Open Source Tools Lab 7 5T OTA Design

1 OTA Desing

1.1 Specifications:

Technology	0.13 um CMOS	0.18 um CMOS
Supply Voltage	1.2V	1.8V
Load	5pF	5pF
Open Loop DC Voltage Gain	>= 34dB	>= 34dB
CMRR @ DC	>= 74dB	>= 74dB
Phase Margin	>= 70°	>= 70°
CM input range - low	<= 0.6V	<= 1V
CM input range - high	>= 1V	>= 1.5V
GBW	>= 10MHz	>= 10MHz

Figure 1. Specification Table

1.2 Input Pair Sizing

First Thing In Design OTA is to choose the INPUT pair NMOS or PMOS, this can be determined from CMIR spec., as shown in figure 1, CMIR closer to VDD, then NMOS is more suitable.

Now , Getting the value of g_m for the input pair form GBW spec GBW = $\frac{g_m}{C_L}$ = 10MHz , form this $g_m \approx 317 \, \mu S$, this can be got by choosing $\frac{g_m}{I_d}$ = 16 and I_D = 20 μA , but It was found that VGS in that case = 820mv , which in case of minimum CM input 1V , VDS for tail current source will be equal to 180mV taking a 50mV margin, $V^{(*)}$ = 130mv which is small for the Current source, that's why $\frac{g_m}{I_d}$ is chosen to 17 for the Input pair which gives us $V_{\rm GS} \approx 778$ mv (this is done with $V_{\rm sb}$ = 220mv), this gives us 220mv for the tail current source.

Input for SA	Value
g_{m/I_d}	17
$V_{ m DS}$	0.6V
$V_{ m SB}$	0.22V
$g_m/g_{ m ds}$	110
I_D	$20\mu A$

Table 1. Input Pair Sizing Input

The output form SA is shown in table 2

Paramter	Value
W	22.27μ
L	440n
V_{GS}	778m
r_o	311k
$V_{ m dsat}$	91.93m
$V^{\langle * \rangle}$	119m
$V_{ m ov}$	8.3m
I_d	20μ

Table 2. Input Pair Sizing Output

1.3 CM Load Sizing:

For the current mirror Load (PMOS CM) , the only things to consider is CM Input Maximum and r_o needs to match that of the input to get the required DC gain $\frac{g_m r_o}{2} \geqslant 50$.

Starting with CM Input Maximum ${\geqslant}1.5V$

$$\begin{array}{rcl} V_{\rm GD_{\rm input pair}} & \leqslant & V_{\rm GS_{\rm input pair}} - V_{\rm dsat_{\rm input pair}} \\ 1.5 - (1.8 - V_{\rm GS_{\rm CM}}) & \leqslant & V_{\rm GS_{\rm input pair}} - V_{\rm dsat_{\rm input pair}} \\ V_{\rm GS_{\rm CM}} & \leqslant & 986\,\rm mv \end{array}$$

 $V_{\rm GS}$ is chosen to be 950mv.

Paramter	Value
W	5.84μ
L	300n
$V_{ m GS}$	940m
r_o	311k
$V_{ m dsat}$	217.7m
$V^{\langle * angle}$	243.4m
$V_{ m ov}$	198m
I_d	20μ
g_m/I_d	8.216

Table 3. CM Load Sizing Output

1.4 Tail Current Source Sizing:

For Current Source tail , there are two specs that controls the sizing: CM Input Minimum and CMRR at DC , we chose that $V_{\rm DS_{min}} = 220 \, \rm mV$ as discussed previously.

For CMRR \geqslant 74dB at DC :

$$A_V (1 + 2(g_{m_{\rm CM}})R_{\rm ss}) \ge 5011$$

 $(g_{m_{\rm CM}})R_{\rm ss} \ge 50$
 $R_{\rm ss} \ge 300K$

OTA Desing

 r_o is chosen to be 300 K, $V_{\rm DS}=$ 220mv and $V^{\langle*\rangle}\!=\!180\,{\rm mv}$ (50mv margin).

