

and materials

Semiconductors

Book S8a

1986

Light emitting diodes

LIGHT EMITTING DIODES

	page
Selection guide	
Light emitting diodes	1
Type number survey (alpha-numerical)	9
General	
Safety recommendations	15
Rating system	17
Letter symbols	19
Definitions	25
Dimensioning	31
Driving GaAlAs LEDs	33
Tape packaging of LEDs	36
Soldering and mounting recommendations	38
Device data in alpha-numerical sequence	41
Index of all devices in semiconductor Data Handbooks	437

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks:

ELECTRON TUBES

BLUE

SEMICONDUCTORS

RED

INTEGRATED CIRCUITS

PURPLE

COMPONENTS AND MATERIALS

GREEN

The contents of each series are listed on pages iv to viii.

The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).

Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.

Product specialists are at your service and enquiries will be answered promptly.

ELECTRON TUBES (BLUE SERIES)

The blue series of data handbooks comprises:

1 1	Tubes for r.f. neating
T2a	Transmitting tubes for communications, glass types
T2b	Transmitting tubes for communications, ceramic types
Т3	Klystrons
T4	Magnetrons for microwave heating
T5	Cathode-ray tubes Instrument tubes, monitor and display tubes, C.R. tubes for special applications
Т6	Geiger-Müller tubes
T8	Colour display systems Colour TV picture tubes, colour data graphic display tube assemblies, deflection units
Т9	Photo and electron multipliers
T10	Plumbicon camera tubes and accessories
T11	Microwave semiconductors and components
T12	Vidicon and Newvicon camera tubes
T13	Image intensifiers and infrared detectors
T15	Dry reed switches
T16	Monochrome tubes and deflection units Black and white TV picture tubes, monochrome data graphic display tubes, deflection unity

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:

S1	Diodes Small-signal silicon diodes, voltage regulator diodes ($<$ 1,5 W), voltage reference diodes, tuner diodes, rectifier diodes
S2a	Power diodes
S2b	Thyristors and triacs
S3	Small-signal transistors
S4a	Low-frequency power transistors and hybrid modules
S4b	High-voltage and switching power transistors
S 5	Field-effect transistors
S6	R.F. power transistors and modules
S7	Surface mounted semiconductors
S8a	Light-emitting diodes
S8b	Devices for optoelectronics Optocouplers, photosensitive diodes and transistors, infrared light-emitting diodes and infrared sensitive devices, laser and fibre-optic components
S9	Power MOS transistors
S10	Wideband transistors and wideband hybrid IC modules
S11	Microwave transistors
S12	Surface acoustic wave devices
S13	Semiconductor sensors

INTEGRATED CIRCUITS (PURPLE SERIES)

The purple series of data handbooks comprises:

EXIST	ING SERIES	Superseded by:
IC1	Bipolar ICs for radio and audio equipment	IC01N
IC2	Bipolar ICs for video equipment	IC02Na and IC02Nb
IC3	ICs for digital systems in radio, audio and video equipment	IC01N, IC02Na and IC02Nb
IC4	Digital integrated circuits CMOS HE4000B family	
IC5	Digital integrated circuits – ECL ECL10 000 (GX family), ECL100 000 (HX family), dedicate	IC08N ted designs
IC6	Professional analogue integrated circuits	IC03N and Supplement to IC11N
IC7	Signetics bipolar memories	
IC8	Signetics analogue circuits	IC11N
IC9	Signetics TTL logic	IC09N and IC15N
IC10	Signetics Integrated Fuse Logic (IFL)	IC13N
IC11	Microprocessors, microcomputers and peripheral circuitry	IC14N

	/\	
NEW SERIES		
IC01N	Radio, audio and associated systems Bipolar, MOS	(published 1985)
IC02Na	Video and associated systems Bipolar, MOS Types MAB8031AH to TDA1524A	(published 1985)
IC02Nb	Video and associated systems Bipolar, MOS Types TDA2501 to TEA1002	(published 1985)
IC03N	Integrated circuits for telephony	(published 1985)
IC04N	HE4000B logic family CMOS	
IC05N	HE4000B logic family — incased ICs CMOS	(published 1984)
IC06N*	High-speed CMOS; PC74HC/HCT/HCU Logic family	(published 1986)
IC07N	High-speed CMOS; PC54/74HC/HCT/HCU — uncased ICs Logic family	
IC08N	ECL 10K and 100K logic families	(published 1984)
IC09N	TTL logic series	(published 1984)
IC10N	Memories MOS, TTL, ECL	
IC11N	Linear LSI	(published 1985)
Supplement to IC11N	Linear LSI	(published 1986)
IC12N	Semi-custom gate arrays & cell libraries ISL, ECL, CMOS	
IC13N	Semi-custom Integrated Fuse Logic	(published 1985)
IC14N	Microprocessors, microcontrollers & peripherals Bipolar, MOS	(published 1985)
IC15N	FAST TTL logic series	(published 1984)

Note

Books available in the new series are shown with their date of publication.

^{*} Supersedes the IC06N 1985 edition and the Supplement to IC06N issued Autumn 1985.

COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks comprises:

C1	Programmable controller modules PLC modules, PC20 modules	
C2	Television tuners, coaxial aerial input assemblies, surface acoustic	wave filters
СЗ	Loudspeakers	
C4	Ferroxcube potcores, square cores and cross cores	
C 5	Ferroxcube for power, audio/video and accelerators	
C6	Synchronous motors and gearboxes	
C7	Variable capacitors	
C8	Variable mains transformers	
C9	Piezoelectric quartz devices	11
C10	Connectors	
C11	Varistors, thermistors and sensors	ļ
C12	Potentiometers, encoders and switches	
C13	Fixed resistors	
C14	Electrolytic and solid capacitors	
C15	Ceramic capacitors	
C16	Permanent magnet materials	
C17	Stepping motors and associated electronics	
C18	Direct current motors	
C19	Piezoelectric ceramics	
C20	Wire-wound components for TVs and monitors	
C21*	Assemblies for industrial use	

Film capacitors

C22

^{*} To be issued shortly.

LEDs (visible light) grouped according to light families 5 mm round lens top

dimensions in mm/case	type	crystal	light colour	λ _{peak} nm	θ1/2	V _F at I _F = 10 mA V	l _F max. mA	package colour/ diffusor
φ5	CQX24 *	GaAlAs	hyper-red	650	200	1,75	100	clear
SOD-63	CQX54 * CQX64 * CQX74 *	GaAsP/GaP GaP GaPAs	super-red super-green yellow	630 565 590	20° 20° 20°	2,1 2,1 2,1	30 60 30	clear clear clear
	CQW24 *	GaAlAs	hyper-red	650	100°	1,75	100	red/diff.
72460313	CQX54D CQX64D CQX74D	GaAsP/GaP GaP GaPAs	super-red super-green yellow	630 565 590	30o 30o 30o	2,1 2,1 2,1	30 60 30	red/diff. green/diff. yellow/diff.
	CQX51 * CQY94B * CQY96 *	GaAsP/GaP GaP GaPAs	super-red super-green yellow	630 565 590	70° 70° 70°	2,1 2,1 2,1	30 60 30	red/diff. green/diff. yellow/diff.
	CQY24B *	GaAsP	standard-red	650	70º	1,7	50	red/diff.
	CQT24 *	GaAlAs GaP	hyper-red super-green	650 565	70° 70°	1,75 2,1	100 60	colourless/ diff.
	CQS51 *	GaP:ZnO	ultra-red	700	700	2,0	30	red/diff.
φ5	COS82AL	GaAlAs	hyper-red	650	700	1,75	100	red/diff.
SOD-85AL	CQS82L	GaAsP	standard-red	1	700	1,7	50	red/diff.
	CQS84L CQS86L	GaP GaPAs	super-green yellow	565 590	70º 70º	2,1 2,1	60 30	green/diff. yellow/diff.
1282977								

^{*} Also available in long leads (25 mm); add suffix L, e.g. CQX24L.

existing I _V classes in mcd at I _F = 10 mA												
1	2	3	4	5	6	7	8	9	10	page		
0,7-1,6	1,0-2,2	1,6–3,5	3,0-7,0	5–12	10-22	16-35	30–70	50-120	> 100			
-	_	_	_	_	_	X*	8	9	10*	347		
_	_		_	_	X*	7	8	9*		359		
_	_	_	_	-	X*	7	8	9*		369		
_		-	_		X*	7	8	9*		379		
_	_	_	X*/4	5	6*					283		
			X*/4	5 5	6	7 7				365		
			X*/4	5	6	7				375		
			X*/4	5	6	7				385		
_	_	X*	4	5	6					353		
X*		3	4	5*						413		
Х*		3 3	4	5*						425		
X*	2	3	4	(For th	i iese class	eslF = 20	0 mA)			389		
_	-	_	X*							151		
-			X*									
X*		3	4	;						55		
_	_	X*	4	5	6*					73		
X*	2	3*	4*	(For th	nese class	es I = 20	0 mA)			67		
X*	_	3* 3 3	4	5*			,			79		
X*		3	4	5*						85		

^{*} I_V max. not specified.
X Type unclassified.

LEDs (visible light) grouped according to light families 3 mm round lens and 2 mm flat top

			<u> 1919 - Alendaria II., a</u>	<u> </u>				
						V ⊨ at	IF.	package
dimensions			light	λ _{peak}		IF = 10 mA	max.	colour/
n mm/case	type	crystal	colour	nm	01/2	' v	mA	diffusor
∌3	CQW54	GaAIAs	super-red	650	1000		60	red/diff.
SOD-53E	CQW93▲	GaAlAs	hyper-red	650	60º		60	red/clear
	COW95▲	GaP	super-green	565	60º		60	green/clear
	CQW97▲	GaPAs	yellow	590	60º	2,1	30	yellow/clea
	CQS54	GaP:ZnO	ultra-red	700	700	2,0	30	red/diff.
	CQY54A	GaAsP	standard-red	650	700	1,7	50	red/diff.
	CQY95B	GaP	super-green	565	700	2,1	60	green/diff.
	CQY97A	GaPAs	yellow	590	700	2,1	30	yellow/diff
∌3	1.7							
SOD-82C //								
81	CQS93	GaP:ZnO	ultra-red	700	600	2,2	25	red/diff.
	COS95	GaP	super-green	565	600		30	green/diff.
	CQS97	GaPAs	yellow	590	600		30	yellow/diff
7292971								
∌3 SOD-82В								
000-02D	CQS93E	GaP:ZnO	ultra-red	700	600	2,2	25	red/diff.
A.I.	CQS95E	GaP .ZIIO	super-green	565	600		30	green/diff.
	CQS97E	GaPAs	yellow	590	600		30	yellow/diff
المراس	000072	Gui Au	, clio			-,-		, , , , , , , , , , , , , , , , , , , ,
φ3								
SOD-82A	CQS93L	GaP:ZnO	ultra-red	700	600	2,2	25	red/diff.
13. J	CQS95L	GaP:ZnO		565	600		30	areen/diff.
	CQS95L	GaPAs	super-green vellow	590	600		30	yellow/diff
7212276	CUSSIL	GarAs	yenow	ออบ	000	2,2	30	yenow/am
φ2								
SOD-79				050	1100	4 75	00	1/1:55
	CQW20A	GaAlAs	hyper-red	650	1100		60 60	red/diff.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CQW21	GaP GaPAs	super-green yellow	565 590	110°		60	green/diff.
6	CQW22							

[▲] This device has to be used behind a diffusing screen.

					***************************************				
existing ly	classes in n			,					
1	2	3	4	5	6	7	8	9	page
0,7—1,6	1,0-2,2	1,6-3,5	3,0–7,0	5–12	10–22	16–35	30–70	50-120	
_	_	_	X*	5	6	7*			289
					6	7	8*		331
-	_	_	X*	5 5 5	6	7*			335
_	-		X*	5	6	7*			341
X*		3	4	5*					61
X*	2	3* (	For these c	lasses   F =	20 mA)				395
X*		3	4	5*					419
X*		3	4	5*					431
X*	2	3* (	l For these c	ı lasses l ⊨ =	20 mA)				91
X*	2	3*							109
X*	2	3*							127
		2* (	F		20 4\				97
X*	2	3* ( X*	For these c		= 20 mA) !				115
_	_	X*	4	5* 5*					133
		^	4	ິນ					133
X*	2	3* (	For these c	lasses I = =	20 mA)				103
	_	X*	4	5*					121
_	_	X*	4	5*					139
X*							4		265
Χ*									271
X*									277

^{*} I_V max. not specified. X Type unclassified.

LEDs (visible light) grouped according to light families single cast rectangular

dimensions in mm/case	type	crystal	light colour	λ _{peak} nm	θ1/2	V _F at I _F = 10 mA V	IF max. mA	package colour/ diffusor
5 x 2,5 DC SOD-76	CQW10A* CQW10B* CQW11B* CQW12B*	GaAIAs GaAsP/GaP GaP GaPAs	hyper-red super-red super-green yellow	650 630 565 590	100° 100° 100° 100°	1,75 2,1 2,1 2,1	100 30 60 30	red/diff. red/diff. green/diff. yellow/diff.
7280379	CQW10U*	GaP:ZnO GaAIAs GaP	ultra-red hyper-red super-green	700 650 565	100° 110° 110°	2,1 1,75 2,1	30 100 60	red/diff. colourless/ diff.
5 x 1 DC SOD-75B	CQW60A* CQW60* CQW61* CQW62* CQW60U*	GaAIAs GaAsP/GaP GaP GaPAs GaP:ZnO	hyper-red super-red super-green yellow ultra-red	650 630 565 590 700	110º 110º 110º 110º 110º	1,75 2,1 2,1 2,1 2,0	100 30 60 30 30	red/diff. red/diff. green/diff. yellow/diff. red/diff.
72,00376	CQT60*	GaAIAs GaP	hyper-red super-green	650 565	110º 110º	1,75 2,2	100 60	colourless/ diff.
5 x 3 DC SOD-77	CQV70A* CQV70* CQV71A* CQV72* CQV70U*	GaAIAs GaAsP/GaP GaP GaPAs GaP:ZnO	hyper-red super-red super-green yellow ultra-red	650 630 565 590 700	100° 100° 100° 100° 100°	1,75 2,1 2,1 2,1 2,0	100 30 60 30 30	red/diff. red/diff. green/diff. yellow/diff. red/diff.
7210300	CQT70*	GaAIAs GaP	hyper-red super-green	650 565	110º 110º 110º	1,75 2,2	100 60	colourless/ diff.
5 x 5 DC SOD-74L	CQV80AL CQV80U* CQV80L CQV81L CQV82L CQT80L	GaAIAs GaP:ZnO GaAsP/GaP GaP GaPAs GaAIAs	hyper-red ultra-red super-red super-green yellow hyper-red	650 700 630 565 590 650	100° 100° 100° 100° 100°	1,75 2,0 2,1 2,1 2,1 1,75	100 30 30 60 30	red/diff. red/diff. red/diff. green/diff. yellow/diff. colourless/
		GaP	super-green		1100	2,1	60	diff.

^{*} Also available in long leads (25 mm); add suffix L, e.g. CQX42L.

existing I.	classes in r	mcd at Ir =	10 mΔ						
1	2	3	4	5	6	7	8	9	page
0,7-1,6	1,0-2,2	1,6–3,5	3,0-7,0	5-12	10-22	16–35	30–70	50-120	puge
X*		3	4						235
X*	2	3	_						241
X*	2 2	3	_						253
X*	2	3	_						259
X*	2	3							247
	X*	_	_						145
_	X*	(For this	class IF = 2	0 mA)					
X*		3	4						301
X*	2	3							295
X*	2 2 2	3							313
X*	2	3	_						319
X*	2	3							307
_	X*	_	_						157
	X*	(For this	class IF = 2	0 mA)					
	X*	3	4						181
X*	2	3	_						175
X*	2	3							193
X*	2	3	_						199
X*	2	3							187
	X*								163
_	X*	(For this	class IF = 2	0 mA)					
X*		3	4						211
X*	2	3							217
X*	2	3							205
X*	2 2	3 3							223
X*	2	3							229
	X*								169
-	X*	(For this	class IF = 2	0 mA)					
		L	l		l				L

^{*} I_V max. not specified.X Type unclassified.

Infrared LEDs and photo-sensitive devices

dimensions in mm/case	type	crystal	light colour	λ _{peak} nm	φ½ Ο	VF at IF = 10 mA V	page
SOD-67	BPW50	Si (photo	PIN diode)				49
φ 3 SOD-53F	CQY58A BPW22A	GaAs Si (photo	IR etransistor)	930	10 40	1,25	401 43
φ 5 SOD-63D2	CQW89A CQY89A	GaAIAs GaAs	IR IR	830 930	40 20	1,45 1,15	325 407

TYPE NUMBER SURVEY



# TYPE NUMBER SURVEY

In this alphanumeric list we present all light emitting diodes mentioned in this handbook.

		page
BPW22A	Photosensitive transistor, SOD-53F	43
BPW50	Photosensitive PIN diode for remote control, SOD-67	49
CQS51(L)	LED, ultra-red, φ 5 mm, SOD-63A1	55
CQS54	LED, ultra-red, φ 3 mm, SOD-53E	61
CQS82L	LED, standard-red, $\phi$ 5 mm, SOD-85AL	67
CQS82AL	LED, hyper-red, $\phi$ 5 mm, SOD-85AL	73
CQS84L	LED, super-green, φ 5 mm, SOD-85AL	79
CQS86L	LED, yellow, φ 5 mm, SOD-85AL	85
CQS93	LED, ultra-red, φ 3 mm, SOD-82C	91
CQS93E	LED, ultra-red, φ 3 mm, SOD-82B	97
CQS93L	LED, ultra-red, φ 3 mm, SOD-82A	103
CQS95	LED, super-green, φ 3 mm, SOD-82C	109
CQS95E	LED, super-green, φ 3 mm, SOD-82B	115
CQS95L	LED, super-green, φ 3 mm, SOD-82A	121
CQS97	LED, yellow, φ 3 mm, SOD-82C	127
CQS97E	LED, yellow, φ 3 mm, SOD-82B	133
CQS97L	LED, yellow, φ 3 mm, SOD-82A	139
CQT10B	LED, bi-colour, hyper-red or super-green, SOD-76A2	145
CQT24	LED, bi-colour, hyper-red or super-green, SOD-63A2	151
CQT60	LED, bi-colour, hyper-red or super-green, SOD-75B2	157
CQT70	LED, bi-colour, hyper-red or super-green, SOD-77A2	163
CQT80L	LED, hyper-red, super-green or orange, SOD-74L	169
CQV70(L)	LED, hyper-red, 5 x 3 mm, SOD-77A1 and SOD-77L	175
CQV70A(L)	LED, hyper-red, 5 x 3 mm, SOD-77A2 and SOD-77L	181
CQV70U(L)	LED, ultra-red, 5 x 3 mm, SOD77A1 and SOD-77L	187
CQV71A(L)	LED, super-green, $5 \times 3$ mm, SOD-77A1 and SOD-77L	193
CQV72(L)	LED, yellow, 5 x 3 mm, SOD-77A1 and SOD-77L	199
CQV80L	LED, super-red, 5 x 3 mm, SOD-74L	205
CQV80AL	LED, hyper-red, 5 x 3 mm, SOD-74L	211
CQV80UL	LED, ultra-red, 5 x 5 mm, SOD-74L	217
CQV81L	LED, super-green, 5 x 5 mm, SOD-74L	223
CQV82L	LED, yellow, 5 x 5 mm, SOD-74L	229
CQW10A(L)	LED, hyper-red, 5 x 5 mm, SOD-76A2 and SOD-76L	235
CQW10B(L)	LED, super-red, 5 x 2,5 mm, SOD-76A1 and SOD-76L	241
CQW10U(L)	LED, ultra-red, 5 x 2,5 mm, SOD-76A1 and SOD-76L	247
CQW11B(L)	LED, super-green, 5 x 2,5 mm, SOD-76A1 and SOD-76L	253
CQW12B(L)	LED, yellow, 5 x 2,5 mm, SOD-76A1 and SOD-76L	259
CQW20A	LED, hyper-red, $\phi$ 2 mm, SOD-79	265
CQW21	LED, super-green, φ 2 mm, SOD-79	271
CQW22	LED, yellow, φ 2 mm, SOD-79	277
CQW24(L)	LED, hyper-red, $\phi$ 2 mm, SOD-63A2 and SOD-63L	283
CQW54	LED, hyper-red, φ 3 mm, SOD-53E	289
CQW60(L)	LED, super-red, 5 x 1 mm, SOD-75B1 and SOD-75BL	295
CQW60A(L)	LED, hyper-red, 5 x 1 mm, SOD-75B2 and SOD-75BL	301
CQW60U(L)	LED, standard-red, 5 x 1 mm, SOD-75B1 and SOD-75BL	307
CQW61(L)	LED, super-green, 5 x 1 mm, SOD-75B1 and SOD-75BL	313
CQW62(L)	LED, yellow, 5 x 1 mm, SOD-75B1 and SOD-75BL	319
CQW89A	LED, IR, for remote control, $\phi$ 5 mm, SOD-63D2	325

# TYPE NUMBER SURVEY

oage
331
335
341
347
353
359
365
369
375
379
385
389
395
401
407
413
419
425
431

#### **GENERAL**

Safety recommendations
Rating system
Letter symbols
Definitions
Dimensioning
Driving GaAlAs LEDs
Tape packaging of LEDs
Soldering and mounting recommendations



# GENERAL SAFETY RECOMMENDATIONS OPTOELECTRONIC DEVICES



#### 1. GENERAL

When properly used and handled, optoelectronic devices do not constitute a risk to health or environment. Modern high technology materials have been used in the manufacture of these devices to ensure optimum performance. Some of these materials are toxic in certain circumstances. Mechanical or electrical damage is unlikely to give rise to any hazard, but toxic vapours may be generated if the devices are heated to destruction and it is important that the following recommendations are observed.

Care should be taken to ensure that all personnel who may handle, use or dispose of these products are aware of the necessary precautions.

Individual product data sheets will indicate whether any specific hazards are likely to be present.

#### 2. DISPOSAL

These devices should be disposed of in accordance with the relevant legislation; in the United Kingdom disposal should therefore be carried out in accordance with the Deposit of Poisonous Waste Act 1972 and the Control of Pollution Act 1974, or with the latest legislation.

#### 3. FIRE

Optoelectronic devices themselves, when used within the specified limits, do not present a fire hazard.

Devices can contain arsenic, beryllium, cadmium, lead, mercury, selenium, tellurium or similar hazardous materials or compounds, which, if exposed to high temperatures may emit toxic or noxious fumes.

Most packaging materials are flammable and care should be taken in the disposal of such materials, some of which will emit toxic fumes if burned.

#### 4. HANDLING

Care must be exercised with those devices incorporating glass or plastic. If these devices are broken, precautions must be taken against the following hazards that may arise:

Broken glass or ceramic. Protective clothing such as gloves should be worn.

Contamination from toxic materials and vapours. In particular, skin contact and inhalation must be avoided.

Access to live contacts which may be at high potential. Devices must be isolated from the mains supply prior to their removal.

#### 5. BERYLLIUM COMPOUNDS

Beryllium oxide dust is toxic if inhaled or if particles enter a cut or an abrasion. At all times avoid handling beryllium oxide ceramics; if they are touched, the hands must be washed thoroughly with soap and water. Do nothing to beryllium oxide ceramics that may produce dust or fumes.

Care should be taken upon eventual disposal that they are not thrown out with general industrial waste. Users seeking disposal of devices incorporating beryllium oxide ceramics should first take advice from the manufacturer's service department.

This potential hazard is present at all times from receipt to disposal of devices.

# OPTOELECTRONIC DEVICES

#### 6. CADMIUM COMPOUNDS

Cadmium compounds are toxic. In the event of accidental breakage, cadmium dust may be released. Gloves should be worn and the dust should be mopped up with a damp cloth. Upon disposal, the cloth should be sealed in a plastic bag and the hands washed thoroughly with soap and water.

Controlled disposal of devices containing cadmium compounds should be conducted in the open air or in a well ventilated area.

Inhalation of cadmium dust must be avoided.

This potential hazard is present, if breakage occurs, at all times from receipt to disposal of devices.

#### 7. OTHER COMPOUNDS

Other compounds, such as those containing arsenic, indium, lead, lithium, selenium, tantalum, tellurium etc., may be toxic by ingestion or inhalation.

The above information and recommendations are given in good faith and are in accordance with the best knowledge and opinion available at the date of the compilation of the data sheets.

#### RATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission (IEC) in its Publication 134.

#### **DEFINITIONS OF TERMS USED**

Electronic device. An electronic tube or valve, transistor or other semiconductor device.

Note

This definition excludes inductors, capacitors, resistors and similar components.

Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.

Note

Limiting conditions may be either maxima or minima.

Rating system. The set of principles upon which ratings are established and which determine their interpretation.

Note

The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

#### ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

#### RATING SYSTEMS

#### **DESIGN MAXIMUM BATING SYSTEM**

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

#### **DESIGN CENTRE RATING SYSTEM**

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

#### LETTER SYMBOLS FOR TRANSISTORS AND SIGNAL DIODES

#### based on IEC Publication 148

#### LETTER SYMBOLS FOR CURRENTS, VOLTAGES AND POWERS

#### **Basic letters**

The basic letters to be used are:

I, i = current
V, v = voltage
P, p = power.

Lower-case basic letters shall be used for the representation of instantaneous values which vary with time.

In all other instances upper-case basic letters shall be used.

#### Subscripts

A, a	Anode terminal
(AV), (av) B, b	Average value Base terminal, for MOS devices; Substrate
(BR)	Breakdown
C, c	Collector terminal
D, d	Drain terminal
E, e	Emitter terminal
F, f	Forward
G, g	Gate terminal
K, k	Cathode terminal
M, m	Peak value
O, o	As third subscript: The terminal not mentioned is open circuited
R, r	As first subscript: Reverse. As second subscript: Repetitive.
	As third subscript: With a specified resistance between the terminal
	not mentioned and the reference terminal.
(RMS), (rms)	R.M.S. value
	As first or second subscript: Source terminal (for FETS only)
S, s	As second subscript: Non-repetitive (not for FETS)
	As third subscript: Short circuit between the terminal not mentioned
	and the reference terminal
X, x	Specified circuit
Z, z	Replaces R to indicate the actual working voltage, current or power
	of voltage reference and voltage regulator diodes.

Note: No additional subscript is used for d.c. values.

#### LETTER SYMBOLS

Upper-case subscripts shall be used for the indication of:

a) continuous (d.c.) values (without signal)

Example I_B

b) instantaneous total values

Example i_B

c) average total values

Example I_{B(AV)}

d) peak total values

Example I_{BM}

e) root-mean-square total values

Example I_{B(RMS)}

Lower-case subscripts shall be used for the indication of values applying to the varying component alone:

a) instantaneous values

Example ib

b) root-mean-square values

Example Ib(rms)

c) peak values

Example I_{bm}

d) average values

Example Ib(av)

Note: If more than one subscript is used, subscript for which both styles exist shall either be all upper-case or all lower-case.

#### Additional rules for subscripts

#### Subscripts for currents

Transistors: If it is necessary to indicate the terminal carrying the current, this should

be done by the first subscript (conventional current flow from the external

circuit into the terminal is positive).

Examples: IB, iB, ib, Ibm

Diodes:

To indicate a forward current (conventional current flow into the anode terminal) the subscript F or f should be used; for a reverse current (conventional current flow out of the anode terminal) the subscript R or r

should be used.

Examples: IF, IR, iF, If(rms)

#### Subscripts for voltages

Transistors: If it is necessary to indicate the points between which a voltage is meas-

ured, this should be done by the first two subscripts. The first subscript indicates the terminal at which the voltage is measured and the second the reference terminal or the circuit node. Where there is no possibility of confusion, the second subscript may be suited.

confusion, the second subscript may be omitted.

Examples: 
$$V_{BE}$$
,  $v_{BE}$ ,  $v_{be}$ ,  $V_{bem}$ 

Diodes: To indicate a forward voltage (anode positive with respect to cathode), the

subscript F or f should be used; for a reverse voltage (anode negative with respect to cathode) the subscript R or r should be used.

Examples: 
$$V_F$$
,  $V_R$ ,  $v_F$ ,  $V_{rm}$ 

#### Subscripts for supply voltages or supply currents

Supply voltages or supply currents shall be indicated by repeating the appropriate terminal subscript.

Examples: 
$$V_{CC}$$
,  $I_{EE}$ 

Note: If it is necessary to indicate a reference terminal, this should be done by a third subscript

Example: V_{CCE}

### Subscripts for devices having more than one terminal of the same kind

If a device has more than one terminal of the same kind, the subscript is formed by the appropriate letter for the terminal followed by a number; in the case of multiple subscripts, hyphens may be necessary to avoid misunderstanding.

Examples: I_{B2} = continuous (d.c.) current flowing into the second base terminal

V_{B2-E} = continuous (d.c.) voltage between the terminals of second base and

#### Subscripts for multiple devices

For multiple unit devices, the subscripts are modified by a number preceding the letter subscript; in the case of multiple subscripts, hyphens may be necessary to avoid misunderstanding.

Examples: I_{2C} = continuous (d.c.) current flowing into the collector terminal of the second unit

V_{1C-2C} = continuous (d.c.) voltage between the collector terminals of the first and the second unit.

#### Application of the rules

The figure below represents a transistor collector current as a function of time. It consists of a continuous (d.c.) current and a varying component.



#### LETTER SYMBOLS FOR ELECTRICAL PARAMETERS

#### Definition

For the purpose of this Publication, the term "electrical parameter" applies to fourpole matrix parameters, elements of electrical equivalent circuits, electrical impedances and admittances, inductances and capacitances.

#### **Basic letters**

The following is a list of the most important basic letters used for electrical parameters of semiconductor devices.

B, b = susceptance; imaginary part of an admittance

C = capacitance

G, g = conductance; real part of an admittance

H, h = hybrid parameter

L = inductance

R, r = resistance; real part of an impedance

X, x = reactance; imaginary part of an impedance

Y, y = admittance;

Z, z = impedance;

February 1974

Upper-case letters shall be used for the representation of:

- a) electrical parameters of external circuits and of circuits in which the device forms only a part;
- b) all inductances and capacitances.

Lower-case letters shall be used for the representation of electrical parameters inherent in the device (with the exception of inductances and capacitances).

#### Subscripts

#### General subscripts

The following is a list of the most important general subscripts used for electrical parameters of semiconductor devices:

$$F, f = \text{forward; forward transfer} \\ l, i \text{ (or 1)} = \text{input} \\ L, 1 = \text{load} \\ O, o \text{ (or 2)} = \text{output} \\ R, r = \text{reverse; reverse transfer} \\ S, s = \text{source} \\ Examples: Z_{c}, h_{f}, h_{E}$$

The upper-case variant of a subscript shall be used for the designation of static (d.c.) values.

```
Examples: h<sub>FE</sub> = static value of forward current transfer ratio in common-
emitter configuration (d.c. current gain)
R<sub>E</sub> = d.c. value of the external emitter resistance.
```

Note: The static value is the slope of the line from the origin to the operating point on the appropriate characteristic curve, i.e. the quotient of the appropriate electrical quantities at the operating point.

The lower-case variant of a subscript shall be used for the designation of small-signal values.

Examples: 
$$h_{fe}$$
 = small-signal value of the short-circuit forward current transfer ratio in common-emitter configuration 
$$Z_e = R_e + jX_e = small-signal value of the external impedance$$

Note: If more than one subscript is used, subscripts for which both styles exist shall either be all upper-case or all lower-case

#### LETTER SYMBOLS

#### Subscripts for four-pole matrix parameters

The first letter subscript (or double numeric subscript) indicates input, output, forward transfer or reverse transfer

$$\begin{array}{c} \text{Examples: } h_{1} \text{ (or } h_{11}) \\ h_{1}^{i} \text{ (or } h_{22}) \\ h_{1}^{f} \text{ (or } h_{21}) \\ h_{1}^{f} \text{ (or } h_{12}) \end{array}$$

A further subscript is used for the identification of the circuit configuration. When no confusion is possible, this further subscript may be omitted.

Examples: 
$$h_{fe}$$
 (or  $h_{21e}$ ),  $h_{FE}$  (or  $h_{21E}$ )

#### Distinction between real and imaginary parts

If it is necessary to distinguish between real and imaginary parts of electrical parameters, no additional subscripts should be used. If basic symbols for the real and imaginary parts exist, these may be used.

Examples: 
$$Z_i = R_i + jX_i$$
  
 $y_{fe} = g_{fe} + jb_{fe}$ 

If such symbols do not exist or if they are not suitable, the following notation shall be used:

Examples: Re 
$$(h_{ib})$$
 etc. for the real part of  $h_{ib}$   
Im  $(h_{ib})$  etc. for the imaginary part of  $h_{ib}$ 

# DEFINITIONS FOR OPTOELECTRONIC DEVICES ACCORDING TO IEC 306

#### **DEFINITIONS AND UNITS OF RADIATION AND LIGHT QUANTITIES**

#### Radiant flux, radiant power $\phi$ , P, $(\phi_e)$

This is the power emitted, transferred or received as radiation, i.e. the radiant energy  $(dQ_e)$  emitted per second.

$$\phi_e = \frac{dQ_e}{dt}$$
 unit: watt, W

#### Radiant intensity Ie, I

For a source of given direction, the radiant intensity is the radiant power leaving the source, or an element of the source, in an element of solid angle ( $\Omega$ ) containing the given direction, divided by that element of solid angle.

$$I_e = \frac{d\phi_e}{d\Omega}$$
 unit: watt per steradian, W/sr

#### Irradiance E, (Ee)

At a point on a surface, the irradiance is the radiant power incident on an element of the surface containing the point divided by the area (A) of that element.

$$\mathsf{E} = \frac{\mathsf{d}\phi_\mathsf{e}}{\mathsf{d}\mathsf{A}} \qquad \qquad \mathsf{unit: watt per square metre, W/m^2}$$

#### Light

This is radiation capable of stimulating the eye. Exceptions to this definition are made where necessary in the data sheets, e.g. dark and light currents of a phototransistor and light rise time of a near-infrared light emitting diode.

#### Luminous flux $\phi$ , $(\phi_V)$

The luminous flux  $d\phi$  of a source of luminous intensity  $I_V$  in an element of solid angle of  $d\Omega$ , is given by:

$$d\phi = I_V.d\Omega$$
 unit: lumen, Im

#### Lumen

This is the luminous flux radiating from a point source of uniform luminous intensity of 1 candela, contained within a solid angle of 1 steradian.

$$1 \text{ lm} = 1 \text{ cd.sr}$$

#### Luminous intensity I_v, (I)

For a source of given direction, the luminous intensity is the luminous flux leaving the source, or an element of the source, in an element of solid angle  $(\Omega)$  containing the given direction, divided by that element of solid angle.

$$I_V = \frac{d\phi_V}{d\Omega}$$
 unit: candela, cd

#### Candela

This is the luminous intensity, in the perpendicular direction, of a surface of 1/600 000 square metre of a black body at the temperature of freezing platinum under a pressure of 101 325 pascal.

#### **GENERAL**

#### Illuminance E_v, (E)

At a point on a surface, the illuminance is the luminous flux incident on an element of the surface containing the point, divided by the area (A) of that element.

$$E_V = \frac{d\phi_V}{dA}$$
 unit: lux, lx

#### Lux Ix

This is the illumination produced when 1 lumen of flux falls on a surface of area 1 square metre. It will be seen that an illumination of 1 lx is produced on a area of 1 square metre at a distance of 1 metre from a point source of 1 candela.

#### Distribution temperature T_d

This is the temperature of a black body at which the spectral radiation distribution of the radiator under consideration, in a given wavelength range, is proportional or approximately proportional to the spectral radiation distribution of the black body. If the wavelength range given includes visible radiation, then the distribution temperature corresponds to the colour temperature.

#### Colour temperature T_C

The colour temperature of a radiator is the temperature of a black body which has the same, or approximately the same, spectral radiation distribution in the visible range as the radiator under consideration.

#### **DEFINITIONS OF ELECTRICAL QUANTITIES**

#### Photocurrent Iph

This is the change in output current from the photocathode due to incident radiation.

#### Dark current Id

This is the current flowing in a photoelectric device in the absence of illumination.

#### Dark current equivalent radiation Ed

This is the incident radiation required to give a d.c. signal output current equal to the dark current.

#### Quantum efficiency

This is the ratio of the number of emitted photoelectrons to the number of incident photons. Quantum efficiency (Q.E.) at a given wavelength of incident radiation may be calculated as follows:

Q.E. = 
$$\frac{\text{constant } \times S_k}{\lambda}$$

where  $\textbf{S}_{\boldsymbol{k}}$  = spectral sensitivity (A/W) at wavelength  $\lambda$ 

 $\lambda$  = wavelength of incident radiation (nm)

constant = 
$$\frac{hc}{e}$$
 = 1,24 x 10³ W.nm/A

 $h = Planck's constant (6,6256 \times 10^{-34} js)$ 

c = velocity of electromagnetic waves in vacuo = 2,997925 x 108 m/s

 $e = elementary charge = 1,60210 \times 10^{-19} coulomb or 4,80298 \times 10^{-19} e.s.u.$ 

#### Saturation voltage V_{CEsat}

This is the lowest operating voltage which causes no change in photocurrent when this voltage is increased with constant radiation.

#### Definitions for optoelectronic devices

#### Saturation current ICEsat

This is the output current of a photosensitive device which is not changed by an increase of either:

- a. the irradiance under constant operating conditions, or.
- b. the operating voltage under constant irradiance.

#### Thermal resistance

This is the ratio of temperature rise to power dissipation or

$$R_{th j-a} = \frac{T_j - T_{amb}}{P_{tot}}$$

The thermal resistance is also the reciprocal of the derating factor.

#### Pulsed operation

Under these conditions higher peak power dissipation is possible. In general, the shorter the pulse and lower the frequency, the lower is the temperature that the junction reaches.

By analogy with thermal resistance:

$$Z_{th j-a} = \frac{T_j \cdot T_{amb}}{P_{tot}}$$

#### **DEFINITIONS OF SENSITIVITY**

These definitions apply more directly to photocathode sensitivity. For devices in which it is necessary to define the anode (overall) sensitivity, the signal output current should be considered instead of the photocurrent.

#### Actinity of radiation Z

This is the ratio of the sensitivity to a given radiation to the sensitivity to a reference radiation.

#### Radiant sensitivity SR

This may be expressed as either:

- a. the ratio of the photocurrent of the device to the incident radiant power, expressed in amperes per watt (A/W), or,
- b. the ratio of the photocurrent of the device to the incident irradiance, expressed in amperes per watt per square metre (A/W/m²).

#### Absolute spectral sensitivity s ( $\lambda$ )

This is the radiant sensitivity for monochromatic radiation of a stated wavelength.

#### Relative spectral sensitivity s $(\lambda)_{rel}$

This is the ratio of the radiant sensitivity at a particular wavelength to the radiant sensitivity at a reference wavelength, usually the wavelength of maximum reponse.

#### Note

For non-linear detectors, it is necessary to refer to constant photocurrent at all wavelengths.

### **GENERAL**

#### Luminous sensitivity S₁

This may be expressed as either:

- a. the ratio of the photocurrent of the device to the incident luminous flux, expressed in amperes per lumen (A/Im), or,
- b. the ratio of the photocurrent of the device to the incident illuminance, expressed in amperes per lux (A/Ix).

### Dynamic sensitivity Sp.

Under stated operating conditions, this is the ratio of the variation of the photocurrent of the device to the initiating small variation in the incident radiant or luminous power.

Note

Distinction is made between luminous dynamic sensitivity and radiant sensitivity.

#### Spectral sensitivity characteristics

This is the relationship, usually shown in graphical form, between the wavelength and the absolute or relative spectral sensitivity.

#### Absolute spectral sensitivity characteristics

This is the relationship, usually shown in graphical form, between the wavelength and the absolute spectral sensitivity.

#### Relative spectral sensitivity characteristics

This is the relationship between wavelength and the relative spectral sensitivity.

#### Quantum efficiency characteristic

This is the relationship, usually shown in graphical form, between the wavelength and the quantum efficiency.

#### **DEFINITIONS OF TIME QUANTITIES**

#### Rise time tr

This is the time required for the photocurrent to rise from a stated low percentage to a stated higher percentage of the maximum value when a steady state of radiation is instantaneously applied. It is usual to consider the 10% and 90% levels (see Figs 1 and 2).

#### Fall time tf

This is the time required for the photocurrent to fall from a stated high percentage to a stated lower percentage of the maximum value when the steady state of radiation is instantaneously removed.

It is usual to consider the 90% and 10% levels (see Figs 1 and 2).



V₁

0

V₀

10°/0

10°/0

10°/0

Fig. 1 Switching circuit.

Fig. 2 Waveforms.

#### **DEFINITIONS AND UNITS OF INFRARED SENSITIVE DEVICES**

#### **Emissivity**

This is the ratio of the radiant exitance of a thermal radiator to that of a black body radiator at the same temperature.

#### Absolute refractive index n

This is the ratio of the velocity of light in vacuo to that in a particular medium. For most practical purposes the velocity of light in vacuo can be replaced by that in air.

#### Detectivity

This is the signal-to-noise ratio per unit radiant power. Thus it is the reciprocal of the N.E.P. Care must be exercised when considering detectivity as this term has also been used in the definitions of D*.

unit: 1/watts (1/W)

#### D*

This is an independent figure of merit which is defined as the r.m.s. signal-to-noise ratio in a 1 Hz bandwidth per unit r.m.s. incident radiant power per square root of detector area. Unless otherwise stated, it is assumed that the detector field of view is hemispherical (2  $\pi$  steradian).

unit: cm /Hz/W

#### Wave number

This is the reciprocal of the wavelength in centimetres.  $(\frac{1}{\lambda})$ 

#### N.E.P. (Noise Equivalent Power)

This is the r.m.s. value of the incident, chopped, radiant power necessary to produce an r.m.s. signal to r.m.s. noise ratio of unity. The r.m.s. noise refers to the value calculated for unit square root bandwidth  $V/\sqrt{Hz}$ .

unit:  $W/\sqrt{Hz}$ 

#### Responsivity

This is the ratio of the r.m.s. signal in volts to the r.m.s. value of the incident, chopped, radiant power.

unit: V/W

# **GENERAL**

#### Noise equivalent irradiation

This is the value of incident radiation which, when modulated in a stated manner, produces a signal output power equal to the noise power, both of which are in a stated bandwidth.

#### Radiance Le

This is the radiant intensity (Ia) at a point on a surface and in a given direction, of an element of that surface, divided by the area of the orthogonal projection of the element on a plane perpendicular to the given direction.

unit: watt per steradian square metre, W/sr.m²

#### Radiant exitance (radiant emittance) Me

At a point on a surface, this is the radiant power leaving an element of that surface, divided by the area of the element.

$$M_e = \frac{d\phi_e}{dA}$$
 unit: watt per square metre, W/m²

#### Luminous exitance (luminous emittance) My

At a point on a surface, this is the luminous flux leaving an element of that surface, divided by the area of that element.

$$M_V = \frac{d\phi_V}{d\Delta}$$
 unit: lumen per square metre, lm/m²

#### Luminance L.

This is the luminous intensity  $(I_{\nu})$  at a point on a surface and in a given direction, of an element of that surface divided by the area of the orthogonal projection of the element on a plane perpendicular to the given direction.

unit: candela per square metre, cd/m²

#### Steradian sr (see Fig. 3)

This is the solid angle subtended at the centre of a sphere by an element of the surface area equal to the square of the radius of the sphere. There are, therefore,  $4\pi$  steradians in a complete sphere.



