HASHING - APPROACHING DIRECT ACCESS BASED ON THE KEY VALUE

· A simple hashing scheme

Name	ASCII Co	ode for	Product	Home Address
	first two	chars		
BALL	66	65	66*65=4290	290
LOWELL	76	79	76*79=6004	004
TREE	84	82	84*82=6888	888

Problems:

- ➤ Many names have the same first two characters => collisions
- > Some combinations of two characters never occur in any name => skew distribution

3/7/2018 Dr. Wang, Cal State Fullerton

HASHING

- A better hashing scheme:
- I) Fix the length and represent the key in numerical form

2) Fold and add

3/7/2018

Dr. Wang, Cal State Fullerton

HASHING

```
Problem: What if overflow occurs?

Solution: Take prime 19937, do modulo 19937 after each addition.
```

```
7679+8769 => 16448 % 19937 => 16448

16448+7676 => 24124 % 19937 => 4187

4187+3232 => 7419 % 19937 => 7419

7419+3232 => 10651 % 19937 => 10651

10651+3232 => 13883 % 19937 => 13883
```

3) Do modulo by the size of the addressing space (e.g. 101)

```
a = 13883 % 101
= 46
```

3/7/2018

Dr. Wang, Cal State Fullerton

3

HASHING

```
int Hash ( char Key[12], int MaxAddress )
    {
      int sum = 0;
      for ( int j=0, j<12, j+=2 )
          sum = (sum + 100*Key[j] + key[j+1]) % 19937;
      return sum % MaxAddress;
}</pre>
```

3/7/2018

Dr. Wang, Cal State Fullerton

RESOLVING COLLISIONS

• Progressive overflow: if collisions occur, check the subsequent position for space.

York has the home address of 6 which is occupied. Thus York is stored in the first empty space after 6, namely 9.

3/7/2018

Dr. Wang, Cal State Fullerton

5

RESOLVING COLLISIONS

Problem: What if the end of the array is reached?

Solution: Do (i + 1) % M, where M is the size of the array, that is look at the array as a circle.

3/7/2018

Dr. Wang, Cal State Fullerton

HASHING WITH PROGRESSIVE OVERFLOW

On Search:

If key is found in the home address, OK.

Otherwise sequentially scan the subsequent positions until:

- 1) Key is found, or
- 2) an empty space is encountered, or
- 3) come back to the home address.

The last two cases indicate that the key is not there.

3/7/2018

Dr. Wang, Cal State Fullerton

7

SEARCH LENGTH

• Example:

			•
Key	Home Address		•
Adams	20	20	Adams
Bates	21	21	Bates
Cole	21	22	Cole
Dean	22	23	Dean
Evans	20	24	Evans
Flint	21	25	Flint
			•

Key Adams Bates Cole Dean Evans Flint

#of Accesses 1 1 2 2 5 5

On the average (1 + 1 + 2 + 2 + 5 + 5)/6 = 2.67 accesses.

3/7/2018 Dr. Wang, Cal State Fullerton

HASHING WITH PROGRESSIVE OVERFLOW

- On deletion Tombstones: Marked the record as deleted.
- Implications of tombstones for search and insertion:
 - 1) Search should continue when tombstones are encountered.
- 2) Insertion should do a search to make sure the key does not exist and then come back to insert at the first tombstone or empty space.

3/7/2018

Dr. Wang, Cal State Fullerton

ALTERNATIVE SOLUTIONS TO COLLISIONS

Double hashing: when collisions occur, do (i + c)%M instead of (i + 1)%M. e.g. when c = 7.

Key	Home Address		•	
Adams	20	20 21	Adams Bates	2 2
Bates Cole	21 21	22	Dean	
Dean	22	23		
Evans	20	24		
Flint	21	25		3

27 Evans 28 Cole 35 Flint

What is the number of comparisons on average?

3/7/2018

Dr. Wang, Cal State Fullerton

ALTERNATIVE SOLUTIONS TO COLLISIONS

2) Chained progressive overflow: Overflow records are stored as linked lists in the addresses starting from M on, i.e. M, M+1, M+2, ... e.g. when M=101.

Key	Home Address
Adams	20
Bates	21
Cole	21
Dean	22
Evans	20
Flint	21

	•	
101	Cole	103
102	Evans	-1
103	Flint	-1
	•	

What is the number of comparisons on average?

3/7/2018

Dr. Wang, Cal State Fullerton

1

ALTERNATIVE SOLUTIONS TO COLLISIONS

• 3) Scatter tables

Key	Home Address		•
Adams Bates Cole Dean Evans Flint	20 21 21 22 20 21	20 21 22 23 24	0 1 3 -1
riiii	21	25	- <u> </u>

0	Adams	4
1	Bates	2
2	Cole	5
3	Dean	-1
4	Evans	-1
5	Flint	-1
	•	
	•	
	•	

What is the number of comparisons on average?

3/7/2018

Dr. Wang, Cal State Fullerton

BUCKETS – STORING MORE THAN ONE RECORD IN AN ADDRESS

13

What is the number of comparisons on average?

/2018 Dr. Wang, Cal State Fullerton