

Lesson 08 Outline

- * Problem definition and motivations
- * Dynamics of rigid bodies
- * The equation of unconstrained motion (ODE)
- * User and time control
- * Demos / tools / libs

Concept of Rigid Bodies

- Assumption of Rigidity: The shape of rigid body never undergoes any deformation during simulation
- Motion concept: Due to rigidity overall motion of body is a composition of
- * 1) Linear motion of the center of mass (CoM)
- * 2) Angular motion rotation of body shape around center of mass

Position and Orientation

- * Position is represented as vector c = (x, y, z)
- * Orientation can by represented using:
- * 1) Euler Angles: $\mathbf{q} = (\varphi, \theta, \psi)$
 - \rightarrow This is the minimal 6 (3+3) DOF representation of body.
 - Problems of gimbal lock (non-uniqueness)
- * 2) Rotation Matrices: $\mathbf{R} = (\mathbf{R}_{i,j}) \subseteq \mathbf{R}^{3\times3}$
 - Overdetermined representation. Must by orthogonalized.
- *3) Unit Quaternions: q = (x, y, z, w)
 - → 7 (3+4) DOF representation solved by simple normalization. Very suitable for angular velocity integration

- *Linear velocity v(t) is simply the time derivative of position
 - \rightarrow Formally: v(t) = c'(t) = dc(t)/dt

- * Angular velocity ω(t) is a vector parallel to rotational axis with the length equal to spin velocity
 - Spin velocity = total radians body spin around rotational axis per second.
 - \rightarrow Formally: $q'(t) = 0.5 Q \omega(t)$ (see later for details)

- * Assume some body point p = c + r
 - Local displacement r = a + b can be decomposed into axis parallel "a" and axis perpendicular "b"
- Current velocity u of point p is
 - Perpendicular to rotation axis
 - Proportional to length of angular velocity |ω| and distance from rotation axis |b|
 - → Formally $|u| = |\omega| |b| \rightarrow u = \omega \times b$
- * Since $\omega \times a = 0$
- * $u = \omega \times b = \omega \times a + \omega \times b = \omega \times r (= r')$

- * Cross product matrix a^x for vector $a = (a_x, a_y, a_z)$ is
 - antisymmetric 3x3 matrix

$$\mathbf{a} \times \mathbf{b} = \mathbf{a}^{\times} \mathbf{b} = \begin{pmatrix} 0 & -\mathbf{a}_z & +\mathbf{a}_y \\ +\mathbf{a}_z & 0 & -\mathbf{a}_x \\ -\mathbf{a}_y & +\mathbf{a}_x & 0 \end{pmatrix} \begin{pmatrix} \mathbf{b}_x \\ \mathbf{b}_y \\ \mathbf{b}_z \end{pmatrix}$$

*Rotation matrix R is a orthonormal 3x3 matrix

$$\mathbf{R} = \begin{pmatrix} \mathbf{R}_{x} & \mathbf{R}_{y} & \mathbf{R}_{z} \end{pmatrix} = \begin{pmatrix} \mathbf{R}_{xx} & \mathbf{R}_{xy} & \mathbf{R}_{xz} \\ \mathbf{R}_{yx} & \mathbf{R}_{yy} & \mathbf{R}_{yz} \\ \mathbf{R}_{zx} & \mathbf{R}_{zy} & \mathbf{R}_{zz} \end{pmatrix}$$

* Time derivative of rotation matrix R with respect to angular velocity ω is (assuming $r' = \omega \times r = \omega^{\times} r$)

$$\dot{\mathbf{R}} = (\dot{\mathbf{R}}_x \quad \dot{\mathbf{R}}_y \quad \dot{\mathbf{R}}_z) = (\omega^{\times} \mathbf{R}_x \quad \omega^{\times} \mathbf{R}_y \quad \omega^{\times} \mathbf{R}_z) = \omega^{\times} (\mathbf{R}_x \quad \mathbf{R}_y \quad \mathbf{R}_z) = \omega^{\times} \mathbf{R}$$

* Time derivative of orientation quaternion q=(x,y,z,w) is

$$\dot{\mathbf{q}} = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \\ \dot{w} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} +w & -z & +y \\ +z & +w & -x \\ -y & +x & +w \\ -x & -y & -z \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix} = \frac{1}{2} \mathbf{Q} \boldsymbol{\omega}$$

→ Q is 4x3 "quaternion matrix"

Center of Mass

- Consider rigid body as a collection of particles with their positions p_i and masses m_i
- * Center of mass "c" is a weighted average of all particles

$$\mathbf{c} = \frac{\sum m_i \mathbf{p}_i}{\sum m_i} = \frac{\sum m_i \mathbf{p}_i}{M}$$

- \rightarrow where M = Σ m, is total mass of body
- * Relative position r, of i-th particle satisfies $\rho_i = c + r_i$
- * Current i-th particle position is $\rho_i = c + R r_{0i}$
 - R is current rotation matrix of body
 - \rightarrow r_{0i} is initial local-space position of i-th particle

Linear and Angular Momentum

* Assuming each particle has its own mass m_i and velocity $u_i = \omega \times r_i + v$, we define its linear momentum "P_i" and i-th angular momentum "L_i" as

$$\rightarrow P_i = m_i u_i$$

$$\rightarrow$$
 L_i = r_i x P_i = m_ir_i x u_i

* Summing up Pi and Li over all particles we get total linear momentum "P" and angular momentum "L"

*
$$P = \Sigma P_i = \Sigma m_i u_i = \Sigma m_i (\omega \times r_i + v) = \dots = M v$$

- *L = $\Sigma L_i = \Sigma m_i r_i \times u_i = \Sigma m_i r_i \times (\omega \times r_i + v) = ... = J \omega$
 - where matrix J is the current inertia tensor

Mass and Inertia Tensor

* Total mass M and inertial tensor J are defined as

$$M = \sum m_i$$

$$\mathbf{J} = -\sum m_i \mathbf{r}_i^{\times} \mathbf{r}_i^{\times} = \sum m_i \begin{vmatrix} \mathbf{r}_{iy}^2 + \mathbf{r}_{iz}^2 & -\mathbf{r}_{ix} \mathbf{r}_{iy} & -\mathbf{r}_{ix} \mathbf{r}_{iz} \\ -\mathbf{r}_{iy} \mathbf{r}_{ix} & \mathbf{r}_{ix}^2 + \mathbf{r}_{iz}^2 & -\mathbf{r}_{iy} \mathbf{r}_{iz} \\ -\mathbf{r}_{iz} \mathbf{r}_{ix} & -\mathbf{r}_{iz} \mathbf{r}_{iy} & \mathbf{r}_{ix}^2 + \mathbf{r}_{iy}^2 \end{vmatrix}$$

- → Unlike scalar mass M, inertia tensor J is time dependent
- * Initial inertia is $J_0 = -\Sigma m_i r_{0i} r_{0i} r_{0i}$
 - → Bodies never deform, thus current inertia can be expressed in terms of initial inertia J₀ and current rotation matrix R

*
$$J = RJ_0R^T$$
 and $J^{-1} = RJ_0^{-1}R^T$

Mass and Inertia Tensor

- * J₁ = Inertia tensor of sphere with radius r and mass m
- * J_2 = Inertia tensor of solid box with mass m and width w, height h and depth d

$$\mathbf{J_1} = \begin{pmatrix} \frac{2mr^2}{5} & 0 & 0 \\ 0 & \frac{2mr^2}{5} & 0 \\ 0 & 0 & \frac{2mr^2}{5} \end{pmatrix} \qquad \mathbf{J_2} = \begin{pmatrix} \frac{m}{12}(h^2 + d^2) & 0 & 0 \\ 0 & \frac{m}{12}(w^2 + d^2) & 0 \\ 0 & 0 & \frac{m}{12}(w^2 + h^2) \end{pmatrix}$$

Mass and Inertia Tensor

- * Translated inertia tensor by offset r is
- * $J = J_0 + m(r^Tr 1 rr^T)$
 - → where 1 is 3x3 identity matrix and r is a column vector, ie. transposed $r^T = (r_x, r_y, r_z)$ is row vector, thus
 - → r^Tr (inner or dot product) is scalar
 - \rightarrow rr^T (outer product) is a 3x3 matrix
- * Given body with n solid parts with mass m_i, center of mass c_i and inertia tensor J_{oi}, total body
 - \rightarrow Mass m = Σ m
 - Inertia $J = \Sigma J_i = \Sigma (J_{0i} + m_i(c_i^T c_i 1 c_i c_i^T))$
 - Center of mass $c = (\Sigma m_i c_i) / (\Sigma m_i)$

Linear and Angular Acceleration

- * The time derivative of inertia J (and J-1) is
- * $J' = (RJ_0R^T)' = R'J_0R^T + RJ_0R'^T = \dots = \omega^{\times} J J \omega^{\times}$
- * $J'^{-1} = (RJ^{-1}_{0}R^{T})' = R'J^{-1}_{0}R^{T} + RJ^{-1}_{0}R'^{T} = \dots = \omega^{\times} J^{-1} J^{-1} \omega^{\times}$
- *Linear acceleration "a" is defined as
- * $a = v' = (M^{-1}P)' = M^{-1}P' = M^{-1}f$
 - → Where f is force time derivative of linear momentum P
- * Angular acceleration "α" is defined as
- * $\alpha = \omega' = (J^{-1}L)' = J'^{-1}L + J^{-1}L' = \dots = 0 J^{-1}\omega^{\times}J\omega + J^{-1}T$
 - → Where ⊤ is torque time derivative of angular momentum L

Force and Torque

- *Force fi and torque Ti of i-th particle are
- * f_i = m_ia_i (i-th force)
- * т, = r, x f, = m, r, x a, (i-th torque)
- * Summing up over all particles we get the famous Newton-Euler equations for total force and torque
- * $f = \Sigma f_i = \Sigma m_i \alpha_i = \dots = M v' = P'$
- * T = $\Sigma T_i = \Sigma m_i r_i \times \alpha_i = \dots = J\omega + \omega^{\times} J\omega = \dots = L'$

Summary of Rigid Body Concepts

- * We can summarize main physical properties (quantities) of rigid bodies as either
 - Kinematical (pure geometrical, mass "independent")
 - Dynamical (physical, mass "dependent")

	Kinematical Properties		Dynamical Properties	
lin	Position	$c(t) \in R^{3x1}$	Mass	$M \in R^{lxl}$
ang	Orientation	$q(t) \in R^{4x1}$	Inertia Tensor	$J(t) \subseteq R^{3x3}$
lin	Linear velocity	$\mathbf{v}(t) \in \mathbf{R}^{3\times 1}$	Linear Momentum	$P(t) \subseteq R^{3x1}$
ang	Angular velocity	ω (t) $\in R^{3x1}$	Angular Momentum	$L(t) \subseteq R^{3x1}$
lin	Linear acceleration	$a(t) \subseteq R^{3x1}$	Force	$f(t) \subseteq R^{3x1}$
ang	Angular acceleration	$\alpha(t) \subseteq R^{3x1}$	Torque	$\tau(t) \subseteq R^{3x1}$

Rigid Body Equation of Motion

 The rigid body equation of unconstrained motion can be summarized as the following ODE

$$\frac{d}{dt}\mathbf{x}(t) = \frac{d}{dt} \begin{pmatrix} \mathbf{c}(t) \\ \mathbf{q}(t) \\ \mathbf{P}(t) \\ \mathbf{L}(t) \end{pmatrix} = \begin{pmatrix} \mathbf{v}(t) \\ \frac{1}{2}\mathbf{Q}(t)\boldsymbol{\omega}(t) \\ \mathbf{f}(t) \\ \boldsymbol{\tau}(t) \end{pmatrix}$$

* Where auxiliary variables are

$$\mathbf{Q}(t) = \begin{pmatrix} +\mathbf{q}_w(t) & -\mathbf{q}_z(t) & +\mathbf{q}_y(t) \\ +\mathbf{q}_z(t) & +\mathbf{q}_w(t) & -\mathbf{q}_x(t) \\ -\mathbf{q}_y(t) & +\mathbf{q}_x(t) & +\mathbf{q}_w(t) \\ -\mathbf{q}_x(t) & -\mathbf{q}_y(t) & -\mathbf{q}_z(t) \end{pmatrix} \qquad \mathbf{v}(t) = M^{-1}\mathbf{P}(t) \\ \boldsymbol{\omega}(t) = \mathbf{J}^{-1}(t)\mathbf{L}(t) \\ \mathbf{J}^{-1}(t) = \mathbf{R}(t)\mathbf{J}_0^{-1}\mathbf{R}^{\mathrm{T}}(t)$$

User and Time control

- * According to the time control of the simulation, we can split the overall simulation process into three nested layers
 - The Presentation Layer
 - The Collision Layer
 - The Simulation Layer.

Time control: Presentation Layer

- * From users point-of-view the overall simulation must be present (rendered) in a sequence of animation frames
- * The size of the frame is obviously application dependent:
- * In time-critical and interactive applications (VR) it is usually fixed and defined by the user/device (min. 25 frames per seconds)
- * In large, complex offline simulations it can vary upon the computational expenses

Time control: Collision Layer

- * Within each frame the motion solver perform some sub-steps to advance the motion correctly.
- * Due to collision and constraint resolution discontinuities arise in the motion
- * Depending on the time of collision detection (resolution) the number (size) of "collision steps" can be fixed or adaptive
- When handling multiple penetrating objects in one step fixed time stepping is usually suitable
- * If only one collision is resolved at once adaptive time stepping technique should be used

Backtracking Approach

- * We want to advance the simulation form to to
- * Use bisection to find the first collision occurrence
 - \rightarrow First check for collisions at t_1 , next at mid time $t_m = 0.5(t_0 + t_1)$
 - \rightarrow If there is some collision proceed similar back in (t_0,t_m)
 - → Otherwise proceed in second half interval (t_m, t₁)
 - Proceed similar until desired number of iterations
- * if we know the time derivative of the separation distance the search can be even faster
- * It is simple, robust, can have slow convergence and tunneling problem (some collisions are missed)

One-Side Approach

- * The One-Side Approach is a more conservative technique. We always advance the simulation forward in time.
 - This is possible, since between collisions objects move along ballistic trajectories and we can estimate the lower bound of their Time of Impact (TOI)
- * Given upper bounds on angular and linear velocities we can estimate maximal translation of any surface point (on both estimated bodies) w.r.t. some direction axis d
- * Find earliest time when bodies may penetrate. If no collision occurs, we advance bodies

User and Time control

- * During both methods full collision detection is performed on estimated times
- * Alternative solution is to use continuous collision detection

Time control: Simulation Layer

- * Within each "collision" step the motion solver must integrate the motion equation
- Numerical ODE solver usually requires several integration steps to achieve desired accuracy and stability
- Again we can choose a fixed or adaptive time stepping scheme

