## PART A

(25 *marks*)

**1.** Evaluate the following limits (if exists).

(a) 
$$\lim_{x \to 4} \frac{x^4 - 16}{x - 2}$$

[3 marks]

$$\lim_{x\to 4}\frac{2-\sqrt{x}}{4-x}.$$

[4 marks]

(c) 
$$\lim_{x \to -\infty} \frac{3}{4x^2}$$

[2 marks]

2. (a) By using the definition  $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ , if f is a function with

$$f'(4) = 2$$
, find  $\lim_{x \to 4} \frac{f(x) - f(4)}{\sqrt{x} - 2}$ .

[5 marks]

(b) Differentiate each of the following function with respect to x.

$$i) f(x) = (\ln x)^3$$

[2 marks]

$$ii) f(x) = 3e^{3x}$$

[2 marks]

iii) 
$$f(x) = 4\sin^3 x$$

[2 marks]

3. Given  $y = 3x + \frac{12}{x}$ , x > 0determine the nature of the point. [5 marks]

# PART B

(75 marks)

- 1. (a) Find integer values of m and n for which  $m n \log_3 2 = 10 \log_9 6$ . [4 marks]
  - (b) The complex numbers  $z_1$  and  $z_2$  are given by  $z_1 = p + 2i$  and  $z_2 = 1 2i$  where p is an integer
    - i) Find  $\frac{z_1}{z_2}$  in the form of a + bi where a and b are real numbers. [3 marks]
    - ii) Hence, find the possible values of p when  $\left| \frac{z_1}{z_2} \right| = 13$ . [4 marks]
- 2. Solve
  - a)  $-2|2x+3|+14 \ge -16$  [3 marks]
  - $\left| \frac{x-1}{3x+1} \right| \ge 1$  [7 marks]
- 3. Given the functions  $f(x) = 2 x^2$  and g(x) = x + 2, find  $f \circ g$  and  $g \circ f$ . Hence,

determine the value of x such that  $(f \circ g)(x) = (g \circ f)(x)$ .

[6 marks]

- A function f is defined as  $f(x) = 3 + \sqrt{x-2}$ 4.
  - i) Show that the function  $f^{-1}(x)$  exists and hence, find  $f^{-1}(x)$

[5 marks]

ii) State the domain and range of  $f^{-1}(x)$ 

[2 marks]

iii) On the same axes, sketch the graphs of f(x) and  $f^{-1}(x)$ .

[5 marks]

State the relationship between the two graphs.

5. a) Find the horizontal asymptote of  $f(x) = \frac{2x}{(x+1)(x-2)}$ 

$$f(x) = \frac{2x}{(x+1)(x-2)}$$

[4 marks]

$$f(x) = \begin{cases} \frac{x-1}{x+2}, & 0 \le x < 2\\ ax^2 - 1, & x \ge 2 \end{cases}$$
. Find the value of  $a$  if  $\lim_{x \to 2} f(x)$ 

b) The function f is defined by

exist. Hence, determine whether f is continuous at x = 2.

[7 marks]

A curve has an equation  $x^2 + y^2 - 2y = 4$ 6.

- Find dx in the terms of x and y.
- ii. Determine the gradient of the curve at point (1,3)
- iii. Express  $dx^2$  in terms of y.

[11 marks]

The curve defined by the parametric equations,  $x = t^2 - 3$  and  $y = t^3 + t$ (b)

Find 
$$\frac{dy}{dx}$$
 and  $\frac{d^2y}{dx^2}$ 

[5 marks]

7. A closed rectangular box has a base with its length twice its width, and the total surface area of the box is 300 cm<sup>2</sup>. If the width of the base of the box is x cm, and the volume of

 $V = 100x - \frac{4}{3}x^3$ . Find the height of the box when its volume the box is  $V \text{ cm}^3$ . Show that [9 *marks*] is maximum. Hence, find the maximum volume of the box.

