

Semiconductors

Part 8 September 1983

Photosensitive diodes and transistors

Light emitting diodes

Displays

Photocouplers

Infrared sensitive devices

Photoconductive devices

SEMICONDUCTORS

PART 8 - SEPTEMBER 1983

DEVICES FOR OPTOELECTRONICS

INDEX AND TYPE NUMBER SURVEY

GENERAL

PHOTOSENSITIVE DIODES AND TRANSISTORS

LIGHT EMITTING DIODES
AND SELECTION GUIDE

DISPLAYS

PHOTOCOUPLERS

INFRARED SENSITIVE DEVICES

PHOTOCONDUCTIVE DEVICES

DATA HANDBOOK SYSTEM

Our Data Handbook System is a comprehensive source of information on electronic components, sub-assemblies and materials: it is made up of four series of handbooks each comprising several parts.

ELECTRON TUBES BLUE

SEMICONDUCTORS RED

INTEGRATED CIRCUITS PURPLE

COMPONENTS AND MATERIALS GREEN

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

Where ratings or specifications differ from those published in the preceding edition they are pointed out by arrows. Where application information is given it is advisory and does not form part of the product specification.

If you need confirmation that the published data about any of our products are the latest available, please contact our representative. He is at your service and will be glad to answer your inquiries.

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part without the written consent of the publisher.

May 1980

iii

ELECTRON TUBES (BLUE SERIES)

The blue series of data handbooks is comprised of the following parts:

- T1 Tubes for r.f. heating
- T2 Transmitting tubes for communications
- Т3 Klystrons, travelling-wave tubes, microwave diodes
- ET3 Special Quality tubes, miscellaneous devices (will not be reprinted)
- T4 Magnetrons
- T5 Cathode-ray tubes Instrument tubes, monitor and display tubes, C.R. tubes for special applications
- Т6 Geiger-Muller tubes
- **T7** Gas-filled tubes

Segment indicator tubes, indicator tubes, dry reed contact units, thyratrons, industrial rectifying tubes, ignitrons, high-voltage rectifying tubes, associated accessories

T8 Picture tubes and components

> Colour TV picture tubes, black and white TV picture tubes, colour monitor tubes for data graphic display, monochrome monitor tubes for data graphic display, components for colour television, components for black and white television and monochrome data graphic display

T9 Photo and electron multipliers

> Photomultiplier tubes, phototubes, single channel electron multipliers, channel electron multiplier plates

- T10 Camera tubes and accessories, image intensifiers
- T11 Microwave semiconductors and components

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks is comprised of the following parts:

S1	Diodes Small-signal germanium diodes, small-signal silicon diodes, voltage regulator diodes(< 1,5 W), voltage reference diodes, tuner diodes, rectifier diodes
S2	Power diodes, thyristors, triacs Rectifier diodes, voltage regulator diodes (> 1,5 W), rectifier stacks, thyristors, triacs
S3	Small-signal transistors
S4	Low-frequency power transistors and hybrid IC modules
S5	Field-effect transistors
S6	R.F. power transistors and modules
S7	Microminiature semiconductors for hybrid circuits
S8	Devices for optoelectronics Photosensitive diodes and transistors, light-emitting diodes, displays, photocouplers, infrared sensitive devices, photoconductive devices.
S9	Taken into handbook T11 of the blue series
S10	Wideband transistors and wideband hybrid IC modules

INTEGRATED CIRCUITS (PURPLE SERIES)

The purple series of data handbooks is comprised of the following parts:

IC1	Bipolar ICs for radio and audio equipment
IC2	Bipolar ICs for video equipment
IC3	ICs for digital systems in radio, audio and video equipment
IC4	Digital integrated circuits CMOS HE4000B family
IC5	Digital integrated circuits — ECL ECL10 000 (GX family), ECL100 000 (HX family), dedicated designs
IC6	Professional analogue integrated circuits
IC7	Signetics bipolar memories
IC8	Signetics analogue circuits
IC9	Signetics TTL logic
IC10	Signetics Integrated Fuse Logic (IFL)

Microprocessors, microcomputers and peripheral circuitry

IC11

COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks is comprised of the following parts:

C1	Assemblies for industrial use PLC modules, PC20 modules, HNIL FZ/30 series, NORbits 60-, 61-, 90-series, input devices, hybrid ICs
C2	Television tuners, video modulators, surface acoustic wave filters
С3	Loudspeakers
C4	Ferroxcube potcores, square cores and cross cores
C5	Ferroxcube for power, audio/video and accelerators
C6	Electric motors and accessories Permanent magnet synchronous motors, stepping motors, direct current motors
C7	Variable capacitors
C8	Variable mains transformers
C9	Piezoelectric quartz devices Quartz crystal units, temperature compensated crystal oscillators, compact integrated oscillators, quartz crystal cuts for temperature measurements
C10	Connectors
C11	Non-linear resistors Voltage dependent resistors (VDR), light dependent resistors (LDR), negative temperature coefficient thermistors (NTC), positive temperature coefficient thermistors (PTC)
C12	Variable resistors and test switches
C13	Fixed resistors
C14	Electrolytic and solid capacitors
C15	Film capacitors, ceramic capacitors
C16	Piezoelectric ceramics, permanent magnet materials

INDEX OF TYPE NUMBERS

Data Handbooks S1 to S10

The inclusion of a type number in this publication does not necessarily imply its availability.

type no.	book	section	type no.	book	section	type no.	book	section
AA119	S1	GD	BAS19	S7/S1	Mm/SD	BB109G	S1	Т
AAZ15	S1	GD	BAS20	S7/S1	Mm/SD	BB112	S1	T
AAZ17	Sl	GD	BAS21	S7/S1	Mm/SD	BB119	S1	T
AAZ18	S1	GD	BAT17	S7/S1	Mm/T	BB130	S1	T
BA220	S1	SD	BAT18	s7/s1	Mm/T	вв204в	S1	T
BA221	S1	SD	BAT81	S1	T	BB204G	S1	T
BA223	S1	T	BAT82	S1	T	BB212	S1	T
BA243	Sl	T	BAT83	S1	T	BB405B	S1	T
BA244	S1	T	BAT85	S1	T	BB405G	S1	T
BA280	S1	T	BAV10	S1	SD	BB417	S1	Т
BA314	S1	Vrg	BAV18	S1	SD	вв809	S1	Т
BA315	S1	Vrg	BAV19	S1	SD	BB909A	S1	T
BA316	S1	SD	BAV20	S1	SD	вв909в	S1	\mathbf{r}
BA317	S1	SD	BAV21	S1	SD	BBY31	S7/S1	Mm/T
BA318	S1	SD	BAV45	S1	Sp	BBY40	S7/S1	Mm/T
BA379	Sl	T	BAV70	s7/s1	Mm/SD	BC107	s3	Sm
BA423	S1	T	BAV99	s7/s1	Mm/SD	BC108	s3	Sm
BA481	S1	T	BAW56	s7/s1	Mm/SD	BC109	s3	Sm
BA482	Sl	T	BAW62	S1	SD	BC146	s3	Sm
BA483	S1	T	BAX12	S1	SD	BC177	s3	Sm
BA484	S1	Т	BAX12A	S1	SD	BC178	s3	Sm
BAS11	S1	SD	BAX14	S1	SD	BC179	s3	Sm
BAS16	s7/s1	Mm/SD	BAX18	Sl	SD	BC200	s3	Sm
BAS17	s7/s1	Mm/Vrg	ВВ105В	S1	T	BC264A	S5	FET
BAS18	S1	SD	BB105G	S1	T	BC264B	S5	FET
1								

FET = Field-effect transistors

GD = Germanium diodes

Mm = Microminiature semiconductors for hybrid circuits

SD = Small-signal diodes

Sm = Small-signal transistors

Sp = Special diodes

T = Tuner diodes

Vrg = Voltage regulator diodes

type no.	book	section	type no.	book	section	type no.	book	section
BC264C	s5	FET	BC868	s7	Mm	BCY71	s3	Sm
BC264D	S5	FET	BC869	s7	Mm	BCY72		
			BCF29;R	S7	Mm	1	S3	Sm
BC327;A	S3	Sm C	BCF30; R	s7		BCY78	S3	Sm
BC328	S3	Sm		S7	Mm	BCY79	S3	Sm
BC337;A	S3	Sm	BCF32;R	57	Mm	BCY87	s3	Sm
BC338	s3	Sm	BCF33;R	s7	Mm	всч88	s 3	Sm
BC368	s3	Sm	BCF70;R	s7	Mm	BCY89	s3	Sm
BC369	s3	Sm	BCF81;R	s7	Mm	BD131	S4	P
BC375	s3	Sm	BCV71;R	s7	Mm	BD132	S4	P
BC376	s3	Sm	BCV72;R	s7	Mm	BD135	S4	P
вс546	s3	Sm	BCW29;R	s7	Mm	BD136	S4	P
BC547	\$3	Sm	BCW30:R	s7	Mm	BD130	S4	P
BC548	53 S3	Sm	BCW30; R	s7	Mm	BD137	54 S4	P P
BC546	S3	Sm Sm	BCW31;R	s7	Mm.	BD136	54 S4	P P
			BCW32; R	s7		BD139 BD140	54 S4	P P
BC550	s3	Sm	bCw33; K	57	Mm	BD140	54	Р
BC556	S3	Sm	BCW60*	s7	Mm	BD201	S4	P
BC557	s3	Sm	BCW61*	s7	Mm	BD202	S4	P
BC558	s3	Sm	BCW69;R	s7	Mm	BD203	S4	P
BC559	s3	Sm	BCW70; R	s7	Mm	BD204	S4	P
BC560	S3	Sm	BCW71;R	s7	Mm	BD226	S4	P
D.C.6.2.E	c a	C	BCW72;R	s7	Mm	BD227	S4	Р
BC635	S3	Sm	BCW72; R	s7		BD227 BD228	54 S4	P P
BC636	S3	Sm	BCW89;R	S7	Mm Mm	BD229	54 S4	P P
BC637	S3	Sm				1		
BC638	S3	Sm	BCX17;R	S7	Mm	BD230	S4	P
вс639	s3	Sm	BCX18;R	s7	Mm	BD231	S4	P
BC640	s3	Sm	BCX19;R	s7	Mm	BD233	S4	P
BC807	s7	Mm	BCX20;R	s7	Mm	BD234	S4	P
BC808	s7	Mm	BCX51	S7	Mm	BD235	S4	P
BC817	s7	Mm	BCX52	s7	Mm	BD236	S4	P
BC818	s7	Mm	BCX53	s7	Mm	BD237	S4	P
вс846	s7	Mm	BCX54	s7	Mm	BD238	S4	P
BC847	S7 S7		BCX55	s7	Mm	BD236	54 S4	P P
BC847 BC848	S7 S7	Mm Mm	BCX56	s7	Mm	BD291 BD292	S4 S4	P P
	S7 S7		BCX70*	s7	Mm.	BD292 BD293	S4 S4	P P
BC849	S7 S7	Mm	BCX71*	57 57	Mm	BD293	54 S4	P P
вс850	57	Mm	BOX/1"	31	rull	DU234	54	r
BC856	s7	Mm	BCY56	s3	Sm	BD295	S4	P
BC857	s7	Mm	BCY57	s3	Sm	BD296	S4	P
BC858	s7	Mm	BCY58	s3	Sm	BD329	S4	P
BC859	s7	Mm	BCY59	s3	Sm	BD330	S4	P
BC860	s7	Mm	BCY70	s3	Sm	BD331	S4	P

^{* =} series

FET = Field-effect transistors

Mm = Microminiature semico

Mm = Microminiature semiconductors for hybrid circuits

P = Low-frequency power transistors Sm = Small-signal transistors

type no.	book	section	type no.	book	section	type no.	book	section
BD332	S4	P	BD828	S4	P	BDT30C	s4	P
BD333	S4	P	BD829	S4	P	BDT31	S4	P
BD334	S4	P	BD830	S4	P	BDT31A	S4	P
BD335	S4	P	BD839	S4	P	BDT31B	S4	P
BD336	s4	P	BD840	S4	P	BDT31C	S4	P
BD337	S4	P	BD841	S4	P	BDT32	s4	P
BD338	S4	P	BD842	S4	P	BDT32A	S4	P
BD433	S4	P	BD843	S4	P	BDT32B	S4	P
BD434	S4	P	BD844	S4	P	BDT32C	S4	P
BD435	S4	P	BD933	S4	P	BDT41	S4	P
BD436	S4	P	BD934	S4	P	BDT41A	S4	Р
BD437	S4	P	BD935	S4	P	BDT41B	S4	P
BD438	S4	P	BD936	S4	P	BDT41C	S4	P
BD645	S4	P	BD937	S4	P	BDT42	S4	P
BD646	S4	P	BD938	S4	P	BDT42A	S4	P
BD647	S4	P	BD939	S4	P	BDT42B	S4	P
BD648	S4	P	BD940	S4	P	BDT42C	s4	P
BD649	S4	P	BD941	S4	P	BDT60	S4	P
BD650	S4	P	BD942	S4	P	BDT60A	S4	P
BD651	S4	P	BD943	S4	P	BDT60B	S4	P
BD652	S4	P	BD944	S4	P	BDT60C	S4	Р
BD675	S4	P	BD945	S4	Ρ΄	BDT61	S4	P
BD676	S4	P	BD946	S4	P	BDT61A	S4	P
BD677	S4	P	BD947	S4	P	BDT61B	S4	Р
BD678	S4	P	BD948	S4	P	BDT61C	S4	P
BD679	S4	P	BD949	S4	P	BDT62	S4	Р
BD680	S4	P	BD950	S4	P	BDT62A	S4	P
BD681	S4	P	BD951	S4	P	BDT62B	S4	P
BD682	S4	P	BD952	s4	P	BDT62C	S4	P
BD683	S4	P	BD953	S4	P	BDT63	S4	P
BD684	S4	P	BD954	S4	P	BDT63A	S4	Р
BD813	S4	P	BD955	54 S4	P	BDT63B	S4 S4	P
BD814	S4	P	BD956	S4	P	BDT63C	54 S4	r P
BD815	S4	P	BDT29	S4	P	BDT64	S4 S4	P P
BD816	S4	P P	BDT29A	S4	P P	BDT64A	S4 S4	P P
BD817	S4	Р	BDT29B	S4	D	npm(/p	0.1	
BD818	S4 S4	P P	BDT29B BDT29C	S4 S4	P P	BDT64B	S4	P
BD825	S4 S4	P P	BDT30	54 54		BDT64C	S4	P
BD825	S4 S4	P P	BDT30A	S4 S4	P	BDT65	S4	P
BD827	S4 S4	P	BDT30A BDT30B	S4 S4	P P	BDT65A	S4	P
ואַטעע	34	Ľ	מטכנטמ	54	r	BDT65B	S4	P

P = Low-frequency power transistors

type no.	book	section	type no.	book	section	type no.	book	section
BDT65C	S4	P	BDX63	s4	P	BF241	s3	Sm
BDT91	S4	P	BDX63A	S4	P	BF245A	S5	FET
BDT92	S4	P	BDX63B	S4	P	BF245B	S5	FET
BDT93	S4	P	BDX63C	S4	P	BF245C	S5	FET
BDT94	S4	P	BDX64	S4	P	BF246A	S5	FET
BDT95	S4	P	BDX64A	S4	P	BF246B	S5	FET
BDT96	S4	P	BDX64B	S4	P	BF246C	S5	FET
BDV64	S4	P	BDX64C	S4	P	BF256A	S5	FET
BDV64A	S4	P	BDX65	S4	P	BF256B	S5	FET
BDV64B	S4	P	BDX65A	S4	P	BF256C	S5	FET
BDV64C	S4	P	BDX65B	S4	P	BF324	s3	Sm
BDV65	S4	P	BDX65C	S4	P	BF370	s3	Sm
BDV65A	S4	P	BDX66	S4	P	BF410A	S5	FET
BDV65B	S4	P	BDX66A	S4	P	BF410B	S5	FET
BDV65C	S4	P	BDX66B	S4	P	BF410C	S 5	FET
BDV91	S4	P	BDX66C	S4	P	BF410D	S5	FET
BDV92	s4	P	BDX67	S4	P	BF419	S4	P
BDV93	S4	P	BDX67A	S4	P	BF422	s3	Sm
BDV94	S4	P	BDX67B	S4	P	BF423	s3	Sm
BDV95	S4	P	BDX67C	S4	P	BF450	s3	Sm
BDV96	S4	P	BDX77	S4	P	BF451	s3	Sm
BDW55	S4	P	BDX78	S4	P	BF457	S4	P
BDW56	S4	P	BDX91	S4	P	BF458	S4	P
BDW57	S4	P	BDX92	S4	P	BF459	S4	P
BDW58	S4	P	BDX93	S4	P	BF469	S4	P
BDW59	S4	P	BDX94	S4	P	BF470	s4	P
BDW60	S4	P	BDX95	S4	P	BF471	S4	P
BDX35	S4	P	BDX96	S4	P	BF472	S4	P
BDX36	S4	P	BDY90	S4	P	BF480	s3	Sm
BDX37	S4	P	BDY90A	S4	P	BF494	s3	Sm
BDX42	S4	P	BDY91	S4	P	BF495	s3	Sm
BDX43	S4	P	BDY92	S4	P	BF496	s3	Sm
BDX44	S4	P	BF180	S3	Sm	BF510	S7	Mm
BDX45	S4	P	BF181	S3	Sm	BF511	s7	Mm
BDX45	S4	P	BF182	S3	Sm	BF512	s7	Mm
BDX47	S4	Р	BF183	s3	Sm	BF513	s7	Mm
BDX47	S4	P	BF198	S3	Sm	BF536	s7	Mm
BDX62A	S4	P	BF199	S3	Sm	BF550;R	s7	Mm
BDX62B	S4	P	BF200	S3	Sm	BF569	s7	Mm
BDX62C	S4	P	BF240	S3	Sm	BF579	s7	Mm
		-	DI 240		Jii	1 513,7		11111

FET = Field-effect transistors

Mm = Microminiature semiconductors
for hybrid circuits

P = Low-frequency power transistors Sm = Small-signal transistors

type no.	book	section	type no.	book	section	type no.	book	section
BF620	 S7	Mm	BFP90A	s10	WBT	BFR90A	S10	WBT
BF621	s7	Mm	BFP91A	S10	WBT	BFR91	S10	WBT
BF622	s7	Mm	BFP96	S10	WBT	BFR91A	S10	WBT
BF623	s7	Mm	BFQ10	S5	FET	(S10 S7	
BF660;R	s7	Mm	BFQ11	S5	FET	BFR92;R		Mm
Broot, R	٥,	1111	Brqii	رن	F 15 I	BFR92A;R	57	Mm
в г 689 к	S10	WBT	BFQ12	S5	FET	BFR93;R	s7	Mm
BF767	S7	Mm	BFQ13	S5	FET	BFR93A;R		Mm
BF819	S4	P	BFQ14	S5	FET	BFR94	s10	WBT
BF820	s7	Mm	BFQ15	S5	FET	BFR95	S10	WBT
BF821	s7	Mm	BFQ16	S5	FET	BFR96	S10	WBT
						Brkyo	510	MDI
BF822	s7	Mm	BFQ17	s7	Mm	BFR96S	S10	WBT
BF823	S 7	Mm	BFQ18A	s7	Mm	BFR101A;		Mm
BF857	S4	P	BFQ19	s7	Mm	BFS17;R	s7	Mm
BF858	S4	P	BFQ22	S10	WBT	BFS18;R	s7	Mm
BF859	S4	P	BFQ22S	S10	WBT	BFS19:R	s7	Mm
1						J. 023,10	υ.	
BF869	S4	P	BFQ23	S10	WBT	BFS20;R	s7	Mm
BF870	S4	P	BFQ24	S10	WBT	BFS21	S5	FET
BF871	S4	P	BFQ32	S10	WBT	BFS21A	S5	FET
BF872	S4	P	BFQ33	S10	WBT	BFS22A	S6	RFP
BF926	s3	Sm	BFQ34	S10	WBT	BFS23A	S6	RFP
			}					
BF936	S 3	Sm	BFQ34T	S10	WBT	BFT24	S10	WBT
BF939	s3	Sm	BFQ42	S6	RFP	BFT25;R	s7	Mm
BF960	S5	FET	BFQ43	S6	RFP	BFT44	s3	Sm
BF964	S5	FET	BFQ51	S10	WBT	BFT45	s3	Sm
BF966	S5	FET	BFQ52	S10	WBT	BFT46	s7	Mm
22067		_						
BF967	S3	Sm	BFQ53	S10	WBT	BFT92;R	S7	Mm
BF970	s3	Sm	BFQ63	s10	WBT	BFT93;R	s7	Mm
BF979	S3	Sm	BFQ65	S10	WBT	BFW10	S5	FET
BF980	S5	FET	BFQ66	S10	WBT	BFW11	S5	FET
BF981	S5	FET	BFQ68	S10	WBT	BFW12	S5	FET
BF982	S5	mara	pen 20	C.E	ra va m			
BF982	S7	FET Mm	BFR29	S5 S7	FET	BFW13	S5	FET
BF990	s7 S7	rım Mm	BFR30		Mm M	BFW16A	S10	WBT
BF990	s7		BFR31	S7	Mm	BFW17A	S10	WBT
BF991	S7 S7	Mm Mm	BFR49	S10 S7	WBT	BFW30	S10	WBT
DF 332	٥/	run	BFR53;R	5/	Mm	BFW61	S5	FET
BF994	s7	Mm	BFR54	s3	Sm	p EUO2	c10	marı
BF996	s7	Mm	BFR64	S10	WBT	BFW92	S10 S10	WBT
BFG90A	S10	WBT	BFR65	S10	WBT	BFW92A	S10 S10	WBT WBT
BFG91A	S10	WBT	BFR84	S5	FET	BFW93 BFX29	S10	Sm
BFG96	S10	WBT	BFR90	S10	WBT	BFX29 BFX30	S3	Sm Sm
						BFAJU	رن	

FET = Field-effect transistors

Mm = Microminiature semiconductors for hybrid circuits

P = Low-frequency power transistors

RFP = R.F. power transistors and modules

Sm = Small-signal transistors

WBT = Wideband hybrid IC transistors

Type no. book section section section type no. book section							,		
BFX84	type no.	book	section	type no.	book	section	type no.	book	section
BFX85 S3 Sm BGY59 S10 WBT BLW84 S6 RPP BFX86 S3 Sm BGY59 S10 WBM BLW85 S6 RPP BFX87 S3 Sm BGY60 S10 WBT BLW85 S6 RPP BFX88 S3 Sm BGY61 S10 WBT BLW89 S6 RPP BFY50 S3 Sm BGY67 S10 WBT BLW90 S6 RPP BFY51 S3 Sm BGY70 S10 WBT BLW90 S6 RPP BFY52 S3 Sm BGY71 S10 WBT BLW95 S6 RPP BFY55 S3 Sm BGY74 S10 WBM BLW96 S6 RPP BC2000 S1 RT BLV10 S6 RFP BLX13 S6 RPP BCX11* S2 ThM BLV21 S6 RFP	BFX34	s3	Sm	BGY57	S10	WBM	BLW82		RFP
BFX85 S3	BFX84	s3	Sm	BGY58	S10	WBM	BLW83	S6	RFP
BFX87 S3 Sm BGY60 S10 WBM BLW86 S6 RFP BFX88 S10 WBT BGY65 S10 WBT BLW89 S6 RFP BFY50 S3 Sm BGY67 S10 WBT BLW90 S6 RFP BFY51 S3 Sm BGY70 S10 WBT BLW90 S6 RFP BFY52 S3 Sm BGY71 S10 WBT BLW95 S6 RFP BFY90 S10 WBT BLW95 S6 RFP BFY90 S10 WBT BLW96 S6 RFP BG20097 S1 RT BLV10 S6 RFP BLX13 S6 RFP BGX12* S2 ThM BLV20 S6 RFP BLX14 S6 RFP BGX12* S2 ThM BLV21 S6 RFP BLX35 S6 RFP BGX12* S2 ThM				BGY58A		WBT	BLW84		RFP
BFX87 S3 Sm BGY60 S10 WBM BLW86 S6 RFP BFX88 S10 WBT BGY65 S10 WBT BLW89 S6 RFP BFY50 S3 Sm BGY67 S10 WBT BLW90 S6 RFP BFY51 S3 Sm BGY70 S10 WBT BLW91 S6 RFP BFY52 S3 Sm BGY71 S10 WBT BLW95 S6 RFP BFY55 S3 Sm BGY74 S10 WBM BLW96 S6 RFP BFY90 S10 WBT BLW96 S6 RFP BLX13 S6 RFP BG2007 S1 RT BLV11 S6 RFP BLX13 S6 RFP BGX12* S2 ThM BLV20 S6 RFP BLX14 S6 RFP BGX12* S2 ThM BLV21 S6 RFP	BFX86	s3	Sm	BGY59	S10	WBM	BLW85	S6	RFP
BFX89 S10 WBT BGY65 S10 WBT BLW89 S6 RFP BFY50 S3 Sm BGY67 S10 WBT BLW90 S6 RFP BFY51 S3 Sm BGY70 S10 WBT BLW90 S6 RFP BFY52 S3 Sm BGY71 S10 WBT BLW91 S6 RFP BFY52 S3 Sm BGY71 S10 WBT BLW95 S6 RFP BFY55 S3 Sm BGY71 S10 WBT BLW95 S6 RFP BFY90 S10 WBT BGY75 S10 WBM BLW98 S6 RFP BG2000 S1 RT BLV10 S6 RFP BLX13 C S6 RFP BG2000 S1 RT BLV11 S6 RFP BLX13 C S6 RFP BGX11* S2 ThM BLV20 S6 RFP BLX13 C S6 RFP BGX11* S2 ThM BLV20 S6 RFP BLX14 S6 RFP BGX13* S2 ThM BLV20 S6 RFP BLX14 S6 RFP BGX13* S2 ThM BLV25 S6 RFP BLX39 S6 RFP BGX14* S2 ThM BLV31 S6 RFP BLX39 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX66 S6 RFP BGX17* S2 ThM BLV31 S6 RFP BLX66 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX66 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX65 S6 RFP BGX30 S6 RFP BLX66 S6 RFP BGX30 S6 RFP BLX30 S6 RFP BLX66 S6 RFP BGY22 S6 RFP BLV33 S6 RFP BLX65 S6 RFP BLX66 S6 RFP BGY23 S6 RFP BLV33 S6 RFP BLX68 S6 RFP BLX68 S6 RFP BGY32 S6 RFP BLV33 S6 RFP BLX68 S6 RFP BLX69 S6 RFP BLX93 S6 RFP BLX93 S6 RFP BLX93 S6 RFP BLX93 S6 RFP BLX94 S6 RFP BGY33 S6 RFP BLX33 S6 RFP BLX94 S6 RFP BGY35 S6 RFP BLX33 S6 RFP BLX94 S6 RFP BGY36 S6 RFP BLX33 S6 RFP BLX95 S6 RFP BLX96 S6 RFP BGY40 S6 RFP BLX33 S6 RFP BLX96 S6 RFP BGY40 S6 RFP BLX93 S6 RFP BLX96 S6 RFP BGY40 S6 RFP BLX96 S6 RFP BLX96 S6 RFP BLX96 S6 RFP BGY40 S6 RFP BLX96 S6 RFP BLX96 S6 RFP BGY40 S6 RFP BLX96 S6 RFP BLX96 S6 RFP BGY40 S6 RFP BLX96				BGY60	S10	WBM	BLW86	S6	RFP
BFX89 S10 WBT BGY65 S10 WBT BLW89 S6 RFP BFY50 S3 Sm BGY67 S10 WBT BLW90 S6 RFP BFY51 S3 Sm BGY70 S10 WBT BLW90 S6 RFP BFY52 S3 Sm BGY71 S10 WBT BLW91 S6 RFP BFY52 S3 Sm BGY71 S10 WBT BLW95 S6 RFP BFY55 S3 Sm BGY71 S10 WBT BLW95 S6 RFP BFY90 S10 WBT BGY75 S10 WBM BLW98 S6 RFP BG2000 S1 RT BLV10 S6 RFP BLX13 C S6 RFP BG2000 S1 RT BLV11 S6 RFP BLX13 C S6 RFP BGX11* S2 ThM BLV20 S6 RFP BLX13 C S6 RFP BGX11* S2 ThM BLV20 S6 RFP BLX14 S6 RFP BGX13* S2 ThM BLV20 S6 RFP BLX14 S6 RFP BGX13* S2 ThM BLV25 S6 RFP BLX39 S6 RFP BGX14* S2 ThM BLV31 S6 RFP BLX39 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX66 S6 RFP BGX17* S2 ThM BLV31 S6 RFP BLX66 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX66 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX65 S6 RFP BGX30 S6 RFP BLX66 S6 RFP BGX30 S6 RFP BLX30 S6 RFP BLX66 S6 RFP BGY22 S6 RFP BLV33 S6 RFP BLX65 S6 RFP BLX66 S6 RFP BGY23 S6 RFP BLV33 S6 RFP BLX68 S6 RFP BLX68 S6 RFP BGY32 S6 RFP BLV33 S6 RFP BLX68 S6 RFP BLX69 S6 RFP BLX93 S6 RFP BLX93 S6 RFP BLX93 S6 RFP BLX93 S6 RFP BLX94 S6 RFP BGY33 S6 RFP BLX33 S6 RFP BLX94 S6 RFP BGY35 S6 RFP BLX33 S6 RFP BLX94 S6 RFP BGY36 S6 RFP BLX33 S6 RFP BLX95 S6 RFP BLX96 S6 RFP BGY40 S6 RFP BLX33 S6 RFP BLX96 S6 RFP BGY40 S6 RFP BLX93 S6 RFP BLX96 S6 RFP BGY40 S6 RFP BLX96 S6 RFP BLX96 S6 RFP BLX96 S6 RFP BGY40 S6 RFP BLX96 S6 RFP BLX96 S6 RFP BGY40 S6 RFP BLX96 S6 RFP BLX96 S6 RFP BGY40 S6 RFP BLX96	RFX88	53	Sm	BGY61	s10	WBT	BLW87	s6	RFP
BFY50 S3 Sm BGY67 S10 WBT BLW90 S6 RFP BFY51 S3 Sm BGY70 S10 WBT BLW91 S6 RFP BFY52 S3 Sm BGY71 S10 WBT BLW95 S6 RFP BFY50 S3 Sm BGY71 S10 WBM BLW95 S6 RFP BFY90 S10 WBT BGY75 S10 WBM BLW96 S6 RFP BG2000 S1 RT BLV10 S6 RFP BLX13 S6 RFP BGX11* S2 ThM BLV20 S6 RFP BLX14 S6 RFP BGX12* S2 ThM BLV25 S6 RFP BLX39 S6 RFP BGX12* S2 ThM BLV21 S6 RFP BLX39 S6 RFP BGX12* S2 ThM BLV31 S6 RFP							BLW89	S6	RFP
BFY51				1			BLW90		
BFY52 S3							BLW91		
BFY90 S10 WBT BGY75 S10 WBM BLW98 S6 RFP BG2000 S1 RT BLV10 S6 RFP BLX13 S6 RFP BG2097 S1 RT BLV11 S6 RFP BLX13 S6 RFP BGX11* S2 ThM BLV20 S6 RFP BLX14 S6 RFP BGX12* S2 ThM BLV25 S6 RFP BLX39 S6 RFP BGX13* S2 ThM BLV30 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX66 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX66 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX67 S6 RFP BGY22 S6 RFP BLV333 S6 RFP				i .			BLW95		1
BFY90 S10 WBT BGY75 S10 WBM BLW98 S6 RFP BG2000 S1 RT BLV10 S6 RFP BLX13 S6 RFP BG2097 S1 RT BLV11 S6 RFP BLX13 S6 RFP BGX11* S2 ThM BLV20 S6 RFP BLX14 S6 RFP BGX12* S2 ThM BLV25 S6 RFP BLX39 S6 RFP BGX13* S2 ThM BLV30 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX66 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX66 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX67 S6 RFP BGY22 S6 RFP BLV333 S6 RFP	nnvee		0	BCV7/	s10	IJRM	RI U96	96	DED
BG2000 S1 RT BLV10 S6 RFP BLX13 S6 RFP BG2097 S1 RT BLV11 S6 RFP BLX13C S6 RFP BGX11* S2 ThM BLV20 S6 RFP BLX14 S6 RFP BGX12* S2 ThM BLV21 S6 RFP BLX35 S6 RFP BGX13* S2 ThM BLV25 S6 RFP BLX39 S6 RFP BGX14* S2 ThM BLV30 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV32F S6 RFP BLX66 S6 RFP BGX15* S2 ThM BLV32F S6 RFP BLX66 S6 RFP BGX15* S2 ThM BLV32F S6 RFP BLX68 S6 RFP BGY22 S6 RFP BLV33F S6 RFP </td <td></td> <td></td> <td></td> <td>i</td> <td></td> <td></td> <td>I</td> <td></td> <td></td>				i			I		
BG2097 S1 RT BLV11 S6 RFP BLX13C S6 RFP BGX11* S2 ThM BLV20 S6 RFP BLX14 S6 RFP BGX12* S2 ThM BLV21 S6 RFP BLX39 S6 RFP BGX13* S2 ThM BLV30 S6 RFP BLX39 S6 RFP BGX15* S2 ThM BLV30 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX66 S6 RFP BGX15* S2 ThM BLV32F S6 RFP BLX67 S6 RFP BGY22 S6 RFP BLV33 S6 RFP BLX68 S6 RFP BGY23A S6 RFP BLV33 S6 RFP BLX91A S6 RFP BGY33 S6 RFP BLW35 S6 RFP <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>									1
BGX11* S2 ThM BLV20 S6 RFP BLX14 S6 RFP BGX12* S2 ThM BLV21 S6 RFP BLX39 S6 RFP BGX13* S2 ThM BLV30 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX66 S6 RFP BGX17* S2 ThM BLV32F S6 RFP BLX66 S6 RFP BGY22 S6 RFP BLV33F S6 RFP BLX69A S6 RFP BGY23 S6 RFP BLV33F S6 RFP BLX69A S6 RFP BGY23A S6 RFP BLV37 S6 RFP BLX92A S6 RFP BGY33 S6 RFP BLW39 S6 RFP BLW34 S6 RFP BGY35 S6 RFP BLW32 S6 RFP </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
BGX12* S2 ThM BLV21 S6 RFP BLX15 S6 RFP BGX13* S2 ThM BLV25 S6 RFP BLX39 S6 RFP BGX14* S2 ThM BLV30 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX66 S6 RFP BGX17* S2 ThM BLV32F S6 RFP BLX67 S6 RFP BGY22 S6 RFP BLV33 S6 RFP BLX68 S6 RFP BGY23 S6 RFP BLV33F S6 RFP BLX94A S6 RFP BGY23A S6 RFP BLV57 S6 RFP BLX92A S6 RFP BGY33 S6 RFP BLW29 S6 RFP BLX93A S6 RFP BGY36 S6 RFP BLW32 S6 RFP BLX94A				1					
BGX13* S2 ThM BLV25 S6 RFP BLX39 S6 RFP BGX14* S2 ThM BLV30 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX66 S6 RFP BGX17* S2 ThM BLV32F S6 RFP BLX66 S6 RFP BGY22 S6 RFP BLV33 S6 RFP BLX69A S6 RFP BGY22A S6 RFP BLV36 S6 RFP BLX69A S6 RFP BGY23 S6 RFP BLV36 S6 RFP BLX91A S6 RFP BGY32 S6 RFP BLW29 S6 RFP BLX93A S6 RFP BGY33 S6 RFP BLW31 S6 RFP BLX94A S6 RFP BGY35 S6 RFP BLW33 S6 RFP <td>BGX11*</td> <td>S2</td> <td>ThM</td> <td>BLV20</td> <td>50</td> <td>KFF</td> <td>DLA14</td> <td>50</td> <td>KFF</td>	BGX11*	S2	ThM	BLV20	50	KFF	DLA14	50	KFF
BGX13* S2 ThM BLV25 S6 RFP BLX39 S6 RFP BGX14* S2 ThM BLV30 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX66 S6 RFP BGX17* S2 ThM BLV32F S6 RFP BLX66 S6 RFP BGY22 S6 RFP BLV33F S6 RFP BLX69A S6 RFP BGY22A S6 RFP BLV36 S6 RFP BLX69A S6 RFP BGY23 S6 RFP BLV36 S6 RFP BLX91A S6 RFP BGY32 S6 RFP BLW29 S6 RFP BLX92A S6 RFP BGY33 S6 RFP BLW31 S6 RFP BLX94A S6 RFP BGY35 S6 RFP BLW34 S6 RFP </td <td>BGX12*</td> <td>S2</td> <td>ThM</td> <td>BLV21</td> <td>S6</td> <td>RFP</td> <td>BLX15</td> <td>S6</td> <td>RFP</td>	BGX12*	S2	ThM	BLV21	S6	RFP	BLX15	S 6	RFP
BGX14* S2 ThM BLV30 S6 RFP BLX65 S6 RFP BGX15* S2 ThM BLV31 S6 RFP BLX66 S6 RFP BGX17* S2 ThM BLV32F S6 RFP BLX67 S6 RFP BGY22 S6 RFP BLV33 S6 RFP BLX68 S6 RFP BGY22A S6 RFP BLV36 S6 RFP BLX69A S6 RFP BGY23A S6 RFP BLV36 S6 RFP BLX91A S6 RFP BGY33 S6 RFP BLW29 S6 RFP BLX92A S6 RFP BGY35 S6 RFP BLW31 S6 RFP BLX94A S6 RFP BGY35 S6 RFP BLW32 S6 RFP BLX95 S6 RFP BGY36 S6 RFP BLW33 S6 RFP <td></td> <td></td> <td></td> <td>BLV25</td> <td>S6</td> <td>RFP</td> <td>BLX39</td> <td>s6</td> <td>RFP</td>				BLV25	S6	RFP	BLX39	s6	RFP
BGX15* S2 ThM BLV31 S6 RFP BLX66 S6 RFP BGX17* S2 ThM BLV32F S6 RFP BLX67 S6 RFP BGY22 S6 RFP BLV33 S6 RFP BLX68 S6 RFP BGY22A S6 RFP BLV33F S6 RFP BLX69A S6 RFP BGY23A S6 RFP BLV36 S6 RFP BLX91A S6 RFP BGY32 S6 RFP BLW29 S6 RFP BLX92A S6 RFP BGY32 S6 RFP BLW29 S6 RFP BLX93A S6 RFP BGY33 S6 RFP BLW32 S6 RFP BLX94A S6 RFP BGY35 S6 RFP BLW33 S6 RFP BLX95 S6 RFP BGY40A S6 RFP BLW34 S6 RFP </td <td></td> <td></td> <td></td> <td>BLV30</td> <td>S6</td> <td>RFP</td> <td>BLX65</td> <td>s6</td> <td>RFP</td>				BLV30	S 6	RFP	BLX65	s6	RFP
BGX17* S2 ThM BLV32F S6 RFP BLX67 S6 RFP BGY22 S6 RFP BLV33 S6 RFP BLX68 S6 RFP BGY22A S6 RFP BLV33F S6 RFP BLX91A S6 RFP BGY23A S6 RFP BLV57 S6 RFP BLX92A S6 RFP BGY32 S6 RFP BLW29 S6 RFP BLX93A S6 RFP BGY33 S6 RFP BLW32 S6 RFP BLX94A S6 RFP BGY35 S6 RFP BLW32 S6 RFP BLX94C S6 RFP BGY40A S6 RFP BLW33 S6 RFP BLX95 S6 RFP BGY40B S6 RFP BLW34 S6 RFP BLX97 S6 RFP BGY41B S6 RFP BLW60C S6 RFP				BLV31	S6	RFP	BLX66	S6	RFP
BGY22 S6 RFP BLV33 S6 RFP BLX68 S6 RFP BGY22A S6 RFP BLV33F S6 RFP BLX69A S6 RFP BGY23 S6 RFP BLV36 S6 RFP BLX91A S6 RFP BGY33 S6 RFP BLW29 S6 RFP BLX92A S6 RFP BGY33 S6 RFP BLW29 S6 RFP BLX93A S6 RFP BGY35 S6 RFP BLW32 S6 RFP BLX94C S6 RFP BGY36 S6 RFP BLW33 S6 RFP BLX95 S6 RFP BGY40A S6 RFP BLW34 S6 RFP BLX95 S6 RFP BGY40B S6 RFP BLW50F S6 RFP BLX97 S6 RFP BGY41B S6 RFP BLW60C S6 RFP </td <td></td> <td></td> <td></td> <td>BLV32F</td> <td>s6</td> <td>RFP</td> <td>BLX67</td> <td>S6</td> <td>RFP</td>				BLV32F	s6	RFP	BLX67	S 6	RFP
BGY22A S6 RFP BLV33F S6 RFP BLX69A S6 RFP BGY23 S6 RFP BLV36 S6 RFP BLX91A S6 RFP BGY33A S6 RFP BLV57 S6 RFP BLX92A S6 RFP BGY32 S6 RFP BLW29 S6 RFP BLX93A S6 RFP BGY33 S6 RFP BLW31 S6 RFP BLX94A S6 RFP BGY35 S6 RFP BLW32 S6 RFP BLX94C S6 RFP BGY36 S6 RFP BLW33 S6 RFP BLX95 S6 RFP BGY40A S6 RFP BLW34 S6 RFP BLX96 S6 RFP BGY40B S6 RFP BLW50F S6 RFP BLX97 S6 RFP BGY41A S6 RFP BLW60C S6 RFP	D01121	0.2	21111						
BGY22A S6 RFP BLV33F S6 RFP BLX69A S6 RFP BGY23 S6 RFP BLV36 S6 RFP BLX91A S6 RFP BGY32 S6 RFP BLV57 S6 RFP BLX92A S6 RFP BGY32 S6 RFP BLW29 S6 RFP BLX93A S6 RFP BGY33 S6 RFP BLW32 S6 RFP BLX94C S6 RFP BGY36 S6 RFP BLW33 S6 RFP BLX95 S6 RFP BGY40A S6 RFP BLW34 S6 RFP BLX96 S6 RFP BGY40B S6 RFP BLW50F S6 RFP BLX97 S6 RFP BGY41A S6 RFP BLW60C S6 RFP BLX98 S6 RFP BGY41B S6 RFP BLW64 S6 RFP<	BGY22	S6	RFP	BLV33	S6	RFP	BLX68	S6 ,	RFP
BGY23 S6 RFP BLV36 S6 RFP BLX91A S6 RFP BGY23A S6 RFP BLV57 S6 RFP BLX92A S6 RFP BGY32 S6 RFP BLW29 S6 RFP BLX94A S6 RFP BGY33 S6 RFP BLW32 S6 RFP BLX94C S6 RFP BGY36 S6 RFP BLW33 S6 RFP BLX95 S6 RFP BGY40A S6 RFP BLW34 S6 RFP BLX95 S6 RFP BGY40B S6 RFP BLW50F S6 RFP BLX97 S6 RFP BGY41A S6 RFP BLW60C S6 RFP BLX98 S6 RFP BGY41B S6 RFP BLW60C S6 RFP BLY33 S6 RFP BGY51 S10 WBM BLW75 S6 RFP<				BLV33F	S6	RFP	BLX69A	s6	RFP
BGY23A S6 RFP BLV57 S6 RFP BLX92A S6 RFP BGY32 S6 RFP BLW29 S6 RFP BLX93A S6 RFP BGY33 S6 RFP BLW31 S6 RFP BLX94A S6 RFP BGY35 S6 RFP BLW32 S6 RFP BLX94C S6 RFP BGY36 S6 RFP BLW33 S6 RFP BLX95 S6 RFP BGY40A S6 RFP BLW34 S6 RFP BLX96 S6 RFP BGY40B S6 RFP BLW50F S6 RFP BLX97 S6 RFP BGY41B S6 RFP BLW60C S6 RFP BLY33 S6 RFP BGY41B S6 RFP BLW60C S6 RFP BLY33 S6 RFP BGY51 S10 WBM BLW75 S6 RFP<				BLV36	S6	RFP	BLX91A	S6	RFP
BGY32 S6 RFP BLW29 S6 RFP BLX93A S6 RFP BGY33 S6 RFP BLW31 S6 RFP BLX94A S6 RFP BGY35 S6 RFP BLW32 S6 RFP BLX94C S6 RFP BGY36 S6 RFP BLW33 S6 RFP BLX95 S6 RFP BGY40A S6 RFP BLW34 S6 RFP BLX96 S6 RFP BGY40B S6 RFP BLW50F S6 RFP BLX97 S6 RFP BGY41B S6 RFP BLW60C S6 RFP BLY33 S6 RFP BGY41B S6 RFP BLW60C S6 RFP BLY33 S6 RFP BGY43 S6 RFP BLW64 S6 RFP BLY34 S6 RFP BGY50 S10 WBM BLW75 S6 RFP <td></td> <td></td> <td></td> <td>BLV57</td> <td>S6</td> <td>RFP</td> <td>BLX92A</td> <td>s6</td> <td>RFP</td>				BLV57	S6	RFP	BLX92A	s6	RFP
BGY35 S6 RFP BLW32 S6 RFP BLX94C S6 RFP BGY36 S6 RFP BLW33 S6 RFP BLX95 S6 RFP BGY40A S6 RFP BLW34 S6 RFP BLX96 S6 RFP BGY40B S6 RFP BLW50F S6 RFP BLX97 S6 RFP BGY41A S6 RFP BLW60C S6 RFP BLX98 S6 RFP BGY41B S6 RFP BLW60C S6 RFP BLY33 S6 RFP BGY41B S6 RFP BLW60C S6 RFP BLY33 S6 RFP BGY43 S6 RFP BLW64 S6 RFP BLY34 S6 RFP BGY50 S10 WBM BLW75 S6 RFP BLY35 S6 RFP BGY51 S10 WBM BLW77 S6 RFP </td <td></td> <td></td> <td></td> <td>BLW29</td> <td>S6</td> <td>RFP</td> <td>BLX93A</td> <td>s6</td> <td>RFP</td>				BLW29	S6	RFP	BLX93A	s6	RFP
BGY35 S6 RFP BLW32 S6 RFP BLX94C S6 RFP BGY36 S6 RFP BLW33 S6 RFP BLX95 S6 RFP BGY40A S6 RFP BLW34 S6 RFP BLX96 S6 RFP BGY40B S6 RFP BLW50F S6 RFP BLX97 S6 RFP BGY41A S6 RFP BLW60C S6 RFP BLX98 S6 RFP BGY41B S6 RFP BLW60C S6 RFP BLY33 S6 RFP BGY41B S6 RFP BLW60C S6 RFP BLY33 S6 RFP BGY43 S6 RFP BLW64 S6 RFP BLY34 S6 RFP BGY50 S10 WBM BLW75 S6 RFP BLY35 S6 RFP BGY51 S10 WBM BLW77 S6 RFP </td <td>DCV22</td> <td>06</td> <td>nen</td> <td>BLW31</td> <td>S6</td> <td>RFP</td> <td>BI.X944</td> <td>S6</td> <td>PEP</td>	DCV22	06	nen	BLW31	S 6	RFP	BI.X944	S6	PEP
BGY36 S6 RFP BLW33 S6 RFP BLX95 S6 RFP BGY40A S6 RFP BLW34 S6 RFP BLX96 S6 RFP BGY40B S6 RFP BLW50F S6 RFP BLX97 S6 RFP BGY41A S6 RFP BLW60C S6 RFP BLX98 S6 RFP BGY41B S6 RFP BLW60C S6 RFP BLY33 S6 RFP BGY43 S6 RFP BLW64 S6 RFP BLY34 S6 RFP BGY50 S10 WBM BLW75 S6 RFP BLY35 S6 RFP BGY51 S10 WBM BLW76 S6 RFP BLY35 S6 RFP BGY52 S10 WBM BLW77 S6 RFP BLY83 S6 RFP BGY53 S10 WBM BLW78 S6 RFP <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>I</td>							1		I
BGY40A S6 RFP BLW34 S6 RFP BLX96 S6 RFP BGY40B S6 RFP BLW50F S6 RFP BLX97 S6 RFP BGY41A S6 RFP BLW60 S6 RFP BLX98 S6 RFP BGY41B S6 RFP BLW60C S6 RFP BLY33 S6 RFP BGY43 S6 RFP BLW64 S6 RFP BLY34 S6 RFP BGY50 S10 WBM BLW75 S6 RFP BLY35 S6 RFP BGY51 S10 WBM BLW76 S6 RFP BLY36 S6 RFP BGY52 S10 WBM BLW77 S6 RFP BLY83 S6 RFP BGY53 S10 WBM BLW78 S6 RFP BLY84 S6 RFP BGY54 S10 WBM BLW80 S6 RFP <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
BGY40B S6 RFP BLW50F S6 RFP BLX97 S6 RFP BGY41A S6 RFP BLW60 S6 RFP BLX98 S6 RFP BGY41B S6 RFP BLW60C S6 RFP BLY33 S6 RFP BGY43 S6 RFP BLW64 S6 RFP BLY34 S6 RFP BGY50 S10 WBM BLW75 S6 RFP BLY35 S6 RFP BGY51 S10 WBM BLW76 S6 RFP BLY36 S6 RFP BGY52 S10 WBM BLW77 S6 RFP BLY83 S6 RFP BGY53 S10 WBM BLW78 S6 RFP BLY84 S6 RFP BGY54 S10 WBM BLW80 S6 RFP BLY85 S6 RFP BGY55 S10 WBM BLW80 S6 RFP <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>							1		
BGY41A S6 RFP BLW60 S6 RFP BLX98 S6 RFP BGY41B S6 RFP BLW60C S6 RFP BLY33 S6 RFP BGY43 S6 RFP BLW64 S6 RFP BLY34 S6 RFP BGY50 S10 WBM BLW75 S6 RFP BLY35 S6 RFP BGY51 S10 WBM BLW76 S6 RFP BLY36 S6 RFP BGY52 S10 WBM BLW77 S6 RFP BLY83 S6 RFP BGY53 S10 WBM BLW78 S6 RFP BLY84 S6 RFP BGY54 S10 WBM BLW79 S6 RFP BLY85 S6 RFP BGY55 S10 WBM BLW80 S6 RFP BLY87A S6 RFP									
BGY41B S6 RFP BLW60C S6 RFP BLY33 S6 RFP BGY43 S6 RFP BLW64 S6 RFP BLY34 S6 RFP BGY50 S10 WBM BLW75 S6 RFP BLY35 S6 RFP BGY51 S10 WBM BLW76 S6 RFP BLY36 S6 RFP BGY52 S10 WBM BLW77 S6 RFP BLY83 S6 RFP BGY53 S10 WBM BLW78 S6 RFP BLY84 S6 RFP BGY54 S10 WBM BLW79 S6 RFP BLY85 S6 RFP BGY55 S10 WBM BLW80 S6 RFP BLY87A S6 RFP	BGY4UB	50	RFP	BEWSOF	30	KFF	BLAST	30	Krr
BGY43 S6 RFP BLW64 S6 RFP BLY34 S6 RFP BGY50 S10 WBM BLW75 S6 RFP BLY35 S6 RFP BGY51 S10 WBM BLW76 S6 RFP BLY36 S6 RFP BGY52 S10 WBM BLW77 S6 RFP BLY83 S6 RFP BGY53 S10 WBM BLW78 S6 RFP BLY84 S6 RFP BGY54 S10 WBM BLW79 S6 RFP BLY85 S6 RFP BGY55 S10 WBM BLW80 S6 RFP BLY87A S6 RFP				1					
BGY50 S10 WBM BLW75 S6 RFP BLY35 S6 RFP BGY51 S10 WBM BLW76 S6 RFP BLY36 S6 RFP BGY52 S10 WBM BLW77 S6 RFP BLY83 S6 RFP BGY53 S10 WBM BLW78 S6 RFP BLY84 S6 RFP BGY54 S10 WBM BLW79 S6 RFP BLY85 S6 RFP BGY55 S10 WBM BLW80 S6 RFP BLY87A S6 RFP			RFP						
BGY51 S10 WBM BLW76 S6 RFP BLY36 S6 RFP BGY52 S10 WBM BLW77 S6 RFP BLY83 S6 RFP BGY53 S10 WBM BLW78 S6 RFP BLY84 S6 RFP BGY54 S10 WBM BLW79 S6 RFP BLY85 S6 RFP BGY55 S10 WBM BLW80 S6 RFP BLY87A S6 RFP				i			1		
BGY52 S10 WBM BLW77 S6 RFP BLY83 S6 RFP BGY53 S10 WBM BLW78 S6 RFP BLY84 S6 RFP BGY54 S10 WBM BLW79 S6 RFP BLY85 S6 RFP BGY55 S10 WBM BLW80 S6 RFP BLY87A S6 RFP	BGY50		WBM	1			1		
BGY53 S10 WBM BLW78 S6 RFP BLY84 S6 RFP BGY54 S10 WBM BLW79 S6 RFP BLY85 S6 RFP BGY55 S10 WBM BLW80 S6 RFP BLY87A S6 RFP	BGY51	S10	WBM	BLW76	S6	RFP	BLY36	S6	RFP
BGY53 S10 WBM BLW78 S6 RFP BLY84 S6 RFP BGY54 S10 WBM BLW79 S6 RFP BLY85 S6 RFP BGY55 S10 WBM BLW80 S6 RFP BLY87A S6 RFP	BGY52	S10	WBM	BLW77	s6	RFP	BLY83	s6	RFP
BGY54 S10 WBM BLW79 S6 RFP BLY85 S6 RFP BGY55 S10 WBM BLW80 S6 RFP BLY87A S6 RFP				BLW78	S6	RFP	BLY84	S6	RFP
BGY55 S10 WBM BLW80 S6 RFP BLY87A S6 RFP				BLW79	S6	RFP	BLY85	S6	
	BGY55			BLW80	s6	RFP	BLY87A	S6	RFP
				BLW81	S6	RFP	BLY87C	s6	RFP

RFP = R.F. power transistors and modules RT = Tripler

Sm = Small-signal transistors

ThM = Thyristor Modules WBM = Wideband hybrid IC modules WBT = Wideband hybrid IC transistors

type no.	book	section	type no.	book	section	type no.	book	section
BLY88A	s6	RFP	BSR30	s7	Mm	BSV78	S 5	FET
BLY88C	s6	RFP	BSR31	s7	Mm	BSV79	S5	FET
BLY89A	S6	RFP	BSR32	s7	Mm	BSV80	S5	FET
BLY89C	S 6	RFP	BSR33	s7	Mm	BSV81	S5	FET
BLY90	s6	RFP	BSR40	s7	Mm	BSW66A	s3	Sm
BLY91A	s6	RFP	BSR41	S 7	Mm	BSW67A	s3	Sm
BLY91C	s6	RFP	BSR42	s7	Mm	BSW68A	S3	Sm
BLY92A	S6	RFP	BSR43	s7	Mm	BSX19	s3	Sm
BLY92C	S6	RFP	BSR50	S3	Sm	BSX20	s3	Sm
BLY93A	S6	RFP	BSR51	S3	Sm	BSX45	s3	Sm
BLY93C	s6	RFP	BSR52	s3	Sm	BSX46	s3	Sm
BLY94	s6	RFP	BSR56	s7	Mm	BSX47	S3	Sm
BLY97	S6	RFP	BSR57	s7	Mm	BSX59	S3	Sm
BPF10	S8	PDT	BSR58	s7	Mm	BSX60	s3	Sm
BPF24	S8	PDT	BSR50	s3	Sm	BSX61	s3	Sm
BPF24	20	PDI	BSROO	53	SIII	BSVOT	53	SIII
BPW22A	S8	PDT	BSR61	s3	Sm	BSY95A	S3	Sm
BPW50	S8	PDT	BSR62	s3	Sm	BT136*	S2	Tri
BPX25	S8	PDT	BSS38	s3	Sm	BT137*	S2	Tri
BPX29	S8	PDT	BSS50	s3	Sm	BT138*	S2	Tri
BPX40	S8	PDT	BSS51	S3	Sm	BT139*	S2	Tri
BPX41	s8	PDT	BSS52	s3	Sm	BT149*	S2	Th
BPX42	S8	PDT	BSS60	s3	Sm	BT151*	S2	Th
BPX71	\$8	PDT	BSS61	s3	Sm	BT152*	S2	Th
BPX72	S8	PDT	BSS62	S3	Sm	BT153	S2	Th
BPX95C	S8	PDT	BSS63;R	S7	Mm	BT154	S2	Th
Brasse	30	LDI	D5505, K	37	rini	B1134	32	111
BR100/03	S2	Th	BSS64;R	s7	Mm	BT155*	S2	Th
BR101	s3	Sm	BSS68	s3	Sm	BTV24*	S2	Th
BRY39	s3	Sm	BST15	S7	Mm	BTV34*	S2	Tri
BRY56	s3	Sm	BST16	s7	Mm	BTV58*	S2	Th
BRY61	s7	Mm	BST50	s7	Mm	BTW23*	S2	Th
BRY62	s7	Mm	BST51	s7	Mm	BTW30S*	S2	Th
BSR12;R	s7	Mm	BST52	s7	Mm	BTW31W*	S2	Th
BSR13;R	s7	Mm	BST60	s7	Mm	BTW38*	S2	Th
BSR14;R	s7	Mm	BST61	s7	Mm	BTW40*	S2	Th
BSR15;R	s7	Mm	BST62	s7	Mm	BTW42*	S2	Th
ncn16.n	s7	V	BSV15	s3	Sm	BTW43*	S2	Tri
BSR16;R		Mm	BSV15	S3	Sm Sm	BTW45*	S2 S2	Th
BSR17;R	S7	Mm	BSV17	53 53	Sm Sm	BTW47*	S2 S2	Th
BSR17A;R		Mm		53 S7	Sm Mm	BTW58*	S2 S2	Th Th
BSR18;R	s7	Mm	BSV52;R					
BSR18A;R	S/	Mm	BSV64	s3	Sm	BTW63*	S2	Th

⁼ series

RFP = R.F. power transistors and modules

FET = Field-effect transistors

Mm = Microminiature semiconductors

for hybrid circuits

PDT = Photodiodes or transistors

Sm = Small-signal transistors

Th = Thyristors
Tri = Triacs

type no.	book	section	type no.	book	section	type no.	book	section
BTW92*	S2	Th	BY249	S2	R	BYW93*	S2	R
BTX18*	S2	Th	BY260*	S2	R	BYW94*	S2	R
BTX94*	S2	Tri	BY261*	S2	R	BYW95A	S1	R
BTY79*	S2	Th	BY277*	S2	R	вүү 95 в	S1	R
BTY87*	S2	Th	BY438	S1	R	BYW95C	S1	R
BTY91*	S2	Th	BY448	S1	R	BYW96D	S1	R
BU208A	S4	P	BY458	S1	R	BYW96E	S1	R
BU326	S4	P	BY476	S1	R	BYX10	Sl	R
BU326A	S4	P	BY477	S1	R	BYX22*	S2	R
BU426	S4	P	BY478	S1	R	BYX25*	S2	R
BU426A	s\$	Р	ву505	S1	R	BYX30*	S2	R
BU433	S4	P	BY509	S1	R	BYX32*	S2	R
BUS11;A	S4	P	BY527	S1	R	BYX38*	S2	R
BUS12;A	S4	P	BY584	S1	R	BYX39*	S2	R
BUS13;A	S4	P	ву609	S1	R	BYX42*	S2	R
BUS14;A	S4	Р	BY610	s!	R	BYX45*	S2	R
BUV82	s4	P	BYV20	S2	R	BYX46*	S2	R
BUV83	S4	P	BYV21*	S2	R	BYX49*	S2	R
BUW84	S4	P	BYV22	S2	R	BYX50*	S2	R
BUW85	S4	P	BYV23	S2	R	BYX52*	S2	R
BUX46;A	S4	P	BYV24	S2	R	BYX56*	S2	R
BUX47; A	S4	P	BYV27	S1	R	BYX71*	S2	R
BUX48;A	54 S4	P P	BYV28	S1	R	BYX90	S1	
BUX40;A	54 S4	P P	BYV30*	S2	R R	BYX91*	S1 S1	R
	_		BYV32*	S2 S2	R R	BYX94		R
BUX81	S4	P	BIVJZ	52	K	B1X94	S1	R
BUX82	S4	P	BYV92*	S2	R	BYX96*	S2	R
BUX83	S4	P	BYV95A	S1	R	BYX97*	S2	R
BUX84	S4	P	BYV95B	S1	R	BYX98*	S2	R
BUX85	S4	P	BYV95C	S1	R	BYX99*	S2	R
BUX86	S4	P	BYV96D	S1	R	BZT03	S1	Vrg
BUX87	S4	P	BYV96E	S1	R	BZV10	S1	Vrf
BUX98	S4	P	BYW19*	S2	R	BZV11	S1	Vrf
BUY89	S4	P	BYW25	S2	R	BZV12	S1	Vrf
BY184	S1	R	BYW29*	S2	R	BZV13	S1	Vrf
BY188G	S1	R	BYW30*	S2	R	BZV14	S1	Vrf
BY223	S2	R	BYW31*	S2	R	BZV15*	S2	Vrf
BY224*	S2	R	BYW54	S1	R	BZV37	S1	Vrf
BY225*	S2	R	BYW55	S1	R	BZV46	S1	Vrg
BY228	S1	R	BYW56	S1	R	BZV49*	S1/S7	Vrg
BY229*	S2	R	BYW92*	S2	R	BZV85	S1/S/	_
01447	52	IX.	DI 1172	52	K	1 12405	10	Vrg

^{* =} series

xvi May 1983

Th = Thyristors

Tri = Triacs

P = Low-frequency power transistors

R = Rectifier diodes Vrg = Voltage regulator diodes Vrf = Voltage reference diodes

type no.	book	section	type no.	book	section	type no.	book	section
BZW70*	S2	TS	CQ332;R	s8	D	CQX10	s8	LED
BZW86*	S2	TS	CQ427;R	S8	D	CQX11	S8	LED
BZW91*	S2	TS	CQ430;R	S8	D	CQX12	S8	LED
BZX55	S1	Vrg	CQ431;R	S8	D	CQX24(L)	s8	LED
BZX70*	S2	Vrg	CQ432;R	s8	D	CQX51	S8	LED
BZX75	S1	Vrg	CQF24	s8	Ph	CQX54(L)	S 8	LED
BZX79*	S1	Vrg	CQL10A	S8	Ph	CQX64(L)	s8	LED
BZX84*	s7/s1	Mm/Vrg	CQL13	S8	Ph	CQX74(L)	s8	LED
BZX87*	S1	Vrg	CQL13A	S8	Ph	CQX74Y	S8	LED
BZX90	S1	Vrf	CQL14A	S8	Ph	CQY11B	S8	LED
BZX91	S1	Vrf	CQL14B	s8	Ph	CQY11C	s8	LED
BZX92	S 1	Vrf	CQN10	s8	LED	CQY24B(L		LED
BZX93	S1	Vrf	CQN11	S8	LED	CQY49B	S8	LED
BZX94	S1	Vrf	CQT10	S8	LED	CQY49C	s8	LED
BZY91*	S2	Vrg	CQT11	S8	LED	CQY50	S8	LED
BZY93+	S2	Vrg	COT12	s8	LED	CQY52	s8	LED
BZY95*	S2	Vrg	CQV60(L)	S8	LED	CQY54A	s8	LED
BZY96*	S2	Vrg	COV60A(I		LED	CQY58A	S8	LED
CNX21	S8	PhC	COV61A(I		LED	CQY89A	s8	LED
CNX35	s8	PhC	CQV62(L)		LED	CQY94	S8	LED
CNX36	S8	PhC	CQV70(L)	S8	LED	COY94B(L)s8	LED
CNX37	S8	PhC	COV70A(I		LED	CQY95B	s8	LED
CNX38	S8	PhC	CQV71A(I		LED	CQY96(L)		LED
CNX44	S8	PhC	CQV72(L)		LED	CQY97A	S8	LED
CNX48	S8	PhC	COV80L	S8	LED	0A90	S1	GD
CNX62	S8	PhC	COV80AL	s8	LED	OA91	S1	GD
CNY50	S8	PhC	CQV81L	S8	LED	0A95	S1	GD
CNY52	S8	PhC	CQV82L	S8	LED	0м320	S10	WBM
CNY53	S8	PhC	CQW10(L)	S8	LED	OM321	S10	WBM
CNY57	S8	PhC	CQW10A(I	.)s8	LED	0м322	S10	WBM
CNY57A	s8	PhC	CQW10B(I)S8	LED	ом323	S10	WBM
CNY62	S8	PhC	CQW11A(I		LED	OM323A	S10	WBM
CNY63	S8	PhC	CQW11B(I		LED	ом335	S10	WBM
CQ209S	S8	D	COW12(L)	•	LED	ом336	S10	WBM
CQ216X	S8	D	CQW12B(I		LED	ом337	S10	WBM
CQ216Y	S8	D	CQW2OA	s8	LED	0м337а	s10	WBM
CQ327;R	S8	D	CQW21	S8	LED	ом339	S10	WBM
CQ330;R	S8	D	CQW22	S8	LED	OM345	S10	WBM
CQ331;R	S8	D	CQW24(L)		LED	ом350	S10	WBM
			cQW54	S8	LED	0м360	s10	WBM
* = series			*		***************************************	•		

