CAA 24-25

Exercise Sheet on Symmetric Crypto 1 Solutions

1 Modes of Operation

For the birthday attacks:

- In CBC: if two ciphertext blocks c_i and c_j are equal, then, $c_{i-1} \oplus c_{j-1} = m_i \oplus m_j$.
- In CFB: if two ciphertext blocks c_i and c_j are equal, then, $c_{i+1} \oplus c_{j+1} = m_{i+1} \oplus m_{j+1}$.

Mode of operation	stream	parallel	partial enc/dec	Padding	Only encryption?
ECB	No	Yes	Yes	Yes	No
CBC	No	Yes (decryption)	Yes(decryption)	Yes	No
CFB	No	Yes (decryption)	Yes(decryption)	No	Yes
OFB	Yes	No	No	No	Yes
CTR	Yes	Yes	Yes	No	Yes

Mode of	IV reuse	Error propagation	Security issues
opera-		(one bit change in	
tion		ciphertext)	
ECB	No IV	total change in current	Do not use: same plaintext
		block of plaintext	block implies same ciphertext
			block
CBC	If first blocks are simi-	total change in current	After $2^{n/2}$ blocks (birthday
	lar, leaks	block of plaintext, one	attack), repetition of cipher-
		bit change in next	text block implies IV reuse.
			Padding oracle attack. Needs
			a random IV and not a
			counter.
CFB	XOR of first different	one bit change in cur-	After $2^{n/2}$ blocks (birthday
	block ciphertext =	rent block of plaintext,	attack), repetition of cipher-
	XOR first different	total change in the next	text implies that XOR of next
	block plaintext	block	plaintexts = XOR of next ci-
			phertexts
OFB	Stream cipher: XOR of	one bit change in plain-	After $2^{n/2}$ blocks cycle in
	plaintext = XOR of ci-	text	stream. Total repetition of
	phertext		following keystream. Strictly
			no integrity protection.
CTR	Stream cipher: XOR of	one bit change in plain-	Strictly no integrity protec-
	plaintext = XOR of ci-	text	tion. Smaller nonce size than
	phertext		other construction. Beware of
			collisions if random nonces are
			used. Beware of counter over-
			flow.

Finally, regarding predictable IVs, only CBC is vulnerable. Let's suppose that you want to guess the value of a plaintext block (e.g. while doing a bruteforce). For instance, let's say that the block is either yes or no. The ciphertext block is then $c = \mathsf{AES}_K(m \oplus \mathsf{IV}_1)$, where m is either yes of no. Since the IV is predictable, you know that the next IV is going to be IV_2 . Hence, to guess yes, you can submit yes $\oplus \mathsf{IV}_1 \oplus \mathsf{IV}_2$ to the encryption oracle. If your guess is correct, then you will obtain c. This attack was used against TLS 1.0 in the BEAST attack.

2 Forensics on SHA-3

In the RAM, you were able to find the outer **and** the inner state. Hence, it is rather easy to go backwards. We start with the final state and we apply on it the function f^{-1} . This function can be deduced from the definition of f, is given in the specification, and is even already part of the keccak tools package: https://keccak.team/software.html.

If you look now at the outer state, you have the password, since 70 chars = 560 bits which is smaller than any possible rate in SHA-3.