Grundlagen Aussagenlogik äquivalente Aussagen

de Morgan $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$ $\neg (A \lor B) \Leftrightarrow \neg A \land \neq B$

 $\begin{array}{l} \text{Assoziativit"at} \\ A \lor (B \lor C) \Leftrightarrow (A \lor B) \lor C \\ \underline{A} \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C) \end{array}$ Distributivität $A \wedge (B \wedge C) \Leftrightarrow (A \wedge B) \wedge C$ $A \wedge (B \vee C) \Leftrightarrow (A \wedge B) \vee (A \wedge C)$

All- und Existenzquantor All-Quantor: \forall

 $\overline{\text{"Für alle } n}$ aus M gilt: A(n)" $\forall n \in M : A(n)$

Existenz-Quantor:

 $\overline{\text{"Es existiert min}}$ destens ein n aus M, für das gilt: A(n)" $\exists n \in M : A(n)$

Mengen

Mengenverknüpfungen

Vereinigung $A \cup B := \{m | m \in A \lor m \in B\}$ Schnitt Schnitt $A \cap B := \{m | m \in A \land m \in B\}$ Differenz $A \backslash B := \{m | m \in A \land m \notin B\}$ Kartesisches Produkt $A \times B := \{(m,n) | m \in A \land n \in B\}$ Verallgemeinerung Vereinigung $\bigcup_{M \in \mathcal{N}} M := \{m | \exists M \in \mathcal{N} : m \in M\}$ Verallgemeinerung Schnitt $\bigcap_{M \in \mathcal{N}} M := \{m | \forall M \in \mathcal{N} : m \in M\}$ Komplement $A^c = U \backslash A$ Reweistechniken

Beweistechniken Direkter Beweis

Folgerungen Umformungen von bereits bewiesenen Aussagen.

Bei Aquivalenzen müssen beide Richtungen gezeigt werden:

 $(A \Leftrightarrow B) \Leftrightarrow ((A \Rightarrow B) \land (B \Rightarrow A))$ Indirekter Beweis - Kontraposition

Beweis erfolgt indem dei Kontraposition gezeigt wird (rechte Seite) $(A \Rightarrow B) \Leftrightarrow (\neq B \Rightarrow \neq B)$

Widerspruchbeweis

Zeige, dass die gegenteilige Aussage zu einer Falschen Aussage führt. Ist dies der Fall, so gilt A.

 $((\neg A \Rightarrow C) \land \neq C) \Rightarrow A$ Vollständige Induktion

1. IA: Beweise A(n=1)

2. IV: Für ein beliebiges aber festes $n \in \mathbb{N}$ gilt A(n)

3. IS: Beweise $A(n) \Rightarrow A(n+1)$

Zahlenmengen

Körper Hier könnten vielleicht noch die Körperaxiome und die Folgerungen daraus hin.

Bruchrechenregeln

a. $\frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc$ b. $\frac{ae}{be} = \frac{a}{b}$ c. $\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{bd}$ d. $\frac{\frac{a}{b}}{\frac{e}{d}} = \frac{ad}{be}$

Folgerungen für Ungleichungen

In einem geordneten Körper K gilt für beliebige Elemente $a,b,c,d\in K$ und $x \in K \setminus \{0\}$

- a. $(a < b) \lor (a > b) \lor (a = b)$
- b. $(a < b) \land (b < c) \Rightarrow a < c$
- c. $(a < b) \land (c \le d) \Rightarrow a + c < b + d$ d. $(a < b) \land (x > 0) \Rightarrow ax < bx$
- $(a < b) \land (x < 0) \Rightarrow ax > bx$
- e. $a < b \Leftrightarrow a > -b$
- f. $x^2 := x \cdot x > 0$ g. $0 < a < b \Leftrightarrow 0 < b^{-1} < a^{-1}$

Betrag und Folgerungen

 $|x| := \begin{cases} x & \text{, falls } x \ge 0 \\ -x & \text{, falls } x < 0 \end{cases}$

Es gelten folgende Regeln:

a. $|x| \ge 0 \land (|x| = \Leftrightarrow x = 0)$

b. $|x \cdot y| = |x| \cdot |y|$

c. $(|x| < \varepsilon) \Leftrightarrow (x < \varepsilon) \land (-\varepsilon < x) \Leftrightarrow$ $(-\varepsilon < x < \varepsilon)$ $(|x| \le \varepsilon) \Leftrightarrow (x \le \varepsilon) \land (-\varepsilon \le x) \Leftrightarrow$ $(-\varepsilon \le x \le \varepsilon)$

d. $|x+y| \le |x| + |y|$ (Dreiecksung.) e. $||x|-|y|| \le |x-y|$ (umgekehrte.D.)

Metrik

Sei A eine Menge. Wir nennen eine Abbildung $d: A \times A \to \mathbb{R}$ eine Metrik auf A, wenn für alle $x, y, z \in A$ drei Eigenschaften erfüllt sind:

a. Positive Definitheit

d(x,y) > 0 für $x \neq y$

d(x,y) = 0 für x = y

b. Symmetrie d(x, y) = d(y, x)

c. Dreiecksungleichung

 $d(x,y) \le d(x,z) + d(z,y)$

Beispielmetrik: $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ mit d(x,y) = |x-y|Gaußklammern

Sei $x \in \mathbb{R}$ und $m, n \in \mathbb{Z}$:

a) $m \le x < m + 1$ b) $n - 1 < x \le n$

 $\lceil x \rceil := n$

Modulo

Sei $m, r, z \in \mathbb{Z}$ und $n \in \mathbb{N}$: z = mn + r $r=z \!\!\mod n$

Komplexe Zahlen

Definition $\mathbb{C} := \{(a,b) \in \mathbb{R} \times \mathbb{R}\} \text{ Für } z =$ (a,b) ist Re(z) := a der Realteil und

Im(z) := b der Imaginärteil **Rechnen mit** \mathbb{C} $z_1 + z_2 := (a_1 + a_2, b_1 + b_2)$

 $z_1 \cdot z_2 := (a_1 a_2 - b_1 b_2, a_1 b_2 + a_2 b_1)$ Nullelement (0,0)

Einselement (1,0)

-(a,b) = (-a,-b)(Negativelement) $(a,b)^{-1} = \left(\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}\right)$ (Inverses

Element)

Entential Enten

 $\frac{d(z_1, z_2) = |z_1 - z_2|}{\overline{z_1 \cdot z_2} = \overline{z_1} \overline{z_2}} = \overline{z_1} + \overline{z_2}$

$\overline{z_1 \cdot z_2} = \overline{z_1} \overline{z_2}$ $\overline{z_1 + z_2} = \overline{z_1}$ Summen, Produkte, ... Def. Summe, Produkt

$$\sum_{k=m}^{n} a_k := \begin{cases} a_m + a_{m+1} + \\ \dots + a_n & m \le n \\ 0 & , \text{sonst} \end{cases}$$

$$\prod_{k=m}^{n} a_k := \begin{cases} a_m \cdot a_{m+1} \cdot \\ \dots \cdot a_n & m \le n \\ 1 & , \text{ sonst} \end{cases}$$

