Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

Wydział Fizyki i Informatyki Stosowanej

KATEDRA INFORATYKI STOSOWANEJ I FIZYKI KOMPUTEROWEJ

PRACA INŻYNIERSKA

ERNEST JĘCZMIONEK

SYMULACJE EWOLUCJI KOALICJI MIESZANYCH

PROMOTOR:

prof. dr hab. Krzysztof Kułakowski

OŚWIADCZENIE AUTORA PRACY
OŚWIADCZAM, ŚWIADOMY ODPOWIEDZIALNOŚCI KARNEJ ZA POŚWIADCZENIE NIEPRAWDY, ŻE NINIEJSZĄ PRACĘ DYPLOMOWĄ WYKONAŁEM OSOBIŚCIE I SAMODZIELNIE, I NIE KORZYSTAŁEM ZE ŹRÓDEŁ INNYCH NIŻ WYMIENIONE W PRACY.
PODPIS

AGH University of Science and Technology in Krakow

Faculty of Physics and Applied Computer Science

Department of Applied Informatics and Computational Physics

BACHELOR OF SCIENCE THESIS

ERNEST JĘCZMIONEK

SIMULATIONS OF EVOLUTION OF MIXED COALITIONS

SUPERVISOR:

Professor Krzysztof Kułakowski

Serdecznie dziękuję ... tu ciąg dalszych podziękowań np. dla promotora, żony, sąsiada itp.

Spis treści

1.	Wprowadzenie 6				
2.	Opis teoretyczny				
	2.1.	Gra	7		
	2.2.	Model gry	7		
	2.3.	Równania standardowe	8		
	2.4.	Równania replikatorów	9		
	2.5.	Ograniczenie prawdopodobieństwa	9		
	2.6.	Rozwiązanie stacjonarne równań standardowych	11		
	2.7.	Stabilność równań replikatorów	12		
3.	Impl	ementacja symulacji	14		
	3.1.	Środowisko QT	14		
	3.2.	GLWidget	14		
	3.3.	Schemat programu	14		
	3.4.	Rysowanie 3D	14		
	3.5.	Makefile	14		
4.	Wyni	iki	16		
	4.1.	Gry 3-osobowe	16		
	4.2.	Gry N-osobowe	18		
5.	Podsi	umowanie	2.1		

1. Wprowadzenie

Teoria gier wielu osobom kojarzy się z opisem gier towarzyskich między dwojgiem graczy, lecz takie rozgrywki to rzadkość w naszym zróżnicowanym świecie, gdzie zwykle w grę ekonomiczną, społeczną czy polityczną angażuje się wielu uczestników. W niniejszej pracy zostaną umówione gry wieloosobowe o niepełnej informacji. W tym typie gier ważnym elementem strategii jest odpowiedni wybór koalicjantów. Oczywiście nie jest możliwe aby uwzględnić wszystkie czynniki mogące mieć wpływ na grę, ale zostaną przeanalizowane dwa równania ewolucyjne, które mogłyby sterować graczami oraz przeprowadzona będzie analiza ich stabilności. Modelami gry użytymi w niniejszej pracy będzie gra 3-osobowa oraz gra wieloosobowa, w której gracze będą ustawieni w okręgu. Symulację partii w przypadku gier 3-osobowych będą obrazowane jako trójwymiarowe funkcje prawdopodobieństwa, natomiast dla gier wieloosobowych jako funkcje prawdopodobieństwa od czasu dla poszczególnych graczy.

!!!TEST CYTATÓW!!! [Now06] [HS98] [P.01] [Qt] [Tut] [Sza] [Fsm]

2. Opis teoretyczny

2.1. Gra

Niniejsza praca skupia się na grach wieloosobowych, których szczególnym przypadkiem jest gra 3-osobowa. Model gry 3-osobowej pokazuje, że decyzję jednego z zawodników mają bezpośredni wpływ na zachowanie sąsiadów. W modelu gry N-osobowej decyzje graczy będą wpływać nie tylko na najbliższych sąsiadów, ale pośrednio także na decyzje innych graczy. Omawiane tutaj gry są grami o niepełnej informacji, w tej pracy oznacza to grę, w której nie wszyscy uczestnicy znają prawdopodobieństwo wyborów przeciwników. Prawdopodobieństwo gry przeciwników będzie szacowane na podstawie obserwacji historii ich zagrań. Opisywane gry będą także grami ewolucyjnymi, czyli mającymi możliwość przewidywania i uczenia się na podstawie zachowań graczy.

