

Machine Learning

Linear Algebra review (optional)

Matrix multiplication properties

Let A and B be matrices. Then in general, $A \times B \neq B \times A$. (not commutative.)

E.g.
$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 0 \times A \\ 0 & 0 \end{bmatrix}$$

$$3 \times 5 \times 2$$

 $3 \times (5 \times 2) = (3 \times 5) \times 2$
"Associative"
 $A \times (0 \times c) \leftarrow 1$
 $\times B \times C$.

$$A \times B \times C$$
.

Let $D = B \times C$. Compute $A \times D$.

Let $E = A \times B$. Compute $E \times C$.

A \times ($E \times C$)

Some

Identity Matrix

Denoted \underline{I} (or $I_{n \times n}$).

Examples of identity matrices:

$$\begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}$$

$$3 \times 3$$

