Exercícios TP

Redes Neuronais MLP – problemas não linearmente separáveis

1. Demonstre que uma rede MLP com N camadas e com funções de ativação linear é equivalente a uma rede com uma camada.

Para uma rede MLP, a saída da primeira camada é dada por

$$a^1 = W^1 p + b^1$$

Para a segunda camada:

$$a^2=W^2 a^1+b^2 \Leftrightarrow$$

$$a^2 = W^2 W^1 p + W^2 b^1 + b^2$$

De forma genérica:

$$W = W^N W^{N-1} \dots W^2 W^1$$

$$b \!\!=\!\! (W^N \; W^{N\text{--}1} \; \ldots \; W^2 \;) \; b^1 + (W^N \; W^{N\text{--}1} \; \ldots \; W^3 \;) \; b^2 \!\!+ \; \ldots \!\!+ \; b^{\;N}$$

- 2. Considere duas classes de padrões como demonstrados na Figura. A classe I representa linhas verticais e a classe II representa linhas horizontais.
 - i) Verifique se o problema é linearmente separável.
 - ii) Desenhe uma rede MLP para classificar corretamente os quatro exemplos.

Classe I

$$\boldsymbol{p}_1 \!\! = \! [1 \ 1 \ \text{-} 1 \ \text{-} 1]^T \! ; \, \boldsymbol{p}_2 \!\! = \! [\text{-} \ 1 \ \text{-} \ 1 \ 1]^T$$

Classe II

$$\boldsymbol{p}_{3} \!\! = \! [1 \text{ -} 1 \text{ 1 -- 1}]^{\mathrm{T}}; \, \boldsymbol{p}_{4} \!\! = \! [\text{-} 1 \text{ 1 -- 1 1}]^{\mathrm{T}}$$

Para o problema ser linearmente ser deverá ser possível determinar um hiperplano $(\mathbf{WP}+b=0)$ a separar as duas classes. Assim, deve existir uma matriz de pesos \mathbf{W} e um bias b que satisfaçam as seguintes condições:

W
$$p_1 + b > 0$$

W p₂ +
$$b > 0$$

W
$$p_3 + b < 0$$

W
$$p_4 + b < 0$$

 \Leftrightarrow

$$[\,w_{11}\,w_{12}\,w_{13}\,w_{14}\,]\,[\,1\,\,1\,\,\text{-}1\,\,\text{-}1\,]^T \!\!= w_{11} + w_{12}\,\,\text{-}\,w_{13}\,\,\text{-}\,w_{14} \!>\!\! 0$$

$$-w_{11}-w_{12}+w_{13}+w_{14}>0$$

$$w_{11} - w_{12} + w_{13} - w_{14} < 0$$

$$-w_{11}+w_{12}-w_{13}+w_{14}<0$$

As primeiras duas condições reduzem-se a:

$$w_{11} + w_{12} > \ w_{13} + w_{14}$$

$$w_{13} + w_{14} > \ + \ w_{11} + \ w_{12}$$

O que são contraditórias!! O mesmo acontece com as duas últimas condições. Assim o problema é não linearmente separável.

ii) Existem diversas soluções.

Se notarmos que para os vetores da primeira classe ou são os dois primeiros elementos positivos ou (exclusivo) os dois últimos.

To do Work: Resolver exercícios do Cap. 11 do livro NN Design

Referências: https://hagan.okstate.edu/nnd.html