->	P	9
Face Value (RS.)	1,000	1,000
Coupon (Annual)	10%	8 %
N (years)	5	5
TTM	9%	970
0	?	7
	1038,89	961.10

	100 1/9	80
Interest Rate	P	§
7 %	1,123.01	1,041.00
90%	1,038-89	961.10
1170	963.40	889-12
	P	L S
7. change in price	7.267.	7.497
97 + 117)		

(97. to 1170) Shope for Q > shope for P.

	×	Y
Fv(Rg.)	1,000	1,000
Coupon	8 of 0	6%
N N	13	13
Po?		

	×	*	
Po	1,177.05	841.92	Pull to Parc
P.	1,167.68	849.28	
P3	1,147.20	865,79	
P8	1,084-25	920.15	
P12	1,018.87	981.48	
P13	1,000	1,000	,
			,

Face Value (Par Value RS. 5000)Coupon 3.70%, payable semi-annually
YTM 3.90%.
N 16 years

Po = ?

Coupon = Rs. 92.5 (for 6 months) $P_0 = 92.5 \times PVIFA (1.957., 32) + 5000 \times PVIF (1.957., 32)$ = 2186.67 + 2695.13 = 4881.80

-> Book 8.21

Par Value 1,000 Coupon, 6.47. paid semi-annually. Price = 106.817. of par N=18yrs.

Find YTM

 $|068 \cdot | = 32 \times PVIFA(Y, 36) + |000 \times PVIF(Y, 36)$ $= 32 \left(1 - \frac{1}{(1+Y)^{36}}\right) + \frac{1000}{(1+Y)^{36}}$

r= 2.8970

 $YTM = 2.89 \times 2 = 5.787$

Effective yield = (1+2.89)2-1=5-86%

→ Book 9.23

Price = 1,035.00 Coupon = 5.909, y Semi-annually Par Value = 1,000.00 4 months left to watwidy.

2 months interest = Rs. 9.83

Pirty Price = Rs. 1,035

Clean Price = Rs. 1,035-9.83

= Rs. 1,025.17

-> Book S.25 Coupon-annual = 8% YTM = 7.20% Par Value = 1,000 Current Yield = 7.55% Cy = Coupon Corrent Price Find N. $P_{\text{rice}} = \frac{80}{7.55} \times 100 = 1059.60$ n= 11.0575 -> Book 933 Annual coupon = 7% Price = 1,660 N=17 Face Value = 1,000 1060 = 70 x PVIFA(x,17) + @ 1000 x PVIF(x,17) r = 6.41% (Rote of return) 2 year hance, YTM falle by 170 = 5-4170 Pruce (P2) = 70 × PNIFA (5.4190,15) + 1000 × PNIF (5.41,15) = Rs. 1160.56 $1060 = \frac{70}{(1+8)!} + \frac{70}{(1+8)^2} + \frac{1160.56}{(1+8)^2}$ 8=11.10%

(Holding Poviod Vield) (accurring that the Re. 70s are

Rick, Return Portfolio Scenario Exp Return
P Stock B -> Stock A 6 % (ptimistic) 0.30 87. (Average) 0.40 10%. 1270 16 % Expected Return: (A) $\vec{Y}_{x} = 0.30 \times 0.08 + 0.40 \times 0.10 + 0.30 \times 0.13 = 10.30$ (B) ry = 11.40 % -) For Stock A, Range = 5%, For Stock B, Range = 10% Variance 2 Std. Deviation $A \qquad B \qquad (0.08-0.103)^{2} \times 0.3 \qquad (0.06-0.114)^{2}$ $(0.10-0.103)^{2} \times 0.4$ $(0.12-0.114)^{2}$ $(0.13-0.103)^{2} \times 0.3$ $(0.16-0.114)^{2}$ 10.30% 11.40% Var 6.337. 25.33 7 T 2.51% 5.037 Risk per Return. of Variation (x) 0.243 0.441

