LINEAR LOGIC Homework #2

One General Lemma for Substitution

Jiawen LIU

UBID: jliu223 person #: 50245965

Types
$$T ::= A|B|C$$

Term $t ::= x|t| \lambda x.t$

Figure 1: syntax

 $\Gamma \vdash t : A$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} \text{ ABS}$$

$$\frac{\Gamma \cap \Delta = \emptyset \qquad \Gamma \vdash t : A \to B \qquad \Delta \vdash u : A}{\Gamma, \Delta \vdash t u : B} \text{ APP}$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma, x : A \vdash t : B} \text{ WEAKNESS}$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma, x : A \vdash t : B} \text{ DERELICATE}$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma, x : A \vdash t : B} \text{ DERELICATE}$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma, x : A \vdash t : B} \text{ DERELICATE}$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma, x : A \vdash t : B} \text{ PROMOTION}$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma, x : A \vdash t : B} \text{ PROMOTION}$$

Figure 2: Typing rules

Lemma 1 (Preservation under Substitution). *If* $\Gamma \vdash t : A$ *and* $\Delta, x : A \vdash u : B$ *then* $\Gamma, \Delta \vdash u[t/x] : B$.

Proof. Lemma 1 is proved by induction on the typing derivation of the second premise Δ , $x : A \vdash u : B$. Assume we know: $\Gamma \vdash t : A$

Case

SubCase1:

$$\frac{\Delta \vdash u : B}{\Delta, x : !C \vdash u : B}$$
 WEAKNESS

where A = !C.

TS: Γ , $\Delta \vdash u[t/x] : B$

STS: $\Gamma, \Delta \vdash u : B$, because x doesn't show up in u.

By applying WEAKNESS rule on hypothesis, we get: Δ ,! $\Gamma \vdash u : B$.

By applying EXCHANGE rule, we get: $!\Gamma, \Delta \vdash u : B$.

[[how to remove ! from $!\Gamma$]]

SubCase2:

$$\frac{\Delta, x : !A \vdash u : B}{\Delta, x : !A, \hat{x} : !A \vdash u : B}$$
 WEAKNESS

TS: $!\Gamma, \Delta, \hat{x} : !A \vdash u[t/x] : B$

By IH, we get: $!\Gamma, \Delta \vdash u[t/x] : B$

By apply WEAKNESS rule, we get: $!\Gamma, \Delta, \hat{x} : !A \vdash u[t/x] : B$

This case is proved.

Case

SubCase1:

$$\frac{\Delta, x : A \vdash u : B}{\Delta, x : !A \vdash u : B}$$
 DERELICATE

TS: $!\Gamma, \Delta \vdash u[t/x] : B$.

By IH, we get: $!\Gamma, \Delta \vdash u[t/x] : B$.

This case is proved.

SubCase2:

$$\frac{\Delta, x : !A, \hat{x} : A \vdash u : B}{\Delta, x : !A, \hat{x} : !A \vdash u : B}$$
 DERELICATE

TS: $!\Gamma, \Delta, \hat{x} : !A \vdash u[t/x] : B$.

By IH, we get: $!\Gamma, \Delta, \hat{x} : A \vdash u[t/x] : B$.

By applying DERELICATE rule, we get: $!\Gamma, \Delta, \hat{x} : !A \vdash u[t/x] : B$.

This case is proved.

Case

SubCase1:

$$\frac{\Delta, x : |A, y : |A \vdash v : B}{\Delta, x : |A \vdash v[x/y] : B}$$
CONSTRUCT

TS: $!\Gamma, \Delta \vdash u[t/x] : B$

STS: $!\Gamma, \Delta \vdash v[x/y][t/x] : B$

STS: $!\Gamma, \Delta \vdash v[t/y][t/x] : B$

By IH on Δ , $x: A, y: A \vdash v: B$, we get: $\Gamma, \Delta, y: A \vdash v[t/x]: B$

SubCase2:

$$\frac{\Delta, x : !A, \hat{x} : !A, y : !A \vdash v : B}{\Delta, x : !A, \hat{x} : !A \vdash \nu[\hat{x}/y] : B}$$
CONSTRUCT

where $v[\hat{x}/y] = u$.

TS: $!\Gamma, \Delta, \hat{x} : !A \vdash u[t/x] : B$

STS: $!\Gamma, \Delta, \hat{x} : !A \vdash \nu[\hat{x}/\gamma][t/x] : B$

We know Δ , $\hat{x}: A, y: A, x: A \vdash v: B$ by applying EXCHANGE rule on Δ , $x: A, \hat{x}: A, y: A \vdash v: B$.

By IH on Δ , \hat{x} :!A, y:!A, x:! $A \vdash v$: B, we get:

 $!\Gamma, \Delta, \hat{x} : !A, y : !A \vdash v[t/x] : B$

By applying CONSTRUCT rule on $!\Gamma, \Delta, \hat{x} : !A, y : !A \vdash v[t/x] : B$, we get:

 $!\Gamma, \Delta, \hat{x} : !A \vdash v[t/x][\hat{x}/y] : B.$

Because $v[t/x][\hat{x}/y] \equiv v[\hat{x}/y][t/x]$, this case is proved.

Case

$$\frac{!\Delta, x : !A \vdash u : C}{!\Delta, x : !A \vdash u : !C}$$
 PROMOTION

where B = !C.

TS: $!\Gamma$, $!\Delta \vdash u[t/x] : B$.

STS: $!\Gamma$, $!\Delta \vdash u[t/x] : !C$

By IH, we get: $!\Gamma, !\Delta \vdash u[t/x] : C$

By applying the PROMOTION rule, we get: $!\Gamma, !\Delta \vdash u[t/x] : !C$.

This case is proved.

Theorem 0.1 (Preservation). *If* $\Gamma \vdash t : A$ *and* $t \rightarrow t'$ *then* $\vdash t' : A$

Proof. of Theorem 0.1 by induction on the derivation of first premise: $\Gamma \vdash t : A$: