Computational Algebraic Geometry Homework 2

Michael Nelson

Problem 1

Exercise 1. Let \mathbb{F}_2 be the field with two elements.

- 1. Show that $x^2y + y^2x$ vanishes on \mathbb{F}_2^2 .
- 2. Prove that $\langle x^2 x, y^2 y \rangle \subseteq \mathcal{I}(\mathbb{F}_2^2)$.
- 3. Show that every $f \in \mathbb{F}_2[x, y]$ can be written as

$$f = A(x^2 - x) + B(y^2 - y) + axy + bx + cy + d$$
(1)

where $A, B \in \mathbb{F}_2[x, y]$ and $a, b, c, d \in \mathbb{F}_2$.

- 4. Show that $axy + bx + cy + d \in \mathcal{I}(\mathbb{F}_2^2)$ if and only if a = b = c = d = 0.
- 5. From here, conclude that $\langle x^2 x, y^2 y \rangle = \mathcal{I}(\mathbb{F}_2^2)$.

Solution 1. 1. Let $(a,b) \in \mathbb{F}_2^2$ and let $f = x^2y + y^2x$. We have

$$f(a,b) = a^{2}b + b^{2}a$$
$$= ab + ba$$
$$= 2ab$$
$$= 0.$$

where we used the fact that we are working in \mathbb{F}_2 . It follows that f vanishses on \mathbb{F}_2^2 .

2. Let $f(x^2 - x) + g(y^2 - y) \in \langle x^2 - x, y^2 - y \rangle$ where $f, g \in \mathbb{F}_2[x, y]$. Then given any $(a, b) \in \mathbb{F}_2^2$, we have

$$(f(x^{2}-x)+g(y^{2}-y))(a,b) = f(a,b)(a^{2}-a)+g(a,b)(b^{2}-b)$$

$$= f(a,b)(a-a)+g(a,b)(b-b)$$

$$= f(a,b)\cdot 0+g(a,b)\cdot 0$$

$$= 0.$$

It follows that $f(x^2-x)+g(y^2-y)\in \mathcal{I}(\mathbb{F}_2^2)$. Since $f(x^2-x)+g(y^2-y)$ was an arbitrary element in $\langle x^2-x,y^2-y\rangle$, we see that $\langle x^2-x,y^2-y\rangle\subseteq \mathcal{I}(\mathbb{F}_2^2)$.

3. Observe that $\mathcal{G} = \{x^2 - x, y^2 - y\}$ is a Gröbner basis for $\langle x^2 - x, y^2 - y \rangle$ with respect to lexicographic order (x > y). Indeed, the *S*-polynomial of $x^2 - x$ and $y^2 - y$ is

$$S(x^{2} - x, y^{2} - y) = y^{2}(x^{2} - x) - x^{2}(y^{2} - y)$$

$$= -y^{2}x + x^{2}y$$

$$= x^{2}y - xy^{2},$$

and this reduces to 0 when divided by \mathcal{G} using the division algorithm:

$$x^{2}y - xy^{2} = y(x^{2} - x) - x(y^{2} - y).$$

The monomials which do not belong to $LT(\mathcal{G})$ are $\{1, x, y, xy\}$. It follows that every polynomial in $\mathbb{F}_2[x, y]$ can be expressed in the form (1).

4. Set r = axy + bx + cy + d. If a = b = c = d = 0, then r = 0, and clearly in this case we have $r \in \mathcal{I}(\mathbb{F}_2^2)$. Conversely, suppose $r \in \mathcal{I}(\mathbb{F}_2^2)$. Evaluating r at (0,0) gives us d = 0. Next, evaluating r at (1,0) gives us b = 0. Similarly, evaluating r at (0,1) gives us c = 0. Finally, evaluating r at (1,1) gives us a = 0.

5. We just need to show that $\mathcal{I}(\mathbb{F}_2^2)\subseteq \langle x^2-x,y^2-y\rangle$ since part 2 gives us the reverse inclusion. Suppose $f\in\mathcal{I}(\mathbb{F}_2^2)$. By part 3, we can express f in the form (1). Since $f\in\mathcal{I}(\mathbb{F}_2^2)$, the remainder part is zero by part 4: axy+bx+cy+d=0. Therefore f has the form $f=A(x^2-x)+B(y^2-y)$, which implies $f\in\langle x^2-x,y^2-y\rangle$. Since f was arbitrary, it follows that $\mathcal{I}(\mathbb{F}_2^2)\subseteq\langle x^2-x,y^2-y\rangle$.

Problem 2

Exercise 2. Let $f = x^3 - x^2y - x^2z$, $f_1 = x^2y - z$, and $f_2 = xy - 1$.

- 1. Use the lexicographic order (x > y > z) to compute the remainder r_1 of f when divided by (f_1, f_2) and the remainder r_2 of f when divided (f_2, f_1) .
- 2. Find an expression for $r = r_1 r_2$ in $\langle f_1, f_2 \rangle$, that is, find $A, B \in k[x, y, z]$ such that $r = Af_1 + Bf_2$ for r.

