Departamento de Matemática

Universidade do Minho

Álgebra

exame de recurso - segunda parte - 4 fev 2021

Lic. em Ciências de Computação/Lic. em Matemática - $2^{\underline{o}}$ ano

duração: duas horas

Nome		
Curso	Número	

Responda no próprio enunciado, colocando uma cruz no quadrado correspondente. Cada questão está cotada com 0,8 valores numa escala de 0 a 20. Respostas erradas descontam 0,2 valores na mesma escala.

Declaração de Honra: "Ao submeter esta avaliação online, declaro por minha honra que irei resolver a prova recorrendo apenas aos elementos de consulta autorizados, de forma autónoma e sem trocar qualquer informação por qualquer meio, com qualquer pessoa ou repositório de informação, físico ou virtual"

Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição, assinalando a opção conveniente:

1.	Em S_7 existem pelo menos uma permutação α par e uma permutação β ímpar tais que $o(\alpha)=o(\beta)=6.$	V DFD
2.	Num anel A de característica 12 com identidade 1_A , o elemento $11\cdot 1_A$ é um divisor de zero de A .	V□ F□
3.	Se A é um anel com identidade 1_A e B é um subanel de A tal que $1_A \in B$, então, B tem identidade e $1_B = 1_A$.	V DFD
4.	Se a é uma unidade de um anel A com identidade, então a^2-a é simplificável.	V□ F□
5.	$A=\left\{\left[\begin{array}{cc}a&b\\a&b\end{array}\right]:a,b\in\mathbb{R}\right\} \text{ \'e um subanel do anel das matrizes quadradas reais de ordem 2}.$	V DFD
6.	Seja A um anel. Então, $I=\{x\in A: 3x=0_A\}$ é um ideal de A .	V□ F□
7.	Se I e J são ideais de A tais que $I \neq J$, então, $I \cap J \neq I + J$.	V□ F□
8.	Se A é um domínio de integridade e I é um ideal de A , então, A/I é um domínio de integridade.	V□ F□
9.	Sejam A um anel comutativo com identidade, I um ideal maximal e B um subanel de A . Então $I+B$ é um ideal maximal de A .	V□ F□
10.	Se A é um anel de característica 6, então $(x+y)^6=x^6+y^6$ para todo $x\in A$.	V□ F□
11.	Se A é um corpo, então, existe um morfismo de anéis $f:A\times A\to A'$ tal que $\mathrm{Nuc}f=A\times\{1_A\}$	V□ F□
12.	No anel dos números reais, $\{0\}$ é um ideal maximal.	V□ F□
13.	$3\mathbb{Z} imes \{0\}$ é um ideal maximal de $\mathbb{Z} imes \mathbb{Z}.$	V□ F□
14.	Se I e J são ideais maximais de um anel comutativo com identidade A , então, $A=I+J$.	V□ F□
15.	No anel dos inteiros, temos que $4\mathbb{Z}+6\mathbb{Z}=2\mathbb{Z}.$	V□ F□
16.	Seja $f:A\to A'$ um morfismo de anéis. Então, $A'/\mathrm{Nuc}f$ é isomorfo a $A.$	V□ F□
17.	Seja $\varphi:A o A'$ um morfismo não nulo de anéis. Se A é um corpo então $\varphi(A)$ é um corpo	V 🗆 F 🗆

Em cada uma das questões seguintes, assinale a opção correta:

18.	Em S_8 , a permutação $\sigma = (123)(132)$ tem ordem		
	\Box 1 \Box 2 \Box 3 \Box 6		
19.	Em S_{10} , se $\gamma=(98756)$, então		
	$\Box \gamma^2 = (976)(85)$ $\Box \gamma^2 = (68597)$ $\Box \gamma^2 = (65789)$ $\Box \gamma^2 = (97)$		
20.	0. Em S_7 , sabendo que $(34)lpha^2=(123)eta$, podemos afirmar que		
	$\square \ \alpha \ \text{\'e par e} \ \beta \ \text{\'e impar} \qquad \qquad \square \ \alpha \ \text{\'e impar e} \ \beta \ \text{\'e par}$ $\square \ \beta \ \text{\'e impar} \qquad \qquad \square \ \beta \ \text{\'e par}$		
21.	O anel \mathbb{Z}_{20} tem exatamente		
	\square 12 divisores de zero \square 9 divisores de zero \square 8 divisores de zero \square 1 divisor de zero		
22.	A caraterística do anel $\mathbb{Z}_3 \times \mathbb{Z}_6$ é		
23.	3. Sejam $a \in \{n \in \mathbb{Z} : 0 \le n \le 7\}$ e $f_a : \mathbb{Z}_8 \to \mathbb{Z}_8$ a função definida por $f_a([x]_8) = [ax]_8$, para todo $x \in \mathbb{Z}$. Então, $f_a([x]_8) = [ax]_8$, para todo $f_a([x]_8) = [ax]_8$.		
	$\Box \ a \in \{0, 1\} \qquad \qquad \Box \ a \in \{0, 2, 4, 6\} $ $\Box \ a \in \{1, 3, 5, 7\} \qquad \qquad \Box \ a \in \{0, 1, 2, 3, 4, 6, 7\}$		
24.	Seja A um anel tal que $A=I+J$, com I e J ideais de A . Então, o anel $A/I\times A/J$ é isomorfo ao anel		
	$\Box A/(I+J)$ $\Box A \times A$ $\Box A$ $\Box A/(I \cap J)$		
25.	Se I é um ideal primo não maximal do anel $\mathbb{R} \times \mathbb{Z}$, então, I pode ser		
	$\square \ \mathbb{Z} \times 2\mathbb{Z} \qquad \square \ \mathbb{R} \times 2\mathbb{Z} \qquad \square \ \mathbb{R} \times \{0\} \qquad \square \ \{0\} \times \mathbb{Z}$		