# Vision Series: Overview and Design Guidelines for Power Discrete Technologies



ON Semiconductor®







### Switching Frequency (50hZ to ≤ 5kHz); Low to Medium power

Applications: Relay solenoid drivers, auxiliary controls, Motor control

Power Discretes: Triacs

### Switching Frequency (≥50kHZ up to MhZ), Low Power = ≤ 1kW

Applications: Power Supplies

Power Discretes: MOSFETs, Trench ultrafast rectifiers, Trench Schottky rectifiers

### Switching Frequency (5kHZ to 100kHZ); High Power ≥ 1kW

Applications: Motor controls, White Goods appliances, Solar & Wind power, UPS

Power Discretes: IGBTs, Ultrafast rectifiers

## Switching Frequency (> 100kHZ), High Power ≥ 1kW

Applications: HEV, Solar & Wind inverters, Power supplies, UPS

Power Discretes: SiC or GaN Diodes and Transistors











- · Channel is horizontal.
- Cell pitch ≥ 5um.
- High Rdson, due to low channel density, and JFET region.





Drain

#### Trench MOSFET

- · Channel is vertical
- Cell pitch 1.5 2.5um.
- Lower Rdson, due to high channel density, and no JFET region.
- High capacitance. Thick oxide may be used at trench bottom to reduce Cgd.





State of the Art Trench MOSFET

- · Channel is vertical
- Cell pitch ≤ 1um.
- Shield electrode enables higher epi doping concentration, as well as lower Cgd.
- Ultra-low Rdson, due to very high channel density, and high epi doping.









- Similar to a power MOSFET but substrate is p+ instead of n+, forming a diode on the backside
- First the channel is formed by applying +ve voltage on the gate, allowing electron flow downward
- The back p+ /n-FZ sub junction is forward biased and holes are injected into the n-FZ sub
- The high concentration of holes and electrons in the n float zone reduce the bulk resistance by 10x
- Switching is slowed because the holes die slowly after the channel is cut off









- n-channel FET with P+ diode (substrate) connection
- pnp high current BJT
- npn parasitic BJT with BE junction shorted
- Was initially designed to be a MOS gated SCR











# Use of MOSFETs vs. IBGTs







## **MOSFETs**

 $V_{DS}$  10 – 1500

 $I_D \leq 300 \text{ A (discretes)}$ 

 $I_D \leq 600 \text{ A (modules)}$ 

tr 10 ns - 70 ns

tf 10 ns – 90 ns

Typ sw freq 100 - 500 kHz

≥ 1MHz for integrated drivers

t<sub>Jmax</sub> 150 °C – 175 °C

## **IGBTs**

 $V_{CE}$  300 – 6500  $V_{CE}$ 

 $I_D \leq 150 \text{ A (discretes)}$ 

 $I_D \leq 2000 \text{ A (modules)}$ 

tr 20 ns - 150 ns

tf 30 ns - 250 ns

Typ sw freq 20 - 70 kHz

t<sub>Jmax</sub> 150 °C – 175 °C





# Comparison of $V_{CE}$ , $V_{DS}$ for 600 V, 50 A parts



Infineon IPW60R070C6 CoolMOS 600 V, 53 A MOSFET ON Semiconductor NGTG50N60FW 600 V, 50 A IGBT







# Effects of Switching Frequency

## Benefits of high switching frequencies

- Reduction of transformers for isolated converters
- Reduction of LC filter elements

## Benefits of lower switching frequencies (above audible)

- Lower EMI
- Reduction of switching losses
- No magnetic/capacitor advantage for motor drives due to high motor inductance







# Effects of Switching Frequency for Motors

What are the effects on a motor as the switching frequency varies?

For a given inductance, a higher switching frequency will cause a lower ripple current at that frequency which will reduce the ac flux levels for the switching frequency. This supports a higher switching frequency.

The core losses of the motor increase with frequency and this supports a lower switching frequency.



So which is it?











# Effects of Switching Frequency for Motors

This chart shows the efficiency dropping as the switching frequency is increased.

Sys1 - 60 in-lb

Sys2 – 120 in-lb

Sys3 - 180 in-lb

2000 rpm

Source: Switching Frequency Effects on Traction Drive System Efficiency, William L. Cornwell, Virginia Polytechnic Institute, Sept.6, 2002









# Effects of Switching Frequency for Motors

This study shows no significant difference based on the switching frequency.

Induction motor

50 Hz fundamental frequency

75 Nm load

Source: Influence of Switching Frequency and Squirrel Cage Design on Audible Noise and Losses in Induction Motor Drives, S. Van Haute, A. Malfait, R.

Belmans, Katholieke Universiteit Leuven









# Effects of Switching Frequency for Motors

This study shows an increase in losses for the inverter with frequency and constant motor losses.

Induction motor
35 Hz fundamental frequency

70 Nm load

Source: <u>Audible Noise and Losses in Variable Speed</u> <u>Induction Motor Drives with IGBT Inverters – Influency</u> <u>of Design and Switching Frequency</u>, A. Malfait, R. Reekmans, R. Belmans, K. U. Leuven, Oct.6, 1994









Frequency is generally the determining factor in the overlap areas.

Voltage and current limits are based on device ratings and not system requirements.









# MOSFET Modes of Operation













### **BUCK CONVERTER**







## Saturation Mode









**Audio Amplifier** 

















# **Switch Mode**







## **Switch Mode Operation**













# **Saturation Mode**









# Saturation operation applications include:

- linear regulators
- active clamp inductive load switches
- class A, B, AB amplifiers

Saturation operation is also possible in fault modes such as:

short circuit

And other transient conditions such as:

• in-rush current (filament switching, hot swap)

However, note that for any switching cycle, the MOSFET must transit through the saturation region.





# **Saturation Operation**



**Normal switching of MOSFET transits** thru saturation operation.

This is normally not an issue since transition time is on order of nano seconds to a few micro seconds.

However, some applications purposely slow down switching transitions to tens or even hundreds of microseconds. In these cases, issues associated with saturation operation must be considered.

12



4 V

3.5 V

3 V



3

VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS)

2



In addition to high power dissipation, saturation operation can also result in thermal instability, due to change in saturation current with junction temperature.

$$I_{D(sat)} \cong \frac{\mu_o \cdot C_{ox} \cdot W}{2 \cdot L} (V_{gs} - V_{th})^2$$

where,

$$\mu_o = f(T_J), \ \frac{\partial \mu_o}{\partial T_J} < 0 \qquad V_{th} = f(T_J), \quad \frac{\partial V_{gs}}{\partial T_J} < 0$$

At high  $V_{gs}$ , the  $\mu_o$  term dominates and  $I_{D(sat)}$ decreases. At low  $V_{gs}$ , the delta  $V_{gs}$  term dominates and I<sub>D(sat)</sub> increases with junction temperature.

When I<sub>D(sat)</sub> has a positive temperature coefficient, the possibility exists for thermal runaway, where:

$$\frac{\partial P_{gen}}{\partial T_J} \ge \frac{\partial P_{dis}}{\partial T_J}$$

Which can be written as:

$$V_D \cdot \frac{\partial I_{D(sat)}}{\partial T_I} \ge \frac{1}{r(t)}$$

<sup>\*</sup> Special thanks to S. Robb for plot







| Device   | Tech     | Active Area | Typ. Rds(on)            |
|----------|----------|-------------|-------------------------|
|          |          | (mm2)       | $Vgs = 10 V, (m\Omega)$ |
| NTD5407N | 40V HD3e | 2.66        | 21                      |
| NTD5807N | 40V T2   | 1.46        | 20                      |
| NTD5805N | 40V T2   | 2.71        | 7.6                     |

Compared to planar, trench technology affords much higher channel density (W/area). Thus at a given current density, the trench device will operate closer to  $V_{th}$ .

$$J_{D(sat)} \cong \frac{\mu_o \cdot C_{ox} \cdot W}{2 \cdot L \cdot Area} (V_{gs} - V_{th})^2$$

Operation near  $V_{th}$  increases the probability of thermal instability, thus trench technology devices are more likely to suffer thermal runaway during saturation operation.





# Safe Operating Area







## Traditional FBSOA



## Corrected FBSOA



### **Key points:**

- Traditional assumed constant power which was okay for planar technology
- Newer Trench Technologies require an adjustment to account for higher gain (GFS)







# Forward biased – Device is conducting

Pulsed curves are for a single pulse with the package at 25 °C



0.01

0.1

 $\mathsf{V}_\mathsf{CE},\,\mathsf{COLLECTOR}\text{-}\mathsf{EMITTER}\,\,\mathsf{VOLTAGE}\,\,(\mathsf{V})$ 

10

Linearly with Increase in Temperature







1000

100

50 us

The SOA curves are based on the assumption that there is a uniform current distribution across the die. i.e. no hot spots. A high  $V_{GF}$  is required.

