2	bellflower (Centropogon granulosus, Campanulaceae) and
2	bennower (Centropogon granutosus, Campanulaceae) and
3	pollination by Buff-tailed Sicklebill (Eutoxeres condamini)
4	
5	Note: All data and scripts used in this study have been deposited in the Dryad Digital Repository
6	(https://)
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	

Supplementary Materials for: Floral development in an Andean

Phenological modeling

- 20 To model flowering phenology of *C. granulosus*, we fit the following linear model to the rate of
- 21 anthesis and senescence for each inflorescence that produced at least five flowers (n = 6 controls,
- n = 5 pollinator excluded):

$$23 n_i = \beta_0 + \beta_1 * days + \epsilon$$

- Where n_i is the cumulative number of flowers produced on an inflorescence at days=i, β_0
- 25 is the intercept, β_1 is the flowering rate, and ϵ is the residual error.

To determine if pollinator exclusion affected the total number of flowers produced, we fit

the linear model:

$$n_{total} = \beta_0 + \beta_1 * treatment + \epsilon$$

Where β_0 is the intercept, β_1 is a coefficient, and ϵ is the residual error.

31

26

19

- To test for differences in male/female phase duration between treatments, we fit a separate
- mixed-effects model for each phase in 1merTest v.3.1-3 (Kuznetsova et al., 2017):

$$n = \beta_0 + \beta_1 * treatment + U_i + \epsilon$$

- Where n is the duration of the specified phase, U_i is the individual specific random effect,
- and all other variables are as above. T-values were approximated using the Welch–Satterthwaite
- 37 method and Cohen's standardized effect (f) was calculated in effectsize v.0.4.4 (Ben-Shachar
- 38 et al., 2020).

Figure S1. Fused anther hairs forming a scale and serving as a lever to deposit pollen (red arrow). This individual has finished the male phase and is in transition to the female phase — the stigma will continue to extend past the scale and unfold when receptive (white arrow).

46 Figure S2. Wire cages used to exclude avian visitors from accessing the nectaries of C.

47 granulosus. Further details on the design can be found in Sun et al. (2017).

Figure S3. Still frames extracted from a video recording of E. condamini pollinating C. granulosus. A: The hummingbird approaches and inspects an inflorescence without any open flowers. B: A second inflorescence with an open flower is approached. C: To insert its bill, E. condamini hovers below the flower opening and tilts its head backwards. D: During feeding, its head is at eye-level with the corolla opening and the anther/stigma is in contact with the crown.

Figure S4. A long-nosed bat (Glossophaginae) recorded near an inflorescence of C. granulosus with several developing berries.

61 Figure S5. A murid (Muridae, bottom left) recorded near an inflorescence of C. granulosus (top

left) with several developing berries.

65 Figure S6. Evidence of frugivory of a C. granulosus berry.

Figure S7. Herbivory of a C. granulosus flower by a larval lepidoptran.

Figure S8. An anthophilid collecting pollen from an anther scale of C. granulosus.

Figure S9. Inflorescence of C. granulosus with a multitude of peduncle scars (red arrow)
suggestive of an extended flowering peak.

Figure S10. Flowering rate in C. granulosus. The x-axis represents the number of days elapsed since the first flower opened. The y-axis counts the cumulative number of flowers opened since t=0, not the number of flowers open simultaneously.

Figure S11. Flowering rates in C. granulosus are constant, and not affected by pollinator exclusion.

Figure S12. The duration of male and female phases of flowering in C. granulosus are not affected by pollinator exclusion.

91 Figure S13. Buff-tailed Sicklebill visiting Heliconia aemygdiana Burle-Marx, and using the

92 floral bract as a perch during feeding.

