Diskrete Mathematik

Patrick Bucher & Lukas Arnold

8. Juni 2017

ln	haltsverzeichnis			4.2	Induktionsbeweis	4
1	Foundations	2		4.3	Schlussregeln / Inferenzregeln	5
	1.1 Operationen	2	5	Cou	nting	5
	1.2 Prioritäten der Operationen	2		5.1	Produktregel	5
	1.3 Tautologie & Kontraktion	2		5.2	Summenregel	5
	1.4 Logische Äquivalenzgesetze	2		5.3	Einschluss-/Ausschlussprinzip	5
	1.5 Äquivalenzgesetze	2		5.4	Verallgemeinertes Schubfachprinzip	5
	1.6 Quantifikatoren	3		5.5	Permutationen	5
	1.7 Negation von Quantifikatoren	3		5.6	Anzahl Permutationen	5
	1.8 Beweise	3		5.7	Kombinationen	5
				5.8	Anzahl Kombinationen	5
2	Basic Structures	3		5.9	Binomialkoeffizienten	5
	2.1 Mengen	3		5.10	Binomialsatz	5
	2.2 Spezielle Menegen	3				
	2.3 Mengenoperationen	3	6	Disk	rete Wahrscheinlichkeitsrechnung	5
	2.4 Rechenregeln für Mengen	3		6.1	Wahrscheindlichkeit nach Laplace	5
	2.5 Definition von Fuktionen	3		6.2	Komplement der Wahrscheindlichkeit	5
	2.6 Arten von Funktionen	3		6.3	Additionsregel	5
	2.7 Zusammengesetzte Funktion	3		6.4	Bedingte Wahrscheinlichkeit	5
	2.8 Umkehrfunktion	3		6.5	Unabhängige Ereignisse	5
	2.9 <i>ceiling</i> und <i>floor</i> -Funktion	3		6.6	Satz der totalen Wahrscheindlichkeit	5
	2.10 Folgen	3		6.7	Satz von Bayes	5
	2.11 Reihen	3		6.8	Binomialverteilung	5
	2.12 Summenformeln	3		6.9	Hypergeometrische Verteilung	6
				6.10	Poissonverteilung	6
3	Fundamentals	3			W'keitsverteilung einer Zufallsvariablen .	6
	3.1 Wachstum von Funktionen	3		6.12	Erwartungswert einer Zufallsvariable	6
	3.2 Exponentialfunktionen	4		6.13	Varianz einer Zufallsvariable	6
	3.3 Logarithmusfunktionen	4		6.14	Standardabweichung einer Zufallsvariable	6
	3.4 Komplexität von Algorithmen	4			-	
	3.5 Zahlen und Division	4	7	Adva	anced Counting Techniques	6
	3.6 Primzahl	4		7.1	Rekursionsbeziehungen	6
	3.7 Mersenne Primes	4		7.2	Erzeugende Funktion	6
	3.8 Primzahlsatz	4		7.3	Ein-/ Ausschlussprinzip	6
	3.9 ggT und kgV	4		7.4	Anzahl Derangements	6
	3.10 Kongruenz	4				
	3.11 Addition zweier Matrizen	4	8		entheorie	6
	3.12 Multiplikation einer Matrix mit einer Zahl	4		8.1	Division mit Rest	6
	3.13 Multiplikation von Matrizen	4		8.2	Kongruenz modulo n	6
	3.14 Transponierte Matrix	4		8.3	Euklidsche Algorithmus	6
	3.15 Symmetrie einer Matrix	4		8.4	Diophantischer Gleichung	6
	3.16 Einheitsmatrix	4		8.5	erweiterter Euklidsche Algorithmus	6
	3.17 Inverse Matrix	4		8.6	Chinesischer Restsatz	6
	3.18 Boolsches Produkt zweier Matrizen	4		8.7	Eulersche ϕ -Funktion	6
				8.8	Primzahl	6
4	Reasoning	4		8.9	kleiner Satz von Fermat	6
	4.1 Beweismethoden	4		8.10	Primzahltest von Wilson	6

