```
In [1]:
```

```
import pandas as pd
from numpy import mean
from numpy import std
from sklearn.datasets import make_classification
from sklearn.metrics import fl_score
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.metrics import fl_score
from sklearn.metrics import preprocessing
```

In [2]:

71 0

```
# reading csv files
data = pd.read_csv("C:/Users/Mohsen/Desktop/Autism-Adult-Data.csv")
df=pd.DataFrame(data)
print(df)
```

	A1_Score	A2_Score	A3_Score	A4_Score	A5_Score	A6_Sco
re	A7_Score	\				
0	1	1	1	1	0	
0	1					
1	1	1	0	1	0	
0	0					
2	1	1	0	1	1	
0	1					
3	1	1	0	1	0	
0	1					
4	1	0	0	0	0	
0	0					
• •	• • •	• • •			• • •	
• • •	• • •	4	0	4	-	
699	0	1	0	1	1	
0	1	0	0	0	0	
700	1	0	0	0	0	
0	0	0	1	1	1	
701	1	0	1	1	1	
0	1	0	0	4	-	
702	1	0	0	1	1	
0	1	0	4	4	-	
703	1	0	1	1	1	
0	1					

```
A8 Score A9 Score A10 Score ... gender ethnicit
y jundice austim \
0
           1
                     0
                               0 ...
                                        f White-Europea
n
      no
            no
                               1 ...
1
           1
                     0
                                          m
                                                      Latin
0
     no
           yes
2
                               1 ...
           1
                     1
                                          m
                                                      Latin
           yes
0
     yes
3
                     0
                               1
                                          f White-Europea
           1
                                  . . .
n
      no
           yes
                     0
                               0
                                           f
4
?
      no
           no
                              . . . . . . . . .
                   . . .
```

699	• •	 1	1	1		f	White-E	uropea
n	no	no						1
700		1	0	1		m	Н	ispani
С	no	no						
701		1	0	1		f		
?	no	no						
702		0	1	1		m	Sout	h Asia
n	no	no						
703		1	1	1	• • •	f	White-E	uropea
n	no	no						
	contr	, of ros	used_app	hoforo	rosul+	3	ao dosa	rolati
on C	lass/AS		used_app	_perore	resurc	а	ige_desc	TETALI
0		d States		no	6	18 a	nd more	Se
lf		10						
1		Brazil		no	5	18 a	nd more	Se
lf	1	10						
2		Spain		no	8	18 a	nd more	Pare
nt		ES						
3	United	d States		no	6	18 a	nd more	Se
lf	1	10					_	
4	3.7.6	Egypt		no	2	18 a	nd more	
?	NO							
• •		• • •		• • •	• • •		• • •	
699		 Russia		no	7	18 a	nd more	Se
lf	YF	ES		110	,	10 a	ina more	bc
700		Mexico		no	3	18 a	nd more	Pare
nt	1	10						
701		Russia		no	7	18 a	nd more	
?	YES	5						
702	Ι	Pakistan		no	6	18 a	nd more	Se
lf	1	10						
703		Cyprus		no	8	18 a	nd more	Se
lf	YI	ES						

[704 rows x 21 columns]

In [3]:

print(df)							
A1_Score	A2_Score	A3_Score	A4_Score	A5_Score	A6_Sco		

	Al_Score	AZ_Score	A3_Score	A4_Score	A5_Score	A6_SCO
re	A7_Score	\				
0	1	1	1	1	0	
0	1					
1	1	1	0	1	0	
0	0					
2	1	1	0	1	1	
0	1					
3	1	1	0	1	0	
0	1					
4	1	0	0	0	0	
0	0					
69	99 0	1	0	1	1	
0	1					
70	00 1	0	0	0	0	
\cap	\cap					