Fig. 3.

# DIMENSIONING OF LED ENVELOPES

The dimensioning of the envelopes contained in this handbooks is in accordance with the I.E.C. publication 191: Mechanical Standardization of Semiconductor devices.

The following section defines the different characteristics of LED dimensions.

#### The Base Plane

As the base of the plastic body is irregular, due to the manufacturing process, the base plane is defined as:

for Ø5 mm LEDs (or equivalent) a 4,4 mm hole,

for Ø3 mm LEDs (or equivalent) a 1,5 mm slot.



The Seating Plane

This is defined as when the flanges of the leads are seated on a gauge with  $0.8 \text{ mm } \emptyset$  holes which are 2.54 mm apart.



# **GENERAL**

#### The Emission Area

The emission area is defined by top view dimensions such as QD1, D1 and E1.



#### Pinning

The cathode, anode, emitter and collector are indicated on the drawings. Only the flat on the body or the shortest lead are used for pinning reference. The wider part of the lead must not be taken as a reference as different configurations may exist according to version and variant.

#### Envelope numbering

In the absence of international standards the following numbering system is used:



# DRIVING GAAIAS LIGHT EMITTING DIODES

GaAlAs LEDs should be driven from a constant current supply to avoid small changes in forward voltage leading to large current changes. It is, however, possible to pulse the current to increase the efficiency of the LEDs by taking advantage of the non-linear relationship between luminous intensity and forward current (Fig. 1).



Fig. 1.

As the figure shows, a forward current of 4 mA results in a luminous intensity of 3,2 mcd, while a forward current of 20 mA results in a luminous intensity of 23 mcd. If the 20 mA current is pulsed with a dutyfactore d of 0,2, the average forward current is still 4 mA, and the average luminous intensity becomes 4,6 mcd. Thus the effective luminance intensity is 1,44 times as great with pulsed current as with d.c. of the same average value.

The effect is greatest at low average current; at higher currents the gain diminishes. This is because, at higher peak currents  $I_{FM}$ , the average power  $P_{(AV)}$  increases as  $V_{FM}I_{FM}d$ , where  $V_{FM}$  is the peak voltage. The increase in  $P_{(AV)}$  causes the diode junction temperature  $I_j$  to increase by  $\Delta I_j = P_{(AV)}R_H$ , where  $I_j$  is the thermal resistance of the diode junction. Since the luminous intensity is related to the junction temperature by  $I_j = -0.7\%$  per  $I_j$ 

Junction temperature is also affected by the pulse duration  $t_p$ , since average current increases with increasing duration.

Figure 2 shows the effect of the peak current ( $I_{FM}$ ) and pulse duration ( $t_p$ ) on the average luminous intensity, and Fig. 3 shows how the duty factor and pulse duration affect the absolute maximum ratings of  $I_F$ .





Fig. 2  $T_{amb} = 25$  °C;

- (1)  $t_D = 20 \text{ ps}$
- (2)  $t_p = 100 \text{ ps}$

# FORWARD CURRENT VERSUS DUTY CYCLE AND PULSE DURATION



The peak wavelength of the colour emitted by the LED also changes with junction temperature, according to the relation d  $\lambda_p/dT_j=+0.15$  to 0,20 nm/K. Detection of a colour difference between two LEDs depends on the dominant wavelength. Figure 4 shows how the response of the eye varies with wavelength, and Fig. 5, the change in wavelength just detectable by eye as a function of wavelength.



CHANGE IN WAVELENGTH JUST DETECTABLE
BY HUMAN EYE VERSUS WAVELENGTH



Fig. 5.

# TAPE PACKAGING OF LEDs

LEDs can be supplied on tape, with unindirectional leads for automatic insertion into PCBs. The tape packaging can be delivered on bandolier/rolls or meander/concertina packing as shown in Fig. 1.

The packaging consists of a carrier tape and a fixing tape as specified by IEC Publication 286. The relevant dimensions are given in Fig. 2 and the table.

#### **MECHANICAL DATA**

Dimensions in mm

Item	Symbol	Specification		Symbol Specification		Remarks
		value	tolerance			
Body width	A1			Dimensions derived from relevant		
Body height	A			comp. spec.		
Body thickness	T					
Lead wire dimensions	b					
	С		in the second	See Philips envelope spec.		
Pitch of component	P	12,7	±1			
Feed hole pitch	Po	12,7	±0,2	Cumulative error 1mm/20 pitch		
Feed hole centre to						
component centre	P ₂	6,35	±0,4	To be measured at 10 mm from		
Feed hole centre to lead	P ₁			feed hole centre		
Distance between outer		77.4				
leads	F	2,54	±0,2			
Lead to lead distance	F ₁ F ₂		in the second of			
Component alignment	Δh	±1		At top of body		
Component alignment	Δh ₁	±1		At top of body		
Lead alignment after	ΔΠ	., *: ., <u>+</u>		At top of body		
cutting	100					
Parallelism	$\Delta_2$ $\Delta_3$					
	1 2.73					
Tape width	W	18	±0,5			
Hold down tape width	Wo	6	±0,3			
Hole position	W ₁	9	±0,5			
Hold down tape position	W ₂	0,5	±0,2			
Feed hole diameter	D ₀	4	±0,2			
Total tape thickness	t	0,9	max.			
Height of component						
from tape centre	H					
Lead wire clinch height	Ho					
Component height	H ₁	H+A	+0-0,2			
Length of snipped leads	L ₁	11	max.			
Lead wire taped portion	<u>-</u>	1.1	Illax.			
Pull out force	(P)	6N	min.			
Pull out force from tape	W /	011	11111.			
end/reel		2,5N	max.			
CHA/TCCI		2,514	l liax.			



#### **MECHANICAL DATA**

#### Dimensions in mm



Fig. 2 See table.



# SOLDERING AND MOUNTING RECOMMENDATIONS

Because LEDs are encapsulated in cast resin and not in transfer-moulded housings, they tend to soften when heated, as for instance during soldering. If there happens to be any mechanical stresses on the leads at this time, they tend to be displaced in a direction that minimizes the stress, with the result that the internal connections of the LED are fractured. This is one of the major reasons for LED failure.

To overcome the problem, it is essential:

- a) to form and crop the leads before soldering;
- to ensure that the holes in the printed circuit board (PCB) are of sufficient size (0,8 mm) to allow the LED to be inserted without stressing the leads while still allowing a good soldered joint to be made:
- c) to ensure that the holes in the PCB are adequately spaced (2,54 mm) so as not to stress the leads;
- d) that any spacers used do not impose stresses on the leads;
- e) that any sockets are able to secure the LED without stress.

If it is necessary to crop the leads after soldering, the LED must first be allowed to cool to room temperature. This may take from 30 seconds to 3 minutes depending upon the circumstances.

Long sockets are particularly hazardous for the LED as they rarely have the same expansion characteristics as the PCB. The resulting distortion can easily be fatal for the LEDs unless great care is taken to ensure that the holes in the sockets and the PCB are not only in perfect alignment, but also that they are of adequate size and spacing. The longer the socket, the greater the care needed.

Soldering should be done with a solder-bath or temperature-controlled iron. In either case, the temperature should be accurately controlled (preferably at 245 °C) and, in the case of the solder-bath, it is useful to record the temperature. The maximum temperature must not exceed 260 °C and the maximum time is 7 seconds. Solder must not be less than 1,5 mm from the seating plane. When using a solder-bath, take care to avoid the pressure of the solder-wave bending the PCB.

The way in which the LED is cast means that the lower surface of the device is not suitable as a reference surface. The top of the device or the top of any flange should therefore be used. A slighty less accurate reference is the seating plane.

Figure 1 shows the effect on the lower surface of the LED of (a) under filling, and (b), over filling the mould. Other dimensions are within 0,1 mm and can be used as reference.



Fig. 1.

When mounting arrays of LEDs, it is preferable to use the top as the reference surface and if possible to use a screen in front of them. The screen not only makes any small differences of position less noticeable but also removes the need for the LEDs to withstand the mechanical tests required by some countries (see Fig. 2).



Fig. 2.

Finally, Fig. 3 shows a recommended mounting arrangement using sockets. The LED is held on the PCB by a double-sided adhesive tape and the socket presses the device against it. With the correct hole size and spacing, no stress is imposed on the leads and soldering can be done in complete safety.



Fig. 3.



DEVICE DATA



# SILICON PHOTOTRANSISTOR

N-P-N silicon phototransistor in epoxy resin encapsulation intended for optical coupling and encoding. The base is inaccessible. Combination with LED CQY58A is recommended.

#### QUICK REFERENCE DATA

Collector-emitter voltage		V _{CEO}	max.	50 V
Collector current (d.c.)		^I C	max.	25 mA
Total power dissipation up to T _{amb} = 25 °C		$P_{tot}$	max.	100 mW
Collector dark current $V_{CE} = 30 \text{ V}$ ; $E = 0$		^l CEO(D)	<	100 nA
Collector light current $V_{CE} = 5 \text{ V}$ ; $E_e = 1 \text{ mW/cm}^2$ ; $\lambda_{pk} = 930 \text{ nm}$	BPW22A-1 BPW22A-2	ICEO(L)		5 to 8 mA 5 to 25 mA
Wavelength at peak response		λp	typ.	800 nm

#### MECHANICAL DATA

Dimensions in mm

Fig. 1 SOD-53F.







#### **RATINGS**

device mounted on printed-circuit board

	Limiting values in accordance with the Absolute Ma	ximum System	(IEC 134)			
	Collector-emitter voltage		V _{CEO}	max.	50	٧
	Emitter-collector voltage		V _{ECO}	max.	7	٧
	Collector current					
	d.c.		IC	max.	25	mΑ
	peak value		ICM	max.	50	mΑ
	Total power dissipation up to $T_{amb} = 25$ °C		P _{tot}	max.	100	mW
	Storage temperature		T _{stg}	-55 to +	100	οС
	Junction temperature		T _i	max.	100	οС
	Lead soldering temperature		,			
-	$>$ 1,5 mm from the seating plane; $t_{sld}$ $<$ 7 s		T _{sld}	max.	260	οС
	THERMAL RESISTANCE					
	From junction to ambient,					

R_{th j-a}

750 K/W



Fig. 2 Power derating curve versus ambient temperature.

#### CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Switching times (see Figs 3, 4, 9 and 10)

Collector dark current V _{CE} = 30 V; E = 0		ICEO(D)	<	100 nA	
Collector light current $V_{CE}$ = 5 V; $E_e$ = 1 mW/cm ² ; $\lambda_p$ = 930 nm	BPW22A-1 BPW22A-2	ICEO(L)		1,5 to 8 mA 5 to 25 mA	•
Collector-emitter saturation voltage $I_C = 1 \text{ mA}$ ; $E_e = 1 \text{ mW/cm}^2$ ; $\lambda_p = 930 \text{ nm}$		V _{CEsat}	<	0,4 V	
Wavelength at peak response		$\lambda_{p}$	typ.	800 nm	
Bandwidth at half height		Δλ	typ.	400 nm	
Beamwidth between half-intensity directions		$\theta_{1/2}$	typ.	20°	•

$I_{Con} = 2 \text{ mA}$ ; $V_{CC} = 5 \text{ V}$ ; $R_E = 100 \Omega$ ; $T_{amb} = 25 \text{ °C}$				
turn-on time	ton	typ.	3 μs	
turn-off time	t _{off}	typ.	3 μs	
$I_{Con} = 2 \text{ mA}$ ; $V_{CC} = 5 \text{ V}$ ; $R_E = 1 \text{ k}\Omega$ ; $T_{amb} = 25 \text{ °C}$				
turn-on time	t _{on}	typ.	12,0 μs	
turn-off time	toff	typ.	12,0 μs	-



Fig. 3 Switching circuit with light emitting diode CQY58A, T.U.T. = BPW22A.



Fig. 4 Input and output switching waveforms.





Fig. 9  $V_{CC}$  = 5 V;  $T_{amb}$  = 25 °C; typical values; see also Figs 3 and 4.



Fig. 10  $V_{CC}$  = 5 V;  $T_{amb}$  = 25 °C; typical values; see also Figs 3 and 4.



Fig. 11.



Fig. 12 Spectral response.



Fig. 14  $V_{CE} = 5 V$ ;  $T_{amb} = 25 °C$ ; typical values.



Fig. 13  $V_{CE} = 5 \text{ V}$ ;  $t_p (I_{FM}) = 10 \mu \text{s}$ ; T = 1 ms;  $d^* = 10 \text{ mm}$ ;  $T_{amb} = 25 ^{\circ}\text{C}$ .



Fig. 15  $V_{CE} = 5 V$ ;  $d^* = 10 mm$ ; typical values.

^{*} d = shortest free distance of mechanical on-axis when BPW22A is coupled with CQY58A.

# SILICON PHOTO P-I-N DIODE

Silicon photo p-i-n diode in a plastic envelope with an infrared filter.

### QUICK REFERENCE DATA

Continuous reverse voltage	$V_{R}$	max.	32 V
Total power dissipation up to T _{amb} = 47,5 °C	$P_{tot}$	max.	150 mW
Junction temperature	Τį	max.	100 °C
Dark reverse current $V_R = 10 V; E_e = 0$	I _{R(D)}	<	30 nA
Light reverse current $V_R = 5 V$ ; $E_e = 1 \text{ mW/cm}^2$ ; $\lambda = 930 \text{ nm}$	I _{R(L)}	>	30 μΑ
Wavelength at peak response $V_R = 5 V$	$\lambda_{\mathbf{p}}$	typ.	930 nm 🖜
Sensitive area	A	typ.	5 mm²

### **MECHANICAL DATA**

Fig. 1 SOD-67.

Dimensions in mm



(1) Reference for the positional tolerance of the sensitive area.

#### RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) ٧R 32 V Continuous reverse voltage max. Total power dissipation up to T_{amb} = 47,5 °C Ptot 150 mW max. Storage temperature Tstg -30 to + 100 °C 100 °C Junction temperature Ti max. Lead soldering temperature up to the seating plane; t_{sld} < 10 s Tsld 260 °C max. THERMAL RESISTANCE From junction to ambient in free air Rth i-a 350 K/W CHARACTERISTICS T_i = 25 °C Dark reverse current 2 nA typ. $V_R = 10 V; E_e = 0$ IR(D) 30 nA Light reverse current 30 uA $V_R = 5 V; E_e = 1 \text{ mW/cm}^2; \lambda = 930 \text{ nm}$ IR(L) 45 µA typ. Reverse voltage $I_R = 0.1 \text{ mA}; E_P = 0$ ٧R 32 V Wavelength at peak response $V_R = 5 V$ 930 nm λp typ. Diode capacitance 17 pF typ. $V_R = 3V$ $C_{\mathbf{d}}$ < 30 pF $V_R = 0$ $C^{4}$ 50 pF typ. Light switching times (see Figs 2 and 3) Rise time and fall time $V_{KK} = 10 \text{ V}; R_A = 1 \text{ k}\Omega$ 50 ns tr, tf typ. $v_{KK}$ ٧ı CQY11C v_o 7Z75734

Fig. 3 Input and output switching waveforms.

February 1986

Fig. 2 Switching circuit.



Fig. 4 Maximum permissible power dissipation as a function of temperature.



Fig. 5  $T_{amb} = 25$  °C.





Fig. 9  $E_e = 1 \text{ mW/cm}^2$ ;  $\lambda = 930 \text{ nm}$ .



Fig. 10  $V_R = 5 V$ ;  $T_{amb} = 25 °C$ .



Fig. 11.

# LIGHT EMITTING DIODES

Circular light emitting diodes with a diameter of 5 mm which emit red light (GaP:ZnO; ultra-red) at a typical peak wavelength of 700 nm when forward biased.

The CQS51 and CQS51L have a SOD-63 outline and are encapsulated in a red coloured diffusing resin.

The CQS51L is the long lead version of the CQS51 and has no seating plane but is in all other respects equal to the CQS51.

These LEDs are specially designed for low current applications.

#### QUICK REFERENCE DATA

Continuous reverse voltage		$v_R$	max.	5	٧	
Forward current (d.c.)		۱F	max.	30	mΑ	
Total power dissipation up to T _{amb} = 65 °C		$P_{tot}$	max.	90	mW	
Junction temperature		Τj	max.	100	oC	
Luminous intensity IF = 10 mA	CQS51(L)	I _v	min.	0,7	mcd	
Wavelength at peak emission		$\lambda_{p}$	typ.	700	nm	
Beamwidth at half-intensity directions		$\theta _{1/2}$	typ.	70	0	

# MECHANICAL DATA

Fig. 1 SOD-63A1.

Dimensions in mm



Fig. 1b SOD-63L.



Note: Solderability not guaranteed in tie-bar zone.

n	ΑΙ	 IGS

RATINGS					
Limiting values in accordance with the Absolut	te Maximum Syste	em (IEC 134)			
Continuous reverse voltage		$v_R$	max.	5	V
Forward current d.c.		le	max.	30	mA
peak value; $t_D = 1 \mu s$ ; $f = 300 \text{ Hz}$		11-	max.		A
peak value; $t_{on} = 1 \text{ ms}$ ; $\delta = 0.33$		^l FRM	max.		mΑ
Total power dissipation up to $T_{amb} = 65  {}^{o}C$		$P_{tot}$	max.	90	mW
Storage temperature		$T_{stg}$	−55 t	o +100	oC
Junction temperature		Tj	max.	100	oC
Lead soldering temperature; $t_{\rm sld} < 7$ s; $> 1,5$ mm from the seating plane for CQS51 $> 5$ mm from the plastic body for CQS51L		T _{sld}	max.	260	oC
THERMAL RESISTANCE					
From junction to ambient when					
the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W
CHARACTERISTICS					
T _{amb} = 25 °C unless otherwise specified					
Forward voltage			tun	2,0	V
IF = 10 mA		٧F	typ. max.	2,6	
Reverse current					
V _R = 5 V		IR	max.	100	μΑ
Beamwidth at half-intensity directions					
IF = 10 mA		$\theta_{1/2}$	typ.	70	0
Bandwidth at half height		Δλ	typ.	90	nm
Wavelength at peak emission					
IF = 10 mA		$\lambda_{p}$	typ.	700	nm
Luminous intensity					
IF = 10 mA	CQS51(L)	lv	min.		mcd
	CQS51(L)-3 CQS51(L)-4	l _V l _V	min.	3,5 to 3,5	mcd
Diode capacitance	0.000 T(L) T	٠٧	111111.	5,0	
Diode capacitance V _R = 0; f = 1 MHz		Cd	typ.	45	рF
. II = 1		-u	- /		•



Fig. 2 Typical values.



Fig. 4  $I_{V} = f(I_{F})$ .



Fig. 6 Typical values.



Fig. 3  $I_F = f(V_F)$ .



Fig. 5 Typical values.



Fig. 7 Typical values.



Fig. 8 Typical values.

# LIGHT EMITTING DIODE

Circular light emitting diode with a diameter of 3 mm which emits red light (GaP:ZnO; ultra-red) at a typical peak wavelength of 700 nm when forward biased.

The CQS54 has a SOD-53 outline and is encapsulated in a red coloured diffusing resin.

This LED is specially designed for low current applications.

#### QUICK REFERENCE DATA

Continuous reverse voltage	٧R	max.	5 V
Forward current (d.c.)	lF	max.	30 mA
Total power dissipation up to Tamb = 55 °C	P _{tot}	max.	90 mW
Junction temperature	$T_{j}$	max.	100 °C
Luminous intensity IF = 10 mA	l _v	min.	0,7 mcd
Wavelength at peak emission	$\lambda_{p}$	typ.	700 nm
Beamwidth at half-intensity directions	$ heta_{1/2}$	typ.	70 °

# **MECHANICAL DATA**

Fig. 1 SOD-53E.

Dimensions in mm







RATINGS					
Limiting values in accordance with the Absolute	Maximum Syste	m (IEC 134)			
Continuous reverse voltage		VR	max.	5	V
Forward current d.c. peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$		lF	max.		mA A
peak value; $t_{on} = 1$ ms; $\delta = 0.33$		IFRM	max.		mΑ
Total power dissipation up to $T_{amb} = 55$ °C		$P_{tot}$	max.	90	mW
Storage temperature		$T_{stg}$	-55 to	+100	oC
Junction temperature		Tj	max.	100	oC
Lead soldering temperature; $t_{\rm sld} < 7$ s; $>$ 1,5 mm from the seating plane		T _{sld}	max.	260	oC
THERMAL RESISTANCE					
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	500	K/W
CHARACTERISTICS					
T _{amb} = 25 °C unless otherwise specified					
Forward voltage I _F = 10 mA		٧F	typ. max.	2,0 2,6	
Reverse current $V_R = 5 V$		IR	max.	100	μΑ
Beamwidth at half-intensity directions $I_F = 10 \text{ mA}$		$\theta \gamma_2$	typ.	70	0
Bandwidth at half height		Δλ	typ.	90	nm
Wavelength at peak emission $I_F = 10 \text{ mA}$		$\lambda_{p}$	typ.	700	nm
Luminous intensity IF = 2 mA		I _V	typ.		mcd
Luminous intensity IF = 10 mA	CQS54 CQS54-2	l _V l _V		02,2	
	CQS54-3	I _V	min.	1,6	mcd
Diode capacitance V _R = 0; f = 1 MHz		C _d	typ.	45	pF



Fig. 2 Typical values.



Fig. 4  $I_V = f(I_F)$ .



Fig. 6 Typical values.



Fig. 3  $I_F = f(V_F)$ .



Fig. 5 Typical values.



Fig. 7 Typical values.



Fig. 8 Typical values.



Circular light emitting diode which emits red light at a typical peak wavelength of 650 nm (GaAsP; standard red) when forward biased.

The CQS82L has a flangeless SOD-85 outline and is encapsulated in a red coloured diffusing resin. Together with the CQS84L and CQS86L, the CQS82L forms one family and is available only in the long lead (L) version.

Continuous reverse voltage		٧R	max.	5 V
Forward current (d.c.)		ΙF	max.	50 mA
Total power dissipation up to $T_{amb} = 60  {}^{o}C$		$P_{tot}$	max.	100 mW
Junction temperature		$T_{j}$	max.	100 °C
Luminous intensity				
IF = 20 mA	CQS82L	I _V	min.	0,7 mcd
	CQS82L-2	l _v	1,0	to 2,2 mcd
	CQS82L-3	lv	1,6	to 3,5 mcd
	CQS82L-4	Ι <mark>ν</mark>	min.	3,0 mcd
Wavelength at peak emission				
IF = 20 mA		$\lambda_{p}$	typ.	650 nm
Beamwidth at half-intensity directions		$\theta 1/2$	typ.	70 °

Fig. 1 SOD-85AL.

Dimensions in mm



RATINGS					
Limiting values in accordance with the Absolut	e Maximum Syste	m (IEC 134)			
Continuous reverse voltage		V _R	max.	5	V
Forward current					
d.c.		۱F	max.		mΑ
peak value; $t_p = 1 \mu s$ ; $f = 300 Hz$ peak value; $t_p = 10 \mu s$ ; $\delta = 0.01$		IFRM	max. max.		A mA
Total power dissipation up to T _{amb} = 60 °C		$P_{tot}$	max.	100	mW
Storage temperature		T _{stg}	-55 to	+100	oC
Junction temperature		Τį	max.	100	oC
Lead soldering temperature; $t_{sld} < 7 s$ ; $> 5 \text{ mm}$ from the plastic body		T _{sld}	max.	260	oC
THERMAL RESISTANCE					
From junction to ambient when					
the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W
CHARACTERISTICS					
T _{amb} = 25 °C unless otherwise specified					
Forward voltage			typ.	1,7	V
IF = 20 mA		٧F	max.	2,0	
Reverse current					
$V_R = 5 V$		1 _R	max.	100	μΑ
Beamwidth at half-intensity directions					
IF = 20 mA		$\theta_{1/2}$	typ.	70	
Bandwidth at half height		Δλ	typ.	20	nm
Wavelength at peak emission  IF = 20 mA		`	turo.	650	<b>n</b> m
Luminous intensity		λp	typ.	050	11111
IF = 20 mA	CQS82L	lv	min.	0.7	mcd
•	CQS82L-2	lv	1,0 t	o 2,2	
	CQS82L-3	1 _V		o 3,5	
	CQS82L-4	Iv	min.	3,0	mcd
Diode capacitance		٥.		10	
$V_R = 0$ ; $f = 1 MHz$		$C_d$	typ.	10	pF



Fig. 2.



Fig. 4.



Fig. 3.



Fig. 5.









Fig. 8 Typical values.

Fig. 9 Typical values.



Fig. 10 Typical values.

Circular light emitting diode which emits red light at a typical peak wavelength of 650 nm (GaAlAs; hyper-red) when forward biased.

The CQS82AL has a flangeless SOD-85 outline and is encapsulated in a red diffusing resin.

Together with the CQS84L and the CQS86L, the CQS82AL forms one family and is available only in the long lead (L) version.

Continuous reverse voltage		$v_R$	max.	5	V
Forward current (d.c.)		۱F	max.	100	mΑ
Total power dissipation up to Tamb = 25 °C		$P_{tot}$	max.	215	mW
Junction temperature		Τj	max.	100	oC
Luminous intensity					
IF = 10 mA	CQS82AL	Iv	min.	1,6	mcd
	CQS82AL-4	I _V	3,0	to 7,0	mcd
	CQS82AL-5	Iv	5,0	0 to 12	mcd
	CQS82AL-6	Iv	min.	10	mcd
Wavelength at peak emission					
I _F = 10 mA		$\lambda_{p}$	typ.	650	nm
Beamwidth at half-intensity directions		$\theta 1/2$	typ.	70	0

Fig. 1 SOD-85AL.

Dimensions in mm



### RATINGS

Limiting values in accordance with the Absolut	e Maximum Syst	em (IEC 134)			
Continuous reverse voltage		v _R	max.	5	٧
Forward current					
d.c.		۱F	max.	100	mΑ
peak value; $t = 1 \mu s$ ; $f = 300 Hz$		FRM	max.		Α
peak value; $t_{on} = 20 \mu s$ ; $\delta = 0.01$		IFRM	max.	500	mΑ
Total power dissipation up to T _{amb} = 25 °C		$P_{tot}$	max.	215	mW
Storage temperature		$T_{stg}$	-55 to	+100	oC
Junction temperature		Τj	max.	100	oC
Lead soldering temperature; t _{sld} < 7 s;					
>5 mm from the plastic body		$T_{sld}$	max.	260	oC
THERMAL RESISTANCE					
From junction to ambient when					
the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W
CHARACTERISTICS					
T _{amb} = 25 °C unless otherwise specified					
Forward voltage				1 75	.,
I _F = 10 mA		٧F	typ. max.	1,75 2,2	
				2,0	
IF = 100 mA		٧F	typ. max.	2,5	
Reverse current					
V _R = 5 V		1 _R	max.	100	μΑ
Beamwidth at half-intensity directions					
IF = 10 mA; in the plane of the leads		$\theta 1/_{2}$	typ.	70	0
Bandwidth at half height		Δλ	typ.	20	nm
Wavelength at peak emission					
I _F = 10 mA		$\lambda_{\mathbf{p}}$	typ.	650	nm
Luminous intensity					
IF = 10 mA	CQS82AL	lv	min.		mcd
	CQS82AL-4	lv	•	to 7,0	
	CQS82AL-5 CQS82AL-6	1 _V	min.	to 12	mcd mcd
Dia da sassaida sas	CG302AL-0	۱۸	111111.	10	mcu
Diode capacitance V _R = 0; f = 1 MHz		Cd	tvo	80	n E
V K - 0, I - I WITZ		∽d	typ.	00	PΓ



Fig. 2.



Fig. 4  $t_{on}$  = 20  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6 Typical values.



Fig. 3 Tamb = 25 °C; typ. values.



Fig. 5 IF = 10 mA; typ. values.



Fig. 7  $t_p = 50 \mu s$ ; typ. values.



Fig. 8  $I_F = 10 \text{ mA}$ ;  $T_{amb} = 25 \text{ °C}$ ; typ. values.



Fig. 9 Typical values.



Circular light emitting diode which emits green light at a typical peak wavelength of 565 nm (GaP; super-green) when forward biased.

The CQS84L has a flangeless SQD-85 outline and is encapsulated in a green diffusing resin.

Together with the CQS82AL and the CQS86L, the CQS84L forms one family and is available only in the long lead (L) version.

Continuous reverse voltage		VR	max.	5 V
Forward current (d.c.)		۱F	max.	60 mA
Total power dissipation up to $T_{amb} = 35$ °C		$P_{tot}$	max.	180 mW
Junction temperature		Τj	max.	100 °C
Luminous intensity				
I _F = 10 mA	CQS84L	Iv	min.	0,7 mcd
	CQS84L-3	۱ _۷	1,6	to 3,5 mcd
	CQS84L-4	lv	3,0	to 7,0 mcd
	CQS84L-5	I _V	min.	5,0 mcd
Wavelength at peak emission				
IF = 10 mA		$\lambda_{p}$	typ.	565 nm
Beamwidth at half-intensity directions		$\theta 1/_{2}$	typ.	70 °

**MECHANICAL DATA** 

Fig. 1 SOD-85AL.

Dimensions in mm



Diode capacitance V_R = 0; f = 1 MHz

RATINGS				
Limiting values in accordance with the Absolu	ıte Maximum Sys	tem (IEC 134)	)	
Continuous reverse voltage		٧R	max.	5 V
Forward current d.c. peak value; $t = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_0 < 1 \text{ ms}$ ; $\delta = 0.33$		l _F lFRM	max. max. max.	60 mA 1 A 150 mA
Total power dissipation up to Tamb = 35 °C		P _{tot}	max.	180 mW
Storage temperature		T _{sta}	–55 t	o +100 °C
Junction temperature		T _i	max.	100 °C
Lead soldering temperature; $t_{sld} < 7 s$ ; $> 5 \text{ mm}$ from the plastic body		T _{sld}	max.	260 °C
THERMAL RESISTANCE				
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350 K/W
CHARACTERISTICS				
Tamb = 25 °C unless otherwise specified				
Forward voltage I _F = 10 mA		VF	typ. max.	2,1 V 2,6 V
Reverse current V _R = 5 V		IR	max.	100 μΑ
Beamwidth at half-intensity directions IF = 10 mA		$\theta 1_{2}$	typ.	70 °
Bandwidth at half height		Δλ	typ.	30 nm
Wavelength at peak emission $I_F = 10 \text{ mA}$		$\lambda_{p}$	typ.	565 nm
Luminous intensity IF = 10 mA	CQS84L CQS84L-3 CQS84L-4	lv lv lv		1,0 mcd 3 to 3,5 mcd 3 to 7,0 mcd
	CQS84L-5	lv	min.	5,0 mcd

20 pF

typ.

 $C_{d}$ 



Fig. 2.



Fig. 4  $t_{OR}$  = 1 ms;  $\delta$  = 0,33;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6 Typical values.



Fig. 3 T_{amb} = 25 °C; typ. values.



Fig. 5 Typical values.



Fig. 7  $t_p = 50 \mu s$ ; typ. values.



Fig. 8  $I_F = 10 \text{ mA}$ ; typ. values.



Fig. 9  $I_F = 10 \text{ mA}$ ; typ. values.



Circular light emitting diode which emits yellow light at a typical peak wavelength of 590 nm (GaPAs) when forward biased.

The CQS86L has a flangeless SOD-85 outline and is encapsulated in a yellow diffusing resin.

Together with the CQS82AL and the CQS84L, the CQS86L forms one family and is available only in the long lead (L) version.

Continuous reverse voltage		V _R	max.	5	V
Forward current (d.c.)		lE , ''	max.		mA
Total power dissipation up to Tamb = 65 °C		P _{tot}	max.	90	mW
Junction temperature		Τį	max.	100	oC
Luminous intensity		•			
IF = 10 mA	CQS86L	I _V	min.	0,7	mcd
	CQS86L-3	l _v	1,6	to 3,5	mcd
	CQS86L-4	l _V	3,0	to 7,0	mcd
	CQS86L-5	Ι _ν	min.	5,0	mcd
Wavelength at peak emission					
I _F = 10 mA		$\lambda_{\mathbf{p}}$	typ.	590	nm
Beamwidth at half-intensity directions		$\theta_{1/2}$	typ.	70	0

Fig. 1 SOD-85AL

Dimensions in mm



R	Λ	т	18	11	2	c

RATINGS					
Limiting values in accordance with the Absolute	e Maximum System	(IEC 134)			
Continuous reverse voltage		$V_R$	max.	5	V
Forward current d.c. peak value; $t_p$ = 1 $\mu$ s; f = 300 Hz peak value; $t_p$ < 1 ms; $\delta$ = 0,33		l _F lFRM	max. max. max.	1	mA A mA
Total power dissipation up to T _{amb} = 65 °C		$P_{tot}$	max.	90	mW
Storage temperature		$T_{stg}$	-55 to	+100	oC
Junction temperature		$T_{j}$	max.	100	oC
Lead soldering temperature; t _{sld} < 7 s; > 5 mm from the plastic body		T _{sld}	max.	260	oC
THERMAL RESISTANCE					
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Forward voltage I _F = 10 mA		VF	typ. max.	2,1 2,6	
Reverse current $V_R = 5 V$		IR	max.	100	μΑ
Beamwidth at half-intensity directions IF= 10 mA		θ 1/2	typ.	70	0
Bandwidth at half height		Δλ	typ.	40	nm
Wavelength at peak emission $I_F = 10 \text{ mA}$		$\lambda_{p}$	typ.	590	nm
Luminous intensity IF = 10 mA	CQS86L-3 CQS86L-4	l _v l _v	3,0 t	o 3,5 o 7,0	mcd
B: 1	CQS86L-5	1 _V	min.	5,0	mcd
Diode capacitance V _R = 0; f = 1 MHz		$c_{d}$	typ.	15	pF



Fig. 2.



Fig. 4  $t_{on}$  = 50  $\mu$ s;  $\delta$  = 0,33;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6 Typical values.



Fig. 3 T_{amb} = 25 °C; typ. values.



Fig. 5 Typical values.



Fig. 7  $t_p$  = 50  $\mu$ s; typ. values.



Fig. 8 Typical values.



Fig. 9 Typical values.



Circular light emitting diode with a diameter of 3 mm which emits red light at a typical peak wavelength of 700 nm (GaP:ZnO; ultra-red) when forward biased.

The CQS93 has a SQD-82 outline and is encapsulated in a red coloured diffusing resin.

Together with the CQS95 and CQS97, the CQS93 forms one family.

Continuous reverse voltage		$V_{R}$	max.	5 V
Forward current (d.c.)		۱F	max.	25 mA
Total power dissipation up to $T_{amb} = 65  {}^{\circ}C$		$P_{tot}$	max.	70 mW
Junction temperature		$T_{j}$	max.	100 °C
Luminous intensity				
$I_F = 20 \text{ mA}$	CQS93	ι _ν	min.	0,7 mcd
	CQS93-2	Ι _ν	1,0	to 2,2 mcd
	CQS93-3	$I_V$	min.	1,6 mcd
Wavelength at peak emission		$\lambda_{\mathbf{p}}$	typ.	700 nm
Beamwidth at half-intensity directions		$\theta \gamma_2$	typ.	60 °

Fig. 1 SOD-82C.

Dimensions in mm



RATINGS					
Limiting values in accordance with the Absolute	Maximum Syste	em (IEC 134)			
Reverse voltage		٧R	max.	5	V
Forward current d.c. peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_p = 1 \text{ ms}$ ; $\delta = 0.33$		lF lFRM	max. max. max.	1	mA A mA
Total power dissipation up to $T_{amb} = 65  {}^{\circ}\text{C}$		P _{tot}	max.	70	mW
Storage temperature		$T_{stq}$	-30 to	+100	oC
Junction temperature		Τį	max.	100	oC
Lead soldering temperature; $t_{sld} < 7s$ ; $> 3$ mm from the plastic body		T _{sld}	max.	260	оС
THERMAL RESISTANCE					
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	500	K/W
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Forward voltage I _F = 20 mA		VF	typ. max.	2,2 2,8	
Reverse current V _R = 5 V		1 _R	max.	5	μΑ
Beamwidth at half-intensity directions $I_F = 20 \text{ mA}$		$\theta \gamma_2$	typ.	60	o
Bandwidth at half height		$\Delta\lambda$	typ.	100	nm
Wavelength at peak emission I _F = 20 mA		$\lambda_p$	typ.	700	nm
Luminous intensity I _F = 20 mA	CQS93 CQS93-2	I _V	min. 1.0 to	0,7 o 2,2	mcd mcd

CQS93-3

min. 1,6 mcd



Fig. 2.



40

Fig. 3  $T_{amb} = 25$  °C; typ. values.



Fig. 4 Typical values.



Fig. 5  $T_{amb}$  = 25 °C; typ. values.



Fig. 6  $I_F = 20 \text{ mA}$ ;  $T_{amb} = 25 \text{ }^{o}\text{C}$ ; typ. values.



Fig. 7 Typical values.



Circular light emitting diode with a diameter of 3 mm which emits red light at a typical peak wavelength of 700 nm (GaP:ZnO; ultra-red) when forward biased.

The COS93E has a SOD-82 outline and is encapsulated in a red coloured diffusing resin.

The additional letter E signifies extremely long leads (34 mm).

Continuous reverse voltage		$v_R$	max.	5 V
Forward current (d.c.)		۱F	max.	25 mA
Total power dissipation up to Tamb = 65 °C		$P_{tot}$	max.	70 mW
Junction temperature		Тj	max.	100 °C
Luminous intensity				
I _F = 20 mA	CQS93E	۱ _۷	min.	0,7 mcd
	CQS93E-2	l _v	1,0	) to 2,2 mcd
	CQS93E-3	۱ _۷	min.	1,6 mcd
Wavelength at peak emission		$\lambda_{\mathbf{p}}$	typ.	700 nm
Beamwidth between half-intensity directions		$\theta_{1/2}$	typ.	50 °

Fig. 1 SOD-82B.

Dimensions in mm



RATINGS					
Limiting values in accordance with the Absolut	e Maximum Syste	em (IEC 134)			
Reverse voltage		$v_R$	max.	5	V
Forward current d.c.		۱ _F	max.		mA
peak value; $t_{on} = 1 \text{ ms}$ ; $\delta = 0.33$ peak value; $t_{p} = 1 \mu s$ ; $f = 300 \text{ Hz}$		FRM	max. max.		mA A
Total power dissipation up to Tamb = 65 °C		$P_{tot}$	max.	70	mW
Storage temperature		$T_{stg}$	-30 to	+100	oC
Junction temperature		Tj	max.	100	oC
Lead soldering temperature; $t_{sld}$ < 7 s; > 1,5 mm from the seating plane		T _{sld}	max.	260	oC
THERMAL RESISTANCE					
From junction to ambient when the device is m on a p.c. board	ounted	R _{th j-a}	max.	500	K/W
CHARACTERISTICS					
T _{amb} = 25 °C unless otherwise specified					
Forward voltage I _F = 20 mA		٧ _F	typ. max.	2,2 2,8	
Reverse current V _R = 5 V		IR	max.	5	μΑ
Beamwidth between half-intensity directions $I_F = 20 \text{ mA}$		$\theta_{1/2}$	typ.	50	0
Bandwidth at half height		Δλ	typ.	100	nm
Wavelength at peak emission; IF = 20 mA		$\lambda_{p}$	typ.	700	nm
Luminous intensity I _F = 20 mA	CQS93E	ı _v	min.	0,7	mcd

CQS93E-2

CQS93E-3

lv

Ιν

1,0 to 2,2 mcd min. 1,6 mcd



Fig. 2.



Fig. 3 T_{amb} = 25 °C; typ. values.



Fig. 4 Typ. values.



June 1985



Fig. 6 Typ. values.



Fig. 7 Typ. values.



Circular light emitting diode with a diameter of 3 mm which emits red light at a typical peak wavelength of 700 nm (GaP:ZnO; ultra-red) when forward biased.

The CQS93L has a SOD-82 outline and is encapsulated in a red coloured diffusing resin.

The additional letter L signifies long leads (26 mm).

Continuous reverse voltage		٧R	max.	5 V
Forward current (d.c.)		۱F	max.	25 mA
Total power dissipation up to Tamb = 65 °C		$P_{tot}$	max.	70 mW
Junction temperature		Tj	max.	100 °C
Luminous intensity				
I _F = 20 mA	CQS93L	١ _٧	min.	<b>0,7</b> mcd
	CQS93L-2	I _V	1,0	to 2,2 mcd
	CQS93L-3	Iv	min.	1,6 mcd
Wavelength at peak emission		$\lambda_{p}$	typ.	700 nm
Beamwidth between half-intensity directions		$\theta \frac{1}{2}$	typ.	50 °

Fig. 1 SOD-82A.

Dimensions in mm



RATINGS					
Limiting values in accordance with the Absolu	ite Maximum Syst	tem (IEC 134)			
Reverse voltage		٧R	max.	5	٧
Forward current d.c. peak value; $t_{on} = 1 \text{ ms}$ ; $\delta = 0.33$ peak value; $t_{p} = 1  \mu \text{s}$ ; $f = 300 \text{ Hz}$		IF IFRM	max. max. max.	30	mA mA A
Total power dissipation up to T _{amb} = 65 °C		$P_{tot}$	max.	70	mW
Storage temperature		T _{stg}	-30 t	o +100	οС
Junction temperature		Τj	max.	100	оС
Lead soldering temperature; $t_{sld} < 7 s$ ; $> 1,5 \text{ mm}$ from the seating plane		T _{sld}	max.	260	oC
THERMAL RESISTANCE					
From junction to ambient when the device is on a p.c. board	mounted	R _{th j-a}	max.	500	K/W
CHARACTERISTICS					
T _{amb} = 25 °C unless otherwise specified					
Forward voltage I _F = 20 mA		VF	typ. max.	2,2 2,8	
Reverse current V _R = 5 V		I _R	max.	5	μΑ
Beamwidth between half-intensity directions IF = 20 mA		$\theta_{\frac{1}{2}}$	typ.	50	o
Beamwidth at half height		Δλ	typ.	100	nm
Wavelength at peak emission  IF = 20 mA		$\lambda_{p}$	typ.	700	nm
Luminous intensity  IF = 20 mA	CQS93L CQS93L-2 CQS93L-3	I _V I _V	min. 1,0 min.	to 2,2	mcd mcd mcd





40

10

l_v (mcd)





Fig. 4 Typ. values.

100



Fig. 6 Typ. values.



Fig. 7 Typ. values.

•

Circular light emitting diode with diameter of 3 mm which emits green light at a typical peak wavelength of 565 nm (GaP; super-green) when forward biased.

The CQS95 has a SOD-82 outline and is encapsulated in a green coloured diffusing resin.

Together with the CQS93 and the CQS97, the CQS95 forms one family.

