Corrigé du partiel 2

Exercice 1 (4 points)

1. Déterminons les points critiques de f:

$$\frac{\partial f}{\partial x}(x,y) = 6x^2 + 6y$$

$$\frac{\partial f}{\partial y}(x,y) = 6x - 6y$$

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0 \\ \Leftrightarrow (x,y) = (0,0) \text{ ou } (x,y) = (-1,-1) \end{cases}$$

f a donc 2 points critiques (0,0) et (-1,-1).

2. Déterminons la nature de chaque point critique.

$$\frac{\partial^2 f}{\partial x^2}(x, y) = 12x$$
$$\frac{\partial^2 f}{\partial x \partial y}(x, y) = 6$$
$$\frac{\partial^2 f}{\partial y^2}(x, y) = -6$$

Donc au point (0,0): r=0, s=6 et t=-6 donc $rt-s^2=-36<0$ d'où f admet en (0,0) un point-col.

Au point (-1,-1): r=-12, s=6 et t=-6 donc $rt-s^2=36>0$ et r<0 d'où f admet en (-1,-1) un maximum local.

Exercice 2 (5 points)

1. f est paire donc pour tout $n \in \mathbb{N}$, $b_n = 0$.

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| dx = \frac{2}{\pi} \int_{0}^{\pi} x dx = \pi$$

Soit $n \in \mathbb{N}^*$.

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \cos(nx) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} x \cos(nx) dx$$

$$= \frac{2}{\pi} \left(\frac{1}{n} \underbrace{\left[x \sin(nx) \right]_{0}^{\pi}}_{=0} - \frac{1}{n} \int_{0}^{\pi} \sin(nx) dx \right)$$

$$= -\frac{2}{n\pi} \int_{0}^{\pi} \sin(nx) dx$$

$$= \frac{2}{n^2 \pi} [\cos(nx)]_{0}^{\pi}$$

$$= \frac{2}{n^2 \pi} ((-1)^n - 1)$$

Ainsi pour tout $p \in \mathbb{N}^*$, $a_{2p} = 0$ et pour tout $p \in \mathbb{N}$,

$$a_{2p+1} = -\frac{4}{(2p+1)^2\pi}$$

La série de Fourier de f est donc

$$\frac{\pi}{2} - \frac{4}{\pi} \sum \frac{1}{(2p+1)^2} \cos((2p+1)x)$$

2. La fonction f est C^1 par morceaux (et de plus continue sur \mathbb{R}) donc d'après le théorème de Dirichlet, la série de Fourier de f converge simplement vers f sur \mathbb{R} . Ainsi pour tout $x \in \mathbb{R}$,

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2} \cos((2p+1)x) = |x|$$

En particulier pour x=0, on a $\frac{\pi}{2}-\frac{4}{\pi}\sum_{n=0}^{+\infty}\frac{1}{(2p+1)^2}=0$ soit

$$\sum_{n=0}^{+\infty} \frac{1}{(2p+1)^2} = \frac{\pi^2}{8}$$

3.

 $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \sum_{p=1}^{+\infty} \frac{1}{(2p)^2} + \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2}$

Or

 $\sum_{n=1}^{+\infty} \frac{1}{(2p)^2} = \frac{1}{4} \sum_{n=1}^{+\infty} \frac{1}{n^2}$

donc

 $\frac{3}{4}\sum_{n=1}^{+\infty}\frac{1}{n^2}=\sum_{p=0}^{+\infty}\frac{1}{(2p+1)^2}=\frac{\pi^2}{8}$

d'où

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

4. En utilisant l'égalité de Parseval, on a

 $\frac{\pi^2}{4} + \frac{1}{2} \cdot \frac{16}{\pi^2} \sum_{n=0}^{+\infty} \frac{1}{(2p+1)^4} = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 dx$

or

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 \mathrm{d}x = \frac{\pi^2}{3}$$

donc

$$\frac{8}{\pi^2} \sum_{n=0}^{+\infty} \frac{1}{(2p+1)^4} = \frac{\pi^2}{3} - \frac{\pi^2}{4} = \frac{\pi^2}{12}$$

donc

$$\frac{1}{(2p+1)^4} = \frac{\pi^4}{96}$$

Corrigé partiel 2 - mai 2011

5.