⁼ series

PhC = Photocouplers

WBM = Wideband hybrid IC modules

TS = Transient suppressor diodes

= Voltage reference diodes Vrf

Vrg = Voltage regulator diodes

D = Displays

GD = Germanium diodes

LED = Light emitting diodes

Mm = Microminiature semiconductors for hybrid circuits

Ph = Photoconductive devices

type no.	book	section	type no.	book	section	type no.	book	sectio
ом361	S10	WBM	1N821;A	S1	Vrf	1N5059	S1	R
OM370	S10	WBM	1N823;A	S1	Vrf	1N5060	S1	R
OM931	S4	P	1N825;A	S1	Vrf	1N5061	S1	R
OM961	S4	P	1N827;A	S1	Vrf	1N5062	S1	R
OSB9110	S2	St	1N829;A	S1	Vrf	2N918	S10	WBT
OSB9210	S2	St	1N914	S1	SD	2N929	s3	Sm
OSB9410	S2	St	1N916	S1	SD	2N930	s3	Sm
OSM9110	S2	St	1N3879	S2	R	2N1613	s3	Sm
OSM9210	S2	St	1N3880	S2	R	2N1711	S3	Sm
OSM9410	S2	St	1N3881	S2	R	2N1893	s3	Sm
OSM9510	S2	St	1N3882	S2	R	2N2218	s3	Sm
OSM9511	S2	St	1N3889	S2	R	2N2218A	S3	Sm
OSM9512	S2	St	1N3890	S2	R	2N2219	s3	Sm
OSS9110	S2	St	1N3891	S2	R	2N2219A	S3	Sm
oss9210	S2	St	1N3892	S2	R	2N2221	s3	Sm
oss9410	S2	St	1N3899	S2	R	2N2221A	s3	Sm
PH2222;R		Sm	1N3900	S2	R	2N2222	S3	Sm
PH2222A;		Sm	1N3901	S2	R	2N2222A	s3	Sm
PH2369	S3	Sm	1N3902	S2	R	2N2297	S3	Sm
PH2907; R		Sm	1N3903	S2	R	2N2368	s3	Sm
PH2907A;	RS3	Sm	1N3909	S2	R	2N2369	S 3	Sm
PH40*	S2	R	1N3910	S2	R	2N2369A	s3	Sm
PH70*	S2	R	1N3911	S2	R	2N2483	s3	Sm
RPY58A	S8	Ph	1N3912	S2	R	2N2484	S3	Sm
RPY76B	S8	Ph	1N3913	S2	R	2N2904	s3	Sm
RPY86	S8	I	1N4001G	S1	R	2N2904A	s3	Sm
RPY87	S8	I	1N4002G	S1	R	2N2905	s3	Sm
RPY88	S8	I	1N4003G	S1	R	2N2905A	S3	Sm
RPY89	S8	Ī	1N4004G	S1	R	2N2906	s3	Sm
RPY90*	s8	I	1N4005G	S1	R	2N2906A	S3	Sm
RPY91*	S8	I	1n4006g	S1	R	2N2907	S 3	Sm
RPY93	S8	I	1N4007G	S1	R	2N2907A	s3	Sm
RPY94	S8	I	1N4148	S1	SD	2N3019	s3	Sm
RPY95	S8	Ī	1N4150	S1	SD	2N3020	S3	Sm
RPY96	S8	I	1N4151	S1	SD	2N3053	S3	Sm
RPY97	s8	I	1N4154	S1	SD	2N3375	S 6	RFP
RTC901	S8	Ar	1N4446	S1	SD	2N3553	S6	RFP
RTC902	S8	Ar	1N4448	s1	SD	2N3632	S6	RFP
RTC903	S8	Ar	1N4531	S1	SD	2N3822	S5	FET
RTC904	S8	Ar	1N4532	S1	SD	2N3823	S5	FET

= Arrays FET = Field-effect transistors

= Infrared devices = Low-frequency power transistors

= Rectifier diodes RFP = R.F. power transistors and modules

= Small-signal transistors Sm = Rectifier stacks = Voltage reference diodes WBT = Wideband hybrid IC transistors WBM = Wideband hybrid IC modules

type no.	book	section	type no.	book	section	type no.	book	section
2N3866	S6	RFP	2N5415	s3	Sm	56353	S4	Α
2N3903	s3	Sm	2N5416	s3	Sm	56354	S4	Α
2N3904	s3	Sm	61sV	S8	I	56359ъ	S4	A
2N3905	s3	Sm	375CQY/B	S8	Ph	56359c	S4	A
2N3906	s3	Sm	497CQF/A		Ph	56359d	S4	A
2N3924	s6	RFP	498COL	s8	Ph	56360a	S4	A
2N3926	S6	RFP	56201d	S4	A	56363	S2,S4	A
2N3927	S6	RFP	562011	S4	A	56364	S2,S4	A
2N3966	S5	FET	56230	S2	HE	56366	S2,5	A
2N4030	S 3	Sm	56231	s2	HE	56367	S2	A
2N4031	s 3	Sm	56245	s3,6,	10A	56368a	S4	A
2N4032	s3	Sm	56246	s3,5,		56368ъ	S4	A
2N4033	s3	Sm	56253	s2,5,	DH	56369	S2,S4	A
2N4091	S 5	FET	56256	S2	DH	56378	S4	A
2N4092	S 5	FET	56261a	S4	A			
2N4093	S5	FET	56262A	s2	A	56379	S4	A
2N4123	s3	Sm	56264A	S2	A	56387a,b		A
2N4124	s3	Sm	56268	S2	DH	303074,5	0-1	А
2N4125	s3	Sm	56290	S2	HE			
2N4126	S 3	Sm	56295	S2	A			
2N4391	s5	FET	56312	S2	DH			
2N4392	S5	FET	56313	S2	DH			
2N4393	S 5	FET	56316	S2	A	1		
2N4427	S6	RFP	56317	S2	A			
2N4856	S 5	FET	56326	S4	A			
2N4857	s5	FET	56333	S4	A			
2N4858	S5	FET	56339	S4	A	1		
2N4859	S5	FET	56348	S2	DH			
2N4860	S5	FET	56350	S2	DH			
2N4861	S5	FET	56352	S4	A			

= Accessories

DH = Diecast heatsinks

FET = Field-effect transistors

HE = Heatsink extrusions

= Infrared devices

RFP = R.F. power transistors and modules Sm = Small-signal transistors

Ph = Photoconductive devices

TYPE NUMBER SURVEY

		page
BPF10	Photodiode for fibre-optic transmissions, modified TO-18	21
BPF24	Photodiode for fibre-optic transmissions, TO-46	27
BPW22A	Phototransistor for optical coupling and decoding, SOD-53D	31
BPW50	Photodiode for optical coupling and decoding, plastic SOD-67	37
BPX25	Phototransistor with lens, IR remote control, TO-18	43
BPX29	Phototransistor with plane window, IR remote control, TO-18	43
BPX40		49
BPX41	Photodiode unencapsulated	55
BPX42		61
BPX71	Phototransistor with glass lens, SOT-71A (DO-31)	67
BPX72	Phototransistor with plastic lens, SOT-70A	73
BPX95C	Phototransistor with clear plastic encapsulation, SOD-63A	-79
CNX21	Photocoupler, IR, 10 kV, I _C /I _F > 0,2, 4-lead DIL	361
CNX35	Photocoupler, IR, 1,5 kV, $I_{\rm C}/I_{\rm F} > 0,4$, 6-lead DIL	369
CNX36	Thotocoupler, III, 1,5 kV, IC/IF > 0,4, 0-lead DIE	
CNX37	Photocoupler, IR, 2,5 kV, $I_C/I_F > 0,4$, 6-lead DIL	383
CNX38	Photocoupler, IR, 1,5 kV, $I_C/I_F > 0,7$, 6-lead DIL	395
CNX44	Photocoupler, IR, 1 kV, I _C /I _F >0,3, metal SOT-104C	409
CNX48	Photocoupler, IR, 1,5 kV, Darlington, I _C /I _F >5, 6-lead DIL	421
CNX62	Photocoupler, IR, 2,5 kV, $I_C/I_F > 0,4$, 6-lead DIL	431
CNY50	Photocoupler, IR, metal SOT-104B	443
CNY52	Photocoupler, IR, 1,5 kV, 4-lead plastic (SOT-91A)	455
CNY53		
CNY57	Photocoupler, IR, 1,5 kV, 6-lead DIL (SOT-90)	469
CNY57A		
CNY62	Photocoupler, IR, 1,5 kV, 4-lead plastic (SOT-91B)	483
CNY63	Display on LAS Bails Organisms	
CO209S	Display, red, 1,5-digit, 9-segment	343
CQ216X	Display, super-red, 2-digit	347
CQ216Y / CQ327(R)		
to	Display, red, 4-digit 2-point, clock	351
CQ332(R)	Display, red, 4-digit 2-point, clock	351
CQ427(R)		
to	Display, red, 4-digit 2 point, clock	355
CQ432(R)	Display, rea, 4-aight 2 point, clock	555
CQF24	LED, IR, for fibre-optic transmissions, TO-46	91
CQL10A	Diode laser, SOT-148	97
CQL13	Collimator pen, 2 mW, 790 nm	101
CQL13A	Collimator pen, 2 mW, 820 nm	105
CQL13C	Collimator pen, 2 mW, 870 nm	109
CQL14A	Collimator pen, 20 mW, 820 nm	113
CQL14B	Collimator pen, 20 mW, 850 nm	117
CQN10	LED, WIB, hyper-red, 2 diodes, SOD-73	121
CQN11	LED, WIB, super-green, 2 diodes, SOD-73	125
CQT10	LED, bi-colour, hyper-red or super-green (polarity-dependent), SOD-77A2	129
CQT11	LED, bi-colour, hyper-red or super-green (polarity dependent), SOD-78	133
CQT12	LED, bi-colour, hyper-red or super-green (polarity dependent), SOD-75A2	137
CQV60(L)	LED, super-red, 1 x 5 mm, SOD-75A1 and SOD-75L	141
	LED, hyper-red, 1 x 5 mm, SOD-75A2 and SOD-75L	145
CQV61A(L)	LED, super-green, 1 x 5 mm, SOD-75A1 and SOD-75L	149
CQV62(L)	LED, yellow, 1 x 5 mm, SOD-75A1 and SOD-75L	153

TYPE NUMBER SURVEY

		page
CQV70(L)	LED, super-red, 3 x 5 mm, SOD-77A1 and SOD-77L	157
CQV70A(L)	LED, hyper-red, 3 x 5 mm, SOD-77A2 and SOD-77L	161
CQV71A(L)	LED, super-green, 3 x 5 mm, SOD-77A1 and SOD-77L	165
CQV72(L)	LED, yellow, 3 x 5 mm, SOD-77A1 and SOD-77L	169
CQV80L	LED, super-red	173
CQV80AL	LED, hyper-red 5 x 5 mm, SOD-74L	177
CQV81L	LED, super-green	181
CQV82L	LED, yellow	185
CQW10(L)	LED, super-red, 2,5 x 5 mm, medium-red coloured SOD-76A and SOD-76L	189
CQW10A(L)	LED, hyper-red, 2,5 x 5 mm, SOD-76B and SOD-76L	193
CQW10B(L)	LED, super-red, 2,5 x 5 mm, dark-red coloured SOD-76A and SOD-76L	189
CQW11A(L)	LED, super-green, 2,5 x 5 mm, medium-green coloured SOD-76A and SOD-76L	197
CQW11B(L)	LED, super-green, 2,5 x 5 mm, dark-green coloured SOD-76A and SOD-76L	197
CQW12(L)	LED, yellow, 2,5 x 5 mm, medium-yellow coloured SOD-76A and SOD-76L	201
CQW12B(L)	LED, yellow, 2,5 x 5 mm, dark-yellow coloured SOD-76A and SOD-76L	201
CQW20A	LED, hyper-red	205
CQW21	LED, super-green φ 2 mm, SOD-79	209
CQW22	LED, yellow	213
CQW24(L)	LED, hyper-red, ϕ 5 mm, SOD-63A and SOD-63L	217
CQW54	LED, hyper-red, φ 3 mm, SOD-53E	221
CQX10	LED, super-red	225
CQX11	LED, super-green 2,5 x 5 mm, flat, lensed top, SOD-65	229
CQX12	LED, yellow	233
CQX24(L)	LED, hyper-red, ϕ 5 mm, transparent, small angle, SOD-63A and SOD-63L	237
CQX51	LED, super-red, φ 5 mm, SOD-63A	243
CQX54(L)	LED, super-red	249
CQX64(L)	LED, super-green ϕ 5 mm, transparent, small angle, SOD-63A and SOD-63L	253
CQX74(L)	LED, yellow	257
CQX74Y	LED, yellow, φ 5 mm, yellow coloured SOD-63A	257
CQY11B	LED, IR, for optical coupling and decoding, TO-18 with flat window	261
CQY11C	LED, IR, for optical coupling and decoding, TO-18 with lens	267
CQY24B(L)	LED, red, ϕ 5 mm, SOD-63A and SOD-63L	273
CQY49B	LED, IR, for optical coupling and decoding, TO-18 with flat window	279
CQY49C	LED, IR, for optical coupling and decoding, TO-18 with lens	279
CQY50	LED, IR, for punched card reading, modified DO-31	285
CQY52 J		
CQY54A	LED, red, φ 3 mm, SOD-53E	291
CQY58A	LED, IR, ϕ 3 mm, SOD-53D remote control	295
CQY89A	LED, IR, ϕ 5 mm, SOD-63A	301
CQY94	LED, green, φ 5 mm, SOD-63A	307
CQY94B(L)	LED, super-green, ϕ 5 mm, SOD-63A and SOD-63L	311
CQY95B	LED, super-green, φ 3 mm, SOD-53E	315
CQY96(L)	LED, yellow, φ 5 mm, SOD-63A and SOD-63L	319
CQY97A	LED, yellow, φ 3 mm, SOD-53E	323

TYPE NUMBER SURVEY

498CQL

RPY58A RPY76B RPY86 RPY87 RPY88 RPY88 RPY89	Photoconductive device, 5 x 5 mm, plastic Photoconductive cell for wavelengths over 1,5 μ m, SOT-49/1 Pyroelectric IR detector with preamplifier, SOT-49E	page 603 607 497 497 509
RPY90A RPY90C RPY90D RPY90E	Pyroelectric IR detector, 2,0 x 0,5 mm sensitive area	521
RPY91A RPY91C RPY91D RPY91E	Pyroelectric IR detector, 2,75 x 1,25 mm sensitive area	535
RPY93	Dual element pyroelectric IR detector, SOT-49E	549
RPY94	Dual element pyroelectric IR detector, SOT-49E	557
RPY95	Single element pyroelectric IR detector, SOT-49F	565
RPY96	Single element pyroelectric IR detector, SOT-49F	573
RPY97	Dual element pyroelectric IR detector, SOT-49H	581
RTC901	12 segment array with 12 x CQV60 (super-red)	327
RTC902	12 segment array with 12 x CQV61A (super-green)	327
RTC903	12 segment array with 12 x CQV62 (yellow)	327
RTC904	12 segment array with colour mix upon request	327
375CQY/B	Diode laser with fibre pigtail, 850 nm	329
497CQF/A	Diode laser with fibre pigtail, 835 nm	333

337

Diode laser, 840 nm, SOT-148

GENERAL

Rating systems
Letter symbols
Definitions for optoelectronic devices
General safety recommendations optoelectronic devices

RATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission (IEC) in its Publication 134.

DEFINITIONS OF TERMS USED

Electronic device. An electronic tube or valve, transistor or other semiconductor device.

Note

This definition excludes inductors, capacitors, resistors and similar components.

Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.

Note

Limiting conditions may be either maxima or minima.

Rating system. The set of principles upon which ratings are established and which determine their interpretation.

Note

The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

GENERAL

DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

5

LETTER SYMBOLS FOR TRANSISTORS AND SIGNAL DIODES

based on IEC Publication 148

LETTER SYMBOLS FOR CURRENTS, VOLTAGES AND POWERS

Basic letters

The basic letters to be used are:

I, i = current V, v = voltageP, p = power.

Lower-case basic letters shall be used for the representation of instantaneous values which vary with time.

In all other instances upper-case basic letters shall be used.

Subscripts

A, a	Anode terminal
(AV), (av)	Average value
B, b	Base terminal, for MOS devices: Substrate
(BR)	Breakdown
С, с	Collector terminal
D, d	Drain terminal
Е, е	Emitter terminal
F, f	Forward
G, g	Gate terminal
K, k	Cathode terminal
M, m	Peak value
О, о	As third subscript: The terminal not mentioned is open circuited
R, r	As first subscript: Reverse. As second subscript: Repetitive.
	As third subscript: With a specified resistance between the terminal
	not mentioned and the reference terminal.
(RMS), (rms)	R.M.S. value
	As first or second subscript: Source terminal (for FETS only)
S, s	As second subscript: Non-repetitive (not for FETS)
	As third subscript: Short circuit between the terminal not mentioned
	and the reference terminal
X, x	Specified circuit
Z, z	Replaces R to indicate the actual working voltage, current or power
	of voltage reference and voltage regulator diodes.

Note: No additional subscript is used for d.c. values.

February 1974

LETTER SYMBOLS

Upper-case subscripts shall be used for the indication of:

a) continuous (d.c.) values (without signal)

Example I_B

b) instantaneous total values

Example i_B

c) average total values

Example I_{B(AV)}

d) peak total values

Example I_{BM}

e) root-mean-square total values

Example I_{B(RMS)}

Lower-case subscripts shall be used for the indication of values applying to the varying component alone:

a) instantaneous values

Example ib

b) root-mean-square values

Example Ib(rms)

c) peak values

Example I_{bm}

d) average values

Example Ib(av)

Note: If more than one subscript is used, subscript for which both styles exist shall either be all upper-case or all lower-case.

Additional rules for subscripts

Subscripts for currents

Transistors: If it is necessary to indicate the terminal carrying the current, this should be done by the first subscript (conventional current flow from the external

circuit into the terminal is positive).

Examples: I_B, i_B, i_b, I_{bm}

Diodes:

To indicate a forward current (conventional current flow into the anode terminal) the subscript F or f should be used; for a reverse current (conventional current flow out of the anode terminal) the subscript R or r

should be used.

Examples: IF, IR, iF, If(rms)

Subscripts for voltages

Transistors: If it is necessary to indicate the points between which a voltage is measured, this should be done by the first two subscripts. The first subscript

indicates the terminal at which the voltage is measured and the second the reference terminal or the circuit node. Where there is no possibility of

confusion, the second subscript may be omitted.

Examples:
$$V_{BE}$$
, v_{BE} , v_{be} , V_{bem}

Diodes: To indicate a forward voltage (anode positive with respect to cathode), the

subscript F or f should be used; for a reverse voltage (anode negative with

respect to cathode) the subscript R or r should be used.

Examples:
$$V_F$$
, V_R , v_F , V_{rm}

Subscripts for supply voltages or supply currents

Supply voltages or supply currents shall be indicated by repeating the appropriate terminal subscript.

Note: If it is necessary to indicate a reference terminal, this should be done by a third subscript

Example: V_{CCE}

Subscripts for devices having more than one terminal of the same kind

If a device has more than one terminal of the same kind, the subscript is formed by the appropriate letter for the terminal followed by a number; in the case of multiple subscripts, hyphens may be necessary to avoid misunderstanding.

Examples: I_{B2} = continuous (d.c.) current flowing into the second base terminal

V_{B2-E} = continuous (d.c.) voltage between the terminals of second base and

Subscripts for multiple devices

For multiple unit devices, the subscripts are modified by a number preceding the letter subscript; in the case of multiple subscripts, hyphens may be necessary to avoid misunderstanding.

V_{1C-2C} = continuous (d.c.) voltage between the collector terminals of the first and the second unit.

The figure below represents a transistor collector current as a function of time. It consists of a continuous (d.c.) current and a varying component.

LETTER SYMBOLS FOR ELECTRICAL PARAMETERS

Definition

For the purpose of this Publication, the term "electrical parameter" applies to fourpole matrix parameters, elements of electrical equivalent circuits, electrical impedances and admittances, inductances and capacitances.

Basic letters

The following is a list of the most important basic letters used for electrical parameters of semiconductor devices.

B, b = susceptance; imaginary part of an admittance

C = capacitance

G, g = conductance; real part of an admittance

H, h = hybrid parameter

L = inductance

R, r = resistance; real part of an impedance

X, x = reactance; imaginary part of an impedance

Y, y = admittance;

Z,z = impedance;

Upper-case letters shall be used for the representation of:

- a) electrical parameters of external circuits and of circuits in which the device forms only a part;
- b) all inductances and capacitances.

Lower-case letters shall be used for the representation of electrical parameters inherent in the device (with the exception of inductances and capacitances).

Subscripts

General subscripts

The following is a list of the most important general subscripts used for electrical parameters of semiconductor devices:

 $\begin{array}{lll} F,\,f &=& \text{forward: forward transfer} \\ l,\,i\,(\text{or 1}) &=& \text{input} \\ L,\,l &=& \text{load} \\ O,\,o\,(\text{or 2}) &=& \text{output} \\ R,\,r &=& \text{reverse: reverse transfer} \\ S,\,s &=& \text{source} \\ Examples: \,Z_c,\,h_f,\,h_E \end{array}$

The upper-case variant of a subscript shall be used for the designation of static (d.c.) values.

Examples: h_{FE} = static value of forward current transfer ratio in commonemitter configuration (d.c. current gain) R_E = d.c. value of the external emitter resistance.

Note: The static value is the slope of the line from the origin to the operating point on the appropriate characteristic curve, i.e. the quotient of the appropriate electrical quantities at the operating point.

The lower-case variant of a subscript shall be used for the designation of small-signal values.

Examples: h_{fe} = small-signal value of the short-circuit forward current transfer ratio in common-emitter contiguration $Z_{e} = R_{e} + jX_{e} = small-signal value of the external impedance$

Note: If more than one subscript is used, subscripts for which both styles exist shall either be all upper-case or all lower-case

Examples: h_{FE}, y_{RE}, h_{fe}

LETTER SYMBOLS

Subscripts for four-pole matrix parameters

The first letter subscript (or double numeric subscript) indicates input, output, forward transfer or reverse transfer

Examples:
$$h_{1}$$
 (or h_{11})
 h_{1} (or h_{21})
 h_{1} (or h_{21})
 h_{1} (or h_{12})

A further subscript is used for the identification of the circuit configuration. When no confusion is possible, this further subscript may be omitted.

Examples:
$$h_{fe}$$
 (or h_{21e}), h_{FE} (or h_{21E})

Distinction between real and imaginary parts

If it is necessary to distinguish between real and imaginary parts of electrical parameters, no additional subscripts should be used. If basic symbols for the real and imaginary parts exist, these may be used.

Examples:
$$Z_i = R_i + jX_i$$

 $y_{fe} = g_{fe} + jb_{fe}$

If such symbols do not exist or if they are not suitable, the following notation shall be used:

Examples: Re
$$(h_{1b})$$
 etc. for the real part of h_{1b}
Im (h_{ib}) etc. for the imaginary part of h_{ib}

DEFINITIONS FOR OPTOELECTRONIC DEVICES ACCORDING TO IEC 306

DEFINITIONS AND UNITS OF RADIATION AND LIGHT QUANTITIES

Radiant flux, radiant power ϕ , P, (ϕ_P)

This is the power emitted, transferred or received as radiation, i.e. the radiant energy (dQ_e) emitted per second.

$$\phi_e = \frac{dQ_e}{dt}$$
 unit: watt, W

Radiant intensity Ie, I

For a source of given direction, the radiant intensity is the radiant power leaving the source, or an element of the source, in an element of solid angle (Ω) containing the given direction, divided by that element of solid angle.

$$I_e = \frac{d\phi_e}{d\Omega}$$
 unit: watt per steradian, W/sr

Irradiance E, (E_e)

At a point on a surface, the irradiance is the radiant power incident on an element of the surface containing the point divided by the area (A) of that element.

$$E = \frac{d\phi_e}{dA}$$
 unit: watt per square metre, W/m²

Light

This is radiation capable of stimulating the eye. Exceptions to this definition are made where necessary in the data sheets, e.g. dark and light currents of a phototransistor and light rise time of a near-infrared light emitting diode.

Luminous flux ϕ , (ϕ_V)

The luminous flux $d\phi$ of a source of luminous intensity I_V in an element of solid angle of $d\Omega$, is given by:

$$d\phi = I_V \cdot d\Omega$$
 unit: lumen, Im

Lumen

This is the luminous flux radiating from a point source of uniform luminous intensity of 1 candela, contained within a solid angle of 1 steradian.

$$1 \text{ lm} = 1 \text{ cd.sr}$$

Luminous intensity I_V, (I)

For a source of given direction, the luminous intensity is the luminous flux leaving the source, or an element of the source, in an element of solid angle (Ω) containing the given direction, divided by that element of solid angle.

$$I_V = \frac{d\phi_V}{d\Omega}$$
 unit: candela, cd

Candela

This is the luminous intensity, in the perpendicular direction, of a surface of 1/600 000 square metre of a black body at the temperature of freezing platinum under a pressure of 101 325 pascal.

Illuminance E_v, (E)

At a point on a surface, the illuminance is the luminous flux incident on an element of the surface containing the point, divided by the area (A) of that element.

$$E_V = \frac{d\phi_V}{dA}$$
 unit: lux, lx

Lux Ix

This is the illumination produced when 1 lumen of flux falls on a surface of area 1 square metre. It will be seen that an illumination of 1 lx is produced on a area of 1 square metre at a distance of 1 metre from a point source of 1 candela.

Distribution temperature T_d

This is the temperature of a black body at which the spectral radiation distribution of the radiator under consideration, in a given wavelength range, is proportional or approximately proportional to the spectral radiation distribution of the black body. If the wavelength range given includes visible radiation, then the distribution temperature corresponds to the colour temperature.

Colour temperature T_c

The colour temperature of a radiator is the temperature of a black body which has the same, or approximately the same, spectral radiation distribution in the visible range as the radiator under consideration.

DEFINITIONS OF ELECTRICAL QUANTITIES

Photocurrent Inh

This is the change in output current from the photocathode due to incident radiation.

Dark current Id

This is the current flowing in a photoelectric device in the absence of illumination.

Dark current equivalent radiation Ed

This is the incident radiation required to give a d.c. signal output current equal to the dark current.

Quantum efficiency

This is the ratio of the number of emitted photoelectrons to the number of incident photons. Quantum efficiency (Q.E.) at a given wavelength of incident radiation may be calculated as follows:

Q.E. =
$$\frac{\text{constant x S}_k}{\lambda}$$

where S_k = spectral sensitivity (A/W) at wavelength λ

 λ = wavelength of incident radiation (nm)

constant =
$$\frac{hc}{e}$$
 = 1,24 x 10³ W.nm/A

 $h = Planck's constant (6,6256 \times 10^{-34} js)$

c = velocity of electromagnetic waves in vacuo = 2,997925 x 108 m/s

e = elementary charge = $1,60210 \times 10^{-19}$ coulomb or $4,80298 \times 10^{-19}$ e.s.u.

Saturation voltage V_{CEsat}

This is the lowest operating voltage which causes no change in photocurrent when this voltage is increased with constant radiation.

Saturation current ICFsat

This is the output current of a photosensitive device which is not changed by an increase of either:

- a. the irradiance under constant operating conditions, or,
- b. the operating voltage under constant irradiance.

Thermal resistance

This is the ratio of temperature rise to power dissipation or

$$R_{th j-a} = \frac{T_j - T_{amb}}{P_{tot}}$$

The thermal resistance is also the reciprocal of the derating factor.

Pulsed operation

Under these conditions higher peak power dissipation is possible. In general, the shorter the pulse and lower the frequency, the lower is the temperature that the junction reaches.

By analogy with thermal resistance:

$$Z_{th j-a} = \frac{T_j - T_{amb}}{P_{tot}}$$

DEFINITIONS OF SENSITIVITY

These definitions apply more directly to photocathode sensitivity. For devices in which it is necessary to define the anode (overall) sensitivity, the signal output current should be considered instead of the photocurrent.

Actinity of radiation Z

This is the ratio of the sensitivity to a given radiation to the sensitivity to a reference radiation.

Radiant sensitivity SR .

This may be expressed as either:

- a. the ratio of the photocurrent of the device to the incident radiant power, expressed in amperes per watt (A/W), or,
- b. the ratio of the photocurrent of the device to the incident irradiance, expressed in amperes per watt per square metre (A/W/m²).

Absolute spectral sensitivity s (λ)

This is the radiant sensitivity for monochromatic radiation of a stated wavelength.

Relative spectral sensitivity s $(\lambda)_{rel}$

This is the ratio of the radiant sensitivity at a particular wavelength to the radiant sensitivity at a reference wavelength, usually the wavelength of maximum reponse.

Note

For non-linear detectors, it is necessary to refer to constant photocurrent at all wavelengths.

GENERAL

Luminous sensitivity S₁

This may be expressed as either:

- a. the ratio of the photocurrent of the device to the incident luminous flux, expressed in amperes per lumen (A/Im), or,
- b. the ratio of the photocurrent of the device to the incident illuminance, expressed in amperes per lux (A/Ix).

Dynamic sensitivity Sn

Under stated operating conditions, this is the ratio of the variation of the photocurrent of the device to the initiating small variation in the incident radiant or luminous power.

Note

Distinction is made between luminous dynamic sensitivity and radiant sensitivity.

Spectral sensitivity characteristics

This is the relationship, usually shown in graphical form, between the wavelength and the absolute or relative spectral sensitivity.

Absolute spectral sensitivity characteristics

This is the relationship, usually shown in graphical form, between the wavelength and the absolute spectral sensitivity.

Relative spectral sensitivity characteristics

This is the relationship between wavelength and the relative spectral sensitivity.

Quantum efficiency characteristic

This is the relationship, usually shown in graphical form, between the wavelength and the quantum efficiency.

DEFINITIONS OF TIME QUANTITIES

Rise time t_r

This is the time required for the photocurrent to rise from a stated low percentage to a stated higher percentage of the maximum value when a steady state of radiation is instantaneously applied. It is usual to consider the 10% and 90% levels (see Figs 1 and 2).

Fall time tf

This is the time required for the photocurrent to fall from a stated high percentage to a stated lower percentage of the maximum value when the steady state of radiation is instantaneously removed.

It is usual to consider the 90% and 10% levels (see Figs 1 and 2).

V₁

0

V₀

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

100 0

1

Fig. 1 Switching circuit.

Fig. 2 Waveforms.

DEFINITIONS AND UNITS OF INFRARED SENSITIVE DEVICES

Emissivity

This is the ratio of the radiant exitance of a thermal radiator to that of a black body radiator at the same temperature.

Absolute refractive index n

This is the ratio of the velocity of light in vacuo to that in a particular medium. For most practical purposes the velocity of light in vacuo can be replaced by that in air.

Detectivity

This is the signal-to-noise ratio per unit radiant power. Thus it is the reciprocal of the N.E.P. Care must be exercised when considering detectivity as this term has also been used in the definitions of D*.

unit: 1/watts (1/W)

D*

This is an independent figure of merit which is defined as the r.m.s. signal-to-noise ratio in a 1 Hz bandwidth per unit r.m.s. incident radiant power per square root of detector area. Unless otherwise stated, it is assumed that the detector field of view is hemispherical (2 π steradian).

unit: cm /Hz/W

Wave number

This is the reciprocal of the wavelength in centimetres. ($\frac{1}{\lambda}$)

N.E.P. (Noise Equivalent Power)

This is the r.m.s. value of the incident, chopped, radiant power necessary to produce an r.m.s. signal to r.m.s. noise ratio of unity. The r.m.s. noise refers to the value calculated for unit square root bandwidth V/\sqrt{Hz} .

unit: W/\sqrt{Hz}

Responsivity

This is the ratio of the r.m.s. signal in volts to the r.m.s. value of the incident, chopped, radiant power.

unit: V/W

Noise equivalent irradiation

This is the value of incident radiation which, when modulated in a stated manner, produces a signal output power equal to the noise power, both of which are in a stated bandwidth.

Radiance Le

This is the radiant intensity (l_e) at a point on a surface and in a given direction, of an element of that surface, divided by the area of the orthogonal projection of the element on a plane perpendicular to the given direction.

unit: watt per steradian square metre, W/sr.m²

Radiant exitance (radiant emittance) Me

At a point on a surface, this is the radiant power leaving an element of that surface, divided by the area of the element.

$$M_e = \frac{d\phi_e}{dA}$$
 unit: watt per square metre, W/m²

Luminous exitance (luminous emittance) M_v

At a point on a surface, this is the luminous flux leaving an element of that surface, divided by the area of that element.

$$M_V = \frac{d\phi_V}{d\Delta}$$
 unit: lumen per square metre, lm/m²

Luminance L_V

This is the luminous intensity (I_{ν}) at a point on a surface and in a given direction, of an element of that surface divided by the area of the orthogonal projection of the element on a plane perpendicular to the given direction.

unit: candela per square metre, cd/m²

Steradian sr (see Fig. 3)

This is the solid angle subtended at the centre of a sphere by an element of the surface area equal to the square of the radius of the sphere. There are, therefore, 4π steradians in a complete sphere.

Fig. 3.

GENERAL SAFETY RECOMMENDATIONS OPTOELECTRONIC DEVICES

1. GENERAL

When properly used and handled, optoelectronic devices do not constitute a risk to health or environment. Modern high technology materials have been used in the manufacture of these devices to ensure optimum performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the devices are heated to destruction and it is important that the following recommendations are observed.

Care should be taken to ensure that all personnel who may handle, use or dispose of these products are aware of the necessary precautions.

Individual product data sheets will indicate whether any specific hazards are likely to be present.

2. DISPOSAL

These devices should be disposed of in accordance with the relevant legislation; in the United Kingdom disposal should therefore be carried out in accordance with the Deposit of Poisonous Waste Act 1972 and the Control of Pollution Act 1974, or with the latest legislation.

3. FIRE

Optoelectronic devices themselves, when used within the specified limits, do not present a fire hazard.

Devices can contain arsenic, beryllium, cadmium, lead, mercury, selenium, tellurium or similar hazardous materials or compounds, which, if exposed to high temperatures may emit toxic or noxious fumes.

Most packaging materials are flammable and care should be taken in the disposal of such materials, some of which will emit toxic fumes if burned.

4. HANDLING

Care must be exercised with those devices incorporating glass or plastic. If these devices are broken, precautions must be taken against the following hazards that may arise:

Broken glass or ceramic. Protective clothing such as gloves should be worn.

Contamination from toxic materials and vapours. In particular, skin contact and inhalation must be avoided.

Access to live contacts which may be at high potential. Devices must be isolated from the mains supply prior to their removal.

5. BERYLLIUM COMPOUNDS

Beryllium oxide dust is toxic if inhaled or if particles enter a cut or an abrasion. At all times avoid handling beryllium oxide ceramics; if they are touched, the hands must be washed thoroughly with soap and water. Do nothing to beryllium oxide ceramics that may produce dust or fumes.

Care should be taken upon eventual disposal that they are not thrown out with general industrial waste. Users seeking disposal of devices incorporating beryllium oxide ceramics should first take advice from the manufacturer's service department.

This potential hazard is present at all times from receipt to disposal of devices.

OPTOELECTRONIC DEVICES

6. CADMIUM COMPOUNDS

Cadmium compounds are toxic. In the event of accidental breakage, cadmium dust may be released. Gloves should be worn and the dust should be mopped up with a damp cloth. Upon disposal, the cloth should be sealed in a plastic bag and the hands washed thoroughly with soap and water.

Controlled disposal of devices containing cadmium compounds should be conducted in the open air or in a well ventilated area.

Inhalation of cadmium dust must be avoided.

This potential hazard is present, if breakage occurs, at all times from receipt to disposal of devices.

7. OTHER COMPOUNDS

Other compounds, such as those containing arsenic, indium, lead, lithium, selenium, tantalum, tellurium etc., may be toxic by ingestion or inhalation.

The above information and recommendations are given in good faith and are in accordance with the best knowledge and opinion available at the date of the compilation of the data sheets.

PHOTOSENSITIVE DIODES AND TRANSISTORS

SILICON AVALANCHE PHOTODIODE FOR FIBRE-OPTIC COMMUNICATIONS

Type 1 Silicon avalanche photodiode in a hermetically sealed modified TO-18 envelope coupled directly to a graded-index optical guartz glass fibre.

The device features high coupling and quantum efficiency, extremely fast response time and very low noise characteristics. The characteristics of this photodiode make it useful in a wide variety of applications in fibre-optic communications as well as in laser detection, ranging, high-sensitivity measurements, high-speed switching and transit-time measurements.

Type 2 A separate silicon avalanche (photo) diode in a hermetically "dark sealed" TO-18 envelope, to be used as a reference diode, with corresponding "dark electrical" behaviour.

QUICK REFERENCE DATA

Reverse dark avalanche breakdown voltage			
$I_{R(D)} = 1 \mu A$	V _{(BR)R}	typ.	200 V
Reach-through voltage	V _{(RT)R}	typ.	140 V
Dark reverse current			
$V_{R(D)} = 0.8 V_{(BR)R}$	I _{R(D)}	typ.	5 nA
Wavelength at peak response	λ_{pk}	typ.	800 nm
Quantum efficiency	,		
$V_R > V_{(RT)R}$; $\lambda = 800 \text{ nm}$	η_{λ}	typ.	90 %
Responsivity			
$V_R > V_{(RT)R}$; $\lambda = 800 \text{ nm}$; M = 100	R	typ.	60 A/W
Diode capacitance			
$V_{R(D)} > V_{(RT)R}$	C_d	typ.	1,3 pF
Pulse response FWHM			
M = 50 to 100	σ	typ.	0,44 ns
Effective noise factor (see page 26)	k _{eff}	typ.	0,02
Diameter active area	ϕ		$350~\mu m$

MECHANICAL DATA

Fig. 1 TO-18 (modified).

Anode connected to case.

Dimensions in mm

BPF10 (368BPY)

RATINGS				
Limiting values in accordance with the Absolute Maximum S	System (IEC	134)		
Forward current (d.c.)	ΙF	max.	10	mA
Total power dissipation up to T _{amb} = 90 °C	P _{tot}	max.	100	mW
Storage temperature Avalanche photodiode with fibre Reference diode	T _{stg} T _{stg}		0 to + 90 –25 to + 125	
Junction temperature	Tj	max.	125	oC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	350	oC/W
From junction to case	R _{th j-c}	=		oC/M
CHARACTERISTICS (measured on crystal)				
$T_j = 25 {}^{\circ}\text{C}$				
Dark reverse currents $V_{R(D)} = 0.8 V_{(BR)R}$; surface	I _{R(D)}	typ.		nA nA
$V_{R(D)} = 0.8 V_{(BR)R}$; bulk (unmultiplied)	I _{R(D)b}	typ.	20	pA
Reverse dark avalanche breakdown voltage $I_{R(D)} = 1 \mu A$	V _{(BR)R}	typ.	200 165 to 245	-
Reach-through voltage	V _{(RT)R}	typ.	140	V
Forward voltage I _F = 1 mA	V _F	typ.	600	mV
Temperature coefficient of reverse voltage at M = 100	$\frac{\Delta V_{R}}{T_{amb}}$	typ.	0,6	V/ºC
Wavelength at peak response	λ_{pk}	typ.	800	nm
Multiplication operating range	M		20 to 120	
Responsivity $V_R > V_{(RT)R}$; $\lambda = 800 \text{ nm}$; $M = 100$	R	typ.	60	A/W
Quantum efficiency $V_R > V_{(RT)R}$; $\lambda = 800 \text{ nm}$ Effective noise factor (see page 26)	η_{λ}	typ.	90	%
Excess noise factor $F \approx 2 + k_{eff} M - 1/M$ up to M = 120	k _{eff}	typ.	0,020 0,025	
Noise equivalent power $M = 50$; $\eta = 0.90$; $\lambda = 800$ nm $I_{R(D)d} = 20$ pA; $k_{eff} = 0.02$	N.E.P.	typ.	7,6 × 10 ⁻¹⁵	\M/ / Ll=
Diode capacitance (≈ 0,7 pF TO-18 envelope included)	IN.L.I .	ιγp.	7,0 X 10	VV/V 112
VR(D) > V(RT)R Pulse response FWHM*	c_d	typ.	1,3	pF
M = 50 to 100; λ = 850 nm; R _L = 50 Ω $\sigma_{\rm opt} \approx$ 100 ps FWHM	σ	typ.	0,44	ns

^{*} FWHM means full width half maximum.

Silicon avalanche photodiode for fibre-optic communications

BPF10 (368BPY)

OPTICAL DATA

Graded-index optical quartz glass fibre

Numerical aperture on-axis	NA	typ. 0,20 to	0,21 0,22
Core diameter	$\phi_{ extsf{core}}$	typ. 48 t	50 μm to 52 μm
Cladding diameter	ϕ cladding	typ. 123 to	125 μm 127 μm
Primary coating thickness		typ.	5 μm
Secondary coating diameter	$\phi_{coating}$	typ.	0,9 mm
Coupling efficiency	$\eta_{ ext{coupling}}$	>	85 %

Note 1

 $\eta_{\rm a.p.d.}$ = $\eta_{\rm \lambda}$ × $\eta_{\rm coupling}$ $\eta_{\rm \lambda}$ = quantum efficiency

 $\eta_{
m coupling}$ = optical coupling efficiency for the assembled envelope, from the free end of the avalanche photodiode fibre to the active area of the crystal.

Note 2

On special request the same crystals on TO-18 headers can be delivered with flat or lens windows. Also optical glass-fibres of deviating specifications can be mounted (e.g. $\phi_{\text{COTe}} = 50~\mu\text{m}$; $\phi_{\text{Cladding}} = 100~\mu\text{m}$).

BPF10 (368BPY)

Fig. 2 Quantum efficiency versus wavelength; $V_R > V_{(RT)R}$.

Fig. 4 Effective noise factor versus wavelength.

Fig. 3 Responsivity (M = 100) versus wavelength; $V_R > V_{(RT)R}$.

Fig. 5 Multiplication versus normalized voltage.

Fig. 6 Multiplied photocurrent versus primary photocurrent; typical values.

Fig. 7 Pulse response on a lightpulse $\sigma_{\rm opt} \approx 100$ ps FWHM versus time; $\lambda = 850$ nm; M = 50 to 100.

Fig. 8 Step response versus time; $\lambda = 850$ nm; M = 50.

BPF10 (368BPY)

Explanation of the effective noise factor (k_{eff}), noise equivalent power (N.E.P.) and signal to noise ratio (S/N).

The excess noise factor F is expressed by $F = \frac{\langle M^2 \rangle}{\langle M \rangle^2}$ in which:

$$\langle M^2 \rangle$$
 = the mean square gain

$$\langle M \rangle^2$$
 = the average gain squared

$$\langle M^2 \rangle > \langle M \rangle^2$$
.

F is the ratio of the actual noise to that which would exist when all generated pairs are multiplied by

$$F \approx 2 + k_{eff} M - \frac{1}{M}$$
 in which:

k_{eff}, the effective noise factor, is a weighted ionization rate ratio of holes and electrons.

The mean square noise current for the avalanche photodiode is given by

$$\langle i_n^2 \rangle = 2 \text{ qB} \left\{ M^2 \text{F} \left(I_b + I_{ph} \right) + I_s \right\} \approx 2 \text{ qBM}^2 \text{FI}_{ph} \text{ in which:}$$

$$q = electronic charge 1.602 \times 10^{-19} (C)$$

$$I_b = I_R(D)_b$$
 bulk dark reverse current; M = 1 (unmultiplied); (A)

N.E.P. (W/
$$\sqrt{\text{Hz}}$$
) = $\frac{\text{noise current without signal, I}_{ph} = 0 (A/ $\sqrt{\text{Hz}}$)}{\text{responsivity (A/W)}}$

N.E.P. (W/
$$\sqrt{\text{Hz}}$$
) = $\frac{i_n/\sqrt{B} \text{ (without signal, I}_{ph} = 0); (A/ $\sqrt{\text{Hz}}$)}{R_m (A/W)}$

$$S/N = \frac{\text{responsivity (A/W)} \times \text{N.E.P. (W/}\sqrt{\text{Hz}})}{\text{noise current without signal, I}_{ph} = 0 \text{ (A/}\sqrt{\text{Hz}})} = 1$$

$$S/N = \frac{R_m (A/W) \times N.E.P. (W/\sqrt{Hz})}{i_n/\sqrt{B} \text{ (without signal, } I_{Dh} = 0); (A/\sqrt{Hz})} = 1$$

$$R_{\rm m} = \frac{\rm m}{100} \times R_{\rm M} = 100$$

SILICON PHOTODIODE FOR FIBRE-OPTIC COMMUNICATIONS

Photo p-i-n diode in hermetic TO-46 encapsulation, designed for fibre-optic transmissions over short and medium distances, mainly for military and industrial applications.

It is optimized to be coupled with a 200 μm core diameter fibre and to be used in combination with the CQF24 emitter.

The crystal is electrically isolated from the case.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	50 V
Dark reverse current at $V_R = 10 \text{ V}$ Total power dissipation up to $T_{amb} = 25 ^{\circ}\text{C}$	I _{R(D)} P _{tot}	max. max.	0,8 nA 300 mW
Diode capacitance at $V_R = 10 \text{ V}$	C _d	max.	3 pF
Spectral sensitivity at $V_R = 10 \text{ V}$; $\lambda = 830 \text{ nm}$	s_λ	min.	0,3 A/W

MECHANICAL DATA

Dimensions in mm

(1) Case diameter over this length is 4,7 (+0,05; -0,1) mm.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Light photocurrent, when coupled to a fibre-glass rod with NA = 0,2 and ϕ core = 200 μ m and at a distance d = 0.7 mm (see Fig. 2) at $V_R = 10 \text{ V}$; $\lambda = 830 \text{ nm}$;

IR

25 µA

typ.

Fig. 2 Distance d and lateral displacement x.

 $P_{opt} = 100 \mu W$

Fig. 3.

Fig. 5 $T_{amb} = 25$ °C.

Fig. 7 f = 1 MHz; $T_{amb} = 25 \text{ °C}$.

Fig. 4.

Fig. 6.

Fig. 8 $V_R = 10 V$; $T_{amb} = 25 °C$.

Fig. 9.

SILICON PHOTOTRANSISTOR

N-P-N silicon phototransistor in epoxy resin encapsulation intended for optical coupling and encoding. The base is inaccessible. Combination with LED CQY58A is recommended.

QUICK REFERENCE DATA

Collector-emitter voltage		V _{CEO}	max.	50 V
Collector current (d.c.)		IC	max.	25 mA
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	100 mW
Collector dark current V _{CE} = 30 V; E = 0		ICEO(D)	<	100 nA
Collector light current $V_{CE} = 5 \text{ V}; E_e = 1 \text{ mW/cm}^2; \lambda_{pk} = 930 \text{ nm}$	BPW22A-I BPW22A-II	ICEO(L)	> >	1,5 mA 5 mA
Wavelength at peak response		λ_{pk}	typ.	800 nm

MECHANICAL DATA

Fig. 1 SOD-53D.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-emitter voltage	VCEO	max.	50	٧
Emitter-collector voltage	V _{ECO}	max.	7	٧
Collector current				
d.c.	ΙC	max.	25	mΑ
peak value	ICM	max.	50	mΑ
Total power dissipation up to $T_{amb} = 25$ °C	P_{tot}	max.	100	mW
Storage temperature	T_{stg}	-55 to + 1	100	οС
Junction temperature	Τ _i	max. 1	100	oC
Lead soldering temperature $>$ 3,5 mm from the body; t_{sld} $<$ 7 s	T _{sld}	max. 2	240	οС

R_{th j-a}

750 °C/W

THERMAL RESISTANCE

From junction to ambient, device mounted on printed-circuit board

Fig. 2 Power derating curve versus ambient temperature.

3 μs

12,0 µs

12,5 μs

CHARACTERISTICS

turn-off time

turn-on time

turn-off time

T _j = 25 ^o C unless otherwise specified Collector dark current				
V _{CE} = 30 V; E = 0		ICEO(D)	<	100 nA
Collector light current				
$V_{CE} = 5 \text{ V}; E_e = 1 \text{ mW/cm}^2; \lambda_{pk} = 930 \text{ nm}$	BPW22A-I	CEO(L)		1,5 to 8 mA
	BPW22A-II	(CEO(L)		5 to 25 mA
Collector-emitter saturation voltage				
$I_C = 1 \text{ mA}$; $E_e = 1 \text{ mW/cm}^2$; $\lambda_{pk} = 930 \text{ nm}$		v_{CEsat}	<	0,4 V
Wavelength at peak response		λ_{pk}	typ.	800 nm
Bandwidth at half height		B _{50%}	typ.	400 nm
Beamwidth between half sensitivity directions		α50%	typ.	± 20°
Switching times (see Figs 3, 4, 9 and 10)				
$I_{Con} = 2 \text{ mA}; V_{CC} = 5 \text{ V}; R_E = 100 \Omega; T_{amb} = 2$	25 °C			
turn-on time		ton	typ.	3 μs

 I_{Con} = 2 mA; V_{CC} = 5 V; R_E = 1 k Ω ; T_{amb} = 25 °C

Fig. 3 Switching circuit with light emitting diode CQY58A. T.U.T. = BPW22A.

toff

ton

toff

typ.

typ.

typ.

Fig. 4 Input and output switching waveforms.

Fig. 9 V_{CC} = 5 V; T_{amb} = 25 °C; typical values; see also Figs 3 and 4.

Fig. 10 V_{CC} = 5 V; T_{amb} = 25 °C; typical values; see also Figs 3 and 4.

Fig. 11.

Fig. 12 Spectral response.

Fig. 14 $V_{CE} = 5 \text{ V}$; $T_{amb} = 25 \text{ °C}$; typical values.

Fig. 13 V_{CE} = 5 V; t_p (I_{FM}) = 10 μ s; T = 1 ms; d^* = 10 mm; T_{amb} = 25 °C.

Fig. 15 $V_{CE} = 5 V$; $d^* = 10 mm$; typical values.

^{*} d = shortest free distance of mechanical on-axis when BPW22A is coupled with CQY58A.

SILICON PHOTO P-I-N DIODE

Silicon photo p-i-n diode in a plastic envelope with an infrared filter.

QUICK REFERENCE DATA

Continuous reverse voltage Total power dissipation up to T _{amb} = 47,5 °C Junction temperature	V _R P _{tot} T _i	max. max. max.	32 V 150 mW 100 ^o C
Dark reverse current $V_R = 10 V$; $E_e = 0$	I _{R(D)}	<	30 nA
Light reverse current $V_R = 5 \text{ V}$; $E_e = 1 \text{ mW/cm}^2$; $\lambda = 930 \text{ nm}$	^I R(L)	>	30 μΑ
Wavelength at peak response $V_R = 5 V$	λ_{pk}	typ.	930 nm
Sensitive area	Α	typ.	5 mm²

MECHANICAL DATA

Fig. 1 SOD-67.

Dimensions in mm

(1) Reference for the positional tolerance of the sensitive area.

Limiting values in accordance with	the Absolute Maximum System (IEC 134)

Continuous reverse voltage	v_R	max.	32	V
Total power dissipation up to T _{amb} = 47,5 °C	P _{tot}	max.	150	mW
Storage temperature	T_{stg}	-30 to +	100	οС
Junction temperature	Tj	max.	100	οС
Lead soldering temperature up to the seating plane; $t_{\mbox{sld}} < 10 \mbox{ s}$	T _{sld}	max.	260	οС

THERMAL RESISTANCE

From junction to ambient in free air $R_{th j-a} = 350 \text{ °C/W}$

CHARACTERISTICS

 $I_R = 0.1 \text{ mA}; E_e = 0$

 $T_i = 25$ °C

Dark reverse current $V_R = 10 \text{ V; } E_e = 0 \\ \text{IR(D)} \\ \text{ } &< \text{ } 30 \text{ nA} \\ \text{ } \\ \text{ } \end{aligned}$

Light reverse current > 30 μ A $V_R = 5 \text{ V}$; $E_e = 1 \text{ mW/cm}^2$; $\lambda = 930 \text{ nm}$ $I_{R(L)}$ type 45 μ A

Reverse voltage R(L) typ. 45 μ A

Wavelength at peak response $V_R = 5 \ V \hspace{1cm} \lambda_{pk} \hspace{1cm} typ. \hspace{1cm} 930 \ nm$ Diode capacitance

 $V_{R} = 3 V \qquad \qquad C_{d} \qquad \begin{array}{c} \text{typ.} & 17 \text{ pF} \\ < & 30 \text{ pF} \end{array}$

 $V_R = 0$ C_d typ. 50 pF

Light switching times (see Figs 2 and 3)

Rise time and fall time $V_{KK} = 10 \text{ V}; \, R_A = 1 \text{ k}\Omega \qquad \qquad t_r, \, t_f \qquad \text{typ.} \qquad \qquad \text{50 ns}$

Fig. 2 Switching circuit.

Fig. 3 Input and output switching waveforms.

 V_{R}

>

32 V

Fig. 4 Maximum permissible power dissipation as a function of temperature.

Fig. 5 $T_{amb} = 25$ °C.

Fig. 9 $E_e = 1 \text{ mW/cm}^2$; $\lambda = 930 \text{ nm}$.

Fig. 10 $V_R = 5 V$; $T_{amb} = 25 °C$.

Fig. 11.

SILICON PLANAR EPITAXIAL PHOTOTRANSISTORS

General purpose n-p-n silicon phototransistors in TO-18. The BPX25 has a lens, the BPX29 has a plane window.

QUICK REFERENCE DATA					
Collector-emitter voltage (open base)	v_{CEO}	max.	3	32 V	
Collector current (peak value)	I_{CM}	max.	20	00 mA	
Junction temperature	$^{\mathrm{T}}{}_{\mathrm{j}}$	max.	15	oC oC	
Collector dark current $I_B = 0$; $V_{CE} = 24 \text{ V}$	I _{CEO(D)}	<	50	00 nA	
Collector light current			BPX25	BPX29	
$I_B = 0; V_{CE} = 6 \text{ V}; \text{ at } 1000 \text{ lx}$	ICEO(L)	typ.	13	0,8 mA	
Wavelength at peak response	λ_{pk}	typ.	80	00 nm	

MECHANICAL DATA

Dimensions in mm

BPX25

TO-18, except for lens Collector connected to case

BPX29

TO-18, except for window Collector connected to case

		ᆜᆫ			
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)					
Voltages					
Collector-base voltage (open emitter)	v_{CBO}	max.	32	V	
Collector-emitter voltage (open base)	v_{CEO}	max.	32	V	
Emitter-base voltage (open collector)	v_{EBO}	max.	5	V	
Current					
Collector current (d.c.)	$^{\mathrm{I}}\mathrm{_{C}}$	max.	100	mA	
Collector current (peak value)	I_{CM}	max.	200	mA	
Power dissipation					
Total power dissipation up to $T_{amb} = 25$ ^{o}C	P_{tot}	max.	300	mW	
Temperatures					
Storage temperature	$^{\mathrm{T}}\mathrm{stg}$	-65 t	o + 150	oC	
Junction temperature	$T_{\mathbf{j}}$	max.	150	°C	
THERMAL RESISTANCE					
From junction to ambient in free air	R _{th j-a}	=	0,4	OC/mW	
From junction to case	R _{th j-c}	=	0,15	^o C/mW	
CHARACTERISTICS T _{am}	ab = 25 °C un	less oth	erwise	specified	
Collector dark current					
$I_B = 0$; $V_{CE} = 24 \text{ V}$	I _{CEO(D)}	typ. <	100 500	nA nA	
$I_B = 0$; $V_{CE} = 24 \text{ V}$; $T_{amb} = 100 ^{o}\text{C}$	I _{CEO} (D)	typ.	15 100	μA μA	
Collector light current					
I _B = 0; V _{CE} = 6 V; tungsten filament lamp		_	BPX25	BPX29	
source with $T_c = 2700 \text{ K}$; $E_v = 1000 \text{ lx } (7.7 \text{ mW/cm}^2)$	I _{CEO(L)}	> typ.	5 13	0,25 mA 0,8 mA	
D.C. current gain			1		
$I_C = 2 \text{ mA}; V_{CE} = 6 \text{ V}$	${\tt h_{FE}}$	typ.	500	500	
Cut-off frequency					
Source: modulated GaAs; 0,4 mW/cm ²	£	4	200	150 141-	
Load : optimum (50 Ω); $V_{CE} = 24 \text{ V}$	^f co	typ.	200	150 kHz	

			BPX25	BPX29
Switching times 1) Delay time	t _d	typ.	1,0 3,0	2,5 μs 5,0 μs
Rise time	tr	typ.	1,5 3,0	2,5 μs 5,0 μs
Storage time	t _s	typ.	0, 2 0, 4	0,2 μs 0,4 μs
Fall time	$t_{\mathbf{f}}$	typ.	1,5 4,0	3,5 μs 8,0 μs
Wavelength at peak response	λ_{pk}	typ.	800	800 nm

¹⁾ Source: modulated GaAs: 0,4 mW/cm²

Load: optimum (50 Ω)

 $V_{CE} = 24 V$

Improved switching times can be obtained by a quiescent bias current.

I.e. $I_B = 2 \mu A$: $t_d < 0, 2 \mu s$.

October 1973

SILICON PLANAR PHOTODIODE

Unencapsulated photodiode for general purpose applications.

QUICK REFERENCE DATA							
Reverse voltage	v_R	max.	18	V			
Luminous sensitivity V _R = 15 V; E = 1000 lx	N	typ.	14	nA/lx			
Dark reverse current at $V_R = 15 \text{ V}$	$^{\mathrm{I}}$ đ	<	0,5	μΑ			
Wavelength at peak response	λ_{pk}	typ.	800	nm			

MECHANICAL DATA

Dimensions in mm

Slice thickness 0,27 mm

PATTING III III III III III III III III III	1 . 36 .			
RATINGS Limiting values in accordance with the Abs Voltage	olute Maxir	num Sys	tem (IE	C 134)
Reverse voltage	$v_{\mathbf{R}}$	max.	18	V
G	R			·
Currents			_	
Forward current	$^{ m I}_{ m F}$	max.	5	mA
Dark reverse current	I_{R}	max.	2	mA
Temperatures				
Storage temperature	${ m T_{stg}}$	-65 to	+ 125	$^{\mathrm{o}}\mathrm{C}$
Junction temperature	Тj	max.	125	°C
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	0,5	^o C/mW
CHARACTERISTICS T _{amb}	= 25 °C un	less oth	erwise	specified
Dark reverse current				
$V_R = 15 V$.	^I d	typ. <	0,01 0,5	μΑ μΑ
$V_R = 15 V; T_{amb} = 100 {}^{o}C$	^I d	typ.	0,6 4,0	μΑ μΑ
Photovoltaic mode				
$E = 1000 lx; T_C = 2700 K (equivalent to 7,7 mW/cm)$	²)			
Light reverse current; V = 0	^I 1	> typ.	10 13	μΑ μΑ
Forward voltage; I = 0	v_F	> typ.	330 350	mV mV
Luminous sensitivity with external voltage 1)				
$V_R = 15 \text{ V}; E = 1000 \text{ lx}; T_c = 2700 \text{ K}$ (equivalent to 7,7 mW/cm ²)	N	> typ.	10,5 14	nA/lx nA/lx
Wavelength at peak response	λ_{pk}	typ.	800	nm
Diode capacitance; f = 500 kHz				
$V_R = 15 \text{ V}$	$C_{\mathbf{d}}$	typ.	90	рF
$V_R = 0$	C _d	typ.	300	pF
Cut-off frequency (modulated GaAs source)	f_{co}	typ.	500	kHz

¹⁾ The value of light current increases with temperature by an amount approximately equal to the increase in dark current.

March 1972

March 1972 | 53

SILICON PLANAR PHOTODIODE

Unencapsulated photodiode for general purpose applications.

QUICK REFERENCE DATA						
Reverse voltage	v_{R}	max.	18	V		
Luminous sensitivity $V_R = 15 V$; $E = 1000 lx$	N	typ.	40	nA/lx		
Dark reverse current at V_R = 15 V	I_d	<	1	μA		
Wavelength at peak response	λ_{pk}	typ.	800	nm		

MECHANICAL DATA

Dimensions in mm

Slice thickness 0,27 mm

April 1976 55

Voltage				
Reverse voltage	v_R	max.	18	V
Currents				
Forward current	I_{F}	max.	10	mA
Dark reverse current	I_R	max.	5	mA
Temperatures				
Storage temperature	${\sf T}_{\sf stg}$	-65 to	+ <u>1</u> 25	$^{\mathrm{o}\mathrm{C}}$
function temperature	T_{j}	max.	125	°C
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	0,5	OC/mW
CHARACTERISTICS T ₂	amb = 25 °C ur	less oth	erwise	specified
Dark reverse current				
$V_R = 15 \text{ V}$	I_d	typ. <	0,02 1,0	μA μA
$V_R = 15 \text{ V}; T_{amb} = 100 ^{\circ}\text{C}$	I_d	typ.	1,2 8,0	μΑ μΑ
Photovoltaic mode				
$E = 1000 lx; T_c = 2700 K$ (equivalent to 7,7 mW)	′cm²)			
Light reverse current; V = 0	I ₁	> typ.	30 38	μA μA
Forward voltage; I = 0	v_{F}	> typ.	330 350	mV mV
Luminous sensitivity with external voltage 1)				
$V_R = 15 \text{ V}; E = 1000 \text{ lx}; T_c = 2700 \text{ K}$ (equivalent to 7,7 mW/cm ²)	N	> typ.	31 40	nA/lx nA/lx
Wavelength at peak response	λ_{pk}	typ.	800	nm
Diode capacitance; f = 500 kHz				
V _R = 15 V	c_d	typ.	250	pF
$V_R = 0$	$C_{\mathbf{d}}$	typ.	800	pF
Cut-off frequency (modulated GaAs source)	f_{CO}	typ.	500	kHz

¹⁾ The value of light current increases with temperature by an amount approximately equal to the increase in dark current.

SILICON PLANAR PHOTODIODE

Unencapsulated photodiode for general purpose applications.

QUICK REFERENCE DATA					
Reverse voltage	v_R	max.	12	V	
Luminous sensitivity $V_R = 10 \text{ V}$; $E = 1000 \text{ lx}$	N	typ.	150	nA/lx	
Dark reverse current at V_R = 10 V	$^{\mathrm{I}}\mathrm{_{d}}$	<	5	μΑ	
Wavelength at peak response	λ_{pk}	typ.	800	nm	

MECHANICAL DATA

Dimensions in mm

61

Slice thickness 0,27 mm

Voltage				
Reverse voltage	v_R	max.	12	V
Currents				
Forward current	I_{F}	max.	50	mA
Dark reverse current	I_R	max.	20	mA
Temperatures				
Storage temperature	$T_{ m stg}$	-65 to	+ 125	$^{\circ}\mathrm{C}$
Junction temperature	$T_{\mathbf{j}}$	max.	125	$^{\mathrm{o}}\mathrm{C}$
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	0,3	oC/mV
CHARACTERISTICS T _a	mb = 25 °C un	less oth	erwise	specifie
Dark reverse current				
$V_R = 10 V$	$I_{\mathbf{d}}$	typ.	0, 1 5, 0	μA μA
$V_R = 10 \text{ V}; T_{amb} = 100 ^{\circ}\text{C}$	I_d	typ.	6, 0 40	μΑ μΑ
Photovoltaic mode				
$E = 1000 lx; T_c = 2700 K (equivalent to 7,7 mW/c$	cm^2)			
Light reverse current; V = 0	11	> typ.	110 140	μA μA
Forward voltage; I = 0	v_{F}	> typ.	330 350	mV mV
Luminous sensitivity with external voltage 1)				
V_R = 10 V; E = 1000 1x; T_c = 2700 K (equivalent to 7,7 mW/cm ²)	N	> typ.	120 150	nA/lx nA/lx
Wavelength at peak response	λ_{pk}	typ.	800	nm
Diode capacitance; f = 500 kHz				
$V_R = 10 \text{ V}$	$C_{\mathbf{d}}$	typ.	1000	pF
$V_R = 0$	$C_{\mathbf{d}}$	typ.	3000	pF
Cut-off frequency (modulated GaAs source)	f_{CO}	typ.	500	kHz

¹⁾ The value of light current increases with temperature by an amount approximately equal to the increase in dark current.

PHOTOTRANSISTOR

General purpose n-p-n silicon phototransistor with a glass lens. Inaccessable base.

QUICK REFERENCE DATA

Collector-emitter voltage		V _{CEO}	max.	50	V
Collector current (d.c.)		$I_{\mathbb{C}}$	max.	20	mΑ
Junction temperature		Tj	max.	150	оС
Collector dark (cut-off) current $V_{CE} = 30 \text{ V}$		I _d	<	25	nA
Collector light (cut-off) current $V_{CE} = 5 \text{ V}$; $E_e = 20 \text{ mW/cm}^2$	BPX71 BPX71-203 BPX71-204	Ι <u>ρ</u> Ι <u>ρ</u> Ι <u>ρ</u>	4 1	to 15 to 8 to 15	mΑ
Wavelength at peak response Angle between half-sensitivity directions		$^{\lambda_{ m pk}}_{lpha_{ m 50\%}}$	typ.	800 40 ⁰	

MECHANICAL DATA

Fig. 1 SOT-71A (DO-31).

Dimensions in mm

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

193tcm (120 10-1)			
v_{CEO}	max.	50	٧
v_{ECO}	max.	7	V
IC	max.	20	mΑ
ICM	max.	50	mΑ
P_{tot}	max.	50	mW
P _{tot}	max.	100	mW
T_{stg}	-65 to	+ 150	οС
Ti	max.	150	οС
	VECO IC ICM Ptot Ptot Tstg	V_{ECO} max. I_{C} max. I_{CM} max. P_{tot} max. P_{tot} max. T_{stg} —65 to	$\begin{array}{ccccc} V_{ECO} & \text{max.} & 7 \\ I_{C} & \text{max.} & 20 \\ I_{CM} & \text{max.} & 50 \\ \\ P_{tot} & \text{max.} & 50 \\ P_{tot} & \text{max.} & 100 \\ T_{stg} & -65 \text{ to} + 150 \\ \end{array}$

THERMAL RESISTANCE

From junction to ambient in free air $R_{th j-a} = 2000 \text{ °C/W}$ From junction to mounting base $R_{th j-mb} = 950 \text{ °C/W}$

CHARACTERISTICS

 V_{CE} = 5; tungsten filament lamp source with colour temperature 2856 K E_e = 4,75 mW/cm²

ΙQ

typ.

