Домашняя работа №1 по курсу «Методов Оптимизации»

Коврижных Дмитрий Б05-903

10.10.2021

К чему был вопрос про Disco Elysium?

1 Matrix

1 $\nabla f(x)$ где $f(x) = \frac{1}{2} ||Ax - b||_2^2$

Я знаю, что $df(x) = <\nabla f(x), dx>$, поэтому df(x) = <Ax-b, d(Ax-b)>, так как $d(\|x\|_2^2) = <x, dx>$ и получится, что $df(x) = <Ax-b, A\cdot dx$, а затем используем перенос с транспонированием и хоба: $df(x) = <A^T(Ax-b), dx> => \nabla f(x) = A^T(Ax-b)$

- $\begin{array}{l} {\color{red} \mathbf{2}} \quad \nabla f(x) \text{ где } f(x) = < x, x >^{< x, x >}. \\ d(f(x)) = d(e^{< x, x > \cdot \ln < x, x >}) = [d(< x, x > \cdot \ln < x, x >) = (\frac{< x, x >}{< x, x >} \cdot < 2x, dx > + \ln < x, x > * < 2x, dx >] => \nabla f(x) = (2x) \cdot (1 + \ln < x, x >) < x, x >^{< x, x >} \end{array}$
- **3** Calculate the Frobenious norm derivative: $\frac{\partial}{\partial X} \|X\|_F^2$ $d(\|X\|_F) = d(< X, X >^{\frac{1}{2}}) = \frac{1}{2} < X, X >^{\frac{-1}{2}} \cdot d(< X, X >)$ а как мы знаем из конспектов первого семинара, $d < X, X > = < 2X, dX > = > f(x) = < X, X >^{(\frac{1}{2}) \cdot (-1)} \cdot < X, dX >$ или же, хорошо бы написать ответ через норму Фробениуса: $df(x) = \|X\|_F^{-1} \cdot < X, dX >$

 $d(\|X\|_F^2) = 2\|X\|_F^1 \cdot \|X\|_F^{-1} \cdot \langle X, dX \rangle = \langle 2X, dX \rangle$ Тогда: $\frac{\partial}{\partial X} \|X\|_F^2 = 2X$ - Ответ.

 $4 f(t) = det(A - tI_n)$

Известно, что $d(det(X)) = det(X) < X^{-T}, dx >= det(X)X^{-T}$ поэтому $d(det(A - tI_n)) = det(A - tI_n) \cdot -I_n^T \cdot (A - tI_n)^{-T}$. То есть первая производная равна $det(A - tI_n) \cdot -I_n^T \cdot (A - tI_n)^{-T}$. Где I_n^T можно убрать, но я оставлю.

Тогда вторая производная равна: $d(det(A-tI_n))\cdot -I_n^T\cdot (A-tI_n)^{-1}+det(A-tI_n)\cdot d(-I_n^T\cdot (A-tI_n)^{-T})=det(A-tI_n)\cdot -I_n^T\cdot (A-tI_n)^{-T}\cdot -I_n^T\cdot (A-tI_n)^{-T}+H1\cdot det(A-tI_n).$ Распишем H1 чтобы не таскать левую часть: $H1=d(-I_n^T\cdot (A-tI_n)^{-T})=-I_n^T\cdot < d((A-tI_n)^{-1},d(tI_n)>=-I_n^T\cdot < d((A-tI_n)^{-1}\cdot -I_n^T,dt>$

2 Convex sets

1 Prove that the set of square symmetric positive definite matrices is convex. Множество выпукло, если $\forall \theta \in [0,1]: C = \theta A + (1-\theta)B$; и оба множителя не равны нулю одновременно.

Для двух матриц A и B верно, что $\forall x \in \mathbb{R} \backslash 0 : x^T A x > 0$ аналогично для B, т.е они положительно определены.

Тогда $x^T \hat{C} x = \theta x^T A x + (1 - \theta) x^T B x > 0$, Данная сумма симметрична и положительно определена, поэтому это верно для C, и в силу произвольности C множество выпукло.

3 Show that the hyperbolic set of $\{x \in \mathbb{R}^n_+ | \prod_{i=1}^n x_i \ge 1\}$ is convex. Hint: For $0 \le \theta \le 1$ it is valid, that $a^{\theta}b^{1-\theta} \le \theta a + (1-\theta)b$ with non-negative a,b.

Пусть $_1,_2,x_i$ - элементы нашего множества L. Запишем исходное неравенство с учётом свойства множества L(1 и 2 - это индексы): $\prod_{i=1}^n (x_i^1)^\theta (x_i^2)^{1-\theta} = (\prod_{i=1}^n x_i^1)^\theta (\prod_{i=1}^n x_i^2)^{1-\theta} \leq \prod_{i=1}^n (\theta x_i^1 + (1-\theta)x_i^2) = RightPart.$

$$RightPart = \begin{cases} \prod_{i=1}^{n} (x_i^1)^{\theta} \ge 1 & \theta = 1\\ (\prod_{i=1}^{n} x_i^2)^{1-\theta} \ge 1 & \theta = 0\\ (\prod_{i=1}^{n} x_i^1)^{\theta} (\prod_{i=1}^{n} x_i^2)^{1-\theta} & \theta \in (0; 1) \end{cases}$$

