Поиск согласованных нейросетевых моделей в задаче мультидоменного обучения

K.Д. Яковлев¹ О.Ю. Бахтеев^{1,2} В.В. Стрижов^{1,2} {iakovlev.kd, bakhteev, strijov}@phystech.edu

 1 Москва, Московский физико-технический институт 2 Москва, Вычислительный центр им. А.А. Дородницына ФИЦ ИУ РАН

Цель исследования

Цель

Предложить градиентный метод оптимизации гиперпараметров с линейейной по количеству параметров и гиперпараметров сложностью итерации и затратами памяти.

Проблема

Существующие методы не гарантируют выполнение следующих условий одновременно: 1) онлайн оптимизация, 2) отсутствие смещения из-за короткого горизонта, 3) линейная сложность итерации и затраты памяти.

Метод решения

Предлагаемый метод основан на аггрегации жадных гиперградиентов без дополнительных вычислительных затрат.

Аггрегация жадных гиперградиентов

Пусть задано $\gamma \in (0,1)$. Тогда аппроксимация гиперградиента запишется как:

$$\hat{\nabla}_{\boldsymbol{\alpha}} = \frac{\partial}{\partial \boldsymbol{\alpha}} \mathcal{L}_2(\mathbf{w}_T(\boldsymbol{\alpha}), \boldsymbol{\alpha}) + \sum_{t=1}^T \mathbf{B}_t \frac{\partial \mathcal{L}_2(\mathbf{w}_t, \boldsymbol{\alpha})}{\partial \mathbf{w}_t} \gamma^{T-t}.$$

	IFT	RMAD	DrMAD	TruncBP	Proposed
Онлайн оптимизация	×	✓	×	✓	✓
Длинный горизонт	✓	✓	✓	×	✓
линейная сложность	✓	×	\checkmark	\checkmark	\checkmark

Постановка задачи оптимизации гиперпараметров

lacktriangle Пусть задан вектор параметров модели lacktriangle и вектор гиперпараметров lacktriangle . Задача оптимизации:

$$egin{aligned} & oldsymbol{lpha}^* = \arg\min_{oldsymbol{lpha}} \mathcal{L}_2(oldsymbol{w}^*, oldsymbol{lpha}), \ & \mathrm{s.t.} \quad oldsymbol{w}^* = \arg\min_{oldsymbol{w}} \mathcal{L}_1(oldsymbol{w}, oldsymbol{lpha}). \end{aligned}$$

ightharpoonup Пусть внутренняя задача решается с помощью оптимизатора $\Phi(.,.)$:

$${\sf w}_{t+1}(lpha) = {\sf \Phi}({\sf w}_t,lpha), \quad t = \overline{1,\, {\sf T}}.$$

Гиперградиент запишется как:

$$\begin{split} &\nabla_{\boldsymbol{\alpha}}\mathcal{L}_{2}(\mathbf{w}_{T}(\boldsymbol{\alpha}),\boldsymbol{\alpha}) = \frac{\partial}{\partial\boldsymbol{\alpha}}\mathcal{L}_{2}(\mathbf{w}_{T}(\boldsymbol{\alpha}),\boldsymbol{\alpha}) + \sum_{t=1}^{T}\mathbf{B}_{t}\mathbf{A}_{t+1}\dots\mathbf{A}_{T}\frac{\partial\mathcal{L}_{2}(\mathbf{w}_{T}(\boldsymbol{\alpha}),\boldsymbol{\alpha})}{\partial\mathbf{w}}, \\ &\mathbf{B}_{t} = \frac{\partial\mathbf{\Phi}(\mathbf{w}_{t-1},\boldsymbol{\alpha})}{\partial\boldsymbol{\alpha}}, \quad \mathbf{A}_{t} = \frac{\partial\mathbf{\Phi}(\mathbf{w}_{t-1},\boldsymbol{\alpha})}{\partial\mathbf{w}_{t-1}}. \end{split}$$

Аппроксимация гиперградиента

lacktriangle Пусть задано $\gamma \in (0,1)$. Тогда аппроксимация гиперградиента запишется как:

$$\hat{\nabla}_{\alpha} = \frac{\partial}{\partial \alpha} \mathcal{L}_2(\mathbf{w}_T(\alpha), \alpha) + \sum_{t=1}^T \mathbf{B}_t \frac{\partial \mathcal{L}_2(\mathbf{w}_t, \alpha)}{\partial \mathbf{w}_t} \gamma^{T-t}.$$

