2E200 : Electronique Numérique, Combinatoire et Séquentielle

Bertrand Granado

LIP6 / Sorbonne Université / Faculté des Sciences Contact : Bertrand.Granado@sorbonne-universite.fr

April 1, 2019

Plan

Interface avec l'environnement continu : Conversion Analogique vers Numérique et Numérique vers Analogique

Plan

- Interface avec l'environnement continu : Conversion Analogique vers Numérique et Numérique vers Analogique
 - Conversion Analogique Numérique
 - Conversion Numérique Analogique

Plan

- Interface avec l'environnement continu : Conversion Analogique vers Numérique et Numérique vers Analogique
 - Conversion Analogique Numérique
 - Conversion Numérique Analogique

• Le monde numérique est un monde discrétisé

- Le monde numérique est un monde discrétisé
- Le monde réel est un monde continu

- Le monde numérique est un monde discrétisé
- Le monde réel est un monde continu
- Le monde n'est pas numérique

- Le monde numérique est un monde discrétisé
- Le monde réel est un monde continu
- Le monde n'est pas numérique
- Comment Interfacer les 2 mondes ?

- Le monde numérique est un monde discrétisé
- Le monde réel est un monde continu
- Le monde n'est pas numérique
- Comment Interfacer les 2 mondes ?
- A travers des Capteurs

• Capteur = Fonction de conversion du Monde en grandeur électrique

- Capteur = Fonction de conversion du *Monde* en grandeur électrique
- Capteur renvoie une Valeur Analogique

- Capteur = Fonction de conversion du *Monde* en grandeur électrique
- Capteur renvoie une Valeur Analogique
- Nécessité d'une fonction de conversion Analogique Numérique

- Capteur = Fonction de conversion du *Monde* en grandeur électrique
- Capteur renvoie une Valeur Analogique
- Nécessité d'une fonction de conversion Analogique Numérique
- Conversion Analogique Numérique : CAN

- Capteur = Fonction de conversion du *Monde* en grandeur électrique
- Capteur renvoie une Valeur Analogique
- Nécessité d'une fonction de conversion Analogique Numérique
- Conversion Analogique Numérique : CAN
- Conversion Numérique Analogique : CNA

La conversion analogique numérique consiste à transformer une grandeur électrique représentée par un signal en une grandeur numérique exprimée sur N bits après échantillonage et quantification du signal. Cette valeur est une valeur codée représentant un nombre proportionnel à la grandeur électrique.

• Echantillonage : prise périodique de valeur du signal, attention à Shannon $F_e > 2 * F_{signal}$

- Echantillonage : prise périodique de valeur du signal, attention à Shannon $F_e > 2 * F_{signal}$
- Quantification : association d'une mesure à la valeur échantillonnée, c'est une fonction de mémorisation.

- Echantillonage : prise périodique de valeur du signal, attention à Shannon $F_e > 2 * F_{signal}$
- Quantification : association d'une mesure à la valeur échantillonnée, c'est une fonction de mémorisation.
- Pour le traitement Echantillonage/Quantification on parle aussi d'échantillonnage-blocage ou d'échantillonage-mémorisation.

- Echantillonage : prise périodique de valeur du signal, attention à Shannon $F_e > 2 * F_{signal}$
- Quantification : association d'une mesure à la valeur échantillonnée, c'est une fonction de mémorisation.
- Pour le traitement Echantillonage/Quantification on parle aussi d'échantillonnage-blocage ou d'échantillonage-mémorisation.
- Codage : représentation de la valeur quantifiée dans un alphabet interprétable par un circuit numérique

 Résolution : Amplitude de la plus petite variation. Correspond au LSB (Least Significant Bit)

- Résolution : Amplitude de la plus petite variation. Correspond au LSB (Least Significant Bit)
- Temps de conversion : Temps de stabilisation de la donnée en sortie