COLLECTOR CURRENT linearly with increase in temperature 0.01 10 100 V<sub>CF</sub>, COLLECTOR-EMITTER VOLTAGE (V) 120 100 I<sub>c</sub> as temp increases Collector Current (A) Pos Temp 80 Coefficient Isothermal 60 Neg Temp Coefficient

If the IGBT is biased in the negative temp coefficient area, the resistivity of the cells will decrease with temperature and hot spots will develop.







2

40



 $T_{J} = 150^{\circ}C$ 

VGF, Gate to Emitter Voltage (V)

 $T_1 = 25^{\circ}C$ 

10

12

100 ແs

1000

dc operation  $\equiv$ 

Single Nonrepetitive Pulse  $T_C = 25^{\circ}C$ Curves must be derated The gain of the npn and pnp transistors increases with temperature which lowers the current at which the parasitic SCR will latch. Latchup is more easily achieved at high temperatures











# Reverse biased – Gate is low

The RBSOA is a measure of the avalanche capability of the device – which is also the UIS rating. It can be displayed in several ways.













# UIS (Unclamped Inductive Spike)









## **Unclamped (UIS)**

At switch off\*:

$$V_{DS} = V_{AV} \cong 1.3 \cdot BV_{DSS}$$

Clamped (re-circ)

At switch off\*:

$$V_{DS} = V_b + V_{diode} < V_{AV}$$

**Active Clamp** 

At switch off\*:

$$V_{DS} \cong V_Z + V_{th} < V_{AV}$$

UIS data applies only to scenarios where FET drain to source junction avalanches

\* V<sub>g gate drive</sub> = 0 V







## High-side Inductive Switching



## **Unclamped (self-active clamp)**

**Clamped (re-circ)** 

At switch off\*:

$$V_{DS} \cong V_b + V_{th} < V_{AV}$$

At switch off\*:

$$V_{DS} = V_b + V_{diode} < V_{AV}$$

FET in high-side switching configuration generally does not avalanche

\*  $V_{g \text{ to gnd}} = 0 \text{ V}$ 











General form for FET energy during avalanche

$$E = \int_{0}^{t_{AV}} P \cdot dt = V_{AV} \cdot \int_{0}^{t_{AV}} i(t) \cdot dt$$













### **Vb supply in circuit at switch-off\*:**

$$E = \frac{1}{2} \cdot L \cdot I_{PK}^{2} \cdot \frac{V_{AV}}{(V_{AV} - V_{b})}$$

$$t_{AV} = \frac{L \cdot I_{PK}}{(V_{AV} - V_B)}$$

$$P_{ave} = \frac{I_{PK} \cdot V_{AV}}{2}$$

## Vb supply removed at switch-off\*:

$$E = \frac{1}{2} \cdot L \cdot I_{PK}^{2}$$

$$t_{AV} = \frac{L \cdot I_{PK}}{V_{AV}}$$

$$P_{ave} = \frac{I_{PK} \cdot V_{AV}}{2}$$

\* Series R in circuit zero or negligible



















 $I_{PK}$  as a  $f(t_{AV})$  follows a power function.

Re-arranged this function is of the form:

$$K = I_{pk}^{1/x} \cdot t_{av}$$

where,

$$K = C^{1/x}$$

Typically the term  $1/x \sim 2$ , thus typical FET UIS capability follows the relationship:

$$I_{pk}^{\approx 2} \cdot t_{av} = K$$

I<sup>2</sup>t = constant indicates a thermal based failure mode; e.g. fuses (that melt open) follow the same relationship.







As the initial junction temperature increases device UIS capability decreases.

Thermal device failures occurs when device junction temperature reaches  $T_{intrinsic}$ . Thus as the initial junction temperature increases there is less thermal headroom ( $\Delta T_{J}$  to failure).

Less thermal headroom means less power capability and thus less energy required to reach intrinsic junction temperature.







| Single Pulse Drain-<br>to-Source Avalanche                                                                  | (I <sub>L(pk)</sub> = 14.5 A, L = 0.1 mH) | E <sub>AS</sub> | 10.5 | mJ |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------|------|----|
| Energy (T <sub>J</sub> = 25°C,<br>V <sub>DD</sub> = 24 V, V <sub>GS</sub> =<br>10 V, R <sub>G</sub> = 25 Ω) | (I <sub>L(pk)</sub> = 6.3 A, L =<br>2 mH) |                 | 40   |    |



- Another way to display UIS capability SOA is to plot  $I_{PK}$  as a function of  $t_{AV}$  for different starting junction temperatures.
- With knowledge of the device avalanche voltage  $(V_{AV})$ , the user can determine the application operating point on the plot and determine if operation is within the SOA.





# **Short Circuit Ratings**









Adjusting the transconductance of the FET will affect the base drive of the BJT, which will affect the overall power dissipation during a short.

This will also affect the Vce(sat) of the IGBT.

| Application  | Short circuit rating                                      |
|--------------|-----------------------------------------------------------|
| Motor Drives | 10 μs for most equipment<br>5 μs for some newer equipment |
| White Goods  | 5 μs                                                      |
| UPS          | 0 – 5 μs                                                  |
| Solar        | 10 μs                                                     |
| PFC          | 10 µs                                                     |





# Inverter Topologies











Solar Inverter

**Motor Drive** 



- Motor Drives
- UPS
- Solar Inverters

- Well understood topology
- Good at high power levels
- Existing code for many microcontrollers
- Power switches rated for full input voltage
- All switches operate at the switching frequency





# 1200 V, Inverter IGBTs

45

| 10              |            |          |               |         |              |              |      |  |
|-----------------|------------|----------|---------------|---------|--------------|--------------|------|--|
| Part Number     | Release    | VCE(sat) | Trr           | Current | Short<br>Ckt | Package      | Tech |  |
| NGTB40N120FLWG  | Released   | 1.75     | 250           | 40      | 10           | TO-247       | FSI  |  |
| NGTB15N120FLWG  | Released   | 1.90     | 100           | 15      | 10           | TO-247       | FSI  |  |
| NGTB25N120FLWG  | Released   | 1.70     | 200           | 25      | 10           | TO-247       | FSI  |  |
| NGTB40N120FL2WG | Q2, '13    | 2.00     | 200           | 40      | 10           | TO-247       | FSII |  |
| NGTB25N120FL2WG | Q2, '13    | 2.00     | 200           | 25      | 10           | TO-247       | FSII |  |
| NGTB15N120FL2WG | Q3, '13    | 2.00     | 200           | 15      | 10           | TO-247       | FSII |  |
| NGTB40N120L2WG  | Q3, '13    | 1.70     | 400           | 40      | 10           | TO-247       | FSII |  |
| NGTB25N120L2WG  | Q3, '13    | 1.70     | 400           | 25      | 10           | TO-247       | FSII |  |
| NGTB25N120L2WG  | Q3, '13    | 1.70     | 400           | 15      | 10           | TO-247       | FSII |  |
| NVVV Power      | Management |          | ON Semiconduc | tor° ON |              | V Five Years | Out  |  |

# 600 V, Inverter IGBTs

| Part Number    | Release    | VCE(sat) | Trr | Current | Short<br>Ckt | Package | Tech |
|----------------|------------|----------|-----|---------|--------------|---------|------|
| NGTB30N60FWG   | Production | 1.50     | 189 | 30      | 5            | TO-247  | NPT  |
| NGTB50N60FWG   | Production | 1.40     | 180 | 50      | 5            | TO-247  | NPT  |
| NGTB30N60FLWG  | Production | 1.50     | 100 | 30      | 5            | TO-247  | FS1  |
| NGTB50N60FLWG  | Production | 1.50     | 100 | 50      | 5            | TO-247  | FS1  |
| NGTB75N60FL2WG | Q3, '13    | 1.85     | 80  | 75      | 5            | TO-247  | FSII |
| NGTB50N60FL2WG | Q4, '13    | 1.85     | 80  | 50      | 5            | TO-247  | FSII |
| NGTB40N60FL2WG | Q4, '13    | 1.85     | 80  | 40      | 5            | TO-247  | FSII |
| NGTB30N60FL2WG | Q4, '13    | 1.85     | 80  | 30      | 5            | TO-247  | FSII |
| NGTB75N60L2WG  | Q4, '13    | 1.50     | 150 | 75      | 5            | TO-247  | FSII |
| NGTB50N60L2WG  | Q4, '13    | 1.50     | 150 | 50      | 5            | TO-247  | FSII |
| NGTB40N60L2WG  | Q4, '13    | 1.50     | 150 | 40      | 5            | TO-247  | FSII |
| NGTB30N60L2WG  | Q4, '13    | 1.50     | 150 | 30      | 5            | TO-247  | FSII |







