Wire Cell Reconstruction Method and Software Library for Liquid Argon Time Projection Chambers

Brett Viren for the BNL Wire Cell Group

Physics Department

BROOKHAVEN NATIONAL LABORATORY

Connecting The Dots 2016

Outline

LArTPC Detectors

Wire Cell Technique
Data Preparation
Imaging Of Activity
Pattern Recognition

Wire Cell Software Bee Display Prototype Toolkit

LArTPC Experiments - ICARUS

The origin of LArTPC technology for Neutrinos: C. Rubbia, 1977 led to ICARUS, the first, large-scale LArTPC.

- 2× 300† modules.
- Took data in the Gran Sasso tunnel, Italy from CERN neutrino beam.
- Moving to Fermilab as part of the Short-Baseline Neutrino Program.

LArTPC Experiments - MicroBooNE

Recently started taking ν -data at Fermilab!

- 85 ton fiducial mass.
- 8256 channels
- 3 mm wire pitch.
- Investigate:
 - low energy excess puzzle
 - sterile- ν search
 - ν -Ar cross sections

MicroBooNE is the initial test bed for Wire Cell reconstruction.

LArTPC Experiments - DEEP UNDERGROUND NEUTRING EXPERIMENT

"International mega-science project"

Three stages of DUNE LATTPC detectors:

- **1** "**35ton**" prototype (at FNAL), just started operating, cosmic- μ exposure.
- 2 Full-scale "protoDUNE" (at CERN) 2017/2018 with π , K, p beam tests.
- 3 Full "DUNE" far detector underground in South Dakota \sim 2025.
 - At least 10 kt of single-phase LAr, 3-plane, wire readout: 5 mm wire pitch, 375K channels.
 - Total of 40 kt fiducial mass in 4 separate cryostats, different technologies possible for each module.

LArTPC with Wire Readout - Basics Principles

- Charged particles produce tracks of ionized LAr
- Electrons drift in an applied electric field
 - Eg: E = 500 V/cm, $v_{\text{drift}} = 1.6 \text{ mm/\mu s}$
- Charge drifts past 3 parallel wire planes (3-5 mm pitch)
 - 2 induction planes with bipolar signals.
 - 1 collection plane with monopolar signals.
- Digitize wire signal waveforms (2 MHz, 12 bits)
- Deconvolve detector response and apply noise filter.
- Optical system gives prompt T_0 from scintillation light.
- → Gives three independent measures of each element of drifting charge as three, 2D views (in wire vs time) which multiplex the two transverse dimensions.

(animation by Bo Yu \rightarrow)

7/28

7/28

7/28

7/28

7/28

7/28

7/28

LArTPC Data

LArTPC can produce **huge quantities** of **high-resolution** data from **large detector volumes**:

- 10⁴ 10⁶ channels
- 2MHz @ 12 bit waveform digitization
- each "event" spans several milliseconds

Full Stream: read out entire waveform (MicroBooNE)

- 30GB/s in 120 MB "events".
- DUNE at FS would produce 5 TB/s in 25 GB "events"!

Zero Supression: only save waveform parts with significant activity (**DUNE**)

- Threshold chosen based on noise ($E_{thesh} \sim 0.1 \, \text{MeV/wire}$)
- 2.5 MB/event → 100's TB/year
- requires rejection of natural ³⁹Ar decay @ 50 PB/year

LArTPC Detectors

Wire Cell Technique
Data Preparation
Imaging Of Activity
Pattern Recognition

Wire Cell Software

Four main parts:

- Data Preparation
 - Deconvolve detector response and filter noise.
 - Construct wire geometry and associated cells.
 - Form time slices across all wire signal waveforms.
- 2 Imaging of Activity
 - The heart of the Wire Cell technique.
 - Identify regions ("cells") in each time slice that likely contain the drifted charge.
- 3 Pattern Recognition
 - Cluster imaged activity in space and time slices.
 - Categorize patterns as track, shower, etc.
- 4 Physics Quantities
 - Determine particle ID and kinematics of tracks/showers.

Four main parts:

- Data Preparation
 - Deconvolve detector response and filter noise.
 - Construct wire geometry and associated cells.
 - Form time slices across all wire signal waveforms.
- 2 Imaging of Activity
 - The heart of the Wire Cell technique.
 - Identify regions ("cells") in each time slice that likely contain the drifted charge.
- 3 Pattern Recognition
 - Cluster imaged activity in space and time slices.
 - Categorize patterns as track, shower, etc.
- Physics Quantities
 - Determine particle ID and kinematics of tracks/showers.

