自然语言处理导论 #L9 文本聚类

袁彩霞
yuancx@bupt.edu.cn
智能科学与技术中心

Overview

- 目前为止: 分类问题
 - 应用: 文本主题分类、语言识别、词义消歧等
 - "有监督"学习框架:学习时需要类别标签
 - 生成模型: e.g., Naïve Bayes
 - 模型=一组分布P(x,y; θ), $\theta \in \Theta$
 - 选择一种最可能从中抽样得到训练数据的分布 $P(x,y;\hat{\theta})$
 - 根据 $\hat{y} = \arg \max_{y} P(x, y; \theta)$ 对新样本x进行分类
 - 判别模型: e.g., maximum entropy models (a.k.a. logistic regression)
 - 模型=一组分类函数F
 - 选择一种可以对训练样本正确分类的函数 $\hat{f} \in F$
 - 根据 $\hat{y} = sign(\hat{f}(x))$ 对新样本X进行分类

Overview

- 接下来: 聚类问题
 - "无监督"学习框架: 学习时不需要类别标签
 - Magic: 挖掘数据内部的隐藏模式(结构、类别等)
 - 很多NLP任务都关乎聚类问题: IR, recommendation system, exploratory data analysis

例子: 标题聚类

例子: web搜索优化

- 用户提交的query本身往往包含歧义
 - E.g., Jaguar, NLP, Paris Hilton

- 前10页几乎没有关于"animal"词义下的结果
- 仅靠词义消歧通常不能很好的解决web搜索的歧义
 - 需要交由用户选择相关的搜索结果
 - 将搜索结果按照query的语义进行分组
 - Jaguar or Jaguar car

聚类

Inter-cluster distances are maximized

- 如何定义样本间的距离?
- 如何找到这样一组划分?

距离测度

- 假设每个样本可以看成高维空间内的一个点,则可以采用距离测度表示样本间的距离
- 则聚类问题的输入可以看成由样本距离张成的一个矩阵:

距离测度

• 样本点 x 和样本点集合 A 之间的距离:

$$\mathbf{d}(\mathbf{x},\mathbf{A}) = \frac{1}{|\mathbf{A}|} \sum_{\mathbf{y} \in \mathbf{A}} \mathbf{d}(\mathbf{x},\mathbf{y})$$

• 两个样本点集合A, B之间的距离:

$$d(A,B) = \frac{1}{|A||B|} \sum_{x \in A, y \in B} d(x,y)$$

•注意,还有其它多种不同的刻画方式

X

聚类模型

- K-means
- Hierarchical Clustering
- Density-based Clustering
- Gaussian Mixture Model
- Spectral Clustering
-

K-means

- 先确定簇的个数, K
- 假设每个簇都有一个中心点(centroid)
- 将每个样本点划分到距离它最近的中心点所属的簇中
- 迭代过程:

The basic algorithm:

1: select K points as the initial centroids

2: repeat

3: Form K clusters by assigning all points to the *closest centroid*

4: Recompute the centroid of each cluster

5: until the centroids don't change

K-means Clustering

K-means

• 目标函数: 定义为每个样本与其簇中心点的距离的 平方和(the Sum of Squared Error, SSE)

$$SSE = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \operatorname{dist}(x_n - \mu_k)$$
 e.g., $\operatorname{dist}(x_n - \mu_k) = ||x_n - \mu_k|||^2$

- $-\mu_k$ 表示簇 C_k 的中心点(或其它能代表 C_k 的点)
- $若x_n 被划分到簇C_k则r_{nk}=1, 否则r_{nk}=0$
- 目标:找到簇的中心点 μ_k 及簇的划分 r_{nk} 使得目标。函数SSE最小

K-means

- 1: choose some initial values for the μ_k (k=1,...,K)
- 2: repeat
- 3: minimize SSE with respect to the r_{nk} (n=1,...,N)

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} / |x_n - \mu_j|/2\\ 0 & \text{otherwise} \end{cases}$$

• 4: minimize SSE with respect to the m_k

$$\mu_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}$$

• 5: until convergence

- 初始中心点通常是随机选取的
 - 产生的簇可能和上一次迭代相差很大
- 中心点通常是当前簇中所有样本点的均值
 - K-medoids: 中位数
- 算法复杂度: O(n×d×K×1)
 - n=样本点个数, d=样本特征为度
 - K=类的个数, I=迭代次数
- 需要预先确定K!

不同初始中心点的选取对聚类结果的影响:

不同初始中心点的选取对聚类结果的影响:

类别本身可能存在歧义:

聚类模型

- K-means
- Hierarchical Clustering
- Gaussian Mixture Model
- Density-based Clustering
- Spectral Clustering
- •

Hierarchical Clustering

- 为数据集输出一个嵌套的、层次化的类别树: dendrogram
 - 树结构记录了簇的合并或拆分
 - 自底向上 (agglomerative)
 - 自顶向下 (divisive)

Hierarchical Agglomerative Clustering (HAC)

• 层次凝聚聚类:一种很常用的聚类模型

Basic algorithm:

- 1. Compute the proximity matrix
- 2. Let each data point be a cluster
- 3. Repeat
- 4. **Merge** the two closest clusters
- 5. Update the proximity matrix
- 6. Until only a single cluster remains
- 关键步骤: 计算两个簇的相似度
 - 不同的度量两个簇的相似度方法,区分了不同的聚 类算法

初始状态

• 初始状态:每个点代表一个簇以及一个相似度矩阵(proximity matrix)

中间状态

• 经过几次合并操作,得到一些簇以及一个相似度矩阵

合并操作

• 合并操作:合并最近的两个簇(C2 and C5),同时更新相似度矩阵

合并操作

• 问题: 如何更新相似度矩阵?

	р1	p2	рЗ	p4	р5	<u>.</u>
р1						
<u>p2</u>						
р3						
p4						
p5						
ζ —						

两个不相交的簇G和H, 其间的相似度D(G, H)可以通过点点间的相似度 (pairwise similarities) D(i, j), i∈G, j∈H, 计算得到

	p 1	p2	рЗ	p4	р5	<u>.</u>
p1						
p2						
р3						
p4						
р5						
_	_					_

- MIN (single linkage)
- MAX (complete linkage)
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	рЗ	p4	p 5	<u> </u>
p1						
<u>p2</u>						
р3						
p4						
p5						

- MIN (single linkage)
- MAX (complete linkage)
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

How to Define Inter-Cluster Similarity

- MIN (single linkage)
- MAX (complete linkage)
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p 1	p2	рЗ	p4	р5	<u> </u>
p1						
p2						
р3						
<u>p4</u>						
p5						
_						

	р1	p2	рЗ	p4	р5	<u>.</u> .
p1						
p2						
р3						
p4						
p5						

- MIN (single linkage)
- MAX (complete linkage)
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

 A Example: 2000个样本,测试一下算法对cluster size的 敏感度

• A Example: 选择类别数目为4

• A Example: 选择类别数目为5

- 如何确定应该取多少个cluster?
 - 2000个样本,假设每次合并两个cluster
 - 每次合并得到的两个cluster的距离

Divisive Hierarchical Clustering

Social Network Graphs

Divisive Hierarchical Clustering

- E.g., in a MST approach
- 构建最小生成树 (Minimum Spanning Tree)
 - Prime算法

Divisive Hierarchical Clustering

- E.g., in a MST approach
- 构建最小生成树 (Minimum Spanning Tree)
 - Kruskal 算法

Hierarchical Clustering: Strengths

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level

- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters

聚类模型

- K-means
- Hierarchical Clustering
- Gaussian Mixture Model
- Density-based Clustering
- Spectral Clustering
- •

Probabilistic Clustering

- Represent the probability distribution of the data as a mixture model
 - captures uncertainty in cluster assignments
 - gives model for data distribution
 - Bayesian mixture model allows us to determine K

Consider mixtures of Gaussians

高斯分布

- 单高斯模型(Gaussian Single Model)
 - 一个随机变量x服从高斯分布时, 概率密度函数为:

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

- μ: 模型均值, σ²为模型方差
- 多维变量x服从高斯分布时, 概率密度函数为:

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

- x是维度为D的列向量, μ: 模型均值, Σ为D*D的协方差矩阵

似然函数

• 数据集:

$$D=\{x_i\}, i=1, ..., N$$

- 考虑单个Gaussian模型
- 假设观测样本点由单个Gaussian独立等分布地抽样得到:

$$p(D|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{n=1}^{N} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

• 可以被看做模型参数的函数, 因此被称为似然函数

极大似然估计

- 求解使得似然函数取最大值时对应的模型参数
- 等价地,极大化log似然函数:

$$\ln p(D|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{N}{2} \ln |\boldsymbol{\Sigma}| - \frac{Nd}{2} \ln(2\pi)$$
$$-\frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu})$$

极大似然估计

• 相对于均值求似然最大化,得到样本均值:

$$\mu_{\mathsf{ML}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$

• 相对于方差求似然最大化,得到样本方差:

$$\Sigma_{\mathsf{ML}} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}_{\mathsf{ML}}) (\mathbf{x}_n - \boldsymbol{\mu}_{\mathsf{ML}})^{\mathsf{T}}$$

Gaussian混合模型

Gaussian Mixture Model (GMM): 多个Gaussian模型的线性混合:

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

• 混合系数: $\sum_{k=1}^{K} \pi_k = 1$ $0 \le \pi_k \le 1$

• 可以看做一种先验概率:

$$p(\mathbf{x}) = \sum_{k=1}^{K} p(k)p(\mathbf{x}|k)$$

3个Gaussian的混合:

概率分布的等高线:

从Gaussian混合分布中抽样得到数据

- 样本点xn的生成过程:
 - 首先, 以概率π_k选择一个混合成分;
 - 接着,从该混合成分中抽样得到样本点Xn
- 对于每个样本点, 重复以上两个步骤

从数据中估计Gaussian混合分布的参数

- 求解上述过程的逆过程-给定样本点,估计相应的
 - 混合系数
 - 均值
 - 协方差

- 如果知道每个样本点由哪个成分抽样得到,则通过极大似然方法可以得到每个类对应的Gaussian模型的参数
- 问题:数据集缺少类别标注
- 因此类别labels可以看做是隐变量(latent/hidden variable)

后验概率

- 可以把混合系数看做每个成分的先验概率
- 给定一个类别标记k,估计相应的后验概率(posterior probabilities,或responsibilities)
- 可以通过Bayes' theorem得到:

$$\gamma_k(\mathbf{x}) \equiv p(k|\mathbf{x}) = \frac{p(k)p(\mathbf{x}|k)}{p(\mathbf{x})}$$

$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum\limits_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

0.5

0.5

GMM的极大似然估计

• Log似然函数:

$$\ln p(D|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

• 注意: sum出现在log内

GMM的极大似然估计

- 对log似然函数简单求导
- \Diamond In $p(X|\pi,\mu,\Sigma)$ 相对于第k个Gaussian的均值 μ_k 的倒数为零,得:

$$0 = -\sum_{n=1}^{N} \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j} \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} \boldsymbol{\Sigma}_k(\mathbf{x}_n - \boldsymbol{\mu}_k)$$
$$\gamma(z_{nk})$$

$$\mu_k = \frac{1}{N_k} \sum_{i=1}^N \gamma_k(x_i) x_i$$

$$N_k = \sum_{i=1}^N \gamma_k(x_i)$$
 类别 k 中所属的有效样本个数

GMM的极大似然估计

• 类似的, 求解协方差:

$$\Sigma_{k} = \frac{1}{N_{k}} \sum_{i=1}^{N} \gamma_{k}(x_{i})(x_{i} - \mu_{k})(x_{i} - \mu_{k})^{T}$$

• 根据Lagrange multiplier求解混合系数:

$$\pi_k = \frac{1}{N} \sum_{i=1}^N \gamma_k(x_i)$$

EM Algorithm

- 上述解构不成封闭形式, 因为变量之间互为耦合
- 采用一种迭代的方式求解:
 - 给参数一个初始值
 - 通过下述两个步骤更新参数:
 - E-step: 估计后验概率或responsibilities
 - M-step: 根据MLE的结果更新参数
- 每一次 EM 循环都能保证likelihood值增大

EM Algorithm

• E-step: 估计responsibilities

$$\gamma_{k}(x_{i}) = \frac{\pi_{k} N(x_{i} | \mu_{k}, \Sigma_{k})}{\sum_{j=1}^{K} \pi_{j} N(x_{i} | \mu_{j}, \Sigma_{j})}$$

• M-step: 采用MLE估计更新参数

$$\mu_{k} = \frac{1}{N_{k}} \sum_{i=1}^{N} \gamma_{k}(x_{i})$$

$$\Sigma_{k} = \frac{1}{N_{k}} \sum_{i=1}^{N} \gamma_{k}(x_{i})(x_{i} - \mu_{k})(x_{i} - \mu_{k})^{T}$$

Example

GMM应用于分类

- 分类时:
 - 每个混合成分(类)的参数μ和Σ已知
 - 把数据点x带入到每个混合成分 C_k 中 N(x| μ_k , Σ_k)
 - 当概率大于一定阈值时便认为x属于C_k类

与 K-means之间的关系

- 考虑GMM的协方差为一个常数 ε
- 令极限ε→0
- Responsibilities取两个值:

$$\gamma_i(\mathbf{x}_n) = \frac{\pi_i \exp\left\{-\|\mathbf{x}_n - \boldsymbol{\mu}_i\|^2 / 2\epsilon\right\}}{\sum_j \pi_j \exp\left\{-\|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 / 2\epsilon\right\}} \to r_{ni} \in \{0, 1\}$$

• 此时,EM algorithm与K-means等价

Other issues: Over-fitting in Gaussian Mixture Models

• 假设:某个混合成分仅包括一个样本点

$$\begin{split} & \boldsymbol{\Sigma_j} = \boldsymbol{\sigma^2} \boldsymbol{I}, \, \boldsymbol{\mu_j} = \boldsymbol{x_n} \\ & \mathcal{N}(\mathbf{x}_n | \mathbf{x}_n, \sigma_j^2 \mathbf{I}) = \frac{1}{(2\pi)^{1/2}} \frac{1}{\sigma_j} \end{split}$$

- · 考虑情形σ²→0
- 此时log似然函数趋于无穷大,则极大化似然估计不是 一个良态问题

Problems and Solutions

- 如何避免似然函数中的奇点
 - Bayesian方法
- 如何选取混合成分的个数K
 - 呃。。。也采用Bayesian方法

Summary

- Clustering is cool
- It's easy to find the most salient pattern
- It's quite hard to find the pattern you want
- It's hard to know how to fix when broken
- EM is a useful optimization technique you should understand well if you don't already

Next lecture

Latent Semantic Analysis