Função Exponencial

Propriedades

Propriedades da Função Exponencial

Propriedades da Função Exponencial

Uma função exponencial do tipo $f(x)=a^x$, com a>0 e $a\neq 1$, possui várias propriedades importantes relacionadas às potências.

Principais propriedades

Positividade

$$a^x > 0, \quad \forall x \in \mathbb{R}$$

O valor da função exponencial nunca é negativo nem zero.

Principais propriedades

Valor no zero

$$a^0 = 1$$

• Independentemente da base a (desde que a>0), o gráfico sempre passa pelo ponto (0,1).

Produto de potências de mesma base

$$a^x \cdot a^y = a^{x+y}$$

Multiplicar funções exponenciais equivale a somar os expoentes.

Principais Propriedades

Quociente de potências de mesma base

$$rac{a^x}{a^y}=a^{x-y},\quad y
eq 0$$

Dividir funções exponenciais equivale a subtrair os expoentes.

Potência de potência

$$(a^x)^y = a^{xy}$$

Elevar uma função exponencial a outro expoente equivale a multiplicar os expoentes.

Comparação de valores

• Se a>1: a função é **crescente**, logo:

$$x_1 < x_2 \implies a^{x_1} < a^{x_2}$$

• Se 0 < a < 1: a função é **decrescente**, logo:

$$x_1 < x_2 \implies a^{x_1} > a^{x_2}$$

Exemplos

Exemplos

$$2^3 \cdot 2^5 = 2^{3+5} = 2^8 = 256$$

 $\frac{3^7}{3^4} = 3^{7-4} = 3^3 = 27$
 $(5^2)^3 = 5^6 = 15625$

Como 2 > 1, temos que $2^1 < 2^3$ (2 < 8).

Como $\frac{1}{2}<1$, temos que $\left(\frac{1}{2}\right)^1>\left(\frac{1}{2}\right)^3$ (0, 5>0, 125).

Resumo Esquemático

Resumo esquemático

Propriedade	Regra
Positividade	$a^x > 0$
Valor no zero	$a^0=1$
Produto de potências	$a^x \cdot a^y = a^{x+y}$
Quociente de potências	$rac{a^x}{a^y}=a^{x-y}$
Potência de potência	$(a^x)^y = a^{xy}$
Crescimento (se $a>1$)	$x_1 < x_2 \implies a^{x_1} < a^{x_2}$
Decrescimento (se $0 < a < 1$)	$x_1 < x_2 \implies a^{x_1} > a^{x_2}$