# 1200 V, Motor Drive IGBTs

| Part Number   | Release    | VCE(sat) | Trr | Current | Short<br>Ckt | Package | Tech |
|---------------|------------|----------|-----|---------|--------------|---------|------|
| NGTB15N120LWG | Production | 1.80     | 300 | 15      | 5            | TO-247  | FSI  |
| NGTB20N120LWG | Production | 1.80     | 300 | 20      | 5            | TO-247  | FSI  |
| NGTB25N120LWG | Production | 1.85     | 300 | 25      | 5            | TO-247  | FSI  |
| NGTB30N120LWG | Production | 1.80     | 420 | 30      | 5            | TO-247  | FSI  |
| NGTB40N120LWG | Production | 1.90     | 420 | 40      | 5            | TO-247  | FSI  |







# 600 V, Motor Drive IGBTs

| Part Number   | Release    | VCE(sat) | Trr | Current | Short<br>Ckt | Package | Tech |
|---------------|------------|----------|-----|---------|--------------|---------|------|
| NGTB15N60EG   | Production | 1.70     | 270 | 15      | 10           | TO-220  | NPT  |
| NGTB15N60S1EG | Production | 1.50     | 270 | 15      | 5            | TO-220  | NPT  |
| NGTG15N60S1EG | Production | 1.50     | 270 | 15      | 5            | TO-220  | NPT  |







### Inverter Topologies – H-bridge







**UPS** 

- High Frequency Welders
- UPS
- Solar Inverters



Single phase H-bridge

- Well understood topology
- Good at medium power levels
- Existing code for many microcontrollers
- Power switches rated for full input voltage
- Two switches operate at the switching frequency and two at fundamental frequency







# **Inverter Topologies - Welding**



- Switching Frequencies up to 100 KHz
- Increase in frequency reduces size of magnetics
  - Lighter more portable
  - Complex output circuit controls for better performance

| Voltage     | Current                                   | Packages         |  |  |  |  |  |
|-------------|-------------------------------------------|------------------|--|--|--|--|--|
| 600/1200V   | 40A                                       | TO-220, TO-220FP |  |  |  |  |  |
| Frequency   | 60KHz                                     |                  |  |  |  |  |  |
| Application | Co-packaged rectifier, soft-<br>switching |                  |  |  |  |  |  |











$$V_{out} = 20 \text{ V} + 0.04\Omega \text{ x I (A)}$$
 MMA (Arc)

$$V_{out} = 10 V + 0.04 \Omega \times I (A)$$
 TIG

$$V_{out} = 14 V + 0.04 \Omega \times I (A)$$
 MIG

General output voltage load lines for high-frequency welders







#### UIS capability of 1200 V welding IGBTs

#### **1200 V IGBTs**







**Power Management** 

ON Semiconductor®



V Five Years Out

| Part Number     | Release  | VCE(sat) | Trr | Current | Short<br>Ckt | Package | Tech |
|-----------------|----------|----------|-----|---------|--------------|---------|------|
| NGTB40N120FLWG  | Released | 1.75     | 250 | 40      | 10           | TO-247  | FSI  |
| NGTB15N120FLWG  | Released | 1.90     | 100 | 15      | 10           | TO-247  | FSI  |
| NGTB25N120FLWG  | Released | 1.70     | 200 | 25      | 10           | TO-247  | FSI  |
| NGTB40N120FL2WG | Q2, '13  | 2.00     | 200 | 40      | 10           | TO-247  | FSII |
| NGTB25N120FL2WG | Q2, '13  | 2.00     | 200 | 25      | 10           | TO-247  | FSII |
| NGTB15N120FL2WG | Q2, '13  | 2.00     | 200 | 15      | 10           | TO-247  | FSII |







| Part Number    | Release | VCE(sat) | Trr | Current | Short<br>Ckt | Package | Tech |
|----------------|---------|----------|-----|---------|--------------|---------|------|
| NGTB30N60FWG   | Q4, '12 | 1.50     | 189 | 30      | 5            | TO-247  | NPT  |
| NGTB50N60FWG   | Q4, '12 | 1.40     | 180 | 50      | 5            | TO-247  | NPT  |
| NGTB30N60FLWG  | Q4, '12 | 1.50     | 100 | 30      | 5            | TO-247  | FS1  |
| NGTB50N60FLWG  | Q4, '12 | 1.50     | 100 | 50      | 5            | TO-247  | FS1  |
| NGTB75N60FL2WG | Q2, '13 | 1.85     | 80  | 75      | 5            | TO-247  | FSII |
| NGTB50N60FL2WG | Q3, '13 | 1.85     | 80  | 50      | 5            | TO-247  | FSII |
| NGTB40N60FL2WG | Q3, '13 | 1.85     | 80  | 40      | 5            | TO-247  | FSII |
| NGTB30N60FL2WG | Q3, '13 | 1.85     | 80  | 30      | 5            | TO-247  | FSII |







# **Neutral Point Clamp Inverters**





#### **Neutral Point Clamp Topologies**

- Better duty ratio resolution
  - H-Bridge, 0 400 V 50% 100% a
  - NPC, 0 400 V 0% 100% d
- Lower switch transition voltage
- Lower voltage ratings on some/all switches
- > Higher semiconductor count







Solar Inverters



3-level, NPC, Inverter

- Motor Drives
- UPS
- Solar Inverters

- Efficient topology
- Good at medium to high power levels
- Power switches see half input voltage
- Switching losses are reduced due to lower voltage at transition
- Two switches operate at the switching frequency and two at fundamental frequency







#### Three Level Inverter with PFC











#### Positive half sine wave operation



For each half sine cycle, two of the switches are static and two are PWMed.







#### Three Level Inverter with PFC



Figure 1. NPC Inverter





Leg voltage waveform



Phase-to-phase







**UPS** 



T-Type, NPC, Inverter

- Motor Drives
- UPS
- Solar Inverters

- Efficient topology
- Good at medium to high power levels
- Q1 & Q2 see full input voltage
- Q3 & Q4 see half input voltage
- Switching losses are reduced due to lower voltage at transition
- Two switches operate at the switching frequency and two at fundamental frequency









Solar Inverters



T-Type, NPC, Inverter

- Motor Drives
- UPS
- Solar Inverters

- Efficient topology
- Good at medium to high power levels
- Power switches see half input voltage
- Switching losses are reduced due to lower voltage at transition
- Two switches operate at the switching frequency and two at fundamental frequency





# Inverter Topologies – NPC, T-Type

62



High voltage

**Neutral** 









#### Necessary chip area for Tj=125°C (rectifier operation)

#### Switching frequency



Total die area [mm<sup>2</sup>] (3 phases)







Necessary chip area for Tj=125°C (Inverter operation)

#### Switching frequency



Total die area [mm²] (3 phases)







#### Optimization results for Tj = 125°C

#### 2-level topology

- Losses are concentrated in few chips
- Chip size increases sharply with frequency
- Total chip area of 2-level is smallest only for low switching freq. (fs < 10 kHz)!</li>

#### •3-level topologies

- Losses are distributed over many semiconductors
- Chip size reduction possible
- Losses increase only slightly with fs
- Distinct loss profile (Operating point)
- Total semiconductor area:

for 
$$f_s$$
=35 kHz:  $A_{2\text{-level}} \approx 2^* A_{3\text{-lvl NPC}}!$ 









#### Simple Efficiency Comparison

#### 2-level is efficient for low switching frequency

SiC diodes can extend fs range

#### T-type topology is very efficient for medium fs (8 - 20 kHz)

#### 3-level NPC efficiency has flattest dependency on fs

- Suitable for high fs
- SiC diodes make only sense for very high fs (>50 kHz)







ON Semiconductor®



#### **Efficiency Comparison**

#### 3-Level NPC inverter compared to an H-bridge inverter

50 kW, three phase inverter  $f_{sw} = 10 \text{ kHz}$ 









# Summary

- 3 Level topologies are more energy efficient than 2 Level.
- 3 Level topologies require more semiconductor devices but not necessarily more die area.
- Inverter efficiency normally decreases with switching frequency.
- The data are uncertain for motor efficiency vs. switching frequency.