1 mA

CHARACTERISTICS (continued)

Breakdown voltages

Collector-emitter voltage

$E = 0$; $I_C = 0,5 \text{ mA}$
E = 0; I _C = 0,5 mA Emitter-collector voltage
T - O. I - O. I A

Collector-emitter light saturation voltage

$$I_{C} = 0.4 \text{ mA}; E_{e} = 20 \text{ mW/cm}^{2}; T_{c} = 2856 \text{ K}$$

$$\lambda_{pk}$$

V_{CEsat}

typ.

$$I_{Con}$$
 = 0, 8 mA; V_{CC} = 35 V; R_L = 1 k Ω
Delay time

μs

μs

$$t_s$$

typ.
$$0, 1 \mu s$$
 < $2, 0 \mu s$

$$\mathsf{t}_{\mathbf{f}}$$

$$t_r = t_f = 20 \text{ ns}$$

$$t_p = 20 \mu s$$

 $f = 500 Hz$

800 nm

BPX71

polar response of relative sensitivity

PHOTOTRANSISTOR

General purpose n-p-n silicon phototransistor with a plastic lens.

QUICK REFERENCE DATA

Collector-emitter voltage (open base)		V _{CEO}	max. 30 V
Collector current (d.c.)		Ic	max. 25 mA
Junction temperature		Τį	max. 125 °C
Collector dark (cut-off) current $V_{CE} = 20 \text{ V}$		l _d	< 100 nA
Collector light (cut-off) current $V_{CE} = 5 \text{ V}$; $E_v = 1000 \text{ lx } (E_e = 4,75 \text{ mW/cm}^2)$	BPX72 BPX72D BPX72E BPX72F	1g 1g 1g 1g	500 to 3000 μA 850 to 2000 μA 1400 to 3000 μA 2400 to 5000 μA
Wavelength at peak response		λ _{pk}	typ. 800 nm
Angle between half-sensitivity directions		α50%	typ. 120 ⁰
,		3070	

MECHANICAL DATA

Fig. 1 SOT-70A.

Dimensions in mm

Maximum lead diameter is guaranteed only for 12,7 mm.

BPX72

RA	Т	IN	GS
----	---	----	----

Limiting values in accordance with the Absolute Maxim	num System (I	EC 134)			
Collector-base voltage (open emitter)		v_{CBO}	max.	40	٧
Collector-emitter voltage (open base)		VCEO	max.	30	V
Emitter-collector voltage (open base)		VECO	max.	6	٧
Collector current					
d.c.		ΙC	max.	25	mΑ
(peak value); $t_p \le 50 \mu s$; $\delta \le 0,1$		^I CM	max.	50	mΑ
Total power dissipation up to T _{amb} = 25 °C		P_{tot}	max.	180	mW
Storage temperature		T_{stg}	-40 to	+ 125	оС
Junction temperature		Тj	max.	125	oC
THERMAL RESISTANCE					
From junction to ambient in free air		R _{th j-a}	=	550	oC/M
CHARACTERISTICS					
I _B = 0; T _{amb} = 25 °C unless otherwise specified					
Collector dark (cut-off) current			tvo	10	nA
V _{CE} = 20 V		۱ _d	typ.	100	
V = 20 V: T = 100 00			typ.	10	μΑ
V _{CE} = 20 V; T _j = 100 °C		ld	<	100	μΑ
Collector light (cut-off) current V _{CF} = 5 V; tungsten filament lamp	1				
source with colour temperature 2856 K					
$E_V = 1000 \text{ lx } (E_e = 4,75 \text{ mW/cm}^2)$	BPX72	le	500 to		
	BPX72D BPX72E	lg Ig	850 to 1400 to		•
	BPX72F	Ιg	2400 to		
$E_V = 2500 \text{ lx } (E_e = 12 \text{ mW/cm}^2)$		اړ	typ.	3000	μΑ

CHARACTERISTICS (continued)

Breakdown voltages Collector-base voltage

$E = 0; I_C = 0, 1 \text{ mA}$	V(BR)CBO	>	40	V
Collector-emitter voltage E = 0; I _C = 1 mA	V _(BR) CEO	>	30	v
Emitter-collector voltage E = 0; I _C = 0, 1 mA	V _{(BR)ECO}	>	6	v

Collector capacitance

$$I_{\rm E}$$
 = $I_{\rm e}$ = 0; $V_{\rm CB}$ = 20 V $C_{\rm c}$ typ. 3,5 pF
Wavelength at peak response $\lambda_{\rm pk}$ typ. 800 nm

Bandwidth at half height B_{50%} typ. 300 nm

td

 t_r

Switching times

$$I_{Con}$$
 = 1 mA; V_{CC} = 5 V; R_L = 100 Ω Delay time
Rise time
Storage time

Light input pulse: $t_r = t_f = 20 \text{ ns}$ $t_p = 20 \mu \text{s}$ f = 500 Hz $\lambda = 800 \text{ nm}$

3,0

6,0

6,0

20 μs

1,5

μs

μs

μs

μs

typ.

typ.

typ.

October 1972

SILICON PLANAR EPITAXIAL PHOTOTRANSISTOR

N-P-N phototransistor designed for use as detector. Clear epoxy encapsulation.

QUICK REFERENCE DATA

Collector-emitter voltage (open base)	V_{CEO}	max.	30 V
Collector current (d.c.)	1 _C	max.	25 mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	100 mW
Collector light (cut-off) current $V_{CE} = 5 \text{ V}; E = 1 \text{ mW/cm}^2; \lambda = 930 \text{ nm}$	I _{CEO(L)}	>	3 mA
Wavelength at peak response	$\lambda_{\mathbf{pk}}$	typ.	800 nm

MECHANICAL DATA

Fig. 1 SOD-63A.

Dimensions in mm

Limiting values in accordance with the Absolute Maximum System (IEC 134)						
Collector-emitter voltage (open base)		V_{CEO}	max.	30	V	
Emitter-collector voltage (open base)		V _{ECO}	max.	5	V	
Collector current (d.c.)		I _C	max.	25	mΑ	
Collector current (peak value) $t_p = 50 \mu s; \delta = 0,1$		I _{CM}	max.	50	mA	
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	100	mW	
Storage temperature		T _{stg}	-40 to +	100	оС	
Junction temperature		Tj	max.	100	оС	
Lead soldering temperature up to the seating plane; $t_{\mbox{sld}} < 10 \mbox{ s}$		T _{sld}	max.	240	οС	
THERMAL RESISTANCE						
From junction to ambient		R _{th j-a}	=	750	oC/M	
From junction to ambient, device mounted on a printed-circuit board		R _{th j-a}	=	500	oC/W	
CHARACTERISTICS						
T _i = 25 °C unless otherwise specified						
Collector dark (cut-off) current V _{CE} = 20 V		ICEO(D)	<	100	nA	
Collector light (cut-off) current* $V_{CE} = 5 \text{ V}$; $E = 1 \text{ mW/cm}^2$; $\lambda = 930 \text{ nm}$	BPX95C-1 BPX95C-2	ICEO(L)	3 1	o 15 10	mA mA	
Collector-emitter saturation voltage* $I_C = 2 \text{ mA}$; E = 1 mW/cm ² ; λ = 930 nm		V _{CEsat}	<	0,4	V	
Wavelength at peak response		λ_{pk}	typ.	800	nm	
Bandwidth at half height		B _{50%}	typ.	400	nm	
Angle between half-sensitivity directions		α 50%	typ.	209)	
					_	

 1 mm^2

typ.

Receiving area

^{*} Measured with a tungsten linear filament lamp and an interference filter at λ = 930 nm.

Switching times (see Figs 2, 3, 4 and 5)

 I_{Con} = 2 mA; V_{CC} = 5 V; R_E = 100 Ω ; T_{amb} = 25 °C Light current turn-on time

Light current turn-off time

3 μs typ. ton 3 μs toff typ.

7Z82798

٧ 7282740 0 V_O 90% 10%

Fig. 2 Switching circuit.

Fig. 3 Input and output switching waveforms.

Pulse generator: f = 500 Hz

 $t_p = 20 \, \mu s$ $t_r = t_f = 20 \text{ ns}$

Fig. 4 V_{CC} = 5 V; T_{amb} = 25 °C; typ. values.

Fig. 5 V_{CC} = 5 V; T_{amb} = 25 $^{\circ}$ C; typ. values.

Fig. 10 Total power dissipation as a function of ambient temperature.

Fig. 11 Spectral response.

LIGHT EMITTING DIODES AND SELECTION GUIDE

SELECTION GUIDE

Selection guide for LEDs (visible light) grouped according to light families

OUTLINE INDICATIO	number	light colour	λ _{peak} nm	α _{50%}	V _F at I _F = 10 mA V	I _F max. mA	package: colour/ diffusor
φ 5 SOD-63	A CQX24 CQX54 CQX64 CQX74 CQX74 CQX74 CQX74 CQX51 CQY24B CQY94 CQY94B CQY96	hyper-red super-green yellow hyper-red super-red standard-red green super-green yellow	650 630 565 590 650 630 650 560 565 590	25° 25° 25° 25° 60° 60° 60° 60° 60°	1,75 2,1 2,1 1,75 2,1 1,6 2,1 2,1 2,1 2,1	100 30 60 30 100 30 50 30 60 30	transparent transparent transparent transparent red/diff red/diff green/diff green/diff yellow/diff
φ 3 1 1: 1: 1: SOD-53E	CQW54 CQW51 CQY54A CQY95B	hyper-red super-red standard-red super-green yellow	650 630 650 565 590	60° 60° 60° 60°	1,75 2,1 1,6 2,1 2,1	60 30 50 60 30	red/diff red/diff red/diff green/diff yellow/diff
φ 2 DC 11 1 SOD-79	7 CQW21	hyper-red super-green yellow	650 565 590	100° 100° 100°	1,75 2,1 2,1	60 60 30	red DC green DC yellow DC
φ 2 DC SOD-78	9 CQT11	bi-colour	see ite	em 46			
5 x 2,5 2 2 2 SOD-65	1 CQX11	super-red super-green yellow	630 565 590	50°	2,1 2,1 2,1	30 60 30	red/diff green/diff yellow/diff
DC 2 2 2 2 SOD-76 2	34 CQW10A 44 CQW10 55 CQW11A 64 CQW12 74 CQW10B 84 CQW11B 94 CQW12B	hyper-red super-red super-green yellow super-red super-green yellow	650 630 565 590 630 565 590	100° 100° 100° 100° 100° 100° 100°	1,75 2,1 2,1 2,1 2,1 2,1 2,1	100 30 60 30 30 60 30	dark red red green yellow dark red dark green dark yellow

indicates availability of a long lead (25 mm) version; in that case letter L is added to the type number e.g. CQX24L.

DC double cast product (with diffusing zone), flat top.

SELECTION GUIDE

							-	
		existin	g I _V classes	in mcd at	I _F = 10 m	A		
0,7-1,6	1,0-2,2	1,6-3,5	3,0-7,0	5-12	10–22	16–35	30–70	50-120
						I* > 20	11* > 50	III* > 100
					X* > 12			
			1*>4,0	II* > 7,5	X* > 12			
		1*	П	Ш				
* *	11 11		IV* IV*		classes F	= 20 mA I		
* *			IV IV	V* V*				
			X* >4.0	v	VI	VII*		
X*		111*		1				
X*	11	111	IV	V*	= 20 MA 			
X*		111	IV	V*				
X*								
*	II II	111	IV*					
	II	111	IV*					
	X*	111	IV					
	- 11							
	11	111						
	11 11	 						
	* * * * * * *	*	1,0-2,2 1,6-3,5	0,7-1,6	0,7-1,6	0,7-1,6		0,7-1,6

class without classification number; basic type number used only, e.g. CQX54. class without maximum $\rm I_V$ value; minimum $\rm I_V$ level specified only. Χ

SELECTION GUIDE

					γ				
1	NE INDICATions in mm	ΓΙΟΝ m no.	type number	light colour	λ _{peak} nm	α50%	V _F at I _F = 10 mA V	I _F max. mA	package: colour/ diffusor
5 x 1 DC	SOD-75	30▲ 31▲ 32▲ 33▲	CQV60A CQV60 CQV61A CQV62	hyper-red super-red super-green yellow	650 630 565 590	110° 110° 110° 110°	1,75 2,1 2,1 2,1	100 30 60 30	red red green yellow
5 x 3 DC	SOD-77	34▲ 35▲ 36▲ 37▲	CQV70A CQV70 CQV71A CQV72	hyper-red super-red super-green yellow	650 630 565 590	100° 100° 100° 100°	1,75 2,1 2,1 2,1 2,1	100 30 60 30	red red green yellow
5 x 5 DC	SOD-74	38 39 40 41	CQV80AL CQV80L CQV81L CQV82L	hyper-red super-red super-green yellow	650 630 565 590	100° 100° 100° 100°	1,75 2,1 2,1 2,1 2,1	100 30 60 30	red red green yellow
7 x 14, DC	5 SOD-73	42 43	CQN10 CQN11	hyper-red super-green	650 565	100° 100°	1,75 2,1	100 60	red green
5 x 3 φ 2 5 x 1	SOD-77 SOD-78 SOD-75	45 46 47	CQT10 CQT11 CQT12	hyper-red super-green hyper-red super-green hyper-red super-green	650 565 650 565 650 565	110° 110° 110°	1,75 2,1 1,75 2,1 1,75 2,1	100 60 100 60 100 60	transp. DC transp. DC transp. DC

DC double cast product (with diffusing zone), flat top.

indicates availability of long lead (25 mm) version; in that case letter L is added to the type number e.g. CQX24L.

SELECTION GUIDE

			existin	g I _v classes	in mcd at	I _F = 10 m	4		
0,5	0,7-1,6	1,0-2,2	1,6-3,5	3,0-7,0	5-12	10-22	16-35	30-70	50-120
X* X* X*		X* 		IV					
X* X* X*		X* 	111 111 111 111	IV IV					
X* X* X*		X* 		IV					
			X* > 2 X* > 2	For this c	ass I _F = 2	0 mA			
		X* X* X* X* X*	For this c	lass F = 20 lass F = 20 lass F = 20	 0 mA 				

class without classification number; basic type number used only, e.g. CQX54. class without maximum $\rm I_V$ value; minimum $\rm I_V$ level specified only.

=

GaAlAs LIGHT EMITTING DIODE

Infrared light emitting diode in hermetic TO-46 encapsulation, designed for fibre-optic transmissions over short and medium distances, mainly for military and industrial applications.

It is optimized to be coupled with a 200 μm core diameter fibre and to be used in combination with the BPF24 receiver.

The crystal is electrically isolated from the case.

QUICK REFERENCE DATA

Continuous reverse voltage	v_R	max.	3 V
Forward current (d.c.)	lF	max.	100 mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	250 mW
Optical power coupled into fibre (ϕ core = 200 μ m and NA = 0,2) at I _F = 100 mA	$\phi_{ extsf{e}}$	min.	200 μW
Switching times at I _F = 100 mA	t _r t _f	typ. typ.	10 ns 10 ns
Wavelength at peak emission	λ_{pk}	typ.	830 nm

MECHANICAL DATA

Dimensions in mm

Fig. 1.
Pinning:
1 = anode
2 = cathode
3 = case

(1) Case diameter over this length is 4,7 (+ 0,05; -0,1) mm.

RATINGS

RATINGS				
Limiting values in accordance with the Absolute Maximum System (IE	C 134)			
Continuous reverse voltage	V_R	max.	3	V
Forward current	۱F	max.	100	mΑ
Forward current (peak) t = 10 μ s; δ = 0,1	IFM	max.	300	mA
Total power dissipation up to T _{amb} = 25 °C device mounted on a printed circuit	P _{tot}	max.	250	mW
Junction temperature	Тj	max.	150	oC
Operating temperature	T _{op}	-55 to	+125	oC
Storage temperature	T _{stg}	65 to	+ 150	οС
THERMAL RESISTANCE				
From junction to ambient when the device is mounted on a printed circuit	R _{th j-a}	typ. max.	500	K/W K/W
From junction to case	R _{th j-c}	typ. max.		K/W K/W
CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Forward voltage at I _F = 100 mA	۷F	typ. max.	2,2 2,5	
Reverse current at V _R = 3 V	IR	max.	100	μΑ
Radiant power coupled into fibre at I _F = 100 mA ϕ core = 200 μ m, NA = 0,2	$\phi_{\mathbf{e}}$	min. typ.	200 400	•
Radiant intensity				
at I _F = 100 mA	I _e	min.	5	mW/sr
Wavelength at peak emission	λ_{pk}	min. typ. max.	800 830 880	nm
Bandwidth at half height	B _{50%}	typ.	40	nm
Switching times at I _{Fon} = 100 mA	t _r	typ. max.	10 15	ns ns
	tf	typ. max.		ns ns

NOTES

Fig. 2 Distance d and lateral displacement x.

1. For this measurement the device is shifted along its 3 axes, so that the maximum power is coupled into the fibre.

If the device is adjusted in front of the geometrical axis of the same fibre with distance d = 0,7 mm, P_{min} = 100 μ W.

2. For a different core diameter $\phi_{\rm X} \le 200~\mu{\rm m}$: $\frac{{\rm Pinj}({\rm x})}{{\rm Pinj}(200)} = \left(\frac{\phi_{\rm X}}{200}\right)^2$

For a different numerical aperture $NA_X \le 0.2$: $\frac{P_{inj}(x)}{P_{inj}(0.2)} = \left(\frac{NA_X}{0.2}\right)^2$

Fig. 3 $T_{amb} = 25$ °C.

Fig. 5.

Fig. 7 T_{amb} = 25 °C; T_{on} = 10 μ s; δ = 0,01.

Fig. 4 T_{amb} = 25 °C; T_{on} = 10 μ s; δ = 0,1.

Fig. 6 $T_{amb} = 25$ °C.

Fig. 8.

Fig. 9 See notes 1 and 2.

Fig. 11 $I_F = 100 \text{ mA}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$.

Fig. 10 Distance d = $700 \mu m$. See notes 1 and 2.

Fig. 12.

Fig. 13.

DOUBLE HETEROSTRUCTURE AIGAAS LASER

The CQL10A is designed for reading applications such as: video-audio disc applications, optical memories, security systems, etc.

This device is mounted in an hermetic SOT-148 encapsulation specifically designed for easy alignment in an optical read or write system. The copper heatsink is circular and precision engineered with a diameter accuracy of +0, $-9 \mu m$. Laser-stripe and mechanical axis coincide within $50 \mu m$.

The CQL10A is standard equipped with a photo p-i-n diode, optically coupled to the rear emitting facet of the laser. This fast responding (less than 20 ns) photodiode can be used as a sensor to control the laser radiant output level. The ultra-flat top window (flat within two fringes) guarantees an unperturbed beam wavefront.

OUICK REFERENCE DATA

Threshold current at $T_c = 30$ °C	l _{th}	typ.	65 mA
C.W. radiant output power up to $T_c = 60$ °C	ϕ_{e}	typ.	5 mW
Wavelength at peak emission	λ_{pk}	typ.	820 nm

Α

MECHANICAL DATA

crystal from the

reference plane. (2) Within the plane of

 ϕ 6,8 protrusions

flange diameter.

Fig. 1 SOT-148.

reference slot crystal (3) Ф 0,08 A

Ø6,8 max

7Z82891

LASER

The double heterostructure stripe laser operates in single transverse, multiple longitudinal mode (TE_{00}) over the full power range. The structure is designed to operate C.W. 5 mW up to relatively high temperatures (60 °C case temperature) and a wavelength of 820 nm which makes reading standard Video Long Play records and compact discs (DAD) a possible application.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IE	C 134)			
Radiant output power	ϕ_{e}	max.	10	mW
Reverse voltage	v_R	max.	1	٧
Temperatures (both laser and photodiode) C.W. operation storage	T _c T _{stg}	–20 to –55 to		
CHARACTERISTICS				
Threshold current at $T_C = 30$ °C at $T_C = 60$ °C	I _{th}	typ.		mA mA
Operating current $\phi_e = 5 \text{ mW; T}_c = 30 \text{ °C}$	l _{op}	typ.	120	mA mA
ϕ_e = 5 mW; T_c = 60 °C	lop	typ. max.		mA mA
Recommended operating radiant output power up to $T_c = 60$ °C	$\phi_{ extsf{e}}$	typ.		mW
Forward voltage drop up to T $_{\rm C}$ = 60 $^{\rm o}{\rm C}$ $\phi_{\rm e}$ = 5 mW	VF	typ.	2,5	V
Wavelength at peak emission $\phi_e = 5 \text{ mW}$; $T_c = 30 \text{ °C}$	λ_{pk}	typ.	820	nm
Spectral width at half height $\phi_{ m e}$ = 5 mW	Δλ	typ.	4	nm
Far-field angle at half-intensity directions (FWHM) perpendicular to the junction plane parallel to the junction plane	α _{50%} (⊥) α _{50%} (II)	typ. typ.	50 35	
Near-field width at half-intensity directions (FWHM)	δ 50%	typ.	6-7	μm
Astigmatism (distance between focal lines)	A_{D}	typ.	15	μm
Series resistance	R_S	typ.	5	Ω
Differential efficiency at ϕ_e = 2 mW	ϵ	typ.	0,15	W/A
Spontaneous emission at I _{th}	ϕ spon	typ.	0,5	mW
Turn-on/turn-off time (above threshold)	t _{on} /t _{off}	typ.	1	ns
Degradation rate $T_c = 60$ °C; $\phi_e = 5$ mW	$\frac{1}{I_{op}} \cdot \frac{dId}{dI}$	p typ.	5	%/Kh
Temperature coefficient of wavelength	dλpk dT	typ.	0,25	nm/K
Temperature coefficient of I _{th}	$\frac{1}{1 \text{th}} \cdot \frac{\text{dith}}{\text{dT}}$	typ.	1	%/K
Thermal resistance from junction to case	R _{th j-c}	typ.	50	K/W

Fig. 2 Far-field pattern.

- a. parallel to the junction plane.
- b. perpendicular to the junction plane.

PHOTODIODE

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Reverse voltage V_R max. 30 V

CHARACTERISTICS

Luminous sensitivity at $V_R = 15 \text{ V}$ Dark reverse current at $V_R = 15 \text{ V}$ Capacitance at $V_R = 0$ Monitor diode current at $V_R = 15 \text{ V}$

N	typ.	0,5	A/W
I _{R(D)}	max.	10	nA
c_d	max.	5	pF
I _{R(L)}		150-400	μA/mW

Fig. 3 Forward voltage drop (V_F) and radiant output power (ϕ_e) of laser diode as a function of forward current; typ. values.

Fig. 4 Radiant output power (ϕ_e) as a function of monitor current of photodiode; V_R (photodiode) = 15 V; typ. values.

* Ten-turn. Zero position is at 0,58 revolution. Each revolution is equivalent to 500 μA monitor diode current. Adjust from zero position.

Fig. 5 Recommended control circuit for continuous operation.

OPERATING PRECAUTIONS

Semiconductor lasers in general are easily damaged by overdriving and electrical transients. Electrically, the laser diode is a very reliable device and can easily withstand current surges of several amperes. Optically, however, the laser diode is more susceptible to damage because of the extremely high optical flux density passing through both facets, while in operation. By overdriving or transients to the laser, even for pulses in the nanosecond region, the optical flux density can rise to unacceptable values (10 to 100 MW/cm²), causing gradual or catastrophic degradation of the laser facets. Current transients should therefore be carefully avoided; they can substantially decrease the laser life time.

CAUTION

Aluminium gallium arsenide lasers emit radiation which is invisible to the human eye. When in use, do not look directly into the device. Direct viewing of laser light at close ranges, especially in conjunction with collimating lenses, may cause eye damage.

The device falls within safety class 3B of the international standard code.

COLLIMATOR PEN

The collimator pen CQL13 is used for reading applications such as: data retrieval, video-audio disc applications, optical memories, security systems etc.

The pen is mounted in a non-hermetic encapsulation, specifically designed for easy alignment in an optical read or write system, and consists of a lens system and a laser device. The lens system collimates the diverging laser light. The wavefront quality is diffraction limited. A cylindrical lens is used for correction of the astigmatism of the laser.

The housing is circular and precision manufactured with a diameter accuracy between + 0 and $-11~\mu m$.

QUICK REFERENCE DATA

Output power ϕ_{e}		2 mW
Current at output power $\phi_{\rm e}$ = 2 mW and temperature of 60 °C	<	175 mA
Wavelength at peak emission λ_{pk}	typ.	790 nm
Wavefront form of bundle (non-convergent) divergence	<	0,3 mrad

MECHANICAL DATA

Dimensions in mm

Fig. 1.

Mass max. 8 g

Concentricity angle between the mechanical and optical axis ≤ 10 mrad

Marking type number CQL13 and serial number

Mounting on a p.c. board by means of a specifically designed connector

Accessories the pen is supplied with a connector

WARNING THE LASER AND CONSEQUENTLY THE COLLIMATOR PEN HAS POSITIVE

POLARITY ON THE CASE.

CHARACTERISTICS

Measuring conditions

Climatological relative humidity 5-90%, atmospheric pressure. Housing temperature of the

pen 5-60 °C

Electrical d.c. operation, optical feedback drive and protection against transients

Optical only the radiation in a bundle with a diameter of 5,4 mm is relevant

Optical data

Output power ϕ_e max. 2 mW (see Fig. 4)

Spectral

Bundle properties dimension

dimension ϕ 5,4 mm plane, non-convergent divergence < 0,3 mrad aberrations variance of wavefront with respect to the Gaussian reference sphere is less than

 $$\lambda^2/300$$ polarization plane polarization typ. 35 : 1

Intensity distribution transversal mode longitudinal mode symmetry

I mode

TE_{OO}-fundamental
see note
variation of optical power in the four quadrants

(see Fig. 2) typ. 20% ripple local value of the intensity < 15% of the

smooth value

filling ratio I_{rim}/I_{max} > 0,17

Note: the number of longitudinal modes is related to the spectral width.

Electrical data

Current

Resistance between collimator pen and connector at 10 mA, max. 20 mV_{DD} and 1 kHz

≤ 12 mΩ

0.1 A/W

PHOTODIODE (see Fig. 5)

RATINGS

Reverse voltage

V_R ≤ 30 V

CHARACTERISTICS

Monitor diode sensitivity (ratio of photodiode current to optical power emitted by collimator pen)

at $\phi_e = 2$ mW

Dark reverse current

I_{R(D)} < 10 nA

at $V_R = 15 V$

Capacitance at V_R = 0

 $C_{\rm d}$ < 5 pF

ENVIRONMENTAL TESTS

The device meets all specifications mentioned below 2 hours after each test. During these tests the collimator pen is not operating.

test	in accordance with	conditions
Rapid change of temperature	IEC 68-2-14, test Na	-25 °C to 25 °C to 70 °C to 25 °C; duration of each exposure 30 min and 10 cycles in total
Dry heat	IEC 68-2-2, test Bc	Temperature: 70 °C Duration: 7 days
Cold	IEC 68-2-1 test Aa	Temperature: -25 °C Duration: 7 days
Damp heat, steady state	IEC 68-2-3 test Ca	Temperature: 40 °C Relative humidity (R.H.): 90–95% Duration: 42 days
Damp heat, cyclic	IEC 68-2-30 test Db	Temperature/R.H. 45 °C/100% (12 h) to 25 °C/ 85% (12 h Duration of one cycle: 24 hours Number of cycles: 42
Vibration	IEC 68-2-6 test Db	Frequency range: 10–55 Hz Amplitude: 0,75 mm Duration: 6 hours (2 h in each of directions)
Shock	IEC 68-2-27 test Ea	Pulse shape: half-sine Pulse duration: 11 ms Peak acceleration: 981 m/s ² Number of shocks: 10 in each of 3 directions
Bump	IEC 68-2-29 test Eb	Pulse duration: 6 ms Peak acceleration: 390 m/s ² Number of bumps: 1000 Axes of direction: 6

Cleaning test

The cylinder lens at the side of the long conjugate is cleaned 100x with a small piece of cotton wool, soaked in a 45–95% solution of ethyl-alcohol in water, attached to the end of a small stick.

* Ten-turn. Zero position is at 0,58 revolution. Each revolution is equivalent to 500 μA monitor diode current.

Fig. 3 Recommended control circuit.

OPERATING PRECAUTIONS

Semiconductor lasers in general are easily damaged by overdriving and transients. Electrically, the laser diode is a very reliable device and can easily withstand current surges of several amperes. Optically, however, the diode laser is more susceptible to damage because of the extremely high optical flux density passing through both facets, while in operation. By overdriving or transients to the laser, even for pulses in the nanosecond region, the optical flux density can rise to unacceptable values (10 to 100 MW/cm²), causing gradual or catastrophic degradation of the laser facets. Current transients should therefore be carefully avoided; they decrease the laser life time.

CAUTION

Aluminium gallium arsenide lasers emit radiation which is invisible to the human eye. When in use, do not look directly into the device. Direct viewing of laser light at close ranges, especially in conjunction with collimating lenses, may cause eye damage.

The device meets the requirements of safety class 3B of the international standard code.

Fig. 4 $T_h = 60$ °C.

Fig. 5 $V_R = 15 V$.

COLLIMATOR PEN

The collimator pen CQL13A is used for reading applications such as: data retrieval, video-audio disc applications, optical memories, security systems etc.

The pen is mounted in a non-hermetic encapsulation, specifically designed for easy alignment in an optical read or write system, and consists of a lens system and a laser device. The lens system collimates the diverging laser light. The wavefront quality is diffraction limited. A cylindrical lens is used for correction of the astigmatism of the laser.

The housing is circular and precision manufactured with a diameter accuracy between + 0 and $-11 \mu m$.

QUICK REFERENCE DATA

Output power ϕ_{e}		2 mW
Current at output power $\phi_{\rm e}$ = 2 mW and temperature of 60 $^{\rm o}{\rm C}$	<	175 mA
Wavelength at peak emission λ_{pk}	typ.	820 nm
Wavefront form of bundle (non-convergent) divergence	<	0,3 mrad

MECHANICAL DATA

Dimensions in mm

Fig. 1.

Mass max. 8 g

Concentricity angle between the mechanical and optical axis ≤ 10 mrad

Marking type number CQL13A and serial number

Mounting on a p.c. board by means of a specifically designed connector

Accessories the pen is supplied with a connector

WARNING THE LASER AND CONSEQUENTLY THE COLLIMATOR PEN HAS POSITIVE

POLARITY ON THE CASE.

CHARACTERISTICS

Measuring conditions

Climatological relative humidity 5-90%, atmospheric pressure. Housing temperature of the pen

5-60 °C

Electrical d.c. operation, optical feedback drive and protection against transients

Optical only the radiation in a bundle with a diameter of 5.4 mm is relevant

Optical data

Output power max, 2 mW (see Fig. 4) $\phi_{\mathbf{P}}$ Spectral wavelength 820 ± 10 nm λ bandwidth Δλ < 4 nm (see note) wavelength drift $\Delta \lambda / \Delta T$ approx. 0,25 nm/K

Bundle properties

dimension ϕ 5,4 mm

wavefront form plane, non-convergent divergence < 0.3 mrad aberrations variance of wavefront with respect to the Gaussian reference sphere is less than

 $\lambda^{2}/300$

polarization plane polarization ratio typ. 35:1

Intensity distribution

transversal mode TE₀₀-fundamental longitudinal mode see note

symmetry variation of optical power in the four quadrants

(see Fig. 2) typ. 20%

ripple local value of the intensity < 15% of the

smooth value

filling ratio Irim/Imax > 0.17

Note: the number of longitudinal modes is related to the spectral width.

Electrical data

Current

at ϕ_e = 2 mW and T_h = 60 °C ≤ 175 mA Drive voltage Vd ≤5 V

Resistance between collimator

pen and connector at 10 mA, max. 20 mV_{pp} and 1 kHz

 $\leq 12 \text{ m}\Omega$

PHOTODIODE (see Fig. 5)

RATINGS

Reverse voltage $V_R \leqslant 30 V$

CHARACTERISTICS

Monitor diode sensitivity (ratio of photodiode current to optical power emitted by collimator pen) at $\phi_P = 2$ mW

0,1 A/W

Dark reverse current at V_R = 15 V

 $I_{R(D)}$ < 10 nA

Capacitance at V_R = 0

 C_d < 5 pF

ENVIRONMENTAL TESTS

The device meets all specifications mentioned below 2 hours after each test. During these tests the collimator pen is not operating.

test	in accordance with	conditions
Rapid change of temperature	IEC 68-2-14, test Na	-25 °C to 25 °C to 70 °C to 25 °C; duration of each exposure 30 min and 10 cycles in total
Dry heat	IEC 68-2-2, test Bc	Temperature: 70 °C Duration: 7 days
Cold	IEC 68-2-1 test Aa	Temperature: -25 °C Duration: 7 days
Damp heat, steady state	IEC 68-2-3 test Ca	Temperature: 40 °C Relative humidity (R.H.): 90–95% Duration: 42 days
Damp heat, cyclic	IEC 68-2-30 test Db	Temperature/R.H. 45 °C/100% (12 h) to 25 °C/ 85% (12 h) Duration of one cycle: 24 hours Number of cycles: 42
Vibration	IEC 68-2-6 test Db	Frequency range: 10–55 Hz Amplitude: 0,75 mm Duration: 6 hours (2 h in each of directions)
Shock	IEC 68-2-27 test Ea	Pulse shape: half-sine Pulse duration: 11 ms Peak acceleration: 981 m/s² Number of shocks: 10 in each of 3 directions
Bump	IEC 68-2-29 test Eb	Pulse duration: 6 ms Peak acceleration: 390 m/s² Number of bumps: 1000 Axes of direction: 6

Cleaning test

The cylinder lens at the side of the long conjugate is cleaned 100x with a small piece of cotton wool, soaked in a 45–95% solution of ethyl-alcohol in water, attached to the end of a small stick.

1,5 kΩ

1,8 kΩ

current.

Fig. 3 Recommended control circuit.

OPERATING PRECAUTIONS

470 μF (25 V)

BZX79

Semiconductor lasers in general are easily damaged by overdriving and transients, Electrically, the laser diode is a very reliable device and can easily withstand current surges of several amperes. Optically, however, the diode laser is more susceptible to damage because of the extremely high optical flux density passing through both facets, while in operation. By overdriving or transients to the laser, even for pulses in the nanosecond region, the optical flux density can rise to unacceptible values (10 to 100 MW/cm²), causing gradual or catastrophic degradation of the laser facets.

Current transients should therefore be carefully avoided; they decrease the laser life time.

CAUTION

Aluminium gallium arsenide lasers emit radiation which is invisible to the human eye. When in use, do not look directly into the device. Direct viewing of laser light at close ranges, especially in conjunction with collimating lenses, may cause eye damage.

The device meets the requirements of safety class 3B of the international standard code.

Fig. 4 $T_h = 60 \, {}^{\circ}\text{C}$.

Fig. 5 $V_{R} = 15 V$.

January 1983

COLLIMATOR PEN

The collimator pen CQL13C is used for reading applications such as: data retrieval, video-audio disc applications, optical memories, security systems etc.

The pen is mounted in a non-hermetic encapsulation, specifically designed for easy alignment in an optical read or write system, and consists of a lens system and a laser device. The lens system collimates the diverging laser light. The wavefront quality is diffraction limited. A cylindrical lens is used for correction of the astigmatism of the laser.

The housing is circular and precision manufactured with a diameter accuracy between + 0 and -11 μ m.

QUICK REFERENCE DATA

Output power	<i>d</i>		2 mW
Current at output power $\phi_{\rm P}$ = 2 mW and temperature of 60 °C	ϕ_{e}	_	175 mA
Wavelength at peak emission	١.	tvn	870 nm
Wavefront form of bundle (non-convergent)	λ _{pk}	typ.	070 11111
divergence		<	0,3 mrad

MECHANICAL DATA

Dimensions in mm

Fig. 1.

Mass max. 8 g

Concentricity angle between the mechanical and optical axis \leq 10 mrad

Marking type number CQL13C and serial number

Mounting on a p.c. board by means of a specifically designed connector

Accessories the pen is supplied with a connector

WARNING THE LASER AND CONSEQUENTLY THE COLLIMATOR PEN HAS POSITIVE

POLARITY ON THE CASE.

CHARACTERISTICS

Measuring conditions

Climatological relative humidity 5–90%, atmospheric pressure. Housing temperature of the pen

5-60 °C

Electrical d.c. operation, optical feedback drive and protection against transients

Optical only the radiation in a bundle with a diameter of 5,4 mm is relevant

Optical data

Output power $\phi_{
m e}$ max. 2 mW (see Fig. 4)

Spectral

wavelength λ 870 ± 10 nm bandwidth $\Delta\lambda$ <4 nm (see note) wavelength drift $\Delta\lambda/\Delta T$ approx. 0,25 nm/K

Bundle properties

dimension ϕ 5,4 mm

wavefront form plane, non-convergent divergence < 0,3 mrad aberrations variance of wavefront with respect to the

Gaussian reference sphere is less than $\lambda^2/300$

polarization plane polarization ratio plane typ. 35 : 1

Intensity distribution transversal mode TE₀₀-fundamental

longitudinal mode see note symmetry variation of optical power in the four quadrants

(see Fig. 2) typ. 20%

ripple local value of the intensity < 15% of the

smooth value

filling ratio I_{rim}/I_{max} > 0,17

Note: the number of longitudinal modes is related to the spectral width.

Electrical data

Current

at ϕ_e = 2 mW and T_h = 60 °C \leq 175 mA Drive voltage V_d \leq 5 V

Resistance between collimator

pen and connector at 10 mA, max. 20 mV $_{\rm DD}$ and 1 kHz \leq 12 m Ω

Ξ

PHOTODIODE (see Fig. 5)

RATINGS

Reverse voltage

v_R ≤ 30 v

CHARACTERISTICS

Monitor diode sensitivity (ratio of photodiode current to optical power emitted by collimator pen)

at ϕ_e = 2 mW

0,1 A/W

5 pF

Dark reverse current at V_R = 15 V

Capacitance at V_R = 0 $I_{R(D)}$ < 10 nA

 c_d <

ENVIRONMENTAL TESTS

The device meets all specifications mentioned below 2 hours after each test. During these tests the collimator pen is not operating.

test	in accordance with	conditions
Rapid change of temperature	IEC 68-2-14, test Na	-25 °C to 25 °C to 70 °C to 25 °C; duration of each exposure 30 min and 10 cycles in total
Dry heat	IEC 68-2-2, test Bc	Temperature: 70 °C Duration: 7 days
Cold	IEC 68-2-1 test Aa	Temperature: -25 °C Duration: 7 days
Damp heat, steady state	IEC 68-2-3 test Ca	Temperature: 40 °C Relative humidity (R.H.): 90–95% Duration: 42 days
Damp heat, cyclic	IEC 68-2-30 test Db	Temperature/R.H. 45 °C/100% (12 h) to 25 °C/ 85% (12 h) Duration of one cycle: 24 hours Number of cycles: 42
Vibration	IEC 68-2-6 test Db	Frequency range: 10—55 Hz Amplitude: 0,75 mm Duration: 6 hours (2 h in each of directions)
Shock	IEC 68-2-27 test Ea	Pulse shape: half-sine Pulse duration: 11 ms Peak acceleration: 981 m/s² Number of shocks: 10 in each of 3 directions
Bump	IEC 68-2-29 test Eb	Pulse duration: 6 ms Peak acceleration: 390 m/s ² Number of bumps: 1000 Axes of direction: 6

Cleaning test

The cylinder lens at the side of the long conjugate is cleaned 100x with a small piece of cotton wool, soaked in a 45–90% solution of ethyl-alcohol in water, attached to the end of a small stick.

 Ten-turn. Zero position is at 0,58 revolution. Each revolution is equivalent to 500 μA monitor diode current.

Fig. 3 Recommended control circuit.

OPERATING PRECAUTIONS

Semiconductor lasers in general are easily damaged by overdriving and transients. Electrically, the laser diode is a very reliable device and can easily withstand current surges of several amperes. Optically, however, the diode laser is more susceptible to damage because of the extremely high optical flux density passing through both facets, while in operation. By overdriving or transients to the laser, even for pulses in the nanosecond region, the optical flux density can rise to unacceptible values (10 to 100 MW/cm²), causing gradual or catastrophic degradation of the laser facets. Current transients should therefore be carefully avoided; they decrease the laser life time.

CAUTION

Aluminium gallium arsenide lasers emit radiation which is invisible to the human eye. When in use, do not look directly into the device. Direct viewing of laser light at close ranges, especially in conjunction with collimating lenses, may cause eye damage.

The device meets the requirements of safety class 3B of the international standard code.

Fig. 4 $T_h = 60$ °C.

Fig. 5 $V_R = 15 V$.

COLLIMATOR PEN

The collimator pen CQL14A is used for writing applications such as: data retrieval (as used in optical memories), video disc applications, laser printers etc.

The pen is mounted in a non-hermetic encapsulation, specifically designed for easy alignment in an optical read or write system, and consists of a lens system and a laser device. The lens system collimates the diverging laser light. The wavefront quality is diffraction limited. A cylindrical lens is used for correction of the astigmatism of the laser.

The housing is circular and precision manufactured with a diameter accuracy between + 0 and $-11 \mu m$.

QUICK REFERENCE DATA

Output peak power at $t_D = 60$ ns and $\delta = 0,1$	φ _e		20 mW
Current at output power ϕ_e = 20 mW and temperature of 60 °C	•	≤	500 mA
Wavelength at peak emission	λ_{pk}	typ.	820 nm
Wavefront form of bundle (non-convergent) divergence		<	0,3 mrad

MECHANICAL DATA

Dimensions in mm

Fig. 1.

Mass max. 8 g

Concentricity angle between the mechanical and optical axis \leq 10 mrad

Marking type number CQL14A and serial number

Mounting on a p.c. board by means of a specifically designed connector

Accessories the pen is supplied with a connector

WARNING THE LASER AND CONSEQUENTLY THE COLLIMATOR PEN HAS POSITIVE

POLARITY ON THE CASE.

CHARACTERISTICS

Measuring conditions

Climatological relative humidity 5-90%, atmospheric pressure. Housing temperature of the pen

5-60 °C

current modulation; repetition frequency 1,3 MHz; pulse length 60 ns at FWHM; Electrical

 ϕ_e

λ

rise and fall time < 20 ns at 500 mA

only the radiation in a bundle with a diameter of 5,4 mm is relevant Optical

Optical data

Output peak power

Spectral wavelength bandwidth

Δλ < 3 nm wavelength drift $\Delta \lambda / \Delta T$ approx. 0,25 nm/K

Bundle properties dimension

wavefront form aberrations

polarization polarization ratio

Intensity distribution

 ϕ 5,4 mm

820 + 10 nm

plane, non-convergent, divergence < 0,3 mrad variance of wavefront with respect to the Gaussian reference sphere is less than

max. 20 mW ($t_p = 60 \text{ ns}$; $\delta = 0.1$)

 $\lambda^{2}/300$ plane tvp. 35:1

transversal mode TE₀₀-fundamental longitudinal mode

see note

symmetry variation of optical power in the four quadrants

(see Fig. 2) tvp. 20%

ripple local value of the intensity < 15% of the

smooth value

Note: the number of longitudinal modes is related to the spectral width.

Electrical data

Current

at ϕ_e = 20 mW and T_h = 60 °C Drive voltage V_d

≤ 500 mA ≤5 V

Capacitance Resistance between collimator < 10 pF

pen and connector at 10 mA,

≤ 12 mΩ

max. 20 mV_{DD} and 1 kHz

PHOTODIODE

RATINGS

Reverse voltage $V_R \leq 30 V$

CHARACTERISTICS

Monitor diode sensitivity (ratio of photodiode current to optical power emitted by collimator pen) at ϕ_e = 20 mW

0,1 A/W

Dark reverse current at V_R = 15 V

 $I_{R(D)}$ < 10 nA

Capacitance at V_R = 0

 C_d < 5 pF

ENVIRONMENTAL TESTS

The device meets all specifications mentioned below 2 hours after each test. During these tests the collimator pen is not operating.

test	in accordance with	conditions
Rapid change of temperature	IEC 68-2-14, test Na	-25 °C to 25 °C to 70 °C to 25 °C; duration of each exposure 30 min and 10 cycles in total
Dry heat	IEC 68-2-2, test Bc	Temperature: 70 °C Duration: 7 days
Cold	IEC 68-2-1 test Aa	Temperature: —25 °C Duration: 7 days
Damp heat, steady state	IEC 68-2-3 test Ca	Temperature: 40 °C Relative humidity (R.H.): 90–95% Duration: 42 days
Damp heat, cyclic	IEC 68-2-30 test Db	Temperature/R.H. 45 °C/100% (12 h) to 25 °C/ 85% (12 h) Duration of one cycle: 24 hours Number of cycles: 42
Vibration	IEC 68-2-6 test Db	Frequency range: 10–55 Hz Amplitude: 0,75 mm Duration: 6 hours (2 h in each of directions)
Shock	IEC 68-2-27 test Ea	Pulse shape: half-sine Pulse duration: 11 ms Peak acceleration: 981 m/s ² Number of shocks: 10 in each of 3 directions
Bump	IEC 68-2-29 test Eb	Pulse duration: 6 ms Peak acceleration: 390 m/s² Number of bumps: 1000 Axes of direction: 6

Cleaning test

The cylinder lens at the side of the long conjugate is cleaned 100x with a small piece of cotton wool, soaked in a 45-95% solution of ethyl-alcohol in water, attached to the end of a small stick.

OPERATING PRECAUTIONS

Semiconductor lasers in general are easily damaged by overdriving and transients. Electrically, the laser diode is a very reliable device and can easily withstand current surges of several amperes. Optically, however, the diode laser is more susceptible to damage because of the extremely high optical flux density passing through both facets, while in operation. By overdriving or transients to the laser, even for pulses in the nanosecond region, the optical flux density can rise to unacceptible values (10 to 100 MW/cm²), causing gradual or catastrophic degradation of the laser facets. Current transients should therefore be carefully avoided; they decrease the laser life time.

CAUTION

Aluminium gallium arsenide lasers emit radiation which is invisible to the human eye. When in use, do not look directly into the device. Direct viewing of laser light at close ranges, especially in conjunction with collimating lenses, may cause eye damage.

The device meets the requirements of safety class 3B of the international standard code.

COLLIMATOR PEN

The collimator pen CQL14B is used for writing applications such as: data retrieval (as used in optical memories), video disc applications, laser printers etc.

The pen is mounted in a non-hermetic encapsulation, specifically designed for easy alignment in an optical read or write system, and consists of a lens system and a laser device. The lens system collimates the diverging laser light. The wavefront quality is diffraction limited. A cylindrical lens is used for correction of the astigmatism of the laser.

The housing is circular and precision manufactured with a diameter accuracy between ± 0 and ± 11 μm .

QUICK REFERENCE DATA

Output peak power at $t_D = 60$ ns and $\delta = 0,1$	φe		20	mW
Current at output power ϕ_e = 20 mW and temperature of 60 °C	ŭ	≤	500	mΑ
Wavelength at peak emission	λ_{pk}	typ.	850	nm
Wavefront form of bundle (non-convergent) divergence	,	<	0,3	mrad

MECHANICAL DATA

Dimensions in mm

Fig. 1.

Mass max. 8 g

Concentricity angle between the mechanical and optical axis ≤ 10 mrad

Marking type number CQL14B and serial number

Mounting on a p.c. board by means of a specifically designed connector

Accessories the pen is supplied with a connector

WARNING THE LASER AND CONSEQUENTLY THE COLLIMATOR PEN HAS POSITIVE

POLARITY ON THE CASE.

CHARACTERISTICS

Measuring conditions

Climatological relative humidity 5-90%, atmospheric pressure. Housing temperature of the pen

Electrical current modulation; repetition frequency 1,3 MHz; pulse length 60 ns at FWHM;

rise and fall time < 20 ns at 500 mA

Optical only the radiation in a bundle with a diameter of 5,4 mm is relevant

Optical data

Output peak power

 ϕ_{e} λ

max. 20 mW ($t_D = 60 \text{ ns}$; $\delta = 0,1$)

Spectral

wavelength bandwidth

Δλ

850 ± 10 nm < 3 nm $\Delta \lambda / \Delta T$ approx. 0,25 nm/K

wavelength drift Bundle properties

> dimension wavefront form

 ϕ 5,4 mm

plane, non-convergent, divergence < 0,3 mrad aberrations variance of wavefront with respect to the Gaussian reference sphere is less than

> $\lambda^{2}/300$ plane

polarization polarization ratio tvp. 35:1

Intensity distribution transversal mode TE₀₀-fundamental

longitudinal mode see note

symmetry variation of optical power in the four quadrants

(see Fig. 2) tvp. 20%

ripple local value of the intensity < 15% of the

smooth value

Note: the number of longitudinal modes is related to the spectral width.

Electrical data

Current

at ϕ_e = 20 mW and T_h = 60 °C

≤ 500 mA

Drive voltage V_d

Capacitance

≤ 5 V

Resistance between collimator

< 10 pF

pen and connector at 10 mA. max. 20 mV_{DD} and 1 kHz

≤ 12 mΩ

PHOTODIODE

RATINGS

Reverse voltage $V_R \leq 30 V$

CHARACTERISTICS

Monitor diode sensitivity (ratio of photodiode current to optical power emitted by collimator pen) at $\phi_e = 20 \text{ mW}$

0,1 A/W

Dark reverse current

at $V_R = 15 V$

 $I_{R(D)}$ < 10 nA

Capacitance

at V_R = 0

 C_d < 5 pF

ENVIRONMENTAL TESTS

The device meets all specifications mentioned below 2 hours after each test. During these tests the collimator pen is not operating.

test	in accordance with	conditions
Rapid change of temperature	IEC 68-2-14, test Na	-25 °C to 25 °C to 70 °C to 25 °C; duration of each exposure 30 min and 10 cycles in total
Dry heat	IEC 68-2-2, test Bc	Temperature: 70 °C Duration: 7 days
Cold	IEC 68-2-1 test Aa	Temperature: —25 °C Duration: 7 days
Damp heat, steady state	IEC 68-2-3 test Ca	Temperature: 40 °C Relative humidity (R.H.): 90–95% Duration: 42 days
Damp heat, cyclic	IEC 68-2-30 test Db	Temperature/R.H. 45 °C/100% (12 h) to 25 °C/ 85% (12 h) Duration of one cycle: 24 hours Number of cycles: 42
Vibration	IEC 68-2-6 test Db	Frequency range: 10—55 Hz Amplitude: 0,75 mm Duration: 6 hours (2 h in each of directions)
Shock	IEC 68-2-27 test Ea	Pulse shape: half-sine Pulse duration: 11 ms Peak acceleration: 981 m/s² Number of shocks: 10 in each of 3 directions
Bump	IEC 68-2-29 test Eb	Pulse duration: 6 ms Peak acceleration: 390 m/s ² Number of bumps: 1000 Axes of direction: 6

Cleaning test

The cylinder lens at the side of the long conjugate is cleaned 100x with a small piece of cotton wool, soaked in a 45–95% solution of ethyl-alcohol in water, attached to the end of a small stick.

OPERATING PRECAUTIONS

Semiconductor lasers in general are easily damaged by overdriving and transients. Electrically, the laser diode is a very reliable device and can easily withstand current surges of several amperes. Optically, however, the diode laser is more susceptible to damage because of the extremely high optical flux density passing through both facets, while in operation. By overdriving or transients to the laser, even for pulses in the nanosecond region, the optical flux density can rise to unacceptible values (10 to 100 MW/cm²), causing gradual or catastrophic degradation of the laser facets. Current transients should therefore be carefully avoided; they decrease the laser life time.

CAUTION

Aluminium gallium arsenide lasers emit radiation which is invisible to the human eye. When in use, do not look directly in to the device. Direct viewing of laser light at close ranges, especially in conjunction with collimating lenses, may cause eye damage.

The device meets the requirements of safety class 3B of the international standard code,

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

LIGHT EMITTING DIODE

The CQN10 is a hyper-red light emitting block. The SOD-73 envelope is a block (7 mm x 14,5 mm) containing 2 GaAlAs diodes and has long leads. The diodes are encapsulated in a transparent resin with a medium-red coloured diffusing zone cast on the top.

This so-called Word Illumination Block (WIB) is designed to illuminate small texts in equipment. Because of its high light intensity and large $(7 \times 14,5)$ light diffusing surface it is very suitable for special indicator purposes, for example, in cars, white goods, power switches etc., and in applications where only low currents are available.

QUICK REFERENCE DATA

Continuous reverse voltage	v_R	max.	5	V
Forward current (d.c.)	1F	max.	60	mΑ
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	360	mW
Junction temperature	Τį	max.	100	οС
Luminous intensity IF = 10 mA	I _v	min.	2	mCd
Wavelength at peak emission	λ_{pk}	typ.	650	nm
Beamwidth between half-intensity directions	α _{50%}	typ.	110	0

MECHANICAL DATA

SOD-73 (see page 122)

MECHANICAL DATA

7, 2 ⁽²⁾_6,8

Fig. 1 SOD-73.

14,6 (2)

14,4

- 1. The seating plane is defined when the device is mounted over an aperture of 12,6 mm x 5,2 mm
- 2. Max. value including plastic burrs
- 3. Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	v_R	max.	5 V
Forward current			
d.c.	۱ _F	max.	60 mA
peak value; $t_p = 1 \mu s$; $f = 300 Hz$	^I FM	max.	1 A
peak value; t_{on} = 20 μ s; δ = 0,01	IFM	max.	500 mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	360 mW
Storage temperature	T_{stg}	-55 to	+85 °C
Junction temperature	Tj	max.	100 °C
Lead soldering temperature			
$>$ 5 mm from the plastic body; t_{sld} $<$ 7 s	T_{sld}	max.	260 °

THERMAL RESISTANCE

From junction to ambient when the device is mounted on a p.c. board

R_{th j-a} max. 210 K/W

7Z86929 1

Dimensions in mm

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Forward voltage (per diode)

Reverse current (per diode)

$$V_R = 5 V$$

Beamwidth between half-intensity directions

Bandwidth at half height

Wavelength at peak emission

Luminous intensity

I_F = 10 mA

DEVELOPMENT SAMPLE DATA

Capacitance (per diode)

Fig. 2.

Fig. 4 t_{on} = 20 μ s; δ = 0,01; T_{amb} = 25 °C; typ. values.

Fig. 3 T_{amb} = 25 °C; typ. values.

Fig. 5 Value per diode; typ. values.

Fig. 6 $I_F = 10 \text{ mA}$; typ. values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 $I_F = 10 \text{ mA}$; $T_{amb} = 25 \, {}^{\circ}\text{C}$; typ. values.

Fig. 9 Typical values.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation, it does not necessarily imply that the device will go into regular production.

LIGHT EMITTING DIODE

The CQN11 is a super-green light emitting block. The SOD-73 envelope is a block (7 mm x 14,5 mm) containing 2 GaP diodes and has long leads. The diodes are encapsulated in a transparent resin with an extra medium-green coloured diffusing zone cast on the top.

This so-called Word Illumination Block (WIB) is designed to illuminate small texts in equipment. Because of its high light intensity and large (7 x 14,5) light diffusing surface it is very suitable for special indicator purposes, for example, in cars, white goods, power switches etc. and in applications where only low currents are available.

QUICK REFERENCE DATA

Continuous reverse voltage	v_R	max.	5 V
Forward current (d.c.)	۱F	max.	60 mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	360 mW
Junction temperature	T_{j}	max.	100 °C
Luminous intensity I _F = 20 mA	I _V	min.	2 mCd
Wavelength at peak emission	λ_{pk}	typ.	565 nm
Beamswitch between half-intensity directions	lpha 50%	typ.	110 °

MECHANICAL DATA

SOD-73 (see page 126)

MECHANICAL DATA

Fig. 1 SOD-73.

Notes

- 1. The seating plane is defined when the device is mounted over an aperture of 12,6 mm x 5,2 mm
- 2. Max. value including plastic burrs
- 3. Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	V_R	max.	5	V
Forward current				
d.c.	۱F	max.	60	mΑ
peak value; $t_p = 1 \mu s$; $f = 300 Hz$	IFM	max.	1	Α
peak value; $t_{on} = 1 \text{ ms}$; $\delta = 0.33$	^l FM	max.	150	mΑ
Total power dissipation up to $T_{amb} = 25$ °C	P_{tot}	max.	360	mW
Storage temperature	T_{stg}	-55 to	+85	oC
Junction temperature	Tj	max.	100	οС
Lead soldering temperature				
> 5 mm from the plastic body; t _{sld} < 7 s	T_{sld}	max.	260	0

THERMAL RESISTANCE

From junction to ambient when the device is mounted on a p.c. board

R_{th j-a} max.

210 K/W

CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified

Forward voltage	(per	diode)
$I_r = 20 \text{ m}\Delta$		

Reverse current (per diode)

V_R = 5 V

Beamwidth between half-intensity directions

Bandwidth at half height

Wavelength at peak emission

Luminous intensity

 $I_F = 20 \text{ mA}$

Capacitance (per diode)

160 7288853 1FM (mA)
120
80
40
0 1 2 3 4

Fig. 4 $t_{on} = 20 \mu s$; $\delta = 0.01$; $T_{amb} = 25 \text{ °C}$. $T_{amb} = 25 \text{ °C}$; typ. values.

Fig. 3 T_{amb} = 25 °C; typ. values.

Fig. 5 Value per diode; typ. values.

Fig. 6 $I_F = 20 \text{ mA}$; typ. values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 $I_F = 20 \text{ mA}$; $T_{amb} = 25 \text{ °C}$; typ. values.

Fig. 9 Typical values.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

LIGHT EMITTING DIODE

Solid-state rectangular lamp of 3 mm \times 5 mm which emits hyper-red light (GaAlAs) or super-green light (GaP) depending on the polarity of the current.

The CQT10 has a SOD-77A outline and is encapsulated in a transparent resin with a diffusing zone cast on the top. Because of its SOD-77 envelope it can be used in configurations together with the CQV70 LED family. The bicolour function gives this light emitting device special application possibilities e.g.

- as level sensor overdrive indicator
- as zero point indicator
- as tuning indicator

QUICK REFERENCE DATA

Forward current (d.c.) red green	I _F	max.	100 mA 60 mA
Total power dissipation up to T _{amb} = 35 °C	P _{tot}	max.	180 mW
Junction temperature	T _i	max.	100 °C
Luminous intensity red at I _F = 10 mA green at I _F = 20 mA	ı _v	min.	1 mcd
Wavelength at peak emission red green	$\lambda_{\sf pk}$	typ.	650 nm 565 nm
Beamwidth between half-intensity directions in the plane of the leads	^α 50%	typ.	110 °

MECHANICAL DATA

SOT-77A (see page 130)

Dimensions in mm

CHARACTERISTICS (continued)

Wavelength at peak emission
at I_F = 10 mA
red
green

Capacitance
at V = 0; f = 1 MHz

Luminous intensity
red at I_F = 10 mA

green at IF = 20 mA

 $\lambda_{
m pk}$ typ. ${650 \
m nm} \atop 565 \
m nm}$ ${\rm C_d}$ typ. $90 \
m pF}$ ${\rm I_V}$ ${\rm min.}$ 1,0 mcd typ. 1,5 mcd

Fig. 2.

Fig. 3 $T_{amb} = 25$ °C; typ. values.

Fig. 4 t_{on} = 20 μ s; δ = 0,01; T_{amb} = 25 °C; typ. values.

Fig. 5 $I_F = 10 \text{ mA}$; typ. values.

Fig. 6 $t_p = 50 \mu s$; typ. values.

Fig. 8 Typical values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 9 $I_F = 10 \text{ mA}$; typ. values.

Fig. 10 $I_F = 10 \text{ mA}$; typ. values.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production

LIGHT EMITTING DIODE

Solid-state lamp with diameter of 2 mm, which emits either hyper-red light (GaAlAs) or super-green light (GaP) depending on the polarity of the current.

The CQT11 has a SOD-78 outline and is encapsulated in a transparent resin with a diffusing zone cast on the top. Because of its 2 mm diameter it can be used in configurations together with the CQW20 LED family. The bicolour function gives this light emitting device special application possibilities such as:

- level sensor overdrive indicator
- zero point indicator
- tuning indicator

QUICK REFERENCE DATA

Forward current (d.c.)			100 1
red green	ΙF	max.	100 mA 60 mA
Total power dissipation up to T _{amb} = 35 °C	P_{tot}	max.	180 mW
Junction temperature	Тj	max.	100 °C
Luminous intensity red at I _F = 10 mA green at I _F = 20 mA	I _V	min.	1 mcd
Wave length at peak emission			
red green	λ_{pk}	typ.	650 nm 565 nm
Beamwidth between half-intensity directions	$\alpha_{50\%}$	typ.	110 °

MECHANICAL DATA

SOD-78 (see page 134)

Dimensions in mm

MECHANICAL DATA

Fig. 1 SOD-78.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Forward current (d.c.) red

100 mA lF. max. green 60 mA

Forward current peak value; $t_D = 1 \mu s$; f = 300 Hz1 A |FM max.

peak value; $t_{on} = 1 \text{ ms}$; $\delta = 0.33$

IFM max. 150 mA Total power dissipation up to Tamb = 35 °C Ptot 180 mW max.

Junction temperature T_i 100 °C max.

Storage temperature -55 to +100 °C T_{sta}

Lead soldering temperature > 1,5 mm from the seating plane; t_{sld} < 7 s T_{sld} 260 °C max.

THERMAL RESISTANCE

From junction to ambient when the device is mounted on a p.c. board

350 K/W Rth i-a max.

1.0 min

diffusing

CHARACTERISTICS

T_{amb} = 25 °C unless otherwise specified

Forward voltage

1,75 V typ. red at IF = 10 mA ٧F max. 2,2 V

typ. 2.1 V green at IF = 20 mA ٧F 3,0 V max.

CHARACTERISTICS (continued)

Beamwidth between half-intensity directions at $I_F = 10 \text{ mA}$

Wavelength at peak emission at I_F = 10 mA

red

green Capacitance

at V = 0; f = 1 MHz

Luminous intensity

red at $I_F = 10 \text{ mA}$ green at $I_F = 20 \text{ mA}$

Fig. 2.

Fig. 4 t_{on} = 20 μ s; δ = 0,01; T_{amb} = 25 °C; typ. values.

Fig. 3 $T_{amb} = 25$ °C; typ. values.

Fig. 5 $I_F = 10 \text{ mA}$; typ. values.

Fig. 6 $t_p = 50 \mu s$; typ. values.

Fig. 8 Typical values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 9 $I_F = 10 \text{ mA}$; typ. values.

Fig. 10 $I_F = 10 \text{ mA}$; typ. values.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

LIGHT EMITTING DÍODE

Solid-state rectangular lamp of 1 mm x 5 mm which emits either hyper-red light (GaAIAs) or supergreen light (GaP) depending on the polarity of the current.

The CQT12 has a SOD-75A2 outline and is encapsulated in a transparent resin with a diffusing zone cast on the top. Because of its SOD-75 envelope it can be used in configurations together with the CQV60 LED family e.g. the LED array RTC 907. The bicolour function gives this light emitting device special application possibilities e.g.

- as level sensor overdrive indicator
- as zero point indicator
- as tuning indicator

QUICK REFERENCE DATA			
Forward current (d.c.) red green	۱۴	max.	100 mA 60 mA
Total power dissipation up to T _{amb} = 35 °C	P _{tot}	max.	180 mW
Junction temperature	T_{j}	max.	100 °C
Luminous intensity red at I _F = 10 mA green at I _F = 20 mA	I _V	min.	1 mcd
Wavelength at peak emission red green	λ_{pk}	typ.	650 nm 565 nm
Beamwidth between half-intensity directions in the plane of the leads	α _{50%}	typ.	110 °
MECHANICAL DATA Fig. 1 SOD-75A2	13	Dime	nsions in mm
1,20 1,05 anode red	8,6 8,2		-
5,0	-		

137

red

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Forward current (d.c.)

green	'F	max.	60 mA
Forward current			
peak value; $t_p = 1 \mu s$; $f = 300 Hz$	IFM	max.	1 A
peak value; $t_{on} = 1 \text{ ms}$; $\delta = 0.33$	IFM	max.	150 mA
Total power dissipation up to $T_{amb} = 35$ °C	P_{tot}	max.	180 mW
Junction temperature	T_{j}	max.	100 °C

Storage temperature Lead soldering temperature

> 1,5 mm from the seating plane; t_{sld} < 7 s

260 °C T_{sld} max.

-55 to +100 °C

 T_{stq}

100 mA

THERMAL RESISTANCE

From junction to ambient when the device 350 K/W is mounted on a p.c. board R_{th i-a} max.

CHARACTERISTICS

Tamb = 25 °C unless otherwise specified Earward valtage

red at I _F = 10 mA	V _F	typ. max.	1,75 V 2,2 V
green at I _F = 20 mA	VF	typ. max.	2,1 V 3,0 V
Beamwidth between half-intensity directions at $I_F = 10 \text{ mA}$ (in the plane of the leads)	α50%	typ.	110 °

Wavelength at peak emission at $I_F = 10 \text{ mA}$

red typ. 650 nm λ_{pk} 565 nm green typ. Capacitance

at V = 0; f = 1 MHz90 pF C_d typ. Luminous intensity

red at IF = 10 mA 1.0 mcd min. green at IF = 20 mA 1,5 mcd typ.

