Az adatkapcsolati réteg LAN/WAN topológiák, protokollok, technológiák és szabványok

Hálózatok 1

Varga Tibi 2022

Az adatkapcsolati réteg szabványai

A TCP/IP modell felsőbb rétegeiben található protokollokkal ellentétben, az adatkapcsolati réteg protokolljait általában nem RFC (Request for Comments) dokumentumokban definiálják.

Az Internet Mérnöki Munkacsoport (IETF) felelős a TCP/IP felsőbb rétegeiben működő protokollok és szolgálatatások karbantartásáért, a hálózatelérési réteg működését és feladatait viszont már nem ez a szervezet szabályozza.

A hálózatelérési rétegre (pl. fizikai és adatkapcsolati rétege) vonatkozó nyílt szabványokat és protokollokat létrehozó mérnöki szervezetek az alábbiak:

- Mérnököket egyesítő nemzetközi szervezet (Institute of Electrical and Electronics Engineers, IEEE)
- Nemzetközi Távközlési Szövetség (International Telecommunication Union, ITU)
- Nemzetközi Szabványügyi Szervezet (International Organization for Standardization, ISO)
- Amerikai Nemzeti Szabványügyi Intézet (ANSI)

Az adatkapcsolati rétegben használatos LAN/WAN protokollok és technológiák

WAN protokollok

- HDLC(High Level Data Link Control)
- X.25
- Frame Relay (ITU Q.922)
- ATM(Asynchronous TransferMode)
- PPP (Piont-to-Piont Protokoll)
- Wimax (IEEE 802.16)
- PPPoE (Point to Point over Ethernet)
- SONET

LAN protokollok

- Higher Layer LAN (IEEE 802.1)
- Logical Link Control LLC (802.2)
- Ethernet (IEEE 802.3)
- Token Ring (IEEE 802.5)
- Token BuS (IEEE 802.4)
- WLAN (WIFI) (IEEE 802.11)
- WPAN (Bluetooth, IEEE 802.15)

Topológiák

- A LAN és WAN hálózatok leírására kétféle topológiát használnak:
- Fizikai topológia A fizikai összeköttetéseket, valamint a végberendezések és a közvetítő eszközök (pl.: routerek, switchek és vezeték nélküli hozzáférési pontok) kapcsolódási módját határozza meg. A topológia tartalmazhatja egy adott eszköz helyét is, például a helyiség számát és a rack szekrényben elfoglalt helyét. A fizikai topológia általában pont-pont vagy csillag típusú.
- Logikai topológia Arra utal, hogy a hálózat miként szállítja a kereteket egyik állomástól a másikig. Ez a topológia azonosítja a virtuális kapcsolatokat eszközinterfészekkel és 3. rétegbeli IP-címzési sémák használatával.
- Az adatkapcsolati réteg a hálózat logikai topológiáját figyeli a közeghozzáférés vezérlése közben

Fizikai topológia

Logikai topológia

Logikai topológiák vezérlés szerint

Szórásos topológia:

- Az állomások minden adatot elküldenek minden, a hálózati közeghez csatlakozó állomásnak
- Semmilyen sorrendet sem kell betartani a hálózat használatában
- Pl.: Régi Ethernet hálózatok hubokkal

Vezérjeles topológia:

- Minden állomás megkap egy elektronikus vezérjelet
- Ez a vezérjel ad jogot az állomásnak adatok küldéséhez
- Ha egy állomás nem akar adatokat küldeni, átadja a vezérjelet a következő állomásnak
- Pl.: Token Ring, FDDI

Kapcsolt topológia

- Az állomások egy switch-en keresztül kapcsolódnak
- Az átvitelkor a csomagok dedikált útvonalat kapnak hálózatban, ezért nincs ütközés
- Az átvitel egyidőben kétirányú
- Pl.: Korszerű Ethernet hálózatok

Adatkapcsolati rétegbeli LAN topológiák, protokollok, technológiák

Helyi hálózat – LAN (Local Area Network)

- A helyi hálózat (LAN) egy fizikai helyen, például épületben, irodában vagy otthon összekapcsolt eszközök gyűjteménye. A LAN lehet kicsi vagy nagy, az egyfelhasználós otthoni hálózattól a több ezer felhasználót és eszközt tartalmazó vállalati hálózatig egy irodában vagy iskolában.
- Mérettől függetlenül a LAN egyetlen meghatározó jellemzője, hogy egyetlen, korlátozott területen lévő eszközöket köt össze egy alhálózatban.
- A LAN előnyei ugyanazok, mint bármely, egymással hálózatba kapcsolt eszközcsoporté. Az eszközök egyetlen internetkapcsolatot használhatnak, fájlokat oszthatnak meg egymással, nyomtathatnak megosztott nyomtatókra, és egymás által elérhetők és akár vezérelhetők is.

Local Area Network

LAN topológiák

- A többes hozzáférésű helyi hálózatokban a végberendezések (azaz csomópontok) csillag- vagy kiterjesztett csillag topológiákkal vannak összekapcsolva, ahogy az ábrán is látható. Az ilyen típusú topológiában a végberendezések egy központi közvetítő eszközhöz csatlakoznak, ebben az esetben egy Ethernet switch-hez.
- Egy kiterjesztett csillag topológia több Ethernet switch összekapcsolásával bővíti ezt ki.

Extended Star Topology

Régi LAN topológiák

- A korai Ethernet és a régi vezérjeles gyűrű (Token Ring) LAN technológiák két másik topológia típust tartalmaztak:
- Busz \- Az állomások egymás után vannak láncolva és valamilyen formában a lánc mindkét vége le van zárva. A végberendezések összekapcsolásához nincs szükség (a kapcsolóhoz hasonló) hálózati eszközökre.
- Gyűrű Az állomások a megfelelő szomszédaikkal összeköttetésben állva alkotnak egy gyűrűt. A gyűrűt nem kell lezárni.

Ring Topology

Ethernet

A számítógépek közötti kommunikációban (akárcsak az emberek közötti kommunikáció során) fontos a protokollok (szabályok) betartása. Ha nem azonos protokollt követnének az egyes eszközök, akkor nem értenék egymást – mintha más nyelvet beszélnének.

A vezetékes helyi hálózatokon használt leggyakoribb protokoll az Ethernet, ez az uralkodó" vezetékes LAN technológia Az adatkapcsolatiréteg protokolljait az IEEE 802 szabványcsalád határozza meg!

Ethernet IEEE 803

- Az Ethernet a manapság használt két LAN-technológia egyike, a másik a vezeték nélküli LAN (WLAN).
- Az Ethernet vezetékes kommunikációt használ, csavart érpárat, optikai és koaxiális kábeleket.
- Az Ethernet az OSI-modell két rétegében működik: az adatkapcsolati és a fizikai rétegben. Hálózati technológiák egész családját jelenti, amelyeket az IEEE 802.2 és 802.3 szabványok határoznak meg.
- Az Ethernet a következő sávszélességeket támogatja:
 - •10 Mbit/s
 - •100 Mbit/s
 - •1000 Mbit/s (1 Gbit/s)
 - •10 000 Mbit/s (10 Gbit/s)
 - •40 000 Mbit/s (40 Gbit/s)
 - •100 000 Mbit/s (100 Gbit/s)

Klasszikus Ethernet

- Az Ethernet egy állomások egy közös átviteli közegre (hub-ra) vannak csatlakoztatva .
- A csatornát az állomások folyamatosan figyelik, ha ütközést tapasztalnak, akkor zavarni kezdik a csatornát, hogy figyelmeztessék a küldőket, ezután véletlen ideig várnak, majd adni kezdenek. Ha ezek után további ütközések történnek, az eljárás ugyanez, de a véletlenszerű várakozás idejét kétszeresére növelik, esélyt adva arra, hogy valaki adni tudjon.
- Az ilyen Ethernet hálózatba **half-duplex** átvitel valósítható meg. Az ütközések miat az eszközök száma és a sávszélesség limitált.

Megnevezés	Kábel	Max. szegmenshossz	Csomópont/szegmens	Megjegyzés
10Base5	vastag koaxiális	500 m	100	Eredeti kábel, mára idejétmúlta
10Base2	vékony koaxiális	185 m	30	Nincs szükség elosztóra
10Base-T	sodrott érpár	100 m	1024	A legolcsóbb rendszer
10Base-F	optikai	2000 m	1024	Épületek között

Kapcsolt Ethernet

- Az Ethernet egy állomások egy switsh (kapcsoló) keresztül vannak csatlakoztatva .
- A kapcsolók, ellentétben a Hub-okkal, duplex működésre képesek A kapcsolók dedikált sávszélességet biztosítanak az egyes portjai közötti forgalom számára A kapcsolók portjai ún. mikro szegmenseket alkotnak.
- Ideális esetben a szegmens egyetlen (a portra csatolt) készülékből áll, így ütközés nem fordulhat elő A keretátvitel idejére két port között egy ún. virtuális áramkör jön létre, amelyen a keret áthalad. Ez a virtuális áramkör jellemző sávszélességet biztosít a kommunikáló gépek számára.

Megnevezés	Kábel	Max. szegmenshossz	Megjegyzés
100Base-T4	sodrott érpár	100 m	3-as kategóriájú UTP
100Base-TX	sodrott érpár	100 m	Duplex 100Mb/s (5.kat. UTP)
100Base-FX	fényvezető szál	20000 m	Nagy távolságra, duplex 100Mb/s

Ethernet család fizikai közegbeli jellemzői

- 10-10000 Mbit/s
- Jelölés rendszer
 - 802.3u,
 - 10GBaseLX
- ~ 802.3u
 - Fast Ethernet (100Mbit/s)
 - 100Base-TX
 - 100Base-T4
 - 100Base-FX

- ~ 802.3z, 802.3ab
 - Gigabit Ethernet (1000 Mbit/s)
 - 1000Base-T
 - 1000Base-TX
 - 1000Base-SX
 - 1000Base-LX
- 802.3ae, 802.3ak
 - 10Gigabit Ethernet (10000 Mbit/s)
 - 10GBASE-CX4
 - 10GBASE-T
 - 10GBASE-LRM

Ethernet: megbízhatatlan kapcsolat

- A vezetékes helyi hálózatokon használt leggyakoribb protokoll az Ethernet.
- Kapcsolatmentes: nincs kézfogás a küldőés a fogadó NIC között
- Megbízhatatlan: a fogadó NICnem küld visszajelzést a küldő NIC-nek hiba esetén sem, a hibás keret símán eldobásra kerül
 - az eldobott keretekben elveszett adatot a magasabb rétegben megvalósított rdt szolgáltatás(pl.:TCP) küldi át újra, egyébkéntaz elveszik
- Az Ethernet közeg hozzáférési eljárása: (ütközés vezérlés) réseletlen aloha CSMA/CD bináris visszalépéssel

802.3 Ethernet szabványok: adatkapcsolati és fizikai rétegben

- több különböző Ethernet szabvány
 - közös MAC protokol és keret formátum
 - különböző sebességek: 2 Mb/s, 10 Mb/s, 100 Mb/s, 1Gb/s, 10 Gb/s, 40 Gb/s
 - különböző fizikai rétegbéli médium: optika, sodrott vagy koax kábel

Az Ethernet helye az OSI-modellben

Az alsó két réteget definiálja

802.3 Ethernet

Az Ethernet protokoll alrétegei

- Az Ethernet a NIC meghajtóprogramban van megvalósítva
- Az LLC és a MAC a következő szerepekkel rendelkezik az adatkapcsolati rétegben:
- LLC alréteg- Ez az IEEE 802.2 alréteg biztosítja a kommunikációt a felső rétegek hálózati szoftverei és az alsó rétegek eszközhardverei között. Információkat helyez el a keretben annak a hálózati rétegbeli protokollnak az azonosítására, amelyik a keretet használni fogja. Ez az információ lehetővé teszi, hogy több 3. rétegbeli protokoll (pl. IPv4 és IPv6) is ugyanazt a hálózati interfészt és közeget használja.
- MAC-alréteg Ez az alréteg (például IEEE 802.3, 802.11 vagy 802.15) a hardverben valósul meg, és felelős az adatbeágyazásért és a közeghozzáférés-vezérléséért. Biztosítja az adatkapcsolati réteg címzését, és együttműködik a különböző fizikai rétegbeli technológiákkal.

MAC-alréteg

A MAC-alréteg felelős az adatbeágyazásért és a közeghez való hozzáférésért.

Az IEEE 802.3 adatbeágyazás a következőket tartalmazza:

- Ethernet keret Az Ethernet keret belső szerkezete.
- Ethernet címzés Az Ethernet keret forrás- és cél MAC-címet is tartalmaz, hogy a keretet az egyik Ethernet hálózati kártyától egy másik Ethernet hálózati kártyához ugyanazon a LAN-on keresztül továbbítsa.
- Ethernet hibajelzés Az Ethernet keret tartalmaz egy hibaészleléshez használt keret-ellenőrző bitsorozat utótagot (Frame Check Sequence, FCS).

Közeghozzáférés:

 Az IEEE 802.3 MAC-alréteg tartalmazza az Ethernet kommunikációs szabványok specifikációit a különböző típusú adathordozókhoz, beleértve a réz és üvegszál alapú közegeket is

Az Ethernet protokoll alrétegei

Network	Network Layered Protocol							
Data Link	LLC Sublayer	LLC alayer-IEE 802.2						
	MAC Sublayer	Ethernet-IEEE 802.3						
Phys	ical	IEEE 802.3u Fast Ethernet	IEEE 802.3z Gigabit Ethernet over Fiber	IEEE 802.3ab Gigabit Ethernet over Copper	IEEE 802.3ae 10 Gigabit Ethernet over Fiber	Etc.		

Az Ethernet keretek mezői

- Az Ethernet keret mérete minimum 64 bájt, maximum 1518 bájt. Ez magában foglalja az összes bájtot a cél MAC-cím mezőtől kezdve a keret ellenőrző összeg mezőig (Frame Check Sequence, FCS). Az előtag és a keretkezdő mezőket nem vesszük figyelembe, amikor megadjuk a keret méretét.
- Minden keretet, ami kevesebb, mint 64 bájt hosszúságú, ütközési töredéknek (runt) nevezünk. Ezeket a fogadó állomás automatikusan eldobja.
- A több mint 1500 bájt adattal rendelkező kereteket "jumbo" vagy "óriás" kereteknek hívjuk. A jumbo kereteket azonban a legtöbb Fast Ethernet és Gigabit Ethernet switch és hálózati kártya támogatja. Létezik Super Jumbo keret ami MTU ~64000? Byte (teljes IP csomag is férjen bele).
- Ha egy átvitt keret mérete kisebb, mint a minimális vagy nagyobb, mint a maximális érték, a fogadó készülék eldobja azt. Az eldobott keretek valószínűleg ütközések vagy más, nem kívánt jelenségek eredményei, ezért érvénytelennek minősülnek.

Ethernet keret szerkezete

Előtag	SFD	a cél MAC- címe	a forrás MAC címe	Hossz/típus	Beágyazott adat	Keretellenőrző összeg
7	1	6	6	2	46-től 1500-ig	4

IEEE 802.3 Ethernet keret mezői

Bájtok	Mező név
7	Előtag
1	Keretkezdet
6	a cél MAC címe
6	a forrás MAC címe
2	Hossz/típus mező
46-től 1500-ig	Beágyazott adat
4	Keretellenőrző összeg (CRC)

Ethernet keret struktúra

- la előtag: Ezt a küldő és a fogadó NIC szinkronizálására használják
- > címek: 6 bájtos cél és forrás MAC címek
 - amennyiben az interfész a sajátjával egyező vagy üzenetszórás címet lát (pl.:ARP csomag) egy keretben akkor átadja az IP protkollnak
 - egyébként figyelmen kívül hagyja
- típus: magasabbszintű protokoll (leggyakrabban IP de lehet más is pl.: Novell IPX, AppleTalk)
- CRC: ciklikus redundancia ellenőrzés a fogadónál
 - amennyiben hibát detektál: eldobja a keretet

Preamble Előtag	Dest. Address Célcím (MAC)	Source Address Forráscím (MAC)	Data (payload) Adat (rakomány)	CRC
--------------------	-------------------------------------	---	-----------------------------------	-----

Ethernet: fizikai topológia

- busz: a 90-es években volt népszerű
 - minden csomópont egy ütközési tartományban (ütközhetnek egymással)
- csillag: ma domináns
 - aktív kapcsoló a központban
 - minden "beszélgetés" (szeparált) Ethernet protokollon történik (a csomópontok nem ütköznek)

Ethernet keret struktúra

a küldő interfész Ethernet keretbe csomagolja az IP datagram-mot (vagy más protokollt)

			τιρ	ous	
Preamble Előtag	Dest. Address Célcím (MAC)	Source Address Forráscím (MAC)	<i>EtherTyp</i> e	Data (payload) Adat (rakomány)	CRC

előtag:

- 7 10101010 mintájú bájt majd egy bájt 10101011 mintával
- Ezt a küldő és a fogadó óráinak szinkronizálására használják

Vezérjeles gyűrű (Token Ring)

Fizikailag gyűrű topológiájú hálózatok esetén, a leggyakrabban használt hozzáférési módszer a vezérjel továbbításos eljárás, amelyben egy ún. vezérjel (token) halad körben a gyűrű mentén állomásról állomásra.

A vezérjel lényegében egy rövid üzenet, ami utal a gyűrű foglaltságára. Ha szabadot jelez, akkor a tokent vevő állomás számára ez azt jelenti, hogy üzenetet küldhet.

A tokent foglaltra állítja és üzenettel együtt küldi tovább, vagy más megoldásként kivonja a gyűrűből.

Az üzenet a gyűrűn halad körben állomásról állomásra, az állomások veszik, megvizsgálják hogy nekik szól-e, majd továbbadják. Amikor a gyűrűben az üzenet visszaér az elküldő állomáshoz, akkor kivonja az üzenetét a gyűrűből, a tokent szabadra állítja.

All.

 All_{\cdot}

Vezériel

All.

All.

ÀШ.

ΑII.

ÁII.

Vezérjeles sín (Token bus - Vezérjel busz)

A vezérjel továbbításos eljárást két különféle topológiájú (busz illetve gyűrű) hálózati szabványban is használják. Busz topológiájú hálózat esetén vezérjel busz szabványról beszélünk. A vezérjel busz az átviteli közeget úgy vezérli, hogy az állomásról állomásra történő vezérjel (ún. token) továbbítása egy logikai gyűrűt képez melynek működése egyenértékű az előzőekben említett vezérjeles gyűrűvel.

Adatkapcsolati rétegbeli WAN topológiák, protokollok, technológiák

WAN (Wide Area Network)

- A nagy kiterjedésű hálózat (általánosan használt rövidítéssel: WAN az angol Wide Area Network kifejezésből) egy olyan számítógép-hálózat, mely nagyobb területet fed le (azaz olyan hálózatok, melyek nagyvárosok, régiók, országok közötti kommunikációt valósítanak meg)
- A WAN olyan adatátviteli hálózat, amely jóv l nagyobb földrajzi területre terjed ki, mint egy LAN.
- A LAN és a WAN közötti egyik fontos különbség az, hogy a WANkapcsolatok igénybevételéhez a felhasználónak külső WANszolgáltatóval kell szerződnie.

WAN- Wide Area Network

WAN topológiák

• Pont - pont

- Szeged Csillag
 - Teljes háló
 - Részleges háló

HDLC

- A HDLC a High-level Data Link Control rövidítése.
- A HDLC adatkapcsolati réteg (Layer 2) protokollok csoportjába tartozik, és szinkron adatcsomagok továbbítására szolgálnak legtöbbször kettő, soros eszközök interfésszel rendelkező csomópont között.

 A HDLC-t pont-pont kapcsolat konfigurációval és többpontos kapcsolat konfigurációval valósítják meg.

HDLC

 A HDLC-keret szinkron, ezért a fizikai rétegre (1. réteg) támaszkodik az órajel és a keretátvitel és -vétel szinkronizálására.

 Az adatok címezhető keretekbe vannak rendezve, de nem kötelezően kínál hibaérzékelést.

Flag	Address	Control	Data	CRC	Flag
(7E)	(8bits x n)	(8bits x n)	Data	(16 or 32 bits)	(7E)

X.25

- Az X.25 hálózathoz az előfizetők bérelt vonalon vagy telefonos hálózaton keresztül kapcsolódnak.
- Az X.25 hálózatokban előre létrehozott csatornák, állandó virtuális áramkörök (PVC) is lehetnek az előfizetők között.
- A díjfizetés alapja a továbbított adatok mennyisége.
- Az adatok továbbítása tetszőleges sebességgel történhet, korlátot csak a kapcsolat kapacitása jelent.
- Az X.25 hálózatok általában kis kapacitásúak, maximális átviteli sebességük 48 kbit/s.
- Használatukkor a csomagok a megosztott hálózatokra jellemző késleltetéseket szenvedhetik el.

X.25 felhasználása

- Az X.25 egyik jellegzetes alkalmazása a kiskereskedelmi bankkártyaolvasó készülékek hálózatba kötése.
- Egyes vállalatok az X.25-öt értéknövelt hálózatokban (value added network, VAN) elektronikus adatcserére vagyis számlák, szállítólevelek és egyéb üzleti dokumentumok továbbítására használják.
- Ezeknél az alkalmazásoknál a kis sávszélesség és a nagy késleltetés nem okoz problémát, alacsony költsége viszont kiváló megoldássá teszi az X.25-öt.

Frame Relay

• A **Frame Relay** egy iparági szabványnak megfelelő, kapcsolt adatkapcsolati réteg protokoll, amely több virtuális áramkört kezel a csatlakoztatott eszközök között.

 Gyors adatátvitelt biztosít, a változó hosszúságú adatok keretekbe foglalva utaznak a hálózaton. Jellemzően WAN hálózatok egymáshoz és helyi hálózatok Internetre való kapcsolásához használják.

 A Frame Relay protokoll egy egyszerűbb, nagyobb teljesítményt és nagyobb hatékonyságot tesz lehetővé mint az X.25 protokollt, amelynek helyettesítőnek tekintik.

Frame Relay keret

- A Frame Relay keretek, az adaton kívül, csak egy DLCI (Connection Identifier) 10 bites azonosítót tartalmaznak.
- A 10 bites DLCI érték azonosítja a fizikai csatornába multiplexelt logikai kapcsolatot. A kapcsolat két különböző végén lévő végkészülékek eltérő DLCI-t használhatnak ugyanarra a kapcsolatra hivatkozva.

ATM (Asynchronous Transfer Mode)

A különböző típusú forgalmak (audio, video) párhuzamos átvitelére találták ki.

- Az 1500 byte-os Ethernet csomagok túl nagyok
- 10 Mbps-os Etherneten 0.1 μ s bit time \rightarrow 1.2 ms / keret
- Ha több forrás (gép vagy alkalmazás) áll sorban, túl nagy várakozási idők

Az audio és video alkalmazásoknak szoros

késleltetés (delay)

és **késleltetés ingadozás**

(jitter) követelményei vannak

Megoldás az ATM!

ATM (Asynchronous Transfer Mode)

Az **ATM** folyamat elvileg egyszerű: egy másik protokollból bejövő csomagot, amelyet az ATM-hálózaton keresztül továbbítanak, szegmensekre vágják, amelyek 48 bájtos darabokba illeszkednek, amelyeket ATM cella hasznos adatként szállítanak. A túlsó végén ezeket a darabokat visszaillesztik egymáshoz, hogy helyreállítsák az eredeti csomagot.

- Fix méretű ATM cellák: 5 byte fejléc + 48 byte adat = 53 byte
- Segmentation and Reassembly (SAR)
- A szegmentálás és újra összeállítás a változó hosszúságú csomagok fix hosszúságú cellákká történő feldarabolására és a fejléc alapján újra összeállítására szolgáló folyamat, lehetővé téve azok átvitelét aszinkron átviteli módú (ATM) hálózaba.

ATM cella

- Az ATM kapcsolók egymás között pedig egy ún. "NNI Network Node Interface" típusú cellaformátumot használnak.
- A cella fejrészében az egyik legfontosabb (legtöbb bitet használó)
 információt a kapcsolat azonosítására szolgáló VPI (Virtual Path Identifier)
 és VCI (Virtual Channel Identifier) mezők adják. A VPI ugyanazon
 végponthoz menő csatornákat (VCI-ket) fogja össze. A VPI és VCI mezők
 együttesen látják el az azonosítási funkció

SONET

A SONET egy nagy kiterjedésű hálózatokban alkalmazott optikai kapcsolatot megvalósító protokoll, melyet leggyakrabban a kommunikációs hálózatok gerinchálózataiban használnak, beleértve a telefonhálózatokat is.

Egy jól definiált sebességű bitfolyamot biztosít, 2,4 Gb/s – 40 Gb/s sebességet határoz meg. Ezt a bitfolyamot adott darabszámú bájtot tartalmazó blokkokba (payload) rendezi, amelyeket 125 μ s-onként ismétel, függetlenül attól, hogy van-e elküldendő felhasználói adat,

PPP - Point-to-Point Protocol 1.

- A Pont-pont protokoll (általánosan használt rövidítéssel: PPP az angol Pointto-Point Protocol kifejezésből) egy magas szintű adatkapcsolati protokoll két végpontos vonalakhoz.
- Széleskörűen alkalmazott megoldás az Internetben.
- Telefonos, pont-pont adatátvitelre tervezték
- A PPP keret IP, IPX, NetBEUI csomagokat fogadhat be

Point-to-Point Protocol 2.

A PPP kapcsolat fázisai:

- 1. PPP vonal felépítés (Link Control Protocol paraméter csere)
- 2. Felhasználó azonosítás
 - Password Authentication Protocol (PAP)
 - » Titkosítatlan jelszó átvitel (a NAS kéri a kliens küldi)
 - Challenge Handshake Authentication Protocol (CHAP)
 - » Titkosított (NAS véletlen szám -> Kliens MD5 passwd. + véletlen szám)
 - » A szerver tudja a felhasználó jelszavát
 - 3. PPP visszahívás vezérlés
- 4. Hálózati réteg protokollok meghívása
 - Network Control Protocol (NCP)
 - IPCP IP címet ad a felhasználónak
- 5. Adat átviteli fázis

PPPoE - Point-to-Point Protocol over Ethernet

- A Point-to-Point Protocol over Ethernet (PPPoE) egy hálózati protokoll Pointto-Point Protocol (PPP) keretek Ethernet- keretekbe való beágyazására
- A PPPoE protokoll és egy szélessávú hálózati eszköz segítségével a helyi hálózatot használó ügyfelek egyedi hitelesített hozzáférést kaphatnak a nagy sebességű adathálózatokhoz. Az Ethernet és a Point-to-Point Protocol (PPP) protokoll kombinálásával a PPPoE hatékony megoldást jelent arra, hogy minden felhasználó külön kapcsolatot tudjon teremteni a távoli kiszolgálókkal.
- A hozzáférés felhasználó, nem pedig hely alapján történik.

