МИНОБРНАУКИ РОССИИ

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) Кафедра МО ЭВМ

ОТЧЕТ

по учебной практике

Тема: Генетические алгоритмы

Студент гр. 3384	Питеров А. В.
Преподаватель	Жангиров Т. Р

Санкт-Петербург 2025

Цели учебной практики

- Ознакомиться с генетическими алгоритмами на примере решения оптимизационной задачи.
- Разработать полноценное приложение с GUI для работы над задачей, экспериментов с генетическими алгоритмами.

Задача (Вариант 16)

Задано N фигур тетрамино (фигуры из игры тетрис) различных форм. Необходимо разместить их на поле шириной L, так, чтобы количество рядов, занимаемых фигурами, было минимально.

Содержание

Итерация №1	3
Цели итерации	
Постановка работы	
Компоненты генетического алгоритма	
Работа над GUI	
Итерация №2	
Цели итерации	
Работа над ГА	
Работа над GUI	
Вывод	
Итерация №3	
Цели итерации	

ИТЕРАЦИЯ №1

Цели итерации

- Определить как реализовывать ГА.
- Разработать прототип GUI.
- Срок до 29 июня.

Постановка работы

Отчитаны требования к итоговой программе.

Установлено, что задачами программы является: решение пользовательской задачи с помощью ГА (в текущей работе — одну задачу данную вариантом) с возможностью настройки ГА (выбор параметров, конструирование из готовых блоков), демонстрировать поиск решения (графиками и визуализацией решения).

Отчитана теория касающаяся тетриса. Задача уточняется тем, что: фигуры бывают 7-ми типов (O, I, T, Z, S, L, J); их можно располагать на поле и вращать на 90° , они должны быть «прижаты к нижней части» поля.

Поле прямоугольное имеет один установленный параметр — ширину, длину предложено оценить, чтобы не работать с бесконечностью.

Целевая функция — количество занимаемых фигурами рядов для конкретного решения, может быть вычислена алгоритмически обходом поля.

Отчитана предложенная методичка.

Компоненты генетического алгоритма

Так как задача состоит из фигур и поля, решение задачи можно представить в двух тривиальных видах, в табл. 1 приведено их сравнение.

Таблица 1 — Сравнение представлений

Представление 1	Представление 2	
Суть		
Назначение каждой фигуре своей позиции на	Назначение каждой клетке поля	
поле и ориентации.	принадлежности какой-либо фигуре.	
Параметры для кодировки		
Позиция на поле и ориентация (4 поворота)	Принадлежность (каждой фигуре выдать	
— целые числа.	свой номер) — целое число.	
Представление кодировки, затраты на память		
Каждой фигуре сопоставить пару параметров и	Для каждой ячейки хранить параметр.	
объединить в строку по некоторому принципу	Память = количество ячеек в поле * вес	
(последовательно, случайно).	параметра	
Память = количество фигур * вес параметров		
Кодировка данных параметров влечё	т наличие некорректных решений	
— проблемы	кодировок	
Выход фигуры за границы поля.	Образование несуществующего типа	
Наложение фигур друг на друга.	фигуры.	
	Фигура несвязна (разделена на части).	
	Неправильное количество фигур.	
Как реагировать на некорректное решение?		
Предполагается, что подавляющее количество решений будет некорректным в обоих		
представлениях. Поэтому отбрасывание приведёт к случайному поиску, исправление		
равноценно разработке переборных алгоритмов, а другие кодировки если и есть, то		

нетривиальны. Выбран подход со штрафами	. Соотношения между штрафами — есть	
гиперпараметр, определяющий траекторию работы ГА.		
Как проверить корректность решения?		
Построение решения с фиксацией выхода за Представлять исследуемую фигуру графом.		
пределы поля и наложения.	Использовать обходы графов, изоморфизм,	
	подсчитывать корректные фигуры.	

Первый подход технически легче, поэтому будет реализован в первую очередь. Ожидается долгая сходимость, поэтому выбрано несколько операторов ГА для экспериментов, см. табл. 2.

Таблица 2 — Характеристики и операторы ГА

Популяция	Фиксированной длины с повторениями	
Оператор	Выбор (В порядке реализации)	
Отбор родителей	Панмиксия (случайно)	
	Ин(аут)бридинг (метрика - расстояние Хэмминга)	
Скрещивание	Дискретная рекомбинация	
	k-точечный кроссинговер	
Мутация	Мутация инверсией (выборки, участков)	
	Мутация обменом (генов, участков)	
Отбор в новую популяцию	Отбор усечением (с/без элитаризма)	

Как мера сохранения решений: банк на основе очереди с приоритетом фиксированной длины, использующийся при «плохих» преобразованиях популяции.

Работа над GUI

Выделены следующие подходы к модификации поведения ГА: изменение исходного кода программы; выбор готовых решений для операторов ГА (встроенных в код программы, подключаемых извне — плагины); описание операторов как скриптов; конструирование потока исполнения ГА в визуальной форме. Решено реализовать второй подход как доступный.

При разработке интерфейса положено, что все касающиеся настроек должно быть убрано в отдельные меню-окна, а основное окно посвящено исключительно работе алгоритма. Так продуман интерфейс, перечисление всех окон и требований к ним см. табл. 3.

