Výsledky

(a) Pozorovaná rodina Eunomia určená HCM s hodnotou $v_{\rm cutoff} = 44 \, {\rm m/s}$ v rovině vlastní hlavní poloosy $a_{\rm p}$ a vlastní excentricity $e_{\rm p}$ (nahoře) a v rovině vlastní hlavní poloosy $a_{\rm p}$ a vlastního sklonu sin I_p (dole). Barevná škála odpovídá albedu $p_{\rm V}$ a $p_{\rm IR}$ z katalogu WISE [3]. Nápisy J3/1, J8/3 a J13/5 označují polohu **rezonancí středního pohybu** s *Jupiterem*. Šedé elipsy a úsečky (degenerované elipsy) naznačují předpokládaný tvar rodiny, při rozpadu v bodě oběžné dráhy s hodnotami **pravé anomálie** $f=0^{\circ}, 90^{\circ}, 180^{\circ}$ (nahoře) a jejího součtu s **argumentem pericentra** $\omega + f = 0^{\circ}, 50^{\circ}, 90^{\circ}$ (dole), kde elipsou zvolenou pro další výpočety je elipsa pro hodnoty $f=90^\circ$ a $\omega+f=50^\circ$.

K určení rodiny *Eunomia* jsme použili metodu HCM s hodnotou $v_{\rm cutoff} = 44\,{\rm m/s}$. Dále jsme odstranili přimísená tělesa pomocí závislosti unášení ve vlastní hlavní poloose $\Delta a_{\rm p}$ na absolutní hvězdné velikosti H a pomocí dvou spektroskopických metod — závislosti albed $p_{
m V}$ a $p_{
m IR}$ a závislosti barevných indexů a^* a i-z. Před odstraněním činil počet planetek 6503, po použití všech metod 6184.

(b) Pozorovaná rodiny Eunomia v rovině vlastní hlavní poloosy a_p a absolutní hvězdné velikosti H. Lze pozorovat typický tvar "V", který je způsobem počátečním (v infračerveném) z katalogu WISE. Barvy rychlostním polem a Jarkovského jevem, jenž je ještě neodpovídají reálnému zbarvení. Pro vyřazení zbarvení. Pro vyřazení přimísených těles zesílen vlivem **YORPu**, což způsobuje zvýšenou koncentraci malých planetek při okrajích rodiny.

(c) **Albeda** $p_{\rm V}$ (ve viditelném spektru) a $p_{\rm IR}$ přimísených těles touto metodou byly zvoleny hraniční hodnoty $0.05 \le p_{\rm V} \le 0.4$.

(d) Barevné indexy a^* a i-z z katalogu Sloan [4]. Barvy neodpovídají reálnému byly zvoleny hraniční hodnoty $0 \le a^* \le 0.3$ a $-0.3 \le i - z \le 0.3$.

Při vytváření syntetické populace planetek jsme částicím přiřadili průměry, albeda a orientace rotačních os (vliv na Jarkovského jev) podle pozorované rodiny nebo náhodně. U průměrů jsme zohlednili rozdělení velikostí a při zpracovávání simulace jsme rozdělení korigovali tak, aby odpovídalo pozorovanému.

Dále jsme částicím přiřadili úvodní rychlosti jako při izotropním rozpadu v bodě oběžné dráhy s hodnotami $f=90^\circ$ a $\omega+f=50^\circ$.

Po dobu **jedné miliardy let** jsem simulovali populaci 6210 částic s tím, že přibližně v půlce došlo ke ztrátě dat. Simulace byla spuštěna na výpočetním clusteru Astronomického ústavu Univerzity Karlovy a celkově se spotřebovalo 23040 CPU hodin. Protože jsme z ladících důvodů nechali ukládat nejen **vlastní**, ale i **střední** elementy, je celkový objem **binárních dat** roven 164 GB.

Obrázek: Histogram četnosti velikostí planetek rodiny Eunomia, kde veličina N(>D)označuje počet planetek s průměrem větším než D. Jedná se o logaritmický graf $(\log D, \log N(>D))$, na kterém lze vztah mezi danými veličinami aproximovat přímkou, což znamená, že vztah mezi veličinami D a N(>D) je **mocninný**. Vodorovná část zcela vlevo je způsobena observační nedostatečností. Změna sklonu přímky prvního intervalu D (vlevo, q=-4) na druhý interval D (vpravo, q=-1,2) je důsledkem jednak prvotního rozpadu a jednak druhotného vývoje — tělesa se nadále srážejí, vytvářejí menší tělesa, která snáze opouštějí rodinu.

