

Robotics 2

Adaptive Trajectory Control

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Motivation and approach

- need of adaptation in robot motion control laws
 - large uncertainty on the robot dynamic parameters
 - poor knowledge of the inertial payload
- characteristics of direct adaptive control
 - direct aim is to bring to zero the state trajectory error, i.e., position and velocity errors
 - no need to estimate on-line the true values of the dynamic coefficients of the robot (as opposed to indirect adaptive control)
- main tool and methodology
 - linear parametrization of robot dynamics
 - nonlinear control law of the dynamic type (the controller has its own 'states')

Summary of robot parameters

- parameters assumed to be known
 - kinematic description based, e.g., on Denavit-Hartenberg parameters $\{\{\alpha_i, d_i, a_i, i = 1, ..., N\}$ in case of all revolute joints), including link lengths (kinematic calibration)
- uncertain parameters that can be identified off-line
 - masses m_i , positions r_{ci} of CoMs, and inertia matrices I_i of each link, appearing in combinations (dynamic coefficients) $\Rightarrow p \ll 10 \times N$
- parameters that are (slowly) varying during operation
 - viscous F_{Vi} , dry F_{Di} , and stiction F_{Si} friction at each joint $\Rightarrow 1 \div 3 \times N$
- unknown and abruptly changing parameters
 - mass, CoM, inertia matrix of the payload (w.r.t. the tool center point)

when a payload is firmly attached to the robot E-E, only the 10 parameters of the last link are modified, influencing however most part of the robot dynamics

Goal of adaptive control

- given a twice-differentiable desired joint trajectory $q_d(t)$
 - with known desired velocity $\dot{q}_d(t)$ and acceleration $\ddot{q}_d(t)$
 - possibly obtained by kinematic inversion + joint interpolation
- execute this trajectory under large dynamic uncertainties
 - with a trajectory tracking error vanishing asymptotically

$$e = q_d - q \longrightarrow 0$$
 $\dot{e} = \dot{q}_d - \dot{q} \longrightarrow 0$

- guaranteeing global stability, no matter how far are the initial estimates of the unknown/uncertain parameters from their true values and how large is the initial trajectory error
- identification is not of particular concern: in general, the estimates of dynamic coefficients will not converge to the true ones!
- if this convergence is a specific extra requirement, then one should use (more complex) indirect adaptive schemes

Linear parameterization

$$M(q)\ddot{q} + S(q,\dot{q})\dot{q} + g(q) + F_V\dot{q} = u$$

• there exists always a (p-dimensional) vector a of dynamic coefficients, so that the robot model takes the linear form

$$Y(q, \dot{q}, \ddot{q}) a = u$$

- vector a contains only unknown or uncertain coefficients
- each component of α is in general a combination of the robot physical parameters (not necessarily all of them)
- the model regression matrix Y depends linearly on \ddot{q} , quadratically on \dot{q} (for the terms related to kinetic energy), and nonlinearly (trigonometrically) on q

Trajectory controllers

based on model estimates

inverse dynamics feedforward (FFW) + PD (linear) control

$$u = \underbrace{\hat{M}(q_d)\ddot{q}_d + \hat{S}(q_d, \dot{q}_d)\dot{q}_d + \hat{g}(q_d) + \hat{F}_V\dot{q}_d}_{\hat{u}_d} + K_P e + K_D \dot{e}$$

(nonlinear) control based on feedback linearization (FBL)

$$u = \widehat{M}(q)(\ddot{q}_d + K_P e + K_D \dot{e}) + \widehat{S}(q, \dot{q})\dot{q} + \widehat{g}(q) + \widehat{F}_V \dot{q}$$

$$\widehat{M}, \widehat{S}, \widehat{g}, \widehat{F}_V \iff \text{estimate } \widehat{a}$$

- approximate estimates of dynamic coefficients may lead to instability with FBL due to temporary 'non-positive' PD gains (e.g., $\widehat{M}(q)K_P < 0!$)
- not easy to turn these laws in adaptive schemes: inertia inversion/use of acceleration (FBL); bounds on PD gains (FFW)

A control law more easily made 'adaptive'

 nonlinear trajectory tracking control (without cancellations) having global asymptotic stabilization properties

$$u = \widehat{M}(q)\ddot{q}_d + \widehat{S}(q,\dot{q})\dot{q}_d + \widehat{g}(q) + \widehat{F}_V\dot{q}_d + K_Pe + K_D\dot{e}$$

a natural adaptive version would require ...

$$\dot{\hat{a}} = \frac{\text{designing a suitable update law}}{\text{(in continuous time)}}$$