- Résolution : Amplitude de la plus petite variation. Correspond au LSB (Least Significant Bit)
- Temps de conversion : Temps de stabilisation de la donnée en sortie
- Erreur de Quantification : Incertitude du à la conversion

- Résolution : Amplitude de la plus petite variation. Correspond au LSB (Least Significant Bit)
- Temps de conversion : Temps de stabilisation de la donnée en sortie
- Erreur de Quantification : Incertitude du à la conversion
- Pleine Echelle : Etendue de la grandeur Analogique d'entrée

• Il exite différents type de conversion

- Il exite différents type de conversion
- La conversion à rampe

- Il exite différents type de conversion
- La conversion à rampe
- La conversion à approximation successive

- Il exite différents type de conversion
- La conversion à rampe
- La conversion à approximation successive
- La conversion Flash

- Il exite différents type de conversion
- La conversion à rampe
- La conversion à approximation successive
- La conversion Flash
- La conversion Sigma-Delta

La conversion à rampe

La conversion à rampe

• Phase 1 : V_c , tension aux bornes de C mis à 0 ainsi que N

La conversion à rampe

- Phase 1 : V_c, tension aux bornes de C mis à 0 ainsi que N
- Phase 2 : Intégration aux bornes de C, $V_c = \frac{1}{C} \sum Idt = \frac{1}{C}t$ tant que $V_{in} > V_c$ le compteur est incrémenté

La conversion à rampe

- Phase 1 : V_c , tension aux bornes de C mis à 0 ainsi que N
- Phase 2 : Intégration aux bornes de C, $V_c = \frac{1}{C} \sum Idt = \frac{1}{C}t$ tant que $V_{in} > V_c$ le compteur est incrémenté
- V_{in} = V_c le comparateur passe de 1 à 0 et bloque le compteur sur la valeur N correspondant au nombre binaire recherché

La conversion à rampe numérique

Utilisation d'un CNA pour générer une rampe numérique.

 Détermination des valeurs de bits de N les unes après les autres en commençant par le bit de poids fort

- Détermination des valeurs de bits de N les unes après les autres en commençant par le bit de poids fort
- On fixe le bit de poids fort à 1 et les autres à 0. Conversion NA du registre et comparaison à V_{in}

- Détermination des valeurs de bits de N les unes après les autres en commençant par le bit de poids fort
- On fixe le bit de poids fort à 1 et les autres à 0. Conversion NA du registre et comparaison à V_{in}
- Si V_{in} est plus grand alors le bit reste à 1 sinon il passe à 0.

- Détermination des valeurs de bits de N les unes après les autres en commençant par le bit de poids fort
- On fixe le bit de poids fort à 1 et les autres à 0. Conversion NA du registre et comparaison à V_{in}
- Si V_{in} est plus grand alors le bit reste à 1 sinon il passe à 0.
- On garde la valeur du bit de poids fort et on passe au bit suivant

- Détermination des valeurs de bits de N les unes après les autres en commençant par le bit de poids fort
- On fixe le bit de poids fort à 1 et les autres à 0. Conversion NA du registre et comparaison à V_{in}
- Si V_{in} est plus grand alors le bit reste à 1 sinon il passe à 0.
- On garde la valeur du bit de poids fort et on passe au bit suivant
- On rérête le même traitement que précédemment pour ce bit et ainsi de suite jusqu'au bit de poids faible.

