BIOINFORMATYKA

edycja 2019 / 2020

wykład 10

Transkryptomika Mikromacierze

dr Jacek Śmietański

jacek.smietanski@ii.uj.edu.pl http://jaceksmietanski.net

Genom drożdży na mikromacierzy

Mikromacierze DNA

Pozwalają na przeprowadzanie analiz genetycznych dla wielu (nawet tysięcy) genów jednocześnie.
Badanie ekspresji genów.

Jacek Śmietański, Kraków 2019

Określenie zmian w poziomie ekspresji genów. W badaniu określa się obecność i ilość cząsteczek mRNA dla poszczególnych genów w danym momencie funkcjonowania komórki.

Np. jedna próbka pochodzi z komórki zdrowej, druga – z chorej. Albo z komórek funkcjonujących w różnych warunkach środowiska (np. bakteria w warunkach tlenowych i beztlenowych).

Albo z komórek w różnych stadiach rozwoju (np. w różnych etapach mitozy).

Jacek Śmietański, Kraków 2019

Zwykle produkowana komercyjnie.

Każda płytka posiada tysiące ściśle określonych punktów, każdy zawiera nić pochodzącą z innego genu.

Nicią jest fragment nici cDNA lub syntetyczny oligonukleotyd.

Nici są dodawane automatycznie za pomocą igły aplikującej cDNA lub metodą podobną do tworzenia procesorów – z tego względu

mikromacierze nazywane są też czipami genowymi (*Gene Chip*)

Przebieg eksperymentu

- 1. Pobranie próbek
- 2. Izolacja mRNA.
- 3. Odwrotna transkrypcja do cDNA.
- 4. Hybrydyzacja na płytce
- 5. Skanowanie mikromacierzy
- 6. Analiza danych

@ Healthwise, Incorporated

Eksperyment

Uzyskane dane – znaczenie kolorów

ZIELONY - geny z próbki kontrolnej, które hybrydyzowały bardziej niż w badanej.

CZERWONY - geny z próbki badanej, które hybrydyzowały bardziej niż w kontrolnej.

ŻÓŁTY - geny z obu próbek hybrydyzowały w podobnym stopniu

CZARNY - obszary, w których żadna próbka nie hybrydyzowała do danej sekwencji DNA

Analiza różnic w ekspresji genów pomiędzy dwiema próbkami pozwala nam zrozumieć rolę genów w poszczególnych stadiach życiowych czy w razie choroby komórki.

Idea analizy

- 1) Identyfikacja punktów na obrazie odpowiadającym poszczególnym genom
- 2) Odczyt intensywności kolorów
- 3) Analizy statystyczne, itp.

Bioinformatyka, wykład 10

slajd 9

Analiza obrazu - problemy praktyczne (1)

Ogon komety (comet tail)

Najprawdopodobniej spowodowane niedostatecznie szybkim zanurzeniem próbki w roztworze.

IIMK UJ

Plamy, nierówne rozmiary, nachodządze na siebie

Jacek Śmietański, Kraków 2019

Analiza obrazu - problemy praktyczne (3)

Jasne / nierówne tło.

Analiza obrazu - problemy praktyczne (4)

Zachodzenie punktów.

Artefakty

Obrazy ze skanera

Rozdzielczość:10 µm

Standardowy rozmiar punktu: 100 µm

⇒ Średnica obiektu: 10 pixeli

Format obrazu:

TIFF (tagged image file format) 16 bit (65,536 poziomów szarości)

Obraz 1cm x 1cm (16 bit) = 2Mb (bez kompresji)

Istnieją też inne formaty, np. SCN (Stanford)

Oddzielne obrazy dla poszczególnych próbek.

IIMK UJ

Etapy przetwarzania obrazów

- Adresowanie (tworzenie siatki)
- Przypisanie współrzędnych do każdego punktu
- Segmentacja
- Oddzielenie sygnału od tła
- Analiza intensywności sygnału
- Analiza jakości pomiaru

This is the process of assigning coordinates to each of the spots.

Automating this part of the procedure permits high throughput analysis.

4 by 4 grids 19 by 21 spots per grid

— Skew in the array

Adresowanie - rejestracja

Problemy podczas automatycznego adresowania

Misregistration of the red and green channels Rotation of the array in the image Skew in the array

IIMK UJ

Adresowanie - etapy

- Analiza podstawowej struktury obrazu (determinowanej przez urządzenie)
- Pozycjonowanie macierzy na obrazie
- Rozdział na wiersze i kolumny w grupach (grids)
- Identyfikacja względnego przesunięcia grup
- Rozdział na wiersze i kolumny wewnątrz każdej grupy
- Korekty (przesunięcia) pojedynczych punktów

ScanAlyze

Jacek Śmietański, Kraków 2019

Segmentacja

Klasyfikacja pikseli do tła lub sygnału.

Metody:

- Fixed circles
- Adaptive circles
- Adaptive shape
- Edge detection
- Seeded Region Growing (R. Adams and L. Bishof (1994): rozrost obszarów począwszy od "punktów zasiewu" stosownie do różnicy pomiędzy jasnościami pikseli i średniej jasności sąsiadujących obszarów
- Metody bazujące na histogramie

Metody segmentacji w wybranych programach

Fixed circle	ScanAlyze, GenePix, QuantArray
Adaptive circle	GenePix, Dapple, SignalViewer (uses ellipse)
Adaptive shape	Spot, region growing and watershed
Histogram	ImaGene, QuantArray, DeArray and adaptive thresholding

Metoda Fixed circle

Dopasowuje okręgi o zadanej na sztywno średnicy do wszystkich obszarów na obrazie.

Łatwa w implementacji.

Obszary powinny mieć ten sam kształt i wielkość.

May not be good for this example

Metoda Adaptive circle

Średnica okręgu jest szacowana indywidualnie dla każdego obszaru.

Wykorzystywane są tu metody gradientowe wykrywania krawędzi (second derivative)

Problematyczna dla nieokrągłych kształtów, np. owalnych.

IIMK UJ

Ograniczenia segmentacji bazującej na okręgach

- Zbyt mały obszar
- Kształt inny niż okrąg

Ograniczenia sztywnych okręgów

Fixed circle

IIMK UJ

slajd 28

Metoda Adaptive shape

- 1. Ustalamy punkty startowe dla każdej pozycji w macierzy (zakładamy ich znajomość)
- 2. Powiększamy obszery związane z punktami startowymi na podstawie analizy jasności sąsiadujących pikseli.
- 3. Ostatecznie uzyskane obszary mogą mieć różne kształty.

Segmentacja na podstawie histogramu

Analizujemy obszar pokrywający w całości dany punkt. Na podstawie histogramu jasności punktów w tym obszarze ustalamy poziom jasności tła i badanej plamki.

Przykład: narzędzie QuantArray.

Przykładowe cechy:

Punkty obiektu:

- średnia
- mediana
- rozkład jasności pikseli.

Jasność tła:

- nie definiujemy
- ustalana lokalnie
- wartość globalna (stała)
- operacje morfologiczne (otwarcie)

Dane jakościowe.

Take the average

Określenie intensywności tła

Mierzony w eksperymencie poziom fluorescencji uwzględnia również wpływ niespecyficznych hybrydyzacji i zanieczyszczeń na płytce.

Poziom fluorescencji z regionów nie zawierających DNA powinien być inny niż z regionów badanych.

Rozwiązanie: stosowanie kontroli negatywnej: fragment DNA, co do którego wiemy, że nie będzie wiązał się z płytką.

slajd 32

Analiza jakości

Cała macierz:

- Korelacja między intensywnościami punktów
- Stosunek liczby punktów nie dających sygnału
- Rozkłąd obszarów dających sygnał

Punkt

- Stosunek sygnału do szumy
- Różnice w intensywności poszczególnych pikesli
- Identyfikacja punktów nie dających sygnału

Grupowanie genów wg stopnia aktywności w poszczególnych próbach.

IIMK UJ

Klastrowanie hierarchiczne

http://www.ncbi.nlm.nih.gov/geo/

IIMK UJ

Jacek Śmietański, Kraków 2019

RNA Seq

Analiza RNA dzięki wykorzystaniu wysokoprzepustowych technik sekwencjonowania.

Aminokwasy i białka

sekwencja -> struktura -> funkcja

Genetic Information

MVHLTPEEKT
AVNALWGKVN
VDAVGGEALG
RLLVVYPWTQ
RFFESFGDLS
SPDAVMGNPK
VKAHGKKVLG
AFSDGLAHLD
NLKGTFSQLS
ELHCDKLHVD
PENFRLLGNV
LVCVLARNFG
KEFTPQMQAA
YQKVVAGVAN
ALAHKYH

Molecular Structure Biochemical Function Phenotype (Symptoms)

Dotyczą zarówno białek, jak i kwasów nukleinowych (głównie RNA).

- przewidywanie struktury
- poszukiwanie miejsc wiążących
- predykcja oddziaływań
- modelowanie molekularne
- analiza relacji ewolucyjnych
- przewidywanie funkcji
- projektowanie leków (CADD)

Bioinformatyka, wykład 10

Ogólna budowa aminokwasów:

w neutralnym pH

grupa aminowa - NH₂

grupa karboksylowa - COOH

Aminokwasy białkowe

nazwa	symbol	skrót
alanina	Α	Ala
arginina	R	Arg
asparagina	N	Asn
kw.asparaginowy	D	Asp
cysteina	С	Cys
glutamina	Q	Gln
kw.glutaminowy	Е	Glu
glicyna	G	Gly
histydyna	Н	His
izoleucyna	1	lle

nazwa	symbol	skrót
leucyna	L	Leu
lizyna	K	Lys
metionina	M	Met
fenyloalanina	F	Phe
prolina	Р	Pro
seryna	S	Ser
treonina	Т	Thr
tryptofan	W	Trp
tyrozyna	Υ	Tyr
walina	V	Val

Aminokwasy hydrofobowe

(a) Hydrophobic amino acids

Leu, Leucine

A, V, F, I, L, P, M C, G, Y, W, H, K, T

M Met, Methionine

Ile, Isoleucine

Aminokwasy polarne

Aminokwasy naładowane

Wiązanie peptydowe

Ponieważ wiązanie peptydowe jest płaskie, konformacja głównego łańcucha może być wyznaczona przez kąty ϕ i ψ .

Zawada steryczna

Niektóre konformacje są niedopuszczalne.

Obrazuje dopuszczalne konformacje.

Struktury białek

Poziomy przestrzennej organizacji białek:

I rzędowa – liniowa sekwencja aminokwasów

II rzędowa – opisuje lokalne pofałdowanie (α-helisy, β-kartki)

III rzędowa – struktura 3D pojedynczego łańcucha

IV rzędowa – struktura 3D całego białka (połączone wszystkie łańcuchy)

Zwijanie białka (film): http://www.youtube.com/watch?v=fvBO3TqJ6FE

Struktura 2-rzędowa

α-helisy

helisa	φ	Ψ	ω	reszt aminkwasowych na skręt	przesunięcie na resztę (Å)	wiązania wodorowe
α helisa	-57	-47	180	3,6	1,5	i+4
3 ₁₀ helisa	-49	-26	180	3,0	2,0	i+3
π helisa	-57	-70	180	4,4	1,2	i+5

Są stabilizowane przez wiązania wodorowe i kontakt sąsiadujących łańcuchów

- równoległe
- antyrównoległe
- mieszane

The different types of beta-sheet. Dashed lines indicate main chain hydrogen bonds.

Mixed beta-sheet

β-kartki – reprezentacja graficzna

$$\gamma$$
-zwrot (ϕ_{i+1} =-79°, ψ_{i+1} =69°)

β-zwroty

Typy β -zwrotów w białkach

Table 1. Frequency and mean dihedral angles for standard β-turn types

Turn type	Ramachandran nomenclature ^a	No. of turns		Mean dihedral anglesd			
		ь	ç	$\phi(i+1)$	$\psi(i+1)$	$\phi(i+2)$	$\psi(i+2)$
I	$\alpha_R \alpha_R$	1,231	1,419	-64 (-60)	-27 (-30)	-90 (-90)	-7 (0)
11	$\beta \gamma_{\rm L}$	405	489	-60 (-60)	131 (120)	84 (80)	1 (0)
VIII	$\alpha_R \beta$	325	451	-72 (-60)	-33 (-30)	-123 (-120)	121 (120)
I'	$\alpha_{L} \gamma_{L}$	127	142	55 (60)	38 (30)	78 (90)	6 (0)
II'	$\epsilon \alpha_R$	90	100	60 (60)	-126 (-120)	-91 (-80)	1 (0)
VIa1	$\beta \alpha_R$	15	17	-64 (-60)	142 (120)	-93 (-90)	5 (0)
VIa2	$\beta \alpha_R$	5	5	-132 (-120)	139 (120)	-80 (-60)	-10 (0)
Vlb	$\beta\beta$	35	35	-135 (-135)	131 (135)	-76(-75)	157 (160)
IV		1,666	1,241	-61	10	-53	17
TOTAL		3,899					

^a Ramachandran nomenclature for turn type as in Wilmot and Thornton (1990). The nomenclature describes the regions of the Ramachandran plot occupied by residues i + 1 and i + 2 of the turn.

b Using normal cutoffs of 30° for deviation from standard angles, with one angle allowed to deviate by 45°.

c Allowing up to 40° deviation from standard angles, with one angle allowed to deviate by 50°.

^d The idealized ϕ , ψ values as determined by Lewis et al. (1973) are given in parentheses after the averaged values determined from the data set. The values for the type VI turns are taken from Richardson (1981). Types VIa1 and VIa2 are the two subclasses of type VIa turns identified by Richardson (1981).

Odmiana β –zwrotu. Częsty wzór, zwykle złożony z 3 aminokwasów, łączący sąsiadujące, antyrównoległe β-kartki

Fałdowanie białka – paradoks Levinthala

Jeśli każda reszta aminokwasowa może przybierać tylko trzy różne położenia przestrzenne. To dla białka o długości 100 aminokwasów, całkowita ilość struktur jakie może przyjąć wynosi 3¹⁰⁰, czyli ok. 5 ·10⁴⁷.

Jeżeli czas potrzebny na przekształcenie jednej struktury w drugą wynosi 10⁻¹³s, to całkowity czas potrzebny na ustalenie optymalnej struktury wyniósłby 5·10⁴⁷·10⁻¹³s (1,6·10²⁷ lat).

Tymczasem rzeczywisty czas potrzebny na zwinięcie się białka liczony jest w mikrosekundach.

slajd 57

Teoria Anfinsena

Anfinsen (1961) – cała informacja potrzebna białku do przyjęcia ostatecznej konformacji zakodowana jest w jego strukturze pierwszorzędowej

Stabilizacja struktury przestrzennej

- wiązania wodorowe;
- mostki dwusiarczkowe
- oddziaływania elektrostatyczne;
- siły van der Waalsa

Ustalanie srtuktury 3D – techniki eksperymentalne

- Krystalografia rentgenowska (X-ray)
- Jądrowy rezonans magnetyczny (NMR)
- inne

Metody drogie i czasochłonne.

- X-ray (96957)
- Solution NMR (10879)
- Electron Microscopy (781)
- Solid-State NMR (76)
- Hybrid (76)
 - Electron Crystallography
 - (47)
- Neutron Diffraction (47)
- Fiber Diffraction (38)
- Solution Scattering (32)
- Other (24)

Podejście fizyczne – szkoła boltzmannowska Modelowanie zwijania białka (procesu poszukiwania przez łańcuch konformacji o najniższej energii swobodnej, który w komórkach trwa zaledwie ułamki sekundy) korzystając z praw fizyki statycznej.

Podejście ewolucyjne – szkoła darwinowska Rekonstrukcja procesu powstania sekwencji i struktury białka na drodze ewolucji (przyrodzie zabiera to miliony lat).

KNOWN PROTEIN SEQUENCE MKDIRILDACCGSRMFWFDKKEPHT TYMDRREEEFEIHKKKINVKPDIVA...

EVOLUTIONARY MODEL: PROTEIN DIVERGENCE

PHYSICAL MODEL: PROTEIN FOLDING