2.2. Model gry

Jak wcześniej wspomniano będą potrzebne dwa modele gier. Pierwszym z nich będzie model gry 3-osobowej 2.1a. Graczy nazwiemy odpowiednio G_0 , G_1 , G_2 (gracz zerowy, pierwszy, drugi). Każdy z nich posiada prawdopodobieństwo zagrania, w celu nawiązania koalicji z graczem o wyższym indeksie. To prawdopodobieństwo oznaczone jest jako p_i (i jest indeksem gracza), przy czym dla G_2 gracz o wyższym indeksie to G_0 . Prawdopodobieństwo zagrania, w celu nawiązanie koalicji z graczem o niższym indeksie to $1-p_i$, co nie będzie przechowywane, ponieważ w łatwy sposób można to wyliczyć. Analogicznie dla G_0 gracz o niższym indeksie to G_2 . Ponieważ omawiana jest gra o niepełnej informacji żaden z zawodników nie ma dostępu do prawdopodobieństw innych graczy, lecz każdy ma dostęp do statystyki gry na którą składa się:

- liczba_{partii} liczba rozegranych w grze partii
- $nast_i$ ilość zagrań G_i w celu zawiązania sojuszu z G_{i+1} , ilość zagrań G_i aby nawiązać sojusz z G_{i-1} wyraża się jako $liczba_{partii} nast_i$

Model gry N-osobowe 2.1b będzie dysponował takimi samymi danymi jak model gry 3-osobowej. Różnicą między nimi będzie ustawienie graczy w okręgu, co będzie prowadziło do konsekwencji nieograniczających się do najbliższych sąsiadów. UKŁAD

2.3. Równania standardowe 8

Rysunek 2.1: Modele gry

2.3. Równania standardowe

W tym typie równań celem będzie maksymalizacja zysku(zyskiem jest prawdopodobieństwo) w czasie. Wyprowadzenie będzie przeprowadzone dla G_0 , przy założeniu gry o pełnej informacji. Pozostałe dwa równania można wyprowadzić analogicznie. Niech $x=p_0$, $y=p_1$, $z=p_2$. Wypłata dana jest przez:

$$W = \underbrace{x(1-y)}_{\text{wypłata sojuszu } G_0 \text{ z } G_2} + \underbrace{(1-x)z}_{\text{wypłata sojuszu } G_0 \text{ z } G_2}$$

$$(2.1)$$

Aby znaleźć dynamikę należy zróżniczkować wypłatę po δx .

$$\frac{\delta W}{\delta x} = 1 - x - y = W_x$$

Iloraz różnicowy na zmianę wypłaty od czasu daje:

$$z(t) = \frac{W_x(t+dt) - W_x(t)}{\Delta t}$$

$$z(t)\Delta t = W_x(t+dt) - W_x(t) = \Delta p_0$$

$$\Delta p_0 = \Delta t (1-y-z)$$
(2.2)

W dalszej części będzie stosowane oznaczenie $\alpha=\Delta t$. Równanie wygląda obiecująco, gdyż człon 1-y jest prawdopodobieństwem zagrania G_1 aby zawiązać sojusz z G_0 . Podobnie -z prowadzi do sojuszu G_2 z G_0 , minus przy z powoduje ubytek dla x, ponieważ prawdopodobieństwo zagrania G_0 w celu zawarcia sojuszu z G_2 jest dane przez 1-x.

W przypadku gry o niepełnej informacji należy zmodyfikować równanie 2.2. Opis użytych parametrów można znaleźć w podrozdziale 2.2.

$$\Delta p_i = \alpha \cdot \left(1 - \frac{nast_{i+1}}{liczba_{partii}} - \frac{nast_{i-1}}{liczba_{partii}}\right)$$
 (2.3)

2.4. Równania replikatorów

Model dynamiki replikatorów jest najbardziej znanym różniczkowym modelem teorii gier ewolucyjnych, przez co może stanowić dobry wybór do sterowania zachowaniem graczy. Tak jak poprzednio przyjmijmy prawdopodobieństwa $x=p_0$, $y=p_0$ oraz $z=p_0$ pamiętając, że prawdopodobieństwa przeciwników w symulacji są szacowane. Podstawowy wzór równania replikatorów wygląda następująco:

$$\dot{x} = x \cdot (W_x - \overline{W}) \tag{2.4}$$

Gdzie W_x jest średnią wypłatą dla strategii x (prawdopodobieństw strategii x), natomiast \overline{W} jest średnią wypłatą co daje:

$$\dot{x} = x \cdot (\overbrace{(1-y)}^{W_x} - \overbrace{(x(1-y) + (1-x)z)}^{\overline{W}})$$

$$\downarrow \qquad \qquad \qquad \dot{x} = x \cdot (1-x) \cdot (1-y-z)$$

Iloraz różnicowy zmiany wypłaty od czasu ponownie wyznaczy Δp_0 :

$$z(t) = \frac{\dot{x}(t + \Delta t) - \dot{x}(t)}{\Delta t}$$
$$z(t)\Delta t = \dot{x}(t + \Delta t) - \dot{x}(t) = \Delta p_0$$

W dalszej części tej pracy $\alpha = \Delta t$. Co dla gry 3-osobowej generuje równania:

$$\Delta p_{0} = \alpha p_{0} \cdot (1 - p_{0}) \cdot \left(1 - \frac{n_{1}}{liczba_{partii}} - \frac{n_{2}}{liczba_{partii}}\right)$$

$$\Delta p_{1} = \alpha p_{1} \cdot (1 - p_{1}) \cdot \left(1 - \frac{n_{2}}{liczba_{partii}} - \frac{n_{0}}{liczba_{partii}}\right)$$

$$\Delta p_{2} = \alpha p_{2} \cdot (1 - p_{2}) \cdot \left(1 - \frac{n_{0}}{liczba_{partii}} - \frac{n_{1}}{liczba_{partii}}\right)$$

$$(2.5)$$

2.5. Ograniczenie prawdopodobieństwa

Wszystkie zmiany prawdopodobieństwa muszą zostać poddane funkcji ograniczającej.

$$p_i = oqr(p_i + \Delta p_i) \tag{2.6}$$

W przeciwnym razie równania z poprzednich podrozdziałów mogą wyjść poza przedział <0,1>. Każde nowo obliczone prawdopodobieństwo podawane jest jako parametr do funkcji ogr, a dopiero jej

rezultat jest przypisywany poszczególnym prawdopodobieństwom graczy. Funkcja dbająca o pozostanie prawdopodobieństwa w dziedzinie wygląda następująco:

$$ogr(p_i) = \begin{cases} 1 & \text{jeżeli } p_i > 1 \\ p_i & \text{jeżeli } 1 \ge p_i \ge 0 \\ 0 & \text{jeżeli } p_i < 0 \end{cases}$$

Wyjaśnienia wymaga wartość α , która została przyjęta jako 0.1. Jest to wartość przyjęta autorytarnie aby spowolnić rozgrywkę oraz umożliwić łatwiejszą zmianę koalicji. Najpierw przeanalizowane zostaną równania standardowe dla gry 3-osobowej o prawdopodobieństwie początkowym $\frac{1}{2}$ i $\alpha=1$. Gdzie N oznacza zagranie G_i mające na celu zawiązanie sojuszu z G_{i+1} , a P ilość zagranie G_i mające na celu zawiązanie sojuszu z G_{i-1} . UKŁAD

$$G_0 = N, G_1 = P, G_2 = N$$

$$G_0 = N, G_1 = P, G_2 = P$$

$$\begin{cases}
\Delta p_0 = (1 - 0 - 1) = 0 & p_0 = \frac{1}{2} \\
\Delta p_1 = (1 - 1 - 1) = -1 & p_1 = 0 \\
\Delta p_2 = (1 - 1 - 0) = 0 & p_2 = \frac{1}{2}
\end{cases}$$

$$\begin{cases}
\Delta p_0 = (1 - 0 - \frac{1}{2}) = 0 & p_0 = \frac{3}{4} \\
\Delta p_1 = (1 - \frac{1}{2} - 1) = -\frac{1}{2} & p_1 = 0 \\
\Delta p_2 = (1 - 0 - \frac{1}{2}) = \frac{1}{2} & p_2 = \frac{3}{4}
\end{cases}$$

Schemat przedstawia dwie osobne tury: po lewej pierwszą, a po prawej drugą. Parametr $\alpha=1$ powoduje szybkie zawiązanie mocnych koalicji, których przerwanie staje się mało prawdopodobne, co może praktycznie uniemożliwiać jakiekolwiek zmiany sojuszy.

