This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Intyg Certificate

Härmed intygas att bifogade kopior överensstämmer med de handlingar som ursprungligen ingivits till Patent- och registreringsverket i nedannämnda ansökan.

This is to certify that the annexed is a true copy of the documents as originally filed with the Patent- and Registration Office in connection with the following patent application.

(71) Sökande Volvo Lastvagnar AB, Göteborg SE Applicant (s)

(21) Patentansökningsnummer 0100429-0 Patent application number

(86) Ingivningsdatum
Date of filing

2001-02-09

Stockholm, 2003-09-30

För Patent- och registreringsverket For the Patent- and Registration Office

Musein Gudin Rerstin Gerden

Avgift Fee 170:-

Ink. t. Patent- och reg.verket

FAX:46 317790640

2001 -02- 0 9

TITEL

5

25

....i

Huvudiaxen Kassan

Anordning och förfarande för reglering av förhållandet mellan bränslemängd och luftmängd i en naturgasdriven förbränningsmotor.

TEKNISKT OMRÅDE

Föreliggende uppfinning avser en snordning für reglering av förhållandet mellan

bränslemängd och luftmängd i en naturgasdriven förbränningsmotor enligt ingressen till

patentkravet 1 samt ett förfarande för reglering av förhållandet mellan bränslemängd och
luftmängd i en naturgasdriven förbränningsmotor enligt ingressen till patentkravet 8.

15 TEKNIKENS STÅNDPUNKT

Naturgasmotorer används till stora delar såsom ett alternativ till dieseldrivna motorer för att emissionerna från naturgasmotorer är lägre än emissioner från dieseldrivna motorer. I synnarhet utgör partikelbildning vid förbränningen av bränslet i en dieselmotor ett problem varför försök att reducera partikelutsläpp genom att nedströms dieselmotorn montera partikelfällor har nyttjats. Denna utvecklingsväg har dock behäftats med såväl tekniska som kostnadsmässiga problem. Såsom ett alternativ till dieselmotorer kan därför naturgasdrivna motorer nyttjas.

I dag befintliga naturgasdrivna förbränningsmotorer vilka är anpassade för drift av tunga fördon utgörs av modifierade dieselmotorer. Förbränningsmotorer är konstruerade för att medge att en maximalt tillåten driftstemperatur inte överskrids. Om denna temperatur överskrids ger den termiska belastningen upphov till motorhaveri. Ett sådant haveri kan äga rum i motorns huvudkomponenter såsom exempelvis att i förbränningsmotorn ingående kolvar fastsvetsas mot förbränningsrummens väggar, alternativt kan haveri äga rum i nedströms förbränningsrummens utloppsportar anordnade avgaskanaler där exempelvis turboaggregat kan utsättas för alltför stor termisk belastning. För att undvika dessa problem drivs befintliga naturgasdrivna förbränningsmotorer med ett bränsle- luftförhållande av storleken $\lambda=1.5$.

link it. Patent- och reguverket

2001 -02- 0 9

Huvudfaxen Kassan

Detta driftaförfarande har visat sig uppvisa den nackdel att en nedströms förbränningsmotom anordnad katalysator förgiftas på grund av förekomsten av svavel i bränsle och motorolja.

Vid drift av tunga fordon är det av stor vikt att responsen vid läga varvtal är god, med vilket avscs att tillgängligt avgivet moment vid tomgångavarvtal är stort. Det har dock visat sig att naturgasdrivna fordon vilka drivs i magerdrift uppvisar ett relativt lägt avgivet moment vid tomgång i förhållande till tillgängligt avgivet moment vid den driftpunkten av motorn som ger maximal effekt.

10

15

20

KORT BESKRIVNING AV UPPFINNINGEN

Ändamålet med uppfinningen är att tillhandahålla en anordning samt ett förfarande för reglering av förhållandet meilan bränslemängd och luftmängd i en naturgasdriven förbränningsmotorn där driftsförhållandet hos förbränningsmotorn medger regeneraring av en nedströms förbränningsmotorn monterad katalysator samt att tillhandahålla en anordning samt ett förfarande för regleting av förhållandet meilan bränslemängd och luftmängd i en naturgasdriven förbränningsmotor vilka medger en ökning av tillgängligt svgivet moment vid tomgångsvarvtal. Dessa ändamål uppnås genom en anordning enligt den kännetecknade delen av patentkravet 1 samt ett förfarande enligt den kännetecknade delen av patentkravet 7.

Genom att indelst förbränningsmotosus last- och varvtals område i ett första område där förbränningsmotom drives i magerdrift och ett andra område där förbränningsmotom drives i stökiometrisk drift och att nämnda område för stökiometrisk drift är mordnet att nyttjas vid driftspunkter i nämnda last- och varvtalsområde med läg last och/eller lågt varvtal erhålles en förbränningsmotor där tillgängligt avgivet moment vid tomgångsvarvtal ökst väsentligt samt där regenerering av katalysatom medges genom intermittent drift i homogen drift, dvs drift vid stökiometriskt förhållande.

:30

•:••:

O

Samma fördelar erhålles med den enligt den kännstecknande delen av patentkravet 8 där förbränningsmotorn drives i stökiometrisk drift vid driftspunkter i förbränningsmotorns lastoch varvtalsområde med låg effekt och att förbränningsmotorn drives i magerdrift drift vid
driftspunkter i nämnda last- och varvtalsområde med hög effekt.

15

25

-:--:

0

2001 -02- 0 9

Huvudfaren Kassan

Enligt en föredragen utföringsform av uppfinningen är det för motorn specificerade driftspunktskarta för \(\lambda\)-värde reglering inom fordunets last- och varvtalsområdet så anordnat att gränslinjen mellan mager drift och stökiometriskt drift är placerad så att temperaturen hos ett område nedströms hos förbränningsmotorns förbränningsrum befintliga utloppsportar begränsas till en maximalt tillåten gränstemperatur. Denna gränstemperatur uppgår vanligtvis till ca 700° C.

I en ytterligare föredragen utföringsform av uppfinningen fastställs befintlig driftspunkt i förforämningsmotoms last- och varvtalsområde genom nyttjande av en parameter som är obervende av i vilket diftstillstånd förbränningsmotoms för tillfället befinner sig i såsom parametern begärt avgivet moment. Genom att nyttja en styrande parametern vilken inte är påverkad av i vilken driftsmod förbränningsmotom för tillfället befinner sig i erhålles stabil drift och enkla regleringsalgoritmer i förhållande till om en beroende parameter såsom exempelvis last, varvtal eller avgivet moment akulle nyttjas.

I ytterligare föredragna utföringaformer sker en stegvis förändring av \(\lambda\)-värdet vid övergången från magerdrift till stökiometrisk drift respektive vid övergången från stökiometrisk drift till mager drift. I en speciellt föredragen utföringaform sker denna stegvisa förändring i form av en linjär ramp. Genom detta förfarande reduceras risken för uppkomst av abrupta förändringar av svgivet moment vid byte av driftområde hos förbränningamotorn.

I en ämm ytterligare föredragen utföringsform av uppfinningen överlappar nämnda första och andra område delvis varandra varvid instabil pendling mellan nämnda första och andra område motværkas

FIGURBESKRIVNING

En utföringsform av uppfinningen kommer nedan att beskrivas med hänvisning till bifogade ritningsfigurer. där

fig. 1 visar ett diagram över NOx bildning som funktion av λ för en naturgasmotor,

25

-:--:

③

Huvudfoxen	Kassan

- fig. 2 visar ett diagram av omvandlingsgraden som funktion av λ för en oxidationakatalysator monterad nedströms en naturgasdriven förbränningsmotor,
- fig. 3 visar schematiskt en naturgasdriven fürbränningsmotor enligt uppfinningen,
- fig. 4 visar ett exempel på ett utseende av en driftspunktskarta för λ- värde reglering inom förbydnningsmotoms last- och varvtalsområde,
- fig. 5 visar schematiskt funktionen av överlapp eller hysteres mellan ett första och ett mir som förbrämningsmotorns last- och varvtalsområde,
 - fig. 6 visar schematiskt ett styrsystem för reglering av trottelvinkel och tillförd bränslemängd till förbränningsmotorns förbränningsrum, och
- 15 fig.7 viser schematiskt delkretsar för fastställning av i vilken driftsmod förbränningsmotom befinner sig i samt upp respektive nedrampning av tillhörande λ- värde.

