Data-Driven Customer Insights with KMeans Clustering

Sobre a base de dados e o projeto:

Este projeto tem como objetivo aplicar o algoritmo de KMeans Clustering para segmentação de clientes com base em seus comportamentos e padrões de compra. Utilizando bibliotecas populares do Python, como Pandas, Scikit-learn, e Matplotlib, o projeto demonstra como preparar os dados, escolher o número ideal de clusters usando o Elbow Method e interpretar os resultados para gerar insights valiosos para negócios.

Inspiração: https://www.youtube.com/watch?v=afPJeQuVeuY

Data-set: https://archive.ics.uci.edu/dataset/502/online+retail+ii

Online Retail Mining Whitepaper: https://link.springer.com/article/10.1057/dbm.2012.17

O dataset utilizado no projeto contém dados sobre clientes, incluindo variáveis como idade, renda anual e pontuação de gastos em uma loja. Ele é amplamente usado em análises de segmentação para identificar perfis distintos de consumidores. A partir dessas variáveis, o KMeans Clustering pode agrupar os clientes em clusters com base em semelhanças, permitindo identificar padrões de comportamento. Esse tipo de análise é útil em estratégias de marketing personalizadas, ajudando empresas a compreender melhor seus clientes e otimizar ofertas de produtos e serviços conforme os perfis identificados.

1. Importando as bibliotecas

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.preprocessing import StandardScaler
```

2. Baixando o data-set:

```
# Previamente carregado no meu collab

df = pd.read_excel('/content/online_retail_II.xlsx') # Formato de excel é um pouco mais p
```

df.head(10)

=		Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	Country
	0	489434	85048	15CM CHRISTMAS GLASS BALL 20 LIGHTS	12	2009-12-01 07:45:00	6.95	13085.0	United Kingdom
	1	489434	79323P	PINK CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	United Kingdom
	2	489434	79323W	WHITE CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	United Kingdom
	3	489434	22041	RECORD FRAME 7" SINGLE SIZE	48	2009-12 - 01 07:45:00	2.10	13085.0	United Kingdom
	4	489434	21232	STRAWBERRY CERAMIC TRINKET BOX	24	2009-12-01 07:45:00	1.25	13085.0	United Kingdom
	5	489434	22064	PINK DOUGHNUT TRINKET POT	24	2009-12-01 07:45:00	1.65	13085.0	United Kingdom
	6	489434	21871	SAVE THE PLANET MUG	24	2009-12-01 07:45:00	1.25	13085.0	United Kingdom
	7	489434	21523	FANCY FONT HOME SWEET HOME DOORMAT	10	2009-12-01 07:45:00	5.95	13085.0	United Kingdom
	8	489435	22350	CAT BOWL	12	2009-12-01 07:46:00	2.55	13085.0	United Kingdom
	9	489435	22349	DOG BOWL , CHASING BALL DESIGN	12	2009-12-01 07:46:00	3.75	13085.0	United Kingdom
	4								

3. Explorando os dados

Informações gerais sobre o data-set:
df.info()

[#] Vemos que as colunas 'Description' e 'Customer ID' apresentam valores ausentes quando c # Podemos perceber também que a coluna 'InvoiceDate' já está em formato de tempo, o que é

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 525461 entries, 0 to 525460

Data columns (total 8 columns): # Column Non-Null Count Dtype ---

----Invoice 525461 non-null object 0

1 StockCode 525461 non-null object 2 Description 522533 non-null object

3 Quantity 525461 non-null int64 4 InvoiceDate 525461 non-null datetime64[ns]

5 Price 525461 non-null float64 Customer ID 417534 non-null float64 7 Country 525461 non-null object

dtypes: datetime64[ns](1), float64(2), int64(1), object(4)

memory usage: 32.1+ MB

df.describe()

Algo estranho de notar é o valor de quantity (min) sendo negativo, o mesmo também ocorr # Outra coisa a se perceber é que por padrão aqui estão apenas os valores numéricos e não

\Rightarrow		Quantity	InvoiceDate	Price	Customer ID	E
	count	525461.000000	525461	525461.000000	417534.000000	
	mean	10.337667	2010-06-28 11:37:36.845017856	4.688834	15360.645478	
	min	-9600.000000	2009-12-01 07:45:00	-53594.360000	12346.000000	
	25%	1.000000	2010-03-21 12:20:00	1.250000	13983.000000	
	50%	3.000000	2010-07-06 09:51:00	2.100000	15311.000000	
	75%	10.000000	2010-10-15 12:45:00	4.210000	16799.000000	
	max	19152.000000	2010-12-09 20:01:00	25111.090000	18287.000000	
	std	107.424110	NaN	146.126914	1680.811316	

Vendo os objetos:

df.describe(include = '0')

Esse parece ok, os valores não me geram nenhuma estranheza.

\Rightarrow		Invoice	StockCode	Description	Country	
	count	525461	525461	522533	525461	
	unique	28816	4632	4681	40	
	top	537434	85123A	WHITE HANGING HEART T-LIGHT HOLDER	United Kingdom	
	freq	675	3516	3549	485852	

[#] Vamos dar uma olhada nos valores faltantes ['CustomerID']:

df[df["Customer ID"].isna()].head(10)

Vemos que '85123a mixed', '21733 mixed' e 'short' apresentam valores negativos com preç # Esses parecem dados válidos de serem eliminados!

₹		Tnyoice	StockCode	Description	Ouantity	TnvoiceDate	Drico	Customer ID	Countr
	263	489464	21733	85123a mixed	-96	2009-12-01 10:52:00	0.00	NaN	Unite Kingdor
	283	489463	71477	short	-240	2009-12-01 10:52:00	0.00	NaN	Unite Kingdor
	284	489467	85123A	21733 mixed	-192	2009-12-01 10:53:00	0.00	NaN	Unite Kingdor
	470	489521	21646	NaN	-50	2009-12-01 11:44:00	0.00	NaN	Unite Kingdor
	577	489525	85226C	BLUE PULL BACK RACING CAR	1	2009-12-01 11:49:00	0.55	NaN	Unite Kingdor
	578	489525	85227	SET/6 3D KIT CARDS FOR KIDS	1	2009-12-01 11:49:00	0.85	NaN	Unite Kingdor
	1055	489548	22271	FELTCRAFT DOLL ROSIE	1	2009-12-01 12:32:00	2.95	NaN	Unite Kingdor
	1056	489548	22254	FELT TOADSTOOL LARGE	12	2009-12-01 12:32:00	1.25	NaN	Unite Kingdor
	1057	489548	22273	FELTCRAFT DOLL MOLLY	3	2009-12-01 12:32:00	2.95	NaN	Unite Kingdor
	1058	489548	22195	LARGE HEART MEASURING SPOONS	1	2009-12-01 12:32:00	1.65	NaN	Unite Kingdor
	4								•

[#] Na realidade, tendo em vista que estamos clusterizando os clientes, e é impossível repo # Iremos fazer isso em breve!

[#] Vamos dar uma olhada especificamente nos valores negativos para compreender eles melhor df[df['Quantity'] < 0].head(10)

[#] Podemos reparar que grande parte desses valores possui um 'C' a frente da sequência em # Na descrição dos dados somos informados que C é para produtos Cancelados!

	Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	Count
178	C489449	22087	PAPER BUNTING WHITE LACE	-12	2009-12-01 10:33:00	2.95	16321.0	Austra
179	C489449	85206A	CREAM FELT EASTER EGG BASKET	-6	2009-12-01 10:33:00	1.65	16321.0	Austra
180	C489449	21895	POTTING SHED SOW 'N' GROW SET	-4	2009-12-01 10:33:00	4.25	16321.0	Austra
181	C489449	21896	POTTING SHED TWINE	-6	2009-12-01 10:33:00	2.10	16321.0	Austra
182	C489449	22083	PAPER CHAIN KIT RETRO SPOT	-12	2009-12-01 10:33:00	2.95	16321.0	Austra
183	C489449	21871	SAVE THE PLANET MUG	-12	2009-12-01 10:33:00	1.25	16321.0	Austra
184	C489449	84946	ANTIQUE SILVER TEA GLASS ETCHED	-12	2009-12-01 10:33:00	1.25	16321.0	Austra
185	C489449	84970S	HANGING HEART ZINC T-LIGHT HOLDER	-24	2009-12-01 10:33:00	0.85	16321.0	Austra
186	C489449	22090	PAPER BUNTING RETRO SPOTS	-12	2009-12-01 10:33:00	2.95	16321.0	Austra
196	C489459	90200A	PURPLE SWEETHEART BRACELET	-3	2009-12-01 10:44:00	4.25	17592.0	Unit Kingdo
4								•

[#] Vamos olhar esses dados de Cancelados usando Regex:

