(NN Structure

RGB has 3 Channels ex) 3x64x64 Guyssenle has 1 Channel. ex) 1x28x2B

* Padding:

ſ	1	1		0	0	O	0	O	
0	I	1	\longrightarrow	0	_	7	١	0	
0	٥	1		0	0	ſ	(0	
		•		0	0	0	ı	д	
				0	0	0	0	δ	
					1			-	

Why? if input data is $R^{5\times5}$, and apply hermel 3×3 , $R^{5\times5} \rightarrow R^{3\times3}$ After padding to data, $R^{5\times5} \rightarrow R^{7\times7}$, and when we apply 5×5 newel, $R^{7\times7} \rightarrow R^{5\times5}$.
It prevents lossing information

* Stride: How far the filter moves in every step along

 $\left(\frac{5-3}{2}+1\right)\times\left(\frac{5-3}{2}+1\right)=2\times2$

*Dimension:
$$\left(\frac{d_1-k_1}{s}\right)+1 \times \left(\frac{d_2-k_2}{s}\right)+1$$

* Convolutional layer: Convolution + (Normalize) + Activation
Optional

Pooling: live on Subsample the pixels to make image smaller with fever parameters to characterize the image

)

Code example w/ PyTorch

nn. Sequential (

nn. Con 2d (input_channel, output_channel, kernel_size, stride, padding, bics= False),),

MM. Bottch Norm 2d (Out Put-size),

nn. Lewy ReLU(0.2),

& Convolution is a linear operator

Henre, we need to follow Consolution with a nonlinearity (e.s. ReLV) to get nonlinear functions