Fig. 2.

DEVELOPMENT SAMPLE DATA

Fig. 4 t_{on} = 20 μ s; δ = 0,01; T_{amb} = 25 °C; typical values.

Fig. 6 $t_p = 50 \mu s$; typical values.

Fig. 3 T_{amb} = 25 °C; typical values.

Fig. 5 $I_F = 10 \text{ mA}$; typical values.

Fig. 7 $t_p = 50 \mu s$; typical values.

Fig. 8 Typical values.

Fig. 9 $I_F = 10 \text{ mA}$; typical values.

Fig. 10 $I_F = 10 \text{ mA}$; typical values.

CQV60 CQV60L

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

LIGHT EMITTING DIODES

Rectangular light emitting diode of 1 mm x 5 mm which emits super-red light (GaPAs) when forward biased. The CQV60 and CQV60L have a SOD-75 outline and are encapsulated in a medium-red coloured resin with a diffusing zone cast on the top. These LEDs when stacked in the array RTC901 (or in combination with other SOD-75 LEDs) can be used e.g. as a level indicator.

The CQV60L is equal to the CQV60A but has long leads and no seating plane.

QUICK REFERENCE DATA

Continuous reverse voltage		V _R	max.	5 V
Forward current (d.c.)		١Ę	max.	30 mA
Total power dissipation up to T _{amb} = 65 °C		P_{tot}	max.	90 mW
Junction temperature		T_{i}	max.	100 °C
Luminous intensity I _F = 10 mA	CQV60(L) CQV60(L)-II CQV60(L)-III	I _V I _V	min. 1,0 to 1,6 to	0,5 mcd 2,2 mcd 3,5 mcd
Wavelength at peak emission $I_F = 10 \text{ mA}$		λ _{pk}	typ.	630 nm
Beamwidth between half-intensity directions in the plane of the leads		^α 50%	typ.	110 °

Ŧ

August 1983

7Z86914.1A

CQV60 CQV60L

Notes

- 1. Dimension measured when the device is seated in a gauge with 2 holes of 0,80 mm diameter and 2,54 mm apart.
- 2. For the maximum value including plastic burrs.
- 3. Solderability is not guaranteed within this zone due to tie-bar cropping.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Reverse voltage	v_R	max.	5 V
Forward current	_		
d.c.	١F	max.	30 mA
peak value; $t_p = 1 \mu s$; $f = 300 Hz$	IFM	max.	1 A
peak value; $t_{on} = 1 \text{ ms}$; $\delta = 0.33$	IFM	max.	60 mA
Total power dissipation up to T _{amb} = 65 °C	P_{tot}	max.	90 mW
Storage temperature	T_{stg}	–55 to	+100 °C
Junction temperature	Tj	max.	100 °C
Lead soldering temperature at t _{sld} < 7 s > 1,5 mm from the seating plane for CQV60 > 5 mm from the plastic body for CQV60L	T _{sld}	max.	260 °C
THERMAL RESISTANCE			

From junction to ambient when the device is mounted on a p.c. board

CHARACTERISTICS

T_j = 25 °C unless otherwise specified

Forw	ar	q	٧O	Itage
۱Ł	=	10) n	ıΑ

typ. ٧F max.

max.

350 K/W

2,1 V

3,0 V

Rth j-a

Reverse current

Beamwidth between half-intensity directions in the plane of the leads

Bandwidth at half height
Wavelength at peak emission
IF = 10 mA

Luminous intensity I_f = 10 mA

Diode capacitance

Fig. 2.

Fig. 4 t_{on} = 50 μ s; δ = 0,0,1; T_{amb} = 25 °C; typ. values.

Fig. 3 $T_{amb} = 25$ °C; typ. values.

Fig. 5 Typical values.

Fig. 6 $I_F = 10 \text{ mA}$; typ. values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 Typical values.

Fig. 9 Typical values.

LIGHT EMITTING DIODES

Rectangular light emitting diode of 1 mm x 5 mm which emits hyper-red light (GaAIAs) when forward biased.

The CQV60A and CQV60AL have a SOD-75 outline and are encapsulated in a medium-red coloured resin with a diffusing zone cast on the top. These LEDs when stacked in the array RTC907 (in combination with other SOD-75 LEDs) can be used e.g. as a level indicator.

Because of the high light intensity the CQV60A(L) is very suitable in those applications where only very low currents are available and because of its high $I_{F\ max}$ it can be used for high $I_{V\ applications}$. The CQV60AL is equal to the CQV60A but has long leads and no seating plane.

QUICK REFERENCE DATA

Continuous reverse voltage		V_{R}	max.	5	V
Forward current (d.c.)		l _E	max.	100	mΑ
Total power dissipation up to T _{amb} = 25 °C		P_{tot}	max.	250	mW
Junction temperature		Τį	max.	100	οС
Luminous intensity IF = 10 mA Wavelength at peak emission	CQV60A(L) CQV60A(L)-III CQV60A(L)-IV	I _V I _V I _V		1,0 3,5 o 7,0	
I _F = 10 mA Beamwidth between half-intensity directions		$^{\lambda_{ m pk}}_{lpha_{ m 50\%}}$	typ.	650 110	

CQV60A CQV60AL

- 1. Dimension measured when the device is seated in a gauge with 2 holes of 0,80 mm diameter 2,54 mm
- 2. For the maximum value: including plastic burrs.
- Solderability is not quaranteed within this zone due to tie-bar cropping

3. Solderability is not guaranteed within this zone due to tie-bar d	ropping.		
RATINGS			
Limting values in accordance with the Absolute Maximum System	(IEC 134)		
Reverse voltage	v_R	max.	5 V
Forward current			
d.c.	۱F	max.	100 mA
peak value; $t_p = 1 \mu s$; $f = 300 Hz$	^I FM	max.	1 A
peak value; t_{on} = 20 μ s; δ = 0,01	IFM	max.	500 mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	250 mW
Storage temperature	T_{stg}	-55 to	+100 °C
Junction temperature	Тj	max.	100 °C
Lead soldering temperature at $t_{\rm sld}$ < 7 s > 1,5 mm from the seating plane for CQV60A > 5 mm from the plastic body for CQV60AL	T _{sld}	max.	260 °C
THERMAL RESISTANCE			
From junction to ambient when the device is mounted on a p.c. board	R _{th j-a}	max.	350 K/W
CHARACTERISTICS			
T _j = 25 °C unless otherwise specified			
Forward voltage	٧c	typ.	1,75 V

۷F

 I_R

max.

max.

2,20 V

100 µA

I_F = 10 mA

Reverse current $V_R = 5 V$

Beamwidth between half-intensity directions in the plane of the leads Bandwidth at half height

Wavelength at peak emission IF = 10 mA

Luminous intensity IF = 10 mA

Diode capacitance V_R = 0; f = 1 MHz

Fig. 4 t_{on} = 20 μ s; δ = 0,01; T_{amb} = 25 °C; typ. values.

Fig. 5 $I_F = 10 \text{ mA}$; typ. values.

Fig. 6 Typical values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 $I_F = 10 \text{ mA}$; $T_{amb} = 25 \text{ }^{o}\text{C}$; typ. values.

Fig. 9 Typical values.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production

LIGHT EMITTING DIODES

Rectangular light emitting diodes of 1 mm \times 5 mm which emit super-green light (GaP) when forward biased.

The CQV61A and CQV61AL have a SOD-75 outline and are encapsulated in a medium-green coloured resin with a diffusing zone cast on the top. These LEDs, when stacked in the array RTC902, or in combination with other SOD-75 LEDs in the array RTC907, can be used e.g. as a level indicator.

The CQV61AL is equal to the CQV61A but has long leads and no seating plane.

QUICK REFERENCE DATA

Continuous reverse voltage Forward current (d.c.) Total power dissipation up to Tamb = 35 °C Junction temperature		V _R I _F P _{tot} T _j	max. max. max. max.	5 V 60 mA 180 mW 100 °C
Luminous intensity I _F = 10 mA	CQV61A(L) CQV61A(L)-II CQV61A(L)-III	I _V I _V	min. 1,0 to 1,6 to	0,5 mcd 2,2 mcd 3,5 mcd
Wavelength at peak emission $I_F = 10 \text{ mA}$		ν λ _{pk}	typ.	565 nm
Beamwidth between half-intensity directions in the plane of the leads		α50%	typ.	110 °

7Z86914 1

CQV61A CQV61AL

Notes

- 1. Measured when the device is seated in a gauge with 2 holes 0,80 mm diameter and 2,54 mm apart.
- 2. Maximum value including burrs.
- 3. Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Reverse voltage	v_R	max.	5 V
Forward current			
d.c.	١Ę	max.	60 mA
peak value; $t_p = 1 \mu s$; $f = 300 Hz$	less	max.	1 A
peak value; $t_{on} = 1 \text{ ms}$; $\delta = 0.33$	^I FM	max.	150 mA
Total power dissipation up to T _{amb} = 35 °C	P_{tot}	max.	180 mW
Storage temperature	T_{stg}	−55 to	+100 °C
Junction temperature	Tj	max.	100 °C
Lead soldering temperature at t _{sld} < 7 s > 1,5 mm from the seating plane for CQV61A > 5 mm from the plastic body for CQV61AL	T _{sld}	max.	260 °C

THERMAL RESISTANCE

From junction to ambient when the device is mounted on a p.c. board

CHARACTERISTICS

 $T_j = 25$ °C unless otherwise specified

Forward voltage IF = 10 mA	•	V _F	typ. max.	2,1 V 3,0 V

Rth i-a

max.

350 K/W

Reverse current $V_R = 5 \text{ V}$ Beamwidth between half-intensity directions in the plane of the leads; $I_F = 10 \text{ mA}$ Bandwidth at half height
Wavelength at peak emission $I_F = 10 \text{ mA}$

Luminous intensity IF = 10 mA

Diode capacitance V_R = 0; f = 1 MHz

Fig. 2.

Fig. 4 t_{on} = 50 μ s; δ = 0,01; T_{amb} = 25 °C; typical values.

B_{50%} typ. 30 nm

 $\lambda_{
m pk}$ typ. 565 nm CQV61A(L) I, min. 0,5 mcd

C_d typ. 35 pF

Fig. 3 $T_{amb} = 25$ °C; typical values.

Fig. 5 Typical values.

Fig. 6 Typical values.

Fig. 7 $t_p = 50 \mu s$; typical values.

Fig. 8 $I_F = 10 \text{ mA}$; typical values.

CQV62L

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

LIGHT EMITTING DIODES

Rectangular light emitting diodes of 1 mm \times 5 mm which emits yellow light (GaPAs) when forward biased.

The CQV62 and CQV62L have a SOD-75 outline and are encapsulated in a medium-yellow coloured resin with a diffusing zone cast on the top. When stacked in the array RTC903 or in combination with other SOD-75 LEDs in the array RTC907 these LEDs can be used, for instance, as a level indicator. The CQV62L is equal to the CQV62 but has long leads and no seating plane.

QUICK REFERENCE DATA

Continuous reverse voltage		v_R	max.	5 V
Forward current (d.c.)		ΙF	max.	30 mA
Total power dissipation up to T _{amb} = 65 °C		P_{tot}	max.	90 mW
Junction temperature		Τį	max.	100 °C
Luminous intensity		•		
I _F = 10 mA	CQV62(L)	l _v	min.	0,5 mcd
·	CQV62-II(L)	Ιν	1,0 t	to 2,2 mcc
	CQV62-III(L)	ľv	1,6 1	to 3,5 mcc
Wavelength at peak emission				
I _F = 10 mA		λ_{pk}	typ.	590 nm
Beamwidth between half-intensity directions		•		
in the plane of the leads		^α 50%	typ.	110 °

CQV62| CQV62L|

Note 1: Dimension measured when the device is seated in a gauge with 2 holes of 0,80 mm diameter 2.54 mm apart.

Note 2: For the maximum value: including plastic burrs.

Note 3: Solderability is not guaranteed within this zone due to tie-bar cropping.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Reverse voltage V_R max. 5 V

Forward current
d.c. IF max. 30 mA

Forward current d.c. IF max. 30 mA peak value; t_p = 1 μ s; f = 300 Hz IFM max. 1 A peak value; t_p = 1 ms; δ = 0,33 IFM max. 60 mA

Total power dissipation up to $T_{amb} = 65 \, ^{\circ}\text{C}$ P_{tot} max. 90 mW Storage temperature T_{stq} $-55 \, \text{to} + 100 \, ^{\circ}\text{C}$

Storage temperature $T_{stg} = -55 \text{ to} + 100 \text{ °C}$ Junction temperature $T_j = -55 \text{ to} + 100 \text{ °C}$

Lead soldering temperature at t_{sld} < 7 s > 1,5 mm from the seating plane for CQV62 > 5 mm from the plastic body for CQV62L T_{sld} max. 260 °C

THERMAL RESISTANCE

From junction to ambient when the device is mounted on a p.c. board Rth j-a max. 350 K/W

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Forward voltage I_F = 10 mA

V_F typ. 2,1 V max. 3,0 V Reverse current

in the plane of the leads; I_F = 10 mA

Bandwidth at half height
Wavelength at peak emission

I_F = 10 mA

Luminous intensity

IF = 10 mA

Diode capacitance $V_R = 0$; f = 1 MHz

Fig. 2.

Fig. 4 t_{on} = 50 μ s; δ = 0,01; T_{amb} = 25 °C; typical values.

Fig. 3 $T_{amb} = 25$ °C; typical values.

Fig. 5 Typical values.

Fig. 6 $I_F = 10 \text{ mA}$; typical values.

Fig. 7 t_p = 50 μ s; typical values.

Fig. 8 Typical values.

Fig. 9 Typical values.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

LIGHT EMITTING DIODES

Rectangular light emitting diodes of 3 mm \times 5 mm which emit super-red light (GaPAs) when forward biased. The CQV70 (and CQV70L) has a SOD-77 envelope and is encapsulated in a medium-red coloured resin with a diffusing zone cast on the top.

When stacked in an array these SOD-77 LEDs can be used e.g. as a level indicator. The CQV70L is similar to the CQV70 but has long leads and has no seating plane.

QUICK REFERENCE DATA

Continuous reverse voltage		VR	max.	5 V
Forward current (d.c.)		l _E	max.	30 mA
Total power dissipation up to T _{amb} = 65 °C		P_{tot}	max.	90 mW
Junction temperature		Tį	max.	100 °C
Luminous intensity I _F = 10 mA	CQV70(L) CQV70(L)-II CQV70(L)-III	I _V I _V	min. 1,6 to 1,6 to	0,5 mcd 2,2 mcd 3,5 mcd
Wavelength at peak emission $I_F = 10 \text{ mA}$		λ_{pk}	typ.	630 nm
Beamwidth between half-intensity directions in the plane of the leads; $I_F = 10 \text{ mA}$		$\alpha_{50\%}$	typ.	100 °

MECHANICAL DATA

Dimensions in mm

Fig. 1b SOD-77L. CQV70L

Notes

- 1. Measured when the device is seated in a gauge with 2 holes 0,80 mm in diameter and 2,54 mm apart.
- 2. Maximum value including plastic burrs.
- 3. Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Reverse voltage	v_{R}	max.	5	V
Forward current				
d.c.	۱۴	max.	30	mΑ
peak value; $t_p = 1 \mu s$; $f = 300 \text{ Hz}$ peak value; $t_{OB} = 1 \text{ ms}$; $\delta = 0.33$	I _{EM}	max.		Α
peak value; $t_{on} = 1 \text{ ms}$; $\delta = 0.33$	• •••	max.	60	mΑ
Total power dissipation up to T _{amb} = 65 °C	P_{tot}	max.	90	mW
Storage temperature	T_{stg}	-55 t	o + 100	οС
Junction temperature	T_{j}	max.	100	οС
Lead soldering temperature at t _{sld} < 7 s > 1,5 mm from the seating plane for CQV70 > 5 mm from the plastic body for CQV70L	T _{sld}	max.	260	°C

max.

350 K/W

2,1 V 3,0 V

THERMAL RESISTANCE

From junction to ambient when the device is mounted on a p.c. board Rth j-a

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Forward voltage	`	
IF = 10 mA	VE	typ.
.,	*F	max.

Revei	rse c	ur	rent		
٧F	? = 5	V	•		
Beam	wid ⁻	th	betv	ve	er
				_	

Beamwidth between half-intensity directions in the plane of the leads; $I_F = 10 \text{ mA}$

Bandwidth at half height

Wavelength at peak emission

I_F = 10 mA

Luminous intensity I_F = 10 mA

Diode capacitance V_R = 0; f = 1 MHz

Fig. 2.

Fig. 4 t_{on} = 50 μ s; δ = 0,01; T_{amb} = 25 °C; typical values.

$$\alpha_{50\%}$$
 typ. 100 ° B_{50%} typ. 30 nm

$$\lambda_{pk}$$
 typ. 630 nm

 C_d typ. 35 pF

Fig. 3 T_{amb} = 25 °C; typical values.

Fig. 5 Typical values.

Fig. 6 $I_F = 10 \text{ mA}$; typical values.

Fig. 7 $t_p = 50 \mu s$; typical values.

Fig. 8 $I_F = 10 \text{ mA}$; $T_{amb} = 25 \text{ °C}$; typical values.

LIGHT EMITTING DIODES

Rectangular light emitting diode of 3 mm x 5 mm which emits hyper-red light (GaAlAs) when forward biased. The CQV70A has a SOD-77 envelope and is encapsulated in a medium-red coloured resin with a diffusing zone cast on the top. Because of its high luminous intensity the CQV70A is very suitable in applications where only low currents are available and because of its high I_{Fmax} it can be used in high I_{V} applications.

These SOD-77 LEDs when stacked in an array can be used e.g. as a level indicator. The CQV70 AL is similar to the CQV70A but has long leads and has no seating plane.

QUICK REFERENCE DATA

Continuous reverse voltage		VR	max.	5 V
Forward current (d.c.)		۱F	max.	100 mA
Total power dissipation up to T _{amb} = 25 °C		P_{tot}	max.	215 mW
Junction temperature		Τį	max.	100 °C
Luminous intensity I _F = 10 mA	CQV70A(L) CQV70A(L)-III CQV70A(L)-IV	I _V I _V	min. 1,6 to 3,0 to	
Wavelength at peak emission IF = 10 mA		λ_{pk}	typ.	650 nm
Beamwidth between half-intensity directions in the plane of the leads; I _F = 10 mA		^α 50%	typ.	100 °

MECHANICAL DATA

Fig. 1a SOD-77A2. CQV70A 3,3 3,1 5,55 5,35 R 0,2 (4x)

7Z86911.1A

Notes

1. Measured when the device is seated in a gauge with 2 holes of 0,80 mm diameter and 2,54 mm apart.

1,0 min

zone

7Z86990

- 2. Maximum value including plastic burrs.
- 3. Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)		
Reverse voltage	v_R	max.	5 V
Forward current			
d.c.	۱F	max.	100 mA
peak value; $t_p = 1 \mu s$; $f = 300 Hz$ peak value; $t_{on} = 20 \mu s$; $\delta = 0,01$	IFM	max. max.	1 A 500 mA
Total power dissipation up to $T_{amb} = 25$ °C	P_{tot}	max.	215 mW
Storage temperature	T_{stg}	-55 to	+100 °C
Junction temperature	Τį	max.	100 °C
Lead soldering temperature at t _{sld} < 7 s > 1,5 mm from the seating plane for CQV70A > 5 mm from the plastic body for CQV70AL	T _{sld}	max.	260 °C
THERMAL RESISTANCE			
From junction to ambient when the device is mounted on a p.c. board	R _{th j-a}	max.	350 K/W
CHADACTEDISTICS			

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Forward voltage			
$I_F = 10 \text{ mA}$	٧٤	typ.	1,75 V
·F · · · · · · · · · · · · · · · · · ·	۸,1	max.	2,2 V

Reverse current V _R = 5 V
Beamwidth between half-intensity directions $I_F = 10 \text{ mA}$
Bandwidth at half height
Wavelength at peak emission $I_F = 10 \text{ mA}$
Luminous intensity I _F = 10 mA

Diode capacitance $V_R = 0$; f = 1 MHz

Fig. 4 $t_{on} = 20 \,\mu s$; $\delta = 0.01$; typ. values.

V_{FM} (V)

o l

Fig. 3 T_{amb} = 25 °C; typ. values.

Fig. 5 $I_F = 10 \text{ mA}$; typ. values.

Fig. 6 Typical values.

Fig. 7 $t_D = 50 \mu s$; typ. values.

Fig. 8 $I_F = 10 \text{ mA}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$; typ. values.

LIGHT EMITTING DIODES

Rectangular light emitting diodes of 3 mm \times 5 mm which emit super-green light when forward biased. The CQV71A(L) has a SOD-77 envelope and is encapsulated in a 'medium-green coloured resin with a diffusing zone cast on the top.

When stacked in an array these LEDs with other SOD-77 LEDs can be used e.g. as a level indicator. The CQV71AL is similar to the CQV71A but has long leads and has no seating plane.

QUICK REFERENCE DATA

Continuous reverse voltage		VR	max.	5 V
Forward current (d.c.)		ΙF	max.	60 mA
Total power dissipation up to T _{amb} = 35 °C		P_{tot}	max.	180 mW
Junction temperature		Τį	max.	100 °C
Luminous intensity		,		
$I_F = 10 \text{ mA}$	CQV71A(L)	l _v	min.	0,5 mcd
	CQV71A(L)-II	l _v	1,0 to	2,2 mcd
	CQV71A(L)-III	l _v	1,6 to	3,5 mcd
	CQV71A(L)-IV	Ιν	3 to	7 mcd
Wavelength at peak emission				
I _F = 10 mA		λ_{pk}	typ.	565 nm
Beamwidth between half-intensity directions in the plane of the leads; I _F = 10 mA		α _{50%}	typ.	100 °

MECHANICAL DATA

Notes

- 1. Measured when the device is seated in a gauge with 2 holes 0,80 mm diameter and 2,54 mm apart.
- 2. Maximum value including burrs.
- 3. Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Reverse voltage	v_R	max.	5	٧
Forward current				
d.c.	۱۴	max.	60	mΑ
peak value; $t_p = 1 \mu s$; $f = 300 Hz$ peak value; $t_{OD} = 1 ms$; $\delta = 0.01$	^I FM	max.	1	Α
peak value; t'_{on} = 1 ms; δ = 0,01	' F IVI	max.	150	mΑ
Total power dissipation up to $T_{amb} = 35$ °C	P_{tot}	max.	180	mW
Storage temperature	T_{stg}	–55 to -	⊦ 100	οС
Junction temperature	Τj	max.	100	oC
Lead soldering temperature at t _{sld} < 7 s > 1,5 mm from the seating plane for CQV71A > 5 mm from the plastic body for CQV71AL	T _{sld}	max.	260	°C

THERMAL RESISTANCE

From junction to ambient when the device 350 K/W is mounted on a p.c. board R_{th j-a} max.

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

I _F = 10 mA	٧F	typ. max.	2,1 V 3,0 V
------------------------	----	--------------	----------------

Reverse current

Beamwidth between half-intensity directions in the plane of the leads; IF = 10 mA

Bandwidth at half height Wavelength at peak emission

I= = 10 mA

Luminous intensity $I_E = 10 \text{ mA}$

Fig. 2.

Fig. 4 $t_{on} = 1 \text{ ms}; \delta = 0.01;$ $T_i = 25$ °C; typical values.

 C^{q} 35 pF typ.

Fig. 3 T_{amb} = 25 °C; typical values.

Fig. 5 Typical values.

Fig. 6 $I_F = 10 \text{ mA}$; typical values.

Fig. 7 $t_D = 50 \mu s$; typical values.

Fig. 8 Typical values.

Fig. 9 Typical values.

This information is derived from development samples made available for evaluation, It does not necessarily imply that the device will go into regular production

LIGHT EMITTING DIODES

Rectangular light emitting diodes of 3 mm \times 5 mm which emit yellow light when forward biased. The CQV72 (and CQV72L) has a SOD-77 envelope and is encapsulated in a medium-yellow coloured resin with a diffusing zone cast on the top.

When stacked in an array these SOD-77 LEDs can be used e.g. as a level indicator. The CQV72L is similar to the CQV72 but has long leads and has no seating plane.

QUICK REFERENCE DATA

Continuous reverse voltage		VR	max.	5	٧
Forward current (d.c.)		ΙF	max.	30	mΑ
Total power dissipation up to T _{amb} = 65 °C		P_{tot}	max.	90	mW
Junction temperature		T_{j}	max.	100	οС
Luminous intensity I _F = 10 mA	CQV72(L) CQV72(L)-II CQV72(L)-III	I _V I _V	min. 1,0 to 1,6 to	2,2	mcd mcd mcd
Wavelength at peak emission $I_F = 10 \text{ mA}$		λ_{pk}	typ.	590	nm
Beamwidth between half-intensity directions in the plane of the leads; $I_F = 10 \text{ mA}$		$\alpha_{50\%}$	typ.	100	0

MECHANICAL DATA

Dimensions in mm

Fig. 1b SOD-77L. CQV72L

Notes

- 1. Measured when the device is seated in a gauge with 2 holes 0,80 mm in diameter and 2,54 mm apart.
- 2. Maximum value including plastic burrs.
- 3. Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS

RATINGS				
Limiting values in accordance with the Absolute Maximum System (I	EC 134)			
Reverse voltage	v_R	max.	5	٧
Forward current d.c. peak value; t_p = 1 μ s; f = 300 Hz	l _E	max. max.		mA A
peak value; t_{OI} = 1 ms; δ = 0,33	· [N]	max.	60	mΑ
Total power dissipation up to T _{amb} = 65 °C	P_{tot}	max.	90	mW
Storage temperature	T_{stg}	-55 to		
Junction temperature	T_{j}	max.	100	οС
Lead soldering temperature at t _{sld} < 7 s > 1,5 mm from the seating plane for CQV72 > 5 mm from the plastic body for CQV72L	T _{sld}	max.	260	οС
THERMAL RESISTANCE				
From junction to ambient when the device is mounted on a p.c. board	R _{th j-a}	max.	350	K/W
CHARACTERISTICS				

typ.

max.

٧F

2,1 V

3,0 V

Forward voltage

IF = 10 mA

T_i = 25 °C unless otherwise specified

Reverse current

V_R = 5 V Beamwidth between half-intensity directions

in the plane of the leads; I_F = 10 mA Bandwidth at half height

Wavelength at peak emission

I_F = 10 mA

Luminous intensity IF = 10 mA

Diode capacitance V_R = 0; f = 1 MHz

DEVELOPMENT SAMPLE DATA

Fig. 2.

Fig. 4 t_{on} = 50 μ s; δ = 0,01; T_{amb} = 25 °C; typ. values.

Fig. 3 T_{amb} = 25 °C; typ. values.

Fig. 5 Typical values.

Fig. 6 $I_F = 10 \text{ mA}$; typ. values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 Typical values.

This information is derived from development samples made available for evaluation, It does not necessarily imply that the device will go into regular production.

LIGHT EMITTING DIODE

Rectangular light emitting diode of 5 mm x 5 mm which emits super-red light when forward biased. The CQV80L has a SOD-74L envelope and is encapsulated in a transparent resin with a medium-red coloured diffusing zone cast on the top.

These SOD-74 LEDs are very suitable for surface illumination, for example in information boards, score boards, moving advertisement and electronic game applications.

The CQV80L has long leads and has no seating plane.

QUICK REFERENCE DATA

Continuous reverse voltage		٧R	max.	5 V
Forward current (d.c.)		۱F	max.	30 mA
Total power dissipation up to T _{amb} = 65 °C		P_{tot}	max.	90 mW
Junction temperature		Τį	max.	100 °C
Luminous intensity IF = 10 mA	CQV80L CQV80L-II CQV80L-III	I _V I _V	min. 1,0 to 1,6 to	0,5 mcd 2,2 mcd 3,5 mcd
Wavelength at peak emission I _F = 10 mA		λ _{pk}	typ.	630 nm
Beamwidth between half-intensity directions $I_F = 10 \text{ mA}$		^α 50%	typ.	100 °

MECHANICAL DATA

Dimensions in mm

- 7Z86913 1 1. Measured when the device is seated in a gauge with 2 holes 0,80 mm in diameter and 2,54 mm apart.
- 2. Maximum value including plastic burrs.
- 3. Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Reverse voltage		v_R	max.	5	٧
Forward current					
d.c.		۱F	max.		mΑ
peak value; $t_p = 1 \mu s$; $f = 300 \text{ Hz}$		IFM	max.		Α^
peak value; $t_{on} = 1 \text{ ms}$; $\delta = 0.33$			max.		mΑ
Total power dissipation up to T _{amb} = 65 °C		P_{tot}	max.		mW
Storage temperature		T _{stg}	–55 to	+ 100	оС
Junction temperature		Τj	max.	100	οС
Lead soldering temperature					
$>$ 5,0 mm from the plastic body; t_{std} $<$ 7 s		T _{sld}	max.	260	оС
THERMAL RESISTANCE					
From junction to ambient when the device					
is mounted on a p.c. board		R _{th j-a}	max.	350	K/W
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Forward voltage			4	0.1	.,
$I_F = 10 \text{ mA}$		٧F	typ. max.	2,1 3,0	
Reverse current			max.	5,0	v
V _R = 5 V		IR	max.	100	μΑ
Beamwidth between half-intensity directions					
I _F = 10 mA		$\alpha_{50\%}$	typ.	100	0
Bandwidth at half height		B _{50%}	typ.	45	nm
Wavelength at peak emission					
I _F = 10 mA		λ_{pk}	typ.	630	nm
Luminous intensity		•			
I _F = 10 mA	CQV80L	I_V	min.		mcd
	CQV80L-II	!v	1,0 to		mcd
Diode capacitance	CQV80L-III	I _V	1,6 to	3,5	mcd
Diode capacitance		_			_

 c_d

typ.

35 pF

 $V_R = 0$; f = 1 MHz

Fig. 2.

DEVELOPMENT SAMPLE DATA

Fig. 4 t_{ON} = 50 μ s; δ = 0,01; T_{amb} = 25 O C; typ. values.

Fig. 6 $I_F = 10 \text{ mA}$; typ. values.

Fig. 3 $T_{amb} = 25$ °C; typ. values.

Fig. 5 Typical values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 Typical values.

Fig. 9 Typical values.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

LIGHT EMITTING DIODE

Rectangular light emitting diode of 5 mm x 5 mm which emits hyper-red light (GaAlAs) when forward biased. The CQV80AL has a SOD-74L envelope and is encapsulated in a transparent resin with a medium-red coloured diffusing zone cast on the top. The CQV80AL has long leads but has no seating plane.

This LED is very suitable for surface illumination, for example in information boards, score boards, moving advertisements and electronic games applications. Because of its high light intensity the CQV80AL is also very suitable in applications where only very low currents are available and because of its high I_{Fmax} it can be used in high I_V applications.

QUICK REFERENCE DATA

Continuous reverse voltage		V_R	max.	5 V
Forward current (d.c.)		Ιϝ	max.	100 mA
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	215 mW
Junction temperature		T_i	max.	100 °C
Luminous intensity I _F = 10 mA	CQV80AL CQV80AL-III CQV80AL-IV	I _V I _V	min. 1,6 to 3,0 to	1,0 mcd 3,5 mcd 7,0 mcd
Wavelength at peak emission $I_F = 10 \text{ mA}$		λ_{pk}	typ.	650 nm
Beamwidth between half-intensity directions IF = 10 mA		α _{50%}	typ.	100 °

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOD-74L.

Notes

7286913.1

- 1. Measured when the device is seated in a gauge with 2 holes 0,80 mm diameter and 2,54 mm apart.
- 2. Maximum value including plastic burrs.
- 3. Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS

RATINGS					
Limiting values in accordance with the Absolute Maximu	ım System (IE)	C 134)			
Reverse voltage		v_R	max.	5	٧
Forward current d.c. peak value; $t_p = 1 \mu s$; $f = 300 \text{ Hz}$		I _F	max.		Α
peak value; $t_{on}^{\prime} = 20 \mu\text{s}$; $\delta = 0.01$			max.	500	
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	215	
Storage temperature		T _{stg}	-55 to +		
Junction temperature		т _ј	max.	100	٥,
Lead soldering temperature > 5,0 mm from the plastic body; t _{sld} < 7 s		T _{sld}	max.	260	οС
THERMAL RESISTANCE					
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Forward voltage I _F = 10 mA		VF	typ. max.	1,75 2,2	
Reverse current V _R = 5 V		IR	max.	100	μΑ
Beamwidth between half-intensity directions IF = 10 mA		α _{50%}	typ.	100	
Bandwidth at half height		B50%	typ.	20	nm
Wavelength at peak emission IF = 10 mA		λ_{pk}	typ.	650	nm
•	CQV80AL CQV80AL-III CQV80AL-IV	I _V I _V	min. 1,6 to 3,0 to	3,5	mcd mcd mcd
Diode capacitance V _R = 0; f = 1 MHz		C _d	typ.	60	

Fig. 2.

120

Fig. 3 $T_{amb} = 25$ °C; typ. values.

DEVELOPMENT SAMPLE DATA

Fig. 4 $t_{on} = 20 \mu s$; $\delta = 0.01$; $T_{amb} = 25 \, {}^{o}C$; typ. values.

Fig. 5 $I_F = 10 \text{ mA}$; typ. values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 $I_F = 10 \text{ mA}$; $T_{amb} = 25 \text{ °C}$; typ. values.

Fig. 9 Typical values.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

LIGHT EMITTING DIODE

Rectangular light emitting diode of 5 mm x 5 mm which emits super-green light (GaP) when forward biased. The CQV81L has a SOD-74L envelope and is encapsulated in a transparent resin with a medium-green coloured diffusing zone cast on the top. This LED has long leads and no seating plane.

These SOD-74 LEDs are very suitable for surface illumination, for example in information boards, score boards, moving advertisement and electronic game applications.

QUICK REFERENCE DATA

Continuous reverse voltage		٧ _R	max.	5 V
Forward current (d.c.)		ΙF	max.	60 mA
Total power dissipation up to T _{amb} = 35 °C		P_{tot}	max.	180 mW
Junction temperature		Τį	max.	100 °C
Luminous intensity IF = 10 mA	CQV81L CQV81L-II CQV81L-III	_V _V _V	min. 1,0 to 1,6 to	0,5 mcd 2,2 mcd 3,5 mcd
Wavelength at peak emission $I_F = 10 \text{ mA}$		λ_{pk}	typ.	565 nm
Beamwidth between half-intensity directions IF = 10 mA		α _{50%}	typ.	100 °

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOD-74L.

Notes

- 1. Measured when the device is seated in a gauge with 2 holes 0,80 mm diameter 2,54 mm apart.
- 2. Maximum value including plastic burrs.
- 3. Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS					
Limiting values in accordance with the Absolute M	Maximum System (IE	EC 134)			
Reverse voltage		v_R	max.	5	٧
Forward current d.c.		۱F	max.		mΑ
peak value; $t_p = 1 \mu s$; $f = 300 Hz$ peak value; $t_{on} = 1 ms$; $\delta = 0.33$		^I FM	max. max.		A mA
Total power dissipation up to T _{amb} = 35 °C		P_{tot}	max.	180	mW
Storage temperature		T_{stg}	–55 to	+ 100	οС
Junction temperature		Тj	max.	100	оС
Lead soldering temperature					
$>$ 5,0 mm from the plastic body; t_{sld} $<$ 7 s		T_{sld}	max.	260	оС
THERMAL RESISTANCE					
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W
CHARACTERISTICS					
T _j = 25 ^o C unless otherwise specified					
Forward voltage $I_F = 10 \text{ mA}$		VF	typ. max.	2,1 3,0	
Reverse current V _R = 5 V	,	IR	max.	100	μΑ
Beamwidth between half-intensity directions I _F = 10 mA		$\alpha_{50\%}$	typ.	100	0
Bandwidth at half height		B _{50%}	typ.	30	nm
Wavelength at peak emission $I_F = 10 \text{ mA}$		λ _{pk}	typ.	565	nm
Luminous intensity IF = 10 mA	CQV81L CQV81L-II CQV81L-III	I _V I _V	min. 1,0 to 1,6 to	2,2	mcd mcd mcd
Diode capacitance V _R = 0; f = 1 MHz	- · · · · · · · · · · · · · · · · · · ·	c _d	typ.		pF

Fig. 2.

Fig. 4 t_{on} = 50 μ s; δ = 0,01; T_{amb} = 25 °C; typical values.

Fig. 6 I_F = 10 mA; typical values.

Fig. 3 $T_{amb} = 25$ °C; typical values.

Fig. 5 Typical values.

Fig. 7 $t_p = 50 \mu s$; typical values.

Fig. 8 Typical values.

Fig. 9 Typical values.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

LIGHT EMITTING DIODE

Rectangular light emitting diode of 5 mm x 5 mm which emits yellow light (GaPAs) when forward biased. The CQV82L has a SOD-74L envelope and is encapsulated in a transparent resin with a mediumyellow coloured diffusing zone cast on the top. These SOD-74 LEDs are very suitable for surface illumination, for example in information boards, score boards, moving advertisement and electronic game applications.

The CQV82L has long leads and has no seating plane.

QUICK REFERENCE DATA

Continuous reverse voltage		v _R	max.	5	V
Forward current (d.c.)		ΙF	max.	30	mΑ
Total power dissipation up to $T_{amb} = 65 {}^{o}C$		P_{tot}	max.	90	mW
Junction temperature		Τj	max.	100	οС
Luminous intensity		•			
I _F = 10 mA	CQV82L	l _v	min.	0,5	mcd
	CQV82L-II	lv	1,0 to	2,2	mcd
	CQV82L-III	l _v	1,6 to	3,5	mcd
Wavelength at peak emission					
$I_F = 10 \text{ mA}$		$\lambda_{\sf pk}$	typ.	590	nm
Beamwidth between half-intensity directions					
I _F = 10 mA		^α 50%	typ.	100	0

MECHANICAL DATA

Dimensions in mm

- 1. Measured when the device is seated in a gauge with 2 holes 0,80 mm diameter and 2,54 mm apart.
- 2. Maximum value including plastic burrs.
- 3. Solderability not guaranteed within this zone due to tie-bar cropping.

Reverse voltage

	• •		
Forward current			
d.c.	1 _F	max.	30 mA
peak value; $t_p = 1 \mu s$; $f = 300 Hz$	le	max.	1 A
peak value; $t_{0n}^{r} = 1 \text{ ms}$; $\delta = 0.33$	^I FM	max.	60 mA
Total power dissipation up to T _{amb} = 65 °C	P_{tot}	max.	90 mW
Storage temperature	T_{stg}	-55 to	+100 °C
Junction temperature	Тj	max.	100 °C
Lead soldering temperature			
$>$ 5,0 mm from the plastic body; $t_{ m sld}$ $<$ 7 s	T_{sld}	max.	260 °C
THERMAL RESISTANCE			
From junction to ambient when the device			
is mounted on a p.c. board	R _{th j-a}	max.	350 K/W
	,		
CHARACTERISTICS			
T _j = 25 °C unless otherwise specified			
Forward voltage	.,	typ.	2,1 V
·	v_F	max.	3,0 V
Reverse current			
V _R = 5 V	1 _R	max.	100 μΑ
Beamwidth between half-intensity directions			
I _F = 10 mA	α 50%	typ.	100 °
Bandwidth at half height			40 nm
•	B _{50%}	typ.	40 1111
Wavelength at peak emission			
$I_F = 10 \text{ mA}$	$\lambda_{\sf pk}$	typ.	590 nm
Luminous intensity			

CQV82L

CQV82L-II

CQV82L-III

١_٧

 C_d

5 V

0,5 mcd

2,2 mcd

3,5 mcd

35 pF

min.

typ.

1,0 to

1,6 to

 V_{R}

max.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

 $I_F = 10 \text{ mA}$

Diode capacitance V_R = 0; f = 1 MHz

Fig. 2.

Fig. 4 t_{on} = 50 μ s; δ = 0,01; T_{amb} = 25 °C; typ. values.

Fig. 6 IF = 10 mA; typ. values.

Fig. 3 Typical values.

Fig. 5 Typical values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 Typical values.

Fig. 9 Typical values.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

LIGHT EMITTING DIODES

The CQW10 and CQW10B are 2,5 mm x 5 mm rectangular light emitting diodes which emit super-red light (GaPAs) when forward biased.

These LEDs have a SOD-76 envelope and are encapsulated in a medium-red resin (CQW10 and CQW10L) and a dark-red coloured resin for the CQW10B and CQW10BL. An extra diffusing zone has been cast on the top, with a stronger diffusor for the B-types.

The CQW10L and CQW10BL (SOD-76L envelope) have no seating plane but have long leads and are in all other respects similar to the CQW10 and CQW10B.

When stacked in an array these SOD-76 LEDs can be used, for example, as level indicators.

QUICK REFERENCE DATA

Continuous reverse voltage		v_R	max.	5	V
Forward current (d.c.)		Ιϝ	max.	30	mΑ
Total power dissipation up to $T_{amb} = 65$	oC	P _{tot}	max.	90	mW
Junction temperature		Τį	max.	100	οС
Luminous intensity		•			
I _F = 10 mA	CQW10(L)/CQW10B(L)	l _v	min.	0,5	mCd
	CQW10(L)/CQW10B(L)-II	lv	1,0 to	2,2	mCd
	CQW10(L)/CQW10B(L)-III	lv	1,6 to	3,5	mCd
Wavelength at peak emission		-			
$I_F = 10 \text{ mA}$		λ_{pk}	typ.	630	nm
Beamwidth between half-intensity direction	ons	•			
I _F = 10 mA		$\alpha_{50\%}$	typ.	100	0

MECHANICAL DATA Fig. 1a SOD-76A.

August 1983

CQW10 CQW10L CQW10B CQW10BL

□ 0,56 ± 0,45 + (2x) 7Z86979

Notes

- 1. Measured when the device is seated in a gauge with 2 holes 0.80 mm diameter and 2.54 mm apart.
- 2. Maximum value including burrs.
- 3. Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	v_R	max.	5 V
Forward current			
d.c.	1 _F	max.	30 mA
peak value; $t_p = 1 \mu s$; $f = 300 Hz$	IFM	max.	1 A
peak value; $t_{on}^{\Gamma} = 1 \text{ ms}$; $\delta = 0.33$	^I FM	max.	60 mA
Total power dissipation up to T _{amb} = 65 °C	P_{tot}	max.	90 mW
Storage temperature	T_{stg}	55 to	+100 °C
Junction temperature	Τ _i	max.	100 °C

Lead soldering temperature; t _{sld} < 7 s	-		
> 1,5 mm from the seating plane for CQW10/10B	т	ma 0.14	260 °C
> 5 mm from the plastic body for CQW10L/10BL	^T sld	max.	200 °C

THERMAL RESISTANCE

From junction to ambient when the device is mounted on a p.c. board 350 K/W Rth i-a max.

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Forward voltage $I_F = 10 \text{ mA}$

٧F	typ.	2,1	١
٧F	max.	3,0	١

190

August 1983

100 µA

Reverse current V_R = 5 V Beamwidth between half-intensity directions $I_F = 10 \text{ mA}$ Bandwidth at half height

Wavelength at peak emission $I_F = 10 \, \text{mA}$

Luminous intensity I_F = 10 mA

Diode capacitance $V_R = 0$; f = 1 MHz

Fig. 2.

Fig. 4 t_{OR} = 50 μ s; δ = 0,01; T_j = 25 °C; typ. values.

100 ° α_{50%} typ. 45 nm B_{50%} typ.

630 nm λ_{pk} typ.

 I_{ν} min. 0,5 mCd CQW10(L)/CQW10B(L)-II IV 1,0 2,2 mCd to

CQW10(L)/CQW10B(L)-III IV 3,5 mCd 1,6 to

CQW10(L)/CQW10B(L)

Fig. 3 $T_i = 25$ °C; typ. values.

Fig. 5 Typical values.

CQW10 CQW10L CQW10B CQW10BL

Fig. 6 $I_F = 10 \text{ mA}$; typ. values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 $I_F = 10 \text{ mA}$; typ. values.

Fig. 9 Typical values.

LIGHT EMITTING DIODES

The CQW10A(L) is a $2.5 \text{ mm} \times 5 \text{ mm}$ rectangular light emitting diode which emits hyper-red light (GaAIAs) when forward biased.

The CQW10A has a SOD-76B envelope and is encapsulated in a red coloured resin with a strong diffusing zone cast on the top.

The CQW10AL (in SOD-76L envelope) is the long-lead version of the CQW10A without seating plane, but in all respects similar to the CQW10A.

When stacked in an array these SOD-76 LEDs can be used, for example, as a level indicator. Because of its high light intensity the CQW10A(L) is very suitable in applications where only low currents are available and because of its high $I_{F,max}$ it can be used for high I_{V} applications.

QUICK REFERENCE DATA

Continuous reverse voltage		٧ _R	max.	5 V
Forward current (d.c.)		1F	max.	100 mA
Total power dissipation up to T _{amb} = 25 °C		P_{tot}	max.	215 mW
Junction temperature		Τį	max.	100 °C
Luminous intensity I _F = 10 mA	CQW10A(L) CQW10A(L)-III CQW10A(L)-IV	I _v	min. 1,6 to 3,0 to	1,0 mcd 3,5 mcd 7,0 mcd
Wavelength at peak emission $I_F = 10 \text{ mA}$		λ_{pk}	typ.	650 nm
Beamwidth between half-intensity directions I _F = 10 mA; in the plane of the leads		^α 50%	typ.	100 °

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOD-76B.

CQW10A

CQW10A CQW10AL

Fig. 1b SOD-76L.

CQW10AL

Notes

- 1. Measured when the device is seated in a gauge with 2 holes 0,80 mm diameter and 2,54 mm apart.
- 2. Maximum value including burrs.
- 3. Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	v_R	max.	5 V
d.c. peak value; $t_p = 1 \mu s$; $f = 300 \text{ Hz}$ peak value; $t_{on} = 20 \mu s$; $\delta = 0.01$	l _E M	max. max. max.	100 mA 1 A 500 mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	215 mW
Storage temperature	T_{stg}	-55 to	+100 °C
Junction temperature	т _i	max.	100 °C
Lead soldering temperature; $t_{sld} < 7 \text{ s}$ > 1,5 mm from the seating plane for CQW10A > 5 mm from the seating plane for CQW10AL	T _{sld}	max.	260 °C
THERMAL RESISTANCE			
Francisco de la continua de la continua de la compansión			

From junction to ambient when the device is mounted on a p.c. board R_{th j-a} max. 350 K/W

1,75 V

2,2 V

100 µA

typ.

max.

max.

٧F

CHARACTERISTICS

 $I_F = 10 \text{ mA}$

T_j = 25 °C unless otherwise specified Forward voltage

Reverse current $V_R = 5 V$

Beamwidth between half-intensity directions $I_F = 10 \text{ mA}$

Bandwidth at half height
Wavelength at peak emission
Lr = 10 mA

I_F = 10 mA Luminous intensity

I_F = 10 mA

Diode capacitance V_R = 0; f = 1 MHz

DEVELOPMENT SAMPLE DATA

α_{50%} 1

typ. 100 ° typ. 20 n

typ. 20 nm

 λ_{pk} typ. 650 nm

CQW10A(L) min. 1,0 mcd
CQW10A(L)-III I_V 1,6 to 3,5 mcd
CQW10A(L)-IV 3,0 to 7,0 mcd

C_d typ. 60 pF

Fig. 2 Typical values.

Fig. 3 T_{amb} = 25 °C; typ. values.

Fig. 4 t_{on} = 20 μ s; δ = 0,01; typ. values.

Fig. 5 $I_F = 10 \text{ mA}$; typ. values.

August 1983

Fig. 6 Typical values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 $I_F = 10 \text{ mA}$; $T_{amb} = 25 \, {}^{\circ}\text{C}$; typ. values.

Fig. 9 Typical values.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

CQW11A CQW11AL CQW11B CQW11BL

LIGHT EMITTING DIODES

The CQW11A and CQW11B are 2,5 mm x 5 mm rectangular light emitting diodes which emit supergreen light (GaP) when forward biased.

These LEDs have a SOD-76 envelope and are encapsulated in a medium-green resin for the CQW11A(L) and a dark-green coloured resin for the CQW11B(L). An extra diffusing zone has been cast on the top, with a stronger diffusor for the B-types.

The CQW11AL and CQW11BL (SOD-76L envelope) have no seating plane but have long leads and are in all other respects similar to the CQW11A and CQW11B.

When stacked in an array these SOD-76 LEDs can be used, for example, as level indicators. They can resist higher forward currents when a higher luminous intensity is wanted and because the CQW11A/11B is easily deliverable in high I_V classes this LED is very suitable in those applications where only low currents are available.

QUICK REFERENCE DATA

Continuous reverse voltage		VR	max.	5 V
Forward current (d.c.)		ΙF	max.	60 mA
Total power dissipation up to Tamb	= 35 °C	P_{tot}	max.	180 mW
Junction temperature		Tį	max.	100 °C
Luminous intensity		•		
I _F = 10 mA	CQW11A(L)/CQW11B(L)	I _v	min.	0,5 mCd
	CQW11A(L)/CQW11B(L)-II	Iv	1,0 to	2,2 mCd
	CQW11A(L)/CQW11B(L)-III	I_{v}	1,6 to	3,5 mCd
Wavelength at peak emission				
$I_F = 10 \text{ mA}$		λ_{pk}	typ.	565 nm
Beamwidth between half-intensity di	rections	•		
I _F = 10 mA		$\alpha_{50\%}$	typ.	100 °

MECHANICAL DATA

CQW11A CQW11AL CQW11B CQW11BL

Fig. 1b SOD-76L. CQW11AL CQW11BL

Notes

- 1. Measured when the device is seated in a gauge with 2 holes 0,80 mm diameter and 2,54 mm apart.
- 2. Maximum value including burrs.
- 3. Solderability not guaranteed with this zone due to tie-bar cropping.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	VR	max.	5 V
Forward current			
d.c.	۱F	max.	60 mA
peak value; $t_p = 1 \mu s$; $f = 300 Hz$	IFM	max.	1 A
peak value; t_{on}^{\prime} = 1 ms; δ = 0,33	IFM	max.	150 mA
Total power dissipation up to T _{amb} = 35 °C	P_{tot}	max.	180 mW
Storage temperature	T_{stg}	-55 to	+100 °C
Junction temperature	Тj	max.	100 °C
Lead soldering temperature; t _{sld} < 7 s	•		
> 1,5 mm from the seating plane (CQW11A/11B)	T_{sld}	max.	260 °C

THERMAL RESISTANCE

From junction to ambient when the device is mounted on a p.c. board 350 K/W Rth i-a max.

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Forward voltage	
I _F = 10 mA	,

> 5 mm from the plastic body (CQW11AL/11BL)

2,1 V typ. ٧F max. 3,0 V

100 µA

100 °

30 nm

565 nm

0,5 mCd

2,2 mCd

3,5 mCd

35 pF

max.

typ.

typ.

typ.

min.

1,0 to

1,6 to

typ.

Reverse current V _R = 5 V
Beamwidth betw I _F = 10 mA
Bandwidth at ha
Wavelength at pe

Luminous intensity I_E = 10 mA

Diode capacitance $V_R = 0$; f = 1 MHz

CQW11A(L)/CQW11B(L) CQW11A(L)/CQW11B(L)-II CQW11A(L)/CQW11B(L)-III

7Z88904

Fig. 2.

Fig. 4 t_{on} = 1 ms; δ = 0,33; T_{amb} = 25 °C; typ. values.

 C^{4}

Fig. 3 $T_i = 25$ °C; typ. values.

Fig. 5 Typical values.

CQW11A CQW11AL CQW11B CQW11BL

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 $I_F = 10 \text{ mA}$; $T_{amb} = 25 \, {}^{\circ}\text{C}$; typ. values.

Fig. 9 Typical values.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

CQW12 CQW12L CQW12B CQW12BI

LIGHT EMITTING DIODES

The CQW12 and CQW12B are 2,5 mm x 5 mm rectangular light emitting diodes which emit yellow light when forward biased.

The CQW12 and CQW12B have a SOD-76A envelope and the CQW12L and CQW12BL have a SOD-76L envelope. The CQW12 and CQW12L are encapsulated in a medium-yellow resin and the CQW12B and CQW12BL in a slightly dark-yellow resin. Both have a diffusing zone cast on the top, with a stronger diffusor for the B-types.

The CQW12L and CQW12BL(SOD-76L envelope) have no seating plane but have long leads and are in all other respects similar to the CQW12 and CQW12B respectively.

When stacked in an array these SOD-76 LEDs can be used, for example, as level indicators.

QUICK REFERENCE DATA

Continuous reverse voltage		VR	max.	5	V
Forward current (d.c.)		İF	max.	30	mΑ
Total power dissipation up to $T_{amb} = 6$	5 °C	P _{tot}	max.	90	mW
Junction temperature		Tį	max.	100	$^{\rm o}$ C
Luminous intensity		,			
I _F = 10 mA	CQW12(L)/CQW12B(L)	I _V	min.	0,5	mCd
	CQW12(L)/CQW12B(L)-II	l _v	1,0 to	2,2	mCd
	CQW12(L)/CQW12B(L)-III	l _v	1,6 to	3,5	mCd
Wavelength at peak emission		•			
I _F = 10 mA		λ_{pk}	typ.	590	nm
Beamwidth between half-intensity direc $I_F = 10 \text{ mA}$; in the plane of the leads		α _{50%}	typ.	100	0

MECHANICAL DATA

Dimensions in mm

CQW12 CQW12L CQW12B CQW12BL

Fig. 1b SOD-76L.

Notes

- Measured when the device is seated in a gauge with 2 holes 0,80 mm diameter and 2,54 mm apart.
- Maximum value including burrs.
- Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS

Continuous reverse voltage

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Forward current d.c. 30 mA 1F max. peak value; $t_D = 1 \mu s$; f = 300 Hz1_{EM} max. 1 A peak value; $t_{on}^r = 1 \text{ ms}$; $\delta = 0.33$ 1_{FM} max. 60 mA Total power dissipation up to Tamb = 65 °C Ptot 90 mW max.

Storage temperature -55 to +100 °C T_{stq} Junction temperature 100 °C Τį max. Lead soldering temperature; t_{sld} < 7 s

> 1,5 mm from the seating plane for CQW12/12B 260 °C Tsld max. > 5 mm from the plastic body for CQW12L/12BL

THERMAL RESISTANCE

From junction to ambient when the device is mounted on a p.c. board

CHARACTERISTICS

T_i = 25 °C unless otherwise specified Forward voltage

IF = 10 mA

Rth j-a

٧R

max.

max.

typ.

max.

2.1 V

3,0 V

350 K/W

5 V

Reverse current V _R = 5 V		I _R	max.	100 μΑ
Beamwidth between half-intensity directi	ons	$\alpha_{50\%}$	typ.	100 °
Bandwidth at half height		B _{50%}	typ.	40 nm
Wavelength at peak emission IF = 10 mA		λ_{pk}	typ.	630 nm
Luminous intensity IF = 10 mA	CQW12(L)/CQW12B(L) CQW12(L)/CQW12B(L)-II CQW12(L)/CQW12B(L)-III	_V _V _V	min. 1,0 to 1,6 to	0,5 mCd 2,2 mCd 3,5 mCd
Diode capacitance V _R = 0; f = 1 MHz		C _d	typ.	35 pF

Fig. 3 $T_j = 25$ °C; typ. values.

Fig. 5 Typical values.

CQW12 CQW12L CQW12B CQW12BL

Fig. 6 $I_F = 10 \text{ mA}$; typ. values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 Typical values.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production

LIGHT EMITTING DIODE

Circular light emitting diode with diameter of 2 mm which emits hyper-red light (GaAlAs) when forward biased.

The CQW20A has a SOD-79 outline and is encapsulated in a medium-red coloured resin with an extra diffusing zone cast on the top. This LED is very suitable for small indicator functions and in applications where only low currents are available.

QUICK REFERENCE DATA

Continuous reverse voltage	v_R	max.	5 V
Forward current (d.c.)	1 _F	max.	60 mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	150 mW
Junction temperature	Τį	max.	100 oC
Luminous intensity I _F = 10 mA	I _V	min. typ.	1,0 mCd 1,5 mCd
Wavelength at peak emission	λ_{pk}	typ.	650 nm
Beamwidth between half-intensity directions	$^{lpha}_{50\%}$	typ.	110 °

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOD-79.

CQW20A

RATINGS				
Limiting values in accordance with the Absolute Maximum System (IE	C 134)			
Reverse voltage	V_{R}	max.	5	V
Forward current				
d.c.	۱F	max.	60	mΑ
peak value; $t_p = 1 \mu s$; $f = 300 Hz$	IFM	max.	1	Α
peak value; $t_{on} = 20 \mu s$; $\delta = 0.01$	IFM	max.	500	mΑ
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	150	mW
Storage temperature	T _{stg}	-55 to	+100	οС
Junction temperature	Τį	max.	100	οС
Lead soldering temperature	,			
$>$ 1,5 mm from the seating plane; $t_{ m sld}$ $<$ 7 s	T_{sld}	max.	260	oC
THERMAL RESISTANCE				
From junction to ambient				
when the device is mounted on a p.c. board	R _{th j-a}	max.	500	K/W
CHARACTERISTICS				
T _i = 25 °C unless otherwise specified				
Forward voltage				
$I_F = 4 \text{ mA}$	٧F	typ.	1,65	V
I _F = 10 mA	VF	typ.	1,75	
·		max.	2,20	V
Reverse current V _R = 5 V	I _R	max.	100	μΑ
Beamwidth between half-intensity directions				
I _F = 10 mA	α 50%	typ.	110	0
Bandwidth at half height	B _{50%}	typ.	20	nm
Wavelength at peak emission	λ_{pk}	typ.	650	nm
Luminous intensity		min.	1 0	m Cd
$I_F = 10 \text{ mA}$	I_{V}	mın. typ.		mCd mCd
		-71-	.,-	34

typ.

 c_d

60 pF

Diode capacitance $V_R = 0$; f = 1 MHz

DEVELOPMENT SAMPLE DATA

Fig. 4 $t_{on} = 20 \mu s$; $\delta = 0.01$; $T_{amb} = 25 \, {}^{\circ}\text{C}$; typ. values.

Fig. 3 $T_{amb} = 25$ °C; typ. values.

Fig. 5 $I_F = 10 \text{ mA}$; typ. values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 $I_F = 10 \text{ mA}$; $T_{amb} = 25 \, {}^{\circ}\text{C}$; typ. values.

Fig. 9 $I_F = 10 \text{ mA}$; typ. values.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production

LIGHT EMITTING DIODE

Circular light emitting diode with diameter of 2 mm which emits super-green light (GaP) when forward biased.

The CQW21 has a SOD-79 outline and is encapsulated in a medium-green coloured resin with a diffusing zone cast on the top. This LED is very suitable for very small indicator functions and can resist higher forward currents when a higher luminous intensity is wanted. In the near future the CQW21 is easily deliverable in high I_V classes and is therefore very suitable in those applications where only low currents are available.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	5 V
Forward current (d.c.)	۱F	max.	60 mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	150 mW
Junction temperature	T_{j}	max.	100 °C
Luminous intensity I _F = 10 mA	I _v	min.	0,5 mcd
Wavelength at peak emission	λ_{pk}	typ.	565 nm
Beamwidth between half-intensity directions	^α 50%	typ.	100 °

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOD-79

77869121

CQW21

RATINGS	FO 124\			
Limiting values in accordance with the Absolute Maximum System (EC 134)			
Reverse voltage	v_R	max.	5	V
Forward current				
d.c.	۱F	max.	60	mΑ
peak value; $t_p = 1 \mu s$; $f = 300 Hz$	IFM	max.	1	Α
peak value; $t_{on} = 1$ ms; $\delta = 0.33$	IFM	max.	150	mΑ
Total power disspation up to T _{amb} = 25 °C	P_{tot}	max.	150	mW
Storage temperature	T_{stg}	-55 to	+100	оС
Junction temperature	Τj	max.	100	οС
Lead soldering temperature $>$ 1,5 mm from the seating plane; $t_{\rm sld}$ $<$ 7 s	T _{sld}	max.	260	οС
THERMAL RESISTANCE				
From junction to ambient when the device is mounted on a p.c. board	R _{th j-a}	max.	500	K/W

CHARACTERISTICS

Forward voltage

 $T_i = 25$ °C unless otherwise specified

$I_F = 10 \text{ mA}$	V _F	max.	2,1 V 3,0 V
Reverse current			,
$V_R = 5 V$	۱ _R	max.	100 μΑ
Beamwidth between half-intensity directions	lpha 50%	typ.	100 °
Bandwidth at half height	B ₅₀ %	typ.	30 nm
Wavelength at peak emission	λ_{pk}	typ.	565 nm

Luminous intensity 0,5 mcd min. I_F = 10 mA typ. 1,5 mcd

Fig. 2.

Fig. 4 t_{on} = 1 ms; δ = 0,33; T_{amb} = 25 °C; typ. values.

Fig. 6 Typical values.

Fig. 3 $T_{amb} = 25$ °C; typ. values.

Fig. 5 Typical values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 $I_F = 10 \text{ mA}$; typ. values.

Fig. 9 Typical values.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

LIGHT EMITTING DIODE

Circular light emitting diode with diameter of 2 mm which emits yellow light (GaAsP) when forward biased.

The CQW22 has a SOD-79 outline and is encapsulated in a medium-yellow coloured resin with a diffusing zone cast on the top.

This LED is very suitable for very small indicator functions.

QUICK REFERENCE DATA

Continuous reverse voltage	٧R	max.	5	٧
Forward current (d.c.)	۱F	max.	30	mΑ
Total power dissipation up to T _{amb} = 55 °C	P_{tot}	max.	90	mW
Junction temperature	Τj	max.	100	oC
Luminous intensity IF = 20 mA	I _v	min. typ.		mCd mCd
Wavelength at peak emission	λ_{pk}	typ.	590	nm
Beamwidth between half-intensity directions	$\alpha_{50\%}$	typ.	110	0

MECHANICAL DATA

Fig. 1 SOD-79.

7Z86912 1

Dimensions in mm

CQW22

п	Λ 7	٧G	0

RATINGS				
Limiting values in accordance with the Absolute Maximum System (IE	C 134)			
Reverse voltage	v_R	max.	5	V
Forward current d.c. peak value; $t_p = 1 \mu s$; $f = 300 \text{ Hz}$ peak value; $t_{OD} = 1 \text{ ms}$; $\delta = 0.33$	I _F I _{FM} I _{FM}	max. max. max.	1	mA A mA
Total power dissipation up to T _{amb} = 55 °C	P _{tot}	max.		mW
Storage temperature	T _{sta}	-55 to +	100	οС
Junction temperature	Tj	max.	100	οС
Lead soldering temperature $>$ 1,5 mm from the seating plane; $\rm t_{sld} < 7~s$	T _{sld}	max.	260	oC
THERMAL RESISTANCE				
From junction to ambient when the device is mounted on a p.c. board	R _{th j-a}	max.	500	K/W
CHARACTERISTICS				
T _j = 25 °C unless otherwise specified				
Forward voltage IF = 20 mA	٧ _F	typ. max.	2,1 3,0	
Reverse current V _R = 5 V	I _R	max.	100	μΑ
Diode capacitance	c_d	typ.	35	pF
Beamwidth between half-intensity directions I _F = 20 mA	^α 50%	typ.	110	o
Bandwidth at half height	B _{50%}	typ.	40	nm
Wavelength at peak emission	λ_{pk}	typ.	590	nm
Luminous intensity IF = 20 mA	I _v	typ. typ.		mCd mCd

Fig. 2.

DEVELOPMENT SAMPLE DATA

 1,5 2 2,5 $_{V_{FM}}$ (v) 3 Fig. 4 t_{On} = 1 ms; δ = 0,33; T_{amb} = 25 °C; typical values.

Fig. 6 Typical values.

Fig. 3 T_{amb} = 25 °C; typical values.

Fig. 5 I_F = 10 mA; typical values.

Fig. 7 $t_p = 50 \mu s$; typical values.

Fig. 8 Typical values.

Fig. 9 Typical values.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

LIGHT EMITTING DIODES

Circular light emitting diodes with diameter of 5 mm which emit hyper-red (GaAlAs) light when forward biased. The CQW24 and CQW24L have a SOD-63 outline and are encapsulated in a medium-red coloured diffusing resin.

Because of its high light intensity the CQW24 (and CQW24L) is also very suitable in applications where only low currents are available.

The CQW24L is the long-lead version of the CQW24 and has no seating plane but is in all other respects equal to the CQW24.

QUICK REFERENCE DATA

Continuous reverse voltage		V _R	max.	5	V
Forward current (d.c.)		ΙF	max.	100	mΑ
Total power dissipation up to T _{amb} = 25 °C		P_{tot}	max.	215	mW
Junction temperature		Тj	max.	100	oC
Luminous intensity I _F = 10 mA	CQW24(L)-I CQW24(L)-II	I _V	min. min.		mCd mCd
Wavelength at peak emission		λ_{pk}	typ.	650	nm
Beamwidth between half-intensity directions		α 50%	typ.	60	0

MECHANICAL DATA

Dimensions in mm

August 1983

(1) Measured when the device is seated in a gauge with 2 holes 0,80 mm diameter 2,54 mm apart. (2) Maximum value including burrs.