Exemple : Convertisseur 8 bits, V_{ref}=10 V

- Exemple : Convertisseur 8 bits, V_{ref}=10 V
- Tension à convertir 6,92 V

- Exemple : Convertisseur 8 bits, V_{ref}=10 V
- Tension à convertir 6,92 V
- $10000000 = 5V < 6,92 \rightarrow B_7 = 1$

- Exemple : Convertisseur 8 bits, V_{ref}=10 V
- Tension à convertir 6,92 V
- $10000000 = 5V < 6,92 \rightarrow B_7 = 1$
- $11000000 = 7,5V > 6,92 \rightarrow B_6 = 0$

- Exemple : Convertisseur 8 bits, V_{ref}=10 V
- Tension à convertir 6,92 V
- $10000000 = 5V < 6,92 \rightarrow B_7 = 1$
- $11000000 = 7,5V > 6,92 \rightarrow B_6 = 0$
- $10100000 = 6,25 V < 6,92 \rightarrow B_5 = 1$

- Exemple : Convertisseur 8 bits, V_{ref}=10 V
- Tension à convertir 6,92 V
- $10000000 = 5V < 6,92 \rightarrow B_7 = 1$
- $11000000 = 7,5V > 6,92 \rightarrow B_6 = 0$
- $10100000 = 6,25 V < 6,92 \rightarrow B_5 = 1$
- $10110000 = 6,675 V < 6,92 \rightarrow B_4 = 1$

- Exemple : Convertisseur 8 bits, V_{ref}=10 V
- Tension à convertir 6,92 V
- $10000000 = 5V < 6,92 \rightarrow B_7 = 1$
- $11000000 = 7,5V > 6,92 \rightarrow B_6 = 0$
- $10100000 = 6,25 V < 6,92 \rightarrow B_5 = 1$
- $10110000 = 6,675 V < 6,92 \rightarrow B_4 = 1$
- $10111000 = 7,1875V > 6,92 \rightarrow B_3 = 0$

- Exemple : Convertisseur 8 bits, V_{ref}=10 V
- Tension à convertir 6,92 V
- $10000000 = 5V < 6,92 \rightarrow B_7 = 1$
- $11000000 = 7,5V > 6,92 \rightarrow B_6 = 0$
- $10100000 = 6,25 V < 6,92 \rightarrow B_5 = 1$
- $10110000 = 6,675 V < 6,92 \rightarrow B_4 = 1$
- $10111000 = 7,1875V > 6,92 \rightarrow B_3 = 0$
- $10110100 = 7,03125 V > 6,92 \rightarrow B_2 = 0$

- Exemple : Convertisseur 8 bits, V_{ref}=10 V
- Tension à convertir 6,92 V
- $10000000 = 5V < 6,92 \rightarrow B_7 = 1$
- $11000000 = 7,5 V > 6,92 \rightarrow B_6 = 0$
- $10100000 = 6,25 V < 6,92 \rightarrow B_5 = 1$
- $10110000 = 6,675 V < 6,92 \rightarrow B_4 = 1$
- $10111000 = 7,1875V > 6,92 \rightarrow B_3 = 0$
- $10110100 = 7,03125V > 6,92 \rightarrow B_2 = 0$
- $10110010 = 6,95312V > 6,92 \rightarrow B_1 = 0$

- Exemple : Convertisseur 8 bits, V_{ref}=10 V
- Tension à convertir 6,92 V
- $10000000 = 5V < 6,92 \rightarrow B_7 = 1$
- $11000000 = 7,5V > 6,92 \rightarrow B_6 = 0$
- $10100000 = 6,25 V < 6,92 \rightarrow B_5 = 1$
- $10110000 = 6,675 V < 6,92 \rightarrow B_4 = 1$
- $10111000 = 7,1875V > 6,92 \rightarrow B_3 = 0$
- $10110100 = 7,03125V > 6,92 \rightarrow B_2 = 0$
- $10110010 = 6,95312V > 6,92 \rightarrow B_1 = 0$
- $10110001 = 6,91406 V < 6,92 \rightarrow B_0 = 1$

