Optical Fiber Communications

Chapter 3

Dispersion

Dispersion in SMF

Dispersion Characteristics for SMF (Single Mode Fiber)

(Chromatic) Dispersion is wavelength dependent.

Optical Signal Propagation (Single Pulse)

Optical Signal Representation in "Time Domain"

Optical Signal Propagation (Multiple Pulses) (Data Stream)

Optical Signal Representation in "Time Domain"

Optical Signal Representation in "Time Domain"

Optical Signal Representation in "Time Domain"

Eye Diagram

- Overlays for different logics
- Can be viewed as repeated oscilloscope display
- Provides good measure of dispersion (shown in next slides)

Dispersion compensation example

Transmission fiber

Positive dispersion (Negative dispersion)

Longer wavelength > Slow (Fast)

Shorter wavelength Fast (Slow)

Dispersion compensating fiber (DCF)

Negative dispersion (Positive dispersion)

Longer wavelength Fast (Slow)

Shorter wavelength Slow (Fast)

40 Gb/s optical signal

After fiber transmission

After dispersion comp.

Ref: New functionalities for advanced optical interfaces (Dispersion compensation), Kazuo Yamane, Fujitsu Corp, Photonic systems development dept.

Optical Signal Propagation (Attenuation and Dispersion)

Dispersion and Attenuation Effects

Dispersion and Attenuation Effects

Micro Photonics

Dispersion in SMF

Dispersion Characteristics for SMF (Single Mode Fiber)

Why Not Use 1310-nm for long haul transmission?

20

10

5.0

2.0

1.0

0.5

0.2

0.1

600

Attenuation (dB/km)

· · · /

800

First

window

(Solution 1) Using DCF

Dispersion Characteristics for §MF (Single Mode Fiber)

What will happen to pulses if you have special fiber with dispersion parameter in "opposite polarity"?

Fiber Communication System Config.

(Solution 2) Using DSF, (NZDSF), DFF

Dispersion Characteristics for SMF, DSF, DFF

Why DSF, DFF?

20 ┌

10

1300-nm-optimized

Dispersion-flattened

(Example) Optical Signal Propagation

(Dispersion and Compensation Example)

Material Dispersion Comparison

LED source

Example 3.10 A manufacturer's data sheet lists the material dispersion $D_{\rm mat}$ of a ${\rm GeO_2}$ -doped fiber to be 110 ps/(nm \cdot km) at a wavelength of 860 nm. Find the rms pulse broadening per kilometer due to material dispersion if the optical source is a GaAlAs LED that has a spectral width σ_1 of 40 nm at an output wavelength of 860 nm.

<u>Solution</u>: From Eq. (3.28) we find that the rms material dispersion is

$$\sigma_{\text{mat}}/L = \sigma_{\lambda}D_{\text{mat}} = (40 \text{ nm}) \times [110 \text{ ps/(nm} \cdot \text{km})]$$

= 4.4 ns/km

40nm

Laser diode source

Example 3.11 The manufacturer's data shows that the same fiber as in Example 3.10 has a material dispersion $D_{\rm mat}$ of 15 ps/(nm · km) at a wavelength of 1550 nm. However, now suppose we use a laser source with a spectral width σ_{λ} of 0.2 nm at an operating wavelength of 1550 nm. What is the rms pulse broadening per kilometer due to material dispersion in this case?

Solution: From Eq. (3.28) we find that the rms material dispersion is

$$\sigma_{\text{mat}}/L = \sigma_{\lambda}D_{\text{mat}} = (0.2 \text{ nm}) \times [15 \text{ ps/(nm} \cdot \text{km})]$$

= 7.5 ps/km

This example shows that a dramatic reduction in dispersion can be achieved when operating at longer wavelengths with laser sources.

