КРИВЫЕ

Это краткий конспект к курсу $\Gamma K\Pi^1$, в процессе создания. Вопросы по конспекту пишите $A.\Pi$ ерепечко².

1.. Гладкие кривые. (Параметризованная) кривая - это дифференцируемое отображение γ из \mathbb{R}^1 (или его открытого подмножества) в \mathbb{R}^n . Его производная называется вектором скорости γ' .

Также кривые можно задавать *неявно*, без параметризации - уравнением или системой уравнений на координаты.

Кривая называется гладкой или регулярной, если вектор скорости нигде не обращается в ноль. Единичный касательный вектор (сонаправленный с вектором скорости) обозначается через $T = \gamma'/|\gamma'|$.

Замена параметра - отображение $\mathbb{R} \to \mathbb{R}$, новая параметризация получается композицией с γ . Параметризация называется *натуральной*, если $|\gamma'|=1$ всюду; она обозначается через $\gamma(s)$, а производные - точками $\dot{\gamma}$.

Длина кривой вычисляется по формуле $\int_a^b |\gamma'(t)| dt$.

Какие формулы получаются для

- 1. плоской кривой?
- 2. пространственной кривой?
- 3. кривой-графика y = f(x)?
- 4. натуральной параметризации?
- 1...1. *Репер Френе*. Каждому аргументу $t \in \mathbb{R}$ сопоставляется положительно ориентированный ортонормированный репер в точке $\gamma(t)$, в некотором смысле согласованный с производными. Состоит из T, *нормали* N и (в трёхмерном случае) *бинормали* B.
 - 1. Для плоских кривых репер T, N однозначно восстанавливается по T, и нормаль N в натуральной параметризации паралельна $\ddot{\gamma}$ (но может быть противонаправлена).
 - 2. Для пространственных кривых нормаль определяется через $N=\ddot{\gamma}/||\ddot{\gamma}||$ и по возможности гладко достраивается в точках с $\ddot{\gamma}=0$. Иначе говоря, T,N ортонормированный базис плоскости $\langle \gamma',\gamma''\rangle$, имеющий ту же ориентацию, что и γ',γ'' . Эта плоскость называется соприкасающейся.
 - 3. Бинормаль B однозначно восстанавливается по T, N.

 $\mathit{Кривизнa}\ \kappa$ определяется из $\ddot{\gamma} = \kappa N$. Для пространственных кривых она неотрицательна. Неформально: кривизна показывает, насколько быстро кривая отклоняется от касательной.

Paduyc кривизны $R=1/|\kappa|$. Соприкасающаяся окружность имеет радиус R, касается кривой и лежит в соприкасающейся плоскости по правильную сторону от кривой. Это единственная окружность, имеющая касание второго порядка.

 $\mathit{Kpyuehue}\ au$ пространственной кривой определяется в натуральной параметризации как

$$\tau = \frac{(\dot{\gamma}, \ddot{\gamma}, \dddot{\gamma})}{\kappa^2},$$

где в числителе смешанное произведение, то есть ориентированный объём натянутого на вектора параллелепипеда. Неформально: кручение показывает, насколько быстро кривая отклоняется от соприкасающейся плоскости.

- 1..2. полезные формулы.
- 1..3. интересные факты (теоремы). Плоская (соотв. пространственная) кривая однозначно, с точностью до движения, определяется функцией кривизны (соотв. кривизны и кручения).

Полная кривизна (интеграл кривизны по прямой) принимает дискретный набор значений для замкнутых плоских кривых. Какой?

1

^{1&}lt;https://nvbogachev.netlify.app/teaching/gcs20f/>

^{2&}lt;mailto:a@perep.ru>

2.. Дискретные кривые. Дискретная кривая - это ломаная, то есть набор последовательно соединённых точек пространства.

Способы задать κ ривизну в i-й вершине плоской дискретной прямой $\gamma_1, \gamma_2 \ldots$

- 1. Угол поворота от $\overline{\gamma_{i-1}\gamma_i}$ к $\overline{\gamma_i\gamma_{i+1}}$.
- 2. Через соприкасающуюся окружность, описанную вокруг $\gamma_{i-1}\gamma_i\gamma_{i+1}$.
- 3. Изменение длины при шевелении вершины. Строго модуль градиента длины от координат γ_i .
- 4. По формуле Штейнера (три варианта): параллельный перенос рёбер + три варианта соединительной шапочки (продолжение рёбер, соединение отрезком, соединение дугой).