Minimum Spawning Tree

DPHPC

Th. Cambier R. Dang-Nhu Th. Dardinier C. Trassoudaine

ETH Zürich

October 2018

- Problem definition
 - Concepts
 - Use cases
- 2 Algorithms
 - Prim
 - Kruskal
 - Borůvka (Sollin)
 - Others
- 3 Environment
- 4 Benchmarking
 - Reference, baseline, tools

Concepts Use cases

Problem definition

The MST problem

Concepts

(Somewhat) realistic use-cases and input sets?

- *G*(*n*, *p*)
- Preferential attachment
 - Social networks

Problem definition
Algorithms
Environment
Benchmarking
References

Prim Kruskal Borůvka (Sollin) Others

Algorithms

Problem definition Algorithms Environment Benchmarking References

Prim Kruskal Borůvka (Sollin) Others

Prim

- Sort all edges by growing weight.
- For each edge: Add it to the MST if it doesn't create a cycle.

- Sort all edges by growing weight.
- For each edge: Add it to the MST if it doesn't create a cycle.

- Sort all edges by growing weight.
- For each edge: Add it to the MST if it doesn't create a cycle.

- Sort all edges by growing weight.
- For each edge: Add it to the MST if it doesn't create a cycle.

- Sort all edges by growing weight.
- For each edge: Add it to the MST if it doesn't create a cycle.

- Sort all edges by growing weight.
- For each edge: Add it to the MST if it doesn't create a cycle.

- Sort all edges by growing weight.
- For each edge: Add it to the MST if it doesn't create a cycle.

Data structure: Union-find

Represents the connected components of the graph given our MST. Implementation with an array *parent* and 3 operations:

- Create: Every vertex is in its own component

Data structure: Union-find

Represents the connected components of the graph given our MST. Implementation with an array *parent* and 3 operations:

- Create: Every vertex is in its own component
 - parent[x] = x.
- Find(x): Find the component of this vertex.
 - ① If $parent[x] \neq x$, then parent[x] = find(parent[x])
 - Return parent[x].

Data structure: Union-find

Represents the connected components of the graph given our MST. Implementation with an array *parent* and 3 operations:

- Create: Every vertex is in its own component
 - parent[x] = x.
- Find(x): Find the component of this vertex.
 - ① If $parent[x] \neq x$, then parent[x] = find(parent[x])
 - Return parent[x].
- Union(x, y): Unite two components.
 - parent[find(x)] = find(y).

Sequential and parallel Kruskal

Sequential complexity:

- $O(E \log E)$: Sort all edges by growing weight.
- O(E) (in practice): For each edge: Add it to the MST if it doesn't create a cycle.

Sequential and parallel Kruskal

Sequential complexity:

- $O(E \log E)$: Sort all edges by growing weight.
- O(E) (in practice): For each edge: Add it to the MST if it doesn't create a cycle.

We can parallelize the sort on $O(\log E)$ processors: O(E) (in practice).

A better parallel approach: Filter-Kruskal

Similar to a quick sort¹:

- $oldsymbol{0}$ If E < threshold, solve using classical Kruskal
- Choose a pivot (edge)
- **3** Partition in two sets E_{\leq} , $E_{>}$ (weight)
- **4** Recursive call to solve problem with E_{\leq}
- Filter out the edges of E_> that connect two vertices of the same component
- **o** Recursive call to solve problem with $E_{>}$

¹Osipov, Sanders, and Singler 2009.

A better parallel approach: Filter-Kruskal

Similar to a quick sort¹:

- If E < threshold, solve using classical Kruskal
- Choose a pivot (edge)
- **3** Partition in two sets E_{\leq} , $E_{>}$ (weight)
- **4** Recursive call to solve problem with E_{\leq}
- Filter out the edges of E_> that connect two vertices of the same component
- **1** Recursive call to solve problem with $E_{>}$

Better for parallelization since we can distribute the edges for filtering and partitioning.

¹Osipov, Sanders, and Singler 2009.

Borůvka (Sollin)

A few ideas

Correctness

How to verify correctness of the parallelization?

Problem definition Algorithms Environment Benchmarking References

Environment

Architecture

EULER Cluster

Xeon $Ex, x \in \{3, 5, 7\}$ x86_64 architecture

Source: https://scicomp.ethz.ch/wiki/Euler

Tools

- CMake
 v3.3+
- C++11 GCC v4.9.2+
- OpenMPI (shared memory) v1.6.5+

Reference, baseline, tools

Benchmarking

Tools

- Measures : LibSciBench library
- Interpretation :
 - LibSciBench's R scripts
 - (Custom python scripts)

Ref: https://spcl.inf.ethz.ch/Research/Performance/LibLSB/

Baseline

Borůvka's serial algorithm $O(E \cdot log(V))$

https://en.wikipedia.org/wiki/Otakar_Bor%C5%AFvka

Osipov, V., P. Sanders, and J. Singler (2009). "The Filter-Kruskal Minimum Spanning Tree Algorithm". In: *Proceedings of the Meeting on Algorithm Engineering & Expermiments*. New York, New York: Society for Industrial and Applied Mathematics, pp. 52–61.

