## (19) World Intellectual Property Organization International Bureau





## (43) International Publication Date 25 May 2001 (25.05.2001)

#### **PCT**

## (10) International Publication Number WO 01/35726 A1

(51) International Patent Classification?: 5/00, C12N 5/14, 15/82

\_\_\_\_

A01H 1/00.

(21) International Application Number: PCT/US00/31418

.

(22) International Filing Date: 14 November 2000 (14.11.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/166,228 17 November 1999 (17.11.1999) US 60/197,899 17 April 2000 (17.04.2000) US 60/227,439 22 August 2000 (22.08.2000) US

(71) Applicant (for all designated States except US): MENDEL BIOTECHNOLOGY, INC. [US/US]; 21375 Cabot Boulevard, Hayward, CA 94541 (US).

(71) Applicants and

(72) Inventors: HEARD, Jacqueline [US/US]; 810 Guildford Avenue, San Mateo, CA 94402 (US). RATCLIFFE, Oliver [GB/US]; 814 East 21st Street, Oakland, CA 94606 (US). CREELMAN, Robert [US/US]; 2801 Jennifer Drive, Castro Valley, CA 94546 (US). JIANG, Cai-Zhong [CN/US]; 34495 Heathrow Terrace, Fremont, CA 94555 (US). PINEDA, Omaira [CO/US]; 19563 Helen Place, Castro Valley, CA 94546 (US). REUBER, Lynne [US/US]; 2000 Walnut Avenue, Fremont, CA 94538 (US). ADAM, Luc [CA/US]; 25800 Industrial Boulevard, L403, Hayward, CA 94545 (US).

- (74) Agent: GUERRERO, Karen; Mendel Biotechnology, Inc., 21375 Cabot Boulevard, Hayward, CA 94545 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published:

With international search report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

#### **PATHOGEN TOLERANCE GENES**

#### RELATED APPLICATION INFORMATION

The present invention claims the benefit from US Provisional Patent Application Serial Nos. 60/166,228 filed November 17, 1999 and 60/197,899 filed April 17, 2000 and "Plant Trait Modification III" filed August 22, 2000.

5

10

15

20

25

30

35

#### FIELD OF THE INVENTION

This invention relates to the field of plant biology. More particularly, the present invention pertains to compositions and methods for phenotypically modifying a plant.

#### **BACKGROUND OF THE INVENTION**

Transcription factors can modulate gene expression, either increasing or decreasing (inducing or repressing) the rate of transcription. This modulation results in differential levels of gene expression at various developmental stages, in different tissues and cell types, and in response to different exogenous (e.g., environmental) and endogenous stimuli throughout the life cycle of the organism.

Because transcription factors are key controlling elements of biological pathways, altering the expression levels of one or more transcription factors can change entire biological pathways in an organism. For example, manipulation of the levels of selected transcription factors may result in increased expression of economically useful proteins or metabolic chemicals in plants or to improve other agriculturally relevant characteristics. Conversely, blocked or reduced expression of a transcription factor may reduce biosynthesis of unwanted compounds or remove an undesirable trait. Therefore, manipulating transcription factor levels in a plant offers tremendous potential in agricultural biotechnology for modifying a plant's traits.

The present invention provides novel transcription factors useful for modifying a plant's phenotype in desirable ways, such as modifying a plant's pathogen tolerance.

#### SUMMARY OF THE INVENTION

In a first aspect, the invention relates to a recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID Nos. 2N, where N=1-29, or a complementary nucleotide sequence thereof; (b) a nucleotide sequence encoding a polypeptide comprising a conservatively substituted variant of a polypeptide of (a); (c) a nucleotide sequence comprising a sequence selected from those of SEQ ID Nos. 2N-1, where N=1-29, or a complementary nucleotide sequence thereof; (d) a nucleotide sequence

comprising silent substitutions in a nucleotide sequence of (c); (e) a nucleotide sequence which hybridizes under stringent conditions over substantially the entire length of a nucleotide sequence of one or more of: (a), (b), (c), or (d); (f) a nucleotide sequence comprising at least 15 consecutive nucleotides of a sequence of any of (a)-(e); (g) a nucleotide sequence comprising a subsequence or fragment of any of (a)-(f), which subsequence or fragment encodes a polypeptide having a biological activity that modifies a plant's pathogen tolerance; (h) a nucleotide sequence having at least 31% sequence identity to a nucleotide sequence of any of (a)-(g); (i) a nucleotide sequence having at least 60% identity sequence identity to a nucleotide sequence of any of (a)-(g); (j) a nucleotide sequence which encodes a polypeptide having at least 31% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-29; (k) a nucleotide sequence which encodes a polypeptide having at least 60% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-29; and (I) a nucleotide sequence which encodes a conserved domain of a polypeptide having at least 65% sequence identity to a conserved domain of a polypeptide of SEQ ID Nos. 2N, where N=1-29. The recombinant polynucleotide may further comprise a constitutive, inducible, or tissue-active promoter operably linked to the nucleotide sequence. The invention also relates to compositions comprising at least two of the above described polynucleotides.

5

10

15

25

30

35

In a second aspect, the invention is an isolated or recombinant polypeptide comprising a subsequence of at least about 15 contiguous amino acids encoded by the recombinant or isolated polynucleotide described above.

In another aspect, the invention is a transgenic plant comprising one or more of the above described recombinant polynucleotides. In yet another aspect, the invention is a plant with altered expression levels of a polynucleotide described above or a plant with altered expression or activity levels of an above described polypeptide. Further, the invention may be a plant lacking a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID Nos. 2N, where N=1-29.

The plant may be a soybean, wheat, corn, potato, cotton, rice, oilseed rape, sunflower, alfalfa, sugarcane, turf, banana, blackberry, blueberry, strawberry, raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits, or vegetable brassicas plant.

In a further aspect, the invention relates to a cloning or expression vector comprising the isolated or recombinant polynucleotide described above or cells comprising the cloning or expression vector.

In yet a further aspect, the invention relates to a composition produced by incubating a polynucleotide of the invention with a nuclease, a restriction enzyme, a polymerase; a polymerase and a primer; a cloning vector, or with a cell.

Furthermore, the invention relates to a method for producing a plant having improved pathogen tolerance. The method comprises altering the expression of an isolated or recombinant polynucleotide of the invention or altering the expression or activity of a polypeptide of the invention in a plant to produce a modified plant, and selecting the modified plant for modified pathogen tolerance.

5

10

15

20

25

30

35

In another aspect, the invention relates to a method of identifying a factor that is modulated by or interacts with a polypeptide encoded by a polynucleotide of the invention. The method comprises expressing a polypeptide encoded by the polynucleotide in a plant; and identifying at least one factor that is modulated by or interacts with the polypeptide. In one embodiment the method for identifying modulating or interacting factors is by detecting binding by the polypeptide to a promoter sequence, or by detecting interactions between an additional protein and the polypeptide in a yeast two hybrid system, or by detecting expression of a factor by hybridization to a microarray, subtractive hybridization or differential display.

In yet another aspect, the invention is a method of identifying a molecule that modulates activity or expression of a polynucleotide or polypeptide of interest. The method comprises placing the molecule in contact with a plant comprising the polynucleotide or polypeptide encoded by the polynucleotide of the invention and monitoring one or more of the expression level of the polynucleotide in the plant, the expression level of the polypeptide in the plant, and modulation of an activity of the polypeptide in the plant.

In yet another aspect, the invention relates to an integrated system, computer or computer readable medium comprising one or more character strings corresponding to a polynucleotide of the invention, or to a polypeptide encoded by the polynucleotide. The integrated system, computer or computer readable medium may comprise a link between one or more sequence strings to a modified plant pathogen tolerance phenotype.

In yet another aspect, the invention is a method for identifying a sequence similar or homologous to one or more polynucleotides of the invention, or one or more polypeptides encoded by the polynucleotides. The method comprises providing a sequence database; and, querying the sequence database with one or more target sequences corresponding to the one or more polynucleotides or to the one or more polypeptides to identify one or more sequence members of the database that display sequence similarity or homology to one or more of the one or more target sequences.

The method may further comprise of linking the one or more of the polynucleotides of the invention, or encoded polypeptides, to a modified plant pathogen tolerance phenotype.

#### **BRIEF DESCRIPTION OF THE DRAWINGS**

Figure 1 provides a table of exemplary polynucleotide and polypeptide sequences of the invention. The table includes from left to right for each sequence: the SEQ ID No., the internal code reference number (GID), whether the sequence is a polynucleotide or polypeptide sequence, and identification of any conserved domains for the polypeptide sequences.

Figure 2 provides a table of exemplary sequences that are homologous to other sequences provided in the Sequence Listing and that are derived from *Arabidopsis thaliana*. The table includes from left to right: the SEQ ID No., the internal code reference number (GID), identification of the homologous sequence, whether the sequence is a polynucleotide or polypeptide sequence, and identification of any conserved domains for the polypeptide sequences.

Figure 3 provides a table of exemplary sequences that are homologous to the sequences provided in Figures 1 and 2 and that are derived from plants other than *Arabidopsis thaliana*. The table includes from left to right: the SEQ ID No., the internal code reference number (GID), the unique GenBank sequence ID No. (NID), the probability that the comparison was generated by chance (P-value), and the species from which the homologous gene was identified.

20

25

30

35

10

15

#### DETAILED DESCRIPTION

The present invention relates to polynucleotides and polypeptides, e.g. for modifying phenotypes of plants.

In particular, the polynucleotides or polypeptides are useful for modifying traits associated with a plant's pathogen tolerance when the expression levels of the polynucleotides or expression levels or activity levels of the polypeptides are altered. Specifically, the polynucleotides and polypeptides are useful for modifying traits associated with a plant's pathogen tolerance, such as alterations in cell wall composition, trichome number or structure, callose induction, phytoalexin induction, alterations in the cell death response, or the like. Transgenic plants employing the polynucleotides or polypeptides of the invention are more tolerant to biotrophic or necrotrophic pathogens such as fungi, bacteria, mollicutes, viruses, nematodes, parasitic higher plants or the like.

The polynucleotides of the invention encode plant transcription factors. The plant transcription factors are derived, e.g., from *Arabidopsis thaliana* and can belong, e.g., to one or more of the following transcription factor families: the AP2 (APETALA2) domain transcription factor family (Riechmann and Meyerowitz (1998) <u>J. Biol. Chem.</u> 379:633-646); the MYB transcription factor family (Martin and Paz-Ares (1997) <u>Trends Genet.</u> 13:67-73); the MADS domain transcription factor family (Riechmann and Meyerowitz (1997) <u>J. Biol.</u>

Chem. 378:1079-1101); the WRKY protein family (Ishiguro and Nakamura (1994) Mol. Gen. Genet. 244:563-571); the ankyrin-repeat protein family (Zhang et al. (1992) Plant Cell 4:1575-1588); the miscellaneous protein (MISC) family (Kim et al. (1997) Plant J. 11:1237-1251); the zinc finger protein (Z) family (Klug and Schwabe (1995) FASEB J. 9: 597-604); the homeobox (HB) protein family (Duboule (1994) Guidebook to the Homeobox Genes. Oxford University Press); the CAAT-element binding proteins (Forsburg and Guarente (1989) Genes Dev. 3:1166-1178); the squamosa promoter binding proteins (SPB) (Klein et al. (1996) Mol. Gen. Genet. 1996 250:7-16); the NAM protein family; the IAA/AUX proteins (Rouse et al. (1998) Science 279:1371-1373); the HLH/MYC protein family (Littlewood et al. (1994) Prot. Profile 1:639-709); the DNA-binding protein (DBP) family (Tucker et al. (1994) EMBO J. 13:2994-3002); the bZIP family of transcription factors (Foster et al. (1994) FASEB J. 8:192-200); the BPF-1 protein (Box P-binding factor) family (da Costa e Silva et al. (1993) Plant J. 4:125-135); and the golden protein (GLD) family (Hall et al. (1998) Plant Cell 10:925-936).

In addition to methods for modifying a plant phenotype by employing one or more polynucleotides and polypeptides of the invention described herein, the polynucleotides and polypeptides of the invention have a variety of additional uses. These uses include their use in the recombinant production (i.e, expression) of proteins; as regulators of plant gene expression, as diagnostic probes for the presence of complementary or partially complementary nucleic acids (including for detection of natural coding nucleic acids); as substrates for further reactions, e.g., mutation reactions, PCR reactions, or the like, of as substrates for cloning e.g., including digestion or ligation reactions, and for identifying exogenous or endogenous modulators of the transcription factors.

#### **DEFINITIONS**

10

15

20

25

30

35

A "polynucleotide" is a nucleic acid sequence comprising a plurality of polymerized nucleotide residues, e.g., at least about 15 consecutive polymerized nucleotide residues, optionally at least about 30 consecutive nucleotides, at least about 50 consecutive nucleotides. In many instances, a polynucleotide comprises a nucleotide sequence encoding a polypeptide (or protein) or a domain or fragment thereof. Additionally, the polynucleotide may comprise a promoter, an intron, an enhancer region, a polyadenylation site, a translation initiation site, 5' or 3' untranslated regions, a reporter gene, a selectable marker, or the like. The polynucleotide can be single stranded or double stranded DNA or RNA. The polynucleotide optionally comprises modified bases or a modified backbone. The polynucleotide can be, e.g., genomic DNA or RNA, a transcript (such as an mRNA), a cDNA, a PCR product, a cloned DNA, a synthetic DNA or RNA, or the like. The polynucleotide can comprise a sequence in either sense or antisense orientations.

A "recombinant polynucleotide" is a polynucleotide that is not in its native state, e.g., the polynucleotide comprises a nucleotide sequence not found in nature, or the polynucleotide is in a context other than that in which it is naturally found, e.g., separated from nucleotide sequences with which it typically is in proximity in nature, or adjacent (or contiguous with) nucleotide sequences with which it typically is not in proximity. For example, the sequence at issue can be cloned into a vector, or otherwise recombined with one or more additional nucleic acid.

5

10

15

20

25

30

35

An "isolated polynucleotide" is a polynucleotide whether naturally occurring or recombinant, that is present outside the cell in which it is typically found in nature, whether purified or not. Optionally, an isolated polynucleotide is subject to one or more enrichment or purification procedures, e.g., cell lysis, extraction, centrifugation, precipitation, or the like.

A "recombinant polypeptide" is a polypeptide produced by translation of a recombinant polynucleotide. An "isolated polypeptide," whether a naturally occurring or a recombinant polypeptide, is more enriched in (or out of) a cell than the polypeptide in its natural state in a wild type cell, e.g., more than about 5% enriched, more than about 10% enriched, or more than about 20%, or more than about 50%, or more, enriched, i.e., alternatively denoted: 105%, 110%, 120%, 150% or more, enriched relative to wild type standardized at 100%. Such an enrichment is not the result of a natural response of a wild type plant. Alternatively, or additionally, the isolated polypeptide is separated from other cellular components with which it is typically associated, e.g., by any of the various protein purification methods herein.

The term "transgenic plant" refers to a plant that contains genetic material, not found in a wild type plant of the same species, variety or cultivar. The genetic material may include a transgene, an insertional mutagenesis event (such as by transposon or T-DNA insertional mutagenesis), an activation tagging sequence, a mutated sequence, a homologous recombination event or a sequence modified by chimeraplasty. Typically, the foreign genetic material has been introduced into the plant by human manipulation.

A transgenic plant may contain an expression vector or cassette. The expression cassette typically comprises a polypeptide-encoding sequence operably linked (i.e., under regulatory control of) to appropriate inducible or constitutive regulatory sequences that allow for the expression of polypeptide. The expression cassette can be introduced into a plant by transformation or by breeding after transformation of a parent plant. A plant refers to a whole plant as well as to a plant part, such as seed, fruit, leaf, or root, plant tissue, plant cells or any other plant material, e.g., a plant explant, as well as to progeny thereof, and to *in vitro* systems that mimic biochemical or cellular components or processes in a cell.

The phrase "ectopically expression or altered expression" in reference to a polynucleotide indicates that the pattern of expression in, e.g., a transgenic plant or plant

tissue, is different from the expression pattern in a wild type plant or a reference plant of the same species. For example, the polynucleotide or polypeptide is expressed in a cell or tissue type other than a cell or tissue type in which the sequence is expressed in the wild type plant, or by expression at a time other than at the time the sequence is expressed in the wild type plant, or by a response to different inducible agents, such as hormones or environmental signals, or at different expression levels (either higher or lower) compared with those found in a wild type plant. The term also refers to altered expression patterns that are produced by lowering the levels of expression to below the detection level or completely abolishing expression. The resulting expression pattern can be transient or stable, constitutive or inducible. In reference to a polypeptide, the term "ectopic expression or altered expression" further may relate to altered activity levels resulting from the interactions of the polypeptides with exogenous or endogenous modulators or from interactions with factors or as a result of the chemical modification of the polypeptides.

10

15

20

25

30

35

The term "fragment" or "domain," with respect to a polypeptide, refers to a subsequence of the polypeptide. In some cases, the fragment or domain, is a subsequence of the polypeptide which performs at least one biological function of the intact polypeptide in substantially the same manner, or to a similar extent, as does the intact polypeptide. For example, a polypeptide fragment can comprise a recognizable structural motif or functional domain such as a DNA binding domain that binds to a DNA promoter region, an activation domain or a domain for protein-protein interactions. Fragments can vary in size from as few as 6 amino acids to the full length of the intact polypeptide, but are preferably at least about 30 amino acids in length and more preferably at least about 60 amino acids in length. In reference to a nucleotide sequence, "a fragment" refers to any subsequence of a polynucleotide, typically, of at least consecutive about 15 nucleotides, preferably at least about 30 nucleotides, more preferably at least about 50, of any of the sequences provided herein.

The term "trait" refers to a physiological, morphological, biochemical or physical characteristic of a plant or particular plant material or cell. In some instances, this characteristic is visible to the human eye, such as seed or plant size, or can be measured by available biochemical techniques, such as the protein, starch or oil content of seed or leaves or by the observation of the expression level of genes, e.g., by employing Northern analysis, RT-PCR, microarray gene expression assays or reporter gene expression systems, or by agricultural observations such as stress tolerance, yield or pathogen tolerance.

"Trait modification" refers to a detectable difference in a characteristic in a plant ectopically expressing a polynucleotide or polypeptide of the present invention relative to a plant not doing so, such as a wild type plant. In some cases, the trait modification can be evaluated quantitatively. For example, the trait modification can entail at least about a 2%

increase or decrease in an observed trait (difference), at least a 5% difference, at least about a 10% difference, at least about a 20% difference, at least about a 30%, at least about a 50%, at least about a 70%, or at least about a 100%, or an even greater difference. It is known that there can be a natural variation in the modified trait. Therefore, the trait modification observed entails a change of the normal distribution of the trait in the plants compared with the distribution observed in wild type plant.

5

10

15

20

25

35

Trait modifications of particular interest include those to seed ( such as embryo or endosperm), fruit, root, flower, leaf, stem, shoot, seedling or the like, including: enhanced tolerance to environmental conditions including freezing, chilling, heat, drought, water saturation, radiation and ozone; improved tolerance to microbial, fungal or viral diseases; improved tolerance to pest infestations, including nematodes, mollicutes, parasitic higher plants or the like; decreased herbicide sensitivity; improved tolerance of heavy metals or enhanced ability to take up heavy metals; improved growth under poor photoconditions (e.g., low light and/or short day length), or changes in expression levels of genes of interest. Other phenotype that can be modified relate to the production of plant metabolites, such as variations in the production of taxol, tocopherol, tocotrienol, sterols, phytosterols, vitamins, wax monomers, anti-oxidants, amino acids, lignins, cellulose, tannins, prenyllipids (such as chlorophylls and carotenoids), glucosinolates, and terpenoids, enhanced or compositionally altered protein or oil production (especially in seeds), or modified sugar (insoluble or soluble) and/or starch composition. Physical plant characteristics that can be modified include cell development (such as the number of trichomes), fruit and seed size and number, yields of plant parts such as stems, leaves and roots, the stability of the seeds during storage, characteristics of the seed pod (e.g., susceptibility to shattering), root hair length and quantity, internode distances, or the quality of seed coat. Plant growth characteristics that can be modified include growth rate, germination rate of seeds, vigor of plants and seedlings, leaf and flower senescence, male sterility, apomixis, flowering time, flower abscission, rate of nitrogen uptake, biomass or transpiration characteristics, as well as plant architecture characteristics such as apical dominance, branching patterns, number of organs, organ identity, organ shape or size.

#### 30 POLYPEPTIDES AND POLYNUCLEOTIDES OF THE INVENTION

The present invention provides, among other things, transcription factors (TFs), and transcription factor homologue polypeptides, and isolated or recombinant polynucleotides encoding the polypeptides. These polypeptides and polynucleotides may be employed to modify a plant's pathogen tolerance.

Exemplary polynucleotides encoding the polypeptides of the invention were identified in the *Arabidopsis thaliana* GenBank database using publicly available sequence

analysis programs and parameters. Sequences initially identified were then further characterized to identify sequences comprising specified sequence strings corresponding to sequence motifs present in families of known transcription factors. Polynucleotide sequences meeting such criteria were confirmed as transcription factors.

Additional polynucleotides of the invention were identified by screening Arabidopsis thaliana and/or other plant cDNA libraries with probes corresponding to known transcription factors under low stringency hybridization conditions. Additional sequences, including full length coding sequences were subsequently recovered by the rapid amplification of cDNA ends (RACE) procedure, using a commercially available kit according to the manufacturer's instructions. Where necessary, multiple rounds of RACE are performed to isolate 5' and 3' ends. The full length cDNA was then recovered by a routine end-to-end polymerase chain reaction (PCR) using primers specific to the isolated 5' and 3' ends. Exemplary sequences are provided in the Sequence Listing.

The polynucleotides of the invention were ectopically expressed in overexpressor or knockout plants and changes in the pathogen tolerance of the plants was observed. Therefore, the polynucleotides and polypeptides can be employed to improve the pathogen resistance of plants.

### Making polynucleotides

5

10

15

20

25

30

35

The polynucleotides of the invention include sequences that encode transcription factors and transcription factor homologue polypeptides and sequences complementary thereto, as well as unique fragments of coding sequence, or sequence complementary thereto. Such polynucleotides can be, e.g., DNA or RNA, e.g., mRNA, cRNA, synthetic RNA, genomic DNA, cDNA synthetic DNA, oligonucleotides, etc. The polynucleotides are either double-stranded or single-stranded, and include either, or both sense (i.e., coding) sequences and antisense (i.e., non-coding, complementary) sequences. The polynucleotides include the coding sequence of a transcription factor, or transcription factor homologue polypeptide, in isolation, in combination with additional coding sequences (e.g., a purification tag, a localization signal, as a fusion-protein, as a pre-protein, or the like), in combination with non-coding sequences (e.g., introns or inteins, regulatory elements such as promoters, enhancers, terminators, and the like), and/or in a vector or host environment in which the polynucleotide encoding a transcription factor or transcription factor homologue polypeptide is an endogenous or exogenous gene.

A variety of methods exist for producing the polynucleotides of the invention. Procedures for identifying and isolating DNA clones are well known to those of skill in the art, and are described in, e.g., Berger and Kimmel, <u>Guide to Molecular Cloning Techniques</u>. Methods in Enzymology volume 152 Academic Press, Inc., San Diego, CA ("Berger");

Sambrook et al., <u>Molecular Cloning - A Laboratory Manual</u> (2nd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989 ("Sambrook") and <u>Current Protocols in Molecular Biology</u>, F.M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 2000) ("Ausubel").

Alternatively, polynucleotides of the invention, can be produced by a variety of in vitro amplification methods adapted to the present invention by appropriate selection of specific or degenerate primers. Examples of protocols sufficient to direct persons of skill through in vitro amplification methods, including the polymerase chain reaction (PCR) the ligase chain reaction (LCR), Qbeta-replicase amplification and other RNA polymerase mediated techniques (e.g., NASBA), e.g., for the production of the homologous nucleic acids of the invention are found in Berger, Sambrook, and Ausubel, as well as Mullis et al., (1987) PCR Protocols A Guide to Methods and Applications (Innis et al. eds) Academic Press Inc. San Diego, CA (1990) (Innis). Improved methods for cloning in vitro amplified nucleic acids are described in Wallace et al., U.S. Pat. No. 5,426,039. Improved methods for amplifying large nucleic acids by PCR are summarized in Cheng et al. (1994) Nature 369: 684-685 and the references cited therein, in which PCR amplicons of up to 40kb are generated. One of skill will appreciate that essentially any RNA can be converted into a double stranded DNA suitable for restriction digestion, PCR expansion and sequencing using reverse transcriptase and a polymerase. See, e.g., Ausubel, Sambrook and Berger, all supra.

Alternatively, polynucleotides and oligonucleotides of the invention can be assembled from fragments produced by solid-phase synthesis methods. Typically, fragments of up to approximately 100 bases are individually synthesized and then enzymatically or chemically ligated to produce a desired sequence, e.g., a polynucleotide encoding all or part of a transcription factor. For example, chemical synthesis using the phosphoramidite method is described, e.g., by Beaucage et al. (1981) Tetrahedron Letters 22:1859-69; and Matthes et al. (1984) EMBO J. 3:801-5. According to such methods, oligonucleotides are synthesized, purified, annealed to their complementary strand, ligated and then optionally cloned into suitable vectors. And if so desired, the polynucleotides and polypeptides of the invention can be custom ordered from any of a number of commercial suppliers.

#### **HOMOLOGOUS SEQUENCES**

5

15

25

30

35

Sequences homologous, i.e., that share significant sequence identity or similarity, to those provided in the Sequence Listing, derived from Arabidopsis thaliana or from other plants of choice are also an aspect of the invention. Homologous sequences can be derived from any plant including monocots and dicots and in particular agriculturally important plant species, including but not limited to, crops such as soybean, wheat, com,

potato, cotton, rice, oilseed rape (including canola), sunflower, alfalfa, sugarcane and turf; or fruits and vegetables, such as banana, blackberry, blueberry, strawberry, and raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits (such as apple, peach, pear, cherry and plum) and vegetable brassicas (such as broccoli, cabbage, cauliflower, brussel sprouts and kohlrabi). Other crops, fruits and vegetables whose phenotype can be changed include barley, rye, millet, sorghum, currant, avocado, citrus fruits such as oranges, lemons, grapefruit and tangerines, artichoke, cherries, nuts such as the walnut and peanut, endive, leek, roots, such as arrowroot, beet, cassava, turnip, radish, yam, and sweet potato, and beans. The homologous sequences may also be derived from woody species, such pine, poplar and eucalyptus.

10

15

20

25

30

35

Transcription factors that are homologous to the listed sequences will typically share at least about 31% amino acid sequence identity. More closely related transcription factors can share at least about 50%, about 60%, about 65%, about 70%, about 75% or about 80% or about 90% or about 95% or about 98% or more sequence identity with the listed sequences. Factors that are most closely related to the listed sequences share, e.g., at least about 85%, about 90% or about 95% or more % sequence identity to the listed sequences. At the nucleotide level, the sequences will typically share at least about 40% nucleotide sequence identity, preferably at least about 50%, about 60%, about 70% or about 80% sequence identity, and more preferably about 85%, about 90%, about 95% or about 97% or more sequence identity to one or more of the listed sequences. The degeneracy of the genetic code enables major variations in the nucleotide sequence of a polynucleotide while maintaining the amino acid sequence of the encoded protein. Conserved domains within a transcription factor family may exhibit a higher degree of sequence homology, such as at least 65% sequence identity including conservative substitutions, and preferably at least 80% sequence identity.

#### Identifying Nucleic Acids by Hybridization

Polynucleotides homologous to the sequences illustrated in the Sequence Listing can be identified, e.g., by hybridization to each other under stringent or under highly stringent conditions. Single stranded polynucleotides hybridize when they associate based on a variety of well characterized physico-chemical forces, such as hydrogen bonding, solvent exclusion, base stacking and the like. The stringency of a hybridization reflects the degree of sequence identity of the nucleic acids involved, such that the higher the stringency, the more similar are the two polynucleotide strands. Stringency is influenced by a variety of factors, including temperature, salt concentration and composition, organic and non-organic additives, solvents, etc. present in both the hybridization and wash solutions and incubations (and number), as described in more detail in the references cited above.

An example of stringent hybridization conditions for hybridization of complementary nucleic acids which have more than 100 complementary residues on a filter in a Southern or northern blot is about 5°C to 20°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The T<sub>m</sub> is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Nucleic acid molecules that hybridize under stringent conditions will typically hybridize to a probe based on either the entire cDNA or selected portions, e.g., to a unique subsequence, of the cDNA under wash conditions of 0.2x SSC to 2.0 x SSC, 0.1% SDS at 50-65° C, for example 0.2 x SSC, 0.1% SDS at 65° C. For identification of less closely related homologues washes can be performed at a lower temperature, e.g., 50° C. In general, stringency is increased by raising the wash temperature and/or decreasing the concentration of SSC.

As another example, stringent conditions can be selected such that an oligonucleotide that is perfectly complementary to the coding oligonucleotide hybridizes to the coding oligonucleotide with at least about a 5-10x higher signal to noise ratio than the ratio for hybridization of the perfectly complementary oligonucleotide to a nucleic acid encoding a transcription factor known as of the filing date of the application. Conditions can be selected such that a higher signal to noise ratio is observed in the particular assay which is used, e.g., about 15x, 25x, 35x, 50x or more. Accordingly, the subject nucleic acid hybridizes to the unique coding oligonucleotide with at least a 2x higher signal to noise ratio as compared to hybridization of the coding oligonucleotide to a nucleic acid encoding known polypeptide. Again, higher signal to noise ratios can be selected, e.g., about 5x, 10x, 25x, 35x, 50x or more. The particular signal will depend on the label used in the relevant assay, e.g., a fluorescent label, a colorimetric label, a radio active label, or the like.

Alternatively, transcription factor homologue polypeptides can be obtained by screening an expression library using antibodies specific for one or more transcription factors. With the provision herein of the disclosed transcription factor, and transcription factor homologue nucleic acid sequences, the encoded polypeptide(s) can be expressed and purified in a heterologous expression system (e.g., E. coli) and used to raise antibodies (monoclonal or polyclonal) specific for the polypeptide(s) in question. Antibodies can also be raised against synthetic peptides derived from transcription factor, or transcription factor homologue, amino acid sequences. Methods of raising antibodies are well known in the art and are described in Harlow and Lane (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York. Such antibodies can then be used to screen an expression library produced from the plant from which it is desired to clone additional transcription

factor homologues, using the methods described above. The selected cDNAs can be confirmed by sequencing and enzymatic activity.

#### SEQUENCE VARIATIONS

5

10

It will readily be appreciated by those of skill in the art, that any of a variety of polynucleotide sequences are capable of encoding the transcription factors and transcription factor homologue polypeptides of the invention. Due to the degeneracy of the genetic code, many different polynucleotides can encode identical and/or substantially similar polypeptides in addition to those sequences illustrated in the Sequence Listing.

For example, Table 1 illustrates, e.g., that the codons AGC, AGT, TCA, TCC, TCG, and TCT all encode the same amino acid: serine. Accordingly, at each position in the sequence where there is a codon encoding serine, any of the above trinucleotide sequences can be used without altering the encoded polypeptide.

Table 1

| Amino acids   |     |   | Codon | ····· | -   | •   |     |     |
|---------------|-----|---|-------|-------|-----|-----|-----|-----|
| Alanine       | Ala | Α | GCA   | GCC   | GCG | GCU | ·   |     |
| Cysteine      | Cys | С | TGC   | TGT   |     |     |     |     |
| Aspartic acid | Asp | D | GAC   | GAT   |     |     |     |     |
| Glutamic acid | Glu | E | GAA   | GAG   |     |     | •   |     |
| Phenylalanine | Phe | F | TTC   | TTT   |     |     |     |     |
| Glycine       | Gly | G | GGA   | GGC   | GGG | GGT |     |     |
| Histidine     | His | H | CAC   | CAT   |     |     |     |     |
| Isoleucine    | Ile | I | ATA   | ATC   | ATT |     |     |     |
| Lysine        | Lys | K | AAA · | AAG   | •   |     |     |     |
| Leucine       | Leu | L | TTA   | TTG   | CTA | CTC | CTG | CTT |
| Methionine    | Met | M | ATG   |       |     |     |     |     |
| Asparagine    | Asn | N | AAC   | AAT   |     |     | •   |     |
| Proline       | Pro | P | CCA   | CCC   | CCG | CCT |     |     |
| Glutamine     | Gln | Q | CAA   | CAG   |     |     |     |     |
| Arginine      | Arg | R | AGA   | AGG   | CGA | CGC | CGG | CGT |
| Serine        | Ser | S | AGC   | AGT   | TCA | TCC | TCG | TCT |
| Threonine     | Thr | T | ACA   | ACC   | ACG | ACT |     |     |
| Valine        | Val | V | GTA   | GTC   | GTG | GTT |     |     |
| Tryptophan    | Trp | W | TGG   |       |     |     |     |     |
| Tyrosine      | Tyr | Y | TAC   | TAT   |     |     |     |     |

15

20

Sequence alterations that do not change the amino acid sequence encoded by the polynucleotide are termed "silent" variations. With the exception of the codons ATG and TGG, encoding methionine and tryptophan, respectively, any of the possible codons for the same amino acid can be substituted by a variety of techniques, e.g., site-directed mutagenesis, available in the art. Accordingly, any and all such variations of a sequence selected from the above table are a feature of the invention.

In addition to silent variations, other conservative variations that alter one, or a few amino acids in the encoded polypeptide, can be made without altering the function of the polypeptide, these conservative variants are, likewise, a feature of the invention.

For example, substitutions, deletions and insertions introduced into the sequences provided in the Sequence Listing are also envisioned by the invention. Such sequence modifications can be engineered into a sequence by site-directed mutagenesis (Wu (ed.) Meth. Enzymol. (1993) vol. 217, Academic Press) or the other methods noted below. Amino acid substitutions are typically of single residues; insertions usually will be on the order of about from 1 to 10 amino acid residues; and deletions will range about from 1 to 30 residues. In preferred embodiments, deletions or insertions are made in adjacent pairs, e.g., a deletion of two residues or insertion of two residues. Substitutions, deletions, insertions or any combination thereof can be combined to arrive at a sequence. The mutations that are made in the polynucleotide encoding the transcription factor should not place the sequence out of reading frame and should not create complementary regions that could produce secondary mRNA structure. Preferably, the polypeptide encoded by the DNA performs the desired function.

Conservative substitutions are those in which at least one residue in the amino acid sequence has been removed and a different residue inserted in its place. Such substitutions generally are made in accordance with the Table 2 when it is desired to maintain the activity of the protein. Table 2 shows amino acids which can be substituted for an amino acid in a protein and which are typically regarded as conservative substitutions.

25

5

10

15

20

30

35

Table 2

| Residue | Conservative Substitutions |
|---------|----------------------------|
| Ala     | Ser                        |
| Arg     | Lys                        |
| Asn     | Gln; His                   |
| Asp     | Glu                        |
| Gln     | Asn                        |
| Cys     | Ser                        |
| Glu     | Asp                        |
| Gly     | Pro                        |
| His     | Asn; Gln                   |
| Ile     | Leu, Val                   |
| Leu     | Ile; Val                   |
| Lys     | Arg; Gln                   |
| Met     | Leu; Ile                   |
| Phe     | Met; Leu; Tyr              |
| Ser     | Thr; Gly                   |
| Thr     | Ser;Val                    |
| Trp     | Tyr                        |
| Тут     | Trp; Phe                   |
| Val     | Ile; Leu                   |

Substitutions that are less conservative than those in Table 2 can be selected by picking residues that differ more significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in protein properties will be those in which (a) a hydrophilic residue, e.g., seryl or threonyl, is substituted for (or by) a hydrophobic residue, e.g., leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g., lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g., glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) one not having a side chain, e.g., glycine.

5

10

## FURTHER MODIFYING SEQUENCES OF THE INVENTION—MUTATION/ FORCED EVOLUTION

In addition to generating silent or conservative substitutions as noted, above, the present invention optionally includes methods of modifying the sequences of the Sequence Listing. In the methods, nucleic acid or protein modification methods are used to alter the given sequences to produce new sequences and/or to chemically or enzymatically modify given sequences to change the properties of the nucleic acids or proteins.

Thus, in one embodiment, given nucleic acid sequences are modified, e.g., according to standard mutagenesis or artificial evolution methods to produce modified sequences. For example, Ausubel, *supra*, provides additional details on mutagenesis methods. Artificial forced evolution methods are described, e.g., by Stemmer (1994) Nature 370:389-391, and Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751. Many other mutation and evolution methods are also available and expected to be within the skill of the practitioner.

10

15

20

30

35

Similarly, chemical or enzymatic alteration of expressed nucleic acids and polypeptides can be performed by standard methods. For example, sequence can be modified by addition of lipids, sugars, peptides, organic or inorganic compounds, by the inclusion of modified nucleotides or amino acids, or the like. For example, protein modification techniques are illustrated in Ausubel, *supra*. Further details on chemical and enzymatic modifications can be found herein. These modification methods can be used to modify any given sequence, or to modify any sequence produced by the various mutation and artificial evolution modification methods noted herein.

Accordingly, the invention provides for modification of any given nucleic acid by mutation, evolution, chemical or enzymatic modification, or other available methods, as well as for the products produced by practicing such methods, e.g., using the sequences herein as a starting substrate for the various modification approaches.

For example, optimized coding sequence containing codons preferred by a particular prokaryotic or eukaryotic host can be used e.g., to increase the rate of translation or to produce recombinant RNA transcripts having desirable properties, such as a longer half-life, as compared with transcripts produced using a non-optimized sequence. Translation stop codons can also be modified to reflect host preference. For example, preferred stop codons for S. cerevisiae and mammals are TAA and TGA, respectively. The preferred stop codon for monocotyledonous plants is TGA, whereas insects and E. coli prefer to use TAA as the stop codon.

The polynucleotide sequences of the present invention can also be engineered in order to alter a coding sequence for a variety of reasons, including but not limited to, alterations which modify the sequence to facilitate cloning, processing and/or expression of

the gene product. For example, alterations are optionally introduced using techniques which are well known in the art, e.g., site-directed mutagenesis, to insert new restriction sites, to alter glycosylation patterns, to change codon preference, to introduce splice sites, etc.

Furthermore, a fragment or domain derived from any of the polypeptides of the invention can be combined with domains derived from other transcription factors or synthetic domains to modify the biological activity of a transcription factor. For instance, a DNA binding domain derived from a transcription factor of the invention can be combined with the activation domain of another transcription factor or with a synthetic activation domain. A transcription activation domain assists in initiating transcription from a DNA binding site. Examples include the transcription activation region of VP16 or GAL4 (Moore et al. (1998) Proc. Natl. Acad. Sci. USA 95: 376-381; and Aoyama et al. (1995) Plant Cell 7:1773-1785), peptides derived from bacterial sequences (Ma and Ptashne (1987) Cell 51; 113-119) and synthetic peptides (Giniger and Ptashne, (1987) Nature 330:670-672).

#### EXPRESSION AND MODIFICATION OF POLYPEPTIDES

15

20

25

5

10

Typically, polynucleotide sequences of the invention are incorporated into recombinant DNA (or RNA) molecules that direct expression of polypeptides of the invention in appropriate host cells, transgenic plants, in vitro translation systems, or the like. Due to the inherent degeneracy of the genetic code, nucleic acid sequences which encode substantially the same or a functionally equivalent amino acid sequence can be substituted for any listed sequence to provide for cloning and expressing the relevant homologue.

Vectors, Promoters and Expression Systems

The present invention includes recombinant constructs comprising one or more of the nucleic acid sequences herein. The constructs typically comprise a vector, such as a plasmid, a cosmid, a phage, a virus (e.g., a plant virus), a bacterial artificial chromosome (BAC), a yeast artificial chromosome (YAC), or the like, into which a nucleic acid sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available.

30

35

General texts which describe molecular biological techniques useful herein, including the use and production of vectors, promoters and many other relevant topics, include Berger, Sambrook and Ausubel, *supra*. Any of the identified sequences can be incorporated into a cassette or vector, e.g., for expression in plants. A number of expression vectors suitable for stable transformation of plant cells or for the establishment of transgenic plants have been described including those described in Weissbach and Weissbach, (1989) Methods for Plant Molecular Biology, Academic Press, and Gelvin et al., (1990) Plant

Molecular Biology Manual, Kluwer Academic Publishers. Specific examples include those derived from a Ti plasmid of *Agrobacterium tumefaciens*, as well as those disclosed by Herrera-Estrella et al. (1983) Nature 303: 209, Bevan (1984) Nucl Acid Res. 12: 8711-8721, Klee (1985) Bio/Technology 3: 637-642, for dicotyledonous plants.

5

Alternatively, non-Ti vectors can be used to transfer the DNA into monocotyledonous plants and cells by using free DNA delivery techniques. Such methods can involve, for example, the use of liposomes, electroporation, microprojectile bombardment, silicon carbide whiskers, and viruses. By using these methods transgenic plants such as wheat, rice (Christou (1991) Bio/Technology 9: 957-962) and corn (Gordon-Kamm (1990) Plant Cell 2: 603-618) can be produced. An immature embryo can also be a good target tissue for monocots for direct DNA delivery techniques by using the particle gun (Weeks et al. (1993) Plant Physiol 102: 1077-1084; Vasil (1993) Bio/Technology 10: 667-674; Wan and Lemeaux (1994) Plant Physiol 104: 37-48, and for Agrobacterium-mediated DNA transfer (Ishida et al. (1996) Nature Biotech 14: 745-750).

15

20

25

30

35

10

Typically, plant transformation vectors include one or more cloned plant coding sequence (genomic or cDNA) under the transcriptional control of 5' and 3' regulatory sequences and a dominant selectable marker. Such plant transformation vectors typically also contain a promoter (e.g., a regulatory region controlling inducible or constitutive, environmentally-or developmentally-regulated, or cell- or tissue-specific expression), a transcription initiation start site, an RNA processing signal (such as intron splice sites), a transcription termination site, and/or a polyadenylation signal.

Examples of constitutive plant promoters which can be useful for expressing the TF sequence include: the cauliflower mosaic virus (CaMV) 35S promoter, which confers constitutive, high-level expression in most plant tissues (see, e.g., Odel et al. (1985) Nature 313:810); the nopaline synthase promoter (An et al. (1988) Plant Physiol 88:547); and the octopine synthase promoter (Fromm et al. (1989) Plant Cell 1: 977).

A variety of plant gene promoters that regulate gene expression in response to environmental, hormonal, chemical, developmental signals, and in a tissue-active manner can be used for expression of a TF sequence in plants. Choice of a promoter is based largely on the phenotype of interest and is determined by such factors as tissue (e.g., seed, fruit, root, pollen, vascular tissue, flower, carpel, etc.), inducibility (e.g., in response to wounding, heat, cold, drought, light, pathogens, etc.), timing, developmental stage, and the like. Numerous known promoters have been characterized and can favorable be employed to promote expression of a polynucleotide of the invention in a transgenic plant or cell of interest. For example, tissue specific promoters include: seed-specific promoters (such as the napin, phaseolin or DC3 promoter described in US Pat. No. 5,773,697), fruit-specific promoters that are active during fruit ripening (such as the dru 1 promoter (US Pat. No. 5,783,393), or the

2A11 promoter (US Pat. No. 4,943,674) and the tomato polygalacturonase promoter (Bird et al. (1988) Plant Mol Biol 11:651), root-specific promoters, such as those disclosed in US Patent Nos. 5,618,988, 5,837,848 and 5,905,186, pollen-active promoters such as PTA29, PTA26 and PTA13 (US Pat. No. 5,792,929), promoters active in vascular tissue (Ringli and Keller (1998) Plant Mol Biol 37:977-988), flower-specific (Kaiser et al. (1995) Plant Mol Biol 28:231-243), pollen (Baerson et al. (1994) Plant Mol Biol 26:1947-1959), carpels (Ohl et al. (1990) Plant Cell 2:837-848), pollen and ovules (Baerson et al. (1993) Plant Mol Biol 22:255-267), auxin-inducible promoters (such as that described in van der Kop et al. (1999) Plant Mol Biol 39:979-990 or Baumann et al. (1999) Plant Cell 11:323-334), cytokinininducible promoter (Guevara-Garcia (1998) Plant Mol Biol 38:743-753), promoters responsive to gibberellin (Shi et al. (1998) Plant Mol Biol 38:1053-1060, Willmott et al. (1998) 38:817-825) and the like. Additional promoters are those that elicit expression in response to heat (Ainley et al. (1993) Plant Mol Biol 22: 13-23), light (e.g., the pea rbcS-3A promoter, Kuhlemeier et al. (1989) Plant Cell 1:471, and the maize rbcS promoter, Schaffner and Sheen (1991) Plant Cell 3: 997); wounding (e.g., wunI, Siebertz et al. (1989) Plant Cell 1: 961); pathogens (such as the PR-1 promoter described in Buchel et al. (1999) Plant Mol. Biol. 40:387-396, and the PDF1.2 promoter described in Manners et al. (1998) Plant Mol. Biol. 38:1071-80), and chemicals such as methyl jasmonate or salicylic acid (Gatz et al. (1997) Plant Mol Biol 48: 89-108). In addition, the timing of the expression can be controlled by using promoters such as those acting at senescence (An and Amazon (1995) Science 270: 1986-1988); or late seed development (Odell et al. (1994) Plant Physiol 106:447-458).

10

15

20

25

30

Plant expression vectors can also include RNA processing signals that can be positioned within, upstream or downstream of the coding sequence. In addition, the expression vectors can include additional regulatory sequences from the 3'-untranslated region of plant genes, e.g., a 3' terminator region to increase mRNA stability of the mRNA, such as the PI-II terminator region of potato or the octopine or nopaline synthase 3' terminator regions.

Additional Expression Elements

Specific initiation signals can aid in efficient translation of coding sequences. These signals can include, e.g., the ATG initiation codon and adjacent sequences. In cases where a coding sequence, its initiation codon and upstream sequences are inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only coding sequence (e.g., a mature protein coding sequence), or a portion thereof, is inserted, exogenous transcriptional control signals including the ATG initiation codon can be separately provided. The initiation codon is provided in the correct reading frame to facilitate transcription. Exogenous transcriptional elements and initiation

codons can be of various origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of enhancers appropriate to the cell system in use.

#### **Expression Hosts**

5

10

15

20

25

30

35

The present invention also relates to host cells which are transduced with vectors of the invention, and the production of polypeptides of the invention (including fragments thereof) by recombinant techniques. Host cells are genetically engineered (i.e, nucleic acids are introduced, e.g., transduced, transformed or transfected) with the vectors of this invention, which may be, for example, a cloning vector or an expression vector comprising the relevant nucleic acids herein. The vector is optionally a plasmid, a viral particle, a phage, a naked nucleic acids, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants, or amplifying the relevant gene. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to those skilled in the art and in the references cited herein, including, Sambrook and Ausubel.

The host cell can be a eukaryotic cell, such as a yeast cell, or a plant cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Plant protoplasts are also suitable for some applications. For example, the DNA fragments are introduced into plant tissues, cultured plant cells or plant protoplasts by standard methods including electroporation (Fromm et al., (1985) Proc. Natl. Acad. Sci. USA 82, 5824, infection by viral vectors such as cauliflower mosaic virus (CaMV) (Hohn et al., (1982) Molecular Biology of Plant Tumors, (Academic Press, New York) pp. 549-560; US 4,407,956), high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface (Klein et al., (1987) Nature 327, 70-73), use of pollen as vector (WO 85/01856), or use of Agrobacterium tumefaciens or A. rhizogenes carrying a T-DNA plasmid in which DNA fragments are cloned. The T-DNA plasmid is transmitted to plant cells upon infection by Agrobacterium tumefaciens, and a portion is stably integrated into the plant genome (Horsch et al. (1984) Science 233:496-498; Fraley et al. (1983) Proc. Natl. Acad. Sci. USA 80, 4803).

The cell can include a nucleic acid of the invention which encodes a polypeptide, wherein the cells expresses a polypeptide of the invention. The cell can also include vector sequences, or the like. Furthermore, cells and transgenic plants which include any polypeptide or nucleic acid above or throughout this specification, e.g., produced by transduction of a vector of the invention, are an additional feature of the invention.

For long-term, high-yield production of recombinant proteins, stable expression can be used. Host cells transformed with a nucleotide sequence encoding a polypeptide of the invention are optionally cultured under conditions suitable for the

expression and recovery of the encoded protein from cell culture. The protein or fragment thereof produced by a recombinant cell may be secreted, membrane-bound, or contained intracellularly, depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides encoding mature proteins of the invention can be designed with signal sequences which direct secretion of the mature polypeptides through a prokaryotic or eukaryotic cell membrane.

#### Modified Amino Acids

10

15

25

30

35

Polypeptides of the invention may contain one or more modified amino acids. The presence of modified amino acids may be advantageous in, for example, increasing polypeptide half-life, reducing polypeptide antigenicity or toxicity, increasing polypeptide storage stability, or the like. Amino acid(s) are modified, for example, co-translationally or post-translationally during recombinant production or modified by synthetic or chemical means.

Non-limiting examples of a modified amino acid include incorporation or other use of acetylated amino acids, glycosylated amino acids, sulfated amino acids, prenylated (e.g., farnesylated, geranylgeranylated) amino acids, PEG modified (e.g., "PEGylated") amino acids, biotinylated amino acids, carboxylated amino acids, phosphorylated amino acids, etc. References adequate to guide one of skill in the modification of amino acids are replete throughout the literature.

### 20 <u>IDENTIFICATION OF ADDITIONAL FACTORS</u>

A transcription factor provided by the present invention can also be used to identify additional endogenous or exogenous molecules that can affect a phentoype or trait of interest. On the one hand, such molecules include organic (small or large molecules) and/or inorganic compounds that affect expression of (i.e., regulate) a particular transcription factor. Alternatively, such molecules include endogenous molecules that are acted upon either at a transcriptional level by a transcription factor of the invention to modify a phenotype as desired. For example, the transcription factors can be employed to identify one or more downstream gene with which is subject to a regulatory effect of the transcription factor. In one approach, a transcription factor or transcription factor homologue of the invention is expressed in a host cell, e.g, a transgenic plant cell, tissue or explant, and expression products, either RNA or protein, of likely or random targets are monitored, e.g., by hybridization to a microarray of nucleic acid probes corresponding to genes expressed in a tissue or cell type of interest, by two-dimensional gel electrophoresis of protein products, or by any other method known in the art for assessing expression of gene products at the level of RNA or protein. Alternatively, a transcription factor of the invention can be used to identify promoter sequences (i.e., binding sites) involved in the regulation of a downstream target. After

identifying a promoter sequence, interactions between the transcription factor and the promoter sequence can be modified by changing specific nucleotides in the promoter sequence or specific amino acids in the transcription factor that interact with the promoter sequence to alter a plant trait. Typically, transcription factor DNA binding sites are identified by gel shift assays. After identifying the promoter regions, the promoter region sequences can be employed in double-stranded DNA arrays to identify molecules that affect the interactions of the transcription factors with their promoters (Bulyk et al. (1999) Nature Biotechnology 17:573-577).

The identified transcription factors are also useful to identify proteins that modify the activity of the transcription factor. Such modification can occur by covalent modification, such as by phosphorylation, or by protein-protein (homo or-heteropolymer) interactions. Any method suitable for detecting protein-protein interactions can be employed. Among the methods that can be employed are co-immunoprecipitation, cross-linking and co-purification through gradients or chromatographic columns, and the two-hybrid yeast system.

The two-hybrid system detects protein interactions in vivo and is described in Chien, et al., (1991), Proc. Natl. Acad. Sci. USA 88, 9578-9582 and is commercially available from Clontech (Palo Alto, Calif.). In such a system, plasmids are constructed that encode two hybrid proteins: one consists of the DNA-binding domain of a transcription activator protein fused to the TF polypeptide and the other consists of the transcription activator protein's activation domain fused to an unknown protein that is encoded by a cDNA that has been recombined into the plasmid as part of a cDNA library. The DNA-binding domain fusion plasmid and the cDNA library are transformed into a strain of the yeast Saccharomyces cerevisiae that contains a reporter gene (e.g., lacZ) whose regulatory region contains the transcription activator's binding site. Either hybrid protein alone cannot activate transcription of the reporter gene. Interaction of the two hybrid proteins reconstitutes the functional activator protein and results in expression of the reporter gene, which is detected by an assay for the reporter gene product. Then, the library plasmids responsible for reporter gene expression are isolated and sequenced to identify the proteins encoded by the library plasmids. After identifying proteins that interact with the transcription factors, assays for compounds that interfere with the TF protein-protein interactions can be preformed.

#### **IDENTIFICATION OF MODULATORS**

10

15

20

25

30

35

In addition to the intracellular molecules described above, extracellular molecules that alter activity or expression of a transcription factor, either directly or indirectly, can be identified. For example, the methods can entail first placing a candidate molecule in contact with a plant or plant cell. The molecule can be introduced by topical administration, such as spraying or soaking of a plant, and then the molecule's effect on the

expression or activity of the TF polypeptide or the expression of the polynucleotide monitored. Changes in the expression of the TF polypeptide can be monitored by use of polyclonal or monoclonal antibodies, gel electrophoresis or the like. Changes in the expression of the corresponding polynucleotide sequence can be detected by use of microarrays, Northerns, quantitative PCR, or any other technique for monitoring changes in mRNA expression. These techniques are exemplified in Ausubel et al. (eds) <u>Current Protocols in Molecular Biology</u>, John Wiley & Sons (1998). Such changes in the expression levels can be correlated with modified plant traits and thus identified molecules can be useful for soaking or spraying on fruit, vegetable and grain crops to modify traits in plants.

Essentially any available composition can be tested for modulatory activity of expression or activity of any nucleic acid or polypeptide herein. Thus, available libraries of compounds such as chemicals, polypeptides, nucleic acids and the like can be tested for modulatory activity. Often, potential modulator compounds can be dissolved in aqueous or organic (e.g., DMSO-based) solutions for easy delivery to the cell or plant of interest in which the activity of the modulator is to be tested. Optionally, the assays are designed to screen large modulator composition libraries by automating the assay steps and providing compounds from any convenient source to assays, which are typically run in parallel (e.g., in microtiter formats on microtiter plates in robotic assays).

10

15

20

25

30

35

In one embodiment, high throughput screening methods involve providing a combinatorial library containing a large number of potential compounds (potential modulator compounds). Such "combinatorial chemical libraries" are then screened in one or more assays, as described herein, to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as target compounds.

A combinatorial chemical library can be, e.g., a collection of diverse chemical compounds generated by chemical synthesis or biological synthesis. For example, a combinatorial chemical library such as a polypeptide library is formed by combining a set of chemical building blocks (e.g., in one example, amino acids) in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound of a set length). Exemplary libraries include peptide libraries, nucleic acid libraries, antibody libraries (see, e.g., Vaughn et al. (1996) Nature Biotechnology, 14(3):309-314 and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang et al. Science (1996) 274:1520-1522 and U.S. Patent 5,593,853), peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), and small organic molecule libraries (see, e.g., benzodiazepines, Baum C&EN Jan 18, page 33 (1993); isoprenoids, U.S. Patent 5,569,588; thiazolidinones and metathiazanones, U.S. Patent 5,549,974; pyrrolidines, U.S. Patents 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent 5,506,337) and the like.

Preparation and screening of combinatorial or other libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent 5,010,175, Furka, Int. J. Pept. Prot. Res. 37:487-493 (1991) and Houghton et al. Nature 354:84-88 (1991)). Other chemistries for generating chemical diversity libraries can also be used.

5

10

15

20

25

30

35

In addition, as noted, compound screening equipment for high-throughput screening is generally available, e.g., using any of a number of well known robotic systems that have also been developed for solution phase chemistries useful in assay systems. These systems include automated workstations including an automated synthesis apparatus and robotic systems utilizing robotic arms. Any of the above devices are suitable for use with the present invention, e.g., for high-throughput screening of potential modulators. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art.

Indeed, entire high throughput screening systems are commercially available. These systems typically automate entire procedures including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. Similarly, microfluidic implementations of screening are also commercially available.

The manufacturers of such systems provide detailed protocols the various high throughput. Thus, for example, Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like. The integrated systems herein, in addition to providing for sequence alignment and, optionally, synthesis of relevant nucleic acids, can include such screening apparatus to identify modulators that have an effect on one or more polynucleotides or polypeptides according to the present invention.

In some assays it is desirable to have positive controls to ensure that the components of the assays are working properly. At least two types of positive controls are appropriate. That is, known transcriptional activators or inhibitors can be incubated with cells/plants/ etc. in one sample of the assay, and the resulting increase/decrease in transcription can be detected by measuring the resulting increase in RNA/ protein expression, etc., according to the methods herein. It will be appreciated that modulators can also be combined with transcriptional activators or inhibitors to find modulators which inhibit transcriptional activation or transcriptional repression. Either expression of the nucleic acids and proteins herein or any additional nucleic acids or proteins activated by the nucleic acids or proteins herein, or both, can be monitored.

In an embodiment, the invention provides a method for identifying compositions that modulate the activity or expression of a polynucleotide or polypeptide of the invention. For example, a test compound, whether a small or large molecule, is placed in contact with a cell, plant (or plant tissue or explant), or composition comprising the polynucleotide or polypeptide of interest and a resulting effect on the cell, plant, (or tissue or explant) or composition is evaluated by monitoring, either directly or indirectly, one or more of: expression level of the polynucleotide or polypeptide, activity (or modulation of the activity) of the polynucleotide or polypeptide. In some cases, an alteration in a plant phenotype can be detected following contact of a plant (or plant cell, or tissue or explant) with the putative modulator, e.g., by modulation of expression or activity of a polynucleotide or polypeptide of the invention.