# Characterization vs. Bench Testing







## Characterization vs. Bench Testing

#### 70 ELECTRICAL CHARACTERISTICS (T<sub>J</sub> = 25°C unless otherwise specified)

| Parameter Test Conditions                                           |                                                                                                                          | Symbol               | Min       | Тур         | Max      | Unit |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|-------------|----------|------|
| STATIC CHARACTERISTIC                                               |                                                                                                                          |                      |           |             |          |      |
| Collector-emitter breakdown voltage, gate-emitter short-circuited   | V <sub>GE</sub> = 0 V, I <sub>C</sub> = 500 μA                                                                           | V <sub>(BR)CES</sub> | 600       | _           | -        | V    |
| Collector-emitter saturation voltage                                | V <sub>GE</sub> = 15 V, I <sub>C</sub> = 50 A<br>V <sub>GE</sub> = 15 V, I <sub>C</sub> = 50 A, T <sub>J</sub> = 150°C   | V <sub>CEsat</sub>   | 1.25<br>- | 1.45<br>1.7 | 1.7<br>- | V    |
| Gate-emitter threshold voltage                                      | V <sub>GE</sub> = V <sub>CE</sub> , I <sub>C</sub> = 350 μA                                                              | $V_{GE(th)}$         | 4.5       | 5.5         | 6.5      | V    |
| Collector-emitter cut-off current, gate-<br>emitter short-circuited | V <sub>GE</sub> = 0 V, V <sub>CE</sub> = 600 V<br>V <sub>GE</sub> = 0 V, V <sub>CE</sub> = 600 V, T <sub>J =</sub> 150°C | I <sub>CES</sub>     | -<br>-    | -<br>-      | 0.5<br>2 | mA   |
| Gate leakage current, collector-emitter short-circuited             | V <sub>GE</sub> = 20 V , V <sub>CE</sub> = 0 V                                                                           | I <sub>GES</sub>     | -         | -           | 200      | nA   |
| DYNAMIC CHARACTERISTIC                                              |                                                                                                                          |                      |           |             |          |      |
| Input capacitance                                                   |                                                                                                                          | Cles                 | -         | 7300        | -        | pF   |
| Output capacitance                                                  | V <sub>CE</sub> = 20 V, V <sub>GE</sub> = 0 V, f = 1 MHz                                                                 | Coes                 | -         | 275         | -        |      |
| Reverse transfer capacitance                                        | 1                                                                                                                        | C <sub>res</sub>     | -         | 170         | -        |      |
| Gate charge total                                                   |                                                                                                                          | Qg                   | -         | 310         | -        | nC   |
| Gate to emitter charge                                              | V <sub>CE</sub> = 480 V, I <sub>C</sub> = 50 A, V <sub>GE</sub> = 15 V                                                   | Q <sub>ge</sub>      | -         | 60          | -        |      |
| Gate to collector charge                                            | 1                                                                                                                        | Q <sub>gc</sub>      | -         | 150         | -        |      |

Characterization data is collected under a standard set of conditions and is useful for comparing and selecting parts

For  $V_{CEsat}$   $V_{GE}$  = 15 V is std,  $I_{C}$  is at the rated current, and in this case both 25°C and the maximum rated temp (150°C) have been tested.







#### **System Testing**

The overall efficiency of a power transistor is a key factor in the selection process.





One system is not representative of all systems but does provide valuable insight into the operation of a part under real conditions.







# Characterization vs. Bench Testing

72



Test results for PFC system testing. This unit was tested with a 3 kW output level and at two switching frequencies.









# Testing process variations for a 15 A, 600 V, motor drive IGBT

### **Device Energy Losses distribution chart 1**











# **Thermal**







$$PD = \frac{Tjmax - Tref}{R\Theta JX}$$

#### Where:

 $T_{jmax}$  = Maximum junction temperature specified for the device under analysis, usually 150  $^{\circ}$ C for power MOSFETS.

Tref = Reference temperature, usually the ambient temperature of your system, usually 25  $^{\circ}$ C and 85  $^{\circ}$ C.

 $R\Theta JX$  = Thermal Resistance from Junction-to-X, where X could be Case, Ambient, Foot, Lead, etc.





















Top view

Side view







# What's MOSFET RO?



 Thermal resistance is not a constant. It strongly depends on package, application circuit, system, and surrounding environment.

















- 1. Separate power devices on PCB board, Thermal interactions
- 2. Deposit thicker copper
- 3. Use more layers
- 4. Use more vias to spread thermal power
- 5. Orient heat sink to help hot air flow
- 6. Use colder air to cool heat sink





- 1. Thermal resistance of heat sink is strongly related with surface area
- Thermal resistance of heat sink is strongly related with surface airflow in application
- 3. Thermal surface of heat sink is a function of shape and materials
- 4. No universal equations for thermal resistance calculation for heat sink
- 5. Specific thermal resistance calculation should refer to heat sink manufacturers' guide





# New Trends IGBTs







# NPT, FSI and FSII Trench IGBT



Ultra thin wafer and backside processing is the enabling technology for reducing both conduction and switching power conversion losses







# NPT, FSI and FSII Trench IGBT (Assuming VCE(sat) of 1.6V)











Comparison of Field Stop I to new Field Stop II process.

Switching losses are similar, with significant reduction in conduction losses.







## **NEW DEVICES**

Voltage: 600, 650, 1200, 1350 V

**Current: 15 – 75 A** 

Diodes: None, co-packed, monolithic







# New Trends Rectifiers















## **New Trends - Rectifiers**







#### **PUF** Rectifiers

### PUF (Planar Ultra Fast) Portfolio



- Lower losses(reduced trr and qrr), reduced EMI and higher efficiency in hard switching applications.
- Planar structure enabling expansion of Ultrafast portfolio in lower height STM packages which was not possible in Standard mesa ultrafast portfolio.
- 4 devices released YTD. TO220/TO220FP Pkg.

| ON Part<br>Number | V <sub>R</sub> (V) | If(A) | Status    | STM Part<br>Number | Vishay Part<br>Number | NXP<br>Part Number |
|-------------------|--------------------|-------|-----------|--------------------|-----------------------|--------------------|
| NHPJ08S600G       | 600                | 8     | Released. | STTH8R06FP         | VS-ETH0806FP-M3       | BYC8X-600P         |
| NHPV08S600G       | 600                | 8     | Released. | STTH8R06D          | VS-ETH0806-M3         | BYC8-600           |
| NHPJ15S600G       | 600                | 15    | Released. | STTH15R06FP        | VS-ETH1506FP-M3       | BYC15X-600         |
| NHPV15S600G       | 600                | 15    | Released. | STTH15R06D         | VS-ETH1506-M3         | BYC15-600          |







# **New Trends - Rectifiers**



# Improved Efficiency with Trench Schottky Rectifiers



Ability to meet regulatory requirements without synchronous rectification

#### 65W Adapter Low Line Efficiency (115V Input)



#### 65W Adapter High Line Efficiency (230V Input)





Conservation Authority

Te Tari Tiaki Püngao







# Trench Rectifiers: Switching Performance

NTST30100SG Switching Performance (1A, 30V, 100A/µs)



Stable performance in applications operating over a wide temperature range



Trench Rectifiers provides exceptionally stable switching over temperature



Excellent for automotive power conversion operating in the MHz range









# Trench Schottky Rectifiers - Current Portfolio Summary

|               |                      | V <sub>F</sub> MAX | I <sub>R</sub> MAX |                    |                      |                              |
|---------------|----------------------|--------------------|--------------------|--------------------|----------------------|------------------------------|
| Device        | V <sub>RRM</sub> (V) | (V)                | (uA)               | I <sub>o</sub> (A) | I <sub>FSM</sub> (A) | Package(s)                   |
| NTSX2080CT    | 80                   | 0.68 - 0.82        | 600                | 20                 | 100-150              | TO-220-FP, TO-220            |
| NTSX3080CT    | 80                   | 0.65 -0.82         | 700                | 30                 | 160                  | TO-220-FP, T0-220            |
| NTS(x)20100CT | 100                  | 0.68               | 800                | 20                 | 150                  | I2PAK,D2PAK,TO-220-FP,TO-220 |
| NTSV20100CT   | 100                  | 0.82               | 800                | 20                 | 100                  | TO-220                       |
| NSTV30100SG   | 100                  | 0.85               | 1000               | 30                 | 100                  | TO-220                       |
| NTS(x)30100CT | 100                  | 0.68               | 500                | 30                 | 160                  | I2PAK,D2PAK,TO-220,TO-220-FP |
| NTSV30100CT   | 100                  | 0.82               | 500                | 30                 | 500                  | TO-220                       |
| NTS(x)20120CT | 120                  | 0.72- 0.86         | 700                | 20                 | 120                  | I2PAK,D2PAK,TO-220-FP,TO-220 |
| NTS(x)30120CT | 120                  | 0.76-0.92          | 800                | 30                 | 150                  | I2PAK,D2PAK,TO-220-FP,TO-220 |
| NTS(x)40100CT | 100                  | 0.68               | 800                | 40                 | 160                  | I2PAK,D2PAK,TO-220-FP,TO-220 |
| NTS(x)40120CT | 120                  | 0.71               | 500                | 40                 | 250                  | I2PAK,D2PAK,TO-220-FP,TO-220 |

• 58 OPN's

Current Vbr Range: 80V to 120VCurrent Io range: 20A to 40A







## Trench Schottky Rectifier - Portfolio Expansion Summary

#### **Current Portfolio:**

Count: 58 Orderable Part Numbers.