	8.11	Restklassen	6		
	8.12	Rechenregeln für modularen Rechnen			
		.13 Potenzieren modulo n			
	8.14 Square and Multiply Algorithm				
		Nullteiler	7		
		Inverse Elemente	7		
	8.17	7 Primitive Elemente / Erzeugende			
	8.18	Einwegfunktionen			
		Modulare Quadratwurzeln	7		
		diskrete Logarithmus	7		
9	Gran	ohentheorie 1	7		
•	9.1	(Ecken)grade	7		
	9.2	Wichtige Graphen	7		
	9.2	Baum	7		
	9.4		7		
	-	8	7		
	9.5	Matrizen			
	9.6	Wege und Kreise	7		
10	Grap	phentheorie 2	8		
	10.1	Satz von Euler	8		
	10.2	Satz von Kuratovsky	8		
		Färbungen	8		
		Dekompositionsgleichung	8		
		Gerüste	8		
11	Gran	ohentheorie 3	8		

1 Foundations

1.1 Operationen

Negation	$\neg p$	Verneinung
Konkunktion	$p \wedge q$	Und-Verknüpfung
Disjunktion	$p \lor q$	Oder-Verknüpfung
EXOR	$p\oplus q$	Exklusiv-Oder
Implikation	$p \to q$	falls p dann q
Bikonditional	$p \leftrightarrow q$	p genau dann wenn q

1.2 Prioritäten der Operationen

1.3 Tautologie & Kontraktion

 $\begin{array}{lll} \text{Tautologie} & p \vee \neg p & \textit{immer wahre Aussage} \\ \text{Kontraktion} & p \wedge \neg q & \textit{immer falsche Aussage} \\ \end{array}$

1.4 Logische Äquivalenzgesetze

Identität	$p \wedge \mathbf{T} \equiv p \qquad p \vee \mathbf{F} \equiv p$
Dominanz	$p \lor \mathbf{T} \equiv \mathbf{T} \qquad p \land \mathbf{F} \equiv \mathbf{F}$
Negation	$p \lor \neg p \equiv \mathbf{T} p \land \neg p \equiv \mathbf{F}$
Assoziativ 1	$(p \vee q) \vee r \equiv p \vee (q \vee r)$
Assoziativ 2	$(p \land q) \land r \equiv p \land (q \land r)$
Distributiv 1	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
Distributiv 2	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
De Morgan's 1	$\neg (p \land q) \equiv \neg p \lor \neg q$
De Morgan's 2	$\neg(p \lor q) \equiv \neg p \land \neg q$

1.5 Äquivalenzgesetze

1.6 Quantifikatoren

For All für alle x aus P wahr

Exists \exists für mindestens ein x aus P wahr

 $\neg \exists$ für alle x aus P falsch Not Exists

Not For All $\neg \forall$ für mindestens ein x aus P falsch

1.7 Negation von Quantifikatoren

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

1.8 Beweise

direkter Beweis indirekter Beweis $\neg q \rightarrow \neg p$ $\neg p \to q$ Widerspruch

Vorgehen Widerspruch $(\neg p \rightarrow \mathbf{f}) \Rightarrow (p \rightarrow \mathbf{w})$

2 Basic Structures

2.1 Mengen

 $\mathbb{N} = \{1, 2, \dots\}$ $\mathbb{N}_0 = \{0, 1, 2, \dots\}$ $\mathbb{Z} = \{\ldots, -1, 0, 1, 2, \ldots\}$ $\mathbb{Z}^+ = \{1, 2, \dots\}$

 $\mathbb{Q} = \{ p/q | p \in Z \land q \in N \}$

 \mathbb{R} : die Menge der reellen Zahlen

C: die Menge der komplexen Zahlen

2.2 Spezielle Menegen

 $A \subset B \equiv \forall x (x \in A \to x \in B)$ Teilmenge:

Leere Menge: $\emptyset \subset A$ gilt für jede Menge A

Kardinalität: |S| beschreibt Anzahl Elmenete von A $P(S) = 2^S = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}\$ Potenzmenge: $A \times B = \{(a, b) | a \in A \land b \in B\}$ Kreuzprodukt:

2.3 Mengenoperationen

Komplement: $A^c = \overline{A} = \{m \in M : m \notin A\}$

Durchschnitt: $A \cap B = \{ m \in M | m \in A \land m \in B \}$ $A \cup B = \{ m \in M | m \in A \lor m \in B \}$ Vereinigung: Differenz: $B - A = \{ m \in M | m \in B \land m \notin A \}$

2.4 Rechenregeln für Mengen

Kommutativgesetz $A \cup B = B \cup A$ Kommutativgesetz $A \cap B = B \cap A$

 $A \cup (B \cup C) = (A \cup B) \cup C$ Assoziativgesetz $A \cap (B \cap C) = (A \cap B) \cap C$ Assoziativgesetz

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Distributivgesetz Distributivgesetz $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

 $\overline{A \cup B} = \overline{A} \cap \overline{B}$ De Morgan's Gesetz

De Morgan's Gesetz $\overline{A \cap B} = \overline{A} \cup \overline{B}$

2.5 Definition von Fuktionen

$$f: X \rightarrow Y \quad x \mapsto f(x) \quad f: x \mapsto f(x)$$

$$f(x) := \left\{ \begin{array}{ll} 5 & \text{für } x < 0 \\ x^2 + 5 & \text{für } x \in [0, 2] \\ 0.5x + 8 & \text{für } x > 2 \end{array} \right\}$$

2.6 Arten von Funktionen

injektiv auf jedes Element in Y zeigt höchstens ein Pfeil surjektiv auf jedes Element in Y zeigt mindestens ein Pfeil auf jedes Element in Y zeigt genau ein Pfeil bijektiv

2.7 Zusammengesetzte Funktion

$$\begin{array}{ll} g: X \to U & x \mapsto g(x) \\ f: U \to Y & u \mapsto g(u) \\ F = f \circ g: X \to Y & x \mapsto f(g(x)) \end{array}$$

2.8 Umkehrfunktion

 $y = f(x) \quad x = f^{-1}(y)$

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$$

$$(f^{-1} \circ f)(y) = f^{-1}(f(y)) = y$$

2.9 ceiling und floor-Funktion

2.10 Folgen

harmonisch geometrisch $a_k = a_0 * q^k$

arithmetisch $a_k = a_0 + (k * d)$

2.11 Reihen

 $\begin{array}{ll} \text{harmonisch} & \sum_{k=1}^n 1/k \\ \text{geometrisch} & a_0 * \sum_{k=0}^{n-1} q^k = a_0 \frac{q^n-1}{q-1} \\ \text{arithmetisch} & \sum_{k=0}^{n-1} (a_0 + kd) = n \frac{a_0 + a_{n-1}}{2} \end{array}$

2.12 Summenformeln

$$\begin{array}{lll} \sum_{k=1}^n k & \frac{n*(n+1)}{2} \\ \sum_{k=1}^n k^2 & \frac{n(n+1)(2n+1)}{6} \\ \sum_{k=1}^n k^3 & \frac{n^2(n+1)^2}{4} \\ \sum_{k=0}^n x^k, |x| < 1 & \frac{1}{1-x} \\ \sum_{k=1}^n k x^{k-1}, |x| < 1 & \frac{1}{(1-x)^2} \end{array}$$

3 Fundamentals

3.1 Wachstum von Funktionen

f="sehr komplizierte Funktion" g= "einfachere Funktion" $|f(x)| \le C|g(x)|, \forall x > k$ $f(x) = \mathcal{O}(g(x))$

3.2 Exponentialfunktionen

$$a^r * a^s = a^{r+s}$$

 $\frac{a^r}{a^s} = a^{r-s}$
 $(a^r)^s = (a^s)^r = a^{r*s}$

3.3 Logarithmusfunktionen

$$log_a(u * v) = log_a(u) + log_a(v)$$

$$log_a(\frac{u}{v}) = log_a(u) - log_a(v)$$

$$log_a(u^v) = v * log_a(u)$$

3.4 Komplexität von Algorithmen

 $\begin{array}{lll} \text{konstant} & \mathcal{O}(1) \\ \text{logarithmisch} & \mathcal{O}(logn) \\ \text{linear} & \mathcal{O}(n) \\ \text{n log n} & \mathcal{O}(n*logn) \\ \text{polynomial} & \mathcal{O}(n^b) \\ \text{exponentiell} & \mathcal{O}(b^n), b > 1 \\ \text{faktorielle} & \mathcal{O}(n!) \end{array}$

3.5 Zahlen und Division

$$\begin{aligned} a|b \wedge a|c &\rightarrow a|(b+c) \\ a|b &\rightarrow \forall c(a|bc) \\ a|b \wedge b|c &\rightarrow a|c \end{aligned}$$

3.6 Primzahl

$$\not\exists a(a|n \land (1 < a < n))$$

3.7 Mersenne Primes

$$M_n = 2^p - 1, p \in "Primzahlen"$$

3.8 Primzahlsatz

$$\pi(x) \approx \frac{x}{\ln(x)}$$

3.9 ggT und kgV

$$a = dq + r$$
, wobei $(0 \le r < d)$
 $q = a$ div d und $r = a \mod d$
 $ab = ggT(a, b) * kgV(a, b)$

3.10 Kongruenz

$$a \equiv b \mod m, m | (a - b)$$

3.11 Addition zweier Matrizen

$$A+B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

3.12 Multiplikation einer Matrix mit einer Zahl

$$\alpha A = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} & \cdots & \alpha a_{1n} \\ \alpha a_{21} & \alpha a_{22} & \cdots & \alpha a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha a_{m1} & \alpha a_{m2} & \cdots & \alpha a_{mn} \end{bmatrix}$$

3.13 Multiplikation von Matrizen

$$A \times B = C \qquad \begin{bmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \quad \begin{bmatrix} c_{11} & \cdots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{m1} & \cdots & c_{mn} \end{bmatrix}$$

$$c_{11} = (a_{11} * b_{11}) + (a_{12} * b_{21}) + \dots + (a_{1n} * b_{m1})$$

3.14 Transponierte Matrix

 A^T durch Vertauschen von Zeilen und Spalten

3.15 Symmetrie einer Matrix

ist symmetrisch, falls $A^T = A$ ist antisymmetrisch, falls $A^T = -A$

3.16 Einheitsmatrix

 I_n ist eine Matrix bei der alle Elemente auf der Diagonalen Eins und alle anderen Null sind

3.17 Inverse Matrix

$$A^{-1} * A = A * A^{-1} = I_n$$

3.18 Boolsches Produkt zweier Matrizen

$$A \odot B = [c_{ij}],$$

wobei $c_{ij} = (a_{i1} \wedge b_{1j}) \vee (a_{i2} \wedge b_{2j}) \vee \cdots \vee (a_{in} \wedge b_{nj})$

4 Reasoning

4.1 Beweismethoden

Direkter Beweis $p \rightarrow q$ Beweis durch Kontraposition $\neg q \rightarrow \neg p$ Beweis durch Widerspruch $\neg p \rightarrow q$

4.2 Induktionsbeweis

Induktionshypothese
$$P(k)$$
Induktionsverankerung $P(1)$
Induktionsschritt $P(k) \rightarrow P(k+1)$

$$[P(1) \land \forall k(P(k) \rightarrow P(k+1))] \rightarrow \forall nP(n)$$

4.3 Schlussregeln / Inferenzregeln

Modus ponens	$((p \to q) \land p) \to q$
Modus tollens	$((\neg q \land (p \to q))) \to \neg p$
TT .1 .1 1	

$$\begin{array}{ll} \text{Hypothetischer} & \\ \text{Syllogismus} & ((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r) \end{array}$$

