DERWENT-ACC-NO:

2001-360427

DERWENT-WEEK:

200138

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE:

Information processor e.g. notebook type personal computer, switches over and selects one in several registration images as selection image based on level of

acquired audio signal

PATENT-ASSIGNEE: SONY CORP[SONY]

PRIORITY-DATA: 1999JP-0267754 (September 21, 1999)

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES MAIN-IPC

JP 2001092434 A

April 6, 2001

N/A

012 G09G 005/00

APPLICATION-DATA:

PUB-NO

APPL-DESCRIPTOR

APPL-NO

APPL-DATE

JP2001092434A

N/A

1999JP-0267754

September 21, 1999

INT-CL (IPC): G01R023/16, G06F017/30, G09G005/00, G09G005/36, G09G005/377, H04N001/00, H04N001/387, H04N005/265

ABSTRACTED-PUB-NO: JP2001092434A

BASIC-ABSTRACT:

NOVELTY - An analysis unit analyzes frequency of audio-signal acquired by acquisition unit. A generator generates a preset frequency analysis image based on result of frequency analysis. A switching unit switches over and selects one in several registration images as selection image based on level of acquired audio signal. The frequency analysis image and selection image are synthesized and displayed in a display.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

- (a) Image generation procedure;
- (b) Program storage medium

USE - Information processor e.g. notebook type personal computer.

ADVANTAGE - Enables to associate and display the image efficiently, by changing the synthetic procedure of frequency analysis image and section image based on audio change.

DESCRIPTION OF DRAWING(S) - The figure shows component of notebook type personal computer.

CHOSEN-DRAWING: Dwg.1/11

DERWENT-CLASS: P85 S01 T01 W02 W04

EPI-CODES: S01-D03C1; T01-J05B; W02-J; W02-J03A2B; W04-N05B1;

07/14/2003, EAST Version: 1.03.0002

(19)日本国特济庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特期2001-92434 (P2001-92434A)

(43)公開日 平成13年4月6日(2001.4.6)

(51) Int.CL'		識別記号		FΙ			รั	-7]-1*(参考)
G09G	5/00	5 5 0		G 0 9 G	5/00		550C	5B075
		5 3 0					530T	5 C O 2 3
G01R	23/16			G01R	23/16		D	5 C 0 6 2
							E	5 C O 7 6
G06F	17/30			G 0 9 G	5/36		510A	5 C 0 8 2
			審查請求	未請求 請求	秋項の数9	OL	(全 12 頁)	最終頁に続く

(21)出願番号 特顏平11-267754

(22)出廣日 平成11年9月21日(1999.9.21) (71)出顧人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(72)発明者 三井 卓

東京都品川区北品川6丁目7番35号ソニー

株式会社内

(74)代理人 100082740

弁理士 田辺 恵基

最終質に続く

(54) 【発明の名称】 情報処理装置、画像生成方法及びプログラム格納媒体

(57)【要約】

【課題】画像を音声と関連付けて表示する情報処理装置

【解決手段】音声の変化に基づいて選択画像Psel を切 り替えるとともに、音声の変化に基づいて周波数解析画 像Pspc と選択画像Psel の合成方法を変更する。

図6 スペクトラムアナライザ処理手順

【特許請求の範囲】

【請求項1】音声信号を取得する音声信号取得手段と、 上記取得した音声信号を周波数解析する音声信号解析手 段と、

上記周波数解析の結果に基づいて所定の周波数解析画像 を生成する周波数解析画像生成手段と、

上記取得した音声信号のレベルに基づいて、複数の登録 画像のうちの1枚を選択画像として切り替えて選択する 選択画像切替手段と、

上記周波数解析画像と上記選択画像とを合成して合成画 10 像を生成して表示する合成画像表示手段とを具えること を特徴とする情報処理装置。

【請求項2】上記合成画像表示手段は、上記周波数解析 画像の画素と上記選択画像の対応する画素とを論理演算 することにより上記合成画像を生成することを特徴とす る請求項1に記載の情報処理装置。

【請求項3】上記合成画像表示手段は、上記取得した音 声信号のレベルに基づいて、上記周波数解析画像と上記 選択画像との合成方法を変更することを特徴とする請求 項1に記載の情報処理装置。

【請求項4】音声信号を取得する音声信号取得ステップ と、

上記取得した音声信号を周波数解析する音声解析ステッ プと、

上記周波数解析の結果に基づいて所定の周波数解析画像 を生成する周波数解析画像生成ステップと、

上記取得した音声信号のレベルに基づいて、複数の登録 画像のうちの1枚を選択画像として切り替えて選択する 選択画像切替ステップと、

上記周波数解析画像と上記選択画像とを合成して合成画 30 像を牛成して表示する合成画像表示ステップとを具える ことを特徴とする画像生成方法。

【請求項5】上記合成画像表示ステップは、上記周波数 解析画像の画素と上記選択画像の対応する画素とを論理 演算することにより上記合成画像を生成することを特徴 とする請求項4に記載の画像生成方法。

【請求項6】上記合成画像表示ステップは、上記取得し た音声信号のレベルに基づいて、上記周波数解析画像と 上記選択画像との合成方法を変更することを特徴とする 請求項4に記載の画像生成方法。