Paramter	Value
W	72.6μ
${ m L}$	2.7μ
$V_{ m GS}$	$787.4 \mathrm{m}$
r_o	292.4k
$V_{ m dsat}$	137.3m
$V^{\langle * \rangle}$	182m
$V_{ m ov}$	$124.7 \mathrm{m}$
I_d	40μ
g_m/I_d	11

Table 4. Tail Current Source Sizing Output

1.5 Sizing Summary

Devices	W	L	I_d	g_m	$\frac{g_m}{I_d}$	$V_{ m dsat}$	$V^{\langle * angle}$	$V_{ m ov}$
Input pair	22.27μ	440n	20μ	336.3μ	16.81	91.93 m	119m	8.3m
CM load	5.84μ	300n	20μ	164.3μ	8.216	217.7m	243.4m	198m
Current	72.6μ	2.7μ	40μ	439.5μ	11	137.3m	182m	124m
Source								

Table 5. Sizing Summary

Figure 2. 5T OTA schematic

2 Simulation:

2.1 OP and AC simulation for $V_{\rm diff}$

2.1.1 Operating point analysis

Using VICM = 1.25 V , Vout = 0.859 V , that's because for common mode input , $V_{\rm out}$ follows CM node which is equals to $1.8-V_{\rm GS}=0.859\,V$.

BSIM4v5: Berkeley	Short Channel IGFE	T Model-4	
device	m.x9.xm6.m0	m.x9.xm5.m0	m.x9.xm3.m0
model	pfet_03v3.8	pfet_03v3.8	nfet_03v3.14
gm	0.000164599	0.000164599	0.000447876
gmbs	5.80529e-05	5.80529e-05	0.000176937
gds	3.1984e-06	3.1984e-06	1.05891e-06
vds	0.940782	0.940782	0.411416
vdsat	0.215992	0.215992	0.134862
vgs	0.940787	0.940787	0.78313
vth	0.744719	0.744719	0.663319
id	1.98544e-05	1.98544e-05	3.97088e-05
BSIM4v5: Berkeley	Short Channel IGFE	T Model-4	
device	m.x9.xm4.m0	m.x9.xm2.m0	m.x9.xm1.m0
model	nfet_03v3.14	nfet_03v3.12	nfet_03v3.12
gm	0.000112588	0.000333659	0.000333659
gmbs	4.44853e-05	9.10594e-05	9.10594e-05
gds	1.92954e-07	3.38133e-06	3.38133e-06
vds	0.783129	0.447789	0.447789
vdsat	0.134862	0.0935572	0.0935572
vgs	0.78313	0.838581	0.838581
vth	0.663319	0.829473	0.829473
id	1e-05	1.98544e-05	1.98544e-05

Figure 3. OP Results

2.1.2 AC Simulation $V_{\rm diff}$

Doing AC analysis where $v_{\rm cm}=0$ and $v_{\rm id}=1$, Results shows that BW = 206.6KHz , DC gain = 50.2 and GBW = 10.3M.

Figure 4. DC gain , BW and GBW

Analytical:

1. BW:

$${\rm BW} = \frac{1}{2\pi\,R_{\rm out}C_L} = \frac{3.38 + 3.2}{2\pi\,5}\,M = 209.4 {\rm KHz}$$

2. DC gain:

$$DC gain = g_m r_o / 2 = 333 / (3.38 + 3.2) = 50.6$$

3. GBW = 10.6M

Simulation: 5

	Simulation	Analysis
DC gain	50.2	50.6
$_{\mathrm{BW}}$	$206.6 \mathrm{KHz}$	209.4KHz
GBW	10.3M	10.6M

 ${\bf Table~6.~}$ BW , GBW and DC gain Simualtion Vs Analysis

Figure 5. $V_{
m out_{
m diff}}$ bode plot in db

2.1.3 VICM vs Frequency:

Here $v_{\rm cm} = 1$ and $v_{\rm id} = 0$.

Figure 6. $V_{\text{out}_{\text{diff}}}(\text{Common Mode Input})$ bode plot in db

Simulation:

DC gain = -0.00245417

Peak = 0.0042545

pole : 216.5 KHzzero : 5.77969e+07

second pole: 3.51603e+08

Analytical:

1. DC gain:

$$A_v = \frac{-1}{2g_m R_{SS}} = \frac{-1}{2164/1.06} = -3.2 \times 10^{-3}$$

2. Pole 1:

$$\frac{1}{2\pi(r_{o3}//r_{o2})C_L} = 204\text{KHz}$$

3. Zero: From ADT tail current source $C_{\rm db} = 117.4 \, {\rm fF}, \, C_{\rm sb} ({\rm Input \, Pair}) = 17.39 \, {\rm fF}$

$$\frac{1}{2\pi(2r_o)(C_{\rm db}+C_{\rm sb})}\!=\!62.58{\rm MHz}$$

4. Pole 2:

$$\frac{(g_{m_3} + g_{\rm ds_3} + g_{\rm ds_{input}})}{2\pi(C_{\rm db_{input}} + C_{\rm gd_{input}} + C_{\rm db} + C_{\rm gd} + 2(C_{\rm gs})} = 833 \rm MHz$$