Continuous reverse voltage		$v_R$	max.	5 V
Forward current (d.c.)		lF .	max.	30 mA
Total power dissipation up to T _{amb} = 55 °C		$P_{tot}$	max.	90 mW
Junction temperature		Τj	max.	100 °C
Luminous intensity		•		
IF = 10 mA	CQS95	I _V	min.	0,7 mcd
	CQS95-2	۱ _۷	1,0	to 2,2 mcd
	CQS95-3	I _V	min.	1,6 mcd
Wavelength at peak emission		$\lambda_{p}$	typ.	565 nm
Beamwidth at half-intensity directions		θ 1/2	typ.	60 °

Fig. 1 SOD-82C.

Dimensions in mm



Luminous intensity I_F = 10 mA

RATINGS				
Limiting values in accordance with the Absolute Maximum Syste	em (IEC 134)			
Continuous reverse voltage	$v_R$	max.	5	٧
Forward current				
d.c.	۱F	max.		mA
peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_{OR} = 1 \text{ ms}$ ; $\delta = 0.33$	FRM	max. max.		A mA
Total power dissipation up to T _{amb} = 55 °C	$P_{tot}$	max.	90	mW
Storage temperature	$T_{stg}$	−30 t	o +100	oC
Junction temperature	Τj	max.	100	oC
Lead soldering temperature; $t_{sld} < 7 s$ ; $> 3 mm$ from the plastic body	T _{sld}	max.	260	оС
THERMAL RESISTANCE				
From junction to ambient when				
the device is mounted on a p.c. board	R _{th j-a}	max.	500	K/W
CHARACTERISTICS				
T _j = 25 °C unless otherwise specified				
Forward voltage		typ.	2,2	V
I _F = 20 mA	٧F	max.	2,8	
Reverse current				
V _R = 5 V	۱ _R	max.	10	μΑ
Beamwidth at half-intensity directions				
I _F = 20 mA	$\theta 1/2$	typ.	60	0
Bandwidth at half height	$\Delta \lambda$	typ.	30	nm
Wavelength at peak emission				
I _F = 20 mA	λp	typ.	565	nm

CQS95

CQS95-2

CQS95-3

lv

 $I_{V}$ 

min. 0,7 mcd

1,0 to 2,2 mcd min. 1,6 mcd

min.



Fig. 2 Typical values.



Fig. 4 Typical values.



Fig. 3  $T_{amb} = 25$  °C; typ. values.



Fig. 5 T_{amb} = 25 °C; typ. values.



Fig. 6  $I_F = 10 \text{ mA}$ ;  $T_{amb} = 25 \text{ °C}$ ; typ. values.



Fig. 7 Typical values.



Circular light emitting diode with diameter of 3 mm which emits green light at a typical peak wavelength of 565 nm (GaP; super-green) when forward biased.

The CQS95E has a SOD-82 outline and is encapsulated in a green coloured diffusing resin.

The additional letter E signifies extremely long leads (34 mm).

Continuous reverse voltage		٧R	max.	5 V
Forward current (d.c.)		۱F	max.	30 mA
Total power dissipation up to T _{amb} = 55 °C		$P_{tot}$	max.	90 mW
Junction temperature		Τj	max.	100 °C
/Luminous intensity				
$I_F = 10 \text{ mA}$	CQS95E	I _V	min.	1,6 mcd
	CQS95E-4	Iv	3,0	to 7,0 mcd
	CQS95E-5	I _V	min.	5,0 mcd
Wavelength at peak emission		$\lambda_{\mathbf{p}}$	typ.	565 nm
Beamwidth between half-intensity directions		$\theta 1/2$	typ.	50 °

Fig. 1 SOD-82B.

Dimensions in mm



RATINGS				
Limiting values in accordance with the Absol	ute Maximum Sys	tem (IEC 134)		
Reverse voltage		$v_R$	max.	5 V
Forward current d.c. peak value; $t_{OB} = 1$ ms; $\delta = 0.01$ peak value; $t_{D} = 1$ $\mu$ s; $f = 300$ Hz		l _F I _{FRM}	max. max. max.	30 mA 40 mA 1 A
Total power dissipation up to $T_{amb} = 55$ °C		$P_{tot}$	max.	90 mW
Storage temperature		$T_{stg}$	-30 t	o +100 °C
Junction temperature		$T_{j}$	max.	100 °C
Lead soldering temperature; $t_{\rm sld}$ < 7 s; > 1,5 mm from the seating plane		T _{sld}	max.	260 °C
THERMAL RESISTANCE				
From junction to ambient when the device is on a p.c. board	mounted	R _{th j-a}	max.	500 K/W
CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Forward voltage IF = 20 mA		٧F	typ. max.	2,2 V 2,8 V
Reverse current V _R = 5 V		IR	max.	10 μΑ
Beamwidth between half-intensity directions IF = 20 mA		$\theta 1/_{2}$	typ.	50 °
Bandwidth at half height		Δλ	typ.	30 nm
Wavelength at peak emission		$\lambda_{\mathbf{p}}$	typ.	565 nm
Luminous intensity I _F = 10 mA	CQS95E CQS95E-4	l _v	min. 3,0	1,6 mcd 1 to 7,0 mcd
	CQS95E-5	l _V	min.	5,0 mcd





Fig. 4 Typ. values.



Fig. 3 T_{amb} = 25 °C; typ. values.



Fig. 5 Typ. values.



Fig. 6 Typ. values.



Fig. 7 Typ. values.



Circular light emitting diode with a diameter of 3 mm which emits green light at a typical peak wavelength of 565 nm (GaP; super-green) when forward biased.

The CQS95L has a SOD-82 outline and is encapsulated in a green coloured diffusing resin.

The additional letter L signifies long leads (26 mm).

Continuous reverse voltage		$v_R$	max.	5 V
Forward current (d.c.)		1F	max.	30 mA
Total power dissipation up to $T_{amb} = 55$ °C		$P_{tot}$	max.	90 mW
Junction temperature		T _j	max.	100 °C
Luminous intensity				
$I_F = 10 \text{ mA}$	CQS95L	I _V	min.	1,6 mcd
	CQS95L-4	I _V	3,0	) to 7,0 mcd
	CQS95L-5	I _V	min.	5,0 mcd
Wavelength at peak emission		$\lambda_{p}$	typ.	565 nm
Beamwidth between half-intensity directions		$\theta _{2}$	typ.	50 °

Fig. 1 SOD-82A.

Dimensions in mm



RATINGS					
Limiting values in accordance with the Absolut	e Maximum Syst	tem (IEC 134)			
Reverse voltage		٧R	max.	5	٧
Forward current d.c. peak value; $t_{on}$ = 1 ms; $\delta$ = 0,01 peak value; $t_p$ = 1 $\mu$ s; $f$ = 300 Hz		lF IFRM	max. max. max.	40	mA mA A
Total power dissipation up to $T_{amb} = 55$ °C		$P_{tot}$	max.	90	mW
Storage temperature		$T_{stg}$	−30 t	o +100	oC
Junction temperature		Тj	max.	100	oC
Lead soldering temperature; $t_{sld} < 7 s$ ; $> 1,5 \text{ mm}$ from the seating plane		T _{sld}	max.	260	oC
THERMAL RESISTANCE					
From junction to ambient when the device is m on a p.c. board	nounted	R _{th j-a}	max.	500	K/W
CHARACTERISTICS					
T _{amb} = 25 °C unless otherwise specified					
Forward voltage I _F = 20 mA		VF	typ. max.	2,2 2,8	
Reverse current V _R = 5 V		IR	max.	10	μΑ
Beamwidth between half-intensity directions $I_F = 20 \text{ mA}$		$\theta  \gamma_{\!\scriptscriptstyle 2}$	typ.	50	0
Bandwidth at half height		$\Delta \lambda$	typ.	30	nm
Wavelength at peak emission  IF = 20 mA		$\lambda_p$	typ.	565	nm
Luminous intensity  IF = 10 mA	CQS95L CQS95L-4 CQS95L-5	I _V I _V	min. 3,0 min.	to 7,0	mcd mcd mcd



Fig. 2.



Fig. 4 Typ. values.



Fig. 3 Tamb = 25 °C; typ. values.



Fig. 5 Typ. values.



Fig. 6 Typ. values.



Fig. 7 Typ. values.

Circular light emitting diode with a diameter of 3 mm which emits yellow light at a typical peak wavelength of 590 nm (GaPAs) when forward biased.

The CQS97 has a SOD-82 outline and is encapsulated in a yellow coloured diffusing resin. Together with the CQS93 and CQS95, the CQS97 forms one family.

Continuous reverse voltage		$v_R$	max.	5 V
Forward current (d.c.)		۱F	max.	30 mA
Total power dissipation up to $T_{amb} = 55 ^{\circ}\text{C}$		P _{tot}	max.	90 mW
Junction temperature		$T_{j}$	max.	100 °C
Luminous intensity I _F = 10 mA	CQS97 CQS97-2 CQS97-3	l _V l _V	min. 1,0 min.	0,7 mcd to 2,2 mcd 1,6 mcd
Wavelength at peak emission		$\lambda_{p}$	typ.	590 nm
Beamwidth at half-intensity directions		$\theta_{1/2}$	typ.	60 °

Fig. 1 SOD-82C.

Dimensions in mm



R	A	TI	N	GS
---	---	----	---	----

NATINGS				
Limiting values in accordance with the Abs	olute Maximum Sy	stem (IEC 134)	)	
Continuous reverse voltage		٧R	max.	5 V
Forward current				
d.c.		l F	max.	30 mA
peak value; $t_p = 1 \mu s$ ; $f = 300 Hz$ peak value; $t_p = 1 ms$ ; $\delta = 0.33$		IFRM	max. max.	1 A 40 mA
Total power dissipation up to $T_{amb} = 55^{\circ}$	C	$P_{tot}$	max.	90 mW
Storage temperature		$T_{stg}$	-30 t	to +100 °C
Junction temperature		Τį	max.	100 °C
Lead soldering temperature; t _{sld} < 7 s		•		
> 3 mm from the plastic body		T _{sld}	max.	260 °C
THERMAL RESISTANCE				
From junction to ambient when the device on a p.c. board	is mounted	R _{th j-a}	max.	500 K/W
		···tii j-a		000 11,11
CHARACTERISTICS				
T _j = 25 °C unless otherwise specified				
Forward voltage			typ.	2,2 V
I _F = 20 mA		٧F	max.	2,8 V
Reverse current				
V _R = 5 V		۱R	max.	10 μΑ
Beamwidth at half-intensity directions				
IF = 20 mA		$\theta_{1/2}$	typ.	60 °
Bandwidth at half height		Δλ	typ.	30 nm
Wavelength at peak emission		_		
IF = 20 mA		λp	typ.	590 nm
Luminous intensity  IF = 10 mA	CQS97		min.	0.7 mcd
1F - 10 IIIA	CQS97-2	l _V I _V		0,7 mcd 0 to 2,2 mcd
	CQS97-3	I _V	min.	1,6 mcd



Fig. 2 Typical values.



Fig. 4 Typical values.



Fig. 3 T_{amb} = 25 °C; typ. values.



Fig. 5  $T_{amb} = 25$  °C; typ. values.



Fig. 6  $I_F = 20 \text{ mA}$ ;  $T_{amb} = 25 \text{ }^{o}\text{C}$ ; typ. values.



Fig. 7 Typical values.



Circular light emitting diode with a diameter of 3 mm which emits yellow light at a typical peak wavelength of 590 nm (GaPAs) when forward biased.

The CQS97E has a SOD-82 outline and is encapsulated in a yellow coloured diffusing resin.

The additional letter E signifies long leads (34 mm)

Continuous reverse voltage		VR	max.	5 V
Forward current (d.c.)		1F	max.	30 mA
Total power dissipation up to Tamb = 55 °C		$P_{tot}$	max.	90 mW
Junction temperature		Tj	max.	100 °C
Luminous intensity				
IF = 10 mA	CQS97E	lv	min.	1,6 mcd
	CQS97E-4	l _V	3,0	to 7,0 mcd
	CQS97E-5	$I_V$	min.	5,0 mcd
Wavelength at peak emission				
IF = 20 mA		$\lambda_{p}$	typ.	590 nm
Beamwidth between half-intensity directions	•	$\theta_{1/2}$	typ.	50 o

Fig. 1 SOD-82B.

Dimensions in mm



e Maximum Syst	tem (IEC 134)	)		
	$V_{R}$	max.	5	V
	lF IF	max.		mA
	3			
	Тj	max.	100	оС
	$T_{sld}$	max.	260	oC
ounted	R _{th j-a}	max.	500	K/W
	VF	typ. max.	2,2 2,8	
	۱ _R	max.	10	μΑ
	$\theta_{1/2}$	typ.	50	o
	Δλ	typ.	30	nm
	λp	typ.	590	nm
CQS97E	I _V	min.		mcd
CQS97E-4 CQS97E-5	I _V I _V	3,0 min.		mcd mcd
	CQS97E CQS97E-4	$V_R$ $I_F$ $I_FRM$ $P_{tot}$ $T_{stg}$ $T_j$ $T_{sid}$ Hounted $R_{th \ j-a}$ $V_F$ $I_R$ $\theta_{V_2}$ $\Delta\lambda$ $\lambda_p$ $COS97E$ $I_V$ $COS97E-4$ $I_V$	IF max. IFRM max. Ptot max. Tstg $-30$ t Tj max. Tsld max. Tsld max. Tsld max. Tsld max. $V_F = \frac{V_F}{M_{AB}} = \frac{V_F}{M_{A$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$







Fig. 4 Typ. values.



Fig. 3  $T_{amb} = 25 \circ$ ; typ. values.



Fig. 5 Typ. values.



Fig. 6  $I_F = 20 \text{ mA}$ ;  $T_{amb} = 25 \text{ oC}$ .



Fig. 7 Typ. values.



# LIGHT EMITTING DIODE

Circular light emitting diode with a diameter of 3 mm which emits yellow light at a typical peak wavelength of 590 nm (GaPAs) when forward biased.

The CQS97L has a SOD-82 outline and is encapsulated in a yellow coloured diffusing resin. The additional letter L signifies long leads (26 mm).

Continuous reverse voltage		٧R	max.	5 V
Forward current (d.c.)		lF	max.	30 mA
Total power dissipation up to Tamb = 55 °C		$P_{tot}$	max.	90 mW
Junction temperature		Τj	max.	100 °C
Luminous intensity				
IF = 10 mA	CQS97L	l _V	min.	1,6 mcd
	CQS97L-4	I _V	3,0	to 7,0 mcd
	CQS97L-5	I _V	min.	5,0 mcd
Wavelength at peak emission		$\lambda_{\mathbf{p}}$	typ.	590 nm
Beamwidth between half-intensity directions		$\theta \gamma_2$	typ.	50 °

Fig. 1 SOD 82A.

Dimensions in mm



RATINGS					
Limiting values in accordance with the Absolu	te Maximum Syst	tem (IEC 134)			
Reverse voltage		$V_R$	max.	5	V
Forward current d.c. peak value; $t_{on} = 1$ ms; $\delta = 0.01$ peak value; $t_p = 1$ $\mu$ s; $f = 300$ Hz		l _F l _{FRM}	max. max. max.	40	mA mA A
Total power dissipation up to $T_{amb} = 55  {}^{o}C$		$P_{tot}$	max.	90	mW
Storage temperature		$T_{stg}$	-30 to	o +100	oC
Junction temperature		Тj	max.	100	oC
Lead soldering temperature; $t_{sld} < 7 s$ ; $>$ 1,5 mm from the seating plane		T _{sld}	max.	260	oC
THERMAL RESISTANCE					
From junction to ambient when the device is nonap.c. board	nounted	R _{th j-a}	max.	500	K/W
CHARACTERISTICS					
T _{amb} = 25 °C unless otherwise specified					
Forward voltage I _F = 20 mA		٧F	typ. max.	2,2 2,8	
Reverse current V _R = 5 V		IR	max.	10	μΑ
Beamwidth between half-intensity directions $I_F = 20 \text{ mA}$		$\theta \gamma_2$	typ.	50	o
Bandwidth at half height		Δλ	typ.	30	nm
Wavelength at peak emission    F = 20 mA		$\lambda_p$	typ.	590	nm
Luminous intensity IF = 10 mA	COS97L COS97L-4 COS97L-5	I _V I _V	min. 3,0 min.	to 7,0	
	CG281 F-2	I _V	mm.	5,0	mcd



Fig. 2.



Fig. 4 Typ. values.



Fig. 3 T_{amb} = 25 °C; typ. values.



Fig. 5  $T_{amb} = 25$  °C; typical values.



Fig. 6 Typical values.



Fig. 7 Typical values.



This data sheet contains advance information and specifications are subject to change without notice.

## LIGHT EMITTING DIODE

Rectangular light emitting diode of 5 mm x 2,5 mm which emits red light at a typical peak wavelength of 650 nm (GaAlAs; hyper-red) or green light at a typical peak wavelength of 565 nm (GaP; super-green) depending on the polarity of the current.

The CQT10B has a SOD-76 outline and is encapsulated in a colourless diffusing resin. The SOD-76 envelope enables the CQT10B to be used in configurations together with the CQW10B family.

The bicolour function gives this light emitting block special possibilities e.g.

- · as level sensor overdrive indicator or
- as zero point indicator or
- as tuning indicator

Forward current (d.c.)	red green	۱ _F	max.	100 mA 60 mA
Total power dissipation up to T _{amb} = 25 °C		$P_{tot}$	max.	215 mW
Junction temperature		Τj	max.	100 °C
Luminous intensity red at I F = 10 mA green at I F = 20 mA		I _V	min. typ.	1,0 mcd 1,5 mcd
Wave length at peak emission	red green	$\lambda_{p}$	typ.	650 nm 565 nm
Beamwidth between half-intensity directions in the plane of the leads		$\theta$ $\frac{1}{2}$	typ.	100 °

Fig. 1 SOD-76A2

Dimensions in mm



## **RATINGS**

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Forward current d.c.	red green	۱۴	max.	100 mA 60 mA
peak value; $t_p = 1 \mu s$ ; $f = 300 Hz$ peak value, $t_{on} = 1 ms$ ; $\delta = 0.33$	3	IFRM	max. max.	1 A 150 mA
Total power dissipation up to T _{amb} = 25 °C		$P_{tot}$	max.	215 mW
Junction temperature		Tj	max.	100 °C
Storage temperature		$T_{stg}$	-55 t	o +100 °C
Lead soldering temperature $>$ 1,5 mm from the seating plane; $t_{\mbox{sld}} < 7~\mbox{s}$		T _{sld}	max.	260 °C
THERMAL RESISTANCE				
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350 K/W
CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Forward voltage red at I _F = 10 mA		VF	typ. max.	1,75 V 2,2 V
green at I _F = 20 mA		VF	typ. max.	2,1 V 3,0 V
Beamwidth between half-intensity directions at $I_F = 10 \text{ mA}$		$ heta_{1/2}$	typ.	100 °
Wavelength at peak emissions at I _F = 10 mA	red green	$\lambda_{\mathbf{p}}$	typ. typ.	650 nm 565 nm
Capacitance at V _R = 0; f = 1 MHz		Cd	typ.	100 pF
Luminous intensity  red at I = 10 mA  green at I = 20 mA		Iv	min. typ.	1,0 mcd 1,5 mcd



Fig. 2.



Fig. 4  $t_{on}$  = 20  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C; typical values.



Fig. 6  $t_p = 50 \mu s$ ; typ. values.



Fig. 3 T_{amb} = 25 °C; typ values.



Fig. 5 IF = 10 mA; typical values.



Fig. 7  $t_p = 50 \mu s$ ; typ. values.







Fig. 9  $I_F = 10 \text{ mA}$ ; typical values.



Fig. 10 Typical values.



This data sheet contains advance information and specifications are subject to change without notice.

# LIGHT EMITTING DIODE

Circular light emitting diode with a diameter of 5 mm which emits red light at a typical peak wavelength of 650 nm (GaAlAs; hyper-red) or green light at a typical peak wavelength of 565 nm (GaP; super-green) depending on the polarity of the current.

The CQT24 has a SOD-63 outline and is encapsulated in a clear diffusing resin. Because of its resistance to high forward currents, the CQT24 is suitable for high  $I_V$  applications, for example, moving information display panels.

Other applications are:

- mains indicator
- temperature indicator
- motor control indicator

Continuous reverse current	VR	max.	5 V
Forward current (d.c.) red green	۱բ	max.	100 mA 60 mA
Total power dissipation up to T _{amb} = 25 °C	$P_{tot}$	max.	215 mW
Junction temperature	$T_{i}$	max.	100 °C
Luminous intensity red at $I_F = 10 \text{ mA}$ green at $I_F = 20 \text{ mA}$	I _V	min. typ. min. typ.	3 mcd 10 mcd 3 mcd 10 mcd
Wavelength at peak emission red green	$\lambda_{p}$	typ.	650 nm 565 nm
Beamwidth between half-intensity directions	$\theta_{1/2}$	typ.	70 °

Fig. 1 SOD-63A2.

Dimensions in mm





### RATINGS

RATINGS				
Limiting values in accordance with the Absolute Maximum System	n (IEC 134)			
Forward current (d.c.) red green	lF	max.	100 60	mA mA
Forward current peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_{on} = 1 \text{ ms}$ ; $\delta = 0.33$	IFRM	max. max.	1 150	A mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	215	mW
Junction temperature	$T_{\mathbf{j}}$	max.	100	oC
Storage temperature	T _{stg}	-55 to +	⊦1 <b>0</b> 0	oC
Lead soldering temperature $>$ 1,5 mm from the seating plane; $t_{\mbox{sld}} < 7~\mbox{s}$	T _{sld}	max.	260	oC
THERMAL RESISTANCE				
From junction to ambient when the device is mounted on a p.c. board	R _{th j-a}	max.	350	K/W
CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Forward voltage red at IF = 10 mA	VF	typ. max.	1,75 2,2	V
green at I _F = 20 mA	VF	typ. max.	2,1 3,0	
Beamwidth between half-intensity directions at $I_F = 10$ mA (in the plane of the leads)	$\theta_{1/2}$	typ.	70	o
Wavelength at peak emissions at I _F = 10 mA red green Diode capacitance	$\lambda_p$	typ.	650 565	
at V _R = 0; f = 1 MHz	$c_d$	typ.	160	pF
Luminous intensity red at I _F = 10 mA	I _V	min. typ.	10	mcd mcd
green at I _F = 20 mA	I _V	min. typ.		mcd mcd





Fig. 4  $t_{on}$  = 20  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C; typical values.



Fig. 6  $t_p = 50 \mu s$ ; typ. values.



Fig. 3 T_{amb} = 25 °C; typ. values.



Fig. 5 IF = 10 mA; typical values.



Fig. 7  $t = 50 \mu s$ ; typical values.



Fig. 8 Typical values.



Fig. 9 I_F = 10 mA; typical values.



Fig 10 I_F = 10 mA; typical values.



This data sheet contains advance information and specifications are subject to change without notice.

# LIGHT EMITTING DIODE

Rectangular light emitting diode of 5 mm x 1 mm which emits red light at a typical peak wavelength of 650 nm (GaAlAs; hyper-red) or green light at a typical peak wavelength of 565 nm (GaP; super-green) depending on the polarity of the current.

The CQT60 has a SOD-75 outline and is encapsulated in a colourless diffusing resin. Because of its SOD-75 envelope, the CQT60 can be used in configurations together with the CQW60 family.

The bicolour function gives this light emitting device special application possibilities, e.g.

- as level sensor overdrive indicator
- as zero point indicator
- as tuning indicator

Forward current (d.c.) red green	lF	max.	100 mA 60 mA
Total power dissipation up to T _{amb} = 25 °C	$P_{tot}$	max.	215 mW
Junction temperature	$T_{j}$	max.	100 °C
Luminous intensity red at IF = 10 mA green at IF = 20 mA	Iv	min. typ.	1,0 mcd 1,5 mcd
Wavelength at peak emission red green	$\lambda_{p}$	typ.	650 nm 565 nm
Beamwidth between half-intensity directions in the plane of the leads	$ heta_{1/2}$	typ.	110 °

Fig. 1 SOD-75B2

Dimensions in mm



Diode capacitance at  $V_R = 0$ ; f = 1 MHz

### **RATINGS**

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Eliming values in accordance with the Absolute Maximum System	1 (120 104)			
Forward current red green	lF	max.	100 60	mA mA
Forward current peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value, $t_{on} = 1 \text{ ms}$ ; $\delta = 0.33$	IFRM	max.	1 150	A mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	215	mW
Junction temperature	Tj	max.	100	oC
Storage temperature	$T_{stg}$	55 to -	⊦1 <b>0</b> 0	oC
Lead soldering temperature $>$ 1,5 mm from the seating plane; $\rm t_{SId} < 7~s$	T _{sld}	max.	260	oC
THERMAL RESISTANCE				
From junction to ambient when the device is mounted on a p.c. board	R _{th j-a}	max.	350	K/W
CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Forward voltage red at IF = 10 mA	VF	typ. max.	1,75 2,2	٧
green at I _F = 20 mA	٧F	typ. max.	2,1 3,0	
Beamwidth between half-intensity directions at IF = 10 mA	$\theta_{1/2}$	typ.	110	o
Wavelength at peak emission at I F = 10 mA red green	$\lambda_{\mathbf{p}}$	typ.	650 565	
Luminous intensity red at $I_F = 10 \text{ mA}$ green at $I_V = 20 \text{ mA}$	I _V	min. typ.		mcd mcd

 $\mathsf{C}_\mathsf{d}$ 

100 pF

typ.



T_{amb} (°C)



Fig. 4  $t_{On}$  = 20  $\mu$ s;  $\delta$  = 0,01;  $T_{amb} = 25$  °C; typical values.



Fig. 6  $t_p$  = 50  $\mu$ s; typ. values.



Fig. 3 T_{amb} = 25 °C; typ. values.



Fig. 5 IF = 10 mA; typical values.



Fig. 7  $t_p = 50 \mu s$ ; typ. values.



Fig. 8 Typical values.



Fig. 9 IF = 10 mA; typical values.



Fig. 10 IF = 10 mA; typical values.



This data sheet contains advance information and specifications are subject to change without notice.

## LIGHT EMITTING DIODE

Rectangular light emitting diode of 5 mm x 3 mm which emits red light at a typical peak wavelength of 650 nm (GaAlAs; hyper-red) or green light at a typical peak wavelength of 565 nm (GaP; super-green) depending on the polarity of the current.

The CQT70 has a SOD-77 outline and is encapsulated in a colourless diffusing resin. Because of its SOD-77 envelope, the CQT70 can be used in configurations together with the CQV70 family.

The bicolour function gives this light emitting device special application possibilities, e.g.

- as level sensor overdrive indicator
- as zero point indicator
- as tuning indicator
- as temperature indicator
- for motor control
- in bicolour information panels

Forward current (d.c.) red green	lF	max.	100 mA 60 mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	215 mW
Junction temperature	$T_{j}$	max.	100 °C
Luminous intensity red at IF = 20 mA green at IF = 20 mA	l _V	min. typ.	1,0 mcd 1,5 mcd
Wavelength at peak emission red green	$\lambda_{\mathbf{p}}$	typ.	650 nm 565 nm
Beamwidth between half-intensity directions in the plane of the leads	$ heta_{1/2}$	typ.	110 °

Fig. 1 SOD-77A2.

Dimensions in mm



green at I_V = 20 mA

Diode capacitance at V_R = 0; f = 1 MHz

### **RATINGS**

Forward current (d.c.) red green	lF	max.		mA mA
Forward current peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_{OR} = 1 \text{ ms}$ ; $\delta = 0.33$	IFRM	max.		A mA
Total power dissipation up to T _{amb} = 35 °C	P _{tot}	max.	215	mW
Junction temperature	$T_{j}$	max.	100	oC
Storage temperature	T _{stq}	–55 to +	100	oC
Lead soldering temperature $>$ 1,5 mm from the seating plane; $t_{\mbox{\scriptsize SId}} < 7~\mbox{\scriptsize s}$	T _{sld}	max.	260	oC
THERMAL RESISTANCE				
From junction to ambient when the device is mounted on a p.c. board	R _{th j-a}	max.	350	K/W
CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Forward voltage				

Limiting values in accordance with the Absolute Maximum System (IEC 134)

CHARACTERISTICS			
Tamb = 25 °C unless otherwise specified			
Forward voltage red at I _F = 10 mA	VF	typ. max.	1,75 V 2,2 V
green at I _F = 20 mA	VF	typ. max.	2,1 V 3,0 V
Beamwidth between half-intensity directions at $I_F = 10 \text{ mA}$	$ heta_{1/2}$	typ.	110 °
Wavelength at peak emission at IF = 10 mA red			650 nm
green	$\lambda_{p}$	typ.	565 nm
Luminous intensity red at $I_F = 10 \text{ mA}$	I _V	min.	1,0 mcd

 $I_V$ 

 $C_d$ 

typ.

1,5 mcd

100 pF



Fig. 2.



Fig. 4  $t_{OR}$  = 20  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C, typical values.



Fig. 6  $t_p = 50 \mu s$ ; typ. values.



Fig. 3 Tamb = 25 °C; typ. values.



Fig. 5 IF = 10 mA; typical values.



Fig. 7  $t_p$  = 50  $\mu$ s; typ. values.



Fig. 8 Typical values.



Fig. 9 IF = 10 mA; typical values.



Fig. 10  $I_F = 10 \text{ mA}$ ; typical values.



This data sheet contains advance information and specifications are subject to change without notice.

## LIGHT EMITTING DIODE

Rectangular light emitting diode of 5 mm x 5 mm which emits red light at a typical peak wavelength of 650 nm (GaAlAs; hyper-red) or green light at a typical peak wavelength of 565 nm (GaP; super-green) depending on the polarity of the current. The CQT80L has a SOD-74L envelope and is encapsulated in a clear diffusing resin.

Because of its high I_V the CQT80L is suitable for applications where only low currents are available.

The CQT80L is suitable for surface illumination such as announcing boards, score boards, moving advertisements and electronic games applications. A third colour (orange) is available when an alternating current is applied.

Forward current (d.c.) red green	Ιϝ	max.	100 mA 60 mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	215 mW
Junction temperature	$T_{j}$	max.	100 °C
Luminous intensity red at IF = 10 mA green at IF = 20 mA	I _V	min. typ.	1,0 mcd 2,0 mcd
Wavelength at peak emission red green	$\lambda_{p}$	typ.	650 nm 565 nm
Beamwidth between half-intensity directions	$ heta_{1/2}$	typ.	100 °

Fig. 1 SOD-74L.

Dimensions in mm



Note. Solderability not guaranteed in tie-bar zone.

Diode capacitance V_R = 0; f = 1 MHz

RATINGS				
Limiting values in accordance with the Absolute Maximum S	ystem (IEC 134)			
Forward current (d.c.)			100	^
red green	lF	max.		mA mA
Forward current				
peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_{OR} = 1 \text{ ms}$ ; $\delta = 0.33$	IFRM	max. max.	1 150	A mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	215	mW
Storage temperature	$T_{stg}$	55 t	o +1 <b>00</b>	oC
Junction temperature	Тj	max.	100	oC
Lead soldering temperature $>$ 5,0 mm from the plastic body; $t_{sld}$ $<$ 7 s	T _{sld}	max.	260	oC
THERMAL RESISTANCE				
From junction to ambient when the device is mounted on a p.c. board	R _{th j-a}	max.	350	K/W
CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Forward voltage		typ.	1.75	V
red at IF = 10 mA	٧F	max.	2,2	
green at I _F = 20 mA	VF	typ. max.	2,1 3,0	
Beamwidth between half-intensity directions				
I _F = 10 mA	θ 1/2	typ.	100	0
Wavelength at peak emission at IF = 10 mA				
red green	$\lambda_{p}$	typ.	650 565	
Luminous intensity	•		500	
red at IF = 10 mA	I _V	min.	1,0	mcd
green at IF = 20 mA		typ.	2,0	mcd

 $C_d$ 

100 pF

typ.



Fig. 2.



Fig. 4  $t_{OR}$  = 20  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C; typical values.



Fig. 6  $t_p$  = 50  $\mu$ s; typ. values.



Fig. 3 T_{amb} = 25 °C; typ. values.



Fig. 5 IF = 10 mA; typical values.



Fig. 7  $t_p = 50 \mu s$ ; typ. values.





Fig. 8 Typical values.

Fig. 9 IF = 10 mA; typ. values.



Fig. 10 Typical values.

Rectangular light emitting diodes with a diameter of 5 mm x 3 mm which emit red light at a typical peak wavelength of 630 nm (GaAsP/GaP; super-red) when forward biased. The CQV70 and CQV70L have a SOD-77 envelope and are encapsulated in a red diffusing resin.

When stacked in an array these SOD-77 LEDs can be used as level indicators. The CQV70L is similar to the CQV70 but has long leads and has no seating plane.

QUICK REFERENCE DATA					
Continuous reverse voltage		٧R	max.	5	٧
Forward current (d.c.)		lF	max.	30	mΑ
Total power dissipation up to Tamb = 65 °C		$P_{tot}$	max.	90	mW
Junction temperature		Tj	max.	100	oC
Luminous intensity IF = 10 mA	CQV70(L) CQV70(L)-2 CQV70(L)-3	•	•	0,7 0 to 2,2 6 to 3,5	
Wavelength at peak emission $I_F = 10 \text{ mA}$		$\lambda_{\mathbf{p}}$	typ.	630	nm
Beamwidth between half-intensity directions in the plane of the leads, I _F = 10 mA		θ1/2	typ.	100	o

Fig. 1 SOD-77A1. CQV70.

Dimensions in mm



Fig. 1b SOD-77L. CQV70L.



Limiting values in accordance with the Absolute Ma	ximum System	(IEC 134)				
Reverse voltage		$V_{R}$	max.	5	٧	
Forward current d.c. peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_{on} = 1 \text{ ms}$ ; $\delta = 0.33$		l _F lFRM	max. max. max.	1	mA A mA	
Total power dissipation up to T _{amb} = 65 °C		P _{tot}	max.	90	mW	
Storage temperature		$T_{stg}$	–55 to −	<b>⊦100</b>	oC	
Junction temperature		Тj	max.	100	oC	
Lead soldering temperature at $t_{sld} < 7 s$ > 1,5 mm from the seating plane for CQV70 > 5 mm from the plastic body for CQV70L		T _{sld}	max.	260	оС	
THERMAL RESISTANCE From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W	
CHARACTERISTICS						
T _j = 25 °C unless otherwise specified						
Forward voltage IF = 10 mA		VF	typ. max.	2,1 3,0		
Reverse current V _R = 5 V		·I _R	max.	100	μΑ	
Beamwidth between half-intensity directions		۸		100	0	_
in the plane of the leads; $I_F = 10 \text{ mA}$ Bandwidth at half height		$ heta_{1/2} \ \Delta \lambda$	typ.		nm	
Wavelength at peak emission		ΔΛ	typ.	40	11111	
I _F = 10 mA		$\lambda_{p}$	typ.	630	nm	
Luminous intensity  IF = 10 mA	CQV70(L) CQV70(L)-2 CQV70(L)-3	I _V I _V	min. 1,0 to 1,6 to	2,2		<b>←</b>
Diode capacitance V _R = 0; f = 1 MHz		C _d	typ.		pF	-



Fig. 2.



Fig. 4  $t_{on}$  = 50  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C; typical values.



Fig. 6 IF = 10 mA; typical values.



Fig. 3 T_{amb} = 25 °C; typical values.



Fig. 5 Typical values.



Fig. 7  $t_p = 50 \mu s$ ; typical values.



Fig. 8  $I_F = 10 \text{ mA}$ ;  $T_{amb} = 25 \text{ °C}$ ; typical values.



Fig. 9 Typical values.



Rectangular light emitting diodes of 5 mm x 3 mm which emit red light at a typical peak wavelength of 650 nm (GaAlAs, hyper-red) when forward biased. The CQV70A and CQV70AL have SOD-77 envelopes and are encapsulated in a red diffusing resin. Its high luminousity enables the CQV70A to be used in applications where only low currents are available and because of its high  $I_{\mbox{\sc Fmax}}$  it can be used in high  $I_{\mbox{\sc V}}$  applications.

These SOD-77 LEDs, when stacked in an array, can be used as level indicators. The CQV70AL is similar to the CQV70A but has long leads and has no seating plane.

Continuous reverse voltage		VR	max.	5	٧ .
Forward current (d.c.)		iF	max.	100	mΑ
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	215	mW
Junction temperature		$T_j$	max.	100	oC
Luminous intensity					
I _F = 10 mA	CQV70A(L)-3 CQV70A(L)-4	•		0,7 5 to 3,5 6 to 7,0	
Wavelength at peak emission					
IF = 10 mA		λp	typ.	650	nm
Beamwidth between half-intensity directions in the plane of the leads; IF = 10 mA		θ 1/2	typ.	100	0

Fig. 1a SOD-77A2. CQV70A. Dimensions in mm



Fig. 1b SOD-77L. CQV70AL.



 $V_R = 0$ ; f = 1 MHz

RATINGS						
Limiting values in accordance with the Absolut	te Maximum Syste	m (IEC 134)				
Reverse voltage		$v_R$	max.	5	V	
Forward current d.c. peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_{on} = 20 \mu s$ ; $\delta = 0.01$		l _F	max. max. max.		mA A mA	
Total power dissipation up to $T_{amb} = 25$ °C		P _{tot}	max.	215	mW	
Storage temperature		T _{stq}	-55 t	o +100	οС	
Junction temperature		T _i	max.	100		
Lead soldering temperature at $t_{sld} < 7 \text{ s}$ > 1,5 mm from the seating plane for CQV70 > 5 mm from the plastic body for CQV70A		T _{sld}	max.	260	оС	
THERMAL RESISTANCE						
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W	
CHARACTERISTICS						
T _j = 25 °C unless otherwise specified						
Forward voltage I _F = 10 mA		Vf	typ. max.	1,75 2,2		
Reverse current V _R = 5 V		^I R	max.	100	μΑ	
Beamwidth between half-intensity directions IF = 10 mA		$\theta 1/2$	typ.	100	0	
Bandwidth at half height		Δλ	typ.	20	nm	
Wavelength at peak emission IF = 10 mA		$\lambda_{p}$	typ.	650	nm	
Luminous intensity I _F = 10 mA	CQV70A(L) CQV70A(L)-3 CQV70A(L)-4	l _v l _v l _v		0,7 6 to 3,5 0 to 7,0		<b>-</b>
Diode capacitance				00	_	

 $C_{d}$ 

typ.

80 pF



Fig. 2.



Fig. 4  $t_{On}$  = 20  $\mu$ s;  $\delta$  = 0,01; typ. values.



Fig. 6 Typical values.



Fig. 3 T_{amb} = 25 °C; typ. values.



Fig. 5 IF = 10 mA; typ. values.



Fig. 7  $t_p = 50 \mu s$ ; typ. values.



Fig. 8  $I_F = 10 \text{ mA}$ ;  $T_{amb} = 25 \text{ }^{o}\text{C}$ ; typ. values.



Fig. 9 Typical values.



This data sheet contains advance information and specifications are subject to change without notice.

# LIGHT EMITTING DIODES

Rectangular light emitting diodes of 5 mm x 3 mm which emit red light at a typical peak wavelength of 700 nm (GaP:ZnO; ultra-red) when forward biased.

The CQV70U and CQV70UL have a SOD-77 outline and are encapsulated in a red diffusing resin. The CQV70UL is similar to the CQV70U but has longer leads and no seating plane.

Reverse voltage	VR	max.	5 V
Forward current (d.c.)	lF	max.	30 mA
Total power dissipation up to Tamb = 65 °C	$P_{tot}$	max.	90 mW
Junction temperature	$T_{j}$	max.	100 °C
Luminous intensity at IF = 10 mA	I _V	min.	0,7 mcd
Wavelength at peak emission	$\lambda_{\mathbf{p}}$	typ.	700 nm
Beamwidth between half-intensity directions	$\theta_{1/2}$	typ.	100 °

Fig. 1 SOD-77A1. CQV70U

Dimensions in mm



Fig. 1b SOD-77. CQV70UL



### **RATINGS**

RATINGS						
Limiting values in accordance with the Absolute M	Maximum Syster	n (IEC 134)				
Reverse voltage		$v_R$	max.	5	٧	
Forward current d.c. peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_{OR} = 1 \text{ ms}$ ; $\delta = 0.33$		l _F lFRM lFRM	max. max. max.	1	mA A mA	
Total power dissipation up to $T_{amb} = 25$ °C		P _{tot}	max.	90	mW	
Junction temperature		Тj	max.	100	oC	
Storage temperature		T _{stg}	-55 to +	100	oC	
Lead soldering temperature $>$ 1,5 mm from the seating plane; $\rm t_{sld} < 7~s$ $>$ 5 mm from the seating plane; $\rm t_{sld} < 7~s$	CQV70U CQV70UL	T _{sld}	max.	260	oC	
THERMAL RESISTANCE						
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W	
CHARACTERISTICS						
T _{amb} = 25 °C unless otherwise specified						
Forward voltage at IF = 10 mA		VF	typ. max.	2,0 2,6		
Reverse current at V _R = 5 V		IR	max.	100	μΑ	
Beamwidth between half-intensity directions at $I_F = 10 \text{ mA}$		$\theta \gamma_2$	typ.	100	0	
Wavelength at peak emission at IF = 10 mA		$\lambda_p$	typ.	700	nm	
Capacitance at V _R = 0; f = 1 MHz		C _d	typ.	45	pF	
Bandwidth at half height		Δλ	typ.	90	nm	
Luminous intensity at I _F = 10 mA	CQV70U(L) CQV70U(L)-2 CQV70U(L)-3	l _v l _v	min. 1,0 to 1,6 to	2,2		
		'V	.,	-,-		



Fig. 2 Typical values.



Fig. 4 Typical values.



Fig. 6 Typical values.



Fig. 3 Typical values.



Fig. 5 Typical values.



Fig. 7 Typical values.



Fig. 8 Typical values.



Rectangular light emitting diodes of 5 mm x 3 mm which emit green light at a typical peak wavelength of 565 nm (GaP, super-green) when forward biased. The CQV71A and CQV71AL have SOD-77 envelopes and are encapsulated in a green diffusing resin.

When stacked in an array these SOD-77 LEDs can be used as level indicators.

The CQV71AL is similar to the CQV71A but has long leads and has no seating plane.

Continuous reverse voltage		VR	max.	5 V
Forward current (d.c.)		IF	max.	60 mA
Total power dissipation up to Tamb = 35 °C		P _{tot}	max.	180 mW
Junction temperature		Tj	max.	100 °C
Luminous intensity				
lF = 10 mA	CQV71A(L)	l _v	min.	0,7 mcd
	CQV71A(L)-2	I _V	1,0	to 2,2 mcd
	CQV71A(L)-3	Iv	1,6	to 3,5 mcd
Wavelength at peak emission				
IF = 10 mA		$\lambda_{p}$	typ.	565 nm
Beamwidth between half-intensity directions		•		
in the plane of the leads; $I_F = 10 \text{ mA}$		$\theta \%$	typ.	100 °

Fig. 1a SOD-77A1. CQV71A.

Dimensions in mm



Fig. 1b SOD-77L. CQV71AL.



