Step-1

The give inequality is,

 $\max_{x} \min_{y} yAx = \min_{y} yAx^* \le y * Ax^* \le \max_{x} y * Ax = \min_{y} \max_{x} yAx$

Step-2

In a payoff matrix A, the total expected payoff of X will be $\sum \sum x_j a_{ij} y_i$ where a_{ij} is the element of the matrix where option i is chosen by X and option i is chosen by Y, with the probabilities of x_j, y_i .

Step-3

As it is the payoff for X, it wants to maximize this payoff yAx but the player Y wants to minimize it. Hence, player Y will minimize the value of $\frac{\max_{x} yAx}{x}$.

Similarly, X will maximize the value of $\min_{y} yAx$.

The maximum of the minimized value of $\min_{y} yAx$ will be smaller than or equal to minimum of maximized value of $\lim_{x} yAx$.

In between these two values there will a point which is optimal for both X and Y, that is, y^*Ax^* .

This can be written as $\min_{y} yAx^* \le y * Ax^* \le \max_{x} y * Ax$

Using minimax theorem we get,

 $\max_{x} \min_{y} yAx = \min_{y} \max_{x} yAx$

Using these two equations we get,

 $\max_{x} \min_{y} yAx = \min_{y} yAx^* \le y * Ax^* \le \max_{x} y * Ax = \min_{y} \max_{x} yAx$

Step-4

There will be optimal values of x and y known as x^* and y^* .

The maximum value player X wants to attain is yAx^* .

The minimum value payer Y wants to attain is y^*Ax .

Hence, the equation $\min_{y} yAx^* \le y * Ax^* \le \max_{x} y * Ax$ can be written as

 $y*Ax \leq y*Ax* \leq yAx*$