# **Classification of Non-Spatial Data Types in GIS**

Geographic Information Systems (GIS) handle both spatial and non-spatial data. As spatial data outlines the location and shape of geographical features, non-spatial data (attribute data) contains other information about the features. It is essential to understand non-spatial data types to efficiently manage, analyze, and visualize data in GIS.

In this blog, we will discuss the various classes of non-spatial data types and their importance in GIS applications.

#### Lets delve into Non-Spatial Data —

Non-spatial data, or attribute data, defines the properties of geographic features but lacks information regarding location. For instance:

- **♦** The population size of a city (numeric attribute).
- ◆The name of a river (text attribute).
- **♦** The land use category of a parcel (categorical attribute).

This information is usually saved in tables associated with spatial objects (e.g., the attribute table of a shapefile or a geodatabase).



# Types of Non-Spatial Data Types —

Non-spatial data may be broadly classified into various types depending on their nature and measurement scales:

## A. Qualitative (Categorical) Data

This type of data is used to represent categories or labels and is not numerically measurable. It can be subdivided into:

→ Nominal Data — Describes categories with no inherent order.

Example:

- Soil erosion levels (Low, Medium, High)
- Customer satisfaction ratings (Poor, Fair, Good, Excellent)

## **B. Quantitative (Numerical) Data**

This type of data consists of measurable numerical values which further include:

→ Discrete Data — Expresses whole numbers (countable).

## Example:

- Number of homes within a neighborhood
- Number of traffic accidents within a junction

→ Continuous Data — Expresses values which can be any value in an interval.

# Example:

- Temperature readings (°C or °F)
- Elevation readings (meters or feet)

## C. Text (String) Data

Consists of alphanumeric characters. Used to represent descriptive data.

## Example:

- Street names
- Owner names in a real estate database

#### D. Date & Time Data

Captures date and time data. Useful in monitoring changes over time.

### Example:

- Date when satellite was taken.
- Time of traffic accident.

## E. Binary & Boolean Data

Binary Data: Stores yes/no or true/false values.

Boolean Data: Stores logical values (0/1, True/False).

## Example:

- "HasPublicTransport" (Yes/No)
- "IsFloodProne" (True/False)

# **Best Practices for Managing Non-Spatial Data in GIS**

- √ Use Consistent Naming Conventions (e.g., pop\_2024 instead of population data).
- ✓ Normalize Data (avoid redundancy, e.g., storing country names repeatedly).

- ✓ Apply Proper Data Types (e.g., store ZIP codes as text, not numbers).
- ✓ Document Metadata (describe sources, units, and accuracy).

# Importance of Non-Spatial Data in GIS

Strengthening Analysis: Enabling statistical and thematic analysis (e.g., population density, land use patterns).

Assists Decision-Making: Aids urban planning, disaster planning, and business intelligence.

Enables Better Visualization: Enables better map symbology (color-coding according to attributes).

Supports Querying: Enables users to select and show data (e.g., "Show all hospitals with more than 100 beds").



[2] Metaphor representation and analysis

## Conclusion

Non-spatial data underpins GIS since it provides meaning to spatial attributes. Data classification into qualitative, quantitative, text, date/time, and binary facilitates GIS experts in upholding the efficient management, analysis, and visualization of geographic data. Awareness of these data types enables good data modeling and more effective geospatial analysis.

# Images from —

- [1] https://cdn.safe.com/wp-content/uploads/2021/10/14163948/Non-Spatial-Data-.png
- [2] https://pub.mdpi-res.com/ijgi/ijgi-07-00225/article\_deploy/html/images/ijgi-07-00225-g015.png?1570202991

Online resources/References —

[3] Esri (2023).

ArcGIS Pro Help: Attribute Data Types.

Retrieved from <a href="https://pro.arcgis.com">https://pro.arcgis.com</a>

[4]QGIS Documentation (2024). Working with Attribute Tables.
Retrieved from <a href="https://docs.qgis.org">https://docs.qgis.org</a>