Wartym rozważenia jest czy w równaniach replikatorów potrzebna będzie $\alpha < 1$, skoro posiadają one człon postaci x(1-x) gasnący na krańcach przedziału prawdopodobieństwa. Założenia zostały oparte na poprzednim przykładzie.

$$G_0 = N, G_1 = P, G_2 = N$$

$$\begin{cases}
\Delta p_0 = \frac{1}{2} \cdot (1 - \frac{1}{2}) \cdot (1 - 0 - 1) = 0 & p_0 = \frac{1}{2} \\
\Delta p_1 = \frac{1}{2} \cdot (1 - \frac{1}{2}) \cdot (1 - 1 - 1) = 0 & p_1 = \frac{1}{4} \\
\Delta p_2 = \frac{1}{2} \cdot (1 - \frac{1}{2}) \cdot (1 - 0 - 1) = 0 & p_2 = \frac{1}{2}
\end{cases}$$

$$G_0 = N, G_1 = P, G_2 = P$$

$$\begin{cases}
\Delta p_0 = \frac{1}{2} \cdot (1 - \frac{1}{2}) \cdot (1 - 0 - \frac{1}{2}) = \frac{1}{8} & p_0 = \frac{5}{8} \\
\Delta p_1 = \frac{1}{4} \cdot (1 - \frac{1}{4}) \cdot (1 - \frac{1}{2} - 1) = -\frac{1}{32} & p_1 = \frac{7}{32} \\
\Delta p_2 = \frac{1}{2} \cdot (1 - \frac{1}{2}) \cdot (1 - 0 - \frac{1}{2}) = \frac{1}{8} & p_2 = \frac{5}{8}
\end{cases}$$

Jak widać najszybsza zmiana zachodzi dla pierwszego gracza, który traci 25% z prawdopodobieństwa sojuszu z graczem o wyższym indeksie. W kolejnej partii nie widzimy już tak dużych zmian. Należy odpowiedzieć na pytanie czy jest to na tyle dużo, aby zastosować α taką jak w równaniach standardowych. Powinno się poruszyć dwie kwestie. Dynamika prawdopodobieństwa jest akceptowalna(wynosi do 10%), ale tylko dla prawdopodobieństw które oddalają się od środka przedziału, a grę rozpoczynamy właśnie w nim. Drugą sprawą jest porównanie obu równań. Porównanie wyników, o różnym kroku czasowym nie jest najłatwiejszą rzeczą do opisania. Celem członu x(1-x) w równaniu replikatorów jest rozwiązanie problemu supersilnych, szybko tworzących się koalicji.

Omówiony teraz zostanie szczególny przypadek, gdy w dwóch osobnych grach żaden z graczy nie współpracował. Użyte będą równania standardowe, prawdopodobieństwo początkowe $\frac{1}{2}$ oraz $\alpha=1$.

$$G_0 = N, G_1 = N, G_2 = N$$

$$G_0 = P, G_1 = P, G_2 = P$$

$$\Delta p_0 = (1 - 1 - 1) = -1 \quad p_0 = 0$$

$$\Delta p_1 = (1 - 1 - 1) = -1 \quad p_1 = 0$$

$$\Delta p_2 = (1 - 1 - 1) = -1 \quad p_2 = 0$$

$$G_0 = P, G_1 = P, G_2 = P$$

$$\Delta p_0 = (1 - 0 - 0) = 1 \quad p_0 = 1$$

$$\Delta p_1 = (1 - 0 - 0) = 1 \quad p_1 = 1$$

$$\Delta p_2 = (1 - 0 - 0) = 1 \quad p_2 = 1$$

Przypadek ten pokazuje skutki braku ograniczenia kroku czasowego. Następny ruch jest z góry znany, każdy z graczy wykona ruch przeciwny do poprzedniego co daje w obu grach:

$$\begin{cases} \Delta p_0 = (1 - \frac{1}{2} - \frac{1}{2}) = 0\\ \Delta p_1 = (1 - \frac{1}{2} - \frac{1}{2}) = 0\\ \Delta p_2 = (1 - \frac{1}{2} - \frac{1}{2}) = 0 \end{cases}$$

Brak zmian prawdopodobieństw, gracze dokonują wyboru jak poprzednio.

$$G_0 = P, G_1 = P, G_2 = P$$

$$G_0 = N, G_1 = N, G_2 = N$$

$$\begin{cases}
\Delta p_0 = (1 - \frac{1}{3} - \frac{1}{3}) = \frac{1}{3} & p_0 = \frac{1}{3} \\
\Delta p_1 = (1 - \frac{1}{3} - \frac{1}{3}) = \frac{1}{3} & p_1 = \frac{1}{3} \\
\Delta p_2 = (1 - \frac{1}{3} - \frac{1}{3}) = \frac{1}{3} & p_2 = \frac{1}{3}
\end{cases}$$

$$\begin{cases}
\Delta p_0 = (1 - \frac{2}{3} - \frac{2}{3}) = -\frac{1}{3} & p_0 = \frac{2}{3} \\
\Delta p_1 = (1 - \frac{2}{3} - \frac{2}{3}) = -\frac{1}{3} & p_1 = \frac{2}{3} \\
\Delta p_2 = (1 - \frac{2}{3} - \frac{2}{3}) = -\frac{1}{3} & p_2 = \frac{2}{3}
\end{cases}$$

Nie jest to powrót do punktu wyjścia, w którym wyjściowym prawdopodobieństwem jest $\frac{1}{3}$ dla gry przedstawionej po lewej stronie i $\frac{2}{3}$ dla gry po prawej. W pamięci każdego z graczy jest liczba rozegranych partii ze swoimi rywalami co będzie prowadziło do niekoniecznie oczywistych zachowań. Od teraz dokonywany wybór będzie tym o większym prawdopodobieństwie.

$$G_0 = P, G_1 = P, G_2 = P$$

$$G_0 = N, G_1 = N, G_2 = N$$

$$\begin{cases}
\Delta p_0 = (1 - \frac{1}{4} - \frac{1}{4}) = \frac{1}{2} & p_0 = \frac{5}{6} \\
\Delta p_1 = (1 - \frac{1}{4} - \frac{1}{4}) = \frac{1}{2} & p_1 = \frac{5}{6} \\
\Delta p_2 = (1 - \frac{1}{4} - \frac{1}{4}) = \frac{1}{2} & p_2 = \frac{5}{6}
\end{cases}$$

$$\begin{cases}
\Delta p_0 = (1 - \frac{2}{5} - \frac{2}{5}) = -\frac{1}{2} & p_0 = \frac{1}{6} \\
\Delta p_1 = (1 - \frac{2}{5} - \frac{2}{5}) = -\frac{1}{2} & p_1 = \frac{1}{6} \\
\Delta p_2 = (1 - \frac{2}{5} - \frac{2}{5}) = -\frac{1}{2} & p_2 = \frac{1}{6}
\end{cases}$$

Obserwowana jest zmiana zachowania graczy spowodowana częstością gier przeciwników. Sytuacja takiej fluktuacji może się powtarzać. Dysponując odpowiednio dużą grupą instancji gry oraz dostatecznie długą rozgrywką możliwe byłoby zaobserwowanie funkcji prawdopodobieństwa od czasu (równą dla wszystkich graczy instancji) w kształcie sinusoidy o rosnącym okresie. Sytuacja taka nie jest pożądana, co stanowi dodatkowy argument za użyciem $\alpha < 1$ skutecznie niwelującego wystąpienie takich sytuacji.

2.6. Rozwiązanie stacjonarne równań standardowych

Do ustalenia punktów stałych potrzebny jest zanik dynamiki $\Delta p_i = 0$. Krok czasowy zostanie pominięty, gdyż nie daje wkładu do obliczeń. Należy rozwiązać układ równań, gdzie przyjęte jest $x = p_0$,

 $y = p_1, z = p_2$:

$$\begin{cases}
1 - y - z = 0 \\
1 - x - z = 0 \Rightarrow p_0 = p_1 = p_2 = \frac{1}{2} \\
1 - x - y = 0
\end{cases}$$
(2.7)

Z czego wynika że gra startująca w punkcie $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ nie powinna z niego wyjść. Byłoby tak gdyby prawdopodobieństwa użyte w równaniu były faktycznymi prawdopodobieństwami p_i , są one natomiast jedynie obserwacją zachowania pozostałych graczy. Są ono dane jako $\frac{nast_j}{liczba_{partii}}$, dzięki czemu gra w ogóle się odbywa.

2.7. Stabilność równań replikatorów

Aby wyznaczyć stabilność równań replikatorów należy najpierw znaleźć punkty stałe, jak poprzednio krok czasowy zostanie pominięty. Przyjęte zostały następujące oznaczenia $\dot{x}=\Delta p_0,\,\dot{y}=\Delta p_1,\,\dot{z}=\Delta p_2.$

$$\begin{cases} \dot{x} = 0 & (0,0,0) \quad i = 0 \\ \dot{y} = 0 & \Rightarrow kombinacje \\ \dot{z} = 0 & (1,1,1) \quad i = 2 \\ (0,1,\xi) & i = 3 \end{cases}$$
 dają punkty stałe (x_i^*,y_i^*,z_i^*) , gdzie $\xi \in <0,1>$