【請求項7】音声信号を取得する音声信号取得ステップ

上記取得した音声信号を周波数解析する音声解析ステッ プと、

上記周波数解析の結果に基づいて所定の周波数解析画像 を生成する周波数解析画像生成ステップと、

上記取得した音声信号のレベルに基づいて、複数の登録 画像のうちの1枚を選択画像として切り替えて選択する 選択画像切替ステップと、

上記周波数解析画像と上記選択画像とを合成して合成画 50

像を生成して表示する合成画像表示ステップとからなる ことを特徴とするプログラムを情報処理装置に実行させ るプログラム格納媒体。

【請求項8】上記合成画像表示ステップは、上記周波数 解析画像の画素と上記選択画像の対応する画素とを論理 演算することにより上記合成画像を生成することを特徴 とする請求項7に記載のプログラム格納媒体。

【請求項9】上記合成画像表示ステップは、上記取得し た音声信号のレベルに基づいて、上記周波数解析画像と 上記選択画像との合成方法を変更することを特徴とする 請求項7に記載のプログラム格納媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は情報処理装置、画像 生成方法及びプログラム記録媒体に関し、例えばスペク トラムアナライザ画像と背景画像を合成して表示する情 報処理装置に適用して好適なものである。

[0002]

【従来の技術】従来、パーソナルコンピュータのアプリ 20 ケーションプログラムにおいて、予め登録された複数の 画像を所定時間間隔毎に切り換えて表示するスライドシ ョープログラムがある。また、画像表示中に音楽をBG Mとして出力したり、画像の切り換え時に効果音を鳴ら す等の、音声出力を併用したスライドショープログラム がある。

[0003]

【発明が解決しようとする課題】ところが、このような スライドショープログラムでは画像データと音声データ は独立して扱われており、音声データの変化が画像デー タの表示に影響を与える等の相互的な表示が行われてい ないという問題があった。

【0004】本発明は以上の点を考慮してなされたもの で、画像を音声と関連付けて表示する情報処理装置、画 像生成方法及びプログラム格納媒体を提案しようとする ものである。

[0005]

【課題を解決するための手段】かかる課題を解決するた め本発明においては、音声信号を取得する音声信号取得 手段と、取得した音声信号を周波数解析する音声信号解 40 析手段と、周波数解析の結果に基づいて所定の周波数解 析画像を生成する周波数解析画像生成手段と、取得した 音声信号のレベルに基づいて複数の登録画像のうちの1 枚を選択画像として切り替えて選択する選択画像切替手 段と、周波数解析画像と選択画像とを合成して合成画像 を生成して表示する合成画像表示手段とを設けた。

【0006】音声信号のレベルに基づいて選択画像を切 り替えて周波数解析画像と合成することにより、音声信 号の変化に応じて変化する合成画像を生成することがで

【0007】また本発明においては、周波数解析画像の

30

設けられている。

3

画素と選択画像の対応する画素とを論理演算して合成画像を生成することにより、音声信号のレベル変化に遅れることなく変化する合成画像を生成することができる。 【0008】また本発明においては、音声信号のレベルに基づいて周波数解析画像と上記選択画像との合成方法を変更することにより、音声信号の変化に応じて変化する合成画像を生成することができる。

[0009]

【発明の実施の形態】以下図面について、本発明の一実 施の形態を詳述する。

【0010】(1)ノートブック型パーソナルコンピュータの構成

図1において、1は全体として本発明の情報処理装置を構成するノートブック型パーソナルコンピュータ(以下、これをノートパソコンと呼ぶ)を示し、本体2と当該本体2に対して開閉自在に取り付けられた表示部3とによって構成されている。

【0011】本体2には、その上面に各種文字や記号及び数字等を入力するための複数の操作キー4、マウスカーソルの移動に用いられるスティック式ポインティング 20 デバイス(以下、これを単にスティックと呼ぶ)5、通常のマウスにおける左ボタン及び右ボタンに相当する左クリックボタン5A及び右クリックボタン5B、マウスカーソルをスクロールボタンに合わせることなくスクロールバーを操作するためのセンタボタン5C、内蔵スピーカ6及び表示部3に設けられたCCD(Charge Couple d Device)カメラ23用のシャッタボタン7が設けられている。

【0012】表示部3には、正面にLCD(Liquid Crystal Display)でなる液晶ディスプレイ21が設けられており、正面の中央上端部にCCDカメラ23を備えた撮像部22が表示部3に対して回動自在に取り付けられている

【0013】すなわち撮像部22は、表示部3の正面方向及び背面方向との間の180度の角度範囲内で回動し、当該角度範囲内の任意の位置で位置決めし得るようになされている。また撮像部22には、CCDカメラ23のフォーカス調整を行う調整リング25が設けられており、当該CCDカメラ23によって所望の撮像対象を撮像する際のフォーカス調整を調整リング25の回転操40作によって容易に行い得るようになされている。

【0014】また表示部3には、撮像部22の左隣近傍にマイクロフォン24が設けられており、当該マイクロフォン24を介して表示部3の背面側からも集音し得るようになされている。

【0015】さらに表示部3には、マイクロフォン24の左隣近傍にツメ13が設けられると共に、当該ツメ13と対応する本体2の所定位置に孔部8が設けられており、表示部3を本体2に閉塞した状態でツメ13が孔部8に嵌合されてロックするようになされている。

【0016】本体2は、前側面にスライドレバー9が設けられており、当該スライドレバー9をスライドすることにより、孔部8に嵌合されたツメ13のロックを解除して表示部3を本体2に対して展開し得るようになされている。また本体2の前側面には、複数の吸気孔11が