20 DETALJERAD BESKRIVNING AV UPPFINNINGEN

I figur 1 visas schematiskt ett diagram över NOx bildningsgraden a som funktion av bränsleoch luftförhållandet λ vid förbränning av naturgas i en förbränningsmotor. I detta diagram
visas att NOX bildningen uppvisar ett maxima för ett värde på λ strax över 1. NOx bildningen
avtar därefter snæbet med stigande λ och är mycket låg vid $\lambda > 1,5$. Vanliga mått på NOx
bildning vid $\lambda = 1$ är 1 β g/kWh och vid $\lambda = 1,5$ ca. 1,5 g/kWh

I figur 2 visas schematiskt omvandlingsgraden av NOx som funktion av λ för en oxidationskatalysator monterad nedströms en naturgasdriven förbrämingsmotor. Omvandlingsgarden är av storleksordningen 99% för λ understigande 1,0 och försumbar för λ överstigande 1,0.

Mot bakgrund av i figur 1 och 2 redovisade förhållanden har konventionalla naturgasmotorer antingen konstruerats för drift i magermod med $\lambda > 1,5$ eller i homogen drift med $\lambda = 1$.

25

•:---

()

_ link i Patent- och reg.verket

2001-02-09

Havadianan Kassan

I figur 3 visas schematiskt en naturgasdriven förbränningsmotor 1. Pörbränningsmotorn 1 år av i sig konventionellt slag och beskrives därför inte i detalj. I en uffiringsform är förbränningsmotom 1 uppbyggd av ett motorblock 2 i vilket ett antal förbränningsrum i form av cylindrar 3 är bildade och ett topplock 4 i vilket inloppskanaler (icke visude), inloppsportar (icke visade), ventilanordningar (icke visade), avgaskanaler (icke visade) och avgasportsr (icke visade) är bildade. Topplocket 4 är delvis uppsnittat varvid en av cylindrama 3 hos motorn visas. Till topplockets 4 inloppsportar är ett insugningsgrenrör 5 kopplat och till topplockets avgasportar är ett avgasgrenrör 6 kopplat. Insugningsgrenröret 5 är sammankopplat med ett inloppsledning 7 i vilket en trottel 8 är monterad. Vidare kan en 10 kompressor 9 vara monterad i inloppsledningen i det fall att förbränningsmotorn är överladdad. I det fall att motorn är överladdad innefattar motorn företrädesvis en laddhiffkylare (icke visad) monterad nedströms kompressom 9. Avgasgremöret 6 är i sin tur kopplat till en avgasledning 10 i vilken en kutalysstor 11 är monterad. I förekommunde fall, nër förbränningsmotorn är en av turbotyp, finns även en avgasturbin 12 anordnad i 15 avgasledningen 10. Avgasturbinen 12 och kompressom 9 är vanligtvis monterade på en gemensam rotationsaxél 13, men även andra typer av kraftöverföring från turbin till kompressor är tänkbara.

Cylindrama 3 matas med bränsle i form av naturgas via ett bränslematningssystem 14. Bränslematningssystemet 14 innefattar en bränslereservoar 15 i form av en högtryckstank, bränsledningar 16 vilka förbinder bränsletanken 15 med insprutningsorgan i form av injektorer 17, vilka vanligtvis är monterade uppströms insugningsgrenröret 5. En vanlig placering av injektorerna 17 är mellan kompressor 9 och trottel 8, alternativt kan kompressom monteras uppströms kompressom. I en alternativ utföringsform kan insprutningen ake utanför cylinderrummen 3 och i analutning till cylindramas inloppsportar, ak. portinsprutning. Enligt en ytterligare alternativ utföringsform är injektorerna 17 monterade och mynnar direkt i cylinderrummen 3, ak. direktinsprutning. Bränslet drivs runt i bränslematningssytemet med hjälp av en pump 18.

Vidare finns ett tändsystem 19 analutet till förbränningsmotorn. Tändsystemet 19 är av konventionell typ och innafattar en spänningskälla (icke visad)och en högspänningsdel med tändstift 20, vilka är monterade i topplocket 4. I en alternativ utföringsform av uppfinningen kan tändningen ake genom injicering av en liten mängd diesel vilken sprutas direkt in i

10

20

O

2001 -02- 0 9

Huvudfaxen Kassan

cylinderrummen, sk.micro pilot. I detta fall nyttjas sålunda inga tändstift utan dessa är utbytta mot dieselinjektorer. Den injicerade mängden diesel ger ett försumbart momenttillskott i förhållande till den naturgas som antinds av den injicerade dieseln och nyttjas som huvudsakliet drivmedel.

