IN THE SPECIFICATION

Please replace page 3, paragraph 3 with:

The LDL-r synthesis is regulated by a sophisticated feedback mechanism that controls the transcription of the LDL-r gene in response to variations in the intracellular sterol concentration and the cellular demand for cholesterol (Sudhof TC et al J Biol Chem 1987; 262:10773-10779). DNA motifs necessary for transcriptional regulation of the LDL-r gene are located within 177 bp of the proximal promoter (Sudhof TC et al. J Biol Chem 1987; 262: 10773-10779). This region contains all the cis-acting elements for basal expression and sterol regulation and includes three imperfect direct repeats of 16 bp each. Repeat 1 and 3 containing binding sites for the transcriptional factor Sp1 and are essential for producing the basal expression of the gene but require the contribution of the repeat 2 for full expression (Dawson PA et al. J Biol Chem 1988; 263;3372-3379). Repeat 2 contains a 10 bp regulatory element, SRE-1, (Smith JR et al. J Biol Chem 1990; 265:2306-2310) that allows binding of the transcriptional factor designated as SREBP-1, when the intra-cellular sterol concentration diminishes. To date, several naturally-occurring mutations have been mapped to the transcriptional regulatory elements of the LDL gene receptor (Hobbs HH, et al. Hum Mutat 1992; 1:445-466; Koivisto UM, et al ProcNatl Acad Sci USA, 1994; 91:10526-10530), Mozas P, et al J Lipid Res 2002; 43:13-18, http://www.ucl.ac.uk/fh; http://www.umd.necker.fr) (worldwideweb: ucl.ac.uk/fh; worldwideweb:umd.necker.fr.)

Please replace page 4, paragraph 1 with:

Exon 1 encodes the signal peptide, a sequence of 21 amino acids, which is cleaved from the protein during the translocation into the endoplasmic reticulum. Several frameshift, missense and nonsense mutation has been described in this exon http://www.uel.ac.uk/fh; http://www.uel.ac.uk/fh; http://www.umd.necker.fr) (worldwideweb: ucl.ac.uk/fh; worldwideweb: umd.necker.fr.)

Please replace page 4, paragraph 3 with:

The second domain of the human LDL-r consists of 400 amino acid sequence, encoded by exons 7 to 14. This sequence shows a 33% of homology of the epidermal growth factor precursor (EGFP). Like the ligand binding domain, this region also contains three repeats of 40 amino acids with cysteine-rich sequences. The first two repeats, designated A and B, are contiguous and separated from the third repeat, by a 280 amino acid region that contains five copies of the YWTD (Tyr-Trp-Thr-Asp) sequence. The EGFP like domain is fundamental for the acid–dependent dissociation of the LDL particles from the LDL-r and clathrin coat pits that takes place in the endosome during receptor recycling. Of the all mutations described to date, approximately 55% are located in the EGFP-homology region and 35% among the YWTD repeats (http://www.ucl.ac.uk/fh)—worldwideweb:ucl.ac.uk/fh; worldwideweb:umd.necker.fr.)

Page 35, line 16 as numbered, please replace with:

R279G mutation analysis R279G mutation analysis

Page 46, line 21 as numbered, please replace with:

Análisis of the mutation T446I Analysis of the mutation T446I

Page 47, line 14 as numbered, please replace with:

Análisis de la mutación 1423delGC/insA Analysis Mutant 1423delGC/insA

Page 49, line 4 as numbered, please replace with:

Análisis of the mutation [1587-5del5; 1587del31] Analysis of the mutation [1587-5del5; 1587del31]

Delete the Sequence Listing presently of record and replace, on a separate page after page 65, last line with the Sequence Listing attached hereto.