001

Context and applications

Spring 2023

Optimization on manifolds, MATH 512 @ EPFL

Instructor: Nicolas Boumal

Step 0 in optimization

It starts with a set *S* and a function $f: S \to \mathbf{R}$. We want to compute:

$$\min_{x \in S} f(x)$$

These bare objects fully specify the problem.

Any additional structure on *S* and *f* may (and should) be exploited for algorithmic purposes but is not part of the problem.

Classical unconstrained optimization

The search space is a linear space, e.g., $S = \mathbb{R}^n$:

$$\min_{x \in \mathbf{R}^n} f(x)$$

We can *choose* to turn \mathbb{R}^n into a Euclidean space: $\langle u, v \rangle = u^T v$.

If f is differentiable, we have a gradient grad f and Hessian Hess f. We can build algorithms with them: gradient descent, Newton's...

This course: optimization on manifolds

We target applications where $S = \mathcal{M}$ is a smooth manifold:

$$\min_{x \in \mathcal{M}} f(x)$$

We can *choose* to turn \mathcal{M} into a Riemannian manifold.

If f is differentiable, we have a Riemannian gradient and Hessian.

We can build algorithms with them: gradient descent, Newton's...

Proposed by Luenberger in 1972

Practical since 1990s with numerical linear algebra

Popularized in the 2010s by Absil et al.'s book

How do manifolds come up in optimization?

Example 1: $A \in \mathbb{R}^{n \times n}$, $A = A^{\mathsf{T}}$; want: the largest eigenvalue of A.

$$A = \sum_{i=1}^{n} \lambda_i \ V_i \ V_i^T$$
, $\lambda_i > \dots > \lambda_n$, $\lambda_i > \dots > \lambda_n \in \mathbb{R}^n$ orthonormal.

$$f(x) = x^T A x; \quad f(v_i) = v_i^T A v_i = \lambda_i \cdot v_i^T v_i = \lambda_i.$$

Claim:
$$\begin{bmatrix} \max_{x \in \mathbb{R}^n} f(x) & A.t, & x^T x = 1 \end{bmatrix} = \lambda_i$$
.

$$S^{n-1} = \left\{ x \in \mathbb{R}^n : & x^T x = 1 \right\} \text{ is a manifold.}$$

Example 2: $M \in \mathbb{R}^{m \times n}$; want: the largest singular value of M.

SVD:
$$M = \sum_{i=1}^{r} \sigma_i u_i v_i^T$$
, $\sigma_i \gg - - \gg \sigma_r$

$$u_i = u_i v_i^T$$

$$u_i = u_i v_i^T$$

$$v_i = v_i^T$$

$$v_i =$$

$$f(x,y) = x^T M y$$
; $f(u_i,v_i) = u_i^T M v_i = \sigma_i$.

Claim:
$$\begin{cases} \max_{x \in \mathbb{R}^m} f(x,y) & \text{s.t. } x \neq 1 \\ y \in \mathbb{R}^m \end{cases} = \nabla_i.$$

Sm-1 x 5m-1 is a manifold.

Example 3: $A \in \mathbb{R}^{n \times n}$, $A = A^{\mathsf{T}}$; want: top-k eigenspace of A.

$$S+(n,k) = \{x \in \mathbb{R}^{n \times k} : X^T x = I k \}$$

Stiefel

$$f(x) = Tr[x^T A x].$$

Claim:
$$\begin{cases} \max_{X \in \mathbb{R}^{n \times k}} f(X) & \text{s.t. } X^T X = I k \\ & \text{x.e.} R^{n \times k} \end{cases} = \lambda_1 + \dots + \lambda_k$$

$$Q \in O(k) = \{Q \in \mathbb{R}^{k \times k} : Q^{T}Q = QQ^{T} = I_{k}\}$$

$$X \in St(n,k), Q \in O(k) = \{(XQ) = T_{r}[(XQ)^{T}AXQ]\}$$

$$define: X, NX_{2} = X_{1} = X_{2}Q \text{ for some } = T_{r}[Q^{T}X^{T}AXQ]$$

define:
$$X, N \times_2 \iff X, = X_2 Q$$
 for some $= T_r [Q^T \times^T A \times Q]$
 $Q \in O(h). = T_r [X^T A \times Q Q^T]$
 $[X] = \{ XQ : Q \in O(h) \} = f(x).$

St(n,k)/~

More examples from applications

Structure from motion (SfM)

$$\mathbb{R}^{3} \times SO(3)$$

$$SO(4) = \left\{ \mathbb{R} \in \mathbb{R}^{d \times d} : \mathbb{R}^{T} \mathbb{R} = \mathcal{I}_{d, d} \right\}$$

$$det(\mathbb{R}) = +1$$

Simultaneous localization and mapping (SLAM)

Recommender systems

Gaussian mixture models (GMM)

