Metrisches TSP:

- Vollständiger Graph G = (V, E)
- Metr. Abstandsfunktion $d: E \to \mathbb{R}$

 ρ -approximative Algorithmen

z.B. Christofides ($\rho = 1, 5$)

- Lsgen: Tour τ durch ganz V
- **Ziel:** Minimiere $d(\tau)$

- Vollständiger Graph G = (V, E)
- Metr. Abstands funktion $d: E \to \mathbb{R}$
- Startpunkt/Depot $s \in V$
- Kapazität Q (polynomiell in Eingabe)
- Bedarfe $(q_v)_{v \in V}, q_v \in \{0, ..., Q\}$
- Lsgen: Route (σ) , die bei s beginnend alle Bedarfe erfüllt und nie mehr als Q
- Elemente transportiert
 Ziel: Minimiere $d(\sigma)$

Heterogenes k-TSP:

- Vollständiger Graph G = (V, E)
- Metr. Abstandsfunktion $d: E \to \mathbb{R}$
- Startpunkt $s \in V$
- k Fahrzeuge mit Geschw. $(2^{\lambda_i})_{i=1}^k$
- **Lsgen:** Touren (τ_i) , die bei s beginnen und gemeinsam ganz V abdecken
- und gemeinsam ganz V abdecken Ziel: Minimiere $\max \frac{d(\tau_i)}{2^{\lambda_i}}$
- •

 $\max_{i} \frac{d(\sigma_i)}{2^{\lambda_i}} \in \mathcal{O}(1) \cdot \max_{i} \frac{d(\tau_i)}{2^{\lambda_i}}$

Lsg. (τ_i)

 $\mathcal{O}(1)$ -approx.

Lsg. (σ_i) mit

 $\mathcal{O}(1)$ -approximativer Algorithmus

(Theorem 4.1 in $[G\emptyset+10]$)

Instanz \mathcal{I}

von HetCVRP

 $\mathcal{O}(1)$ -Reduktion:

Heterogenes k-CVRP:

- Vollständiger Graph G = (V, E)
- Mater Abstandafordation d. E. A.
- Metr. Abstandsfunktion $d: E \to \mathbb{R}$
- $\bullet\,$ einheitliche Kapazität Q

Startpunkt/Depot $s \in V$

- Bedarfe $(q_v)_{v \in V}, q_v \in \{0, ..., Q\}$
- k Fahrzeuge mit Geschw. $(2^{\lambda_i})_{i=1}^k$
- Lsgen: Touren (σ_i) , die bei s beginnen, gemeinsam alle Bedarfe erfüllen, wobei kein Fahrzeug jemals mehr als Q Elemente transportiert
- **Ziel:** Minimiere max $\frac{d(\sigma_i)}{2^{\lambda_i}}$