

LABORATÓRIO DE CIRCUITOS ELÉTRICOS III

EXPERIÊNCIA 04

Circuitos Trifásicos

1 Objetivos:

• Encontrar a Corrente, tensões e até potência complexa em circuitos trifásicos.

2 Introdução Teórica:

Circuitos Trifásicos:

Ligação de carga em estrela Y

A fonte da Figura 1 é constituindo de um sistema trifásico simétrico e uma carga trifásica desequilibrada ligada em estrela (Z_A, Z_B e Z_C), com uma impedância ligada entre o centroestrela e a referência (terra), conhecida como impedância de aterramento, Z_N. A impedância Z_P representaria a impedância de uma linha de transmissão que conecta fonte com a carga.

Figura 1- Sistema Trifásicas com carga desiquilibrada

Ligação em ∆ (delta)

Para uma ligação em Δ ou triangulo ou delta, a tensão de linha (fase-fase) e a tensão de fase (V_{AC}) tem o mesmo valor, tal como pode-se observar na Figura 2. A corrente de linha (I_{aA} , I_{bB} , I_{cc} ,) será $\sqrt{3}$ vezes maior que a corrente de fase (I_{AB} , I_{CA} , I_{BC}).

Figura 2- Ligação em Δ (delta)

3 Material

- Barramento da Bancada energizada de forma trifásica;
- 6 reostatos de 230 ohms de 1,5 A ou maior. (valor a usar pode ser menor a 230 Ω , só tenha cuidado com a corrente)
- Voltímetros de ferro móvel 400 V.
- Amperimetros HB ca. 0/5/25 A.
- Multímetro digital Tektronix DM250;

4 Parte Experimental

4.1.- Monte um circuito e preencha a Tabela respectiva de cada circuito, como é mostrada na Figura 3. Para o Circuito da Figura, calcule a corrente e a potência complexa absorvidas, e a tensão entre os pontos N e N'.

Grandeza	Valor medido
I_A (A)	
I_{B} (A)	
\overline{S} (VA)	
$V_{NN'}(V)$	

Grandeza	Valor medido
I_A (A)	
I_{B} (A)	
I_N (A)	
\overline{S} (VA)	

Figura 3- Circuitos trifásicos

- 4.2.- Utilizando a Figura 4, preencha a tabela 1 para as seguintes condições:
 - a) $R_{X1} = R_{X2} = infinito$;
 - b) $R_{X1} = R$; $R_{X2} = infinito$;
 - c) Conectar n-N'₁ e R_{X1} = R_{X2} = infinito;
 - **d)** $R_{X1} = R_{X2} = R$; **e)** Conectar $N'_1 = N'_2 = R_{X1} = R_{X2} = R$;

Figura 4- Circuitos trifásicos em paralelo

- 4.3.- Utilizando a Figura 5 e de acordo com as condições dadas em a), b), c e d), preencha as tabelas respectivas.
 - a) $R_1 = 0$ Ω e $R_0 = R_2 = infinito$;
 - **b)** $R_1 = R_0 = R$; e $R_2 = infinito$;

Tabela 1.- Tabela de medições

rabeia 1 rabeia de medições	
Grandeza	Valor medido
<i>I</i> _A (A)	
I_{B} (A)	
I_c (A)	
I _{A1} (A)	
I _{A2} (A)	
I_{C1} (A)	
I_{c2} (A)	
$V_{NN_1'}$ (V)	
$V_{NN_2'}$ (V)	
$V_{N_1'N_2'}$ (V)	
I _N (A) (parte c)	
\overline{S} (VA)	

- c) $R_1 = 0$ Ω e $R_0 = R_2 = R$;
- d) Conectar N com N' e $R_1 = 0$ Ω e $R_0 = R_2 = R$;

Figura 5- Circuitos trifásicos em paralelo

Tabela 2.- Tabela de medições da parte "a"

Grandeza	Valor medido
$I_{\scriptscriptstyle A}$ (A)	
<i>I</i> _B (A)	
I_{c} (A)	

Tabela 3.- Tabela de medições da parte "b"

Grandeza	Valor medido
I_{A} (A)	
I_{B} (A)	
I_{c} (A)	
I_{AB} (A)	
I_{BC} (A)	
I _{CA} (A)	

Tabela 4.- Tabela de medições da parte ${\pmb c}$ e da parte ${\pmb d}$

Grandeza	Valor medido
I_{A} (A)	
I_{B} (A)	
I_{c} (A)	
I_{AB} (A)	
I_{BC} (A)	
I _{CA} (A)	
$I_{AN'}$ (A)	
$I_{CN'}$ (A)	

Grandeza	Valor medido
I_A (A)	
I_{B} (A)	
I_{c} (A)	
I_{AB} (A)	
I_{BC} (A)	
I _{CA} (A)	
$I_{AN'}$ (A)	
$I_{CN'}$ (A)	
I_N (A)	

5. Relatório

5.1. Fazer os diagramas fasoriais das tensões e correntes de fase, usando $V_{\rm AN}$ como referência do item 4.

5.2. Resultados

5.2.1. Resultados Analítico:

Monte todos os circuitos do item 4 e realize os cálculos para preencher as respectivas tabelas.

5.2.2. Resultados de Programação:

Realize os scripts de acordo com o solicitado no item 4 e o item 5.2.1.

5.2.3. Resultados Simulação:

Realize a montagem dos circuitos da Figura 6, Figura 7 e Figura 8 num simulador (bancada virtual) e faça as medições solicitadas no item 4.

- 5.3. Compare os resultados Experimentais, Analíticos, Programação e de Simulação e do item5.2 anterior, analise-los, mostre as diferencias e ressalte os erros mais grosseiros.Explique o porquê dessas diferenças.
- 5.4. Conclusões e comentários, procurando relacionar os valores obtidos com os valores teóricos esperados, tudo em base ao item anterior.

PREPARATÓRIO:

- (a) Monte o circuito das Figuras 6, 7 e 8 e determine o que é solicitado no item 4 parte experimental.
- (b) Num simulador de circuitos elétricos, realize o indicado do item 4 parte experimental.
- (c) Compare e comente os resultados obtidos em (b) e (c).

CUIDADOS GERAIS:

Após montar o circuito teste, verifique se as conexões estão fixas e seguras. Lembre os cuidados de segurança num laboratório de circuitos elétricos. Aguarde o professor verificar a montagem do circuito antes de ligar a fonte.