AI 1103 - Challenging Problem 11

T. Rohan CS20BTECH11064

Download all latex codes from

https://github.com/rohanthota/ Challenging problem/main.tex

1 Problem

(UGC/MATH 2018 (June set-a)-Q.106) Let $X_{ii\geq 1}$ be a sequence of i.i.d. random variables with $E(X_i) = 0$ and $V(X_i) = 1$. Which of the following are true?

1)
$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 \to 0$$
 in probability
2) $\frac{1}{n_1^{3/4}} \sum_{i=1}^{n} X_i \to 0$ in probability

2)
$$\frac{1}{n^{3/4}} \sum_{i=1}^{n} X_i \to 0$$
 in probability

3)
$$\frac{1}{n^{1/2}} \sum_{i=1}^{n} X_i \to 0$$
 in probability

4)
$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 \to 1$$
 in probability

2 Solution

Definition 1. (Convergence in distribution)

A sequence of random variables $Y, Y_1, Y_2 \dots$ converges in distribution to a random variable Y, if

$$\lim_{n \to \infty} F_{X_n}(a) = F_X(a) \ \forall a \in \mathbb{R}. \tag{2.0.1}$$

Definition 2. (Convergence in probability)

A sequence of random variables $Y, Y_1, Y_2 \dots$ is said to converge in probability to Y, if

$$\lim_{n \to \infty} \Pr(|Y_n - Y| > \epsilon) = 0 \ \forall \epsilon > 0.$$
 (2.0.2)

Lemma 2.1. If $Y_n \rightarrow Y$ in probability, $Y_n \rightarrow$ Y in distribution.

Lemma 2.2. (Strong Law of Large Numbers) Let $X_1, X_2, ... X_n$ be i.i.d. random variables with expected value $E(X_i) = \mu < \infty$, then,

$$\lim_{n \to \infty} \Pr\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_i - \mu\right| \ge \epsilon\right) = 0 \tag{2.0.3}$$

Or, $\frac{1}{n} \sum_{i=1}^{n} X_i$ converges in probability to μ .

Lemma 2.3. If X_i is a sequence of i.i.d. random variables, satisfying condition

$$F_{X_1}(x) = F_{X_2}(x) = \dots = F_{X_n}(x) = F_X(x)$$
 (2.0.4)

then,

$$F_{X_1^2}(x) = F_{X_2^2}(x) = \dots = F_{X_n^2}(x) = F_{X^2}(x)$$
 (2.0.5)

 $\forall x \in \mathbb{R}$ where $F_X(x)$ is the c.d.f. of X_i .

Proof. X_i is a sequence of i.i.d. random variables, which means it satisfies the following condition.

$$F_{X_1}(x) = F_{X_2}(x) = \dots = F_{X_n}(x) = F_X(x)$$
 (2.0.6)

where $F_X(x)$ is the c.d.f. of X_i .

Let $Y_i = X_i^2$. For $y \ge 0$,

$$F_{Y_i}(y) = \Pr(Y_i \le y)$$
 (2.0.7)

$$\implies F_{Y_i}(y) = \Pr\left(X_i^2 \le y\right)$$
 (2.0.8)

$$\implies F_{Y_i}(y) = \Pr\left(-\sqrt{y} \le X_i \le \sqrt{y}\right)$$
 (2.0.9)

$$\implies F_{Y_i}(y) = \Pr(X_i \le \sqrt{y}) - \Pr(X_i \le -\sqrt{y})$$
(2.0.10)

$$\implies F_{Y_i}(y) = F_{X_i}(\sqrt{y}) - F_{X_i}(-\sqrt{y})$$
 (2.0.11)

Using (2.0.6),

$$F_{Y_i}(y) = F_X(\sqrt{y}) - F_X(-\sqrt{y})$$
 (2.0.12)

From (2.0.12),

$$F_{Y_1}(y) = F_{Y_2}(y) = \dots = F_{Y_n}(y) = F_Y(y)$$
 (2.0.13)

where
$$F_Y(y)$$
 is the c.d.f. of $Y_i = X_i^2$.

Lemma 2.4. If X_i is a sequence of i.i.d. random variables, satisfying condition

$$F_{X_1,...X_n}(x_1...x_n) = F_X(x_1)F_X(x_2)...F_X(x_n)$$
(2.0.14)

where $F_X(x)$ is the c.d.f. of X_i , then for $Y_i = X_i^2$

$$F_{Y_1,Y_2,\dots,Y_n}(y_1,y_2,\dots,y_n) = F_Y(y_1)F_Y(y_1)\dots F_Y(y_n)$$
 (2.0.15)

where $F_Y(y)$ is the c.d.f. of $Y_i = X_i^2$.

