(**) Quanto é Possível Ganhar com Gestão Data Driven em uma Fábrica de Ferro-Ligas

Uma Análise Técnico-Estratégica Baseada em Evidências e Projeções Econômicas

I. Introdução: A Transição Global para o Modelo Data Driven

A indústria de base está no centro de uma transição estratégica. Empresas dos setores de metalurgia, energia e siderurgia vêm adotando o modelo de **gestão orientada por dados** (data driven management) como resposta a desafios históricos como downtime elevado, consumo energético excessivo e baixa previsibilidade de manutenção.

Segundo estudos da **Harvard Business School** e do **MIT Sloan Management Review**, empresas com forte cultura analítica têm **até 3,7 vezes mais chances de melhorar significativamente seus indicadores operacionais** (DAVENPORT & HARRIS, 2023; RANSBOTHAM et al., 2016). A transição para o data driven não é mais uma tendência — é um requisito competitivo.

II. O Papel dos Consultores Especializados na Transformação Digital

Conselhos de Administração que não dominam as tecnologias envolvidas recorrem, com frequência crescente, a **consultores especializados** que atuam como intérpretes estratégicos e arquitetos da transformação digital.

Referências internacionais, como os projetos realizados com **HSBC (Deloitte)** e **NHS-UK (McKinsey)**, mostram que esses consultores:

- Diagnosticam a maturidade digital da empresa;
- Conduzem workshops executivos e de aculturamento;
- Planejam a arquitetura de dados e os projetos-piloto de maior impacto;
- Estabelecem a governança de dados e os indicadores estratégicos;
- Traduzem resultados técnicos em ganhos tangíveis, compreensíveis para a Diretoria.

Esse apoio técnico-estratégico permite **tomada de decisão orientada a valor**, mesmo em ambientes não familiarizados com termos como IA, digital twin ou data lake.

III. Valores Referenciais e Possibilidades de Ganho — Revisão Bibliográfica

Com base em referências verificáveis e estudos de caso publicados, seguem os indicadores de melhoria típicos com a adoção de soluções data driven no setor de ferro-ligas:

	Valor	Melhoria		
Indicador	Típico	com Data	Fontes	
	Atual	Driven		

Indicador	Valor Típico Atual	Melhoria com Data Driven	Fontes
OEE (Overall Equipment Effectiveness – Eficiência Global dos Equipamentos)	65–75%	+8 a 12 p.p.	EGA Sistemas; Siemens; ABB; MIT Sloan
Downtime (h/mês)	50–70 h/mês	Redução de 20–40%	TRACTIAN; Brazilian Journals; ABM Proceedings; EGA Sistemas
Consumo de energia elétrica	18–26 MWh/ton	Redução de 8–15%	SEBRAE (2023); Clarke Energy (2024); ABB (2023)
Consumo de redutor (kg/ton)	400–550 kg/ton	Redução de 6–12%	Siemens (2024); ABB (2023)
Custo de manutenção	R\$ 300– 600/ton	Redução de 15–30%	TRACTIAN (2022); ABB (2023)

IV. Estimativa de Ganhos no Cliente — Horizonte de 5 Anos

Para uma fábrica de ferro-ligas com 100.000 toneladas/ano de capacidade produtiva, os ganhos projetados são:

Indicador	Ganho Anual Estimado	Cálculo Base	
Redução no consumo de redutor (6%)	R\$ 2.940.000,00	4.200 t * R\$ 700/ton	
Redução de downtime (40%)	R\$ 6.397.440,00	134,4 h/ano * R\$ 4.000/ton equivalente	
Redução no consumo de energia elétrica (10%)	R\$ 2.100.000,00	10.000 MWh * R\$ 210/MWh (tarifa média) * 10% de redução	
Ganho total anual estimado	R\$ 11.437.440,00		
Ganho em 5 anos (sem inflação)	R\$ 57.187.200,00	Ganho anual multiplicado por 5	

V. Proposição de Pagamento para a Consultoria

A proposta comercial é baseada no princípio de valor gerado:

- Investimento Inicial Total: menos de R\$ 800.000
 Inclui diagnóstico, protótipo funcional, apoio técnico, arquitetura de dados, machine learning e assistente cognitivo (Framework 3AGD completo).
- Bônus de Sucesso (Taxa de Performance):

- 5% sobre os ganhos anuais do cliente
- Limitado a R\$ 1 milhão por ano
- Vigência: 5 anos
- Valor total projetado: R\$ 2,3 milhões em 5 anos

VI. Visão Win-Win: ROI Consolidado em 5 Anos

Este modelo entrega uma relação justa e escalável:

Métrica	Valor em 5 anos	
Investimento total do cliente	~ R\$ 2,8 milhões	
Ganho bruto estimado	R\$ 57,2 milhões	
ROI (Retorno sobre investimento)	> 20 vezes o investimento	
% do valor que permanece com cliente	> 94%	

A estrutura proposta garante que **o sucesso da consultoria está diretamente vinculado ao sucesso operacional e financeiro do cliente**. Essa é a essência de um modelo verdadeiramente sustentável e colaborativo.

Referências Bibliográficas

- 1. DAVENPORT, T. H.; HARRIS, J. G. *Competing on Analytics: The New Science of Winning*. Boston: Harvard Business School Press, 2023.
- 2. RANSBOTHAM, S.; KIRON, D.; PRENTICE, P. K. Beyond the Hype: The Hard Work Behind Analytics Success. *MIT Sloan Management Review*, 2016. Disponível em: https://sloanreview.mit.edu/projects/the-hard-work-behind-data-analytics-strategy/. Acesso em: 7 jun. 2025.
- 3. TRACTIAN. *Como a Vetorial eliminou 1.200hrs em manutenções corretivas*. São Paulo: TRACTIAN, 2022. Disponível em: https://tractian.com/cases/vetorial-siderurgia. Acesso em: 7 jun. 2025.
- 4. EGA SISTEMAS. *Aplicações MES em indústrias metalúrgicas: casos de sucesso*. São Paulo: EGA Sistemas, 2023. Disponível em: https://www.egasistemas.com.br/cases. Acesso em: 7 jun. 2025.
- 5. SEBRAE. *Como reduzir o consumo de energia no setor siderúrgico*. Brasília: SEBRAE, 2023. Disponível em: https://www.sebrae.com.br. Acesso em: 7 jun. 2025.
- 6. CLARKE ENERGY. *Como reduzir custos de energia na indústria de metalurgia*. Rio de Janeiro: Clarke Energy, 2024. Disponível em: https://www.clarke-energy.com/br/metalurgia. Acesso em: 7 jun. 2025.
- 7. ABB. *Eficiência energética em sistemas industriais: guia prático para siderurgia*. Osasco: ABB, 2023. Disponível em: https://new.abb.com/br/eficiencia-energetica. Acesso em: 7 jun. 2025.
- 8. SIEMENS. *Digitalização e automação em plantas metalúrgicas: estudo de caso*. São Paulo: Siemens, 2024. Disponível em: https://new.siemens.com/br/pt/solucoes/industria/metalurgia.html. Acesso em: 7 jun. 2025.

- 9. SILVA, J. P.; OLIVEIRA, M. T. A importância do gerenciamento de manutenção para redução de downtime. *Brazilian Journals of Industry and Technology*, Curitiba, v. 4, n. 2, p. 58–72, abr. 2022.
- 10. SANTOS, A. C.; GOMES, P. R. Otimização de processos com monitoramento contínuo em metalurgia. In: CONGRESSO ANUAL DA ABM, 76., 2022, São Paulo. *Anais...*. São Paulo: ABM, 2022. p. 245–258.