Machine Learning

Neural Networks

```
11 Dec.: NN; VC dimension
15 Dec.: VC dimension; clastering
18 Dec: LAB (clastering)
22 Dec: Deep learning
                                                 December 11<sup>th</sup>. 2023
            Fabio Vandin
& Jan: LAB (NN; other topics)
12 Jah: Additional topics; exercises
15 Jah: Exercises - Q&A
```

1

An Extremely Powerful Hypothesis Class...

Runtime of Learning NNs

Informally: applying the ERM rule with respect to $\mathcal{H}_{V,E,\text{sign}}$ is *computationally difficult*, even for small NN...

Proposition

Let $k \geq 3$. For every d, let (V, E) be a layered graph with d input nodes, k+1 nodes at the (only) hidden layer, where one of them is the constant neuron, and a single output node. Then, it is NP-hard to implement the ERM rule with respect to $\mathcal{H}_{V,E,\text{sign}}$.

Well maybe the above is only for very specific cases...

- instead of ERM rule, find h close to ERM? Computationally infeasible! (probably)
- other activation functions (e.g., sigmoid)? Computationally infeasible! (probably)
- smart embedding in larger network? Computationally infeasible! (probably)

So? *Heuristic* for training NNs \Rightarrow SGD algorithm and its improved versions are used: gives good results in practice!

Matrix Notation

Consider layer t, 0 < t < T:

- let $d^{(t)} + 1$ the number of nodes:
 - constant node 1
 - values of nodes for (hidden) variables: $V_{t,1}, \dots, V_{t,d(t)}$
- arc from $v_{t-1,i}$ to $v_{t,j}$ has weight $w_{ij}^{(t)}$

Let

$$\mathbf{v}^{(t)} = \left(1, v_{t,1}, \dots, v_{t,d^{(t)}}\right)^T$$

$$\mathbf{w}_{j}^{(t)} = \left(w_{0j}^{(t)}, w_{1j}^{(t)}, \dots, w_{d^{(t-1)}j}^{(t)}\right)^{T}$$

$$v_{t,j} = \sigma\left(\langle \mathbf{w}_j^{(t)}, \mathbf{v}^{(t-1)} \rangle\right)$$

Note:

$$\mathbf{v}^{(t)} = \begin{bmatrix} 1 \\ v_{t,1} \\ \vdots \\ v_{t,d^{(t)}} \end{bmatrix} = \begin{bmatrix} 1 \\ \sigma\left(\langle \mathbf{w}_{1}^{(t)}, \mathbf{v}^{(t-1)}\rangle\right) \\ \vdots \\ \sigma\left(\langle \mathbf{w}_{d^{(t)}}^{(t)}, \mathbf{v}^{(t-1)}\rangle\right) \end{bmatrix}$$

Let

$$a_{t,j} := \langle \mathbf{w}_j^{(t)}, \mathbf{v}^{(t-1)}
angle$$

and

$$\mathbf{a}^{(t)} = \begin{bmatrix} a_{t,1} \\ \vdots \\ a_{t,d^{(t)}} \end{bmatrix} \qquad \qquad \sigma\left(\mathbf{a}^{(t)}\right) = \begin{bmatrix} \sigma\left(a_{t,1}\right) \\ \vdots \\ \sigma\left(a_{t,d^{(t)}}\right) \end{bmatrix}$$

$$\mathbf{v}^{(t)} = egin{bmatrix} 1 \ \sigma\left(\mathbf{a}^{(t)}
ight) \end{bmatrix}$$

Let

$$\mathbf{w}^{(t)} = \begin{bmatrix} w_{01}^{(t)} & w_{02}^{(t)} & \dots & w_{0d^{(t)}}^{(t)} \\ w_{11}^{(t)} & w_{12}^{(t)} & \dots & w_{1d^{(t)}}^{(t)} \\ \vdots & \vdots & \dots & \vdots \\ w_{d^{(t-1)}1}^{(t)} & w_{d^{(t-1)}2}^{(t)} & \dots & w_{d^{(t-1)}d^{(t)}}^{(t)} \end{bmatrix}$$

 $(\mathbf{w}^{(t)} \text{ describes the weights of edges from layer } t-1 \text{ to layer } t)$

$$\mathbf{a}^{(t)} = \left(\mathbf{w}^{(t)}\right)^T \mathbf{v}^{(t-1)}$$

Using Matrix Notation Warm-Up: Forward Propagation Algorithm

```
Input: \mathbf{x} = (x_1, \dots, x_d)^T; NN with 1 output node
Output: prediction y of NN;
\mathbf{v}^{(0)} \leftarrow (1, x_1, \dots, x_d)^T
for t \leftarrow 1 to T do
 \begin{vmatrix} \mathbf{a}^{(t)} \leftarrow \left(\mathbf{w}^{(t)}\right)^T \mathbf{v}^{(t-1)}; \\ \mathbf{v}^{(t)} \leftarrow \left(1, \sigma \left(\mathbf{a}^{(t)}\right)^T\right)^T; \end{vmatrix}
y \leftarrow \sigma\left(\mathbf{a}^{(T)}\right);
return y;
```

Learning NN parameters

How do we compute the weights $w_{ij}^{(t)}$?

ERM: given training data $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ pick $\mathbf{w}_{ij}^{(t)}, \forall i, j, t$ (defining a specific model h) minimizing the training error:

$$L_{\mathcal{S}}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, (\mathbf{x}_i, y_i))$$

How?

Not easy!

Learning NN parameters (2)

We use GD seeing $L_S(h)$ as a function of $\mathbf{w}^{(t)}, \forall 1 \leq t \leq T$:

GD Update rule:

$$\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t)} - \eta \nabla L_{\mathcal{S}}(\mathbf{w}^{(t)})$$

where $\nabla L_S(\mathbf{w}^{(t)})$ is the gradient of L_S (and η is the learning parameter). To compute it we need $\forall t, 1 \leq t \leq T$:

$$\frac{\partial L_{S}}{\partial \mathbf{w}^{(t)}} = \frac{\partial}{\partial \mathbf{w}^{(t)}} \left(\frac{1}{m} \sum_{i=1}^{m} \ell(h, (\mathbf{x}_{i}, y_{i})) \right) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial \ell(h, (\mathbf{x}_{i}, y_{i}))}{\partial \mathbf{w}^{(t)}}$$

$$\Rightarrow$$
 need $\frac{\partial \ell}{\partial \mathbf{w}^{(t)}}$

Learning NN parameters (3)

Definition: Sensitivity vector for layer t

$$\delta^{(t)} = \frac{\partial \ell}{\partial \mathbf{a}^{(t)}} = \begin{bmatrix} \frac{\partial \ell}{\partial a_{t,1}} \\ \vdots \\ \frac{\partial \ell}{\partial a_{t,d}^{(t)}} \end{bmatrix} = \begin{bmatrix} \delta_1^{(t)} \\ \vdots \\ \delta_{d^{(t)}}^{(t)} \end{bmatrix}$$

 $\delta^{(t)}$ quantifies how the training error changes with $\mathbf{a}^{(t)}$ (the inputs to the t layer - before the nonlinear transformation)

Learning NN parameters (4)

Consider a weight $w_{ij}^{(t)}$: a change in $w_{ij}^{(t)}$ changes only $a_{t,j}$ therefore by chain rule we have

$$\begin{split} \frac{\partial \ell}{\partial w_{ij}^{(t)}} &= \frac{\partial \ell}{\partial a_{t,j}} \cdot \frac{\partial a_{t,j}}{\partial w_{ij}^{(t)}} \\ &= \delta_j^{(t)} \cdot \frac{\partial}{\partial w_{ij}^{(t)}} \left(\sum_{k=0}^{d^{(t-1)}} w_{kj}^{(t)} v_{t-1,k} \right) \\ &= \delta_j^{(t)} \underbrace{v_{t-1,i}} \quad \text{fixed by the input} \end{split}$$

Therefore to compute the gradient we only need $\delta^{(t)} = \frac{\partial \ell}{\partial \mathbf{a}^{(t)}} \quad \forall t$. How can we compute it?

Learning NN parameters (5)

Since ℓ depends from $a_{t,j}$ only through $v_{t,j}$, then from chain rule:

$$\delta_{j}^{(t)} = \frac{\partial \ell}{\partial a_{t,j}}$$

$$= \frac{\partial \ell}{\partial v_{t,j}} \cdot \frac{\partial v_{t,j}}{\partial a_{t,j}}$$

$$= \frac{\partial \ell}{\partial v_{t,j}} \cdot \sigma'(a_{t,j})$$

(the last equality derives from the definition of $v_{t,i}$)

Learning NN parameters (6)

Consider $\frac{\partial \ell}{\partial v_{t,j}}$: we need to understand how loss ℓ changes due to changes in $v_{t,j}$

- change in $\mathbf{v}^{(t)}$ affects only $\mathbf{a}^{(t+1)}$ (and then ℓ)
- changes in $v_{t,j}$ can affect every $a_{t+1,k}$
- ⇒ sum chain rule contributions

$$\frac{\partial \ell}{\partial v_{t,j}} = \sum_{k=1}^{d^{(t+1)}} \frac{\partial a_{t+1,k}}{\partial v_{t,j}} \cdot \frac{\partial \ell}{\partial a_{t+1,k}}$$
$$= \sum_{k=1}^{d^{(t+1)}} w_{jk}^{(t+1)} \cdot \delta_k^{(t+1)}$$

Learning NN parameters (7)

Putting everything together:

15

Learning NN parameters (7)

Putting everything together:

$$\delta_j^{(t)} = \sigma'(a_{t,j}) \cdot \sum_{k=1}^{d^{(t+1)}} w_{jk}^{(t+1)} \delta_k^{(t+1)}$$

Notes:

- $\sigma'(a_{t,j})$ depends on the function σ chosen
- To compute $\delta_j^{(t)}$ need $\delta_k^{(t+1)}$, $1 \le k \le d^{(t+1)}$ \Rightarrow backpropagation algorithm
- To start: need $\delta^{(L)} = \frac{\partial \ell}{\partial \mathbf{a}^{(L)}}$ (sensitivity of final layer): depends on the loss ℓ used

Algorithm to compute sensitivities $\delta^{(t)}$, $\forall t$, for a given data point (\mathbf{x}_i, y_i) .

Input: data point
$$(\mathbf{x}_i, y_i)$$
, NN (with weights $w_{ij}^{(t)}$, for $1 \leq t \leq T$)

Output: $\delta^{(t)}$ for $t = 1, \ldots, T$

compute $\mathbf{a}^{(t)}$ and $\mathbf{v}^{(t)}$ for $t = 1, \ldots, T$;

$$\delta^{(T)} \leftarrow \frac{\partial \ell}{\partial a^{(T)}};$$

for $t = T - 1$ downto 1 do

$$\begin{bmatrix} \delta_j^{(t)} \leftarrow \sigma'(a_{t,j}) \cdot \sum_{k=1}^{d^{(\ell+1)}} w_{jk}^{(t+1)} \delta_k^{(t+1)} & \text{for all } j = 1, \ldots, d^{(t)}; \\ \text{return } \delta^{(1)}, \ldots, \delta^{(T)}; \end{bmatrix}$$

Backpropagation Algorithm

```
This is the final backpropagation algorithm, based on SGD, to
train a NN
Input: training data (x_1, y_1), \dots, (x_m, y_m), NN (no weights
         w_{::}^{(t)}
Output: NN with weights w_{ii}^{(t)}
initialize w_{ii}^{(t)} for all i, j, t;
for s \leftarrow 0, 1, 2, \dots do /* until convergence
                                                                              */
    pick (\mathbf{x}_k, \mathbf{y}_k) at random from training data;
    /* forward propagation
                                                                              */
    compute v_{t,j} for all j, t from (\mathbf{x}_k, y_k);
    /* backward propagation
                                                                              */
    compute \delta_i^{(t)} for all j, t from (\mathbf{x}_k, y_k);
    w_{ii}^{(t)} \leftarrow w_{ii}^{(t)} - \eta v_{t-1,i} \delta_i^{(t)} for all i, j, t;
                                                                   /* update
      weights */
    if converged then return w_{ii}^{(t)} for all i, j, t;
```

Notes on Backpropagation Algorithm

- preprocessing: all inputs are normalized and centered
- initialization of $w_{ij}^{(t)}$?

 Random values around 0 regime where model is \approx linear
 - $w_{ij}^{(t)} \sim U(-0.7, 0.7)$ (uniform distribution)
 - $w_{ii}^{(t)} \sim N(0, \sigma^2)$ with small σ^2
 - (if all weights set to $0 \Rightarrow$ all neurons get the same weights
- when to stop?
 Usually combination of:
 - "small" (training) error;
 - "small" marginal improvement in error;
 - upper bound on number of iterations
- L_S(h) usually has multiple local minima
 - ⇒ run stochastic gradient descent for different (random) initial weights

Regularized NN

Instead of training a NN by minimizing $L_S(h)$, find h that minimizes:

$$L_S(h) + \frac{\lambda}{2} \sum_{i,j,t} (w_{ij}^{(t)})^2$$

where $\lambda = regularization parameter$

How do we find h? SGD or improved algorithms.

Note: for layer t, gradient is $\nabla(L_S(h)) + \lambda \mathbf{w}^{(t)}$

This is called squared weight decay regularizer

Other regularizations are possible.

Machine Learning

VC-Dimension

Fabio Vandin

December 11th, 2023

PAC Learning

Question: which hypothesis classes \mathcal{H} are PAC learnable?

Up to now: if $|\mathcal{H}| < +\infty \Rightarrow \mathcal{H}$ is PAC learnable.

What about \mathcal{H} : $|\mathcal{H}| = +\infty$? Not PAC learnable?

We focus on:

- binary classification: $\mathcal{Y} = \{0, 1\}$
- 0-1 loss

but similar results apply to other learning tasks and losses.

Restrictions

Definition (Restriction of \mathcal{H} to \mathcal{C})

Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0,1\}$ and let $C = \{c_1, \dots, c_m\} \subset \mathcal{X}$. The restriction \mathcal{H}_C of \mathcal{H} to C is:

$$\mathcal{H}_{C} = \{ [h(c_1), \ldots, h(c_m)] : h \in \mathcal{H} \}$$

where we represent each function from C to $\{0,1\}$ as a vector in $\{0,1\}^{|C|}$.