Modelado y simulación de sistema de tráfico de la intersección vial de la Calle 4 con Carrera 19 de Villavicencio

Edison Arango - Carlos Gonzalez

Descripción

La intersección vial de la calle 4 con carrera 19 es una intersección de dos vías de doble sentido que, además de ser un punto por el que circulan gran cantidad de buses de servicio público, se encuentra ubicada en un sector comercial en crecimiento, que provoca un aumento de tráfico en esta intersección.

Intersección

Agentes

Carro

Peatón

Buseta

Datos observados

Dirección Este			Dirección Sur			Dirección Oeste		
	Promedio de llegada	Tasa de Ilegada		Promedio de llegada	Tasa de Ilegada		Promedio de llegada	Tasa de Ilegada
Medio día	21,7s	2.75 carros / minuto	Medio día	23,1s	2.59 carros / minuto	Medio día	22,5s	2.65 carros / minuto
6pm	13,9s	4,3 carros / minuto	6pm	11,3s	5,3 carros / minuto	6pm	5,2s	5,2 carros / minuto

Tasa de llegadas de busetas:

7 busetas / hora

Tasa de llegadas de peatones:

30 peatones / hora

Distribución de probabilidad para la llegada de los carros

Poisson

$$f(k,\lambda)=rac{e^{-\lambda}\lambda^k}{k!}$$

Los antecedentes demuestran que la llegada de carros tiene una distribución de probabilidad Poisson, por esta razón esta fue utilizada para simular la llegada de los carros a la intersección.

Name:	carCalle4Oeste	Show name
✓ Ignore		
Arrivals defined by:	Rate	▼
Arrival rate:	=_ poisson(2.7575	5) per minute
Set agent parameters from DB:	=, 🗆	
Limited number of arrivals:	= 0	

Implementación

Lógica Movimiento Carros

Configuración Semáforos

Estadísticas tomadas

Resultados Semáforo Configuración Actual

Resultados Sin Semáforo

Medio día

Noche

Comparación Resultados

Medio Día

	Vehículos Totales	Tiempo Medio en el Sistema	Tiempo Máximo Espera
Semáforo Conf. Actual	408	51,7s	114s
Sin Semáforo	386	23,9s	45s

Noche

	Vehículos Totales	Tiempo Medio en el Sistema	Tiempo Máximo Espera
Semáforo Conf. Actual	795	106,7s	190,6s
Sin Semáforo	1034	31,3s	85,3s

Conclusiones

Viendo los resultados obtenidos en la simulaciones se comprueba que el semáforo efectivamente aumenta altamente la cantidad de tiempo que un conductor debe esperar. Sin embargo en la simulación no se tuvo en cuenta la accidentalidad y el orden en el tránsito vehicular. Situación que podría demostrar la necesidad del semáforo.

Sin embargo, si se desean tiempos de espera bajos en la intersección, la solución obtenida más adecuada es que no haya semáforo.