Indian Institute of Technology Roorkee MAN-001(Mathematics-1): B. Tech. I Year Autumn Semester: 2018-19

Assignment Sheet-8: Application of Multiple Integrals

- 1. Find the area of the region included between the cardioids $r = a(1 + \cos \theta)$ and $r = a(1 \cos \theta)$.
- 2. Find the area inside the circle $r = 2a\cos\theta$ and outside the circle r = a.
- 3. Find the value of the triple integral $\iiint_R xydxdydz$ where R is the cylindrical solid $x^2 + y^2 \le 1$ with $0 \le z \le 1$.
- 4. Use cylindrical coordinates to compute the integral $\iiint_D z(x^2 + y^2)^{-\frac{1}{2}} dx dy dz$, where *D* is the solid bounded above by the plane z = 2 and below by the surface $2z = x^2 + y^2$.
- 5. Using the definition of average value of a function f(x, y, z) over a solid region D as $\frac{1}{vol.\ of\ D} \iiint_D f(x, y, z) dv$, find the average value of the function f(x, y, z) = x + y + z over the sphere $x^2 + y^2 + z^2 = 4$.
- 6. Find the volume bounded above by the sphere $x^2 + y^2 + z^2 = 32$ and below by the paraboloid $x^2 + y^2 = 4z$.
- 7. Find the volume of the tours generated by revolving the circle $x^2 + y^2 = 4$ about the line x = 3.
- 8. Find the volume bounded by the surfaces $z = 4 x^2 \frac{1}{4}y^2$ and $z = 3x^2 + \frac{y^2}{4}$.
- 9. Evaluate $\iiint z^2 dx dy dz$ over the region common to the sphere $x^2 + y^2 + z^2 = a^2$ and the cylinder $x^2 + y^2 = ax$.
- 10. Find the centre of gravity of the area bounded by the parabola $y^2 = x$ and the line x + y = 2, treating the density as constant.
- 11. Find the mass of a plate in the shape of the curve $\left(\frac{x}{a}\right)^{\frac{2}{3}} \left(+\frac{y}{a}\right)^{\frac{2}{3}} = 1$, the density being given by $\rho = \mu xy$.
- 12. A solid body of constant density ρ is obtained by revolving the cardiod $r = a(1 + \cos \theta)$ about the initial line. Find its M.I. about a straight line through the pole and perpendicular to the initial line.

Answers: 1. $\frac{a^2}{2}(3\pi - 8)$; 2. $a^2\left(\frac{\pi}{3} + \frac{\sqrt{3}}{2}\right)$; 3. 0; 4. 8π ; 5. 0; 6. $64\pi\left(4\sqrt{2} - \frac{7}{6}\right)$; 7. $24\pi^2$

; 8.
$$4\sqrt{2}\pi$$
 ; 9. $\frac{-2}{15}\pi a^5$; 10. $\left(\frac{8}{5}, -\frac{31}{54}\right)$; 11. $\frac{\mu a^2 b^2}{20}$; 12. $\frac{352}{105}\pi \rho a^5$.