CS498AML_HW8_panz2

10 segment

20 segment

50 segment

10 segment

20 segment

50 segment

10 segment

20 segment

50 segment

10 segment

20 segment

50 segment

Display of tree image with 20 segments with 5 different initial points:

Five different start points don't result in obvious difference in the pictures.

```
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from sklearn.cluster import KMeans
import numpy as np
import math
sunset = mpimg.imread('smallsunset.jpg')
strelitzia = mpimg.imread('smallstrelitzia.jpg')
robert = mpimg.imread('RobertMixed03.jpg')
tree= mpimg.imread('tree.jpg')
def innitial_center(n_cluster, state, pixels):
    kmeans = KMeans(n_clusters=n_cluster,init=state).fit(pixels)
    return kmeans.cluster_centers_
def get_new_figure(fig, n_cluster, state='k-means++'):
   stop = 0.001
   iteration=1000
    tol = 0.0001
    height, width = fig.shape[0], fig.shape[1]
   pixels = fig.reshape(-1,3)
    length= height*width
   mu = innitial_center(n_cluster, state, pixels)
    initial_mu = mu
   pi = np.ones(n_cluster)/n_cluster
   \dot{w} = []
   # calculate E-tep
   0=[1]
    while True:
        dist = np.zeros(length*n_cluster).reshape(length,n_cluster)
        for i in range(n_cluster):
            diff=pixels - mu[i]
            for j in range(length):
                dist[j][i] = sum(np.power(diff[j],2))
        expon = []
        wij=[]
        for u in range(length):
            new_list=(dist[u]-min(dist[u]))*(-0.5)
            expon.append(new_list)
            numerat = np.zeros(n_cluster)
            for k in range(n_cluster):
                numerat[k] = math.exp(new_list[k])*pi[k]
            wij.append(list(map(lambda x: x/(sum(numerat)+tol), numerat)))
        # calculate Q
        expon = np.array(expon)
        for j in range(len(pi)):
            expon[:, j] -= math.log(pi[j])
       new_q = sum(sum(np.multiply(np.array(expon), np.array(wij))))
        Q.append(new_q)
        # calculate M-tep
        for 1 in range(n_cluster):
            center=[0,0,0]
            denom = 0
            for m in range(length):
                center=center+pixels[m]*wij[m][1]
                 denom += wij[m][1]
            mu[1] = center/denom
            pi[1] = denom/length
        #print(sum(pi))
        if (len(Q)>1):
            if (new_q-Q[len(Q)-1] < stop):
                 print(len(Q))
                 break
            elif ((len(Q)== iteration)):
                 print("Does not converge.")
                break
        # replace every pixel
        final_image = np.zeros(height*width*3).reshape(height, width, 3)
        for i in range(height):
            for j in range(width):
                 ind=i*width+j
                 index = wij[ind].index(max(wij[ind]))
                 final_image[i][j] = mu[index]
        return (final_image, initial_mu, len(Q))
```

```
# Image segmentation
final_image= get_new_figure(sunset,10)[0]
plt.imsave("new_10_sunset.jpg", np.uint8(final_image))
final_image = get_new_figure(sunset, 20)[0]
plt.imsave("new_20_sunset.jpg", np.uint8(final_image))
final_image = get_new_figure(sunset, 50)[0]
plt.imsave("new_50_sunset.jpg", np.uint8(final_image))
final_image= get_new_figure(strelitzia,10)[0]
plt.imsave("new_10_strelitzia.jpg", np.uint8(final_image))
final_image = get_new_figure(strelitzia, 20)[0]
plt.imsave("new_20_strelitzia.jpg", np.uint8(final_image))
final_image = get_new_figure(strelitzia, 50)[0]
plt.imsave("new_50_strelitzia.jpg", np.uint8(final_image))
final_image= get_new_figure(robert,10)[0]
plt.imsave("new_10_RobertMixed03.jpg", np.uint8(final_image))
final_image = get_new_figure(robert, 20)[0]
plt.imsave("new_20_RobertMixed03.jpg", np.uint8(final_image))
final_image = get_new_figure(robert, 50)[0]
plt.imsave("new_50_RobertMixed03.jpg", np.uint8(final_image))
final_image= get_new_figure(tree,10)[0]
plt.imsave("new_10_tree.jpg", np.uint8(final_image))
final_image = get_new_figure(tree, 20)[0]
plt.imsave("new_20_tree.jpg", np.uint8(final_image))
final_image = get_new_figure(tree, 50)[0]
plt.imsave("new_50_tree.jpg", np.uint8(final_image))
# five different start points
for i in range(5):
   results= get_new_figure(tree, 20, state = 'random')
    final_image=results[0]
   name = "new_20_" + str(i+1) + "_tree.jpg"
    plt.imsave(name, np.uint8(final_image))
   print (results[1])
```