —> IR	ADD 00_00
IP —> ALU-A	IR-W
+2> ALU-B	IP-W
ALU-C> IP	

2. Understand and operand fetch. (S_{14})

	0 1 1
Fetch	Controls

IR ₉₋₁₁ —>RF-A ₁	T₁-W
RF-D ₁ > T ₁	

3. Execute. (S_{15})

Fetch	Controls

T ₁ —> ALU-A	ADD 00_00
IR ₀₋₅ —> SE[6] —> ALU-B	T ₃ -W
ALU-C —> T ₃	

4. Update result onto Register. (S₁₆)

T ₃ > RF-D ₃	RF-W
IR ₆₋₈ —> RF-A ₃	

AND

- 1. Fetch instruction and IP update. (S₁₇)
- 2. Understand and operand fetch. (S_{18})
- 3. Execute logical AND. (S₁₉)
- 4. Update result onto Register (S₂₀)
- 1. Fetch instruction and IP update. (S₁₇)

Fetch	Controlo
Ferch	Controls

IP —> Memory Address	Mem-Read
Memory Data —> IR	ADD 00_00
IP —> ALU-A	IR-W
+2> ALU-B	IP-W
ALU-C -> IP	

2. Understand and operand fetch. (S_{18})

Fetch Controls

IR ₉₋₁₁ —>RF-A ₁	T₁-W
IR ₆₋₈ —> RF-A ₂	T ₂ -W
$RF-D_1 \longrightarrow T_1$	
RF-D ₂ > T ₂	

3. Execute logical AND. (S₁₉)

Fetch Controls

T ₁ —>ALU-A	AND 01_00
T ₂ > ALU-B	T ₃ -W
ALU-C —> T ₃	

4. Update result onto Register. (S₂₀)

T ₃ —>RF-D ₃	RF-W
IR ₃₋₅ > RF-A ₃	

ORA

- 1. Fetch instruction and IP update. (S_{21})
- 2. Understand and operand fetch. (S_{22})
- 3. Execute logical OR. (S_{23})
- 4. Update result onto Register (S₂₄)
- 1. Fetch instruction and IP update. (S_{21})

Fetch Controls

IP —> Memory Address	Mem-Read
Memory Data —> IR	ADD 00_00
IP —> ALU-A	IR-W
+2> ALU-B	IP-W
ALU-C -> IP	

2. Understand and operand fetch. (S_{22})

Fetch Controls

IR ₉₋₁₁ —>RF-A ₁	T₁-W
IR ₆₋₈ —> RF-A ₂	T ₂ -W
$RF-D_1 \longrightarrow T_1$	
RF-D ₂ > T ₂	

3. Execute. (S₂₃)

Fetch Controls

T ₁ —>ALU-A	ORA 01_01
T ₂ > ALU-B	T ₃ -W
ALU-C —> T ₃	

4. Update result onto Register. (S₂₄)

T ₃ —>RF-D ₃	RF-W
IR ₃₋₅ > RF-A ₃	

IMP

4	F-4-1-				(O)	
Ί.	retcn	instruction	and IP	update.	(525)	ì

Understand and operand fetch. (S₂₆)

3. Execute logical implication. (S_{27})

4. Update result onto Register (S₂₈)

1. Fetch instruction and IP update. (S₂₅)

Fetch Controls

IP —> Memory Address	Mem-Read
Memory Data —> IR	ADD 00_00
IP> ALU-A	IR-W
+2 —> ALU-B	IP-W
ALU-C> IP	

2. Understand and operand fetch. (S_{26})

Fetch Controls

1 01011	Control
IR ₉₋₁₁ —>RF-A ₁	T₁-W
IR ₆₋₈ —> RF-A ₂	T ₂ -W
$RF-D_1 \longrightarrow T_1$	
RF-D ₂ > T ₂	

