EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

September 30, 2016

Lambda-Kaon Femtoscopy in Pb-Pb Collisions at $\sqrt{s_{NN}}$ = 2.76 TeV with ALICE

J. T. Buxton and T. J. Humanic

Department of Physics, The Ohio State University, Columbus, Ohio, USA

Email: jesse.thomas.buxton@cern.ch

Abstract

We present results from a femtoscopic analysis of Lambda-Kaon correlations in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76~\text{TeV}$ by the ALICE experiment at the LHC. All pair combinations of Λ and $\bar{\Lambda}$ with K^+ , K^- and K^0_S are analyzed. The femtoscopic correlations are the result of strong final-state interactions, and are fit with a parametrization based on a model by R. Lednicky and V. L. Lyuboshitz[1]. This allows us to both characterize the emission source and measure the scattering parameters for the particle pairs. We observe a large difference in the Λ - K^+ ($\bar{\Lambda}$ - K^-) and Λ - K^- ($\bar{\Lambda}$ - K^+) correlations in pairs with low relative momenta ($k^* \lesssim 100~\text{MeV}$). Additionally, the average of the Λ - K^+ ($\bar{\Lambda}$ - K^-) and Λ - K^- ($\bar{\Lambda}$ - K^+) correlation functions is consistent with our Λ - K^0_S ($\bar{\Lambda}$ - K^0_S) measurement. The results suggest an effect arising from different quark-antiquark interactions in the pairs, i.e. s \bar{s} in Λ - K^+ ($\bar{\Lambda}$ - K^-) and u \bar{u} in Λ - K^- ($\bar{\Lambda}$ - K^+). To gain further insight into this hypothesis, we currently are conducting a Cascade-Kaon femtoscopic analysis.

[1] R. Lednicky and V.L. Lyuboshitz, Sov. J. Nucl. Phys. 35, 770 (1982)