Potenzen

$$x^{n} := \prod_{k=1}^{n} x$$

$$\text{Für } x \neq 0 \colon x^{-n} := \frac{1}{x^{n}} \qquad x^{0} := 1$$

$$\text{Rechenregeln}$$

$$a^{n}a^{m} = a^{n+m} \qquad (a^{n})^{m} = a^{nm}$$

$$a^{n}b^{n} = (a \cdot b)^{n}$$

Fakultät

 $n! := \prod_{i=1}^{n} k = 1 \cdot 2 \cdot \dots \cdot n$ 0! = 1

Binomialkoeffizient

$$\binom{n}{k} := \begin{cases} \frac{n!}{(n-k)! \cdot k!} = \\ \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{k \cdot (k-1) \cdot \dots \cdot 1} & n \ge k \\ 0 & n < k \end{cases}$$

 $\forall n, k \in \mathbb{N}_0 : \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$ Binomischer Lehrsatz Für $a, b \in \mathbb{R}$ und $n \in \mathbb{N}$: $(a + b)^n =$ $\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k$

Bernoullische Ungleichung $\forall x \in \mathbb{R}, x \geq -1, n \in \mathbb{N}_0$ gilt: (1 + $(x)^n \ge 1 + nx$

Satz 2.49 $\forall x \in \mathbb{R} \text{ mit } x \geq 0 \text{ und } \forall n \in N \text{ mit}$

 $n \ge 2$ gilt $(1+x)^n \ge \frac{n^2 x^2}{4}$

Folgen Definition

Eine Folge ist eine Abbildung, bei der jedem $n \in \mathbb{N}$ ein $a_n \in \mathbb{R}$ zugeordnet wird. Schreibweise: (a_n) oder

$\operatorname{Def.}^{(a_n)_{n\in\mathbb{N}}}$ Konvergenz, Diver-

genz Folge (a_n) ist konvergent, wenn gilt: $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : |a_n - a| <$

- 1. nicht konvergent \Rightarrow divergent
- 2. Falls (a_n) gegen a konvergiert, so ist a Grenzwert von (a_n) . Schreibweise: $\lim_{n\to\infty} a_n = a$ oder $a_n \to a$ für $n\to\infty$
- 3. Falls $\lim_{n\to\infty} a_n = 0 \Rightarrow$ Nullfolge

Eindeutigkeit Grenzwerts

Der Grenzwert einer Folge ist, falls er existiert eindeutig!

Divergenz inverser Nullfolge Ist Folge (a_n) Nullfolge mit $a_n \neq 0$, dann ist Folge $(b_n) = \frac{1}{a_n}$ divergent. Bestimmte Divergenz

Folge (a_n) ist bestimmt divergent gegen $\infty/-\infty$, wenn $b_n = \frac{1}{a_n}$ eine Nullfolge ist und $\exists n_0 \in \mathbb{N} \forall n \geq n_0$: $a_n \leq 0$. Wir schreiben:

 $\lim a_n = \infty / - \infty$

Beschränkte Folge Folge (a_n) nach oben (unten) be-

schränkt, wenn Menge $M = \{a_n | n \in$ $\mathbb{N}\}$ nach oben (unten) beschränkt ist. Ist (a_n) nach oben und unten beschränkt so heißt sie beschränkt.

 $Konvergenz \Rightarrow Beschränkt$ Jede Konvergente Folge ist beschränkt

Monotonie

Folge (a_n) heißt:

- monoton wachsend: $a_n \le a_{n+1} \forall n \in \mathbb{N}$
- streng monoton wachsend: $a_n < a_{n+1} \forall n \in \mathbb{N}$
- monoton fallend:
 - $a_n \ge a_{n+1} \forall n \in \mathbb{N}$
- streng monoton fallend: $a_n > a_{n+1} \forall n \in \mathbb{N}$

$Monoton + Beschränkt \Rightarrow Kon$ vergenz

Jede beschränkte montone FOlge ist konvergent.

- a. (a_n) monoton wachsend + oben beschränkt \Rightarrow konvergent. Es gilt $\lim_{n \to \infty} a_n = \sup\{a_n | n \in \mathbb{N}\}\$
- b. (a_n) monoton fallend + unten be $schränkt \Rightarrow konvergent.$ Es gilt $\lim_{n \to \infty} a_n = \inf\{a_n | n \in \mathbb{N}\}\$

Rechenregeln

Seien $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}$ konvergente Folgen und $c \in \mathbb{R}$

- a. $(a_n) + (b_n) = (a_n + b_n)$
- b. $c \cdot (a_n) = (c \cdot a_n)$
- c. $(a_n) \cdot (b_n) = (a_n \cdot b_n)$
- d. $\frac{(a_n)}{(b_n)} = \left(\frac{a_n}{b_n}\right)$, falls $b_n \neq 0$
- e. $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} (a_n) +$ $\lim_{n\to\infty}(b_n)$
- f. $\lim_{n \to \infty} c \cdot (a_n) = c \cdot \lim_{n \to \infty} (a_n)$ $\lim_{n \to \infty} (a_n) \cdot (b_n) = \lim_{n \to \infty} (a_n) \cdot$ $\lim_{n\to\infty}(b_n)$
- h. $\lim_{n \to \infty} \frac{(a_n)}{(b_n)} = \frac{\lim_{n \to \infty} (a_n)}{\lim_{n \to \infty} (b_n)}$, falls $b_n \neq 0$ und $\lim_{n \to \infty} \frac{1}{n}$ 0 und $\lim_{n\to\infty} b_n \neq 0$

Größenvergl. konv. Folgen Seien $(a_n), (b_n)$ konvergente Folgen mit $(a_n) \leq (b_n)$ Dann gilt:

 $\lim_{n \to \infty} (a_n) \le \lim_{n \to \infty} (b_n)$ Sandwich-Theorem

Seien $(a_n), (b_n), (c_n)$ Folgen, für die $\exists n_0, \text{ sodass } n \geq n_0 \text{ gilt: } (a_n) \leq$ $(b_n) \leq (c_n)$. Wenn $(a_n), (c_n)$ konvergent und gilt

 $\lim_{n\to\infty} (a_n) = \lim_{n\to\infty} (c_n), \text{ dann ist auch } (b_n) \text{ konvergent und es gilt:}$

 $\lim_{n \to \infty} (a_n) = \lim_{n \to \infty} (b_n) = \lim_{n \to \infty} (c_n)$

Teilfolgen

Grenzwert Teilfolge

Jede Teilfolge (a_{n_k}) einer konvergenten Folge (a_n) ist konvergent. Es gilt: $\lim_{k \to \infty} a_{n_k} = \lim_{n \to \infty} a_n = a$

Divergenz durch Teilfolge Besitzt eine FOlge (a_n)

- a. eine divergente Teilfolge
- Teilfolgen b. zwei konvergente $(a_{n_k}), (a_{n_l}) \text{ mit } \lim_{k \to \infty} \neq \lim_{l \to \infty} (a_{n_l})$

so ist die Folge divergent.

