Optimization

Quadratic forms I

Learning goals

- Univariate Quadratic functions
- Multivariate Quadratic functions

Consider a quadratic function $q:\mathbb{R} \to \mathbb{R}$

$$q(x) = a \cdot x^2 + b \cdot x + c, \qquad a \neq 0.$$

A quadratic function $q_1(x) = x^2$ (left) and $q_2(x) = -x^2$ (right).

Basic properties can be read off easily:

• The **slope** of a tangent at a point $(\tilde{x}, q(\tilde{x}))$ is given by the first derivative $q'(\tilde{x}) = 2 \cdot a \cdot \tilde{x} + b$

• The **curvature** of *q* is given by $q''(x) = 2 \cdot a$.

 $q_1 = x^2$ (orange) $q_2 = 2x^2$ (green), $q_3(x) = -x^2$ (blue), $q_4 = -3x^2$ (magenta)

- Convexity / Concavity:
 - If a > 0: q is convex, bounded from below and has a unique global minimum
 - If a < 0: q is concave, bounded from above and has a unique global maximum
- The optimum x^* is

$$q'(x) = 0 \Leftrightarrow 2ax + b = 0 \Leftrightarrow x^* = \frac{-b}{2a}$$

Left: $q_1(x) = x^2$ (convex). Right: $q_2(x) = -x^2$ (concave).

A quadratic function $q: \mathbb{R}^d \to \mathbb{R}$ has the following form:

$$q(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b}^{\top} \mathbf{x} + c,$$

with $\mathbf{A} \in \mathbb{R}^{d \times d}$ being a full-rank matrix, $\mathbf{b} \in \mathbb{R}^d$, and $\mathbf{c} \in \mathbb{R}$.

W.l.o.g. we can assume that \mathbf{A} is a **symmetric** matrix, i.e. $\mathbf{A}^{\top} = \mathbf{A}$, because there always exists a symmetric matrix $\tilde{\mathbf{A}}$ such that

$$q(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \mathbf{x}^{\top} \tilde{\mathbf{A}} \mathbf{x} = \tilde{q}(\mathbf{x}) \quad \forall \mathbf{x}.$$

Justification: We can write $q(\mathbf{x})$ as

$$q(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \frac{1}{2} \mathbf{x}^{\top} \underbrace{(\mathbf{A} + \mathbf{A}^{\top})}_{\tilde{\mathbf{A}}_{1}} \mathbf{x} + \frac{1}{2} \mathbf{x}^{\top} \underbrace{(\mathbf{A} - \mathbf{A}^{\top})}_{\tilde{\mathbf{A}}_{2}} \mathbf{x}$$

with $\tilde{\mathbf{A}}_1$ symmetric, and $\tilde{\mathbf{A}}_2$ anti-symmetric (i.e., $\tilde{\mathbf{A}}_2^\top = -\tilde{\mathbf{A}}_2$). Since $\mathbf{x}^\top \mathbf{A}^\top \mathbf{x}$ is a scalar, it is equal to its transposed and we get:

$$\mathbf{x}^{\top}(\mathbf{A} - \mathbf{A}^{\top})\mathbf{x} = \mathbf{x}^{\top}\mathbf{A}\mathbf{x} - \mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{x} = \mathbf{x}^{\top}\mathbf{A}\mathbf{x} - (\mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{x})^{\top}$$

= $\mathbf{x}^{\top}\mathbf{A}\mathbf{x} - \mathbf{x}^{\top}\mathbf{A}\mathbf{x} = 0$.

Therefore, $q(\mathbf{x}) = \tilde{q}(\mathbf{x})$ with $\tilde{q}(\mathbf{x}) = \mathbf{x}^{\top} \tilde{\mathbf{A}} \mathbf{x}$ with $\tilde{\mathbf{A}} = \tilde{\mathbf{A}}_1$.

• The gradient of q is given by

$$abla q(\mathbf{x}) = \left(\mathbf{A}^ op + \mathbf{A}
ight)\mathbf{x} + \mathbf{b} =
abla q(\mathbf{x}) = 2\cdot \mathbf{A}\mathbf{x} + \mathbf{b} \in \mathbb{R}^d$$

(the last step follows from assuming A to be symmetric).

The directional derivative in the direction of $\mathbf{v} \in \mathbb{R}^d$, $\|\mathbf{v}\| = 1$, is

$$\frac{\partial q(\mathbf{x} + h \cdot \mathbf{v})}{\partial h} \bigg|_{h=0} = \nabla q(\mathbf{x} + h\mathbf{v})^{\top} \mathbf{v} \bigg|_{h=0} = \nabla q(\mathbf{x})^{\top} \mathbf{v}$$

by using the chain rule.

• The Hessian is given by

$$abla^2 q(\mathbf{x}) = \left(\mathbf{A}^{ op} + \mathbf{A}
ight) = 2\mathbf{A} := \mathbf{H} \in \mathbb{R}^{d imes d},$$

(again assuming that A is symmetric).

The curvature in the direction of $\mathbf{v} \in \mathbb{R}^d$, $\|\mathbf{v}\| = 1$, is

$$\frac{\partial^2 q(\mathbf{x} + h \cdot \mathbf{v})}{\partial h^2} \bigg|_{h=0} = \frac{\partial \left[\nabla q(\mathbf{x} + h\mathbf{v})^\top \mathbf{v} \right]}{\partial h} \bigg|_{h=0}$$
$$= \mathbf{v}^\top \nabla^2 q(\mathbf{x} + h\mathbf{v}) \mathbf{v} \bigg|_{h=0} = \mathbf{v}^\top \mathbf{H} \mathbf{v}.$$

 If A has full rank, there exists one unique stationary point (which may be a minimum, maximum, or a saddle point)

$$\nabla q(\mathbf{x}) = 0$$

$$2 \cdot \mathbf{A}\mathbf{x} + \mathbf{b} = 0$$

$$\mathbf{x}^* = -\frac{1}{2}\mathbf{A}^{-1}\mathbf{b}.$$

Bernd Bischl [©] Optimization − 9 / ??