USD

Odense 11 August 2010

MAS Course 6

Yves Demazeau

Yves.Demazeau@imag.fr

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 326

SCHEDULE OF THE COURSE + EXAMINATION

MAS 01	04 Aug.	Introduction, Methodology, Agents
MAS 02	05 Aug.	Agents, Environments, Interactions
MAS 03	06 Aug.	Dynamics, Organisations, Example
MAS 04	09 Aug.	Development, Deployment, Example
MAS 05	10 Aug.	Stand alone MAS, Interaction with Users
MAS 06	11 Aug.	User-Centered MAS, Service to the User

attendance ; handouts ; individual work [Ferber 95] [HERMES 01] [OFTA 04]

MAS Ex. 13 Aug. Written Control and Oral Delivery

CNRS Laboratoire d'Informatique de Grenoble

User-Centered Multi-Agent Systems			
CNRS Laboratoire d'Informatique de Grenoble	Yves DEMAZEAU - 328		
ALAVs			

Yves DEMAZEAU - 329

CNRS Laboratoire d'Informatique de Grenoble

M@trice Active Project (with U. Paris 1 - Lavaud)

VOWELS approach

- Extension of PACO to a 3D world environment
- Elements as A, evolving in a 3D Environment
- I and O wrt Kandinsky's rules of painting

Applications

- Pedagogical : to explain and to explore Kandinsky
- Artistic : to support Kandinsky's like painting
- Creative : multi-user collaborative framework

Y. Gufflet & Y. Demazeau, "Applying the PACO paradigm to a 3-D artistic creation", 5th International Workshop on Agent-Based Simulation, ABS'04, pp. 121-126, SCS, Lisbon, Portugal, May 2004.

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 330

M@trice Active : the Kandinsky example

CNRS Laboratoire d'Informatique de Grenoble

ZKM	
CNRS Laboratoire d'Informatique de Grenoble	Yves DEMAZEAU - 332
CLIC	
CLIC	

Yves DEMAZEAU - 333

CNRS Laboratoire d'Informatique de Grenoble

LEARNING CNRS Laboratoire d'Informatique de Grenoble Yves DEMAZEAU - 334

Motivations to Learning

Knowledge Acquisition

- to acquire new knowledge (from interactions) to acquire, synthesize, refine experiences

- Knowledge Processing

 to update knowlegde and acquire new one

 to create new concepts from lower level ones

Local Performance

- to minimize interactions among agents
- to remember experiments for reuse

Global Performance

- to improve the system performance to get global centralization and homogeneity

CNRS Laboratoire d'Informatique de Grenoble

Multi [Agent Learning]

A Learning to perceive and represent other agents

- Discovering skills, and possible roles through a dedicated introduction protocol [Demazeau 92]
 Learning by linear anticipation, to predict future states and guide low-level behaviour [Davidsson 97]
 Learning algorithms are actions which should be evaluated like other actions [Schmidhuber 97]

E Learning to re-act, to co-act in shared environments

- A multi-legged robot learning to walk using reinforcement learning [Demazeau 90]
- Using reinforcement learning to program a team of robots with a shared mission [Versino 97]
 Evolutionary mutation and selection mechanisms to find stable coordination strategies [Bazzan 97]

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 336

[Multi-Agent] Learning

I Learning to communicate, to inter-act

- Learning to converse by coconstructing the meaning of an exchanged messages [Pesty 97]
 Using common ontology for possible information exchange and learning framework [Friedrich 97]
- Learning to reduce communications amount by avoiding broadcasting when possible [Ohko 97]

Learning to share organizations, to organize

- Clustering techniques through interactions to form coalitions [Sichman 95]
- Supervised learning to discover social rules and conventions [Huhns 97]
- Better knowing skills, improving organisational knowledge, to optimize interactions [Terabe 97]

CNRS Laboratoire d'Informatique de Grenoble

Impact of Multi Agent Learning

Learning in Multi-Agent Systems

- is either A-, E-, I-, or O- centered
 mainly deals with A-E, A-A, A-I, A-O, and... I-O
- permits global and local feedback
- ensures global and local goals

Multi [Agent Learning]

- privilegiates individual skills
- assumes homogeneous agents

[Multi Agent] Learning

- not always minimizes A-A interchanges
- does not protect individual skills

CNRS Laboratoire d'Informatique de Grenoble

TRUST	
CNRS Laboratoire d'Informatique de Grenoble	Yves DEMAZEAU - 339

Trust in MAS

Expansion of the distributed systems such as electronic trade, services for citizens, or BtoB applications

- Act in an open, unpredictable, dynamic environment
- Need for guaranteeing security
- Need for providing the best services for other services and users

Trust: mechanism of social integration and mechanism of coordination

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 340

Trust model based on Falcone's approach

Trust is regarded as a mental state and consists of beliefs in the behaviour of the other, in connection with something in a precise field or context.