RATINGS					
Limiting values in accordance with the Absolute	Maximum System	(IEC 134)			
Reverse voltage		$V_{R}$	max.	5	V
Forward current d.c. peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_{on} = 1 \text{ ms}$ ; $\delta = 0.01$		lF lFRM	max. max. max.	1	mA A mA
Total power dissipation up to T _{amb} = 35 °C		$P_{tot}$	max.	180	mW
Storage temperature		$T_{stg}$	-55 to	+100	oC
Junction temperature		Тj	max.	100	oC
Lead soldering temperature at $t_{\rm SId}$ < 7 s $>$ 1,5 mm from the seating plane for CQV71A $>$ 5 mm from the plastic body for CQV71AL		T _{sld}	max.	260	oC
THERMAL RESISTANCE					
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Forward voltage IF = 10 mA		VF	typ. max.	2,1 3,0	
Reverse current V _R = 5 V		IR	max.	100	μΑ
Beamwidth between half-intensity directions in the plane of the leads; $I_F = 10 \text{ mA}$		$\theta \gamma_2$	typ.	100	0
Bandwith at half height		Δλ	typ.	30	nm
Wavelength at peak emission IF = 10 mA		$\lambda_p$	typ.	565	nm
Luminous intensity  IF = 10 mA	CQV71A(L) CQV71A(L)-2 CQV71A(L)-3	I _V I _V		0,7 o 2,2 o 3,5	
Diode capacitance V _R = 0; f = 1 MHz		C _d	typ.	20	pF





Fig. 4  $t_{OR}$  = 1 ms;  $\delta$  = 0,01;  $T_i$  = 25 °C; typical values.



Fig. 6  $I_F = 10 \text{ mA}$ ; typ. values.





Fig. 5 Typical values.



Fig. 7  $t_p = 50 \mu s$ ; typical values.



Fig. 8 Typical values.



Fig. 9 Typical values.

Rectangular light emitting diodes of 5 mm x 3 mm which emit yellow light at a typical wavelength of 590 nm (GaPAs) when forward biased. The CQV72 and CQV72L have a SOD-77 envelope and are encapsulated in a yellow diffusing resin.

The CQV72L is the long lead version (26 mm) and has no seating plane but is in all other respects equal to the CQV72.

When stacked in an array these LEDs can be used as level indicators etc.

Continuous reverse voltage Forward current (d.c.)		V _R	max. max.	5 V 30 mA
Total power dissipation up to T _{amb} = 65 °C		P _{tot}	max.	90 mW
Junction temperature		Тj	max.	100 °C
Luminous intensity IF = 10 mA	CQV72(L) CQV72(L)-2 CQV72(L)-3	I _V I _V		0,7 mcd to 2,2 mcd to 3,5 mcd
Wavelength at peak emission  IF = 10 mA		$\lambda_{\mathbf{p}}$	typ.	590 nm
Beamwidth between half-intensity directions in the plane of the leads; IF = 10 mA		$\theta 1/2$	typ.	100 °

Fig 1a SOD-77A1. CQV72. Dimensions in mm



Fig. 1b SOD-77L. CQV72L.



## **RATINGS**

Limiting values in accordance with the Absolute	Maximum Syste	m (IEC 134)				
Reverse voltage		٧R	max.	5	V	
Forward current d.c. peak value; $t_p = 1 \ \mu s$ ; $f = 300 \ Hz$ peak value; $t_{on} = 1 \ ms$ ; $\delta = 0.33$		lf lfRM	max. max. max.	1	mA A mA	
Total power dissipation up to T _{amb} = 65 °C		$P_{tot}$	max.	90	mW	
Storage temperature		$T_{stg}$	-55 to	+100	oC	
Junction temperature		Tj	max.	100	oC	
Lead soldering temperature at $t_{sld} < 7 s$ > 1,5 mm from the seating plane for CQV72 > 5 mm from the plastic body for CQV72L		T _{sld}	max.	260	oC	
THERMAL RESISTANCE From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W	
CHARACTERISTICS						
T _j = 25 °C unless otherwise specified						
Forward voltage IF = 10 mA		VF	typ. max.	2,1 3,0		
Reverse current $V_R = 5 V$		IR	max.	100	μΑ	
Beamwidth between half-intensity directions in the plane of the leads; $I_F = 10 \text{ mA}$		$\theta_{1/2}$	typ.	100	0	
Bandwidth at half height		$\Delta\lambda$	typ.	40	nm	
Wavelength at peak emission $I_F = 10 \text{ mA}$		$\lambda_{p}$	typ.	590	nm	
Luminous intensity IF = 10 mA	CQV72(L) CQV72(L)-2 CQV72(L)-3	I _V I _V		0,7 to 2,2 to 3,5		
Diode capacitance $V_R = 0$ , $f = 1$ MHz		C _d	typ.	15	pF	



Fig. 2.



Fig. 4  $t_{on}$  = 50  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6  $I_F = 10 \text{ mA}$ ; typ. values.



Fig. 3 T_{amb} = 25 °C; typ. values.



Fig. 5 Typical values.



Fig. 7  $t_p = 50 \mu s$ ; typical values.



Fig. 8 Typical values.



Fig. 9 Typical values.



Rectangular light emitting diode of 5 mm x 5 mm which emits red light at a typical peak wavelength of 630 nm (GaAsP/GaP; super-red) when forward biased. The CQV80 has a SOD-74L envelope and is encapsulated in a red diffusing resin.

These SOD-74 LEDs are suitable for surface illumination, for example in information boards, score boards, moving advertisement and electronic game applications.

The CQV80L has long leads and has no seating plane.

Continuous reverse voltage		$v_R$	max.	5 V	
Forward current (d.c.)		1F	max.	30 mA	
Total power dissipation up to T _{amb} = 65 °C		$P_{tot}$	max.	90 mW	
Junction temperature		Ti	max.	100 °C	
Luminous intensity		,			
IF = 10 mA	CQV80L	I _V	min.	0,7 mcd	4
	CQV80L-2	I _V	1,0	to 2,2 mcd	
	CQV80L-3	lv	1,6	to 3,5 mcd	
Wavelength at peak emission					
IF = 10 mA		$\lambda_{p}$	typ.	630 nm	
Beamwidth between half-intensity directions		•			
IF = 10 mA		$\theta 1/2$	typ.	100 °	

Fig. 1 SOD-74L.

Dimensions in mm



RA.	TIN	ıcc

Limiting values in accordance with the Absolute	Maximum Syste	em (IEC 134)			
Reverse voltage		$V_{R}$	max.	5	V
Forward current d.c.		l _E	max.	30	mA
peak value; $t_p = 1 \mu s$ , $f = 300 Hz$ peak value; $t_{OD} = 1 ms$ ; $\delta = 0.33$		IFRM	max. max.	1 60	
Total power dissipation up to T _{amb} = 65 °C		$P_{tot}$	max.	90	mW
Storage temperature		$T_{stg}$	55 to +100		оС
Junction temperature		Τį	max.	100	оС
Lead soldering temperature		•			
$>$ 5,0 mm from the plastic body; ${ m t_{sld}} <$ 7 s		$T_{sld}$	max.	260	oC
THERMAL RESISTANCE					
From junction to ambient when the device					
is mounted on a p.c. board		R _{th j-a}	max.	350	K/W
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Forward voltage			typ.	2,1	V
IF = 10 mA		VF	max.	3,0	
Reverse current					
V _R = 5 V		IR	max.	100	μΑ
Beamwidth between half-intensity directions		0		100	
I _F = 10 mA		θ1/2	typ.	100	
Bandwidth at half height		Δλ	typ.	45	nm
Wavelength at peak emission  IF = 10 mA		$\lambda_{p}$	typ.	630	nm
Luminous intensity		Nβ	typ.	000	
I _F = 10 mA	CQV80L	l _v	min.	0,7	mcd
	CQV80L-2	I _V		to 2,2	
	CQV80L-3	I _V	1,6	6 to 3,5	mcd
Diode capacitance		0.	4	10	F
$V_R = 0$ , $f = 1 MHz$		Cd	typ.	10	þΓ



Fig. 2.



Fig. 4  $t_{on}$  = 50  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6  $I_F = 10 \text{ mA}$ ; typ. values.



Fig. 3 Tamb = 25 °C; typ. values.



Fig. 5 Typical values.



Fig. 7  $t_p = 50 \mu s$ ; typical values.



Fig. 8 Typical values.



Fig. 9 Typical values.



# LIGHT EMITTING DIODE

Rectangular light emitting diode of 5 mm x 5 mm which emits red light at a typical peak wavelength of 650 nm (GaAlAs; hyper-red) when forward biased. The CQV80AL has SOD-74L envelope and is encapsulated in a red diffusing resin. The CQV80AL has long leads but no seating plane.

This LED is suitable for surface illumination, for example in information boards, score boards, moving advertisements and electronic games applications. Because of its high light intensity the CQV80AL is also suitable in applications where only very low currents are available and because of its high IFmax it can be used in high I_V applications.

Continuous reverse voltage		VR	max.	5 V
Forward current (d.c.)		IF	max.	100 mA
Total power dissipation up to T _{amb} = 25 °C		$P_{tot}$	max.	215 mW
Junction temperature		$T_{j}$	max.	100 °C
Luminous intensity IF = 10 mA	CQV80AL CQV80AL-3 CQV80AL-4	I _V I _V	•	0,7 mcd 5 to 3,5 mcd 0 to 7,0 mcd
Wavelength at peak emission  IF = 10 mA		$\lambda_{p}$	typ.	650 nm
Beamwidth between half-intensity directions $I_F = 10 \text{ mA}$		$\theta 1/2$	typ.	100 °

Fig. 1 SOD-74L.

Dimensions in mm



Note. Solderability not guaranteed in tie-bar zone.

RA	TI	N	GS	

Limiting values in accordance with the Absolute Maximum System (IEC 134)							
Reverse voltage		$V_{R}$	max.	5 V	/		
Forward current d.c. peak value, $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_{OR} = 20 \mu s$ ; $\delta = 0.01$		l _F lFRM	max. max. max.	100 m 1 A 500 m	١.		
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	215 m	nW		
Storage temperature		$T_{stg}$	−55 to	+100 °	C		
Junction temperature		Tj	max.	100 º	C		
Lead soldering temperature $>\!5,\!0$ mm from the plastic body; $t_{sld}<7~s$		T _{sld}	max.	260 º	C		
THERMAL RESISTANCE							
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350 K			
CHARACTERISTICS							
T _i = 25 °C unless otherwise specified							
Forward voltage IF = 10 mA		VF	typ. max.	1,75 V 2,2 V			
Reverse current V _R = 5 V		IR	max.	100 μ	ıΑ		
Beamwidth between half-intensity directions IF = 10 mA		$\theta 1/2$	typ.	100 °	•		
Bandwidth at half height		$\Delta \lambda$	typ.	<b>20</b> n	ım		
Wavelength at peak emission  IF = 10 mA		λp	typ.	650 n	ım		
Luminous intensity  IF = 10 mA	CQV80AL CQV80AL-3 CQV80AL-4	l _v l _v		1,0 m to 3,5 m to 7,0 m	ncd		
Diode capacitance V _R = 0; f = 1 MHz		c _d	typ.	80 p	ρF		





Fig. 4  $t_{on}$  = 20  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6 Typical values.





Fig. 5 IF = 10 mA; typ. values.



Fig. 7  $t_p = 50 \mu s$ ; typical values.



Fig. 8  $I_F = 10 \text{ mA}$ ;  $T_{amb} = 25 \text{ °C}$ ; typ. values.



Fig. 9 Typical values.

## **DEVELOPMENT DATA**

This data sheet contains advance information and specifications are subject to change without notice.

# LIGHT EMITTING DIODES

Rectangular light emitting diode of 5 mm x 5 mm which emits red light at a typical peak wavelength of 700 nm (GaP:ZnO; ultra-red) when forward biased.

The CQV80UL has a SOD-74L outline and is encapsulated in a red diffusing resin.

The CQV80UL has long leads but no seating plane.

Reverse voltage	VR	max.	5 V
Forward current (d.c.)	I _E	max.	30 mA
Total power dissipation up to T _{amb} = 65 °C	P _{tot}	max.	90 mW
Junction temperature	Τį	max.	100 °C
Luminous intensity at IF = 10 mA	I _V	min.	0,7 mcd
Wavelength at peak emission	$\lambda_{p}$	typ.	700 nm
Beamwidth between half-intensity directions	$\theta_{1/2}$	typ.	100 °

# CQV80U CQV80UL

### **MECHANICAL DATA**

Fig. 1 SOD-74L.

Dimensions in mm



Note: Solderability not guaranteed in tie-bar zone.

RATINGS					
Limiting values in accordance with the Absolute I	Maximum Syste	m (IEC 134)			
Reverse voltage		$V_{R}$	max.	5	٧
Forward current d.c.		lF	max.		mA
peak value; $t_p = 1 \mu s$ ; $f = 300 Hz$ peak value; $t_{on} = 1 ms$ ; $\delta = 0.33$		IFRM IFRM	max. max.		A mA
Total power dissipation up to Tamb = 25 °C		P _{tot}	max.	90	mW
Junction temperature		Тj	max.	100	oC
Storage temperature		T _{stg}	-55 to	+100	oC
Lead soldering temperature $>$ 1,5 mm from the seating plane; $t_{sld}$ $<$ 7 s $>$ 5 mm from the seating plane; $t_{sld}$ $<$ 7 s	COV80UL	T _{sld}	max.	260	oC
THERMAL RESISTANCE					
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W
CHARACTERISTICS					
Tamb = 25 °C unless otherwise specified					
Forward voltage			typ.	2,0	V
at I _F = 10 mA		VF	max.	2,6	
Reverse current					
at $V_R = 5 V$		I _R	max.	100	μΑ
Beamwidth between half-intensity directions at $I_F = 10 \text{ mA}$		$\theta \gamma_2$	typ.	100	o
Wavelength at peak emission at $I_F = 10 \text{ mA}$		$\lambda_{p}$	typ.	700	nm
Capacitance at V _R = 0; f = 1 MHz		Cd	typ.	45	pF
Bandwidth at half height		$\Delta \lambda$	typ.	90	nm
Luminous intensity at I _F = 2 mA		I _V	typ.	0,4	mcd
Luminous intensity at IF = 10 mA	CQV80UL CQV80UL-2	l _v l _v	-	0 2,2	
	COV80UL-3	I _V	1,0 1	3,5	mca



Fig. 2.



Fig. 4 Typical values.



Fig. 6 Typical values.



Fig. 3 Typical values.



Fig. 5 Typical values.



Fig. 7 Typical values.



Fig. 8 Typical values.



# LIGHT EMITTING DIODE

Rectangular light emitting diode of 5 mm x 5 mm which emits green light at a typical peak wavelength of 565 nm (GaP; super-green) when forward biased. The CQV81L has SOD-74L envelope and is encapsulated in a green diffusing resin.

These SOD-74 LEDs are suitable for surface illumination, for example in information boards, score boards, moving advertisement and electronic game applications.

Continuous reverse voltage		$V_{R}$	max.	5 V
Forward current (d.c.)		iF	max.	60 mA
Total power dissipation up to T _{amb} = 35 °C		$P_{tot}$	max.	180 mW
Junction temperature		$T_{i}$	max.	100 °C
Luminous intensity	001/041		•	0.7
IF = 10 mA	CQV81L CQV81L-2	l _V I _V	min. 1,0	0,7 mcd to 2,2 mcd
	CQV81L-3	$I_{V}$	1,6	to 3,5 mcd
Wavelength at peak emission I _F = 10 mA		λ _p	typ.	565 nm
Beamwidth between half-intensity directions IF = 10 mA		$\theta_{1/2}$	typ.	100 °

Fig. 1 SOD-74L.

Dimensions in mm



Note. Solderability not guaranteed in tie-bar zone.

Limiting values in accordance with the Absolute	Maximum Syste	em (IEC 134)			
Reverse voltage		VR	max.	5 V	
Forward current					
d.c.		۱۴	max.	60 mA	
peak value, $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_{OD} = 1 \text{ ms}$ ; $\delta = 0.33$		¹ FRM	max. max.	1 A 150 mA	_
Total power dissipation up to T _{amb} = 35 °C		P _{tot}	max.	180 mW	
Storage temperature		T _{stq}		o +100 °C	
Junction temperature		Tj	max.	100 °C	
Lead soldering temperature		,			
$>$ 5,0 mm from the plastic body; $t_{sld}$ $<$ 7 s		T _{sld}	max.	260 °C	
THERMAL RESISTANCE					
From junction to ambient when the device					
is mounted on a p.c. board		R _{th j-a}	max.	350 K/V	V
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Forward voltage			typ.	2,1 V	
I _F = 10 mA		VF	max.	3,0 V	
Reverse current					
V _R = 5 V		۱R	max.	100 μA	
Beamwidth between half-intensity directions					
IF = 10 mA		$\theta_{1/2}$	typ.	100 °	-
Bandwidth at half height		Δλ	typ.	30 nm	
Wavelength at peak emission		,		565 nm	
IF = 10 mA		λp	typ.	202 11111	
Luminous intensity IF = 10 mA	CQV81L	I _V	min.	0,7 mc	۸ ــــــ
1F 10 11174	CQV81L-2	i _v		) to 2,2 mc	
	CQV81L-3	Iv	1,6	6 to 3,5 mc	d
Diode capacitance					
$V_R = 0$ ; $f = 1 MHz$		Cd	typ.	20 pF	





Fig. 4  $t_{On}$  = 50  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C; typical values.



Fig. 6 IF = 10 mA; typical values.



Fig. 5 Typical values.



Fig. 7  $t_p$  = 50  $\mu$ s; typical values.



Fig. 8 Typical values.



Fig. 9 Typical values.



# LIGHT EMITTING DIODE.

Rectangular light emitting diode of 5 mm x 5 mm which emits yellow light at a typical peak wavelength of 590 nm (GaPAs) when forward biased. The CQV82L has a SOD-74L envelope and is encapsulated in a yellow diffusing resin.

The CQV82L is suitable for surface illumination, for example, information boards, score boards, moving advertisements and electronic game applications.

The CQV82L has long leads and has no seating plane.

Continuous reverse voltage		$v_R$	max.	5 V
Forward current (d.c.)		1 _F	max.	30 mA
Total power dissipation up to T _{amb} = 65 °C		$P_{tot}$	max.	90 mW
Junction temperature		Τį	max.	100 °C
Luminous intensity IF = 10 mA	CQV82L CQV82L-2 CQV82L-3	l _v l _v	•	0,7 mcd to 2,2 mcd to 3,5 mcd
Wavelength at peak emission IF = 10 mA		λp	typ.	590 nm
Beamwidth between half-intensity directions IF = 10 mA		$ heta_{1/2}$	typ.	100 °

Fig. 1 SOD-74L.

Dimensions in mm



➤ Note. Solderability not guaranteed in tie-bar zone.

# **RATINGS**

Limiting values in accordance with the Absolute Maximum System (IEC 134)							
Reverse voltage	$v_R$	max.	5	٧			
Forward current				00			
d.c. peak value; t _p = 1 μs; f = 300 Hz		lF	max. max.		mA A		
peak value; $t_{on} = 1$ ms; $\delta = 0.33$		IFRM	max.		mΑ	•	
Total power dissipation up to T _{amb} = 65 °C		$P_{tot}$	max.	90	mW		
Storage temperature		$T_{stg}$	-55 t	to +100	oC		
Junction temperature		Тj	max.	100	oC		
Lead soldering temperature							
$>$ 5,0 mm from the plastic body; $t_{\sf sld}$ $<$ 7 s		$T_{sld}$	max.	260	oC		
THERMAL RESISTANCE							
From junction to ambient when the device							
is mounted on a p.c. board		R _{th j-a}	max.	350	K/W		
CHARACTERISTICS							
T _i = 25 °C unless otherwise specified							
Forward voltage		VF	typ.	2,1 3,0			
			max.	3,0	V		
Reverse current VR = 5 V		I _R	max.	100	Δ		
Beamwidth between half-intensity directions		יה	mux.	100	μ/\		
IF = 10 mA		θ 1/2	typ.	100	О	-	
Bandwidth at half height		Δλ	typ.	40	nm		
Wavelength at peak emission							
IF = 10 mA		$\lambda_{p}$	typ.	590	nm		
Luminous intensity		•					
I _F = 10 mA	CQV82L	I _V	min.		mcd	-	
	CQV82L-2	l _v	•	0 to 2,2			
	CQV82L-3	l _V	1,0	6 to 3,5	mca		
Diode capacitance VR = 0; f = 1 MHz		Ca	typ	15	рF		
v H - 0, I - 1 IVITIZ		$c_d$	typ.	13	þι		



Fig. 2.



Fig. 4  $t_{on}$  = 50  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6  $I_F = 10 \text{ mA}$ ; typ. values.



Fig. 3 Typical values.



Fig. 5 Typical values.



Fig. 7  $t_p = 50 \mu s$ ; typical values.



Fig. 8 Typical values.



Fig. 9 Typical values.



### LIGHT EMITTING DIODES

Rectangular light emitting diode of 5 mm x 2,5 mm which emits red light at a typical peak wavelength of 650 nm (GaAIAs; hyper-red) when forward biased.

The CQW10A has a SOD-76 envelope and is encapsulated in a red diffusing resin.

The CQW10AL is the long lead version of the CQW10A without a seating plane but is in all other respects similar to the CQW10A.

When stacked in an array these SOD-76 LEDs can be used, for example, as level indicators. Because of its high light intensity the CQW10A(L) is suitable in applications where only low currents are available and because of its high  $I_{Fmax}$  it can be used for high  $I_{V}$  applications.

Continuous reverse voltage		$V_{R}$	max.	5 V
Forward current (d.c.)		ΙF	max.	100 mA
Total power dissipation up to T _{amb} = 25 °C		$P_{tot}$	max.	215 mW
Junction temperature		Τį	max.	100 °C
Luminous intensity IF = 10 mA	CQW10A(L) CQW10A(L)-3 CQW10A(L)-4	l _v l _v		0,7 mcd to 3,5 mcd to 7,0 mcd
Wavelength at peak emission  IF = 10 mA		λ _p	typ.	650 nm
Beamwidth between half-intensity directions IF = 10 mA		$\theta 1/2$	typ.	100 °

Fig. 1 SOD-76A2. CQW10A

Dimensions in mm



Fig. 1b SOD-76L. CQW10AL



Note: Solderability not guaranteed in tie-bar zone.

$\mathbf{r}$	Λ	-	ŧ	R.	IG	c
n	м		н	IV	11.7	

MATINGS						
Limiting values in accordance with the Absolute	Maximum Syster	m (IEC 134)				
Continuous reverse voltage d.c.		V _R I _F	max. max.	100		
peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_{OD} = 20 \mu s$ ; $\delta = 0.01$		IFRM	max. max.	1 500	A mA	<b>4</b>
Total power dissipation up to $T_{amb} = 25$ °C		$P_{tot}$	max.	215	mW	
Storage temperature		$T_{stg}$	55 to	+100	$^{\rm oC}$	
Junction temperature		Τį	max.	100	oC	
Lead soldering temperature; t _{sld} < 7 s > 1,5 mm from the seating plane for CQW10, > 5 mm from the plastic body for CQW10A		T _{sld}	max.	260	oC	
THERMAL RESISTANCE						
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W	
CHARACTERISTICS						
T _j = 25 °C unless otherwise specified						
Forward voltage IF = 10 mA		VF	typ. max.	1,75 2,2		
Reverse current VR = 5 V		IR	max.	100	μΑ	
Beamwidth between half-intensity directions IF = 10 mA		$\theta \gamma_2$	typ.	100	О	•
Bandwidth at half height		Δλ	typ.	20	nm	
Wavelength at peak emission IF = 10 mA		$\lambda_{p}$	typ.	650	nm	
Luminous intensity IF = 10 mA	CQW10A(L)		min.		mcd	◄
	CQW10A(L)-3 CQW10A(L)-4	l _V		o 3,5 o 7,0		
Diode capacitance V _R = 0, f = 1 MHz		Cd	typ.	80	pF	



Fig. 2 Typical values.



Fig. 4  $t_{OD}$  = 20  $\mu$ s;  $\delta$  = 0,01; typ. values.



Fig. 6 Typical values.



Fig. 3 T_{amb} = 25 °C; typ. values.



Fig. 5 IF = 10 mA; typ. values.



Fig. 7  $t_p = 50 \mu s$ ; typ. values.



Fig. 8  $I_F = 10 \text{ mA}$ ;  $T_{amb} = 25 \text{ °C}$ ; typ. values.



Fig. 9 Typical values.



# LIGHT EMITTING DIODES

Rectangular light emitting diode of 5 mm x 2,5 mm which emits red light at a typical peak wavelength of 630 nm (GaAsP/GaP; super-red) when forward biased.

The CQW10B has a SOD-76 envelope and is encapsulated in a red diffusing resin.

The CQW10BL is similar to the CQW10 but has long leads (26 mm) and no seating plane.

When stacked as an array these SOD-76 LEDs can be used, for example, as level indicators.

Continuous reverse voltage		٧R	max.	5 V
Forward current (d.c.)		1 _F	max.	30 mA
Total power dissipation up to T _{amb} = 65 °C		P _{tot}	max.	90 mW
Junction temperature		Τj	max.	100 °C
Luminous intensity  IF = 10 mA	CQW10B(L) CQW10B(L)-2 CQW10B(L)-3	I _V I _V	•	0,7 mcd to 2,2 mcd to 3,5 mcd
Wavelength at peak emission I _F = 10 mA		$\lambda_{\mathbf{p}}$	typ.	630 nm
Beamwidth between half-intensity directions $I_F = 10 \text{ mA}$		$\theta_{\frac{1}{2}}$	typ.	100 °

# CQW10B CQW10BL

### MECHANICAL DATA

Fig. 1 SOD-76A1. CQW10B

Dimensions in mm



Fig. 1b SOD-76L CQW10B4



Note: Solderability not guaranteed in tie-bar zone.

KATINGS					
Limiting values in accordance with the Absolute Maximum System (IEC 134)					
Continuous reverse voltage		$v_R$	max.	5	٧
Forward current d.c. peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_{on} = 1 \text{ ms}$ ; $\delta = 0.33$		l _F l _{FRM}	max. max. max.	1	mA A mA
Total power dissipation up to $T_{amb} = 65$ °C		P _{tot}	max.	90	mW
Storage temperature		T _{stq}	55 to	+100	οС
Junction temperature		T _i	max.	100	οС
Lead soldering temperature; $t_{sld} < 7 s$ > 1,5 mm from the seating plane for CQW10B > 5 mm from the plastic body for CQW10BL		T _{sld}	max.	260	oC
THERMAL RESISTANCE From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Forward voltage IF = 10 mA		VF	typ. max.	2,1 3,0	
Reverse current V _R = 5 V		IR	max.	100	μΑ
Beamwidth between half-intensity directions IF = 10 mA		$\theta_{1/2}$	typ.	100	0
Bandwidth at half height		Δλ	typ.		nm
Wavelength at peak emission IF = 10 mA		$\lambda_{\mathbf{p}}$	typ.	630	nm
Luminous intensity IF = 10 mA	CQW10B(L) CQW10B(L)-2 CQW10B(L)-3	I _V I _V I _V	•	0,7 to 2,2 to 3,5	
Diode capacitance $V_R = 0$ ; $f = 1 MHz$		$c_d$	typ.	10	pF

# CQW10B CQW10BL



Fig. 2.



Fig. 4  $t_{OR}$  = 50  $\mu$ s;  $\delta$  = 0,01;  $T_j$  = 25 °C; typ. values.



Fig. 6 IF = 10 mA; typ. values.



Fig. 3  $T_i = 25$  °C; typ. values.



Fig. 5 Typical values.



Fig. 7  $t_p = 50 \mu s$ ; typ. values.



Fig. 8  $I_F = 10 \text{ mA}$ ; typ. values.



Fig. 9 Typical values.

# CQW10U CQW10UL

This data sheet contains advance information and specifications are subject to change without notice.

## LIGHT EMITTING DIODES

Rectangular light emitting diodes of 2,5 mm x 5 mm which emit red light at a typical peak wavelength of 700 nm (GaP:ZnO; ultra-red) when forward biased.

The CQW10U and CQW10UL have a SOD-76 outline and are encapsulated in a red diffusing resin.

The CQW10U and CQW10UL are specially designed for low current applications.

Reverse voltage	$v_R$	max.	5 V
Forward current (d.c.)	۱F	max.	30 mA
Total power dissipation upt to T _{amb} = 65 °C	$P_{tot}$	max.	90 mW
Junction temperature	Тj	max.	100 °C
Luminous intensity			
at I _F = 10 mA	$I_V$	min.	0,7 mcd
Wavelength at peak emission	$\lambda_{\mathbf{p}}$	typ.	700 nm
Beamwidth between half-intensity directions	$\theta_{1/2}$	typ.	100 °

#### Dimensions in mm

#### **MECHANICAL DATA**

Fig. 1 SOD-76A1. CQW10U.



Fig. 1b SOD-76L. CQW10UL



Note: Solderability not guaranteed in tie-bar zone.

RATINGS							
Limiting values in accordance with the Absolute	Limiting values in accordance with the Absolute Maximum System (IEC 134)						
Reverse voltage		VR	max.	5	V		
Forward current							
d.c.		1F	max.		mΑ		
peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$		!FRM	max.		A mA		
peak value; $t_{on} = 1 \text{ ms}$ ; $\delta = 0.33$		^I FRM	max.		mW		
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.				
Junction temperature		T _j	max.	100			
Storage temperature		$T_{stg}$	55 to	+100	OC.		
$ \begin{array}{l} \text{Lead soldering temperature} \\ > \text{1,5 mm from the seating plane; } \text{t}_{\text{sld}} < \text{7 s} \\ > \text{5 mm from the seating plane; } \text{t}_{\text{sld}} < \text{7 s} \\ \end{array} $	CQW10U CQW10UL	T _{sld}	max.	260	οС		
THERMAL RESISTANCE							
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W		
CHARACTERISTICS							
T _{amb} = 25 °C unless otherwise specified							
Forward voltage			tu (15	2,0	V		
at IF = 10 mA		٧F	typ. max.	2,6			
Reverse current				·			
at V _R = 5 V		I _R	max.	100	μΑ		
Beamwidth between half-intensity directions							
at I _F = 10 mA		$\theta_{1/2}$	typ.	100	0		
Wavelength at peak emission							
at IF = 10 mA		$\lambda_{p}$	typ.	700	nm		
Capacitance		0		45			
at V _R = 0; f = 1 MHz		Cd	typ.		pF		
Bandwidth at half height		Δλ	typ.	90	nm		
Luminous intensity	00141011/1		min	0.7	mcd		
at IF = 10 mA	CQW10U(L) CQW10U(L)-2	l _V l _V	min. 1.0 t	o 2,2			
	CQW10U(L)-3	iv Iv		o 3,5			



Fig. 2.



Fig. 4 Typical values.



Fig. 6 Typical values.



Fig. 3 Typical values.



Fig. 5 Typical values.



Fig. 7 Typ. values.



Fig. 8 Typical values.

Rectangular light emitting diode of 5 mm x 2,5 mm which emits green light at a typical peak wavelength of 565 nm (GaP; super-green) when forward biased.

The CQW11B has a SOD-76 envelope and is encapsulated in a green diffusing resin.

The CQW11BL is the long lead version of the CQW11B without a seating plane, but in all respects similar to the CQW11B.

When stacked in an array these SOD-76 LEDs can be used, for example, as level indicators. Because of its high light intensity the CQW11B is very suitable in applications where only low currents are available and because of its high I_{Fmax} it can be used for high I_V applications.

Continuous reverse voltage		$V_{R}$	max.	5 V
Forward current (d.c.)		۱F	max.	60 mA
Total power dissipation up to T _{amb} = 35 °C		P _{tot}	max.	180 mW
Junction temperature		Tj	max.	100 °C
Luminous intensity IF = 10 mA	CQW11B(L) CQW11B(L)-2 CQW11B(L)-3	I _V I _V	•	0,7 mcd to 2,2 mcd to 3,5 mcd
Wavelength at peak emission $I_F = 10 \text{ mA}$		$\lambda_{\mathbf{p}}$	typ.	565 nm
Beamwidth between half-intensity directions IF = 10 mA		$\theta_{1/2}$	typ.	100 °

Fig. 1a SOD-76A1. CQW11B Dimensions in mm



Fig. 1b SOD-76L. CQW11BL



Note: Solderability not guaranteed in tie-bar zone.

RA	ΤI	N	GS

Limiting values in accordance with the Absolut	e Maximum System	(IEC 134)				
Continuous reverse voltage		٧R	max.	5	V	
Forward current d.c. peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_{on} = 1 \text{ ms}$ ; $\delta = 0.33$		lF lFRM	max. max. max.	1	mA A mA	•
Total power dissipation up to Tamb = 35 °C		P _{tot}	max.	180	mW	
Storage temperature		$T_{stg}$	55 to	+100	oC	
Junction temperature		Tj	max.	100	oC	
Lead soldering temperature; $t_{sld} < 7 \text{ s}$ > 1,5 mm from the seating plane CQW11B > 5 mm from the plastic body CQW11BL		T _{sld}	max.	260	oC	
THERMAL RESISTANCE						
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W	
CHARACTERISTICS						
T _j = 25 °C unless otherwise specified						
Forward voltage I _F = 10 mA		VF	typ. max.	2,1 3,0		
Reverse current V _R = 5 V		IR	max.	100	μΑ	
Beamwidth between half-intensity directions					_	
I _F = 10 mA		θ1/2	typ.	100		•
Bandwidth at half height		Δλ	typ.	30	nm	
Wavelength at peak emission  IF = 10 mA		$\lambda_{\mathbf{p}}$	typ.	565	nm	
Luminous intensity I _F = 10 mA	CQW11B(L) CQW11B(L)-2 CQW11B(L)-3	l _v l _v l _v		0,7 to 2,2 to 3,5		•
Diode capacitance V _R = 0; f = 1 MHz		c _d	typ.	20	pF	



Fig. 2.



Fig. 4  $t_{on}$  = 1 ms;  $\delta$  = 0,33;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6  $I_F = 10 \text{ mA}$ ; typ. values.



Fig. 3  $T_i = 25$  °C; typ. values.



Fig. 5 Typical values.



Fig. 7  $t_p = 50 \mu s$ ; typical values.



Fig. 8  $I_F = 10 \text{ mA}$ ;  $T_{amb} = 25 \text{ °C}$ ; typ. values.



Fig. 9 Typical values.



Rectangular light emitting diode of 5 mm  $\times$  2,5 mm which emits yellow light at a typical peak wavelength of 590 nm (GaPAs) when forward biased.

The CQW12B has a SOD-76 envelope and is encapsulated in a yellow diffusing resin.

The CQW12BL is similar to the CQW12B but has long leads and no seating plane.

When stacked as an array these SOD-76 LEDs can be used, for example, as level indicators.

Continuous reverse voltage		V _R	max.	5 V
Forward current (d.c.)		I _F	max.	30 mA
Total power dissipation up to T _{amb} = 65 °C		P _{tot}	max.	90 mW
Junction temperature		Тj	max.	100 °C
Luminous intensity IF = 10 mA	CQW12B(L) CQW12B(L)-2 CQW12B(L)-3	l _v l _v	•	0,7 mcd to 2,2 mcd to 3,5 mcd
Wavelength at peak emission $I_F = 10 \text{ mA}$		λp	typ.	590 nm
Beamwidth between half-intensity directions $I_F = 10 \text{ mA}$ ; in the plane of the leads		$\theta \gamma_2$	typ.	100 °

Fig. 1a SOD-76A.1. CQW12B.

Dimensions in mm



Fig. 1b SOD-76L. CQW12BL



Note: Solderability not guaranteed in tie-bar zone.

#### **RATINGS**

Maximum Syster	n (IEC 134)			
	VR	max.	5	V
	IF	max.		mA
	IFRM	max. max.		A mA
	$P_{tot}$	max.	90	mW
	$T_{stg}$	55	to +100	oC
	$T_{j}$	max.	100	oC
	T _{sld}	max.	260	oC
	R _{th j-a}	max.	350	K/W
	VF	typ.		
		max.	3,0	V
	IR	max.	100	μΑ
	$\theta \%$	typ.		
	Δλ	typ.	40	nm
	$\lambda_{\mathbf{p}}$	typ.	590	nm
	•			mcd mcd
CQW12B(L)-3	I _V			
	$C_{d}$	typ.	15	рF
	CQW12B(L) CQW12B(L)-2	F	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$



Fig. 2.



Fig. 4  $t_{OR} = 50 \mu s$ ;  $\delta = 0.01$ ;  $T_j = 25 \, ^{\circ}C$ ; typ. values.



Fig. 6 IF = 10 mA; typ. values.



Fig. 3  $T_i = 25$  °C; typ. values.



Fig. 5 Typical values.



Fig. 7  $t_p = 50 \mu s$ ; typical values.



Fig. 8 Typical values.



Fig. 9 Typical values.

Circular light emitting diode with a diameter of 2 mm which emits red light at a typical peak wavelength of 650 nm (GaAlAs; hyper-red) when forward biased.

The CQW20A has a SOD-79 outline and is encapsulated in a red diffusing resin.

This LED is suitable for small indicator functions and in applications where only low currents are available.

Continuous reverse voltage	VR	max.	5 V
Forward current (d.c.)	Ιϝ	max.	60 mA
Total power dissipation up to T _{amb} = 25 °C	$P_{tot}$	max.	150 mW
Junction temperature	Τj	max.	100 °C
Luminous intensity I _F = 10 mA	l _v	min. typ.	0,7 mcd 2,5 mcd
Wavelength at peak emission	$\lambda_{p}$	typ.	650 nm
Beamwidth between half-intensity directions	$\theta_{1/2}$	typ.	110 °

Fig. 1 SOD-79.

Dimensions in mm



RATINGS						
Limiting values in accordance with the Absolute Maximum System (IEC 134)						
Reverse voltage	٧R	max.	5 V			
Forward current d.c. peak value; $t_p = 1 \mu s$ ; $f = 300 Hz$ peak value, $t_{on} = 20 \mu s$ ; $\delta = 0.01$	I _F IFRM	max. max. max.	60 mA 1 A 500 mA	-		
Total power dissipation up to T _{amb} = 25 °C	$P_{tot}$	max.	150 mW			
Storage temperature	T _{stg}	-55 t	to +100 °C			
Junction temperature	Τį	max.	100 °C			
Lead soldering temperature $>$ 1,5 mm from the seating plane; $t_{sld}$ $<$ 7 s	T _{sld}	max.	260 °C			
THERMAL RESISTANCE						
From junction to ambient when the device is mounted on a p.c. board	R _{th j-a}	max.	500 K/W			
CHARACTERISTICS						
T _j = 25 °C unless otherwise specified						
Forward voltage  IF = 4 mA  IF = 10 mA	VF VF	typ.	1,65 V 1,75 V 2,20 V			
Daylore allowed		max.	2,20 V			
Reverse current V _R = 5 V	IR	max.	100 μΑ			
Beamwidth between half-intensity directions IF = 10 mA	$ heta_{1/2}$	typ.	110 °	•		
Bandwidth at half height	Δλ	typ.	20 nm			
Wavelength at peak emission	$\lambda_{p}$	typ.	650 nm			
Luminous intensity IF = 10 mA	I _V	min. typ.	0,7 mcd 2,5 mcd	<b>←</b>		
Diode capacitance V _R = 0; f = 1 MHz	C _d	typ.	80 pF			



Fig. 2.



Fig. 4  $t_{on}$  = 20  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6 Typical values.



Fig. 3 Tamb = 25 °C; typ. values.



Fig. 5 IF = 10 mA; typ. values.



Fig. 7  $t_p = 50 \mu s$ ; typ. values.



Fig. 8  $I_F = 10 \text{ mA}$ ;  $T_{amb} = 25 \text{ °C}$ ; typ. values.



Fig. 9  $I_F = 10 \text{ mA}$ ; typ. values.



Circular light emitting diode with a diameter of 2 mm which emits green light at a typical peak wavelength of 565 nm (GaP; super-green) when forward biased.

The CQW21 has a SOD-79 outline and is encapsulated in a green diffusing resin.

The CQW21 is suitable for small indicator functions and can resist higher forward currents when a higher luminousity is required.

Continuous reverse voltage	٧R	max.	5 V
Forward current (d.c.)	1F	max.	60 mA
Total power dissipation up to Tamb = 25 °C	P _{tot}	max.	150 mW
Junction temperature	Тj	max.	100 °C
Luminous intensity IF = 10 mA	I _V	min. typ.	0,7 mcd 1,5 mcd
Wavelength at peak emission	$\lambda_{\mathbf{p}}$	typ.	565 nm
Beamwidth between half-intensity directions	$\theta_{1/2}$	typ.	110 °

Fig. 1 SOD-79.

Dimensions in mm







_			
RΔ	TI	N	GS

Limiting values in accordance with the Absolute Maximum System	(IEC 134)				
Reverse voltage	$V_{R}$	max.	5	٧	
Forward current d.c. peak value; $t_p$ = 1 $\mu$ s; f = 300 Hz peak value; $t_{on}$ = 1 ms; $\delta$ = 0,33	l _F	max. max. max.		mA A mA	
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	150	mW	
Storage temperature	$T_{stg}$	-55 to +	100	oC	
Junction temperature	Tj	max.	100	oC	
Lead soldering temperature $>$ 1,5 mm from the seating plane; $t_{sld}$ $<$ 7 s	T _{sld}	max.	260	оС	
THERMAL RESISTANCE					
From junction to ambient when the device is mounted on a p.c. board	R _{th j-a}	max.	500	K/W	
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Forward voltage IF = 10 mA	VF	typ. max.	2,1 3,0		
Reverse current $V_R = 5 V$	IR	max.	100	μΑ	
Beamwidth between half-intensity directions	$\theta \frac{1}{2}$	typ.	110	0	
Bandwidth at half height	Δλ	typ.	30	nm	
Wavelength at peak emission	$\lambda_p$	typ.	565	nm	
Luminous intensity IF = 10 mA	I _V	min. typ.		mcd mcd	
Diode capacitance V _R = 0; f = 1 MHz	C _d	typ.	20	pF	





Fig. 4  $t_{on}$  = 1 ms;  $\delta$  = 0,33;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6 Typical values.



Fig. 3  $T_{amb} = 25$  °C; typ. values.



Fig. 5 Typical values.



Fig. 7  $t_p = 50 \mu s$ ; typical values.



Fig. 8  $I_F = 10 \text{ mA}$ ; typ. values.



Fig. 9 Typical values.



Circular light emitting diode with a diameter of 2 mm which emits yellow light at a typical peak wavelength of 590 nm (GaPAs) when forward biased.

The CQW22 has a SOD-79 outline and is encapsulated in a yellow diffusing resin.

The CQW21 is suitable for small indicator functions.

Beamwidth between half-intensity directions	$\theta_{1/2}$	typ.	110 °
Wavelength at peak emission	$\lambda_{p}$	typ.	590 nm
Luminous intensity  IF = 20 mA	I _V	min. typ.	0,7 mcd - 1,5 mcd
Junction temperature	Τj	max.	100 °C
Total power dissipation up to T _{amb} = 55 °C	$P_{tot}$	max.	90 mW
Forward current (d.c.	۱F	max.	30 mA
Continuous reverse voltage	VR	max.	5 V

Fig. 1 SOD-79.

