Primer Punto.

Primer Punto

Inicializar el sistema()

YMCJ=CX0, Y0, 70> / XM, F< XM2, YM2, ZM2)

MMZM

+ime= n

 $M_1 = M_1$

 $M_0 = M_2$

 $A_1 = A_1$

AL = AZ

Calculo de variables insdantaneas ()

FCJ = (0,0,0) $Y_1 = \sqrt{\chi_0^2 - \chi_0^2} \quad Y_2 = \sqrt{\chi_0^2 - \chi_0^2}$ 61=6. (Mm + M1)/5?

6, = 6. EMm * M2)/83

 $FCJ+=-62 \cdot \frac{XmCJ}{|XmEJ|}$

Resolver Er. 60. Mov ()

(SMIJ & EJMV) = +EDMX

1mcJ+=(FC)/mm) &time

Segundo Punto

Segundo Punto

Simule el sistema en Unity, resolviendo la ecuación general de movimiento con el método de Euler. Para la simulación use los siguientes valores, todos en sistema MKS. G = 1 (Contante de atracción gravitacional) $M_1 = M_2 = 1000$ $A_1 = <-50, 10, 0>$ $A_2 = <50, 10, 0>$ $\overline{X(0)} = \overline{X_0} = <0,10,50>$ $\overline{V(0)} = \overline{V_0} = \langle 0, 0, 0 \rangle$

private void CalcularVariablesInstantaneas() r1 - Vector3.Magnitude(m2Position-m0Position); G1 - G*(m2Mass * m0Mass) / (r1 * r1); Fuerza1 +- -G1 * Vector3.Normalize(m2Position-m0Position); private void EcGenMov() e void MetodoEuler()//metodo eule m2Position += (m2Velocity * mstep);
m2Velocity +- (FuerzaT / m2Mass) * mstep; public Vector3 m2Velocity0

h = 0.05

Explique con argumento físicos, matemáticos o computacionales el resultado de la simulación.

Dado que la rastirila empieza en un estado de rereso. Lentamente es atraida por la fuerza gravitacional de las masas Mr y Mz, éstas al sir de igual masa q, la particula situada justo en el punto medio de la distancias entre las massis transladada so unidades perpendicular a este punto medio, y al sev la masa de la particula muy pequeña en comparación a los Masas, dos como resultado esa a relevación que creve de manera exponencial que sa le disparada y se pierde en la vista de la simulación