Imaging Molecular Diffusion

Quantitative and Functional Imaging
BME 4420/7450
Fall 2022

Topics

- Molecular diffusion
- How water diffusion reveals tissue microstructure
- How water diffusion is measured with MR
- Why is diffusion imaging useful in biomedicine?
- Applications

Molecular diffusion

Free diffusion of water

- Random thermal motion
- No preferred direction (isotropic)
- Modeled as a random walk
- Net displacement: $< r^2 > = 2DT$
- $D = 2.5 \text{ microns}^2/\text{msec}$

en.wikipedia.org

Water diffusion reflects tissue microstructure

- Diffusion of water in tissue
 - Constrained by cell membranes
 - Preferred direction of membranes -> preferred direction of water diffusion
- Largest displacements
 - Parallel to axons in brain
- Variation of displacements over orientations reflects
 - Membrane density
 - Membrane permeability
 - Fiber coherence (angular deviation)

Beaulieu, NMR Biomed, 2002

Diffusion Anisotropy reveals fiber bundle orientation

- Anisotropy maps
 - Bright in coherent white matter
 - Darker
 - Where fibers diverge
 - In gray matter
 - Fractional Anisotropy (FA): $0 \le FA \le 1$
- Orientation information
 - Color code FA by fiber direction
 - Red = Right/Left
 - Green = Anterior/Posterior
 - Blue = Superior/Inferior
- Reveals structure within white matter

Measuring water diffusion with MRI

Spin precession reveals diffusion

- Spins precess around a magnetic field, B_{loc}
- Rate of precession is proportional to B_{loc}
- Use the precession frequency to determine spin position
- Use <u>changes</u> in frequency to determine <u>changes</u> in position

Effect of a field gradient

 B_{loc}

Fast precession

Slow precession

$$\omega = \gamma B_{loc}$$

X

Stationary spins are rephased by reversing the field gradient

Gradient pulse sequence

What about a moving spin?

Displacement encoding

Summed effect:

Signal decrease

Diffusion attenuates signal

Signal depends on spin displacements

$$S = S_0 \cdot e^{-b \cdot D}$$

$$D = \frac{\langle r^2 \rangle}{2T}$$

Why is diffusion imaging useful in biomedicine?

Water diffusion reflects changes in tissue microstructure

- Diffusion weighted imaging
- Diffusion in stroke
 - Decreases within ~1 min
 - Diffusion drops by ~40%

Acute stroke does not affect T₂

Diffusion reflects tissue microstructure

- Dominated by diffusion barriers (e.g., cell membranes)
- Water diffusion reflects the geometry of cell membranes in tissues

In-class exercise: what orientation do axons have in the ROI?

Diffusion weighting

$$S = S_0 e^{-bD_{\chi\chi}}$$

$$S = S_0 e^{-bD_{yy}}$$

Describe anisotropic diffusion with a diffusion tensor

Describes diffusion in 3 dimensions:

$$D_{ij} = \frac{\langle r_i r_j \rangle}{2T}$$

• 3x3 matrix

Matrix diagonalization

Transform from

$$\begin{pmatrix} D_{xx} & D_{xy} \\ D_{yx} & D_{yy} \end{pmatrix} = \frac{1}{2T} \begin{pmatrix} \langle x^2 \rangle & \langle xy \rangle \\ \langle yx \rangle & \langle y^2 \rangle \end{pmatrix}$$

To the form

$$\begin{pmatrix} D_{x'x'} & 0 \\ 0 & D_{y'y'} \end{pmatrix} = \frac{1}{2T} \begin{pmatrix} \langle (x')^2 \rangle & \langle x'y' \rangle \\ \langle y'x' \rangle & \langle (y')^2 \rangle \end{pmatrix}$$

Matrix diagonalization

Transform from

$$\begin{pmatrix} D_{xx} & D_{xy} \\ D_{yx} & D_{yy} \end{pmatrix} = \frac{1}{2T} \begin{pmatrix} \langle x^2 \rangle & \langle xy \rangle \\ \langle yx \rangle & \langle y^2 \rangle \end{pmatrix}$$