#### **SUBSEQUENCES**

10

15

20

25

30

35

Also contemplated are uses of polynucleotides, also referred to herein as oligonucleotides, typically having at least 12 bases, preferably at least 15, more preferably at least 20, 30, or 50 bases, which hybridize under at least highly stringent (or ultra-high stringent or ultra-ultra- high stringent conditions) conditions to a polynucleotide sequence described above. The polynucleotides may be used as probes, primers, sense and antisense agents, and the like, according to methods as noted *supra*.

Subsequences of the polynucleotides of the invention, including polynucleotide fragments and oligonucleotides are useful as nucleic acid probes and primers. An oligonucleotide suitable for use as a probe or primer is at least about 15 nucleotides in length, more often at least about 18 nucleotides, often at least about 21 nucleotides, frequently at least about 30 nucleotides, or about 40 nucleotides, or more in length. A nucleic acid probe is useful in hybridization protocols, e.g., to identify additional polypeptide homologues of the invention, including protocols for microarray experiments. Primers can be annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, and then extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR) or other nucleic-acid amplification methods. See Sambrook and Ausubel, supra.

In addition, the invention includes an isolated or recombinant polypeptide including a subsequence of at least about 15 contiguous amino acids encoded by the recombinant or isolated polynucleotides of the invention. For example, such polypeptides, or domains or fragments thereof, can be used as immunogens, e.g., to produce antibodies specific for the polypeptide sequence, or as probes for detecting a sequence of interest. A

subsequence can range in size from about 15 amino acids in length up to and including the full length of the polypeptide.

#### PRODUCTION OF TRANSGENIC PLANTS

5

10

15

20

25

30

35

#### Modification of Traits

The polynucleotides of the invention are favorably employed to produce transgenic plants with various traits, or characteristics, that have been modified in a desirable manner, e.g., to improve the pathogen resistance of a plant. For example, alteration of expression levels or patterns (e.g., spatial or temporal expression patterns) of one or more of the transcription factors (or transcription factor homologues) of the invention, as compared with the levels of the same protein found in a wild type plant, can be used to modify a plant's traits. An illustrative example of trait modification, improved pathogen tolerance, by altering expression levels of a particular transcription factor is described further in the Examples and the Sequence Listing.

#### Antisense and Cosuppression Approaches

In addition to expression of the nucleic acids of the invention as gene replacement or plant phenotype modification nucleic acids, the nucleic acids are also useful for sense and anti-sense suppression of expression, e.g., to down-regulate expression of a nucleic acid of the invention, e.g., as a further mechanism for modulating plant phenotype. That is, the nucleic acids of the invention, or subsequences or anti-sense sequences thereof, can be used to block expression of naturally occurring homologous nucleic acids. A variety of sense and anti-sense technologies are known in the art, e.g., as set forth in Lichtenstein and Nellen (1997) Antisense Technology: A Practical Approach IRL Press at Oxford University, Oxford, England. In general, sense or anti-sense sequences are introduced into a cell, where they are optionally amplified, e.g., by transcription. Such sequences include both simple oligonucleotide sequences and catalytic sequences such as ribozymes.

For example, a reduction or elimination of expression (i.e., a "knock-out") of a transcription factor or transcription factor homologue polypeptide in a transgenic plant, e.g., to modify a plant trait, can be obtained by introducing an antisense construct corresponding to the polypeptide of interest as a cDNA. For antisense suppression, the transcription factor or homologue cDNA is arranged in reverse orientation (with respect to the coding sequence) relative to the promoter sequence in the expression vector. The introduced sequence need not be the full length cDNA or gene, and need not be identical to the cDNA or gene found in the plant type to be transformed. Typically, the antisense sequence need only be capable of hybridizing to the target gene or RNA of interest. Thus, where the introduced sequence is of shorter length, a higher degree of homology to the endogenous transcription factor sequence will be needed for effective antisense suppression. While antisense sequences of various

lengths can be utilized, preferably, the introduced antisense sequence in the vector will be at least 30 nucleotides in length, and improved antisense suppression will typically be observed as the length of the antisense sequence increases. Preferably, the length of the antisense sequence in the vector will be greater than 100 nucleotides. Transcription of an antisense construct as described results in the production of RNA molecules that are the reverse complement of mRNA molecules transcribed from the endogenous transcription factor gene in the plant cell.

5

10

15

20

25

30

35

Suppression of endogenous transcription factor gene expression can also be achieved using a ribozyme. Ribozymes are RNA molecules that possess highly specific endoribonuclease activity. The production and use of ribozymes are disclosed in U.S. Patent No. 4,987,071 and U.S. Patent No. 5,543,508. Synthetic ribozyme sequences including antisense RNAs can be used to confer RNA cleaving activity on the antisense RNA, such that endogenous mRNA molecules that hybridize to the antisense RNA are cleaved, which in turn leads to an enhanced antisense inhibition of endogenous gene expression.

Vectors in which RNA encoded by a transcription factor or transcription factor homologue cDNA is over-expressed can also be used to obtain co-suppression of a corresponding endogenous gene, e.g., in the manner described in U.S. Patent No. 5,231,020 to Jorgensen. Such co-suppression (also termed sense suppression) does not require that the entire transcription factor cDNA be introduced into the plant cells, nor does it require that the introduced sequence be exactly identical to the endogenous transcription factor gene of interest. However, as with antisense suppression, the suppressive efficiency will be enhanced as specificity of hybridization is increased, e.g., as the introduced sequence is lengthened, and/or as the sequence similarity between the introduced sequence and the endogenous transcription factor gene is increased.

Vectors expressing an untranslatable form of the transcription factor mRNA, e.g., sequences comprising one or more stop codon, or nonsense mutation) can also be used to suppress expression of an endogenous transcription factor, thereby reducing or eliminating it's activity and modifying one or more traits. Methods for producing such constructs are described in U.S. Patent No. 5,583,021. Preferably, such constructs are made by introducing a premature stop codon into the transcription factor gene. Alternatively, a plant trait can be modified by gene silencing using double-strand RNA (Sharp (1999) Genes and Development 13: 139-141).

Another method for abolishing the expression of a gene is by insertion mutagenesis using the T-DNA of Agrobacterium tumefaciens. After generating the insertion mutants, the mutants can be screened to identify those containing the insertion in a transcription factor or transcription factor homologue gene. Plants containing a single

transgene insertion event at the desired gene can be crossed to generate homozygous plants for the mutation (Koncz et al. (1992) Methods in Arabidopsis Research, World Scientific).

Alternatively, a plant phenotype can be altered by eliminating an endogenous gene, such as a transcription factor or transcription factor homologue, e.g., by homologous recombination (Kempin et al. (1997) Nature 389:802).

5

10

15

20

25

30

35

A plant trait can also be modified by using the cre-lox system (for example, as described in US Paent No. 5,658,772). A plant genome can be modified to include first and second lox sites that are then contacted with a Cre recombinase. If the lox sites are in the same orientation, the intervening DNA sequence between the two sites is excised. If the lox sites are in the opposite orientation, the intervening sequence is inverted.

The polynucleotides and polypeptides of this invention can also be expressed in a plant in the absence of an expression cassette by manipulating the activity or expression level of the endogenous gene by other means. For example, by ectopically expressing a gene by T-DNA activation tagging (Ichikawa et al. (1997) Nature 390 698-701; Kakimoto et al. (1996) Science 274: 982-985). This method entails transforming a plant with a gene tag containing multiple transcriptional enhancers and once the tag has inserted into the genome, expression of a flanking gene coding sequence becomes deregulated. In another example, the transcriptional machinery in a plant can be modified so as to increase transcription levels of a polynucleotide of the invention (See, e.g., PCT Publications WO 96/06166 and WO 98/53057 which describe the modification of the DNA binding specificity of zinc finger proteins by changing particular amino acids in the DNA binding motif).

The transgenic plant can also include the machinery necessary for expressing or altering the activity of a polypeptide encoded by an endogenous gene, for example by altering the phosphorylation state of the polypeptide to maintain it in an activated state.

Transgenic plants (or plant cells, or plant explants, or plant tissues) incorporating the polynucleotides of the invention and/or expressing the polypeptides of the invention can be produced by a variety of well established techniques as described above. Following construction of a vector, most typically an expression cassette, including a polynucleotide, e.g., encoding a transcription factor or transcription factor homologue, of the invention, standard techniques can be used to introduce the polynucleotide into a plant, a plant cell, a plant explant or a plant tissue of interest. Optionally, the plant cell, explant or tissue can be regenerated to produce a transgenic plant.

The plant can be any higher plant, including gymnosperms, monocotyledonous and dicotyledenous plants. Suitable protocols are available for Leguminosae (alfalfa, soybean, clover, etc.), Umbelliferae (carrot, celery, parsnip), Cruciferae (cabbage, radish, rapeseed, broccoli, etc.), Curcurbitaceae (melons and cucumber), Gramineae (wheat, corn, rice, barley, millet, etc.), Solanaceae (potato, tomato, tobacco,

peppers, etc.), and various other crops. See protocols described in Ammirato et al. (1984) Handbook of Plant Cell Culture —Crop Species. Macmillan Publ. Co. Shimamoto et al. (1989) Nature 338:274-276; Fromm et al. (1990) Bio/Technology 8:833-839; and Vasil et al. (1990) Bio/Technology 8:429-434.

5

10

15

20

25

30

35

Transformation and regeneration of both monocotyledonous and dicotyledonous plant cells is now routine, and the selection of the most appropriate transformation technique will be determined by the practitioner. The choice of method will vary with the type of plant to be transformed; those skilled in the art will recognize the suitability of particular methods for given plant types. Suitable methods can include, but are not limited to: electroporation of plant protoplasts; liposome-mediated transformation; polyethylene glycol (PEG) mediated transformation; transformation using viruses; microinjection of plant cells; micro-projectile bombardment of plant cells; vacuum infiltration; and Agrobacterium tumeficiens mediated transformation. Transformation means introducing a nucleotide sequence in a plant in a manner to cause stable or transient expression of the sequence.

Successful examples of the modification of plant characteristics by transformation with cloned sequences which serve to illustrate the current knowledge in this field of technology, and which are herein incorporated by reference, include: U.S. Patent Nos. 5,571,706; 5,677,175; 5,510,471; 5,750,386; 5,597,945; 5,589,615; 5,750,871; 5,268,526; 5,780,708; 5,538,880; 5,773,269; 5,736,369 and 5,610,042.

Following transformation, plants are preferably selected using a dominant selectable marker incorporated into the transformation vector. Typically, such a marker will confer antibiotic or herbicide resistance on the transformed plants, and selection of transformants can be accomplished by exposing the plants to appropriate concentrations of the antibiotic or herbicide.

After transformed plants are selected and grown to maturity, those plants showing a modified trait are identified. The modified trait can be any of those traits described above. Additionally, to confirm that the modified trait is due to changes in expression levels or activity of the polypeptide or polynucleotide of the invention can be determined by analyzing mRNA expression using Northern blots, RT-PCR or microarrays, or protein expression using immunoblots or Western blots or gel shift assays.

### INTEGRATED SYSTEMS—SEQUENCE IDENTITY

Additionally, the present invention may be an integrated system, computer or computer readable medium that comprises an instruction set for determining the identity of one or more sequences in a database. In addition, the instruction set can be used to generate or identify sequences that meet any specified criteria. Furthermore, the instruction set may

be used to associate or link certain functional benefits, such improved pathogen tolerance, with one or more identified sequence.

For example, the instruction set can include, e.g., a sequence comparison or other alignment program, e.g., an available program such as, for example, the Wisconsin Package Version 10.0, such as BLAST, FASTA, PILEUP, FINDPATTERNS or the like (GCG, Madision, WI). Public sequence databases such as GenBank, EMBL, Swiss-Prot and PIR or private sequence databases such as PhytoSeq (Incyte Pharmaceuticals, Palo Alto, CA) can be searched.

Alignment of sequences for comparison can be conducted by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482, by the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity method of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. U.S.A. 85: 2444, by computerized implementations of these algorithms. After alignment, sequence comparisons between two (or more) polynucleotides or polypeptides are typically performed by comparing sequences of the two sequences over a comparison window to identify and compare local regions of sequence similarity. The comparison window can be a segment of at least about 20 contiguous positions, usually about 50 to about 200, more usually about 100 to about 150 contiguous positions. A description of the method is provided in Ausubel et al., supra.

10

15

20

25

30

35

A variety of methods of determining sequence relationships can be used, including manual alignment and computer assisted sequence alignment and analysis. This later approach is a preferred approach in the present invention, due to the increased throughput afforded by computer assisted methods. As noted above, a variety of computer programs for performing sequence alignment are available, or can be produced by one of skill.

One example algorithm that is suitable for determining percent sequence identity and sequence similarity is the BLAST algorithm, which is described in Altschul et al. J. Mol. Biol 215:403-410 (1990). Software for performing BLAST analyses is publicly available, e.g., through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters

M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).

In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence (and, therefore, in this context, homologous) if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, or less than about 0.01, and or even less than about 0.001. An additional example of a useful sequence alignment algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments. The program can align, e.g., up to 300 sequences of a maximum length of 5,000 letters.

The integrated system, or computer typically includes a user input interface allowing a user to selectively view one or more sequence records corresponding to the one or more character strings, as well as an instruction set which aligns the one or more character strings with each other or with an additional character string to identify one or more region of sequence similarity. The system may include a link of one or more character strings with a particular phenotype or gene function. Typically, the system includes a user readable output element which displays an alignment produced by the alignment instruction set.

The methods of this invention can be implemented in a localized or distributed computing environment. In a distributed environment, the methods may implemented on a single computer comprising multiple processors or on a multiplicity of computers. The computers can be linked, e.g. through a common bus, but more preferably the computer(s) are nodes on a network. The network can be a generalized or a dedicated local or

wide-area network and, in certain preferred embodiments, the computers may be components of an intra-net or an internet.

Thus, the invention provides methods for identifying a sequence similar or homologous to one or more polynucleotides as noted herein, or one or more target polypeptides encoded by the polynucleotides, or otherwise noted herein and may include linking or associating a given plant phenotype or gene function with a sequence. In the methods, a sequence database is provided (locally or across an inter or intra net) and a query is made against the sequence database using the relevant sequences herein and associated plant phenotypes or gene functions.

5

10

15

25

30

35

Any sequence herein can be entered into the database, before or after querying the database. This provides for both expansion of the database and, if done before the querying step, for insertion of control sequences into the database. The control sequences can be detected by the query to ensure the general integrity of both the database and the query. As noted, the query can be performed using a web browser based interface. For example, the database can be a centralized public database such as those noted herein, and the querying can be done from a remote terminal or computer across an internet or intranet.

#### **EXAMPLES**

The following examples are intended to illustrate but not limit the present invention.

#### 20 EXAMPLE I. FULL LENGTH GENE IDENTIFICATION AND CLONING

Putative transcription factor sequences (genomic or ESTs) related to known transcription factors were identified in the *Arabidopsis thaliana* GenBank database using the tblastn sequence analysis program using default parameters and a P-value cutoff threshold of -4 or -5 or lower, depending on the length of the query sequence. Putative transcription factor sequence hits were then screened to identify those containing particular sequence strings. If the sequence hits contained such sequence strings, the sequences were confirmed as transcription factors.

Alternatively, Arabidopsis thaliana cDNA libraries derived from different tissues or treatments, or genomic libraries were screened to identify novel members of a transcription family using a low stringency hybridization approach. Probes were synthesized using gene specific primers in a standard PCR reaction (annealing temperature 60° C) and labeled with <sup>32</sup>P dCTP using the High Prime DNA Labeling Kit (Boehringer Mannheim). Purified radiolabelled probes were added to filters immersed in Church hybridization medium (0.5 M NaPO<sub>4</sub> pH 7.0, 7% SDS, 1 % w/v bovine serum albumin) and hybridized overnight at 60 °C with shaking. Filters were washed two times for 45 to 60 minutes with 1xSCC, 1% SDS at 60° C.

To identify additional sequence 5' or 3' of a partial cDNA sequence in a cDNA library, 5' and 3' rapid amplification of cDNA ends (RACE) was performed using the Marathon<sup>TM</sup> cDNA amplification kit (Clontech, Palo Alto, CA). Generally, the method entailed first isolating poly(A) mRNA, performing first and second strand cDNA synthesis to generate double stranded cDNA, blunting cDNA ends, followed by ligation of the Marathon<sup>TM</sup> Adaptor to the cDNA to form a library of adaptor-ligated ds cDNA.

Gene-specific primers were designed to be used along with adaptor specific primers for both 5' and 3' RACE reactions. Nested primers, rather than single primers, were used to increase PCR specificity. Using 5' and 3' RACE reactions, 5' and 3' RACE fragments were obtained, sequenced and cloned. The process can be repeated until 5' and 3' ends of the full-length gene were identified. Then the full-length cDNA was generated by PCR using primers specific to 5' and 3' ends of the gene by end-to-end PCR.

### EXAMPLE II. CONSTRUCTION OF EXPRESSION VECTORS

5

10

30

35

The sequence was amplified from a genomic or cDNA library using primers specific to sequences upstream and downstream of the coding region. The expression vector 15 was pMEN20 or pMEN65, which are both derived from pMON316 (Sanders et al, (1987) Nucleic Acids Research 15:1543-58) and contain the CaMV 35S promoter to express transgenes. To clone the sequence into the vector, both pMEN20 and the amplified DNA fragment were digested separately with SalI and NotI restriction enzymes at 37° C for 2 hours. The digestion products were subject to electrophoresis in a 0.8% agarose gel and visualized 20 by ethidium bromide staining. The DNA fragments containing the sequence and the linearized plasmid were excised and purified by using a Qiaquick gel extraction kit (Qiagen, CA). The fragments of interest were ligated at a ratio of 3:1 (vector to insert). Ligation reactions using T4 DNA ligase (New England Biolabs, MA) were carried out at 16° C for 16 hours. The ligated DNAs were transformed into competent cells of the E. coli strain 25 DH5alpha by using the heat shock method. The transformations were plated on LB plates containing 50 mg/l kanamycin (Sigma).

Individual colonies were grown overnight in five milliliters of LB broth containing 50 mg/l kanamycin at 37° C. Plasmid DNA was purified by using Qiaquick Mini Prep kits (Qiagen, CA).

# EXAMPLE III. TRANSFORMATION OF AGROBACTERIUM WITH THE EXPRESSION VECTOR

After the plasmid vector containing the gene was constructed, the vector was used to transform Agrobacterium tumefaciens cells expressing the gene products. The stock of Agrobacterium tumefaciens cells for transformation were made as described by Nagel et al. (1990) FEMS Microbiol Letts. 67: 325-328. Agrobacterium strain ABI was grown in 250 ml

LB medium (Sigma) overnight at 28°C with shaking until an absorbance ( $A_{600}$ ) of 0.5 – 1.0 was reached. Cells were harvested by centrifugation at 4,000 x g for 15 min at 4° C. Cells were then resuspended in 250  $\mu$ l chilled buffer (1 mM HEPES, pH adjusted to 7.0 with KOH). Cells were centrifuged again as described above and resuspended in 125  $\mu$ l chilled buffer. Cells were then centrifuged and resuspended two more times in the same HEPES buffer as described above at a volume of 100  $\mu$ l and 750  $\mu$ l, respectively. Resuspended cells were then distributed into 40  $\mu$ l aliquots, quickly frozen in liquid nitrogen, and stored at -80° C.

Agrobacterium cells were transformed with plasmids prepared as described above following the protocol described by Nagel et al. For each DNA construct to be transformed, 50 – 100 ng DNA (generally resuspended in 10 mM Tris-HCl, 1 mM EDTA, pH 8.0) was mixed with 40 μl of Agrobacterium cells. The DNA/cell mixture was then transferred to a chilled cuvette with a 2mm electrode gap and subject to a 2.5 kV charge dissipated at 25 μF and 200 μF using a Gene Pulser II apparatus (Bio-Rad). After electroporation, cells were immediately resuspended in 1.0 ml LB and allowed to recover without antibiotic selection for 2 – 4 hours at 28° C in a shaking incubator. After recovery, cells were plated onto selective medium of LB broth containing 100 μg/ml spectinomycin (Sigma) and incubated for 24-48 hours at 28° C. Single colonies were then picked and inoculated in fresh medium. The presence of the plasmid construct was verified by PCR amplification and sequence analysis.

10

15

20

25

30

35

## EXAMPLE IV. TRANSFORMATION OF ARABIDOPSIS PLANTS WITH AGROBACTERIUM TUMEFACIENS WITH EXPRESSION VECTOR

After transformation of Agrobacterium tumefaciens with plasmid vectors containing the gene, single Agrobacterium colonies were identified, propagated, and used to transform Arabidopsis plants. Briefly, 500 ml cultures of LB medium containing 50 mg/l kanamycin were inoculated with the colonies and grown at 28° C with shaking for 2 days until an absorbance ( $A_{600}$ ) of > 2.0 is reached. Cells were then harvested by centrifugation at 4,000 x g for 10 min, and resuspended in infiltration medium (1/2 X Murashige and Skoog salts (Sigma), 1 X Gamborg's B-5 vitamins (Sigma), 5.0% (w/v) sucrose (Sigma), 0.044  $\mu$ M benzylamino purine (Sigma), 200  $\mu$ l/L Silwet L-77 (Lehle Seeds) until an absorbance ( $A_{600}$ ) of 0.8 was reached.

Prior to transformation, Arabidopsis thaliana seeds (ecotype Columbia) were sown at a density of ~10 plants per 4" pot onto Pro-Mix BX potting medium (Hummert International) covered with fiberglass mesh (18 mm X 16 mm). Plants were grown under continuous illumination (50-75  $\mu$ E/m²/sec) at 22-23° C with 65-70% relative humidity. After about 4 weeks, primary inflorescence stems (bolts) are cut off to encourage growth of

multiple secondary bolts. After flowering of the mature secondary bolts, plants were prepared for transformation by removal of all siliques and opened flowers.

The pots were then immersed upside down in the mixture of Agrobacterium infiltration medium as described above for 30 sec, and placed on their sides to allow draining into a 1' x 2' flat surface covered with plastic wrap. After 24 h, the plastic wrap was removed and pots are turned upright. The immersion procedure was repeated one week later, for a total of two immersions per pot. Seeds were then collected from each transformation pot and analyzed following the protocol described below.

### EXAMPLE V. IDENTIFICATION OF ARABIDOPSIS PRIMARY TRANSFORMANTS

Seeds collected from the transformation pots were sterilized essentially as follows. Seeds were dispersed into in a solution containing 0.1% (v/v) Triton X-100 (Sigma) and sterile H<sub>2</sub>O and washed by shaking the suspension for 20 min. The wash solution was then drained and replaced with fresh wash solution to wash the seeds for 20 min with shaking. After removal of the second wash solution, a solution containing 0.1% (v/v) Triton X-100 and 70% ethanol (Equistar) was added to the seeds and the suspension was shaken for 5 min. After removal of the ethanol/detergent solution, a solution containing 0.1% (v/v) Triton X-100 and 30% (v/v) bleach (Clorox) was added to the seeds, and the suspension was shaken for 10 min. After removal of the bleach/detergent solution, seeds were then washed five times in sterile distilled H2O. The seeds were stored in the last wash water at 4° C for 2 days in the dark before being plated onto antibiotic selection medium (1 X Murashige and Skoog salts (pH adjusted to 5.7 with 1M KOH), 1 X Gamborg's B-5 vitamins, 0.9% phytagar (Life Technologies), and 50 mg/l kanamycin). Seeds were germinated under continuous illumination (50-75 µE/m²/sec) at 22-23° C. After 7-10 days of growth under these conditions, kanamycin resistant primary transformants (T<sub>1</sub> generation) were visible and obtained. These seedlings were transferred first to fresh selection plates where the seedlings continued to grow for 3-5 more days, and then to soil (Pro-Mix BX potting medium).

Primary transformants were crossed and progeny seeds (T<sub>2</sub>) collected; kanamycin resistant seedlings were selected and analyzed. The expression levels of the recombinant polynucleotides in the transformants varies from about a 5% expression level increase to a least a 100% expression level increase. Similar observations are made with respect to polypeptide level expression.

# EXAMPLE VI. IDENTIFICATION OF ARABIDOPSIS PLANTS WITH TRANSCRIPTION FACTOR GENE KNOCKOUTS

10

15

20

25

30

The screening of insertion mutagenized *Arabidopsis* collections for null mutants in a known target gene was essentially as described in Krysan et al (1999) <u>Plant Cell</u> 11:2283-2290. Briefly, gene-specific primers, nested by 5-250 bases to each other, were designed from the 5' and 3' regions of a known target gene. Similarly, nested sets of primers were also created specific to each of the T-DNA or transposon ends (the "right" and "left" borders). All possible combinations of gene specific and T-DNA/transposon primers were used to detect by PCR an insertion event within or close to the target gene. The amplified DNA fragments were then sequenced which allows the precise determination of the T-DNA/transposon insertion point relative to the target gene. Insertion events within the coding or intervening sequence of the genes were deconvoluted from a pool comprising a plurality of insertion events to a single unique mutant plant for functional characterization. The method is described in more detail in Yu and Adam, US Application Serial No. 09/177,733 filed October 23, 1998.

#### 15 EXAMPLE VII. IDENTIFICATION OF PATHOGEN INDUCED GENES

5

10

20

25

30

In some instances, expression patterns of the pathogen induced genes (such as defense genes) was monitored by microarray experiments. cDNAs were generated by PCR and resuspended at a final concentration of ~ 100 ng/ul in 3X SSC or 150mM Na-phosphate (Eisen and Brown (1999) *Meth. in Enzymol.* 303:179-205). The cDNAs were spotted on microscope glass slides coated with polylysine. The prepared cDNAs were aliquoted into 384 well plates and spotted on the slides using an x-y-z gantry (OmniGrid) purchased from GeneMachines (Menlo Park, CA) outfitted with quill type pins purchased from Telechem International (Sunnyvale, CA). After spotting, the arrays were cured for a minimum of one week at room temperature, rehydrated and blocked following the protocol recommended by Eisen and Brown (1999).

Sample total RNA (10 ug) samples were labeled using fluorescent Cy3 and Cy5 dyes. Labeled samples were resuspended in 4X SSC/0.03% SDS/4 ug salmon sperm DNA/2 ug tRNA/ 50mM Na-pyrophosphate, heated for 95°C for 2.5 minutes, spun down and placed on the array. The array was then covered with a glass coverslip and placed in a sealed chamber. The chamber was then kept in a water bath at 62°C overnight. The arrays were washed as described in Eisen and Brown (1999) and scanned on a General Scanning 3000 laser scanner. The resulting files are subsequently quantified using Imagene a software purchased from BioDiscovery (Los Angeles, CA).

# EXAMPLE VIII. IDENTIFICATION OF PATHOGEN TOLERANCE PHENOTYPE IN OVEREXPRESSOR OR GENE KNOCKOUT PLANTS

5

10

15

20

25

30

35

Experiments were performed to identify those transformants or knockouts that exhibited an improved pathogen tolerance. For such studies, the transformants were exposed to biotropic fungal pathogens, such as Erisyphe orontii; and necrotropic fungal pathogens, such as Fusarium oxysporum. Fusarium oxysporum isolates cause vascular wilts and damping off of various annual vegetables, perennials and weeds (Mauch-Mani and Slusarenko (1994) Molecular Plant-Microbe Interactions 7: 378-383). For Fusarium oxysporum experiments, plants grown on petri dishes were sprayed with a fresh spore suspension of F. oxysporum. The spore suspension was prepared as follows: A plug of fungal hyphae from a plate culture was placed on a fresh potato dextrose agar plate and allowed to spread for one week. 5 ml sterile water was then added to the plate, swirled, and pipetted into 50 ml Armstrong Fusarium medium. Spores were grown overnight in Fusarium medium and then sprayed onto plants using a Preval paint sprayer. Plant tissue was harvested and frozen in liquid nitrogen 48 hours post infection.

Erysiphe orontii is a causal agent of powdery mildew. For Erysiphe orontii experiments, plants were grown approximately 4 weeks in a greenhouse under 12 hour light (20 C, ~30% relative humidity (rh)). Individual leaves were infected with E. orontii spores from infected plants using a camel's hair brush, and the plants were transferred to a Percival growth chamber (20 C, 80% rh.). Plant tissue was harvested and frozen in liquid nitrogen 7 days post infection.

Botrytis cinerea is a necrotrophic pathogen. Botrytis cinerea was grown on potato dextrose agar in the light. A spore culture was made by spreading 10 ml of sterile water on the fungus plate, swirling and transferring spores to 10 ml of sterile water. The spore inoculum (approx. 105 spores/ml) was used to spray 10 day-old seedlings grown under sterile conditions on MS (-sucrose) media. Symptoms were evaluated every day up to approximately 1 week.

Infection with bacterial pathogens Pseudomonas syringae pv maculicola strain 4326 and pv maculicola strain 4326 was performed by hand inoculation at two doses. Two inoculation doses allows the differentiation between plants with enhanced susceptibility and plants with enhanced resistance to the pathogen. Plants were grown for 3 weeks in the greenhouse, then transferred to the growth chamber for the remainder of their growth. Psm ES4326 was hand inoculated with 1 ml syringe on 3 fully-expanded leaves per plant (4 1/2 wk old), using at least 9 plants per overexpressing line at two inoculation doses, OD=0.005 and OD=0.0005. Disease scoring occured at day 3 post-inoculation with pictures of the plants and leaves taken in parallel.

Table 3 shows the phenotypes observed for particular overexpressor or knockout plants and provides the SEQ ID No., the internal reference code (GID), whether a knockout or overexpressor plant was analyzed and the observed phenotype.

Table 3

| SEQ ID No. | GID  | Knockout (KO) or overexpressor (OE) | Phenotype                                                      |
|------------|------|-------------------------------------|----------------------------------------------------------------|
| 1          | G188 | KO                                  | Increased susceptibility to Fusarium                           |
| 3          | G616 | OE                                  | Increased tolerance to Erysiphe                                |
| 5          | G19  | OE                                  | Increased tolerance to Erysiphe                                |
| 7.         | G261 | OE .                                | Increased susceptibility to Botrytis                           |
| 9          | G28  | OE                                  | Increased resistance to Erysiphe                               |
| 11         | G869 | OE                                  | Increased susceptibility to Fusarium                           |
| 13         | G237 | OE                                  | Increased tolerance to Erysiphe                                |
| 15         | G409 | OE                                  | Increased tolerance to Erysiphe                                |
| 17         | G418 | OE                                  | Increased tolerance to Pseudomonas                             |
| 19         | G591 | OE                                  | Increased tolerance to Erysiphe                                |
| 21         | G525 | OE ·                                | Increased tolerance to Pseudomonas                             |
| 23         | G545 | OE                                  | Increased susceptibility to Pseudomonas, Erysiphe and Fusarium |
| 25         | G865 | OE                                  | Increased susceptibility to Erysiphe and Botrytis              |
| 27 ·       | G881 | OE                                  | Increased susceptibility to Erysiphe and Botrytis              |
| 29         | G896 | KO                                  | Increased susceptibility to Fusarium                           |
| 31         | G378 | OE                                  | Increased resistance to Erysiphe                               |
| 33         | G569 | OE                                  | Decreased expression of defense genes                          |
| 35         | G558 | OE                                  | Increased expression of defense genes                          |

For a particular overexpressor that shows an increased susceptibility to a pathogen, it may be more useful to select a plant with a decreased expression of the particular transcription factor. For a particular knockout that shows an increased susceptibility to a pathogen, it may be more useful to select a plant with an increased expression of the particular transcription factor.

Other than Fusarium oxysporum, Erysyphe orontii, the transgenic plants are more tolerant to Sclerotinia spp., soil-borne oomycetes, foliar oomycetes, Botrytis spp., Rhizoctonia spp, Verticillium dahliae/albo-atrum, Alternaria spp., rusts, Mycosphaerella spp, Fusarium solani, or the like. The transgenic plants are more resistant to fungal diseases such as rusts, smuts, wilts, yellows, root rot, leaf drop, ergot, leaf blight of potato, brown spot of rice, leaf blight, late blight, powdery mildew, downy mildew, and the like; viral diseases such as sugarcane mosaic, cassava mosaic, sugar beet yellows, plum pox, barley yellow dwarf, tomato yellow leaf curl, tomato spotted wilt virus, and the like; bacterial diseases such as citrus canker, bacterial leaf blight, bacterial will, soft rot of vegetables, and the like; nematode diseases such as root knot, sugar beet cyst nematode or the like.

15

5

## EXAMPLE IX. IDENTIFICATION OF HOMOLOGOUS SEQUENCES

10

15

20

25

30

35

Homologous sequences from *Arabidopsis* and plant species other than *Arabidopsis* were identified using database sequence search tools, such as the Basic Local Alignment Search Tool (BLAST) (Altschul et al. (1990) <u>J. Mol. Biol.</u> 215:403-410; and Altschul et al. (1997) <u>Nucl. Acid Res.</u> 25: 3389-3402). The tblastx sequence analysis programs were employed using the BLOSUM-62 scoring matrix (Henikoff, S. and Henikoff, J. G. (1992) <u>Proc. Natl. Acad. Sci. USA</u> 89: 10915-10919).

Identified *Arabidopsis* homologous sequences are provided in Figure 2 and included in the Sequence Listing. The percent sequence identity among these sequences is as low as 47% sequence identity. Additionally, the entire NCBI GenBank database was filtered for sequences from all plants except *Arabidopsis thaliana* by selecting all entries in the NCBI GenBank database associated with NCBI taxonomic ID 33090 (Viridiplantae; all plants) and excluding entries associated with taxonomic ID 3701 (*Arabidopsis thaliana*). These sequences were compared to sequences representing genes of SEQ IDs Nos. 1-58 on 9/26/2000 using the Washington University TBLASTX algorithm (version 2.0a19MP). For each gene of SEQ IDs Nos. 1-58, individual comparisons were ordered by probability score (P-value), where the score reflects the probability that a particular alignment occurred by chance. For example, a score of 3.6e-40 is 3.6 x 10<sup>-40</sup>. For up to ten species, the gene with the lowest P-value (and therefore the most likely homolog) is listed in Figure 3.

In addition to P-values, comparisons were also scored by percentage identity. Percentage identity reflects the degree to which two segments of DNA or protein are identical over a particular length. The ranges of percent identity between the non-Arabidopsis genes shown in Figure 3 and the Arabidopsis genes in the sequence listing are: SEQ ID No. 1: 38%-76%; SEQ ID No. 3: 36%-72%; SEQ ID No. 5: 51%-75%; SEQ ID No. 7: 37%-76%; SEQ ID No. 9: 48%-75%; SEQ ID No. 11: 31%-68%; SEQ ID No. 13: 59%-81%; SEQ ID No. 15: 49%-81%; SEQ ID No. 17: 53%-87%; SEQ ID No. 19: 48%-84%; SEQ ID No. 21: 73%-89%; SEQ ID No. 23: 52%-64%; SEQ ID No. 25: 48%-83%; SEQ ID No. 27: 35%-92%; SEQ ID No. 29: 56%-89%; SEQ ID No. 31: 50%-90%; SEQ ID No. 33: 50%-93%; SEQ ID No. 35: 52%-81%; SEQ ID No. 37: 75%-81%; SEQ ID No. 39: 35%-72%; SEQ ID No. 41: 55%-89%; SEQ ID No. 43: 56%-77%; SEQ ID No. 45: 34%-72%; SEQ ID No. 47: 51%-86%; SEQ ID No. 49: 46%-86%; SEQ ID No. 51: 58%-80%; SEQ ID No. 53: 46%-55%; SEQ ID No. 55: 84%-89%; and SEQ ID No. 57: 43%-71%.

The polynucleotides and polypeptides in the Sequence Listing and the identified homologous sequences may be stored in a computer system and have associated or linked with the sequences a function, such as that the polynucleotides and polypeptides are useful for modifying the pathogen tolerance of a plant.

All references, publications, patents and other documents herein are incorporated by reference in their entirety for all purposes. Although the invention has been described with reference to the embodiments and examples above, it should be understood that various modifications can be made without departing from the spirit of the invention.

#### What is claimed is:

5

15

20

1. A transgenic plant with modified pathogen tolerance, which plant comprises a recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of:

- (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID Nos. 2N, where N=1-29, or a complementary nucleotide sequence thereof;
  - (b) a nucleotide sequence encoding a polypeptide comprising a conservatively substituted variant of a polypeptide of (a);
- (c) a nucleotide sequence comprising a sequence selected from those of SEQ ID Nos.
   2N-1, where N=1-29, or a complementary nucleotide sequence thereof;
  - (d) a nucleotide sequence comprising silent substitutions in a nucleotide sequence of (c);
  - (e) a nucleotide sequence which hybridizes under stringent conditions to a nucleotide sequence of one or more of: (a), (b), (c), or (d);
  - (f) a nucleotide sequence comprising at least 15 consecutive nucleotides of a sequence of any of (a)-(e);
  - (g) a nucleotide sequence comprising a subsequence or fragment of any of (a)-(f), which subsequence or fragment encodes a polypeptide that modifies a plant's pathogen tolerance;
  - (h) a nucleotide sequence having at least 31% sequence identity to a nucleotide sequence of any of (a)-(g);
  - (i) a nucleotide sequence having at least 60% identity sequence identity to a nucleotide sequence of any of (a)-(g);
- 25 (j) a nucleotide sequence which encodes a polypeptide having at least 31% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-29;
  - (k) a nucleotide sequence which encodes a polypeptide having at least 60% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-29; and
- (l) a nucleotide sequence which encodes a polypeptide having at least 65% sequence identity to a conserved domain of a polypeptide of SEQ ID Nos. 2N, where N=1-29.
  - 2. The transgenic plant of claim 1, further comprising a constitutive, inducible, or tissueactive promoter operably linked to said nucleotide sequence.
- 35 3. The transgenic plant of claim 1, wherein the plant is selected from the group consisting of: soybean, wheat, corn, potato, cotton, rice, oilseed rape, sunflower, alfalfa, sugarcane, turf, banana, blackberry, blueberry, strawberry, raspberry, cantaloupe, carrot,

cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits, and vegetable brassicas.

- 5 4. An isolated or recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of:
  - (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID Nos. 2N, where N=1-29, or a complementary nucleotide sequence thereof:
- (b) a nucleotide sequence encoding a polypeptide comprising a conservatively substituted variant of a polypeptide of (a);

15

- (c) a nucleotide sequence comprising a sequence selected from those of SEQ ID Nos. 2N-1, where N=1-29, or a complementary nucleotide sequence thereof;
- (d) a nucleotide sequence comprising silent substitutions in a nucleotide sequence of (c);
- (e) a nucleotide sequence which hybridizes under stringent conditions to a nucleotide sequence of one or more of: (a), (b), (c), or (d);
- (f) a nucleotide sequence comprising at least 15 consecutive nucleotides of a sequence of any of (a)-(e);
- 20 (g) a nucleotide sequence comprising a subsequence or fragment of any of (a)-(f), which subsequence or fragment encodes a polypeptide having a biological activity that modifies a plant's pathogen tolerance;
  - (h) a nucleotide sequence having at least 31% sequence identity to a nucleotide sequence of any of (a)-(g);
- 25 (i) a nucleotide sequence having at least 60% identity sequence identity to a nucleotide sequence of any of (a)-(g);
  - (j) a nucleotide sequence which encodes a polypeptide having at least 31% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-29;
  - (k) a nucleotide sequence which encodes a polypeptide having at least 60% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-29; and
  - (1) a nucleotide sequence which encodes a conserved domain of a polypeptide having at least 65% sequence identity to a conserved domain of a polypeptide of SEQ ID Nos. 2N, where N=1-29.
- 35 5. The isolated or recombinant polynucleotide of claim 4, further comprising a constitutive, inducible, or tissue-active promoter operably linked to the nucleotide sequence.

6. A cloning or expression vector comprising the isolated or recombinant polynucleotide of claim 4.

- 7. A cell comprising the cloning or expression vector of claim 6.
- 8. A transgenic plant comprising the isolated or recombinant polynucleotide of claim 4.
- 9. A composition produced by one or more of:
  - (a) incubating one or more polynucleotide of claim 4 with a nuclease;
- 10 (b) incubating one or more polynucleotide of claim 4 with a restriction enzyme;
  - (c) incubating one or more polynucleotide of claim 4 with a polymerase;
  - (d) incubating one or more polynucleotide of claim 4 with a polymerase and a primer;
  - (e) incubating one or more polynucleotide of claim 4 with a cloning vector, or
  - (f) incubating one or more polynucleotide of claim 4 with a cell.

15

5

- 10. A composition comprising two or more different polynucleotides of claim 4.
- 11. An isolated or recombinant polypeptide comprising a subsequence of at least about 15 contiguous amino acids encoded by the recombinant or isolated polynucleotide of claim 4.

20

25

- 12. A plant comprising an isolated polypeptide of claim 11.
- 13. A method for producing a plant having a modified pathogen tolerance, the method comprising altering the expression of the isolated or recombinant polynucleotide of claim 4 or the expression levels or activity of a polypeptide of claim 11 in a plant, thereby producing a modified plant, and selecting the modified plant for improved pathogen tolerance thereby providing the modified plant with a modified pathogen tolerance.
  - 14. The method of claim 13, wherein the polynucleotide is a polynucleotide of claim 4.

- 15. A method of identifying a factor that is modulated by or interacts with a polypeptide encoded by a polynucleotide of claim 4, the method comprising:
  - (a) expressing a polypeptide encoded by the polynucleotide in a plant; and
- (b) identifying at least one factor that is modulated by or interacts with the polypeptide.

16. The method of claim 15, wherein the identifying is performed by detecting binding by the polypeptide to a promoter sequence, or detecting interactions between an additional protein and the polypeptide in a yeast two hybrid system.

- 5 17. The method of claim 15, wherein the identifying is performed by detecting expression of a factor by hybridization to a microarray, subtractive hybridization or differential display.
  - 18. A method of identifying a molecule that modulates activity or expression of a polynucleotide or polypeptide of interest, the method comprising:
- (a) placing the molecule in contact with a plant comprising the polynucleotide or polypeptide encoded by the polynucleotide of claim 4; and,
  - (b) monitoring one or more of:
    - (i) expression level of the polynucleotide in the plant;
    - (ii) expression level of the polypeptide in the plant;
    - (iii) modulation of an activity of the polypeptide in the plant; or
    - (iv) modulation of an activity of the polynucleotide in the plant.
  - 19. An integrated system, computer or computer readable medium comprising one or more character strings corresponding to a polynucleotide of claim 4, or to a polypeptide encoded by the polynucleotide.
    - 20. The integrated system, computer or computer readable medium of claim 19, further comprising a link between said one or more sequence strings to a modified plant pathogen tolerance phenotype.

25

15

- 21. A method of identifying a sequence similar or homologous to one or more polynucleotides of claim 4, or one or more polypeptides encoded by the polynucleotides, the method comprising:
  - (a) providing a sequence database; and,
- 30 (b) querying the sequence database with one or more target sequences corresponding to the one or more polynucleotides or to the one or more polypeptides to identify one or more sequence members of the database that display sequence similarity or homology to one or more of the one or more target sequences.
- 35 22. The method of claim 21, wherein the querying comprises aligning one or more of the target sequences with one or more of the one or more sequence members in the sequence database.

23. The method of claim 21, wherein the querying comprises identifying one or more of the one or more sequence members of the database that meet a user-selected identity criteria with one or more of the target sequences.

5

- 24. The method of claim 21, further comprising linking the one or more of the polynucleotides of claim 4, or encoded polypeptides, to a modified plant pathogen tolerance phenotype.
- 10 25. A plant comprising altered expression levels of an isolated or recombinant polynucleotide of claim 4.
  - 26. A plant comprising altered expression levels or the activity of an isolated or recombinant polypeptide of claim 11.

15

27. A plant lacking a nucleotide sequence encoding a polypeptide of claim 11.

Figure 1

| SEQ ID No. | GID  | cDNA or protein | conserved domain |
|------------|------|-----------------|------------------|
| 1          | G188 | cDNA            |                  |
| 2          | G188 | protein         | 175-222          |
| 3          | G616 | cDNA            |                  |
| 4          | G616 | protein         | 39-95            |
| 5          | G19  | cDNA            |                  |
| 6          | G19  | protein         | 76-145           |
| 7          | G261 | cDNA            |                  |
| 8          | G261 | protein         | 16-104           |
| 9          | G28  | cDNA            |                  |
| 10         | G28  | protein         | 145-213          |
| 11         | G869 | cDNA            |                  |
| 12         | G869 | protein         | 109-177          |
| 13         | G237 | cDNA            |                  |
| 14         | G237 | protein         | 11-113           |
| 15         | G409 | cDNA            |                  |
| 16         | G409 | protein         | 64-124           |
| 17         | G418 | cDNA            |                  |
| 18         | G418 | protein         | 500-560          |
| 19         | G591 | cDNA            |                  |
| 20         | G591 | protein         | 143-240          |
| 21         | G525 | cDNA            |                  |
| 22         | G525 | protein         | 23-167           |
| 23         | G545 | cDNA            |                  |
| 24         | G545 | protein         | 82-102, 136-154  |
| 25         | G865 | cDNA            |                  |
| 26         | G865 | protein         | 36-103           |
| 27         | G881 | cDNA            |                  |
| 28         | G881 | protein         | 176-233          |
| 29         | G896 | cDNA            |                  |
| 30         | G896 | protein         | 18-39            |
| 31         | G378 | cDNA            |                  |
| 32         | G378 | protein         | 196-237          |
| 33         | G569 | cDNA            |                  |
| 34         | G569 | protein         | 90-153           |
| 35         | G558 | cDNA            |                  |
| 36         | G558 | protein         | 45-105           |

Figure 2

| SEQ ID No. | GID   | homolog          | cDNA or protein | conserved domain |
|------------|-------|------------------|-----------------|------------------|
| 37         | G1396 | homolog of G1394 | cDNA            |                  |
| 38         | G1396 | homolog of G1394 | protein         | entire protein   |
| 39         | G265  | homolog of G261  | cDNA            |                  |
| 40         | G265  | homolog of G261  | protein         | 14-105           |
| 41         | G1006 | homolog of G28   | cDNA            | ·                |
| 42         | G1006 | homolog of G28   | protein         | 114-182          |
| 43         | G1309 | homolog of G237  | cDNA            |                  |
| 44         | G1309 | homolog of G237  | protein         | 9-114            |
| 45         | G2550 | homolog of G418  | cDNA            |                  |
| 46         | G2550 | homolog of G418  | protein         | 348-408          |
| 47         | G965  | homolog of G418  | cDNA            |                  |
| 48         | G965  | homolog of G418  | protein         | 423-486          |
| 49         | G793  | homolog of G591  | cDNA            | <u> </u>         |
| 50         | G793  | homolog of G591  | protein         | 151-206          |
| 51         | G764  | homolog of G525  | cDNA            |                  |
| 52         | G764  | homolog of G525  | protein         | 27-171 ·         |
| 53         | G350  | homolog of G545  | cDNA            |                  |
| 54         | G350  | homolog of G545  | protein         | 91-113,150-170   |
| 55         | G986  | homolog of G881  | cDNA            |                  |
| 56         | G986  | homolog of G881  | protein         | 146-203          |
| 57         | G1349 | homolog of G896  | cDNA            |                  |
| 58         | G1349 | homolog of G896  | protein         | 13-63            |

Figure 3A

| SEQ ID No. | GID  | Genbank NiD | P-value              | Species                            |
|------------|------|-------------|----------------------|------------------------------------|
| 1          | G188 | 7779802     | 5.20E-36             | Lotus japonicus                    |
| 1          | G188 | 7284340     | 2.10E-34             | Glycine max                        |
| 1          | G188 | 9361307     | 1.20E-27             | Triticum aestivum                  |
| 1          | G188 | 7340336     | 1.10E-22             | Oryza sativa                       |
| 1          | G188 | 6529152     | 3.60E-22             | Lycopersicon esculentum            |
| 1          | G188 | 8748477     | 7.70E-21             | Medicago truncatula                |
| 1          | G188 | 5456433     | 7.10Ė-14             | Zea mays                           |
| 1          | G188 | 9302479     | 1.60E-12             | Sorghum bicolor                    |
| 1          | G188 | 6696287     | 4.10E-12             | Pinus taeda                        |
| 1          | G188 | 562242      | 9.00E-12             | Brassica rapa                      |
| 3          | G616 | 7719440     | 8.30E-37             | Lotus japonicus                    |
| 3          | G616 | 7692230     | 5.90E-33             | Glycine max                        |
| 3          | G616 | 7501307     | 1.10E-21             | Gossypium arboreum                 |
| 3          | G616 | 8071090     | 1.50E-21             | Solanum tuberosum                  |
| 3          | G616 | 8858771     | 1.50E-21             | Oryza sativa                       |
| 3          | G616 | 5047315     | 1.50E-21             | Gossypium hirsutum                 |
| 3          | G616 | 6358532     | 5.80E-20             | Antirrhinum graniticum             |
| 3          | G616 | 2826867     | 7.00E-20             | Antirrhinum majus                  |
| 3          | G616 | 6358535     | 7.40E-20             | Antirrhinum majus subsp. linkianum |
| 3          | G616 | 6358538     | 7.50E-20             | Antirrhinum braun-blanquetii       |
| 5          | G19  | 8789223     | 2.80E-34             | Citrus x paradisi                  |
| 5          | G19  | 9434234     |                      | Lycopersicon esculentum            |
| 5          | G19  | 7478682     | 4.50E-34             | Glycine max                        |
| 5          | G19  | 6654934     | 1.30E-30<br>1.20E-28 |                                    |
| 5          | G19  |             |                      | Medicago truncatula                |
| . 5        |      | 3264766     | 5.50E-26             | Prunus armeniaca                   |
| 5          | G19  | 7624302     | 8.30E-26             | Gossypium arboreum                 |
|            | G19  | 9425363     | 2.90E-25             | Triticum aestivum                  |
| 5          | G19  | 688579      | 3.60E-25             | Ricinus communis_                  |
| 5          | G19  | 9419304     | 6.00E-25             | Hordeum vulgare                    |
| 5          | G19  | 7720316     | 8.80E-25             | Lotus japonicus                    |
| 7          | G261 | 5821137     | 5.10E-93             | Nicotiana tabacum                  |
| 7          | G261 | 7158881     | 8.80E-86             | Medicago sativa                    |
| 7          | G261 | 886741      | 1.00E-73             | Zea mays                           |
| 7          | G261 | 5900449     | 5.20E-47             | Lycopersicon esculentum            |
| 7          | G261 | 7561318     | 1.20E-46             | Medicago truncatula                |
| 7          | G261 | 19491       | 1.70E-42             | Lycopersicon peruvianum            |
| 7          | G261 | 7233914     | 3.50E-41             | Glycine max                        |
| 7          | G261 | 4528238     | 9.00E-41             | Citrus unshiu                      |
| 7          | G261 | 8903922     | 4.00E-39             | Hordeum vulgare                    |
| 7          | G261 | 9251913     | 1.90E-36`            | Solanum tuberosum                  |
| 9          | G28  | 7528275     | 4.20E-62             | Mesembryanthemum crystallinum      |
| 9          | G28  | 6654776     | 1.20E-57             | Medicago truncatula                |
| 9          | G28  | 790362      | 2.30E-54             | Nicotiana tabacum                  |
| 9          | G28  | 8809570     | 8.00E-54             | Nicotiana sylvestris               |
| 9          | G28  | 3342210     | 8.40E-54             | Lycopersicon esculentum            |
| 9          | G28  | 6566281     | 8.40E-47             | Glycine max                        |
| 9          | G28  | 7627061     | 8.40E-47             | Gossypium arboreum                 |
| 9          | G28  | 7324479     | 2.00E-44             | Lycopersicon pennellii             |
| 9          | G28  | 6478844     | 1.80E-35             | Matricaria chamomilla              |
| 9          | G28  | 7273972     | 7.80E-29             | Oryza sativa                       |
| 11         | G869 | 2213784     | 1.30E-19             | Lycopersicon esculentum            |
| 11         | G869 | 3065894     | 7.30E-19             | Nicotiana tabacum                  |

Figure 3B

| SEQ ID No. | GID  | Genbank NID | P-value   | Species                                    |
|------------|------|-------------|-----------|--------------------------------------------|
|            |      | 8570080     | 4.20E-18  | Oryza sativa                               |
| 11         | G869 |             | 1.50E-17  | Medicago truncatula                        |
| 11         | G869 | 7560260     | 5.20E-14  | Sorghum bicolor                            |
| 11         | G869 | 7534890     | 1.10E-13  | Glycine max                                |
| 11         | G869 | 6455322     |           | Triticum aestivum                          |
| 11         | G869 | 9362061     | 2.70E-13  |                                            |
| 11         | G869 | 7788764     | 5.70E-13  | Lotus japonicus Gossypium arboreum         |
| 11         | G869 | 7624302     | 2.50E-12  | Populus balsamifera subsp. trichocarpa     |
| 11         | G869 | 3858036     | 2.80E-12  | Glycine max                                |
| 13         | G237 | 8283916     | 4.70E-42  | Triticum aestivum                          |
| 13         | G237 | 9361969     | 8.30E-41  | Zea mays                                   |
| 13         | G237 | 4753385     | 4.10E-39  |                                            |
| 13         | G237 | 7535969     | 4.10E-33  | Sorghum bicolor  Medicago truncatula       |
| 13         | G237 | 7566043     | 9.30E-33  | Lycopersicon esculentum                    |
| 13         | G237 | 7339127     | 2.00E-32  |                                            |
| 13         | G237 | 5860031     | 1.10E-28  | Pinus taeda                                |
| 13         | G237 | 7776223     | 2.20E-28  | Lotus japonicus                            |
| 13         | G237 | 6850206     | 5.10E-28  | Oryza sativa                               |
| 13         | G237 | 5048991     | 8.50E-28  | Gossypium hirsutum                         |
| 15         | G409 | 6654773     | 6.10E-57  | Medicago truncatula                        |
| 15         | G409 | 6531235     | 2.00E-56  | Lycopersicon esculentum                    |
| 15         | G409 | 7924152     | 1.10E-47  | Glycine max                                |
| 15         | G409 | . 5006854   | 6.50E-43. | Oryza sativa                               |
| 15         | G409 | 8098529     | 2.10E-41  | Hordeum vulgare                            |
| 15         | G409 | 767697      | 1.40E-37  | Daucus carota                              |
| 15         | G409 | 8328991     | 3.30E-37  | Mesembryanthemum crystallinum              |
| 15         | G409 | 7415613     | 1.40E-32  | Physcomitrella patens                      |
| 15         | G409 | 7785121     | 2.80E-32  | Lotus japonicus                            |
| 15         | G409 | 6916941     | 4.80E-32  | Lycopersicon pennellii                     |
| 17         | G418 | 7239156     | 1.90E-123 | Maius x domestica                          |
| 17         | G418 | 5892190     | 2.00E-62  | Lycopersicon esculentum                    |
| 17         | G418 | 7628137     | 8.70E-58  | Gossypium arboreum                         |
| 17         | G418 | 9205496     | 3.90E-51  | Glycine max                                |
| 17         | G418 | 6069643     | 1.50E-45  | Oryza sativa                               |
| 17         | G418 | 7562931     | 6.90E-45  | Medicago truncatula                        |
| 17         | G418 | 7781695     | 5.50E-40  | Lotus japonicus                            |
| 17         | G418 | 9298824     | 7.80E-34  | Sorghum bicolor                            |
| 17         | G418 | 9428023     | 3.90E-32  | Triticum aestivum                          |
| 17         | G418 | 7244366     | 1.30E-31  | Mentha x piperita  Lycopersicon esculentum |
| 19         | G591 | 7646333     | 1.90E-55  |                                            |
| 19         | G591 | 7924288     | 4.10E-53  | Glycine max                                |
| 19         | G591 | 7722838     | 1.10E-41  | Lotus japonicus                            |
| 19         | G591 | 5804781     | 1.40E-24  | Nicotiana tabacum                          |
| 19         | G591 | 9198126     | 2.50E-23  | Medicago truncatula Oryza sativa           |
| 19         | G591 | 427677      | 9.50E-15  | Gossypium arboreum                         |
| 19         | G591 | 7624745     | 1.80E-14  | Sorghum bicolor                            |
| 19         | G591 | 7535578     | 8.70E-14  |                                            |
| 19         | G591 | 5915205     | 1.30E-11  | Zea mays Solanum tuberosum                 |
| 19         | G591 | 9249806     | 2.60E-11  | Lycopersicon esculentum                    |
| 21         | G525 | 4384535     | 5.60E-61  |                                            |
| 21         | G525 | 6454868     | 2.00E-58  | Glycine max Petunia x hybrida              |
| 21         | G525 | 6066594     | 9.30E-54  |                                            |
| 21         | G525 | 4977542     | 8.60E-51  | Oryza sativa                               |

