Difficult genes and their impact on RNA-Seq data analysis

Alicja Szabelska-Beręsewicz Idzi Siatkowski Joanna Zyprych-Walczak Michał Okoniewski

Contents

1	Introduction	1
2	Preliminary analysis	2
	2.1 Heatmaps	2
	2.2 Barplots	3
3	Difficult genes	4
4	Description of difficult genes	5
5	Machine learning	7
	5.1 Classification errors	7

1 Introduction

The issue being analysed is pinpointing the genes that cause systematically artifactual results in the analysis of RNA-seq. Such genes cannot be reliably measured and detected as differentially expressed. In particular the problem occurs, when popular genome aligners do not agree in the number and distribution of reads assigned to such genes. It causes confusion in reproducible data analysis. When such difficult genes are those of particular biological

interest, it may distort the biological interpretation of the whole experiment. When difficult genes are the key ones in human metabolic pathways, the distorted results may be confusing for the further research in genomic personalised medicine.

2 Preliminary analysis

2.1 Heatmaps

2.2 Barplots

3 Difficult genes

4 Description of difficult genes

contingency table for methods edge R, DESeq, limma + voom i
 limma + vst for dataset dataset 4

	m.T	m.N	m.T	m.N	m.T	m.N	m.T	m.N
g.T	10.09	28.28	2.32	12.47	9.24	28.80	7.29	24.1
g.N	18.95	42.68	20.86	64.35	19.37	42.59	20.21	48.4

contingency table for methods edge R, DESeq, limma + voom i
 limma + vst for dataset dataset 5

	m.T	m.N	m.T	m.N	m.T	m.N	m.T	m.N
g.T	20.83	56.17	6.29	39.77	19.14	55.08	17.11	55.35
g.N	10.26	12.73	15.30	38.62	11.71	14.07	12.62	14.92

contingency table for methods edge R, DESeq, limma + voom i limma + vst for dataset ${\it dataset6}$

	m.T	m.N	m.T	m.N	m.T	m.N	m.T	m.N
0	21.08			1				
g.N	11.76	16.20	14.05	33.23	12.84	17.37	13.41	18.07

contingency table for methods edge R, DESeq, limma + voom i limma + vst for dataset dataset 7

	m.T	m.N	m.T	m.N	m.T	m.N	m.T	m.N
g.T	3.96	41.02	0.79	19.99	3.15	41.46	2.13	32.83
g.N	8.97	46.05	6.74	72.47	8.46	46.93	9.17	55.86

contingency table for methods edge R, DESeq, limma + voom i limma + vst for dataset dataset 8

	m.T	m.N	m.T	m.N	m.T	m.N	m.T	m.N
g.T	16.01	62.67	9.32	56.37	15.45	62.35	14.41	63.72
g.N	8.06	13.26	9.77	24.54	8.00	14.20	8.27	13.61

Table 1: Percentage of significant genes due to mappers and groups across each dataset

		Dataset								
	GSE:	22260	GSE41364		GSE42146		GSE50760		GSE87340	
Mappers	yes	no	yes	no	yes	no	yes	no	yes	no
yes	10.09	28.28	16.01	62.67	3.96	41.02	20.83	56.17	21.08	50.96
no	18.95	42.68	8.06	13.26	8.97	46.05	10.26	12.73	11.76	16.20

Table 2: Percentage of significant genes due to mappers and groups across each dataset

each dataset											
	Mappers										
Datasets	Н	[isat	5	Star	Subread						
	% of all	% of DEG	% of all	% of DEG	% of all	% of DEG					
GSE22260	0.10	17.93	0.25	27.11	0.20	22.75					
GSE41364	11.60	23.38	13.34	26.19	12.62	25.39					
GSE42146	11.73	20.70	11.61	20.43	14.52	25.92					
GSE50760	10.08	18.04	9.90	17.67	11.40	20.63					
GSE87340	0.44	4.81	0.44	4.22	0.77	7.27					

5 Machine learning

5.1 Classification errors

Table 3: Average AUC values for 10 simulations for considered datasets and

mappers

паррего											
		Mapper/Difficultness									
Dataset	No of pred	Hi	sat	St	ar	Subread					
		yes	no	yes	no	yes	no				
	10	0.575	0.893	0.569	0.904	0.717	0.945				
GSE22260	15	0.598	0.901	0.636	0.884	0.668	0.939				
	20	0.610	0.903	0.905	0.879	0.908	0.913				
	18	0.890	0.881	0.893	0.814	0.899	0.877				
GSE41364	27	0.910	0.878	0.908	0.811	0.906	0.870				
	36	0.897	0.858	0.906	0.795	0.901	0.865				
	14	1.000	0.991	1.000	1.000	1.000	0.998				
GSE42146	22	1.000	1.000	1.000	1.000	1.000	1.000				
	29	1.000	1.000	1.000	1.000	1.000	1.000				
	4	0.773	0.977	0.913	0.838	0.899	0.788				
GSE50760	6	0.795	0.988	0.908	0.970	0.894	0.874				
	8	0.865	0.995	0.948	0.969	0.918	0.811				
	3	1.000	0.886	1.000	0.930	1.000	0.958				
GSE87340	4	1.000	0.944	1.000	0.998	1.000	1.000				
	6	1.000	0.945	1.000	0.990	1.000	0.996				