EVA²: Exploiting Temporal Redundancy In Live Computer Vision

Mark Buckler, Philip Bedoukian, Suren Jayasuriya, Adrian Sampson

International Symposium on Computer Architecture (ISCA)

Tuesday June 5, 2018

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)

FPGA Research

Suda et al.

Qiu et al.

Zhang et al.

Farabet et al.

Many more...

Embedded Vision Accelerators

Industry Adoption

ASIC Research

ShiDianNao

Eyeriss

EIE

SCNN

Many more...

Temporal Redundancy

Temporal Redundancy

Temporal Redundancy

Talk Overview

Background

Algorithm

Hardware

Evaluation

Conclusion

Talk Overview

Background

Algorithm

Hardware

Evaluation

Conclusion

Image Classification

Semantic Segmentation

Object Detection

Image Captioning

Talk Overview

Background

Algorithm

Hardware

Evaluation

Conclusion

Activation Motion Compensation (AMC)

Activation Motion Compensation (AMC)

- How to perform motion estimation?
- How to perform motion compensation?
- Which frames are key frames?

- How to perform motion estimation?
- How to perform motion compensation?
- Which frames are key frames?

- How to perform motion estimation?
- How to perform motion compensation?
- Which frames are key frames?

- How to perform motion estimation?
- How to perform motion compensation?
- Which frames are key frames?

- How to perform motion estimation?
- How to perform motion compensation?
- Which frames are key frames?

Motion Estimation

• We need to estimate the motion of activations by using pixels...

Pixels to Activations

Pixels to Activations: Receptive Fields

Pixels to Activations: Receptive Fields

Estimate motion of activations by estimating motion of receptive fields

Receptive Field Block Motion Estimation (RFBME)

Receptive Field Block Motion Estimation (RFBME)

Key Frame

Predicted Frame

Receptive Field Block Motion Estimation (RFBME)

- How to perform motion estimation?
- How to perform motion compensation?
- Which frames are key frames?

Motion Compensation

Predicted Activations

- Subtract the vector to index into the stored activations
- Interpolate when necessary

- How to perform motion estimation?
- How to perform motion compensation?
- Which frames are key frames?

When to Compute Key Frame?

- System needs a new key frame when motion estimation fails:
 - De-occlusion
 - New objects
 - Rotation/scaling
 - Lighting changes

When to Compute Key Frame?

- System needs a new key frame when motion estimation fails:
 - De-occlusion
 - New objects
 - Rotation/scaling
 - Lighting changes
- So, compute key frame when RFBME error exceeds set threshold

Talk Overview

Background

Algorithm

Hardware

Evaluation

Conclusion

Embedded Vision Accelerator

Embedded Vision Accelerator Accelerator (EVA²)

Frame 0

Frame 0: *Key frame*

Frame 1

• EVA² leverages sparse techniques to save 80-87% storage and computation

Talk Overview

Background

Algorithm

Hardware

Evaluation

Conclusion

Evaluation Details

Train/Validation Datasets	YouTube Bounding Box: Object Detection & Classification
Evaluated Networks	AlexNet, Faster R-CNN with VGGM and VGG16
Hardware Baseline	Eyeriss & EIE performance scaled from papers
EVA ² Implementation	Written in RTL, synthesized with 65nm TSMC

EVA² Area Overhead

Total 65nm area: 74mm²

EVA² takes up only **3.3**%

EVA² Energy Savings

EVA² Energy Savings

EVA² Energy Savings

Input Frame

Key Frame

High Level EVA² Results

Network	Vision Task	Keyframe %	Accuracy Degredation	Average Latency Savings	Average Energy Savings
AlexNet	Classification	11%	0.8% top-1	86.9%	87.5%
Faster R-CNN VGG16	Detection	36%	0.7% mAP	61.7%	61.9%
Faster R-CNN VGGM	Detection	37%	0.6% mAP	54.1%	54.7%

- EVA² enables **54-87% savings** while incurring **<1% accuracy degradation**
- Adaptive key frame choice metric can be adjusted

Talk Overview

Background

Algorithm

Hardware

Evaluation

Conclusion

Conclusion

• Temporal redundancy is an entirely new dimension for optimization

AMC & EVA² improve efficiency and are highly general

- Applicable to many different...
 - CNN applications (classification, detection, segmentation, etc)
 - Hardware architectures (CPU, GPU, ASIC, etc)
 - Motion estimation/compensation algorithms

EVA²: Exploiting Temporal Redundancy In Live Computer Vision

Mark Buckler, Philip Bedoukian, Suren Jayasuriya, Adrian Sampson

International Symposium on Computer Architecture (ISCA)

Tuesday June 5, 2018

Backup Slides

Why not use vectors from video codec/ISP?

- We've demonstrated that the ISP can be skipped (Bucker et al. 2017)
 - No need to compress video which is instantly thrown away
 - Can save energy by power gating the ISP
 - Opportunity to set own key frame schedule
- However, great idea for pre-stored video!

Why Not Simply Subsample?

- If lower frame rate needed, simply apply AMC at that frame rate
 - Warping
 - Adaptive key frame choice

Different Motion Estimation Methods

Difference from Deep Feature Flow?

• Deep Feature Flow does also exploit temporal redundancy, but...

	AMC and EVA ²	Deep Feature Flow
Adaptive key frame rate?	Yes	No
On chip activation cache?	Yes	No
Learned motion estimation?	No	Yes
Motion estimation granularity	Per receptive field	Per pixel (excess granularity)
Motion compensation	Sparse (four-way zero skip)	Dense
Activation storage	Sparse (run length)	Dense

Difference from Euphrates?

Euphrates has a strong focus on SoC integration

- Motion estimation from ISP
 - May want to skip the ISP to save energy & create more optimal key schedule

- Motion compensation on bounding boxes
 - Skips entire network, but is only applicable to object detection

Re-use Tiles in RFBME

Changing Error Threshold

Network	Config	Acc.	Keys	Time (ms)	Energy (mJ)
AlexNet	orig	65.1	100%	115.4	32.2
	hi	65.1	22%	26.7	7.4
	med	64.3	11%	14.5	4.0
	lo	63.8	4%	5.9	1.6
Faster16	orig	60.1	100%	4370.1	1035.5
	hi	60.0	60%	2664.8	631.3
	med	59.4	36%	1673.6	396.4
	lo	58.9	29%	1352.7	320.3
FasterM	orig	51.9	100%	492.3	116.7
	hi	51.6	61%	327.2	77.4
	med	51.3	37%	226.4	53.4
	lo	50.4	29%	194.7	45.9

Different Adaptive Key Frame Metrics

Normalized Latency & Energy

How about Re-Training?

Network	Target Layer	Accuracy
FasterM	No Retraining Early Target Late Target	51.02 45.35 47.82
Faster16	No Retraining Early Target Late Target	60.4 61.30 60.52

Where to cut the network?

Network	Interval	Early Target	Late Target
AlexNet	orig	63.52	63.52
	4891 ms	49.95	53.64
Faster16	orig	60.4	60.4
	33 ms	60.29	60.05
	198 ms	55.44	57.48
FasterM	orig	51.85	51.85
	33 ms	50.90	51.14
	198 ms	48.77	49.61

#MakeRyanGoslingTheNewLenna

- Lenna dates back to 1973
- We need a new test image for image processing!