3. Execute logical implication. (S₂₇)

Fetch Controls

T ₁ —>ALU-A	IMP 01_10
T ₂ > ALU-B	T ₃ -W
ALU-C —> T ₃	

4. Update result onto Register. (S₂₈)

T ₃ —>RF-D ₃	RF-W
IR ₃₋₅ > RF-A ₃	

<u>LHI</u>

2. Empty State.

1. Fetch instruction and IP update. (S_{29})

3. Executing left shift operation.4. Update result onto Register.

 (S_{30}) (S_{31})

 (S_{32})

Fetch	Controls	
IP —> Memory Address	Mem-Read	
Memory Data —> IR	ADD 00_00	
IP —> ALU-A	IR-W	
+2> ALU-B	IP-W	
ALU-C> IP		
2. Empty State. (S ₃₀)		
Fetch	Controls	
B. Execute. (S ₃₁)		
Fetch	Controls	
IR ₀₋₇ > SE[8]> ALU-A	LEFT SHIFT (8 bits)	
ALU-C> T ₃	T ₃ -W	
I. Update result onto Register. (S ₃₂)		
Fetch	Controls	
T ₃ —>RF-D ₃	RF-W	
IR ₉₋₁₁ > RF-A ₃		

 Fetch instruction and IP update. (S₃₃)
 Empty state. (S₆ (S_{34}) 3. Update result onto Register (S_{35}) 1. Fetch instruction and IP update. (S_{33}) Fetch Controls IP -> Memory Address Mem-Read Memory Data --> IR ADD 00_00 $IP \longrightarrow ALU-A$ IR-W +2 ---> ALU-B IP-W ALU-C -> IP 2. Empty state. (S₃₄) Fetch Controls 3. Update result onto Register. (S₃₅) Fetch Controls $IR_{0-7} \longrightarrow SE[8] \longrightarrow RF-D3$ RF-W IR₉₋₁₁ ---> RF-A₃

LW

1. Fetch instruction and IP update. (S₃₆)

Fetch	Controls
1 01011	001111010

IP —> Memory Address	Mem-Read
Memory Data —> IR	ADD 00_00
IP —> ALU-A	IR-W
+2> ALU-B	IP-W
ALU-C —> IP	

2. Understand and operand fetch. (S₃₇)

Fetch Controls

IR ₉₋₁₁ —>RF-A ₁	T ₁ -W
RF-D ₁ —> T ₁	

3. Compute Address [R_2 + IMM*2] (S_{38})

Fetch

T ₁ > ALU-A	ADD 00_00
IR ₀₋₅ —> SE[6] —> ALU-B	T ₃ -W
ALU-C —> T ₃	

Controls

4. Read Memory $M[R_2 + IMM*2]$ (S₃₉)

Fetch Controls

T ₃ —> Memory Address	Mem-Read
Memory Data —> T ₃	T ₃ -W

5. Update Register (R_1) (S_{40})

T ₃ > RF-D ₃	RF-W
IR ₆₋₈ > RF-A ₃	

SW

- 1. Fetch instruction and IP update. (S_{41})
- 2. Understand and operand fetch. (S_{42})
- 3. Compute address. (S_{43})
- 4. Write Memory. (S₄₄)
- 1. Fetch instruction and IP update. (S₄₁)

Fetch Controls

IP —> Memory Address	Mem-Read
Memory Data —> IR	ADD 00_00
IP —> ALU-A	IR-W
+2> ALU-B	IP-W
ALU-C —> IP	

2. Understand and operand fetch. (S_{42})

Fetch Controls

IR ₉₋₁₁ > RF-A ₁	T₁-W
IR ₆₋₈ —> RF-A ₂	T ₂ -W
$RF-D_1 \longrightarrow T_1$	
RF-D ₂ > T ₂	

