字符串杂题选讲

范斯喆

浙江省诸暨市海亮高级中学

2025年2月3日

前言

本次讲课包含两部分。 第一部分是笔者最近遇到的有关字符串的有趣问题。 第二部分是基本子串结构的介绍,以及相关的一些问题。

前置知识

本次讲课所需要的前置知识如下:

- KMP, 扩展 KMP;
- Manacher;
- 字典树, AC 自动机;
- SA, SAM.

没有学过的同学们可以自行学习。

给定一个长度为 *n* 的字符串 *S*。 定义一个字符串是好的,当且仅当它可以分解为若干个偶回文串的拼接。

求 § 有多少个子串是好的。

 $1 \le n \le 5 \times 10^5$

保证 S 只包含小写字母。

对于一个偶回文串,如果它有一个真后缀也是偶回文串,那它一定可以分解为更短的偶回文串的拼接。

对于一个偶回文串,如果它有一个真后缀也是偶回文串,那它一 定可以分解为更短的偶回文串的拼接。 因此一个字符串的"极小"分解方式是唯一的,考虑进行 DP。

对于一个偶回文串,如果它有一个真后缀也是偶回文串,那它一 定可以分解为更短的偶回文串的拼接。

因此一个字符串的"极小"分解方式是唯一的,考虑进行 DP。 显然,我们只需要求出以 i 结尾的最短偶回文串长度。设为 f_i 。

对于一个偶回文串,如果它有一个真后缀也是偶回文串,那它一 定可以分解为更短的偶回文串的拼接。

因此一个字符串的"极小"分解方式是唯一的,考虑进行 DP。显然,我们只需要求出以i结尾的最短偶回文串长度。设为 f_i 。用 Manacher 求出以每个间隔为中心的最大回文半径。从大到小考虑所有间隔,用双向链表维护区间赋值即可。

对于一个偶回文串,如果它有一个真后缀也是偶回文串,那它一 定可以分解为更短的偶回文串的拼接。

因此一个字符串的"极小"分解方式是唯一的,考虑进行 DP。显然,我们只需要求出以i结尾的最短偶回文串长度。设为 f_i 。用 Manacher 求出以每个间隔为中心的最大回文半径。从大到小考虑所有间隔,用双向链表维护区间赋值即可。时间复杂度O(n)。

给定一个长度为 n 的字符串 S。 你可以将至多一个字符替换为任意小写字母,求这样操作一次之后串中回文子串数量的最大值。 $1 \le n \le 3 \times 10^5$ 。 保证 S 仅包含小写字母。

枚举替换的位置 i 和替换后的字符 j。则回文子串数量的改变有两部分:增加和减少。

枚举替换的位置 i 和替换后的字符 j。则回文子串数量的改变有两部分:增加和减少。

减少的回文子串数量就等于跨过 *i* 且 *i* 不为回文中心的回文子串数量,可以通过差分简单求出。

枚举替换的位置 *i* 和替换后的字符 *j*。则回文子串数量的改变有两部分:增加和减少。

减少的回文子串数量就等于跨过 i 且 i 不为回文中心的回文子串数量,可以通过差分简单求出。

接下来计算增加的回文子串数量。只考虑奇回文串,偶回文串是类似的。

枚举替换的位置 *i* 和替换后的字符 *j*。则回文子串数量的改变有两部分:增加和减少。

减少的回文子串数量就等于跨过 *i* 且 *i* 不为回文中心的回文子串数量,可以通过差分简单求出。

接下来计算增加的回文子串数量。只考虑奇回文串,偶回文串是 类似的。

枚举回文中心 x, 设其最长回文半径为 len_x 。则我们修改的位置必须是 $x - len_x$ 或者 $x + len_x$ 。

枚举替换的位置 i 和替换后的字符 j。则回文子串数量的改变有两部分:增加和减少。

减少的回文子串数量就等于跨过 *i* 且 *i* 不为回文中心的回文子串数量,可以通过差分简单求出。

接下来计算增加的回文子串数量。只考虑奇回文串,偶回文串是 类似的。

枚举回文中心 x, 设其最长回文半径为 len_x 。则我们修改的位置必须是 $x-len_x$ 或者 $x+len_x$ 。

于是只要求 $S^T[1, x - len_x - 1]$ 和 $S[x + len_x + 1, n]$ 的 LCP 即可。

枚举替换的位置 i 和替换后的字符 j。则回文子串数量的改变有两部分:增加和减少。

减少的回文子串数量就等于跨过 *i* 且 *i* 不为回文中心的回文子串数量,可以通过差分简单求出。

接下来计算增加的回文子串数量。只考虑奇回文串,偶回文串是 类似的。

枚举回文中心 x, 设其最长回文半径为 len_x 。则我们修改的位置必须是 $x - len_x$ 或者 $x + len_x$ 。

于是只要求 $S^T[1, x - len_x - 1]$ 和 $S[x + len_x + 1, n]$ 的 LCP 即可。 考虑到这是 CF, 建议使用 SA。复杂度 $O(n \log n)$ 。

给定一个长度为 n 的字符串 S。 q 次询问,每次给定 (i,k),求有多少个非空字符串 A,使得存在可空字符串 B_1,B_2,\cdots,B_{k-1} ,满足:

$$S[1,i] = A + B_1 + A + B_2 + A + \dots + A + B_{k-1} + A$$
 $1 \le k \le i \le n \le 2 \times 10^5, 1 \le q \le 2 \times 10^5$ 。
保证 S 仅包含小写字母。

特判 k=1 的情况。k>1 时,A 合法的充要条件为:

- A 为 S[1, i] 的一个 border;
- 2 A E S[1,i] 中不重叠出现了至少 k 次。

特判 k=1 的情况。k>1 时,A 合法的充要条件为:

- A 为 S[1, i] 的一个 border;
- $\mathbf{2}$ $A \leftarrow S[1,i]$ 中不重叠出现了至少 k 次。

建出 KMP 的失配树,则合法的 A 为根到某个结点 u 的链,其中 u 为 i 的祖先中最近的满足条件的点。因此只要求出 u 即可得到答案。

特判 k=1 的情况。k>1 时,A 合法的充要条件为:

- A 为 S[1, i] 的一个 border;
- $\mathbf{2}$ $A \leftarrow S[1,i]$ 中不重叠出现了至少 k 次。

建出 KMP 的失配树,则合法的 A 为根到某个结点 u 的链,其中 u 为 i 的祖先中最近的满足条件的点。因此只要求出 u 即可得到答案。

若我们对每个 u 都预处理了其在 S 中不重叠出现的位置 (显然,我们需要的空间仅有 $O(n \log n)$),则只需要倍增就可以求出 u。

考虑如何预处理。枚举 u,则只要从 1 开始暴力往后跳到第一个 p,满足 S[p,p+u-1]=S[1,u] 即可。也就是说,S[p,n] 和 S 的 LCP 长度至少为 u。