Solution 2. 1. The computation for r_1 is done below:

We obtain $r_1 = x^3 - x^2z - z$. Next, the computation for r_2 is done below:

We obtain $r_2 = x^3 - x^2z - x$.

2. From the computations above, we see that $-xf_2 + r_2 = -f_1 + r_1$. Thus

$$r = r_1 - r_2$$
$$= -xf_2 + f_1.$$

Problem 3

Exercise 3. A basis (generating set) $\{x^{\alpha_1}, \dots, x^{\alpha_s}\}$ for a monomial ideal I is **minimal** if no x^{α_i} divides any x^{α_j} for $i \neq j$.

- 1. Prove that every monomial ideal has a minimal basis.
- 2. Prove that every monomial ideal has a *unique* minimal basis.

Solution 3. 1. Let I be a monomial ideal with generating set $\{m_1, \ldots, m_s\}$ (where we assume the coefficient for each m_i is 1). If for some $i \neq j$, we have $m_i \mid m_j$, then we may remove m_j from the generating set $\{m_1, \ldots, m_s\}$ to obtain another generating set of I: $\{m_1, \ldots, m_{i-1}, m_{i+1}, \ldots, m_s\}$. Indeed, clearly we have

$$\langle m_1,\ldots,m_{j-1},m_{j+1},\ldots m_s\rangle\subseteq\langle m_1,\ldots,m_{j-1},m_j,m_{j+1},\ldots,m_s\rangle.$$

We have the reverse inclusion since $m_i \mid m_j$. Thus for each $1 \leq j \leq s$, we remove m_j from $\{m_1, \ldots, m_s\}$ if there exists an $i \neq j$ such that $m_i \mid m_j$. Doing so results in a minimal basis for I.

2. Suppose $\{m_1,\ldots,m_s\}$ and $\{m'_1,\ldots,m'_{s'}\}$ are two minimal bases for I. Let $1 \leq i \leq s$. Then since $m_i \in \langle m'_1,\ldots,m'_{s'}\rangle$, there must exist some $1 \leq i' \leq s'$ such that $m'_{i'} \mid m_i$. Similarly, since $m'_{i'} \in \langle m_1,\ldots,m_s\rangle$, there must exist some $1 \leq j \leq s$ such that $m_j \mid m'_{i'}$. Since $m_j \mid m'_{i'}$ and $m'_{i'} \mid m_i$, we see that $m_j \mid m_i$. Since $\{m_1,\ldots,m_s\}$ is minimal, we must in fact have j=i. It follows that $m_i \mid m'_{i'}$ and $m'_{i'} \mid m_i$, which implies $m_i=m'_{i'}$ since we are assuming the coefficient for each m_i and $m'_{i'}$ is 1.

What we've shown so far is that for each $1 \le i \le s$ there exists some $1 \le i' \le s'$ such that $m_i = m'_{i'}$. In fact, such an i' is uniquel. Indeed, if $m_i = m'_{j'}$ for some $1 \le j' \le s'$, then clearly $m'_{i'} \mid m'_{j'}$, which implies i' = j' by minimality $\{m'_1, \ldots, m'_{s'}\}$. Thus we have a one-one and onto correspondence from $\{m_1, \ldots, m_s\}$ to $\{m'_1, \ldots, m'_{s'}\}$; in fact they are the same set: $\{m_1, \ldots, m_s\} = \{m'_1, \ldots, m'_{s'}\}$. Therefore every monomial ideal has a *unique* minimal basis.

Problem 4

Exercise 4. Consider $\mathbb{Z}^n \subseteq \mathbb{C}^n$. Prove that if f vanishes on \mathbb{Z}^n , then f is the zero polynomial. From this, conclude that $\mathcal{I}(\mathbb{Z}^n) = \langle 0 \rangle$.

Solution 4. We prove this by induction on n. The base case n=1 follows from the fact that any nonzero polynomial has at most finitely many roots, thus if $f \in \mathbb{C}[x]$ vanishes on all of \mathbb{Z} , then it must be the zero polynomial. Now suppose we have proven the theorem for some $n \geq 1$. Let $f \in \mathbb{C}[x_1, \ldots, x_n, y]$ and suppose f vanishes on \mathbb{Z}^{n+1} . Express f as

$$f = c_d y^d + \dots + c_1 y + c_0$$

where $c_0, c_1, \ldots, c_d \in \mathbb{C}[x_1, \ldots, x_d]$. Now let $(a_1, \ldots, a_n) \in \mathbb{Z}^n$. Then

$$f|_{x_1=a_1,\ldots,x_n=a_n}=c_d(a_1,\ldots,a_n)y^d+\cdots+c_1(a_1,\ldots,a_n)y+c_0(a_1,\ldots,a_n)$$

is a polynomial in y which vanishes on all of \mathbb{Z} by assumption. It follows that $f|_{x_1=a_1,...,x_n=a_n}$ is the zero polynomial (by the base case), and thus $c_i(a_1,...,a_n)=0$ for each $1 \le i \le d$. Since $(a_1,...,a_n)$ is arbitrary, we see that c_i vanishes on all of \mathbb{Z}^n . It follows by induction on n that $c_i=0$ for all $1 \le i \le d$. Thus f is the zero polynomial.