5. Peak: This peak after occurs when $R_{\rm ss}$ becomes approximately zero abnd $R_{\rm out}$ is so small,

$$\begin{split} R_{\rm out}\,\text{at 1GHz} &= \frac{R_{\rm out}}{1+R_{\rm out}\omega C_L} \!=\! 32\Omega \ , \ R_{\rm ss} \!=\! \frac{R_{\rm ss}}{1+R_{\rm ss}\omega(C_{\rm db}+C_sb)} \!=\! 1.1K\Omega \end{split}$$
 Peak =

$$\frac{g_{m_{1,2}}}{1 + g_{m_{1,2}} R_{\rm ss}} \left(\frac{g_{m_{3,4}}(R_{\rm out})}{1 + g_{m_{3,4}}(R_{\rm out})} - 1 \right) R_{\rm out} \approx -4.64 m$$

This equation is an approximation but results is good

	Simulation	Analysis
DC gain	-2.45m	-3.2m
Pole 1	$216.5 \mathrm{KHz}$	$204 \mathrm{KHz}$
Zero(Due to $R_{\rm ss}$ Degradation)	$57.7 \mathrm{MHz}$	$62.58 \mathrm{MHz}$
Peak	-4.25m	-4.64m

Table 7. Pole, Zero ,DC gain and Peak Simulation Vs analysis

Simulation: 7

2.1.4 CMRR:

Figure 7. CMRR bode plot in (db)

As obivous form figure 7 that CMRR $\approx\!86\mathrm{db}$ at DC

 $\rm DC~CMRR = 20.418K$

Analysis:

1. DC CMRR:

$$g_{m_{1,2}}r_{o1}//r_{o2} 2(g_{m_{3,4}}R_{ss}) = 15.625K$$

	Simulation	Analysis
DC CMRR	20.418K	15.625K

Table 8. DC CMRR Simulation Vs Analysis

2.2 Large Signal Analysis

2.2.1 Differential Mode

Sweeping $V_{\rm diff}$ from -VDD : 0.1m: VDD, the output is

Figure 8. $V_{\rm out} \text{Vs } V_{\rm id}$ Large Signal

 $V_{\rm out}$ at $V_{\rm id}=0$ equals 0.859 V. that's because at $v_{\rm id}=0$, $V_{\rm out}$ follows Current Mirror Node which equals VDD- $V_{\rm SG}=0.859$ V Now for small signal gain:

Figure 9. Small Signal Open Loop gain

Here gain at $V_{\rm id}=0$ equals 51.0345V, $A_{\rm vd}{=}50.2$

2.2.2 Large Signal Common Mode:

Figure 10. GBW Vs VICM

 $VICM_{min} = 0.82V$ and 1.65V VICM is calculated for $90\langle\%\rangle$ GBW

3 Closed Loop OTA Simulation:

3.1 OP and Mismatch

Operating Point analysis at VICM = 0.87 (CMIR Low + 50mv)

BSIM4v5: Berkeley	Short Channel IGFET	Model-4	
device	m.x9.xm6.m0	m.x9.xm5.m0	m.x9.xm3.m0
model	pfet_03v3.8	pfet_03v3.8	nfet_03v3.14
gm	0.000160075	0.000159987	0.000387871
gmbs	5.64273e-05	5.63999e-05	0.000154041
gds	3.07766e-06	3.0815e-06	7.35356e-05
vds	0.93449	0.930071	0.12201
vdsat	0.210864	0.210832	0.134862
vgs	0.934494	0.934494	0.78313
vth	0.744777	0.744818	0.663319
id	1.88131e-05	1.87995e-05	3.76126e-05
- 1 TA 1 T			
BSIM4v5: Berkeley	Short Channel IGFET	Model-4	
device	m.x9.xm4.m0	m.x9.xm2.m0	m.x9.xm1.m0
model	nfet_03v3.14	nfet_03v3.12	nfet_03v3.12
gm	0.000112588	0.000320648	0.000320829
gmbs	4.44853e-05	0.000101006	0.000101063
gds	1.92954e-07	2.6828e-06	2.68848e-06
vds	0.783129	0.747907	0.743489
vdsat	0.134862	0.0893531	0.0893858
vgs	0.78313	0.747908	0.747988
vth	0.663319	0.745317	0.745328
id	1e-05	1.87995e-05	1.88131e-05
			•