Przeanalizowane zostaną 4 przypadki, które nie są symetryczne względem siebie, wpierw jednak należy policzyć pochodne cząstkowe.

$$\begin{array}{ll} \frac{\delta \dot{x}}{\delta x} = 1 - y - z - 2x + 2xy + 2xz & \frac{\delta \dot{y}}{\delta x} = y^2 - y \\ \frac{\delta \dot{x}}{\delta y} = x^2 - x & \frac{\delta \dot{y}}{\delta y} = 1 - x - z - 2y + 2xy + 2yz \\ \frac{\delta \dot{x}}{\delta z} = x^2 - x & \frac{\delta \dot{y}}{\delta z} = y^2 - y \end{array}$$

$$\frac{\delta \dot{z}}{\delta x} = z^2 - z$$

$$\frac{\delta \dot{z}}{\delta y} = z^2 - z$$

$$\frac{\delta \dot{z}}{\delta z} = 1 - x - y - 2z + 2xz + 2yz$$

Kolejnym krokiem jest znalezienie wartości własnych. ZRÓB PIONOWĄ KRESKĘ PRZY =

$$J = \begin{pmatrix} \frac{\delta \dot{x}}{\delta x} & \frac{\delta \dot{x}}{\delta y} & \frac{\delta \dot{x}}{\delta z} \\ \frac{\delta \dot{y}}{\delta x} & \frac{\delta \dot{y}}{\delta y} & \frac{\delta \dot{y}}{\delta z} \\ \frac{\delta \dot{z}}{\delta x} & \frac{\delta \dot{z}}{\delta y} & \frac{\delta \dot{z}}{\delta x} \end{pmatrix} x = x_{i}^{*} = J_{i} \qquad \begin{vmatrix} \frac{\delta \dot{x}}{\delta x} - \lambda & \frac{\delta \dot{x}}{\delta y} & \frac{\delta \dot{x}}{\delta z} \\ \frac{\delta \dot{y}}{\delta x} & \frac{\delta \dot{y}}{\delta y} - \lambda & \frac{\delta \dot{y}}{\delta z} \\ y = y_{i}^{*} & \frac{\delta \dot{z}}{\delta x} & \frac{\delta \dot{z}}{\delta y} & \frac{\delta \dot{z}}{\delta z} - \lambda \end{vmatrix} = J_{i} - \lambda I = J_{i,\lambda}$$

$$z = z_{i}^{*}$$

$$J_{i,\lambda} = 0 \Rightarrow \begin{cases} \lambda_0 = 1 \\ \lambda_1 \in \{-\frac{1}{2}, \frac{1}{4}\} \\ \lambda_2 = 1 \end{cases}$$
$$\lambda_3 \in \{-z, z - 1\}$$

Warunkiem na stabilność punktu jest $Re\lambda_i < 0$, co eliminuje nam wszystkie lambdy poza λ_3 . Pokazuje to że punkty o kombinacji $(0,1,\xi)$ są marginalnie stabilne. Ponieważ analiza matematyczna nie przyniosła jednoznacznej odpowiedzi co do stabilności, można spróbować przeanalizować równanie \dot{z} , dla sytuacji gdy p_i dwóch z graczy dojdą do granicy prawdopodobieństwa. W pierwszym wierszu tabelki 2.1 widać, że x dąży do zawarcia sojuszu z z, natomiast y gra aby osiągnąć sojusz z x. W tej sytuacji prawdopodobieństwo strategii z będzie rosło do zawiązania

Tablica 2.1: Stabilność na krawędzi sześcianu

X	у	1-x-y	\dot{z}
0	0	1	$z \cdot (1-z)$
0	1	0	0
1	0	0	0
1	1	-1	$-z\cdot(1-z)$

koalicji z x. W kolejnych dwóch wierszach są stany ustalone. W wierszu drugim zmiana \dot{z} nie ma znaczenia gdyż obaj przeciwnicy są w wyłącznej koalicji z z. Wiersz trzeci pokazuje przeciwną sytuację, w której jakakolwiek zmiana \dot{z} nie wniesie nic do gry ze względu na trwały sojusz między x a y. Ostatni wiersz pokazuje przypadek symetryczny do pierwszego, z tym że jedynym możliwym sojusznikiem dla z jest y. Oczywiście omawiany teraz przykład do osiągnięcia stabilności wymagałby braku zmian decyzji pozostałych graczy. Musieli by oni znać realne prawdopodobieństwo przeciwników.

