Université de Sherbrooke - Département d'informatique MAT115 - Logiques et mathématiques discrètes Marc Frappier, professeur

Devoir 1 - Logique avec Tarski UdeS

Date de remise: Vendredi 12 septembre à 16h (aucun retard permis)

Travail réalisé avec l'équipe assignée par le professeur; les équipes sont affichées dans <u>Turninweb</u>, le système de soumission de travaux du Département d'informatique

Utilisez <u>TurninWeb</u> pour soumettre votre travail. Soumettez le fichier suivant :

• devoir1.json - qui contient toutes vos formules avec des mondes pour les tester.

Une ébauche du fichier <u>devoir1.json</u> vous est fournie, avec le texte de chaque formule. Importez-la et modifiez-la pour faire votre devoir.

Vous pouvez soumettre un travail autant de fois que nécessaire; seule la dernière soumission est conservée et corrigée. Aucun retard permis. La note 0 sera attribuée si le devoir n'est pas soumis avant la date et l'heure limite.

Énoncé du devoir

Traduisez les phrases suivantes en logique avec le langage de Tarski UdeS. Chaque question **x** doit correspondre à une formule nommée Formula-**x** (ce qui est le nom par défaut dans TarskiUdes quand vous créez une formule).

- 0. Il existe deux petits triangles et un grand carré. Le carré est sur la même colonne que les triangles.
- 1. Chaque grand carré est situé entre deux moyens pentagones.
- 2. Il existe une colonne où on retrouve tous les pentagones petits. Il n'y a pas de petit triangle sur cette colonne. S'il n'y a pas de petit pentagone, alors cet énoncé est satisfait.
- 3. Il existe exactement un petit carré; de plus, tous les grands pentagones sont situés à sa gauche sur la même ligne que lui.
- 4. Tous les grands triangles sont situés entre deux petits pentagones. Ces deux petits pentagones sont sur la même colonne. La formule est satisfaite s'il n'y a pas de grand triangle, mais il faut toujours avoir les deux petits pentagones.
- 5. Il existe au plus deux grands pentagones, et ils sont sur la même ligne.
- 6. Une condition nécessaire pour qu'un pentagone soit grand est qu'il existe un petit triangle sur la même ligne que lui.
- 7. Une condition suffisante pour que tous les pentagones soient grands est qu'il existe un petit triangle.
- 8. Un pentagone est grand si, et seulement si, tous les objets sur sa ligne sont petits.
- 9. Traduisez la phrase suivante sans utiliser un ∀. Tous les pentagones sont petits.

5 autres questions seront ajoutée la semaine prochaine (3 septembre)

Conseils

- Testez chaque formule avec plusieurs mondes, afin de représenter exactement les contraintes indiquées dans la phrase en langage naturel.
 - o Testez-la d'abord avec des mondes où la formule devrait être vraie.
 - o Testez-la ensuite avec des mondes où la formule devrait être fausse.
- Sauvegardez fréquemment vos solutions dans OneDrive, afin de vous assurer d'en garder une copie, et de partager facilement vos solutions dans votre équipe.

Bon travail!