Politechnika wrocławska Wydział Elektroniki, Fotoniki i Mikrosystemów Projektowanie Algorytmów i Metody Sztucznej Inteligencji Automatyka i Robotyka

Projekt 2

Autor: Jakub Jankowiak Nr. indeksu: 258965

Grupa: Y03-51a, Pn 15:15

Prowadzący: Mgr inż. Marta Emirajsłow

Spis treści

1	Wprowadzenie	2
	Cel ćwiczenia	
	Algorytm Dijkstry	
	3.1 Teoria	
	3.2 Złożoność obliczeniowa	2
4	Efektywność	3
	4.1 Tabele pomiarowe	3
	4.2 Wykresy	3
5	Wnioski	6
6	Bibliografia	6

1 Wprowadzenie

Grafy to powszechnie stosowane struktury danych, których używa się między innymi do modelowania różnego rodzaju układów i sieci. Składają się one z wierzchołków i krawędzi. Są one reprezentowane w pamięci na dwa sposoby, za pomocą macierzy jak i listy sąsiedztwa. Posiadają one również różne algorytmy.

2 Cel ćwiczenia

Celem ćwiczenia jest zbadnie algorymu Dijkstry, a konkretnie jego efektywności. Badanie to zostanie dokonane poprzez zmierzenie czasu działania pracy programu przy różnych iościach wierzchołków oraz gęstości grafu.

3 Algorytm Dijkstry

3.1 Teoria

Służy on do znajdowania najkrótszej ścieżki z pojedynczego źródła w grafie o nieujemnych wagach krawędzi. Mając dany graf z wyróżnionym wierzchołkiem (źródłem) algorytm znajduje odległości od źródła do wszystkich pozostałych wierzchołków. Z algorytmu Dijkstry można skorzystać przy obliczaniu najkrótszej drogi do danej miejscowości. Wystarczy przyjąć, że każdy z punktów skrzyżowań dróg to jeden z wierzchołków grafu, a odległości między punktami to wagi krawędzi.

Rysunek 1: Działanie algorytmu Dijstry

3.2 Złożoność obliczeniowa

Złożoność obliczeniowa zależy od liczby wierzchołków(V) i krawędzi grafu(E). Dzielimy ją na czasową i pamięciową. Rozpatrywane są także przypadki, oczekiwany inaczej średni oraz pesymistyczny. Oczekiwany to taki gdzie określony jest sposób uśredniania wszystkich przypadków. Pesymistyczny to taki gdzie rozpatruje się przypadki najgorsze, jego złożoność pamięciowa to O(E+VlogV).

4 Efektywność

4.1 Tabele pomiarowe

Costośś	Ilość wierzchołków					
Gęstość	100	200	500	1000	2000	
25%	5,0239	19,984	136,632	511,876	1923,39	
50%	5,9841	20,947	141,614	520,228	2088,88	
75%	6,0345	22,9414	147,111	579,824	2446,62	
100%	6,9827	23,9843	150,789	614,404	2744,83	

Rysunek 2: Tabela pomiarowa dla macierzy sąsiedztwa

Gostość	Ilość wierzchołków					
Gęstość	100	200	500	1000	2000	
25%	4,986	17,9872	143,661	780,644	4673,26	
50%	4,9899	27,9276	202,706	1768,94	8516,22	
75%	7,9832	38,9476	315,448	2723,54	12684,6	
100%	9,0108	48,9135	505,572	3920,96	16558,4	

Rysunek 3: Tabela pomiarowa dla listy sąsiedztwa

4.2 Wykresy

Rysunek 4: Wykres dla macierzy sąsiedztwa

Rysunek 5: Wykres dla listy sąsiedztwa

Rysunek 6: Prównanie czasu działania dla macierzy i listy sąsiedztwa

Rysunek 7: Porównanie czasu działania dla macierzy i listy sąsiedztwa

Rysunek 8: Porównanie czasu działania dla macierzy i listy sąsiedztwa

Rysunek 9: Porównanie czasu działania dla macierzy i listy sąsiedztwa

5 Wnioski

- Dla macierzy sąsiedztwa różnice w czasie działania są niewielkie, natomiast dla listy sąsiedztwa są spore, widać to wyraźnie przy dużych ilościach wierzchołków grafu.
- Algorytm działa efektywniej dla macierzy sąsiedztwa.
- Efektywność zaimplementowanego programu dla macierzy sąsiedztwa wzrasta wraz z liczbą wierzchołków, można to zaobserwować na ostatnich czterech wykresach.
- Dla małej liczby wierzchołków (>200) można powiedzieć, że algorytm Dijkstry dla maciezry i listy sąsiedztwa maja porównywalną efektywność.

6 Bibliografia

- \bullet https://eduinf.waw.pl/inf/alg/001_search/0122.php
- https://home.agh.edu.pl/horzyk/lectures/pi/ahdydpiwykl9.html
- $\bullet \ https://pl.khanacademy.org/computing/computer-science/algorithms/graph-representation/a/representing-graphs$
- $https://pl.wikipedia.org/wiki/Algorytm_Dijkstry$
- \bullet https://eduinf.waw.pl/inf/alg/001_search/0138.php