In [26]: import pandas as pd

#HERE I AM IMPORTING MY ALGORITHMS

from sklearn.linear_model import LogisticRegression, ElasticNetCV

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

In [27]: | #LET US READ OUR CLEANED TRAIN AND TEST DATASETS INTO THIS NOTEBOOK

train = pd.read_csv('CLEANED_TRAIN.csv')
test = pd.read_csv('CLEANED_TEST.csv')

In [28]: #Overview of the first 5 rows of the train dataset (Microsoft Excel can be use d for this)

train.head()

Out[28]:

	Survived	Pclass	Age	SibSp	Parch	Fare	male	Q	S
0	0	3	22.0	1	0	7.2500	1	0	1
1	1	1	38.0	1	0	71.2833	0	0	0
2	1	3	26.0	0	0	7.9250	0	0	1
3	1	1	35.0	1	0	53.1000	0	0	1
4	0	3	35.0	0	0	8.0500	1	0	1

In [29]: #Overview of the first 5 rows of the test dataset (Microsoft Excel can be used for this)

test.head()

Out[29]:

	Passengerld	Pclass	Age	SibSp	Parch	Fare	male	Q	S
0	892	3	34.5	0	0	7.8292	1	1	0
1	893	3	47.0	1	0	7.0000	0	0	1
2	894	2	62.0	0	0	9.6875	1	1	0
3	895	3	27.0	0	0	8.6625	1	0	1
4	896	3	22.0	1	1	12.2875	0	0	1

```
In [30]: test.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 418 entries, 0 to 417
         Data columns (total 9 columns):
         PassengerId
                       418 non-null int64
         Pclass
                       418 non-null int64
         Age
                       418 non-null float64
                     418 non-null int64
         SibSp
         Parch
                       418 non-null int64
         Fare
                       418 non-null float64
         male
                       418 non-null int64
                       418 non-null int64
         Q
                       418 non-null int64
         dtypes: float64(2), int64(7)
         memory usage: 29.5 KB
In [31]: #LET US ASSIGN OUR X and y variables
         X = train.drop('Survived', axis = 1)
         y = train['Survived']
         #LET US DROP THE PASSENGER ID COLUMN FROM TEST AND ASSIGN IT TO ID
         test copy = test.drop('PassengerId', axis =1)
         ID = test['PassengerId']
```

NOW LET US ASSIGN VARIABLES TO THE THREE ALGORITHMS WE WILL BE TRAINING AND USING TO PREDICT

```
In [32]: linearmodel = LogisticRegression()
    treemodel = DecisionTreeClassifier()
    forestmodel = RandomForestClassifier()
```

NOW LET US FIT EACH ALGORITHM AND PREDICT ON THE TEST DATA

```
In [33]: | #Fitting of each algorithm with X and y
         linearmodel.fit(X, y)
         treemodel.fit(X, y)
         forestmodel.fit(X, y)
         C:\Users\Adeoluwa Adeboye\Anaconda3\lib\site-packages\sklearn\linear model\lo
         gistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.
         22. Specify a solver to silence this warning.
           FutureWarning)
         C:\Users\Adeoluwa Adeboye\Anaconda3\lib\site-packages\sklearn\ensemble\fores
         t.py:245: FutureWarning: The default value of n_estimators will change from 1
         0 in version 0.20 to 100 in 0.22.
           "10 in version 0.20 to 100 in 0.22.", FutureWarning)
Out[33]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                                max depth=None, max features='auto', max leaf nodes=No
         ne,
                                min_impurity_decrease=0.0, min_impurity_split=None,
                                min_samples_leaf=1, min_samples_split=2,
                                min weight fraction leaf=0.0, n estimators=10,
                                n jobs=None, oob score=False, random state=None,
                                 verbose=0, warm start=False)
In [34]: | #Let us predict on our test dataset
         linear prediction = linearmodel.predict(test copy)
         tree prediction = treemodel.predict(test copy)
         forest prediction = forestmodel.predict(test copy)
```

HERE WE PUT OUT PREDICTION ON THE TEST DATA INTO A CSV FORMAT FOR SUBMISSION ON KAGGLE

```
In [35]: #THE CSV FORMAT MUST BE OF SIMILAR FORMAT WITH THE FORMAT STATED ON THE COMPET
ITION PAGE

#outputting a submission file fpr the linear prediction
linear_output = pd.DataFrame({'PassengerId' : ID, 'Survived' : linear_prediction})

linear_output.to_csv('linear_prediction.csv', index=False)

#outputting a submission file for the tree prediction
tree_output = pd.DataFrame({'PassengerId' : ID, 'Survived' : tree_prediction}))

tree_outputting a submission file for the forest prediction
forest_output = pd.DataFrame({'PassengerId' : ID, 'Survived' : forest_prediction}))

forest_output.to_csv('forest_prediction.csv', index=False)
```

NOW LET US SEE HOW EACH OF OUR PREDICTION SCORE ON THE LEADERBOARD

```
In [ ]:
```