```
df['Invoice'] = df['Invoice'].astype('str')
df[df['Invoice'].str.match("^\\d{6}$") == False]
# Pegando as colunas onde não são exatos 6 digitos, como diz a expressão!
```


		Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	Cou
1	78	C489449	22087	PAPER BUNTING WHITE LACE	-12	2009-12-01 10:33:00	2.95	16321.0	Aus
1	79	C489449	85206A	CREAM FELT EASTER EGG BASKET	-6	2009-12-01 10:33:00	1.65	16321.0	Aus
18	80	C489449	21895	POTTING SHED SOW 'N' GROW SET	-4	2009-12-01 10:33:00	4.25	16321.0	Aus
18	81	C489449	21896	POTTING SHED TWINE	-6	2009-12-01 10:33:00	2.10	16321.0	Aus
18	82	C489449	22083	PAPER CHAIN KIT RETRO SPOT	-12	2009-12-01 10:33:00	2.95	16321.0	Aus
524	1695	C538123	22956	36 FOIL HEART CAKE CASES	-2	2010-12-09 15:41:00	2.10	12605.0	Gerr
524	696	C538124	М	Manual	-4	2010-12-09 15:43:00	0.50	15329.0	U King
524	·697	C538124	22699	ROSES REGENCY TEACUP AND SAUCER	-1	2010-12-09 15:43:00	2.95	15329.0	U King
524	698	C538124	22423	REGENCY CAKESTAND 3 TIER	-1	2010-12-09 15:43:00	12.75	15329.0	U King
525	5282	C538164	35004B	SET OF 3 BLACK FLYING DUCKS	-1	2010-12-09 17:32:00	1.95	14031.0	U King
1020)9 rov	vs × 8 colun	nns						
4									•

Será que o C é a única letra possível de aparecer na frente do 'Invoice'?

df['Invoice'].str.replace('[0-9]', '', regex = True).unique()

Vemos que temos também um A, que é inesperado, pois não está no index dos dados!

- # Apenas os valores iniciados com A
 df[df['Invoice'].str.startswith('A')]
- # Vemos que eles correspondem a categoria 'Adjust bad debt'
- # Também são possíveis valores para excluir

=		Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	(
	179403	A506401	В	Adjust bad debt	1	2010-04-29 13:36:00	-53594.36	NaN	ŀ
	276274	A516228	В	Adjust bad debt	1	2010-07-19 11:24:00	-44031.79	NaN	k
	403472	A528059	В	Adjust bad debt	1	2010-10-20 12:04:00	-38925.87	NaN	ŀ
	4							•	•

[#] Inspecionando a coluna 'StockCode':

Na descrição dos dados, vemos que são valores compostos por A-5 digitos designada para

Voltamos uma lista de valores que não corespondem a isso, mas eles não parecem ter nada

→		Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	Col
	0	489434	85048	15CM CHRISTMAS GLASS BALL 20 LIGHTS	12	2009-12-01 07:45:00	6.95	13085.0	l Kin
	1	489434	79323P	PINK CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	l Kin
	2	489434	79323W	WHITE CHERRY LIGHTS	12	2009-12 - 01 07:45:00	6.75	13085.0	l Kin
	3	489434	22041	RECORD FRAME 7" SINGLE SIZE	48	2009-12-01 07:45:00	2.10	13085.0	l Kin
	4	489434	21232	STRAWBERRY CERAMIC TRINKET BOX	24	2009-12-01 07:45:00	1.25	13085.0	l Kin
	525456	538171	22271	FELTCRAFT DOLL ROSIE	2	2010-12-09 20:01:00	2.95	17530.0	l Kin
	525457	538171	22750	FELTCRAFT PRINCESS LOLA DOLL	1	2010-12-09 20:01:00	3.75	17530.0	l Kin
	525458	538171	22751	FELTCRAFT PRINCESS OLIVIA DOLL	1	2010-12-09 20:01:00	3.75	17530.0	l Kin
	525459	538171	20970	PINK FLORAL FELTCRAFT SHOULDER BAG	2	2010-12-09 20:01:00	3.75	17530.0	l Kin
	525460	538171	21931	JUMBO STORAGE BAG SUKI	2	2010-12-09 20:01:00	1.95	17530.0	l Kin
	525461 rd	ows × 8 col	umns						
	4								•
								_	

 $df[(df['StockCode'].str.match('^\d{5})$') == False) & (df['StockCode'].str.match('^\d{5})$') == False) & (df['StockCode'].str.match(''^\d{5})$') == False) & (df['StockCode'].str.match(''^\d{5}) & (df['StockCode'].str.match('''^\d{5}) & (df['StockCode'].str.match(''$

[#] Vemos que temos muitos valores que não seguem esse padrão

r		_
	→	
ú	-	

→		Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	Col
	0	489434	85048	15CM CHRISTMAS GLASS BALL 20 LIGHTS	12	2009-12-01 07:45:00	6.95	13085.0	l Kin
	1	489434	79323P	PINK CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	l Kin
	2	489434	79323W	WHITE CHERRY LIGHTS	12	2009-12 - 01 07:45:00	6.75	13085.0	l Kin
	3	489434	22041	RECORD FRAME 7" SINGLE SIZE	48	2009-12-01 07:45:00	2.10	13085.0	l Kin
	4	489434	21232	STRAWBERRY CERAMIC TRINKET BOX	24	2009-12-01 07:45:00	1.25	13085.0	l Kin
	525456	538171	22271	FELTCRAFT DOLL ROSIE	2	2010-12-09 20:01:00	2.95	17530.0	l Kin
	525457	538171	22750	FELTCRAFT PRINCESS LOLA DOLL	1	2010-12-09 20:01:00	3.75	17530.0	l Kin
	525458	538171	22751	FELTCRAFT PRINCESS OLIVIA DOLL	1	2010-12-09 20:01:00	3.75	17530.0	l Kin
	525459	538171	20970	PINK FLORAL FELTCRAFT SHOULDER BAG	2	2010-12-09 20:01:00	3.75	17530.0	l Kin
	525460	538171	21931	JUMBO STORAGE BAG SUKI	2	2010-12-09 20:01:00	1.95	17530.0	l Kin
	525461 rd	ows × 8 col	umns						
	4								•
								_	

Retornando os valores unicos:

 $df[(df['StockCode'].str.match('^\d{5})$') == False) & (df['StockCode'].str.match('^\d{5})$') == False) & (df['StockCode'].str.match(''^\d{5})$') == False) & (df['StockCode'].str.match(''^\d{5}) & (df['StockCode'].str.match('''^\d{5}) & (df['StockCode'].str.match(''''$

Vamos olhar especificamente e de forma manual cada um desses valores:

df[df['StockCode'].str.contains('^DOT')]

No caso de DOT por exemplo, não é útil usar esses dados pois não temos 'CustomerID'

<u> </u>		Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer	Coui
	2379	489597	DOT	DOTCOM POSTAGE	1	2009-12-01 14:28:00	647.19	NaN	Uı King
	2539	489600	DOT	DOTCOM POSTAGE	1	2009-12-01 14:43:00	55.96	NaN	Uı King
	2551	489601	DOT	DOTCOM POSTAGE	1	2009-12-01 14:44:00	68.39	NaN	Uı King
	2571	489602	DOT	DOTCOM POSTAGE	1	2009-12-01 14:45:00	59.35	NaN	Uı King
	2619	489603	DOT	DOTCOM POSTAGE	1	2009-12-01 14:46:00	42.39	NaN	Uı King
	524272	538071	DOT	DOTCOM POSTAGE	1	2010-12-09 14:09:00	885.94	NaN	Uı King
	524887	538148	DOT	DOTCOM POSTAGE	1	2010-12-09 16:26:00	547.32	NaN	Uı King
	525000	538149	DOT	DOTCOM POSTAGE	1	2010-12-09 16:27:00	620.68	NaN	Uı King
	525126	538153	DOT	DOTCOM POSTAGE	1	2010-12-09 16:31:00	822.94	NaN	Uı King
	525147	538154	DOT	DOTCOM POSTAGE	1	2010-12-09 16:35:00	85.79	NaN	Uı King
	736 rows	× 8 column	IS						
	4								•

Resumindo os dados de todos eles em formato de tabela, temos:

Code	Description	Acti
DCGS	Looks valid, some quantities are negative though and customer ID is null	Exclude from
D	Looks valid, represents discount values	Exclude from
DOT	Looks valid, represents postage charges	Exclude from
M or m	Looks valid, represents manual transactions	Exclude from
C2	Carriage transaction - not sure what this means	Exclude from
C3	Not sure, only 1 transaction	Exclude
BANK CHARGES or B	Bank charges	Exclude from
S	Samples sent to customer	Exclude from
TESTXXX	Testing data, not valid	Exclude from
gift_XXX	Purchases with gift cards, might be interesting for another analysis, but no customer data	Exclude
PADS	Looks like a legit stock code for padding	Include
SP1002	Looks like a special request item, only 2 transactions, 3 look legit, 1 has 0 pricing	Exclude for n

,	Description	ACII
	Looks like fees for Amazon shipping or something	Exclude for n
	Looks like manual account adjustments by admins	Exclude for n

Resumidamente, vamos usar apenas 'PADS', que parece válida, o resto será excluiído!

4. Limpando os dados:

```
# Vamos criar uma cópia para poder realizar a limpeza dos dados:
cleaned_df = df.copy()

# Limpando a coluna 'Invoice':
cleaned_df['Invoice'] = cleaned_df['Invoice'].astype('str')

# Criando uma máscara, que é basicamente uma variável para filtrar dados:
mask = (
    cleaned_df['Invoice'].str.match('^\\d{6}$') == True
)

cleaned_df = cleaned_df[mask]

cleaned_df

# Com isso, excluimos todos os 'Invoices' que não seguem o padrão que comentamos antes.
```


	Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	Co
0	489434	85048	15CM CHRISTMAS GLASS BALL 20 LIGHTS	12	2009-12-01 07:45:00	6.95	13085.0	l Kin
1	489434	79323P	PINK CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	(Kin
2	489434	79323W	WHITE CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	l Kin
3	489434	22041	RECORD FRAME 7" SINGLE SIZE	48	2009-12-01 07:45:00	2.10	13085.0	l Kin
4	489434	21232	STRAWBERRY CERAMIC TRINKET BOX	24	2009-12-01 07:45:00	1.25	13085.0	l Kin
5254	56 538171	22271	FELTCRAFT DOLL ROSIE	2	2010-12-09 20:01:00	2.95	17530.0	l Kin
52545	57 538171	22750	FELTCRAFT PRINCESS LOLA DOLL	1	2010-12-09 20:01:00	3.75	17530.0	l Kin
52545	58 538171	22751	FELTCRAFT PRINCESS OLIVIA DOLL	1	2010-12-09 20:01:00	3.75	17530.0	l Kin
52545	59 538171	20970	PINK FLORAL FELTCRAFT SHOULDER BAG	2	2010-12-09 20:01:00	3.75	17530.0	l Kin
52546	53 8171	21931	JUMBO STORAGE BAG SUKI	2	2010-12-09 20:01:00	1.95	17530.0	l Kin
515252	2 rows × 8 col	umns						
4								•

```
# Fazendo a mesma coisa para a coluna 'StockCode':

cleaned_df['StockCode'] = cleaned_df['StockCode'].astype('str')

# Criando uma máscara, que é basicamente uma variável para filtrar dados:

mask = (
    (cleaned_df['StockCode'].str.match('^\\d{5}$') == True) # Apenas 5 digitos (padrão)
    | (cleaned_df['StockCode'].str.match('^\\d{5}[a-zA-Z]$') == True) # or 5 digitos segu
```

(cleaned_df['StockCode'].str.match('^PADS\$') == True) # or a PADS que verificamos s