Förbränningsmotorn styrs av ett styrorgan 21, vilket är anordnat att styra trotteln 8 för erhällande av korrekt trottelvinkel i förhållande till aktuellt driftstillatåral hos förbränningsmotorn, imsprutningsorganen 17 för erhållande av korrekt tillförd bränslemängd i förhållande till aktuellt driftstillstånd hos förbränningsmotom samt tändsystemet för erhållande av korrekt tändtid i förhållande till aktuellt driftstillstånd hos förbränningsmotorn. Styrorganet 21 kommunicerar för detta ändamål med ett ställdon (icke visat) anordnat för installning av trottelvinkel, med insprutningsorganet 17 för installning av insprutningstider och med tändsystemet för tändlägesreglering.

I figur 4 visas schematiskt en driftpunktskarta för \(\lambda\) värde reglering inom 15 förbränningsmotorns last- och varvtalsområde . Last- och varvtalsområdet är indelat i ett första område 23 där förbränningsmotorn drives i magerdrift och ett andra område 24 där förbränningsmotorn drives i stökiometrisk eller fet drift ett λ- värde mellan 0,7 och 1,0.Med fet eller stökiometrisk drift avses ett. Med magordrift avses härmed ett λ- värde överstigande 1,0, företrädesvis ett λ - värde mellan 1,25 och 2,0. Uppfinningen fungerar bäst med magerdrift med ett λ- värde mellen 1,25 och 1,6. För att erhålle väsentligt reducerad NOx bildning utan att misståndningar, höga HC-emissioner eller momentförhister på grund av alltför höga λ - värden uppkommer kan ett λ - värde inom området 1,5 – 1,6 nyttjas. Med homogen och stökiometrisk drift avses att bränsle luftblandningen i förbränningsmotoms förbränningsrum sker vid $\lambda=1,0$. Det första och det andra området avakiljs av en gränslinjen 25 25 mellan mager drift och stökiometriskt drift. Gränslinjen 25 är placerad så att temperaturen hos ett område nedströms hos förbrättningsmotorns förbränningsrum befintlige utloppsporter begränses till en maximalt tillåten gränstemperatur. Denna gränstemperatur uppgår vanligtvis till ca 700°. Granslinjen 25 utgör sälunda av en effektbegransning vid förbränning i homogent tillstånd varvid det säleerställe att förbränningsmotom och därtill nedströms kopplade enheter inte utsätts för alltför stor termisk belastning. Gränslinjen kan finsiställas genom utprovning vid konstruktion av en motortyp genom att avgastemperaturen uppmäts med en sensor i valda områden nedströms förbränningsrummens utloppsportar. För bränningsmotorn körs därvid i stökiometriskt förhållande i olika driftspunkter med allt högre last och varvtal tills det att

10

15

25

0

2001 -02- 0 9

Huvudfæren Kassan

gränstemperaturen uppmäts. Driftpunktema där gränstemperaturema uppmäs noteras och den fullständiga kurvan erhälles genom interpolation mellan dessa mätvärden. Även teoretiska beräkningar kan ligga till grund för framtagandet av driftpunkternas temperaturvärden och därigenom gränslinjes utseende och position i förbränningsmotorns last- varvtalsområde.

Gränslinjen 25 är i en föredragen utföringsform utformad med en viss hysteres. Detta innebär att det första området 23 och det andra området 24 delvis överlappar varandra.

