

Poisson Approximation

MATH/STAT 394: Probability I Summer 2021 A Term

Introduction to Probability
D. Anderson, T.Seppäläinen, B. Valkó
§ 4.4

Aaron Osgood-Zimmerman

Department of Statistics

Logistics

- course evaluation: https://uw.iasystem.org/survey/245028
 (please consider filling this out to improve the course and my teaching for future students!)
- HW5 due tomorrow, Tuesday, at 11:59am (noon) PST so we can release HW5 solutions for you to review before the final is due
- Final
 - will primarily cover material since the midterm, but you may need leverage knowledge you learned per-midterm
 - will be available after today's lecture
 - will be due Wednesday July 21 at 11:59pm
 - unlimited time allowed during that window
- Last day of lecture will be Q+A (basically extra office hours)
- I have posted a review lecture deck that you can look at beforehand if you like

Outline

Polling

Poisson Approximation

Additional details

Practice solution

Practice

Suppose we interviewed 400 people and 100 of them liked spinach

Find a 90% confidence interval for the true probability that people like spinach assuming that we amy call the same person twice (sampling with replacement)

Solution

• We seek to find $\varepsilon > 0$ s.t.

$$\mathbb{P}(|p-\hat{p}| \leq \varepsilon) \geq 0.9$$

• Using that $\mathbb{P}(|p-\hat{p}| \le \varepsilon) \ge 2\Phi(2\varepsilon\sqrt{n})$, this amounts to find ε s.t.

$$\begin{aligned} 2\Phi(2\varepsilon\sqrt{n}) - 1 &\geq 0.9 \Leftrightarrow \Phi(2\varepsilon\sqrt{n}) \geq 0.95 \\ &\Leftrightarrow 2\varepsilon\sqrt{n} \geq 1.645 \Leftrightarrow 40\varepsilon \geq 1.645 \Leftrightarrow \varepsilon \geq 0.041 \end{aligned}$$

• Therefore a 90% confidence interval for p is (given that $\hat{p} = 1/4$)

$$[0.25 - 0.041, 0.25 + 0.041] = [0.209, 0291]$$

Polling

Sampling without replacement

- In reality one would not call twice the same person
- In other words the variable would not be a binomial but a hypergeometric distribution
- Would our approximation still works?

Binomial limit of the hypergeometric distribution

Binomial limit of the hypergeometric distribution

- Consider picking n people from a population of size N with N_A people linking spinach and $N-N_A$ people who do not like spinach
- Let X be the number of people you sampled that liked spinach X ∼ Hypergeom(N, N_A, n)
- Consider $N \to +\infty$ and $N_A \to +\infty$ such that $N/N_A = p$ remains constant
- Then $\mathbb{P}(X=k) \to \binom{n}{k} p^k (1-p)^k$, i.e., X tends to have a binomial distribution 1
- So a normal approximation could again be used for polling a large population using sampling without replacement

¹See backup slides

Recap

Normal Approximation

• A standardized binomial can be approximated by a standard normal dist. for np(1-p) not too small

$$\mathbb{P}\left(a \leq \frac{S_n - \mathbb{E}[S_n]}{\sqrt{\mathsf{Var}(S_n)}} \leq b\right) \approx \Phi(b) - \Phi(a)$$

where $\mathcal{S}_n \sim \mathsf{Bin}(n,p)$ and Φ is the c.d.f. of $Z \sim \mathcal{N}(0,1)$

Confidence interval

• For $X \sim \text{Ber}(p)$ and $\hat{p} = S_n/n$ an estimate of p, we saw that

$$\mathbb{P}(|p - \hat{p}| \le \varepsilon) \ge 2\Phi(2\varepsilon\sqrt{n}) - 1$$

• A confidence interval of level e.g. 95% consists in finding ε s.t.

$$\mathbb{P}(|p-\hat{p}|<\varepsilon)>95\%$$

- To do that, compute $z_{95\%}$ s.t. $2\Phi(z_{95\%}) 1 = 95\%$ (here $z_{95\%} = 1.96$)
- ullet Then an arepsilon>0 s.t. $2arepsilon\sqrt{n}\geq z_{95\%}$

gives you a confidence interval!

Outline

Polling

Poisson Approximation

Additional details

Poisson approximation

Motivation

- We have seen limits of distribution when p is not too close to 0 or 1
- What happens if the event is extremely rare, i.e., $p \ll 1$?

Bad normal approximation

 $Bin(100, \lambda/100)$ and its normal approximation.

Poisson distribution

Definition

A r.v. has a Poisson dist. with param. $\lambda > 0$ if it has a p.m.f.

$$\mathbb{P}(X=k) = e^{-\lambda} \frac{\lambda^k}{k!} \quad \text{for } k \in \{0, 1, 2, \ldots\}$$

We denote it $X \sim \text{Poisson}(\lambda)$

p.m.f. of $X \sim \text{Poisson}(\lambda)$

Poisson Distribution

Properties

• From the quiz of lecture 19, if $X \sim \text{Poisson}(\lambda)$, then

$$\mathbb{E}[X] = \lambda \quad Var(X) = \lambda$$

• Typically models rare events

Lemma

Let $\lambda > 0$, consider $S_n \sim \text{Bin}(n, \lambda/n)$ for $n > \lambda$.

$$\lim_{n\to+\infty}\mathbb{P}(S_n=k)=e^{-\lambda}\frac{\lambda^k}{k!}$$

Interpretation

If S_n counts the number of successes of n independent trials and the mean $\mathbb{E}[S_n] = \lambda$ does not change with n, then as $n \to +\infty$. the dist. of S_n approaches the dist. of a Poisson dist.

Lemma

Let $\lambda > 0$, consider $S_n \sim \text{Bin}(n, \lambda/n)$ for $n > \lambda$.

$$\lim_{n\to+\infty}\mathbb{P}(S_n=k)=e^{-\lambda}\frac{\lambda^k}{k!}$$

Proof

$$\mathbb{P}(S_n = k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{n(n-1)\dots(n-k+1)}{k!} \frac{\lambda^k}{n^k} \left(1 - \frac{\lambda}{n}\right)^n \frac{1}{(1-\lambda/n)^k}$$

$$= \frac{\lambda^k}{k!} \left(1 - \frac{\lambda}{n}\right)^n \left[1 \cdot \left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{k-1}{n}\right)\right] \frac{1}{(1-\lambda/n)^k}$$

$$\xrightarrow{n \to +\infty} \frac{\lambda^k}{k!} e^{-\lambda} \cdot 1 \cdot 1$$

where we used that $\lim_{n\to+\infty} (1+x/n)^n = e^x$

Great, but what if *n* is finite?

Lemma

Let $X \sim \text{Bin}(n, p)$ and $Y \sim \text{Poisson}(np)$ then for any $A \subset \{0, 1, 2, \ldots\}$,

$$|\mathbb{P}(X \in A) - \mathbb{P}(Y \in A)| \le np^2$$

Interpretation

- When approximating a binomial by a Poisson r.v. you'll make an error of at most np^2
- ullet So if $np^2 \ll 1$, then the Poisson dist. is a good approx. of the binomial
- So if *p* is very small (rare events), the Poisson dist. is a good approx. of the binomial

Exercise

Let $X \sim \text{Bin}(10,1/10)$. Compare the Poisson and normal approx. of $\mathbb{P}(X \leq 1)$ Solution

• The exact value is

$$\mathbb{P}(X \le 1) = \mathbb{P}(X = 0) + \mathbb{P}(X = 1) = \left(\frac{9}{10}\right)^{10} + 10 \cdot \frac{1}{10} \left(\frac{9}{10}\right)^{9} \approx 0.7631$$

- $np^2 = 10 \cdot (1/10)^2 = 0.1$ so the Poisson approx. is 0.1 close to the exact value
- ullet Here $\mathbb{E}[X]=10\cdot 1/10=1$ so the Poisson approx. is $Y\sim \mathsf{Poisson}(1)$ which gives

$$\mathbb{P}(Y \le 1) = \mathbb{P}(Y = 0) + \mathbb{P}(Y = 1) = e^{-1} \frac{1^0}{0!} + e^{-1} \cdot \frac{1^1}{1!} \approx 0.7358$$

• On the other hand a normal approx. would give (np = 1, np(1-p) = 0.9)

$$\mathbb{P}(X \le 1) = \mathbb{P}(X \le 3/2) = \mathbb{P}\left(\frac{X - 1}{\sqrt{9/10}} \le \frac{3/2 - 1}{\sqrt{9/10}}\right)$$
$$\approx \mathbb{P}\left(\frac{X - 1}{\sqrt{9/10}} \le 0.53\right) \approx \Phi(0.53) = 0.7019$$

where in the first line, we used that X is discrete and that the normal approx. will be more accurate when looking at the middle of the interval rather than the integer

• Here $np(1-p)=9/10\ll 10,$ so, the normal approx. is not expected to be great 15/18

Poisson dist. as a model for rare events

Motivation

 Beyond being used as an approx., the Poisson dist. can be directly use to model rare events

Lemma (Poisson modeling of rare events)

Assume that a r.v. X counts occurrences of rare events that are not strongly dependent on each other.

Then the dist. of X can be approx. as $X \sim \text{Poisson}(\lambda)$ for $\lambda = \mathbb{E}[X]$

Poisson dist.

Exercise

Suppose a factory experiences on average 3 accidents per month. What is the proba. that there are at most 2 accidents a given month?

Solution

- Accidents are a priori rare events
- Under this assumption (rare events), we model the number of accidents as $X \sim \mathsf{Poisson}(\lambda)$ with $\lambda = \mathbb{E}[X] = 3$
- This gives

$$\mathbb{P}(X \le 2) = e^{-3} \frac{3^0}{0!} + e^{-3} \frac{3^1}{1!} + e^{-3} \frac{3^2}{2!} \approx 0.423$$

Practice next lecture

Practice

Assume that the prob. of at least one typo in the slides is 0.2.

What is the prob. that you find at least 2 typos?

Outline

Polling

Poisson Approximation

Additional details

Binomial limit of the hypergeometric distribution

- Consider picking n people from a population of size N with N_A people
- linking spinach and $N N_A$ people who do not like spinach • Let X be the number of people you sampled that liked spinach $X \sim \text{Hypergeom}(N, N_A, n)$

where $(a)_k = a(a-1)...(a-k+1) = a!/(a-k)!$

$$\mathbb{P}(X=k) = \frac{\binom{N_A}{k} \binom{N-N_A}{n-k}}{\binom{N}{n}} = \frac{\frac{(N_A)_k}{k!} \frac{(N-N_A)_{n-k}}{(n-k)!}}{\frac{(N)_n}{n!}} = \binom{n}{k} \frac{(N_A)_k (N-N_A)_{n-k}}{(N)_n}$$

Then
$$\frac{(N_A)_k(N-N_A)_{n-k}}{(N)_n} = \frac{N_A(N-1)\dots(N_A-k+1)}{N(N-1)\dots(N-k+1)} \cdot \frac{(N-N_A)(N-N_A-1)\dots(N-N_A-n+k+1)}{(N-k)(N-k-1)\dots(N-n+1)}$$

$$= \left(\frac{N_A}{N}\right)^k \prod_{i=1}^k \frac{\left(1 - \frac{i-1}{N_A}\right)}{\left(1 - \frac{i-1}{N}\right)} \left(1 - \frac{N_A}{N}\right)^{n-k} \prod_{i=k+1}^n \frac{\left(1 - \frac{i-k-1}{N-N_A}\right)}{\left(1 - \frac{i-1}{N}\right)}$$

$$\Rightarrow \rho^k (1-\rho)^k$$

- Consider $N \to +\infty$ and $N_A \to +\infty$ such that $N/N_A = p$ remains constant
- Then $\frac{(N_A)_k(N-N_A)_{n-k}}{(N)} \rightarrow p^k(1-p)^{n-k}$
- Thus $\mathbb{P}(X = \tilde{k}) \to \binom{n}{k} p^k (1-p)^k$, i.e., X tends to have a binomial