Weak convergence proof v.2

Suzie Brown

February 2, 2021

Bounds on sum-products

Lemma 1. Fix t > 0, $l \in \mathbb{N}$.

$$t^{l} - \left(\sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2}\right) {l \choose 2} (t+1)^{l-2} \le \sum_{s_{1} \neq \dots \neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} c_{N}(s_{j}) \le t^{l} + c_{N}(\tau_{N}(t))(t+1)^{l}.$$
 (1)

Proof. As pointed out in Koskela et al. (2018, Equation (8)).

$$\sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \prod_{j=1}^l c_N(s_j) \ge \left(\sum_{s=0}^{\tau_N(t)} c_N(s)\right)^l - \binom{l}{2} \left(\sum_{s=0}^{\tau_N(t)} c_N(s)^2\right) \left(\sum_{s=0}^{\tau_N(t)} c_N(s)\right)^{l-2}. \tag{2}$$

By definition of τ_N ,

$$t \le \sum_{s=0}^{\tau_N(t)} c_N(s) \le t + 1. \tag{3}$$

Substituting these bounds into the RHS of (2) yields the lower bound.

It is a true fact that

$$\sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \prod_{j=1}^l c_N(s_j) \le \left(\sum_{s=0}^{\tau_N(t)} c_N(s)\right)^l, \tag{4}$$

as can be seen by considering the multinomial expansion of the RHS. This is further bounded by

$$\left(\sum_{s=0}^{\tau_N(t)} c_N(s)\right)^l \le \left(\sum_{s=0}^{\tau_N(t)-1} c_N(s) + c_N(\tau_N(t))\right)^l \le \left[t + c_N(\tau_N(t))\right]^l,\tag{5}$$

again using the definition of τ_N . A binomial expansion yields

$$[t + c_N(\tau_N(t))]^l = t^l + \sum_{i=0}^{l-1} {l \choose i} t^i c_N(\tau_N(t))^{l-i} = t^l + c_N(\tau_N(t)) \sum_{i=0}^{l-1} {l \choose i} t^i c_N(\tau_N(t))^{l-1-i},$$
 (6)

then since $c_N(s) \leq 1$ for all s,

$$\sum_{i=0}^{l-1} {l \choose i} t^i c_N(\tau_N(t))^{l-1-i} \le \sum_{i=0}^{l-1} {l \choose i} t^i \le (t+1)^l.$$
 (7)

Putting this together yields the upper bound.

Lemma 2. Fix t > 0, $l \in \mathbb{N}$. Let B be a positive constant which may depend on n.

$$\sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \prod_{j=1}^l \left[c_N(s_j) + BD_N(s_j) \right] \le \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \prod_{j=1}^l c_N(s_j) + \left(\sum_{s=1}^{\tau_N(t)} D_N(s) \right) (t+1)^{l-1} (1+B)^l. \tag{8}$$

Proof. We start with a binomial expansion:

$$\sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \prod_{j=1}^l \left[c_N(s_j) + BD_N(s_j) \right] = \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \sum_{\mathcal{I} \subseteq [l]} B^{l-|\mathcal{I}|} \left(\prod_{i \in \mathcal{I}} c_N(s_i) \right) \left(\prod_{j \notin \mathcal{I}} D_N(s_j) \right)$$

$$= \sum_{\mathcal{I} \subseteq [l]} B^{l-|\mathcal{I}|} \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \left(\prod_{i \in \mathcal{I}} c_N(s_i) \right) \left(\prod_{j \notin \mathcal{I}} D_N(s_j) \right)$$

$$(9)$$

where $[l] := \{1, ..., l\}$. Since the sum is over all permutations of $s_1, ..., s_l$, we may arbitrarily choose an ordering for $\{1, ..., l\}$ such that $\mathcal{I} = \{1, ..., |\mathcal{I}|\}$:

$$\sum_{\mathcal{I}\subseteq[l]} B^{l-|\mathcal{I}|} \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \left(\prod_{i \in \mathcal{I}} c_N(s_i) \right) \left(\prod_{j \notin \mathcal{I}} D_N(s_j) \right) = \sum_{I=0}^l \binom{l}{I} B^{l-I} \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \left(\prod_{i=1}^I c_N(s_i) \right) \left(\prod_{j=I+1}^l D_N(s_j) \right). \tag{10}$$

Separating the term I = l,

$$\sum_{I=0}^{l} {l \choose I} B^{l-I} \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \left(\prod_{i=1}^{I} c_N(s_i) \right) \left(\prod_{j=I+1}^{l} D_N(s_j) \right) = \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \prod_{j=1}^{l} c_N(s_j) + \sum_{I=0}^{l-1} {l \choose I} B^{l-I} \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \left(\prod_{i=1}^{I} c_N(s_i) \right) \left(\prod_{j=I+1}^{l} D_N(s_j) \right). \tag{11}$$

In the second line, there is always at least one D_N term, and $c_N(s) \ge D_N(s)$ for all s (Koskela et al., 2018, p.9), so we can write

$$\sum_{I=0}^{l-1} {l \choose I} B^{l-I} \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \left(\prod_{i=1}^{I} c_N(s_i) \right) \left(\prod_{j=I+1}^{l} D_N(s_j) \right) \leq \sum_{I=0}^{l-1} {l \choose I} B^{l-I} \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \left(\prod_{i=1}^{l-1} c_N(s_i) \right) D_N(s_l)$$

$$\leq \sum_{I=0}^{l-1} {l \choose I} B^{l-I} \left(\sum_{s_1 \neq \dots \neq s_{l-1}}^{\tau_N(t)} \prod_{i=1}^{l-1} c_N(s_i) \right) \sum_{s_l=1}^{\tau_N(t)} D_N(s_l)$$

$$\leq \sum_{I=0}^{l-1} {l \choose I} B^{l-I} (t+1)^{l-1} \sum_{s=1}^{\tau_N(t)} D_N(s) \tag{12}$$

using (4) and (3). Finally, by the Binomial Theorem,

$$\sum_{I=0}^{l-1} {l \choose I} B^{l-I} (t+1)^{l-1} \sum_{s=1}^{\tau_N(t)} D_N(s) \le \left(\sum_{s=1}^{\tau_N(t)} D_N(s) \right) (t+1)^{l-1} (1+B)^l, \tag{13}$$

which, together with (11), concludes the proof.

Lemma 3. Fix t > 0, $l \in \mathbb{N}$. Let B be a positive constant which may depend on n.

$$\sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \prod_{j=1}^l \left[c_N(s_j) - BD_N(s_j) \right] \ge \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \prod_{j=1}^l c_N(s_j) - \left(\sum_{s=1}^{\tau_N(t)} D_N(s) \right) (t+1)^{l-1} (1+B)^l. \tag{14}$$

Proof. A binomial expansion and subsequent manipulation as in (9)–(11) gives

$$\sum_{s_{1}\neq\cdots\neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} \left[c_{N}(s_{j}) - BD_{N}(s_{j}) \right] = \sum_{\mathcal{I}\subseteq[l]} (-B)^{l-|\mathcal{I}|} \sum_{s_{1}\neq\cdots\neq s_{l}}^{\tau_{N}(t)} \left(\prod_{i\in\mathcal{I}} c_{N}(s_{i}) \right) \left(\prod_{j\notin\mathcal{I}} D_{N}(s_{j}) \right) \\
= \sum_{l=0}^{l} \binom{l}{l} (-B)^{l-l} \sum_{s_{1}\neq\cdots\neq s_{l}}^{\tau_{N}(t)} \left(\prod_{i=1}^{l} c_{N}(s_{i}) \right) \left(\prod_{j=l+1}^{l} D_{N}(s_{j}) \right) \\
= \sum_{s_{1}\neq\cdots\neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} c_{N}(s_{j}) + \sum_{l=0}^{l-1} \binom{l}{l} (-B)^{l-l} \sum_{s_{1}\neq\cdots\neq s_{l}}^{\tau_{N}(t)} \left(\prod_{i=1}^{l} c_{N}(s_{i}) \right) \left(\prod_{j=l+1}^{l} D_{N}(s_{j}) \right) \\
\geq \sum_{s_{1}\neq\cdots\neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} c_{N}(s_{j}) - \sum_{l=0}^{l-1} \binom{l}{l} B^{l-l} \sum_{s_{1}\neq\cdots\neq s_{l}}^{\tau_{N}(t)} \left(\prod_{j=l+1}^{l} C_{N}(s_{j}) \right) \left(\prod_{j=l+1}^{l} D_{N}(s_{j}) \right) \tag{15}$$

where the last inequality just multiplies some positive terms by -1. Then (12)–(13) can be applied directly (noting that an upper bound on negative terms gives a lower bound overall):

$$-\sum_{I=0}^{l-1} {l \choose I} B^{l-I} \sum_{s_1 \neq \dots \neq s_l}^{\tau_N(t)} \left(\prod_{i=1}^{I} c_N(s_i) \right) \left(\prod_{j=I+1}^{l} D_N(s_j) \right) \ge -\left(\sum_{s=1}^{\tau_N(t)} D_N(s) \right) (t+1)^{l-1} (1+B)^l$$
 (16)

which concludes the proof.

Main components of weak convergence

Lemma 4 (Basis step). For any $0 < t < \infty$,

$$\lim_{N \to \infty} \mathbb{E}\left[\prod_{r=1}^{\tau_N(t)} (1 - p_r)\right] = e^{-\alpha_n t} \tag{17}$$

where $\alpha_n := n(n-1)/2$.

Proof. We start by showing that $\lim_{N\to\infty} \mathbb{E}\left[\prod_{r=1}^{\tau_N(t)} (1-p_r)\right] \leq e^{-\alpha_n t}$.

