PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

A1	(43) International Publication Date: 2 February 1995 (02.02.95)
	(10)
	(81) Designated States: AU, BB, BG, BR, BY, CA, CN, CZ, FI, GE, HU, IP, KG, KP, KR, KZ, LK, LV, MD, MG, MN, MW, NO, NZ, PL, RO, RU, SD, SI, SK, TJ, TT, UA, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). Published With international search report.
P o	US MPANY ati, Of- ne Cres IWELL H 45040

(54) Title: DETERGENT COMPOSITIONS INHIBITING DYE TRANSFER IN WASHING

(57) Abstract

The invention relates to a dye transfer inhibiting composition comprising: (a) dye binding polymers selected from polyvinylpyrrolidone, polyamine N-oxide containing polymer, N-vinylpimidazole, N-vinylpyrrolidone copolymer, and mixtures thereof; and (b) polymeric agents selected from alkoxy containing polymers, cellulosic derivatives, and mixtures thereof; where the ratio of polymeric agent to dye binding polymer on a ppm basis delivered in the wash solution is from about 2:1 to about 250:1. The invention also relates to a detergent composition which contains the dye transfer inhibiting composition to surfactants, builders and other conventional detergent ingredients, where the level of dye binding polymer in the detergent composition is from about 0.001 % to about 10 % by weight, and the level of polymeric agent in the detergent composition is from about 0.1 % to about 15 % by weight. The amount of dye binding polymer delivered in the wash solution is from about 0.01 ppm to about 100 ppm.

77

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria ·	GB	United Kingdom	MR	Mauritania
ΑÜ	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Paso	HU	Hungary	NO	Norway
	# *	IE.	Ireland	NZ	New Zealand
BG	Bulgaria .				• • • • • • • • • • • • • • • • • • • •
BJ	Benin	п	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korca	SE	Sweden
CH	Switzerland	KR	Republic of Kores	SI	Slovenia
CI	Côte d'Ivoire	KZ.	Kazakhstan	SK	Slovakia
CM	Cameroon	Ц	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ.	Uzbekistan
FR	France	MN	Mongolia	VN	Vict Nam
~	Cohen				

DETERGENT COMPOSITIONS INHIBITING DYE TRANSFER IN WASHING

Related Application

Field of the Invention

The present invention relates to a composition for inhibiting dye transfer between fabrics during washing.

Background of the Invention

One of the most persistent and troublesome problems arising during modern fabric laundering operations is the tendency of some colored fabrics to release due into the laundering solutions. The due can then be transferred onto other fabrics being washed therewith.

Polyvinylpyrrolidone and other dye binding polymers have been used to inhibit dye transfer between fabrics during laundering operations. However, it has now been found that certain polymeric agents such as polyethylene glycol or carboxymethylcellulose combined with certain dye binding polymers, in specific ratios, provide an unexpected improvement in the dye transfer inhibition performance of detergent compositions. This combination of ingredients is very effective in reducing the amount of dye transfer that occurs during a laundering operation.

Accordingly, the present invention provides a dye transfer inhibiting composition which exhibits optimum dye transfer inhibiting properties.

Summary of the Invention

The invention relates to a dye transfer inhibiting composition comprising:

(a) dye binding polymers selected from polyvinylpyrrolidone, polyamine N-oxide containing polymer, N-vinylimidazole N-vinylpyrrolidone copolymer, and mixtures thereof; and (b) polymeric agents selected from alkoxy containing polymers, cellulosic derivatives, and mixtures thereof; where the ratio of polymeric agent to dye binding polymer on a ppm basis delivered in the wash solution is from about 2:1 to about 250:1. The invention also relates to a detergent composition which contains the dye transfer inhibiting composition in addition to surfactants, builders and other conventional detergent ingredients, where the level of dye binding polymer in the detergent composition is from about 0.001% to about 10% by weight, and the level of polymeric agent in the detergent composition is from about 0.1% to about 15% by weight. The amount of dye binding polymer delivered in the wash solution is from about 0.01 ppm to about 120 ppm, and the amount of polymeric agent delivered in the wash solution is from about 1 ppm to about 100 ppm.

Detailed Description of the Invention

It has now been discovered that the combination of certain polymeric agents and certain dye binding polymers, in specific ratios, delivers unexpectedly improved dye transfer inhibition relative to the dye binding polymers alone. As a result, the dye transfer inhibition performance of a detergent composition can be dramatically enhanced.

The dye binding polymers are selected from polyvinylpyrrolidone, polyamine N-oxide containing polymer, N-vinylimidazole N-vinylpyrrolidone copolymer, and mixtures thereof. These dye binding polymers are described in more detail hereinbelow.

