Experimentalphysik (H.-C. Schulz-Coulon)

Robin Heinemann

October 26, 2016

Contents

1	Begrüßung ist langweilig										
2	Begrüßung2 ist auch langweilig										
3	Moodle										
4	Klausur										
5	Büc	her		2							
6	Ein	leitung	3	2							
	6.1	Eigens	schaften der Physik	2							
		6.1.1	Beispiel								
	6.2	Maßei	inheiten								
	٠	6.2.1	Basisgrößen								
		6.2.2	Weitere Größen								
7	Med	chanik		4							
	7.1	Kinen	natik des Massenpunktes	4							
		7.1.1	Eindimensionale Bewegung	4							
		7.1.2	Bewegung im Raum								
	7.2	Newto	onsche Dynamik								
		7.2.1									

- 1 Begrüßung ist langweilig
- 2 Begrüßung2 ist auch langweilig
- 3 Moodle

Passwort: F=ma

4 Klausur

11.02.2017 (9 Uhr) 60% Übungspunkte

5 Bücher

Buch Bemerkung

Heintze; Lehrbuch zur Experimentalphysik I

Haliday, Resnick, Walker; Physik

Tipler, Allen; Physik

Demtröder; Experimentalphysik I

Bergman

online...

6 Einleitung

6.1 Eigenschaften der Physik

Physik ist nicht axiomatisch!

- Nicht alle Gesetze der Natur sind bekannt.
- Die bekannten Naturgesezte sind nicht unumstößlich
- unfertig
- empirisch
- quantitativ
- experimentell
- überprüfbar

- braucht Mathematik
- Gefühl für Größenordnungen und rationale Zusammenhänge

6.1.1 Beispiel

Fermi-Probleme:

- Anzahl der Klabirstimmer in Chicago?
- Anzahl der Autos in einem 10km Stau?
- Anzahl von Fischen im Ozean

6.2 Maßeinheiten

Internationales Einheitensystem (SI)

6.2.1 Basisgrößen

Größe	Einheit	Symbol
Länge	Meter	m
Masse	Kilogramm	kg
Zeit	Sekunden	\mathbf{s}

- 1. Meter Strecke, die das Lich im Cakuum während der Dauer von $\frac{1}{299792458}$ s durchläuft.
- 2. Sekunde Das 9 192 631 770-fache der Periodendauder der am Übergang zwischen den beiden Hyperfeinstukturniveaus des Grundzustandes von Atomen des Nukulids Cs_{133} entsprechenden Strahlung.
- 3. Kilogramm Das Kilogramm ist die Einheit der Masse, es ist gleich der Masse des internationalen Kilogrammprototyps (ist scheiße).
 - (a) Avogadroprojekt

$$N_A = \frac{MVn}{m}$$

 N_A : Avogardokonstante ($N_A=6.022\,141\,5\times10^{23})$

6.2.2 Weitere Größen

Größe	Einheit	Symbol
Strom	Ampere	A
Temperatur	Kelvin	K
Lichtstärke	Candla	cd

7 Mechanik

Kinematik: Beschreibung der Bewegung Dynamik: Ursache der Berwegung

7.1 Kinematik des Massenpunktes

7.1.1 Eindimensionale Bewegung

1. **TODO** Skizze 1 $x_1, t_1 \longrightarrow x_2, t_2$ Geschwindigkeit

$$v = \frac{\text{Weg}}{\text{Zeit}} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$
 $[v] = \text{m s}^{-1}$ abgeleitete Größe

2. Momentangeschwindigkeit

$$v := \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{\mathrm{d}x}{\mathrm{d}t} = \dot{x}$$

3. Beschleunigung

$$a := \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \ddot{x} \quad [a] = \mathrm{m}\,\mathrm{s}^{-2}$$

4. Freier Fall a = const. (Behauptung)

$$a = \ddot{x} = \text{const} = \dot{v}$$

 \rightarrow Integration:

$$v(t) = \int_0^t a dt + v_0 = at + v_0$$
$$x(t) = x_0 + \int_0^t v(t) dt = x_0 + \int_0^t (at + v_0) dt = \frac{1}{2}at^2 + v_0t + x_0$$

Bei unserem Fallturm

$$x(t) = \frac{1}{2}at^2 \rightarrow a = \frac{2x}{t^2}$$

$$x[m] \quad t[ms] \quad \frac{2x}{t^2}[m s^{-2}]$$

$$0.45 \quad 304.1 \quad 9.7321696$$

$$0.9 \quad 429.4 \quad 9.7622163$$

$$1.35 \quad 525.5 \quad 9.7772861$$

$$1.80 \quad 606.8 \quad 9.7771293$$

$$x(t) = \frac{1}{2}gt^2, \ g = 9.81 \,\mathrm{m \, s^{-2}}$$

Die Erdbeschleunigung g ist für alle Körper gleich (Naturgesetz).

7.1.2 Bewegung im Raum

1. **TODO** Skizze 2 Ortsvektor:

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} x(t) & y(t) & z(t) \end{pmatrix}^{\mathsf{T}}$$

Durschnittsgeschwindigkeit

$$\frac{\Delta \vec{r}_{12}}{\Delta t} = \frac{\vec{r}_2 - \vec{r}_1}{\Delta t} = \vec{v}_D$$

$$\vec{v}(t) = \frac{d\vec{r}}{dt} = \dot{\vec{r}}(t) = (\dot{x}(t) \quad \dot{y}(t) \quad \dot{z}(t))^{\mathsf{T}} = (v_x \quad v_y \quad v_z)^{\mathsf{T}}$$

$$\vec{a}(t) = \frac{d\vec{v}}{dt} = \dot{\vec{v}}(t) = \ddot{\vec{r}}(t) = (\ddot{x} \quad \ddot{y} \quad \ddot{z})^{\mathsf{T}} = (a_x \quad a_y \quad a_z)^{\mathsf{T}}$$

 \rightarrow Superpositionsprinzip:

Kinematik kann für jede einzelne (Orts)komponente einzeln betrachtet werden.

$$\vec{r}(t) = \vec{r_0} + \vec{v_0}(t - t_0) + \frac{1}{2}\vec{a}(t^2 - t_0^2) = \begin{pmatrix} x_0 + v_{x,0}(t - t_0) + \frac{1}{2}a_{x,0}(t^2 - t_0^2) \\ y_0 + v_{y,0}(t - t_0) + \frac{1}{2}a_{y,0}(t^2 - t_0^2) \\ z_0 + v_{z,0}(t - t_0) + \frac{1}{2}a_{z,0}(t^2 - t_0^2) \end{pmatrix}$$

- 2. Horizontaler Wurf
- 3. TODO Skizze 3

$$t_0 = 0$$

$$\vec{a_0} = \begin{pmatrix} 0 & 0 & -g \end{pmatrix}^{\mathsf{T}}$$

$$\vec{v_0} = \begin{pmatrix} v_{x,0} & 0 & 0 \end{pmatrix}^{\mathsf{T}}$$

$$\vec{x_0} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}^{\mathsf{T}}$$

$$\vec{r}(t) = \begin{pmatrix} v_{x,0}t & 0 & \frac{1}{2}gt^2 \end{pmatrix}^{\mathsf{T}}$$

4. Schiefer Wurf

$$\vec{a_0} = \begin{pmatrix} 0 \\ 0 \\ -g \end{pmatrix}$$

$$\vec{v_0} = \begin{pmatrix} v_{x,0} \\ 0 \\ v_{z,0} \end{pmatrix}$$

$$\vec{r_0} = \begin{pmatrix} 0 \\ 0 \\ z_0 \end{pmatrix}$$

$$r(t) = \begin{pmatrix} v_{x,0}t \\ 0 \\ -\frac{1}{2}gt^2 + v_{z,0}t + z_0 \end{pmatrix}$$

$$z(x) = -\frac{1}{2}\frac{g}{v_{x,0}^2}x^2 + \frac{v_{z,0}}{v_{x,0}}x + z_0$$

5. Nachtrag

$$a = \dot{v}$$

$$\int_0^t \dot{v} dt' = \int_0^t a dt'$$

$$v \mid_0^t = at' \mid_0^t$$

$$v(t) - \underbrace{v(0)}_{v_0} = at$$

$$v(t) = at + v_0$$

analog:

$$x(t) = \frac{1}{2}at^2 + v_0t + x_0$$

(a) **TODO** Skizze Wurfparabel

$$\tan \varphi = \frac{v_{z,0}}{v_{x,0}}$$

$$v_0^2 = v_{x,0}^2 + v_{z,0}^2$$

Scheitel:

$$Z'(x_s) = 0$$
$$x_s = \frac{v_0^2}{2q} \sin 2\varphi$$

Wurfweite:

$$Z(x_w) = 0$$

$$x_w = \frac{v_0^2}{2g} \sin 2\varphi (1 + \sqrt{1 + \frac{2gz_0}{v_0^2 \sin^2 \varphi}})$$

Optimaler Winkel: φ_{opt}, x_w max.

$$z_0 = 0 \Rightarrow \sin 2\varphi = 1 \rightarrow \varphi = 45^{\circ}$$

$$z_0 \neq 0 \Rightarrow \sin \varphi_{opt} = (2 + \frac{2gz_0}{v_0^2})^{-\frac{1}{2}}$$

6. Gleichförmige Kreisbewegung

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} R\cos\varphi \\ R\sin\varphi \end{pmatrix}$$

 $mit \varphi = \varphi(t)$

$$\vec{v}(t) = \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -R\dot{\varphi}\sin\varphi \\ R\dot{\varphi}\cos\varphi \end{pmatrix}$$

Gleichförmige Kreisbewegung: $\dot{\varphi} = \text{const}$ Definition Winkelgeschwindigkeit:

$$\omega = \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \dot{\varphi} \quad [w] = \mathrm{rad}\,\mathrm{s}^{-1} = 1/\mathrm{s}$$

Für $\omega = \text{const.}$:

$$\vec{r} = R \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} \rightarrow |\vec{r}(t)| = r = \text{const}$$

$$\vec{v} = R\omega \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} \rightarrow |\vec{r}(t)| = r = \text{const}$$

$$\vec{v} \perp \vec{r} \Leftrightarrow \vec{v} \cdot \vec{r} = 0$$

- (a) **TODO** Skizze Kreisbewegung
- (b) Mitbewegtes Koordinatensystem

$$\vec{r}(t) = R\vec{e_R} \quad \vec{e_R} = \begin{pmatrix} \cos \varphi(t) \\ \sin \varphi(t) \end{pmatrix}$$

$$\vec{v}(t) = R\omega \vec{e_t}$$
 $\vec{e_t} = \begin{pmatrix} -\sin\varphi(t) \\ \cos\varphi(t) \end{pmatrix}$

$$\vec{t} \neq \text{ const das heißt } \vec{a}(t) \neq 0$$

Kreisbeschleunigung

$$\vec{a}(t) = \begin{pmatrix} \ddot{x}(t) \\ \ddot{y}(t) \end{pmatrix} = \begin{pmatrix} -R\omega^2\cos\varphi \\ -R\omega^2\sin\varphi \end{pmatrix} = -R\omega^2\vec{e_R} \Rightarrow \vec{a} \parallel \vec{r}$$

$$|\vec{a}(t)| = R\omega^2 = \frac{v^2}{R} \neq 0$$

Zentripetalbeschleunigung Zeigt in Richtung des Ursprungs.

$$\vec{a}_{zp} = -R\omega^2 \vec{e_R}$$

(c) Allgemein

 $\vec{\omega}$

Räumliche Lage der Bewegungsebene

$$\vec{v} = \vec{w} \times \vec{r} \quad v = \omega r$$

$$\vec{a} = \vec{w} \times \vec{v}$$

- i. **TODO** Skizze omega
- 7. Allgemeine Krummlinige Bewegung

$$\vec{v} = v\vec{e_t}$$

$$\vec{a} = \dot{\vec{v}} = \frac{\mathrm{d}(v\vec{e_t})}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}t}\vec{e_t} + v\frac{\mathrm{d}ve_t}{\mathrm{d}t}$$

$$\vec{e_t} = \cos \rho \vec{e_x} + \sin \rho \vec{e_y}$$

$$\vec{e_n} = -\sin\rho\vec{e_x} + \cos\rho\vec{e_y}$$

$$\frac{\mathrm{d}\vec{e_t}}{\mathrm{d}t} = \dot{\rho} - \sin\rho\vec{e_x} + \cos\rho\vec{e_y} = \dot{\rho}\vec{e_n}$$

$$\vec{a} = \dot{v}\vec{e_t} + \frac{v^2}{\rho}\vec{e_n}$$

- (a) TODO Skizze
- 8. Relativbewegung
 - S-Laborsystem
 - S'-Bewegtes System
 - $\vec{u} = (u, 0, 0) = \text{const Geschwindigkeit von S' im System S}$
 - Punkt P = (x, y, z) in S
 - Punkt P' = (x', y', z') in S'
 - Zeitpunkt t = 0: S = S', P = P'

- (a) **TODO** Skizze Bewegtes Bezugssystem
- (b) Galilei-Transformation
 - i. Eindimensional

$$x' = x - ut$$

$$y' = y$$

$$z' = z$$

$$v' = v - u$$

$$t' = t$$

ii. Dreidimensional

$$\vec{r}' = \vec{r} - \vec{u}t$$
$$\vec{v}' = \vec{v} - \vec{u}$$
$$\vec{a}' = \vec{a}$$

7.2 Newtonsche Dynamik

Warum bewegen sich Körper?

Newton 1686: Ursache von Bewegungsänderungen sind Kräfte. Newtonsche Gesetze (Axiome)

- 1. Jeder Körper verharrt im Zustand der Ruhe oder der gleichförmigen Bewegung, sofern er nicht durch Kräfte gezwungen wird diesen Bewegungszustand zu verlassen
- 2. Die Änderung einer Bewegung wird durch Einwirken einer Kraft verursacht. Sie geschieht in Richtung der Kraft und ist proportional zu Größe der Kraft
- 3. Übt ein Körper 1 auf einen Körper 2 die Kraft F_{12} , so reagiert Körper 2 auf den Körper 1 mit der Gegenkraft F_{21} und es gilt $F_{21} = -F_{12}$ (actio = reactio)

7.2.1 Kraft und Impuls

$$\vec{F} = \begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix}$$

Superpositions von Kräften (Zusatz zu den Newtonschen Gesetzen (Korollar)):

$$\vec{F}_{\text{ges}} = \sum_{i=1}^{n} \vec{F}_{i}$$

- 1. **TODO** Skizze Addition von Kräften
- 2. Grundkräfte der Natur
 - Elektromagnetische Kraft
 - Starke Draft
 - Schwache Kraft
 - Gravitation
- 3. Impuls

$$\vec{P} = m\vec{v}$$
 $[\vec{P}] = \text{kg m s}^{-1}$

4. Kraft

$$\vec{F} = \frac{\mathrm{d}\vec{P}}{\mathrm{d}t} = \dot{\vec{P}} = \frac{\mathrm{d}}{\mathrm{d}t}(m\vec{v})$$

m = const.:

$$\vec{F} = m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = m\dot{\vec{v}} = m\ddot{\vec{x}} = m\vec{a}$$

5. Grundgesetz der Dynamik

$$\vec{F} = \dot{\vec{P}}$$
 beziehungsweise $\vec{F} = m\vec{a}$

(a) Trägheitsprinzip (Impulserhaltung)

$$\vec{P} = m\vec{v} = \text{const}, \ \vec{P} = 0 \ \text{für} \ \vec{F} = 0$$

6. Experiment

$$\vec{F}_G = \underbrace{m\vec{g}}_{Kraft} = \underbrace{(m+M)}_{Trgheit} \vec{a} = m_{\rm ges} \vec{a}$$

$$m \qquad d-1 \qquad m \qquad m$$

$$\vec{a} = \frac{m}{m+M} \vec{g} \stackrel{d=1}{\Longleftrightarrow} a = \frac{m}{m+M} g = \frac{m}{m_{textges}} g$$

- (a) Erwartung: $a\frac{\tilde{m}}{m_{\rm ges}},\,a=\frac{2\Delta s}{\Delta s},$ weil $\Delta s=\frac{1}{2}a\Delta t^2$
- (b) Messung:

m[g]	M[g]	$m_{\rm ges}[{\rm g}]$	$\frac{m_{\rm ges}}{m}$	$\Delta s [\mathrm{mm}]$	$\Delta t[\mathrm{s}]$	$a[\mathrm{meter/s}]$
10	470	480	48	800	2.75	0.21157025
40	440	480	12	800	1.40	0.81632653
10	1910	1920	192	800	5.55	0.051943836
40	1880	1920	48	800	2.79	0.20554721

- (c) **TODO** Skizze
- 7. Trägheitsprinzip "revisited" **Definition**: Ein Bezugssystem in dem das Trägheitsprinzip gilt nennt man ein Inatialsystem.

In einem beschleunigten Bezugsystem gilt das Trägheitsprinzip
 <u>nicht</u>. Beschleunigte Systeme \neq Inatialsysteme. Das Trägheitsprinzip ist Galilei-invariant.

- (a) **TODO** Skizze whatever
- (b) Trägheitsprinzip: [moderne Formulierung]: Es gibt Inatialsysteme, das heißt Koordinatensysteme in denen ein Kräftefreier Körper im Zustand der Ruhe oder der gradlinig gleichförmigen Bewegung verbleibt.
- 8. Actio gleich Reactio

$$\underbrace{\vec{F_{12}}}_{\text{Kraft}} = \underbrace{-\vec{F_{21}}}_{\text{Gegenkraft}}$$

- (a) **TODO** Skizze von Körpern
- (b) **TODO** (Skizze) Experiment
 - i. Erwartung:

$$v_1 = v_2 \rightarrow a_1 = a_2 \rightarrow F_1 = F_2 \checkmark$$

Nichttrivialer Fall:

Kraftstoß:

Magnetische Kraft: $F_{\text{mag}} \frac{\tilde{1}}{r^2}$

$$v_{1,2} = \int_0^{t_{1,2}} a(t) dt = a_{\text{eff}} T$$

 $\to F_1(t) = F_2(t) \to v_1 = v_2$

(c) Experiment 2

$$m_1 = 241.8 \,\mathrm{g} \wedge 2 = 341.8 \,\mathrm{g} \Rightarrow \frac{m_2}{m_1} \approx 1.5$$

$$v = \frac{\Delta s}{\Delta t} \to \frac{v_1}{v_2} = \frac{t_2}{t_1} = \frac{71}{48} \approx 1.5$$

$$a\tilde{v}, F = ma \to \frac{v_1}{v_2} = \frac{a_1}{a_2} = \frac{m_2}{m_1} \cdot \frac{F_1}{F_2}$$

$$1 = \frac{F_1}{F_2} \Rightarrow F_1 = F_2$$

- (d) Beispiele
 - Kraft und Gegenkraft (TODO Skizze)