From Koskela et al. (2018, Lemma 1 Case 1), taking $\xi = \Delta$, we have for each r

$$1 - p_r = p_{\Delta\Delta}(r) \le 1 - \alpha_n (1 + O(N^{-1})) \left[c_N(r) - B'_n D_N(r) \right]$$
(18)

where the $O(N^{-1})$ term does not depend on r. When N is large enough, a sufficient condition to ensure the bound in (18) is non-negative is the event

$$E_r := \left\{ c_N(r) \le \alpha_n^{-1} \right\} \tag{19}$$

and we define $E := \bigcap_{r=1}^{\tau_N(t)} E_r$, so

$$1 - p_r = p_{\Delta\Delta}(r) \le 1 - \alpha_n (1 + O(N^{-1})) \left[c_N(r) - B_n' D_N(r) \right] \mathbb{1}_E.$$
 (20)

Applying a multinomial expansion and then separating the positive and negative terms,

$$\prod_{r=1}^{\tau_{N}(t)} (1 - p_{r}) \leq 1 + \sum_{l=1}^{\tau_{N}(t)} (-\alpha_{n})^{l} (1 + O(N^{-1})) \frac{1}{l!} \sum_{s_{1} \neq \cdots \neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} \left[c_{N}(s_{j}) - B'_{n} D_{N}(s_{j}) \right] \mathbb{1}_{E}$$

$$= 1 + \sum_{\substack{l=2 \text{even}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \sum_{s_{1} \neq \cdots \neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} \left[c_{N}(s_{j}) - B'_{n} D_{N}(s_{j}) \right] \mathbb{1}_{E}$$

$$- \sum_{\substack{l=1 \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \sum_{s_{1} \neq \cdots \neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} \left[c_{N}(s_{j}) - B'_{n} D_{N}(s_{j}) \right] \mathbb{1}_{E}. \tag{21}$$

This is further bounded by applying Lemma 3 and then both bounds of Lemma 1:

$$\prod_{r=1}^{\tau_{N}(t)} (1 - p_{r}) \leq 1 + \left\{ \sum_{\substack{l=2 \text{even}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \sum_{\substack{s_{1} \neq \dots \neq s_{l} \ j=1}}^{\tau_{N}(t)} \prod_{j=1}^{l} c_{N}(s_{j}) - \sum_{\substack{l=1 \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \left[\sum_{\substack{s_{1} \neq \dots \neq s_{l} \ j=1}}^{\tau_{N}(t)} \prod_{j=1}^{l} c_{N}(s_{j}) - \left(\sum_{s=1}^{\tau_{N}(t)} D_{N}(s) \right) (t + 1)^{l-1} (1 + B_{n}^{\prime})^{l} \right] \right\} \mathbb{1}_{E}$$

$$\leq 1 + \left\{ \sum_{\substack{l=2 \text{even}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \left\{ t^{l} + c_{N}(\tau_{N}(t))(t + 1)^{l} \right\} - \sum_{\substack{l=1 \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \left[t^{l} - \left(\sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2} \right) \binom{l}{2} (t + 1)^{l-2} - \left(\sum_{s=1}^{\tau_{N}(t)} D_{N}(s) \right) (t + 1)^{l-1} (1 + B_{n}^{\prime})^{l} \right] \right\} \mathbb{1}_{E}.$$

$$(22)$$

Collecting some terms,

$$\prod_{r=1}^{\tau_{N}(t)} (1 - p_{r}) \leq 1 + \sum_{l=1}^{\tau_{N}(t)} (-\alpha_{n})^{l} (1 + O(N^{-1})) \frac{1}{l!} t^{l} \mathbb{1}_{E} + c_{N}(\tau_{N}(t)) \sum_{\substack{l=2 \text{even}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} (t+1)^{l} \\
+ \left(\sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2} \right) \sum_{\substack{l=1 \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \binom{l}{2} (t+1)^{l-2} \\
+ \left(\sum_{s=1}^{\tau_{N}(t)} D_{N}(s) \right) \sum_{\substack{l=1 \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} (t+1)^{l-1} (1 + B_{n}')^{l} \\
\leq 1 + \sum_{l=1}^{\infty} (-\alpha_{n})^{l} (1 + O(N^{-1})) \frac{1}{l!} t^{l} \mathbb{1}_{\{\tau_{N}(t) \geq l\}} \mathbb{1}_{E} + c_{N}(\tau_{N}(t)) \exp[\alpha_{n} (1 + O(N^{-1}))(t+1)] \\
+ \left(\sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2} \right) \frac{1}{2} \alpha_{n}^{2} \exp[\alpha_{n} (1 + O(N^{-1}))(t+1)] \\
+ \left(\sum_{s=1}^{\tau_{N}(t)} D_{N}(s) \right) \exp[\alpha_{n} (1 + O(N^{-1}))(t+1)(1 + B_{n}')]. \tag{23}$$

Now, taking the expectation and limit, then applying Brown et al. (2021, Equations (3.3)–(3.5)), and Lemmata 10 and 12 to deal with the indicators,

$$\lim_{N \to \infty} \mathbb{E} \left[\prod_{r=1}^{\tau_N(t)} (1 - p_r) \right] \le 1 + \sum_{l=1}^{\infty} (-\alpha_n)^l \frac{1}{l!} t^l \lim_{N \to \infty} \mathbb{P} \left[\{ \tau_N(t) \ge l \} \cap E \right] + \lim_{N \to \infty} \mathbb{E} \left[c_N(\tau_N(t)) \right] \exp[\alpha_n(t+1)]$$

$$+ \lim_{N \to \infty} \mathbb{E} \left[\sum_{s=1}^{\tau_N(t)} c_N(s)^2 \right] \frac{1}{2} \alpha_n^2 \exp[\alpha_n(t+1)]$$

$$+ \lim_{N \to \infty} \mathbb{E} \left[\sum_{s=1}^{\tau_N(t)} D_N(s) \right] \exp[\alpha_n(t+1)(1+B_n')]$$

$$= 1 + \sum_{l=1}^{\infty} (-\alpha_n)^l \frac{1}{l!} t^l = e^{-\alpha_n t}.$$
(24)

It remains to show the corresponding lower bound $\lim_{N\to\infty} \mathbb{E}\left[\prod_{r=1}^{\tau_N(t)} (1-p_r)\right] \ge e^{-\alpha_n t}$.

From Brown et al. (2021, Equation (3.14)), taking $\xi = \Delta$, we have

$$1 - p_t = p_{\Delta\Delta}(t) \ge 1 - \alpha_n (1 + O(N^{-1})) \left[c_N(t) + B_n D_N(t) \right]$$
(25)

where $B_n > 0$ and the $O(N^{-1})$ term does not depend on t. In particular,

$$1 - p_t = p_{\Delta\Delta}(t) \ge 1 - \frac{N^{n-2}}{(N-2)_{n-2}} \alpha_n [c_N(t) + B_n D_N(t)]. \tag{26}$$

Since $D_N(s) \le c_N(s)$ for all s (Koskela et al., 2018, p.9), a sufficient condition for this bound to be non-negative is

$$E_r := \left\{ c_N(r) \le \frac{(N-2)_{n-2}}{N^{n-2}} \alpha_n^{-1} (1 + B_n)^{-1} \right\},\tag{27}$$

and we again define $E := \bigcap_{r=1}^{\tau_N(t)} E_r$. We now apply a multinomial expansion to the product, and split into positive and negative terms:

$$\prod_{r=1}^{\tau_{N}(t)} (1 - p_{r}) \ge \left\{ 1 + \sum_{l=1}^{\tau_{N}(t)} (-\alpha_{n})^{l} (1 + O(N^{-1})) \frac{1}{l!} \sum_{s_{1} \ne \cdots \ne s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} \left[c_{N}(s_{j}) + B_{n} D_{N}(s_{j}) \right] \right\} \mathbb{1}_{E}$$

$$= \left\{ 1 + \sum_{\substack{l=2 \text{even} \\ \text{even}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \sum_{s_{1} \ne \cdots \ne s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} \left[c_{N}(s_{j}) + B_{n} D_{N}(s_{j}) \right] \right.$$

$$- \sum_{\substack{l=1 \text{odd} \\ \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \sum_{s_{1} \ne \cdots \ne s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} \left[c_{N}(s_{j}) + B_{n} D_{N}(s_{j}) \right] \right\} \mathbb{1}_{E}$$

$$(28)$$

This is further bounded by applying Lemma 2 and both bounds in Lemma 1:

$$\prod_{r=1}^{\tau_{N}(t)} (1 - p_{r}) \geq \left\{ 1 + \sum_{\substack{l=2 \text{even}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \sum_{s_{1} \neq \cdots \neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} c_{N}(s_{j}) \right. \\
\left. - \sum_{\substack{l=1 \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \left[\sum_{s_{1} \neq \cdots \neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} c_{N}(s_{j}) + \left(\sum_{s=1}^{\tau_{N}(t)} D_{N}(s) \right) (t+1)^{l-1} (1 + B_{n})^{l} \right] \right\} \mathbb{1}_{E}$$

$$\geq \left\{ 1 + \sum_{\substack{l=2 \text{even}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \left[t^{l} - \left(\sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2} \right) \binom{l}{2} (t+1)^{l-2} \right] \right.$$

$$- \sum_{\substack{l=1 \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \left[t^{l} + c_{N}(\tau_{N}(t)) (t+1)^{l} + \left(\sum_{s=1}^{\tau_{N}(t)} D_{N}(s) \right) (t+1)^{l-1} (1 + B_{n})^{l} \right] \right\} \mathbb{1}_{E}. \tag{29}$$

Collecting terms,

$$\prod_{r=1}^{\tau_{N}(t)} (1 - p_{r}) \geq \sum_{l=0}^{\tau_{N}(t)} (-\alpha_{n})^{l} (1 + O(N^{-1})) \frac{1}{l!} t^{l} \mathbb{1}_{E} - \left(\sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2} \right) \sum_{\substack{l=2 \text{even}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} \left(\frac{l}{2} \right) (t + 1)^{l-2}
- c_{N}(\tau_{N}(t)) \sum_{\substack{l=1 \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} (t + 1)^{l}
- \left(\sum_{s=1}^{\tau_{N}(t)} D_{N}(s) \right) \sum_{\substack{l=1 \text{odd}}}^{\tau_{N}(t)} \alpha_{n}^{l} (1 + O(N^{-1})) \frac{1}{l!} (t + 1)^{l-1} (1 + B_{n})^{l}
\geq \sum_{l=0}^{\infty} (-\alpha_{n})^{l} (1 + O(N^{-1})) \frac{1}{l!} t^{l} \mathbb{1}_{E} \mathbb{1}_{\{\tau_{N}(t) \geq l\}} - \left(\sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2} \right) \frac{1}{2} \alpha_{n}^{2} \exp[\alpha_{n} (1 + O(N^{-1})) (t + 1)]
- c_{N}(\tau_{N}(t)) \exp[\alpha_{n} (1 + O(N^{-1})) (t + 1)]
- \left(\sum_{s=1}^{\tau_{N}(t)} D_{N}(s) \right) \exp[\alpha_{n} (1 + O(N^{-1})) (t + 1) (1 + B_{n})].$$
(30)

Now, taking the expectation and limit, and applying Brown et al. (2021, Equations (3.3)–(3.5)) to show that all but the first sum vanish, and Lemmata 10 and 9 to show that $\lim_{N\to\infty} \mathbb{P}[\{\tau_N(t) \geq l\} \cap E] = 1$,

$$\lim_{N \to \infty} \mathbb{E} \left[\prod_{r=1}^{\tau_N(t)} (1 - p_r) \right] \ge \sum_{l=0}^{\infty} (-\alpha_n)^l (1 + O(N^{-1})) \frac{1}{l!} t^l \lim_{N \to \infty} \mathbb{P} \left[\left\{ \tau_N(t) \ge l \right\} \cap E \right]$$

$$- \lim_{N \to \infty} \mathbb{E} \left[\sum_{s=1}^{\tau_N(t)} c_N(s)^2 \right] \frac{1}{2} \alpha_n^2 \exp[\alpha_n(t+1)]$$

$$- \lim_{N \to \infty} \mathbb{E} \left[c_N(\tau_N(t)) \right] \exp[\alpha_n(t+1)]$$

$$- \lim_{N \to \infty} \mathbb{E} \left[\sum_{s=1}^{\tau_N(t)} D_N(s) \right] \exp[\alpha_n(t+1)(1 + B_n)]$$

$$= \sum_{l=0}^{\infty} (-\alpha_n)^l \frac{1}{l!} t^l = e^{-\alpha_n t}. \tag{31}$$

Combining the upper and lower bounds in (24) and (31) respectively concludes the proof.

