§1.3 **函数极限**

1.3.1 函数

函数就是量与量之间的数学关系式。数学和其他科学中绝大部分关系都受到函数关系的支配。例如,自由落体下落时间 t 与下落距离 h 之间的关系是

$$h=rac{1}{2}gt^2$$

(其中, g 是重力加速度); 质量是 m 的运动质点的动能是通过它的运动速度 v 按照公式

$$E=rac{1}{2}mv^2$$

给出的;

定义在实数集合 ℝ 的子集上且取值为实数的函数, 其严格的定义如下:

定义 1 设 D 是 \mathbb{R} 的非空子集, 若按照某种对应关系 f, 对于 D 中的每一个数 x, 有唯一确定的 $y \in \mathbb{R}$ 与之对应, 将 y 记成 f(x), 那么, 就称 f 是 D 上的一个实值函数. 集合 D 称为 f 的定义域, 记为 $\mathcal{D}(f)$, 而数 f(x) 称为 f 的值. f 的一切值的集合叫做 f 的值域, 通常记成 $\mathcal{D}(f)$, 即 $\mathcal{D}(f) = \{y \mid y = f(x), x \in \mathcal{D}(f)\}$. 习惯上, 称上述的 x 为自变量, y 为因变量.

一个函数,也可以看成是一个将 $D \subset \mathbb{R}$ 映入 \mathbb{R} 内的一个映射:

$$f: D \longrightarrow \mathbb{R}, \quad \vec{\mathfrak{g}} \quad f: x \longmapsto y = f(x)$$

要注意因变量是由自变量唯一确定的,即函数具有单值性,但不同的数的值可以是相同的。

当 $A \subset \mathcal{D}(f)$ 时, 称集合 $f(A) := \{f(x) | x \in A\}$ 为 A 在函数 f 下的像. 当 $B \subset \mathbb{R}$ 时, 称集合 $f^{-1}(B) := \{x \in \mathcal{D}(f) | f(x) \in B\}$ 为 B 在 f 下的原像. \mathbb{R}^2 中的点集 $\{(x, f(x)) | x \in \mathcal{D}(f)\}$ 称为函数 f 的图像.

常值函数: 函数的取值是一个固定的数, 其图像为一段水平直线.

取整函数: f(x) = [x], 其图像为一阶梯形状.

Dirichlet 函数:
$$D(x) = egin{cases} 1, & x \in \mathbb{Q}; \ 0, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

有界函数: 函数的值域是 ℝ 中一个有界集.

单调函数: 函数的定义域与值域同序(或者反序),即定义域中任意两个数 x_1 , x_2 的大小次序,均与它们对应的值域中的两个数 $y_1 = f(x_1)$, $y_2 = f(x_2)$ 的大小次序相同(或者相反),有两种情形:

单调递增函数, 对任意的 $x_1, x_2 \in \mathcal{D}(f)$, 如果 $x_1 < x_2$, 有 $f(x_1) \leqslant f(x_2)$; 单调递减函数, 对任意的 $x_1, x_2 \in \mathcal{D}(f)$, 如果 $x_1 < x_2$, 有 $f(x_1) \geqslant f(x_2)$; 若上面的不等号为严格不等号, 则称 f(x) 为严格单调递增(减)函数.

反函数: 若对每一个 $y \in \mathcal{R}(f)$, 都有唯一确定的 $x \in \mathcal{D}(f)$ 使得 f(x) = y, 即, 从函数图象上看, 就是任何一条平行于 x 轴的直线, 与函数的图象至多有一个交点. 此时, 自然地导出一个由 $\mathcal{R}(f)$ 到 $\mathcal{D}(f)$ 的映射. 这个映射称为 f 的反函数 (或逆映射), 记为 f^{-1} , 它的定义域为 $\mathcal{R}(f)$, 值域为 $\mathcal{D}(f)$. 显然, 当且仅当 f 是 $\mathcal{D}(f)$ 到 $\mathcal{R}(f)$ 的一一对应时, f 才有反函数, 而且反函数是唯一的.

例 1 证明函数 $y = \frac{x}{1+x}$ (0 < x < + ∞) 是一一的, 并求其反函数.

证明 该函数的定义域是 $(0,+\infty)$, 值域是 (0,1). 对于两个正数 x_1,x_2

$$rac{x_1}{1+x_1}=rac{x_2}{1+x_2}\Longrightarrowrac{1}{1+x_1}=rac{1}{1+x_2}\Longrightarrow x_1=x_2,$$

所以该函数是一一的, 因而有反函数.

有

从 $y = \frac{x}{1+x}$ 可得 $x = \frac{y}{1-y}$, 所以该函数的反函数是 $y = \frac{x}{1-x}$, (0 < x < 1).

常数函数、幂函数、指数函数、对数函数、三角函数与反三角函数,是最基本的函数. 称它们为基本初等函数. 由基本初等函数经过有限次加、减、乘、除和复合运算得出的函数称为初等函数.

有限个幂函数的线性组合称为多项式:

$$f(x) = a_n x^n + \dots + a_1 x + a_0,$$

其中 a_0, a_1, \cdots, a_n 称为多项式的系数.

两个多项式函数 f(x)、g(x) 的商 $\frac{f(x)}{g(x)}$ 称为有理函数, 它的定义域当然就是不包括 g(x)=0 的实根的所有实数.

设 f(x) 是一个函数, 称 $f^+(x) := \max\{f(x), 0\}$ 为 f(x) 的正部, 称 $f^-(x) := -\min\{f(x), 0\}$ 为 f(x) 的负部. 显然有

$$f(x) = f^{+}(x) - f^{-}(x), \quad |f(x)| = f^{+}(x) + f^{-}(x).$$

函数的表示

显式函数 象基本初等函数那样用明显的代数式子: y = f(x) 表达的函数. 例如, $y = \sin x$, $y = x + \ln x$, 等.

隐式函数 变量 x 和 y 的依赖关系通过一个二元方程 F(x,y)=0 给出. 例如,

$$y + 2^y - x - \sin x = 0$$

决定了一个函数 y = f(x), 我们给不出这个函数的明确表达式, 但以后我们可以证明这是一个严格单调递增函数, 定义域和值域都是 $(-\infty, +\infty)$.