3. Implementacja symulacji

W tym rozdziale chciałbym przedstawić technologie i narzędzia użyte do wykonania symulacji oraz sposoby ich uruchomienia.

3.1. Środowisko QT

Zdecydowałem się wykorzystać QT Creator IDE z kilku powodów, które zamierzam zaraz rozwinąć. Najważniejszą cechą środowiska jest udostępnienie go na kilku rodzajach licencji. Osobiście użyłem licencji LGPL, która pozwoliła mi bez ponoszenia kosztów korzystać ze środowiska. Kolejnym ważnym elementem jest multiplatformowość pozwalająca w łatwy sposób przenosić kod program między systemami operacyjnymi, o ile nie zostały użyte biblioteki dostępne tylko na jeden z systemów. Kolejną z zalet jest łatwy i intuicyjny interfejs tworzenia graficznego interfejsu użytkownika, osoba mająca wcześniej styczność z chociażby biblioteką Swing Java'y nie powinna mieć problemu z zaadaptowaniem się do formularza QT Creatora. Wykorzystywany jest model sygnałów i slotów, polegający na emitowaniu sygnału przez zdarzenie, który następnie trafia do podłączonego slotu. Jest to w stanie znacznie ułatwić komunikację między elementami. Używanie nowoczesnego języka C++ (ja używałem wersji 14) nie sprawia problemów, lecz powinniśmy być świadomi że przykładowe uruchomienie wątków w aplikacji powinno być zrobione przy użyciu klas i funkcji z biblioteki QT.

3.2. GLWidget

3.3. Schemat programu

3.4. Rysowanie 3D

3.5. Makefile

Symulując grę w okręgu postanowiłem rysować wykresy funkcji prawdopodobieństwa od numeru partii. Do tego celu uznałem, że najbardziej odpowiedni będzie plik *Makefile*, który wykona kompilację, uruchomienie oraz narysowanie wykresu przy pomocy programu gnuplot. Aby uruchomić program należy podać argument: G - ilość partii do rozegrania oraz P - ilość graczy. Poniżej przykład polecenia dla 100 partii rozegranych przez 20 zawodników.

3.5. Makefile 15

make G=100 P=20

4. Wyniki

4.1. Gry 3-osobowe

Równania standardowe Analiza teoretyczna równań wskazała $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ jako punkt stabilny. Wynikało to z założenia gry o pełnej informacji, co nie jest spełnione dla symulacji, której funkcje opuszczają centrum sześcianu. Osiągnięcie przez funkcję krawędzi sześcianu oznacza zawiązanie koalicji, po czym funkcja przesuwa się po krawędzi dążąc do wierzchołka. Analizując tabelkę 2.1 można ją także odnieść do równań standardowych by dojść do wniosku że funkcja powinna osiagać punkt stabilności na krawędzi i nie poruszać się dalej. Byłoby tak gdyby błąd szacowania prawdopodobieństw przeciwników był odpowiednio mały. Szacowanie prawdopodobieństw dane jest przez $\frac{nast_j}{liczba_{partii}}.$ Wynika z tego, że wystarczy kilka zagrań przeciwników niezgodnych z zawartą koalicją, aby gracz szacujący ich prawdopodobieństwa nie mógł stwierdzić, że ich realne

Rysunek 4.1: Równania standardowe: 100 partii, 10 instancji

prawdopodobieństwa wynoszą 0 lub 1. Co pokazuje rysunek 4.1, na którym widać funkcje o wielu punktach przegięcia. Szybkość dążenia do wierzchołków będzie malała wraz z czasem spędzonym na krawędzi, gdyż

$$\lim_{nast_{j} \rightarrow liczba_{partii} \wedge liczba_{partii} \rightarrow \infty} \frac{nast_{j}}{liczba_{partii}} \in \{0,1\}$$

Równania replikatorów Równań replikatorów charakteryzują się mniejszej dynamiką gry w stosunku do równań standardowych. Przyczyną jest człon x(1-x), którego maksimum wynosi 0.25. Daje to czterokrotnie mniejsze Δp w punkcie $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$. Na krańcach dziedziny <0,1> wspomniany człon szybko dąży do 0 (przypomina wielomian węzłowy Lagrange'a), co znacznie opóźnia osiągnięcie koalicji. Widać to porównując rysunki 4.1 oraz 4.2a. Dopiero rysunki 4.1 oraz 4.2d, gdzie gra

4.1. Gry 3-osobowe 17

Rysunek 4.2: Równania replikatorów: 10 instancji

4.2. Gry N-osobowe

używająca równań replikatorów wykonała ich 100 razy więcej niż gra używająca równań standardowych pokazują liczbę partii potrzebną do osiągnięcia podobnych miejsc w przestrzeni sześcianu.