## **END OF QUESTIONS PAPER**

### **ANSWERS**

## **PART A**

- 1. (a) 120
- (b)  $\frac{1}{4}$  (c) 0 (bi)  $\frac{3}{x}(\ln x)^2$  (bii)  $9e^{3x}$  (biii)  $12\sin^2 x \cos x$ 2. (a) 8
- 3. (2, 12), minimum point

#### **PART B**

1. (a) 
$$m = 5$$
,  $n = -5$  (bi)  $\frac{p-4}{5} + \frac{2}{5}(p+1)i$  (bii)  $p = \pm 29$   
2. (a)  $-9 \le x \le 6$  (b)  $\left[-1, -\frac{1}{3}\right] \cup \left(-\frac{1}{3}, 0\right]$ 

2. (a) 
$$-9 \le x \le 6$$
 (b)  $\left[-1, -\frac{1}{3}\right] \cup \left(-\frac{1}{3}, 0\right)$ 

$$x = -\frac{3}{2}$$

4. (ai) 
$$f^{-1}(x) = (x-3)^2 + 2$$
 (aii)  $D_{f^{-1}} = [3, \infty), R_{f^{-1}} = [2, \infty)$ 



 $f^{-1}(x)$  is a reflection of graph f (x) about the line y = x.

5. (a) 
$$y = 0$$
 (b)  $a = \frac{5}{16}$ , f (x) is continuous at  $x = 2$ 

6. (ai) 
$$\frac{x}{1-y} @ \frac{-x}{y-1}$$
 (aii)  $\frac{-1}{2}$  (aiii)  $\frac{5}{(1-y)^3}$ 

(b) 
$$\frac{dy}{dx} = \frac{3t^2 + 1}{2t}$$
,  $\frac{d^2y}{dx^2} = \frac{3t^2 - 1}{4t^3}$ 

7. 
$$\frac{1000}{3}$$
 cm<sup>3</sup>

PART A

(25 marks)

| NO   | ANSWER SCHEMES                                                                                                                                     | REMARKS    |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1a   | $\lim_{x \to 4} \frac{x^4 - 16}{x - 2} = 120$                                                                                                      | K1KIJ1     |
| 1b   | $\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x} = \lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x} \times \frac{2 + \sqrt{x}}{2 + \sqrt{x}}$                   | K1         |
|      | $= \lim_{x \to 4} \frac{4 - x}{(4 - x)(2 + \sqrt{x})} = \lim_{x \to 4} \frac{1}{(2 + \sqrt{x})}$                                                   | K1K1       |
|      | $=\frac{1}{2+2}=\frac{1}{4}$                                                                                                                       | J1         |
| 1c   | $\lim_{x \to -\infty} \frac{3}{4x^2} = \frac{3}{\infty} = 0$                                                                                       | K1J1       |
|      | TOTAL                                                                                                                                              | 9 marks    |
| 2a   | Given $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ , $f'(4) = 2$                                                                             |            |
|      | $\lim_{x \to 4} \frac{f(x) - f(4)}{\sqrt{x} - 2} = \lim_{x \to 4} \frac{f(x) - f(4)}{\sqrt{x} - 2} \times \frac{\sqrt{x} + 2}{\sqrt{x} + 2}$       | <b>K</b> 1 |
|      | $= \lim_{x \to 4} \frac{f(x) - f(4)}{x - 4} \times \left(\sqrt{x} + 2\right) = \left[f'(4)\right] \times \lim_{x \to 4} \left(\sqrt{x} + 2\right)$ | K1K1       |
|      | $=(2)\times(2+2)=8$                                                                                                                                | K1J1       |
| 2bi  | $f(x) = \left(\ln x\right)^3$                                                                                                                      |            |
|      | $f'(x) = 3(\ln x)^2 \frac{d}{dx}(\ln x)$                                                                                                           | K1         |
|      | $=3(\ln x)^2\frac{1}{x} @ \frac{3}{x}(\ln x)^2$                                                                                                    | J1         |
| 2bii | $f(x) = 3e^{3x}$ $f'(x) = 9e^{3x}$                                                                                                                 | 17.1       |
|      | $\int_{0}^{\infty} f'(x) = 9e^{-x}$                                                                                                                | K1<br>J1   |