【0017】さらに本体2の右側面には、排気孔12、 PCMCIA(Personal Computer Memory Card Interna tional Association) 規格のPC(Personal Computer) 10 カードに対応したPCカードスロット14及びモジュラ ージャック用のモデム端子15が設けられている。

【0018】一方、図2に示すように本体2の左側面には、スライド式の電源スイッチ40、4ピン対応のIEEE(Institute of Electrical and Electronics Engineers) 1394端子41、USB(Universal Serial Bus)端子42、外部ディスプレイ用コネクタ46、マイクロフォン用入力端子43、ヘッドフォン端子44及びIrDA(Infrared Data Association) 準拠の赤外線ボート45が設けられている。

0 【0019】さらに図3に示すように、本体2の後側面には外部電源コネクタ16が設けられており、底面にはバッテリバック(図示せず)を取り外すためのスライド式取り外しレバー18と、動作を中断して電源投入時の環境を再構成するためのリセットスイッチ19が設けられている。なお、バッテリバックはバッテリコネクタ17に対して着脱自在に接続される。

【0020】かかる構成に加えて本体2の上面(図1)には、右端部においてバックスペースキーに相当する操作キー4Aとエンターキーに相当する操作キー4Bとの間に、当該操作キー4A及び4Bと同一高さになるようにジョグダイヤル30が組み込まれている。

【0021】ここでジョグダイヤル30とは、ダイヤルの回転操作及び押圧操作によってシステムセッティングや各種アプリケーションソフトウェアにおける種々の機能を容易に実現し得る操作性の優れたユーザインターフェースである。

【0022】このジョグダイヤル30は、図4に示すように平目模様の円板状操作つまみ218が本体2の外装ケース32から僅かに突出した状態で取り付けられており、円板状操作つまみ218による矢印a方向又はb方向への回転操作に対応して所定の処理を実行すると共に、矢印c方向への押圧操作に対応して所定の処理を実行するようになされている。

【0023】このときジョグダイヤル30は、円板状操作つまみ218が本体2の外装ケース32から僅かに突出されるように装着されていることにより、ユーザが突出した円板状操作つまみ218の周関面218Aを外装ケース32(図4)に指を這わしながら容易に操作し得るようになされている。なお円板状操作つまみ218

50 は、剛性が保てればその厚さを薄くすることができ、こ

れにより本体2の薄型化に十分対応し得るようになされ ている。

【0024】次に、ノートパソコン1の回路構成につい て図5を用いて詳細に説明する。 ノートパソコン1の本 体2においては、当該本体2における各種機能を統括的 に制御するCPU(Central Processing Unit) 50がホ ストバス52に接続されており、当該CPU50によっ てRAM(Random Access Memory) 53にロードされた各 種プログラムやアプリケーションソフトウェアに応じた テムクロックに基づいて所定の動作速度で実行すること により各種機能を実現し得るようになされている。

【0025】またホストバス52には、キャッシュメモ リ51が接続されており、CPU50が使用するデータ をキャッシュし、高速アクセスを実現し得るようになさ れている。

【0026】このホストバス52は、PCI (Periphera 1 Component Interconnect) バス55とホストーPCI ブリッジ54を介して接続されており、当該PCIバス 55にはビデオコントローラ56、IEEE(Institute 20 of Electrical and Electronics Engineers) 1394 インターフェース57、ビデオキャプチャ処理チップ8 3及びPC (Personal Computer) カードインターフェー ス58が接続されている。

【0027】 ここでホストーPCIブリッジ54は、 C PU50とビデオコントローラ56、ビデオキャプチャ 処理チップ83、IEEE1394インターフェース5 7及びPCカードインターフェース58との間で行われ る各種データの授受を制御すると共に、メモリバス59 を介して接続されたRAM53のメモリコントロールを 30 行うようになされている。

【0028】またホストーPC I ブリッジ54は、ビデ オコントローラ56とAGP (Accelerated Graphics Po rt) に沿った信号線を介して接続されており、これによ りホスト-PC I ブリッジ54及びビデオコントローラ 56間で画像データを高速転送し得るようになされてい る。

【0029】ビデオキャプチャ処理チップ83は、シリ アルバスでなる I² Cバス82 (一般的にSM(System Management) バスとも呼ばれている)と接続されてお り、当該 I² Cバス8 2を介してCCD (Charge Couple d Device) カメラ23で撮像された画像データが供給さ れると、これを内蔵のフレームメモリ(図示せず)に一 旦格納し、JPEG(Joint Photographic Experts Grou p)規格に従って画像圧縮処理を施すことによりJPEG 画像データを生成した後、当該JPEG画像データを再 度フレームメモリに格納するようになされている。

【0030】そしてビデオキャプチャ処理チップ83 は、CPU50からの要求に応じてフレームメモリに格 納されているJPEG画像データをバスマスタ機能を用 50 ウス等の外部デバイスを、USBインターフェースを介

いてRAM53へ直接転送した後、JPEG画像(静止

画) データ又はMotionJPEG画像 (動画) デー タとしてハードディスクドライブ (HDD) 67へ転送

【0031】ビデオコントローラ56は、CCD(Charg e Coupled Device) カメラ23によって撮像された画像 データや、ビデオキャプチャ処理チップ83のJPEG 画像データに対して所定のグラフィックス処理を施した 後、内蔵のVRAM(Video Random Access Memory)に格 処理を、クロックジェネレータ60から与えられるシス 10 納して適宜読み出し、液晶ディスプレイ21に出力して 表示させるようになされている。

> 【0032】またビデオコントローラ56は、適時供給 される各種アプリケーションソフトウェアに基づく画像 データを液晶ディスプレイ21に出力することにより、 複数のウィンドウ画面を表示し得るようになされてい る。

【0033】PCカードインターフェース58は、オプ ション機能を追加するときにPCカードを介して適宜装 着されるようになされており、PCカードを介して例え ばCD-ROMドライブやDVDドライブ等の外部デバ イスと接続し得るようになされている。

【0034】IEEE1394インターフェース57 は、IEEE1394端子41と直結されており、当該 IEEE1394端子41を介して他のコンピュータ装 置やディジタルビデオカメラ等の外部デバイスと接続し 得るようになされている。

【0035】PCIバス55は、ISA(Industrial St andard Architecture)バス65とPCI-ISAブリッ ジ66を介して接続されており、当該PCI-ISAブ リッジ66にはHDD67及びUSB(Universal Seria 1 Bus) 端子42が接続されている。

【0036】ここでPCI-ISAブリッジ66は、I DE (Integrated Drive Electronics)インターフェー ス、コンフィギュレーションレジスタ、RTC (Real-Ti me Clock) 回路及びUSBインターフェース等によって 構成されており、クロックジェネレータ60から与えら れるシステムクロックを基に I DEインターフェースを 介してHDD67の制御を行う。

【0037】HDD67のハードディスクには、Window 40 s98(商標) 等のOS(Operating System)、電子メールプ ログラム、オートパイロットプログラム、ジョグダイヤ ルユーティリティプログラム、ジョグダイヤルドライ バ、キャプチャーソフトウェア及びディジタル地図ソフ トウェア、さらにこれ以外の各種アプリケーションソフ トウェアが記憶されており、起動処理の過程で適時RA M53に転送される。

【0038】またPCI-ISAブリッジ66は、US B端子42を介して接続される図示しないフロッピー (登録商標) ディスクドライブ、プリンタ及びUSBマ

7 して制御すると共に、ISAバス65に接続されるモデ ム69及びサウンドコントローラ70の制御を行う。

【0039】モデム69は、モデム端子15から図示し ない公衆電話回線及びインターネットを介してインター ネットサービスプロバイダ(以下、これをプロバイダと 呼ぶ) に接続し、当該プロバイダとの間でアクセスする ようになされている。

【0040】サウンドコントローラ70は、マイクロフ ォン24から取り込まれた音声信号をディジタル変換し て音声データを生成し、これをCPU50に出力すると 10 ともに、CPU50から供給される音声データをアナロ グ変換して音声信号を生成し、これを内蔵スピーカ6を 介して外部に出力する。

【0041】またISAバス65には、I/O(In/Out) コントローラ73が接続されており、電源供給充電制御 回路85を介して外部電源コネクタ84から電力の供給 を受け、電源スイッチ40がオンされたときに各回路へ 電力の供給を行う。なお、ここでもI/Oコントローラ 73は、クロックジェネレータ60から供給されるシス テムクロックを基に動作する。

【0042】また電源供給充電制御回路85は、I/O コントローラ73によって制御され、バッテリコネクタ 17 (図3) に接続されたバッテリパック86の充電を 制御する。

【0043】この I/Oコントローラ73はマイクロコ ントローラ、I/Oインターフェース、CPU、ROM 及びRAM等によって構成されており、フラッシュメモ リ79に格納されているBIOS(Basic Input/Output System) に基づいてOSやアプリケーションソフトウェ アと液晶ディスプレイ21やHDD67等の各種周辺機 30 するプログラムである。 器との間におけるデータの入出力を制御する。

【0044】また I/Oコントローラ73は、赤外線ポ ート45と接続されており、例えば他のコンピュータ装 置との間で赤外線通信を実行し得るようになされてい る。 さらに I/Oコントローラ73は、 反転スイッチ7 7と接続されており、CCDカメラ23の撮像部22が 液晶ディスプレイ21の背面側方向に180度回転され たとき反転スイッチ77がオンされ、その旨をPCI-ISAブリッジ66及びホストーPCIブリッジ54を 介してCPU50に通知する。

【0045】さらに I/Oコントローラ73は、全押し /半押しスイッチ78と接続されており、 本体2の上面 に設けられたシャッタボタン7が半押し状態にされたと き全押し/半押しスイッチ78がオンされ、その旨をC PU50に通知すると共に、シャッタボタン7が全押し 状態にされたとき全押し/半押しスイッチ78がオンさ れ、その旨をCPU50に通知する。

【0046】すなわちCPU50は、HDD67のハー ドディスクからキャプチャーソフトウェアをRAM53

7が半押し状態にされると静止画像モードに入り、CC Dカメラ23を制御して静止画像のフリーズを実行し、 全押し状態にされるとフリーズされた静止画像データを 取り込みビデオコントローラ56に送出する。

【0047】これに対してCPU50は、キャプチャー ソフトウェアを立ち上げない状態で、ユーザによってシ ャッタボタン7が全押し状態にされると動画像モードに 入り、最大60秒程度までの動画像を取り込みビデオコ ントローラ56に送出するようになされている。

【0048】ところでI/Oコントローラ73のROM には、ウェイクアッププログラム、キー入力監視プログ ラム、LED制御プログラム及びジョグダイヤル状態監 視プログラム、その他種々の制御プログラムが格納され ている。

【0049】ここでジョグダイヤル状態監視プログラム は、HDD67のハードディスクに格納されているジョ グダイヤルユーティリティプログラムと関連したプログ ラムであり、ジョグダイヤル30が回転操作又は押圧操 作されたか否かを監視するためのものである。

20 【0050】ウェイクアッププログラムは、PCI-I SAブリッジ66内のRTC回路から供給される現在時 刻が予め設定した開始時刻になると、CPU50によっ て所定の処理を実行するように制御されたプログラムで あり、キー入力監視プログラムは操作キー4及び、その 他の各種キースイッチからの入力を監視するプログラム である。

【0051】LED制御プログラムは、電源ランプP し、電池ランプBL、メッセージランプML等のLED (Light Emitting Diode)でなる各種ランプの点灯を制御

【0052】またI/Oコントローラ73のRAMに は、ウェイクアッププログラム用の設定時刻レジスタ、 キー入力監視プログラム用のキー入力監視レジスタ、L ED制御プログラム用のLED制御レジスタ及びジョグ ダイヤル状態監視プログラム用の I/Oレジスタ、その 他の各種プログラム用のレジスタが設けられている。

【0053】設定時刻レジスタは、ウェイクアッププロ グラムで用いるためにユーザが予め任意に設定した開始 時刻の時間情報を格納するようになされている。従って 40 I/Oコントローラ73は、ウェイクアッププログラム に基づいてRTC回路から供給される現在時刻が任意に 設定した開始時刻になったか否かを判別し、開始時刻に なったときにはその旨をCPU50に通知する。これに よりCPU50は、開始時刻になったとき予め設定され た所定のアプリケーションソフトウェアを立ち上げ、当 該アプリケーションソフトウェアに従って所定の処理を 実行する。

【0054】キー入力監視レジスタは、操作キー4、ス ティック5、左クリックボタン5A、右クリックボタン 上に立ち上げた状態で、ユーザによってシャッタボタン 50 5B及びセンタボタン5Cの入力に基づいて操作キーフ ラグを格納するようになされている。

【0055】従って I / Oコントローラ 73は、キー入力監視プログラムに基づいて例えばスティック5によるポインティング操作や、左クリックボタン5A、右クリックボタン5B及びセンタボタン5Cのクリック操作が行われたか否かを操作キーフラグの状態に基づいて判別し、ポインティング操作やクリック操作が行われたときにはその旨を CPU 50に通知する。

9

【0056】ここでボインティング操作とは、スティック5を指で上下左右に押圧操作することによりマウスカ 10 ーソルを所望の位置に移動する操作のことであり、クリック操作とは左クリックボタン5A又は右クリックボタン5Bを指で素早く押して離す操作のことである。

【0057】これによりCPU50は、ポインティング操作によるマウスカーソルの移動やクリック操作に応じた所定の処理を実行する。

【0058】LED制御レジスタは、電源ランプPL、電池ランプBL、メッセージランプML等のLEDでなる各種ランプの点灯状態を示す点灯フラグを格納するようになされている。

【0059】従ってI/Oコントローラ73は、例えばジョグダイヤル30の押圧操作によりCPU50がHDD67のハードディスクから電子メールプログラムを読み出してRAM53上で立ち上げ、当該電子メールプログラムに従って電子メールを受け取ったとき点灯フラグを格納すると共に、当該点灯フラグに基づいてLED81を制御することによりメッセージランプMLを点灯する

【0060】ジョグダイヤル状態監視プログラム用の I /Oレジスタは、ジョグダイヤル30に対して行われた 30 回転操作及び押圧操作に応じてそれぞれ回転操作フラグ 及び押圧操作フラグを格納するようになされている。

【0061】従ってI/Oコントローラ73は、回転検出部88を介して接続されたジョグダイヤル30の回転操作及び押圧操作により複数のメニュー項目の中からユーザ所望のメニュー項目が選択されたとき、I/Oレジスタに回転操作フラグ及び押圧操作フラグを格納すると共に、その旨をCPU50に通知する。

【0062】これによりCPU50は、HDD67から 読み出してRAM53上で起動中のジョグダイヤルユー 40 ティリティプログラムに従って、ジョグダイヤル30の 回転操作及び押圧操作によって決定されたメニュー項目 に該当するアプリケーションソフトウェアを立ち上げて 所定の処理を実行する。

【0063】ここでI/Oコントローラ73は、電源スイッチ40がオフでOSが起動していない状態であっも、電源供給充電制御回路85の制御によってジョグダイヤル状態監視プログラムに基づいて常時動作しており、専用キーを設けることなく省電力状態又は電源オフ時においてもジョグダイヤル30の押圧場作にトップス

ーザ所望のアプリケーションソフトウェアやスクリプト ファイルを起動し得るようになされている。

【0064】ところで I / Oコントローラ73は、I² Cバス82と接続されており、操作キー4やジョグダイヤル30によって設定したCCDカメラ23に対する各種設定パラメータを I² Cバス82を介して供給することにより、CCDカメラ23におけるカメラ電源のオン/オフを制御したり、CCDカメラ23における明るさやコントラストを調整するようになされている。