Disjunktiver Syllogismus
$$((p \lor q) \land \neg p) \to q$$

Addition
$$p \to (p \lor q)$$

Simplifikation $(p \land q) \to p$

Konjunktion
$$(p \land q) \rightarrow p$$

 $(p) \land (q) \rightarrow p \land q$

Resolution
$$((p \land q) \land (\neg p \lor r)) \rightarrow (q \lor r)$$

5 Counting

5.1 Produktregel

$$|A_1 \times A_2 \times \cdots \times A_n| = |A_1| * |A_2| * \cdots * |A_n|$$

5.2 Summenregel

$$|A_1 \cup A_2 \cup \cdots \cup A_n| = |A_1| + |A_2| + \cdots + |A_n|$$

5.3 Einschluss-/Ausschlussprinzip

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$|A \cup B \cup C| = |A| + |B| + |C|$$
$$-|A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

5.4 Verallgemeinertes Schubfachprinzip

Falls man N Objekte auf k Schubfächer verteilt, dann gibt es wenigstens ein Schubfach, welches mindestens $\lceil N/k \rceil$ Objekte enthält

5.5 Permutationen

geordnete Anordnung von r der n Elemente

5.6 Anzahl Permutationen

Bedingung	$0 \le r \le n \in \mathbb{N}$
ohne Wiederholung	$P(n,r) = \frac{n!}{(n-r)!}$
mit Wiederholung	$P(n,r) = n^r$

5.7 Kombinationen

ungeordnete Auswahl von r dieser n Elemente

5.8 Anzahl Kombinationen

$$\begin{array}{ll} \text{Bedingung} & 0 \leq r \leq n \in \mathbb{N} \\ \text{ohne Wiederholung} & C(n,r) = \frac{n!}{r!(n-r)!} = \binom{n}{r} \\ \text{mit Wiederholung} & C(n,r) = \frac{n!}{r!(n-r)!} = \binom{n+r-1}{r} \end{array}$$

5.9 Binomialkoeffizienten

$$\binom{\alpha}{k} = \frac{\alpha*(\alpha-1)*\cdots*(\alpha-k+1)}{k!}$$

$$C(n,k) = \binom{n}{k} = \binom{n}{n-k} = C(n,n-k)$$

5.10 Binomialsatz

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

$$\sum_{k=0}^n \binom{n}{k} = 2^n$$

$$\sum_{k=0}^n (-1)^k \binom{n}{k} = 0$$

$$\sum_{k=0}^n 2^k \binom{n}{k} = 3^n$$

$$\sum_{k=0}^n \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n}$$

6 Diskrete Wahrscheinlichkeitsrechnung

6.1 Wahrscheindlichkeit nach Laplace

$$p(A) = \frac{|A|}{|S|} = \frac{Anzahl\ guenstige}{Anzahl\ moegliche}$$

6.2 Komplement der Wahrscheindlichkeit

$$p(\overline{A}) = 1 - p(A)$$

6.3 Additionsregel

$$p(A_1 \cup A_2) = p(A_1) + p(A_2) - p(A_1 \cap A_2)$$

6.4 Bedingte Wahrscheinlichkeit

$$p(A|B) = \frac{p(A \cap B)}{p(B)}$$

6.5 Unabhängige Ereignisse

$$p(A|B) = \frac{p(A \cap B)}{p(B)} = \frac{p(A)p(B)}{p(B)} = p(A)$$

6.6 Satz der totalen Wahrscheindlichkeit

$$p(A) = \sum_{i=1}^{k} p(A \cap B_i) = \sum_{i=1}^{k} p(A|B_i) \cdot p(B_i)$$

$$p(A|C) = \frac{1}{p(C)} \sum_{i=1}^{k} p(A \cap (B_i \cap C))$$

$$p(A|C) = \sum_{i=1}^{k} p(A|B_i) \cdot p(B_i|C)$$

Spezialfall für 2 Mengen: $p(A) = p(A|B) \cdot p(B) + p(A|\overline{B}) \cdot p(\overline{B})$