Or

donc

d'où

 $\sum_{n=0}^{+\infty} \frac{1}{n^4} = \sum_{n=0}^{+\infty} \frac{1}{(2p)^4} + \sum_{n=0}^{+\infty} \frac{1}{(2p+1)^4}$ $\sum_{1}^{+\infty} \frac{1}{(2p)^4} = \frac{1}{16} \sum_{1}^{+\infty} \frac{1}{n^4}$

$$\frac{15}{16} \sum_{n=1}^{4} \frac{1}{n^4} = \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^4} = \frac{\pi^4}{96}$$
$$\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

Exercice 3 (4 points)

1. Notons (A, B, C) la famille orthogonale cherchée. Posons A = 1. Comme < 1, X >= 0, on peut prendre B = 1Cherchons C sous la forme $C = X^2 + aX + b$ avec $(a,b) \in \mathbb{R}^2$ tel que < C,1>=0 et < C,X>=0 c'est-à-di tel que

$$\begin{cases} < X^2 + aX + b, 1 >= 0 \\ < X^2 + aX + b, X >= 0 \end{cases}$$

soit finalement comme $\langle X, 1 \rangle = \langle 1, X \rangle = 0$:

$$\begin{cases} b = -\frac{\langle X^2, 1 \rangle}{\langle 1, 1 \rangle} \\ a = -\frac{\langle X^2, X \rangle}{\langle X, X \rangle} \end{cases}$$

 $\langle X^2, 1 \rangle = \int_{-1}^{1} x^2 dx = \frac{2}{3}$

Or

et < 1, 1 >= 2 d'où

D'autre part
$$< X^2, X> = 0$$
 car $x \mapsto x^3$ est impaire. Donc $a=0$.

Finalement la famille orthogonale recherchée est $\left(1, X, X^2 - \frac{1}{2}\right)$

2. Notons P_0 le projeté orthogonal de X^3 sur $F = \mathbb{R}_2[X] = \mathrm{Vect}(1, X, X^2)$. Alors

$$= \mathbb{K}_2[X] = \text{Vect}(1, X, X^2). \text{ Al}$$

$$\begin{cases} P_0 \in F \\ Y^3 & P_1 \in F^{\perp} \end{cases}$$

i.e.

$$\begin{cases}
P_0 = aX^2 + bX + c \\
< X^3 - aX^2 - bX - c, 1 >= 0 \\
< X^3 - aX^2 - bX - c, X >= 0 \\
< X^3 - aX^2 - bX - c, X^2 >= 0
\end{cases}$$

i.e.

$$\begin{cases} P_0 = aX^2 + bX + c \\ \int_{-1}^{1} (x^3 - ax^2 - bx - c) dx = 0 \\ \int_{-1}^{1} (x^3 - ax^2 - bx - c) x dx = 0 \\ \int_{-1}^{1} (x^3 - ax^2 - bx - c) x^2 dx = 0 \end{cases}$$

or $x \longmapsto x$, $x \longmapsto x^3$ et $x \longmapsto x^5$ sont impaires donc

$$\begin{cases}
P_0 = aX^2 + bX + c \\
-2a \int_0^1 x^2 dx - 2c \int_0^1 dx = 0 \\
2 \int_0^1 x^4 dx - 2b \int_0^1 x^2 dx = 0 \\
-2a \int_0^1 x^4 dx - 2c \int_0^1 x^2 dx = 0
\end{cases}$$

i.e.

$$\begin{cases}
P_0 = aX^2 + bX + c \\
b = \frac{3}{5} \\
a = c = 0
\end{cases}$$

Donc

$$P_0 = \frac{3}{5} X$$

3. Soient $P = X^3$ et $I = \underset{(a,b,c) \in \mathbb{R}^2}{\text{Min}} \int_{-1}^1 (x^3 - ax^2 - bx - c)^2 dx$. En utilisant les propriétés de P_0 , on a

$$I = \min_{Q \in F} ||P - Q||^2 = ||P - P_0||^2$$

or

$$||P-P_0||^2 = < P-P_0, P-P_0> = < P, P-P_0> - < P_0, P-P_0> = < P, P-P_0>$$
 car $P-P_0 \in F^\perp$ et $P_0 \in F$. Donc $I = < P, P-P_0>$ i.e.

$$I = \int_{-1}^{1} x^3 \left(x^3 - \frac{3}{5} x \right) dx = 2 \int_{0}^{1} x^3 \left(x^3 - \frac{3}{5} x \right) dx$$

donc

$$I = 2\left[\frac{x^7}{7} - \frac{3}{5}\frac{x^5}{5}\right]_0^1 = 2\left(\frac{1}{7} - \frac{3}{25}\right)$$

