230306_Reporte1Exploracion

Camila Silva

2023-03-08

R Markdown

```
reporte
```

```
library("phyloseq")
library("ggplot2")
library("vegan")

## Loading required package: permute

## Loading required package: lattice

## This is vegan 2.6-4

library("RColorBrewer")
library("stringi")
```

Cargado de datos originales

```
setwd("/home/camila/GIT/Tesis_Maestria/Data/fresa_solena")
outpath = "/home/camila/GIT/Tesis_Maestria/Analisis_Comparativo/Fresa_Solena/Results_img"

fresa_kraken <- import_biom("fresa_kraken.biom")
colnames(fresa_kraken@tax_table@.Data) <- c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "fresa_kraken@tax_table@.Data <- substr(fresa_kraken@tax_table@.Data,4,100)
colnames(fresa_kraken@otu_table@.Data) <- substr(colnames(fresa_kraken@otu_table@.Data),1,6)
metadata_fresa <- read.csv2("/home/camila/GIT/Tesis_Maestria/Data/fresa_solena/metadata.csv",header = fresa_kraken@sam_data <- sample_data(metadata_fresa)
fresa_kraken@sam_data$Sample<-row.names(fresa_kraken@sam_data)
colnames(fresa_kraken@sam_data)<-c('Treatment','Samples')
samples_to_remove <- c("MP2079","MP2080","MP2088","MP2109","MP2137")
fresa_kraken_fil <- prune_samples(!(sample_names(fresa_kraken) %in% samples_to_remove), fresa_kraken)
percentages_fil <- transform_sample_counts(fresa_kraken_fil, function(x) x*100 / sum(x) )
percentages_df <- psmelt(percentages_fil)</pre>
```

Subconjunto de "Eukaryota"

```
merge_Eukaryota<-subset_taxa(fresa_kraken_fil,Kingdom=="Eukaryota")</pre>
```

Subconjunto de "Bacteria"

```
merge_Bacteria<-subset_taxa(fresa_kraken_fil,Kingdom=="Bacteria")</pre>
```

Funciones

Crea los subconjuntos de datos input phy phyliseq total tax rango al que queremos recortar output

```
glomToGraph<-function(phy,tax){
    ## creamos el subconjunto dependiendo del linaje taxonomico deseado
    glom <- tax_glom(phy, taxrank = tax)
    ## sacamos los porcentajes
    percentages <- transform_sample_counts(glom, function(x) x*100 / sum(x) )
    percentages_df <- psmelt(percentages)
    return(list(glom,percentages,percentages_df))
}</pre>
```

Graficar abundancias stackbar

input entra el percentages_df

```
Abundance_barras <- function(phy,tax,attribute,abundance_percentage){
  ##llamar funcion de datos
  Data <- glomToGraph(phy,tax)</pre>
  glom <- Data[[1]] #phyloseq</pre>
  percentages <- Data[[2]] #phyloseq</pre>
  percentages_df <- Data[[3]] # dataframe</pre>
  ## Graficamos para cada subconjunto las barras de abundancia
  plot_barras <- ggplot(data=percentages_df, aes_string(x='Sample', y='Abundance', fill=tax ,color=attr
    scale_colour_manual(values=c('white','black')) +
    geom_bar(aes(), stat="identity", position="stack") +
    labs(title = "Abundance", x='Sample', y='Abundance', color = tax) +
    theme(legend.position = "bottom",
          legend.title = element_text(face = "bold"),
          text = element_text(size=12),
          axis.text.x = element_text(angle=90, size=12, hjust=1, vjust=0.5))
  percentages_df$tax<-percentages_df[,ncol(percentages_df)]</pre>
  percentages_df$tax[percentages_df$Abundance < abundance_percentage] <- "abundance_percentage"
  percentages_df$tax <- as.factor(percentages_df$tax)</pre>
  plot_percentages <- ggplot(data=percentages_df, aes_string(x='Sample', y='Abundance', fill='tax', col
    scale_colour_manual(values=c('white','black')) +
    geom_bar(aes(), stat="identity", position="stack") +
    labs(title = "Abundance", x='Sample', y='Abundance', color = tax) +
    theme(legend.position = "bottom",
          legend.title = element_text(face = "bold"),
```

Graficar betadiversity

```
Beta_diversity <- function(phy,tax,attribute,distance){

Data <- glomToGraph(phy,tax)
glom <- Data[[1]]
#CREAR UN GLOM AL 10%
percentages <- Data[[2]]
percentages_df <- Data[[3]]
## Beta diversidad
meta_ord <- ordinate(physeq = percentages, method = "NMDS", distance = distance)
plot_beta <- plot_ordination(physeq = percentages, ordination = meta_ord, color = attribute) +
    geom_text(mapping = aes(label = colnames(phy@otu_table@.Data)), size = 3, vjust = 1.5)
    return(plot_beta)
}</pre>
```

Graficar alphadiversity

```
Alpha_diversity <- function(phy,tax,attribute){</pre>
  ## llamamos la funcion que crea los dataset
  Data <- glomToGraph(phy,tax)</pre>
  glom <- Data[[1]]</pre>
  percentages <- Data[[2]]</pre>
  percentages_df <- Data[[3]]</pre>
  ## Alfa diversidad
  plot_alpha <- plot_richness(physeq = glom, measures = c("Observed", "Chao1", "Shannon", "simpson"), x = a</pre>
  return(plot_alpha)
}
        -Eukarya by Phylum
Barras_Phylum <- Abundance_barras(merge_Eukaryota, 'Phylum', 'Treatment', 10.0)
## Warning: 'aes_string()' was deprecated in ggplot2 3.0.0.
## i Please use tidy evaluation ideoms with 'aes()'
Barras_Phylum[1] # normal
## [[1]]
```



```
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.01148681
## Run 1 stress 8.581372e-05
## ... New best solution
## ... Procrustes: rmse 0.03464451 max resid 0.09086026
## Run 2 stress 0.3921933
## Run 3 stress 9.235661e-05
## ... Procrustes: rmse 8.175744e-05 max resid 0.0002288446
## ... Similar to previous best
## Run 4 stress 9.617614e-05
## ... Procrustes: rmse 0.0001008522 max resid 0.000269171
## ... Similar to previous best
## Run 5 stress 9.644717e-05
## ... Procrustes: rmse 7.91108e-05 max resid 0.0002130743
## ... Similar to previous best
## Run 6 stress 9.553648e-05
## ... Procrustes: rmse 5.57069e-05 max resid 0.0001792227
## ... Similar to previous best
## Run 7 stress 9.878097e-05
## ... Procrustes: rmse 8.529878e-05 max resid 0.0002173021
## ... Similar to previous best
## Run 8 stress 9.713914e-05
```

```
## ... Procrustes: rmse 0.0001313505 max resid 0.0003899858
## ... Similar to previous best
## Run 9 stress 9.742258e-05
## ... Procrustes: rmse 8.139225e-05 max resid 0.000230473
## ... Similar to previous best
## Run 10 stress 9.485504e-05
## ... Procrustes: rmse 7.85512e-05 max resid 0.0002270051
## ... Similar to previous best
## Run 11 stress 0.004528109
## Run 12 stress 9.76768e-05
## ... Procrustes: rmse 7.773256e-05 max resid 0.0002308454
## ... Similar to previous best
## Run 13 stress 3.426821e-05
## ... New best solution
## ... Procrustes: rmse 3.502835e-05 max resid 0.0001157903
## ... Similar to previous best
## Run 14 stress 0.4042142
## Run 15 stress 5.930543e-05
## ... Procrustes: rmse 2.516612e-05 max resid 5.308667e-05
## ... Similar to previous best
## Run 16 stress 9.713476e-05
## ... Procrustes: rmse 9.139138e-05 max resid 0.0002546255
## ... Similar to previous best
## Run 17 stress 0.004365444
## Run 18 stress 8.993984e-05
## ... Procrustes: rmse 6.829854e-05 max resid 0.0001603421
## ... Similar to previous best
## Run 19 stress 9.909522e-05
## ... Procrustes: rmse 0.0001362133 max resid 0.0003464382
## ... Similar to previous best
## Run 20 stress 8.874459e-05
## ... Procrustes: rmse 8.475813e-05 max resid 0.0002386906
## ... Similar to previous best
## *** Best solution repeated 6 times
## Warning in metaMDS(veganifyOTU(physeq), distance, ...): stress is (nearly) zero:
## you may have insufficient data
```



```
Alpha_diversity(merge_Eukaryota , 'Phylum' , 'Treatment')
```

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


#——Eukarya by Family

Barras_Species <- Abundance_barras(merge_Eukaryota, 'Family', 'Treatment', 10.0)
Barras_Species[1]</pre>

Abundance

Beta_diversity(merge_Eukaryota , 'Family' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1089081
## Run 1 stress 0.1088889
## ... New best solution
## ... Procrustes: rmse 0.001720324 max resid 0.009420874
## ... Similar to previous best
## Run 2 stress 0.1089102
  ... Procrustes: rmse 0.001709312 max resid 0.009429385
## ... Similar to previous best
## Run 3 stress 0.109113
## ... Procrustes: rmse 0.00999353 max resid 0.05406397
## Run 4 stress 0.135207
## Run 5 stress 0.1089297
## ... Procrustes: rmse 0.008437248 max resid 0.05478629
## Run 6 stress 0.1089296
## ... Procrustes: rmse 0.008439796 max resid 0.05478447
## Run 7 stress 0.1089299
## ... Procrustes: rmse 0.008608354 max resid 0.05452418
## Run 8 stress 0.1088885
## ... New best solution
## ... Procrustes: rmse 0.001575318 max resid 0.008989064
## ... Similar to previous best
## Run 9 stress 0.1312477
```

```
## Run 10 stress 0.1089289
```

... Procrustes: rmse 0.00838502 max resid 0.05449974

Run 11 stress 0.1088904

... Procrustes: rmse 0.001868121 max resid 0.01070488

Run 12 stress 0.1088886

... Procrustes: rmse 0.001486157 max resid 0.008465417

... Similar to previous best

Run 13 stress 0.1089296

... Procrustes: rmse 0.008424576 max resid 0.05466056

Run 14 stress 0.1089294

... Procrustes: rmse 0.008419728 max resid 0.05464795

Run 15 stress 0.1089489

... Procrustes: rmse 0.00806154 max resid 0.05392253

Run 16 stress 0.1088962

... Procrustes: rmse 0.001932239 max resid 0.009016564

... Similar to previous best

Run 17 stress 0.108929

... Procrustes: rmse 0.008397748 max resid 0.0545526

Run 18 stress 0.1089078

... Procrustes: rmse 0.002060412 max resid 0.009177838

... Similar to previous best

Run 19 stress 0.1089523

... Procrustes: rmse 0.008114132 max resid 0.05378841

Run 20 stress 0.1088882

... New best solution

... Procrustes: rmse 0.001363466 max resid 0.007742189

... Similar to previous best

*** Best solution repeated 1 times

Alpha_diversity(merge_Eukaryota , 'Family' , 'Treatment')

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


#——Eukarya by Genero

Barras_Species <- Abundance_barras(merge_Eukaryota, 'Genus', 'Treatment', 10.0)
Barras_Species[1]</pre>

Abundance


```
Beta_diversity(merge_Eukaryota , 'Genus' , 'Treatment', 'bray')
```

```
## Wisconsin double standardization
## Run 0 stress 0.110709
## Run 1 stress 0.1119784
## Run 2 stress 0.1236297
## Run 3 stress 0.1222458
## Run 4 stress 0.1107325
## ... Procrustes: rmse 0.003155808 max resid 0.0178256
## Run 5 stress 0.1119814
## Run 6 stress 0.1107099
  ... Procrustes: rmse 0.001218476 max resid 0.006978283
  ... Similar to previous best
## Run 7 stress 0.1119817
## Run 8 stress 0.1107099
## ... Procrustes: rmse 0.0002610031 max resid 0.001454966
## ... Similar to previous best
## Run 9 stress 0.1107096
  ... Procrustes: rmse 0.001154233 max resid 0.006656173
  ... Similar to previous best
## Run 10 stress 0.1236305
## Run 11 stress 0.1223838
## Run 12 stress 0.1235029
## Run 13 stress 0.1107093
## ... Procrustes: rmse 8.867104e-05 max resid 0.0004837295
```

```
## ... Similar to previous best
## Run 14 stress 0.1223831
## Run 15 stress 0.1107092
## ... Procrustes: rmse 0.001046559 max resid 0.005988173
## ... Similar to previous best
## Run 16 stress 0.1107088
## ... New best solution
## ... Procrustes: rmse 9.242977e-05 max resid 0.0005407841
## ... Similar to previous best
## Run 17 stress 0.1107088
## ... New best solution
## ... Procrustes: rmse 0.0002525399 max resid 0.001356355
## ... Similar to previous best
## Run 18 stress 0.1107097
## ... Procrustes: rmse 0.0009608511 max resid 0.005945941
## ... Similar to previous best
## Run 19 stress 0.1119813
## Run 20 stress 0.1107099
## ... Procrustes: rmse 0.0005559224 max resid 0.0027921
## ... Similar to previous best
## *** Best solution repeated 3 times
```


Alpha_diversity(merge_Eukaryota , 'Genus' , 'Treatment')

Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided

```
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


#——Eukarya by Species

Barras_Species <- Abundance_barras(merge_Eukaryota, 'Species', 'Treatment', 10.0)
Barras_Species[1]</pre>

[[1]]

Abundance

Beta_diversity(merge_Eukaryota , 'Species' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1226512
## Run 1 stress 0.1272844
## Run 2 stress 0.1218539
## ... New best solution
## ... Procrustes: rmse 0.02022733 max resid 0.1284437
## Run 3 stress 0.121854
  ... Procrustes: rmse 0.0001884672 max resid 0.0008491261
## ... Similar to previous best
## Run 4 stress 0.121874
## ... Procrustes: rmse 0.002565178 max resid 0.01268243
## Run 5 stress 0.1218543
## ... Procrustes: rmse 0.0002458649 max resid 0.001223033
## ... Similar to previous best
## Run 6 stress 0.1218541
## ... Procrustes: rmse 0.0003502193 max resid 0.001741702
## ... Similar to previous best
## Run 7 stress 0.1218543
## ... Procrustes: rmse 0.0002170087 max resid 0.001060605
## ... Similar to previous best
## Run 8 stress 0.1218543
## ... Procrustes: rmse 0.0002443382 max resid 0.001196685
## ... Similar to previous best
```

```
## Run 9 stress 0.1218541
## ... Procrustes: rmse 0.000372195 max resid 0.001835571
## ... Similar to previous best
## Run 10 stress 0.1218545
## ... Procrustes: rmse 0.0003347888 max resid 0.001663274
## ... Similar to previous best
## Run 11 stress 0.1272837
## Run 12 stress 0.1272835
## Run 13 stress 0.1517477
## Run 14 stress 0.1547184
## Run 15 stress 0.121854
## ... Procrustes: rmse 4.026617e-05 max resid 0.0001777355
## ... Similar to previous best
## Run 16 stress 0.1218549
## ... Procrustes: rmse 0.0004050457 max resid 0.002010646
## ... Similar to previous best
## Run 17 stress 0.1351259
## Run 18 stress 0.1218542
## ... Procrustes: rmse 0.0004154338 max resid 0.002196092
## ... Similar to previous best
## Run 19 stress 0.1226506
## Run 20 stress 0.1227525
## *** Best solution repeated 10 times
```


Alpha_diversity(merge_Eukaryota , 'Species' , 'Treatment')

#----Bacteria by Phylum

Barras_Species <- Abundance_barras(merge_Bacteria, 'Phylum', 'Treatment', 10.0)
Barras_Species[1]</pre>


```
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.1520004
## Run 1 stress 0.1742641
## Run 2 stress 0.1593175
## Run 3 stress 0.1573463
## Run 4 stress 0.161734
## Run 5 stress 0.1537339
## Run 6 stress 0.1573473
## Run 7 stress 0.1667699
## Run 8 stress 0.1744041
## Run 9 stress 0.1697749
## Run 10 stress 0.1744627
## Run 11 stress 0.1711649
## Run 12 stress 0.1707681
## Run 13 stress 0.1656732
## Run 14 stress 0.1692037
## Run 15 stress 0.1668935
## Run 16 stress 0.1693494
## Run 17 stress 0.162697
## Run 18 stress 0.157849
## Run 19 stress 0.1680263
```

Run 20 stress 0.1573461

```
## *** Best solution was not repeated -- monoMDS stopping criteria:
## 2: no. of iterations >= maxit
## 18: stress ratio > sratmax
```


Alpha_diversity(merge_Bacteria , 'Phylum' , 'Treatment')

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


#——Bacteria by Familia

Barras_Species <- Abundance_barras(merge_Bacteria, 'Family', 'Treatment', 10.0)
Barras_Species[1]</pre>

Abundance


```
Beta_diversity(merge_Bacteria , 'Family' , 'Treatment', 'bray')
```

```
## Wisconsin double standardization
## Run 0 stress 0.1412073
## Run 1 stress 0.1567789
## Run 2 stress 0.1400264
## ... New best solution
## ... Procrustes: rmse 0.02602484 max resid 0.1381912
## Run 3 stress 0.1631861
## Run 4 stress 0.1455823
## Run 5 stress 0.1412069
## Run 6 stress 0.137377
## ... New best solution
## ... Procrustes: rmse 0.05943273 max resid 0.3596099
## Run 7 stress 0.1412066
## Run 8 stress 0.1396568
## Run 9 stress 0.1401651
## Run 10 stress 0.1369869
## ... New best solution
## ... Procrustes: rmse 0.01588383 max resid 0.05975398
## Run 11 stress 0.1571927
## Run 12 stress 0.1418143
## Run 13 stress 0.1418148
## Run 14 stress 0.1373772
## ... Procrustes: rmse 0.01593279 max resid 0.05952602
```

```
## Run 15 stress 0.1373768
## ... Procrustes: rmse 0.01582816 max resid 0.05945794
## Run 16 stress 0.1401068
## Run 17 stress 0.1647408
## Run 18 stress 0.1517988
## Run 19 stress 0.140104
## Run 20 stress 0.1369864
## ... New best solution
## ... Procrustes: rmse 0.0001686947 max resid 0.0005752435
## ... Similar to previous best
## *** Best solution repeated 1 times
```


Alpha_diversity(merge_Bacteria , 'Family' , 'Treatment')

#——Bacteria by Genero

Barras_Species <- Abundance_barras(merge_Bacteria, 'Genus', 'Treatment', 10.0)
Barras_Species[1]</pre>

esulfosediminicola	Lawsonia	Pengzhenrongella
esulfosporosinus	Leadbetterella	Peptacetobacter
esulfosudis	Leclercia	Peptoclostridium
esulfotalea	Lederbergia	Peptoniphilus
esulfotomaculum	Leeuwenhoekiella	Peribacillus
esulfovibrio	Legionella	Periweissella
esulfurispirillum	Leifsonia	Permianibacter
esulfurivibrio	Leisingera	Persephonella
esulfurobacterium	Lelliottia	Persicimonas
esulfuromonas	Leminorella	Peteryoungia
evosia	Lentibacillus	Petrimonas
evriesea	Lentilactobacillus	Petrocella
ialister	Lentilitoribacter	Petrotoga
iaminobutyricimonas	Lentzea	Phaeobacter
iaphorobacter	Leptodesmis	Phascolarctobacterium
ichelobacter	Leptolyngbya	Phenylobacterium
ickeya	Leptospira	Phnomibacter
ictyoglomus	Leptospirillum	Phocaeicola
ietzia	Lentothermofonsia	Phoenicibacter

Beta_diversity(merge_Bacteria , 'Genus' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1467945
## Run 1 stress 0.1432832
## ... New best solution
## ... Procrustes: rmse 0.08897178 max resid 0.3295048
## Run 2 stress 0.1496771
## Run 3 stress 0.1475446
## Run 4 stress 0.1454655
## Run 5 stress 0.1468279
## Run 6 stress 0.143337
## ... Procrustes: rmse 0.004699465 max resid 0.02896213
## Run 7 stress 0.1693988
## Run 8 stress 0.1439567
## Run 9 stress 0.1538104
## Run 10 stress 0.145199
## Run 11 stress 0.1490812
## Run 12 stress 0.1474936
## Run 13 stress 0.1496766
## Run 14 stress 0.1669881
## Run 15 stress 0.1432834
## ... Procrustes: rmse 0.0001297085 max resid 0.0005894101
## ... Similar to previous best
## Run 16 stress 0.148677
```

```
## Run 17 stress 0.1437853
## Run 18 stress 0.1475447
## Run 19 stress 0.1433508
## ... Procrustes: rmse 0.006150377 max resid 0.03676621
## Run 20 stress 0.1505683
## *** Best solution repeated 1 times
```


Alpha_diversity(merge_Bacteria , 'Genus' , 'Treatment')

#——Bacteria by Species

Barras_Species <- Abundance_barras(merge_Bacteria, 'Species', 'Treatment',10.0)
Barras_Species[1]</pre>

Abundance


```
Beta_diversity(merge_Bacteria , 'Species' , 'Treatment', 'bray')
```

```
## Wisconsin double standardization
## Run 0 stress 0.1597841
## Run 1 stress 0.1600856
## ... Procrustes: rmse 0.05681376 max resid 0.275897
## Run 2 stress 0.1576765
  ... New best solution
## ... Procrustes: rmse 0.05506173 max resid 0.2871601
## Run 3 stress 0.1598505
## Run 4 stress 0.1738726
## Run 5 stress 0.16716
## Run 6 stress 0.1639717
## Run 7 stress 0.208091
## Run 8 stress 0.1597922
## Run 9 stress 0.175953
## Run 10 stress 0.179444
## Run 11 stress 0.1618986
## Run 12 stress 0.1783748
## Run 13 stress 0.1577445
## ... Procrustes: rmse 0.03464099 max resid 0.1600732
## Run 14 stress 0.1640697
## Run 15 stress 0.1604227
## Run 16 stress 0.160562
## Run 17 stress 0.1692767
```

```
## Run 18 stress 0.1632417
## Run 19 stress 0.1705406
## Run 20 stress 0.1586886
## *** Best solution was not repeated -- monoMDS stopping criteria:
## 4: no. of iterations >= maxit
## 16: stress ratio > sratmax
```


Alpha_diversity(merge_Bacteria , 'Species' , 'Treatment')