Figure 3C

| SEQ ID No. | GID  | Genbank NID | P-value   | Species                               |
|------------|------|-------------|-----------|---------------------------------------|
| 21         | G525 | 9361647     | 2.50E-50  | Triticum aestivum                     |
| 21         | G525 | 4218536     | 5.20E-50  | Triticum sp.                          |
| 21         | G525 | 6732159     | 5.20E-50  | Triticum monococcum                   |
| 21         | G525 | 5343151     | 2.70E-49  | Zea mays                              |
| 21         | G525 | 5049217     | 4.20E-48  | Gossypium hirsutum                    |
| 21         | G525 | 8708684     | 8.90E-48  | Hordeum vulgare                       |
| 23         | G545 | 4666359     | 8.30E-55  | Datisca glomerata                     |
| 23         | G545 | 7228328     | 3.70E-52  | Medicago sativa                       |
| 23         | G545 | 1763062     | 1.30E-51  | Glycine max                           |
| 23         | G545 | 7206360     | 3.10E-44  | Medicago truncatula                   |
| 23         | G545 | 7626808     | 9.60E-40  | Gossypium arboreum                    |
| 23         | G545 | 439492      | 3.90E-39  | Petunia x hybrida                     |
| 23         | G545 | 4382658     | 1.70E-38  | Lycopersicon esculentum               |
| 23         | G545 | 8486215     | 8.70E-38  | Euphorbia esula                       |
| 23         | G545 | 7322653     | 6.80E-37  | Lycopersicon hirsutum                 |
| 23         | G545 | 7785845     | 1.10E-33  | Lotus japonicus                       |
| 25         | G865 | 9417297     | 1.70E-32  | Triticum aestivum                     |
| 25         | G865 | 7206394     | 4.90E-29  | Medicago truncatula                   |
| 25         | G865 | 7796858     | 5.70E-27  | Glycine max                           |
| 25         | G865 | 4387560     | 9.20E-25  | Lycopersicon esculentum               |
| 25         | G865 | 569065      | 1.50E-23  | Oryza sativa                          |
| 25         | G865 | 7788764     | 4.10E-23  | Lotus japonicus                       |
| 25         | G865 | 790362      | 8.40E-22  | Nicotiana tabacum                     |
| 25         | G865 | 7528275     | 5.90E-21  | Mesembryanthemum crystallinum         |
| 25         | G865 | 3264766     | 8.80E-20  | Prunus armeniaca                      |
| 25         | G865 | 8098026     | 2.00E-19  | Hordeum vulgare                       |
| 27         | G881 | 5820418     | 9.80E-29  | Glycine max                           |
| 27         | G881 | 8440065     | 1.00E-27  | Gossypium hirsutum                    |
| . 27       | G881 | 4380578     | 1.50E-27  | Lycopersicon esculentum               |
| 27         | G881 | 9199620     | 2.70E-27  | Medicago truncatula                   |
| 27         | G881 | 6472584     | 2.20E-24  | Nicotiana tabacum                     |
| 27         | G881 | 9250698     | 3.20E-24  | Solanum tuberosum                     |
| 27         | G881 | 8205146     | 5.20E-21  | Oryza sativa                          |
| 27         | G881 | 1159878     | 8.20E-17  | Avena fatua                           |
| 27         | G881 | 9299778     | 2.70E-16  | Sorghum bicolor                       |
| 27         | G881 | 9444636     | 1.10E-14  | Triticum aestivum                     |
| 29         | G896 | 9410462     | 1.90E-101 | Hordeum vulgare                       |
| 29         | G896 | 7628908     | 3.60E-82  | Gossypium arboreum                    |
| 29         | G896 | 7244408     | 1.80E-79  | Mentha x piperita                     |
| 29         | G896 | 5046180     | 2.10E-73  | Gossypium hirşutum                    |
| 29         | G896 | 7678652     | 1.10E-63  | Lotus japonicus                       |
| 29         | G896 | 8286031     | 1.40E-60  | Glycine max                           |
| 29         | G896 | 5888938     | 4.50E-58  | Lycopersicon esculentum               |
| 29         | G896 | 9298238     | 9.20E-54  | Sorghum bicolor                       |
| 29         | G896 | 7566414     | 8.00E-52  | Medicago truncatula                   |
| 29         | G896 | 8845076     | 1.00E-46  | Triticum aestivum                     |
| 31         | G378 | 5270028     | 5.10E-73  | Lycopersicon esculentum               |
| 31         | G378 | 5048335     | 4.10E-58  | Gossypium hirsutum                    |
| 31         | G378 | 7239521     | 5.90E-42  | Oryza sativa                          |
| 31         | G378 | 5606120     | 6.80E-36  | Glycine max                           |
| 31         | G378 | 3853800     | 3.20E-30  | Populus tremula x Populus tremuloides |
| 31         | G378 | 7659983     | 1.70E-23  | Sorghum bicolor                       |

Figure 3D

| SEQ ID No. | GID    | Genbank NID | P-value  | Species                                |
|------------|--------|-------------|----------|----------------------------------------|
| 31         | G378   | 6626305     | 1.10E-21 | Zea mays                               |
| 31         | G378   | 9412941     | 9.40E-19 | Triticum aestivum                      |
| 31         | G378   | 3242033     | 4.30E-17 | Mesembryanthemum crystallinum          |
| 31         | G378   | 7626259     | 7.70E-13 | Gossypium arboreum                     |
| 33         | G229   | 7337390     | 6.60E-51 | Lycopersicon esculentum                |
| 33         | G229   | 9823237     | 3.60E-50 | Hordeum vulgare                        |
| 33         | G229   | 7244424     | 4.90E-50 | Mentha x piperita                      |
| 33         | G229   | 7776053     | 1.70E-49 | Lotus japonicus                        |
| 33         | G229   | 2921335     | 5.80E-48 | Gossypium hirsutum                     |
| 33         | G229   | 1491932     | 4.50E-47 | Zea mays                               |
| 33         | G229   | 6455590     | 2.80E-44 | Glycine max                            |
| 33         | G229   | 6020191     | 2.00E-41 | Pinus taeda                            |
| 33         | G229   | 10697236    | 4.20E-41 | Oryza sativa                           |
| 33         | G229   | 7765706     | 5.10E-41 | Medicago truncatula                    |
| 35         | G663   | 7673087     | 5.10E-43 | Petunia integrifolia                   |
| 35         | G663   | 9508051     | 3.00E-41 | Lycopersicon esculentum                |
| 35         | G663   | 7673091     | 3.30E-41 | Petunia x hybrida                      |
| 35         | G663   | 7673097     | 2.40E-36 | Petunia axillaris                      |
| 35         | G663   | 5048991     | 1.20E-33 | Gossypium hirsutum                     |
| 35         | G663   | 6455590     | 2.50E-31 | Glycine max                            |
| 35         | G663   | 7560175     | 1.90E-27 | Medicago truncatula                    |
| 35         | G663   | 7244424     | 4.10E-26 | Mentha x piperita                      |
| 35         | G663   | 9954117     | 3.40E-25 | Solanum tuberosum                      |
| 35         | G663   | 6020191     | 3.60E-25 | Pinus taeda                            |
| 37         | G1396  | 498704      | 5.20E-22 | Spinacia oleracea                      |
| 37         | G1396  | 7502400     | 1.20E-21 | Gossypium arboreum                     |
| 37         | G1396  | 3857536     | 3.40E-21 | Populus balsamifera subsp. trichocarpa |
| 37         | G1396  | 4385300     | 1.20E-20 | Lycopersicon esculentum                |
| 37         | G1396  | 6917249     | 1.50E-20 | Lycopersicon pennellii                 |
| 37         | G1396  | 6915979     | 1.70E-20 | Glycine max                            |
| 37         | G1396  | 7674530     | 2.70E-20 | Medicago truncatula                    |
| 37         | G1396  | 8090319     | 3.40E-20 | Sorghum bicolor                        |
|            | G1396  | 3592182     | 9.10E-20 | Oryza sativa                           |
| 37         | G1396  | 6654124     | 1.10E-19 | Zea mays                               |
| 37         | G265   | 5821137     | 6.50E-83 | Nicotiana tabacum                      |
| 39<br>39   | G265   | 7158881     | 3.80E-79 | Medicago sativa                        |
| 39         | G265   | 886741      | 1.60E-70 | Zea mays                               |
| 39         | G265   | 5900449     | 5.60E-43 | Lycopersicon esculentum                |
| 39         | G265   | 8903922     | 8.20E-43 | Hordeum vulgare                        |
| 39         | G265   | 7561318     | 2.10E-41 | Medicago truncatula                    |
| 39         | G265   | 9204445     | 5.30E-36 | Glycine max                            |
| . 39       | G265   | 4528238     | 5.40E-36 | Citrus unshiu                          |
| 39         | G265   | 19489       | 2.10E-35 | Lycopersicon peruvianum                |
| 39         | G265   | 9251913     | 2.00E-32 | Solanum tuberosum                      |
| 41         | G1006  | 7528275     | 2.70E-51 | Mesembryanthemum crystallinum          |
| 41         | G1006  | 3342210     | 4.90E-49 | Lycopersicon esculentum                |
| 41         | G1006  | 6654776     | 1.90E-48 | Medicago truncatula                    |
| 41         | G1006  | 790362      | 2.30E-47 | Nicotiana tabacum                      |
| 41         | G1006  | 8809570     | 2.00E-46 | Nicotiana sylvestris                   |
| 41         | G1006  | 7627061     | 6.40E-41 | Gossypium arboreum                     |
| 41         | G1006  | 7324479     | 1.20E-35 | Lycopersicon pennellii                 |
|            | G1006  | 6478844     | 1.80E-35 | Matricaria chamomilla                  |
| 41         | G 1000 | 1 07/0077   | 1.000    | ,                                      |

Figure 3E

| SEQ ID No. | GID    | Genbank NID | P-value   | Species                 |
|------------|--------|-------------|-----------|-------------------------|
| 41         | G1006  | 6566281     | 1.30E-34  | Glycine max             |
| 41         | G1006  | 4716624     | 3.80E-28  | Oryza sativa            |
| 43         | G1309  | 9361969     | 2.40E-45  | Triticum aestivum       |
| 43         | G1309  | 7566043     | 9.60E-35  | Medicago truncatula     |
| 43         | G1309  | 5891104     | 2.20E-31  | Lycopersicon esculentum |
| 43         | G1309  | 5860031     | 2.10E-30  | Pinus taeda             |
| 43         | G1309  | 5049507     | 6.20E-30  | Gossypium hirsutum      |
| 43         | G1309  | 5139805     | 1.30E-29  | Glycine max             |
| 43         | G1309  | 6850206     | 2.50E-29  | Oryza sativa            |
| 43         | G1309  | 7721017     | 3.40E-29  | Lotus japonicus         |
| 43         | G1309  | 8368245     | 5.20E-28  | Zea mays                |
| 43         | G1309  | 20560       | 9.50E-27  | Petunia x hybrida       |
| 45         | G2550  | 4380729     | 2.80E-51  | Lycopersicon esculentum |
| 45         | G2550  | 5667196     | 2.20E-49  | Oryza sativa            |
| 45         | G2550  | 8669454     | 1.40E-48  | Glycine max             |
| 45         | G2550  | 9298824     | 1.50E-48  | Sorghum bicolor         |
| 45         | G2550  | 7239156     | 9.90E-46  | Malus x domestica       |
| 45         | G2550  | 7570704     | 5.70E-45  | Medicago truncatula     |
| 45         | G2550  | 7628137     | 3.30E-42  | Gossypium arboreum      |
| . 45       | G2550  | 7244366     | 6.00E-41  | Mentha x piperita       |
| 45         | G2550  | 9428023     | 4.70E-40  | Triticum aestivum       |
| 45         | G2550  | 9250642     | 3.50E-39  | Solanum tuberosum       |
| 47         | G965   | 7239156     | 3.10E-126 | Malus x domestica       |
| 47         | G965   | 5892190     | 2.00E-62  | Lycopersicon esculentum |
| 47         | G965   | 7628137     | 1.60E-56  | Gossypium arboreum      |
| 47         | G965   | 9205496     | 2.60E-49  | Glycine max             |
| 47         | G965   | 6069643     | 1.70E-45  | Oryza sativa            |
| 47         | G965   | 7562931     | 2.50E-44  | Medicago truncatula     |
| 47         | G965   | 7781695     | 1.60E-41  | Lotus japonicus         |
| 47         | G965   | 9298824     | 6.30E-33  | Sorghum bicolor         |
| 47         | G965   | 9428023     | 1.50E-31  | Triticum aestivum       |
| 47         | G965   | 7244366     | 1.20E-29  | Mentha x piperita       |
| 49         | G793   | 6976712     | 3.60E-43  | Lycopersicon esculentum |
| 49         | G793   | 7924288     | 2.00E-41  | Glycine max             |
| 49         | G793   | 7614163     | 3.90E-34  | Lotus japonicus         |
| 49         | G793   | 9198126     | 5.70E-23  | Medicago truncatula     |
| 49         | G793   | 5804781     | 1.10E-22  | Nicotiana tabacum       |
| 49         | G793   | 7535578     | 1.60E-14  | Sorghum bicolor         |
| 49         | G793   | 427677      | 6.10E-14  | Oryza sativa            |
| 49         | G793   | 5915205     | 2.90E-10  | Zea mays                |
| 49         | G793   | 9249806     | 4.20E-10  | Solanum tuberosum       |
| 49         | G793 . | 7624745     | 1.30E-09  | Gossypium arboreum      |
| 51         | G764   | 4384535     | 7.00E-70  | Lycopersicon esculentum |
| 51         | G764   | 5049217     | 1.80E-65  | Gossypium hirsutum      |
| 51         | G764   | 6454868     | 1.90E-64  | Glycine max             |
| 51         | G764   | 6066594     | 5.20E-59  | Petunia x hybrida       |
| 51         | G764   | 4218536     | 2.30E-52  | Triticum sp.            |
| 51         | G764   | 6732159     | 2.30E-52  | Triticum monococcum     |
| 51         | G764   | 9361647     | 7.50E-52  | Triticum aestivum       |
| 51         | G764   | 4977542     | 4.10E-49  | Oryza sativa            |
| 51         | G764   | 6799764     | 4.40E-49  | Medicago truncatula     |
| 51         | G764   | 9296257     | 1.00E-48  | Sorghum bicolor         |

Figure 3F

| SEQ ID No. | GID   | Genbank NID | P-value  | Species                 |
|------------|-------|-------------|----------|-------------------------|
| 53         | G350  | 439492      | 5.20E-53 | Petunia x hybrida       |
| 53         | G350  | 7228328     | 8.90E-51 | Medicago sativa         |
| 53         | G350  | 4666359     | 3.10E-48 | Datisca glomerata       |
| 53         | G350  | 1763062     | 8.30E-48 | Glycine max             |
| 53         | G350  | 7626808     | 9.10E-44 | Gossypium arboreum      |
| 53         | G350  | 7206360     | 2.20E-43 | Medicago truncatula     |
| 53         | G350  | 2981168     | 2.10E-38 | Nicotiana tabacum       |
| 53         | G350  | 7322653     | 2.00E-37 | Lycopersicon hirsutum   |
| 53         | G350  | 5276755     | 2.40E-37 | Lycopersicon esculentum |
| 53         | G350  | 2058503     | 1.10E-31 | Brassica rapa           |
| 55         | G986  | 6472584     | 1.00E-34 | Nicotiana tabacum       |
| 55         | G986  | 8440065     | 8.80E-33 | Gossypium hirsutum      |
| 55         | G986  | 4385167     | 1.50E-32 | Lycopersicon esculentum |
| 55         | G986  | 8205146     | 5.50E-30 | Oryza sativa            |
| 55         | G986  | 5820418     | 8.80E-26 | Glycine max             |
| 55         | G986  | 1159878     | 2.30E-23 | Avena fatua             |
| 55         | G986  | 9250698     | 4.60E-22 | Solanum tuberosum       |
| 55         | G986  | 9413507     | 7.90E-21 | Triticum aestivum       |
| 55         | G986  | 7748539     | 2.30E-20 | Lotus japonicus         |
| 55         | G986  | 9199620     | 1.30E-16 | Medicago truncatula     |
| 57         | G1349 | 8904043     | 1.50E-47 | Hordeum vulgare         |
| 57         | G1349 | 7244408     | 2.40E-47 | Mentha x piperita       |
| 57         | G1349 | 8286031     | 3.60E-46 | Glycine max             |
| 57         | G1349 | 9298238     | 9.10E-36 | Sorghum bicolor         |
| . 57       | G1349 | 7628908     | 4.70E-34 | Gossypium arboreum      |
| 57         | G1349 | 5046180     | 1.50E-33 | Gossypium hirsutum      |
| 57         | G1349 | 5888938     | 1.30E-30 | Lycopersicon esculentum |
| 57         | G1349 | 5043924     | 6.20E-30 | Pinus taeda             |
| 57         | G1349 | 8845076     | 4.40E-29 | Triticum aestivum       |
| 57         | G1349 | 7678652     | 4.20E-27 | Lotus japonicus         |

## MBI15 Sequence Listing.ST25 SEQUENCE LISTING

| :                                                                                                 | Heard,<br>Keddie<br>Yu, Guo<br>Ratclii<br>Creelma<br>Jiang,<br>Pineda<br>Reuber<br>Adam,                                                                                                        | , Jame<br>o-Liar<br>ffe, C<br>an, Ro<br>Cai-2<br>, Omai<br>, Lynr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es<br>ng<br>Dliver<br>obert<br>chong                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                          |                                                                          |                                                            |                                                                                              |                                                                          |                                                                          |                                                                       |                                                            | :                        |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------|--------------------------|
| <120>                                                                                             | Patho                                                                                                                                                                                           | gen Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | esistan                                                                                  | ce Ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | enes                                                                      | 1                                                                        |                                                                          |                                                            |                                                                                              |                                                                          |                                                                          |                                                                       |                                                            |                          |
| <130>                                                                                             | MBI-0                                                                                                                                                                                           | 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | ·                                                                        |                                                                          |                                                            |                                                                                              |                                                                          |                                                                          |                                                                       |                                                            |                          |
| <150><br><151>                                                                                    | 60/16<br>1999-                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | ٠                                                                        |                                                                          | •                                                          |                                                                                              |                                                                          | ٠.                                                                       |                                                                       |                                                            | •                        |
| <150><br><151>                                                                                    | Plant<br>2000-                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : Modif                                                                                  | icati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ion                                                                       | III                                                                      |                                                                          |                                                            |                                                                                              |                                                                          |                                                                          |                                                                       |                                                            |                          |
| <150><br><151>                                                                                    | 60/19<br>2000-                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                          |                                                                          |                                                            |                                                                                              | -                                                                        |                                                                          |                                                                       |                                                            |                          |
| <160>                                                                                             | 58                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                          |                                                                          |                                                            |                                                                                              | ,                                                                        |                                                                          |                                                                       |                                                            |                          |
| <170>                                                                                             | Paten                                                                                                                                                                                           | tIn ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ersion                                                                                   | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           |                                                                          |                                                                          |                                                            |                                                                                              |                                                                          |                                                                          |                                                                       |                                                            |                          |
|                                                                                                   | 1<br>1187<br>DNA<br>Arabi                                                                                                                                                                       | dopsi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s thali                                                                                  | iana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |                                                                          |                                                                          |                                                            |                                                                                              |                                                                          |                                                                          |                                                                       |                                                            |                          |
|                                                                                                   | CDS<br>(50).<br>G188                                                                                                                                                                            | . (1096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5)                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                          |                                                                          |                                                            |                                                                                              |                                                                          |                                                                          |                                                                       |                                                            |                          |
|                                                                                                   |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                          |                                                                          |                                                            |                                                                                              |                                                                          |                                                                          |                                                                       |                                                            |                          |
| <400><br>ctctca                                                                                   | l<br>accaa c                                                                                                                                                                                    | ataato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | caaa ga                                                                                  | agct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ttcc                                                                      | : tca                                                                    | ıcgaa                                                                    | ittc                                                       | aaga                                                                                         | itege                                                                    | c at<br>Me<br>1                                                          | g to                                                                  | c tcc<br>er Ser                                            | 58                       |
| ctctca                                                                                            | 1<br>accaa c<br>at tgg<br>ap Trp                                                                                                                                                                | gat ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | te tte                                                                                   | acc (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | atc                                                                       | qtc                                                                      | aqa                                                                      | agc                                                        | tgc                                                                                          | agc                                                                      | Me<br>1<br>tct                                                           | tct                                                                   | er Ser<br>gtt                                              | 58<br>106                |
| gag ga<br>Glu As<br>5                                                                             | nccaa c                                                                                                                                                                                         | gat ci<br>Asp Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tc ttc<br>eu Phe                                                                         | gcc q<br>Ala 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gtc<br>Val                                                                | gtc<br>Val<br>cat                                                        | aga<br>Arg<br>qaa                                                        | agc<br>Ser                                                 | tgc<br>Cys<br>15                                                                             | agc<br>Ser                                                               | tct<br>Ser                                                               | tct<br>Ser                                                            | gtt<br>Val                                                 |                          |
| gag ga<br>Glu As<br>5<br>tcc ac<br>Ser Th<br>20                                                   | at tgg                                                                                                                                                                                          | gat ci<br>Asp Le<br>aat to<br>Asn Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tc ttc<br>eu Phe<br>et tgt<br>er Cys<br>25<br>at cct<br>sp Pro                           | gcc (Ala (10) gct (Ala (10) cct (10) gct (10) act (10) ac | gtc<br>Val<br>ggt<br>Gly                                                  | gtc<br>Val<br>cat<br>His                                                 | aga<br>Arg<br>gaa<br>Glu                                                 | agc<br>Ser<br>gac<br>Asp<br>30                             | tgc<br>Cys<br>15<br>gac<br>Asp                                                               | agc<br>Ser<br>ata<br>Ile                                                 | tct<br>Ser<br>gga<br>Gly                                                 | tct<br>Ser<br>aac<br>Asn                                              | gtt<br>Val<br>tgt<br>Cys<br>35                             | 106                      |
| gag ga<br>Glu As<br>5<br>tcc ac<br>Ser Th<br>20<br>aaa ca<br>Lys Gl                               | at tgg ap Trp cc acc nr Thr aa caa in Gln gc aac                                                                                                                                                | gat chasp Least to Asn Secan gan A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tc ttc<br>eu Phe<br>et tgt<br>er Cys<br>25<br>at ect<br>sp Pro                           | gcc Ala 10 gct Ala cct Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gtc<br>Val<br>ggt<br>Gly<br>cct<br>Pro                                    | gtc<br>Val<br>cat<br>His<br>cct<br>Pro                                   | aga<br>Arg<br>gaa<br>Glu<br>cct<br>Pro<br>45                             | agc<br>Ser<br>gac<br>Asp<br>30<br>ctg<br>Leu               | tgc<br>Cys<br>15<br>gac<br>Asp<br>ttt<br>Phe                                                 | agc<br>Ser<br>ata<br>Ile<br>caa<br>Gln                                   | tct<br>Ser<br>gga<br>Gly<br>gct<br>Ala                                   | tct<br>Ser<br>aac<br>Asn<br>tct<br>Ser<br>50                          | gtt<br>Val<br>tgt<br>Cys<br>35<br>tct<br>Ser               | 106                      |
| gag ga<br>Glu As<br>5<br>tcc ac<br>Ser Th<br>20<br>aaa ca<br>Lys Gl<br>tct tg<br>Ser Cy           | at tgg ap Trp cc acc nr Thr aa caa in Gln gc aac                                                                                                                                                | gat class Local Garage Caa Garage Caa Garage Caa Garage Caa Garage Caa Garage Caa Caa Caa Caa Caa Caa Caa Caa Caa Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tc ttc<br>eu Phe<br>et tgt<br>er Cys<br>25<br>at cct<br>sp Pro<br>0                      | gcc Ala 10 gct Ala cct pro gat Asp tgg Trp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gtc<br>Val<br>ggt<br>Gly<br>cct<br>Pro                                    | gtc<br>Val<br>cat<br>His<br>cct<br>Pro<br>tgc<br>Cys<br>60               | aga<br>Arg<br>gaa<br>Glu<br>cct<br>Pro<br>45<br>aaa<br>Lys               | agc<br>Ser<br>gac<br>Asp<br>30<br>ctg<br>Leu<br>cca<br>Pro | tgc<br>Cys<br>15<br>gac<br>Asp<br>ttt<br>Phe<br>ttt                                          | agc<br>Ser<br>ata<br>Ile<br>caa<br>Gln<br>tta<br>Leu                     | gga<br>Gly<br>gct<br>Ala<br>ccc<br>Pro<br>65                             | tct<br>Ser<br>aac<br>Asn<br>tct<br>Ser<br>50<br>gtt<br>Val            | gtt<br>Val<br>tgt<br>Cys<br>35<br>tct<br>Ser<br>act<br>Thr | 106<br>154<br>202        |
| gag ga<br>Glu As<br>5<br>tcc ac<br>Ser Th<br>20<br>aaa ca<br>Lys Gl<br>tct tg<br>Ser Cy<br>act ac | at tgg ap Trp as acc ar Thr as cas an Gln ac asc r Thr ac acc acc | gat class Load San                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tc ttc eu Phe et tgt er Cys 25 et cct sp Pro 0 ta caa eu Gln et act hr Thr               | gcc Ala 10 gct Ala cct Pro gat Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gtc<br>Val<br>ggt<br>Gly<br>cct<br>Pro<br>tct<br>Ser<br>tct<br>Ser<br>75  | gtc<br>Val<br>cat<br>His<br>cct<br>Pro<br>tgc<br>Cys<br>60<br>cct<br>Pro | aga<br>Arg<br>gaa<br>Glu<br>cct<br>Pro<br>45<br>aaa<br>Lys               | agc<br>Ser<br>gac<br>Asp<br>30<br>ctg<br>Leu<br>cca<br>Pro | tgc<br>Cys<br>15<br>gac<br>Asp<br>ttt<br>Phe<br>ttt<br>Phe                                   | agc<br>Ser<br>ata<br>Ile<br>caa<br>Gln<br>tta<br>Leu<br>ctt<br>Leu<br>80 | tct<br>Ser<br>gga<br>Gly<br>gct<br>Ala<br>ccc<br>Pro<br>65<br>cct<br>Pro | tct<br>Ser<br>aac Asn<br>tct<br>Ser<br>50<br>gtt<br>Val<br>cct<br>Pro | gtt<br>Val<br>tgt<br>Cys<br>35<br>tct<br>Ser<br>act<br>Thr | 106<br>154<br>202<br>250 |
| gag gag gag gag gag gag s 5  tcc ac ser Th 20  aaa ca Lys Gl  tct tg ser Cy  act ac Thr Th        | at tgg ap Trp as acc ar Thr as cas an Gln ac asc r Thr ac acc acc | gat character and the case gag the case gag the case gag the case the case the case the case the case the case case the case the case case the | tc ttc eu Phe et tgt er Cys 25 et cct sp Pro 0 ta caa eu Gln et act hr Thr ca tct ro Ser | gcc Ala 10 gct Ala cct pro gat Asp tgg Trp ccc pro 90 caa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gtc<br>Val<br>ggt<br>Gly<br>cct<br>Pro<br>tct<br>Ser<br>tct<br>Ser<br>aat | gtc<br>Val<br>cat<br>His<br>cct<br>Pro<br>tgc<br>Cys<br>60<br>cct<br>Pro | aga<br>Arg<br>gaa<br>Glu<br>cct<br>Pro<br>45<br>aaa<br>Lys<br>cct<br>Pro | agc Ser gac Asp 30 ctg Leu cca Pro cct Pro cta Leu ctt     | tgc<br>Cys<br>15<br>gac<br>Asp<br>ttt<br>Phe<br>ttt<br>Phe<br>cta<br>Leu<br>aaa<br>Lys<br>95 | agc Ser ata Ile caa Gln tta Leu ctt Leu 80 caa Gln                       | Med 1 tct Ser gga Gly gct Ala ccc Pro 65 cct Pro                         | tct<br>Ser<br>aac Asn<br>tct<br>Ser<br>50<br>gtt<br>Val<br>cct<br>Pro | gtt<br>Val<br>tgt<br>Cys<br>35<br>tct<br>Ser<br>act<br>Thr | 106<br>154<br>202<br>250 |

Page 1

|                                                    | 120                               |                                 | uence Listin                          | g.ST25<br>130                             |        |
|----------------------------------------------------|-----------------------------------|---------------------------------|---------------------------------------|-------------------------------------------|--------|
| cag ctt ctt caa<br>Gln Leu Leu Gln<br>135          | caa caa tcc<br>Gln Gln Ser        | caa cct cc<br>Gln Pro Pr<br>140 | cc ctt cga to<br>ro Leu Arg Se        | ct aga aaa aga<br>er Arg Lys Arg<br>145   | 490    |
| aag aat cag caa<br>Lys Asn Gln Gln<br>150          | aaa aga acc<br>Lys Arg Thr        | ata tgt ca<br>Ile Cys H:<br>155 | 18 val lint G                         | aa gag aat ctt<br>ln Glu Asn Leu<br>50    | 538    |
| tct tct gat ttg<br>Ser Ser Asp Leu<br>165          | tgg gct tgg<br>Trp Ala Trp<br>170 | cgt aaa t<br>Arg Lys T          | ac ggt caa a<br>yr Gly Gln L<br>175   | aa ccc atc aaa<br>ys Pro Ile Lys          | -586   |
| ggc tct cct tat<br>Gly Ser Pro Tyr<br>180          | cca agg aat<br>Pro Arg Asn<br>185 | tat tac a<br>Tyr Tyr A          | ga tgt agt a<br>rg Cys Ser S<br>190   | gc tca aaa gga<br>er Ser Lys Gly<br>195   | 634    |
| tgt tta gca cga<br>Cys Leu Ala Arg                 | aaa caa gtt<br>Lys Gln Val<br>200 | GIU AIG 3                       | gt aat tta g<br>er Asn Leu A<br>:05   | at cct aat atc<br>sp Pro Asn Ile<br>210   | 682    |
| ttc atc gtt act<br>Phe Ile Val Thr<br>215          | Tyr Thr Gly                       | gaa cac a<br>Glu His T<br>220   | ct cat cca c<br>Thr His Pro A         | gt cct act cac<br>rg Pro Thr His<br>225   | 730    |
| cgg aac tct ctc<br>Arg Asn Ser Leu<br>230          | gcc gga agt<br>Ala Gly Ser        | act cgt a<br>Thr Arg A<br>235   | ABIL DAS DET C                        | ag ccc gtt aac<br>lln Pro Val Asn<br>140  | 778    |
| ccg gtt cct aaa<br>Pro Val Pro Lys<br>245          | ccg gac aca<br>Pro Asp Thr<br>250 | Ser Pro r                       | tta tcg gat a<br>Leu Ser Asp 1<br>255 | ica gta aaa gaa<br>Thr Val Lys Glu        | 826    |
| gag att cat ctt<br>Glu Ile His Lev<br>260          | tet eeg acg<br>Ser Pro Thr<br>265 | aca ccg t<br>Thr Pro I          | ttg aaa gga a<br>Leu Lys Gly 1<br>270 | ac gat gac gtt<br>Asn Asp Asp Val<br>275  | 874    |
| caa gaa acg aat<br>Gln Glu Thr Ası                 | gga gat gaa<br>Gly Asp Glu<br>280 | 1 Wab wer                       | gtt ggt caa g<br>Val Gly Gln (<br>285 | gaa gtc aac atg<br>3lu Val Asn Met<br>290 | 922    |
| Glu Glu Glu Glu<br>29                              | i gin gin gir<br>5                | 300                             |                                       | gat gaa gaa gaa<br>Asp Glu Glu Glu<br>305 | 970    |
| Glu Asp Asp Asp<br>310                             | p Asp val As                      | 315                             | DCG 110 110 .                         | aat tta gcg gtg<br>Asn Leu Ala Val<br>320 | 1018   |
| Arg Asp Arg As<br>325                              | p Asp Leu Pn<br>33                | e Phe Ala                       | 335                                   | cca tct tgg tcc<br>Pro Ser Trp Ser        | 1066   |
| gcc gga tcc gc<br>Ala Gly Ser Al<br>340            | a GIY ASP GI<br>345               | A GIA GIA                       |                                       |                                           | 1116   |
| atttacaatt tac                                     | aaaaaga aaaa                      | agtcag ttt                      | ttaatta ttat                          | ttttgt ttgttaaaac                         | : 1176 |
| ttgacattta t                                       |                                   |                                 |                                       |                                           | 1187   |
| <210> 2<br><211> 348<br><212> PRT<br><213> Arabido | opsis thaliar                     | ıa                              |                                       |                                           |        |
| <400> 2                                            |                                   |                                 |                                       |                                           |        |
| Met Ser Ser Gl                                     | lu Asp Trp As<br>5                | p Leu Phe                       | Ala Val Val<br>10                     | Arg Ser Cys Ser<br>15                     |        |

Ser Ser Val Ser Thr Thr Asn Ser Cys Ala Gly His Glu Asp Asp Ile Page 2 MBI15 Sequence Listing.ST25 25 30

20

Gly Asn Cys Lys Gln Gln Gln Asp Pro Pro Pro Pro Pro Leu Phe Gln 35 40 45

Ala Ser Ser Ser Cys Asn Glu Leu Gln Asp Ser Cys Lys Pro Phe Leu 50 55 60

Pro Val Thr Thr Thr Thr Thr Thr Thr Trp Ser Pro Pro Pro Leu Leu 65 70 80

Pro Pro Pro Lys Ala Ser Ser Pro Ser Pro Asn Ile Leu Leu Lys Gln
85 90 95

Glu Gln Val Leu Leu Glu Ser Gln Asp Gln Lys Pro Pro Leu Ser Val 100 105 110

Arg Val Phe Pro Pro Ser Thr Ser Ser Ser Val Phe Val Phe Arg Gly

Gln Arg Asp Gln Leu Leu Gln Gln Gln Ser Gln Pro Pro Leu Arg Ser 130 135 140

Arg Lys Arg Lys Asn Gln Gln Lys Arg Thr Ile Cys His Val Thr Gln 145 150 150 160

Glu Asn Leu Ser Ser Asp Leu Trp Ala Trp Arg Lys Tyr Gly Gln Lys 165 170 175

Pro Ile Lys Gly Ser Pro Tyr Pro Arg Asn Tyr Tyr Arg Cys Ser Ser 180 185 190

Ser Lys Gly Cys Leu Ala Arg Lys Gln Val Glu Arg Ser Asn Leu Asp 195 200 205

Pro Asn Ile Phe Ile Val Thr Tyr Thr Gly Glu His Thr His Pro Arg 210 215 220

Pro Thr His Arg Asn Ser Leu Ala Gly Ser Thr Arg Asn Lys Ser Gln 225 230 240

Pro Val Asn Pro Val Pro Lys Pro Asp Thr Ser Pro Leu Ser Asp Thr 245 250 255

Val Lys Glu Glu Ile His Leu Ser Pro Thr Thr Pro Leu Lys Gly Asn 260 265 270

Asp Asp Val Glu Glu Thr Asn Gly Asp Glu Asp Met Val Gly Glu Glu 275 280 285

Val Asn Met Glu Glu Glu Glu Glu Glu Glu Val Glu Glu Asp Asp 290 295 300

Glu Glu Glu Glu Asp Asp Asp Asp Val Asp Asp Leu Leu Ile Pro Asn 305 310 315 320

Leu Ala Val Arg Asp Arg Asp Leu Phe Phe Ala Gly Ser Phe Pro 325

Ser Trp Ser Ala Gly Ser Ala Gly Asp Gly Gly Gly 340

| <210         |             |            |           |           |            |          |      |            |       |     |      |            |            |            |            |     |
|--------------|-------------|------------|-----------|-----------|------------|----------|------|------------|-------|-----|------|------------|------------|------------|------------|-----|
| <211<br><212 |             | 431<br>NA  |           |           |            |          |      |            |       |     |      |            |            |            |            |     |
| <213         |             |            | aqob      | is t      | hali       | ana      |      |            |       |     |      |            |            |            |            |     |
| <220         | _           |            |           |           |            |          |      |            |       |     |      |            |            |            |            |     |
| <221         |             | DS         |           |           |            |          |      |            |       |     |      |            |            |            |            |     |
| <222         |             | 129)       | (1        | 211)      |            |          |      |            |       |     | ·    |            |            |            |            |     |
| <223         | > G         | 616        |           |           |            |          |      |            |       |     |      |            |            |            | •          |     |
|              |             |            |           |           |            |          |      |            |       |     |      |            |            |            |            |     |
| <400<br>cttt | > 3<br>aaat | cc c       | aaac      | caac      | c ct       | aaag     | ttt  | gat        | tttt  | aat | tttg |            | ta a       | ccaa       | aaaaa      | 60  |
| aaac         | aaaa        | cc c       | taat      | tttt      | t tt       | cttt     | agtg | atg        | agat  | tat | tggt | gatg       | at g       | aaat       | gattg      | 120 |
| qaga         | tcta        | atg        | aag       | aat       | aac        | aac      | aat  | ggc        | gac   | gtt | gtg  | gat        | aac        | gaa        | gtg        | 170 |
| , ,          |             | Met<br>1   | Lys       | Asn       | Asn        | Asn<br>5 | Asn  | Gly        | ' Asp | Val | Val  | Авр        | Asn        | Glu        | Val        |     |
| aac          | aac         | cqq        | tta       | agc       | cgg        | tgg      | cat  | cac        | aat   | tct | tcc  | cgg        | ata        | att        | agg        | 218 |
| Asn          | Asn         | Arg        | Leu       | Ser       | Arg        | Trp      | His  | His        | Asn   | ser | Ser  | Arg        | Ile        | Ile        | Arg<br>30  |     |
| 15           |             |            |           |           | 20         |          |      |            |       | 25  |      |            |            | •          | 30         |     |
| gtt          | tca         | cga        | gct       | tcc       | ggt        | ggt      | aaa  | gat        | cga   | cac | agc  | aaa        | gtc        | ttg        | act        | 266 |
| Val          | Ser         | Arg        | Ala       | Ser<br>35 | Gly        | Gly      | ьуs  | Asp        | Arg   | HIS | ser  | гуѕ        | vai        | 45         | THE        |     |
|              |             |            |           |           |            |          |      |            |       |     |      |            |            |            |            | 224 |
| tct          | aaa         | gga        | cca       | cgt       | gac<br>Asp | cgt      | cgt  | gtc        | cgg   | tta | tca  | gtc<br>Val | Ser        | acc<br>Thr | gct<br>Ala | 314 |
| Ser          | Lys         | GIA        | Pro<br>50 | Arg       | Asp        | Arg      | Arg  | 55         | ALG   | neu | SEI  | Vai        | 60         | ****       | ****       |     |
|              |             |            | -         |           |            |          |      |            |       |     |      | ant        | <b>633</b> | cct        | 200        | 362 |
| ctt          | caa         | ttc        | tat       | gat       | ctt<br>Leu | Caa      | gat  | cgg        | Leu   | Glv | Tyr  | Asp        | Gln        | Pro        | Ser        | 302 |
| Den          | GIII        | 65         | 171       | мор       | 200        | <b></b>  | 70   |            |       | ,   | •    | 75         |            |            |            |     |
|              |             |            |           |           | tta        | atc      | 222  | act        | act   | gaa | gat  | tca        | atc        | tct.       | gag        | 410 |
| Lvs          | Ala         | Val        | Glu       | Trp       | Leu        | Ile      | Lув  | Ala        | Ala   | Glu | Asp  | Ser        | Ile        | Ser        | Glu        |     |
| -3 -         | 80          |            |           | -         |            | 85       |      |            |       |     | 90   |            |            |            |            |     |
| ctt          | cct         | tca        | ctc       | aac       | aac        | act      | cat  | ttt        | ccq   | acc | gat  | gac        | gag        | aat        | cac        | 458 |
| Leu          | Pro         | Ser        | Leu       | Asn       | Asn        | Thr      | His  | Phe        | Pro   | Thr | Āsp  | Āsp        | Ğlü        | Asn        | HIS        |     |
| 95           |             |            |           |           | 100        |          |      |            |       | 105 |      |            |            |            | 110        |     |
| caq          | aat         | caq        | aca       | tta       | aca        | aca      | gtt  | gct        | gct   | aat | tcc  | ttg        | tct        | aaa        | tct        | 506 |
| Gln          | Asn         | Gln        | Thr       | Leu       | Thr        | Thr      | Val  | Ala        | Ala   | Asn | Ser  | Leu        | Ser        | Lys<br>125 | Ser        |     |
|              |             |            |           | 115       |            |          |      |            | 120   |     |      |            |            |            |            |     |
| gct          | tgt         | agt        | agc       | aat       | tca        | gac      | acg  | agc        | aag   | aac | tct  | tct        | ggt        | ttg        | tct        | 554 |
| Ala          | Cys         | Ser        | Ser       | Asn       | Ser        | Asp      | Thr  | ser<br>135 | гЛа   | Asn | ser  | ser        | 140        | Leu        | Ser        |     |
|              |             |            |           |           |            |          |      |            |       |     |      |            |            |            | •          | 600 |
| tta          | tca         | aga        | tcg       | gag       | ctt<br>Leu | aga      | gat  | aaa        | gct   | aga | gag  | agg        | gct        | aga        | gag<br>Glu | 602 |
| Leu          | ser         | Arg<br>145 | ser       | GIU       | Leu        | Arg      | 150  | Буз        | ΛIα   | Arg | 014  | 155        | ,,,,,,     | 5          |            |     |
|              |             |            |           |           |            |          |      |            |       |     |      |            |            |            |            | 650 |
| aga          | aca         | gct        | aaa       | gag       | acc<br>Thr | aag      | gaa  | aga        | gat   | His | Asn  | His        | Thr        | Ser        | Phe        | 030 |
| мгg          | 160         |            | m y B     | GIU       |            | 165      |      | 3          |       |     | 170  |            |            |            |            |     |
|              |             |            |           |           |            | ~~+      | +00  | ast.       | ccc   | att | 220  | tca        | aac        | caa        | caa        | 698 |
| acg<br>Thr   | gat         | Leu        | Leu       | Asn       | tcc<br>Ser | Gly      | Ser  | Asp        | Pro   | Val | Asn  | Ser        | Asn        | Arg        | GIN        |     |
| 175          |             |            |           |           | 180        |          |      | -          |       | 185 |      |            |            |            | 190        |     |
| taa          | ato         | act        | tca       | act       | cct        | tct      | tca  | tct        | cca   | atg | gag  | tat        | ttc        | agt        | tcg        | 746 |
| Trp          | Met         | Ala        | Ser       | Ala       | Pro        | Ser      | Ser  | Ser        | Pro   | met | Ğlu  | Tyr        | Phe        | Ser        | Ser        |     |
|              |             |            |           | 195       |            |          |      |            | 200   |     |      |            |            | 205        |            |     |

Page 4

#### MBI15 Sequence Listing.ST25

| 7.5113 0.                                                                             | equence broading.org                                                      |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| ggt tta att ctc ggg tcg ggt caa caa<br>Gly Leu Ile Leu Gly Ser Gly Gln Gln<br>210 215 | acc cat ttc cct att tca aca Thr His Phe Pro Ile Ser Thr 220               |
| aat tct cat cct ttc tca tca atc tcc<br>Asn Ser His Pro Phe Ser Ser Ile Ser<br>225 230 | gat cat cat cat cat cct 842 Asp His His His His Pro 235                   |
| cat cat cag cat caa gag ttt tca ttc<br>His His Gln His Gln Glu Phe Ser Phe<br>240 245 | gtt ccc gac cat ttg ata tca 890<br>Val Pro Asp His Leu Ile Ser<br>~250    |
| ccg gca gaa tcc aac ggc gga gca ttc<br>Pro Ala Glu Ser Asn Gly Gly Ala Phe<br>255 260 | aat ctt gat ttt aat atg tca 938<br>Asn Leu Asp Phe Asn Met Ser<br>265 270 |
| aca ccc tcc ggc gcc gga gct gcc gtc<br>Thr Pro Ser Gly Ala Gly Ala Ala Val<br>275     | tcc gcc gca tca ggt ggt ggc 986<br>Ser Ala Ala Ser Gly Gly Gly<br>280 285 |
| ttc agt ggt ttc aac agg ggg acc ctt<br>Phe Ser Gly Phe Asn Arg Gly Thr Leu<br>290 295 | cag tcc aat tca aca aat cag Gln Ser Asn Ser Thr Asn Gln 300               |
| cat cag tca ttc ctc gct aat cta cag<br>His Gln Ser Phe Leu Ala Asn Leu Gln<br>305     | agg ttt cca aca tca gaa agt 1082<br>Arg Phe Pro Thr Ser Glu Ser<br>315    |
| gga gga ggt cca cag ttc tta ttc ggt<br>Gly Gly Gly Pro Gln Phe Leu Phe Gly<br>320 325 | gca ctg cct gca gag aat cac 1130<br>Ala Leu Pro Ala Glu Asn His<br>330    |
| cac cac aat cac cag ttt cag ctt tac<br>His His Asn His Gln Phe Gln Leu Tyr<br>335 340 | tat gaa aat gga tgc aga aac 1178<br>Tyr Glu Asn Gly Cys Arg Asn 350       |
| tca tca gaa cat aag ggt aaa ggc aag<br>Ser Ser Glu His Lys Gly Lys Gly Lys<br>355     |                                                                           |
| ttggttttgt tcaaatgctc attttgtatg tt                                                   | tatctttg gtttatttca aaacaaatgt 1291                                       |
| taatetettt egitgtetga tgigtgttag ggl                                                  | tttgttt tatgtattga gggtctttgg 1351                                        |
| aaatettttt geattgtget tgtaatgttg tal                                                  | ttgtgat aatagcattt tgtttgtgag 1411                                        |
| ttaaaaaaa aaaaaaaaaa                                                                  | 1431                                                                      |
|                                                                                       |                                                                           |

<210> 4

<211> 360

<212> PRT <213> Arabidopsis thaliana

<400> 4

Met Lys Asn Asn Asn Gly Asp Val Val Asp Asn Glu Val Asn Asn 1 5 10 15

Arg Ala Ser Gly Gly Lys Asp Arg His Ser Lys Val Leu Thr Ser Lys  $_{35}$ 

Gly Pro Arg Asp Arg Arg Val Arg Leu Ser Val Ser Thr Ala Leu Gln 50 60

Phe Tyr Asp Leu Gln Asp Arg Leu Gly Tyr Asp Gln Pro Ser Lys Ala 65 70 75 80

Page 5

#### MBI15 Sequence Listing.ST25

Val Glu Trp Leu Ile Lys Ala Ala Glu Asp Ser Ile Ser Glu Leu Pro 85 90 95

Ser Leu Asn Asn Thr His Phe Pro Thr Asp Asp Glu Asn His Gln Asn 100 105 110

Gln Thr Leu Thr Thr Val Ala Ala Asn Ser Leu Ser Lys Ser Ala Cys 115 120 125

Ser Ser Asn Ser Asp Thr Ser Lys Asn Ser Ser Gly Leu Ser Leu Ser 130 135 • 140

Arg Ser Glu Leu Arg Asp Lys Ala Arg Glu Arg Ala Arg Glu Arg Thr 145 150 155 160

Ala Lys Glu Thr Lys Glu Arg Asp His Asn His Thr Ser Phe Thr Asp 165 170 175

Leu Leu Asn Ser Gly Ser Asp Pro Val Asn Ser Asn Arg Gln Trp Met 180 185 190

Ala Ser Ala Pro Ser Ser Ser Pro Met Glu Tyr Phe Ser Ser Gly Leu 195 200 205

Ile Leu Gly Ser Gly Gln Gln Thr His Phe Pro Ile Ser Thr Asn Ser 210 215 220

His Pro Phe Ser Ser Ile Ser Asp His His His His Pro His His 225 230 235 240

Gln His Gln Glu Phe Ser Phe Val Pro Asp His Leu Ile Ser Pro Ala 245 250 255

Glu Ser Asn Gly Gly Ala Phe Asn Leu Asp Phe Asn Met Ser Thr Pro 260 265 270

Ser Gly Ala Gly Ala Ala Val Ser Ala Ala Ser Gly Gly Phe Ser 275 280 285

Gly Phe Asn Arg Gly Thr Leu Gln Ser Asn Ser Thr Asn Gln His Gln 290 295 300

Ser Phe Leu Ala Asn Leu Gln Arg Phe Pro Thr Ser Glu Ser Gly Gly 305 310 315 320

Gly Pro Gln Phe Leu Phe Gly Ala Leu Pro Ala Glu Asn His His His 325 330 335

Asn His Gln Phe Gln Leu Tyr Tyr Glu Asn Gly Cys Arg Asn Ser Ser 340 345 350

Glu His Lys Gly Lys Gly Lys Asn 355 360

<210> 5

## MBI15 Sequence Listing.ST25

| <211> 1055<br><212> DNA<br><213> Arabidopsis thaliana                                                                                                 |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <220> <221> CDS <222> (70)(816) <223> G19                                                                                                             |     |
| <400> 5 ataaaggcat ttcagctcca ccgtaggaaa ctttctcttg aaagaaaccc acagcaacaa                                                                             | 60  |
| acagagaaa atg tgt ggc ggt gct att att tcc gat tat gcc cct ctc gtc<br>Met Cys Gly Gly Ala Ile Ile Ser Asp Tyr Ala Pro Leu Val<br>1 5 10                | 111 |
| acc aag gcc aag ggc cgt aaa ctc acg gct gag gaa ctc tgg tca gag<br>Thr Lys Ala Lys Gly Arg Lys Leu Thr Ala Glu Glu Leu Trp Ser Glu<br>15 20 25 30     | 159 |
| ctc gat gct tcc gcc gcc gac gac ttc tgg ggt ttc tat tcc acc tcc<br>Leu Asp Ala Ser Ala Ala Asp Asp Phe Trp Gly Phe Tyr Ser Thr Ser<br>35 40 45        | 207 |
| aaa ctc cat ccc acc aac caa gtt aac gtg aaa gag gag gca gtg aag<br>Lys Leu His Pro Thr Asn Gln Val Asn Val Lys Glu Glu Ala Val Lys<br>50 55 60        | 255 |
| aag gag cag gca aca gag ccg ggg aaa cgg agg a                                                                                                         | 303 |
| tat aga ggg ata cgt aag cgt cca tgg gga aaa tgg gcg gct gag att<br>Tyr Arg Gly Ile Arg Lys Arg Pro Trp Gly Lys Trp Ala Ala Glu Ile<br>80 85 90        | 351 |
| cga gat cca cga aaa ggt gtt aga gtt tgg ctt ggt acg ttc aac acg<br>Arg Asp Pro Arg Lys Gly Val Arg Val Trp Leu Gly Thr Phe Asn Thr<br>95 100 105 110  | 399 |
| gcg gag gaa gct gcc atg gct tat gat gtt gcg gcc aag cag atc cgt<br>Ala Glu Glu Ala Ala Met Ala Tyr Asp Val Ala Ala Lys Gln Ile Arg<br>115 120 125     | 447 |
| ggt gat aaa gcc aag ctc aac ttc cca gat ctg cac cat cct cct cct Gly Asp Lys Ala Lys Leu Asn Phe Pro Asp Leu His His Pro Pro Pro 130 135 140           | 495 |
| cct aat tat act cct ccg ccg tca tcg cca cga tca acc gat cag cct<br>Pro Asn Tyr Thr Pro Pro Pro Ser Ser Pro Arg Ser Thr Asp Gln Pro<br>145 150 155     | 543 |
| ccg gcg aag aag gtc tgc gtt gtc tct cag agt gag agc gag tta agt<br>Pro Ala Lys Lys Val Cys Val Val Ser Gln Ser Glu Ser Glu Leu Ser<br>160 165 170     | 591 |
| cag ccg agt ttc ccg gtg gag tgt ata gga ttt gga aat ggg gac gag<br>Gln Pro Ser Phe Pro Val Glu Cys Ile Gly Phe Gly Asn Gly Asp Glu<br>175 180 185 190 | 639 |
| ttt cag aac ctg agt tac gga ttt gag ccg gat tat gat ctg aaa cag<br>Phe Gln Asn Leu Ser Tyr Gly Phe Glu Pro Asp Tyr Asp Leu Lys Gln<br>195 200 205     | 687 |
| cag ata tcg agc ttg gaa tcg ttc ctt gag ctg gac ggt aac acg gcg<br>Gln Ile Ser Ser Leu Glu Ser Phe Leu Glu Leu Asp Gly Asn Thr Ala<br>210 215 220     | 735 |
| gag caa ccg agt cag ctt gat gag tcc gtt tcc gag gtg gat atg tgg<br>Glu Gln Pro Ser Gln Leu Asp Glu Ser Val Ser Glu Val Asp Met Trp<br>225 230 235     | 783 |
| atg ctt gat gat gtc att gcg tcg tat gag taa aagaaaaaaa ataagtttaa<br>Met Leu Asp Asp Val Ile Ala Ser Tyr Glu                                          | 836 |
| Page 7                                                                                                                                                |     |

Page 7

PCT/US00/31418 WO 01/35726

896

956 1016

1055

| MBI15 | Sequence | Listing.ST25 |
|-------|----------|--------------|
|       |          |              |

245 aaaaagttaa ataaagtctg taatatatat gtaaccgccg ttacttttaa aaggttttta ccgtcgcatt ggactgctga tgatgtctgt tgtgtaatgt gtagaatgtg accaaatgga cgttatatta cggtttgtgg tattattagt ttcttagatg gaaaaactta catgtgtaaa taagatttgt aatgtaagac gaagtactta taacttctt <210> 248 <211> PRT <212> <213> Arabidopsis thaliana <400> 6 Met Cys Gly Gly Ala Ile Ile Ser Asp Tyr Ala Pro Leu Val Thr Lys Ala Lys Gly Arg Lys Leu Thr Ala Glu Glu Leu Trp Ser Glu Leu Asp 20 25 30 Ala Ser Ala Ala Asp Asp Phe Trp Gly Phe Tyr Ser Thr Ser Lys Leu 35 40 45 His Pro Thr Asn Gln Val Asn Val Lys Glu Glu Ala Val Lys Lys Glu 50 55 60 Gln Ala Thr Glu Pro Gly Lys Arg Lys Arg Lys Asn Val Tyr Arg 65 70 75 80 Gly Ile Arg Lys Arg Pro Trp Gly Lys Trp Ala Ala Glu Ile Arg Asp 85 90 95 Pro Arg Lys Gly Val Arg Val Trp Leu Gly Thr Phe Asn Thr Ala Glu 100 105 110 Glu Ala Ala Met Ala Tyr Asp Val Ala Ala Lys Gln Ile Arg Gly Asp 115 120 125 Lys Ala Lys Leu Asn Phe Pro Asp Leu His His Pro Pro Pro Pro Asn 130 135 140 Tyr Thr Pro Pro Pro Ser Ser Pro Arg Ser Thr Asp Gln Pro Pro Ala 145 150 155 160 Lys Lys Val Cys Val Val Ser Gln Ser Glu Ser Glu Leu Ser Gln Pro 165 170 175 Ser Phe Pro Val Glu Cys Ile Gly Phe Gly Asn Gly Asp Glu Phe Gln 180 185 190 Asn Leu Ser Tyr Gly Phe Glu Pro Asp Tyr Asp Leu Lys Gln Gln Ile 195 200 205 Ser Ser Leu Glu Ser Phe Leu Glu Leu Asp Gly Asn Thr Ala Glu Gln 210 215

Pro Ser Gln Leu Asp Glu Ser Val Ser Glu Val Asp Met Trp Met Leu

### MBI15 Sequence Listing.ST25

225 230 235 240

Asp Asp Val Ile Ala Ser Tyr Glu 245

<210> <211> 1857 <212> DNA Arabidopsis thaliana <221> CDS <222> (458) .. (1663) G261 <400> 7 gtttaggttc gagaagcaga gagggttcga gaagctaata agggtttctt ctttttgatt 60 120 ttaatgetaa aagggtteta gattegttga attttacaag ggttttaggg gttettagaa gettttgett gattgtettt tatttagaaa eagtggtgag tttttagtet tteaetttgt 180 tcaagttcga agctttttt ggagggaatt ttgggcttct gattttgatc gaaacttact 240 gatagtaagt tetttgagte eteettaaet gtagtttetg tgtactgaag ttattgaatt 300 360 gaaagttttt atcttttttg gttattgaaa ctttcatagt ttgatcaaaa gagtctcttg ctctgttttt ggctctgttt ttgtgagtgt gattgtaagc tttgttgtga gtagattgaa 420 tcaaggagtg tgagagttgt taaaagtgtt ttcagag atg gat gag aat aat cat Met Asp Glu Asn Asn His 475 gga gtt tca tca agc tca ctt cca cct ttc ctc acc aaa aca tat gag Gly Val Ser Ser Ser Leu Pro Pro Phe Leu Thr Lys Thr Tyr Glu 523 atg gtt gat gat tct tca tcc gat tct atc gtc tct tgg agt cag agc Met Val Asp Asp Ser Ser Ser Asp Ser Ile Val Ser Trp Ser Gln Ser 571 aat aag agt ttc atc gtt tgg aat ccg ccg gag ttt tct aga gat ctt Asn Lys Ser Phe Ile Val Trp Asn Pro Pro Glu Phe Ser Arg Asp Leu 619 ctt ccg aga ttc ttc aag cac aat aac ttc tct agc ttt atc cgc cag 667 Leu Pro Arg Phe Phe Lys His Asn Asn Phe Ser Ser Phe Ile Arg Gln ctt aac aca tat ggt ttt aga aaa gct gat cct gag caa tgg gaa ttt Leu Asn Thr Tyr Gly Phe Arg Lys Ala Asp Pro Glu Gln Trp Glu Phe 715 gcg aat gat gat ttt gtg aga ggt caa cct cat ctt atg aag aac att Ala Asn Asp Asp Phe Val Arg Gly Gln Pro His Leu Met Lys Asn Ile 763 cat aga cgc aaa cca gtt cat agc cac tct tta ccg aat ctt caa gct His Arg Arg Lys Pro Val His Ser His Ser Leu Pro Asn Leu Gln Ala 811 cag tta aac ccg ttg acg gat tca gaa cga gtg aga atg aat aat cag Gln Leu Asn Pro Leu Thr Asp Ser Glu Arg Val Arg Met Asn Asn Gln 859 att gag aga ttg aca aaa gag aaa gaa gga ttg ctt gaa gag tta cat Ile Glu Arg Leu Thr Lys Glu Lys Glu Gly Leu Leu Glu Glu Leu His 907 aaa caa gac gag gaa cga gaa gtg ttt gag atg caa gtg aaa gaa ctt Lys Gln Asp Glu Glu Arg Glu Val Phe Glu Met Gln Val Lys Glu Leu 955

