Bangladesh University of Engineering and Technology

CSE 316 January 2021, Final Quiz

Total Marks: 45, Time: 40 minutes (+10 for submission)

Part 1: MCQ (Google Form)

 $1 \times 15 = 15$

Part 2: Short Questions

 $5 \times 6 = 30$

Question 1:

You are given the following assembly code segment. Make necessary modifications to make it print the value x - 2y.

.MODEL SMALL	MOV AH, 2
.STACK 100H	MOV DL, CR
.DATA	INT 21H
CR EQU 0DH	MOV DL, LF
LF EQU ØAH	INT 21H
X DW ?	
Y DW ?	MOV AX, X
Z DW ?	MOV BX, 2
.CODE	MUL BL
	MOV BX, AX
MAIN PROC	MOV AX, Y
MOV AX, @DATA	SUB AX, BX
MOV DS, AX	MOV Z, AX
	MOV DX, Z
MOV AH, 1	ADD DX, 0
INT 21H	MOV AH, 2
SUB AL, 0	INT 21H
MOV X, AX	
	;DOS EXIT
MOV AH, 1	MOV AH, 4CH
INT 21H	INT 21H
SUB AL, 0	
MOV Y, AX	MAIN ENDP
	END MAIN

Question 2:

In tropical geometry (a branch of mathematics), tropical addition (\oplus) and multiplication (\otimes) operations are defined as follows:

$$x \oplus y = \min(x, y)$$
$$x \otimes y = x + y$$

Assume you have two signed integers x and y in AX and BX. Write an assembly code segment that will compute $x \oplus y$ and $x \otimes y$ and store them in AX and BX respectively. You can ignore overflow.

Question 3:

What will be the output of the following assembly code? Note that the following code is a running code having no error.

```
section .text
global _start ;must be declared for using gcc
_start: ;tell linker entry point
mov ecx, [num1]
cmp ecx, [num2]
jg check third num
mov ecx, [num2]
check_third_num:
cmp ecx, [num3]
jg _exit
mov ecx, [num3]
_exit:
mov [result], ecx
mov ecx, msg
mov edx, len
mov ebx,1 ;file descriptor (stdout)
mov eax,4 ;system call number (sys write)
int 0x80 ;call kernel
mov ecx, result
mov edx, 2
mov ebx,1 ;file descriptor (stdout)
mov eax,4 ;system call number (sys write)
int 0x80 ;call kernel
mov eax, 1
int 80h
section .data
msg db "Result is: ",
len equ $- msg
num1 dd '22'
num2 dd '31'
num3 dd '47'
segment .bss
result resb 2
```

Question 4:

Using recursion, write an assembly program which takes a positive integer n as input, and prints all positive integers from 1 to n in descending order.

Sample input: 5

Sample output: 5 4 3 2 1

Question 5:

Suppose you have an active low switch S and two LEDs L1 and L2 connected with your ATmega32. Initially L1 is ON and L2 is OFF. You need to toggle L1 and L2 whenever S is pressed. Draw the circuit diagram and write necessary C code to perform the task. [Handle the press of S with external interrupt one(1)]

Question 6:

Suppose, for ATmega32, ADC is right justified, internal 2.56V is reference. Input voltage varies between 0V-2.56V. What is the maximum error if only ADCH is read?

Helping Materials

Register Name	Configuration								
GICR	INT1	INT0	INT2	-	-	-	IVSEL	IVCE	
MCUCR	- Trigger cod	- es: 00 → lov	- v level, 01 –	- → any logi	ISC11	ISC10 , 10 → fallin	ISC01 g edge, 11 →	ISC00	
MCUCSR	JTD	ISC2	- : 0 → falling	- gedge trig	- gger, 1 → ri	sing edge tr	- igger	-	