I figur 5 visas schematiskt funktionen av överlapp eller hysteres mellan ett första 23 och ett andra 24 område inom förbränningsmotoms last- och varvtalsområde. Det första och det andra området avgränses av en gränslinje 25 vilken uppvisar en viss hysteres 26. Gränslinjen bildas sålunda av en första gränslinje 27 och en andra gärnslinje 28 vilka följs åt på ett avstånd motsvarande nämnda hysteres 26. Den första gränslinjen 27 ansluter mot områden i förbränningsmotorns lest- och varviels område där förbränningsmotorn utvecklar läg effekt och den andra gränslinjen 28 ansluter mot områden i förbränningsmotorns last- och varvtals område där förbränningsmotom utvecklar hög effekt. En driftpunktsvariation 29 visar hur förbrämningsmotorn anpar de skilda driftsmoderna definierade av det första och det andra området 23, 24 vid passage från det andra området 24 till det första området 23 och omvänt. Driftpunktsvariationen passerar härvidlag driftspunkterna A – H markerade i figuren. Vid "passage från A till B passerar driftpunktsværistionen först den första gränslinjen 27. Förbränningsmotorn kommer i detta läge inte att omställas från drift i sin andra driftmod definiered genom det undra området 24 där förbränningsmotom drives i stökiometriak förbränningsförhållande. Något senare passerar driftpunktsvaristionen den andra gränslinjen 28. I detta liige ställs fürbränningsmotorn om für drift i sin första driftsmod definierad genom det första området 23 där förbränning sker med mager bränsleluftblandning. Vidare sker vid passage av driftpunktavariationen från B till C en passage av den andra gränslinjen 28. Estersom inte båda granslinjerna passeras aker ingen omställning till den andra driftsmoden motsvarande dat andra driftsområdet 24. När driftpunktsvariationen följes ytterligare från C till D passeras ånyo den andra gränslinjen 28 utan att förändring av driftsmod sker. Förbränningsmotom drives i detta läge redan i sin första driftsmod motsvarande det första området 23. Senare när driftpunktsvariationen passerar från D till E passeras ånyo båda gränslinjerna 27, 28 vijular fürbränningsmotom sin driftsmod från det första området 23 till det andra området 24. På samma sätt sker ingen förändring av driftsmod när driftpunktsvaristionen passerar från E till F, från F till G och från G till H.

20

25

Ø

Ink. t. Patent- och ren verket

2001-02-09

Huvudfaxen Kassan

Sammanfattningsvia aker såtunda en förändring av förbräuningsmotoms driftmod från det första området 23 till det andra området 24 när den andra gränslinjen 28 och den första gränelinjen 27 passerata konsekutivt efter varandra och en förändring av förbränningsmotorna driftmod från det andra området 24 till det första området 23 när den första gränslinjen 27 och den andra gränslinjen 28 passerats konsekutivt efter varandra. Nyttjandet av ett överlapp mellan den första och det andra området 23, 24 medför att instabil pendling mellan de båda områdena vid liten variation av driftpunkten i närheten av gränslinjen 25 undviks.

GÖTEBORGS PATENTBYRA DARLS AB

46 317798648

Vid passage från det första området 23 till det andra området 24 respektive omvänt aker enligt en föredragen utföringsform av uppfinningen en stegvis förändring av A- värdet. I en speciellt föredragen utföringsform sker denna stegvisa förändring i form av en linjär ramp. Med detta avses att λ - värdet ökas eller minska med små inkrement under en fastställd tidsperiod eller under ett fætställt antal motorvarvtal. Genom detta förfarande reduceras risken för uppkomst av abrupta förändringar av avgivet moment vid byte av driftområde hos förbränningsmotorn.

I figur 6visas schematiskt ett exempel på ett styrsystem 30 för reglering av trottelvinkel och tillförd bränslemängd till förbränningsmotorns förbränningsrum. Styrsystemet innefattar ett första funktionsblock 31 vilket generarar en utsignal 32 motsvarande begärt avgivet moment. Insignalen till det första funktionsblocket 31 innefattar exempelvis gaspedalläget hos fordonet.

Utsignalen 32 från det första funktionsblocket 31 utgör en insignal till ett andra funktionsblock 44. Det andra funktionsblocket 44 fastställer en utsignal 45 motsvarande begärt \u03b4- värde. Det andra funktionsblocket innefattar en första delkrets 46 i vilket utsignalen 32 motsvarande det begärda avgivna momentet lägpassfiltreras varvid högfrekventa fluktuationer reduceras och en tredje utsignal 47 genereras, där hänsyn tagit till motorns dynamiska respons. Den lägpassfiltererde tredje utsignalen 47 och en insignal 48 motsvarande aktuellt motorvarvtal nyttjas i en andra delkrets 49 i vilken en utsignal 50 motsvarande aktuell driftspunkt genereras. Utsignalen 50 utgör insignal till en tredje delkrets 40 vilken genererar en utsignal 45' vilken motsvarar modväxlingsgraden mellan första och andra driftmod i beroende av vilket område motorn drive i och hur växling skett. En mer detaljerad beskrivning av ett exempel på en utformning av delkretsen 40 ges nedan i anslutning till figur 7.