Polyvinylpyrrolidone

5

10

15

20

25

30

35

The dye binding polymer can be a polyvinylpyrrolidone ("PVP") having an average molecular weight of from about 5,000 to about 400,000, preferably from about 5,000 to about 200,000, more preferably from about 5,000 to about 50,000, and most preferably from about 5,000 to about 20,000. Suitable polyvinylpyrrolidones are commercially available from GAF Corporation, New York, NY and Montreal, Canada under the product names PVP K-15 (average molecular weight of 10,000), PVP K-30 (average molecular weight of 40,000), PVP K-60 (average molecular weight of 160,000), and PVP K-90 (average molecular weight PVP K-15 is also available from ISP Corporation. of 360,000). Polyvinylpyrrolidones are known to persons skilled in the detergent field; see, for example, EP-A-262,897 and EP-A-258,696. The amount of polyvinylpyrrolidone used in the present detergent compositions is preferably from about 0.001% to about 5% by weight of the detergent, more preferably from about 0.01% to about 4% by weight, more preferably from about 0.05% to about 3% by weight, and most preferably from about 0.1% to about 2% by weight. The amount of polyvinylpyrrolidone delivered in the wash solution is preferably from about 0.1 ppm to about 75 ppm, more preferably from about 0.5 ppm to about 50 ppm, and most preferably from about 1 ppm to about 25 ppm.

Polyamine N-Oxide Containing Polymer

The dye binding polymer can also be a polyamine N-oxide containing polymer which contains units having the following structure formula (I):

wherein P is a polymerisable unit, whereto the R-N-O group can be attached or wherein the R-N-O group forms part of the polymerisable unit or a combination of

both:

10

15

20

25

30

35

wherein A is NC, CO, C, -O-, -S-, or -N-; x is 0 or 1; and

wherein R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.

The N-O group can be represented by the following general structures:

wherein R_1 , R_2 , and R_3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x and/or y and/or z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups.

The N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.

Suitable polyamine N-oxides wherein the N-O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.

One class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group forms part of the R-group. Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.

Another class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group is attached to the R-group.

Other suitable polyamine N-oxides are the polyamine oxides whereto the N-O group is attached to the polymerisable unit. A preferred class of these polyamine N-oxides are the polyamine N-oxides having the general formula (I) wherein R is an aromatic, heterocyclic or alicyclic group wherein the nitrogen of the N-O functional group is part of said R group.

Examples of this class are polyamine oxides wherein R is a heterocyclic compound such as pyridine, pyrrole, imidazole and derivatives thereof.

Another preferred class of polyamine N-oxides are the polyamine oxides having the general formula (I) wherein R are aromatic, heterocyclic or alicyclic

5

10

20

25

30

35

groups wherein the nitrogen of the N-O functional group is attached to said R groups.

Examples of this class are polyamine oxides wherein R groups can be aromatic such as phenyl.

Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties. Examples of suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof.

The polyamine N-oxide containing polymers of the present invention typically have a ratio of amine to the amine N-oxide of 10:1 to 1:1000000. However the amount of amine oxide groups present in the polyamine N-oxide containing polymer can be varied by appropriate copolymerization or by appropriate degree of N-oxidation. Preferably, the ratio of amine to amine N-oxide is from 2:3 to 1:1000000. More preferably from 1:4 to 1:1000000, most preferably from 1:7 to 1:1000000. The polymers of the present invention actually encompass random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is either an amine N-oxide or not. The amine oxide unit of the polyamine N-oxides has a PKa < 10, preferably PKa < 7, more preferred PKa < 6.

The polyamine N-oxide containing polymer can be obtained in almost any degree of polymerization. The degree of polymerization is not critical provided the material has the desired water-solubility and dye-suspending power.

Typically, the average molecular weight of the polyamine N-oxide containing polymer is within the range of 500 to 1,000,000; preferably from 1,000 to 50,000, more preferably from 2,000 to 30,000, most preferably from 3,000 to 20,000.

The amount of polyamine N-oxide containing polymer used in the present detergent compositions is preferably from about 0.005% to about 5% by weight of the detergent, more preferably from about 0.01% to about 3% by weight, and most preferably from about 0.02% to about 1.6% by weight. The amount of polyamine N-oxide containing polymer delivered in the wash solution is preferably from about 0.01 ppm to about 30 ppm, more preferably from about 0.05 ppm to about 20 ppm, more preferably from about 0.1 ppm to about 5 ppm.

N-vinylimidazole N-vinylpyrrolidone Copolymer

The dye binding polymer can also be an N-vinylimidazole N-vinylpyrrolidone copolymer having an average molecular weight range from about 5000-1,000,000, preferably from about 20,000-200,000. Highly preferred polymers having an excellent overall detergency performance have an average

molecular weight range from 5,000 to 50,000 more preferably from 8,000 to 30,000, most preferably from 10,000 to 20,000. The average molecular weight range was determined by light scattering as described in Barth H.G. and Mays J. W. Chemical Analysis Vol. 113 "Modern Methods of Polymer Characterization".