考虑如何预处理。枚举 u,则只要从 1 开始暴力往后跳到第一个 p,满足 S[p,p+u-1]=S[1,u] 即可。也就是说,S[p,n] 和 S 的 LCP 长度至少为 u。

用扩展 KMP 求出每个后缀和 S 的 LCP 长度之后,从小到大枚举 u,利用并查集维护删除即可。

考虑如何预处理。枚举 u,则只要从 1 开始暴力往后跳到第一个 p,满足 S[p,p+u-1]=S[1,u] 即可。也就是说,S[p,n] 和 S 的 LCP 长度至少为 u。

用扩展 KMP 求出每个后缀和 S 的 LCP 长度之后,从小到大枚 举 u,利用并查集维护删除即可。

复杂度 $O(n\alpha(n)\log n + q\log n)$ 。

给定一个长度为 n 的字符串 S。 q 次询问,每次给定一个非空字符串 T,求最小的 x 满足 S[1,x]+T+S[x+1,n] 的字典序最小。 $1 \le n, \sum |T| \le 10^6, 1 \le q \le 5 \times 10^5$ 。 保证字符串仅由数字构成。

显然,我们要找到一对 (i,j) 使得 S[1,i] + T[1,j] < S[1,i+j],使得 i+j 最小。当然,为了保证存在这样的位置,要在 S 最后添加一个最大的字符。

显然,我们要找到一对 (i,j) 使得 S[1,i]+T[1,j]< S[1,i+j],使得 i+j 最小。当然,为了保证存在这样的位置,要在 S 最后添加一个最大的字符。

先枚举 j,然后从 T[j]+1 开始往大枚举下一个字符 p,查找 T[1,j-1]+p 在 S 中出现的位置就行了。这里需要使用 SAM 维护子串匹配。

显然,我们要找到一对 (i,j) 使得 S[1,i]+T[1,j]< S[1,i+j],使 得 i+j 最小。当然,为了保证存在这样的位置,要在 S 最后添加一个最大的字符。

先枚举 j,然后从 T[j]+1 开始往大枚举下一个字符 p,查找 T[1,j-1]+p 在 S 中出现的位置就行了。这里需要使用 SAM 维护子串匹配。

然而 i+j 最小时也可能有多个合法的 (i,j)。考虑如何比较它们 谁最优。

显然,我们要找到一对 (i,j) 使得 S[1,i]+T[1,j]< S[1,i+j],使得 i+j 最小。当然,为了保证存在这样的位置,要在 S 最后添加一个最大的字符。

先枚举 j,然后从 T[j]+1 开始往大枚举下一个字符 p,查找 T[1,j-1]+p 在 S 中出现的位置就行了。这里需要使用 SAM 维护子串匹配。

然而 i+j 最小时也可能有多个合法的 (i,j)。考虑如何比较它们 谁最优。

设有 $i_1 + j_1 = i_2 + j_2$,且 $S[1, i_1] + T[1, j_1]$ 和 $S[1, i_2] + T[1, j_2]$ 均 小于 $S[1, i_1 + j_2]$ 。

显然,我们要找到一对 (i,j) 使得 S[1,i]+T[1,j]< S[1,i+j],使得 i+j 最小。当然,为了保证存在这样的位置,要在 S 最后添加一个最大的字符。

先枚举 j,然后从 T[j]+1 开始往大枚举下一个字符 p,查找 T[1,j-1]+p 在 S 中出现的位置就行了。这里需要使用 SAM 维护子串匹配。

然而 i+j 最小时也可能有多个合法的 (i,j)。考虑如何比较它们 谁最优。

设有 $i_1 + j_1 = i_2 + j_2$,且 $S[1, i_1] + T[1, j_1]$ 和 $S[1, i_2] + T[1, j_2]$ 均小于 $S[1, i_1 + j_2]$ 。

由于 i+j最小,因此 $S[1,i_1]+T[1,j_1-1]=S[1,i_2]+T[1,j_2-1]$ 。

此时只需要比较 T 的后缀 $T[j_1,|T|]$ 和 $T[j_2,|T|]$ 谁更优。用一个后缀数组预处理就行了。

此时只需要比较 T 的后缀 $T[j_1,|T|]$ 和 $T[j_2,|T|]$ 谁更优。用一个后缀数组预处理就行了。

不难证明, 如果 $T[j_2, |T|]$ 恰好是 $T[j_1, |T|]$ 的前缀,则两种方案得到的串相同。

此时只需要比较 T 的后缀 $T[j_1,|T|]$ 和 $T[j_2,|T|]$ 谁更优。用一个后缀数组预处理就行了。

不难证明, 如果 $T[j_2,|T|]$ 恰好是 $T[j_1,|T|]$ 的前缀,则两种方案得到的串相同。

于是,我们得到了一个最优的 i。不过我们要求的是最优的 i 中最小的,怎么求?

此时只需要比较 T 的后缀 $T[j_1,|T|]$ 和 $T[j_2,|T|]$ 谁更优。用一个后缀数组预处理就行了。

不难证明, 如果 $T[j_2, |T|]$ 恰好是 $T[j_1, |T|]$ 的前缀, 则两种方案得到的串相同。

于是,我们得到了一个最优的 i。不过我们要求的是最优的 i 中最小的,怎么求?

其实只要找出 T 的周期,然后倍增向前跳就行了。用哈希判断是否相等。

此时只需要比较 T 的后缀 $T[j_1,|T|]$ 和 $T[j_2,|T|]$ 谁更优。用一个后缀数组预处理就行了。

不难证明, 如果 $T[j_2,|T|]$ 恰好是 $T[j_1,|T|]$ 的前缀,则两种方案得到的串相同。

于是,我们得到了一个最优的 i。不过我们要求的是最优的 i 中最小的,怎么求?