701	O	1	0	1		1	1	
0 702	1	1	0	0		1	1	
0	1							
703	4	1	0	1		1	1	
0	1							
				A10_Score	<u>c</u>	gender	et	hnicit
	ndice a	ustim \		0		_	T-71 '	_
0 n	no	1 no	0	0	• • •	f	White-E	uropea
1	110	1	0	1		m		Latin
0	no	yes	1	1				
2	yes	1 yes	1	1	• • •	m		Latin
3	100	1	0	1		f	White-E	Europea
n	no	yes				_		
4 ?	no	1 no	0	0	• • •	f		
•	•	••						
699 n	no	1 no	1	1	• • •	f	White-E	Europea
700	no	1	0	1		m	. F	Hispani
С	no	no						
701 ?	no	1	0	1	• • •	f		
: 702	no	no 0	1	1		m	. Sout	th Asia
n	no	no						
703 n	no	1 no	1	1	• • •	f	White-E	Europea
11	no	110						
~	-		used_a	pp_before	result	-	age_desc	relati
	lass/AS United			no	6	5 18	and more	Se
lf	N							
1		Brazil		no	5	18	and more	Se
lf 2	N	O Spain		no	8	3 18	and more	Pare
nt	YE	_						
3		States		no	6	18	and more	Se
lf 4	N	O Egypt		no	2	2 18	and more	
?	NO							
• •		• • •		• • •			• • •	
699	•	 Russia		no	7	7 18	and more	Se
lf	YE						ana moro	23
700		Mexico		no	3	3 18	and more	Pare
nt 701	N	O Russia		no	-	7 18	and more	
?	YES			110	,	10	and more	
702		akistan		no	6	18	and more	Se
lf 703	N			no	c	10	and more	90
703 lf		Cyprus S		no	C	, то	and more	Se
[704	rows x	21 colu	mns]					

```
In [4]:
df.shape
Out[4]:
(704, 21)
In [5]:
df.head(10)
Out[5]:
 A1_Score A2_Score A3_Score A4_Score A5_Score A6_Score A7_Score A8_
0
         1
                          1
                                                     0
1
         1
                  1
                          0
                                   1
                                            0
                                                              0
3
         1
                  1
                          0
                                   1
                                            0
                                                     0
                                                              1
         1
                          0
                                   0
         1
5
                  1
                                   1
                                                     0
                                                              1
                                                              0
7
         1
                  1
                           1
                                   1
                                            0
                                                     0
                                                              0
         1
                  1
                           1
                                   1
                                            0
                                                     1
                                                              1
9
10 rows × 21 columns
In [ ]:
In [6]:
df.loc[:,"austim"].mode()
Out[6]:
0 no
dtype: object
In [7]:
df.loc[:,"austim"].replace("?", "White-European",inplace=True)
```

```
In [8]:
df.loc[:,"ethnicity"].mode()
Out[8]:
0 White-European
dtype: object
In [9]:
df.loc[:,"ethnicity"].replace("?", "White-European",inplace=True)
In [10]:
df.loc[:,"relation"].mode()
Out[10]:
0 Self
dtype: object
In [11]:
df.loc[:,"relation"].replace("?", "Self",inplace=True)
In [12]:
df.isnull().sum()
Out[12]:
A1 Score
                  0
A2 Score
                  0
A3_Score
                  0
A4 Score
                  0
A5 Score
                  0
A6 Score
                  0
                  0
A7 Score
A8 Score
                  0
A9_Score
                  0
A10_Score
                  0
                  0
age
gender
ethnicity
                  0
jundice
                  0
austim
                  0
contry_of_res
                 0
used_app_before
                  0
result
                  0
age desc
                  0
relation
Class/ASD
dtype: int64
In [13]:
df.describe()
Out[13]:
```

	A1_Score	A2_Score	A3_Score	A4_Score	A5_Score	A6_Score	A
count	704.000000	704.000000	704.000000	704.000000	704.000000	704.000000	70
mean	0.721591	0.453125	0.457386	0.495739	0.498580	0.284091	
std	0.448535	0.498152	0.498535	0.500337	0.500353	0.451301	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
50%	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
75%	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	

In [14]:

#Which attributes seem to be correlated
correlation =df.corr(method='pearson')
correlation

Out[14]:

	A1_Score	A2_Score	A3_Score	A4_Score	A5_Score	A6_Score	A7_S
A1_Score	1.000000	0.011539	0.074096	0.127814	0.169369	0.110199	0.217
A2_Score	0.011539	1.000000	0.223921	0.158998	0.153821	0.185864	-0.041
A3_Score	0.074096	0.223921	1.000000	0.412722	0.264927	0.268846	0.078
A4_Score	0.127814	0.158998	0.412722	1.000000	0.306806	0.295152	0.151
A5_Score	0.169369	0.153821	0.264927	0.306806	1.000000	0.392354	0.238
A6_Score	0.110199	0.185864	0.268846	0.295152	0.392354	1.000000	0.175
A7_Score	0.217538	-0.041768	0.078216	0.151236	0.238589	0.175489	1.000
A8_Score	0.147640	0.035408	0.017771	0.008617	0.102086	0.100123	0.085
A9_Score	0.145452	0.205421	0.315113	0.327673	0.396582	0.479422	0.189
A10_Score	0.118413	0.068883	0.168454	0.210968	0.267561	0.294435	0.252
result	0.397454	0.392540	0.552356	0.586025	0.639706	0.630012	0.454

