VE203 Discrete Math

Spring 2022 — Worksheet 3

February 14, 2022

Exercise 3.1 Poset

Which of these are posets?

- a) $({\bf Z}, =)$
- b) (\mathbf{Z}, \neq)
- c) (\mathbf{Z}, \geq)
- d) (**Z**, /)
- e) $(\mathbf{R}, =)$
- f) (**R**, <)
- g) (\mathbf{R}, \leq)
- h) (\mathbf{R}, \neq)

Exercise 3.2 Partial Order

Answer these questions for the poset $(\{2, 4, 6, 9, 12, 18, 27, 36, 48, 60, 72\}, |)$.

- a) Find the maximal elements.
- b) Find the minimal elements.
- c) Is there a greatest element?
- d) Is there a least element?
- e) Find all upper bounds of $\{2, 9\}$.
- f) Find the least upper bound of $\{2, 9\}$, if it exists.
- g) Find all lower bounds of $\{60, 72\}$.
- h) Find the greatest lower bound of {60,72}, if it exists.

Exercise 3.3 Lattice

Determine whether these posets are lattices.

- a) $(\{1,3,6,9,12\},1)$
- b) $(\{1, 5, 25, 125\}, |)$
- c) (\mathbf{Z}, \geq)
- d) $(P(S), \supseteq)$, where P(S) is the power set of a set S

Exercise 3.4 Chain and Antichain

Figure 1: problem 3.4

- a) Find a chain
- b) Find an antichain
- c) Find a maximal chain
- d) Find a maximal antichain

Exercise 3.5 Cardinality

Give an example of two uncountable sets A and B such that $A \cap B$ is

- a) finite.
- b) countably infinite.
- c) uncountable.

Exercise 3.6 Cardinality

Show that there is no infinite set A such that $|A| < |\mathbf{Z}^+| = \aleph_0$.

Reference

- 1. Rosen, Kenneth H., and Kamala Krithivasan. Discrete mathematics and its applications: with combinatorics and graph theory. Tata McGraw-Hill Education, 2012.
- $2.\ https://services.math.duke.edu/lpereira/Teaching/ApCombSlides/3012_Lecture_18_handout.pdf$