其实只要找出 T 的周期,然后倍增向前跳就行了。用哈希判断是否相等。

复杂度为 $O(n + \sum |T| \log \sum |T| + q \log n)$ 。

CF1975G

给定两个长度分别为 n 和 m 的字符串 S, T,其中包含小写字母,

- 和 *。
- 可以替换成任意小写字母。* 可以替换成任意小写字母构成的字符串(可以为空)。

求能否使得 S 和 T 经过替换之后相等。

 $1 \le n, m \le 2 \times 10^6$

CF1975G

两个串都没有*的情况是简单的。

两个串都没有 * 的情况是简单的。 两个串都有 * 的情况,只要比较没有 * 的前缀或后缀是否相等 即可。

两个串都没有*的情况是简单的。

两个串都有 * 的情况,只要比较没有 * 的前缀或后缀是否相等即可。

剩下只有 S 有 * 的情况。容易处理成 S 的开头和结尾都是 * 的情况。

两个串都没有*的情况是简单的。

两个串都有 * 的情况,只要比较没有 * 的前缀或后缀是否相等即可。

剩下只有 S 有 * 的情况。容易处理成 S 的开头和结尾都是 * 的情况。

设 S 形如 $*s_1*s_2*\cdots*s_k*$ 。考虑贪心,找到 T 中第一个能匹配 s_1 的位置,然后把这个位置之前的全部删掉,继续匹配。显然这样是对的。

两个串都没有*的情况是简单的。

两个串都有 * 的情况,只要比较没有 * 的前缀或后缀是否相等即可。

剩下只有 S 有 * 的情况。容易处理成 S 的开头和结尾都是 * 的情况。

设 S 形如 $*s_1*s_2*\cdots*s_k*$ 。考虑贪心,找到 T 中第一个能匹配 s_1 的位置,然后把这个位置之前的全部删掉,继续匹配。显然这样是对的。

那么问题变为找到 T 中某个串的第一次出现位置。

考虑将 s_1 与 T 中的前 $2|s_1|$ 个字符进行匹配。如果没找到,就 删去前 $|s_1|$ 个字符。

考虑将 s_1 与 T 中的前 $2|s_1|$ 个字符进行匹配。如果没找到,就 删去前 $|s_1|$ 个字符。

那么如何寻找匹配呢? 我们有工具: NTT 优化带通配符的字符 串匹配。

考虑将 s_1 与 T 中的前 $2|s_1|$ 个字符进行匹配。如果没找到,就删去前 $|s_1|$ 个字符。

那么如何寻找匹配呢?我们有工具: NTT 优化带通配符的字符 串匹配。

具体地,设我们要将 S 与 T 匹配。构造序列 a,b,如果 s_i 是 -则 $a_i=0$,否则 $a_i=s_i$ 。同理构造 b。

考虑将 s_1 与 T 中的前 $2|s_1|$ 个字符进行匹配。如果没找到,就删去前 $|s_1|$ 个字符。

那么如何寻找匹配呢?我们有工具: NTT 优化带通配符的字符 串匹配。

具体地,设我们要将 S 与 T 匹配。构造序列 a,b,如果 s_i 是 -则 $a_i=0$,否则 $a_i=s_i$ 。同理构造 b。 那么 s 能匹配 t_i,\cdots,t_{i+n-1} ,当且仅当

$$\sum_{j=0}^{n-1} (s_j - t_{i+j})^2 s_j t_{i+j} = 0$$

考虑将 s_1 与 T 中的前 $2|s_1|$ 个字符进行匹配。如果没找到,就删去前 $|s_1|$ 个字符。

那么如何寻找匹配呢?我们有工具: NTT 优化带通配符的字符 串匹配。

具体地,设我们要将 S 与 T 匹配。构造序列 a, b,如果 s_i 是 -则 $a_i = 0$,否则 $a_i = s_i$ 。同理构造 b。

那么 s 能匹配 t_i, \dots, t_{i+n-1} , 当且仅当

$$\sum_{j=0}^{n-1} (s_j - t_{i+j})^2 s_j t_{i+j} = 0$$

拆括号之后用 NTT 优化差卷积即可。

考虑将 s_1 与 T 中的前 $2|s_1|$ 个字符进行匹配。如果没找到,就删去前 $|s_1|$ 个字符。

那么如何寻找匹配呢?我们有工具: NTT 优化带通配符的字符 串匹配。

具体地,设我们要将 S 与 T 匹配。构造序列 a,b,如果 s_i 是 -则 $a_i=0$,否则 $a_i=s_i$ 。同理构造 b。 那么 s 能匹配 t_i,\cdots,t_{i+n-1} ,当且仅当

$$\sum_{i=0}^{n-1} (s_j - t_{i+j})^2 s_j t_{i+j} = 0$$

拆括号之后用 NTT 优化差卷积即可。 复杂度 $O(n \log n)$ 。

给定 n 个字符串 S_1, S_2, \cdots, S_n 以及一个字符串 T。 定义一个字符串 R 是好的当且仅当它是某个 S_i 的前缀。空串也 算前缀。

定义一个三元组 (l, r, k) 是好的当且仅当 $1 \le l \le r \le |T|, 1 \le k \le K$ 且存在 k 个好的字符串 R_1, R_2, \cdots, R_k 满足 $R_1 + R_2 + \cdots + R_k = T[l, r]$ 。 求好的三元组数量,并且对每个 i 求出有多少个好的三元组 (l, r, k) 满足 $l \le i \le r$ 。 $1 \le n \le 10, 1 \le |S_i| \le 5 \times 10^4, 1 \le |T|, K \le 5 \times 10^5$ 。 保证字符串仅包含小写字母。

注意到, 当 l, k 固定时, 使 (l, r, k) 合法的 r 构成一段从 l 开始的 区间。

注意到,当 l,k 固定时,使 (l,r,k) 合法的 r 构成一段从 l 开始的 区间。

设 $dp_{l,k}$ 表示使得 (l, r, k) 合法的最大的 r。转移为:

$$dp_{l,k} = \max_{l \le i \le dp_{l,k-1} + 1} to_i$$

其中 $dp_{l,1} = to_{l\bullet}$

注意到,当 l,k 固定时,使 (l,r,k) 合法的 r 构成一段从 l 开始的区间。

设 $dp_{l,k}$ 表示使得 (l, r, k) 合法的最大的 r。转移为:

$$dp_{l,k} = \max_{l \leq i \leq dp_{l,k-1}+1} to_i$$

其中 $dp_{l,1}=to_l$ 。 第一问的答案可以直接求出。第二问的答案相当于区间加等差数 列,差分两次即可。

注意到, 当 l,k 固定时, 使 (l,r,k) 合法的 r 构成一段从 l 开始的 区间。

设 $dp_{l,k}$ 表示使得 (l, r, k) 合法的最大的 r。转移为:

$$dp_{l,k} = \max_{l \leq i \leq dp_{l,k-1}+1} to_i$$

其中 $dp_{l,1} = to_l$ 。

第一问的答案可以直接求出。第二问的答案相当于区间加等差数 列,差分两次即可。

时间复杂度 $O(K|T| + n|T|\log|T|)$ 。需要继续优化。

 $dp_{l,k}$ 转移时要求 to 在 $[l, dp_{l,k-1} + 1]$ 上的区间 max。

 $dp_{l,k}$ 转移时要求 to 在 $[l, dp_{l,k-1} + 1]$ 上的区间 max。 l 固定时这些区间的右端点递增,因此上一次取到区间 max 之前的位置都不用考虑。

