Goal

Simulate a spring-mass-gravity system

Constants

k = 100

 $l_0=1$

m = 1

g = 9.8

Duration: 20s

Framerate: $25 \mathrm{fps}$

Initial Values

l = 1.5

 $\dot{l} = 0$

 $\theta = 0$

 $\dot{\theta} = 0$

Results

In which ME stands for mechanical energy, T_{rad} stands for radical kinetic energy, T_{tan} stands for tangential kinetic energy, V_{elas} stands for elastic potential energy, V_{grav} stands for gravitational potential energy.

The average calculated mechanical energy is -2.0769138619149143 J

The Root Mean Square Error of mechanical energy is 0.1424396880941304

the standard deviation of mechanical energy is $\ 0.017137885306576336$

Therefore the calculated energy stays close to the theoretical energy, meaning the energy of this system converges to the theoretical value. This simulation has a high accuracy and a high preciseness.