3. Compute Address [R_2 + IMM*2] (S_{43})

Fetch Controls

T ₁ —> ALU-A	ADD 00_00
IR ₀₋₅ —> SE[6] —> ALU-B	T ₃ -W
ALU-C —> T ₃	

4. Write Memory. (S₄₄)

T ₃ —> Memory Address	Mem-Write
T ₂ —> Memory Data	

BEQ

1.	Fetch instruction	(S_{45})
2.	Understand and operand fetch	(S ₄₆)
3.	Compute if $(R_1-R_2) = 0$	(S ₄₇)
4.	Update Instruction pointer 1	(S_{48})
5.	Update Instruction pointer 2	(S ₅₇)

1. Fetch instruction.(S₄₅)

Fetch Controls

IP —> Memory Address	Mem-Read
Memory Data —> IR	IR-W

2. Understand and operand fetch. (S_{46})

Fetch Controls

IR ₉₋₁₁ —>RF-A ₁	T ₁ -W
IR ₆₋₈ —> RF-A ₂	T ₂ -W
$RF-D_1 \longrightarrow T_1$	
RF-D ₂ > T ₂	

3.Compute if $(R_1-R_2) = 0 (S_{47})$

Fetch Controls

T ₁ —>ALU-A	SUB 00_01
T ₂ —> ALU-B	Z-W
ALU-Z—> Z	

4.Update Instruction pointer 1. (S₄₈)

Fetch Controls

IP—>ALU-A	ADD 00_00
IR ₀₋₅ > SE6> ALU-B	T3_W
ALU-C> T3	

5. Update Instruction pointer 2. (S_{57})

IP—>ALU-A	ADD 00_00
	IP_W
+2> ALU-B	T1_W
ALU-C> T1	
If (Z==1) T3 -> IP	

	,
Else T1 —> IP	
<u>JAL</u>	
 Fetch instruction. Empty state Update current Instruction pointer onto Register Compute Instruction pointer. 	(S_{49}) (S_{50}) (S_{51}) (S_{52})
1. Fetch instruction (S ₄₉)	
Fetch	Controls
IP —> Memory Address	Mem-Read
Memory Data —> IR	IR-W
2. Empty state (S ₅₀)	
Fetch	Controls
3. Update current Instruction pointer onto Register(S ₅₁)	
Fetch	Controls
IP → RF-D ₃	RF-W
IR ₉₋₁₁ > RF-A ₃	
4. Compute Instruction pointer (S ₅₂)	
Fetch	Controls
IP —> ALU-A	ADD 00_00
IR ₀₋₈ > SE[9]> SHIFT LEFT> ALU-B	IP-W
ALU-C —> IP	

 Fetch instruction. (S₅₃) Empty state. (S₅₄) Update current Instruction pointer onto Register. (S₅₅) Update Instruction pointer. (S₅₆) 		
1. Fetch instruction. (S ₅₃)		
Fetch	Controls	
IP —> Memory Address	Mem-Read	
Memory Data —> IR	IR-W	
2. Empty state. (S ₅₄)		
Fetch	Controls	
3. Update current Instruction pointer onto Register(S ₅₅)		
Fetch	Controls	
IP> RF-D ₃	RF-W	
IR ₉₋₁₁ > RF-A ₃		
4. Update Instruction pointer (S ₅₆)		
Fetch	Controls	
IR ₆₋₈ —> RF-A2	IP-W	
RF-D ₂ > IP		

