Homework 1

RT Hatfield

31 August 2016

- 1. Problems from book
 - (a) $f = \Theta(g)$
 - (b) $f = \Omega(g)$
 - (c) f = O(g)
 - (d) $f = \Theta(g)$
 - (e) f = O(g)
 - (f) $f = \Omega(g)$
 - (g) f = O(g)
- 2. Bonus

$$g(n) = \frac{1 - c^{n+1}}{1 - c} \tag{1}$$

(a)

$$\lim_{n \to \infty} \frac{\frac{1 - c^{n+1}}{1 - c}}{\frac{1}{1}} = \frac{\frac{1}{1 - c}}{\frac{1}{1}} = \frac{1}{1 - c}$$

If 0 < c < 1, then $0 < \frac{1}{1-c} < 1$, and $g(n) = \Theta(1)$.

(b) If c = 1, then the sum of the geometric series is 1 + n.

$$\lim_{n\to\infty}\frac{1+n}{n}=\lim_{n\to\infty}\frac{1}{n}+1=1$$

Therefore, if c = 1, $g(n) = \Theta(n)$.

(c)

$$\lim_{n \to \infty} \frac{\frac{1-c^{n+1}}{1-c}}{c^n} = \lim_{n \to \infty} \frac{1-c^{n+1}}{c^n-c^{n+1}} = -\frac{c}{1-c}$$

If c > 1, then $0 < -\frac{c}{1-c} < 1$, and $g(n) = \Theta(c^n)$.

3. Fabonacci Series

```
Data: n: desired Fabonacci number in sequence Result: Fabonacci number at that index if n = 0, 1, 2 then

| return 1;
end
else
| return Fabonacci(n - 1) + Fabonacci(n - 2) * Fabonacci(n - 3);
end
```

This algorithm requires $O(3^n)$. The call stack would look like a ternary tree, which Wikipedia tells me has a size of $\frac{3^{n+1}-1}{2}$ nodes if the height is n. Reducing this to normal Big-O gives $O(3^n)$.

```
Data: n: desired Fabonacci number in sequence Result: Fabonacci number at that index create array Fab at least as long as n; for i \leftarrow 0 to n do

| if i = 0, 1, 2 then
| Fab[i] \leftarrow 1;
```

(b) $\begin{vmatrix} \textbf{if } i = 0, 1, 2 \textbf{ then} \\ & | Fab[i] \leftarrow 1; \\ \textbf{end} \\ & \textbf{else} \\ & | Fab[i] \leftarrow Fab[i-1] + Fab[i-2] * Fab[i-3]; \\ & \textbf{end} \\ & \textbf{end} \\ & \textbf{return } Fab[n]; \\ \end{vmatrix}$

This algorithm will require 2(n-3) adds and multiplies to calculate the given Fabonacci number.