Satz 3.29

Jede Folge enhtält eine monotone Teilfolge

Balzano-Weierstraß

Jede beschränkte Folge (a_n) besitzt eine konvergente Teilfolge. Häufungspunkt

Für (a_n) heißt a Häufungspunkt, wenn Teilfolge (a_{n_k}) existiert und $\lim (a_{n_k}) = a$ Cauchy-Folge

 (a_n) heißt Cauchy-Folge, wenn gilt: $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 : |a_n - a_n| = |a_n|$

bedeutet:

 $a_{n_0} < \varepsilon$ Satz 3.34 Folge ist genau dann konvergent, wenn sie eine Cauchy-Folge ist. Das

- a. Jede konvergente Folge ist eine Cauchy-Folge
- b. Jede Cauchy-Folge ist konvergent

Intervallle

Kompaktheit

Intervall I heißt kompakt, wenn es abgeschlossen und beschränkt ist.

Intervalschachtelung

Eine F Olge (I_n) von abgeschlossenen Intervallen I_n heißt Intervallschachtelung, wenn gilt:

- $\bullet \ \forall n \in \mathbb{N} : I_{n+1} \subset I$
- $\bullet \lim_{n \to \infty} |I_n| = 0$

Konvergenz Intervalschachtelung

Für jede Intervallschachtelung (I_n) existiert genau ein eindeutiges $x \in \mathbb{R}$, für das gilt: $x \in I, \forall n \in \mathbb{N}$

Wir sagen auch: die Intervallschachtelung konvergiert gegen x.

Reihen Def. Reihe

 $\sum\limits_{k=1}^{\infty}a_k=a_1+\dots$ eine Reihe. $s_n=$

 $\sum_{k=1}^{n} a_k$ die n-te Teilsumme der Reihe. Folge der Teilsummen konvergent ⇒

Reihe konvergent. Sonst divergent. Cauchy-Konvergenzkrit. Reihe konvergiert g.d.w. gilt: $\forall \varepsilon >$

$0 \exists n_0 \in \mathbb{N} \ \forall n \ge m \ge n_0 : \left| \sum_{k=m}^n < \varepsilon \right|$ Notw. Konvergenzkrit.

 $\sum_{k=1}^{\infty} a_k$ konvergente Reihe \Rightarrow Folge (a_k) ist Nullfolge $\Rightarrow \lim_{k \to \infty} a_k = 0$.

Teilsummenbeschränktheit

 $\sum_{k=1}^{\infty} a_k \text{ mit } a_k \geq 0 \ \forall k \in \mathbb{N} \text{ kon-}$ vergiert g.d.w. Folge der Teilsummen

Rechenregeln konv. Reihen $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} b_k$ konvergente Reihen:

a.
$$\sum_{k=1}^{\infty} (a_k \pm b_k) \text{ konvergent. Für die}$$
 Grenzwerte gilt:
$$\sum_{k=1}^{\infty} (a_k \pm b_k) = \sum_{k=1}^{\infty} a_k \pm \sum_{k=1}^{\infty} b_k$$

b.
$$\sum\limits_{k=1}^{\infty} c \cdot a_k$$
 konvergent für $c \in \mathbb{R}.$ Es

gilt:
$$\sum_{k=1}^{\infty} c \cdot a_k = \sum_{k=1}^{\infty} a_k$$

c.
$$\forall l \in N \ l > 0 : \sum_{k=l}^{\infty} a_k \text{ konvergiert}$$

 $\Leftrightarrow \sum_{k=1}^{\infty} a_k \text{ konvergiert}$

d. Gilt
$$a_k \leq b_k \forall k \in \mathbb{N}: \sum\limits_{k=1}^{\infty} a_k \leq \sum\limits_{k=1}^{\infty} b_k$$

Def. absolute Konvergenz

 $\sum_{k=1}^{\infty} a_k \text{ abs. konv.} \Leftrightarrow \sum_{k=1}^{\infty} |a_k| \text{ konv.}$ Reihenumordnung

 $\sum_{k=1}^{\infty} a_k$ abs. konv. \Rightarrow Jede Umordnung der Glieder konvergiert gegen den selben Grenzwert.

abs. Konv. \Rightarrow Konvergenz

 $\sum_{k=0}^{\infty} a_k$ abs. konv. \Rightarrow konvergent

Cauchy-Produkt

 $\sum\limits_{k=0}^{\infty}a_{k},\sum\limits_{k=0}^{\infty}b_{k}$ abs. konverg.. Für $n\in$

$$\mathbb{N}$$
 sei $c_n := \sum_{k=0}^n a_k \cdot b_{n-k}$, dann

ist
$$\sum_{k=0}^{\infty} = \left(\sum_{k=0}^{\infty} a_k\right) \cdot \left(\sum_{k=0}^{\infty} b_k\right)$$
 abs. konv.

Konvergenzkriterien Leibnitz-Kriterium

 (a_k) monoton fallende Folge mit $\forall k \in \mathbb{N} a_k \ge 0 \text{ mit } \lim_{k \to \infty} a_k = 0, \text{ dann}$

 $\begin{array}{l} & \overset{\sim}{\underset{k=1}{\sum}} (-1)^k a_k. \\ \textbf{Majorantenkriterium} \\ & \overset{\sim}{\underset{k=1}{\sum}} c_k \text{ konvergent mit } \forall k \in \mathbb{N} : c_k \geq \end{array}$

0. Wenn für $\sum\limits_{k=1}^{\infty}a_k\exists k_0\in\mathbb{N},$ sodass $\forall k\geq k_0$ gilt $|a_k|\leq c_k,$ dann konvergiert $\sum\limits_{k=1}^{\infty}a_k$ absolut.