Proof. Let $Y_i = X_i^2$. Now, for $y_i \ge 0$, consider

$$F_{Y_1,Y_2,\dots,Y_n}(y_1,y_2,\dots,y_n)$$

= $\Pr(Y_1 \le y_1, Y_2 \le y_2,\dots,Y_n \le y_n)$ (2.0.16)

$$= \Pr\left(X_1^2 \le y_1, X_2^2 \le y_2, \dots, X_n^2 \le y_n\right)$$
 (2.0.17)
= $\Pr\left(-\sqrt{y_1} \le X_1 \le \sqrt{y_1}, -\sqrt{y_2} \le X_2 \le \sqrt{y_2}, \dots, -\sqrt{y_n} \le X_n \le \sqrt{y_n}\right)$ (2.0.18)

Since X_1, X_2, \ldots, X_n are independent,

$$F_{Y_{1},Y_{2},...,Y_{n}}(y_{1}, y_{2},..., y_{n}) = \Pr\left(-\sqrt{y_{1}} \le X_{1} \le \sqrt{y_{1}}\right) \Pr\left(-\sqrt{y_{2}} \le X_{2} \le \sqrt{y_{2}}\right) \dots \Pr\left(-\sqrt{y_{n}} \le X_{n} \le \sqrt{y_{n}}\right) \quad (2.0.19)$$

From (2.0.9) and (2.0.13),

$$F_{Y_1,Y_2,\dots,Y_n}(y_1,y_2,\dots,y_n)$$

$$= F_{Y_1}(y_1)F_{Y_2}(y_2)\dots F_{Y_n}(y_n)$$

$$= F_{Y}(y_1)F_{Y}(y_2)\dots F_{Y}(y_n)$$
(2.0.20)
$$(2.0.21)$$

So,

$$F_{Y_1,Y_2,\dots,Y_n}(y_1,y_2,\dots,y_n) = F_Y(y_1)F_Y(y_1)\dots F_Y(y_n) \qquad (2.0.22)$$

Lemma 2.5. If X_i is a sequence of i.i.d. random variables, it follows that X_i^2 is also a sequence of i.i.d. random variables.

Proof. From Lemma 2.3 and Lemma 2.4, X_i^2 is also a sequence of i.i.d. random variables.

1) From Lemma 2.5, $\{X_i^2\}$ is a sequence of i.i.d. random variables. We know,

$$E(X_i^2) = V(X_i) + (E(X_i))^2$$
 (2.0.23)

Putting given values, we get,

$$E(X_i^2) = 1 (2.0.24)$$

From Lemma 2.2, $\frac{1}{n} \sum_{i=1}^{n} X_i^2$ converges in probability to $E(X_i^2) = 1$.

Therefore, option 1 is incorrect.

2) Let us define $Y_n = \frac{1}{n^{3/4}} \sum_{i=1}^n X_i$. Then,

$$E(Y_n) = \frac{1}{n^{3/4}} E\left(\sum_{i=1}^n X_i\right)$$
 (2.0.25)

$$\implies E(Y_n) = 0 \tag{2.0.26}$$

Since $E(X_i) = 0$

Lemma 2.6. If $X_1, X_2, ... X_n$ are independent random variables,

$$V\left(\sum_{i=1}^{n} X_{i}\right) = V(X_{1}) + V(X_{2}) + \dots + V(X_{n})$$
(2.0.27)

Here,

$$V(Y_n) = V\left(\frac{1}{n^{3/4}} \sum_{i=1}^n X_i\right)$$
 (2.0.28)

$$V(Y_n) = \frac{1}{n^{3/2}} V\left(\sum_{i=1}^n X_i\right)$$
 (2.0.29)

$$\implies V(Y_n) = \frac{1}{n^{3/2}} \times n = \frac{1}{n^{1/2}}$$
 (2.0.30)

Since $V(X_i) = 1$

Lemma 2.7. (Chebyshev's Inequality)

Let the random variable X have a finite mean μ and a finite variance σ^2 . For every $\epsilon > 0$,

$$\Pr(|X - \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2} \tag{2.0.31}$$

For Y_n ,

$$\Pr(|Y_n - E(Y_n)| \ge \epsilon) \le \frac{V(Y_n)}{\epsilon^2} \qquad (2.0.32)$$

$$\implies \lim_{n \to \infty} \Pr(|Y_n - 0| \ge \epsilon) \le \lim_{n \to \infty} \frac{1}{n^{1/2} \epsilon^2} (=0)$$
(2.0.33)

$$\implies \lim_{n \to \infty} \Pr\left(\left| \frac{1}{n^{3/4}} \sum_{i=1}^{n} X_i - 0 \right| \ge \epsilon \right) = 0$$
(2.0.34)

So, $\frac{1}{n^{3/4}} \sum_{i=1}^{n} X_i \to 0$ in probability.

Thus, option 2 is correct.

3) The option states that $\frac{1}{n^{1/2}} \sum_{i=1}^{n} X_i \rightarrow 0$ in probability. This statement implies that $\frac{1}{n^{1/2}} \sum_{i=1}^{n} X_i \rightarrow 0$ in distribution, from Lemma 2.1.

Lemma 2.8. (Central Limit Theorem)

Let $X_1, X_2, ... X_n$ be i.i.d. random variables with expected value $E(X_i) = \mu < \infty$ and $0 < V(X_i) = \sigma^2 < \infty$. Then the random variable

$$Z_n = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n}\sigma}$$
 (2.0.35)

converges in distribution to the standard normal random variable as n goes to infinity, that is

$$\lim_{n \to \infty} \Pr\left(Z_n \le a\right) = \Phi(a) \ \forall a \in \mathbb{R}. \tag{2.0.36}$$

where $\Phi(a)$ is the standard normal CDF. Writing the random variable Z_n for $\{X_i\}$ where $\mu = 0$ and $\sigma = 1$,

$$Z_n = \frac{1}{n^{1/2}} \sum_{i=1}^n X_i$$
 (2.0.37)

where,

$$Z_n \to Z$$
, where, $Z \sim N(0, 1)$ (2.0.38)

The above result doesn't match the option's statement. Therefore, option 3 is incorrect.

4) As proved in option (1), $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} \rightarrow 1$ in probability. So option 4 is correct.

Therefore, options 2 and 4 are correct.