Select geometry favorites

People

September 21, 2022

This is a collection of problems we've done and found particularly cute/beautiful/hard, inspired by chapter 11 of *Euclidean Geometry in Math Olympiads* and Eric Shen's paper *Geometry At Its Best*. Have fun!

Contents

0	Prob	plems	2
1	Solutions		4
		SL 1998/G4	
	1.2	SL 2016/G7	5
	1.3	Mock AIME 2019/15', by Eric Shen	6
		China TST 2015/2/3	
	1.5	MOP & USA TST 2019	
		1.5.1 MOP	Ю
		1.5.2 USA TST 2019/6	
	1.6	IMO 2021/3	12
	1.7	SL 2021/G8	12

♣0 Problems

Remark. Some attempt has been made to deviate from the aformentioned two famous geometry papers.

:)))

Problem 1 (SL 1998/G4). Let M and N be two points inside triangle ABC such that

$$\angle MAB = \angle NAC$$
 and $\angle MBA = \angle NBC$.

Prove that

$$\frac{AM \cdot AN}{AB \cdot AC} + \frac{BM \cdot BN}{BA \cdot BC} + \frac{CM \cdot CN}{CA \cdot CB} = 1.$$

Problem 2 (SL 2009/G3). Let ABC be a triangle. The incircle of ABC touches the sides AB and AC at the points Z and Y, respectively. Let G be the point where the lines BY and CZ meet, and let R and S be points such that the two quadrilaterals BCYR and BCSZ are parallelogram. Prove that GR = GS.

Problem 3 (SL 2015/G4). Let ABC be an acute triangle and let M be the midpoint of AC. A circle ω passing through B and M meets the sides AB and BC at points P and Q respectively. Let T be the point such that BPTQ is a parallelogram. Suppose that T lies on the circumcircle of ABC. Determine all possible values of $\frac{BT}{BM}$.

Problem 4 (SL 2016/G7). Let I be the incentre of a non-equilateral triangle ABC, I_A be the A-excentre, I'_A be the reflection of I_A in BC, and I_A be the reflection of line AI'_A in AI. Define points I_B , I'_B and line I_B analogously. Let P be the intersection point of I_A and I_B .

- (a) Prove that *P* lies on line *OI* where *O* is the circumcentre of triangle *ABC*.
- (b) Let one of the tangents from P to the incircle of triangle ABC meet the circumcircle at points X and Y. Show that $\angle XIY = 120^{\circ}$.

Problem 5 (EGMO 2015/6). Let H be the orthocentre and G be the centroid of acute-angled triangle ABC with $AB \neq AC$. The line AG intersects the circumcircle of ABC at A and P. Let P' be the reflection of P in the line BC. Prove that $\angle CAB = 60$ if and only if HG = GP'.

Problem 6 (Iran TST 2018/1/4). Let ABC be a triangle ($\angle A \neq 90^{\circ}$). \overline{BE} , \overline{CF} are the altitudes of the triangle. The bisector of $\angle A$ intersects \overline{EF} , \overline{BC} at M, N. Let P be a point such that $\overline{MP} \perp \overline{EF}$ and $\overline{NP} \perp \overline{BC}$. Prove that \overline{AP} bisects \overline{BC} .

Problem 7 (Eric Shen). In $\triangle ABC$, let D, E, F be the feet of the altitudes from A, B, C respectively, and let O be the circumcenter. Points X, Y are the projections of E, F onto \overline{AD} respectively. Let $Z = \overline{AO} \cap \overline{EF}$. There exists a point T such that $\angle DTZ = 90^\circ$ and AZ = AT. If $P = \overline{AD} \cap \overline{TZ}$, and Q lies on \overline{EF} such that $\overline{PQ} \parallel \overline{BC}$, prove that \overline{AQ} is a median.

Problem 8 (China TST 2015/2/3). Let $\triangle ABC$ be an acute triangle with circumcenter O and centroid G. Let D be the midpoint of \overline{BC} , and E be on (BC) with $\overline{AE} \perp \overline{BC}$. Let $F = \overline{EG} \cap \overline{AD}$. Define points $K, L \in \overline{BC}, M \in \overline{AB}, N \in \overline{AC}$ with $\overline{FK} \parallel \overline{OB}, \overline{FL} \parallel \overline{OC}$, and $\overline{MK}, \overline{NL} \perp \overline{BC}$.