Minorantenkriterium

 $\sum_{k=1}^{\infty} c_k \text{ konvergent mit } \forall k \in \mathbb{N} : c_k \geq$

0. Wenn für $\sum_{k=1}^{\infty} a_k \exists k_0 \in \mathbb{N}$, sodass $\forall k \geq k_0$ gilt $a_k \geq c_k$, dann divergiert $\sum_{k=1}^{\infty} a_k$

Wurzelkriterium 1. Wenn festes $q \in \mathbb{R}$ mit 0 < q < 1und $k_0 \in \mathbb{N}$ existiert, sodass $\forall k \geq$ $k_0: \sqrt[k]{|a_k|} \leq q$, dann konvergiert $\sum_{k=1}^{\infty} a_k$ absolut

2. $\exists k_0 \in \mathbb{N}$, sodass $\forall k \geq k_0$: $\sqrt[k]{|a_k|} \geq 1$, dann divergiert

Existiert $a = \lim_{k \to \infty} \sqrt[k]{|a_k|}$, dann gilt:

- $a < 1 \Rightarrow \text{absolut konvergent}$
- $a > 1 \Rightarrow \text{divergent}$
- $a = 1 \Rightarrow$ unwissend

Quotientenkriterium a. Wenn festes $q \in \mathbb{R}$ mit 0 < q < 1und $k_0 \in \mathbb{N}$ existiert, sodass $\forall k \geq$ $k_0: a_k \neq 0 \land \left| \frac{a_{k+1}}{a_k} \right| \leq q$, dann

 $\begin{array}{c|c} & a_k & | & -1 \\ & konvergiert \sum\limits_{k=1}^{\infty} a_k \text{ absolut.} \\ \text{b. } \exists k_0 \in \mathbb{N}, \text{ sodass } \forall k \geq k_0 : a_k \neq \\ & 0 \land \left|\frac{a_{k+1}}{a_k}\right| \geq 1, \text{ dann divergiert.} \end{array}$

Limesform:

Existiert $a = \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|$, dann gilt:

- a < 1 ⇒ konvergiert
- $a > 1 \Rightarrow$ divergiert
- $a = 1 \Rightarrow$ unwissend

Potenzreihen

tenzreihe $P(x, x_0)$ mit Entwicklungspunkt x_0 definiert als: $P(x, x_0) =$ $\sum_{k=0}^{\infty} a_k \cdot (x - x_0)^k.$ Häufig $x_0 = 0$,

dann $P(x,0) = \sum_{k=0}^{\infty} a_k \cdot x^k$. **Konvergenz von Potenzr.** a. $P(x,x_0)$ konvergent in $c \Rightarrow$ kon-

vergiert absolut $\forall x : |x - x_0| <$ $|c - x_0|$

b. Konvergiert $P(x, x_0)$ $_{\rm in}$ nicht absolut, dann divergiert $P(x,x_0)\forall |x-x_0| > |c-x_0|$

Def. Konvergenzradius Sei $P(x, x_0)$ Potenzreihe. $\exists r \in \mathbb{R}_{\geq 0}$, dass $P(x, x_0) \ \forall |x - x_0| < r \text{ konver-}$ giert und $\forall |x - x_0| > r$ divergiert, dann ist r der Konvergenzradius.

Exponentialreihe Definition

$$\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$
. Es gilt $e := \exp(1)$.

 $\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$. Es gilt $e := \exp(1)$. Konvergenz von Exp.Reihen. $\forall x \in \mathbb{R} : \exp(x)$ absolut konvergent. Eigenschaften

- a. $\forall x, y \in \mathbb{R} : \exp(x+y) = \exp(x)$.
- b. $\forall x \in \mathbb{R} : \exp(-x) = \frac{1}{\exp(x)}$
- c. $\forall x \in \mathbb{R} : \exp(x) > 0$
- d. $\forall n \in \mathbb{Z} : \exp(n) = e^n$

exp als Folgengrenzwert

Es gilt $\forall x \in \mathbb{R}$: $\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} =$ $\lim_{n \to n} \left(1 + \frac{x}{n}\right)^n$. Für x = 1 gilt besonders: $e = \sum_{k=0}^{\infty} \frac{1}{k!} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$

Funktionen Definition

A, B nichtleere Mengen. Funktion fordnet jedem $x \in A$ eindeutig $y \in$ B zu. Schrift: $A \to B$. Zugeordnetes Element auch als f(x).

A Definitionsbereich

B Bild-/Zielbereich

 $f(A) \subseteq B$ Bildmenge/Bild von f **Injektiv, ...** 1. Injektiv: $x_1 \neq x_2 \Rightarrow f(x_1) \neq$

- 2. Surjektiv: $\forall y \in B \ \exists x \in A$: f(x) = y
- 3. Bijektiv: Injektiv + Surjektiv

 $\begin{array}{l} \textbf{Rechenregeln} \\ \textbf{Sei} \ f,g : A \rightarrow \mathbb{R} \ \textbf{Funktionen und} \\ c \in \mathbb{R}. \ \textbf{Dann gilt:} \end{array}$

- (f+g)(x) := f(x) + g(x)
- (cf)(x) := cf(x)
- $(f \cdot g)(x) := f(x) \cdot g(x)$
- Sei $A' := \{x \in A | g(x) \neq 0\}$, dann Funktion $\frac{f}{g} : A' \to \mathbb{R}$ definiert: $\left(\frac{f}{g}\right)(x) := \frac{f(x)}{g(x)}$
- $f(A) \subseteq B \Rightarrow (g \circ f)(x) := g(f(x))$

Umekehrfunktion

 $f^{-1}: B \to A$ Umkehrfunktion von f, falls:

- \bullet $(f^{-1} \circ f)(x) = f^{-1}(f(x)) =$
- $x, \forall x \in A$ $\bullet \ (f \circ f^{-1})(x) = f(f^{-1}(x)) =$ $x, \forall x \in B$

Bijektiv-Umkehrfunktion

Für $f: A \to B$ existiert f^{-1} , g.d.w. f bijektiv.

Monotonie Umkehrfunktion

 $A \subseteq \mathbb{R}, f : A \to B$ Funktion mit $B := f(A) \subseteq \mathbb{R}$. f streng monoton $\Rightarrow f^{-1} : B \to A$ existiert + streng mon. (im g. Sinne)

Beschränktheit

 $f: A \to B$ heißt nach oben/unten Beschränkt, wenn Bildmenge f(A)oben/unten beschränkt.

Monotonie

Sei $A \subseteq \mathbb{R}$, $f: A \to \mathbb{R}$, dann

- mon. wachsend: $f(x) \leq f(x')$
- streng mon. wachs.: f(x) < f(x')
- mon. fallend: $f(x) \ge f(x')$
- streng mon. fall.: f(x) > f(x')

 $\forall x, x' \in A \text{ mit } x < x'.$

Berührpunkt von A, falls $\forall \varepsilon \in \mathbb{R}, \varepsilon >$ $0 \exists b \in (a - \varepsilon, a + \varepsilon) : b \in A$

Grenzwerte Funktionen

Sei $f:A\in\mathbb{R}\to\mathbb{R}$ und $a\in\mathbb{R}$ Berührpunkt von A. $\lim_{n \to \infty} x_n = a \Rightarrow \lim_{n \to \infty} f(x_n) = c.$ Analog definieren wir: $\lim_{x\to a} f(x) =$ c, wenn A oben/unten unbeschränkt und $\forall (x_n)$ mit $\lim_{n\to\infty} x_n = \pm \infty$ gilt $\lim_{n \to \infty} f(x_n) = c$

1. Rechtsseitiger Grenzwert: $\lim_{x \to 0} f(x)$ = xwenn a Berührpunkt von $A \cap (a, \infty)$ und $\forall (x_n) \text{ mit } x_n \in A, x_n > a \text{ und}$ $\lim_{n \to \infty} x_n = a \text{ gilt: } \lim_{n \to \infty} f(x_n) = c$

2. Linksseitiger Grenzwert: $\lim_{n \to a} f(x)$ = x, wenn aBerührpunkt von $A \cap (a, \infty)$ und $\forall (x_n) \text{ mit } x_n \in A, x_n < a \text{ und}$ $\lim_{n \to \infty} x_n = a \text{ gilt: } \lim_{n \to \infty} f(x_n) = c$

Satz 4.20

Satz 4.20
$$\lim_{x \to a} f(x) = f(a) \Leftrightarrow \lim_{x \nearrow a} f(x) = \lim_{x \to a} f(x) = f(a)$$

Stetigkeit

Sei $f: A \to \mathbb{R}$ Funktion und $a \in A$. f stetig in a, falls $\lim_{x \to a} f(x) = f(a)$. f stetig, falls f in jedem Punkt aus A stetig.

