Quantum Many-Body Simulations of

Double Dot System

Alocias Mariadason

Contents

- 1 Introduction
- 2. Methods
- 3. Wavefunction
- 4. Implementation
- 5. Results
- 6. Summary and Conclusion

Introduction

Quantum-Dot

• Small semiconductor nanostructures

- Schrödinger equation
 - $\bullet \ \mathcal{H} \left| \psi \right\rangle = E \left| \psi \right\rangle$

- Schrödinger equation
 - $\mathcal{H} |\psi\rangle = E |\psi\rangle$
- Hamiltonian

•
$$\mathcal{H} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i < j} f(\mathbf{r}_{j}, \mathbf{r}_{j}) - \frac{1}{2} \sum_{k} \frac{\nabla_{k}^{2}}{M_{k}} + \sum_{k < l} g(\mathbf{R}_{k}, \mathbf{R}_{l}) + V(\mathbf{R}, \mathbf{r})$$

- Schrödinger equation
 - $\mathcal{H} |\psi\rangle = E |\psi\rangle$
- Hamiltonian

•
$$\mathcal{H} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i < j} f(\mathbf{r}_{j}, \mathbf{r}_{j}) - \frac{1}{2} \sum_{k} \frac{\nabla_{k}^{2}}{M_{k}} + \sum_{k < l} g(\mathbf{R}_{k}, \mathbf{R}_{l}) + V(\mathbf{R}, \mathbf{r})$$

- Born-Oppenheimer Approximation
 - Ignore Nuclei
 - $\sum_{k=1}^{\infty} \frac{\nabla_k^2}{M_k}$ gone
 - $\sum_{k=1}^{K} g(R_k, R_l)$ constant

- Schrödinger equation
 - $\mathcal{H} |\psi\rangle = E |\psi\rangle$
- Hamiltonian

•
$$\mathcal{H} = -\frac{1}{2} \sum_{j} \nabla_{i}^{2} + \sum_{i < j} f(\mathbf{r}_{j}, \mathbf{r}_{j}) - \frac{1}{2} \sum_{k} \frac{\nabla_{k}^{2}}{M_{k}} + \sum_{k < l} g(\mathbf{R}_{k}, \mathbf{R}_{l}) + V(\mathbf{R}, \mathbf{r})$$

- Born-Oppenheimer Approximation
 - Ignore Nuclei
 - $\sum_{k=1}^{\infty} \frac{\nabla_k^2}{M_k}$ gone
 - $\sum_{k=1}^{n} g(R_k, R_l)$ constant
 - $\mathcal{H} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i < j} f(\mathbf{r}_{j}, \mathbf{r}_{j}) + V(\mathbf{R}, \mathbf{r})$

- Interaction
 - $f(\mathbf{r}_i, \mathbf{r}_j) = \frac{1}{|\mathbf{r}_i \mathbf{r}_j|}$

- Interaction: Coulomb repulsion
 - $f(\mathbf{r}_i, \mathbf{r}_j) = \frac{1}{|\mathbf{r}_i \mathbf{r}_j|}$
- Confinement: Harmonic Oscillator¹, Double-Well²

$$V(\mathbf{r}) = \frac{1}{2}m\omega^2 r^2 \qquad V(\mathbf{R}, \mathbf{r}) = \frac{1}{2}m\omega^2 (r^2 - \delta R|x| + R^2)$$

¹S. Kvaal. "Harmonic Oscillator Eigenfunction Expansions, Quantum dots, and Effective Interactions". In: *Phys. Rev. B* 80 (4 2009), p. 045321.

²M. J. A. Schuetz et al. "Nuclear Spin Dynamics in Double Quantum Dots: Multistability, Dynamical Polarization, Criticality, and Entanglement". In: *Phys. Rev. B* 89 (19 2014), p. 195310.

