# UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA INDUSTRIAL Y DE SISTEMAS



"Solucionario de compendio de ejercicios  $\mathbf{N}^{\circ}$ 2"

CURSO: Química I SECCIÓN: B

DOCENTE:

FUKUDA KAGAMI, Nancy Elena

**ALUMNO:** 

CRUZ HUAMAN, Francis Joao

LIMA - PERÚ

2024

## Solucionario de ejercicios propuestos

#### 1. Solución:

a) Sea  $n_1 = 2$  y  $n_2 = 3 \rightarrow \infty$  pertenecientes al espectro visible, entonces:

$$\frac{1}{486 \times 10^{-9} m} = 1,097 \times 10^7 m^{-1} \left( \frac{1}{2^2} - \frac{1}{n_2^2} \right)$$

$$n_2 = 4,0021$$

$$n_2 \approx 4$$

b) Si  $\lambda=570nm$  en el espectro visible, entonces:

$$\frac{1}{570 \times 10^{-9}m} = 1,097 \times 10^7 m^{-1} \left(\frac{1}{2^2} - \frac{1}{n_x^2}\right)$$

$$n_x = 3,3320$$

$$n_x \approx 3$$

 $\therefore$  Podemos afirmar que hay transición electrónica para  $\lambda=570nm$ , ya que  $n:2\rightarrow 3$ 

## 2. Solución:

a) Sea un electrón e con masa  $m_e = 9.1 \times 10^{-31} Kg$  con una velocidad v = 7000 Km/s

$$\Delta x(9.1 \times 10^{-28}g)(210m/s) \geqslant \frac{6.626 \times 10^{-34}J.s}{4\pi}$$
  
 $\Delta x \geqslant 2.76 \times 10^{-10}m$ 

b) Sea un proyectil p con masa  $m_p = 50g$  con una velocidad v = 300m/s

$$\Delta x(50g)(0,009m/s) \geqslant \frac{6,626 \times 10^{-34} J.s}{4\pi}$$
  
 $\Delta x \geqslant 1,17 \times 10^{-34} m$ 

- 3. Solución: Sea el ion  $C_{(g)}^{5+}$  con  $R_{C_{(g)}^{5+}}=1,09733\times 10^7 m^{-1}$  y z=12
  - a) Para la longitud de onda de la cuarta linea de Brakett, entonces:  $n_1 = 4$  y  $n_2 = 8$

$$\frac{1}{\lambda} = (1,09733 \times 10^7 m^{-1})(12^2) \left(\frac{1}{4^2} - \frac{1}{8^2}\right)$$
$$\lambda = 1.35 \times 10^{-8} m$$

b) La longitud de onda del quinto nivel de energía en el espectro de Brakett, entonces:  $n_1=4$  y  $n_2=5$ 

$$\frac{1}{\lambda} = (1,09733 \times 10^7 m^{-1})(12^2) \left(\frac{1}{4^2} - \frac{1}{5^2}\right)$$
$$\lambda = 2.81 \times 10^{-8} m$$

4. Solución: Sea una onda que incide sobre una superficie de  $Na(\lambda=4500\text{\AA}=4500\times10^{-10})$  y la  $E_{k_{max}}=3.36\times10^{-12}erg=3.36\times10^{-19}\mathrm{J}$ 

$$E_{inc} = \phi + E_k$$

1

$$\phi = \frac{(6,626 \times 10^{-34} J.s)(3 \times 10^8 m/s)}{4500 \times 10^{-10} m} - 3,36 \times 10^{-19} J$$
  
$$\phi = 1,057 \times 10^{-19} J$$

b)

$$\phi = hv_{umbral}$$

$$1,057 \times 10^{-19} \text{J} = (6,626 \times 10^{-34} J.s) v_{umbral}$$

$$v_{umbral} = 1,60 \times 10^{14} s^{-1}$$

c)

$$\lambda_{m\acute{a}x} = \frac{3 \times 10^8 m/s}{1.6 \times 10^{14} s^{-1}}$$
$$\lambda_{m\acute{a}x} = 1.88 \times 10^{-6} m$$

## 5. Solución:

a)

$$\begin{split} E_{fotones} &= 13{,}527eV \\ \lambda &= \frac{(6{,}626\times10^{-34}J.s)(3\times10^8m/s)}{2{,}16\times10^{-18}J} \\ \lambda &= 9{,}20\times10^{-8}m \end{split}$$

Calculando la constante  $\mathcal{R}_H$  para el átomo de hidrógeno:

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n^2}\right)$$

$$\frac{1}{9,20 \times 10^{-8}m} = R_H \left(\frac{1}{1^2}\right)$$

$$R_H = 1,087 \times 10^{-7}m^{-1}$$

## 6. Solución: Sea una estación de radio que emite $\lambda_{emisión} = 25m$

a)

$$v = \frac{3 \times 10^8 m/s}{25m}$$
$$v = 1.2 \times 10^7 s^{-1}$$

b)

$$E_{fotones} = (6.626 \times 10^{-34} J.s)(1.2 \times 10^{7} s^{-1})$$
  
$$E_{fotones} = 7.95 \times 10^{-27} J$$

c) Fotones emitidos por hora con potencia de  $6KW = 6 \times 10^3 J/s$ 

$$n(fotones) = \frac{3600s(6 \times 10^{3} J/s)}{7,95 \times 10^{-27} J}$$
$$n(fotones) = 2,72 \times 10^{33}$$

7. Solución: Sabemos que  $\phi=7{,}52\times10^{-19}J$ y que la  $\lambda_{incidente}=36\times10^{-9}m$ 

$$E_{inc} = \phi + E_k$$

a)

$$E_{km\acute{a}x} = \frac{(6,626 \times 10^{-34} J.s)(3 \times 10^8 m/s)}{36 \times 10^{-9} m} - 7,52 \times 10^{-19} J$$
  

$$E_{km\acute{a}x} = 4,77 \times 10^{-18} J$$

8. Solución: Se sabe que el  $e^-$  se encuentra en el cuarto nivel de energía y emite una energía  $E=4,16\times 10^{-19}J$ 

a)

$$E = 4.16 \times 10^{-19} J = 2.18 \times 10^{-18} \left( \frac{1}{n_1^2} - \frac{1}{4^2} \right)$$
$$n_1 = 1.98 n_1 \approx 2$$

b)

$$n\lambda = 2\pi r_n$$

$$4\lambda = 2\pi r_4$$

$$\lambda = \frac{2\pi r_4}{4}$$

$$\lambda = \frac{\pi r_4}{2}$$

c)

$$r_n = \frac{n^2}{z}a_0$$

$$r_4 - r_2 = 16a_0 - 4a_0$$

$$r_4 - r_2 = 12a_0$$

$$\Delta r = 12(0.529) = 6.348$$

9. Solución: Sabemos que por la ecuación de De Broglie:  $\lambda = \frac{h}{p}$ , entonces podemos inferir la siguiente formula:

$$\lambda = \frac{h}{\sqrt{2m_e e^- V_0}}$$

a)

$$\lambda = \frac{6,626 \times 10^{-34} J.s}{\sqrt{2(9,1 \times 10^{-31} Kg)(1,6 \times 10^{-19} C)(400 V)}}$$
 
$$\lambda = 6,14 \times 10 - 11 m$$

10. Solución:

$$X^{1+} : 1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{2}$$

$$e_{1}^{-} = \left(4, 0, 0, +\frac{1}{2}\right)$$

$$e_{2}^{-} = \left(4, 0, 0, -\frac{1}{2}\right)$$

## 11. Solución:

Rpta. B)

#### 12. Solución:

Dato: n + l = 4

$$n = \{1, 2, 3, 4, 5, \ldots\}$$

$$l = \{0, 1, 2, 3, 4, \ldots\}$$

Valores admisibles para n y l son:  $\{(3,1); (4,0)\}; n>l$  número de  $e^-$  del mismo espin = 4

#### 13. Solución:

Rpta. A) y C)

## 14. Solución:

Energía de Ionización:  $_{12}Z<_{5}X<_{9}Y$ Radio Atómico:  $_{9}Y<_{5}X<_{12}Z$ 

## 15. Solución:

 $^{82}Pb: [Xe]_{54}6s^24f^{14}5d^{10}6p^2$  Rpta. A)  $6s^26p^2$ 

## 16. Solución:

Rpta. C)  $^{52}Te$ 

## 17. Solución:

Sean los elementos:

$$_{13}Al: [Ne]3s^23p^1(Paramagn\'etico)$$

$$_{20}Ca:[Ar]4s^2(Diamagn\'etico)$$

$$_{25}Mn: [Ar]4s^23d^5(Paramagn\'etico)$$

#### 18. Solución:

A partir de la ecuación química:

$$Na^{1+} + Cl^{1-} \longrightarrow NaCl$$

$$EI = 496KJ/mol$$

$$AE = -348KJ/mol$$

$$\Delta E = 148 KJ/mol$$

## 19. Solución:

Rpta. B) Nitrogenoide

#### 20. Solución:

Sean los elementos:

a)

$$Ag^+: [Kr]5s^14d^{10} \to \left(5, 0, 0, +\frac{1}{2}\right)$$

$$O^{2-}: [He]2s^22p^2 \to \left(2, 1, 0, +\frac{1}{2}\right)$$

$$W^{5+}: [Xe]6s^24f^9 \to \left(6,0,0,-\frac{1}{2}\right)$$

b)

 $Ag^+:[Kr]5s^14d^{10};(Paramagn\'etico)$ 

 $O^{2-}:[He]2s^22p^2;(Paramagn\'etico)$ 

 $W^{5+}:[Xe]6s^24f^9;(Paramagn\'etico)$ 

 $Continuar\'a. \dots$ 

IATEX