(3) Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Reverse voltage	v_R	max.	´ 5 V
Forward current d.c.	I _F	max.	100 mA
Forward current peak value; $t_p = 1 \mu s$; $f = 300 \text{ Hz}$ peak value; $t_{OR} = 20 \mu s$; $\delta = 0.01$	I _{FM}	max. max.	1 A 500 mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	215 mW
Storage temperature	T_{stg}	-55 to	+100 °C
Junction temperature	Tj	max.	100 °C
Lead soldering temperature: $t_{\rm sld} < 7~{\rm s}$ > 1,5 mm from the seating plane for CQW24 > 5 mm from the plastic body for CQW24L	T _{sld}	max.	260 °C
THERMAL RESISTANCE			
Exam lunation to ambient			

From junction to ambient when the device is mounted on a p.c. board Rth j-a max. 350 K/W

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

218 August 1983

Forward voltage

100 μA

60 °

Reverse current V _R = 5 V
Bandwidth between half-intensity directions $I_F = 10 \text{ mA}$
Bandwidth at half height
Wavelength at peak emission IF = 10 mA; T _{amb} = 25 °C
Luminous intensity
$I_F = 4 \text{ mA}$
I _F = 10 mA

Fig. 4 $t_{on} = 20 \mu s$; $\delta = 0.01$; $T_{amb} = 25 \, {}^{o}C$; typ. values.

max.

typ.

IR

 $\alpha_{50\%}$

Fig. 3 $T_{amb} = 25$ °C; typ. values.

Fig. 5 IF = 10 mA; typ. values.

Fig. 6 Typ. values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 $I_F = 10 \text{ mA}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$; typ. values.

Fig. 9 Typ. values.

This information is derived from development samples made available for evaluation, it does not necessarily imply that the device will go into regular production.

LIGHT EMITTING DIODE

Circular light emitting diode with diameter of 3 mm which emits hyper-red light (GaAlAs) when forward biased.

The CQW54 has a SOD-53E outline and is encapsulated in a medium-red coloured diffusing resin.

Because of its high light intensity this LED is also very suitable in applications where only low currents are available.

QUICK REFERENCE DATA

Continuous reverse voltage		VR	max.	5 V
Forward current (d.c.)		۱F	max.	60 mA
Total power dissipation up to $T_{amb} = 25$ °C		P_{tot}	max.	150 mW
Junction temperature		T_{i}	max.	100 °C
Luminous intensity I _F = 10 mA	CQW54 CQW54-V CQW54-VI CQW54-VII	_V	min. 5 to 10 to min.	
Wavelength at peak emission I _F = 10 mA	CQW54-V11	ι _ν λ _{pk}	typ.	650 nm
Beamwidth at half-intensity directions		α 50%	typ.	60 °

MECHANICAL DATA

Dimensions in mm

7Z86930 1

May 1983

RATINGS					
Limiting values in accordance with the Absolute	Maximum System (IE	C 134)			
Reverse voltage		V_{R}	max.	5	V
Forward current					
d.c.		۱F	max.		mA A
peak value; $t_p = 1 \mu s$; $f = 300 \text{ Hz}$ peak value; $t_{OD} = 20 \mu s$; $\delta = 0.01$		¹ FM	max. max.		mA
Total power dissipation up to $T_{amb} = 25 {}^{\circ}C$		P_{tot}	max.		mW
Storage temperature		T _{sta}	-55 to	+100	οС
Junction temperature		T _i	max.	100	οС
Lead soldering temperature		J			
$>$ 1,5 mm from the seating plane; t_{sld} $<$ 7 s		T_{sld}	max.	260	oC
THERMAL RESISTANCE					
From junction to ambient					
when the device is mounted on a p.c. board		R _{th j-a}	max.	500	K/W
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Forward voltage					
I _F = 4 mA		٧F	typ.	1,65	
I _F = 10 mA		٧F	typ. max.	2,1 3,0	
Reverse current					
$V_R = 5 V$		^I R	max.	100	μΑ
Beamwidth between half-intensity directions I _F = 10 mA		^α 50%	typ.	60	0
Bandwidth at half height		B _{50%}	typ.		nm
Wavelength at peak emission		- 30 / 6	-71		
I _F = 10 mA		λ_{pk}	typ.	650	nm
Luminous intensity					
I _F = 4 mA	CQW54 CQW54-V	l _v	typ		mcd mcd
	CQW54-VI	I _V I _V	typ. typ.		mcd
	CQW54-VII	I _V	typ.		mcd
I _F = 10 mA	CQW54	I _v	min.		mcd
.,		·v	typ.		mcd
	CQW54-V	I_V			mcd mcd
			typ. 10 t	_	mcd
	CQW54-VI	I_V	typ.		mcd
	CQW54-VII	1	min.	16	mcd
	CQW54-V11	1 _V	typ.	18	mcd
$I_F = 50 \text{ mA}$	CQW54	$I_{\mathbf{v}}$	typ.		mcd
	CQW54-V CQW54-VI	l _V	typ.		mcd mcd
	CQW54-VII	I _V I _V	typ. typ.		mca mcd
		v	.,, 1		

Fig. 2. Tamb (°C)

Fig. 6 Typical values.

Fig. 3 T_{amb} = 25 °C; typ. values.

Fig. 5 $I_F = 10 \text{ mA}$; typ. values.

Fig. 7 $t_D = 50 \mu s$; typ. values.

Fig. 8 $I_F = 10 \text{ mA}$; $T_{amb} = 25 \text{ °C}$; typ. values.

Fig. 9 Typical values.

LIGHT EMITTING DIODE

Light emitting diode in a flat plastic stackable envelope with rectangular lens (2,5 mm \times 5 mm). The CQX10 emits visible super-red light (GaAsP), when forward biased.

QUICK REFERENCE DATA

Continuous reverse voltage		v_R	max.	5 V
Forward current (d.c.)		۱F	max.	30 mA
Total power dissipation up to T _{amb} = 65 °C		P_{tot}	max.	90 mW
Luminous intensity (on-axis) IF = 10 mA	CQX10-I CQX10-II CQX10-III CQX10-IV	_V _V _V		0,7 mcd to 2,2 mcd to 3,5 mcd 3,0 mcd
Wavelength at peak emission		λ_{pk}	typ.	630 nm
Beamwidth between half-intensity directions in the plane of the connections		α50%	typ.	500

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOD-65.

R	Δ	т	ŧ	N	G	c

HATINGO					
Limiting values in accordance with the Absolute Maxi	imum System (II	EC 134)			
Continuous reverse voltage		v_R	max.	5	V
Forward current (d.c.)		۱F	max.	30	mΑ
Forward current peak value; $t_p = 1 \mu s$; $f = 300 \text{ Hz}$ peak value; $t_{on} = 1 \text{ ms}$; $\delta = 0.33$		I _{FM} I _{FM}	max. max.	1000 60	mA mA
Total power dissipation up to T _{amb} = 65 °C		P_{tot}	max.	90	mW
Storage temperature		T _{stg}	-55 to	+ 100	οС
Junction temperature		Ti	max.	100	οС
Lead soldering temperature up to the seating plane; $t_{\rm Sld} < 7~{\rm s}$, T _{sld}	max.	260	°С
THERMAL RESISTANCE					
From junction to ambient when the device is mounted on a printed-circuit board		R _{th j-a}	=	350	K/W
CHARACTERISTICS					
T _i = 25 °C unless otherwise specified					
Forward voltage I _F = 10 mA		٧ _F	typ.	2,1 3	
Reverse current V _R = 5 V		I _R	<	100	μΑ
Beamwidth between half-intensity directions in the plane of the connections in the plane perpendicular to the connections		α _{50%} α _{50%}	typ. typ.	50 40	
Bandwidth at half height		B _{50%}	typ.	45	nm
Wavelength at peak emission		λ_{pk}	typ.	630	nm
Luminous intensity (on-axis) I _F = 10 mA	CQX10-I CQX10-II CQX10-III	I _V I _V	1,6	to 2,2 to 3,5	mcd
Diode capacitance	CQX10-IV	I _V	min.	3,0	mcd
V _R = 0; f = 1 MHz		c_d	typ.	35	pF

Fig. 2.

Fig. 4 t_{on} = 50 μ s; δ = 0,01; T_{amb} = 25 °C; typ. values.

Fig. 6 $I_F = 10 \text{ mA}$; typ. values.

Fig. 3 $T_{amb} = 25$ °C; typ. values.

Fig. 5 Typical values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 Typical values.

Fig. 9 Spatial distribution in the plane of the connections; typ. values.

Fig. 10 Spatial distribution in the plane perpendicular to the connections; typ. values.

April 1983

Dimensions in mm

LIGHT EMITTING DIODE

Light emitting diodes in flat plastic stackable envelopes with rectangular lens (2,5 mm \times 5 mm). The CQX11 emits visible super-green light (GaP) when forward biased.

QUICK REFERENCE DATA

Continuous reverse voltage		v_R	max.	5 V
Forward current (d.c.)		ΙF	max.	60 mA
Total power dissipation up to T _{amb} = 35 °C		P_{tot}	max.	180 mW
Luminous intensity (on-axis) IF = 10 mA	CQX11-I CQX11-II CQX11-III CQX11-IV	_V _V _V		0,7 mCd to 2,2 mCd to 3,5 mCd 3,0 mCd
Wavelength at peak emission	34,,,,,	ν λ _{pk}	typ.	565 nm
Beamwidth between half-intensity directions in the plane of the connections		α _{50%}	typ.	50 °

MECHANICAL DATA

2,54

max

Fig. 1 SOD-65.

5,08

max

RATINGS

MATINGS					
Limiting values in accordance with the Absolute Maxi	mum System (I	EC 134)			
Reverse voltage		v_R	max.	5	٧
Forward current					
d.c.		۱F	max.		mΑ
peak value; $t_p = 1 \mu s$; $f = 300 \text{ Hz}$!FM	max.		A
peak value; $t_{on} = 1 \text{ ms}$; $\delta = 0.33$		IFM	max.		mA
Total power dissipation up to T _{amb} = 35 °C		P_{tot}	max.		mW
Storage temperature		T_{stg}	-55 to +	100	оC
Junction temperature		Τ _j	max.	100	οС
Lead soldering temperature					
up to the seating plane; $t_{ m sld}$ $<$ 7 s		T_{sld}	max.	260	οС
THERMAL RESISTANCE					
From junction to ambient when the device					
is mounted on a p.c. board		R _{th j-a}	max.	350	K/W
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Forward voltage			4	2.1	v
$I_F = 10 \text{ mA}$		٧F	typ. max.	2,1 3,0	
Reverse current			max.	0,0	•
V _R = 5 V		I _R	max.	100	μΑ
Beamwidth between half-intensity directions		.,			•
in the plane of the connections		α _{50%}	typ.	50	0
in the plane perpendicular to the connections		α _{50%}	typ.	40	0
Bandwidth at half height		B _{50%}	typ.	30	nm
Wavelength at peak emission					
I _F = 10 mA		$\lambda_{\sf pk}$	typ.	565	nm
Luminous intensity (on-axis)					
I _F = 10 mA	CQX11-I	l _v	min.		mCd
	CQX11-II CQX11-III	ļ _v	1,0 to		
	CQX11-III	I _V I _V	1,6 to min,		mCd mCd
Diode capacitance	34/11.10	٠٧	,	5,5	
V _R = 0; f = 1 MHz		c_d	typ.	35	pF
••		-u	-, -,		r- ·

Fig. 2.

Fig. 4 t_{on} = 50 μ s; δ = 0,01; T_{amb} = 25 °C; typical values.

Fig. 6 I_F = 10 mA; typical values.

Fig. 3 T_{amb} = 25 °C; typical values.

Fig. 5 Typical values.

Fig. 7 $t_p = 50 \mu s$; typical values.

Fig. 8 Typical values.

Fig. 9 Spatial distribution in the plane of the connections; typical values.

Fig. 10 Spatial distribution in the plane perpendicular to the connections; typical values.

Dimensions in mm

LIGHT EMITTING DIODE

Light emitting diodes in flat plastic stackable envelopes with rectangular lens (2,5 mm \times 5 mm). The CQX12 emits visible yellow light (GaAsP) when forward biased.

QUICK REFERENCE DATA

Continuous reverse voltage		٧R	max.	5	V
Forward current (d.c.)		1 _F	max.	30	mΑ
Total power dissipation up to T _{amb} = 65 °C		P_{tot}	max.	90	mW
Luminous intensity (on-axis) IF = 10 mA	CQX12-I CQX12-II CQX12-III CQX12-IV	I _V I _V I _V		0,7 to 2,2 to 3,5 3,0	mcd
Wavelength at peak emission		λ_{pk}	typ.	590	nm
Beamwidth between half-intensity directions in the plane of the connections		α 50 %	typ.	50	0

MECHANICAL DATA

2,54

max

Fig. 1 SOD-65.

5,08

max

RATINGS

RATINGS					
Limiting values in accordance with the Absolute Ma	ximum System (I	EC 134)			
Reverse voltage		v_R	max.	5	V
Forward current					
d.c.		lF.	max.		mΑ
peak value; $t_p = 1 \mu s$; $f = 300 \text{ Hz}$		IFM	max.		A mA
peak value; $t_{on} = 1 \text{ ms}$; $\delta = 0.33$		I _{FM}	max.		mW
Total power dissipation up to T _{amb} = 65 °C		P _{tot}	max.		
Storage temperature		T _{stg}	55 to		
Junction temperature		Τj	max.	100	оС
Lead soldering temperature up to the seating plane; t _{Sld} < 7 s		T_{sld}	max.	260	οС
THERMAL RESISTANCE					
From junction to ambient when the device					
is mounted on a p.c. board		R _{th j-a}	max.	350	K/W
CHARACTERISTICS					
T _i = 25 °C unless otherwise specified					
Forward voltage			tvo	2,1	V
I _F = 10 mA		v_{F}	typ. max.	3,0	
Reverse current				-,	
V _R = 5 V		1 _R	max.	100	μΑ
Beamwidth between half-intensity directions					
in the plane of the connections		$\alpha_{50\%}$	typ.	50	
in the plane perpendicular to the connections		α 50%	typ.	40	
Bandwidth at half height		B _{50%}	typ.	40	nm
Wavelength at peak emission		3			
I _F = 10 mA		λ_{pk}	typ.	590	nm
Luminous intensity (on-axis) IF = 10 mA	CQX12-I	1	min.	0.7	mcd
IF - 10 IIIA	CQX12-II	I _V I _V		to 2,2	
	CQX12-III	I _V		to 3,5	
	CQX12-IV	Iv	min.	3,0	mcd
Diode capacitance					
\/ _ O. f 1 MIII		_		0.5	_

 c_d

35 pF

typ.

 $V_R = 0$; f = 1 MHz

Light emitting diode

Fig. 2.

Fig. 4 t_{on} = 50 μ s; δ = 0,01; T_{amb} = 25 °C; typical values.

Fig. 6 I_F = 10 mA; typical values.

Fig. 3 Typical values.

Fig. 5 Typical values.

Fig. 7 $t_p = 50 \mu s$; typical values.

Fig. 8 Typical values.

Fig. 9 Spatial distribution in the plane of the connections; typical values.

Fig. 10 Spatial distribution in the plane perpendicular to the connections; typical values.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

CQX24 CQX24L

LIGHT EMITTING DIODES

Circular light emitting diodes with diameter of 5 mm which emit a narrow beam hyper-red (GaAlAs) light when forward biased. The CQX24 and CQX24L have a SOD-63 outline and are encapsulated in a transparent non-diffusing resin.

Because of its very high light intensity the CQX24 (and CQX24L) is very suitable in applications where only low currents are available and because this type can withstand high forward currents it is extremely suitable for very high luminous intensity applications.

The CQX24L is the long-lead version of the CQX24 and has no seating plane but is in all other respects equal to the CQX24.

QUICK REFERENCE DATA

	v_R	max.	5	٧
	l _F	max.	100	mΑ
	P_{tot}	max.	215	mW
	Τį	max.	100	οС
	•			
CQX24(L)-I	I _V	min.	20	mCd
CQX24(L)-II	l _v	min.	50	mCd
CQX24(L)-III	I_{V}	min.	100	mCd
	λ_{pk}	typ.	650	nm
	α50%	typ.	24	0
	CQX24(L)-II	$\begin{array}{c} \text{I}_{\text{F}} \\ \text{P}_{\text{tot}} \\ \text{T}_{j} \end{array}$ $\text{COX24(L)-II} \text{I}_{\text{V}} \\ \text{COX24(L)-III} \text{I}_{\text{V}} \\ \text{COX24(L)-III} \text{I}_{\text{V}} \\ \lambda_{\text{pk}} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

MECHANICAL DATA

Dimensions in mm

August 1983

- (1) Measured when the device is seated in a gauge with 2 holes 0,80 mm diameter and 2,54 mm apart.
- (2) Maximum value including burrs.
- (3) Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Reverse voltage	v_R	max.	5 V
Forward current d.c.	1-		100 4
u.c.	1F	max.	100 mA
Forward current peak value; $t_p = 1 \mu s$; $f = 300 \text{ Hz}$ peak value; $t_{OR} = 20 \mu s$; $\delta = 0.01$	I _{FM}	max. max.	1 A 500 mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	215 mW
Storage temperature	T_{stg}	-55 to	+100 °C
Junction temperature	Tj	max.	100 °C
Lead soldering temperature; t _{sld} < 7 s > 1,5 mm from the seating plane for CQX24 > 5 mm from the plastic body for CQX24L	T _{sld}	max.	260 °C

THERMAL RESISTANCE

From junction to ambient when the device is mounted on a p.c. board

R_{th j-a} max. 350 K/W

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Forward voltage

$$I_F = 10 \text{ mA}$$
 VF typ. 1,75 V
 $I_F = 50 \text{ mA}$ VF typ. 1,9 V
max. 2,5 V

 $I_F = 50 \text{ mA}$

DEVELOPMENT SAMPLE DATA

 $V_R = 0$; f = 1 MHz

rig. 2.

Fig. 3 $T_{amb} = 25$ °C; typ. values.

Fig. 4 $t_{on} = 20 \mu s$; $\delta = 0.01$; $T_{amb} = 25 \, {}^{\circ}\text{C}$; typ. values.

Fig. 6 Typ. values.

Fig. 5 $I_F = 10 \text{ mA}$; typ. values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 $I_F = 10 \text{ mA}$; $T_{amb} = 25 \text{ }^{o}\text{C}$; typ. values.

HIGH-EFFICIENCY GaAsP RED LIGHT EMITTING DIODE

Gallium arsenide phosphide light emitting diode which emits visible super-red light. Red, light-diffusing plastic envelope.

QUICK REFERENCE DATA

V_{R}	2.14
, U	max. 3 V
۱۴	max. 20 mA
P_{tot}	max. 60 mW
1-II I _v	min. 1,6 mCd - 3 to 7 mCd 5 to 11 mCd
λ_{pk}	typ. 630 nm
α _{50%}	typ. 55 ⁰
	IF P _{tot} 1-I I _V 1-II I _V 1-III I _V

MECHANICAL DATA

Fig. 1 SOD-63A.

Dimensions in mm

Accessories for panel mounting (panel thickness < 4 mm)

Plastic clip and ring

black type RTC757

colourless type RTC758

Hole diameter

6,4 mm for panel thickness < 3 mm

6,5 mm for panel thickness > 3 mm

Fig. 2.

Fig. 3.

Fig. 4.

Beamwidth between half-intensity directions

RATINGS					
Limiting values in accordance with the Absolute Maximu	m System (IE	C 134)			
Continuous reverse voltage		V_{R}	max.	3	V
Forward current (d.c.)		l _E	max.	20	mA
Forward current (peak value)					
$t_p = 1 \text{ ms}; \delta = 0.33$		IFM	max.	60	mA
$t_p = 1 \mu s$; $f = 300 Hz$		IFM	max.	1000	mA
Total power dissipation up to T _{amb} = 55 °C		P_{tot}	max.	60	mW
Storage temperature		T_{stg}	-55 to	+ 100	oC
Junction temperature		Тj	max.	100	oC
Lead soldering temperature					
$>$ 1,5 mm from the seating plane; $t_{ m sld}$ $<$ 7 s		T _{sld}	max.	230	οС
THERMAL RESISTANCE					◄
From junction to ambient					
in free air		R _{th j-a}	=	750	K/W
mounted on a printed-circuit board		R _{th j-a}	=	500	K/W
CHARACTERISTICS					
T _j = 25 ^o C unless otherwise specified					
Forward voltage			tun	2.1	V
$I_F = 10 \text{ mA}$		V_{F}	typ.	2,1 3	V
Reverse current					
V _R = 3 V		I _R	<	100	μΑ
Diode capacitance					
$V_R = 0$; $f = 1 MHz$		c_d	typ.	35	pF
Luminous intensity (on-axis)					
I _F = 10 mA	CQX51-I CQX51-II	1 _V	min.		mCd ◄ — mCd
	CQX51-III	I _V I _V		to 11	
Wavelength at peak emission		ν λ _{pk}	typ.	630	

55°

α_{50%}

typ.

Fig. 5 Maximum permissible power dissipation as a function of ambient temperature.

Fig. 7 $t_p = 50 \mu s$; T = 5 ms; $T_j = 25 \, {}^{\circ}\text{C}$.

Fig. 6 $T_j = 25$ °C.

Fig. 8 Typical values.

Fig. 9 Typical values; $T_j = 25$ °C.

Fig. 10 $I_F = 10 \text{ mA}$.

Fig. 11.

CQX54 CQX54L

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

LIGHT EMITTING DIODES

Circular light emitting diodes with diameter of 5 mm which emit a narrow-beam super-red (GaAsP) light when forward biased.

The CQX54 and CQX54L have a SOD-63 outline and are encapsulated in a transparent non-diffusing resin.

The CQX54L is the long-lead version of the CQX54 and has no seating plane but is in all other respects equal to the CQX54.

QUICK REFERENCE DATA

Continuous reverse voltage	v_R	max.	5 V
Forward current (d.c.)	1 _F	max.	30 mA
Total power dissipation up to T _{amb} = 65 °C	P_{tot}	max.	90 mW
Junction temperature	Τį	max.	100 °C
Luminous intensity I _F = 10 mA	ı _v	min. typ.	15 mCd 20 mCd
Wavelength at peak emission	λ_{pk}	typ.	630 nm
Beamwidth between half-intensity directions	α _{50%}	typ.	20 °

MECHANICAL DATA

Dimensions in mm

Fig. 1a SOD-63A. CQX54

August 1983

Fig. 1b SOD-63L.

CQX54L

Notes

- 1. Dimension measured when the device is seated in a gauge with 2 holes of 0,80 mm diameter and 2,54 mm apart.
- 2. For the maximum value including plastic burrs.
- 3. Solderability is not guaranteed within this zone due to tie-bar cropping.

RATINGS

Limiting values in accordance with the Absolute Maximum System	(IEC 134)			
Reverse voltage	v_R	max.	5	V
Forward current d.c.	l _F	max.	30	mA
Forward current peak value; $t_p = 1 \mu s$; $f = 300 Hz$ peak value; $t_p = 1 ms$; $\delta = 0.33$	I _{FM}	max.	-	A mA
Total power dissipation up to T _{amb} = 65 °C	P _{tot}	max.	90	mW
Storage temperature	T_{stq}	-55 to +	100	οС
Junction temperature	Τį	max.	100	οС
Lead soldering temperature > 1,5 mm from the seating plane; t _{sld} < 7 s	T _{sld}	max.	260	°C

THERMAL RESISTANCE

From junction to ambient when the device is mounted on a p.c. board

R_{th j-a}

max.

350 K/W

250 August 1983

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Forward voltage

 $I_F = 10 \text{ mA}$

Reverse current

 $V_R = 5 V$

Beamwidth between half-intensity directions

Bandwidth at half height

Wavelength at peak emission

Luminous intensity I_F = 10 mA

Diode capacitance $V_R = 0$; f = 1 MHz

Fig. 2.

Fig. 4 t_{on} = 50 μ s; δ = 0,01; T_{amb} = 25 °C; typ. values.

Fig. 3 $T_{amb} = 25$ °C; typ. values.

Fig. 5 Typical values.

Fig. 6 Typical values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 Typical values.

Fig. 9 $I_F = 10 \text{ mA}$; typ. values.

LIGHT EMITTING DIODES

Circular light emitting diodes with diameter of 5 mm which emit a super-green (GaP) narrow light beam when forward biased.

The CQX64 and CQX64L have a SOD-63 outline and are encapsulated in a transparent non-diffusing resin. Because of its resistance to high forward currents the CQX64 (and CQX64L) is very suitable in applications where a high luminous intensity is wanted, but also very suitable in those applications where only low currents are available.

The CQX64L is the long-lead version of the CQX64 and has no seating plane but is in all other respects equal to the CQX64.

QUICK REFERENCE DATA

Continuous reverse voltage	v_R	max.	5 V
Forward current (d.c.)	ΙF	max.	60 mA
Total power dissipation up to T _{amb} = 35 °C	P_{tot}	max.	180 mW
Junction temperature	Тj	max.	100 °C
Luminous intensity I _F = 10 mA	I _V	min.	15 mCd
Wavelength at peak emission	λ_{pk}	typ.	565 nm
Beamwidth between half-intensity directions	lpha 50%	typ.	20 °

MECHANICAL DATA

Dimensions in mm

CQX64 CQX64L

- 2. Maximum value including plastic burrs.
- 3. Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Reverse voltage 5 V V_R max. Forward current d.c. 60 mA ۱F max. Forward current 1 A

peak value; t_p = 1 μ s; f = 300 Hz peak value; t_p = 1 ms; δ = 0,33 1_{EM}

Total power dissipation up to $T_{amb} = 35$ °C Ptot max. 180 mW Storage temperature T_{sta} -55 to +100 °C Junction temperature T_i 100 °C max.

Lead soldering temperature; t_{sld} < 7 s > 1,5 mm from the seating plane for CQX64

T_{sld} 260 UC max > 5 mm from the plastic body for CQX64L

THERMAL RESISTANCE

From junction to ambient when the device is mounted on a p.c. board Rth j-a 350 K/W max.

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Forward voltage $I_F = 10 \text{ mA}$ Reverse current

 $V_R = 5 V$

typ. ٧F max. 2,1 V 3,0 V

150 mA

1_R

max.

max.

100 µA

Beamwidth between half-intensity directions Bandwidth at half height Wavelength at peak emission Luminous intensity

 $I_F = 10 \text{ mA}$

Diode capacitance $V_B = 0$; f = 1 MHz

Fig. 2.

Fig. 4 t_{on} = 1 ms; δ = 0,33; T_{amb} = 25 °C; typ. values.

Fig. 3 $T_{amb} = 25$ °C; typ. values.

Fig. 5 Typical values.

Fig. 6 Typical values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 $I_F = 10 \text{ mA}$; typ. values.

Fig. 9 $I_F = 10 \text{ mA}$; typ. values.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

CQX74 CQX74Y CQX74L

LIGHT EMITTING DIODES

Circular light emitting diodes with diameter of 5 mm which emit a narrow-beam yellow (GaPAs) light when forward biased.

The CQX74 and CQX74L have a SOD-63 outline and are encapsulated in a transparent non-diffusing resin. The CQX74Y is equal but has a yellow-coloured non-diffusing resin.

The CQX74L is the long-lead version of the CQX74 and has no seating plane but is in all other respects equal to the CQX74.

QUICK REFERENCE DATA

Continuous reverse voltage	v_R	max.	5 V
Forward current (d.c.)	۱F	max.	30 mA
Total power dissipation up to T _{amb} = 65 °C	P_{tot}	max.	90 mW
Junction temperature	Тj	max.	100 °C
Luminous intensity I _F = 10 mA	I _V	min. typ.	15 mcd 20 mcd
Wavelength at peak emission	λ_{pk}	typ.	590 nm
Beamwidth between half-intensity directions	$\alpha_{50\%}$	typ.	20 °

MECHANICAL DATA

Dimensions in mm

Fig. 1a SOD-63A.

7286977

Fig. 1b SOD-63L. CQX74L

- (1) Measured when the device is seated in a gauge with 2 holes 0,80 mm diameter and 2,54 mm apart.
- (2) Maximum value including burrs.
- (3) Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS

Limitii	ig values in accordance with i	the Absolute Maximum 5	ystem (IEC 134)
Revers	e voltage		v_R

Reverse voltage	VR	max.	5 V
Forward current d.c.	۱ _F	max.	30 mA
Forward current peak value; $t_p = 1 \mu s$; $f = 300 \text{ Hz}$ peak value; $t_{On} = 1 \text{ ms}$; $\delta = 0.33$	I _{FM}	max. max.	1 A 60 mA
Total power dissipation up to T _{amb} = 65 °C Storage temperature	P _{tot} T _{stg}	max.	90 mV +100 °C
Junction temperature	rstg T _j	max.	100 °C
Lead soldering temperature; t _{sld} < 7 s > 1,5 mm from the seating plane for CQX74/74Y > 5 mm from the plastic body for CQX74L	T _{sld}	max.	260 °C

THERMAL RESISTANCE

From junction to ambient R_{th j-a} max. 350 K/W

40 nm

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Forwar	d voltage
F =	10 mA

Reverse current

Beamwidth between half-intensity directions

Bandwidth at half height Wavelength at peak emission

Luminous intensity $I_F = 10 \text{ mA}$

Diode capacitance

DEVELOPMENT SAMPLE DATA

 $V_R = 0$; f = 1 MHz

Fig. 2.

2,1 V typ. ۷F 3,0 V max.

100 μA I_R max.

typ.

B_{50%} 590 nm λ_{pk} typ.

15 mCd min. I_{v} 20 mCd typ.

Fig. 3 $T_i = 25$ °C; typ. values.

Fig. 5 Typical values.

Fig. 6 $I_F = 10 \text{ mA}$; typ. values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 Typical values.

GaAs LIGHT EMITTING DIODE

Gallium arsenide light emitting diode intended for optical coupling and encoding. It emits radiation in the near infrared when forward biased. The diode is provided with a flat glass window.

QUICK REFERENCE DATA					
Continuous reverse voltage	v_R	max.	2	V	
Forward current (d.c.)	$\mathfrak{l}_{\mathrm{F}}$	max.	30	mA	
Forward current (peak value) $t_p = 100 \ \mu s$; $\delta = 0, 1$	$^{ m I}_{ m FM}$	max.	200	mA	
Total power dissipation up to T _{amb} = 95 °C	P _{tot}	max.	50	mW	
Total radiant power at I _F = 20 mA	φe	> typ.	60 100	μW μW	
Radiant intensity (on-axis) at I_F = 20 mA	I_e	typ.	64	μW/sr	
Light rise time at $I_{F \text{ on}}$ = 20 mA	t_{r}	<	100	ns	
Light fall time at $I_{F \text{ on}} = 20 \text{ mA}$	t_f	<	100	ns	
Wavelength at peak emission	λ_{pk}	typ.	880	nm	
Thermal resistance from junction to ambient	R _{th j-a}	=	0,6	⁰ C/mW	

MECHANICAL DATA

Dimensions in mm

TO-18, except for window

Max. lead diameter is guaranteed only for 12,7 mm

March 1978 | 261

CQY11B

RATINGS Limiting values in accordance with the Absorption	olute Maxi	mum Syste	m (IEC	C 134)
Voltage				
Continuous reverse voltage	v_R	max.	2	V
Current				
Forward current (d.c.)	$I_{ m F}$	max.	30	mA
Forward current (peak value) $t_p = 100 \mu s; \delta = 0, 1$	I_{FM}	max.	200	mA

Power dissipation

· · · · · · · · · · · · · · · · · · ·				
Total power dissipation up to $T_{amb} = 95$ °C	P_{tot}	max.	50	mW

Temperature

Storage temperature	${ m T_{stg}}$	-55 to $+150$		°C
Operating junction temperature	$T_{\mathbf{j}}$	max.	125	°C

THERMAL RESISTANCE

From junction to ambient in free air	R _{th j-a}	=	0,6	^o C/mW
From junction to case	R _{th j-c}	=	0,22	⁰ C/mW

CHARACTERISTICS

CHARACTERISTICS	T_{amb} = 25 o C unless otherwise specified			ecified
Forward voltage at $I_F = 30 \text{ mA}$	${ m v_F}$	typ.	1,3 1,6	V V
$I_{FM} = 0, 2 A$	${ m v_F}$	typ.	1,5	V
Reverse current at V_R = 2 V	$I_{\mathbf{R}}$	<	0,5	mA
Diode capacitance at f = 1 MHz; $V_R = 0$	c_{d}	typ.	65	pF

CHARACTERISTICS (contin	ued) T _{an}	_{ab} = 25 °	C unles	s otherv	wise specified
Radiant output power at $\boldsymbol{I}_{\boldsymbol{F}}$	= 20 mA	$\phi_{\mathbf{e}}$	> typ.	60 100	µW
${\tt I}_{\bf F}$	= 20 mA; $T_j = 100$ °C	φe	typ.	50	μW
$I_{\mathbf{F}}$	= 200 mA ¹)	ϕ_{e}	typ.	1, 16	mW
Radiant intensity (on-axis) $I_F = 20 \text{ mA}$	at	I _e	typ.	64	μW/sr
Radiance at $I_F = 20 \text{ mA}$		L_{e}	typ.	1,6	${ m mW/mm^2sr}$
$I_F = 200 \text{ mA}^{-1}$		L_e	typ.	15	${\rm mW/mm^2sr}$
Emissive area		$^{\mathrm{A}}\mathrm{e}$	typ.	0,04	mm^2
Wavelength at peak emissio	n	λ_{pk}	typ.	880	nm
Bandwidth at half height		$\Delta\lambda$	typ.	40	nm
Light rise time at $I_{Fon} = 20$) mA	tr	typ.	30 100	ns ns
Light fall time at $I_{Fon} = 20$	mA	t_{f}	typ.	30 100	ns ns

 $[\]overline{1}$) $t_p = 100 \ \mu s$; $\delta = 0, 1$.

CQY11B

CQY11B

July 1972

265

GALLIUM ARSENIDE LIGHT EMITTING DIODE

Gallium arsenide light emitting diode intended for optical coupling and encoding. It emits radiation in the near infrared when forward biased. Suitable for combination with phototransistor BPX25 or BPX72.

QUICK REFERENCE DATA							
Continuous reverse voltage	v_R	max.	2	V			
Forward current (d.c.)	$I_{\mathbf{F}}$	max.	30	mA			
Forward current (peak value)	I_{FM}	max.	200	mA			
Total power dissipation up to T _{amb} = 95 °C	P_{tot}	max.	50	mW			
Total radiant power at I $_{ m F}$ = 20 mA	ϕ e	typ.	50	μW			
Radiant intensity (on-axis) at I_F = 20 mA	Ie	typ.	1,25	mW/sr			
Light rise time at I _{Fon} = 20 mA	$t_{\mathbf{r}}$	<	100	ns			
Light fall time at I _{Fon} = 20 mA	$t_{\mathbf{f}}$	<	100	ns			
Wavelength at peak emission	$\lambda_{ m pk}$	typ.	880	nm			
Thermal resistance from junction to ambient	R _{th j-a}	=	0,6	^o C/mW			

MECHANICAL DATA

Dimensions in mm

TO-18, except for lens

267

CQYIIC

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	v_R	max.	2	V
Current				
Forward current (d.c.)	$^{\mathrm{I}}\mathrm{_{F}}$	max.	30	mA
Forward current (peak value) $t_p = 100 \ \mu s$; $\delta = 0, 1$	I_{FM}	max.	200	mA
Power dissipation				
Total power dissipation up to T _{amb} = 95 °C	P _{tot}	max.	50	mW
Temperature				
Storage temperature	$\mathtt{T}_{\mathtt{stg}}$	-55 t	o + 150	oС
Junction temperature	$\mathrm{T}_{\mathbf{j}}$	max.	125	$^{\mathrm{o}}\mathrm{C}$
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	0,6	OC/mW
From junction to case	R _{th j-c}	=	0,22	oC/mW
CHARACTERISTICS	$T_{amb} = 25$ oC	unless otl	nerwise	specifie
Forward voltage				
$I_{\rm F}$ = 30 mA	v_{F}	typ.	1, 3 1, 6	V V
$I_{FM} = 200 \text{ mA}$	$v_{\mathbf{F}}$	typ.	1,5	V
Reverse current				
$V_R = 2 V$	I_{R}	<	0,5	mA
Diode capacitance				
$V_R = 0$; $f = 20$ MHz	$C_{\mathbf{d}}$	typ.	25	pF
Total radiant power				
$I_{\rm F} = 20 \text{ mA}$	φe	typ.	50	μW

 I_e

typ.

1,25 mW/sr

 $I_F = 20 \text{ mA}$

CHARACTERISTICS (continued)

Mean irradiance

on a receiving area with D = 2 mm at a distance a = 10 mm and at $\rm I_{\overline{F}}$ = 20 mA , measured as below

 E_e > 0,28 mW/cm² typ. 0,50 mW/cm² 1)

Fig. 1

Decrease of radiant power with temperature	$\frac{\Delta\phi_e}{\Delta T_j}$	typ.	0,7	%/°C
Cross section of the radiant beam				
between 0 to 10 mm from the lens	A _{beam}	typ.	7	$^{\rm mm^2}$
Angle between optical and mechanical axis			6 ⁰	
Wavelength at peak emission	λ_{pk}	typ.	880	nm
Bandwidth at half height	$\mathrm{B}_{50\%}$	typ.	40	nm
<u>Light rise time</u> at $I_{Fon} = 20 \text{ mA}$	t _r	typ.	30 100	ns ns
<u>Light fall time</u> at I _{Fon} = 20 mA	tf	typ.	30 100	ns

This corresponds typically with $I_{CEO\,(L)}$ = 0,4 mA in a phototransistor BPX25 and with 200 μ A in a phototransistor BPX72.

CQYIIC

270

CQY11C

CQYIIC

=

LIGHT EMITTING DIODES

Circular light emitting diodes with diameter of 5 mm which emit standard red light when forward biased.

The CQY24B and CQY24BL have a SOD-63 outline and are encapsulated in a medium-red diffusing resin. Together with the types CQY94B(L) and CQY96(L) they form one family.

The CQY24BL is the long-lead version of the CQY24B and has no seating plane but is in all other respects equal to the CQY24B.

QUICK REFERENCE DATA

Continuous reverse voltage		v_R	max.	5 V
Forward current (d.c.)		ΙF	max.	50 mA
Total power dissipation up to T _{amb} = 65 °C		P_{tot}	max.	100 mW
Junction temperature		Τį	max.	100 °C
Luminous intensity IF = 20 mA	CQY24B(L)-I CQY24B(L)-II CQY24B(L)-III CQY24B(L)-IV	I _V I _V I _V	min. 1,0 to 1,6 to min.	0,7 mCd 2,2 mCd 3,5 mCd 3,0 mCd
Wavelength at peak emission		λ_{pk}	typ.	650 nm
Beamwidth between half-intensity directions		^α 50%	typ.	60 o

MECHANICAL DATA

Dimensions in mm

Fig. 1b SOD-63L.

- (1) Measured when the device is seated in a gauge with 2 holes 0,80 mm in diameter and 2,54 mm between the holes.
- (2) Maximum value including burrs.
- (3) Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse voltage	v_R	max.	5	V
Forward current d.c.	۱ _F	max.	50	mΑ
Forward current				
peak value; $t_p = 1 \mu s$; $f = 300 Hz$	1	max.	1	Α
peak value; $t_p = 10 \mu s$; $f = 1000 Hz$	IFM	max.	100	mΑ
Total power dissipation up to T _{amb} = 65 °C	P_{tot}	max.	100	ınW
Storage temperature	T_{stg}	-55 to	+100	οС
Junction temperature	T_{j}	max.	100	οС
Lead soldering temperature; $t_{\rm sld} < 7~{\rm s}$ $> 1,5~{\rm mm}$ from the seating plane for CQY24B $> 5~{\rm mm}$ from the plastic body for CQY24BL	T _{sld}	max.	260	оC

THERMAL RESISTANCE

From junction to ambient

	500 K/W 350 K/W
	R _{th j-a} max. R _{th j-a} max.

60 pF

CHARACTERISTICS

V_R = 0; f = 1 MHz

	*			
T _j = 25 °C unless otherwise specified				
Forward voltage I _F = 20 mA		٧ _F	typ. max.	1,7 V 2,0 V
Negative temperature coefficient of V_F $I_F = 20 \text{ mA}$		$\frac{-\Delta V_{F}}{\Delta T_{j}}$	typ.	1,6 mV/00
I _F = 2 mA		$\frac{-\Delta V_F}{\Delta T_j}$	typ.	2,0 mV/0
Reverse current V _R = 5 V		I _R	max.	100 μΑ
Beamwidth between half-intensity directions $I_F = 10 \text{ mA}$		^α 50%	typ.	60 °
Bandwidth at half height		B _{50%}	typ.	20 mm
Wavelength at peak emission $I_F = 10 \text{ mA}$		λ_{pk}	typ.	650 nm
Luminous intensity (on axis)	CQY24B(L)-I CQY24B(L)-II CQY24B(L)-III CQY24B(L)-IV	I _V I _V I _V	min. 1,0 to 1,6 to min.	0,7 mCd 2,2 mCd 3,5 mCd 3,0 mCd
Diode capacitance				

 c_d

typ.

Fig. 2.

Fig. 5.

Fig. 11.

GaAs LIGHT EMITTING DIODES

Epitaxial gallium arsenide light emitting diodes intended for optical coupling and encoding. They emit radiation in the near infrared when forward biased. Envelopes like TO-18. Suitable for combination with phototransistors BPX25 and BPX72.

QUICK REFERENCE DATA							
Continuous reverse voltage		v_R	max.	2	V		
Forward current (d.c.)		$I_{\mathbf{F}}$	max.	100	mΑ		
Total power dissipation up to T _{amb} = 25 °C		P_{tot}	max.	150	mW		
Radiant intensity (on-axis) at $I_F = 50 \text{ mA}$	CQY49B CQY49C	I _e I _e	> >	0,3	mW/sr mW/sr		
Wavelength at peak emission		λ_{pk}	typ.	930	nm		
Thermal resistance from junction to ambi	ent	R _{th j-a}	=	0,665	⁰ C/mW		

MECHANICAL DATA

Dimensions in mm

CQY49B: TO-18 except for window

CQY49C: TO-18 except for lens

CQY49B CQY49C

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)							
Voltage							
Continuous reverse voltage	v_R	max.	2	V			
Current							
Forward current (d.c.)	$^{\mathrm{I}}\mathrm{_{F}}$	max.	100	mA			
Forward current (peak value) $t_p < 10~\mu \text{s}; \delta < 0,01$	I_{FM}	max.	1	A			
Power dissipation							
Total power dissipation up to T_{amb} = 25 ^{o}C	P_{tot}	max.	150	mW			
Temperature							
Storage temperature	$T_{ m stg}$	-40 to	+ 100	oC			
Operating junction temperature	Тj	max.	125	$^{\circ}\mathrm{C}$			
Lead soldering temperature $>$ 1,5 mm from the body; $t_{\mbox{sld}} <$ 10 s	$T_{ m sld}$	max.	260	°C			
THERMAL RESISTANCE							

 $R_{th\ j-a}$

R_{th j-c}

0,665

0,3

oC/mW

oC/mW

From junction to ambient in free air

From junction to case

CHARACTERISTICS	$T_i = 2$	5 °C ur	nless otherv	wise s	specified
	3	(CQY49B C	QY 490	<u>C</u>
Forward voltage at $I_F = 50 \text{ mA}$	v_{F}	typ. <	1,3 1,5		V V
$\underline{\text{Reverse current}} \text{ at } V_{R} = 2 \text{ V}$	$I_{\mathbf{R}}$	<	100		μΑ
Diode capacitance					
$V_{\mathbf{R}}$ = 0; f = 1 MHz	c_d	typ.	55		pF
Radiant intensity (on-axis) at I_F = 50 mA	Ie	> typ.	0,3 0,5	3 5	mW/sr mW/sr
Wavelength at peak emission	λ_{pk}	typ.	930		nm
Bandwidth at half height	B50%	typ.	50		nm
Beamwidth between half-intensity directions	$^{lpha}50\%$	typ.	80°	15°	
Angle between optical and mechanical axis		typ.	-	6º	
Switching times					
$I_{Fon} = 50 \text{ mA}; t_p = 2 \mu s; f = 45 \text{ kHz}$					
Light rise time	$t_{\mathbf{r}}$	typ.	600		ns

 t_f

typ.

350

ns

Light fall time

CQY49B CQY49C

CQY49B CQY49C

GaAs LIGHT EMITTING DIODES

Gallium arsenide light emitting diodes which emit near-infrared light when forward biased. Ceramic-metal envelope with glass lens like BPX71, suitable for matrix layout on printed circuit boards. In conjunction with BPX71 also suitable for punched card reading.

QUICK REFERENCE DATA							
Continuous reverse voltage	v_R	max.	2		V		
Forward current (d.c.)	I_{F}	max.	10	00	mA		
Total power dissipation up to T _{amb} = 25 °C mounted on printed circuit board	P _{tot}	max.	CQY50	50 CQY52	mW		
Total radiant power at I_F = 20 mA	ϕ_{e}	>	160	400	μW		
Radiant intensity (on-axis) at $I_{ m F}$ = 20 mA	I_e	>	180	450	μW/sr		
Wavelength at peak emission	λ_{pk}	typ.	9:	30	nm		

MECHANICAL DATA

Dimensions in mm

DO-31 except for length

V	ol	t	a	g	E	,	
_			•				

Continuous reverse voltage $\qquad \qquad V_{R} \qquad \text{max.} \qquad \qquad 2 \quad V$

Current

Forward current (d.c.) I_F max. 100 mA

Forward current (peak value) $t_D = 10 \mu s$; $\delta = 0.01$

I_{FM} max. 500 mA

Temperature

Storage temperature $T_{\rm stg}$ -65 to +150 $^{\rm o}{\rm C}$ Operating junction temperature $T_{\rm l}$ max. 125 $^{\rm o}{\rm C}$

Power dissipation

Total power dissipation up to T_{amb} = 25 ^{o}C device mounted on p.c. board 1) P_{tot} max. 150 mW

THERMAL RESISTANCE

From junction to ambient, device mounted on p.c. board 1) $R_{th\ j-a}$ = 0,66 o C/mW

 $^{^1)}$ With copper islands of 6 x 2 mm on both sides of 1,6 mm glass-epoxy printed circuit board; thickness of copper 35 μm .

CHARACTERISTICS	T,	amb = 25	5 ^o C unless	otherwis	e specified
Forward voltage			CQY50	CQY52	
$I_{\rm F} = 50 \text{ mA}$	v_{F}	typ.	1, 3	1,3	V
·r	_	<	1,5	1,5	V
$I_F = 500 \text{ mA}; t_p = 10 \text{ µs}; \delta = 0.01$	v_{F}	typ.	2,3	2,3	V
Reverse current					
$V_R = 2 V$	I_R	<	100	100	μΑ
Diode capacitance					
$V_R = 0$; $f = 1 MHz$	$C_{\mathbf{d}}$	typ.	45	45	pF
Total radiant power					
$I_{\mathbf{F}} = 20 \text{ mA}$	$\phi_{\mathbf{e}}$	>	160	400	μW
$I_{F} = 50 \text{ mA}$	$\phi_{\mathbf{e}}$	typ.	700	1500	μW
Radiant intensity (on-axis)					
$l_{\mathbf{F}} = 20 \text{ mA}$	I_{e}	>	180	450	μW/sr
Wavelength at peak emission	λ_{pk}	typ.	930	930	nm
Bandwidth at half height	B ₅₀ %	typ.	40	40	nm
Beamwidth between half-intensity directions	$\alpha_{50\%}$	typ.	35 ⁰	35°	
Switching times					
I_{Fon} = 20 mA; t_p = 2 μs ; f = 45 kHz					
Light rise time	$t_{\mathbf{r}}$	typ.	600	600	ns

350

ns

typ. 350

 $t_{\mathbf{f}}$

Light fall time

CQY50 CQY52

January 1974

CQY50 CQY52

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation, It does not necessarily imply that the device will go into regular production.

LIGHT EMITTING DIODE

Circular light emitting diode with diameter of 3 mm which emits standard red light (GaAsP) when forward biased.

The CQY54A has a SOD-53E outline and is encapsulated in a medium-red coloured diffusing resin. Together with the CQY95B and the CQY97A the CQY54A forms one light-intensity family.

QUICK REFERENCE DATA

Continuous reverse voltage		V_{R}	max.	5 V
Forward current (d.c.)		ΙF	max.	50 mA
Total power dissipation up to T _{amb} = 55 °C		P_{tot}	max.	90 mW
Junction temperature		Τį	max.	100 °C
Luminous intensity IF = 20 mA	CQY54A CQY54A-I CQY54A-II CQY54A-III	I _V	min. 0,7 to 1,0 to min.	0,5 mCd 1,6 mCd 2,2 mCd 1,6 mCd
Wavelength at peak emission $I_F = 20 \text{ mA}$		λ_{pk}	typ.	650 nm
Beamwidth at half-intensity directions IF = 20 mA		^α 50%	typ.	60 °

MECHANICAL DATA

Fig. 1 SOD-53E.

7Z86930 1

Dimensions in mm

RATINGS

Reverse voltage

Forward current d.c.

Storage temperature

Junction temperature

Lead soldering temperature

THERMAL RESISTANCE From function to ambient

Bandwidth at half height

I_F = 20 mA

 $I_F = 20 \text{ mA}$

Diode capacitance V_R = 0; f = 1 MHz

Luminous intensity

Wavelength at peak emission

peak value; $t_D = 1 \mu s$; f = 300 Hz

Total power dissipation up to Tamb = 55 °C

> 1,5 mm from the seating plane; t_{sld} < 7 s

Limiting values in accordance with the Absolute Maximum System (IEC 134)

5 V

50 mA

1 A

90 mW

100 °C

260 °C

500 K/W

1,7 V

2.0 V

100 µA

60 °

20 nm

650 nm

0.5 mCd

1.6 mCd

2,2 mCd

1,6 mCd

60 pF

-55 to +100 °C

 V_R

1_F

IFM

Ptot

 T_{stq}

Tsld

R_{th j-a}

٧F

 I_R

 α 50%

B50%

 λ_{pk}

١_v

 C_d

CQY54A

CQY54A-I

CQY54A-II

CQY54A-III

Τį

max.

max.

max.

max.

max.

max;

max.

typ.

max.

max.

typ.

typ.

typ.

min.

0.2 to

1,0 to

min.

typ.

Fig. 4 Typical values.

Fig. 6 $I_F = 20 \text{ mA}$; typ. values.

Fig. 3 $T_i = 25$ °C; typ. values.

Fig. 5 $I_F = 20 \text{ mA}$; typ. values.

Fig. 7 $t_p = 50 \mu s$; $T_j = 25$; typ. values.

Fig. 8 Typical values.

Fig. 9 Typical values.

GaAs LIGHT EMITTING DIODE

Diffused planar light emitting diode intended for optical coupling and encoding. It emits radiation in the near infrared when forward biased. Infrared translucent epoxy encapsulation (dark blue). Combination with phototransistor BPW22A is recommended.

QUICK REFERENCE DATA

Continuous reverse voltage	٧ _R	max.	5	V
Forward current (d.c.)	ΙF	max.	50	mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	100	mW
Radiant intensity (on-axis) at $I_F = 20 \text{ mA}$	le	>	1	mW/sr
Wavelength at peak emission	λ_{pk}	typ.	930	nm

MECHANICAL DATA

Fig. 1 SOD-53D.

Dimensions in mm

RATINGS

From junction to ambient,

device mounted on a printed-circuit board

Limiting values in accordance with the Absolute Maximum System	(IEC 134)		
Continuous reverse voltage	v_R	max.	5 V
Forward current			
d.c.	ΙF	max.	50 mA
(peak value); $t_p = 10 \mu s$; $\delta = 0.01$	^I FM	max.	200 mA
Total power dissipation up to $T_{amb} = 25$ °C (see Fig. 2)	P_{tot}	max.	100 mW
Storage temperature	T_{stg}	-55 to	+ 100 °C
Junction temperature	Τj	max.	100 °C
Lead soldering temperature $>$ 3,5 mm from the body; t_{sld} $<$ 7 s	T _{sld}	max.	260 °C
THERMAL RESISTANCE			

R_{th j-a}

750 °C/W

Fig. 2 Power derating curve versus ambient temperature.

CHARACTERISTICS	
T: = 25 °C	

Light fall time

OTH WITHOUT TOO				
T _j = 25 °C				
Forward voltage . IF = 20 mA		٧ _F	typ.	1,2 V 1,5 V
Reverse current V _R = 5 V		I _R	<	100 μΑ
Diode capacitance $V_R = 0$; $f = 1 MHz$		C _d	typ.	40 pF
Total radiant power IF = 20 mA		$\phi_{ extsf{e}}$	typ.	1 mW
Radiant intensity (on-axis) $I_F = 20 \text{ mA}$	CQY58A-I*	I _e	> <	1 mW/sr 5 mW/sr
	CQY58A-II*	Ι _e	>	3 mW/sr
Wavelength at peak emission		λ_{pk}	typ.	930 nm
Bandwidth at half height		B _{50%}	typ.	50 nm
Beamwidth between half-intensity directions $I_F = 20 \text{ mA}$		lpha50%	typ.	± 10 ⁰
Switching times IFon = 20 mA				
Light rise time		t _r	typ.	3 μs

tf

typ.

3 μs

^{*} CQY58A (without class indication) has a radiant intensity (I_e) of 2,2 to 3,45 mW/sr.

Fig. 3 $T_{amb} = 25$ °C.

Fig. 4 t_p = 10 μ s; T = 1 ms; T_{amb} = 25 o C.

Fig. 5 Typical values.

Fig. 8 V_{CE} = 5 V; T_{amb} = 25 °C; typical values.

Fig. 9 $V_{CE} = 5 V$; $d^* = 10 mm$; typical values.

^{*} d = shortest free distance of mechanical on-axis when BPW22A is coupled with CQY58A.

Fig. 10 Spectral response.

Fig. 11.

GaAs LIGHT EMITTING DIODE

Epitaxial gallium arsenide light emitting diode intended for remote-control applications. It emits radiation in the near infrared when forward biased. Infrared translucent epoxy encapsulation (dark blue).

QUICK REFERENCE DATA

Continuous reverse voltage		v_R	max.	5	V	
Forward current (d.c.)		۱۴	max.	130	mA	
Total power dissipation up to T _{amb} = 25 °C		P_{tot}	max.	215	mW	
Junction temperature		Τį	max.	100	oC	
Radiant intensity (on-axis) at $I_F = 100 \text{ mA}$	CQY89A	l _e	>	9	mW/sr	
	CQY89A-I	۱ _e		9 to 20	mW/sr	_
	CQY89A-II	Ιe	>	15	mW/sr	_
Wavelength at peak emission		λ_{pk}	typ.	930	nm	

MECHANICAL DATA

Fig. 1 SOD-63A.

Dimensions in mm

RATINGS		(150404)			
Limiting values in accordance with the Absolute Max	kimum System			-	.,
Continuous reverse voltage		V _R	max.	_	V
Forward current (d.c.)		۱۴	max.	130	mA
Forward current (peak value) $t_D \le 50 \mu s$; $\delta = 0.05$		IFM	max.	1000	mA
Non-repetitive peak forward current ($t_p \le 10 \mu s$)		^I FSM	max.	2500	mΑ
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	215	mW
Storage temperature		T_{sta}	-55 1	to + 100	οС
Junction temperature		Τį	max.	100	oC
Lead soldering temperature up to the seating plane; $t_{\mbox{sld}} < 10 \mbox{ s}$		T _{sld}	max.	260	оС
THERMAL RESISTANCE					
From junction to ambient					
mounted on a printed-circuit board		R _{th j-a}	=	350	K/W
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Forward voltage			typ.	1,4	V
$I_{F} = 100 \text{ mA}$		٧F	< vp.	1,4	
I_{FM} = 1500 mA; t_p = 20 μ s; δ = 0,033		$v_{\sf FM}$	typ.	2,4	V
Reverse current					
V _R = 5 V		۱ _R	<	100	μΑ
Diode capacitance V _B = 0; f = 1 MHz		Cd	typ.	40	pF
Total radiant power		od	typ.		•
I _F = 100 mA		$\phi_{\mathbf{e}}$	>		mW mW
Decrease of radiant news with temperature			typ.	12	mW
Decrease of radiant power with temperature I _F = 100 mA		$rac{\Delta\phi_{f e}}{\DeltaT_{f j}}$	typ.	1	%/K
Radiant intensity (on-axis)			>	9	mW/sr
I _F = 100 mA	CQY89A	^l e	typ.	15	mW/sr
	CQY89A-I	Ιe		9 to 20	mW/sr
	CQY89A-II	1 _e	>	15	mW/sr
Wavelength at peak emission $I_F = 100 \text{ mA}$		λ_{pk}	typ.	930	nm
Bandwidth at half height $I_F = 100 \text{ mA}$		B50%	typ.	50	nm
Beamwidth between half-intensity directions $I_F = 100 \text{ mA}$		^α 50%	typ.	40	0

Fig. 2 $T_{amb} = 25 \, {}^{\circ}\text{C}$; $T_{j peak} = 100 \, {}^{\circ}\text{C}$.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6 $T_j = 25$ °C.

Fig. 7.

Fig. 8 $T_{amb} = 25 \, {}^{o}C$; $t_p = 10 \, \mu s$; $T = 1 \, ms$.

Fig. 9.

Fig. 10.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

LIGHT EMITTING DIODE

Circular light emitting diode with diameter of 5 mm which emits green light (GaP) when forward biased.

The CQY94 has a SOD-63A outline and is encapsulated in a medium-green diffusing resin. This device will eventually be replaced by the CQY94B which has a super-green crystal, which has a better yield in the higher I_V classes.

The CQY94 forms one family with the CQY24B and the CQY96.

QUICK REFERENCE DATA

Continuous reverse voltage		VR	max.	5	V
Forward current (d.c.)		İF	max.	30	mΑ
Total power dissipation up to T _{amb} = 65 °C		P_{tot}	max.	90	mW
Junction temperature		Τj	max.	100	oC
Luminous intensity IF = 10 mA	CQY94-I CQY94-II CQY94-III CQY94-IV	I _v	min. 1,0 to 1,6 to min.	2,2 3,5	mcd mcd mcd mcd
Wavelength at peak emission Beamwidth between half-intensity directions		λ _{pk} α5 0 %	typ. typ.	560 60	

MECHANICAL DATA

Fig. 1 SOD-63A.

Dimensions in mm

May 1983

RATINGS

RATINGS					
Limiting values in accordance with the Absolute Maxin	num System (II	EC 134)			
Reverse voltage		v_R	max.	5	V
Forward current d.c.		lF	max.	30	mA
Forward current		·F	marti	-	
peak value; $t_p = 1 \mu s$; $f = 300 \text{ Hz}$ peak value; $t_{on} = 1 \text{ ms}$; $\delta = 0.33$		^I FM	max. max.		A mA
Total power dissipation up to T _{amb} = 65 °C		P_{tot}	max.	90	mW
Storage temperature		T_{stg}	-55 to ₹	100	оС
Junction temperature		Τj	max.	100	oC
Lead soldering temperature					
$>$ 1,5 mm from the seating plane; t_{sld} $<$ 7 s		T_{sld}	max.	260	оС
THERMAL RESISTANCE					
From junction to ambient when the device is mounted on a p.c.b.		R _{th j-a}	max.	350	K/W
CHARACTERISTICS					
T _j = 25 ^o C unless otherwise specified					
Forward voltage			typ.	2,1	V
$I_F = 10 \text{ mA}$		٧ _F	max.	3,0	
Reverse current				400	
$V_R = 5 V$		1 _R	max.	100	μΑ
Beamwidth between half-intensity directions IF = 10 mA		^α 50%	typ.	60	О
Bandwidth at half height		B _{50%}	typ.	30	nm
Wavelength at peak emission		0070			
$I_F = 10 \text{ mA}$		$\lambda_{\sf pk}$	typ.	560	nm
Luminous intensity			_		
I _F = 10 mA	CQY94-I CQY94-II		min. 1,0 to		mcd mcd
	CQY94-111	Ι _ν	1,6 to		mcd
	CQY94-IV		min.	3,0	mcd
Diode capacitance		•			_
$V_R = 0$; $f = 1 MHz$		c_d	typ.	35	pF

Fig. 2.

Fig. 4 T_{amb} = 25 °C; t_{on} = 1 ms; δ = 0,33; typ. values.

Fig. 6 $I_F = 10 \text{ mA}$; typ. values.

Fig. 3 $T_{amb} = 25$ °C; typ. values.

Fig. 5 Typical values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 Typical values.

Fig. 9 Typical values.

LIGHT EMITTING DIODES

Circular light emitting diodes with diameter of 5 mm which emit super-green (GaP) light when forward biased.

The CQY94B and CQY94BL have a SOD-63 outline and are encapsulated in a medium-green diffusing resin. Because of its resistance to high forward currents the CQY94B (and CQY94BL) is very suitable in applications where a high luminous intensity is wanted. This type is easily deliverable in high $\rm I_{V}$ classes and therefore very suitable in those applications where only low currents are available. The CQY94BL is the long-lead version of the CQY94B and has no seating plane but is in all other respects equal to the CQY94B.

QUICK REFERENCE DATA

	V_R	max.	5 V
	1 _F	max.	60 mA
	P_{tot}	max.	180 mW
	Τį	max.	100 °C
	•		
CQY94B(L)	l _v	min.	0,7 mCd
CQY94B(L)-III	l _v	1,6 to	3,5 mCd
CQY94B(L)-IV	lv	3,0 to	7,0 mCd
CQY94B(L)-V	I _V	min.	5,0 mCd
	λ_{pk}	typ.	565 nm
	^α 50%	typ.	60 °
	CQY94B(L)-III CQY94B(L)-IV	CQY94B(L) I _V CQY94B(L)-IV I _V CQY94B(L)-IV I _V CQY94B(L)-V I _V $^{\lambda}$ pk	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

MECHANICAL DATA

Dimensions in mm

Fig. 1a SOD-63A.

CQY94B CQY94BL

- (1) Measured when the device is seated in a gauge with 2 holes 0,80 mm diameter 2,54 mm apart. (2) Maximum value including burrs.
- (3) Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS

Reverse voltage

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Forward current d.c. IF. max. 60 mA Forward current peak value; t_p = 1 μ s; f = 300 Hz peak value; t_p = 1 ms; δ = 0,33 1 A 1_{EM} max. 150 mA Total power dissipation up to Tamb = 35 °C Ptot 180 mW max. Storage temperature -55 to +100 °C Tsta 100 °C Junction temperature Τį max. Lead soldering temperature at $t_{sld} < 7$ s

> 1,5 mm from the seating plane for CQY94B > 5 mm from the plastic body for CQY94BL

THERMAL RESISTANCE

From junction to ambient

when the device is mounted on a p.c. board R_{th j-a} max. 350 K/W

CHARACTERISTICS

 $T_j = 25$ °C unless otherwise specified

Forward voltage
IF = 10 mA

Reverse current

V_R = 5 V

V_F typ. max.

1R

 V_R

Tsld

max.

max.

2,1 V 3,0 V

260 °C

5 V

,

max. 100 μA

Beamwidth between half-intensity directions $I_F = 10 \text{ mA}$

Bandwidth at half height

Wavelength at peak emission

I_F = 10 mA

Luminous intensity

I_F = 10 mA

Fig. 2.

Fig. 4 t_{on} = 1 ms; δ = 0,33; T_{amb} = 25 °C; typ. values.

Fig. 3 $T_{amb} = 25$ °C; typ. values.

Fig. 5 Typical values.

Fig. 6 Typical values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 $I_F = 10 \text{ mA}$; typ. values.

Fig. 9 $I_F = 10 \text{ mA}$; typ. values.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

LIGHT EMITTING DIODE

Circular light emitting diode with diameter of 3 mm which emits super-green light (GaP) when forward biased.

The CQY95B has a SOD-53 outline and is encapsulated in a medium-green coloured resin. This LED can resist higher forward currents when a higher luminous intensity is wanted. Because the CQY95B is easily deliverable in high I_V classes it is very suitable in those applications where only low currents are available.

QUICK REFERENCE DATA

Continuous reverse voltage		VR	max.	5 V
Forward current (d.c.)		ΙF	max.	60 mA
Total power dissipation up to $T_{amb} = 25$ °C		P_{tot}	max.	150 mW
Junction temperature		Τį	max.	100 °C
Luminous intensity I _F = 10 mA	CQY95B CQY95B-III CQY95B-IV CQY95B-V	I _V I _V I _V	min. 1,6 to 3,0 to min.	0,7 mCd 3,5 mCd 7,0 mCd 5,0 mCd
Wavelength at peak emission		λ_{pk}	typ.	565 nm
Beamwidth between half-intensity directions		$^{lpha}_{50\%}$	typ.	60 °

MECHANICAL DATA

Fig. 1 SOD-53E.

7Z86930 1

CQY95B

RATINGS

RATINGS					
Limiting values in accordance with the Absolute Ma	ximum System (IE	C 134)			
Reverse voltage		v_R	max.	5	٧
Forward current					
d.c.		۱F	max.	60	mΑ
peak value; $t_p = 1 \mu s$; $f = 300 Hz$		IFM	max.	1	Α
peak value; $t_{on} = 1 \text{ ms}$; $\delta = 0.33$		IFM	max.	150	mΑ
Total power dissipation up to $T_{amb} = 25$ °C		P_{tot}	max.	150	mW
Storage temperature		T _{stg}	-55 to	+ 100	οС
Junction temperature		Tj	max.	100	οС
Lead soldering temperature		•			
$>$ 1,5 mm from the seating plane; $t_{ m sld}$ $<$ 7 s		T_{sld}	max.	260	οС
THERMAL RESISTANCE					
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	500	K/W
CHARACTERISTICS					
T _i = 25 °C unless otherwise specified					
Forward voltage			tun	2,1	\ <i>/</i>
$I_F = 10 \text{ mA}$		٧F	typ. max.	3,0	
Reverse current				-,-	
V _R = 5 V		IR	max.	100	μΑ
Beamwidth between half-intensity directions		α 50%	typ.	60	0
Bandwidth at half height		B _{50%}	typ.	30	nm
Wavelength at peak emission		λ_{pk}	typ.	565	nm
Luminous intensity		•			
$I_F = 10 \text{ mA}$	CQY95B	l _v	min.		mCd
	CQY95B-III CQY95B-IV	l _v	1,6 to		mCd
	CG 1 95B-1V	lv	3,0 to	7,0	mCd

CQY95B-V

 C_d

5,0 mCd

35 pF

min.

typ.

