Inferencia

Instituto Artek

Abril 17

Índice

1.	Introducción	2
2.	Repaso	2
3.	Consistencia	2
4.	Intervalos de confianza	3

1. Introducción

Ejercicio: En una universidad 1/3 de los estudiantes toma 9 horas de crédito, 1/3 toma 12 horas de crédito y 1/3 toma 15 horas de crédito. Si X representa las horas de crédito que toma un estudiante, la distribución de X es 1/3 para x = 9, 12 y 15. Encontrar la media y la varianza de X. ¿Qué tipo de distribución tiene X?

2. Repaso

Un **estimador** para un parámetro θ es una variable aleatoria,

$$\hat{\Theta} = f(X_1, \dots, X_n),$$

un valor particular de $\hat{\Theta}$ denotado por $\hat{\theta}$ es una estimación de θ . El sesgo de un estimador $\hat{\Theta}$ para un parámetro θ por la ecuación,

$$Sesghat\Theta) = \mathbb{E}(\hat{\Theta}) - \theta$$

Si $Sesg(\hat{\Theta}) = 0$ decimos que el estimador $\hat{\Theta}$ es **insesgado**, en caso contrario decimos que es **sesgado**.

3. Consistencia

Un estimador $\hat{\Theta}$ es **consistente** de un parámetro θ

$$\mathbb{E}(\hat{\Theta} - \theta)^2 \to 0$$

cuando $n \to \infty$. A la ecuación anterior se le llama usualmente como **error** cuadrático medio y es una medida de concentración de $\hat{\Theta}$ alrededor de θ . En general se relaciona con la varianza de la siguiente manera.

$$\mathbb{E}(\hat{\Theta} - \theta)^2 = \mathbb{E}((\hat{\Theta}) - \theta)^2 + Var(\hat{\Theta})$$

Ejercicio:

$$\mathbb{E}(\overline{X} - \mu) = \sigma^1/n.$$

La relación de consistencia con la probabilidad se da mendiante la desigualdad de Chebyshev, para todo $\varepsilon > 0$,

$$\mathbb{P}(|\hat{\Theta} - \theta| > \varepsilon) \le \frac{1}{\varepsilon^2} \mathbb{E}(\hat{\Theta} - \theta)^2,$$

esto también nos da consistencia en probabilidad, pues tenemos que si un estimador $\hat{\Theta}$ es consistente entonces

$$\mathbb{P}(|\hat{\Theta} - \theta| > \varepsilon) \to 0$$

cuando $n \to \infty$.

4. Intervalos de confianza

Los intervalos de confianza se interpretan como el nivel de confianza sobre la estimación de un parámetro. Por ejemplo, tomada la media muestral \overline{X} y una estimación $\overline{x}=$,86 queremos encontrar un intervalo del tipo ,86 \pm ,4, ahora nuestro interés se enfoca en calcular un error mediante los valores de la muestra. Digamos que nos interesa saber si dada una muestra, tenga media muestral entre $\mu-\varepsilon$ y $\mu+\varepsilon$ en un nivel de confianza del 95 %, en términos de probabilidades es

$$\mathbb{P}(\mu - \varepsilon < \overline{X} < \mu + \varepsilon) = .95$$

de manera equivalente

$$\mathbb{P}(\overline{X} - \varepsilon < \mu < \overline{X} + \varepsilon) = .95$$

cuando la muestra es muy grande, \overline{X} tiene una distribución normal con media μ y varianza σ^2/n y así

$$\mathbb{P}(\frac{-\varepsilon}{\sigma/\sqrt{n}} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < \frac{\varepsilon}{\sigma/\sqrt{n}}) = .95$$

por el teorema limite central tenemos que la distribución limite $\overline{X}^* = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$ es una Norm(0,1).

Ejercicio: Halle el valor de $\frac{\varepsilon}{\sigma/\sqrt{n}}$ tal que

$$\mathbb{P}(0 \le \overline{X}^* \le \frac{\varepsilon}{\sigma/\sqrt{n}}) = .475$$

O

$$2 * \mathbb{P}(0 \le \overline{X}^* \le \frac{\varepsilon}{\sigma/\sqrt{n}}) = .95$$

a los extremos $\overline{x} \pm \frac{\varepsilon}{\sigma/\sqrt{n}}$ se les llama limites de confianza.

Ejercicio: El departamento de tránsito de una cierta ciudad realizó una investigación para estimar el tiempo promedio μ , de reacción de un automovilista que conduce a una velocidad dada. Se hizo una estimación tomando una muestra aleatoria a 100 automovilistas donde se encontró que los tiempo de reacción son $\overline{x} = ,86$ y $s^2 = ,09$. Halle los limites de confianza del 95 %. Además del intervalo $\overline{x} - \varepsilon < \mu < \overline{x} - \varepsilon$.