tion defined on the measurable set E and that $(f_n)_{n\in\mathbb{N}}$ is a sequence of measurable functions so that $|f_n| \leq g$. If f is a function so that $f_n \to f$ almost everywhere then $\lim_{n\to\infty} \int f_n = \int f.$

Theorem 1 (Dominated convergence of Lebesgue) Assume that g is an integrable func-

Proof: The function
$$g - f_n$$
 is non-negative and thus from Fatou lemma we have that $f(g - f) \le \liminf f(g - f_n)$. Since $|f| \le g$ and $|f_n| \le g$ the functions f and f_n are integrable and we have

 $\int g - \int f \le \int g - \limsup \int f_n,$ so

$$\int f \geq \limsup \int f_n.$$
 Θεώρημα 2 (Κυριαρχημένης σύγκλισης του Lebesgue) Έστω ότι η g είναι μια ολοκληρώσιμη συνάρτηση ορισμένη στο μετρήσιμο σύνολο E και η $(f_n)_{n\in\mathbb{N}}$ είναι μια ακολουθία μετρήσιμων συναρτήσεων ώστε $|f_n| \leq g$. Υποθέτουμε ότι υπάρχει μια συνάρτηση f ώστε

ρώσιμη συνάρτηση ορισμένη στο μετρήσιμο σύνολο
$$E$$
 και η $(f_n)_{n\in\mathbb{N}}$ είναι μια ακολουθία μετρήσιμων συναρτήσεων ώστε $|f_n|\leq g$. Υποθέτουμε ότι υπάρχει μια συνάρτηση f ώστε η $(f_n)_{n\in\mathbb{N}}$ να τείνει στην f σχεδόν παντού. Τότε
$$\lim \int f_n = \int f.$$

$$A$$
πόδειξη: Η συνάρτηση $g-f_n$ είναι μη αρνητική και άρα από το Λήμμα του Fatou ισχύει $\int (f-g) \leq \liminf \int (g-f_n)$. Επειδή $|f| \leq g$ και $|f_n| \leq g$ οι f και f_n είναι ολοκληρώσιμες, έχουμε

$$\begin{split} f(f-g) & \leq \liminf f(g-f_n). \text{ Επειδή } |f| \leq g \text{ και } |f_n| \leq g \text{ or } f \text{ και } f_n \text{ είναι ολοκληρώσιμες} \\ & \qquad \qquad \int g - \int f \leq \int g - \limsup \int f_n, \end{split}$$

άρα $\int f \ge \lim \sup \int f_n.$

$$\lim \sup \int f_n$$
.