Problem 5

Exercise 5. Consider the system of equations

$$2x^2 + y^2 = 3$$
$$x^2 + xy + y^2 = 3$$

- 1. Compute a Gröbner basis for the corresponding ideal using the lexicographic order (y > x).
- 2. Symbolically find the four common solutions to these equations.
- 3. Let *f* be the smallest degree polynomial in *I* in *y* (that is, *x* does not appear in the polynomial). Symbolically, find the roots of *f* and compare them to what you found in part 2.

Solution 5. 1. First we set $f_1 = y^2 + 2x^2 - 3$, $f_2 = y^2 + yx + x^2 - 3$, and $\mathcal{F}_1 = \{f_1, f_2\}$. Now we compute the S-polynomial

$$S(f_2, f_1) = f_2 - f_1$$

= $(y^2 + yx + x^2 - 3) - (y^2 + 2x^2 - 3)$
= $yx - x^2$.

The S-polynomial $S(f_2, f_1)$ remains the same when we divide it by \mathcal{F}_1 ; that is

$$S(f_1, f_2)^{\mathcal{F}_1} = yx - x^2.$$

Now we set $f_3 = yx - x^2$ and $\mathcal{F}_2 = \{f_1, f_2, f_3\}$. If we divide f_1 with respect to $\mathcal{F}_2 \setminus \{f_1\}$, we obtain

$$f_1^{\mathcal{F}_2\setminus\{f_1\}}=0,$$

thus we may replace \mathcal{F}_2 with $\mathcal{F}_3 = \{f_2, f_3\}$. Now we compute the S-polynomial

$$S(f_2, f_3) = xf_2 - yf_2$$

= $x(y^2 + yx + x^2 - 3) - y(yx - x^2)$
= $2yx^2 + x^3 - 3x$

When we divide $S(f_2, f_3)$ with respect to \mathcal{F}_3 , we obtain

$$S(f_2, f_3)^{\mathcal{F}_3} = 3x^3 - 3x.$$

Now we set $f_4 = x^3 - x$ and $\mathcal{F}_4 = \{f_2, f_3, f_4\}$. We claim that \mathcal{F}_4 is a Gröbner basis. Indeed, we have

$$S(f_2, f_4) = x^3 f_2 - y^2 f_2$$

= $x^3 (y^2 + yx + x^2 - 3) - y^2 (x^3 - x)$
= $y^2 x + yx^3 + x^5 - 3x^3$,

and when we divide $S(f_2, f_4)$ with respect to \mathcal{F}_4 , we obtain

$$S(f_2, f_4)^{\mathcal{F}_4} = 0.$$

Similarly, we have $S(f_3, f_4)^{\mathcal{F}_4} = 0$ and $S(f_2, f_3)^{\mathcal{F}_4} = 0$.

2. To find the four common solutions, we use the Gröbner basis:

$$y^{2} + xy + x^{2} - 3 = 0$$
$$xy - x^{2} = 0$$
$$x^{3} - x = 0.$$

First we solve the third equation in x: from $x^3 - x = 0$, we see that $x = \{0, 1, -1\}$. If x = 0, then from the first two equations we see that $y^2 - 3 = 0$, thus $y = \pm \sqrt{3}$. It is easy to check that $(0, \sqrt{3})$ and $(0, -\sqrt{3})$ are two solutions to the system of equations above. To find the other two solutions, first assume x = 1. Then from the second equation, we see that y = 1. The point (1,1) is also a solution to the first equation, so (1,1) is a solution to the system of equations above. Finally assume x = -1. Then from the second equation, we see that y = -1. The point (-1, -1) is also a solution to the first equation, so (-1, -1) is a solution to the system of equations above. So all four solutions are given below:

$$\{(0,\sqrt{3}),(0,-\sqrt{3}),(1,1),(-1,-1)\}.$$

3. Using Singular, we compute a Gröbner basis with respect to lexicographic order (x > y). We obtain $\mathcal{G} = \{y^4 - 4y^2 + 3, 2x + y^3 - 3y\}$. Thus $f = y^4 - 4y^2 + 3$. The roots of f are seen in the way it factors:

$$y^4 - 4y^2 + 3 = (y - 1)(y + 1)(y - \sqrt{3})(y + \sqrt{3}).$$

These four *y*-coordinates agree with the points we found above.