Page 9

|                   |                   |                   | ·                 | 155               |                   |                   | MBI1              |                   | quen<br>160       | ice I             | ist               | ing.              | ST25              | 165               |                       |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|------|
| aaa<br>Lys        | gaa<br>Glu        | cga<br>Arg        | tta<br>Leu<br>170 | caa<br>Gln        | cac<br>His        | atg<br>Met        | GIu               | aag<br>Lys<br>175 | cgt<br>Arg        | cag<br>Gln        | aaa<br>Lys        | aca<br>Thr        | atg<br>Met<br>180 | gtt<br>Val        | tcg<br>Ser            | 1003 |
| ttt<br>Phe        | gtt<br>Val        | tct<br>Ser<br>185 | caa<br>Gln        | gta<br>Val        | ttg<br>Leu        | gaa<br>Glu        | aag<br>Lys<br>190 | cca<br>Pro        | 999<br>Gly        | ctt<br>Leu        | gct<br>Ala        | ttg<br>Leu<br>195 | aac<br>Asn        | cta<br>Leu        | tcg<br>Ser            | 1051 |
| ccg<br>Pro        | tgt<br>Cys<br>200 | gtt<br>Val        | ccc<br>Pro        | gaa<br>Glu        | aca<br>Thr        | aac<br>Asn<br>205 | gag<br>Glu        | agg<br>Arg        | aaa<br>Lys        | aga<br>Arg        | agg<br>Arg<br>210 | ttc<br>Phe        | cct<br>Pro        | agg<br>Arg        | atc<br>Ile            | 1099 |
| gag<br>Glu<br>215 | Phe               | ttt<br>Phe        | ccc<br>Pro        | gat<br>Asp        | gaa<br>Glu<br>220 | ccg<br>Pro        | atg<br>Met        | ttg<br>Leu        | gaa<br>Glu        | gag<br>Glu<br>225 | aac<br>Asn        | aaa<br>Lys        | act<br>Thr        | tgt<br>Cys        | gtt<br>Val<br>230     | 1147 |
| gtt<br>Val        | gtg<br>Val        | aga<br>Arg        | gag<br>Glu        | gaa<br>Glu<br>235 | ggt<br>Gly        | tct<br>Ser        | aca<br>Thr        | agc<br>Ser        | cct<br>Pro<br>240 | tct<br>Ser        | tca<br>Ser        | cac<br>His        | aca<br>Thr        | aga<br>Arg<br>245 | gag<br>Glu            | 1195 |
| cat<br>His        | caa<br>Gln        | gtg<br>Val        | gaa<br>Glu<br>250 | cag<br>Gln        | tta<br>Leu        | gag<br>Glu        | tca<br>Ser        | tcg<br>Ser<br>255 | ata<br>Ile        | gcg<br>Ala        | att<br>Ile        | tgg<br>Trp        | gag<br>Glu<br>260 | aat<br>Asn        | ctt<br>Leu            | 1243 |
| Val               | Ser               | Asp<br>265        | Ser               | Сув               | GIu               | ser               | 270               | ren               | GIII              | 261               | Arg               | agt<br>Ser<br>275 | MCC               | 1100              | ••••                  | 1291 |
| Leu               | Asp<br>280        | Val               | Asp               | Glu               | Ser               | ser<br>285        | Thr               | Pne               | Pro               | GIU               | 290               |                   | PIO               | nea               | Jer                   | 1339 |
| Cys<br>295        | Ile               | Gln               | Leu               | Ser               | Val<br>300        | Asp               | ser               | Arg               | ьеи               | 305               | 261               | PIC               | PIO               | Der               | cca<br>Pro<br>310     | 1387 |
| Arg               | ılle              | Ile               | Asp               | 315               | Asn               | Cys               | GIu               | Pro               | 320               | GIY               | 261               | . Lys             | . 610             | 325               |                       | 1435 |
| Thi               | . Val             | Ala               | Ala<br>330        | Pro               | Pro               | Pro               | Pro               | 335               | vai               | Ald               | GI                | ATO               | 340               | )                 | ggc<br>Gly            | 1483 |
| Phe               | e Trp             | 345               | Glr               | . Phe             | Phe               | Ser               | 350               | ASI               | Pro               | ) G1}             | , 261             | 359               | 5                 | . 011             | cgg<br>Arg            | 1531 |
| Glu               | 1 Val             | Glr               | ı Lei             | ı Glu             | Arg               | 365               | Asp               | ASP               | , па              | , waf             | 370               | 0                 | . 01)             | , , ,             | cgt<br>Arg            | 1579 |
| Th:               | r Glu<br>5        | ı Lys             | Cys               | 3 Trį             | 380               | )<br>)            | ı ser             | ALC               | , Abi             | 385               | 5                 |                   |                   |                   | a gaa<br>c Glu<br>390 | 1627 |
| Gl                | n Lev             | ı Gly             | / His             | 39!               | i Thi             | : Sei             | r Sei             | GIV               | 400               | )                 | •                 | a ta              |                   |                   |                       | 1673 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | ttgtttt               | 1733 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | ttcccag               |      |
| tt                | catt              | gtag              | cag               | actt              | caa I             | tgg <b>t</b> :    | aatga             | at.aa             | agcta             | agag              | c tt              | atgg              | atag              | tat               | tcataaa               |      |
| aa                | aa                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                       | 1857 |

<sup>&</sup>lt;210> 8 <211> 401 <212> PRT <213> Arabidopsis thaliana

#### MBI15 Sequence Listing.ST25

<400>

Met Asp Glu Asn Asn His Gly Val Ser Ser Ser Ser Leu Pro Pro Phe 1 . 5 10 15

Leu Thr Lys Thr Tyr Glu Met Val Asp Asp Ser Ser Ser Asp Ser Ile 20 25 30

Val Ser Trp Ser Gln Ser Asn Lys Ser Phe Ile Val Trp Asn Pro Pro 35 40 45

Glu Phe Ser Arg Asp Leu Leu Pro Arg Phe Phe Lys His Asn Asn Phe 50 55 60

Ser Ser Phe Ile Arg Gln Leu Asn Thr Tyr Gly Phe Arg Lys Ala Asp 65 70 75 80

Pro Glu Gln Trp Glu Phe Ala Asn Asp Asp Phe Val Arg Gly Gln Pro

His Leu Met Lys Asn Ile His Arg Arg Lys Pro Val His Ser His Ser 100 105 · 110

Leu Pro Asn Leu Gln Ala Gln Leu Asn Pro Leu Thr Asp Ser Glu Arg 115 120 125

Val Arg Met Asn Asn Gln Ile Glu Arg Leu Thr Lys Glu Lys Glu Gly 130 135 140

Leu Leu Glu Glu Leu His Lys Gln Asp Glu Glu Arg Glu Val Phe Glu 145 150 155 160

Met Gln Val Lys Glu Leu Lys Glu Arg Leu Gln His Met Glu Lys Arg 165 170 175

Gln Lys Thr Met Val Ser Phe Val Ser Gln Val Leu Glu Lys Pro Gly 180 185 190

Leu Ala Leu Asn Leu Ser Pro Cys Val Pro Glu Thr Asn Glu Arg Lys 195 200 205

Arg Arg Phe Pro Arg Ile Glu Phe Phe Pro Asp Glu Pro Met Leu Glu 210 215 220

Glu Asn Lys Thr Cys Val Val Val Arg Glu Glu Gly Ser Thr Ser Pro 225 230 235 235

Ser Ser His Thr Arg Glu His Gln Val Glu Gln Leu Glu Ser Ser Ile 245 250 255

Ala Ile Trp Glu Asn Leu Val Ser Asp Ser Cys Glu Ser Met Leu Gln 260 265 270

Ser Arg Ser Met Met Thr Leu Asp Val Asp Glu Ser Ser Thr Phe Pro 275 280 285

| Glu                      | Ser             | Pro                     | Pro                  | Leu                  | Ser              | Cys        | MBII<br>Ile | l5 Se<br>Gln     | quei<br>Leu        | nce I<br>Ser     | Jisti<br>Val   | ing.S<br>Asp     | ST25<br>Ser      | Arg                | Leu                |          |   |     |
|--------------------------|-----------------|-------------------------|----------------------|----------------------|------------------|------------|-------------|------------------|--------------------|------------------|----------------|------------------|------------------|--------------------|--------------------|----------|---|-----|
|                          | 290             |                         |                      |                      |                  | 295        |             |                  |                    |                  | 300            |                  |                  |                    |                    |          |   |     |
| Lys<br>305               | Ser             | Pro                     | Pro                  | Ser                  | Pro<br>310       | Arg        | Ile         | Ile              | Asp                | Met<br>315       | Asn            | Cys              | Glu              | Pro                | Asp<br>320         | •        |   |     |
| Gly                      | Ser             | Lys                     | Glu                  | Gln<br>325           | Asn              | Thr        | Val         | Ala              | Ala<br>330         | Pro              | Pro            | Pro              | Pro              | Pro<br>335         | Val                |          |   |     |
| Ala                      | Gly             | Ala                     | Asn<br>340           | Asp                  | Gly              | Phe        | Trp         | Gln<br>345       | Gln                | Phe              | Phe            | Ser              | Glu<br>350       | Asn                | Pro                |          |   |     |
| Gly                      | Ser             | Thr<br>355              | Glu                  | Gĺn                  | Arg              | Glu        | Val<br>360  | Gln              | Leu                | Glu              | Arg            | Lys<br>365       | Asp              | Asp                | Lys                |          |   |     |
| Asp                      | Lys<br>370      |                         | Gly                  | Val                  | Arg              | Thr<br>375 | Glu         | Lys              | Cys                | Trp              | Trp<br>380     | Asn              | Ser              | Arg                | Asn                |          |   |     |
| Val<br>385               | Asn             | Ala                     | Ile                  | Thr                  | Glu<br>390       | Gln        | Leu         | Gly              | His                | Leu<br>395       | Thr            | Ser              | Ser              | Glu                | Arg<br>400         |          |   |     |
| Ser                      |                 |                         |                      |                      |                  |            |             |                  |                    |                  |                |                  |                  |                    |                    |          |   |     |
| <21<br><21<br><21<br><21 | 1><br>2>        | 9<br>964<br>DNA<br>Arab | idop                 | sis                  | thal             | iana       |             |                  |                    |                  |                |                  |                  |                    |                    |          |   |     |
| <22<br><22<br><22<br><22 | 1><br>2>        | CDS<br>(63)<br>G28      | (8                   | 69)                  |                  |            |             |                  |                    |                  |                |                  |                  |                    |                    |          |   |     |
| <40<br>gaa               | 0><br>atct      | 9<br>:caa               | caag                 | aacc                 | aa a             | ccaa       | acaa        | c aa             | aaaa               | acat             | tct            | taat             | aat              | tato               | ttt                | ctg      |   | 60  |
| tt                       | atg<br>Met<br>1 | tcg<br>Ser              | atg<br>Met           | Thr                  | gcg<br>Ala<br>5  | gat<br>Asp | tct<br>Ser  | caa<br>Gln       | tct<br>Ser         | gat<br>Asp<br>10 | tat<br>Tyr     | gct<br>Ala       | ttt<br>Phe       | ctt<br>Leu         | gag<br>Glu<br>15   |          | 1 | .07 |
| t co<br>Sei              | ata<br>Ile      | a cga<br>e Arg          | a cga<br>g Arg       | cac<br>His           | tta<br>Leu       | cta<br>Leu | gga<br>Gly  | gaa<br>Glu       | Ser<br>25          | g gag<br>Glu     | ccg<br>Pro     | ata<br>Ile       | cto<br>Lev       | agt<br>Ser<br>30   | gaq<br>Gl          | i<br>I   | 1 | 155 |
| t co<br>Sei              | aca<br>Thi      | a gcg                   | g agt<br>a Ser<br>35 | tcg<br>Ser           | gtt<br>Val       | act<br>Thr | caa<br>Glr  | tct<br>Ser<br>40 | tgt<br>Cys         | gta<br>Val       | acc<br>Thr     | ggt<br>Gly       | Caq<br>Glr<br>45 | g age              | at<br>Il           | t<br>e   | 2 | 203 |
| aaa<br>Lys               | a cc            | g gte<br>o Va<br>50     | g tac                | gga<br>Gly           | cga<br>Arg       | aac<br>Asn | cct<br>Pro  | ago<br>Ser       | ttt<br>Phe         | ago<br>e Sei     | aaa<br>Lys     | tet<br>Let<br>60 | tai<br>Ty        | r Pr               | t tg<br>o Cy       | С<br>В   | 2 | 251 |
| Ph                       | e Th:           | r Gl                    | g ago<br>u Ser       | r Trp                | o Gly            | 70         | ) Let       | ı Pro            | ) Lei              | ı PA:            | 75             | i Asi            | ı AS             | y se               | . 01               | <b>.</b> | - | 299 |
| ga<br>As<br>80           | р Ме            | g tt<br>t Le            | a gti<br>u Vai       | t tac<br>l Tyr       | ggt<br>Gly<br>85 | ato<br>Ile | cte<br>Le   | c aac<br>u Asr   | gae<br>n Asj       | p Ala            | ttt<br>a Phe   | cae<br>Hi        | 5 99<br>8 Gl     | gg<br>y Gl         | t tg<br>y Tr<br>95 | P        | ; | 347 |
| ga<br>Gl                 | g cc<br>u Pr    | g tc<br>o Se            | t tc<br>r Se         | t tcg<br>r Sei<br>10 | r Sei            | tco<br>Sei | ga<br>As    | c gaa<br>p Glu   | a ga<br>a As<br>10 | p Ar             | t age<br>g Se: | c tc<br>r Se     | t tt<br>r Ph     | c cc<br>e Pr<br>11 | 0 50               | t        |   | 395 |
| gt                       | t aa            | g at                    | c ga                 | g ac                 | t ccg            | g gag      | g ag        | t tte            | c gc               | g gc             |                | g ga             | t tc             | t gt               | t cc               | g        |   | 443 |

| Val                          | Lys               | Ile                       | Glu        | Thr        | Pro        | Glu        |            | 15 S<br>Phe |            |            |            |                   |            |            | Pro        |      |
|------------------------------|-------------------|---------------------------|------------|------------|------------|------------|------------|-------------|------------|------------|------------|-------------------|------------|------------|------------|------|
|                              |                   |                           | 115        |            |            |            |            | 120         |            |            |            |                   | 125        |            |            |      |
| gtc<br>Val                   | aag<br>Lys        | aag<br>Lys<br>130         | gag<br>Glu | aag<br>Lys | acg<br>Thr | agt<br>Ser | Pro<br>135 | gtt<br>Val  | tcg<br>Ser | gcg<br>Ala | gcg<br>Ala | gtg<br>Val<br>140 | acg<br>Thr | gcg<br>Ala | gcg<br>Ala | 491  |
|                              | gga<br>Gly<br>145 |                           |            |            |            |            |            |             |            |            |            |                   |            |            |            | 539  |
|                              | gcg<br>Ala        |                           |            |            |            |            |            |             |            |            |            |                   |            |            |            | 587  |
|                              | acg<br>Thr        |                           |            |            |            |            |            |             |            |            |            |                   |            |            |            | 635  |
|                              | ttc<br>Phe        |                           |            |            |            |            |            |             |            |            |            |                   |            |            |            | 683  |
|                              | aat<br>Asn        |                           |            |            |            |            |            |             |            |            |            |                   |            |            |            | 731  |
|                              | ttt<br>Phe<br>225 |                           |            |            |            |            |            |             |            |            |            |                   |            |            |            | 779  |
|                              | gcc<br>Ala        |                           |            |            |            |            |            |             |            |            |            |                   |            |            |            | 827  |
|                              | gtt<br>Val        |                           |            |            |            |            |            |             |            |            |            |                   | taa        |            |            | .869 |
| ttt                          | tgati             | tt (                      | cttt       | gtt        | gg at      | gatt       | atat       | gat         | tctt       | caa        | aaaa       | agaag             | gaa d      | gtta       | ataaa      | 929  |
| aaa                          | atte              | gtt (                     | tatta      | ıttaa      | aa aa      | aaaa       | aaaa       | a aaa       | aa         |            |            |                   |            |            |            | 964  |
| <21:<br><21:<br><21:<br><21: | l > 2<br>2 > 1    | 10<br>268<br>PRT<br>Arab: | idops      | sis t      | hali       | iana       |            |             |            |            |            |                   |            |            |            |      |
| <40                          | ) > 1             | L <b>O</b>                |            |            |            |            |            |             |            |            |            |                   |            |            |            |      |
| Met<br>1                     | Ser               | Met                       | Thr        | Ala<br>5   | Asp        | Ser        | Gln        | Ser         | Asp<br>10  | Tyr        | Ala        | Phe               | Leu        | Glu<br>15  | Ser        |      |
| Ile                          | Arg               | Arg                       | His<br>20  | Leu        | Leu        | Gly        | Glu        | Ser<br>25   | Glu        | Pro        | Ile        | Leu               | Ser<br>30  | Glu        | Ser        |      |
| Thr                          | Ala               | Ser<br>35                 | Ser        | Val        | Thr        | Gln        | Ser<br>40  | Cys         | Val        | Thr        | Gly        | Gln<br>45         | Ser        | Ile        | Lys        |      |
| Pro                          | Val.<br>50        | Tyr                       | Gly        | Arg        | Asn        | Pro<br>55  | Ser        | Phe         | Ser        | Lys        | Leu<br>60  | Tyr               | Pro        | Суз        | Phe        |      |
| Thr<br>65                    | Glu               | Ser                       | Trp        | Gly        | Asp<br>70  | Leu        | Pro        | Leu         | Lys        | Glu<br>75  | Asn        | Asp               | Ser        | Glų        | Asp<br>80  |      |

Met Leu Val Tyr Gly Ile Leu Asn Asp Ala Phe His Gly Gly Trp Glu 85 90 95

|                          |              |                           |                |              |            |            | MBI:       | 15 Se         | eque           | nce 1        | List:                | ing.       | ST25         | C          | u-1            |     |
|--------------------------|--------------|---------------------------|----------------|--------------|------------|------------|------------|---------------|----------------|--------------|----------------------|------------|--------------|------------|----------------|-----|
| Pro                      | Ser          | Ser                       | Ser<br>100     | Ser          | Ser        | Asp        | Glu        | 105           | Arg            | Ser          | Ser                  | Pne        | 110          | ser        | vai            |     |
| Lys                      | Ile          | Glu<br>115                | Thr            | Pro          | Glu        | Ser        | Phe<br>120 | Ala           | Ala            | Val          | Asp                  | Ser<br>125 | Val          | Pro        | Val            |     |
| Lys                      | Lys<br>130   | Glu                       | Lys            | Thr          | Ser        | Pro<br>135 | Val        | Ser           | Ala            | Ala          | Val<br>140           | Thr        | Ala          | Ala        | Lys            |     |
| Gly<br>145               | Lys          | His                       | Tyr            | Arg          | Gly<br>150 | Val        | Arg        | Gln           | Arg            | Pro<br>155   | Trp                  | Gly        | Lys          | Phe        | Ala<br>160     |     |
| Ala                      | Glu          | Ile                       | Arg            | Asp<br>165   | Pro        | Ala        | Lys        | Asn           | Gly<br>170     | Ala          | Arg                  | Val        | Trp          | Leu<br>175 | Gly            |     |
| Thr                      | Phe          | Glu                       | Thr<br>180     | Ala          | Glu        | Asp        | Ala        | Ala<br>185    | Leu            | Ala          | Tyr                  | Asp        | Arg<br>190   | Ala        | Ala            |     |
| Phe                      | Arg          | Met<br>195                |                | Gly          | Ser        | Arg        | Ala<br>200 | Leu           | Leu            | Asn          | Phe                  | Pro<br>205 | Leu          | Arg        | Val            |     |
| Asn                      | Ser<br>210   |                           | Glu            | Pro          | Авр        | Pro<br>215 | Val        | Arg           | Ile            | Lys          | Ser<br>220           | Lys        | Arg          | Ser        | Ser            |     |
| Phe<br>225               |              | Ser                       | Ser            | Asn          | Glu<br>230 | Asn        | Gly        | Ala           | Pro            | Lys<br>235   | Lув                  | Arg        | Arg          | Thr        | Val<br>240     |     |
| Ala                      | Ala          | Gly                       | Gly            | Gly<br>245   |            | Авр        | Lys        | Gly           | Leu<br>250     | Thr          | Val                  | Lys        | Cys          | Glu<br>255 | Val            |     |
| Val                      | Glu          | Val                       | Ala<br>260     |              | Gly        | Asp        | Arg        | Leu<br>265    | Leu            | Val          | Leu                  |            |              |            |                |     |
| <21<br><21<br><21<br><21 | .1><br>.2>   | 11<br>1571<br>DNA<br>Arab |                | sis          | thal       | iana       |            |               |                |              |                      |            |              |            |                |     |
| <22<br><22<br><22<br><22 | !1><br>!2>   | CDS<br>(428<br>G869       | ) (            | 1402         | :)         |            |            |               |                |              |                      |            |              |            |                |     |
| <40<br>agg               | 00><br>gaaca | 11<br>agtg                | aaag           | gtto         | gg t       | ttt        | tggg       | jt tt         | .cgat          | :ctga        | ı taa                | tcaa       | ıcaa         | gaaa       | aaaggg         | 60  |
| ttt                      | gati         | tat                       | gtcg           | gcts         | gg t       | ttga       | atco       | ga ct         | gtga           | tttt         | gto                  | tttg       | gatt         | cata       | tctctt         | 120 |
| cto                      | cgai         | ttc                       | atca           | tcat         | ct t       | ccc        | atca       | at co         | tcgt           | ctt          | gaa                  | atct       | tgt          | ctto       | tcaacg         | 180 |
| cto                      | ette         | actt                      | ctg            | tgta         | aat a      | agca       | gagg       | gc tt         | gtto           | tgga         | a gad                | tcct       | tct          | cttt       | ccatgc         | 240 |
|                          |              |                           |                |              |            |            |            |               |                |              |                      |            |              |            | taaagc         |     |
| age                      | caaa         | agtt                      | ttct           | tttl         | tc a       | tagt       | tcg        | ct ga         | agagt          | ttt          | g agt                | ttt        | gata         | ccaa       | aaaagt         | 360 |
| tt                       | tgac         | cttt                      | taga           | igtga        | att (      | ttt        | gttc       | tt to         | etgti          | ttc          | 999                  | gtati      | ttt          | gag        | gagtggg        | 420 |
| tt                       | taac         | a ato<br>Me               | g gti<br>t Vai | gcg<br>L Ala | g att      | aga<br>Arg | a aag      | g gaa<br>s Gl | a cag<br>ı Glı | tc:          | t ttg<br>r Leu<br>10 | g agt      | t gg<br>r Gl | y Val      | t agt<br>l Ser | 469 |
| ag                       | c ga         | g at                      | t aag          | g aag        | g aga      | a gci      | t aa       | g ag          |                | c ac<br>Page |                      | a to       | g to         | c ct       | t cct          | 51  |

| Ser        | Glu               | Tle               | Lvs               | Lvs        | Ara        | Ala               |                   | 15 S<br>Arg       |            |            |                   |                   |                   | T.en       | Pro        |      |
|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|------|
| 15         |                   |                   | _                 | _          | 20         |                   | _                 |                   |            | 25         |                   |                   |                   |            | 30         |      |
|            |                   |                   |                   |            |            |                   |                   | gtc<br>Val        |            |            |                   |                   |                   |            |            | 565  |
|            |                   |                   |                   |            |            |                   |                   | gat<br>Asp<br>55  |            |            |                   |                   |                   |            |            | 613  |
|            |                   |                   |                   |            |            |                   |                   | gtt<br>Val        |            |            |                   |                   |                   |            |            | 661  |
|            |                   |                   |                   |            |            |                   |                   | gag<br>Glu        |            |            |                   |                   |                   |            |            | 709  |
|            |                   |                   |                   |            |            |                   |                   | tca<br>Ser        |            |            |                   |                   |                   |            |            | 757  |
|            |                   |                   |                   |            |            |                   |                   | agg<br>Arg        |            |            |                   |                   |                   |            |            | 805  |
|            |                   |                   |                   |            |            |                   |                   | act<br>Thr<br>135 |            |            |                   |                   |                   |            |            | 853  |
|            |                   |                   |                   |            |            |                   |                   | gct<br>Ala        |            |            |                   |                   |                   |            |            | 901  |
|            |                   |                   |                   |            |            |                   |                   | gtg<br>Val        |            |            |                   |                   |                   |            |            | 949  |
|            |                   |                   |                   |            |            |                   |                   | tct<br>Ser        |            |            |                   |                   |                   |            |            | 997  |
|            |                   |                   |                   |            |            |                   |                   | tca<br>Ser        |            |            |                   |                   |                   |            |            | 1045 |
| cct<br>Pro | gat<br>Asp        | gac<br>Asp        | gtc<br>Val<br>210 | tcg<br>Ser | acc<br>Thr | gtt<br>Val        | gct<br>Ala        | cca<br>Pro<br>215 | act<br>Thr | gct<br>Ala | cca<br>Pro        | act<br>Thr        | cca<br>Pro<br>220 | aat<br>Asn | gtt<br>Val | 1093 |
| cct<br>Pro | gct<br>Ala        | ggt<br>Gly<br>225 | gga<br>Gly        | aac<br>Asn | aag<br>Lys | gaa<br>Glu        | acg<br>Thr<br>230 | ttg<br>Leu        | ttc<br>Phe | gat<br>Asp | ttc<br>Phe        | gac<br>Asp<br>235 | ttt<br>Phe        | act<br>Thr | aat<br>Asn | 1141 |
| cta<br>Leu | cag<br>Gln<br>240 | atc<br>Ile        | cct<br>Pro        | gat<br>Asp | ttt<br>Phe | ggt<br>Gly<br>245 | ttc<br>Phe        | ttg<br>Leu        | gca<br>Ala | gag<br>Glu | gag<br>Glu<br>250 | caa<br>Gln        | caa<br>Gln        | gac<br>Asp | cta<br>Leu | 1189 |
|            |                   |                   |                   |            |            |                   |                   | gat<br>Asp        |            |            |                   |                   |                   |            |            | 1237 |
|            |                   |                   |                   |            |            |                   |                   | gat<br>Asp        |            |            |                   |                   |                   |            |            | 1285 |
|            |                   |                   |                   |            |            |                   |                   | gat<br>Asp<br>295 |            |            |                   |                   |                   |            |            | 1333 |
|            |                   |                   |                   |            |            |                   |                   | cct<br>Pro        |            |            |                   |                   |                   |            |            | 1381 |

| MBI15 Sequence Listing.ST25<br>aaa agt ttt gca gct tca tag gatcttgctt agtaatgtta agtgagaa | aga 1432       |
|-------------------------------------------------------------------------------------------|----------------|
| Lys Ser Phe Ala Ala Ser<br>320                                                            |                |
| gtgttttgtt ttttcgttta tgctttagta atttaagaca tacaaaagtg tg                                 | tgttccgg 1492  |
| attgtagtaa gatcttaaga cataaagccg ggttttgcaa ttaggaatcg ag                                 | ttttaatg 1552  |
| aagttttagt ttatgtttg                                                                      | 1571           |
| <210> 12<br><211> 324<br><212> PRT<br><213> Arabidopsis thaliana                          |                |
| <400> 12                                                                                  |                |
| Met Val Ala Ile Arg Lys Glu Gln Ser Leu Ser Gly Val Ser S<br>1 5 10                       | er Glu<br>5    |
| Ile Lys Lys Arg Ala Lys Arg Asn Thr Leu Ser Ser Leu Pro G<br>20 25 30                     | iln Glu        |
| Thr Gln Pro Leu Arg Lys Val Arg Ile Ile Val Asn Asp Pro T 35 40 45                        | yr Ala         |
| Thr Asp Asp Ser Ser Ser Asp Glu Glu Glu Leu Lys Val Pro L<br>50 55 60                     | ys Pro         |
| Arg Lys Met Lys Arg Ile Val Arg Glu Ile Asn Phe Pro Ser M                                 | 1et Glu<br>80  |
| Val Ser Glu Gln Pro Ser Glu Ser Ser Ser Gln Asp Ser Thr I                                 | ys Thr<br>95   |
| Asp Gly Lys Ile Ala Val Ser Ala Ser Pro Ala Val Pro Arg I<br>100 105 110                  | Lys Lys        |
| Pro Val Gly Val Arg Gln Arg Lys Trp Gly Lys Trp Ala Ala C                                 | Glu Ile        |
| Arg Asp Pro Ile Lys Lys Thr Arg Thr Trp Leu Gly Thr Phe 1                                 | Asp Thr        |
| Leu Glu Glu Ala Ala Lys Ala Tyr Asp Ala Lys Lys Leu Glu I<br>145 150 155                  | Phe Asp<br>160 |
| Ala Ile Val Ala Gly Asn Val Ser Thr Thr Lys Arg Asp Val                                   | Ser Ser<br>175 |
| Ser Glu Thr Ser Gln Cys Ser Arg Ser Ser Pro Val Val Pro 180 185 190                       | Val Glu        |
| Gln Asp Asp Thr Ser Ala Ser Ala Leu Thr Cys Val Asn Asn 195 200 205                       | Pro Asp        |
| Asp Val Ser Thr Val Ala Pro Thr Ala Pro Thr Pro Asn Val<br>210 215 220                    | Pro Ala        |
| Gly Gly Asn Lys Glu Thr Leu Phe Asp Phe Asp Phe Thr Asn<br>Page 16                        | Leu Gln        |

| W                            | <b>O</b> 01      | /357:                    | 26                |            |            |                  |                  |                   |            |              |                  |                  |                   |            |            | PCT/US |
|------------------------------|------------------|--------------------------|-------------------|------------|------------|------------------|------------------|-------------------|------------|--------------|------------------|------------------|-------------------|------------|------------|--------|
| 225                          |                  |                          |                   |            | 230        |                  | мві              | 15 S              | eque       | nce 1<br>235 | List             | ing.             | ST25              | ٠          | 240        |        |
| Ile                          | Pro              | Asp                      | Phe               | Gly<br>245 | Phe        | Leu              | Ala              | Glu               | Glu<br>250 | Gln          | Gln              | Авр              | Leu               | Asp<br>255 | Phe        |        |
| Asp                          | Сув              | Phe                      | Leu<br>260        | Ala        | Asp        | Asp              | Gln              | Phe<br>265        | Asp        | Asp          | Phe              | Gly              | Leu<br>270        | Leu        | Asp        |        |
| Asp                          | Ile              | Gln<br>275               | Gly               | Phe        | Glu        | Asp              | Asn<br>280       | Gly               | Pro        | Ser          | Ala              | Leu<br>285       | Pro               | Asp        | Phe        |        |
| Asp                          | Phe<br>290       | Ala.                     | Asp               | Val        | Glu        | Asp<br>295       | Leu              | Gln               | Leu        | Ala          | Asp<br>300       | Ser              | Ser               | Phe        | Gly        |        |
| Phe 305                      | Leu              | Asp                      | Gln               | Leu        | Ala<br>310 | Pro              | Ile              | Asn               | Ile        | Ser<br>315   | Cys              | Pro              | Leu               | Lys        | Ser<br>320 |        |
| Phe .                        | Ala              | Ala                      | Ser               |            |            |                  |                  |                   |            |              |                  |                  |                   |            |            |        |
| <210<br><211<br><212<br><213 | > 9<br>> I       | .3<br>220<br>NA<br>Arabi | idops             | sis (      | thali      | iana             |                  |                   |            |              |                  |                  |                   |            |            |        |
| <220<br><221<br><222<br><223 | > (<br>> (       |                          | . (852            | 2)         |            |                  |                  |                   |            |              |                  |                  |                   |            |            |        |
| <400<br>atg<br>Met<br>1      | gcg              | aag                      |                   |            |            |                  |                  |                   |            |              |                  |                  |                   |            |            | 48     |
| cct<br>Pro                   | gaa<br>Glu       | gaa<br>Glu               | gac<br>Asp<br>20  | gag<br>Glu | aag<br>Lys | cta<br>Leu       | agg<br>Arg       | agc<br>Ser<br>25  | ttc<br>Phe | atc<br>Ile   | ctc<br>Leu       | Ser              | tat<br>Tyr<br>30  | ggc        | cat<br>His | 96     |
| tct<br>Ser                   | tgc<br>Cys       | tgg<br>Trp<br>35         | acc<br>Thr        | act<br>Thr | gtt<br>Val | ccc<br>Pro       | atc<br>Ile<br>40 | aaa<br>Lys        | gct<br>Ala | 999<br>Gly   | tta<br>Leu       | caa<br>Gln<br>45 | agg<br>Arg        | aat<br>Asn | 999<br>999 | 144    |
| aag<br>Lys                   | agc<br>Ser<br>50 | tgc<br>Cys               | aga<br>Arg        | tta<br>Leu | aga<br>Arg | tgg<br>Trp<br>55 | att<br>Ile       | aat<br>Asn        | tac<br>Tyr | cta<br>Leu   | aga<br>Arg<br>60 | cca<br>Pro       | Gly<br>999        | tta<br>Leu | aag<br>Lys | 192    |
| agg<br>Arg<br>65             |                  |                          |                   |            |            |                  |                  |                   |            |              |                  |                  |                   |            |            | 240    |
| tct<br>Ser                   |                  |                          |                   |            |            |                  |                  |                   |            |              |                  |                  |                   |            | gga<br>Gly | 288    |
| aga<br>Arg                   | aca<br>Thr       | gac<br>Asp               | aat<br>Asn<br>100 | gag<br>Glu | ata<br>Ile | aag<br>Lys       | aac<br>Asn       | tat<br>Tyr<br>105 | tgg<br>Trp | cac<br>His   | tct<br>Ser       | cat<br>His       | ttg<br>Leu<br>110 | aaa<br>Lys | aag<br>Lys | 336    |

384

432

aaa tgg ctc aag tct cag agc tta caa gat gca aaa tct att tcc cct Lys Trp Leu Lys Ser Gln Ser Leu Gln Asp Ala Lys Ser Ile Ser Pro 115 120 125

cct tcg tct tca tca tca tca ctt gtt gct tgt gga gaa aga aat ccg Pro Ser Ser Ser Ser Ser Leu Val Ala Cys Gly Glu Arg Asn Pro 130 135 140

| gaa<br>Glu<br>145                                        | acc<br>Thr                                                          | ttg<br>Leu                                   | atc<br>Ile              | tcg<br>Ser                    | aat<br>Asn<br>150 | cac<br>His        | ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ttc                              | Ser                      | ctc                            | caq                     | aga                     | ctt               | cta<br>Leu        | gag<br>Glu<br>160              | 480 |
|----------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|-------------------------|-------------------------------|-------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|--------------------------------|-------------------------|-------------------------|-------------------|-------------------|--------------------------------|-----|
| aac<br>Asn                                               | aaa<br>Lys                                                          | tct<br>Ser                                   | tca<br>Ser              | tct<br>Ser<br>165             | ccc<br>Pro        | tca<br>Ser        | caa<br>Gln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gaa<br>Glu                       | agc<br>Ser<br>170        | aac<br>Asn                     | gga<br>Gly              | aat<br>Asn              | aac<br>Asn        | agc<br>Ser<br>175 | cat<br>His                     | 528 |
| caa<br>Gln                                               | tgt<br>Cys                                                          | tct<br>Ser                                   | tct<br>Ser<br>180       | gct<br>Ala                    | cct<br>Pro        | gag<br>Glu        | att<br>Ile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cca<br>Pro<br>185                | agg<br>Arg               | ctt<br>Leu                     | ttc<br>Phe              | ttc<br>Phe              | tct<br>Ser<br>190 | gaa<br>Glu        | tgg<br>Trp                     | 576 |
| ctt<br>Leu                                               | tct<br>Ser                                                          | tct<br>Ser<br>195                            | tca<br>Ser              | tat<br>Tyr                    | ccc<br>Pro        | cac<br>His        | acc<br>Thr<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gat<br>Asp                       | tat<br>Tyr               | tcc<br>Ser                     | tct<br>Ser              | gag<br>Glu<br>205       | ttt<br>Phe        | acc<br>Thr        | gac<br>Asp                     | 624 |
| tct<br>Ser                                               | aag<br>Lys<br>210                                                   | cac<br>His                                   | agt<br>Ser              | caa<br>Gln                    | gct<br>Ala        | cca<br>Pro<br>215 | aat<br>Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gtc<br>Val                       | gaa<br>Glu               | gag<br>Glu                     | act<br>Thr<br>220       | ctc<br>Leu              | tca<br>Ser        | gct<br>Ala        | tat<br>Tyr                     | 672 |
| gaa<br>Glu<br>225                                        | Glu                                                                 | atg<br>Met                                   | ggt<br>Gly              | gat<br>Asp                    | gtt<br>Val<br>230 | gat<br>Asp        | cag<br>Gln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ttc<br>Phe                       | cat<br>His               | tac<br>Tyr<br>235              | aac<br>Asn              | gaa<br>Glu              | atg<br>Met        | atg<br>Met        | atc<br>Ile<br>240              | 720 |
| aac<br>Asn                                               | aac<br>Asn                                                          | agc<br>Ser                                   | aac<br>Asn              | tgg<br>Trp<br>245             | act<br>Thr        | ctt<br>Leu        | aac<br>Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gac<br>Asp                       | att<br>Ile<br>250        | gtg<br>Val                     | ttt<br>Phe              | ggt<br>Gly              | tcc<br>Ser        | aaa<br>Lys<br>255 | tgt<br>Cys                     | 768 |
| aag<br>Lys                                               | aag<br>Lys                                                          | cag<br>Gln                                   | gag<br>Glu<br>260       | cat<br>His                    | cat<br>His        | att<br>Ile        | tat<br>Tyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | aga<br>Arg<br>265                | gag<br>Glu               | gct<br>Ala                     | tca<br>Ser              | gat<br>Asp              | tgt<br>Cys<br>270 | aat<br>Asn        | tct<br>Ser                     | 816 |
| tct<br>Ser                                               | gct<br>Ala                                                          | gaa<br>Glu<br>275                            | Phe                     | ttt<br>Phe                    | tct<br>Ser        | cca<br>Pro        | cca<br>Pro<br>280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Thr                              | acg<br>Thr               | acg<br>Thr                     | taa                     | att                     | gcgt              | tta               |                                | 862 |
| ttg                                                      | taat                                                                | gta                                          | aatc                    | aaat                          | tt c              | taag              | gcaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a ac                             | cggaa                    | aaaa                           | aaa                     | aaaa                    | aaa               | aaaa              | aaaa                           | 920 |
|                                                          |                                                                     |                                              |                         |                               |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                          |                                |                         |                         |                   |                   |                                |     |
| <21<br><21<br><21<br><21                                 | l1><br>l2>                                                          | 14<br>283<br>PRT<br>Arab                     | idop                    | sis                           | thal              | iana              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                          |                                |                         |                         |                   |                   |                                |     |
| <21<br><21                                               | 12><br>12>                                                          | 283<br>PRT                                   | idop                    | sis                           | thal              | iana              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                          |                                |                         |                         |                   |                   |                                |     |
| <21<br><21<br><21                                        | 11><br>12><br>13>                                                   | 283<br>PRT<br>Arab                           | -                       |                               |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arg                              | His<br>10                | Arg                            | Lys                     | Gly                     | Leu               | Trp<br>15         | Ser                            |     |
| <21<br><21<br><21<br><40<br>Met<br>1                     | 11><br>12><br>13><br>00><br>: Ala                                   | 283<br>PRT<br>Arab<br>14                     | Thr                     | Lys<br>5                      | туг               | Gly               | . Glu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  | 10                       |                                |                         |                         |                   | 13                | Ser                            |     |
| <21 <21 <21 <40 Met 1                                    | 11><br>12><br>13><br>00><br>: Ala                                   | 283<br>PRT<br>Arab<br>14<br>Lys              | Thr<br>Asp<br>20        | Lys<br>5<br>Glu               | Tyr<br>Lys        | Gly               | Glu<br>Arg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ser<br>25                        | Phe                      | Ile                            | Leu                     | . Ser                   | Туг<br>30         | · Gly             |                                |     |
| <21<br><21<br><40<br>Met<br>1<br>Pro                     | 11><br>12><br>13><br>00><br>: Ala                                   | 283<br>PRT<br>Arab<br>14<br>Lys<br>Glu<br>35 | Thr<br>Asp<br>20        | Lys<br>5<br>Glu<br>Thr        | Tyr<br>Lys<br>Val | Gly<br>Leu        | Glu<br>Arg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ser<br>25<br>Lys                 | Phe<br>Ala               | Ile                            | Leu<br>Leu              | Ser<br>Glr<br>45        | Tyx<br>30         | Gly               | , His                          |     |
| <21 <21 <4() Met 1 Pro                                   | 1>, 12>, 13>, 100, 100, 100, 100, 100, 100, 100, 10                 | 283 PRT Arab 14 Lys Glu Trp 35               | Thr<br>Asp<br>20<br>Thr | Lys<br>5<br>Glu<br>Thr        | Tyr<br>Lys<br>Val | Gly<br>Leu<br>Pro | Glu<br>Arg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ser<br>25<br>Lys<br>Asr          | Phe Ala                  | Ile<br>Gly<br>Leu              | Leu<br>Leu<br>Arg       | Glr<br>45               | Tyr<br>30<br>Arg  | Gly Asi           | His                            |     |
| <21 <21 <21 <40 Met 1 Pro                                | 11><br>12><br>13><br>00><br>1 Ala<br>1 Cya<br>1 See 50              | 283 PRT Arab 14 Lys Glu 35 Trp 35 Cys        | Asp<br>20 Thr           | Lys<br>5<br>Glu<br>Thr<br>Leu | Tyr Lys Val       | Gly Leu Pro       | Glu Arg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ser<br>25<br>Lys<br>Asr          | Phe Ala                  | Ile<br>Gly<br>Leu<br>Thr<br>75 | Leu<br>Leu<br>Arg<br>60 | Glr<br>45<br>Pro        | Tyr<br>30<br>Arg  | Gly Ass           | His Gly Lys                    |     |
| <21 < 21 < 21 < 41<br>Met 1<br>Pro See Ly<br>Ar 65<br>Se | 1><br>12><br>13><br>00><br>12 Ala  OGLU  Tr Cys  See 50  GAB  Tr Pr | 283 PRT Arab 14 Lyss 15 Trp 35 Trp 35 Cys    | Asp 20 Thr Arg          | Lys 5 Glu Thr Let Ser 85      | Tyr Lys Val Arg   | Gly Leu Pro       | Glu Arg 11e 40 Ile 10 I | Ser 25<br>25<br>Lyse Lyse<br>Asr | Phe Ala Tyr Glu 1 Glu 90 | Ile<br>Gly<br>Leu<br>Thr<br>75 | Leu Arc 60              | Ser<br>Glr<br>45<br>Pro | Tyr<br>30<br>Arc  | Gly Ass           | His<br>Gly<br>Lys<br>His<br>80 |     |

Page 18

WO 01/35726

### PCT/US00/31418

450

MBI15 Sequence Listing.ST25 115 Pro Ser Ser Ser Ser Ser Leu Val Ala Cys Gly Glu Arg Asn Pro Glu Thr Leu Ile Ser Asn His Val Phe Ser Leu Gln Arg Leu Leu Glu Asn Lys Ser Ser Ser Pro Ser Gln Glu Ser Asn Gly Asn Asn Ser His Gln Cys Ser Ser Ala Pro Glu Ile Pro Arg Leu Phe Phe Ser Glu Trp Leu Ser Ser Ser Tyr Pro His Thr Asp Tyr Ser Ser Glu Phe Thr Asp Ser Lys His Ser Gln Ala Pro Asn Val Glu Glu Thr Leu Ser Ala Tyr Glu Glu Met Gly Asp Val Asp Gln Phe His Tyr Asn Glu Met Met Ile 225 Asn Asn Ser Asn Trp Thr Leu Asn Asp Ile Val Phe Gly Ser Lys Cys Lys Lys Gln Glu His His Ile Tyr Arg Glu Ala Ser Asp Cys Asn Ser Ser Ala Glu Phe Phe Ser Pro Pro Thr Thr Thr <210> 15 <211> 1302 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (331)..(1149) <223> G409 <400> 15 60 tgtctctctc tctggctctc tttctcttaa cgtgatcata acgtgattcg aaaattggat atagataggt ttcttgttgg atcttgatcc ctctggaaaa ggaggggaga atagcagttc 120 180 atgatgggat tttgtatctg cccgttggag tcacctgcga gattactatg gagtacaagc ttottoogco ataagatoat gatottotaa toottootao ttottoccat otttttaato 240 300 atcttctcgc tatctctgct tcctctttct ctctgtttcc tctttctcag aactcagaag tagttgttgt tttatttctg ttgatcaaaa atg gaa tcc aat tcg ttt ttc ttc Met Glu Ser Asn Ser Phe Phe Phe 354 gat cca tct gct tca cac ggc aac agc atg ttc ttc ctt ggg aat ctc Asp Pro Ser Ala Ser His Gly Asn Ser Met Phe Phe Leu Gly Asn Leu 10 15 20 402

Page 19

aat ccc gtc gtc caa gga gga gga gca aga tcg atg atg aac atg gag Asn Pro Val Val Gln Gly Gly Gly Ala Arg Ser Met Met Asn Met Glu

|                       |                   |                     |                   |                   |                   |                  | MBII              | 15 Se             | ecuer             | nce I             | List              | ing.S                 | T25               |                   |                   |       |
|-----------------------|-------------------|---------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|-------|
| 25                    |                   |                     |                   |                   | 30                |                  |                   |                   | _                 | 35                |                   |                       |                   |                   | 40                |       |
| gaa<br>Glu            | act<br>Thr        | tcg<br>Ser          | aag<br>Lys        | cga<br>Arg<br>45  | agg<br>Arg        | ccc<br>Pro       | ttc<br>Phe        | ttt<br>Phe        | agc<br>Ser<br>50  | tcc<br>Ser        | cct<br>Pro        | gag<br>Glu            | gat<br>Asp        | ctc<br>Leu<br>55  | tac<br>Tyr        | 498   |
| gac<br>Asp            | gat<br>Asp        | gac<br>Asp          | ttt<br>Phe<br>60  | tac<br>Tyr        | gac<br>Asp        | gac<br>Asp       | cag<br>Gln        | ttg<br>Leu<br>65  | cct<br>Pro        | gaa<br>Glu        | aag<br>Lys        | aag<br>Lys            | cgt<br>Arg<br>70  | cgc<br>Arg        | ctc<br>Leu        | 546   |
| act<br>Thr            | acc<br>Thr        | gaa<br>Glu<br>75    | caa<br>Gln        | gtg<br>Val        | cat<br>His        | ctg<br>Leu       | ctg<br>Leu<br>80  | gag<br>Glu        | aaa<br>Lys        | agc<br>Ser        | ttc<br>Phe        | gag<br>Glu<br>85      | aca<br>Thr        | gag<br>Glu        | aac<br>Asn        | 594   |
| aag<br>Lys            | cta<br>Leu<br>90  | gag<br>Glu          | cct<br>Pro        | gaa<br>Glu        | cgc<br>Arg        | aag<br>Lys<br>95 | act<br>Thr        | cag<br>Gln        | ctt<br>Leu        | gcc<br>Ala        | aag<br>Lys<br>100 | aag<br>Lys            | ctt<br>Leu        | ggt<br>Gly        | cta<br>Leu        | 642   |
| cag<br>Gln<br>105     | cca<br>Pro        | agg<br>Arg          | caa<br>Gln        | gtg<br>Val        | gct<br>Ala<br>110 | gtc<br>Val       | tgg<br>Trp        | ttt<br>Phe        | cag<br>Gln        | aat<br>Asn<br>115 | cgc               | cga<br>Arg            | gct<br>Ala        | cgt<br>Arg        | tgg<br>Trp<br>120 | 690   |
| aaa<br>Lys            | aca<br>Thr        | aaa<br>Lys          | cag<br>Gln        | ctt<br>Leu<br>125 | gag<br>Glu        | aga<br>Arg       | gac<br>Asp        | tac<br>Tyr        | gat<br>Asp<br>130 | neu               | ctc<br>Leu        | aag<br>Lys            | tcc<br>Ser        | act<br>Thr<br>135 | tac<br>Tyr        | 738   |
| gac<br>Asp            | caa<br>Gln        | ctt<br>Leu          | ctt<br>Leu<br>140 | tct<br>Ser        | aac<br>Asn        | tac<br>Tyr       | gac<br>Asp        | tcc<br>Ser<br>145 | atc<br>Ile        | gtc<br>Val        | atg<br>Met        | gac<br>Asp            | aac<br>Asn<br>150 | vob               | aag<br>Lys        | 786   |
| ctc<br>Leu            | aga<br>Arg        | tcc<br>Ser<br>155   | gag<br>Glu        | gtt<br>Val        | act<br>Thr        | tcc<br>Ser       | ctg<br>Leu<br>160 | Thr               | gaa<br>Glu        | aag<br>Lys        | Leu               | cag<br>Gln<br>165     | GIY               | aaa<br>Lys        | caa<br>Gln        | 834   |
| gag<br>Glu            | aca<br>Thr        | Ala                 | aat<br>Asn        | gaa<br>Glu        | cca<br>Pro        | cct<br>Pro       | GLY               | caa<br>Gln        | gtg<br>Val        | Pro               | gaa<br>Glu<br>180 | PIO                   | aac               | caa<br>Glm        | ctt<br>Leu        | 882   |
| gat<br>Asp<br>189     | Pro               | gtt<br>Val          | tac<br>Tyr        | att<br>Ile        | aat<br>Asn<br>190 | Ala              | gca<br>Ala        | gca<br>Ala        | ato<br>Ile        | aaa<br>Lys        | 1111              | gag<br>Glu            | gac               | cgg<br>Arg        | tta<br>Leu<br>200 | 930   |
| agt<br>Sei            | tca<br>Ser        | 999<br>Gly          | agc<br>Ser        | gtt<br>Val<br>205 | GLY               | ago<br>Ser       | gcg               | gta<br>Val        | cta<br>Leu<br>210 | r wei             | gad<br>Ası        | gac<br>Asp            | gca<br>Ala        | cct<br>Pro<br>215 | caa<br>Gln        | . 978 |
| cta<br>Lei            | cta<br>Lev        | gaq<br>1 Asp        | ago<br>Ser<br>220 | Cys               | gac<br>Asp        | tct<br>Sei       | tac<br>Tyr        | tto<br>Phe        | PIC               | a ago<br>Sei      | ato               | e gta<br>e Val        | Pro<br>230        | , 110             | caa<br>Gln        | 1026  |
| ga<br>As <sub>l</sub> | aac<br>Asr        | age<br>1 Ser<br>23! | . Asr             | gco<br>Ala        | agt<br>Sei        | gat<br>As        | cat<br>His        | a Asi             | aat<br>Asi        | gao<br>n Asp      | c cg              | g ago<br>g Ser<br>245 | . cy              | tto<br>Pho        | gcc<br>Ala        | 1074  |
| ga<br>As              | gto<br>Val        | l Pho               | t gtg<br>e Val    | Pro               | aco<br>Thi        | act<br>Thi       | r Sei             | a ccg             | g to<br>Se:       | g cad             | ga<br>8 As<br>26  | h vr                  | cac<br>His        | gg<br>Gl          | gaa<br>Glu        | 1122  |
| tc<br>Se<br>26        | r Lei             | g gc                | t tto<br>a Phe    | tgg<br>Tr         | g gg<br>p Gl      | y Tr             | g cci             | t tag             | gaa               | aacc              | actc              | tga                   | taat              | aaa               |                   | 1169  |
|                       |                   | ttta                | ttta              | aagt              | tca :             | agag             | tcat              | ct t              | cttg              | ttgt              | t tc              | catg                  | ttga              | cga               | taattgt           | 1229  |
|                       |                   |                     |                   |                   |                   |                  |                   |                   |                   |                   |                   |                       |                   |                   | tgctttt           |       |
|                       |                   |                     | aaa               |                   |                   |                  |                   |                   |                   |                   |                   |                       |                   |                   |                   | 1302  |
|                       | 10-               | 16                  |                   |                   |                   |                  |                   |                   |                   |                   |                   |                       |                   |                   |                   |       |
| <2                    | 10><br>11><br>12> | 16<br>272<br>PRT    |                   |                   |                   |                  |                   |                   |                   |                   |                   |                       |                   |                   |                   |       |

