Análisis Numérico

Trabajo Práctico 6

Segundo cuatrimestre 2025

Instrucciones:

- Fecha de presentación: 14/11/25.
- Los grupos se conforman de 4 o 5 personas.
- Utilice todas las herramientas informáticas, lenguajes o herramientas en línea que considere convenientes (Mathematica, Wolfram Alpha, Ques, Xeos, Sympy, Scilab, Octave, Scipy, Matplotlib, ImageJ, etc).
- Elabore un informe lo mas detallado posible, mencionando los problemas con los que se encontró intentando obtener las respuestas a las consignas.
- Subir al campus en un archivo comprimido único, el informe en formato pdf y cualquier otro archivo que considere útil, como códigos u otros.
- Elaborar un video de no más de 3 minutos de duración sobre los aspectos más importantes del proceso y las conclusiones del trabajo. Subir el video al grupo de TEAMS.

Flujo en medios porosos: la ecuación de Richards

El transporte de líquidos en sustratos porosos finos es fundamental en procesos de impresión, secado, reciclaje y análisis biomédicos portátiles. A diferencia de grandes acuíferos, en papel la escala espacial es pequeña, la gravedad suele ser despreciable frente a fuerzas capilares y el fenómeno dominante es la redistribución capilar y la difusión no lineal de humedad. Modelar estos fenómenos permite: (i) predecir la saturación localizada, (ii) optimizar procesos de secado y tratamientos superficiales, y (iii) validar técnicas numéricas aplicables a otros medios porosos.

La ecuación de Richards describe el movimiento de agua en medios porosos insaturados combinando la conservación de masa con una ley de Darcy dependiente de la saturación y de la presión capilar.

En notación usual, con θ siendo el contenido volumétrico de agua (saturación volumétrica), h la altura capilar (presión capilar expresada en unidades de longitud), y K la conductividad hidráulica (que depende de h y θ), la forma general (sin incluir la gravedad) es:

$$\frac{\partial \theta}{\partial t} = \nabla \cdot (K(h) \nabla h). \tag{1}$$

Relacionando θ con h mediante la función retención $\theta(h)$ (modelo constitutivo), definimos la capacidad capilar

$$C(h) \equiv \frac{d\theta}{dh}.$$
 (2)

Usando la regla de la cadena $\partial \theta / \partial t = C(h) \partial h / \partial t$, la ecuación en términos de h es

$$C(h)\frac{\partial h}{\partial t} = \nabla \cdot \left(K(h)\nabla h\right). \tag{3}$$

Alternativamente, se puede escribir una formulación directa en la variable θ . Definiendo la difusividad efectiva

$$D(\theta) \equiv K(h(\theta)) \frac{dh}{d\theta} = \frac{K(h)}{C(h)},\tag{4}$$

se obtiene la forma de ecuación de difusión no lineal

$$\frac{\partial \theta}{\partial t} = \nabla \cdot \left(D(\theta) \, \nabla \theta \right). \tag{5}$$

Esta expresión es particularmente útil cuando se implementa en variables de saturación θ (la difusividad D puede depender no linealmente de θ).

Actividades

- a) Suponga una difusividad constante $D(\theta) = D_0$ y verifique la implementación de diferencias finitas en 1D contra una solución analítica.
- b) Resuelva en diferencias finitas 1D con algún modelo constitutivo de su elección (Brooks-Corey, van Genuchten, etc.) obteniendo los parámetros de la tabla proporcionada y valide con la transformación de Boltzmann que transforma el problema en una EDO. Para la EDO use un integrador Runge-Kutta de paso adaptativo. Comparar perfiles y, posiciones de frente.
- c) Verifique una implementación de diferencias finitas en 2D con D constante contra una solución analítica (p. ej. solución en un rectángulo con condiciones de Dirichlet/Neumann conocidas). Mostrar convergencia en norma L^2 al refinar mallas 2D.
- d) Resuelva en 2D una gota circular verifique la solución comparando con la solución 1D en coordenadas cilíndricas (suponiendo simetría radial). Trate el término singular en r=0 con cuidado (condición de simetría $\partial \theta/\partial r|_{r=0}=0$) y compare perfiles radiales.
- e) Resuelva una gota elíptica (relación de ejes 2:1) usando la discretización completa en 2D y discuta las diferencias frente al caso circular.
- f) En todos los casos aclare la discretización espacial y temporal utilizada. Informe el costo computacional en todos los casos.

Table 1: Parámetros estimados para papel comercial Whatman 1 para diferentes modelos de $D(\theta)$

Model	Parameters		χ^2_{ν}
Brooks and Corey	$\begin{vmatrix} n \\ l \\ \theta_r \\ K_s/\alpha \end{vmatrix}$	$0.2837 \\ 4.795 \\ 2.378 \times 10^{-5} \\ 3.983 \times 10^{-6} \mathrm{m}^2 \mathrm{s}^{-1}$	691
Van Genuchten	$ \begin{vmatrix} n \\ l \\ \theta_r \\ K_s/\alpha \end{vmatrix} $	$\begin{array}{c} 8.093 \\ 2.344 \\ 0.004943 \\ 2.079\times 10^{-6}\mathrm{m}^2\mathrm{s}^{-1} \end{array}$	1.7
LETx + LETs	$ \begin{vmatrix} L_w \\ E_w \\ T_w \\ L_s \\ E_s \\ T_s \\ S_{wir} \\ K_s P_{cir}/\gamma \end{vmatrix} $	1.651 230.5 0.9115 0.517 493.6 0.3806 0.01680 $8.900\times10^{-3}\mathrm{m}^2\mathrm{s}^{-1}$	1.0
LETd	$ \begin{vmatrix} L \\ E \\ T \\ S_{wir} \\ D_{wt} \end{vmatrix} $	0.004569 12930 1.505 0.02836 $4.660\times10^{-4}\mathrm{m}^2\mathrm{s}^{-1}$	1.5