Figure 11. Operating point results.

```
gm_mismatch = 1.809496e-07
id_mismatch = 1.360924e-08
```

Figure 12. Mismatch between Input Pair

There is a mismatch between Input pair current because there is differential compoent $v_{\rm id}$, Lets assume that's the output is the output at $v_{\rm id}=0$, then $V_{\rm out_{CM}}=0.8655$ (1.8- $V_{\rm GS}$) shown previously but $v_{+}=0.87$, then $v_{\rm id}=\frac{V_{\rm out}-V_{\rm out_{CM}}}{50}$, (since $V_{\rm CM_{min}}$ is close to $V_{\rm out_{CM}}$ the mismatch is so small). Mismatch in $\Delta I_d=v_{\rm id}\,g_{m_{1,2}}=28n$.

$$\Delta g_m = g_{m_1} - g_{m_2} = \sqrt{2k_n(I_D + \Delta I_D)} - \sqrt{2k_n(I_D)} = \frac{\sqrt{2K_n(I_D) + 2K_n(\Delta I_D)}}{\sqrt{2K_nI_D}} g_m - g_m$$

$$\Delta g_m = \sqrt{1 + \frac{\Delta I_D}{I_D}} g_m - g_m = \sqrt{1 + \frac{28n}{18.8}} 320\mu - 320\mu = 0.23\mu = 2.3 \times 10^{-7}$$

3.2 Loop Gain

```
bw = 2.070736e+05

pm_deg = -8.929352e+01

dominant_pole_f = 1.006400e+07

loop_gain = 3.373958e+01

gbw = 1.007173e+07
```

Figure 13. Loop AC Paramters

DC gain Open Loop = 50.2 , DC gain closed loop = $48.4,\,\mathrm{GBW}$ open loop = $10\mathrm{MHz} = \mathrm{Closed}$ Loop.

Analysis:

- 1. DC loop Gain = $\beta A_{\rm OL} = A_{\rm OL} = 50$
- $2.~\mathrm{BW} = 206.6\mathrm{KHz}$
- 3. Closed Loop Bandwidth = BW(1 + $\beta A_{\rm OL}$) = 10.5MHz
- 4. GBW = BW (since $\beta = 1$) = 10.5MHz

5. PM :
$$-{\rm tan}^{-1}\frac{\omega_{p_2}}{w_i} = -{\rm tan}^{-1}\frac{833M}{10.5} = -89.27$$

	Analysis	Simulation
DC Loop Gain	50	48
BW	$206.6 \mathrm{KHz}$	$207 \mathrm{KHz}$
Dominant Pole (Close Loop BW)	$10.5 \mathrm{MHz}$	$10 \mathrm{MHz}$
GBW	$10.5 \mathrm{MHz}$	10MHz
PM	-89	-89

Table 9. Analysis Vs Simulation Closed Loop AC paramters

Figure 14. Loop Gain and Phase Margin

 ${\bf Figure~15.~Loop~Gain~Bode~plot}$

Figure 16. Loop Gain Phase plot.

Operating Point :

BSIM4v5: Berkelev	Short Channel IGFET	Model-4	
device	m.x9.xm6.m0	m.x9.xm5.m0	m.x9.xm3.m0
model	pfet_03v3.8	pfet_03v3.8	nfet_03v3.14
gm	0.000167482	0.000158384	0.000447859
gmbs	5.90904e-05	5.62031e-05	0.00017693
gds	3.27676e-06	3.93255e-06	1.06212e-06
vds	0.94483	0.557565	0.409805
vdsat	0.219295	0.216415	0.134862
vgs	0.944834	0.944835	0.78313
vth	0.744682	0.748255	0.663319
id	2.05395e-05	1.91675e-05	3.9707e-05
74.7			
-	Short Channel IGFET		
device	m.x9.xm4.m0	m.x9.xm2.m0	m.x9.xm1.m0
model	nfet_03v3.14	nfet_03v3.12	nfet_03v3.12
gm	0.000112588	0.000325194	0.000342494
gmbs	4.44853e-05	8.87802e-05	9.35409e-05
gds	1.92954e-07	2.67243e-06	3.48829e-06
vds	0.783129	0.832618	0.445353
vdsat	0.134862	0.0913452	0.094572
vgs	0.78313	0.832619	0.840193
vth	0.663319	0.828016	0.829047
id	1e-05	1.91675e-05	2.05395e-05

Figure 17. Operating Point