Review

1 $A\boldsymbol{x} = \boldsymbol{b} \ (A \in \mathbb{R}^{m \times n}, \boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{b} \in \mathbb{R}^m)$

- Gaussian elimination: Why does it work?
- Three cases
 - (i) no solution
 - ⇔ no point where all the hyperplanes do intersect
 - \Leftrightarrow **b** cannot be represented as a linear combination of the column vectors of A
 - \Leftrightarrow **b** \notin span (columns of A)
 - $\Leftrightarrow \boldsymbol{b} \notin \operatorname{col}(A)$
 - \Leftrightarrow There is no vector in \mathbb{R}^n that is transformed to **b** by the linear transformation T_A
 - $\Rightarrow \text{ The columns of A are either linearly dependent } \left(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right) \text{ of linearly independent } \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right).$
 - \Rightarrow dim col(A) = rank(A) < m (otherwise col(A) = \mathbb{R}^m and the linear system always have a solution)
 - \Rightarrow If m = n, det(A) = 0 (A is not invertible)
 - \Rightarrow There can be any number of free variables. (including 0)
 - (ii) a unique solution
 - ⇔ all the hyperplanes intersect at one point
 - $\Rightarrow b \in col(A)$
 - \Rightarrow no free variable (converse is not always true: e.g. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$)
 - \Rightarrow null $(A) = \{0\}$ (otherwise we can get another solution by adding a nonzero vector in null(A))
 - $\Rightarrow \operatorname{rank}(A) = n$
 - \Rightarrow columns of A are linearly independent
 - $\Rightarrow n \le m$ (otherwise columns of A are linearly dependent)
 - \Leftrightarrow There is a unique way to represent **b** as a linear combination of the columns of A
 - \Leftrightarrow There is only one vector $\boldsymbol{x} \in \mathbb{R}^n$ that is transformed to \boldsymbol{b} by the linear transformation T_A
 - $\Leftrightarrow A \text{ maps } \mathbb{R}^n \text{ to the subspace } \operatorname{col}(A) \subset \mathbb{R}^m \text{ 1-to-1}$
 - \Leftrightarrow col(A) is an n-dimensional hyperplane in \mathbb{R}^m through the origin
 - \Rightarrow If m = n, $det(A) \neq 0$ (A is invertible)
 - (iii) infinitely many solutions
 - ⇔ all the hyperplanes meet infinitely many points (lines or planes...)
 - $\Rightarrow b \in \operatorname{col}(A)$
 - \Rightarrow columns of A are linearly dependent
 - \Rightarrow nullity(A) > 0
 - \Rightarrow one or more free variables
 - \Leftrightarrow There are more than one ways to represent **b** as a linear combination of the columns of A.
 - \Leftrightarrow There are infinitely many vectors in \mathbb{R}^n that are transformed to **b** by the linear transformation T_A
 - $\Leftrightarrow A \text{ maps } \mathbb{R}^n \text{ to } \text{col}(A) \text{ many-to-1}.$
 - \Rightarrow If m = n, det(A) = 0 (A is not invertible)

$oldsymbol{A} oldsymbol{x} = oldsymbol{0} \; \left(A \in \mathbb{R}^{m imes n}, oldsymbol{x} \in \mathbb{R}^{n}, oldsymbol{b} \in \mathbb{R}^{m} ight)$

- Two cases
 - (i) a unique solution (0)
 - ⇔ all the hyperplanes meet only at the origin
 - $\Leftrightarrow \text{null}(A) = \{\mathbf{0}\}\$
 - \Leftrightarrow nullity(A) = 0
 - ⇔ no free variable
 - \Leftrightarrow columns of A are linearly independent
 - \Leftrightarrow col(A) is an n-dimensional subspace in \mathbb{R}^m
 - $\Leftrightarrow \dim \operatorname{col}(A) = \operatorname{rank}(A) = n$
 - $\Leftrightarrow A \text{ maps } \mathbb{R}^n \text{ to } \text{col}(A) \text{ 1-to-1}$
 - \Leftrightarrow If m = n, det $A \neq 0$
 - (ii) infinitely many solutions
 - ⇔ all the hyperplanes meet infinitely many points (lines, planes...)
 - \Leftrightarrow The set of solution vectors forms a nontrivial subspace $\operatorname{null}(A) \subset \mathbb{R}^n$
 - \Leftrightarrow null(A) is non-trivial.
 - $\Leftrightarrow \dim \text{null}(A) = \text{nullity}(A) > 0$
 - \Rightarrow columns of A are linearly dependent
 - $\Leftrightarrow A \text{ maps } \mathbb{R}^n \text{ to } \text{col}(A) \text{ many-to-1}$
 - \Leftrightarrow There is a non-zero vector x such that Ax = 0
 - \Leftrightarrow If m = n, det(A) = 0

3 $A = LU (A, L, U \in \mathbb{R}^{n \times n})$

- How does it work?
 - (a) Gaussian elimination: $E_k \cdots E_2 E_1 A = U$
 - (b) $A = (E_k \cdots E_1)^{-1}U = (E_1^{-1} \cdots E_k^{-1})U$ (elementral matrices E_1, \ldots, E_k are invertible)
 - (c) A = LU where $L = E_1^{-1} \cdots E_k^{-1}$ $(E_1^{-1}, \dots, E_k^{-1})$ are unit lower triangular matrices)

4 A is invertible $(A \in \mathbb{R}^{n \times n})$

- How to find A^{-1} ? Gauss-Jordan elimination: $[A|I] \rightarrow [I|A^{-1}]$
- Why does it work? $E_k \cdots E_1 A = I \Leftrightarrow E_k \cdots E_1 I = A^{-1}$
- "The fundamental theorem of invertible matrices"
- 5 $\operatorname{col}(A), \operatorname{row}(A), \operatorname{null}(A) \ (A \in \mathbb{R}^{m \times n})$
 - $\boldsymbol{x} \in \operatorname{col}(A) \ (\boldsymbol{x} \in \mathbb{R}^m)$
 - \Leftrightarrow There is a column vector $\boldsymbol{y} \in \mathbb{R}^n$ such that $\boldsymbol{x} = A\boldsymbol{y}$
 - $\Leftrightarrow x$ can be represented as a linear combination of the columns of A
 - \Leftrightarrow The linear system Ay = x is consistent.
 - $\boldsymbol{x} \in \text{row}(A) \ (\boldsymbol{x} \in \mathbb{R}^n)$
 - \Leftrightarrow There is a row vector $\mathbf{y} \in \mathbb{R}^m$ such that $\mathbf{x} = \mathbf{y}A$
 - $\Leftrightarrow x$ can be represented as a linear combination of the rows of A
 - \Leftrightarrow The linear system $(A^T)y = x^T$ is consistent
 - $\boldsymbol{x} \in \text{null}(A) \ (\boldsymbol{x} \in \mathbb{R}^n)$
 - $\Leftrightarrow Ax = 0$

6 $A\boldsymbol{x} = \lambda \boldsymbol{x} \ (A \in \mathbb{R}^{n \times n}, \boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{x} \neq \boldsymbol{0}, \lambda \in \mathbb{R})$

- $\Leftrightarrow \lambda$ is an eigenvalue of A
- \Leftrightarrow \boldsymbol{x} is an eigenvector of A associated with the eigenvalue λ
- \Leftrightarrow Geometric meaning: $m{x}$ does not change its direction by the linear transformation T_A (including becoming the zero vector)
- $\Leftrightarrow (A \lambda I)\boldsymbol{x} = \boldsymbol{0}$
- $\Leftrightarrow x \in \text{null}(A \lambda I)$
- $\Leftrightarrow A \lambda I$ is not invertible.
- $\Leftrightarrow \det(A \lambda I) = 0$
- $\Leftrightarrow \lambda$ is a solution of the characteristic equation of A
- $\Leftrightarrow \text{nullity}(A \lambda I) > 0$

7 $P^{-1}AP = D$ $(A, P, D \in \mathbb{R}^{n \times n}, D$ is a diagonal matrix)

- $\Leftrightarrow \ A \sim D$
- $\Rightarrow A^k = P^{-1}D^kP$
- \Leftrightarrow "The diagonalization theorem"

8 Computing $A^k \boldsymbol{x} \ (A \in \mathbb{R}^{n \times n}, \boldsymbol{x} \in \mathbb{R}^n)$

- (i) Is A diagonalizable?
 - $\to A^k \boldsymbol{x} = P D^k P^{-1} \boldsymbol{x}$
- (ii) Is \boldsymbol{x} a linear combination of eigenvectors of A? $(\boldsymbol{x} = \sum_{j=1}^{m} c_j \boldsymbol{v}_j)$

$$ightarrow A^k oldsymbol{x} = \sum_{j=1}^m c_j \lambda^k oldsymbol{v}_j^k$$