```
# Agora o padrão é o que vimos para StockCode!
)
cleaned_df = cleaned_df[mask]
cleaned_df
# Com isso, excluimos todos os 'StockCodes' que não seguem o padrão que comentamos antes.
```


<ipython-input-19-119511e3d4fa>:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us cleaned_df['StockCode'] = cleaned_df['StockCode'].astype('str')

		-		-	J1 (/			
	Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	Co
0	489434	85048	15CM CHRISTMAS GLASS BALL 20 LIGHTS	12	2009-12-01 07:45:00	6.95	13085.0	(Kin
1	489434	79323P	PINK CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	l Kin
2	489434	79323W	WHITE CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	l Kin
3	489434	22041	RECORD FRAME 7" SINGLE SIZE	48	2009-12-01 07:45:00	2.10	13085.0	l Kin
4	489434	21232	STRAWBERRY CERAMIC TRINKET BOX	24	2009-12-01 07:45:00	1.25	13085.0	l Kin
525456	538171	22271	FELTCRAFT DOLL ROSIE	2	2010-12-09 20:01:00	2.95	17530.0	l Kin
525457	538171	22750	FELTCRAFT PRINCESS LOLA DOLL	1	2010-12-09 20:01:00	3.75	17530.0	l Kin
525458	538171	22751	FELTCRAFT PRINCESS OLIVIA DOLL	1	2010-12-09 20:01:00	3.75	17530.0	l Kin
525459	538171	20970	PINK FLORAL FELTCRAFT SHOULDER BAG	2	2010-12-09 20:01:00	3.75	17530.0	l Kin
525460	538171	21931	JUMBO STORAGE BAG SUKI	2	2010-12-09 20:01:00	1.95	17530.0	l Kin
511918 rd	ows × 8 colu	umns						
4 ■								•

[#] Vamos ver se com isso o preço negativo foi corrigido junto:

cleaned_df.describe()

[#] Vemos que não foi o caso, então precisamos arrumar isso também!

[#] Price agora está 0 e quantity apresenta valor negativo ainda

Vamos eliminar os valores nulos:

cleaned_df.dropna(subset = ['Customer ID'], inplace = True)

<ipython-input-21-0f3a3f958082>:3: SettingWithCopyWarning:
 A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us cleaned_df.dropna(subset = ['Customer ID'], inplace = True)

cleaned_df.describe()

Com isso, é possível perceber que eliminamos o problema dos valores negativos!

\Rightarrow		Quantity	InvoiceDate	Price	Customer ID	
	count	405555.000000	405555	405555.000000	405555.000000	
	mean	13.624024	2010-07-01 12:37:55.533823744	2.985737	15373.275965	
	min	1.000000	2009-12-01 07:45:00	0.000000	12346.000000	
	25%	2.000000	2010-03-26 14:16:00	1.250000	14004.000000	
	50%	5.000000	2010-07-11 10:28:00	1.950000	15326.000000	
	75%	12.000000	2010-10-14 17:23:00	3.750000	16814.000000	
	max	19152.000000	2010-12-09 20:01:00	295.000000	18287.000000	
	std	97.075664	NaN	4.287946	1677.247500	

Conferindo os preços iguais a 0:

cleaned df[cleaned df['Price'] == 0]

Não sabemos exatamente o que são esses preços 0, se são por exemplo itens grátis, mas d

		Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID
•	4674	489825	22076	6 RIBBONS EMPIRE	12	2009-12-02 13:34:00	0.0	16126.0
	6781	489998	48185	DOOR MAT FAIRY CAKE	2	2009-12-03 11:19:00	0.0	15658.0
	18738	490961	22065	CHRISTMAS PUDDING TRINKET POT	1	2009-12-08 15:25:00	0.0	14108.0
	18739	490961	22142	CHRISTMAS CRAFT WHITE FAIRY	12	2009-12-08 15:25:00	0.0	14108.0
	32916	492079	85042	ANTIQUE LILY FAIRY LIGHTS	8	2009-12-15 13:49:00	0.0	15070.0
	40101	492760	21143	ANTIQUE GLASS HEART DECORATION	12	2009-12-18 14:22:00	0.0	18071.0
	47126	493761	79320	FLAMINGO LIGHTS	24	2010-01-06 14:54:00	0.0	14258.0
	48342	493899	22355	CHARLOTTE BAG , SUKI DESIGN	10	2010-01-08 10:43:00	0.0	12417.0
	57619	494607	21533	RETRO SPOT LARGE MILK JUG	12	2010-01-15 12:43:00	0.0	16858.0
	111348	500073	21662	VINTAGE GLASS COFFEE CADDY	1	2010-03-04 11:44:00	0.0	13047.0
	149201	503585	22459	CAST IRON HOOK GARDEN TROWEL	8	2010-04-01 17:13:00	0.0	13047.0
	149202	503585	22458	CAST IRON HOOK GARDEN FORK	8	2010-04-01 17:13:00	0.0	13047.0
	166143	505083	22376	AIRLINE BAG VINTAGE JET SET WHITE	1	2010-04-20 09:56:00	0.0	12623.0
	232526	511902	21765	HANGING METAL BIRD BATH	1	2010-06-11 11:12:00	0.0	12748.0
	240455	512609	20914	SET/5 RED SPOTTY LID	2	2010-06-17	0.0	14045.0

1.45		·	BOWLS	nsignis with Nivi	IU. IZ.UU	Ь	
248583	513416	22423	REGENCY CAKESTAND 3 TIER	5	2010-06-24 12:34:00	0.0	13089.0
276858	516304	22690	DOORMAT HOME SWEET HOME BLUE	6	2010-07-19 13:13:00	0.0	14025.0
296375	518231	22472	TV DINNER TRAY DOLLY GIRL	9	2010-08-05 15:28:00	0.0	12471.0
327801	521375	22202	MILK PAN PINK RETROSPOT	3	2010-09-05 11:58:00	0.0	12647.0
358820	524181	46000M	POLYESTER FILLER PAD 45x45cm	648	2010-09-27 16:59:00	0.0	17450.0
364333	524701	22218	CAKE STAND LACE WHITE	2	2010-09-30 12:19:00	0.0	17667.0
392008	527084	22630	DOLLY GIRL LUNCH BOX	64	2010-10-14 15:33:00	0.0	14646.0
400047	527696	22121	NOEL WOODEN BLOCK LETTERS	1	2010-10-18 15:13:00	0.0	13554.0
439309	531361	21843	RED RETROSPOT CAKE STAND	2	2010-11-07 14:26:00	0.0	12820.0
453705	532470	22624	IVORY KITCHEN SCALES	2	2010-11-12 11:41:00	0.0	12647.0
471775	533822	22846	BREAD BIN DINER STYLE RED	1	2010-11-19 09:40:00	0.0	12647.0
471776	533822	22845	VINTAGE CREAM CAT FOOD CONTAINER	1	2010-11-19 09:40:00	0.0	12647.0
512240	537197	22841	ROUND CAKE TIN VINTAGE GREEN	1	2010-12-05 14:02:00	0.0	12647.0

len(cleaned_df[cleaned_df['Price'] == 0])

Vendo o tamanho, podemos reparar que são apenas 28 valores, então realmente não é um pr

→ 28

cleaned_df = cleaned_df[cleaned_df['Price'] > 0]

cleaned_df.describe()

Vemos que o valor ainda está 0 mesmo tendo sido apagado, vamos conferir melhor isso:

\Rightarrow		Quantity	InvoiceDate	Price	Customer ID	
	count	405527.000000	405527	405527.000000	405527.000000	
	mean	13.622846	2010-07-01 12:41:15.852705280	2.985943	15373.365389	
	min	1.000000	2009-12-01 07:45:00	0.001000	12346.000000	
	25%	2.000000	2010-03-26 14:16:00	1.250000	14004.000000	
	50%	5.000000	2010-07-11 10:28:00	1.950000	15326.000000	
	75%	12.000000	2010-10-14 17:23:00	3.750000	16814.000000	
	max	19152.000000	2010-12-09 20:01:00	295.000000	18287.000000	
	std	97.073841	NaN	4.288022	1677.211001	

cleaned_df['Price']. min()

Agora que terminamos a parte de limpar, quanto dados 'perdemos'?

(len(cleaned_df)/ len(df))*100

Sobrou cerca de 77% do total de dados que tinhamos ao iniciar o processo de cleaning!

→ 77.17547068193453

5. Feature engineering:

Criando uma coluna para total de transações:

cleaned_df['SalesLineTotal'] = cleaned_df['Quantity']*cleaned_df['Price']
cleaned_df

[#] Vemos que há valores bem baixos próximos a 0, como 0,001.

[#] Nesse caso, vamos deixar da forma que está

Vemos agora uma coluna de total!

<ipython-input-29-493afa16332b>:3: SettingWithCopyWarning:
 A value is trying to be set on a copy of a slice from a DataFrame.
 Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us cleaned_df['SalesLineTotal'] = cleaned_df['Quantity']*cleaned_df['Price']

	Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	Co
0	489434	85048	15CM CHRISTMAS GLASS BALL 20 LIGHTS	12	2009-12-01 07:45:00	6.95	13085.0	l Kin
1	489434	79323P	PINK CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	l Kin
2	489434	79323W	WHITE CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	l Kin
3	489434	22041	RECORD FRAME 7" SINGLE SIZE	48	2009-12-01 07:45:00	2.10	13085.0	l Kin
4	489434	21232	STRAWBERRY CERAMIC TRINKET BOX	24	2009-12-01 07:45:00	1.25	13085.0	l Kin
525456	538171	22271	FELTCRAFT DOLL ROSIE	2	2010-12-09 20:01:00	2.95	17530.0	l Kin
525457	538171	22750	FELTCRAFT PRINCESS LOLA DOLL	1	2010-12-09 20:01:00	3.75	17530.0	l Kin
525458	538171	22751	FELTCRAFT PRINCESS OLIVIA DOLL	1	2010-12-09 20:01:00	3.75	17530.0	l Kin
525459	538171	20970	PINK FLORAL FELTCRAFT SHOULDER BAG	2	2010-12-09 20:01:00	3.75	17530.0	l Kin
525460	538171	21931	JUMBO STORAGE BAG SUKI	2	2010-12-09 20:01:00	1.95	17530.0	l Kin
405527 rd	ows × 9 col	umns						
4								•

[#] Vamos agregar os nossos dados por Cliente, ou seja, pelo 'CustomerID':

[#] Esse data-frame vai ter algumas novas colunas:

[#] MonetaryValue, Frequency

etapas:

com