Let ω be the circle tangent to \overline{OB} , \overline{OC} at B, C respectively. Prove that (AMN) is tangent to ω .

Problem 9 (MOP 2019 & USA TST 2019/6). Let ABC be a triangle with incenter I, and let D be a point on line BC satisfying $\angle AID = 90^\circ$. Let the excircle of triangle ABC opposite the vertex A be tangent to \overline{BC} at A_1 . Define points B_1 on \overline{CA} and C_1 on \overline{AB} analogously, using the excircles opposite B and C, respectively.

- (a) (MOP 2019) Let E, F be the feet of the altitudes from B, C respectively. Prove that if \overline{EF} touches the incircle, then quadrilateral $AB_1A_1C_1$ is cyclic.
- (b) (USA TST 2019/6) Prove that if quadrilateral $AB_1A_1C_1$ is cyclic, then \overline{AD} is tangent to the circumcircle of $\triangle DB_1C_1$.

Problem 10 (USAMO 2016/3). Let $\triangle ABC$ be an acute triangle, and let $\underline{I_B}$, I_C , and O denote its B-excenter, C-excenter, and circumcenter, respectively. Points E and Y are selected on \overline{AC} such that $\angle ABY = \angle CBY$ and $\overline{BE} \perp \overline{AC}$. Similarly, points F and Z are selected on \overline{AB} such that $\angle ACZ = \angle BCZ$ and $\overline{CF} \perp \overline{AB}$.

Lines $\overrightarrow{I_BF}$ and $\overrightarrow{I_CE}$ meet at P. Prove that \overrightarrow{PO} and \overrightarrow{YZ} are perpendicular.

Problem 11 (TSTST 2018/3). Let ABC be an acute triangle with incenter I, circumcenter O, and circumcircle Γ . Let M be the midpoint of \overline{AB} . Ray AI meets \overline{BC} at D. Denote by ω and γ the circumcircles of $\triangle BIC$ and $\triangle BAD$, respectively. Line MO meets ω at X and Y, while line CO meets ω at C and C. Assume that C lies inside C0 and C2 and C3 and C4 and C5.

Consider the tangents to ω at X and Y and the tangents to γ at A and D. Given that $\angle BAC \neq 60^{\circ}$, prove that these four lines are concurrent on Γ .

Problem 12 (IMO 2021/3). Let D be an interior point of the acute triangle ABC with AB > AC so that $\angle DAB = \angle CAD$. The point E on the segment AC satisfies $\angle ADE = \angle BCD$, the point E on the segment E satisfies E satisfies E satisfies E satisfies E and E satisfies E

Problem 13 (USAMO 2021/6). Let ABCDEF be a convex hexagon satisfying $\overline{AB} \parallel \overline{DE}, \overline{BC} \parallel \overline{EF}, \overline{CD} \parallel \overline{FA}$, and

$$AB \cdot DE = BC \cdot EF = CD \cdot FA$$
.

Let X, Y, and Z be the midpoints of \overline{AD} , \overline{BE} , and \overline{CF} . Prove that the circumcenter of $\triangle ACE$, the circumcenter of $\triangle BDF$, and the orthocenter of $\triangle XYZ$ are collinear.

Problem 14 (SL 2021/G8). Let ABC be a triangle with circumcircle ω and let Ω_A be the A-excircle. Let X and Y be the intersection points of ω and Ω_A . Let P and Q be the projections of A onto the tangent lines to Ω_A at X and Y respectively. The tangent line at P to the circumcircle of the triangle APX intersects the tangent line at Q to the circumcircle of the triangle AQY at a point R. Prove that $\overline{AR} \perp \overline{BC}$.

♣1 Solutions

♣ 1.1 SL 1998/G4

Let M and N be two points inside triangle ABC such that

$$\angle MAB = \angle NAC$$
 and $\angle MBA = \angle NBC$.

Prove that

$$\frac{AM \cdot AN}{AB \cdot AC} + \frac{BM \cdot BN}{BA \cdot BC} + \frac{CM \cdot CN}{CA \cdot CB} = 1.$$

how cute uwu

♣ 1.2 SL 2016/G7

Let I be the incentre of a non-equilateral triangle ABC, I_A be the A-excentre, I'_A be the reflection of I_A in BC, and I_A be the reflection of line AI'_A in AI. Define points I_B , I'_B and line I_B analogously. Let P be the intersection point of I_A and I_B .

- (a) Prove that *P* lies on line *OI* where *O* is the circumcentre of triangle *ABC*.
- (b) Let one of the tangents from *P* to the incircle of triangle *ABC* meet the circumcircle at points *X* and *Y*. Show that $\angle XIY = 120^{\circ}$.

Redefine *P* as the inverse of *I*; it's clear via Poncelet spam that this point satisfies the second part. For the first part we assert more strongly that:

Claim -
$$\triangle AI_aI'_a \stackrel{+}{\sim} \triangle API$$
.

Proof. One of the few uses of SAS similarity? By angle chasing, $\angle I_a = \angle P$ follows easily. To finish, we show $I_aI'_a/I_aA = IP/AP$; indeed, the first ratio equals $2\cos\angle BI_aC = 2\sin\frac{A}{2}$ because of similar triangles; thus, we're left to length chase IP/AP; this becomes

$$\frac{OP}{AP} - \frac{OI}{OA}\frac{OA}{AP} = \frac{OI}{AI} - \frac{OI^2}{OA \cdot AI} = \frac{R}{AI} - \frac{R^2 - 2rR}{R \cdot AI}$$
$$= \frac{R - (R - 2r)}{AI} = 2\sin\frac{A}{2},$$

so the ratios are equal, as needed.

The claim clearly implies the isogonality.

Remark. Surprising how people found the inverse but not the similar triangles...

♣ 1.3 Mock AIME 2019/15', by Eric Shen

In $\triangle ABC$, let D, E, F be the feet of the altitudes from A, B, C respectively, and let O be the circumcenter. There exists a point T such that $\triangle DTZ = 90^{\circ}$ and AZ = AT. If $P = \overline{AZ} \cap \overline{QT}$, and Q lies on \overline{EF} such that $\overline{PQ} \parallel \overline{BC}$, prove that \overline{AQ} is a median.

Construct points X, Y as the projections of E, F onto \overline{AD} respectively. *

After drawing a diagram on Geogebra, we obtain:

Characterization of T

T is the harmonic conjugate of Z wrt XY – i.e. it lies on $\omega = (XYZ)$ so that the resulting quadrilateral is harmonic.

In American style, we show that this choice of T lies on ω_a (defined as the circle @A thru Z) and (DZ),

Verification

For AZ = AT, we use PoP / length chase to get $AZ^2 = AX \cdot AY$ whence \overline{AZ} touches ω . Hence, by harmonics \overline{AT} is also tangent to ω , so this property follows.

 $\angle DTZ = 90^{\circ}$ is much less straightforward. We define Z' = 2A - Z and G = E + F - Z as the antipodes of Z on the circle at A through Z. By a well-known lemma, D, Z', G collinear (along the cevian through the intouch point in $\triangle DEF$).

But also at the same time, T is on ω , $\omega_a \Rightarrow \angle ZTG = \angle ZTZ' = \pi/2$ due to antipodes. Hence, $\angle DTZ = \pi/2$, completing the verification.

^{*}Eric Shen originally included these points in the problem statement (as seen in the 2019 version of "Geometry At Its Best"), but I guess the problem's made harder by deleting them. For me, thinking about their relevance/use was important in making nonzero progress on the problem.

By this definition, we clearly have (AP; XY) = -1. From here (the chase is best discovered backwards), harmonic chasing suffices. Define $K = \overline{EF} \cap \overline{A} \otimes_{BC}$. Then

$$(\overline{AQ} \cap \overline{BC}, \infty_{BC}; B, C) \stackrel{A}{=} (QK; FE) \stackrel{\infty_{BC}}{=} (PA; YX) = -1,$$

the end!

♣ 1.4 China TST 2015/2/3

Let $\triangle ABC$ be an acute triangle with circumcenter O and centroid G. Let D be the midpoint of \overline{BC} , and E be on (BC) with $\overline{AE} \perp \overline{BC}$. Let $F = \overline{EG} \cap \overline{AD}$. Define points $K, L \in \overline{BC}, M \in \overline{AB}, N \in \overline{AC}$ with $\overline{FK} \parallel \overline{OB}, \overline{FL} \parallel \overline{OC}$, and $\overline{MK}, \overline{NL} \perp \overline{BC}$.

Let ω be the circle tangent to \overline{OB} , \overline{OC} at B, C respectively. Prove that (AMN) is tangent to ω .

As much of the parallel/perpendicular lines aren't even relevant (just to give us some equal ratios), we simplify as follows:

Problem reworded

In acute $\triangle ABC$ with circumcenter O and orthocenter H, D is the midpoint of \overline{BC} , and the altitude from A meets (BC) at E (either one works). Let U, $V = \overline{OD} \cap \overline{AB}$, \overline{AC} , respectively; define M, $N \in \overline{AB}$, \overline{AC} with (lengths directed)

$$UM/MB = VN/NC = AE/EH$$
.

Let ω be the circle tangent to segments *OB*, *OC* at *B*, *C* respectively. Prove that (AMN) is tangent to ω .

We define a load of new points as follows.

- A' = 2O A;
- E_1 , E_2 be the choices of E with AE/EH > 0 and AE/EH < 0 respectively. We will only consider M_1 , N_1 , because the negative case is identically handled;
- T_1 , $T_2 = \overline{AO} \cap \omega$, $X = \overline{AO} \cap \overline{BC}$, corresponding to E_1 , E_2 from earlier;

- $Y = \overline{T_1T_1} \cap \overline{T_2T_2} \cap \overline{BC}$ (which exists since $(BC; T_1T_2) = -1$);
- Q as the harmonic conjugate of A' wrt BC.

Claim 1 - *Q* is the Miquel point of *ABCDUV*.

Proof. First, note that if H_a is the reflection of H in \overline{BC} , then H_a , D, Q collinear because

$$-1 = (D \infty_{BC}; BC) \stackrel{H_a}{=} (\overline{H_a D} \cap (ABC), A'; B, C)$$

whence $Q \in \overline{H_aD}$. Now the result follows by Reim because AH_aQC cyclic and $\overline{DV} \parallel \overline{AH_a}$.

Claim 2 -
$$(AQT_1)$$
 touches ω , $\overline{YT_1}$ at T_1 .

Proof. Sufficient to show $Q \in \overline{AY}$, so that the claim will follow by PoP @Y. Indeed,

$$-1 = (BC; XY) \stackrel{A}{=} (B, C; A', \overline{AY} \cap (ABC))$$

so we're done.

Claim 3 -
$$AE_1/E_1H = AT_1/T_1A'$$
.

Proof. Construct $P = \frac{E_1 + E_2}{2}$, $Z = \frac{T_1 + T_2}{2}$ as the foot of A onto \overline{BC} and the foot of O' onto \overline{AO} respectively (O' is the center of ω , and the pole of \overline{BC} wrt (ABC)). Then, sufficient to show AH/AP = AA'/AZ.

It's not too hard to show via midpoints of harmonics/etc that Z is the inverse of X wrt (ABC). Define B', $C' = \overline{A'B} \cap \overline{AC}$, $\overline{A'C} \cap \overline{AB}$, so that $\overline{ZB'C'}$ is the polar of X wrt (ABC) by Brokard. Meanwhile, note that Z, A' are the orthocenter and foot of A-altitude in $\triangle AB'C'$ (because the polar of $X \perp \overline{AOA'}$ by definition).

But also recall that $\triangle ABC \stackrel{\sim}{\sim} \triangle AB'C'!$ Thus the mentioned points correspond in their respective triangles which completes the claim.

We're actually finished now! $M_1, N_1 \in (AQT_1)$ follows by spiral similarity at Q, hence done.

♣ 1.5 MOP & USA TST 2019

Let ABC be a triangle with incenter I, and let D be a point on line BC satisfying $\angle AID = 90^{\circ}$. Let the excircle of triangle ABC opposite the vertex A be tangent to \overline{BC} at A_1 . Define points B_1 on \overline{CA} and C_1 on \overline{AB} analogously, using the excircles opposite B and C, respectively.

♣ 1.5.1 MOP

Let E, F be the feet of the altitudes from B, C respectively. Prove that if \overline{EF} touches the incircle, then quadrilateral $AB_1A_1C_1$ is cyclic.

Call the incircle ω .

Claim 1 - D, E, F are collinear.

Proof. We will prove that the tangent line from D is antiparallel to \overline{BC} wrt $\angle A$. Indeed, this line is found by reflecting \overline{DBC} over \overline{DI} , a line perpendicular to \overline{AI} , so we win.

Let ω touch \overline{DEF} at a point T, and let D' denote the A-intouch point.

Claim 2 - $\overline{AI} \parallel \overline{HD'}$; hence AID'H is a parallelogram and AH = r, the inradius of $\triangle ABC$.

Proof. Because *BCEF* is tangential, it follows by degenerate Brianchon that lines *BE, CF, DT'* concur, i.e. $H \in \overline{TD'}$. Observe that DT = DD'; then $\overline{THD'} \perp \overline{DI}$ by symmetry, while $\overline{AI} \perp \overline{DI}$ is given; the lines are thus parallel as claimed. □

Now, let ω_a , etc denote (AB_1C_1) , etc, respectively. We observe that because the perpendicular from A_1 to \overline{BC} and its cyclic variants all concur at the point 2O-I, it follows that all three circles must concur at this point by Miquel spam.

But because r/2 = AH/2 is the distance from O to \overline{BC} , we actually have $2O - I = A_1$ (also because of their feet onto \overline{BC}). Hence $A_1 \in \omega_a$ as desired.

♣ 1.5.2 USA TST 2019/6

Prove that if quadrilateral $AB_1A_1C_1$ is cyclic, then \overline{AD} is tangent to the circumcircle of $\triangle DB_1C_1$.

We first make some observations from working backwards on the previous part.

First, $\overline{I_aA_1}$ is unconditionally the raxis of ω_b , ω_c , which is because 2O - I, A_1 , I_a lie on the same line $\bot \overline{BC}$. Thus, if A_1 is to lie on ω_a , then by anglechase, ω_b , ω_c touch at A_1 whence $I_aA_1 \bot \overline{BC}$.

Also, by 19MOP converse we have D, E, F collinear by uniqueness. If T is the foot of A onto \overline{BC} , it follows that (DT;BC)=-1.

Claim 1 - The *A-SD* point coincides with the *A-* orthocenter Miquel.

Proof. Since $BF/CE = \cos B/\cos C = (s-c)/(s-b)$ from 19MOP, result follows by spiral.

Claim 2 - A_1 is the antipode of A on ω_a .

Proof. Angle chase, observing that ω_b , ω_c touch at A_1 / etc.

Claim 3 - \overline{AD} is tangent to ω_a .

Proof. Recall that \overline{ADQ} is perpendicular to $\overline{HIQ'}$; thus, equivalent to show $\overline{HQ} \parallel \overline{AA'}$ which is not hard.

By radical axis/etc, it suffices to show that the midpoint M of \overline{AD} lies on $\overline{B_1C_1}$. By symmetry, \overline{MA} , \overline{TA} touch ω_a .

Claim 4 - $(AT; B_1C_1) = -1$.

Proof. $(AT; B_1C_1) \stackrel{A}{=} (DT; BC) = -1$, the end.

Result follows from PoP converse on $MD^2 = MA^2 = MB_1 \cdot MC_1$.

\$ 1.6 IMO 2021/3

Let D be an interior point of the acute triangle ABC with AB > AC so that $\angle DAB = \angle CAD$. The point E on the segment AC satisfies $\angle ADE = \angle BCD$, the point E on the segment E satisfies E and E satisfies E sati

to be written later

♣ 1.7 SL 2021/G8

Let ABC be a triangle with circumcircle ω and let Ω_A be the A-excircle. Let X and Y be the intersection points of ω and Ω_A . Let P and Q be the projections of A onto the tangent lines to Ω_A at X and Y respectively. The tangent line at P to the circumcircle of the triangle APX intersects the tangent line at Q to the circumcircle of the triangle AQY at a point R. Prove that $\overline{AR} \perp \overline{BC}$.

Remark. Brianchon exists?