3,3 2,9 2,0 1,8 0,56 0,45



Dimensions in mm



I_F = 20 mA

RATINGS					
Limiting values in accordance with the Absolute Maximum Sys	tem (IEC 134)				
Reverse voltage	$v_R$ .	max.	5	V	
Forward current d.c. peak value; $t_p$ = 1 $\mu$ s; f = 300 Hz peak value; $t_{OR}$ = 1 ms; $\delta$ = 0,33	lF lFRM	max. max. max.	1	mA A mA	
Total power dissipation up to T _{amb} = 55 °C	$P_{tot}$	max.	90	mW	
Storage temperature	$T_{stg}$	-55 to +100		oC	
Junction temperature	$T_{j}$	max.	100	oC	
Lead soldering temperature $>$ 1,5 mm from the seating plane; $t_{sld}$ $<$ 7 s	T _{sld}	max.	260	oC	
THERMAL RESISTANCE					
From junction to ambient when the device is mounted on a p.c. board	R _{th j-a}	max.	500	K/W	
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Forward voltage IF = 20 mA	٧F	typ. max.	2,1 3,0		
Reverse current					
V _R = 5 V	I _R	max.	100		_
Diode capacitance	Cd	typ.		pF	-
Beamwidth between half-intensity directions	$\theta_{1/2}$	typ.	110		
Bandwidth at half height	$\Delta \lambda$	typ.	40	nm	
Wavelength at peak emission	$\lambda_{p}$	typ.	590	nm	
Luminous intensity I = 20 mA	lv	min.	0,7	mcd	•

 $I_{\mathbf{V}}$ 

1,5 mcd

typ.



Fig. 2.



Fig. 4  $t_{on}$  = 1 ms;  $\delta$  = 0,33;  $T_{amb}$  = 25 °C; typical values.



Fig. 6 Typical values.



Fig. 3 T_{amb} = 25 °C; typ. values.



Fig. 5 IF = 10 mA; typical values.



Fig. 7  $t_p = 50 \mu s$ ; typical values.



Fig. 8 Typical values.



Fig. 9 Typical values.



Circular light emitting diodes with a diameter of 5 mm which emit red light at a typical peak wavelength of 650 nm (GaAlAs; hyper-red) when forward biased.

The CQW24 and CQW24L have a SOD-63 outline and are encapsulated in a red diffusing resin.

The CQW24L is the long-lead version of the CQW24 and has no seating plane but is in all other respects similar to the CQW24.

Continuous reverse voltage		$v_R$	max.	5 V
Forward current (d.c.)		ΙF	max.	100 mA
Total power dissipation up to $T_{amb} = 25  {}^{\circ}\text{C}$		$P_{tot}$	max.	215 mW
Junction temperature		Тj	max.	100 °C
Luminous intensity				
I _F = 10 mA	CQW24(L)	$I_V$	min.	3 mcd
	CQW24(L)-4	I _V		3 to 7 mcd
	CQW24(L)-5	lv		5 to 12 mcd
	CQW24(L)-6	Ι <mark>ν</mark>	min.	10 mcd
Wavelength at peak emission		$\lambda_{p}$	typ.	650 nm
Beamwidth between half-intensity directions		$\theta \frac{1}{2}$	typ.	100 ^o

Fig. 1a SOD-63A2. CQW24

Dimensions in mm







Fig. 1b SOD-63L







RATINGS						
Limiting values in accordance with the Absolu	ite Maximum Syst	em (IEC 134)				
Reverse voltage		VR	max.	5	V	
Forward current		.,				
d.c.		lF	max.	100	mΑ	
Forward current						
peak value, $t_p = 1 \mu s$ ; $f = 300 Hz$		IFRM	max.		A	
peak value; $t_{OI} = 20 \mu s$ ; $\delta = 0.01$			max.	500		
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	215		
Storage temperature		$T_{stg}$	-55	to +100		
Junction temperature		Тj	max.	100	oC	
Lead soldering temperature; t _{sld} < 7 s > 1,5 mm from the seating plane for CQW2 > 5 mm from the plastic body for CQW24L		T _{sld}	max.	260	оС	
THERMAL RESISTANCE						
From junction to ambient when the device		_				
is mounted on a p.c. board		R _{th j-a}	max.	350	K/W	
CHARACTERISTICS						
T _j = 25 °C unless otherwise specified						
Forward voltage						
IF = 4 mA		٧F	typ.	1,65		
I _F = 10 mA		VF	typ. max.	1,75 2,2		
I _F = 50 mA		VF	typ.	1,9	V	
Reverse current						
V _R = 5 V		1 _R	max.	100	μΑ	
Bandwidth between half-intensity directions						
IF = 10 mA		$\theta 1/2$	typ.	100		-
Bandwidth at half height		Δλ	typ.	20	nm	
Wavelength at peak emission		`		650		
I _F = 10 mA, T _{amb} = 25 °C		$\lambda_{\mathbf{p}}$	typ.	650	nm	
Luminous intensity IF = 4 mA	CQW24(L)-4	l _v	typ.	15	mcd	
	CQW24(L)-5	i _v	typ.		mcd	
	CQW24(L)-6	l _v	typ.	4	mcd	
IF = 10 mA	CQW24(L)	l _v	min.		mcd	
	CQW24(L)-4	, I _V	typ.	3 to 7	mcd mcd	
	COMOVITY		typ.	5 to 12		
	CQW24(L)-5	Ι _ν	typ.		mcd	
	CQW24(L)-6	l _v	min.		mcd mcd	
Ir = 50 mA	CQW24(L)-4	1	typ.		mcd	
IF = 50 mA	CQW24(L)-4 CQW24(L)-5	l _V I _V	typ. typ.		mcd	
	CQW24(L)-6	I _V	typ.		mcd	

## CQW24 CQW24L

#### → Diode capacitance



Fig. 2.



Fig. 4  $t_{On} = 20 \mu s$ ;  $\delta = 0.01$ ;  $T_{amb} = 25 \, ^{\circ}\text{C}$ ; typ. values.



Fig. 6 Typical values.



Fig. 3 Tamb = 25 °C; typ. values.



Fig. 5 IF = 10 mA; typ. values.



Fig. 7  $t_p = 50 \mu s$ ; typ. values.



Fig. 8  $I_F = 10 \text{ mA}$ ;  $T_{amb} = 25 \text{ oC}$ ; typ. values.



Fig. 9 Typical values.

Circular light emitting diode with a diameter of 3 mm which emits red light at a typical peak wavelength of 650 nm (GaAlAs; hyper-red) when forward biased.

The CQW54 has a SOD-53 outline and is encapsulated in a red coloured diffusing resin.

The high light intensity of the CQW54 makes it suitable for applications where only low currents are available.

Continuous reverse voltage		$v_R$	max.	5 V
Forward current (d.c.)		ΙF	max.	60 mA
Total power dissipation up to Tamb = 25 °C		$P_{tot}$	max.	150 mW
Junction temperature		Τj	max.	100 °C
Luminous intensity				
IF = 10 mA	CQW54	1 _V	min.	3 mcd
	CQW54-5	I _V		5 to 12 mcd
	CQW54-6	I _V		10 to 22 mcd
	CQW54-7	Iv	min.	16 mcd
Wavelength at peak emission				
I _F = 10 mA		$\lambda_{p}$	typ.	650 nm
Beamwidth at half-intensity directions		$\theta_{1/2}$	typ.	100 °

Fig. 1 SOD-53E.

Dimensions in mm







			_			
RATINGS						
Limiting values in accordance with the Absolute	Maximum Syst	tem (IEC 134)				
Reverse voltage		V _R	max.	5	V	
Forward current						
d.c.		۱۴	max.		mΑ	
peak value; $t_p = 1 \mu s$ ; $f = 300 Hz$ peak value; $t_{on} = 20 \mu s$ ; $\delta = 0.01$		FRM	max. max.	500	A mA	
Total power dissipation up to $T_{amb} = 25$ °C		P _{tot}	max.	150		
Storage temperature		T _{stq}		to +100		
Junction temperature		T _i	max.	100	οС	
Lead soldering temperature		,				
$>$ 1,5 mm from the seating plane; $t_{\mbox{sld}}$ $<$ 7 s		$T_{sld}$	max.	260	oC	
THERMAL RESISTANCE						
From junction to ambient						
when the device is mounted on a p.c. board		R _{th j-a}	max.	500	K/W	
CHARACTERISTICS						
T _j = 25 °C unless otherwise specified						
Forward voltage						
IF = 4 mA		VF	typ.	1,65		
I _F = 10 mA		VF	typ. max.	1,75 2,2		
Reverse current			IIIax.	2,2	V	
V _R = 5 V		I _R	max.	100	μΑ	
Beamwidth between half-intensity directions		••			•	
I _F = 10 mA		$\theta \gamma_2$	typ.	100	0	◄
Bandwidth at half height		Δλ	typ.	20	nm	
Wavelength at peak emission						
IF = 10 mA		λp	typ.	650	nm	
Luminous intensity IF = 4 mA	CQW54-5	1	typ.	2	mcd	
1F - 4 IIIA	CQW54-6	l _V I _V	typ.		mcd	
	CQW54-7	Iv	typ.	7	mcd	
IF = 10 mA	CQW54	Iv	min.	3	mcd	
14 - 10 IIIA	COWS4	I _V	typ.	_	mcd	
	CQW54-5	lv	tun	5 to 12	mcd mcd	
		l _V	typ.	o 10 to 22		
	CQW54-6	I _V I _V	typ.		mcd	
	CQW54-7	l _v	min.	16	mcd	
		l _v	typ.		mcd	
IF = 50 mA	CQW54-5	lv	typ.		mcd	
	CQW54-6 CQW54-7	l _v I _v	typ. typ.		mcd mcd	
	J <b>2</b>	· <b>v</b>	., ~.	30		

## Diode capacitance







Fig. 6 Typical values.





Fig. 5 IF = 10 mA; typ. values.



Fig. 7  $t_p = 50 \mu s$ ; typ. values.



Fig. 8  $I_F = 10 \text{ mA}$ ;  $T_{amb} = 25 \text{ °C}$ ; typ. values.



Fig. 9 Typical values.

Rectangular light emitting diodes of 5 mm x 1 mm which emit red light at a typical peak wavelength of 630 nm (GaAsP/GaP; super-red) when forward biased.

The CQW60 and CQW60L have a SOD-75 outline and are encapsulated in a red diffusing resin. These LEDs when stacked in an array (in combination with other SOD-75 LEDs) can be used, for example, as level indicators.

The CQW60L is equal to the CQW60 but has long leads and no seating plane.

Continuous reverse voltage		٧R	max.	5 V
Forward current (d.c.)		1F	max.	30 mA
Total power dissipation up to Tamb = 65 °C		$P_{tot}$	max.	90 mW
Junction temperature		$T_{j}$	max.	100 °C
Luminous intensity IF = 10 mA	CQW60(L) CQW60(L)-2 CQW60(L)-3	l _v l _v	min. 1,0 min.	0,7 mcd to 2,2 mcd 1,6 mcd
Wavelength at peak emission $I_F = 10 \text{ mA}$		$\lambda_{p}$	typ.	630 nm
Beamwidth between half-intensity directions in the plane of the leads		$ heta$ $1/_{2}$	typ.	110 °

Fig. 1a SOD-75B1. CQW60

Dimensions in mm



Fig. 1b SOD-75BL. CQW60L.



RATINGS		
Limiting values in accordance with the Absolute Maximum System (IEC 134)		
Reverse voltage V _R ma	x. 5	V
Forward current		
d.c. IF ma		mΑ
peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ ma peak value; $t_{on} = 1 \text{ ms}$ ; $\delta = 0.33$		A mA
Total power dissipation up to T _{amb} = 65 °C P _{tot} ma	x. 90	mW
Storage temperature T _{stq}	55 to +100	oC
Junction temperature T _i ma	x. 100	oC
Lead soldering temperature at $t_{sld} < 7 \text{ s}$ > 1,5 mm from the seating plane for CQW60 > 5 mm from the plastic body for CQW60L	x. 260	οС
THERMAL RESISTANCE		
From junction to ambient when the device is mounted on a p.c. board $ \cdot                  $	x. 350	K/W
CHARACTERISTICS		
T _j = 25 °C unless otherwise specified		
Forward voltage	o. 2,1	V
I _F = 10 mA V _F ma		
Reverse current		
V _R = 5 V I _R ma	x. 100	μΑ
Beamwidth between half-intensity directions in the plane of the leads $\theta_{14}$ type	o. 110	0
		nm
Bandwidth at half height $\Delta\lambda$ type Wavelength at peak emission	. 45	11111
$I_{F} = 10 \text{ mA} \qquad \qquad \lambda_{D} \qquad \text{typ}$	o. 630	nm
Luminous intensity		
$I_F = 10 \text{ mA}$ CQW60(L) $I_V$ min	•	mcd
CQW60(L)-2 I _V CQW60(L)-3 I _V mir	1,0 to 2,2	
CQW60(L)-3 I _V mii		
Diode capacitance	n. 1,6	mcd



Fig. 2.



Fig. 4  $t_{on} = 50 \,\mu s$ ;  $\delta = 0.01$ 



Fig. 6 IF = 10 mA; typ. values.



Fig. 3  $T_{amb} = 25$  °C; typ. values.



Fig. 5 Typical values.



Fig. 7  $t_p = 50 \mu s$ ; typical values.



Fig. 8 Typical values.



Fig. 9 Typical values.



Rectangular light emitting diodes of 5 mm x 1 mm which emit red light at a typical peak wavelength of 650 nm (GaAlAs; hyper-red) when forward biased.

The CQW60A and CQW60AL have a SOD-75 outline and are encapsulated in a red diffusing resin. These LEDs when stacked in an array (in combination with other SOD-75 LEDs) can be used, for example, as level indicators.

The CQW60AL is equal to the CQW60A but has long leads and no seating plane.

Continuous reverse voltage		$V_{R}$	max.	5 V
Forward current (d.c.)		۱F	max.	100 mA
Total power dissipation up to $T_{amb} = 25 ^{\circ}\text{C}$		$P_{tot}$	max.	215 mW
Junction temperature		Τį	max.	100 °C
Luminous intensity IF = 10 mA	CQW60A(L) CQW60A(L)-3 CQW60A(L)-4	I _V I _V	min. 1,6 min.	0,7 mcd 3 to 3,5 mcd 3,0 mcd
Wavelength at peak emission  IF = 10 mA		λ _p	typ.	650 nm
Beamwidth between half-intensity directions in the plane of the leads		$\theta_{1/2}$	typ.	110 °

# CQW60A CQW60AL

#### **MECHANICAL DATA**

Fig. 1a SOD-75B2. CQW60A

Dimensions in mm



Fig. 1b SOD-75BL. CQW60AL



H	KAT	IN	IG	S
1	imi	tin	'n	.,,

KATINGS					
Limiting values in accordance with the Absolu	te Maximum Systen	n (IEC 134)			
Reverse voltage		$V_{R}$	max.	5	V
Forward current d.c. peak value; t _p = 1 μs; f = 300 Hz		l _F	max. max.		Α
peak value; $t_{on} = 20 \mu s$ ; $\delta = 0.01$			max.	500	
Total power dissipation up to T _{amb} = 25 °C		$P_{tot}$	max.	215	
Storage temperature		$T_{stg}$	55 t	o +100	
Junction temperature		Тj	max.	100	oC
Lead soldering temperature at $t_{sld} < 7 \text{ s}$ > 1,5 mm from the seating plane for CQW60 > 5 mm from the plastic body for CQW60A		T _{sld}	max.	260	oC
THERMAL RESISTANCE					
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Forward voltage I _F = 10 mA		VF	typ. max.	1,75 2,20	
Reverse current VR = 5 V		IR	max.	100	μΑ
Beamwidth between half-intensity directions in the plane of the leads		$\theta_{1/2}$	typ.	110	o
Bandwidth at half height		Δλ	typ.	20	nm
Wavelength at peak emission $I_F = 10 \text{ mA}$		$\lambda_{p}$	typ.	650	nm
Luminous intensity IF = 10 mA	CQW60A(L) CQW60A(L)-3 CQW60A(L)-4	lv lv lv	min. 1,6 min.	to 3,5	mcd mcd mcd
Diode capacitance V _R = 0, f = 1 MHz		c _d	typ.	80	





Fig. 4  $t_{on}$  = 20  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6 Typical values.



Fig. 3 Tamb = 25 °C; typ. values.



Fig. 5 IF = 10 mA; typical values.



Fig. 7  $t_p = 50 \mu s$ ; typical values.



Fig. 8  $I_F = 10 \text{ mA}$ ;  $T_{amb} = 25 \text{ °C}$ ; typ. values.



Fig. 9 Typical values.



## DEVELOPMENT DATA

This data sheet contains advance information and specifications are subject to change without notice.

## LIGHT EMITTING DIODES

Rectangular light emitting diodes of 5 mm x 1 mm which emit red light at a typical peak wavelength of 700 nm (GaAsP; standard red) when forward biased.

The CQW60U and CQW60UL have a SOD-75 outline and are encapsulated in a red diffusing resin. The CQW60U and CQW60UL are specially designed for low current applications.

Reverse voltage	٧R	max.	5 V
Forward current (d.c.)	IF	max.	30 mA
Total power dissipation up to T _{amb} = 65 °C	P _{tot}	max.	90 mW
Junction temperature	Тj	max.	100 °C
Luminous intensity at IF = 10 mA	I _V	min.	0,7 mcd
Wavelength at peak emission	$\lambda_{p}$	typ.	700 nm
Beamwidth between half-intensity directions	$\theta_{1/2}$	typ.	110 °

Fig. 1 SOD-75B1. CQW60U

Dimensions in mm



Fig. 1b SOD-75BL. CQW60UL



_imiting values in accordance with the Absolute	Maximum Syster	n (IEC 134)			
Reverse voltage		$V_{R}$	max.	5	٧
Forward current				20	
d.c. peak value; t _D = 1 μs; f = 300 Hz		lF lFRM	max. max.		mA A
peak value; $t_0 = 1 \text{ ms}$ ; $\delta = 0.33$		IFRM	max.		mΑ
Fotal power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	90	mW
lunction temperature		Tj	max.	100	oC
Storage temperature		T _{stg}	-55 to	+100	oC
_ead soldering temperature					
$>$ 1,5 mm from the seating plane; $t_{sld}$ $<$ 7 s $>$ 5 mm from the seating plane; $t_{sld}$ $<$ 7 s	CQW60UL	T _{sid}	max.	260	оC
THERMAL RESISTANCE					
From junction to ambient when the device					
is mounted on a p.c. board		R _{th j-a}	max.	350	K/W
CHARACTERISTICS					
Tamb = 25 °C unless otherwise specified					
Forward voltage			tun	2.0	v
at I _F = 10 mA		VF	typ. max.	2,6	
Reverse current					
at V _R = 5 V		1 _R	max.	100	μΑ
Beamwidth between half-intensity directions					_
at I _F = 10 mA		$\theta_{\frac{1}{2}}$	typ.	110	U
Wavelength at peak emission at IF = 10 mA		λ	typ.	700	nm
Capacitance		λp	ιγρ.	,00	*****
at V _R = 0; f = 1 MHz		$C_d$	typ.	45	рF
Bandwidth at half height		Δλ	typ.	90	nm
_uminous intensity					
at I _F = 10 mA		$I_V$	min.		mcd
	CQW60U(L)-2	l _v	min. max.		mcd mcd
	CQW60U(L)-3	l _v	min.	•	mcd

# CQW60UL



Fig. 2.



Fig. 4 Typical values.



Fig. 6 Typical values.



Fig. 3 Typical values.



Fig. 5 Typical values.



Fig. 7 Typ. values.



Fig. 8 Typical values.



Rectangular light emitting diodes of 5 mm x 1 mm which emit green light at a typical peak wavelength of 565 nm (GaP; super-green) when forward biased.

The CQW61 and CQW61L have a SOD-75 outline and are encapsulated in a green diffusing resin. These LEDs when stacked in an array (in combination with other SOD-75 LEDs) can be used, for example, as level indicators.

The CQW61L is equal to the CQW61 but has long leads and no seating plane.

Continuous reverse voltage		$V_{R}$	max.	5 V
Forward current (d.c.)		ΙF	max.	60 mA
Total power dissipation up to T _{amb} = 35 °C		$P_{tot}$	max.	180 mW
Junction temperature		Ti	max.	100 °C
Luminous intensity		•		
IF = 10 mA	CQW61(L)	I _V	min.	0,7 mcd
	CQW61(L)-2	I _V	1,0	) to 2,2 mcd
	CQW61(L)-3	$I_V$	min.	1,6 mcd
Wavelength at peak emission				
IF = 10 mA		$\lambda_{p}$	typ.	565 nm
Beamwidth between half-intensity directions				
in the plane of the leads		$\theta_{1/2}$	typ.	110 °

Fig. 1a SOD-75B1. CQW61

Dimensions in mm



Fig. 1b SOD-75BL. CQW61L



RATINGS					
Limiting values in accordance with the Absolute Maximum System (IEC 134)					
Reverse voltage		$V_{R}$	max.	5	V
Forward current d.c.		lF	max.	60	mA
peak value; $t_p = 1 \mu s$ ; $f = 300 Hz$ peak value; $t_{on} = 1 ms$ ; $\delta = 0.33$		IFRM	max. max.	1 150	A mA
Total power dissipation up to T _{amb} = 35 °C		$P_{tot}$	max.	180	mW
Storage temperature		$T_{stg}$	55 to	+100	oC
Junction temperature		Tj	max.	100	oC
Lead soldering temperature at $t_{sld} < 7$ s $>$ 1,5 mm from the seating plane for CQW61 $>$ 5 mm from the plastic body for CQW61L		T _{sld}	max.	260	oC
THERMAL RESISTANCE					
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W
CHARACTERISTICS					
T _i = 25 °C unless otherwise specified					
Forward voltage IF = 10 mA		VF	typ. max.	2,1 3,0	
Reverse current V _R = 5 V		IR	max.	100	μΑ
Beamwidth between half-intensity directions in the plane of the leads; IF = 10 mA		$\theta 1/2$	typ.	110	o
Bandwidth at half height		Δλ	typ.	30	nm
Wavelength at peak emission  IF = 10 mA		$\lambda_{\mathbf{p}}$	typ.	565	nm
Luminous intensity  IF = 10 mA	CQW61(L)	lv	min.		mcd
	CQW61(L)-2 CQW61(L)-3	l _V l _V	1,0 t min.	o 2,2 1.6	mcd mcd
Diode capacitance		: <b>V</b>		.,5	
V _R = 0; f = 1 MHz		$C_{d}$	typ.	20	pF



Fig. 2.



Fig. 4  $t_{on}$  = 50  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6 Typical values.



Fig. 3 Tamb = 25 °C; typ. values.



Fig. 5 Typical values.



Fig. 7  $t_p = 50 \mu s$ ; typical values.



Fig. 8  $I_F = 10 \text{ mA}$ ; typical values.



Fig. 9 Typical values.

## LIGHT EMITTING DIODES

Rectangular light emitting diodes of 5 mm x 1 mm which emit yellow light at a typical peak wavelength of 590 nm (GaPAs) when forward biased.

The CQW62 and CQW62L have a SOD-75 outline and are encapsulated in a yellow diffusing resin. These LEDs when stacked in an array (in combination with other SOD-75 LEDs) can be used, for example, as level indicators.

The CQW62L is equal to the CQW62 but has long leads and no seating plane.

Continuous reverse voltage		$v_R$	max.	5 V
Forward current (d.c.)		l _F	max.	30 mA
Total power dissipation up to Tamb = 65 °C		$P_{tot}$	max.	90 mW
Junction temperature		Tj	max.	100 °C
Luminous intensity				
IF = 10 mA	CQW62(L)	I _V	min.	0,7 mcd
·	CQW62(L)-2	lv	1.0	) to 2,2 mcd
	CQW62(L)-3	Ι <mark>ν</mark>	min.	1,6 mcd
Wavelength at peak emission				
I _F = 10 mA		$\lambda_{p}$	typ.	590 nm
Beamwidth between half-intensity directions				
in the plane of the leads		$\theta_{1/2}$	typ.	110 °

Fig. 1a SOD-75B1. CQW62

Dimensions in mm



Fig. 1b SOD-75BL. CQW62L



Note: Solderability not guaranteed in tie-bar zone.

RATINGS					
Limiting values in accordance with the Absolute	Maximum System	(IEC 134)			
Reverse voltage		VR	max.	5	٧
Forward current					
d.c.		1F	max.		mΑ
peak value; $t_p = 1 \mu s$ ; $f = 300 Hz$ peak value; $t_{on} = 1 ms$ ; $\delta = 0.33$		IFRM	max. max.	1 60	A mA
Total power dissipation up to Tamb = 65 °C		$P_{tot}$	max.	90	mW
Storage temperature		T _{stg}	-55 to	+100	oC
Junction temperature		Tj	max.	100	oC
Lead soldering temperature at $t_{\rm SId} < 7~{\rm s}$ > 1,5 mm from the seating plane for CQW62 > 5 mm from the plastic body for CQW62L		T _{sld}	max.	260	oC
THERMAL RESISTANCE					
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Forward voltage I _F = 10 mA		VF	typ. max.	2,1 3,0	
Reverse current					
V _R = 5 V		^I R	max.	100	μΑ
Beamwidth between half-intensity directions in the plane of the leads; IF = 10 mA		$\theta_{\frac{1}{2}}$	typ.	110	o
Bandwidth at half height		Δλ	typ.	40	nm
Wavelength at peak emission  IF = 10 mA		$\lambda_{p}$	typ.	590	nm
Luminous intensity IF = 10 mA	CQW62(L)	I _V	min.		mcd
	CQW62(L)-2 CQW62(L)-3	lv	1,0 t min.		mcd mcd
Diada capacitanas	CQVV02(L/-3	I _V	111111.	1,0	med
Diode capacitance V _R = 0; f = 1 MHz		C _d	typ.	15	pF



Fig. 2.



Fig. 4  $t_{on}$  = 50  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6 I_F = 10 mA; typ. values.



Fig. 3 T_{amb} = 25 °C; typ. values.



Fig. 5 Typical values.



Fig. 7  $t_D = 50 \mu s$ ; typical values.



Fig. 8 Typical values.



Fig. 9 Typical values.



# HIGH-SPEED INFRARED EMITTING DIODE

Circular infrared emitting diode with diameter of 5 mm which emits infrared light at a typical peak wavelength of 830 nm (GaAIAs; infrared) when forward biased.

The CQW89A has a SOD-63 outline and is moulded in a light blue encapsulation with long leads. It is intended for remote control applications using carrier frequencies up to 1 MHz.

Continuous reverse voltage		$v_R$	max.	5	V	
Forward current (d.c.)		1F	max.	130	mA	
Total power dissipation up to Tamb = 25 °C		$P_{tot}$	max.	300	mW	
Junction temperature		Tj	max.	100	oC	
Radiant intensity (on axis)						
I _F = 100 mA	CQW89A	le	min.	9	mW/sr	-
	CQW89A-1	le	min.	12	mW/sr	
	CQW89A-2	le	min.	15	mW/sr	
Switching times (see Figs 2 and 3)						
IF = 100 mA		t _r	typ.	30		
,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		tf	typ.	30	ns	
Wavelength at peak emission		$\lambda_{p}$	typ.	830	nm	
Beamwidth at half-intensity directions		$\theta \frac{1}{2}$	typ.	40	0	

Fig. 1 SOD-63D2.

Dimensions in mm







RATINGS						
Limiting values in accordance with the Absolute I	Maximum System (I	EC 134)				
Continuous reverse voltage		$v_R$	max.	5	V	
Forward current						
d.c.		lF.	max. max.	130 2500	mA m A	
peak value; $t_p = 10 \mu s$ ; $\delta = 0.01$ peak value; $t_p = 50 \mu s$ ; $\delta = 0.01$		lFM lFM	max.	1500		
Total power dissipation up to						
T _{amb} = 25 °C with heatsink		Ptot	max.		mW	
Storage temperature		$T_{stg}$	55 to			
Junction temperature		Τj	max.	100	оС	
Lead soldering temperature		т		260	00	
$t_{sld}$ < 10 s		T _{sld}	max.	200	٥,	
THERMAL RESISTANCE						
From junction to ambient						
when the device is mounted on a printed circui	t board	R _{th j-a}	max.	350	K/W	
CHARACTERISTICS						
T _i = 25 °C unless otherwise specified						
Forward voltage						
$I_F = 1.5 \text{ A}$ ; $t_{OD} = 50 \mu \text{s}$ ; $\delta = 0.01$		٧F	typ.	3,7	V	<b>-</b>
Forward voltage						
IF = 100 mÅ		٧F	typ. max.	1,7 2,2		
Reverse current			max.	2,2	•	
V _R = 5 V		I _R	max.	100	μΑ	
Diode capacitance at f = 1 MHz						
V _R = 0		$c_d$	typ.	200	рF	
Total radiant power				_		
I _F = 100 mA		$\phi$ e	typ.	8	mW	
Radiant intensity (on axis)  IF = 100 mA	CQW89A	1	min.	a	mW/sr	_
it - 100 mV	CQW89A-1	l _e l _e	min.		mW/sr	
	CQW89A-2	l _e	min.	15	mW/sr	
Radiant power temperature coefficient		kφe	typ.	-0,6	%/K	
Wavelength at peak emission						
IF = 100 mA		λp	typ.	830	nm	
Spectral line half width  IF = 100 mA		Δλ	typ.	35	nm	•
Beamwidth at half-intensity direction						
IF = 100 mA		$\theta \frac{1}{2}$	min.	28 40		
Switching times (see Figs 2 and 3)			typ.	40	-	
IF = 100 mA		tr	typ.		ns	
		tf	typ.	30	ns	



Fig. 2 Measuring circuit.



Fig. 4 Typical values.



Fig. 6 T_{amb} = 25 °C; typical values.



Fig. 3 Waveforms.



Fig. 5  $t_{on}$  = 10  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C; typical values.



Fig. 7  $t_{on}$  = 10  $\mu$ s;  $T_{amb}$  = 25 °C; typical values.



Fig. 8  $I_F = 100 \text{ mA}$ ; typical values.



Fig. 10 Spectral response; typical values.



Fig. 9 Typical values.



Fig. 11 Typical values.



Fig. 12 Typical values.



# **DEVELOPMENT DATA**

This data sheet contains advance information and specifications are subject to change without notice.

## LIGHT EMITTING DIODE

Circular light emitting diode with a diameter of 3 mm which emits red light at a typical peak wavelength of 650 nm (GaAIAS; hyper-red) when forward biased. The CQW93 has a SOD-53 outline and is encapsulated in a red non-diffusing resin.

Note: This device has to be used behind a diffusing screen.

Continuous reverse voltage		$v_R$	max.	5	V	
Forward current (d.c.)		lF	max.	60	mΑ	
Total power dissipation up to T _{amb} = 25 °C		$P_{tot}$	max.	150	mW	
Junction temperature		Τį	max.	100	oC	
Luminous intensity I _F = 10 mA	CQW93	I _V	min.	5	mcd	
Wavelength at peak emission		$\lambda_{p}$	typ.	650	nm	
Beamwidth between half-intensity directions		$\theta_{1/2}$	typ.	60	o	4

Fig. 1 SOD-53E.

Dimensions in mm







V_R = 0; f = 1 MHz

RATINGS					
Limiting values in accordance with the Absolute	Maximum Syst	em (IEC 134)			
Continuous reverse voltage		V _R	max.	5	٧
Forward current d.c. peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_{OB} = 20 \mu s$ ; $\delta = 0.01$		lF lFRM	max. max. max.	1	mA A mA
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	150	mW
Storage temperature		T _{stq}	-55 to	o +100	oC
Junction temperature		Ti	max.	100	oC
Lead soldering temperature $>$ 1,5 mm from the seating plane; $\rm t_{sld} < 7~s$		T _{sld}	max.	260	оС
THERMAL RESISTANCE					
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	500	K/W
CHARACTERISTICS					
T _i = 25 °C unless otherwise specified					
Forward voltage IF = 10 mA		VF	typ. max.	1,75 2,2	
Reverse current VR = 5 V		1 _R	max.	100	μΑ
Beamwidth between half-intensity directions		$\theta_{1/2}$	typ.	60	0 -
Bandwidth at half height		Δλ	typ.	20	nm
Wavelength at peak emission		$\lambda_{p}$	typ.	650	nm
Luminous intensity IF = 10 mA	COW93	. , . I _V	min.		mcd
	CQW93-5	l _V	min. max.	12	mcd mcd mcd
	CQW93-6	l _v	min. max.		mca mcd
Diode capacitance	CQW93-7	l _V	min.		mcd

 $\mathsf{C}_\mathsf{d}$ 

80 pF

typ.



## LIGHT EMITTING DIODE WITH HIGH LUMINOSITY

Circular light emitting diode with a diameter of 3 mm which emits green light at a typical peak wavelength of 565 nm (GaP; super-green) when forward biased.

The CQW95 has a SOD-53 outline and is encapsulated in a green non-diffusing resin.

The CQW95 can resist higher forward currents when high luminosity is required. An appropriate device, for example, for the backlighting of push buttons.

Note: This device has to be used behind a diffusing screen.

Continuous reverse voltage		$V_{R}$	max.	5 V
Forward current (d.c.)		iF	max.	60 mA
Total power dissipation up to Tamb = 25 °C		$P_{tot}$	max.	150 mW
Junction temperature		Τį	max.	100 °C
Luminous intensity		•		
I _F = 10 mA	CQW95	I _V	min.	3 mcd
	CQW95-5	Iv		5 to 12 mcd
	CQW95-6	I _V		10 to 22 mcd
	CQW95-7	I _V	min.	16 mcd
Wavelength at peak emission		$\lambda_{\mathbf{p}}$	typ.	565 nm
Beamwidth between half-intensity directions		$\theta_{1/2}$	typ.	60 o

Fig. 1 SOD-53E.

Dimensions in mm







 $V_R = 0$ ; f = 1 MHz

RATINGS						
Limiting values in accordance with the Absolute	Maximum Syster	n (IEC 134)				
Continuous reverse voltage		VR	max.	5	٧	
Forward current d.c. peak value; $t_p = 1 \ \mu s$ ; $f = 300 \ Hz$ peak value; $t_{on} = 1 \ ms$ ; $\delta = 0.33$		I _F	max. max. max.	1	mA A mA	
Total power dissipation up to $T_{amb} = 25$ °C		P _{tot}	max.	150	mW	
Storage temperature		$T_{stg}$	55 t	o +100	oC	
Junction temperature		Tj	max.	100	oC	
Lead soldering temperature $>$ 1,5 mm from the seating plane; $t_{\mbox{sld}} < 7~\mbox{s}$		T _{sld}	max.	260	oC	
THERMAL RESISTANCE						
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	500	K/W	
CHARACTERISTICS						
T _i = 25 °C unless otherwise specified						
Forward voltage IF = 10 mA		VF	typ. max.	2,1 3,0		
Reverse current VR = 5 V		IR	max.	100	μΑ	
Beamwidth between half-intensity directions		$\theta \frac{1}{2}$	typ.	60	0	-
Bandwidth at half height		Δλ	typ.	30	nm	
Wavelength at peak emission		$\lambda_p$	typ.	565	nm	
Luminous intensity  IF = 10 mA	CQW95 CQW95-5 CQW95-6 CQW95-7	lv lv lv		5 to 12 0 to 22		
Diode capacitance						

 $\mathsf{C}_\mathsf{d}$ 

typ.

20 pF



Fig. 2.



Fig. 4  $t_{on}$  = 1 ms;  $\delta$  = 0,33;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6 Typical values.



Fig. 3  $T_{amb} = 25$  °C; typ. values.



Fig. 5 Typical values.



Fig. 7  $t_p = 50 \mu s$ ; typ. values.



Fig. 8  $I_F = 10 \text{ mA}$ ; typ. values.



Fig. 9 Typical values.



# LIGHT EMITTING DIODE WITH HIGH LUMINOSITY

Circular light emitting diode with a diameter of 3 mm which emits yellow light at a typical peak wavelength of 590 nm (GaPAs) when forward biased.

The CQW97 has a SOD-53 outline and is mounted in a yellow non-diffusing resin. An appropriate device, for example, backlighting push button indicators.

Note: This device has to be used behind a diffusing screen.

Continuous reverse voltage		$V_{R}$	max.	5	V	
Forward current (d.c.)		ΙF	max.	30	mΑ	
Total power dissipation up to T _{amb} = 55 °C		Ptot	max.	90	mW	
Junction temperature		$T_i$	max.	100	οС	
Luminous intensity		•				
IF = 10 mA	CQW97A	l _v	min.	3	mcd	
·	CQW97A-5	l _v		5 to 12	mcd	
	CQW97A-6	l _V		10 to 22	mcd	
	CQW97A-7	Iv	min.	16	mcd	
Wavelength at peak emission		$\lambda_{p}$	typ.	590	nm	
Beamwidth between half-intensity directions		$\theta_{1/2}$	typ.	60	0	-

→ Fig. 1 SOD-53E.

Dimensions in mm







RATINGS					
Limiting values in accordance with the Absolute	Maximum Syster	m (IEC 134)			
Reverse voltage		$V_{R}$	max.	5	V
Forward current					
d.c.		ΙF	max.		mA
peak value; $t_p = 1 \mu s$ ; $f = 300 Hz$		IFRM	max.		A mA
peak value; $t_{on} = 1$ ms; $\delta = 0.33$			max.		
Total power dissipation up to T _{amb} = 55 °C		P _{tot}	max.		mW
Storage temperature		$T_{stg}$	-55	to +100	
Junction temperature		Тj	max.	100	oC
Lead soldering temperature $>$ 1,5 mm from the seating plane; $t_{\mbox{sld}} < 7 \mbox{ s}$		T _{sld}	max.	260	oC
THERMAL RESISTANCE					
From junction to ambient when the device is					
mounted on a p.c. board		R _{th j-a}	max.	500	K/W
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Forward voltage			typ.	2,1	V
I _F = 10 mA		VF	max.	3,0	
Reverse current					
V _R = 5 V		IR	max.	100	μΑ
Beamwidth between half-intensity directions					
I _F = 10 mA		$\theta_{1/2}$	typ.	60	0
Bandwidth at half height		Δλ	typ.	40	nm
Wavelength at peak emission					
IF = 10 mA		$\lambda_{\mathbf{p}}$	typ.	590	nm
Luminous intensity					
IF = 10 mA	CQW97A CQW97A-5	lv	min.	3 5 to 12	mcd
	CQW97A-5	I _V I _V		10 to 22	
	CQW97A-7	I _V	min.		mcd
Diode capacitance		•			
$V_R = 0$ ; $f = 1 MHz$		$c_d$	typ.	15	pF



Fig. 2.



Fig. 4  $t_p = 50 \mu s$ ;  $\delta = 0.01$ ;  $T_{amb} = 25 \, ^{o}C$ ; typ. values.



Fig. 6 Typical values.



Fig. 3  $T_i = 25$  °C; typ. values.





Fig. 7  $T_j = 25$  °C; typ. values.



Fig. 8 Typical values.



Fig. 9 Typical values.



## LIGHT EMITTING DIODES

Circular light emitting diodes with a diameter of 3 mm which emit a narrow beam of red light at a typical peak wavelength of 650 nm (GaAlAs; hyper-red) when forward biased.

The CQX24 and CQX24L have a SOD-63 outline and are encapsulated in a clear colourless resin.

The very high light intensity of the CQX24 and CQX24L make them suitable for applications where only low currents are available. They are also suited for very high luminous intensity applications because of their ability to withstand high forward currents.

The CQX24L is the long-lead version of the CQX24 and has no seating plane but is in all other respects equal to the CQX24.

Continuous reverse voltage		VR	max.	5 \	<b>/</b>	
Forward current (d.c.)		lF.	max.	100 r	nΑ	
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	215 r	пW	
Junction temperature		Τj	max.	100 9	C	
Luminous intensity I _F = 10 mA	CQX24(L) CQX24(L)-8 CQX24(L)-9 CQX24(L)-10	l _V l _V l _V	_	16 r 0 to 70 r to 120 r 100 r	ncd ncd	•
Wavelength at peak emission		$\lambda_{p}$	typ.	650 r	nm	
Beamwidth between half-intensity directions		$\theta_{1/2}$	typ.	20 9	)	<b>←</b>

Dimensions in mm

Fig. 1a SOD-63D2. CQX24





Fig. 1b SOD-63L. CQX24L



Note. Solderability not guaranteed in tie-bar zone.

RATINGS						
Limiting values in accordance with the Absolut	e Maximum Syste	m (IEC 134)				
Reverse voltage		$V_{R}$	max.	5	V	
Forward current						
d.c.		1 _F	max.	100	mΑ	
Forward current peak value, $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value, $t_{OD} = 20 \mu s$ ; $\delta = 0.01$		IFRM	max. max.		A mA	
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	215	mW	
Storage temperature		$T_{sta}$	55 to	+100	oC	
Junction temperature		Tj	max.	100	oC	
Lead soldering temperature; $t_{sld} < 7 \text{ s}$ > 1,5 mm from the seating plane for CQX24 > 5 mm from the plastic body for CQX24L	ļ.	T _{sld}	max.	260	oC	
THERMAL RESISTANCE						
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W	
CHARACTERISTICS						
T _i = 25 °C unless otherwise specified						
Forward voltage			may	2,2	1/	
I _F = 10 mA		٧F	max. typ.	1,75		
IF = 50 mA		VF	typ.	1,9		◀
Reverse current V _R = 5 V		I _R	max.	100	μA	
Beamwidth between half-intensity directions		-11			•	
IF = 10 mA		$\theta \frac{1}{2}$	typ.	20	0	-
Bandwidt at half height		$\Delta\lambda$	typ.	20	nm	
Wavelength at peak emission I _F = 10 mA; T _{amb} = 25 °C		$\lambda_{p}$	typ.	650	nm	
Luminous intensity IF = 4 mA	CQX24(L)-8 CQX24(L)-9	l _v I _v	typ. typ.		mcd mcd	
	CQX24(L)-10	lv	typ.	50	mcd	
I _F = 10 mA	CQX24(L)	$I_V$	min.		mcd	-
	CQX24(L)-8	lv	typ.	to 70 50	mcd mcd	
	CQX24(L)-9	Iv		o 120		
		V	typ.		mcd	
	CQX24(L)-10	I _V	min. typ.		mcd mcd	
1 _F = 50 mA	CQX24(L)-8	I _V	typ.	200	mcd	
	CQX24(L)-9	l _v	typ.		mcd	
	CQX24(L)-10	I _V	typ.	600	mcd	

### Diode capacitance





Fig. 4  $t_{on}$  = 20  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C; typ. values. 7288913 200



Fig. 6 Typical values.





Fig. 5 IF = 10 mA; typ. values.



Fig. 7  $t_p = 50 \mu s$ ; typ. values.



Fig. 8  $I_F = 10 \text{ mA}$ ;  $T_{amb} = 25 \text{ °C}$ ; typ. values.



Fig. 9.



# LIGHT EMITTING DIODE

Circular light emitting diode with a diameter of 5 mm which emits red light at a typical peak wavelength of 630 nm (GaAsP/GaP; super-red) when forward biased.

The CQX51 and CQX51L have a SOD-63 outline and are encapsulated in a red diffusing resin.