09-FEB. '01 (FRE) 14:55

S

10

15

20

25

::::

•:••:

tok t. Patent- och reg.verket

2001 -02- 0 9

Genom den lågpassfiltrerade tredje utsignalen och insignalen 48 motsvarande aktuellt Muvudfoxen Kosson motorvarvtal fastställs ett driftspunktaläge för förbränningsmotorn inom ett för motorn specificerat last- och varvtalsområde enligt vad som beskrivits ovan. I en föredragen utföringsform bildas utsignalen 45 motsvarande begärt λ- värde med hänsyn till eventuellt existerande överlapp mellan det första området 23 och det andra området 24 motsvarande olika driftsmoder hos förbränningsmotorn och/ eller existerande upp- respektive nedrampning ev λ- värdet vid passage från det ena området till det andra området.

I figur 7 visas schematiskt delkretser av pännnda andra funktionsblock 44 där en utsignel 45 motsværende begärt λ - værde fastställs. I den andra delkretsen 49 fastställs ett driftspunktsläge för förbrämingsmotorn inom ett för motorn specificerat last- och varvtalsområde genom den lågpassfiltrerade tredje utsignalen och insignalen 48 motsvarande aktuellt motorvarvtal. Den andra delkretsen 49 genererer i detta fall en utsignal 50 motsvarande aktuell driftspunkt. I en tredje delkrets 51 fastställs huruvida driftspunkten ligger inom det första eller det andra området 23, 24, samt genereras en utsignal vilken 52 motsvarar aktuellt område. Vidare fastställs i en fjärde delkrets 53 vilken nyttjar utsignalen 52 motsvarar aktuellt område samt uteignal 50 motsvarande aktuell driftspunkt för ett fastställa huruvida den första respektive den andra gränslinjen 27, 28 har passerats. I detta fall bildas en utsignal 54 indikerande att förbränningsmotom har ändrat driftsmod från första området 23 till andra området 24 eller omvänt. Denna utsignal återförs till den tredje delkretsen 51 varvid aktuell information om områdestillhörighet upprätthålls. Den tredje delkretsen 53 genererar även en andra utsignal 45' motsvarande begärt λ- värde. I det fall att ingen rampningsfunktion är anordnad motsvarar denna utsignal utsignalen 45 från det andra funktionsblocket motsvarande begärt λ - värde. I en förodragen utföringsform utgör dock utsignalen 45 från den fjärde delkretsen 53 en insignal till en femte delkrets 55 i vilken en utsignal 45 från det andra funktionsblocket 44 motsvarande begärt λ- värde generas med upp respektive nedrampning vid passage från det första till det andra området 23, 24 eller omvänt. För åstadkommandet av denna upp respektive nedrampning uppvisar den femte delkretsen en andra insignal 56 vilken utgörs av en klockfrekvens eller motorvarvtalet varvid den kontinusrlig stegvis upp respektive nedrampning av utsignalen 45 medges.

Utsignalen 45 från det andra funktionsblocket 44 utgör insignal till ett tredje funktionsblock 57 vilket utgör en konventionell regleranordning för inställning av trottelvinkel.. Det tredje funktionsblocket 57 innefattar en första delkrets 58 i vilket en utsignal 59 motsvarande begård

10

20

Ö

2001-02-09

Huvudfaxen Kassan

trottelvinkel från utsigrælen 32 motsvarande det begärds avgivna momentet, en insignal 48 motsvarande aktuellt motorvarvtal och utsignalen 45 motsvarande beglirt λ - värde genereras. Utzignalen från det tredje funktionsblocket skickas därefter till ställdon villes ställer in trottelvinkel till diskat läge.