The N-vinylimidazole N-vinylpyrrolidone copolymer of the present invention has a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 to 0.2, more preferably from 0.8 to 0.3, most preferably from 0.6 to 0.4. The N-vinylimidazole N-vinylpyrrolidone copolymers can be linear or branched.

The amount of N-vinylimidazole N-vinylpyrrolidone polymer used in the present detergent compositions is preferably from about 0.005% to about 5% by weight of the detergent, more preferably from about 0.01% to about 3% by weight, and most preferably from about 0.02% to about 1.6% by weight. The amount of N-vinylimidazole N-vinylpyrrolidone polymer delivered in the wash solution is preferably from about 0.01 ppm to about 30 ppm, more preferably from about 0.05 ppm to about 20 ppm, more preferably from about 0.1 ppm to about 10 ppm, and most preferably from about 0.1 ppm to about 5 ppm.

The polymeric agents which are combined with the dye binding polymers in the present compositions are selected from alkoxy containing polymers, cellulosic derivatives, and mixtures thereof. These polymeric agents are described in more detail hereinbelow.

Alkoxy Containing Polymers

5

10

15

20

25

30

35

The alkoxy containing polymers (i.e., polymers having alkoxy moieties) can include copolymeric blocks of ethylene terephthalate and polyethylene oxide or polypropylene oxide terephthalate and the like. The most preferred alkoxy containing polymers include polyethylene glycol or polypropylene glycol and derivatives thereof. Particularly preferred is polyethylene glycol ("PEG") having an average molecular weight from about 500 to about 100,000, preferably from about 1,000 to about 50,000, more preferably from about 1,500 to about 10,000, and most preferably from about 1,500 to about 4,000. Polyethylene glycol is prepared in a known manner by subjecting ethylene glycol to a polycondensation process; thus, the polyethylene glycol may be regarded as the condensation polymer of ethylene oxide or ethylene glycol with water. The general structure is: HO-(-CH2-CH2-O)n-H. Suitable polyethylene glycols are commercially available from Union Carbide Chemicals and Plastics Co., Inc., Danbury, CT. The polyethylene glycol can be added as a separate ingredient or as part of a combined ingredient (e.g., a co-flake containing about 99% polyethylene glycol and about 1% suds suppressor).

Another suitable alkoxy containing polymer is a copolymer having random blocks of ethylene terephthalate and polyethylene oxide (PEO) terephtalate. More

specifically, these polymers are comprised of repeating units of ethylene terephthalate and PEO terephthalate in a mole ratio of ethylene terephthalate units to PEO terephthalate units of from 25:75 to 35:65, said PEO terephthalate units containing polyethylene oxide having molecular weights of from 300 to 2000. The molecular weight of this polymer is in the range of from 3,000 to 55,000.

Another suitable alkoxy containing polymer is a polyester with repeating units of ethylene terephthalate containing 10-15% by weight of ethylene terephthalate units together with 90-80% by weight of polyoxyethylene terephthalate units, derived from a polyoxyethylene glycol of average molecular weight 300-5,000, and the mole ratio of ethylene terephthalate units to polyoxyethylene terephthalate units in the polymeric compound is between 2:1 and 6:1.

Other alkoxy containing polymers are compounds of formula:

wherein the R¹ moieties are all 1,4-phenylene moieties; the R² moieties are essentially ethylene moieties, 1,2-propylene moieties or mixtures thereof; the R³ moieties are substituted 1,3-phenylene moieties having the substituent

10

15

20

25

30

35

-CO [(R2-OC-R4-CO] w (CH2CH2O)n-X

at the 5 position; the R^4 moieties are R^1 or R^3 moieties, or mixtures thereof; each X is ethyl or preferably methyl; each n is from 12 to 43; when w is 0, u + v is from 3 to 10; when w is at least 1, u + v + w is from 3 to 10. Preferred block polyesters are those where v is 0, i.e. the linear block polyesters. For these preferred linear block polyesters, u typically ranges from 3 to 8, especially for those made from dimethyl terephthalate, ethylene glycol (or 1,2-propylene glycol) and methyl capped polyethylene glycol. The most water soluble of these linear block polyesters are those where u is from 3 to 5.

Other alkoxy containing polymers suitable for the present invention are alkoxylated polyamines. Such materials can conveniently be represented as molecules of the empirical structures with repeating units:

Wherein R is a hydrocarbyl group, usually of 2-6 carbon atoms; R¹ may be a C₁-C₂₀ hydrocarbon; the alkoxy groups are ethoxy, propoxy, and the like, and y is 2-30, most preferably from 10-20; n is an integer of at least 2, preferably from 2-20, most preferably 3-5; and X⁻ is an anion such as halide or methylsulfate, resulting from the quatemization reaction.

The amount of alkoxy containing polymers used in the present detergent compositions is preferably from about 0.2% to about 8% by weight of the detergent, more preferably from about 0.3% to about 6% by weight, and most preferably from about 0.4% to about 4% by weight. The amount of alkoxy containing polymers delivered in the wash solution is preferably from about 3 ppm to about 90 ppm, more preferably from about 5 ppm to about 80 ppm, and most preferably from about 10 ppm to about 70 ppm.

Cellulosic Derivatives

5

10

15

20

25

30

35

The cellulosic derivatives for use as polymeric agents in the present dye transfer inhibiting compositions are water-soluble cellulosic derivatives which include the alkali metal salts of a carboxy lower alkyl cellulose having up to 3 carbons in the alkyl group, such as the sodium and potassium salts of carboxymethylcellulose or of carboxyethylcellulose. Sodium carboxymethylcellulose is preferred. Suitable water-soluble cellulosic derivatives also include the lower alkyl cellulose ethers, e.g., methyl cellulose and ethyl cellulose; hydroxyalkyl cellulose ethers, e.g., hydroxyethyl cellulose; cellulose ethane sulfonic acid; and cellulose glycollic acid.

The amount of cellulosic derivatives used in the present detergent compositions is preferably from about 0.2% to about 8% by weight of the detergent, more preferably from about 0.3% to about 6% by weight, and most preferably from about 0.4% to about 4% by weight. The amount of cellulosic derivatives delivered in the wash solution is preferably from about 3 ppm to about 90 ppm, more preferably from about 5 ppm to about 80 ppm, and most preferably from about 10 ppm to about 70 ppm.

As discussed above, it has surprisingly been discovered that by combining the polymeric agents with the dye binding polymers in certain ratios, an

unexpected improvement in dye transfer inhibition is obtained. The ratio of polymeric agent to dye binding polymer on a ppm basis delivered in the wash solution is from about 2:1 to about 250:1. When polyvinylpyrrolidone is used as the dye binding polymer, the ratio of polymeric agent to dye binding polymer on a ppm basis delivered in the wash solution is preferably from about 2:1 to about 50:1, more preferably from about 3:1 to about 20:1, more preferably from about 3:1 to about 10:1, and most preferably from about 4:1 to about 8:1. When polyamine N-oxide containing polymer and/or N-vinylimidazole N-vinylpyrrolidone copolymer are used as the dye binding polymer, the ratio of polymeric agent to dye binding polymer on a ppm basis delivered in the wash solution is preferably from about 3:1 to about 150:1, more preferably from about 3:1 to about 100:1, and most preferably from about 4:1 to about 75:1.

The present dye transfer inhibiting compositions are conveniently used as additives to conventional detergent compositions for use in laundry operations. The present invention also encompasses detergent compositions containing the dye transfer inhibiting compositions along with conventional detergent ingredients.

<u>Detergent Ingredients</u>

10

15

20

25

30

35

A wide range of surfactants can be used in the detergent compositions. A typical listing of anionic, nonionic, ampholytic and zwitterionic classes, and species of these surfactants, is given in U.S. Patent 3,664,961 issued to Norris on May 23, 1972.

Mixtures of anionic surfactants are particularly suitable herein, especially mixtures of sulphonate and sulphate surfactants in a weight ratio of from 5:1 to 1:2, preferably from 3:1 to 2:3, more preferably from 3:1 to 1:1. Preferred sulphonates include alkyl benzene sulphonates having from 9 to 15, especially 11 to 13 carbon atoms in the alkyl radical, and the alpha-sulphonated methyl fatty acid esters in which the fatty acid is derived from a C12-C18 fatty source, preferably from a C16-C18 fatty source. In each instance the cation is an alkali metal, preferably sodium. Preferred sulphate surfactants are alkyl sulphates having from 12 to 18 carbon atoms in the alkyl radical, optionally in admixture with ethoxy sulphates having from 10 to 20, preferably 10 to 16 carbon atoms in the alkyl radical and an average degree of ethoxylation of 0.1 to 9. Examples of preferred alkyl sulphates herein are tallow alkyl sulphate, coconut alkyl sulphate, and C14-15 alkyl sulphates. The cation in each instance is again an alkali metal cation, preferably sodium.