Diode capacitance V = 0; f = 1 MHz

Fig. 4 t_{on} = 1 ms; δ = 0,33; T_{amb} = 25 °C; typ. values.

Fig. 6 Typical values.

Fig. 3 $T_{amb} = 25$ °C; typ. values.

Fig. 5 Typical values.

Fig. 7 $t_p = 50 \mu s$; typ. values.

Fig. 8 $I_F = 10 \text{ mA}$; typ. values.

Fig. 9 Typical values.

LIGHT EMITTING DIODE'S

Circular light emitting diodes with diameter of 5 mm which emit yellow (GaAsP) light when forward biased.

The CQY96 and CQY96L have a SOD-63 outline and are encapsulated in a yellow diffusing resin.

The CQY96L is the long-lead version of the CQY96 and has no seating plane but is in all other respects equal to the CQY96.

QUICK REFERENCE DATA

Continuous reverse voltage		٧ _R	max.	5	٧
Forward current (d.c.)		ΙF	max.	30	mΑ
Total power dissipation up to T _{amb} = 65 °C		P_{tot}	max.	90	mW
Junction temperature		Τj	max.	100	оС
Luminous intensity (on-axis) IF = 10 mA	CQY96(L)-II CQY96(L)-III CQY96(L)-IV CQY96(L)-V	I _V I _V I _V	min. 1,6 to 3,0 to min.	3,5 7,0	mCd mCd mCd mCd
Wavelength at peak emission		λ_{pk}	typ.	590	nm
Beamwidth between half-intensity directions		α50%	typ.	60	0

MECHANICAL DATA

Dimensions in mm

7Z86977

June 1983

Fig. 1b SOD-63L.

CQY96L

Notes

- 1. Measured when the device is seated in a gauge with 2 holes 0,80 mm diameter 2,54 mm apart.
- 2. Maximum value including burrs.
- 3. Solderability not guaranteed within this zone due to tie-bar cropping.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

v_R	max.	5 V
۱ _F	max.	30 mA
I _{FM}	max. max.	1 A 60 mA
P _{tot}	max.	90 mW
T_{stg}	-55 to	+ 100 °C
Τj	max.	100 °C
T _{sld}	max.	260 °C
	IFM IFM Ptot T _{stg} Tj	$\begin{array}{ccc} I_F & \text{max.} \\ \\ I_{FM} & \text{max.} \\ \\ I_{FM} & \text{max.} \\ \\ P_{tot} & \text{max.} \\ \\ T_{stg} & -55 \text{ to} \\ \\ T_j & \text{max.} \end{array}$

THERMAL RESISTANCE

From junction to ambient in free air $R_{th\ j-a} = 500\ K/W$ mounted on a printed board $R_{th\ j-a} = 350\ K/W$

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Forward voltage

Reverse current

V_R = 3 V

Diode capacitance

V_B = 0; f = 1 MHz

Luminous intensity (on-axis)

I_E = 10 mA

Wavelength at peak emission

Bandwidth at half height

Beamwidth between half-intensity directions

Fig. 2.

Fig. 4 t_{on} = 1 ms; δ = 0,33; T_{amb} = 25 °C; typ. values.

 I_R max. 100 μA

C_d typ. 35 pF

CQY96(L)-I min. 0,7 mCd CQY96(L)-III IV 1,6 to 3,5 mCd CQY96(L)-IV IV 3,0 to 7,0 mCd 5.0 mCd CQY96(L)-V min. 590 nm typ. λ_{ak} B_{50%} 40 nm typ. 60 o typ. $\alpha_{50\%}$

Fig. 3 T_{amb} = 25 °C; typ. values.

Fig. 5 Typical values.

Fig. 6 Typical values.

Fig. 7 $t_p = 50 \,\mu\text{s}$; typ. values.

Fig. 8 Typical values.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into recular production

LIGHT EMITTING DIODE

Circular light emitting diode with diameter of 3 mm which emits yellow light (GaPAs) when forward biased.

The CQY97A has a SOD-53E envelope and is encapsulated in a medium-yellow coloured diffusing resin.

QUICK REFERENCE DATA

Continuous reverse voltage		٧ _R	max.	5 V
Forward current (d.c.)		ΙF	max.	30 mA
Total power dissipation up to $T_{amb} = 55$ °C		P_{tot}	max.	90 mW
Junction temperature		Τį	max.	100 °C
Luminous intensity I _F = 10 mA	CQY97A CQY97A-III CQY97A-IV CQY97A-V	I _V I _V I _V	min. 1,6 to 3,0 to min.	0,7 mCd 3,5 mCd 7,0 mCd 5,0 mCd
Wavelength at peak emission $I_F = 10 \text{ mA}$ Beamwidth at half-intensity directions		λ _{pk} α50%	typ.	590 nm 60 ^o

MECHANICAL DATA

Dimensions in mm

7Z86930 1

RATINGS					
Limiting values in accordance with the Absolute	Maximum System (II	EC 134)			
Reverse voltage		v_R	max.	5	٧
Forward current d.c.		lF	max.	30	mA
peak value; $t_p = 1 \mu s$; $f = 300 Hz$ peak value; $t_p = 1 ms$; $\delta = 0.33$		I _{FM}	max.		A mA
Total power dissipation up to T _{amb} = 55 °C		P_{tot}	max.	90	mW
Storage temperature		T_{stg}	–55 t	o+100	οС
Junction temperature		Τj	max.	100	οС
Lead soldering temperature $>$ 1,5 mm from the seating plane; $t_{\mbox{sld}} < 7 \mbox{ s}$		T_{sld}	max.	260	οС
THERMAL RESISTANCE					
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	500	K/W
CHARACTERISTICS					
T _i = 25 °C unless otherwise specified					
Forward voltage IF = 10 mA		VF	typ.	2,1 3,0	
Reverse current V _R = 5 V		I _R	max.	100	
Beamwidth between half-intensity directions $I_F = 10 \text{ mA}$		$lpha_{50\%}$	typ.	60	0
Bandwidth at half height		B _{50%}	typ.	40	nm
Wavelength at peak emission $I_F = 10 \text{ mA}$		λ_{pk}	typ.	590	nm
Luminous intensity (class division) IF = 10 mA	CQY97A CQY97A-III CQY97A-IV CQY97A-V	I _V I _V I _V	min. 1,6 to 3,0 to min.	o 3,5 o 7,0	mCd mCd mCd mCd
Diode capacitance $V_R = 0$; $f = 1$ MHz		c _d	typ.	•	pF

Fig. 2.

Fig. 3 $T_i = 25$ °C; typ. values.

Fig. 4 $t_p = 50 \mu s$; $\delta = 0.01$; $T_{amb} = 25 \, {}^{\circ}\text{C}$; typ. values.

Fig. 5 Typical values.

Fig. 7 $T_j = 25$ °C; typ. values.

Fig. 8 Typical values.

Fig. 9 Typical values.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

RTC901 RTC903 RTC902 RTC904

TWELVE SEGMENTS BAR GRAPH DISPLAY

The RTC901 to 904 series are 12 segments bar graph LED displays with separate anode and cathodes for each light segment. The bar graph array consists of 12 pieces of rectangular LED of the family CQV60 assembled in a plastic bar (holder).

RTC901 = 12 CQV60 (super-red)

RTC902 = 12 CQV61A (super-green)

RTC903 = 12 CQV62 (yellow)

RTC904 = mix in any colour upon request (RTC907 = empty array)

Intensity matching in the array < 2:1.

Ratings and characteristics see CQV60..

MECHANICAL DATA

Dimensions in mm

·		!

DOUBLE HETEROSTRUCTURE AIGaAs DIODE LASER WITH FIBRE PIGTAII

The 375CQY/B is an AIGaAs double heterostructure semiconductor laser designed for high speed (560 Mbits/s), long distance, optical communications and CATV systems.

The diode laser, emitting in the 850 nm transmission window of silica optical fibres, is mounted in a specifically designed hermetic encapsulation (modified TO-5). The 375CQY/B is standard equipped with a fast-responding photodiode optically coupled to the rear facet of the laser for monitoring the laser radiant output power. A silica graded index optical fibre pigtail is coupled to the front facet of the laser.

For application in long-distance optical telecommunication, the silicon avalanche photodiode BPF10 (368BPY) is recommended as the photo-detector at the receiving end of the optical transmission section.

MECHANICAL DATA

Dimensions in mm

Fig. 1.

LASER

The double heterostructure laser, with very narrow stripe, operates in a stable single transverse mode (TE_{00}) over the full power range and in several longitudinal modes. This results in a rather short coherence length, which is advantageous in suppressing modal noise and optical feedback effects.

The structure is designed to operate at a radiant output level of up to 3 mW in the fibre, up to relatively high case temperatures ($60\,^{\circ}$ C) and at an emission wavelength of 850 nm (at which wavelength the absorption of high-quality silica fibres is low).

All lasers have been subjected to a burn-in test at a radiant output level from the laser facet of 5 mW at a case temperature of $60\,^{\circ}\text{C}$.

RATINGS

HATINGO				
Limiting values in accordance with the Absolute Maximum System	n (IEC 134)			
Radiant output power from fibre pigtail	ϕ_{e}	max.	5	mW
Reverse voltage	v_R	max.	1	V
CHARACTERISTICS				
Threshold current				
$T_{\rm C} = 30 {\rm oC}$	lth	typ.	90	mA
$T_{\rm C}$ = 60 °C	l _{th}	typ. max.		mA mA
Radiant output power from fibre pigtail				
$T_c = 60 {}^{\circ}\text{C}$	ϕ_{e}	typ.	3	mW
Forward voltage drop				
$\phi_{ m e}$ = 3 mW	VF	typ.	2,5	
Wavelength at peak emission	λ_{pk}	typ.	850	nm
Spectral width at half intensity	Δλ	typ.	3	nm
Rise time, fall time laser biased near I _{th}	t _r , t _f	typ.	0,5	ns
Degradation rate	1 dl _{th}			
$T_{c} = 60 {}^{\circ}\text{C}; \phi_{e} = 3 \text{mW}$	I _{th} · dt	typ.	5	%/Kh
Spectrum at ϕ_e = 1 mW (FWHM)		typ.	6 longi modes	tudinal
Extinction ratio at $\phi_e = 3 \text{ mW}$			1:10	
Temperature coefficient of wavelength	$\frac{d\lambda_{pk}}{dT}$	typ.	0,25	nm/K
Temperature coefficient of I _{th}	$\frac{1}{l_{th}} \cdot \frac{dl_{th}}{dt}$	typ.	1	%/K
Differential efficiency				
(stimulated emission)	ϵ	typ.	0,1	mW/mA

Graded index silica rubber numerical aperture on axis

primary coating thickness

core diameter

cladding diameter

PHOTODIODE

11101001002			
Reverse voltage	v_R	max.	30 V
Luminous sensitivity V _R = 15 V	N	typ.	0,5 A/W
Dark reverse current V _R = 15 V	I _{RD}	max.	10 nA
Capacitance V _R = 0	c _d	max.	5 pF
Monitor diode current	¹ R	100 to	300 μA/mW
FIBRE PIGTAIL			
Graded index silica rubber		min. typ.	max.

secondary coating diameter

Options: Other fibre for pigtail may be made available.

Other wavelengths are available and are specified by adding a suffix to the type number:

NΑ

 ϕ_{core}

 ϕ_{clad}

 ϕ_{pc}

 ϕ_{SC}

no suffix = 780-810 nm suffix A = 810-840 nm suffix B = 840-860 nm suffix C = 860-880 nm

0,20

48

123

0,21

125

500

50

5

0.22

52 μm

127 μm

μm

μm

Options may be subject to surcharge.

TEMPERATURES (total assembly)

Fig. 2 Typical modulation circuit with ECL logic input and control of average optical power output. Data rate > 200 Mbits/s.

P₁ sets the peak-peak modulation current.

P2 sets the laser bias current.

R_I determines maximum mean value of optical output power.

1-2-3 laser connections.

Note: If single ECL drive is applied, the other input shall be connected to the ECL threshold level (-1,35 V).

OPERATING PRECAUTIONS

Semiconductor lasers in general are easily damaged by overdriving and electrical transients. Electrically, the laser diode is a very reliable device and can easily withstand current surges of several amperes. Optically, however, the laser diode is more susceptible to damage because of the extremely high optical flux density passing through both facets while in operation. By overdriving or transients to the laser, even for pulses to the nanosecond region, the optical flux density can rise to unacceptable values (10 to 100 MW/cm²), causing gradual or catastrophic degradation of the laser facets. Current transients should therefore be carefully avoided; they decrease the life time of the laser.

CAUTION

Aluminium gallium arsenide lasers emit radiation which is invisible to the human eye. When in use, do not look directly into the device. Direct viewing of laser light at close range to the fibre pigtail end, may cause eye damage.

The device falls within the safety class 3B the international standard code.

Note: Each laser is accompanied with an individual test sheet, showing the P_{opt}-I_{op} characteristic and the monitor current for a given optical output power.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

DOUBLE HETEROSTRUCTURE AIGaAs LASER DIODE WITH FIBRE PIGTAIL

The 497CQF/A is an AlGaAs double heterostructure semiconductor laser made in index guiding structure. The device is designed for high-speed long distance, optical communications and data transmissions.

The diode laser, emitting in the 835 nm transmission window of silica optical fibres, is mounted in a specifically designed hermetic encapsulation (modified TO-5). The 497CQF/A is standard equipped with a fast-responding photodiode optically coupled to the rear facet of the laser for monitoring the laser radiant output power. A silica graded index optical fibre pigtail is coupled to the front facet of the laser.

For application in long-distance optical telecommunication, the silicon avalanche photodiode BPF10 (368BPY) is recommended as the photo-detector at the receiving end of the optical transmission section.

MECHANICAL DATA

Dimensions in mm

Fig. 1.

LASER

The double heterostructure laser AlGaAs laser is made by index guiding technology and provides single transverse mode as well as single longitudinal mode operation. This technology gives rise to a large spectral purity, large extinction ratio and is free of self-pulsations.

The structure is designed to operate at a radiant output level of up to 2 mW in the fibre, up to relatively high case temperatures (60 °C) and at an emission wavelength of 835 nm (at which wavelength the absorption of high-quality silica fibres is low).

All lasers have been subjected to a burn-in test at a radiant output level from the laser facet of 4 mW at a case temperature of $60\,^{\circ}\text{C}$.

RATINGS

Limiting values in accordance with the Absolute Max	kimum System (IEC 134)			
Radiant output power from fibre pigtail	$\phi_{ extsf{e}}$	max.	4 n	nW
Reverse voltage	VR	max.	1 \	/
CHARACTERISTICS				
Threshold current				
$T_c = 30 \text{°C}$	l _{th}	typ.	70 n	nΑ
$T_c = 60 ^{\circ}C$	I _{th}	typ. max.	100 n 130 n	
Radiant output power from fibre pigtail				
$T_c = 60 ^{\circ}C$	$\phi_{\mathbf{e}}$	typ.	2 n	nW
Forward voltage drop	•			
$\phi_{\mathbf{e}}$ = 2 mW	v_F	typ.	2,0 ∖	/
Wavelength at peak emission	λ_{pk}	typ.	835 n	ım
Spectral width at half intensity	$\Delta\lambda$	typ.	0,5 n	ım
Rise time, fall time laser biased near l _{th}	t _r , t _f	typ.	0,5 n	ıs
Degradation rate		typ.	0,0 1	
$T_c = 60$ °C; $\phi_e = 3$ mW	$\frac{1}{I_{th}} \cdot \frac{dI_{th}}{dt}$	typ.	3 %	6/Kh
Temperature coefficient of wavelength	dλ _{pk} dT	typ.	0,2 5 n	ım/K
Temperature coefficient of threshold current	$\frac{1}{I_{th}} \cdot \frac{dI_{th}}{dT}$	typ.	1 %	6/K
Differential efficiency (stimulated emission)	ϵ	typ.	0,2 n	nW/mA
Extinction ratio $\phi_{e} = 4 \text{ mW}$		typ.	1:25	
Spectral purity (90% of output radiant power)		single !	ongitudin	al

mode

PH	OI	ΓO	DI	O	DE

Reverse voltage	v_R	max. 30 V
Luminous sensitivity VR = 15 V	N	typ. 0,5 A/W
Dark reverse current V _R = 15 V	I _{RD}	max. 10 nA
Capacitance $V_R = 0$	C _d	max. 5 pF
Monitor diode current	I _R	100 to 300 $\mu\text{A/mW}$

FIBRE PIGTAIL

Graded index silica rubber		min.	typ.	max.
numerical aperture on axis	NA	0,20	0,21	0,22
core diameter	$\phi_{ extsf{core}}$	48	50	52 μm
cladding diameter	ϕ clad	123	125	127 μm
primary coating thickness	$\phi_{ t pc}$		5	μ m
secondary coating diameter	$\phi_{ extsf{sc}}$		500	μ m

Options: Other fibre for pigtail may be accommodated.

Other wavelengths are available and are specified by adding a suffix to the type number:

no suffix	=	780-810 nm
suffix A	=	810-840 nm
suffix B	=	840-860 nm
suffix C	=	860-880 nm

Options may be subject to surcharge.

TEMPERATURES (total assembly)

C.W. operation	T_{op}	0 to 60 °C
Storage	T_{stg}	-40 to +125 °C

Thermal resistance

from junction to case $R_{th\ j\text{-}c}$ typ. 45 K/W

Fig. 2 Typical modulation circuit with ECL logic input and control of average optical power output. Data rate > 200 Mbits/s.

P₁ sets the peak-peak modulation current.

P₂ sets the laser bias current.

R₁ determines maximum mean value of optical output power.

1-2-3 laser connections.

Note: If single ECL drive is applied, the other input shall be connected to the ECL threshold level $(-1,35\ V)$.

OPERATING PRECAUTIONS

Semiconductor lasers in general are easily damaged by overdriving and electrical transients. Electrically, the laser diode is a very reliable device and can easily withstand current surges of several amperes. Optically, however, the laser diode is more susceptible to damage because of the extremely high optical flux density passing through both facets while in operation. By overdriving or transients to the laser, even for pulses in the nanosecond region, the optical flux density can rise to unacceptable values (10 to 100 MW/cm²), causing gradual or catastrophic degradation of the laser facets. Current transients should therefore be carefully avoided; they decrease the life time of the laser.

CAUTION

Aluminium gallium arsenide lasers emit radiation which is invisible to the human eye. When in use, do not look directly into the device. Direct viewing of laser light at close range to the fibre pigtail end, may cause eye damage.

The device falls within the safety class 3B of the international standard code.

Note: Laser is accompanied with an individual test sheet, showing the Popt-Iop characteristic and the monitor current for a given optical output power.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into remilar production.

DOUBLE HETEROSTRUCTURE AIGAAS LASER

The 498CQL is an AlGaAs double heterostructure diode laser made in index guiding technology and is designed for reading applications such as: video-audio disc applications, optical memories, security systems, etc.

This device is mounted in an hermetic SOT-148 encapsulation specifically designed for easy alignment in an optical read or write system. The copper heatsink is circular and precision engineered with a diameter accuracy of +0, -9 μ s. Laser stripe and mechanical axis coincide within 50μ m.

The 498CQL is standard equipped with a photo p-i-n diode, optically coupled to the rear emitting facet of the laser. This fast responding (less than 20 ns) photodiode can be used as a sensor to control the laser radiant output level. The ultra-flat top window (flat within two fringes) guarantees an unperturbed beam wavefront.

QUICK REFERENCE DATA

Threshold current at $T_c = 30$ °C	I_{th}	typ.	50 mA
C.W. radiant output power up to $T_c = 60$ °C	$\phi_{ extsf{e}}$	typ.	5 mW
Wavelength at peak emission	λ_{pk}	typ.	840 nm

MECHANICAL DATA

Fig. 1 SOT-148.

ø 9,000 (9h6) 8,991

Dimensions in mm

7785815

- Position of the laser crystal from the reference plane.
- (2) Within the plane of 6,8 diameter, protrusions and irregularities are permitted.
- (3) Positional accuracy of the laser stripe with respect to the flange diameter.

LASER

The double heterostructure stripe laser is made by index guiding technology and operates in single transverse as well in single longitudinal mode over the full power range. This structure gives rise to large spectral purity, large coherence length and is free of self-pulsations.

The structure is designed to operate C.W. 5 mW up to relatively high temperatures (60 °C case temperature) with a wavelength of 840 nm which makes reading standard Video Long Play records and compact discs (DAD) a possible application.

RATINGS

Limiting values in accordance with the Absolute Maximum System	n (IEC 134)			
Radiant output power	ϕ_{e}	max.	10	mW
Reverse voltage	V_{R}	max.	1	V
Temperatures C.W. operation storage	T _c T _{stg}	-20 to -55 to +		
CHARACTERISTICS				
Threshold current at $T_c = 30$ °C at $T_c = 60$ °C	I _{th} I _{th}	typ. typ.		mA mA
Operating current ϕ_e = 5 mW; T_c = 30 °C	l _{op}	typ. max.		mA mA
ϕ_e = 5 mW; T_c = 60 °C	l _{op}	typ. max.		mA mA
Recommended operating radiant output power up to $T_c = 60$ °C	$\phi_{\mathbf{e}}$	typ.	5	mW
Forward voltage drop up to T_c = 60 °C ϕ_e = 5 mW	VF	typ.	2,0	V
Wavelength at peak emission $\phi_e = 5 \text{ mW}$; $T_c = 30 ^{\circ}\text{C}$	λ_{pk}	typ.	840	nm
Spectral width at half height $\phi_{\rm e}$ = 5 mW	Δλ	typ.	0,5	nm
Far-field angle at half-intensity directions (FWHM) perpendicular to the junction plane parallel to the junction plane	α _{50%} (⊥) α _{50%} (Ⅱ)	typ. typ.	35 15	
Series resistance	R_S	typ.	3	Ω
Differential efficiency at $\phi_e = 2 \text{ mV}$	ϵ	typ.	0,20	W/A
Spontaneous emission at I _{th}	$\phi_{\sf spon}$	typ.	0,2	mW
Turn-on/turn-off time (above threshold)	t _{on} /t _{off}	typ.	1	ns
Degradation rate $T_{\rm C}$ = 60 °C; $\phi_{\rm e}$ = 5 mW	$\frac{1}{I_{op}} \cdot \frac{dI_{op}}{dT}$	typ.	3	%/Kh
Temperature coefficient of wavelength	$\frac{d\lambda_{pk}}{dT}$	typ.	0,25	nm/K
Temperature coefficient of I _{th}	$\frac{1}{l_{th}} \cdot \frac{dl_{th}}{dT}$	typ.	1	%/K
Thermal resistance from junction to case	R _{th j-c}	typ.	50	K/W

Fig. 2 Far-field pattern.

- a. parallel to the junction plane.
- b. perpendicular to the junction plane.

PHOTODIODE

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Reverse voltage V_B max. 30 V

CHARACTERISTICS

Fig. 3 Forward voltage drop (V_F) and radiant output power $(\phi_{\rm e})$ of laser diode as a function of forward current; typ. values.

Fig. 4 Radiant output power (ϕ_e) as a function of monitor current of photodiode; V_R (photodiode) = 15 V; typ. values.

* Ten turn. Zero position is at 0,58 revolution. Each revolution is equivalent to 500 μA monitor diode current. Adjust from zero position.

Fig. 5 Recommended control circuit for continuous operation.

OPERATING PRECAUTIONS

Semiconductor lasers in general are easily damaged by over-driving and electrical transients. Electrically, the laser diode is a very reliable device and can easily withstand current surges of several amperes. Optically, however, the diode laser is more susceptible to damage because of the extremely high optical flux density passing through both facets, while in operation. By over-driving or transients to the laser, even for pulses in the nanosecond region, the optical flux density can rise to unacceptible values (10 to 100 MW/cm²), causing gradual or catastrophic degradation of the laser facets. Current transients should therefore be carefully avoided; they can substantially decrease the laser life time.

CAUTION

Aluminium gallium arsenide lasers emit radiation which is invisible to the human eye. When in use, do not look directly into the device. Direct viewing of laser light at close ranges, especially in conjunction with collimating lenses, may cause eye damage.

The device falls within safety class 3B of the international standard code.

DISPLAYS

		1
		•

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

11/2-DIGIT RED LED DISPLAY

The display has the following features:

- One and a half 12,7 mm (½") high red colour digits readout display.
- GaP type red light emitting crystal with low power consumption.
- Series connection for low current consumption.
- Wide operating segment current (d.c.) range from 1 mA to 20 mA.
- Each segment performs a diffused and uniform display with high contrast through filtering function of lens cap.
- Highly legible arabic numerals with wide viewing angle.
- Solid state reliability and long operational life.
- The SAB3064 is recommended as driver circuit.

QUICK REFERENCE DATA

Continuous reverse voltage	v_R	max.	3 V
Forward current (d.c.) per segment	1 _F	max.	20 mA
Luminous intensity (of segment, normal to surface)			
I _F = 5 mA	I_V	typ.	100 μcd
Wavelength at peak emission	λ_{pk}	typ.	700 nm

MECHANICAL DATA

Dimensions in mm

Fig. 1.

Fig. 2 Circuit diagram.

Fig. 3 Indication of segments per digit. (See also terminal connection table below).

TERMINAL CONNECTION TABLE (see Figs 1, 2 and 3)

address	segment	cathode terminal number	anode terminal number
unit digit	A B C D E F G	12 11 8 7 6 5	13 12 11 8 13 6 5
10 s digit	H	16 15	17 16

RATINGS

Limiting values in accordance w	with the Absolute	Maximum System	(IEC 134)
---------------------------------	-------------------	----------------	-----------

Continuous reverse voltage	V _R	max.	3	V
Forward current (d.c.) per segment	IF	max.	20	mΑ
Storage temperature	T_{stg}	-40 t	o + 75	оС
Operating junction temperature	Τį	−20 t	o + 60	oC
Soldering temperature at 3 mm from reflector edge; $t_{\mbox{sld}} \leqslant 3 \mbox{ s}$	T _{sld}	max.	260	οС
CHARACTERISTICS (single segment)				
T _{amb} = 25 °C				
Forward voltage I _F = 10 mA	٧ _F	typ. 1,7	2,0 to 2,3	
Reverse current V _R = 3 V	I _R	<	,	μΑ
Luminous intensity (normal to surface) IF = 5 mA	I_{v}	typ.	100	μcd
le = 10 m Δ	1	>	100	μcd

Intensity matching ratio

 $I_F = 10 \text{ mA}$

I_F = 5 mA

Wavelength at peak emission $I_F = 5 \text{ mA}$

Bandwidth at half height IF = 5 mA

\$<\$ 2,5 $$\lambda_{\mbox{\footnotesize{pk}}}$$ typ. 700 nm

typ.

 I_{v}

B_{50%}

typ. 100 nm

160 μcd

NOTES

Avoid immersing the whole display in liquid.

Avoid contact with chlorinated solvents. Recommended cleaning solvents for flux and stain contamination, Freon TE or TF and methyl alcohol.

Except for the printed-wiring board, avoid heating the display above 75 °C.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

2-DIGIT SUPER-RED LED DISPLAYS

The displays have the following features:

- Two 12,7 mm (½") high super-red colour digits readout display.
- Configuration in dynamic multiplex drive connections.
- Wide operating segment current (d.c.) range from 1 mA to 20 mA.
- Each segment performs a diffused and uniform display with high contrast through filtering function of lens cap.
- Highly legible arabic numerals with wide viewing angle.
- Solid state reliability and long operational life.

QUICK REFERENCE DATA

Continuous reverse voltage	v_R	max.	`3 V
Forward current (d.c.) per segment	۱F	max.	20 mA
Luminous intensity (of segment, normal to surface)			
$I_F = 5 \text{ mA}$	I_V	typ.	50 μcd
Wavelength at peak emission	λ_{pk}	typ.	630 nm

MECHANICAL DATA

Dimensions in mm

Fig. 1.

 $\label{eq:note_note} \mbox{NOTE} \\ \mbox{Tolerance} \ \pm \ \mbox{0,25 mm unless otherwise specified.}$

Fig. 2a Circuit diagram ${\tt CQ216X}$ (common cathode).

Fig. 2b Circuit diagram CQ216Y (common anode).

Fig. 3 Indication of segments per digit. (See also connection table on next page.)

3 V

TERMINAL CONNECTION TABLE (see Figs 1, 2a, 2b and 3)

address	segment	terminal number	address	segment	terminal number
10s digit	A2 B2 C2 D2 E2 F2 G2 DP2 common	17 11 9 7 3 18 1 8	unit digit	A1 B1 C1 D1 E1 F1 G1 DP1	17 11 9 7 3 18 1 8

٧n

B_{50%}

typ.

max.

RATINGS

Continuous reverse voltage

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Continuous reverse vortage	٧R	max.	3	V
Forward current (d.c.) per segment	Ιϝ	max.	20	mΑ
Storage temperature	T_{stg}	-40 to	+ 75	оС
Operating junction temperature	Ti	-20 to	+ 60	оС
Soldering temperature	,			
at 3 mm from reflector edge; $t_{sld} \le 3 s$	T_{sld}	max.	260	oC
CHARACTERISTICS (single segment)				
T _{amb} = 25 °C				
Forward voltage		turn	1.0	\/
$I_F = 10 \text{ mA}$	V_{F}	typ. 1,6 to	1,9 2.2	
Reverse current		•	,	
V _R = 3 V	IR	<	5	μΑ
Luminous intensity (normal to surface)				
$I_F = 5 \text{ mA}$	I_V	typ.	50	μcd
I _F = 10 mA	I _v	>		μcd
·	٠,٧	typ.	100	μcd
Intensity matching ratio I _F = 5 mA		<	2 5	
•			2,5	
Wavelength at peak emission IF = 5 mA	λnt	typ.	630	nm
Bandwidth at half height	λ _{pk}	-/1-	200	

NOTES

 $I_F = 5 \text{ mA}$

Avoid immersing the whole display in liquid.

Avoid contact with chlorinated solvents. Recommended cleaning solvents for flux and stain contamination, Freon TE or TF and methyl alcohol.

Except for the printed-wiring board, avoid heating the display above 75 °C.

100 nm

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

CQ327; CQ327R CQ330; CQ330R CQ331; CQ331R CQ332; CQ332R

4-DIGIT LED CLOCK DISPLAYS

The displays, primarily designed for applications where compactness is of prime importance, have the following features:

- Four 15 mm high red colour digit readout clock display.
- Common anode or cathode configuration for use in static drive connections.
- Wide operating segment current (d.c.) range from 5 mA to 20 mA.
- Each segment performs a diffused and uniform display with high contrast.
- Display with dull surface free from undesirable glare or reflections.
- Highly legible arabic numerals with wide viewing angle.
- Display format available for 12 or 24 hours.
- Solid state reliability and long operational life.

QUICK REFERENCE DATA

Continuous reverse voltage	v_R	max.	3 V
Forward current (d.c.) per segment	۱F	max.	20 mA
Luminous intensity (of segment, normal to surface)			
$I_F = 5 \text{ mA}$	I_{V}	typ.	200 μcd
Wavelength at peak emission	λ_{pk}	typ.	700 nm

7Z85306

TYPE N	IUMBER	FULLY DISPLAYED FONT
common cathode	common anode	FOLLY DISPLATED FONT
CQ327	CQ327R	: 18:88
CQ330	CQ330R	88:88
CQ331	CQ331R	:38:88
CQ332	CQ332R	:88:88

Fig. 1.

CQ327; CQ327R CQ330; CQ330R CQ331; CQ331R CQ332; CQ332R

MECHANICAL DATA

Fig. 2.

Dimensions in mm

(1) Slip-out tolerance with light diffusing film and reflector is + 0,5 mm at each side.

NOTE

Tolerance ± 0,25 mm unless otherwise specified.

CQ327; CQ327R CQ330; CQ330R

CQ331; CQ331R CQ332; CQ332R

Fig. 3 Indication of segments per digit. (See also Fig. 2 and terminal connection table.)

TERMINAL CONNECTION TABLE (see Figs 2 and 3)

terminal number	addro	ess	CQ327 CQ327R	CQ330 CQ330R	CQ331 CQ331R	CQ332 CQ332R
1	com	mon	comm	on for all segm	ents, colon and o	dots
2	p.m. dot		С	n.c.	С	С
3	a.m.	a.m. dot		n.c.	С	С
4 5 6 7 8 9	A F G E D C B	10s hour digit	n.c. n.c. n.c. n.c. c	c c c c	C n.c. C C C C	C C C C C
11 12 13 14 15 16	F G A B E D C	unit hour digit	c c c c c	c c c c	c c c c c	C C C C
18	uppe	r dot of colon	С	С	С	С
19	lowe	r dot of colon	С	С	С	С
20 21 22 23 24 25 26	F G A B D E C	10s minute digit	C C C C	c c c c c	c c c c c	C C C C
27 28 29 30 31 32 33	F G A B E D C	unit minute digit	C C C C C	0 0 0 0 0 0	c c c c c	C C C C C
34	comr	mon	comm	on for all segm	ents, colon and o	dots

CQ327; CQ327R CQ330; CQ330R CQ331; CQ331R CQ332; CQ332R

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC	134)			
Continuous reverse voltage	v_R	max.	3	V
Forward current (d.c.) per segment	1F	max.	20	mΑ
Storage temperature	T_{stq}	-40 to +	75	оС
Operating junction temperature	Τį	-20 to +	60	оС
Soldering temperature	•			

CHARACTERISTICS (single segment)

at 3 mm from reflector edge; t_{sld} ≤ 3 s

•			 ,5	0090
T _{amb} =	25	οС		

Reverse current	
$V_R = 3 V$	

Luminous intensity (normal to surface)
$I_F = 5 \text{ mA}$

I _F = 10 mA
Intensity matching ratio

Forward voltage

 $I_F = 10 \text{ mA}$

I _F = 5 mA	
Wavelength at peak emission	n

Wavelength at peak em	ission
$I_F = 5 \text{ mA}$	

· [= • · · · · ·
Bandwidth at half height
$I_F = 5 \text{ mA}$

< 2,5

max.

tvp.

<

typ.

typ.

T_{sld}

٧F

 I_{R}

 I_{v}

١_v

260 °C

2.0 V

5 μA

 $200~\mu cd$

200 μcd

400 μcd

1,7 to 2,3 V

and the second	^pk	τyp.	700 nm
neight	B _{50%}	typ.	100 nm

NOTES

Avoid immersing the whole display in liquid. Avoid contact with chlorinated solvents. Recommended cleaning solvents for flux and stain contamination, Freon TE or TF and methyl alcohol.

Except for the printed-wiring board, avoid heating the display above 75 °C.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation, it does not necessarily imply that the device will go into regular production, CQ427; CQ427R CQ430; CQ430R CQ431; CQ431R CQ432; CQ432R

4-DIGIT LED CLOCK DISPLAYS

The displays, with the overall dimensions 33,5 mm x 90 mm, have the following features:

- Four 15 mm high red colour digit readout clock display.
- Common anode or cathode configuration for use in static drive connections.
- Wide operating segment current (d.c.) range from 5 mA to 20 mA.
- Each segment performs a diffused and uniform display with high contrast through filtering function of lens cap.
- Highly legible arabic numerals with wide viewing angle.
- Display format available for 12 or 24 hours.
- Solid state reliability and long operational life.

QUICK REFERENCE DATA

Continuous reverse voltage	v_R	max.	3 V
Forward current (d.c.) per segment	۱F	max.	20 mA
Luminous intensity (of segment, normal to surface)			
$I_F = 5 \text{ mA}$	I_V	typ.	100 μcd
Wavelength at peak emission	λ_{pk}	typ.	700 nm

7Z75887.1

TYPE N	IUMBER	FULLY DISPLAYED FONT
common cathode	common anode	FULLY DISPLATED FUNT
CQ427	CQ427R	:18:88
CQ430	CQ430R	88:88
CQ431	CQ431R	:88:88
CQ432	CQ432R	:88:88

Fig. 1.

MECHANICAL DATA

Fig. 2.

NOTE

Tolerance ± 0,25 mm unless otherwise specified.

CQ427; CQ427R CQ430; CQ430R CQ431; CQ431R CQ432; CQ432R

Fig. 3 Indication of segments per digit. (See also Fig. 2 and terminal connection table.)

TERMINAL CONNECTION TABLE (see Figs 2 and 3)

number address CQ427R CQ4		CQ432				
	30R CQ431R	CQ432R				
1 common for a	common for all segments, colon and dots					
2 p.m. dot c n.d	c. c	С				
3 a.m. dot c n.	c. c	С				
	с с	С				
	c n.c.	С				
	С	С				
	СС	С				
	СС	С				
	СС	С				
10 B C	ССС	С				
	СС	С				
12 G c	СС	С				
	СС	С				
	СС	С				
	СС	С				
	СС	С				
	СС	С				
18 upper dot of colon c	с с	С				
19 lower dot of colon c	СС	С				
20 F c	с с	С				
	с с	С				
	СС	С				
	СС	С				
	С	С				
	С	С				
26 C J c	ССС	С				
27 F C	с с	С				
	ССС	С				
	ССС	С				
	ССС	С				
	с с	С				
	с с	С				
33 C c	с с	С				
34 common common for a	all sefments, colon and c	lots				

CQ427; CQ427R CQ430; CQ430R CQ431; CQ431R CQ432; CQ432R

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) 3 V Continuous reverse voltage ٧ĸ max. Forward current (d.c.) per segment ۱F max. 20 mA T_{stg} -40 to + 75 °C Storage temperature -20 to +60 °C Operating junction temperature Τį Soldering temperature

260 °C

max.

Tsld

CHARACTERISTICS (single segment)

at 3 mm from reflector edge; t_{sld} ≤ 3 s

T_{amb} = 25 °C

Forward voltage $I_F = 10 \text{ mA} \qquad \qquad V_F \qquad \begin{array}{c} \text{typ.} & \text{2,0 V} \\ \text{1,7 to 2,3 V} \end{array}$

Reverse current $V_R = 3 \ V$ $I_R < 5 \ \mu A$ Luminous intensity (normal to surface)

 $I_F = 5 \text{ mA}$ I_V typ. $100 \mu \text{cd}$ $I_F = 10 \text{ mA}$ I_V typ. $160 \mu \text{cd}$ I_V typ. $160 \mu \text{cd}$

 $_{\text{F}}$ = 10 mA $_{\text{pcd}}$ typ. 160 $_{\text{pcd}}$ Intensity matching ratio $_{\text{F}}$ = 5 mA $_{\text{pcd}}$

Wavelength at peak emission $I_F = 5 \text{ mA} \qquad \qquad \lambda_{pk} \qquad \text{typ.} \qquad 700 \text{ nm}$

Bandwidth at half height $I_F = 5 \text{ mA}$ $B_{50\%}$ typ. 100 nm

Avoid immersing the whole display in liquid.

Avoid contact with chlorinated solvents. Recommended cleaning solvents for flux and stain contamination, Freon TE or TF and methyl alcohol.

Except for the printed-wiring board, avoid heating the display above 75 $^{\rm oC}$.

PHOTOCOUPLERS

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

HIGH-VOLTAGE PHOTOCOUPLER

Optically coupled isolator consisting of an infrared emitting GaAs diode and a silicon n-p-n phototransistor without accessible base.

Features of this product:

- very high isolation voltage of 10 kV (d.c.).
- working voltage of 10 kV (d.c.).

QUICK REFERENCE DATA

Diode				
Continuous reverse voltage	v_R	max.	5	٧
Forward current d.c. (peak value); $t_p = 10 \mu s$; $\delta = 0.1$	I _F I _{FM}	max. max.	100 1000	
Total power dissipation up to $T_{amb} = 25 {}^{\circ}\text{C}$	P_{tot}	max.	100	mW
Transistor				
Collector-emitter voltage (open base)	v_{CEO}	max.	30	V
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	100	mW
Photocoupler				
Output/input d.c. current transfer ratio $I_F = 10 \text{ mA}$; $V_{CE} = 0.4 \text{ V}$; ($I_B = 0$)	I _C /I _F	>	0,2	
Collector cut-off current (dark) V _{CC} = 10 V; working voltage (d.c.) = 10 kV				
diode: $I_F = 0$ (see also Fig. 4)	ICEW	<	200	nΑ
Isolation voltage (d.c.)	v_{10}	>	10	kV

MECHANICAL DATA

See Fig. 1.

MECHANICAL DATA

Fig. 1.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Diode				
Continuous reverse voltage	v_R	max.	5	٧
Forward current				
d.c.	۱ _F	max.	100	mΑ
(peak value); $t_p = 10 \mu s$; $\delta = 0.1$	I _{FM}	max.	1000	mΑ
Total power dissipation up to $T_{amb} = 25 {}^{\circ}C$	P _{tot}	max.	100	mW
Transistor				
Collector-emitter voltage (open base)	V _{CEO}	max.	30	V
Emitter-collector voltage (open base)	VECO	max.	7	V

Collector current

u.c.	ıC	max.	25 mA
peak value	ICM	max.	50 mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	100 mW

July 1980

Photocoupler				
Storage temperature	T_{stg}	–55 to ⁴	100	oC
Junction temperature	Tj	max.	100	οС
Lead soldering temperature up to the seating plane; t _{sld} < 10 s	T _{sld}	max.	260	oC
THERMAL RESISTANCE				
From junction to ambient in free air diode transistor	R _{th j-a} R _{th j-a}	=		oC\M oC\M
CHARACTERISTICS				
T _j = 25 °C unless otherwise specified				
Diode				
Forward voltage I _F = 10 mA	٧ _F	typ.	1,2 1,5	
Reverse current V _R = 5 V	I _R	<	100	μΑ
Transistor				
Collector cut-off current (dark) VCE = 10 V	I _{CEO}	typ.	-	nA nA
Photocoupler (I _B = 0)*				
Output/input d.c. current transfer ratio $I_F = 10 \text{ mA}$; $V_{CE} = 0.4 \text{ V}$	I _C /I _F	>	0,2	
Collector-emitter saturation voltage I _F = 10 mA; I _C = 2 mA	V _{CEsat}	typ.	0,4	V
Isolation voltage, d.c. value	v_{10}	>	10	kV
Capacitance between input and output $I_F = 0$; $V = 0$; $f = 1$ MHz	C _{io}	typ.	1	pF
Insulation resistance between input and output $\pm V_{10} = 1 \text{ kV}$	rIO	> typ.	10 ¹¹ 10 ¹²	

^{*} Where the phototransistor receives light from the diode the O (for open base) has been omitted from the symbols.

Switching times (see Figs 2 and 3)

$$I_{Con} = 2 \text{ mA}; V_{CC} = 20 \text{ V}; R_1 = 100 \Omega$$

Rise time

Fall time

Fig. 2 Switching circuit.

Fig. 3 Waveforms.

Collector cut-off current (dark) see Fig. 4
V_{CC} = 10 V; working voltage (d.c.) = 10 kV

I_{CEW} < 200 nA*

Fig. 4.

^{*} As quality assurance (on a sample basis), these parameters are covered by a 1000 h reliability test.

7Z82741

Fig. 8 Power derating curve for diode and transistor versus ambient temperature.

100

Fig. 9 $I_F = 0$; $V_{CE} = 20 \text{ V}$.

DEVELOPMENT SAMPLE DATA

Fig. 10 $I_F = 0$; $T_j = 25$ °C.

Fig. 11 - t_r ; - - t_o ; I_B = 0; V_{CC} = 20 V; T_{amb} = 25 o C; typical values. See also Fig. 13.

Fig. 12 — t_f ; — $-t_{off}$; I_B = 0; V_{CC} = 20 V; T_{amb} = 25 °C; typical values. See also Fig. 13.

Fig. 13 Switching circuit and waveforms.

Optically coupled isolators consisting of an infrared emitting GaAs diode and a silicon n-p-n phototransistor with accessible base. Plastic envelopes. Suitable for TTL integrated circuits.

Features of these products:

- high output/input d.c. current transfer ratio;
- low saturation voltage;
- high isolation voltage of 3 kV (r.m.s.) and 4,4 kV (d.c.);
- working voltage 1,5 kV.

QUICK REFERENCE DATA

Diode				
Continuous reverse voltage		v_R	max.	3 V
Forward current				
d.c.		۱F	max.	100 mA
(peak value); $t_p = 10 \mu s$; $\delta = 0,1$		¹ FM	max.	3000 mA
Total power dissipation up to $T_{amb} = 25$ °C		P_{tot}	max.	200 mW
Transistor				
Collector-emitter voltage (open base)		v_{CEO}	max.	30 V
Total power dissipation up to T_{amb} = 25 ${}^{o}C$		P_{tot}	max.	200 mW
Photocoupler				
Output/input d.c. current transfer ratio				
$I_F = 10 \text{ mA}; V_{CE} = 0.4 \text{ V}; (I_B = 0)$	CNX35	IC/IF	>	0,4
	CNX36	IC/IF	>	0,8
Collector cut-off current (dark)				
$V_{CC} = 10 \text{ V}$; working voltage (d.c.) = 1,5 kV diode: $I_F = 0$ (see also Fig. 2)		ICEW	<	200 nA
Isolation voltage (d.c.)		0211		
t = 1 min		v_{10}	>	4,4 kV

MECHANICAL DATA

SOT-90 (see Fig. 1)

MECHANICAL DATA

Fig. 1 SOT-90.

Dimensions in mm

- Positional accuracy.
- M Maximum Material Condition.
- (1) Lead spacing tolerances apply from seating plane to the line indicated.
- (2) Centre-lines of all leads are within ± 0,125 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ± 0,25 mm.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Diode

Continuous reverse voltage	v_R	max.	3 \	V
Forward current d.c. (peak value); $t_D = 10 \mu s$; $\delta = 0.1$	l _E M		100 r 3000 r	
Total power dissipation up to $T_{amb} = 25 {}^{\circ}\text{C}$	P _{tot}		200 r	
Transistor				

Total power dissipation up to $T_{amb} = 25 {}^{\circ}\text{C}$	Ptot	max.	200 mW
Transistor			
Collector-emitter voltage (open base)	VCEO	max.	30 V
Collector-base voltage (open emitter)	$v_{\sf CBO}$	max.	70 V
Emitter-collector voltage (open base)	VECO	max.	7 V
Collector current (d.c.)	IC	max.	100 mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	200 mW

Isolation voltage, d.c. value **

Photocoupler					
Storage temperature		T_{stg}	-55 to	+ 150	οс
Operating junction temperature		T _i	max.	125	
Lead soldering temperature up to the seating plane; t _{sld} < 10 s		T _{sld}	max.	260	
THERMAL RESISTANCE					
From junction to ambient in free air diode transistor From junction to ambient, device		R _{th j-a} R _{th j-a}	=		oC/W
mounted on a printed-circuit board diode transistor		R _{th j-a} R _{th j-a}	=		oC/W
CHARACTERISTICS					
$T_j = 25$ °C unless otherwise specified					
Diode					
Forward voltage I _F = 10 mA		٧ _F	typ.	1,15 1,5	
Reverse current V _R = 3 V		I _R	<	10	μΑ
Transistor (diode: $I_F = 0$)					
Collector cut-off current (dark) VCE = 10 V		ICEO	typ.		nA nA
V _{CE} = 10 V; T _{amb} = 70 °C		ICEO	<	10	μΑ
$V_{CB} = 10 V$		ICBO	<	20	nΑ
Photocoupler (I _B = 0)*					
Output/input d.c. current transfer ratio $I_F = 10 \text{ mA}$; $V_{CE} = 5 \text{ V}$		I _C /I _F	typ.	1,5	
$I_F = 10 \text{ mA}; V_{CE} = 0.4 \text{ V}$	CNX35 CNX36	IC/IF	> 0,4	to 1,6 0,8	
Collector-emitter saturation voltage $I_F = 10 \text{ mA}$; $I_C = 2 \text{ mA}$ $I_F = 10 \text{ mA}$; $I_C = 4 \text{ mA}$		V _{CEsat} V _{CEsat}	typ. typ.	0,15 0,19	
•		02000			

4,4 kV

 V_{10}

^{*} Where the phototransistor receives light from the diode the O (for open base) has been omitted from the symbols.

^{**} Tested with a d.c. voltage for 1 minute between shorted input leads and shorted output leads.

Collector cut-off current (light) at Tamb = 0 °C to 70 °C $V_F = 0.8 \text{ V}; V_{CF} = 15 \text{ V}$

 $I_F = 2 \text{ mA}$; $V_{CF} = 0.4 \text{ V}$

Collector capacitance at f = 1 MHz

 $I_E = I_e = 0$; $V_{CR} = 10 \text{ V}$

Capacitance between input and output $I_F = 0$; V = 0; f = 1 MHz

Insulation resistance between input and output

 $\pm V_{10} = 1 kV$

Switching times (see Figs 2 and 3) $I_{Con} = 2 \text{ mA}$; $V_{CC} = 5 \text{ V}$; $R_L = 100 \Omega$

Turn-on time

Turn-off time

 $I_{Con} = 2 \text{ mA}$; $V_{CC} = 5 \text{ V}$; $R_L = 1 \text{ k}\Omega$

Turn-on time

Turn-off time

Fig. 2 Switching circuit.

<

>

typ.

typ.

typ.

typ.

typ.

ICE(L)

ICE(L)

 C_{c}

Cio

rio

ton

toff

15 µA

150 μA

4,5 pF

0,6 pF

 $10^{10} \Omega$

 $10^{12} \Omega$

3 μs

3 µs

Fig. 3 Waveforms.

7267238 1

Collector cut-off current (dark) see Fig. 4 $V_{CC} = 10 \text{ V}$; working voltage (d.c.) = 1,5 kV

 $V_{CC} = 10 \text{ V}$; working voltage (d.c.) = 1,5 kV; $T_i = 70 \text{ }^{\circ}\text{C}$

ICFW < 200 nA * **ICEW** < 100 μA *

Fig. 4.

^{*}As quality assurance (on a sample basis), these parameters are covered by a 1000 h reliability test.

Fig. 7 Typical values.

Fig. 8 $I_F = 50 \,\mu\text{A}$.

Fig. 9 $I_F = 0$; $V_{CE} = 10 \text{ V}$.

Fig. 10 $I_F = 0$; $T_j = 25$ °C.

Fig. 11 Typical values.

Fig. 12 I_B = 0; I_C = 2 mA; V_{CC} = 5 V; R_L = 1 k Ω ; T_{amb} = 25 °C.

Fig. 13 $T_{amb} = 25$ °C, typical values.

Fig. 14 T_{amb} = 25 °C; t_p = 10 μ s; T = 1 ms; typical values.

Fig. 15 $V_{CB} = 5 V$; $T_{amb} = 25 \circ C$.

Fig. 16 $I_B = 0$; $V_{CE} = 5 \text{ V}$; $T_{amb} = 25 \text{ }^{o}\text{C}$; typical values.

10³

7Z82662

Fig. 21 $I_B = 0$; $T_{amb} = 25$ °C; typical values.

Fig. 22 Max. permissible power dissipation for diode and transistor versus ambient temperature.

Fig. 23 I_B = 0; V_{CC} = 5 V; T_{amb} = 25 °C; typical values. (See also Fig. 25.)

Fig. 24 I_B = 0; V_{CC} = 5 V; T_{amb} = 25 °C; typical values. (See also Fig. 25.)

Fig. 25 Switching circuit and waveforms.

CNX37

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

HIGH-VOLTAGE PHOTOCOUPLER

The CNX37 is a photocoupler consisting of an infrared emitting GaAs diode and a silicon n-p-n phototransistor in a dual-in-line (DIL) envelope.

Features

D:- 4-

- high current transfer ratio and a low saturation voltage suitable for use with TTL integrated circuits
- high degree of a.c. and d.c. insulation (3,9 kV r.m.s. and 5,3 kV d.c.)
- working voltage of 2,5 kV (d.c.)

QUICK REFERENCE DATA

Diode			
Continuous reverse voltage	v_R	max.	3 V
Forward current d.c. peak value; t_{on} = 10 μ s; δ = 0,01 Total power dissipation up to T_{amb} = 45 °C when mounted on a p.c.b.	I _F I _{FM} P _{tot}	max. max. max.	100 mA 3 A 200 mW
Transistor			
Collector-emitter voltage (open base)	V_{CEO}	max.	30 V
Total power dissipation up to T _{amb} = 45 °C when mounted on a p.c.b.	P _{tot}	max.	200 mW
Photocoupler			
Output/input d.c. current transfer ratio $I_F = 10 \text{ mA; } V_{CE} = 5 \text{ V}$	IC/IF	min.	1,5
Collector cut-off current (dark) V _{CC} = 10 V; working voltage (d.c.) = 2,5 kV I _F (diode) = 0 (see note 1)	^I CEW	max.	200 nA
Test isolation voltage (d.c.) t = 1 min (see note 2)	v ₁₀	max.	5,3 kV

MECHANICAL DATA

See Fig. 1.

MECHANICAL DATA

Fig. 1 SOT-90B.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Diode

Diode			
Continuous reverse voltage	v_{R}	max.	3 V
Forward current d.c. peak value; $t_{OR} = 10 \mu s$; $\delta = 0.01$	I _F I _{FM}	max. max.	100 mA 3 A
Total power dissipation up to T_{amb} = 45 °C when mounted on a p.c.b.	P _{tot}	max.	200 mW
Transistor			
Collector-emitter voltage (open base)	V _{CEO}	max.	30 V
Collector-base voltage (open emitter)	$v_{\sf CBO}$	max.	70 V
Emitter-collector voltage	V _{ECO}	max.	7 V

Emitter-collector voltage

Collector current (d.c.) Total power dissipation up to T_{amb} = 45 °C when mounted on a p.c.b.

max.

7 V 100 mA max.

Ptot

Ic

max. 200 mW

V_{CB} = 10 V

Photocoupler				
Storage temperature	T _{stq}	-55 to +	150	οС
Junction temperature	T _i	max.	125	оС
Soldering temperature up to the seating plane; $t_{\rm sld} < 10~{\rm s}$	T _{sld}	max.	260	οС
THERMAL RESISTANCE				
From junction to ambient in free air diode transistor	R _{th j-a} R _{th j-a}	max. max.		K/W K/W
From junction to ambient when mounted on p.c.b. diode transistor	R _{th j-a} R _{th j-a}	max. max.		K/W K/W
CHARACTERISTICS				
T _j = 25 ^o C unless otherwise specified				
Diode				
Forward voltage I _F = 10 mA	VF	typ. max.	1,15 1,50	
Reverse current	I _R	max.	10	μΑ
Transistor				
Collector-emitter breakdown voltage $I_C = 1 \text{ mA}$	V _(BR) CEO	min.	30	٧
Collector-base breakdown voltage $I_C = 0.1 \text{ mA}$	V _{(BR)CBO}	min.	70	٧
Emitter-collector breakdown voltage I _E = 0,1 mA	V _{(BR)ECO}	min.	7	٧
Collector cut-off current (dark); diode I _F = 0 V _{CE} = 10 V	I _{CEO}	typ. max.	-	nA nA
V _{CE} = 10 V; T _{amb} = 70 °C	I _{CEO}	max.	10	μΑ

I_{CBO}

20 nA

max.

Photocoupler

Priotocoupier				
Output/input d.c. current transfer ratio $I_F = 10 \text{ mA}$; $V_{CE} = 0.4 \text{ V}$ $I_F = 10 \text{ mA}$; $V_{CE} = 5 \text{ V}$	I _C /I _F	min. typ.	0,4 1,5	
Collector cut-off current (light) $T_{amb} = 0 \text{ to } 70 ^{\circ}\text{C}; \forall_{F} = 0.8 \text{V}; \forall_{CE} = 15 \text{V}$ $I_{F} = 2 \text{mA}; \forall_{CE} = 0.4 \text{V}$	CE(L)	max. min.	15 150	μΑ μΑ
Collector-emitter saturation voltage $I_F = 10 \text{ mA}$; $I_C = 2 \text{ mA}$	V _{CEsat}	typ. max.	0,15 0,40	
$I_F = 10 \text{ mA}; I_C = 4 \text{ mA}$	V _{CEsat}	typ. max.	0,19 0,40	
Test isolation voltage, d.c. value t = 1 min (see note 2)	V _{IO}	max.	5,3	kV
Output capacitance V _{CB} = 10 V; f = 1 MHz	$C_{\mathbf{c}}$	typ.	4,5	рF
Capacitance between input and output V = 0; f = 1 MHz	C _{io}	typ.	0,6	pF
Insulation resistance between input and output $V_{IO} = \pm 1000 \text{ V}$	R _{IO}	min. typ.	10 ¹⁰ 10 ¹²	
Switching times (see Figs 2 and 3)				
Turn-on time	t _{on}	typ.		μs μs
Turn-off time $I_C = 2 \text{ mA}$; $V_{CC} = 5 \text{ V}$; $R_L = 100 \Omega$ $I_C = 2 \text{ mA}$; $V_{CC} = 5 \text{ V}$; $R_L = 1 \text{ k}\Omega$	t _{off}	typ.	3 12,5	μs μs

Fig. 2 Switching circuit.

Fig. 3 Waveforms.

Note 1:

Collector cut-off current (dark) at working voltage $V_W = 2.5 \text{ kV (d.c. value)}$; $V_{CC} = 10 \text{ V}$; $T_j = 25 \text{ °C}$ $V_{CC} = 10 \text{ V}$; $T_j = 70 \text{ °C}$

$$V_{CC} = 10 \text{ V}; T_j = 25 ^{\circ}\text{C}$$

 $V_{CC} = 10 \text{ V}; T_i = 70 ^{\circ}\text{C}$

200 nA* max. ICEW 100 μA* max.

Fig. 4.

A test voltage of 5,3 kV (d.c.) is applied between the shorted diode leads and the shorted transistor leads for 1 min.

Fig. 5.

^{*} The two parameters are tested on a sample basis for 1000 h.

Fig. 11.

Fig. 12.

Fig. 13.

1,5

1_C

(mA)

3. . . .

1111111

June 1983

See Figs 2 and 3 in connection with Figs 23 and 24.

PHOTOCOUPLER

Optically coupled isolator consisting of an infrared emitting GaAs diode and a silicon n-p-n phototransistor with accessible base. Plastic envelope. Suitable for TTL integrated circuits.

Features of these products:

- high output/input d.c. current transfer ratio;
- low saturation voltage;
- high isolation voltage of 3 kV (r.m.s.) and 4,3 kV (d.c.);
- working voltage 1,5 kV.

QUICK REFERENCE DATA

Diode			
Continuous reverse voltage	v_R	max.	3 V
Forward current d.c. (peak value); $t_p = 10 \ \mu s$; $\delta = 0.1$ Total power dissipation up to $T_{amb} = 25 \ ^{\circ}C$	I _F I _{FM} P _{tot}	max. max. max.	100 mA 1000 mA 150 mW
Transistor			
Collector-emitter voltage (open base)	v_{CEO}	max.	80 V
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	max.	200 mW
Photocoupler			
Output/input d.c. current transfer ratio $I_F = 10 \text{ mA}$; $V_{CE} = 10 \text{ V}$; ($I_B = 0$)	I _C /I _F	0,7	to 2,1
Collector cut-off current (dark) $V_{CC} = 10 \text{ V}$; working voltage (d.c.) = 1,5 kV diode; $I_F = 0$ (see also Fig. 4)	ICEW	<	200 nA
Isolation voltage (d.c.) t = 1 min	V _{IO}	>	4,3 kV

MECHANICAL DATA

SOT-90 (see Fig. 1).

MECHANICAL DATA

Fig. 1 SOT-90.

8,3 max 7270427 0,3 0,2 7,62

Dimensions in mm

- Positional accuracy.
- (M) Maximum Material Condition.
- (1) Lead spacing tolerances apply from seating plane to the line indicated.
- (2) Centre-lines of all leads are within ±0,125 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,25 mm.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Diode

Continuous reverse voltage	v_R	max.	3 V
Forward current d.c. (peak value); $t_p = 10 \ \mu s$; $\delta = 0.1$ Total power dissipation up to $T_{amb} = 25 \ ^{\circ}C$	I _F I _{FM} P _{tot}	max. max. max.	100 mA 1000 mA 150 mW
Transistor			
Collector-base voltage (open emitter)	v_{CBO}	max.	120 V
Collector-emitter voltage (open base)	V _{CEO}	max.	80 V
Emitter-collector voltage (open base)	V_{ECO}	max.	7 V
Collector current (d.c.)	Ic	max.	100 mA
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	200 mW

Photocoupler

Storage temperature

Isolation voltage, d.c. value **

-55 to +150 °C

T_{stg}

	sig		
Operating junction temperature	Тj	max.	125 °C
Lead soldering temperature			
up to the seating plane; t_{sld} < 10 s	T _{sld}	max.	260 °C
THERMAL RESISTANCE			
From junction to ambient in free air			
diode	R _{th j-a}	=	650 °C/W
transistor	R _{th j-a}	= `	500 °C/W
From junction to ambient, device			
mounted on a printed-circuit board diode	р.,	=	600 °C/W
	R _{th j-a}		
transistor	R _{th j-a}	=	400 °C/W
CHARACTERISTICS			
T _j = 25 °C unless otherwise specified			
Diode			
Forward voltage		typ.	1,2 V
I _F = 10 mA	٧ _F	<	1,5 V
Reverse current	_		
V _R = 3 V	I _R	<	10 μΑ
Transistor (diode: I _F = 0)			
Collector cut-off current (dark)		typ.	5 nA
$V_{CE} = 10 \text{ V}$	ICEO	<	50 nA
$V_{CE} = 10 \text{ V; } T_{amb} = 70 \text{ °C}$	ICEO	<	10 μΑ
V _{CB} = 10 V; T _{amb} = 25 °C	I _{CBO}	<	20 nA
Photocoupler (I _B = 0) *			
Output/input d.c. current transfer ratio			
I _F = 10 mA; V _{CE} = 10 V	IC/IF	0,7 t	o 2,1
I _F = 16 mA; V _{CE} = 0,4 V	Ic/IF	>	0,5
Collector-emitter saturation voltage			00.1/
$I_F = 16 \text{ mA}; I_C = 2 \text{ mA}$	v_{CEsat}	typ.	0,2 V 0,4 V
		_	0,4 V

4,3 kV

VIO

^{*} Where the phototransistor receives light from the diode the O (for open base) has been omitted from the symbols.

^{**} Tested with a d.c. voltage for 1 minute between shorted input leads and shorted output leads.

Collector capacitance at f = 1 MHz $I_{E} = I_{e} = 0; V_{CB} = 10 \text{ V}$ C_{c} 6 pF tvp. Capacitance between input and output $I_F = 0; V = 0; f = 1 MHz$ 0,6 pF C_{io} typ. Insulation resistance between input and output 10¹⁰ Ω $\pm V_{10} = 1 \text{ kV}$ rio $10^{12} \Omega$ typ. Switching times (see Figs 2 and 3) I_{Con} = 4 mA; V_{CC} = 5 V; R_L = 100 Ω Turn-on time 5 μs typ. ton Turn-off time 5 μs typ. toff

Fig. 2 Switching circuit.

V_I
0
0
0
0
toff
7267238.1

Fig. 3 Waveforms.

Collector cut-off current (dark) see Fig. 4 $V_{CC} = 10 \text{ V; working voltage (d.c.)} = 1,5 \text{ kV}$ $V_{CC} = 10 \text{ V; working voltage (d.c.)} = 1,5 \text{ kV; } T_i = 70 \text{ °C}$

 I_{CEW} < 200 nA * I_{CEW} < 100 μ A *

Fig. 4.

^{*} As quality assurance (on a sample basis), these parameters are covered by a 1000 h reliability test.

Fig. 5 $T_{amb} = 25$ °C,

 $V_{FM}(V)$ Fig. 6 T_{amb} = 25 °C; t_p = 10 μ s; T = 1 ms.

Fig. 9 $I_F = 0$; $V_{CE} = 10 \text{ V}$.

Fig. 10 $I_F = 0$; $T_j = 25$ °C.

Fig. 11 Typical values.

Fig. 13 $T_{amb} = 25$ °C, typical values.

Fig. 14 T_{amb} = 25 °C; t_p = 10 μ s; T = 1 ms; typical values.

Fig. 15 $V_{CB} = 5 V$; $T_{amb} = 25 °C$.

Fig. 16 $I_B = 0$; $V_{CE} = 5 \text{ V}$; $T_{amb} = 25 \, {}^{o}\text{C}$; typical values.

Fig. 21 $I_B = 0$; $T_{amb} = 25$ °C; typical values.

Fig. 22 Max. permissible power dissipation for total device versus ambient temperature.

Fig. 23 I_B = 0; V_{CC} = 5 V; T_{amb} = 25 °C; typical values. (See also Fig. 25))

Fig. 24 I_B = 0; V_{CC} = 5 V; T_{amb} = 25 °C; typical values. (See also Fig. 25.)

Fig. 25 Switching circuit and waveforms.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

HIGH-VOLTAGE OPTOCOUPLER

The CNX44 is an optocoupler hermetically sealed in a metal envelope. It has a high reliability and can be used under severe conditions such as in military or industrial applications.

An outstanding characteristic is the high common-mode rejection ratio.

