Department of Mathematics

National University of Singapore

(2022/23) Semester I MA1521 Calculus for Computing Tutorial 4

- (1) Evaluate the following definite integrals.
 - (a) $\int_{1}^{\sqrt{2}} \frac{s^2 + \sqrt{s}}{s^2} ds$,
 - (b) $\int_{-1}^{4} |x| \, dx$,
 - (c) $\int_0^{\pi} \frac{1}{2} (\cos x + |\cos x|) dx$,
 - (d) $\int_0^{\pi} \sin^2\left(1 + \frac{\theta}{2}\right) d\theta.$

Ans. (a) $1 + \sqrt{2} - 2^{3/4}$, (b) 16, (c) 1, (d) $\frac{1}{2}\pi + \sin 2$.

- (2) Using the fundamental theorem of Calculus, find the derivative dy/dx for the following functions.
 - (a) $y = \int_0^{\sqrt{x}} \cos t \, dt$,
 - (b) $y = \int_{0}^{x^2} \cos \sqrt{t} \, dt$,
 - (c) $y = \int_0^{\sin x} \frac{dt}{\sqrt{1 t^2}}, \quad |x| < \frac{\pi}{2}.$

Ans. (a) $\frac{\cos \sqrt{x}}{2\sqrt{x}}$, (b) $2x \cos x$, (c) 1.

(3) Using the *substitution* method, or otherwise, find the following integrals.

1

- (a) $\int x^{1/2} \sin(x^{3/2} + 1) \, dx$,
- (b) $\int \csc^2 2t \cot 2t \, dt$,
- (c) $\int \frac{1}{\theta^2} \sin \frac{1}{\theta} \cos \frac{1}{\theta} d\theta,$
- (d) $\int \frac{18 \tan^2 x \sec^2 x}{(2 + \tan^3 x)} dx$,

2

(e)
$$\int \frac{\sin \sqrt{\theta}}{\sqrt{\theta} \cos^3 \sqrt{\theta}} d\theta.$$

Ans. (a)
$$-\frac{2}{3}\cos(x^{3/2}+1)+C$$
, (b) $-\frac{1}{4}\cot^2 2t+C$, (c) $-\frac{1}{2}\sin^2\frac{1}{\theta}+C$, (d) $6 \ln|\tan^3 x + 2| + C$, (e) $\sec^2 \sqrt{\theta} + C$.

(4) Applying the method of *integration by parts*, or otherwise, find the following integrals.

(a)
$$\int x \sin\left(\frac{x}{2}\right) dx$$
,

(b)
$$\int t^2 e^{4t} dt,$$

(c)
$$\int e^{-y} \cos y \, dy$$
,

(d)
$$\int \theta^2 \sin(2\theta) d\theta,$$

(e)
$$\int z (\ln z)^2 dz.$$

Ans. (a)
$$-2 \left[x \cos \left(\frac{x}{2} \right) - 2 \sin \left(\frac{x}{2} \right) \right] + C$$
, (b) $\left(\frac{t^2}{4} - \frac{t}{8} + \frac{1}{32} \right) e^{4t} + C$, (c) $\frac{e^{-y}}{2} (\sin y - \cos y) + C$, (d) $-\frac{1}{2} \left[\theta^2 \cos(2\theta) - \theta \sin(2\theta) - \frac{1}{2} \cos(2\theta) \right] + C$, (e) $\frac{1}{2} \left[z^2 (\ln z)^2 - z^2 (\ln z) + \frac{z^2}{2} \right] + C$.

(5) Evaluate the following improper integrals.

(a)
$$\int_0^1 \frac{1}{(x-1)^{\frac{4}{5}}} dx$$
,

(b)
$$\int_{1}^{\infty} \frac{\ln x}{x^3} \, dx.$$

Ans. (a) 5, (b)
$$\frac{1}{4}$$
.

Further Exercises (Not to be discussed during tutorial

(1) Find the exact value of $\int_0^a \frac{dx}{x + \sqrt{a^2 - x^2}}$, where a is a positive constant. **Ans**. $\frac{\pi}{4}$.

(2) Use the result

$$\int_{a}^{b} f(x) dx = bf(b) - af(a) - \int_{f(a)}^{f(b)} f^{-1}(x) dx$$

to evaluate the integral

$$\int_1^2 \sec^{-1} x \, dx.$$

Ans. $\frac{2\pi}{3} - \ln(2 + \sqrt{3})$.

(3) (a) Find the value of $\int_0^\pi \frac{\sin x}{\sqrt{9 - \cos^2 x}} dx.$ (b) Use the result $\int_0^a f(x) dx = \int_0^a f(a - x) dx$ and (a) to show that

$$\int_0^{\pi} \frac{x \sin x}{\sqrt{9 - \cos^2 x}} \, dx = \pi \sin^{-1} \frac{1}{3}.$$