| TARGET A | SM015 | KMS |
|----------|-------|-----|
|          |       |     |
| 2h:::    |       |     |

| 2biii | $f(x) = 4\sin^3 x$                                                                             |                             |
|-------|------------------------------------------------------------------------------------------------|-----------------------------|
|       |                                                                                                | K1                          |
|       | $f'(x) = 4\left[3\sin^2 x\right] \frac{d}{dx}(\sin x)$                                         |                             |
|       | $=12\sin^2 x \cos x$                                                                           | J1                          |
|       | TOTAL                                                                                          | 11 marks                    |
| 3     | $y = 3x + \frac{12}{x}, x > 0$ $\frac{dy}{dx} = 3 - \frac{12}{x^2}$                            | B1 (differentiate)          |
|       | $\frac{dy}{dx} = 0 \rightarrow 3 - \frac{12}{x^2} = 0$                                         | K1                          |
|       | $x^{2} = \frac{12}{3}$ $x = \sqrt{4} = 2, x > 0$                                               | $\frac{dy}{dx}$ equal to 0) |
|       | When $x = 2$ , $y = 3(2) + \frac{12}{2} = 12$<br>Coordinates of the stationary point = (2, 12) | K1 (find y)                 |
|       |                                                                                                |                             |
|       | $\frac{d^2y}{dx^2} = -12(-2)(x^{-3}) = 24x^{-3}$                                               | •                           |
|       | when $x = 2$ , $\frac{d^2y}{dx^2} = \frac{24}{(2)^3} = 3 > 0 \text{ (min)}$                    | K1                          |
|       | (2, 12) is a minimum point.                                                                    | J1                          |
|       | TOTAL                                                                                          | 5 marks                     |

. .

PART B

(75 marks)

| NO | ANSWER SCHEMES                                                                      | REMARKS         |
|----|-------------------------------------------------------------------------------------|-----------------|
| 1  | (a) $m - n \log_3 2 = 10 \log_9 6$                                                  |                 |
|    | (a) 23 29                                                                           | B1              |
|    | $=10\left(\frac{\log_3 6}{\log_3 3^2}\right)$                                       | (change base)   |
|    | $=10\left(\frac{\log_3(3 \bullet 2)}{2}\right)$                                     | <b>K1</b>       |
|    | $=5\lceil\log_3(3 \cdot 2)\rceil$                                                   | (law of log)    |
|    | $=5\left[\log_3 3 + \log_3 2\right]$                                                | K1              |
|    | $= 5\log_3 3 + 5\log_3 2$<br>= 5 + 5\log_3 2                                        | (simplify)      |
|    | $-3+3\log_3 2$                                                                      |                 |
|    |                                                                                     | J1              |
|    | $\therefore m = 5, n = -5$                                                          |                 |
|    |                                                                                     | K1              |
|    |                                                                                     | (multiply with  |
|    | $\frac{p+2i}{1-2i} = \left(\frac{p+2i}{1-2i}\right) \left(\frac{1+2i}{1+2i}\right)$ | conjugate)      |
|    |                                                                                     | K1              |
|    | $=\frac{p+2pi+2i+4i^2}{1-4i^2}$                                                     | (expand)        |
|    | $=\frac{p-4+(2p+2)i}{5}$                                                            | J1              |
|    | $=\frac{p-4}{5}+\frac{2}{5}(p+1)i$                                                  | (must in a +bi) |
|    |                                                                                     |                 |
|    |                                                                                     |                 |

| TARGET A SM015 KMS |          | _     | •   |
|--------------------|----------|-------|-----|
|                    | TARGET A | SM015 | KMS |

|     | bii) $ \frac{\left \frac{z_1}{z_2}\right }{z_2} = 13 $ $ \sqrt{\left(\frac{p-4}{5}\right)^2 + \left[\frac{2}{5}(p+1)\right]^2} = 13 $ $ \left(\frac{p-4}{5}\right)^2 + \left[\frac{2}{5}(p+1)\right]^2 = 169 $ $ (p-4)^2 + 4(p+1)^2 = 169(25) $ $ p^2 - 8p + 16 + 4p^2 + 8p + 4 = 4225 $ $ 5p^2 = 4205 $ | K1K1 Sub in correct formula  K1  K1  Attempt to solve  J1  both |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|     | $5p = 4205$ $p = \pm 29$                                                                                                                                                                                                                                                                                 | DOTH                                                            |
|     | TOTAL                                                                                                                                                                                                                                                                                                    | 11 marks                                                        |
| 2a) | $-2 2x+3 +14 \ge -16$                                                                                                                                                                                                                                                                                    |                                                                 |
|     | $ 2x+3  \le 15$                                                                                                                                                                                                                                                                                          |                                                                 |
|     | $-15 \le 2x + 3 \le 15$                                                                                                                                                                                                                                                                                  | K1                                                              |
|     | $-9 \le x \le 6$                                                                                                                                                                                                                                                                                         | K1                                                              |
|     | or<br>[ o c]                                                                                                                                                                                                                                                                                             | J1                                                              |
|     | [-9,6]                                                                                                                                                                                                                                                                                                   |                                                                 |
| 2b) | $\left  \frac{x-1}{3x+1} \right  \ge 1$                                                                                                                                                                                                                                                                  |                                                                 |
|     | $\frac{x-1}{3x+1} \ge 1 \qquad or \qquad \frac{x-1}{3x+1} \le -1$                                                                                                                                                                                                                                        | K1                                                              |
|     | $\frac{x-1-(3x+1)}{3x+1} \ge 0 \qquad \frac{x-1+(3x+1)}{3x+1} \le 0$ $\frac{-2x-2}{3x+1} \ge 0 \qquad \frac{4x}{3x+1} \le 0$                                                                                                                                                                             | K1                                                              |
|     |                                                                                                                                                                                                                                                                                                          | K1K1                                                            |

|       | TARGET A                                                                                                                                                          | SM015 | KMS              |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------|
|       | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                            |       | J1  K1  J1       |
|       | $ \begin{array}{cccc}  & -1 & -1/3 & 0 \\  & & \left[-1, -\frac{1}{3}\right] \cup \left(-\frac{1}{3}, 0\right] \\  & & & & & & & & \\  & & & & & & & \\  & & & &$ |       | 10 marks         |
| 3     | $f \circ g = f[g(x)] = f(x+2) = 2 - (x+2)^2 = -x^2 - 4x - 2$                                                                                                      |       | K1J1             |
|       | $g \circ f = g[f(x)] = g(2-x^{2}) = 2-x^{2} + 2 = 4-x^{2}$ $(f \circ g)(x) = (g \circ f)(x)$ $-x^{2} - 4x - 2 = 4-x^{2}$ $\therefore x = -\frac{3}{2}$            |       | K1J1<br>K1<br>J1 |
|       | TOTAL                                                                                                                                                             |       | 6 marks          |
| 4a)i. | For $x_1, x_2 \in D_f$                                                                                                                                            |       | <b>K</b> 1       |
|       |                                                                                                                                                                   |       | K1               |

|      | If $f(x_1) = f(x_2)$<br>$3 + \sqrt{x_1 - 2} = 3 + \sqrt{x_2 - 2}$<br>$\sqrt{x_1 - 2} = \sqrt{x_2 - 2}$<br>$(\sqrt{x_1 - 2})^2 = (\sqrt{x_2 - 2})^2$<br>$x_1 - 2 = x_2 - 2$<br>$x_1 = x_2$ | J1                                                                 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|      | Thus, $f(x)$ is a one-to-one function. Therefore $f^{-1}(x)$ exists.                                                                                                                      | K1                                                                 |
| ii.  | $f \circ f^{-1}(x) = x$ $3 + \sqrt{f^{-1}(x) - 2} = x$ $\sqrt{f^{-1}(x) - 2} = x - 3$ $\therefore f^{-1}(x) = (x - 3)^{2} + 2$                                                            | J1<br>B1                                                           |
|      | $OR$ $\therefore f^{-1}(x) = x^2 - 6x + 11$                                                                                                                                               | В1                                                                 |
| iii. | $D_{f^{-1}} = [3, \infty)$ $R_{f^{-1}} = [2, \infty)$                                                                                                                                     | R1 (shape f(x)) R1 (shape inverse) R1 (complete – label, line y=x) |
|      |                                                                                                                                                                                           |                                                                    |



$$f(x) = \frac{2x}{(x+1)(x-2)} = \frac{2x}{x^2 - x - 2}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\frac{2x}{x^2}}{\frac{x^2}{x^2} - \frac{x}{x^2} - \frac{2}{x^2}} = \lim_{x \to +\infty} \frac{\frac{2}{x}}{1 - \frac{1}{x} - \frac{2}{x^2}} = \frac{0}{1 - 0 - 0} = 0$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\frac{2x}{x^2}}{\frac{2x}{x^2} - \frac{x}{x^2} - \frac{2}{x^2}} = \lim_{x \to +\infty} \frac{\frac{2}{x}}{1 - \frac{1}{x} - \frac{2}{x^2}} = \frac{0}{1 - 0 - 0} = 0$$
K1
Divide by highest degree of denominator K1

| TARGET A | SM015 | KMS |
|----------|-------|-----|
|----------|-------|-----|

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J1               |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|            | $\therefore$ Horizontal Asymptote, $y = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
|            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| <b>(b)</b> | x - 1 $x - 2$ $x - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K1K1             |
|            | $\lim_{x \to 2^{-}} \frac{x-1}{x+2} = \lim_{x \to 2^{+}} (ax^{2} - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|            | $\frac{2-1}{2+2} = a(2)^2 - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K1               |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Attempt to solve |
|            | $\frac{1}{4} = 4a - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|            | $\therefore a = \frac{5}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | J1               |
|            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
|            | Hence,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|            | $\int_{-1}^{1} (2)^{2} \int_{-1}^{1} $ | K1               |
|            | $f(2) = \frac{5}{16}(2)^2 - 1 = \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Find f(2)        |
|            | $\lim_{x \to 2} f(x) = \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K1               |
|            | $\lim_{x \to 2} f(x) = f(2) = \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J1               |
|            | $\therefore f(x)$ is continuous at $x = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
|            | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11 marks         |

| NO    | ANSWER SCHEMES                                   | REMARKS |
|-------|--------------------------------------------------|---------|
| 6a(i) | $2x + 2y\frac{dy}{dx} - 2\frac{dy}{dx} = 0$      |         |
|       | $2y\frac{dy}{dx} - 2\frac{dy}{dx} = -2x$         | K1      |
|       | $\frac{dy}{dx} = \frac{-x}{y-1} @ \frac{x}{1-y}$ | J1      |

| TARGET A | SM015 | KMS |
|----------|-------|-----|
| .,       | 0     |     |

| 6a(ii)  | At point $(1,3)$ @ $x = 1, y = 3$                                                                       |            |
|---------|---------------------------------------------------------------------------------------------------------|------------|
|         | $\frac{dy}{dx} = \frac{x}{1-y} = \frac{1}{1-3} = -\frac{1}{2}$                                          | K1J1       |
| 6a(iii) | dy x                                                                                                    |            |
|         | $\frac{dy}{dx} = \frac{x}{1 - y}$                                                                       |            |
|         | $u = x \qquad v = 1 - y$                                                                                | K1K1       |
|         | $u'=1 \qquad \qquad v'=-\frac{dy}{dx}=-\frac{x}{1-y}$                                                   |            |
|         | $\frac{d^2y}{dx^2} = \frac{vu' - uv'}{v^2} = \frac{(1-y)(1) - (x)\left(-\frac{x}{1-y}\right)}{(1-y)^2}$ | <b>K</b> 1 |
|         | $\frac{d^2y}{dx^2} = \frac{(1-y)^2 + (x)^2}{(1-y)^3}$                                                   | J1         |
|         | $x^2 + y^2 - 2y = 4$ @ $x^2 = 4 - y^2 + 2y$                                                             |            |
|         | $\frac{d^2y}{dx^2} = \frac{(1-y)^2 + (x)^2}{(1-y)^3}$                                                   |            |
|         | $= \frac{\left(1 - 2y + y^2\right) + \left(4 - y^2 + 2y\right)}{\left(1 - y\right)^3}$                  | K1K1       |
|         | $=\frac{5}{\left(1-y\right)^3}$                                                                         | J1         |

