LH5749/J

FEATURES

- 8,192 × 8 bit organization
- Access times:

LH5749J: 55/70 ns (MAX.) LH5749: 70 ns (MAX.)

- Low power consumption: 394 mW/(MAX.)
- Single +5 V power supply
- Fully static operation
- TTL compatible I/O
- Three-state outputs
- High speed programming:
 SHARP original programming algorithm
 (32 second programming)
- Pin compatible with Bipolar PROM
- Packages:

 EPROM
 24-pin, 600-mil CERDIP

 OTPROM
 24-pin, 600-mil DIP
 24-pin, 300-mil SK-DIP

24-pin, 300-mil SDIP

JEDEC standard pinout (CERDIP/DIP)

DESCRIPTION

The LH5749J is a high-performance 64K, UV erasable, electrically programmable read-only-memory, organized as $8,192\times8$ bits. It is manufactured in an advanced CMOS technology which allows it to operate at Bipolar speeds while consuming only 75 mA.

The LH5749J is packaged in 24-pin CERDIP which is pin-compatible to bipolar PROM.

The LH5749 is a one-time PROM packaged in plastic DIP.

PIN CONNECTIONS

Figure 1. Pin Connections for CERDIP, DIP, SK-DIP and SDIP Packages

Figure 2. LH5749/J Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
A ₀ - A ₁₂	Address input	
O ₀ - O ₇	Data output (input)	1
CS/V _{PP}	Chip Select/Program input	

PIN NAME	NOTE
Power supply	
Ground	
	Power supply

NOTE:

1. O₀ - O₇ pins are also used to input data to the column output controller through input buffers in programming mode.

TRUTH TABLE

	MODE	O ₀ - O ₇	CS/V _{PP}	Vcc	NOTE
Read	Read	Data out	L	+5 V	4
Neau	Output disable	High-Z	Н	+5 V	'
	Program	Data in	+13 V	+6 V	
Program	Program inhibit	High-Z	Н	+6 V	1
	Program verify	Data out	L	+6 V	'

NOTE:

1. H = VIH, L = VIL

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
	Vcc	-0.6 to +7.0		
Supply voltage	CS/V _{PP}	-0.6 to +14.0	٧	1
	VIN. VOUT	-0.6 to +7.0		
Operating temperature	Topr	0 to +70	°C	
Storage temperature	Tstg	-65 to +150	°C	2
Storage temperature	, sig	-55 to +150		3

NOTES:

- The maximum applicable voltage on any pin with respect to GND.
 Maximum ratings are those values beyond which damage to the device may occur.
- 2. Applied to ceramic package.
- 3. Applied to plastic package.

RECOMMENDED OPERATING CONDITIONS (Read Mode) (T_A = 0 to +70°C)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	Vcc	4.75	5.0	5.25	
Input "Low" voltage	VIL	-0.1		0.8	٧
Input "High" voltage	ViH	2.0		Vcc +0.3	

DC CHARACTERISTICS (Read Mode) ($V_{CC} = 5 \text{ V} \pm 5\%$, $T_A = 0 \text{ to } +70^{\circ}\text{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input leakage current	lu	V _{IN} = GND or V _{CC}	-10		10	μΑ	
Output leakage current	lLO	Vout = GND or Vcc	-10		10	μА	
V _{CC} operating current	Icc1	CMOS input			75	mA	1, 2
VCC operating current	Icc2	TTL input			75	mA	1, 3
Input "Low" voltage	VIL		-0.1		0.8	٧	
Input "High" voltage	VIH		2.0		Vcc + 0.3	٧	
Output "Low" voltage	VoL	loL = 16 mA			0.45	>	
Output "High" voltage	Voн	I _{OH} = -4 mA	2.4			V	

NOTES:

- 1. Minimum cycle time, lout = 0 mA
- 2. $V_{IN} = GND \pm 0.3 \text{ V or } V_{CC} \pm 0.3 \text{ V}$
- 3. $V_{IN} = V_{IL} \text{ or } V_{IH}$

AC CHARACTERISTICS (Read Mode) (VCC = 5 V \pm 5%, TA = 0 to +70°C)

PARAMETER	SYMBOL	LH57	LH5749J-55		LH5749J-70 LH5749/D/T-70	
		MIN.	MAX.	MIN.	MAX.	
Address valid to output valid	tacc		55		70	ns
Chip select to output valid	tcs	_	25		25	ns
Chip disable to output in High Z	tor	0	20	0	25	ns
Output hold from address	tон	10		10		ns

