6. NURBS (Non-Uniform Rational B-Spline)

スプラインの歴史を考えると、最初に3次スプラインが使用され、そのご、B-Spline の特殊な 形である、Uniform B-Spline が Riesenfeld により提唱され、CAD への B-Spline への応用が始 まった。Uniform B-Spline は Non-uniform なものへと拡張され、さらに Rational な B-Spline へと拡張された。このため、最も一般的な B-Spline の形式を指して Non Uniform B-Spline と 呼称し、その有理式による表現を Non Uniform Rational B-Spline と呼ぶ。これを略して NURBS と称されることが多い。 もともと B-Spline は Non uniform なものが一般的であるが、 おそらく、Bezier Curve が 0 から 1 までのパラメータ区間を利用していたため、それを踏襲し て B-Spline を導入し、Uniform B-Spline という特殊なものを考えたのであろう。Bezier Curve はその導入の初期段階では広く使用され、これで表現された CAD データは数多く存在する。こ の表現形式は B-Spline の特殊なものであり、B-Spline (または、NURBS) としての表現の特 殊なケースとして取り扱うことができる。しかし、このことはかなり厄介な問題をシステムに残 すこととなった。Bezier Curve はどのようなワールド座標系であっても、パラメータ区間を[0, 1] とする。しかし、今ではより弧長に近いパラメータ区間とすることが、曲線の取り扱い易さから 一般的である。これらのデータが同一システムの中に混在することは、曲線の1次微分値の大き さがまったく異なるものが混在し、このことが数値計算上での多くの問題を引き起こす。同一シ ステム内では、曲線の1次微分値(接ベクトル)の大きさはおおむね同一であることが望ましい のである。

- 6. 1 円錐曲線の NURBS による表現
- 6. 2 回転体の NURBS 曲面による表現