QUICK REFERENCE DATA

Diode			
Continuous reverse voltage	v_R	max.	3 V
Forward current d.c. peak value; $t_{OD} = 10 \ \mu s$; $\delta = 0.01$	l _F	max. max.	100 mA 3 A
Total power dissipation up to T _{amb} = 75 °C mounted on a p.c.b.	P _{tot}	max.	150 mW
Transistor			
Collector-emitter voltage (open base)	V_{CEO}	max.	50 V
Total power dissipation up to T _{amb} = 75 °C mounted on a p.c.b.	P _{tot}	max.	150 mW
Photocoupler			
Output/input d.c. current transfer ratio $I_F = 10 \text{ mA}$; $V_{CE} = 0.4 \text{ V}$	I _C /I _F	min.	0,3
Collector cut-off current (dark) V _{CE} = 15 V; working voltage (d.c.) = 1,0 kV I _F (diode) = 0 (see note)	ICEW	max.	200 nA
Test isolation voltage (d.c.)	VIO	max.	1 kV
Common-mode rejection ratio	-10	ux.	
I _C = 2 mA; f = 10 kHz (see Fig. 2)	CMRR	typ.	-85 dB

MECHANICAL DATA

See Fig. 1.

MECHANICAL DATA

Fig. 1 SOT-104C.

Dimensions in mm

Fig. 1.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Diode

Continuous reverse voltage	V _R	max.	3 V
Forward current d.c. peak value; $t_{on} = 10 \mu s$; $\delta = 0.01$	l _F	max. max.	100 mA 3 A
Transistor			
0.11. / 1. 1. 1			EO 1/

Collector-emitter voltage (open base)	VCEO	max.	50 V
Emitter-collector voltage	V _{ECO}	max.	7 V
Collector current (d.c.)	IC	max.	100 mA

Photocoupler

Storage temperature	T _{stg}	-65 to + 1	150	οС
Operating ambient temperature	T _{amb}	-55 to + 1	125	οС
Total power dissipation of diode and				
transistor up to $T_{amb} = 75 {}^{\circ}\text{C}$	P _{tot}	max. 3	300	mW

THERMAL RESISTANCE

From junction to ambient when mounted on p.c.b. diode R_{th j-a} 330 K/W max. transistor 330 K/W R_{th j-a} max.

1 μΑ

100 μΑ

typ.

max.

 I_{R}

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Diode

Forward voltage $I_F = 10 \text{ mA}$	V _F	typ. max.	1,15 V 1,30 V
$I_F = 2 \text{ mA}$; $T_{amb} = 0 \text{ to } 70 ^{\circ}\text{C}$	V _F	max.	1,20 V
Reverse current		4	1 1

 $V_R = 3 V$

Transistor		
Collector-emitter breakdown voltage		

I _C = 1 mA	V(BR)CEO	min.	50 V
Emitter-collector breakdown voltage $I_E = 0,1 \text{ mA}$	V _{(BR)ECO}	min.	7 V
Collector cut-off current (dark); diode $I_F = 0$ $V_{CE} = 20 \text{ V}$	I _{CEO}	typ. max.	5 nA 100 nA
$V_{CE} = 20 \text{ V}; T_{amb} = 70 \text{ °C}$	ICEO	max.	10 μΑ
D.C. current gain $I_C = 10 \text{ mA}$; $V_{CE} = 5 \text{ V}$	hFE	typ.	600

Photocoupler

Collector current $I_F = 10 \text{ mA}$; $V_{CE} = 0.4 \text{ V}$	IC	min. typ.	3 mA 6 mA
I _F = 10 mA; V _{CE} = 5 V	Ic	typ.	10 mA
Switching times (see Figs 4 and 5)			

1F = 10 IIIW, ACE = 2 A	ıC	ιγp.	10 1117
Switching times (see Figs 4 and 5)			
$I_C = 2 \text{ mA}$; $V_{CC} = 5 \text{ V}$; $R_L = 100 \Omega$	^t on	typ.	5 μs 5 μs
	^t off	ryp.	5 μ5
Collector cut off current (dark) at			

Working voltage $V_W = 1 \text{ kV (d.c. value)}$; $V_{CC} = 15 \text{ V; } T_j = 25 \text{ °C (see note)}$ $V_{CC} = 15 \text{ V; } T_j = 70 \text{ °C (see note)}$	ICEW	max. max.	200 nA 50 μA
Test isolation voltage (d.c. value) between shorted input and shorted output terminals	V _{IO}	max.	1 kV
Capacitance between input and output			

V = 0; $f = 1 MHz$	c _{IO}	typ.	1 pF
Insulation resistance between input and output $V_{1O} = 500 \text{ V}$	R _{IO}	min. typ.	100 GΩ 1000 GΩ

Common-mode rejection ratio (see Fig. 2)			
$I_C = 2 \text{ mA}; f = 10 \text{ kHz}$	CMRR	typ.	-85 dB

Fig. 2.

Note (see Fig. 3):

Collector cut-off current (dark) at working voltage $V_W = 1 \text{ kV (d.c. value)};$ $V_{CC} = 10 \text{ V}; T_j = 25 \text{ °C}$ $V_{CC} = 10 \text{ V}; T_j = 70 \text{ °C}$

200 nA* max. **ICEW** 50 μA* max.

Fig. 3 $V_W = 1 \text{ kV (d.c.)}$; $V_{CC} = 10 \text{ V}$.

^{*} The two parameters are tested on a sample basis for 1000 h.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 11.

Fig. 14.

Fig. 15.

Fig. 16.

418

Fig. 21.

PHOTOCOUPLER

Opto-isolator comprising an infrared emitting GaAs diode and a silicon n-p-n Darlington phototransistor with accessible base. Plastic 6-lead dual-in line (DIL) envelope.

Features:

- very high output/input d.c. current transfer ratio;
- high isolation voltage of 3 kV (r.m.s.) and 4,4 kV (d.c.);
- working voltage 1,5 kV.

QUICK REFERENCE DATA

Diode			
Continuous reverse voltage	v_R	max.	3 V
Forward current d.c.	l _F	max.	100 mA
(peak value); $t_p = 10 \mu s$; $\delta = 0,1$	IFM	max.	3 A
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	200 mW
Transistor			
Collector-emitter voltage (open base)	V _{CEO}	max.	30 V
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	200 mW
Photocoupler			
Output/input d.c. current transfer ratio $I_F = 1 \text{ mA}$; $V_{CE} = 1 \text{ V}$; ($I_B = 0$)	I _C /I _F	min.	5
Collector cut-off current (dark) V _{CC} = 10 V; working voltage (d.c.) = 1,5 kV			
diode: I _F = 0 (see also Fig. 2)	ICEW	max.	1 μΑ
Isolation voltage (d.c.)			4.4.11/
t = 1 min	v_{10}	max.	4,4 kV

MECHANICAL DATA

SOT-90B (see Fig. 1).

MECHANICAL DATA

Fig. 1 SOT-90B.

Dimensions in mm

Positional accuracy.

- M Maximum material condition.
- (1) Lead spacing tolerances apply from seating plane to the line indicated.
- (2) Centre-lines of all leads are within ±0,125 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ±0,25 mm.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Diode

Continuous reverse voltage	v_R	max.	3 V
Forward current			
d.c.	۱۴	max.	100 mA
(peak value); $t_p = 10 \mu s$; $\delta = 0,1$	¹ FM	max.	3 A
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	200 mW
Junction temperature	T_{j}	max.	125 °C

Transistor				
Collector-emitter voltage (open base)	v_{CEO}	max.	30	V
Collector-base voltage (open emitter)	v_{CBO}	max.	30	٧
Emitter-collector voltage (open base)	v_{ECO}	max.	6	٧
Collector current (d.c.)	l _C	max.	100	mΑ
Total power dissipation up to T _{amb} = 25 °C	P_{tot}	max.	200	mW
Junction temperature	Ti	max.	125	οС
Dhatasaunlau	•			
Photocoupler	-	EE		00
Storage temperature	T _{stg}	55 to	+ 125	90
Lead soldering temperature up to the seating plane; t _{sld} < 10 s	T _{sld}	max.	260	٥٥
up to the seating plane, t _{SIQ} < 10.3	sia	max.	200	Ü
THERMAL RESISTANCE				
From junction to ambient in free air				
diode and transistor	R _{th j-a}	=	500	K/W
From junction to ambient, device				
mounted on a printed-circuit board diode and transistor	R _{th j-a}	==	400	K/W
	··tn j-a			,
CHARACTERISTICS				
T _j = 25 °C unless otherwise specified				
Diode				
Forward voltage				
I _F = 10 mA	٧F	typ.	1,15	
Reverse current	•	max.	1,3	V
V _R = 3 V	I _R	max.	10	μΑ
				•
Transistor (diode; $I_F = 0$)				
Collector cut-off current (dark)			-00	nА
V - 40 V		tvp.	20	
V _{CE} = 10 V	ICEO	typ. max.	100	nΑ
V _{CE} = 10 V V _{CB} = 10 V	I _{CEO}		100	nA nA
V _{CB} = 10 V		max.	100	
V _{CB} = 10 V Photocoupler (I _B = 0)*		max.	100	
V _{CB} = 10 V Photocoupler (I _B = 0)* Output/input d.c. current transfer ratio	ICEO	max.	100 20	
$V_{CB} = 10 \text{ V}$ Photocoupler ($I_B = 0$)* Output/input d.c. current transfer ratio $I_F = 0.5 \text{ mA; } V_{CE} = 1 \text{ V}$	I _{CEO}	max. max. min.	100 20 3,5	
V _{CB} = 10 V Photocoupler (I _B = 0)* Output/input d.c. current transfer ratio	ICEO	max.	100 20	

^{*} Where the phototransistor receives light from the diode the O (for open base) has been omitted from the symbols.

Collector cut-off current (dark) see Fig. 2 1 µA* $V_{CC} = 10 \text{ V}$; working voltage (d.c.) = 1,5 kV CEW max. $V_{CC} = 10 \text{ V}$; working voltage (d.c.) = 1,5 kV; $T_i = 70 \text{ °C}$ **ICEW** max. 1000 µA* Collector-emitter saturation voltage V_{CEsat} 1 V $I_F = 5 \text{ mA}; I_C = 10 \text{ mA}$ max. Vio 4.4 kV** Isolation voltage, d.c. value* max. Collector capacitance at f = 1 MHz $I_F = I_e = 0$; $V_{CR} = 10 \text{ V}$ C_{c} typ. 4.5 pF Capacitance between input and output $I_F = 0$; V = 0; f = 1 MHz C_{io} typ. 0,6 pF Insulation resistance between input and output $10^{10} \Omega$ min. $\pm V_{IO} = 1 kV$ rio $10^{12} \Omega$ typ. Switching times (see Figs 3 and 4) 5 us typ. ton $I_{Eop} = 1 \text{ mA}$; $V_{CC} = 5 \text{ V}$; $R_{E} = 100 \Omega$; $R_{BE} = 1 \text{ M}\Omega$ toff typ. 30 us 50 μs ton typ. $I_{Fon} = 10 \text{ mA}$; $V_{CC} = 5 \text{ V}$; $R_E = 1 \text{ k}\Omega$; $R_{BE} = 10 \text{ M}\Omega$ 250 μs typ.

Fig. 2.

Fig. 3 Switching circuit.

Fig. 4 Waveforms.

- * As quality assurance (on a sample basis), these parameters are covered by a 1000 h reliability test.
- ** Tested with a d.c. voltage for 1 minute between shorted input leads and shorted output leads.

transistor as a function of temperature.

Fig. 6 $T_{amb} = 25$ °C.

Fig. 9 $I_F = 0$; $T_j = 25$ °C.

Fig. 10 Typical values.

Fig. 12 $I_F = 0$; typical values.

Fig. 13 Typical values; $I_B = 0$; $T_i = 25$ °C.

Fig. 15 Typical values; $I_B = 0$; $T_{amb} = 25$ °C.

Fig. 14 Typical values; $I_B = 0$; $V_{CE} = 1 V$.

Fig. 16 $I_E = I_e = 0$; f = 1 MHz; $T_{amb} = 25 \text{ }^{\circ}\text{C}$.

Fig. 17 $I_E = 0$; $V_{CB} = 5 \text{ V}$; $T_{amb} = 25 \text{ °C}$.

Fig. 20 Typ. values; $V_{CE} = 1 \text{ V}$; $T_{amb} = 25 \text{ °C}$.

Fig. 21 Typ. values; $V_{CE} = 1 \text{ V}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

HIGH-VOLTAGE PHOTOCOUPLER

The CNX62 is a photocoupler consisting of an infrared emitting GaAs diode and a silicon n-p-n phototransistor in a dual-in-line (DIL) plastic envelope.

Features

- o high current transfer ratio and a low saturation voltage suitable for use with TTL integrated circuits
- high degree of a.c. and d.c. insulation (3750 V r.m.s. and 5300 V d.c.)
- working voltage of 2,5 kV (d.c.)

QUICK REFERENCE DATA

Diode			
Continuous reverse voltage Forward current	v_R	max.	3 V
d.c.	۱F	max.	100 mA
peak value; $t_{OR} = 10 \mu s$; $\delta = 0.01$	IFM	max.	3 A
Total power dissipation up to $T_{amb} = 45$ °C when mounted on a p.c.b.	P _{tot}	max.	200 mW
Transistor			
Collector-emitter voltage (open base)	V_{CEO}	max.	50 V
Total power dissipation up to T _{amb} = 45 °C when mounted on a p.c.b.	P _{tot}	max.	200 mW
Photocoupler			
Output/input d.c. current transfer ratio IF = 10 mA; V _{CE} = 4 V	I _C /I _F	min.	0,4
Collector cut-off current (dark) V _{CC} = 10 V; working voltage (d.c.) = 2,5 kV I _F (diode) = 0 (see note 1)	lo=	may	200 nA
Collector-emitter saturation voltage	ICEM	max.	200 HA
I _F = 10 mA; I _C = 4 mA	v_{CEsat}	max.	0,4 V
Test isolation voltage (d.c.)			
t = 1 min (see note 2)	v_{10}	max.	5,3 kV

MECHANICAL DATA

See Fig. 1.

MECHANICAL DATA

Fig. 1 SOT-174.

Dimensions in mm

Fig. 1.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

11	IOC	0

Continuous reverse voltage	v_R	max.	3 V
Forward current			
d.c.	١Ę	max.	100 mA
peak value; $t_{on} = 10 \mu_s$; $\delta = 0.01$	IFM	max.	3 A
Total power dissipation up to T_{amb} = 45 °C when mounted on a p.c.b.	P _{tot}	max.	200 mW
Transistor			
Collector-emitter voltage (open base)	v_{CEO}	max.	50 V
Emitter-collector voltage	v_{ECO}	max.	7 V
Collector current (d.c.)	IC	max.	100 mA
Total power dissipation up to T _{amb} = 45 °C when mounted on a p.c.b.	P _{tot}	max.	200 mW

500 K/W

400 K/W

400 K/W

1,15 V

1,50 V

10 μA

50 V

7 V

2 nA

50 nA

10 µA

0,4

0,8

1,5

15 μA

150 µA

max.

max.

max.

typ.

max.

max.

Photocoupler

Thotocoupiei			
Storage temperature	T_{stg}	-55 to	+150 °C
Junction temperature	T _j	max.	125 °C
Soldering temperature up to the seating plane; $t_{\rm sld} < 10~{\rm s}$	T_{sld}	max.	260 °C
THERMAL RESISTANCE			
From junction to ambient in free air diode	R _{th} i.a	max.	500 K/W

transistor

From junction to ambient when mounted on p.c.b.

transistor **CHARACTERISTICS**

diode

Diode

T_i = 25 °C unless otherwise specified

Forward voltage
IF = 10 mA

Reverse current $V_R = 3 V$

Transistor Collector-emitter breakdown voltage

 $I_C = 1 \text{ mA}$ Emitter-collector breakdown voltage

 $I_{F} = 0.1 \, \text{mA}$ Collector cut-off current (dark); diode IF = 0 $V_{CE} = 10 V$

 $V_{CF} = 10 \text{ V; } T_{amb} = 70 \text{ }^{\circ}\text{C}$

Photocoupler Output/input d.c. current transfer ratio

 $I_F = 10 \text{ mA}; V_{CF} = 0.4 \text{ V}$ $I_F = 10 \text{ mA}; V_{CE} = 5 \text{ V}$

Collector cut-off current (light) $T_{amb} \le 70 \text{ °C}; V_F = 0.8 \text{ V}; V_{CE} = 15 \text{ V}$

 $T_{amb} \le 70 \, {}^{\circ}\text{C}$; $I_F = 2 \, \text{mA}$; $V_{CE} = 0.4 \, \text{V}$ Collector-emitter saturation voltage

 $I_F = 10 \text{ mA}$; $I_C = 2 \text{ mA}$ $I_F = 10 \text{ mA}; I_C = 4 \text{ mA}$

Rth j-a R_{th i-a}

Rth j-a

Rth i-a

٧F I_{R}

V(BR)CEO min.

min. V(BR)ECO

typ. ICEO

max. max.

> min. typ.

typ.

ICE(L) max. min.

max.

typ. 0.19 V 0,40 V

ICE(L) **VCEsat**

V_{CEsat}

ICEO

Ic/IE

IC/IF

typ.

0,15 V 0,40 V

max.

Turn-off time

Photocoupler (continued)

Collector cut-off current (dark) at working voltage $V_W = 2.5 \text{ kV (d.c. value)}$;			
$V_{CC} = 10 \text{ V}; T_j = 25 ^{\circ}\text{C} \text{ (see note 1)}$ $V_{CC} = 10 \text{ V}; T_j = 70 ^{\circ}\text{C} \text{ (see note 1)}$	ICEW	max. max.	200 nA 100 μA
Test isolation voltage, d.c. value t = 1 min (see note 2)	V _{IO}	max.	5,3 kV
Capacitance between input and output V = 0; f = 1 MHz	C _{io}	typ.	0,6 pF
Insulation resistance between input and output $V_{10} = \pm 1000 \text{ V}$	R _{IO}	min. typ.	$10^{10} \Omega$ $10^{12} \Omega$
Switching times (see Figs 2 and 3)			
Turn-on time			•
$I_C = 2 \text{ mA}$; $V_{CC} = 5 \text{ V}$; $R_L = 100 \Omega$	t _{on}	typ.	3 μs
$I_C = 2 \text{ mA}$; $V_{CC} = 5 \text{ V}$; $R_L = 1 \text{ k}\Omega$	*011	typ.	12 μs

 I_C = 2 mA; V_{CC} = 5 V; R_L = 100 Ω

 $I_C = 2 \text{ mA}$; $V_{CC} = 5 \text{ V}$; $R_L = 1 \text{ k}\Omega$

Fig. 2 Switching circuit.

toff

typ.

typ.

3 μs

200 nA*

100 μA*

12,5 µs

Fig. 3 Waveforms.

CEW

max.

max.

Note 1 (see Fig. 4):

Collector cut-off current (dark) at working voltage $V_W = 2,5 \text{ kV (d.c. value)};$ $V_{CC} = 10 \text{ V}; T_j = 25 \text{ °C}$ $V_{CC} = 10 \text{ V}; T_j = 70 \text{ °C}$

^{*} The two parameters are tested on a sample basis for 1000 h.

Fig. 4.

Note 2:

A test voltage of 5,3 kV (d.c.) is applied between the shorted diode leads and the shorted transistor leads for 1 min.

Fig. 5.

Fig. 6.

DEVELOPMENT SAMPLE DATA

Fig. 14.

Fig. 15.

			1
			ı
,			

PHOTOCOUPLER

Optically coupled isolator consisting of an infrared emitting GaAs diode and a silicon n-p-n photo-transistor with accessible base. Hermetically encapsulated in a metal envelope. The CNY50 is intended for professional applications.

QUICK REFERENCE DATA

Diode					
Continuous reverse voltage		v_R	max.	3	V
Forward current					
d.c.		۱F	max.	100	mΑ
(peak value); $t_p = 300 \ \mu s$; $\delta = 0.02$		¹ FM	max.	3000	mΑ
Total power dissipation up to $T_{amb} = 75 {}^{\circ}C$		P_{tot}	max.	150	mW
Transistor					
Collector-emitter voltage (open base)		VCEO	max.	35	V
Total power dissipation up to $T_{amb} = 75$ °C		P_{tot}	max.	150	mW
Photocoupler					
Output/input d.c. current transfer ratio					
$I_F = 10 \text{ mA}; V_{CE} = 0.4 \text{ V}; (I_B = 0)$	CNY50-1	1C/1F	>	0,25	
	CNY50-2	IC/IF	>	0,40	
Collector cut-off current (dark)					
V_{CC} = 15 V; working voltage (d.c.) = 1 kV					
diode: $I_F = 0$ (see also Fig. 2)		ICEW	<	200	nA
Isolation voltage(d.c.)		v_{10}	>	1	kV

MECHANICAL DATA

Fig. 1 SOT-104B.

Pinning

- 1 emitter
- 2 base
- 3 collector
- 4 anode
- 5 internal connection

Dimensions in mm

6 cathode

Maximum lead diameter guaranteed only for 12,7 mm.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Diode

Continuous reverse voltage	v_R	max.	3 V
Forward current			
d.c.	۱F	max.	100 mA
(peak value); $t_p = 300 \ \mu s$; $\delta = 0.02$	IFM	max.	3000 mA
Total power dissipation up to T _{amb} = 75 °C (see Fig. 2)	P_{tot}	max.	150 mW
Operating junction temperature	T_{j}	max.	125 °C

Transistor

Collector-base voltage (open emitter)	v_{CBO}	max.	70 V
Collector-emitter voltage (open base)	v_{CEO}	max.	35 V
Emitter-collector voltage (open base)	v_{ECO}	max.	7 V
Collector current (d.c.)	1 _C	max.	100 mA

Conector current (a.c.)	1C	IIIax.	TOO IIIA
Total power dissipation up to T _{amb} = 75 °C	P_{tot}	max.	150 mW
Operating junction temperature	Тј	max.	125 °C

Photocoupler		
Total power dissipation up to T _{amb} = 75 °C	P_{tot}	max. 300 mW
Storage temperature	T_{stg}	$-65 \text{ to} + 150 ^{\circ}\text{C}$
Operating ambient temperature	T _{amb}	-40 to +85 °C

THERMAL RESISTANCE

From junction to ambient in free air diode transistor

Fig. 2 Power/temperature derating curve for diode and transistor.

CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified

Diode

Forward voltage $I_F = 2 \text{ mA; } T_{amb} = 0 ^{\circ}\text{C} \text{ to } 70 ^{\circ}\text{C}$		٧ _F	<	1,2 V
I _F = 10 mA		VF	typ.	1,15 V 1,50 V
Reverse current V _R = 3 V		I _R	typ.	1 μA 100 μA
Diode capacitance $V_R = 0$; $f = 1 MHz$		c _d	typ.	75 pF
Transistor (diode: I _F = 0)				
Collector-base breakdown voltage open emitter; I _C = 0,1 mA		V _(BR) CBO	>	70 V
Collector-emitter breakdown voltage open base; $I_C = 1 \text{ mA}$		V _{(BR)CEO}	>	35 V
Emitter-collector breakdown voltage open base; $I_E = 0.1 \text{ mA}$		V _{(BR)ECO}	>	7 V
Collector cut-off current (dark) IE = 0; VCB = 10 V		¹ СВО	<	20 nA
I _B = 0; V _{CE} = 20 V		ICEO	typ.	5 nA 100 nA
$I_B = 0$; $V_{CE} = 20 \text{ V}$; $T_{amb} = 70 \text{ °C}$		ICEO	<	10 μΑ
D.C. current gain $I_C = 10 \text{ mA}$; $V_{CE} = 5 \text{ V}$		hFE	typ.	600
Photocoupler (I _B = 0)*				
Collector cut-off current (light)	0011/50 4			4 4
$V_F = 0.8 \text{ V}; V_{CE} = 15 \text{ V}; T_{amb} = 0 ^{\circ}\text{C} \text{ to } 70 ^{\circ}\text{C}$	CNY50-1	l _C	<	15 μA
I _F = 2 mA; V _{CE} = 0,4 V; T _{amb} = 0 °C to 70 °C	CNY50-2	1 _C	<	150 μΑ
Output/input d.c. current transfer ratio $I_F = 10 \text{ mA}$; $V_{CE} = 0.4 \text{ V}$	CNY50-1	I _C /I _F	typ. 0,25	0,4 to 1,0
	CNY50-2	IC/IF	typ. 0,40	0,8 to 1,6
Collector cut-off current (dark) see Fig. 3 V _{CC} = 15 V; working voltage (d.c.) = 1 kV				
$T_j = 25$ °C		I _{CEW}	<	200 nA
T _j = 70 °C		ICEW	<	100 μΑ

^{*} Where the phototransistor receives light from the diode the O (for open base) has been omitted from the symbols.

Isolation voltage, d.c. value measured between shorted input leads v_{10} and shorted output leads 1 kV Capacitance between input and output $I_F = 0$; V = 0; f = 1 MHz C_{io} 1 pF typ. Insulation resistance between input and output 100 GΩ $\pm V_{10} = 500 V$ rIO typ. 1000 $G\Omega$

Fig. 3.

Fig. 8 $I_F = 0$; $V_{CE} = 20 \text{ V}$.

Fig. 11 $I_E = 0$; $V_{CB} = 5 \text{ V}$; $T_{amb} = 25 \, {}^{o}\text{C}$.

Fig. 13 I_B = 0; I_C = 2 mA; V_{CC} = 5 V; R_L = 1 $k\Omega$; T_{amb} = 25 °C.

Fig. 14 $T_{amb} = 25$ °C; typical values.

Fig. 15 $T_{amb} = 25$ °C; typical values.

Fig. 16 T_{amb} = 25 °C; t_p = 10 μ s; δ = 0,01; typical values.

Fig. 17 $I_B = 0$; $V_{CE} = 5 V$; $T_{amb} = 25 \, {}^{o}C$; typical values.

Fig. 20 $I_B = 0$; $T_{amb} = 25$ °C; typical values.

75

toff
(μ s)

50 $R_L = 5 k\Omega$ 100 Ω 100 Ω

Fig. 21 I_B = 0; V_{CC} = 5 V; T_{amb} = 25 °C; typical values. (See Fig. 23).

Fig. 22 I_B = 0; V_{CC} = 5 V; T_{amb} = 25 °C; typical values. (See Fig. 23).

Fig. 23 Switching circuit and waveforms.

PHOTOCOUPLERS

Optically coupled isolators consisting of an infrared emitting GaAs diode and a silicon n-p-n phototransistor with accessible base. Plastic envelopes. Suitable for TTL integrated circuits.

Features of these products:

- high output/input d.c. current transfer ratio;
- low saturation voltage;
- high isolation voltage
 CNY52 3,75 kV (r.m.s.) and 5,3 kV (d.c.);
 CNY53 3 kV (r.m.s.) and 4,3 kV (d.c.);
- working voltage 1,5 kV.

QUICK REFERENCE DATA

Diode	CNY52	CNY53
Continuous reverse voltage	V _R max. 3	3 V
Forward current		
d.c.	IF max. 100	100 mA
(peak value); $t_p = 10 \mu s$; $\delta = 0.1$	I _{FM} max. 1000	1000 mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot} max. 150	150 mW
Transistor		
Collector-emitter voltage (open base)	V _{CEO} max. 50	30 V
Total power dissipation up to $T_{amb} = 25 ^{\circ}\text{C}$	P _{tot} max. 200	200 mW
Photocoupler		
Output/input d.c. current transfer ratio $I_F = 10 \text{ mA}$; $V_{CE} = 0.4 \text{ V}$; ($I_B = 0$)	I _C /I _F > 0,25	0,50
Collector cut-off current (dark) VCC = 10 V; working voltage (d.c.) = 1,5 kV	200	200 - 4
diode: I _F = 0 (see also Fig. 2)	I _{CEW} < 200	200 nA
Isolation voltage (d.c.)	V > 50	42.17
t = 1 min	V_{1O} > 5,3	4,3 kV

MECHANICAL DATA

SOT-91A (see Fig. 1)

MECHANICAL DATA

Fig. 1 SOT-91A.

Dimensions in mm

7 V

VECO

max.

(M) Maximum material condition.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Diode				
Continuous reverse voltage		v_R	max.	3 V
Forward current d.c. (peak value); $t_p = 10 \ \mu s$; $\delta = 0.1$ Total power dissipation up to $T_{amb} = 25 \ ^{\circ}C$ Operating junction temperature		I _F I _{FM} P _{tot} T _j	max. max. max. max.	100 mA 1000 mA 150 mW 125 °C
Transistor				
Collector-emitter voltage (open base)	CNY52 CNY53	V _{CEO}	max. max.	50 V 30 V
Collector-base voltage (open emitter)		V _{CBO}	max.	50 V

Emitter-collector voltage (open base)

		_			
6 H					
Collector current (d.c.)		l _C	max.	100	
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	200	
Operating junction temperature		т _ј	max.	125	00
Photocoupler					
Storage temperature		T _{stg}	-55 to	+150	оС
Lead soldering temperature		J			
up to the seating plane; t_{sld} $<$ 10 s		T_{sld}	max.	260	оС
THERMAL RESISTANCE					
From junction to ambient in free air					
diode transistor		R _{th j-a}	=		OC/mW
From junction to ambient, device		R _{th j-a}	=	0,5	oC/mW
mounted on a printed-circuit board					
diode		R _{th j-a}	=		oC/mW
transistor		R _{th j-a}	=	0,4	oC/mW
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Diode					
Forward voltage			typ.	1,2	V
I _F = 10 mA		٧F	<	1,5	
Reverse current					
V _R = 3 V		1 _R	<	10	μΑ
Transistor (diode: $I_F = 0$)					
Collector cut-off current (dark)			typ.	5	nA
V _{CE} = 10 V		ICEO	<	100	nA
$V_{CE} = 10 \text{ V; } T_{amb} = 70 \text{ °C}$		ICEO	<	10	μΑ
V _{CB} = 10 V		Ісво	<	20	nA
Photocoupler (I _B = 0)*					
Output/input d.c. current transfer ratio					
I _F = 10 mA; V _{CE} = 0,4 V	CNY52	I _C /I _E	>	0,25	
	CNY53	1-/1-	typ. >	0,50 0,5	
	CNTOS	I _C /I _F	typ.	1,0	
Collector cut-off current (dark) see Fig. 2					
V _{CC} = 10 V; working voltage (d.c.) = 1,5 k\		CEW	<	200	
$V_{CC} = 10 V$; working voltage (d.c.) = 1,5 kV	/; T _j = 70 °C	ICEW	<	100	μΑ

^{*} Where the phototransistor receives light from the diode the O (for open base) has been omitted from the symbols.

		C	NY52	CNY53	
I _F = 10 mA; I _C = 2 mA	V _{CEsat}	typ.	0,17 0,40	_	V V
I _F = 10 mA; I _C = 4 mA	V _{CEsat}	typ.	_	0,17 0,40	
Isolation voltage, d.c. value*	v_{10}	>	5,3	4,3	kV
Capacitance between input and output I F = 0; V = 0; f = 1 MHz	C _{io}	typ.	0,6	0,6	pF
Insulation resistance between input and output $\pm V_{1O} = 1 \text{ kV}$	rIO	> typ.	10 ¹⁰ 10 ¹²	10 ¹⁰ 10 ¹²	Ω
Switching times (see Figs 3 and 4) $I_{Con} = 2 \text{ mA}; V_{CC} = 5 \text{ V}; R_L = 100 \Omega$ Turn-on time	^t on	typ.	3	_	μs
Turn-off time	ton toff	typ.	3	_	μs
$I_{Con} = 4 \text{ mA}$; $V_{CC} = 5 \text{ V}$; $R_L = 100 \Omega$ Turn-on time	t _{on}	typ.	_	5	μs
Turn-off time	^t off	typ.	_	5	μs

Fig. 2.

Fig. 3 Switching circuit.

Fig. 4 Waveforms.

^{*} Tested with a d.c. voltage for 1 minute between shorted input leads and shorted output leads.

Fig. 9 $I_F = 0$; $V_{CE} = 10 \text{ V}$.

Fig. 10 $I_F = 0$; $T_i = 25$ °C.

Fig. 12. $I_E = 0$; $V_{CB} = 5 \text{ V}$; $T_{amb} = 25 \text{ °C}$.

Fig. 11 I_F = 0; Typical values.

Fig. 14 CNY52; $I_B = 0$; $V_{CE} = 5 \text{ V}$; $T_{amb} = 25 \text{ }^{o}\text{C}$; typical values.

Fig. 15 CNY53; $I_B = 0$; $V_{CE} = 5 V$; $T_{amb} = 25 \, {}^{o}C$; typical values.

Fig. 16 CNY52; $T_{amb} = 25$ °C; typical values.

Fig. 18 CNY52; $T_{amb} = 25$ °C; typical values.

Fig. 17 CNY53; T_{amb} = 25 °C; t_p = 10 μ s; T = 1 ms; typical values.

Fig. 19 CNY53; T_{amb} = 25 °C; Typical values.

Fig. 20 I $_B$ = 0; I $_C$ = 2 mA; V $_{CC}$ = 5 V; R $_L$ = 1 k Ω ; T $_{amb}$ = 25 °C.

Fig. 21 —— CNY52; —— CNY53; $I_B = 0$; $I_F = 10$ mA; typical values.

Fig. 22 CNY52; $I_B = 0$; $T_{amb} = 25$ °C; typical values.

Fig. 23 CNY53; $I_B = 0$; $T_{amb} = 25$ °C; typical values.

7Z82044

Fig. 24 CNY52; I_B = 0; V_{CC} = 5 V; T_{amb} = 25 °C; typical values. (See also Fig. 26.)

T_{amb} = 25 °C; typical values. (See also Fig. 26.)

Fig. 26 Switching circuit and waveforms.

75

Fig. 27 CNY53; $I_B = 0$; $V_{CC} = 5$ V; $T_{amb} = 25$ °C; typical values. (See also Fig. 29.)

Fig. 28 CNY53; $I_B = 0$; $V_{CC} = 5$ V; $T_{amb} = 25$ °C; typical values. (See also Fig. 29.)

Fig. 29 Switching circuit and waveforms.

PHOTOCOUPLERS

Optically coupled isolators consisting of an infrared emitting GaAs diode and a silicon n-p-n phototransistor with accessible base. Plastic envelopes. Suitable for TTL integrated circuits.

Features of these products:

- high output/input d.c. current transfer ratio;
- low saturation voltage;
- high isolation voltage of 3 kV (r.m.s.) and 4,3 kV (d.c.);
- working voltage 1,5 kV.

QUICK REFERENCE DATA

Diode				
Continuous reverse voltage		v_R	max.	3 V
Forward current d.c. (peak value); $t_p = 10 \ \mu s$; $\delta = 0.1$ Total power dissipation up to $T_{amb} = 25 \ ^{o}C$		I _F I _{FM} P _{tot}	max. max. max.	100 mA 1000 mA 150 mW
Transistor				
Collector-emitter voltage (open base)		V_{CEO}	max.	30 V
Total power dissipation up to T_{amb} = 25 o C		P_{tot}	max.	200 mW
Photocoupler				
Output/input d.c. current transfer ratio $I_F = 10 \text{ mA}$; $V_{CE} = 0.4 \text{ V}$; $(I_B = 0)$	CNY57 CNY57A	^I C/I _F IC/I _F	> >	0,2 0,4
Collector cut-off current (dark) $V_{CC} = 10 \text{ V}$; working voltage (d.c.) = 1,5 kV diode: $I_F = 0$ (see also Fig. 2)		¹ CEW	<	200 nA
Isolation voltage (d.c.) t = 1 min		v _{IO}	>	4,3 kV

MECHANICAL DATA

SOT-90 (see Fig. 1)

MECHANICAL DATA

6 5 4

Continuous reverse voltage

Dimensions in mm

3 V

max.

- Positional accuracy.
- M Maximum material condition.
 - Lead spacing tolerances apply from seating plane to the line indicated.
- (2) Centre-lines of all leads are within ± 0,125 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by ± 0,25 mm.

V٥

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Diode

Continuous reverse vertage	* rt	mar.		•
Forward current				
d.c.	lF	max.	100	mΑ
(peak value); $t_p = 10 \mu s$; $\delta = 0.1$	IFM	max.	1000	mΑ
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	150	mW
Operating junction temperature	T_{j}	max.	125	оС
Transistor				
Collector-emitter voltage (open base)	V_{CEO}	max.	30	V
Collector-base voltage (open emitter)	V_{CBO}	max.	50	V
Emitter-collector voltage (open base)	VECO	max.	7	٧

_				<u> </u>		
	Collector current (d.c.)		l _C	max.	100	mA
	Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	200	mW
	Operating junction temperature		Ti	max.	125	oC
	Photocoupler		·			
	Storage temperature		T _{stq}	-55 to +	150	оС
	Lead soldering temperature up to the seating plane; $t_{\rm sld} <$ 10 s		T _{sld}	max.	260	оС
	THERMAL RESISTANCE					
	From junction to ambient in free air diode transistor		R _{th j-a} R _{th j-a}	=		oC/mW
	From junction to ambient, device mounted on a printed-circuit board diode transistor		R _{th j-a} R _{th j-a}	= =		°C/mW
	CHARACTERISTICS		•			
	$T_j = 25$ °C unless otherwise specified					
	Diode					
	Forward voltage I _F = 10 mA		VF	typ.	1,2 1,5	
	Reverse current V _R = 3 V		I _R	<	•	μΑ
	Transistor (diode: I _F = 0)					
	Collector cut-off current (dark) VCE = 10 V		ICEO	typ.	5 100	nA nA
	$V_{CE} = 10 \text{ V; } T_{amb} = 70 ^{\circ}\text{C}$		CEO	<	10	μΑ
	V _{CB} = 10 V		^I CBO	<	20	nA
	Photocoupler (I _B = 0)*					
	Output/input d.c. current transfer ratio $I_F = 10 \text{ mA; } V_{CE} = 0,4 \text{ V}$	CNY57	I _C /I _F	typ. 0,2 to	0,5 0,8	
		CNY57A	I _C /I _F	> typ.	0,4 1,0	
	Collector cut-off current (dark) see Fig. 2 V _{CC} = 10 V; working voltage (d.c.) = 1,5 kV		loru	<	200	nΛ
	$V_{CC} = 10 \text{ V}$; working voltage (d.c.) = 1,5 kV; $T_i = 70$	οС	ICEW	<	100	
			CLVV			•

 $^{^{*}}$ Where the phototransistor receives light from the diode the O (for open base) has been omitted from the symbols.

			CNY57	CNY57A
Collector-emitter saturation voltage I _F = 10 mA; I _C = 2 mA	v_{CEsat}	typ.	0,17 0,40	- V - V
I _F = 10 mA; I _C = 4 mA	v_{CEsat}	typ.	_	0,17 V 0,40 V
Isolation voltage, d.c. value*	v_{10}	>	4,3	4,3 kV
Capacitance between input and output I _F = 0; V = 0; f = 1 MHz	C _{io}	typ.	0,6	0,6 pF
Insulation resistance between input and output $\pm V_{10} = 1 \text{ kV}$	r _{IO}	> typ.	10 ¹⁰ 10 ¹²	10 $^{10} \Omega$ 10 $^{12} \Omega$
Switching times (see Figs 3 and 4) $I_{Con} = 2 \text{ mA}; V_{CC} = 5 \text{ V}; R_{L} = 100 \Omega$				
Turn-on time	^t on	typ.	3	— μs
Turn-off time	^t off	typ.	3	— μs
I_{Con} = 4 mA; V_{CC} = 5 V; R_L = 100 Ω Turn-on time	^t on	typ.	_	5 μs
Turn-off time	toff	typ.	_	5 μs

Fig. 2.

Fig. 3 Switching circuit.

Fig. 4 Waveforms.

^{*} Tested with a d.c. voltage for 1 minute between shorted input leads and shorted output leads.

Fig. 7 Typical values.

Fig. 9 $I_F = 0$; $V_{CE} = 10 \text{ V}$.

Fig. 10 $I_F = 0$; $T_j = 25$ °C.

Fig. 12 $I_E = 0$; $V_{CB} = 5 V$; $T_{amb} = 25 \, ^{\circ}C$.

Fig. 11 $I_F = 0$; typical values.

Fig. 13 f = 1 MHz; $T_{j} = 25 \text{ °C}$.

Fig. 14 CNY57; I_B = 0; V_{CE} = 5 V; T_{amb} = 25 °C; typical values.

Fig. 15 CNY57A; I_B = 0; V_{CE} = 5 V; T_{amb} = 25 °C; typical values.

Fig. 16 CNY57; T_{amb} = 25 °C; typical values.

Fig. 18 CNY57; $T_{amb} = 25$ °C; typical values.

Fig. 17 CNY57A; T_{amb} = 25 °C; t_p = 10 μ s; T = 1 ms; typical values.

Fig. 19 CNY57A; $T_{amb} = 25$ °C; typical values.

Fig. 20 I_B = 0; I_C = 2 mA; V_{CC} = 5 V; R_L = 1 k Ω ; T_{amb} = 25 °C.

Fig. 21 —— CNY57; — — CNY57A; $I_B = 0$; $I_F = 10$ mA; typical values.

Fig. 22 CNY57; $I_B = 0$; $T_{amb} = 25$ °C; typical values.

Fig. 23 CNY57A; $I_B = 0$; $T_{amb} = 25$ °C; typical values.

Fig. 24 CNY57; I_B = 0; V_{CC} = 5 V; T_{amb} = 25 °C; Fig. 25 CNY57; I_B = 0; V_{CC} = 5 V; T_{amb} = 25 °C; typical values. (See also Fig. 26.)

Fig. 26 Switching circuit and waveforms.

Fig. 27 CNY57A; $I_B = 0$; $V_{CC} = 5 \text{ V}$; $T_{amb} = 25 \text{ °C}$; typical values. (See also Fig. 29.)

Fig. 28 CNY57A; $I_B = 0$; $V_{CC} = 5 \text{ V}$; $T_{amb} = 25 \text{ °C}$; typical values. (See also Fig. 29.)

Fig. 29 Switching circuit and waveforms.

PHOTOCOUPLERS

Optically coupled isolators consisting of an infrared emitting GaAs diode and a silicon n-p-n photo-transistor without accessible base. Plastic envelopes. Suitable for TTL integrated circuits.

Features of these products:

- high output/input d.c. current transfer ratio;
- low saturation voltage;
- a high isolation voltage
 CNY62 3,75 kV (r.m.s.) and 5,3 kV (d.c.);
 CNY63 3 kV (r.m.s.) and 4,3 kV (d.c.);
- working voltage 1,5 kV.

QUICK REFERENCE DATA

Diode		С	NY62	CNY63	
Continuous reverse voltage	v_R	max.	3	3	٧
Forward current d.c.	ļF	max.	100	100	
(peak value); $t_p = 10 \mu s$; $\delta = 0.1$	¹ FM	max.	1000	1000	
Total power dissipation up to $T_{amb} = 25$ °C	P_{tot}	max.	150	150	mW
Transistor					
Collector-emitter voltage (open base)	v_{CEO}	max.	50	30	٧
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	max.	200	200	mW
Photocoupler					
Output/input d.c. current transfer ratio $I_F = 10 \text{ mA}$; $V_{CE} = 0,4 \text{ V}$; $(I_B = 0)$	IC/IF	>	0,25	0,50	
Collector cut-off current (dark) V _{CC} = 10 V; working voltage (d.c.) = 1,5 kV diode: I _F = 0 (see also Fig. 2)	I _{CEW}	<	200	200	nA
Isolation voltage (d.c.)	OLW				
t = 1 min	٧ı٥	>	5,3	4,3	kV

MECHANICAL DATA

SOT-91B (see Fig. 1)

Dimensions in mm

MECHANICAL DATA

Fig. 1 SOT-91B.

- Positional accuracy.
- Maximum material condition.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

D	iod	A

Diode				
Continuous reverse voltage		v_R	max.	3 V
Forward current d.c. (peak value); $t_p = 10 \ \mu s$; $\delta = 0.1$ Total power dissipation up to $T_{amb} = 25 \ ^{\circ}C$ Operating junction temperature		I _F I _{FM} P _{tot} T _j	max. max. max. max.	100 mA 1000 mA 150 mW 125 °C
Transistor Collector-emitter voltage (open base)	CNY62 CNY63	V _{CEO}	max. max.	50 V 30 V
Emitter-collector voltage (open base)		VECO	max.	7 V
Collector current (d.c.)		l _C	max.	100 mA

			<u> </u>		
Total power dissipation up to T _{amb} = 25 °C Operating junction temperature		P _{tot} T _j	max. max.	200 125	
Photocoupler					
Storage temperature		T_{stg}	-55 to	+150	oC
Lead soldering temperature up to the seating plane; t _{sld} < 10 s		T_{sld}	max.	260	oC
THERMAL RESISTANCE					
From junction to ambient in free air diode transistor		R _{th j-a} R _{th j-a}	=	•	°C/mW
From junction to ambient, device mounted on a printed-circuit board diode transistor		R _{th j-a} R _{th j-a}	=	•	oC/mW oC/mW
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Diode					
Forward voltage I _F = 10 mA		V _F	typ.	1,2 1,5	
Reverse current V _R = 3 V		I _R	<	10	μΑ
Transistor (diode: I _F = 0)					
Collector cut-off current (dark) VCE = 10 V		I _{CEO}	typ.	5 100	nA nA
$V_{CE} = 10 \text{ V; } T_{amb} = 70 \text{ °C}$		I _{CEO}	<	10	μΑ
Photocoupler (I _B = 0)*					
Output/input d.c. current transfer ratio I _F = 10 mA; V _{CE} = 0,4 V	CNY62	I _C /I _F	> typ.	0,25 0,50	
	CNY63	I _C /I _F	> typ.	0,5 1,0	
Collector cut-off current (dark) see Fig. 2 V _{CC} = 10 V; working voltage (d.c.) = 1,5 kV		ICEW	<	200	nA
			_	400	

 V_{CC} = 10 V; working voltage (d.c.) = 1,5 kV; T_j = 70 °C

100 μΑ

ICEW

^{*} Where the phototransistor receives light from the diode the O (for open base) has been omitted from the symbols.

			CNY62	CNY63
I _F = 10 mA; I _C = 2 mA	V _{CEsat}	typ.	0,17 0,40	– V – V
I _F = 10 mA; I _C = 4 mA	v_{CEsat}	typ.	_	0,17 V 0,40 V
/Isolation voltage, d.c. value*	v_{10}	>	5,3	4,3 kV
Capacitance between input and output I _F = 0; V = 0; f = 1 MHz	C _{io}	typ.	0,6	0,6 pF
Insulation resistance between input and output $\pm V_{10} = 1 \text{ kV}$	r _{IO}	> typ.	10 ¹⁰ 10 ¹²	$10^{10}~\Omega$
Switching times (see Figs 3 and 4) $I_{Con} = 2 \text{ mA; } V_{CC} = 5 \text{ V; R}_{L} = 100 \Omega$ Turn-on time	t	typ.	3	— μs
Turn-off time	^t on ^t off	typ.	3	— μs
I_{Con} = 4 mA; V_{CC} = 5 V; R_L = 100 Ω Turn-on time	t _{on} ,	typ.	_	μs 5 μs
Turn-off time	t _{off}	typ.	-	5 μs

Fig. 2.

Fig. 3 Switching circuit.

Fig. 4 Waveforms.

^{*} Tested with a d.c. voltage for 1 minute between shorted input leads and shorted output leads.

1000 | TFM (mA) | T50 | Typ |

Fig. 7 Typical values.

Fig. 9 $I_F = 0$; $V_{CE} = 10 \text{ V}$.

7Z82049

V_{CE} =

100

T_{amb} (°C)

10 5 0 0 -50 0

20

15

I_C (mA)

Fig. 10 $I_F = 0$; $T_j = 25$ °C.

Fig. 12 $I_B = 0$; $I_C = 2$ mA; $V_{CC} = 5$ V; $R_L = 1$ k Ω ; $T_{amb} = 25$ °C.

Fig. 13 CNY62; $T_{amb} = 25$ °C; typical values.

Fig. 15 CNY62; $T_{amb} = 25$ °C; typical values.

Fig. 14 **CNY63**; T_{amb} = 25 °C; t_p = 10 μ s; T = 1 ms; typical values.

Fig. 17 CNY62; $I_B = 0$; $T_{amb} = 25$ °C; typical values.

Fig. 18 CNY63; $I_B = 0$; $T_{amb} = 25$ °C; typical values.

Fig. 19 CNY62; $I_B = 0$; $V_{CC} = 5$ V; $T_{amb} = 25$ °C; typical values. (See also Fig. 21.)

Fig. 20 CNY62; I_B = 0; V_{CC} = 5 V; T_{amb} = 25 °C; typical values. (See also Fig. 21.)

Fig. 21 Switching circuit and waveforms.

Fig. 22 CNY63; $I_B = 0$; $V_{CC} = 5$ V; $T_{amb} = 25$ °C; typical values. (See also Fig. 24.)

Fig. 23 CNY63; $I_B = 0$; $V_{CC} = 5$ V; $T_{amb} = 25$ °C; typical values. (See also Fig. 24.)

Fig. 24 Switching circuit and waveforms.

SINGLE ELEMENT PYROELECTRIC INFRARED DETECTORS

This is an infrared sensitive device, combined with a pre-amplifier which is stabilized to overcome d.c. saturation due to thermal changes. It is sealed in a low-profile TO-5 can.

QUICK REFERENCE DATA

		RPY86	RPY87	
Spectral Response		$6.5 \pm 0.5 \text{ to} > 14$	1.0 to > 15	μm
Responsivity	typ.	(10 μm, 10) 600	(6 μm, 10) 500	VW ⁻¹
Noise Equivalent Power (N.E.P.),	typ.	(10 μm, 10, 1) 0.9 x 10 ⁻⁹	(6 μm, 10, 1) 1.05 x 10 ⁻⁹	WHz ^{-½}
Element dimensions		2 x	: 1	mm
Field of View	typ.	11	0	degrees
Operating voltage		9)	V
Optimum operating frequency range		0.1 to	1000	Hz

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS — OPTOELECTRONIC DEVICES

MECHANICAL DATA

SOT-49E (low profile TO-5)

Dimensions in mm

PRODUCT SAFETY

Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. Disposal of large quantities should therefore be carried out in accordance with the latest local legislation.

=

SOLDERING

- 1. When making soldered connections to the leads, a thermal shunt should be used.
- It is essential that any mains operated soldering iron should be both screened and earthed. Failure to observe these precautions could lead to the introduction of line voltage and possible damage to the device.

RATINGS

DDVOC

Limiting values in accordance with the Absolute Maximum System (IEC134)

Supply voltage	max.	30	V
Temperature, operating	max.	+100	oC
	min.	40	oC
Temperature, storage	max.	+100	oC
	min.	40	oC
Lead soldering temperature, \geq 6 mm from header, $t_{sld} \leq 3$ s	max.	+350	οС

CHARACTERISTICS (at 25 ± 3 °C and with recommended circuit)

RPY86		min.	typ.	max.	
Spectral Response		6.5 ± 0.5	_	> 14	μm
Responsivity (10 μ m, 10)	notes 1 and 4	450	600	_	VW ⁻¹
N.E.P. (10 μm, 10, 1)	notes 1 and 4	_	0.9×10^{-9}	3 x 10 ⁻⁹	WHz ^{-½}
Field of view	note 2	_	110	_	degrees
Operating voltage	note 3	8	9	10	V
RPY87					
Spectral Response		1	_	>15	μm
Responsivity (500 K, 10) or (6 μ m, 10)	notes 1 and 4	400	500	_	VW ⁻¹
N.E.P. (500 K, 10, 1) or (6 μm, 10, 1)	notes 1 and 4	_	1.05 x 10 ⁻⁹	3 x 10 ⁻⁹	WHz ^{-1/2}
Field of View	note 2	_	110	_	degrees
Operating voltage	note 3	8	9	10	V

- 1. These characteristics apply throughout the spectral response range.
- 2. Field of view to 50% of the maximum responsivity level.
- 3. The detector will operate outside the quoted range but may have a degraded performance.
- 4. For performance as a function of frequency and temperature, see pages 6 to 9.

RECOMMENDED CIRCUIT

OPERATING NOTES

- 1. The case potential must not be allowed to become positive with respect to the other two terminals.
- 2. It is inadvisable to operate the detector at mains related frequencies.
- 3. To avoid the possibility of optical microphony, the detector must be firmly mounted
- 4. An increase in temperature of the element will produce a negative going signal at the output.
- 5. Use recommended circuit for low noise operation.
- 6. For simplicity of operation, a source follower may be used where noise is not a problem. This may be achieved with a $22 \text{ k}\Omega$ resistor between source and envelope with the positive supply taken to the drain terminal. This will give a voltage gain of approximately 0.9.

DEFINITIONS

1. Responsivity VW⁻¹

This is the ratio of the r.m.s. signal in volts to the r.m.s. value of the incident, chopped radiant power.

2. N.E.P. (Noise Equivalent Power), WHz-1/2

This is the r.m.s. value of the incident, chopped radiant power necessary to produce an r.m.s. signal to r.m.s. noise ratio of unity. The r.m.s. noise refers to the value calculated for unit square root bandwidth $VHz^{-\frac{1}{2}}$

RECOMMENDED CIRCUIT

1. Optional additional stage for extra gain

Recommended component value for various gains

Gain	R ₁	R ₂
x	kΩ	MΩ
50	560	5.6
20	220	2.2
10	100	1.0

2. Temperature slew

The FET used with a pyroelectric detector requires a gate leakage resistor to earth in parallel with the element. This stabilizes its working point. The pyroelectric voltage appearing across this resis is proportional to the rate of change of temperature.

To ensure a low level of noise current from this resistor, its value should be of the order of 3 x $10^{10}~\Omega$. When the temperature slew rate is 1 °C/minute, the pyroelectric voltage produce 1 volt. In a system which is designed to sense microvolts, this is almost certain to cause overlany a.c. signal superimposed on this d.c. shift will be lost.

Our detectors incorporate a bleed system which acts progressively on the d.c. shift caused temperature slew. The law is logarithmic.

Thus a slew rate of 0.1 $^{\circ}$ C/minute may produce on offset across the sensing element of 200 millivolts, 1 $^{\circ}$ C/minute 280 millivolts and 10 $^{\circ}$ C/minute 360 millivolts.

MECHANICAL AND ENVIRONMENTAL STANDARDS

As part of the Quality Assurance programme, the detectors are assessed at regular intervals against the requirements of the following IEC standards. The frequency of testing and the limits and conditions for the pre- and post-test measurements are based on those stipulated for the CECC 50 000 series of approved transistors.

	Test		Severity	Duration	Note
IEC 68-2-3	Ca	Damp Heat, steady state	+40 °C, 95% RH	168 hours	1
68-2-20	Ta	Solderability	+235 °C, 1.5 mm from header	5 seconds	1
68-2-21	Ub	Lead Fatigue	4 cycles	_	1
68-2-1	Α	Low Temperature Storage	-40 °C	2000 hours	2
68-2-2	Ba	High Temperature Storage	+100 °C	2000 hours	2
68-2-14	Nb	Change of Temperature	-40 °C to +100 °C	10 cycles	2
68-2-6	Fc (B4)	Vibration, swept frequency	125 Hz to 2kHz 196 ms ⁻²	2 h in each orientation	2
68-2-7	Ga	Acceleration, steady state	196000 m ⁻²	60 seconds	2
68-2-27	Ea	Shock	14700 ms ⁻²	3 pulses 6 orientations	2
68-2-20	Tb	Resistance to Solder Heat	+350 °C, 6 mm from header	3 seconds	3

- The detectors are checked on a production batch release principle at approximately weekly intervals. This is equivalent to Group B.
- 2. The detectors are checked at quarterly intervals. This is equivalent to Group C.
- 3. This is an annual check.

RPY86, typical Responsivity, N.E.P., and Noise as functions of Frequency

RPY86, typical Responsivity, N.E.P., and Noise as functions of Temperature

RPY87, typical Responsivity, N.E.P., and Noise as functions of Frequency

RPY87, typical Responsivity, N.E.P., and Noise as functions of Temperature

POLAR DIAGRAMS

Typical Field of View in x-x plane (see Mechanical Data)

Typical Field of View in y-y plane (see Mechanical Data)

RPY86 RPY87

Typical normalized window transmission characteristics

This is an infrared sensitive device, combined with a pre-amplifier which is stablized to overcome d.c. saturation due to thermal changes. It is sealed in a low-profile TO-5 can.

QUICK REFERENCE DATA

		RPY88	RPY89	
Spectral Response		6.5 ± 0.5 to > 14	1.0 to > 15	μm
Responsivity	typ.	(10 μm, 10) 300	(6 μm, 10) 250	VW ⁻¹
Noise Equivalent Power (N.E.P.),	typ.	(10 μm, 10, 1) 1.65 x 10 ⁻⁹	(6 μm, 10, 1) 2.0 x 10 ⁻⁹	WHz ^{-½}
Element dimensions		2 x	2	mm
Field of View	typ.	11	0	degrees
Operating voltage		. 9		V
Optimum operating frequency range		0.1 to	1000	Hz

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS — OPTOELECTRONIC DEVICES

MECHANICAL DATA

SOT-49E (low profile TO-5)

Dimensions in mm

PRODUCT SAFETY

Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. Disposal of large quantities should therefore be carried out in accordance with the latest local legislation.

SOLDERING

- 1. When making soldered connections to the leads, a thermal shunt should be used.
- It is essential that any mains operated soldering iron should be both screened and earthed. Failure to observe these precautions could lead to the introduction of line voltage and possible damage to the device.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

Supply voltage	max.	30	V
Temperature, operating	max.	+100	oC
	min.	40	oC
Temperature, storage	max.	+100	oC
	min.	40	oC
Lead soldering temperature, \geqslant 6 mm from header, $t_{\mbox{sld}} \leqslant 3 \mbox{ s}$	max.	+350	oC

CHARACTERISTICS (at 25 ± 3 °C and with recommended circuit)

RPY88		min.	typ.	max.	
Spectral Response		6.5 ± 0.5	_	>14	μ m
Responsivity (10 μ m, 10)	notes 1 and 4	225	300		VW ⁻¹
N.E.P. (10 μ m, 10, 1)	notes 1 and 4	_	1.65 x 10 ⁻⁹	3 x 10 ⁻⁹	WHz ^{-½}
Field of View	note 2	-	110		degrees
Operating voltage	note 3	8	9	10	V
RPY89					
Spectral Response		1	_	> 15	μm
Responsivity (500 K, 10) or (6 μm, 10)	notes 1 and 4	200	250	_	VW ⁻¹
N.E.P. (500 K, 10, 1) or (6 μm, 10, 1)	notes 1 and 4	_	2.0 x 10 ⁻⁹	3 x 10 ⁻⁹	WHz ^{-½}
Field of View	note 2	_	110	_	degrees
Operating voltage	note 3	8	9	10	V

- 1. These characteristics apply throughout the spectral response range.
- 2. Field of view to 50% of the maximum responsivity level.
- 3. The detector will operate outside the quoted range but may have a degraded performance.
- 4. For performance as a function of frequency and temperature, see pages 6 to 9.

OPERATING NOTES

- 1. The case potential must not be allowed to become positive with respect to the other two terminals.
- 2. It is inadvisable to operate the detector at mains related frequencies.
- 3. To avoid the possibility of optical microphony, the detector must be firmly mounted
- 4. An increase in temperature of the element will produce a negative going signal at the output.
- 5. Use recommended circuit for low noise operation.
- 6. For simplicity of operation, a source follower may be used where noise is not a problem. This may be achieved with a 22 k Ω resistor between source and envelope with the positive supply taken to the drain terminal. This will give a voltage gain of approximately 0.9.

DEFINITIONS

1. Responsivity VW-1

This is the ratio of the r.m.s. signal in volts to the r.m.s. value of the incident, chopped radiant power.

2. N.E.P. (Noise Equivalent Power), WHz^{-1/2}

This is the r.m.s. value of the incident, chopped radiant power necessary to produce an r.m.s. signal to r.m.s. noise ratio of unity. The r.m.s. noise refers to the value calculated for unit square root bandwidth VHz^{-1/2}.

APPLICATION INFORMATION

1. Optional additional stage for extra gain

Recommended component values for various gains

Gain x	R ₁ kΩ	$^{ m R}_2$ M Ω
50	560	5.6
20	220	2.2
10	100	1.0

*this capacitor must be a low leakage type e.g. our 344 series.

2. Temperature slew

The FET used with a pyroelectric detector requires a gate leakage resistor to earth in parallel with the element. This stabilizes its working point. The pyroelectric voltage appearing across this resistor is proportional to the rate of change of temperature.

To ensure a low level of noise current from this resistor, its value should be of the order of $3\times 10^{10}~\Omega$. When the temperature slew rate is 1 °C/minute, the pyroelectric voltage produced is 1 volt. In a system which is designed to sense microvolts, this is almost certain to cause overload and any a.c. signal superimposed on this d.c. shift will be lost.

Our detectors incorporate a bleed system which acts progressively on the d.c. shift caused by temperature slew. The law is logarithmic.

Thus a slew rate of 0.1 °C/minute may produce on offset across the sensing element of 200 millivolts, 1 °C/minute 280 millivolts and 10 °C/minute 360 millivolts.

MECHANICAL AND ENVIRONMENTAL STANDARDS

As part of the Quality Assurance programme, the detectors are assessed at regular intervals against the requirements of the following IEC standards. The frequency of testing and the limits and conditions for the pre- and post-test measurements are based on those stipulated for the CECC 50 000 series of approved transistors.

	Test		Severity	Duration	Note
IEC 68-2-3	Ca	Damp Heat, steady state	+40 °C, 95% RH	168 hours	1
68-2-20	Та	Solderability	+235 ^o C, 1.5 mm from header	5 seconds	1
68-2-21	Ub	Lead Fatigue	4 cycles	_	1
68-2-1	Α	Low Temperature Storage	-40 °C	2000 hours	2
68-2-2	Ba	High Temperature Storage	+100 °C	2000 hours	2
68-2-14	Nb	Change of Temperature	-40 °C to +100 °C	10 cycles	2
68-2-6	Fc (B4)	Vibration, swept frequency	125 Hz to 2 kHz 196 ms ⁻²	2 h in each orientation	2
68-2-7	Ga	Acceleration, steady state	196000 ms ⁻²	60 seconds	2
68-2-27	Ea	Shock	14700 ms ⁻²	3 pulses 6 orientations	2
68-2-20	Тb	Resistance to Solder Heat	+350 ^o C, 6 mm from header	3 seconds	3

- The detectors are checked on a production batch release principle at approximately weekly intervals. This is equivalent to Group B.
- 2. The detectors are checked at quarterly intervals. This is equivalent to Group C.
- 3. This is an annual check.

RPY88, typical Responsivity, N.E.P., and Noise as functions of Frequency

RPY88, typical Responsivity, N.E.P., and Noise as functions of Temperature

RPY89. typical Responsivity, N.E.P., and Noise as functions of Frequency

RPY89, typical Responsivity, M LP , and Moise as functions of Temperature

POLAR DIAGRAMS

Typical Field of View in x-x plane (see Mechanical Data)

Typical Field of View in y-y plane (see Mechanical Data)

RPY88 RPY89

Typical normalized window transmission characteristics

LATGS PYROELECTRIC INFRARED DETECTORS

This series of pyroelectric infrared detectors is designed to replace conventional bolometers. The sensitive material is L-alanine doped triglycine sulphate* (LATGS) which operates at room temperature and has a good broadband performance. Each device has a 2.0×0.5 mm sensitive area and is available with a selection of window materials giving a range of spectral performance. A pre-amplifer with short circuit protection is incorporated.

QUICK REFERENCE DATA

dolok her ene				
	Window material		Spectral response μm	Window description
RPY90A	caesium iodide		1 to 70	transparent, hygroscopic, sof
RPY90C	KRS-5		1 to 40	non-hygroscopic, toxic
RPY90D	silicon (AR coated – optimized for 8 to 14 μ r use).	n	1.2 to 15	non-hygroscopic
RPY90E	sapphire		1 to 6.5	transparent, non-hygroscopic
N.E.P.** (500K, Responsivity (50 Recommended o Operating freque Optimum operati Field of view	OK, 10) RPY90A perating voltage		1.0×10^{-10} 8.0×10^{3} 9 $10 \text{ to } 1000$ $-20 \text{ to } +45$ > 60	WHz ^{-½} VW ⁻¹ V Hz oC degrees

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS — OPTOELECTRONIC DEVICES

PRODUCT SAFETY

Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. Disposal of large quantities should therefore be carried out in accordance with the Deposit of Poisonous Waste Act 1972 and the Control of Pollution Act 1974, or with the latest legislation.

- * LATGS cuts off below $\lambda = 1 \mu m$, where incident energy is no longer absorbed.
- ** Noise Equivalent Power

MECHANICAL DATA

Dimensions in mm

Three female connectors are supplied with each device to fit Sealectro feed throughs type no. FT SM 14.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

Supply voltage	max.	+18	V
Supply current	max.	10	mΑ
Ambient operating temperature		-20 to +45	οС
Storage temperature		-20 to +55	οС

CHARACTERISTICS at T_{amb} = 20 °C, using a 500 K black body source

		RPY90A	С	D	Е		
N.E.P. (500 K, 10, 1)	typ. <	1.0 1.5	1.3 2.0	1.6 2.4	3.0 4.5	× 10 ^{-1 0} × 10 ^{-1 0}	WHz ^{-½} WHz ^{-½}
Responsivity (500 K, 10)*	typ.	8.0	6.2	5.0	2.7	x 10 ³	VW ⁻¹
Noise per unit bandwidth at 10 Hz	typ.	0.8	0.8	0.8	0.8		μVHz ^{-½}
Output voltage (d.c.level)	> typ. <	2 3 8	2 3 8	2 3 8	2 3 8		V V V
Output impedance	<	4	4 .	4	4		k Ω
Element dimensions		all	types: 2.0	0.5 x			mm
Field of view		all	types: >	60			degrees
Operating voltage range		all	types: 8 t	to 10			V
Supply current		all	types: up	to 10			mA

^{*}These detectors can also be supplied with an integral frequency compensated amplifier similar to that described under Application Information. This would, for example, increase the responsivity by up to x 100 with an amplifier designed to give a flat response to 20 Hz.