ε - δ -Kriterium

Sei $A\subseteq \mathbb{R}$ und $f:A\to \mathbb{R}$ funktion. f ist g.d. in $a \in A$ stetig, wenn: $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in A : |x - a| <$ $\delta \Rightarrow |f(x) - f(a)|\varepsilon$

Operationen Stetigkeit

 $f,g:A\to\mathbb{R}$ in $a\in A$ stetig und $c \in \mathbb{R}$. Dann auch folgendes in a ste-

a. $f + g : A \to \mathbb{R}$ b. $c \cdot f : A \to \mathbb{R}$

c. $f \cdot g : A \to \mathbb{R}$ d. $\frac{f}{g} : A' \to \mathbb{R}$, falls $g(a) \neq 0$ e. $g \circ f : A \to \mathbb{R}$, falls f in a und gin f(a) = b stetig

Zwischenwertsatz

Sei $f:[a,b]\to\mathbb{R}$ stetig mit $f(a)\lessgtr$ $0 \le f(b)$, dann $\exists x \in (a, b)$ mit f(c) =

Allgemeiner: $\forall y \in \mathbb{R}$: Wenn $f(a) \leq$ $y \leq f(b)$, dann $\exists d \in (a,b) : f(d) = y$

Umekehrfunk. stet. Funk. Sei $I \subseteq \mathbb{R}$ Intervall und $f: I \to \mathbb{R}$ stetig + streng monoton. Dann bildet f I bijektiv auf f(I) ab und

 $^{-1}: f(I) \to \mathbb{R}$ ist stetig. Min, Max-kompakt. Interv. Auf [a, b] jede stetige Funktion f: $[a,b] \rightarrow \mathbb{R}$ beschränkt und nimmt

Min/Max an. Gleichmäßige Stetigkeit

 $f:A\to\mathbb{R}$ gleichmäßig stetig wenn: $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in A : |x - y| < 0$ $\delta \Rightarrow |f(x) - f(y)| < \varepsilon$ $f: A \to \mathbb{R} \text{ auf } [a,b] \in A \text{ stetig } \Rightarrow$

dort auch gleichm. stetig. Polynom

Polynomfunktion: $p(x) = a_n x^n +$... + $a_1x + a_0$. $Grad(p) = \max(n)$, wo $a_n \neq 0$

Rationale Funktion

p,q Polynome und $A=\{x\in\mathbb{R}|q(x)\neq 0\},$ dann ist $r:A\to\mathbb{R}$ mit $r(x) = \left(\frac{p}{q}\right)(x) = \frac{p(x)}{q(x)}$ rationale Funktion

Polynomdivision

$$\left(\begin{array}{c} x^2 - x + 1 \\ -x^2 + x \end{array}\right) : \left(x - 1\right) = x + \frac{1}{x - 1}$$

Linearfaktoren

Polynom p(x) genau dann ohne Rest durch $q(x) = x - x_1$ teilbar, wenn $x_1 \in \mathbb{R}$ Nullstelle von p(x).

Exponentialfunktionen

- $\exp: \mathbb{R} \to \mathbb{R}_{>0} : \exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ Eigenschaften exp-Funktion a. $\exp(x+y) = \exp(x) \cdot \exp(y)$
- b. $\exp(-x) = \frac{1}{\exp(x)}$
- c. $\exp(x) > 0$ d. $\forall n \in \mathbb{Z} : \exp(n) = e^n$
- e. $\exp(x) = \lim_{n \to \infty} (1 + \frac{x}{n})^n$
- f. streng mon. wachsend + bijektiv g. $\lim_{x \to 0} \frac{\exp(x) - 1}{x} = 1$

1. Satz vom Wachstum Für beliebige $n \in \mathbb{N}_0$ gilt:

Logarithmus Umkehrfunktion von $\exp(x)$ ist natürlicher Logarith. ln : $\mathbb{R}_{>0} \to \mathbb{R}$ Eigenschaften ln(x)

a. $\ln(\exp(x)) = \exp(\ln(x)) = x$ b. ln(1) = 0 und ln(e) = 1

$$\ln(x) \begin{cases} <0 & , x \in (0,1) \\ =0 & , x = 1 \\ >0 & , x > 1 \end{cases}$$

d. ln(xy) = ln(x) + ln(y)e. $n \in \mathbb{Z} : \ln(x^n) = n \ln(x)$ f. ln(x) ist stetig

2. Satz vom Wachstum

 $\forall n \in \mathbb{N} \text{ gilt: } \lim_{x \to \infty} \frac{\ln(x)}{\sqrt[n]{x}} = 0. \ln(x)$

wächst schwächer als $\sqrt[n]{x}$ allgemeine Exponentialfunktion

Sei $a \in \mathbb{R}_{>0}.\exp_a : \mathbb{R} \to \mathbb{R}$: $\exp_a(x) := \exp(x \ln(a))$. Schreiben auch a^x statt $\exp_a(x)$. Eigenschaften allg. Poten-

zen a. $a^x = \exp_a(x)$ stetig $\forall x \in \mathbb{R}$ b. $\forall n \in \mathbb{Z}: \exp_a(x) = a^n$ $c. \ a^{x+y} = a^x a^y$

 $d. (a^x)^y = a^{xy}$ e. $a^x b^x = (ab)^x$

f. $\forall p \in \mathbb{Z}, q \in \mathbb{N} \setminus \{1\} : a^{\frac{\nu}{q}} = \sqrt[q]{a^p}$

 $\begin{array}{ll} \textbf{Log zu allg. Basen} \\ \text{Sei } a \in \mathbb{R}_{>0} \backslash \{1\}, \text{dann } \log_a : \mathbb{R}_{>0} \rightarrow \end{array}$

 $\mathbb{R}: \log_a(x) := \frac{\ln(x)}{\ln(a)}$

Funktionssymmetrie

- achsen(gerade): f(-x) = f(x)
- punkt(ungerade):f(-x) = -f(x)