Lemma 5 (Induction step upper bound). Fix $k \in \mathbb{N}$, $i_0 := 0$, $i_k := k$. For any sequence of times $0 = t_0 \le t_1 \le \cdots \le t_k \le t$,

$$\lim_{N \to \infty} \mathbb{E} \left[\sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \left(\prod_{i=1}^k p_{r_i} \right) \left(\prod_{\substack{r=1 \\ \notin \{r_1, \dots, r_k\}}}^{\tau_N(t)} (1 - p_r) \right) \right] \le \alpha_n^k \sum_{l=0}^{\infty} \frac{1}{l!} (-\alpha_n)^l t^l \sum_{\substack{i_1 \le \dots \le i_{k-1} \\ \in \{0, \dots, k\}: \\ i_j \ge j \forall j}} \prod_{j=1}^k \frac{(t_j - t_{j-1})^{i_j - i_{j-1}}}{(i_j - i_{j-1})!}.$$
(32)

Proof. We use the bound on $(1-p_r)$ from (18) and apply a multinomial expansion, defining as in (19) the event E

which ensures the bound is non-negative:

$$\prod_{\substack{r=1\\ \neq \{r_1,\dots,r_k\}}}^{\tau_N(t)} (1-p_r) \leq \prod_{\substack{r=1\\ \neq \{r_1,\dots,r_k\}}}^{\tau_N(t)} \left\{ 1 - \alpha_n (1 + O(N^{-1})) [c_N(r) - B'_n D_N(r)] \mathbb{1}_E \right\}$$

$$= 1 + \sum_{l=1}^{\tau_N(t)-k} (-\alpha_n)^l (1 + O(N^{-1})) \frac{1}{l!} \sum_{\substack{s_1 \neq \dots \neq s_l\\ \neq \{r_1,\dots,r_k\}}}^{\tau_N(t)} \prod_{j=1}^{l} [c_N(s_j) - B'_n D_N(s_j)] \mathbb{1}_E$$

$$= 1 + \sum_{l=1}^{\tau_N(t)-k} (-\alpha_n)^l (1 + O(N^{-1})) \frac{1}{l!} \sum_{\substack{s_1 \neq \dots \neq s_l\\ \exists i, i': s_i = r_{i'}}}^{\tau_N(t)} \prod_{j=1}^{l} [c_N(s_j) - B'_n D_N(s_j)] \mathbb{1}_E$$

$$- \sum_{l=1}^{\tau_N(t)-k} (-\alpha_n)^l (1 + O(N^{-1})) \frac{1}{l!} \sum_{\substack{s_1 \neq \dots \neq s_l\\ \exists i, i': s_i = r_{i'}}} \prod_{j=1}^{l} [c_N(s_j) - B'_n D_N(s_j)] \mathbb{1}_E. \tag{33}$$

The penultimate line above is exactly the expansion we had in the basis step (21), except for the limit on l, and as such following the same arguments gives a bound like that in (23):

$$1 + \sum_{l=1}^{\tau_{N}(t)-k} (-\alpha_{n})^{l} (1 + O(N^{-1})) \frac{1}{l!} \sum_{s_{1} \neq \cdots \neq s_{l}}^{\tau_{N}(t)} \prod_{j=1}^{l} [c_{N}(s_{j}) - B'_{n}D_{N}(s_{j})] \mathbb{1}_{E}$$

$$\leq 1 + \sum_{l=1}^{\tau_{N}(t)-k} (-\alpha_{n})^{l} (1 + O(N^{-1})) \frac{1}{l!} t^{l} \mathbb{1}_{E} + c_{N}(\tau_{N}(t)) \exp[\alpha_{n}(1 + O(N^{-1}))(t+1)]$$

$$+ \left(\sum_{s=1}^{\tau_{N}(t)} c_{N}(s)^{2}\right) \frac{1}{2} \alpha_{n}^{2} \exp[\alpha_{n}(1 + O(N^{-1}))(t+1)]$$

$$+ \left(\sum_{s=1}^{\tau_{N}(t)} D_{N}(s)\right) \exp[\alpha_{n}(1 + O(N^{-1}))(t+1)(1 + B'_{n})]. \tag{34}$$

For the last line of (33),

$$-\sum_{l=1}^{\tau_{N}(t)-k} (-\alpha_{n})^{l} (1+O(N^{-1})) \frac{1}{l!} \sum_{\substack{s_{1} \neq \cdots \neq s_{l} \\ \exists i,i':s_{1}=r_{l'}}} \prod_{j=1}^{l} \{c_{N}(s_{j}) - B'_{n}D_{N}(s_{j})\} \mathbb{1}_{E}$$

$$\leq \sum_{l=1}^{\tau_{N}(t)-k} \alpha_{n}^{l} (1+O(N^{-1})) \frac{1}{l!} \sum_{\substack{s_{1} \neq \cdots \neq s_{l} \\ \exists i,i':s_{1}=r_{l'}}} \prod_{j=1}^{l} \{c_{N}(s_{j}) + B'_{n}D_{N}(s_{j})\}$$

$$\leq \sum_{l=1}^{\tau_{N}(t)-k} \alpha_{n}^{l} (1+O(N^{-1})) \frac{1}{l!} \sum_{\substack{s_{1} \neq \cdots \neq s_{l} \\ \exists i,i':s_{1}=r_{l'}}} (1+B'_{n})^{l} \prod_{j=1}^{l} c_{N}(s_{j})$$

$$\leq \sum_{l=1}^{\tau_{N}(t)-k} \alpha_{n}^{l} (1+O(N^{-1})) \frac{1}{(l-1)!} \sum_{s_{1} \in \{r_{1},\dots,r_{k}\}} \sum_{s_{2} \neq \cdots \neq s_{l}} (1+B'_{n})^{l} \prod_{j=1}^{l} c_{N}(s_{j})$$

$$= \sum_{s \in \{r_{1},\dots,r_{k}\}} c_{N}(s) \sum_{l=1}^{\tau_{N}(t)-k} \alpha_{n}^{l} (1+O(N^{-1})) \frac{1}{(l-1)!} (1+B'_{n})^{l} \sum_{s_{1} \neq \cdots \neq s_{l-1}}^{\tau_{N}(t)} \prod_{j=1}^{l-1} c_{N}(s_{j})$$

$$\leq \sum_{j=1}^{k} c_{N}(r_{j}) \sum_{l=1}^{\tau_{N}(t)-k} \alpha_{n}^{l} (1+O(N^{-1})) \frac{1}{(l-1)!} (1+B'_{n})^{l} (t+1)^{l-1}$$

$$\leq \left(\sum_{j=1}^{k} c_{N}(r_{j})\right) \alpha_{n} (1+B'_{n}) \exp[\alpha_{n} (1+O(N^{-1})) (1+B'_{n})(t+1)]. \tag{35}$$

Putting these together, we have

$$\prod_{\substack{r=1\\ \ell \in \{r_1, \dots, r_k\}}}^{\tau_N(t)} (1 - p_r) \leq 1 + \sum_{l=1}^{\tau_N(t) - k} (-\alpha_n)^l (1 + O(N^{-1})) \frac{1}{l!} t^l \mathbb{1}_E + c_N(\tau_N(t)) \exp[\alpha_n (1 + O(N^{-1}))(t+1)]
+ \left(\sum_{s=1}^{\tau_N(t)} c_N(s)^2 \right) \frac{1}{2} \alpha_n^2 \exp[\alpha_n (1 + O(N^{-1}))(t+1)]
+ \left(\sum_{s=1}^{\tau_N(t)} D_N(s) \right) \exp[\alpha_n (1 + O(N^{-1}))(t+1)(1 + B'_n)]
+ \left(\sum_{j=1}^k c_N(r_j) \right) \alpha_n (1 + B'_n) \exp[\alpha_n (1 + O(N^{-1}))(1 + B'_n)(t+1)].$$
(36)

Meanwhile, using the bound on p_r from (25) then applying a modification of Lemma 2,

$$\sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \prod_{i=1}^k p_{r_i} \le \alpha_n^k (1 + O(N^{-1})) \sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \prod_{i=1}^k \left[c_N(r_i) + B_n D_N(r_i) \right] \\
\le \alpha_n^k (1 + O(N^{-1})) \sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \prod_{i=1}^k c_N(r_i) + \left(\sum_{s=1}^{\tau_N(t)} D_N(s) \right) \alpha_n^k (1 + O(N^{-1})) (t+1)^{k-1} (1 + B_n)^k. \tag{37}$$

A more liberal (but simpler) bound can be arrived at thus:

$$\prod_{i=1}^{k} p_{r_i} \le \alpha_n^k (1 + O(N^{-1})) \prod_{i=1}^{k} [c_N(r_i) + B_n D_N(r_i)]$$

$$\le \alpha_n^k (1 + O(N^{-1})) \prod_{i=1}^{k} c_N(r_i) (1 + B_n)$$

$$\le \alpha_n^k (1 + O(N^{-1})) (1 + B_n)^k \prod_{i=1}^{k} c_N(r_i)$$
(38)

which also leads to the deterministic bound

$$\sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \prod_{i=1}^k p_{r_i} \le \alpha_n^k (1 + O(N^{-1})) (1 + B_n)^k \sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \prod_{i=1}^k c_N(r_i)
\le \alpha_n^k (1 + O(N^{-1})) (1 + B_n)^k \frac{1}{k!} \sum_{r_1 \ne \dots \ne r_k}^{\tau_N(t)} \prod_{i=1}^k c_N(r_i)
\le \alpha_n^k (1 + O(N^{-1})) (1 + B_n)^k \frac{1}{k!} (t+1)^k.$$
(39)

