ADATSZERKEZETEK ÉS ALGORITMUSOK

- Hatékony keresőfa-konstrukció.
- Ez is fa, de a binárisnál bonyolultabb: egy nem-levél csúcsnak 2 vagy 3 fia lehet.
- A 2-3-fa egy (lefelé) irányított gyökeres fa, melyre:
 - A rekordok a fa leveleiben helyezkednek el, a kulcs értéke szerint balról jobbra növekvő sorrendben.
 - Egy levél egy rekordot tartalmaz.
 - Minden belső (azaz nem levél) csúcsból 2 vagy 3 él megy lefelé
 - Ennek megfelelően a belső csúcsok egy, illetve két $k \in U$ kulcsot tartalmaznak.
 - A belső pontokban fizikailag ilyen szerkezet van:

Logikailag a belső csúcs kétféle:

- 3 gyerek
 - Itt m_1 ; m_2 ; m_3 mutatók a csúcs részfáira, k_1 , k_2 pedig U-beli kulcsok, melyekre $k_1 < k_2$.
 - Az m_1 által mutatott részfa minden kulcsa kisebb, mint k_1 .
 - Az m_2 részfájában k_1 a legkisebb kulcs, és minden kulcs kisebb, mint k_2 .
 - Végül m_3 részfájában k_2 a legkisebb kulcs.

- Logikailag a belső csúcs kétféle:
 - 2 gyerek
 - Itt m_1 , m_2 mutatók a csúcs részfáira, k_1 pedig U-beli kulcs.
 - Az m_1 által mutatott részfa minden kulcsa kisebb, mint k_1 .
 - Az m_2 részfájában k_1 a legkisebb kulcs.
 - A két típus közötti váltást csak logikailag kezeljük.

• Példa két különböző szerkezetű 2-3 fára, n=13-ra

- Megjegyzés:
 - n = 0
 - t=NIL vagy üres gyökér
 - n = 1
 - Kivételesen a gyökérnek 1 gyermeke van
- ullet Összefüggés n és h között:
 - $2^h < n < 3^h \Rightarrow h \leq \log_2 n$
 - Még 2-es elágazási tényező esetén is korlátos a fa magassága!

11/3 EA

- Műveletek
 - Keresés
 - Összehasonlítások száma
 - $0, 1, \dots, h-1$ magasságban: 1 vagy 2
 - h magasságban: 1
 - $T(n) < 2h + 1 < 2\log_2 n + 1 = \Theta(\log_2 n)$

2-3 fák – beszúrás

- Kereséssel meghatározzuk a helyét
- I. A legalsó belső pontnak 2 gyereke van (elfér még egy harmadik is)

2-3 fák – beszúrás

- Kereséssel meghatározzuk a helyét
- II. A legalsó belső pontnak 3 gyereke van

$$k = 8$$
 A megoldás a csúcsvágás

2-3 fák – beszúrás

- II. A legalsó belső pontnak 3 gyereke van. (folyt.)
 - Ha a szülőnek eleve 3 gyereke volt, akkor itt is csúcsvágásra van szükség, és így tovább felfelé. Ha valahol ezen az úton van egy kétgyermekes belső csúcs, akkor ott megáll a beszúrás, mert annak lehet 3 gyereke
 - Ha ezen az úton minden belső pontnak 3 gyereke volt, akkor a csúcsvágás felgyűrűzik a gyökérig. Ekkor a felfelé vágott gyökér fölé egy új gyökeret kell tenni, ami megnöveli a fa magasságát!
 - Az előző példát véve alapul:

- Megkeressük a törlendő kulcsot.
- I. A kulcs szülőjének 3 gyereke van
 - tehát neki 2 testvére van

$$k = 5$$

korrekció a szülőben

5-ről 10-re

- Megkeressük a törlendő kulcsot.
- I. A kulcs szülőjének 3 gyereke van
 - tehát neki 2 testvére van

korrekció a szülőben

5-ről 10-re

- II. A törlendő elemnek csak 1 testvére van, (a szülőnek 2 gyereke van)
 - II/1. Ha a szülőnek van 3 gyerekes testvére, akkor az 1 gyereket "átad"

- II. A törlendő elemnek csak 1 testvére van, (a szülőnek 2 gyereke van)
 - II/1. Ha a szülőnek nincs 3 gyerekes testvére, akkor csúcsot vonunk össze

- Szükség esetén a csúcsösszevonásokat folytatjuk felfelé.
 - Ez felgyűrűzhet a gyökérig így a fa magassága csökkenhet

k = 10

- Műveletek költsége:
 - $T(n) = \mathcal{O}(h) = \mathcal{O}(\log_2 n)$

B-fák

Következő téma