Ainsi

$$\operatorname{Min}_{(a,b,c)\in\mathbb{R}^3} \int_{-1}^{1} (x^3 - ax^2 - bx - c)^2 dx = \frac{8}{175}$$

Exercice 4 (5 points)

- 1. Soit $x \in \mathbb{R}^+$. Alors $|f_n(x)| = \frac{e^{-x\sqrt{n}}}{n} \xrightarrow[n \to +\infty]{} 0$ donc $(|f_n|)$ converge simplement vers la fonction nulle sur \mathbb{R}^+
 - 2. On a $\sup_{x \in \mathbb{R}^+} |f_n(x)| = \frac{1}{n} \xrightarrow[n \to +\infty]{} 0$ donc $(|f_n|)$ converge simplement vers la fonction nulle sur \mathbb{R}^+ .
 - 3. La série $\sum |f_n(0)| = \sum \frac{1}{n}$ diverge donc $\sum f_n$ ne converge pas absolument sur \mathbb{R}^+ .
 - 4. Soit $x \in \mathbb{R}^+$.
- La série $\sum f_n$ est alternée et vérifie le critère spécial donc la série $\sum f_n$ converge simplement sur \mathbb{R}^+ .

5. Via la question 2, $\sup_{x \in \mathbb{R}^+} |f_n(x)| = \frac{1}{n}$ or $\sum \frac{1}{n}$ diverge donc $\sum f_n$ ne converge pas normalement sur \mathbb{R}^+ .

- 6. Soit $x \in \mathbb{R}^+$. Via le critère spécial des séries alternées, $|R_n(x)| \leqslant |f_{n+1}(x)| = \frac{e^{-x\sqrt{n+1}}}{n+1} \leqslant \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0$
- o. Soit $x \in \mathbb{R}^+$. Via le critère special des sèries alternées, $|R_n(x)| \leq |f_{n+1}(x)| = \frac{1}{n+1} \leq \frac{1}{n+1} \xrightarrow{n \to +\infty} 0$ donc (R_n) converge uniformément vers la fonction nulle sur \mathbb{R}^+ d'où $\sum f_n$ converge uniformément sur \mathbb{R}^+ .

Exercice 5 (3 points)

1.
$$a_0(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} \cos(a\pi) = \frac{2}{a\pi} \sin(a\pi)$$

$$a_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} \cos(ax) \cos(nx) dx$$

$$= \frac{1}{\pi} \int_0^{\pi} \left[\cos((a+n)x) + \cos((a-n)x) \right] dx = \frac{1}{\pi} \left(\frac{1}{a+n} \sin((a+n)\pi) + \frac{1}{a-n} \sin((a-n)\pi) \right)$$

$$= \frac{1}{\pi(a^2 - n^2)} \left(a \sin((a+n)\pi) - n \sin((a+n)\pi) + a \sin((a-n)\pi) + n \sin((a-n)\pi) \right)$$

donc, comme
$$\sin(u+v) + \sin(u-v) = 2\sin(u)\cos(v)$$
, $\sin(u+v) - \sin(u-v) = 2\sin(v)\cos(u)$,

$$\sin(n\pi) = \sin(-n\pi) = 0$$
 et $\cos(n\pi) = \cos(-n\pi) = (-1)^n$, on a finalement
$$a_n(f) = \frac{2a(-1)^n}{\pi(a^2 - n^2)}\sin(a\pi)$$

La série de Fourier de f est

$$\left(\frac{1}{a\pi} + \frac{2a}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{a^2 - n^2} \cos(nx)\right) \sin(a\pi)$$

2. Via le théorème de Lejeune-Dirichlet, on a pour tout $x \in [-\pi, \pi]$,

me-Dirichlet, on a pour tout
$$x \in [-\pi, \pi]$$
,
$$\left(\frac{1}{a\pi} + \frac{2a}{\pi} \sum_{n=1}^{+\infty} \frac{(-1)^n}{a^2 - n^2} \cos(nx)\right) \sin(a\pi) = \cos(ax)$$

en particulier pour x = 0, on a

Particulier pour
$$x=0$$
, on a
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{a^2-n^2} = \left(\frac{1}{\sin(a\pi)} - \frac{1}{a\pi}\right) \frac{\pi}{2a}$$

3. En particulier pour $x=\pi$, on a $\sum_{n=0}^{+\infty}\frac{1}{a^2-n^2}=\left(\cot a(a\pi)-\frac{1}{a\pi}\right)\frac{\pi}{2a}$