Combining (36) with the other product, the expression inside the expectation in (32) is bounded above by

$$\sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \left(\prod_{i=1}^k p_{r_i} \right) \left(\prod_{\substack{r=1 \\ \neq \{r_1, \dots, r_k\}}}^{\tau_N(t)} (1 - p_r) \right) \le \left\{ 1 + \sum_{l=1}^{\tau_N(t) - k} (-\alpha_n)^l (1 + O(N^{-1})) \frac{1}{l!} t^l \mathbb{1}_E \right\} \sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \prod_{i=1}^k p_{r_i} + \left\{ c_N(\tau_N(t)) \exp[\alpha_n (1 + O(N^{-1}))(t+1)] + \left(\sum_{s=1}^{\tau_N(t)} c_N(s)^2 \right) \frac{1}{2} \alpha_n^2 \exp[\alpha_n (1 + O(N^{-1}))(t+1)] + \left(\sum_{s=1}^{\tau_N(t)} D_N(s) \right) \exp[\alpha_n (1 + O(N^{-1}))(t+1)(1 + B'_n)] \right\} \sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \prod_{i=1}^k p_{r_i} + \exp[\alpha_n (1 + O(N^{-1}))(1 + B'_n)(1 + B'_n) \sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \sum_{j=1}^k c_N(r_j) \prod_{i=1}^k p_{r_i}. \tag{40}$$

Applying the various bounds (37)–(39), we have

$$\sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \left(\prod_{i=1}^k p_{r_i} \right) \left(\prod_{\substack{r=1 \\ \not \in \{r_1, \dots, r_k\}}}^{\tau_N(t)} (1 - p_r) \right) \le \alpha_n^k (1 + O(N^{-1})) \left\{ 1 + \sum_{l=1}^{\tau_N(t) - k} (-\alpha_n)^l (1 + O(N^{-1})) \frac{1}{l!} t^l \mathbb{1}_E \right\} \sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \prod_{i=1}^k c_N(r_i) \left\{ \sum_{l=1}^{\tau_N(t)} D_N(s) \right\} \alpha_n^k (1 + O(N^{-1})) (t+1)^{k-1} (1 + B_n)^k \sum_{l=0}^{\tau_N(t)} (\alpha_n)^l (1 + O(N^{-1})) \frac{1}{l!} t^l \right\} \\
+ \left\{ c_N(\tau_N(t)) \exp[\alpha_n (1 + O(N^{-1})) (t+1)] + \left(\sum_{s=1}^{\tau_N(t)} c_N(s)^2 \right) \frac{1}{2} \alpha_n^2 \exp[\alpha_n (1 + O(N^{-1})) (t+1)] \right\} \\
+ \left(\sum_{s=1}^{\tau_N(t)} D_N(s) \right) \exp[\alpha_n (1 + O(N^{-1})) (t+1) (1 + B_n')] \right\} \alpha_n^k (1 + O(N^{-1})) (1 + B_n)^k \frac{1}{k!} (t+1)^k \\
+ \exp[\alpha_n (1 + B_n') (t+1)] \alpha_n (1 + B_n') \alpha_n^k (1 + O(N^{-1})) (1 + B_n)^k \\
\times \sum_{\substack{r_1 < \dots < r_k: \\ r_i < \tau_N(t_i) \forall i}} \sum_{j=1}^k c_N(r_j) \prod_{i=1}^k c_N(r_i). \tag{41}$$

Upon taking the expectation and limit, we have

$$\lim_{N \to \infty} \mathbb{E} \left[\sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \left(\prod_{i=1}^k p_{r_i} \right) \left(\prod_{\substack{r=1 \\ \ell \ne 1, \dots, r_k \}}}^{\tau_N(t)} (1 - p_r) \right) \right] \le \alpha_n^k \lim_{N \to \infty} \mathbb{E} \left[\left(1 + \sum_{l=1}^{\tau_N(t) - k} (-\alpha_n)^l \frac{1}{l!} t^l \mathbb{1}_E \right) \sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \prod_{i=1}^k c_N(r_i) \right] + \lim_{N \to \infty} \mathbb{E} \left[\sum_{s=1}^{\tau_N(t)} D_N(s) \right] \alpha_n^k (t+1)^{k-1} (1+B_n)^k \exp[\alpha_n t]$$

$$+ \left\{ \lim_{N \to \infty} \mathbb{E} \left[c_N(\tau_N(t)) \right] \exp[\alpha_n (t+1)] + \lim_{N \to \infty} \mathbb{E} \left[\sum_{s=1}^{\tau_N(t)} c_N(s)^2 \right] \frac{1}{2} \alpha_n^2 \exp[\alpha_n (t+1)] \right.$$

$$+ \lim_{N \to \infty} \mathbb{E} \left[\sum_{s=1}^{\tau_N(t)} D_N(s) \right] \exp[\alpha_n (t+1) (1+B_n')] \right\} \alpha_n^k (1+B_n)^k \frac{1}{k!} (t+1)^k$$

$$+ \exp[\alpha_n (1+B_n') (t+1)] \alpha_n^{k+1} (1+B_n') (1+B_n)^k \lim_{N \to \infty} \mathbb{E} \left[\sum_{r_1 < \dots < r_k: \atop r_i \le \tau_N(t_i) \forall i} \sum_{j=1}^k c_N(r_j) \prod_{i=1}^k c_N(r_i) \right]. \tag{42}$$

The middle terms vanish due to Brown et al. (2021, Equations (3.3)–(3.5)) and the expression becomes

$$\lim_{N \to \infty} \mathbb{E} \left[\sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \left(\prod_{i=1}^k p_{r_i} \right) \left(\prod_{\substack{r=1 \\ \notin \{r_1, \dots, r_k\}}}^{\tau_N(t)} (1 - p_r) \right) \right] \le \alpha_n^k \lim_{N \to \infty} \mathbb{E} \left[\sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \prod_{i=1}^k c_N(r_i) \right]$$

$$+ \alpha_n^k \sum_{l=1}^{\infty} (-\alpha_n)^l \frac{1}{l!} t^l \lim_{N \to \infty} \mathbb{E} \left[\mathbb{1}_{\{\tau_N(t) \ge k + l\}} \mathbb{1}_E \sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \prod_{i=1}^k c_N(r_i) \right]$$

$$+ \exp[\alpha_n (1 + B_n')(t+1)] \alpha_n^{k+1} (1 + B_n')(1 + B_n)^k \lim_{N \to \infty} \mathbb{E} \left[\sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \sum_{j=1}^k c_N(r_j) \prod_{i=1}^k c_N(r_i) \right]. \tag{43}$$

To simplify the last line,

$$\sum_{\substack{r_1 < \dots < r_k : \\ r_i \le \tau_N(t_i) \forall i}} \sum_{j=1}^k c_N(r_j) \prod_{i=1}^k c_N(r_i) \le \frac{1}{k!} \sum_{r_1 \ne \dots \ne r_k}^{\tau_N(t)} \sum_{j=1}^k c_N(r_j) \prod_{i=1}^k c_N(r_i)$$

$$= \frac{1}{k!} \sum_{r_1 \ne \dots \ne r_k}^{\tau_N(t)} \sum_{j=1}^k c_N(r_j)^2 \prod_{i \ne j} c_N(r_i)$$

$$\le \frac{1}{k!} \sum_{j=1}^k \sum_{s=1}^{\tau_N(t)} c_N(s)^2 \sum_{r_1 \ne \dots \ne r_{k-1}}^{\tau_N(t)} \prod_{i=1}^{k-1} c_N(r_i)$$

$$\le \frac{1}{(k-1)!} \sum_{s=1}^{\tau_N(t)} c_N(s)^2 (t+1)^{k-1}$$

$$(44)$$

hence

$$\lim_{N \to \infty} \mathbb{E} \left[\sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \sum_{s \in \{r_1, \dots, r_k\}} c_N(s) \prod_{i=1}^k c_N(r_i) \right] \le \frac{1}{(k-1)!} (t+1)^{k-1} \lim_{N \to \infty} \mathbb{E} \left[\sum_{s=1}^{\tau_N(t)} c_N(s)^2 \right] = 0$$
 (45)

by Brown et al. (2021, Equation (3.5)). By Lemmata 10 and 9, $\lim_{N\to\infty} \mathbb{P}[\{\tau_N(t)\geq k+l\}\cap E]=1$, so we can apply Lemma 7 to the remaining expectations in (43), yielding

$$\lim_{N \to \infty} \mathbb{E} \left[\sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \left(\prod_{i=1}^k p_{r_i} \right) \left(\prod_{\substack{r=1 \\ \notin \{r_1, \dots, r_k\}}}^{\tau_N(t)} (1 - p_r) \right) \right] \le \alpha_n^k \sum_{l=0}^{\infty} (-\alpha_n)^l \frac{1}{l!} t^l \sum_{\substack{i_1 \le \dots \le i_{k-1} \\ i_j \ge j \forall j}} \prod_{j=1}^k \frac{(t_j - t_{j-1})^{i_j - i_{j-1}}}{(i_j - i_{j-1})!}$$

$$= \alpha_n^k e^{-\alpha_n t} \sum_{\substack{i_1 \le \dots \le i_{k-1} \\ i_j \ge j \forall j}} \prod_{j=1}^k \frac{(t_j - t_{j-1})^{i_j - i_{j-1}}}{(i_j - i_{j-1})!}$$

$$= \alpha_n^k e^{-\alpha_n t} \sum_{\substack{i_1 \le \dots \le i_{k-1} \\ i_j \ge j \forall j}} \prod_{j=1}^k \frac{(t_j - t_{j-1})^{i_j - i_{j-1}}}{(i_j - i_{j-1})!}$$

$$(46)$$

as required.