Obrázek: Výsledky simulace v prostorech (a_p, e_p) , $(a_p, \sin l_p)$ a $(e_p, \sin l_p)$ v časech postupně t = 5, 105, 405, 905 miliónů let. Modré body označují **simulovanou** rodinu, žluté body **pozorovanou** rodinu identifikovanou HCM a šedé body **pozadí** a jiné okolní rodiny. Jsou také značeny nejvýznamnější **rezonance** s *Jupiterem* J3/1, J8/3, J13/5 a J5/2. Černá křivka nahoře označuje hranici oblasti, kde je hlavní poloosa a excentricita tělesa taková, že dráha kříží dráhu Marsu. Podobná hranice existuje i pro **Jupiter**, ale ta se nachází mimo tyto grafy (přibližně kolem e = 0.65). Fialový obdélník označuje oblast vybranou pro vzorek populace **pozadí**.

Kvůli specifickému výpočtu vlastních elementů dráhy z počátečních rychlostí můžeme v čase 5 miliónů let pozorovat mírně nesymetrický tvar simulované rodiny. Lze vidět vliv **rezonancí středního pohybu** J3/1, J5/2, J8/3 a J13/5 — v jejich blízkosti se **excentricity** planetek začnou zvyšovat, až se dostanou do oblasti, kde kříží dráhy Marsu nebo Jupitera, což znamená, že se planetka dříve nebo později některé z těchto planet přiblíží a její hlavní poloosa se náhle změní. **Rezonance** J8/3 a J13/5 jasně rozdělují planetky do oblastí, ze kterých planetky zřídkakdy vystupují. Na prvním obrázku jsou data již zprůměrována z prvních 10 miliónů let, takže můžeme vidět, že se planetky, které se zřejmě na počátku nacházely v blízkosti **rezonancí** J3/1, J8/3 a J13/5, stihly rozptýlit a narušily tak jinak zatím pravidelný tvar rodiny. Potvrzuje se, že **rezonance** J8/3 je silnější než **rezonance** J13/5 (planetky v její blízkosti se v čase 105 miliónů let rozšířily do pásu o velikosti $0.05 < e_{\rm p} < 0.5$, zatímco v blízkosti **rezonance** J13/5 pouze do pásu o velikosti $0.1 < e_{\rm p} < 0.23$)

Na grafu $(a_p, \sin l_p)$ můžeme pozorovat mírné "naklonění" pozorované rodiny (část pod $a \approx 2,62\,\mathrm{AU}$ má vyšší sklon l_p), čehož si na rodině simulované bohužel zatím všimnout nemůžeme.

Obrázek: Hodnota **chi kvadrátu** χ^2 pro každý **box** v prostoru (a_p, e_p) . Na prvních třech obrázcích lze vidět rozdělení **chi kvadrátu** pro t=5,105,405 miliónů let, na posledním obrázku lze vidět rozdělení chi kvadrátu při vygenerování pouze pozadí bez použití částic simulované rodiny. Tečky označují syntetickou populaci i s přidaným pozadím.

K odhadu **stáří rodiny** jsme použili metodu nazvanou příznačně "blackbox" popsanou v [5], která funguje na principu rozdělení planetek jak pozorované, tak simulované rodiny do "boxů" v prostoru $(a_{\rm p},e_{\rm p},\sin l_{\rm p})$ a následném porovnání počtů pozorovaných a simulovaných planetek v jednotlivých boxech. Simulovanonou populaci ještě "smícháváme" se vzorkem **pozadí**, přičemž dodržuje **rozdělení velikostí**.

Na tento jednoduchý princip je pak použita standardní statistická metoda rozdělení **chí kvadrátu** χ^2 — pro každý **box** vypočteme jeho příspěvek k χ^2 jako

$$\frac{(N_{\rm sim}-N_{\rm obs})^2}{N_{\rm sim}+N_{\rm obs}}$$

kde $N_{\rm sim}$, resp. $N_{\rm obs}$ označuje počet simulovaných, resp. pozorovaných těles v daném **boxu**. Výslednou hodnotu χ^2 potom dostaneme prostým sečtením všech příspěvků. Můžeme vidět, že nejvíce se odlišuje jádro rodiny kolem 2,65 AU (moc syntetických částic) a oblast nalevo od jádra v oblasti $a_{\rm p}\in(2,55\,{
m AU};\,2,5\,{
m AU})$ a $e_{\rm p}\in(0,14;\,0,16)$ (málo **syntetických** těles). Kvůli silné **kontaminaci** rodinou *Adeona* v oblasti 0,16 < e < 0.18 jsme byli nuceni pozorované členy této rodiny ručně odstranit