CNRS Laboratoire d'Informatique de Grenoble

Bayesian trust network : first approach

- Beliefs: ability, willingness, danger, opportunity...
- Each component is associated with a probability of satisfaction.
 The subjective certainty of the beliefs is derived from the credibility of their sources

- Computation by Bayesian inference: influences between the components are supported by conditional probabilities
- Dynamics using Kalman filtering

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 342

Dynamic trust model: first experiments

Simple instantiation of our model

- Two beliefs and only one source
- Bernoulli distribution
- A priori distribution: uniform
- Common sense inertia: the decrease is faster than the increase
- No belief is privileged

CNRS Laboratoire d'Informatique de Grenoble

Experiment: erosion of trust

Erosion: in the absence of information, trust drifts towards a default value corresponding to an increase of the uncertainty

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 344

Experiment: impact of a negative observation

Only one negative observation corresponds to a contradiction perceived in regard to the previous positive observations

CNRS Laboratoire d'Informatique de Grenoble

Experiment: impact of a positive observation

Only one positive observation has a weak impact on trust

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 346

Experiment: versatile behaviour

Inertia of trust and distrust: speed to swing to one to the other

CNRS Laboratoire d'Informatique de Grenoble

CONCLUSION

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 350

How MAS Methodology is specific?

- = Approach + Model + Tools + Problem + Domain
- = Analysis + Design + Development + Deployment

It provides a new analysis and design approach

It is supported by existing formalisms,

It integrates existing programming paradigms,

It is striving towards industrial quality,

It caters for distributed intelligence applications,

It will always imply difficulties in provability.

CNRS Laboratoire d'Informatique de Grenoble

MAS Characteristics [OFTA 04]

Artificial Knowledge Intelligence Sharing

Artificial

Adaptation

Life

Software Agent Delegation **Autonomy**

Decentralisation

Interaction

Organisation

Situatedness

Openness

Emergence

Distributed

Distribution System

Personnalisation Human Computer Interaction

Intelligibility Software Engineering

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 352

Issues driving to the use of MAS

Availability of supporting technologies

network Capacity
processor performance
software Language and Tool Power

Inherent distribution

- physical
- organizational

System openess

- changing system structure
- uncertain environment

Competitive collaboration

- multiple knowledge domains
- multiple solution methods

Natural or social systems modelling

...

CNRS Laboratoire d'Informatique de Grenoble

Issues refraining to the use of MAS

Social acceptability of MAS applications

- degree of delegation (trust by users)
- degree of autonomy (responsability of owners)

Important properties cannot be guaranteed

- deadlock avoidance
- convergent negotiation

Impossibility to prove system behaviour

- prediction of system behaviour
- validation of system behaviour

Transfer from research to industry

- first to market has greater impact than best technology
- theoretical / formal MAS research have little impact

...

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 354

The MAS Working Space

The AgentLink Network of Excellence

The European series of conferences

- 10 issues of the MAAMAW workshops from 89 until 01
- 6th CEEMAS in XXX in XXX 10
- 7th EUMAS workshop in Ayia Napa in December 09

The IFAAMAS Foundation & the FIPA IEEE Chapter

The International series of conferences

- ICMAS series of conferences (merged into AAMAS)
- 11th IAT in Toronto in September 10
- 8th PAAMS in Salamanca in April 10
- 9th AAMAS in Toronto in May 10

The AAMAS Journal and the MASA Collection

CNRS Laboratoire d'Informatique de Grenoble

MAS Series of Events

- IWDAI International / American W. DAI (USA)
- MAAMAW Western European W. MAS (Europe)
- MACC MA and Concurrent Computing W. (Japan)
- JFSMA DAIMAS W. (French Speaking Countries)
- ICMAS Int. Conference on MAS (World)
- DIMAS Decentralized Intelligent MAS W. (Poland)
- ADAIMAS Australian DAIMAS W. (Australia)
- PDAI Parrallel and DAI Conference (India)
- IAWDAIMAS IberoAmerican W. (C. & S. America)
- DAIMAS International / Russian W. (Russia)
- IWMAS International / American W. (North-America)
- CEEMAS Central & Eastern Europe MAS W (Europé)
- AAMAS Int. Conference on AA&MAS (World)
- IAT Int. Conference on Agent Technology (World)
- **EUMAS European Workshop on MAS (Europe)**
- PAAMS Practical Applications of Agents and MAS (World)
- PRIMA Principles of Practice in MAS (World)