VBr Range: 80 V to 120 V

lo range: 20 A to 40 A

Pkgs: TO-220/I2Pak/D2Pak/TO-220FP

Type: Low Vf Only

## **Target Portfolio by 2H'14:**

Count: ?? Orderable Part Numbers

VBr Range: 45 V to 200 V

lo range: 1 A to 60 A

New Pkgs: SMX/SO8FL/SOD123FL/SMAFL

Type: Low Vf and Low Leakage







# New Trends MOSFETs







# New Trends - MOSFETS

#### 97 **Features**

1.6x1.6x0.5mm

2.56mm<sup>2</sup>

#### - Small Footprint, down to 0.38mm<sup>2</sup>

- Ultra Thin Packages, 0.4mm
- 1.5V RDS(on) rating

#### **Applications**

- New Features Enable Switches
- Interface / Analog Switch
- Level Shift and Level Translate

#### **End Products**

- Media Tablets and Smart Phones

#### **Interface Switches**



**Level Translator** 

To connect to external interfaces with ultra high off resistance The low gate drive voltage allows the use in ultra low voltage environment (<1.65V)

Logic levels can be translated in both directions

**Industry Smallest FETs** 

SOT-563 SOT-723 SOT-963 SOT-883

> 1.2x1.2x0.5mm 1.0x1.0x0.5mm 1.44mm<sup>2</sup> 1.0mm<sup>2</sup>

1.0x0.6x0.4mm 0.62x0.62x0.4mm 0.6mm<sup>2</sup> 0.38mm<sup>2</sup>

|     | Dimono      |          |              |                 |     |     |     | N    | <b>laxim</b> | um Ra           | tings           |                 |                 |        |         |
|-----|-------------|----------|--------------|-----------------|-----|-----|-----|------|--------------|-----------------|-----------------|-----------------|-----------------|--------|---------|
|     | Part Number | Package  | Dimensions   | Configuratio    | Pol | VDS | VGS | ID   | PD           |                 | RDS             | (on) Ω          | 2               | Sample | Release |
|     | Fait Number | rackaye  | mm           | n               | FUI | (V) | (V) | (A)  | (W)          | V <sub>GS</sub> | V <sub>GS</sub> | V <sub>GS</sub> | V <sub>GS</sub> | Date   | Date    |
|     |             |          |              |                 |     |     |     |      |              | 4.5V            | 2.5V            | 1.8V            | 1.5V            |        |         |
| 8   | NTNS3193NZ  | XLLGA3   | 0.6x0.6x0.4  |                 | N   | 20  |     | 0.23 |              | 1.40            | 1.90            | 2.20            | 4.30            | Now    | Now     |
| _   | NTNS3A91PZ  | XLLGA3   | 0.6x0.6x0.4  | Single          | Р   | -20 | ±8  | 0.21 | 0.13         | 1.60            | 2.40            | 3.30            | 4.50            | Now    | Now     |
|     | NTNS3164NZ  | SOT-883  | 1.0x0.6x0.4  | Single          | N   | 20  | ±8  | 0.22 | 0.13         | 1.50            | 2.00            | 3.00            | 4.50            | Now    | Now     |
|     | NTNS3A65PZ  | SOT-883  | 1.0x0.6x0.4  | Single          | Р   | -20 | ±8  | 0.23 | 0.13         | 1.60            | 2.40            | 3.40            | 4.50            | Now    | Now     |
|     | NTNUS3171PZ | SOT-1123 | 1.0x0.6x0.4  | Single          | Р   | -20 | ±8  | 0.15 | 0.13         | 3.50            | 4.00            | 5.50            | 7.00            | Now    | Now     |
|     | NTUD3170NZ  | SOT-963  | 1.0x1.0x0.4  | Dual            | N   | 20  | ±8  | 0.22 | 0.13         | 1.50            | 2.00            | 3.00            | 4.50            | Now    | Now     |
| _   | NTUD3169CZ  | COT OCO  | 1 0 1 0 1 0  |                 | N   | -20 | ±8  | 0.22 | 0.13         | 1.50            | 2.00            | 3.00            | 4.50            |        |         |
|     |             | SOT-963  | 1.0x1.0x0.4  | Complementary   | Р   | 20  | ±8  | 0.25 | 0.13         | 5.00            | 6.00            | 7.00            | 10.00           | Now    | Now     |
|     | NTK3139P    | SOT-723  | 1.2x1.2x0.5  | Single          | Р   | -20 | ±6  | 0.78 | 0.45         | 0.48            | 0.67            | 0.95            | 2.20            | Now    | Now     |
| -   | NTK3134N    | SOT-723  | 1.2x1.2x0.5  | Single          | N   | 20  | ±6  | 0.89 | 0.45         | 0.35            | 0.45            | 0.65            | 1.20            | Now    | Now     |
| = = | NTK3043N    | SOT-723  | 1.2x1.2x0.5  | Single          | Ν   | 20  | ±10 | 0.26 | 045          | 3.40            | 4.50            | 10.00           | 15.00           | Now    | Now     |
|     | SCH1342     | SOT-563  | 1.6x1.6x0.56 | Single          | Р   | -12 | ±10 | 4.5  | 1.0          | 0.052           | 0.091           | 0.21            | 0.111           | Now    | Now     |
|     | NTZS3151P   | SOT-563  | 1.6x1.6x0.5  | Single          | Р   | -20 | ±8  | 0.9  | 0.21         | 0.142           | 0.200           | 0.240           | -               | Now    | Now     |
|     | NTZD3152P   | SOT-563  | 1.6x1.6x0.5  | Dual            | Р   | -20 | ±6  | 0.4  | 0.25         | 0.900           | 1.200           | 2.000           | -               | Now    | Now     |
|     | NTZD3154N   | SOT-563  | 1.6x1.6x0.5  | Dual            | N   | 20  | ±6  | 0.5  | 0.25         | 0.550           | 0.700           | 0.900           | -               | Now    | Now     |
| 200 | NTZD5110N   | SOT-563  | 1.6x1.6x0.5  | Dual            | N   | 60  | ±20 | 0.3  | 0.25         | 2.500           | -               | -               | -               | Now    | Now     |
|     | NTZD3155C   | SOT-563  |              | 5 Complementary | N   | 20  | ±6  | 0.54 | 0.25         | 0.550           | 0.700           | 0.900           | -               | Now    | Now     |
|     | INTZD3155C  | 301-363  | 1.0x1.0x0.5  | Complementary   | Р   | -20 | ±6  | 0.43 | 0.25         | 0.900           | 1.200           | 2.000           | -               | INOW   | INOW    |



# Charging Circuit Solution – P Channel

#### **Features** 98

- Low RDS(on)
  - → Improve System Efficiency
- u8FL, uDFN and CPS packages
  - → Space Saving
  - → Excellent Thermal Conduction