One class of nonionic surfactants useful in the present invention are condensates of ethylene oxide with a hydrophobic moiety to provide a surfactant having an average hydrophilic-lipophilic balance (HLB) in the range from 8 to 17, preferably from 9.5 to 13.5, more preferably from 10 to 12.5. The hydrophobic

(lipophilic) moiety may be aliphatic or aromatic in nature and the length of the polyoxyethylene group which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements. Especially preferred nonionic surfactants of this type are C₉-C₁₅ primary alcohol ethoxylates containing 3-9 moles of ethylene oxide per mole of alcohol, particularly the C₁₄-C₁₅ primary alcohols containing 6-9 moles of ethylene oxide per mole of alcohol and the C₁₂-C₁₅ primary alcohols containing 3-9 moles of ethylene oxide per mole of alcohol.

Another class of nonionic surfactants comprises alkyl polyglucoside compounds of general formula

10

20

25

30

35

wherein Z is a moiety derived from glucose; R is a saturated hydrophobic alkyl group that contains from 12 to 18 carbon atoms; t is from 0 to 10 and n is 2 or 3; x is from 1.3 to 4, the compounds including less than 10% unreacted fatty alcohol and less than 50% short chain alkyl polyglucosides. Compounds of this type and their use in detergent are disclosed in EP-B 0,070,077, 0,075,996 and 0,094,118.

Also suitable as nonionic surfactants are polyhydroxy fatty acid amide surfactants of the formula

wherein R^1 is H, or R^1 is C_{1-4} hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl or a mixture thereof, R^2 is C_{5-31} hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof. Preferably, R^1 is methyl, R^2 is a straight C_{11-15} alkyl or alkenyl chain such as coconut alkyl or mixtures thereof, and Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose, in a reductive amination reaction.

The compositions according to the present invention may further comprise a builder system. Any conventional builder system is suitable for use herein including aluminosilicate materials, phosphates, silicates, polycarboxylates, fatty acids, materials such as ethylenediamine tetraacetate, and metal ion sequestrants such as aminopolyphosphonates.

Suitable builders can be an inorganic ion exchange material, commonly an inorganic hydrated aluminosilicate material, more particularly a hydrated synthetic zeolite such as hydrated zeolite A, X, B or HS.

Another suitable inorganic builder material is layered silicate, e.g., SKS-6 (Hoechst). SKS-6 is a crystalline layered silicate consisting of sodium silicate

(Na₂Si₂O₅).

10

15

20

25

30

35

Suitable polycarboxylate builders for use herein include nitrilotriacetate (NTA); ethylenediaminetetracetic acid (EDTA); citric acid, preferably in the form of a water-soluble salt; and derivatives of succinic acid of the formula R-CH(COOH)CH₂(COOH) wherein R is C_{10-20} alkyl or alkenyl, preferably C_{12-16} , or wherein R can be substituted with hydroxyl, sulfo sulfoxyl or sulfone substituents. Specific examples include lauryl succinate, myristyl succinate, palmityl succinate, 2-dodecenylsuccinate, 2-tetradecenyl succinate. Succinate builders are preferably used in the form of their water-soluble salts, including sodium, potassium, ammonium and alkanolammonium salts.

Especially for the liquid execution herein, suitable fatty acid builders for use herein are saturated or unsaturated C₁₀₋₁₈ fatty acids, as well as the corresponding soaps. Preferred saturated species have from 12 to 16 carbon atoms in the alkyl chain. The preferred unsaturated fatty acid is oleic acid. Another preferred builder system for liquid compositions is based on dodecenyl succinic acid.

Preferred builder systems for use in granular compositions include a mixture of NTA, phosphate and zeolite.

Other builder materials that can form part of the builder system for use in granular compositions for the purposes of this invention include inorganic materials such as alkali metal carbonates, bicarbonates, silicates, and organic materials such as the organic phosphonates, amino polyalkylene phosphonates and amino polycarboxylates. Other suitable water-soluble organic salts are the homo- or co-polymeric acids of their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers of this type are disclosed in GB-A-1,596,756. Examples of such salts are polyacrylates of MW 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 70,000, especially about 40,000.

Builders are normally included in amounts of from about 10% to about 80% by weight of the detergent composition, preferably from about 20% to 70%, and more preferably from about 30% to about 60%.

Other components used in detergent compositions may be employed, such as suds boosting or depressing agents, enzymes such as proteases, amylases or lipases, enzyme stabilizers or activators, bleaching agents, soil-suspending agents, soil-release agents, fabric softening agents, optical brighteners, abrasives, bactericides, tarnish inhibitors, coloring agents, and perfumes. Especially preferred are combinations with enzyme technologies which also provide a type of color care benefit, for example cellulase for color maintenance/rejuvenation.

10

15

20

The detergent compositions according to the invention can be in liquid, gel, paste or granular forms. Granular compositions will generally have a density from about 300 g/l to about 900 g/l. "Compact" granular detergents can have a relatively higher density than conventional granular detergents; in such case, the detergent compositions will contain a lower amount of "inorganic filler salt" (e.g., sodium sulfate), compared to conventional granular detergents, typically not more than 20% filler sait.

