

Complejidad Algorítmica

Unidad 1: Comportamiento asintótico, métodos de búsquedas y grafos

Módulo 4: Teoría de Grafos

Complejidad Algorítmica

Semana 4 / Sesión 1

MÓDULO 4: Teoría de Grafos

- 1. ¿Qué es un Grafo?
- 2. Tipos de Grafos
- 3. Casos de Uso para los grafos
- 4. Representación de un grafo
- 5. Grafos Completos, Subgrafos y Componentes

1. ¿Qué es un Grafo?

- Debemos referirnos primero a "La teoría de grafos" como el estudio de líneas y puntos.
- La teoría de grafos es un subcampo de las matemáticas que se ocupa de los gráficos, es decir, al estudio de la relación entre aristas y vértices.
- Formalmente, **un grafo es un par (V, E)**, donde **V** es un conjunto finito de vértices (nodos o estados) y **E** un conjunto finito de aristas (arcos, bordes o ramas).

1. ¿Qué es un Grafo?

ENTENDAMOS COMO ES LA ESTRUCTURA DE UN GRAFO

Grafo no dirigido

Cuando los bordes (también llamados aristas o ramas) no tienen una dirección.

Grafo dirigido

Cuando los bordes tienen una dirección.

También se le conoce como digrafo o direccionado

Grafo ponderado

Cuando los bordes tienen un valor numérico.

1. ¿Qué es un Grafo?

ENTENDAMOS COMO ES LA ESTRUCTURA DE UN GRAFO

Nodo: Todas las posibles posiciones o

(Estado o Vértice) paradas con una identificación

única.

Borde: Cada conexión entre dos nodos.

(Arista o rama)

Transición: El acto de moverse entre nodos (o

vértices)

Nodo inicio: Dónde empezar a buscar (nodo

inicial).

Nodo objetivo: El objétivo para detener la búsqueda

(nodo final).

Espacio de Una colección de nodos, como

búsqueda: todas las posiciones del tablero de

un juego de mesa

2. Tipos de Grafos

GRAFO NULO

 Un grafo que <u>no tiene</u> <u>bordes</u> se llama grafo nulo.

GRAFO FINITO

 Un grafo es finito si tiene un número finito de vértices y un número finito de aristas

GRAFO INFINITO

 Un grafo es infinito si tiene un número infinito de vértices y un número infinito de aristas (contiene a todos los grafos finitos, como un subgrafo).

Otros tipos de grafos:

• Grafo trivial, regular, completo, de ciclo, de rueda, etc.

Redes Sociales

Redes Sociales

A partir de los datos recolectados de redes sociales, se realizan investigaciones de índole: social, educativo, económico y comercial.

Fuente: http://hdl.handle.net/10609/104066

2019: Redes en Twitter y la defensa de la mujer peruana

Objetivos:

- Modelar redes de Twitter.
- Identificar a los principales actores influyentes por red.
- Identificar las relaciones entre los actores y sus comunidades.
- Ver relaciones existentes entre actores del Gobierno y de la sociedad civil.

Redes Sociales

Modelado y análisis de las Redes

- Consideraciones importantes:
 - Las redes se modelan a partir de los Retweets como tipo de interacción entre nodos.
 - Todas las redes son de tipo dirigidas.
 - Las métricas calculadas son las siguientes:
 - Densidad de la red
 - Centralidad
 - Modularidad de la red
 - La centralidad del vector propio o Eigenvector fue la métrica utilizada para la visualización de los nodos en cada una de las redes.

Redes Sociales

Tratamiento de los datos de los retweets como grafos.

