

PaNOSC status update:

Mousumi Upadhyay Kahaly

Computational Materials Research, Theory & Simulation

ELI-ALPS, Szeged, Hungary

The Research Institutes (sites) of ELI

ELI-DC Brussels

The consortium that is responsible for the coordination of the three research centres during implementation

ELI-BL Dolny Brezany Czech Republic

Ultrashort x-ray generation, particle acceleration

ELI-ALPS Szeged **Hungary**

Ultrashort laser pulses at high repetition rate

ELI-NP Magurele

Romania Ultra-intense optical

and gamma ray pulses

UHFS

Ultra-High-Field Science unprecedented laser field strength (location: TBD)

Activity range at ELI-ALPS ELI-ALPS user facility

- 1) Generation of XUV/X-ray femto- and attosecond pulses
 - → Attosecond scale of electron dynamics in atoms, molecules, plasmas and solids

ATTOSECOND Beamlines & User Facility

2) New direction in attoscience: Advancement of laser science and technology

- ❖ Laser-matter interaction different domains
- Tools to address the interaction
- Numerical simulations -using a common platform
- Adding results to repository- big data analysis.
- Some practical applications
 - ✓ Electronic structures of a material
 - ✓ Probing ultrafast processes in nanostructures

What happens when we shine a material with light

Use LASER to understand and control materials

Period of first Bohr orbit: 150 as

Control and trace the motion of atoms in molecules

⇒ Control chemical reactions

m eli

Control & trace electrons inside atoms & molecules

How ab-initio method works?

- ✓ Quantum espresso (free)
- √ Octopus (free)
- √ VASP (licensed)
- ✓ Siesta (free)

TDDFT for excited state properties and dynamics.

fundamental variable is the many-body charge density.

- Structure, energetics....
- Cheap, virtual experiment

Real-time electron dynamics in materials

Generic situation: Molecule in laser field

$$\hat{H}(t) = \hat{T}_e + \hat{W}_{ee} + \sum_{j,\alpha} - \frac{Z_{\alpha} e^2}{|r_i - R_{\alpha}|} + \vec{E} \cdot \vec{r}_j \cdot \sin \omega t$$

Strong laser $(v_{laser}(t) \ge v_{en})$:

Non-perturbative solution of full TDSE required

Nonlinear response and ionization of atoms and molecules in strong laser fields

THz spectroscopy lab - THz control in gas & solid phase

Exploring mechanism of terahertz generation from two-color laser induced air plasmas with high-resolution step scan FT VIS spectroscopy

Controlling vibrational, rotational, electronic populations from photodissociation processes with terahertz pulses

Example reaction...

 CHX_3 +multiphoton(514nm) $\rightarrow CH(A)$ +Products

User experiment: Terahertz-driven Luminescence in CdSe Quantum Dots

THz spectroscopy + DFT..... Comprehensive approach

Isoniazid in molecular, and crystalline form.... Identifying suitable structures

spectra closer to experiment

https://doi.org/10.1016/j.saa.2019.117591

mei ei

DFT based tools: Virtual X—ray laboratory

Density functional study of amorphous, liquid and crystalline Ge 2Sb2Te5: Homopolar bonds and/or AB alternation?

J. Phys. Cond. Mat. 20(46):465103 (2008)

₩ei

X-ray photoemission spectroscopy (XPS) valence band spectrum of a-(thick black) and c-GST (red/grey lines)

DOI: 10.1088/0953-8984/20/46/465103

A common ab-initio simulation platform... ASE

Atomistic simulation environment (ASE) for Density functional study

Materials data & their structure

Level	Properties	Methods	Size
	Atomic positions and nuclear charges, properties of free atoms, symmetry	Input: definition of material	10 kB -
	The amount of materials data produced on workstations, compute clusters, and supercomputers is growing exponentially.		10 MB
Ш			10 MB -
			10 TB
III	Most of it is thrown away Inauta elements of Codiomic interaction, etc. theory (wide 1), optical spectra, electrical conductivity, NOMAD		1 GB -
	phonon spectra, thermal conductivity, etc.		1 TB
IV	Efficiency of solar cell, thermoelectric figurerit, turn-over frequency of catalyst, etc.	NOMAD code-independent ARCHIVE	10 kB -
	as a function of temperature and pressure		1 MB

Novel Materials Discovery (NOMAD)

http://nomad-repository.eu

Welcome to the NoMaD Repository

) eli

The *NoMaD* (Novel Materials Discovery) *Repository* was established to host, organize, and share materials data.

NoMaD copes with the increasing demand and requirement of storing scientific data and making them available for longer periods. Rules of good scientific practice set by many funding agencies, worldwide, require keeping scientific data for 10 years. **NoMaD** offers this for free. **NoMaD** also facilitates research groups to share and exchange their results, inside a single group or between two or more, and to recall what was actually done some years ago.

News

Currently, the NoMaD Repository contains

50,236,539 entries.

Upload to NoMaD from MedeA application ... more

Check for related conferences and workshops.

Financial Support

The *NoMaD Repository* enables the confirmatory analysis of materials data, their reuse, and repurposing. Have a look at **voutube** to see our **movies on the concept and a basic tutorial.**

THANK YOU FOR YOUR ATTENTION!

INVESTING IN YOUR FUTURE