Sammanfattning av SG1113 Mekanik, fortsättningskurs

Yashar Honarmandi yasharh@kth.se

31 augusti 2018

Sammanfattning

Detta är en sammanfattning av SG1113 Mekanik, fortsättningskurs.

Innehåll

1	Acc	Accelererande referensramar															1							
	1.1	Kinematik																						1
	1.2	Dynamik																						2

1 Accelererande referensramar

1.1 Kinematik

Vi vill betrakta en referensram S' som rör sig relativt en inertialram S. S' rör sig med hastighet $\mathbf{v}_{O'}$ och roterar med vinkelhastighet ω kring en given axel (dessa två kommer slås i hop till en enda rotationsvektor ω).

Transformation av vektorstorheter Betrakta en godtycklig vektorstorhet **A**. Denna kan skrivas i båda koordinatsystem, vilket ger likheten

$$\mathbf{A} = A_x \hat{\mathbf{e}}_x + A_y \hat{\mathbf{e}}_y + A_x \hat{\mathbf{e}}_y$$
$$= A'_x \hat{\mathbf{e}}'_x + A'_y \hat{\mathbf{e}}'_y + A'_z \hat{\mathbf{e}}'_z.$$

Vi beräknar nu tidsderivatan och får

$$\partial_t \mathbf{A} = \partial_t A_x \hat{\mathbf{e}}_x + \partial_t A_y \hat{\mathbf{e}}_y + \partial_t A_z \hat{\mathbf{e}}_y$$

= $\partial_t A_x' \hat{\mathbf{e}}_x' + \partial_t A_y' \hat{\mathbf{e}}_y' + \partial_t A_z' \hat{\mathbf{e}}_z' + A_x' \partial_t \hat{\mathbf{e}}_x' + A_y' \partial_t \hat{\mathbf{e}}_y' + A_z \partial_t \hat{\mathbf{e}}_z'.$

Vi inför nu den nya operatorn

$$\mathring{\mathbf{A}} = \partial_t A_x' \hat{\mathbf{e}}_x' + \partial_t A_y' \hat{\mathbf{e}}_y' + \partial_t A_z' \hat{\mathbf{e}}_z',$$

som låter oss skriva om de tre första termerna i sista raden. Vi kan vidare visa att tidsderivatorna av enhetsvektorerna har belopp som ges av $|\partial_t \hat{\mathbf{e}}_i'| = \omega \sin \alpha_i$, där α_i är vinkeln som bildas mellan rotationsvektorn ω och den givna enhetsvektorn, samt att varje tidsderivata av en enhetsvektor är normal på ω och själva enhetsvektoren. Därmed kan vi skriva $\partial_t \hat{\mathbf{e}}_i' = \omega \times \hat{\mathbf{e}}_i'$, och slutligen

$$\partial_t \mathbf{A} = \mathring{\mathbf{A}} + \boldsymbol{\omega} \times \mathbf{A} \tag{1}$$

Hastighet Ortsvektorn till en punkt kan skrivas som

$$\mathbf{r} = \mathbf{r}_{O'} + \mathbf{r}',$$

där \mathbf{r} är ortsvektorn i S, \mathbf{r}' är ortsvektorn i S' och $\mathbf{r}_{O'}$ är ortsvektorn till origo i S' relativt S. Vi tidsderiverar och får

$$\partial_t \mathbf{r} = \partial_t \mathbf{r}_{O'} + \partial_t \mathbf{r}'.$$

Vi känner igen hastigheten i S och hastigheten till ramen S'. Vid att använda det härledda sambandet för transformation av vektorstorheter får man

$$\mathbf{v} = \mathbf{v}_{O'} + \mathring{\mathbf{r}'} + \boldsymbol{\omega} \times \mathbf{r}'.$$

Vi känner även igen hastigheten till punkten i S', vilket ger

$$\mathbf{v} = \mathbf{v}_{O'} + \mathbf{v}' + \boldsymbol{\omega} \times \mathbf{r}'.$$

För att tolka detta resultatet, inför vi systempunkten, som är en materiell punkt i S' som sammanfaller med punkten vi betraktar i ögonblicket vi betraktar. Denna punkten är fix relativt S', vilket ger den hastighet i S lika med $\mathbf{v}_{O'} + \boldsymbol{\omega} \times \mathbf{r}'$. Vi kan då skriva

$$\mathbf{v} = \mathbf{v}_{\mathrm{sp}} + \mathbf{v}',$$

där \mathbf{v}_{sp} är systempunktens hastighet.

Acceleration För att beräkna accelerationen, tidsderiverar vi hastigheten, och får

$$\partial_t \mathbf{v} = \partial_t \mathbf{v}_{O'} + \partial_t \boldsymbol{\omega} \times \mathbf{r}' + \boldsymbol{\omega} \times \partial_t \mathbf{r}' + \partial_t \mathbf{v}'.$$

Vi använder ekvation 1 på storheterna i S' för att få

$$\partial_t \mathbf{v} = \partial_t \mathbf{v}_{O'} + \partial_t \boldsymbol{\omega} \times \mathbf{r}' + \boldsymbol{\omega} \times (\mathring{\mathbf{r}'} + \boldsymbol{\omega} \times \mathbf{r}') + \mathring{\mathbf{v}'} + \boldsymbol{\omega} \times \mathbf{v}'$$

$$= \partial_t \mathbf{v}_{O'} + \partial_t \boldsymbol{\omega} \times \mathbf{r}' + \boldsymbol{\omega} \times \boldsymbol{\omega} \times \mathbf{r}' + \boldsymbol{\omega} \times (\mathring{\mathbf{r}'} + \mathbf{v}') + \mathring{\mathbf{v}'}.$$

Vi känner igen accelerationen mätt i S, accelerationen till ramen S' och hastigheten mätt i S', och får

$$\mathbf{a} = \mathbf{a}_{O'} + \partial_t \boldsymbol{\omega} \times \mathbf{r}' + \boldsymbol{\omega} \times \boldsymbol{\omega} \times \mathbf{r}' + 2\boldsymbol{\omega} \times \mathbf{v}' + \mathbf{a}'$$

För att tolka detta, inför vi igen systempunkten. Eftersom denna är fix relativt S', ger de två sista termerna inget bidrag till dennas acceleration, vilket ger $\mathbf{a}_{\rm sp} = \mathbf{a}_{O'} + \partial_t \boldsymbol{\omega} \times \mathbf{r}' + \boldsymbol{\omega} \times \boldsymbol{\omega} \times \mathbf{r}'$. Den sista termen känner vi även igen som punktens acceleration S'. Dock återstår en sista term, som döps Coriolisaccelerationen $\mathbf{a}_{\rm cor}$. Vi får då

$$\mathbf{a} = \mathbf{a}_{sp} + \mathbf{a}_{cor} + \mathbf{a}'$$
.

1.2 Dynamik

När vi nu tillämpar Newtons andra lag i S, får man

$$\mathbf{F} = m\mathbf{a} = m\left(\mathbf{a}_{\mathrm{sp}} + \mathbf{a}_{\mathrm{cor}} + \mathbf{a}'\right).$$

Vi definierar nu två tröghetskrafter: systempunktskraften $\mathbf{F}_{\rm sp} = -m\mathbf{a}_{\rm sp}$ och Corioliskraften $\mathbf{F}_{\rm cor} = -m\mathbf{a}_{\rm cor}$. Detta ger oss

$$m\mathbf{a}' = \mathbf{F} + \mathbf{F}_{\text{sp}} + \mathbf{F}_{\text{cor}} = \mathbf{F}_{\text{rel}}.$$

Från detta drar vi slutsatsen att partikeldynamiken kan översättas till accelererande system om

- alla absoluta storheter och tidsderivator ersätts med motsvarande relativa storheter och derivator.
- de fysiska krafterna kompletteras med de två tröghetskrafterna.

Vi kan nu undersöka termerna systempunktskraften består av. Dessa är

- en translatorisk kraft $\mathbf{F}_{\text{tl}} = -m\mathbf{a}_{O'}$.
- en transversell kraft $\mathbf{F}_{tv} = -m\mathbf{a}_{tv} = -m\partial_t \boldsymbol{\omega} \times \mathbf{r}'$.
- en centrifugalkraft $\mathbf{F}_{c} = -m\mathbf{a}_{c} = -m\boldsymbol{\omega} \times \boldsymbol{\omega} \times \mathbf{r}'$.

2 Stela kroppar

En stel kropp är en massbelagd domän så att avståndet mellan två godtyckliga punkter är konstant.

En stel kropp kan ha translationshastighet eller rotationshastighet. Translationshastighet karakteriseras av att $\mathbf{v}_A = \mathbf{v}_B$ för alla A, B. Rotationshastighet karakteriseras av att det finns ett C som är stelt förenad med kroppen så att $\mathbf{v}_C = \mathbf{0}$ momentant.

För att beskriva rörelsen till en stel kropp, bilda en referensram med axlerna fixa relativt kroppen. betrakta två punkter A, B i kroppen, där origo i den nya referensramen är A. Då gäller det att

$$\mathbf{v}_B = \mathbf{v}_{B,\mathrm{sp}} + \mathbf{v}_{B,\mathrm{rel}}.$$

Eftersom axlerna är fixa relativt kroppen, ger andra termen inget bidrag, vilket ger

$$\mathbf{v}_B = \mathbf{v}_A + \boldsymbol{\omega} \times \mathbf{r}_{AB}$$

och bekräftar vårt påstående om att all rörelse för en stel kropp är antingen translation eller rotation.

Betrakta vidare kroppens acceleration, som ges av

$$\mathbf{a}_B = \mathbf{a}_{B,\mathrm{sp}} + \mathbf{a}_{B,\mathrm{cor}} + \mathbf{a}_{B,\mathrm{rel}}.$$

Fixa axler ger att de två sista termerna ej bidrar och

$$\mathbf{a}_B = \mathbf{a}_A + \frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}t} \times \mathbf{r}_{AB} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}_{AB}),$$

där den första termen är ett translatoriskt bidrag och de två andra är rotationsbidrag.

Plan rörelse för en stel kropp karakteriseras av att hastigheten i alla punkter är parallellt med ett och samma fixa plan. Om en stel kropp roterar under plan rörelse, finns det alltid en punkt C med $\mathbf{v}_C = \mathbf{0}$, som kallas

momentancentrum. Denna punkt uppfyller $\mathbf{v}_A=-\boldsymbol{\omega}\times\mathbf{r}_{AC}$. För att hitta den, multiplicera med $\boldsymbol{\omega}$ på båda sidor för att få

$$\boldsymbol{\omega} \times \mathbf{v}_A = -\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}_{AC})$$
$$= -(\boldsymbol{\omega} \cdot \mathbf{r}_{AC}) \boldsymbol{\omega} + \omega^2 \mathbf{r}_{AC}.$$

Eftersom rörelsen är plan, behöver vi bara betrakta ett snitt av kroppen i rörelsesplanet, vilket gör att den första skalärprodukten blir 0. Detta ger då positionen till momentancentrumet enligt

$$\mathbf{r}_{AC} = \frac{1}{\omega^2} \boldsymbol{\omega} \times \mathbf{v}_A.$$