Seat	
No.	

[4657]-543

S.E. (E & TC/Electronics) (First Semester) EXAMINATION, 2014 ELECTRONICS DEVICES AND CIRCUITS (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. No. 1 or 2, Q. No. 3 or 4, Q. No. 5 or 6, Q. No. 7 or 8.
 - (ii) Neat diagrams drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of calculator is allowed.
 - (v) Assume suitable data if necessary.
- 1. (a) Draw h-parameter models for C_E , C_B and C_C transistor configurations. [6]
 - (b) For the circuit shown in Fig. 1. Silicon transistor with β = 100 is used. Calculate I_B , I_C and V_{CE} . [6]

Fig. 1

- 2. (a) For the circuit shown in Fig. 1, silicon transistor with $h_{ie}=1.1~{\rm k}\Omega,~h_{fe}=50,~h_{re}=2.5~\times~10^{-4},~h_{oe}=25~\mu\text{A/V}$ is used. Calculate A_i, A_v, R_i, R_i', R₀ and R₀'. [6]
 - (b) Derive the expression for stability factor S for the voltage divider bias circuit. [6]
- 3. (a) Draw and explain Hartley oscillator using BJT. Calculate frequency of oscillation, when C = 0.001 μ F, L₁ = L₂ = 100 μ H and mutual inductance between L₁ and L₂ is 20 μ H. [6]
 - (b) Derive the expression for lower cut-off frequency and higher cut-off frequency in terms of percentage tilt and rise time respectively. [6]

Or

4. (a) Determine the input resistance of a series input connection and the output resistance of a shunt output connection for an ideal feedback voltage amplifier in which $A_v=10^5$ and $A_{vf}=50$. Assume that input and output resistances of the basic amplifier are $R_i=10~\mathrm{k}\Omega$ and $R_0=20~\mathrm{k}\Omega$ respectively.

[4657]-543

- (b) Explain the effect of internal capacitances of transistor used in amplifier circuit on bandwidth of amplifier with frequency response curve. Define F_{α} and F_{β} separately. [6]
- 5. (a) Draw class B push pull power amplifier and show that maximum efficiency is 78.5%. [6]
 - (b) A transformer coupled class A power amplifier draws a current of 200 mA from a collector supply of 10 V when no signal is applied to it. Determine:
 - (i) Maximum output power
 - (ii) Maximum collector efficiency
 - (iii) Power rating of the transistors.

If the load connected across transformer. Secondary is of 2Ω and transformer turns ratio is 5:1.

Or

- 6. (a) Explain with circuit diagram, how even harmonics are eliminated in class B push-pull power amplifier. [6]
 - (b) A sinusoidal signal $V_S = 1.75 \sin (600 \ t)$ is fed to a power amplifier. The resulting output current is $I_0 = 15 \sin 600 \ t$ + 1.5 sin 1200 t + 1.2 sin 1800 t + 0.5 sin 2400 t.

 Calculate the percentage increase in the power due to distortion.

- 7. (a) Explain various non-ideal current voltage characteristics of EMOSFET. [6]
 - (b) For the circuit shown in Fig. 2, the MOSFET parameters are $V_T = 3V$, k = 0.4 mA/V². Determine V_{GS} , V_{DS} and I_D and show that MOSFET is biased in the saturation region : [7]

Fig. 2

Or

- 8. (a) For the circuit shown in the Fig. 2, determine g_m , A_v , R_i , R_i , R_0 and R_0 . Given $V_T=3V$, k=0.4 mA/ V^2 and $r_0=40$ k Ω .
 - (b) Describe Bi-CMOS technology of MOSFET with circuit diagram. [6]