Lemma 6 (Induction step lower bound). Fix $k \in \mathbb{N}$, $i_0 := 0$, $i_k := k$. For any sequence of times $0 = t_0 \le t_1 \le \cdots \le t_k \le t$,

$$\lim_{N \to \infty} \mathbb{E} \left[\sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \left(\prod_{i=1}^k p_{r_i} \right) \left(\prod_{\substack{r=1 \\ \notin \{r_1, \dots, r_k\}}}^{\tau_N(t)} (1 - p_r) \right) \right] \ge \alpha_n^k \sum_{l=0}^{\infty} \frac{1}{l!} (-\alpha_n)^l t^l \sum_{\substack{i_1 \le \dots \le i_{k-1} \\ \in \{0, \dots, k\}: \\ i_j \ge j \forall j}} \prod_{j=1}^k \frac{(t_j - t_{j-1})^{i_j - i_{j-1}}}{(i_j - i_{j-1})!}.$$

$$(47)$$

Proof. Firstly,

$$\sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \left(\prod_{i=1}^k p_{r_i} \right) \left(\prod_{\substack{r=1 \\ \notin \{r_1, \dots, r_k\}}}^{\tau_N(t)} (1 - p_r) \right) \ge \sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \left(\prod_{i=1}^k p_{r_i} \right) \left(\prod_{r=1}^{\tau_N(t)} (1 - p_r) \right). \tag{48}$$

Now the second product does not depend on r_1, \ldots, r_k , and we can use the lower bound from (30):

$$\prod_{r=1}^{\tau_N(t)} (1 - p_r) \ge \sum_{l=0}^{\tau_N(t)} (-\alpha_n)^l (1 + O(N^{-1})) \frac{1}{l!} t^l \mathbb{1}_E - \left(\sum_{s=1}^{\tau_N(t)} c_N(s)^2 \right) \frac{1}{2} \alpha_n^2 \exp[\alpha_n (1 + O(N^{-1}))(t+1)]
- c_N(\tau_N(t)) \exp[\alpha_n (1 + O(N^{-1}))(t+1)]
- \left(\sum_{s=1}^{\tau_N(t)} D_N(s) \right) \exp[\alpha_n (1 + O(N^{-1}))(t+1)(1+B_n)]$$
(49)

where E is defined as in (27). We will also need an upper bound on this product, which is formed from (23) with a further deterministic bound:

$$\prod_{r=1}^{\tau_N(t)} (1 - p_r) \leq \sum_{l=0}^{\tau_N(t)} (-\alpha_n)^l (1 + O(N^{-1})) \frac{1}{l!} t^l + c_N(\tau_N(t)) \exp[\alpha_n (1 + O(N^{-1}))(t+1)]
+ \left(\sum_{s=1}^{\tau_N(t)} c_N(s)^2 \right) \frac{1}{2} \alpha_n^2 \exp[\alpha_n (1 + O(N^{-1}))(t+1)]
+ \left(\sum_{s=1}^{\tau_N(t)} D_N(s) \right) \exp[\alpha_n (1 + O(N^{-1}))(t+1)(1 + B'_n)]
\leq \exp[\alpha_n (1 + O(N^{-1}))t] + \exp[\alpha_n (1 + O(N^{-1}))(t+1)]
+ \frac{1}{2} \alpha_n^2 (t+1) \exp[\alpha_n (1 + O(N^{-1}))(t+1)] + (t+1) \exp[\alpha_n (1 + O(N^{-1}))(t+1)(1 + B'_n)]
\leq \left(2 + \frac{\alpha_n^2 (t+1)}{2} \right) \exp[\alpha_n (1 + O(N^{-1}))(t+1)] + (t+1) \exp[\alpha_n (1 + O(N^{-1}))(t+1)(1 + B'_n)]. \quad (50)$$

Now let us consider the remaining sum-product on the RHS of (48). We use the same bound on p_r as in (18):

$$p_r = 1 - p_{\Delta\Delta}(r) \ge \alpha_n (1 + O(N^{-1})) \left[c_N(r) - B_n' D_N(r) \right]$$
(51)

where the $O(N^{-1})$ term does not depend on r. When N is large enough for the factor of $(1 + O(N^{-1}))$ to be non-negative, a sufficient condition to ensure the bound in (51) is non-negative is the event

$$E'_r := \{c_N(r) \ge B'_n D_N(r)\} \tag{52}$$

and we define $E' := \bigcap_{r=1}^{\tau_N(t)} E'_r$. Then

$$\prod_{i=1}^{k} p_{r_i} \ge \alpha_n^k (1 + O(N^{-1})) \prod_{i=1}^{k} \left[c_N(r_i) - B_n' D_N(r_i) \right] \mathbb{1}_{E'}.$$
(53)

Applying a modification of Lemma 3,

$$\sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \left(\prod_{i=1}^k p_{r_i} \right) \ge \alpha_n^k (1 + O(N^{-1})) \sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \prod_{i=1}^k \left[c_N(r_i) - B'_n D_N(r_i) \right] \mathbb{1}_{E'}$$

$$\ge \alpha_n^k (1 + O(N^{-1})) \left\{ \sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \prod_{i=1}^k c_N(r_i) \mathbb{1}_{E'} - \frac{1}{k!} \left(\sum_{s=1}^{\tau_N(t_i)} D_N(s) \right) (t+1)^{k-1} (1 + B'_n)^k \right\}. \tag{54}$$

The above expression is already split into positive and negative terms; a lower bound on (48) can be formed by multiplying the positive terms by the lower bound (49) and the negative terms by the upper bound (50). Thus

$$\sum_{\substack{r_1 < \dots < r_k : \\ r_i \le \tau_N(t_i) \forall i}} \left(\prod_{i=1}^k p_{r_i} \right) \left(\prod_{\substack{r=1 \\ \neq \{r_1, \dots, r_k\}}}^{\tau_N(t)} (1 - p_r) \right) \ge \alpha_n^k (1 + O(N^{-1})) \sum_{\substack{r_1 < \dots < r_k : \\ r_i \le \tau_N(t_i) \forall i}} \prod_{i=1}^k c_N(r_i) \mathbb{1}_{E'} \left\{ \sum_{t=1}^k (1 - p_t) \left(-\alpha_n \right)^t (1 + O(N^{-1})) \frac{1}{t!} t^t \mathbb{1}_{E} \right\} - \left(\sum_{t=1}^{\tau_N(t)} c_N(s)^2 \right) \frac{1}{2} \alpha_n^2 \exp[\alpha_n (1 + O(N^{-1}))(t+1)] - c_N(\tau_N(t)) \exp[\alpha_n (1 + O(N^{-1}))(t+1)] - \left(\sum_{t=1}^{\tau_N(t)} D_N(s) \right) \exp[\alpha_n (1 + O(N^{-1}))(t+1)(1 + B_n)] \right\} - \left(\sum_{t=1}^{\tau_N(t)} D_N(s) \right) \alpha_n^k (1 + O(N^{-1})) \frac{1}{k!} (t+1)^{k-1} (1 + B_n')^k \left\{ \left(2 + \frac{\alpha_n^2(t+1)}{2} \right) \exp[\alpha_n (1 + O(N^{-1}))(t+1)] + (t+1) \exp[\alpha_n (1 + O(N^{-1}))(t+1)(1 + B_n')] \right\}. \tag{55}$$

Due to Brown et al. (2021, Equations (3.3)–(3.5)), all but the first two lines in the above have vanishing expectation,

leaving

$$\lim_{N \to \infty} \mathbb{E} \left[\sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \left(\prod_{i=1}^k p_{r_i} \right) \left(\prod_{\substack{r=1 \\ \not \in \{r_1, \dots, r_k\}}}^{\tau_N(t)} (1 - p_r) \right) \right] \\
\ge \lim_{N \to \infty} \mathbb{E} \left[\alpha_n^k (1 + O(N^{-1})) \sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \prod_{i=1}^k c_N(r_i) \mathbb{1}_{E'} \sum_{l=0}^{\tau_N(t)} (-\alpha_n)^l (1 + O(N^{-1})) \frac{1}{l!} t^l \mathbb{1}_{E} \right] \\
= \alpha_n^k \sum_{l=0}^{\infty} (-\alpha_n)^l \frac{1}{l!} t^l \lim_{N \to \infty} \mathbb{E} \left[\mathbb{1}_{\{\tau_N(t) \ge l\}} \mathbb{1}_{E \cap E'} \sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \prod_{i=1}^k c_N(r_i) \right] \tag{56}$$

Lemmata 9 and 12 establish that $\lim_{N\to\infty} \mathbb{P}[E\cap E']=1$ and Lemma 10 deals with the other indicator. We can therefore apply Lemma 7 to conclude that

$$\lim_{N \to \infty} \mathbb{E} \left[\sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \left(\prod_{i=1}^k p_{r_i} \right) \left(\prod_{\substack{r=1 \\ \notin \{r_1, \dots, r_k\}}}^{\tau_N(t)} (1 - p_r) \right) \right] \ge \alpha_n^k \sum_{l=0}^{\infty} (-\alpha_n)^l \frac{1}{l!} t^l \sum_{\substack{i_1 \le \dots \le i_{k-1} \\ i_j \ge j \forall j}} \prod_{j=1}^k \frac{(t_j - t_{j-1})^{i_j - i_{j-1}}}{(i_j - i_{j-1})!}$$

$$= \alpha_n^k e^{-\alpha_n t} \sum_{\substack{i_1 \le \dots \le i_{k-1} \\ i_j \ge j \forall j}} \prod_{j=1}^k \frac{(t_j - t_{j-1})^{i_j - i_{j-1}}}{(i_j - i_{j-1})!}$$

$$(57)$$

as required.

Lemma 7. Fix $k \in \mathbb{N}$, $i_0 := 0$, $i_k := k$. Let E be any event independent of r_1, \ldots, r_k such that $\lim_{N \to \infty} \mathbb{P}[E] = 1$. Then for any sequence of times $0 = t_0 \le t_1 \le \cdots \le t_k \le t$,

$$\lim_{N \to \infty} \mathbb{E} \left[\mathbb{1}_{E} \sum_{\substack{r_{1} < \dots < r_{k}: \\ r_{i} \le \tau_{N}(t_{i}) \forall i}} \prod_{i=1}^{k} c_{N}(r_{i}) \right] = \sum_{\substack{i_{1} \le \dots \le i_{k-1} \\ \in \{0, \dots, k\}: \\ i_{j} \ge j \forall j}} \prod_{j=1}^{k} \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!}.$$
 (58)

Proof. As pointed out by Möhle (1999, p. 460), the sum-product on the left hand side can be expanded as

$$\sum_{\substack{r_1 < \dots < r_k: \\ r_i \le \tau_N(t_i) \forall i}} \prod_{i=1}^k c_N(r_i) = \sum_{\substack{i_1 \le \dots \le i_{k-1} \\ \in \{0,\dots,k\}: \\ i_i > j \forall i}} \prod_{j=1}^k \sum_{\substack{r_{i_{j-1}+1} < \dots < r_{i_j} \\ =\tau_N(t_{j-1})+1}}^{\tau_N(t_j)} \prod_{i=i_{j-1}+1}^{i_j} c_N(r_i).$$
(59)