127. 47. same sick, more return TB 137, 47. same return, loss rick TP 117. 67. 87. 110/0 -> Say, a portfolio with 0.50A, 0.50B, rp = 0.5 × 0.103 + 0.50 × 0.114 = 10.857, (Portfolio Return) -) One way to calculate variance: (7-10.85)2×0.3+ (11-10.85)2×0.4+ (14.5-10.85)2×0.3 avg. of neturns > op = Z w; x o; XF (Not correct) Varp = E Wix 52 X

$$\Rightarrow \text{ Generic Formula;}$$

$$\nabla_{p}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} \int_{ij}^{ij} \times W_{i} \times W_{j} \times \sigma_{i} \times \sigma_{j}$$

3 stock partfolio:

2 3 | P12 P23

W V V V V P13

Stock A B 127. 16 % 307. 409. 30% 47. 67. 87. $f_{12} = 0.60$, $f_{13} = 0.80$, $f_{23} = 0.40$ Tp = 0.3x12+0.4x14+0.3x16 = 147 $\sigma_{p}^{2} = w_{1}^{2} \sigma_{1}^{2} + w_{2}^{2} \sigma_{2}^{2} + w_{3}^{2} \sigma_{3}^{2} +$ 2 (P12W1W20102+ 923W2W302037203+ P13W, W30,03) = 12.96 + 2×6.336 = 25.632 P= 5.0628 7/3/23

-> W,=?

Two-security Portfolio:-
$$\nabla \rho^2 = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2 \int_{12} w_1 w_2 \sigma_1 \sigma_2$$

$$\int_{12} = \frac{\text{Covariance }_{1,2}}{\sigma_1 \sigma_2}$$

for to be the least?

Pt = 8%. Rm = 1870 (marked) m= 676

no rick-free

asset, only

risky asset

$$= 315 = 18 - 10 \text{ Wf}$$

 $= 36\%$

Say 12p -- 20 7.

$$Wf = -0.2$$

-> Concept of Security Market Line
-Relationship between return and Systematic risk.

(no of stocks)

N=30-40 is the best practical option (not worth the effort for more N)

- → Non-diversifiable risk is also known as marked risk or Systematic risk.
- -> Total Risk = Systematic Risk + Unsystematic Risk

- -> Stock return is dependent on the market return.
- → Say, 8=0.6 (correlation of we stock return & market return)

 How much of the variation in in stock return is explained
 by variation in market return?
 - → r² = coefficient of determination 36% non-diversifiable, 64% diversifiable.
- -> 1% change in market (means market return = $\pm 1\%$)
 what will be the change in stock? $\begin{bmatrix}
 Y_i = \alpha + \beta \gamma_m + e
 \end{bmatrix}$

B represents systematic risk.

If \$=0.8, 1% change in marked => 0.8% change in stock.

& <1 (beforeive)

B>1 (Aggressine)

So, Ri = Rf + B (Rm-Rf). (CAPM)

Risk premium

7 Rm=17 %, Rf=87., R.P.=97.

Ri = 87, + 1.30 × 97, = 19.77,

expected rate of return from equity innestor's

>> Stock
$$\beta = 1.14$$

Expected return on stock = 10.5%.
Rick-free rate of return = 2.40%.

- a) If weighte are equal between stock & risk free asset, find Rp.
- b) of portfolio & is 0.92, what are the weighte?
- a) If portfolio return = 97, what is its B?
 d) u " B = 2-8, what are the weights?

a)
$$\mathbb{R}_{p} = \frac{10.5 + 2.4}{2} = 6.45 \%$$

b)
$$0.92 = 1.14 \times W_{5}$$

 $\Rightarrow W_{5} = 0.8070 = 80.707_{0}$
 $W_{7} = 19.307_{0}$

$$=)$$
 $W_5 = \frac{6.6}{8.1} = 0.8148 = 81.487.$

d)
$$W_5 = \frac{2.8}{1.14} = 2.4561 = 245.617$$
, $W_f = -145.617$