Redes Sociales

Modelado y análisis de las Redes

Red 5: Feminicidio

Resumen de pruebas estadísticas

Tipo de red	Dirigida
Nro. de Nodos	625
Nro. de Conexiones	594
Densidad de la Red	0.003041025641025641
Modularidad	0.833
Núm. Comunidades	69

Nodos influyentes

Item	Nombre Nodo	Comunidad	Descripción
1	saldelsol		Presidente del Consejo de Ministros del Perú. https://twitter.com/saldelsol
2	mabel_huertas		Periodista. Todas las mañanas en Buenos Días Perú @BDPTV por @PanamericanaTV https://twitter.com/mabel_huertas
3	PeruECpe		Cuenta oficial de la sección Perú del diario El Comercio. https://twitter.com/PeruECpe

- La densidad de la red mide la proporción de enlaces que existen entre las relaciones posibles de una red en concreto.
- La modularidad es una medida de la estructura de las redes o grafos
- La modularidad, mide la fuerza de la división de una red en módulos, agrupaciones o comunidades

Redes Sociales

Sistemas Geográficos

Redes Semánticas

Cuanto más a menudo aparece una palabra clave, mayor el tamaño de las letras y círculos.

Figure 1. Visualization topic area using VOSviewer using network visualization

Figure 3. Visualization topic area using VOSviewer using density visualization

Fuente: https://ejournal.upi.edu/index.php/ijost/article/view/24522

Redes Viales

Redes de transporte publico

Redes de energía eléctrica

Redes de computadoras

Redes de módulos (p.e. flujos de información)

Redes de computadoras

Un grafo lo representaremos mediante:

- 1. Una matriz de adyacencia.
- 2. Una lista de adyacencia.

Pero antes definamos el grado de un grafo y el grado de un nodo o vértice:

Grado de un grafo = Cantidad de nodos o vértices que contiene.

Grado de un nodo = Cantidad de aristas que son incidentes a él (de entrada o de salida).

Representación #1: Matriz de Adyacencia

Dado <u>un grafo G</u>, este será representado por una <u>matriz de n x n</u> que denominaremos A, donde:

```
A_{ij}=1 \Longleftrightarrow G tiene una arista i \to j 
 Variante: A_{ij}=peso\ de\ la\ arista\ i \to j
```

- El grafo está representado por una matriz cuadrada A de tamaño n x n, donde n es el número de nodos o vértices.
- Si hay una arista (borde) entre un **vértice (nodo) i** y un **vértice (nodo) j**, entonces el elemento A(i, j) es 1, de lo contrario, es 0.

Veamos un ejemplo...

EJEMPLO #1: Convertir un grafo en una matriz de adyacencia.

Dado el siguiente grafo:

¿Cuál es la matriz de adyacencia?

SOLUCION:

- 1. Contamos la cantidad de vértices o nodos y creamos una matriz de n * n
- 2. Evaluamos las relaciones (aristas o bordes) entre cada par de la matriz (Ai,j) Asignamos 1 si existe una arista o 0 si no existe.

	а	b	С	d		Grado de	el nodo
а	0	1	1	0	=	2	Cantidad de aristas que inciden en cada nodo.
b	1	0	1	2	=	4	
С	1	1	0	1	=	3	
d						3	

- **Grado del grafo** = 4 (cantidad de nodos o vértices)
- Hemos creado una matriz **simétrica** (una matriz de orden n con el mismo número de filas y columnas donde su matriz traspuesta es igual a la matriz original).

EJEMPLO #2: Convertir una matriz de adyacencia en un grafo

Dada la siguiente matriz dirigida:

$$\left[
\begin{array}{ccccc}
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}
\right]$$

- ¿Cuál es el grafo? (visualmente)
- ¿Cuánto espacio es necesario para almacenar una matriz de adyacencia, en función a n, el número de vértices y m, el número de aristas?

SOLUCION:

- ¿Que nos dice la matriz? Que tiene 4 nodos (grado 4), entonces representamos cada nodo con una letra.
- Calculamos el grado de cada nodo. ¿Es una matriz simétrica?

	а	b	С	d	grado
а	Γ1	0	1	0]	= 2
a b	1	$0 \\ 0$	1	1	= 3
С	0	1	1	0	= 2
d	1	0	0	0	= 1
	_			_	,

- Dibujamos los 4 nodos con sus etiquetas
- Dibujamos las aristas o bordes entre nodos para obtener el grafo
- No es una matriz simétrica.

