MODULE 7

LIMITING DISTRIBUTIONS

PROBLEMS

- 1. Let X_1, X_2, \ldots be a sequence of i.i.d. $N(\mu, \sigma^2)$ random variables, where $\mu > 0$ and $0 < \sigma^2 < \infty$. Let $Z_n = \sum_{i=1}^n X_i$ and let $M_n = \sqrt{n}(\bar{X}_n \mu)$, where $\bar{X}_n = \frac{1}{n}\sum_{i=1}^n X_i$, $n = 1, 2, \ldots$ Show that the sequence $\{Z_n\}_{n \geq 1}$ does not have a limiting distribution, however, the sequence $\{M_n\}_{n \geq 1}$ has a limiting distribution.
- 2. Let $X_1, X_2, ...$ be a sequence of i.i.d. random variables. Let $X_{1:n} = \min\{X_1, ..., X_n\}$ and let $Y_n = nX_{1:n}, n = 1, 2, ...$ Find the limiting distribution of $\{X_{1:n}\}_{n \ge 1}$ and $\{Y_n\}_{n \ge 1}$ when
 - (i) $X_1 \sim U(0, \theta), \theta > 0$
 - (ii) $X_1 \sim \text{Exp}(\theta), \theta > 0.$
- 3. Let $X_1, X_2, ...$ be a sequence of i.i.d. random variables with mean μ and finite variance. Show that
 - (i) $\frac{2}{n(n+1)} \sum_{i=1}^{n} i X_i \xrightarrow{p} \mu$, as $n \to \infty$;
 - (ii) $\frac{6}{n(n+1)(2n+1)} \sum_{i=1}^{n} i^2 X_i \xrightarrow{p} \mu, \text{ as } n \to \infty$
- 4. Let $\{X_n\}_{n\geq 1}$ be a sequence of independent random variables such that the p.m.f. of X_n is given by

$$f_n(x) = \begin{cases} \frac{1}{2}, & \text{if } x \in \left\{ -n^{\frac{1}{4}}, n^{\frac{1}{4}} \right\}. \\ 0, & \text{otherwise} \end{cases}$$

Show that $\bar{X}_n \stackrel{p}{\to} 0$, as $n \to \infty$, where $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, n = 1, 2, ...

- 5. Let $X_n \sim NB(n, p_n)$, where $p_n \in (0,1), n = 1, 2, ...$ and $\lim_{n \to \infty} n (1 p_n) = \lambda > 0$. Show that $X_n \stackrel{d}{\to} X \sim P(\lambda)$, the Poisson distribution with mean λ .
- 6. (i) Let $X_n \sim G\left(n, \frac{1}{n}\right)$, n = 1, 2, ... Show that $X_n \stackrel{p}{\to} 1$, as $n \to \infty$.
 - (ii) Let $X_n \sim N\left(\frac{1}{n}, 1 \frac{1}{n}\right)$, $n = 1, 2, \dots$ Show that $X_n \stackrel{d}{\to} Z \sim N(0, 1)$, as $n \to \infty$.

7. Consider a random sample of size 80 from the distribution having a p.d.f.

$$f(x) = \begin{cases} \frac{2}{x^3}, & \text{if } x > 1\\ 0, & \text{otherwise} \end{cases}.$$

Compute, approximately, the probability that not more than 20 of the items of the random sample are greater than $\sqrt{6}$.

- 8. Let $X_1, X_2, ..., X_{200}$ be a random sample from P(2) distribution, and let $Y_{200} = \sum_{i=1}^{200} X_i$. Find, approximately, $P(\{420 \le Y_{200} \le 440\})$.
- 9. Let $X_1, X_2, ...$ be a sequence of i.i.d. random variables having a common p.d.f.

$$f(x) = \frac{1}{\pi} \cdot \frac{1}{1 + x^2}, -\infty < x < \infty.$$

Using the principle of mathematical induction, show that $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{d}{=} X_1, \forall n \in \{1,2,...\}$. Hence show that $\{\bar{X}_n\}_{n\geq 1}$ does not converge to anything in probability (Note that $E(X_1)$ is not finite and therefore validity of WLLN is not guaranteed).

- 10. Let $X_n \sim P(2n)$, $Y_n = \frac{X_n}{n}$ and $Z_n = \frac{X_{n^2}}{n(2n+1)}$, n = 1, 2, Show that
 - (i) $Y_n \stackrel{p}{\to} 2$ and $Z_n \stackrel{p}{\to} 1$, as $n \to \infty$;
 - (ii) $Y_n^2 + \sqrt{Z_n} \xrightarrow{p} 5$, as $n \to \infty$;
 - (iii) $\frac{n^2 Y_n^2 + n Y_n}{n Y_n + n^2} \xrightarrow{p} 4, \text{ as } n \to \infty.$
- 11. Let \bar{X}_n be the sample mean based on a random sample of size n from a distribution having mean $\mu \in (-\infty, \infty)$ and variance $\sigma^2 \in (0, \infty)$. Let $Z_n = \frac{\sqrt{n}(\bar{X}_n \mu)}{\sigma}$, n = 1, 2, ... If $\{Y_n\}_{n \geq 1}$ is a sequence of random variables such that $Y_n \stackrel{p}{\to} 2$, as $n \to \infty$, show that:
 - (i) $\frac{2Z_n}{Y_n} \xrightarrow{d} Z \sim N(0,1)$, as $n \to \infty$;
 - (ii) $\frac{4Z_n^2}{Y_n^2} \xrightarrow{d} U \sim \chi_1^2$, as $n \to \infty$;
 - (iii) $\frac{(2n+Y_n)Z_n}{nY_n+Y_n^2} \stackrel{d}{\to} Z \sim N(0,1), \text{ as } n \to \infty.$
- 12. Let $X_1, X_2, ...$ be a sequence of i.i.d. U(0,1) random variables. Let $G_n = (X_1 X_2 \cdots X_n)^{\frac{1}{n}}, n = 1, 2, ...$ be the sequence of geometric means. Show that, as $n \to \infty$,