<212> PRT <213> Arabidopsis thaliana

<400> 16

### MBI15 Sequence Listing.ST25

Met Glu Ser Asn Ser Phe Phe Phe Asp Pro Ser Ala Ser His Gly Asn 1 5 10 15

Ser Met Phe Phe Leu Gly Asn Leu Asn Pro Val Val Gln Gly Gly 25 30

Ala Arg Ser Met Met Asn Met Glu Glu Thr Ser Lys Arg Arg Pro Phe 35 40 45

Phe Ser Ser Pro Glu Asp Leu Tyr Asp Asp Asp Phe Tyr Asp Asp Gln 50 55

Leu Pro Glu Lys Lys Arg Arg Leu Thr Thr Glu Gln Val His Leu Leu 65 70 75 80

Glu Lys Ser Phe Glu Thr Glu Asn Lys Leu Glu Pro Glu Arg Lys Thr 85 90 95

Gln Leu Ala Lys Lys Leu Gly Leu Gln Pro Arg Gln Val Ala Val Trp 100 105 110

Phe Gln Asn Arg Arg Ala Arg Trp Lys Thr Lys Gln Leu Glu Arg Asp 115 120 125

Tyr Asp Leu Leu Lys Ser Thr Tyr Asp Gln Leu Leu Ser Asn Tyr Asp 130 135 140

Ser Ile Val Met Asp Asn Asp Lys Leu Arg Ser Glu Val Thr Ser Leu 145 150 160

Thr Glu Lys Leu Gln Gly Lys Gln Glu Thr Ala Asn Glu Pro Pro Gly 165 170 175

Gln Val Pro Glu Pro Asn Gln Leu Asp Pro Val Tyr Ile Asn Ala Ala 180 185 190

Ala Ile Lys Thr Glu Asp Arg Leu Ser Ser Gly Ser Val Gly Ser Ala 195 200 205

Val Leu Asp Asp Asp Ala Pro Gln Leu Leu Asp Ser Cys Asp Ser Tyr 210 215 220

Phe Pro Ser Ile Val Pro Ile Gln Asp Asn Ser Asn Ala Ser Asp His 225 230 235 240

Asp Asn Asp Arg Ser Cys Phe Ala Asp Val Phe Val Pro Thr Thr Ser 245 250 255

Pro Ser His Asp His His Gly Glu Ser Leu Ala Phe Trp Gly Trp Pro 260 265 270

<210> 17

<211> 2545

<212> DNA

<213> Arabidopsis thaliana

<220>

# MBI15 Sequence Listing.ST25

| MBI15 Sequence Listing.ST25                                                                                                                      |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| <221> CDS<br><222> (103)(2322)<br><223> G418                                                                                                     |                       |
| <400> 17 acatatgttt taaattettt gtetgaatet tacaggatee gagagagaga getetgga                                                                         | aac 60                |
| gatattaaca tatatcatga agaaaaagat tgaagtattg at atg gga ata act<br>Met Gly Ile Thr                                                                | 114                   |
| aaa act tct cct aat act aca att ctc ttg aag act ttt cac aat aa<br>Lys Thr Ser Pro Asn Thr Thr Ile Leu Leu Lys Thr Phe His Asn As<br>5 10 20      | • •                   |
| tct atg tcc caa gat tat cat cat cat cat cat cat aat caa cac ca<br>Ser Met Ser Gln Asp Tyr His His His His His Asn Gln His Gl<br>25 30            | a 210<br>n            |
| gga ggt atc ttc aac ttc tct aat gga ttc gac cga tca gat tct cc<br>Gly Gly Ile Phe Asn Phe Ser Asn Gly Phe Asp Arg Ser Asp Ser Pr<br>40 45 50     | c 258                 |
| aat tta aca act cag cag aag caa gag cat caa agg gta gag atg ga<br>Asn Leu Thr Thr Gln Gln Lys Gln Glu His Gln Arg Val Glu Met As<br>55 60 65     | e 306<br>p            |
| gag gaa tot toa gto goo gga ggt agg att cog gto tac gaa toa go<br>Glu Glu Ser Ser Val Ala Gly Gly Arg Ile Pro Val Tyr Glu Ser Al<br>70 75 80     | c 354<br>.a           |
| ggt atg tta tcc gaa atg ttt aat ttc ccc gga agc agc ggt gga gg<br>Gly Met Leu Ser Glu Met Phe Asn Phe Pro Gly Ser Ser Gly Gly Gl<br>85 90 95     | Y                     |
| aga gat ctc gac ctc ggc caa tct ttc cgg tca aat agg cag ttg ct<br>Arg Asp Leu Asp Leu Gly Gln Ser Phe Arg Ser Asn Arg Gln Leu Le<br>105 110 115  | t 450<br>eu           |
| gag gag caa cat cag aat att ccg gct atg aat gct acg gat tca gc<br>Glu Glu Gln His Gln Asn Ile Pro Ala Met Asn Ala Thr Asp Ser Al<br>120 125 130  | ec 498<br>La          |
| acc gcc acc gca gcc gcc atg cag tta ttc ttg atg aat cca ccg cc<br>Thr Ala Thr Ala Ala Ala Met Gln Leu Phe Leu Met Asn Pro Pro Pro<br>135 140 145 | ca 546<br>ro          |
| ccg caa caa cca ccg tct ccg tca tcc aca act tcc cca agg agc ca<br>Pro Gln Gln Pro Pro Ser Pro Ser Ser Thr Thr Ser Pro Arg Ser H:<br>150 155 160  | ac 594<br>is          |
| Cac aat tot toa act oft cac atg the oft coa agt coa too acc at His Asn Ser Ser Thr Leu His Met Leu Leu Pro Ser Pro Ser Thr As 165                | ac 642<br>sn<br>80    |
| aca act cac cat cag aac tac act aat cat atg tct atg cat cag c<br>Thr Thr His His Gln Asn Tyr Thr Asn His Met Ser Met His Gln L<br>185 190 195    | tt 690<br>eu          |
| cca cat cag cat cac caa cag ata tcg acg tgg cag tct tct ccc g<br>Pro His Gln His His Gln Gln Ile Ser Thr Trp Gln Ser Ser Pro A<br>200 205 210    | at 738<br>sp          |
| cat cat cat cat cac acc acc acc acc gag att ggg acc gtc c<br>His His His His His His Asn Ser Gln Thr Glu Ile Gly Thr Val H<br>215 220 225        | .10                   |
| gtg gaa aac agc gga gga cac gga gga caa ggc ttg tcc tta tct c<br>Val Glu Asn Ser Gly Gly His Gly Gly Gln Gly Leu Ser Leu Ser L<br>230 235 240    | etc 834<br>Jeu        |
| tca tcg tct tta gag gct gca gca aaa gcg gaa gag tat aga aac a<br>Ser Ser Ser Leu Glu Ala Ala Ala Lys Ala Glu Glu Tyr Arg Asn I<br>245 250 255 2  | 1tt 882<br>11e<br>260 |

|                   |                   |                   |                   |                   |                   |                   | MBI               | 15 S              | eque              | nce               | List              | ing.              | ST25              |                   |                   |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
|                   |                   |                   |                   |                   |                   | tct<br>Ser        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 930  |
|                   |                   |                   |                   |                   |                   | gct<br>Ala        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 978  |
|                   |                   |                   |                   |                   |                   | tct<br>Ser        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1026 |
| Ala               |                   |                   |                   |                   | Arg               | aac<br>Asn<br>315 |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1074 |
| ttg<br>Leu<br>325 | ttg<br>Leu        | gaa<br>Glu        | gag<br>Glu        | ttt<br>Phe        | tgt<br>Cys<br>330 | agt<br>Ser        | gtt<br>Val        | gga<br>Gly        | aga<br>Arg        | gga<br>Gly<br>335 | ttt<br>Phe        | ttg<br>Leu        | aag<br>Lys        | aag<br>Lys        | aac<br>Asn<br>340 | 1122 |
|                   |                   |                   |                   |                   | Ser               | aac<br>Asn        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1170 |
|                   |                   |                   |                   |                   |                   | gcc<br>Ala        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1218 |
|                   |                   |                   |                   |                   |                   | gag<br>Glu        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1266 |
|                   |                   |                   |                   |                   |                   | gac<br>Asp<br>395 |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1314 |
|                   |                   |                   |                   |                   |                   | tct<br>Ser        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1362 |
|                   |                   |                   |                   |                   |                   | ttg<br>Leu        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1410 |
| aga<br>Arg        | tgc<br>Cys        | ctt<br>Leu        | aaa<br>Lys<br>440 | gat<br>Asp        | gca<br>Ala        | gtt<br>Val        | gcg<br>Ala        | gct<br>Ala<br>445 | cag<br>Gln        | ctt<br>Leu        | aag<br>Lys        | cag<br>Gln        | agt<br>Ser<br>450 | tgc<br>Cys        | gaa<br>Glu        | 1458 |
| ctt<br>Leu        | ctt<br>Leu        | 999<br>Gly<br>455 | gac<br>Asp        | aaa<br>Lys        | gat<br>Asp        | gca<br>Ala        | gcg<br>Ala<br>460 | gga<br>Gly        | atc<br>Ile        | tct<br>Ser        | tct<br>Ser        | tcc<br>Ser<br>465 | ggg<br>Gly        | tta<br>Leu        | aca<br>Thr        | 1506 |
| aaa<br>Lys        | ggt<br>Gly<br>470 | gaa<br>Glu        | act<br>Thr        | ccg<br>Pro        | cgt<br>Arg        | ttg<br>Leu<br>475 | cgt<br>Arg        | ttg<br>Leu        | cta<br>Leu        | gag<br>Glu        | caa<br>Gln<br>480 | agt<br>Ser        | ttg<br>Leu        | cgt<br>Arg        | cag<br>Gln        | 1554 |
| caa<br>Gln<br>485 | cgt<br>Arg        | gcg<br>Ala        | ttt<br>Phe        | cat<br>His        | caa<br>Gln<br>490 | atg<br>Met        | ggt<br>Gly        | atg<br>Met        | atg<br>Met        | gaa<br>Glu<br>495 | caa<br>Gln        | gaa<br>Glu        | gct<br>Ala        | tgg<br>Trp        | cgg<br>Arg<br>500 | 1602 |
| cca<br>Pro        | caa<br>Gln        | cgc<br>Arg        | ggt<br>Gly        | ttg<br>Leu<br>505 | cct<br>Pro        | gaa<br>Glu        | ege<br>Arg        | tcc<br>Ser        | gtc<br>Val<br>510 | aat<br>Asn        | ata<br>Ile        | ctt<br>Leu        | aga<br>Arg        | gct<br>Ala<br>515 | tgg<br>Trp        | 1650 |
|                   |                   |                   |                   |                   |                   | cac<br>His        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1698 |
| cta<br>Leu        | ttg<br>Leu        | gct<br>Ala<br>535 | cga<br>Arg        | cag<br>Gln        | act<br>Thr        | ggt<br>Gly        | tta<br>Leu<br>540 | tcc<br>Ser        | aga<br>Arg        | aat<br>Asn        | cag<br>Gln        | gta<br>Val<br>545 | tca<br>Ser        | aat<br>Asn        | tgg<br>Trp        | 1746 |
|                   |                   |                   |                   |                   |                   | cgt<br>Arg        |                   |                   | ГЛа               |                   | Met               |                   |                   |                   |                   | 1794 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |

|                   | 550               |                   |                   |                   |                   | 555               | MBI               | 15 Se             | equer             | ice l             | List:<br>560      | ing.              | ST25              |                   |                   |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| tac<br>Tyr<br>565 | caa<br>Gln        | caa<br>Gln        | gaa<br>Glu        | tca<br>Ser        | aaa<br>Lys<br>570 | gaa<br>Glu        | aga<br>Arg        | gaa<br>Glu        | aga<br>Arg        | gaa<br>Glu<br>575 | gag<br>Glu        | gaa<br>Glu        | tta<br>Leu        | gaa<br>Glu        | gag<br>Glu<br>580 | 1842 |
| aac<br>Asn        | gaa<br>Glu        | gaa<br>Glu        | gat<br>Asp        | caa<br>Gln<br>585 | gaa<br>Glu        | aca<br>Thr        | aaa<br>Lys        | aac<br>Asn        | agc<br>Ser<br>590 | aac<br>Asn        | gac<br>Asp        | gac<br>Asp        | aag<br>Lys        | agc<br>Ser<br>595 | aca<br>Thr        | 1890 |
| aaa<br>Lys        | tcc<br>Ser        | aac<br>Asn        | aac<br>Asn<br>600 | aat<br>Asn        | gaa<br>Glu        | agc<br>Ser        | aac<br>Asn        | ttc<br>Phe<br>605 | act<br>Thr        | gcc<br>Ala        | gtt<br>Val        | cgg<br>Arg        | acc<br>Thr<br>610 | act<br>Thr        | tca<br>Ser        | 1938 |
| caa<br>Gln        | act<br>Thr        | cca<br>Pro<br>615 | acg<br>Thr        | aca<br>Thr        | acc<br>Thr        | gca<br>Ala        | cca<br>Pro<br>620 | gac<br>Asp        | gca<br>Ala        | tca<br>Ser        | gac<br>Asp        | gca<br>Ala<br>625 | gac<br>Asp        | gca<br>Ala        | gca<br>Ala        | 1986 |
| gta<br>Val        | gcg<br>Ala<br>630 | aca<br>Thr        | ggc<br>Gly        | cac<br>His        | cgt<br>Arg        | cta<br>Leu<br>635 | aga<br>Arg        | tcc<br>Ser        | aac<br>Asn        | att<br>Ile        | aat<br>Asn<br>640 | gct<br>Ala        | tac<br>Tyr        | gaa<br>Glu        | aac<br>Asn        | 2034 |
| gac<br>Asp<br>645 | gct<br>Ala        | tca<br>Ser        | tca<br>Ser        | ctt<br>Leu        | cta<br>Leu<br>650 | ctc<br>Leu        | cct<br>Pro        | tcc<br>Ser        | tct<br>Ser        | tat<br>Tyr<br>655 | tcc<br>Ser        | aac<br>Asn        | gcc<br>Ala        | gcc<br>Ala        | gct<br>Ala<br>660 | 2082 |
| cct<br>Pro        | gcc<br>Ala        | gct<br>Ala        | gtt<br>Val        | tct<br>Ser<br>665 | gac<br>Asp        | gac<br>Asp        | ttg<br>Leu        | aat<br>Asn        | tct<br>Ser<br>670 | cgt<br>Arg        | tac<br>Tyr        | ggt<br>Gly        | ggc<br>Gly        | tca<br>Ser<br>675 | gac<br>Asp        | 2130 |
| gcg<br>Ala        | ttt<br>Phe        | tcc<br>Ser        | gcc<br>Ala<br>680 | Val               | gcc<br>Ala        | acg<br>Thr        | tgt<br>Cys        | caa<br>Gln<br>685 | caa<br>Gln        | agt<br>Ser        | gta<br>Val        | ggt<br>Gly        | 999<br>Gly<br>690 | ttc<br>Phe        | gat<br>Asp        | 2178 |
| gat<br>Asp        | gct<br>Ala        | gac<br>Asp<br>695 | atg<br>Met        | gat<br>Asp        | ggt<br>Gly        | gtt<br>Val        | aac<br>Asn<br>700 | Vai               | ata<br>Ile        | agg<br>Arg        | ttt<br>Phe        | 999<br>Gly<br>705 | aca<br>Thr        | aac<br>Asn        | cct<br>Pro        | 2226 |
| act<br>Thr        | ggt<br>Gly<br>710 | Asp               | gtg<br>Val        | tct<br>Ser        | ctc<br>Leu        | acg<br>Thr<br>715 | ctt<br>Leu        | ggt<br>Gly        | tta<br>Leu        | cgc<br>Arg        | cac<br>His<br>720 | Ala               | gga<br>Gly        | aac<br>Asn        | atg<br>Met        | 2274 |
| cct<br>Pro<br>725 | Asp               | aaa<br>Lys        | gac<br>Asp        | gct<br>Ala        | tct<br>Ser<br>730 | Phe               | tgc<br>Cys        | gtt<br>Val        | aga<br>Arg        | gag<br>Glu<br>735 | rne               | 999<br>Gly        | ggt<br>Gly        | ttt<br>Phe        | tag               | 2322 |
| ttt               | gctt              | ttg               | tcac              | tcca              | tt t              | aatt              | aatt              | a at              | tata              | gttt              | tcc               | attc              | tta               | ctta              | ttttaa            | 2382 |
| ttg               | aaaa              | tct               | attt              | ttgt              | ct c              | ttaa              | aagt              | с са              | aaca              | atac              | att               | agtc              | tag               | ccct              | cctctg            | 2442 |
| ctt               | ttt               | ttt               | tcta              | tctc              | gt g              | aaga              | gaag              | a aa              | acga              | tacg              | taa               | atco              | ctt               | cgaa              | aactaa            | 2502 |
| tgt               | acgt              | tgt               | acga              | ctta              | tt g              | tttt              | cata              | a aa              | aaaa              | aaaa              | aaa               | ı                 |                   |                   |                   | 2545 |
| <21<br><21        | .0><br>.1>        | 18<br>739         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |

<211> 739 <212> PRT <213> Arabidopsis thaliana

Met Gly Ile Thr Lys Thr Ser Pro Asn Thr Thr Ile Leu Leu Lys Thr 1 10 15

Phe His Asn Asn Ser Met Ser Gln Asp Tyr His His His His His 20 25 30

Asn Gln His Gln Gly Gly Ile Phe Asn Phe Ser Asn Gly Phe Asp Arg 35

Ser Asp Ser Pro Asn Leu Thr Thr Gln Gln Lys Gln Glu His Gln Arg Page 24

50

# MBI15 Sequence Listing.ST25

Val Glu Met Asp Glu Glu Ser Ser Val Ala Gly Gly Arg Ile Pro Val 80

Tyr Glu Ser Ala Gly Met Leu Ser Glu Met Phe Asn Phe Pro Gly Ser 95

Ser Gly Gly Arg Asp Leu Asp Leu Gly Gln Ser Phe Arg Ser Asn 100 105 110

Arg Gln Leu Leu Glu Glu Gln His Gln Asn Ile Pro Ala Met Asn Ala 115 120 125

Thr Asp Ser Ala Thr Ala Thr Ala Ala Ala Met Gln Leu Phe Leu Met 130 135 140

Asn Pro Pro Pro Pro Gln Gln Pro Pro Ser Pro Ser Ser Thr Thr Ser 145 150 150 160

Pro Arg Ser His His Asn Ser Ser Thr Leu His Met Leu Leu Pro Ser 165 170 175

Pro Ser Thr Asn Thr Thr His His Gln Asn Tyr Thr Asn His Met Ser 180 185 190

Met His Gln Leu Pro His Gln His His Gln Gln Ile Ser Thr Trp Gln 195 200 205

Ser Ser Pro Asp His His His His His Asn Ser Gln Thr Glu Ile 210 215 220

Gly Thr Val His Val Glu Asn Ser Gly Gly His Gly Gly Gln Gly Leu 225 230 235 240

Ser Leu Ser Leu Ser Ser Leu Glu Ala Ala Ala Lys Ala Glu Glu 245 250 255

Tyr Arg Asn Ile Tyr Tyr Gly Ala Asn Ser Ser Asn Ala Ser Pro His 260 265 270

His Gln Tyr Asn Gln Phe Lys Thr Leu Leu Ala Asn Ser Ser Gln His 275 280 285

His His Gln Val Leu Asn Gln Phe Arg Ser Ser Pro Ala Ala Ser Ser 290 295 300

Ser Ser Met Ala Ala Val Asn Ile Leu Arg Asn Ser Arg Tyr Thr Thr 305 310 315 320

Ala Ala Gln Glu Leu Leu Glu Glu Phe Cys Ser Val Gly Arg Gly Phe 325 330 335

Leu Lys Lys Asn Lys Leu Gly Asn Ser Ser Asn Pro Asn Thr Cys Gly 340 345 350

- Gly Asp Gly Gly Gly Ser Ser Pro Ser Ser Ala Gly Ala Asn Lys Glu 355 360 365
- His Pro Pro Leu Ser Ala Ser Asp Arg Ile Glu His Gln Arg Arg Lys 370 375 380
- Val Lys Leu Leu Thr Met Leu Glu Glu Val Asp Arg Arg Tyr Asn His
- Tyr Cys Glu Gln Met Gln Met Val Val Asn Ser Phe Asp Ile Val Met
- Gly His Gly Ala Ala Leu Pro Tyr Thr Ala Leu Ala Gln Lys Ala Met
- Ser Arg His Phe Arg Cys Leu Lys Asp Ala Val Ala Ala Gln Leu Lys 435 440 445
- Gln Ser Cys Glu Leu Leu Gly Asp Lys Asp Ala Ala Gly Ile Ser Ser 450 455 460
- Ser Gly Leu Thr Lys Gly Glu Thr Pro Arg Leu Arg Leu Leu Glu Gln 465 470 475 480
- Ser Leu Arg Gln Gln Arg Ala Phe His Gln Met Gly Met Met Glu Gln 485 490 495
- Glu Ala Trp Arg Pro Gln Arg Gly Leu Pro Glu Arg Ser Val Asn Ile 500 505 510
- Leu Arg Ala Trp Leu Phe Glu His Phe Leu His Pro Tyr Pro Ser Asp 515 520 525
- Ala Asp Lys His Leu Leu Ala Arg Gln Thr Gly Leu Ser Arg Asn Gln 530 535 540
- Val Ser Asn Trp Phe Ile Asn Ala Arg Val Arg Leu Trp Lys Pro Met 545 550 560
- Val Glu Glu Met Tyr Gln Gln Glu Ser Lys Glu Arg Glu Arg Glu Glu 565 570 575
- Glu Leu Glu Glu Asn Glu Glu Asp Gln Glu Thr Lys Asn Ser Asn Asp 580 585
- Asp Lys Ser Thr Lys Ser Asn Asn Glu Ser Asn Phe Thr Ala Val
- Arg Thr Thr Ser Gln Thr Pro Thr Thr Thr Ala Pro Asp Ala Ser Asp 610 615 620
- Ala Asp Ala Ala Val Ala Thr Gly His Arg Leu Arg Ser Asn Ile Asn 625 635 640
- Ala Tyr Glu Asn Asp Ala Ser Ser Leu Leu Leu Pro Ser Ser Tyr Ser 645 650 655

### MBI15 Sequence Listing.ST25

Asn Ala Ala Pro Ala Ala Val Ser Asp Asp Leu Asn Ser Arg Tyr
660 665 670

Gly Gly Ser Asp Ala Phe Ser Ala Val Ala Thr Cys Gln Gln Ser Val 675 680 685

Gly Gly Phe Asp Asp Ala Asp Met Asp Gly Val Asn Val Ile Arg Phe 690 695 700

Gly Thr Asn Pro Thr Gly Asp Val Ser Leu Thr Leu Gly Leu Arg His 705 710 715 720

Ala Gly Asn Met Pro Asp Lys Asp Ala Ser Phe Cys Val Arg Glu Phe 725 730 735

Gly Gly Phe

<210> 19 <211> 1240 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (88)..(1020) <223> G591

gtaaatctct ctttgaaggt tcctaactcg ttaatcgtaa ctcacagtga ctcgttcgag tcaaagtcte tgtctttage tcaaace atg get agt aac aac eet eac gac aac Met Ala Ser Asn Asn Pro His Asp Asn ctt tot gad daa act oot tot gat gat tto tto gag daa ato oto ggo 162 Leu Ser Asp Gln Thr Pro Ser Asp Asp Phe Phe Glu Gln Ile Leu Gly ctt cct aac ttc tca gcc tct tct gcc gcc ggt tta tct gga gtt gac Leu Pro Asn Phe Ser Ala Ser Ser Ala Ala Gly Leu Ser Gly Val Asp 210 gga gga tta ggt ggt gga gca ccg cct atg atg ctg cag ttg ggt tcc Gly Gly Leu Gly Gly Ala Pro Pro Met Met Leu Gln Leu Gly Ser 258 gga gaa gaa gga agt cac atg ggt ggc tta gga gga agt gga cca act Gly Glu Glu Gly Ser His Met Gly Gly Leu Gly Gly Ser Gly Pro Thr 306 ggg ttt cac aat cag atg ttt cct ttg ggg tta agt ctt gat caa ggg 354 Gly Phe His Asn Gln Met Phe Pro Leu Gly Leu Ser Leu Asp Gln Gly aaa gga cct ggg ttt ctt aga cct gaa gga gga cat gga agt ggg aaa Lys Gly Pro Gly Phe Leu Arg Pro Glu Gly Gly His Gly Ser Gly Lys 90 95 100 105 402 aga ttc tca gat gat gtt gtt gat aat cga tgt tct tct atg aaa cct Arg Phe Ser Asp Asp Val Val Asp Asn Arg Cys Ser Ser Met Lys Pro 450 gtt ttc cac ggg cag cct atg caa cag cca cct cca tcg gcc cca cat Val Phe His Gly Gln Pro Met Gln Gln Pro Pro Pro Ser Ala Pro His 125 130 135 498

### MBI15 Sequence Listing.ST25

Gly Gly Leu Gly Gly Ser Gly Pro Thr Gly Phe His Asn Gln Met Phe

Pro Leu Gly Leu Ser Leu Asp Gln Gly Lys Gly Pro Gly Phe Leu Arg

Pro Glu Gly Gly His Gly Ser Gly Lys Arg Phe Ser Asp Asp Val Val

Asp Asn Arg Cys Ser Ser Met Lys Pro Val Phe His Gly Gln Pro Met

Gln Gln Pro Pro Pro Ser Ala Pro His Gln Pro Thr Ser Ile Arg Pro

Arg Val Arg Ala Arg Gly Gln Ala Thr Asp Pro His Ser Ile Ala 145 150 150 160

Glu Arg Leu Arg Glu Arg Ile Ala Glu Arg Ile Arg Ala Leu Gln 165 170 175

Glu Leu Val Pro Thr Val Asn Lys Thr Asp Arg Ala Ala Met Ile Asp 180 185 190

Glu Ile Val Asp Tyr Val Lys Phe Leu Arg Leu Gln Val Lys Val Leu

Ser Met Asn Arg Leu Gly Gly Ala Gly Ala Val Ala Pro Leu Val Thr 210 215 220

Asp Met Pro Leu Ser Ser Ser Val Glu Asp Glu Thr Gly Glu Gly

Arg Thr Pro Gln Pro Ala Trp Glu Lys Trp Ser Asn Asp Gly Thr Glu 245 250 255

Arg Gln Val Ala Lys Leu Met Glu Glu Asn Val Gly Ala Ala Met Gln 260 265 270

Leu Leu Gln Ser Lys Ala Leu Cys Met Met Pro Ile Ser Leu Ala Met 275 280 285

Ala Ile Tyr His Ser Gln Pro Pro Asp Thr Ser Ser Val Val Lys Pro 295

Glu Asn Asn Pro Pro Gln 305

<210>

<211> 1179 <212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (109)..(966)

G525

| <400<br>cttc      | > 2<br>tctc      | 1<br>tt c         | tcaa              | aaac              | c ct              | tccc             | tctt              | cgt               | ctcc              | aaa               | caac             | aaca              | aa c              | acaa              | caaca             | 60  |
|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|-----|
| acaa              | aaat             | ct t              | acaa              | gaag              | a tc              | attt             | ttag              | aaa               | ccct              | att               | agga             | taaa              | atg<br>Met<br>1   | gat<br>Asp        | tac<br>Tyr        | 117 |
| gag<br>Glu        | gca<br>Ala<br>5  | tca<br>Ser        | aga<br>Arg        | atc<br>Ile        | Val               | gaa<br>Glu<br>10 | atg<br>Met        | gta<br>Val        | gaa<br>Glu        | Asp               | gaa<br>Glu<br>15 | gaa<br>Glu        | cat<br>His        | ata<br>Ile        | gat<br>Asp        | 165 |
| cta<br>Leu<br>20  | cca<br>Pro       | cca<br>Pro        | gga<br>Gly        | ttc<br>Phe        | aga<br>Arg<br>25  | ttt<br>Phe       | cac<br>His        | cct<br>Pro        | Thr               | gat<br>Asp<br>30  | gaa<br>Glu       | gaa<br>Glu        | ctc<br>Leu        | ata<br>Ile        | act<br>Thr<br>35  | 213 |
| cac<br>His        | tac<br>Tyr       | ctc<br>Leu        | aaa<br>Lys        | cca<br>Pro<br>40  | aag<br>Lys        | gtt<br>Val       | ttc<br>Phe        | aac<br>Asn        | act<br>Thr<br>45  | ttc<br>Phe        | ttc<br>Phe       | tct<br>Ser        | gct<br>Ala        | act<br>Thr<br>50  | gcc<br>Ala        | 261 |
| att<br>Ile        | ggt<br>Gly       | gaa<br>Glu        | gtt<br>Val<br>55  | gat<br>Asp        | ctc<br>Leu        | aac<br>Asn       | aag<br>Lys        | att<br>Ile<br>60  | gag<br>Glu        | cct<br>Pro        | tgg<br>Trp       | gac<br>Asp        | tta<br>Leu<br>65  | cca<br>Pro        | tgg<br>Trp        | 309 |
| aag<br>Lys        | gct<br>Ala       | aag<br>Lys<br>70  | atg<br>Met        | gga<br>Gly        | gaa<br>Glu        | aaa<br>Lys       | gaa<br>Glu<br>75  | tgg<br>Trp        | tat<br>Tyr        | ttc<br>Phe        | ttc<br>Phe       | tgt<br>Cys<br>80  | gtg<br>Val        | aga<br>Arg        | gac<br>Asp        | 357 |
| cgg<br>Arg        | aaa<br>Lys<br>85 | tac<br>Tyr        | ccg<br>Pro        | acc<br>Thr        | ggt<br>Gly        | tta<br>Leu<br>90 | agg<br>Arg        | aca<br>Thr        | aac<br>Asn        | cgg<br>Arg        | gcg<br>Ala<br>95 | aca<br>Thr        | gaa<br>Glu        | gcc<br>Ala        | ggt<br>Gly        | 405 |
| tat<br>Tyr<br>100 | tgg<br>Trp       | aaa<br>Lys        | gcc<br>Ala        | aca<br>Thr        | gga<br>Gly<br>105 | aaa<br>Lys       | gac<br>Asp        | aaa<br>Lys        | gag<br>Glu        | ata<br>Ile<br>110 | ttc<br>Phe       | aag<br>Lys        | gga<br>Gly        | aaa<br>Lys        | tca<br>Ser<br>115 | 453 |
| ctt<br>Leu        | gtg<br>Val       | ggt<br>Gly        | atg<br>Met        | aag<br>Lys<br>120 | aaa<br>Lys        | act<br>Thr       | ttg<br>Leu        | gtt<br>Val        | ttc<br>Phe<br>125 | tat<br>Tyr        | aaa<br>Lys       | gga<br>Gly        | aga<br>Arg        | gct<br>Ala<br>130 | cct<br>Pro        | 501 |
| aaa<br>Lys        | gga<br>Gly       | gtt<br>Val        | aaa<br>Lys<br>135 | Thr               | aat<br>Asn        | tgg<br>Trp       | gtt<br>Val        | atg<br>Met<br>140 | cat<br>His        | gaa<br>Glu        | tat<br>Tyr       | cgt<br>Arg        | tta<br>Leu<br>145 | gaa<br>Glu        | ggc<br>Gly        | 549 |
| aaa<br>Lys        | tat<br>Tyr       | tgt<br>Cys<br>150 | att<br>Ile        | gaa<br>Glu        | aat<br>Asn        | ctt<br>Leu       | ccc<br>Pro<br>155 | GIn               | aca<br>Thr        | gct<br>Ala        | aag<br>Lys       | aac<br>Asn<br>160 | gaa<br>Glu        | tgg<br>Trp        | gtt<br>Val        | 597 |
| Ile               | Cys<br>165       | Arg               | gtt<br>Val        | Phe               | Gln               | Lys<br>170       | Arg               | Ala               | Asp               | GIY               | 175              | гÀг               | vai               | PIQ               | met               | 645 |
| Ser<br>180        | Met              | Leu               | gat<br>Asp        | Pro               | His<br>185        | Ile              | Asn               | Arg               | Met               | 190               | Pro              | Ala               | GIĀ               | peu               | 195               | 693 |
| Ser               | Leu              | Met               | gat<br>Asp        | Cys<br>200        | Ser               | Gln              | Arg               | Asp               | 205               | Pne               | Int              | GIŞ               | per               | 210               | Ser               | 741 |
| His               | Val              | Thr               | tgc<br>Cys<br>215 | Phe               | Ser               | Asp              | Gln               | 220               | Thr               | GIu               | Asp              | ràa               | 225               | Leu               | val               | 789 |
| His               | Glu              | 230               | )                 | Asp               | Gly               | Phe              | Gly<br>235        | ser               | Leu               | Pne               | ıyr              | 240               | Asp               | PIO               | , ner             | 837 |
| Ph∈               | 245              | Glr               | ı Asp             | Asn               | Tyr               | Ser<br>250       | Leu               | Met               | : гув             | Leu               | 255              | Leu               | Авр               | GIY               | caa<br>Gln        | 885 |
| gaa<br>Glu<br>260 | Thr              | caa<br>Glr        | tto<br>Phe        | tcc<br>Sex        | ggc<br>Gly<br>265 | . Lys            | Pro               | tto<br>Phe        | e Asp             | ggt<br>Gly<br>270 | Arg              | gat<br>Asp        | tcg<br>Ser        | Ser               | ggt<br>Gly<br>275 | 933 |

### MBI15 Sequence Listing.ST25

| aca gaa gaa ttg gat tgc gtt tgg aat ttc tga gttgtataag ttatgt<br>Thr Glu Glu Leu Asp Cys Val Trp Asn Phe<br>280 285 | tgta 986  |
|---------------------------------------------------------------------------------------------------------------------|-----------|
| gacttgtagt agtcatgtgt tcgtgtgtgt gaatgaatat tcttgttaca tttttt                                                       | tgta 1046 |
| aaaaaggaga aaaaaatatg ctagaaagtc aattgctttt gttatgtagc attagt                                                       | gttt 1106 |
| tttatgtact caatagactt cctaattaaa taaaaatctt aatttatttg ccaaaa                                                       | aaaa 1166 |
| aaaaaaaaa aaa                                                                                                       | 1179      |

<210> 22

<211> 285

<212> PRT

<213> Arabidopsis thaliana

<400> 22

Met Asp Tyr Glu Ala Ser Arg Ile Val Glu Met Val Glu Asp Glu Glu 1 10 15

His Ile Asp Leu Pro Pro Gly Phe Arg Phe His Pro Thr Asp Glu Glu 25 30

Leu Ile Thr His Tyr Leu Lys Pro Lys Val Phe Asn Thr Phe Phe Ser 35 40 45

Ala Thr Ala Ile Gly Glu Val Asp Leu Asn Lys Ile Glu Pro Trp Asp 50 55 60

Leu Pro Trp Lys Ala Lys Met Gly Glu Lys Glu Trp Tyr Phe Phe Cys 65 70 80

Val Arg Asp Arg Lys Tyr Pro Thr Gly Leu Arg Thr Asn Arg Ala Thr 85 90 95

Glu Ala Gly Tyr Trp Lys Ala Thr Gly Lys Asp Lys Glu Ile Phe Lys 100 105 110

Gly Lys Ser Leu Val Gly Met Lys Lys Thr Leu Val Phe Tyr Lys Gly

Arg Ala Pro Lys Gly Val Lys Thr Asn Trp Val Met His Glu Tyr Arg 130 135 140

Leu Glu Gly Lys Tyr Cys Ile Glu Asn Leu Pro Gln Thr Ala Lys Asn 145 150 150 160

Glu Trp Val Ile Cys Arg Val Phe Gln Lys Arg Ala Asp Gly Thr Lys 165 170 175

Val Pro Met Ser Met Leu Asp Pro His Ile Asn Arg Met Glu Pro Ala 180 185 190

Gly Leu Pro Ser Leu Met Asp Cys Ser Gln Arg Asp Ser Phe Thr Gly 195 200 205

Ser Ser Ser His Val Thr Cys Phe Ser Asp Gln Glu Thr Glu Asp Lys 210 215 220

| Arg Leu Val His<br>225                               | Glu Ser Lys 2<br>230                  |                                       | ly Ser Leu Phe Tyr<br>35                          | Ser<br>240            |
|------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------------------|-----------------------|
| Asp Pro Leu Phe                                      | Leu Gln Asp 2<br>245                  | Asn Tyr Ser Le<br>250                 | eu Met Lys Leu Leu<br>255                         | Leu                   |
| Asp Gly Gln Glu<br>260                               | Thr Gln Phe                           | Ser Gly Lys Pr<br>265                 | ro Phe Asp Gly Arg<br>270                         | Asp                   |
| Ser Ser Gly Thr<br>275                               |                                       | Asp Cys Val Ti<br>280                 | rp Asn Phe<br>285                                 |                       |
| <210> 23<br><211> 890<br><212> DNA<br><213> Arabidop | sis thaliana                          |                                       |                                                   |                       |
| <220> <221> CDS <222> (55)(7 <223> G545              | 38)                                   |                                       |                                                   |                       |
| <400> 23<br>gcaaccttca aact                          | aaaact cgagag                         | gacaa gaaatcct                        | ca gaatctttaa ctta                                | atg 57<br>Met<br>1    |
| gcg ctc gag gct<br>Ala Leu Glu Ala<br>5              | ctt aca tca<br>Leu Thr Ser            | cca aga tta g<br>Pro Arg Leu A<br>10  | ct tct ccg att cct<br>la Ser Pro Ile Pro<br>15    | cct 105<br>Pro        |
| ttg ttc gaa gat<br>Leu Phe Glu Asp<br>20             | tct tca gtc<br>Ser Ser Val            | ttc cat gga g<br>Phe His Gly V<br>25  | tc gag cac tgg aca<br>al Glu His Trp Thr<br>30    | aag 153<br>Lys        |
| ggt aag cga tct<br>Gly Lys Arg Ser<br>35             | aag aga tca<br>Lys Arg Ser<br>40      | aga tcc gat t<br>Arg Ser Asp P        | tc cac cac caa aac<br>he His His Gln Asn<br>45    | ctc 201<br>Leu        |
| act gag gaa gag<br>Thr Glu Glu Glu<br>50             | tat cta gct<br>Tyr Leu Ala<br>55      | Phe Cys Leu M                         | tg ctt ctc gct cgc<br>let Leu Leu Ala Arg<br>0    | gac 249<br>Asp<br>65  |
| aac cgt cag cct<br>Asn Arg Gln Pro                   | cct cct cct<br>Pro Pro Pro<br>70      | ccg gcg gtg g<br>Pro Ala Val G<br>75  | ag aag ttg agc tac<br>lu Lys Leu Ser Tyr<br>80    | aag 297<br>Lys        |
| tgt agc gtc tgc<br>Cys Ser Val Cys<br>85             | gac aag acg<br>Asp Lys Thr            | ttc tct tct t<br>Phe Ser Ser T<br>90  | ac caa gct ctc ggt<br>yr Gln Ala Leu Gly<br>95    | ggt 345<br>Gly        |
| cac aag gca ago<br>His Lys Ala Ser<br>100            | cac cgt aag<br>His Arg Lys            | aac tta tca c<br>Asn Leu Ser 6<br>105 | ag act ctc tcc ggc<br>ln Thr Leu Ser Gly<br>110   | gga 393<br>Gly        |
| gga gat gat cat<br>Gly Asp Asp His<br>115            | tca acc tcg<br>Ser Thr Ser<br>120     | Ser Ala Thr T                         | ncc aca tcc gcc gtg<br>Thr Thr Ser Ala Val<br>125 | act 441<br>Thr        |
| act gga agt ggg<br>Thr Gly Ser Gly<br>130            | y aaa tca cac<br>y Lys Ser His<br>135 | Val Cys Thr                           | atc tgt aac aag tct<br>Ne Cys Asn Lys Ser<br>140  | ttt 489<br>Phe<br>145 |
| cct tcc ggt car<br>Pro Ser Gly Glr                   | gct ctc ggc<br>Ala Leu Gly<br>150     | gga cac aag o<br>Gly His Lys A<br>155 | egg tge cac tac gaa<br>Arg Cys His Tyr Glu<br>160 | GIA                   |
| aac aac aac at                                       | ; aac act agt                         |                                       | aac tee gaa ggt geg<br>ge 32                      | ggg 585               |

| Asn                          | Asn               | Asn                      | Ile<br>165 | Asn        | Thr        | Ser               |            | 15 S<br>Val<br>170 |            |            |                   |            |            | Ala        | Gly        |     |
|------------------------------|-------------------|--------------------------|------------|------------|------------|-------------------|------------|--------------------|------------|------------|-------------------|------------|------------|------------|------------|-----|
|                              |                   |                          |            |            |            |                   |            |                    |            |            |                   |            |            | aac<br>Asn |            | 633 |
| cct<br>Pro                   | ccg<br>Pro<br>195 | atc<br>Ile               | cct<br>Pro | gaa<br>Glu | ttc<br>Phe | tcg<br>Ser<br>200 | atg<br>Met | gtc<br>Val         | aac<br>Asn | gga<br>Gly | gac<br>Asp<br>205 | gac<br>Asp | gaa<br>Glu | gtc<br>Val | atg<br>Met | 681 |
|                              |                   |                          |            |            |            |                   |            |                    |            |            |                   |            |            | aaa<br>Lys |            | 729 |
|                              | ctt<br>Leu        | taa                      | ggaa       | aatti      | tac 1      | taga              | acgat      | ca ag              | gatti      | cgt        | tg!               | ata        | ctgt       |            |            | 778 |
| tga                          | gagti             | tgt (                    | gtagg      | gaati      | tt gl      | tgad              | etgta      | a cat              | acca       | aaat       | tgga              | actt       | tga 'd     | ctgai      | ttccaa     | 838 |
| ttc                          | ttcti             | tgt 1                    | ctti       | cat        | tt ta      | aaaa              | ttal       | taa                | acc        | gatt       | ctt               | acca       | aca a      | aa         |            | 890 |
| <210<br><210<br><210<br><210 | 1> 2<br>2> 1      | 24<br>227<br>PRT<br>Arab | idops      | sis (      | thal:      | iana              |            |                    |            |            |                   |            |            |            |            |     |
| <400                         | 0 > :             | 24                       |            |            |            |                   |            |                    |            |            |                   |            |            |            |            |     |
| Met<br>1                     | Ala               | Leu                      | Glu        | Ala<br>5   | Leu        | Thr               | Ser        | Pro                | Arg<br>10  | Leu        | Ala               | Ser        | Pro        | Ile<br>15  | Pro        |     |
| Pro                          | Leu               | Phe                      | Glu<br>20  | Asp        | Ser        | Ser               | Val        | Phe<br>25          | His        | Gly        | Val               | Glu        | His<br>30  | Trp        | Thr        |     |
| Lys                          | Gly               | Lys<br>35                | Arg        | Ser        | Lys        | Arg               | Ser<br>40  | Arg                | Ser        | Asp        | Phe               | His<br>45  | His        | Gln        | Asn        |     |
| Leu                          | Thr<br>50         | Glu                      | Glu        | Glu        | Tyr        | Leu<br>55         | Ala        | Phe                | Сув        | Leu        | Met<br>60         | Leu        | Leu        | Ala        | Arg        | •   |
| Авр<br>65                    | Asn               | Arg                      | Gln        | Pro        | Pro<br>70  | Pro               | Pro        | Pro                | Ala        | Val<br>75  | Glu               | Lys        | Leu        | Ser        | Tyr<br>80  |     |
| Lys                          | Сув               | Ser                      | Val        | Cys<br>85  | Asp        | Lys               | Thr        | Phe                | Ser<br>90  | Ser        | Tyr               | Gln        | Ala        | Leu<br>95  | Gly        |     |
| Gly                          | His               | Lys                      | Ala<br>100 | Ser        | His        | Arg               | Lys        | Asn<br>105         | Leu        | Ser        | Gln               | Thr        | Leu<br>110 | Ser        | Gly .      |     |
| Gly                          | Gly               | Asp<br>115               | Asp        | His        | Ser        | Thr               | Ser<br>120 | Ser                | Ala        | Thr        | Thr               | Thr<br>125 | Ser        | Ala        | Val        |     |
| Thr                          | Thr<br>130        | Gly                      | Ser        | Gly        | Lys        | Ser<br>135        | His        | Val.               | Cys        | Thr        | Ile<br>140        | Сув        | Asn        | Lys        | Ser        |     |
| Phe<br>145                   | Pro               | Ser                      | Gly        | Gln        | Ala<br>150 | Leu               | Gly        | Gly                | His        | Lys<br>155 | Arg               | Сув        | His        | Tyr        | Glu<br>160 |     |
| Gly                          | Asn               | Asn                      | Asn        | Ile<br>165 | Asn        | Thr               | Ser        | Ser                | Val<br>170 | Ser        | Asn               | Ser        | Glu        | Gly<br>175 | Ala        |     |

MBI15 Sequence Listing.ST25 Gly Ser Thr Ser His Val Ser Ser Ser His Arg Gly Phe Asp Leu Asn 185 Ile Pro Pro Ile Pro Glu Phe Ser Met Val Asn Gly Asp Asp Glu Val Met Ser Pro Met Pro Ala Lys Lys Pro Arg Phe Asp Phe Pro Val Lys Leu Gln Leu 225 <210> 25 <211> 1126 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS (282) . . (920) <222> G865 <223> <400> 25 60 atccccactt gttgttcatc accaagccaa gctccatgtc ctagtcactc cacagattcc ctatcatcat caattcgttt caaacttagt tcctttcaaa gtcttgtaca tatatacaca 120 cacacctatt attetettgg tgtgtttgtg tgttacatat acgtgtgagt acatactttg 180 ttgtaaaagt ggatcggagg tatggaaagg gaccggttcc accggaaaca tcggcggcgg 240 cggatgataa ttcgtcttgg aacgagactg atgtcaccgc c atg gtc tcc gct ctc Met Val Ser Ala Leu 296 ago ogt gto ata gag aat oog aca gao oog gto aaa caa gag ott Ser Arg Val Ile Glu Asn Pro Thr Asp Pro Pro Val Lys Gln Glu Leu 344 gat aaa tcg gat caa cat caa cca gac caa gat caa cca aga aga aga Asp Lys Ser Asp Gln His Gln Pro Asp Gln Asp Gln Pro Arg Arg Arg 392 cac tat aga ggc gta agg cag aga cca tgg ggt aaa tgg gcg gca gaa His Tyr Arg Gly Val Arg Gln Arg Pro Trp Gly Lys Trp Ala Ala Glu 440 atc cgc gat cca aag aaa gca gcc cgt gtc tgg ctc ggg act ttc gag Ile Arg Asp Pro Lys Lys Ala Ala Arg Val Trp Leu Gly Thr Phe Glu 488 acg gca gag gaa gct gct tta gcc tat gac cga gct gcc ctc aaa ttc Thr Ala Glu Glu Ala Ala Leu Ala Tyr Asp Arg Ala Ala Leu Lys Phe 536 aaa ggc acc aag gct aaa ctg aac ttc cct gaa cgg gtc caa ggc cct Lys Gly Thr Lys Ala Lys Leu Asn Phe Pro Glu Arg Val Gln Gly Pro 584 95 act acc acc aca acc att tct cat gca cca aga gga gtt agt gaa tcc Thr Thr Thr Thr Thr Ile Ser His Ala Pro Arg Gly Val Ser Glu Ser 632 110 atg aac tca cct cct cct cga cct ggt cca cct tca act act act Met Asn Ser Pro Pro Pro Arg Pro Gly Pro Pro Ser Thr Thr Thr 680

Page 34

145

728

tcg tgg cca atg act tat aac cag gac ata ctt caa tac gct cag ttg Ser Trp Pro Met Thr Tyr Asn Gln Asp Ile Leu Gln Tyr Ala Gln Leu

140

| MRT15 | Sequence | Ligting  | CT25   |
|-------|----------|----------|--------|
| MDIID | Seduence | DISCING. | . 5125 |

|      |       |       |       |       |       |       |      |       |       |      |      |                   |       | act<br>Thr        |        | 776  |
|------|-------|-------|-------|-------|-------|-------|------|-------|-------|------|------|-------------------|-------|-------------------|--------|------|
|      |       |       |       |       |       |       |      |       |       |      |      |                   |       | tcc<br>Ser<br>180 |        | 824  |
|      |       |       |       |       |       |       |      |       |       |      |      |                   |       | gaa<br>Glu        |        | 872  |
|      |       |       |       |       |       |       |      |       |       |      |      | cca<br>Pro<br>210 |       | gaa<br>Glu        | taa    | 920  |
| tcta | atta  | att a | ittgi | tggt  | c ga  | atca  | gttt | tat   | aaat  | agc  | tato | atag              | gtt 1 | catt              | tttgg  | 980  |
| ttt  | cgta  | aac d | ettt  | gttgo | a to  | ggaaa | atat | ga a  | itgaa | ıcga | 9998 | cate              | gtg 1 | taaca             | atttg  | 1040 |
| ttt  | gtgtt | tc g  | gtaaa | atgtt | a gt  | tgta  | tttg | g gat | ttg   | etga | agtt | tgat              | tt 1  | ctga              | igcata | 1100 |
| aato | catt  | ga d  | ggto  | caaaa | aa aa | aaaa  | ı    |       |       |      |      |                   |       |                   |        | 1126 |

<210> 26

<211> 212

<212> PRT

<213> Arabidopsis thaliana

<400> 26

Met Val Ser Ala Leu Ser Arg Val Ile Glu Asn Pro Thr Asp Pro Pro 1 5 10 15

Val Lys Gln Glu Leu Asp Lys Ser Asp Gln His Gln Pro Asp Gln Asp 20 25 30

Gln Pro Arg Arg Arg His Tyr Arg Gly Val Arg Gln Arg Pro Trp Gly 35 40 45

Lys Trp Ala Ala Glu Ile Arg Asp Pro Lys Lys Ala Ala Arg Val Trp 50 55 60

Leu Gly Thr Phe Glu Thr Ala Glu Glu Ala Ala Leu Ala Tyr Asp Arg 65 70 75 80

Ala Ala Leu Lys Phe Lys Gly Thr Lys Ala Lys Leu Asn Phe Pro Glu 85 90 95

Arg Val Gln Gly Pro Thr Thr Thr Thr Thr Ile Ser His Ala Pro Arg

Gly Val Ser Glu Ser Met Asn Ser Pro Pro Pro Arg Pro Gly Pro Pro 115 120 125

Ser Thr Thr Thr Ser Trp Pro Met Thr Tyr Asn Gln Asp Ile Leu

Gln Tyr Ala Gln Leu Leu Thr Ser Asn Asn Glu Val Asp Leu Ser Tyr

Tyr Thr Ser Thr Leu Phe Ser Gln Pro Phe Ser Thr Pro Ser Ser Ser 165 170 175

Ser Ser Ser Gln Gln Thr Gln Gln Gln Gln Leu Gln Gln Gln Gln Gln 180 185 190

Gln Gln Arg Glu Glu Glu Lys Asn Tyr Gly Tyr Asn Tyr Tyr Asn 195 200 205

Tyr Pro Arg Glu 210

<210> 27 <211> 1152 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (76)..(1008) <223> G881

<400> 27 gtgaccgaag aaagcaaatt gagactacgc accaactagt cctttggttt gtatcttaag 60 ataaaggttt ctttt atg gac ggt tct tcg ttt ctc gac atc tct ctc gat
Met Asp Gly Ser Ser Phe Leu Asp Ile Ser Leu Asp 111 ctc aac acc aat cct ttc tcc gca aaa ctt ccg aag aag gag gtc tca Leu Asn Thr Asn Pro Phe Ser Ala Lys Leu Pro Lys Lys Glu Val Ser 159 gtt ttg gct tct act cac tta aag agg aaa tgg ttg gag caa gac gag Val Leu Ala Ser Thr His Leu Lys Arg Lys Trp Leu Glu Gln Asp Glu 207 35 agc gca agt gag tta cga gag gag cta aac aga gtt aat tca gag aac Ser Ala Ser Glu Leu Arg Glu Glu Leu Asn Arg Val Asn Ser Glu Asn 255 303 aag aag cta aca gag atg tta gct aga gtc tgt gag agc tac aac gaa Lys Lys Leu Thr Glu Met Leu Ala Arg Val Cys Glu Ser Tyr Asn Glu 65 70 75 cta cat aat cat ttg gag aag ctt cag agt cgc cag agc cct gaa atc Leu His Asn His Leu Glu Lys Leu Gln Ser Arg Gln Ser Pro Glu Ile gag cag acc gat ata ccg ata aag aaa aga aaa caa gac ccg gat gag Glu Gln Thr Asp Ile Pro Ile Lys Lys Arg Lys Gln Asp Pro Asp Glu ttc tta ggc ttt cct att gga ctc agt agt gga aaa act gag aac agc Phe Leu Gly Phe Pro Ile Gly Leu Ser Ser Gly Lys Thr Glu Asn Ser 110 115 120 tcc agc aac gaa gat cat cat cat cat cat cag caa cat gag cag aaa Ser Ser Asn Glu Asp His His His His Gln Gln His Glu Gln Lys 495 aat cag ctt ctt tca tgt aaa aga cca gtc act gat agc ttc aac aaa Asn Gln Leu Ser Cys Lys Arg Pro Val Thr Asp Ser Phe Asn Lys 543 gca aaa gtt tcg act gtc tac gtg cct act gaa aca tcg gac aca agc Ala Lys Val Ser Thr Val Tyr Val Pro Thr Glu Thr Ser Asp Thr Ser 591 ttg aca gtt aaa gat gga ttt caa tgg agg aaa tac gga caa aag gtt Leu Thr Val Lys Asp Gly Phe Gln Trp Arg Lys Tyr Gly Gln Lys Val 175 180 185 639

| aca aga gac aac ccg tca cct aga gct tac ttt aga tgc tcg ttt gca<br>Thr Arg Asp Asn Pro Ser Pro Arg Ala Tyr Phe Arg Cys Ser Phe Ala<br>190 195 200     | 687  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ccgtcttgtccagtaaaaaaggtacaacgcagcgcagaggatccaProSerCysProValLysLysLysValGlnArgSerAlaGluAspPro205210215220                                             | 735  |
| tct tta ctt gta gcg aca tac gaa ggg acg cat aac cac ttg ggt cca<br>Ser Leu Leu Val Ala Thr Tyr Glu Gly Thr His Asn His Leu Gly Pro<br>225 230 235     | 783  |
| Asn Ala Ser Glu Gly Asp Ala Thr Ser Gln Gly Gly Ser Ser Thr Val 240 245 250                                                                           | 831  |
| act ttg gat ctg gtt aat ggc tgt cat aga cta gcg ttg gag aaa aac<br>Thr Leu Asp Leu Val Asn Gly Cys His Arg Leu Ala Leu Glu Lys Asn<br>255 260 265     | 879  |
| gaa agg gat aat acg atg caa gag gtt ctg att caa caa atg gcg tca<br>Glu Arg Asp Asn Thr Met Gln Glu Val Leu Ile Gln Gln Met Ala Ser<br>270 275 280     | 927  |
| tcg tta aca aaa gat tcg aaa ttt aca gct gct ctt gct gct gct ata<br>Ser Leu Thr Lys Asp Ser Lys Phe Thr Ala Ala Leu Ala Ala Ala Ile<br>285 290 295 300 | 975  |
| tct ggg agg tta atg gag caa tct aga aca tga acgtttttag tgaatgtatt<br>Ser Gly Arg Leu Met Glu Gln Ser Arg Thr<br>305 310                               | 1028 |
| gtttttgttt gtttagaatg attcttcgtt ttcgaattgt gtctttcgat taggagataa                                                                                     | 1088 |
| aagatgtata taaatattat aagtagatga agaaatcgta taagtaaaaa aaaaaaaaaa                                                                                     | 1148 |
| aaaa                                                                                                                                                  | 1152 |

<210> 28

<211> 310

<212> PRT

<213> Arabidopsis thaliana

<400> 28

Met Asp Gly Ser Ser Phe Leu Asp Ile Ser Leu Asp Leu Asn Thr Asn 1 5 10 15

Pro Phe Ser Ala Lys Leu Pro Lys Lys Glu Val Ser Val Leu Ala Ser  $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$ 

Thr His Leu Lys Arg Lys Trp Leu Glu Gln Asp Glu Ser Ala Ser Glu 35 40 45

Leu Arg Glu Glu Leu Asn Arg Val Asn Ser Glu Asn Lys Lys Leu Thr 50 55 60

Glu Met Leu Ala Arg Val Cys Glu Ser Tyr Asn Glu Leu His Asn His 65 70 75 80

Leu Glu Lys Leu Gln Ser Arg Gln Ser Pro Glu Ile Glu Gln Thr Asp  $85 \hspace{1cm} 90 \hspace{1cm} 95$ 