90

Table S1: Locations in San Pedro monitored for Sicklebill visitation to C. granulosus. The first column lists the C. granulosus individual identifiers.

name	latitude	longitude	elevation
CNTRPGN 1-10	-13.05684	-71.54469	1306.706
CNTRPGN 11	-13.05603	-71.54515	1301.995
CNTRPGN 12-15	-13.05928	-71.54773	1381.661
CNTRPGN 16-20	-13.05900	-71.54666	1323.870
CNTRPGN 21-23	-13.05921	-71.54690	1330.937
CNTRPGN 24-32	-13.05932	-71.54778	1345.147
CNTRPGN 33-41	-13.05821	-71.54805	1359.792
CNTRPGN 42	-13.05720	-71.54699	1370.250
CNTRPGN 43-50	-13.05728	-71.54672	1368.063
CNTRPGN 51-53	-13.05563	-71.54676	1358.099
CNTRPGN 54-60	-13.05696	-71.54784	1398.831

Stage	Description	Consensus duration (days)
A	Flower primordia appears above bracts. No curvature and	28
	red-orange pigmentation is not continuous around the base.	
	Flower up to 9 mm tall (as measured from the top of the	
	bracts). Basal diameter up to 4 mm.	
B1	Initiation of curvature, creating 90 degree angle. Red-	21
	orange pigmentation is continuous around the base. Flower	
	up to 10 mm tall. Basal diameter up to 6 mm.	
B2	Growth phase. 180 degree angle formed. Red-orange	
	pigmentation outweighs yellow. Flower 14 to 20 mm tall.	
	Basal diameter 6 - 8 mm.	
В3	Pre-anthesis. >180 degree angle formed. Flower 30 mm tall.	
	Basal diameter 7 - 8 mm.	
C1	Anthesis. Mature male-phase flower. Flower 34 -36 mm	8
	tall. Basal diameter 7 - 8 mm.	
C2	Female-phase flower. Pistil grows overtop of the pollen	
	trap. Flower up to 36 mm tall. Basal diameter up to 10 mm.	
D1	Senescing flower. Petals wilting but retained. Basal	27
	diameter 8 - 10 mm.	
D2	Berry development. Petals senesced and lost. Basal	

diameter grows from 11 - 17 mm.

Table S3: Camera trap records of E. condamini.

Date	Time of	Feeding	Temperature	Centropogon	Flower
observed	day	mode	(Celsius)	ID	ID
Aug_18_2017	12:36	hovering	19	1	1
Aug_22_2017	10:38	hovering	21	1	1
Aug_22_2017	10:38	hovering	21	1	2
Aug_22_2017	15:54	hovering	20	1	1
Aug_22_2017	10:39	hovering	20	2	1
Aug_23_2017	10:24	hovering	19	1	2
Aug_24_2017	7:17	perching	17	1	1
Aug_24_2017	7:17	hovering	17	1	2
Aug_25_2017	16:27	inspecting	19	3	NA
Aug_26_2017	5:52	hovering	15	4	1
Sep_15_2017	5:24	hovering	16	5	1
Sep_16_2017	5:56	inspecting	15	5	NA
Sep_19_2017	5:36	perching	14	5	2
Sep_19_2017	7:15	perching	16	6	1

101 Table S4: Camera trap records of S. geofryii.

Date	Time of	Feeding		Centropogon	Flower
observed	day	mode	Temperature (Celsius)	ID	ID
Sep_11_2017	9:58	hovering	20	7	1
Sep_11_2017	13:03	hovering	22	7	1
Sep_11_2017	13:55	hovering	23	7	1
Sep_11_2017	15:01	hovering	23	7	1
Sep_11_2017	16:11	hovering	22	7	1
Sep_14_2017	10:44	hovering	21	7	2
Sep_14_2017	11:42	hovering	22	7	2
Sep_14_2017	13:10	hovering	21	7	2
Sep_14_2017	14:32	hovering	21	7	2
Sep_14_2017	16:54	hovering	21	7	2

References

103	Ben-Shachar, M.S., Lüdecke, D., and Makowski, D. (2020). effectsize: Estimation of effect size
104	indices and standardized parameters. Journal of Open Source Software 5, 2815–2892.
105	Kuznetsova, A., Brockhoff, P.B., and Christensen, R.H.B. (2017). lmerTest package: Tests in
106	linear mixed effects models. Journal of Statistical Software 82, 1–26.
107	Sun, SG., Huang, ZH., Chen, ZB., and Huang, SQ. (2017). Nectar properties and the role
108	of sunbirds as pollinators of the golden-flowered tea Camellia petelotii. American Journal
109	of Botany 104, 468–476.