UE23CS352A: MACHINE LEARNING

Week 6 - Artificial Neural Networks Lab Report

Student ID: PES2UG23CS485

Name: Rithvik Matta

Date: 11 September 2025

1. Introduction

The objective of this lab was to implement an Artificial Neural Network (ANN) **from scratch** without using high-level frameworks like TensorFlow or PyTorch. The goal was to approximate a polynomial function generated based on my SRN and to study how well the network generalizes to unseen data.

The main tasks involved:

- Implementing activation functions, loss functions, forward and backward propagation.
- Training the network using gradient descent.
- Evaluating performance on training and test datasets.
- Visualizing results through loss curves and predicted vs. actual plots.

2. Dataset Description

• Polynomial type: Quadratic

• Equation:

```
y=1.40x2+3.86x+10.62+\epsilony = 1.40x^2 + 3.86x + 10.62 + \varepsilony=1.40x2+3.86x+10.62+\epsilon where \epsilon~N(0,1.66)\varepsilon \sim \mathcal{N}(0, 1.66)\epsilon~N(0,1.66).
```

• Samples: 100,000

• Split: 80% training, 20% testing

• **Preprocessing:** Both input x and output y standardized using StandardScaler.

3. Methodology

Network Architecture

Input Layer: 1 neuron

Hidden Layer 1: 32 neurons, ReLU activation

• Hidden Layer 2: 72 neurons, ReLU activation

• Output Layer: 1 neuron, Linear activation

• Architecture type: Narrow-to-Wide

Training Configuration

Learning rate: 0.005

• Epochs: 500 (early stopping enabled with patience = 10)

• Loss function: Mean Squared Error (MSE)

• Optimizer: Gradient Descent (manual implementation)

4. Results & Analysis

4.1 Training and Test Loss Curve

(Plot shown in results – smooth decrease, no divergence).

• Loss consistently decreased over time, showing **stable training**.

4.2 Final Metrics

• Final Training Loss: 0.0825

• Final Test Loss: 0.0831

• R² Score: 0.9176 (good fit, but not perfect)

• Epochs Run: 500

4.3 Prediction Example

For x=90.2x = 90.2x=90.2:

• Ground Truth: **11,721.45**

• Prediction: **10,162.96**

• Absolute Error: **1,558.49**

Relative Error: 13.29%

4.4 Plots

• Training & Test Loss Curve: Both decrease steadily, no signs of overfitting.

• **Predicted vs Actual:** General quadratic shape captured, though predictions underestimate values for large xxx.

4.5 Observations

The network generalizes well, with low training and test loss.

- Predictions deviate more at extreme input values (extrapolation issue).
- R² score > 0.9 confirms strong approximation capability.

5. Results Table

Experiment	Learning Rate	Batch Size	Number of Epochs	Optimizer	Activation Function
1 (Baseline)	0.005	Full-batch	500	GD	ReLU
2	0.005	Full-batch	600	GD	ReLU
3	0.005	Full-batch	400	GD	ReLU
4	0.005	Full-batch	300	GD	ReLU
5	0.005	Full-batch	200	GD	ReLU

Training Accuracy	Validation Accuracy	Test Accuracy	Training Loss	Validation Loss	Test Loss	Observations
_	_	0.9176	0.0825	_	0.0831	Stable convergence, R ² = 0.9176, good fit, slight underestimation for large x
_	_	0.9476	0.0522	-	0.052834	Best performance, highest accuracy and lowest loss. Stable convergence, no signs of overfitting, R² ≈ 0.9476. Model generalizes well.
_	_	0.8434	0.157360	-	0.157957	Moderate fit, lower accuracy and higher loss compared to baseline. Training stopped too early, underfitting visible.
_	_	0.7001	0.301955	-	0.302604	Significant underfitting, accuracy dropped to 0.70, losses remain high. Insufficient training epochs for proper convergence.
_	_	0.4808	0.522411	_	0.523821	Severe underfitting, very poor accuracy (0.48) and high loss. Model failed to learn underlying patterns due to too few epochs.

PREDICTION RESULTS FOR x = 90.2

Neural Network Prediction: 10,162.96
Ground Truth (formula): 11,721.45
Absolute Error: 1,558.49
Relative Error: 13.296%

FINAL PERFORMANCE SUMMARY

Final Training Loss: 0.082480 Final Test Loss: 0.083128 R² Score: 0.9176

PREDICTION RESULTS FOR x = 90.2

Neural Network Prediction: 10,543.13
Ground Truth (formula): 11,721.45
Absolute Error: 1,178.32
Relative Error: 10.053%

FINAL PERFORMANCE SUMMARY

Final Training Loss: 0.052285
Final Test Loss: 0.052834
R² Score: 0.9476

3)

PREDICTION RESULTS FOR x = 90.2

Neural Network Prediction: 9,592.70
Ground Truth (formula): 11,721.45
Absolute Error: 2,128.75
Relative Error: 18.161%

FINAL PERFORMANCE SUMMARY

Final Training Loss: 0.157360
Final Test Loss: 0.157957
R² Score: 0.8434

PREDICTION RESULTS FOR x = 90.2

Neural Network Prediction: 8,832.86 Ground Truth (formula): 11,721.45 Absolute Error: 2,888.59 Relative Error: 24.644%

FINAL PERFORMANCE SUMMARY

Final Training Loss: 0.301955 Final Test Loss: 0.302604 R² Score: 0.7001

PREDICTION RESULTS FOR x = 90.2

Neural Network Prediction: 7,973.95 Ground Truth (formula): 11,721.45 Absolute Error: 3,747.50 Relative Error: 31.971%

FINAL PERFORMANCE SUMMARY

Final Training Loss: 0.522411
Final Test Loss: 0.523821
R² Score: 0.4808
Total Epochs Run: 200

6. Conclusion

In this lab, I successfully implemented a feedforward neural network from scratch to approximate a quadratic polynomial function. The model achieved a test loss of **0.0831**

and an R² score of **0.9176**, demonstrating that the network captured the underlying polynomial trend with high accuracy.

The training loss curve indicated **stable convergence without overfitting**, and predictions matched well with actual values, except at extreme inputs where the network underestimates outputs.

Future improvements could include:

- Trying different learning rates or optimizers (e.g., Adam).
- Adding regularization to improve generalization.
- Exploring deeper or alternative architectures for more complex polynomials.