ALGEBRA Y GEOMETRÍA ANALÍTICA I-MÓDULO 5 - TRANSFORMACIONES LINEALES – PRIMERA CLASE EJERCITACIÓN COMPLEMENTARIA

TRANSFORMACIONES LINEALES

1) Dada f:
$$R^3 \to R^4$$
 f((x,y,z)) = (x + 2y - z, x - y, 3y + 2z, - x - 3y +z)
Evaluar: f((1,2,1)); f((-1,-1,0)); f((-2,3,-1))

- 2) Indicar cuáles de las siguientes funciones son transformaciones lineales, para aquellas que lo sean, demostrarlo y para las que no , proporcionar un contraejemplo.
- a) $f: \mathbb{R}^3 \to \mathbb{R}$, f((x; y; z)) = x y + z.

b)
$$T_1: \mathbb{R}^2 \to \mathbb{R}^3$$
, $T_1((x; y)) = (2x-3y; -y + 4x; -y)$

c)
$$T_2: \mathbb{R}^2 \to \mathbb{R}^3, T_2((x; y)) = (2x - y; -y; x^2)$$

d)
$$T_1: \mathbb{R}^2 \to \mathbb{R}^3, T_1((x; y)) = (x + 2y; xy; -x)$$

e)
$$T_2: \mathbb{R}^{2\times 2} \to \mathbb{R}^2$$
, $T_2\begin{pmatrix} x & y \\ z & w \end{pmatrix} = (2x + y + w; y - x)$

3) Decidir cuáles de las siguientes funciones son transformaciones lineales:

a)
$$f: R^2 \to R$$
 $f((x,y)) = x + y + 2$

b) f:
$$R^2 \rightarrow R^3$$
 f((x,y)) = (x + y, x - y, 2x)

b) f:
$$R^2 \to R^3$$
 f((x,y)) = (x + y, x - y, 2x)
c) f: $R^3 \to R^{2x^2}$ f((x,y,z)) = $\begin{bmatrix} x+y+z & 2x-y \\ 2y+z & 0 \end{bmatrix}$

d)
$$f: \mathbb{R}^{2x^2} \to R$$
 $f(A) = \det(A)$

4) Sea f:
$$R^3 \to R^2$$
: $f((x,y,z)) = (x + y + z, x - y - 2z)$

- a) Hallar bases de Nu(f) e Im (f)
- b) Hallar $f^{-1}(v)$, si v=(2,-3)
- 5) Sea f: $R^3 \to R^3$ f((x, y, z)) = (x + y + z, x + 2y + 2z, 2x + 3y + 3z) Hallar bases de Nu(f) e Im(f)

6) Sea la T. L.
$$f: R^{2x^2} \to R$$
 definida por $f\left(\begin{pmatrix} x & y \\ z & w \end{pmatrix}\right) = x + z$.

Encontrar una base del núcleo de f.

- 7) Hallar bases de Nu(f) e Im(f) para las siguientes transformaciones lineales:
- a) f: $R^4 \rightarrow R^4$.

$$f((x_1,x_2,x_3,x_4)) = (x_1 + x_2 - x_3 + x_4, x_1 - x_2 + 2x_3 - x_4, 2x_1 + x_3, 2x_2 - 3x_3 + 2x_4)$$

b)
$$f: \mathbb{R}^{2x^2} \to \mathbb{R}^3$$
 $f\left(\begin{bmatrix} a_{11}a_{12} \\ a_{21}a_{22} \end{bmatrix}\right) = (a_{11} + a_{12} - a_{21}, -a_{11} + 2a_{12} + a_{22}, 3a_{12} - a_{21} + a_{22})$

- 8) Decidir si las siguientes afirmaciones son verdaderas o falsas, justificando EN TODOS los casos.
- a) Si T es una transformación lineal y $v \in Nu(T)$ entonces $2v \in Nu(T)$
- b) $T(x_1; x_2) = (x_1; x_1; x_1)$ tiene un núcleo de dimensión 0.
- c) Si T es una transformación lineal y $v \in Im(T)$ entonces $2v \in Im(T)$
- 9) Sea $T: \mathbb{R}^4 \to \mathbb{R}^4$ la transformación definida por:

$$T(x_1;x_2;x_3;x_4) = (x_4 - x_1 \; ; \; x_2 - x_1 \; ; \; x_4 - x_2 \; ; 2x_4 - x_2 - x_1)$$
 Y el subespacio $S = \{(x_1;x_2;x_3;x_4) \in \mathbb{R}^4; \; x_1 + x_2 - x_3 + x_4 = 0\}$

- a) Dar bases y dimensión de Nu(T), Im(T)
- b) Hallar $S \cap Nu(T)$ y verificar que el (1; 1; 3; 1) pertenece al subespacio intersección entre S y Nu(T)
- **10**) Sea T: $\mathbb{V} \to \mathbb{R}^3$ una transformación lineal que verifica que:

$$T(v_1) = (2; 1; 1)$$

 $T(v_2) = (1; 1; 0)$
 $T(v_3) = (0; 0; 0)$
 $T(v_4) = (0; -1; 1)$

Hallar base y dimensión de la Im(T), sabiendo que el conjunto $\{v_1; v_2; v_3; v_4\}$ es base del espacio \mathbb{V}