Ile Pro Ile Lys Lys Arg Lys Gln Asp Pro Asp Glu Phe Leu Gly Phe 100 105 110

| ro                       | Ile               | Gly<br>115                | Leu          | Ser          | Ser                | Gly                | MBI:<br>Lys<br>120 | 15 Se<br>Thr | equer<br>Glu | ce l<br>Asn  | Listi<br>Ser       | ing.S<br>Ser<br>125 | ST25<br>Ser     | Asn          | Glu                  |     |
|--------------------------|-------------------|---------------------------|--------------|--------------|--------------------|--------------------|--------------------|--------------|--------------|--------------|--------------------|---------------------|-----------------|--------------|----------------------|-----|
|                          | His<br>130        | His                       | ніз          | His          | His                | Gln<br>135         | Gln                | His          | Glu          | Gln          | Lys<br>140         | Asn                 | Gln             | Leu          | Leu                  |     |
| Ser<br>145               | Сув               | Lys                       | Arg          | Pro          | Val<br>150         | Thr                | qaA                | Ser          | Phe          | Asn<br>155   | Lys                | Ala                 | Ъуs             | Val          | Ser<br>160           |     |
| Thr                      | Val               | туг                       | Val          | Pro<br>165   | Thr                | Glu                | Thr                | Ser          | Asp<br>170   | Thr          | Ser                | Leu                 | Thr             | Val<br>175   | Lys                  | ,   |
| Asp                      | Gly               | Phe                       | Gln<br>180   | Trp          | Arg                | Lys                | Tyr                | Gly<br>185   | Gln          | Lys          | Val                | Thr                 | Arg<br>190      | Asp          | Asn                  |     |
| Pro                      | Ser               | Pro<br>195                |              | Ala          | Tyr                | Phe                | Arg<br>200         | Суз          | Ser          | Phe          | Ala                | Pro<br>205          | Ser             | Сув          | Pro                  |     |
| Val                      | Lys<br>210        |                           | Lys          | Val          | Gln                | Arg<br>215         | Ser                | Ala          | Glu          | Asp          | Pro<br>220         | Ser                 | Leu             | Leu          | Val                  |     |
| Ala<br>225               | Thr               | Tyr                       | Glu          | Gly          | Thr<br>230         | His                | Asn                | His          | Leu          | Gly<br>235   | Pro                | Asn                 | Ala             | Ser          | Glu<br>240           |     |
|                          |                   |                           |              | 245          |                    |                    |                    |              | 250          |              |                    |                     |                 | 233          |                      |     |
|                          |                   |                           | 260          | )            |                    |                    |                    | 265          | i            |              |                    |                     | 270             |              | Asn                  |     |
|                          |                   | 275                       | ;            |              |                    |                    | 280                | )            |              |              |                    | 285                 |                 |              | . FAs                |     |
| Asp                      | Ser<br>290        |                           | Ph∈          | Thr          | : Ala              | Ala<br>295         |                    | ı Ala        | a Ala        | Ala          | 11€<br>300         | Ser                 | Gly             | Arg          | , Leu                |     |
| Met<br>305               |                   | Gl:                       | ı Sei        | r Arg        | Thr<br>310         | <u>.</u>           |                    |              |              |              |                    |                     |                 |              |                      |     |
| <21<br><21<br><21<br><21 | .1><br>.2>        | 29<br>1270<br>DNA<br>Aral |              | psis         | thal               | Liana              | ı                  |              |              |              |                    |                     |                 |              |                      |     |
| <22<br><22<br><22<br><22 | 21>               | CDS<br>(47<br>G89         |              | 1150         | )                  |                    | ,                  |              |              |              |                    |                     |                 |              |                      |     |
| <40<br>taa               | 00><br>atcc       | 29<br>gatt                | cgt          | cttca        | atc 1              | tgati              | ccc                | tc c         | cttc         | cgag         | a at               | aata                | atg<br>Met<br>1 | tac<br>Tyr   | ccg<br>Pro           | 55  |
| CC:<br>Pro               | a cc<br>o Pr<br>5 | t cc<br>o Pr              | c tc<br>o Se | a ag<br>r Se | c at               | c ta<br>e Ty<br>10 | r Al               | t cc<br>a Pr | t cc         | g at<br>o Me | g ct<br>t Le<br>15 | u va                | g aat<br>1 Ast  | t tg<br>n Cy | c tcc<br>s Ser       | 103 |
| 99<br>G1:<br>20          | у Су              | s Ar                      | g ac<br>g Th | g cc<br>r Pr | t ct<br>o Le<br>25 | n GI               | g ct<br>n Le       | c cc<br>u Pr | a to<br>o Se | 30           | y AI               | c cg<br>a Ar        | a tc<br>g Se    | t at<br>r Il | t cgc<br>e Arg<br>35 | 151 |
|                          |                   |                           |              |              |                    |                    |                    |              |              | Page         | 38                 |                     |                 |              |                      |     |

|                   |            |                   |                   |                   |                   |            |                   |                   | -4                |                   |            | 9.                |                   |                   |                   |      |
|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------|
|                   |            |                   |                   |                   | gct<br>Ala        |            |                   |                   |                   |                   |            |                   |                   |                   |                   | 199  |
|                   |            |                   |                   |                   | tcc<br>Ser        |            |                   |                   |                   |                   |            |                   |                   |                   |                   | 247  |
|                   |            |                   |                   |                   | ctg<br>Leu        |            |                   |                   |                   |                   |            |                   |                   |                   |                   | 295  |
|                   |            |                   |                   |                   | tat<br>Tyr        |            |                   |                   |                   |                   |            |                   |                   |                   |                   | 343  |
|                   |            |                   |                   |                   | tgc<br>Cys<br>105 |            |                   |                   |                   |                   |            |                   |                   |                   |                   | 391  |
|                   |            |                   |                   |                   | att<br>Ile        |            |                   |                   |                   |                   |            |                   |                   |                   |                   | 439  |
|                   |            |                   |                   |                   | aag<br>Lys        |            |                   |                   |                   |                   |            |                   |                   |                   |                   | 487  |
| gta<br>Val        | cag<br>Gln | gga<br>Gly<br>150 | tgc<br>Cys        | aca<br>Thr        | gca<br>Ala        | ggc<br>Gly | gac<br>Asp<br>155 | tca<br>Ser        | ctt<br>Leu        | gtc<br>Val        | ttc<br>Phe | cac<br>His<br>160 | tac<br>Tyr        | tct<br>Ser        | ggt<br>Gly        | 535  |
|                   |            |                   |                   |                   | aga<br>Arg        |            |                   |                   |                   |                   |            |                   |                   |                   |                   | 583  |
|                   |            |                   |                   |                   | cct<br>Pro<br>185 |            |                   |                   |                   |                   |            |                   |                   |                   |                   | 631  |
| gac<br>Asp        | gat<br>Asp | gag<br>Glu        | atc<br>Ile        | aac<br>Asn<br>200 | gca<br>Ala        | acc<br>Thr | att<br>Ile        | gta<br>Val        | cgc<br>Arg<br>205 | cct<br>Pro        | ctt<br>Leu | cca<br>Pro        | cat<br>His        | ggt<br>Gly<br>210 | gtc<br>Val        | 679  |
| aag<br>Lys        | ctc<br>Leu | cat<br>His        | tca<br>Ser<br>215 | att<br>Ile        | atc               | gat<br>Asp | gct<br>Ala        | tgc<br>Cys<br>220 | cat<br>His        | agt<br>Ser        | ggt<br>Gly | acc<br>Thr        | gtt<br>Val<br>225 | ctg<br>Leu        | gat.<br>Asp       | 727  |
|                   |            |                   |                   |                   | aga<br>Arg        |            |                   |                   |                   |                   |            |                   |                   |                   |                   | 775  |
|                   |            |                   |                   |                   | tca<br>Ser        |            |                   |                   |                   |                   |            |                   |                   |                   |                   | 823  |
| gcc<br>Ala<br>260 | att<br>Ile | tca<br>Ser        | att<br>Ile        | agt<br>Ser        | gga<br>Gly<br>265 | tgt<br>Cys | gat<br>Asp        | gat<br>Asp        | gat<br>Asp        | cag<br>Gln<br>270 | act<br>Thr | tcg<br>Ser        | gcc<br>Ala        | gac<br>Asp        | aca<br>Thr<br>275 | 871  |
| tca<br>Ser        | gcg<br>Ala | ctg<br>Leu        | tcg<br>Ser        | aag<br>Lys<br>280 | atc<br>Ile        | acg<br>Thr | tct<br>Ser        | acg<br>Thr        | ggt<br>Gly<br>285 | gct<br>Ala        | atg<br>Met | act<br>Thr        | ttc<br>Phe        | tgt<br>Cys<br>290 | ttt<br>Phe        | 919  |
| att<br>Ile        | caa<br>Gln | gca<br>Ala        | att<br>Ile<br>295 | gaa<br>Glu        | cgc<br>Arg        | agc<br>Ser | gca<br>Ala        | caa<br>Gln<br>300 | ggc<br>Gly        | aca<br>Thr        | acc<br>Thr | tat<br>Tyr        | gga<br>Gly<br>305 | agc<br>Ser        | ctt<br>Leu        | 967  |
|                   |            |                   |                   |                   | acc<br>Thr        |            |                   |                   |                   |                   |            |                   |                   |                   |                   | 1015 |
|                   |            |                   |                   |                   | gtg<br>Val        |            |                   |                   | Leu               |                   | Met        |                   |                   |                   | 999<br>Gly        | 1063 |

|                          | 325          |                           |            |                   | ;                 | 330            | MBI 1      | .5 Se      | quen              |                   | isti<br>335 | ng.S       | T25        |            |                   |
|--------------------------|--------------|---------------------------|------------|-------------------|-------------------|----------------|------------|------------|-------------------|-------------------|-------------|------------|------------|------------|-------------------|
| gga<br>Gly<br>340        | agt<br>Ser   | gcg<br>Ala                | att (      | Gly (             | gga<br>Gly<br>345 | tta .<br>Leu . | aga<br>Arg | cag<br>Gln | GIU               | cct<br>Pro<br>350 | caa<br>Gln  | ctg<br>Leu | act of     | ura .      | tgc<br>Cys<br>355 |
| caa<br>Gln               | aca<br>Thr   | ttc<br>Phe                | gat<br>Asp | gtc<br>Val<br>360 | tat<br>Tyr        | gca<br>Ala     | aag<br>Lys | Pro        | ttc<br>Phe<br>365 | act<br>Thr        | ctc<br>Leu  | tag        | taaa       | ggaca      | aa                |
| gtca                     | acttt        | tt a                      | tgta       | tagc              | g ag              | tgtg           | attt       | gag        | aatc              | cgt               | ccat        | ataa       | сс а       | cctt       | ttgtt             |
| tct                      | attt         | tt a                      | tttt       | tctt              | t ca              | aaag           | aata       | aag        | gaaa              | aca               | ttga        | tttg       | gt g       | atto       | 9                 |
| <21<br><21<br><21<br><21 | l> 3<br>2> I | 00<br>867<br>PRT<br>Arabi | .dops      | is t              | hali              | .ana           |            |            |                   |                   |             |            |            |            |                   |
| <40                      |              | 30                        |            |                   |                   |                |            |            |                   |                   |             |            |            | _          |                   |
| Met<br>1                 | Tyr          | Pro                       | Pro        | Pro<br>5          | Pro               | Ser            | Ser        | Ile        | Tyr<br>10         | Ala               | Pro         | Pro        | Met        | Leu<br>15  | vai               |
| Asn                      | Cys          | Ser                       | Gly<br>20  | Сув               | Arg               | Thr            | Pro        | Leu<br>25  | Gln               | Leu               | Pro         | Ser        | Gly<br>30  | Ala        | Arg               |
| Ser                      | Ile          | Arg<br>35                 | Суз        | Ala               | Leu               | Сув            | Gln<br>40  | Ala        | Val               | Thr               | His         | Ile<br>45  | Ala        | Asp        | Pro               |
| Arg                      | Thr<br>50    | Ala                       | Pro        | Pro               | Pro               | Gln<br>55      | Pro        | Ser        | Ser               | Ala               | Pro<br>60   | Ser        | Pro        | Pro        | Pro               |
| Gln<br>65                | Ile          | His                       | Ala        | Pro               | Pro<br>70         | Gly            | Gln        | Leu        | Pro               | His<br>75         | Pro         | His        | Gly        | Arg        | Lys<br>80         |
| Arg                      | Ala          | Val                       | Ile        | Cys<br>85         | Gly               | Ile            | Ser        | Tyr        | Arg<br>90         | Phe               | Ser         | Arg        | His        | Glu<br>95  | Leu               |
| Lys                      | Gly          | Cys                       | Ile<br>100 | Asn               | Asp               | Ala            | Lys        | Суs<br>105 | Met               | Arg               | Нів         | Leu        | Leu<br>110 | Ile        | Asn               |
| Lys                      | Phe          | Lys<br>115                | Phe        | Ser               | Pro               | Asp            | Ser<br>120 | Ile        | Leu               | Met               | Leu         | Thr<br>125 | Glu        | Glu        | Glu               |
| Thi                      | Asp<br>130   | Pro                       | Tyr        | Arg               | Ile               | Pro<br>135     | Thr        | Lys        | Gln               | Asn               | Met<br>140  | Arg        | Met        | Ala        | Leu               |
| Ty:                      |              | Leu                       | Val        | Gln               | Gly<br>150        | Сув            | Thr        | Ala        | Gly               | Asp<br>155        | Ser         | Leu        | Val        | Phe        | His<br>160        |
| Ту                       | r Sez        | : Gly                     | His        | Gly<br>165        | Ser               | Arg            | Gln        | Arg        | Asn<br>170        | Tyr               | Asn         | Gly        | Asp        | Glu<br>175 | Val               |
| As                       | p Gly        | у Туг                     | Asp<br>180 | Glu               | Thr               | Leu            | Сує        | Pro<br>185 | Leu               | Авр               | Phe         | Glu        | Thr<br>190 | Gln        | Gly               |
| Ме                       | t Ile        | e Val                     |            | Asp               | Glu               | ılle           | 200        | n Ala      | Thr               | : Ile             | val         | Arg<br>205 | Pro        | Leu        | Pro               |
| ні                       | s Gl         | y, Val                    | L Lys      | Lev               | Hia               | Ser            | : 11       | e Ile      |                   | Ala<br>Page       |             | B His      | Ser        | Gly        | Thr               |

Val Leu Asp Leu Pro Phe Leu Cys Arg Met Asn Arg Ala Gly Gln Tyr 230 235

Val Trp Glu Asp His Arg Pro Arg Ser Gly Leu Trp Lys Gly Thr Ala

Gly Gly Glu Ala Ile Ser Ile Ser Gly Cys Asp Asp Asp Gln Thr Ser 260 265 270

Ala Asp Thr Ser Ala Leu Ser Lys Ile Thr Ser Thr Gly Ala Met Thr

Phe Cys Phe Ile Gln Ala Ile Glu Arg Ser Ala Gln Gly Thr Thr Tyr

Gly Ser Leu Leu Asn Ser Met Arg Thr Thr Ile Arg Asn Thr Gly Asn

Asp Gly Gly Ser Gly Gly Val Val Thr Thr Val Leu Ser Met Leu

Leu Thr Gly Gly Ser Ala Ile Gly Gly Leu Arg Gln Glu Pro Gln Leu 340 345 350

Thr Ala Cys Gln Thr Phe Asp Val Tyr Ala Lys Pro Phe Thr Leu 355 360 365

<210> 31 <211> 726

<212> DNA

Arabidopsis thaliana <213>

<220>

<221>

<222> (1)..(726)

<400> 31

atg gcc tcg tca tca tca tca tct tat aga ttc caa tct ggg tct tac Met Ala Ser Ser Ser Ser Ser Tyr Arg Phe Gln Ser Gly Ser Tyr

cct ctt tcg tca agt cct tct ctt ggg aat ttc gtc gaa cgc att aaa Pro Leu Ser Ser Pro Ser Leu Gly Asn Phe Val Glu Arg Ile Lys 20 25 30

gac gct tgt cat ttc ctt gtc tct gct gtt ttg ggt acc att atc tcc Asp Ala Cys His Phe Leu Val Ser Ala Val Leu Gly Thr Ile Ile Ser 144

gcg atc ttg acc ttc ttc ttc gca cta gtg ggc aca ttg cta ggg gca Ala Ile Leu Thr Phe Phe Phe Ala Leu Val Gly Thr Leu Leu Gly Ala 192 55

ctt aca gga gct ttg ata ggt caa gaa act gag agt ggt ttc att aga Leu Thr Gly Ala Leu Ile Gly Gln Glu Thr Glu Ser Gly Phe Ile Arg 240

gga gca gca att gga gcc att tcg gga gct gtt ttc tct atc gag gtc Gly Ala Ala Ile Gly Ala Ile Ser Gly Ala Val Phe Ser Ile Glu Val 288

|                          |                   |                          |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   | _                 |                   |     |   |
|--------------------------|-------------------|--------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|---|
| tt<br>he                 | gaa<br>Glu        | tca<br>Ser               | tct<br>Ser<br>100 | ctg<br>Leu        | gat<br>Asp        | ctc<br>Leu        | tgg<br>Trp        | aaa               | equer<br>tcc<br>Ser | qat               | qaq               | tca               | qqt               | ttc<br>Phe        | gga<br>Gly        | 336 | 5 |
| gt<br>Cys                | ttt<br>Phe        | ctc<br>Leu<br>115        | tac<br>Tyr        | ttg<br>Leu        | att<br>Ile        | gat<br>Asp        | gtc<br>Val<br>120 | att<br>Ile        | gtt<br>Val          | agt<br>Ser        | ctt<br>Leu        | cta<br>Leu<br>125 | agc<br>Ser        | 999<br>Gly        | aga<br>Arg        | 384 | 1 |
| ctt<br>Leu               | gta<br>Val<br>130 | cga<br>Arg               | gag<br>Glu        | cgc<br>Arg        | att<br>Ile        | ggt<br>Gly<br>135 | cct<br>Pro        | gca<br>Ala        | atg<br>Met          | cta<br>Leu        | agt<br>Ser<br>140 | gca<br>Ala        | gtg<br>Val        | caa<br>Gln        | agt<br>Ser        | 43: | 2 |
| caa<br>31n<br>145        | atg<br>Met        | gga<br>Gly               | gct<br>Ala        | gtg<br>Val        | gat<br>Asp<br>150 | aca<br>Thr        | gct<br>Ala        | ttt<br>Phe        | gat<br>Asp          | gat<br>Asp<br>155 | cac<br>His        | aca<br>Thr        | agc<br>Ser        | ctt<br>Leu        | ttt<br>Phe<br>160 | 48  | D |
| gat<br>Asp               | aca<br>Thr        | gga<br>Gly               | ggc<br>Gly        | tca<br>Ser<br>165 | aaa<br>Lys        | gga<br>Gly        | ttg<br>Leu        | aca<br>Thr        | gga<br>Gly<br>170   | gac<br>Asp        | ctt<br>Leu        | gtt<br>Val        | gag<br>Glu        | aaa<br>Lys<br>175 | atc<br>Ile        | 52  | В |
| cca<br>Pro               | aag<br>Lys        | atg<br>Met               | aca<br>Thr<br>180 | atc<br>Ile        | act<br>Thr        | ggc<br>Gly        | aac<br>Asn        | aat<br>Asn<br>185 | aac<br>Asn          | act<br>Thr        | gat<br>Asp        | gct<br>Ala        | tct<br>Ser<br>190 | gag<br>Glu        | aac<br>Asn        | 57  | 6 |
| Thr                      | Āsp               | Ser<br>195               | tgt<br>Cys        | Ser               | Val               | Сув               | Leu<br>200        | Gln               | Asp                 | Phe               | GIn               | Leu<br>205        | GIÀ               | GIU               | THE               | 62  |   |
| Val                      | Arg<br>210        | Ser                      | ttg<br>Leu        | Pro               | His               | Cys<br>215        | His               | His               | Met                 | Phe               | 11S<br>220        | rea               | PTO               | cys               | He                | 67  | 2 |
| gac<br>Asp<br>225        | aat<br>Asn        | tgg<br>Trp               | ctc<br>Leu        | ctt<br>Leu        | aga<br>Arg<br>230 | cac<br>His        | ggt<br>Gly        | tct<br>Ser        | tgc<br>Cys          | ccg<br>Pro<br>235 | atg<br>Met        | tgt<br>Cys        | aga<br>Arg        | cgt<br>Arg        | gat<br>Asp<br>240 | 72  |   |
| att<br>Ile               | taa               |                          | ſ                 |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |                   |                   | 72  | 6 |
| <21<br><21<br><21<br><21 | 1 > 2 >           | 32<br>241<br>PRT<br>Arab | idop              | sis               | thal              | iana              |                   |                   |                     |                   |                   |                   |                   |                   |                   |     |   |
| <40                      | 0>                | 32                       |                   |                   |                   |                   |                   |                   |                     |                   |                   | •                 |                   |                   |                   |     |   |
| Met<br>1                 | Ala               | Ser                      | Ser               | Ser<br>5          | Ser               | Ser               | Ser               | Tyr               | Arg<br>10           | Phe               | Gln               | Ser               | Gly               | Ser<br>15         | Tyr               |     |   |
| Pro                      | Leu               | Ser                      | Ser<br>20         | Ser               | Pro               | Ser               | Leu               | Gly<br>25         | Asn                 | Phe               | Val               | Glu               | Arg<br>30         | Ile               | Lys               |     |   |
| Asp                      | Ala               | Сув<br>35                | His               | Phe               | Leu               | Val               | Ser<br>40         | Ala               | Val                 | Leu               | Gly               | Thr<br>45         | Ile               | Ile               | Ser               |     |   |
| Ala                      | Ile<br>50         | Leu                      | Thr               | Phe               | Phe               | Phe<br>55         | Ala               | Leu               | Val                 | Gly               | Thr<br>60         | Leu               | Leu               | Gly               | Ala               |     |   |
| Leu<br>65                | Thr               | Gly                      | Ala               | Leu               | Ile<br>70         | Gly               | Gln               | Glu               | Thr                 | Glu<br>75         | Ser               | Gly               | Phe               | Ile               | Arg<br>80         |     |   |
| Gly                      | Ala               | Ala                      | Ile               | Gly<br>85         | Ala               | Ile               | . Ser             | Gly               | Ala<br>90           | Val               | Phe               | Ser               | : Ile             | 95                | val               |     |   |
| Phe                      | Glu               | Ser                      | Ser<br>100        |                   | Asp               | Leu               | Trp               | Lys<br>105        | Ser                 | Asp               | Glu               | . Ser             | Gly               | Phe               | Gly               |     |   |

#### MBI15 Sequence Listing.ST25

Cys Phe Leu Tyr Leu Ile Asp Val Ile Val Ser Leu Leu Ser Gly Arg

Leu Val Arg Glu Arg Ile Gly Pro Ala Met Leu Ser Ala Val Gln Ser 130 135 140

Gln Met Gly Ala Val Asp Thr Ala Phe Asp Asp His Thr Ser Leu Phe 145 150 155 160

Asp Thr Gly Gly Ser Lys Gly Leu Thr Gly Asp Leu Val Glu Lys Ile 165 170 175

Pro Lys Met Thr Ile Thr Gly Asn Asn Asn Thr Asp Ala Ser Glu Asn 180 185 190

Thr Asp Ser Cys Ser Val Cys Leu Gln Asp Phe Gln Leu Gly Glu Thr
195 200 205

Val Arg Ser Leu Pro His Cys His His Met Phe His Leu Pro Cys Ile 210 215 220

Asp Asn Trp Leu Leu Arg His Gly Ser Cys Pro Met Cys Arg Arg Asp 225 230 235 240

Ile

<210> 33

<211> 1370

<212> DNA <213> Arabidopsis thaliana

<220>

<221> CDS

<222> (184)..(969)

<223> G569

<400> 33

gtcgacccac gcgtccgggt ttttctttta tcctcttatc gctaatctgg agctctatat 60 120 agactataaa gggtttttga ttgattcggg agctcgagat ttgacttctt ttagctgatt cggcaagttt gtatctagaa aggatcgatt ggtgaggtca atagtggttg gtgggtttta 180 gta atg gaa gac ggt gag ctt gat ttc tcc aat cag gaa gtg ttt tcg Met Glu Asp Gly Glu Leu Asp Phe Ser Asn Gln Glu Val Phe Ser 228 agt tcg gag atg ggt gaa tta cca cct agc aat tgt tcg atg gat agt Ser Ser Glu Met Gly Glu Leu Pro Pro Ser Asn Cys Ser Met Asp Ser 276 ttc ttt gat ggg ctt tta atg gat act aat gct gct tgt acc cac act Phe Phe Asp Gly Leu Leu Met Asp Thr Asn Ala Ala Cys Thr His Thr 324 cac acc tgt aac ccc act gga cca gag aac act cat act cac acg tgc His Thr Cys Asn Pro Thr Gly Pro Glu Asn Thr His Thr His Thr Cys 372 ttc cat gtc cac acc aag att ctc ccg gat gag agc gat gaa aaa gtt Phe His Val His Thr Lys Ile Leu Pro Asp Glu Ser Asp Glu Lys Val 420

| MBI15 Sequence Listing.ST25                                                                                                                         |                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| tct act gat gat aca gct gag tct tgt ggg aag aag ggt gaa aag ag<br>Ser Thr Asp Asp Thr Ala Glu Ser Cys Gly Lys Lys Gly Glu Lys Ax<br>80 85 90 95     | :g                        |
| cct ttg gga aac cgg gaa gcg gtt aga aag tat aga gag aag aag aa<br>Pro Leu Gly Asn Arg Glu Ala Val Arg Lys Tyr Arg Glu Lys Lys Ly<br>100 105 110     | ng 516<br>/s              |
| gct aaa gct gct tct ttg gag gat gag gtt gca agg ctt agg gcg gt<br>Ala Lys Ala Ala Ser Leu Glu Asp Glu Val Ala Arg Leu Arg Ala Va<br>115 120 125     | g 564<br>al               |
| aat cag cag ctg gtg aag agg ttg caa aat cag gct acc ttg gaa gc<br>Asn Gln Gln Leu Val Lys Arg Leu Gln Asn Gln Ala Thr Leu Glu Al<br>130 135 140     | et 612<br>la              |
| gag gtt tcg agg ctt aag tgt ttg ctt gtg gat ttg aga gga aga at<br>Glu Val Ser Arg Leu Lys Cys Leu Leu Val Asp Leu Arg Gly Arg II<br>145 150 155     | ca 660<br>Le              |
| gat gga gag att gga tct ttt cct tat cag aaa cct atg gct gca aa<br>Asp Gly Glu Ile Gly Ser Phe Pro Tyr Gln Lys Pro Met Ala Ala As<br>160 165 170 170 | an .                      |
| att cct tct tcc tcg cac atg atg aat cct tgt aat gta caa tgt ga<br>Ile Pro Ser Phe Ser His Met Met Asn Pro Cys Asn Val Gln Cys As<br>180 185 190     | at 756<br>sp              |
| gat gaa gtt tat tgc cct cag aat gtg ttt gga gtg aat agc caa ga<br>Asp Glu Val Tyr Cys Pro Gln Asn Val Phe Gly Val Asn Ser Gln Gl<br>195 200 205     | aa 804 <sup>°</sup><br>lu |
| ggt gcc tcg atc aat gac caa ggg tta agt ggt tgt gat ttt gat ca<br>Gly Ala Ser Ile Asn Asp Gln Gly Leu Ser Gly Cys Asp Phe Asp Gl<br>210 215 220     | ag 852<br>ln              |
| cta caa tgc atg gct aat cag aac tta aat gga aat gga aac gga tc<br>Leu Gln Cys Met Ala Asn Gln Asn Leu Asn Gly Asn Gly Asn Gly Sc<br>225 230 235     | ca 900<br>er              |
| ttc agc aac gtc aat aca tct gtc tcg aat aag aga aaa ggt ggg c<br>Phe Ser Asn Val Asn Thr Ser Val Ser Asn Lys Arg Lys Gly Gly H<br>240 245 250 250   | at 948<br>is<br>55        |
| cgt gca tca aga gca gtt tga agcatcatca agcttgtact atctatttcc<br>Arg Ala Ser Arg Ala Val<br>260                                                      | 999                       |
| accagcatag atattgtatt ccaaataagt tgtagagttc agctgcagga tcagct                                                                                       | tcgc 1059                 |
| tcagetttga ggggttggtg gtgtggtett tetttgtgge acgagtgaga tetatg                                                                                       |                           |
| gaacccagat ttagtagtag tagaggcagg atttcgactt ccactaacca tcatgt                                                                                       |                           |
| tggtgaagaa caaggtatge ccatgaagca cactgttttg tacattgage ttgagg                                                                                       |                           |
| gtctctgatc tagccttact gtaacattgc aacgttctca caattgtgat cccaag                                                                                       | ttgc 1299                 |
| tttgttgact taaatgtgat aatatagctt aacttttact tgaaaaaaaa aaaaaa                                                                                       | aaaa 1359                 |
| aaaaaaaaa a                                                                                                                                         | 1370                      |
| <210> 34                                                                                                                                            |                           |

<210> 34 <211> 261 <212> PRT <213> Arabidopsis thaliana

<400> 34

Met Glu Asp Gly Glu Leu Asp Phe Ser Asn Gln Glu Val Phe Ser Ser 1 10 15

Ser Glu Met Gly Glu Leu Pro Pro Ser Asn Cys Ser Met Asp Ser Phe Page 44

20

Phe Asp Gly Leu Leu Met Asp Thr Asn Ala Ala Cys Thr His Thr His 35 40 45

Thr Cys Asn Pro Thr Gly Pro Glu Asn Thr His Thr His Thr Cys Phe 50 60

His Val His Thr Lys Ile Leu Pro Asp Glu Ser Asp Glu Lys Val Ser 65 70 75 80

Thr Asp Asp Thr Ala Glu Ser Cys Gly Lys Lys Gly Glu Lys Arg Pro

Leu Gly Asn Arg Glu Ala Val Arg Lys Tyr Arg Glu Lys Lys Lys Ala

Lys Ala Ala Ser Leu Glu Asp Glu Val Ala Arg Leu Arg Ala Val Asn 115 120 125

Gln Gln Leu Val Lys Arg Leu Gln Asn Gln Ala Thr Leu Glu Ala Glu 130 135 140

Val Ser Arg Leu Lys Cys Leu Leu Val Asp Leu Arg Gly Arg Ile Asp 145 150 150 160

Gly Glu Ile Gly Ser Phe Pro Tyr Gln Lys Pro Met Ala Ala Asn Ile 165 170 175

Pro Ser Phe Ser His Met Met Asn Pro Cys Asn Val Gln Cys Asp Asp 180 185 190

.Glu Val Tyr Cys Pro Gln Asn Val Phe Gly Val Asn Ser Gln Glu Gly 195 200 205

Ala Ser Ile Asn Asp Gln Gly Leu Ser Gly Cys Asp Phe Asp Gln Leu 210 215 220

Gln Cys Met Ala Asn Gln Asn Leu Asn Gly Asn Gly Asn Gly Ser Phe 225 230 235 240

Ser Asn Val Asn Thr Ser Val Ser Asn Lys Arg Lys Gly Gly His Arg 245 250 255

Ala Ser Arg Ala Val

<210> 35

<211> 1638

<212> DNA <213> Arabidopsis thaliana

<220>

221> CDS

<222> (267)..(1259)

223> G558

<400> 35

| MBI15 Sequence Listing.ST25                                                                                                                           |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ggaatttcgg atcgtgtctc tctctgtttc tttgtttcaa tccgatttcg aatcaagccc                                                                                     | 60   |
| tttacttgtg caccttcaag atttcgtttt ttccagcgcc cagaatgctc cgggtgacca                                                                                     | 120  |
| acatttgttc ctgattcatt tcctattggt tcgtattgtc tgtgcacaca agagaaattt                                                                                     | 180  |
| caagaagttg ttactaaaag agaggccaca agtggatatt gtctttgtta tcaagtgtta                                                                                     | 240  |
| gtacagaaaa gtggtgagaa agtaat atg gct gat acc agt ccg aga act gat<br>Met Ala Asp Thr Ser Pro Arg Thr Asp<br>1 5                                        | 293  |
| gtc tca aca gat gac gac aca gat cat cct gat ctt ggg tcg gag gga<br>Val Ser Thr Asp Asp Asp Thr Asp His Pro Asp Leu Gly Ser Glu Gly<br>10 15 20 25     | 341  |
| gca cta gtg aat act gct gct tct gat tcg agt gac cga tcg aag gga<br>Ala Leu Val Asn Thr Ala Ala Ser Asp Ser Ser Asp Arg Ser Lys Gly<br>30 35 40        | 389  |
| aag atg gat caa aag act ctt cgt agg ctt gct caa aac cgt gag gca<br>Lys Met Asp Gln Lys Thr Leu Arg Arg Leu Ala Gln Asn Arg Glu Ala<br>45 50 55        | 437  |
| gca agg aaa agc aga ttg agg aag aag gct tat gtt cag cag cta gag<br>Ala Arg Lys Ser Arg Leu Arg Lys Lys Ala Tyr Val Gln Gln Leu Glu<br>60 65 70        | 485  |
| aac agc cgc ttg aaa cta acc cag ctt gag cag gag ctg caa aga gca<br>Asn Ser Arg Leu Lys Leu Thr Gln Leu Glu Gln Glu Leu Gln Arg Ala<br>75 80 85        | 533  |
| aga cag cag ggc gtc ttc att tca ggc aca gga gac cag gcc cat tct<br>Arg Gln Gln Gly Val Phe Ile Ser Gly Thr Gly Asp Gln Ala His Ser<br>90 95 100 105   | 581  |
| act ggt gga aat ggt gct ttg gcg ttt gat gct gaa cat tca cgg tgg<br>Thr Gly Gly Asn Gly Ala Leu Ala Phe Asp Ala Glu His Ser Arg Trp<br>110 115 120     | 629  |
| ttg gaa gaa aag aac aag caa atg aac gag ctg agg tct gct ctg aat<br>Leu Glu Glu Lys Asn Lys Gln Met Asn Glu Leu Arg Ser Ala Leu Asn<br>125 130 135     | 677  |
| gcg cat gca ggt gat tct gag ctt cga ata ata gtc gat ggt gtg atg<br>Ala His Ala Gly Asp Ser Glu Leu Arg Ile Ile Val Asp Gly Val Met<br>140 145 150     | 725  |
| gct cac tat gag gag ctt ttc agg ata aag agc aat gca gct aag aat<br>Ala His Tyr Glu Glu Leu Phe Arg Ile Lys Ser Asn Ala Ala Lys Asn<br>155 160 165     | 773  |
| gat gtc ttt cac ttg cta tct ggc atg tgg aaa aca cca gct gag aga<br>Asp Val Phe His Leu Leu Ser Gly Met Trp Lys Thr Pro Ala Glu Arg<br>170 175 180 185 | 821  |
| tgt ttc ttg tgg ctc ggt gga ttt cgt tca tcc gaa ctt cta aag ctt<br>Cys Phe Leu Trp Leu Gly Gly Phe Arg Ser Ser Glu Leu Leu Lys Leu<br>190 195 200     | 869  |
| ctg gcg aat cag ttg gag cca atg aca gag aga cag ttg atg ggc ata<br>Leu Ala Asn Gln Leu Glu Pro Met Thr Glu Arg Gln Leu Met Gly Ile<br>205 210 215     | 917  |
| aat aac ctg caa cag aca tcg cag cag gct gaa gat gct ttg tct caa<br>Asn Asn Leu Gln Gln Thr Ser Gln Gln Ala Glu Asp Ala Leu Ser Gln<br>220 225 230     | 965  |
| ggg atg gag agc tta caa cag tca cta gct gat act tta tcg agc ggg<br>Gly Met Glu Ser Leu Gln Gln Ser Leu Ala Asp Thr Leu Ser Ser Gly<br>235 240 245     | 1013 |
| act ctt ggt tca agt tca tca ggg aat gtc gca agc tac atg ggt cag<br>Thr Leu Gly Ser Ser Ser Gly Asn Val Ala Ser Tyr Met Gly Gln<br>250 265             | 1061 |

### MBI15 Sequence Listing.ST25

| atg gcc atg gca atg gga aag tta ggt aca ctc gaa gga ttt atc cgc<br>Met Ala Met Ala Met Gly Lys Leu Gly Thr Leu Glu Gly Phe Ile Arg<br>270 275 280 | 1109 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| cag gct gat aat ttg aga cta caa aca ttg caa cag atg ata aga gta<br>Gln Ala Asp Asn Leu Arg Leu Gln Thr Leu Gln Gln Met Ile Arg Val<br>285 290 295 | 1157 |
| tta aca acg aga cag tca gca cgt gct cta ctt gca ata cac gat tac<br>Leu Thr Thr Arg Gln Ser Ala Arg Ala Leu Leu Ala Ile His Asp Tyr<br>300 305 310 | 1205 |
| ttc tca cgg cta cga gct cta agc tcc tta tgg ctt gct cga ccc aga<br>Phe Ser Arg Leu Arg Ala Leu Ser Ser Leu Trp Leu Ala Arg Pro Arg<br>315 320 325 | 1253 |
| gag tga aactgtattt tggtcacatg tcagetgtac aaaatccata tggacacaaa<br>Glu<br>330                                                                      | 1309 |
| accaggagag actattaatc aacacttgtc agattcttct taccaaatcc atcaacaaat                                                                                 | 1369 |
| aagcaaattt ctgggaaaca aaagactctt tgtatgtagg tttcttctac atggttgtgg                                                                                 | 1429 |
| taattcatgt tgttttagtt gtagtcatca gtttttaatt tagcatttga aaagttcaat                                                                                 | 1489 |
| gttgtttata tagcatotto gattatotta gaaaggttat tgaattttgt tttttttgt                                                                                  | 1549 |
| tacttttgtg tgtggtaaag gtgttttaac cttgcaactt ctgtactgta                                                                                            | 1609 |
| aatattaaga tgttctattt gagttttgt                                                                                                                   | 1638 |

<210> 36

<211> 330

<213> Arabidopsis thaliana

<400> 36

Met Ala Asp Thr Ser Pro Arg Thr Asp Val Ser Thr Asp Asp Asp Thr 1 10 15

Asp His Pro Asp Leu Gly Ser Glu Gly Ala Leu Val Asn Thr Ala Ala 20 30

Ser Asp Ser Ser Asp Arg Ser Lys Gly Lys Met Asp Gln Lys Thr Leu 35 40 45

Lys Lys Ala Tyr Val Gln Gln Leu Glu Asn Ser Arg Leu Lys Leu Thr 65 70 80

Gln Leu Glu Gln Glu Leu Gln Arg Ala Arg Gln Gln Gly Val Phe Ile 90 95

Ser Gly Thr Gly Asp Gln Ala His Ser Thr Gly Gly Asn Gly Ala Leu 100 105 110 .

Ala Phe Asp Ala Glu His Ser Arg Trp Leu Glu Glu Lys Asn Lys Gln 115 120 125

Met Asn Glu Leu Arg Ser Ala Leu Asn Ala His Ala Gly Asp Ser Glu 130 135 140

| Leu<br>145               | Arg            | Ile                      | Ile            | Val        | Asp<br>150   | Gly             | Val            | Met                  | Ala                  | His<br>155         | Tyr            | Glu           | Glu             | Leu              | Phe<br>160             |     |
|--------------------------|----------------|--------------------------|----------------|------------|--------------|-----------------|----------------|----------------------|----------------------|--------------------|----------------|---------------|-----------------|------------------|------------------------|-----|
| Arg                      | Ile            | Lys                      | Ser            | Asn<br>165 | Ala          | Ala             | Lys            | Asn                  | Asp<br>170           | Val                | Phe            | His           | Leu             | Leu<br>175       | Ser                    |     |
| Gly                      | Met            | Trp                      | Lys<br>180     | Thr        | Pro          | Ala             | Glu            | Arg<br>185           | Cys                  | Phe                | Leu            | Trp           | Leu<br>190      | Gly              | Gly                    |     |
| Phe                      | Arg            | Ser<br>195               | Ser            | Glu        | Leu          | Leu             | Lys<br>200     | Leu                  | Leu                  | Ala                | Asn            | Gln<br>205    | Leu             | Glu              | Pro                    |     |
| Met                      | Thr<br>210     | Glu                      | Arg            | Gln        | Leu          | Met<br>215      | Gly            | Ile                  | Asn                  | Asn                | Leu<br>220     | Gln           | Gln             | Thr              | Ser                    |     |
| Gln<br>225               | Gln            | Ala                      | Glu            | Asp        | Ala<br>230   | Leu             | Ser            | Gln                  | Gly                  | Met<br>235         | Glu            | Ser           | Leu             | Gln              | Gln<br>240             |     |
| Ser                      | Leu            | Ala                      | Asp            | Thr<br>245 | Leu          | Ser             | Ser            | Gly                  | Thr<br>250           | Leu                | Gly            | Ser           | Ser             | Ser<br>255       | Ser                    |     |
| Gly                      | Asn            | Val                      | Ala<br>260     | Ser        | Tyr          | Met             | Gly            | Gln<br>265           | Met                  | Ala                | Met            | Ala           | Met<br>270      | Gly              | Lys                    |     |
| Leu                      | Gly            | Thr<br>275               |                | Glu        | Gly          | Phe             | Ile<br>280     | Arg                  | Gln                  | Ala                | Asp            | Asn<br>285    | Leu             | Arg              | Leu                    |     |
| Gln                      | Thr<br>290     |                          | Gln            | Gln        | Met          | Ile<br>295      | Arg            | Val                  | Leu                  | Thr                | Thr<br>300     | Arg           | Gln             | Ser              | Ala                    |     |
| Arg<br>305               |                | Leu                      | Leu            | Ala        | Ile<br>310   |                 | Asp            | Tyr                  | Phe                  | Ser<br>315         | .Arg           | Leu           | Arg             | Ala              | Leu<br>320             |     |
| Ser                      | Ser            | Leu                      | Trp            | Leu<br>325 |              | Arg             | Pro            | Arg                  | Glu<br>330           |                    |                | ·             |                 |                  | . •                    |     |
| <21<br><21<br><21<br><21 | 1>             | 37<br>436<br>DNA<br>Arab | oidop          | sis        | thal         | iana            | L              |                      |                      |                    |                |               |                 |                  |                        |     |
| <22<br><22<br><22<br><22 | 1><br>!2>      | CDS<br>(83)<br>G139      | (3<br>)6       | 13)        |              |                 |                |                      |                      |                    |                |               |                 |                  |                        |     |
| tc                       |                |                          |                |            |              |                 |                |                      |                      |                    |                |               |                 |                  | gatete                 | 60  |
| acg                      | gtata          | ttt                      | tgga           | tcgt       | aa t         | c at<br>Me<br>1 | g ga           | ac go<br>sp Gl       | gc ga<br>ly Gl       | a ga<br>lu As<br>5 | it ti<br>sp Pl | t go<br>ne Al | c gg<br>a Gl    | ga aa<br>Ly Ly   | ng gcg<br>ys Ala<br>10 | 112 |
| gct<br>Ala               | gct<br>Ala     | gaa<br>Glu               | a gco<br>ı Ala | aaq<br>Lyi | g gga<br>Gly | ttg<br>/ Lei    | g aad<br>ı Ası | e ccg                | g gga<br>5 Gly<br>20 | a tta<br>/ Lei     | a ato          | gte<br>Val    | cto<br>Lev      | ctt<br>Let<br>25 | gtt<br>val             | 160 |
| gt!<br>Va:               | t gga<br>l Gly | a ggt<br>y Gly           | y Pro          | cti<br>Le  | t ctt        | gto<br>ı Va     | g tto<br>1 Pho | c cta<br>e Lei<br>35 | a ato<br>u Ilo       | gce<br>Ala         | aa<br>a As     | tao<br>n Ty   | gtq<br>Va<br>40 | g cti<br>Lei     | tac<br>Tyr             | 208 |

00/31418

| WO 01/35726                                                                                                                                    | PCT/US0 |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| MBI15 Sequence Listing.ST25                                                                                                                    |         |
| gtt tat gct cag aag aac cta cct cca agg aag aag aag ccc gtt tcc<br>Val Tyr Ala Gln Lys Asn Leu Pro Pro Arg Lys Lys Pro Val Ser<br>45 50 55     | 256     |
| aaa aag aag ctc aag cgg gag aag cta aag caa gga gtc cct gtc cct<br>Lys Lys Lys Leu Lys Arg Glu Lys Leu Lys Gln Gly Val Pro Val Pro<br>60 65 70 | 304     |
| gga gaa taa aagccagctt aagctteett eacttgtgee teetteaaag<br>Gly Glu<br>75                                                                       | 353     |
| cggtttttgt tcggttacca aatttcaccc ttgcgggttt ttttcttcct ttacttctgt                                                                              | 413     |
| catgaggatt atctttgagg cct                                                                                                                      | 436     |
| <210> 38 <211> 76 <212> PRT <213> Arabidopsis thaliana                                                                                         |         |
| <400> 38                                                                                                                                       |         |
| Met Asp Gly Glu Asp Phe Ala Gly Lys Ala Ala Ala Glu Ala Lys Gly 1 10 15                                                                        |         |
| Leu Asn Pro Gly Leu Ile Val Leu Leu Val Val Gly Gly Pro Leu Leu 20 25 30                                                                       |         |
| Val Phe Leu Ile Ala Asn Tyr Val Leu Tyr Val Tyr Ala Gln Lys Asn 35 40 45                                                                       |         |
| Leu Pro Pro Arg Lys Lys Pro Val Ser Lys Lys Lys Leu Lys Arg                                                                                    |         |
| Glu Lys Leu Lys Gln Gly Val Pro Val Pro Gly Glu<br>65 70 75                                                                                    |         |
| <210> 39<br><211> 1470<br><212> DNA<br><213> Arabidopsis thaliana                                                                              |         |
| <220> <221> CDS <222> (280)(1317) <223> G265                                                                                                   |         |

ctttggtctt ggaagccaaa tcaaaccttt ccttcaatcc tcaaattttc gaaaattttc tcttttgctt tacgttctct caattcttat ttgtaagaaa gtttgttcct ttaatcaatc 120 180 aaatcaaaga gacttttgaa gattgtttcc caatttgcgt caatcgggat cgagtcaaat ctgaaatctt ctccactcat catctgacta taagacttaa tcaagggact ttttgttcgg 240 gtttggtttt aaacgtcttg gattcgaagt ggttaaggt atg gat gaa aat aat Met Asp Glu Asn Asn 1 294 342 gtt gat gat tet tet tet gae teg gte g<br/>t get tgg age gaa aac aac Val Asp Asp Ser Ser Ser Asp Ser Val Val A<br/>la Trp Ser Glu Asn Asn 390 Page 49

|                   |                   |                   | 25                |                   |                   |                   | MBI               | 15 Se<br>30       | equer             | ce I              | isti              | ing.S             | T25<br>35         |                   |                   |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| aaa<br>Lys        | Ser               | ttc<br>Phe<br>40  | atc<br>Ile        | gtc<br>Val        | aag<br>Lys        | aat<br>Asn        | cca<br>Pro<br>45  | gca<br>Ala        | gag<br>Glu        | ttt<br>Phe        | tca<br>Ser        | aga<br>Arg<br>50  | gac<br>Asp        | ctt<br>Leu        | ctt<br>Leu        | 438  |
| ccg<br>Pro        | aga<br>Arg<br>55  | ttc<br>Phe        | ttc<br>Phe        | aag<br>Lys        | cat<br>His        | aag<br>Lys<br>60  | aat<br>Asn        | ttc<br>Phe        | tca<br>Ser        | agt<br>Ser        | ttc<br>Phe<br>65  | atc<br>Ile        | cgt<br>Arg        | cag<br>Gln        | ctt<br>Leu        | 486  |
| aat<br>Asn<br>70  | aca<br>Thr        | tat<br>Tyr        | ggt<br>Gly        | ttt<br>Phe        | cga<br>Arg<br>75  | aaa<br>Lys        | gta<br>Val        | gat<br>Asp        | cct<br>Pro        | gag<br>Glu<br>80  | aaa<br>Lys        | tgg<br>Trp        | gaa<br>Glu        | ttc<br>Phe        | ttg<br>Leu<br>85  | 534  |
| aat<br>Asn        | gat<br>Asp        | gat<br>Asp        | ttt<br>Phe        | gtt<br>Val<br>90  | aga<br>Arg        | ggt<br>Gly        | cga<br>Arg        | cct<br>Pro        | tac<br>Tyr<br>95  | ctt<br>Leu        | atg<br>Met        | aag<br>Lys        | aac<br>Asn        | att<br>Ile<br>100 | cat<br>His        | 582  |
| aga<br>Arg        | cga<br>Arg        | aaa<br>Lys        | ccg<br>Pro<br>105 | gtt<br>Val        | cat<br>His        | agc<br>Ser        | cac<br>His        | tcg<br>Ser<br>110 | tta<br>Leu        | gtg<br>Val        | aat<br>Asn        | cta<br>Leu        | caa<br>Gln<br>115 | gcg<br>Ala        | caa<br>Gln        | 630  |
| aat<br>Asn        | cct<br>Pro        | ttg<br>Leu<br>120 | acg<br>Thr        | gaa<br>Glu        | tca<br>Ser        | gaa<br>Glu        | aga<br>Arg<br>125 | cgg<br>Arg        | agc<br>Ser        | atg<br>Met        | gag<br>Glu        | gat<br>Asp<br>130 | cag<br>Gln        | ata<br>Ile        | gaa<br>Glu        | 678  |
| aga<br>Arg        | ctg<br>Leu<br>135 | aaa<br>Lys        | aat<br>Asn        | gag<br>Glu        | aaa<br>Lys        | gaa<br>Glu<br>140 | ggc<br>Gly        | ctt<br>Leu        | ctt<br>Leu        | gcg<br>Ala        | gag<br>Glu<br>145 | tta<br>Leu        | cag<br>Gln        | aac<br>Asn        | caa<br>Gln        | 726  |
| gag<br>Glu<br>150 | caa<br>Gln        | gaa<br>Glu        | cgg<br>Arg        | aaa<br>Lys        | gag<br>Glu<br>155 | ttt<br>Phe        | gag<br>Glu        | ctg<br>Leu        | caa<br>Gln        | gta<br>Val<br>160 | acg<br>Thr        | aca<br>Thr        | ttg<br>Leu        | aaa<br>Lys        | gat<br>Asp<br>165 | 774  |
| cgg<br>Arg        | tta<br>Leu        | caa<br>Gln        | cat<br>His        | atg<br>Met<br>170 | gaa<br>Glu        | caa<br>Gln        | cat<br>His        | cag<br>Gln        | aaa<br>Lys<br>175 | tca<br>Ser        | ata<br>Ile        | gtg<br>Val        | gca<br>Ala        | tat<br>Tyr<br>180 | gtt<br>Val        | 822  |
| tca<br>Ser        | cag<br>Gln        | gtt<br>Val        | ttg<br>Leu<br>185 | Gly               | aaa<br>Lys        | cca<br>Pro        | gga<br>Gly        | Ctt<br>Leu<br>190 | ser               | cta<br>Leu        | aac<br>Asn        | ctc<br>Leu        | gaa<br>Glu<br>195 | aac<br>Asn        | cat<br>His        | 870  |
| Ğlü               | Arg               | Arg<br>200        | Lys               | Arg               | aga<br>Arg        | Phe               | G1n<br>205        | Glu               | Asn               | ser               | ren               | 210               | PLO               | 261               | 261               | 918  |
| tca<br>Ser        | cac<br>His<br>215 | Ile               | gaa<br>Glu        | cag<br>Gln        | gtc<br>Val        | gaa<br>Glu<br>220 | гув               | tta<br>Leu        | gaa<br>Glu        | tct<br>Ser        | Ser<br>225        | neu               | acg<br>Thr        | ttt<br>Phe        | tgg<br>Trp        | 966  |
| gag<br>Glu<br>230 | Asn               | ctt<br>Leu        | gta<br>Val        | tcg<br>Ser        | gaa<br>Glu<br>235 | tca<br>Ser        | tgc<br>Cys        | gag<br>Glu        | aag<br>Lys        | agc<br>Ser<br>240 | GIA               | ttg<br>Leu        | cag<br>Gln        | tca<br>Ser        | Ser<br>245        | 1014 |
| Ser               | Met               | Asp               | His               | 250               | ) Ala             | Ala               | Glu               | ı Ser             | 255               | Leu               | Sei               | TIE               | : СІУ             | 260               |                   | 1062 |
| cga               | ccc<br>Pro        | aaa<br>Lys        | tca<br>Ser<br>265 | : Ser             | aag<br>Lys        | att<br>Ile        | gat<br>Asp        | atg<br>Met<br>270 | . ASI             | tca<br>Ser        | gaç<br>Gli        | ccg<br>Pro        | Pro<br>275        | , vai             | acc<br>Thr        | 1110 |
| Va]               | Thr               | 280               | Pro               | ) Ala             | a Pro             | Lys               | 285               | r Gly             | y val             | . AST             | ı AS              | 290               | )                 | : III             | ggaa<br>Glu       | 1158 |
| Glı               | 295               | s Lev             | ı Thi             | r Glu             | ı Asn             | 300               | ) G1              | y Sei             | r Tni             | c GII             | 30                | 5                 | ı GIC             | ı va              | cag<br>Gln        | 1206 |
| 310               | r Glu<br>O        | ı Ar              | g Arg             | g Asj             | 315               | GI                | y AB              | n As              | р жы              | 320               | )<br>)            | y Asi             | r mys             |                   | gga<br>Gly<br>325 | 1254 |
| aa                | t ca              | a ag              | g ac              | g ta              | t tgg             | g tg              | g aa              | t tc              |                   | g aa<br>Page      |                   | a aat             | t aad             | c at              | t aca             | 1302 |

MBI15 Sequence Listing.ST25

Asn Gln Arg Thr Tyr Trp Trp Asn Ser Gly Asn Val Asn Asn Ile Thr 330 335 340

gag aaa gct tct tga catgaatgag gtttttgtaa aatagttttc ttttggttcc 1357 Glu Lys Ala Ser

- ....

actgagatta ttgtatgtgt tcattattta ttactctgtt tctgtaaaaa caaatctctc 1417

tattgtttga ggcaggagtg acataaatgc atatgcagaa ttggtttcaa aaa

1470

<210> 40

<211> 345

<212> PRT

<213> Arabidopsis thaliana

<400> 40

Lys Thr Tyr Glu Met Val Asp Asp Ser Ser Ser Asp Ser Val Val Ala
20 25 30

Trp Ser Glu Asn Asn Lys Ser Phe Ile Val Lys Asn Pro Ala Glu Phe 35 40 45

Ser Arg Asp Leu Leu Pro Arg Phe Phe Lys His Lys Asn Phe Ser Ser 50 55 60

Phe Ile Arg Gln Leu Asn Thr Tyr Gly Phe Arg Lys Val Asp Pro Glu 65 70 75 80

Lys Trp Glu Phe Leu Asn Asp Asp Phe Val Arg Gly Arg Pro Tyr Leu 85 90 95

Met Lys Asn Ile His Arg Arg Lys Pro Val His Ser His Ser Leu Val

Asn Leu Gln Ala Gln Asn Pro Leu Thr Glu Ser Glu Arg Arg Ser Met 115 120 125  $_{\perp}$ 

Glu Asp Gln Ile Glu Arg Leu Lys Asn Glu Lys Glu Gly Leu Leu Ala 130 135 140

Glu Leu Gln Asn Gln Glu Gln Glu Arg Lys Glu Phe Glu Leu Gln Val 145 150 155 160

Thr Thr Leu Lys Asp Arg Leu Gln His Met Glu Gln His Gln Lys Ser 165 170 175

Ile Val Ala Tyr Val Ser Gln Val Leu Gly Lys Pro Gly Leu Ser Leu 180 185 190

Asn Leu Glu Asn His Glu Arg Arg Lys Arg Arg Phe Gln Glu Asn Ser 195 200 205

Leu Pro Pro Ser Ser Ser His Ile Glu Gln Val Glu Lys Leu Glu Ser 210 215 220

| Ser                                                                                       | Leu                                                           | Thr                                                                             | Phe                                 | Trp                                                               | Glu                                                        | Asn                                          | MBI:<br>Leu                                  | l5 Se<br>Val                                          | equer<br>Ser                                        | Glu                                                 | ist:<br>Ser                                  | ing.S<br>Cys                                 | T25<br>Glu                                           | Lys                                                         | Ser                                          |                          |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|--------------------------|
| 225                                                                                       |                                                               |                                                                                 |                                     |                                                                   | 230                                                        |                                              |                                              |                                                       |                                                     | 235                                                 |                                              |                                              |                                                      |                                                             | 240                                          |                          |
| Gly                                                                                       | Leu                                                           | Gln                                                                             | Ser                                 | Ser<br>245                                                        | Ser                                                        | Met                                          | Asp                                          | His                                                   | Asp<br>250                                          | Ala                                                 | Ala                                          | Glu                                          | Ser                                                  | Ser<br>255                                                  | Leu                                          |                          |
| Ser                                                                                       | Ile                                                           | Gly                                                                             | Asp<br>260                          | Thr                                                               | Arg                                                        | Pro                                          | Lys                                          | Ser<br>265                                            | Ser                                                 | Lys                                                 | Ile                                          | Asp                                          | Met<br>270                                           | Asn                                                         | Ser                                          |                          |
| Glu                                                                                       | Pro                                                           | Pro<br>275                                                                      | Val                                 | Thr                                                               | Val                                                        | Thr                                          | Ala<br>280                                   | Pro                                                   | Ala                                                 | Pro                                                 | Lys                                          | Thr<br>285                                   | Gly                                                  | Val                                                         | Asn                                          |                          |
| Asp                                                                                       | Asp<br>290                                                    | Phe                                                                             | Trp                                 | Glu                                                               | Gln                                                        | Cys<br>295                                   | Leu                                          | Thr                                                   | Glu                                                 | Asn                                                 | Pro<br>300                                   | Gly                                          | Ser                                                  | Thr                                                         | Glu                                          |                          |
| Gln<br>305                                                                                | Gln                                                           | Glu                                                                             | Val                                 | Gln                                                               | Ser<br>310                                                 | Glu                                          | Arg                                          | Arg                                                   | Asp                                                 | Val<br>315                                          | Gly                                          | Asn                                          | Asp                                                  | Asn                                                         | Asn<br>320                                   |                          |
| Gly                                                                                       | Asn                                                           | Lys                                                                             | Ile                                 | Gly<br>325                                                        | Asn                                                        | Gln                                          | Arg                                          | Thr                                                   | Tyr<br>330                                          | Trp                                                 | Trp                                          | Asn                                          | Ser                                                  | Gly<br>335                                                  | Asn                                          |                          |
| Val                                                                                       | Asn                                                           | Asn                                                                             | Ile<br>340                          | Thr                                                               | Glu                                                        | Lys                                          | Ala                                          | Ser<br>345                                            |                                                     |                                                     |                                              |                                              |                                                      |                                                             |                                              |                          |
| <21<br><21<br><21<br><21                                                                  | 1> :<br>2> :                                                  | 41<br>913<br>DNA<br>Arab                                                        | idopa                               | sis :                                                             | thal:                                                      | iana                                         |                                              |                                                       |                                                     |                                                     |                                              |                                              |                                                      |                                                             |                                              |                          |
|                                                                                           |                                                               |                                                                                 |                                     |                                                                   |                                                            |                                              |                                              |                                                       |                                                     |                                                     |                                              |                                              |                                                      |                                                             |                                              |                          |
| <22<br><22<br><22<br><22                                                                  | 1><br>2>                                                      | CDS<br>(52)<br>G100                                                             | (7!<br>6                            | 83)                                                               |                                                            |                                              |                                              |                                                       |                                                     |                                                     |                                              |                                              |                                                      | ٠                                                           |                                              |                          |
| <22<br><22<br><22                                                                         | 1>                                                            | (52)<br>G100                                                                    | 6                                   |                                                                   | ac a                                                       | aaaa                                         | aaac                                         | t ct                                                  | atag                                                | ttag                                                | ttt                                          | ctct                                         | gaa                                                  | a. at<br>Me                                                 | g tac<br>t Tyr                               | 57                       |
| <22<br><22<br><22<br><40<br>gat                                                           | 1>                                                            | (52)<br>G100<br>41<br>caa                                                       | tcaa                                | caaa                                                              | gaa                                                        | tcc                                          | gac                                          | tac                                                   | act                                                 | tta                                                 | ttq                                          | qaq                                          | tcg                                                  | ne<br>1<br>ata                                              | g tac<br>t Tyr<br>aca<br>Thr                 | 57<br>105                |
| <22<br><22<br><22<br><40<br>gat                                                           | 1><br>2><br>3><br>0><br>aaat<br>cag                           | (52)<br>G100<br>41<br>caa<br>tgc<br>Cys                                         | aat<br>Asn                          | caaa<br>ata<br>Ile                                                | gaa<br>Glu                                                 | tcc<br>Ser                                   | gac<br>Asp<br>10                             | tac<br>Tyr                                            | gct<br>Ala                                          | ttg<br>Leu<br>gag<br>Glu                            | ttg<br>Leu                                   | gag<br>Glu<br>15<br>cga<br>Arg               | tcg<br>Ser                                           | ata<br>I ata                                                | aca                                          |                          |
| <22<br><22<br><22<br><40<br>gat<br>gga<br>Gly                                             | 1><br>2><br>3><br>0><br>aaat<br>cag<br>Gln<br>cac<br>His      | (52)<br>G100<br>41<br>caa<br>tgc<br>Cys<br>5<br>ttg                             | aat<br>Asn<br>Cta                   | ata<br>Ile<br>gga<br>Gly                                          | gaa<br>Glu<br>gga<br>Gly                                   | tcc<br>Ser<br>gga<br>Gly<br>25               | gac<br>Asp<br>10<br>gga<br>Gly               | tac<br>Tyr<br>gag<br>Glu                              | gct<br>Ala<br>aac<br>Asn                            | ttg<br>Leu<br>gag<br>Glu                            | ttg<br>Leu<br>ctg<br>Leu<br>30               | gag<br>Glu<br>15<br>cga<br>Arg               | tcg<br>Ser<br>ctc<br>Leu                             | ata<br>Ile                                                  | aca<br>Thr                                   | 105                      |
| <222<br><222<br><222<br><40 gat<br>gga<br>Gly<br>cgt<br>Arg                               | 1> 2> 3> 0> aaaat caggin cac His 20 acac Thr                  | (52)<br>G100<br>41<br>caa<br>tgc<br>Cys<br>5<br>ttg<br>Leu                      | aat<br>Asn<br>cta<br>Leu            | ata<br>Ile<br>gga<br>Gly<br>tcg                                   | gaa<br>Glu<br>gga<br>Gly<br>tgt<br>Cys<br>40               | tcc<br>Ser<br>gga<br>Gly<br>25<br>ttc<br>Phe | gac<br>Asp<br>10<br>gga<br>Gly<br>aca<br>Thr | tac<br>Tyr<br>gag<br>Glu<br>gag<br>Glu                | gct<br>Ala<br>aac<br>Asn<br>agt                     | ttg<br>Leu<br>gag<br>Glu<br>tgg<br>Trp<br>45        | ttg<br>Leu<br>ctg<br>Leu<br>30<br>gga<br>Gly | gag<br>Glu<br>15<br>cga<br>Arg<br>ggt<br>Gly | tcg<br>Ser<br>ctc<br>Leu                             | ata<br>ata<br>Ile<br>aat<br>Asr                             | aca<br>Thr<br>gag<br>Glu                     | 105                      |
| <222<br><222<br><422<br><40 gat<br>ggaaggly<br>cgt<br>Arg<br>tca<br>ser<br>35<br>aaa      | 1> 2> 3> 0> aaaat caggGln cacsHis 20 acac Thr                 | (52)<br>G100<br>41<br>caa<br>tgc<br>Cys<br>5<br>ttgg<br>Ettge<br>Pro            | aaat Asn cta Leu agt Ser            | caaaa<br>ataa<br>Ile<br>gga<br>Gly<br>tcg<br>Ser<br>tca           | gaa<br>Glu<br>gga<br>Gly<br>tgt<br>Cys<br>40<br>gag<br>Glu | gga<br>Gly<br>25<br>ttc<br>Phe               | gac<br>Asp<br>10<br>gga<br>Gly<br>aca<br>Thr | gag<br>Glu<br>gag<br>Glu<br>ttg<br>Leu                | gct<br>Ala<br>aac<br>Asn<br>agt<br>Ser<br>Val<br>60 | ttg<br>Leu<br>gag<br>Glu<br>tgg<br>Trp<br>45<br>tac | ctg<br>Leu<br>30<br>gga<br>Gly               | gag<br>Glu<br>15<br>cga<br>Arg<br>ggt<br>Gly | tcg<br>Ser<br>Ctc<br>Lev                             | ata<br>lata<br>lata<br>lata<br>lata<br>lata<br>lata<br>lata | aca<br>Thr<br>gag<br>Glu<br>ttg<br>Leu<br>50 | 105<br>153<br>201        |
| <222<br><222<br><420<br>gat<br>gga<br>Gly<br>cgt<br>Arg<br>tca<br>Ser<br>35<br>aaa<br>Lys | 1> 22> 3> 0> aaaat caggGln cacaGln cacaGln gagGln gagGlu cttc | (52)<br>G100<br>41<br>caa<br>tgc<br>Cys<br>5<br>ttgg<br>Cys<br>5<br>ttgg<br>Pro | aaat Asn cta Leu agt Ser gat Asp 70 | ata<br>ata<br>Ile<br>gga<br>Gly<br>tcg<br>Ser<br>tca<br>Ser<br>55 | gaaa Glu gga tgt Cys 40 gag Glu acg                        | tcc<br>Ser<br>gga<br>Gly<br>25<br>ttc<br>Phe | gac<br>Asp<br>10<br>gga<br>Gly<br>aca<br>Thr | tac<br>Tyr<br>gag<br>Glu<br>gagg<br>Glu<br>ttg<br>Leu | gct Alaaac Asn agt Ser Val 60 gac                   | ttgg Glu tgg Glu tgg Trp 45 tac Tyr                 | ctg<br>Leu<br>30<br>gga<br>Gly               | gag<br>Glu<br>15<br>cga<br>Arg<br>ggt<br>Gly | tcg<br>Ser<br>ctc<br>Leu<br>ttg<br>Leu<br>ctc<br>Leu | ata ata lata lata lata lata lata lata l                     | aca<br>Thr<br>gag<br>Glu<br>ttg<br>Leu<br>50 | 105<br>153<br>201<br>249 |

|                                                        |                                        |                                                |                                 |                        |                    |                                |                         |                         | •                       |                          |                          |                         | 0123                    |                         |                          |            |
|--------------------------------------------------------|----------------------------------------|------------------------------------------------|---------------------------------|------------------------|--------------------|--------------------------------|-------------------------|-------------------------|-------------------------|--------------------------|--------------------------|-------------------------|-------------------------|-------------------------|--------------------------|------------|
|                                                        | His                                    |                                                |                                 |                        |                    |                                |                         |                         |                         |                          |                          |                         |                         | gcg<br>Ala              |                          | 441        |
| gag<br>Glu                                             | ata<br>Ile                             | cgt<br>Arg                                     | gat<br>Asp                      | ccg<br>Pro<br>135      | gcg<br>Ala         | aag<br>Lys                     | aat<br>Asn              | gga<br>Gly              | gct<br>Ala<br>140       | agg<br>Arg               | gtt<br>Val               | tgg<br>Trp              | tta<br>Leu              | 999<br>Gly<br>145       | acg<br>Thr               | 489        |
|                                                        |                                        |                                                |                                 |                        |                    |                                |                         |                         |                         |                          |                          |                         |                         | gct<br>Ala              |                          | 537        |
|                                                        |                                        |                                                |                                 |                        |                    |                                |                         |                         |                         |                          |                          |                         |                         | gtt<br>Val              |                          | 585        |
|                                                        |                                        |                                                |                                 |                        |                    |                                |                         |                         |                         |                          |                          |                         |                         | tct<br>Ser              |                          | 633        |
| tcg<br>Ser<br>195                                      | tcg<br>Ser                             | tcg<br>Ser                                     | tcg<br>Ser                      | tcg<br>Ser             | tcc<br>Ser<br>200  | tct<br>Ser                     | tct<br>Ser              | acg<br>Thr              | tcg<br>Ser              | tcg<br>Ser<br>205        | tct<br>Ser               | gaa<br>Glu              | aac<br>Asn              | ggg<br>Gly              | aag<br>Lys<br>210        | 681        |
| ttg<br>Leu                                             | aaa<br>Lys                             | cga<br>Arg                                     | agg<br>Arg                      | aga<br>Arg<br>215      | ʻaaa<br>Lys        | gca<br>Ala                     | gag<br>Glu              | aat<br>Asn              | ctg<br>Leu<br>220       | acg<br>Thr               | tcg<br>Ser               | gag<br>Glu              | gtg<br>Val              | gtg<br>Val<br>225       | cag<br>Gln               | 729        |
|                                                        |                                        |                                                |                                 |                        |                    |                                |                         |                         |                         |                          |                          |                         |                         | ttg<br>Leu              |                          | 777        |
|                                                        | taa                                    | gtt                                            | gato                            | ett g                  | gtgtg              | gttt                           | g ta                    | gttg                    | gaata                   | gtt                      | ttg                      | ctat                    | aaat                    | gttg                    | gag                      | 833        |
| Ser                                                    |                                        |                                                |                                 |                        |                    |                                |                         |                         |                         |                          |                          |                         |                         |                         |                          |            |
|                                                        | ccaaç                                  | gta a                                          | aagt                            | gtto                   | ec cg              | gtgat                          | gtaa                    | a att                   | agtt                    | act                      | aaad                     | cagag                   | gee a                   | atata                   | atcttc                   | 893        |
| gca                                                    | ccaaç                                  | _                                              | • -                             | _                      |                    | gtgat                          | gtaa                    | a att                   | agtt                    | act                      | aaad                     | cagag                   | gee a                   | atata                   | atcttc                   | 893<br>913 |
| gca                                                    | 0> 4<br>1> 2<br>2> 1                   | aaa a<br>42<br>243<br>PRT                      | aaaa                            | aaaa                   | aa                 |                                | gtaa                    | att                     | cagtt                   |                          | aaad                     | cagaç                   | gcc a                   | atata                   | atcttc                   |            |
| gca<br>aat<br><21<br><21<br><21                        | 0> 4<br>1> 2<br>2> 1                   | aaa a<br>42<br>243<br>PRT                      | aaaa                            | aaaa                   |                    |                                | gtaa                    | a att                   | cagtt                   | act<br>:                 | aaad                     | cagag                   | gcc a                   | atata                   | atcttc                   |            |
| gca<br>aat<br><21<br><21<br><21:<br><40                | 0> 4<br>1> 2<br>2> 1<br>3> 7           | aaa a<br>12<br>243<br>PRT<br>Arabi             | iaaaa<br>idops                  | aaaaa<br>sis t         | na<br>:hali        | iana                           |                         |                         |                         | ž.                       |                          |                         |                         | atata<br>Glu<br>15      | ·                        |            |
| gca<br>aat<br><21<br><21<br><21<br><40<br>Met          | 0> 4<br>1> 2<br>2> 1<br>3> 7<br>0> 4   | 42<br>243<br>PRT<br>Arabi                      | idops<br>Gln                    | cys                    | hali<br>Asn        | iana                           | Glu                     | Ser                     | Asp<br>10               | :<br>Tyr                 | Ala                      | Leu                     | Leu                     | Glu                     | Ser                      |            |
| gca<br>aat<br><211<br><211<br><211<br><400<br>Met<br>1 | 0> 41> 22> 13> 70> 4                   | aaa a<br>42<br>243<br>PRT<br>Arabi             | idops<br>Gln<br>His<br>20       | Cys<br>5               | hali<br>Asn<br>Leu | iana<br>Ile<br>Gly             | Glu                     | Ser<br>Gly<br>25        | Asp<br>10               | :<br>Tyr<br>Glu          | Ala<br>Asn               | Leu                     | Leu<br>Leu<br>30        | Glu<br>15               | Ser<br>Leu               |            |
| gca<br>aat<br><211<br><211<br><211<br><400<br>Met<br>1 | 00> 4 1> 2 2> 1 3> 7 Tyr Thr           | 42<br>2243<br>PRT<br>Arabi<br>42<br>Gly<br>Arg | dops<br>Gln<br>His<br>20        | Cys<br>5<br>Leu        | Asn<br>Leu<br>Ser  | iana<br>Ile<br>Gly<br>Ser      | Glu<br>Gly<br>Cys<br>40 | Ser<br>Gly<br>25        | Asp<br>10<br>Gly        | Tyr<br>Glu<br>Glu        | Ala<br>Asn<br>Ser        | Leu<br>Glu<br>Trp<br>45 | Leu<br>Leu<br>30        | Glu<br>15<br>Arg        | Ser<br>Leu<br>Leu        |            |
| gca<br>aat<br><211<br><211<br><211<br><400<br>Met<br>1 | Caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa | Arg Ser 35                                     | dops<br>Gln<br>His<br>20<br>Thr | Cys<br>5<br>Leu<br>Pro | Asn<br>Leu<br>Ser  | Ile<br>Gly<br>Ser<br>Ser<br>55 | Glu<br>Gly<br>Cys<br>40 | Ser<br>Gly<br>25<br>Phe | Asp<br>10<br>Gly<br>Thr | Tyr<br>Glu<br>Glu<br>Leu | Ala<br>Asn<br>Ser<br>Val | Leu<br>Glu<br>Trp<br>45 | Leu<br>Leu<br>30<br>Gly | Glu<br>15<br>Arg<br>Gly | Ser<br>Leu<br>Leu<br>Leu |            |

Page 53

Met Glu Glu Lys Pro Lys Lys Ala Ile Pro Val Thr Glu Thr Ala Val 100  $\,$  105  $\,$  110  $\,$  ,

| Lys                      | Ala               | Lys<br>115               | His              | Tyr              | Arg              | Gly              | Val<br>120       | Arg              | Gln              | Arg              | Pro              | Trp<br>125       | Gly              | Lys        | Phe              |     |
|--------------------------|-------------------|--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------|------------------|-----|
| Ala                      | Ala<br>130        | Glu                      | Ile              | Arg              | Asp              | Pro<br>135       | Ala              | Lys              | Asn              | Gly              | Ala<br>140       | Arg              | Val              | Trp        | Leu              |     |
| Gly<br>145               | Thr               | Phe                      | Glu              | Thr              | Ala<br>150       | Glu              | Asp              | Ala              | Ala              | Leu<br>155       | Ala              | Tyr              | qaA              | Ile        | Ala<br>160       |     |
| Ala                      | Phe               | Arg                      | Met              | Arg<br>165       | Gly              | Ser              | Arg              | Ala              | Leu<br>170       | Leu              | Asn              | Phe              | Pro              | Leu<br>175 | Arg              |     |
| Val                      | Asn               | Ser                      | Gly<br>180       | Glu              | Pro              | Asp              | Pro              | Val<br>185       | Arg              | Ile              | Thr              | Ser              | Lys<br>190       | Arg        | Ser              |     |
| Ser                      | Ser               | Ser<br>195               | Ser              | Ser              | Ser              | Ser              | Ser<br>200       | Ser              | Ser              | Thr              | Ser              | Ser<br>205       | Ser              | Glu        | Asn              |     |
| Gly                      | Lув<br>210        | Leu                      | Lys              | Arg              | Arg              | Arg<br>215       | Lys              | Ala              | Glu              | Asn              | Leu<br>220       | Thr              | Ser              | Glu        | Val              |     |
| Val<br>225               |                   | Val                      | Lys              | Сув              | Glu<br>230       | Val              | Gly              | Asp              | Glu              | Thr<br>235       | Arg              | Val              | Asp              | Glu        | Leu<br>240       |     |
| Leu                      | Val               | Ser                      |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |            |                  |     |
| <21<br><21<br><21<br><21 | 1><br>2>          | 43<br>912<br>DNA<br>Arab | idop             | sis :            | thal:            | iana             |                  |                  |                  |                  |                  |                  |                  |            |                  |     |
| <22<br><22<br><22<br><22 | 1>                |                          | (8<br>9          | 59)              |                  |                  |                  |                  |                  |                  |                  |                  | •                |            |                  |     |
| <40<br>cgt               | 0><br>cgac        | 43<br>ctc                | ttaa             | ttaa             | ga c             | gact             | tgag             | a ga             | gaaa             | gaaa             | gat              | acgt             | gga              | ag a<br>M  | tg acc<br>et Thr | 58  |
| aaa<br>Lys               | tct<br>Ser        | gga<br>Gly<br>5          | gag              | aga<br>Arg       | cca<br>Pro       | Lys              | cag<br>Gln<br>10 | aga<br>Arg       | cag<br>Gln       | agg<br>Arg       | Lys              | 999<br>Gly<br>15 | tta<br>Leu       | tgg<br>Trp | tca<br>Ser       | 106 |
| cct                      | gaa<br>Glu<br>20  | gaa<br>Glu               | gac<br>Asp       | cag<br>Gln       | aag<br>Lys       | ctc<br>Leu<br>25 | aag<br>Lys       | agt<br>Ser       | ttc<br>Phe       | atc<br>Ile       | ctc<br>Leu<br>30 | tct<br>Ser       | cgt              | ggc        | cat              | 154 |
| gct<br>Ala<br>35         | tgc<br>Cys        | tgg<br>Trp               | acc<br>Thr       | act<br>Thr       | gtt<br>Val<br>40 | ccc<br>Pro       | ato              | cta<br>Leu       | gct<br>Ala       | gga<br>Gly<br>45 | ttg<br>Leu       | caa<br>Gln       | agg<br>Arg       | aat<br>Asn | 999<br>Gly<br>50 | 202 |
| aaa<br>Lys               | ago<br>Ser        | tgo<br>Cys               | aga<br>Arg       | tta<br>Leu<br>55 | agg<br>Arg       | tgg<br>Trp       | att<br>Ile       | aat<br>Asn       | tac<br>Tyr<br>60 | cta<br>Leu       | aga<br>Arg       | cca<br>Pro       | gga<br>Gly       | Leu<br>65  | aag              | 250 |
| agg                      | 999<br>999<br>999 | tcg<br>Ser               | ttt<br>Phe<br>70 | agt<br>Ser       | gaa<br>Glu       | gaa<br>Glu       | gaa<br>Glu       | gaa<br>Glu<br>75 | gag<br>Glu       | acc<br>Thr       | ato              | ttg<br>Leu       | act<br>Thr<br>80 | tta<br>Leu | cat<br>His       | 298 |
| tct                      | tec               | : ttg                    | ggt              | aac              | aag              | tgg              | tct              | . cgg            |                  | gca<br>Page      |                  | tat              | : tta            | ccg        | gga              | 346 |

|                           |         |           |           |          |           |           |           |           |           |           |             |           |           |           | •         |     |
|---------------------------|---------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|-----------|-----------|-----------|-----------|-----|
| Ser S                     |         | Leu<br>85 | Gly       | Asn      | Lys       | Trp       |           |           |           |           | List<br>Lys |           |           | Pro       | Gly       |     |
| aga a<br>Arg T            |         |           |           |          |           |           |           |           |           |           |             |           |           |           |           | 394 |
| aga t<br>Arg T<br>115     |         |           |           |          |           |           |           |           |           |           |             |           |           |           |           | 442 |
| aca g<br>Thr G            |         |           |           |          |           |           |           |           |           |           |             |           |           |           |           | 490 |
| acc g<br>Thr G            |         |           |           |          |           |           |           |           |           |           |             |           |           |           |           | 538 |
| cca a<br>Pro T            | hr      |           |           |          |           |           |           |           |           |           |             |           |           |           |           | 586 |
| aac a<br>Asn S            |         |           |           |          |           |           |           |           |           |           |             |           |           |           |           | 634 |
| tca a<br>Ser A<br>195     |         |           |           |          |           | Tyr       |           |           |           |           |             |           |           |           |           | 682 |
| att a<br>Ile A            |         |           |           |          |           |           |           |           |           |           |             |           |           |           |           | 730 |
| aat a<br>Asn A            |         |           |           |          |           |           |           |           |           |           |             |           |           |           |           | 778 |
| ttt t<br>Phe L            | eu      |           |           |          |           |           |           |           |           |           |             |           |           |           |           | 826 |
| Phe P                     |         | Ile       |           |          |           |           |           |           |           | taa       | gaag        | gagte     | gaa t     | atga      | tcgta     | 879 |
| agagg                     | aac     | at a      | agct      | agtt     | a ct      | tgtg      | jttac     | ago       | 2         |           |             |           |           |           |           | 912 |
| <210><211><211><212><213> | 2<br>P  | 68<br>RT  | .dops     | is t     | :hali     | lana      |           |           |           |           |             |           |           |           | ٠         |     |
| <400>                     | 4       | 4         |           |          |           |           |           |           |           |           |             |           |           |           |           |     |
| Met T<br>1                | hr i    | Lys       | Ser       | Gly<br>5 | Glu       | Arg       | Pro       | Lys       | Gln<br>10 | Arg       | Gln         | Arg       | Lys       | Gly<br>15 | Leu       |     |
| Trp S                     | er      | Pro       | Glu<br>20 | Glu      | Asp       | Gln       | Lys       | Leu<br>25 | Lys       | Ser       | Phe         | Ile       | Leu<br>30 | Ser       | Arg       |     |
| Gly H                     |         | Ala<br>35 | Cys       | Trp      | Thr       | Thr       | Val<br>40 | Pro       | Ile       | Leu       | Ala         | Gly<br>45 | Leu       | Gln       | Arg       |     |
| Asn G<br>5                | ly<br>0 | Lys       | Ser       | Сув      | Arg       | Leu<br>55 | Arg       | Trp       | Ile       | Asn       | Tyr<br>60   | Leu       | Arg       | Pro       | Gly       |     |
| Leu L<br>65               | ys .    | Arg       | Gly       | Ser      | Phe<br>70 | Ser       | Glu       | Glu       | Glu       | Glu<br>75 | Glu         | Thr       | Ile       | Leu       | Thr<br>80 |     |

#### MBI15 Sequence Listing.ST25

|            |                          |                           |                  |                 |            |            | MBI1             | .5 Se            | equer      | ice I      | isti       | ng.S             | T25              |                  |            |     |  |
|------------|--------------------------|---------------------------|------------------|-----------------|------------|------------|------------------|------------------|------------|------------|------------|------------------|------------------|------------------|------------|-----|--|
| Leu        | His                      | Ser                       | Ser              | Leu<br>85       | Gly        | Asn        | Lya              | Trp              | Ser<br>90  | Arg        | Ile        | Ala              | Lys              | Tyr<br>95        | Leu        |     |  |
| Pro        | Gly                      | Arg                       | Thr<br>100       | Asp             | Asn        | Glu        | Ile              | Lys<br>105       | Asn        | Tyr        | Trp        | His              | Ser<br>110       | Tyr              | Leu        |     |  |
| Lys        | Lys                      | Arg<br>115                | Trp              | Leu             | Lys        | Ser        | Gln<br>120       | Pro              | Gln        | Leu        | Lys        | Ser<br>125       | Gln              | Ile              | Ser        |     |  |
| Asp        | Leu<br>130               | Thr                       | Glu              | Ser             | Pro        | Ser<br>135 | Ser              | Leu              | Leu        | Ser        | Cys<br>140 | Gly              | Lys              | Arg              | Asn        |     |  |
| Leu<br>145 |                          | Thr                       | Glu              | Thr             | Leu<br>150 | Asp        | His              | Val              | Ile        | Ser<br>155 | Phe        | Gln              | Lys              | Phe              | Ser<br>160 |     |  |
| Glu        | Asn                      | Pro                       | Thr              | Ser<br>165      | Ser        | Pro        | Ser              | Lys              | Glu<br>170 | Ser        | Asn        | Asn              | Asn              | Met<br>175       | Ile        |     |  |
|            |                          |                           | 180              | Asn             |            |            |                  | 185              |            |            |            |                  | 190              |                  |            |     |  |
|            |                          | 195                       |                  | Pro             |            |            | 200              |                  |            |            |            | 205              |                  |                  |            |     |  |
|            | 210                      |                           |                  | Glu             |            | 215        |                  |                  |            |            | 220        |                  |                  |                  |            |     |  |
| 225        | •                        |                           |                  | Asn             | 230        |            |                  |                  |            | 235        |            |                  |                  |                  | 240        |     |  |
|            |                          | •                         |                  | Gln<br>245      |            |            |                  |                  | 250        |            |            | Tyr              | Tyr              | Ser<br>255       | Ser        |     |  |
| Gly        | Asp                      | Phe                       | 260              | Ile             | Asn        | Ser        | Asp              | Gln<br>265       | Asn        | Tyr        | Val        |                  |                  |                  |            |     |  |
| <23        | 1><br>12>                | 45<br>1575<br>DNA<br>Arab |                  | sis             | thal       | iana       |                  |                  |            |            |            |                  |                  |                  |            |     |  |
| <22<br><22 | 20><br>21><br>22><br>23> |                           | . (15<br>60      | 75)             |            |            |                  |                  |            |            |            |                  |                  |                  |            |     |  |
| 200        | 00><br>g gct<br>t Ala    | . ata                     | tat<br>Tyr       | tac<br>Tyr<br>5 | cct<br>Pro | aat<br>Asn | agt<br>Ser       | gtc<br>Val       | ggc<br>Gly | atg<br>Met | caa<br>Gln | tct<br>Ser       | ctt<br>Leu       | tac<br>Tyr<br>15 | caa<br>Gln | 48  |  |
| ga:<br>Gl: | a tco<br>u Sei           | att<br>Ile                | tac<br>Tyr<br>20 | cto<br>Leu      | aac<br>Asn | gaa<br>Glu | caa<br>Gln       | caa<br>Glr<br>25 | caa<br>Gln | caa<br>Gln | caa<br>Glm | caa<br>Glm       | caa<br>Gln<br>30 | gct              | tct<br>Ser | 96  |  |
| tc<br>Se   | t tco                    | tct<br>Sei<br>35          | gct<br>Ala       | gca<br>Ala      | tct<br>Ser | tto<br>Phe | tcc<br>Ser<br>40 | gag<br>Glu       | att<br>Ile | gtt<br>Val | tco<br>Ser | ggt<br>Gly<br>45 | gat<br>Asp       | gtt<br>Val       | cga<br>Arg | 144 |  |
| aa         | c aa                     | c gag                     | gate             | gta             | ttt        | ato        | cca              | CC               | a aca      | ago        | gac        | gta              | gco              | gto              | aac        | 192 |  |

| _          |            |                   |            |                   |            |            |                   |            |                   |            |            |                   | ST25              |                   |            |       |
|------------|------------|-------------------|------------|-------------------|------------|------------|-------------------|------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|-------|
| Asn        | Asn<br>50  | Glu               | Met        | Val               | Phe :      | Ile<br>55  | Pro               | Pro        | Thr               | Ser        | Asp<br>60  | Val               | Ala               | Val               | Asn        |       |
|            |            |                   |            |                   |            |            |                   |            |                   |            |            |                   | ggt<br>Gly        |                   |            | 240   |
|            |            |                   |            |                   |            |            |                   |            |                   |            |            |                   | tct<br>Ser        |                   |            | 288   |
|            |            |                   |            |                   |            |            |                   |            |                   |            |            |                   | agt<br>Ser<br>110 |                   |            | 336   |
| aat<br>Asn | ctt<br>Leu | aat<br>Asn<br>115 | cct<br>Pro | tct<br>Ser        | act<br>Thr | atg<br>Met | tct<br>Ser<br>120 | gat<br>Asp | gag<br>Glu        | aat<br>Asn | 999<br>Gly | aag<br>Lys<br>125 | agc<br>Ser        | ttg<br>Leu        | agt<br>Ser | 384   |
|            |            |                   |            |                   |            |            |                   |            |                   |            |            |                   | gtt<br>Val        |                   |            | 432   |
|            |            |                   |            |                   |            |            |                   |            |                   |            |            |                   | cgt<br>Arg        |                   |            | 480   |
|            |            |                   |            |                   |            |            |                   |            |                   |            |            |                   | ctt<br>Leu        |                   |            | 528   |
|            |            |                   |            |                   |            |            |                   |            |                   |            |            |                   | gat<br>Asp<br>190 |                   |            | 576   |
|            |            |                   |            |                   |            |            |                   |            |                   |            |            |                   | ttt<br>Phe        |                   |            | 624   |
|            |            |                   |            |                   |            |            |                   |            |                   |            |            |                   | tcg<br>Ser        |                   |            | . 672 |
|            |            |                   |            |                   |            |            |                   |            |                   |            |            |                   | agc<br>Ser        |                   |            | 720   |
| tta<br>Leu | aca<br>Thr | atg<br>Met        | gtg<br>Val | gat<br>Asp<br>245 | gag<br>Glu | gta<br>Val | gat<br>Asp        | aaa<br>Lys | agg<br>Arg<br>250 | tat<br>Tyr | aac<br>Asn | caa<br>Gln        | tac<br>Tyr        | cat<br>His<br>255 | cat<br>His | 768   |
|            |            |                   |            |                   | Ala        |            | Ser               | Phe        |                   |            |            |                   | ggt<br>Gly<br>270 |                   |            | 816   |
| gca<br>Ala | gct<br>Ala | aag<br>Lys<br>275 | cct<br>Pro | tac<br>Tyr        | aca<br>Thr | tcc<br>Ser | gta<br>Val<br>280 | gct<br>Ala | ctg<br>Leu        | aat<br>Asn | aga<br>Arg | atc<br>Ile<br>285 | tct<br>Ser        | cgc<br>Arg        | cat<br>His | 864   |
|            |            |                   |            |                   |            |            |                   |            |                   |            |            |                   | gtg<br>Val        |                   |            | 912   |
|            |            |                   |            |                   |            |            |                   |            |                   |            |            |                   | gag<br>Glu        |                   |            | 960   |
|            |            |                   |            |                   |            |            |                   |            |                   |            |            |                   | aga<br>Arg        |                   |            | 1008  |
|            |            |                   |            |                   |            |            |                   |            |                   |            |            |                   | caa<br>Gln<br>350 |                   |            | 1056  |

Page 57

| tta<br>Leu               | cct<br>Pro        | gaa<br>Glu<br>355        | aac<br>Asn        | tct<br>Ser        | gtc<br>Val        | tct<br>Ser        | ata               | ctt               | cqa               | qct               | tqq               | ing.S<br>ctc<br>Leu<br>365 | ttt               | gag<br>Glu        | cat<br>His        | 1104 |
|--------------------------|-------------------|--------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------|-------------------|-------------------|-------------------|------|
| ttc<br>Phe               | ctt<br>Leu<br>370 | cat<br>His               | cca<br>Pro        | tat<br>Tyr        | cct<br>Pro        | aaa<br>Lys<br>375 | gaa<br>Glu        | tca<br>Ser        | gag<br>Glu        | aaa<br>Lys        | atc<br>Ile<br>380 | atg<br>Met                 | ctt<br>Leu        | tca<br>Ser        | aag<br>Lys        | 1152 |
| cag<br>Gln<br>385        | aca<br>Thr        | gga<br>Gly               | cta<br>Leu        | tcg<br>Ser        | aaa<br>Lys<br>390 | aac<br>Asn        | cag<br>Gln        | gtt<br>Val        | gca<br>Ala        | aat<br>Asn<br>395 | tgg<br>Trp        | ttt<br>Phe                 | att<br>Ile        | aac<br>Asn        | gcg<br>Ala<br>400 | 1200 |
| aga<br>Arg               | gtt<br>Val        | cga<br>Arg               | cta<br>Leu        | tgg<br>Trp<br>405 | aaa<br>Lys        | cca<br>Pro        | atg<br>Met        | att<br>Ile        | gaa<br>Glu<br>410 | gag<br>Glu        | atg<br>Met        | tat<br>Tyr                 | aaa<br>Lys        | gaa<br>Glu<br>415 | gag<br>Glu        | 1248 |
| ttt<br>Phe               | gga<br>Gly        | gaa<br>Glu               | tca<br>Ser<br>420 | gca<br>Ala        | gag<br>Glu        | tta<br>Leu        | ctc<br>Leu        | tct<br>Ser<br>425 | aac<br>Asn        | tct<br>Ser        | aat<br>Asn        | caa<br>Gln                 | gac<br>Asp<br>430 | acc<br>Thr        | aaa<br>Lys        | 1296 |
| aaa<br>Lys               | atg<br>Met        | cag<br>Gln<br>435        | gaa<br>Glu        | aca<br>Thr        | tct<br>Ser        | cag<br>Gln        | ctc<br>Leu<br>440 | aaa<br>Lys        | cac<br>His        | gaa<br>Glu        | gac<br>Asp        | tct<br>Ser<br>445          | tcg<br>Ser        | tct<br>Ser        | tcg<br>Ser        | 1344 |
| caa<br>Gln               | caa<br>Gln<br>450 | cag<br>Gln               | aat<br>Asn        | cag<br>Gln        | gga<br>Gly        | aac<br>Asn<br>455 | aac<br>Asn        | aac<br>Asn        | aac<br>Asn        | aac<br>Asn        | atc<br>Ile<br>460 | cca<br>Pro                 | tat<br>Tyr        | aca<br>Thr        | tct<br>Ser        | 1392 |
| gat<br>Asp<br>465        | gca<br>Ala        | gaa<br>Glu               | caa<br>Gln        | aac<br>Asn        | cta<br>Leu<br>470 | gtc<br>Val        | ttt<br>Phe        | gca<br>Ala        | gat<br>Asp        | cct<br>Pro<br>475 | aaa<br>Lys        | cca<br>Pro                 | gac<br>Asp        | cgt<br>Arg        | gct<br>Ala<br>480 | 1440 |
| act<br>Thr               | act<br>Thr        | gga<br>Gly               | gat<br>Asp        | tac<br>Tyr<br>485 | gac<br>Asp        | agc<br>Ser        | ttg<br>Leu        | atg<br>Met        | aac<br>Asn<br>490 | tat<br>Tyr        | cat<br>His        | 999<br>999                 | ttt<br>Phe        | ggt<br>Gly<br>495 | att<br>Ile        | 1488 |
| gat<br>Asp               | gat<br>Asp        | tac<br>Tyr               | aat<br>Asn<br>500 | Arg               | tac<br>Tyr        | gtt<br>Val        | Gly               | ctt<br>Leu<br>505 | gga<br>Gly        | aac<br>Asn        | caa<br>Gln        | caa<br>Gln                 | gat<br>Asp<br>510 | ggc<br>Gly        | aga<br>Arg        | 1536 |
| tat<br>Tyr               | tct<br>Ser        | aat<br>Asn<br>515        | Pro               | cat<br>His        | caa<br>Gln        | tta<br>Leu        | cac<br>His<br>520 | gac               | ttt<br>Phe        | gtt<br>Val        | gtc<br>Val        | taa                        |                   |                   |                   | 1575 |
| <21<br><21<br><21<br><21 | 1><br>2>          | 46<br>524<br>PRT<br>Arab | idop              | sis               | thal              | iana              | •                 |                   |                   |                   |                   |                            |                   |                   | -                 |      |
| <40                      | 0>                | 46                       |                   |                   |                   |                   |                   |                   |                   |                   |                   |                            |                   |                   |                   |      |
| Met<br>1                 | Ala               | Val                      | Tyr               | Tyr<br>5          | Pro               | Asn               | Ser               | Val               | Gly<br>10         | Met               | Gln               | Ser                        | Leu               | Tyr<br>15         | Gln               |      |
| Glu                      | Ser               | Ile                      | Tyr<br>20         | Leu               | Asn               | Glu               | Gln               | Gln<br>25         | Gln               | Gln               | Gln               | Gln                        | Gln<br>30         | Ala               | Ser               |      |

Ser Ser Ser Ala Ala Ser Phe Ser Glu Ile Val Ser Gly Asp Val Arg 35 40 45

Asn Asn Glu Met Val Phe Ile Pro Pro Thr Ser Asp Val Ala Val Asn 50 55

Gly Asn Val Thr Val Ser Ser Asn Asp Leu Ser Phe His Gly Gly Gly 65 70 75 80

Leu Ser Leu Ser Leu Gly Asn Gln Ile Gln Ser Ala Val Ser Val Ser 85 90 95

#### MBI15 Sequence Listing.ST25

Pro Phe Gln Tyr His Tyr Gln Asn Leu Ser Asn Gln Leu Ser Tyr Asn 100 105 110

Asn Leu Asn Pro Ser Thr Met Ser Asp Glu Asn Gly Lys Ser Leu Ser 115 120 125

Val His Gln His His Ser Asp Gln Ile Leu Pro Ser Ser Val Tyr Asn 130 135 140

Asn Asn Gly Asn Asn Gly Val Gly Phe Tyr Asn Asn Tyr Arg Tyr Glu 145 150 155 160

Thr Ser Gly Phe Val Ser Ser Val Leu Arg Ser Arg Tyr Leu Lys Pro 165 170 175

Thr Gln Gln Leu Leu Asp Glu Val Val Ser Val Arg Lys Asp Leu Lys 180 185 190

Leu Gly Asn Lys Lys Met Lys Asn Asp Lys Gly Gln Asp Phe His Asn 195 200 205

Gly Ser Ser Asp Asn Ile Thr Glu Asp Asp Lys Ser Gln Ser Gln Glu 210 215 220

Leu Ser Pro Ser Glu Arg Gln Glu Leu Gln Ser Lys Lys Ser Lys Leu 225 230 235 240

Leu Thr Met Val Asp Glu Val Asp Lys Arg Tyr Asn Gln Tyr His His 245 250 255

Gln Met Glu Ala Leu Ala Ser Ser Phe Glu Met Val Thr Gly Leu Gly 260 265 270

Ala Ala Lys Pro Tyr Thr Ser Val Ala Leu Asn Arg Ile Ser Arg His 275 280 285

Phe Arg Cys Leu Arg Asp Ala Ile Lys Glu Gln Ile Gln Val Ile Arg 290 295 300

Gly Lys Leu Gly Glu Arg Glu Thr Ser Asp Glu Gln Gly Glu Arg Ile 305 310 315 320

Pro Arg Leu Arg Tyr Leu Asp Gln Arg Leu Arg Gln Gln Arg Ala Leu 325 330 335

His Gln Gln Leu Gly Met Val Arg Pro Ala Trp Arg Pro Gln Arg Gly 340 345 350

Leu Pro Glu Asn Ser Val Ser Ile Leu Arg Ala Trp Leu Phe Glu His 355 360 365

Phe Leu His Pro Tyr Pro Lys Glu Ser Glu Lys Ile Met Leu Ser Lys 370 375 380

Gln Thr Gly Leu Ser Lys Asn Gln Val Ala Asn Trp Phe Ile Asn Ala 385 390 395 400

### MBI15 Sequence Listing.ST25

| Phe Gly Glu Ser Ala Glu Leu Leu Ser Asn Ser Asn Gln Asp Thr Lys 420 425 430                                                                                                                                 |                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Lys Met Gln Glu Thr Ser Gln Leu Lys His Glu Asp Ser Ser Ser Ser 445                                                                                                                                         |                                 |
| Gln Gln Gln Asn Gln Gly Asn Asn Asn Asn Ile Pro Tyr Thr Ser<br>450 455 460                                                                                                                                  |                                 |
| Asp Ala Glu Gln Asn Leu Val Phe Ala Asp Pro Lys Pro Asp Arg Ala 465 470 475 480                                                                                                                             |                                 |
| Thr Thr Gly Asp Tyr Asp Ser Leu Met Asn Tyr His Gly Phe Gly Ile 485 490 495                                                                                                                                 |                                 |
| Asp Asp Tyr Asn Arg Tyr Val Gly Leu Gly Asn Gln Gln Asp Gly Arg 500 505 510                                                                                                                                 |                                 |
| Tyr Ser Asn Pro His Gln Leu His Asp Phe Val Val 515 520                                                                                                                                                     |                                 |
| <210> 47 <211> 1983 <212> DNA <213> Arabidopsis thaliana                                                                                                                                                    |                                 |
| <220><br><221> CDS                                                                                                                                                                                          |                                 |
| <222> (73)(1956)<br><223> G965                                                                                                                                                                              |                                 |
| <223> G965                                                                                                                                                                                                  | 60                              |
| <223> G965                                                                                                                                                                                                  | 60<br>111                       |
| <223> G965 <400> 47 gattctctgt gtatgtctga atccttacag gatccaagag ctttggaaaa aagatataat gaataacaag at atg ggt tta gct act aca act tct tct atg tca caa gat Met Gly Leu Ala Thr Thr Thr Ser Ser Met Ser Gln Asp |                                 |
| <pre>&lt;223&gt; G965  &lt;400&gt; 47 gattctctgt gtatgtctga atccttacag gatccaagag ctttggaaaa aagatataat gaataacaag at atg ggt tta gct act aca act tct tct atg tca caa gat</pre>                             | 111                             |
| <pre>&lt;223&gt; G965  &lt;400&gt; 47 gattctctgt gtatgtctga atccttacag gatccaagag ctttggaaaa aagatataat gaataacaag at atg ggt tta gct act aca act tct tct atg tca caa gat</pre>                             | 111                             |
| <pre>&lt;223&gt; G965  &lt;400&gt; 47 gattctctgt gtatgtctga atccttacag gatccaagag ctttggaaaa aagatataat gaataacaag at atg ggt tta gct act aca act tct tct atg tca caa gat</pre>                             | 111<br>159<br>207               |
| <pre>&lt;223&gt; G965  &lt;400&gt; 47 gattctctgt gtatgtctga atccttacag gatccaagag ctttggaaaa aagatataat gaataacaag at atg ggt tta gct act aca act tct tct atg tca caa gat</pre>                             | 111<br>159<br>207<br>255        |
| <pre>&lt;223&gt; G965  &lt;400&gt; 47 gattctctgt gtatgtctga atccttacag gatccaagag ctttggaaaa aagatataat gaataacaag at atg ggt tta gct act aca act tct tct atg tca caa gat</pre>                             | 111<br>159<br>207<br>255<br>303 |

### MBI15 Sequence Listing.ST25

|            |                   |                   |                   |                   | gac<br>Asp<br>115 |                   |                   |                   |                   |            |                   |                   |                   |                   |            | 447  |
|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|------|
|            |                   |                   |                   |                   | tct<br>Ser        |                   |                   |                   |                   |            |                   |                   |                   |                   |            | 495  |
| atg<br>Met | atc<br>Ile        | gga<br>Gly        | acc<br>Thr<br>145 | gtc<br>Val        | cac<br>His        | gtg<br>Val        | gaa<br>Glu        | gga<br>Gly<br>150 | gga<br>Gly        | aag<br>Lys | ggt<br>Gly        | ttg<br>Leu        | tct<br>Ser<br>155 | tta<br>Leu        | tct<br>Ser | 543  |
|            |                   |                   |                   |                   | gcc<br>Ala        |                   |                   |                   |                   |            |                   |                   |                   |                   |            | 591  |
| tat<br>Tyr | tgt<br>Cys<br>175 | gca<br>Ala        | gcc<br>Ala        | gtt<br>Val        | gat<br>Asp        | gga<br>Gly<br>180 | act<br>Thr        | tct<br>Ser        | tct<br>Ser        | tct<br>Ser | tct<br>Ser<br>185 | aac<br>Asn        | gca<br>Ala        | tcc<br>Ser        | gct<br>Ala | 639  |
|            |                   |                   |                   |                   | aat<br>Asn<br>195 |                   |                   |                   |                   |            |                   |                   |                   |                   |            | 687  |
|            |                   |                   |                   |                   | cac<br>His        |                   |                   |                   |                   |            |                   |                   |                   |                   |            | 735  |
|            |                   |                   |                   |                   | gcg<br>Ala        |                   |                   |                   |                   |            |                   |                   |                   |                   |            | 783  |
|            |                   |                   |                   |                   | tat<br>Tyr        |                   |                   |                   |                   |            |                   |                   |                   |                   |            | 831  |
|            |                   |                   |                   |                   | aga<br>Arg        |                   |                   |                   |                   |            |                   |                   |                   |                   |            | 879  |
|            |                   |                   |                   | Pro               | aat<br>Asn<br>275 |                   |                   |                   |                   |            |                   |                   |                   |                   |            | 927  |
| tcg<br>Ser | tca<br>Ser        | tcg<br>Ser        | gcc<br>Ala        | gga<br>Gly<br>290 | aca<br>Thr        | gct<br>Ala        | aat<br>Asn        | gat<br>Asp        | agt<br>Ser<br>295 | cct<br>Pro | cct<br>Pro        | ttg<br>Leu        | tct<br>Ser        | ccg<br>Pro<br>300 | gct<br>Ala | 975  |
|            |                   |                   |                   |                   | caa<br>Gln        |                   |                   |                   |                   |            |                   |                   |                   |                   |            | 1023 |
| gaa<br>Glu | gag<br>Glu        | gtg<br>Val<br>320 | gac<br>Asp        | cga<br>Arg        | cgg<br>Arg        | Tyr               | aac<br>Asn<br>325 | cac<br>His        | tac<br>Tyr        | tgc<br>Cys | gaa<br>Glu        | caa<br>Gln<br>330 | atg<br>Met        | caa<br>Gln        | atg<br>Met | 1071 |
|            |                   |                   |                   |                   | gac<br>Asp        |                   |                   |                   |                   |            |                   |                   |                   |                   |            | 1119 |
|            |                   |                   |                   |                   | caa<br>Gln<br>355 |                   |                   |                   |                   |            |                   |                   |                   |                   |            | 1167 |
| aaa<br>Lys | gac<br>Asp        | gcg<br>Ala        | gta<br>Val        | gcg<br>Ala<br>370 | gtt<br>Val        | cag<br>Gln        | ctt<br>Leu        | aaa<br>Lys        | cgc<br>Arg<br>375 | agc<br>Ser | tgt<br>Cys        | gag<br>Glu        | ctt<br>Leu        | cta<br>Leu<br>380 | 999<br>Gly | 1215 |
| gat<br>Asp | aaa<br>Lys        | gag<br>Glu        | gcg<br>Ala<br>385 | gca<br>Ala        | gj<br>gag         | gct<br>Ala        | gca<br>Ala        | tcc<br>Ser<br>390 | tcg<br>Ser        | 999<br>Gly | tta<br>Leu        | acc<br>Thr        | aaa<br>Lys<br>395 | 999<br>Gly        | gaa<br>Glu | 1263 |
|            |                   |                   |                   |                   | t tg<br>Leu       |                   |                   |                   |                   |            |                   |                   |                   |                   |            | 1311 |

|                          |                   | 400                      |                   |                   |                   |                   | MBI:              | L5 Se             | equer             | ice 1             | List              | ing.9<br>410      | T25               |                   |                   |      |
|--------------------------|-------------------|--------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| ttt<br>Phe               | cat<br>His<br>415 | cat<br>His               | atg<br>Met        | ggt<br>Gly        | atg<br>Met        | atg<br>Met<br>420 | gag<br>Glu        | caa<br>Gln        | gag<br>Glu        | gca<br>Ala        | tgg<br>Trp<br>425 | aga<br>Arg        | ccg<br>Pro        | caa<br>Gln        | cgt<br>Arg        | 1359 |
| 99t<br>Gly<br>430        | ttg<br>Leu        | cct<br>Pro               | gaa<br>Glu        | cgc<br>Arg        | tcc<br>Ser<br>435 | gtt<br>Val        | aat<br>Asn        | atc<br>Ile        | ctt<br>Leu        | aga<br>Arg<br>440 | gct<br>Ala        | tgg<br>Trp        | cta<br>Leu        | ttc<br>Phe        | gag<br>Glu<br>445 | 1407 |
| cat<br>His               | ttt<br>Phe        | ctt<br>Leu               | aat<br>Asn        | ccg<br>Pro<br>450 | tac<br>Tyr        | cca<br>Pro        | agc<br>Ser        | gat<br>Asp        | gct<br>Ala<br>455 | gat<br>Asp        | aag<br>Lys        | cac<br>His        | ctc<br>Leu        | tta<br>Leu<br>460 | gca<br>Ala        | 1455 |
| cga<br>Arg               | cag<br>Gln        | act<br>Thr               | ggt<br>Gly<br>465 | tta<br>Leu        | tcc<br>Ser        | aga<br>Arg        | aat<br>Asn        | cag<br>Gln<br>470 | gtg<br>Val        | tca<br>Ser        | aat<br>Asn        | tgg<br>Trp        | ttc<br>Phe<br>475 | ata<br>Ile        | aat<br>Asn        | 1503 |
| gct<br>Ala               | agg<br>Arg        | gtt<br>Val<br>480        | cgc<br>Arg        | cta<br>Leu        | tgg<br>Trp        | aaa<br>Lys        | cca<br>Pro<br>485 | atg<br>Met        | gtg<br>Val        | gaa<br>Glu        | gag<br>Glu        | atg<br>Met<br>490 | tat<br>Tyr        | caa<br>Gln        | caa<br>Gln        | 1551 |
| gaa<br>Glu               | gca<br>Ala<br>495 | aaa<br>Lys               | gaa<br>Glu        | aga<br>Arg        | gaa<br>Glu        | gaa<br>Glu<br>500 | gca<br>Ala        | gaa<br>Glu        | gaa<br>Glu        | gaa<br>Glu        | aat<br>Asn<br>505 | gaa<br>Glu        | aat<br>Asn        | caa<br>Gln        | caa<br>Gln        | 1599 |
| caa<br>Gln<br>510        | caa<br>Gln        | aga<br>Arg               | aga<br>Arg        | cag<br>Gln        | caa<br>Gln<br>515 | caa<br>Gln        | aca<br>Thr        | aac<br>Asn        | aac<br>Asn        | aac<br>Asn<br>520 | gac<br>Asp        | acg<br>Thr        | aaa<br>Lys        | ccc<br>Pro        | aac<br>Asn<br>525 | 1647 |
| aac<br>Asn               | aat<br>Asn        | gaa<br>Glu               | aac<br>Asn        | aac<br>Asn<br>530 | ttc<br>Phe        | act<br>Thr        | gtc<br>Val        | ata<br>Ile        | acc<br>Thr<br>535 | gca<br>Ala        | caa<br>Gln        | act<br>Thr        | cca<br>Pro        | acg<br>Thr<br>540 | acg<br>Thr        | 1695 |
| atg<br>Met               | aca<br>Thr        | tcg<br>Ser               | aca<br>Thr<br>545 | cat<br>His        | cac<br>His        | gaa<br>Glu        | aac<br>Asn        | gac<br>Asp<br>550 | tct<br>Ser        | tca<br>Ser        | ttc<br>Phe        | ctc<br>Leu        | tct<br>Ser<br>555 | tcc<br>Ser        | gtc<br>Val        | 1743 |
| gcc<br>Ala               | gcc<br>Ala        | gct<br>Ala<br>560        | tct<br>Ser        | cac<br>His        | ggc<br>Gly        | ggt<br>Gly        | tca<br>Ser<br>565 | gac<br>Asp        | gcg<br>Ala        | ttc<br>Phe        | acc<br>Thr        | gtc<br>Val<br>570 | gcc<br>Ala        | acg<br>Thr        | tgt<br>Cys        | 1791 |
| cag<br>Gln               | caa<br>Gln<br>575 | gac<br>Asp               | gtc<br>Val        | agt<br>Ser        | gac<br>Asp        | ttc<br>Phe<br>580 | His               | gtc<br>Val        | gac<br>Asp        | gga<br>Gly        | gat<br>Asp<br>585 | ggt<br>Gly        | gtg<br>Val        | aac<br>Asn        | gtc<br>Val        | 1839 |
| ata<br>Ile<br>590        | Arg               | ttc<br>Phe               | ggg<br>ggg        | acc<br>Thr        | aaa<br>Lys<br>595 | cag<br>Gln        | act<br>Thr        | ggt<br>Gly        | gac<br>Asp        | gtg<br>Val<br>600 | Ser               | ctt<br>Leu        | acg<br>Thr        | ctt<br>Leu        | ggt<br>Gly<br>605 | 1887 |
| cta<br>Leu               | cgc<br>Arg        | cac<br>His               | tct<br>Ser        | ggc<br>Gly<br>610 | Asn               | att               | cct<br>Pro        | gat<br>Asp        | aag<br>Lys<br>615 | Asn               | act<br>Thr        | tct<br>Ser        | ttc<br>Phe        | ser<br>620        | gtt<br>Val        | 1935 |
| aga<br>Arg               | gac               | ttt<br>Phe               | gga<br>Gly<br>625 | Asp               | ttt<br>Phe        | tag               | tct               | tctt              | tgt               | ttct              | caat              | tt a              | ttca              | tc                |                   | 1983 |
| <21<br><21<br><21<br><21 | .1><br>.2>        | 48<br>627<br>PRT<br>Arab | oidop             | sis               | thal              | iana              | ı                 |                   |                   |                   |                   | •                 |                   |                   |                   |      |
| <40                      | O->               | 48                       |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |
| Met<br>1                 | : Gly             | , Leu                    | ı Ala             | Thr<br>5          | Thr               | Thr               | Ser               | Ser               | Met<br>10         | Ser               | Glr               | Asp               | Туг               | His<br>15         | His               |      |
| His                      | s Glr             | ı Gly                    | 7 Ile<br>20       | e Phe             | e Ser             | Phe               | e Ser             | Asr<br>25         | ı Gly             | Phe               | His               | a Arg             | Ser<br>30         | : Sei             | Ser               |      |

Thr Thr His Gln Glu Glu Val Asp Glu Ser Ala Val Val Ser Gly Ala Page 62 35

# MBI15 Sequence Listing.ST25

Gln Ile Pro Val Tyr Glu Thr Ala Gly Met Leu Ser Glu Met Phe Ala 50  $\phantom{000}$  55  $\phantom{000}$  60

Tyr Pro Gly Gly Gly Gly Gly Gly Ser Gly Gly Glu Ile Leu Asp Gln 65 70 75 80

Ser Thr Lys Gln Leu Leu Glu Gln Gln Asn Arg His Asn Asn Asn Asn 90 95

Asn Ser Thr Leu His Met Leu Leu Pro Asn His His Gln Gly Phe Ala

Phe Thr Asp Glu Asn Thr Met Gln Pro Gln Gln Gln His Phe Thr 115 120 125

Trp Pro Ser Ser Ser Asp His His Gln Asn Arg Asp Met Ile Gly 130 135 140

Thr Val His Val Glu Gly Gly Lys Gly Leu Ser Leu Ser Leu Ser Ser 145 150 150 160

Ser Leu Ala Ala Ala Lys Ala Glu Glu Tyr Arg Ser Ile Tyr Cys Ala 165 170 175

Ala Val Asp Gly Thr Ser Ser Ser Ser Asn Ala Ser Ala His His His 180 180 190

Gln Phe Asn Gln Phe Lys Asn Leu Leu Glu Asn Ser Ser Gln
195 200 205

His His His Gln Val Val Gly His Phe Gly Ser Ser Ser Ser Ser 210 220

Pro Met Ala Ala Ser Ser Ser Ile Gly Gly Ile Tyr Thr`Leu Arg Asn 225 230 230 235

Ser Lys Tyr Thr Lys Pro Ala Gln Glu Leu Leu Glu Glu Phe Cys Ser 245 250 255

Val Gly Arg Gly His Phe Lys Lys Asn Lys Leu Ser Arg Asn Asn Ser 260 265 270

Asn Pro Asn Thr Thr Gly Gly Gly Gly Gly Gly Ser Ser Ser Ser 275 280 285

Ala Gly Thr Ala Asn Asp Ser Pro Pro Leu Ser Pro Ala Asp Arg Ile 290 295 295

Glu His Gln Arg Arg Lys Val Lys Leu Leu Ser Met Leu Glu Glu Val 305 310 315 320

Asp Arg Arg Tyr Asn His Tyr Cys Glu Gln Met Gln Met Val Val Asn 325 330 335

- MBI15 Sequence Listing.ST25
  Ser Phe Asp Gln Val Met Gly Tyr Gly Ala Ala Val Pro Tyr Thr Thr
  340 345 350
- Leu Ala Gln Lys Ala Met Ser Arg His Phe Arg Cys Leu Lys Asp Ala 355 360 365
- Val Ala Val Gln Leu Lys Arg Ser Cys Glu Leu Leu Gly Asp Lys Glu 370 375 380
- Ala Ala Gly Ala Ala Ser Ser Gly Leu Thr Lys Gly Glu Thr Pro Arg 385 390 395 400
- Leu Arg Leu Leu Glu Gln Ser Leu Arg Gln Gln Arg Ala Phe His His 405 410 415
- Met Gly Met Met Glu Gln Glu Ala Trp Arg Pro Gln Arg Gly Leu Pro 420 425 430
- Glu Arg Ser Val Asn Ile Leu Arg Ala Trp Leu Phe Glu His Phe Leu 435 440 445
- Asn Pro Tyr Pro Ser Asp Ala Asp Lys His Leu Leu Ala Arg Gln Thr 450 455 460
- Gly Leu Ser Arg Asn Gln Val Ser Asn Trp Phe Ile Asn Ala Arg Val 465 470 475 480
- Arg Leu Trp Lys Pro Met Val Glu Glu Met Tyr Gln Gln Glu Ala Lys 485 490 495
- Glu Arg Glu Glu Ala Glu Glu Glu Asn Glu Asn Gln Gln Gln Arg 500 505 510
- Arg Gln Gln Gln Thr Asn Asn Asn Asp Thr Lys Pro Asn Asn Asn Glu 515 520 525
- Asn Asn Phe Thr Val Ile Thr Ala Gln Thr Pro Thr Thr Met Thr Ser 530 535 540
- Thr His His Glu Asn Asp Ser Ser Phe Leu Ser Ser Val Ala Ala Ala 545 550 560
- Ser His Gly Gly Ser Asp Ala Phe Thr Val Ala Thr Cys Gln Gln Asp 565 570 575
- Val Ser Asp Phe His Val Asp Gly Asp Gly Val Asn Val Ile Arg Phe 580 585 595
- Gly Thr Lys Gln Thr Gly Asp Val Ser Leu Thr Leu Gly Leu Arg His 595 600 605
- Ser Gly Asn Ile Pro Asp Lys Asn Thr Ser Phe Ser Val Arg Asp Phe 610 620

