Divyansh Mittal, 2020CS10342

1. 1 Nonlinear Regression

	Date	Location	MinTemp	MaxTemp F	Rainfall Eva	poration S	unshine \	WindGustDir V	VindGustSpeed	WindDir9am	WindDir3pm	Wind Speed9am	WindSpeed3pm	Humidity9am	Humidity3pm	Pressure9am	Pressure3pr	n Cloud9am	Cloud3pm 1	Temp9am	Temp3pm	RainTomorrow
0 0	11-12-2008	Albury	13.4	22.9	0.6	NaN	NaN	W	44.0	W	WNW	20.0	24.0	71.0	22.0	1007.7	1007.	1 8.0	NaN	16.9	21.8	No
1 0	2-12-2008	Albury	7.4	25.1	0.0	NaN	NaN	WNW	44.0	NNW	WSW	4.0	22.0	44.0	25.0	1010.6	1007.	8 NaN	NaN	17.2	24.3	No
2 0	3-12-2008	Albury	12.9	25.7	0.0	NaN	NaN	WSW	46.0	W	WSW	19.0	26.0	38.0	30.0	1007.6	1008.	7 NaN	2.0	21.0	23.2	No
	4-12-2008	Albury	9.2	28.0	0.0	NaN	NaN	NE	24.0	SE	Е	11.0	9.0	45.0	16.0				NaN	18.1	26.5	No
4 0	5-12-2008	Albury	17.5 MinTemp	32.3 MaxTemp F	1.0 Rainfall Eva	NaN sporation S	NaN unshine V	W	41.0 VindGustSpeed	ENE	NW WindDir3pm	7.0 Wind Speed9am	20.0	82.0	33.0				8.0 Cloud3pm	17.8 Temp9am	29.7 Temp3pm	No RainTomorrow
0.0	11-12-2008	Albury	MIN IEMP	22.9	0.6	NaN	NaN	WINGGUSTDIF V	vinaGustspeed 44.0	WindDirsam	WNW	windspeedsam 20.0	Wind Speed3pm 24.0	71.0	Humidity3pm 22.0	Pressure9am 1007.7			NaN	16.9	21.8	Rain iomorrow
	2-12-2008	Albury	7.4	25.1	0.0	NaN	NaN	WNW	44.0	NNW	WSW	4.0	24.0	44.0	25.0				NaN	17.2	24.3	0
	3-12-2008	Albury	12.9	25.7	0.0	NaN	NaN	wsw	46.0	w	WSW	19.0	26.0	38.0	30.0				2.0	21.0	23.2	0
	4-12-2008	Albury	9.2	28.0	0.0	NaN	NaN	NE	24.0	SE	E	11.0	9.0	45.0	16.0				NaN	18.1	26.5	0
4 0	5-12-2008	Albury	17.5	32.3	1.0	NaN	NaN	W	41.0	ENE	NW	7.0	20.0	82.0	33.0	1010.8	1006.	0 7.0	8.0	17.8	29.7	0
	MinTemp	MaxTe	mp Ra	infall Eva	poration	Sunshin	e Wind	GustSpeed	Wind Speed 9	am Wind	Speed3pm	Humidity9am	Humidity3p	m Pressui	e9am Pre	ssure3pm	Cloud9am	Cloud3pm	Temp9an	Temp	3pm Ra	in Tomorrow
0	13.4	2	2.9	0.6	NaN	Nat	V	44.0		20.0	24.0	71.0	22	.0 1	007.7	1007.1	8.0	NaN	16.9	9 :	21.8	0
1	7.4	. 2	5.1	0.0	NaN	Nat	V	44.0		4.0	22.0	44.0	25	.0 1	010.6	1007.8	NaN	NaN	17.2	2	24.3	0
2	12.9) 2	5.7	0.0	NaN	Nat	V	46.0		19.0	26.0	38.0	30	.0 1	007.6	1008.7	NaN	2.0	21.0)	23.2	0
3	9.2	. 2	8.0	0.0	NaN	Nat	V	24.0		11.0	9.0	45.0	16	.0 1	017.6	1012.8	NaN	NaN	18.1		26.5	0
4	17.5		32.3	1.0	NaN	Nat	V	41.0		7.0	20.0	82.0	33	0 1	010.8	1006.0	7.0	8.0	17.8	3	29.7	0
	MinTemp			infall Eva	poration	Sunshin	e Wind				Speed3pm	Humidity9am		m Pressur	e9am Pre		Cloud9am	Cloud3pm				in Tomorrow
0	13.4	1 2	2.9	0.6	5.52876	7.56870	6	44.0		20.0	24.0	71.0	22	0 1	007.7	1007.1	8.00000	4.487216	16.9)	21.8	0
1	7.4		25.1	0.0	5.52876	7.56870		44.0		4.0	22.0	44.0			010.6	1007.8	4.43216	4.487216			24.3	0
2	12.9		5.7	0.0	5.52876	7.56870		46.0		19.0	26.0	38.0			007.6	1008.7	4.43216	2.000000	21.0		23.2	0
3	9.2		8.0	0.0	5.52876	7.56870		24.0		11.0	9.0	45.0			017.6	1012.8	4.43216	4.487216			26.5	0
	17.5		2.3	1.0		7.56870		41.0		7.0	20.0	82.0			010.8	1006.0	7.00000	8.000000	17.8		29.7	0
4	MinTem		Temp	Rainfall				e WindG				oz.u ndSpeed3pn			idity3pm	Pressure			Cloud9a		ud3pm	Temp9am
_		<u> </u>																				
0	0.56992	21 0.4	54139	0.001617	0.0	38129	0.53678	18	0.289062	0.1	53846	0.28915	0.701	031	0.212121	0.452	579	0.477080	0.88888	39 0.	560902	0.490196
1	0.41160	0.5	03356	0.000000	0.0	38129	0.53678	18	0.289062	0.0	30769	0.26506	0.422	680	0.242424	0.500	832	0.488964	0.49246	62 0.5	560902	0.497549
2	0.55672	28 0.5	16779	0.000000	0.0	38129	0.53678	18	0.304688	0.1	46154	0.31325	0.360	825	0.292929	0.450	915	0.504244	0.49246	62 0.2	250000	0.590686
3	0.45910	0.50	68233	0.000000	0.0	38129	0.53678	8	0.132812	0.0	84615	0.10843	0.432	990	0.151515	0.617	304	0.573854	0.49246	52 0.5	560902	0.519608
4	0.67810	0 0.6	64430	0.002695	0.0	38129	0.53678	8	0.265625	0.0	53846	0.24096	1 0.814	433	0.323232	0.504	1160	0.458404	0.77777	78 1.0	000000	0.512255
					3.0					3.0				-		2.30	-					

Figure 1: Pandas head after various modifications

Figure 2: J vs iterations

APL 405

2. Question 2

Figure 3: Plotted data

Figure 4: Contour for various values of lambda

APL 405

With a higher value of lambda, we get a stronger regularisation effect. The weight of coeeficients tend to get smaller as lambda increases. If we take a too small lambda, we overfit the data. But if we take a lambda that is too large, we might underfit. Thus it becomes important to take a correct lambda for regression.

APL 405 3

```
1 import numpy as np
 2 from matplotlib import pyplot as plt
 3 from scipy import optimize
 plt.style.use('ggplot')
 7 dat = np.loadtxt("nonLinearClass.txt" ,delimiter=',')
9 data_zero = dat[dat[:,2] == 0]
print(data_zero)
12 data_one = dat[dat[:,2] == 1]
print(data_one)
plt.plot(data_zero[:,0],data_zero[:,1],'o')
plt.plot(data_one[:,0],data_one[:,1],'x')
plt.xlabel('Microchip Test 1')
plt.ylabel('Microchip Test 2')
22 # Specified in plot order
plt.legend(['y = 1', 'y = 0'], loc='upper right')
def costFunctionReg(w,X,y,lambda_):
                       y = np.round(np.array(y))
26
                         m,col = X.shape
27
                         x = X.T
28
                        h = sigmoid(np.dot(w,x))
31
                          J = (-1*np.dot(y,np.log(h)) - np.dot(1-y,np.log(1-h)))/m + lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambda_*np.sum(lambd
32
               np.square(w))/(2*m) # Cost 'J' should be a scalar
34
                           grad = (h - y)
35
                          grad_J = np.dot(x,grad.T)
36
37
                         grad = np.divide(grad_J,m) + lambda_*w/(m) # Gradient 'grad' should
               be a vector
                         print(J)
39
                          return J, grad
41 def sigmoid(z):
                         <u>return</u> 1/(1 + np.exp(-z))
44
def mapFeature(x1,x2):
              a = len(x1)
               X = np.ones(a)
47
               for j in range(1,7):
48
                         for i in range(j+1):
                                    t = (x1**(j-i)) *(x2**i)
                                    X= np.np.c_[X,t]
               return X
52
53
54 def minCostFun( w_ini, X_train, y_train, iters,lambda_):
                      row,col = X_train.shape
                         m = col
                 options = {'maxiter':iters}
```

APL 405

```
58
          res = optimize.minimize(costFunctionReg,w_ini,(X_train,y_train,lambda_),jac
       = True, method='TNC', options = options)
60
          cost = res.fun
61
          w_opt = res.x
                              # Optimized weights rounded off to 3 decimal places
          return w_opt
64
66 X1 = np.array(dat[:,0])
67 X2 = np.array(dat[:,1])
69 Y = dat[:,2]
70 m = X1.size
1ambda_ = 0.001
74 X_set = mapFeature(X1, X2,6).T
75 w = minCostFun(np.zeros(28), X_set.T,Y,1000,lambda_)
_{78} u = np.linspace(-1, 1.5, 50) # 1D array from -1 to 1.5 based on the limits of data
79 v = np.linspace(-1, 1.5, 50)
81 z = np.zeros((u.size, v.size))
# Evaluate z = w*x over the grid
83 for i, ui in enumerate(u):
     for j, vj in enumerate(v):
          z[i, j] = np.dot(mapFeature(np.array([ui]),np.array([vj])), w)
z = z.T
_{89} plt.contour(u, v, z, levels=[0], linewidths=2, colors='g')    # Plots contour lines
90 plt.contourf(u, v, z, levels=[np.min(z), 0, np.max(z)], cmap='Greens', alpha=0.4) #
       Plots filled contours
92 plt.plot(data_zero[:,0],data_zero[:,1],'o', label = 'Y = 1')
plt.plot(data_one[:,0],data_one[:,1],'x', label = 'Y = 0')
96 # Specified in plot order
98 plt.xlabel('Microchip Test 1')
99 plt.ylabel('Microchip Test 2')
plt.legend()
plt.savefig("lambda001",dpi=500)
plt.title('lambda = %0.2f' % lambda_)
```

Listing 1: Python code

APL 405 5