Living at Home: Non-Market Housing and Labour Market Risk

Stephen Hennessy

August 27, 2025

Introduction

New empirical evidence (Health and Retirement Study)

- Children who lose their job are more likely to move home with parents
 - NEW Effect is present both at young adulthood and into middle age
 - ► Kaplan (2012): evidence for men 17-22, NLSY97
- Effect is robust to controlling for income, eldercare, and parent characteristics

Research questions

- 1. How does coresidence affect job market search among adult children?
- 2. How does coresidence affect welfare from unemployment insurance?

Approach and Findings

Approach

Quantitative lifecycle model of job search and coresidence

Findings

- ▶ Children are more likely to move home when transitioning into unemployment
 - ▶ NEW Observed for children into middle age
- Welfare increases from coresidence are largest at low levels of UI

HRS Data Selection: Definition of Cross-wave Flows

Employment: two types of job transitions

- 1. Employed-Employed: working in two subsequent waves
- 2. Employed-Unemployed: working in the previous wave but not in the current wave

Coresidence: child lives independently previously and coresides in the current wave

- If parent is a homeowner and child is not: child moves home
- If child is a homeowner and parent is not: child hosts parent
- Neither (or both) parent and child are homeowners: ambiguous coresidence

HRS: E-U children are more likely to move home at all working ages

Probit: Average Marginal Effects on Share(Move Home)

Dependent variable: indicator for moving home after living independently

	Child Age			
Independent Variable	(1) 20-25	(2) 26-30	(3) 31-35	(4) 36-40
Employed-Unemployed	+100% ***	+117% ***	+150% ***	+77% **
Transfer from Parent	+31% *	+88% ***	+73% ***	+75% ***
Transfer to Parent	+46%	+3%	+127% ***	+76% *
Child Income				
<10K	Base			
10-35K	-55% ***	-24%	-127% ***	-121% ***
35-70K	-121% ***	-38%	-236% ***	-225% ***
70-100K	-69%	-47%	-257% ***	-224% ***
100K+		-45%	-268% ***	-241% ***
Child Gender (Female)	+15%	-14%	-82% ***	-60% **
Child Marital Status	-208% ***	-216% ***	-201% ***	-192% ***
Child Parental Status	+39%	-32% *	+55% ***	+4%

CI : I I A

Model Overview

- Overlapping generations model: lifecycle solved via backwards induction
- Consumers are heterogeneous productivity and assets
 - ▶ NEW option to move home with a parent
 - ► Assumed to be purely altruistic: no strategic interaction b/t parents and children
 - ▶ Tradeoff: can avoid housing costs but lose out on utility from living independently
- Wages are determined via piece-rate search
- Children choose:
 - Submarket (piece-rate) for search
 - Saving for next period
 - Whether to coreside or live independently

Algebra

Job Search

- lacktriangle Directed search in submarkets on age j, piece-rate ϕ , and worker productivity ϵ
- ▶ Den Haan matching function $M(u,v)=rac{uv}{(u^{lpha}+v^{lpha})^{rac{1}{lpha}}}$ with market tightness $heta=rac{v}{u}$

Worker:

- Find job at rate $f(\theta) = \frac{M(u,v)}{u}$
- ightharpoonup Provide individual-specific productivity ϵ to the firm
- lacktriangle Earn wage as an after-tax share of output: $m{w} = (1- au)\phi\epsilon$
 - Proportional tax on output finances unemployment benefit

Firm:

- lacktriangle Hire worker at rate $q(heta)=rac{M(u,v)}{v}$ after paying posting cost κ_p
- lacktriangle Match is destroyed in each subsequent period with probability δ

Worker's Problem (Age < 65)

$$U(j, a, \epsilon) = \max_{\phi, a', d_h} \frac{c^{1-\sigma}}{1-\sigma} + d_h \chi$$

s.t.

$$f(\theta(j,\epsilon,\phi))[1-\tau]\epsilon\phi + [1-f(\theta(j,\epsilon,\phi))]b + (1+r)a = c + a' + d_h\kappa_h$$

Where:

- j: age
- ε: individual-specific productivity
- \triangleright ϕ : match piece-rate
- \blacktriangleright $f(\theta(j, \epsilon, \phi))$: job-finding rate
- ightharpoonup au: proportional labour income tax
- b: unemployment benefit
- $ightharpoonup d_h$: coresidence status; $d_h = 1$ if consumer lives independently, 0 otherwise
- \triangleright κ_h : cost of housing
- $\triangleright \chi$: independence utility

Firm's Problem

$$\Pi(j,\epsilon,\phi) = \max_{\epsilon,\phi} q(\theta(j,\epsilon,\phi))(1-\tau)(1-\phi)\epsilon - \kappa_p$$

Where:

- $ightharpoonup q(\theta(j,\epsilon,\phi))$: job-filling rate
- $ightharpoonup \kappa_j$: cost of posting a vacancy

Government's Problem

Choose τ such that:

$$\int au \epsilon \phi \; d\omega_{e}(j,\mathsf{a},\epsilon,\phi) = \int b \; d\omega_{u}(j,\mathsf{a},\epsilon) + \int \mathit{SS} \; d\omega_{r}(j,\mathsf{a})$$

Where $\omega_e, \omega_u, \omega_r$ are the distributions for employed, unemployed, and retired consumers

Value Functions - Worker (Age < 65)

Value of search for a worker:

$$V^s(j, a, \epsilon) = \max_{\phi} \left\{ f(\theta(\epsilon, \phi)) V^e(j, a, \epsilon, \phi) + [1 - f(\theta(\epsilon, \phi))] V^u(j, a, \epsilon) \right\}$$

Value for an unemployed worker:

$$V^u(j,a,\epsilon) = \max_{a' \geq 0, d_h \in \{0,1\}} \left\{ rac{[b+(1+r)a-a'-d_h\kappa_h]^{1-\sigma}}{1-\sigma} + d_h\chi + eta V^s(j+1,a',\epsilon)
ight\}$$

Value for an employed worker:

$$V^{e}(j, a, \epsilon, \phi) = \max_{a' \ge 0, d_h \in \{0, 1\}} \left\{ \frac{\left[(1 - \tau)\phi\epsilon + (1 + r)a - a' - d_h \kappa_h \right]^{1 - \sigma}}{1 - \sigma} + d_h \chi + \beta \left[(1 - \delta)V^{e}(j + 1, a', \epsilon, \phi) + \delta V^{s}(j + 1, a', \epsilon) \right] \right\}$$

Retiree Problem Firm Problem

Equilibrium

Given initial distributions of assets and productivity there is an equilibrium such that:

- 1. Workers solve their problem by choosing a submarket and coresidence arrangement
- 2. Firms face zero expected profits for each submarket in which they post
- 3. Government funds an unemployment benefit via a proportional income tax

Calibration

Internal Parameters

Parameter		Value	Target	Model	Data
$rac{}{\kappa_h}$	Cost of Housing	0.073	Rent-to-Income Ratio ¹	0.126	0.120
χ	Independence Utility	0.029	Coresidence Share	0.110	0.104
κ_{p}	Cost of Posting	1.271	Unemployment Share ³	0.048	0.042
b	UI Benefit	0.139	Replacement Rate ²	0.416	0.430
S	Social Security Benefit	0.237	SS-to-Income Ratio ⁴	0.354	0.347
σ_ϵ	St. Dev. Productivity	0.216	SD Log Earnings ⁵	1.488	1.500

External Parameters

Parameter		Value	Source
α	Match Elasticity	1.270	Den Haan (2000)
δ	Destruction Rate	0.020	Share E-U (HRS)

³ Bureau of Labor Statistics (2025)

⁴ Social Security Administration (2025)

⁵ Kuhn & Ríos-Rull (2013)

Model Validation: Share who Move Home

Coresidence Option and Job Search: New Consumers

► Coresidence option results in higher piece-rates and lower job finding rates

Optimal UI Replacement Rate: Consumption Equivalent Variation

► Welfare benefits of coresidence are largest at low replacement rates

Conclusion

Empirical observation: E-U children are more likely to enter coresidence

Structural model:

- 1. Children who can coreside search in submarkets with lower job-finding rates
 - Relative cost of unemployment is lower due to the coresidence option
 - ightharpoonup Coresidence allows children to avoid housing cost κ_h
- 2. Welfare benefits of coresidence are largest at lower unemployment benefits
 - Suggests coresidence and UI are complementary insurance mechanisms

Thank you

HRS v. NLSY97: E-U young adults are more likely to move home

HRS v. NLSY97

Health and Retirement Study (1998-2018):

- ▶ Biannual frequency, ages 18-45
- Categorical child income, no unemployment benefits
- Coresidence and transfers in all years

NLSY97 (1998-2021):

- Annual frequency, ages 18-42
- Child income, employment, and unemployment benefits
- Key variables:
 - 1. Coresidence: available until 2009 (age 26)
 - 2. Transfers: available until 2002 (22); extensive margin until 2011 (age 32)

Counterfactual: U-E children are more likely to move out

HRS: Coresidence

- ▶ 8% of adult children (excluding students) live with their parents
- ▶ In any individual wave, 1.3% of adult children move home
 - ▶ 0.71% move in with parents
 - ▶ 0.15% host parents
 - ▶ 0.44% are ambiguous
- Children who move home tend to be younger and have less education
- Parents of children who move home have lower incomes but higher wealth

	Move home	Stay independent
Child age	36.2	42.1
Child education (years)	12.4	13.8
Parent income	\$89,357	\$79,104
Parent assets	\$465,707	\$578,635

HRS: Transfers

Parents transfer choices and co-residence depend on child employment outcomes

- Children who have recently lost their jobs are more likely to receive transfers relative to those who stay employed
- ► The quantity of these transfers is also larger in both the unconditional average and intensive margin
- Job-losing children are also approximately 3.5 times more likely to move home

	E-U	E-E
Extensive margin	0.1932	0.1672
Intensive margin	\$10,336	\$9,740
Average transfer	\$1,997	\$1,628
Share(Move home)	0.03773	0.01354
Share(MH & Transfer)	0.00683	0.00214

Model

$$U(w, a, a', d_h) = \frac{(w + (1+r)a - a' - d_h \kappa_h)^{1-\sigma}}{1-\sigma} + d_h \chi$$

Child moves out $(d_h = 1)$ when:

$$\tilde{U} = U(w, a, a', 1) - U(w, a, a', 0) = \frac{[w + (1+r)a - a' - \kappa_h]^{1-\sigma}}{1 - \sigma} - \frac{[w + (1+r)a - a']^{1-\sigma}}{1 - \sigma} + \chi \ge 0$$

$$\begin{split} \frac{\partial \tilde{U}}{\partial w} &> 0 \Rightarrow \mathsf{higher} \; \mathsf{wages} \to \mathsf{move} \; \mathsf{out} \\ \frac{\partial \tilde{U}}{\partial \kappa_h} &< 0 \Rightarrow \mathsf{higher} \; \mathsf{housing} \; \mathsf{costs} \to \mathsf{stay} \; \mathsf{home} \\ \frac{\partial \tilde{U}}{\partial v} &> 0 \Rightarrow \mathsf{higher} \; \mathsf{independence} \; \mathsf{utility} \to \mathsf{move} \; \mathsf{out} \end{split}$$

Back

Search Equilibrium

Value for a firm with a match:

$$V^f(j,\epsilon,\phi) = (1-\tau)(1-\phi)\epsilon + \beta(1-\delta)V^f(j+1,\epsilon,\phi)$$

Free entry condition:

$$q(\theta(j,\epsilon,\phi))V^f(j,\epsilon,\phi) = \kappa_p \quad \forall j,\epsilon,\phi$$

If $V^f(j, \epsilon, \phi) < \kappa_j \to \theta = 0$ since the firm does not post in submarket (j, ϵ, ϕ) Otherwise:

$$q(\theta) = \frac{\kappa_p}{J} = \frac{M(u, v)}{v} = \frac{u}{(u^{\alpha} + v^{\alpha})^{\frac{1}{\alpha}}}$$

$$u = \frac{\kappa_p}{J} (u^{\alpha} + v^{\alpha})^{\frac{1}{\alpha}} \Rightarrow \frac{u^{\alpha}}{u^{\alpha} + v^{\alpha}} = \left(\frac{\kappa_p}{V^f}\right)^{\alpha}$$

$$1 + \theta^{\alpha} = \left(\frac{V^f}{\kappa_p}\right)^{\alpha} \Rightarrow \theta^{\alpha} = \left(\frac{V^f}{\kappa_p}\right)^{\alpha} - 1 \Rightarrow \theta = \left[\left(\frac{V^f}{\kappa_p}\right)^{\alpha} - 1\right]^{\frac{1}{\alpha}} \quad \forall \epsilon, \phi$$

Back

Retiree's Problem (Age \geq 65)

$$U(j, a) = \max_{a'} \frac{[S + (1+r)a - a']^{1-\sigma}}{1-\sigma}$$

Where S is the social security benefit

Retiree Problem (Age \geq 65)

Value for a retiree:

$$V^r(j,a) = \max_{a'} \left\{ rac{[S+(1+r)a-a']^{1-\sigma}}{1-\sigma} + eta \psi_j V^r(j+1,a')
ight\}$$

Back

Firm's Problem

Value of posting for a firm:

$$V^p(j,\epsilon,\phi) = \max_{\epsilon,\phi} \{q(\theta(j,\epsilon,\phi))V^f(j,\epsilon,\phi) - \kappa_p, 0\}$$

Value for a matched firm:

$$V^f(j,\epsilon,\phi) = (1-\tau)(1-\phi)\epsilon + \beta[(1-\delta)V^f(j+1,\epsilon,\phi) + \delta V^p(j+1,\epsilon,\phi)]$$

Solution Algorithm

Assuming independence utility (χ) , cost of housing (κ_h) , unemployment benefit (b), cost of posting (κ_p) , and distribution of consumers (ω) at $j=1 \ \forall a, \epsilon$

- (1) Guess labour income tax rate $\tau \in \{0,1\}$
- (2) Firm: solve for $V^f(j, \epsilon, \phi)$ via backwards induction where $V^f(J, \epsilon, \phi) = 0 \ \forall \epsilon, \phi$ Using $V^f(j, \epsilon, \phi)$, compute market tightness θ
- (3) Worker: using $V^r(J, a) = 0 \ \forall a$, compute
 - ► $V^r(j, a) \forall a \text{ and } j \in \{47, ..., J-1\}$
 - $V^u(j, a, \epsilon)$ and $V^e(j, a, \epsilon, \phi) \forall a, \epsilon, \phi$ and $j \in \{0, ..., 46\}$
 - $ightharpoonup V^s(j,a,\epsilon) \ \forall a,\epsilon \ \text{and} \ j\in\{0,...,46\}$
- (4) Compute distribution of consumers $\omega(j, a, \epsilon)$ for $j \in \{2, ..., J-1\}$
- (5) Compute tax rate to balance the government's budget constraint; update guess
- (6) Iterate on (2) (5) until convergence

Back

Consumer Value Functions

Firm Value Function

Optimal UI Replacement Rate: GE Tax Rate