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 356

Actes JFSMA

- 1. IRIT, Toulouse, 1993
- LIFIA et TIMC, Grenoble, 1994
- 3. LIA, Chambéry, 1995
- 4. LIRMM, Montpellier, 1996
- LI2S, Nice, 1997
- LORIA, Nancy, 1998
- 7. IREMIA, St Gilles, 1999
- 8 EMSE, St Etienne, 2000
- 9. CRIM, Montréal, 2001
- 10. LIFL, Lille, 2002
- ENSI, Hammamet, 2003
- 12. LIP6, Paris, 2004
- 13. LIL, Université du Littoral, Calais, 2005
- 14. LISTIC, Annecy, 2006
- 15. IRIT, Carcassonne, 2007
- 16. LISÝC, Brest, 2008
- 17. LIESP, Lyon, 2009

CNRS Laboratoire d'Informatique de Grenoble

MAAMAW Proceedings

- Decentralized A.I.
 - Y. Demazeau, J.-P. Müller (eds), Elsevier N.-H., 1990
- Decentralized A.I. 2
 - Y. Demazeau, J.-P. Müller (eds), Elsevier N.-H., 1991
- 3 Decentralized A.I. 3
 - E. Werner, Y. Demazeau (eds), Elsevier N.-H., 1992
- 4. Artificial Social Agents
 - C. Castelfranchi, E. Werner (eds), Springer V. LNAI 830, 1994
- 5. From Reaction to Cognition
 - J.-P. Müller, C. Castelfranchi (eds), Springer V. LNAI 957, 1995
- 6 Distributed Software Agents and Applications
 - J. Perram, J.-P. Müller (eds), Springer V. LNAI 1069, 1996
- 7 Agents Breaking Away
 - W. Van de Velde, J. Perram (eds), Springer V. LNAI 1038, 1996
- 8. Multi-Agent Rationality
 - M. Boman, W. van de Velde (eds), Springer V. LNAI 1237, 1997
- 9. Multi-Agent System Engineering
 - F. Garijo, M. Boman (eds), Springer V. LNAI 1647, 1999
- 10. Multi-Agent Organisations
 - Y. Demazeau, F. Garijo (eds.), e-publication, CD-ROM, 2001

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 358

ICMAS and **AAMAS** Proceedings

- 1. ICMAS 95, San Francisco, USA
- 2. ICMAS 96, Kyoto, Japan
- 3 ICMAS 98, Paris, France
- 4. ICMAS 00 Boston, USA
- 5. AAMAS 02 Bologna, Italy
- 6. AAMAS 03 Melbourne, Australia
- 7. AAMAS 04 New York, USA
- 8. AAMAS 05 Utrecht, the Netherlands
- 9. AAMAS 06 Hakodate, Japan
- 10. AAMAS 07 Hawai, USA
- 11. AAMAS 08 Estoril, Portugal
- 12. AAMAS 09 Budapest, Hungary
- 13. AAMAS 10 Toronto, Canada

CNRS Laboratoire d'Informatique de Grenoble

IAT & PAAMS Proceedings

- IAT 99 Hong-Kong, China
- IAT 01 Maebashi, Japan
- IAT 03 Halifax, Canada
- IAT 04 Beijing, China IAT 05 Compiègne, France
- IAT 06 Hong-Kong, China
- IAT 07 Silicon Valley, California IAT 08 Sydney, Australia
- 9. IAT 09 Milano, Italy
- 10. IAT 10 Toronto, Canada
- 11. PAAMS'09 Salamanca, Spain
- 12 PAAMS'10 Salamanca, Spain

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 360

Monographies and Compilations (1)

- Distributed Artificial Intelligence M. Huhns (ed), Pitman, 1987
- Readings in Distributed Artificial Intelligence Alan H. Bond & L. Gasser (eds), Morgan Kaufman, 1988
- Distributed Artificial Intelligence (Volume II) L. Gasser & M. Huhns (eds), Pitman, 1989
- Distributed Artificial Intelligence: Theory and Practice N. Avouris, L. Gasser (eds), Kluwer Academic Publishers, 1992
- Multiagent Systems M. Singh, Springer V, 1994
- Les systèmes multi-agents (in french) J. Ferber, InterEditions, 1995

