Renewable

태양광발전 발전량 예측 기반 ESS 운영 방안 제공 서비스

Context

01

Problem & Solution

아이디어 선정배경 태양광 발전사업과 ESS 시스템 아이디어 목표 02

Methodolgy

Process
Dataset
Data Imputation
Modeling

03

Application

Flow Chart DEMO

04

Benefit

기대효과 서비스 적용 효과 시스템의 발전 방향 스마트 그리드와 서비스

Problem & Solution

1. 아이디어 선정 배경

그린뉴딜과제 재생에너지 3020

그린뉴딜 수혜로 올해 가장 큰 성장이 예상되는 신재생에너지원

ESS 화재사고 원인·안전대책

에너지저장장치(ESS): 생산된 전기를 배터리에 저장했다가 필요할 때 내보내는 장치

<mark>안정적</mark>이고 <mark>경제적</mark>인 태양발전-ESS 연계 방안?

2. 태양광 발전사업과 ESS 시스템

태양광 발전사업

- SMP
 - : 한국전력 판매가, 계통한계가격
- REC
 - : RPS(신재생에너지 의무할당제)로 얻는 추가 이익

태양광 연계 ESS

	공급인증서		대상에너지 및 기준			
구분	가	중치	HAIDN	UHZIZ		
	기존	변경	설치유형	세부기준		
	1,2	1.2		100kW미만		
	1.0	1.0	일반부지에 설치하는 경우	100kW부터		
	0.7	0.8 (†)		3,000kW초과부터		
	0.7	0.5 (1)	임야에 설치하는 경우	-		
	1,5	1.4 (↓)	건축물 등	300kW 이하 100kW미만 (신설)		
태양광	1.5	1.2 (↓)	기존 시설 물을 이용하는 경우	100kW부터 (신설)		
에너지	1,0	1.0		3,000kW초과부터		
	1,5	1.6 (1)	유지 등의	100kW미만 (신설)		
	1.5	1.4 (1)	수면에 부유하여	100kW부터 (신설)		
	1,5	1.2 (↓)	설치하는 경우	3,000kW초과부터 (신설)		
	1,0	1.0	자가용 발전설비를 통	해 전력을 거래하는 경우		
	5,0	- (1)	ESS 설비	2018년 · 2020,06,30,		
	4.0	- (↓)	(태양광설비 연계)	2020.07.01. 2020.12.31.		

3. 아이디어 목표

" 태양광발전 발전량 예측 기반 ESS 운영 방안 제공 서비스"

- 지역별 태양광 발전데이터와 날씨데이터(온도, 습도, 일사량, 풍속) 등을 수집하여 인공지능 기반으로 발전량 예측
- 태양광 발전 예측 데이터 기반 최적 ESS 운영방안 제시

Methodolgy 1. Process

Methodolgy 2. Dataset

사용 기간 : 2017.06.01 ~ 2021.06.30

데이터 출저	사용 데이터	데이터 설명		
************************************	부산복합자재창고 태양광 발전	부산복합자재창고 태양광 발전 시간별 생산량 및 판매량		
Tかる Korea Meteorological Administration	단기예보 Open API	부산 기준 발표한 단기예보 데이터		
Kバル 한국천문연구원 Korea Astronomy & Space Science Institute	태양 고도 정보	위치 기반 태양 고도 데이터		

Methodolgy

2. Dataset

6
기상청

데이터	데이터 설명
기온	3시간 단위의 예보 데이터, 선형보간법 진행
풍 속, 풍향	3시간 단위의 예보 데이터, 선형보간법 진행
하늘 상태	3시간 단위의 예보 데이터(1 : 맑음, 3 : 구름많음, 4 : 흐림) → OneHotencoder
강수확률	3시간 단위의 예보 데이터, 선형보간법 진행
습도	3시간 단위의 예보 데이터, 선형보간법 진행

발표시각	발표시각		최저기온			최고기온	
(UTC)	(KST)	오늘	내일	모레	오늘	내일	모레
17	2	0	0		0	0	
20	5		0	0	0	0	0
23	8		0	0	0	0	0
2	11		0	0	0	0	0
5	14		0	0		0	0
8	17		0	0		0	0
11	20		0	0		0	0
14	23		0	0		0	0

- 6시간 강수량/적설의 발표시간별 저장되는 예보자료 시간
- 6시간 강수량/적설의 처음 예보자료는 발표시간+1시간부터 그 다음 6시간/12시간/18시간/24시간/30시간까지의 강수량임.

HLTT (17)	MLTT LLDI		6시간 강수/적설										
발표시각 (UTC)	발표시각 (KST)	오늘				내일				모레			
(010)	(NoI)	오전		오후		오전		오후		오전		오후	
17	2	0	0	0	0	0	0	0	0				
20	5		0	0	0	0	0	0	0	0	0	0	0
23	8		0	0	0	0	0	0	0	0	0	0	0
2	11			0	0	0	0	0	0	0	0	0	0
5	14			0	0	0	0	0	0	0	0	0	0
8	17				0	0	0	0	0	0	0	0	0
11	20				0	0	0	0	0	0	0	0	0
14	23					0	0	0	0	0	0	0	0

Methodolgy

2. Dataset

	데이터	데이터 설명
한국남부발전	태양광 발전량	시간별 태양광 발전량 데이터
ΚΛ <mark>ζ</mark> Ι	태양의 남중고도	년월일 기준 태양의 남중고도 위치(9시, 12, 15시 18시 기준)

- 검색 내용 2021년 7월 14일 태양의 고도 및 방위각 변화
- **현재 지역** 서울특별시
- **현재 위치** 동경 126도 58분 1초 / 북위 37도 32분 59초