- предлположения:
 - 1. $\mathcal{L}_1(., \alpha)$, $\mathcal{L}_2(., \alpha)$ являются L-гладкими и μ -сильно выпуклыми.
 - 2. $\frac{\partial^2 \mathcal{L}_1(.,\alpha)}{\partial w \partial w^{\top}}$ является H_w -липшицева.
 - 3. $1 \eta L \leq \gamma 1 \eta \mu$
 - 4. $\|\frac{\partial \mathcal{L}_1(\mathbf{w}, \boldsymbol{\alpha})}{\partial \boldsymbol{\alpha} \partial \mathbf{w}^{\top}}\| \leq B$.
 - 5. $\frac{\partial^2 \mathcal{L}_1(., \alpha)}{\partial \alpha \partial \mathbf{w}^\top}$ является M_b -липшицевой.
 - 6. $\left(\frac{\partial^2 \mathcal{L}_1(.,\alpha)}{\partial \alpha \partial \mathbf{w}^{\top}}\right)^{\top} \left(\frac{\partial^2 \mathcal{L}_1(.,\alpha)}{\partial \alpha \partial \mathbf{w}^{\top}}\right) \succeq \kappa \mathbf{I}$.

Ассимптотическая несмещенность гиперградиента

Теорема (Яковлев, 2023)

Пусть выполнены предположения (1-6). Тогда:

$$\|\hat{\nabla}_{\alpha} - \nabla_{\alpha}\|_{2} \leq \frac{2LB\|\mathbf{w}_{0} - \mathbf{w}_{*}\|\sqrt{1 - \eta\mu^{T}}}{\sqrt{1 - \eta\mu^{-1}} - 1} + B\|\frac{\partial \mathcal{L}_{2}(\mathbf{w}_{T}, \alpha)}{\partial \mathbf{w}}\|\cdot \left[\frac{1}{\eta}(\frac{1}{\mu} - \frac{1}{L} + \frac{1}{L}(1 - \eta\mu)^{T}) + 2\eta H_{w}((T - 1)\sqrt{1 - \eta\mu^{T}} - \frac{\sqrt{1 - \eta\mu^{T-1}} - (1 - \eta\mu)^{T}}{\sqrt{1 - \eta\mu^{-1}} - 1})\right].$$

Теорема (Яковлев, 2023)

Пусть $\mathcal{L}_2 = \mathcal{L}_2(\mathbf{w})$. Тогда найдется c > 0:

$$\hat{\nabla}_{\boldsymbol{\alpha}}^{\top} \nabla_{\boldsymbol{\alpha}} \geq c \|\nabla_{\mathbf{w}} \mathcal{L}_{2}(\mathbf{w}_{T}, \boldsymbol{\alpha})\|_{2}^{2}.$$

То есть, выполнено достаточное условие спуска.

Постановка вычислительного эксперимента

- ▶ Цель сравнение качества предложенного подхода с существующими методами подсчета гиперградиента.
- Эксперимент проводится на задаче очистки обучающей выборки. Приводится точность предсказания на отложенной выборке.
- ▶ Сравниваются следующие методы: DrMAD, IFT, Truncated Backpropagation.

Method	Valid. Acc.	# JV Ps	
Truncated backpropagation (Lukethina)	72.5	1 (1)	
DrMAD	69.8	99 (2 $T-1$)	
IFT(9, 5)	70.3	50 ((N+1)K)	
IFT(4, 10)	70.7	$50\;((N+1)K)$	
Proposed ($\gamma=0.99$)	73.5*	50 (<i>T</i>)	

Из таблицы видно, что предложенный метод превосходит существующие методы оптимизации гиперпараметров в терминах точности предсказаний на отложенной выборке, имея сопоставимые вычислительные затраты.

Заключение

- Рассмотрена задача оптимизации гиперпараметров.
- Предложен метод оптимизации гиперпараметров, удовлетворяющий одновременно трем условиям: 1) онлайн оптимизация, 2) отсутствие смещения из-за короткого горизонта, 3) линейная сложность итерации и затраты памяти.
- Продемонстрирована работоспособность предлагаемого решения.