1.3.1. Variables aleatorias discretas

Distribución uniforme discreta: $U\{1, n\}$

Se dice que una variable aleatoria tiene **distribución uniforme** si todos sus valores son equiprobables. Con $U\{1, n\}$ denotaremos a la variable aleatoria que toma valores en el conjunto $\{1, 2, \ldots, n\}$, todos con la misma probabilidad $\frac{1}{n}$.

$$p(i) = \frac{1}{n}, \qquad i = 1, 2, \dots, n.$$

El valor esperado y la varianza están dados por:

$$E[X] = \frac{n+1}{2}$$
, $Var(X) = \frac{n^2 - 1}{12}$.

Distribución de Bernoulli: B(p)

Una variable aleatoria que toma dos valores con probabilidad p (éxito) y 1 - p (fracaso), se dice **de Bernoulli**. La distribución de Bernoulli teórica se corresponde con la variable aleatoria que toma los valores 1 y 0:

$$X = \begin{cases} 1 & \text{con prob. } p \\ 0 & \text{con prob. } 1 - p. \end{cases}.$$

Su valor esperado y varianza están dados por:

$$E[X] = p,$$
 $Var(X) = p \cdot (1 - p).$

Distribución Binomial B(n, p)

Si consideramos un experimento que consiste en n ensayos independientes, cada uno con probabilidad p de éxito, entonces el número de éxitos tiene una distribución binomial de parámetros n y p. El rango de la variable aleatoria es el conjunto $\{0,1,2,\ldots,n\}$, y la función de masa de probabilidad está dada por:

$$p(i) = P(X = i) = \binom{n}{i} p^{i} (1 - p)^{n-i}, \qquad 0 \le i \le n.$$

Más adelante resultará útil la siguiente fórmula recursiva para las probabilidades de masa:

$$p(0) = (1-p)^n$$
, $p(i+1) = \frac{n-i}{i+1} \frac{p}{(1-p)} p(i)$, $0 \le i \le n-1$.

El valor esperado y la varianza están dados por:

$$E[X] = n p,$$
 $Var(X) = n p (1 - p).$

Figura 1.1: Distribución binomial. Bin(17, 0.3)

Distribución de Poisson: $\mathcal{P}(\lambda)$

Una variable aleatoria se dice que es de **Poisson con parámetro** λ si toma valores en $\mathbb{N} \cup 0$ con probabilidad de masa

$$p(i) = P(X = i) = e^{-\lambda} \frac{\lambda^i}{i!}, \qquad i \ge 0.$$

Una fórmula recursiva para estas probabilidades está dada por:

$$p(0) = e^{-\lambda}, \qquad p(i+1) = \frac{\lambda}{i+1} p(i), \quad i \ge 0.$$

El valor esperado y la varianza están dados por:

$$E[X] = \lambda, \quad Var(X) = \lambda.$$

Figura 1.2: Distribución de Poisson. $\lambda = 10$

Distribución Geométrica: Geom(p)

Dada una sucesión de ensayos independientes con probabilidad p de éxito, la variable aleatoria geométrica cuenta el número de ensayos independientes hasta obtener el primer éxito. Su rango es el conjunto de números naturales, \mathbb{N} .

La función de probabilidad de masa está dada por:

$$p(n) = P(X = n) = p(1 - p)^{n-1}, \qquad n \ge 1.$$

El valor esperado y la varianza están dados por:

$$E[X] = \frac{1}{p}, \quad Var(X) = \frac{1-p}{p^2}$$

Figura 1.3: Distribución geométrica. p = 0.4

Distribución Binomial Negativa o Pascal: Bn(r, p)

Esta distribución se corresponde con la variable aleatoria que mide el número de ensayos independientes con probabilidad de éxito p, hasta obtener r éxitos. La variable toma valores en el intervalo $\{r,r+1,r+2,\dots\}=\{n\in\mathbb{N}\mid n\geq r\}$. La función de probabilidad de masa está dada por

$$P(X = n) = {n-1 \choose r-1} p^r (1-p)^{n-r}, \qquad n \ge r.$$

El valor esperado y la varianza están dados por:

$$E[X] = \frac{r}{p}, \quad Var(X) = \frac{r(1-p)}{p^2}.$$

Distribución Hipergeométrica H(n, N, M)

Esta distribución se corresponde con la variable aleatoria que mide el número de éxitos en una muestra de tamaño n extraída de un conjunto de N+M elementos, donde un éxito equivale a extraer un elemento del subconjunto de cardinal N.