#### **End Products**

- Media Tablets, Smart Phones, others

#### **Applications**

- Battery Switch
- Power Load Switch
- Over Voltage & Reverse Current Protection









1.6x1.6x0.55

|               |         |                |         |     |     | N   | laximu | ım Rating               | S                    |                         |         |         |                                      |
|---------------|---------|----------------|---------|-----|-----|-----|--------|-------------------------|----------------------|-------------------------|---------|---------|--------------------------------------|
| Part Number   | Package | Dimensions     | Config. | Pol | VDS | VGS | ID     | RD                      | S(on) C              | 2                       | Samples | Release | Applications                         |
| rait Nullibel | rackage | mm             | Coming. | FOI | (V) | (V) | (A)    | V <sub>GS</sub><br>4.5V | V <sub>GS</sub> 2.5V | V <sub>GS</sub><br>1.8V | Samples | Release | Аррисацопа                           |
| EFC6301       | CSP     | 1.46x1.46x0.44 | Single  | Р   | -12 | ±10 | 6      | 0.0215                  | 0.026                | 0.035                   | Now     | Q2-13   | Battery Switch                       |
| NTLUS3C18PZ   | UDFN    | 1.6x1.6x0.5    | Single  | Р   | -12 | ±10 | 6.4    | 0.025                   | 0.035                | 0.065                   | Q1-13   | Q3-13   | Battery Switch                       |
| NTLUS3A39PZ   | UDFN    | 1.6x1.6x0.5    | Single  | Р   | -20 | ±8  | 5.2    | 0.039                   | 0.050                | 0.081                   | Now     | Now     | Battery Switch                       |
| NTLUD3A260PZ  | UDFN    | 1.6x1.6x0.5    | Dual    | Р   | -20 | ±8  | 1.7    | 0.200                   | 0.290                | 0.390                   | Now     | Now     | OV and Reverse Current Protection    |
| NTLUS3C13PZ   | UDFN    | 2.0x2.0x0.5    | Single  | Р   | -12 | ±10 | 10     | 0.0125                  | 0.0175               | 0.0255                  | Q1-12   | Q3-13   | Battery Switch                       |
| NTLUS3A18PZ   | UDFN    | 2.0x2.0x0.5    | Single  | Р   | -20 | ±8  | 8.2    | 0.018                   | 0.025                | 0.05                    | Now     | Now     | Battery Switch                       |
| NTLUD3A50PZ   | UDFN    | 2.0x2.0x0.5    | Dual    | Р   | -20 | ±8  | 4.5    | 0.048                   | 0.07                 | 0.115                   | Now     | Now     | OV and Reverse Current<br>Protection |
| NTLUD3A75PZ   | UDFN    | 2.0x2.0x0.5    | Dual    | Р   | -30 | ±12 | 4.5    | 0.075                   | 0.097                | 0.125                   | Q3      | Q4      | OV and Reverse Current Protection    |
| NTLJS3A18PZ   | WDFN    | 2.0x2.0x0.8    | Single  | Р   | -20 | ±8  | 8.2    | 0.018                   | 0.025                | 0.05                    | Now     | Now     | Battery Switch                       |
| MCH6351       | SC-88   | 2.0x2.1x0.85   | Single  | Р   | -12 | ±10 | 9      | 0.017                   | 0.019                | 0.04                    | Now     | Q2-13   | Battery Switch                       |
| NTR3A30PZ     | SOT-23  | 2.9x2.4x1.0    | Single  | Р   | -20 | ±8  | 3.2    | 0.037                   | 0.050                | 0.065                   | Now     | Apr-13  | Battery Switch                       |
| ECH8601       | ECH8    | 2.9x2.8x0.9    | Dual    | Р   | -12 | ±10 | 9      | 0.015                   | 0.02                 | 0.029                   | Now     | Q2-13   | OV and Reverse Current Protection    |
| NTTFS3A08PZ   | µ8FL    | 3.3x3.3x0.8    | Single  | Р   | -20 | ±8  | 14     | 0.0067                  | 0.09                 | -                       | Now     | Now     | Battery Switch                       |







# Switching MOSFET Roadmap Overview

99

T2/T3 30V N-CH **SO8FL TE** Heatsinkable, High Power Density Server/Netcom DC-DC

T3 HSVR/LSVR 30V N-CH Asymmetric Dual SO-8FL and u8FL High Efficiency Phase Pair, Min Layout Computing (NB, Tablet) DC-DC

T3 w Schottky (LSVR) 30V N-CH S08-FL and u8FL **High Efficiency Lowside** Computing (DT,NB)/Netcom DC-DC

T3 HSVR/LSVR 30V N-CH **PhaseFET** High Eff Phase Pair, High Pwr Density Server/Netcom DC-DC

**T6 30V N-CH** u8FL, S08-FL, Duals Low Cost, Technology Upgrade Computing (DT,NB) DC-DC

T6 30V N-CH + Schottky u8FL, S08-FL, Duals **High Performance/Efficiency** Server/Netcom DC-DC

2012 2013 2014 2011





# Switching MOSFET Roadmap - Computing

100

#### NTMFD4901NF

30V/20V Dual N-CH, SO8FL  $10\Omega/3.5m\Omega$  @4.5V, T3.1/T3.2

#### NTMFD4902NF

30V/20V Dual N-CH, SO8FL  $10m\Omega/6.2m\Omega$  @4.5V, T3.1/T3.2

#### NTLLD4901NF

30V/20V Dual N-CH, WDFN8  $30m\Omega/22m\Omega$  @4.5V, T3.1/T3.2

#### NTMD4903NF

30V/20V Dual N-CH, SO8  $30m\Omega/16m\Omega$  @4.5V, T3.1/T3.2

#### NTMFS4983NF

30V/20V Single N-CH, SO8FL 3mΩ @4.5V, T3

#### NTMFS4985NF

30V/20V Single N-CH, SO8FL 5mΩ @4.5V, T3

#### NTTFS4985NF

30V/20V Single N-CH, µ8FL 5mΩ @4.5V, T3

#### NTMFS4C05N

30V/20V Single N-CH, SO8FL

5mΩ @4.5V, T6

#### NTMFS4C08N

30V/20V Single N-CH, SO8FL

8.3mΩ @4.5V, T6

#### NTMFS4C10N

30V/20V Single N-CH, SO8FL

10.6mΩ @4.5V, T6

#### NTMFS4C13N

30V/20V Single N-CH, SO8FL

13.5mΩ @4.5V, T6

#### NTTFS4C05N

30V/20V Single N-CH, µ8FL

5mΩ @4.5V, T6

#### NTTFS4C10N

30V/20V Single N-CH, SO8FL

10.6mΩ @4.5V, T6

#### NTTFS4C25N

30V/20V Single N-CH, µ8FL

25mΩ @4.5V, T6

#### NTMFD4C20N

30V/20V Dual N-CH, SO8FL 10.8m $\Omega$ /5.2m $\Omega$  @4.5V, T6

#### NTMFS4C06N

30V/20V Single N-CH, SO8FL

6mΩ @4.5V, T6

#### NTMFS4C09N

30V/20V Single N-CH, SO8FL

8.3mΩ @4.5V, T6

#### NTTFS4C06N

30V/20V Single N-CH, µ8FL

6mΩ @4.5V, T6

#### NTTFS4C08N

30V/20V Single N-CH, µ8FL

8.5mΩ @4.5V, T6

#### NTTFS4C13N

30V/20V Single N-CH, µ8FL

13.8mΩ @4.5V, T6

#### NTMFS4CXXNF

#### NTMFD4CXXNF

30V/20V Dual N-CH + Int Sch.

2012

NOTE Power Management

2013

Planning

**Exploring** 

ON Semiconductor®

Production Development 2014

# Low & Medium Voltage MOSFET Roadmap



# Planned 40/60 V Industrial & Automotive MOSFETs

102

#### **Features**

- Best in-class FOM (R<sub>DS(ON)</sub> x Q<sub>G</sub>)
- Low Q<sub>G</sub>
- Low R<sub>DS(ON)</sub>
- Soft switching
- Industry standard 5x6mm package

#### **Benefits**

- Increased efficiency, lower power dissipation
- → Reduction in switching losses
- Reduction in conduction losses
- > Reduced ringing and noise
- > Standard footprint for direct drop-in

### **Applications**

- Secondary Side Synchronous Rectification
- Diode ORing, Hot Swap, Battery Protection
- Motor Control, Load Switch, Solenoid Driver

#### **Markets**

- Motor Control
- Power Supply
- Automotive Engine, Chassis, Body Control

|              |                              |         |          |         | V                             | V                             | R <sub>DS(on)</sub> | @4.5 V             | R <sub>DS(on)</sub> @10 V |                 | O Typ                                                     |
|--------------|------------------------------|---------|----------|---------|-------------------------------|-------------------------------|---------------------|--------------------|---------------------------|-----------------|-----------------------------------------------------------|
| Part Number  | Auto Standard<br>Part Number | Package | Polarity | Config. | V <sub>DS</sub><br>Max<br>(V) | V <sub>GS</sub><br>Max<br>(V) | <b>Typ</b><br>(mΩ)  | <b>Max</b><br>(mΩ) | <b>Typ</b><br>(mΩ)        | <b>Max</b> (mΩ) | <b>Q</b> <sub>G</sub> <b>Typ</b><br><b>@4.5 V</b><br>(nC) |
| NTMFS5C404NL | NVMFS5C404NL                 | SO-8FL  | N        | Single  | 40                            | 20                            | 0.8                 | 1.0                | 0.6                       | 0.75            | 42                                                        |
| NTMFS5C418NL | NVMFS5C418NL                 | SO-8FL  | N        | Single  | 40                            | 20                            | 1.25                | 1.55               | 0.95                      | 1.2             | 32                                                        |
| NTMFS5C442NL | NVMFS5C442NL                 | SO-8FL  | N        | Single  | 40                            | 20                            | 3.1                 | 3.9                | 2.25                      | 2.8             | 11                                                        |
| NTMFS5C604NL | NVMFS5C604NL                 | SO-8FL  | N        | Single  | 60                            | 20                            | 1.3                 | 1.6                | 1.0                       | 1.2             | 53                                                        |
| NTMFS5C612NL | NVMFS5C612NL                 | SO-8FL  | N        | Single  | 60                            | 20                            | 1.7                 | 2.2                | 1.3                       | 1.6             | 40                                                        |
| NTMFS5C646NL | NVMFS5C646NL                 | SO-8FL  | N        | Single  | 60                            | 20                            | 5.2                 | 6.2                | 3.9                       | 4.7             | 13                                                        |







