Considérons la fonction f définie sur ${\mathbb R}$ par

$$f(x) = \left(rac{1}{3}x + 2
ight)\left(x + rac{4}{3}
ight)$$

Notons u et v les fonctions suivantes :

Étudions le signe de u et v sur \mathbb{R} .

$$u(x) \geqslant 0$$

$$v(x)\geqslant 0$$

$$rac{1}{3}x+2\geqslant 0$$

$$x+rac{4}{3}\geqslant 0$$
 $x\geqslant -rac{4}{3}$

$$\frac{1}{2}x \geqslant -2$$

$$x\geqslant -rac{4}{2}$$

$$x\geqslant -6$$

Regroupons ces informations dans un tableau de signes pour déterminer le signe de f sur \mathbb{R} .

x	$-\infty$		-6		$-\frac{4}{3}$		$+\infty$
u(x)		_	•	+		+	
v(x)		_		_	0	+	
f(x)		+	0	_	•	+	

Complétez les tableaux de signes

x	$-\infty$		$-\frac{5}{4}$		0	$+\infty$
$egin{array}{c} u(x) \ v(x) \end{array}$		+	0	_	_	
v(x)		_		_	+	
f(x)						

b.

ĺ	x	$-\infty$		-3		5	$+\infty$
	u(x)		+		+	6 –	
	v(x)						
	f(x)		+	•	_	+	

x	$-\infty$	4	<u> </u>	9	$+\infty$
u(x)		_	_ (+	
$egin{array}{c} u(x) \ v(x) \ w(x) \end{array}$		_	_	_	
w(x)		- (+	+	
f(x)					

On considère les représentations graphiques des fonctions u et v suivantes.

Complétez le tableau de signes de la fonction

x	$-\infty$	$+\infty$
$egin{array}{c} u(x) \ v(x) \end{array}$		
v(x)		
f(x)		

E3 On considère la représentation graphique de la fonction f=uv suivante.

Complétez son tableau de signes :

\boldsymbol{x}	$-\infty$				$+\infty$
$egin{array}{c} u(x) \ v(x) \end{array}$		+ () —	_	
v(x)					
f(x)					

Propriété : Soient a et b deux réels et u la fonction définie sur $\mathbb R$ par u(x)=ax+b.

- Si a>0, alors u est positive sur $\mathbb R$ si et seulement si $x\geqslant -\frac{b}{a}$.
- Si a < 0, alors u est positive sur $\mathbb R$ si et seulement si $x \leqslant -\frac{b}{a}$.

lacksquare On considère les fonctions u et vdéfinies sur $\mathbb R$ par u(x)=3x-2 et v(x) = -5x + 3.

- **a.** Étudiez le signe de u et v sur \mathbb{R} .
- **b.** En déduire le tableau de signes de f=uv sur

 \blacksquare Étudiez sur $\mathbb R$ le signe des fonctions suivantes:

$$f_1(x) = (x-2)(x-5) \qquad f_2(x) = (x+2)(x-3)$$

$$f_3(x) = (8-x)(x+4)$$
 $f_4(x) = (4x-8)(9-3x)$