NOTAS DE ESTUDO EM ANÁLISE I (ANÁLISE REAL) UM GUIA DE TEOREMAS, RESULTADOS IMPORTANTES E EXERCÍCIOS

Gil S. M. Neto

Graduando em Matemática Aplicada - UFRJ gilsmneto@gmail.com, gil.neto@ufrj.br http://mirandagil.github.io

Criado em 22 de Julho de 2019

Atualizado em September 24, 2019

Contents

1	Teoria Ingênua dos Conjuntos A construção dos números		2
2			
	2.1	Números Naturais e Inteiros \mathbb{N}, \mathbb{Z}	2
	2.2	Números Racionais $\mathbb Q$	2
	2.3	Números Reais $\mathbb R$	2
3	Den	nonstrações sobre os Reais	2
	3.1	$\sqrt{2} \notin \mathbb{O}$	2

1 Teoria Ingênua dos Conjuntos

Definição 1.1 (Informal de conjuntos). *Um conjunto é uma coleção não ordenada de objetos. Se x é um objeto do conjunto A, dizemos x \in A, caso contrário dizemos x \notin A.*

Exemplo: $3 \in \{1, 2, 3, 4, 5\}; 7 \notin \{1, 2, 3, 4, 5\}$

Axioma 1.1 (Conjuntos são objetos). Se A é um conjunto, então A também é um objeto, ou seja, se existe outro conjunto B, então faz sentido inferir $A \in B$ ou $A \notin B$

Exemplo. Seja $B = \{1, 3, \{4, 5\}, 8\}; A = \{4, 5\},$ então $A \in B$

Seja $C = \{1, 3, 4, 5, 8\}; D = \{4, 5\}, \text{ então } C \subset D$

é importante notar que apesar de $4 \in A, 5 \in A$, é verdade que $4 \notin B, 5 \notin B$ (verificar)

Definição 1.2 (Subconjuntos). $A \subset B \iff x \in A \implies x \in B, \forall x \in A$

Definição 1.3 (Igualdade de Conjuntos). *Definimos dois conjuntos* $A = B \iff A \subset B \land B \subset A$ *Ou seja,* $x \in A \implies x \in B$, $\forall x \in A \land y \in B \implies y \in A$, $\forall y \in B$

Axioma 1.2 (Conjunto Vazio). *Existe um conjunto ao qual nenhum objeto pertence. A este grupo denominamos* \emptyset . *Para qualquer objeto* x, temos $x \notin \emptyset$.

Lema 1.1 (O Conjunto vazio é subconjunto de todo conjunto). Seja A um conjunto qualquer, então $\emptyset \subset A$

Proof. Suponha que $\emptyset \not\subset A$, para qualquer conjunto A. Para negar a Definição 1.2 teremos: $A \not\subset B \iff \exists \, x \in A; x \not\in B$

Logo, para termos $\emptyset \not\subset A$, deve existir um objeto em \emptyset que não está contido em A, mas não há nenhum objeto em \emptyset , logo uma contradição, e temos $\emptyset \subset A$, $\forall A$

Lema 1.2 (O conjunto vazio é único). *Proof.* Seja \emptyset , \emptyset' conjuntos vazios, então do Lema 1.1 temos $\emptyset \subset \emptyset'$ e $\emptyset' \subset \emptyset$, e pela Definição 1.3 $\emptyset = \emptyset'$.

Lema 1.3 (Escolha única). Seja A um conjunto não vazio, então existe ao menos um x tal que $x \in A$

Proof. Suponha que não exista nenhum objeto x pertencente a A, então: $x \notin A$, $\forall x$, mas isso implicaria que A é um conjunto vazio, o que contraria a hipótese.

Este lema nos permite escolher algum elemento de A. Ainda mais, dado uma família finita de Conjuntos A_1, A_2, \ldots, A_n , podemos escolher um elemento de cada conjunto x_1, x_2, \ldots, x_n . Para o caso infinito cairá no Axioma da Escolha, assunto a ser desenvolvido em outro momento.

Axioma 1.3 (Singleton). Dado um objeto a, então existe um conjunto de apenas um elemento $\{a\}$. Ou seja, para todo objeto $x, x \in \{a\} \iff y = a$. Ainda mais, para todo objeto a, b existe um conjunto $\{a, b\}$ onde $\forall y, y \in \{a, b\} \iff y = a \lor y = b$

2 A construção dos números

- 2.1 Números Naturais e Inteiros \mathbb{N}, \mathbb{Z}
- 2.2 Números Racionais Q
- 2.3 Números Reais \mathbb{R}

3 Demonstrações sobre os Reais

3.1 $\sqrt{2} \notin \mathbb{Q}$

Vamos mostrar que a equação

$$p^2 = 2 \tag{1}$$

não tem solução nos racionais.

Primeiro vamos provar uma pequena proposição

Proposição $(n^2 \text{ par} \iff n \text{ \'e par})$.

Proof. ←

n par implica que podemos escrever n=2m para um dado m. Então

$$n^2 = (2m)^2 = 4m^2$$

e podemos reescrever $4m^2 = 2 \cdot (2m^2)$, logo n^2 é par.

 \Rightarrow

Vamos assumir que n seja ímpar, então podemos escrever n=2m+1, logo

$$n^2 = (2m+1)^2 = (4m^2 + 4m + 1) = 2(2m^2 + 2m) + 1$$

O que nos daria que n^2 é impar contrariando a hipótese, logo n é par.

Assumindo por hipótese que (1) tenha solução nos reais, podemos escrever $p=\frac{m}{n}$ com mdc(m,n)=1 , temos então

$$\frac{m^2}{n^2} = 2$$
$$m^2 = 2n^2$$

Mas isso nos dá m^2 que pela proposição implica em m par. Mas se m^2 é par, então $m^2 \geq 4$, o que nos diz que $2n^2$ é divísivel por 4, com uma manipulação chegamos que n^2 par implicando que n é par, então $mdc(n,m) \neq 1$ o que contraria a hipótese, logo $\sqrt{2} \notin \mathbb{Q}$

Bibliografia

References

- [1] Tao, T.: Analysis I. 1st ed. Hindustan Book Agency (2006)
- [2] Rudin, W.: Principles of Mathematical Analysis. 3rd ed. McGraw-Hill (1976)
- [3] Lima, E.: Curso de Análise vol I. 14ª ed. IMPA (2016)
- [4] Neri, C. & Cabral, M.: Curso de Análise Real. 2ª ed. (2011)