Sr. No. of Question Paper:

Your Roll No.....

Unique Paper Code :

Name of the Course :

Name of the Paper : THEORY OF COMPUTATION

Semester : V

Duration: 3 Hours Maximum Marks: 75

Instructions For Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Part A is of 35 marks and all its questions are compulsory. Attempt any four questions from Part B.
- 3. Assume $\Sigma = \{a, b\}$ as the underlying alphabet set unless mentioned otherwise.
- 4. Parts of a question must be answered together.

Part A

1	(a)	Prove that for all sets S, $(S^+)^* = S^*$	2
	(b)	Give regular expression for the language of all strings that do not contain 'ab' as substring.	2
	(c)	Does $(a^*b^*)^*$ and $(a + b)^*$ defines the same language. Generate first 6 words of each of the language in the lexicographic order.	3
	(d)	Build deterministic finite automata (DFA) machine that accept all strings that either start with 'ab' or end with 'ba'.	4
	(e)	Build a DFA machine that accepts only those strings that do not end with double letters.	4
	(f)	Find a Context Free Grammar (CFG) for a language of the form $a^xb^ya^z$ where $x,y,z>=0$ and $x+y=z$.	4
	(g)	Using pumping lemma for regular languages show that the language $L=\{\ a^nb\ a^n\ \ n\geq 0\ \}$ is not regular.	4
	(h)	Show that if L_1 and L_2 are regular languages then so are $L_1 + L_2$, $L_1 L_2$ and $L_1 *$.	4
	(i)	Construct a PDA for the language $L = \{a^nb^{2n} \mid n \ge 0\}$.	4
	(j)	Design a right shifting Turing machine.	4
Part B			
2	(a)	Define regular expression.	2
	(b)	Build a regular expression for all strings in which b's occur in clumps of an odd number at a time such as ab, ba, abbb, bbba, abaabbb,	3
	(c)	Build an FA that accepts all strings that have an even length that is not divisible by 6.	5
3	(a)	For languages, L_1 = $(a+b)^*a$ and L_2 = $(a+b)^*aa(a+b)^*$, Construct respective DFA's and derive the finite automata that define $L_1 + L_2$.	6
	(b)	Show that the following context free grammar is ambiguous: $S \rightarrow aSb \mid Sb \mid Sa \mid a$.	4

- (b) Write a regular expression and construct a DFA for the language of all words that have an even number of substrings 'ab' in them.
- 5 (a) Construct a PDA for the language EQUAL. (Language that contains equal number of a's and b's no matter where they are distributed).
 - (b) Construct a CFG for the language (ba+ab)*
- 6 (a) Prove that a recursive language is also recursively enumerable. 5
 - (b) Consider the following CFG in Chomsky Normal Form (CNF) 5

Generate the derivation trees for the word

- (i) abab
- (ii) ababab

State whether the given CFG is ambiguous or not.

- 7 (a) Design a Turing machine for the language $a^nb^nc^n$ where $n \ge 1$.
 - (b) Describe Universal Turing machine. 4