Moreover,

$$\sum_{\substack{r_{i_{j-1}+1} < \dots < r_{i_j} \\ = \tau_N(t_{j-1}) + 1}}^{\tau_N(t_j)} \prod_{i=i_{j-1}+1}^{i_j} c_N(r_i) = \frac{1}{(i_j - i_{j-1})!} \sum_{\substack{r_{i_{j-1}+1} \neq \dots \neq r_{i_j} \\ = \tau_N(t_{j-1}) + 1}}^{\tau_N(t_j)} \prod_{i=i_{j-1}+1}^{i_j} c_N(r_i).$$

$$(60)$$

By a modification of the upper bound in Lemma 1,

$$\sum_{\substack{r_{i_{j-1}+1}\neq\dots\neq r_{i_{j}}\\ =\tau_{N}(t_{j-1})+1}}^{\tau_{N}(t_{j})} \prod_{i=i_{j-1}+1}^{i_{j}} c_{N}(r_{i}) \leq (t_{j}-t_{j-1})^{i_{j}-i_{j-1}} + c_{N}(\tau_{N}(t_{j}))(t_{j}-t_{j-1}+1)^{i_{j}-i_{j-1}}$$

$$\leq (t_{j}-t_{j-1})^{i_{j}-i_{j-1}} + c_{N}(\tau_{N}(t_{j}))(t_{j}-t_{j-1}+1)^{k}. \tag{61}$$

Now, taking the product on the outside,

$$\prod_{j=1}^{k} \sum_{\substack{r_{i_{j-1}+1} < \dots < r_{i_{j}} \\ = \tau_{N}(t_{j-1}) + 1}}^{\tau_{N}(t_{j})} \prod_{i=i_{j-1}+1}^{i_{j}} c_{N}(r_{i}) \leq \prod_{j=1}^{k} \left\{ \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!} + c_{N}(\tau_{N}(t_{j})) \frac{(1 + t_{j} - t_{j-1})^{k}}{(i_{j} - i_{j-1})!} \right\} \\
\leq \prod_{j=1}^{k} \left\{ \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!} + c_{N}(\tau_{N}(t_{j}))(1 + t_{j} - t_{j-1})^{k} \right\} \\
= \sum_{\mathcal{I} \subseteq [k]} \left(\prod_{j \in \mathcal{I}} \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!} \right) \left(\prod_{j \notin \mathcal{I}} c_{N}(\tau_{N}(t_{j}))(1 + t_{j} - t_{j-1})^{k} \right) \\
= \prod_{j=1}^{k} \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!} \\
+ \sum_{\mathcal{I} \subset [k]} \left(\prod_{j \in \mathcal{I}} \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!} \right) \left(\prod_{j \notin \mathcal{I}} c_{N}(\tau_{N}(t_{j}))(1 + t_{j} - t_{j-1})^{k} \right) \\
\leq \prod_{j=1}^{k} \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!} \\
+ \sum_{\mathcal{I} \subset [k]} c_{N}(\tau_{N}(t_{j})) \left(\prod_{j \in \mathcal{I}} \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!} \right) (1 + t_{j} - t_{j-1})^{k^{2}}$$

$$(62)$$

where, say, $j^* := \min\{j \notin \mathcal{I}\}$. Now we are in a position to evaluate the limit in (58):

$$\lim_{N \to \infty} \mathbb{E} \left[\mathbb{I}_{E} \sum_{\substack{r_{1} < \dots < r_{k}: \\ r_{i} \le \tau_{N}(t_{i}) \forall i}} \prod_{i=1}^{k} c_{N}(r_{i}) \right] \le \lim_{N \to \infty} \mathbb{E} \left[\sum_{\substack{r_{1} < \dots < r_{k}: \\ r_{i} \le \tau_{N}(t_{i}) \forall i}} \prod_{i=1}^{k} c_{N}(r_{i}) \right]$$

$$\le \sum_{\substack{i_{1} \le \dots \le i_{k-1} \\ i_{j} \ge j \forall j}} \prod_{j=1}^{k} \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!}$$

$$+ \sum_{\substack{i_{1} \le \dots \le i_{k-1} \\ i_{j} \ge j \forall j}} \sum_{j=1} \sum_{\substack{N \to \infty \\ i_{j} \ge j \forall j}} \lim_{N \to \infty} \mathbb{E} \left[c_{N}(\tau_{N}(t_{j^{*}})) \right] \left(\prod_{j \in \mathcal{I}} \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!} \right) (1 + t_{j} - t_{j-1})^{k^{2}}$$

$$= \sum_{\substack{i_{1} \le \dots \le i_{k-1} \\ i_{j} \ni \forall j}} \prod_{j=1}^{k} \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!}$$

$$= \sum_{\substack{i_{1} \le \dots \le i_{k-1} \\ i_{j} \ni \forall j}} \prod_{j=1}^{k} \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!}$$

$$(63)$$

using Brown et al. (2021, Equation (3.3)).

For the corresponding lower bound, by a modification of the lower bound in Lemma 1,

$$\sum_{\substack{r_{i_{j-1}+1}\neq\cdots\neq r_{i_{j}}\\ =\tau_{N}(t_{j-1})+1}}^{\tau_{N}(t_{j})} \prod_{i=i_{j-1}+1}^{i_{j}} c_{N}(r_{i}) \geq (t_{j}-t_{j-1})^{i_{j}-i_{j-1}} - \binom{i_{j}-i_{j-1}}{2} \left(\sum_{s=\tau_{N}(t_{j-1})+1}^{\tau_{N}(t_{j})} c_{N}(s)^{2}\right) (t_{j}-t_{j-1}+1)^{i_{j}-i_{j-1}-2} \\
\geq (t_{j}-t_{j-1})^{i_{j}-i_{j-1}} - (i_{j}-i_{j-1})! \left(\sum_{s=\tau_{N}(t_{j-1})+1}^{\tau_{N}(t_{j})} c_{N}(s)^{2}\right) (t_{j}-t_{j-1}+1)^{k-1}.$$
(64)

Define the event

$$E_j^{\star} = \left\{ \left(\sum_{s=\tau_N(t_{j-1})+1}^{\tau_N(t_j)} c_N(s)^2 \right) \le \frac{(t_j - t_{j-1})^{i_j - i_{j-1} - k + 1}}{(i_j - i_{j-1})!} \right\},\tag{65}$$

(If $t_j = t_{j-1}$ then E_j^* has probability 1 even without the limit; otherwise this is in the right form for Lemma 11.) which is sufficient to ensure the j^{th} term in the following product is non-negative, and define $E^* := \bigcap_{j=1}^k E_j^*$. Now, taking a product over j,

$$\begin{split} \prod_{j=1}^{k} \sum_{\substack{r_{i_{j-1}+1} < \dots < r_{i_{j}} \\ = \tau_{N}(t_{j-1}) + 1}}^{\tau_{N}(t_{j})} \prod_{i=i_{j-1}+1}^{i_{j}} c_{N}(r_{i}) &\geq \prod_{j=1}^{k} \left\{ \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!} - \left(\sum_{s = \tau_{N}(t_{j-1}) + 1}^{\tau_{N}(t_{j})} c_{N}(s)^{2} \right) (t_{j} - t_{j-1} + 1)^{k-1} \right\} \mathbb{1}_{E^{*}} \\ &= \sum_{T \subseteq [k]} (-1)^{k-|T|} \left(\prod_{j \in T} \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!} \right) \left(\prod_{j \notin T} \left(\sum_{s = \tau_{N}(t_{j-1}) + 1}^{\tau_{N}(t_{j})} c_{N}(s)^{2} \right) (t_{j} - t_{j-1} + 1)^{k-1} \right) \mathbb{1}_{E^{*}} \\ &= \prod_{j=1}^{k} \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!} \mathbb{1}_{E^{*}} \\ &+ \sum_{T \subseteq [k]} (-1)^{k-|T|} \left(\prod_{j \in T} \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!} \right) \left(\prod_{j \notin T} \left(\sum_{s = \tau_{N}(t_{j-1}) + 1}^{\tau_{N}(t_{j})} c_{N}(s)^{2} \right) (t_{j} - t_{j-1} + 1)^{k-1} \right) \mathbb{1}_{E^{*}} \\ &\geq \prod_{j=1}^{k} \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!} \mathbb{1}_{E^{*}} \\ &- \sum_{T \subseteq [k]} \left(\prod_{j \in T} \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!} \mathbb{1}_{E^{*}} \\ &- \sum_{T \subseteq [k]} \left(\sum_{s = \tau_{N}(t_{j^{*} - 1}) + 1}^{\tau_{N}(t_{j^{*} - 1})} c_{N}(s)^{2} \right) \left(\prod_{j \notin T} (t_{j} - t_{j-1} + 1)^{k} \right) \\ &\geq \prod_{j=1}^{k} \frac{(t_{j} - t_{j-1})^{i_{j} - i_{j-1}}}{(i_{j} - i_{j-1})!} \mathbb{1}_{E^{*}} - \sum_{T \subseteq [k]} \left(\sum_{s = \tau_{N}(t_{j^{*} - 1}) + 1}^{\tau_{N}(t_{j^{*} - 1}) + 1} c_{N}(s)^{2} \right) (t_{j} - t_{j-1} + 1)^{k^{2}}, \tag{66} \end{split}$$

where again we have arbitrarily set $j^* := \min\{j \notin \mathcal{I}\}$. We can now evaluate the limit:

$$\lim_{N\to\infty} \mathbb{E}\left[\mathbb{1}_{E} \sum_{\substack{r_{1}<\dots< r_{k}\\r_{i}\leq r_{N}(t_{i})\forall i}} \prod_{i=1}^{k} c_{N}(r_{i})\right] \geq \lim_{N\to\infty} \mathbb{E}\left[\mathbb{1}_{E\cap E^{*}} \sum_{\substack{i_{1}\leq\dots< i_{k-1}\\i_{2}\geq j\neq j}} \prod_{j=1}^{k} \frac{(t_{j}-t_{j-1})^{i_{j}-i_{j-1}}}{(i_{j}-i_{j-1})!}\right]$$

$$-\lim_{N\to\infty} \mathbb{E}\left[\mathbb{1}_{E} \sum_{\substack{i_{1}\leq\dots< i_{k-1}\\i_{2}\geq j\neq j}} \sum_{j=1}^{k} \sum_{\substack{r_{1}\leq\dots< i_{k-1}\\i_{2}\geq j\neq j}} \sum_{l_{2}\geq k} \left(\sum_{s=r_{N}(t_{j^{*}-1})+1}^{r_{N}(t_{j^{*}})} c_{N}(s)^{2}\right) (t_{j}-t_{j-1}+1)^{k^{2}}\right]$$

$$\geq \sum_{\substack{i_{1}\leq\dots< i_{k-1}\\i_{2}\geq j\neq j}} \prod_{j=1}^{k} \frac{(t_{j}-t_{j-1})^{i_{j}-i_{j-1}}}{(i_{j}-i_{j-1})!} \lim_{N\to\infty} \mathbb{E}\left[\mathbb{1}_{E\cap E^{*}}\right]$$

$$-\lim_{N\to\infty} \mathbb{E}\left[\sum_{\substack{i_{1}\leq\dots< i_{k-1}\\i_{2}\geq j\neq j}} \sum_{j=1}^{r_{N}} \sum_{\substack{r_{1}\leq \dots< i_{k-1}\\i_{2}\geq j\neq j}} \sum_{l_{1}\geq j\neq j} \sum_{r_{1}\leq n} \sum_{r_{1}\leq n} \sum_{r_{1}\leq n} \mathbb{E}\left[\sum_{s=r_{N}(t_{j^{*}-1})+1} c_{N}(s)^{2}\right) (t_{j}-t_{j-1}+1)^{k^{2}}\right]$$

$$= \sum_{\substack{i_{1}\leq\dots< i_{k-1}\\i_{2}\geq j\neq j}} \prod_{j=1}^{k} \frac{(t_{j}-t_{j-1})^{i_{j}-i_{j-1}}}{(i_{j}-i_{j-1})!} \lim_{N\to\infty} \mathbb{E}\left[\sum_{s=r_{N}(t_{j^{*}-1})+1} c_{N}(s)^{2}\right] (t_{j}-t_{j-1}+1)^{k^{2}}$$

$$= \sum_{\substack{i_{1}\leq\dots< i_{k-1}\\i_{2}\geq j\neq j}} \prod_{j=1}^{k} \frac{(t_{j}-t_{j-1})^{i_{j}-i_{j-1}}}{(i_{j}-i_{j-1})!} c_{N}(s)^{2}} (t_{j}-t_{j-1}+1)^{k^{2}}$$

$$= \sum_{\substack{i_{1}\leq\dots< i_{k-1}\\i_{2}\geq N\neq j}} \prod_{j=1}^{k} \frac{(t_{j}-t_{j-1})^{i_{j}-i_{j-1}}}{(i_{j}-i_{j-1})!} (t_{j}-t_{j-1})!} c_{N}(s)^{2}$$

$$= \sum_{\substack{i_{1}\leq\dots< i_{k-1}\\i_{2}\geq N\neq j}} \prod_{j=1}^{k} \frac{(t_{j}-t_{j-1})^{i_{j}-i_{j-1}}}{(i_{j}-i_{j-1})!} (t_{j}-t_{j-1})!} c_{N}(s)^{2}$$

where for the last equality we use Brown et al. (2021, Equation (3.5)) to show that the second sum vanishes and Lemma 11 to show that $\lim_{N\to\infty} \mathbb{P}[E\cap E^*] = 1$. We have shown that the upper and lower bounds coincide, so the result follows.

Indicators

Lemma 8. Let A, B be events. If $\lim \mathbb{P}[A] = 1$ and $\lim \mathbb{P}[B] = 1$ then $\lim \mathbb{P}[A \cap B] = 1$.

The above might be so obvious as to go unstated, but it is very important because it means we don't have to deal with intersections of dependent events!

Lemma 9. Let K > 0 be a constant which may depend on n, N but not on r, such that $K^{-2} = O(1)$ as $N \to \infty$. Define the events $E_r := \{c_N(r) < K\}$ and denote $E := \bigcap_{r=1}^{\tau_N(t)} E_r$. Then $\lim_{N \to \infty} \mathbb{P}[E] = 1$.

Proof.

$$\mathbb{P}[E] = 1 - \mathbb{P}[E^c] = 1 - \mathbb{P}\left[\bigcup_{r=1}^{\tau_N(t)} E_r^c\right] = 1 - \mathbb{E}\left[\mathbb{1}_{\bigcup E_r^c}\right] \ge 1 - \mathbb{E}\left[\sum_{r=1}^{\tau_N(t)} \mathbb{1}_{E_r^c}\right]$$

$$= 1 - \mathbb{E}\left[\sum_{r=1}^{\tau_N(t)} \mathbb{E}\left[\mathbb{1}_{E_r^c} \mid \mathcal{F}_{r-1}\right]\right] = 1 - \mathbb{E}\left[\sum_{r=1}^{\tau_N(t)} \mathbb{P}\left[E_r^c \mid \mathcal{F}_{r-1}\right]\right] \tag{68}$$

where for the second line we apply Lemma 13 with $f(r) = \mathbb{1}_{E_r^c}$. By the generalised Markov inequality,

$$\mathbb{P}[E_r^c \mid \mathcal{F}_{r-1}] = \mathbb{P}[c_N(r) \ge K \mid \mathcal{F}_{r-1}] \le K^{-2} \mathbb{E}[c_N(r)^2 \mid \mathcal{F}_{r-1}]. \tag{69}$$

Substituting this into (68) and applying Lemma 13 again, this time with $f(r) = c_N(r)^2$,

$$\mathbb{P}[E] \ge 1 - K^{-2} \mathbb{E} \left[\sum_{r=1}^{\tau_N(t)} \mathbb{E}[c_N(r)^2 \mid \mathcal{F}_{r-1}] \right] = 1 - K^{-2} \mathbb{E} \left[\sum_{r=1}^{\tau_N(t)} c_N(r)^2 \right].$$
 (70)

Applying Brown et al. (2021, Equation (3.5)), the limit is

$$\lim_{N \to \infty} \mathbb{P}[E] = 1 - O(1) \times 0 = 1 \tag{71}$$

as required.

Lemma 10. Fix t > 0. For any $l \in \mathbb{N}$, $\lim_{N \to \infty} \mathbb{P}[\tau_N(t) \ge l] = 1$.

Proof. We can replace the event $\{\tau_N(t) \geq l\}$ with an event of the form of E in Lemma 9:

$$\{\tau_N(t) \ge l\} = \left\{ \min \left\{ s \ge 1 : \sum_{r=1}^s c_N(r) \ge t \right\} \ge l \right\} = \left\{ \sum_{r=1}^{l-1} c_N(r) < t \right\} \supseteq \bigcap_{r=1}^{l-1} \left\{ c_N(r) < \frac{t}{l} \right\} \supseteq \bigcap_{r=1}^{\tau_N(t)} \left\{ c_N(r) < \frac{t}{l} \right\}. \tag{72}$$

Hence

$$\lim_{N \to \infty} \mathbb{P}[\tau_N(t) \ge l] \ge \lim_{N \to \infty} \mathbb{P}\left[\bigcap_{r=1}^{\tau_N(t)} \left\{ c_N(r) < \frac{t}{l} \right\} \right] = 1$$
 (73)

by applying Lemma 9 with K = t/l.

Lemma 11. Fix $k \in \mathbb{N}$, a sequence of times $0 = t_0 \le t_1 \le \cdots \le t_k \le t$, and let K_1, \ldots, K_k be strictly positive constants such that for each j, $K_j^{-1} = O(1)$ as $N \to \infty$. Define the event

$$E^* := \bigcap_{j=1}^k \left\{ \sum_{s=\tau_N(t_{j-1})+1}^{\tau_N(t_j)} c_N(s)^2 \le K_j \right\}.$$
 (74)

Then $\lim_{N\to\infty} \mathbb{P}[E^{\star}] = 1$.

Proof.

$$\mathbb{P}[E^{\star}] = 1 - \mathbb{P}[(E^{\star})^{c}] = 1 - \mathbb{P}\left[\bigcup_{j=1}^{k} \left\{ \sum_{s=\tau_{N}(t_{j-1})+1}^{\tau_{N}(t_{j})} c_{N}(s)^{2} > K_{j} \right\} \right] \ge 1 - \sum_{j=1}^{k} \mathbb{P}\left[\sum_{s=\tau_{N}(t_{j-1})+1}^{\tau_{N}(t_{j})} c_{N}(s)^{2} \ge K_{j} \right]. \quad (75)$$

Applying Markov's inequality,

$$\mathbb{P}[E^{\star}] \ge 1 - \sum_{j=1}^{k} K_j^{-1} \mathbb{E} \left[\sum_{s=\tau_N(t_{j-1})+1}^{\tau_N(t_j)} c_N(s)^2 \right] \xrightarrow[N \to \infty]{} 1 - \sum_{j=1}^{k} O(1) \times 0 = 1$$
 (76)

by Brown et al. (2021, Equation (3.5)).

Lemma 12. Fix t > 0. Let K be a constant not depending on N, r, but which may depend on n.

$$\lim_{N \to \infty} \mathbb{P} \left[\bigcap_{r=1}^{\tau_N(t)} \left\{ c_N(r) \ge K D_N(r) \right\} \right] = 1.$$
 (77)

Proof.

$$\mathbb{P}\left[\bigcap_{r=1}^{\tau_{N}(t)} \left\{c_{N}(r) \geq KD_{N}(r)\right\}\right] \geq \mathbb{P}\left[\bigcap_{r=1}^{\tau_{N}(t)} \left\{c_{N}(r) > KD_{N}(r)\right\}\right] \\
= 1 - \mathbb{P}\left[\bigcup_{r=1}^{\tau_{N}(t)} \left\{c_{N}(r) \leq KD_{N}(r)\right\}\right] \\
= 1 - \mathbb{E}\left[\mathbb{1}_{\bigcup\left\{c_{N}(r) \leq KD_{N}(r)\right\}}\right] \\
\geq 1 - \mathbb{E}\left[\sum_{r=1}^{\tau_{N}(t)} \mathbb{1}_{\left\{c_{N}(r) \leq KD_{N}(r)\right\}}\right] \\
= 1 - \mathbb{E}\left[\sum_{r=1}^{\tau_{N}(t)} \mathbb{P}[c_{N}(r) \leq KD_{N}(r) \mid \mathcal{F}_{r-1}]\right] \tag{78}$$

where the final inequality is an application of Lemma 13 with $f(r) = \mathbb{1}_{\{c_N(r) \le KD_N(r)\}}$.

Fix $0 < \varepsilon < K^{-1}/2$ and assume $N > \max\{\varepsilon^{-1}, (K^{-1} - 2\varepsilon)^{-1}\}$. For each r, i define the event $A_i(r) := \{\nu_r^{(i)} \le N\varepsilon\}$. Conditional on \mathcal{F}_{r-1} , we have

$$D_N(r) = \frac{1}{N(N)_2} \sum_{i=1}^{N} (\nu_r^{(j)})_2 \left[\nu_r^{(i)} + \frac{1}{N} \sum_{j \neq i} (\nu_r^{(i)})^2 \right] \mathbb{1}_{A_i^c(r)} + \frac{1}{N(N)_2} \sum_{i=1}^{N} (\nu_r^{(i)})_2 \left[\nu_r^{(i)} + \frac{1}{N} \sum_{j \neq i} (\nu_r^{(j)})^2 \right] \mathbb{1}_{A_i(r)}.$$
 (79)

For the first term,

$$\frac{1}{N(N)_2} \sum_{i=1}^{N} (\nu_r^{(i)})_2 \left[\nu_r^{(i)} + \frac{1}{N} \sum_{j \neq i} (\nu_r^{(j)})^2 \right] \mathbb{1}_{A_i^c(r)} \le \sum_{i=1}^{N} \mathbb{1}_{A_i^c(r)}.$$
 (80)

For the second term,

$$\frac{1}{N(N)_{2}} \sum_{i=1}^{N} (\nu_{r}^{(i)})_{2} \left[\nu_{r}^{(i)} + \frac{1}{N} \sum_{j \neq i} (\nu_{r}^{(j)})^{2} \right] \mathbb{1}_{A_{i}(r)} \leq \frac{1}{N(N)_{2}} \sum_{i=1}^{N} (\nu_{r}^{(i)})_{2} \nu_{r}^{(i)} \mathbb{1}_{A_{i}(r)} + \frac{1}{N^{2}(N)_{2}} \sum_{i=1}^{N} (\nu_{r}^{(i)})_{2} \sum_{j=1}^{N} (\nu_{r}^{(j)})^{2} \mathbb{1}_{A_{i}(r)} \\
\leq \frac{1}{N} c_{N}(r) N \varepsilon + \frac{1}{N^{2}(N)_{2}} \sum_{i=1}^{N} (\nu_{r}^{(i)})_{2} \sum_{j=1}^{N} (\nu_{r}^{(j)})_{2} \mathbb{1}_{A_{i}(r)} \\
+ \frac{1}{N^{2}(N)_{2}} \sum_{i=1}^{N} (\nu_{r}^{(i)})_{2} \sum_{j=1}^{N} (\nu_{r}^{(j)}) \mathbb{1}_{A_{i}(r)} \\
\leq \varepsilon c_{N}(r) + \frac{1}{N^{2}} \sum_{i=1}^{N} \nu_{r}^{(i)} N \varepsilon c_{N}(r) + \frac{1}{N^{2}} c_{N}(r) N \\
= c_{N}(r) \left(2\varepsilon + \frac{1}{N} \right). \tag{81}$$

Altogether we have

$$D_N(r) \le c_N(r) \left(2\varepsilon + \frac{1}{N}\right) + \sum_{i=1}^N \mathbb{1}_{A_i^c(r)}.$$
 (82)

Hence, still conditional on \mathcal{F}_{r-1} ,

$$\{c_{N}(r) \leq KD_{N}(r)\} \subseteq \left\{c_{N}(r) \leq Kc_{N}(r)(2\varepsilon + N^{-1}) + K\sum_{i=1}^{N} \mathbb{1}_{A_{i}^{c}(r)}\right\}$$

$$= \left\{K^{-1} - 2\varepsilon - \frac{1}{N} \leq \sum_{i=1}^{N} \frac{\mathbb{1}_{A_{i}^{c}(r)}}{c_{N}(r)}\right\}$$
(83)

where the ratio $\mathbb{1}_{A_i^c(r)}/c_N(r)$ is well-defined because

$$A_{i}^{c}(r) \Rightarrow c_{N}(r) := \frac{1}{(N)_{2}} \sum_{j=1}^{N} (\nu_{r}^{(j)})_{2} \ge \frac{1}{(N)_{2}} (\nu_{r}^{(i)})_{2} \ge \frac{\varepsilon(N\varepsilon - 1)}{N - 1} \ge \varepsilon \left(\varepsilon - \frac{1}{N}\right) > 0.$$
 (84)

Hence by Markov's inequality (the conditions on ε , N ensuring the constant is always strictly positive),

$$\mathbb{P}\left[c_{N}(r) \leq KD_{N}(r) \mid \mathcal{F}_{r-1}\right] \leq \mathbb{P}\left[\sum_{i=1}^{N} \mathbb{1}_{A_{i}^{c}(r)} \geq \left(K^{-1} - 2\varepsilon - \frac{1}{N}\right) \varepsilon \left(\varepsilon - \frac{1}{N}\right) \middle| \mathcal{F}_{r-1}\right] \\
\leq \frac{1}{\left(K^{-1} - 2\varepsilon - \frac{1}{N}\right) \varepsilon \left(\varepsilon - \frac{1}{N}\right)} \mathbb{E}\left[\sum_{i=1}^{N} \mathbb{1}_{A_{i}^{c}(r)} \middle| \mathcal{F}_{r-1}\right] \\
\leq \frac{1}{\left(K^{-1} - 2\varepsilon - \frac{1}{N}\right) \varepsilon \left(\varepsilon - \frac{1}{N}\right)} \mathbb{E}\left[\sum_{i=1}^{N} \frac{(\nu_{r}^{(i)})_{3}}{(N\varepsilon)_{3}} \middle| \mathcal{F}_{r-1}\right] \\
\leq \frac{1}{\left(K^{-1} - 2\varepsilon - \frac{1}{N}\right) \varepsilon \left(\varepsilon - \frac{1}{N}\right)} \mathbb{E}\left[\frac{N(N)_{2}}{(N\varepsilon)_{3}} D_{N}(r) \middle| \mathcal{F}_{r-1}\right]. \tag{85}$$

Applying Lemma 13 once more, with $f(r) = D_N(r)$,

$$\mathbb{E}\left[\sum_{r=1}^{\tau_{N}(t)} \mathbb{P}[c_{N}(r) \leq KD_{N}(r) \mid \mathcal{F}_{r-1}]\right] \leq \frac{1}{\left(K^{-1} - 2\varepsilon - \frac{1}{N}\right)\varepsilon\left(\varepsilon - \frac{1}{N}\right)} \frac{N(N)_{2}}{(N\varepsilon)_{3}} \mathbb{E}\left[\sum_{r=1}^{\tau_{N}(t)} \mathbb{E}[D_{N}(r) \mid \mathcal{F}_{r-1}]\right] \\
= \frac{1}{\left(K^{-1} - 2\varepsilon - \frac{1}{N}\right)\varepsilon\left(\varepsilon - \frac{1}{N}\right)} \frac{N(N)_{2}}{(N\varepsilon)_{3}} \mathbb{E}\left[\sum_{r=1}^{\tau_{N}(t)} D_{N}(r)\right] \\
\xrightarrow[N \to \infty]{} \frac{1}{(K^{-1} - 2\varepsilon)\varepsilon^{5}} \times 0 = 0. \tag{86}$$

Substituting this back into (78) concludes the proof.

Other useful results

The following Lemma is taken from Koskela et al. (2018, Lemma 2), where the function is set to $f(r) = c_N(r)$, but the authors remark that the result holds for other choices of function.

Lemma 13. Fix t > 0. Let (\mathcal{F}_r) be the backwards-in-time filtration generated by the offspring counts $\nu_r^{(1:N)}$ at each generation r, and let f(r) be any deterministic function of $\nu_r^{(1:N)}$ that is non-negative and bounded. In particular, for all r there exists $B < \infty$ such that $0 \le f(r) \le B$. Then

$$\mathbb{E}\left[\sum_{r=1}^{\tau_N(t)} f(r)\right] = \mathbb{E}\left[\sum_{r=1}^{\tau_N(t)} \mathbb{E}[f(r) \mid \mathcal{F}_{r-1}]\right]. \tag{87}$$

Proof. Define

$$M_s := \sum_{r=1}^{s} \{ f(r) - \mathbb{E}[f(r) \mid \mathcal{F}_{r-1}] \}.$$
 (88)

It is easy to establish that (M_s) is a martingale with respect to (\mathcal{F}_s) , and $M_0 = 0$. Now fix $K \geq 1$ and note that $\tau_N(t) \wedge K$ is a bounded \mathcal{F}_t -stopping time. Hence we can apply the optional stopping theorem:

$$\mathbb{E}[M_{\tau_N(t)\wedge K}] = \mathbb{E}\left[\sum_{r=1}^{\tau_N(t)\wedge K} \{f(r) - \mathbb{E}[f(r) \mid \mathcal{F}_{r-1}]\}\right] = \mathbb{E}\left[\sum_{r=1}^{\tau_N(t)\wedge K} f(r)\right] - \mathbb{E}\left[\sum_{r=1}^{\tau_N(t)\wedge K} \mathbb{E}[f(r) \mid \mathcal{F}_{r-1}]\right] = 0. \quad (89)$$

Since this holds for all $K \geq 1$,

$$\lim_{K \to \infty} \mathbb{E}\left[\sum_{r=1}^{\tau_N(t) \wedge K} f(r)\right] = \lim_{K \to \infty} \mathbb{E}\left[\sum_{r=1}^{\tau_N(t) \wedge K} \mathbb{E}[f(r) \mid \mathcal{F}_{r-1}]\right]. \tag{90}$$

The monotone convergence theorem allows the limit to pass inside the expectation on each side (since increasing K can only increase each sum, by possibly adding non-negative terms). Hence

$$\mathbb{E}\left[\sum_{r=1}^{\tau_N(t)} f(r)\right] = \mathbb{E}\left[\lim_{K \to \infty} \sum_{r=1}^{\tau_N(t) \land K} f(r)\right] = \mathbb{E}\left[\lim_{K \to \infty} \sum_{r=1}^{\tau_N(t) \land K} \mathbb{E}[f(r) \mid \mathcal{F}_{r-1}]\right] = \mathbb{E}\left[\sum_{r=1}^{\tau_N(t)} \mathbb{E}[f(r) \mid \mathcal{F}_{r-1}]\right]$$
(91)

which concludes the proof.

Dependency graph

Figure 1: Graph showing dependencies between the lemmata used to prove weak convergence. Dotted arrows indicate dependence via a slight modification of the preceding lemma.

References

Brown, S., Jenkins, P. A., Johansen, A. M. and Koskela, J. (2021), 'Simple conditions for convergence of sequential Monte Carlo genealogies with applications', *Electronic Journal of Probability* **26**(1), 1–22.

Koskela, J., Jenkins, P. A., Johansen, A. M. and Spanò, D. (2018), Asymptotic genealogies of interacting particle systems with an application to sequential Monte Carlo, Mathematics e-print 1804.01811, ArXiv.

Möhle, M. (1999), 'Weak convergence to the coalescent in neutral population models', *Journal of Applied Probability* **36**(2), 446–460.