OPERATING NOTES

- The detector is supplied with a black plastic cap to protect the window. This cap must be removed before operation.
- 2. The shape of the electrical output waveform is the integral of the incident radiation waveform.
- 3. It is inadvisable to operate the detector at mains related frequencies.
- 4. To avoid the possibility of optical microphony, the detector must be firmly mounted.
- 5. An increase in temperature of the element will produce a negative going signal at the output.
- Provided that the operating voltage does not exceed 10 V, the maximum time for the output to be short-circuited (to the supply or common rail) is unlimited.

DEFINITIONS

- N.E.P. (Noise Equivalent Power), WHz^{-1/2}
 This is the r.m.s. value of the incident, chopped, radiant power necessary to produce an r.m.s. signal to r.m.s. noise ratio of unity. The r.m.s. noise refers to the value calculated for unit square root bandwidth VHz^{-1/2}.
- Responsivity VW⁻¹
 This is the ratio of the r.m.s. signal in volts to the r.m.s. value of the incident, chopped, radiant power.

APPLICATION INFORMATION

1. The pyroelectric element may be considered as a capacitor whose charge state changes with temperature. It also behaves as a normal capacitor, i.e. its voltage changes with charge. Thus a change of temperature results in a change of voltage. It can be seen that, for a given change in amplitude of incident radiation, the resulting change in temperature will decrease as the chopping frequency increases. Thus the voltage change will also decrease with frequency. In addition, there is a 90° phase lag between the thermal and electrical signals. The voltage signal therefore becomes the integral of the radiation signal.

2. Frequency compensating amplifier

The following circuit is designed to be connected directly to the detector output and may be used to compensate for the falling responsivity characteristic with frequency. It is a simple 'virtual earth' amplifier which uses a series input capacitor to provide increasing current through the feedback resistor R_2 with increasing frequency. The time constants R_2 C_2 and R_3 C_3 are chosen to coincide with R_1 C_1 , where R_1 is the output impedance of the detector (<4.0 k Ω).

The table below gives recommended component values for various roll-off frequencies (approx. —3 dB point).

Frequency Hz	C ₁ C ₃ nF	R $_{f 2}$ k Ω	C ₂ nF	
30	680	330	10	
300	68	220	1.5	
600	33	330	0.47	
1500	15	68	1.0	
3000	15	82	0.47	
4500	4.7	68	0.33	

With this circuit the original shape of the radiation waveform is restored at the output for chopping frequencies sensibly lower than the roll-off frequency.

Additional stage for extra gain which may be connected directly to the detector output or to the output of the frequency compensating amplifier.

Recommended component values for various gains

Gain	R ₁	R ₂
×	kΩ	MΩ
50	560	5.6
20	220	2.2
10	100	1.0

^{*}this capacitor must be a low leakage type, e.g. our 344 series

Typical window transmission characteristics.

RPY90A

Typical 500 K black body performance as a function of frequency

RPY90A

Typical 500 K black body performance as a function of temperature

RPY90C

Typical 500 K black body performance as a function of frequency

RPY90C

Typical 500 K black body performance as a function of temperature

RPY90D

Typical 500 K black body performance as a function of frequency

RPY90D

Typical 500 K black body performance as a function of temperature

RPY90E

Typical 500 K black body performance as a function of frequency

RPY90E

Typical 500K black body performance as a function of temperature

LATGS PYROELECTRIC INFRARED DETECTORS

This series of pyroelectric infrared detectors is designed to replace conventional bolometers. The sensitive material is L-alanine doped triglycine sulphate* (LATGS) which operates at room temperature and has a good broadband performance. Each device has a 2.75×1.25 mm sensitive area and is available with a selection of window materials giving a range of spectral performance. A pre-amplifier with short circuit protection is incorporated.

QUICK REFERENCE DATA

	Window material	Spectral response μm	Window description
RPY91A	caesium iodide	1 to 70	transparent, hygroscopic, soft
RPY91C	KRS-5	1 to 40	non-hygroscopic, toxic
RPY91D	silicon (AR coated— optimized for 8 to 14 μ m use).	1.2 to 15	non-hygroscopic
RPY91E	sapphire	1 to 6.5	transparent, non-hygroscopic
N.E.P.** (500) Responsivity (RPY91A 1 THE	$1.5 \times 10^{-1.0}$ 6.5×10^{3}	WHz⁻½ ∨W⁻¹
• •	l operating voltage	9	V
Operating freq	uency range	10 to 1000	Hz
Optimum operating temperature range		-20 to +45	oC
Field of view		>60	degrees

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS — OPTOELECTRONIC DEVICES

PRODUCT SAFETY

Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. Disposal of large quantities should therefore be carried out in accordance with the Deposit of Poisonous Waste Act 1972 and the Control of Pollution Act 1974, or with the latest legisation.

^{*} LATGS cuts off below $\lambda = 1 \mu m$, where incident energy is no longer absorbed.

^{**} Noise Equivalent Power

MECHANICAL DATA

Dimensions in mm

Three female connectors are supplied with each device to fit Sealectro feed throughs type no. FT SM 14.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

•	•		
Supply voltage	max.	+18	V
Supply current	max.	10	mA
Ambient operating temperature		-20 to +45	oC
Storage temperature		-20 to +55	oC

CHARACTERISTICS at Tamb = 20 °C, using a 500 K black body source

		RPY91A	С	D	E		
N.E.P. (500 K, 10, 1)	typ.	1.5 3.0	2.0 4.0	2.5 5.0	4.5 9.0	x 10 ⁻¹⁰ x 10 ⁻¹⁰	WHz ^{-1/} 2 WHz ^{-1/} 2
Responsivity (500 K, 10)*	typ.	6.5	5.0	4.0	2.3	x 10 ³	VW ⁻¹
Noise per unit bandwidth at 10 Hz	typ.	1.0	1.0	1.0	1.0		μVHz ^{-1/2}
Output voltage (d.c. level)	> typ. <	4 6 8	4 6 8	4 6 8	4 6 8		V V V
Output impedance	<	4	4	4	4		k Ω
Element dimensions		ä	all types: 2	2.75 x 1.25	i		mm
Field of view		ā	all types:	> 60			degrees
Operating voltage range		a	all types: 8	3 to 10			V
Supply current		á	all types: ι	up to 10			mA
w							

^{*}These detectors can also be supplied with an integral frequency compensated amplifier similar to that described under Application Information. This would, for example, increase the responsivity by up to x 100 with an amplifier designed to give a flat response to 20 Hz.

OPERATING NOTES

- The detector is supplied with a black plastic cap to protect the window. This cap must be removed before operation
- 2. The shape of the electrical output waveform is the integral of the incident radiation waveform.
- 3. It is inadvisable to operate the detector at mains related frequencies.
- 4. To avoid the possibility of optical microphony, the detector must be firmly mounted.
- 5. An increase in temperature of the element will produce a negative going signal at the output.
- 6. Provided that the operating voltage does not exceed 10 V, the maximum time for the output to be short-circuited (to the supply or common rail) is unlimited.

DEFINITIONS

- 1. N.E.P. (Noise Equivalent Power) WHz^{-1/2}
 - This is the r.m.s. value of the incident, chopped, radiant power necessary to produce an r.m.s. signal to r.m.s. noise ratio of unity. The r.m.s. noise refers to the value calculated for unit square root bandwidth VHz^{-1/2}.
- 2. Responsivity VW-1
 - This is the ratio of the r.m.s. signal in volts to the r.m.s. value of the incident, chopped, radiant power.

APPLICATION INFORMATION

1. The pyroelectric element may be considered as a capacitor whose charge state changes with temperature. It also behaves as a normal capacitor, i.e. its voltage changes with charge. Thus a change of temperature results in a change of voltage. It can be seen that, for a given change in amplitude of incident radiation, the resulting change in temperature will decrease as the chopping frequency increases. Thus the voltage change will also decrease with frequency. In addition, there is a 90° phase lag between the thermal and electrical signals. The voltage signal therefore becomes the integral of the radiation signal.

2. Frequency compensating amplifier

The following circuit is designed to be connected directly to the detector output and may be used to compensate for the falling responsivity characteristic with frequency. It is a simple 'virtual earth' amplifier which uses a series input capacitor to provide increasing current through the feedback resistor R_2 with increasing frequency. The time constants R_2 C_2 and R_3 C_3 are chosen to coincide with R_1 C_1 , where R_1 is the output impedance of the detector ($< 4.0 \text{ k}\Omega$).

The table below gives recommended component values for various roll-off frequencies (approx. -3 dB point).

Frequency Hz	C ₁ C ₃ nF	$^{ m R}_2$ k Ω	C ₂ nF
30	680	330	10
300	68	220	1.5
600	33	330	0.47
1500	15	68	1.0
3000	15	82	0.47
4500	4.7	68	0.33

With this circuit the original shape of the radiation waveform is restored at the output for chopping frequencies sensibly lower than the roll-off frequency.

Additional stage for extra gain which may be connected directly to the detector output or to the output of the frequency compensating amplifer.

Recommended component values for various gains

Gain x	R ₁ kΩ	$R_2 \atop M\Omega$
50	560	5.6
20	220	2.2
10	100	1.0

^{*}this capacitor must be a low leakage type, e.g. our 344 series

Typical window transmission characteristics.

RPY91A

Typical 500K black body performance as a function of frequency

RPY91A

Typical 500K black body performance as a function of temperature

RPY91C

Typical 500K black body performance as a function of frequency

542 December 1980

RPY91C

Typical 500K black body performance as a function of temperature

RPY91D

Typical 500K black body performance as a function of frequency

Typical 500K black body performance as a function of temperature

RPY91E

Typical 500K black body performance as a function of frequency

RPY91E

Typical 500K black body performance as a function of temperature

DUAL ELEMENT PYROELECTRIC INFRARED DETECTOR

This is an infrared sensitive device specifically designed for passive IR intruder alarms. It has differentially connected dual elements, combined with a single impedance converting amplifier to provide immunity from common mode signals such as those generated by variations in ambient temperature, background radiation and acoustic noise.

The detector will give an output signal only when radiation falling on the elements is unbalanced as in a focused system.

It is sealed in a low profile TO-5 can with a window optically coated to restrict the response to wavelengths greater than $6.5 \mu m$.

QUICK REFERENCE DATA

Spectral Response		$6.5 \pm 0.5 \text{ to} > 14$	μm
Responsivity (10 μ m, 10), each element	typ.	800	VW ⁻¹
Noise Equivalent Power (N.E.P.), (10 μ m, 10, 1), each element	typ.	1.4 × 10 ⁻⁹	WHz ^{-½}
Element dimensions, each element		2 x 0.75	mm
Element separation		0.5	mm
Field of View in horizontal plane (x-x)	typ.	120	degrees
Operating voltage		9	V
Optimum operating frequency range		0.1 to 1000	Hz

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS -OPTOFI ECTRONIC DEVICES

MECHANICAL DATA Dimensions in mm SOT-49E (low profile TO-5) 12,7 envelope do not hend leads 0.5mm gap within this distance φ8.5 8.2 φ5.2 φ9.4 max φ1.0 1 max φ0,53 source annarent element plane element A drain 2.6 PRODUCT SAFETY

Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. Disposal of large quantities should therefore be carried out in accordance with the latest local legislation.

M 0 2 7 8

=

SOLDERING

- 1. When making soldered connections to the leads, a thermal shunt should be used.
- It is essential that any mains operated soldering iron should be both screened and earthed. Failure to observe these precautions could lead to the introduction of line voltage and possible damage to the device.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

Supply voltage	max.	30	٧
Temperature, operating	max. min.	+50 40	oC oC
Temperature, storage	max. min.	+70 40	oC oC
Lead soldering temperature, \geq 6 mm header, $t_{sld} \leq 3s$	max.	+350	оС

CHARACTERISTICS (at Tamb = 25 ± 3 °C and with recommended circuit)

		min.	typ.	max.	
Spectral Response		6.5 ± 0.5	_	> 14	μm
Responsivity (10 μ m, 10)	notes 1 and 5	605	800	_	VW ⁻¹
N.E.P. (10 μm, 10, 1)	notes 1 and 5	_	1.4×10^{-9}	3 x 10 ⁻⁹	WHz ^{-½}
Element matching	note 2	-	±4	±20	%
Field of View (x-x plane)	note 3	_	120	_	degrees
Operating voltage	note 4	8	9	10	V

Notes

- 1. Each element. These characteristics apply throughout the spectral response range.
- 2. With both elements equally irradiated, the matching of the element signals is derived from:-

 $\frac{\Delta S}{\frac{1}{2} (S_A + S_B)}$ x 100, where S_A and S_B are the signals of the two elements and ΔS is the signal with

- both elements irradiated.
- 3. Field of view to 50% of the maximum responsivity level.
- 4. The detector will operate outside the quoted range but may have a degraded performance.
- 5. For performance as a function of frequency and temperature see pages 6 and 7.

RECOMMENDED CIRCUIT

OPERATING NOTES

- 1. The case potential must not be allowed to become positive with respect to the other two terminals.
- 2. It is inadvisable to operate the detector at mains related frequencies.
- 3. To avoid the possibility of optical microphony, the detector must be firmly mounted.
- 4. An increase in temperature of element A will produce a negative going signal at the output. For element B, the corresponding output will be positive going.
- 5. Use recommended circuit for low noise operation.
- 6. For simplicity of operation, a source follower may be used where noise is not a problem. This may be achieved with a 22 k Ω resistor between source and envelope with the positive supply taken to the drain terminal. This will give a voltage gain of approximately 0.9.

DEFINITIONS

1. Responsivity VW⁻¹

This is the ratio of the r.m.s. signal in volts to the r.m.s. value of the incident, chopped radiant power.

2. N.E.P. (Noise Equivalent Power), WHz-1/2

This is the r.m.s. value of the incident, chopped radiant power necessary to produce an r.m.s. signal to r.m.s. noise ratio of unity. The r.m.s. noise refers to the value calculated for unit square root bandwidth VHz- $\frac{1}{2}$.

APPLICATION INFORMATION

Optional additional stage for extra gain

Recommended component values for various gains

R_1 k Ω	R ₂ MΩ
560 220	5.6 2.2 1.0
	560

MECHANICAL AND ENVIRONMENTAL STANDARDS

As part of the Quality Assurance programme, the detectors are assessed at regular intervals against the requirements of the following IEC standards. The frequency of testing and the limits and conditions for the pre- and post-test measurements are based on those stipulated for the CECC 50 000 series of approved transistors.

	Test		Severity	Duration	Note
IEC 68-2-3	Ca	Damp Heat, steady state	+40 °C, 95% RH	168 hours	1
68-2-20	Та	Solderability	+235 ^o C, 1.5 mm from header	5 seconds	1
68-2-21	Ub	Lead Fatigue	4 cycles	_	1
68-2-1	Α	Low Temperature Storage	-40 °C	2000 hours	2
68-2-2	Ba	High Temperature Storage	+70 °C	2000 hours	2
68-2-14	Nb	Change of Temperature	-40 °C to +70 °C	10 cycles	2
68-2-6	Fc (B4)	Vibration, swept frequency	125 Hz to 2 kHz 196 ms ⁻²	2 h in each orientation	2
68-2-7	Ga	Acceleration, steady state	196000 ms ⁻²	60 seconds	2
68-2-27	Ea	Shock	14700 ms ⁻²	3 pulses 6 orientations	2
68-2-20	Tb	Resistance to Solder Heat	+350 °C, 6 mm from header	3 seconds	3

Notes

- 1. The detectors are checked on a production batch release principle at approximately weekly intervals. This is equivalent to Group B.
- 2. The detectors are checked at quarterly intervals. This is equivalent to Group C.
- 3. This is an annual check.

Typical normalized window transmission characteristic

Typical Responsivity, N.E.P., and Noise as functions of Frequency (one element screened)

Typical Responsivity, N.E.P., and Noise as functions of Temperature (one element screened)

Typical Field of View in x-x plane (see Mechanical Data)

Typical Field of View in y-y plane (see Mechanical Data)

DUAL ELEMENT PYROELECTRIC INFRARED DETECTOR

This is an infrared sensitive device specifically designed for passive IR intruder alarms. It has differentially connected dual elements, with wide separation, combined with a single impedance converting amplifier to provide immunity from common mode signals such as those generated by variations in ambient temperature, background radiation and acoustic noise.

The detector will give an output signal only when the radiation falling on the elements is unbalanced as in a focused system.

It is sealed in a low profile TO-5 can with a window optically coated to restrict the response to wavelengths greater than 6.5 μ m.

QUICK REFERENCE DATA

Spectral Response		6.5 ± 0.5 to > 14	μm
Responsivity (10 μ m, 10), each element	typ.	650	∨W ⁻¹
Noise Equivalent Power (N.E.P.) (10 µm, 10, 1), each element	typ.	1.5 × 10 ⁻⁹	WHz ^{-½}
Element dimensions, each element		2 x 1	mm
Element separation		1.0	mm
Field of View in horizontal plane (x-x)	typ.	130	degrees
Operating voltage		9	V
Optimum operating frequency range		0.1 to 1000	Hz

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS — OPTOFI ECTRONIC DEVICES

Dimensions in mm **MECHANICAL DATA** SOT-49E (low profile TO-5) element R envelope do not bend leads within this distance φ5.2 φ 1.0 max source apparent 0.7 element plane elemen plane PRODUCT SAFETY MOZES

Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. Disposal of large quantities should therefore be carried out in accordance with the latest local legislation.

SOI DERING

- 1. When making soldered connections to the leads, a thermal shunt should be used.
- It is essential that any mains operated soldering iron should be both screened and earthed. Failure to observe these precautions could lead to the introduction of line voltage and possible damage to the device.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

Supply voltage	max.	30	V
Temperature, operating	max.	+50	oC
	min.	20	oC
Temperature, storage	max.	+50	oC
	min.	—20	oC
Lead soldering temperature, \geq 6 mm from header, $t_{sld} \leq 3$ s	max.	+350	οС

CHARACTERISTICS (at T_{amb} = 25 °C \pm 3 °C and with recommended circuit).

		min.	typ.	max.	
Spectral Response		6.5 ± 0.5	_	> 14	μ m
Responsivity (10 μ m, 10)	note 1	450	650	_	VW ⁻¹
N.E.P. (10 μm, 10, 1)	note 1	_	1.5 x 10 ⁻⁹	6×10^{-9}	WHz ^{-½}
Element matching	note 2		_	± 20	%
Field of View (x-x plane)	note 3	_	130	_	degrees
Operating voltage	note 4	8	9	10	V

Notes

- 1. Each element. These characteristics apply throughout the spectral response range.
- 2. With both elements irradiated, the matching of the element signals is derived from: -

$$\frac{\Delta S}{\frac{V_{2}}{2}\left(S_{A}+S_{B}\right)}$$
 x 100, where S_{A} and S_{B} are the signals of the two elements and ΔS is the signal with

both elements irradiated.

- 3. Field of view to 50% of the maximum responsivity level.
- 4. The detector will operate outside the quoted range but may have a degraded performance.
- 5. For performance as a function of frequency and temperature see pages 6 and 7.

OPERATING NOTES

- 1. The case potential must not be allowed to become positive with respect to the other two terminals.
- 2. It is inadvisable to operate the detector at mains related frequencies.
- 3. To avoid the possibility of optical microphony, the detector must be firmly mounted.
- An increase in temperature of element A will produce a positive going signal at the output. For element B, the corresponding output will be negative going.
- 5. Use recommended circuit for low noise operation.
- 6. For simplicity of operation, a source follower may be used where noise is not a problem. This may be achieved with a 22 k Ω resistor between source and envelope with the positive supply taken to the drain terminal. This will give a voltage gain of approximately 0.9.

DEFINITIONS

1. Responsivity VW-1

This is the ratio of the r.m.s. signal in volts to the r.m.s. value of the incident, chopped radiant power.

2. N.E.P. (Noise Equivalent Power), WHz-1/2

This is the r.m.s. value of the incident, chopped radiant power necessary to produce an r.m.s. signal to r.m.s. noise ratio of unity. The r.m.s. noise refers to the value calculated for unit square root bandwidth $VHz^{-\frac{1}{2}}$.

APPLICATION INFORMATION

Optional additional stage for extra gain

Recommended component value for various gains

Tor various gains					
Gain	R ₁	R ₂			
x	kΩ	MΩ			
50	560	5.6			
20	220	2.2			
10	100	1.0			

^{*}this capacitor must be a low leakage type e.g. our 344 series.

.MECHANICAL AND ENVIRONMENTAL STANDARDS

As part of the Quality Assurance programme, the detectors are assessed at regular intervals against the requirements of the following IEC standards. The frequency of testing and the limits and conditions for the pre- and post-test measurements are based on those stipulated for the CECC 50 000 series of approved transistors.

	Test		Severity	Duration	Note
IEC 68-2-3	Ca	Damp Heat, steady state	+40 °C, 95% RH	168 hours	1
68-2-20	Та	Solderability	+235 ^o C, 1.5 mm from header	5 seconds	1
68-2-21	Ub	Lead Fatigue	4 cycles	_	1
68-2-1	Α	Low Temperature Storage	-20 °C	2000 hours	2
68-2-2	Ba	High Temperature Storage	+50 °C	2000 hours	2
68-2-14	Nb	Change of Temperature	-20 °C to +50 °C	10 cycles	2
68-2-6	Fc (B4)	Vibration, swept frequency	125 Hz to 2 kHz 196 ms ⁻²	2 h in each orientation	2
68-2-7	Ga	Acceleration, steady state	196000 ms ⁻²	60 seconds	2
68-2-27	Ea	Shock	14700 ms ⁻²	3 pulses 6 orientations	2
68-2-20	Tb	Resistance to Solder Heat	+350 °C, 6 mm from header	3 seconds	3

- The detectors are checked on a production batch release principle at approximately weekly intervals. This is equivalent to Group B.
- 2. The detectors are checked at quarterly intervals. This is equivalent to Group C.
- 3. This is an annual check.

Typical normalized window transmission characteristic

Typical Responsivity, N.E.P., and Noise as functions of Frequency (one element screened)

Typical Responsivity, N.E.P., and Noise as functions of Temperature (one element screened)

POLAR DIAGRAMS

Typical Field of View in x-x plane (see Mechanical Data)

Typical Field of View in y-y plane (see Mechanical Data)

DUAL ELEMENT PYROELECTRIC INFRARED DETECTOR

This is an infrared sensitive device specifically designed for passive IR intruder alarms. It has differentially connected dual elements, with wide separation, combined with a single impedance converting amplifier to provide immunity from common mode signals such as those generated by variations in ambient temperature, background radiation and acoustic noise.

The detector will give an output signal only when the radiation falling on the elements is unbalanced as in a focused system.

It is sealed in a low profile TO-5 can with a window optically coated to restrict the response to wavelengths greater than 6.5 μ m.

QUICK REFERENCE DATA

Spectral Response		6.5 ± 0.5 to > 14	μm
Responsivity (10 μm, 10), each element	typ.	450	∨W-1
Noise Equivalent Power (N.E.P.) (10 µm, 10, 1), each element	typ.	2.1 × 10 ⁻⁹	WHz ^{-½}
Element dimensions, each element		2 x 1	mm
Element separation		1.0	mm
Field of View in horizontal plane (x-x)	typ.	110	degrees
Operating voltage		9	V
Optimum operating frequency range		0.1 to 1000	Hz

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS — OPTOELECTRONIC DEVICES

Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. Disposal of large quantities should therefore be carried out in accordance with the latest local legislation.

SOLDERING

- 1. When making soldered connections to the leads, a thermal shunt should be used.
- It is essential that any mains operated soldering iron should be both screened and earthed.
 Failure to observe these precautions could lead to the introduction of line voltage and possible damage to the device.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

Supply voltage	max.	30	V
Temperature, operating	max.	+50	oC
	min.	20	oC
Temperature, storage	max.	+50	oC
	min.	-20	oC
Lead soldering temperature \geq 6 mm from header, $t_{sld} \leq 3$ s	max.	+350	οС

CHARACTERISTICS (at T_{amb} = 25 °C \pm 3 °C and with recommended circuit)

		min.	typ.	max.	
Spectral Response		6.5 ± 0.5	_	>14	μm
Responsivity (10 μ m, 10)	note 1	265	450	_	VW ⁻¹
N.E.P. (10 μm, 10, 1)	note 2	_	2.1 x 10 ⁻⁹	6 x 10 ⁻⁹	WHz ^{-½}
Element matching	note 2	_	_	± 20	%
Field of View (x-x plane)	note 3	_	110	_	degrees
Operating voltage	note 4	8	9	10	V

- 1. Each element. These characteristics apply throughout the spectral response range.
- 2. With both elements irradiated, the matching of the element signals is derived from:-

$$\frac{\Delta S}{\frac{1}{2} (S_A + S_B)} \times 100$$
, where S_A and S_B are the signals of the two elements and ΔS is the signal with both elements irradiated.

- 3. Field of view to 50% of the maximum responsivity level.
- 4. The detector will operate outside the quoted range but may have a degraded performance.
- 5. For performance as a function frequency and temperature see pages 6 and 7.

OPERATING NOTES

- 1. The case potential must not be allowed to become positive with respect to the other two terminals.
- 2. It is inadvisable to operate the detector at mains related frequencies.
- 3. To avoid the possibility of optical microphony, the detector must be firmly mounted.
- An increase in temperature of element A will produce a positive going signal at the output. For element B, the corresponding output will be negative going.
- 5. Use recommended circuit for low noise operation.
- 6. For simplicity of operation, a source follower may be used where noise is not a problem. This may be achieved with a 22 k Ω resistor between source and envelope with the positive supply taken to the drain terminal. This will give a voltage gain of approximately 0.9.

DEFINITIONS

1. Responsivity VW-1

This is the ratio of the r.m.s. signal in volts to the r.m.s. value of the incident, chopped radiant power.

N,E.P. (Noise Equivalent Power), WHz-½

This is the r.m.s. value of the incident, chopped radiant power necessary to produce an r.m.s. signal to r.m.s. noise ratio of unity. The r.m.s. noise refers to the value calculated for unit square root bandwidth $VHz^{-\frac{1}{2}}$.

APPLICATION INFORMATION

Optional additional stage for extra gain

Recommended component values for various gains

Tor various gains				
Gain	R ₁	R_2		
x	kΩ	MΩ		
50	560	5.6		
20	220	2.2		
10	100	1.0		

MECHANICAL AND ENVIRONMENTAL STANDARDS

As part of the Quality Assurance programme, the detectors are assessed at regular intervals against the requirements of the following IEC standards. The frequency of testing and the limits and conditions for the pre- and post-test measurements are based on those stipulated for the CECC 50 000 series of approved transistors.

	Test		Severity	Duration	Note
IEC 68-2-3	Ca	Damp Heat, steady state	+40 °C, 95% RH	168 hours	1
68-2-20	Та	Solderability	+235 ^o C, 1.5 mm from header	5 seconds	1
68-2-21	Ub	Lead Fatigue	4 cycles	_	1
68-2-1	Α	Low Temperature Storage	-20 °C	2000 hours	2
68-2-2	Ba	High Temperature Storage	+50 °C	2000 hours	2
68-2-14	Nb	Change of Temperature	-20 °C to +50 °C	10 cycles	2
68-2-6	Fc (B4)	Vibration, swept frequency	125 Hz to 2 kHz 196 ms ⁻²	2 h in each orientation	2
68-2-7	Ga	Acceleration, steady state	196000 ms ⁻²	60 seconds	2
68-2-27	Ea	Shock	14700 ms ⁻²	3 pulses 6 orientations	2
. 68-2-20	Tb	Resistance to Solder Heat	+350 °C, 6 mm from header	3 seconds	3

- The detectors are checked on a production batch release principle at approximately weekly intervals. This is equivalent to Group B.
- 2. The detectors are checked at quartely intervals. This is equivalent to Group C.
- 3. This is an annual check.

Typical normalized window transmission characteristic

Typical Responsivity, N.E.P., and Noise as functions of Frequency (one element screened)

Typical Responsivity, N.E.P., and Noise as functions of Temperature (one element screened)

POLAR DIAGRAMS

Typical Field of View in x-x plane (see Mechanical Data)

Typical Field of View in y-y plane (see Mechanical Data)

SINGLE ELEMENT PYROELECTRIC INFRARED DETECTOR

This is an infrared sensitive device, combined with a pre-amplifier which is stabilized to overcome d.c. saturation due to thermal changes. It is sealed in a low-profile TO-5 can.

QUICK REFERENCE DATA

Spectral Response		6.5 ± 0.5 to > 14	μm
Responsivity, (10 μ m, 10)	typ.	130	∨W-1
Noise Equivalent Power (N.E.P.), (10 µm, 10, 1)	typ.	3.5 × 10 ⁻⁹	WHz ^{-½}
Element dimensions		2 x 1	mm
Field of view	typ.	105	degrees
Operating voltage		9	V
Optimum operating frequency range		0.1 to 1000	Hz

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS — OPTOELECTRONIC DEVICES

MECHANICAL DATA

Dimensions in mm

SOT-49F (low profile TO-5)

PRODUCT SAFETY

Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. Disposal of large quantities should therefore be carried out in accordance with the latest local legislation.

SOLDERING

- 1. When making soldered connections to the leads, a thermal shunt should be used.
- It is essential that any mains operated soldering iron should be both screened and earthed.
 Failure to observe these precautions could lead to the introduction of line voltage and possible damage to the device.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134)

Supply voltage	max.	30	V
Temperature, operating	max.	+60	oC
	min.	40	oC
Temperature, storage	max.	+70	oC
	min.	-40	oC
Lead soldering temperature ≥ 6 mm from header, told ≤ 3 s	max.	+350	οс

CHARACTERISTICS (at T_{amb} = 25 ± 3 °C and with recommended circuit).

		mın.	typ.	max.	
Spectral Response		6.5 ± 0.5	_	> 14	μm
Responsivity (10 µm, 10)	notes 1 and 4	95	130	_	VW ⁻¹
N.E.P. (10 μm, 10, 1)	notes 1 and 4	_	3.5×10^{-9}	9 x 10 ⁻⁹	$WHz^{-\frac{1}{2}}$
Field of View,	note 2		150	_	degrees
Operating voltage	note 3	8	9	10	V

9V

O OV M0287

Notes

- 1. These characteristics apply throughout the spectral response range.
- 2. Field of view to 50% of the maximum responsivity level.
- 3. The detector will operate outside the quoted range but may have a degraded performance.
- 4. For performance as a function of frequency and temperature, see pages 4 and 5.

RECOMMENDED CIRCUIT

OPERATING NOTES

- 1. The case potential must not be allowed to become positive with respect to the other two terminals.
- 2. It is inadvisable to operate the detector at mains related frequencies.
- 3. To avoid the possibility of optical microphony, the detector must be firmly mounted.
- 4. An increase in temperature of the element will produce a negative going signal at the output.

DEFINITIONS

1. Responsivity VW-1

This is the ratio of the r.m.s. signal in volts to the r.m.s. value of the incident, chopped radiant power.

2. N.E.P. (Noise Equivalent Power), WHz-1/2

This is the r.m.s. value of the incident, chopped radiant power necessary to produce an r.m.s. signal to r.m.s. noise ratio of unity. The r.m.s. noise refers to the value calculated for unit square root bandwidth $VHz^{-\frac{1}{2}}$.

MECHANICAL AND ENVIRONMENTAL STANDARDS

As part of the Quality Assurance programme, the detectors are assessed at regular intervals against the requirements of the following IEC standards. The frequency of testing and the limits and conditions for the pre-and post-test measurements are based on those stipulated for the CECC 50 000 series of approved transistors.

	Test		Severity	Duration	Note
IEC 68-2-3	Ca	Damp Heat, steady state	+40 °C, 95% RH	168 hours	1
68-2-20	Та	Solderability	+235 ^o C,1.5 mm from header	5 seconds	1
68-2-21	Ub	Lead Fatigue	4 cycles	_	1
68-2-1	Α	Low Temperature Storage	-40 °C	2000 hours	2
68-2-2	Ва	High Temperature Storage	+70 °C	2000 hours	2
68-2-14	Nb	Change of Temperature	-40 °C to +70 °C	10 cycles	2
68-2-6	Fc (B4)	Vibration, swept frequency	125 Hz to 2 kHz 196 ms ⁻²	2 h in each orientation	2
68-2-7	Ga	Acceleration, steady state	196000 ms ⁻²	60 seçonds	2
68-2-27	Ea	Shock	14700 ms ⁻²	3 pulses 6 orientations	2
68-2-20	Tb	Resistance to Solder Heat	+350 °C, 6 mm from header	3 seconds	3

- The detectors are checked on a production batch release principle at approximately weekly intervals. This is equivalent to Group B.
- 2. The detectors are checked at quarterly intervals. This is equivalent to Group C.
- 3. This is an annual check.

Typical Responsivity, N.E.P., and Noise as functions of Frequency

Typical Responsivity, N.E.P., and Noise as functions of Temperature

POLAR DIAGRAMS

Typical Field of View in x-x plane (see Mechanical Data)

Typical Field of View in y-y plane (see Mechanical Data)

Typical normalized window transmission characteristic

DUAL ELEMENT PYROELECTRIC INFRARED DETECTOR

This is an infrared sensitive device specifically designed for battery operated passive infrared movement sensors such as intruder alarms and light switches. It has differentially connected dual elements which provide immunity from common mode signals such as those generated by variations in ambient temperature, background radiation and acoustic noise. The wide separation of the elements makes this detector compatible with most optical systems. The dual elements are combined with a single impedance converting amplifier, which is specially designed to function from low voltage supplies with low current consumption. The detector will give an output signal only when the radiation falling on the elements is unbalanced, as in a focused system. It is sealed in a low profile TO-5 can with a window optically coated to restrict the response to wavelengths greater than 6.5 μ m.

QUICK REFERENCE DATA

Spectral Response		$6.5 \pm 0.5 \text{ to} > 14$	μm
Responsivity (10 μ m, 10), each element (see circuit 1)	typ.	150	VW ⁻¹
Responsivity (10 μm, 10), each element (see circuit 2)	typ.	720	<i>VW</i> ⁻¹
Noise Equivalent Power (N.E.P.) (10 μ m, 10, 1), each element	typ.	1.5 × 10 ⁻⁹	WHz ^{-½}
Element dimensions, each element	nom.	2.1×0.9	mm
Element separation	nom.	1.0	mm
Field of View in horizontal plane (x-x)	typ.	130	degrees
Operating voltage	min.	3	V
Optimum operating frequency range		0.1 to 20	Hz

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS — ${\tt OPTOELECTRONIC}$ DEVICES

MECHANICAL DATA

SOT-49H (TO-5 variant)

Dimensions in mm

PRODUCT SAFETY

Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. Disposal of large quantities should therefore be carried out in accordance with the latest local legislation.

SOLDERING

- 1. When making soldered connections to the leads, a thermal shunt should be used.
- It is essential that any mains operated soldering iron used should be both screened and earthed. Failure to observe these precautions may lead to the introduction of line voltages and possible damage to the device.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC134).

Supply voltage	30	V
Temperature, operating range	-40 to +70	oC
Temperature, storage range	-55 to +85	°C
Lead soldering temperature, \geq 6 mm from header, $t_{sld} \leq 3$ s max.	+350	οС

OPERATING CONDITIONS

		min.	max.	
Voltage	note 5	3	10	V
Frequency	note 5	0.1	20	Hz

OPERATING NOTES

- The case potential must not be allowed to become positive with respect to the other two terminals.
- 2. It is inadvisable to operate the detector at mains related frequencies.
- 3. To avoid the possibility of optical microphony, the detector must be firmly mounted.
- 4. An increase in temperature of element A will produce a negative going signal at the output. For element B, the corresponding output will be positive going.
- 5. The detector will operate outside the quoted range but may have a degraded performance.

CHARACTERISTICS (at T_{amb} = 25 °C ± 3 °C and with recommended circuit 1).

		min.	typ.	max.	
Spectral Response		6.5 ± 0.5	_	> 14	μm
Responsivity (10 μ m, 10)	note 1	100	150	_	VW ⁻¹
Responsivity (10 μm, 10)	note 4	_	<i>720</i>	_	<i>VW</i> ⁻¹
N.E.P. (10 μm, 10, 1)	note 1	_	1.5 × 10 ⁻⁹	6 × 10 ⁻⁹	WHz ^{-½}
Element matching	note 2	_	_	± 20	%
Field of View (x-x plane)	note 3	_	130	_	degrees
Quiescent current		_	10		μΑ
Element dimensions		2	2.1 imes 0.9 nominal		mm
Element separation			1.0 nominal		mm

Notes

- 1. Each element. These characteristics apply throughout the spectral response range.
- 2. With both elements irradiated, the matching of the element signals is derived from:—

$$\frac{\Delta S}{\frac{1}{2}(S_A + S_B)}$$
 \times 100, where S_A and S_B are the signals of the two elements and ΔS is the signal with both elements irradiated.

- 3. Field of view to 50% of the maximum responsivity level.
- 4. The RPY97 has been specified in conjunction with a source follower circuit with a typical gain of 0.9. For comparison with the RPY93, RPY94 and RPY95 dual element detectors, the alternative circuit shown should be used. This explains the difference in responsivity levels.

CIRCUIT 1 (RECOMMENDED)

CIRCUIT 2 (ALTERNATIVE, X5 GAIN)

DEFINITIONS

- 1. Responsivity VW⁻¹
 - This is the ratio of the r.m.s. signal in volts to the r.m.s. value of the incident, chopped radiant power.
- 2. N.E.P. (Noise Equivalent Power), WHz-1/2

This is the r.m.s. value of the incident, chopped radiant power necessary to produce an r.m.s. signal to r.m.s. noise ratio of unity. The r.m.s. noise refers to the value calculated for unit square root bandwidth $VHz^{-\frac{1}{2}}$.

MECHANICAL AND ENVIRONMENTAL STANDARDS

As part of the Quality Assurance programme, the detectors are assessed at regular intervals against the requirements of the following IEC standards. The frequency of testing and the limits and conditions for the pre- and post-test measurements are based on those stipulated for the CECC 50 000 series of approved transistors.

		Test		Severity	Duration	Note
IEC 6	68-2-3	Ca	Damp Heat, steady state	+40 °C, 95% RH	168 hours	1
6	68-2-20	Та	Solderability	+235 °C, 1.5 mm from header	5 seconds	1
ϵ	68-2-21	Ub	Lead Fatigue	4 cycles	_	1
e	68-2-1	Aa	Low Temperature Storage	−55 °C	2000 hours	2
e	68-2-2	Ba	High Temperature Storage	+85 °C	2000 hours	2
e	68-2-14	Nb	Change of Temperature	-55 °C to +85 °C	10 cycles	2
6	68-2-6	Fc (B4)	Vibration, swept frequency	125 Hz to 2 kHz 196 ms ⁻²	2 h in each orientation	2
ϵ	68-2-7	Ga	Acceleration, steady state	196000 ms ⁻²	60 seconds	2
6	68-2-27	Ea	Shock	14700 ms ⁻²	3 pulses 6 orientations	2
6	68-2-20	Tb	Resistance to Solder Heat	+350 °C, 6 mm from header	3 seconds	3

- 1. The detectors are checked on a production batch release principle at approximately weekly intervals. This is equivalent to Group B.
- 2. The detectors are checked at quarterly intervals. This is equivalent to Group C.
- 3. This is an annual check.

Typical normalized window transmission characteristic

Typical Responsivity, N.E.P., and Noise as functions of Frequency (one element screened)

Typical Responsivity, N.E.P., and Noise as functions of Temperature (one element screened)

POLAR DIAGRAMS

Typical Field of View in x-x plane (see Mechanical Data)

Typical Field of View in y-y plane (see Mechanical Data)

PHOTOCONDUCTIVE DEVICES

LIST OF SYMBOLS

Cell voltage	V
Cell current	I
Illumination current	I_1
Initial illumination current	I_{lo}
Equilibrium illumination current	I_{le}
Dark current	I_d
Initial dark current	I_{do}
Equilibrium dark current	I _{de}
Illumination resistance	rl
Initial illumination resistance	rlo
Equilibrium illumination resistance	rle
Dark resistance	r_{d}
Initial dark resistance	rdo
Equilibrium dark resistance	rde
Current rise time	tri
Current decay time	t _{fi}
Pulse duration	^t p
Averaging time	tav
Pulse repetition rate	p_{rr}
Illumination sensitivity	N
Illumination response	γ
Voltage response	α
Ambient temperature	T_{amb}
Thermal resistance	R_{th}
Temperature of CdS tablet	T_{tablet}
Colour temperature	T_c (T_K)
Dissipation	P
Illumination	E
Initial drift	D_0
Peak value (subscript)	M

GENERAL OPERATIONAL RECOMMENDATIONS PHOTOCONDUCTIVE DEVICES

1. GENERAL

- 1.1 These application directions are valid for all types of photoconductive cells, unless otherwise stated on the individual technical data sheets.
- 1.2 A photoconductive device is a light-sensitive device whose resistance varies with the illumination on the device.
- 1.3 Where the term <u>illumination</u> is used in the following sections it shall be taken to mean the radiant energy which is normally used to excite the device.
- 1.4 Also in the following sections, <u>history</u> is taken to mean the duration of the specified conditions plus a sufficient description of previous conditions.

2. OPERATING CHARACTERISTICS

- 2.1 The data given on the individual technical data sheets are based on the devices being uniformly illuminated.
- 2.2 The illumination resistance is the ratio of the voltage across the device to the current through the device when illumination is applied to the device.
- 2.2.1 For a particular set of conditions the equilibrium illumination resistance is the illumination resistance after such a time under these conditions that the rate of change of the illumination resistance is less than 1% per 5 minutes.
- 2.2.2 For a particular set of conditions the <u>initial illumination resistance</u> is the first virtually constant value of the illumination resistance after a period of storage or other operating conditions.

 The initial-illumination resistance usually occurs after a few seconds under the specified conditions.
- 2.3 The <u>illumination current</u> is the current which passes when a voltage and illumination are applied to the device.
- 2.3.1 For a particular set of conditions the equilibrium illumination current is the illumination current after such a time under these conditions that the rate of change of the illumination current is less than 1% per 5 minutes.

PHOTOCONDUCTIVE DEVICES

2.3.2 For a particular set of conditions the <u>initial illumination current</u> is the first virtually constant value of the illumination current after a period of storage or other operating conditions.

The initial illumination current usually occurs after a few seconds under the specified conditions.

- 2.4 The <u>dark resistance</u> is the resistance of the device in the absence of illumi-
- 2.4.1 For a particular set of conditions the equilibrium dark resistance is the dark resistance after such a time under these conditions that the rate of change of the dark resistance is less than 2% per 5 minutes.
- 2.4.2 For a particular set of conditions the <u>initial dark resistance</u> is the dark resistance after a specified time under these conditions following a specified history.
- 2.5 The <u>dark current</u> is the current which passes when a voltage is applied to the device in the absence of illumination.
- 2.5.1 For a particular set of conditions the equilibrium dark current is the dark current after such a time under these conditions that the rate of change of the dark current is less than 2% per 5 minutes.
- 2.5.2 For a particular set of conditions the <u>initial dark current</u> is the dark current after a specified time under these conditions immediately following a specified history.

2.6.1 For a particular set of conditions and history the <u>current rise time</u> is the time taken for the current through the device to rise to 90% to its initial illumination current measured from the instant of starting the illumination.

2.6.2 For a particular set of conditions and history the current decay time is the time taken for the current through the device to fall to 10% of its value at the instant of stopping the illumination, measured from that instant.

- 2.7 The <u>illumination sensitivity</u> is the quotient of illumination current by the incident illumination.
- 2.8 The <u>illumination resistance</u> (<u>current</u>) temperature response is the relationship between the illumination resistance (current) and the ambient temperature of the device under constant illumination and voltage conditions.
 - 2.9 For a particular set of conditions the <u>initial drift</u> is the difference between the equilibrium and initial illumination current, expressed as a percentage of the initial illumination current.
- 2.10 The illumination response is the relationship between the initial illumination resistance and the illumination, defined as $\frac{\Delta \log r_{lo}}{\Delta \log E}$

PHOTOCONDUCTIVE DEVICES

3. THERMAL DATA

- 3.1 Ambient temperature. The ambient temperature of a device is the temperature of the surrounding air of that device in its practical situation, which means that other elements in the same space or apparatus must have their normal maximum dissipation and that the same apparatus envelope must be used. This ambient temperature can normally be measured by using a mercury thermometer the mercury container of which has been blackened, placed at a distance of 5 mm from the envelope in the horizontal plane through the centre of the effective area of the CdS tablet.
 - It shall be exposed to substantially the same radiant energy as that incident on the CdS tablet.
- 3.2 The thermal resistance of a device is defined as the temperature difference between the hottest point of the device and the dissipating medium, divided by the power dissipated in the device.

4. OPERATIONAL NOTES

4.1 When a photoconductive device is subjected to a change of operating conditions there may be a transient change of current in excess of that due to the difference between the equilibrium illumination currents. This transient change is called overshoot.

4.2 Direct sunlight irradiation should be avoided.

5. MOUNTING

- 5.1 If no restrictions are made on the individual published data sheets, the device may be mounted in any position.
- 5.2 Most of the photoconductive devices may be soldered directly into the circuit, which is indicated on the individual published data sheets. However, the heat conducted to the seal of the device should be kept to a minimum by the use of a thermal shunt. If not otherwise indicated, the device may be dip-soldered at a solder temperature of 240 °C for a maximum of 10 seconds up to a point 5 mm from the seals.

6. STORAGE

It is recommended that the devices be stored in the dark. At any rate direct sunlight irradiation should be avoided.

7. LIMITING VALUES

The limiting values of photoconductive devices are given in the absolute maximum rating system.

8. OUTLINE DIMENSIONS

The outline dimensions are given in mm.

9. MECHANICAL ROBUSTNESS

The conditions for shock and vibration given on the individual data sheets are intended only to give an indication of the mechanical quality of the device. It is not advisable to subject the device to such conditions.

Type D response curve

PHOTOCONDUCTIVE DEVICES

Current rise curves for cells with type D response curve

Current decay curves for cells with type D response curve

CADMIUM SULPHIDE PHOTOCONDUCTIVE CELLS

Top sensitive cadmium sulphide photoconductive cells in hermetically sealed all-glass envelope intended for on-off applications such as flame failure circuits, and for automatic brightness and contrast control in television receivers.

The cells are shock and vibration resistant.

QUICK REFERENC	E DATA			
Power dissipation at T _{amb} = 25 °C	P	max.	70	mW
Cell voltage, d.c. and repetitive peak	V	max.	350	V
Cell resistance at 50 lx, 2700 K colour temperature, ORP60 ORP66	$rac{ ext{r}_{ ext{lo}}}{ ext{r}_{ ext{lo}}}$	typ.	60 55	kΩ kΩ
Spectral response, current rise and decay curves			type D	
Outline dimensions		max. 6 di	ia. x 15,5	mm

MECHANICAL DATA

Dimensions in mm

Soldering

The cell may be soldered directly into the circuit but heat conducted to the tablet should be kept to a minimum by the use of a thermal shunt. The cell may be dip-soldered at a solder temperature of 240 $^{\rm OC}$ for maximum 10 s up to a point 5 mm from the seals.

=

²⁾ Not tinned.

Sensitive surface.

⁾ Blue dot on ORP66.

ORP60 ORP66

ELECTRICAL DATA

General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only check points of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at T_{amb} = 25 ^{o}C , illumination with colour temperature of 2700 K and at delivery

Initial dark resistance			ORP60	ORP	56
measured at 300 V d.c. applied via 1 M Ω , 20 s after switching off the illumination	$r_{ m do}$	>	200	200	MΩ 1)
Initial illumination resistance measured at 30 V d.c., illumination = 50 lx, after 16 hrs in darkness ²)	r_{lo}	> typ. <	37,5 60 150	- - 55	kΩ kΩ kΩ
Equilibrium illumination resistance measured at 30 V d.c., illumination = 50 lx, after 15 min under the measuring conditions	r_{le}	> typ. <	37,5 75 190	- - 90	kΩ kΩ kΩ
Negative temperature response of illumination resistance		typ. < .	0, 0,		%/°C %/°C
Voltage response rat 0,5 V d.c.	α	typ.	1,	5	

 $^{^{1})}$ The spread of the dark resistance is large and values higher than 1000 MQ are possible for the initial dark resistance.

²⁾ After 16 hours in darkness changes in the CdS material are still occurring but have only insignificant effect on the illumination resistance.

CADMIUM SULPHIDE PHOTOCONDUCTIVE CELLS

Side sensitive cadmium sulphide photoconductive cells in hermetically sealed all-glass envelope intended for on-off applications such as flame failure circuits, and for automatic brightness and contrast control in television receivers.

The cells are shock and vibration resistant.

QUICK REFERENCE DATA					
ORP61 ORP62					
Power dissipation at T _{amb} = 25 °C	P	max.	70	100 mW	
Cell voltage, d.c. and repetitive peak	V	max.	350	350 V	
Cell resistance at 50 lx, 2700 K colour temperature	r_{lo}	typ.	60	45 k Ω	
Spectral response, current rise and decay curves		type D			
Outline dimensions		max.	6 dıa.	x 15,5 mm	

MECHANICAL DATA

Dimensions in mm

Soldering

The cell may be soldered directly into the circuit but heat conducted to the tablet should be kept to a minimum by the use of a thermal shunt. The cell may be dipsoldered at a solder temperature of 240 °C for maximum 10 s up to a point 5 mm from the seals.

^{1,} Not tinned

^{2\(\)} Centre of sensitive area

³⁾ ORP61 brown dot; ORP62 red dot.

ORP61 ORP62

ELECTRICAL DATA

General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only check points of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at T_{amb} = 25 °C, illumination with colour temperature of 2700 K and at delivery.

and at delivery.			ORP61	ORP	62
Initial dark resistance measured at 300 V d.c. applied via 1 M\Omega, 20 s after switching off the illumination	rdo	>	200	150	MΩ ¹)
Initial illumination resistance measured at 30 V d.c., illumination = $50 lx$, after 16 hrs in darkness 2)	r_{lo}	> typ. <	37,5 60 150	30 45 100	kΩ kΩ kΩ
Equilibrium illumination resistance measured at 30 V d.c., illumination = 50 lx, after 15 min under the measuring conditions	r_{le}	> typ. <	37, 5 75 190	30 60 170	kΩ kΩ kΩ
Negative temperature response of illumination resistance		typ.	0,2 0,5	0,2 0,5	%/°C %/°C
Voltage response $\frac{\text{r at } 0,5 \text{ V d.c.}}{\text{r at } 30 \text{ V d.c.}}$	α	typ.	1,5	1,4	

¹⁾ The spread of the dark resistance is large and values higher than 1000 M Ω are possible for the initial dark resistance.

^{2)} After 16 hours in darkness changes in the CdS material are still occurring but have only insignificant effect on the illumination resistance.

CADMIUM SULPHIDE PHOTOCONDUCTIVE CELLS

Top and side sensitive cadmium sulphide photoconductive cells in hermetically sealed all-glass envelope intended for on-off applications such as flame failure circuits, and for automatic brightness and contrast control in television receivers.

The cells are shock and vibration resistant.

QUICK REFERENCE DATA							
Power dissipation at T _{amb} = 25 °C	P	max.	100	mW			
Cell voltage, d.c. and repetitive peak	V	max.	350	V			
Cell resistance at 50 lx, 2700 K colour temperature, ORP69 ORP69	$r_{ m lo} \\ r_{ m lo}$	typ.	64 30	kΩ kΩ			
Spectral response, current rise and decay curves			type D				
Outline dimensions		max.	6 dia. x 15,5	mm			

MECHANICAL DATA

Dimensions in mm

Soldering

The cell may be soldered directly into the circuit but heat conducted to the tablet should be kept to a minimum by the use of a thermal shunt. The cell may be dipsoldered at a solder temperature of $240\,^{\circ}\mathrm{C}$ for maximum $10\,\mathrm{s}$ up to a point 5 mm from the seals.

¹) Not tinned.

²⁾ Centre of sensitive area.

³⁾ ORP68: gray dot; ORP69: white dot.

ORP68 ORP69

ELECTRICAL DATA

General

The electrical properties of CdS cells are dependent on many factors such as illumination, colour temperature of the light source, voltage, current, temperature, total time of operation in the circuit and the time of operation during the last 24 hours prior to the measurement. The following basic characteristics are therefore only check points of the electrical properties of these devices measured with defined values of the various conditions and at delivery.

Basic characteristics at T_{amb} = 25 o C, illumination with colour temperature of 2700 K and at delivery

and at dolly-			ORP68	ORP69	
Initial dark resistance measured with 300 V d.c. applied via 1 MO, 20 s after switching off the illumination	r _{do}	>	150	100	$MΩ$ 1)
Initial illumination resistance measured at 30 Vdc., illumination = 50 lx, after 16 h in darkness 2) 3)	r_{lo}	> typ. <	30 46 100	20 30 60	kΩ kΩ kΩ
Equilibrium illumination resistance measured at 30 V dc., illumination = 50 lx, after 15 min under the measuring conditions	r _{le}	> typ. <	30 60 170	27 46 115	kΩ kΩ kΩ
Negative temperature response of illumination resistance		typ.	0,		%/°C %/°C
Voltage response $\frac{\text{r at } 0.5 \text{ V d.c.}}{\text{r at } 30 \text{ V d.c.}}$		typ.	1,	4	

 $[\]overline{1})$ The spread of the dark resistance is large and values higher than 1000 M Ω are possible for the initial dark resistance.

²⁾ After 16 hours in darkness changes in the CdS material are still occurring but have only insignificant effect on the illumination resistance.

³⁾ Measured at top sensitivity.

CADMIUM SULPHIDE PHOTOCONDUCTIVE DEVICE

Cadmium sulphide photoconductive device with side sensitivity in plastic encapsulation. The device consists of two cells connected in series and is intended for general applications.

QUICK REFER	RENCE DAT	ΓA		
Power dissipation at T _{amb} ≤ 25 °C	P		100	mW
Voltage, d.c. and repetitive peak	V	max.	50	V
Resistance at 50 lux, T _c = 2700 ^o K	r_{l_0}		600	Ω
Wavelengths at 50% sensitivity	λ		500 and 675	nm
Outline dimensions		max.	5,3x5,3x1,4	mm

MECHANICAL DATA

Dimensions in mm

Soldering

The device may be soldered direct into the circuit but heat conducted to the tablet should be kept to a minimum by the use of a thermal shunt.

It may be dip-soldered at a solder temperature of 270 $^{\rm oC}$ for a maximum of 2 s up to a point 6 mm from the envelope.

October 1972 603

RATINGS Limiting values in accordance with the	Absolute	Maximum	System	(IEC134)
Cell voltage, d.c. and repetitive peak	V	max.	50	V
Cell.voltage, $p_{rr} \le once per minute$, $t_p \le 5 ms$	$v_{\mathbf{M}}$	max.	100	V
Power dissipation, $t_{av} = 0.5 \text{ s}$, $T_{amb} \le 25 ^{\circ}\text{C}$	P	max.	100	mW
Cell current, d.c. and repetitive peak	I	max.	25	mA
Ambient temperature, storage and operating storage	${ m T_{amb}} \ { m T_{stg}}$	mia. max.	-40 +50	oC oC
Temperature of CdS tablet	T_{tablet}	max.	+70	$^{\mathrm{o}}\mathrm{C}$
THERMAL RESISTANCE				
Thermal resistance from CdS tablet to ambient	R _{th t} -a	=	0,45	⁰ C/mW
CHARACTERISTICS				
Initial dark resistance, measured with 50 V d.c. applied via 1 MΩ, 20 s after switching off the illumination	r_{do}	>	200	kΩ
Initial ilumination resistance	-00		200	Ros
measured at 1 V d.c., illumination 50 lx, $T_c = 2700 \text{ K}$	r_{lo}	typ. 0,3	0,6 5-1,4	kΩ kΩ
Initial drift	D_0	typ.	0	%
F ₄₇₀₀ (= $\frac{r_1 \text{ at } 4700 \text{ K}}{r_1 \text{ at } 2856 \text{ K}}$ at constant illumination				

OPERATING NOTES

and using a Davis-Gibson filter)

- The device consits of two photoconductive cells connected in series. The resistance
 of the device is mainly governed by the resistance of that cell receiving the lower
 luminous flux,
 - If it is required for any application that the device is partly shaded, the shadow line should be perpendicular to the axis of the device.

typ.

1, 2

2. For optimum heat dissipation use the shortest permissible lead length.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production

PHOTOCONDUCTIVE CELL

Lead sulphide, chemically deposited, photoconductive cell recommended for room temperature operation. It is encapsulated in a hermetically sealed envelope similar to TO-5, with an end-viewing window. It incorporates a germanium filter to cut off radiation at wavelengths below 1.5 μ m.

QUICK REFERENCE DATA

Wavelength range at maximum response		1.8 to 2.2	μm
Operating temperature		20	оС
Current responsivity (2.0 μ m, 800)	typ.	2500	mAW ⁻¹
Voltage responsivity (2.0 μ m, 800)	typ.	6 x 10 ⁵	VW ⁻¹
D* (2.0 μm, 800, 1)	min,	1.0×10^{10}	cmHz ½W-1
Time constant	typ.	250	μs
Sensitive area		1.0 × 1.0	mm

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS — OPTOELECTRONIC DEVICES

MECHANICAL DATA

SOT-49/1 (similar to TO-5)

Dimensions in mm

PRODUCT SAFETY

Modern high technology materials have been used in the manufacture of this device to ensure high performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the device is heated to destruction. Disposal of large quantities should therefore be carried out in accordance with the latest local legislation.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Power dissipation (note 2)	Р	max.	20	mW
Storage temperature range	T _{stg}		-20 to +50	οС
Ambient operating temperature range	T _{amb}		-20 to +50	οС
CHARACTERISTICS T _{amb} = 20 °C (see no	otes)			
Wavelength range at maximum response			1.8 to 2.2	μm
Spectral response range (see page 5)			1.5 to 2.9	μm
Cell resistance		min. typ.	100 240	kΩ kΩ
Time constant (note 3)		typ.	250	μs
Field of view		typ.	70	deg
BLACK BODY PERFORMANCE				
Current responsivity (500K, 800)		min. typ.	10 25	mAW ⁻¹ mAW ⁻¹
Voltage responsivity (500K, 800)		typ.	6×10^{3}	VW ⁻¹
D* (500K, 800, 1)		min. typ.	1.0×10^{8} 2.3×10^{8}	cmHz ^½ W⁻¹ cmHz½W⁻¹
N.E.P. (500K, 800, 1)		max.	1.0×10^{-9}	WHz ^{-½}
MONOCHROMATIC PERFORMANCE (2.0	μm radiation)			
Current responsivity (2.0 μ m, 800)		min. typ.	1000 2500	mAW ⁻¹ mAW ⁻¹
Voltage responsivity (2.0 μ m, 800)		typ.	6 × 10 ⁵	VW ⁻¹
D* (2.0 μm, 800, 1)		min. typ.	1.0×10^{10} 2.3×10^{10}	cmHz½W ⁻¹ cmHz½W ⁻¹
N.E.P. (2.0 μm, 800, 1)		max.	$1.0 \times 10^{-1.1}$	WHz ^{-½}
-				

The above characteristics should be used in conjunction with the following notes.

1. Test conditions

The cell is operated at a temperature of 20 °C. The sensitive element is situated at a distance of 264 mm from a black body source limited by an aperture of 3 mm diameter.

The radiation path is interrupted at 800 Hz by a chopper blade at ambient temperature. Under these conditions the r.m.s. power at the element (chopping factor 2.2) is $4.5 \,\mu\text{W}$ cm⁻².

A bias voltage of 24 V is applied to the cell. Measurements of the detector output are made using a low value resistive load, followed by a current pre-amplifier, as shown in figure 1. The output is fed into an amplifier tuned to 800 Hz with a bandwidth of 50 Hz.

The figures in brackets, which follow responsivity, D* and N.E.P. refer to the test conditions, for example, D* (2.0 μ m, 800, 1) denotes monochromatic radiation incident on the detector of wavelength 2.0 μ m, modulation frequency 800 Hz and electronic bandwidth of 1 Hz.

The characteristics shown in the data for D* and N.E.P. are normalized to 1 Hz bandwidth. This means that with the 50 Hz bandwidth recommended for the test amplifier (figure 1), D* will be $\sqrt{50}$ higher than the normalized value and, conversely, N.E.P. will be reduced by the same factor. (See following definitions of D* and N.E.P.).

D* and N.F.P.

where

These are figures of merit for the materials of detectors and are fully discussed in most textbooks on infrared. D* is derived from the expression:

$$D^* = \frac{\frac{I_S}{I_N} \times A (\Delta f)^{\frac{1}{2}}}{W}$$

$$I_S = \text{Signal current}$$

$$I_N = \text{Noise current}$$

$$A = \text{Detector area}$$

$$(\Delta f) = \text{Bandwidth of measuring amplifier}$$

$$W = \text{Radiation power incident on detector sensitive element}$$

(r.m.s. value in watts)

The Noise Equivalent Power (N.E.P.) is related to D^* by the expression:

N.E.P. =
$$\frac{A^{\frac{1}{2}}}{D^*}$$

2. Variation of performance with bias

Both signal and noise vary with bias in this type of cell. At bias levels at which the cell dissipation is less than 2.5 mW the maximum level of D* is maintained. At higher levels of dissipation the noise increases more rapidly than the signal so that although the responsivity increases, D* falls. The maximum responsivity typically occurs at a dissipation level of 10 mW, beyond which element heating takes place with a consequent reduction in responsivity.

Variation of performance with temperature/life

The quoted values are those which may be expected after storage or operation up to 20 $^{\rm o}$ C. These values may change after storage or operation at temperatures up to the absolute maximum temperature of 50 $^{\rm o}$ C.

3. Time constant

The detector time constant figure is based on the response to a step function of incident radiation. The quoted time indicates the interval between the moment of application and the output pulse reaching 63% of its peak value.

4. Recommended operating conditions

A suitable circuit is shown in Fig. 1. With this mode of operation, the signal is the short-circuit current, which is related to the open-circuit cell voltage by the expression:

$$V_{oc} = I_{sc} \times R_{cell}$$

Fig.1

Typical polar response of relative sensitivity

Typical relative spectral response

Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. 541-7141/7242/7343/7444/7545.

Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 427 08 88. Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 62 91 11. Belgium: N.V. PHILIPS & MBLE ASSOCIATED, 9, rue du Pavillon, B-1030 BRUXELLES, Tel. (02) 242 74 00. Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2600. Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161. Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001. Colombia: SADAPE S.A., P.O. Box 9805, Calle 13, No. 51 + 39, BOGOTA D.E. 1., Tel. 600 600.

Denmark: MINIWATT A/S, Strandlodsvej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 54 11 33.

Finland: OY PHILIPS AB, Elcomo Division, Kaivokatu 8, SF-00100 HELSINK1 10, Tel. 172 71. France: R.T.C. LA RADIOTECHNIQUE-COMPELEC. 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99 Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0. Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 9215111 Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-24 51 21. India: PEICO ELECTRONICS & ELECTRICALS LTD., Elcoma Div., Ramon House, 169 Backbay Reclamation, BOMBAY 400020, Tel. 295144. Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Panim Bank Building, 2nd Fl., Jl. Jend. Sudirman, P.O. Box 223, JAKARTA, Tel. 716 131. Treland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 69 33 55. Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6752.1. Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.
(IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chiyoda-ku, TOKYO 102, Tel. (03)230-1521. Kores: PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel. 794-4202. Malaysia: PHILIPS MALAYSIA SDN. BERHAD, No. 4 Persiaran Barat, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 77 44 11. Mexico: ELECTRONICA, S.A. de C.V., Carr. Mexico-Toluca km. 62.5, TOLUCA, Edo. de Mexico 50140, Tel. Toluca 91(721)613-00. Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 79 33 33 New Zealand: PHILIPS ELECTRICAL IND. LTD., Elcoma Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. 605-914. Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. 68 02 00. Peru: CADESA, Av. Alfonso Ugarte 1268, LIMA 5, Tel. 326070. Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59. Portugal: PHILIPS PORTUEGESA S.A.R.L., Av. Eng. Duarte Pacheco 6, LISBOA 1, Tel. 68 31 21. Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 25 38 811. South Africa: EDAC (Pty.) Ltd., 3rd Floor Rainer House, Upper Railway Rd. & Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. 614-2362/9. Spain: MINIWATT S.A., Balmes 22, BARCELONA 7, Tel. 301 63 12.
Sweden: PHILIPS KOMPONENTER A.B., Lidingövägen 50, S-11584 STOCKHOLM 27, Tel. 08/67 97 80 Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel, 01-488 22 11 Taiwan: PHILIPS TAIWAN LTD., 3rd Fl., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. (02)-5631717.
Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9. Turkey: TÜRK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80. ISTANBUL, Tel. 43 59 10. United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633. United States: (Active Devices & Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000.

For all other countries apply to: Philips Electronic Components and Materials Division, Corporate Relations & Projects, Building BAE-3, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Tel. +31 40 72 33 04, Telex 35000 phtc nl/nl be vec. A33

(Passive Devices & Electromechanical Devices) CENTRALAB INC., 5855 N. Glen Park Rd., MILWAUKEE, WI 53201, Tel. (414)228-7380 (IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.

Venezuela: IND. VENEZOLANAS PHILIPS S.A., Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, CARACAS, Tel. 36 05 11.

(Passive Devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201)539-2000.

Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. 914321

© 1983 Philips Export B.V.

This information is furnished for guidance, and with no guarantee—as to its accuracy or completeness, its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher.