Training Generative Adversarial Networks with Limited Data

NeurlPS 2020

Catalogue

- Background
- Related work
- Introduction
- Model
- Conclusion

Background

Limited Data

- It remains challenging to collect a large enough set of images for a specific application that places constraints on subject type, image quality, geographical location, time period, privacy, copyright status...
- Specifically, in some application about medicine...

GAN

- Based on large dataset
- The key problem of training on small dataset is the discriminator overfits to the training examples which will lead to mode collapse...

Training Generative Adversarial Networks with Limited Data

Challenging but useful

Background

Figure 1: (a) Convergence with different training set sizes. "140k" means that we amplified the 70k dataset by $2 \times$ through x-flips; we do not use data amplification in any other case. (b,c) Evolution of discriminator outputs during training. Each vertical slice shows a histogram of D(x), i.e., raw logits.

Background

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

Related work

• Data Augmentation

leaking augmentations

• Consistency Regularization (CR-GAN 2020,bCR-GAN 2020)

leaking augmentations

• Stochastic Discriminator Augmentation

Related work

Introduction

Dataset		Baseline	ADA	+ bCR
FFHQ	1k	100.16	21.29	22.61
	5k	49.68	10.96	10.58
	10k	30.74	8.13	7.53
	30k	12.31	5.46	4.57
	70k	5.28	4.30	3.91
	140k	3.71	3.81	3.62
LSUN CAT	1k	186.91	43.25	38.82
	5k	96.44	16.95	16.80
	10k	50.66	13.13	12.90
	30k	15.90	10.50	9.68
	100k	8.56	9.26	8.73
	200k	7.98	9.22	9.03

(a) FFHQ (256×256)

(b) LSUN CAT (256×256)

(c) 中位数FID

(d) 均值图像

(c) Effect of augmentation probability p

- the training implicitly undoes the corruptions and finds the correct distribution, as long as the corruption process is represented by an invertible transformation of probability distributions over the data space;
- this does not mean that augmentations performed on individual images would need to be undoable;
- this rotation is only executed at a probability p < 1: this increases the relative occurrence of 0;

This experiment suggests that as long as p remains below 0.8, leaks are unlikely to happen in practice.

18 transformations that are grouped into 6 categories

Model-adaptive discriminator augmentation (ADA)

$$r_v = \frac{\mathbb{E}[D_{\text{train}}] - \mathbb{E}[D_{\text{validation}}]}{\mathbb{E}[D_{\text{train}}] - \mathbb{E}[D_{\text{generated}}]}$$

$$r_t = \mathbb{E}[\operatorname{sign}(D_{\operatorname{train}})]$$

Experiment

Conclusion

- the optimal augmentation strength depends heavily on the amount of training data, and not all augmentation categories are equally useful in practice
- Compared with Deceive D

Thanks for listening.