- without extra assumptions, it can be shown that joint velocities become eventually "clamped" to those of the desired trajectory (zero velocity error), but a residual position error may be left
- idea: on-line modification with a reference velocity

$$\dot{q}_d \longrightarrow \left| \dot{q}_r = \dot{q}_d + \Lambda(q_d - q) \right| \qquad \Lambda > 0$$

typically, $\Lambda = K_D^{-1}K_P$ (all matrices will be chosen diagonal)

STONE STONE

Intuitive interpretation of \dot{q}_r

- elementary case
 - a mass 'lagging behind' a mobile reference (e > 0) at constant speed

 \Rightarrow 'enhanced' velocity error $s = \dot{q}_r - \dot{q} > \dot{q}_d - \dot{q} = \dot{e}$

$$u = K_D s = K_D (\dot{q}_r - \dot{q}) = K_D (\dot{q}_d + \Lambda e - \dot{q}) = K_D \dot{e} + K_D \Lambda e$$

$$K_D$$

- a mass 'leading in front' of its mobile reference (e < 0)
- \implies in a symmetric way, a 'reduced' velocity error will appear ($s < \dot{e}$)

Adaptive control law design

• substituting $\dot{q}_r = \dot{q}_d + \Lambda e$, $\ddot{q}_r = \ddot{q}_d + \Lambda \dot{e}$ in the previous nonlinear controller for trajectory tracking

$$u = \widehat{M}(q)\ddot{q}_r + \widehat{S}(q,\dot{q})\dot{q}_r + \widehat{g}(q) + \widehat{F}_V\dot{q}_r + K_Pe + K_D\dot{e}$$

= $Y(q,\dot{q},\dot{q}_r,\ddot{q}_r)\hat{a} + K_Pe + K_D\dot{e}$

dynamic parameterization of PD stabilization the control law using current estimates (diagonal matrices, >0) (note here the 4 arguments in $Y(\cdot)$!)

• update law for the estimates of the dynamic coefficients (\hat{a} becomes the p-dimensional state of the dynamic controller)

$$\dot{\hat{a}} = \Gamma Y^T(q, \dot{q}, \dot{q}_r, \ddot{q}_r)(\dot{q}_r - \dot{q})$$
 $\Gamma > 0$ (diagonal) estimation gains (variation rate of estimates)

'modified' velocity error

Theorem

The introduced adaptive controller makes the tracking error along the desired trajectory globally asymptotically stable

$$e = q_d - q \longrightarrow 0, \ \dot{e} = \dot{q}_d - \dot{q} \longrightarrow 0$$

Proof

a Lyapunov candidate for the closed-loop system (robot + dynamic controller) is given by

$$V = \frac{1}{2}s^{T}M(q)s + \frac{1}{2}e^{T}Re + \frac{1}{2}\tilde{a}^{T}\Gamma^{-1}\tilde{a} \ge 0$$

$$s = \dot{q}_r - \dot{q} \ (= \dot{e} + \Lambda e)$$
 $R > 0$ $\tilde{a} = a - \hat{a}$

$$\tilde{a} = a - \hat{a}$$

modified velocity error

(to be specified later)

constant matrix error in parametric estimation

$$V = 0 \iff \hat{a} = a, \quad q = q_d, \quad s = 0 \quad (\Rightarrow \dot{q} = \dot{q}_d)$$

Proof (cont)

the time derivative of V is

$$\dot{V} = \frac{1}{2} s^T \dot{M}(q) s + s^T M(q) \dot{s} + e^T R \dot{e} - \tilde{a}^T \Gamma^{-1} \dot{\hat{a}}$$

since
$$\dot{\tilde{a}} = -\dot{\hat{a}}$$
 ($\dot{a} = 0$)

the closed-loop dynamics is given by

$$M(q)\ddot{q} + S(q,\dot{q})\dot{q} + g(q) + F_{V}\dot{q} =$$

$$= \widehat{M}(q)\ddot{q}_{r} + \widehat{S}(q,\dot{q})\dot{q}_{r} + \widehat{g}(q) + \widehat{F}_{V}\dot{q}_{r} + K_{P}e + K_{D}\dot{e}$$

subtracting the two sides from $M(q)\ddot{q}_r + S(q,\dot{q})\dot{q}_r + g(q) + F_V\dot{q}_r$ leads to

$$\begin{split} M(q)\dot{s} + (S(q,\dot{q}) + F_V)s &= \\ &= \widetilde{M}(q)\ddot{q}_r + \widetilde{S}(q,\dot{q})\dot{q}_r + \widetilde{g}(q) + \widetilde{F}_V\dot{q}_r - K_Pe - K_D\dot{e} \end{split}$$
 with $\widetilde{M} = M - \widehat{M}$, $\widetilde{S} = S - \hat{S}$, $\widetilde{g} = g - \hat{g}$, $\widetilde{F}_V = F_V - \widehat{F}_V$

SA TON MARINE

Proof (cont)

from the property of linearity in the dynamic coefficients, it follows

$$M(q)\dot{s} + (S(q,\dot{q}) + F_V)s = Y(q,\dot{q},\dot{q}_r,\ddot{q}_r)\tilde{a} - K_P e - K_D \dot{e}$$

• substituting in \dot{V} , together with $\hat{a} = \Gamma Y^T s$, and using the skew-symmetry of matrix $\dot{M} - 2S$ we obtain

$$\dot{V} = \frac{1}{2} s^{T} [\dot{M}(q) - 2S(q, \dot{q})] s - s^{T} F_{V} s + s^{T} Y \tilde{a}$$

$$-s^{T} (K_{P} e + K_{D} \dot{e}) + e^{T} R \dot{e} - \tilde{a}^{T} Y^{T} s$$

$$= -s^{T} F_{V} s - s^{T} (K_{P} e + K_{D} \dot{e}) + e^{T} R \dot{e}$$

• replacing $s = \dot{e} + \Lambda e$ and being $F_V = F_V^T$ (diagonal)

$$\dot{V} = -e^T (\Lambda^T F_V \Lambda + \Lambda^T K_P) e$$

a complete $-e^T(2\Lambda^TF_V+\Lambda^TK_D+K_P-R)\dot{e}-\dot{e}^T(F_V+K_D)\dot{e}$ quadratic form in $e,\dot{e}!$

Proof (end)

defining now (all matrices are diagonal!)

$$\Lambda = K_D^{-1} K_P > 0$$
 $R = 2K_P (I + K_D^{-1} F_V) > 0$

cancels the cross-term in $e^T(...)\dot{e}$ and leads to

$$\dot{V} = -e^{T} \Lambda^{T} (F_{V} + K_{D}) \Lambda e - \dot{e}^{T} (F_{V} + K_{D}) \dot{e}$$

$$= -e^{T} K_{P} K_{D}^{-1} (F_{V} + K_{D}) K_{D}^{-1} K_{P} e - \dot{e}^{T} (F_{V} + K_{D}) \dot{e} \leq 0$$

and thus

$$\dot{V} = 0 \iff e = \dot{e} = 0$$

the thesis follows from Barbalat lemma + LaSalle theorem

the maximal invariant set of states $\subseteq \{\dot{V} = 0\}$ has zero trajectory error $(e = \dot{e} = 0)$ and a constant value for \hat{a} , not necessarily the true one $(\tilde{a} \neq 0)$

Remarks

- if the desired trajectory $q_d(t)$ is persistently exciting, then also the estimates of the dynamic coefficients converge to their true values
- condition of persistent excitation
 - for linear systems: # of frequency components in the desired trajectory should be at least twice as large as # of unknown coefficients
 - for nonlinear systems: the condition can be checked only a posteriori
 (a squared motion integral should always be positive bounded from below)
- in case of known absence of (viscous) friction ($F_V \equiv 0$), the same proof applies (a bit easier in the final part)
- the adaptive controller does not require the inverse of the inertia matrix (true or estimated), nor the actual robot acceleration (only the desired acceleration), nor further lower bounds on $K_P > 0$, $K_D > 0$
- adaptation can also be used only for a subset of dynamic coefficients, with the others being known ($Ya = Y_{adapt} \hat{a}_{adapt} + Y_{known} a_{known}$)
- the non-adaptive version (using accurate estimates) is a static
 tracking controller based on the passivity property of robot dynamics

model $I\ddot{\theta} + mg_0 d \sin \theta + f_V \dot{\theta} = u$ (with friction)

linear parameterization

$$Y(\theta, \dot{\theta}, \ddot{\theta})a = \begin{bmatrix} \ddot{\theta} & \sin \theta & \dot{\theta} \end{bmatrix} \begin{bmatrix} I \\ mg_0 d \\ f_V \end{bmatrix} = u$$

adaptive controller

$$e = \theta_d - \theta_{\Lambda > 0}$$

$$\dot{\theta}_r = \dot{\theta}_d + \frac{k_P}{k_D} e$$

$$\gamma_i > 0, i = 1, 2, 3$$

$$e = \theta_d - \theta_{A>0}$$

$$\dot{\theta}_r = \dot{\theta}_d + \frac{k_P}{k_D} e$$

$$\dot{\hat{q}}_r = \dot{\theta}_d + \frac{k_P}{k_D} e$$

$$\dot{\hat{q}}_r = 0, i = 1,2,3$$

$$u = \hat{I} \ddot{\theta}_r + \widehat{mg_0} d \sin \theta + \widehat{f_V} \dot{\theta}_r + k_P e + k_D \dot{e}$$

$$\dot{\hat{q}}_r = (\hat{I} \ddot{\theta}_r) + (\hat{I}$$

real dynamic coefficients

$$I = 7.5, \qquad mg_0 d = 6, \qquad f_V = 1$$

initial estimates

$$\widehat{I} = 5$$
, $\widehat{mg_0d} = 5$, $\widehat{f_V} = 2$

control parameters

$$k_P = 25$$
, $k_D = 10$, $\gamma_i = 5$, $i = 1,2,3$

- test trajectories (starting with $\theta(0) = 0$, $\dot{\theta}(0) = 0$)
 - first

$$\theta_d(t) = -\sin t$$

second

Note: same test trajectories used also for robust control

$$\ddot{\theta}_d(t)$$
 = (periodic) bang-bang acceleration profile with $A=1 \text{ rad/s}^2, \ \omega=1 \text{ rad/s}$

Results first trajectory

note the nonlinear system dynamics (no sinusoidal regime at steady state!)

position and velocity errors

control torque

$$\theta_d(t) = -\sin t$$

Results second trajectory

position and velocity errors

control torque

$$\ddot{\theta}_d(t)$$
 = (periodic) bang-bang acceleration profile

STOOL MARK

Estimates of dynamic coefficients

errors
$$\tilde{a} = a - \hat{a}$$

first trajectory

only the estimate of the viscous friction coefficient converges to the true value

second trajectory

all three estimates of dynamic coefficients converge to their true values

A special case: Adaptive regulation

- ullet adaptation in case q_d is constant
- no special simplifications for the presented adaptive control law (designed for the general tracking case...)

$$u = \widehat{M}(q)\ddot{q}_r + \widehat{S}(q,\dot{q})\dot{q}_r + \widehat{g}(q) + \widehat{F}_v\dot{q}_r + K_Pe + K_D\dot{e}$$

$$\dot{\widehat{a}} = \Gamma Y^T(q,\dot{q},\dot{q}_r,\ddot{q}_r)(\dot{q}_r - \dot{q})$$

since $\dot{q}_r = \Lambda(q_d - q)$ and $\ddot{q}_r = -\Lambda \dot{q}$ do not vanish!

 a different case would be the availability of an adaptive version of the trajectory tracking controller

$$u = \widehat{M}(q)\ddot{q}_{d} + \widehat{S}(q,\dot{q})\dot{q}_{d} + \widehat{g}(q) + \widehat{F}_{v}\dot{q}_{d} + K_{P}e + K_{D}\dot{e}$$

since, when q_d collapses to a constant, only the adaptation of the gravity term would be left over (which is what one would naturally expect...)

An efficient adaptive regulator

use a linear parameterization of the gravity term only

$$g(q) = G(q)a_g$$

with a p_g -dimensional vector a_g

• an adaptive regulator yielding global asymptotic stability of the equilibrium state $(q_d, 0)$ is provided by

$$u = G(q)\hat{a}_{g} + K_{P}(q_{d} - q) - K_{D}\dot{q}$$

$$\dot{\hat{a}}_{g} = \gamma G^{T}(q) \left(\frac{2e}{1 + 2||e||^{2}} - \beta \dot{q}\right), \qquad \gamma > 0$$

where $e=q_d-q$, $K_P>0$, $K_D>0$ (symmetric), and $\beta>0$ is chosen sufficiently large

(see paper by P. Tomei, IEEE TRA, 1991; available as extra material on the course web)

An adaptive regulator

Sketch of asymptotic stability analysis

use the function

$$V = \frac{\beta}{2} (\dot{q}^T M(q) \dot{q} + e^T K_P e) - \frac{2 \dot{q}^T M(q) e}{1 + 2||e||^2} + \frac{1}{2} (\hat{a}_g - a_g)^T (\hat{a}_g - a_g)$$

ullet a sufficient condition for V to be a Lyapunov candidate is that

$$\beta > \frac{2M_M}{\sqrt{M_m K_{P,m}}}$$

a sufficient condition which guarantees also that

is
$$\dot{V} = \dots \le -a\|e\|^2 - b\|\dot{q}\|^2 \le 0, \qquad a > 0, b > 0$$

$$\beta > \max\left\{\frac{2M_M}{\sqrt{M_m K_{P,m}}}, \frac{1}{K_{D,m}}\left(\frac{K_{D,m}^2}{2K_{P,m}} + 4M_M + \frac{\alpha_S}{\sqrt{2}}\right)\right\}$$

Note: for any symmetric, positive definite matrix *A*

$$\begin{array}{l} A_{M} = \lambda_{\max}(A) = \sqrt{\lambda_{\max}(A^{T}A)} = \|A\| \\ A_{m} = \lambda_{\min}(A) \end{array} \quad \text{and thus, e.g., } \frac{1}{2} \, \dot{q}^{T} M(q) \dot{q} \geq \frac{1}{2} M_{m} \|\dot{q}\|^{2} \end{array}$$