Tourists

Problem Name	Tourists
Input file	standard input
Output file	standard output
Time limit	4 seconds
Memory limit	256 megabytes

Er zijn n steden in Utopia, genummerd van 1 tot en met n. Er zijn ook n-1 tweerichtings-wegen om de steden te verbinden. Je kunt alle steden vanuit alle steden bereiken via deze wegen. Op dit moment, zijn er m toeristen, genummerd 1 tot en met m, die dit land bezoeken, omdat Utopia erg mooi is. Iedere toerist i start in stad a_i . Meerdere toeristen kunnen in dezelfde stad zijn. Oftewel, het kan zijn dat $a_i = a_i$ voor een paar i,j zodat $i \neq j$.

Elke toerist heeft een waardering over hoe interessant hun huidige bezoek aan Utopia is, gerepresenteerd door een nummer. In het begin, is de waardering van iedere toerist 0. De Utopiaanse regering wil de waardering van toeristen verhogen door evenementen te organiseren in geselecteerde steden. Wanneer een event in stad c gehouden wordt, wordt de waardering van alle toeristen die daar op dat moment verblijven verhoogd met d. De hoogte van d hangt af van het type evenement.

Sommige toeristen hebben gepland om te reizen naar verschillende steden in Utopia. Hoewel het reizen tussen steden bijna geen tijd kost (door de efficiënte Utopiaanse wegen), is het toch ongemakkelijk en verlaagt het de hoogte van de waardering. Om precies te zijn, reizen die k wegen gebruiken verlagen de waardering met k (toeristen kiezen altijd het kortste pad tussen twee steden).

Jij bent gevraagd om de waarderingen van toeristen te volgen, terwijl zij door het land reizen. Om dit te doen, krijg je q vragen als onderdeel van de input. Deze moet je uitvoeren en beantwoorden in de volgorde waarin ze gegeven worden.

Invoer

De eerste regel bevat 3 integers n, m, q ($2 \le n \le 200\,000$, $1 \le m, q \le 200\,000$) - respectievelijk het aantal steden, toeristen en vragen.

De tweede regel bevat m integers $a_1, a_2, ..., a_m$ ($1 \le a_i \le n$), waar a_i de start-stad van de i^{de} tourist representeert.

De volgende n-1 regels bevatten elk 2 integers: v_i en w_i ($1 \le v_i$, $w_i \le n$, $v_i \ne w_i$) wat betekent dat er een weg is tussen stad v_i and w_i .

Op de volgende q regels staan de vragen op volgorde. Elke regel is in 1 van de volgende 3 formaten:

- de letter 't' gevolgd door 3 integers f_i , g_i , c_i ($1 \le f_i \le g_i \le m$, $1 \le c_i \le n$); wat betekent dat alle toeristen met cijfers van f_i tot g_i (inclusief) reizen naar stad c_i . Wie al in stad c_i is, verplaatst zich niet en verandert de waardering niet.
- de letter 'e' gevolgd door 2 integers c_i , d_i ($1 \le c_i \le n$, $0 \le d_i \le 10^9$); wat betekent dat in stad c_i een evenement wordt georganiseerd wat de waardering van de toerist verbeterd met d_i .
- de letter 'q' gevolgd door 1 integer v_i ($1 \le v_i \le m$), wat een vraag representeerd over de huidige waardering van toerist v_i .

Het is gegarandeerd dat er op zijn minst 1 'q' vraag aanwezig is in de invoer.

Uitvoer

Print het antwoord op alle q vragen, elk in een aparte regel, in de volgorde waarin ze gesteld zijn.

Puntentelling

Subtaak 1 (10 punten): $n, m, q \leq 200$

Subtaak 2 (15 punten): $n, m, q \le 2\,000$

Subtaak 3 (25 punten): $m,q \leq$ 2 000

Subtaak 4 (25 punten): Geen 'e' vragen

Subtaak 5 (25 punten): Geen extra randvoorwaarden

Voorbeeld Input

8 4 11

1481

64

63

37

65

5 1

12

- 18
- q 4
- t 3 4 5
- t 2 2 7
- q 4
- e 5 10
- e 1 5
- q 4
- t 1 1 5
- t 2 2 1
- q 1
- q 2

Voorbeeld Output

- 0
- -1
- 9
- 4
- -7