EXPONENTIALS AND LOGARITHMS CHAPTER 6

6.1 An Overview (page 234)

In $10^4 = 10,000$, the exponent 4 is the logarithm of 10,000. The base is b = 10. The logarithm of 10^m times 10^n is m + n. The logarithm of $10^m/10^n$ is m - n. The logarithm of $10,000^x$ is 4x. If $y = b^x$ then $x = \log_b y$. Here x is any number, and y is always positive.

A base change gives $b = a^{\log_{\mathbf{a}} \mathbf{b}}$ and $b^x = a^{x \log_{\mathbf{a}} \mathbf{b}}$. Then 8^5 is 2^{15} . In other words $\log_2 y$ is $\log_2 8$ times $\log_8 y$. When y = 2 it follows that $\log_2 8$ times $\log_8 2$ equals 1.

On ordinary paper the graph of y = mx + b is a straight line. Its slope is m. On semilog paper the graph of $y = Ab^{x}$ is a straight line. Its slope is log b. On log-log paper the graph of $y = Ax^{k}$ is a straight line. Its slope is k.

The slope of $y = b^x$ is $dy/dx = cb^x$, where c depends on b. The number c is the limit as $h \to 0$ of $\frac{b^h-1}{b}$. Since $x = \log_b y$ is the inverse, (dx/dy)(dy/dx) = 1. Knowing $dy/dx = cb^x$ yields $dx/dy = 1/cb^x$. Substituting b^x for y, the slope of $\log_b y$ is 1/cy. With a change of letters, the slope of $\log_b x$ is 1/cx.

1 5; -5; -1;
$$\frac{1}{5}$$
; $\frac{3}{2}$; 2 **5** 1; -10; 80; 1; 4; -1 **7** $n \log_b x$ **9** $\frac{10}{3}$; $\frac{3}{10}$ **13** 10^5 **15** 0; $I_{SF} = 10^7 I_0$; 8.3 + $\log_{10} 4$ **17** $A = 7, b = 2.5$ **19** $A = 4, k = 1.5$ **21** $\frac{1}{cx}$; $\frac{2}{cx}$; $\log 2$ **23** $y - 1 = cx$; $y - 10 = c(x - 1)$ **25** $(.1^{-h} - 1)/(-h) = (10^h - 1)/(-h)$ **27** $y'' = c^2 b^x$; $x'' = -1/cy^2$ **29** Logarithm

- **2** (a) 5 (b) 25 (c) 1 (d) 2 (e) 10^4 (f) 3
- 4 The graph of 2^{-x} goes through $(0,1),(1,\frac{1}{2}),(2,\frac{1}{4})$. The mirror image is $x=\log_{\frac{1}{2}}y$ (y is now horizontal): $\log_{1/2} 2 = -1$ and $\log_{1/2} 4 = -2$.
- **6** (a) 7 (b) 3 (c) $\sqrt{10}$ (d) $\frac{1}{4}$ (e) $\sqrt{8}$ (f) 5
- 8 $\log_b a = (\log_b d)(\log_d a)$ and $(\log_b d)(\log_d c) = \log_b c$. Multiply left sides, multiply right sides, cancel $\log_b d$.
- 10 Number of decimal digits \approx logarithm to base 10. For 2^{1000} this logarithm is $1000 \log_{10} 2 \approx 1000(.3) = 300$.
- 12 $y = \log_{10} x$ is a straight line on "inverse" semilog paper: y axis normal, x axis scaled logarithmically (so x = 1, 10, 100 are equally spaced). Any equation $y = \log_b x + C$ will have a straight line graph.
- 14 $y = 10^{1-x}$ drops from 10 to 1 to .1 with slope -1 on semilog paper; $y = \frac{1}{2}\sqrt{10}^x$ increases with slope $\frac{1}{2}$ from $y = \frac{1}{2}$ at x = 0 to y = 5 at x = 2.
- 16 If 440/second is the frequency of middle A, then the next A is 880/second. The 12 steps from A to A are approximately multiples of $2^{1/12}$. So 7 steps multiplies by $2^{7/12} \approx 1.5$ to give (1.5) (440) = 660. The seventh note from A is E.
- 18 $\log y = 2 \log x$ is a straight line with slope 2; $\log y = \frac{1}{2} \log x$ has slope $\frac{1}{2}$.
- 20 g(f(y)) = y gives $g'(f(y)) \frac{df}{dy} = 1$ or $cg(f(y)) \frac{df}{dy} = 1$ or $cy \frac{df}{dy} = 1$ or $\frac{df}{dy} = \frac{1}{cy}$. 22 The slope of $y = 10^x$ is $\frac{dy}{dx} = c10^x$ (later we find that $c = \ln 10$). At x = 0 and x = 1 the slope is c and 10c. So the tangent lines are y-1=c(x-0) and y-10=10c(x-1).

- **24** h = 1 gives c = 9; h = .1 gives c = 2.6; h = .01 gives c = 2.339; h = .001 gives c = 2.305; the limit is $c = \ln 10 = 2.3026.$
- 26 (The right base is b=e.) With $h=\frac{1}{4}$ we pick the base so that $\frac{b^{1/4}-1}{1/4}=1$ or $b^{1/4}=\left(1+\frac{1}{4}\right)$ or $b = (1 + \frac{1}{4})^4 = \frac{625}{256}$. Generally $b = (1 + h)^{1/h}$ which approaches e as $h \to 0$.
- **28** $c = \lim_{h \to 0} \frac{10^h 1}{h} = \lim_{h \to 0} \frac{10^{2h} 1}{2h} = \frac{1}{2} \lim_{h \to 0} \frac{100^h 1}{h} = \frac{1}{2} C.$

The Exponential e^x 6.2 (page 241)

The number e is approximately 2.78. It is the limit of (1+h) to the power 1/h. This gives 1.01^{100} when h = .01. An equivalent form is $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$.

When the base is b=e, the constant c in Section 6.1 is 1. Therefore the derivative of $y=e^x$ is $dy/dx=e^x$. The derivative of $x = \log_e y$ is dx/dy = 1/y. The slopes at x = 0 and y = 1 are both 1. The notation for $\log_e y$ is $\ln y$, which is the natural logarithm of y.

The constant c in the slope of b^x is $c = \ln b$. The function b^x can be rewritten as $e^{x \ln b}$. Its derivative is $(\ln b)e^{x \ln b} = (\ln b)b^{x}$. The derivative of $e^{u(x)}$ is $e^{u(x)} \frac{du}{dx}$. The derivative of $e^{\sin x}$ is $e^{\sin x}$ cos x. The derivative of e^{cx} brings down a factor c.

The integral of e^x is $e^x + C$. The integral of e^{cx} is $\frac{1}{C}e^{Cx} + C$. The integral of $e^{u(x)}du/dx$ is $e^{u(x)} + C$. In general the integral of $e^{u(x)}$ by itself is impossible to find.

- 1 $49e^{7x}$ 3 $8e^{8x}$ 5 $3^x \ln 3$ 7 $(\frac{2}{3})^x \ln \frac{2}{3}$ 9 $\frac{-e^x}{(1+e^x)^2}$ 11 2 13 xe^x 15 $\frac{4}{(e^x+e^{-x})^2}$ 17 $e^{\sin x} \cos x + e^x \sin e^x$ 19 .1246, .0135, .0014 are close to $\frac{e}{2n}$ 21 $\frac{1}{e}$; $\frac{1}{e}$ 23 $Y(h) = 1 + \frac{1}{10}$; $Y(1) = (1 + \frac{1}{10})^{10} = 2.59$ 25 $(1 + \frac{1}{x})^x < e < e^x < e^{3x/2} < e^{2x} < 10^x < x^x$ 27 $\frac{e^{3x}}{3} + \frac{e^{7x}}{7}$ 29 $x + \frac{2^x}{\ln 2} + \frac{3^x}{\ln 3}$ 31 $\frac{(2e)^x}{\ln (2e)} + 2e^x$ 33 $\frac{e^x^2}{2} \frac{e^{-x^2}}{2}$

- 35 $2e^{x/2} + \frac{e^{2x}}{2}$ 37 e^{-x} drops faster at x = 0 (slope -1); meet at x = 1; $e^{-x^2}/e^{-x} < e^{-9}/e^{-3} < \frac{1}{100}$ for x > 3
- **39** $y e^a = e^a(x a)$; need $-e^a = -ae^a$ or a = 1
- **41** $y' = x^x (\ln x + 1) = 0$ at $x_{\min} = \frac{1}{e}$; $y'' = x^x [(\ln x + 1)^2 + \frac{1}{x}] > 0$
- 43 $\frac{d}{dx}(e^{-x}y) = e^{-x}\frac{dy}{dx} e^{-x}y = 0$ so $e^{-x}y = \text{Constant or } y = Ce^{x}$
- **45** $\frac{e^{2x}}{2}|_{0}^{1} = \frac{e^{2}-1}{2}$ **47** $\frac{2^{x}}{\ln 2}|_{-1}^{1} = \frac{2-\frac{1}{2}}{\ln 2} = \frac{3}{2\ln 2}$ **49** $-e^{-x}|_{0}^{\infty} = 1$ **51** $e^{1+x}|_{0}^{1} = e^{2} e$ **53** $2^{\sin x}|_{0}^{\pi} = 0$
- 55 $\int \frac{du/dx}{e^u} dx = -e^{-u} + C$; $\int (e^u)^2 \frac{du}{dx} dx = \frac{1}{2}e^{2u} + C$ 57 yy' = 1 gives $\frac{1}{2}y^2 = x + C$ or $y = \sqrt{2x + 2C}$
- **59** $\frac{dF}{dx} = (n-x)x^{n-1}/e^x < 0 \text{ for } x > n; F(2x) < \frac{\text{constant}}{e^x} \to 0$ **61** $\frac{6!}{\sqrt{12\pi}} \approx 117; (\frac{6}{e})^6 \approx 116; 7 \text{ digits}$
- **2** $49e^{-7x}$ **4** $8e^{8x}$ **6** $(\ln 3)e^{x \ln 3} = (\ln 3)3^x$ **8** $4(\ln 4)4^{4x}$ **10** $\frac{-1}{(1+x)^2}e^{1/(1+x)}$ **12** $(-\frac{1}{x}+1)e^{1/x}$ **14** x^2e^x
- 16 $x^2 + x^2$ has derivative 4x 18 $x^{-1/x} = e^{-(\ln x)/x}$ has derivative $\left(-\frac{1}{x^2} + \frac{\ln x}{x^2}\right)e^{-(\ln x)/x} = \left(\frac{\ln x 1}{x^2}\right)x^{-1/x}$
- 20 $(1+\frac{1}{n})^{2n} \to e^2 \approx 7.7$ and $(1+\frac{1}{n})^{\sqrt{n}} \to 1$. Note that $(1+\frac{1}{n})^{\sqrt{n}}$ is squeezed between 1 and $e^{1/\sqrt{n}}$ which approaches 1.
- 22 $(1.001)^{1000} = 2.717$ and $(1.0001)^{10000} = 2.7181$ have 3 and 4 correct decimals. $(1.00001)^{100000} = 2.71827$ has one more correct decimal. The difference between $(1+\frac{1}{n})^n$ and e is proportional to $\frac{1}{n}$.

- 24 $y = e^{-X}$ solves $\frac{dy}{dx} = -y$. The difference equation $Y(x + \frac{1}{4}) = Y(x) \frac{1}{4}Y(x)$ with Y(0) = 1 gives $Y(\frac{1}{4}) = \frac{3}{4}$ and $Y(1) = (\frac{3}{4})^{\frac{4}{3}}$. (Compare $e^{-1} = .37$ with $(\frac{3}{4})^4 = .32$. See the end of Section 6.6.)
- 26 $\sqrt{e^x}$ is the same as $e^{x/2}$. Its graph at x=-2,0,2 has the same heights $\frac{1}{e},1,e$ as the graph of e^x at x = -1, 0, 1.
- 28 $(e^{3x})(e^{7x}) = e^{10x}$ which is the derivative of $\frac{1}{10}e^{10x}$
- 30 $2^{-x} = e^{-x \ln 2}$ which has antiderivative $\frac{-1}{\ln 2} e^{-x \ln 2} = \frac{-1}{\ln 2} 2^{-x}$. 32 $e^{-x} + x^{-e}$ has antiderivative $-e^{-x} + \frac{x^{1-e}}{1-e}$ 34 $-e^{\cos x} + e^{\sin x}$ 36 $xe^{x} e^{x}$
- 38 e^x meets x^x at x = e. Their slopes are e^x and $x^x(1 + \ln x)$ by Example 6. At x = e those slopes are e^e and $2e^{\epsilon}$. The ratio $\frac{x^{2}}{\epsilon^{2}} = (\frac{x}{\epsilon})^{x}$ approaches infinity.
- 40 At x=0 equality holds: $e^0=1+0$ and $e^{-0}=1-0$. (a) Beyond x=0 the slope of e^x exceeds the slope of 1+x (this means $e^x>1$). So e^x increases faster than 1+x. (b) Beyond x=0 the slope of e^{-x} is larger than the slope of 1-x (this means $-e^{-x} > -1$). Since they start together, e^{-x} is larger than 1-x.
- 42 $x^{1/x} = e^{(\ln x)/x}$ has slope $e^{(\ln x)/x}(\frac{1}{x^2} \frac{\ln x}{x^2}) = x^{1/x}(\frac{1-\ln x}{x^2})$. This slope is zero at x = e, when $\ln x = 1$. The second derivative is negative so the maximum of $x^{1/x}$ is $e^{1/e}$. Check: $\frac{d}{dx}e^{(\ln x)/x}(\frac{1-\ln x}{x^2})$ $e^{(\ln x)/x}[(\frac{1-\ln x}{x^2})^2 + \frac{(-2-1+2\ln x)}{x^3}] = -\frac{1}{e^3}e^{1/e}$ at x = e.
- 44 $x^e = e^x$ at x = e. This is the only point where $x^e e^{-x} = 1$ because the derivative is $x^e(-e^{-x}) + ex^{e-1}e^{-x} = 1$ $(\frac{e}{x}-1)x^ee^{-x}$. This derivative is positive for x < e and negative for x > e. So the function x^ee^{-x} increases to 1 at x = e and then decreases: it never equals 1 again.
- **46** $\int_0^{\pi} \sin x \, e^{\cos x} dx = [-e^{\cos x}]_0^{\pi} = -e^{-1} + e.$
- 48 $\int_{-1}^{1} 2^{-x} dx = \text{(by Problem 30)} \left[\frac{-1}{\ln 2} 2^{-x} \right]_{-1}^{1} = \frac{-1}{\ln 2} \left(\frac{1}{2} 2 \right) = \frac{3}{2 \ln 2}.$ 50 $\int_{0}^{\infty} x e^{-x^{2}} dx = \int_{0}^{\infty} e^{-u} \frac{du}{2} = \left[-\frac{e^{-u}}{2} \right]_{0}^{\infty} = \frac{1}{2}.$ 52 $\int_{0}^{1} e^{1+x^{2}} x dx = \left[\frac{1}{2} e^{1+x^{2}} \right]_{0}^{1} = \frac{1}{2} (e^{2} e)$
- $54 \int_0^1 (1 e^x)^{10} e^x dx = \left[-\frac{(1 e^x)^{11}}{11} \right]_0^1 = -\frac{(1 e)^{11}}{11}$
- 56 y'(x) = 5y(x) is solved by $y = Ae^{5x}$ (A is any constant). Choose A = 2 so that $y(x) = 2e^{5x}$ has y(0) = 2.
- 58 The asymptotes of $(1+\frac{1}{x})^x = (\frac{x+1}{x})^x = (\frac{x}{x+1})^{-x}$ are x=-1 (from the last formula) and y=e (from the first formula).
- 60 The maximum of x^6e^{-x} occurs when its derivative $(6x^5-x^6)e^{-x}$ is zero. Then x=6 (note that x=0is a minimum).
- **62** $\lim \frac{x^6}{a^x} = \lim \frac{6x^5}{a^x} = \lim \frac{30x^4}{a^x} = \lim \frac{120x^3}{a^x} = \lim \frac{360x^2}{a^x} = \lim \frac{720x}{a^x} = \lim \frac{720}{a^x} = 0.$

6.3 Growth and Decay in Science and Economics (page 250)

If y'=cy then $y(t)=y_0e^{ct}$. If dy/dt=7y and $y_0=4$ then $y(t)=4e^{7t}$. This solution reaches 8 at $t=\frac{\ln 2}{7}$. If the doubling time is T then $c = \frac{\ln 2}{T}$. If y' = 3y and y(1) = 9 then y_0 was $9e^{-3}$. When c is negative, the solution approaches zero as $t \to \infty$.

The constant solution to dy/dt = y + 6 is y = -6. The general solution is $y = Ae^t - 6$. If $y_0 = 4$ then A = 10. The solution of dy/dt = cy + s starting from y_0 is $y = Ae^{ct} + B = (y_0 + \frac{s}{c})e^{ct} - \frac{s}{c}$. The output from the source is $\frac{\mathbf{s}}{\mathbf{c}}(\mathbf{e^{ct}} - \mathbf{1})$. An input at time T grows by the factor $\mathbf{e^{c(t-T)}}$ at time t.

At c = 10%, the interest in time dt is dy = .01 y dt. This equation yields $y(t) = y_0 e^{.01t}$. With a source term instead of y_0 , a continuous deposit of s = 4000/year yields y = 40,000(e-1) after ten years. The deposit required to produce 10,000 in 10 years is $s = yc/(e^{ct} - 1) = 1000/(e - 1)$. An income of 4000/year forever (!) comes from $y_0 = 40,000$. The deposit to give 4000/year for 20 years is $y_0 = 40,000(1 - e^{-2})$. The payment rate s to clear a loan of 10,000 in 10 years is 1000e/(e - 1) per year.

The solution to y' = -3y + s approaches $y_{\infty} = s/3$.

1
$$t^2 + y_0$$
 3 y_0e^{2t} 5 $10 e^{4t}$; $t = \frac{\ln 10}{4}$ 7 $\frac{1}{4}e^{4t} + 9.75$; $t = \frac{\ln 361}{4}$ 11 $c = \frac{\ln 2}{2}$; $t = \frac{\ln 10}{c}$ 13 $\frac{5568}{-.7} \ln(\frac{1}{5})$ 15 $c = \frac{\ln 2}{20}$; $t = \frac{1}{c} \ln(\frac{8}{5})$ 17 $t = \frac{\ln(1/240)}{\ln(.98)}$ 19 $e^c = 3$ so $y_0 = e^{-3c}1000 = \frac{1000}{27}$ 21 $p = 1013 e^{ch}$; $50 = 1013 e^{20c}$; $c = \frac{1}{20} \ln(\frac{50}{1013})$; $p(10) = 1013 e^{10c} = 1013 \sqrt{\frac{50}{1013}} = \sqrt{(1013)(50)}$ 23 $c = \frac{\ln 2}{3}$; $(\frac{1}{2})^3 = \frac{1}{8}$ 25 $y = y_0 - at$ reaches y_1 at $t = \frac{y_0 - y_1}{a}$; then $y = Ae^{-at/y_1}$ 27 F; F; T; T 29 $A = \frac{1}{3}$, $B = -\frac{1}{3}$ 31 $e^t - 1$ 33 $1 - e^{-t}$ 35 6 ; $6 + Ae^{-2t}$; $6 - 6e^{-2t}$, $6 + 4e^{-2t}$; 6 37 4 ; $4 - \frac{1}{e}$; 4 39 ye^{-t} ; $y(t) = te^t$ 41 $A = 1$, $B = -1$, $C = -1$ 43 $e^{.0725} > .075$ 45 $s(e-1)$; $\frac{s(e-1)}{e}$ 47 $(1.02)(1.03) \rightarrow 5.06\%$; 5% by Problem 27 49 $20,000 e^{(20-T)(.5)} = 34,400$ (it grows for $20 - T$ years) 51 $s = -cy_0e^{ct}/(e^{ct} - 1) = -(.01)(1000)e^{.60}/(e^{.60} - 1)$ 53 $y_0 = \frac{100}{.005}(1 - e^{-.005(48)})$ 55 $e^{4c} = 1.20$ so $c = \frac{\ln 1.20}{4}$ 57 $24e^{36.5} = ?$ 59 To $-\infty$; constant; to $+\infty$ 61 $\frac{dY}{dT} = 60cY$; $\frac{dY}{dT} = 60(-Y + 5)$; still $Y_\infty = 5$ 63 $y = 60e^{ct} + 20$, $60 = 60e^{12c} + 20$, $c = \frac{1}{12} \ln(\frac{40}{60})$; $100 = 60e^{ct} + 20$ at $t = \frac{1}{c} \ln(\frac{80}{60})$ 65 0