CNRS Laboratoire d'Informatique de Grenoble

Monographies and Compilations (2)

- Readings in Agents
 M. Huhns & M. Singh (eds), Morgan Kaufman, 1997
- Multi Agent Systems
 G. Weiss, MIT Press, 1999
- Principes et Architecture des SMA (in french)
 J.-P. Briot & Y. Demazeau, Hermès, 2001
- Systèmes Multi-Agents (in french)
 Y. Demazeau, OFTA n°29, Lavoisier, 2004
- Knowledge Engineering and Agent Technology
 J. Cuena, Y. Demazeau, A. Garcia, J. Treur, IOS, 2004
- Multiagent Systems
 Y. Shoham & K. Leyton-Brown, Cambridge, 2008

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 362

Journals

Artificial Intelligence

Artificial Intelligence in Medecine
 Artificial Intelligence Research

Autonomous and Adaptive Systems

Autonomous Agents and Multi-Agent Systems

Autonomous Robots

Information Interaction Intelligence

■ Intelligence Artificielle

Intelligent Systems and Applications

■ Internet Computing

Multiagent and Grid Systems

■ Pattern Recognition

Robotics and Autonomous Systems

Systems, Man, and Cybernetics

Web Intelligence

. ...

Elsevier Elsevier www ACM

Springer Verlag Springer Verlag Cepadues Hermes IEEE IEEE IOS Elsevier Elsevier

Springer Verlag

IEEE

CNRS Laboratoire d'Informatique de Grenoble

Evolution of Agents and Multi-Agent Systems

Robotics Agents
Mobile Agents
Software Agents
Interface Agents
Service Agents
User Agents

Artificial Intelligence
Telecommunications
Software Engineering
HC Interfaces
Internet Computing
Creative Computing

MAS assuming Closed Environments MAS integrating Open Environments MAS including Human Agents (CSCW, ITS) MAS for the benefit of Human Agents

. . .

CNRS Laboratoire d'Informatique de Grenoble

A VISION OF THE FUTURE (1st $98 - 2^{nd} 01 - 3^{rd} 04$)

Fusion of Virtual Reality and Real Virtuality
Mutual acceptance and Social space
Interaction interfaces between Agents
Management of the Social space
From Productivity tools to Creativity tools
Towards real-time interactive Applications

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 366

Fusion of Virtual Reality and Real Virtuality

The physical world and the virtual world will merge

- Virtual agents will be increasingly present in the physical world... Animal-like and human-like robots, connected to the network, will interact with humans (and each other) in a physical way... Already toys exist that are based on this philosophy. Some work on humanoid robots also fits in quite well...
- Agentcities services will interact with the user, even if through some kind of "user agents" attached to the user...
- Interactive Game characters will interact with the User, should they represent the player or directly interact with...

Social rules have to be identified for such a world!

CNRS Laboratoire d'Informatique de Grenoble

Mutual acceptance and Social space

Human and artificial agents will accept or at least tolerate each other

- Human agents will adapt quickly to artificial agents that play a peripheral, assisting role. If artificial agents obey certain rules, they might be taken for granted... Artificial agents have hard time understanding our world. The artificial agents will socially organise themselves...
- Agentcities services will support interests and preferences of the user, respecting privacy, generating trust...
- Interactive Game characters will better care about the User capabilities, respecting his/her skills, actively helping him/her to learn and progress, installing trust...

One might not care to deal with a real or an artificial agent (reversing the Turing test !)

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 368

Interaction interfaces between Agents

Which kind of interaction language, of representation will arise between such agents?

- Representing other agents in terms of competences is the usual way... DAML-S, AUML, WSDL represent services... Between human and artificial agents, HCl try to reach the level of NL... Between artificial agents, Interactions are based on Speech Acts (ACL) ... Using ontologies that share the same representation (DAML+OIL) ...
- Agentcities services representation and languages will evolve in order to better interact wit the User...
- The interactions between the Interactive Games Characters and the User will be grounded on emotions...

Semantics and pragmatics should be worked out to satisfy both artificial and human agents!

CNRS Laboratoire d'Informatique de Grenoble

Management of the Social space

Social space has to be organised and this is actually too much usually done in an ad hoc fashion

- Buildings not only provide shelter, but also organise physical space... To interact with somebody, one had to be physically close... Transportation technology serves to overcome the constraints of physical space... Until the Internet, people did not change their social space through technology... Using chat rooms, people can now make friends without physically meeting...
- Producers will have organize and dynamically combine Agentcities services to offer more complex services...
- Complex Interactive Game scenarios will be dynamically composed in a more User-driven way...

Most of the social space between artificial agents should be organized in a dynamic way!

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 370

From Productivity tool to Creativity tools

The new world has to move from a space of productivity tools to a space of creativity tools

- As barriers disappear,, the need for middlemen will gradually disappear... Using networks, the product (not the producer!) will easily find its way to the consumer...As production becomes smoother, the importance of creativity will increase... Creation of original content will be a main activity... Agents will want tools to assist in this process...
- Agentcities services will find their way to users... Users will build quick prototypes, using virtual agents...
- Games will find their way to the User, and will adapt to his/her wishes, offering tools to assist...

High-Level License Free Users-driven Products will help to move from productivity to creativity!

CNRS Laboratoire d'Informatique de Grenoble

Towards real-time interactive Applications

There will be a new focus on highly interactive real-time applications

- Static information becomes no value... People want the information to be interactive, to follow them... Information will not only have to be original, it will have to be live and to adapt real time... Producers will have to return to the live production of their material... Virtual agents and Human agents will join in production / creation teams...
- Agentcities products product will adapt to the needs of the user in a real-time and interactive way...
- Interactive Game evolution will imply the active cooperation of the characters as well as the contribution of the User...

The support of an interactive real-time agent-like technology will enable new kind of applications!

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 372

User Centered Emergent Creativity [Demazeau 03]

Grand challenge

- User centred adaptive ICT systems, or
- From production tools to creation tools
- Emergent real-time ICT usage

Working hypothesis

Users are either human or virtual agents

Research themes

- The process and the economy of creation
- Real-time user-centred exploitation of data
- User modelling, personalization, and trust
- Interaction, collaboration, organisation
- Emergence, composition of functionality
- The creator becoming the real designer
- A way to evaluate properly such systems

CNRS Laboratoire d'Informatique de Grenoble

Industrial recommendations

MAS generates more and more revenue!

- New applications become viable
- MAS reduces risk of building the applications
- MAS encourages reusability

Widespread adoption of MAS requires

- MAS and not only Agents
- Methodology
- Industrial strength toolkits
- Standards and Norms

Deployment of lead applications requires

- The use of simple, well understood techniques
- The focus on application value, not technology
- An industrial partnership

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 374

Scientific recommendations

The problem lays in the relations between mental issues and coordination theories, between micro and macro issues.

- Mutual representations, including trust issues
- Coordination models, including full decentralization
- Organisations, including dynamic emergent ones
- Methodologies, including user-centered ones

Multi-agent systems will be in the near future what object oriented systems are today: a set of well defined techniques

- Multi-Agent Oriented Programming, not only Agents
- Testbeds and Benchmarks, not only Moke-ups
- Standards, not only delocalized efforts
- Available industrial platforms to be universally used

CNRS Laboratoire d'Informatique de Grenoble

Research agenda: Service to the person

Both the purpose of the user and the one of the domain have to be taken in parallel...

Protecting personal data, managing multiple identity, towards cognitive trust (delegation) ...

Reasoning under incertain and incomplete models such as partial BDI models... (social reasoning)

Static (personnalisation) and dynamic adaptation (real time) of service composition

Evaluating MAS systems from a CS point of view and from a usage point of view (evaluation)

Purposive MAS will also have to be able to deal with realtime and real-size issues...

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 376

M	Α	G١	V	IΑ
---	---	----	---	----

CNRS Laboratoire d'Informatique de Grenoble

MAGMA: Project 11-14: Service to the person

MULTI AGENT SYSTEMS TO SERVE THE PERSON

Theme 1 : Affective Conversational Agents

Theme 2: Coordinated Planning Agents

Theme 3: Engineering Multi-Agent Systems

Theme 4 : Agent-Based Modelling and Simulation

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 378

ACA: Affective Conversational Agents

Speech acts as the central view

- From A-A interaction to A-U conversation
- Dialogism, 32 speech acts, Dynamics, Conversation
- Damasio theory linking decision making and emotion
- Investigating the language in parallel to the appearance

Works

- Pedagogical, rational, & affective, interactive agent PRAIA Project Application to pedagogical games and e-commerce (with LIMSI Sansonnet) (with UFRGS Jaques) (Pesty)
 Project ANR CECIL sur les Agents Conversationnels Animés. Language expressivity in an Emotional Conversational Agent (with IRIT Longin) (with INRIA Pelachaud) (Rivière)

CNRS Laboratoire d'Informatique de Grenoble

CPA: Coordinated Planning Agents

Composition as the central view

- Composition is not coordination, the goal is not to coordinate existing individuals plans but to build a collaborative plan.
- The user as an additional constraint to be taken into account in order to help to solve the problem.
- Real-time constraints.

Works

- Interleaving assumption-based planning and goal-space planning (Fiorino)
- Interfaces plasticity. From functional kernels to human-computer interfaces (with IIHM Calvary) (Martin)
- Interfaces plasticity. From human-computer interfaces to functional kernels (with IIHM Calvary) (Gabillon)
- User constraints. Application to web services, in relation semantic web (with USavoie Huget) (Fiorino)

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 380

EMA: Engineering Multi-Agent Systems

VOWELS as the central view

- Evaluation as the cornerstone of UCMAS methodology...
- The user as a consumer, as a partner, as a creator...
- Engineering by dynamic composition of the vowels...

Works

- The VOWELS Framework. Adding the User (U). VOWELS Dynamics through AMAS (with IRIT Camps) (Demazeau)
- Personalisation and dynamics of agent networks (with IRIT Camps) (Lacomme)
- MAS characteristics modelling towards evaluation of performance. Application to the transporter-explorer application (with MESCAL Vincent) (Journaa)
- CLIC: Support to artistic creation (with COIN-COIN Houot) (Lacomme)
- Citizen Agents Project (with EMSE, IRIT, LIFL): personal assistants to assist the daylife of the citizen (Demazeau)
- Intellicare Project : Ambient Assisted Living (with MMMI Hallenborg) (Demazeau)

CNRS Laboratoire d'Informatique de Grenoble

ABS: Agent-Based Modelling and Simulation

Cognition as the central view

- Focus on both modelling and simulation on social aspects
- The cognitive level, the work group level, the societal level
- Creativity support, intelligent house, crisis management

Works

- Crisis Management (with IRD Drogoul) (Dugdale)
- MAS support to individual human creativity (Dugdale)
- Intelligent houses (with G-SCOP Ploix) energy regulation (Pesty)
 Crisis management (with ENSI Tunis) (Dugdale)
- Modelling expectations (with U Pelotas) (Dugdale)
- Middle Age social networks (with IRIT Camps) (with IMT Jouve)
- Personalized follow-up of a soldier (with TIMC Baconnier) (Amate)

CNRS Laboratoire d'Informatique de Grenoble

MAGMA People in 09-10				
Staff	08	Y. Demazeau	CNRS	EMA, ABS
	05	J. Dugdale	UPMF	ABS
	05	H. Fiorino	UJF	CPA
	02	C. Garbay	CNRS	ABS, AMA
	04	S. Pesty	UPMF	ACA, ABS
Post Doctoral	06	L. Amate	UJF	ABS, AMA
Collaborators	01	S. Abras	G-Scop	ABS
	01	V. Camps	IRIT	EMA
	01	L. Crépin	LIRMM	EMA
	01	MP. Huget	LISTIC	EMA
PhD students	01	L. Crépin – 4	UJM	EMA
	07	H. Joumaa – 4	UJF	EMA, MESCAL
	03	Y. Gabillon – 3	INPG	IIHM, CPA
	10	L. Lacomme – 2	INPG	EMA
	07	C. Martin – 2	UJF	CPA, IIHM
	10	J. Riviere – 1	UPMF	ACA
MSc students	04	A. Kashif	UJF	ABS
	04	R. Lamarche	UJF	MESCAL, EMA
	04	B. Vettier	UJF	CPA
	01	M. Vezain	UPMF	ABS
CNRS Laborato	CNRS Laboratoire d'Informatique de Grenoble Yves DEMAZEAU - 383			

MMMI

CNRS Laboratoire d'Informatique de Grenoble

Yves DEMAZEAU - 384

MAS at MMMI

ON GOING

Negociation, explanation **B.** Norregard

Plant growing

K.Hallenborg Platform, Planning, Personalisation

Intellicare

PERSPECTIVES

Human modelling, Social networks Counter-terrorism U. Will

Dynamics, Programming language Reconfigurable robotics **U. Schultz**

CNRS Laboratoire d'Informatique de Grenoble