- (i) $G_n \xrightarrow{p} \frac{1}{\rho}$;
- (ii) $n^b \left(G_n^2 \frac{1}{e^2} \right) \xrightarrow{d} N(0, \sigma^2)$, for some b > 0 and $\sigma^2 > 0$. Find the values of b and σ^2 .
- 13. Let $\{(X_{1n}, X_{2n})\}_{n\geq 1}$ be a sequence of i.i.d. bivariate random vectors such that $E(X_{11}) = \mu_1 \in \mathbb{R}, E(X_{21}) = \mu_2 \in \mathbb{R}, Var(X_{11}) = \sigma_1^2 > 0$, $Var(X_{21}) = \sigma_2^2 > 0$, and $Corr(X_{11}, X_{21}) = \rho \in (-1, 1)$. Let $\bar{X}_{1n} = \frac{1}{n} \sum_{i=1}^n X_{1i}$, $\bar{X}_{2n} = \frac{1}{n} \sum_{i=1}^n X_{2i}$, $C_n = \frac{1}{n-1} \sum_{i=1}^n (X_{1i} \bar{X}_{1n}) (X_{2i} \bar{X}_{2n})$, $S_{1n}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_{1i} \bar{X}_{1n})^2$, $S_{2n}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_{2i} \bar{X}_{2n})^2$ and $R_n = \frac{C_n}{S_{1n}S_{2n}}$, $n = 2, 3, \dots$ Show that, as $n \to \infty$,
 - (i) $C_n \xrightarrow{p} \rho \sigma_1 \sigma_2 \text{ and } R_n \xrightarrow{p} \rho;$
 - (ii) $\sqrt{n}(C_n \rho \sigma_1 \sigma_2) \xrightarrow{d} N(0, (\theta \rho^2) \sigma_1^2 \sigma_2^2)$

where

$$\theta = \frac{E((X_{11} - \mu_1)^2 (X_{21} - \mu_2)^2)}{\sigma_1^2 \sigma_2^2}.$$

14.

(i) Let $X_n \sim \text{Bin}(n, p_n)$, where $p_n \in (0,1), n = 1, 2, ...$ and $\lim_{n \to \infty} p_n = p \in (0,1)$. Show that

$$\frac{X_n - np_n}{\sqrt{np_n(1 - p_n)}} \stackrel{d}{\to} Z \sim N(0,1), \text{ as } n \to \infty;$$

- (ii) Let $X_1, X_2, ...$ be a sequence of i.i.d. random variables of absolutely continuous type. Let $F(\cdot)$ and $f(\cdot)$, respectively, denote the d.f. and the p.d.f. of X_1 and let θ be the median of $F\left(\text{i.e.}, F(\theta) = \frac{1}{2}\right)$. Suppose that $f(\theta) > 0$. Let $M_n = X_{n+1:2n+1}, n = 1, 2, ...$, be the middle observation (called the sample median) based on random sample $X_1, X_2, ..., X_{2n+1}$. Show that, as $n \to \infty$,
- (a) $\sqrt{n}(M_n \theta) \xrightarrow{d} N\left(0, \frac{1}{4f^2(\theta)}\right);$
- (b) $M_n \stackrel{p}{\to} \theta$.
- 15. Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables such that, for real constants μ and $\sigma > 0$, $\sqrt{n}(X_n \mu) \stackrel{d}{\to} N(0, \sigma^2)$, as $n \to \infty$. Find the limiting distributions of
 - (i) $S_n = \sqrt{n}(X_n^2 \mu^2), n = 1, 2, ...,$
 - (ii) $T_n = n(X_n \mu)^2$, n = 1, 2, ...,
 - (iii) $U_n = \sqrt{n}(\ln X_n \ln \mu), n = 1, 2, ..., \text{ where } \mu > 0.$

16. Let $X_n \sim \text{Bin}(n,p), n=1,2,...$. Find the limiting distribution of $Z_n = \sqrt{n} \left(\frac{X}{n} \left(1 - \frac{X}{n} \right) - p(1-p) \right), n=1,2,...$. Find the limiting distribution (non degenerate) of a normalized version of $Y_n = \frac{X}{n} \left(1 - \frac{X}{n} \right)$ when $p = \frac{1}{2}$.