Вероятностные алгоритмы проверки чисел на простоту

Бакундукизе Эжид Принц НФИмд-01-21 21 сентября, 2022, Москва, Россия

Российский Университет Дружбы Народов

Цели и задачи

Цель лабораторной работы

Изучение алгоритов Ферма, Соловэя-Штрассена, Миллера-Рабина.

Выполнение лабораторной

работы

Простыре числа

Для построения многих систем защиты информации требуются простые числа большой разрядности.

Существует два типа критериев простоты: детерминированные и вероятностные.

Детерминированные тесты полезны, когда необходимо построить большое простое число. Вероятностные тесты можно эффективно использовать для тестирования отдельных чисел, однако их результаты, с некоторой вероятностью, могут быть неверными. К счастью, ценой количества повторений теста с модифицированными исходными данными вероятность ошибки можно сделать как угодно малой.

Тест Ферма

- Вход. Нечетное целое число $n \ge 5$.
- Выход. «Число n, вероятно, простое» или «Число n составное».
- 1. Выбрать случайное целое число $a, 2 \le a \le n-2$.
- 2. Вычислить $r = a^{n-1} (mod n)$
- 3. При r=1 результат: «Число n, вероятно, простое». В противном случае результат: «Число n составное»..

Тест Соловэя-Штрассена

- Вход. Нечетное целое число $n \ge 5$.
- Выход. «Число n, вероятно, простое» или «Число n составное».
- 1. Выбрать случайное целое число $a, 2 \le a \le n-2$.
- 2. Вычислить $r = a^{(\frac{n-1}{2})}(modn)$
- 3. При $r \neq 1$ и $r \neq n-1$ результат: «Число n составное».
- 4. Вычислить символ Якоби $s=\left(\frac{a}{n}\right)$
- 5. При r = s(modn) результат: «Число n, вероятно, простое». В противном случае результат: «Число n составное».

Тест Миллера-Рабина.

- 1. Представить n-1 в виде $n-1=2^{s}r$, где ${\bf r}$ нечетное число
- 2. Выбрать случайное целое число $a, 2 \le a \le n-2$.
- 3. Вычислить $y = a^r (mod n)$
- 4. При $y \neq 1$ и $y \neq n-1$ выполнить действия
 - Положить j = 1
 - Если $j \leq s-1$ и $y \neq n-1$ то
 - Положить $y = y^2 (mod n)$
 - При y=1 результат: «Число n составное».
 - Положить j = j + 1
 - При $y \neq n-1$ результат: «Число n составное».
- 5. Результат: «Число n, вероятно, простое».

Пример работы алгоритма

```
main()

Введите число 17
Тест ферма для числа 17
Число п вероятно простое
Тест Соловэя-Штрассена для числа 17
Число п вероятно простое
Тест Миллера Рабина для числа 17
Число п вероятно простое
```

Figure 1: Работа алгоритма

Выводы

Результаты выполнения лабораторной работы

В ходе выполнения данной лабораторной работы мы изучили вероятностные алгоритмы проверки чисел на простоту, в частности, были рассмотрены алгоритмы Ферма, Соловэя-Штрассена и Миллера-Рабина. Перечисленные алгоритмы были реализованы программно, представлены результаты работы алгоритмов.