# Planned 40/60 V High Speed Switching MOSFETs

103

#### **Features**

- Best in-class FOM (R<sub>DS(ON)</sub> x Q<sub>G</sub>)
- Low Q<sub>G</sub>
- Low R<sub>DS(ON)</sub>
- Low Qoss
- Industry standard 5x6mm package

#### **Benefits**

- Increased efficiency, lower power dissipation
- → Reduction in switching losses
- Reduction in conduction losses
- Increased efficiency in hard switching
- > Standard footprint for direct drop-in

#### **Applications**

- Primary Side Switch
- Secondary Side Synchronous Rectification
- Motor Control, Load Switch, Solenoid Driver

#### **Markets**

- Telecom, Datacom
- Base Station
- Power Supply

|              |         |          |         | V                             | V <sub>GS</sub> | R <sub>DS(on)</sub> | @4.5 V      | R <sub>DS(on)</sub> | @10 V              | Q <sub>G</sub> Typ  | Q <sub>oss</sub> Typ          |  |
|--------------|---------|----------|---------|-------------------------------|-----------------|---------------------|-------------|---------------------|--------------------|---------------------|-------------------------------|--|
| Part Number  | Package | Polarity | Config. | V <sub>DS</sub><br>Max<br>(V) | Max Max (V)     |                     | Max<br>(mΩ) | <b>Typ</b><br>(mΩ)  | <b>Max</b><br>(mΩ) | @ <b>4.5 V</b> (nC) | @1/2 V <sub>DS</sub> Max (nC) |  |
| NTMFS5C401NL | SO-8FL  | N        | Single  | 40                            | 20              | 0.8                 | 1.0         | 0.6                 | 0.75               | 42                  | 73                            |  |
| NTMFS5C403NL | SO-8FL  | N        | Single  | 40                            | 20              | 1.25                | 1.55        | 0.95                | 1.2                | 32                  | 45                            |  |
| NTMFS5C407NL | SO-8FL  | N        | Single  | 40                            | 20              | 3.1                 | 3.9         | 2.25                | 2.8                | 11                  | 20                            |  |
| NTMFS5C601NL | SO-8FL  | N        | Single  | 60                            | 20              | 1.3                 | 1.6         | 1.0                 | 1.2                | 53                  | 103                           |  |
| NTMFS5C603NL | SO-8FL  | N        | Single  | 60                            | 20              | 1.7                 | 2.2         | 1.3                 | 1.6                | 40                  | 79                            |  |
| NTMFS5C607NL | SO-8FL  | N        | Single  | 60                            | 20              | 5.2                 | 6.2         | 3.9                 | 4.7                | 13                  | 25                            |  |





# Planned 100 V MOSFETS

104

#### **Features**

- Best in-class FOM
- Lowest available Q<sub>G</sub>
- Low R<sub>DS(ON)</sub>
- Soft switching
- Industry standard 5x6mm package
- AEC-Q101 qualified

#### **Applications**

- Primary Side Switch
- Secondary Side Synchronous Rectification
- Diode ORing, Hot Swap, Battery Protection
- Solenoid Driver, PS Boost Switch

#### **Benefits**

- Increased efficiency, lower power dissipation
- Reduction in switching losses
- Reduction in conduction losses
- → Reduced ringing and noise
- > Standard footprint for direct drop-in
- > Enables automotive opportunities

#### **Markets**

- Telecom, Datacom
- Base Station
- Power Supply
- Automotive Engine, Lighting Control

|             |                              |         |          |         | V                             | V                             | R <sub>DS(on)</sub> | @10 V       | Q <sub>G</sub> Typ | Q <sub>oss</sub> Typ<br>@1/2 |
|-------------|------------------------------|---------|----------|---------|-------------------------------|-------------------------------|---------------------|-------------|--------------------|------------------------------|
| Part Number | Auto-Standard<br>Part Number | Package | Polarity | Config. | V <sub>DS</sub><br>Max<br>(V) | V <sub>GS</sub><br>Max<br>(V) | <b>Typ</b> (mΩ)     | Max<br>(mΩ) | @10 V<br>(nC)      | V <sub>DS</sub><br>Max (nC)  |
| NTMFS6B03N  | NVMFS6B03N                   | SO-8FL  | N        | Single  | 100                           | 20                            | 3.3                 | 3.7         | 55                 | 99                           |
| NTMFS6B05N  | NVMFS6B05N                   | SO-8FL  | N        | Single  | 100                           | 20                            | 4.5                 | 5           | 40                 | 73                           |
| NTMFS6B10N  | NVMFS6B10N                   | SO-8FL  | N        | Single  | 100                           | 20                            | 8.5                 | 10          | 22                 | 39                           |
| NTMFS6B14N  | NVMFS6B14N                   | SO-8FL  | N        | Single  | 100                           | 20                            | 12                  | 14          | 15                 | 27                           |
| NTMFS6B25N  | NVMFS6B25N                   | SO-8FL  | N        | Single  | 100                           | 20                            | 20                  | 25          | 9                  | 16                           |







# Today's N-Channel "ND" Series - Product Offering

105

| 5 |                     |              |               |        |     |     | Maximum Ra |     | Rating  | VGS(th) | VGS(th) | 0          | Ciss | Cana         | Sam ple       |     |
|---|---------------------|--------------|---------------|--------|-----|-----|------------|-----|---------|---------|---------|------------|------|--------------|---------------|-----|
|   | Package             | Part Number  | Package       | Config | Pol | VDS | ID         | VGS | RDS(ON) | Min     | Max     | Qg<br>(nC) | (pF) | Coss<br>(pF) | Availability  | RTM |
|   |                     |              |               |        |     | (V) | (A)        | (V) | (mΩ)    | (V)     | (V)     | (!!)       | (12) | (6.7         | rivaliability |     |
|   |                     | NDD02N40T4G  | DPAK (TO-252) | Single | N   | 400 | 2          | 30  | 5500    | 8.0     | 2.0     | 10         | 125  | 15           | Now           | Now |
|   |                     | NDD03N50ZT4G | DPAK (TO-252) | Single | N   | 500 | 3          | 30  | 3300    | 3.0     | 4.5     | 10         | 274  | 38           | Now           | Now |
|   |                     | NDD04N50ZT4G | DPAK (TO-252) | Single | Ν   | 500 | 4          | 30  | 2700    | 3.0     | 4.5     | 12         | 308  | 43           | Now           | Now |
|   |                     | NDD05N50ZT4G | DPAK (TO-252) | Single | N   | 500 | 5          | 30  | 1500    | 3.0     | 4.5     | 19         | 530  | 68           | Now           | Now |
|   | ~ P                 | NDD01N60T4G  | DPAK (TO-252) | Single | N   | 600 | 1          | 30  | 8500    | 2.2     | 3.7     | 6.5        | 160  | 22           | Now           | Now |
|   | DPAK                | NDD02N60ZT4G | DPAK (TO-252) | Single | N   | 600 | 2          | 30  | 4800    | 3.0     | 4.5     | 10.1       | 274  | 34           | Now           | Now |
|   | (TO-252)            | NDD03N60ZT4G | DPAK (TO-252) | Single | N   | 600 | 3          | 30  | 3600    | 3.0     | 4.5     | 12         | 312  | 39           | Now           | Now |
|   |                     | NDD04N60ZT4G | DPAK (TO-252) | Single | N   | 600 | 4          | 30  | 2000    | 3.0     | 4.5     | 19         | 535  | 62           | Now           | Now |
|   |                     | NDD03N80ZT4G | DPAK (TO-252) | Single | N   | 800 | 3          | 30  | 4500    | 3.0     | 4.5     | 17         | 440  | 52           | Now           | Now |
| ı |                     | NDD02N40-1G  | IPAK (TO-251) | Single | N   | 400 | 2          | 30  | 5500    | 0.8     | 2.0     | 10         | 125  | 15           | Now           | Now |
|   |                     | NDD03N50Z-1G | IPAK (TO-251) | Single | N   | 500 | 3          | 30  | 3300    | 3.0     | 4.5     | 10         | 274  | 38           | Now           | Now |
|   |                     | NDD04N50Z-1G | IPAK (TO-251) | Single | N   | 500 | 4          | 30  | 2700    | 3.0     | 4.5     | 12         | 308  | 43           | Now           | Now |
|   | 100                 | NDD05N50Z-1G | IPAK (TO-251) | Single | N   | 500 | 5          | 30  | 1500    | 3.0     | 4.5     | 19         | 530  | 68           | Now           | Now |
|   | ///                 | NDD01N60-1G  | IPAK (TO-251) | Single | N   | 600 | 1          | 30  | 8500    | 2.2     | 3.7     | 6.5        | 160  | 22           | Now           | Now |
|   | IPAK                | NDD02N60Z-1G | IPAK (TO-251) | Single | N   | 600 | 2          | 30  | 4800    | 3.0     | 4.5     | 10.1       | 274  | 34           | Now           | Now |
|   | (TO-251)            | NDD03N60Z-1G | IPAK (TO-251) | Single | N   | 600 | 3          | 30  | 3600    | 3.0     | 4.5     | 12         | 312  | 39           | Now           | Now |
|   |                     | NDD04N60Z-1G | IPAK (TO-251) | Single | N   | 600 | 4          | 30  | 2000    | 3.0     | 4.5     | 19         | 535  | 62           | Now           | Now |
|   |                     | NDD03N80Z-1G | IPAK (TO-251) | Single | N   | 800 | 3          | 30  | 4500    | 3.0     | 4.5     | 17         | 440  | 52           | Now           | Now |
|   |                     |              |               |        |     |     |            |     |         |         |         |            |      |              |               |     |
|   |                     | NDT01N60T3G  | SOT-223       | Single | Ν   | 600 | 1          | 30  | 8500    | 2.2     | 3.7     | 6.5        | 160  | 22           | Now           | Now |
|   | SOT-223<br>(TO-261) | NDT02N40T3G  | SOT-223       | Single | N   | 400 | 2          | 20  | 5500    | 0.8     | 2.0     | 10         | 125  | 15           | Now           | Now |
|   |                     | NDF05N50ZH   | TO-220FP      | Single | N   | 500 | 5          | 30  | 1500    | 3.0     | 4.5     | 18.5       | 530  | 68           | Now           | Now |
|   |                     | NDF08N50ZH   | TO-220FP      | Single | N   | 500 | 8          | 30  | 850     | 3.0     | 4.5     | 31         | 912  | 120          | Now           | Now |
|   |                     | NDF11N50ZH   | TO-220FP      | Single | N   | 500 | 11         | 30  | 520     | 3.0     | 4.5     | 46         | 1375 | 166          | Now           | Now |
|   |                     | NDF02N60ZH   | TO-220FP      | Single | N   | 600 | 2          | 30  | 4800    | 3.0     | 4.5     | 10.1       | 274  | 34           | Now           | Now |
|   | 775/                | NDF03N60ZH   | TO-220FP      | Single | N   | 600 | 3          | 30  | 3600    | 3.0     | 4.5     | 12         | 312  | 39           | Now           | Now |
|   | ///                 | NDF04N60ZH   | TO-220FP      | Single | N   | 600 | 4          | 30  | 2000    | 3.0     | 4.5     | 19         | 535  | 62           | Now           | Now |
|   | TO-220FP            | NDF06N60ZH   | TO-220FP      | Single | N   | 600 | 6          | 30  | 1200    | 3.0     | 4.5     | 31         | 923  | 106          | Now           | Now |
|   | . 5 22011           | NDF08N60ZH   | TO-220FP      | Single | N   | 600 | 8          | 30  | 950     | 3.0     | 4.5     | 39         | 1140 | 129          | Now           | Now |
|   |                     | NDF10N60ZH   | TO-220FP      | Single | N   | 600 | 10         | 30  | 750     | 3.0     | 4.5     | 47         | 1425 | 150          | Now           | Now |