To the form

$$\begin{pmatrix} D_{x'x'} & 0 \\ 0 & D_{y'y'} \end{pmatrix} = \frac{1}{2T} \begin{pmatrix} \langle (x')^2 \rangle & \langle x'y' \rangle \\ \langle y'x' \rangle & \langle (y')^2 \rangle \end{pmatrix}$$
 eigenvalues

Measuring D

For isotropic diffusion

$$S = S_0 \cdot e^{-bD}$$

For anisotropic diffusion

$$S = S_0 \cdot e^{-\sum_{i,j=1}^3 b_{ij} D_{ij}}$$

$$b_{ij} = \gamma^2 \delta^2 G^2 (\Delta - \delta/3) n_i n_j$$

$$= b n_i n_i$$

and \hat{n} is a unit vector in the direction of the gradient.

Measuring D

Estimate the tensor

$$\begin{pmatrix} D_{xx} & D_{xy} \\ D_{yx} & D_{yy} \end{pmatrix}$$

using

$$ln(S/S_0) = -b\sum_{i,j} n_i n_j D_{ij}$$

Requires diffusion weighting in three directions:

$$\vec{G} || \hat{x}: \qquad ln(S/S_0) = -bD_{xx}$$

$$\vec{G} || \hat{y}: \qquad ln(S/S_0) = -bD_{yy}$$

$$\vec{G} || \hat{x} + \hat{y}: \qquad ln(S/S_0) = -b\left(\frac{1}{2}D_{xx} + D_{xy} + \frac{1}{2}D_{yy}\right)$$

Measuring D

- D is a symmetric matrix
- 3 unknowns in 2 dimensions:

$$\tilde{D} = \begin{pmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{pmatrix}$$

• 6 unknowns in 3 dimensions:

$$ilde{D} = egin{pmatrix} D_{xx} & D_{xy} & D_{xz} \ D_{xy} & D_{yy} & D_{yz} \ D_{xz} & D_{yz} & D_{zz} \end{pmatrix}$$

Tensor components

Interpreting the diffusion tensor

- Orientation: largest diffusivity is parallel to axons (single fiber)
- Anisotropy: cell membranes have a preferred orientation

Applications of diffusion imaging

Anisotropy reflects axon 'integrity'

- Altered in
 - Traumatic brain injury
 - Schizophrenia
 - Alcoholism
 - Multiple sclerosis
 - Dyslexia
 - Premature birth
 - Old age

Human

Mouse

Anisotropic diffusion changes during development

Preterm newborn (26 wk PCA)

Rollins, Pedr Radiol (2007)

5 month old

White matter changes remote to injury

Rollins, Pedr Radiol (2007)

Normal brainstem anatomy

11 yo with perinatal infarct and cortical spinal tract (CST) changes

Fiber tracking

 Fiber paths calculated from fast diffusion direction

 Integrate starting from user-defined seed points

https://youtu.be/wy8KEUmyasA

Tractography for white matter segmentation

Arcuate fasciculus

Catani et al (2005)

Individual variability

Catani et al (2005)

Information from MR fiber tracking

- What regions are connected?
 (fiber tracking)
- Extent of connections? (volume of fiber bundles)
- Are the connections intact? (axial, radial diffusivities)

Wakana, Radiology (2004)

Fiber segmentation

Wakana, Radiology (2004)

Summary

- Diffusion tensor imaging reveals tissue microstructure
 - Anisotropy of cell membranes
- Reflects microstructural changes in disease
 - Brain, but also
 - Cardiac/skeletal muscle
 - Kidney
- Makes non-invasive fiber tracking possible
- Segments the white matter
- Provides a basis for network models of the brain

Sources

- Catani M, Jones DK, ffytche DH, Perisylvian Language Networks of the Human Brain. Ann Neurol 57: 8 (2005).
- Conturo TE et al., Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA (1999).
- Diffusion MRI: Theory, Methods, and Applications, DK Jones, ed. (Oxford, 2011)
- https://doctorlib.info/anatomy/neuroanatomy-illustratedcolour-text/13.html
- Wakana S, et al. Fiber tract-based atlas of human white matter anatomy. Radiology (2004).