Continuous reverse voltage		V _R	max.	5 V
Forward current (d.c.)		IF	max.	30 mA
Total power dissipation up to Tamb = 65 °C		$P_{tot}$	max.	90 mW
Luminous intensity				
at I _F = 10 mA	CQX51	Ι _V	min.	1,6 mcd
	CQX51-4	lv		3 to 7 mcd
	CQX51-5	lv		5 to 12 mcd
	CQX51-6	lv	min.	10 mcd
Wavelength at peak emission		$\lambda_{\mathbf{p}}$	typ.	630 nm
Beamwidth between half-intensity directions		$\theta 1/2$	typ.	70 °

Fig. 1 SOD-63A1. CQX51



12,4 11,6

9,3 8,8

8,4 8,1





Fig. 1b SOD-63L. CQX51L



Beamwidth between half-intensity directions

RATINGS					
	Massimosama Cosats	···· (IEC 124)			
Limiting values in accordance with the Absolute	waximum ayste			-	.,
Continuous reverse voltage		V _R	max.	_	٧.
Forward current (d.c.)		1F	max.	30	mΑ
Forward current peak value; $t_{on}$ =1 ms; $\delta$ = 0,33 peak value; $t_{p}$ = 1 $\mu$ s; $f$ = 300 Hz		IFRM	max. max.		mA A
Total power dissipation up to T _{amb} = 65 °C		$P_{tot}$	max.	90	mW
Storage temperature		T _{stg}	55	to +100	oC
Junction temperature		Tį	max.	100	oC
Lead soldering temperature $>$ 1,5 mm from the seating plane; $\rm t_{sld} < 7~s$		T _{sld}	max.	230	οС
THERMAL RESISTANCE					
From junction to ambient mounted on a printed-circuit board		R _{th j-a}	min.	350	K/W
CHARACTERISTICS					
T _i = 25 °C unless otherwise specified					
Forward voltage IF = 10 mA		VF	typ.	2,1 5	V V
Reverse current V _R = 5 V		IR	max.	100	μΑ
Diode capacitance V _R = 0; f = 1 MHz		Cd	typ.	10	pF
Luminous intensity (on-axis) IF = 10 mA	CQX51 CQX51-4 CQX51-5 CQX51-6	I _V I _V I _V	min.	3 to 7 5 to 12	
Wavelength at peak emission		λp	typ.	630	nm

θ1/2

70 °

typ.



Fig. 2  $I_F = 10 \text{ mA}$ .



Fig. 4  $t_p$  = 50  $\mu$ s; T = 5  $\mu$ s; T $_j$  = 25  $\mu$ C.



Fig. 3  $T_j = 25$  °C.



Fig. 5 Typical values.



Fig. 6.



Fig. 7  $T_{amb} = 25$  °C.



Fig. 8 Typical values.



Fig. 9 Typical values.

# LIGHT EMITTING DIODES

Circular light emitting diodes with a diameter of 5 mm which emit a narrow beam of red light at a typical peak wavelength of 630 nm (GaAsP/GaP; super-red) when forward biased.

The CQX54 and CQX54L have a SOD-63 outline and are encapsulated in a clear diffusing resin.

The CQX54L is the long-lead version of the CQX54 and has no seating plane but is in all other respects equal to the CQX54.

Continuous reverse voltage		$V_R$	max.	5 V	
Forward current (d.c.)		۱F	max.	30 mA	
Total power dissipation up to Tamb = 65 °C		$P_{tot}$	max.	90 mW	
Junction temperature		Tj	max.	100 °C	
Luminous intensity					
IF = 10 mA	CQX54(L)	I _V	min.	10 mcd	•
	CQX54(L)-7	I _V	1	6 to 35 mcd	
	CQX54(L)-8	I _V	3	80 to 70 mcd	
	CQX54(L)-9	I _V	min.	50 mcd	
Wavelength at peak emission		$\lambda_p$	typ.	630 nm	
Beamwidth between half-intensity directions		$\theta 1/2$	typ.	20 °	

### Dimensions in mm

7Z93501

#### **MECHANICAL DATA**

Fig. 1a SOD-63D1. CQX54



Fig. 1b SOD-63L. CQX54L



RATINGS						
Limiting values in accordance with the Absolut	e Maximum Syste	m (IEC 134)				
Reverse voltage		VR	max.	5	V	
Forward current d.c.		lF	max.	30	mA	
Forward current peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_{OR} = 1 \text{ ms}$ ; $\delta = 0.33$		^I FRM	max. max.		A mA	
Total power dissipation up to Tamb = 65 °C		$P_{tot}$	max.	90	mW	
Storage temperature		$T_{stg}$	-55 to	+100	oC	
Junction temperature		Ti	max.	100	oC	
Lead soldering temperature; $t_{sld} < 7 \text{ s}$ > 1,5 mm from the seating plane for CQX54 > 5 mm from the plastic body for CQX54L	i	T _{sld}	max.	260	oC	
THERMAL RESISTANCE						
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W	
CHARACTERISTICS						
T _i = 25 °C unless otherwise specified						
Forward voltage IF = 10 mA		VF	typ. max.	2,1 3,0		
Reverse current V _R = 5 V		I _R	max.	100	μΑ	
Beamwidth between half-intensity directions		θ1/2	typ.	20	0	
Bandwidth at half height		Δλ	typ.	45	nm	-
Wavelength at peak emission		$\lambda_{D}$	typ.	630	nm	
Luminous intensity IF = 10 mA	CQX54(L)-7 CQX54(L)-7 CQX54(L)-8 CQX54(L)-9	l _V l _V l _V		to 35 to 70		· ••
Diode capacitance V _R = 0; f = 1 MHz		C _d	typ.	10	pF	•



Fig. 2.



Fig. 4  $t_{on}$  = 50  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6 Typical values.



Fig. 3  $T_{amb} = 25$  °C; typ. values.



Fig. 5 Typical values.



Fig. 7  $t_p = 50 \mu s$ ; typ. values.



Fig. 8 Typical values.



Fig. 9 IF = 10 mA; typ. values.

# **DEVELOPMENT DATA**

This data sheet contains advance information and specifications are subject to change without notice.

## LIGHT EMITTING DIODE

Circular light emitting diode with a diameter of 5 mm which emits red light at a typical peak wavelength of 630 nm (GaPAs; super-red) when forward biased.

The CQX54D has a SOD-63 outline and is encapsulated in a clear diffusing resin.

Reverse voltage	V _R	max.	5	V	
Forward current (d.c.)	İF	max.	30	mΑ	
Total power dissipation up to T _{amb} = 65 °C	$P_{tot}$	max.	90	mW	
Junction temperature	Тj	max.	100	oC	
Luminous intensity at IF = 10 mA	I _V	min.	3	mcd	
Wavelength at peak emission	$\lambda_{p}$	typ.	630	nm	
Beamwidth between half-intensity directions	$\theta_{1/2}$	typ.	30	0	-

→ Fig. 1 SOD-63D1.

Dimensions in mm







### RATINGS

RATINGS					
Limiting values in accordance with the Absolute I	Maximum Systen	n (IEC 134)			
Reverse voltage		$V_R$	max.	5	V
Forward current d.c. peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_{OD} = 1 \text{ ms}$ ; $\delta = 0.33$		l _F	max. max. max.	1	mA A mA
Total power dissipation up to T _{amb} = 65 °C		$P_{tot}$	max.	90	mW
Junction temperature		Ti	max.	100	oC
Storage temperature		T _{stg}	55 to +	⊦100	oC
Lead soldering temperature $>$ 1,5 mm from the seating plane; $\rm t_{sld} < 7~s$		T _{sld}	max.	260	oC
THERMAL RESISTANCE					
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W
CHARACTERISTICS					
T _{amb} = 25 °C unless otherwise specified					
Forward voltage at IF = 10 mA		VF	typ. max.	2,1 3,0	
Reverse current V _R = 5 V		IR	max.	100	μΑ
Beamwidth between half-intensity directions at I _F = 10 mA		θ1/2	typ.	30	0 -
Bandwidth at half height		$\Delta \lambda$	typ.		nm
Wavelength at peak emission at IF = 10 mA		$\lambda_{\mathbf{p}}$	typ.	630	
Capacitance at $V_R = 0$ ; $f = 1 MHz$		Cd	typ.	35	pF
Luminous intensity at IF = 10 mA	CQX54D	I _V	min.		mcd
	CQX54D-5	$I_V$	min. max.	12	mcd mcd
	CQX54D-6	$I_V$	min. min.		mcd mcd
	CQX54D-7	$I_V$	min.		mcd

## LIGHT EMITTING DIODES

Circular light emitting diodes with a diameter of 5 mm which emit a narrow beam of green light at a typical peak wavelength of 565 nm (GaP, super-green) when forward biased.

The CQX64 and CQX64L have a SOD-63 outline and are encapsulated in a clear resin. Because of their resistance to high forward currents, the CQX64 and CQX64L are suitable for applications where high luminous intensity is required and applications where only low currents are available.

The CQX64L is the long-lead version of the CQX64 and has no seating plane but is in all other respects equal to the CQX64.

						_
Continuous reverse voltage		$V_{R}$	max.	5	٧	
Forward current (d.c.)		۱F	max.	60	mΑ	
Total power dissipation up to Tamb = 35 °C		$P_{tot}$	max.	180	mW	
Junction temperature		Τį	max.	100	οС	
Luminous intensity IF = 10 mA	CQX64(L) CQX64(L)-7 CQX64(L)-8 CQX64(L)-9	I _V I _V I _V	min. min.	16 to 35 30 to 70		•
Wavelength at peak emission		$\lambda_{p}$	typ.	565	nm	
Beamwidth between half-intensity directions		$\theta_{1/2}$	typ.	20	0	

Dimensions in mm

→ Fig. 1 SOD-63DI.



Fig. 1b SOD-63L. CQX64L



RATINGS						
Limiting values in accordance with the Absolute	Maximum Syster	m (IEC 134)				
Reverse voltage		$V_{R}$	max.	5	٧	
Forward current						
d.c.		۱۴	max.	60	mΑ	
Forward current						
peak value, $t_p = 1 \mu s$ ; $f = 300 Hz$ peak value; $t_{op} = 1 ms$ ; $\delta = 0.33$		<b>IFRM</b>	max. max.		A mA	
Total power dissipation up to T _{amb} = 35 °C		P _{tot}	max.		mW	
Storage temperature		T _{stq}		o +100		
Junction temperature		T _i	max.	100		
Lead soldering temperature; t _{sld} < 7 s		.1				
> 1,5 mm from the seating plane for CQX64		<b>T</b>	man.	260	00	
> 5 mm from the plastic body for CQX64L		T _{sld}	max.	200	٥,	
THERMAL RESISTANCE						
From junction to ambient						
when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W	
CHARACTERISTICS						
T _j = 25 °C unless otherwise specified						
Forward voltage			tun	2,1	V	
I _F = 10 mA		٧F	typ. max.	3.0		
Reverse current				•		
V _R = 5 V		IR	max.	100	μΑ	
Beamwidth between half-intensity directions		$\theta_{1/2}$	typ.	20	0	
Bandwidth at half height		Δλ	typ.	30	nm	
Wavelength at peak emission		$\lambda_{p}$	typ.	565	nm	
Luminous intensity						
I _F = 10 mA	CQX64(L) CQX64(L)-7	lv	min.	10 6 to 35	mcd	-
	CQX64(L)-8	l _V I _V		0 to 30		
	CQX64(L)-9	l _V	min.	50	mcd	
Diode capacitance						
$V_R = 0$ ; $f = 1 MHz$		$c_d$	typ.	20	рF	-



Fig. 2.



Fig. 4  $t_{on}$  = 1 ms;  $\delta$  = 0,33;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6 Typical values.



Fig. 3 T_{amb} = 25 °C; typ. values.



Fig. 5 Typical values.



Fig. 7  $t_p = 50 \mu s$ ; typ. values.



Fig. 8 IF = 10 mA; typ. values.



Fig. 9  $I_F = 10 \text{ mA}$ ; typ. values.

# **DEVELOPMENT DATA**

This data sheet contains advance information and specifications are subject to change without notice.

# LIGHT EMITTING DIODE

Circular light emitting diode with a diameter of 5 mm which emits green light at a typical peak wavelength of 565 nm (GaP) when forward biased.

The CQX64D has a SOD-63 outline and is encapsulated in a green diffusing resin.

Reverse voltage	VR	max.	5 V
Forward current (d.c.)	۱F	max.	60 mA
Total power dissipation up to T _{amb} = 35 °C	$P_{tot}$	max.	180 mW
Junction temperature	$T_{j}$	max.	100 °C
Luminous intensity at IF = 10 mA	I _V	min.	3 mcd
Wavelength at peak emission	$\lambda_{p}$	typ.	565 nm
Beamwidth between half-intensity directions	$\theta$ $\frac{1}{2}$	typ.	30 0

Fig. 1 SOD-63D1.

Dimensions in mm







DATINO						
RATINGS						
Limiting values in accordance with the Absolu	ute Maximum Sys		)			
Reverse voltage		$V_{R}$	max.	5	V	
Forward current d.c. peak value, $t_D = 1 \mu s$ ; $f = 300 \text{ Hz}$		IF	max. max.		mA A	
peak value; $t_{on} = 1$ ms; $\delta = 0.33$		FRM	max.		mΑ	
Total power dissipation up to Tamb = 35 °C		$P_{tot}$	max.	180	mW	
Junction temperature		Τį	max.	100	oC	
Storage temperature		$T_{stg}$	-55 t	o +100	oC	
Lead soldering temperature		J				
$>$ 1,5 mm from the seating plane; $t_{\mbox{sld}}$ $<$ 7	s	$T_{sld}$	max.	260	oC	
THERMAL RESISTANCE						
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W	
CHARACTERISTICS						
Tamb = 25 °C unless otherwise specified						
Forward voltage at I _F = 10 mA		VF	typ. max.	2,1 3	V V	
Reverse current $V_R = 5 V$		IR	max.	100	μΑ	
Beamwidth between half-intensity directions at IF = 10 mA		$ heta_{1/2}$	typ.	30	o	4
Bandwidth at half height		$\Delta\lambda$	typ.	30	nm	
Wavelength at peak emission at IF = 10 mA		λp	typ.	565	nm	
Capacitance at V _R = 0; f = 1 MHz		C _d	typ.	35	pF	
Luminous intensity at IF = 10 mA	CQX54D	l _v	min.	3	mcd	
	CQX54D-5	I _V	min. max.	5	mcd mcd	
	CQX54D-6	lv	min.	10	mcd	

CQX54D-6

CQX54D-7

 $I_{\nu}$ 

 $I_V$ 

22 mcd

16 mcd

min.

min.



## LIGHT EMITTING DIODES

Circular light emitting diodes with a diameter of 5 mm which emit a narrow beam of yellow light at a typical peak wavelength of 590 nm (GaPAs) when forward biased.

The CQX74 and CQX74L have a SOD-63 outline and are encapsulated in a clear resin.

The CQX74L is the long-lead version of the CQX74 and has no seating plane but is in all other respects equal to the CQX74.

VR	max.	5	V	
lF	max.	30	mΑ	
P _{tot}	max.	90	mW	
$T_{j}$	max.	100	oC	
-				
_) l _v	min.	10	mcd	•
_)-7 I _V		16 to 35	mcd	
_)-8 I _v		30 to 70	mcd	
_)-9 I _V	min.	50	mcd	
$\lambda_{\mathbf{p}}$	typ.	590	nm	
$\theta_{1/2}$	typ.	20	0	
Ĺ	F   Ptot   T _j   I _V   L)-7   I _V   L)-8   I _V   L)-9   I _V   λ _p   λ _p   L	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IF max. 30 Ptot max. 90 Tj max. 100  L) I _V min. 10 L)-7 I _V 16 to 35 L)-8 I _V 30 to 70 λ _p typ. 590	IF   max.   30 mA   Ptot   max.   90 mW   Tj   max.   100 °C

Dimensions in mm

Fig. 1a SOD-63DI. CQX74







Fig. 1b SOD-63L. CQX74L







RATINGS						
Limiting values in accordance with the Absolut	te Maximum Syste	m (IEC 134)				
Reverse voltage		$v_R$	max.	5	V	
Forward current						
d.c.		۱۴	max.	30	mΑ	
Forward current						
peak value; $t_p = 1 \mu s$ ; $f = 300 Hz$ peak value; $t_{on} = 1 ms$ ; $\delta = 0.33$		^I FRM	max. max.		A mA	
Total power dissipation up to $T_{amb} = 65  ^{\circ}\text{C}$		P _{tot}	max.		mW	
Storage temperature		T _{stg}		to +100		
Junction temperature		T _j	max.	100		
Lead soldering temperature; t _{sld} < 7 s		.1	maxi			
> 1,5 mm from the seating plane for CQX74	1	<del>-</del> .		260	00	
> 5 mm from the plastic body for CQX74L		$T_{sld}$	max.	260	90	
THERMAL RESISTANCE						
From junction to ambient		R _{th j-a}	max.	350	K/W	
CHARACTERISTICS						
T _j = 25 °C unless otherwise specified						
Forward voltage			4	2.1	.,	
I _F = 10 mA		٧F	typ. max.	2,1 3,0		
Reverse current				-,-		
V _R = 5 V		IR	max.	100	μΑ	
Beamwidth between half-intensity directions						
I _F = 10 mA		$\theta_{1/2}$	typ.	20	0	
Bandwidth at half height		$\Delta \lambda$	typ.	40	nm	
Wavelength at peak emission						
IF = 10 mA		$\lambda_{p}$	typ.	590	nm	
Luminous intensity	CQX74(L)			10	mcd	_
I _F = 10 mA	CQX74(L)-7	l _V I _V	min.	16 to 35		
	CQX74(L)-8	I _V		30 to 70		
	CQX74(L)-9	I _V	min.	50	mcd	
Diode capacitance					_	
$V_R = 0$ ; $f = 1 MHz$		$C_d$	typ.	15	рF	-





Fig. 4  $t_{on}$  = 50  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6 IF = 10 mA; typ. values.



Fig. 3  $T_i = 25$  °C; typ. values.



Fig. 5 Typical values.



Fig. 7  $t_p = 50 \mu s$ ; typ. values.



Fig. 8 Typical values.



Fig. 9 Typical values.



# **DEVELOPMENT DATA**

This data sheet contains advance information and specifications are subject to change without notice.

## LIGHT EMITTING DIODE

Circular light emitting diode with a diameter of 5 mm which emits yellow light at a typical peak wavelength of 590 nm (GaPAs) when forward biased.

The CQX74D has a SOD-63 outline and is encapsulated in a yellow diffusing resin.

Reverse voltage	$V_{R}$	max.	5	V	
Forward current (d.c.)	IF.	max.	30	mΑ	
Total power dissipation up to T _{amb} = 65 °C	P _{tot}	max.	90	mW	
Junction temperature	$T_{j}$	max.	100	oC	
Luminous intensity at IF = 10 mA	I _V	min.	3	mcd	
Wavelength at peak emission	$\lambda_p$	typ.	590	nm	
Beamwidth between half-intensity directions	$\theta \frac{1}{2}$	typ.	30	0	-

Dimensions in mm

→ Fig. 1 SOD-63D1.







RATINGS								
Limiting values in accordance with the Absolu-	imiting values in accordance with the Absolute Maximum System (IEC 134)							
Reverse voltage		٧R	max.	5	V			
Forward current d.c. peak value, $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$		le I	max. max.		mA A			
peak value; $t_{on} = 1 \text{ ms}$ ; $\delta = 0.33$		lfrm	max.	60	mΑ			
Total power dissipation up to $T_{amb} = 65$ °C		$P_{tot}$	max.	90	mW			
Junction temperature		Тj	max.	100	oC			
Storage temperature		$T_{stg}$	55 to	+100	oC			
Lead soldering temperature $>$ 1,5 mm from the seating plane; $t_{\mbox{sld}} < 7 \mbox{ s}$		T _{sld}	max.	260	oC			
THERMAL RESISTANCE								
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W			
CHARACTERISTICS								
T _{amb} = 25 °C unless otherwise specified								
Forward voltage at I _F = 10 mA		VF	typ. max.	2,1 3	V V			
Reverse current V _R = 5 V		IR	max.	100	μΑ			
Beamwidth between half-intensity directions at IF = 10 mA		$\theta_{\frac{1}{2}}$	typ.	30	o	•		
Bandwidth at half height		$\Delta \lambda$	typ.	40	nm			
Wavelength at peak emission at IF = 10 mA		λp	typ.	590	nm			
Capacitance at V _R = 0; f = 1 MHz		Cd	typ.	35	pF			
Luminous intensity								
at IF = 10 mA	CQX54D	I _V	min. min.		mcd mcd			
	CQX54D-5	I _V	min. max.		mcd			
	CQX54D-6	I _V	min. min.		mcd mcd			

CQX54D-7

١٧

16 mcd

min.



# LIGHT EMITTING DIODES

Circular light emitting diodes with a diameter of 5 mm which emit red light at a typical peak wavelength of 650 nm (GaAsP; standard-red) when forward biased.

The CQY24B and CQY24BL have a SOD-63 outline and are encapsulated in a red diffusing resin. Together with types CQY94B(L) and CQY96(L) they form one family.

The CQY24BL is the long-lead version of the CQY24B and has no seating plane but is in all other respects equal to the CQY24B.

Continuous reverse voltage		$V_{R}$	max.	5	٧	
Forward current (d.c.)		IF	max.	50	mΑ	
Total power dissipation up to T _{amb} = 65 °C		$P_{tot}$	max.	100	mW	
Junction temperature		Tj	max.	100	oC	
Luminous intensity						
IF = 20 mA	CQY24B(L)	l _v	min.	0,7	mcd	
	CQY24B(L)-2	Iv		1,0 to 2,2	mcd	
	CQY24B(L)-3	lv		1,6 to 3,5	mcd	
	CQY24B(L)-4	Ι <mark>ν</mark>	min.	3,0	mcd	
Wavelength at peak emission		$\lambda_{p}$	typ.	650	nm	
Beamwidth between half-intensity directions		$\theta_{1/2}$	typ.	70	0	4

## Dimensions in mm

#### **MECHANICAL DATA**

Fig. 1a SOD-63AI. CQY24B







Fig. 1b SOD-63L. CQY24BL







Note: Solderability not guaranteed in tie-bar zone.

RATINGS						
Limiting values in accordance with the Absolut	e Maximum Syste	m (IEC 134)				
Continuous reverse voltage		$V_{R}$	max.	5	V	
Forward current						
d.c.		۱۴	max.	50	mΑ	
Forward current peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_p = 10 \mu s$ ; $\delta = 0.01$		!FRM	max. max.		A mA	-
Total power dissipation up to T _{amb} = 65 °C		$P_{tot}$	max.	100	mW	
Storage temperature		$T_{stg}$	-55 to	+100	oC	
Junction temperature		Тj	max.	100	oC	
Lead soldering temperature; $t_{sld}$ < 7 s $>$ 1,5 mm from the seating plane for CQY24 $>$ 5 mm from the plastic body for CQY24BL		T _{sld}	max.	260	oC	
THERMAL RESISTANCE						
From junction to ambient mounted on a p.c. board		R _{th j-a}	max.	350	K/W	
CHARACTERISTICS						
T _j = 25 °C unless otherwise specified						
Forward voltage I _F = 10 mA		VF	typ. max.	1,7 2,0		<b>←</b>
Reverse current V _R = 5 V		I _R	max.	100	μΑ	
Beamwidth between half-intensity directions IF = 10 mA		$\theta 1/_{2}$	typ.	70	О	•
Bandwidth at half height		$\Delta\lambda$	typ.	20	nm	
Wavelength at peak emission  IF = 20 mA		λp	typ.	650	nm	
Luminous intensity (on axis)  IF = 20 mA	CQY24B(L) CQY24B(L)-2 CQY24B(L)-3 CQY24B(L)-4	l _v l _v l _v		to 2,2 to 3,5		
Diode capacitance V _R = 0; f = 1 MHz	. ,	Cd	typ.		pF	•



Fig. 2.



Fig. 4.



Fig. 3.



Fig. 5.



Fig. 6 Typical values.





Fig. 8.



Fig. 9.



Fig. 10 Typical values.

# LIGHT EMITTING DIODE

Circular light emitting diode with a diameter of 3 mm which emits red light at a typical peak wavelength of 650 nm (GaAsP; standard-red) when forward biased.

The CQY54A has a SOD-53 outline and is encapsulated in a red diffusing resin.

Together with the CQY95B and the CQY97A the CQY54A forms one LED family.

Continuous reverse voltage		VR	max.	5 V	
Forward current (d.c.)		lE AU	max.	50 mA	
Total power dissipation up to Tamb = 40 °C		P _{tot}	max.	120 mW	-
Junction temperature		Ti	max.	100 °C	
Luminous intensity		•			
IF = 20 mA	CQY54A	lv	min.	0,7 mcd	-
	CQY54A-2	١ _٧	1,0	) to 2,2 mcd	
	CQY54A-3	Iv	min.	1,6 mcd	
Wavelength at peak emission					
IF = 20 mA		$\lambda_{p}$	typ.	650 nm	
Beamwidth at half-intensity directions		•			
IF = 20 mA		$\theta_{1/2}$	typ.	70 °	-

## **MECHANICAL DATA**

Fig. 1 SOD-53E.

Dimensions in mm







RATINGS						
Limiting values in accordance with the Absolute	Maximum Syste	em (IEC 134)				
Reverse voltage		$V_{R}$	max.	5	V	
Forward current						
d.c.		l F	max.		mΑ	
peak value; $t_p = 1 \mu s$ ; $f = 300 Hz$		!FRM	max.	1		
Total power dissipation up to T _{amb} = 40 °C		$P_{tot}$	max.	120		◀
Storage temperature		$T_{stg}$	55 to	+100	oC	
Junction temperature		Тj	max.	100	oC	
Lead soldering temperature						
$>$ 1,5 mm from the seating plane; $t_{ m Sld}$ $<$ 7 s		$T_{sld}$	max.	260	oC	
THERMAL RESISTANCE						
From junction to ambient						
when the device is mounted on a p.c. board		R _{th j-a}	max.	500	K/W	
CHARACTERISTICS						
T _i = 25 °C unless otherwise specified						
Forward voltage				4 7		
IF = 20 mA		VF	typ. max.	1,7 2,0		
Reverse current			mux.	2,0	•	
V _R = 5 V		I _R	max.	100	μА	
Beamwidth between half-intensity directions		• • • • • • • • • • • • • • • • • • • •				
IF = 20 mA		$\theta$ 1/3	typ.	70	0	◀
Bandwidth at half height		Δλ	typ.	20	nm	
Wavelength at peak emission						
IF = 20 mA		λp	typ.	650	nm	
Luminous intensity						
1F = 20 mA	CQY54A	l _V	min.		mcd	◀
	CQY54A-2	lv		to 2,2		
	CQY54A-3	I _V ,	min.	1,6	mcd	
Diode capacitance		<b>C</b> .		45	n E	
$V_R = 0$ ; $f = 1 MHz$		Cd	typ.	45	pΕ	



Fig. 2.



Fig. 4 Typical values.



Fig. 6 IF = 20 mA; typ. values.



Fig. 3 T_{amb} = 25 °C.



Fig. 5 IF = 20 mA; typ. values.



Fig. 7  $t_p = 50 \mu s$ ;  $T_j = 25 \, {}^{\circ}\text{C}$ .



Fig. 8 Typical values.



Fig. 9 Typical values.

terminal terminal

# LIGHT EMITTING DIODE

Diffused planar light emitting diode intended for optical coupling and encoding. It emits radiation in the near infrared when forward biased. Infrared translucent epoxy encapsulation (dark blue). Combination with phototransistor BPW22A is recommended.

### QUICK REFERENCE DATA

$v_R$	max.	5 V	
۱F	max.	50 mA	
$P_{tot}$	max.	100 mW	
l _e	typ.	2 mW/sr	-
λ	typ.	930 nm	
	I _F P _{tot}	I _F max. P _{tot} max. I _e typ.	I _F max. 50 mA P _{tot} max. 100 mW I _e typ. 2 mW/sr

### **MECHANICAL DATA**

Fig. 1 SOD-53F.

Dimensions in mm







R	Δ٦	П	N	GS	:

Limiting values in accordance with the Absolute Maximum Syst	tem (IEC 134)			
Continuous reverse voltage	v _R	max.	5 \	<b>V</b>
Forward current				
d.c.	l _F	max.	50 n	nΑ
(peak value); $t_p = 10 \mu s$ ; $\delta = 0.01$	FRM	max.	200 n	nΑ
Total power dissipation up to T _{amb} = 25 °C (see Fig. 2)	P _{tot}	max.	100 n	nW.
Storage temperature	$T_{stg}$	-55 to	+ 100	C
Junction temperature	Τ _i	max.	100 C	C
Lead soldering temperature	,			
$\rightarrow$ > 1,5 mm from the seating plane; $t_{sld}$ < 7 s	$T_{sld}$	max.	260 °	C,C
THERMAL RESISTANCE				
From junction to ambient,				
device mounted on a printed-circuit board	R _{th i-a}		750 k	



Fig. 2 Power derating curve versus ambient temperature.

	-	-		
CHA	KA	CIE	HIS	HCS

CHARACTERISTICS						
T _j = 25 °C						
Forward voltage I _F = 20 mA		٧ _F	typ. max,	1,2 1,5		
Reverse current V _R = 5 V		I _R	max.	100	μΑ	
Diode capacitance V _R = 0; f = 1 MHz		C _d	typ.	40	pF	
Total radiant power $I_F = 20 \text{ mA}$		$\phi_{\mathbf{e}}$	typ.	1	mW	
Radiant intensity (on-axis) $I_F = 20 \text{ mA}$	CQY58A CQY58A-1	l _e	min. min. max.	1	mW/sr mW/sr mW/sr	
	CQY58A-2	l _e	min.		mW/sr	
Wavelength at peak emission		λ	typ.	930	nm	
Bandwidth at half height		Δλ	typ.	50	nm	
Beamwidth between half-intensity directions $I_F = 20 \text{ mA}$		$\theta_{1/2}$	typ.	20	o	<b>4</b>
Switching times I _{Fon} = 20 mA						
Light rise time		t _r	typ.	3	μs	
Light fall time		t _f	typ.	3	μs	



Fig. 3  $T_{amb} = 25$  °C.



Fig. 4  $t_p$  = 10  $\mu$ s; T = 1 ms;  $T_{amb}$  = 25  $^{\circ}$ C.



Fig. 5 Typical values.





Fig. 8  $V_{CE}$  = 5 V;  $T_{amb}$  = 25 °C; typical values.



Fig. 9  $V_{CE} = 5 \text{ V}$ ;  $d^* = 10 \text{ mm}$ ; typical values.

^{*} d = shortest free distance of mechanical on-axis when BPW22A is coupled with CQY58A.



Fig. 10 Spectral response.



Fig. 11 Typical values.

# GaAs LIGHT EMITTING DIODE

Epitaxial gallium arsenide light emitting diode intended for remote-control applications. It emits radiation in the near infrared when forward biased. Infrared translucent epoxy encapsulation (dark blue).

Continuous reverse voltage		٧R	max.	5 V
Forward current (d.c.)		۱F	max.	130 mA
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	215 mW
Junction temperature		Τj	max.	100 °C
Radiant intensity (on-axis) at IF = 100 mA	CQY89A	le	min.	9 mW/sr
	CQY89A-1	l _e	min.	12 mW/sr
	CQY89A-2	le	min.	15 mW/sr
Wavelength at peak emission		$\lambda_{p}$	typ.	930 nm

## ► MECHANICAL DATA

Fig. 1 SOD-63B2.

Dimensions in mm







RATINGS						
Limiting values in accordance with the Absolute Ma	ximum System	(IEC 134)				
Continuous reverse voltage		$v_R$	max.	. 5	V	
Forward current (d.c.)		I _F	max.	130	mA	
Forward current (peak value) $t_p \le 50 \ \mu s; \delta = 0.05$		^I FM	max.	1000	mA	
Non-repetitive peak forward current ( $t_p \le 10 \mu s$ )		1 _{FSM}	max.	2500	mΑ	
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	215	mW	
Storage temperature		T _{stg}	-55 to	+ 100	oC	
Junction temperature		Tj	max.	100	oC	
Lead soldering temperature up to the seating plane; $t_{sld}$ $<$ 10 s		T _{sld}	max.	260	оС	
THERMAL RESISTANCE						
From junction to ambient						
mounted on a printed-circuit board		R _{th j-a}	=	350	K/W	
CHARACTERISTICS						
T _j = 25 °C unless otherwise specified						
Forward voltage			typ.	1,4	V	
I _F = 100 mA		٧ _F	<	1,6		
$I_{FM} = 1500 \text{ mA}; t_p = 20 \mu s; \delta = 0.033$		$v_{\sf FM}$	typ.	2,4	٧	
Reverse current						
V _R = 5 V		^I R	<	100	μΑ	
Diode capacitance V _R = 0; f = 1 MHz		c _d	typ.	40	pF	
Total radiant power			>	7	mW	
I _F = 100 mA		$\phi_{\mathbf{e}}$	typ.	12	mW	
Decrease of radiant power with temperature $I_F = 100 \text{ mA}$		$rac{\Delta\phi_{f e}}{\Delta T_{f i}}$	typ.	1	%/K	
Radiant intensity (on-axis)		,				
IF = 100 mA	CQY89A CQY89A-1	le	min.		mW/sr	-
	CQY89A-1	l _e l _e	min. min.		mW/sr mW/sr	
Wavelength at peak emission  IF = 100 mA		·e λ _p	typ.	930		
Spectral line half width		- · · · ·	-,			
IF = 100 mA		Δλ	typ.	50	nm	
Beamwidth between half-intensity directions IF = 100 mA		θ1/3	typ.	40	o	
•		12	,	_		



Fig. 2  $T_{amb}$  = 25 °C;  $T_{j peak}$  = 100 °C.



Fig. 3.



Fig. 4.



Fig. 5.



Fig. 7.



Fig. 6  $T_j = 25$  °C.



Fig. 8  $T_{amb}$  = 25 °C;  $t_p$  = 10  $\mu$ s; T = 1 ms.



Fig. 9.



Fig. 10.

# LIGHT EMITTING DIODES

Circular light emitting diodes with a diameter of 5 mm which emit green light at a typical peak wavelength of 565 nm (GaP; super-green) when forward biased.

The CQY94B and CQY94BL have a SOD-63 outline and are encapsulated in a green diffusing resin. Because of their resistance to high forward currents, the CQY94B and CQY94BL are suitable for those applications where high lumousity is required.

The CQY94BL is the long-lead version of the CQY94B and has no seating plane but is in all other respects equal to the CQY94B.

Continuous reverse voltage		$v_R$	max.	5	V	
Forward current (d.c.)		lF	max.	60	mΑ	
Total power dissipation up to Tamb = 35 °C		$P_{tot}$	max.	180	mW.	
Junction temperature		Tj	max.	100	oC	
Luminous intensity IF = 10 mA	CQY94B(L) CQY94B(L)-3 CQY94B(L)-4 CQY94B(L)-5	l _V l _V l _V	min.	1,6 to 3,5 3,0 to 7,0		•
Wavelength at peak emission		$\lambda_{p}$	typ.	565	nm	
Beamwidth between half-intensity directions		$\theta_{1/2}$	typ.	70	0	-

# MECHANICAL DATA

Fig 1a SOD-63AI. CQY94B

Dimensions in mm







Fig. 1b SOD-63L. CQY94BL







Note: Solderability not guaranteed in tie-bar zone.

414 February 1986

Diode capacitance VR = 0; f = 1 MHz

RATINGS						
Limiting values in accordance with the Absolut	e Maximum Syste	m (IEC 134)				
Reverse voltage		$V_{R}$	max.	5	V	
Forward current d.c.		lF	max.	60	mΑ	
Forward current peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_p = 1 \text{ ms}$ ; $\delta = 0.33$		[†] FRM	max. max.	1 150	A mA	
Total power dissipation up to $T_{amb} = 35 \text{ oC}$		$P_{tot}$	max.	180	mW	
Storage temperature		$T_{stg}$	−55 t	-55 to +100 °C		
Junction temperature		Тj	max.	100	oC	
Lead soldering temperature at $t_{s d} < 7$ s $> 1,5$ mm from the seating plane for CQY94 $> 5$ mm from the plastic body for CQY94BI		T _{sld}	max.	260	oC	
THERMAL RESISTANCE						
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	350	K/W	
CHARACTERISTICS						
T _i = 25 °C unless otherwise specified						
Forward voltage IF = 10 mA		VF	typ. max.	2,1 3,0		
Reverse current V _R = 5 V		I _R	max.	100	μΑ	
Beamwidth between half-intensity directions $I_F = 10 \text{ mA}$		$\theta 1/_{2}$	typ.	70	О	•
Bandwidth at half height		$\Delta\lambda$	typ.	30	nm	
Wavelength at peak emission $I_F = 10 \text{ mA}$		$\lambda_p$	typ.	565	nm	
Luminous intensity IF = 10 mA	CQY94B(L) CQY94B(L)-3 CQY94B(L)-4 CQY94B(L)-5	l _v l _v l _v	•	to 3,5 to 7,0		<b>-</b>

 $\mathsf{C}_\mathsf{d}$ 

20 pF

typ.



Fig. 2 Typical values.



Fig. 4  $t_{on}$  = 1 ms;  $\delta$  = 0,33;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6 Typical values.



Fig. 3 Tamb = 25 °C; typ. values.



Fig. 5 Typical values.



Fig. 7  $t_p = 50 \,\mu s$ .



Fig. 8 IF = 10 mA; typ. values.



Fig. 9 Typical values.



## LIGHT EMITTING DIODE

Circular light emitting diode with a diameter of 3 mm which emits green light at a typical peak wavelength of 565 nm (GaP; super-green) when forward biased.

The CQY95B has a SOD-53 outline and is encapsulated in a green diffusing resin.

This LED can resist higher forward currents when a higher lumiousity is required. Because the CQY95B is available in high  $I_V$  classes, it is suitable for those applications where only low currents are available.

Continuous reverse voltage		VR	max.	5	V	
Forward current (d.c.)		lF	max.	60	mA	
Total power dissipation up to $T_{amb} = 25  {}^{\circ}\text{C}$		$P_{tot}$	max.	150	mW	
Junction temperature		Тj	max.	100	oC	
Luminous intensity						
$I_F = 10 \text{ mA}$	CQY95B	I _V	min.	0,7	mcd	
	CQY95B-3	I _V		1,6 to 3,5	mcd	
	CQY95B-4	lv		3,0 to 7,0	mcd	
	CQY95B-5	l _v	min.	5,0	mcd	
Wavelength at peak emission		$\lambda_{p}$	typ.	565	nm	
Beamwidth between half-intensity directions		$\theta \frac{1}{2}$	typ.	70	0	•

# **MECHANICAL DATA**

Fig. 1 SOD-53E.

Dimensions in mm







RATI	NGS
------	-----

Limiting values in accordance with the Absolute	Maximum Systen	n (IEC 134)				
Reverse voltage		$V_{R}$	max.	5	V	
Forward current						
d.c.		1F	max.		mΑ	
peak value; $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$ peak value; $t_{on} = 1 \text{ ms}$ ; $\delta = 0.33$		FRM	max. max.	1 150	A m A	
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	150		
Storage temperature			-55 to -			
· ·		T _{stg}		100		
Junction temperature		Тj	max.	100	•0	
Lead soldering temperature > 1,5 mm from the seating plane; t _{sld} < 7 s		T _{sld}	max.	260	οС	
> 1,0 mm from the seating plane, esign < 7 s		' SIU	mux.		•	
THERMAL RESISTANCE						
From junction to ambient when the device is						
mounted on a p.c. board		R _{th j-a}	max.	500	K/W	
CHARACTERISTICS						
T _i = 25 °C unless otherwise specified						
Forward voltage			tun	2,1	1/	
I _F = 10 mA		٧F	typ. max.	3,0		
Reverse current				•		
V _R = 5 V		IR	max.	100	μΑ	
Beamwidth between half-intensity directions		$\theta_{1/2}$	typ.	70	0	-
Bandwidth at half height		Δλ	typ.	30	nm	
Wavelength at peak emission		$\lambda_{p}$	typ.	565	nm	
Luminous intensity		•				
$I_F = 10 \text{ mA}$	CQY95B	$I_{\mathbf{V}}$	min.		mcd	
	CQY95B-3 CQY95B-4	l _V	1,6 to 3,0 to			
	CQY95B-5	l _V I _V	min.		mcd	
Diode capacitance		•		,-		
V _R = 0; f = 1 MHz		$C_d$	typ.	20	pF	-



Fig. 2.

160

1_{FM}
(mA)

120

80

40

0

1 2 3 V_{FM} (V) 4

Fig. 4  $t_{on}$  = 1 ms;  $\delta$  = 0,33;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6 Typical values.









Fig. 7  $t_p = 50 \mu s$ ; typ. values.



Fig. 8  $I_F = 10 \text{ mA}$ ; typ. values.



Fig. 9 Typical values.



# LIGHT EMITTING DIODES

Circular light emitting diodes with a diameter of 5 mm which emit yellow light at a typical peak wavelength of 590 nm (GaPAs) when forward biased.

The CQY96 and CQY96L have a SOD-63 outline and are encapsulated in a yellow diffusing resin.

The CQY96L is the long-lead version of the CQY96 and has no seating plane but is in all other respects equal to the CQY96.

#### QUICK REFERENCE DATA

Continuous reverse voltage		٧R	max.	5 \	V	
Forward current (d.c.)		lF	max.	30 1	mΑ	
Total power dissipation up to Tamb = 65 °C		$P_{tot}$	max.	90 1	mW	
Junction temperature		Τj	max.	100	oC	
Luminous intensity (on-axis)		•				
IF = 10 mA	CQY96(L)	I _V	min.	0,7 1	mcd	
	CQY96(L)-3	Iv	1,6	i to 3,5 ı	mcd	
	CQY96(L)-4	l _v	3,0	to 7,0 i	mcd	
	CQY96(L)-5	Ι <mark>ν</mark>	5,0	0 to 12	mcd	◄
Wavelength at peak emission		$\lambda_{p}$	typ.	590 r	nm	
Beamwidth between half-intensity directions		$\theta_{1/2}$	typ.	70 (	0	-

## Dimensions in mm

#### **MECHANICAL DATA**

Fig. 1a SOD-63A1. CQY96







Fig. 1b SOD-63L. CQY96L







Note: Solderability not guaranteed in tie-bar zone.