Four main parts:

- Data Preparation
 - Deconvolve detector response and filter noise.
 - Construct wire geometry and associated cells.
 - Form time slices across all wire signal waveforms.
- 2 Imaging of Activity
 - The heart of the Wire Cell technique.
 - Identify regions ("cells") in each time slice that likely contain the drifted charge.
- 3 Pattern Recognition
 - Cluster imaged activity in space and time slices
 - Categorize patterns as track, shower, etc.
- 4 Physics Quantities
 - Determine particle ID and kinematics of tracks/showers.

Four main parts:

- Data Preparation
 - Deconvolve detector response and filter noise.
 - Construct wire geometry and associated cells.
 - Form time slices across all wire signal waveforms.
- 2 Imaging of Activity
 - The heart of the Wire Cell technique.
 - Identify regions ("cells") in each time slice that likely contain the drifted charge.
- 3 Pattern Recognition
 - Cluster imaged activity in space and time slices.
 - Categorize patterns as track, shower, etc.
- Physics Quantities
 - Determine particle ID and kinematics of tracks/showers.

Four main parts:

- Data Preparation
 - Deconvolve detector response and filter noise.
 - Construct wire geometry and associated cells.
 - Form time slices across all wire signal waveforms.
- 2 Imaging of Activity
 - The heart of the Wire Cell technique.
 - Identify regions ("cells") in each time slice that likely contain the drifted charge.
- 3 Pattern Recognition
 - Cluster imaged activity in space and time slices.
 - Categorize patterns as track, shower, etc.
- 4 Physics Quantities
 - Determine particle ID and kinematics of tracks/showers.

Time Slicing

Focus on one **time slice** along a plane transverse to the drift.

- Slice duration is chosen to **match electronics shaping time**: combine 4 FADC "ticks" = 2 µs.
- Select wires above threshold in the slice.
- Identify regions near triple-wire overlap as potential "cells" holding drifted charge in that time slice.

Tiling

Zoom in on the wires and their associated (constructed) cells.

MicroBooNE geometry, grey wires, colored cells.

- Try to localize drifted charge into 2D bins or "cells" in the plane transverse to the electron drift direction.
- Each cell covers region near the approximate triple-crossing of one wire from each plane.
- Pattern determined by **pitch**, **angle** and **phase** of wire planes.

MicroBooNE regular isosceles triangles of fixed size.

DUNE variety of polygons with a spectrum of sizes.

The heart of the Wire Cell concept: if all three wires are above threshold in a time slice, the associated cell *likely* contains some drifted charge.

Ideal Solution

In a **perfect detector**, simply invert matrix equation:

$$\vec{w} = \mathbf{G}\vec{c}$$

- \vec{w} measured charge on wires (in time slice)
- \vec{c} expected charge on **cells** (in time slice)
- **G** fixed wire-cell **connection** matrix (geometry)

Ideal Solution

In a **perfect detector**, simply invert matrix equation:

$$\vec{w} = \mathbf{G}\vec{c}$$

- \vec{w} measured charge on wires (in time slice)
- \vec{c} expected charge on **cells** (in time slice)
- **G** fixed wire-cell **connection** matrix (geometry)

In a **real detector**:

- Solution is often ambiguous $(N_{wires} < N_{cells})$
 - CT scanners have 100s of views in each slice, not just 3!
- Uncertainty in charge measurements (\vec{w})
 - Environmental, electronic and thermal noise.
 - Statistical uncertainty due to digitization.
 - Systematic uncertainties from deconvolution.

Ambiguities - Example Hit Pattern

Zoom in on $5 \times 5 \times 3$ wires:

- cell with nonzero true charge
- no true charge, all wires hit
- no true charge, unambiguous

Cartoon of activity in one time slice:

- 9 cells and their associated wires.
- wires: color=plane, thickness=charge
- purple shows true drifted charge

Ambiguities - Example Hit Pattern

Zoom in on $5 \times 5 \times 3$ wires:

- cell with nonzero true charge
- no true charge, all wires hit
- no true charge, unambiguous

Cartoon of activity in one time slice:

- 9 cells and their associated wires.
- wires: color=plane, thickness=charge
- purple shows true drifted charge

Good wire v3 measures no charge, all its cells must **not** be hit.

Bad wires hit by charge in **c2**, **c7** and **c8** induce "ghost" at **c4**.

Ambiguous multiple cells measured by same wire. How much charge is in **c6**???

