

Hình 1: Tập nghiệm của bài toán Tối ưu nguyên hoàn toàn

0.0.0.1 Các bước thực hiện của phương pháp

Tối ưu nguyên hoàn toàn (Pure integer linear program)

(H)
$$z_h = c^T x \longrightarrow Max$$

$$\begin{cases} Ax \le b, \\ x \ge 0, \text{ nguyên} \end{cases}$$
 (1)

- Trong đó $c^T=(c_1\ c_2\ \dots\ c_n),\ A$ là ma trận $m\times n,\ b=\begin{pmatrix}b_1\\b_2\\\vdots\\b_m\end{pmatrix},$ với $x\in Z^n.$
- Bài toán (H) gọi là bài toán **Tối ưu nguyên hoàn toàn.**
- Tập $S_h := \{x \in \mathbb{Z}_+^n : Ax \leq b\}$ là tập nghiệm của bài toán Tối ưu nguyên hoàn toàn.

Minh hoạ bài toán

$$2x_1 + 2x_2 \longrightarrow Max
\begin{cases}
x_1 + 3x_2 \le 24 \\
\frac{13}{3}x_1 + 2x_2 \le 32.5 \\
x_1, x_2 \ge 0.
\end{cases} (2)$$

Tối ưu nguyên bộ phận (Mixed integer linear program)

(B)
$$z_b = c^T x + h^T y \longrightarrow Max$$

$$\begin{cases}
Ax + Gy \le b, \\
x \ge 0, \text{ nguyên} \\
y \ge 0.
\end{cases}$$
(3)

Hình 2: Tập nghiệm của bài toán Tối ưu nguyên bộ phận

- Trong đó $c^T = (c_1 \ c_2 \ \dots \ c_n), \ h^T = (h_1 \ h_2 \ \dots \ h_p), \ A$ là ma trận $m \times n, \ G$ là ma trận $m \times p, \ b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}, với \ x \in Z^n \ và \ y \in R^p.$
- Bài toán (B) gọi là bài toán **Tối ưu nguyên bộ phận.**
- Tập $S_b := \{(x,y) \in \mathbb{Z}_+^n \times \mathbb{R}_+^p : Ax + Gy \leq b\}$ là tập nghiệm của bài toán Tối ưu nguyên bộ phận.

Minh hoạ bài toán

$$\begin{cases} 5x_1 + \frac{15}{7}x_2 \le 20\\ -2.4x_1 + \frac{30}{7}x_2 \le 15\\ x_1, x_2 > 0. \end{cases}$$
(4)

Muc tiêu

Bài toán quan tâm

$$(P) z_p = c^T x + h^T y \longrightarrow Max$$

$$\begin{cases} Ax + Gy \le b, \\ x, y \ge 0. \end{cases} (5)$$

- Trong đó (P) là bài toán (B) với nghiệm thuộc tập số thực.
- Bài toán (P) là một bài toán **Tối ưu tuyến tính thông thường** hay gọi đơn giản là bài toán Tối ưu tuyến tính (Natural linear programming relaxation).

• Tập $S_p := \{(x,y) \in R_+^n \times R_+^p : Ax + Gy \leq b\}$ là tập nghiệm của bài toán Tối ưu tuyến tính.

Mục tiêu Giả sử ta nhận được tập phương án tối ưu của bài toán (3) sau hữu hạn lần giải, ký hiệu (x_b, y_b) và giá trị tối ưu là z_b thì ta có nhận xét sau:

Nhận xét 1.

- Nếu $S_b \subset S_p$ thì ta luôn nhận được $z_b \leq z_p$ và phương án có thể cải thiện.
- Nếu $S_b = S_p$ thì ta nhận được $z_b = z_p$ và bài toán được giải.

Vì thế, ta chọn xử lý bài toán (B) thông qua bài toán (P) bằng cách cải thiện phương án thu được từ bài toán (P) sao cho thoả điều kiện của bài toán (B).

Ví dụ

$$(P) \quad 5.5x_1 + 2.1x_2 \longrightarrow Max$$

$$\begin{cases}
-1x_1 + x_2 \le 2 \\
8x_1 + 2x_2 \le 17
\end{cases}$$

$$x_1 \ge 0,$$

$$x_2 \ge 0.$$

$$\Rightarrow \begin{cases}
x_1 = 1.3 \\
x_2 = 3.3 \\
z = 14.08
\end{cases}$$

Phương án có thể cải thiện.

Ví dụ

$$(P) \quad 3x_1 + 4x_2 \longrightarrow Max$$

$$\begin{cases} 2.5x_1 + \frac{15}{4}x_2 \le 20 \\ x_1 + \frac{5}{3}x_2 \le \frac{50}{3} \\ x_1 \ge 0, \\ x_2 \ge 0. \end{cases}$$

$$\Longrightarrow \begin{cases} x_1 = 5 \\ x_2 = 7 \\ z = 43 \end{cases}$$

Bài toán được giải.

Thuật toán nhánh cận

Phương pháp xác định cận

Ta gọi x_j với $1 \le j \le n$ là nghiệm thu được từ bài toán (P).

Định lý 1.

- Với mỗi $x_j \in \mathbb{R}$, tồn tại duy nhất số nguyên $k \in \mathbb{Z}$ sao cho $k \le x_j < k+1$.
 - Giá trị k khi đó ta gọi là phần nguyên nhỏ nhất của x_j , ký hiệu là $\lfloor x_j \rfloor$.
 - Giá trị k+1 gọi là phần nguyên lớn nhất của x_i , ký hiệu là $[x_i]$.

Chứng minh.

• $\forall x_j \geq 0$, ta có:

$$-x_i \in \mathbb{Z} \Rightarrow |x_i| = x_i$$
. (dpcm)

 $-x_j \notin \mathbb{Z}$, ta đặt $S = \{m \in \mathbb{N} \mid m > x_j\}$ Theo tiên đề Peano, luôn tồn tại một minS, vì thế ta dễ dàng nhận thấy min $S - 1 = k = \lfloor x_j \rfloor$ với $k \in \mathbb{Z}$ và thoả $k \leq x_j < k + 1$ hay $\lfloor x_j \rfloor \leq x_j < \lceil x_j \rceil$.

Ví dụ 1. Ta có $x_1 = 3.3$, vậy khi đó phần nguyên nhỏ nhất của x_1 là $\lfloor x_1 \rfloor = 3$ và phần nguyên lớn nhất là $\lceil x_1 \rceil = 4$.

Phương pháp xử lý bài toán

- Từ (1) và (1), ta thấy rằng nếu $\exists x_j \notin \mathbb{Z}$, thì ta có thể tiếp tục cải thiện phương án cho đến khi $\forall x_j \in \mathbb{Z}$.
- Nếu nghiệm thu được là $x_j \notin \mathbb{Z}$ ta thiết lập được 2 bài toán con từ bài toán (P) ban đầu, ký hiệu (P_1) và (P_2) .

$$(P_1) \quad z_1 = c^T x + h^T y \longrightarrow Max$$

$$\begin{cases} Ax + Gy \le b \\ x_j \le \lfloor x_j \rfloor, \\ x, y \ge 0. \end{cases}$$

$$(6)$$

• Tập $S_1 := S_p \cap \{(x,y) : x_j \leq \lfloor x_j \rfloor\}$ là tập nghiệm tối ưu của bài toán con (P_1) .

$$(P_2) \quad z_2 = c^T x + h^T y \longrightarrow Max$$

$$\begin{cases} Ax + Gy \le b \\ x_j \ge \lceil x_j \rceil, \\ x, y \ge 0. \end{cases}$$

$$(7)$$

Hình 3: Tập nghiệm của bài toán

- Tập $S_2 := S_p \cap \{(x,y) : x_j \ge \lceil x_j \rceil \}$ là tập nghiệm tối ưu của bài toán con (P_2) . Điều kiện nghiệm
- Nếu tồn tại (P_i) với i=1,2 không giải được $(S_i=\emptyset)$, ta gọi bài toán **vô nghiệm**.
- $\bullet\,$ Giả sử x^i là nghiệm tối ưu của bài toán (P_i) và giá trị tối ưu là z_i với i=1,2.
 - Nếu $\forall x^i \in Z_+^n$, ta nói S_i là tập nghiệm thoả mãn bài toán tối ưu nguyên bộ phận, z_i^* là giá trị tối ưu và bài toán con (P_i) được giải (gọt bởi nghiệm nguyên).
 - Nếu $\exists x^i \notin Z_+^n$ đồng thời $z_i \leq z_i^*$, ta dừng phân nhánh và bỏ qua bài toán (gọt bởi cận).
 - Nếu $\exists x^i \notin Z^n_+$ đồng thời $z_i > z_i^*$, bài toán chưa tối ưu và có thể tiếp tục cải thiện.

Ví dụ minh hoạ

(P)
$$z_p = 5.5x_1 + 2.1x_2 \longrightarrow Max$$

$$\begin{cases}
-x_1 + x_2 \le 2 \\
8x_1 + 2x_2 \le 17 \\
x_1 \ge 0, \\
x_2 \ge 0.
\end{cases}$$

Giải bài toán bằng phương pháp đơn hình thông thường ta được nghiệm $x_1=1.3,$ $x_2=3.3$ và $z_p=14.08.$

Hình 4: Tập nghiệm của bài toán (P_1)

Chọn $x_1 = 1.3$ để cải thiện phương án, ta thu được 2 bài toán con sau:

$$(P_1) \quad z_1 = 5.5x_1^1 + 2.1x_2^1$$

$$\begin{cases}
-x_1^1 + x_2^1 \le 2 \\
8x_1^1 + 2x_2^1 \le 17
\end{cases}$$

$$\begin{cases}
x_1^1 \le 1 \\
x_1^1 \ge 0 \\
x_2^1 \ge 0.
\end{cases}$$

$$(P_2) \quad z_2 = 5.5x_1^2 + 2.1x_2^2$$

$$\begin{cases}
-x_1^2 + x_2^2 \le 2 \\
8x_1^2 + 2x_2^2 \le 17
\end{cases}$$

$$\begin{cases}
x_1^2 \ge 2 \\
x_1^2 \ge 0 \\
x_2^2 \ge 0.
\end{cases}$$

$$(P_1) \quad z_1 = 5.5x_1^1 + 2.1x_2^1 \longrightarrow Max$$

$$\begin{cases}
-x_1^1 + x_2^1 \le 2 \\
8x_1^1 + 2x_2^1 \le 17
\end{cases}$$

$$\begin{cases}
x_1^1 \le 1 \\
x_1^1 \ge 0 \\
x_2^1 \ge 0.
\end{cases}$$

Giải bài toán ta được $x_1^1 = 1, x_2^1 = 3$ và $z_1 = 11.8$. Bài toán được giải (gọt bởi nghiệm nguyên).

Tương tự bài toán (P_2) ta được $x_1^2=2, x_2^2=0.5$ và $z_2=12.05.$ Ta chọn $x_2^2=0.5$

để cải thiện phương án. Ta được 2 bài toán con (P_3) và (P_4) :

$$(P_3) \quad z_3 = 5.5x_1^3 + 2.1x_2^3$$

$$\begin{cases}
-x_1^3 + x_2^3 \le 2 \\
8x_1^3 + 2x_2^3 \le 17 \\
x_1^3 \ge 2 \\
x_2^3 \le 0 \\
x_1^3 \ge 0 \\
x_2^3 \ge 0.
\end{cases}$$

$$(P_4) \quad z_4 = 5.5x_1^4 + 2.1x_2^4$$

$$\begin{cases}
-x_1^4 + x_2^4 \le 2 \\
8x_1^4 + 2x_2^4 \le 17 \\
x_1^4 \ge 2 \\
x_2^4 \ge 1 \\
x_1^4 \ge 0 \\
x_2^4 \ge 0.
\end{cases}$$

- Giải bài toán (P_3) ta được $x_1^3 = 2.125, x_2^3 = 0$ và $z_3 = 11.6875 \Rightarrow$ không khả thi do $z_3 < z_1$ (gọt bởi cận).
- Bài toán (P_4) vô nghiệm.
- Vậy phương án tối ưu của bài toán là $x_1^1 = 1, x_2^1 = 3$ và z = 11.8.

Sơ đồ thuật toán

- Ta gọi bài toán (P) có nút ban đầu là N_0 , tương ứng mỗi bài toán tối ưu tuyến tính thông thường (P_i) ứng với mỗi nút N_i trên sơ đồ nhánh và \mathcal{L} là danh sách chứa các nút được lập thông qua lý thuyết xác định cận và lý thuyết nghiệm.
- Ta đánh dấu giá trị tối ưu tốt nhất và nghiệm tối ưu tốt nhất của bài toán lần lượt là z^* và (x^*, y^*) .

Sơ đồ thuật toán

Thuật toán 1 (Land-Doig).

Bước 1. Thiết lập Đặt $\mathcal{L} := \{N_0\}, \ z^* = z_p \ và \ (x^*, y^*) = (x, y).$

Bước 2. Kiểm tra Nếu $\mathcal{L} = \emptyset$ thì nghiệm tối ưu của bài toán là (x^*, y^*) , giá trị tối ưu là z^* và bài toán được giải. Nếu $\mathcal{L} \neq \emptyset$, chuyển sang bước 3.

Bước 3. Chọn nút Chọn nút N_i từ danh sách \mathcal{L} và xoá khỏi \mathcal{L} sau đó chuyển sang bước \mathcal{L} .

Bước 4. Xác định cận Giải bài toán (P_i) , nếu bài toán vô nghiệm hoặc $z_i \leq z^*$, quay lại bước 2, nếu không, chuyển sang bước 5.

Bước 5. Gọt nghiệm Nếu tồn tại $x^i \notin Z_+^n$, ta thêm nút N_{i+1}, \ldots, N_k vào \mathcal{L} và quay về bước \mathcal{L} . Nếu không tồn tại $x^i \notin Z_+^n$, tức $\forall x^i \in Z_+^n$, ta đặt $z_i = z^*$, $(x^i, y^i) = (x^*, y^*)$ và quay lại bước \mathcal{L} .

Hình 5: Lưu đồ giải thuật của thuật toán nhánh cận.

0.0.0.2 Ví dụ minh họa

$$(P) \quad z_p = 5.5x_1 + 2.1x_2 + 3x_3 \longrightarrow Max$$

$$\begin{cases}
-x_1 + x_2 + x_3 \le 2 \\
8x_1 + 2x_2 + x_3 \le 17 \\
9x_1 + x_2 + 6x_3 \le 20 \\
x_i \ge 0, \ i = \overline{1, \dots, 3}
\end{cases}$$

Giải bài toán (P) ta được $x_1=1.38, x_2=2.55, x_3=0.83.$ Ta chọn biến x_1 để phân nhánh. $(x_2,x_3$ tương tự) Với $x_1^1 \leq 1$

$$(P_1) \quad z_p = 5.5x_1^1 + 2.1x_2^1 + 3x_3^1 \longrightarrow Max$$

$$\begin{cases}
-x_1^1 + x_2^1 + x_3^1 \le 2 \\
8x_1^1 + 2x_2^1 + x_3^1 \le 17 \\
9x_1^1 + x_2^1 + 6x_3^1 \le 20 \\
x_1^1 \le 1 \\
x_i^1 \ge 0, \ i = \overline{1, \dots, 3}
\end{cases}$$

$$\rightarrow z_1 = 13.24, x_1^1 = 1, x_2^1 = 1.4, x_3^1 = 1.6$$

Với $x_1^2 \geq 2$

$$(P_2) \quad z_p = 5.5x_1^2 + 2.1x_2^2 + 3x_3^2 \longrightarrow Max$$

$$\begin{cases}
-x_1^2 + x_2^2 + x_3^2 \le 2 \\
8x_1^2 + 2x_2^2 + x_3^2 \le 17 \\
9x_1^2 + x_2^2 + 6x_3^2 \le 20 \\
x_1^2 \ge 2 \\
x_i^2 \ge 0, \ i = \overline{1, \dots, 3}
\end{cases}$$

$$\rightarrow z_2 = 12.58, x_1^2 = 2, x_2^2 = 0.36, x_3^2 = 0.27$$

Ta tiếp tục chọn $x_2^1=1.4$ từ (P_1) . Với $x_2^3\leq 1$

$$(P_3) \quad z_p = 5.5x_1^3 + 2.1x_2^3 + 3x_3^3 \longrightarrow Max$$

$$\begin{cases}
-x_1^3 + x_2^3 + x_3^3 \le 2 \\
8x_1^3 + 2x_2^3 + x_3^3 \le 17 \\
9x_1^3 + x_2^3 + 6x_3^3 \le 20
\end{cases}$$

$$x_1^3 \le 1$$

$$x_2^3 \le 1$$

$$x_i^3 \ge 0, \ i = \overline{1, \dots, 3}$$

$$(P_4) \quad z_p = 5.5x_1^4 + 2.1x_2^4 + 3x_3^4 \longrightarrow Max$$

$$\begin{cases}
-x_1^4 + x_2^4 + x_3^4 \le 2 \\
8x_1^4 + 2x_2^4 + x_3^4 \le 17 \\
9x_1^4 + x_2^4 + 6x_3^4 \le 20 \\
x_1^4 \le 1 \\
x_2^4 \ge 2 \\
x_i^4 \ge 0, \ i = \overline{1, \dots, 3}
\end{cases}$$

 $o z_4 = 12.7, x_1^4 = 1, x_2^4 = 2, x_3^4 = 1 o$ gọt bởi nghiệm nguyên. Ta chọn $x_3^3 = 1.66$ từ (P_3) . Với $x_3^5 \le 1$.

$$(P_5) \quad z_p = 5.5x_1^5 + 2.1x_2^5 + 3x_3^5 \longrightarrow Max$$

$$\begin{cases}
-x_1^5 + x_2^5 + x_3^5 \le 2 \\
8x_1^5 + 2x_2^5 + x_3^5 \le 17 \\
9x_1^5 + x_2^5 + 6x_3^5 \le 20 \\
x_1^5 \le 1 \\
x_2^5 \le 1 \\
x_3^5 \le 1 \\
x_i^5 > 0, \ i = \overline{1, \dots, 3}
\end{cases}$$

 $\to z_5 = 10.6, x_1^5 = 1, x_2^5 = 1, x_3^5 = 1 \to \text{gọt bởi nghiệm nguyên nhưng } z_5 < z_4 \to \text{loại.}$

Với $x_3^6 \ge 2$.

$$(P_6) \quad z_p = 5.5x_1^6 + 2.1x_2^6 + 3x_3^6 \longrightarrow Max$$

$$\begin{cases}
-x_1^6 + x_2^6 + x_3^6 \le 2 \\
8x_1^6 + 2x_2^6 + x_3^6 \le 17 \\
9x_1^6 + x_2^6 + 6x_3^6 \le 20 \\
x_1^6 \le 1 \\
x_2^6 \le 1 \\
x_3^6 \ge 2 \\
x_i^6 \ge 0, \ i = \overline{1, \dots, 3}
\end{cases}$$

- $\to z_6=12.08, x_1^6=0.8, x_2^6=0.8, x_3^6=2 \to {\bf gọt}$ bởi cận. Ta chọn $x_2^2=0.36$ từ (P_2)
 - (P_7) cho $z_7 = 12.1, x_1^7 = 2.1, x_2^7 = 0, x_3^7 = 0.17, do <math>z_7 < z_4 \rightarrow loai.$
 - (P_8) cho kết quả **vô nghiệm**.

Vậy nghiệm tối ưu của bài toán là $x_1=1, x_2=2, x_3=1$ và giá trị tối ưu z=12.7.