PhoglyStruct: Prediction of phosphoglycerylated lysine residues using structural properties of amino acids

Abel Chandra^{5, *,†}, Alok Sharma^{1,2,3,5,9 *,†}, Abdollah Dehzangi⁴, Shoba Ranganathan⁶, Anjeela Jokhan⁷, Kuo-Chen Chou^{8,&}, Tatsuhiko Tsunoda^{2,3,9,&}

[†]Correspondence: abelavit@gmail.com; alok.sharma@griffith.edu.au

Supplement 2: Comparison of PhoglyStruct with simpler set of features

The table below shows the comparison of PhoglyStruct with simpler set of features for the same 10-fold cross-validation set. Simpler_Features are features for each lysine taking into account the occurrence of amino acids in the ±2 residue window. The matrix representing each lysine is of the size 20x5 where 20 is the different types of amino acid in the genome and 5 is the 2 upstream, the lysine and 2 downstream amino acid. Out of the 20 amino acids, a value of 1 is given to the amino acid present at that position otherwise the rest are given a value of 0. Therefore, the feature representing each lysine is a 100-dimensional vector. As it can be seen, PhoglyStruct, which uses the structural properties of amino acids, outperforms this simpler set of features.

Method	Sensitivity	Specificity	G-Mean	Accuracy	MCC	F-Measure	AUC
Simpler_Features	0.6470	0.7490	0.6887	0.7233	0.3612	0.5326	0.6982
PhoglyStruct	0.8726	0.7331	0.7976	0.7678	0.5343	0.6513	0.8034

^{*}Equal Contributors

[&]amp;Last Authors

¹Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, QLD-4111, Australia.

²Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan

³Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan

⁴Department of Computer Science, Morgan State University, Baltimore, Maryland, USA

⁵School of Engineering and Physics, Faculty of Science, Technology and Environment, University of the South Pacific, Suva, Fiji Islands

⁶Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia

⁷Faculty of Science, Technology and Environment, University of the South Pacific, Suva, Fiji Islands

⁸The Gordon Life Science Institute, Boston, MA 02478, USA

⁹CREST, JST, Tokyo 113-8510, Japan