Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Original) A process for synthesizing biopolymers by stepwise assembly from synthesis building blocks which carry protective groups, where at least one synthesis building block which carries a two-stage protective group is used, where the two-stage protective group is activated by an illumination step and eliminated by a subsequent chemical treatment step, characterized in that the activation takes place by elimination of a photoactivatable protective group which is selected from triplet-sensitized photoactivatable groups, labeled photoactivatable groups and triplet-sensitized and labeled photoactivatable groups.
- 2. (Original) The process as claimed in claim 1, characterized in that the chemical treatment step comprises a treatment with base, a treatment with acid, an oxidation, a reduction or/and a catalyzed, e.g. enzymatic, reaction.
- (Original) The process as claimed in claim 2, characterized in that the chemical treatment step comprises an acid treatment.
- 4. (Previously Presented) The process as claimed in claim 1, characterized in that a derivatized trityl group is used as two-stage protective group.

5. (Original) The process as claimed in claim 4, characterized in that the synthesis building block with the two-stage protective group has the general formula (I):

$$R_2$$
 M_m
 M_m
 M_m
 M_m
 M_m

where R_1 and R_2 are each independently selected from hydrogen, (L)- R_3 , -O-(L)- R_3 , N(R_3)₂, NHZ and M,

 R_3 is a C_1 - C_8 alkyl group, a C_2 - C_8 -alkenyl group, a C_2 - C_8 -alkynyl group, a C_6 - C_{25} -aryl group or/and a C_5 - C_{25} -heteroaryl group, which may optionally have substituents,

L is a linker group which is optionally present,

X is the synthesis building block,

M is in each case independently a label optionally linked via a linker group, and m is in each case independently an integer from 0 to 4,

Y is in each case independently a photoactivatable protective group as claimed

in claim 1,

Z is an amino protective group, and where R_1 or/and R_2 may optionally be replaced by Y.

6. (Previously Presented) The process as claimed in claim 1, characterized in that a photoactivatable group of the general formula (II) is used

in which Ar is a fused polycyclic fluorescent aryl or heteroaryl, $S_1 \text{ and } S_2 \text{ are each independently selected from hydrogen, a } C_1\text{-}C_8\text{-alkyl group, a} \\ C_2\text{-}C_8\text{-alkenyl group, a } C_2\text{-}C_8\text{-alkynyl group, a } C_6\text{-}C_{25}\text{-aryl group or a } C_5\text{-}C_{25}\text{-heteroaryl group, each of which may optionally have substituents, and} \\ Q \text{ is a group for linking the photolabile component to the component which can be eliminated chemically.}$

7. (Previously Presented) The process as claimed in claim 1, characterized in that a photoactivatable group of the general formula (III) is used:

$$T_{s} \xrightarrow{T_{s}} T_{1} \xrightarrow{T_{2}} Q$$

$$Q_{1} \xrightarrow{T_{6}} Z_{1} \xrightarrow{Z_{2}} Q$$
(IIII)

in which T_1 , T_2 , T_3 , T_4 , T_5 and T_6 are each independently selected from hydrogen, C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, C_1 - C_8 -alkoxy, C_2 - C_8 -alkoxycarbonyl, C_6 - C_{20} -aryl or aryloxy or/and C_5 - C_{25} -heteroaryl or heteroaryloxy, each of which may optionally have substituents, and T_1 or/and T_2 may additionally be trialkylsilyl,

and one of T_3 and T_4 may be NO_2 , with the proviso that the other is then H, Q_1 is hydrogen, optionally substituted C_1 - C_4 -alkoxy or $di(C_1$ - C_4 -alkyl)amino, Z_1 and Z_2 together are -OC(O)-, -NT₇C(O)- or -CT₈=CT₉, where T₈ and T₉ are defined as T₃ - T₆, and T₉ may additionally be NO_2 ,

and adjacent groups T may optionally form a 5- or 6-membered carbocyclic or heterocyclic, saturated or unsaturated ring, and

Q is a group for linking the photolabile component to the component which can be eliminated chemically.