In [15]:

import seaborn as sns
sns.heatmap(correlation)

Out[15]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c3b35b92b0>

In [16]:

```
# balanced dataset and Normalize the dataset
df['result'].value_counts()
# dataset is imbalanced
df['result'].value_counts().plot.pie(autopct='%.2f')
```

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c3b3dd0820>

In [17]:

```
import pandas as pd
credithistory_dataset = pd.DataFrame(df)
credithistory_dataset
```

Out[17]:

A4 0---- A0 0---- A0 0---- A4 0---- A5 0---- A0 0---- A7 0----

	A1_Score	A2_Score	A3_Score	A4_Score	A5_Score	Ap_Score	A/_Score	μ
0	1	1	1	1	0	0	1	
1	1	1	0	1	0	0	0	
2	1	1	0	1	1	0	1	
3	1	1	0	1	0	0	1	
4	1	0	0	0	0	0	0	
699	0	1	0	1	1	0	1	
700	1	0	0	0	0	0	0	
701	1	0	1	1	1	0	1	
702	1	0	0	1	1	0	1	
703	1	0	1	1	1	0	1	

704 rows × 21 columns

In [18]:

```
df['gender'] = df['gender'].replace(['m'],'0')
df['gender'] = df['gender'].replace(['f'],'1')
df['jundice']=df['jundice'].replace(['no'],'1')
df['jundice']=df['jundice'].replace(['yes'],'1')
df['Class/ASD']=df['Class/ASD'].replace(['NO'],'0')
df['Class/ASD']=df['Class/ASD'].replace(['YES'],'1')
df['relation']=df['relation'].replace(['Self'],'1')
df['relation']=df['relation'].replace(['Parent'],'0')
df['used_app_before']=df['used_app_before'].replace(['no'],'0')
df['used_app_before']=df['used_app_before'].replace(['yes'],'1')
df['austim']=df['austim'].replace(['no'],'0')
df['austim']=df['austim'].replace(['yes'],'1')
```

Out[18]:

	A1_Score	A2_Score	A3_Score	A4_Score	A5_Score	A6_Score	A7_Score	A
0	1	1	1	1	0	0	1	
1	1	1	0	1	0	0	0	
2	1	1	0	1	1	0	1	
3	1	1	0	1	0	0	1	
4	1	0	0	0	0	0	0	

699	0	1	0	1	1	0	1
700	1	0	0	0	0	0	0
701	1	0	1	1	1	0	1
702	1	0	0	1	1	0	1
703	1	0	1	1	1	0	1

704 rows x 21 columns

In []:

```
X = df.drop(['austim', 'ethnicity', 'contry_of_res','age_desc'], axis=1)
X.head
```

In [29]:

```
X = df[['Al_Score' ,'A2_Score','A3_Score' ,'A4_Score' ,'A5_Score' ,'A6_Score' ,'A7_Score','A8_Score' ,'A9_Score' ,'A10_Score','result']]
```

In [30]:

X

Out[30]:

	A1_Score	A2_Score	A3_Score	A4_Score	A5_Score	A6_Score	A7_Score A
0	1	1	1	1	0	0	1
1	1	1	0	1	0	0	0
2	1	1	0	1	1	0	1
3	1	1	0	1	0	0	1
4	1	0	0	0	0	0	0
699	0	1	0	1	1	0	1
700	1	0	0	0	0	0	0
701	1	0	1	1	1	0	1
702	1	0	0	1	1	0	1
703	1	0	1	1	1	0	1