The present invention also relates to a process for inhibiting dye transfer from one fabric to another of solubilized and suspended dyes encountered during fabric laundering operations involving colored fabrics. The process comprises contacting fabrics with a laundering solution containing the dye transfer inhibiting composition of this invention. The process of the invention is conveniently carried out in the course of the washing process. The washing process is preferably carried out at 1°C to 90°C, especially 5°C to 60°C. The pH of the treatment solution is preferably from about 7 to about 12, especially from about 8 to about 11.

The following examples are meant to exemplify compositions of the present invention, but are not necessarily meant to limit or otherwise define the scope of the invention, said scope being determined according to claims which follow.

Example 1

A granular laundry detergent composition of the present invention is as follows:

<u>Ingredient:</u>	Weight Percent
Crutched	
Sodium C _{12 3} linear alkylbenzene sulfonate	12.2%
Sodium C ₁₄₋₁₅ alkyl sulfate	12.2%
Tetrasodium pyrophosphate	7.2%
Nitrilotriacetate (active)	19.5%
Sodium carbonate	13.0%
Sodium silicate solids	6.1%
Optical Brightener	0.1%
Zeolites (active)	4.7%
De-Dust	
Condensation product of C ₁₂₋ C ₁₃ linear alcohol with 6.5 moles ethylene oxide	0.8%
Dry-Adds	

Polyvinylpyrrolidone	0.5%
Polyethylene glycol	3.9%
Protease enzyme	0.1%
Perfume	0.5%
Zeolites (active)	1.2%
Cellulase enzyme	0.9%

The "crutched" ingredients are mixed together with water in a crutcher to form a paste. This mixture is then spray dried to evaporate the excess moisture and form detergent granules. Then the de-dust is sprayed onto the granules. The "dry-add" ingredients are then admixed to form the finished granular detergent composition.

This composition delivers in the wash solution about 37 ppm polyethylene glycol and about 5.1 ppm polyvinylpyrrolidone (a ratio of about 7.5:1 PEG:PVP).

The pH of a 1% aqueous solution of the detergent composition is 11.

Example 2

The following example illustrates the invention and facilitates its understanding.

- 1. In a Miniwasher pot of 2 U.S. gallons of 35°C water, 61 grams of detergent are added. The mixture is agitated for 1 minute.
- 2. The dye source is added under agitation and allowed to mix for 1 minute.
- 20 3. A total of twelve tracer swatches are added to the Miniwasher pot and washed for 10 minutes. These swatches had previously been balanced by Hunter Colorimeter L,a,b values so that all swatches of a specific type were starting uniformly for each treatment.
- 4. After the wash cycle is complete, the tracer swatches are rinsed in cold water (7°C).
 - 5. Steps 1-5 are repeated seven times for a total of 8 wash cycles using a new measurement of detergent, a new dye source, and the same 12 tracer swatches for each wash cycle.
- 6. After wash cycle number 1, 4, and 8 the tracer swatches are dried for 1 hour and then L,a,b readings are taken on the Hunterlab Colorimeter, and a delta E (dE) at that cycle is calculated.

Dye Source

5

10

C46 Brown Swatch - 3 swatches of 2.5" x 2.5" square are added per pot, per cycle.

- 35 Tracer Swatches
 - 4 86% Cotton/15% Polyester Terry (loop yam is 100% Cotton)
 - 4 100% Cotton Denim

4 - 100% Cotton Interlock T-shirt

Condition

8 grains per gallon water hardness

35°C wash water temperature

7°C rinse water temperature

Miniwasher of 2 U.S. gallon capacity

Results

10

15

The following table shows that when the PVP level is cut by approximately 25% in conjunction with the PEG level being increased by nine times, substantial dye transfer inhibition is achieved. Lower delta E (dE) readings represent less color change from the original fabric color.

Change in dE on Terry Fabric

Treatment	PEG 8000	PVP K-15	PEG-PVP Ratio		₫Ē	
				Cycle 1	Cycle 4	Cycle 8
Α	5.1ppm	11.75ppm	1:2.3	1.63	7.06	11.52
В	46ppm	8.82ppm	5.2:1	0.81	1.51	3.14

As a result, it appears that PEG:PVP ratios dominated by higher PEG amounts deliver more dye transfer inhibition.

Example 3

The granular laundry detergent composition of the present invention is made as described in Example 1, except that 3.9% sodium carboxymethylcellulose is used instead of 3.9% polyethylene glycol as the polymeric agent.

