

SLADE: A Self-Training Framework For Distance Metric Learning

Jiali Duan^{1,2}, Yen-liang Lin², Son Tran², Larry S. Davis², C.-C. Jay Kuo¹

¹University of Southern California, ²Amazon

Problem Definition

Goal:

- Propose and investigate a semi-supervised framework for deep metric learning.
- Leverage unlabeled data to further improve the fully-supervised metric learning approaches.

Motivation: A recent study [1] shows that most losses perform similarly when properly tuned. We explore another direction that leverages un-annotated data.

Contributions:

- A novel self-training framework to improve retrieval performance with unlabeled data.
- A feature basis learning approach to deal with noisy pseudo-labels during self-training.

Dataset

CUB-200/NABirds:

- CUB-200: 200 fine-grained species / 11,788 images
- NABirds: 743 categories birds / 48,000 images

Cars-196/CompCars:

- Cars-196: 196 classes / 16,185 images
- CompCars: filtered 145 classes / 16,537 images

In-shop/Fashion200k:

Unlabeled data

- In-shop: 7,982 clothing items / 52,712 images
- Fashion 200k: filtered 1,045 items / 14,635 images

Training: Laysan Albatross Labeled data Teacher Student

Method

Embedding learning:

$$\mathcal{L}_{\text{rank}} = [d_{\text{p}} - m_{\text{pos}}]_{+} + [m_{\text{neg}} - d_{\text{n}}]_{+}$$

Feature basis learning:

$$\mathcal{L}_{\mathrm{Basis}} = \mathcal{L}_{\mathrm{CE}} + \mathcal{L}_{\mathrm{SD}}$$

Sample mining:

$$P = \{(\hat{x}_i, \hat{x}_j) | s(\hat{x}_i, \hat{x}_j) \ge T_1 \}$$

$$N = \{(\hat{x}_i, \hat{x}_j) | s(\hat{x}_i, \hat{x}_j) \le T_2 \}$$

Joint training of student and feature basis:

$$\min_{\theta^s, \mathbf{W}_a} \mathcal{L}(\theta^s, \mathbf{W}_a) = \mathcal{L}_{\text{rank}}(D^l; \theta^s) + \lambda_1 \mathcal{L}_{\text{rank}}(D^u; \theta^s) + \lambda_2 \mathcal{L}_{\text{Basis}}(D^l, D^u; \theta^s, \mathbf{W}_a)$$

- D^l : labeled data
- D^u : unlabeled (pseudo-labeled) data
- θ^s : learnable student parameters
- W_a: learnable feature-basis parameters

Experiments & Results

Main Result: Comparison against state-of-the-art fully supervised approaches on CUB-200 and Cars-196

				CU	B-200-20)11	(Cars-196	
Methods	Frwk	Init	Arc / Dim	MAP@R	RP	P@1	MAP@R	RP	P@1
Contrastive	[1]	ImageNet	BN / 512	26.53	37.24	68.13	24.89	35.11	81.78
Triplet	[1]	ImageNet	BN / 512	23.69	34.55	64.24	23.02	33.71	79.13
ProxyNCA	[1]	ImageNet	BN / 512	24.21	35.14	65.69	25.38	35.62	83.56
N. Softmax	[1]	ImageNet	BN / 512	25.25	35.99	65.65	26.00	36.20	83.16
CosFace	[1]	ImageNet	BN / 512	26.70	37.49	67.32	27.57	37.32	85.52
FastAP	[1]	ImageNet	BN / 512	23.53	34.20	63.17	23.14	33.61	78.45
MS+Miner	[1]	ImageNet	BN / 512	26.52	37.37	67.73	27.01	37.08	83.67
Proxy-Anchor ¹	[2]	ImageNet	R50 / 512	-	_	69.9	_	_	87.7
Proxy-Anchor ²	[1]	ImageNet	R50 / 512	25.56	36.38	66.04	30.70	40.52	86.84
ProxyNCA++	[3]	ImageNet	R50 / 2048	_	-	72.2	_	_	90.1
Mutual-Info	[4]	ImageNet	R50 / 2048	_	_	69.2	_	_	89.3
Contrastive (T_1)	[1]	ImageNet	R50 / 512	25.02	35.83	65.28	25.97	36.40	81.22
Contrastive (T_2)	[1]	SwAV	R50 / 512	29.29	39.81	71.15	31.73	41.15	88.07
SLADE (Ours) (S_1)	[1]	ImageNet	R50 / 512	29.38	40.16	68.92	31.38	40.96	85.8
SLADE (Ours) (S_2)	[1]	SwAV	R50 / 512	33.59	44.01	73.19	36.24	44.82	91.06
$MS(T_3)$	[1]	ImageNet	R50 / 512	26.38	37.51	66.31	28.33	38.29	85.16
$MS(T_4)$	[1]	SwAV	R50 / 512	29.22	40.15	70.81	33.42	42.66	89.33
SLADE (Ours) (S_3)	[1]	ImageNet	R50 / 512	30.90	41.85	69.58	32.05	41.50	87.38
SLADE (Ours) (S_4)	[1]	SwAV	R50 / 512	33.90	44.36	74.09	37.98	46.92	91.53

Note: The teacher networks (T_1, T_2, T_3, T_4) are trained with the different losses, and then used to train the student networks (S_1, S_2, S_3, S_4) .

Ablation study 1: Initialization of Teacher Network

Pre-trained weight	MAP@R			
ric-trafficu weight	CUB-200	Cars-196		
ImageNet	29.38	31.38		
Pre-trained SwAV	32.79	35.54		
Fine-tuned SwAV	33.59	36.24		

Ablation study 2: Components in Student Network

Components	MAP@R			
	CUB-200	Cars-196		
Teacher (contrastive)	29.29	31.73		
Student (pseudo label)	30.81	31.99		
+ Basis	32.45	35.78		
+ Basis + Mining	33.59	36.24		

Qualitative Results:

Ablation study 3: Pairwise Similarity Loss

Regularization	CUB-200				
Regularization	MAP@R	RP	P@1		
Local-CE	32.69	43.20	72.64		
Global-CE	32.23	42.68	72.45		
SD (Ours)	33.59	44.01	73.19		

Ablation study 4: Number of Clusters

k	NABirds				
κ	MAP@R	RP	P@1		
100	31.83	42.25	72.19		
200	32.61	43.02	72.75		
300	32.81	43.18	72.21		
400	33.59	44.01	73.19		
500	33.26	43.69	73.26		

Reference:

1. Musgrave Kevin, et al. "A metric learning reality check." ECCV 2020.

Paper ID: 3886

Paper Link: https://arxiv.org/abs/2011.10269