Ambiguities - Example Hit Pattern

Zoom in on $5 \times 5 \times 3$ wires:

- cell with nonzero true charge
- no true charge, all wires hit
- no true charge, unambiguous

Cartoon of activity in one time slice:

- 9 cells and their associated wires.
- wires: color=plane, thickness=charge
- purple shows true drifted charge

Good wire v3 measures no charge, : all its cells must **not** be hit.

Bad wires hit by charge in **c2**, **c7** and **c8** induce "ghost" at **c4**.

Ambiguous multiple cells measured by same wire. How much charge is in **c6**???

Fight ambiguity by reducing number of unknowns!

Brett Viren (BNL) Wire Cell September 19, 2019 14/28

Blobs

Reduce matrix size and (try to) **remove ambiguity** by exploiting knowledge of cell-nearest-neighbors.

 $\begin{array}{c} \text{cells} \rightarrow \text{blobs} \\ \text{wires} \rightarrow \text{merged wires} \end{array}$

Same basic problem to solve:

$$\vec{w_b} = \mathbf{G_{wb}} \vec{b}$$

- **Sometimes** gives more favorable numerology: $N_{blob} \lesssim N_{w_b}$
- But not always! some G_{wb} can still not be inverted.
- ightarrow And, we still haven't taken into account **uncertainty**.

Brett Viren (BNL) Wire Cell September 19, 2019 15/28

Charge Measurement Uncertainty

Can form:

$$\chi^2 = (\vec{w}_{meas} - \vec{w}_{exp})^{\mathsf{T}} \mathbf{V}^{-\mathsf{T}} (\vec{w}_{meas} - \vec{w}_{exp})$$

 \vec{w}_{meas} measured (merged) wire charges (in a slice)

$$\vec{w}_{\text{exp}}$$
 expected wire charge $(\vec{w}_{\text{exp}} = \vec{w}_{\text{b}} = \mathbf{G}_{\text{wb}} \vec{b})$

V wire charge uncertainty covariance matrix

Minimization over blob charges is equivalent to matrix inversion and gives:

$$\vec{b} = (\mathbf{G}^{\mathsf{T}}\mathbf{V}\mathbf{G})^{-1}\mathbf{G}^{\mathsf{T}}\mathbf{V}^{-1}\mathbf{B}\vec{w}_{meas}$$

B matrix connects "merged" wires to individual wires (per slice).

Reminder: only works if $N_{blob} < N_{w_b}$!

Brett Viren (BNL) Wire Cell September 19, 2019 16/28

Remaining Ambiguities

Even after forming **blobs** sometimes still some **time slices** with:

$$N_{blob} > N_{w_b}$$

⇒ zero-value eigenvalues, remaining ambiguity.

Brett Viren (BNL) Wire Cell September 19, 2019 17/28

Remaining Ambiguities

Even after forming **blobs** sometimes still some **time slices** with:

$$N_{blob} > N_{w_b}$$

- ⇒ zero-value eigenvalues, remaining ambiguity.
 - Try removing blobs in combinations: 2, 3, ... until all eigenvalues are nonzero
 - Combinatorics ⇒ hugely time consuming!
 - Algorithm optimization and shortcuts employed.
 - Still, some time slices can take ~hours.
 - ⇒ We are looking into exploiting GPUs.
 - For now, if no solution is found after fixed number of iterations
 give up on time slice....

Brett Viren (BNL) Wire Cell September 19, 2019 17/28

The Payoff: imaged $3 \, \text{GeV} \, \nu_e$ interaction

Brett Viren (BNL) Wire Cell September 19, 2019 18/28

The Payoff: imaged 3 GeV ν_e interaction

- **Excellent imaging** of major features and isolated activity.

Brett Viren (BNL) Wire Cell September 19, 2019 18/28

The Payoff: imaged $3 \, \text{GeV} \, \nu_e$ interaction

- Excellent imaging of major features and isolated activity.
 - \rightarrow a static 2D view doesn't do it justice! Follow link to view it online.
- Residual ambiguity seen as wide blue patches.
 - ightarrow Inherent problem of tomography using low number of viewing angles
 - Will pursue an **iterative** approach: constrain ambiguous regions after reconstructing the good parts to the kinematics-level.

Brett Viren (BNL) Wire Cell September 19, 2019 18/28

Post-imaging Pattern Recognition

- 1 cluster together blobs contiguous in space and time (slice).
- track straight line through a cluster.
- 3 categorize track fit solutions/failures.

Some initial, coarse categories:

track cluster is well characterized by the track.

shower cluster consistent with an EM/hadronic shower.

short cluster appears to be a "short track" (eg, δ -ray).

undefined no well-suited categorization.

- This is an active area of development for Wire Cell.
- Plan for semi-automated, hand-scanning to map out problem space.
- Maybe a problem suited for machine learning?

Brett Viren (BNL) Wire Cell September 19, 2019 19/28

LArTPC Detectors

Wire Cell Technique

Wire Cell Software Bee Display Prototype Toolkit

Brett Viren (BNL) Wire Cell September 19, 2019 20/28

Wire Cell Software Ecosystem

The software is composed into three main parts:

visualization the "Bee" web application (Chao Zhang)
prototype reconstruction algorithms, initial proof of principle
(Xin Qian)

toolkit production process, parallelism and basis for long-term development (bv)

Brett Viren (BNL) Wire Cell September 19, 2019 21/28

Bee: an interactive 3D visualization system

Select features:

- Web browser-based 3D event display,
- Shows variety of reconstructed and "true" information.
- Implemented in JavaScript/WebGL (Django backend).
- Simple JSON data file format,
 - drag-and-drop user file uploads.

Brett Viren (BNL) Wire Cell September 19, 2019 22/28

Bee: an interactive 3D visualization system

Select features:

- Web browser-based 3D event display,
- Shows variety of reconstructed and "true" information.
- Implemented in JavaScript/WebGL (Django backend).
- Simple JSON data file format,
 - drag-and-drop user file uploads.

Bee 2.0 in development

- → **semi-automated, human-guided** pattern recognition.
- → collect and replay human decisions.
- → look for low-hanging fruit to automate.
- → maybe feed into machine learning?

Brett Viren (BNL) Wire Cell September 19, 2019 22/28

Bee Screenshot

Try it yourself: http://www.phy.bnl.gov/wire-cell/bee/

Brett Viren (BNL) Wire Cell September 19, 2019 23/28

Wire Cell Working Prototype

- Very successful proof of principle!
- Currently leads the state of the art in LArTPC reconstruction techniques.

Example result showing imaging + pattern recognition. Colors indicate identified tracks and showers.

Brett Viren (BNL) Wire Cell September 19, 2019 24/28

Wire Cell Toolkit

Address compromises made in the name of rapid prototyping

- Modular packaging and build system (waf).
- Comprehensive API via abstract interface classes.
- Mindful of dependencies, external and internal.
- Built-in wire and cell geometry descriptions or load from file.
- Includes simple LArTPC detector simulation.
- Rewriten implementations of prototype algorithms.
- Data Flow Programming execution model with abstracted DFP engine.

Just now becoming available but with some work still to do.

Wire Cell Execution Model

The toolkit supports **data flow programming** paradigm

- Design influenced by VisTrails and others.
- Data flows through a graph made from:

vertices: **computational units** (algorithms) edges: **data queues** of a given type

- Streamed processing minimizes RAM usage.
- High-level "graph programming" in user config.
- Thread-safe queues ⇒ parallel processing.
- Abstract graph execution machinery.
 - Intel TBB provides reference implementation.

One possible Wire Cell flow.

Brett Viren (BNL) Wire Cell September 19, 2019 26/28

Summary

- The Wire Cell working prototype LArTPC reconstruction method and software has been developed.
 - already producing some of the world's best results,
 - technical and performance improvements on-going.
- The Bee interactive 3D event visualization application has been developed
 - critical for understanding LArTPC and developing Wire Cell
 - plans to evolve to "human-directed automated reconstruction" system.
- The Wire Cell Toolkit for LArTPC reconstruction becoming available.
 - Basis for long term development including investigations into parallel processing.

We expect Wire Cell requires wading into the **new waters** (for us) of parallel processing, hardware acceleration, computing science and mathematics.

 \rightarrow Expert suggestions, help and collaboration are most welcome!

Brett Viren (BNL) Wire Cell September 19, 2019 27/28

Wire Cell on the web

• home page:

```
http://www.phy.bnl.gov/wire-cell/
```

• Bee entry page:

```
http://www.phy.bnl.gov/wire-cell/bee/
```

prototype user manual:

```
http://bnlif.github.io/wire-cell-docs/
```

prototype repositories:

```
https://github.com/BNLIF
```

toolkit user manual:

```
http://wirecell.github.io/wire-cell-docs/
```

toolkit code reference:

```
http://www.phy.bnl.gov/wire-cell/doxy/html/
```

toolkit repositories:

```
https://github.com/WireCell
```