SHARP 5-3

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0 V to 3 V
Input rise/fall time	≤ 10 ns
Input reference level	1 V, 2 V
Output reference level	0.8 V, 2 V

Figure 3. Output Load Circuit

CAPACITANCE (TA = 25°C, f = 1MHz)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	CIN	VIN = 0 V		4	6	рF
Output capacitance	Cour	Vout = 0 V		8	12	рF

Figure 4. Timing Diagram (Read Mode)

RECOMMENDED OPERATING CONDITIONS (Program Mode) ($T_A = 25^{\circ}C \pm 5^{\circ}C$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	Vcc	5.75	6.0	6.25	V
Program voltage	CS/V _{PP}	12.7	13.0	13.3	V
Input "Low" voltage	ViL	-0.1		0.45	V
Input "High" voltage	ViH	2.4		V _{CC} + 0.3	٧

DC CHARACTERISTICS (Program Mode)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input leakage current	lu	VIN = Vcc or 0.45 V	-10		10	μА
CS/V _{PP} current	Ipp	Programming	_		75	mA
V _{CC} supply current	lcc				75	mA
Input "Low" voltage	VIL		-0.1		0.45	٧
Input "High" voltage	ViH		2.4		Vcc + 0.3	٧
Output "Low" voltage	Vol	loL = 16 mA			0.45	٧
Output "High" voltage	Voн	юн = -4 mA	2.4			٧

NOTES:

- 1. The program pulse CS/Vpp must be applied after Vcc is stable and inhibited before Vcc is turned off.
- 2. CS/Vpp must not be greater than 14 volts including overshoot.

AC CHARACTERISTICS (Program mode)

 $(V_{CC} = 6.0 \text{ V} \pm 0.25 \text{ V}, \overline{CS}/V_{PP} = 13.0 \text{ V} \pm 0.3 \text{ V}, T_A = 25^{\circ}C \pm 5^{\circ}C)$

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Address setup time	tas	2			μs
CS/Vpp rise time	tR	1		100	μs
CS/Vpp fall time	tF	1		100	μs
Data setup time	tos	2			μs
Chip select delay time	tcs			30	กร
Address hold time	tah	0			μs
Data hold time	tDH	2			μs
Output disable time	t _{DF}			30	ns
V _{CC} setup time	tvcs	2			μs
CS/Vpp pulse width	tpw	0.95	1.0	1.05	ms
Add CS/V _{PP} pulse width *	topw	2.85		78.75	ms
Program pulse count	N	1		25	TIMES

^{*} This width is defined by the Program Flowchart (Figure 6).

Figure 5. Timing Diagram (Program Mode)

PROGRAMMING

Upon delivery from SHARP or after each erasure (see Erasure section), the LH5749 and LH5749J have all 8192×8 bits in the "1", or high state. "0's" are loaded into the LH5749 and LH5749J through the procedure of programming.

The programming mode is entered when +13.0 V is applied to the $\overline{\text{CS/VPP}}$ pin. A 0.1 μF capacitor between $\overline{\text{CS/VPP}}$ and GND is needed to prevent excessive voltage transients, which could damage the device. The address to be programmed is applied to the proper address pins. 8 bit patterns are placed on the respective data pins. The voltage levels should be standard TTL levels.

ERASURE

In order to clear all locations of their programmed contents, it is necessary to expose the LH5749J to an ultraviolet light source. A dosage of 15 W-second/cm² is required to completely erase an LH5749J. This dosage can be obtained by exposure to an ultra-violet lamp (wave-length of 2,537 Angstroms (Å)) with intensity of 12,000 µW/cm² for 20 to 30 minutes. The LH5749J

should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the LH5749J and similar devices, will erase with light sources having wavelength shorter than 4,000 Å. Although erasure times will be much longer than with UV sources at 2,537 Å, the exposure to fluorescent light and sunlight will eventually erase the LH5749J and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

CAUTION

Fluorescent light and sunlight contain UV rays which will gradually erase the EPROM. To prevent deterioration of EPROM data due to UV rays, it is recommended that EPROMs should not be left under direct sunlight or fluorescent light, or the package window should be covered with an opaque material.

Care must be taken to avoid friction between package window and plastics or the like, as the resulting static-electric build-up may cause faulty operation.

Figure 6. Programming Flowchart

ORDERING INFORMATION

SHARP