Topic: Coterminal angles

Question: Which angle is coterminal with -150° ?

Answer choices:

A 120°

B -420°

C 570°

D 230°

Solution: C

Let $\theta = -150^\circ$, and recall that if two angles are coterminal, then their measures (in degrees) differ by an integer multiple of 360° . Let α denote an angle which is coterminal with θ . Then there is some integer n such that

$$\alpha = \theta + n(360^{\circ})$$

Putting this another way, there is some integer n such that

$$\frac{\alpha - \theta}{360^{\circ}} = n$$

Let's check each of the answer choices in turn, by substituting each of them as a value of α and determining whether there is some integer n that satisfies the equation $(\alpha - \theta)/(360^\circ) = n$.

$$\alpha = 120^{\circ}$$
: $\alpha - \theta = 120^{\circ} - (-150^{\circ}) = 120^{\circ} + 150^{\circ} = 270^{\circ}$ $\frac{270^{\circ}}{360^{\circ}} = \frac{3}{4}$

$$\alpha = -420^{\circ}: \ \alpha - \theta = -420^{\circ} - (-150^{\circ}) = -420^{\circ} + 150^{\circ} = -270^{\circ}$$
$$\frac{-270^{\circ}}{360^{\circ}} = -\frac{3}{4}$$

$$\alpha = 570^{\circ}$$
: $\alpha - \theta = 570^{\circ} - (-150^{\circ}) = 570^{\circ} + 150^{\circ} = 720^{\circ}$ $\frac{720^{\circ}}{360^{\circ}} = 2$

$$\alpha = 230^{\circ}$$
: $\alpha - \theta = 230^{\circ} - (-150^{\circ}) = 230^{\circ} + 150^{\circ} = 380^{\circ}$ $\frac{380^{\circ}}{360^{\circ}} = \frac{19}{18}$

The only value of α for which $(\alpha - \theta)/(360^{\circ})$ is equal to an integer is 570°.

Topic: Coterminal angles

Question: Which angle α is coterminal with $(71/16)\pi$ if the terminal side of α is reached from the terminal side of $(71/16)\pi$ by making two full rotations about the origin in the negative direction?

Answer choices:

$$A \qquad \alpha = \frac{7}{16}\pi$$

B
$$\alpha = -\frac{7}{16}\pi$$

$$C \qquad \alpha = \frac{39}{16}\pi$$

$$D \qquad \alpha = -\frac{25}{16}\pi$$

Solution: A

Let $\theta = (71/16)\pi$, and recall that if two angles are coterminal, then their measures (in radians) differ by an integer multiple of 2π . Let α denote an angle which is coterminal with θ . Then there is some integer m such that

$$\alpha = \theta + m(2\pi)$$

Here, we want to determine the angle α which is coterminal with θ and whose terminal side is reached from the terminal side of θ by making a rotation of two full turns about the origin in the negative direction. Therefore, we must have m=-2, so we substitute m=-2 and solve for α :

$$\alpha = \theta + (-2)(2\pi)$$

$$\alpha = \frac{71}{16}\pi - 4\pi$$

$$\alpha = \left(\frac{71}{16} - 4\right)\pi$$

$$\alpha = \left(\frac{71 - 16(4)}{16}\right)\pi$$

$$\alpha = \left(\frac{71 - 64}{16}\right)\pi$$

$$\alpha = \frac{7}{16}\pi$$

Topic: Coterminal angles

Question: Which angle is not coterminal with $-(8/3)\pi$?

Answer choices:

$$A \qquad \frac{4}{3}\pi$$

B
$$-\frac{4}{3}\pi$$

$$-\frac{26}{3}\pi$$

D
$$\frac{22}{3}\pi$$

Solution: B

Let $\theta = -(8/3)\pi$, and recall that if two angles are coterminal, then their measures (in radians) differ by an integer multiple of 2π . Let α denote an angle which is coterminal with θ . Then there is some integer m such that

$$\alpha = \theta + m(2\pi)$$

Putting this another way, there is some integer m such that

$$\frac{\alpha - \theta}{2\pi} = m$$

Let's check each of the answer choices in turn, by substituting each of them as a value of α and determining whether there is some integer m that satisfies the equation $(\alpha - \theta)/(2\pi) = m$.

$$\alpha = \frac{4}{3}\pi$$
: $\alpha - \theta = \frac{4}{3}\pi - \left(-\frac{8}{3}\pi\right) = \left(\frac{4}{3} + \frac{8}{3}\right)\pi = \frac{12}{3}\pi = 4\pi$ $\frac{4\pi}{2\pi} = 2$

$$\alpha = -\frac{4}{3}\pi$$
: $\alpha - \theta = -\frac{4}{3}\pi - \left(-\frac{8}{3}\pi\right) = \left(-\frac{4}{3} + \frac{8}{3}\right)\pi = \frac{4}{3}\pi$ $\frac{\left(\frac{4}{3}\pi\right)}{2\pi} = \frac{2}{3}$

$$\alpha = -\frac{26}{3}\pi; \quad \alpha - \theta = -\frac{26}{3}\pi - \left(-\frac{8}{3}\pi\right) = \left(-\frac{26}{3} + \frac{8}{3}\right)\pi = -\frac{18}{3}\pi = -6\pi\frac{-6\pi}{2\pi} = -3$$

$$\alpha = \frac{22}{3}\pi$$
: $\alpha - \theta = \frac{22}{3}\pi - \left(-\frac{8}{3}\pi\right) = \left(\frac{22}{3} + \frac{8}{3}\right)\pi = \frac{30}{3}\pi = 10\pi$ $\frac{10\pi}{2\pi} = 5$

The only value of α for which $(\alpha - \theta)/(2\pi)$ is not equal to an integer is $-(4/3)\pi$.