Onur Demir 18011078

- a. Best Case
- b. Average Case
- c. Worst Case

Sequential search algoritması aşağıdaki pseudo kod ile ifade edilebilir.				(Tebra	· yoksa.)
For i from 0 to n-1:		CL L	1-37+1	Ract	- worst
İf Li = T:		c_2	1-31	3	-300/37
	return i;	C 3	$1 \rightarrow n$	1	
return -1		C 4	3n+2=wo	たと	

a.En iyi çalışma zamanında(best case) bulunacak eleman aranacak elemanın ilk eleman olması durumudur. Dile ifade edilebilir. (Sırasıyla Big-O ve Big Omega analizi için ; c_3 de f(n) = 3 g(n) = 1 için $f(n) <= c^*g(n)$ c>=3 için ve c_3 de f(n) = 3 g(n) = 1 için $f(n) >= c^*g(n)$ c=2 için)

b.En kötü çalışma zamanı(worst case) elemanın bulunamamasıdır. \bigcirc \bigcirc \bigcirc ile ifade edilebilir. (Sırasıyla Big-O ve Big Omega analizi için ; c_4 de f(n) = 3n+2 g(n)=n için f(n)<= $c^*g(n)$ c=4,n>2 için ve c_4 de f(n)=3n+2 g(n)=n için f(n) >= $c^*g(n)$ c=3,n>0 için) Eğer sequential search tekrarlı elemanı arıyor ise tekrar eden eleman sayısı kadar çıkarılır. Bu durumda \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc olur.

c.Ortalama çalışma zamanı için tüm durumlar incelenmelidir. Bu durumda her eleman tek tek aranmalıdır ve aranma sayısına bölünmelidir.

$$\frac{k_1 + k_2 + k_3 + \dots + k_n}{n} = \sum_{i=1}^{n} \frac{k_i}{n}$$

nitoplan arma sayisi

kii i. indexteki elemanı aramak idin geden cost

temel operation karsılastıcmadır ve zostu 1 dir buna

göre $f(n) = \frac{1+2+nn+n}{n} = \frac{n \cdot (n+1)}{2} \cdot \frac{1}{n} = \frac{n+1}{2}$ (tekrarsızı)

eger ke kadar eleman takım ed yarsa; $f(n) = \frac{n+1}{2(k+1)}$ olur, g(n) = n/k isin $c_1g(n) \leq f(n) \leq c_2g(n)$ $c_1=1/4$ $c_2=2$ Igin $f(n) \leq f(n) \leq c_2g(n)$ c_3

Buna gore algoritma Galisma Zamani D(1) ve O(1)

2. $\frac{1}{2}n(n-1) \in \Theta(n^2)$ ifadesinin doğruluğunu ispat eden çözümünüzü adım adım yazınız. (20 Puan)

$$g(\eta) = n^2 \int f(\eta) = \frac{1}{2} \ln(n-1) \operatorname{iden}$$

$$C_1 \cdot g(\eta) = f(\eta) \leq c_2 \cdot g(\eta) \operatorname{santi} \operatorname{saglanmolide}$$

$$c_1 = \frac{1}{4} \int c_2 = 1 \operatorname{idin}$$

$$\frac{1}{4} \int a^2 = \frac{1}{2} \int a^2 - \frac{1}{2} \leq n^2 \quad \text{n} \geq 2 \operatorname{idin} \operatorname{sagladigman}$$

$$f(\eta) \in \Theta(n^2) \operatorname{denebilin}$$

Aşağıda verilen ifadeleri çözümleyerek "n" cinsinden sonucu yazınız. (20 Puan)

3. Aşağıda verilen ifadeleri çözümleyerek "n" cinsinden sonucu yazınız. (20 Puan)
$$\frac{\sum_{i=3}^{n+1} i}{\int_{b}^{n} \frac{1}{b}} = \sum_{i=0}^{n-1} i(i+1)$$

$$\frac{\int_{i=1}^{n} \frac{1}{2}}{\int_{i=0}^{n-1} \frac{1}{2}} = \sum_{i=1}^{n+1} \frac{1}{i} = \sum_{i=1}^{n+1} \frac{1}{i} = \frac{(n+1)(n+1)}{2} - 3$$

$$\frac{\int_{i=1}^{n} \frac{1}{2}}{\int_{i=0}^{n+1} \frac{1}{2}} = \sum_{i=1}^{n+1} \frac{1}{i} = \sum_{i=1}^{n+1} \frac{1}{i} = \frac{(n+1)(n+1)}{2} - 3$$

$$\frac{\int_{i=0}^{n+1} \frac{1}{2}}{\int_{i=0}^{n+1} \frac{1}{2}} = \sum_{i=1}^{n+1} \frac{1}{i} = \sum_{i=1}^{n+1} \frac{1}{2} = \sum_{i=1}^{n+1} \frac{1}{2$$

4. Aşağıda verilen rekürans bağıntısını "backward substitution" yardımı ile çözünüz. (20 Puan) $x(n) = x(n/2) + n \text{ for } n > 1, \quad x(1) = 1 \text{ (solve for } \underline{n} = 2^k)$ $\times (2^k) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^k) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^k) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{substitution" yardımı ile çözünüz. (20 Puan)}$ $\times (2^{k-1}) = \times (2^{k-1}) + 2^k \quad \text{su$

 Verilen d tabanındaki m basamaklı bir sayıyı "Decimal" olarak ifade eden algoritmanın sözde kodunu yazıp karmaşıklığını ifade ediniz. (20 Puan)

her bossomaleta 3 temel islem var. Üstler (bossomalelar) tekan dinda ifade edilemtyorsa ia bir döngüde ifade edilecektir. Algerithm Topeamal (A[O...n-1], K)

K: Base

"A: Number!

Dumber to do

digital

for je 0 to i-n-1 do

digit to digit to K.

Algerithm Topeamal (A[O...n-1], J.)

digit to do do

algit to digit to to i-n-1 do

digit to digit to i-n-1 do

number = number + digit * ALI 3n
return number

1

Time -> D(n2) Space -> D(1) Algorithm Tolecimal - Opt (A[0-n-1], K)

MK: Base 7

Number 6

Pow = 1

for i=n-1 to 0 do

Number Pow A[i] + number 3n

Pow = flow K

return number 4

Time o (n): Tek durumlu islem tanıml.

Spoce (a) (1)