- 【0065】(2)スペクトラムアナライザプログラムまたノートパソコン1においてCPU50は、HDD67に格納されているスペクトラムアナライザプログラム(以下、これをスペアナプログラムと呼ぶ)に基づいて、予め登録された音楽データをHDD67から読み出してスピーカ24から再生するとともに、当該音楽データの音声を所定の帯域毎に周波数解析し、当該解析結果に基づいて、帯域毎の信号レベルを示すスペクトラムアナライザ画像(以下、これをスペアナ画像と呼ぶ)Pspcを生成する。
- 20 【0066】そしてCPU50は、予め登録された複数の静止画画像データ(以下、これを登録画像Preg と呼ぶ)をHDD67から読み出し、当該読み出した複数の登録画像Preg のうちの1枚を選択画像Psel として選択し、さらに当該選択画像Psel とスペアナ画像Pspcとを合成して合成画像Pcompを生成し液晶ディスプレイ21に表示する。このときCPU50は、音楽データの解析結果に基づいて選択画像Psel を変更するとともに、選択画像Psel とスペアナ画像Pspc の合成方法を変更する。
- 30 【0067】すなわちCPU50は、ユーザによるスペアナプログラムの開始操作に応じて、図6に示すスペクトラムアナライザ処理手順を開始する。

【0068】CPU50はRT1で処理を開始し、ステップSP1においてCPU50は初期化処理を行い、HDD67に記憶されている複数の登録画像PregをRAM53に読み出し、当該読み出した複数の登録画像Pregのうちの一枚を選択画像Pselとして選択するとともに、後述する4種類の画像の合成方法のうちの一つを選択する。そしてCPU50は、HDD67から音楽データを読み出して再生を開始する。

【0069】ステップSP2において、音声信号取得手段としてのCPU50は、再生中の音楽データの音声を取り込み(以下、これをキャプチャと呼ぶ)、次のステップSP3に移る。

【0070】ステップSP3において、音声信号解析手段としてのCPU50は、キャプチャした音声をFFT (Fast Fourier Transform:高速フーリエ変換)を用いて周波数解析し、次のステップSP4に移る。

り、専用キーを設けることなく省電力状態又は電源オフ 【0071】ステップSP4において、周波数解析画像 時においてもジョグダイヤル30の押圧操作によってユ 50 生成手段としてのCPU50は、周波数解析結果に基づ いてスペアナ画像を生成する。すなわち図7はスペアナ 画像Pspc を示し、6本のインジケータf1~f6が表 示されている。

【0072】 インジケータ f 1~f6はそれぞれ14個 の表示ブロックB1kで構成されており、下から9個の 表示ブロックBlkは緑色で表示されるとともに、上か ら5個の表示ブロックB1kは赤色で表示される。ま た、インジケータ f 1~f 6の背景は黒で表示される。 【0073】 インジケータ f 1~f 6はそれぞれ対応す る周波数帯域の信号レベルを表しており、再生中の音声 10 に応じて各インジケータの高さが変動する。すなわち、 インジケータf 1は0~500(Hz)の帯域 (周波数帯N o. 1) の信号強度を表し、インジケータ f 2は500 [lb]~1[klb] の帯域(周波数帯No. 2)の信号強度 を表し、インジケータf3は1~2[kHz] の帯域(周波 数帯No.3)の信号強度を表している。また、インジ ケータ f 4は2~4 [kHz] の帯域 (周波数帯No. 4) の信号強度を表し、インジケータ f 5は4~8 [kHz] の 帯域(周波数帯No.5)の信号強度を表し、インジケ ータf 6は8~16[kHz] の帯域 (周波数帯No. 6) 20 の信号強度を表している。

【0074】ステップSP5において、選択画像切替手 段としてのCPU50は、周波数帯No. 1の信号レベ ルが所定の閾値以上であるか否かを判断する。ステップ SP5において否定結果が得られた場合、このことは周 波数帯No. 1の信号レベルが所定の閾値未満であるこ とを表しており、CPU50はステップSP7に移る。 【0075】これに対してステップSP5において肯定 結果が得られた場合、このことは周波数帯No. 1の信 号レベルが所定の閾値以上であることを表しており、C 30 択画像Psel の赤成分がビット反転される。 PU50はステップSP6に進む。ステップSP6にお いて、CPU50は複数の登録画像Preg のうちの一枚 をランダムに選択してこれを選択画像Psel とし、ステ ップSP7に移る。

ドラムやベース等の低音領域に相当する。このためCP U50は、再生中の音楽データにおけるドラムやベース 等の低音をトリガとして選択画像Psel を切り替える。 【0077】ステップSP7においてCPU50は、周 波数帯No.5の信号レベルが所定の閾値以上であるか 40 否かを判断する。ステップSP7において否定結果が得 られた場合、このことは周波数帯No. 5の信号レベル が所定の閾値未満であることを表しており、CPU50 はステップSP9に移る。

【0076】ここで、周波数帯No. 1は音楽における

【0078】 これに対してステップSP7において肯定 結果が得られた場合、このことは周波数帯No. 5の信 号レベルが所定の閾値以上であることを表しており、C PU50はステップSP8に進む。ステップSP8にお いて、CPU50は4種類ある画像の合成方法のうちの 一つをランダムに選択する。

12

【0079】ここで、周波数帯No. 5は音楽における ボーカル等の中高音領域に相当する。このためCPU5 0は、再生中の音楽データにおけるボーカル等をトリガ として画像の合成方法を切り替える。