Utsignalen 45 från det andra funktionsblocket 44 utgör även insignal till ett fjärde funktionsblock 62 vilket utgör en konventionell regleranordning för styrning av förhållandet mellan bränsle och luft mot ett målvärde. Det fjärde funktionsblocket 62 innefattar en första delkreta 63 i vilken en utsignal 64 motsvarande ett uppmätt luftflöde genereras. Derma utsignal 64 nyttjas som insignal till en andra delkrets 65 i vilket en utsignal 66 motsværande målvärde för lambda genereras ur insignalen 45 motsvarande begärt lambda, aktuellt motorvarvtal 48 och utsignalen 64 motsverande ett uppmätt luftfiöde. En tredje delkrets 67 genereras en insignal 68 motsvarande ett beräknat bränsle/luftförhållande vilken utgörs av en λ regulator. Vidare genereras i en fjärde delkrets 69 en utsignal 70 från en lambdesond. I en 15 femte delkrets 71 genereras en utsignal 72 motsvarande begärd bränslemängd från utsignalen 66 motsvarande målvärde för lambda, utsignalen 64 motsvarande ett uppmätt luftflöde, insignalen 68 motsvarande ett beräknat bränsle/luftförhållande det andra funktionsblocket och utsignal 70 från en lambdasond, varvid inställning av insprutningstid hos i fürbränningsmotom befintliga injektorer 17 sker genom nyttjande av insignalen 72.

Uppfinningen skall inte begränses till ovenstående beskrivna utföringsformer utan kan varieras inom ramen för efterföljande patentkrav. I synnerhet kan första, tredje och fjärde funktionsblocken utformas på andra för fackmannen kända sätt.

3

tak. t. Patent- och reg.verket. 2001 -02- 0 9

Huvudfaxen Kassan

PATENTKRAV

- Anordning för reglering av förhållandet mellan bränslemängd och luftmängd i en naturgaadriven förbränningsmotor, vilken är avsedd att arbeta inom ett för motorn specificerat last- och varvtalsområde, där anordningen innefattar en trottel för reglering av tillförd luftmängd till förbränningsmum anordnade i förbränningsmotorn, insprutningsorgan för reglering av mängden tillförd naturgas till nämnda förbränningsrum samt styrorgan för styrning av nämnda trottel och nämnda insprutningsorgan, varvid nämnda styrorgan är anordnat att reglera nämnda förhållande mellan bränslemängd och luftmängd i beroende av befintlig driftspunkt förbränningsmotorns last- och varvtalsområde, kännetecknad av att nämnda last- och varvtals område är indelat i ett första område dår förbränningsmotorn drives i magerdrift och ett andra område där förbränningsmotorn drives i magerdrift och att nämnda område för stökiometriak drift är anordnat att nyttjas vid driftspunkter i nämnda last- och varvtalsområde med låg effekt.
- Anordning enligt patentkrav 1, kännetecknad av att området med stöklometrisk drift är avgränsat mot området med mager drift så att temperaturen hos ett område nedströms hos förbränningsmotorns förbränningsrum befintliga utloppsportar begränsas till en maximalt tillåten gränstemperatur, varvid nämnda styrorgan är anordnat att medge växling från stöklometrisk eller fet drift till magerdrift innan nämnda gränstemperatur uppnås.
 - Anordning enligt något av patentkraven 1 eller 2, kännetecknad av att styrorganet är anordnat att fastställa befintlig driftpunkt i nämnda last- och varvtalsområde från en styrsignal motsvarande begärt avgivet moment från förbränningsmotorn.
 - Anordning enligt något av föregående patentkrav, kännstecknad av att nämnda styrorgan är anordnat att reglera övergången mellan mager drift och atökiometrisk eller fet drift vid passage från nämnda första område till nämnda

9

©

2001 -02- 0 9

Huvudfoxen Kassan

andra område genom stegvis förändring av förhållandet mellan bränslemängd och luftmängd.

- Anordning enligt patentkravet 4, kännetecknad av att nämnda styrorgan är anordnat att reglera övergången mellan stökiometrisk eller fet drift och mager drift vid passage från nämnda andra område till nämnda första område genom stegvis förändring av förhållandet mellan bränslemängd och luftmängd.
- Anordning enligt något av föregående patentkrav, kännetecknad av att nämnda första och andra område delvis överlappar varandra varvid instabil pendling mellan nämnda första och andra område motverkas.
- 7 Anordning enligt något av föregående patentkrav, kännetecknad av att nämnda första område motsvarar ett λ- värde mellan 1,25 och 1,6 samt att nämnda andra område motsvarar ett λ- värde mellan 0,7 och 1,0.
 - Förfarande för reglering av förhållandet mellan bränslemängd och luftmängd i en naturgasdriven förbränningsmotor, vilken är avsedd att arbeta inom ett för motorn specificerat last- och varvtalsområde, varvid ett till förbränningsmotorn anordnat styrorgan reglerar förhållanda mellan bränslemängd och luftmängd i beroende av befintlig driftspunkt förbränningsmotorna last- och varvtalsområde genom inställning av trottelvinkel bos en hos förbränningsmotorn anordnad trottel för reglering av tillförd luftmängd till förbränningsrum anordnade i förbränningsmotorn samt styrning av mängden tillförd naturgas till nämnda förbränningsrum via insprutningsorgan, kännetecknat av att förbränningsmotorn drives i stökiometrisk eller fet drift vid driftspunkter i nämnda last- och varvtalsområde med låg effekt och att förbränningsmotorn drives i magerdrift drift vid driftspunkter i nämnda last- och varvtalsområde med hög effekt.
 - Förfarande enligt patentkrav 8, kännetecknad av att området med stökiomstrisk eller fet drift är avgränsat mot området med mager drift så att temperaturen hos ett område nedströms hos förbränningsmotorns förbränningsnum befintliga utloppsportar begränsas till en maximalt tillåten gränstemperatur, varvid nämnda styrorgan är anordnat att medge växling från stökiometrisk eller fet drift till

link, t. Patent- och reg.verket

2001 -02- 0 9

Huvudfaxen Kassan

magerdrift imm nämnda gränstemperatur uppnås.

- Förfarande enligt något av patenikraven 8 eller 9, kännetecknad av att styrorganet fastställer befintlig driftpunkt i nämnda last- och varvtalsområds från en styrsignal motsvarande begärt avgivet moment från förbränningsmotorn.
- Pörfarande enligt något av patentkraven 8 10, kännstecknad av att nämnda styrorgan reglera övergången mellan mager drift och stökiometrisk drift vid passage från nämnda första område till nämnda andra område genom stegvis förändring av förhållandet mellan bränslemängd och luftmängd.
- 12 Förfarande enligt patentkravet 11, kännetecknad av att nämnda styrorgan reglerar övergången mellan stökiometrisk drift och mager drift vid passage från nämnda andra område till nämnda första område genom stegvis förändring av förhållandet mellan bränslemängd och luftmängd.
- 13 Förfarande enligt något av patentkraven 8 12, kännetecknad av att nämnda första och andra område delvis överlapper varandra varvid instabil pendling mellan nämnda första och andra område motverkas.
- Pörfarande enligt något av patentkraven 8 13, kännetecknad av att nämnda första område motsvarar ett λ- värde mellan 1,25 och 1,6 samt att nämnda andra område motsvarar ett λ- värde mellan 0,7 och 1,0.

09-FEB. '01 (FRE) 14:56

GÖTEBORGS PATENTBYRA DAALS AB

PAX: 46 317790640k t Patent- och regiverker 2001 -02- 0 9

Huvudfaxen Kassan

BAMMANDRAG

Anordning och förfarande för reglering av förhållandet mellan bränslemängd och luftmängd i en naturgasdriven förbränningsmotor, vilken är avsedd att arbeta inom ett för motorn specificerat last- och varvtalsområde, där anordningen innefattar en trottel för reglering av tillförd luftmängd till förbränningsrum anordnade i förbränningsmotorn, insprutningsorgan för reglering av mängden tillförd naturgas till nämnda förbränningsrum samt styrorgan för styrning av nämnda trottel och nämnda insprutningsorgan, varvid nämnda styrorgan är smordnat att reglera nämnda förhållande mellan bränslemängd och luftmängd i beroende av befintlig driftspunkt förbränningsmotorns last- och varvtalsområde.

Fig.4

Ink. t. Patent- och reg.verket

2001 -02- 0 9

1/5

GÖTEBORGS PATENTBYRA DAÂLS AB 46 317790640

Huvudiasen Kassan

2001 -02- 0 9

Huvudfaxen Kassan

2/5

Ink. t. Patent- och reg.verket

2001 -02- 0 9

Huvudfaxen Kassan

FIG.4

ink t. Patent- och reg.verket

2001 -02- 0 9

Huvudfaxen Kassan

4/5

Ink. t. Patent- och reg.verket

2001 -02- 0 9

Huvudfaxan Kassan

5/5

COTEBORGS PATENTBYRA DAALS AB

