МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

Расчётно-графическая работа. Математический анализ № 1 по теме «Предел»

Вариант №2

Выполнила группа №2:
Студенты: Темешев Тимур,
Колмаков Дмитрий,
Щербаков Святослав,
Динь-Ань Зыонг, Собитов
Анвархон, Константинов
Никита
Преподаватель:
Селеменчук Антон Сергеевич

Задание 1. Метод математической индукции

Пользуясь методом математической индукции, докажите, что при любом $n \in N$:

$$1^2 + 3^2 + \dots + (2n - 1)^2 = \frac{n(4n^2 - 1)}{3}$$

План:

1) Ознакомьтесь с методом математической индукции. Например, в задачнике:

Кудрявцев Л.Д. и др. «Сборник задач по математическому анализу» Том 1 (2003).

- 2) Проверьте утверждение для номеров n = 1, n = 2, n = 3 (база индукции).
- 3) Предположите, что утверждение верно (индукционное предположение).
- 4) Покажите, что из справедливости индукционного предположения для номера n следует

справедливость этого утверждения для номера n+1 (шаг индукции).

5) Сделайте вывод.

Решение

$$1^2 + 3^2 + \dots + (2n - 1)^2 = \frac{n(4n^2 - 1)}{3}$$

 $1.\Pi$ роверьте утверждение для номеров $n=1,\, n=2,\, n=3$ (база индукции).

1) n=1
$$(2*1-1)^2 = \frac{1*(4*1^2-1)}{3} \rightarrow 1 = 1$$
 Утверждение верно!

2) n=2
$$(2*1-1)^2 + (2*2-1)^2 = \frac{2(4*2^2-1)}{3} \rightarrow 1^2 + 3^2 = 10 \rightarrow 10 = 10$$
 Утверждение верно!

3) n=3
$$(2*1-1)^2 + (2*2-1)^2 + (2*3-1)^2 = \frac{3(4*3^2-1)}{3} \rightarrow 1^2 + 3^2 + 5^2 = 35 \rightarrow 1 + 9 + 25 = 35 \rightarrow 35 = 35$$
 Утверждение верно!

2.Предположим, что утверждение верно для любого произвольного значения $n,\ 1^2+3^2+\ldots+(2n-1)^2=\frac{n(4n^2-1)}{3}$, тогда оно и верно для элемента n+1. Докажем это.

$$1^{2} + 3^{2} + \dots + (2n-1)^{2} + (2(n+1)-1)^{2} = \frac{(n+1)(4(n+1)^{2}-1)}{3}$$

т.к выражение $1^2 + 3^2 + \ldots + (2n-1)^2 = \frac{n(4n^2-1)}{3}$, мы можем совершить замену.

$$\frac{n(4n^2-1)}{3} + (2(n+1)-1)^2 = \frac{(n+1)(4(n+1)^2-1)}{3}$$

$$\frac{4n^3 - n}{3} + (2n + 2 - 1)^2 = \frac{(n+1)(4(n^2 + 2n + 1) - 1)}{3}$$

$$\frac{4n^3 - n}{3} + 4n^2 + 4n + 1 = \frac{(n+1)(4n^2 + 8n + 3)}{3}$$

$$\frac{4n^3 - n}{3} + 4n^2 + 4n + 1 = \frac{4n^3 + 8n^2 + 3n + 4n^2 + 8n + 3}{3}$$

$$\frac{4n^3 - n}{3} + 4n^2 + 4n + 1 = \frac{4n^3 + 12n^2 + 11n + 3}{3}$$

Умножаем все на 3:

$$4n^{3} - n + 12n^{2} + 12n + 3 = 4n^{3} + 12n^{2} + 11n + 3$$
$$-n + 12n = 11n$$
$$11n = 11n$$

Утверждение верно!

3. Вывод. Математическая индукция лежит в основе одного из самых распространенных методов математических доказательств. С его помощью можно доказать большую часть формул с натуральными числами n.

Задание 2. Исследование предела рекуррентно заданной последовательности

Вещественная последовательность задана рекуррентно: $x_{n+1} = \sqrt{2 + x_n}$ где $x \in \mathbb{R}$. Исследуйте её предел при $n \to \infty$ в зависимости от значения x_1 . План:

1) Предположите, что предел существует, и найдите его. Доказательство существования

предела будет проведено в п. 6).