【0080】すなわち図8 (A) は、OR (論理和) を 用いた画像の合成を示し、それぞれ24ビットカラー (R、G、Bそれぞれ8ビットずつ)で表現された選択 画像Psel 及びスペアナ画像Pspc の対応する画素毎に おいて、対応するビット毎に論理和を行うことにより合 成画像Pcompを生成する。例えば、図9に示す選択画像 Pseとスペアナ画像Pspc (図7)を論理和を用いて合 成した場合、図10(A)に示す合成画像Pcomが生成 される。この合成画像Pcompにおいて、スペアナ画像P spc の背景部に対応する部分は選択画像Psel の絵柄が そのまま表示され、スペアナ画像 Pspc の緑色のインジ ケータに対応する部分は、選択画像Pselの緑成分が強 調され、スペアナ画像 Pspc の赤色のインジケータに対 応する部分は、選択画像Psel の赤成分が強調された絵 柄になる。

【0081】図8 (B) は、XOR (排他的論理和)を 用いた画像の合成を示し、選択画像Psel 及びスペアナ 画像Pspc の対応する画素毎において、対応するビット 毎に排他的論理和を行うことにより合成画像Pcomを生 成する。 すなわち図10(B)はXORによる合成画像 Pcompを示し、スペアナ画像Pspc の背景部に対応する 部分は選択画像Psel の絵柄がそのまま表示され、スペ アナ画像Pspc の緑色のインジケータに対応する部分 は、選択画像Psel の緑成分がビット反転され、スペア ナ画像Pspc の赤色のインジケータに対応する部分は選

【0082】図8 (C)はAND (論理積)を用いた画 像の合成を示し、選択画像Psel 及びスペアナ画像Psp c の対応する画素毎において、対応するビット毎に論理 積を行うことにより合成画像Pcompを生成する。すなわ ち図10(C)はANDによる合成画像Pcompを示し、 スペアナ画像Pspc の背景部に対応する部分は黒く表示 され、スペアナ画像Pspc の緑色のインジケータに対応 する部分は、選択画像 Psel の緑成分のみが表示され、 スペアナ画像Pspc の赤色のインジケータに対応する部 分は、選択画像 Psel の赤成分のみが表示される。

【0083】図8 (D) は、反転ANDを用いた画像の 合成を示し、反転させた選択画像 Psel 及びスペアナ画 像Pspc の対応する画素毎において、対応するビット毎 に論理積を行うことにより合成画像Pcompを生成する。 すなわち図10(D)は反転ANDによる合成画像Pco 町を示し、スペアナ画像 Pspc の背景部に対応する部分 は黒く表示され、スペアナ画像Pspc の緑色のインジケ ータに対応する部分は、反転した選択画像Psel の緑成 分のみが表示され、スペアナ画像 Pspc の赤色のインジ 50 ケータに対応する部分は、反転した選択画像Psel の赤 成分のみが表示される。

【0084】かかる論理演算による画像の合成は、画像合成の手法として一般に用いられているアルファブレンディング等に比べて計算量が少なく、画像合成を高速に処理することができる。このため、音楽のリズムが速く選択画像Psel や合成方法が高速で切り替わる場合においても、リズムの変化に追従した選択画像Psel を生成することができる。

【0085】ステップSP9において、合成画像表示手段としてのCPU50は、選択画像Psel とスペアナ画 10像Pspc を合成して合成画像Pcompを生成し、次のステップSP10に移る。

【0086】ステップSP10において、合成画像表示 手段としてのCPU50は、生成した合成画像Pcomを 液晶ディスプレイ21に所定時間表示した後、ステップ SP2に戻る。

【0087】かくしてCPU50は、再生中の音楽データのドラムやベース等の低音をトリガとして選択画像Pselを切り替えるとともに、ボーカル等をトリガとして画像の合成方法を切り替えて合成画像Pcompを表示する。

【0088】(3)実施の形態における動作及び効果 以上の構成において、ノートパソコン1のCPU50は スペクトラムアナライザプログラムを実行し、再生中の 音楽データを所定の帯域毎に周波数解析してスペアナ画 像Pspc を生成する。

【0089】そしてCPU50は、複数の登録画像Pregのうちの1枚を選択画像Pselとして選択し、当該選択画像Pselとスペアナ画像Pspcとを論理演算を用いて合成し、合成画像Pcompとして液晶ディスプレイ2130に表示する。

【0090】このときCPU50は、音楽データの低音 領域の変化に基づいて選択画像Psel を切り替えるとと もに、音楽データの中高音領域の変化に基づいて画像の 合成方法を切り替える。

【0091】以上の構成によれば、選択画像Psel 及び 画像の合成方法を音楽データの変化に基づいて切り替え ることにより、音楽データの変化に応じて不規則に変化 する合成画像Pcomを表示することができるとともに、 合成処理時間が短い論理演算を用いて選択画像Psel と 40 スペアナ画像Pspc とを合成することにより、音楽デー タの変化に遅れることなく選択画像Psel を変化させる ことができる。

【0092】(4)他の実施の形態

なお上述の実施の形態においては、HDD67内に格納された音楽データに基づいて選択画像Psel 及び画像の合成方法を切り替えたが、本発明はこれに限らず、例えばマイクロフォン24から入力した音楽や、ノートパソコン1に接続したCD-ROMドライブで再生した音楽CDの音楽等、さまざまな音源による音楽に基づいて選 50

14

択画像Psel 及び画像の合成方法を切り替えるようにしても良い。

【0093】また上述の実施の形態においては、音楽データに基づいて選択画像Psel 及び画像の合成方法を切り替えたが、本発明はこれに限らず、例えば波の音等の自然の音や、あるいは人間の声等、さまざまな音に基づいて選択画像Psel 及び画像の合成方法を切り替えるようにしても良い。

【0094】また上述の実施の形態においては、静止画でなる登録画像Preg とスペアナ画像Pspc とを合成して合成画像Pcompを生成したが、本発明はこれに限らず、例えば動画像とスペアナ画像Pspc とを合成して合成画像Pcompを生成するようにしても良い。

【0095】また上述の実施の形態においては、再生中の音楽データの低音をトリガとして選択画像 Psel を切り替えるようにしたが、本発明はこれに限らず、例えば中音をトリガとして用いる等、音楽データの様々な変化をトリガとして用いて選択画像 Psel を切り替えるようにしてもよい。さらに、選択画像 Psel の切り替えの際20 に、ワイプやディフューズ等の映像特殊効果を施すようにしてもよい。

【0096】さらに上述の実施の形態においては、CPU50がHDD67のハードディスクに予め格納されたスペクトラムアナライザプログラムに基づいて、合成画像Pcompを生成して表示する場合について述べたが、本発明はこれに限らず、スペクトラムアナライザプログラムの記録されたプログラム格納媒体をインストールすることにより、上述の合成画像Pcomの表示を行うようにしても良い。

【0097】このように上述した一連の処理を実行するスペクトラムアナライザプログラムをノートパソコン1にインストールし、当該ノートパソコン1によって実行可能な状態とするために用いられるプログラム格納媒体としては、例えばフロッピーディスク、CD-ROM(Compact Disc-Read Only Memory)、DVD(Digital Video Disc)等のパッケージメディアのみならず、プログラムが一時的もしくは永続的に格納される半導体メモリや磁気ディスク等で実現してもよい。また、これらプログラム格納媒体にプログラムを格納する手段としては、ローカルエリアネットワークやインターネット、ディジタル衛星放送等の有線及び無線通信媒体を利用してもよく、ルータやモデム等の各種通信インターフェースを介在させて格納するようにしても良い。

【0098】さらに上述の実施の形態においては、本発明の情報処理装置をノートブック型パーソナルコンピュータ1に適用するようにした場合について述べたが、本発明はこれに限らず、デスクトップ型のパーソナルコンピュータに適用するようにしても良い。

[0099]

50 【発明の効果】上述のように本発明によれば、音声の変

15

化に基づいて選択画像を切り替えるとともに、音声の変 化に基づいて周波数解析画像と選択画像の合成方法を変 更することにより、音声の変化に応じて変化する合成画 像を生成して表示することができる。

【図面の簡単な説明】

【図1】本発明によるノートブック型パーソナルコンピュータの全体構成を示す略線図である。

【図2】本体の左側面の構成を示す側面図である。

【図3】本体の後側面及び底面の構成を示す略線図である

【図4】本体に取り付けられているジョグダイヤルの外 観を示す略線図である。

【図5】 ノートブック型パーソナルコンピュータの回路

構成を示すブロック図である。

【図6】スペクトラムアナライザプログラムの処理手順 を示すフローチャートである。

16

【図7】スペクトラムアナライザ画像を示す略線図である。

【図8】画像の合成方法を示す略線図である。

【図9】選択画像を示す略線図である。

【図10】合成画像を示す略線図である。

【図11】合成画像を示す略線図である。

10 【符号の説明】

1……ノートパソコン、2……本体、3……表示部、2 1……液晶ディスプレイ、50……CPU、53……R AM、67……HDD。

【図2】

【図1】

図1 ノートブック型パーソナルコンピュータの全体構成

図2 本体の左側面の構成

【図4】

【図3】

図4 本体に取り付けられているジョグダイヤルの外観

図3 本体の後側面及び底面の構成

【図5】

Best Available Copy

【図8】 【図10】 R 6 B スペアナ百億 00000000 11111111 00000000 (A) OR 合成資俸 00001011 [1111111 11001000 (A) OR 00001011 01001001 11001000 (B) XOR スペアナ画像 00000000 11111111 00000000 Peamp 合成資金 [00001011]10110110 11091000 選択画像 00001011 01001001 11001000 (C) AND スペアナ資金 00000000 11111111 00000000 (B) XOR 合成智量 00000000 01001001 00000000 選択画像 00001011 01001001 11001000 反転送択資金 11110100 10110110 00110111 図10 合成画像(1) スペアナ画像 00000000 11111111 00000000 00000000 10110110 00000000 図8 画像の合成 【図11】

図11 合成画像(2)

Best Available Copy

フロントページの続き

(51) Int. Cl . ⁷		識別記号	F I		テーマユード(参考)
G09G	5/36	510	H04N	1/387	
	5/377			1/00	102A
H04N	1/387			5/265	
// H04N	1/00	102	G06F	15/40	370B
	5/265			15/403	310Z
			G09G	5/36	520M

Fターム(参考) 5B075 ND06 PP03 PP07 PQ02

5C023 AA18 AA37 AA38 BA11 BA15

CA03 CA04 CA05 DA08

5C062 AC05 AC24 AC29 AE11

5C076 AA12 AA13

5C082 AA01 AA11 AA21 AA22 AA24

BA16 BA20 BA27 BB25 BB42

CA56 CB01 DA61 DA87 MM09

MM10