1. A dye transfer inhibiting composition comprising: (a) dye binding polymers selected from polyvinylpyrrolidone, polyamine N-oxide containing polymer, N-vinylimidazole N-vinylpyrrolidone copolymer, and mixtures thereof; and (b) polymeric agents selected from alkoxy containing polymers, cellulosic derivatives, and mixtures thereof; wherein the ratio of polymeric agent to dye binding polymer on a ppm basis delivered in the wash solution is from 2:1 to 250:1.

- A dye transfer inhibiting composition according to Claim 1 wherein the polymeric agent is selected from the group consisting of polyethylene glycol, carboxymethylcellulose, and mixtures thereof.
- A dye transfer inhibiting composition according to Claim 1 wherein the dye binding polymer is polyvinylpyrrolidone, and wherein the ratio of polymeric agent to dye binding polymer on a ppm basis delivered in the wash solution is from 2:1 to 50:1.
- 4. A dye transfer inhibiting composition according to Claim 1 wherein the dye binding polymer is selected from the group consisting of polyamine N-oxide containing polymers, N-vinylimidazole N-vinylpyrrolidone copolymers, and mixtures thereof, and wherein the ratio of polymeric agent to dye binding polymer on a ppm basis delivered in the wash solution is from 3:1 to 150:1.
- 5. A detergent composition which comprises a dye transfer inhibiting composition according to Claim 1 and which further comprises surfactants, builders and other conventional detergent ingredients; wherein the amount of dye binding polymer in the detergent composition is from 0.01% to 10% by weight, and the amount of polymeric agent in the detergent composition is from 0.1% to 15% by weight; and wherein the amount of dye binding polymer delivered in the wash solution is from 0.01 ppm to 120 ppm, and the amount of polymeric agent delivered in the wash solution is from 1 ppm to 100 ppm.
- 6. A detergent composition according to Claim 5 wherein the amount of polymeric agent in the detergent composition is from 0.2% to 8% by weight, and the amount of polymeric agent delivered in the wash solution is from 3 ppm to 90 ppm.
- 7. A detergent composition according to Claim 5 wherein the dye binding polymer is polyvinylpyrrolidone, the amount of dye binding polymer in the detergent composition is from 0.001% to 5% by weight, and the amount of dye binding polymer delivered in the wash solution is from 0.1 ppm to 75 ppm.
- 8. A detergent composition according to Claim 5 wherein the dye binding polymer is selected from the group consisting of polyamine N-oxide

containing polymers, N-vinylimidazole N-vinylpyrrolidone copolymers, and mixtures thereof, the amount of dye binding polymer in the detergent composition is from 0.005% to 5% by weight, and the amount of dye binding polymer delivered in the wash solution is from 0.01 ppm to 30 ppm.

9. A dye transfer inhibiting composition according to Claim 1 wherein the polyamine N-oxide containing polymer contains units having the following structural formula:

wherein P is a polymerisable unit, whereto the R-N-O group can be attached or wherein the R-N-O group forms part of the polymerisable unit or a combination of both;

000

wherein A is NC, CO, C, -O-, -S-, or -N-; x is 0 or 1; and

wherein R are aliphatic, ethoxylated aliphatic, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.

 A dye transfer inhibiting composition according to Claim 1 wherein the Nvinylimidazole N-vinylpyrrolidone copolymer has an average molecular weight from 5,000 to1,000,000.

Inte onal Application No
PCT/US 94/06849

			PCT/US 94/06849
A. CLASS IPC 6	SIFICATION OF SUBJECT MATTER C11D3/37 C11D3/22		
According	to international Patent Classification (IPC) or to both national c	lassification and IPC	·
B. FIELD	S SEARCHED		
Minimum of IPC 6	documentation searched (classification system followed by classi C11D	fication symbols)	
Documenta	tion searched other than minimum documentation to the extent t	hat such documents are includ	ed in the fields searched
Electronic d	lata base consulted during the international search (name of data	base and, where practical, see	urch terms used)
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	ne relevant passages	Relevant to claim No.
	7,5	· F	
X	EP,A,O 256 696 (UNILEVER PLC ET February 1988 cited in the application see page 2, line 6 - page 3, li examples 1-5		1-3
P,X	EP,A,O 581 753 (THE PROCTER & G COMPANY) 2 February 1994 see page 2, line 35 - page 6, l examples 1-2		1-4,9
X	GB,A,2 137 221 (COLGATE-PALMOLI 3 October 1984 see page 1, line 35 - page 3, l see page 4, line 30 - page 5, l example 1	ine 24	1,3,5-7
		-/	
X Furth	ner documents are listed in the continuation of box C.	. X Patent family mea	nbers are listed in annex.
* Special can	egories of cited documents :		
'A' docume conside	ent defining the general state of the art which is not ared to be of particular relevance document but published on or after the international	or priority date and n cited to understand th invention	ned after the international filing date of in conflict with the application but be principle or theory underlying the relevance; the claimed invention
which i	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another a or other special reason (as specified)	cannot be considered involve an inventive a document of particula cannot be considered	novel or cannot be considered to top when the document is taken alone r relevance; the claimed invention to involve an inventive step when the
other n	ent referring to an oral disclosure, use, exhibition or occurs of the international filing date but international filing date but		d with one or more other such docu- ion being obvious to a person skilled
later th	an the priority date claimed	'&' document member of	
	September 1994		3. 10. 94
	nailing address of the ISA European Patent Office, P.B. 5818 Patentian 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Doolan, G	i

Form PCT/ISA/210 (second sheet) (July 1992)

' 1

Interr 141 Application No
PCT/US 94/06849

		T/US 94/06849
	tion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
egory *	Citation of document, with moncaston, where appropriate, or me seems passages	
	US,A,3 318 816 (J. R. TROWBRIDGE) 9 May 1967 see column 1, line 33 - column 6, line 61	1-3,5-7
	EP,A,O 508 034 (THE PROCTER & GAMBLE COMPANY) 14 October 1992	1,2,5-7
	see page 2, line 5 - page 2, line 40 see page 5, line 15 - page 6, line 43; examples 1-5	
A	EP,A,O 538 228 (THE PROCTER & GAMBLE COMPANY) 21 April 1993 see page 2, line 50 - page 7, line 21	1-3
	EP,A,0 203 486 (HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN) 3 December 1986 see column 2, line 1 - column 8, line 30; example 1	1,5-7
	•	
	·	
	·	
	· · · · · · · · · · · · · · · · · · ·	
	·	
		•
	· ·	
•		
٠.	'	
	·	

information on patent family members

Inter nal Application No PCT/US 94/06849

			10,700	
Patent document cited in search report	Publication date	Patent f membe		Publication date
EP-A-0256696	24-02-88	AU-B-	591791	14-12-89
E! // OFGOOD	2. 00 00	AU-A-	7617587	04-02-88
		JP-B-	6000920	05-01-94
		JP-A-	63037200	17-02-88
		US-A-	4999129	12-03-91
EP-A-0581753	02-02-94	EP-A-	0596184	11-05-94
		EP-A-	0579295	19-01-94
	•	AU-B-	4658193	14-02-94
		WO-A-	9402578	03-02-94
		AU-B-	4545693	14-02-94
		AU-B-	4545793	14-02-94
		AU-B-	4654293	14-02-94
		AU-B-	4654393	14-02-94
		AU-B-	4658293	14-02-94
		EP-A-	0587549	16-03-94
		EP-A-	0587550	16-03-94
		EP-A-	0581751	02-02-94
		EP-A-	0581752	02-02-94
		WO-A-	9402576	03-02-94
		WO-A-	9402577	03-02-94
		WO-A-	9402579	03-02-94
		WO-A-	9402580	03-02-94
		WO-A-	9402581	03-02-94
		AU-B-	5590594	08-06-94
		WO-A-	9411477	26-05-94
GB-A-2137221	03-10-84	AT-B-	395164	12-10-92
•		AU-B-	563631	16-07-87
		AU-A-	2565084	04-10-84
		BE-A-	899264	28-09-84
	•	CA-A-	1224374	21-07-87
		CH-Y-	660198	31-03-87
		DE-A-	3410810	04-10-84
•		FR-A,B	2543568	05-10-84
		NL-A-	8400996	16-10-84
•		SE-C-	459972	21-12-89
		SE-A-	8401312	30-09-84
US-A-3318816		NONE		

information on patent family members

Interr tal Application No PCT/US 94/06849

Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
EP-A-0508034		AU-A-	1757992	17-11-92	
		AU-A-	1798692	17-11-92	
ř		BR-A-	9205889	05-07-94	
•		CA-A-	2108164	13-10-92	
		CA-A-	2108165	13-10-92	
		CN-A-	1066878	09-12-92	
		CN-A-	1067917	13-01-93	
		EP-A-	0508358	14-10-92	
••		WO-A-	9218597	29-10-92	
		WO-A-	9218598	29-10-92	
EP-A-0538228	21-04-93	EP-A-	0537381	21-04-93	
		AU-A-	2760992	21-05-93	
		CA-A-	2120776	29-04-93	
		CN-A-	1073202	16-06-93	
		CN-A-	1075501	25-08-93	
		FI-A-	941708	13-04-94	
		PT-A-	100955	30-11-93	
		WO-A-	9308324	29-04-93	
	·	WO-A-	9315174	05-08-93	
EP-A-0203486	03-12-86	DE-A-	3519012	27-11-86	
		DE-A-	3686737	22-10-92	
-		JP-A-	61276898	06-12-86	
		US-A-	4756849	12-07-88	