PROBLEM 5.3:

$$y(n) = 2x(n) - 3x(n-1) + 2x(n-2)$$

(a) MAKE A TABLE:

n	40	0	1	2	3	4	5	6	7	≥8
N X[n]	0	1	2	3	2	1	1	1	1	1
ymi	0	2	1	2	-1	2	3	1	1	1

$$y[0] = 2x[0] - 3x[-1] + 2x[-2] = 2(1) = 2$$

$$y[1] = 2x[1] - 3x[0] + 2x[-1] = 2(2) - 3(1) = 1$$

$$y[2] = 2x[2] - 3x[1] + 2x[0] = 2(3) - 3(2) + 2(1) = 2$$

$$y[3] = 2(2) - 3(3) + 2(2) = -1$$

$$y[4] = 2(1) - 3(2) + 2(3) = 2$$

$$y[5] = 2(1) - 3(1) + 2(2) = 3$$

$$y[6] = 2(1) - 3(1) + 2(1) = 1$$

$$y[7] = 2(1) - 3(1) + 2(1) = 1$$

$$y[8] = 2(1) - 3(1) + 2(1) = 1$$

(C) Impulse Response

$$h[0] = 2(1) - 3(0) + 2(0) = 2$$

 $h[1] = 2(0) - 3(1) + 2(0) = -3$
 $h[2] = 2(0) - 3(0) + 2(0) = 2$

Notice hin7 just "reads out" the filter coefficients:
i.e., hin7= bn

PROBLEM 5.8:

Use convolution

McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7. Pearson Prentice Hall, Inc. Upper Saddle River, NJ 07458. © 2003

This page should not be copied or electronically transmitted unless prior written permission has been obtained from the authors. October 8, 2004

PROBLEM 5.9:

Linearity?

(a) YES.

Let
$$x[n] = \alpha_1 x_1[n] + \alpha_2 x_2[n]$$

$$\Rightarrow y[n] = (\alpha_1 x_1[n] + \alpha_2 x_2[n]) \cos(0.2\pi n)$$

$$= \alpha_1 x_1[n] \cos(0.2\pi n) + \alpha_2 x_2[n] \cos(0.2\pi n)$$

$$y_1[n]$$

$$y_2[n]$$

(b)
$$Y_{E} \le .$$

$$y[n] = (\alpha_1 X_1[n] - \alpha_2 X_2[n]) - (\alpha_1 X_1[n-1] + \alpha_2 X_2[n-1])$$

$$= \alpha_1 (X_1[n] - X_1[n-1]) + \alpha_2 (X_2[n] - X_2[n-1])$$

$$y_1[n]$$

$$y_2[n]$$

(c) No.
Let
$$X_1[n] = \delta[n]$$
 and $X_2[n] = -2\delta[n]$.
 $\Rightarrow y_1[n] = \delta[n]$ $\Rightarrow y_2[n] = |X_2[n]| = 2\delta[n]$
Let $X[n] = X_1[n] + X_2[n] = \delta[n] - 2\delta[n] = -\delta[n]$
 $\Rightarrow y[n] = |X[n]| = \delta[n]$ $\Rightarrow y_1[n] + y_2[n] = \delta[n] + 2\delta[n] = 3\delta[n]$
NOT EQUAL!

(d) NO! if B
$$\neq$$
 0
if $x_1[n] \rightarrow y_1[n]$, test $2x_1[n] \rightarrow 2y_1[n]$.
$$A(2x_1[n]) + B = 2(Ax_1[n] + B) - B \neq 2y_1[n]$$

TIME - INVARIANT?

(a) No!
Let
$$x[n] = \delta[n]$$
, then $y[n] = \delta[n] \cos(0.2\pi n) = \delta[n]$
Try $x[n-1] = \delta[n-1]$, then output is $\delta[n-1] \cos(0.2\pi n) = \cos(0.2\pi) \delta[n-1]$.
But $\cos(0.2\pi) \delta[n-1] \neq y[n-1] = \delta[n-1]$

PROBLEM 5.9 (more):

TIME-INVARIANT?

