Chapitre 19

Convexité

19	Convexité	1
	19.7 Position du graphe d'une fonction convexe par rapport à ses sécantes	2
	19.8 Inégalités des pentes	2
	19.9 Continuité et dérivabilité des fonctions convexes	3

19.7 Position du graphe d'une fonction convexe par rapport à ses sécantes

Propostion 19.7

Soit $f: I \to \mathbb{R}$ une fonction convexe et $(x,y) \in I^2$ avec x < y. Le graphe de f est situé en-dessous de sa sécante sur l'intervalle [x,y] et au-dessus à l'extérieur, soit sur $I \cap]-\infty,x] \cup [y,+\infty[$.

On pose $g: \mathbb{R} \to \mathbb{R}; t \mapsto \frac{f(y) - f(x)}{y - x}(t - x) + f(x)$. g paramètre la sécante passant par les points (x, f(x)) et (y, f(y)).

- Sur [x, y], RAF car f est convexe.
- Soit t > y. On pose $\lambda = \frac{y-x}{t-x} \neq 0 \in [0,1]$. On a :

$$\lambda t + (1 - \lambda)x = \frac{y - x}{t - x}t + \left(1 - \frac{y - x}{t - x}\right)x$$
$$= \frac{t(y - x) + x(t - y)}{t - x}$$
$$= y$$

Par convexité de f:

$$f(y) = f(\lambda t + (1 - \lambda)x)$$

$$\leq \lambda f(t) + (1 - \lambda)f(x)$$

$$\operatorname{donc} f(t) \geq \frac{1}{y}f(y) - \left(\frac{1}{y} - 1\right)f(x)$$

$$= \frac{t - x}{y - x}f(y) - \left(\frac{t - x}{y - x} - 1\right)f(x)$$

$$= \frac{t - x}{y - x} \times (f(y) - f(x)) + f(x)$$

$$= g(t)$$

— On raisonne de la même manière si $t \le x < y$.

19.8 Inégalités des pentes

Propostion 19.8

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I.

- 1. f est convexe si et seulement si pour tout $a \in I$, la fonction $x \mapsto \frac{f(x) f(a)}{x a}$ est croissante sur $I \setminus \{a\}$.
- 2. Si f est convexe, alors pour tout $(a, b, c) \in I^3$ avec a < b < c,

$$\frac{f(b)-f(a)}{b-a} \leq \frac{f(c)-f(a)}{c-a} \leq \frac{f(c)-f(b)}{c-b}$$

 $1. \Rightarrow$

On suppose f convexe. Soit $a \in I$ et x < y dans $I \setminus \{a\}$.

— On suppose x < a < y. D'après (19.7) :

$$f(y) \le \frac{f(a) - f(x)}{a - x} \times (y - a) + f(a)$$

Donc:

$$\frac{f(y) - f(a)}{y - a} \ge \frac{f(a) - f(x)}{a - x}$$

— Si x < a < y, d'après (19.7) :

$$f(y) \ge \frac{f(a) - f(x)}{a - x} \times (y - a) + f(a)$$

Donc:

$$\frac{f(y) - f(a)}{y - a} \ge \frac{f(a) - f(x)}{a - x}$$

— Les autres cas s'y ramènent.

 \Leftarrow

On suppose que pour tout $a \in I$, $g_a : I \setminus \{a\} \to \mathbb{R}$; $x \mapsto \frac{f(x) - f(a)}{x - a}$ est croissante. Soit x < y et $\lambda \in]0,1[$. On pose $a = \lambda y + (1 - \lambda)x$. g_a est croissante sur $I \setminus \{a\}$, donc :

$$g_a(x) \leq g_a(y)$$

Donc:

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(y) - f(a)}{y - a}$$

Donc:

$$x - a < 0 \text{ et } y - a > 0$$

$$(f(x) - f(a))(y - a) \le (f(y) - f(a))(x - a)$$

$$\text{donc } f(a)(y - x) \le f(x)(y - a) - f(y)(x - a)$$

$$\text{soit } f(a) \le f(x)\frac{y - a}{y - x} + f(y)\frac{a - x}{y - x}$$

$$= (1 - \lambda)f(x) + \lambda f(y)$$

2. Soit a < b < c.

$$g_a(b) \le g_a(c) = g_c(a) \le g_c(b)$$

19.9 Continuité et dérivabilité des fonctions convexes

Théorème 19.9

Soit f une fonction convexe sur un intervalle I ouvert. La fonction f est alors continue et possède des dérivées à gauche et à droite en tout point (où les limites osnt envisageables). Pour tout $a \in I$, on a

$$f_q'(a) \le f_d'(a)$$

Pour $a \in I$, on note encore $g_a: I \setminus \{a\} \to \mathbb{R}; x \mapsto \frac{f(x) - f(a)}{x - a}$.

Comme g est définie à gauche et à droite de a (I est ouvert) et que g est croissante sur $I \setminus \{a\}$, d'après le TLM g admet des limites finies à gauche et à droite de a et :

$$\lim_{a^{+}} g = f'_{d}(a) \ge f'_{g}(a) = \lim_{a^{-}} g$$

$$\forall x \ne a, f(x) = \frac{f(x) - f(a)}{x - a}(x - a) + f(a)$$

$$\xrightarrow[x \to a^{-}]{} f(a)$$

$$\xrightarrow[x \to a^{-}]{} f(a)$$