# Super Junction Initial Target Products – U1 Series

106

- 600 V Products available Q3 2013
- 500 V Products available Q4 2013

|          |                |               |        |     |            | Maxi      | mum        | Rating       | VGS(th)    | VGS(th)    | Qg   | Ciss | Coss |
|----------|----------------|---------------|--------|-----|------------|-----------|------------|--------------|------------|------------|------|------|------|
| Package  | Part Number    | Package       | Config | Pol | VDS<br>(V) | ID<br>(A) | VGS<br>(V) | RDS(ON) (mΩ) | Min<br>(V) | Max<br>(V) | (nC) | (pF) | (pF) |
|          | NDD50N320U1T4G | DPAK (TO-252) | Single | N   | 500        | 10        | 25         | 320          | 2.0        | 4.0        | 27   | 816  | 60   |
|          | NDD50N470U1T4G | DPAK (TO-252) | Single | N   | 500        | 7         | 25         | 470          | 2.0        | 4.0        | 19   | 547  | 42   |
|          | NDD50N630U1T4G | DPAK (TO-252) | Single | N   | 500        | 6         | 25         | 630          | 2.0        | 4.0        | 17   | 450  | 38   |
|          | NDD50N790U1T4G | DPAK (TO-252) | Single | N   | 500        | 5         | 25         | 790          | 2.0        | 4.0        | 14   | 364  | 33   |
| 7        | NDD60N360U1T4G | DPAK (TO-252) | Single | N   | 600        | 10        | 25         | 360          | 2.0        | 4.0        | 30   | 790  | 60   |
| DPAK     | NDD60N550U1T4G | DPAK (TO-252) | Single | N   | 600        | 6         | 25         | 550          | 2.0        | 4.0        | 19   | 540  | 44   |
| (TO-252) | NDD60N745U1T4G | DPAK (TO-252) | Single | N   | 600        | 4         | 25         | 745          | 2.0        | 4.0        | 14   | 363  | 25   |
|          | NDD60N900U1T4G | DPAK (TO-252) | Single | N   | 600        | 4         | 25         | 900          | 2.0        | 4.0        | 14   | 363  | 25   |
|          | NDD60N1K8U1T4G | DPAK (TO-252) | Single | N   | 600        | 3         | 25         | 1800         | 2.0        | 4.0        | 10   | 190  | 13   |
|          | NDD50N320U1-1G | DPAK (TO-252) | Single | N   | 500        | 10        | 25         | 320          | 2.0        | 4.0        | 27   | 816  | 60   |
|          | NDD50N470U1-1G | DPAK (TO-252) | Single | N   | 500        | 7         | 25         | 470          | 2.0        | 4.0        | 19   | 547  | 42   |
|          | NDD50N630U1-1G | DPAK (TO-252) | Single | N   | 500        | 6         | 25         | 630          | 2.0        | 4.0        | 17   | 450  | 38   |
|          | NDD50N790U1-1G | DPAK (TO-252) | Single | N   | 500        | 5         | 25         | 790          | 2.0        | 4.0        | 14   | 364  | 33   |
| ///      | NDD60N360U1-1G | DPAK (TO-252) | Single | N   | 600        | 10        | 25         | 360          | 2.0        | 4.0        | 30   | 790  | 60   |
| IPAK     | NDD60N550U1-1G | DPAK (TO-252) | Single | N   | 600        | 6         | 25         | 550          | 2.0        | 4.0        | 19   | 540  | 44   |
| (TO-251) | NDD60N745U1T4G | DPAK (TO-252) | Single | N   | 600        | 4         | 25         | 745          | 2.0        | 4.0        | 14   | 363  | 25   |
|          | NDD60N900U1-1G | DPAK (TO-252) | Single | N   | 600        | 4         | 25         | 900          | 2.0        | 4.0        | 14   | 363  | 25   |
|          | NDD60N1K8U1-1G | DPAK (TO-252) | Single | N   | 600        | 3         | 25         | 1800         | 2.0        | 4.0        | 10   | 190  | 13   |







# Part Numbering System







# Part Numbering System - IGBTs

108 ROOT N G T B 2 5 N 1 2 0 I H W T 4 G **Product Class** N = ON Semi Standard Pb-Free Designator S = Special G = Lead-Free P = Engineering Proto Optional Tape and Reel Suffix T4 = DPAK/D2PAK**Product Group** GT = IGBTPackage Designator (1 digit) **Product Family** T = TO-3PB = IGBT (with co-pack diode) W = TO-247I = Intelligent power modules B = D2PAKP = Power Integrated Module D = DPAKD = Die saleE = TO-220G = IGBT Only F = TO-220FPS = TO-264Current @ 100°C in A Optional Performance Attributes (1 or 2 digits) Polarity - Standard IGBT (≤20kHz) N = N Channel Voltage [V/10] F = FAST IGBTs (20kHZ - 50kHz)P = P Channel 60 = 600 VU = Ultrafast IGBTs (50kHZ to 100kHz) 90 = 900 VL = Field Stop 120 = 1200 V L2 = Field Stop Gen II 135 = 1350 VR = Reverse Conducting(monolithic) 140 = 1400 VS- = Special(S1, S2, S3...ect)170 = 1700 V IH = Inductive Heating Optimized







#### Low and Medium Voltage MOSFETs:









#### High Voltage MOSFETs:









# Thank You Please visit us at our booth

**For More Information:** 

Existing Arrow Customers: 800 777 2776

New Customers: 800 833 3557

www.arrownac.com/powermanagement





