线性代数

张建磊 jianleizhang@nankai.edu.cn

线性代数理论

- 大学数学课的基础课程
- 理工科、经济类专业课的数学基础

- 人工智能、自动化、计算机、金融、经济等学科的数学基础
- 工作和科研必备的数学储备

考核方式

- 比例: 平时成绩20%, 期末测试80%。
- 考核形式: 闭卷,不准使用计算器,不准自带草稿纸,不准用手机,带着准考证/学生证等能证明自己身份的有照片的证件。
- 考试时间: 100分钟。
- 试卷结构:
 - 1. 总分: 100分
 - 2. 题型:

单选题; 判断题;

计算题; 证明题。

3. 容易、中等难度、难题的分值比例约为3:6:1。

考试范围

- 第1-7章所讲内容
- 下面内容特殊处理
 厄米特矩阵和酉矩阵不考
 线性变换的核不考
 (Jordan)标准形不考

补充的分块矩阵应用建议使用

如何学好线性代数

- 理解最重要
- 尚未理解的时候先记住
- 大量的练习既可以帮助记忆,又可以帮助 理解
- 可以且建议读其他教材或者看视频
- 课上会讲实例应用

毕业要求指标点

• 1. 工程知识

▶1.1掌握解决自动化领域工程问题所需的数学、自然科学知识,能够灵活应用数学、自然科学的基本理论和原理。

• 2. 问题分析

▶ 2.1能够掌握并应用数学、自然科学的基本原理对问题识别、表达和分析。

什么是线性?

第一章 行列式

本章主要内容

- > n阶行列式的定义
- > 行列式的主要性质
- ▶ 行列式按行(列)展开

第一节n阶行列式的定义

§ 1.1.1 二、三阶行列式的定义

一、二阶行列式的引入

用消元法解二元线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$
 (1)

$$(1) \times a_{22} : \quad a_{11}a_{22}x_1 + a_{12}a_{22}x_2 = b_1a_{22},$$

$$(2) \times a_{12}: \quad a_{12}a_{21}x_1 + a_{12}a_{22}x_2 = b_2a_{12},$$

两式相减消去 x_2 ,得

$$(a_{11}a_{22}-a_{12}a_{21}) x_1 = b_1a_{22}-a_{12}b_2;$$

$$(a_{11}a_{22}-a_{12}a_{21}) x_1 = b_1a_{22}-a_{12}b_2;$$

类似地,消去 x_1 ,得

$$(a_{11}a_{22}-a_{12}a_{21}) x_2=a_{11}b_2-b_1a_{21},$$

当 $a_{11}a_{22}-a_{12}a_{21}\neq 0$ 时,方程组的解为

$$x_1 = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}}, \quad x_2 = \frac{a_{11} b_2 - b_1 a_{21}}{a_{11} a_{22} - a_{12} a_{21}}.$$

由方程组的四个系数确定.

用记号
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
 表示 $a_{11}a_{22} - a_{12}a_{21}$ 并称之为一个

二阶(级)行列式,即

$$D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

二阶行列式的计算——对角线法则

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2, \\ D = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix},$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2, \end{cases} x_1 = \frac{b_1a_{22} - a_{12}b_2}{a_{11}a_{22} - a_{12}a_{21}},$$

$$x_1 = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}},$$

$$D_1 = \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix} = b_1 a_{22} - a_{12} b_2,$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2, \end{cases}$$

$$D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix},$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2, \end{cases}$$

$$D_1 = \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix} = b_1 a_{22} - a_{12} b_2,$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2, \end{cases} \qquad x_2 = \frac{a_{11}b_2 - b_1a_{21}}{a_{11}a_{22} - a_{12}a_{21}}.$$

$$D_2 = \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix} = a_{11}b_2 - b_1a_{21}.$$

则二元线性方程组的解为

$$x_{1} = \frac{D_{1}}{D} = \frac{\begin{vmatrix} b_{1} & a_{12} \\ b_{2} & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, \qquad x_{2} = \frac{D_{2}}{D} = \frac{\begin{vmatrix} a_{11} & b_{1} \\ a_{21} & b_{2} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}.$$

注意 分母都为原方程组的系数行列式.

$$x_1 = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}}, \qquad x_2 = \frac{a_{11} b_2 - b_1 a_{21}}{a_{11} a_{22} - a_{12} a_{21}}.$$

二、三阶行列式

定义 设有9个数排成3行3列的数表

$$a_{11}$$
 a_{12} a_{13}
 a_{21} a_{22} a_{23} (3)
 a_{31} a_{32} a_{33}

记

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$
(4)
$$-a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31},$$

(4) 式称为数表(3) 所确定的三阶行列式.

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

三阶行列式的计算

三阶行列式包括3!项,每一项都是位于不同行, 不同列的三个元素的乘积, 其中三项为正, 三项为 负.

利用三阶行列式求解三元线性方程组

如果三元线性方程组
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

的系数行列式
$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \neq 0,$$

若记
$$\begin{bmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{bmatrix}$$
 若记
$$D_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}$$

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

若记
$$D_1 = \begin{vmatrix} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{vmatrix}$$

$$D_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}$$

$$D_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}$$
或 a_{32} a_{33}

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

得
$$D_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}$$
,

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

得
$$D_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases} \Rightarrow D_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}.$$

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \quad D_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix},$$

$$D_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}, \quad D_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}.$$

则三元线性方程组的解为:

$$x_1 = \frac{D_1}{D}, \qquad x_2 = \frac{D_2}{D}, \qquad x_3 = \frac{D_3}{D}.$$

三、小结

二阶和三阶行列式是由解二元和三元线性方程组引入的.

二阶和三阶行列式的计算 ——对角线法则

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31},$$

思考

- 1. n阶行列式如何定义?
- 2. n元线性方程组的解是什么形式?