6.7 Satz von Bayes

$$p(B_j|A) = \frac{P(A|B_j) \ p(B_j)}{p(A)} = \frac{p(A|B_j) \ p(B_j)}{\sum_{i=1}^k p(A|B_i) \cdot p(B_i)}$$

Spezialfall für 2 Mengen: $p(B|A) = \frac{P(A|B) \ p(B)}{p(A|B) \cdot p(B) + p(A|\neg B) \cdot p(\overline{B})}$

6.8 Binomialverteilung

$$B(k|n,p) = B_{n,p}(k) = C(k)p^{k}(1-p)^{n-k}$$

$$B(k|n,p) = {n \choose k}p^{k}(1-p)^{n-k}$$

Bedingung:

$$p = M/N \text{ und } n \le M/10 \le (N-M)/10$$

6.9 Hypergeometrische Verteilung

$$p(k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$$

6.10 Poissonverteilung

$$f(k) = \frac{u^k}{k!} e^{-u}$$

Bedingung:

$$u = np \text{ und } p \le 0.1, n \ge 100$$

6.11 W'keitsverteilung einer Zufallsvariablen

$$\{(r, p(X=r)) | \forall r \in X(S)\}$$

6.12 Erwartungswert einer Zufallsvariable

$$E(C) = \sum_{s \in S} X(s) \cdot p(s) = \sum_{r \in X(S)} r \cdot p(X = r)$$

6.13 Varianz einer Zufallsvariable

$$\begin{array}{l} V(X) = \sum_{s \in S} (X(s) - E(X))^2 \cdot p(s) \\ V(X) = \sum_{r \in X(S)} (r - E(X))^2 \cdot p(X = r) \end{array}$$

6.14 Standardabweichung einer Zufallsvariable

$$o(X) = \sqrt{V(X)}$$

7 Advanced Counting Techniques

7.1 Rekursionsbeziehungen

$$a_n = f(a_{n-1}, a_{n-2}, ..., a_2, a_1), \forall n \ge n_0, n_0 \in \mathbb{N}^+$$

7.2 Erzeugende Funktion

$$G(x) = \sum_{k=0}^{\infty} a_k x^k$$

7.3 Ein- / Ausschlussprinzip

$$|A \cup B| = |A| + |B| - |A \cap B|$$

7.4 Anzahl Derangements

$$D_n = n![1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!}]$$

8 Zahlentheorie

8.1 Division mit Rest

$$A = q * n + r$$
 wobei $0 \le r < |n|$

8.2 Kongruenz modulo n

$$a \equiv b \pmod{n} \iff n | (a - b)$$

 $\iff \exists q : a - b = q * n$
 $\iff \exists q : a = b + q * n$

8.3 Euklidsche Algorithmus

8.4 Diophantischer Gleichung

$$n_1 * x + n_2 * y = n$$

8.5 erweiterter Euklidsche Algorithmus

67 - 1 0
24 2* 0 1

$$19*$$
 1 1* -2* $19 = 67\% 24$
5 4 -1 3 2 = 67 div 24
4 1 4 -11 $I = I - 2*0$
1 -5 14 -2 = 0 - 2* I

8.6 Chinesischer Restsatz

$$M_i = \frac{m}{m_i}$$

$$M_i * y_1 \equiv 1 \pmod{m_i}$$

$$x = \sum_{i=1}^k r_i * M_i * y_i$$

8.7 Eulersche ϕ -Funktion

$$\mathbb{Z}_n := \{0, 1, 2, \dots, n-1\}$$

$$\mathbb{Z}_n^* := \{x \in \mathbb{Z}_n | x > 0 \text{ und } ggT(x, n) = 1\}$$

$$|\mathbb{Z}_n^*| := \text{Anzahl Elemente in } \mathbb{Z}_n^*$$

$$\phi : \mathbb{N} \to \mathbb{N}, n \mapsto |\mathbb{T}_n^*| =: \phi(n)$$

$$\begin{array}{rcl} \phi(p) & = & p-1 \\ \phi(p*q) & = & (p-1)*(q-1) \\ \phi(m) & = & (p_1-1)*p_1^{r_1-1}*(p_2-1)*p_2^{r_2-1}*\dots \end{array}$$

