P O L I T E C H N I K A W A R S Z A W S K A PODSTAWY KONSTRUKCJI URZĄDZEŃ PRECYZYJNYCH

Projekt 2

Temat nr ZNL - 14

Zespół napędu liniowego

Wykonał: Łukasz Pastuszko, gr. Mt-131B Prowadzący: dr inż. Marcin Zaczyk

1. Przedmiot założeń.

Przedmiotem poniższych założeń jest mechanizm napędu liniowego przeznaczony do kątowego lub liniowego pozycjonowania obiektów zasilany silnikiem elektrycznym.

2. Symbol i nazwa konstrukcji

Urządzenie skonstruowane zgodnie z niniejszymi założeniami ma mieć symbol ZNL-14 i nazwę Zespół Napędu Liniowego.

3. Zastosowanie

Moduł napędu liniowego zapewnia płynny, precyzyjny ruch liniowy, przy działającym na niego niewielkim obciążeniu. Dzięki dużej dokładności znajduje swoje zastosowanie w kątowych i liniowych układach pozycjonujących .

4. Uzasadnienie celowości opracowania konstrukcji

Jako urządzenie precyzyjne moduł przeznaczony jest do użytku we wszelkiego rodzajach układach pozycjonujących przenoszących niewielkie obciążenie. Ma stanowić konkurencję dla urządzeń już istniejących na rynku ze względu na łatwość eksploatacji i niską cenę.

5. Orientacyjne zapotrzebowanie i przewidywalna wielkość produkcji

Urządzenie projektowane z myślą o rynku europejskim, dlatego jest zgodnie z jego wymaganiami. Szacowane roczne zapotrzebowanie krajowe i zagraniczne wynosi do 1000 sztuk, dlatego najlepiej, aby urządzenie zastało wykonane w produkcji seryjnej.

6. Wymagania stawiane konstrukcji

Wymagania techniczne:

- Maksymalne liniowe przemieszczenie popychacza L_{max}=60 mm
- Maksymalne robocze obciążenie osiowe popychacza Qmax=80 N
- Maksymalna prędkość posuwu popychacza vmax=4 mm/s
- Zapewnić sygnalizowanie położenia popychacza na drodze elektrycznej z rozdzielczością nie gorszą niż Δs=5 μm
- Trzykrotne obciążenie przepychacza nie może spowodować uszkodzenia napędu
- Zastosować zabezpieczenie elektryczne oraz mechaniczne umożliwiające przekroczenie położeń końcowych popychacza
- Sposób mocowania zespołu: **K** kołnierzowy
- Zastosować silnik prądu stałego (DC) zasilany bezpiecznym napięciem (do 24 V)
- Przewidzieć złącze wielostykowe mocowane do szkieletu,
- Zastosować sprzegło przeciążeniowe cierne
- Urządzenie powinno spełniać wymagania takie jak: odporność na niewłaściwe użytkowanie, mały koszt, niewielkie wymiary i ciężar a także wygoda i bezpieczeństwo obsługi oraz napraw Mechanizm ma pracować w pomieszczeniu zamkniętym w zakresie temperatur: +5°C do +40°C, przy średnim zapyleniu
- Wielkość produkcji urządzenia: seryjna (S)

7. Schemat napędu liniowego

- 1. Nakrętka
- 2. Łożysko
- 3. Przekładnia
- 4. Zabezpieczenie elektryczne
- 5. Silnik z reduktorem
- 6. Popychacz
- 7. Enkoder
- 8. Sprężyna
- 9. Sprzęgło
- 10. Zabezpieczenie mechaniczne

Obliczenia konstrukcyjne

1. Dobór średnicy popychacza

a. Przewidywana całkowita długość popychacza L_c :

$$L_c = L_d + L_{max} + L_z$$

 L_d – długość popychacza, od jego wyjścia z nakrętki do czoła, w skrajnym położeniu, gdy jest najmniej wysunięty,

 L_{max} – zakres ruchu

 L_z – długość ześrubowania w mm,

Popychacz może najłatwiej ulec wyboczeniu, gdy jest maksymalnie wysunięty.

Długość części popychacza wysuniętej z nakrętki wynosi:

$$L = L_{max} + L_d = 60 + 30 = 90 \ mm$$

b. Minimalna średnica śruby ze względu na wyboczenie.