- 2) Какими могут быть значения x_1 ? Укажите множество возможных значений x_1 . Докажите ваш ответ аналитически.
- 3) При каком значении x_1 последовательность является стационарной? Докажите это аналитически.
- 4) Познакомьтесь с теоремой Вейерштрасса об ограниченной монотонной последовательности и запишите её формулировку (например, в учебнике: Зорич В.А. "Математический анализ" Том 1 (2019): глава III, п. 3. "Вопросы существования предела").
- 5) Выделите характерные случаи для значений x_1 (с точки зрения монотонности) и проиллюстрируйте их графиками последовательности.
- 6) Докажите аналитически ограниченность и монотонность последовательности для каждого характерного случая. Сделайте заключение о существовании предела по теореме Вейерштрасса.

Решение

1)Предположим, что предел существует

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} x_{n+1}$$
 пусть $\lim_{n\to\infty} x_n = A$, $x_n > 0 \to A > 0$

 $A = \sqrt{2 + A}$, возведем в степень и посмотрим, какие корни подходят $A^2 - A - 2 = 0$ Далее решаем квадратное уравнение

D=3 Дискриминант равен 3, т.е. корни этого уравнения будут 2 и -1 $A_1=2$ $A_2=-1$

Корень A_2 не подходит, по неравенству $x_n>0 \to A>0$

2) Т.к
$$x_2 = \sqrt{2 + x_1}$$
, то

$$2 + x_1 \ge 0$$

$$x_1 \ge -2$$

$$x_1 \in [-2; \infty)$$

3)Определить: $a_1 = a_2 = a_3 = \ldots = a_n$

Предположим

$$x_n = x_{n+1}$$

$$x_n = \sqrt{2 + x_n}$$

$$x_n^2 - x_n - 2 = 0$$

$$D=3$$
 Корень $x_n=-1$ не подходит т.к. x_n и т.д. не могут быть отрицательными $x_n=-1$ Корень $x_n=2$ подходит $x_n=2$ Последовательность стационарная $x_1=2$ $x_2=2$ $x_3=2\dots x_n=2$ 4) — 5)Рассмотрим $\begin{cases} x_n\geq 0 \\ x_n-x_{n+1}>0 \\ x_n>\sqrt{2+x_n} \end{cases}$ убывает и ограничена снизу $x_n^2-x_n-2>0$ $(x_n+1)(x_n-2)>0$ $x_n\in(2,\infty)\to x_1\in(2,\infty)$

$$\begin{cases} x_n \ge 0 \\ x_n - x_{n+1} < 0 \\ x_n < x_{n+1} \text{ Возрастает и ограничена сверху} \\ (x_n + 1)(x_n - 2) < 0 \\ x_n \in [0; 2) \text{ и } x_1 \in [-2, 2) \end{cases}$$

Рассмотрим

$$x_n = x_{n+1}$$
 - последовательность стационарна

$$x_n^2 - x_n - 2 = 0$$

$$D = 3$$

Корень $x_n = -1$ не подходит т.к. x_n и т.д. не могут быть отрицательными

$$x_n = -1$$

Корень
$$x_n = 2$$
 подходит

$$x_n = 2$$

6) По теореме Вейерштрасса

При $x_1 \in [-2; 2)$ последовательность возрастает и ограничена сверху $\to A=2$ При $x_1 \in (2; \infty)$ последовательность убывает и ограничена снизу $\to A=2$ При $x_1 = 2$ последовательность стационарна.

Задание 3. Сравнение бесконечно малых

Какой порядок будет иметь приращение площади квадрата по отношению к бесконечно малому приращению его диагонали? План:

- 1) Сделайте геометрическую иллюстрацию к задаче.
- 2) Составьте математическую модель: введите обозначения, составьте формулу.
- 3) Решите задачу аналитически.
- 4) Запишите ответ и проиллюстрируйте его геометрически.

Решение

1) Сделайте геометрическую иллюстрацию к задаче

2) Составьте математическую модель: введите обозначения, составьте формулу.

