Lista de exercícios 02 - FMC

Andriel Vinicius de M. Fernandes

July 10, 2024

1 Congruência Modular

1. Demonstre:

Sejam $a, b, c, d, n \in \mathbb{Z}$, com n > 1.

Se $a \equiv c \pmod{n}$ e $b \equiv d \pmod{n}$, então:

- (a) $(a \cdot b) \equiv (c \cdot d) \pmod{n}$; Resolução.
 - (1) Sejam $a, b, c, d, n \in \mathbb{Z}$, com n > 1, onde $a \equiv c \pmod{n}$ e $b \equiv d \pmod{n}$.
 - (2) Por def., temos que $\exists k_1 \in \mathbb{Z}, k_1 \cdot n = a c \implies a = k_1 n + c$.
 - (3) Por def., temos que $\exists k_2 \in \mathbb{Z}, k_2 \cdot n = b d \implies b = k_2 n + d$. Assim, temos:

(4)
$$a = k_1 n + c$$
 (Por aritmética)

(5)
$$ab = (k_1n + c) \cdot b$$
 (Por multiplicação por b)

(6)
$$ab = bk_1n + bc$$
 (Por distributividade em 5)

(7)
$$ab = (k_2n + d)k_1n + (k_2n + d)c$$
 (Por substituição em b por 3)

(8)
$$ab = k_1nk_2n + k_1nd + k_2nc + cd$$
 (Por distributividade)

(9)
$$ab = n(k_1nk_2 + k_1d + k_2c) + cd$$
 (Por evidência em n)

(10)
$$ab = nk_3 + cd$$
 (Para $k_3 = (k_1nk_2 + k_1d + k_2c)$)

(11)
$$ab - cd = nk_3$$
 (Por aritmética)

(11)
$$n|ab-cd$$
 (Por def. de divisibilidade)

Portanto, $ab \equiv cd \pmod{n}$ pela def. de congruência.

- (b) $a^m \equiv c^m \pmod{n}$, para qualquer $m \in \mathbb{Z}$.
- 2. Quantas soluções inteiras existem para x, com $0 \le x < 150$ para a congruência linear $63x \equiv 30 \pmod{50}$? Quais são elas?
- 3. Qual o menor valor positivo que satisfaz esta congruência linear?

$$81x \equiv 12 \pmod{264}$$

4. Calcule $(8^10 - 128^1796) \pmod{13}$. Mostre todos os resultados intermediários. Durante o processo nenhum número com mais de 3 dígitos deve ser gerado.