Прямые, полюсы, поляры

№ 1

Угол между двумя секущими плоскостями равен α . Чему равен угол между двумя прямыми, каждая из которых соединяет полюсы соответсвующий плоскостей?

Решение

- 1) Так как секущие прямые имеют общую точку, то они пересекаются по прямой AB, что следует из аксиом стереометрии.
- 2) Восстановим перпендикуляр $OC \perp AB$ в плоскости (BOC) и перпендикуляр $OD \perp AB$ в плоскости BOD. Проведем прямые, соединяющие полюсы GF и EN, так как прямая AB лежит в плоскостях сечений, то $CF \perp AB$ и $EN \perp AB$.
- 3) $OC \bot AB$, $OD \bot AB$, $GF \bot AB$, $EN \bot AB$, тогда эти прямые (OC, OD, GF, EN) лежат в плоскости (COE), перпендикулярной прямой AB.
- 4) Вынесем планиметрический чертеж, на котором $\angle COT = \alpha$ линейный угол двугранного угла CABT, который равен углу между секущими плоскостями. Так как $GF\bot(TOA)$, то $GF\bot TD \subset (TOA)$ и так как $EN\bot(COP)$, то $EN\bot CP \subset (COP)$. Получаем, что $\beta = 90^{\circ} \alpha = \angle COT$
 - 5) Таким образом:

$$2\beta + \alpha + \gamma = 180^{\circ}$$
$$180^{\circ} - 2\alpha + \alpha + \gamma = 180^{\circ}$$
$$\alpha = \gamma$$

Ответ: α

№ 2

Чему равна площадь четырехугольника, образованного двумя полисами и диаметрально противоположными точками поляры, если радиус сферы R.

Решение

1)
$$CO = DO = AO = BO = R$$

$$S_{ABCD} = S_{\triangle AOC} + S_{\triangle BOC} + S_{\triangle BOD} + S_{\triangle DOA} = 4S_{\triangle BOC} = 4*\frac{AO*CO}{2} = 2R^2$$

Ответ: $2R^2$