Tutorial 2

Decision Tree, Cross-validation, Precision and Recall

Luke Chang

The University of Auckland

Mar. 2021

Objectives

- Evaluation Metrics: Accuracy, Precision, Recall and F1 score
- ROC curve and AUC
- Should you trust the results?
- Parametric Tests VS. Non-parametric Tests
- Regression and Least Square Problem
- Ensemble Methods

Confusion Matrix

Confusion Matrix can be applied to binary classification as well as for multiclass classification problems.

		Predicted							
		Positive Negative							
Actual	Positive	True Positive	False Negative						
	Negative	False Positive	True Negative						

- True Positive (TP): Correctly classified.
- True Negative (TN): Correctly rejected.
- False Positive (FP): Incorrectly classified. Type I Error.
- False Negative (FN): Incorrectly rejected. Type II Error.

$$\mathsf{Accuracy} = \frac{\mathsf{TP} + \mathsf{TN}}{\mathsf{TP} + \mathsf{TN} + \mathsf{FP} + \mathsf{FN}}$$

Confusion Matrix

How many selected items are relevant? Selected Elements = TP + FP

Precision (P) =
$$\frac{TP}{TP + FP}$$

How many relevant items are selected? Relevant Elements = TP + FN

Recall (R) =
$$\frac{TP}{TP + FN}$$

 F_1 score is the **harmonic mean** between Precision and Recall.

$$F_1 = 2 \times \frac{P \times R}{P + R}$$

Example – Weather Prediction

Build a logistic regression model to predict the weather based on the humidity.

Recorded 10 days in total.

Class	Prediction					
Р	Р					
Ν	Р					
Р	N					
Р	Р					
Ν	Р					
Р	Р					
Ν	Р					
N	N					
N	N					
Р	Р					

Caveat: A model with high Recall may also has high FPR (Type I Error).

Acc.
$$=\frac{6}{10}=0.6$$

Precision (P) =
$$\frac{\text{TP}}{\text{TP} + \text{FP}} = \frac{4}{4+3} \approx 0.571$$

Recall (R) =
$$\frac{\text{TP}}{\text{TP} + \text{FN}} = \frac{4}{4+1} \approx 0.8$$

$$F_1 = 2\frac{P \times R}{P + R} = 2 \times \frac{0.571 \times 0.8}{0.571 + 0.8} \approx 0.667$$

Precision-Recall (PR) Curve (Optional)

Average precision (AP) summarizes such a plot as the weighted mean of precisions achieved at each threshold.

$$AP = \sum_{n} (R_n - R_{n-1}) P_n$$

- Where P_n and R_n are the precision and recall at the n-th threshold.
- A pair (P_n, P_k) is referred to as an *operating point*.

Figure: A SVM classifier trained on the Breast Cancer dataset

Receiver Operating Characteristic (ROC) Curve

- The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings.
- Area Under Curve (AUC): The integration of the ROC function between 0 and 1.

Figure: A SVM classifier trained on the Breast Cancer dataset

Example – Weather Prediction

Build a logistic regression model to predict the weather based on the humidity.

Recorded 10 days in total.

		Th	Thresholds											
Class	Prediction	0	0.2	0.4	0.6	8.0	1							
P	0.95	1	1	1	1	1	0							_
Ν	0.85	1	1	1	1	1	0	Threshold	0	0.2	0.4	0.6	0.8	1
Р	0.78	1	1	1	1	0	0	TPR	1	1	1	0.60	0.2	0
Р	0.66	1	1	1	1	0	0	FPR	1	1	1	0.4	0.2	0
Ν	0.6	1	1	1	1	0	0							
Р	0.55	1	1	1	0	0	0							
Ν	0.53	1	1	1	0	0	0							
N	0.52	1	1	1	0	0	0							
Ν	0.51	1	1	1	0	0	0							
Р	0.4	1	1	1	0	0	0							

Should you trust the results?

Parametric Tests VS. Non-parametric Tests

Regression and Least Square Problem

Ensemble Methods