Methods

Hartree-Fock Variational Monte-Carlo

Methods: Variational Principle

$$E_0 \leq \frac{\left<\Psi\right|\mathcal{H}\left|\Psi\right>}{\left<\Psi\right|\Psi\right>}$$

• Pauli Principle

- Pauli Principle
- Slater Determinant

•
$$\Psi_T^{\mathsf{AS}} = \frac{1}{\sqrt{N!}} \sum_P (-1)^p \mathscr{P}_P \prod_i \psi_i$$

$$\begin{split} \bullet \ \ \Psi^{\mathsf{AS}}_{T} &= \frac{1}{\sqrt{N!}} \sum_{P} (-1)^{p} \mathscr{P}_{P} \prod_{i} \psi_{i} \\ \bullet \ \ \Psi^{\mathsf{S}}_{T} &= \sqrt{\prod\limits_{i=1}^{N} n_{i}!} \sum_{P} \mathscr{P}_{P} \prod_{i} \psi_{i} \end{split}$$

- Pauli Principle
- Slater Determinant

$$\bullet \ \Psi_T^{\mathsf{AS}} = \frac{1}{\sqrt{N!}} \sum_P (-1)^p \mathscr{P}_P \prod_i \psi_i$$

•
$$\Psi_T^{S} = \sqrt{\frac{\prod\limits_{i=1}^{N} n_i!}{N!}} \sum\limits_{P} \mathscr{P}_P \prod\limits_{i} \psi_i$$

$$\bullet \ E\left[\Psi\right] = \frac{\langle\Psi|\mathcal{H}|\Psi\rangle}{\langle\Psi|\Psi\rangle} = \sum_{p} \langle p|\mathcal{H}_{0}|p\rangle + \frac{1}{2} \sum_{p,q} \left[\langle pq|f_{12}|pq\rangle \pm \langle pq|f_{12}|qp\rangle \right]$$

$$\bullet \mathcal{H}_0 = -\frac{1}{2} \sum_i \nabla_i^2 + V(r)$$

- Assumptions
 - The Born-Oppenheimer approximation holds.
 - All relativistic effects are negligible.
 - The wavefunction can be described by a single Slater determinant.
 - The Mean Field Approximation holds.

- Assumptions
 - The Born-Oppenheimer approximation holds.
 - All relativistic effects are negligible.
 - The wavefunction can be described by a single Slater determinant.
 - The Mean Field Approximation holds.

• Constrained minimization

- Constrained minimization
 - ullet Spin orthogonality: $\langle \psi_i | \psi_j \rangle = \delta_{ij}$

- Constrained minimization
 - ullet Spin orthogonality: $\langle \psi_i ig| \psi_j
 angle = \delta_{ij}$
 - Lagrange Multiplier method

- Constrained minimization
 - Spin orthogonality: $\langle \psi_i | \psi_j \rangle = \delta_{ij}$
 - Lagrange Multiplier method
 - Fock-operator: $\mathscr{F} \equiv \mathscr{H}_0 + \mathscr{J} \pm \mathscr{K}$
 - $\mathcal{J} \equiv \langle \psi_k^* | f_{12} | \psi_k \rangle = \int \psi_k^*(\mathbf{r}) f_{12} \psi_k(\mathbf{r}) d\mathbf{r}$
 - $\mathcal{K} \equiv \langle \psi_k^* | f_{12} | \psi \rangle = \int \psi_k^*(\mathbf{r}) f_{12} \psi(\mathbf{r}) d\mathbf{r}$
 - $\mathscr{F}|\psi\rangle = \varepsilon|\psi\rangle, \varepsilon = (\varepsilon_0, ..., \varepsilon_N)$

- Constrained minimization
 - Spin orthogonality: $\langle \psi_i | \psi_j \rangle = \delta_{ij}$
 - Lagrange Multiplier method
 - Fock-operator: $\mathscr{F} \equiv \mathscr{H}_0 + \mathscr{J} \pm \mathscr{K}$

•
$$\mathcal{J} \equiv \langle \psi_k^* | f_{12} | \psi_k \rangle = \int \psi_k^*(\mathbf{r}) f_{12} \psi_k(\mathbf{r}) d\mathbf{r}$$

•
$$\mathcal{K} \equiv \langle \psi_k^* | f_{12} | \psi \rangle = \int \psi_k^*(\mathbf{r}) f_{12} \psi(\mathbf{r}) d\mathbf{r}$$

•
$$\mathscr{F}|\psi\rangle = \varepsilon|\psi\rangle, \varepsilon = (\varepsilon_0, ..., \varepsilon_N)$$

• Integrate out spin

- Integrate out spin
- Pair spins as: $\{\psi_{2l-1}, \psi_{2l}\} = \{\phi_l(\mathbf{r})\alpha(s), \phi_l(\mathbf{r})\beta(s)\}$

- Integrate out spin
- Pair spins as: $\{\psi_{2l-1}, \psi_{2l}\} = \{\phi_l(\mathbf{r})\alpha(s), \phi_l(\mathbf{r})\beta(s)\}$
- Expand: $\phi_i(\mathbf{r}) = \sum_{p=1}^{L} C_{pi} \chi_p(\mathbf{r})$

- Integrate out spin
- Pair spins as: $\{\psi_{2l-1}, \psi_{2l}\} = \{\phi_l(\mathbf{r})\alpha(s), \phi_l(\mathbf{r})\beta(s)\}$
- Expand: $\phi_i(\mathbf{r}) = \sum_{p=1}^L C_{pi} \chi_p(\mathbf{r})$
- Roothan-Hall: $FC_i = \varepsilon SC_i$
 - $F_{pq} = h_{pq} + \sum_{pq} \rho_{pq} \left(2D_{prqs} \pm D_{prsq} \right)$
 - $h_{pq} \equiv \langle p | h | q \rangle$
 - $\bullet \ \rho_{pq} \equiv \sum_{i=1}^{\frac{N}{2}} C_{pi} C_{qi}^*$
 - $D_{pqrs} \equiv \langle pq | f_{12} | rs \rangle$
 - $S_{pq} \equiv \langle p | q \rangle$

- Integrate out spin
- Pair spins as: $\{\psi_{2l-1}, \psi_{2l}\} = \{\phi_l(\mathbf{r})\alpha(s), \phi_l(\mathbf{r})\beta(s)\}$
- Expand: $\phi_i(\mathbf{r}) = \sum_{p=1}^L C_{pi} \chi_p(\mathbf{r})$
- Roothan-Hall: $FC_i = \varepsilon SC_i$
 - $F_{pq} = h_{pq} + \sum_{pq} \rho_{pq} \left(2D_{prqs} \pm D_{prsq} \right)$
 - $h_{pq} \equiv \langle p | h | q \rangle$
 - $\bullet \ \rho_{pq} \equiv \sum_{i=1}^{\frac{N}{2}} C_{pi} C_{qi}^*$
 - $D_{pqrs} \equiv \langle pq | f_{12} | rs \rangle$
 - $S_{pq} \equiv \langle p | q \rangle$
- Poople-Nesbet: $F^+C^+ = \varepsilon SC^+$, $F^-C^- = \varepsilon^-SC^-$
 - $\bullet \quad F^{\pm}_{pq} = h_{pq} + \sum_{k_{\pm}} \sum_{rs} C^{\pm\dagger}_{rk_{\pm}} C^{\pm\dagger}_{sk_{\pm}} \left[D_{prqs} D_{prsq} \right] + \sum_{k_{\mp}} \sum_{rs} C^{\mp\dagger}_{rk_{\mp}} C^{\mp\dagger}_{sk_{\mp}} D_{prqs}$

• Variational Principle

- Variational Principle
- Rewrite expectation value: $\frac{\langle \Psi | \mathscr{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \int \frac{\Psi^* \mathscr{H} \Psi}{\int \Psi^* \Psi dr} dr = \int \frac{|\Psi|^2 E_L}{\int \Psi^* \Psi dr} dr$
 - $E_L(R; \alpha) \equiv \frac{1}{\Psi} \mathcal{H} \Psi$ $P(R) \equiv \frac{|\Psi|^2}{\langle \Psi | \Psi \rangle}$

- Variational Principle
- Rewrite expectation value: $\frac{\langle \Psi | \mathscr{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \int \frac{\Psi^* \mathscr{H} \Psi}{\int \Psi^* \Psi dr} dr = \int \frac{|\Psi|^2 E_L}{\int \Psi^* \Psi dr} dr$
 - $E_L(\mathbf{R}; \boldsymbol{\alpha}) \equiv \frac{1}{\Psi} \mathcal{H} \Psi$
 - $P(R) \equiv \frac{|\psi_T|^2}{\langle \Psi_T | \Psi_T \rangle}$
- Metropolis-Hastings Algorithm
 - $r^{\text{new}} = r^{\text{old}} + \Delta t \xi$
 - $A_{i \to j} = \min\left(\frac{P_{i \to j}}{P_{j \to i}} \frac{T_{i \to j}}{T_{j \to i}}, 1\right)$

Methods: Variational Monte-Carlo

- Variational Principle
- Rewrite expectation value: $\frac{\langle \Psi | \mathscr{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \int \frac{\Psi^* \mathscr{H} \Psi}{\int \Psi^* \Psi dr} dr = \int \frac{|\Psi|^2 E_L}{\int \Psi^* \Psi dr} dr$
 - $E_L(R; \alpha) \equiv \frac{1}{\Psi} \mathcal{H} \Psi$
 - $P(R) \equiv \frac{|\psi_T|^2}{\langle \Psi_T | \Psi_T \rangle}$
- Metropolis-Hastings Algorithm
 - $r^{\text{new}} = r^{\text{old}} + \Delta t \xi$
 - $A_{i \to j} = \min \left(\frac{P_{i \to j}}{P_{j \to i}} \frac{T_{i \to j}}{T_{j \to i}}, 1 \right)$
 - Importance Sampling
 - $r^{\text{new}} = r^{\text{old}} + D\Delta t F^{\text{old}} + \sqrt{\Delta t} \xi$
 - $F = \frac{2}{\Psi} \nabla \Psi$
 - $\bullet \quad \frac{T(b,a,\Delta t)}{T(a,b,\Delta t)} = \sum_{i} \exp \left(-\frac{\left(r_{i}^{(b)} r_{i}^{(a)} D\Delta t F_{i}^{(a)}\right)^{2}}{4D\Delta t} + \frac{\left(r_{i}^{(a)} r_{i}^{(b)} D\Delta t F_{i}^{(b)}\right)^{2}}{4D\Delta t} \right)$

Methods: Variational Monte-Carlo

Wavefunction

Wavefunction

$$\phi_i(\mathbf{r}) = \sum_{p=1}^L C_{pi} \chi_p(\mathbf{r})$$

Wavefunction

$$\phi_i(\mathbf{r}) = \sum_{p=1}^L C_{pi} \chi_p(\mathbf{r})$$

Wavefunction: Integral Elements

$$\langle \phi_i(\mathbf{r}) | \phi_j(\mathbf{r}) \rangle$$

$$\langle \phi_i(\mathbf{r}) | x_d^k | \phi_j(\mathbf{r}) \rangle$$

$$\langle \phi_i(\mathbf{r}) | \nabla^2 | \phi_j(\mathbf{r}) \rangle$$

$$\langle \phi_i(\mathbf{r}_1) \phi_j(\mathbf{r}_2) | f_{12} | \phi_k(\mathbf{r}_1) \phi_l(\mathbf{r}_2) \rangle$$

• Hermite Function: $\psi_n(\mathbf{r}) \equiv \prod_d N_d H_{n_d}(\sqrt{\omega} x_d) \exp\left(-\frac{\omega}{2} x_d^2\right)$

- Hermite Function: $\psi_n(\mathbf{r}) \equiv \prod_d N_d H_{n_d}(\sqrt{\omega} x_d) \exp(-\frac{\omega}{2} x_d^2)$
- Solution in polar³

³E. Anisimovas and A. Matulis. "Energy spectra of few-electron quantum dots". In: *Journal of Physics: Condensed Matter* (1998).

- Hermite Function: $\psi_n(\mathbf{r}) \equiv \prod_d N_d H_{n_d}(\sqrt{\omega} x_d) \exp\left(-\frac{\omega}{2} x_d^2\right)$
- Solution in polar⁴
- $\psi_n(\mathbf{r}) = \prod_d N_d \sum_{l=1}^{n_d} C_{n_d l}^{\text{Hermite}} g_l(\frac{\omega}{2}, \mathbf{r}, \mathbf{0})$

⁴E. Anisimovas and A. Matulis. "Energy spectra of few-electron quantum dots". In: *Journal of Physics: Condensed Matter* (1998).

- Hermite Function: $\psi_n(\mathbf{r}) \equiv \prod_d N_d H_{n_d}(\sqrt{\omega} x_d) \exp\left(-\frac{\omega}{2} x_d^2\right)$
- Solution in polar⁵

•
$$\psi_n(\mathbf{r}) = \prod_d N_d \sum_{l=1}^{n_d} C_{n_d l}^{\text{Hermite}} g_l(\frac{\omega}{2}, \mathbf{r}, \mathbf{0})$$

• Solution in Cartesian⁶

$$\langle g_{i}(\mathbf{r}) | g_{j}(\mathbf{r}) \rangle$$

$$\langle g_{i}(\mathbf{r}) | x_{d}^{k} | g_{j}(\mathbf{r}) \rangle$$

$$\langle g_{i}(\mathbf{r}) | \nabla^{2} | g_{j}(\mathbf{r}) \rangle$$

$$\langle g_{i}(\mathbf{r}_{1}) g_{i}(\mathbf{r}_{2}) | f_{12} | g_{k}(\mathbf{r}_{1}) g_{i}(\mathbf{r}_{2}) \rangle$$

⁵E. Anisimovas and A. Matulis. "Energy spectra of few-electron quantum dots". In: Journal of Physics: Condensed Matter (1998).

⁶J. Olsen T. Helgaker P. Jørgensen. *Molecular Electronic-Structure Theory*. Wiley, 2014. isbn: 978-0-47-196755-2. doi: 10.1002/9781119019572.

Wavefunction: Single-Well Integral Elements

• Perturbation of harmonic oscillator: $U^{\mathrm{DW}}(r) = V^{\mathrm{HO}}(r) + V^{\mathrm{DW}}_{n}(r)$

- Perturbation of harmonic oscillator: $U^{\mathrm{DW}}(r) = V^{\mathrm{HO}}(r) + V^{\mathrm{DW}}_{n}(r)$
- Expand in HO-functions: $\left|\psi_{p}^{\text{DW}}\right\rangle = \sum_{l} C_{lp}^{\text{DW}} \left|\psi_{l}^{\text{HO}}\right\rangle$

- Perturbation of harmonic oscillator: $U^{\mathrm{DW}}(r) = V^{\mathrm{HO}}(r) + V^{\mathrm{DW}}_{n}(r)$
- Expand in HO-functions: $\left|\psi_{p}^{\text{DW}}\right\rangle = \sum_{l} C_{lp}^{\text{DW}} \left|\psi_{l}^{\text{HO}}\right\rangle$
- Eigenvalue equation: $H^{DW}C^{DW} = \epsilon^{DW}C^{DW}$

•
$$H_{ij}^{\text{DW}} = \varepsilon_i^{\text{HO}} \delta_{ij} + \left\langle \psi_i^{\text{HO}} \middle| V_n^{\text{DW}} \middle| \psi_j^{\text{HO}} \right\rangle$$

- Perturbation of harmonic oscillator: $U^{\mathrm{DW}}(r) = V^{\mathrm{HO}}(r) + V^{\mathrm{DW}}_{n}(r)$
- Expand in HO-functions: $\left|\psi_{p}^{\text{DW}}\right\rangle = \sum_{l} C_{lp}^{\text{DW}} \left|\psi_{l}^{\text{HO}}\right\rangle$
- Eigenvalue equation: $H^{DW}C^{DW} = \epsilon^{DW}C^{DW}$

•
$$H_{ij}^{DW} = \varepsilon_i^{HO} \delta_{ij} + \langle \psi_i^{HO} | V_n^{DW} | \psi_j^{HO} \rangle$$

Integral-Elements

$$\begin{split} \left\langle \psi_{p}^{\text{DW}} \left| \psi_{q}^{\text{DW}} \right\rangle &= \delta_{pq} \\ \left\langle \psi_{p}^{\text{DW}} \left| h^{\text{DW}} \right| \psi_{q}^{\text{DW}} \right\rangle &= \varepsilon_{p}^{\text{DW}} \delta_{pq} \\ \left\langle \psi_{p}^{\text{DW}} \psi_{q}^{\text{DW}} \left| \frac{1}{r_{12}} \left| \psi_{r}^{\text{DW}} \psi_{s}^{\text{DW}} \right\rangle &= \sum_{tuvw}^{ijkl} C_{tp}^{\text{DW}} C_{vq}^{\text{DW}} C_{vr}^{\text{DW}} C_{ws}^{\text{DW}} \left\langle \psi_{t}^{\text{HO}} \psi_{u}^{\text{HO}} \right| \frac{1}{r_{12}} \left| \psi_{v}^{\text{HO}} \psi_{w}^{\text{HO}} \right\rangle \end{split}$$

• Slater determinant: $\psi_T = \det(\Phi(R; \alpha))\xi(s)$

- Slater determinant: $\psi_T = \det(\Phi(R; \alpha))\xi(s)$
- Modified Hermite: $\Phi_{ij} = \psi_{n_j}^{HO}(\sqrt{\alpha\omega}r_i) = \prod_d N_d H_{n_d}(\sqrt{\alpha\omega}x_d) e^{-\frac{\alpha\omega}{2}x_d^2}$

- Slater determinant: $\psi_T = \det(\Phi(R; \alpha))\xi(s)$
- Modified Hermite: $\Phi_{ij} = \psi_{n_j}^{\text{HO}}(\sqrt{\alpha\omega}r_i) = \prod_d N_d H_{n_d}(\sqrt{\alpha\omega}x_d) e^{-\frac{\alpha\omega}{2}x_d^2}$
- Hartree-Fock: $\Phi_{ij} = \sum_{l} C_{jl} \psi_{n_l}^{\mathsf{HO}} \left(\sqrt{\omega} r_i \right)$

- Slater determinant: $\psi_T = \det(\Phi(R; \alpha))\xi(s)$
- Modified Hermite: $\Phi_{ij} = \psi_{n_j}^{HO}(\sqrt{\alpha\omega}r_i) = \prod_d N_d H_{n_d}(\sqrt{\alpha\omega}x_d) e^{-\frac{\alpha\omega}{2}x_d^2}$
- Hartree-Fock: $\Phi_{ij} = \sum_{l} C_{jl} \psi_{n_l}^{HO} (\sqrt{\omega} r_i)$
- Modified Hartree-Fock: $\Phi_{ij} = \sum_{l} C_{jl} \psi_{n_l}^{HO} (\sqrt{\alpha \omega} r_i)$

- Slater determinant: $\psi_T = \det(\Phi(R; \alpha))\xi(s)$
- Modified Hermite: $\Phi_{ij} = \psi_{n_j}^{HO}(\sqrt{\alpha\omega}r_i) = \prod_d N_d H_{n_d}(\sqrt{\alpha\omega}x_d) e^{-\frac{\alpha\omega}{2}x_d^2}$
- Hartree-Fock: $\Phi_{ij} = \sum_{l} C_{jl} \psi_{n_l}^{HO} (\sqrt{\omega} r_i)$
- Modified Hartree-Fock: $\Phi_{ij} = \sum_{l} C_{jl} \psi_{n_l}^{HO} (\sqrt{\alpha \omega} r_i)$
- Padé-Jastrow: $J_{\mathsf{Padé}} = \prod_{i < j} e^{\frac{a_{ij} r_{ij}}{1 + \hat{p} r_{ij}}}$

- Slater determinant: $\psi_T = \det(\Phi(R; \alpha))\xi(s)$
- Modified Hermite: $\Phi_{ij} = \psi_{n_j}^{HO}(\sqrt{\alpha\omega}r_i) = \prod_d N_d H_{n_d}(\sqrt{\alpha\omega}x_d) e^{-\frac{\alpha\omega}{2}x_d^2}$
- Hartree-Fock: $\Phi_{ij} = \sum_{l} C_{jl} \psi_{n_l}^{HO} (\sqrt{\omega} r_i)$
- Modified Hartree-Fock: $\Phi_{ij} = \sum_{l} C_{jl} \psi_{n_l}^{HO} (\sqrt{\alpha \omega} r_i)$
- Padé-Jastrow: $J_{\mathsf{Padé}} = \prod_{i < j} e^{\frac{a_{ij} r_{ij}}{1 + \beta r_{ij}}}$
- NQS: $J_{NQS} = e^{-\sum_{i=1}^{N} \frac{(r_i a_i)^2}{2\sigma^2}} \prod_{j}^{M} \left(1 + e^{b_j + \sum_{i=1}^{N} \sum_{d=1}^{D} \frac{x_j^{(d)} w_{i+d,j}}{\sigma^2}} \right)$

- Slater determinant: $\psi_T = \det(\Phi(R; \alpha))\xi(s)$
- Modified Hermite: $\Phi_{ij} = \psi_{n_j}^{HO}(\sqrt{\alpha\omega}r_i) = \prod_d N_d H_{n_d}(\sqrt{\alpha\omega}x_d) e^{-\frac{\alpha\omega}{2}x_d^2}$
- Hartree-Fock: $\Phi_{ij} = \sum_{l} C_{jl} \psi_{n_l}^{HO} (\sqrt{\omega} r_i)$
- Modified Hartree-Fock: $\Phi_{ij} = \sum_{l} C_{jl} \psi_{n_l}^{HO} (\sqrt{\alpha \omega} r_i)$
- Padé-Jastrow: $J_{\mathsf{Pad\acute{e}}} = \prod_{i < j} e^{\frac{a_{ij} r_{ij}}{1 + \beta r_{ij}}}$
- NQS: $J_{NQS} = e^{-\sum\limits_{i=1}^{N} \frac{(r_i a_i)^2}{2\sigma^2}} \prod\limits_{j}^{M} \left(1 + e^{b_j + \sum\limits_{i=1}^{N} \sum\limits_{d=1}^{D} \frac{x_i^{(d)} w_{i+d,j}}{\sigma^2}} \right)$
- Padé-NQS: $J = J_{Padé}J_{NQS}$

- Slater determinant: $\psi = \det(\Phi(R; \alpha))\xi(s)$
- Modified Hermite: $\Phi_{ij} = \psi_{n_j}^{HO}(\sqrt{\alpha\omega}r_i) = \prod_d N_d H_{n_d}(\sqrt{\alpha\omega}x_d) e^{-\frac{\alpha\omega}{2}x_d^2}$
- Hartree-Fock: $\Phi_{ij} = \sum_{l} C_{jl} \psi_{n_l}^{HO} (\sqrt{\omega} r_i)$
- Modified Hartree-Fock: $\Phi_{ij} = \sum_{l} C_{jl} \psi_{n_l}^{HO} (\sqrt{\alpha \omega} r_i)$
- Padé-Jastrow: $J_{\mathsf{Pad\acute{e}}} = \prod_{i < j} e^{\frac{a_{ij} r_{ij}}{1 + \beta r_{ij}}}$
- NQS: $J_{NQS} = e^{-\sum_{i=1}^{N} \frac{(r_i a_i)^2}{2\sigma^2}} \prod_{j}^{M} \left(1 + e^{b_j + \sum_{i=1}^{N} \sum_{d=1}^{D} \frac{x_j^{(d)} w_{i+d,j}}{\sigma^2}} \right)$
- Padé-NQS: $J = J_{Padé}J_{NQS}$

• C++ and Eigen

- C++ and Eigen
 - Performance

- C++ and Eigen
 - Performance
 - Generalization

- C++ and Eigen
 - Performance
 - Generalization
- Python

- C++ and Eigen
 - Performance
 - Generalization
- Python
 - Generate C++ code

Implementation: Cartesian

- Parallelization
 - Two-body element is computationally expensive • $S_i = \sum\limits_{j=0}^{P_i}\prod\limits_{d}(n_{j_d}+1)$

•
$$S_i = \sum_{j=0}^{P_i} \prod_d (n_{j_d} + 1)$$

- Parallelization
 - Two-body element is computationally expensive

•
$$S_i = \sum_{j=0}^{P_i} \prod_d (n_{j_d} + 1)$$

• Hartree-Fock algorithm only run on one process

- Parallelization
 - Two-body element is computationally expensive

•
$$S_i = \sum_{j=0}^{P_i} \prod_d (n_{j_d} + 1)$$

- Hartree-Fock algorithm only run on one process
- Tabulation of Two-Body matrix

Implementation: Variational Monte-Carlo

• Hermite generated with Python and SymPy

• set: Called during initialization (before each sampling)

• reSetAll: Sets all matrices to zero (used in testing)

• initializeMatrices: Allocate memory

• update: Update positions and wavefunction

• reset: Revert to previous positions and wavefunction

resetGradient
 Revert to previous gradient

• acceptState: Update previous positions and wavefunction to current

• acceptGradient: Update previous gradient to current one

• Hermite generated with Python and SymPy

- Hermite generated with Python and SymPy
- Wavefunction class can be created with Python

Results

ω[a.u]	N			
	2	6	12	20
0.1	0.4407(4)	3.5650(4)	12.3164(4)	30.0480(4)
0.28	1.0020(4)	7.6198(4)	25.5948(3)	61.8090(3)
0.5	1.6650(4)	11.8017(4)	39.3166(3)	93.9240(2)
1.0	3.0000(5)	20.2863(3)	68.1465(3)	156.2778(2)

ω[a.u]	N		
	2	8	
0.1	0.50006(5)	5.80479(4)	
0.28	1.20156(5)	12.48178(4)	
0.5	2.00027(5)	19.33356(4)	
1.0	3.72985(5)	33.30958(4)	

$$\psi = \psi^{\mathsf{HO}} \left(\sqrt{\alpha \omega} r \right) J_{\mathsf{Pad\acute{e}}}$$

Summary and Conclusion

Questions?

Questions

Questions?