- $2 \frac{dy}{dt} = -t$ gives dy = -t dt and $y = -\frac{1}{2}t^2 + C$. Then $y = -\frac{1}{2}t^2 + 1$ and $y = -\frac{1}{2}t^2 1$ start from 1 and -1.
- 4 $\frac{dy}{dt} = -y$ gives $\frac{dy}{y} = -dt$ and $\ln y = -t + C$ and $y = Ae^{-t}$ (where $A = e^{C}$). (Question: How does a negative y appear, since e^{C} is positive? Answer: $\int \frac{dy}{y} = \ln |y|$ leads to $|y| = Ae^{-t}$ and allows y < 0.) To start from 1 and -1 choose $y = e^{-t}$ and $y = -e^{-t}$.
- 6 $\frac{dy}{dt} = 4t$ gives dy = 4t dt and $y = 2t^2 + C = 2t^2 + 10$. This equals 100 when $2t^2 = 90$ or $t = \sqrt{45}$.
- 8 $\frac{dy}{dt} = e^{-4t}$ has $y(t) = \frac{e^{-4t}}{-4} + C = \frac{e^{-4t}}{-4} + 10\frac{1}{4}$. This only increases from 10 to $10\frac{1}{4}$ as $t \to \infty$. Before t = 0 we find y(t) = 1 when $\frac{e^{-4t}}{4} = 9\frac{1}{4}$ or $e^{-4t} = 37$ or $t = \frac{\ln 37}{-4}$.
- 10 The solutions of y' = y 1 (which is also (y 1)' = y 1) are $y 1 = Ae^x$ or $y = Ae^x + 1$. Figure 6.7b is raised by 1 unit. (The solution that was $y = e^x$ is lifted to $y = e^x + 1$. The solution that was y = 0 is lifted to y = 1.)
- 12 To multiply again by 10 takes ten more hours, a total of 20 hours. If $e^{10c} = 10$ (and $e^{20c} = 100$) then $10c = \ln 10$ and $c = \frac{\ln 10}{10} \approx .23$.
- 14 Following Example 2, the ratio e^{ct} would be 90% or .9. Then $t = \frac{\ln .9}{c} = (\frac{\ln .9}{\ln \frac{1}{2}})5568 = (\ln 1.8)5568 = 3273$ years. So the material is dated earlier than the year 0.
- 16 $8e^{.01t} = 6e^{.014t}$ gives $\frac{8}{6} = e^{.004t}$ and $t = \frac{1}{.004} \ln \frac{8}{6} = 250 \ln \frac{4}{3} = 72$ years.
- 18 At t = 3 days, $e^{3c} = 40\% = .4$ and $c = \frac{\ln .4}{3} = -.3$. At T days, 20% remember: $e^{-.3T} = 20\% = .2$ at $T = \frac{\ln .2}{(-.3)} = 5.36$ days. (Check after 6 days: $(.4)^2 = 16\%$ will remember.)
- 20 If y is divided by 10 in 4 time units, it will be divided by 10 again in 4 more units. Thus y = 1 at t = 12. Returning to t = 0 multiplies by 10 so $y_0 = 1000$.
- 22 Exponential decay is $y = Ae^{ct}$. Then y(0) = A and $y(2t) = Ae^{2ct}$. The square root of $y(0)y(2t) = A^2e^{2ct}$ is $y(t) = Ae^{ct}$. One way to find $y(3t) = Ae^{3ct}$ is $y(0)(\frac{y(2t)}{y(0)})^{3/2}$. (A better question is to find $y(4t) = Ae^{4ct} = y(0)(\frac{y(2t)}{y(0)})^2 = \frac{(y(2t))^2}{y(0)}$.)

- **24** Go from 4 mg back down to 1 mg in T hours. Then $e^{-.01T} = \frac{1}{4}$ and $-.01T = \ln \frac{1}{4}$ and $T = \frac{\ln \frac{1}{4}}{-.01} = 139$ hours (not so realistic).
- 26 The second-order equation is $(\frac{d}{dt}-c)(\frac{d}{dt}-C)y = \frac{d^2y}{dt^2}-(c+C)\frac{dy}{dt}+cCy=0$. Check the solution $y=Ae^{ct}+Be^{Ct}$ by substituting into the equation: $c^2Ae^{ct} + C^2Be^{Ct} - (c+C)(cAe^{ct} + CBe^{Ct}) + cC(Ae^{ct} + Be^{Ct})$ does equal zero.
- 28 Given $mv = mv v\Delta m + m\Delta v (\Delta m)\Delta v + \Delta m(v 7)$; cancel terms to leave $m\Delta v (\Delta m)\Delta v = 7\Delta m$; divide by Δm and approach the limit $\frac{d\mathbf{v}}{d\mathbf{m}} = 7$. Then $v = 7 \ln m + C$. At t = 0 this is $20 = 7 \ln 4 + C$ so that $v = 7 \ln m + 20 - 7 \ln 4 = 7 \ln \frac{m}{4} + 20$.
- 30 Substitute $y = Ae^{-t} + B$ into y' = 8 y to find $-Ae^{-t} = 8 Ae^{-t} B$. Then $\mathbf{B} = 8$. At the start $y_0 = A + B = A + 8$ so $A = y_0 - 8$. Then $y = (y_0 - 8)e^{-t} + 8$ or $y = y_0e^{-t} + 8(1 - e^{-t})$.
- **32** Apply formula (8) to $\frac{dy}{dt} = y 1$ with $y_0 = 0$. Then $y(t) = \frac{-1}{1}(e^t 1) = 1 e^t$.
- **34** Formula (8) applied to $\frac{dy}{dt} = -y 1$ with $y_0 = 0$ gives $y = \frac{-1}{-1}(e^{-t} 1) = e^{-t} 1$.
- **36** (a) $\frac{dy}{dt} = 3y + 6$ gives $y \to \infty$ (b) $\frac{dy}{dt} = -3y + 6$ gives $y \to 2$ (c) $\frac{dy}{dt} = -3y 6$ gives $y \to -2$ (d) $\frac{dy}{dt} = 3y - 6$ gives $y \to -\infty$.
- 38 Solve $y' = y + e^t$ by adding inputs at all times T times growth factors $e^{t-T}: y(t) = \int_0^t e^{t-T} e^T dT =$ $\int_0^t e^t dT = te^t$. Substitute in the equation to check: $(te^t)' = te^t + e^t$.
- 40 Solve y' + y = 1 by multiplying to give $e^t y' + e^t y = e^t$. The left side is the derivative of ye^t (by the product rule). Integrate both sides: $ye^t - y_0e^0 = e^t - e^0$ or $ye^t = y_0 + e^t - 1$ or $y = y_0e^{-t} + 1 - e^{-t}$.
- 42 \$1000 changes by (\$1000) (-.04dt), a decrease of 40dt dollars in time dt. The printing rate should be s = 40.
- 44 First answer: With continuous interest at c = .09 the multiplier after a year is $e^{.09} = 1.094$ and the effective rate is 9.4%. Second answer: The continuous rate c that gives an effective annual rate of 9% is $e^c = 1.09$ or $c = \ln 1.09 = .086$ or 8.6%.
- 46 y_0 grows to $y_0e^{(.1)(20)} = 50,000$ so the grandparent gives $y_0 = 50,000e^{-2} \approx 6767 . A continuous deposit s grows to $\frac{s}{.1}(e^{(.1)(20}-1)=50,000$ so the parent deposits $s=\frac{(.1)50,000}{e^2-1}=\783 per year. Saving s = \$1000/yr grows to $\frac{1000}{.1}(e^{.1t} - 1) = 50,000$ when $e^{.1t} = 1 + \frac{5000}{1000}$ or $.1t = \ln 6$ or t = 17.9 years.
- 48 The deposit of 4dT grows with factor c from time T to time t, and reaches $e^{c(t-T)}4dT$. With t=2 add deposits from T=0 to T=1: $\int_0^1 e^{c(2-T)} 4dT = \left[\frac{4e^{c(2-T)}}{-c}\right]_0^1 = \frac{4e^{C} - 4e^{2C}}{-c}.$ 50 $y(t) = (5000 - \frac{500}{.08})e^{.08t} + \frac{500}{.08}$ is zero when $e^{.08t} = \frac{-\frac{500}{5000}}{5000 - \frac{500}{.08}} = 5$. Then $.08t = \ln 5$ and $t = \frac{\ln 5}{.08} \approx 20$ years.
- (Remember the deposit grows until it is withdrawn.)
- **52** After 365 days the value is $y = e^{(.01)365} = e^{3.65} = 38 .
- 54 (a) Income = expense when $I_0e^{2ct}=E_0e^{ct}$ or $e^{ct}=\frac{E_0}{I_0}$ or $t=\frac{\ln(E_0/I_0)}{c}$. (b) Integrate $E_0e^{ct}-I_0e^{2ct}$ until $e^{ct} = \frac{E_0}{I_0}$. At the upper limit the integral is $\frac{E_0}{c}e^{ct} - \frac{I_0}{2c}e^{2ct} = \frac{1}{c}(\frac{E_0^2}{I_0} - \frac{I_0}{2}\frac{E_0^2}{I_0^2}) = \frac{E_0^2}{2cI_0}$. Lower limit is t=0 so subtract $\frac{E_0}{c}-\frac{I_0}{2c}$: Borrow $\frac{E_0^2}{2cI_0}-\frac{E_0}{c}+\frac{I_0}{2c}$.
- 56 After 10 years (halfway through the mortgage) the variable rate .09 + .001(10) equals the fixed rate 10% = .1. Since the variable was lower early, and therefore longer, the variable rate is preferred.
- 58 If $\frac{dy}{dt} = -y + 7$ then $\frac{dy}{dt}$ is zero at $y_{\infty} = 7$ (this is $-\frac{s}{c} = \frac{7}{1}$). The derivative of $y y_{\infty}$ is $\frac{dy}{dt}$, so the derivative of y-7 is -(y-7). The decay rate is c=-1, and $y-7=e^{-t}(y_0-7)$.
- 60 All solutions to $\frac{dy}{dt} = c(y-12)$ converge to y = 12 provided c is negative.
- **62** (a) False because $(y_1 + y_2)' = cy_1 + s + cy_2 + s$. We have 2s not s. (b) True because $(\frac{1}{2}y_1 + \frac{1}{2}y_2)' = cy_1 + s + cy_2 + s$. $\frac{1}{2}cy_1 + \frac{1}{2}s + \frac{1}{2}cy_2 + \frac{1}{2}s$. (c) False because the derivative of y' = cy + s is (y')' = c(y') and s is gone.
- **64** The solution is $y = Ae^{ct} + B$. Substitute t = 0, 1, 2 and move B to the left side: 100 B = A, $90 - B = Ae^{c}$, $84 - B = Ae^{2c}$. Then (100 - B)(84 - B) = (90 - B)(90 - B); both sides are $A^{2}e^{2c}$. Solve for $B: 8400 - 184B + B^2 = 8100 - 180B + B^2$ or 300 = 4B. The steady state is B = 75. (This problem is a good challenge and was meant to have a star.)

66 (a) The white coffee cools to $y_{\infty} + (y_0 - y_{\infty})e^{ct} = 20 + 40e^{ct}$. (b) The black coffee cools to $20 + 50e^{ct}$. The milk warms to $20 - 10e^{ct}$. The mixture $\frac{5(\text{black coffee}) + 1(\text{milk})}{6}$ has $20 + \frac{250 - 10}{6}e^{ct} = 20 + 40e^{ct}$. So it doesn't matter when you add the milk!

6.4 Logarithms (page 258)

The natural logarithm of x is $\int_1^x \frac{d\mathbf{t}}{\mathbf{t}}$ (or $\int_1^\mathbf{x} \frac{d\mathbf{x}}{\mathbf{x}}$). This definition leads to $\ln xy = \ln \mathbf{x} + \ln \mathbf{y}$ and $\ln x^n = n \ln \mathbf{x}$. Then e is the number whose logarithm (area under 1/x curve) is 1. Similarly e^x is now defined as the number whose natural logarithm is \mathbf{x} . As $x \to \infty$, $\ln x$ approaches infinity. But the ratio $(\ln x)/\sqrt{x}$ approaches zero. The domain and range of $\ln x$ are $0 < \mathbf{x} < \infty$, $-\infty < \ln \mathbf{x} < \infty$.

The derivative of $\ln x$ is $\frac{1}{x}$. The derivative of $\ln(1+x)$ is $\frac{1}{1+x}$. The tangent approximation to $\ln(1+x)$ at x=0 is x. The quadratic approximation is $x-\frac{1}{2}x^2$. The quadratic approximation to e^x is $1+x+\frac{1}{2}x^2$.

The derivative of $\ln u(x)$ by the chain rule is $\frac{1}{\mathbf{u}(\mathbf{x})} \frac{\mathbf{d}\mathbf{u}}{\mathbf{d}\mathbf{x}}$. Thus $(\ln \cos x)' = -\frac{\sin x}{\cos x} = -\tan x$. An antiderivative of $\tan x$ is $-\ln \cos x$. The product $p = xe^{5x}$ has $\ln p = 5x + \ln x$. The derivative of this equation is $\mathbf{p}'/\mathbf{p} = \mathbf{5} + \frac{1}{x}$. Multiplying by p gives $p' = \mathbf{x}e^{5x}(\mathbf{5} + \frac{1}{x}) = \mathbf{5}\mathbf{x}e^{5x} + e^{5x}$, which is **LD** or logarithmic differentiation.

The integral of u'(x)/u(x) is $\ln u(x)$. The integral of $2x/(x^2+4)$ is $\ln(x^2+4)$. The integral of 1/cx is $\frac{\ln x}{c}$. The integral of 1/(ct+s) is $\frac{\ln (ct+s)}{c}$. The integral of $1/\cos x$, after a trick, is $\ln (\sec x + \tan x)$. We should write $\ln |x|$ for the antiderivative of 1/x, since this allows x < 0. Similarly $\int du/u$ should be written $\ln |u|$.

- 1 $\frac{1}{x}$ 3 $\frac{-1}{x(\ln x)^2}$ 5 $\ln x$ 7 $\frac{\cos x}{\sin x} = \cot x$ 9 $\frac{7}{x}$ 11 $\frac{1}{3} \ln t + C$ 13 $\ln \frac{4}{3}$ 15 $\frac{1}{2} \ln 5$ 17 $-\ln(\ln 2)$ 19 $\ln(\sin x) + C$ 21 $-\frac{1}{3} \ln(\cos 3x) + C$ 23 $\frac{1}{3} (\ln x)^3 + C$ 27 $\ln y = \frac{1}{2} \ln(x^2 + 1)$; $\frac{dy}{dx} = \frac{x}{\sqrt{x^2 + 1}}$ 29 $\frac{dy}{dx} = e^{\sin x} \cos x$ 31 $\frac{dy}{dx} = e^x e^{e^x}$ 33 $\ln y = e^x \ln x$; $\frac{dy}{dx} = ye^x (\ln x + \frac{1}{x})$ 35 $\ln y = -1$ so $y = \frac{1}{e}$, $\frac{dy}{dx} = 0$ 37 0 39 $-\frac{1}{x}$ 41 sec x 47 .1; .095; .095310179 49 -.01; -.01005; -.010050335 51 l'Hôpital: 1 53 $\frac{1}{\ln b}$ 55 3 $-2 \ln 2$ 57 Rectangular area $\frac{1}{2} + \dots + \frac{1}{n} < \int_1^n \frac{dt}{t} = \ln n$ 59 Maximum at e 61 0 63 $\log_{10} e$ or $\frac{1}{\ln 10}$ 65 1 x; $1 + x \ln 2$ 67 Fraction is y = 1 when $\ln(T + 2) \ln 2 = 1$ or T = 2e 2 69 $y' = \frac{2}{(t+2)^2} \rightarrow y = 1 \frac{2}{t+2}$ never equals 171 $\ln p = x \ln 2$; LD $2^x \ln 2$; ED $p = e^{x \ln 2}$, $p' = \ln 2 e^{x \ln 2}$ 75 $2^4 = 4^2$; $y \ln x = x \ln y \rightarrow \frac{\ln x}{x} = \frac{\ln y}{y}$; $\frac{\ln x}{x}$ decreases after x = e, and the only integers before e are 1 and 2.
- $2 \frac{2}{2x+1} 4 \frac{x(\frac{1}{x}) (\ln x)}{x^2} = \frac{1 \ln x}{x^2} 6 \text{ Use } (\log_e 10)(\log_{10} x) = \log_e x. \text{ Then } \frac{d}{dx}(\log_{10} x) = \frac{1}{\log_e 10} \cdot \frac{1}{x} = \frac{1}{x \ln 10}.$ $8 y = \ln u \text{ so } \frac{dy}{dx} = \frac{du/dx}{u} = \frac{1/x}{\ln x} = \frac{1}{x \ln x}. \qquad 10 \ y = 7 \ln 4x = 7 \ln 4 + 7 \ln x \text{ so } \frac{dy}{dx} = \frac{7}{x}.$ $12 \ln(1+x) \text{ from } \int \frac{du}{u}. \qquad 14 \frac{1}{2} \ln(3+2t)|_0^1 = \frac{1}{2}(\ln 5 \ln 3) = \frac{1}{2}\ln \frac{5}{3}.$ $16 \ y = \frac{x^3}{x^2+1} \text{ equals } x \frac{x}{x^2+1}. \text{ Its integral is } [\frac{1}{2}x^2 \frac{1}{2}\ln(x^2+1)]_0^2 = 2 \frac{1}{2}\ln 5.$ $18 \int \frac{du}{u^2} = -\frac{1}{u} = [-\frac{1}{\ln x}]_0^e = -1 + \frac{1}{\ln 2}.$

- $20 \int \frac{\sin x}{\cos x} dx = \int \frac{-du}{u} = -\ln u = -\ln(\cos x)|_0^{\pi/4} = -\ln \frac{1}{\sqrt{2}} + 0 = \frac{1}{2}\ln 2.$
- 22 $\int \frac{\cos 3x}{\sin 3x} dx = \frac{1}{3} \ln(\sin 3x) + C.$
- 24 Set $u = \ln \ln x$. By the chain rule $\frac{du}{dx} = \frac{1}{\ln x} \frac{1}{x}$. Our integral is $\int \frac{du}{u} = \ln u = \ln (\ln(\ln x)) + C$.
- 26 The graph starts at $-\infty$ when x=0. It reaches zero when $x=\frac{\pi}{2}$ and goes down again. At $x=\pi$ it stops.
- 28 $\ln y = \frac{1}{2} \ln(x^2 + 1) + \frac{1}{2} \ln(x^2 1)$. Then $\frac{1}{y} \frac{dy}{dx} = \frac{x}{x^2 + 1} + \frac{x}{x^2 1} = \frac{2x^3}{x^4 1}$. Then $\frac{dy}{dx} = \frac{2x^3y}{x^4 1} = \frac{2x^3}{\sqrt{x^4 1}}$.
- 30 $\ln y = -\frac{1}{x} \ln x$ and $\frac{1}{y} \frac{dy}{dx} = \frac{\ln x 1}{x^2}$ so $\frac{dy}{dx} = (\frac{\ln x 1}{x^2}) x^{-1/x}$.
- 32 $\ln y = e \ln x$ and $\frac{1}{u} \frac{dy}{dx} = \frac{e}{x}$ so $\frac{dy}{dx} = \frac{e}{x} x^e = ex^{e-1}$
- **34** $\ln y = \frac{1}{2} \ln x + \frac{1}{3} \ln x + \frac{1}{6} \ln x = \ln x$ and eventually $\frac{dy}{dx} = 1$.
- 36 $\ln y = -\ln x$ so $\frac{1}{y} \frac{dy}{dx} = \frac{-1}{x}$ and $\frac{dy}{dx} = -\frac{e^{-\ln x}}{x}$. Alternatively we have $y = \frac{1}{x}$ and $\frac{dy}{dx} = -\frac{1}{x^2}$.
- 38 $[\ln x]_1^{e^{\pi}} + [\ln |x|]_{-2}^{-1} = (\pi 0) + (0 \ln |-2|) = \pi \ln 2.$
- 40 $\frac{d}{dx} \ln x = \frac{1}{x}$. Alternatively use $\frac{1}{x^2} \frac{d}{dx}(x^2) \frac{1}{x} \frac{d}{dx}(x) = \frac{1}{x}$.
- 42 This is $\int \frac{du}{u}$ with $u = \sec x + \tan x$ so the integral is $\ln (\sec x + \tan x)$. See Problem 41!
- $44 \frac{d}{dx} (\ln(x-a) \ln(x+a)) = \frac{1}{x-a} \frac{1}{x+a} = \frac{(x+a) (x-a)}{(x-a)(x+a)} = \frac{2a}{x^2-a^2}.$
- 46 Misprint! $\frac{1+\frac{x}{\sqrt{x^2+a^2}}}{x+\sqrt{x^2+a^2}} = \frac{1}{\sqrt{x^2+a^2}} \frac{\sqrt{x^2+a^2}+x}{x+\sqrt{x^2+a^2}} = \frac{1}{\sqrt{x^2+a^2}}$. 48 Linear: $e^{\cdot 1} \approx 1 + .1 = 1.1$. Quadratic: $e^{\cdot 1} \approx 1 + .1 + \frac{1}{2}(.1)^2 = 1.105$. Calculator: $e^{\cdot 1} = 1.105170918$.
- **50** Linear: $e^2 \approx 1 + 2 = 3$. Quadratic: $e^2 \approx 1 + 2 + \frac{1}{2}(2^2) = 5$. Calculator: $e^2 = 7.389$.
- **52** Use l'Hôpital's Rule: $\lim_{x\to 0} \frac{e^x}{1} = 1$.
- 54 Use l'Hôpital's Rule: $\lim_{x\to 0} \frac{b^x \ln b}{1} = \ln b$. We have redone the derivative of b^x at x=0.
- **56** Upper rectangles $\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} \approx .7595$. Lower rectangles: $\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \approx .6345$. Exact area $\ln 2 \approx .693$.
- 58 $\frac{1}{t}$ is smaller than $\frac{1}{\sqrt{t}}$ when 1 < t < x. Therefore $\int_1^x \frac{dt}{t} < \int_1^x \frac{dt}{\sqrt{t}}$ or $\ln x < 2\sqrt{x} 2$. (In Problem 59 this leads to $\frac{\ln x}{x} \to 0$. Another approach is from $\frac{x}{e^x} \to 0$ in Problem 6.2.59. If x is much smaller than e^x then $\ln x$ is much smaller than x.)
- 60 From $\frac{\ln x}{x} \to 0$ we know $\frac{\ln x^{1/n}}{x^{1/n}} \to 0$. This is $\frac{1}{n} \frac{\ln x}{x^{1/n}} \to 0$. Since n is fixed we have $\frac{\ln x}{x^{1/n}} \to 0$.
- 62 $\frac{1}{x} \ln \frac{1}{x} = -\frac{\ln x}{x} \to 0$ as $x \to \infty$. This means $y \ln y \to 0$ as $y = \frac{1}{x} \to 0$. (Emphasize: The factor $y \to 0$ is "stronger" than the factor $\ln y \to -\infty$.)
- 64 From $\int_1^x t^{h-1} dt = \frac{x^h 1}{h}$ we find $\int_1^x t^{-1} dt = \lim_{h \to 0} \frac{x^h 1}{h}$. The left side is recognized as $\ln x$. (The right side is the "mysterious constant c" when the base is b=x. We discovered earlier that $c=\ln b$.)
- **66** $.01 \frac{1}{2}(.01)^2 + \frac{1}{3}(.01)^3 = .00995033 \cdots$ Also $\ln 1.02 \approx .02 \frac{1}{2}(.02)^2 + \frac{1}{3}(.02)^3 = .01980266 \cdots$
- 68 To emphasize: If the ant didn't crawl, the fraction y would be constant (the ant would move as the band stretches). By crawling v dt the fraction y increases by $\frac{v}{\text{band length}}$. So $\frac{dy}{dt} = \frac{v}{\ell} = \frac{1}{8t+2}$. Then $y = \frac{1}{8}\ln(8t+2) + C = \frac{1}{8}(\ln(8t+2) - \ln 2)$. This equals 1 when $8 = \ln \frac{8t+2}{2}$ or $4t+1 = e^8$ or $t = \frac{1}{4}(e^8 - 1)$
- 70 LD: $\ln p = x \ln x$ so $\frac{1}{p} \frac{dp}{dx} = 1 + \ln x$ and $\frac{dp}{dx} = p(1 + \ln x) = x^x(1 + \ln x)$. Now find the same answer by **ED:** $\frac{d}{dx}(e^{x \ln x}) = e^{x \ln x} \frac{d}{dx}(x \ln x) = x^x(1 + \ln x).$
- 72 To compute $\int_1^2 \frac{dx}{x} = \ln 2$ with error $\approx 10^{-5}$ the trapezoidal rule needs $\Delta x \approx 10^{-2}$. Six Simpson steps: $S_6 = \frac{1}{36} \left[\frac{1}{1} + \frac{4}{13/12} + \frac{2}{7/6} + \frac{4}{15/12} + \frac{2}{8/6} + \frac{4}{17/12} + \frac{2}{9/6} + \frac{4}{19/12} + \frac{2}{10/6} + \frac{4}{21/12} + \frac{2}{11/6} + \frac{4}{23/12} + \frac{1}{12/6} \right] = .693149 \text{ compared to } \ln 2 = .693147. \text{ Predicted error } \frac{1}{2880} \left(\frac{1}{6} \right)^4 \left(6 - \frac{6}{2^4} \right) = 1.6 \times 10^{-6}, \text{ actual error } 1.5 \times 10^{-6}.$
- 74 $\frac{1}{\ln 90,000}$ = .0877 says that about 877 of the next 10,000 numbers are prime: close to the actual count 879.
- 76 $\frac{\ln x}{x} = \frac{t \ln(\frac{t+1}{t})}{(\frac{t+1}{t})^t}$. This equals $\frac{\ln y}{y} = \frac{(t+1)\ln(\frac{t+1}{t})}{(\frac{t+1}{t})^{t+1}} = \frac{t+1}{\frac{t+1}{t}} \frac{\ln(\frac{t+1}{t})}{(\frac{t+1}{t})^t}$. The curve $x^y = y^x$ is asymptotic to x = 1, for t near zero. It approaches x = e, y = e as $t \to \infty$. It is symmetric across the 45°

line (no change by reversing x and y), roughly like the hyperbola $(x-1)(y-1)=(e-1)^2$.

6.5 Separable Equations Including the Logistic Equation (page 266)

The equations dy/dt = cy and dy/dt = cy + s and dy/dt = u(y)v(t) are called separable because we can separate y from t. Integration of $\int dy/y = \int c dt$ gives $\ln y = \text{ct} + \text{constant}$. Integration of $\int dy/(y + s/c) = \int c dt$ gives $\ln(y + \frac{s}{c}) = \text{ct} + C$. The equation dy/dx = -x/y leads to $\int y dy = -\int x dx$. Then $y^2 + x^2 = \text{constant}$ and the solution stays on a circle.

The logistic equation is $dy/dt = cy - by^2$. The new term $-by^2$ represents competition when cy represents growth. Separation gives $\int dy/(cy - by^2) = \int dt$, and the y-integral is 1/c times $\ln \frac{y}{c-by}$. Substituting y_0 at t=0 and taking exponentials produces $y/(c-by) = e^{ct}y_0/(c-by_0)$. As $t\to\infty$, y approaches $\frac{c}{b}$. That is the steady state where $cy - by^2 = 0$. The graph of y looks like an S, because it has an inflection point at $\frac{1}{2}\frac{c}{b}$.