ADD / SUB / MUL / LOGICAL_AND / LOGICAL_OR / LOGICAL_IMP

ADD_IMM / LOAD / STORE / BEQ

LLI

LHI

JUMP AND LINK

JUMP AND LINK TO REG

Grouping of equivalent states

```
M_1\!\!:\, S_1,\, S_5,\, S_9,\, S_{13},\, S_{17},\, S_{21},\, S_{25},\, S_{29},\, S_{33},\, S_{36},\, S_{41}.
M_2: S_2, \, S_6, \, S_{10}, \, S_{14}, \, S_{18}, \, S_{22}, \, S_{26}, \, S_{30}, \, S_{34}, \, S_{37}, \, S_{42}, \, S_{46}, \, S_{50}, \, S_{54}.
M_3: S_3, S_7, S_{11}, S_{19}, S_{23}, S_{27}.
M_4 \!\!:\, S_4,\, S_8,\, S_{12},\, S_{16},\, S_{20},\, S_{24},\, S_{28},\, S_{32},\, S_{40}.
M_5: S_{15}, S_{38}, S_{42}.
M_6: S_{45}, S_{49}, S_{53}.
M_7: S_{31}.
M<sub>8</sub>: S<sub>35</sub>.
M<sub>9</sub>: S<sub>39</sub>.
M_{10}: S_{44}.
M<sub>11</sub>: S<sub>47</sub>.
M<sub>12</sub>: S<sub>48</sub>.
M_{13}: S_{51}, S_{55}.
M_{14}: S_{52}.
M_{15}: S_{56}.
M_{16} = S_{57}
```


Final Circuit

MUX mappings

ADD: S₁ s=0 g=0 k=10 j=0000 IR_W=1 IP_W=1 h=101 k=00 i=010 I=00 q=10 S_2 $T_1W=1$ $T_2_W=1$ IR₉₋₁₁=RF_A₁ IR_{6-8} = RF_A_2 a=111 b=111 e=000 f=001 S_3 p=0 m=0 j=0000 $T_3_W=1$ q=01

S_4

RF_W=1

d=010

n=00

IR₃₋₅=RF_A₃

SUB:

S₅ g=0 k=10 j=0000 IR_W=1 IP_W=1 h=101 k=00

i=010

I=00

q=10 s=0

 S_6

 $T_1W=1$

T₂_W=1

IR₉₋₁₁=RF_A₁

 IR_{6-8} = RF_A_2

a=111

b=111

e=000

f=001

 S_7

p=0

m=0

j=0010

 T_3 _W=1

q=01

 S_8

RF_W=1

d=010

n=00

IR₃₋₅=RF_A₃

MUL

 S_9

g=0

k=10

j=0000

IR_W=1

IP_W=1

h=101

k=00

i=010

I=00

q=10

s=0

S₁₀

 $T_1W=1$

T₂_W=1

IR₉₋₁₁=RF_A₁

 IR_{6-8} =RF_A₂

a=111

b=111

e=000

f=001

p=0 m=0 j=0011 T₃_W=1 q=01 S₁₂ RF_W=1

RF_W=1 d=010 n=00 IR₃₋₅=RF_A₃

ADI

S₁₃ g=0 k=10 j=0000 IR_W=1 IP_W=1 h=101 k=00 i=010 I=00 q=10

 S_{14} $T_1_W=1$ $IR_{9-11}=RF_A_1$

s=0

 S_{15} h=110 $IR_{0.5}$ =SE i=100 q=01 j=0000 T_{3} _W=1 r=10

S₁₆ n=00 d=011 RF_W=1 IR₆₋₈=RF_A₃ c=111

AND

S₁₇ g=0 k=10 j=0000 IR_W=1 IP_W=1 h=101 k=00 i=010 I=00

q=10

s=0

 S_{18} T_{1} W=1 T_{2} W=1 IR_{9-11} =RF_A₁ IR_{6-8} =RF_A₂ a=111 b=111

e=000

f=001

 S_{19} p=0 m=0 j=0100 $T_3_W=1$ q=01

 S_{20} RF_W=1 d=010 n=00 IR₃₋₅=RF_A₃

ORA

 S_{21} g=0 k=10 j=0000 IR_W=1 IP_W=1 h=101 k=00 i=010

l=00 q=10

s=0

 S_{22} T_{1} W=1 T_{2} W=1 IR_{9-11} =RF_A₁

 $IR_{6-8}=RF_A_2$ a=111 b=111 e=000f=001

 S_{23} p=0 m=0 j=0101 T_3 _W=1 q=01

 S_{24} RF_W=1 d=010 n=00 IR_{3.5}=RF_A₃

IMP

S₂₅ g=0 k=10 j=0000 IR_W=1 IP_W=1 h=101 k=00 i=010 I=00 q=10 s=0

 S_{26} T_{1} _W=1 T_{2} _W=1 IR_{9-11} =RF_A₁ IR_{6-8} =RF_A₂ a=111 b=111

 S_{27} p=0 m=0 j=0110 T_3 _W=1 q=01

S₂₈ RF_W=1 d=010

```
n=00
IR_{3-5}=RF_A<sub>3</sub>
LHI
S_{29}
g=0
k=10
j=0000
IR_W=1
IP_W=1
h=101
k=00
i=010
I=00
q=10
s=0
S_{30}
S<sub>31</sub>
IR<sub>0-7</sub>=SE
                               when j=1111, ALU executes a LEFT_SHIFT (8 bits) operation
h=100
q=01
m=0
T_3_W=1
r=01
S<sub>32</sub>
n=00
RF_W=1
d=011
IR_{9-11} = RF_A_3
c=111
LLI
S_{33}
g=0
k=10
j=0000
IR_W=1
IP_W=1
h=101
k=00
i=010
I=00
q=10
s=0
```

 S_{34}

```
S_{35}
IR<sub>0-7</sub>=SE
                                   when j=1111, ALU executes a LEFT_SHIFT (8 bits) operation
r=11
RF_W=1
IR<sub>9-11</sub>=RF_A<sub>3</sub>
c=111
LW
S_{36}
g=0
k=10
j=0000
IR W=1
IP_W=1
h=101
k=00
i=010
I=00
q=10
s=0
S_{37}
S<sub>14</sub>
T_1W=1
IR<sub>9-11</sub>=RF_A<sub>1</sub>
S_{38}
h=110
T_{3}W=1
j=0000
IR_{0-5}=SE
i=110
r=10
q=01
m=0
S_{39}
T_3_W=1
n=01
g=0
m=1
S_{40}
n=00
RF_W=1
d=011
IR_{9-11} = RF_A_3
c=111
```

SW

 S_{41}

g=0

k=10

j=0000

IR_W=1

IP_W=1

h=101

k=00

i=010

I=00

q=10

s=0

 S_{42}

 $T_1W=1$

T₂_W=1

 IR_{9-11} = RF_A_1

IR₆₋₈=RF_A₂

a=111

b=111

e=000

f=001

 S_{43}

h=110

j=0000

 T_3 _W=1

IR₀₋₅=SE

i=100

r=10

q=01

m=0

S₄₄

g=1

n=01

p=1

s=1

BEQ

 S_{45}

s=0

g=0

IR_W=1

 S_{46}

T₁_W=1

T₂_W=1

IR₉₋₁₁=RF_A₁

IR₆₋₈=RF_A₂ a=111

b=111

 S_{47}

h=110

i=111

p=0

Z_W=1

j=0001

e=000

f=001

 S_{48}

h=101

k=00

IR₀₋₅=SE

i=100

r=10

q=01

m=0

j=0000

 T_3 _W=1

 S_{57}

k=00

h=101

i=011

q=00

t=1

IP_W=1

 $T_1W=1$

j=0000

if(Z==1)

n=10

I=100

else

u=1

I=001

JLA

S₄₉

s=0

g=0

IR_W=1

 S_{50}

 S_{51}

k=11

d=100

RF_W=1

```
IR_{9-11}=RF\_A_3 c=111
```

 S_{52}

k=00

h=100

j=0000

IP_W=1

IR₀₋₈=SE

r=00

i=101

q=10

I=000

JLR

 S_{53}

s=0

g=0

IR_W=1

 S_{54}

 S_{55}

k=11

d=100

RF_W=1

 $IR_{9\text{-}11}\text{=}RF_A_3$

c=111

 S_{56}

IR₆₋₈=RF_A₂

b=111

IP_W=1

f=111