Visualizações 3D para a web com WebGL

Introdução ao Three.js

Conteúdos

- Introdução
- Renderer
- Mesh
 - Geometrias
 - Materiais
- Luzes
- Animação
- Conclusão

Introdução

WebGL (Web Graphics Library) é uma API de JavaScript para a renderização de gráficos 2D e 3D interativos dentro de qualquer navegador da Web compatível sem a utilização de plugins.^[1]

three.js

Three.js é um motor WebGL baseado em JavaScript que pode executar jogos movidos com GPU ou outros aplicativos gráficos diretamente do navegador. A biblioteca three.js fornece várias funções e APIs para desenhar cenas 3D em seu navegador.^[1]

three.js

- https://threejs.org/
- https://github.com/mrdoob/three.js
 - **b**uild

Renderer

new THREE.PerspectiveCamera(fov, aspect, near, far);

new THREE.PerspectiveCamera(fov, aspect, near, far);

new THREE.PerspectiveCamera(fov, aspect, near, far);

Sistema de coordenadas

Renderer

```
camera = new THREE.PerspectiveCamera(fov, ratio, near, far);
scene = new THREE.Scene();
renderer = new THREE.WebGLRenderer({ antialias: true });
renderer.setSize(width, height);
renderer.render(scene, camera);
```

Mesh

Mesh

```
const geometry = new THREE.BoxBufferGeometry(2, 2, 2);
const material = new THREE.MeshNormalMaterial();
const mesh = new THREE.Mesh(geometry, material);
```


Primitivas

- BoxBufferGeometry, BoxGeometry
- CircleBufferGeometry, CircleGeometry
- ConeBufferGeometry, ConeGeometry
- CylinderBufferGeometry, CylinderGeometry
- DodecahedronBufferGeometry, DodecahedronGeometry
- ExtrudeBufferGeometry, ExtrudeGeometry
- IcosahedronBufferGeometry, IcosahedronGeometry
- LatheBufferGeometry, LatheGeometry
- OctahedronBufferGeometry, OctahedronGeometry
- ParametricBufferGeometry, ParametricGeometry
- PlaneBufferGeometry, PlaneGeometry
- PolyhedronBufferGeometry, PolyhedronGeometry
- RingBufferGeometry, RingGeometry
- ShapeBufferGeometry, ShapeGeometry
- SphereBufferGeometry, SphereGeometry
- TetrahedronBufferGeometry, TetrahedronGeometry
- TextBufferGeometry, TextGeometry
- TorusBufferGeometry, TorusGeometry
- TorusKnotBufferGeometry, TorusKnotGeometry
- TubeBufferGeometry, TubeGeometry
- EdgesGeometry
- WireframeGeometry

Personalizadas

Personalizadas

```
const geometry = new THREE.Geometry();
geometry.vertices.push(
    new THREE. Vector3(-1, -1, 1), // 0
    new THREE. Vector3( 1, -1, 1), // 1
    new THREE. Vector3(-1, 1, 1), // 2
    new THREE. Vector3( 1, 1, 1), // 3
    new THREE. Vector3(-1, -1, -1), // 4
    new THREE. Vector3( 1, -1, -1), // 5
    new THREE. Vector3(-1, 1, -1), // 6
    new THREE. Vector3( 1, 1, −1), // 7
);
geometry.faces.push(
    // front
    new THREE.Face3(0, 3, 2), new THREE.Face3(0, 1, 3),
    // right
    new THREE.Face3(1, 7, 3), new THREE.Face3(1, 5, 7),
    // back
    new THREE.Face3(5, 6, 7), new THREE.Face3(5, 4, 6),
    // left
    new THREE.Face3(4, 2, 6), new THREE.Face3(4, 0, 2),
    // top
    new THREE.Face3(2, 7, 6), new THREE.Face3(2, 3, 7),
    // bottom
    new THREE.Face3(4, 1, 0), new THREE.Face3(4, 5, 1),
);
```


Personalizadas

```
const geometry = new THREE.Geometry();
geometry.vertices.push(
    new THREE. Vector3(-1, -1, 1), // 0
    new THREE. Vector3( 1, -1, 1), // 1
    new THREE. Vector3(-1, 1, 1), // 2
    new THREE. Vector3( 1, 1, 1), // 3
    new THREE. Vector3(-1, -1, -1), // 4
    new THREE. Vector3( 1, -1, -1), // 5
    new THREE. Vector3(-1, 1, -1), // 6
    new THREE. Vector3( 1, 1, −1), // 7
);
geometry.faces.push(
    // front
    new THREE.Face3(0, 3, 2), new THREE.Face3(0, 1, 3),
    // right
    new THREE.Face3(1, 7, 3), new THREE.Face3(1, 5, 7),
    // back
    new THREE.Face3(5, 6, 7), new THREE.Face3(5, 4, 6),
    // left
    new THREE.Face3(4, 2, 6), new THREE.Face3(4, 0, 2),
    // top
    new THREE.Face3(2, 7, 6), new THREE.Face3(2, 3, 7),
    // bottom
    new THREE.Face3(4, 1, 0), new THREE.Face3(4, 5, 1),
);
```


