A la découverte du graph causal!

Exploration sur des cas d'usage concrets

Fabien Faivre Responsable R&D et innovation data

Julien Capitaine Data Scientist

Georges Oppenheim
Professor emeritus

Alessandro Leite
Advanced Research Position

Tiphanie Huang *Junior Consultant*

Audrey Poinsot
PhD student

Marianne Clausel
Professor

Myriam Tami Associate Professor in Al

Agenda de l'atelier

1h **Présentation**

Théorie & Méthode Eki

3h Mise en pratique Benchmark Fki method

Plan de la présentation

1

Récap - Atelier 1

Corrélation n'implique pas effet causal

2

Theorie

Causal discovery: les algos!

3

Méthode Eki

Une méthode hybride data & expertise

1 Récap - Atelier 1

Corrélation n'implique pas effet causal

Corrélation n'implique pas effet causal

"You are smarter than your data. Data do not understand causes and effects; humans do." Judea Pearl. The book of Why

Enjeux: Généralisation & compréhension des phénomènes

Un intérêt grandissant pour la causalité

Modèle CAUSAL

De nouvelles opportunités avec la causalité

Theory Causal Discovery: les algos!

Similar to machine learning

- Similar to machine learning
 - Given the data, infer the causal models

Similar to machine learning

- Given the data, infer the causal models
- Data quality, quantity, and learning criterion may be challenging

- Similar to machine learning
 - Given the data, infer the causal models
 - Data quality, quantity, and learning criterion may be challenging
- Difference: functional causal models

- Similar to machine learning
 - Given the data, infer the causal models
 - Data quality, quantity, and learning criterion may be challenging
- Difference: functional causal models
 - Assumptions

- Similar to machine learning
 - Given the data, infer the causal models
 - Data quality, quantity, and learning criterion may be challenging
- Difference: functional causal models
 - Assumptions
 - Causal sufficiency: no unobserved confounders

- Similar to machine learning
 - Given the data, infer the causal models
 - Data quality, quantity, and learning criterion may be challenging
- Difference: functional causal models
 - Assumptions
 - **★ Causal sufficiency**: no unobserved confounders
 - ★ Causal Markov: all d-separations in the causal graph *G* imply conditional independence in the observational distribution *P*

- Similar to machine learning
 - Given the data, infer the causal models
 - Data quality, quantity, and learning criterion may be challenging
- Difference: functional causal models
 - ► Assumptions
 - **★ Causal sufficiency**: no unobserved confounders
 - Causal Markov: all d-separations in the causal graph G imply conditional independence in the observational distribution P
 - ★ Causal faithfulness: all conditional independence in P imply d-separations in G

- Similar to machine learning
 - Given the data, infer the causal models
 - Data quality, quantity, and learning criterion may be challenging
- Difference: functional causal models
 - Assumptions
 - ★ Causal sufficiency: no unobserved confounders
 - Causal Markov: all d-separations in the causal graph G imply conditional independence in the observational distribution P
 - ★ Causal faithfulness: all conditional independence in P imply d-separations in G

Image credit Rosemary and Bauer, 2021

Challenges and principles

- In general, causal discovery from observational data is impossible.
- But, it is possible under additional assumptions.
- Several approaches in the literature
 - Constraint based methods: run local tests of independence to create constraints on space of possible graphs.
 - Score-based methods: use the fact that each DAG can be scored in relation to the data, by using a penalized likelihood score
 - Noise based methods: find footprints in the noise that imply causal asymmetry.
 - **•** ...

Assumptions and output format of causal discovery methods

	PC	FCI	GES	GIES	ММНС	LINGAM	backShift
Causal suffi- ciency	✓	X	✓	✓	✓	✓	Х
Causal faithful- ness	✓	✓	✓	✓	✓	X	X
Acyclicity	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	X
Non-Gaussian errors	X	×	X	X	X	✓	X
Unknown shift interventions	X	×	X	X	×	×	√
Known do- interventions	×	X	×	✓	×	X	×
Output	CPDAG	PAG	CPDAG	PDAG	DAG	DAG	DG

CPDAG – completed partially directed acyclic graph, DAG – directed acyclic graph, FCI – fast causal inference, GES – greedy equivalence search, GIES – greedy interventional equivalence search, LINGAM – linear non-Gaussian acyclic models, MMHC – max-min hill climbing, PAG – partial ancestral graph, PC – Peter-Clark, PDAG partially directed acyclic graph

