Contrôle continu 1

Durée 1h30. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Exercice 1. (Question de cours) Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien. Montrer que pour tout $u, v \in E$

$$|\langle u, v \rangle| \le \sqrt{\langle u, u \rangle \langle v, v \rangle}.$$

Voir le cours!

Exercice 2. On considère la courbe paramétrée $\Gamma = (I, \phi)$ définie par $\phi(t) = (t - \sin(t), 1 - \cos(t))$ pour $t \in I = [-\pi, \pi]$

1. Calculer ϕ' , ϕ'' et ϕ''' .

On a $\phi'(t) = (1 - \cos(t), \sin(t)), \ \phi''(t) = (\sin(t), \cos(t)), \ \phi'''(t) = (\cos(t), -\sin(t)).$ Dans la suite on pose $\phi(t) = (x(t), y(t)).$

2. Déterminer la nature et la tangente du point critique de Γ .

L'unique temps $t \in I$ en lequel $\phi'(t) = (0,0)$ est t = 0. On a pour tout h suffisament petit en module,

$$\phi(0+h) = (0,0) + (0,0)h + (0,1)h^2/2 + (1,0)h^3/6 + o(|h|^3).$$

Avec les notations du cours, on a p = 2 et q = 3 et c'est un point de rebroussement de première espèce. La tangente est l'axe des ordonnées (vecteur directeur (0,1)).

3. Déterminer les temps en lequels Γ admet des tangentes horizontales.

Il suffit de chercher les temps en lesquels y'(t) = 0 et $x'(t) \neq 0$. On trouve $t = \pm \pi$.

4. Tracer la courbe Γ et les tangentes des questions précédentes. Indication : pour gagner du temps, on peut déterminer une symétrie de la courbe.

Exercice 3. Soit la courbe paramétrée $\Gamma = (I, \phi)$ définie par $I = \mathbb{R}$ et $\phi(t) = \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$ pour tout $t \in I$.

1. Calculer la longueur de I.

On a

$$I = \int_{-\infty}^{+\infty} \|\phi'(t)\| dt = \int_{-\infty}^{+\infty} \sqrt{(-4t)^2 + (2(1-t^2))^2} \frac{dt}{(1+t^2)^2}$$
$$= \int_{-\infty}^{+\infty} \sqrt{4(1+t^2)^2} \frac{dt}{(1+t^2)^2} = 2 \int_{-\infty}^{+\infty} \frac{dt}{(1+t^2)}$$
$$= 2 \left[\operatorname{Arctan}(t) \right]_{-\infty}^{+\infty} = 2 \left(\frac{\pi}{2} - \frac{-\pi}{2} \right) = 2\pi$$

2. Calculer la norme euclidienne de $\phi(t)$ pour tout t. Que peut on en déduire à propos du support de la courbe ?

On a immediatement que $\|\phi(t)\|^2 = 1$. Le support de la courbe est donc inclu dans le cercle unité.

3. Démontrer que $\theta: \tau \mapsto \tan(\tau/2)$ est un difféomorphisme de $]-\pi,\pi[$ dans \mathbb{R} .

La fonction θ est bien \mathcal{C}^{∞} , sa dérivée est strictement positive et θ est inversible sur $]-\pi,\pi[$. Sa fonction réciproque $\theta^{-1}(\cdot)=2\operatorname{Arctan}(\cdot)$ est elle aussi \mathcal{C}^{∞} sur son domaine de définition \mathbb{R} .

4. On admettra que $\cos(\tau) = \frac{1-\tan^2(\tau/2)}{1+\tan^2(\tau/2)}$ et $\sin(\tau) = \frac{2\tan(\tau/2)}{1+\tan^2(\tau/2)}$ pour tout $\tau \in]-\pi,\pi[$. En déduire une reparamétrisation admissible de Γ .

En utilisant le changement de variable suggéré, on a $\Gamma_1 = (]-\pi, \pi[, \phi_2)$ avec $\phi_2(\tau) = (\cos(\tau), \sin(\tau))$.

5. Tracer la courbe Γ . Le support de Γ est il ouvert, fermé, ni l'un ni l'autre ?

Le support de la courbe Γ (et de Γ_1) est donc le cercle unité privé du point (-1,0). Il n'est pas ouvert (inclus dans cercle unité); ni fermé : on peut trouver une suite qui converge vers (-1,0) (prendre par exemple $u_n = \phi(n)$)

Exercice 4. Soient N_1 et N_2 deux normes sur un espace vectoriel E. On pose $N = \max(N_1, N_2)$.

1. Démontrer que N est une norme sur E.

Démontrer directement les trois points (homogéniété, séparabilité et inégalité triangulaire).

2. On se place maintenant dans $E = \mathbb{R}^2$ et on pose $N_1(x,y) = |x| + |y|$ et $N_2(x,y) = \sqrt{4x^2 + y^2}$ pour $(x,y) \in \mathbb{R}^2$. Dessiner la boule unité de N. Indication : Dessiner d'abord les boules unités de N_1 et N_2 .

On a $N(x,y) \leq 1 \Leftrightarrow \max\{N_1(x,y), N_2(x,y)\} \leq 1 \Leftrightarrow N_1(x,y) \leq 1$ et $N_2(x,y) \leq 1$. Ainsi, la boule unité pour la norme N est l'intersection des boules unités de N_1 (en rouge) et N_2 (en bleu).

