APPLIED STATISTICAL MODELING AND DATA ANALYTICS

Linear Regression

Causation and Correlation

Causation

One variable producing an effect in another variable

Correlation

Relationship between two variables

Requirements for causation

Evidence of association between X and Y

X must occur before Y

No third factor driving both

Correlation coefficients

How to explore the correlation between different types of variables

Dependent variable: Y

Categorical

Quantitative

Explorato	ory
Variable:	X

Categorical

Quantitative

Chi-square test	Analysis of Variance (ANOVA)	
Chi-square test	Pearson correlation	
(transform quantitative	Spearman correlation	
to categorical)	Kendall correlation	

Correlation between quantitative variables

Pearson correlation

Restrictions: continuous variable

with normal distributed

Spearman correlation

Kendall correlation

Alternative for Pearson correlation

When assumptions are violated

Hypothesis testing for correlation

H₀: The population correlation coefficient IS NOT significantly different from zero

H₁: The population correlation coefficient IS significantly DIFFERENT FROM zero

Reject H₀ if p-value < significance level

Regression model depended on types of dependent variable

Linear regression

Logistic regression

- Beta regression
- Poisson regression

Multinomial logistic regression

Regression model concerning complexity of optimization

Ridge regression

majorly used to prevent overfitting

works well even in presence of highly correlated features

Source: https://people.eecs.berkeley.edu/

Regression model concerning complexity of optimization

Lasso regression

performs feature selection:: some of the coefficients become exactly zero

selects any one independence variable among the highly correlated ones

Simple linear Regression

What is regression analysis?

Regression analysis is a way of mathematically sorting out which of those variables does indeed have an impact. It answers the questions:

Which factors matter most?

Which can we ignore?

How do those factors interact with each other?

How certain are we about all of these factors?

What is regression analysis?

In regression analysis, those factors are called variables.

You have your **dependent variable** — the main factor that you're trying to understand or predict such as monthly sales.

And then you have your **independent variables** — the factors you suspect have an impact on your dependent variable.

Notation for data used in Regression analysis

Observation	Dependent variable	Independent variable			
	Y	X_1	X_2	•••	X _p
1	y_1	X ₁₁	X ₁₂	•••	X _{1p}
2	y ₂	X ₂₁	X ₂₂	•••	X _{2p}
	•••	•••	•••		•••
n	Уn	X_{n1}	X_{n2}	•••	X _{np}

Model specification

In simple linear regression, it assumes that there is approximately a linear relationship between X and Y.

Mathematically, we can write linear relationship between X and Y as

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$

Model specification

$$E(Y) = \beta_0 + \beta_1 X_1 + \varepsilon$$

- β_0 , β_1 the so-called *coefficients* of the variables
 - eta_1 is the change in the predicted value of Y per unit of change in X_1
 - β_0 the so-called intercept, is the prediction that the model would make if X_1 was zero

Source: http://www.unc.edu/~nielsen/soci709/m1/m1005.gif

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1$$

We define the *residual sum of squares* (RSS) as

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2$$

RSS =
$$(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$

The least squares approach chooses $\hat{\beta}_0$ and $\hat{\beta}_1$ to minimize the RSS.

Using some calculus, one can show that the minimizers are

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2},$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

How to choose the best line

Cost of using specific line

price

$$RSS(\beta_0, \beta_1) = \left(\text{price}_1 - \beta_0 - \beta_1 \text{size}_1\right)^2 + \left(\text{price}_2 - \beta_0 - \beta_1 \text{size}_2\right)^2 + \dots + \left(\text{price}_n - \beta_0 - \beta_1 \text{size}_n\right)^2$$

Cost of using specific line

price

$$RSS(\beta_0, \beta_1) = \left(\text{price}_1 - \beta_0 - \beta_1 \text{size}_1\right)^2 + \left(\text{price}_2 - \beta_0 - \beta_1 \text{size}_2\right)^2 + \dots + \left(\text{price}_n - \beta_0 - \beta_1 \text{size}_n\right)^2$$

$$RSS = \sum_{i=1}^{n} \left(price_{i} - \beta_{0} - \beta_{1} size_{i} \right)^{2}$$

Finding solution for RSS

Defining Gradient of RSS

$$\nabla RSS(\beta_0, \beta_1) = \begin{bmatrix} \frac{\partial RSS(\beta_0, \beta_1)}{\partial \beta_0} \\ \frac{\partial RSS(\beta_0, \beta_1)}{\partial \beta_1} \end{bmatrix}$$

Defining Gradient of RSS

RSS =
$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

$$\frac{\partial RSS(\beta_0,\beta_1)}{\partial \beta_0} =$$

$$\frac{\partial RSS(\beta_0, \beta_1)}{\partial \beta_1} =$$

Defining Gradient of RSS

$$\nabla RSS(\beta_{0}, \beta_{1}) = \begin{bmatrix} -2\sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1}x_{i}) \\ -2\sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1}x_{i})x_{i} \end{bmatrix}$$

Closed form solution

Gradient descent

Closed form solution

$$\nabla RSS(\beta_{0}, \beta_{1}) = \begin{bmatrix} -2\sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1}x_{i}) \\ -2\sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1}x_{i})x_{i} \end{bmatrix}$$

$$-2\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0$$

Closed form solution

$$\nabla RSS(\beta_{0}, \beta_{1}) = \begin{bmatrix} -2\sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1}x_{i}) \\ -2\sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1}x_{i})x_{i} \end{bmatrix}$$

$$-2\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) x_i = 0$$

Optional reading

https://sites.google.com/view/ml-basics/linear-regression-and-gradient-descent

- Gradient
- Gradient descent
- Epochs
- Learning rate
- Convergence

Assumptions in linear regression

Assumptions in linear regression

mostly based on predicted values and residuals

- Linearity
- Independence
- Homogeneity of variance (homoscedasticity)
- Normality

Assumptions in linear regression

Linearity

the relationships between the predictors and the outcome variable should be linear.

Big deal if violated.

Linearity

source https://www.researchgate.net/profile/Ke-Gu-2

Linearity: : How to create diagnostic plot

residuals versus predicted values

Linearity: : How to fix

nonlinear transformation: if it appropriate

take natural log only to dependent variable

Y grows exponentially as a function of X

take natural log to dependent and independent variable

X has multiplicative effects on Y

Linearity: : How to fix

artificially constructed variables (may lead to overfitting)

Polynomial regression

Piecewise Linear Regression

ที่มา https://online.stat.psu.edu/stat501/lesson/8/8.8

Assumptions in linear regression

Independence

no relationship among the residuals

no relationship between the residuals and independent variable

Huge deal if violated

Independence: : How to create diagnostic plot

residuals versus row number

residuals versus independent variables

Independence: : How to use statistics

Durbin Watson (DW) statistic should be close to 2.0

This statistic will always be between 0 and 4.

The closer to 0 the statistic, the more evidence for positive serial correlation.

The closer to 4, the more evidence for negative serial correlation.

Alternative test: Ljung-Box test

Ljung-Box test

```
from statsmodels.stats.diagnostic import acorr_ljungbox
lb = acorr_ljungbox(res.resid)
print(lb)
```

```
lb_stat lb_pvalue

1  0.003400  0.953500

2  0.774305  0.678988

3  1.412020  0.702720

4  1.890551  0.755881

5  2.176684  0.824197

6  2.397583  0.879749

7  3.186928  0.867188

8  3.639602  0.888089

9  3.793818  0.924451

10  5.639786  0.844565
```

Independence: : How to fix

If it due to

Violation of the linearity assumption

Omitted variable bias

Assumptions in linear regression

Homogeneity of variance (homoscedasticity)

the variance of error should be constant

Not as big deal if violated.

Homogeneity of variance:: How to create diagnostic plot

residuals (or standardized residual) versus predicted values

Homogeneity of variance:: How to create diagnostic plot

residuals versus independent variables

Homogeneity of variance : : How to use statistics

White Test

 H_0 : the errors are homoscedasticity (have constant variance)

H₁: the errors are heteroscedasticity (have non-constant variance)

Reject H₀ if p-value is less than significant level

Homogeneity of variance:: How to fix

Relevance to

- linearity assumption
- Independent assumption

Assumptions in linear regression

Normality

the errors should be normally distributed – normality is necessary for defining test statistics for regression coefficients

Not as big deal if violated.

Normality: How to create diagnostic plot

Q-Q plot of residuals

Normality: How to do hypothesis testing

 D'Agostino-Pearson test based on skewness and kurtosis

Shapiro-Wilk test does not work well when several values are identical

 H_0 : a dependent variable is normally distributed H_1 : a dependent variable is not normally distributed Reject H_0 if p-value is less than significant level

Normality:: How to fix

violations of normality often arise either because

- non-normal distributions of the dependent and/or independent variables
- violation of linearity assumption

In such cases, a nonlinear transformation of variables might cure both problems.

Normality:: How to fix

case separate models should be built

some data point should be excluded if such events not likely to be repeated

In addition to assumptions, user should concerunusual and influential data

- Outliers: observations with large residuals
- Leverage: measures the extent to which the predictor differs from the mean of the predictor; the red residual has lower leverage than the blue residual
- Influence: observations that have high leverage and are extreme outliers, changes coefficient estimates drastically if not included

Leverage: focus on value of x

Influence: focus on slop of the line

How to measure the influence of each observation

Cook's distance

• usage measure of the influence of each
• observation on the regression coefficients

observation on the regression coefficients.

algorithm extent of change in model estimates when that particular observation is omitted

ullet interpretation when Cook's distance is close to 1 $\overline{\ \ }$ highly influential data point

Multiple independent variables

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p x_{ip} + \varepsilon_i$$

source: http://www.d4t4v1z.com/

Vector and Matrix notation

Vector notation

Obs.	Y	Independent variable				
		X_1	X ₂	•••	X_p	
1	y_1	X ₁₁	X ₁₂	•••	X _{1p}	
2	y_2	X ₂₁	X ₂₂	•••	X _{2p}	
	•••	•••	•••		•••	
n	y _n	X _{n1}	X _{n2}	•••	X _{np}	

$$y_{1} = \beta_{0} + \beta_{1}x_{11} + \beta_{2}x_{12} + \dots + \beta_{p}x_{1p} + \varepsilon_{1}$$

$$y_{2} = \beta_{0} + \beta_{1}x_{21} + \beta_{2}x_{22} + \dots + \beta_{p}x_{2p} + \varepsilon_{2}$$

$$\vdots$$

 $y_n = \beta_0 + \beta_1 x_{n1} + \beta_3 x_{n2} + \dots + \beta_p x_{np} + \varepsilon_i$

Vector notation

Obs.	V	Independent variable				
		X _o	X ₁	X ₂	•••	X_p
1	y_1	1	X ₁₁	X ₁₂	•••	X _{1p}
2	y_2	1	X ₂₁	X ₂₂	•••	X _{2p}
	•••		•••	•••		•••
n	y _n	1	X _{n1}	X _{n2}	•••	X _{np}

$$y_{1} = \sum_{j=0}^{p} \boldsymbol{\beta}_{j} x_{1j} + \boldsymbol{\varepsilon}_{1}$$

$$= \begin{pmatrix} \boldsymbol{\beta}_{0} & \boldsymbol{\beta}_{1} & \boldsymbol{\beta}_{2} & \cdots & \boldsymbol{\beta}_{p} \end{pmatrix} \begin{pmatrix} 1 \\ x_{11} \\ x_{12} \\ \vdots \end{pmatrix}$$

$$+ \boldsymbol{\varepsilon}_{1}$$

$$y_1 = \boldsymbol{\beta}^T \mathbf{x}_1 + \boldsymbol{\varepsilon}_1$$

$$= \begin{pmatrix} \beta_0 & \beta_1 & \beta_2 \end{pmatrix}$$

$$\left|oldsymbol{eta}_{p}
ight|$$

$$+\varepsilon$$

$$y_1 = \mathbf{x}_1^T \boldsymbol{\beta} + \varepsilon_1$$

$$y_{1} = \mathbf{x}_{1}^{T} \boldsymbol{\beta} + \boldsymbol{\varepsilon}_{1}$$

$$= \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \end{pmatrix} \begin{pmatrix} \boldsymbol{\beta}_{0} \\ \boldsymbol{\beta}_{1} \\ \boldsymbol{\beta}_{2} \\ \vdots \end{pmatrix}$$

$$+ \boldsymbol{\varepsilon}_{1}$$

$$+\epsilon$$

$$egin{array}{c} eta_1 \ eta_2 \ dots \ eta_p \end{array}$$

$$+\mathcal{E}_1$$

Matrix notation

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix} \qquad \boldsymbol{\beta} = \begin{pmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \\ \vdots \\ \boldsymbol{\beta}_p \end{pmatrix} \qquad \boldsymbol{\varepsilon} = \begin{pmatrix} \boldsymbol{\varepsilon}_1 \\ \boldsymbol{\varepsilon}_2 \\ \vdots \\ \boldsymbol{\varepsilon}_n \end{pmatrix}$$

More general expression

$$\mathbf{y} = \mathbf{H}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$\mathbf{H} = \begin{pmatrix} h_0(1) & h_1(x_{11}) & h_2(x_{12}) & \cdots & h_p(x_{1p}) \\ h_0(1) & h_1(x_{21}) & h_2(x_{22}) & \cdots & h_p(x_{2p}) \\ \vdots & \vdots & \vdots & & \vdots \\ h_0(1) & h_1(x_{n1}) & h_2(x_{n2}) & \cdots & h_p(x_{np}) \end{pmatrix}$$

where h(x) is a non-linear transformation of the input x

This model is still called linear model as model parameter appear only linearly.

Example of non-linear transformation: Polynomial regression

$$\mathbf{y} = \mathbf{h}^T(\mathbf{x})\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

This means that we "lift" the original one-dimensional input space into a (K+1)-dimensional feature space.

Cost function

Cost function

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \mathbf{h}^T(\mathbf{x}_i)\boldsymbol{\beta})^2$$

Cost function

Obs.	V	Independent variable				
		X _o	X ₁	X ₂	•••	X_p
1	y_1	1	X ₁₁	X ₁₂	•••	X _{1p}
2	y ₂	1	X ₂₁	X ₂₂	•••	X _{2p}
	•••		•••	•••		•••
n	y _n	1	X _{n1}	X _{n2}	•••	X _{np}

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \mathbf{h}^T(\mathbf{x}_i)\boldsymbol{\beta})^2$$

Deriving the gradient

$$\nabla RSS(\boldsymbol{\beta}) = \nabla \left[\left(\mathbf{y} - \mathbf{H}\boldsymbol{\beta} \right)^T \left(\mathbf{y} - \mathbf{H}\boldsymbol{\beta} \right) \right]$$

$$=-2\mathbf{H}^{T}\left(\mathbf{y}-\mathbf{H}\boldsymbol{\beta}\right)$$

$$\nabla RSS(\boldsymbol{\beta}) = \nabla \left[\left(\mathbf{y} - \mathbf{H}\boldsymbol{\beta} \right)^T \left(\mathbf{y} - \mathbf{H}\boldsymbol{\beta} \right) \right]$$

$$=-2\mathbf{H}^{T}\left(\mathbf{y}-\mathbf{H}\boldsymbol{\beta}\right)$$

$$\nabla \cdot (y - \Box \beta)^{2}$$

$$= 2 (y - \Box \beta) \Box (-1)$$

Closed form solution

$$\nabla RSS(\boldsymbol{\beta}) = -2\mathbf{H}^T \left(\mathbf{y} - \mathbf{H}\boldsymbol{\beta} \right)$$

$$-2\mathbf{H}^T\mathbf{y} + 2\mathbf{H}^T\mathbf{H}\boldsymbol{\beta} = \mathbf{0}$$

$$\mathbf{H}^T \mathbf{H} \boldsymbol{\beta} = \mathbf{H}^T \mathbf{y}$$

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{H}^T \mathbf{H}\right)^{-1} \mathbf{H}^T \mathbf{y}$$

Framework for model evaluation

Evaluating model

Performance evaluation

Obs.	У	ŷ

$$MSE = \frac{\sum_{i=1}^{n} (y_i - \mathbf{h}^T(\mathbf{x}_i) \boldsymbol{\beta})^2}{n}$$

$$=\frac{\left(\mathbf{y}-\mathbf{H}\boldsymbol{\beta}\right)^{T}\left(\mathbf{y}-\mathbf{H}\boldsymbol{\beta}\right)}{n}$$

Low model complexity

High bias

Low variance

High model complexity

Low bias

High variance

We notice that polynomials of low degree fit the training data poorly. When we go to higher-degree, it provide the better results of fitting.

Polynomial degree 1

Polynomial degree 6

Polynomial degree 9

Deisenroth, M. P., Faisal, A. A., & Ong, C. S. (2020). *Mathematics for machine learning*. Cambridge University Press.

https://artsciencemillennial.substack.com/p/bias-variance-tradeoff-a-data-science

Ridge regression

When we increase the number of features, it can result in overfitting. To cope with this issue, the ridge regression introduces a penalty term by way of a tuning parameter called lambda. The idea is to make the fit small by making the residual sum or squares small plus adding a shrinkage penalty.

Cost function of ridge regression

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \mathbf{h}^T(\mathbf{x}_i)\boldsymbol{\beta})^2 + \lambda \|\boldsymbol{\beta}\|_2^2$$

$$= (\mathbf{y} - \mathbf{H}\boldsymbol{\beta})^{T} (\mathbf{y} - \mathbf{H}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^{T} \boldsymbol{\beta}$$

where $\lambda \ge 0$

$$\|\beta\|_{2}^{2} = \beta_{0}^{2} + \beta_{1}^{2} + \ldots + \beta_{p}^{2}$$

Tuning for penalty term

Source: http://wavedatalab.github.io/machinelearningwithr/post4.html

Magnitude of coefficients

Linear Regression

Ridge Regression

Ridge coefficients and lambda value

https://towardsdatascience.com/ridge-regression-for-better-usage-2f19b3a202db

Lasso regression

In lasso, the penalty is the sum of the absolute values of the coefficients. Lasso shrinks the coefficient estimates towards zero and it has the effect of setting variables exactly equal to zero when lambda is large enough while ridge does not. Hence, much like the best subset selection method, lasso performs variable selection.

Cost function of lasso regression

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \mathbf{h}^T(\mathbf{x}_i)\boldsymbol{\beta})^2 + \lambda \|\boldsymbol{\beta}\|_1$$

where $\lambda \ge 0$

$$\|\beta\|_1 = |\beta_0| + |\beta_1| + \ldots + |\beta_p|$$

can be solved by coordinate descent

Magnitude of coefficients

Linear Regression

Lasso Regression

Lasso coefficients and lambda value

Additional topic on linear regression

Log Transformations

In standard mathematical notation and in Excel

LN(X) is the natural log of X

LOG(X) is often used for the base-10 log

In statistics method and most of statistical software such as R and SAS

the function that is called LOG is the natural log

Why we employ Log transformations?

Only the dependent/response variable is log-transformed.

Only independent/predictor variable(s) is log-transformed.

Both dependent/response variable and independent/predictor variable(s) are log-transformed.

- Only the dependent/response variable is log-transformed
 - : log linear model

$$\log \mathbf{Y} = \hat{\boldsymbol{\beta}}_0 + \hat{\boldsymbol{\beta}}_1 \mathbf{x}_1$$

 $\hat{\beta}_{_1}$:one-unit increase in $x_{_1}$ will produce an expected increase in log~Y of $~\hat{\beta}_{_1}$ units

$$Y = \exp(\hat{\beta}_0 + \hat{\beta}_1 x_1) = \exp(\hat{\beta}_0) \exp(\hat{\beta}_1 x_1)$$

Additive relationship

Multiplicative relationship

$$\mathbf{Y} = \hat{\boldsymbol{\beta}}_0 + \hat{\boldsymbol{\beta}}_1 \mathbf{x}_1$$

$$Y = \exp(\hat{\beta}_0) \exp(\hat{\beta}_1 x_1)$$

Ex.

$$Y = 1.7 + 1.22x_1$$

$$Y = \exp(0.53) \exp(0.198x_1)$$
$$= e^{0.53} (e^{0.198})^{x_1}$$

One-unit increase in x₁

We add 1.22 to Y value.

We multiply exp(0.198) to Y value.

$$log(price) = 12.15954 + 0.000417 sqft_living$$

$$\exp(0.000417) = 1.000417$$

For every one-unit increase in sqft_living, price is multiplied by about 1.000417.

Only independent/predictor variable(s) is log-transformed

$$\mathbf{Y} = \hat{\boldsymbol{\beta}}_0 + \hat{\boldsymbol{\beta}}_1 \log(\mathbf{x}_1)$$

1% increase in the independent variable

increases (or decreases) the dependent variable by ($\hat{eta}_{_{1}}$ /100) units

$$(\hat{\beta}_0 + \hat{\beta}_1 \log(101)) - (\hat{\beta}_0 + \hat{\beta}_1 \log(100)) = \hat{\beta}_1 \log(1.01)$$

$$= 0.00995(\hat{\beta}_1)$$

$$\approx 0.01(\hat{\beta}_1)$$

Next Week

Practical guide to linear regression with Python

วิทยากร คุณภาคิน เตชธีรโภคิน ตำแหน่ง Data Scientist บริษัท ทรู คอร์ปอเรชั่น จำกัด (มหาชน)

<u>ศิษย์เก่ารุ่นที่ 1 ของหลักสูตรวิทยาการ</u> <u>ข้อมูลและการวิเคราะห์</u>