Manejo e Implementación de Archivos

Guatemala 17 de agosto de 2023

Ing. David Luna

Agenda

Memoria Caché

Almacenamiento según el tipo de Acceso

Cierre

Memoria Caché

Jerarquía de los Medios de Almacenamiento

Almacenamiento Primario

Almacenamiento Secundario o Almacenamiento en Conexión

Almacenamiento
Terciario o
Almacenamiento
sin Conexión

Memoria Caché

Caché

Objetivos:

- Almacenar una serie de instrucciones y datos a los que el procesador accede continuamente, con la finalidad de que estos accesos sean instantáneos.
- Rendimiento.

Caché

Características:

- Almacenamiento de datos e instrucciones para rápido acceso, que el equipo utiliza con mayor frecuencia para realizar sus tareas cotidianas.
- Tipo de memoria volátil, pero de gran velocidad.
- Tareas repetitivas.
- Integrada en el procesador.

Caché (Tipos)

Caché de 1er nivel (L1):

- La más rápida pero la más pequeña de todas
- Integrada en el núcleo del procesador.
- La cantidad varia de un procesador a otro (Regularmente de 256KB, aunque en algunos procesadores llega a 1 MB)
- Divida en dos partes, una para direcciones (operaciones que debe realizar el procesador) y otra para datos (datos que se deben procesar).

Caché (Tipos)

Caché de 2do. nivel (L2)

- Integrada en el procesador, aunque no directamente en el núcleo.
- Tiene las mismas ventajas que la L1, pero es mas lenta.
- La cantidad es mayor (256 KB 8 MB)
- Utilizada para programas mas que para el sistema.
- Depende de la marca, podemos encontrarla compartida por todos los núcleos o junto en cada núcleo del procesador

Caché (Tipos)

Caché de 3er. nivel (L3)

- Más lenta, pero más grande que la anterior.
- Capacidad 4 MB 50 MB
- Incorporada a la placa base, por lo tanto depende de la comunicación entre el procesador y la placa base.
- La comparten todos los núcleos del procesador.

Caché

Objetivos:

- Almacenar una serie de instrucciones y datos
- Rendimiento.

Objetivos:

- Almacenar una serie de instrucciones y datos
- Rendimiento.

Mayor capacidad de almacenamiento

Objetivos:

- Almacenar una serie de instrucciones y datos
- Rendimiento.

- ✓ Mayor cercanía al CPU
- ✓ Mayor velocidad de acceso

Objetivos:

- Almacenar una serie de instrucciones y datos
- Rendimiento.

¿Es siempre conveniente tener mucho caché?

Almacenamiento según el tipo de Acceso

- No se puede leer o escribir un dato en particular hasta que todos los datos que lo preceden hayan sido leídos o escritos en orden.
- Hemos de recorrer desde el principio todas las posiciones hasta llegar a la deseada.

- Es la forma más simple y quizás la más intuitiva de manipular archivos.
- Cuando se abre el archivo, el sistema operativo apunta el primer bloque de información de archivo.
- Lee a partir de la posición inicial y así sucesivamente hasta que se llega al final del archivo.

Métodos que utilizan acceso secuencial

Cintas Magnéticas

Las cintas se presentan en una diversidad de formas, tamaños y velocidades.

Pistas sobre una banda plástica con un material magnetizado (Oxido de hierro).

Video, audio, datos.

1951

Grabación:

Corriente Aplicada > Cabezal de grabación > Magnetización de la cinta.

Reproducción:

Corriente Inducida> Cabezal de grabación

Parámetros Importantes:

- Magnitud del entrehierro, nos limita la máxima frecuencia a grabar.
- Ancho de la cinta, cuanto mayor sea su anchura la cantidad de información a grabar se reduce.

Clasificación de Tecnologías de cintas magnéticas:

- > Anchura de la cinta
 - ➤ Cinta de Alta Capacidad (1/2 Pul.)
- Método de grabación
 - **≻** Lineal
 - ➤ Helical

- Método de grabación
 - **≻** Helical

Caracterísiticas Técnicas

- Distribución de los bloques.
 - Separación entre registros.
- ➤ Tiempo de acceso.
 - **>** Latencia
- Compresión de los datos.
 - > Algoritmos propios.
 - LZ (Lempel Ziv) la mayoría

Cintas Magnéticas

Las cintas magnéticas en la actualidad

Relación entre precio y capacidad de almacenamiento.

A pesar que estos soportes ya no se utilizan de forma masiva, las grandes empresas siguen prefiriéndolos por sobre los sistemas de discos duros convencionales. La razón es muy sencilla: en una pulgada cuadrada se pueden almacenar 45GB de datos y esto permite crear cartuchos de hasta 50TB, según ha anunciado el Instituto Tecnológico de Tokio en conjunto con Hitachi Maxell, Ltd.

- IBM 330 TB
 - 201 Gb por pulgada cuadrada

Acceso directo

- Permiten el acceso justo en la posición en la que están guardados los datos.
 - ❖ Discos, memoria flash, etc.

 Las unidades de disco consisten en un conjunto de cabezas de lectura y escritura, interpuestas entre uno o más platos (recubiertos de una fina película magnética).

Componentes:

Pista: es el conjunto de bytes en la superficie de un disco al cual puede accederse sin mover el brazo de acceso.

Sector: es la porción más pequeña, a la cual se puede hacer referencia en un disco. Cada pista está divida en varios sectores.

Cilindros: son pistas que están directamente unas sobre otras. La importancia del cilindro es que se puede tener el acceso a toda la información almacenada en uno solo sin mover el brazo que sostiene las cabezas de lectura y escritura.

Almacenamiento en Disco – Memoria Flash

Utiliza circuitos electrónicos para almacenar la información, los cuales no necesitan moverse para efectuar tal función.

Los discos SSD permiten hasta un 56% más de rapidez de respuesta del equipo en comparación a los discos duros tradicionales, son extremadamente resistente, puede soportar golpes y choques sin perder datos.

Utilizan la misma interfaz que los discos duros tradicionales

Diversidad de Discos Duros

Discos duros tecnología magnética

SSD

• Sistemas de arreglos de discos, RAID (Redundant Arrays of Inexpensive Disks)

Exposiciones

Gracias

¿ALGUNA PREGUNTA?