- (b) Yes. If $x[n] \longrightarrow y[n]$, Let $v[n] = x[n-n_0]$ output = $v[n] - v[n-1] = x[n-n_0] - x[n-n_0-1]$ This is the same as $y[n-n_0] = x[n-n_0] - x[n-n_0-1]$
- (C) YES.
 Output depends only on X[] at 'n", so y[n-no] = |x[n-no]|
- (d) Yes y[n-no] = Ax[n-no]+B is always true.

CAUSAL?

- (a) YES.

 y[n] at n=no depends only on x[n] at n=no, and not on past or future values.
 - (b) Yes.

 ying at n=no depends only on xing at n=no & n=no-1

 so it only uses the 'present" and the "past."
 - (c) YES y[n] at n=no depends only on x[n] at n=no. $y[n_0] = |x[n_0]|$
 - (d) YES y(n) at $n=n_0$ depends only on x(n) at $n=n_0$. $y(n_0) = Ax(n_0) + B$

PROBLEM 5.12:

$$x_1[n] = u[n]$$
 $y_1[n] = \delta[n] + 2\delta[n-1] - \delta[n-2]$

$$X_2[n] = 3u[n] - 2u[n-4]$$

Use linearity and time-invariance:

$$= 38[n] + 68[n-1] - 38[n-2] - 28[n-4] - 48[n-5] + 26[n-6].$$

List of values:

$$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{5} \frac{1}{6} \frac{1}{2} \frac{1}$$

McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7. Pearson Prentice Hall, Inc. Upper Saddle River, NJ 07458. © 2003

This page should not be copied or electronically transmitted unless prior written permission has been obtained from the authors. October 8, 2004

PROBLEM 5.14:

- (a) $f_{n} = \delta[n-2] \Rightarrow f_{n} = \delta[n] \Rightarrow f_{n$
- (b) First-difference FIR => $\Re[n] = \Re[n] \Re[n-1]$ The first-difference filter has a nonzero output at n when $\Re[n] \neq \Re[n-1]$ are not equal.

 If $\Re[n] = \Re[n] \Re[n-4]$, then the input $\Re[n]$ changes value at $\Re[n-4]$ and $\Re[n-4]$. At $\Re[n-4]$ jumps up by one; at $\Re[n-4]$ jumps down. $\Re[n] = \Re[n] \Re[n-4]$

jump up
by one

jump down

(c) 4-pt averagen: $y[n] = \frac{1}{4}(x[n]+x[n-1]+x[n-2]+x[n-3])$ If $y[n] = -5\delta[n] - 5\delta[n-2]$ $y[o] = -5 = \frac{1}{4}(x[o]+x[-1]+x[-2]+x[-3])$ ** if we assume x[n] = 0 for $x[-1] + x[-2] = \frac{1}{4}x[-2]$ $y[1] = 0 = \frac{1}{4}(x[-1]+x[-2]+x[-1]+x[-2]) = \frac{1}{4}x[-1] - 5$ $\Rightarrow x[-1] = 20$ $y[2] = -5 = \frac{1}{4}(x[2]+x[-1]+x[-1]+x[-1])$ x[2] = -20 $x[3] = 0 = \frac{1}{4}(x[-2]+x[-1]+x[-2]+x[-1]) \Rightarrow x[-2] = -20$ x[-2] = -20 x[-2] = -20

PROBLEM 5.17:

(a)
$$h_1[n] = \delta[n] - \delta[n-1]$$

 $h_2[n] = \delta[n] + \delta[n-2]$
 $h_3[n] = \delta[n-1] + \delta[n-2]$

(b) The overall h[n] is the convolution of the h;[n]. $h[n] = h_1[n] * h_2[n] * h_3[n]$

$$h_{1}[n] * h_{2}[n] = (\delta[n] - \delta[n-1]) * (\delta[n] + \delta[n-2])$$

$$= \delta[n] - \delta[n-1] + \delta[n-2] - \delta[n-3]$$

Now convolve with ha[n]

$$h[n] = \delta[n-1] - \delta[n-5]$$

(c)
$$y[n] = h[n] * x[n]$$

= $(\delta[n-1] - \delta[n-5]) * x[n]$
 $y[n] = x[n-1] - x[n-5]$

McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7. Pearson Prentice Hall, Inc. Upper Saddle River, NJ 07458. 2 2003

This page should not be copied or electronically transmitted unless prior written permission has been obtained from the authors. October 8, 2004