Hyperbolische Funktionen

- $\cosh(x) := \frac{e^x + e^{-x}}{2}$
- $\sinh(x) := \frac{e^x e^{-x}}{2}$
- $\tanh(x) := \frac{\sinh(x)}{\cosh(x)} = \frac{e^x e^{-x}}{e^{-x} + e^x}$

Eigensch. hyperb. Funkt a. $\exp(x) = \cosh(x) + \sinh(x)$

b.
$$\cosh^2(x) - \sinh^2(x) = 1$$

c.
$$\cosh(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$$

d.
$$\sinh(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$$

e. $\cosh(x+y) = \cosh(x)\cosh(y) + \frac{1}{2}$

- $\sinh(x)\sinh(y)$
- f. $\sinh(x + y) = \sinh(x)\cosh(y) +$ $\sinh(x)\cosh(y)$

$\begin{array}{lll} \mathbf{komplexe} & \mathrm{exp}\text{-}\mathbf{Funktion} \\ \mathrm{exp} & : \mathbb{C} & \to \mathbb{C} & \mathrm{mit} & \mathrm{exp}(z) = e^z & = \end{array}$

$$\sum_{k=0}^{\infty} \frac{z^k}{k!}$$

Trigonom. Funktionen $\sin/\cos: \mathbb{R} \to \mathbb{R}, \tan: \{x | \cos(x) \neq$ $0\} \to \mathbb{R}$

- $\cos(x) := \operatorname{Re}(e^{ix}) = \frac{e^{ix} + e^{-ix}}{2}$
- $\sin(x) := \operatorname{Im}(e^{ix}) = \frac{e^{ix} e^{-ix}}{2}$ $\tan(x) := \frac{\sin(x)}{\cos(x)} = \frac{ie^{-ix} ie^{ix}}{e^{-ix} + e^{ix}}$

Eigenschaften trig. Funkt. a. $\exp(ix) = \cos(x) + i\sin(x)$

- b. $\cos^2(x) + \sin^2(x) = 1$
- c. $|\sin(x)| \le 1$ und $|\cos(x)| \le 1$
- d. $\cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$
- e. $\sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$ f. cos(x + y) = cos(x)cos(y) - $\sin(x)\sin(y)$
- g. $\sin(x + y) = \sin(x)\cos(y) +$ $\cos(x)\sin(y)$

Abschätzung Sin-Cos Für $x \in (0, 2]$ gilt:

- $\begin{array}{l} \bullet \ 1 \frac{x^2}{2} < \cos(x) < 1 \frac{x^2}{2} + \frac{x^4}{4!} \\ \bullet \ x \frac{x^3}{3!} < \sin(x) < x \end{array}$

Folgerung Def. Pi

	\boldsymbol{x}	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
	cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
	\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
Ī	tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	_	0	_	0
P	Allgei	nein					x	\in	\mathbb{R}
$\cos(x + \pi/2) = \in (x + \pi) = -\sin(x)$									
$\cos(x + 2\pi) = \sin(x + \pi/2) = \cos(x)$									
$\cos(x+\pi) = -\cos(x)$									
$\sin(x + 2\pi) = \sin(x)$									

Periodische Funktionen

 $f:\mathbb{R} \to \mathbb{R}$ heißt periodische Funktion, wenn $\exists p > 0$, sodass f(x) = $f(x+p), \forall x \in \mathbb{R}.$

 $\min(p) \in \mathbb{R}_{>0}$ heißt Periode.

Polarkoordinaten \mathbb{C}

 $\forall z \in \mathbb{C} \ \exists \varphi \in \mathbb{R}, \text{ sodass } z = |z|e^{i\varphi} =$ $|z|\cos(\varphi) + i|z|\sin(\varphi).$ Für $z \neq 0$ ist φ bis auf eine Addition mit Vielfachen von 2φ eindeutig. Das Paasr $(|z|, \varphi)$ bezeichnet wir als Polarkoordinaten von z und φ als Argument von z.

Differentialrechnung Definition

Sei $a \in A \subseteq \mathbb{R}$ und $f : A \rightarrow$ ${\mathbb R}$ eine Funktion. f heißt in adifferenzierbar, falls der Grenzwert $\lim \frac{f(x)-f(a)}{a}$ existient.

 $x \to a$ $x \in A \setminus \{a\}$

Alternative:

 $f'(x) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$

 $\forall a \in A \text{ Grenzwert existiert} \Rightarrow f \text{ diff-}$

 $\begin{array}{l} \mathbf{Diffbar} \Rightarrow \mathbf{Stetig} \\ f: A \to \mathbb{R} \text{ in } a \in A \text{ differenzierbar} \end{array}$ \Rightarrow in a stetig

Satz 5.5

 $[a,b] o \mathbb{R}$ diffbar für $c \in$ (a, b) g.d.w. links- + rechtsseitiger Grenzwert existieren und gleich sind. $f'_{-}(c) = \lim_{x \to c} \frac{f(x) - f(C)}{x - c} = f'_{+}(c) =$ $J_{-1}(c) - \lim_{x \nearrow c} \frac{1}{x - c} = J'_{+}(c) = \lim_{x \nearrow c} \frac{f(x) - f(c)}{x - c}. \text{ Dann gilt: } f'(c) = 0$

 $f'_{-}(c) = f'_{+}(c)$

Ābleitungsregeln $f, g: A \to \mathbb{R}$ in $a \in A$ diffbar.

a. Linearität

$$(f+g)'(a) = f'(a) + g'(a)$$
$$(c \cdot f)'(a) = c \cdot f'(a)$$

- b. Produktregel
- $(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$ c. Quotientenr.: $g(x) \neq 0, \forall x \in A$
- $\left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) f(a) \cdot g'(a)}{g^2(a)}$
- d. Kettenregel: $(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$

Ableitung Umekehrf.

Sei $f: I \to \mathbb{R}$ stetig streng monoton und $g = f^{-1} : J \to \mathbb{R}$ mit J = f(I). f in $a \in I$ diffbar und $f'(a) \neq 0 \Rightarrow g \text{ in } b = f(a) \text{ diffbar}$ und es gilt: $g'(b) = \frac{1}{f'(a)} = \frac{1}{f'(g(b))}$

Ableitung höherer Ord.

 $f^{(k+1)}(a) := (f^{(k)}(a))', \text{ falls } f^{(k)}(a)$ in $a \in A$ existiert. f ist dann k-mal (stetig) differenzierbar oder f ist C^k stetig

Lokale Extrema

 $f:(a,b)\to\mathbb{R} \text{ in } x\in(a,b) \text{ lok.}$ $\operatorname{Min}/\operatorname{Max} f(x)$, wenn $\exists \varepsilon > 0 \ \forall y, |x - y|$ $|y| < \varepsilon : f(a) \le f(y)$ Notw. Bed. lok. Extrema

 $f:(a,b) \to \mathbb{R}: f'(x) = 0$ Hin. Bed. lok. Extrema $f:(a,b) \to \mathbb{R}$ 2 mal diffbar in $x \in (a,b)$. f''(x) > 0: Minimum, f''(x) < 0: Maximum

Monoton. und Ableitung $f:[a,b]\to\mathbb{R}$ stetig und diffbar in

(a,b), dann:

- a. $f'(x) \ge 0 \Leftrightarrow f$ mon. wachs.
- b. $f'(x) > 0 \Rightarrow f$ streng mon. wach. c. $f'(x) \leq 0 \Leftrightarrow f$ mon. fall.
- d. $f'(x) < 0 \Rightarrow f$ streng mon. fall.

