EPITA

Mathématiques

Partiel (S3)

décembre 2018

Nom:
Prénom :
Entourer le nom de votre professeur de TD : Mme BOUDIN/M. GORON/M. RODOT
Classe:
NOTE:

2

.

Exercice 1 (5 points)

Soient
$$A = \begin{pmatrix} -1 & 2 & 1 \\ 2 & -1 & -1 \\ -4 & 4 & 3 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 & -1 \\ -3 & 4 & -3 \\ -1 & 1 & 0 \end{pmatrix}$.

A et B sont-elles diagonalisables dans $\mathcal{M}_3(\mathbb{R})$? Si oui, déterminer D et P.

N.B. : l'obtention des sous-espaces propres sous forme de sous-espaces engendrés doit découler d'un raisonnement clair et non pas d'une manière hasardeuse en prenant directement des valeurs particulières.

[suite du cedre page suivante]

1	

Exercice 2 (3 points)

Soient $a \in \mathbb{R}$ et $A = \left(\begin{array}{ccc} 3-a & -5+a & a \\ -a & a-2 & a \\ 5 & -5 & -2 \end{array} \right)$.

Discuter de la diagonalisabilité de A dans $\mathcal{M}_3(\mathbb{R})$ suivant les valeurs de a.

 ${\rm N.B.}$: la diagonalisation dans les cas favorables n'est pas demandée.

1. Soit $f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ (u,v,w) & \longmapsto & (2u-w;3u+v+2w) \end{array} \right.$

Déterminer la matrice de f relativement aux bases canoniques des espaces de départ et d'arrivée.

2. Soient $E = \mathbb{R}_2[X]$ et $f: \left\{ \begin{array}{ccc} E & \longrightarrow & E \\ P(X) & \longmapsto & 2P(X+1) + P(X-1) - 2P(X) \end{array} \right.$

Déterminer la matrice de f relativement à la base canonique $(1, X, X^2)$ de $\mathbb{R}_2[X]$.

Exercice 4 (4 points)

Soient E, F deux \mathbb{R} -ev, $f \in \mathcal{L}(E,F)$ et $X=(x_1,\ldots,x_n)$ est une famille de vecteurs de E. Montrer que

1. $f(\operatorname{Vect}(X)) = \operatorname{Vect}(f(X))$.

2. $[f \text{ surjective et Vect}(X) = E] \Longrightarrow \text{Vect}(f(X)) = F.$

3. $[f \text{ injective et } X \text{ libre}] \Longrightarrow f(X) \text{ libre.}$

Exercice 5 (3 points)

1. Montrer que tout polynôme de degré impair à coefficients réels admet au moins une racine réelle.

a. Soit $\lambda \in \operatorname{Sp}_{\mathbb{R}}(A)$. Montrer que $\lambda^2 + \lambda + 1 = 0$.						
b. Montrer qu'une matrice $A \in \mathscr{M}_3(\mathbb{R})$ ne peut pas vérifier l'équation	(*).					
	,				-	
ercice 6 (2 points)		1	1	1 a_1 a_2 \cdots		
		b_1	b_2	$a_1 \\ a_2$		
nt $n \in \mathbb{N}^*$, $(a_1, \ldots, a_n) \in \mathbb{R}^n$ et $(b_1, \ldots, b_n) \in \mathbb{R}^n$. Calculer le déterminant d	'ordre $n+1:\Delta_n=$:	÷	٠	٠.,	
] ;	; L		٠.,	٠٠. ا
		01	02	•••	•••	o_n