Foundations of Data Analysis

Lecture 1: Introduction

Pierre-Simon Laplace (1749–1827)

Births in Paris 1745 - 1770

Births in Paris 1745 - 1770

251,527 Boys

Births in Paris 1745 - 1770

251,527 Boys

Are males born at a higher rate than females?

251,527 Boys

251,527 Boys

251,527 Boys

241,945 Girls

• **Difference:** +9,582 Boys

251,527 Boys

- **Difference:** +9,582 Boys
- **Ratio:** 104 Boys to 100 Girls

251,527 Boys

- **Difference:** +9,582 Boys
- **Ratio:** 104 Boys to 100 Girls
- **Proportion:** 50.97% Boys

Some possible visualizations

251,527 Boys

How did Laplace solve this?

How did Laplace solve this?

Conditional Probability that:

rate of boys, θ , is greater than girls,

given

observed data

Answer?

Answer?

$$P(\theta > 0.5 \mid \mathrm{data}) = 1 - \epsilon,$$

where $\epsilon pprox 1 imes 10^{-42}$.

What is probability?

What is probability?

Definition: *Probability* is the study of the mathematical rules that govern random events.

But what is randomness?

But what is randomness?

Informally, a random event is an event where we do not know the outcome without observing it.

But what is randomness?

Informally, a random event is an event where we do not know the outcome without observing it.

Probability tells us what we can say about such events, given our assumptions about the possible outcomes.

What is statistics?

What is statistics?

Definition: *Statistics* is the application of probability to the collection, analysis, and description of random data.

• **Design** experiments

- **Design** experiments
- Summarize data

- **Design** experiments
- Summarize data
- Make conclusions about the world

- Design experiments
- Summarize data
- Make conclusions about the world
- Explore complex data

What is machine learning?

What is machine learning?

Definition: *Machine Learning* builds statistical models of data in order to recognize complex patterns and to make decisions based on these observations.

Machine Learning is Everywhere?

Chess player

Assisted driving

Recommendation system

Cancer diagnosis

Machine Learning

Statistics

Probability

Linear Algebra

0: What is data?

0: What is data?

1: I know how to run data analysis software

0: What is data?

1: I know how to run data analysis software

2: I understand the math behind the analysis

0: What is data?

1: I know how to run data analysis software

2: I understand the math behind the analysis

3: I'm able to invent new data analysis methods

Why should you know the mathematical foundations?

When machine learning goes wrong

When machine learning goes wrong

Panda (57.7% confidence)

When machine learning goes wrong

Panda (57.7% confidence)

Gibbon (99.3% confidence)