Analiza stabilności pokazała, że każda krawędź sześcianu powinna być punktem stabilnym, potwierdza to rysunek 4.3. Natomiast symulacja 4.2c pokazuje przemieszczanie się funkcji ku wierzchołkom. Znów powodem jest błąd w szacowaniu prawdopodobieństwa przeciwników. Nie występuje on jednak we wszystkich instancjach gry, na przykład w jasno-zielonej rozgrywce 4.2c widać, że funkcja nieznacznie porusza się po krawędzi, co świadczy o mniejszym błędzie szacowania prawdopodobieństwa w stosunku do innych rozgrywek. Analiza stabilności wskazuje, że punkty (0,0,0) oraz (1,1,1) nie są stabilne, czego dowodem jest iż żądna z symulacji do nich nie zmierza. Co więcej pierwszy i ostatni wiersz tabelki 2.1 nie może wystąpić w symulacji. Osiągnięcie punktu $(0,0,\xi)$ lub $(1,1,\xi)$, gdzie ξ nie jest w pobliżu 0 lub 1, nie jest możliwe w symu-

Rysunek 4.3: Równania replikatorów, gra o pełnej informacji: 300 partii, 10 instancji

lacji. Oznaczałoby to zawiązanie sojuszu pomiędzy graczami, których zagrania nie mają na celu zawiązania między nimi koalicji. Potwierdzają to symulacje z których żadna nie dochodzi do krawędzi wychodzących z punktów (0,0,0) oraz (1,1,1).

4.2. Gry N-osobowe

W grze gdzie ustawionych w okręgu jest N graczy, spodziewamy się że istotnym czynnikiem będzie parzystość ich liczby. Teoretyczna liczba graczy mogących nie znaleźć koalicjanta wynosi $< N \bmod 2, \left \lfloor \frac{N}{3} \right \rfloor >$. W grze o parzystej liczbie graczy zawsze istnieje rozwiązanie, które gwarantuje każdemu graczowi przynależność do koalicji. Natomiast w grach o nieparzystej liczbie graczy musi istnieć co najmniej jeden zawodnik, który nie zawrze sojuszu (posiadanie prawdopodobieństwa 0 lub 1, nie jest równoznaczne z byciem w sojuszu, co pokazały symulacje dla 3-graczy, kiedy funkcje dążyły do wierzchołków). Maksymalna liczba graczy bez sojuszu może być maksymalnie połową liczby graczy będących w sojuszy(maksymalnie co trzeci gracz może być bez sojuszy z zaokrągleniem w dół). Gdyby była większa oznaczałoby to że istnieją pary sąsiadujących graczy, którzy nie są w żadnej koalicji. Tak sytuacja nie może mieć miejsca, ponieważ omawiane pary stałyby się koalicjami.

Przy dużej ilości gier jednocześnie można zaobserwować sytuacje, w których sąsiedzi zawodnika stosują w przewadze jedną taktykę. Co prowadzi do dokładnego szacowania ich prawdopodobieństw. Skutkiem tego jest gracz nie dokonujący zmian w swoim zachowaniu, co wynika z tabelki 2.1. Przypadek taki można zaobserwować na rysunku 4.4d, oznaczony kolorem czarnym.

4.2. Gry N-osobowe **19**

Rysunek 4.4: Gry N-osobowe

5. Podsumowanie

To be done!

Bibliografia

- [Fsm] Finite state machine designer. http://madebyevan.com/fsm/. 2017-12-20.
- [HS98] J. Hofbauer and K. Sigmund. *Evolutionary Games and Pupulation Dynamics*. Cambridge, 1998.
- [Now06] M. A. Nowak. *Evolutionary dynamics: exploring the equations of life*. The Belkan press of Harvard university press, Cambridge, Massachusetts and London, England, 2006.
- [P.01] Straffin P. Teoria gier. Wydawnictwo Naukowe SCHOLAR, Warszawa, 2001.
- [Qt] Qt main site. http://doc.qt.io/. 2017-09-01.
- [Sza] Msc/eng thesis template of university of science and technology in krakow (agh). https://www.sharelatex.com/templates/thesis/agh. 2017-09-01.
- [Tut] Qt5 tutorial opengl with qglwidget 2017. http://www.bogotobogo.com/Qt/Qt5_ OpenGL_QGLWidget.php. 2017-09-01.