

一维搜索 One-dimensional search

电信学部·自动化科学与工程学院 系统工程研究所 吴江

Outline

- 一维搜索简介
- ▶精确一维搜索 (不利用导数)
- ▶精确一维搜索(利用导数)
- ▶ 非精确一维搜索

一维搜索

非线性规划的迭代下降算法框架:

$$x^{(k+1)} = x^{(k)} + t_k p^{(k)}, \quad f(x^{(k+1)}) < f(x^{(k)})$$

怎样确定步长因子 tk?

可以看作是寻找一元函数 $\varphi(t) = f(x^{(k)} + t p^{(k)})$ 的最小值点。

One-dimensional search or Line search

$$(LS) \begin{cases} \min_{t} \varphi(t) = f(x^{(k)} + t p^{(k)}) \\ s.t. \quad t \ge 0; \end{cases}$$

$$(LS) \begin{cases} \min_{t} \varphi(t) = f(x^{(k)} + t p^{(k)}) \\ s.t. \quad 0 \le t \le t_{\text{max}} \end{cases}$$

一维搜索问题的一般形式

步长

 $\varphi(t) = f(x^k + tp^k)$

s.t

min

 $t \ge 0, or \quad 0 \le t \le t_{\text{max}}$

搜索方向

有效一维 搜索问题

几点说明

- ▶ 使用范围: 一元函数极小点、NLP的搜索步长
- ▶ 一维搜索问题 = 一维NLP问题 > 迭代: t_1 , t_2 ,..., t_l ,...
- ▶ 局部最优解, 全局最优解, 满意解
- \triangleright 区间[a,b]上的单谷函数 $\varphi(t)$:
 - 。 ∃*t** ∈[*a*,*b*], 使得*φ*(*t*)在[*a*, *t**]上严格递减,且在在[*t**, *b*]上 严格递增.
 - 单谷函数与凸函数

精确与非精确一维搜索

- ▶ 定义: 若一种一维搜索算法产生的试探点到 $\{t_i\}_{i=1}^{\infty}$ 是收敛的 $(t_i > t^*)$,而 t^* 是该一维搜索问题的某个局部最优解,则称这样的一维搜索算法是精确一维搜索.
- 试探点列收敛于该一元函数的一个局部极小点
- ▶ 精确一维搜索, 最优一维搜索
- ▶ 非精确一维搜索, 可接受一维搜索
- 有限步终止
- 划界问题

常用一维搜索算法

	用导数(φ'(t))	不用导数
精确搜索	插值法	Fibonacci搜索
	二分法	黄金分割法
	Newton法	
非精确搜索	Goldstein法[65']	Goldstein法
	Armijo法[66]	Armijo法
	Wolfe法[69']	

在绝大部分一维搜索问题中, 非精确搜索算法 的效果明显好于精确搜索算法

精确一维搜索: 0.618与Fibonacci

▶ 问题: 已知 $\varphi(t)$ 在[a, b]上为单谷函数, 如何通过不断增加试探点 t_f (f=1, 2,...), 尽快得到其全局极小的一个足够好的近似?

$$a < t_1 < t_2 < b$$

算法基本思想

编小区间

- 。Step1: 取 t_1 , t_2 ∈[a, b], 且a< t_1 < t_2 <b. 置l=2,
 - 当 $\varphi(t_1) \leq \varphi(t_2)$ 时, 令 $\alpha = a, \beta = t_2, \gamma = t_1$
 - 当 $\varphi(t_2) \leq \varphi(t_1)$ 时, 令 $\alpha = t_1$, $\beta = b$, $\gamma = t_2$
- Step2: 若 β - $\alpha \leq \varepsilon$, 停, 输出 γ . 否则更新 t_{l+1} :

	$\varphi(t_{l+1}) \leq \varphi(\gamma)$	$\varphi(t_{l+1}) \geq \varphi(\gamma)$
$t_{l+1} < \gamma$	α 不变, $\beta=\gamma$, $\gamma=t_{l+1}$	$\alpha = t_{l+1}, \beta, \gamma$ 不变
$t_{l+1} > \gamma$	$\alpha=\gamma, \gamma=t_{l+1}$, β 不变	α , γ 不变, $\beta = t_{l+1}$

t_{H1} 的选取

▶ 方式一:保持区间缩小比

0.618

方式二:最终区间最短

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584.....

0.618法(黄金分割法)-保持区间缩小比

对称性: 出于合理的考虑,

要求
$$t_1 - a = \mathbf{b} - t_2$$

缩小比:第一步后区间缩小比 $\omega = (t_2 - a)/(b - a)$ $= (b - t_1)/(b - a)$

 $\omega \approx 0.618$ $\sqrt{}$

以 $[\alpha, \beta] = [t_1, b]$ 为例,若按同样比例在 $[\alpha, \beta]$ 中取两个点,则要求有一个点与 t_2 重合,这样可以节省一个试探点。

$$t_2' = t_2 \Rightarrow \omega = \frac{b - t_2'}{b - t_1} = \frac{b - t_2}{b - t_1} = \frac{(1 - \omega)(b - a)}{\omega(b - a)} \Rightarrow \omega^2 = 1 - \omega \Rightarrow \omega = \frac{-1 \pm \sqrt{5}}{2}$$

$$t_3' = t_2 \Rightarrow 1 - \omega = \frac{b - t_3'}{b - t_1} = \frac{b - t_2}{b - t_1} = \frac{(1 - \omega)(b - a)}{\omega(b - a)} \Rightarrow \omega^2 = 1 \Rightarrow \omega = \pm 1$$

0.618法步骤

第 1 步 确定单谷区间[a,b],给定最后区间精度 $\varepsilon > 0$; 第 2 步 计算最初两个探索点 $t_1 = a + 0.382(b - a) = b - 0.618(b - a)$ $t_2 = a + 0.618(b - a)$ 并计算 $\varphi_1 = \varphi(t_1)$, $\varphi_2 = \varphi(t_2)$; 第 3 步 若 $\varphi_1 \leq \varphi_2$,转第 4 步。否则转第 5 步; 第 4 步 若 $t_2 - a \leq \varepsilon$,停止迭代,输出 。否则 $\varphi \coloneqq t_2$, $t_2 \coloneqq t_1$, $t_1 \coloneqq b - 0.618(b - a)$, $\varphi_2 \coloneqq \varphi_1$,计算 $\varphi_1 = \varphi(t_1)$,转第 3 步;第 5 步 若 $b - t_1 \leq \varepsilon$,停止迭代,输出 。否则 $\varphi^a \coloneqq t_1$, $t_1 \coloneqq t_2$, $t_2 \coloneqq a + 0.618(b - a)$, $\varphi_1 \coloneqq \varphi_2$,计算 $\varphi_2 = \varphi(t_2)$,转第 3 步。

Fibonacci搜索(Fibonacci法)-最终区间最短

ightharpoonup 问题进一步明确化: 已知 $\varphi(t)$ 在[a,b]上为单谷函数, 按缩小区间 法框架, 若只允许试探 N 个点, 怎样选取试探点 t_l (l=1,2,...), 使 最终包含全局极小 t^* 的待探索区间长度最小?

结论: 可描述为非线性规划问题, 可获得全局最优解!

→ 去除冗余信息,问题的等价转化:若只允许试探 N 个点,且最终区间长度要求为 1,最初区间的最大长度是多少?

Fibonacci数列

$$F_0 = 1, F_1 = 1, F_N = F_{N-1} + F_{N-2}$$

Fibonacci搜索(Fibonacci法)

计算过程:按比例缩放至 F_N ,

$$t_1 = a + \frac{F_{N-2}}{F_N}(b-a), t_2 = b - \frac{F_{N-2}}{F_N}(b-a)$$

$$\lim_{N \to +\infty} \frac{F_{N-1}}{F_N} = \frac{\sqrt{5} - 1}{2}$$

0.618法是Fibonacci法的极限形式

Best Exploration for Maximum is Fibonaccian by S. M. Johnson

"The F_n form the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ..., with $F_{20} > 10000$. Thus a maximum can always be located within 10^{-4} of the original interval length with 20 calculations. Using the more conventional technique of computing f(x) and $f(x + \epsilon)$, where x is at the midpoint of the interval [aka Dichotomous Search], may take as many as 28 computations."

Johnson, Selmer M. *Best exploration for maximum is Fibonaccian*. No. P856. RAND CORP SANTA MONICA CA, 1956.

精确一维搜索: Newton法

 $\min \varphi(t)$

$$s.t t \ge 0$$

寻找φ'(t*)=0的 点t*

$$y - \varphi'(t_l) = \varphi''(t_l)(t - t_l)$$

$$y = 0 \Rightarrow t = t_l - \frac{\varphi'(t_l)}{\varphi''(t_l)}$$

$$t_{l+1} = t_l - \frac{\varphi'(t_l)}{\varphi''(t_l)}$$

优点: 若收敛, 则收敛很快

缺点:要求tn非常接近t*

要用到高阶导数

Newton法举例

例1.给定 $t_0 = 2$,求解:

$$\begin{cases} \min \varphi(t) = \frac{1}{3}t^3 - 2t + 1 \\ s.t. \quad t \ge 0 \end{cases}$$

$$t_{l+1} = t_l - \frac{\varphi'(t_l)}{\varphi''(t_l)}$$

解:
$$t_{l+1} = t_l - \frac{\varphi'(t_l)}{\varphi''(t_l)} = t_l - \frac{t_l^2 - 2}{2t_l} = \frac{t_l}{2} + \frac{1}{t_l}$$

$$t_1 = \frac{3}{2}$$

$$t_2 = \frac{17}{12}$$

实质:解方程 $t^2-2=0$ 或求 $\sqrt{2}$

$$t_3 = \frac{577}{408} \approx 1.4142157$$

非精确一维搜索

$$(LS)\begin{cases} \min_{t} \varphi(t) = f(x^{(k)} + t p^{(k)}) \\ s.t. \quad t \ge 0; \end{cases}$$

基本假设: $\varphi(t)$ 连续可导 $\varphi'(0) < 0$

非精确一维搜索方法并不试图寻找(LS)问题的全局或局部最优解,而是致力于获得一个满意解,因此,它的方法包含两个结构要素:

- 1. 满意步长的判别准则
- 2. 获得满意步长的方法

Goldstein准则

选 m_1 , m_2 满足 $0 < m_1 < m_2 < 1$, 则步长因子 t_k 可接受当且仅当:

$$\begin{cases} \varphi(t_k) \le \varphi(0) + m_1 t_k \varphi'(0) \\ \varphi(t_k) \ge \varphi(0) + m_2 t_k \varphi'(0) \end{cases}$$

步长规则的本质含义: 有足够下降,不过分靠近 0

Armijo准则

选m, M 满足0 < m < 1 < M, 则步长因子 t_k 可接受当且仅 当:

$$\begin{cases} \varphi(t_k) \le \varphi(0) + mt_k \varphi'(0) \\ \varphi(Mt_k) \ge \varphi(0) + mMt_k \varphi'(0) \end{cases}$$

步长规则的本质含义: 有足够下降,不过分靠近0

定理: 若 $\varphi(t)$ 在[0, + ∞)有下界, 则满足Armijo准则的步长存 在。

Wolfe准则

选 $m \in (0, 1/2)$, $\sigma \in (m, 1)$, 则步长因子 t_k 可接受当且仅当:

$$\begin{cases} \varphi(t_k) \le \varphi(0) + mt_k \varphi'(0) \\ |\varphi'(t_k)| \le -\sigma \varphi'(0) \end{cases}$$

步长规则的本质含义:有足够 $\varphi(0)$ 下降,不过分靠近 0,尽量包含最优解

非精确一维搜索的一般原则

- $\phi(t_k)$ 和 $\phi(t_0)$ 相比要有足够的下降
- ▶ 距离不要t₀太近
- > 尽可能找到局部极小点

作业

▶ P154 10