Таблица 3 — элементы GUI

Элемент	Описание	
Основное окно	Содержит в себе ниже следующие панели	
Панель управления	Содержит в себе кнопки для перехода к настройкам входящих данных и ГА, секции для управления ГА (следующий шаг, переход/пауза), для управления популяцией (сохранить/загрузить, сбросить), для управления графиками (сброс, сохранение).	
Панель процесса	Содержит две вкладки: область просмотра и таблица популяции. Таблица агрегирует всю информацию рассчитываемую программой по каждому решению и позволяет вывести конкретное в область просмотра, которая позволяет увидеть его в графическом, кодированном и декодированном виде.	
Панель информации	Содержит в себе секцию с требуемой информацией: номер популяции, средние и лучшие значения приспособленности и штрафа; секцию с графиками	

	приспособленности и штрафов за весь процесс работы.	
Всплывающие окно настройки	Вызывается при нажатии кнопки настройки данных на	
входных данных	панели управления: позволяет настроить источники	
	данных (ручной, файл и случайно) и выбрать конкретный	
	для текущей работы.	
Всплывающие окно настройки	Вызывается при нажатии кнопки настройки ГА на	
ГА	панели управления: позволяет настроить и выбрать ГА	
	для текущей работы. Настройка разбита по вкладкам, в	
	соответствие с операторами ГА, в которых можно	
	выбрать оператор из реализованных в коде программы.	
Всплывающие окно перехода	Вызывается при нажатии кнопки переход на панели	
	управления: позволяет выбрать ограничение в	
	количестве популяций как критерий остановки процесса	
	и запустить его.	

Определены глобальные данные: выбранные для текущей работы данные и ГА (настройка и внутренние состояние), текущая популяция, накопленная информация (построение графиков).

Определены связанные с ними потоки данных, что сведено в табл. 4.

Таблица 4 — Потоки данных

Действие	Источник	Формат	
Входные данные			
Загрузить	Пользователь	Текстовый	
ГА (Настройка)			
Загрузить/Сохранить	Пользователь/Программа	JSON	
Популяция (Решение)			
Загрузить/Сохранить	Пользователь/Программа	Бинарный	

Данные для графиков		
Сохранение	Пользователь	CSV

Определён порядок работы с программой, см. на рис. 1.

Рисунок 1 - порядок работы с программой

Выделены следующие способы реализации GUI:

- С использованием библиотеки на основном языке (С++)
- Связка со скриптовым языком (Python)
- web-интерфейс

Выбран первый подход, для чего сделан неглубокий обзор средств, в который попали, в скобках — причина отказа: Qt, wxWidgets, GTK (cairo для отрисовки), FLTK, ImGUI (необходимость в GPU) и некоторые другие. Из них для данной работы выбран Qt, поскольку он де-факто стандарт и обладает готовыми средствами для отрисовки графиков.

ИТЕРАЦИЯ №2

Цели итерации

- Разработать по плану элементы ГА, оформив в самостоятельную программу с возможностью выгрузки результатов работы (данные, популяция).
- Разработать часть программного интерфейса отвечающую за ввод и просмотр популяции.
- Срок до 2 июля.

Работа над ГА

Обдумана программная реализация каждого компонента на C++. Предположено, что следует осторожно отнестись к памяти: заранее выделить достаточно для популяции и её производных из операторов ГА, переиспользовать после отбора в новую популяцию.

Предпринята попытка реализации — неудачно. Возникли проблемы в архитектуре, для решения которых требуется больше времени.

Работа над GUI

Поскольку пункт с ГА не был реализован, нет «кода», чтобы выполнить второй пункт.

Предпринята попытка реализации доступной части, что привело к осознанию слабых знаний в Qt, полученных ранее.

Так освоен принцип построения GUI с помощью Qt Widgets, связь кода и формы составленной графически в QtDesigner; работа с QIcon, создано представление о ресурсной системе Qt — файлах .qrc; подключение сигналов и открытие дополнительных окон; работа с графиками посредством QtCharts и QCustomPlot — для работы выбран первый как достаточный, использование

QPainter. Составлены примеры. Данные знания непосредственно нужны для достижения цели.

Вывод

Необходимо закончить работу над компонентами ГА, после чего будет содержание для заполнения GUI.

Начальная проработка была слишком объёмной: можно было разделить на две итерации, закончив вторую с отлаженными основными структурами данных, методами их загрузки и выгрузки, генерации — перенеся конечную реализацию ГА на третью итерацию.

ИТЕРАЦИЯ №3

Цели итерации

- Закончить работу, начатую в прошлой итерации
- Срок до 4 июля

Прототип ГА

Написана консольная программа применяющая ГА к задаче и выводящая метрики в файл CSV для построения графиков. Проведены эксперименты: ГА достигает решений не выходящих за поле, без наложений, но сильно разбросанных по полю.

Для программы реализованы примитивы задачи, такие как фигура, решение в обычной и кодированной формах, поле и функции-оценки использующие его для построения решения, что применяется для подсчёта штрафов, вспомогательные функции.

Решение представляет из себя список требуемых фигур с параметрами позиции и ориентации на поле. Для кодировки из задачи вычисляется необходимое количество бит на каждый параметр.

Кодированное решение, решение и метрики собраны в структуру особи.

Далее была реализована первая версия ГА, которая имела проблемы с фрагментацией памяти, что приводило к исключению типа bad_alloc при работе на 30-31 шаге работы ГА: исследовалось подбором параметров и инструментом valgrind-massif.

Для решения проблемы реализована ранее предложенная схема, попутно исправлены ошибки с генераторами случайных чисел и другие.

Программа разбита на модули.

Выводы

- Необходимо объединить коды GUI и ГА, например подключив к QtCreator исходники или предоставив библиотеку с заголовками.
- Необходимо связать GUI и ГА, для этого отрефакторить и обобщить прототип.
- Необходимо провести эксперименты с ГА, чтобы улучшить результаты, рассмотреть следующие операторы.