In biology and chemistry, concentrations y and z react at a rate proportional to y times z. This is the Law of Mass Action. In a model equation dy/dt = c(y)y, the rate c depends on y. The MM equation is dy/dt = -cy/(y + K). Separating variables yields $\int \frac{y+K}{y} dy = \int -c dt = -ct + C$.

```
17 e^{t} - 5 3 (\frac{3}{2}x^{2} + 1)^{1/3} 5 x 7 e^{1-\cos t} 9 (\frac{ct}{2} + \sqrt{y_{0}})^{2} 11 y_{\infty} = 0; t = \frac{1}{by_{0}}
15 z = 1 + e^{-t}, y is in 13 17 ct = \ln 3, ct = \ln 9
19 b = 10^{-9}, c = 13 \cdot 10^{-3}; y_{\infty} = 13 \cdot 10^{6}; at y = \frac{c}{2b} (10) gives \ln \frac{1}{b} = ct + \ln \frac{10^{6}}{c - 10^{6}b} so t = 1900 + \frac{\ln 12}{c} = 2091
21 y^{2} dips down and up (a valley)
23 sc = 1 = sbr so s = \frac{1}{c}, r = \frac{c}{b}
25 y = \frac{N}{1 + e^{-Nt}(N-1)}; T = \frac{\ln(N-1)}{N} \to 0 27 Dividing cy by y + K > 1 slows down y'
29 \frac{dR}{dy} = \frac{cK}{(v+K)^{3}} > 0, \frac{cy}{y+K} \to c
31 \frac{dY}{dT} = \frac{Y}{Y+1}; multiply e^{y/K} \frac{y}{K} = e^{-ct/K} e^{y_{0}/K} (\frac{y_{0}}{K}) by K and take the Kth power to reach (19)
33 y' = (3-y)^{2}; \frac{1}{3-y} = t + \frac{1}{3}; y = 2 at t = \frac{2}{3}
35 Ae^{t} + D = Ae^{t} + B + Dt + t \to D = -1, B = -1; y_{0} = A + B gives A = 1
37 y \to 1 from y_{0} > 0, y \to -\infty from y_{0} < 0; y \to 1 from y_{0} > 0, y \to -1 from y_{0} < 0
39 \int \frac{\cos y}{\sin y} = \int dt \to \ln(\sin y) = t + C = t + \ln \frac{1}{2}. Then \sin y = \frac{1}{2}e^{t} stops at 1 when t = \ln 2

2 y dy = dt gives \frac{1}{2}y^{2} = t + C. Then C = \frac{1}{2} at t = 0. So y^{2} = 2t + 1 and y = \sqrt{2t + 1}.
4 \frac{dy}{y^{2} + 1} = dx gives \tan^{-1} y = x + C. Then C = 0 at x = 0. So y = \tan x.
6 \frac{dy}{t + 1} = \cos x dx gives \ln(\sin y) = \sin x + C. Then C = \ln(\sin 1) at x = 0. After taking exponentials \sin y = (\sin 1)e^{\sin x}. No solution after \sin y reaches 1 (at the point where (\sin 1)e^{\sin x} = 1).
8 e^{y} dy = e^{t} dt so e^{y} = e^{t} + C. Then C = e^{c} - 1 at t = 0. After taking logarithms y = \ln(e^{t} + e^{t} - 1).
```

10 $\frac{d(\ln y)}{d(\ln x)} = \frac{dy/y}{dx/x} = n$. Therefore $\ln y = n \ln x + C$. Therefore $y = (x^n)(e^C) = \text{constant times } x^n$.

- 12 $y' = by^2$ gives $y^{-2}dy = b$ dt and $-\frac{1}{y} = bt + C$. Then $C = -\frac{1}{2}$ at t = 0. Therefore $y = \frac{-1}{bt \frac{1}{2}}$ which becomes infinite when $bt = \frac{1}{2}$ or $t = \frac{1}{2b}$.
- 14 (a) Compare $\frac{2}{1+e^{-t}}$ with $\frac{c}{b+de^{-ct}}$. In the exponent c=1. Then $b=d=\frac{1}{2}$. Thus $\mathbf{y'}=\mathbf{y}-\frac{1}{2}\mathbf{y^2}$ with $y_0=1$. (b) For $\frac{1}{1+e^{-3t}}$ the exponent gives c=3. Then also b=d=3. Thus $\mathbf{y'}=3\mathbf{y}-3\mathbf{y^2}$ with $y_0=\frac{1}{2}$.
- 16 Equation (14) is $z = \frac{1}{c}(b + \frac{c by_0}{y_0}e^{-ct})$. Turned upside down this is $y = \frac{c}{b + de^{-ct}}$ with $d = \frac{c by_0}{y_0}$.
- 18 Correction: $u = \frac{y}{c-by}$. Then $\frac{du}{dt} = \frac{d}{dt}(\frac{y}{c-by}) = \frac{(c-by)\frac{du}{dt} y(-b\frac{du}{dt})}{(c-by)^2} = \frac{c}{(c-by)^2}\frac{dy}{dt}$. Substitute $\frac{dy}{dt} = y(c-by)$ to obtain $\frac{du}{dt} = \frac{cy}{c-by} = cu$. So $u = u_0e^{ct}$.
- 20 $y' = y + y^2$ has c = 1 and b = -1 with $y_0 = 1$. Then $y(t) = \frac{1}{-1 + 2e^{-t}}$ by formula (12). The denominator is zero and y blows up when $2e^{-t} = 1$ or $t = \ln 2$.
- 22 If $u = \frac{1}{y^2}$ then $\frac{du}{dt} = \frac{-2y'}{y^3} = \frac{-2(cy-by^3)}{y^3} = -2cu+2b$. The solution is $u = (u_0 \frac{2b}{2c})e^{-2ct} + \frac{2b}{2c}$. Then $y = [(\frac{1}{y_0^2} \frac{b}{c})e^{-2ct} + \frac{b}{c}]^{-1/2}$ solves the equation $y' = cy by^3$ with "cubic competition". Another S-curve!
- 24 $y_0 = rY_0$ and $\frac{dY}{dT} = \frac{dy/r}{dt/s}$ so $(\frac{dY}{dT})_0 = \frac{s}{r}y'_0$.
- 26 At the middle of the S-curve $y = \frac{c}{2b}$ and $\frac{dy}{dt} = c(\frac{c}{2b}) b(\frac{c}{2b})^2 = \frac{c^2}{4b}$. If b and c are multiplied by 10 then so is this slope $\frac{c^2}{4b}$, which becomes steeper.
- 28 If $\frac{cy}{y+K} = d$ then cy = dy + dK and $y = \frac{dK}{c-d}$. At this steady state the maintenance dose replaces the aspirin being eliminated.
- **30** The rate $R = \frac{cy}{y+K}$ is a decreasing function of K because $\frac{dR}{dK} = \frac{-cy}{(y+K)^2}$.
- 34 $\frac{d[A]}{dt} = -r[A][B] = -r[A](b_0 \frac{n}{m}(a_0 [A]))$. The changes $a_0 [A]$ and $b_0 [B]$ are in the proportion m to n; we solved for [B].
- 36 To change $cy by^2$ (with linear term) to $a^2 x^2$ (no linear term), set $x = \sqrt{by} \frac{c}{2\sqrt{b}}$ and $a = \frac{c}{2\sqrt{b}}$. (We completed the square in $cy by^2$.) Now match integrals: The factor $\frac{1}{2a}$ is $\frac{1}{c}$ times \sqrt{b} (from $dx = \sqrt{b} \ dy$). The ratio $\frac{a+x}{a-x} = \frac{\sqrt{by}}{\frac{c}{\sqrt{b}} \sqrt{by}}$ is $\frac{y}{c-by}$.
- 38 The y line shows where y increases (by y' = f(y)) and where y decreases. Then the points where f(y) = 0 are either approached or left behind.
- 40 $y' = cy(1 \frac{y}{K})$ agrees with $y' = cy by^2$ if $K = \frac{c}{b}$. Then y = K is the steady state where y' = 0 (this agrees with $y_{\infty} = \frac{c}{b}$). The inflection point is halfway: $y = \frac{K}{2}$ where $y' = c\frac{K}{2}(1 \frac{1}{2}) = \frac{c}{4}K$ and y'' = 0.

6.6 Powers Instead of Exponentials (page 276)

The infinite series for e^x is $1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+\cdots$. Its derivative is e^x . The denominator n! is called "n factorial" and is equal to $n(n-1)\cdots(1)$. At x=1 the series for e is $1+1+\frac{1}{2}+\frac{1}{6}+\cdots$.

To match the original definition of e, multiply out $(1+1/n)^n = 1 + n(\frac{1}{n}) + \frac{n(n-1)}{2}(\frac{1}{n})^2$ (first three terms). As $n \to \infty$ those terms approach $1+1+\frac{1}{2}$ in agreement with e. The first three terms of $(1+x/n)^n$ are $1+n(\frac{x}{n})+\frac{n(n-1)}{2}(\frac{x}{n})^2$. As $n\to\infty$ they approach $1+x+\frac{1}{2}x^2$ in agreement with e^x . Thus $(1+x/n)^n$ approaches e^x . A quicker method computes $\ln(1+x/n)^n \approx x$ (first term only) and takes the exponential.

Compound interest (n times in one year at annual rate x) multiplies by $(1 + \frac{x}{n})^n$. As $n \to \infty$, continuous

compounding multiplies by e^{x} . At x = 10% with continuous compounding, \$1 grows to $e^{x} \approx 1.105$ in a year.

The difference equation y(t+1) = ay(t) yields $y(t) = \mathbf{a}^{\mathbf{t}}$ times y_0 . The equation y(t+1) = ay(t) + s is solved by $y = a^t y_0 + s[1 + a + \cdots + a^{t-1}]$. The sum in brackets is $\frac{1-a^t}{1-a}$ or $\frac{a^t-1}{a-1}$. When a = 1.08 and $y_0 = 0$, annual deposits of s=1 produce $y=\frac{1.08^{t}-1}{.08}$ after t years. If $a=\frac{1}{2}$ and $y_0=0$, annual deposits of s=6 leave $12(1-\frac{1}{2t})$ after t years, approaching $y_{\infty}=12$. The steady equation $y_{\infty}=ay_{\infty}+s$ gives $y_{\infty}=s/(1-a)$.

When $i = \text{interest rate per period, the value of } y_0 = \$1 \text{ after } N \text{ periods is } y(N) = (1+i)^{N}$. The deposit to produce y(N) = 1 is $y_0 = (1+i)^{-N}$. The value of s = 1 deposited after each period grows to y(N) = 1 $\frac{1}{i}((1+i)^{N}-1)$. The deposit to reach y(N)=1 is $s=\frac{1}{i}(1-(1+i)^{-N})$.

Euler's method replaces y' = cy by $\Delta y = cy\Delta t$. Each step multiplies y by $1 + c\Delta t$. Therefore y at t = 1 is $(1+c\Delta t)^{1/\Delta t}y_0$, which converges to $\mathbf{y_0}e^{\mathbf{c}}$ as $\Delta t \to 0$. The error is proportional to Δt , which is too large for scientific computing.

- 1 $1-x+\frac{x^2}{2}-\frac{x^3}{6}+\cdots$ 3 $1\pm x+\frac{x^2}{2}\pm\frac{x^3}{6}+\cdots$ 5 1050.62; 1050.95; 1051.25 7 $1+n(\frac{-1}{n})+\frac{n(n+1)}{2}(\frac{-1}{n})^2\to 1-1+\frac{1}{2}$ 9 square of $(1+\frac{1}{n})^n$; set N=2n
- 11 Increases; $\ln(1+\frac{1}{x})-\frac{1}{x+1}>0$ 13 y(3)=8 15 $y(t)=4(3^t)$ 17 y(t)=t
- **19** $y(t) = \frac{1}{2}(3^t 1)$ **21** $s(\frac{a^t 1}{a 1})$ if $a \neq 1$; st if a = 1 **23** $y_0 = 6$ **25** $y_0 = 3$
- **27** $-2, -10, -26 \rightarrow -\infty; -5, -\frac{17}{2}, -\frac{41}{4} \rightarrow -12$ **29** $P = \frac{b}{c+d}$ **31** 10.38% **33** $100(1.1)^{20} = \$673$
- **35** $\frac{100,000(.1/12)}{1-(1+.1/12)^{-240}} = 965$ **37** $\frac{1000}{.1}(1.1^{20}-1) = 57,275$ **39** $y_{\infty} = 1500$ **41** $2; (\frac{53}{52})^{52} = 2.69; e$
- **43** $1.0142^{12} = 1.184 \rightarrow \text{Visa charges } 18.4\%$
- 2 $y = 1 + 2x + \frac{1}{2}(2x)^2 + \frac{1}{6}(2x)^3 + \cdots$ Integrate each term and multiply by 2 to find the next term.
- **4** A larger series is $1 + 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = 3$. This is greater than $1 + 1 + \frac{1}{2} + \frac{1}{6} + \cdots = e$.
- 6 $\ln(1-\frac{1}{n})^n = n \ln(1-\frac{1}{n}) \approx n(-\frac{1}{n}) = -1$. Take exponentials: $(1-\frac{1}{n})^n \approx e^{-1}$. Similarly $\ln(1+\frac{2}{n})^n = n\ln(1+\frac{2}{n}) \approx n(\frac{2}{n}) = 2$. Take exponentials: $(1+\frac{2}{n})^n \approx e^2$.
- 8 The exact sum is $e^{-1} \approx .37$ (Problem 6). After five terms $1 1 + \frac{1}{2} \frac{1}{6} + \frac{1}{24} = \frac{9}{24} = .375$. 10 By the quick method $\ln(1 + \frac{1}{n^2})^n \approx n(\frac{1}{n^2}) \to 0$. So $(1 + \frac{1}{n^2})^n \to e^0 = 1$. Similarly $\ln(1 + \frac{1}{n})^{n^2} \approx n^2(\frac{1}{n}) \to \infty$ so $\left(1+\frac{1}{n}\right)^{n^2}\to\infty$.
- 12 Under the graph of $\frac{1}{t}$, the area from 1 to $1 + \frac{1}{x}$ is $\ln(1 + \frac{1}{x})$. The rectangle inside this area has base $\frac{1}{x}$ and height $\frac{1}{1+\frac{1}{x}}$. Its area is $\frac{1}{x+1}$ so this is below $\ln(1+\frac{1}{x})$.
- **14** $y(0) = 0, y(1) = 1, y(2) = 3, y(3) = 7 \text{ (and } y(n) = 2^{n} 1).$ **16** $y(t) = (\frac{1}{2})^{t}$.
- 18 $y(t) = \mathbf{t}$ (Notice that a = 1). 20 $y(t) = 3^{\frac{t}{2}} + \mathbf{s} [\frac{3^{\frac{t}{2}}-1}{2}]$. 22 $y(t) = 5a^{t} + s[\frac{a^{t}-1}{a-1}]$. 24 Ask for $\frac{1}{2}y(0) 6 = y(0)$. Then y(0) = -12. 26 Ask for $-\frac{1}{2}y(0) + 6 = y(0)$. Then y(0) = 4.
- 28 If -1 < a < 1 then $\frac{1-a^t}{1-a}$ approaches $\frac{1}{1-a}$.
- **30** The equation -dP(t+1) + b = cP(t) becomes -2P(t+1) + 8 = P(t) or $P(t+1) = -\frac{1}{2}P(t) + 4$. Starting from P(0) = 0 the solution is $P(t) = 4\left[\frac{(-\frac{1}{2})^{t}-1}{-\frac{1}{2}-1}\right] = \frac{8}{3}(1-(-\frac{1}{2})^{t}) \rightarrow \frac{8}{3}$. 32 $(1+\frac{.10}{365})^{365} = 1.105156 \cdots$ (Compare with $e^{.1} \approx 1+.1+\frac{1}{2}(.1)^{2} = 1.105$.) The effective rate is 5.156%.
- **34** Present value = $\$1,000 (1.1)^{-20} \approx \148.64 .
- **36 Correction** to formulas 5 and 6 on page 273: Change .05n to .05/n. In this problem n = 12 and N = 6(12) = 72 months and .05 becomes .1 in the loan formula: $s = \$10,000 (.1)/12[1 - (1 + \frac{1}{12})^{-72}] \approx \185 .

- **38** Solve \$1000 = \$8000 $\left[\frac{1}{1-(1.1)^{-n}}\right]$ for n. Then $1-(1.1)^{-n}=.8$ or $(1.1)^{-n}=.2$. Thus $1.1^n=5$ and $n = \frac{\ln 5}{\ln 1.1} \approx 17$ years.
- 40 The interest is (.05)1000 = \$50 in the first month. You pay \$60. So your debt is now 1000 - 10 = 990. Suppose you owe y(t) after month t, so y(0) = 1000. The next month's interest is .05y(t). You pay \$60. So y(t+1) = 1.05y(t) - 60. After 12 months $y(12) = (1.05)^{12}1000 - 60[\frac{(1.05)^{12}-1}{1.05-1}]$. This is also $\frac{60}{.05} + (1000 - \frac{60}{.05})(1.05)^{12} \approx 841 .
- **42** Compounding n times in a year at 100% per year gives $(1+\frac{1}{n})^n$. Its logarithm is $n \ln(1+\frac{1}{n}) \approx n[\frac{1}{n}-\frac{1}{2n^2}]$ $=1-\frac{1}{2n}$. Therefore $\left(1+\frac{1}{n}\right)^n\approx e\left(e^{-1/2n}\right)\approx e\left(1-\frac{1}{2n}\right)$.
- **44** Use the loan formula with .09/n not .09n: payments $s = 80,000 \frac{.09/12}{[1-(1+\frac{.02}{10})^{-360}]} \approx 643.70 . Then 360 payments equal \$231,732.

Hyperbolic Functions (page 280) 6.7

Cosh $x = \frac{1}{2}(e^{X} + e^{-X})$ and sinh $x = \frac{1}{2}(e^{X} - e^{-X})$ and $\cosh^{2} x - \sinh^{2} x = 1$. Their derivatives are $\sinh x$ and cosh x and zero. The point $(x, y) = (\cosh t, \sinh t)$ travels on the hyperbola $x^2 - y^2 = 1$. A cable hangs in the shape of a catenary $y = a \cosh \frac{x}{a}$.

The inverse functions $\sinh^{-1} x$ and $\tanh^{-1} x$ are equal to $\ln[x + \sqrt{x^2 + 1}]$ and $\frac{1}{2} \ln \frac{1+x}{1-x}$. Their derivatives are $1/\sqrt{x^2+1}$ and $\frac{1}{1-x^2}$. So we have two ways to write the antiderivative. The parallel to cosh $x+\sinh x=e^x$ is Euler's formula $\cos x + i \sin x = e^{ix}$. The formula $\cos x = \frac{1}{2}(e^{ix} + e^{-ix})$ involves imaginary exponents. The parallel formula for $\sin x$ is $\frac{1}{2i}(e^{ix} - e^{-ix})$.

1
$$e^x$$
, e^{-x} , $\frac{e^{2x}-e^{-2x}}{4}=\frac{1}{2}\sinh 2x$ 7 $\sinh nx$ 9 $3\sinh(3x+1)$ 11 $\frac{-\sinh x}{\cosh^2 x}=-\tanh x$ sech x 13 $4\cosh x\sinh x$ 15 $\frac{x}{\sqrt{x^2+1}}(\operatorname{sech}\sqrt{x^2+1})^2$ 17 $6\sinh^5 x\cosh x$ 19 $\cosh(\ln x)=\frac{1}{2}(x+\frac{1}{x})=1$ at $x=1$ 21 $\frac{5}{13}$, $\frac{13}{5}$, $-\frac{12}{5}$, $-\frac{13}{12}$, $-\frac{5}{12}$ 23 $0,0,1,\infty,\infty$

19
$$\cosh(\ln x) = \frac{1}{2}(x + \frac{1}{x}) = 1$$
 at $x = 1$ **21** $\frac{5}{13}, \frac{13}{5}, -\frac{12}{5}, -\frac{13}{12}, -\frac{5}{12}$ **23** $0, 0, 1, \infty, \infty$

25 $\frac{1}{2} \sinh(2x+1)$ **27** $\frac{1}{3} \cosh^3 x$ **29** $\ln(1+\cosh x)$

33
$$\int y \ dx = \int \sinh t (\sinh t \ dt); A = \frac{1}{2} \sinh t \cosh t - \int y \ dx; A' = \frac{1}{2}; A = 0 \text{ at } t = 0 \text{ so } A = \frac{1}{2}t.$$

41
$$e^y = x + \sqrt{x^2 + 1}, y = \ln[x + \sqrt{x^2 + 1}]$$
 47 $\frac{1}{4} \ln \left| \frac{2 + x}{2 - x} \right|$ **49** $\sinh^{-1} x$ (see 41) **51** $-\operatorname{sech}^{-1} x$

53 $\frac{1}{2} \ln 3$; ∞ **55** $y(x) = \frac{1}{c} \cosh cx$; $\frac{1}{c} \cosh cL - \frac{1}{c}$

57
$$y'' = y - 3y^2$$
; $\frac{1}{2}(y')^2 = \frac{1}{2}y^2 - y^3$ is satisfied by $y = \frac{1}{2}\operatorname{sech}^2 \frac{x}{2}$

$$2 \frac{d}{dx} \frac{(e^x + e^{-x})}{2} = \sinh x; \frac{d}{dx} (\frac{e^x - e^{-x}}{2}) = \frac{e^x + e^{-x}}{2} = \cosh x.$$

$$2\frac{\frac{d}{dx}\left(\frac{e^x+e^{-x}}{2}\right) = \frac{e^x-e^{-x}}{2} = \sinh x; \frac{d}{dx}\left(\frac{e^x-e^{-x}}{2}\right) = \frac{e^x+e^{-x}}{2} = \cosh x.$$

$$4\frac{d}{dx}\left(\frac{\sinh x}{\cosh x}\right) = \frac{(\cosh x)^2 - (\sinh x)^2}{(\cosh x)^2} = \frac{1}{(\cosh x)^2} = \operatorname{sech}^2 x.$$

6 The factor $\frac{1}{2}$ should be removed from Problem 5 Then the derivative of Problem 5 is $2\cosh x \sinh x + 2\sinh x \cosh x = 2\sinh 2x$. Therefore $\sinh 2x = 2\sinh x \cosh x$ (similar to $\sin 2x$).

8
$$\left(\frac{e^x-e^{-x}}{2}\right)\left(\frac{e^y+e^{-y}}{2}\right) + \left(\frac{e^x+e^{-x}}{2}\right)\left(\frac{e^y-e^{-y}}{2}\right) = \frac{1}{4}(2e^{x+y}-2e^{-x-y}) = \sinh(x+y)$$
. The x derivative gives $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$.

10
$$2x \cosh x^2$$
 12 $\sinh(\ln x) = \frac{1}{2}(e^{\ln x} - e^{-\ln x}) = \frac{1}{2}(x - \frac{1}{x})$ with derivative $\frac{1}{2}(1 + \frac{1}{x^2})$.

14 $\cosh^2 x - \sinh^2 x = 1$ with derivative zero.

16 $\frac{1+\tanh x}{1-\tanh x} = e^{2x}$ by the equation following (4). Its derivative is $2e^{2x}$. More directly the quotient rule gives

- $\frac{(1-\tanh x)\operatorname{sech}^2 x + (1+\tanh x)\operatorname{sech}^2 x}{(1-\tanh x)^2} = \frac{2\operatorname{sech}^2 x}{(1-\tanh x)^2} = \frac{2}{(\cosh x \sinh x)^2} = \frac{2}{e^{-2x}} = 2e^{2x}.$ 18 $\frac{d}{dx} \ln u = \frac{du/dx}{u} = \frac{\operatorname{sech} x \tanh x \operatorname{sech}^2 x}{\operatorname{sech} x + \tanh x}$. Because of the minus sign we do not get sech x. The integral of
- **20** sech $x = \sqrt{1 (\frac{3}{5})^2} = \frac{4}{5}$, $\cosh x = \frac{5}{4}$, $\sinh x = \sqrt{(\frac{5}{4})^2 1} = \frac{3}{4}$, $\coth x = \frac{\sinh x}{\cosh x} = \frac{5}{3}$, $\operatorname{csch} x = \frac{4}{3}$.
- 22 $\cosh x = \sqrt{(2)^2 + 1} = \sqrt{5}$, $\tanh x = \frac{2}{\sqrt{5}}$, $\operatorname{csch} x = \frac{1}{2}$, $\operatorname{sech} x = \frac{1}{\sqrt{5}}$, $\coth x = \frac{\sqrt{5}}{2}$.
- 24 $\sinh(\ln 5) = \frac{e^{\ln 5} e^{-\ln 5}}{2} = \frac{5 \frac{1}{5}}{2} = \frac{12}{5}; \tanh(2 \ln 4) = \frac{e^{2 \ln 4} e^{-2 \ln 4}}{e^{2 \ln 4} + e^{-2 \ln 4}} = \frac{16 \frac{1}{16}}{16 + \frac{1}{12}} = \frac{255}{257}.$
- 26 $\int x \cosh(x^2) dx = \frac{1}{2} \sinh(x^2) + C$. 28 $\frac{1}{2} (\tanh x)^3 + C$.
- 30 $\int \coth x \ dx = \int \frac{\cosh x}{\sinh x} dx = \ln(\sinh x) + C$. 32 $\sinh x + \cosh x = e^x$ and $\int e^{nx} dx = \frac{1}{n} e^{nx} + C$.
- **34** $y = \tanh x$ is an odd function, with asymptote y = -1 as $x \to -\infty$ and y = +1 as $x \to +\infty$. The inflection point is (0,0).
- 36 $y = \operatorname{sech} x$ looks like a bell-shaped curve with $y_{\text{max}} = 1$ at x = 0. The x axis is the asymptote. But note that y decays like $2e^{-x}$ and not like e^{-x^2} .
- 38 To define $y = \cosh^{-1} x$ we require $x \ge 1$. Select the positive y (there are two y's so strictly there is no inverse). For large values, $\cosh y$ is close to $\frac{1}{2}e^y$ so $\cosh^{-1} x$ is close to $\ln 2x$.
- **40** $\frac{1}{2}\ln(\frac{1+x}{1-x})$ approaches $+\infty$ as $x\to 1$ and $-\infty$ as $x\to -1$. The function is odd (so is the tanh function). The graph is an S curve rotated by 90°.
- **42** The quadratic equation for e^y has solution $e^y = x \pm \sqrt{x^2 1}$. Choose the plus sign so $y \to \infty$ as $x \to \infty$. Then $y = \ln(x + \sqrt{x^2 - 1})$ is another form of $y = \cosh^{-1} x$.
- 44 The x derivative of $x = \sinh y$ is $1 = \cosh y \frac{dy}{dx}$. Then $\frac{dy}{dx} = \frac{1}{\cosh y} = \frac{1}{\sqrt{1+\sinh^2 y}} = \frac{1}{\sqrt{1+x^2}} = \text{slope of sinh}^{-1} x$.
- 46 The x derivative of $x = \operatorname{sech} y$ is $1 = -\operatorname{sech} y \tanh y \frac{dy}{dx}$. Then $\frac{dy}{dx} = \frac{-1}{\operatorname{sech} y \tanh y} = \frac{-1}{x\sqrt{1-x^2}}$.
- **48** Set x = au and dx = a du to reach $\int \frac{a du}{a^2(1-u^2)} = \frac{1}{a} \tanh^{-1} u = \frac{1}{a} \tanh^{-1} \frac{x}{a} + C$.
- 50 Not hyperbolic! Just $\int (x^2+1)^{-1/2}x \, dx = (x^2+1)^{1/2} + C$.
- 52 Not hyperbolic! $\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x + C.$
- 54 (a) $\frac{dv}{dt} = (\sqrt{g})^2 \operatorname{sech}^2 \sqrt{g} t = g(1 \tanh^2 \sqrt{g}t) = g v^2$. (b) $\int \frac{dv}{g v^2} = \int dt$ gives (by Problem 48) $\frac{1}{\sqrt{g}} \tanh^{-1} \frac{v}{\sqrt{g}} = t$ or $\tanh^{-1} \frac{v}{\sqrt{g}} = \sqrt{g}t$ or $\frac{v}{\sqrt{g}} = \tanh \sqrt{g}t$. (c) $f(t) = \int \sqrt{g} \tanh \sqrt{g}t \, dt = \int \frac{dv}{dt} \int \frac{dv}{dt} \, dt$ $\int \frac{\sinh \sqrt{g} t}{\cosh \sqrt{g}t} \sqrt{g} dt = \ln(\cosh \sqrt{g} t) + C.$
- **56 Change to** $dx = \frac{dW}{\frac{1}{2}W^2 W} = -\frac{dW}{2 W} \frac{dW}{W}$ and integrate: $x = \ln(2 W) \ln W = \ln(\frac{2 W}{W})$. Then $\frac{2-W}{W} = e^x$ and $W = \frac{2}{1+e^x}$. (Note: The text suggests W-2 but that is negative. Writing $\frac{2}{1+e^x}$ as $e^{-x/2}\operatorname{sech}\frac{x}{2}$ is not simpler.)
- 58 $\cos ix = \frac{1}{2}(e^{i(ix)} + e^{-i(ix)}) = \frac{1}{2}(e^{-x} + e^{x}) = \cosh x$. Then $\cos i = \cosh 1 = \frac{e+e^{-1}}{2}$ (real!).
- 60 The derivative of $e^{ix} = \cos x + i \sin x$ is $ie^{ix} = i(\cos x + i \sin x)$ on the left side and $\frac{d}{dx}\cos x + i \frac{d}{dx}\sin x$ on the right side. Comparing we again find $\frac{d}{dx}(\sin x) = \cos x$ and $\frac{d}{dx}(\cos x) = i^2 \sin x$.

MIT OpenCourseWare http://ocw.mit.edu

Resource: Calculus Online Textbook Gilbert Strang

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.