Limiting values in accordance with the Absolute	Maximum Syste	em (IEC 134)				
Continuous reverse voltage		٧R	max.	5	٧	
Forward current						
d.c.		۱۴	max.	30	mΑ	
Forward current						
peak value; $t_p = 1 \mu s$ ; $f = 300 Hz$ peak value; $t_{OR} = 1 ms$ ; $\delta = 0.33$		IFRM	max. max.		A mA	
Total power dissipation up to T _{amb} = 65 °C		$P_{tot}$	max.	90	mW	
Storage temperature		$T_{stg}$	55	to +100	oC	
Junction temperature		Тj	max.	100	oC	
Lead soldering temperature at $t_{sld}$ < 7 s > 1,5 mm from the seating plane for CQY96 > 5 mm from the plastic body for CQY96L		T _{sld}	max.	260	oC	
THERMAL RESISTANCE						
From junction to ambient		_				
mounted on a printed board		R _{th j-a}	=	350	K/W	
CHARACTERISTICS						
T _j = 25 °C unless otherwise specified						
Forward voltage			typ.	2,1	V	
IF = 10 mA		VF	max.	•	v	
Reverse current						
V _R = 5 V		^I R	max.	100	μΑ	
Diode capacitance						
$V_R = 0$ ; f = 1 MHz		Cd	typ.	15	рF	
Luminous intensity (on-axis)	00700(1)	•		0.7		
IF = 10 mA	CQY96(L) CQY96(L)-3	l _V I _V	min. 1	0,7 6 to 3,5	mcd mcd	
	CQY96(L)-4	lv		,0 to 7,0		
	CQY96(L)-5	I _V	5	,0 to 12	mcd	-
Wavelength at peak emission		$\lambda_{\mathbf{p}}$	typ.	590	nm	
Bandwidth at half height		$\theta 1_2$	typ.	40	nm	
Beamwidth between half-intensity directions		Δλ	typ.	70	0	<b>←</b>



Fig. 2.



Fig. 4  $t_{on}$  = 1 ms;  $\delta$  = 0,33;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6 Typical values.



Fig. 3 Tamb = 25 °C; typ. values.



Fig. 5 Typical values.



Fig. 7  $t_p = 50 \,\mu s$ .



Fig. 8 Typical values.



Fig. 9 Typical values.



# LIGHT EMITTING DIODE

Circular light emitting diode with a diameter of 3 mm which emits yellow light at a typical peak wavelength of 590 nm (GaPAs) when forward biased.

The CQY97A has a SOD-53 envelope and is encapsulated in a yellow coloured resin.

## **QUICK REFERENCE DATA**

Continuous reverse voltage		$V_{R}$	max.	5	V
Forward current (d.c.)		۱F	max.	30	mΑ
Total power dissipation up to $T_{amb} = 55$ °C	C	$P_{tot}$	max.	90	mW
Junction temperature		Τį	max.	100	oC
Luminous intensity		•			
IF = 10 mA	CQY97A	lv	min.	0,7	mcd
	CQY97A-3	lv	1,6	6 to 3,5	mcd
	CQY97A-4	lv	3,0	0 to 7,0	mcd
	CQY97A-5	Ι <mark>ν</mark>	min.	5,0	mcd
Wavelength at peak emission					
IF = 10 mA		$\lambda_{p}$	typ.	590	nm
Beamwidth at half-intensity directions		θ1/2	typ.	70	0

## **MECHANICAL DATA**

Fig. 1 SOD-53E.

Dimensions in mm







V_R = 0; f = 1 MHz

RATINGS						
Limiting values in accordance with the Absolute	Maximum Syste	em (IEC 134)				
Reverse voltage		$v_R$	max.	5	٧	
Forward current d.c. peak value, $t_p = 1 \mu s$ ; $f = 300 \text{ Hz}$		l _F	max.	1	mA A mA	
peak value; $t_{on} = 1$ ms; $\delta = 0.33$			max.			
Total power dissipation up to T _{amb} = 55 °C		P _{tot}	max.		mW	
Storage temperature		T _{stg}		+100		
Junction temperature		Тj	max.	100	oC.	
Lead soldering temperature $>$ 1,5 mm from the seating plane; $t_{sld} < 7$ s		T _{sld}	max.	260	oC	
THERMAL RESISTANCE						
From junction to ambient when the device is mounted on a p.c. board		R _{th j-a}	max.	500	K/W	
CHARACTERISTICS						
T _i = 25 °C unless otherwise specified						
Forward voltage IF = 10 mA		VF	typ. max.	2,1 3,0		
Reverse current V _R = 5 V		IR	max.	100	μΑ	
Beamwidth between half-intensity directions IF = 10 mA		$\theta 1/2$	typ.	70	o	•
Bandwidth at half height		Δλ	typ.	40	nm	
Wavelength at peak emission  IF = 10 mA		$\lambda_{\mathbf{p}}$	typ.	590	nm	
Luminous intensity (class division)  IF = 10 mA	CQY97A CQY97A-3 CQY97A-4	l _V l _V l _V	3,0	to 3,5 to 7,0	mcd	
Diode capacitance	CQY97A-5	I _V	min.	5,0	mcd	
Diode oupdertance		_			_	_

 $C_d$ 

15 pF

typ.



Fig. 2.

7288888

1FM (mA)

40

20

0 1 2 3 Very (V) 4

Fig. 4  $t_p$  = 50  $\mu$ s;  $\delta$  = 0,01;  $T_{amb}$  = 25 °C; typ. values.



Fig. 6 Typical values.





Fig. 5 Typical values.



Fig. 7  $T_j = 25$  °C, typ. values.



Fig. 8 Typical values.



Fig. 9 Typical values.



# INDEX OF TYPE NUMBERS

The inclusion of a type number in this publication does not necessarily imply its availability.

type no.	book	section	type no.	book	section	type no.	book	section
BA220	S1	SD	BAS29	S7/S1	Mm/SD	BAV101	S7/S1	Mm/SD
BA221	S1	SD	BAS31	S7/S1	Mm/SD	BAV 102	S7/S1	Mm/SD
BA223	S1	T	BAS32	S7/S1	Mm/SD	BAV 103	S7/S1	Mm/SD
BA281	S1	SD	BAS35	S7/S1	Mm/SD	BAW56	S7/S1	Mm/SD
BA314	S1	Vrg	BAS45	S1	SD	BAW62	S1	SD
BA315	S1	Vrg	BAS56	S1/S7	SD/Mm	BAX12	S1	SD
BA316	S1	SD	BAT17	S7/S1	Mm/T	BAX14	S1	SD
BA317	S1	SD	BAT18	S7/S1	Mm/T	BAX18	S1	SD
BA318	S1	SD	BAT54	S1/S7	SD/Mm	BAY80	S1	SD
BA423	S1	T	BAT74	S1/S7	SD/Mm	BB112	S1	T
BA480	S1	T	BAT81	S1	Т.	BB119	s 1	T
BA481	S1	T	BAT82	S1	T	BB130	S1	T
BA482	S1	T	BAT83	S1	T	BB204B	S1	T
BA483	S1	T	BAT85	S1	T	BB204G	S1	T,
BA484	S1	T	BAT86	S1	T	BB212	S1	T
BA682	S1/S7	T/Mm	BAV10	S1	SD	BB215	s7	Mm
BA683	S1/S7	T/Mm	BAV18	S1	SD	BB219	S7	Mm
BAS11	S1	SD	BAV19	S1	SD	BB405B	S1	T
BAS15	S1	SD	BAV20	S1	SD	BB417	S1	T
BAS16	S7/S1	Mm/SD	BAV21	S1	SD	BB809	S1	T T
BAS17	S7/S1	Mm/Vrg	BAV23	S7/S1	Mm/SD	BB909A	S1	Т
BAS19	S7/S1	Mm/SD	BAV45	S1 [']	Sp	вв909в	S1	T
BAS20	S7/S1	Mm/SD	BAV70	S7/S1	Mm/SD	BBY31	S7/S1	Mm/T
BAS21	S7/S1	Mm/SD	BAV99	S7/S1	Mm/SD	BBY40	S7/S1	Mm/T
BAS28	S7/S1	Mm/SD	BAV100	S7/S1	Mm/SD	BC107	s3	Sm

Mm = Microminiature semiconductors

for hybrid circuits

SD = Small-signal diodes Sm = Small-signal transistors Sp = Special diodes T = Tuner diodes

Vrg = Voltage regulator diodes

type no.	book	section	type no.	book	section	type no.	book	section
BC108	<b>S</b> 3	Sm	BC808	S7	Mm	BCX17;R	s7	Mm
BC109	s3	Sm	BC817	S7	Mm	BCX18;R	S7	Mm
BC140	<b>S</b> 3	Sm	BC818	S7	Mm	BCX19;R	s7	Mm
BC141	s3	Sm	BC846	<b>S7</b>	Mm	BCX20;R	s7	Mm
BC146	<b>S</b> 3	Sm	BC847	S7	Mm	BCX51	<b>S</b> 7	Mm
BC160	s3	Sm	BC848	S7	Mm	BCX52	s7	Mm
BC161	<b>S</b> 3	Sm	BC849	s7	Mm	BCX53	S7	Mm
BC177	53	Sm	BC850	<b>S7</b>	Mm	BCX54	S7	Mm
BC178	<b>S</b> 3	Sm	BC856	S7	Mm	BCX55	s7	Mm
BC179	s3	Sm	BC857	<b>S7</b>	Mm	BCX56	s7	Mm
BC200	<b>s</b> 3	Sm	BC858	<b>s</b> 7	Mm	BCX68	<b>s</b> 7	Mm
BC264A	S5	FET	BC859	s7	Mm	BCX69	s7	mm
BC264B	S5	FET	BC860	<b>S</b> 7	Mm	BCX70*	s7	Mm
BC264C	S5	FET	BC868	s7	Mm	BCX71*	s7	Mm
BC264D	\$5	FET	BC869	<b>S</b> 7	Mm	BCY56	<b>S</b> 3	Sm
BC327;A	s3	Sm	BCF29;R	<b>S</b> 7	Mm	BCY57	<b>S</b> 3	Sm
BC328	<b>S</b> 3	Sm	BCF30;R	S7	Mm	BCY58	<b>S</b> 3	Sm
BC337;A	<b>5</b> 3	Sm	BCF32;R	S7	Mm	BCY59	S3	Sm
BC338	S3	Sm	BCF33;R	s7	Mm	BCY70	<b>S</b> 3	Sm
BC368	<b>S</b> 3	Sm	BCF70;R	s7	Mm	BCY71	S3	Sm
BC369	s3	Sm	BCF81;R	s7	Mm	BCY72	53	Sm
BC375	53	Sm	BCV26	S7	Mm	BCY78	<b>S</b> 3	Sm
BC376	s3	Sm	BCV27	s7	Mm	BCY79	<b>S</b> 3	Sm
BC546	53	Sm	BCV61	s7	Mm	BCY87	<b>S</b> 3	Sm
BC547	<b>S</b> 3	Sm	BCV62	s7	Mm	BCY88	<b>S</b> 3	Sm
BC548	<b>s</b> 3	Sm	BCV71;R	<b>S</b> 7	Mm	BCY89	<b>S</b> 3	Sm
BC549	S3	Sm	BCV72;R	s7	Mm	BD131	S4a	P
BC550	S3	Sm	BCW29;R	s7	Mm	BD132	S4a	P
BC556	<b>S</b> 3	Sm	BCW30;R	s7	Mm	BD135	S4a	P
BC557	<b>S</b> 3	Sm	BCW31;R	S7	Mm	BD136	S4a	P
BC558	<b>s</b> 3	Sm	BCW32;R	<b>S</b> 7	Mm	BD137	S4a	P
BC559	<b>S</b> 3	Sm	BCW33;R	s7	Mm	BD138	S4a	P
BC560	53	Sm	BCW60*	s7	Mm	BD139	S4a	P
BC635	53	Sm	BCW61*	s7	Mm	BD140	S4a	P
BC636	s3	Sm	BCW69;R	S7	Mm	BD201	S4a	P
BC637	<b>s</b> 3	Sm	BCW70;R	s7	Mm	BD202	S4a	P
BC638	53	Sm	BCW71;R	s7	Mm	BD203	S4a	P
BC639	53	Sm	BCW72;R	S7	Mm	BD204	S4a	P
BC640	53	Sm	BCW81;R	s7	Mm	BD226	S4a	P
BC807	<b>s</b> 7	Mm	BCW89;R	s7	Mm	BD227	S4a	P

^{* =} series

FET = Field-effect transistors

Mm = Microminiature semiconductors for hybrid circuits

P = Low-frequency power transistors

Sm = Small-signal transistors

type no.	book	section	type no.	book	section	type no.	book	section
BD228	S4a	P	BD335	S4a	P	BD839	S4a	P
BD229	S4a	P	BD336	S4a	P	BD840	S4a	P
BD230	S4a	P	BD337	S4a	P	BD841	S4a	P
BD231	S4a	P	BD338	S4a	P	BD842	S4a	P
BD233	S4a	P	BD433	S4a	P	BD843	S4a	P
BD234	S4a	P	BD434	S4a	p	BD844	S4a	P
BD235	S4a	P	BD435	S4a	P	BD845	S4a	P
BD236	S4a	P	BD436	S4a	P	BD846	S4a	P
BD237	S4a	P	BD437	S4a	P	BD847	S4a	P
BD238	S4a	P	BD438	S4a	P	BD848	S4a	P
BD239	S4a	P	BD645	S4a	P	BD849	S4a	P
BD239A	S4a	P	BD646	S4a	P	BD850	S4a	P
BD239A BD239B	S4a S4a	P	BD647	S4a S4a	P P	BD933	S4a	P
	54a 54a	P P				BD933	54a 54a	P
BD239C		P P	BD648	S4a	P	BD934 BD935	S4a S4a	P
BD240	S4a	P	BD649	S4a	P	DD333	54a	P
BD24OA	S4a	P	BD650	S4a	P	BD936	S4a	P
BD24OB	S4a	P	BD651	S4a	P	BD937	S4a	P
BD240C	S4a	P	BD652	S4a	P	BD938	S4a	P
BD241	S4a	P	BD675	S4a	P	BD939	S4a	P
BD241A	S4a	P	BD676	S4a	P	BD940	S4a	P
BD241B	S4a	P	BD677	S4a	P	BD941	S4a	P
BD241C	S4a	P	BD678	S4a	P	BD942	S4a	P
BD242	S4a	P	BD679	S4a	P	BD943	S4a	P
BD242A	S4a	P	BD680	S4a	P	BD944	S4a	P
BD242B	S4a	P	BD681	S4a	P	BD945	S4a	P
BD242C	S4a	P	BD682	S4a	P	BD946	S4a	P
BD242C	54a	P	BD683	S4a	P P	BD947	S4a	P
BD243 BD243A	S4a	P	BD684	S4a S4a	P	BD948	S4a	P
BD243R	S4a	P	BD813	S4a	P	BD949	S4a	P
BD243B BD243C	S4a	P	BD814	54a	P	BD950	S4a	P
BD244	S4a	P	BD815	C.4.	P	BD951	S4a	P
BD244 BD244A	S4a S4a	P	BD816	S4a		BD951	54a 54a	P P
BD244A BD244B	54a 54a	P	BD816	S4a	P	BD953	54a 54a	P
BD244B BD244C	54a 54a	P	BD817	S4a S4a	P P	BD954	S4a	P
BD329	54a 54a	P	BD815	54a 54a	P	BD955	54a	P
pp220	04-		DD02C	CA.	<b>.</b>	DDOEC	C.A.o.	n
BD330	S4a	P	BD826	S4a	P	BD956	S4a	P
BD331	S4a	P	BD827	S4a	P	BDT20	S4a	P
BD332	S4a	P	BD828	S4a	P	BDT21	S4a	P
BD333	S4a	P	BD829	54a	P	BDT29	S4a	P
BD334	S4a	P	BD830	S4a	P	BDT29A	S4a	P

P = Low-frequency power transistors

type no.	book	section	type no.	book	section	type no.	book	section
BDT29B	S4a	P	BDT62B	S4a	P	BDV67A	S4a	P
BDT29C	S4a	P	BDT62C	S4a	P	BDV67B	S4a	P
BDT30	S4a	<b>p</b> . :	BDT63	S4a	P	BDV67C	S4a	P
BDT3OA	54a	P	BDT63A	S4a	P	BDV67D	S4a	P
BDT30B	S4a	P	BDT63B	S4a	P	BDV91	S4a	P
DDISOB	Jaa	<b>.</b>	DDIGSD	Jia	E	55151	544	•
BDT30C	S4a	P	BDT63C	S4a	P	BDV92	S4a	P
BDT31	S4a	P ·	BDT64	S4a	P	BDV93	S4a	P
BDT31A	S4a	P	BDT64A	S4a	P	BDV94	S4a	P
BDT31B	S4a	P	BDT64B	S4a	P	BDV95	S4a	P
BDT31C	S4a	P	BDT64C	S4a	P	BDV96	S4a	P
						1		
BDT32	S4a	P	BDT65	S4a	P	BDW55	S4a	P
BDT32A	S4a	P	BDT65A	S4a	P	BDW56	S4a	P
BDT32B	S4a	P	BDT65B	S4a	P	BDW57	S4a	P
BDT32C	S4a	P	BDT65C	S4a	P	BDW58	S4a	P
BDT41	S4a	P	BDT81	S4a	P	BDW59	S4a	P
								_
BDT41A	S4a	1 <b>P</b> 1 1 2	BDT82	S4a	P	BDW60	S4a	P
BDT41B	S4a	P	BDT83	S4a	P	BDX35	S4a	P
BDT41C	S4a	P	BDT84	S4a	P	BDX36	S4a	P
BDT42	S4a	P	BDT85	S4a	P	BDX37	S4a	P
BDT42A	S4a	P	BDT86	S4a	<b>P</b>	BDX42	S4a	P
BDT42B	S4a	p	BDT87	S4a	P	BDX43	S4a	P
BDT42C	S4a	P	BDT88	S4a	P	BDX44	S4a	P
BDT51	S4a	P	BDT91	S4a	P	BDX45	S4a	P
BDT52	S4a	P	BDT92	S4a	P	BDX46	S4a	P
BDT53	S4a	P	BDT93	S4a	P	BDX47	S4a	P
DD133	Jaa	F	DD133	544	-	DDATI	Jau	•
BDT54	S4a	P	BDT94	S4a	P	BDX62	S4a	P
BDT55	S4a	P	BDT95	S4a	P	BDX62A	S4a	P
BDT56	S4a	P	BDT96	S4a	P	BDX62B	S4a	P
BDT57	S4a	P	BDV64	S4a	P	BDX62C	S4a	P
BDT58	S4a	P	BDV64A	S4a	P	BDX63	S4a	P
		_	nn			22	<b>~4</b>	
BDT60	S4a	P	BDV64B	S4a	P	BDX63A	S4a	P
BDT60A	S4a	P	BDV64C	S4a	P	BDX63B	S4a	P
BDT60B	S4a	P	BDV65	S4a	P	BDX63C	S4a	P
BDT60C	S4a	P	BDV65A	S4a	P	BDX64	S4a	P
BDT61	S4a	P	BDV65B	S4a	P	BDX64A	S4a	P
BDT61A	S4a	P	BDV65C	S4a	p ·	BDX64B	S4a	P
BDT61B	S4a	P	BDV66A	S4a	P	BDX64C	S4a	P
BDT61C	S4a	P	BDV66B	S4a	P	BDX65	S4a	P
BDT62	S4a	P.	BDV66C	S4a	P	BDX65A	S4a	P
BDT62A	S4a	P	BDV66D	S4a	P	BDX65B	S4a	P
DDIVER	544	E	22,000	J 14	•	DDM USB	5	•
L						L		

P = Low-frequency power transistors

type no.	book	section	type no.	book	section	type no.	book	section
BDX65C	S4a	P	BF256B	S5	FET	BF593	S4b	HVP
BDX66	S4a	P	BF256C	S5	FET	BF620	<b>S</b> 7	Mm
BDX66A	S4a	P	BF324	S3	Sm	BF621	S7	Mm
BDX66B	S4a	P	BF370	<b>S</b> 3	Sm	BF622	S7	Mm
BDX66C	S4a	P	BF410A	S5	FET	BF623	S7	Mm
BDX67	S4a	P	BF410B	<b>S</b> 5	FET	BF660;R	<b>S</b> 7	Mm
BDX67A	S4a	P	BF410C	S5	FET	BF689K	S10	WBT
BDX67B	S4a	P	BF410D	S5	FET	BF763	S10	WBT
BDX67C	S4a	P	BF419	S4b	HVP	BF767	S7	Mm
BDX68	S4a	P	BF420	S3	Sm	BF819	S4b	HVP
BDX68A	S4a	P	BF421	S3	Sm	BF820	S7	Mm
BDX68B	S4a	P	BF422	S3	Sm	BF821	S7	Mm
BDX68C	S4a	P	BF423	S3	Sm	BF822	S7	Mm
BDX69	S4a	P	BF450	S3	Sm	BF823	<b>S</b> 7	Mm
BDX69A	S4a	P	BF451	S3	Sm	BF824	S7	Mm
i								
BDX69B	S4a	P	BF457	S4b	HVP	BF840	<b>S</b> 7	Mm
BDX69C	S4a	P	BF458	S4b	HVP	BF841	<b>S</b> 7	Mm
BDX77	S4a	P	BF459	S4b	HVP	BF857	S4b	HVP
BDX78	S4a	P	BF469	S4b	HVP	BF858	S4b	HVP
BDX91	S4a	P	BF470	S4b	HVP	BF859	S4b	HVP
1								
BDX92	S4a	P	BF471	S4b	HVP	BF869	S4b	HVP
BDX93	S4a	P	BF472	S4b	HVP	BF870	S4b	HVP
BDX94	S4a	P	BF483	s3	Sm	BF871	S4b	HVP
BDX95	S4a	P	BF485	S3	Sm	BF872	S4b	HVP
BDX96	S4a	P	BF487	<b>S</b> 3	Sm	BF926	S3	Sm
BDY90	S4a	P	BF494	<b>S</b> 3	Sm	BF936	S3	Sm
	54a 54a	P	BF495	S3	Sm	BF939	S3	Sm
BDY90A		P	BF496	S3	Sm	BF960	S5	FET
BDY91	S4a	P	BF510	S7/S5	Mm/FET	BF964	S5	FET
BDY92	<b>S4a</b> S3	P Sm	BF511	S7/S5	Mm/FET	BF966	S5	FET
BF198	53	SIII	DESTI	31/33	ram/121	Br 300	2)	FEI
BF199	s3	Sm	BF512	S7/S5	Mm/FET	BF967	<b>S</b> 3	Sm
BF240	S3	Sm	BF513	S7/S5	Mm/FET	BF970	S3	Sm
BF241	<b>S</b> 3	Sm	BF536	s7	Mm	BF979	S3	Sm
BF245A	<b>S</b> 5	FET	BF550;R	s7	Mm	BF980	S5	FET
BF245B	S5	FET	BF569	s7	Mm	BF981	<b>S</b> 5	FET
		_						
BF245C	<b>S</b> 5	FET	BF579	s7	Mm	BF982	S5	FET
BF247A	<b>S</b> 5	FET	BF583	S4b	HVP	BF989	S7/S5	Mm/FET
BF247B	<b>S</b> 5	FET	BF585	S4b	HVP	BF990	S7/S5	Mm/FET
BF247C	S5	FET	BF587	S4b	HVP	BF991	S7/S5	Mm/FET
BF256A	S5	FET	BF591	S4b	HVP	BF992	S7/S5	Mm/FET
Drzoom								

FET = Field-effect transistors

HVP = High-voltage power transistors

Mm = Microminiature semiconductors for hybrid circuits

P = Low-frequency power transistors

Sm = Small-signal transistors

WBT = Wideband transistors

type no.	book	section	type no.	book	section	type no.	book	section
BF994	S7/S5	Mm/FET	BFQ63	S10	WBT	BFT46	S7/S5	Mm/FET
BF996	S7/S5	Mm/FET	BFQ65	S10	WBT	BFT92;R	S7	Mm
BFG23	S10	WBT	BFQ66	S10	WBT	BFT93;R	S7	Mm
BFG32	S10	WBT	BFQ67	S7 S10	Mm	BFW10	S5 S5	FET
BFG34	S10	WBT	BFQ68	510	WBT	BFW11	50	FET
BFG51	S10	WBT	BFQ136	S10	WBT	BFW12	S5	FET
BFG65	S10	WBT	BFR29	S5	FET	BFW13	S5	FET
BFG67	s7	Mm	BFR30	S7/S5	Mm/FET	BFW16A	S10	WBT
BFG90A	S10	WBT	BFR31	S7/S5	Mm/FET	BFW17A	S10	WBT
BFG91A	S10	WBT	BFR49	S10	WBT	BFW30	S10	WBT
BFG96	S10	WBT	BFR53;R	s7	Mm	BFW61	S5	FET
BFP90A	S10	WBT	BFR54	S3	Sm	BFW92	S10	WBT
BFP91A	S10	WBT	BFR64	S10	WBT	BFW92A	S10	WBT
BFP96	S10	WBT	BFR65	S10	WBT	BFW93	S10	WBT
BFQ10	S5	FET	BFR84	S5	FET	BFX29	S3	Sm
DE011	c c	EEM	BFR90	S10	WBT	BFX30	S3	Sm
BFQ11	S5 S5	FET	BFR90A	S10	WBT	BFX34	S3	Sm
BFQ12	S5	FET FET	BFR91	S10	WBT	BFX84	S3	Sm
BFQ13 BFQ14	S5	FET	BFR91A	S10	WBT	BFX85	S3	Sm
BFQ14	S5	FET	BFR92;R	S7	Mm	BFX86	S3	Sm
Bryis	55	r E.I	DI KJZ, K	57	t-11tt	BINOU	53	JII
BFQ16	S5	FET	BFR92A;R	s7	Mm	BFX87	S3	Sm
BFQ17	s7	Mm	BFR93;R	s7	Mm	BFX88	<b>S</b> 3	Sm
BFQ18A	s7	Mm	BFR93A;R		Mm	BFX89	S10	WBT
BFQ19	s7	Mm	BFR94	S10	WBT	BFY50	S3	Sm
BFQ22S	S10	WBT	BFR95	S 10	WBT	BFY51	53	Sm
BFO23	S10	WBT	BFR96	S10	WBT	BFY52	<b>S</b> 3	Sm
BFQ23C	S10	WBT	BFR96S	S10	WBT	BFY55	S3	Sm
BFQ24	S10	WBT	BFR101A;	B S7/S5	Mm/FET	BFY90	S10	WBT
BFQ32	S10	WBT	BFS17;R	S7	Mm	BG2000	S1	RT
BFQ32C	S10	WBT	BFS18;R	<b>S</b> 7	Mm	BG2097	S1	RT
BF032S	S10	WBT	BFS19;R	<b>S</b> 7	Mm	BGD102	S10	WBM
BFQ323	S10	WBT	BFS20:R	s7	Mm	BGD102E	S10	WBM
BFQ34	S10	WBT	BFS21	S5	FET	BGD104	S10	WBM
BFQ34T	S10	WBT	BFS21A	S5	FET	BGD104E	S10	WBM
BFQ42	s6	RFP	BFS22A	S6	RFP	BGX11*	S2b	ThM
DE042	CC	DED	BFS23A	S6	RFP	BGX12*	S2b	ThM
BFQ43 BFQ51	S6 S10	RFP	BFT24	S10	WBT	BGX12*	S2b	ThM
BFQ51C	S 10	WBT WBT	BFT25;R	S7	Mm	BGX14*	S2b	ThM
BFQ51C	S10	WBT	BFT44	S3	Sm	BGX15*	S2b	ThM
BFQ52 BFQ53	S 10	WBT	BFT45	S3	Sm	BGX 17*	S2b	ThM
DI X22	310	MDI					~~~	
<u> </u>						L		

^{* =} series

RT = Tripler

Sm = Small-signal transistors

WBM= Wideband hybrid IC modules

WBT = Wideband transistors

FET = Field-effect transistors

Mm = Microminiature semiconductors

for hybrid circuits

RFP = R.F. power transistors and modules

BGX25         S2a         ThM         BGY84A         S1O         WBM         BLV95         S6         RFP           BGY22         S6         RFP         BGY85         S1O         WBM         BLV97         S6         RFP           BGY23A         S6         RFP         BGY93A         S6         RFP         BLV99         S6         RFP           BGY32         S6         RFP         BGY93C         S6         RFP         BLV99         S6         RFP           BGY32         S6         RFP         BGY93C         S6         RFP         BLW29         S6         RFP           BGY35         S6         RFP         BLU20/12         S6         RFP         BLW31         S6         RFP           BGY36         S6         RFP         BLU30/12         S6         RFP         BLW33         S6         RFP           BGY36         S6         RFP         BLU50         S6         RFP         BLW33         S6         RFP           BGY40B         S6         RFP         BLU51         S6         RFP         BLW30         S6         RFP           BGY41A         S6         RFP         BLU52         S6         R	type no.	book	section	type no.	book	section	type no.	book	section
BGY22	BGX25	S2a	ThM	BGY84A	S10	WBM	BLV95	S6	RFP
BGY22A							BLV96	S6	RFP
BGY23	1						BLV97		RFP
BGY23A         S6         RFP         BGY93B         S6         RFP         BLV99         S6         RFP           BGY33         S6         RFP         BU20/12         S6         RFP         BLW31         S6         RFP           BGY35         S6         RFP         BLU30/12         S6         RFP         BLW31         S6         RFP           BGY4GA         S6         RFP         BLU36/12         S6         RFP         BLW32         S6         RFP           BGY4GA         S6         RFP         BLU50         S6         RFP         BLW33         S6         RFP           BGY40B         S6         RFP         BLU50         S6         RFP         BLW34         S6         RFP           BGY41B         S6         RFP         BLU53         S6         RFP         BLW60         S6         RFP           BGY41B         S6         RFP         BLU53         S6         RFP         BLW60         S6         RFP           BGY43         S6         RFP         BLU52         S6         RFP         BLW60         S6         RFP           BGY45B         S6         RFP         BLU97         S6         R				1			BLV98	S6	RFP
BGY32							BLV99	<b>S6</b>	RFP
BGY33   S6	2012011								
BGY33	BGY32	S6	RFP	BGY93C	s6	RFP	BLW29		RFP
BGY35				BLU20/12	S6	RFP	BLW31	S6	RFP
BGY36				BLU30/12	s6	RFP	BLW32		RFP
BGY40A         S6         RFP         BLU50         S6         RFP         BLW34         S6         RFP           BGY40B         S6         RFP         BLU51         S6         RFP         BLW50F         S6         RFP           BGY41B         S6         RFP         BLU52         S6         RFP         BLW60C         S6         RFP           BGY41B         S6         RFP         BLU60/12         S6         RFP         BLW76         S6         RFP           BGY45A         S6         RFP         BLU97         S6         RFP         BLW77         S6         RFP           BGY45B         S6         RFP         BLU98         S6         RFP         BLW77         S6         RFP           BGY45B         S6         RFP         BLU99         S6         RFP         BLW79         S6         RFP           BGY45B         S6         RFP         BLU90         S6         RFP         BLW79         S6         RFP           BGY46B         S6         RFP         BLU91         S6         RFP         BLW79         S6         RFP           BGY46B         S6         RFP         BLV10         S6         RF	1			BLU45/12	S6	RFP	BLW33	S6	
BGY40B         S6         RFP         BLU51         S6         RFP         BLW50F         S6         RFP           BGY41B         S6         RFP         BLU52         S6         RFP         BLW60C         S6         RFP           BGY43         S6         RFP         BLU60/12         S6         RFP         BLW76         S6         RFP           BGY45A         S6         RFP         BLU97         S6         RFP         BLW77         S6         RFP           BGY46A         S6         RFP         BLU98         S6         RFP         BLW79         S6         RFP           BGY46B         S6         RFP         BLU910         S6         RFP         BLW80         S6         RFP           BGY47         S6         RFP         BLV10         S6         RFP         BLW80         S6         RFP           BGY50         S10         WBM         BLV20         S6         RFP         BLW81         S6         RFP           BGY51         S10         WBM         BLV21         S6         RFP         BLW83         S6         RFP           BGY52         S10         WBM         BLV25         S6         RFP	1		RFP	BLU50	S6	RFP	BLW34	S6	RFP
BGY41A							1		
BGY41A   S6	BGY40B	S6	RFP	BLU51	S6	RFP	BLW50F		RFP
BGY43         S6         RFP         BLU60/12         S6         RFP         BLW76         S6         RFP           BGY45A         S6         RFP         BLU97         S6         RFP         BLW77         S6         RFP           BGY45B         S6         RFP         BLU98         S6         RFP         BLW79         S6         RFP           BGY46B         S6         RFP         BLV10         S6         RFP         BLW80         S6         RFP           BGY47         S6         RFP         BLV11         S6         RFP         BLW81         S6         RFP           BGY50         S10         WBM         BLV20         S6         RFP         BLW82         S6         RFP           BGY51         S10         WBM         BLV21         S6         RFP         BLW83         S6         RFP           BGY52         S10         WBM         BLV25         S6         RFP         BLW84         S6         RFP           BGY53         S10         WBM         BLV30         S6         RFP         BLW85         S6         RFP           BGY54         S10         WBM         BLV31         S6         RFP <td></td> <td><b>S</b>6</td> <td>RFP</td> <td>BLU52</td> <td>S6</td> <td>RFP</td> <td>BLW60</td> <td></td> <td></td>		<b>S</b> 6	RFP	BLU52	S6	RFP	BLW60		
BGY43         S6         RFP         BLU60/12         S6         RFP         BLW76         S6         RFP           BGY45A         S6         RFP         BLU97         S6         RFP         BLW77         S6         RFP           BGY45B         S6         RFP         BLU99         S6         RFP         BLW79         S6         RFP           BGY46B         S6         RFP         BLV10         S6         RFP         BLW80         S6         RFP           BGY47*         S6         RFP         BLV10         S6         RFP         BLW81         S6         RFP           BGY50         S10         WBM         BLV20         S6         RFP         BLW82         S6         RFP           BGY51         S10         WBM         BLV21         S6         RFP         BLW83         S6         RFP           BGY52         S10         WBM         BLV25         S6         RFP         BLW84         S6         RFP           BGY54         S10         WBM         BLV30         S6         RFP         BLW85         S6         RFP           BGY55         S10         WBM         BLV32F         S6         RFP<	1			BLU53	S6	RFP			
BGY45B         S6         RFP         BLU98         S6         RFP         BLW79         S6         RFP           BGY46B         S6         RFP         BLU99         S6         RFP         BLW79         S6         RFP           BGY47         S6         RFP         BLV10         S6         RFP         BLW80         S6         RFP           BGY50         S10         WBM         BLV20         S6         RFP         BLW81         S6         RFP           BGY51         S10         WBM         BLV21         S6         RFP         BLW82         S6         RFP           BGY52         S10         WBM         BLV25         S6         RFP         BLW84         S6         RFP           BGY52         S10         WBM         BLV30         S6         RFP         BLW85         S6         RFP           BGY54         S10         WBM         BLV30/12         S6         RFP         BLW86         S6         RFP           BGY55         S10         WBM         BLV31         S6         RFP         BLW87         S6         RFP           BGY56         S10         WBM         BLV33F         S6         RFP<	1	<b>S6</b>	RFP	BLU60/12	S6	RFP	1		
BGY46A         S6         RFP         BLU99         S6         RFP         BLW79         S6         RFP           BGY46B         S6         RFP         BLV10         S6         RFP         BLW80         S6         RFP           BGY47         S6         RFP         BLV11         S6         RFP         BLW81         S6         RFP           BGY50         S10         WBM         BLV20         S6         RFP         BLW82         S6         RFP           BGY51         S10         WBM         BLV21         S6         RFP         BLW83         S6         RFP           BGY52         S10         WBM         BLV25         S6         RFP         BLW84         S6         RFP           BGY53         S10         WBM         BLV30         S6         RFP         BLW85         S6         RFP           BGY54         S10         WBM         BLV311         S6         RFP         BLW86         S6         RFP           BGY55         S10         WBM         BLV32F         S6         RFP         BLW87         S6         RFP           BGY56         S10         WBM         BLV33         S6         RFP <td>BGY45A</td> <td>s6</td> <td>RFP</td> <td>BLU97</td> <td>s6</td> <td>RFP</td> <td>BLW77</td> <td>S6</td> <td>RFP</td>	BGY45A	s6	RFP	BLU97	s6	RFP	BLW77	S6	RFP
BGY46A         S6         RFP         BLU99         S6         RFP         BLW79         S6         RFP           BGY46B         S6         RFP         BLV10         S6         RFP         BLW80         S6         RFP           BGY47         S6         RFP         BLV11         S6         RFP         BLW81         S6         RFP           BGY50         S10         WBM         BLV20         S6         RFP         BLW82         S6         RFP           BGY51         S10         WBM         BLV21         S6         RFP         BLW83         S6         RFP           BGY52         S10         WBM         BLV25         S6         RFP         BLW84         S6         RFP           BGY53         S10         WBM         BLV30         S6         RFP         BLW85         S6         RFP           BGY54         S10         WBM         BLV311         S6         RFP         BLW86         S6         RFP           BGY55         S10         WBM         BLV32F         S6         RFP         BLW87         S6         RFP           BGY56         S10         WBM         BLV33         S6         RFP <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
BGY46B         S6         RFP         BLV10         S6         RFP         BLV11         S6         RFP         BLW81         S6         RFP           BGY47*         S6         RFP         BLV11         S6         RFP         BLW81         S6         RFP           BGY50         S10         WBM         BLV20         S6         RFP         BLW82         S6         RFP           BGY51         S10         WBM         BLV25         S6         RFP         BLW83         S6         RFP           BGY52         S10         WBM         BLV25         S6         RFP         BLW84         S6         RFP           BGY53         S10         WBM         BLV30         S6         RFP         BLW85         S6         RFP           BGY55         S10         WBM         BLV31         S6         RFP         BLW86         S6         RFP           BGY56         S10         WBM         BLV32F         S6         RFP         BLW87         S6         RFP           BGY58         S10         WBM         BLV33         S6         RFP         BLW90         S6         RFP           BGY59         S10         WBM <td>BGY45B</td> <td>S6</td> <td>RFP</td> <td>BLU98</td> <td>S6</td> <td>RFP</td> <td></td> <td></td> <td></td>	BGY45B	S6	RFP	BLU98	S6	RFP			
BGY47	BGY46A	S6	RFP	BLU99	S6	RFP			
BGY50         S10         WBM         BLV20         S6         RFP         BLW82         S6         RFP           BGY51         S10         WBM         BLV21         S6         RFP         BLW83         S6         RFP           BGY52         S10         WBM         BLV25         S6         RFP         BLW84         S6         RFP           BGY53         S10         WBM         BLV30/12         S6         RFP         BLW85         S6         RFP           BGY54         S10         WBM         BLV30/12         S6         RFP         BLW86         S6         RFP           BGY55         S10         WBM         BLV31         S6         RFP         BLW87         S6         RFP           BGY56         S10         WBM         BLV32F         S6         RFP         BLW89         S6         RFP           BGY58         S10         WBM         BLV33         S6         RFP         BLW90         S6         RFP           BGY58         S10         WBM         BLV33F         S6         RFP         BLW91         S6         RFP           BGY58         S10         WBM         BLV33F         S6 <t< td=""><td>BGY46B</td><td>S6</td><td>RFP</td><td>BLV10</td><td>S6</td><td>RFP</td><td>1</td><td></td><td></td></t<>	BGY46B	S6	RFP	BLV10	S6	RFP	1		
BGY50	BGY47*	<b>S6</b>	RFP	BLV11	S6	RFP			
BGY52         S10         WBM         BLV25         S6         RFP         BLW85         S6         RFP           BGY53         S10         WBM         BLV30         S6         RFP         BLW85         S6         RFP           BGY54         S10         WBM         BLV30/12         S6         RFP         BLW86         S6         RFP           BGY55         S10         WBM         BLV31         S6         RFP         BLW87         S6         RFP           BGY56         S10         WBM         BLV32F         S6         RFP         BLW89         S6         RFP           BGY57         S10         WBM         BLV33         S6         RFP         BLW90         S6         RFP           BGY58         S10         WBM         BLV33F         S6         RFP         BLW91         S6         RFP           BGY58         S10         WBM         BLV36         S6         RFP         BLW95         S6         RFP           BGY59         S10         WBM         BLV37         S6         RFP         BLW96         S6         RFP           BGY60         S10         WBM         BLV57         S6         RF	BGY50	510	WBM	BLV20	S6	RFP	BLW82	S6	RFP
BGY52         S10         WBM         BLV25         S6         RFP         BLW85         S6         RFP           BGY53         S10         WBM         BLV30         S6         RFP         BLW85         S6         RFP           BGY54         S10         WBM         BLV30/12         S6         RFP         BLW86         S6         RFP           BGY55         S10         WBM         BLV31         S6         RFP         BLW87         S6         RFP           BGY56         S10         WBM         BLV32F         S6         RFP         BLW89         S6         RFP           BGY57         S10         WBM         BLV33         S6         RFP         BLW90         S6         RFP           BGY58         S10         WBM         BLV33F         S6         RFP         BLW91         S6         RFP           BGY58         S10         WBM         BLV36         S6         RFP         BLW95         S6         RFP           BGY59         S10         WBM         BLV37         S6         RFP         BLW96         S6         RFP           BGY60         S10         WBM         BLV57         S6         RF									
BGY55         S10         WBM         BLV30         S6         RFP         BLW86         S6         RFP           BGY54         S10         WBM         BLV30/12         S6         RFP         BLW86         S6         RFP           BGY55         S10         WBM         BLV31         S6         RFP         BLW87         S6         RFP           BGY56         S10         WBM         BLV32F         S6         RFP         BLW89         S6         RFP           BGY57         S10         WBM         BLV33         S6         RFP         BLW90         S6         RFP           BGY58         S10         WBM         BLV33F         S6         RFP         BLW91         S6         RFP           BGY58         S10         WBM         BLV36         S6         RFP         BLW95         S6         RFP           BGY58         S10         WBM         BLV36         S6         RFP         BLW95         S6         RFP           BGY59         S10         WBM         BLV37         S6         RFP         BLW96         S6         RFP           BGY61         S10         WBM         BLV57         S6         RF	BGY51	S10	WBM	BLV21					
BGY54         S10         WBM         BLV30/12         S6         RFP         BLW86         S6         RFP           BGY55         S10         WBM         BLV31         S6         RFP         BLW87         S6         RFP           BGY56         S10         WBM         BLV32F         S6         RFP         BLW89         S6         RFP           BGY57         S10         WBM         BLV33         S6         RFP         BLW90         S6         RFP           BGY58         S10         WBM         BLV33F         S6         RFP         BLW91         S6         RFP           BGY58         S10         WBM         BLV36         S6         RFP         BLW95         S6         RFP           BGY58         S10         WBM         BLV36         S6         RFP         BLW95         S6         RFP           BGY59         S10         WBM         BLV37         S6         RFP         BLW96         S6         RFP           BGY61         S10         WBM         BLV45/12         S6         RFP         BLW98         S6         RFP           BGY65         S10         WBM         BLV57         S6 <td< td=""><td>BGY52</td><td></td><td>WBM</td><td>BLV25</td><td>S6</td><td></td><td>1</td><td></td><td></td></td<>	BGY52		WBM	BLV25	S6		1		
BGY55         S10         WBM         BLV31         S6         RFP         BLW87         S6         RFP           BGY56         S10         WBM         BLV32F         S6         RFP         BLW89         S6         RFP           BGY57         S10         WBM         BLV33         S6         RFP         BLW90         S6         RFP           BGY58         S10         WBM         BLV33F         S6         RFP         BLW91         S6         RFP           BGY58A         S10         WBM         BLV36         S6         RFP         BLW95         S6         RFP           BGY59         S10         WBM         BLV37         S6         RFP         BLW96         S6         RFP           BGY60         S10         WBM         BLV45/12         S6         RFP         BLW99         S6         RFP           BGY61         S10         WBM         BLV57         S6         RFP         BLW98         S6         RFP           BGY65         S10         WBM         BLV57         S6         RFP         BLW99         S6         RFP           BGY67         S10         WBM         BLV75/12         S6 <t< td=""><td>BGY53</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></t<>	BGY53			1					
BGY56         S10         WBM         BLV32F         S6         RFP         BLW89         S6         RFP           BGY57         S10         WBM         BLV33         S6         RFP         BLW90         S6         RFP           BGY58         S10         WBM         BLV33F         S6         RFP         BLW91         S6         RFP           BGY58A         S10         WBM         BLV36         S6         RFP         BLW95         S6         RFP           BGY59         S10         WBM         BLV37         S6         RFP         BLW96         S6         RFP           BGY60         S10         WBM         BLV45/12         S6         RFP         BLW96         S6         RFP           BGY61         S10         WBM         BLV57         S6         RFP         BLW98         S6         RFP           BGY65         S10         WBM         BLV59         S6         RFP         BLW99         S6         RFP           BGY67A         S10         WBM         BLV80/28         S6         RFP         BLX13         S6         RFP           BGY70         S10         WBM         BLV90         S6         <				1 '					
BGY57         S10         WBM         BLV33         S6         RFP         BLW90         S6         RFP           BGY58         S10         WBM         BLV33F         S6         RFP         BLW91         S6         RFP           BGY58A         S10         WBM         BLV36         S6         RFP         BLW95         S6         RFP           BGY59         S10         WBM         BLV37         S6         RFP         BLW96         S6         RFP           BGY60         S10         WBM         BLV45/12         S6         RFP         BLW97         S6         RFP           BGY61         S10         WBM         BLV57         S6         RFP         BLW98         S6         RFP           BGY65         S10         WBM         BLV59         S6         RFP         BLW99         S6         RFP           BGY67         S10         WBM         BLV75/12         S6         RFP         BLX13         S6         RFP           BGY67A         S10         WBM         BLV80/28         S6         RFP         BLX14         S6         RFP           BGY71         S10         WBM         BLV90         S6	BGY55	S10	WBM	BLV31	S6	RFP	Br#81	56	RFP
BGY57         S10         WBM         BLV33         S6         RFP         BLW90         S6         RFP           BGY58         S10         WBM         BLV33F         S6         RFP         BLW91         S6         RFP           BGY58A         S10         WBM         BLV36         S6         RFP         BLW95         S6         RFP           BGY59         S10         WBM         BLV37         S6         RFP         BLW96         S6         RFP           BGY60         S10         WBM         BLV45/12         S6         RFP         BLW97         S6         RFP           BGY61         S10         WBM         BLV57         S6         RFP         BLW98         S6         RFP           BGY65         S10         WBM         BLV59         S6         RFP         BLW99         S6         RFP           BGY67         S10         WBM         BLV75/12         S6         RFP         BLX13         S6         RFP           BGY67A         S10         WBM         BLV80/28         S6         RFP         BLX14         S6         RFP           BGY71         S10         WBM         BLV90         S6					_		DIWOO	c.c	prn
BGY58         S10         WBM         BLV33F         S6         RFP         BLW95         S6         RFP           BGY58A         S10         WBM         BLV36         S6         RFP         BLW95         S6         RFP           BGY59         S10         WBM         BLV37         S6         RFP         BLW96         S6         RFP           BGY60         S10         WBM         BLV45/12         S6         RFP         BLW97         S6         RFP           BGY61         S10         WBM         BLV57         S6         RFP         BLW98         S6         RFP           BGY65         S10         WBM         BLV59         S6         RFP         BLW99         S6         RFP           BGY67         S10         WBM         BLV75/12         S6         RFP         BLX13         S6         RFP           BGY67A         S10         WBM         BLV80/28         S6         RFP         BLX13C         S6         RFP           BGY70         S10         WBM         BLV90         S6         RFP         BLX14         S6         RFP           BGY71         S10         WBM         BLV91         S6				3			1		
BGY58A   S10   WBM   BLV36   S6   RFP   BLW96   S6   RFP				l l			1		
BGY59         S10         WBM         BLV37         S6         RFP         BLW96         S6         RFP           BGY60         S10         WBM         BLV45/12         S6         RFP         BLW97         S6         RFP           BGY61         S10         WBM         BLV57         S6         RFP         BLW98         S6         RFP           BGY65         S10         WBM         BLV59         S6         RFP         BLW99         S6         RFP           BGY67         S10         WBM         BLV75/12         S6         RFP         BLX13         S6         RFP           BGY67A         S10         WBM         BLV80/28         S6         RFP         BLX13C         S6         RFP           BGY70         S10         WBM         BLV90         S6         RFP         BLX14         S6         RFP           BGY71         S10         WBM         BLV91         S6         RFP         BLX15         S6         RFP           BGY74         S10         WBM         BLV92         S6         RFP         BLX39         S6         RFP           BGY75         S10         WBM         BLV93         S6	1			)			l		
BGY60         S10         WBM         BLV45/12         S6         RFP         BLW97         S6         RFP           BGY61         S10         WBM         BLV57         S6         RFP         BLW98         S6         RFP           BGY65         S10         WBM         BLV59         S6         RFP         BLW99         S6         RFP           BGY67         S10         WBM         BLV75/12         S6         RFP         BLX13         S6         RFP           BGY67A         S10         WBM         BLV80/28         S6         RFP         BLX13C         S6         RFP           BGY70         S10         WBM         BLV90         S6         RFP         BLX14         S6         RFP           BGY71         S10         WBM         BLV91         S6         RFP         BLX15         S6         RFP           BGY74         S10         WBM         BLV92         S6         RFP         BLX39         S6         RFP           BGY75         S10         WBM         BLV93         S6         RFP         BLX65         S6         RFP	1								
BGY61   S10   WBM   BLV57   S6   RFP   BLW98   S6   RFP	BGY59	S10	WBM	BLV37	S6	RFP	BLW30	30	Krr
BGY61   S10   WBM   BLV57   S6   RFP   BLW98   S6   RFP	22750	240	******	DT 1745 /40	9.6	nen	BI.W97	56	RFP
BGY70         S10         WBM         BLV90         S6         RFP         BLX13         S6         RFP           BGY67A         S10         WBM         BLV75/12         S6         RFP         BLX13         S6         RFP           BGY67A         S10         WBM         BLV80/28         S6         RFP         BLX13C         S6         RFP           BGY70         S10         WBM         BLV90         S6         RFP         BLX14         S6         RFP           BGY71         S10         WBM         BLV91         S6         RFP         BLX15         S6         RFP           BGY74         S10         WBM         BLV92         S6         RFP         BLX39         S6         RFP           BGY75         S10         WBM         BLV93         S6         RFP         BLX65         S6         RFP	ł								
BGY70         S10         WBM         BLV75/12         S6         RFP         BLX13         S6         RFP           BGY70         S10         WBM         BLV80/28         S6         RFP         BLX13C         S6         RFP           BGY70         S10         WBM         BLV90         S6         RFP         BLX14         S6         RFP           BGY71         S10         WBM         BLV91         S6         RFP         BLX15         S6         RFP           BGY74         S10         WBM         BLV92         S6         RFP         BLX39         S6         RFP           BGY75         S10         WBM         BLV93         S6         RFP         BLX65         S6         RFP							1		
BGY67A         S10         WBM         BLV80/28 S6         RFP         BLX13C         S6         RFP           BGY70         S10         WBM         BLV90         S6         RFP         BLX14         S6         RFP           BGY71         S10         WBM         BLV91         S6         RFP         BLX15         S6         RFP           BGY74         S10         WBM         BLV92         S6         RFP         BLX39         S6         RFP           BGY75         S10         WBM         BLV93         S6         RFP         BLX65         S6         RFP				1			1		
BGY70         S10         WBM         BLV90         S6         RFP         BLX14         S6         RFP           BGY71         S10         WBM         BLV91         S6         RFP         BLX15         S6         RFP           BGY74         S10         WBM         BLV92         S6         RFP         BLX39         S6         RFP           BGY75         S10         WBM         BLV93         S6         RFP         BLX65         S6         RFP	1						1		
BGY71 S10 WBM BLV91 S6 RFP BLX15 S6 RFP BGY74 S10 WBM BLV92 S6 RFP BLX39 S6 RFP BGY75 S10 WBM BLV93 S6 RFP BLX65 S6 RFP	BC X P \ A	510	WBM	BLV80/28	ಎರ	Krr	DIA 130	50	*** *
BGY71 S10 WBM BLV91 S6 RFP BLX15 S6 RFP BGY74 S10 WBM BLV92 S6 RFP BLX39 S6 RFP BGY75 S10 WBM BLV93 S6 RFP BLX65 S6 RFP	DCV70	C 10	WDM	DT.V/QO	96	PED	BLX14	s6	RFP
BGY74 S10 WBM BLV92 S6 RFP BLX39 S6 RFP BGY75 S10 WBM BLV93 S6 RFP BLX65 S6 RFP	ł .						I		
BGY75 S10 WBM BLV93 S6 RFP BLX65 S6 RFP				1			1		
BG1/3 510 WDM BEV/3 50 KII									
DOTO - DIO ADD DEFT							1		
	1 50101	5.10	*****	55.7	20	*** *	J		