Площадь квадрата через диагональ - $S_{\blacksquare} = \frac{1}{2} d^2$, где d-диагональ квадрата Приращенная площадь квадрата - $S = \frac{1}{2}(d + d_{\Delta})^2$,

Формула диагонали - $d_{\blacksquare} = \sqrt{2}a$, где а – сторона квадрата

3) Решите задачу аналитически.
$$\lim_{d_{\bullet}\to 0}\frac{S-S_{\bullet}}{d_{\bullet}}=\lim_{d_{\bullet}\to 0}\frac{\frac{1}{2}(d+d_{\Delta})^2-\frac{1}{2}d^2}{d_{\bullet}}=\lim_{d_{\bullet}\to 0}\frac{\frac{1}{2}(d^2+2dd_{\bullet}+d_{\bullet}^2)-\frac{1}{2}d^2}{d_{\bullet}}=\lim_{d_{\bullet}\to 0}\frac{\frac{1}{2}d^2+dd_{\bullet}+\frac{1}{2}d_{\bullet}^2-\frac{1}{2}d^2}{d_{\bullet}}$$

$$\lim_{d_{\blacksquare}\to 0}\frac{dd_{\blacksquare}+\frac{1}{2}d_{\blacksquare}^{2}}{d_{\blacksquare}}=\lim_{d_{\blacksquare}\to 0}\frac{d_{n}(d+\frac{1}{2}d_{\blacksquare})}{d_{\blacksquare}}=\lim_{d_{\blacksquare}\to 0}=(d+\frac{1}{2}d_{\blacksquare})=d$$
 d-константа, не бесконечная и в общем случае не равна нулю

Значит приращение площади квадрата и приращение его диагонали одного порядка малости. Либо можно сказать, что приращение площади бесконечно малое 1-го порядка относительно приращения диагонали.

Задание 4. Исследование предела рекуррентно заданной последовательности

В круг радиуса r вписан квадрат, в квадрат вписан круг и так n раз. Найдите предел суммы площадей всех кругов и предел суммы площадей всех квадратов при $n \to \infty$.

План:

- 1) Сделайте геометрическую иллюстрацию к задаче.
- 2) Составьте математическую модель: введите обозначения, составьте формулу.
- 3) Решите задачу аналитически.
- 4) Запишите ответ и проиллюстрируйте его геометрически.

Решение

1) Сделайте геометрическую иллюстрацию к задаче.

2) Составьте математическую модель: введите обозначения, составьте формулу.

Площадь первого круга равна

$$S_{1 \text{KD}} = \pi R^2$$

Площадь первого квадрата равна при D-диагональ квадрата

D=2R
$$S_{1KB} = \frac{D^2}{2} = 2R^2$$

Радиус второго круга будет равен $\frac{R\sqrt{2}}{2}$

Площадь второго круга
$$S_{2 \mathrm{ kp}} = \frac{\pi R^2}{2}$$

Площадь второго квадрата $S_{2\text{кв}} = R^2$

И так далее

Сумма площадей всех кругов:

$$S_{n \text{ кругов}} = \pi * R^2 + \frac{\pi R^2}{2} + \frac{\pi R^2}{4} + \frac{\pi R^2}{8} + \ldots + \frac{\pi R^2}{n} = \pi R^2 (1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{n})$$
 Сумма площадей всех квадратов:

 $S_{n \text{ квадратов}} = 2R^2 + R^2 + \frac{R^2}{2} + \frac{R^2}{4} + \frac{R^2}{8} + \ldots + \frac{R^2}{n} = R^2(2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{n})$ Известно, что предел суммы ряда $(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{n})$ при $n \to \infty$ равен 1, тогда предел общей суммы кругов:

$$\lim_{n\to\infty}S_{\mathrm{Kp}}=\pi R^2(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{n})=\pi R^2(1+1)=2\pi R^2$$
 И для квадратов

$$\lim_{n\to\infty} S_{KB} = R^2 \left(2 + 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{n}\right) = R^2 (3+1) = 4R^2$$