Dla pręta obciążonego siłą osiową istnieje siła krytyczna, która nie wywoła jeszcze jego wyboczenia. Jej wartość wyznaczam z zależności:

$$F_{kr} = \left(\frac{\pi}{\beta}\right)^2 \cdot \frac{E \cdot J}{L^2}$$

Gdzie:

E – moduł sprężystości; β – współczynnik zależny od sposobu mocowania pręta, β =2;

L – długość popychacza pracująca na wyboczenie;

J – moment bezwładności przekroju poprzecznego śruby wyrażany wzorem:

$$J = \frac{\pi \cdot d_r^4}{64}$$

 $d_r-\acute{s}rednica\ \acute{s}ruby.$

Podczas pracy napędu liniowego musi być spełniony warunek

$$F_{max} < F_{kr}$$

Siła maksymalna jaką musi wytrzymać napęd, jest trzykrotnie większa od wartości roboczej obciążającej popychacz.

$$F_{max} = k \cdot Q_{max} = 3 \cdot 80 = 240 \text{ N}$$

Gdzie:

k – współczynnik przeciążenia przyjmowany zależnie od przewidywanych warunków pracy, k=3 Q_{max} – siła robocza obciążająca popychacz.

Na podstawie przytoczonych zależności wyznaczam minimalną średnicą rdzenia popychacza $d_{r\,min}$, ze względu na wyboczenie.

$$d_{r\,min} \ge \sqrt[4]{\frac{64 \cdot k \cdot Q_{max} \cdot L^2 \cdot \beta^2}{\pi^3 \cdot E}} = \sqrt[4]{\frac{64 \cdot 240 \cdot 90^2 \cdot 2^2}{3,14^3 \cdot 2,1 \cdot 10^5}} = 2,957 \, mm$$

Tabela 1. Wybrane wartości średnic gwintów metrycznych (wg PN-83/M-02013)

Oznaczenie	P [mm]	$D_2 = d_2$	$d_r = d_3$	$D_1 = d_1$
M3	0,5	2,675	2,387	2,459
M3×0,35	0,35	2,773	2,571	2,621
M4	0,7	3,545	3,141	3,242
M4×0,5	0,5	3,675	3,387	3,459
M5	0,8	4,480	4,019	4,134
M5×0,5	0,5	4,675	4,387	4,459
M6	1,0	5,351	4,773	4,917
M6×0,75	0,75	5,513	5,080	5,188
M6×0,5	0,5	5,675	5,387	5,459

Porównując otrzymaną wartość $d_{r min}$ z wartościami d_r w załączonej tabeli, wstępnie wybieram gwint M4 ze względu na wyboczenie.

c. Obliczenie śruby na rozciąganie (ściskanie)

Naprężenia ściskające lub rozciągające wywołane działaniem na popychacz siły osiowej nie mogą przekroczyć wartości krytycznej:

$$\sigma_{c,r} = \frac{F_{max}}{S} = \frac{4 \cdot k \cdot Q_{max}}{\pi \cdot d_r^2} \le k_{c,r}$$

 $\sigma_{c,r}$ – naprężenia ściskające (rozciągające),

 Q_{max} - zadana robocza siła działająca w osi popychacza,

S - powierzchnia przekroju rdzenia śruby w mm²,

d_r - średnica rdzenia śruby dla gwintu M4,

 $k_{c,r}$ - dopuszczalne naprężenia ściskające (rozciągające), $k_{c,r}\!=0.5\cdot R_e$

 $(R_e - \text{granica plastyczności w MPa})$

k - współczynnik przeciążenia zależny od przewidywanych warunków pracy, k=3

$$\sigma_{c,r} = \frac{4 \cdot 3 \cdot 80}{3.14 \cdot 3.141^2} = 30,973 MPa$$

Materiał wybrany na rdzeń popychacza to **stal stopowa hartowana 17Cr3 (15H)** dla której $R_e = 490\,$ MPa, zatem naprężenia dopuszczalne $k_{c,r} = 245\,$ MPa.

d. Dobór średnicy śruby popychacza ze względów technologicznych Ponieważ długość ześrubowania $L_z > 6 \cdot d = 6 \cdot 3,141 = 18,846$, przyjmuję wartość $L_z = 20$ mm

$$L_c = L_d + L_z + L_{max} = 30 + 20 + 60 = 110 \text{ mm}$$

gdzie:

L_c – całkowita długość popychacza w mm

L_d – długość popychacza, od jego wyjścia z nakrętki do czoła, w skrajnym położeniu, gdy jest najmniej wysunięty,

 $L_{max}-zakres\;ruchu$

L_z – długość ześrubowania w mm,

Tabela 2. Zalecane minimalne średnice gwintu w zależności od długości całkowitej popychacza Le

Całkowita długość popychacza	Zalecana minimalna średnica gwintu
L _c < 75	≥ M3
75 < L _c < 100	≥ M4
100 < <i>L_c</i> < 150	≥ M5
L _c >150 mm	≥ M6

Całkowita długość popychacza zawiera się w przedziale $100 \text{ mm} < L_c < 150 \text{ mm}$. Na tej podstawie wybieram gwint M5 we względów technologicznych i jest to mój ostateczny wybór.

2. Wstępne obliczenia przełożenia i_c.

a. Obliczenie prędkości obrotowej nakrętki – n_{nut}

$$n_{nut} = \frac{60 \cdot V_{max}}{P} = \frac{60 \cdot 4}{0.8} = 300 \frac{obr}{min}$$

gdzie:

 V_{max} – maksymalna prędkość liniowa śruby (popychacza) w mm/s P – skok gwintu śruby w mm

b. Wstępne obliczenie przełożenia całkowitego przekładni – i_c

$$i'_p = \frac{n_{siln}}{n_{nut}} = \frac{5250}{300} = 17.5$$

gdzie:

 n_{siln} – wstępnie przyjęta prędkość robocza silnika, $n_{siln}=5250$ obr/min n_{nut} – prędkość obrotowa nakrętki

c. Sposób realizacji przełożenia – i_p

$$i_p > 8$$

Otrzymana wartość przełożenia jest wysoka zatem należy zastosować reduktor handlowy. Konieczne jest więc zastosowanie jednostopniowej przekładni sprzęgającej. Ostatecznie:

$$i_p = i_{rh} \cdot i_s$$

gdzie:

 i_{rh} – przełożenie reduktora handlowego i_{s} – przełożenie przekładni sprzęgającej

3. Sprawność przekładni redukcyjnej – η_p

a. reduktor handlowy i stopień sprzęgający

$$\eta_p=\eta_{rh}\cdot\eta_s=~0.85\cdot0.9=0.765$$

gdzie:

 η_{rh} – sprawność reduktora handlowego, wstępnie przyjęto η_s – sprawność stopnia sprzęgającego

4. Sprawność zespołu śruba – nakrętka - η_{sr-n}

Rysunek 1. Wybrane parametry gwintu.

$$\begin{split} \eta_{sr-n} &= \frac{tg\gamma}{tg(\gamma + \rho')} \\ \gamma &= arctg \frac{P}{\pi \cdot d_2} = arctg \frac{0,8}{3,14 \cdot 4,48} = 3,25^{\circ} \\ \rho' &= arctg\mu' = arctg \frac{\mu}{cos \frac{\alpha}{2}} = arctg \frac{0,25}{cos \frac{60^{\circ}}{2}} = 16,1^{\circ} \\ \eta_{sr-n} &= \frac{tg(3,25)}{tg(3,25+16,1^{\circ})} = 0,1618 \end{split}$$

γ – kąt pochylenia linii śrubowej gwintu,

 ρ' – pozorny kąt tarcia,

 α – kat zarysu gwintu metrycznego, $\alpha = 60^{\circ}$

P – skok gwintu w mm

d₂ – średnia średnica gwintu w mm

 μ ' – pozorny współczynnik tarcia, μ - współczynnik tarcia materiałów śruby i nakrętki (**stal twarda**– **stal miękka**)

5. Sprawność zespołu napędu liniowego - ηznl

$$\eta_{znl} = \eta_p \cdot \eta_{sr-n} = 0.765 \cdot 0.1618 = 0.124$$

gdzie:

η_p – sprawność przekładni redukcyjnej

η_{sr-n} – sprawność zespołu śruba – nakrętka

6. Moc na popychaczu – N_{sr}

Moc dostarczana na popychacz przez napęd musi być równa:

$$N_{sr} = \frac{Q_{max} \cdot V_{max}}{1000} = \frac{80 \cdot 4}{1000} = 0.32 W$$

 Q_{max} – maksymalne robocze obciążenie popychacza (śruby) w N

V_{max} – maksymalna prędkość ruchu popychacza w mm/s

7. Moc silnika napędowego: obliczeniowa – N_{obl} i maksymalna P_{2max}

$$N_{obl} = \frac{N_{sr}}{\eta_{znl}} = \frac{0.32}{0.124} = 2.585 \text{ W}$$

Dla zapewnienia poprawnej pracy moc maksymalna P_{2max} silnika musi zawierać się w granicach:

$$P_{2max} = (1,3 \div 1,5) \cdot N_{obl} = (1,3 \div 1,5) \cdot 2,585 = (3,361 \div 3,878) \text{ W}$$

8. Moment niezbędny do zapewnienia ruchu obrotowego nakrętki – M_{nut}

$$M_{mut} = 0.5 \cdot Q_{max} \cdot d_2 \cdot tg(\gamma + \rho') = 0.5 \cdot 80 \cdot 4.48 \cdot tg(3.25^{\circ} + 16.1^{\circ}) = 62.949 \text{ mNm}$$

gdzie:

d₂ – średnia średnica gwintu popychacza,

γ – kat pochylenia linii śrubowej gwintu popychacza

 ρ' – pozorny kąt tarcia pary materiałów śruby i nakrętki

Q_{max} – siła osiowa obciążająca popychacz w N

9. Moment obciążenia zredukowany do wałka silnika – M_{zred}

$$M_{zred} = \frac{M_{nut}}{i_p \cdot \eta_p} = \frac{62,949}{17,5 \cdot 0,765} = 4,702 \text{ mNm}$$

gdzie:

M_{nut} – moment niezbędny do zapewnienia ruchu obrotowego nakrętki w mNm

i_p – przełożenie przekładni redukcyjnej

 $\eta_p-sprawność przekładni redukcyjnej$

10. Dobór silnika.

Wymagana moc: $(3,361 \div 3,878)$ W

Na tej podstawie wybieram silnik firmy Maxon RE 16 118701 o prędkości biegu jałowego

 $n_0 = 7130 \; \frac{obr}{min}$ oraz momencie hamującym $\; M_h = 18,6 \; mNm \;$

Kartę katalogową załączam na końcu dokumentacji.

Sprawdzenie mocy silnika:

$$P_{2max} = 0.25 \cdot M_h \cdot \omega_0 = 0.25 \cdot M_h \cdot \frac{\pi \cdot n_0}{30} = 0.25 \cdot 18.6 \cdot \frac{3.14 \cdot 7130}{30 \cdot 1000} = 3.472 W$$

 M_h – moment hamujący silnika w Nm ω_0 – prędkość kątowa biegu jałowego wybranego silnika n_0 - prędkość biegu jałowego silnika w obr/min

11. Wstępny dobór punktu pracy silnika.

$$n_s = n_0 \cdot \frac{M_h - M_{zred}}{M_h}$$

gdzie:

 n_{o} – prędkość biegu jałowego silnika w obr/min,

n_s – prędkość robocza silnika w obr/min

 M_h – moment rozruchowy (startowy) silnika w mNm

 M_{zred} – moment obciążenia zredukowany do wałka silnika w mNm

n_k	i _p	Mzred	n k+1	Δn
5250	17,5	4,702	5328	78
5328	17,758	4,634	5354	26
5354	17,846	4,611		

$$\mathrm{i_p} = \frac{\mathrm{n_k}}{\mathrm{n_{\mathrm{nut}}}} \qquad \qquad M_{zred} = \frac{M_{nut}}{\mathrm{i_p} \cdot \eta_p} \qquad \qquad n_{k+1} = n_0 \cdot \frac{M_h - M_{zred}}{M_h}$$

Punkt pracy dobieramy tak aby spełniał poniższą zależność:

$$0.5M_h > M_{zred} > \frac{1}{7}M_h$$
 9.3 > $M_{zred} > 2.657$

Wyznaczony moment pracy spełnia tą zależność.

$$M_{zred} = 4,611 \, mNm$$

$$n_0 = 5354 \frac{obr}{min}$$

12. Dobór reduktora

Reduktor handlowy należy dobrać spośród zalecanych przez producenta do danego silnika. Wybieram reduktor firmy **Maxon Planetary Gearhead GP 16 A 110321** o przełożeniu 4,4:1 i sprawności 0,9. Maksymalna prędkość wejściowa przy pracy ciągłej wynosi 8000 obr/min.

Kartę katalogową załączam na końcu dokumentacji.

Sprawność przekładni redukcyjnej dla wybranego reduktora:

$$\eta_p = \eta_{rh} \cdot \eta_s = 0.9 \cdot 0.9 = 0.81$$

gdzie:

η_{rh} – sprawność reduktora handlowego

η_s – sprawność stopnia sprzęgającego

Sprawność reduktora różni się od wstępnie przyjętej sprawności, dlatego przeprowadzam obliczenia skorygowanego punktu pracy.

n _k	i _p	Mzred	nk+1	Δn
5354	17,846	3,919	5628	274
5628	18,759	3,729	5701	73
5701	19,002	3,681	5719	18
5719	19,063	3,669		

$$\mathrm{i_p} = \frac{\mathrm{n_k}}{\mathrm{n_{nut}}} \qquad \qquad M_{zred} = \frac{M_{nut}}{i_p \cdot \eta_p} \qquad \qquad n_{k+1} = n_0 \cdot \frac{M_h - M_{zred}}{M_h}$$

Ostateczna wartość momentu zredukowanego: $M_{zred} = 3,669 \ mNm$

Przełożenie przekładni redukcyjnej i_{pk} = 19,063

Prędkość robocza $n_{sk} = 5719$ obr/min

13. Przełożenie stopnia sprzęgającego

Wartość przełożenia stopnia sprzęgającego:

$$i_s = \frac{i_{pk}}{i_{rh}} = \frac{19,063}{4,4} = 4,333$$

 i_{pk} – ostateczna wartość przełożenia przekładni redukcyjnej i_{rh} – przełożenie dobranego reduktora handlowego

Moment zredukowany:

$$M_{zred} = \left(\frac{1}{7}M_h \div 0.5M_h\right) = (2.657 \div 9.3) \, mNm$$

$$M_{zred} = 3,669 \text{ mNm}$$

Dla wybranego punktu pracy moment zredukowany do wałka silnika nie przekracza określonej wartości.

14. Moment sprzęgła przeciążeniowego M_{sp}

$$M_{\rm sp} = (1.3 \div 1.5) M_{nut} = 1.5 \cdot 62.949 = 94.424 \text{ mNm}$$

15. Minimalna liczba impulsów tarczy na jeden obrót - n_{imp}

$$n_{imp} = \frac{1000 \cdot p}{\Delta s} = \frac{1000 \cdot 0.8}{5} = 160$$

gdzie:

p – skok gwintu w mm Δs – rozdzielczość μm

liczba cykli CPR tarczy na jeden obrót:

$$n_{CPR} = 0.25 \cdot n_{imp} = 0.25 \cdot 160 = 40$$

RE 16 Ø16 mm, precious metal brushes CLL, 3.2 watt

Planetary Gearhead GP 16 A Ø16 mm, 0.1-0.3 Nm

Technical Data					
Planetary Gearhead		si	traight	teeth	
Output shaft	stainle	ss stee	al, hard	dened	
Bearing at output			eve be		
Radial play, 6 mm from fla	inge		xx. 0.0		
Axial play	_	0.0	02-0.1		
Max. axial load (dynamic)				8 N	
Max. force for press fits			1	100 N	
Direction of rotation, drive	to outpu	ıt.		-	
Max. continuous input sp				0 rpm	
Recommended temperat	ure range		30+1	loó°C	
Extended range as opti	ion	-	40+1	00°C	
Number of stages 1	2	3	4	5	
Max. radial load, 6 mm					
from flange 8 N	12 N	16 N	20 N	20 N	
-					

		-	-4
м	л	- 1	- 1

	Stock program Standard program	Part Numbers								
	Special program (on request)		110321	110322	110323	118186	110324	134782	110325	134785
Gea	rhoad Data									
1	Reduction		4.4:1	19:1	84:1	157:1	370:1	690:1	1621:1	3027:1
2	Absolute reduction		37/12	2248/	185183/	19483/179	100000001/20001	1171811/1875	Gordanous/ January	#2810087/ ₂₁₁
3	Max. motor shaft diameter	mn	2	2	2	1.5	2	2	2	2
	Part Numbers		118184	134777	134778		134780	118187	134783	134786
1	Reduction		5.4:1	24:1	104:1		455:1	850:1	1996:1	3728:1
2	Absolute reduction		27/2	1529/45	B77723/		1000711/10983	521461/625	78561767/J	30282137/812
3	Max. motor shaft diameter	mп	1.5	2	2		2	1.5	2	2
	Part Numbers			118185	134779		134781		134784	118188
1	Reduction			29:1	128:1		561:1		2458:1	4592:1
2	Absolute reduction			728/ ₂₃	411113/3/321		2388521/4225		133000487/34875	14348907/312
	Max. motor shaft diameter	mm		1.5	2		2		2	1.5
4	Number of stages		1	2	3	3	4	4	5	5
5	Max. continuous torque	Nm	0.10	0.15	0.20	0.20	0.25	0.25	0.30	0.30
6	Max. intermittent torque at gear output	Nm	0.150	0.225	0.300	0.300	0.375	0.375	0.450	0.450
7	Max. efficiency	90	90	81	73	73	65	65	59	59
8	Weight	g	20	23	27	27	31	31	35	35
9	Average backlash no load	3	1.4	1.6	2.0	2.0	2.4	2.4	3.0	3.0
10	Mass inertia	gcm ²	0.07	0.05	0.05	0.04	0.05	0.05	0.05	0.05
11	Gearhead length L1	mm	15.5	19.1	22.7	22.7	26.3	26.3	29.9	29.9

+ Motor	Page	+ Sensor/Brake	Page (Overall leng.	th [mm] - Mo	tor length + 9	qearhead leng	rth + (sensor)	brake) + asse.	mbly parts	
RE 16, 2 W	147			37.9	41.5	45.1	45.1	48.7	48.7	52.3	52.3
RE 16, 2 W	147	MR	507/508	43.6	47.2	50.8	50.8	54.4	54.4	58.0	58.0
RE 16, 3.2 W	148/149			56.0	59.6	63.2	63.2	66.8	66.8	70.4	70.4
RE 16, 3.2 W	149	13 GAMA	472	62.1	65.7	69.3	69.3	72.9	72.9	76.5	76.5
RE 16, 3.2 W	149	MR	507/508	61.0	64.6	68.2	68.2	71.8	71.8	75.4	75.4
RE 16, 4.5 W	150/151			59.0	62.6	66.2	66.2	69.8	69.8	73.4	73.4
RE 16, 4.5 W	151	13 GAMA	472	65.2	68.8	72.4	72.4	76	76	79.6	79.6
RE 16, 4.5 W		MR	507/508	64.0	67.6	71.2	71.2	74.8	74.8	78.4	78.4
A-max 16	167-170			41.0	44.6	48.2	48.2	51.8	51.8	55.4	55.4
A-max 16	168/170	13 GAMA	472	49.1	52.7	56.3	56.3	59.9	59.9	63.5	63.5
A-max 16	168/170	MR	507/508	46.0	49.6	53.2	53.2	56.8	56.8	60.4	60.4
EC-max 16,5 W	263			39.6	43.2	46.8	46.8	50.4	50.4	54.0	54.0
C-max 16, 5 W	263	MR	509	46.9	50.5	54.1	54.1	57.7	57.7	61.3	61.3
C-max 16, 2-wire	264			49.1	52.7	56.3	56.3	59.9	59.9	63.5	63.5
C-max 16, 8 W	265			51.6	55.2	58.8	58.8	62.4	62.4	66.0	66.0
C-max 16.8 W	265	MR	509	58.9	62.5	66.1	66.1	69.7	69.7	73.3	73.2