Causal discovery: preparing the data I

- Handle missing data appropriately (e.g., by interpolating or excluding them) or choose causal discovery methods that are robust to them
- Ensure that variables are "semantically independent" (not mathematically interdefinable) and independently manipulable
 - remove redundant variables (e.g., HDL cholesterol, LDL cholesterol, and total cholesterol, where total = HDL + LDL)
 - ► The variables to remove depend on *domain knowledge*, as there is no universal rules for determining which one to remove
 - General guideline is to ensure that there is no collinearity in the data set (e.g., checking if the covariance matrix is invertible)
- Most causal search algorithms assume that variables are either continuous or categorical
 - Discretization should be done very carefully
 - Different discretizations can lead to various independence judgement and consequently different inferred causal structures

Causal discovery: preparing the data II

- Discretization can also make nonlinear causal dependencies difficult to detect
- Ideally, a discretization strategy should result in causally-appropriate bins preserving relevant causal relationships
- There may exist multiple proxy measurements for non-observable variables of interest
 - Ensure that proxy measurements are accurate estimates of a single non-observable causal factor
 - Otherwise, choose a search method that can discover proxy relationships
- Ensure the observations represent measurements of different individuals or of the same individual over time
 - ► Time series data require additional constraints for causal inference, and thus, demand different causal search algorithms
- Ensure correct background knowledge about the potential causal relations

 Focus on discovering the set of causal graphs that imply the conditional independencies found in the data by performing a sequence of hypothesis tests.

Main steps

- Find skelton
- Find v-structures
- Orient other edges using basic rules

a DAG and its corresponding skeleton

Fork, chains and v-structures

R1:

R2:

R3:

Basic rules

Algorithm 1 SGS

```
Input: P(V)
Output: CPDAG \mathcal{G}^*
```

output. CFDAG 9

- 1: Form the complete undirected graph \mathcal{G}^* on vertex set \mathcal{V}
- 2: **for** all X Y in \mathcal{G}^*

and subsets $S \subseteq V \setminus \{X, Y\}$ **do**

- B: if $\exists S \subseteq V \setminus \{X, Y\}$ such that $X \perp \!\!\!\perp_P Y \mid S$ then
- 4: Delete edge X Y from \mathcal{G}^*
- 5: end if
- 6: end for
- 7: **for** all X Z Y in \mathcal{G}^* such that $X \notin Adj(Y, \mathcal{G})$ **do**
- 8: **if** $\not\ni S \subseteq V \setminus \{X, Y\}$ such that $Z \in S$ and $X \perp \!\!\!\perp_P Y \mid S$ **then**
- 9: Orient $X \to Z \leftarrow Y$ in \mathcal{G}^*
- 10: **end if**
- 11: end for
- 12: Recursively apply rules R1-R3 until no more edges can be oriented
- 13: **Return** \mathcal{G}^*

Independence tests: some examples

Type of variable	Example of independence test
Discrete	χ^2 test
Gaussian	Test based on the precision matrix
Non Gaussian continuous	Non parametric tests Mutual Information (MI), RKHS

See notebook CI.ipynb for more details

The concept of *d* separation

Blocked paths

A path is said to be blocked by a set of vertices Z if:

- it contains a chain $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ and $B \in Z$, or
- it contains a collider $A \rightarrow B \leftarrow C$ such that no descendant of B is in Z

The concept of *d* separation

Definition

Two (sets of) nodes X and Y are d-separated by a set of nodes Z if all of the paths between (any node in) X and (any node in) Y are blocked by Z. We denote $X \perp\!\!\!\perp_G Y|Z$

Theorem

Two DAGs G_1 and G_2 have the same d-separations iff they have the same skeleton and the same v-structures.

The concept of *d* separation

For this DAG : $C \perp\!\!\!\perp_G G | \{X\}$ and $C \not\perp\!\!\!\perp_G G | \{X, H\}$

- PC algorithm : optimized version of SGS
- Infer causal structure with the PC algorithm?
 - Infer mutual dependencies between variables : skeleton of the causal graph
 - Distinguish between causes and effects: orientation of the v-structures of the causal graph

An example

Figure: The initial graph is complete

An example

Example of PC Algorithm: k=0

Unknown true graph

Graph after k=0

Figure: The initial graph is complete

There is no pair of variables d-separated given \emptyset , so the graph is

An example

Example of PC Algorithm k = 1 with (B, C)

Since *B* and *C* are d-separated given $\{A\}$ we remove the B-C edge and record $S_{BC} = \{A\}$.

An example

Example of PC Algorithm : k = 1 with (A, E)

Since A and E are d separated given $\{D\}$ we remove the A-E edge and record $S_{AF} = \{D\}$.

An example

Example of PC Algorithm : k = 1 with (B, E)

Since *B* and *E* are *d* separated given $\{D\}$ we remove the B-E edge and record $S_{BE} = \{D\}$.