^{* =} series

RFP = R.F. power transistors and modules

ThM = Thyristor modules

WBM = Wideband hybrid IC modules

type no.	book	section	type no.	book	section	type no.	book	section
BLX67	<b>S6</b>	RFP	BPX71	S8b	PDT	BSR56	S7/S5	Mm/FET
BLX68	S6	RFP	BPX72	S8b	PDT	BSR57	S7/S5	Mm/FET
BLX69A	S6	RFP	BR100/03		Th	BSR58	S7/S5	Mm/FE
BLX91A	S6	RFP	BR101	S3	Sm	BSR60	S3	Sm Sm
BLX91CB	S6	RFP	BRY39	S3	Sm	BSR61	S3	Sm
DEATICE	50	KFF	BRISS	33	วแ	BSKOI	33	SIII
BLX92A	S6	RFP	BRY56	S3	Sm	BSR62	S3	Sm
BLX93A	S6	RFP	BRY61	S7	Mm	BSS38	S3	Sm
BLX94A	S6	RFP	BRY62	<b>S</b> 7	Mm	BSS50	S3	Sm
BLX94C	S6	RFP	BS107	S5	FET	BSS51	S3	Sm
BLX95	S6	RFP	BS170	S5	FET	BSS52	<b>S</b> 3	Sm
BLX96	s6	RFP	BSD10	S5	FET	BSS60	<b>S</b> 3	Sm
BLX97	S6	RFP	BSD12	S5	FET	BSS61	<b>S</b> 3	Sm
BLX98	S6	RFP	BSD20	S5/7	FET	BSS62	S3	Sm
BLY85	S6	RFP	BSD22	S5/7	FET	BSS63:R	S7	Mm
BLY87A	S6	RFP	BSD212	S5 / /	FET	BSS64;R	S7	Mm
DLIUIA	30	KFF	B5D212	33	LEI	D3304;K	51	PIM
BLY87C	S6	RFP	BSD213	S5	FET	BSS68	<b>s</b> 3	Sm
BLY88A	S6	RFP	BSD214	S5	FET	BSS83	S5/7	FET/M
BLY88C	S6	RFP	BSD215	S5	FET	BST15	S7	Mm
BLY89A	S6	RFP	BSR12;R	S7	Mm	BST16	S7	Mm
BLY89C	S6	RFP	BSR13;R	<b>S</b> 7	Mm	BST39	<b>S7</b>	Mm
BLY90	s6	RFP	BSR14;R	s7	Mm	BST40	S7	Mm
BLY91A	S6	RFP	BSR15;R	S7	Mm	BST50	S7	Mm
BLY91C	S6	RFP	BSR16;R	S7	Mm	BST51	S7	Mm
BLY92A	.S6	RFP	BSR17;R	S7	Mm	BST52	S7	Mm
BLY92C	S6	RFP	BSR17A;R		Mm	BST60	S7	Mm
BBIJZC	30	KFF	BSK17A,K	37	1-1m	B3100	37	PAIN
BLY93A	S6	RFP	BSR18;R	S7	Mm	BST61	<b>S7</b>	Mm
BLY93C	S6	RFP	BSR18A;R		Mm	BST62	S7	Mm
BLY94	S6	RFP	BSR19; A	S7	Mm	BST70A	S5	FET
BLY97	S6	RFP	BSR20; A	S7	Mm	BST72A	S5	FET
BPF24	S8b	PDT	BSR30	S7	Mm	BST74A	S5	FET
BPW22A	S8a/b	PDT	BSR31	S7	Mm	BST76A	S5	FET
BPW50	S8a/b	PDT	BSR32	S7	Mm	BST78	S5	FET
BPW71	S8b	PDT	BSR33	S7	Mm	BST80	S5/S7	FET/M
BPX25	S8b	PDT	BSR40	S7	Mm	BST82	S5/S7	FET/M
BPX29	S8b	PDT	BSR41	s7	Mm	BST84	S5/S7	FET/M
DDV/IO	S8b	PDT	DCD42	C7	Mm	BST86	S5/S7	FET/M
BPX40			BSR42	S7	Mm			-
BPX41 BPX42	S8b S8b	PDT PDT	BSR43	S7	Mm	BST90	S5	FET
BPX61	S8b	PDT	BSR50	S3	Sm	BST97	S5 S5	FET
BPX61P	S8b	PDT	BSR51	S3	Sm	BST 100		FET
DEVOIL	ວດມ	FUI	BSR52	S3	Sm	BST 110	S5	FET

FET = Field-effect transistors

Mm = Microminiature semiconductors for hybrid circuits

PDT = Photodiodes or transistors

RFP = R.F. power transistors and modules

Sm = Small-signal transistors

Th = Thyristors

type no.	book	section	type no.	book	section	type no.	book	section
BST120	S5/S7	FET/Mm	BTW40*	S2b	Th	BUV82	S4b	SP
BST122	S5/S7	FET/Mm	BTW42*	S2b	Th	BUV83	S4b	SP
BSV15	s3	Sm	BTW43*	S2b	Tri	BUV89	S4b	SP
BSV16	53	Sm	BTW45*	S2b	Th	BUV90; A	S4b	SP
BSV17	53	Sm	BTW58*	S2b	Th	BUW11;A	S4b	SP
BSV52;R	<b>S</b> 7	Mm	BTW59*	S2b	Th	BUW12;A	S4b	SP
BSV64	S3	Sm	BTW63*	S2b	Th	BUW13;A	S4b	SP
BSV78	S5	FET	BTW92*	S2b	Th	BUW84	S4b	SP
BSV79	S5	FET	BTX18*	S2b	Th	BUW85	S4b	SP
BSV80	<b>S</b> 5	FET	BTX94*	S2b	Tri	BUX46;A	S4b	SP
BSV81	S5	FET	BTY79*	S2b	Th	BUX47;A	S4b	SP
BSW66A	S3	Sm	BTY91*	S2b	Th	BUX48; A	S4b	SP
BSW67A	S3	Sm	BU426	S4b	SP	BUX80	S4b	SP
BSW68A	S3	Sm	BU426A	S4b	SP	BUX81	S4b	SP
BSX19	s3	Sm	BU433	S4b	SP	BUX82	S4b	SP
BSX20	s3	Sm	BU505	S4b	SP	BUX83	S4b	SP
BSX45	s3	Sm	BU506	S4b	SP	BUX84	S4b	SP
BSX46	S3 .	Sm	BU506D	S4b	SP	BUX84F	S4b	SP
BSX47	<b>S</b> 3	Sm	BU508A	S4b	SP	BUX85	S4b	SP
BSX59	<b>S</b> 3	Sm	BU508D	S4b	SP	BUX85F	S4b	SP
BSX60	<b>S</b> 3	Sm	BU705	S4b	SP	BUX86	S4b	SP
BSX61	s3	Sm	BU706	S4b	SP	BUX87	S4b	SP
BSY95A	s3	Sm	BU706D	S4b	SP	BUX88	S4b	SP
BT136*	S2b	Tri	BU806	S4b	SP	BUX90	S4b	SP
BT137*	S2b	Tri	BU807	S4b	SP	BUX98	S4b	SP
BT138*	S2b	Tri	BU804	S4b	SP	BUX98A	S4b	SP
BT139*	S2b	Tri	BU824	S4b	SP	BUX99	S4b	SP
BT149*	S2b	Th	BU826	S4b	SP	BUY89	S4b	SP
BT151*	S2b	Th	BUP22*	S4b	SP	BUZ 10	S9	PM
BT152*	S2b	Th	BUP23*	S4b	SP	BUZ 10A	S9	PM
BT153	S2b	Th	BUS11;A	S4b	SP	BUZ11	S9	PM
BT155*	S2b	Th	BUS12;A	S4b	SP	BUZ11A	S9	PM
BT157*	S2b	Th	BUS13;A	S4b	SP	BUZ14	S9	PM
BTV24*	S2b	Th	BUS14; A	S4b	SP	BUZ15	S9	PM
BTV34*	S2b	Tri	BUS21*	S4b	SP	BUZ2O	S9	PM
BTV58*	S2b	Th	BUS22*	S4b	SP	BUZ21	S9	PM
BTV59*	S2b	Th	BUS23*	S4b	SP	BUZ23	S9	PM
BTV60*	S2b	Th	BUT11;A	S4b	SP	BUZ24	S9	PM
BTW23*	S2b	Th	BUT 11A	S4b	SP	BUZ25	S9	PM
BTW38*	S2b	Th	BUT11AF	S4b	SP	BUZ30	S9	PM

^{* =} series

FET = Field-effect transistors

Mm = Microminiature semiconductors

for hybrid circuits

PM = Power MOS transistors

Sm = Small-signal transistors

SP = Low-frequency switching power transistors

Th = Thyristors

Tri = Triacs

type no.	book	section	type no.	book	section	type no.	book	sectio
BUZ31	S9	PM	BUZ84A	<b>S</b> 9	PM .	BYV22*	S2a	R
BUZ32	S9	PM	BY228	S1	R	BYV23*	S2a	R
BUZ33	S 9	PM	BY229*	S2a	R	BYV24*	S2a	R
BUZ34	S9	PM	BY249*	S2a	R	BYV26*	S1	R
BUZ35	S9	PM	BY260*	S2a	R	BYV27*	S1/S2a	R
BUZ36	S9	PM	BY261*	S2a	R	BYV28*	S1/S2a	R
BUZ40	59	PM	BY329*	S2a	R	BYV29*	S2a	R
BUZ41A	S9	PM	BY359*	S2a	R	BYV30*	S2a	R
BUZ42	S9	PM	BY438	S1	R	BYV32*	S2a	R
BUZ43	59	PM	BY448	S1	R	BYV33*	S2a	R
BUZ44A	S9	· PM	BY458	S1	R	BYV34*	S2a	R
BUZ45	59	PM	BY505	S1	R	BYV36*	S1	R
BUZ45A	S9	PM ·	BY509	S1	R	BYV39*	S2a	R
BUZ45B	S9	PM	BY527	S1	∴ R	BYV42*	S2a	R
BUZ45C	S 9	PM	BY584	S1	R	BYV43*	S2a	R
BUZ46	S9	PM	BY588	S1	R	BYV72*	S2a	R
BUZ5OA	59	PM	BY609	S1	R	BYV73*	S2a	R
BUZ50B	59	PM	BY610	S1	R	BYV79*	S2a	R
BUZ53A	S9	PM	BY614	S1	R	BYV92*	S2a	R
BUZ54	S9	PM	BY619	S1	R	BYV95A	S1	R
BUZ54A	S9	PM	BY620	S1	R	BYV95B	S1	R
BUZ60	S9	PM	BY707	S1	R	BYV95C	S1	R
BUZ 60B	59	PM	BY708	S1	R	BYV96D	S1	R
BUZ63	S9	PM	BY709	S1	R	BYV96E	S1	R
BUZ63B	S9	PM	BY710	S1	R	BYW25*	S2a	R
BUZ64	S9	PM	BY711	S1	R .	BYW29*	S2a	R
BUZ71	S9	PM	BY712	<b>S</b> 1	R	BYW30*	S2a	R
BUZ71A	<b>S</b> 9	PM	BY713	S1	R	BYW31*	S2a	R
BUZ72	S9	PM	BY714_	S1	R	BYW54	S1	R
BUZ72A	<b>59</b>	PM	BYD13*	S1	R	BYW55	S1	R
BUZ73A	S9	PM ·	BYD33*	S1	R	BYW56	S1	R
BUZ74	S9	PM	BYD73*	S1	R	BYW92*	S2a	R
BUZ74A	S9	P <b>M</b>	BYM56*	S1	R	BYW93*	S2a	R
BUZ76	S9	PM	BYQ28*	S2a	R	BYW94*	S2a	R
BUZ76A	S9	PM	BYR29*	S2a	R	BYW95A	S1	R
BUZ80	59	PM .	BYT79*	S2a	R	BYW95B	S1	R
BUZ 80A	S9	PM	BYV10	S1	R	BYW95C	S1	R
BUZ83	S9	PM .	BYV19*	S2a	R	BYW96D	S1	R
BUZ83A	S9	PM	BYV20*	S2a	R	BYW96E	S1.	R
BUZ84	S9	PM	BYV21*	S2a	R	BYX25*	S2a	R

^{* =} series

PM = Power MOS transistors

R = Rectified diodes

type no.	book	section	type no.	book	section	type no.	book	section
BYX30*	S2a	R	BZX93	S1	Vrf	CNY57A	s8b	PhC
BYX32*	S2a	R	BZX94	S1	Vrf	CNY57U	S8b	PhC
BYX38*	S2a	R	BZY91*	S2a	Vrg	CNY57AU	S8b	PhC
BYX39*	S2a	R	BZY93*	S2a	Vrg	CNY62	S8b	PhC
BYX42*	S2a	R	BZY95*	S2a	Vrg	CNY63	S8b	PhC
BYX46*	S2a	R	BZY96*	S2a	Vrg	CQF24	S8b	Ph
BYX50*	S2a	R	CFX13	S11	M	CQL10A	S8b	Ph
BYX52*	S2a	R	CFX21	S11	M	CQL13A	S8b	Ph
BYX56*	S2a	R	CFX30	S11	M	CQL16	S8b	Ph
BYX9OG	S1	R	CFX31	S11	M	CQS51L	S8a	LED
BYX94	S1	R	CFX32	S11	M	cQS54	S8a	LED
BYX96*	S2a	R	CFX33	S11	M	CQS82L	S8a	LED
BYX97*	S2a	R	CNG35	S8b	PhC	CQS82AL	S8a	LED
BYX98*	S2a	R	CNG36	S8b	PhC	CQS84L	S8a	LED
BYX99*	S2a	R	CNG39	S8b	PhC	CQS86L	S8a	LED
BZD23	S1	Vrg	CNR36	S8b	PhC	CQS93	S8a	LED
BZTO3	S1	Vrg	CNR70	S8b	PhC	CQS93E	S8a	LED
BZV10	S1	Vrf	CNR71	S8b	PhC	CQS93L	S8a	LED
BZV11	S1	Vrf	CNX21	S8b	PhC	CQS95	S8a	LED
BZV12	S1	Vrf	CNX35	S8b	PhC	CQS95E	S8a	LED
BZV13	S1	Vrf	CNX35U	S8b	PhC	CQS95L	S8a	LED
BZV14	S1	Vrf	CNX36	S8b	PhC	CQS97	S8a	LED
BZV37	S1	Vrf	CNX36U	S8b	PhC	CQS97E	S8a	LED
BZV46	S1	Vrg	CNX37	S8b	PhC	CQS97L	S8a	LED
BZV49*	S1/S7	Vrg/Mm	CNX38	S8b	PhC	CQT10B	S8a	LED
BZV55*	s7	Mm	CNX38U	S8b	PhC	CQT24	S8a	LED
BZV85Ĵ	S1	Vrg	CNX39	S8b	PhC	CQT60	S8a	LED
BZWO3 [^]	S1	Vrg	CNX39U	S8b	PhC	CQT70	58a	LED
BZW14	S1	Vrg	CNX44	S8b	PhC	CQT8OL	S8a	LED
BZW7O*	S2a	TS	CNX44A	S8b	PhC	CQV70(L)	S8a	LED
BZW86*	S2a	TS	CNX46	S8b	PhC	CQV70A(I		LED
BZW91*	S2a	TS	CNX48	S8b	PhC	CQV7OU(I		LED
BZX55 [^]	S1	Vrg	CNX48U	S8b	PhC	CQV71A(I	•	LED
BZX70*	S2a	Vrg	CNX62	S8b	PhC	CQV72(L)		LED
BZX75 [*]	S1	Vrg	CNX72	S8b	PhC	COA80r	S8a	LED
BZX79*	S1	Vrg	CNX82	S8b	PhC	CQV8OAL	S8a	LED
BZX84*	S7/S1	Mm/Vrg	CNX91	S8b	PhC	CQV8OUL	S8a	LED
BZX90	S1	Vrf	CNX92	S8b	PhC	CQV81L	S8a	LED
BZX91	S1	Vrf	CNY50	S8b	PhC	CQV82L	S8a	LED
BZX92	S1	Vrf	CNY57	S8b	PhC	CQW1OA(I	J) S8a	LED

^{* =} series

PhC = Photocouplers

LED = Light-emitting diodes

M = Microwave transistors

Mm = Microminiature semiconductors

for hybrid circuits

Ph = Photoconductive devices

R = Rectifier diodes

TS = Transient suppressor diodes

Vrf = Voltage reference diodes

Vrg = Voltage regulator diodes

type no. b	ook	section	type no.	book	section	type no.	book	section
COW1OB(L)	S8a	LED	CQY96(L)	S8a	LED	LKE27010R	S11	M
COW1OU(L)		LED	CQY97A	S8a	LED	LKE27025R	S11	M
CQW11B(L)		LED	H11A1	S8b	PhC	LKE32002T	S11	M
CQW12B(L)		LED	H11A2	S8b	PhC	LKE320021	S11	M
	58a	LED	H11A3	S8b	PhC	LTE42005S	S11	M
CQWZOR .	Jua	пър	niins	502	1110	H1E420035	311	
CQW21 S	58a	LED	H11A4	S8b	PhC	LTE42008R	S11	M
CQW22 S	58a	LED	KMZ 10A	S13	SEN	LTE42012R	S11	M
CQW24(L) 5	58a	LED	KMZ 10B	S13	SEN	LV1721E50R	S11	M
CQW54 S	58a	LED	KMZ 10C	S13	SEN	LV2024E45R	S11	M
CQW60(L) 9	58a	LED	KP 100A	\$13	SEN	LV2327E40R	S11	M
COMEONITY	200	TED	KP101A	S13	SEN	T 1127 40 114 Ch	C11	
COW6OA(L)S		LED	KPZ2OG	S13	SEN	LV3742E16R		M
CQW6OU(L)S		LED	KPZ20G KPZ21G	S13	SEN	LV3742E24R		M
CQW61(L) S		LED	KTY81*	S13		LWE2015R	S11	M
CQW62(L) S		LED			SEN	LWE2025R	S11	M
CQW89A S	58a/b	I	KTY83*	S13	SEN	LZ1418E100	RS11	М
CQW93 S	58a	LED	KTY84*	S13	SEN	MCT2	S8b	PhC
cow95 s	58a	LED	LAE2001R	S11	М	MCT26	S8b	PhC
	58a	LED	LAE40010	S11	M	MKB12040WS		M
CQX24(L) S	58a	LED	LAE4001R	S11	M	MKB12100WS		М
CQX51(L) S		LED	LAE4002S	S11	M	MKB12140W	S11	M
			T. T. C.					
CQX54(L)		LED	LAE6000Q	S11	M	M06075B200		M
-	58a	LED	LBE1004R	S11	M	M06075B400		M
	58a	LED	LBE1010R	S11	M	MRB12175YR		M
~	58a	LED	LBE2003S	S11	M	MRB12350YR		M
CQX74(L) S	58a	LED	LBE2005Q	S11	М	MS1011B700	YS11	M
COX74D S	58a	LED	LBE2008T	S11	м	MS6075B800	ZS11	M
COY11B S	58b	LED	LBE20095	S11	М	MSB12900Y	S11	M
COY11C S	58b	LED	LCE1010R	S11	м	MZO912B75Y	S11	M
CQY24B(L)S	58a	LED	LCE2003S	S11	м	MZO912B150	YS11	M
CQY49B	58b	LED	LCE2005Q	S11	M	OM286; M	S13	SEN
COVAGG	rob	TED	T ペデンハハロサ	S11	м	OM207 - M	C12	CEM
	58b	LED	LCE2008T			OM287; M	S13	SEN
	58b	LED	LCE2009S	S11	M	OM320	S10	WBM
	58b	LED	LJE42002T	S11	M	OM321	S10	WBM
	58b	LED	LKE1004R	S11	M	OM322	S10	WBM
CQY52S S	58b	LED	LKE2002T	S11	M	OM323	S10	WBM
CQY54A S	58a	LED	LKE2004T	S11	M	OM323A	S10	WBM
	58a/b	I	LKE2015T	S11	M	OM335	S10	WBM
	58a/b	I	LKE21004R	S11	M	OM336	S10	WBM
CQY94B(L)S		LED	LKE21015T	S11	М	OM337	S10	WBM
	58a	LED	LKE21050T	S11	M	OM337A	S10	WBM
- <b>N</b>								

^{* =} series

LED = Light-emitting diodes
M = Microwave transistors

SEN = Sensors

WBM = Wideband hybrid IC modules

I = Infrared devices

PhC = Photocouplers

type no.	book	section	type no.	book	section	type no.	book	section
ом339	S10	WBM	PDE1003U	S11	M	PTB23005X	S11	M
OM345	S10	WBM	PDE 1005U	S11	M	PTB32001X	S11	M
OM350	S10	WBM	PDE1010U	S11	M	PTB32003X	S11	M
OM360	S10	WBM	PEE 100 1U	S11	M	PTB32005X	S11	M
OM361	510	WBM	PEE1003U	S11	M	PTB42001X	S11	M
OM370	S10	WBM	PEE 1005U	S11	M	PTB42002X	S11	M
OM386B	S13	SEN	PEE1010U	S11	M	PTB42003X	S11	M
OM386M	S13	SEN	PH2222;R	S3	Sm	PV3742B4X	S11	M
OM387B	S13	SEN	PH2222A;R	S3	Sm	PVB42004X	S11	M
OM387M	<b>S13</b>	SEN	РН2369	53	Sm	PZ 1418B150	S11	M
OM388B	<b>S13</b>	SEN	PH2907;R	s3	Sm	PZ1418B300		M
OM389B	S13	SEN	PH2907A;R	S3	Sm	PZ 172 1B 120	J S11	M
OM931	S4a	P	PH2955T	S4a	P	PZ1721B250		M
OM961	S4a	P	PH3055T	S4a	P	PZ2024B100	J S11	M
OSB9110	S2a	St	PH5415	53	Sm	PZ2024B200	511	M
OSB9115	S2a	St	PH5416	s3	Sm	PZB16035U	S11	M
OSB9210	S2a	St	PH13002	S4b	SP	PZB27020U	S11	M
OSB9215	S2a	St	PH13003	S4b	SP	RPY 100	S8b	I
OSB9410	S2a	St	PHSD51	S2a	R	RPY101	S8b	I
OSB9415	S2a	St	PKB3001U	S11	M	RPY 102	S8b	Ι
OSM9110	S2a	St	PKB3003U	S11	M	RPY103	S8b	I
OSM9115	S2a	St	PKB3005U	S11	M	RPY 109	S8b	I
OSM9210	S2a	St	PKB12005U	S11	M	RV3135B5X	S11	M
OSM9215	S2a	St	PKB20010U	S11	M	RX1214B300	)YS11	M
OSM9410	S2a	St	PKB23001U	S11	M	RXB12350Y	S11	M
OSM9415	S2a	St	PKB23003U	S11	M	RZ1214B355		M
OSM9510	S2a	St	PKB23005U	S11	M	RZ1214B60V		M
OSM9511	S2a	St	PKB25006T	S11	M	RZ1214B653		M
OSM9512	S2a	St	PKB32001U	S11	M	RZ1214B125		M
oss9110	S2a	St	PKB32003U	S11	M	RZ1214B125	YS11	M
OSS9115	S2a	St	PKB32005U	S11	M	RZ1214B150		M
0559210	S2a	St	PMBF4391	<b>S7</b>	Mm	RZ2833B45V		M
oss9215	S2a	St	PMBF4392	s7	Mm	RZ3135B15t		M
oss9410	S2a	St	PMBF4392	<b>S7</b>	Mm	RZ3135B15V		M
OSS9415	S2a	St	PO44	S8b	PhC	RZ3135B250	J S11	M
P2105	S8b	I	PO44A	S8b	PhC	RZ3135B30V		M
PBMF4391	<b>S</b> 5	FET	PPC5001T	S11	M	RZB12100Y	S11	M
PBMF4392	<b>S</b> 5	FET	PQC5001T	S11	M	RZB12350Y	S11	M
PBMF4393	S5	FET	PTB23001X	S11	M	RZZ1214B30	OYS11	
PDE 100 1U	S11	M	PTB23003X	S11	M	TIP29*	S4a	P

* = series

FET = Field-effect transistors

I = Infrared devices

M = Microwave transistors

Mm = Microminiature semiconductors

for hybrid circuits

P = Low-frequency power transistors

PhC = Photocouplers

R = Rectifier diodes

SEN = Sensors

Sm = Small-signal transistors

SP = Low-frequency switching power transistors

St = Rectifier stacks

WBM = Wideband hybrid IC modules

LAb	e no. bo	ok section	on type no.	book	section	type no.	book	section
TT	P30* S4	la P	1N829;A	S1	Vrf	1N6097	S2a	R
	P31* S4		1N9 14	S1	SD	1N6098	S2a	R
i	P32* S4		1N916	S1	SD	2N918	S10	WBT
	P33* S4		1N3879	S2a	R	2N929	S3	Sm
	P34* S4		1N3880	S2a	R	2N930	S3	Sm
			1113000	DZU		211750	55	Jii
TI	P41* S4	la P	1N3881	S2a	R	2N1613	<b>S</b> 3	Sm
TI	P42* 54	a P	1N3882	S2a	R	2N1711	S3	Sm
TI	P47 S4	la P	1N3883	S2a	R	2N1893	<b>S</b> 3	Sm
TI	P48 S4	a P	1N3889	S2a	R	2N2219	S3	Sm
TI	P49 S4	la P	1N3890	S2a	R	2N2219A	<b>S</b> 3	Sm
						· ·		
TI	P50 S4		1N3891	S2a	R	2N2222	53	Sm
TI	P110 S4	la P	1N3892	S2a	R	2N2222A	S3	Sm
TI	P111 S4	la P	1N3893	S2a	R	2N2297	S3	Sm
TI	P112 S4	la P	1N3909	S2a	R	2N2368	S3	Sm
TI	P115 S4	la P	1N3910	S2a	R	2N2369	S3	Sm
TI	P116 S4	la P	1N3911	S2a	R	2N2369A	S3	Sm
TI	P117 S4	la P	1N3912	S2a	R	2N2483	<b>S</b> 3	Sm
TI	P120 S4	a P	1N3913	S2a	R	2N2484	S3	Sm
TI	P121 S4	a P	1N4001G	S1	R	2N29O4	S3	Sm
TI	P122 S4	la P	1N4002G	S1	R	2N2904A	<b>S</b> 3	Sm
TTI	P125 S4	la P	1N4003G	S1	R	2N2905	<b>S</b> 3	Sm
1	P126 S4	-	1N4004G	S1	R	2N2905A	S3	Sm
1	P127 S4		1N4005G	S1	R	2N2905A	S3	Sm
1	P130 S4		1N4006G	S1	R	2N2906A	S3	Sm
1	P131 S4		1N4007G	S1	R	2N2907	S3	Sm
11.	. 131 53	ia i	D100F111	51	IX.	2112307	33	SIII
TI	P132 S4	la P	1N4148	<b>S1</b>	SD	2N2907A	53	Sm
TI	P135 S4	la P	1N4150	S1	SD	2N3O19	s3	Sm
TI	P136 S4	la P	1N4151	S1	SD	2N3O2O	S3	Sm
TI	P137 S4	la P	1N4153	S1	SD	2N3O53	S3	Sm
TI	P140 S4	la P	1N4446	S1	SD	2N3375	S6	RFP
TT1	P141 S4	a P	1N4448	S1	SD	2N3553	S6	RFP
	P145 S4		1N4531	S1	SD	2N3632	S6	RFP
1	P146 S4		1N4531 1N4532	S1	SD	2N3832	S5	FET
1	P147 S4		1N5059	S1	R	2N3823	S5	FET
1	P2955 S4		1N5060	S1	R R	2N3825 2N3866	S6	RFP
			143000	ונ	IX.	2.1.3000		ILL E
TI	93055 S <b>4</b>	a P	1N5061	S1	R	2N39O3	s3	Sm
	321;A S1	Vrf	1N5062	<b>S1</b>	R	2N39O4	S3	Sm
	323;A S1		11.0000	S2a	R	2N3905	<b>S</b> 3	Sm
	325;A S1			S2a	R	2N3906	53	Sm
1N8	327;A S1	Vrf	1N5834	S2a	R	2N3924	S6	RFP

⁼ series

FET = Field-effect transistors

= Low-frequency power transistors

= Rectifier diodes

RFP = R.F. power transistors and modules

SD = Small-signal diodes

Sm = Small-signal transistors

Vrf = Voltage reference diodes

WBT = Wideband transistors

type no.	book	section	type no.	book	section	type no.	book	section
2N3926	s6	RFP	2N5401	<b>S</b> 3	Sm	56339	S4b	A
2N3927	S6	RFP	2N5415	<b>S</b> 3	Sm	56352	S4b	A
2N3966	<b>S</b> 5	FET	2N5416	S3	Sm	56353	S4b	A
2N4O3O	S3	Sm	2N5550	53	Sm	56354	S4b	A
2N4O31	\$3	Sm	2N5551	<b>S</b> 3	Sm	56359b	S2,4b	A
2N4O32	<b>S</b> 3	Sm	2N6659	S5	FET	56359c	S2,4b	A
2N4O33	<b>S</b> 3	Sm	2N6660	S5	FET	56359d	S2,4b	A
2N4O91	S5	FET	2N6661	S5	FET	56360a	S2,4b	A
2N4O92	S5	FET	4N25	S8b	PhC	56363	52,4b	A
2N4093	<b>S</b> 5	FET	4N26	S8b	PhC	56364	s2,4b	
2N4123	s3	Sm	4N27	S8b	PhC	56367	S2a/b	A
2N4124	<b>S</b> 3	Sm	4N28	S8b	PhC	56368a	S2,4b	A
2N4125	<b>S</b> 3	Sm	375CQY-B	S8b	Ph	56368b	S2,4b	A
2N4126	S3	Sm	502CQF	S8b	Ph	56369	S2,4b	A
2N4391	<b>S</b> 5	FET	503CQF	S8b	Ph	56378	S2,4b	A
2N4392	S5	FET	504COL	S8b	Ph	56379	S2,4b	A
2N4393	S5	FET	516CQF-B	S8b	Ph	56387a,b	S4b	A
2N4427	S6	RFP	56201d	S4b	A			
2N4856	S5	FET	56201j	S4b	A			
2N4857	<b>S</b> 5	FET	56245	\$3,10				
2N4858	<b>S</b> 5	FET	56246	s3,10	) A			
2N4859	S5	FET	56261a	S4b	A			
2N4860	S5	FET	56264a,b	S2a/b	A			
2N4861	S5	FET	56295	S2a/b	A A			
2N5400	<b>S</b> 3	Sm	56326	S4b	A			

A = Accessories

FET = Field-effect transistors

Ph = Photoconductive devices

PhC = Photocouplers

RFP = R.F. power transistors and modules

Sm = Small-signal transistors

NOTES

# Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. 541-7141/7242/7343/7444/7545.

Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 11 Waltham Street, ARTARMON, N.S.W. 2064, Tel. (02) 439 3322.
Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE INDUSTRIE G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111. Belgium: N.V. PHILIPS & MBLE ASSOCIATED, 9 rue du Pavillon, B-1030 BRUXELLES, Tel. (02) 2427400. Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2800.
Canada: PHILIPS ELECTRONICS LTD., Elcoma Division, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161. Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001. Colombia: IND. PHILIPS DE COLOMBIA S.A., c/o IPRELENSO LTD., Cra. 21, No. 56-17, BOGOTA, D.E., Tel. 2497624. Denmark: MINIWATT A/S, Strandlodsvej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 541133.

Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271.

France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 43388000. Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0. Greece: PHILIPS HELLENIQUE S.A., Elcoma Division, 54, Syngru Av., ATHENS 11742, Tel. 9215311/319.

Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-245121. India: PEICO ELECTRONICS & ELECTRICALS LTD., Elcoma Dept., Band Box Building, 254-D Dr. Annie Besant Rd., BOMBAY - 400 025, Tel. 4930311/4930590. Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Setiabudi II Building, 6th Fl., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan, JAKARTA - Selatan, Tel. 512572. Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355. Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6752.1. Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611. (IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chiyoda-ku, TOKYO 102, Tel. (03) 230-1521. Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. 794-5011. Malaysia: PHILIPS MALAYSIA SDN. BERHAD, No. 4 Persiaran Barat, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 774411. Mexico: ELECTRONICA, S.A de C.V., Carr. México-Toluca km. 62.5, TOLUCA, Edo. de México 50140, Tel. Toluca 91 (721) 613-00. Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 793333. New Zealand: PHILIPS NEW ZEALAND LTD., Elcoma Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. 605-914. Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. 680200.
Peru: CADESA, Av. Alfonso Ugarte 1268, LIMA 5, Tel. 326070. Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59. Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. 683121. Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 3502 000. South Africa: EDAC (PTY.) LTD., 3rd Floor Rainer House, Upper Railway Rd. & Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. 614-2362/9. Spain: MINIWATT S.A., Balmes 22, BARCELONA 7, Tel. 301 63 12. Sweden: PHILIPS KOMPONENTER A.B., Lidingövägen 50, S-11584 STOCKHOLM 27, Tel. 08/7821000 Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. 01-4882211 Taiwan: PHILIPS TAIWAN LTD., 150 Tun Hua North Road, P.O. Box 22978, TAIPEI, Taiwan, Tel. 7120500. Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9. Turkey: TÜRK PHILIPS TICARET A.S., Elcoma Department, Inönü Cad, No. 78-80, P.K.504, 80074 ISTANBUL, Tel. 4359 10. United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633.
United States: (Active Devices & Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000. (Light Emitting Diodes) DIALIGHT CORP., 203 Harrison Place, BROOKLYN, NY 11237, Tel. 212-4977600. (Passive Devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000. (Passive Devices & Electromechanical Devices) CENTRALAB INC., 5855 N. Glen Park Rd., MILWAUKEE, WI 53201, Tel. (414)228-7380. (IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 991-2000. Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. 914321.

For all other countries apply to: Philips Electronic Components and Materials Division, International Business Relations, Building BAE, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Tel. +3140723304, Telex 35000 phtcnl

G51

Venezuela: IND. VENEZOLANAS PHILIPS S.A., c/o MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, App. Post. 78117, CARACAS, Tel. (02) 2393931.

© Philips Export B.V. 1986

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher.