Probabilidad es una manera de indicar la posibilidad de ocurrencia de un evento futuro

La probabilidad nos proporciona un modelo teórico para la generación de los datos experimentales

Medidas de la Posibilidad de Ocurrencia

Clásica

 $P(A) = \frac{N(A)}{N}$

Frecuentista

$$P(X) = \frac{f(x)}{n}$$

Subjetiva

% creencia

v.rohen

Tipos de PROBABILIDAD

Clásica se basa en las características inherentes de los eventos

Empírica se basa en una gran cantidad de evidencia objetiva

Subjetiva se basa en la intuición o en creencias

Un experimento estadístico es cualquier proceso repetible del cual se puede obtener resultados probabilísticos

Cuando se efectúa un experimento, podemos obtener uno o mas resultados que denotamos como eventos

Los eventos pueden ser simples (aquellos que no pueden descomponerse en otros eventos) o compuestos (aquellos que consisten de varios eventos simples)

Espacio Eventual o Muestral (S) (importante para asociar probabilidades a los eventos) está definido como el conjunto de todos los posibles eventos simples para un experimento

Cuando realizamos un experimento una sola vez y solo podemos observar uno y solo un evento simple, entonces decimos que los eventos son mutuamente excluyentes.

Si A y B son eventos mutuamente excluyentes, entonces $A \cap B = \phi$

Un Espacio Muestral Discreto es aquel que contiene un número finito o infinito numerable de puntos muestrales distintos

Un Espacio Muestral Continuo es aquel que tiene como elementos todos los puntos sobre un intervalo en los reales

Sea A un evento de interés en un experimento, y N(A) el número de veces que el evento A se satisface (la cardinalidad de A) entonces la Probabilidad de ocurrencia de A está dada por:

 $P(A) = \frac{N(A)}{N}$

donde N es la cantidad total de resultados posibles en el experimento (la cardinalidad del espacio muestral S)

Cuando el Espacio Muestral S es continuo (un intervalo (a,b) por ejemplo y el evento de interés $A \subset S$ es un subintervalo (c,d) entonces

$$P(A) = \frac{l(A)}{l(S)}$$

donde l(A) es la longitud del intervalo (c,d) y l(S) es la longitud del intervalo (a,b)

v.rohen

El evento imposible tiene probabilidad cero

El evento seguro tiene probabilidad uno

Axiomas de la probabilidad

A1. $P(A) \ge 0$

A2. P(S) = 1

A3. Si A_1, A_2, \dots, A_n forman un conjunto de eventos mutuamente excluyentes, entonces

$$P(A_1 \cup A_2 \cup \cdots \cup A_n) = P(A_1) + P(A_2) + \cdots + P(A_n)$$

Algunas reglas de la probabilidad

- Si un experimento puede dar origen a uno de N resultados diferentes igualmente probables y si n de estos resultados constituyen el evento A, entonces $P(A) = \frac{n}{N}$
- Si A es un evento de un espacio muestral S y A^c es el complemento de A entonces $P(A^c)=1-P(A)$
- $P(\Phi)$ = 0 para cualquier espacio muestral S

reglas.. cont.

- Si A y B son eventos de un espacio muestral S y $A \subset B$ entonces $P(A) \le P(B)$
- Si A y B son dos eventos cualesquiera en un espacio muestral S, entonces

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Métodos de Conteo

Regla mn: Si un evento A puede ocurrir de m maneras diferentes, y otro evento B puede ocurrir de n maneras diferentes, entonces A y B pueden ocurrir juntos de mn maneras diferentes

Una permutación de n diferentes objetos tomados en grupos de r elementos, es un arreglo ordenado de n en r, y se calcula como

$$P_r^n = \frac{n!}{(n-r)!}$$

Combinaciones: El número de subconjuntos de tamaño r que pueden ser formados con n objetos disponibles se obtiene con la fórmula

$$C_r^n = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

En este caso, el orden no importa, por lo que el subconjunto $\{a_1,a_2,a_3\}$ es igual al conjunto $\{a_2,a_1,a_3\}$

Probabilidad Condicional

Si A y B son dos eventos cualesquiera de un espacio muestral S y $P(B) \neq 0$, la probabilidad condicional del evento A dado que el evento B ha ocurrido es

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Independencia de eventos

Dos eventos A y B son independientes si

$$P(A \mid B) = P(A)$$

$$O(A \mid B) = P(B)$$

$$O(A \mid A) = P(B)$$

$$O(A \cap B) = P(A)P(B)$$

Si A y B son independientes, entonces A y B son independientes

Si dos eventos *A* y *B* son mutuamente excluyentes, *A* y *B* NO pueden ser independientes

Regla de la multiplicación

Si A y B son dos eventos cualesquiera del espacio muestral S tales que, $P(B) \neq 0$ entonces

$$P(A \cap B) = P(B)P(A \mid B)$$

Regla de las probabilidades totales

Si los eventos B_1, B_2, \dots, B_k son eventos mutuamente excluyentes, de tal manera que la unión de ellos conforman todo el espacio muestral S, y si A es un subconjunto de S, entonces

$$P(A) = P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + \dots + P(B_k)P(A \mid B_k)$$

Regla de Bayes

Si los eventos B_1 y B_2 son eventos mutuamente excluyentes, de tal manera que la unión de ellos conforman todo el espacio muestral S, y si A es un subconjunto de S, tal que P(A) > 0entonces

$$P(B_1 \mid A) = \frac{P(B_1)P(A \mid B_1)}{P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2)}$$

generalizando:

Si los eventos B_1, B_2, \dots, B_k son eventos mutuamente excluyentes, de tal manera que la unión de ellos conforman todo el espacio muestral S, y si A es un subconjunto de S, tal que P(A) > 0, entonces

$$P(B_i \mid A) = \frac{P(B_i)P(A \mid B_i)}{P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + \dots + P(B_k)P(A \mid B_k)}$$