An example

Example of PC Algorithm : k = 1 with (C, E)

Unknown true graph

Graph after k=1

Since C and E are d separated given $\{D\}$ we remove the C-E edge and record $S_{CE} = \{D\}$. This completes this stage

An example

Example of PC Algorithm : k = 2 with (A, D)

Unknown true graph

Graph after k=2

Since *A* and *D* are *d* separated given $\{B, C\}$ we remove the A - D edge and record $S_{AD} = \{B, C\}$. This completes this stage.

An example

Orienting unshielded colliders from separating sets

Unknown true graph

Graph after k=1

Since $D \notin S_{BC} = \{A\}$, we orient $B \to D \leftarrow C$. The other triples (B,A,C),(A,B,D),(A,C,D),(B,D,E) and (C,D,E) do not lead to further orientation; since the middle vertex is in each separating set

An example

Additional orientations to form CPDAG

Since (B, D, E) is not a collider, but $B \to D$ we can orient D - E as $D \to E$

Cause or consequence?

- Can we distinguish cause from effect?
- That is distinguish between these two causal graphs

$$X \rightarrow Y$$

or

$$Y \rightarrow X$$

using observational data.

Not always possible!

Cause or consequence?

The example of linear structural equation [f linear]

X cause *Y* if there exists $a \in \mathbb{R}$, ε^Y s.t.

$$Y = aX + \varepsilon^{Y}, X \perp \!\!\! \perp \varepsilon^{Y}.$$

Distinguish cause from consequence? [Shimizu et al., 2006]

Assume that $Y = aX + \epsilon^Y, X \perp \!\!\! \perp \epsilon^Y$ where all r.v. are continuous. Then

$$\exists b \in \mathbb{R}, \varepsilon^X \text{ s.t. } X = bY + \varepsilon^X, Y \perp \!\!\!\perp \varepsilon^X$$

iff (X, ε^X) are Gaussian random variables.

Existence of a non-linear extension of this result.

Theorem (LINGAM)

Assume a linear SCM with graph G = (V, E) and a compatible distribution P(V) such that or all $Y \in V$

$$Y = \sum_{X \in Pa(Y)} a_{xy} X + \xi_Y$$

where all ξ_Y are jointly independent and non-Gaussian distributed. Additionally, we require that for all $Y \in V$, $X \in Pa(Y)$, $a_{xy} \neq 0$. Then, the graph G is identifiable from P(V).

LINGAM

Algorithm 1 LiNGAM

```
Input: P(V)
Output: G
  1: Form an empty graph \mathcal{G} on vertex set \mathcal{V} = \{X_1, \dots, X_p\}
  2: Let S = \{1, \dots, p\} and T = []
  3: repeat
          H = []
         for i \in S do
             for j \in S \setminus \{i\} do
                 \hat{\xi}_{ij} = X_j - \frac{cov(X_i, X_j)}{var(X_i)} X_i
  7.
             end for
  8.
             h = \sum_{j \in S \setminus \{i\}} \hat{I}(X_i, \hat{\xi}_{ij})
H = [H, h]
10:
         end for
11:
          i^* = arg \min_{i \in S} H
       S = S \setminus \{i^*\}
13:
         \mathcal{T} = [\mathcal{T}, i^*]
14:
15:
       \forall j \in S, X_i = \hat{\xi}_{i*i}
16: until |S| = 0
17: Append(\mathcal{T}, S_0)
```

18: Construct a strictly lower triangular matrix by following the order in \mathcal{T} , and estimate the connection strengths $a_{i,j}$ by using some conventional covariance-based regression.

```
19: if a_{i,j} > 0 then
20: Add X_i \to X_j to \mathcal{G}
21: end if
22: Return \mathcal{G}
```

An example

17:

Algorithm 1 The PC_{pop}-algorithm

1: **INPUT:** Vertex Set V, Conditional Independence Information

```
2: OUTPUT: Estimated skeleton C, separation sets S (only needed when directing the skeleton
    afterwards)
 3: Form the complete undirected graph \tilde{C} on the vertex set V.
 4: \ell = -1; C = \tilde{C}
 5: repeat
 6:
       \ell = \ell + 1
 7:
       repeat
          Select a (new) ordered pair of nodes i, i that are adjacent in C such that |ad i(C,i) \setminus \{i\}| > \ell
 8:
          repeat
 9.
             Choose (new) \mathbf{k} \subseteq ad j(C, i) \setminus \{j\} with |\mathbf{k}| = \ell.
10:
             if i and j are conditionally independent given k then
11:
12.
                Delete edge i, i
                Denote this new graph by C
13.
                Save k in S(i, j) and S(j, i)
14:
             end if
15:
16:
          until edge i, j is deleted or all \mathbf{k} \subseteq adj(C, i) \setminus \{j\} with |\mathbf{k}| = \ell have been chosen
```

until all ordered pairs of adjacent variables *i* and *j* such that $|adj(C,i) \setminus \{j\}| > \ell$ and $k \subseteq I$

 $ad j(C,i) \setminus \{j\}$ with $|\mathbf{k}| = \ell$ have been tested for conditional independence

18: **until** for each ordered pair of adjacent nodes $i, i: |ad i(C, i) \setminus \{i\}| < \ell$.

