4장 기본 설계

4.1 설계 과정

설계

- 문제를 해결하기 위한 SW의 컴포넌트를 구성해 나가는 것
- 기본설계
- 응용 프로그램 개발에 기초가 되는 부분(뼈대)을 만드는 것

기본 설계 내용

- 아키텍처 설계 서브시스템으로 분할하기 위한 기능 목록, 인프라가 되는 하드웨어, 네트워크, SW 구성 요소 파악과 관계 정의.
- UI 설계 화면의 레이아웃과 화면의 관계 및 전환, 일괄 처리에 의한 인쇄물 의 레이아웃 설계
- 데이터 설계 코드 설계, 논리 데이터 설계
- 외부 인터페이스 설계 다른 시스템과의 연동 데이터 형식과 호출 방식

기본 설계 절차

기본 설계서

요구 분석 명세의 내용을 정보 시스템의 단어로 대체한 것 어떻게 구현될지 결정한 것

시스템 개발의 기준

문서	누구를 위하여	어떤 내용
요구 분석 명세서	고객	정보 시스템으로 구현할 것
기본 설계	고객 개발자 협력 시스템	정보 시스템이 어떤 기능으로 만들어질 것 인지에 대해 기술
상세 설계	개발자	정보 시스템의 상세한 기능에 대한 것으로 바로 프로그래밍할 수 있는 자세한 설명

4.2 아키텍처 설계

시스템이나 소프트웨어의 전반적인 구조와 구성 요소를 정의하고 이들의 상호작용을 설계하는 과정 전략적인 시스템의 청사진

시스템 구성

하드웨어, 네트워크, SW 등 시스템 구조를 정의

응용 프로그램 구조를 정의

응용 프로그램 아키텍쳐

컴포넌트 구성과 연계 방법

기능 단위로 사용자 서비스, 인증 서비스, 결제 서비스 등

인터페이스

컴포넌트 간 통신 방식 (REST API, 메세지 큐 등)

데이타 흐름

데이타가 시스템 내에서 어떻게 이동하는지, 저장 구조

비기능 요건 고려

보안, 성능, 확장석, 유지 보수성

일반적인 아키텍쳐 유형

아키텍처 유형	설명
계층형 (Layered Architecture)	프레젠테이션, 비즈니스, 데이터 접근 등 계층으로 분리
클라이언트-서버	클라이언트가 요청 → 서버가 응답
마이크로서비스(MSA)	기능을 작고 독립된 서비스로 나누고 각각 배포
이벤트 기반(Event-driven)	이벤트 발생 → 처리 → 결과 전달
서버리스(Serverless)	인프라 관리 없이 함수 단위로 실행

4.3 UI 설계

Made with **GAMMA**

화면 레이아웃 설계

와이어프레임

UI 기획 단계의 초기에 제작하는 것으로 페이지에 대한 개략적인 레이아웃이나 UI 요소등에 대한 뼈대를 설계하는 방법

각 페이지의 영역 구분 콘텐츠, 텍스트 배치 등을 화면 단위로 설계하며 화면 흐름도와 유사하다.

목업

디자인, 사용 방법 설명, 평가 등을 위해 와이어프레임보다 좀 더 실제 화면과 유사하게 만든 정적인 모형.

스토리보드

와이어프레임에 콘텐츠에 대한 설명, 페이지 간 이동 흐름 등을 추가한 문서

프로토타입

와이어 프레이이나 스토리 보드 등에 인터렉션을 적용한 것

예시

4.4 데이터 설계

ER다이어그램

리소스 엔티티 추출 및 정의

- 업무 규칙, 업무 규정, 요구 사항, 요구 분석 명세서, 새 시스템을 나타내는 다이어그램으로부터 리소스 엔티티 추출
- 현시스템의 마스터 데이터
- 예: 거래처, 고객, 상품 증

이벤트 엔티티 추출 및 정의

- 트랜잭션이 될 수 있는 엔티티
- 예: 주문, 발주 등

추출한 엔티티들 사이에 관계를 표현 엔티티 간의 관계성을 정의하고 연결

모델 검증

작성된 ER 다이어그램의 정확성과 완전성 검토

4.5 외부 인터페이스 설계

시스템 외부의 다른 시스템, 서비스, 장치 등과 데이타를 주고 받는 통신 지점

외부 API, 타 시스템(DB, 인증 서버, 결제 시스템), 하드웨어 장비(GPS, 결제 단말기 등), 메시지 브로커(Kafka 등)

외부 파일 스펙

데이터 교환 스펙

외부 시스템 연동 명세

외부 시스템과 주고받는 파일의 형 식과 구조 정의 데이터 교환 방식과 프로토콜 정의

외부 시스템에 전달할 데이터와 받는 데이터의 명세

4.6 기본 설계서

기본 설계 과정에 실시한 아키텍쳐, 데이터, UI등의 개별 설계를 마친 후에는 기본 설계서로 정리한다.