

*Sub
cl
end*

a second optical region made of a second optical material which is substantially transparent to said light but is different from said first optical material and has a refractive index n_2 ;

(A) b1

a third optical region made of a third optical material which is transparent to said light but is different from said second optical material and has a refractive index n_3 , said first, second and third optical regions being arranged to be brought into contact with each other or being arranged close to each other;

a first relief pattern formed in a boundary surface between said first and second optical regions and having a first pitch distribution and a depth d_1 ; and

a second relief pattern formed in a boundary surface between said second and third optical regions and having a second pitch distribution which is substantially identical with said first pitch distribution of the first relief pattern and a second depth d_2 , said first and second relief patterns being substantially aligned in a direction of an optical axis of the diffractive optical element, wherein said first relief pattern has a wavelength depending phase amplitude $a_1(\lambda)$, said second relief pattern has a wavelength depending phase amplitude $a_2(\lambda)$, said diffractive element has a phase amplitude $a(\lambda)$ which is a sum of said phase amplitudes $a_1(\lambda)$ and $a_2(\lambda)$ and includes at least one peak value within the wavelength to be used.

*Sub
C2*

40. (Amended) A diffractive optical element comprising:

a first optical region made of a first optical material which is substantially transparent to light within a wavelength range to be used and has a refractive index n_1 ;

a second optical region made of a second optical material which is substantially transparent to said light but is different from said first optical material and has a refractive index n_2 ;

a third optical region made of a third optical material which is transparent to said light but is different from said second optical material and has a refractive index n_3 , said first, second and third optical regions being arranged to be brought into contact with each other or being arranged close to each other;

a first relief pattern formed in a boundary surface between said first and second optical regions and having a first pitch distribution and a depth d_1 ; and

a second relief pattern formed in a boundary surface between said second and third optical regions and having a second pitch distribution which is substantially identical with said first pitch distribution of the first relief pattern and a second depth d_2 , said first and second relief patterns being substantially aligned in a direction of an optical axis of the diffractive optical element, wherein said first relief pattern has a wavelength depending phase amplitude $a_1(\lambda)$, said second relief pattern has a

*Sub
C2
cont*

wavelength depending phase amplitude $a_2(\lambda)$, said diffractive element has a phase amplitude $a(\lambda)$ which is a sum of said phase amplitudes $a_1(\lambda)$ and $a_2(\lambda)$ and includes at least one peak value within the wavelength to be used, wherein when an average refractive index of a composite relief structure constituted by the first and second relief patterns is n_0 , a thickness of the diffractive optical element is D , and a smallest pitch of the relief patterns is T , the following condition is satisfied:

*Cont'd
B2*

$$\frac{2\pi\lambda D}{n_0 T^2} < 1.$$

*Sub
C3*

42. A diffractive optical element comprising:

a first optical region made of a first optical material which is substantially transparent to light within a wavelength range to be used and has a refractive index n_1 ;

B3

a second optical region made of a second optical material which is substantially transparent to said light but is different from said first optical material and has a refractive index n_2 ;

a third optical region made of a third optical material which is transparent to said light but is different from said second optical material and has a refractive index n_3 , said first, second and third optical regions being arranged to be brought into contact with each other or being arranged close to each other;

*Sub
C3
end*

a first relief pattern formed in a boundary surface between said first and second optical regions and having a first pitch distribution and a depth d_1 ; and

*Continued
B3*

a second relief pattern formed in a boundary surface between said second and third optical regions and having a second pitch distribution which is substantially identical with said first pitch distribution of the first relief pattern and a second depth d_2 , said first and second relief patterns being substantially aligned in a direction of an optical axis of the diffractive optical element, wherein said first relief pattern has a wavelength depending phase amplitude $a_1(\lambda)$, said second relief pattern has a wavelength depending phase amplitude $a_2(\lambda)$, said diffractive element has a phase amplitude $a(\lambda)$ which is a sum of said phase amplitudes $a_1(\lambda)$ and $a_2(\lambda)$ and includes at least one peak value within the wavelength to be used, wherein when a shortest wavelength of the wavelength range to be used is λ_1 , a longest wavelength of the wavelength range to be used is λ_2 , and a middle wavelength between λ_1 and λ_2 is λ_0 ($= (\lambda_1 + \lambda_2)/2$), the following condition is satisfied:

$$\lambda_2 - \lambda_1 > 0.05\lambda_0.$$

*D
BKF* Please add new claim 48 as follow:]

--48. A diffractive optical element according to claim 36,

~~Dick
Cru
by~~
wherein one of the first, second and third optical regions is formed by one of air or material equivalent to air and having a refractive index of substantially 1.--