1 Ricerca

1.1 Criteri di valutazione delle strategie

1. Completezza

Garanzia di trovare una soluzione, se esiste

2. Ottimalità

Garanzia di trovare una soluzione ottima (a costo minimo)

3. Complessità Temporale

Quanto tempo occorre per trovare una soluzione

4. Complessità Spaziale

Quanta memoria occorre per effettuare la ricerca

1.1.1 Valutazioe della Complessità (Temporale e Spaziale)

Si usa Tempo e Spazio **parametrici**. Calcolati in termini di **numero** di nodi creati o visitati.

1.2 Strategie di Ricerca

Ci sono due tipologie di approcci (riguardanti la conoscenza, quanta e quale)

1. Approcci Blind

usano esclusivamente la struttura del problema per cercare (e trovare) una soluzione.

2. Approcci Informati

usano la struttura del problema + ulteriore conoscenza per guidare la ricerca.

- (a) Monoagente
- (b) Multiagente (giochi)
- (c) Problemi di Assegnamento (CSP)

1.2.1 RICERCA IN AMPIEZZA

- La ricerca espande il nodo radice, poi tutti i suoi successori, poi tutti i discendenti di secondo livello, ecc.
- Si realizza gestendo la frontiera come una coda FIFO.
- Tutti i nodi sulla frontiera e tutti i loro antenati vanno tenuti in memoria per poter ricostruire la soluzione quando si trova il nodo obiettivo (Complessità Spaziale)

Valutazione

Completezza Se esiste un nodo obiettivo a una profondità finita d esso verrà trovato a patto che il fattore di ramificazione (cioè il numero di figli che un nodo può avere) b sia finito

Ottimalità La soluzione trovata è ottima solo se il costo del cammino è una funzione monotona crescente della profondità (es. tutte le azioni hanno lo stesso costo, quindi *il costo* dipende solo dalla profondità dell'albero)

Complessità temporale di tipo esponenziale $O(b^{d+1})$ Quanto tempo occorre per trovare una soluzione col crescere dello spazio di ricerca Complessità spaziale di tipo esponenziale $O(b^{d+1})$ Quanta memoria occorre per effettuare la ricerca col crescere dello spazio di ricerca

1.2.2 RICERCA A COSTO UNIFORME

- Quando i costi dei passi non sono tutti identici:
 - ogni nodo ha associato il costo del cammino con cui è stato raggiunto
 - la frontiera è mantenuta ordinata
 - a ogni iterazione espande il nodo appartenente a un cammino di costo minimo
- Quando i costi sono tutti **uguali** diventa la ricerca in **ampiezza**.

• ATTENZIONE

- COSTO \neq NUMERO DEI PASSI il numero dei passi non conta, conta solo il costo dei cammini
- quando trova il nodo obiettivo NON SI FERMA SUBITO,
 prima controlla se vi sono cammini aperti di costo inferire
 e, nel caso, prova ad espanderli.
- 1.2.3 Ricerca in profondità (senza BackTracking)
- 1.2.4 Iterative Deepening
- 1.2.5 Ricerca Bidirezionale

2 Constraint Satisfaction Problem

Questi problemi sono problemi in cui gli stati assumono una **struttura** e **contengono informazioni** che vengono utilizzate nella ricerca della soluzione.

Viene anche introdotta la nozione di **vincolo** e nuovi metodi di ricerca specifici.

Un **CSP** è definito da:

- un insieme di variabili X_1, \ldots, X_n
- un insieme di **vincoli** C_1, \ldots, C_m
- (OPZIONALE) la richiesta di massimizzare una funzione obiettivo.

Le **variabili** prendono i valori tramite l'**assegnamento**, che è un'attribuzione di valori ad alcune variabili del nostro problema

$${X_{i1} = v_{i1}, X_{i2} = v_{i2}, \dots}$$

Un assegnamento è detto:

- COMPLETO se assegna valori a tutte le variabili del CSP
- CONSISTENTE se non viola alcun vincolo del CSP
- SOLUZIONE se è completo e consistente