Representación #2: Listas de Adyacencia

- Una forma sencilla de representar un grafo es a partir de una lista, o un arreglo, de |E| aristas, a la que llamamos una lista de aristas.
- Para representar una arista, solo tenemos <u>un arreglo de dos números de vértices</u>, o un arreglo de objetos que contienen los números de vértices sobre los que inciden las aristas.

Elementos:

- Arreglo (o lista) de vértices (nodos)
- Arreglo (o lista) de aristas
- Cada arista apunta a sus vértices (nodos)
- Cada vértice (nodo) apunta a las aristas incidentes a él.

Ejemplo:

	<u>Vértice</u> <u>inicial</u>	Vértices en los que incide
	0:	1,2
	1:	0,3,4
>	2:	0
	3:	1,4
	4:	1.3

EJEMPLO #1: Convertir un grafo en una lista de adyacencia.

Dado el siguiente grafo:

• ¿Cuál es la lista de adyacencia?

SOLUCION:

- 1. Construimos una lista de vértices o nodos según el grafo
- Identificamos la lista de vértices o nodos en los que incide cada nodo de la lista construida en el paso 1).

Lista de Vértices	Vértices en los que incide	Representación de la lista
0	1,6,8	<u>de aristas</u>
1	0,4,6, 9	
2	4,6	[[0,1], [0,6], [0,8],
3	4,5,8	[1,4], [1,6], [1,9],
4	1,2,3,5,9	[2,4], [2,6],
5	3,4	[3,4], [3,5],[3,8],
6	0,1,2	[4,5], [4,9],
7	8,9	[7,8], [7,9]]
8	0,3,7	[7,0], [7,9]]
9	1,4,7	

En algún lenguaje de programación

EJEMPLO #2: Convertir una lista de adyacencia en un grafo

A partir de la lista de adyacencia:

1:

2: 3 4

 $3: 2 \ 4$

 $4 \cdot 5 \cdot 7$

5: 1 2 4

6: 3 5

7: 5

¿Cuál es el grafo?

SOLUCION:

- Construimos un grafo y lo etiquetamos con cada uno de los vértices de la lista.
- 2. Identificamos cada una de las incidencias desde cada uno de los vértices de la lista en 1) hacia los otros vértices.

Lista de Vértices Vértices en los que incide

<u>Ventajas / Desventajas</u>: Matriz de Adyacencia vs Lista de Adyacencia

Matriz de Adyacencia

- Muy simple de implementar.
- Rápido para ver si hay una conexión entre dos nodos - O(1).
- Lento para atravesar nodos adyacentes O(|V|)
- Alto desperdicio de memoria (en gráficos dispersos) -O(|V|²)
- Gráfico pesado implica solo almacenar peso en la matriz.
- Agregar/eliminar enlaces es solo cambiar la celda de matriz - O (1).

Lista de Adyacencia

- Lento para ver si hay una conexión entre los nodos u y v -O(grado(u)).
- Rápido para atravesar nodos adyacentes O(grado(u)).
- Memoria bien utilizada O(|V| + |E|).
- Gráfico pesado implica agregar un campo a la lista.
- Eliminar enlace (u, v) implica recorrer la lista O(grado(u)).

5. Grafos completos, Subgrafos y Componentes

Grafos completos

- Un grafo es completo si para cualquier pareja de vértices existe una arista que los une (en ambos sentidos si el grafo es no dirigido).
- El número máximo de aristas en un grafo de n vértices es: n(n - 1)/2.

Subgrafos

 Un subgrafo se define como un grafo con vértices y aristas que son un <u>subconjunto de un grafo</u>.

Componentes

 Un <u>subconjunto de vértices</u> (nodos) que forman un <u>subgrafo completo</u>.

PREGUNTAS

Dudas y opiniones