704 rows × 11 columns

In [31]:

```
Y = df['austim']
Y.head(20)
```

- - - - - - -

```
Out[31]:
      0
1
      1
     1
3
     1
4
     0
5
     0
6
     0
7
     0
8
     0
9
     1
10
     0
11
     0
12
     0
13
     0
14
    0
15
     1
16
     0
17
    0
18
    1
19
    0
Name: austim, dtype: object
In [32]:
# Split data set
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size=0.30, r
andom_state=1)
Y_{test}
Out[32]:
402
      0
422
       0
331
      0
189
     0
185
      0
     . .
459 0
346
     0
582
      0
      0
103
323
      1
Name: austim, Length: 212, dtype: object
In [33]:
# Normalize data set
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X train = sc.fit transform(X train)
X test = sc.transform(X test)
In [35]:
#Random Forests
# Feature Scaling
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
```

```
sc = StandardScaler()
X train = sc.fit transform(X train)
X test = sc.transform(X test)
#Create a Gaussian Classifier
clf=RandomForestClassifier(n estimators=100)
#Train the model using the training sets y pred=clf.predict(X test)
model = clf.fit(X train, Y train)
Y pred=clf.predict(X test)
Y test.shape
Y pred.shape
#Import scikit-learn metrics module for accuracy calculation
#Evaluating the Algorithm
from sklearn import metrics
import numpy as np
print('Mean Absolute Error:', metrics.mean_absolute error(Y test, Y pred))
print('Mean Squared Error:', metrics.mean squared error(Y test, Y pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(Y_tes
t, Y_pred)))
# Model Accuracy, how often is the classifier correct?
print("Accuracy:", metrics.accuracy_score(Y_test, Y_pred))
```

Mean Absolute Error: 0.13679245283018868 Mean Squared Error: 0.13679245283018868 Root Mean Squared Error: 0.36985463743231434

Accuracy: 0.8632075471698113

In [37]:

```
# Evaluate a Random Forest model using k-fold cross-validation
# prepare the cross-validation procedure
from numpy import mean
from numpy import std
from sklearn.datasets import make_classification
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
cv = KFold(n_splits=10, random_state=1, shuffle=True)
# Evaluate model
scores = cross_val_score(model, X_test, Y_test, scoring='accuracy', cv=cv,
n_jobs=-1)
# report performance
print('Accuracy: %.3f (%.3f)' % (mean(scores), std(scores)))
```

Accuracy: 0.915 (0.077)

In [44]:

```
#Support Vector Machine
Y_train=Y_train.astype(float)
from sklearn.svm import SVC
svclassifier = SVC(kernel='poly', degree=8)
svclassifier.fit(X_train, Y_train)
# Accuracy with Cross validation for SVM
from numpy import mean
from numpy import std
from sklearn.datasets import make_classification
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
# prepare the cross-validation procedure
```

```
cv = KFold(n splits=10, random state=1, shuffle=True)
# Instantiate the Support Vector Classifier (SVC)
svc = SVC(C=1.0, random state=1, kernel='linear')
model = svc.fit(X train, Y train)
# evaluate model
scores = cross val score(model, X test, Y test, scoring='accuracy', cv=cv,
n jobs=-1)
# report performance
print('Accuracy: %.3f (%.3f)' % (mean(scores), std(scores)))
Accuracy: 0.915 (0.075)
In [48]:
#Evaluate a logistic regression model using k-fold cross-validation
from sklearn.linear model import LogisticRegression
# prepare the cross-validation procedure
cv = KFold(n splits=10, random state=1, shuffle=True)
# create model
model = LogisticRegression()
# Evaluate model
scores = cross val score(model, X test, Y test, scoring='accuracy', cv=cv,
n jobs=-1)
# report performance
print('Accuracy: %.3f (%.3f)' % (mean(scores), std(scores)))
Accuracy: 0.906 (0.078)
In [51]:
#the Naive Bayes Algorithm
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
# Accuracy and Cross validation
from sklearn.model selection import cross val score
# use the same model as before
clf = clf.fit(X train, Y train)
# X,y will automatically devided by 3 folder, the scoring I will still use
the accuracy
scores = cross val score(model, X train, Y train, cv=10, scoring='accurac
y')
# print all 5 times scores
print(scores)
# then I will do the average about these five scores to get more accuracy
print('Accuracy', scores.mean())
            0.7 0.73469388 0.71428571 0.79591837 0.755
[0.62
10204
0.85714286 0.85714286 0.73469388 0.75510204]
Accuracy 0.752408163265306
```