```
agg df = cleaned df.groupby(by = 'Customer ID', as index = False) \
      MonetaryValue = ('SalesLineTotal', 'sum'),
      Frequency = ('Invoice', 'nunique'),
      LastInvoiceData = ('InvoiceDate', 'max')
  )
agg_df.head(10)
\rightarrow
         Customer ID MonetaryValue Frequency
                                                     LastInvoiceData
      0
              12346.0
                               163.41
                                                2 2010-06-28 13:53:00
      1
              12347.0
                              1323.32
                                                2 2010-12-07 14:57:00
                                                1 2010-09-27 14:59:00
              12348.0
                               221.16
                                                2 2010-10-28 08:23:00
      3
              12349.0
                              2221.14
              12351.0
                               300.93
                                                1 2010-11-29 15:23:00
              12352.0
                               343.80
                                                2 2010-11-29 10:07:00
                                                1 2010-10-27 12:44:00
              12353.0
                               317.76
                                                1 2010-05-21 11:59:00
              12355.0
                               488.21
      8
              12356.0
                              3126.25
                                                3 2010-11-24 12:24:00
                                                1 2010-11-16 10:05:00
              12357.0
                             11229.99
 Próximas
                                                       Ver graficos
                                                                              New interactive
                    Gerar codigo
                                 agg_df
```

A coluna Recency representa o número de dias desde a última compra feita por cada cliente até a data mais recente de faturamento no dataset.

recomendados

sheet

Esse conceito é utilizado na análise RFM (Recency, Frequency, Monetary Value) para entender o comportamento dos clientes em termos de:

Recency (Recência): Quando foi a última compra do cliente? Frequency (Frequência): Com que frequência o cliente faz compras? Monetary Value (Valor Monetário): Quanto o cliente gasta em média?

```
# Criando a coluna 'Recency':

max_invoice_date = agg_df['LastInvoiceData'].max()

max_invoice_date

agg_df['Recency'] = (max_invoice_date - agg_df['LastInvoiceData']).dt.days # em dias

agg_df.head(10)
```

$\overline{\Rightarrow}$		Customer ID	MonetaryValue	Frequency	LastInvoiceData	Recency	
	0	12346.0	163.41	2	2010-06-28 13:53:00	164	
	1	12347.0	1323.32	2	2010-12-07 14:57:00	2	
	2	12348.0	221.16	1	2010-09-27 14:59:00	73	
	3	12349.0	2221.14	2	2010-10-28 08:23:00	42	
	4	12351.0	300.93	1	2010-11-29 15:23:00	10	
	5	12352.0	343.80	2	2010-11-29 10:07:00	10	
	6	12353.0	317.76	1	2010-10-27 12:44:00	43	
	7	12355.0	488.21	1	2010-05-21 11:59:00	202	
	8	12356.0	3126.25	3	2010-11-24 12:24:00	15	
	9	12357.0	11229.99	1	2010-11-16 10:05:00	23	
Próx	ima:	s Ger	ar codigo	f	Ver graticos	Nev	v interactive

etapas: com agg_at recomendados sheet

Sabendo que outliers podem ser um problema para o nosso modelo, vamos tentar ldiar com

Plotando todos as variáveis com histogramas:

```
plt.figure(figsize=(15, 5))
plt.subplot(1, 3, 1)
plt.hist(agg_df['MonetaryValue'], bins=10, color='skyblue', edgecolor='black')
plt.title('Monetary Value Distribution')
plt.xlabel('Monetary Value')
plt.ylabel('Count')
plt.subplot(1, 3, 2)
plt.hist(agg_df['Frequency'], bins=10, color='lightgreen', edgecolor='black')
plt.title('Frequency Distribution')
plt.xlabel('Frequency')
plt.ylabel('Count')
plt.subplot(1, 3, 3)
plt.hist(agg_df['Recency'], bins=20, color='salmon', edgecolor='black')
plt.title('Recency Distribution')
plt.xlabel('Recency')
plt.ylabel('Count')
plt.tight layout()
plt.show()
```


Nos podemos ver que nos dois primeiros casos, temos alguns poucos outliers, grande parte dos dados está nas primeiras volunas. Por outro lado, a coluna de 'Recency' parece estar dentro dos padrões que esparamos.