Gly Asp Phe

#### MBI15 Sequence Listing.ST25

| <210><211><211><212><213>        | 49<br>1420<br>DNA<br>Arabid | lopsis (                         | halia                 | ana                       |            |            |                   |                   |            |            |            |                   |     |
|----------------------------------|-----------------------------|----------------------------------|-----------------------|---------------------------|------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|-----|
| <220><br><221><br><222><br><223> | CDS<br>(138).<br>G793       | (1046)                           | )                     |                           |            |            |                   |                   |            |            |            |                   |     |
| <400>                            |                             | ctaacaa                          | et cca                | acacaaq                   | a tto      | ette       | cat               | ggaa              | aacti      | at t       | ctto       | cgactt            | 60  |
|                                  |                             | tegetal                          |                       | _                         |            |            |                   |                   | _          | _          |            | _                 | 120 |
| ctttac                           | tcgt tt                     |                                  |                       | ct aat<br>la Asn          |            |            |                   |                   |            | lis /      |            |                   | 170 |
|                                  | r Āsp P                     | ca tct<br>Pro Ser<br>15          |                       |                           |            |            |                   |                   |            |            |            |                   | 218 |
|                                  |                             | tc tcc<br>he Ser                 |                       |                           |            |            |                   |                   |            |            |            |                   | 266 |
|                                  |                             | cca cct<br>Pro Pro               | Pro M                 |                           |            |            |                   |                   |            |            |            |                   | 314 |
| ggg aa<br>Gly As<br>60           | t cat a<br>n His A          | at cat<br>Asn His                | atg g<br>Met 6<br>65  | ggt gcc<br>Bly Ala        | att<br>Ile | gga<br>Gly | gga<br>Gly<br>70  | ggt<br>Gly        | gga<br>Gly | cct<br>Pro | gta<br>Val | 999<br>Gly<br>75  | 362 |
|                                  |                             | ag atg<br>31n Met<br>80          |                       |                           |            |            |                   |                   |            |            |            |                   | 410 |
|                                  | в Gly Р                     | tt ctt<br>Phe Leu<br>95          |                       |                           |            |            |                   |                   |            |            |            |                   | 458 |
|                                  |                             | gat aat<br>Asp Asn               |                       |                           | Ser        |            |                   |                   |            |            |            |                   | 506 |
|                                  | o Met S                     | ca cag<br>Ser Gln                | Pro A                 |                           |            |            |                   |                   |            |            |            |                   | 554 |
| att cgg<br>Ile Arg<br>140        | g cct a<br>g Pro A          | aga gtt<br>Arg Val               | agg g<br>Arg A<br>145 | gct agg<br>Ala Arg        | cga<br>Arg | Gly        | caa<br>Gln<br>150 | Ala               | acc<br>Thr | gat<br>Asp | cca<br>Pro | cat<br>His<br>155 | 602 |
|                                  |                             | gag agg<br>Blu Arg<br>160        |                       |                           | Glu        |            |                   |                   |            |            |            |                   | 650 |
|                                  | ı Gln G                     | gaa ctt<br>Slu <b>Leu</b><br>175 |                       |                           |            |            |                   |                   |            |            |            |                   | 698 |
|                                  |                             | gag att<br>Slu Ile               |                       |                           | Val        |            |                   |                   |            |            |            |                   | 746 |
| aag gte<br>Lys Val<br>20         | l Leu S                     | agc atg<br>Ser Met               | Ser A                 | egt ctt<br>Arg Leu<br>210 | ggt<br>Gly | gga<br>Gly | gcc<br>Ala        | ggt<br>Gly<br>215 | gct<br>Ala | gtc<br>Val | gca<br>Ala | cca<br>Pro        | 794 |
|                                  |                             | gaa atg<br>Glu Met               |                       |                           |            | Ser        |                   | Glu               |            |            |            |                   | 842 |

|                                                                                                                                      | MBI15 Seque                                                                                     | nce Listing.ST25                                                                                                              |                        |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 220 225                                                                                                                              |                                                                                                 | 230                                                                                                                           | 235                    |
| gcc gtg tgg gag aaa tgg<br>Ala Val Trp Glu Lys Trp<br>240                                                                            | tca aac gat ggg<br>Ser Asn Asp Gly<br>245                                                       | aca gag agg caa gtg g<br>Thr Glu Arg Gln Val 2<br>250                                                                         | gct 890<br>Ala         |
| aag ctg atg gaa gaa aac<br>Lys Leu Met Glu Glu Asn<br>255                                                                            | gtt gga gca gcg<br>Val Gly Ala Ala<br>260                                                       | atg caa ctt ttg caa (<br>Met Gln Leu Leu Gln (<br>265                                                                         | ca 938<br>Ser          |
| aag gct ctt tgc ata atg<br>Lys Ala Leu Cys Ile Met<br>270                                                                            | ccg atc tca ttg<br>Pro Ile Ser Leu<br>275                                                       | gca atg gcg att tac a<br>Ala Met Ala Ile Tyr 1<br>280                                                                         | cat 986<br>His         |
| tct cag cca cca gac aca<br>Ser Gln Pro Pro Asp Thr<br>285                                                                            | tct tct tca atc<br>Ser Ser Ser Ile<br>290                                                       | gtc aaa cca gag atg<br>Val Lys Pro Glu Met 295                                                                                | aat 1034<br>Asn        |
| cct cca ccg tag atttttg<br>Pro Pro Pro<br>300                                                                                        | ttc atccaacggt c                                                                                | cccagctga tgattgacat                                                                                                          | 1086                   |
| tttgctctgt ttcccactac t                                                                                                              | agacttttg tgactc                                                                                | atga aaggtaagta aaaag                                                                                                         | gcatt 1146             |
| ggagatggaa tctaagtagg a                                                                                                              |                                                                                                 |                                                                                                                               |                        |
| aggaaaaagc tctcgcttgc t                                                                                                              | tggctagta tttatc                                                                                | attt tgatgaaagt aactc                                                                                                         | ttttt 1266             |
| tgttcaaaga ctttagtgtg a                                                                                                              | ttttcagga ccaagg                                                                                | gctt tgagggtagt gctag                                                                                                         | ctgta 1326             |
| gtaatagtaa tgaaggtgtg g                                                                                                              | gatcgtgtt tttgaa                                                                                | ttat gtaaaaaagg aagaa                                                                                                         | aaaac 1386             |
| aaatgttggt attatattat g                                                                                                              | gttttgcct gaaa                                                                                  |                                                                                                                               | 1420                   |
| <210> 50<br><211> 302<br><212> PRT<br><213> Arabidopsis thal                                                                         | iana                                                                                            |                                                                                                                               |                        |
| <400> 50                                                                                                                             |                                                                                                 |                                                                                                                               |                        |
| Met Ala Asn Asn Asn Asr<br>1 . 5                                                                                                     | Ile Pro His Asp<br>10                                                                           | Ser Ile Ser Asp Pro<br>15                                                                                                     | Ser                    |
|                                                                                                                                      | ·                                                                                               |                                                                                                                               |                        |
| Pro Thr Asp Asp Phe Phe                                                                                                              | e Glu Gln Ile Let<br>25                                                                         | Gly Leu Ser Asn Phe<br>30                                                                                                     | Ser                    |
| Pro Thr Asp Asp Phe Phe 20  Gly Ser Ser Gly Ser Gly 35                                                                               | 25                                                                                              | 30                                                                                                                            |                        |
| 20 Gly Ser Ser Gly Ser Gly                                                                                                           | Leu Ser Gly Ild<br>40                                                                           | e Gly Gly Val Gly Pro<br>45                                                                                                   | Pro                    |
| Gly Ser Ser Gly Ser Gly 35  Pro Met Met Leu Gln Leu                                                                                  | Leu Ser Gly Ile<br>40<br>1 Gly Ser Gly Ass                                                      | e Gly Gly Val Gly Pro<br>45<br>n Glu Gly Asn His Asn<br>60                                                                    | Pro<br>His             |
| Gly Ser Ser Gly Ser Gly 35  Pro Met Met Leu Gln Let 50  Met Gly Ala Ile Gly Gl                                                       | Leu Ser Gly Ile<br>40<br>1 Gly Ser Gly Ass<br>55<br>7 Gly Gly Pro Va                            | Gly Gly Val Gly Pro 45  Glu Gly Asn His Asn 60  Gly Phe His Asn Gln 75  y Lys Gly His Gly Phe                                 | Pro His Met 80         |
| Gly Ser Ser Gly Ser Gly 35  Pro Met Met Leu Gln Leu 50  Met Gly Ala Ile Gly Gl; 65  Phe Pro Leu Gly Leu Se                           | Leu Ser Gly Ile 40  Gly Ser Gly Ass 55  Gly Gly Pro Val Leu Asp Gln Gl 90                       | e Gly Gly Val Gly Pro 45  Glu Gly Asn His Asn 60  Gly Phe His Asn Gln 75  y Lys Gly His Gly Phe 95                            | Pro His Met 80         |
| Gly Ser Ser Gly Ser Gly 35  Pro Met Met Leu Gln Leu 50  Met Gly Ala Ile Gly Gl 65  Phe Pro Leu Gly Leu Se 85  Lys Pro Asp Glu Thr Gl | Leu Ser Gly Ile 40  Gly Ser Gly Ass 7 Gly Gly Pro Val 8 Leu Asp Gln Gl 90  y Lys Arg Phe Gl 105 | e Gly Gly Val Gly Pro 45  n Glu Gly Asn His Asn 60  l Gly Phe His Asn Gln 75  y Lys Gly His Gly Phe 95  n Asp Asp Val Leu Asp | Pro His Met 80 Leu Asn |

MBI15 Sequence Listing.ST25
130
135
140

Arg Ala Arg Arg Gly Gln Ala Thr Asp Pro His Ser Ile Ala Glu Arg
145
150
150
160

Leu Arg Arg Glu Arg Ile Ala Glu Arg Ile Arg Ser Leu Gln Glu Leu

Val Pro Thr Val Asn Lys Thr Asp Arg Ala Ala Met Ile Asp Glu Ile 180 185 190

Val Asp Tyr Val Lys Phe Leu Arg Leu Gln Val Lys Val Leu Ser Met 195 200 205

Ser Arg Leu Gly Gly Ala Gly Ala Val Ala Pro Leu Val Thr Glu Met 210 215 220

Pro Leu Ser Ser Ser Val Glu Asp Glu Thr Gln Ala Val Trp Glu Lys 225 230 235 240

Trp Ser Asn Asp Gly Thr Glu Arg Gln Val Ala Lys Leu Met Glu Glu 245 250 255

Asn Val Gly Ala Ala Met Gln Leu Leu Gln Ser Lys Ala Leu Cys Ile 260 265 270

Met Pro Ile Ser Leu Ala Met Ala Ile Tyr His Ser Gln Pro Pro Asp 275 280 285

Thr Ser Ser Ser Ile Val Lys Pro Glu Met Asn Pro Pro Pro 290 295 300

<210> 51

<211> 1198 <212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (96)..(1052)

<223> G764

| 55                                                | 60                              | BI15 Seque                        | nce Listing.S7<br>65                   | 70 70                                  |
|---------------------------------------------------|---------------------------------|-----------------------------------|----------------------------------------|----------------------------------------|
| tgg aag gct aag ctt<br>Trp Lys Ala Lys Leu<br>75  | ggg gaa aa<br>Gly Glu Ly        | aa gag tgg<br>ys Glu Trp<br>80    | tac ttc ttt t<br>Tyr Phe Phe C         | gc gta aga 353<br>ys Val Arg<br>85     |
| gac cga aaa tac ccg<br>Asp Arg Lys Tyr Pro<br>90  | act ggt tt<br>Thr Gly Le        | ta aga acg<br>eu Arg Thr<br>95    | Asn Arg Ala T                          | ct aaa gcc 401<br>Chr Lys Ala<br>.00   |
| ggt tat tgg aaa gct<br>Gly Tyr Trp Lys Ala<br>105 | Thr Gly Ly                      | aa gat aaa<br>ys Asp Lys<br>10    | gag atc ttc a<br>Glu Ile Phe I<br>115  | aaa ggg aaa 449<br>Lys Gly Lys         |
| tct ctt gtt ggt atg<br>Ser Leu Val Gly Met<br>120 | aag aaa ac<br>Lys Lys Th<br>125 | ca ttg gtt<br>hr Leu Val          | Phe Tyr Lys 0                          | gga aga gct 497<br>Sly Arg Ala         |
| cct aaa gga gta aaa<br>Pro Lys Gly Val Lys<br>135 | aca aat to<br>Thr Asn Tr<br>140 | gg gtc atg<br>rp Val Met          | cat gag tat of<br>His Glu Tyr /<br>145 | ga tta gaa 545<br>Arg Leu Glu<br>150   |
| ggc aaa ttc gct atc<br>Gly Lys Phe Ala Ile<br>155 | gat aat ct<br>Asp Asn Le        | tc tct aaa<br>eu Ser Lys<br>160   | acc gct aag a<br>Thr Ala Lys A         | aac gaa tgt 593<br>Asn Glu Cys<br>165  |
| gtt att agt cgt gtt<br>Val Ile Ser Arg Val<br>170 | ttt cat ac<br>Phe His Th        | ca cgg act<br>hr Arg Thr<br>175   | Asp Gly Thr 1                          | aag gag cat 641<br>Lys Glu His<br>L80  |
| atg tcc gtt ggt tta<br>Met Ser Val Gly Leu<br>185 | Pro Pro Le                      | tg atg gat<br>eu Met Asp<br>90    | tct tct cca !<br>Ser Ser Pro !<br>195  | tat cta aag 689<br>Tyr Leu Lys         |
| agt aga gga caa gac<br>Ser Arg Gly Gln Asp<br>200 | tct tta go<br>Ser Leu Al<br>205 | cc ggg acc<br>la Gly Thr          | acc ctt ggt g<br>Thr Leu Gly G<br>210  | ggg ttg ttg 737<br>Gly Leu Leu         |
| tct cac gtt acc tac<br>Ser His Val Thr Tyr<br>215 | ttc tcc ga<br>Phe Ser As<br>220 | ac caa aca<br>sp Gln Thr          | acc gat gac a<br>Thr Asp Asp 1<br>225  | aag agt ctt 785<br>Lys Ser Leu<br>230  |
| gtg gcc gat ttt aaa<br>Val Ala Asp Phe Lys<br>235 | Thr Thr M                       | tg ttt ggt<br>let Phe Gly<br>240  | tcc gga tcg<br>Ser Gly Ser             | act aac ttt 833<br>Thr Asn Phe<br>245  |
| tta cca aac ata ggt<br>Leu Pro Asn Ile Gly<br>250 | tct cta c<br>Ser Leu L          | ta gac ttc<br>eu Asp Phe<br>255   | Asp Pro Leu                            | ttt cta caa 881<br>Phe Leu Gln<br>260  |
| aac aat tot toa gta<br>Asn Asn Ser Ser Val<br>265 | Leu Lys M                       | itg ttg ctt<br>Met Leu Leu<br>170 | gac aat gaa<br>Asp Asn Glu<br>275      | gaa acc caa 929<br>Glu Thr Gln         |
| ttt aag aag aat ctt<br>Phe Lys Lys Asn Leu<br>280 | cac aat t<br>His Asn S<br>285   | ca ggt tca<br>Ser Gly Ser         | tca gag agt<br>Ser Glu Ser<br>290      | gaa cta aca 977<br>Glu Leu Thr         |
| gcg agt tct tgg caa<br>Ala Ser Ser Trp Gln<br>295 | ggt cac a<br>Gly His A<br>300   | aat tot tat<br>Asn Ser Tyr        | ggt tcc act<br>Gly Ser Thr<br>305      | ggt cca gtg 1025<br>Gly Pro Val<br>310 |
| aat ctt gat tgc gtt<br>Asn Leu Asp Cys Val<br>315 | . Trp Lys P                     | tc tga att<br>Phe                 | tggaaaa tcgaa                          | aattt 1072                             |
| ggatgttaac tagggggt                               | at atagggt                      | ttt taaaaa                        | cagt gtatatat                          |                                        |
| agctttagat tctaggat                               | at acaaaga                      | atga cactaa                       | taga ttcttata                          |                                        |
| aaaaaa                                            |                                 |                                   |                                        | 1198                                   |

<210> 52 <211> 318

MBI15 Sequence Listing.ST25

<212> PRT

<213> Arabidopsis thaliana

<400> 52

Met Asp Tyr Lys Val Ser Arg Ser Gly Glu Ile Val Glu Gly Glu Val

Glu Asp Ser Glu Lys Ile Asp Leu Pro Pro Gly Phe Arg Phe His Pro 20 25 30

Thr Asp Glu Glu Leu Ile Thr His Tyr Leu Arg Pro Lys Val Val Asn 35 40 45

Ser Phe Phe Ser Ala Ile Ala Ile Gly Glu Val Asp Leu Asn Lys Val

Glu Pro Trp Asp Leu Pro Trp Lys Ala Lys Leu Gly Glu Lys Glu Trp 65 70 75 80

Tyr Phe Phe Cys Val Arg Asp Arg Lys Tyr Pro Thr Gly Leu Arg Thr 85 90 95

Asn Arg Ala Thr Lys Ala Gly Tyr Trp Lys Ala Thr Gly Lys Asp Lys

Glu Ile Phe Lys Gly Lys Ser Leu Val Gly Met Lys Lys Thr Leu Val 115 120 125

Phe Tyr Lys Gly Arg Ala Pro Lys Gly Val Lys Thr Asn Trp Val Met 130 135 140

His Glu Tyr Arg Leu Glu Gly Lys Phe Ala Ile Asp Asn Leu Ser Lys 145 150 155 160

Thr Ala Lys Asn Glu Cys Val Ile Ser Arg Val Phe His Thr Arg Thr 165 170 175

Asp Gly Thr Lys Glu His Met Ser Val Gly Leu Pro Pro Leu Met Asp 180 180 190

Ser Ser Pro Tyr Leu Lys Ser Arg Gly Gln Asp Ser Leu Ala Gly Thr 195 200 205

Thr Leu Gly Gly Leu Leu Ser His Val Thr Tyr Phe Ser Asp Gln Thr 210 215 220

Thr Asp Asp Lys Ser Leu Val Ala Asp Phe Lys Thr Thr Met Phe Gly 225 230 240

Ser Gly Ser Thr Asn Phe Leu Pro Asn Ile Gly Ser Leu Leu Asp Phe 245 250 255

Asp Pro Leu Phe Leu Gln Asn Asn Ser Ser Val Leu Lys Met Leu Leu 260 265 270

Asp Asn Glu Glu Thr Gln Phe Lys Lys Asn Leu His Asn Ser Gly Ser 275 280 285

### MBI15 Sequence Listing.ST25

Ser Glu Ser Glu Leu Thr Ala Ser Ser Trp Gln Gly His Asn Ser Tyr 290 295 300

Gly Ser Thr Gly Pro Val Asn Leu Asp Cys Val Trp Lys Phe 305 310

| <210:<br><211:<br><212:<br><213: | > 9:<br>> Di     | 32<br>NA          | dops              | is t              | hali              | ana              |                   |                   |                   |                   |                   |                   |                   |                   |                   |     |
|----------------------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| <220<br><221<br><222<br><223     | > C              | DS<br>43).<br>350 | . (75             | 9)                |                   |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |     |
| <400<br>cttt                     | > 5<br>cttc      | 3<br>tc a         | attt              | agaa              | ç tt              | agta             | gcta              | gtc               | ttca              | aga               | ta a<br>M<br>1    | ec A              | ca c<br>la L      | tt g<br>eu G      | aa<br>lu          | 54  |
| act<br>Thr<br>5                  | ctt<br>Leu       | act<br>Thr        | tct<br>Ser        | cca<br>Pro        | aga<br>Arg<br>10  | tta<br>Leu       | tct<br>Ser        | tct<br>Ser        | ccg<br>Pro        | atg<br>Met<br>15  | ccg<br>Pro        | act<br>Thr        | ctg<br>Leu        | ttt<br>Phe        | caa<br>Gln<br>20  | 102 |
| gat<br>Asp                       | tca<br>Ser       | gca<br>Ala        | cta<br>Leu        | 999<br>Gly<br>25  | ttt<br>Phe        | cat<br>His       | gga<br>Gly        | agc<br>Ser        | aaa<br>Lys<br>30  | ggc<br>Gly        | aaa<br>Lys        | cga<br>Arg        | tct<br>Ser        | aag<br>Lys<br>35  | cga<br>Arg        | 150 |
| tca<br>Ser                       | aga<br>Arg       | tct<br>Ser        | gaa<br>Glu<br>40  | ttc<br>Phe        | gac<br>Asp        | cgt<br>Arg       | cag<br>Gln        | agt<br>Ser<br>45  | ctc<br>Leu        | acg<br>Thr        | gag<br>Glu        | gat<br>Asp        | gaa'<br>Glu<br>50 | tat<br>Tyr        | atc<br>Ile        | 198 |
| gct<br>Ala                       | tta<br>Leu       | tgt<br>Cys<br>55  | ctc<br>Leu        | atg<br>Met        | ctt<br>Leu        | ctt<br>Leu       | gct<br>Ala<br>60  | cgc<br>Arg        | gac<br>Asp        | gga<br>Gly        | gat<br>Asp        | aga<br>Arg<br>65  | aac<br>Asn        | cgt<br>Arg        | gac<br>Asp        | 246 |
| ctt<br>Leu                       | gac<br>Asp<br>70 | ctg<br>Leu        | cct<br>Pro        | tct<br>Ser        | tct<br>Ser        | tcg<br>Ser<br>75 | tct<br>Ser        | tca<br>Ser        | cct<br>Pro        | cct<br>Pro        | ctg<br>Leu<br>80  | ctt<br>Leu        | cct<br>Pro        | cct<br>Pro        | ctt<br>Leu        | 294 |
| cct<br>Pro<br>85                 | act<br>Thr       | ccg<br>Pro        | atc<br>Ile        | tac<br>Tyr        | aag<br>Lys<br>90  | tgt<br>Cys       | agc<br>Ser        | gtc<br>Val        | tgt<br>Cys        | gac<br>Asp<br>95  | aag<br>Lys        | gcg<br>Ala        | ttt<br>Phe        | tcg<br>Ser        | tct<br>Ser<br>100 | 342 |
| tac<br>Tyr                       | cag<br>Gln       | gct<br>Ala        | ctt<br>Leu        | ggt<br>Gly<br>105 | gga<br>Gly        | cac<br>His       | aag<br>Lys        | gca<br>Ala        | agt<br>Ser<br>110 | cac<br>His        | cgg<br>Arg        | aaa<br>Lys        | agc<br>Ser        | ttt<br>Phe<br>115 | tcg<br>Ser        | 390 |
| ctt<br>Leu                       | act<br>Thr       | caa<br>Gln        | tct<br>Ser<br>120 | gcc<br>Ala        | gga<br>Gly        | gga<br>Gly       | gat<br>Asp        | gag<br>Glu<br>125 | ctg<br>Leu        | tcg<br>Ser        | aca<br>Thr        | tcg<br>Ser        | tcg<br>Ser<br>130 | gcg<br>Ala        | ata<br>Ile        | 438 |
| acc<br>Thr                       | acg<br>Thr       | tct<br>Ser<br>135 | Gly               | ata<br>Ile        | tcc<br>Ser        | ggt<br>Gly       | ggc<br>Gly<br>140 | Gly<br>999        | gga<br>Gly        | gga<br>Gly        | agt<br>Ser        | gtg<br>Val<br>145 | aag<br>Lys        | tcg<br>Ser        | cac<br>His        | 486 |
| Val                              | Cys<br>150       | Ser               | Ile               | Суѕ               | His               | Lys<br>155       | Ser               | Pne               | Ala               | Thr               | ggt<br>Gly<br>160 | GIN               | Ата               | Den               | GIY               | 534 |
| ggc<br>Gly<br>165                | His              | aaa<br>Lys        | cgg<br>Arg        | tgc<br>Cys        | cac<br>His<br>170 | Tyr              | gaa<br>Glu        | gga<br>Gly        | aag<br>Lys        | aac<br>Asn<br>175 | gga<br>Gly        | ggc<br>Gly        | ggt<br>Gly        | gtg<br>Val        | agt<br>Ser<br>180 | 582 |
| Ser                              | Ser              | Val               | Ser               | 185               | Ser               | Glu              | Asp               | val               | 190               | ser               | aca<br>Thr        | Ser               | uis               | 195               | 361               | 630 |
| agt                              | ggc              | cac               | : cgt             | 999               | ttt               | gac              | ctc               | aac               |                   | ccg<br>Page       |                   | ata               | ccg               | gaa               | ttc               | 678 |

|                              |                   |                       |            |            |            |                   | MBII              | .5 Se      | equer      | ice I      | isti       | ng.s              | T25        |            |            |     |
|------------------------------|-------------------|-----------------------|------------|------------|------------|-------------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|-----|
| Ser (                        | Gly               | His                   | Arg<br>200 | Gly        | Phe        | Asp               | Leu               | Asn<br>205 | Ile        | Pro        | Pro        | Ile               | Pro<br>210 | Glu        | Phe        |     |
| tcg a                        | Met               | gtc<br>Val<br>215     | aac<br>Asn | gga<br>Gly | gac<br>Asp | gaa<br>Glu        | gag<br>Glu<br>220 | gtg<br>Val | atg<br>Met | agt<br>Ser | Pro        | atg<br>Met<br>225 | ccg<br>Pro | gcg<br>Ala | aag<br>Lys | 726 |
| Lys :                        | ctc<br>Leu<br>230 | cgg<br>Arg            | ttt<br>Phe | gac<br>Asp | ttc<br>Phe | ccg<br>Pro<br>235 | gag<br>Glu        | aaa<br>Lys | ccc<br>Pro | taa        | acat       | aaac              | ct a       | ggaa       | aaact      | 779 |
| ttac                         | agaa              | tt c                  | attt       | tata       | g ga       | aatt              | gttt              | tac        | tgta       | tat        | acaa       | atat              | .cg a      | tttt       | gattg      | 839 |
| atgt                         | tctt              | ct t                  | cact       | gaaa       | a at       | tate              | atto              | ttt        | gttg       | tat        | aatt       | gatg              | itt t      | ctga       | aaaag      | 899 |
| atat                         | aact              | tt t                  | tatt       | aaaa       | a aa       | aaaa              | aaaa              | aaa        | l          |            |            |                   |            |            |            | 932 |
| <210<br><211<br><212<br><213 | > 2<br>> F        | 4<br>38<br>RT<br>rabi | dops       | sis t      | hali       | iana              |                   |            |            |            |            |                   |            |            | •          |     |
| <400                         | > 5               | 4                     |            |            |            |                   |                   |            |            |            |            |                   |            |            |            |     |
| Met<br>1                     | Ala               | Leu                   | Glu        | Thr<br>5   | Leu        | Thr               | Ser               | Pro        | Arg<br>10  | Leu        | Ser        | Ser               | Pro        | Met<br>15  | Pro        |     |
| Thr                          | Leu               | Phe                   | Gln<br>20  | Asp        | Ser        | Ala               | Leu               | Gly<br>25  | Phe        | His        | Gly        | Ser               | Lys<br>30  | Gly        | Lys        |     |
| Arg                          | Ser               | <b>Lys</b><br>35      | Arg        | Ser        | Arg        | Ser               | Glu<br>40         | Phe        | Asp        | Arg        | Gln        | Ser<br>45         | Leu        | Thr        | Glu        |     |
| Asp                          | Glu<br>50         | Tyr                   | Ile        | Ala        | Leu        | Сув<br>55         | Leu               | Met        | Leu        | Leu        | Ala<br>60  | Arg               | Авр        | Gly        | Авр        |     |
| Arg<br>65                    | Asn               | Arg                   | Asp        | Leu        | Asp<br>70  | Leu               | Pro               | Ser        | Ser        | Ser<br>75  | Ser        | Ser               | Pro        | Pro        | Leu<br>80  |     |
| Leu                          | Pro               | Pro                   | Leu        | Pro<br>85  | Thr        | Pro               | Ile               | Tyr        | Lys<br>90  | Суз        | Ser        | Val               | Сув        | Asp<br>95  | Lys        |     |
| Ala                          | Phe               | Ser                   | Ser<br>100 | туг        | Gln        | Ala               | Leu               | Gly<br>105 | Gly        | His        | Lys        | Ala               | Ser<br>110 | His        | Arg        |     |
| ГÀЗ                          | Ser               | Phe<br>115            | Ser        | Leu        | Thr        | Gln               | Ser<br>120        | Ala        | Gly        | Gly        | Asp        | Glu<br>125        | Leu        | Ser        | Thr        |     |
| Ser                          | Ser<br>130        | Ala                   | Ile        | Thr        | Thr        | Ser<br>135        |                   | Ile        | Ser        | Gly        | Gly<br>140 | Gly               | Gly        | Gly        | Ser        |     |
| Val<br>145                   | Lys               | Ser                   | His        | Val        | Cys<br>150 |                   | Ile               | Cys        | His        | Lys<br>155 | Ser        | Phe               | Ala        | Thr        | Gly<br>160 |     |
| Gln                          | Ala               | Leu                   | Gly        | Gly<br>165 |            | Lys               | Arg               | Cys        | His<br>170 | Tyr        | Glu        | Gly               | Lys        | Asn<br>175 | Gly        |     |
| Gly                          | Gly               | Val                   | Ser<br>180 |            | Ser        | Val               | Ser               | Asn<br>185 | Ser        | Glu        | Asp        | Val               | Gly<br>190 | Ser        | Thr        |     |
| Ser                          | His               | Val<br>195            |            | Ser        | Gly        | His               | Arg<br>200        | Gly        |            | Asp<br>age |            | Asn<br>205        | Ile        | Pro        | Pro        |     |

### MBI15 Sequence Listing.ST25

| Ile                          | Pro (               | Glu 1                  | Phe s             | Ser N             | 1et \               | /al /<br>215      | Asn (             | 3ly /             | Asp (             | 3lu (             | 31u \<br>220      | /al N             | let s             | Ser I             | Pro               |     |
|------------------------------|---------------------|------------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| Met<br>225                   | Pro .               | Ala :                  | Lys 1             | Lys I             | Leu <i>l</i><br>230 | Arg 1             | Phe I             | Asp 1             | Phe I             | Pro (<br>235      | Glu 1             | Lys I             | Pro               |                   |                   |     |
| <210<br><211<br><212<br><213 | > 1<br>?> D         | 5<br>022<br>NA<br>rabi | dops              | is t              | hali                | ana               |                   |                   |                   |                   |                   |                   |                   |                   |                   |     |
| <220<br><220<br><220<br><220 | L> C<br>2> (        | DS<br>31).<br>986      | . (84             | 6)                |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |     |
| <400                         | 0> 5<br>taaat       | is<br>itg g            | ctcc              | tgtg              | a ac                | ctaa              | attt              | atg<br>Met<br>1   | gac<br>Asp        | tat<br>Tyr        | gat<br>Asp        | ccc<br>Pro<br>5   | aac<br>Asn        | acc<br>Thr        | aat<br>Asn        | 54  |
| ccg<br>Pro                   | ttc<br>Phe<br>10    | gac<br>Asp             | ctt<br>Leu        | cat<br>His        | Phe                 | tcc<br>Ser<br>15  | ggt<br>Gly        | aaa<br>Lys        | ctt<br>Leu        | ccg<br>Pro        | aaa<br>Lys<br>20  | aga<br>Arg        | gaa<br>Glu        | gtc<br>Val        | tcg<br>Ser        | 102 |
| gct<br>Ala<br>25             | tca<br>Ser          | gct<br>Ala             | tct<br>Ser        | aaa<br>Lys        | gtt<br>Val<br>30    | gta<br>Val        | gag<br>Glu        | aag<br>Lys        | aaa<br>Lys        | tgg<br>Trp<br>35  | tta<br>Leu        | gtg<br>Val        | aaa<br>Lys        | gat<br>Asp        | gag<br>Glu<br>40  |     |
| aag<br>Lys                   | aga<br>Arg          | aat<br>Asn             | atg<br>Met        | cta<br>Leu<br>45  | caa<br>Gln          | gat<br>Asp        | gaa<br>Glu        | ata<br>Ile        | aac<br>Asn<br>50  | cgg<br>Arg        | gtt<br>Val        | aat<br>Asn        | tcg<br>Ser        | gag<br>Glu<br>55  | aac<br>Asn        | 198 |
| aag<br>Lys                   | aag<br>Lys          | cta<br>Leu             | acc<br>Thr<br>60  | gaa<br>Glu        | atg<br>Met          | tta<br>Leu        | gca<br>Ala        | aga<br>Arg<br>65  | gtc<br>Val        | tgt<br>Cys        | gag<br>Glu        | aag<br>Lys        | tac<br>Tyr<br>70  | tat<br>Tyr        | gct<br>Ala        | 246 |
| ctt<br>Lev                   | aat<br>Asn          | aat<br>Asn<br>75       | ctt<br>Leu        | atg<br>Met        | gag<br>Glu          | gag<br>Glu        | ttg<br>Leu<br>80  | cag<br>Gln        | agt<br>Ser        | cga<br>Arg        | aag<br>Lys        | agt<br>Ser<br>85  | cct<br>Pro        | gaa<br>Glu        | agt<br>Ser        | 294 |
| gtt<br>Val                   | aac<br>Asn<br>90    | ttt<br>Phe             | cag<br>Gln        | aac<br>Asn        | aaa<br>Lys          | cag<br>Gln<br>95  | cta<br>Leu        | acg<br>Thr        | 999<br>Gly        | aaa<br>Lys        | cga<br>Arg<br>100 | aaa<br>Lys        | caa<br>Gln        | gaa<br>Glu        | ctt<br>Leu        | 342 |
| gat<br>Asp<br>105            | gag<br>Glu          | ttt<br>Phe             | gtt<br>Val        | agc<br>Ser        | tcc<br>Ser<br>110   | cca<br>Pro        | att<br>Ile        | gga<br>Gly        | ctc<br>Leu        | agt<br>Ser<br>115 | ctc<br>Leu        | gga<br>Gly        | cca<br>Pro        | atc<br>Ile        | gag<br>Glu<br>120 | 390 |
| aac<br>Asi                   | atc<br>lle          | acc<br>Thr             | aac<br>Asn        | gat<br>Asp<br>125 | aaa<br>Lys          | gcg<br>Ala        | inr               | vai               | tca<br>Ser<br>130 | 1111              | gct<br>Ala        | tac<br>Tyr        | ttt<br>Phe        | gct<br>Ala<br>135 | gct<br>Ala        | 438 |
| gag                          | aag<br>Lys          | tct<br>Ser             | gac<br>Asp<br>140 | Thr               | agc<br>Ser          | ttg<br>Leu        | act<br>Thr        | gtg<br>Val<br>145 | гÀа               | gat<br>Asp        | gga<br>Gly        | tat<br>Tyr        | caa<br>Gln<br>150 | tgg<br>Trp        | agg<br>Arg        | 486 |
| aaa<br>Ly                    | a tac<br>s Tyr      | 999<br>Gly<br>155      | Gln               | aag<br>Lys        | att<br>Ile          | acg<br>Thr        | aga<br>Arg<br>160 | Asp               | aat<br>Asn        | cca<br>Pro        | tct<br>Ser        | cct<br>Pro<br>165 | aga<br>Arg        | gct<br>Ala        | tac<br>Tyr        | 534 |
| tt.<br>Ph                    | c aga<br>e Arg      | у Сув                  | tcg<br>Ser        | ttt<br>Phe        | tca<br>Ser          | ccg<br>Pro<br>175 | Ser               | tgt<br>Cys        | cta<br>Leu        | gtc<br>Val        | aag<br>Lys<br>180 | пур               | aag<br>Lys        | gtg<br>Val        | caa<br>Gln        | 582 |
| cg<br>Ar<br>18               | a agt<br>g Sei<br>5 | gca<br>Ala             | gaa<br>Glu        | gat<br>Asp        | cca<br>Pro<br>190   | Ser               | ttc<br>Phe        | ttg<br>Leu        | gta<br>Val        | gcc<br>Ala<br>195 | THE               | tac<br>Tyr        | gaa<br>Glu        | ggg<br>Gly        | Thr<br>200        | 630 |

cat aac cac acc gga cca cat gca agt gtg tcc agg aca gtg aaa ctt

| His                          | Asn          | His                       | Thr        | Gl <u>y</u><br>205 | Pro        | His               | MBI<br>Ala | 15 S<br>Ser | eque<br>Val<br>210 | nce<br>Ser | List<br>Arg | ing.<br>Thr | ST25<br>Val | Lys<br>215 | Leu        |      |
|------------------------------|--------------|---------------------------|------------|--------------------|------------|-------------------|------------|-------------|--------------------|------------|-------------|-------------|-------------|------------|------------|------|
|                              |              |                           |            |                    |            | ctt<br>Leu        |            |             |                    |            |             |             |             |            | aga<br>Arg | 726  |
|                              |              |                           |            |                    |            | ttg<br>Leu        |            |             |                    |            |             |             |             |            |            | 774  |
|                              |              |                           |            |                    |            | gca<br>Ala<br>255 |            |             |                    |            |             |             |             |            |            | 822  |
|                              |              | gag<br>Glu                |            |                    |            |                   | tga        | aagi        | ttct               | cta g      | gaaca       | atgta       | at · a      | tttci      | tgttt      | 876  |
| tgt                          | cta          | ttt (                     | gtt        | gctca              | at to      | ctag              | gtaaa      | a aag       | ggtaa              | aaga       | ttt         | gttt        | gat (       | ettga      | attagg     | 936  |
| agg                          | cata         | gat g                     | gtcaa      | attt               | a at       | gtgt              | gtgi       | ata         | ataai              | tac        | atca        | aato        | cta a       | agtai      | tccaaa     | 996  |
| aag                          | ggtca        | acc o                     | ccai       | ttta               | at c       | tate              | 3          |             |                    |            |             |             |             |            |            | 1022 |
| <210<br><210<br><210<br><210 | l> 2<br>2> 1 | 56<br>271<br>PRT<br>Arab: | idopa      | ₃is t              | hal:       | iana              |            |             |                    |            |             |             |             |            |            |      |
| <40                          | 0> !         | 56                        |            |                    |            |                   |            |             |                    |            |             |             |             |            |            |      |
| Met<br>1                     | Asp          | Tyr                       | Asp        | Pro<br>5           | Asn        | Thr               | Asn        | Pro         | Phe<br>10          | Asp        | Leu         | His         | Phe         | Ser<br>15  | Gly        |      |
| Lys                          | Leu          | Pro                       | Lys<br>20  | Arg                | Glu        | Val               | Ser        | Ala<br>25   | Ser                | Ala        | Ser         | Lys         | Val<br>30   | Val        | Glu        |      |
| ГÀЗ                          | Lys          | Trp<br>35                 | Leu        | Val                | Lys        | Asp               | Glu<br>40  | Lys         | Arg                | Asn        | Met         | Leu<br>45   | Gln         | Asp        | Glu        |      |
| Ile                          | Asn<br>50    | Arg                       | Val        | Asn                | Ser        | Glu<br>55         | Asn        | Lys         | Ĺув                |            | Thr<br>60   | Glu         | Met         | Leu        | Ala        |      |
| Arg<br>65                    | Val          | Сув                       | Glu        | Lys                | Туг<br>70  | Tyr               | Ala        | Leu         | Asn                | Asn<br>75  | Leu         | Met         | Glu         | Glu        | Leu<br>80  |      |
| Gln                          | Ser          | Arg                       | Lys        | Ser<br>85          | Pro        | Glu               | Ser        | Val         | Asn<br>90          | Phe        | Gln         | Asn         | Lys         | Gln<br>95  | Leu        |      |
| Thr                          | Gly          | Lys                       | Arg<br>100 | Lys                | Gln        | Glu               | Leu        | Asp<br>105  | Glu                | Phe        | Val         | Ser         | Ser<br>110  | Pro        | Ile        |      |
| Gly                          | Leu          | Ser<br>115                | Leu        | Gly                | Pro        | Ile               | Glu<br>120 | Asn         | Ile                | Thr        | Asn         | Asp<br>125  | Lys         | Ala        | Thr        |      |
| Val                          | Ser<br>130   | Thr                       | Ala        | Tyr                | Phe        | Ala<br>135        | Ala        | Glu         | Lys                | Ser        | Asp<br>140  | Thr         | Ser         | Leu        | Thr        |      |
| Val<br>145                   | Lys          | Asp                       | Gly        | Tyr                | Gln<br>150 | Trp               | Arg        | Lys         | Туг                | Gly<br>155 | Gln         | Lув         | Ile         | Thr        | Arg<br>160 |      |
| Asp                          | Asn          | Pro                       | Ser        | Pro<br>165         | Arg        | Ala               | Tyr        | Phe         | 170                | _          |             | Phe         | Ser         | Pro<br>175 | Ser        |      |
|                              |              |                           |            |                    |            |                   |            |             |                    | age        |             |             |             |            |            |      |

## MBI15 Sequence Listing.ST25

| Суз                          | Leu                | Val                       | Lys<br>180            | Lys              | Lys              | Val              | Gln              | Arg<br>185            | Ser              | Ala                | Glu                | Asp                  | Pro<br>190        | Ser              | Phe              |     |
|------------------------------|--------------------|---------------------------|-----------------------|------------------|------------------|------------------|------------------|-----------------------|------------------|--------------------|--------------------|----------------------|-------------------|------------------|------------------|-----|
| Leu                          | Val                | Ala<br>195                | Thr                   | Tyr              | Glu              | Gly              | Thr<br>200       | His                   | Asn              | His                | Thr                | Gly<br>205           | Pro               | His              | Ala              |     |
| Ser                          | Val<br>210         | Ser                       | Arg                   | Thr              | Val              | Lув<br>215       | Leu              | Asp                   | Leu              | Val                | Gln<br>220         | Gly                  | Gly               | Leu              | Glu              |     |
| Pro<br>225                   | Val                | Glu                       | Glu                   | Lys              | Lys<br>230       | Glu              | Arg              | Gly                   | Thr              | Ile<br>235         | Gln                | Glu                  | Val               | Leu              | Val<br>240       |     |
| Gln                          | Gln                | Met                       | Ala                   | Ser<br>245       | Ser              | Leu              | Thr              | Lys                   | Asp<br>250       | Pro                | Lys                | Phe                  | Thr               | Ala<br>255       | Ala              |     |
| Leu                          | Ala                | Thr                       | Ala<br>260            | Ile              | Ser              | Gly              | Arg              | Leu<br>265            | Ile              | Glu                | His                | Ser                  | Arg<br>270        | Thr              |                  |     |
| <210<br><210<br><210<br><210 | 1><br>2>           | 57<br>1230<br>DNA<br>Arab |                       | sis              | thal:            | iana             |                  |                       |                  |                    |                    |                      |                   |                  |                  |     |
|                              | 1 ><br>2 >         | CDS<br>(1).<br>G134       | . (10<br>9            | 89)              |                  |                  |                  |                       |                  |                    |                    |                      |                   |                  |                  |     |
|                              | 0><br>gct<br>Ala   |                           | cgg<br>Arg            | aga<br>Arg<br>5  | gaa<br>Glu       | gta<br>Val       | cgg<br>Arg       | tgc<br>Cys            | cgg<br>Arg<br>10 | tgc<br>Cys         | ggc                | aga<br>Arg           | cgg<br>Arg        | atg<br>Met<br>15 | tgg<br>Trp       | 48  |
| gtt<br>Val                   | caa<br>Glr         | cca<br>Pro                | gac<br>Asp<br>20      | gcc              | cgt<br>Arg       | acc<br>Thr       | gto<br>Val       | caa<br>Gln<br>25      | . tgc<br>. Cys   | tca<br>Ser         | acc<br>Thr         | tgc<br>Cys           | cac<br>His<br>30  | acc<br>Thr       | gtc<br>Val       | 96  |
| acg<br>Thr                   | Cag<br>Glr         | cto<br>Lev<br>35          | tac<br>Tyr            | tcg<br>Ser       | cta<br>Leu       | gtg<br>Val       | gac<br>Asp<br>40 | ata<br>Ile            | gct<br>Ala       | cgc<br>Arg         | ggt<br>Gly         | gca<br>Ala<br>45     | aac<br>Asn        | cgc<br>Arg       | ata<br>Ile       | 144 |
| att<br>Ile                   | cat<br>His         | : ggg<br>: Gly            | y ttt<br>/ Phe        | caa<br>Glr       | cag<br>Gln       | cta<br>Leu<br>55 | ctt<br>Let       | aga<br>Arg            | caa<br>Glr       | cac<br>His         | caa<br>Glr<br>60   | a ccg                | caa<br>Gln        | cat<br>His       | cat<br>His       | 192 |
| gaa<br>Glu<br>65             | caa<br>Gl:         | a caa                     | a caa<br>n Glr        | caa<br>Glr       | caa<br>Glm<br>70 | atg<br>Met       | atg<br>Met       | g gct<br>E Ala        | caa<br>Glr       | e ccg<br>Pro<br>75 | g cca<br>Pro       | a cca<br>o Pro       | cgg<br>Arg        | ctg<br>Lev       | ctt<br>Leu<br>80 | 240 |
| gag<br>Glu                   | g cci              | t cti                     | r cco                 | tco<br>Sei<br>85 | g ccg            | ttt<br>Phe       | 999<br>Gl        | g aag<br>y Lys        | aag<br>Lys<br>90 | g aga              | g gca              | a gtt<br>a Val       | tta<br>Lev        | tgo<br>Cys<br>95 | ggc<br>Gly       | 288 |
| gto<br>Va                    | aa<br>L As         | c ta<br>n Ty              | t aag<br>r Lys<br>100 | s Gly            | a aaa<br>y Lys   | agt<br>Sei       | tai<br>Ty:       | t ago<br>r Sei<br>109 | r Lei            | g aaa<br>u Ly      | a ggi              | t tgo<br>y Cyi       | ato<br>Ile<br>110 | 3 261            | gat<br>Asp       | 336 |
| gc:<br>Ala                   | t aa<br>a Ly       | g to<br>s Se<br>11        | r Me                  | g aga            | a tct<br>g Sei   | tta<br>Lei       | tte<br>Le<br>12  | u va.                 | t car            | a caa<br>n Gl      | a ate              | g gg(<br>t Gl;<br>12 | A Litte           | e Pro            | t att            | 384 |
| ga<br>As                     | c tc<br>p Se<br>13 | r Il                      | t ct                  | c ate            | g cto            | aca<br>Th:       | r Gl             | a gal<br>u Asj        | t ga<br>p Gl     | a gc               | c ag<br>a Se<br>14 | r PI                 | g cag<br>o Gli    | g aga            | a ata<br>g Ile   | 432 |
| CC                           | g ac               | g aa                      | g ag                  | a aa             | c at             | t ag             | g aa             | g gc                  | g at             | g ag               | a tg               | g tt                 | a gt              | t ga             | a ggg            | 480 |

PCT/US00/31418 WO 01/35726

|                                       |                                   | MBI1                          | 5 Sequence I                      | Listing.ST25                      |                                |
|---------------------------------------|-----------------------------------|-------------------------------|-----------------------------------|-----------------------------------|--------------------------------|
| Pro Thr Lys A                         | Arg Asn Ile<br>150                | Arg Lys A                     | Ala Met Arg<br>155                | Trp Leu Val                       | Glu Gly<br>160                 |
| aac aga gca a<br>Asn Arg Ala A        | agg gac tca<br>Arg Asp Ser<br>165 | cta gtg t<br>Leu Val F        | ttc cat ttc<br>Phe His Phe<br>170 | tct ggt cat<br>Ser Gly His        | gga tct 528<br>Gly Ser<br>175  |
| cag cag aat g<br>Gln Gln Asn A        | gac tac aac<br>Asp Tyr Asn<br>180 | Gly Asp G                     | gag atc gat<br>Glu Ile Asp<br>185 | ggt caa gat<br>Gly Gln Asp<br>190 | gaa gcc 576<br>Glu Ala         |
| ttg tgc cct t<br>Leu Cys Pro I<br>195 | tta gac cat<br>Leu Asp His        | gaa aca g<br>Glu Thr G<br>200 | gaa gga aaa<br>Glu Gly Lys        | atc att gat<br>Ile Ile Asp<br>205 | gac gag 624<br>Asp Glu         |
| att aac cgg a<br>Ile Asn Arg I<br>210 | ata ctc gtg<br>Ile Leu Val        | agg cct c<br>Arg Pro I<br>215 | ctc gtc cat<br>Leu Val His        | gga gct aag<br>Gly Ala Lys<br>220 | ctt cac 672<br>Leu His         |
| gct gtc atc g<br>Ala Val Ile A<br>225 | gac gcc tgt<br>Asp Ala Cys<br>230 | Asn Ser C                     | ggg act gtc<br>Gly Thr Val<br>235 | ctt gat tta<br>Leu Asp Leu        | ccc ttc 720<br>Pro Phe<br>240  |
| att tgc agg a<br>Ile Cys Arg N        | atg gag agg<br>Met Glu Arg<br>245 | aat ggt t<br>Asn Gly S        | tct tat gaa<br>Ser Tyr Glu<br>250 | tgg gaa gac<br>Trp Glu Asp        | cat aga 768<br>His Arg<br>255  |
| tca gtc aga g<br>Ser Val Arg 7        | gct tac aaa<br>Ala Tyr Lys<br>260 | Gly Thr A                     | gat ggt gga<br>Asp Gly Gly<br>265 | gca gct ttc<br>Ala Ala Phe<br>270 | tgt ttc 816<br>Cys Phe         |
| agt gct tgt g<br>Ser Ala Cys 2<br>275 | gac gat gat<br>Asp Asp Asp        | gaa tcc a<br>Glu Ser S<br>280 | agt ggt tac<br>Ser Gly Tyr        | act cct gtg<br>Thr Pro Val<br>285 | ttc acg 864<br>Phe Thr         |
| ggg aag aac a<br>Gly Lys Asn 1<br>290 | aca gga gcc<br>Thr Gly Ala        | atg act t<br>Met Thr 1<br>295 | tat agc ttc<br>Tyr Ser Phe        | ata aag gcg<br>Ile Lys Ala<br>300 | gtg aag 912<br>Val Lys         |
| aca gct gga o<br>Thr Ala Gly I<br>305 | cca gca ccc<br>Pro Ala Pro<br>310 | Thr Tyr (                     | ggc cac ctg<br>Gly His Leu<br>315 | ctt aac ctt<br>Leu Asn Leu        | atg tgt 960<br>Met Cys<br>320  |
| tct gca ata o<br>Ser Ala Ile A        | cga gag gcc<br>Arg Glu Ala<br>325 | cag tct o                     | cgc ctc gcc<br>Arg Leu Ala<br>330 | ttt aac ggg<br>Phe Asn Gly        | gac tac 1008<br>Asp Tyr<br>335 |
| aca agc tct of<br>Thr Ser Ser A       | gat gca tcc<br>Asp Ala Ser<br>340 | Ala Glu E                     | cca ctg cta<br>Pro Leu Leu<br>345 | aca tca tct<br>Thr Ser Ser<br>350 | gag gaa 1056<br>Glu Glu        |
| ttt gac gtg t<br>Phe Asp Val 1<br>355 | tac gcg aca<br>Tyr Ala Thr        | aag ttt g<br>Lys Phe \<br>360 | gta ctc tga<br>Val Leu            | atgctgtaca (                      | tatgatgctg 1109                |
| caaatagete g                          | gaaacgttt c                       | tatgtgtat                     | gtatcatgta                        | atgattatgt (                      | gcatagcct 1169                 |
| ctctcttctt ac                         | cgagcaata a                       | gctatgaaa                     | taattgattc                        | gctaagaaat                        | taaaatgaa 1229                 |
| a                                     |                                   |                               |                                   |                                   | 1230                           |

<400> 58

Met Ala Ser Arg Arg Glu Val Arg Cys Arg Cys Gly Arg Arg Met Trp 1 5 10 15

Val Gln Pro Asp Ala Arg Thr Val Gln Cys Ser Thr Cys His Thr Val 20 25 30

<sup>&</sup>lt;210> 58 <211> 362 <212> PRT <213> Arabidopsis thaliana

#### MBI15 Sequence Listing.ST25

- Thr Gln Leu Tyr Ser Leu Val Asp Ile Ala Arg Gly Ala Asn Arg Ile 35 40 45
- Ile His Gly Phe Gln Gln Leu Leu Arg Gln His Gln Pro Gln His His 50 55
- Glu Gln Gln Gln Gln Met Met Ala Gln Pro Pro Pro Arg Leu Leu 65 70 75 80
- Glu Pro Leu Pro Ser Pro Phe Gly Lys Lys Arg Ala Val Leu Cys Gly 85 90 95
- Val Asn Tyr Lys Gly Lys Ser Tyr Ser Leu Lys Gly Cys Ile Ser Asp 100 105 110
- Ala Lys Ser Met Arg Ser Leu Leu Val Gln Gln Met Gly Phe Pro Ile 115 120 125
- Asp Ser Ile Leu Met Leu Thr Glu Asp Glu Ala Ser Pro Gln Arg Ile 130 135 140
- Pro Thr Lys Arg Asn Ile Arg Lys Ala Met Arg Trp Leu Val Glu Gly 145 150 155 160
- Asn Arg Ala Arg Asp Ser Leu Val Phe His Phe Ser Gly His Gly Ser 165 170 175
- Gln Gln Asn Asp Tyr Asn Gly Asp Glu Ile Asp Gly Gln Asp Glu Ala 180 185 190
- Leu Cys Pro Leu Asp His Glu Thr Glu Gly Lys Ile Ile Asp Asp Glu 195 200 205
- Ile Asn Arg Ile Leu Val Arg Pro Leu Val His Gly Ala Lys Leu His 210 215 220
- Ala Val Ile Asp Ala Cys Asn Ser Gly Thr Val Leu Asp Leu Pro Phe 225 230 240
- Ile Cys Arg Met Glu Arg Asn Gly Ser Tyr Glu Trp Glu Asp His Arg 245 250 255
- Ser Val Arg Ala Tyr Lys Gly Thr Asp Gly Gly Ala Ala Phe Cys Phe 260 265 270
- Ser Ala Cys Asp Asp Asp Glu Ser Ser Gly Tyr Thr Pro Val Phe Thr 275 280 285
- Gly Lys Asn Thr Gly Ala Met Thr Tyr Ser Phe Ile Lys Ala Val Lys 290 295 300
- Thr Ala Gly Pro Ala Pro Thr Tyr Gly His Leu Leu Asn Leu Met Cys 305 310 315 320
- Ser Ala Ile Arg Glu Ala Gln Ser Arg Leu Ala Phe Asn Gly Asp Tyr
  Page 76

MBI15 Sequence Listing.ST25 330 335

Phe Asp Val Tyr Ala Thr Lys Phe Val Leu 355

325

# INTERNATIONAL SEARCH REPORT

Interna al application No.

PCT/US00/31418

| A. CLASSIFICATION OF SUBJECT MATTER  IPC(7) : A01H 1/00, 5/00; C12N 5/14, 15/82  US CL : 435/320.1, 419, 468; 800/278, 279, 287, 301, 305-310, 312, 314, 317, 320, 322  According to International Patent Classification (IPC) or to both national classification and IPC  B. FIELDS SEARCHED  Minimum documentation searched (classification system followed by classification symbols)  U.S.: 435/320.1, 419, 468; 800/278, 279, 287, 301, 305-310, 312, 314, 317, 320, 322 |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched                                                                                                                                         |                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Electronic da<br>EAST, USPA                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EAST, USPAT, STN, Agricola, CaPlus, Biosis, Embase                                                                                       |                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| C DOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| C. DOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Citation of document, with indication, where app                                                                                                                                                                                                                      | propriate, of the relevant passages Relevant to claim No.                                                                                                                                                                                                 |  |  |  |  |  |  |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WO 97/47183 A1 (PURDUE RESEARCH FOUNDA                                                                                                                                                                                                                                | ATION) 18 December 1997 1-9, 12, 13, 25                                                                                                                                                                                                                   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (18.12.1997), entire reference.                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                       | 10, 11, 26, 27                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | US 5,939,601 (KLESSIG et al) 17 August 1999 (17.0                                                                                                                                                                                                                     | 08.1999), entire reference. 1-9, 12, 13, 25                                                                                                                                                                                                               |  |  |  |  |  |  |
| <br>Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                       | 10, 11, 26, 27                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Database Genbank on NCBI, US National Library o<br>No. AB009055, SATO, S. et al 'Strucural analysis o<br>IV. Sequence features of the regions of 1,456,315 bp<br>assigned P1 and TAC clones. 27 December 2000, D<br>41-54, see bases 16,003-16,490, 16,571-16,683 and | p covered by nineteen physically  NA RES. 1998, Vol. 5, No. 1, pages                                                                                                                                                                                      |  |  |  |  |  |  |
| ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                       | . *                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Further                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er documents are listed in the continuation of Box C.                                                                                                                                                                                                                 | See patent family annex.                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| , —                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Special categories of cited documents:                                                                                                                                                                                                                                | "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the                                                                                                    |  |  |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nt defining the general state of the art which is not considered to be                                                                                                                                                                                                | principle or theory underlying the invention                                                                                                                                                                                                              |  |  |  |  |  |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rular relevance<br>application or patent published on or after the international filing date                                                                                                                                                                          | "X" document of particular relevance; the chained investion cannot be<br>considered novel or cannot be considered to involve an inventive step<br>when the document is taken alone                                                                        |  |  |  |  |  |  |
| establisi<br>specifie                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                       | "Y" document of particular relevance; the claimed invention cannot be<br>considered to involve an inventive step when the document is<br>combined with one or more other such documents, such combination<br>being obvious to a person skilled in the art |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt referring to an oral disclosure, use, exhibition or other means                                                                                                                                                                                                    |                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| "P" docume<br>priority                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on published prior to the international filing date but later than the date claimed                                                                                                                                                                                   | "&" document member of the same patent family                                                                                                                                                                                                             |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | actual completion of the international search                                                                                                                                                                                                                         | Date of mailing of the international search report                                                                                                                                                                                                        |  |  |  |  |  |  |
| 23 Februar                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | y 2001 (23.02.2001)                                                                                                                                                                                                                                                   | Authorized officer                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| C<br>B<br>W                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mailing address of the ISA/US commissioner of Patents and Trademarks ox PCT //ashington, D.C. 20231 No. (703)305-3230                                                                                                                                                 | David Kruse PARALEGAL SPECIALIST Telephone No. 703-308-TECHNOLOGY CENTER 1600                                                                                                                                                                             |  |  |  |  |  |  |

Facsimile No. (703)305-3230
Form PCT/ISA/210 (second sheet) (July 1998)

## INTERNATIONAL SEARCH REPORT

Internal application No.

PCT/US00/31418

|        | Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet) |                                                                                                                                                                                                                                                  |  |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| This i | nternat                                                                                                 | ional report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:                                                                                                                             |  |  |  |  |  |
| 1.     |                                                                                                         | Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:                                                                                                                                         |  |  |  |  |  |
| 2.     |                                                                                                         | Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:                        |  |  |  |  |  |
| 3.     | 6.4(a).                                                                                                 | Claim Nos.: 14 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule                                                                                                                   |  |  |  |  |  |
| Box I  | I Ob                                                                                                    | servations where unity of invention is lacking (Continuation of Item 2 of first sheet)                                                                                                                                                           |  |  |  |  |  |
|        |                                                                                                         | ional Searching Authority found multiple inventions in this international application, as follows:<br>ontinuation Sheet                                                                                                                          |  |  |  |  |  |
|        |                                                                                                         |                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 1.     |                                                                                                         | As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.                                                                                                         |  |  |  |  |  |
| 2.     | Ш                                                                                                       | As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.                                                                                             |  |  |  |  |  |
| 3.     |                                                                                                         | As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:                                             |  |  |  |  |  |
| 4.     | $\boxtimes$                                                                                             | No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-13 & 25-27 and SEQ ID NOs 1&2 |  |  |  |  |  |
| Rema   | rk on l                                                                                                 | ·                                                                                                                                                                                                                                                |  |  |  |  |  |

#### INTERNATIONAL SEARCH REPORT

Inte......nal application No.

PCT/US00/31418

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Groups I-XXIX, claim(s) 1-14 and 25-27, drawn to a transgenic plant having modified seed characteristics, polynucleotides and vectors for producing said transgenic plant and a method of making said transgenic plant. Applicant must elect one pair of sequences (one nucleic acid and the corresponding amino acid translation) to be examined, i.e. SEQ ID NO: 1 and 2 in Group I, SEQ ID NO: 3 and 4 in Group II, SEQ ID NO: 5 and 6 in Group III, etc.

Group XXX, claim(s) 15-17, drawn to a method of identifying a factor that is modulated.

Group XXXI, claims(s) 18, drawn to a method of identifying a molecule that modulates activity or expression of a polynucleotide or polypeptide.

Group XXXII, claims(s) 19 and 20, drawn to an integrated computer system.

Group XXXIII, claim(s) 21-24, drawn to a method for identifying a polynucleotide sequence comprising selecting a nucleic acid sequence from a database that meets a selected sequence criteria.

The inventions listed as Groups I-XXXIII do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The inventions listed as Groups I-XXXIII do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Groups I-XXIX are drawn to a transgenic plant and a method of producing said plant with a nucleic acid sequence. The methods of Groups I-XXIX differ from each other in that they are directed to a plant transformation method and transgenic plant with a structurally and functionally distinct nucleic acid sequence which encodes a structurally and functionally distinct amino acid sequence. In addition, Groups XXX, XXXI and XXXIII are different methods from any of Groups I-XXIX in that they have different method steps and different end products, and Group XXXII requires a computer system. Thus, there is no single special technical feature, which links the inventions of Groups I-XXXIII under PCT Rule 13.2.