Teoría de Control I Práctica No. 3

Modelado e identificación paramétrica

Plan de la práctica

- Introducción.
 - Modelado de un servomecanismo de corriente directa.
 - Identificación paramétrica utilizando el método de Mínimos Cuadrados.
- Identificación de un sistema de segundo orden.
 Algoritmo de Mínimos Cuadrados. Simulaciones numéricas.
- Caso de estudio: Identificación de un servomecanismo de corriente directa controlado en posición. Algoritmo de Mínimos Cuadrados. Experimentos en tiempo real.

Introducción.

Modelo de un sistema de segundo orden.

Sistema de segundo orden.

$$\ddot{y} + a_1 \dot{y} + a_2 y = bu$$

o alternativamente

$$\ddot{y} = -a_1 \dot{y} - a_2 y + bu$$

b:ganancia

 $a_1; a_2$: coeficientes

y:Salida

u: Entrada

Caso particular de un sistema de segundo orden.

$$G(s) = \frac{b}{s^2 + as}$$

$$=\frac{b}{s(s+a)}$$

Sistema marginalmente estable

Polos: s = 0; s = -a

Este modelo es adecuado para diseñar leyes de control aplicadas a un servomecanismo de corriente directa

Modelado de un servomecanismo de corriente directa

Esquema básico de un servomecanismo de CD

Esquema de un servomecanismo de corriente directa sin la electrónica de potencia

Modelo Lineal basado en ecuaciones diferenciales

Subsistema eléctrico-

$$R_a i_a + L_a \frac{di_a}{dt} + V_b = V_a$$

Fuerza

Contraelectromotriz

$$V_b = K_b \frac{dy}{dt}$$

Subsistema mecánico ·

$$J_m \frac{d^2 y}{dt^2} + B_m \frac{dy}{dt} = T_e$$

Relación Par-Corriente

$$T_e = Ki_a$$

Amplificador de potencia
$$\longrightarrow V_a = K_A v$$

Modelo lineal de tercer orden incluyendo el amplificador de potencia

$$\frac{y(s)}{v(s)} = \frac{KK_A}{s(L_a J_m s^2 + L_a B_m s + R_a J_m s + R_a B_m + K_b K)}$$

Modelo lineal de tercer orden incluyendo

el amplificador de potencia y realimentación de corriente

Modelo lineal de tercer orden incluyendo el amplificador de potencia y realimentación de corriente

Modelo lineal de segundo orden incluyendo el amplificador de potencia y realimentación de corriente

Modelo a bajas frecuencias

Modelo lineal de segundo orden incluyendo el amplificador de potencia y realimentación de corriente

$$\frac{y(s)}{u(s)} = G(s) = \frac{b}{s^2 + as} = \frac{b}{s(s+a)}$$

$$b = \frac{KK_A\beta}{(R_a + K_A\beta)J_m}$$
 electromagnético mecánico
$$\longrightarrow a = \frac{KK_b}{(R_a + K_A\beta)} + B_m$$

Modelo lineal de segundo orden incluyendo el amplificador de potencia y realimentación de corriente

$$\frac{y(s)}{u(s)} = G(s) = \frac{b}{s(s+a)} \longrightarrow \ddot{y} + a\dot{y} = bu$$

Identificación Paramétrica utilizando el método de Mínimos Cuadrados

Problema de identificación

Determinar los valores de a y b

¿Para qué sirve esta información?

Por ejemplo, para diseñar controladores

Ejemplo

$$G(s) = \frac{b}{s^2 + as}$$
: Función de Transferencia

en lazo abierto

$$G_{LC}(s) = \frac{\beta}{s^2 + \alpha_1 s + \alpha_2}$$
: Función de Transferencia

en lazo cerrado deseada

Control Proporcional Derivativo de un sistema de segundo orden

r:Referencia constante

e:error

y:Salida

 K_p : Ganancia Proporcional

u:Señal de control

 K_d : Ganancia Derivativa

Control Proporcional Derivativo de un sistema de segundo orden

Función de transferencia en lazo cerrado

$$G_{LC}(s) = \frac{K_p b}{s^2 + (a + K_d b)s + K_p b} = \frac{\beta}{s^2 + \alpha_1 s + \alpha_2}$$

$$\alpha_2 = K_p b \quad \alpha_1 = a + K_d b$$

$$\beta = K_p b$$

$$K_p = \frac{\alpha_2}{b}$$

$$K_d = \frac{\alpha_1 - a}{b}$$

El cálculo de las ganancias necesita del conocimiento de los parámetros a y b.

Postulado por Gauss (1795)

Asteroide CERES.

Principio

Minimizar el criterio cuadrático

$$J = \sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} (y_i - f(x_i, \theta))^2$$

Respecto al vector de parámetros θ

$$y_i, x_i$$
: Mediciones

$$f(x_i, \theta)$$
: Modelo

$$r_i = y_i - f(x_i, \theta)$$
: Residuos o Discrepancias

$$i = 1, ..., n$$

Ejemplo (Wikipedia)

i	Xi	y _i
1	1	6
2	2	5
3	3	7
4	4	10

Modelo al que se desea ajustar los datos: Ecuación de una línea recta

$$f(x,\theta) = \theta_1 + \theta_2 x$$

$$\theta = \begin{bmatrix} \theta_1 & \theta_2 \end{bmatrix}^T$$

Problema: Determinar los valores de

 θ_1 y θ_2 tales que se minimice el criterio

-cuadrático J

Solución

$$r_{1} = y_{1} - (\theta_{1} + \theta_{2}x_{1}) = 6 - (\theta_{1} + \theta_{2}1)$$

$$r_{2} = y_{2} - (\theta_{1} + \theta_{2}x_{2}) = 5 - (\theta_{1} + \theta_{2}2)$$

$$r_{3} = y_{3} - (\theta_{1} + \theta_{2}x_{3}) = 7 - (\theta_{1} + \theta_{2}3)$$

$$r_{4} = y_{4} - (\theta_{1} + \theta_{2}x_{4}) = 10 - (\theta_{1} + \theta_{2}4)$$

Solución

$$J = \sum_{i=1}^{4} r_i^2 = \left[6 - (\theta_1 + \theta_2 1)\right]^2 + \left[5 - (\theta_1 + \theta_2 2)\right]^2 + \left[7 - (\theta_1 + \theta_2 3)\right]^2 + \left[10 - (\theta_1 + \theta_2 4)\right]^2$$

Solución

$$\frac{\partial J}{\partial \theta_1} = 2(4\theta_1 + 10\theta_2 - 28) = 0$$

$$\frac{\partial J}{\partial \theta_2} = 2(10\theta_1 + 30\theta_2 - 77) = 0$$

$$\theta_1 = 3.5$$

$$\theta_2 = 1.4$$

Algoritmo de Mínimos Cuadrados Solución

La mejor solución en sentido de mínimos cuadrados es

$$\hat{y} = f(x, \theta) = \theta_1 + \theta_2 x = 3.5 + 1.4x$$

Solución de ecuaciones sobre-determinadas

$$r_1 = 6 - (\theta_1 + \theta_2 1)$$

$$r_2 = 5 - (\theta_1 + \theta_2 2)$$

$$r_3 = 7 - (\theta_1 + \theta_2 3)$$

$$r_4 = 10 - (\theta_1 + \theta_2 4)$$

Residuos

$$\theta_1 + \theta_2 = 6$$

$$\theta_1 + 2\theta_2 = 5$$

$$\theta_1 + 3\theta_2 = 7$$

$$\theta_1 + 4\theta_2 = 10$$

Sistema de ecuaciones sobre-determinado

$$A\theta = Y$$

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}; \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}; Y = \begin{bmatrix} 6 \\ 5 \\ 7 \\ 10 \end{bmatrix}$$

Sistema de ecuaciones sobre-determinado

$$A\theta = Y$$

$$A^T A \theta = A^T Y$$

Si la inversa de $A^T A$ existe, entonces

$$\theta = (A^T A)^{-1} A^T Y$$

Esta es la solución para θ .

¿Es óptima en algún sentido?

Solución de ecuaciones sobre-determinadas: Caso general

$$\theta_{1}x_{11} + \theta_{2}x_{12} + \dots + \theta_{n}x_{1n} = y_{1}$$

$$\theta_{1}x_{21} + \theta_{2}x_{22} + \dots + \theta_{n}x_{2n} = y_{2}$$

$$\vdots$$

$$\theta_{1}x_{m1} + \theta_{2}x_{m2} + \dots + \theta_{n}x_{mn} = y_{m}$$

Sistema de ecuaciones sobre-determinado

$$x_{1}^{T}\theta = y_{1}; x_{1} = [x_{11}, x_{12}, ..., x_{1n}]^{T}$$

$$x_{2}^{T}\theta = y_{2}; x_{2} = [x_{21}, x_{22}, ..., x_{2n}]^{T}$$

$$\vdots$$

$$x_{m}^{T}\theta = y_{m}; x_{m} = [x_{m1}, x_{m2}, ..., x_{mn}]^{T}$$

$$A\theta = Y$$

$$A = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_m^T \end{bmatrix} \theta = Y; Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

Criterio Cuadrático

$$J = \sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} (y_i - x_i^T \theta)^2$$
$$= (Y - A\theta)^T (Y - A\theta)$$
$$= Y^T Y - 2Y^T A\theta + \theta^T A^T A\theta$$

Criterio Cuadrático: Minimización respecto de heta

$$\frac{\partial J}{\partial \theta} = -2Y^{T}A + 2\theta^{T}A^{T}A = 0$$

$$\Rightarrow$$

$$A^{T}A\theta = A^{T}Y$$

$$\Rightarrow$$

$$\theta = (A^{T}A)^{-1}A^{T}Y$$

¡Provee una solución óptima respecto de un criterio cuadrático!

Identificación Paramétrica utilizando el método de Mínimos Cuadrados (Continuación)

IDEA: Transformar el problema de identificación paramétrica al problema de resolver un sistema de ecuaciones sobre-determinadas

Modelo del servomecanismo

$$\frac{y(s)}{u(s)} = G(s) = \frac{b}{s(s+a)} \longrightarrow \ddot{y} + a\dot{y} = bu$$

Problema de identificación

Determinar los valores de a y b usando el método de Mínimos Cuadrados

Problema Práctico

El servomecanismo

no es estable en lazo abierto

Solución

Hacer funcionar el servomecanismo

en lazo cerrado

Una ley de Control Proporcional Derivativo (PD) es capaz de estabilizar a un servomecanismo SIN conocer sus parámetros

Modelo del servomecanismo:

Escritura alternativa

$$\ddot{y} + a\dot{y} = bu$$

$$\Rightarrow$$

$$(u)b + (-\dot{y})a = \ddot{y}$$

$$\Rightarrow$$

$$(u)\theta_1 + (-\dot{y})\theta_2 = \ddot{y}$$

Primera Solución

Medir valores de u, y y y en instantes de tiempo diferentes para formar el sistema sobre-determinado

$$u_{11}\theta_1 + (-\dot{y}_{11})\theta_2 = \ddot{y}_1$$

$$u_{21}\theta_1 + (-\dot{y}_{21})\theta_2 = \ddot{y}_2$$
:

$$u_{m1}\theta_1 + (-\dot{y}_{m1})\theta_2 = \ddot{y}_m$$

- y resolver para θ_1 y θ_2

Problemas Prácticos:

- La medición de la aceleración no está disponible.
- •En muchos servomecanismos industriales tampoco se dispone de un tacogenerador, entonces no se tiene disponible la medición de la velocidad.
- •En general sólo se dispone de mediciones de posición.

Segunda solución

Medir valores de *u* y *y* en instantes de tiempo diferentes
Utilizar filtros para evitar la medición de velocidades y aceleraciones
Formar un sistema sobre-determinado

$$\ddot{y} + a\dot{y} = bu$$

$$\frac{y(s)}{u(s)} = G(s) = \frac{b}{s(s+a)}$$

$$(s^2 + as)y(s) = bu(s)$$

Filtro

$$F(s) = \frac{f_2}{s^2 + f_1 s + f_2}; f_1, f_2 > 0$$

Filtrado del modelo

$$(s^2 + as)y(s) = bu(s)$$

$$F(s)(s^2 + as)y(s) = F(s)bu(s)$$

$$(s^2 + as)F(s)y(s) = bF(s)u(s)$$

Definir

$$\mathbf{y}_f(\mathbf{s}) = F(\mathbf{s})\mathbf{y}(\mathbf{s}); \mathbf{u}_f(\mathbf{s}) = F(\mathbf{s})\mathbf{u}(\mathbf{s})$$

En consecuencia

$$(s^2 + as)y_f(s) = bu_f(s)$$

Equivalentemente

$$(s^2 + as)y_f(s) = bu_f(s) \Rightarrow \ddot{y}_f + a\dot{y}_f = bu_f$$

$$y \to \left| \frac{f_2}{s^2 + f_1 s + f_2} \right| \to y_f$$

$$y \to \left| \frac{f_2 s}{s^2 + f_1 s + f_2} \right| \to \dot{y}_f$$

$$y \to \left| \frac{f_2 s^2}{s^2 + f_1 s + f_2} \right| \to \ddot{y}_f$$

$$u \rightarrow \left| \frac{f_2}{s^2 + f_1 s + f_2} \right| \rightarrow u_f$$

Filtrado de señales de entrada y salida para la identificación paramétrica

En conclusión, para llevar a cabo la identificación paramétrica se debe realizar lo siguiente

Medir valores de u_f , \dot{y}_f y \ddot{y}_f

en instantes de tiempo diferentes

Formar el sistema sobre-determinado

$$u_{f11}\theta_1 + (-\dot{y}_{f11})\theta_2 = \ddot{y}_{f1}$$

$$u_{f21}\theta_1 + (-\dot{y}_{f21})\theta_2 = \ddot{y}_{f2}$$

•

$$u_{fm1}\theta_1 + (-\dot{y}_{fm1})\theta_2 = \ddot{y}_{fm}$$

Resolver para θ_1 y θ_2

Condición necesaria para que se lleve a cabo la identificación:

La matriz $A^T A$ debe tener inversa

¿Cómo se logra esta condición? Excitando a la planta con señales que hagan que sus señales (entradas, salidas y sus derivadas) cambien suficientemente con el tiempo.

¿Cómo se sabe si la excitación es correcta?

Calculando el condicionamiento de $A^{T}A$.

$$\kappa = \frac{\lambda_{\max}(A^T A)}{\lambda_{\min}(A^T A)}$$

 λ_{max} : Valor propio máximo de $A^T A$.

 λ_{\min} : Valor propio mínimo de $A^T A$.

Valores cercanos a uno de κ son los adecuados.

Si ambos valores propios son muy diferentes, ésto significará que el condicionamiento y por tanto la excitación no es adecuada.

CASO DE ESTUDIO Identificación paramétrica de un servomecanismo de Corriente Directa: Simulaciones numéricas.

Identificación de un sistema de segundo orden en lazo cerrado.

Condiciones para la simulación

Parámetros : a = 2; b = 50.

Periodo de integración: 0.001 s

Método de integración: Runge-Kutta

Señal de entrada: Escalón unitario.

Tiempo de simulación: 10s

Construir, compilar y ejecutar el diagrama siguiente

El cálculo de la solución de Mínimos Cuadrados se realiza en MatLab de la manera siguiente:

Theta=A\B

Esto es equivalente a la solución del sistema A*Theta=B dada por

$$Theta = (A^T A)^{-1} A^T B$$

- •Conectar primero el generador de señales y sintonizar el controlador PD para que se obtenga una respuesta sin sobretiros. Posteriormente, repetir la simulación con el generador de ruido blanco filtrado.
- •El ruido blanco filtrado provee una excitación adecuada para la identificación.
- La simulación durará solo 10s.
- •La matriz A y el vector B se almacenan en el espacio de trabajo de MatLab
- Al final de la simulación acceder al espacio de trabajo de MatLab
- Calcular el valor de los parámetros
 Theta=A\B
- •Calcular A^TA así como su condicionamiento.
- Comparar los resultados de la estimación y los parámetros usados en la simulación

- •Repetir la estimación de parámetros si se utiliza el generador de funciones en lugar del generador de ruido blanco ¿Qué sucede?
- •Repetir los cálculos de A^TA y sus valores propios.
- •Sustituir el generador de funciones por una entrada constante (no utilizar un escalón) y repetir la estimación de parámetros ¿Qué sucede?
- •Repetir los cálculos de A^TA y su condicionamiento.

CASO DE ESTUDIO Identificación paramétrica de un servomecanismo de Corriente Directa: Resultados Experimentales. Abrir la Carpeta taller experimental localizada en el escritorio.

Abrir la carpeta 2014.

Abrir el archivo Plantilla_Servo_2014.

Crear un modelo nuevo en SIMULINK y guardarlo en la carpeta 2014 con un nombre que permita diferenciarlo de los archivos de otros estudiantes.

Copiar el bloque Servo que aparece en el archivo Plantilla_Servo_2014 en el archivo correspondiente al nuevo modelo.

Mantener abierto el archivo Plantilla_Servo_2014 durante toda la práctica.

Guardar los archivos de prácticas únicamente en la carpeta 2014.

IMPORTANTE!

Guardar el archivo con el nombre IDENT antes de comenzar. Respetar los nombres dados a los osciloscopios del diagrama siguiente.

Construir, compilar y ejecutar el diagrama siguiente

- •Conectar primero el generador de señales y sintonizar el controlador PD para que se obtenga una respuesta sin sobretiros.
- Abrir los osciloscopios A y B mediante el menú OSCILOSCOPIO de WINCON
- •Repetir el experimento con el generador de ruido blanco filtrado.
- El experimento durará sólo 5s.
- •La matriz A y el vector B se almacenan en la memoria de los osciloscopios.

- •En el menú FILE del osciloscopio A, seleccionar SAVE y luego SAVE TO WORKSPACE. Esta operación almacena en el espacio de trabajo de MatLab los datos de la matriz A utilizando las variables IDENT_A_0_ e IDENT_A_1_
- •En el espacio de MatlaB concatenar estos vectores de la manera siguiente:

A=[IDENT_A_0_ IDENT_A_1_]

•En el menú FILE del osciloscopio B, seleccionar SAVE y luego SAVE TO WORKSPACE. Esta operación almacena en el espacio de trabajo de MatLab los datos del vector B utilizando la variable IDENT_B

- En el espacio de Matlab ejecutar la instrucción: B=IDENT_B
- Calcular Theta=A\B
- Todas las variables definidas se pueden observar en el espacio de trabajo de MatLab (WORKSPACE)
- Almacenar los resultados de la estimación para utilizarlos en las prácticas siguientes

- •Repetir la estimación de parámetros si se utiliza el generador de funciones en lugar del generador de ruido blanco ¿Qué sucede?
- •Sustituir el generador de funciones por una entrada constante (no utilizar un escalón) y repetir la estimación de parámetros ¿Qué sucede?