Spring 2019 CS372 Assignment #5 solution.

1. Build a min-heap by inserting elements one at a time in the following order 53, 8, 15, 16, 4, 21, 5, 22, 1. Show all your steps - draw a binary tree representing the heap after each insertion. Represent the resulting heap as a binary tree and as an array.

Solution: Only the resulting heap is shown:

Array representation: [1, 4, 5, 8, 16, 21, 15, 53, 22]

2. Suppose Dijkstra's algorithm is run on the following graph, starting at node 1.

- (a) Draw a table showing the intermediate distance values of all the nodes at each iteration of the algorithm.
- (b) Show the final shortest-path graph.

Solution:

(a)

		Iteration									
		0	1	2	3	4	5	6	7	8	9
	1	0	0	0	0	0	0	0	0	0	0
	2	∞	3	3	3	3	3	3	3	3	3
	3	∞	10	10	8	8	8	8	8	8	8
Vertices	4	∞	∞	10	10	10	10	10	10	10	10
	5	∞	∞	6	6	6	6	6	6	6	6
	6	∞	∞	∞	∞	16	16	16	16	16	16
	7	∞	∞	∞	∞	∞	14	14	14	14	14
	8	∞	∞	∞	13	13	12	12	12	12	12
	9	∞	∞	∞	∞	∞	13	13	13	13	13

(b) The final shortest path is shown below in blue.

3. Suppose Bellman-Ford algorithm is run on the following graph, starting at node 1.

- (a) Draw a table showing the intermediate distance values of all the nodes at each iteration of the algorithm.
 (b) Show the final shortest-path graph.

Solution: (a) and (b)

		Iteration								
		0	1	2	3	4	5	6	7	
	1	0	0	0	0	0	0	0	0	
	2	8	5	5	5	5	5	5	5	
	3	8	4	4	4	4	4	4	4	
Vertices	4	∞	∞	12	12	12	12	12	12	
Vert	5	8	6	3	2	2	1	1	1	
	6	8	8	7	7	6	6	6	6	
	7	∞	∞	∞	7	7	7	7	7	
	8	∞	∞	13	10	9	9	8	8	

4. Run the shortest paths in DAGs algorithm on the following DAG, starting at node 2.

- (a) Show all your steps including
 - the result of linearization and
 - draw a table showing the intermediate distance values of all the nodes at each iteration of the algorithm.
- (b) Show the final shortest-path graph.

Solution:

- Linearize the graph: run DFS and list the vertices in the order of decreasing post numbers. If the vertices are processed in increasing order then the following linearization is obtained: 1, 3, 2, 4, 7, 6, 5, 8.
- Note: vertex that is being processed at each iteration is listed in the parenthesis after the iteration number. For instance, 2(3) means that vertex 3 is being processed at iteration 2.

		0	1(1)	2(3)	3(2)	4(4)	5(7)	6(6)	7(5)	8(8)
	1	8	∞	∞	∞	∞	8	8	8	∞
	2	0	0	0	0	0	0	0	0	0
	3	8	8	∞	∞	∞	8	∞	∞	∞
Vertices	4	8	8	∞	72	72	72	72	72	72
	5	8	8	∞	-22	-22	-22	-46	-46	-46
	6	∞	∞	∞	∞	∞	17	17	17	17
	7	∞	∞	∞	∞	24	24	24	24	24
	8	∞	∞	∞	∞	9 ₄	9 ₄	76	35	35

5. Exercise 4.4

Solution: The graph below is a counterexample: vertices are labeled with their level in the DFS tree, back edges are dashed. The shortest cycle consists of vertices 1-4-5, but the cycle found by the algorithm is 1-2-3-4. In general, the strategy will fail if the shortest cycle contains more than one back edge.

6. Exercise 4.8

Solution: The weighted graph below is a counterexample:

According to the algorithm proposed by Professor Lake we should add +4 to the weight of each edge. Then, the shortest path between u and w would be the edge (u,w) of weight 1. However, the shortest path in the original graph was u - v - w.