1	(a)	The spacing between two atoms in a crystal is $3.8 \times 10^{-10} \text{m}$. State this distance in pm.					
	(b)	Calculate the tin	ne of one day in		=	β	om [1]
	(c)	The distance fro to travel from the		he Sun is 0.15 Tm. 0	=Calculate the tim		
	(d)			es in the list below.	=		
		distance	energy	momentum	weight	work	[1]

(e) The velocity vector diagram for an aircraft heading due north is shown to scale in Fig. 1.1. There is a wind blowing from the north-west.

Fig. 1.1

The speed of the wind is $36\,\mathrm{m\,s^{-1}}$ and the speed of the aircraft is $250\,\mathrm{m\,s^{-1}}$.

- (i) Draw an arrow on Fig. 1.1 to show the direction of the resultant velocity of the aircraft. [1]
- (ii) Determine the magnitude of the resultant velocity of the aircraft.

resultant velocity = ms^{-1} [2]

2 Two planks of wood AB and BC are inclined at an angle of 15° to the horizontal. The two wooden planks are joined at point B, as shown in Fig. 2.1.

Fig. 2.1

A small block of metal M is released from rest at point A. It slides down the slope to B and up the opposite side to C. Points A and C are 0.26 m above B. Assume frictional forces are negligible.

(a) (i)	Describe and explain the acceleration of M as it travels from A to B and from B to	С

(ii) Calculate the time taken for M to travel from A to B.

(iii) Calculate the speed of M at B.

speed =
$$ms^{-1}$$
 [2]

(b) The plank BC is adjusted so that the angle it makes with the horizontal is 30°. M is released from rest at point A and slides down the slope to B. It then slides a distance along the plank from B towards C.

the law of conservation of energy to calculate this distance. Explain your working.

distance = m [2]

3	(a)	Define <i>power</i> .	

.....[1]

(b) A cyclist travels along a horizontal road. The variation with time t of speed v is shown in Fig. 3.1.

Fig. 3.1

(i)

The cyclist maintains a constant power and after some time reaches a constant speed of $12\,\mathrm{m\,s^{-1}}$.

Describe and explain the motion of the cyclist.								
[3]								

(ii)	When the cyclist is moving at a constant speed of $12ms^{-1}$ the resistive force is 48 N. Show that the power of the cyclist is about 600 W. Explain your working.
(iii)	Fig. 3.1 to show that the acceleration of the cyclist when his speed is $8.0\mathrm{ms^{-1}}$ is about $0.5\mathrm{ms^{-2}}$.
(iv)	[2] The total mass of the cyclist and bicycle is 80 kg. Calculate the resistive force <i>R</i> acting on the cyclist when his speed is 8.0 m s ⁻¹ . the value for the acceleration
	given in (iii).
	R = N [3]
(v)	the information given in (ii) and your answer to (iv) to show that, in this situation, the resistive force R is proportional to the speed v of the cyclist.
	T41
	[1]

4 A circuit used to measure the power transfer from a battery is shown in Fig. 4.1. The power is transferred to a variable resistor of resistance *R*.

Fig. 4.1

The battery has an electromotive force (e.m.f.) E and an internal resistance r. There is a potential difference (p.d.) V across R. The current in the circuit is I.

(a)	By reference to the circuit shown in Fig. 4.1, distinguish between the definitions of e.m.f and p.d.					
	[3					

(b) Using Kirchhoff's second law, determine an expression for the current I in the circuit.

(c) The variation with current I of the p.d. V across R is shown in Fig. 4.2.

Fig. 4.2

Fig. 4.2 to determine

(i) the e.m.f. E,

$$E = V [1]$$

(ii) the internal resistance r.

$$r = \dots \Omega$$
 [2]

(d) (i) Using data from Fig. 4.2, calculate the power transferred to R for a current of 1.6 A.

(ii) your answers from (c)(i) and (d)(i) to calculate the efficiency of the battery for a current of 1.6 A.

5 (a) State one property of electromagnetic waves that is not common waves.							t common to	other transv	/erse			
				••••						[1]		
	(b)	The seven regions of the electromagnetic spectrum are represented by blocks labelled A to G in Fig. 5.1.										
		visible region										
			A	В	С	D	E	F	G			
		wav	elength c	lecreasing -					~			
					F	ig. 5.	1					
		A ty	pical wav	elength for th	ne visible reg	ion D	is 500 nm.					
		(i)	Name th B, E and		adiations and	give a	a typical wave	elength for ea	ach of the reg	gions		
		B: name: wavelength: wavelength:								m		
									m			
			F: name	:		۰۰۰۰۰۰۰ ۱	wavelength:			m [3]		
		(ii) Calculate the frequency corresponding to a wavelength of 500 nm.										
(ii) Calculate the frequency corresponding to a wave							io a maroion,	g o. ooo				
						freq	uency =		H	z [2]		
(c) All the waves in the spectrum shown in Fig. 5.1 can be of the term <i>polarised</i> .						5.1 can be p	olarised. Exp	olain the mea	aning			
			,									
		••••										
		••••		•••••								
				• • • • • • • • • • • • • • • • • • • •						[2]		

6	(a)	diation is emitted during the spontaneous radioactive decay of an unstable nucleus						
		(i)	State the nature of a β -particle.					
			[1]				
		(ii)	State two properties of β-radiation.					
		. ,	1					
			2					
			[2]				
		(iii)	Explain the meaning of spontaneous radioactive decay.					
			[1					
	(b)							
		Complete the equation.						
			2					
			$^{3}H \rightarrow \qquad He + \qquad \beta$ [2	J				
	(c)	The	β -particle is emitted with an energy of 5.7 \times 10 ³ eV.					
		Cald	culate the speed of the β -particle.					
			speed = ms ⁻¹ [3]	j				
	(d)		fferent isotope of hydrogen is hydrogen-2 (deuterium). Describe the similarities and erences between the atoms of hydrogen-2 and hydrogen-3.	k				