Section 9.1: An Overview of Sequences and Series

Warm up:

For each of the following sequences, list the first four terms (start each with n=1).

(a)
$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right), \ a_1 = 1.$$

(b)
$$a_n = \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{(2n)! \cdot 2n!}$$
, Recall that $n! = 1 \cdot 2 \cdot 3 \cdot 4 \dots (n-1) \cdot n$.

Group work:

Problem 1 Give an explicit formula for each of the following sequences:

(a)
$$\frac{2}{3}, \frac{-2}{7}, \frac{2}{11}, \frac{-2}{15}, \dots$$

(b)
$$-2, 6, -24, 120, -720, \dots$$

Problem 2 For the sequence $a_k = (2 - k)^k$

- (a) calculate and list a_0 , a_1 , a_2 , a_3 , and a_4 .
- (b) Starting with k=0, calculate and list $S_0=\sum_{k=0}^0 a_k$, $S_1=\sum_{k=0}^1 a_k$, $S_2=\sum_{k=0}^2 a_k$, $S_3=\sum_{k=0}^3 a_k$, and $S_4=\sum_{k=0}^4 a_k$. Write S_n in summation form and write S_∞ in summation form.

Learning outcomes:

Section 9.1: An Overview of Sequences and Series

Problem 3 Reindex the series

$$\sum_{k=0}^{\infty} \frac{5}{(k+2)(k+1)}$$

in the form
$$\sum_{k=1}^{\infty} a_k$$
 and $\sum_{k=-4}^{\infty} c_k$.

Problem 4 If
$$\sum_{k=0}^{\infty} a_k = 6$$
 and $a_n = \frac{3}{2^n}$, what is $\sum_{k=4}^{\infty} a_k$?