- 1. Show Peterson's solution for the given scenario.
 - There are two processes: P_0 and P_1 .
 - Each Statement takes 4 ms to execute.
 - Context Switch will occur after 8 ms.
 - Critical section contains 2 statements.
 - Remainder section contains 4 statements.
 - For P_0 : i=0 and j=1
 - For P_1 : i=1 and j=0
 - turn=0
 - flag[0] = TRUE, flag[1] = FALSE

The structure of process P_i in Peterson's solution:

```
do{
    flag[i] = true;
    turn = j;
    while(flag[j] == true && turn ==j){
        //busy wait
    }
    //critical section
    flag[i] = false;
    //remainder section
}while(true);
```

Complete the table given below for processes P₀ and P₁ using Peterson's solution.

Process 0: i=0, j=1	Process 1: i=1, j=0

- 2. Show Peterson's solution for the given scenario.
 - There are two processes: P_1 and P_2 .
 - Each Statement takes 3 ms to execute.
 - Context Switch will occur after 15 ms.
 - Critical section contains 6 statements.
 - Remainder section contains 10 statements.
 - For P_1 : i=1 and j=0
 - For P_2 : i=0 and j=1
 - turn=0
 - flag[0] = FALSE, flag[1] = TRUE

The structure of process P_i in Peterson's solution:

```
do{
    flag[i] = true;
    turn = j;
    while(flag[j] == true && turn ==j){
        //busy wait
    }
    //critical section
    flag[i] = false;
    //remainder section
}while(true);
```

Complete the table given below for processes P₁ and P₂ using Peterson's solution.

Process 1: i=1, j=0	Process 2: i=0, j=1