8.8 Primzahl

$$n = p_1^{e_1} * p_2^{e_2} * p_3^{e_3} * \dots * p_n^{e_n}$$

8.9 kleiner Satz von Fermat

$$m^p \mod p = m \mod p$$

8.10 Primzahltest von Wilson

falls
$$(n-1)! + 1$$
 durch n teilbar ist

8.11 Restklassen

$$[r] = \{x \in Z | x \equiv r \mod n\}$$

8.12 Rechenregeln für modularen Rechnen

$$a \oplus_n b = b \oplus_n a = a + b \mod n = R_n(a + b)$$

 $a \odot_n b = b \odot_n a = a * b \mod n = R_n(a * b)$
 $a \odot_n (b \oplus_n c) = (a \odot_n b) \oplus_n (a \odot_n c)$

8.13 Potenzieren modulo n

$$x^m = x^{2*k+l} = x^{2+k} * x^l = (x^k)^2 * x^l$$

8.14 Square and Multiply Algorithm

- 1. Exponent binär schreiben
- 2. Q bedeutet quadrieren und M multiplizieren
- 3. Ersetze 1 durch QM und 0 durch Q
- 4. das erste (links) QM streichen
- 5. Reihenfolge von Quadrieren und Multipliziere
- 6. Exponent einsetzten
- 7. entsprechend Quadrieren und Multiplizieren
- 8. immer wieder modular reduzieren

8.15 Nullteiler

$$a\in\mathbb{Z}_n, a\neq 0, b\in\mathbb{Z}_n, b\neq 0$$
 falls $a\odot_n b=0$, dann ist a Nullteiler von \mathbb{Z}_n

8.16 Inverse Elemente

$$\begin{split} \mathbb{Z}_n^* &= \{a \in \mathbb{Z}_n | ggT(a,n) = 1\}\\ a^{-1} &= R_p(a^{p-2}) = a^{p-2} \mod p, (p = \text{Primzahl}) \end{split}$$

8.17 Primitive Elemente / Erzeugende

falls jedes Element $a \in \mathbb{Z}_p^*$ eine Potent von z ist

8.18 Einwegfunktionen

Quadrieren modulo n $x \mapsto x^2 \mod n$ Potenzieren modulo n $x \mapsto x^e \mod n$ Exponentialfunktion modulo p $x \mapsto b^x \mod p$

8.19 Modulare Quadratwurzeln

 $\sqrt{a} \mod n = \{x \in \mathbb{Z}_n^* | x^2 = a \mod n \}$ => Für ein a kann es mehrere Quadratwurzeln geben

8.20 diskrete Logarithmus

$$\exp_b(k) = b^k \mod p$$

9 Graphentheorie 1

9.1 (Ecken)grade

Eckengrad: $sum_{v \in V} deg(v) = 2 \cdot |E|$ Maximalgrad: $\Delta(G) = max_{v \in V(G)} deg(v)$ Maximalgrad: $\delta(G) = min_{v \in V(G)} deg(v)$

9.2 Wichtige Graphen

Vollständiger Graph K_n mit n Knoten: genau eine Kante zwischen je zwei Knoten (m Kanten). $m = \binom{n}{2} = \frac{(n-1)n}{2}$

9.3 Baum

Baum mit n Knoten: n-1 Kanten. Baum mit i inneren Knoten: $n=m\cdot i+1$ Knoten

m-facher Baum der Höhe h: höchstens m^h Blätter.

9.4 Page-Rank-Algorithmus

Gewicht der Seite PR_i in einem Netz mit N Seiten, Dämpfungsfaktor d ([0;1]), C_j von Seite j abgehende Links

$$PR_i = \frac{1-d}{n} + d \cdot \sum_j \frac{PR_j}{C_i}$$

9.5 Matrizen

n Ecken, m Kanten

- Adjazenzmatrix A(G): $n \times n$ -Matrix (Knoten/Knoten) mit Anzahl Kanten zwischen den Ecken.
- Inzidenzmatrix B(G): $n \times m$ -Matrix (Knoten/Kanten) mit 1 (Knoten liegt auf Kante) oder 0 (Knoten *nicht* auf Kante)
- Gradmatrix D(G): $n \times n$ -Diagonal-Matrix (Knoten/Knoten), Grade der Knoten auf der Diagonalen

9.6 Wege und Kreise

Anzahl Wege der Länge l von Knoten i zu j: Eintrag (i,j) von $A(G)^l$ (Adjazenzmatrix hoch l)

- Weg: Folge von Kanten $e_1 = a, b, e_2 = b, c, \dots$
- Kreis: Weg mit übereinstimmendem Anfangs- und Endpunkt (Länge > 0)
- einfacher Kreis: jede Kante kommt höchstens einmal vor
- Eulerweg: Weg, der jede Kante einmal durchläuft
- Eulerkreis: Kreis, der jede Kante einmal durchläuft
- Hamiltonweg: Weg, der jeden Knoten einmal durchläuft
- Hamiltonkreis: Kreis, der jeden Knoten einmal durchläuft
- Satz von Dirac: ein Graph mit $n \geq 3$ Knoten mit Grad $\geq n/2$ hat einen Hamiltonkreis.
- Satz von Ore: ein Graph mit $n \geq 3$ mit $deg(v) + deg(u) \geq n$ für jedes Paar u, v von nicht benachbarten Ecken hat einen Hamiltonkreis.

10 Graphentheorie 2

10.1 Satz von Euler

Für ein zusammenhängender, planarer Graph G mit |V| Knoten, |E| Kanten und |R| Regionen gilt: 2=|V|-|E|+|R|

10.2 Satz von Kuratovsky

Ein Graph ist genau dann nicht planar, wenn er einen Untergraphen vom Typ $K_{3,3}$ oder K_5 enthält.

10.3 Färbungen

Anzahl mögliche Färbungen des Graphen G mit x Farben: P(G,x)

- Graph G mit n Knoten und leerer Kantenmenge: $P(G,x)=x^n$
- Vollständiger Graph G mit n Knoten: $P(K_n, x) = x \cdot (x-1) \cdot (x-2) \cdots (x-n+1)$
- Baum mit n Knoten: $P(T_n, x) = x \cdot (x 1)^{n-1}$

10.4 Dekompositionsgleichung

Graph G = (V, E) mit Kante e = a, b

- G e: Graph G unter Weglassung der Kante e
- G_e : Graph G mit zusammengezogener Kante e unter Weglassung aller parallelen Kanten
- Anzahl Färbungen von G mit x Farben: $P(G,x) = P(G-e,x) P(G_e,x)$
- Ziel: Rückführung des Graphen G auf Bäume (T) und vollständige Graphen (K) mit errechenbarer Anzahl von Färbungen

Chromatische Zahl eines Graphen: $\chi(G)=min\{x\in\mathbb{N}: P(G,x)>0\}$ (das kleinste x, wofür das chromatische Polynom P eine positive Zahl liefert)

10.5 Gerüste

- ullet Gerüst oder Spannbaum eines Graphen G=(V,E): zusammenhängender, kreisfreier Unterbaum, der alle Knoten aus V enthält.
- Baum: 1 Gerüst
- Kreis mit *n* Kanten: je ein Gerüst durch Entfernung einer Kante (*n* Gerüste)
- $\bullet \ G-e$: Graph G unter Weglassung der Kante e
- G/e: Graph g unter Zusammenziehung der Kante e und Weglassen aller Schlingen
- Anzahl der Gerüste des Graphen G: t(G) = t(G e) + t(G/e)
- Ziel: Rückführung des Graphen G auf Kreise und Bäume mit bekannter/errechenbarer Anzahl Gerüste

11 Graphentheorie 3

TODO: Pädu