```
# Usando um boxplot para investigar melhor os outliers:
plt.figure(figsize=(15, 5))
plt.subplot(1, 3, 1)
sns.boxplot(data=agg_df['MonetaryValue'], color='skyblue')
plt.title('Monetary Value Boxplot')
plt.xlabel('Monetary Value')
plt.subplot(1, 3, 2)
sns.boxplot(data=agg_df['Frequency'], color='lightgreen')
plt.title('Frequency Boxplot')
plt.xlabel('Frequency')
plt.subplot(1, 3, 3)
sns.boxplot(data=agg_df['Recency'], color='salmon')
plt.title('Recency Boxplot')
plt.xlabel('Recency')
plt.tight_layout()
plt.show()
```


Confirmando o que vimos anteriormente, temos grande parte dos valores em uma faixa única para as duas primeiras variáveis e alguns outliers muito fora disso, já a 3 temos uma quantidade menor de outliers, o que condiz com a sua distribuição.

Como os outliers nesse caso são extremamente importantes, pois representam clientes que gastaram muito e frequententemente, nós não podemos simplesmente remover eles, eles são os mais valiosos! Por isso vamos separar os dois e conduzir duas analises separadas.

```
# Vamos separar os alcances dos quartis:
# Monetary Value:
M_Q1 = agg_df['MonetaryValue'].quantile(0.25) # 1 quartil corresponde a 25% dos dados.
M_Q1
→ 307.1
M_Q3 = agg_df['MonetaryValue'].quantile(0.75) # 3 quartil corresponde a 75% dos dados.
M Q3
<del>→</del> 1702.98
# Alcance interquartilico:
M_IQR = M_Q3 - M_Q1
M_IQR
→ 1395.88
# Pegando todos os dados desse intervalo:
#top range
monetary_outliers_df = agg_df[(agg_df['MonetaryValue'] > (M_Q3 + 1.5* M_IQR)) | (agg_df['
#botton range - Não acho que vá ter pois a maioria dos dados é abaixo mais vamos adiciona
monetary_outliers_df.describe()
```


	Customer ID	MonetaryValue	Frequency	LastInvoiceData	Recency
count	421.000000	421.000000	421.000000	421	421.000000
mean	15107.242280	12150.487568	17.225653	2010-11-09 16:56:38.764845568	29.847981
min	12357.000000	3796.930000	1.000000	2009-12-10 18:03:00	0.000000
25%	13615.000000	4590.530000	8.000000	2010-11-08 15:42:00	3.000000
50%	15005.000000	6191.320000	12.000000	2010-11-26 12:44:00	13.000000
75%	16700.000000	10164.490000	18.000000	2010-12-06 11:06:00	31.000000
max	18260.000000	343764.350000	183.000000	2010-12-09 19:32:00	364.000000
std	1731.684418	25632.405012	19.758275	NaN	51.563698

Fazendo isso para FrequencyValues:

frequency_outliers_df.describe()

	Customer ID	MonetaryValue	Frequency	LastInvoiceData	Recency	
count	279.000000	279.000000	279.000000	279	279.000000	
mean	15352.655914	14309.816724	23.810036	2010-11-23 11:06:20.645161216	16.089606	
min	12437.000000	1088.440000	12.000000	2010-05-12 16:51:00	0.000000	
25%	13800.000000	4321.670000	13.000000	2010-11-20 13:14:30	2.000000	
50%	15465.000000	6590.060000	17.000000	2010-12-02 10:46:00	7.000000	
75%	16828.500000	11692.405000	23.000000	2010-12-07 11:08:30	19.000000	
max	18260.000000	343764.350000	183.000000	2010-12-09 19:32:00	211.000000	
std	1748.429987	31069.985754	21.932937	NaN	26.589117	

m novo df para os dados que não são outliers:

s_df = agg_df[(~agg_df.index.isin(monetary_outliers_df.index)) & (~agg_df.index.i
s_df.describe()

embora ainda tenha uma certa variabilidade, já está bem melhor do que antes!

Customer ID MonetaryValue Frequency

277.925000

816.814742

	4.	_
-	\rightarrow	$\overline{}$
-		

25%

50%

75%

max

std

13912.500000

1692.963969

count	3811.000000	3811.000000	3811.000000	3811	3811.000000
mean	15375.875098	884.438897	2.864602	2010-09-03 11:37:33.077932288	97.067699
min	12346.000000	1.550000	1.000000	2009-12-01 10:49:00	0.000000

98.089381

2.244160

1.000000 2010-07-08 16:27:00

LastInvoiceData

NaN


```
# Plotando o box plot para esses dados (sem outliers):
plt.figure(figsize=(15, 5))
plt.subplot(1, 3, 1)
sns.boxplot(data=non_outliers_df['MonetaryValue'], color='skyblue')
plt.title('Monetary Value Boxplot')
plt.xlabel('Monetary Value')
plt.subplot(1, 3, 2)
sns.boxplot(data=non_outliers_df['Frequency'], color='lightgreen')
plt.title('Frequency Boxplot')
plt.xlabel('Frequency')
plt.subplot(1, 3, 3)
sns.boxplot(data=non_outliers_df['Recency'], color='salmon')
plt.title('Recency Boxplot')
plt.xlabel('Recency')
plt.tight_layout()
plt.show()
```

Vemos que ainda há alguns outliers, mas está muito mais tolerável do que antes!

Plotando um gráfico em 3 dimensões desses dados:

```
fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(projection="3d")
scatter = ax.scatter(non_outliers_df["MonetaryValue"], non_outliers_df["Frequency"], non_
ax.set_xlabel('Monetary Value')
ax.set_ylabel('Frequency')
ax.set_zlabel('Recency')
ax.set_zlabel('Recency')
plt.show()
```

Essa visualização é muito importante para ter uma noção de como esses gráficos serão cl

3D Scatter Plot of Customer Data

Repare que o matplotlib já coloca em uma escala, mas para o K-means, a gente precisa de

6. Criando escalas para os dados

Vamos usar o Standard Scaling

Escalonamento padrão (Standard Scaling) transforma as características (features) dos seus dados para terem uma média de 0 e um desvio padrão de 1, garantindo que cada característica contribua igualmente para a análise.

A fórmula utilizada para o escalonamento padrão é:

$$z = \frac{x - \mu}{\sigma}$$

 $\mu=$ Mean $\sigma=$ Standard Deviation

Onde:

scaled_data_df

- z é o valor padronizado,
- x é o valor original,
- µ é a média da característica,
- σ é o desvio padrão da característica.

$\overline{\Rightarrow}$		MonetaryValue	Frequency	Recency	E
	0	-0.882848	-0.385318	0.682450	
	1	0.537379	-0.385318	-0.969322	
	2	-0.812138	-0.830978	-0.245397	
	3	1.636695	-0.385318	-0.561477	
	4	-0.714465	-0.830978	-0.887753	
	4280	-0.297131	1.397319	-0.816380	
	4281	-0.578859	-0.830978	-0.316770	
	4282	-0.621323	-0.830978	2.018142	
	4283	0.443232	-0.385318	0.142055	
	4284	1.728001	0.506001	-0.816380	
	3811 ro	ws × 3 columns			

Próximas etapas:

código
scaled_data_df

Ver graticos recomendados

New interactive sheet

```
# Plotando novamente os dados, mas em escala:
```

```
fig = plt.figure(figsize=(8, 8))

ax = fig.add_subplot(projection="3d")

scatter = ax.scatter(scaled_data_df["MonetaryValue"], scaled_data_df["Frequency"], scaled

ax.set_xlabel('Monetary Value')

ax.set_ylabel('Frequency')

ax.set_zlabel('Recency')

ax.set_title('3D Scatter Plot of Customer Data')

plt.show()
```


3D Scatter Plot of Customer Data

7. K-means clustering:

```
# Vamos testar varios valores de K e ver com base na inercia, qual seria o melhor
max_k = 12
inertia = []
k_values = range(2, max_k + 1)
for k in k_values:
    kmeans = KMeans(n_clusters = k, random_state = 42, max_iter = 1000)
    kmeans.fit_predict(scaled_data_df)
    inertia.append(kmeans.inertia_)
```

```
plt.tigure(tigsize=(14,6))

plt.plot(k_values, inertia, marker = 'o')
plt.title('KMeans Inertia for Different Values of k')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Inertia')
plt.xticks(k_values)
plt.grid(True)

plt.tight_layout()
plt.show()
```


O gráfico apresentado mostra a inércia do KMeans para diferentes valores de k (número de clusters) e é utilizado para determinar o número ideal de clusters por meio do método do "cotovelo". A inércia representa a soma das distâncias quadradas entre cada ponto de dados e o centróide mais próximo. Observa-se que, à medida que k aumenta, a inércia diminui, pois os clusters se tornam mais específicos e próximos dos dados. No entanto, essa redução na inércia começa a desacelerar significativamente em torno de k = 4, indicando o ponto de cotovelo. Esse ponto é geralmente considerado o número ideal de clusters, pois balanceia a compactação dos clusters com a simplicidade do modelo, evitando a sobresegmentação dos dados. Portanto, com base no gráfico, o número ideal de clusters parece ser entre 4 e 5.

Para decididr entre 4 e 5, nos usamos o Silhouette Score:

A pontuação de silhueta é calculada usando a seguinte fórmula:

 $max_k = 12$

$$S(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

Onde: s(i) é a pontuação de silhueta para uma única amostra i; a(i) é a distância média entre i e todos os outros pontos no mesmo cluster; b(i) é a distância média mínima entre i e todos os pontos no cluster mais próximo ao qual i não pertence. A pontuação de silhueta varia entre [-1, 1], sendo que valores mais altos indicam clusters mais distintos e bem definidos.

```
inertia = []
silhoutte_scores = []
k_{values} = range(2, max_k + 1)
for k in k values:
    kmeans = KMeans(n_clusters=k, random_state=42, max_iter=1000)
    cluster_labels = kmeans.fit_predict(scaled_data_df)
    sil_score = silhouette_score(scaled_data_df, cluster_labels)
    silhoutte scores.append(sil score)
    inertia.append(kmeans.inertia )
plt.figure(figsize=(14, 6))
plt.subplot(1, 2, 1)
plt.plot(k values, inertia, marker='o')
plt.title('KMeans Inertia for Different Values of k')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Inertia')
plt.xticks(k values)
plt.grid(True)
plt.subplot(1, 2, 2)
plt.plot(k_values, silhoutte_scores, marker='o', color='orange')
plt.title('Silhouette Scores for Different Values of k')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Silhouette Score')
plt.xticks(k values)
plt.grid(True)
```

```
plt.tight_layout()
plt.show()
```


Um score alto score é bom, é um baixo é ruim, onde 1 é perfeito.

Os gráficos comparam a inércia e o Silhouette Score para diferentes valores de clusters (k). A inércia diminui conforme k aumenta, sugerindo k = 4 como ponto de cotovelo. Já o Silhouette Score alcança o pico em k = 3, indicando clusters bem separados. Portanto, ambos os gráficos sugerem que entre 3 e 4 clusters seria uma escolha adequada para um bom agrupamento, mas como o primeiro gráfico indica 4, vamos seguir com K = 4!

8. 4-means clustering:

```
# Agora podemos criar nosso modelo:
kmeans = KMeans(n_clusters = 4, random_state = 42, max_iter = 1000)
cluester_labels = kmeans.fit_predict(scaled_data_df)
cluster_labels
    array([8, 5, 3, ..., 7, 5, 4], dtype=int32)

# Adicionando as clusters labels ao nosso conjunto de dados original:
non_outliers_df['Cluster'] = cluester_labels
non_outliers_df
```


→ <ipython-input-61-21a8a4f2cad0>:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us non_outliers_df['Cluster'] = cluester_labels

	Customer ID	MonetaryValue	Frequency	LastInvoiceData	Recency	Cluster	
0	12346.0	163.41	2	2010-06-28 13:53:00	164	0	11.
1	12347.0	1323.32	2	2010-12-07 14:57:00	2	1	
2	12348.0	221.16	1	2010-09-27 14:59:00	73	3	
3	12349.0	2221.14	2	2010-10-28 08:23:00	42	1	
4	12351.0	300.93	1	2010-11-29 15:23:00	10	3	
4280	18283.0	641.77	6	2010-11-22 15:30:00	17	1	
4281	18284.0	411.68	1	2010-10-04 11:33:00	66	3	
4282	18285.0	377.00	1	2010-02-17 10:24:00	295	0	
4283	18286.0	1246.43	2	2010-08-20 11:57:00	111	1	
4284	18287.0	2295.71	4	2010-11-22 11:51:00	17	1	
3811 row	/s × 6 column	S					
4							

Próximas Ver gráficos New interactive código non_outliers_df recomendados sheet etapas:

Vemos que agora temos uma coluna so para os cluster aos quais os dados foram classificados!

9. Vizualizando os dados e tirando conclusões sobre eles:

Plotando o gráfico separando por cores:

```
cluster colors = {0: '#1f77b4', # Blue
                 1: '#ff7f0e', # Orange
                               # Green
                 2: '#2ca02c',
```


3D Scatter Plot of Customer Data by Cluster


```
# Violin Plots para cada variável
plt.figure(figsize=(12, 18))
plt.subplot(3, 1, 1)
sns.violinplot(x=non_outliers_df['Cluster'], y=non_outliers_df['MonetaryValue'], palette=
sns.violinplot(y=non_outliers_df['MonetaryValue'], color='gray', linewidth=1.0)
plt.title('Monetary Value by Cluster')
plt.ylabel('Monetary Value')

plt.subplot(3, 1, 2)
sns.violinplot(x=non_outliers_df['Cluster'], y=non_outliers_df['Frequency'], palette=clus
sns.violinplot(y=non_outliers_df['Frequency'], color='gray', linewidth=1.0)
plt.title('Frequency by Cluster')
plt.ylabel('Frequency')

plt.subplot(3, 1, 3)
sns.violinplot(x=non_outliers_df['Cluster'], y=non_outliers_df['Recency'], palette=clustery)
```

```
sns.violinplot(y=non_outliers_df['Recency'], color='gray', linewidth=1.0)
plt.title('Recency by Cluster')
plt.ylabel('Recency')

plt.tight_layout()
plt.show()
```


Os gráficos de violino mostram a distribuição dos valores monetários, frequência e recência para cada cluster identificado. O Cluster 2 se destaca com os maiores valores monetários e de

frequência, indicando clientes de alto valor e engajamento. O Cluster 3 apresenta os menores valores, indicando clientes menos ativos. O Cluster 0 possui a maior recência, sugerindo clientes menos recentes. Cada cluster tem um perfil distinto que pode guiar estratégias de marketing personalizadas.

Análise de Clusters e Estratégias de Ação

Cluster 0 (Azul): "Retenção"

Justificativa:

Esse cluster representa clientes de **alto valor** que compram regularmente, embora não muito recentemente. O foco deve ser em mantê-los engajados para garantir sua lealdade e o nível de gastos.

Ação:

- Implementar programas de fidelidade.
- Oferecer ofertas personalizadas.
- Realizar comunicação frequente para garantir que continuem ativos.

Cluster 1 (Laranja): "Reativação"

Justificativa:

Esse grupo inclui clientes de **menor valor** que compram com **pouca frequência** e não fizeram **compras recentes**. O foco deve ser em trazê-los de volta ao ciclo de compras.

Ação:

- Utilizar campanhas de marketing direcionadas.
- Oferecer descontos especiais.
- Enviar lembretes para incentivá-los a voltar a comprar.

Cluster 2 (Verde): "Nutrição"

Justificativa:

Esse cluster representa clientes **menos ativos** e de **menor valor**, mas que fizeram **compras recentes**. Eles podem ser **novos clientes** ou precisar de mais atenção para aumentar o engajamento e os gastos.

Ação:

- Focar no desenvolvimento do relacionamento com esses clientes.
- Oferecer um excelente atendimento ao cliente.
- Criar incentivos para aumentar a frequência de compras.

Cluster 3 (Vermelho): "Recompensa"

Justificativa:

Esse cluster inclui clientes de **alto valor** que compram com **muita frequência** e continuam **ativos**. Eles são os clientes mais leais, e o foco deve

10. Lidando com os outliers de maneira separada:

monetary_outliers_df
frequency_outliers_df

⇒		Customer ID	MonetaryValue	Frequency	LastInvoiceData	Recency	
	65	12437.0	6834.99	20	2010-11-09 14:46:00	30	
	84	12471.0	17721.45	44	2010-11-30 14:35:00	9	+//
	85	12472.0	10426.48	13	2010-12-05 14:19:00	4	
	92	12482.0	21941.72	27	2010-05-12 16:51:00	211	
	115	12523.0	2330.38	12	2010-11-30 12:31:00	9	
	4236	18225.0	7545.14	15	2010-12-09 15:46:00	0	
	4237	18226.0	6650.83	15	2010-11-26 15:51:00	13	
	4241	18231.0	4791.80	23	2010-10-29 14:17:00	41	
	4250	18245.0	3757.92	13	2010-11-25 16:52:00	14	
	4262	18260.0	7318.91	17	2010-11-30 12:25:00	9	
	279 rov	vs × 5 columns					

Próximas etapas:

outlier_clusters_df

código frequency_outliers_df

New interactive sheet

```
overlap_indices = monetary_outliers_df.index.intersection(frequency_outliers_df.i
monetary_only_outliers = monetary_outliers_df.drop(overlap_indices)
frequency_only_outliers = frequency_outliers_df.drop(overlap_indices)
monetary_and_frequency_outliers = monetary_outliers_df.loc[overlap_indices]

monetary_only_outliers['Cluster'] = -1
frequency_only_outliers['Cluster'] = -2
monetary_and_frequency_outliers['Cluster'] = -3

outlier_clusters_df = pd.concat([monetary_only_outliers, frequency_only_outliers],
```

etapas:

\Longrightarrow		Customer	MonetaryValue	Frequency	LastInvoiceData	Recency	Cluster	
	9	12357.0	11229.99	1	2010-11-16 10:05:00	23	-1	11.
	25	12380.0	4782.84	4	2010-08-31 14:54:00	100	-1	
	42	12409.0	12346.62	4	2010-10-15 10:24:00	55	-1	
	48	12415.0	19468.84	4	2010-11-29 15:07:00	10	-1	
	61	12431.0	4145.52	11	2010-12-01 10:03:00	8	-1	
	4235	18223.0	7409.21	12	2010-11-17 12:20:00	22	-3	
	4236	18225.0	7545.14	15	2010-12-09 15:46:00	0	-3	
	4237	18226.0	6650.83	15	2010-11-26 15:51:00	13	-3	
	4241	18231.0	4791.80	23	2010-10-29 14:17:00	41	-3	
	4262	18260.0	7318.91	17	2010-11-30 12:25:00	9	-3	
	474 rows	× 6 columns	÷					
Próx	imas	a ádica	outlier cluster	rs df	Ver gráficos	Ne	w interactive	

11. Vizualizando os dados e tirando conclusões sobre eles (outliers):

código outlier_clusters_df

```
plt.subplot(3, 1, 2)
sns.violinplot(x=outlier_clusters_df['Cluster'], y=outlier_clusters_df['Frequency'], pale
sns.violinplot(y=outlier_clusters_df['Frequency'], color='gray', linewidth=1.0)
plt.title('Frequency by Cluster')
plt.ylabel('Frequency')

plt.subplot(3, 1, 3)
sns.violinplot(x=outlier_clusters_df['Cluster'], y=outlier_clusters_df['Recency'], palett
sns.violinplot(y=outlier_clusters_df['Recency'], color='gray', linewidth=1.0)
plt.title('Recency by Cluster')
plt.ylabel('Recency')

plt.tight_layout()
plt.show()
```


Análise dos Clusters de Outliers e Estratégias de Ação