

Members: Bingxin Ke, Yujie He, Yue Pan, Yuanwen Yue

Supervisor: Dr. Iro Armeni, Shengyu Huang

3D Vision FS 2021

31 May 2021

Introduction

Problem formation

- 1. Segment different objects (such as chairs, tables) from 3D scans
- 2. Retrieve CAD models for each scan segment
- 3. Align CAD models to scan segments

Challenges

- 1. How to extract objects from noisy geometry in real data?
- 2. How to represent multi-class real object data and CAD models?
- 3. How to estimate 9DOF transformation from segments to CAD?

Experimental setup

- Evaluate on Scan2CAD dataset
- Compare with SOTA methods

Input: 3D scan

Output: CAD alignments

Progress

Month	Feb	Mar				Apr				May					Jun
Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Project plan proposal			*												
Literature survey on shape matching methods of real 3D object data to synthetic CADs Scan-to-CAD matching datasets exploration and preparation				*											
Student Proposal Presentations:15 Mar				*											
Re-implementation and analysis of state-of-the- art Scan-to-CAD matching pipelines Data preparation and preliminary tests on Scan2CAD datasets Experiments on one-class matching on					*	*									
Scan2CAD datasets															
Midterm Presentations:19 April								*							
Re-implement JointEmbedding of 3D Scan and CAD Objects										~					
Experiments and improvements of the pipelines													*		
Performance analysis and report writing															
Project Final Presentations: 31 May															

Related works Scan2CAD

[1] Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis Savva, Angel X. Chang, and Matthias Nießner. Scan2cad: Learning cad model alignment in rgb-d scans. CVPR 2019.

- + Keypoint correspondence prediction network
- + 9DOF pose optimization (non-rigid registration)
- + Comprehensive dataset (100k keypoint correspondences between 1506 scans and 14k CAD models)
- Based on keypoints instead of scan segments
- Exhaustive searching of the corresponding CAD model (inefficient model retrieval)

Joint embedding of 3D scan and CAD objects

[2] Dahnert, Manuel, Angela Dai, Leonidas J. Guibas, and Matthias Niessner. Joint embedding of 3d scan and cad objects. ICCV 2019.

- + Close the gap between noisy scan data and clean CAD models
- + Enable efficient and precise model retrieval

- No CAD to scan alignment (can be only used for the model retrieval step)
- Relatively low retrieval accuracy (≈ 40%)

Real2CAD workflow

By SOTA Indoor 3D Object detection network such as 3D-SIS [1]

[1] Hou Ji and Dai Angela and Niessner Matthias. 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans, CVPR 2019.

Real2CAD (B. Ke, Y. He, Y. Pan & Y. Yue)

Real2CAD workflow

[1] Dahnert, Manuel, Angela Dai, Leonidas J. Guibas, and Matthias Niessner. Joint embedding of 3d scan and cad objects. ICCV 2019.

Real2CAD workflow

Scan-CAD Similarity Benchmark [4]

[1] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu, ShapeNet: An Information-Rich 3D Model

[2] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthia Heßner. ScanNet: Richly-annotated 3D reconstructions of indoor

[3] Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis Savva, Angel X. Chang, and Matthias Nießner. Scan2cad: Learning cad model alignment in rgb-d scans. CVPR 2019.

[4] Dahnert, Manuel, Angela Dai, Leonidas J. Guibas, and Matthias Niessner. Joint embedding of 3d scan and cad objects. ICCV 2019.

Training data preparation

Training data preparation

In total, we get ≈ 8000 sampes for training and ≈ 2000 sampes for validation

[1] Dahnert, Manuel, Angela Dai, Leonidas J. Guibas, and Matthias Niessner. Joint embedding of 3d scan and cad objects. ICCV 2019.

Our Improvements:

• Add **skip connection** to the completion encoder-decoder

Our Improvements:

- Add balanced weight for separation and completion (binary classification problem)
- 3D object can be sparse (# occupied voxel << # non-occupied voxel)

Our Improvements:

- Extract features from bottleneck of completion encoder-decoder
- Attach a classification module to this bottleneck.
- Hierarchical retrieval: filter the model pool using the classification prediction during inference

Our Improvements:

- Construct multiple **triplets** [1] (anchors, positives, negatives)
- semi-hard pairing strategy for triplet loss
- Add circle loss [2] as an alternative for metric learning

^[1] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. CVPR 2015. [2] Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang, Liang Zheng, Zhongdao Wang, and Yichen Wei. Circle loss: A unified perspective of pair similarity optimization. CVPR, 2020

Real2CAD (B. Ke, Y. He, Y. Pan & Y. Yue)

Retrieval (inference):

- Go through the foreground segmentation, completion and embedding network for each scan segment
- Go through the embedding network for each CAD in the model pool
- Find nearest neighbor in the joint embedding space

Hierachical retrieval:

- Filter the model pool with the predicted category of the scan segment
- Retrieve in the filtered model pool

