Formula Sheet for Exam 3

• Test statistic (TS) for checking on distribution of frequencies across K categories:

$$TS = \sum_{i=1}^{K} \frac{(O_i - E_i)^2}{E_i}$$

Note: the degrees of freedom for this test is the number of categories minus 1 (i.e., K-1). And, here is an example worksheet:

Fear	0	E	О-Е	[O-E]^2	([O-E]^2)/E
Afraid	22	30	-8	64	64/30 = 2.133
Not Afraid	78	70	8	64	64/70 = 0.914
Sum	100	100			2.133+0.914 = 3.047

• Restricted Addition Rule:

$$p(A \text{ or } B) = p(A) + p(B)$$

• General Addition Rule:

$$p(A \text{ or } B) = p(A) + p(B) - p(A \text{ and } B)$$

• Restricted Multiplication Rule:

$$p(A \text{ and } B) = p(A) \times p(B)$$

• General Multiplication Rule:

$$p(A \text{ and } B) = p(A) \times p(B|A)$$

• Test statistic (TS) for chi-square test of independence for a contingency table with K cells (where K = # of rows $\times \#$ of columns):

$$TS = \sum_{i=1}^{K} \frac{(O_i - E_i)^2}{E_i}$$

Note: the degrees of freedom for this test is the number of rows minus 1 times the number of columns minus 1 (i.e., $df = (\# \text{ of rows - 1}) \times (\# \text{ of columns - 1})$). And, here is an example worksheet:

Cell	0	E	O-E	(O-E)^2	[(O-E)^2]/E
Row 1, Column 1	335	405*346/432 = 324.375	10.625	112.891	112.891/324.375 = 0.348
Row 1, Column 2	11	27*346/432 = 21.625	-10.625	112.891	112.891/21.625 = 5.220
Row 2, Column 1	70	405*86/432 = 80.625	-10.625	112.891	112.891/80.625 = 1.400
Row 2, Column 2	16	27*86/432 = 5.375	10.625	112.891	112.891/5.375 = 21.003
Total	432		0		27.971

Also, please note that the expected frequency for a particular cell is given by the row total for that cell multiplied by the column total for that cell divided by the total number of cases in the table.

• This is the picture of the normal distribution from page 225 of the textbook:

• Formula for the sample mean of a set of x scores for N cases:

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$$

 \bullet Formula for the standard deviation of a set of x scores for N cases:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

• Formula for transforming a raw score, x_i into a standard normal score (i.e., a z-score), z_i :

$$z_i = \frac{x_i - \mu}{\sigma}$$

where μ is the mean or average of the raw x scores and σ is the standard deviation of the raw x scores. Remember, if the problem gives you the standard deviation, you do not have to calculate it. The only time you have to calculate the standard deviation is when the problem asks you to do so.

• Formula for the standard error of the sample mean, se:

se = standard error of the sample mean =
$$\frac{\sigma}{\sqrt{N}}$$

• Formula for the test statistic for testing whether a sample mean is different from the population mean:

$$z \ test \ statistic = \frac{sample \ mean - population \ mean}{std \ error \ of \ sample \ mean}$$

• Formula for the confidence interval for a sample mean:

$$LCL = \text{sample mean} - \text{critical z} \times \text{std. error}$$

$$UCL = \text{sample mean} + \text{critical z} \times \text{std. error}$$

$_{\scriptscriptstyle Appendix}\,2$

Critical Values of χ^2 Distribution

	α							
df	0.20	0.10	0.05	0.02	0.01	0.001		
1	1.642	2.706	3.841	5.412	6.635	10.827		
2	3.219	4.605	5.991	7.824	9.210	13.815		
3	4.642	6.251	7.815	9.837	11.341	16.268		
4	5.989	7.779	9.488	11.668	13.277	18.465		
5	7.289	9.236	11.070	13.388	15.086	20.517		
6	8.558	10.645	12.592	15.033	16.812	22.457		
7	9.803	12.017	14.067	16.622	18.475	24.322		
8	11.030	13.362	15.507	18.168	20.090	26.125		
9	12.242	14.684	16.919	19.679	21.666	27.877		
10	13.442	15.987	18.307	21.161	23.209	29.588		
11	14.631	17.275	19.675	22.618	24.725	31.264		
12	15.812	18.549	21.026	24.054	26.217	32.909		
13	16.985	19.812	22.362	25.472	27.688	34.528		
14	18.151	21.064	23.685	26.873	29.141	36.123		
15	19.311	22.307	24.996	28.259	30.578	37.697		
16	20.465	23.542	26.296	29.633	32.000	39.252		
17	21.615	24.769	27.587	30.995	33.409	40.790		
18	22.760	25.989	28.869	32.346	34.805	42.312		
19	23.900	27.204	30.144	33.687	36.191	43.820		
20	25.038	28.412	31.410	35.020	37.566	45.315		
21	26.171	29.615	32.671	36.343	38.932	46.797		
22	27.301	30.813	33.924	37.659	40.289	48.268		
23	28.429	32.007	35.172	38.968	41.638	49.728		
24	29.553	33.196	36.415	40.270	42.980	51.179		
25	30.675	34.382	37.652	41.566	44.314	52.620		
26	31.795	35.563	38.885	42.856	45.642	54.052		
27	32.912	36.741	40.113	44.140	46.963	55.476		
28	34.027	37.916	41.337	45.419	48.278	56.893		
29	35.139	39.087	42.557	46.693	49.588	58.302		
30	36.250	40.256	43.773	47.962	50.892	59.703		

Source: From Table IV of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research (London: Longman Group Ltd., 1974). (Previously published by Oliver & Boyd, Edinburgh.) Reprinted by permission of Pearson Education Ltd.

Appendix 3

Areas of the Standard Normal Distribution

The entries in this table are the proportion of the cases in a standard normal distribution that lie between 0 and z.

SECOND DECIMAL PLACE IN z

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8 0.9	0.2881 0.3159	0.2910 0.3186	0.2939 0.3212	0.2967	0.2995 0.3264	0.3023	0.3051 0.3315	0.3078	0.3106 0.3365	0.3133 0.3389
0.9	0.3133	0.3100	0.3212	0.3238	0.3204	0.3289	0.3313	0.3340	0.3303	0.3308
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2 2.3	0.4861 0.4893	0.4864 0.4896	0.4868 0.4898	0.4871 0.4901	0.4875 0.4904	0.4878 0.4906	0.4881 0.4909	0.4884 0.4911	0.4887 0.4913	0.4890 0.4916
2.3	0.4033	0.4920	0.4030	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4916
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965 0.4974	0.4966	0.4967 0.4976	0.4968	0.4969 0.4977	0.4970	0.4971 0.4979	0.4972	0.4973	0.4974 0.4981
2.8 2.9	0.4974	0.4975 0.4982	0.4976	0.4977 0.4983	0.4977	0.4978 0.4984	0.4979	0.4979 0.4985	0.4980 0.4986	0.4981
2.3	0.4301	0.4302	0.4302	0.4303	0.4304	0.4304	0.4303	0.4303	0.4300	0.4300
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998
3.5	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998
3.6	0.4998	0.4998	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.7	0.4999									
4.0	0.49997									
4.5 5.0	0.499997									
0.0	0.4999997									

Source: R. Johnson, Elementary Statistics (Belmont, CA: Duxbury Press, 1996).