Métricas de Rendimiento

Descripción

Las métricas de rendimiento permiten evaluar la eficiencia y efectividad del sistema IoT en la clasificación de bolsas de veneno. Estas métricas servirán para determinar si el sistema cumple con los objetivos definidos.

Métricas Definidas

1. Precisión del sensor HX711:

o Margen de error aceptable: ±0.5 gramos.

```
Conectando al servidor MQTT...Conectado!
Peso: 0.185 g
Conectando al servidor MQTT...Conectado!
Peso: 0.210 g
Conectando al servidor MQTT...Conectado!
Peso: 0.221 g
Conectando al servidor MQTT...Conectado!
Peso: 0.190 g
Conectando al servidor MOTT...Conectado!
```

o Frecuencia de recalibración: Cada 1000 lecturas.

```
Salida
       Monitor Serie x
Mensaje (Intro para mandar el mensaje de 'ESP32 Dev Module' a 'COI
                    -85878
Valor de lectura:
Valor de lectura:
                     -85836
Valor de lectura:
                     -85868
                     -85895
Valor de lectura:
                     -85891
Valor de lectura:
                     -85875
Valor de lectura:
                     -85881
Valor de lectura:
                     -85902
Valor de lectura:
                     -85867
Valor de lectura:
                      -85891
Valor de lectura:
                      -85892
Valor de lectura:
                      -85867
Valor de lectura:
                      -85888
Valor de lectura:
                      -85879
Valor de lectura:
                      -85888
Valor de lectura:
                      -85915
Valor de lectura:
Valor de lectura:
                      -85906
                      -85900
Valor de lectura:
Valor de lectura:
                      -85902
Valor de lectura:
                      -85903
                      -85877
Valor de lectura:
Valor de lectura:
                      -85888
                      -85899
Valor de lectura:
Valor de lectura:
                     -85883
                     -85903
Valor de lectura:
Valor de lectura: -85873
```

2. Tiempo de respuesta:

Tiempo desde la detección del peso hasta la acción del servomotor:
 ≤ 1 segundo.

```
// Verificar si el peso es menor a 50 gramos (mover servo1)
if (peso < 25 && peso > 10) {
 // Mover el primer servomotor
 servo1.write(90);
 Serial.println("Moviendo Servo 1 a 110 grados");
 delay(1000); // Esperar 1 segundo
 // Regresar el primer servomotor a 0 grados
 servo1.write(0);
 Serial.println("Regresando Servo 1 a 0 grados");
 delay(1000); // Esperar 1 segundo
// Verificar si el peso es mayor o igual a 50 gramos (mover
else if (peso >= 25) {
 // Mover el segundo servomotor
 servo2.write(110);
 Serial.println("Moviendo Servo 2 a 110 grados");
 delay(1000); // Esperar 1 segundo
 // Regresar el segundo servomotor a 0 grados
 servo2.write(0);
 Serial.println("Regresando Servo 2 a 0 grados");
  delay(1000); // Esperar 1 segundo
```

3. Confiabilidad del sistema:

o Porcentaje de bolsas correctamente clasificadas: ≥ 95%.

4. Estabilidad de la conexión IoT:

Tasa de éxito en la transmisión de datos: ≥ 98%.

```
Conectando al servidor MQTT...Conectado!
Peso: -0.653 g
Conectando al servidor MQTT...Conectado!
Peso: -0.554 g
Conectando al servidor MQTT...Conectado!
Peso: -0.492 g
Conectando al servidor MQTT...Conectado!
Peso: -0.576 g
Conectando al servidor MQTT...Conectado!
Peso: -26.896 g
Conectando al servidor MQTT...Conectado!
Peso: -0.466 g
Conectando al servidor MQTT...Conectado!
Peso: -0.470 g
Conectando al servidor MQTT...Conectado!
Peso: -0.700 g
Peso: -0.538 g
Peso: -0.589 g
Conectando al servidor MQTT...Conectado!
Peso: -0.748 g
Conectando al servidor MOTT...Conectado!
Peso: -0.042 g
Conectando al servidor MQTT...Conectado!
.Conectado a Wi-Fi
```

5. Capacidad de procesamiento:

Número de bolsas procesadas por minuto: ≥ 30.