| TARGET A SM015 KMS |  |
|--------------------|--|
|--------------------|--|

| b | $x = t^2 - 3 \qquad y = t^3 + t$                                                                                                   | K1         |
|---|------------------------------------------------------------------------------------------------------------------------------------|------------|
|   | $\frac{dx}{dt} = 2t \qquad \frac{dy}{dt} = 3t^2 + 1$                                                                               |            |
|   | $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{3t^2 + 1}{2t}$                                                         | J1         |
|   | $\frac{1}{dx} - \frac{1}{dt} \wedge \frac{1}{dx} - \frac{1}{2t}$                                                                   | <b>01</b>  |
|   |                                                                                                                                    |            |
|   | $d^2y + d(dy) + d(dy)(dt)$                                                                                                         | K1         |
|   | $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dt} \left(\frac{dy}{dx}\right) \left(\frac{dt}{dx}\right)$ |            |
|   | $\frac{d^2y}{dx^2} = \frac{d}{dt} \left( \frac{3t^2 + 1}{2t} \right) \left( \frac{1}{2t} \right)$                                  | <b>K</b> 1 |
|   | $\frac{d^2y}{dx^2} = \left[ \frac{(2t)(6t) - (2)(3t^2 + 1)}{(2t)^2} \right] \left( \frac{1}{2t} \right)$                           |            |
|   |                                                                                                                                    | J1         |
|   | $\left[ \frac{d^2y}{dx^2} = \left[ \frac{6t^2 - 2}{8t^3} \right] = \left[ \frac{3t^2 - 1}{4t^3} \right]$                           |            |
|   |                                                                                                                                    |            |
|   |                                                                                                                                    |            |
|   | TOTAL                                                                                                                              | 16 marks   |
|   | Totale height of the home to an                                                                                                    |            |
| 7 | Let the height of the box = $h$ cm<br>Total surface area of the box = $300 \text{ cm}^2$                                           |            |
|   | Total sarrace area of the con soo em                                                                                               |            |
|   | $2(2x^2) + 2hx + 2(2xh) = 300$                                                                                                     |            |
|   | $4x^2 + 6hx = 300$                                                                                                                 | K1         |
|   | $4x^{2} + 6hx = 300$ $2x^{2} + 3hx = 150$                                                                                          |            |
|   | $h = \frac{150 - 2x^2}{3x}$                                                                                                        |            |
|   | 3x                                                                                                                                 |            |
|   |                                                                                                                                    |            |
|   |                                                                                                                                    |            |

| Volume of the box, | $V = 2x^2h$ |
|--------------------|-------------|
|--------------------|-------------|

**J**1

$$V = 2x^{2} \left( \frac{150 - 2x^{2}}{3x} \right)$$
$$= 100x - \frac{4}{3}x^{3}$$

**K1** 

$$\frac{dV}{dx} = 100 - \frac{4}{3} (3x^2)$$
$$= 100 - 4x^2$$

**K1** 

When 
$$\frac{dV}{dx} = 0$$
,  $100 - 4x^2 = 0$ 

J1

$$x^2 = 25$$
$$x = 5$$

**K1** 

$$\frac{d^2V}{dx^2} = -8x$$

**J**1

When 
$$x = 5$$
,  $\frac{d^2V}{dx^2} = -40(<0)$  (maximum value)

K1 J1

the height of the box, 
$$h = \frac{150 - 2(5)^2}{3(5)} = \frac{20}{3} cm$$

$$h = \frac{150 - 2(5)^2}{3(5)} = \frac{20}{3} cm$$

| the maximum volume of the box,                       |          |
|------------------------------------------------------|----------|
| $V = 100(5) - \frac{4}{3}(5)^3 = \frac{1000}{3}cm^3$ |          |
| TOTAL                                                | 9 marks  |
|                                                      | 75 MARKS |