Základy složitosti a vyčíslitelnosti NTIN090

Petr Kučera

2021/22 (1. přednáška)

Sylabus

- 1 Turingovy stroje a jejich varianty. Churchova-Turingova teze
- 2 Halting problém a další nerozhodnutelné problémy
- 3 RAM a jeho ekvivalence s Turingovými stroji. Algoritmicky vyčíslitelné funkce
- Rozhodnutelné a částečně rozhodnutelné jazyky a jejich vlastnosti
- 6 Riceova věta
- Nedeterministické Turingovy stroje, základní třídy složitosti, třídy P, NP, PSPACE, EXPTIME
- 8 Savičova věta
- Věty o deterministické prostorové a časové hierarchii
- Polynomiální převoditelnost problémů, pojmy NP-těžkosti a NP-úplnosti
- f 0 Cookova-Levinova věta, příklady NP-úplných problémů, důkazy NP-úplnosti
- Třídy co-NP a #P
- 13 Parametrizované algoritmy, třída FPT
- Hypotézy o exponenciálním čase (ETH, SETH) a podmíněné dolní odhady
- Složitost a kryptografie

Literatura

Obojí

- Sipser, M. Introduction to the Theory of Computation. Vol. 2. Boston: Thomson Course Technology, 2006.
- Mé poznámky na stránce k předmětu (http://ktiml.mff.cuni.cz/~kucerap/NTIN090/)

Vyčíslitelnost

- Demuth O., Kryl R., Kučera A.: Teorie algoritmů I, II. SPN, 1984, 1989
- Soare R.I.: Recursively enumerable sets and degrees. Springer-Verlag, 1987
- Odifreddi P.: Classical recursion theory, North-Holland, 1989

Složitost

- Garey, Johnson: Computers and intractability a guide to the theory of NP-completeness, W.H. Freeman 1978
- Arora S., Barak B.: Computational Complexity: A Modern Approach. Cambridge University Press 2009.

Motivační otázky

- Co je to algoritmus?
- Oo všechno lze pomocí algoritmů spočítat?
- Obkáží algoritmy vyřešit všechny úlohy a problémy?
- 4 Jak poznat, že pro řešení zadané úlohy nelze sestrojit žádným algoritmus?
- Jaké algoritmy jsou "rychlé" a jaké problémy jimi můžeme řešit?
- Jaký je rozdíl mezi časem a prostorem?
- 7 Které problémy jsou lehké a které těžké? A jak je poznat?
- 8 Které parametry jsou příčinou toho, že je daný problém těžký?
- Jak využít toho, že některé problémy neumíme rychle vyřešit?

Lehký úvod do teorie algoritmů

První program: Hello, world!

Jak se patří na přednášku o programování, i my začneme programem "Hello world" (například v jazyce C).

```
helloworld.c
#include <stdio.h>

int main(int argc, char *argv[])
{
   printf("Hello, world\n");
   return 0;
}
```

- Program vždy skončí a prvních dvanáct znaků, které vypíše jsou Hello, world.
- Program s podobnou funkčností můžeme však napsat i jiným způsobem…

Program Hello, world! (2. verze)

helloworld2.c

```
#include <stdio.h>
int exp(int x, int n)
/* Vrátí n-tou mocninu x (x^n)*/
   int pow, j;
   pow=1;
   for (j=1; j<=n; ++j)
     pow *= x;
   return pow;
```

Program Hello, world! (2. verze)

```
int main(int argc, char *argv[]) {
   int n, total, x, y, z;
   scanf("%d", &n);
   total=3;
   while (1) {
      for (x=1; x<=total-2; ++x) {
         for (y=1; y<=total-x-1; ++y) {
            z=total-x-y;
            if (\exp(x,n) + \exp(y,n) = \exp(z,n)) {
               printf("Hello, world\n");
               return 0;
      ++total;
```


Za jakých podmínek vypíše program helloworld2 jako prvních dvanáct znaků na výstup Hello, world a zastaví se?

...právě když
$$x^n + y^n = z^n$$
 pro nějaké $x, y, z \ge 1$.

...právě když scanf načte číslo $n \le 2$.

Pro n > 2 program helloworld2 neskončí.

K důkazu tohoto faktu potřebujeme velkou Fermatovu větu!

Problém Helloworld

HELLOWORLD

Instance: Zdrojový kód programu P v jazyce C a vstup I.

Otázka: Vypíše P se vstupem I jako prvních 12 znaků svého

výstupu Hello, world? (Nevyžadujeme zastavení.)

Lze napsat program v jazyce C, který pro dvojici P, I zodpoví otázku kladenou v problému Helloworld?

Ukážeme si, že nikoli.

Nerozhodnutelnost Helloworld

Zjednodušující předpoklady

- Vstup je předáván programu P i H na standardní vstup a je čten výhradně funkcí scanf
- Výstup je realizován na standardní výstup, a to výhradně voláním funkce printf

Pozdrav místo odmítnutí

Upravíme program H na H_1 tak, aby místo ne psal Hello, world.

- Vypíše-li H jako první znak n, víme, že nakonec vypíše ne
- Odpovídající printf upravíme tak, aby rovnou vypsalo Hello, world

Co řekne H_1 o sobě?

Co je program H_1 schopen říci sám o sobě?

 H_1 očekává na vstupu kódy programů s jedním vstupním souborem, ale H_1 sám očekává dva vstupní soubory.

- H_1 upravíme tak na H_2 , aby očekával jen jeden vstupní soubor P
- P je použit i jako vstup I v H₂

Dva vstupy v jednom

Program H_2 očekává jeden vstupní soubor, který předloží programu H_1 jako oba vstupní soubory, tedy jako zdrojový kód P i jako vstup I.

- 1 Program H_2 nejprve načte celý vstup a uloží jej v poli A, které alokuje v paměti (např. pomocí malloc).
- 2 Poté program H_2 simuluje práci H_1 , přičemž:
 - a Ve chvíli, kdy H_1 čte vstup (pomocí scanf), H_2 místo čtení přistoupí do pole A (tj. nahradí scanf pomocí čtení z A).
 - **b** Pomocí dvou ukazatelů do pole A si H_2 pamatuje, kolik z P a I program H_1 přečetl (scanf čte popořadě).

Pokud se H_2 zamyslí sám nad sebou

Co z toho vyplývá?

- \Rightarrow Program H_2 nemůže existovat.
- \Rightarrow Tedy ani program H_1 nemůže existovat.
- \Rightarrow Tedy ani program H nemůže existovat.
- ⇒ Problém Helloworld nelze vyřešit žádným programem v jazyku C (a je tedy algoritmicky neřešitelný).

Volání funkce foo

Volání funkce foo

Instance: Zdrojový kód programu Q v jazyce C a vstup V.

Otázka: Zavolá program Q při běhu nad vstupem V funkci jménem foo?

- Chceme ukázat, že problém Volání funkce foo je algoritmicky nerozhodnutelný.
- Ukážeme, že kdybychom uměli rozhodnout problém Volání FUNKCE foo, uměli bychom rozhodnout i problém Helloworld.

Lehký úvod do převoditelnosti

Jsme-li pomocí problému B schopni vyřešit problém A, říkáme, že A je převoditelný na B.

Pozdrav voláním

- Převedeme Helloworld na Volání funkce foo.
- Popíšeme, jak převést
 - instanci Helloworld (program P a vstup I)
 - na instanci Volání funkce foo (program Q a vstup V).
- Musíme přitom zabezpečit, aby platilo, že

program P se vstupem I jako prvních dvanáct znaků svého výstupu vypíše Hello, world,

právě když

program Q se vstupem V zavolá funkci jménem **foo**.

Problém Volání funkce foo je algoritmicky nerozhodnutelný.

Jak převést pozdrav na volání

Vstupem převodního algoritmu je program P a vstupní soubor I.

- 1 Je-li v P funkce foo, přejmenujeme ji i všechna její volání na dosud nepoužité jméno (refaktoring, nový program nazveme P_1)
- 2 K programu P_1 přidáme funkci **foo**, funkce nic nedělá a není volána $(\rightarrow P_2)$
- 3 Upravíme P_2 tak, aby si pamatoval prvních dvanáct znaků, které vypíše a uložil je v poli $A (\rightarrow P_3)$
- 4 Upravíme P_3 tak, že použije-li příkaz pro výstup, zkontroluje pole A, je-li prvních dvanáct znaků rovno Hello, world. Pokud ano, zavolá funkci **foo**
- **5** Tím jsme zkonstruovali výsledný program Q, vstup V = I

Nevýhody jazyka C pro teorii algoritmů

- Jazyk C je příliš komplikovaný
- Museli bychom definovat výpočetní model (tj. zobecněný počítač), který bude programy v jazyce C interpretovat
- V době vzniku teorie nebyly procedurální jazyky k dispozici, proto je teorie v literatuře obvykle popisovaná tradičnějšími prostředky
- Potřebujeme výpočetní model dostatečně jednoduchý, aby jej bylo lze snadno popsat, současně dostatečně silný, aby byl schopen zachytit to, co intuitivně chápeme pod pojmem algoritmus

Trocha historie ...

10. Hilbertův problém

V roce 1900 zformuloval David Hilbert 23 problémů, desátý z nich lze zformulovat takto:

Existuje postup, který by po konečném počtu operací zjistil, zda polynom více proměnných s celočíselnými koeficienty má celočíselný kořen?

Aby bylo možné zodpovědět tuto otázku, je potřeba mít formální definici pojmu algoritmu a efektivní vyčíslitelnosti.

Intuitivně: Algoritmus je konečná posloupnost jednoduchých instrukcí, která vede k řešení zadané úlohy.

Churchova teze

V roce 1934 navrhl Alonzo Church následující tezi:

Efektivně vyčíslitelné funkce jsou právě ty, které jsou definované v λ -kalkulu.

Tuto tezi později (1936) upravil na

Efektivně vyčíslitelné funkce jsou právě částečně rekurzivní funkce.

Turingova teze

V roce 1936 publikoval Alan Turing následující tezi

Ke každému algoritmu v intuitivním smyslu existuje ekvivalentní Turingův stroj.

- Zmíněné výpočetní modely (λ-kalkulus, částečně rekurzivní funkce, Turingovy stroje) jsou navzájem ekvivalentní co do výpočetní síly.
- Obvykle se této tezi říká Churchova-Turingova.

10. Hilbertův problém

Existuje postup, který by po konečném počtu operací zjistil, zda polynom více proměnných s celočíselnými koeficienty má celočíselný kořen?

V roce 1970 dal na tuto otázku Yuri Matijasevič negativní odpověď.

Neexistuje algoritmus, který by zjistil, zda daný polynom více proměnných s celočíselnými koeficienty má celočíselný kořen.

Ekvivalentní modely

Podle Churchovy-Turingovy teze je algoritmus ekvivalentní ...

- popisu Turingova stroje,
- programu pro RAM,
- odvození částečně rekurzivní funkce,
- odvození funkce v λ-kalkulu,
- programu ve vyšším programovacím jazyce, jako je C, Pascal, Java, Basic apod.,
- programu ve funkcionálním jazyce jako je Lisp, Haskell apod.

Ve všech těchto modelech jsme schopni počítat tytéž funkce, řešit tytéž problémy a úlohy.

Turingovy stroje

Turingův stroj

Turingův stroj (definice)

(Jednopáskový deterministický) Turingův stroj (TS) M je pětice

$$M = (Q, \Sigma, \delta, q_0, F)$$

- Q je konečná množina stavů
- Σ je konečná pásková abeceda, která obsahuje znak λ pro prázdné políčko
 - Často budeme neformálně rozlišovat páskovou (vnitřní) a vstupní (vnější) abecedu
- $\delta: Q \times \Sigma \to Q \times \Sigma \times \{R, N, L\} \cup \{\bot\}$ je přechodová funkce, kde \bot označuje nedefinovaný přechod.
- q₀ ∈ Q je počáteční stav
- F ⊆ Q je množina přijímajících stavů

Výpočet Turingova stroje

- Výpočet zahajuje TS M v počáteční konfiguraci, tedy
 - v počátečním stavu,
 - se vstupním slovem zapsaným na pásce a
 - Vstupní slovo nesmí obsahovat prázdné políčko
 - hlavou nad nejlevějším symbolem vstupního slova.
- Nechť M je ve stavu $q \in Q$ a pod hlavou je symbol $a \in \Sigma$:
 - je-li $\delta(q, a) = (q', a', Z)$, kde $q' \in Q$, $a' \in \Sigma$ a $Z \in \{L, N, R\}$, pak M
 - přejde do stavu q',
 - zapíše na pozici hlavy symbol a' a
 - pohne hlavou doleva (pokud Z = L), doprava (Z = R), nebo hlava zůstane na místě (Z = N).
 - je-li $\delta(q, a) = \bot$, pak výpočet M končí
 - Je-li $q \in F$, je výpočet přijímající
 - Jinak je výpočet zamítající

Jazyk palindromů

$$PAL = \{ w \in \{a, b\}^* \mid w = w^R \}$$

- Jazyk je množina slov nad konečnou abecedou Σ
 - $zde \Sigma = \{a, b\}$
- w^R označuje zrcadlové otočení řetězce w
 - $například (abbabab)^R = bababba$
- Chceme sestavit Turingův stroj M, který rozhoduje,
 - zda daný řetězec w je palindrom
 - ⇔ zda patří do jazyka PAL
- Výpočet M se vstupem w má být
 - přijímající, právě když w = w^R a
 - zamítající, právě když $w \neq w^R$

Palindromů — algoritmus

$$PAL = \{ w \in \{a, b\}^* \mid w = w^R \}$$

Práce TS M se vstupem $w = w_1 \dots w_n$

```
1 if w = \varepsilon then // \varepsilon označuje prázdný řetězec
```

- 2 přijmi
- ${f 3}$ Zapamatuj si ve stavu první znak w_1
- 4 Přesuň hlavu na poslední políčko vstupu w_n
- 5 if $w_1 \neq w_n$ then
- 6 odmítni
- 7 Smaž poslední znak
- 8 Přesuň hlavu na první políčko vstupu
- 9 Smaž první znak (pokud nějaký zbyl)
- 10 Pohni hlavou doprava
- 11 **goto 1**

Palindromy — Turingův stroj

- Stavy Q = {INIT, MEM_A, MEM_B, CHECK_A, CHECK_B, BACK, ERASE, ACCEPT}
- Abeceda $\Sigma = \{\lambda, a, b\}$
- Počáteční stav INIT
- Přijímající stav ACCEPT

q,c	\rightarrow	q',c',Z
$INIT, \lambda$	\rightarrow	ACCEPT, λ , N
<pre>INIT, a</pre>	\rightarrow	$\mathtt{MEM_A}$, a, R
INIT, b	\rightarrow	$\texttt{MEM_B}$, b, R
MEM_A,a	\rightarrow	$\mathtt{MEM_A}$, a, R
MEM_A,b	\rightarrow	$\mathtt{MEM_A}$, b, R
$\texttt{MEM_A}$, λ	\rightarrow	$\mathtt{CHECK}_\mathtt{A}, \lambda, L$
MEM_B,a	\rightarrow	$\texttt{MEM_B}$, a, R
MEM_B,b	\rightarrow	$\texttt{MEM_B}$, b, R
$\texttt{MEM_B,} \lambda$	\rightarrow	$\mathtt{CHECK_B}, \lambda, L$

q,c	\rightarrow	q',c',Z
CHECK_A, a	\rightarrow	$\mathtt{BACK}, \lambda, L$
CHECK_B, b	\rightarrow	BACK, λ , L
BACK, a	\rightarrow	\mathtt{BACK} , a, L
BACK, b	\rightarrow	BACK, b, L
BACK, λ	\rightarrow	ERASE, λ , R
ERASE, a	\rightarrow	INIT, λ , R
ERASE, b	\rightarrow	INIT, λ , R
$\texttt{ERASE,} \lambda$	\rightarrow	ACCEPT, λ , N
-		•

Simulace M se vstupem aba


```
INIT, \lambda
                           ACCEPT, \lambda, N
                   \rightarrow
    INIT, a
                            MEM A, a, R
    INIT, b
                            MEM B, b, R
   MEM A, a
                            MEM A, a, R
   MEM A,b
                            MEM_A, b, R
   MEM A, \lambda
                           CHECK A, \lambda, L
                   \rightarrow
   MEM B, a
                            MEM B, a, R
   MEM B,b
                            MEM_B, b, R
                           CHECK B, \lambda, L
   MEM B, \lambda
CHECK A, a
                             BACK, \lambda, L
CHECK B, b
                             BACK, \lambda, L
    BACK, a
                           BACK, a, L
                   \rightarrow
    BACK, b
                            BACK, b, L
    BACK, \lambda
                            ERASE, \lambda, R
                   \rightarrow
   ERASE, a
                 \rightarrow
                             INIT, \lambda, R
   ERASE, b
                             INIT, \lambda, R
                   \rightarrow
   ERASE, A
                   \rightarrow
                           ACCEPT, \lambda, N
```

Simulace M se vstupem aba


```
INIT, \lambda
                            ACCEPT, \lambda, N
                   \rightarrow
    INIT, a
                             MEM A, a, R
    INIT, b
                             MEM_B, b, R
   MEM A, a
                             MEM A, a, R
   MEM_A,b
                             MEM_A, b, R
                   \rightarrow
   MEM A, \lambda
                           CHECK A, \lambda, L
                   \rightarrow
                             MEM B, a, R
   MEM B.a
   MEM B,b
                             MEM_B, b, R
                           CHECK B, \lambda, L
   MEM B, \lambda
CHECK A, a
                             BACK, \lambda, L
CHECK B, b
                             BACK, \lambda, L
    BACK, a
                            BACK, a, L
    BACK, b
                            BACK, b, L
    BACK, \lambda
                             ERASE, \lambda, R
                   \rightarrow
   ERASE, a
                 \rightarrow
                             INIT, \lambda, R
   ERASE, b
                             INIT, \lambda, R
                   \rightarrow
   ERASE, \lambda
                   \rightarrow
                            ACCEPT, \lambda, N
```



```
INIT, \lambda
                           ACCEPT, \lambda, N
                   \rightarrow
    INIT, a
                            MEM A, a, R
    INIT, b
                            MEM_B, b, R
   MEM A, a
                            MEM A, a, R
                   \rightarrow
   MEM A,b
                            MEM_A, b, R
   MEM A, \lambda
                           CHECK A, \lambda, L
                   \rightarrow
                            MEM B, a, R
   MEM B.a
   MEM B,b
                            MEM_B, b, R
                           CHECK B, \lambda, L
   MEM B, \lambda
CHECK A, a
                             BACK, \lambda, L
CHECK B, b
                             BACK, \lambda, L
    BACK, a
                           BACK, a, L
    BACK, b
                            BACK, b, L
    BACK, \lambda
                            ERASE, \lambda, R
                   \rightarrow
   ERASE, a
                 \rightarrow
                             INIT, \lambda, R
   ERASE, b
                             INIT, \lambda, R
                   \rightarrow
   ERASE, A
                   \rightarrow
                           ACCEPT, \lambda, N
```



```
INIT, \lambda
                           ACCEPT, \lambda, N
                   \rightarrow
    INIT, a
                            MEM A, a, R
    INIT, b
                            MEM_B, b, R
   MEM A, a
                            MEM A, a, R
   MEM A,b
                            MEM_A, b, R
                           CHECK_A, \lambda, L
   MEM A, \lambda
                   \rightarrow
                            MEM B, a, R
   MEM B.a
                   \rightarrow
   MEM B, b
                            MEM_B, b, R
                           CHECK B, \lambda, L
   MEM B, \lambda
CHECK A, a
                             BACK, \lambda, L
CHECK B, b
                             BACK, \lambda, L
    BACK, a
                           BACK, a, L
    BACK, b
                            BACK, b, L
    BACK, \lambda
                            ERASE, \lambda, R
                   \rightarrow
   ERASE, a
                 \rightarrow
                             INIT, \lambda, R
   ERASE, b
                             INIT, \lambda, R
                   \rightarrow
   ERASE, A
                   \rightarrow
                           ACCEPT, \lambda, N
```



```
INIT, \lambda
                             ACCEPT, \lambda, N
                    \rightarrow
     INIT, a
                             MEM A, a, R
     INIT, b
                             MEM_B, b, R
   MEM A, a
                             MEM A, a, R
   MEM A,b
                             MEM_A, b, R
   MEM A, \lambda
                            CHECK A, \lambda, L
                    \rightarrow
                             MEM B, a, R
   MEM B.a
   MEM B, b
                             MEM_B, b, R
                            CHECK B, \lambda, L
   MEM B, \lambda
                    \rightarrow
CHECK A, a
                              BACK, \lambda, L
CHECK B, b
                    \rightarrow
                              BACK, \lambda, L
     BACK, a
                    \rightarrow
                              BACK, a, L
     BACK, b
                             BACK, b, L
     BACK, \lambda
                             ERASE, \lambda, R
                    \rightarrow
   ERASE, a
                   \rightarrow
                              INIT, \lambda, R
   ERASE, b
                              INIT, \lambda, R
                    \rightarrow
   ERASE, A
                    \rightarrow
                             ACCEPT, \lambda, N
```



```
INIT, \lambda
                            ACCEPT, \lambda, N
                   \rightarrow
    INIT, a
                             MEM A, a, R
    INIT, b
                             MEM_B, b, R
   MEM A, a
                             MEM A, a, R
   MEM A,b
                             MEM_A, b, R
   MEM A, \lambda
                           CHECK A, \lambda, L
                   \rightarrow
   MEM B, a
                             MEM B, a, R
   MEM B,b
                             MEM_B, b, R
                           CHECK B, \lambda, L
   MEM B, \lambda
                   \rightarrow
CHECK A, a
                             BACK, \lambda, L
CHECK B, b
                             BACK, \lambda, L
                           BACK.a.L
    BACK, a
    BACK, b
                            BACK, b, L
    BACK, \lambda
                             ERASE, \lambda, R
                   \rightarrow
   ERASE, a
                   \rightarrow
                             INIT, \lambda, R
   ERASE, b
                             INIT, \lambda, R
                   \rightarrow
   ERASE, \lambda
                   \rightarrow
                            ACCEPT, \lambda, N
```



```
INIT, \lambda
                            ACCEPT, \lambda, N
                   \rightarrow
    INIT, a
                            MEM A, a, R
    INIT, b
                            MEM_B, b, R
   MEM A, a
                            MEM A, a, R
   MEM A,b
                            MEM_A, b, R
   MEM A, \lambda
                           CHECK A, \lambda, L
                   \rightarrow
   MEM B, a
                            MEM B, a, R
   MEM B,b
                            MEM_B, b, R
                           CHECK B, \lambda, L
   MEM B, \lambda
CHECK A, a
                             BACK, \lambda, L
CHECK B, b
                             BACK, \lambda, L
                           BACK, a, L
    BACK, a
                   \rightarrow
    BACK, b
                             BACK, b, L
    BACK, \lambda
                            ERASE, \lambda, R
                   \rightarrow
   ERASE, a
                   \rightarrow
                             INIT, \lambda, R
   ERASE, b
                             INIT, \lambda, R
                   \rightarrow
   ERASE, A
                   \rightarrow
                            ACCEPT, \lambda, N
```



```
INIT, \lambda
                            ACCEPT, \lambda, N
                   \rightarrow
    INIT, a
                             MEM A, a, R
    INIT, b
                             MEM_B, b, R
   MEM A, a
                             MEM A, a, R
   MEM A,b
                             MEM_A, b, R
   MEM A, \lambda
                           CHECK A, \lambda, L
                   \rightarrow
   MEM B, a
                             MEM B, a, R
   MEM B,b
                             MEM_B, b, R
                           CHECK B, \lambda, L
   MEM B, \lambda
CHECK A, a
                             BACK, \lambda, L
CHECK B, b
                             BACK, \lambda, L
                             BACK, a, L
    BACK, a
                   \rightarrow
    BACK, b
                            BACK, b, L
    BACK, \lambda
                             ERASE, \lambda, R
                   \rightarrow
   ERASE, a
                   \rightarrow
                             INIT, \lambda, R
   ERASE, b
                             INIT, \lambda, R
                   \rightarrow
   ERASE, A
                   \rightarrow
                            ACCEPT, \lambda, N
```



```
INIT, \lambda
                            ACCEPT, \lambda, N
                   \rightarrow
     INIT, a
                             MEM A, a, R
     INIT, b
                             MEM_B, b, R
   MEM A, a
                             MEM A, a, R
   MEM A,b
                             MEM_A, b, R
   MEM A, \lambda
                           CHECK A, \lambda, L
                   \rightarrow
   MEM B, a
                             MEM B, a, R
   MEM B,b
                             MEM_B, b, R
                           CHECK B, \lambda, L
   MEM B, \lambda
CHECK A, a
                              BACK, \lambda, L
CHECK B, b
                              BACK, \lambda, L
     BACK, a
                   \rightarrow
                              BACK, a, L
     BACK, b
                             BACK, b, L
     BACK, \lambda
                             ERASE, \lambda, R
                   \rightarrow
   ERASE, a
                   \rightarrow
                             INIT, \lambda, R
   ERASE, b
                              INIT, \lambda, R
                   \rightarrow
   ERASE, \lambda
                   \rightarrow
                            ACCEPT, \lambda, N
```



```
INIT, \lambda
                           ACCEPT, \lambda, N
                   \rightarrow
    INIT, a
                            MEM A, a, R
    INIT, b
                            MEM_B, b, R
   MEM A, a
                            MEM A, a, R
                   \rightarrow
   MEM A,b
                            MEM_A, b, R
   MEM A, \lambda
                           CHECK A, \lambda, L
                   \rightarrow
   MEM B, a
                            MEM B, a, R
   MEM B,b
                            MEM_B, b, R
                           CHECK B, \lambda, L
   MEM B, \lambda
CHECK A, a
                             BACK, \lambda, L
CHECK_B, b
                             BACK, \lambda, L
    BACK, a
                           BACK, a, L
    BACK, b
                            BACK, b, L
    BACK, \lambda
                            ERASE, \lambda, R
                   \rightarrow
   ERASE, a
                 \rightarrow
                             INIT, \lambda, R
   ERASE, b
                             INIT, \lambda, R
                   \rightarrow
   ERASE, A
                   \rightarrow
                           ACCEPT, \lambda, N
```



```
INIT, \lambda
                           ACCEPT, \lambda, N
                   \rightarrow
    INIT, a
                            MEM A, a, R
    INIT, b
                            MEM_B, b, R
   MEM A, a
                            MEM A, a, R
   MEM A,b
                            MEM_A, b, R
   MEM A, \lambda
                           CHECK A, \lambda, L
                   \rightarrow
                            MEM B, a, R
   MEM B.a
   MEM B,b
                            MEM_B, b, R
   MEM B, \lambda
                           CHECK B, \lambda, L
                   \rightarrow
CHECK A, a
                             BACK, \lambda, L
CHECK B, b
                             BACK, \lambda, L
    BACK, a
                             BACK, a, L
    BACK, b
                            BACK, b, L
    BACK, \lambda
                            ERASE, \lambda, R
                   \rightarrow
   ERASE, a
                 \rightarrow
                             INIT, \lambda, R
   ERASE, b
                             INIT, \lambda, R
                   \rightarrow
   ERASE, A
                   \rightarrow
                           ACCEPT, \lambda, N
```



```
INIT, \lambda
                            ACCEPT, \lambda, N
                   \rightarrow
     INIT, a
                             MEM A, a, R
     INIT, b
                             MEM_B, b, R
   MEM A, a
                             MEM A, a, R
   MEM A,b
                             MEM_A, b, R
   MEM A, \lambda
                           CHECK A, \lambda, L
                   \rightarrow
   MEM B, a
                             MEM B, a, R
   MEM B,b
                             MEM_B, b, R
                           CHECK B, \lambda, L
   MEM B, \lambda
CHECK A, a
                              BACK, \lambda, L
CHECK_B, b
                              BACK, \lambda, L
     BACK, a
                   \rightarrow
                              BACK, a, L
     BACK, b
                            BACK, b, L
     BACK, \lambda
                             ERASE, \lambda, R
                   \rightarrow
   ERASE, a
                 \rightarrow
                             INIT, \lambda, R
   ERASE, b
                              INIT, \lambda, R
                   \rightarrow
   ERASE, \lambda
                   \rightarrow
                            ACCEPT, \lambda, N
```



```
INIT, \lambda
                            ACCEPT, \lambda, N
                   \rightarrow
    INIT, a
                             MEM A, a, R
    INIT, b
                             MEM_B, b, R
   MEM A, a
                             MEM A, a, R
   MEM A,b
                             MEM_A, b, R
   MEM A, \lambda
                           CHECK A, \lambda, L
                   \rightarrow
   MEM B, a
                             MEM B, a, R
   MEM B,b
                             MEM_B, b, R
                           CHECK B, \lambda, L
   MEM B, \lambda
CHECK A, a
                             BACK, \lambda, L
CHECK B, b
                             BACK, \lambda, L
    BACK, a
                             BACK, a, L
                   \rightarrow
    BACK, b
                            BACK, b, L
    BACK, \lambda
                             ERASE, \lambda, R
                   \rightarrow
   ERASE, a
                   \rightarrow
                             INIT, \lambda, R
   ERASE, b
                             INIT, \lambda, R
                   \rightarrow
   ERASE, A
                   \rightarrow
                            ACCEPT, \lambda, N
```



```
INIT, \lambda
                           ACCEPT, \lambda, N
                   \rightarrow
    INIT, a
                            MEM A, a, R
    INIT, b
                            MEM_B, b, R
   MEM A, a
                            MEM A, a, R
   MEM A,b
                            MEM_A, b, R
   MEM A, \lambda
                           CHECK A, \lambda, L
                   \rightarrow
   MEM B, a
                            MEM B, a, R
   MEM B,b
                            MEM_B, b, R
                           CHECK B, \lambda, L
   MEM B, \lambda
CHECK A, a
                             BACK, \lambda, L
CHECK B, b
                             BACK, \lambda, L
    BACK, a
                           BACK, a, L
    BACK, b
                            BACK, b, L
    BACK, \lambda
                            ERASE, \lambda, R
                   \rightarrow
   ERASE, a
                   \rightarrow
                             INIT, \lambda, R
   ERASE, b
                             INIT, \lambda, R
                   \rightarrow
   ERASE. \lambda
                   \rightarrow
                           ACCEPT, \lambda, N
```



```
INIT, \lambda
                           ACCEPT, \lambda, N
                   \rightarrow
    INIT, a
                            MEM A, a, R
    INIT, b
                            MEM B, b, R
   MEM A.a
                            MEM A, a, R
   MEM A,b
                            MEM_A, b, R
   MEM A, \lambda
                           CHECK A, \lambda, L
                   \rightarrow
                            MEM B.a.R
   MEM B.a
   MEM B,b
                            MEM B, b, R
                           CHECK B, \lambda, L
   MEM B, \lambda
CHECK A, a
                             BACK, \lambda, L
CHECK B, b
                             BACK, \lambda, L
                             BACK.a.L
    BACK, a
                   \rightarrow
    BACK, b
                            BACK, b, L
    BACK, \lambda
                            ERASE, \lambda, R
                   \rightarrow
   ERASE, a
                  \rightarrow
                             INIT, \lambda, R
   ERASE, b
                             INIT, \lambda, R
                   \rightarrow
   ERASE, A
                   \rightarrow
                           ACCEPT, \lambda, N
```

Výpočet skončil, vstup byl přijat

INIT, λ	\rightarrow	ACCEPT, λ , N
INIT, a	\rightarrow	$\mathtt{MEM_A}$, a, R
INIT, b	\rightarrow	$\texttt{MEM_B}, \texttt{b}, R$
MEM_A,a	\rightarrow	$\mathtt{MEM_A}$, a, R
MEM_A,b	\rightarrow	$\mathtt{MEM_A}$, b, R
\mathtt{MEM}_{A} , λ	\rightarrow	CHECK_A, λ , L
MEM_B,a	\rightarrow	$\texttt{MEM_B}$, a, R
MEM_B,b	\rightarrow	$\texttt{MEM_B}$, b, R
$\texttt{MEM_B}$, λ	\rightarrow	CHECK_B, λ , L
CHECK_A, a	\rightarrow	BACK, λ , L
CHECK_B, b	\rightarrow	BACK, λ , L
BACK, a	\rightarrow	\mathtt{BACK} , a, L
BACK, b	\rightarrow	$\mathtt{BACK},\mathtt{b},L$
BACK, λ	\rightarrow	ERASE, λ , R
ERASE, a	\rightarrow	INIT, λ , R
ERASE, b	\rightarrow	INIT, λ , R
ERASE, λ	\rightarrow	ACCEPT, λ , N


```
INIT, \lambda
                           ACCEPT, \lambda, N
                   \rightarrow
    INIT, a
                            MEM A, a, R
    INIT, b
                            MEM_B, b, R
   MEM A, a
                            MEM A, a, R
   MEM_A,b
                            MEM_A, b, R
                   \rightarrow
   MEM A, \lambda
                           CHECK A, \lambda, L
                   \rightarrow
                            MEM B, a, R
   MEM B.a
   MEM B,b
                            MEM_B, b, R
                           CHECK B, \lambda, L
   MEM B, \lambda
CHECK A, a
                             BACK, \lambda, L
CHECK B, b
                             BACK, \lambda, L
    BACK, a
                           BACK, a, L
    BACK, b
                           BACK, b, L
    BACK, \lambda
                            ERASE, \lambda, R
                   \rightarrow
   ERASE, a
                 \rightarrow
                             INIT, \lambda, R
   ERASE, b
                             INIT, \lambda, R
                   \rightarrow
   ERASE. \lambda
                   \rightarrow
                           ACCEPT, \lambda, N
```



```
INIT, \lambda
                           ACCEPT, \lambda, N
                   \rightarrow
    INIT, a
                            MEM A, a, R
    INIT, b
                            MEM_B, b, R
   MEM A, a
                            MEM A, a, R
   MEM A,b
                            MEM_A, b, R
                           CHECK_A, \lambda, L
   MEM A, \lambda
                   \rightarrow
                            MEM B, a, R
   MEM B.a
                   \rightarrow
   MEM B, b
                            MEM_B, b, R
                           CHECK B, \lambda, L
   MEM B, \lambda
CHECK A, a
                             BACK, \lambda, L
CHECK_B, b
                            BACK, \lambda, L
    BACK, a
                           BACK, a, L
    BACK, b
                            BACK, b, L
    BACK, \lambda
                            ERASE, \lambda, R
                   \rightarrow
   ERASE, a
                            INIT, \lambda, R
   ERASE, b
                             INIT, \lambda, R
                   \rightarrow
   ERASE. \lambda
                   \rightarrow
                           ACCEPT, \lambda, N
```



```
INIT, \lambda
                           ACCEPT, \lambda, N
                  \rightarrow
    INIT, a
                            MEM A, a, R
    INIT, b
                            MEM B, b, R
   MEM A.a
                            MEM A, a, R
   MEM A,b
                            MEM_A, b, R
   MEM A, \lambda
                          CHECK A, \lambda, L
                  \rightarrow
                            MEM B.a.R
   MEM B.a
   MEM B,b
                            MEM B, b, R
                          CHECK B, \lambda, L
   MEM B, \lambda
CHECK A, a
                            BACK, \lambda, L
CHECK B, b
                            BACK, \lambda, L
    BACK, a
                            BACK.a.L
    BACK, b
                           BACK, b, L
    BACK, \lambda
                            ERASE, \lambda, R
                  \rightarrow
   ERASE, a
                \rightarrow
                            INIT, \lambda, R
   ERASE, b
                            INIT, \lambda, R
                  \rightarrow
   ERASE, A
                  \rightarrow
                           ACCEPT, \lambda, N
```

Výpočet skončil, vstup byl zamítnut

Problém a jazyk

- V rozhodovacím problému se ptáme, zda daná instance x splňuje danou podmínku
- Jazyk L je množina slov (řetězců) nad abecedou Σ
- Rozhodovací problém odpovídá jazyku jeho kladných instancí

HELLOWORLD

Instance: Zdrojový kód programu P v jazyce C a vstup I.

Otázka: Je pravda, že prvních 12 znaků, které daný program vypíše, je Hello, world? (Nevyžadujeme zastavení.)

 $HW = \{\langle P, I \rangle \mid \text{prvních } 12 \text{ znaků, které vypíše program } P \text{ se vstupem } I, \text{ jsou } \text{Hello, world} \}$

Turingovsky rozhodnutelné jazyky

- TS M přijímá slovo w výpočet M se vstupem w přijímající
 - Skončí v přijímajícím stavu
- TS M odmítá slovo w výpočet M se vstupem w zamítající
 - Skončí ve stavu, který není přijímající
 - L(M) jazyk slov přijímaných TS M
 - $M(w)\downarrow$ výpočet TS M nad vstupem w skončí
 - $M(w)\uparrow$ výpočet TS M nad vstupem w neskončí

Definice

- Jazyk L je částečně (Turingovsky) rozhodnutelný (též rekurzivně spočetný), je-li přijímán nějakým Turingovým strojem M (tj. L = L(M))
- Jazyk L je (Turingovsky) rozhodnutelný (též rekurzivní), je-li přijímán nějakým Turingovým strojem M (tj. L = L(M)), který se s každým vstupem zastaví

Turingovsky vyčíslitelné funkce

- Turingův stroj M s páskovou abecedou Σ počítá nějakou částečnou funkci $f_M: \Sigma^* \to \Sigma^*$.
- Pokud $M(w) \downarrow$ pro daný vstup $w \in \Sigma^*$, je hodnota funkce $f_M(w)$ definovaná, což označíme pomocí $f_M(w) \downarrow$.
- Hodnotou funkce $f_M(w)$ je potom slovo na (výstupní) pásce M po ukončení výpočtu nad w.
- Pokud $M(w)\uparrow$, pak je hodnota $f_M(w)$ nedefinovaná, což označíme pomocí $f_M(w)\uparrow$.
- Funkce $f: \Sigma^* \to \Sigma^*$ je turingovsky vyčíslitelná, pokud existuje Turingův stroj M, který ji počítá.

Každá turingovsky vyčíslitelná funkce má nekonečně mnoho různých Turingových strojů, které ji počítají!

Varianty Turingových strojů

- TS s jednosměrně nekonečnou páskou.
- TS s více páskami (vstupní/výstupní/pracovní).
- TS s více hlavami na páskách,
- TS s pouze binární abecedou,
- nedeterministické TS.

Zmíněné varianty jsou ekvivalentní "našemu" modelu.

- všechny přijímají touž třídu jazyků
- všechny vyčíslují touž třídu funkcí

Struktura 3-páskového Turingova stroje

k-páskový Turingův stroj

- Má k pásek, na každé je zvláštní hlava
 Vstupní páska na počátku obsahuje vstupní řetězec
 - Často jen pro čtení

Pracovní pásky jsou určeny pro čtení i zápis Výstupní páska na konci obsahuje výstupní řetězec

- Často jen pro zápis s pohybem hlavy jen vpravo
- Hlavy na páskách se pohybují nezávisle na sobě
- Přechodová funkce je typu

$$\delta: Q \times \Sigma^k \to Q \times \Sigma^k \times \{R, N, L\}^k \cup \{\bot\}$$

Palindromy — algoritmus 2-páskového stroje

- Popíšeme Turingův stroj M se dvěma páskami
 - vstupní páskou a
 - pracovní páskou

Výpočet M se vstupem $w = w_1 \dots w_n$

- 1 Přesuň hlavu na vstupní pásce nad poslední znak vstupu
- 2 Přesuň hlavu na vstupní pásce zpět na první znak vstupu, současně kopíruj znaky na pracovní pásku

// Výsledkem je
$$w^R$$
 na pracovní pásce

- ${f 3}$ Přesuň hlavu na pracovní pásce nad první znak ${f w}^R$
- 4 Pohybem hlav na obou páskách současně zkontroluj, zda vstupní a pracovní páska obsahují totéž slovo (tedy zda $w=w^{R}$)

Rychlejší a jednodušší než s jednou páskou.

Palindromy — 2-páskový stroj

- Q = {INIT, COPY, WBACK, CHECK, ACCEPT}
- $\Sigma = \{\lambda, a, b\}$
- Počáteční stav INIT
- Přijímající stav ACCEPT

q, c_1, c_2	\rightarrow	q', c'_1, c'_2, Z_1, Z_2
INIT, a, λ	\rightarrow	INIT, a, λ , R , N
INIT, b, λ	\rightarrow	INIT, b, λ , R , N
INIT, λ , λ	\rightarrow	COPY, λ , λ , L , N
COPY,a, ∧	\rightarrow	$\mathtt{COPY},\mathtt{a},\mathtt{a},L,R$
COPY, b, λ	\rightarrow	COPY, b, b, L , R
COPY, λ , λ	\rightarrow	WBACK, λ , λ , N , L
WBACK, λ , a	\rightarrow	WBACK, λ ,a, N , L
WBACK, λ , b	\rightarrow	WBACK, λ , b , N , L
WBACK, λ , λ	\rightarrow	CHECK, λ , λ , R , R
CHECK, a, a	\rightarrow	CHECK, a, a, R , R
CHECK, b, b	\rightarrow	CHECK, b, b, R , R
CHECK, λ , λ	\rightarrow	ACCEPT, λ , λ , N , N

INIT, a, λ	\rightarrow	INIT, a, λ , R , N
INIT, b, λ	\rightarrow	INIT, b, λ , R , N
INIT, λ , λ	\rightarrow	$\mathtt{COPY}, \lambda, \lambda, L, N$
COPY, a, λ	\rightarrow	COPY, a, a, L , R
COPY, b, λ	\rightarrow	COPY, b, b, L , R
COPY, λ , λ	\rightarrow	WBACK, λ , λ , N , L
WBACK, λ , a	\rightarrow	WBACK, λ , a, N , L
WBACK, λ , b	\rightarrow	WBACK, λ , b , N , L
WBACK, λ , λ	\rightarrow	CHECK, λ , λ , R , R
CHECK, a, a	\rightarrow	CHECK, a, a, R , R
CHECK, b, b	\rightarrow	CHECK, b, b, R , R
CHECK, λ , λ	\rightarrow	ACCEPT, λ , λ , N , N


```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
  COPY, \lambda, \lambda
                         \rightarrow
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                                     WBACK, \lambda, b, N, L
                         \rightarrow
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```


INIT, a, λ	\rightarrow	INIT, a, λ , R , N
INIT, b, λ	\rightarrow	INIT, b, λ , R , N
INIT, λ , λ	\rightarrow	COPY, λ , λ , L , N
COPY, a, λ	\rightarrow	$\mathtt{COPY},\mathtt{a},\mathtt{a},L,R$
COPY, b, λ	\rightarrow	COPY, b, b, L , R
COPY, λ , λ	\rightarrow	WBACK, λ , λ , N , L
WBACK, λ , a	\rightarrow	WBACK, λ , a, N , L
WBACK, λ , b	\rightarrow	WBACK, λ , b , N , L
WBACK, λ , λ	\rightarrow	CHECK, λ , λ , R , R
CHECK, a, a	\rightarrow	CHECK, a, a, R , R
CHECK, b, b	\rightarrow	CHECK, b, b, R , R
CHECK, λ , λ	\rightarrow	ACCEPT, λ , λ , N , N


```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
  COPY, \lambda, \lambda
                         \rightarrow
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                                     WBACK, \lambda, b, N, L
                         \rightarrow
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```



```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
  COPY, \lambda, \lambda
                         \rightarrow
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                                     WBACK, \lambda, b, N, L
                         \rightarrow
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```



```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
  COPY, \lambda, \lambda
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                                     WBACK, \lambda, b, N, L
                         \rightarrow
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```



```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
  COPY, \lambda, \lambda
                         \rightarrow
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                                     WBACK, \lambda, b, N, L
                         \rightarrow
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```



```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
  COPY, \lambda, \lambda
                         \rightarrow
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                                     WBACK, \lambda, b, N, L
                         \rightarrow
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```



```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
  COPY, \lambda, \lambda
                         \rightarrow
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                         \rightarrow
                                     WBACK, \lambda, b, N, L
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```



```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
  COPY, \lambda, \lambda
                         \rightarrow
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                         \rightarrow
                                     WBACK, \lambda, b, N, L
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```



```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
  COPY, \lambda, \lambda
                         \rightarrow
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                         \rightarrow
                                     WBACK, \lambda, b, N, L
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```



```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
  COPY, \lambda, \lambda
                         \rightarrow
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                                     WBACK, \lambda, b, N, L
                         \rightarrow
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```



```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
  COPY, \lambda, \lambda
                         \rightarrow
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                                     WBACK, \lambda, b, N, L
                         \rightarrow
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```



```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
                                      COPY, b, b, L, R
  COPY, b, \lambda
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
  COPY, \lambda, \lambda
                         \rightarrow
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                                     WBACK, \lambda, b, N, L
                         \rightarrow
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```



```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
  COPY, \lambda, \lambda
                         \rightarrow
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                                     WBACK, \lambda, b, N, L
                         \rightarrow
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```



```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
  COPY, \lambda, \lambda
                         \rightarrow
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                                     WBACK, \lambda, b, N, L
                         \rightarrow
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
CHECK, \lambda, \lambda
                                   ACCEPT, \lambda, \lambda, N, N
                         \rightarrow
```


INIT, a, λ INIT, a, λ , R, N \rightarrow INIT, b, λ INIT, b, λ , R, NCOPY, λ , λ , L, NINIT, λ , λ \rightarrow COPY, a, \lambda COPY, a, a, L, R \rightarrow COPY, b, λ COPY, b, b, L, R \rightarrow COPY, λ , λ WBACK, λ , λ , N, L \rightarrow WBACK, \(\lambda\), a WBACK, λ , a, N, L \rightarrow WBACK, λ , b WBACK, λ , b, N, L \rightarrow WBACK, λ , λ CHECK, λ , λ , R, R \rightarrow CHECK, a, a CHECK, a, a, R, R \rightarrow CHECK, b, b \rightarrow CHECK, b, b, R, RCHECK, λ , λ ACCEPT, λ , λ , N, N \rightarrow

Výpočet skončil, vstup byl přijat

INIT, a, λ	\rightarrow	INIT, a, λ , R , N
INIT, b, λ	\rightarrow	INIT, b, λ , R , N
INIT, λ , λ	\rightarrow	COPY, λ , λ , L , N
COPY, a, λ	\rightarrow	$\mathtt{COPY},\mathtt{a},\mathtt{a},L,R$
COPY, b, λ	\rightarrow	COPY, b, b, L , R
COPY, λ , λ	\rightarrow	WBACK, λ , λ , N , L
WBACK, λ , a	\rightarrow	WBACK, λ , a, N , L
WBACK, λ , b	\rightarrow	WBACK, λ , b , N , L
WBACK, λ , λ	\rightarrow	CHECK, λ , λ , R , R
CHECK, a, a	\rightarrow	CHECK, a, a, R , R
CHECK, b, b	\rightarrow	CHECK, b, b, R , R
CHECK, λ , λ	\rightarrow	ACCEPT, λ , λ , N , N

INIT, a, λ	\rightarrow	INIT, a, λ , R , N
INIT, b, λ	\rightarrow	INIT, b, λ , R , N
INIT, λ , λ	\rightarrow	COPY, λ , λ , L , N
COPY, a, λ	\rightarrow	$\mathtt{COPY},\mathtt{a},\mathtt{a},L,R$
COPY, b, λ	\rightarrow	COPY, b, b, L , R
COPY, λ , λ	\rightarrow	WBACK, λ , λ , N , L
WBACK, λ , a	\rightarrow	WBACK, λ , a, N , L
WBACK, λ , b	\rightarrow	WBACK, λ , b , N , L
WBACK, λ , λ	\rightarrow	CHECK, λ , λ , R , R
CHECK, a, a	\rightarrow	CHECK, a, a, R , R
CHECK, b, b	\rightarrow	CHECK, b, b, R , R
CHECK, λ , λ	\rightarrow	ACCEPT, λ , λ , N , N


```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
  COPY, \lambda, \lambda
                         \rightarrow
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                                     WBACK, \lambda, b, N, L
                         \rightarrow
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```



```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
  COPY, \lambda, \lambda
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                                     WBACK, \lambda, b, N, L
                         \rightarrow
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```



```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
  COPY, \lambda, \lambda
                         \rightarrow
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                                     WBACK, \lambda, b, N, L
                         \rightarrow
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```



```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
  COPY, \lambda, \lambda
                         \rightarrow
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                                     WBACK, \lambda, b, N, L
                         \rightarrow
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```



```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
  COPY, \lambda, \lambda
                         \rightarrow
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                         \rightarrow
                                     WBACK, \lambda, b, N, L
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```



```
INIT, a, \lambda
                                      INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                      INIT, b, \lambda, R, N
                                      COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
  COPY, \lambda, \lambda
                         \rightarrow
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                         \rightarrow
                                     WBACK, \lambda, b, N, L
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```



```
INIT, a, \lambda
                                     INIT, a, \lambda, R, N
                         \rightarrow
  INIT, b, \lambda
                                     INIT, b, \lambda, R, N
                                     COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                         \rightarrow
  COPY, a, \lambda
                                      COPY, a, a, L, R
                         \rightarrow
  COPY, b, \lambda
                                      COPY, b, b, L, R
                         \rightarrow
                                     WBACK, \lambda, \lambda, N, L
  COPY, \lambda, \lambda
                         \rightarrow
WBACK, \(\lambda\), a
                                     WBACK, \lambda, a, N, L
                         \rightarrow
WBACK, \lambda, b
                                     WBACK, \lambda, b, N, L
                         \rightarrow
WBACK, \lambda, \lambda
                                     CHECK, \lambda, \lambda, R, R
                         \rightarrow
CHECK, a, a
                                     CHECK, a, a, R, R
                         \rightarrow
CHECK, b, b
                         \rightarrow
                                     CHECK, b, b, R, R
                                   ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                         \rightarrow
```



```
INIT, a, \lambda
                                    INIT, a, \lambda, R, N
                        \rightarrow
  INIT.b. A
                                    INIT, b, \lambda, R, N
                                    COPY, \lambda, \lambda, L, N
  INIT, \lambda, \lambda
                        \rightarrow
  COPY, a, \lambda
                                     COPY, a, a, L, R
                        \rightarrow
  COPY, b, \lambda
                                     COPY, b, b, L, R
                        \rightarrow
  COPY, \lambda, \lambda
                                    WBACK, \lambda, \lambda, N, L
                        \rightarrow
WBACK, λ, a
                                    WBACK, \lambda, a, N, L
                        \rightarrow
WBACK, \lambda, b
                                    WBACK, \lambda, b, N, L
                        \rightarrow
WBACK, \lambda, \lambda
                                    CHECK, \lambda, \lambda, R, R
                        \rightarrow
CHECK, a, a
                                    CHECK, a, a, R, R
                        \rightarrow
CHECK, b, b
                        \rightarrow
                                    CHECK, b, b, R, R
                                  ACCEPT, \lambda, \lambda, N, N
CHECK, \lambda, \lambda
                        \rightarrow
```

Výpočet skončil, vstup byl zamítnut

Redukce počtu pásek

Věta

Ke každému k-páskovému Turingovu stroji M existuje jednopáskový Turingův stroj M', který simuluje práci M.

Přesněji

- M' přijímá týž jazyk jako M
- M' počítá touž funkci jako M

Reprezentace k pásek na jedné pásce

Konstrukce jednopáskového stroje M'

- Předpokládejme, že $M' = (Q, \Sigma, \delta, q_0, F)$ je 3-páskový stroj
- Tři pásky M reprezentujeme na třech stopách jedné pásky M'.
- Obsahy pásek jsou zarovnané podle poloh hlav
- Navíc páska M' obsahuje stopu se značkami vyznačujícími polohu hlav M
- Abeceda stroje M' je tedy

$$\Sigma' = \Sigma \cup \{ \blacktriangledown, \triangledown \} \times \Sigma \times \Sigma \times \Sigma$$

- Abeceda Σ je součástí Σ' , protože M' čte vstup v abecedě Σ
- Prvním krokem M' je přeformátování vstupu do 4 stop
- Podobně může být nutné zpět přeformátovat i výstup

Simulace kroku k-páskového stroje

Instrukci stroje M

$$\begin{array}{c} \operatorname{stav} \mathbf{z} \ \mathcal{Q} & \operatorname{znaky} \mathbf{z} \ \Sigma \\ \delta(\overbrace{q} , \overbrace{a_1, a_2, a_3}) = (\overbrace{q'} , \overbrace{b_1, b_2, b_3}, \ \overbrace{Z_1, Z_2, Z_3}) \end{array}$$

odpovídá posloupnost instrukci stroje M', která provede

- Změnu stavu jako u k-páskového stroje
 - Stav M je uložen jako část stavu M'
- Přepis obsahu políček v jednotlivých stopách
 - Přepíšou se všechna najednou,
 - v M' jde o jeden znak
- Posun obsahu pásek ve stopách proti směru pohybu tak, aby hlavy byly nakonec opět zarovnané