 $y + 2^y - x - \sin x = 1$ 在 $x \in [-5, 5]$ 时的图像如下:

一般地, 满足二元方程 F(x,y)=0 的点 (x,y) 所成的图像可以更复杂.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$x^{2/3} + y^{2/3} = a^{2/3}$$

参数方程 变量 x 和 y 都是第三个变量 t 的函数, 即,

$$egin{cases} x=arphi(t),\ y=\psi(t), \end{cases} \quad (a\leqslant t\leqslant b).$$

比如前面的椭圆的参数方程为

$$egin{cases} x = a\cos(t), \ y = b\sin(t), \end{cases} \quad (0 \leqslant t \leqslant 2\pi).$$

星形线的参数方程为

$$egin{cases} x = ig(a\cos(t)ig)^3, \ y = ig(a\sin(t)ig)^3, \end{cases} \quad (0\leqslant t\leqslant 2\pi).$$

例 2 半径为 a 的圆在 x 轴上滚动时, 圆周上一个定点在平面上所描绘出的轨迹称为摆线, 其参数方程为

$$egin{cases} x = a(heta - \sin heta) \ y = a(1 - \cos heta) \end{cases} \quad (0 \leqslant heta < +\infty).$$

例 3 动圆绕与其半径相同的定圆圆周外滚动时,动圆上一个定点在平面上所描绘出的轨迹称为心脏线,其参数方程为

$$egin{cases} x = a(2\cos heta - \cos2 heta) \ y = a(2\sin heta - \sin2 heta) \end{cases} \quad (0\leqslant heta\leqslant2\pi).$$

它的图像是下图中的虚线.

极坐标方程 在直角坐标系中,设从原点指向点 (x,y) 的向量与 x 轴正向夹角为 θ , 原点到 (x,y) 的距离为 r, 则 $x=r\cos\theta$, $y=r\sin\theta$, 给出 r 与 θ 的关系,可以得到 x,y 的一个关系. (r,θ) 称为点 (x,y) 的极坐标,由极坐标表示的方程称为极坐标方程. 极坐标方程可以表现为 r 与 θ 之间的显式、隐式、参数方程等形式.

阿基米德螺线: r= heta, $heta\in(0,6\pi)$

对数螺线: $r=e^{0.1 heta,}$ $heta\in(0,20)$

 \mathbf{M} 4 求出所有定义域为实轴的函数使得对于任意实数 x, y 有

$$f(2f(x) + f(y)) = 2x + f(y).$$
 (1)

解 设 f(x) 是这样的一个函数. 在 (1) 中令 x = y 得

$$f(3f(x)) = f(x) + 2x. \tag{2}$$

将 (2) 中的 x 换为 3f(x), 并利用 (2) 可得

$$f(3f(3f(x))) = f(3f(x)) + 6f(x) = f(x) + 2x + 6f(x)$$

= $7f(x) + 2x$.

因此 f(3f(3f(0))) = 7f(0). 由 (2) 得 f(3f(0)) = f(0), 这推出 f(3f(3f(0))) = f(0). 于是 7f(0) = f(0), 即 f(0) = 0.

在 (1) 中令 x = 0, 得 f(f(y)) = f(y). 因此将 (1) 中的 x 换为 f(y) 得 f(3f(y)) = 3f(y).

由此并结合 (2) 即得 f(x) = x.

1.3.2 函数在无穷大处的极限

定义 2 (在 $+\infty$ 的极限) 设函数 y = f(x) 在 $[a, +\infty)$ 有定义. 如果有一个实数 l 具有下列性质: 对于任意给定的正数 ε , 总存在一个正数 $M = M(\varepsilon) > a$, 使当 x > M 时有

$$|f(x) - l| < \varepsilon,$$

则称当x趋向正无穷大时, f(x) 以l 为极限. 记成

$$\lim_{x \to +\infty} f(x) = l, \quad \vec{\mathfrak{A}} \ \ f(x) o l \ (x o +\infty).$$

函数在 $+\infty$ 的极限的几何意义

对于任意以 y=l 为中心线的带状区域, 都存在 M>0, 使得当 x>M 时, 函数 y=f(x) 的图像都在此带状区域中.

定义 3 (在 ∞ 的极限) 设 a>0, 函数 y=f(x) 在 $(-\infty,-a]\cup[a,+\infty)$ 有定义. 如果有一个实数 l 具有下列性质: 对于任意给定的正数 ε , 总存在一个正数 $M=M(\varepsilon)>a$, 使当 |x|>M 时有

$$|f(x)-l|$$

则称当x趋向无穷大时, f(x) 以l 为极限. 记成

$$\lim_{x o\infty}f(x)=l,\quad \ \ \, \ \, \ \, \ \, \ \, f(x) o l\;(x o\infty).$$

易知有

$$\lim_{x o \infty} f(x) = l \iff \lim_{x o +\infty} f(x) = l$$
 同时 $\lim_{x o -\infty} f(x) = l$

例 5 设 k 是正整数, 证明: $\lim_{x\to +\infty} \frac{1}{x^k} = 0$.

证明 对任意的正数 ε , 要想找到所希望的 M, 只要解不等式

$$\left|rac{1}{x^k}-0
ight|$$

从这个不等式解得 $|x|>\varepsilon^{1/k}$. 所以只要取 $M=\varepsilon^{1/k}$, 当 x>M 时, 就能保证上列成立, 即, $\lim_{x\to +\infty}\frac{1}{x^k}=0$.

例 6 证明: $\lim_{x\to -\infty} e^x = 0$.

证明 任给一个正数 $\varepsilon < 1$, 要使 $0 < |e^x - 0| = e^x < \varepsilon$, 只要 $x < \ln \varepsilon$. 故取 $M = -\ln \varepsilon$, 则当 $x < -M = \ln \varepsilon$ 时有 $e^x < \varepsilon$, 即是所要证明的结论.

例 7 证明 $\lim_{x\to -\infty} \arctan x = -\frac{\pi}{2}$, $\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$.

证明 任给正数 $\varepsilon < \frac{\pi}{2}$, 要使

$$-\frac{\pi}{2} - \varepsilon < \arctan x < -\frac{\pi}{2} + \varepsilon$$

只需 $x < \tan\left(-\frac{\pi}{2} + \varepsilon\right)$,所以取 $M = \tan\left(\frac{\pi}{2} - \varepsilon\right) > 0$,当 x < -M 时,就有

$$\left| \arctan x + \frac{\pi}{2} \right| < \varepsilon$$

即

$$\lim_{x\to -\infty}\arctan x=-\frac{\pi}{2},$$

同理可证

$$\lim_{x o +\infty} rctan \, x = rac{\pi}{2}$$

由于当x 趋于正、负无穷大时,函数 $\arctan x$ 的两个单测极限不相等,所以 $\lim_{x\to\infty}\arctan x$ 不存在.

1.3.3 函数在一点处的极限

定义 4 设 f(x) 在 x_0 附近有定义 (在 x_0 不要求有定义). 如果对任意给定的正数 ε , 存在 $\delta > 0$, 当 $0 < |x - x_0| < \delta$ 时有 $|f(x) - l| < \varepsilon$. 则称 l 为当 x 趋向 x_0 时 f(x) 的极限, 记成

$$\lim_{x o x_0}f(x)=l,\quad \ \ \, \ \, \ \, \ \, f(x) o l\;(x o x_0).$$

从函数 f(x) 的图象可以看出, f(x) 在 x 趋于 x_0 时以 l 为极限的几何意义如图所示.

例 8 证明 $\lim_{x\to 1} \frac{x^2-1}{x^2-x} = 2$.

证明 $\frac{x^2-1}{x^2-x}$ 在 x=1 处没有定义, 而当 $x \neq 1$ 时, 我们要估计

$$\left| rac{x^2-1}{x^2-x}-2
ight| = \left| rac{x-1}{x}
ight|.$$

由于所说的极限仅与 1 附近的 x 有关, 故可以先限制 x 的范围, 例如设 $|x-1|<\frac{1}{2},$ 即 $\frac{1}{2}< x<\frac{3}{2}$. 在这个范围内, 上面的估计为

$$\left|\frac{x-1}{x}\right|<2|x-1|.$$

所以, 对于任意给定的正数 ε , 取 $\delta = \min\left(\frac{\varepsilon}{2}, \frac{1}{2}\right)$, 则当 $0 < |x-1| < \delta$ 时, 有

$$\left| rac{x^2-1}{x^2-x} - 2
ight| = \left| rac{x-1}{x}
ight| < 2|x-1| < 2\delta \leqslant arepsilon,$$

这就证明了 $\lim_{x\to 1} \frac{x^2-1}{x^2-x} = 2$.

例 9 求 $\lim_{x\to 0} x \sin \frac{1}{x}$.

解 注意,函数在 x = 0 处没有定义. 当 $x \neq 0$ 时,总有

$$\left|x\sinrac{1}{x}
ight|\leqslant |x|.$$

因此, 对任意的正数 ε , 取 $\delta = \varepsilon$, 则当 $0 < |x| < \delta$ 时, 就有

$$\left|x\sin\frac{1}{x}-0\right|$$

所以

$$\lim_{x\to 0} x \sin\frac{1}{x} = 0.$$

 $x\sin\frac{1}{x}$ 在区间 $x\in[-0.5,0.5]$ 上的图像

定义 5 设 f(x) 在 x_0 的左侧附近有定义. 如果有一个常数 l 满足下述性质: 对于任意的正数 ε , 总存在正数 δ , 使得当 $-\delta < x - x_0 < 0$ 时, 有 $|f(x) - l| < \varepsilon$, 则称 l 是 f(x) 在 x_0 的左极限, 记成

$$\lim_{x o x_0^-}f(x)=l,\;\;\; oxtimes_{}\;\; f(x) o l\;(x o x_0^-)$$

若函数 f(x) 在 x_0 的右侧附近有定义, 类似地可以定义 f(x) 在 x_0 的右极限, 只要在关于左极限定义中的不等式 $-\delta < x - x_0 < 0$ 换成 $0 < x - x_0 < \delta$ 即可. 习惯上, 记函数 f(x) 在 x_0 的左右极限分别记为 $f(x_0 - 0)$ 和 $f(x_0 + 0)$.

定理 1 函数 f(x) 在 x_0 有极限的充分必要条件是 f(x) 在 x_0 的左右极限都存在而且相等.

这个简单的事实可以用来判断函数 f(x) 在 x_0 没有极限.

例 10 证明 $\lim_{x\to 0} a^x = 1$, 这里 a > 0.

证明 当 a=1 时, 结论显然成立. 故以下设 $a \neq 1$. 先证 $\lim_{x\to 0^+} a^x = 1$. 为此分两种情形:

设 a > 1, 此时 $a^x > 1$. 对于任意的正数 ϵ , 要使

$$|a^x - 1| < \varepsilon$$
, $\mathbb{P} 1 < a^x < 1 + \varepsilon$,

只要

$$x \ln a < \ln(1+arepsilon)$$
 或 $x < \frac{\ln(1+arepsilon)}{\ln a}$

即可. 所以只要取 $\delta=\frac{\ln(1+\varepsilon)}{\ln a}$,则当 $0< x<\delta$ 时上述不等式成立,即 $\lim_{x\to 0^+}a^x=1$.

当 0 < a < 1 时, 只要注意到此时 $\ln a < 0$, 仍可得到 $\lim_{x \to 0^+} a^x = 1$.

再注意到, $a^{-x} = (1/a)^x$, 就能证明 $\lim_{x\to 0^-} a^x = 1$.

例 11 设 $x_0 > 0$, 则有 $\lim_{x \to x_0} \ln x = \ln x_0$.

证明 对于任意正数 ε , 取 $\delta=x_0(e^\varepsilon-1)$, 则当 $x_0< x< x_0+\delta$ 时, 有 $x/x_0< e^\varepsilon$, 因而

$$|\ln x - \ln x_0| = \ln rac{x}{x_0} < \ln e^arepsilon = arepsilon.$$

这说明 $\lim_{x \to x_0^+} \ln x = \ln x_0$.

同理可证明
$$\lim_{x\to x_0^-}\ln x=\ln x_0$$
. 于是有 $\lim_{x\to x_0}\ln x=\ln x_0$.

引理 1 设 $0 < x < \frac{\pi}{2}$, 则 $\sin x < x < \tan x$.

证明 如图所示,单位圆上一点 A 的 切线与半径 OD 的延长线交于点 B, DC 垂直于 OA, 由于

 $\triangle AOD$ 面积 < 扇形AOD 面积 < $\triangle AOB$ 面积,

也就是

$$\frac{1}{2}\sin x < \frac{1}{2}x < \frac{1}{2}\tan x.$$

这就是要证明的结果.

В

现在来求 $\lim_{x\to 0} \sin x$.

因为对任意正数 ε , 存在正数 $\delta = \min\{\varepsilon, \frac{\pi}{2}\}$, 当 $0 < |x| < \delta$ 时, 有

$$|\sin x| < |x| < \delta \leqslant arepsilon,$$

所以 $\lim_{x\to 0} \sin x = 0$.

例 13 求证 $\lim_{x \to x_0} \sin x = \sin x_0$.

证明 因为

$$|\sin x-\sin x_0|=\left|2\sinrac{x-x_0}{2}\cosrac{x+x_0}{2}
ight|\leqslant 2\left|\sinrac{x-x_0}{2}
ight|\leqslant |x-x_0|,$$

所以对任意正数 ε , 存在正数 $\delta = \varepsilon$, 当 $0 < |x - x_0| < \delta$ 时, 有

$$|\sin x - \sin x_0| < \varepsilon.$$

这就证明了 $\lim_{x \to x_0} \sin x = \sin x_0$.

1.3.4 函数极限的性质与运算

定理 2 若当 $x \to x_0$ 时, 函数 f(x) 有极限 l, 则

- 1°极限是唯一的.
- $2^{\circ} f(x)$ 在 x_0 的近旁是有界的. 即存在正数 M 和 δ , 使得当 $0 < |x-x_0| < \delta$ 时, $|f(x)| \leq M$.
- 3° 若 a < l < b, 则在 x_0 的近旁, 有 a < f(x) < b, 即存在一个正数 δ , 使得对于满足 $0 < |x x_0| < \delta$ 的所有 x, 有 a < f(x) < b.

证明 1° 若有两个极限 a 和 b, 不妨设 $a \neq b$. 则对于 $\varepsilon = \frac{|b-a|}{2}$, 存在 $\delta > 0$, 当 $0 < |x - x_0| < \delta$ 时, 有 $|f(x) - a| < \varepsilon$, $|f(x) - b| < \varepsilon$. 于是

$$|b-a|\leqslant |f(x)-a|+|f(x)-b|<2\varepsilon=|b-a|,$$

这是矛盾! 因此极限是唯一的. 2°和 3°可类似证明.

定理 3 设当 $x \to x_0$ 时, 函数 f(x) 和 g(x) 分别以 l 和 l' 为极限, 则 1° 若在 x_0 的附近, 有 $f(x) \geqslant g(x)$, 则 $l \geqslant l'$.

- 2° 若 l > l', 则在 x_0 的附近, 必有 f(x) > g(x), 即存在 $\delta > 0$, 使当 $0 < |x x_0| < \delta$ 时, 有 f(x) > g(x).
- 3° 作为 1° 和 2° 的推论, 如果在 x_0 的附近, 有 $f(x) \ge 0$, 则 $l \ge 0$; 如果 l > 0, 则在 x_0 的附近, 有 f(x) > 0.

证明
$$2^\circ$$
 对于 $arepsilon=rac{l-l'}{2}$,存在 $\delta>0$,使得当 $0<|x-x_0|<\delta$ 时,有 $|f(x)-l|$

因此

$$f(x) > l - \varepsilon = l' + \varepsilon > g(x)$$
.

1°和3°都是2°的推论.

定理 4 设当 $x \to x_0$ 时, 函数 f(x) 和 g(x) 分别以 l 和 l' 为极限, 则 $1^{\circ} f(x) \pm g(x)$ 在 x_0 处有极限, 且极限为 $l \pm l'$, 即

$$\lim_{x o x_0}(f(x)\pm g(x))=\lim_{x o x_0}f(x_0)\pm\lim_{x o x_0}g(x_0).$$

 2° 函数 f(x)g(x) 在 x_0 有极限, 且极限是 ll', 即

$$\lim_{x o x_0}f(x)g(x)=\lim_{x o x_0}f(x)\cdot\lim_{x o x_0}g(x).$$

特别, $\lim_{x\to x_0} cf(x) = c \lim_{x\to x_0} f(x)$, 其中 c 是常数.

 3° 对于 $l' \neq 0$, 函数 $\frac{f(x)}{g(x)}$ 的极限存在, 且等于 $\frac{l}{l'}$. 即

$$\lim_{x o x_0}rac{f(x)}{g(x)}=rac{\lim\limits_{x o x_0}f(x)}{\lim\limits_{x o x_0}g(x)}.$$

例 14 求
$$\lim_{x\to\infty} \frac{x^2+2x+3}{x^2+3x+1}$$
.

解

$$\lim_{x o\infty}rac{x^2+2x+3}{x^2+3x+1}=\lim_{x o\infty}rac{1+rac{2}{x}+rac{3}{x^2}}{1+rac{3}{x}+rac{1}{x^2}}=1.$$

例 15 设 $P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$, 则对于任意一点 x_0 , 有

$$\lim_{x o x_0}P(x)=P(x_0).$$

证明 利用 $\lim_{x\to x_0}x=x_0$,得 $\lim_{x\to x_0}x^k=x_0^k$,再利用极限得加法,就得到结果.

例 16 求
$$\lim_{x\to -1} \left(\frac{1}{x+1} - \frac{3}{x^3+1}\right)$$
.

解 当 $x \to -1$ 时, 原式括号中的每一项都没有极限. 所以不能直接利用极限的性质计算. 但是, 当 $x \ne -1$ 时, 可以将括号内的分式进行通分和化简得

$$\frac{x-2}{x^2-x+1},$$

此时, 分子分母在 $x \to -1$ 时, 都有极限, 因此

$$\lim_{x o -1} \left(rac{1}{x+1} - rac{3}{x^3+1}
ight) = \lim_{x o -1} rac{x-2}{x^2-x+1} \ = rac{\lim_{x o -1} (x-2)}{\lim_{x o -1} (x^2-x+1)} = -1.$$

定理 5 函数 f(x) 在 $x \to x_0$ 时有极限 l 的充分必要条件是: 对于任意一个以 x_0 为极限的数列 $\{a_n\}$ $(a_n \neq x_0)$, 都有 $\lim_{n \to \infty} f(a_n) = l$.

证明 "必要性" 设 $\{a_n\}$ $(a_n \neq x_0)$ 是一个以 x_0 为极限的数列. 因为 $\lim_{x \to x_0} f(x) = l$, 故对于任意给定得正数 ε , 一定存在 $\delta > 0$, 当 $0 < |x - x_0| < \delta$ 时, 有 $|f(x) - l| < \varepsilon$. 又由于 $\lim_{n \to \infty} a_n = x_0$, 所以对于已经有的 $\delta > 0$, 存在一个自然数 N, 使得当 n > N 时, 有 $0 < |a_n - x_0| < \delta$, 所以当 n > N 时, $|f(a_n) - l| < \varepsilon$. 即是

$$\lim_{n o\infty}f(a_n)=l.$$

"充分性" (反证) 假设当 $x \to x_0$ 时, f(x) 不以 l 为极限. 那么一定有一个 $\varepsilon_0 > 0$, 使对于任何一个正数 δ , 都能找到一个 x_δ , 即使 $0 < |x_\delta - x_0| < \delta$, 仍有 $|f(x_\delta) - l| \ge \varepsilon_0$.

因此, 取 $\delta_n = \frac{1}{n}$, 对应每一个这样的 δ_n , 都可找到 a_n , 使

$$|0<|a_n-x_0|<\delta_n=rac{1}{n},$$

但

$$|f(a_n)-l|\geqslant arepsilon_0$$

当 $n \to \infty$ 时, 上面第一个不等式表明 $\{a_n\}$ 以 x_0 为极限, 而第二个不等式表明, $\{f(a_n)\}$, $(a_n \neq x_0)$ 不以 l 为极限. 这与条件相矛盾, 所以假设不成立, 即有 $\lim_{x\to x_0} f(x) = l$. 证毕.

定理 5 说明, 当 $x \to x_0$ 时, f(x) 的趋向性态如果在两个趋于 x_0 的点列上不一致, 则 f(x) 一定没有极限.

例 17 证明: 当 $x \to 0$ 时 $\sin \frac{1}{x}$ 没有极限.

证明 取 $a_n = \frac{1}{2n\pi}$, $b_n = \frac{1}{2n\pi + \pi/2} (n = 1, 2, \cdots)$. 显然有 $\lim a_n = \lim b_n = 0$. 但是, $\lim f(a_n) = 0$, $\lim f(b_n) = 1$, 所以 $\lim_{x \to 0} f(x)$ 不存在.

定理 5 可以细化为如下结论.

定理 6 1° 函数 f(x) 在 $x \to x_0^-$ 时有极限 l 的充分必要条件是: 对于任意一个以 x_0 为极限的单调递增数列 $\{a_n\}$ $(a_n \neq x_0)$, 都有 $\lim_{n \to \infty} f(a_n) = l$; 2° 函数 f(x) 在 $x \to x_0^+$ 时有极限 l 的充分必要条件是: 对于任意一个以 x_0 为极限的单调递减数列 $\{a_n\}$ $(a_n \neq x_0)$, 都有 $\lim_{n \to \infty} f(a_n) = l$.

定理 7 设
$$\lim_{x\to x_0}f(x)=l,\ \lim_{t\to t_0}g(t)=x_0,$$
 且当 $t\neq t_0$ 时, $g(t)\neq x_0$. 则 $\lim_{t\to t_0}f(g(t))=l=\lim_{x\to x_0}f(x).$

证明 任给一个正数 ε , 根据 $\lim_{x\to x_0} f(x) = l$ 知, 一定存在一个正数 δ , 使得当 $0<|x-x_0|<\delta$ 时, 有

$$|f(x)-l|<\varepsilon.$$

又因为 $\lim_{t\to t_0}g(t)=x_0$,所以对于正数 δ ,一定存在一个 $\tau>0$,使得当 $0<|t-t_0|<\tau$ 时,有 $0<|g(t)-x_0|<\delta$. 所以,当 $0<|t-t_0|<\tau$ 时有 $|f(g(t))-l|<\varepsilon$.

即

$$\lim_{t o t_0}f(g(t))=l.$$

定理 7 告诉我们, 在求极限的过程中可以使用"变量代换", 从而有可能简化求极限的过程.

例 18 设
$$a > 0$$
, 证明: $\lim_{x \to x_0} a^x = a^{x_0}$.

证明 记
$$y = x - x_0$$
, 则当 $x \rightarrow x_0$ 时有 $y \rightarrow 0$, 故

$$egin{aligned} \lim_{x o x_0}(a^x-a^{x_0}) &= a^{x_0}\lim_{x o x_0}(a^{x-x_0}-1)\ &= a^{x_0}\lim_{y o 0}(a^y-1) = 0. \end{aligned}$$

例 19 设 $\lim_{x\to x_0} f(x) = A > 0$, $\lim_{x\to x_0} g(x) = B$, 其中 A, B 都是实数. 则

$$\lim_{x\to x_0} f(x)^{g(x)} = A^B.$$

有

证明 令 $y = g(x) \ln f(x)$. 由条件可知当 $x \to x_0$ 时, 有 $y \to B \ln A$. 于是

$$egin{aligned} \lim_{x o x_0}f(x)^{g(x)}&=\lim_{x o x_0}e^{g(x)\ln f(x)}\ &=\lim_{y o B\ln A}e^y\ &=e^{B\ln A}\ &=A^B. \end{aligned}$$

1.3.5 函数极限存在的判别法

定理 8 (两边夹定理) 设在 x_0 的附近, 有 $h(x) \leq f(x) \leq g(x)$, 而且当 $x \to x_0$ 时, 函数 h(x) 和 g(x) 都以 l 为极限, 那么, f(x) 也以 l 为极限.

证明 证法与数列的两边夹定理类似. 因为 h(x) 和 g(x) 都以 l 为极限, 所以对任意正数 ε 存在 $\delta > 0$ 使得当 $0 < |x - x_0| < \delta$ 时, 有

$$l - \varepsilon < h(x) < l + \varepsilon, \quad l - \varepsilon < g(x) < l + \varepsilon,$$

因为 f(x) 在 h(x) 和 g(x) 之间, 上面的不等式蕴含

$$l - \varepsilon < f(x) < l + \varepsilon$$

即
$$|f(x)-l|. 于是 $\lim_{x o x_0}f(x)=l$.$$

定理 9 设 f(x) 在 (a,b) 中单调有界,则 f(a+0) 和 f(b-0) 均存在.

证明 我们来证 f(b-0) 存在. 不妨设 f(x) 为单调增. 由于 f(x) 在 (a,b) 有上界, 故有上确界 M. 下面就来证明 f(b-0)=M.

任给 $\varepsilon > 0$, 由于 $M - \varepsilon$ 不是 f(x) 的上界, 故必存在 $x_0 \in (a,b)$ 使 $f(x_0) > M - \varepsilon$. 取 $\delta = b - x_0$, 由 f 的单调性可知, 当 $b - \delta = x_0 < x < b$ 时, 就有

$$M - \varepsilon < f(x) \leqslant M$$
.

因此 f(b-0)=M.

推论 1 设 f(x) 在 (a,b) 中单调有界,则 f(x) 在(a,b) 中每一点 x_0 都有左右极限.

证明 取 $x_0 \in (a,b)$, 只要分别在 (a,x_0) 和 (x_0,b) 中应用定理 9 即可.

定理 10 (Cauchy 判别准则) 函数 f(x) 在 x_0 有极限的充分必要条件是: 任 给 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $0 < |x' - x_0|, |x'' - x_0| < \delta$ 时, 有

$$|f(x') - f(x'')| < \varepsilon$$
.

证明 "⇒" 设 $\lim_{x\to x_0} f(x) = l$. 则对于任意 $\varepsilon > 0$, 按极限的定义存在 $\delta > 0$, 当 $0 < |x - x_0| < \delta$ 时,

$$|f(x)-l|<rac{arepsilon}{2}.$$

故当 $0<|x'-x_0|,\;|x''-x_0|<\delta$ 时

$$|f(x')-f(x'')|\leqslant |f(x')-l|+|l-f(x'')|<rac{arepsilon}{2}+rac{arepsilon}{2}=arepsilon.$$

" \leftarrow " 假设对于任意给定的正数 ε , 存在 $\delta > 0$, 使得当

$$0<|x'-x_0|,\;|x''-x_0|<\delta$$

时有

$$|f(x') - f(x'')| < \varepsilon$$
.

因为对于任意一个以 x_0 为极限的数列 $\{a_n\}$ $(a_n \neq x_0)$, 存在自然数 N, 使得当 m,n>N 时, 有

$$0<|a_m-x_0|,\ |a_n-x_0|<\delta,$$

因此也就有

$$|f(a_m)-f(a_n)|<\varepsilon$$
.

所以数列 $\{f(a_n)\}$ 满足数列的 Cauchy 收敛准则, 故收敛. 设

$$\lim f(a_n) = l.$$

这个极限 l, 也正是函数在 $x \to x_0$ 时的极限. 事实上对于任意给定的正数 ε , 一方面, 由充分性条件可知, 存在 $\delta > 0$, 使得当

$$0<|x'-x_0|,\;|x''-x_0|<\delta$$

时,都有

$$|f(x')-f(x'')|<\frac{\varepsilon}{2},$$

另一方面,由于 $\lim_{n\to\infty} f(a_n) = l$ 和 $\lim_{n\to\infty} a_n = x_0$,故存在一个自然数 m,使

$$0<|a_m-x_0|<\delta, \quad |f(a_m)-l|$$

于是当 $0<|x-x_0|<\delta$ 时, 就有

$$|f(x)-l|\leqslant |f(x)-f(a_m)|+|f(a_m)-l|<rac{arepsilon}{2}+rac{arepsilon}{2}=arepsilon.$$

所以

$$\lim_{x o x_0}f(x)=l.$$

1.3.6 两个重要极限

定理 11
$$\lim_{x\to 0}\frac{\sin x}{x}=1.$$

证明 首先考虑右极限. 设 $0 < x < \frac{\pi}{2}$, 由于 $\sin x > 0$, 由引理1 易知

$$\cos x < \frac{\sin x}{x} < 1.$$

因此

$$0 < 1 - rac{\sin x}{x} < 1 - \cos x = 2\left(\sinrac{x}{2}
ight)^2 < 2\sinrac{x}{2} < x.$$

由两边夹的方法得到

$$\lim_{x\to 0^+}\frac{\sin x}{x}=1.$$

当
$$x \to 0^-$$
时,令 $y = -x$,则 $y \to 0^+$,则有
$$\lim_{x \to 0^-} \frac{\sin x}{x} = \lim_{y \to 0^+} \frac{\sin(-y)}{-y} = \lim_{y \to 0^+} \frac{\sin y}{y} = 1.$$

所以定理得证.

定理
$$12$$
 $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$.

证明 首先对任意的 x > 1, 有 $[x] \le x < [x] + 1$, 以及

$$\left(1+rac{1}{[x]+1}
ight)^{[x]}<\left(1+rac{1}{x}
ight)^{x}<\left(1+rac{1}{[x]}
ight)^{[x]+1}.$$

因为

$$\lim_{x \to +\infty} \left(1 + \frac{1}{[x]+1}\right)^{[x]} = \lim_{x \to +\infty} \left(1 + \frac{1}{[x]+1}\right)^{[x]+1} \left(1 + \frac{1}{[x]+1}\right)^{-1} = e,$$

$$\lim_{x \to +\infty} \left(1 + \frac{1}{[x]}\right)^{[x]+1} = \lim_{x \to +\infty} \left(1 + \frac{1}{[x]+1}\right)^{[x]+1} \left(1 + \frac{1}{[x]}\right) = e.$$

所以根据两边夹的法则, 有 $\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = e$.

当 $x \to -\infty$ 时, 令 y = -x, 则 $y \to +\infty$, 利用上面结果, 就有

$$\lim_{x o -\infty} \left(1+rac{1}{x}
ight)^x = \lim_{y o +\infty} \left(1-rac{1}{y}
ight)^{-y} = \lim_{y o +\infty} \left(1+rac{1}{y-1}
ight)^y \ = \lim_{y o +\infty} \left(1+rac{1}{y-1}
ight)^y = \lim_{y o +\infty} \left(1+rac{1}{y-1}
ight)^y = e.$$

这就证明了

$$\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x = \lim_{x\to -\infty} \left(1+\frac{1}{x}\right)^x = e,$$

从而就有了定理的结果. 证毕.

定理 12 中的极限, 还有下列一种常见的等价形式

$$\lim_{x\to 0}(1+x)^{\frac{1}{x}}=e.$$

例 20 证明
$$\lim_{x\to 0}\cos x = 1$$
 以及 $\lim_{x\to 0}\frac{\tan x}{x} = 1$.

证明 当 $0 < x < \frac{\pi}{2}$ 时, 因为

$$0 < 1 - \cos x < x$$

所以 $\lim_{x\to 0+}\cos x=1$. 但 $\cos x$ 是偶函数, 故有 $\lim_{x\to 0-}\cos x=1$, 所以

$$\lim_{x\to 0}\cos x=1.$$

根据这个结果,有

$$\lim_{x o 0} rac{ an x}{x} = \lim_{x o 0} rac{\sin x}{x} \lim_{x o 0} rac{1}{\cos x} = 1.$$

例 21 求
$$\lim_{x\to 0} rac{1-\cos x}{x^2}$$
.

解

$$egin{aligned} \lim_{x o 0} rac{1-\cos x}{x^2} &= \lim_{x o 0} rac{2\sin^2rac{x}{2}}{x^2} \ &= rac{1}{2}\lim_{x o 0} \left(rac{\sinrac{x}{2}}{rac{x}{2}}
ight)^2 \ &= rac{1}{2}\lim_{y o 0} \left(rac{\sin y}{y}
ight)^2 \ &= rac{1}{2}. \end{aligned}$$

例 22 求
$$\lim_{x \to 0} \frac{\ln(1+x)}{x}$$
.

解 令 $y = (1+x)^{1/x}$, 则当 $x \to 0$ 时, $y \to e$. 根据复合函数的极限, 有

$$egin{aligned} \lim_{x o 0} rac{\ln(1+x)}{x} &= \lim_{x o 0} \ln(1+x)^{1/x} \ &= \lim_{y o e} \ln y \ &= \ln e \ &= 1. \end{aligned}$$

例 23 求
$$\lim_{x \to \infty} \left(\frac{x+1}{x-1} \right)^x$$
.

解 令
$$y = \frac{2}{x-1}$$
,则 $x = 1 + \frac{2}{y}$. 当 $x \to +\infty$ 时, $y \to 0^+$. 因此,
$$\lim_{x \to +\infty} \left(\frac{x+1}{x-1}\right)^x = \lim_{x \to +\infty} \left(1 + \frac{2}{x-1}\right)^x$$

$$= \lim_{y \to 0^+} (1+y)^{1+2/y}$$

$$= \lim_{y \to 0^+} (1+y) \left((1+y)^{1/y}\right)^2$$

$$= e^2.$$

1.3.7 无穷大量与无穷小量

无穷小量及其比较

定义 6 在一个极限过程中趋于零的量称为(在这个极限过程中的)无穷小量。在一个极限过程中总是有界的量称为(在这个极限过程中的)有界量。

注意, 1. 无穷小量是变量不是数. 2. 这个变量的极限为零. 3. 无穷小量也是有界量. 例如,

 $\frac{1}{n^2}$ 和 $\left(1+\frac{1}{n}\right)^n-e$ 当 $n\to+\infty$ 时都是无穷小量.

 $\sin x$ 和 $\cos x - 1$ 当 $x \to 0$ 时都是无穷小量.

 $(-1)^n$ 当 $n \to +\infty$ 时是有界量.

习惯上, 用 o(1) 表示无穷小量. 用 O(1) 表示有界量.

性质 1 有限个无穷小量的代数和及其乘积仍是无穷小量,即,

$$o(1) + o(1) = o(1), \quad o(1) \cdot o(1) = o(1).$$

性质 2 无穷小量与有界量的和是有界量, 无穷小量与有界量的乘积是无穷小量, 即,

$$o(1) + O(1) = O(1), \quad o(1) \cdot O(1) = o(1).$$

证明 我们来证明第二个式子. 设 f(x) 当 $x \to +\infty$ 时是无穷小量, 即 $\lim_{x \to +\infty} f(x) = 0$. 再设 g(x) 当 $x \to +\infty$ 是有界量, 即, 存在 x_0 及 M > 0 使得当 $x > x_0$ 时 |g(x)| < M. 由 $\lim_{x \to +\infty} f(x) = 0$ 知, 对任意 $\varepsilon > 0$ 存在 $A > x_0$ 使得当 x > A 时, 有

$$|f(x)|<rac{arepsilon}{M},$$

因此当 x>A 时有 $|f(x)g(x)| \leqslant \frac{\varepsilon}{M} \cdot M = \varepsilon$. 于是 f(x)g(x) 是无穷小量.

定义 7 (**无穷小量的比较**) 设在同一个极限过程中 (以 $x \to x_0$ 为例) 变量 $\alpha(x)$ 和 $\beta(x)$ 都是无穷小量, 并且 $\beta(x) \neq 0$.

- (1) 如果 $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = A \neq 0$ 为一有限数, 则称当 $x\to x_0$ 时, $\alpha(x)$ 和 $\beta(x)$ 是同阶无穷小量. 特别当 A=1 时, 称 $\alpha(x)$ 和 $\beta(x)$ 是等价无穷小量, 记为 $\alpha(x)\sim\beta(x)\quad (x\to x_0).$
- (2) 如果 $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = 0$, 则称当 $x\to x_0$ 时, $\alpha(x)$ 是比 $\beta(x)$ 更高阶的无穷小量, 这意味着 $\alpha(x)$ 趋于零的速度比 $\beta(x)$ 趋于零的速度更快, 此时记为

$$\alpha(x) = o(\beta(x)) \quad (x \to x_0).$$

- 记号 $\alpha(x) = o(1)$ $(x \to x_0)$ 就表示 $\lim_{x \to x_0} \alpha(x) = 0$, 即 $\alpha(x)$ 是无穷小量.
 - (3) 如果存在一个正数 M,使得在 x_0 的附近,有 $\left| \frac{\alpha(x)}{\beta(x)} \right| \leqslant M$,则记为 $\alpha(x) = O(\beta(x)) \quad (x \to x_0)$.

特别, $\alpha(x) = O(1)$ $(x \to x_0)$ 就表示在 x_0 的附近 $\alpha(x)$ 是一个有界量.

1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.3.6 1.3.7

例 24

$$\sin x \sim x \quad (x \to 0)$$

$$\tan x \sim x \quad (x \to 0)$$

$$1-\cos x \sim rac{1}{2}x^2 \quad (x o 0)$$

$$\ln(x+1) \sim x \quad (x \to 0)$$

$$\sqrt{x+1} - 1 \sim \frac{1}{2}x \quad (x \to 0)$$

性质 3 (等价无穷小替换) 设当 $x \to x_0$ 时, $\alpha(x)$, $\alpha_1(x)$, $\beta(x)$, $\beta_1(x)$ 都是 无穷小量, 且 $\alpha(x) \sim \alpha_1(x)$, $\beta(x) \sim \beta_1(x)$. 如果极限 $\lim_{x \to x_0} \frac{\alpha_1(x)}{\beta_1(x)}$ 存在, 则极限 $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$ 也存在, 且

$$\lim_{x o x_0}rac{lpha(x)}{eta(x)}=\lim_{x o x_0}rac{lpha_1(x)}{eta_1(x)}.$$

证明 只需注意到

$$rac{lpha(x)}{eta(x)} = rac{lpha(x)}{lpha_1(x)} \cdot rac{lpha_1(x)}{eta_1(x)} \cdot rac{eta_1(x)}{eta(x)}$$

即可完成证明.

例 25 求
$$\lim_{x\to 0} \frac{\sin x}{\sqrt{1+x}-1}$$

解 因为 $\sin x \sim x$, 所以

$$\lim_{x \to 0} \frac{\sin x}{\sqrt{1+x}-1} = \lim_{x \to 0} \frac{x}{\sqrt{1+x}-1} = \lim_{x \to 0} (\sqrt{1+x}+1) = 2.$$

例 26 求 $\lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$.

解

$$egin{aligned} \lim_{x o 0} rac{ an x - \sin x}{x^3} &= \lim_{x o 0} rac{\sin x (1 - \cos x)}{x^3 \cos x} \ &= \lim_{x o 0} rac{x \cdot rac{x^2}{2}}{x^3} = rac{1}{2}. \end{aligned}$$

需注意的是只能对无穷小量和无穷大量的因子实行等价替换,而用加、减号连接的式子里,就不能任意实行等价替换,例如在上面的例子中,分子里的 $\tan x$ 和 $\sin x$ 如果用等价无穷小量 x 去替换,就会得到错误的结果.

定义 8 (无穷小量的阶) 当 $x \to x_0$ 时, 若 $\alpha(x)$ 是与 $(x - x_0)^k$ 同阶的 无穷小量, 其中 k 是正常数, 则称 $\alpha(x)$ 是关于 $x - x_0$ 的 k 阶无穷小量.

 $\sin x$, $\tan x$, $\ln(x+1)$, $e^x - 1$ 都是当 $x \to 0$ 时关于 x 的一阶无穷小量. $1 - \cos x$, $e^x - 1 - x$ 都是当 $x \to 0$ 时关于 x 的二阶无穷小量.

注意,并不是所有无穷小量都有阶,例如,

$$x\sin\frac{1}{x}$$

是当 $x \to 0$ 时的无穷小量, 但关于 x 是没有阶的.

无穷大量及其比较

定义 9 设 f(x) 在 x_0 附近定义. 若对任意 M>0 存在 $\delta>0$, 使得当 $0<|x-x_0|<\delta$ 时, 有 |f(x)|>M, 则称当 $x\to x_0$ 时, f(x) 是一个无穷 大量, 记为 $\lim_{x\to x_0}f(x)=\infty$.

注 1: 也可以定义在其它极限过程 (如 $x \to +\infty$) 中的无穷大量.

注 2: 无穷大和无穷小量都与极限过程有关, 例如, 当 $x \to 0$ 时 $\frac{1}{x}$ 是无穷大量, 但当 $x \to +\infty$ 时 $\frac{1}{x}$ 是无穷小量. 又例如函数 $\tan x$ 当 $x \to \frac{\pi}{2}$ 时是无穷大量, 但当 $x \to 0$ 时是无穷小量.

性质 4 两个无穷大量的乘积仍是无穷大量. 记为

$$\infty \cdot \infty = \infty$$
.

性质 5 无穷大量与有界量的和或差仍是无穷大量. 记为

$$\infty \pm O(1) = \infty$$
.

性质 6 无穷大量与非零常数的乘积仍是无穷大量 记为

$$\infty \cdot C = \infty$$
, (C是非零常数).

定义 10 设在同一极限过程中 (以 $x \to x_0$ 为例), 变量 $\alpha(x)$ 和 $\beta(x)$ 都是无穷大量.

(1) 如果 $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = A \neq 0$ 为有限数, 则称当 $x\to x_0$ 时, $\alpha(x)$ 和 $\beta(x)$ 是同阶无穷大量. 特别当 A=1 时, 称为等价无穷大量, 此时记为

$$\alpha(x) \sim \beta(x) \quad (x \to x_0).$$

(2) 如果 $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = 0$, 则称当 $x\to x_0$ 时, $\beta(x)$ 是比 $\alpha(x)$ 更高阶的无穷大量, 此时 $\beta(x)$ 趋于无穷大的速度比 $\alpha(x)$ 更快, 可记为

$$\alpha(x) = o(\beta(x)) \quad (x \to x_0).$$

(3) 如果存在正常数 M, 使得在 x_0 附近有 $\left| rac{lpha(x)}{eta(x)}
ight| \leqslant M$, 则记为 $lpha(x) = O(eta(x)) \quad (x o x_0)$.

例 27 设 $\alpha > 0$. 则当 $x \to +\infty$ 时, x^{α} 是比 $\ln x$ 更高阶的无穷大量.

证明 对 x > 1, 存在自然数 k, 使得

$$2^{k-1} < x \leqslant 2^k.$$

故有

$$\ln x \leqslant k \ln 2 < k$$
.

于是

$$0<rac{\ln x}{x}<rac{2k}{2^k}=rac{2k}{(1+1)^k}<rac{2k}{rac{k(k-1)}{2}}=rac{4}{k-1}.$$

由于当 $x \to +\infty$ 时, $k \to +\infty$, 故由两边夹定理, 即有

$$\lim_{x o +\infty}rac{\ln x}{x}=0.$$

设
$$\alpha > 0$$
, 则当 $x \to +\infty$ 时, $y = x^{\alpha} \to +\infty$, 故

$$\lim_{x\to +\infty}\frac{\ln x}{x^\alpha}=\lim_{x\to +\infty}\frac{\ln x^\alpha}{\alpha x^\alpha}=\frac{1}{\alpha}\lim_{y\to +\infty}\frac{\ln y}{y}=0.$$

所以对任何 $\alpha > 0$, 都有

$$\ln x = o(x^{\alpha}) \quad (x \to +\infty).$$

即当 $x \to +\infty$ 时, 不管 α 是多小的正数, $\ln x$ 都是比 x^{α} 还低级的无穷大量. 所以它趋向无穷大的速度"很慢".

 $extbf{M}$ 28 设 $\alpha > 0, a > 1$, 则当 $x \to +\infty$ 时, a^x 是比 x^α 更高阶的无穷大量.

当无穷大量和无穷小量出现在同一个式子中时可能产生所谓的"未定式",如:

- 0 表示两个无穷小量的商.
- ∞ 表示两个无穷大量的商.
- $0\cdot\infty$ 表示一个无穷小量与一个无穷大量的乘积.
- $\infty \pm \infty$ 表示两个无穷大量的和或差.
- 1^{∞} 和 ∞^0 也是未定式.