Задание 5. Исследование сходимости

План:		
1)	Вычислите предел последовательности при $n \to \infty$.	Вычислите предел функции при $x \to \infty$.
2)	Постройте график общего члена последовательности в зависимости от номера n .	Постройте график функции в зависимости от x .
3)	Проиллюстрируйте сходимость (расходимость) последовательности:	Проиллюстрируйте сходимость (расходимость) функции на бесконечности:
3a)	вспомните определение сходимости (расходимости) последовательности;	вспомните определение сходимости (расходимости) функции на бесконечности;
3б)	выберите три различных положительных числа $\varepsilon_1 > \varepsilon_2 > \varepsilon_3$;	
3в)	для каждого такого числа изобразите на графике ε -окрестность (« ε -трубу»)	
3г)	и найдите на графике номер n_0 , после которого все члены последовательности попадают в ε -окрестность, или установите, что такого номера нет.	и найдите на графике δ -окрестность переменных x , в которой все значения функции $f(x)$ попадают в ε -окрестность, или установите, что такой окрестности нет.
2 × 13		

2.
$$a_n = \frac{8^{n+2} + (-7)^{n-1}}{5 \cdot 8^n + (-7)^n}$$
 $f(x) = \left(\frac{1 - x^2}{2 - 7x^2}\right)^{x - 13}$

1а) Вычислите предел последовательности при $n \to \infty$.

$$\lim_{n \to \infty} \frac{8^{n+2} + (-7)^{n-1}}{5 * 8^n + (-7)^n} = \frac{64 * 8^n + \frac{(-7)^n}{(-7)}}{5 * 8^n + (-7)^n}$$

$$\frac{1}{7} \lim_{n \to \infty} \frac{448 * 8^n + (-7)^n}{5 * 8^n + (-7)^n} = \frac{1}{7} \lim_{n \to \infty} \frac{448 * \frac{8^n}{8^n} + (-\frac{7}{8})^n}{5 * \frac{8^n}{8^n} + (-\frac{7}{8})^n} = \frac{1}{7} * \frac{448 + 0}{5 + 0} = \frac{64}{5}$$

$$\approx 12.8$$

1б) Вычислите предел последовательности при $X \to \infty$.

$$\lim_{n \to \infty} \left(\frac{1 - x^2}{2 - 7x^2} \right)^{x - 13}$$

Вычислим пределы основания и степени отдельно

Предел основания

$$\lim_{n \to \infty} \frac{1 - x^2}{2 - 7x^2} = \frac{x^2(\frac{1}{x^2} - 1)}{x^2(\frac{2}{x^2} - 7)} = \frac{(\frac{1}{x^2} - 1)}{(\frac{2}{x^2} - 7)} = \frac{1}{7}$$

Предел степени

$$\lim_{n\to\infty}(x-13)=\infty$$

Поскольку выражение a^{∞} , 0 < a < 1 определено как 0, то предел

$$\lim_{n \to \infty} \left(\frac{1 - x^2}{2 - 7x^2} \right)^{x - 13} = 0$$

- 2a)Постройте график общего члена последовательности в зависимости от номера n.
- 2б) Постройте график функции в зависимости от х.

3а) Вспомните определение сходимости(расходимости) последовательности

Сходимость означает существование конечного предела у числовой последовательности. Соответственно, расходимость

— отсутствие конечного предела.

$$\forall \epsilon \geq 0 \; \exists \mathsf{N}(\epsilon) \in \mathsf{N} : \forall \mathsf{n} > \mathsf{N} \Rightarrow |x_n - \mathsf{A}| < \epsilon$$

3б) Вспомните определение сходимости(расходимости) функции на бесконечности.

Сходимость означает существование конечного предела у функции. Соответственно, расходимость — отсутствие конечного предела. $\forall \varepsilon > 0 \ \exists x_0 \in \mathbb{R} : \forall x > x0 \Rightarrow |f(x) - A| < \varepsilon$

4а) Выберите три различных положительный числа $\varepsilon_1 > \varepsilon_2 > \varepsilon_3$ Для каждого такого числа изобразите на графике ε — окрестность Выберем 3 числа $\varepsilon_1 > \varepsilon_2 > \varepsilon_3$

$$\varepsilon 1 = 0.1$$

$$\varepsilon 2 = 0.02$$

$$\varepsilon 3 = 0.01$$

4б) Выберите три различных положительный числа $\varepsilon_1 > \varepsilon_2 > \varepsilon_3$ Для каждого такого числа изобразите на графике ε — окрестность

Выберем 3 числа $\epsilon 1 > \epsilon 2 > \epsilon 3$

$$\varepsilon 1 = 1.5$$

$$\varepsilon 2 = 2.5$$

$$\varepsilon 3 = 5$$

