If $\lambda = \mu + i\nu$ with μ , ν real and $\mu > s(A)$ we have for arbitrary $f \in E$, $\phi \in E'$:

$$|< \int_{\mathbf{r}}^{\mathbf{t}} e^{-\lambda s} \mathbf{T}(s) f \, ds, \phi > | \leq \int_{\mathbf{r}}^{\mathbf{t}} e^{-\mu s} < \mathbf{T}(s) | \mathbf{f} |, | \phi | > ds \quad \text{hence}$$

$$||< \int_{\mathbf{r}}^{\mathbf{t}} e^{-\lambda s} \mathbf{T}(s) f \, ds || \leq || \int_{\mathbf{r}}^{\mathbf{t}} e^{-\mu s} \mathbf{T}(s) | \mathbf{f} | \, ds || \quad \text{which shows that}$$

 $\lim_{t \to \infty} \int_0^t \, \mathrm{e}^{-\lambda \, S} T(s) \, f \, \, \mathrm{d}s \quad \text{exists} \ .$ Thus $R(\lambda, A) \, f = \int_0^\infty \, \mathrm{e}^{-\lambda \, S} \, T(s) \, f \, \, \mathrm{d}s \quad \text{by A-I,Prop.1.11}.$

It remains to prove that the net $(\int_0^r \exp(-\mu s)T(s)) ds)_{r\geq 0}$ converges with respect to the operator norm. We fix µ such that

s(A) < μ < Re λ . As we have seen above the map s + $e^{-\mu S}$ < T(s)f, ϕ > is Lebesgue integrable for every (f, ϕ) \in E \times E' , thus defining a bilinear map $b: E \times E' \to L^1(\mathbb{R}_+)$. Using the closed graph theorem it is easy to see that b is separately continuous, hence jointly continuous by [Schaefer (1966), III.Thm.5.1] . Thus there is a constant M such that

$$(1.4) \quad \int_0^\infty e^{-\mu s} |\langle T(s) f, \phi \rangle| \ ds = \|b(f, \phi)\| \le M \|f\| \|\phi\| \qquad (f \in E \ , \ \phi \in E')$$

Given $0 \le t < r$ and setting $\varepsilon := Re \lambda - \mu$ we have:

$$\begin{split} &\left|\int_{t}^{r} e^{-\lambda s} \langle T(s) f, \phi \rangle \ ds\right| \leq \int_{t}^{r} \exp\left(-\left(Re\lambda - \mu\right) s\right) e^{-\lambda s} \left|\langle T(s) f, \phi \rangle\right| \ ds \\ &\leq e^{-\epsilon t} \int_{t}^{r} e^{-\lambda s} \left|\langle T(s) f, \phi \rangle\right| \ ds \leq e^{-\epsilon t} \ M \|f\| \|\phi\| \ . \end{split}$$

It follows that $\left\|\int_{+}^{r} e^{-\lambda s} T(s) ds\right\| \leq Me^{-\varepsilon t}$, hence

 $(\int_0^t e^{-\lambda s} T(s) ds)_{t>0}$ is a Cauchy net with respect to the operator

Theorem 1.2 has many consequences. In particular, we can conclude that $s(A) \in \sigma(A)$ whenever $s(A) > -\infty$ (without using the analogous result for bounded operators, cf. Cor.1.4 below). In each of the following corollaries we assume that A is the generator of a positive semigroup $(T(t))_{t>0}$ on a Banach lattice E.

Corollary 1.3. If Re $\lambda > s(A)$ then we have (1.5) $|R(\lambda,A)f| \leq R(Re\lambda,A)|f|$ (f \in E).

The proof is an immediate consequence of Thm.1.2.

Corollary 1.4. We have $s(A) \in \sigma(A)$ unless $s(A) = -\infty$.

<u>Proof.</u> Assume that $s(A) > -\infty$ and $s(A) \notin \sigma(A)$, then it follows from (1.5) that $\{R(\lambda,A) : Re\lambda > s(A)\}$ is uniformly bounded in L(E),