تأخیر در سیستمهای کنترلی و تأثیر تقریب آن

۱ ،عوامل ایجاد تأخیر در سیستمهای کنترلی

تأخیر زمانی (Time Delay) در سیستمهای کنترلی میتواند به دلیل عوامل مختلفی ایجاد شود که در سه دسته کلی قرار می گیرند:

✓ پدیدههای فیزیکی:

- انتقال انرژی یا ماده :در سیستمهای مکانیکی یا هیدرولیکی، زمان لازم برای حرکت سیالات یا اجزا باعث تأخیر می شود.
 - دینامیک اجزا :قطعات فیزیکی مانند موتورها و فنرها برای تغییر وضعیت به زمان نیاز دارند.
- انتشار امواج :در سیستمهای مخابراتی، امواج الکترومغناطیسی برای رسیدن از یک نقطه به نقطه دیگر زمان مشخصی نیاز دارند.

🔽 تأخير در پردازش داده و محاسبات:

- تأخیر در حسگرها: سنسورها معمولاً دادهها را با تأخیر اندازه گیری و ارسال می کنند.
- زمان پردازش کنترلی :سیستمهای دیجیتال نیاز به پردازش داده و اجرای الگوریتم کنترل دارند که زمانبر است.
- تأخیر در انتقال داده :در سیستمهای کنترلی مبتنی بر شبکه (NCS) ، ارسال دادهها بین اجزا موجب تأخیر میشود.

🔽 تأخير در عملگرها و تجهيزات نهايي:

- زمان واکنش عملگرها: تجهیزات مکانیکی، الکترومکانیکی و هیدرولیکی برای تغییر وضعیت به زمان نیاز دارند.
 - **ویژگیهای مواد :**برخی مواد مانند عایقهای حرارتی یا دیالکتریکها باعث تأخیر در انتقال انرژی میشوند.

۲ .تأثیر تأخیر روی سیستم و پایداری

- - افزایش نوسانات در پاسخ سیستم
 - کاهش قابلیت کنترل و دشوار شدن طراحی کنترلرها
- غیرممکن شدن استفاده مستقیم از روشهای کلاسیک مکان هندسی ریشهها(Root Locus)

۳ . تقریب تأخیر و تأثیر آن بر سیستم

از آنجایی که تابع نمایی {e^{-sT}مستقیماً در روشهای کلاسیک کنترل قابل تحلیل نیست، معمولاً با روشهایی مانند تقریب پده (Pade Approximation) مدلسازی می شود:

$$rac{rac{sT}{2}-1}{rac{sT}{2}+1}pprox {}^{sT-}e$$

مزایا و معایب تأخیر در سیستمهای کنترلی

تأخیر در سیستمهای کنترلی معمولاً یک عامل نامطلوب محسوب میشود، اما در برخی موارد میتواند مزایایی نیز داشته باشد. در ادامه، مزایا و معایب تأخیر برای هر دسته از منابع ایجاد تأخیر بررسی شده است.

۱ . تأخیر ناشی از پدیدههای فیزیکی

√مزايا:

- ایجاد نرمی و پایداری در برخی سیستمها :در سیستمهای مکانیکی، تأخیر طبیعی در پاسخ ممکن است از شوکهای ناگهانی جلوگیری کند.
 - کاهش نویز و اغتشاشات گذرا :در برخی سیستمهای حرارتی یا هیدرولیکی، تأخیر باعث یکپارچهتر شدن تغییرات و جلوگیری از پاسخهای شدید میشود.

X معایب:

- **کاهش سرعت پاسخ سیستم**:سیستم دیرتر به ورودیها واکنش نشان میدهد.
- امکان ناپایداری :در صورت افزایش بیش از حد تأخیر، قطبهای سیستم ممکن است به سمت ناحیه ناپایدار حرکت کنند.
- مشکل در طراحی کنترلر :نیاز به طراحی کنترلرهای پیچیدهتر مانند کنترلرهای پیشبینانه (MPC) یا کنترل تطبیقی.

۲ .تأخیر در پردازش داده و محاسبات

√مزایا:

- امکان انجام پردازشهای پیچیدهتر: تأخیر پردازشی اجازه میدهد که فیلترهای بهتر و الگوریتمهای بهینهتر برای پردازش دادهها استفاده شوند.
- کاهش نوسانات در تصمیم گیریهای سریع: در برخی موارد، یک مقدار تأخیر می تواند باعث جلوگیری از واکنشهای ناپایدار به دادههای نویزی شود.

X معایب:

- **افزایش تأخیر کلی در حلقه کنترلی** :اگر زمان پردازش زیاد باشد، سیستم نمی تواند به تغییرات سریع واکنش نشان دهد.
- **افزایش احتمال از دست دادن اطلاعات مهم** :در برخی سیستمها، تأخیر در پردازش داده ممکن است باعث شود که اطلاعات قدیمی استفاده شود و سیستم دقت کمتری داشته باشد.
- نیاز به سختافزار قدرتمندتر :کاهش تأخیر پردازشی نیازمند پردازندههای سریعتر و حافظه بیشتر است که هزینه سیستم را افزایش میدهد.

۳ . تأخير در عملگرها و تجهيزات نهايي

√مزایا:

- محافظت از تجهیزات مکانیکی :اگر عملگرها با تأخیر کمی کار کنند، از تغییرات ناگهانی جلوگیری کرده و عمر مفید قطعات افزایش می یابد.
- کاهش تأثیر نوسانات کوچک :برخی عملگرها (مانند سیستمهای هیدرولیکی) به دلیل تأخیر ذاتی خود، از اعمال تغییرات ناگهانی در خروجی جلوگیری میکنند.

X معایب:

- **ایجاد پاسخ کند در سیستم کنترلی** :اگر یک عملگر مانند موتور یا شیر کنترل دارای تأخیر زیاد باشد، کنترل دقت کافی نخواهد داشت.
 - احتمال ایجاد ناپایداری در حلقه بسته :اگر تأخیر عملگر بیش از حد شود، ممکن است باعث حرکت قطبهای سیستم به سمت راست صفحه مختلط شود.
- نیاز به جبران تأخیر : در برخی موارد، طراحی سیستم باید شامل جبران کننده هایی باشد که پیچیدگی طراحی کنترلر را افزایش میدهد.

تأثیر تأخیر روی مکان هندسی ریشهها(Root Locus)

وقتی یک سیستم کنترلی دارای تأخیر باشد، تابع تبدیل آن معمولاً شامل یک عامل نمایی به شکل -}e-sTe^{ (ST)می شود. این تأخیر باعث تغییر در ساختار مکان هندسی ریشه ها می شود و تحلیل آن را پیچیده تر می کند. در ادامه، تأثیرات اصلی تأخیر بر مکان هندسی ریشه ها بررسی شده است.

١ . تأخير باعث حركت قطبها به سمت راست صفحه مختلط مي شود

- تأخیر زمانی **زاویه فاز سیستم را کاهش میدهد** که میتواند باعث ناپایداری شود.
- با افزایش تأخیر، قطبهای سیستم در مکان هندسی ریشهها به سمت راست حرکت میکنند که نشان دهنده کاهش پایداری است.

• اگر تأخیر بیش از حد باشد، ممکن است برخی قطبها از محور موهومی عبور کرده و وارد نیمصفحه راست شوند که باعث ناپایداری سیستم می شود.

۲ . تأخیر، مسیرهای مکان هندسی ریشهها را تغییر میدهد

- در یک سیستم بدون تأخیر، مسیرهای مکان هندسی ریشهها به شکل قابل پیشبینی حرکت میکنند. اما با اضافه شدن تأخیر، این مسیرها تغییر کرده و در برخی نقاط خمیده میشوند.
- تأخیر زیاد می تواند باعث بسته شدن یا تغییر جهت مسیر قطبها شود، که ممکن است طراحی کنترلر را دشوار کند.
- در برخی موارد، تأخیر باعث ایجاد ارتباطات پیچیده بین قطبها و صفرها می شود که تحلیل دستی را دشوار تر می کند.

۳ . تأخير باعث افزايش نوسانات در سيستم مىشود

- تأخیر در حلقه باز سیستم، ریشههای مختلط با قسمت موهومی بزرگتر ایجاد میکند که نشان دهنده افزایش نوسانات در پاسخ سیستم است.
 - در مکان هندسی ریشهها، این اثر معمولاً بهصورت حرکت قطبها به سمت نواحی دارای مقادیر موهومی بزرگتر دیده میشود، که منجر به ایجاد رفتار نوسانی شدیدتر در پاسخ سیستم حلقهبسته میشود.
- هرچه تأخیر بیشتر باشد، این قطبها بیشتر به سمت محور موهومی نزدیک شده و باعث پاسخ نوسانی پایدار یا حتی ناپایدار میشوند.

۴ .تقریب تأخیر و اثر آن بر مکان هندسی ریشهها

• برای تحلیل تأخیر در مکان هندسی ریشهها، معمولاً از تقریب پادوو (Pade Approximation) استفاده می شود که تأخیر {e^{-sT} با یک عبارت کسر جبری جایگزین می کند.

- این تقریب باعث اضافه شدن قطب و صفر جدید به سیستم می شود که مسیر مکان هندسی ریشهها را تغییر می دهد.
 - در برخی موارد، تقریب تأخیر میتواند نقاط عبور از محور موهومی را تغییر داده و بر حد پایداری سیستم تأثیر بگذارد.

۵ . تأخير باعث تغيير در نقطه تقاطع مكان هندسي ريشهها با محور موهومي ميشود

- در یک سیستم بدون تأخیر، تقاطع مکان هندسی ریشهها با محور موهومی معمولاً با روش معادله مشخصه و تست راث-هرویتز قابل بررسی است.
 - اما با افزودن تأخیر، این نقاط تغییر کرده و می توانند به نواحی ناپایدار کشیده شوند.
- افزایش تأخیر می تواند باعث شود که تعداد قطبهای سمت راست افزایش یابد که منجر به ناپایداری سیستم حلقه بسته می شود.

جمعبندي

- تأخیر باعث حرکت قطبها به سمت ناپایداری میشود.
- مسیرهای مکان هندسی ریشهها با حضور تأخیر خمیده و پیچیدهتر میشوند.
- تأخیر زیاد نوسانات سیستم را افزایش داده و میتواند سیستم را ناپایدار کند.
- با تقریب تأخیر، قطبها و صفرهای جدیدی اضافه میشوند که بر مسیر مکان هندسی ریشهها تأثیر
 میگذارند.
 - نقاط عبور از محور موهومی تغییر کرده و ممکن است پایداری سیستم تحت تأثیر قرار گیرد.

در صورتی که نیاز به تحلیل عددی یک سیستم خاص دارید، میتوانیم نمودار مکان هندسی ریشهها را با و بدون تأخیر بررسی کنیم.