Importar modelos

Grupos

\exemplos\3-geometrias [9]

Material

```
const material = new THREE.MeshPhongMaterial({
  color: 0xFF0000,
   flatShading: true,
});

const material = new THREE.MeshPhongMaterial();
material.color.setHSL(0, 1, .5);
material.flatShading = true;
```


THREE.Color

```
m1 = new THREE.MeshBasicMaterial({color: 0xFF0000});
m2 = new THREE.MeshBasicMaterial({color: 'red'});
m3 = new THREE.MeshBasicMaterial({color: '#F00'});
m4 = new THREE.MeshBasicMaterial({color: 'rgb(255,0,0)'});
m5 = new THREE.MeshBasicMaterial({color: 'hsl(0,100%,50%)'});
material.color.set(0x00FFFF); // same as CSS's #RRGGBB style
material.color.set(cssString); // any CSS color, e.g.,
                                 // 'purple', '#F32',
                                 // 'rgb(255, 127, 64)',
                                 // 'hsl(180, 50%, 25%)'
material.color.set(someColor); // some other THREE.Color
material.color.setHSL(h, s, l); // where h, s, and l are 0 to 1
material.color.setRGB(r, g, b); // where r, g, and b are 0 to 1
```


Material

Outros materiais (especiais): **MeshNormalMaterial**, MeshDepthMaterial e ShadowMaterial.

Texturas

UV Mapping mapeia mapas de coordenadas 2D (u, v) coordinates em coordenadas 3D (x, y, z):

$$(u,v) \rightarrow (x,y,z)$$

\exemplos\4-material [2-4]

Luz

Luzes

AmbientLight

Luz que ilumina globalmente todos os objetos de forma igual.

PointLight

Luz emitida em todas as direções por um único ponto.

DirectionalLight

Luz emitida numa direção específica.

SpotLight

Luz emitida a partir de um único ponto numa direção ao longo de um cone.

HemisphereLight

Fonte de luz posicionada diretamente acima da cena, com a cor desbotando da cor do céu para a cor do solo.

Sombras

Configurar o renderizador

```
renderer.shadowMap.enabled = true;
// melhorar a qualidade das sombras
// renderer.shadowMap.type = THREE.PCFSoftShadowMap;
```

Configurar os objetos

```
object3d.castShadow = true;
object3d.receiveShadow = false;
```

Configurar as luzes
light.castShadow = true;

Animação

animate() {...}

```
function animate() {
    requestAnimationFrame(animate);

mesh.rotation.x += 0.01;

renderer.render(scene, camera);
}
```

The window.requestAnimationFrame method tells the browser that you wish to perform an animation and requests that the browser call a specified function to update an animation before the next repaint. The method takes a callback as an argument to be invoked before the repaint. [1]

Animação

Exemplo - Labirinto

Animações

Complexas

- O sistema de aninação (Animation System) do three.js é muito versátil e é muito semelhante ao sistema utilizado pelo Unreal Engine.
 - AnimationMixer Controlador principal usado para controlar a aninação de um objeto.
 - Se manipularmos vários objetos serão necessários vários AnimationMixer.
 - AnimationAction Determina como e quando as AnimationClip são executadas.
 - AnimationClip Conjunto reutilizável de KeyframeTrack que representam uma animação.
 - **KeyframeTrack** Sequência temporizada de keyframes usadas para animar uma propriedade específica de um objeto.
- Saber mais:

https://threejs.org/docs/#manual/en/introduction/Animation-system

https://www.youtube.com/watch?v=YjJuniW0ktk

Conclusão

Praticar

"The only way to learn a new programming language is by writing programs in it."

Dennis Ritchie

Recursos

https://threejsfundamentals.org/

https://discoverthreejs.com/

https://adolfoguimaraes.github.io/threejs/

https://www.youtube.com/watch?v=uzkedMF-I4Q

https://www.youtube.com/watch?v=8jP4xpga6yY

https://www.youtube.com/watch?v=6oFvqLfRnsU

Visualizações 3D para a web com WebGL

Introdução ao Three.js