8. (Previously Presented) The process as claimed in claim 1, characterized in that a photoactivatable group of the general formula (IV) is used:

$$\begin{array}{c|c} NO_2 & H & U_5 \\ U_3 & U_4 & & \\ \end{array}$$

in which U_1 , U_2 , U_4 and U_5 are each independently selected from hydrogen, halogen, NO_2 , U_6 , (L)- U_6 , O-(L)- U_6 , $N(U_6)_2$ and NHZ, U_6 is C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, C_6 - C_{25} -aryl or C_5 - C_{25} -heteroaryl, each of which may optionally have substituents, L is a linker group which is optionally present, U_3 is a label optionally linked via a linker group, and Q is a group for linking the photolabile component to the component which can be eliminated chemically.

9. (Previously Presented) The process as claimed in claim 1, characterized in that a photoactivatable group of the general formula (V) is used:

$$V_4$$
 V_2
 V_3
 V_2
 V_4
 V_5
 V_6
 V_6
 V_7
 V_8
 V_8
 V_8
 V_9
 V_9

in which $V_1,\,V_2,\,V_3,\,V_4,\,V_5$ and V_6 are each independently selected from

hydrogen, halogen, NO₂, V₇, (L)-V₇, O-(L)-V₇, N(V₇)₂, NHZ and M, where V₇ is C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, C_6 - C_{25} -aryl or C_5 - C_{25} -heteroaryl, each of which may optionally have substituents, L is a linker group which is optionally present and V₅ and V₆ may additionally be trialkylsilyl, M is a label optionally linked via a linker group, and Q is a group for linking the photolabile component to the component which can be eliminated chemically.

- 10. (Previously Presented) The process as claimed in claim 1, characterized in that the two-stage protective group carries a plurality of labeling groups which can be detected independently of one another.
- 11. (Original) The process as claimed in claim 10, characterized in that a first label is linked to the photolabile component and a second label is linked to the component which can be eliminated chemically.
- 12. (Previously Presented) The process as claimed in claim 5, characterized in that the two-stage protective group comprises at least one fluorescent label.
- 13. (Original) The process as claimed in claim 12, characterized in that a fluorescent label is introduced on the trityl framework of a compound (I).
- 14. (Previously Presented) The process as claimed in claim 1, characterized in that the biopolymers are selected from nucleic acids, nucleic acid analogs,

peptides and saccharides.

- 15. (Original) The process as claimed in claim 14, characterized in that the biopolymers are selected from nucleic acids and nucleic acid analogs.
- 16. (Original) The process as claimed in claim 15, characterized in that phosphoramidites are used as synthesis building blocks.
- 17. (Original) The process as claimed in claim 16, characterized in that phosphoramidite building blocks carrying the two-stage protective group on the 5'-O atom are used.
- 18. (Previously Presented) The process as claimed in claim 1, characterized in that the synthesis of the biopolymers includes the use of spacer and/or linker building blocks.
- 19. (Previously Presented) The process as claimed in claim 1, characterized in that the synthesis of the biopolymers is carried out on a solid phase.
- 20. (Original) The process as claimed in claim 19, characterized in that a location-dependent synthesis of a plurality of biopolymers is carried out with in each case a different sequence of synthesis building blocks on a single support.

- 21. (Previously Presented) The process as claimed in claim 1, characterized in that a synthesis building block with two-stage protective group is used for quality control.
- 22. (Currently Amended) Compounds of the general formula (I)

$$R_2$$
 M_m
 M_m
 M_m
 M_m

where R_1 , R_2 , Y, M and m are defined as in claim 1 claim 5, and X is a synthesis building block or a leaving group, where R_1 or/and R_2 may optionally be replaced by Y.

- 23. (Original) Compounds as claimed in claim 22, characterized in that they carry a plurality of labels detectable independently of one another.
- 24. (Previously Presented) Compounds as claimed in claim 22, characterized in that they carry at least one fluorescent label.

- 25. (Original) The use of compounds of the general formula (I) as synthesis building blocks or for preparing synthesis building blocks for the synthesis of biopolymers.
- 26. (Original) The use as claimed in claim 25 for quality control during the synthesis of biopolymers on a solid support.