Math 462 Homework 7

a lipson

March 14, 2025

Problem 1. Modify Euler's formula so that it holds for any planar graph, not just connected planar graphs. Prove your formula.

Proof. Since G is planar and not connected, then G has k connected components.

We can connect align these components in a row and connect them with k-1 edges.

Now, the new graph is connected and planar, so V - (E + (k-1)) + F = 2 holds.

Hence, we have V - E + F = 3 - k for a disconnected planar graph of k connected components. \square

Problem 2. (i) Prove that if G is a simple planar graph with no triangles and at least three vertices, then $E \leq 2V - 4$.

(ii) Use this to prove that $K_{3,3}$ is not planar.

Proof of (a). Since G is simple and planar with no triangles, then every face must have at least length 4.

So,

$$4F \le \sum_{f \in F} \operatorname{length}(f) = 2E \implies F \le \frac{1}{2}E.$$

Then, substituting the above into Euler's formula we have,

$$2 = V - E + F \le V - \frac{1}{2}E \implies E \le 2V - 4.$$

Proof of (b). We have that, for $K_{3,3}$, V=6 and E=9.

But, V > 2V - 4 as $9 > 2 \cdot 6 - 4 = 8$.

Therefore, $K_{3,3}$ is not planar.

Problem 3.

a lipson March 14, 2025

Let G be a simple graph (not necessarily planar). Let d be the maximum degree of a vertex in G.

- (i) Prove that $\chi(G) \leq d+1$. Hint: Use induction.
- (ii) Find an infinite family of non-isomorphic graphs for which equality holds in the above inequality.

Proof of (a). We will prove the statement by induction on d.

For the base case, when d=0, the all vertices must have degree zero and must therefore be not connected. Hence $\chi(G)=0+1=1$ color for each vertex.

Assume, that $\chi(G) = d$ for the maximum vertex degree in G of d-1.

Now, for the maximum degree of d, we have by the inductive hypothesis that the chromatic number must be at least d.

Then, the vertex with degree d, call it v is adjacent to d other vertices, each of which can be given one of d colors.

But, v must have a different color from the other d vertices; hence the graph must be (d+1)-colorable.

Therefore
$$\chi(G) \leq d+1$$
.

Proof of (b). Consider the complete graphs K_n . The degree of each vertex in K_n is n-1, so $\chi(K_n)=n$.

Each K_n is not isomorphic to K_{n-1} as these graphs have a different number of vertices.

So, for all n, we have that the infinite family of complete graphs has their chromatic number equal to one more than their maximum degree.

Problem 4.

A polyhedron has 26 faces, 20 of which are triangles and 6 of which are quadrilaterals. Find the number of vertices and edges of this polyhedron.

Proof. We have that,

$$2E = \sum_{f \in F} \operatorname{length}(f) = 20 \cdot 3 + 6 \cdot 4 = 84 \implies E = 42.$$

Then, by Euler's formula,

$$V - E + F = V - 42 + 26 = 2 \implies V = 18.$$

Problem 5.

An n-gonal pyramid is a polyhedron formed by connecting each vertex of an n-sided polygon with one additional vertex.

a lipson March 14, 2025

- (i) What is the dual polyhedron of an n-gonal pyramid?
- (ii) What is the chromatic number of an *n*-gonal pyramid?

Proposition 1. An *n*-gonal pyramid is its own dual.

Proof of Proposition and (a). Let N be the n-gonal pyramid and N^* be its dual.

Then, for N, V = n + 1 for the vertices in the base n-gon and the apex.

F = n + 1 for the *n*-gon base and the *n* triangular faces.

E=2n for the n edges in the base n-gon and the n edges connecting the base vertices to the apex.

Next, for N^* , there is a vertex at each face of N, so $V^* = F = n + 1$.

Similarly, there is a face on each vertex of N, so $F^* = V = n + 1$.

Each edge in N corresponds to an edge in the dual N^* , so $E^* = N = 2n$.

In fact, N^* has the same structure as N.

The vertex in the face of the base n-gon in N is the apex in N^* .

The *n* vertices on triangular faces of N form the vertices of the n-gon base in N^* .

Thus, N^* implies that an n-gonal pyramid is its own dual.

Proof of (b). By Problem 3, since the maximum degree in N belongs to the apex vertex with degree n, then $\chi(N) = n + 1$.

Problem 6.

Let G_n be the graph with vertex set $\{0,1\}^n$ and an edge between $x, y \in \{0,1\}^n$ if x and y differ at exactly 2 positions.

- (i) Prove that $\chi(G_3) = 4$ and $\chi(G_4) = 4$.
- (ii) Prove that $\chi(G_n) \geq n$ for all positive integers n.

Proof.