2021년 7월 14일 태양의 고도 및 방위각 변화 서울특별시

$$egin{align} \sin\phi_{
m s} &= rac{-\sin h \cos \delta}{\sin heta_{
m s}} \ \delta_\odot &= -23.44^\circ \cdot \cos \left[rac{360^\circ}{365} \cdot (N+10)
ight] \end{aligned}$$

 $\cos \theta_s = \sin \alpha_s = \sin \Phi \sin \delta + \cos \Phi \cos \delta \cos h$

where

- $heta_s$ is the solar zenith angle
- $lpha_s$ is the solar elevation angle, $lpha_s$ = 90° $heta_s$
- h is the hour angle, in the local solar time.
- δ is the current declination of the Sun
- Φ is the local latitude

3. Data Imputation

3시간 간격의 예보 데이터 전처리 진행 → 선형보간법으로 예보별 Nan값 처리

- (1) 선형보간법으로 태양의 위치 Nan값 추정
- (2) 수리적 계산 방법으로 태양의 위치 계산

발표시각	발표시각		최저기온			최고기온	
(UTC)	(KST)	오늘	내일	모레	오늘	내일	모레
17	2	0	0		0	0	
20	5		0	0	0	0	0
23	8		0	0	0	0	0
2	11		0	0	0	0	0
5	14		0	0		0	0
8	17		0	0		0	0
11	20		0	0		0	0
14	23		0	0		0	0

- 6시간 강수량/적설의 발표시간별 저장되는 예보자료 시간
- · 6시간 강수량/적설의 처음 예보자료는 발표시간+1시간부터 그 다음 6시간/12시간/18시간/24시간/30시간까지의 강수량임.

HL T 1131	HI = 1131		6시간 강수/적설										
발표시각 (UTC)	발표시각 (KST)		오	늘	늘		내일				모레		
(010)	(NoT)	오	전	오	후	오	전	오	후	오	전	오	후
17	2	0	0	0	0	0	0	0	0				
20	5		0	0	0	0	0	0	0	0	0	0	0
23	8		0	0	0	0	0	0	0	0	0	0	0
2	11			0	0	0	0	0	0	0	0	0	0
5	14			0	0	0	0	0	0	0	0	0	0
8	17				0	0	0	0	0	0	0	0	0
11	20				0	0	0	0	0	0	0	0	0
14	23					0	0	0	0	0	0	0	0

Methodolgy

3. Data Imputation

Methodolgy
4. Modeling

Parameter Optimization

Argument	Model 1	Model 2	Argument	Model 3
Model	SVM	GBR	Model	DNN – FFNN
Parameter	C = 800 Epsilon = 0.1	n-estimator = 300	Parameter	Hidden Layer = 1
Max_Score	78%	78%	Max_Score	59%
			Hidden Layer1	300
			Epochs	100
			batch_size	32
			Optimizer	Adam

Methodolgy 4. Modeling

1. Flow Chart

기본 정보

- 태양광 발전량 = 140 kW
- 배터리 충전량 = 700 kWh
- SOC 기준 = 80%

시간	예측값	누적합			
0					
1					
2					
3					
4					
5					
6					
7	5.04	5.04			
8	31.68	36.72			
9	ESS 저징	+ I HIH			
10	L33 A 0	102.00			
11	122.16	305.04			
12	133.44	438.48			
13	135.6	574.08			
14	127.2	701.28			
15	114.96	816.24			
16	95.52	▷∨ 판매 🔣			
17	65.76	977.52			
18	32.16	1009.68			
19	8.64	1018.32			
20	0.96	1019.28			
21					
22					
23					

2.DEMO (Click) See in Youtube

Benefit 1. 기대효과

소규모 전력 중개사업자에게 필수 기술 발전용 예측제도 등록시험 통과 및 정산금 기대 태양광에너지 연계 ESS 발전사업자 수익 향상 국가적으로는 신규발전소의 건립 감소 효과

전력 계통 운영자 입장 어려운 예비전력 확보 비용 문제 해결 발전용 예측제도 시험 심사 및 정산 기준 평가 기술로 활용 전력수요 예측 기술 및 가상발전소 기술로서 확장 가능

가장 효율적인 시간대별 태양광 발전과 국가 전력망을 조합 각 소비자 그룹에 최적화된 공급계획 수립 미세먼지 등 환경개선과 발전소 운영에 따른 위험요인 제거

Benefit

2. 서비스 적용 효과

01. 발전량 예측제도

대상: 소규모 전력중개사업자

참여조건

현재

: 1개월 동안 평균 예측 오차율 10%

이하 시험통과

정산기준: 주 2회 예측 오차율 8%

정산금: 주 3회 3~4원/kWh

02. RPS 제도

REC 가중치

- PV + ESS: 4

- 단독 PV: 0.7 ~ 1.5

03. RPS 제도 (개정안)

REC 가중치

- 충전율 안전조치 미이행: 0 충전율 안전조치: 충전율 제한조치 (옥내 80%, 옥외 90%)를 의무화, 충전율 안전조치 이행 시 일반인 출 입여부 따른 방전량의 8%, 3% 가산

서비스 적용 소규모 전력중개사업자의 설비용량 20MW 기준 연간 **1억원 수익** 발생

태양광 발전사업자 설비용량 1MW 기준 PV+ESS 단독 PV 발전보다 연간 **9천만원 수익** 발생

태양광 발전사업자 1MW 기준 안전조치 이행시 1.2억원 수익 발생 충전율 안전조치 미이행시 발생되는 일간 165만원 손실 방지

Benefit

3. 시스템의 발전 방향

태양광 발전 시스템 연동

ESS 연동을 통한 IoT 시스템 구현

다양한 신재생에너지의 발전량 예측

추가적인 모델 적용을 통한 정확도 향상

Benefit

4. 스마트그리드와 서비스

* Application Flow

