STRAIGHT LINES Exercise 7.1

Contents

1	Problem	1
2	Construction	2
3	Solution	2

1 Problem

Q3. AD and BC are equal perpendiculars to a line segment. Show that CD bisects AB.

Figure 1:

2 Construction

The input parameters are the lengths a and c.

Symbol	Value	Description
а	4	AD = BC
С	3	OA = OB
θ	$\arctan\left(\frac{c}{a}\right)$	$\angle D = \angle C$
0	$\sqrt{a^2+c^2} \begin{pmatrix} \cos\theta\\ \sin\theta \end{pmatrix}$	Point O

3 **Solution**

Given:

$$AD = BC (1)$$

$$\angle CBO = \angle DAO$$
 (2)

To prove:

$$\angle ODA = \angle OCB$$
 (3)

Proof

The directional vectors are:

$$\mathbf{m_1} = \mathbf{O} - \mathbf{D} \tag{4}$$

$$\mathbf{m_2} = \mathbf{D} - \mathbf{A} \tag{5}$$

The Normal vectors are:

$$\mathbf{n_1} = \mathbf{O} - \mathbf{C} \tag{6}$$

$$\mathbf{n_2} = \mathbf{C} - \mathbf{B} \tag{7}$$

(8)

$$\theta_1 = \cos^{-1}\left(\frac{\mathbf{m_1}^T \mathbf{m_2}}{\|\mathbf{m_2}\| \|\mathbf{m_2}\|}\right) \tag{9}$$

$$\theta_1 = \cos^{-1} \left(\frac{\mathbf{m_1}^T \mathbf{m_2}}{\|\mathbf{m_1}\| \|\mathbf{m_2}\|} \right)$$

$$\theta_2 = \cos^{-1} \left(\frac{\mathbf{n_1}^T \mathbf{n_2}}{\|\mathbf{n_1}\| \|\mathbf{n_2}\|} \right)$$
(9)

If $heta_1= heta_2$

$$\triangle OBC \cong \triangle OAD \tag{11}$$

$$OA = OB \tag{12}$$