Satz von Rolle

Sei a < b und $f: [a,b] \to \mathbb{R}$ stetig (auf (a,b) diffbar) mit f(a) = f(b), $dann: \exists c \in (a, b) : f'(c) = 0$

1. Mittelwertsatz

Sei a < b und $f : [a, b] \to \mathbb{R}$ stetig (auf (a,b) diffbar) mit f(a) = f(b), dann: $\exists c \in (a, b) : \frac{f(b) - f(a)}{b - a} = f'(c)$

2. Mittelwertsatz

 $f, g: [a, b] \to \mathbb{R}$ stetig in [a, b], diffbar in (a,b). Sei $\forall x \in (a,b) : g'(x) \neq 0$. Dann $g(a) \neq g(b)$ und $\exists c \in (a, b)$ mit $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$

Satz 5.21

 $\overline{f}:(a,b)\to\mathbb{R}$ diffbar und im Punkt $x \in (a, b)$ n + 1-mal diffbar. Falls $f'(x) = f^{(2)}(x) = \dots = f^{(n)}(x) = 0$ und $f^{(n+1)}(x) \neq 0$, dann besitzt f

- streng. lok. Min., falls n ungerade und $f^{(n+1)}(x) > 0$
- \bullet streng. lok. Max., falls n ungerade und $\tilde{f}^{(n+1)} < 0$
- ullet kein Extremum, falls n gerade

Konvexität

 $f''(x) \ge 0$

 $f:(a,b)\to\mathbb{R}$ heißt konvex, wenn $\forall x_1, x_2 \in (a, b) \forall \lambda \in (0, 1) \text{ gilt}$ $f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)x_2$ $\lambda)f(x_2)$. Konkav wenn -f konvex. Satz 5.23 $f:(a,b)\to\mathbb{R} \text{ konvex} \Leftrightarrow \forall x\in(a,b):$

Wendepunkt f in $x \in (a, b)$ Wendepunkt, wenn $\exists (\alpha, x), (x, \beta)$ für die gilt:

- 1 f in (α, x) streng konvex + in (x, β) streng konkav
- $2 f \text{ in } (\alpha, x) \text{ streng konvex } + \text{ in }$ (x, β) streng konvex

Satz 5.26

 $f:(a,b)\to\mathbb{R}$ 3 mal diffbar: f' lok. Extremum in $x \Rightarrow$ Wendepunkt

- Not. Bed.: f''(x) = 0
- Hin. Bed.: f''(x) = 0 und $f^{\prime\prime\prime}(x) \neq 0$

Uneigentlicher Grenzwert $f: A \to \mathbb{R}$ und a Häufungspunkt.

Falls $\forall K \in \mathbb{R} \ \exists \delta > 0$, sodass f(x) > 0K für $|x-a| < \delta$, so $\lim_{x \to a} f(x) = \infty$.

L'Hospital

f, g diffbar und $g(x) \neq 0$ und $g'(x) \neq$ 0 für alle $x \in (a, b)$. Und a oder b gilt:

- a. $\lim_{x \searrow a} f(x) = \lim_{x \searrow g(x)} = 0$
- b. $\lim |f(x)| = \lim |g(x)| = \infty$

 $\mathrm{Dann} \ \ \mathrm{gilt:} \lim_{x \searrow a} \frac{f(x)}{g(x)} \ \ = \ \ \lim_{x \searrow a} \frac{f'(x)}{g'(x)}$ Analog für $\lim_{x \to b}$ und $a, b = \pm \infty$.

Satz von Taylor Tylorsche Formel

 $f:A \to \mathbb{R} \ (n+1)$ -mal stetig diffbar. $T_n, R_n : A \to \mathbb{R}$ fü rbeliebiges $n \in \mathbb{N}$ und $x_0 \in A$ definiert als $T_n(x) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$

und $R_n(x) := f(x) - T_n(x)$. Dann $\exists y \in [x, x_0] \forall x \in A \setminus \{x_0\}, \text{ sodass}$ $R_n(x) = \frac{f^{(n+1)}(y)}{(n+1)!} (x - x_0)^{n+1}$

Taylorreihe/-polynom $f: A \to \mathbb{R}$ beliebig oft diffbar in $x_0 \in A$. Dann heißt $T[f, x_0](x) =$ $\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \quad \text{Taylorreihe}$ von f im Punkt x_0 .

Die n-te Teilsumme der Taylorreihe $T_n[f, x_{=}](x)$ heißt Taylorpolynom vom Grad n mit Entwick.punkt x_0 :

Integralrechnung Zerlegung

 $[a,b] \subset \mathbb{R}$ und endliche Anzahl Punkte $x_0, ..., x_n$ mit $a = x_0 < ... < x_n =$ b. Dann heißt $Z = (x_0, ..., x_n)$ Zerlegung von [a, b] und $|Z| := \max\{x_i - a_i\}$ $x_{i-1}|i=1,...,n$ ist Feinheitsmaß von Z. Zerlegung heißt äquidistant, wenn die Intervalle $[x_{i-1}, x_i]$ für i =1, ..., n alle gleich groß sind.

Treppenfunktion

 $Z = (x_0, ..., x_n)$ Terlegung von [a, b], dann heißt φ : $[a,b] \to \mathbb{R}$ Treppenfunktion, wenn sie auf jedem Teilintervall (x_{k-1}, x_k) konstant ist. $\mathcal{T}[a,b]$ Menge aller Treppenfunktionen auf [a,b]

Integral für Trep. $\varphi \in \mathcal{T}[a,b]$ Treppenfunktion bezüglich $Z = (a = x_0, ..., x_n = b)$ und seien $\varphi(x) = c_k$ konstante Funktionsabschnitte von φ für $\in (x_{k-1}, x_k)$. Def.: Integral

von
$$\varphi$$
 auf $[a,b]$ als: $\int_{a}^{b} \varphi(x)dx :=$

 $\sum_{k=1}^{n} c_k (x_k - x_{k-1}).$

Monoton. Treppen. Seien $\varphi, \psi \in \mathcal{T}[a, b]$, dann $\forall x \in$

 $[a,b]\,:\,\varphi(x)\,\leq\,\psi(x)\,\Rightarrow\,\int\limits^b\varphi(x)dx\,\leq\,$ $\int_{0}^{\infty} \psi(x) dx$

Einschließen Treppen. $f:[a,b]\to\mathbb{R}$ integrierbar $\Leftrightarrow \forall \varepsilon>0$ $\bar{S}(Z,f)$ und $\underline{S}(Z,f)$ existieren mit