- Exemple : Convertisseur 8 bits, V_{ref}=10 V
- Tension à convertir 6,92 V
- $10000000 = 5V < 6,92 \rightarrow B_7 = 1$
- $11000000 = 7,5 V > 6,92 \rightarrow B_6 = 0$
- $10100000 = 6,25 V < 6,92 \rightarrow B_5 = 1$
- $10110000 = 6,675 V < 6,92 \rightarrow B_4 = 1$
- $\bullet 10111000 = 7,1875V > 6,92 \rightarrow B_3 = 0$
- $\bullet 10110100 = 7,03125 V > 6,92 \rightarrow B_2 = 0$
- $10110010 = 6,95312V > 6,92 \rightarrow B_1 = 0$
- $10110001 = 6,91406 V < 6,92 \rightarrow B_0 = 1$
- Valeur Numérique :10110001

• Flash = Parallèle

• Flash = Parallèle

- Flash = Parallèle
- ullet Principe : Comparer V_{in} à un ensemble de tensions prédéfinie

- Flash = Parallèle
- Principe : Comparer V_{in} à un ensemble de tensions prédéfinie
- Utiliser un codeur pour générer le nombre binaire

La conversion Flash : Exemple

La conversion Flash : Exemple

V _i n	C ₁	C_2	<i>C</i> ₃	C_4	<i>C</i> ₅	C_6	<i>C</i> ₇	S_2	S_1	S_0
< 1								0	0	0
>1, <2	0	1	1	1	1	1	1	0	0	1
>2, <3	0	0	1	1	1	1	1	0	1	0
>3, <4	0	0	0	1	1	1	1	0	1	1
>4, <5	0	0	0	0	1	1	1	1	0	0
>5, <6	0	0	0	0	0	1	1	1	0	1
>6, <7	0	0	0	0	0	0	1	1	1	0
>7	0	0	0	0	0	0	0	1	1	1

La conversion Sigma-Delta

La modulation Delta

La conversion Sigma-Delta

CAN: Comparaison

Туре	Vitesse	Consommation	Précision	Taille	Complexité	Bruit
Rampe	_	++	++	+++	+++	++
Appro- -ximation	+++	+++	+	-	+	+
Flash	+++			_		
Sigma-Delta	_	+	+++	+	_	+++

Thèse de Cédric Pastorelli - 15 décembre 2016

Plan

- Interface avec l'environnement continu : Conversion Analogique vers Numérique et Numérique vers Analogique
 - Conversion Analogique Numérique
 - Conversion Numérique Analogique

CNA: Types

Il existe différents type de Conversion Numérique Analogique

CNA: Types

- Il existe différents type de Conversion Numérique Analogique
- Résistances Poids Proportionnels

CNA: Types

- Il existe différents type de Conversion Numérique Analogique
- Résistances Poids Proportionnels
- Réseau R2R

CNA: Résistances Poids Proportionnels

$$V_{S} = -(a_{N-1} * (\frac{V_{Ref}}{2R}) + a_{N-2} * (\frac{V_{Ref}}{4R}) + a_{N-3} * (\frac{V_{Ref}}{8R}) + \ldots + a_{0} * (\frac{V_{Ref}}{2^{N}R})) * RA$$

CNA: Résistances Poids Proportionnels

$$V_{\mathcal{S}} = -\left(\left(\frac{V_{Ref}}{2R}\right) + \left(\frac{V_{Ref}}{8R}\right)\right) * RA$$

CNA: Résistances Poids Proportionnels

$$V_{\mathcal{S}} = -\left(\left(\frac{V_{Ref}}{4R}\right) + \left(\frac{V_{Ref}}{16R}\right)\right) * RA$$

Avec :
$$Req = R + (\frac{2R*2R}{2R+2R}) = 2R$$

$$V_S = -(a_{N-1} * \frac{i}{2} + a_{N-2} * \frac{i}{4} + a_{N-3} * \frac{i}{8} + \ldots + a_0 * \frac{i}{2^N}) * RA$$

CNA: Comparaison

Туре	Vitesse	Erreur	Résolution
Poids Pondérés	Elevée (µs)	Elevée	Faible
R2R	Elevée (µs)	Faible	Elevée