 $dp_{l,k}$ 转移时要求 to 在 $[l, dp_{l,k-1} + 1]$ 上的区间 max_{\bullet}

l 固定时这些区间的右端点递增,因此上一次取到区间 *max* 之前的位置都不用考虑。

设 pos_i 表示 $[i, to_i + 1]$ 中 to_j 最大的 j。建出 $i \rightarrow pos_i$ 的边,显然会建出基环树森林。

 $dp_{l,k}$ 转移时要求 to 在 $[l, dp_{l,k-1} + 1]$ 上的区间 max_{\bullet}

l 固定时这些区间的右端点递增,因此上一次取到区间 *max* 之前的位置都不用考虑。

设 pos_i 表示 $[i, to_i + 1]$ 中 to_j 最大的 j。建出 $i \rightarrow pos_i$ 的边,显然会建出基环树森林。

则转移时 $k \leftarrow k+1$ 相当于跳父亲。如果跳到了结点 u,则对应的 dp 值就为 to_u 。

 $dp_{l,k}$ 转移时要求 to 在 $[l, dp_{l,k-1} + 1]$ 上的区间 max_{\bullet}

l 固定时这些区间的右端点递增,因此上一次取到区间 *max* 之前的位置都不用考虑。

设 pos_i 表示 $[i, to_i + 1]$ 中 to_j 最大的 j。建出 $i \rightarrow pos_i$ 的边,显然会建出基环树森林。

则转移时 $k \leftarrow k+1$ 相当于跳父亲。如果跳到了结点 u,则对应的 dp 值就为 to_u 。

于是通过树上倍增和树上差分就可以求出答案。

 $dp_{l,k}$ 转移时要求 to 在 $[l, dp_{l,k-1} + 1]$ 上的区间 max_{\bullet}

l 固定时这些区间的右端点递增,因此上一次取到区间 *max* 之前的位置都不用考虑。

设 pos_i 表示 $[i, to_i + 1]$ 中 to_j 最大的 j。建出 $i \rightarrow pos_i$ 的边,显然会建出基环树森林。

则转移时 $k \leftarrow k+1$ 相当于跳父亲。如果跳到了结点 u,则对应的 dp 值就为 to_u 。

于是通过树上倍增和树上差分就可以求出答案。

时间复杂度 $O(n|T|\log|T|)$ 。

给定一个长度为 n 的字符串 S。 你要重排字符串 S,使得其字典序最大的子串的字典序最小。 求这个最小的最大子串。 $1 \le n \le 10^6$ 。 保证 S 仅包含小写字母。

考虑最大的字符 c。显然,答案应当以 c 开头,以 c 结尾。

考虑最大的字符 c。显然,答案应当以 c 开头,以 c 结尾。 设答案为 $cs_1cs_2c\cdots cs_kc$ 。假设我们已经得到所有 s_1, s_2, \cdots, s_k ,则求答案只需要递归一次即可。

考虑最大的字符 c。显然,答案应当以 c 开头,以 c 结尾。设答案为 $cs_1cs_2c\cdots cs_kc$ 。假设我们已经得到所有 s_1,s_2,\cdots,s_k ,则求答案只需要递归一次即可。要注意子问题中两个串的比较并非是字典序比较,而是在末尾加上 c 之后比较。

考虑最大的字符 c。显然,答案应当以 c 开头,以 c 结尾。 设答案为 $cs_1 cs_2 c \cdots cs_k c$ 。假设我们已经得到所有 s_1, s_2, \cdots, s_k ,则求答案只需要递归一次即可。

要注意子问题中两个串的比较并非是字典序比较,而是在末尾加上 $+\infty$ 之后比较。

那么只需知道所有 s_1, s_2, \cdots, s_k 即可。

考虑最大的字符 c。显然,答案应当以 c 开头,以 c 结尾。 设答案为 $cs_1cs_2c\cdots cs_kc$ 。假设我们已经得到所有 s_1,s_2,\cdots,s_k , 则求答案只需要递归一次即可。

要注意子问题中两个串的比较并非是字典序比较,而是在末尾加 上 +∞ 之后比较。

那么只需知道所有 s_1, s_2, \cdots, s_k 即可。

显然, s_i 内部肯定是从小到大排。同时, 所有 s_i 的第一个字符必定是原先字符集排序之后的一个前缀。

考虑最大的字符 c。显然,答案应当以 c 开头,以 c 结尾。

设答案为 $cs_1cs_2c\cdots cs_kc$ 。假设我们已经得到所有 s_1, s_2, \cdots, s_k ,则求答案只需要递归一次即可。

要注意子问题中两个串的比较并非是字典序比较,而是在末尾加 $L + \infty$ 之后比较。

那么只需知道所有 s_1, s_2, \dots, s_k 即可。

显然, s_i 内部肯定是从小到大排。同时, 所有 s_i 的第一个字符必定是原先字符集排序之后的一个前缀。

设我们有 x 个 c, n-x 个其他字符。分类讨论:

- x > n x 时,把每个其他字符前面加上 $\left\lfloor \frac{x}{n-x+1} \right\rfloor$ 个 c;
- $x \le n x$ 时,先用字符集排序后的前缀填进每个 s_i ,然后在所有最大的 s_i 中继续填。

考虑最大的字符 c。显然,答案应当以 c 开头,以 c 结尾。

设答案为 $cs_1cs_2c\cdots cs_kc$ 。假设我们已经得到所有 s_1, s_2, \cdots, s_k ,则求答案只需要递归一次即可。

要注意子问题中两个串的比较并非是字典序比较,而是在末尾加 $L + \infty$ 之后比较。

那么只需知道所有 s_1, s_2, \cdots, s_k 即可。

显然, s_i 内部肯定是从小到大排。同时, 所有 s_i 的第一个字符必定是原先字符集排序之后的一个前缀。

设我们有 x 个 c, n-x 个其他字符。分类讨论:

- x > n x 时,把每个其他字符前面加上 $\left| \frac{x}{n-x+1} \right|$ 个 c;
- $x \le n x$ 时,先用字符集排序后的前缀填进每个 s_i ,然后在所有最大的 s_i 中继续填。

每次递归时,问题规模减半。因此复杂度为 $O(n \log n)$ 。

考虑优化。其实我们可以用迭代的方法干掉递归。

考虑优化。其实我们可以用迭代的方法干掉递归。 维护一个有序的字符串序列,一开始为 $A=(-\infty,s_1,s_2,\cdots,s_n)$ (不妨先将 s 排序)。

考虑优化。其实我们可以用迭代的方法干掉递归。 维护一个有序的字符串序列,一开始为 $A=(-\infty,s_1,s_2,\cdots,s_n)$ (不妨先将 s 排序)。 从左到右扫描序列 A,每次将 A_i 拼接到最靠左的最大值后面, 然后删去 A_i ,直到 A_n 的最后一个字符是 $-\infty$ 。

考虑优化。其实我们可以用迭代的方法干掉递归。 维护一个有序的字符串序列,一开始为 $A = (-\infty, s_1, s_2, \cdots, s_n)$ (不妨先将 s 排序)。

从左到右扫描序列 A,每次将 A_i 拼接到最靠左的最大值后面,然后删去 A_i ,直到 A_n 的最后一个字符是 $-\infty$ 。

本质上,每次扫到的 A_i 以 $-\infty$ 结尾时,意味着完成了一次递归。每一次最大值位置跳回前面时相当于又给 s 加完一轮字符。

考虑优化。其实我们可以用迭代的方法干掉递归。 维护一个有序的字符串序列,一开始为 $A=(-\infty,s_1,s_2,\cdots,s_n)$ (不妨先将 s 排序)。 从左到右扫描序列 A,每次将 A_i 拼接到最靠左的最大值后面, 然后删去 A_i ,直到 A_n 的最后一个字符是 $-\infty$ 。 本质上,每次扫到的 A_i 以 $-\infty$ 结尾时,意味着完成了一次递 归。每一次最大值位置跳回前面时相当于又给 s 加完一轮字符。 复杂度显然是 O(n)。

字符串杂题选讲

CF2053G

给定两个长度分别为 n 和 m 的字符串 S, T。 对每个 $1 \le k < n$,问 S[1,k] 和 S[k+1,n] 能否拼接得到 T。 $2 \le n, m \le 5 \times 10^6$ 。保证 S, T 仅包含小写字母。

CF2053G

不妨把 S[1,k] 和 S[k+1,n] 中短的叫做 s_1 , 长的叫做 s_2 。

不妨把 S[1,k] 和 S[k+1,n] 中短的叫做 s_1 ,长的叫做 s_2 。 考虑贪心匹配。设 $s_2=s_1^k+c$,其中 c 不包含 s_1 作为前缀。我们每次先贪心匹配 s_1 ,到了匹配不了的地方就撤回 k 次匹配,然后尝试匹配 s_2 。

不妨把 S[1,k] 和 S[k+1,n] 中短的叫做 s_1 ,长的叫做 s_2 。 考虑贪心匹配。设 $s_2=s_1^k+c$,其中 c 不包含 s_1 作为前缀。我们每次先贪心匹配 s_1 ,到了匹配不了的地方就撤回 k 次匹配,然后尝试匹配 s_2 。

这种贪心什么时候是错的呢? 比如 $s_1 = aba$, $s_2 = abaab$, T = abaababa。贪心匹配了两次 aba 之后需要多反悔一次。

不妨把 S[1,k] 和 S[k+1,n] 中短的叫做 s_1 ,长的叫做 s_2 。 考虑贪心匹配。设 $s_2=s_1^k+c$,其中 c 不包含 s_1 作为前缀。我们每次先贪心匹配 s_1 ,到了匹配不了的地方就撤回 k 次匹配,然后尝试匹配 s_2 。

这种贪心什么时候是错的呢? 比如 $s_1=aba$, $s_2=abaab$, T=abaababa。贪心匹配了两次 aba 之后需要多反悔一次。是否会需要多反悔两次以上呢? 其实是不可能的。如果要多反悔两次,则 $T=s_1^{k+2}+\dots=s_1^k+c+s_1+\dots$ 。因此 s_1 和 c 必存在公共循环节。而这种有循环节的情况可以直接枚举,根本不需要贪心。

不妨把 S[1,k] 和 S[k+1,n] 中短的叫做 s_1 ,长的叫做 s_2 。 考虑贪心匹配。设 $s_2=s_1^k+c$,其中 c 不包含 s_1 作为前缀。我们每次先贪心匹配 s_1 ,到了匹配不了的地方就撤回 k 次匹配,然后尝试匹配 s_2 。

这种贪心什么时候是错的呢? 比如 $s_1 = aba$, $s_2 = abaab$, T = abaababa。贪心匹配了两次 aba 之后需要多反悔一次。是否会需要多反悔两次以上呢? 其实是不可能的。如果要多反悔两次,则 $T = s_1^{k+2} + \cdots = s_1^k + c + s_1 + \cdots$ 。因此 s_1 和 c 必存在公共循环节。而这种有循环节的情况可以直接枚举,根本不需要贪心。

因此暴力贪心就行了。复杂度是调和级数,即 $O(n \log n)$ 。

怎么做到线性?

怎么做到线性?

首先,这个 k 是可以二分求出的,复杂度 $O\left(\sum_{i=1}^{n}\log\left(\frac{n}{i}\right)\right)=O(n)$ 。

怎么做到线性?

首先,这个k是可以二分求出的,复杂度

$$O\left(\sum_{i=1}^{n} \log\left(\frac{n}{i}\right)\right) = O(n)_{\bullet}$$

接下来,因为长串的长度为 O(n),所以只会填 $O\left(\frac{m}{n}\right)$ 次。考虑对填充短串进行加速。

怎么做到线性?

首先,这个k是可以二分求出的,复杂度

 $O\left(\sum_{i=1}^{n} \log\left(\frac{n}{i}\right)\right) = O(n)_{\bullet}$

接下来,因为长串的长度为 O(n),所以只会填 $O\left(\frac{m}{n}\right)$ 次。考虑对填充短串进行加速。

直接二分是不可行的。考虑 $s_1=a, s_2=b, T=abab\cdots ab$ 。这样 就能卡到 log。

怎么做到线性?

首先,这个k是可以二分求出的,复杂度

 $O\left(\sum_{i=1}^{n} \log\left(\frac{n}{i}\right)\right) = O(n)_{\bullet}$

接下来,因为长串的长度为 O(n),所以只会填 $O\left(\frac{m}{n}\right)$ 次。考虑对填充短串进行加速。

直接二分是不可行的。考虑 $s_1 = a, s_2 = b, T = abab \cdots ab$ 。这样就能卡到 log。

可以把二分改为倍增(枚举倍增上界),这样总复杂度就是对的了。

怎么做到线性?

首先,这个 k 是可以二分求出的,复杂度

 $O\left(\sum_{i=1}^{n} \log\left(\frac{n}{i}\right)\right) = O(n)_{\bullet}$

接下来,因为长串的长度为 O(n),所以只会填 $O\left(\frac{m}{n}\right)$ 次。考虑对填充短串进行加速。

直接二分是不可行的。考虑 $s_1 = a, s_2 = b, T = abab \cdots ab$ 。这样就能卡到 log。

可以把二分改为倍增(枚举倍增上界),这样总复杂度就是对的 了。

也可以设一个阈值 $B=\frac{n}{|s_1|}$ 。 先二分 s_1^B ,剩下的部分不超过 B 个,再二分一遍即可。

怎么做到线性?

首先,这个 k 是可以二分求出的,复杂度

$$O\left(\sum_{i=1}^{n} \log\left(\frac{n}{i}\right)\right) = O(n)_{\bullet}$$

接下来,因为长串的长度为 O(n),所以只会填 $O\left(\frac{m}{n}\right)$ 次。考虑对填充短串进行加速。

直接二分是不可行的。考虑 $s_1 = a, s_2 = b, T = abab \cdots ab$ 。这样就能卡到 log。

可以把二分改为倍增(枚举倍增上界),这样总复杂度就是对的 了。

也可以设一个阈值 $B=\frac{n}{|s_1|}$ 。先二分 s_1^B ,剩下的部分不超过 B个,再二分一遍即可。

这样就可以做到 O(n+m)。

基本子串结构

下面是本次讲课的第二部分:尝试把基本子串结构用人话说出来。

首先我们知道 SAM 的思路:将所有子串按出现的右端点集合划分,成为等价类。

首先我们知道 SAM 的思路:将所有子串按出现的右端点集合划分,成为等价类。

也就是说,两个子串同为一个等价类,当且仅当:其中一个每次出现就会有另一个出现,且其中一个是另一个的后缀。

首先我们知道 SAM 的思路:将所有子串按出现的右端点集合划分,成为等价类。

也就是说,两个子串同为一个等价类,当且仅当:其中一个每次出现就会有另一个出现,且其中一个是另一个的后缀。

那假如去掉"其中一个是另一个的后缀"呢?

首先我们知道 SAM 的思路:将所有子串按出现的右端点集合划 分,成为等价类。

也就是说,两个子串同为一个等价类,当且仅当:其中一个每次出现就会有另一个出现,且其中一个是另一个的后缀。

那假如去掉"其中一个是另一个的后缀"呢?

显然,每个等价类会有且仅有一个最长的字符串(代表元)。因 此每个等价类在平面上都形如阶梯状。

首先我们知道 SAM 的思路:将所有子串按出现的右端点集合划分,成为等价类。

也就是说,两个子串同为一个等价类,当且仅当:其中一个每次出现就会有另一个出现,且其中一个是另一个的后缀。

那假如去掉"其中一个是另一个的后缀"呢?

显然,每个等价类会有且仅有一个最长的字符串(代表元)。因此每个等价类在平面上都形如阶梯状。

同时容易验证,阶梯型网格图的一行(r 相同)代表正串 SAM上的一个结点,一列(l 相同)代表反串 SAM 上的一个结点。

首先我们知道 SAM 的思路:将所有子串按出现的右端点集合划分,成为等价类。

也就是说,两个子串同为一个等价类,当且仅当:其中一个每次出现就会有另一个出现,且其中一个是另一个的后缀。

那假如去掉"其中一个是另一个的后缀"呢?

显然,每个等价类会有且仅有一个最长的字符串(代表元)。因此每个等价类在平面上都形如阶梯状。

同时容易验证,阶梯型网格图的一行(r 相同)代表正串 SAM上的一个结点,一列(l 相同)代表反串 SAM上的一个结点。 因此每个等价类的行数和列数之和都是 O(n) 的。

划分了等价类之后,要把 SAM 的 parent 树边连到网格图上。

划分了等价类之后,要把 SAM 的 parent 树边连到网格图上。 记正串的 parent 树为 T_0 ,反串的 parent 树为 T_1 。

划分了等价类之后,要把 SAM 的 parent 树边连到网格图上。 记正串的 parent 树为 T_0 ,反串的 parent 树为 T_1 。 则 T_0 中的边可以看作是从块的左边界连向右边界, T_1 就是从上边界连向下边界。

划分了等价类之后,要把 SAM 的 parent 树边连到网格图上。 记正串的 parent 树为 T_0 ,反串的 parent 树为 T_1 。 则 T_0 中的边可以看作是从块的左边界连向右边界, T_1 就是从上边界连向下边界。 把树边对应到 SAM 上之后,考虑 SAM 中 DAG 的边。

划分了等价类之后,要把 SAM 的 parent 树边连到网格图上。 记正串的 parent 树为 T_0 ,反串的 parent 树为 T_1 。 则 T_0 中的边可以看作是从块的左边界连向右边界, T_1 就是从上边界连向下边界。

把树边对应到 SAM 上之后,考虑 SAM 中 DAG 的边。 对于一个正串 SAM 上的点 (某一块的一行),如果它不是该块的 上边界,则它有且仅有一条出边,连向它所在块的上面一行;否 则,它的出边连向这块的所有 T_1 上的点的儿子对应的块的下边 界。

划分了等价类之后,要把 SAM 的 parent 树边连到网格图上。 记正串的 parent 树为 T_0 ,反串的 parent 树为 T_1 。 则 T_0 中的边可以看作是从块的左边界连向右边界, T_1 就是从上边界连向下边界。

把树边对应到 SAM 上之后, 考虑 SAM 中 DAG 的边。

对于一个正串 SAM 上的点 (某一块的一行), 如果它不是该块的上边界,则它有且仅有一条出边,连向它所在块的上面一行;否则,它的出边连向这块的所有 T_1 上的点的儿子对应的块的下边界。

对于反串同理。其实 DAG 已经完全被另一个 SAM 的树边替代了。

构建

首先可以 O(n) 构建正反 SAM。

构建

首先可以 O(n) 构建正反 SAM。

接下来分为几个步骤:识别代表元,划分等价类,排序行列。

首先我们要找出所有块的代表元。显然代表元只会是某个 SAM 结点中最长的字符串。

首先我们要找出所有块的代表元。显然代表元只会是某个 SAM 结点中最长的字符串。

因此我们可以对于正串的每个 SAM 结点,找到其最长字符串所在的反 SAM 结点。如果这两个结点的最长串长度恰好相同,则这个最长串就是代表元。

首先我们要找出所有块的代表元。显然代表元只会是某个 SAM 结点中最长的字符串。

因此我们可以对于正串的每个 SAM 结点,找到其最长字符串所在的反 SAM 结点。如果这两个结点的最长串长度恰好相同,则这个最长串就是代表元。

具体实现上,我们可以对正串 SAM 做一遍 dfs,只沿着 $len_v = len_u + 1$ 的边 (u,v) 走。同时维护反 SAM 上对应的结点。因为每次转移只会向后加一个字符,所以反 SAM 上只会走树边。

首先我们要找出所有块的代表元。显然代表元只会是某个 SAM 结点中最长的字符串。

因此我们可以对于正串的每个 SAM 结点,找到其最长字符串所在的反 SAM 结点。如果这两个结点的最长串长度恰好相同,则这个最长串就是代表元。

具体实现上,我们可以对正串 SAM 做一遍 dfs,只沿着 $len_v = len_u + 1$ 的边 (u, v) 走。同时维护反 SAM 上对应的结点。因为每次转移只会向后加一个字符,所以反 SAM 上只会走树边。为了处理这个过程,需要预处理反 SAM 上每个点加上每个字符转移到哪个点,这是容易的。

接下来需要确定不包含代表元的结点分别在哪个等价类。

接下来需要确定不包含代表元的结点分别在哪个等价类。 之前我们证明过,这些结点在 SAM 的 DAG 上只会有一条出边。

接下来需要确定不包含代表元的结点分别在哪个等价类。 之前我们证明过,这些结点在 SAM 的 DAG 上只会有一条出边。 那么其实我们只需要一个合理的枚举顺序,使得枚举到某个未知 等价类的结点时,它的唯一一条出边所能到的点所在的等价类已 经被确定了。

接下来需要确定不包含代表元的结点分别在哪个等价类。 之前我们证明过,这些结点在 SAM 的 DAG 上只会有一条出边。 那么其实我们只需要一个合理的枚举顺序,使得枚举到某个未知 等价类的结点时,它的唯一一条出边所能到的点所在的等价类已 经被确定了。

显然按 len 排序是对的。那么这样也是 O(n) 的。

排序行列

接下来我们要将同一个等价类里的结点按照行列排序,这是简单的。

排序行列

接下来我们要将同一个等价类里的结点按照行列排序,这是简单的。

而且也可以直接按照编号顺序插入,因为 SAM 的增量构造性质,同一个等价类内的结点天然按照编号排序。

排序行列

接下来我们要将同一个等价类里的结点按照行列排序,这是简单的。

而且也可以直接按照编号顺序插入,因为 SAM 的增量构造性质,同一个等价类内的结点天然按照编号排序。

至此,我们在 O(n) 的时间复杂度内完成了基本子串结构的构建。

排序行列

接下来我们要将同一个等价类里的结点按照行列排序,这是简单的。

而且也可以直接按照编号顺序插入,因为 SAM 的增量构造性质,同一个等价类内的结点天然按照编号排序。

至此,我们在 O(n) 的时间复杂度内完成了基本子串结构的构建。接下来分享几道关于基本子串结构的例题。

给定一个长度为 n 的字符串 S。 定义一个非空子串对 (A, B) 合法,当且仅当存在可空子串 C, 使得 A 和 B 每次出现都是以 ACB 形式出现。 求有多少对合法的 (A, B)。 $1 \le n \le 10^5$ 。 保证 S 仅包含小写字母。

(A, B) 合法当且仅当它们在同一个等价类中,且在代表元中出现的位置不交。

(A, B) 合法当且仅当它们在同一个等价类中,且在代表元中出现的位置不交。

于是对每个阶梯形做一遍二维偏序即可。

(A, B) 合法当且仅当它们在同一个等价类中,且在代表元中出现的位置不交。

于是对每个阶梯形做一遍二维偏序即可。 时间复杂度 $O(n \log n)$ 。

给定一个长度为 n 的字符串 S。 初始有一个串 $T_0 = S$ 。你要操作 n 次。第 i 次操作,你可以删除 T_{i-1} 的开头或结尾的字符,得到 T_i 。 定义 occ(T) 为 T 在 S 中的出现次数。定义操作方案的权值为

$$\prod_{i=0}^{n} occ(T_i)$$

求所有操作方案的权值之和。 $1 \le n \le 10^5$ 。 保证 S 仅包含小写字母。

注意到 T 一定是 S 的子串,因此可以对 S 的所有本质不同子串进行 DP。

注意到 T 一定是 S 的子串,因此可以对 S 的所有本质不同子串进行 DP。

由于本质不同子串数量是 $O(n^2)$ 的,因此复杂度也为 $O(n^2)$ 。

注意到 T 一定是 S 的子串,因此可以对 S 的所有本质不同子串进行 DP。

由于本质不同子串数量是 $O(n^2)$ 的,因此复杂度也为 $O(n^2)$ 。 然而处于相同等价类中的 DP 值可以一起计算。由于阶梯形网格 图的性质,只要我们知道右下边界上所有格子的 DP 值,就能用 分治和卷积求出左上边界所有格子的 DP 值。

注意到 T 一定是 S 的子串,因此可以对 S 的所有本质不同子串进行 DP。

由于本质不同子串数量是 $O(n^2)$ 的,因此复杂度也为 $O(n^2)$ 。 然而处于相同等价类中的 DP 值可以一起计算。由于阶梯形网格 图的性质,只要我们知道右下边界上所有格子的 DP 值,就能用 分治和卷积求出左上边界所有格子的 DP 值。

于是建出基本子串结构之后,按顺序求解每个等价类即可。

注意到 T 一定是 S 的子串,因此可以对 S 的所有本质不同子串进行 DP。

由于本质不同子串数量是 $O(n^2)$ 的,因此复杂度也为 $O(n^2)$ 。 然而处于相同等价类中的 DP 值可以一起计算。由于阶梯形网格 图的性质,只要我们知道右下边界上所有格子的 DP 值,就能用 分治和卷积求出左上边界所有格子的 DP 值。

于是建出基本子串结构之后,按顺序求解每个等价类即可。 复杂度 $O(n \log^2 n)$ 。

4 D > 4 A > 4 E > 4 E > E 9 9 0

给定一个长度为 n 的字符串 S。

第 i 个字符有左权值 wl_i 和右权值 wr_i 。定义子串的左权值为所有出现位置左端点的 wl 之和,右权值同理。定义子串的复读程度 w(l,r) 为其左权值与右权值的乘积。

q 次询问,每次给定 l_1, r_1, l_2, r_2 ,求所有以 $s[l_1, r_1]$ 为前缀、 $s[l_2, r_2]$ 为后缀的子串的复读程度之和。

 $1 \le n, q \le 10^5$

保证 S 仅包含小写字母。

一个串的复读程度是其所在正 SAM 节点的右权值乘以所在反 SAM 节点的左权值。

一个串的复读程度是其所在正 SAM 节点的右权值乘以所在反 SAM 节点的左权值。

以 $s[l_1, r_1]$ 为前缀的子串均在 T_1 的对应结点的子树内,以 $s[l_2, r_2]$ 为后缀的子串均在 T_0 的对应结点的子树内。

一个串的复读程度是其所在正 SAM 节点的右权值乘以所在反 SAM 节点的左权值。

以 $s[l_1,r_1]$ 为前缀的子串均在 T_1 的对应结点的子树内,以 $s[l_2,r_2]$ 为后缀的子串均在 T_0 的对应结点的子树内。 然而实际上对应的结点上会有一些子串不能被包含,因为长度小于 r_1-l_1+1 或 r_2-l_2+1 。

一个串的复读程度是其所在正 SAM 节点的右权值乘以所在反 SAM 节点的左权值。

以 $s[l_1, r_1]$ 为前缀的子串均在 T_1 的对应结点的子树内,以 $s[l_2, r_2]$ 为后缀的子串均在 T_0 的对应结点的子树内。

然而实际上对应的结点上会有一些子串不能被包含,因为长度小

于 $r_1 - l_1 + 1$ 或 $r_2 - l_2 + 1$ 。

于是查询可以分为两部分: 求这两棵子树的交集信息, 以及在交 集中却长度不足的串的信息。

考虑求交集信息,跑出 dfs 序之后是一个矩形查询。应用莫队二次离线,会变为 O(q) 次询问。每次给定 x_1, x_2, y ,查询 $\sum_{1 \leq l \leq r \leq n} [x_1 \leq dfn(T_0(l,r)) \leq x_2, dfn(T_1(l,r)) \leq y] w(l,r)$ 。这里所有 $[x_1, x_2]$ 的区间长度之和为 $O(q\sqrt{n})$ 。

考虑求交集信息,跑出 dfs 序之后是一个矩形查询。应用莫队二次离线,会变为 O(q) 次询问。每次给定 x_1, x_2, y ,查询 $\sum_{1 \leq l \leq r \leq n} [x_1 \leq dfn(T_0(l,r)) \leq x_2, dfn(T_1(l,r)) \leq y] w(l,r)$ 。这里 所有 $[x_1, x_2]$ 的区间长度之和为 $O(q\sqrt{n})$ 。 对 y 做扫描线,每次添加一个 T_1 上的结点,对 T_0 的影响为一段在网格图某一块中连续的节点。

考虑求交集信息,跑出 dfs 序之后是一个矩形查询。应用莫队二次离线,会变为 O(q) 次询问。每次给定 x_1, x_2, y ,查询 $\sum_{1 \leq l \leq r \leq n} [x_1 \leq dfn(T_0(l,r)) \leq x_2, dfn(T_1(l,r)) \leq y] w(l,r)$ 。这里所有 $[x_1, x_2]$ 的区间长度之和为 $O(q\sqrt{n})$ 。

对 y 做扫描线,每次添加一个 T_1 上的结点,对 T_0 的影响为一段在网格图某一块中连续的节点。

考虑将所有 T_0 上的点重标号,使得每块中的点编号连续。

以这个编号为下标,维护序列 A, B。其中 A_i 固定为编号为 i 的 T_0 上的点权。

以这个编号为下标,维护序列 A, B。其中 A_i 固定为编号为 i 的 T_0 上的点权。

修改时的操作为:对某个编号区间,令其中所有 $B_i \leftarrow B_i + cA_i$, 其中 c 为 T_1 上的点权乘以对应的 occ。

以这个编号为下标,维护序列 A, B。其中 A_i 固定为编号为 i 的 T_0 上的点权。

修改时的操作为:对某个编号区间,令其中所有 $B_i \leftarrow B_i + cA_i$, 其中 c 为 T_1 上的点权乘以对应的 occ。

查询时, 枚举 $x_1 \le i \le x_2$, 找到 dfn(u) = i 的 u, 查询 B_{id_u} 的 值, 其中 id_u 表示 u 重标号后的编号。

以这个编号为下标,维护序列 A,B。其中 A_i 固定为编号为 i 的 T_0 上的点权。

修改时的操作为:对某个编号区间,令其中所有 $B_i \leftarrow B_i + cA_i$, 其中 c 为 T_1 上的点权乘以对应的 occ。

查询时, 枚举 $x_1 \le i \le x_2$, 找到 dfn(u) = i 的 u, 查询 B_{id_u} 的值, 其中 id_u 表示 u 重标号后的编号。

分块维护 $O(\sqrt{n})$ 修改 O(1) 查询即可。这一部分的复杂度为 $O(n\sqrt{q})$ 。

考虑减去在交集中却长度不足的串的信息。我们分别算出在 T_0 和 T_1 对应结点上长度不足的串的信息,再减去这两个结点的交集。

考虑减去在交集中却长度不足的串的信息。我们分别算出在 T_0 和 T_1 对应结点上长度不足的串的信息,再减去这两个结点的交集。

显然,两个结点的交集至多只有一个串,可以O(1)求出。

考虑减去在交集中却长度不足的串的信息。我们分别算出在 T_0 和 T_1 对应结点上长度不足的串的信息,再减去这两个结点的交集。

显然,两个结点的交集至多只有一个串,可以 O(1) 求出。 只考虑其中一侧,问题变为: 求有多少个 T_0 上和 $S[l_2,r_2]$ 在同一个结点,但长度不足 r_2-l_2+1 ,且在 $S[l_1,r_1]$ 的 T_1 上的子树中。

考虑减去在交集中却长度不足的串的信息。我们分别算出在 T_0 和 T_1 对应结点上长度不足的串的信息,再减去这两个结点的交集。

显然,两个结点的交集至多只有一个串,可以 O(1) 求出。 只考虑其中一侧,问题变为: 求有多少个 T_0 上和 $S[l_2,r_2]$ 在同一个结点,但长度不足 r_2-l_2+1 ,且在 $S[l_1,r_1]$ 的 T_1 上的子树中。

这是一个二位数点问题,可以直接解决。

考虑减去在交集中却长度不足的串的信息。我们分别算出在 T_0 和 T_1 对应结点上长度不足的串的信息,再减去这两个结点的交集。

显然,两个结点的交集至多只有一个串,可以 O(1) 求出。 只考虑其中一侧,问题变为: 求有多少个 T_0 上和 $S[l_2,r_2]$ 在同一个结点,但长度不足 r_2-l_2+1 ,且在 $S[l_1,r_1]$ 的 T_1 上的子树中。

这是一个二位数点问题,可以直接解决。

总复杂度 $O(n\sqrt{q} + q \log n)$ 。

总结

篇幅所限,水平不足,抛砖引玉,别的忘了。 感谢大家的聆听,希望大家能学到更多。