$\bar{S}(Z,f) - \underline{S}(Z,f) \le \varepsilon$ Ober-/Untersumme

Obersumme: $\bar{S}(Z,f) := \int \bar{\varphi}(x)dx =$

$$\sum_{k=1}^{n} \bar{c}_k (x_k - x_{k-1})$$

Untersumme: $\underline{S}(Z, f) := \int \underline{\varphi}(x) dx =$

$$\sum_{k=1}^{\infty} \underline{c}_k (x_k - x_{k-1})$$

Öber-/Unterintegral

Oberintegral: $\int f(x)dx$

 $\inf\{\bar{S}(Z,f)\}$

Unterintegral: $\int f(x)dx$

$\sup\{S(Z, f)\}$ Riemann-Integral

f ist integrierbar, wenn $\int f(x)dx =$

 $\int f(x)dx$. Integrla von f ist dann $\int f(x)dx := \int f(x)dx$

Stetig \Rightarrow Intbar f auf [a, b] stetig \Rightarrow f auf [a, b] int-

Verfeinerung

Z,Z'Zerlegungen. Verfeinerung: \tilde{Z} enhtält alle Elemente von Z auf gleichem Intervall

Überlagerung: $\hat{Z} = Z + Z'$ **Zerlegungswechsel** f auf [a,b] beschränkt mit $|f(x)| \leq$

K und Z Zerlegung von [a, b] mit Feinheitsmaß |Z|. Zerlegung \tilde{Z} entstehe aus Z durch Hinzunahme eines zusätz. Punkts. Dann gilt:

- a. $\underline{S}(Z, f) \leq \underline{S}(\tilde{Z}, f) \leq \underline{S}(Z, f) +$ 2K|Z|
- b. $\bar{S}(Z, f) \geq \bar{S}(\tilde{Z}, f) \geq \bar{S}(Z, f) -$

Integralwertbestimmung

f:[a,b] beschränkt und (Z_n) Folge von Zerlegungen mit $\lim_{n\to\infty} |Z_n| = 0$. Dann gilt:

a.
$$\lim_{n \to \infty} \underline{S}(Z_n, f) = \int_{\underline{a}}^{b} f(x) dx$$

b. $\lim_{n \to \infty} \bar{S}(Z_n, f) = \int f(x) dx$

Rieman. Zwischensumme

 $f: [a,b] \to \mathbb{R}$ integrierbar und (Z_n) Zerlegungsfolge mit $\lim_{n\to\infty} |Z_n| = 0$. $\forall Z_n = (x_0, ..., x_m) \text{ sei } \varphi_n \in \mathcal{T}[a, b]$ Treppenfunktion mit $\varphi_n(x) := f(\zeta_k)$ für $x \in [x_{k-1}, x_k)$ mit beliebigen $\zeta_k \in [x_{k-1}, x_k]$ und $\varphi_n(b) =$ f(b). Dann konvergiert (S_n) der Riemannschen Zwischensummen $S_n :=$ $\int_{a}^{b} \varphi_n(x)dx = \sum_{k=1}^{n} f(\zeta_k)(x_k - x_{k-1})$

gegen Integral: $\int_{a}^{b} f(x)dx = \lim_{n \to \infty} S_n$.

Integraleigeschaften f,g auf [a,b] integrier bar und $\lambda,\mu\in\mathbb{R}$

a. Linearität: $\int_{0}^{x} \lambda f(x) + \mu g(x) dx =$

$$\lambda \int_{a}^{b} f(x)dx + \mu \int_{a}^{b} g(x)dx$$

b. Monotonie: $\int_{a}^{b} f(x)dx \leq \int_{a}^{b} g(x)dx$

c. Beschränktheit:
$$\begin{vmatrix} \int_a^b f(x) dx \end{vmatrix} \leq$$

$$\int_a^b |f(x)| dx +$$

$$d. \int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

$$e. \int_b^a f(x) dx := -\int_a^b f(x) dx$$

$$f. \int_c^c f(x) dx := 0$$

Int. ü. offene Intervalle $f:(a,b)\to\mathbb{R}.\ \forall I=[\alpha,\beta]\subset(a,b):$ integrierbar. Sei $c\in(a,b)$ beliebig:

 $\bullet \int_{c}^{b} f(x)dx := \lim_{\beta \nearrow b} \int_{c}^{\beta} f(x)dx$ $\bullet \int_{a}^{c} f(x)dx := \lim_{\alpha \searrow a} \int_{\alpha}^{c} f(x)dx$ $\bullet \int_{a}^{b} f(x)dx := \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$

Mittelwertsatz Integralr. $f: [a,b] \to \mathbb{R}$ intbar und $\forall x \in [a,b]: m \leq f(x) \leq M$. Dann gilt: $m(b-a) \le \int f(x)dx \le M(b-a).$ Ist f auch stetig, dann $\exists c \in (a, b)$

 $\operatorname{mit} \int f(x)dx = (b-a)f(c)$

Hauptsatz D./I.Rechnnung $f: I \to \mathbb{R}$ stetig und $c \in I$. Sei $F:I\Rightarrow\mathbb{R}$ für $x\in I$ definiert als $F(x) = \int_{0}^{x} f(t)dt$. Dann folgt:

a. F stetig diffbar udn es gilt F'(x) = f(x)b. Für beliebige a,b \in I gilt $\int_{a}^{b} f(t)dt = F(b) - F(a)$

Stammfunk., unb. Int.

$$F(x) = \int f(x)dx$$
. Es gilt $[F(x)]_a^b = F(b) - F(a)$

Bekannte Integrale

Partielle Integration
$$f,g:[a,b] \to \mathbb{R}$$
 stetig diffbar.:
$$\int_{a}^{b} f(x)g'(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$$
Unbestimmte Form:
$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$
Integration d. Substitution f stetig, g stetig diffbar:
$$\int_{a}^{b} f(x)(x)f(x)dx = \frac{g(b)}{f(x)}f(x)dx$$

$$\int_{a}^{b} f(g(t))g'(t)dt = \int_{g(a)}^{g(b)} f(x)dx$$

Unbestimmte Form: $\int f(g(t))g'(t)dt = F(g(t))$

Integral vereinfachung
a.
$$\int f(ax+b)dx = l\frac{1}{a}F(ax+b)$$

b. $\int f(x)f'(x)dx = \frac{1}{2}f^2(x)$
c. $\int \frac{f'(x)}{f(x)}dx = \ln(|f(x)|)$

Integrale ü. uneig. Int.

$$\int_{a}^{\infty} f(x)dx := \lim_{c \to \infty} \int_{a}^{c} f(x)dx$$

$$\int_{-\infty}^{a} f(x)dx := \lim_{c \to -\infty} \int_{c}^{a} f(x)dx$$

$$\int_{-\infty}^{\infty} f(x)dx := \int_{-\infty}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx$$