INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4526B MSI

Programmable 4-bit binary down counter

Product specification
File under Integrated Circuits, IC04

January 1995

HEF4526B MSI

DESCRIPTION

The HEF4526B is a synchronous programmable 4-bit binary down counter with an active HIGH and an active LOW clock input (CP_0 , \overline{CP}_1), an asynchronous parallel load input (PL), four parallel inputs (P_0 to P_3), a cascade feedback input (CF), four buffered parallel outputs (O_0 to O_3), a terminal count output (TC) and an overriding asynchronous master reset input (MR).

This device is a programmable, cascadable down counter with a decoded TC output for divide-by-n applications. In single stage applications the TC output is connected to PL. CF allows cascade divide-by-n operation with no additional gates required.

Information on P_0 to P_3 is loaded into the counter while PL is HIGH, independent of all other input conditions except MR, which must be LOW. When PL and \overline{CP}_1 are LOW, the counter advances on a LOW to HIGH transition of CP_0 . When PL is LOW and CP_0 is HIGH, the counter advances on a HIGH to LOW transition of \overline{CP}_1 . TC is HIGH when the counter is in the zero state ($O_0 = O_1 = O_2 = O_3 = LOW$) and CF is HIGH and PL is LOW. A HIGH on MR resets the counter (O_0 to $O_3 = LOW$) independent of other input conditions.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

HEF4526B MSI

HEF4526BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4526BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4526BT(D): 16-lead SO; plastic

(SOT109-1)

(): Package Designator North America

PINNING

PL parallel load input P_0 to P_3 parallel inputs

CF cascade feedback input

 $\begin{array}{ll} \text{CP}_0 & \text{clock input (LOW to HIGH, triggered)} \\ \hline{\text{CP}}_1 & \text{clock input (HIGH to LOW, triggered)} \\ \text{MR} & \text{asynchronous master reset input} \end{array}$

TC terminal count output O_0 to O_3 buffered parallel outputs

COUNTING MODE

CF = HIGH; PL = LOW; MR = LOW

COUNT	OUTPUTS							
COUNT	O ₃	O ₂	O ₁	O ₀				
15	Н	Н	Н	Н				
14	Н	Н	Н	L				
13	Н	Н	L	н				
12	Н	Н	L	L				
11	Н	L	Н	Н				
10	Н	L	Н	L				
9	Н	L	L	н				
8	Н	L	L	L				
7	L	Н	Н	Н				
6	L	Н	Н	L				
5	L	Н	L	н				
4	L	Н	L	L				
3	L	L	Н	Н				
2	L	L	Н	L				
1	L	L	L	н				
0	L	L	L	L				

FUNCTION TABLE

MR	PL	CP ₀	CP ₁	MODE
Н	Х	Х	Х	reset (asynchronous)
L	Н	Х	X	preset (asynchronous)
L	L		Н	no change
L	L	L	~	no change
L	L	\	Χ	no change
L	L	Х	_	no change
L	L		L	counter advances
L	L	Н	~	counter advances

Notes

1. H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

HEF4526B MSI

SINGLE STAGE OPERATION

Divide-by-n; MR = LOW; CF = HIGH; \overline{CP}_1 = LOW

PL	P ₃	P ₂	P ₁	P ₀	DIVIDE BY	TC OUTPUT PULSE WIDTH		
L	Х	Х	Х	Х	16	one clock period		
TC	Н	Н	Н	Н	15			
TC	Н	Н	Н	L	14			
TC	Н	Н	L	Н	13			
TC	Н	Н	L	L	12			
TC	Н	L	Н	Н	11			
TC	Н	L	Н	L	10			
TC	Н	L	L	Н	9			
TC	Н	L	L	L	8	clock pulse HIGH		
TC	L	Н	Н	Н	7	111011		
TC	L	Н	Н	L	6			
TC	L	Н	L	Н	5			
TC	L	Н	L	L	4			
TC	L	L	Н	Н	3			
TC	L	L	Н	L	2			
TC	L	L	L	Н	1			
TC	L	L	L	L	no operation			

Philips Semiconductors

Philips Semiconductors Product specification

Programmable 4-bit binary down counter

HEF4526B MSI

AC CHARACTERISTICS

 $V_{SS} = 0 \text{ V}$; $T_{amb} = 25 \,^{\circ}\text{C}$; input transition times $\leq 20 \, \text{ns}$

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	$1000 f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	$4000 f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	10 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_oC_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$CP_0, \overline{CP}_1 \rightarrow O_n$	5			150	300	ns	123 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		65	130	ns	54 ns + (0,23 ns/pF) C _L
	15			50	100	ns	42 ns + (0,16 ns/pF) C _L
	5			150	300	ns	123 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		65	130	ns	54 ns + (0,23 ns/pF) C _L
	15			50	100	ns	42 ns + (0,16 ns/pF) C _L
$CP_0, \overline{CP}_1 \to TC$	5			210	420	ns	183 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		90	180	ns	79 ns + (0,23 ns/pF) C _L
	15			70	140	ns	62 ns + (0,16 ns/pF) C _L
	5			210	420	ns	183 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		90	180	ns	79 ns + (0,23 ns/pF) C _L
	15			70	140	ns	62 ns + (0,16 ns/pF) C _L
$PL \rightarrow O_n$	5			200	400	ns	173 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		80	160	ns	69 ns + (0,23 ns/pF) C _L
	15			60	120	ns	52 ns + (0,16 ns/pF) C _L
	5			180	360	ns	153 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		70	140	ns	59 ns + (0,23 ns/pF) C _L
	15			50	100	ns	42 ns + (0,16 ns/pF) C _L
$MR \to O_n$	5			140	280	ns	113 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		55	110	ns	44 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L

Philips Semiconductors Product specification

Programmable 4-bit binary down counter

HEF4526B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.	
Minimum clock	5		80	40	ns	
pulse width CP ₀	10	t _{WCPL}	40	20	ns	
LOW	15		30	15	ns	
Minimum clock	5		80	40	ns	
pulse width CP₁	10	t _{WCPH}	40	20	ns	
HIGH	15		30	15	ns	
Minimum PL	5		100	50	ns	
pulse width; HIGH	10	t _{WPLH}	40	20	ns	
	15		32	16	ns	see also waveforms
Minimum MR	5		130	65	ns	Figs 5 and 6
pulse width; HIGH	10	t _{WMRH}	50	25	ns	
	15		40	20	ns	
Hold time	5		30	5	ns	
$P_n \rightarrow PL$	10	t _{hold}	20	5	ns	
	15		15	5	ns	
Set-up time	5		30	0	ns	
$P_n \rightarrow PL$	10	t _{su}	20	0	ns	
	15		15	0	ns	
Maximum clock	5		6	12	MHz	
pulse frequency	10	f _{max}	12	25	MHz	see note 1
PL = LOW	15		16	32	MHz	

Note

^{1.} In the divide-by-n mode (PL connected to TC), one has to observe the maximum HIGH to LOW propagation delay for CP to TC, before applying the next clock pulse.

HEF4526B MSI

Fig.5 Waveforms showing minimum PL pulse width, propagation delays for PL, P_n to O_n and hold time for PL to P_n .

Philips Semiconductors Product specification

Programmable 4-bit binary down counter

HEF4526B MSI

APPLICATION INFORMATION

Some examples of applications for the HEF4526B are:

- Divide-by-n counter
- Programmable frequency divider

HEF4526B MSI

Counting cycle:

Fig.8 Typical application of two HEF4526B circuits in a 2-stage programmable frequency divider. S are thumbwheel switches; when open: LOW state.