Method: Coarse-to-fine registration workflow

Implementation and Training

- Train with Nvidia GTX 1080Ti and 2080Ti GPU on Leonhard Cluster
- Monitoring and visualization by Weights & Biases
- Adam optimizer
- Hyperparameters Setting:
 - Learning rate (controlled by learning rate scheduler) init = 3e-4
 - Batch size = 128
 - Weight decay = 1e-4
 - Triplet margin = 0.2
- Training for 500 epochs (≈ 30k iterations, ≈ 1 day)
- Rotation augmentation around z axis (0°, 30°, 60°, ..., 330°) during training [1]
- Enlarge the model pool with different rotations for rotation-aware retrieval during testing

Find not only the best CAD but also the best rotation

[1] Daniel Maturana, S. Scherer, VoxNet: A 3D Convolutional Neural Network for real-time object recognition, IROS 2015.

Real2CAD (B. Ke, Y. He, Y. Pan & Y. Yue)

Weights & Biases

Experiment results: Sepration and completion

Experiment results: Fine-grained model retrieval

- High category-based retrival accuracy
- Rotation can only be retrieved roughly
- Object symmetry property: may be used to filter the model pool (redundant rotated objects)

Experiment results: Fine-grained model retrieval

Examples of the failed prediction

- Similar appearance, but different category
- Mirroring (probably due to incorrect sepration and completion)

Experiment results: Fine-grained model retrieval

Top-1 accuracy for category-based and CAD model-based retrieval on Scan-CAD similarity benchmark (# model pool = 100)

Method	cotagory basad	CAD model-based										
	category-based	chair	table	sofa	bed	bookshelf	cabinet	trash bin	other	class avg	inst avg	
FPFH [1]	0.14	0.18	0.02	0.07	0.00	0.00	0.00	0.02	0.03	0.04	0.08	
SHOT [2]	0.07	0.06	0.02	0.07	0.09	0.00	0.01	0.00	0.03	0.05	0.04	
PointNet [3]	0.49	0.43	0.13	0.09	0.61	0.23	0.04	0.38	0.07	0.23	0.29	
3DCNN [4]	0.57	0.28	0.18	0.17	0.48	0.46	0.14	0.52	0.32	0.33	0.31	
JointEmbedding [5]	0.68	0.55	0.32	0.33	0.42	0.19	0.26	0.50	0.43	0.39	0.43	
Ours	0.81 +0.13	0.61	0.34	0.71	0.66	0.25	0.30	0.81	0.25	0.48	0.54	
Ours (hierachical)	0.97 +0.29	0.65	0.41	0.74	0.78	0.42	0.42	0.85	0.32	0.54	0.59	

+0.11

- The proposed model outperformed SOTA (JointEmbedding) by a large margin
 - By online mining the hard triplet pair
 - By using skip connection and balanced cross entropy for the sepration and completion
 - By adding a classification module to get more semantic feature involved
- With the hierarchical retrieval trick, the performance further improves
 - Our classification module has high accuracy
 - Model pool is relatively small

^[5] Dahnert, Manuel, Angela Dai, Leonidas J. Guibas, and Matthias Niessner. Joint embedding of 3d scan and cad objects. ICCV 2019.

^[1] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature histograms (fpfh) for 3d registration. ICRA 2009.

^[2] Federico Tombari, Samuele Salti, and Luigi Di Stefano. Unique signatures of histograms for local surface description. ECCV 2010.

^[3] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d classification and segmentation, CVPR 2017.

^[4] Charles Ruizhongtai Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and Leonidas Guibas. Volumetric and multi-view cnns for object classification on 3d data. CVPR 2016.

Experiment results: Scan2CAD alignment

- Experiments ongoing
- To be added in the final report

Conclusion

We propose the Real2CAD framework with:

- End-to-end multi-task learning for CAD model retrieval
 - Outperform SOTA by 16% on model-based retrival accuracy (29% on category-based accuracy)
 - Retrieve with relative rotation
- Coarse-to-fine registration
 - Coarse registration by rotation retrieval and voxel alignement
 - Fine registration by ICP with scale

Thanks for your attention!

Related works: Scan2CAD

[1] Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis Savva, Angel X. Chang, and Matthias Nießner. Scan2cad: Learning cad model alignment in rgb-d scans. CVPR 2019.

- + Comprehensive dataset (100k keypoint correspondences between 1506 scans and 14k CAD models)
- + Keypoint correspondence prediction network + 9DOF pose optimization (non-rigid registration)
- Based on keypoints instead of scan segments
- Exhaustive searching of the corresponding CAD model (inefficient model retrieval)

Related works: Joint embedding of 3D scan and CAD objects

[1] Dahnert, Manuel, Angela Dai, Leonidas J. Guibas, and Matthias Niessner. Joint embedding of 3d scan and cad objects. ICCV 2019.

- + Close the gap between noisy scan data and clean CAD models
- + Enable efficient and precise model retrieval
- No CAD to scan alignment (can be only used for the model retrieval step)
- Relatively low retrieval accuracy (≈ 40%)

