Республиканская олимпиада по математике, 2004 год, 10 класс

- **1.** Пусть $a_1=1;\ a_2=2$ и $a_{n+1}=\frac{a_na_{n-1}+1}{a_{n-1}}$ для n=2,3,... Докажите, что $a_n>\sqrt{2n}$ для $n\geq 3.$
- **2.** Определите все целые числа $m,n \geq 2$ такие, что $1+m^{3^n}+m^{2\cdot 3^n}$ делится на n.
- **3.** Зигзагом назовем ломаную на плоскости, образованную из двух параллельных лучей и отрезка, соединяющего начала этих лучей. На какое максимальное число частей может быть разбита плоскость с помощью n зигзагов?
- **4.** Пусть n фиксированное натуральное число. Найдите количество всех последовательностей $(a_1,a_2,...,a_{2n}),$ где $a_i=\pm 1$ для любого $1\leq i\leq 2n,$ удовлетворяющих условию: для любых $1\leq k\leq l\leq n$ верно

$$\left|\sum_{i=2k-1}^{2l}a_i\right| \leq 2.$$

- **5.** В треугольнике ABC сторона BC наименьшая. На лучах BA и CA отложены отрезки BD и CE равные BC. Докажите, что радиус описанной окружности треугольника ADE равен $\sqrt{R^2-2Rr}$ (где R и r радиусы описанной и вписанной окружностей треугольника ABC).
- **6.** Пусть $p_1, p_2, ..., p_n$ различные простые числа, большие 3. Докажите, что число $2^{p_1p_2...p_n}+1$ имеет не менее 4^n делителей.
- 7. Пусть P(x) многочлен с действительными коэффициентами такой, что P(x)>0 для всех $x\geq 0$. Докажите, что существует положительное целое число n такое, что $(1+x)^n P(x)$ многочлен с неотрицательными коэффициентами.
- 8. Вещественные числа a,b,c таковы, что числа $\frac{1+bc}{b-c}, \ \frac{1+ac}{c-a}$ и $\frac{1+ab}{b-a}$ целые. Докажите, что тогда они попарно взаимно просты.