Statistics 700 Homework 0

Instructor: Yang Chen

Prerequisite

Due date: 6:00 pm (EST) Sept. 12, 2017

- (1). **Coinflip Trivia.** Assume that you are randomly flipping a biased coin, the probability of getting a head 'H' is 0.4 and the probability of getting a tail 'T' is 0.6. The coin flips are independent of each other.
 - 1. What is the probability of getting 'HHT' in the first three flips?
 - 2. Conditioning on 'two of the first five coin flips are head', what is the probability that the first flip is 'T'? Conduct numerical simulations to verify your result.
 - 3. If you earn \$ 10 for each 'H' and \$ 6 for each 'T', what is the expected reward and corresponding variance for $2, 3, 4, \ldots, n$ coin flips? Conduct numerical simulations to verify your result for 10 coinflips.
- (2). Exchangeability. A generalization of iid random variables is exchangeable random variables, an idea due to deFinetti (1972). A discussion of exchangeability can also be found in Feller (1971). The random variables X_1, \ldots, X_n are exchangeable if any permutation of any subset of them of size k ($k \le n$) has the same distribution. In this exercise we will see an example of random variables that are exchangeable but not iid. Let $X_i|P \sim \text{iid Bernoulli}(P)$, $i = 1, \ldots, n$, and let $P \sim \text{uniform}(0, 1)$.
 - 1. Show that the marginal distribution of any k of the Xs is the same as

$$P(X_1 = x_1, \dots, X_k = x_k) = \int_0^1 p^t (1-p)^{k-t} dp = \frac{t!(k-t)!}{(k+1)!},$$

where $t = \sum_{i=1}^{k} x_i$. Hence, the Xs are exchangeable.

2. Show that, marginally,

$$P(X_1 = x_1, \dots, X_n = x_n) \neq \prod_{i=1}^n P(X_i = x_i),$$

so the distribution of the Xs is exchangeable but not iid.

(3). **Gamma-Poisson**. Given that N = n, the conditional distribution of Y is χ^2_{2n} . The unconditional distribution of N is Poisson(θ).

Instructor: Yang Chen

- 1. Calculate E(Y) and Var(Y) (unconditional moments).
- 2. Verify your results in 1 through simulations with $\theta = 1$: for m = 10, 100, 1000, simulate Y_i ($1 \le i \le m$), calculate the sample mean and sample variance. Try to visualize your results through repeated simulations.
- 3. Show that as $\theta \to \infty$, $(Y E(Y))/\sqrt{Var(Y)} \to N(0,1)$ in distribution.
- 4. Verify your results in 3 through simulations with $\theta = 1, 10, 100, \ldots$ for each θ , simulate Y_i $(1 \le i \le m)$, make a histogram of $(Y E(Y))/\sqrt{Var(Y)}$ and compare it with the density of a standard Gaussian distribution. Experiment on different values of m, what do you find as you increase m or θ ?
- (4). **Gaussian Example.** Assume that $(X_1, Y_1), \ldots, (X_n, Y_n)$ are independently sampled from a bivariate normal distribution with parameters $(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho)$.
 - 1. Assume that $\rho \in (-1,1)$ is known and $\sigma = \sigma_X = \sigma_Y$.
 - (a) Derive the maximum likelihood estimators of (μ_X, μ_Y, σ^2) .
 - (b) Let n=100 and $\sigma_X^2=\sigma_Y^2=1, \rho=0.3$. We can use two methods to form a 95% confidence set for $\theta=\mu_Y/\mu_X$: (1) the Fieller's theorem (Fieller 1954) and (2) the asymptotic distribution of $\widehat{\theta}=\sum_i Y_i/\sum_i X_i$ obtained from the Delta method. In your numerical simulations, set the true values $\mu_X=\mu_Y=10$, and compare the 95% confidence sets from the two methods based on simulated data. What do you find from comparing the results through repeated simulations as you vary n?
 - 2. Assume that $\rho \in (-1, 1)$ is unknown.
 - (a) Consider a linear transformation of (X_i, Y_i)

$$W_i = \frac{X_i - \mu_X}{\sigma_X} - \rho \frac{Y_i - \mu_Y}{\sigma_Y}, Z_i = \frac{Y_i - \mu_Y}{\sigma_Y}.$$

What is the joint distribution of (W_i, Z_i) ?

(b) Derive the maximum likelihood estimator (MLEs) of ρ and show its consistency theoretically and numerically (through a series of repeated simulation studies, as $n \to \infty$, visualize your results).