An example

Algorithm 2 Extending the skeleton to a CPDAG

```
INPUT: Skeleton G_{skel}, separation sets S
```

OUTPUT: CPDAG G

for all pairs of nonadjacent variables i, j with common neighbour k **do**

if $k \notin S(i, j)$ then Replace i - k - j in G_{skel} by $i \rightarrow k \leftarrow j$

end if

end for

In the resulting PDAG, try to orient as many undirected edges as possible by repeated application of the following three rules:

R1 Orient j - k into $j \to k$ whenever there is an arrow $i \to j$ such that i and k are nonadjacent.

R2 Orient i - j into $i \rightarrow j$ whenever there is a chain $i \rightarrow k \rightarrow j$.

R3 Orient i - j into $i \to j$ whenever there are two chains $i - k \to j$ and $i - l \to j$ such that k and l are nonadjacent.

R4 Orient i-j into $i \to j$ whenever there are two chains $i-k \to l$ and $k \to l \to j$ such that k and l are nonadjacent.

Theorem (ANM)

Assume that an SCM with graph G = (V, E) is given and a compatible distribution P(V) such that for all $Y \in V$

$$Y = f((X \in Pa(Y)) + \xi_Y$$

where all ξ_Y are jointly independent.

Then, the graph G is identifiable from P(V).

ANM

```
Algorithm 2 ANM
Input: P(\mathcal{V})
Output: 9
  1: Form an empty graph \mathcal{G} on vertex set \mathcal{V} = \{X_1, \dots, X_n\}
 2: Let S = \{1, \dots, p\} and T = []
  3: repeat
           H = []
  4.
  5:
           for j \in S do
               \hat{f}_{i}: Regress X^{j} on \{X_{i}\}_{i \in S \setminus \{i\}}
  6.
               \hat{\xi}_{i,i} = X_i - \hat{t}_{i,i}(X_i)
  7:
               h = \mathcal{I}(\{X_i\}_{i \in S \setminus \{i\}}, \mathcal{E}_{i})
               H = [H, h]
           end for
10.
       i^* = arg \min_{i \in S} H
11:
           S = S \setminus \{i^*\}
12.
13:
          \mathcal{T} = [i^*, \mathcal{T}]
14: until |S| = 0
15: for j \in \{2, \dots, p\} do
           for i \in \{\mathcal{T}_1, \dots, \mathcal{T}_{i-1}\} do
16:
               \hat{f}_i: Regress X^j on \{X_k\}_{k\in\{\mathcal{T}_1,\cdots,\mathcal{T}_{j-1}\}\setminus\{i\}}
17:
               \hat{\mathcal{E}}_{i,i} = X_i - \hat{f}_{i,i}(X_i)
18:
               if \{X_k\}_{k\in\{\mathcal{T}_1,\dots,\mathcal{T}_{j-1}\}\setminus\{i\}}\not\perp_P \xi_{.j} then Add X_i\to X_j to \mathcal{G}
19:
20:
21.
               end if
           end for
22:
23: end for
24. Return G
```

3 Méthode Eki

Une méthode hybride - data & expertise

Notre constat: Les données et les humains sont "biaisés"

Fully data-based Causal Discovery

- Measurement error
- Unobserved variables
- Observational bias
- Small data regimes
- ... and many more

Fully expert-based Causal Discovery

- Wrong knowledge
- non-instantaneous reasoning
- Human biases
- ... and many more

Hybrid method

Hoping for:

- humans to give hints on potential data biases
- data to reveal human biases.

Notre but: Faire coïncider les indépendances cond.

Data

- · Indep. 2 à 2
 - XXY

- Indep. Cond.
 - XΨY/W

Graph

- Existence d'un chemin →
 - X vers Y ou
 - Y vers X ou
 - X et Y ont un parent en commun
- D-separation
 - X et Y sont d-séparés par W

Notre méthode

Inputs: Data + expertise/apriori about the input variables causal relation

Output: (A non-unique) Causal Graph in line with the data

A vous de jouer!

Le but: Faire échouer notre méthode / identifier ses limites

A dispo:

- Code méthode hybride Eki
- Code pour générer des SCMs
- Un dataset "marketing"
- D'autres méthodes de Causal Discovery

Possibles axes d'exploration:

- Faible régime de données, grande dimension, niveaux de bruit, ...
- Connaissance experte erronée
- Benchmark face à d'autres méthodes de causal discovery
- -

Annexes