El rango de esta distribución es $\{0,1,2,\ldots,n\}$. La función de probabilidad de masa está dada por:

$$p(i) = P(X = i) = \frac{\binom{N}{i} \binom{M}{n-i}}{\binom{N+M}{n}}.$$

La probabilidad p(i) es 0 si i > n o n - i > M. El valor esperado y la varianza están dadas por:

$$E[X] = \frac{nN}{N+M}, \qquad \operatorname{Var}(X) = \frac{nNM}{(N+M)^2} \left(1 - \frac{n-1}{N+M-1}\right).$$

1.3.2. Variables aleatorias continuas

Denotaremos con I_A a la función indicadora del conjunto A, dada por

$$I_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}.$$

Distribución uniforme U(a,b)

Una variable aleatoria continua X se dice uniformemente distribuida en (a,b) si su función de densidad está dada por

$$f(x) = \frac{1}{b-a} \mathbb{I}_{(a,b)}(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{c.c.} \end{cases}$$

Su función de distribución acumulada está dada por:

$$F(x) = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a < x < b , \\ 1 & x \ge b \end{cases}$$

y la varianza y su valor esperado son:

$$E[X] = \frac{a+b}{2}, \quad Var(X) = \frac{1}{12}(b-a)^2.$$

Distribución Normal $N(\mu, \sigma)$

Una variable aleatoria continua X se dice normalmente distribuida con media μ y varianza σ^2 si su función de densidad de probabilidad está dada por

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \qquad x \in \mathbb{R}.$$

En tal caso usamos la notación $X \sim N(\mu, \sigma)$. Si $Z \sim N(0, 1)$ se dice que su distribución es **normal estándar**. La función de densidad es entonces:

$$f_Z(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \qquad x \in \mathbb{R}.$$

La Figura 1.3.2 muestra distribuciones normales, comparadas con la distribución normal estándar. En el primer gráfico la varianza es constante y en el segundo es constante la media.

Figura 1.4: Ejemplos de distribución normal, variando μ y σ

Si $X \sim N(\mu, \sigma)$, entonces $\frac{X-\mu}{\sigma}$ tiene distribución normal estándar. Denotremos con Φ a la función de distribución acumulada de una variable aleatoria normal estándar, $Z \sim N(0, 1)$:

$$\Phi(x) = P(Z \le x) = \frac{1}{2\pi} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$$
 (1.6)

La integral $\Phi(x)$ dada en (1.6) no tiene una fórmula cerrada, por lo cual es usual utilizar valores tabulados para el cálculo o interpolación de valores de Φ . De la expresión para la función de densidad, se observa que es una función par, esto es, f(x) = f(-x). Luego se cumple que

$$\Phi(x) = 1 - \Phi(-x),$$
 para todo $x \in \mathbb{R}$.

Si X es normal con media μ y varianza σ^2 , entonces su función de distribución acumulada puede expresarse en términos de Φ :

$$F(x) = P(X \le x) = P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right).$$

Algunos valores importantes a recordar son las probabilidades de que los valores de una variable aleatoria normal se distribuyan alrededor de la media, a una distancia menor de $k\sigma$, para ciertos valores de k. Para k=1,2,3 tenemos:

$$P(|X - \mu| < \sigma) \simeq 68\%$$
, $P(|X - \mu| < 2\sigma) \simeq 95\%$, $P(|X - \mu| < 3\sigma) \simeq 99.7\%$.

Si $Z \sim N(0,1)$ y α es un número entre 0 y 1, se suele denotar z_{α} al número real tal que

$$P(Z > z_{\alpha}) = \alpha.$$

Así por ejemplo,

$$z_{0.05} = 1.64,$$
 $z_{0.025} = 1.96,$ $z_{0.01} = 2.33,$ $z_{0.005} = 2.58.$

Debido a la simetría de la densidad de la normal estándar, estos valores indican en particular que:

$$P(-1.64 \le Z \le 1.64) = 90\%$$
, $P(-2.58 \le Z \le 2.58) = 99\%$,

y resultados similares para el 95% y el 98%.

Un resultado importante en la teoría de probabilidad es el llamado Teorema Central del Límite. Este teorema establece que la suma de n variables aleatorias independientes, igualmente distribuidas, todas con media μ y varianza σ^2 , tiene una distribución aproximadamente normal, con media $n\mu$ y varianza $n\sigma^2$. Más precisamente:

Teorema 1.2 (Teorema Central del límite). Sean X_1, X_2, \ldots , variables aleatorias independientes igualmente distribuidas con media μ y varianza σ^2 . Entonces

$$\lim_{n \to \infty} P\left(\frac{X_1 + X_2 + \dots + X_n - n\mu}{\sigma\sqrt{n}} < x\right) = \Phi(x).$$

Este teorema resultará útil para estimaciones estadísticas de intervalos de confianza a partir de una muestra de tamaño n.

Distribución exponencial $\mathcal{E}(\lambda)$

Una variable aleatoria X tiene distribución exponencial con parámetro $\lambda, \lambda > 0$, si su función de densidad está dada por

$$f_{\lambda}(x) = \lambda e^{-\lambda x} \mathbb{I}_{(0,\infty)}(x).$$

Su valor esperado y varianza están dados por:

$$E[X] = \frac{1}{\lambda}, \quad Var(X) = \frac{1}{\lambda^2}.$$

Si $X \sim \mathcal{E}(\lambda)$, entonces $c X \sim \mathcal{E}(\frac{1}{c}\lambda)$.

Se dice que una variable aleatoria X tiene **falta de memoria** si

$$P(X > s + t \mid X > s) = P(X > t),$$

para todo $s, t \in \mathbb{R}$. En efecto, si X tiene distribución exponencial con parámetro λ , entonces para cada t se cumple:

$$P(X > t) = 1 - (1 - e^{-\lambda t}) = e^{-\lambda t}.$$

Figura 1.5: Función de densidad de variables exponenciales

Luego,

$$P(X > s + t \mid X > s) = \frac{P(X > s + t, X > s)}{P(X > s)} = \frac{P(X > s + t)}{P(X > s)}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= P(X > t).$$

Las variables aleatorias con distribución exponencial son las únicas variables aleatorias continuas con la propiedad de falta de memoria. El análogo en el caso discreto son las variables aleatorias geométricas.

Sean X_1, X_2, \ldots, X_n son variables aleatorias independientes con función de distribución acumulada F_1, F_2, \ldots, F_n , y sea M el mínimo entre estas variables:

$$M = \min_{1 \le i \le n} \{ X_1, X_2, \dots, X_n \}.$$

Entonces M es una variable aleatoria, y su función de distribución acumulada cumple que:

$$1 - F_M(x) = P(M > x) = (1 - F_1(x)) \cdot (1 - F_2(x)) \cdot \cdots \cdot (1 - F_n(x)).$$

En particular, si las variables aleatorias tienen distribución exponencial:

$$X_i \sim \mathcal{E}(\lambda_i),$$

entonces su distribución satisface:

$$1 - F_M(x) = e^{-\lambda_1 x} \cdot e^{-\lambda_2 x} \dots e^{-\lambda_n x} = e^{-(\sum_i \lambda_i) x}.$$

Por lo tanto, la distribución del **mínimo entre** n **variables aleatorias exponenciales independientes** es exponencial:

$$M \sim \mathcal{E}(\lambda_1 + \lambda_2 + \cdots + \lambda_n).$$

Distribución Lognormal $LN(\mu, \sigma)$

Una variable aleatoria continua X se dice **lognormal** si su logaritmo $\ln(X)$ tiene distribución normal. Denotaremos $X \sim LN(\mu, \sigma)$ si el logaritmo de X tiene media μ y desviación estándar σ . En tal caso su función de densidad está dada por:

$$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}} e^{-(\log(x) - \mu)^2/(2\sigma^2)} \cdot \mathbb{I}_{(0,\infty)}(x).$$

Su valor esperado y varianza están dados por:

$$E[X] = e^{\mu + \sigma^2/2}, \qquad Var(X) = e^{2\mu + \sigma^2}(e^{\sigma^2} - 1).$$

Figura 1.6: Distribución lognormal

Distribución Gamma $\Gamma(\alpha, \beta)$

Una variable aleatoria Gamma con parámetros α y β tiene una función de densidad dada por:

$$f(x) = \frac{1}{\Gamma(\alpha)} \beta^{-\alpha} x^{\alpha - 1} e^{-\frac{x}{\beta}}, \qquad x > 0.$$

En la Figura 1.7 se muestran los gráficos de $\Gamma(\alpha,1)$, para $\alpha=0.5,1,2$ y 3. Notar de la definición de f que $\alpha=1$ corresponde a la distribución exponencial $\mathcal{E}(1)$. Su valor esperado y varianza están dados por:

$$E[X] = \alpha \beta,$$
 $Var(X) = \alpha \beta^2.$

Figura 1.7: Distribuciones Gamma

Distribución Weibull (α, β)

Una variable aleatoria continua Weibull con parámetros α y β , con $\alpha>0$ y $\beta>0$, tiene función de densidad dada por:

$$f(x) = \alpha \beta^{-\alpha} x^{\alpha - 1} e^{-(x/\beta)^{\alpha}} \mathbb{I}_{(0,\infty)}(x).$$

En la Figura 1.8 se muestran gráficos para $\beta=1$ y $\alpha=0.5,\,1,\,2$ y 3. Su valor esperado y varianza son:

$$E[X] = \frac{\beta}{\alpha} \Gamma\left(\frac{1}{\alpha}\right) \qquad Var(X) = \frac{\beta^2}{\alpha} \left[2\Gamma\left(\frac{2}{\alpha}\right) - \frac{1}{\alpha} \left(\Gamma\left(\frac{1}{\alpha}\right)\right)^2 \right].$$

Figura 1.8: Distribución Weibull