Тогда L выпукло по определению $\forall x^1, x^2 \in L, \forall \theta \in [0,1]: \theta x_i^1 + (1-\theta)x^2 \in L$

4 Условие:

В одну сторону просто: если S - выпукло, то $(\alpha + \beta)S = \alpha S + \beta S \Leftrightarrow x \in \alpha S + \beta S$. Т.е х принадлежит левой, то он принадлежит и правой и наоборот. По свойству выпуклых множеств. Обратно, утверждение верно для неотрицательных, коэффициентов, ок пусть они равны как в определении выпуклости $\alpha = \theta$; $\beta = 1 - \theta$, тогда по равенству из условия: $(\theta + 1 - \theta)S = \theta S + (1 - \theta)S$. S выпукло по определению, если вместо S в правую часть подставить элементы из него. Чтд. (Пояснение в видео: https://www.youtube.com/watch?v=dQw4w9WgXcQ)

5 Здесь должно быть условие Интро: симплекс это выпуклое множество, также нам известно, что счётное пересечение не изменяет выпуклости, что позволяет нам пересекать симплекс и множество без потери выпуклости.

Разберём случаи:

 $1 \ \alpha > a_i \Rightarrow \beta \geq 0$, так как вероятность нулевая и выполняется для вещественных иксов, иначе множество x - пустое. Оба варианта множеств выпуклы. 1(1)

Пусть некоторые $a_i > \alpha$, начиная с некоторого индекса в силу упорядоченности, тогда $\beta \geq \sum_{i=index}^n a_i p_i$. Используя выпуклость пересечения с симплексом, получим, что по определению $\sum_{i=j}^n a_i \binom{1}{i} + (1-\theta)p_i^2 \leq \theta\beta + (1-\theta)\beta = \beta$. Доказано.

Так же, как и в первом возьмём два случайных вектора, записываем из них выпуклую комбинацию и как в неравенстве выше будет определение выпуклости.

Снова берём два произвольных вектора, так как ограничений на р нет и $\sum_{i=j}^{n} |a_i^2| (\theta p_i^1 + (1-\theta)p_i^2) = \theta \sum_{i=j}^{n} |a_i^2| p_i^1 + (1-\theta) \sum_{i=j}^{n} |a_i^2| p_i^2 \ge \theta \alpha + (1-\theta)\alpha = \alpha$ так как $beta \ge \sum_{i=index}^{n} a_i p_i$. Чтд.

 $\theta)(p_i^2)^Taa^T(p_i^1)-(1-\theta)^2(p_i^2)^Taa^T(p_i^2)$ Выделяем полный квадрат и получаем выпуклость: $\alpha \leq \alpha+\theta(1-\theta)(a^Tp^1-a^Tp^2)^2 \leq \mathbb{V}x$ Доказано.

3 Subgradient

1 Prove, that x_0 - is the minimum point of a convex function f(x) if and only if $0 \in \partial f(x_0)$

Функция f - выпукла, а точка x_0 - её минимум.

В одну сторону /ra, у выпуклой функции $f(x) \ge f(x_0) = f(x_0) + \langle 0, x - x_0 \rangle$, так называемый "умный ноль". Т.е функция g = 0, получим, что $0 \in df(x_0)$.

В другую сторону, известно: $0 \in df(x_0)$, тогда возьмём g = 0, тогда $f(x_0) = f(x_0) + \langle 0, x - x_0 \rangle$, а так как $\langle 0, x - x_0 \rangle = 0$, получим утверждение в обратную сторону: $f(x) \ge f(x_0)$. Чтд.

2 Find $\partial f(x)$, if $f(x) = \text{ReLU}(x) = \max\{0, x\}$

Функции 0 и x выпуклы, а поточечный максимум определяется как $f(x) = \max_{i} f_i(x)$ абъюзим (используем) теорему Дубовицкого - Милютина.

$$f_1(x) = 0 \Rightarrow \partial f_1(x) = 0; \ f_1(x) = x \Rightarrow \partial f_1(x) = 1;$$
$$\partial f(x) = \begin{cases} 1 & x > 0 \\ [0, 1] & x = 0 \\ 0 & x < 0 \end{cases}$$

Ответ.

3 Find $\partial f(x)$, if $f(x) = ||x||_p$ при $p = 1, 2, \infty$

1.
$$p = 1$$

Из функана я знаю, что манхэттенское расстояние (о, как загнул, ладно, первая норма) равна $\|x\|_1 = \sum_{i=0}^n |x_i|$, и, так как x - это вектор-столбец, то в каждой строчке у него одно значение x_i , то есть $\|x\|_1 = \sum_{i=0}^n |x_i| = \sum_{i=0}^n \max(x_i, -x_i)$.

Поэтому при дифференцировании x по одной из координат мы на её месте получим 1, а на остальных 0. Раз тут сумма, а осталась только одна теорема, то, так как все функции x, -x под суммой выпуклые, а для максимума мы уже знаем из предыдущего пункта и $\partial(x_i) = 1$; $\partial(-x_i) = -1$, то:

$$\partial f(x) = egin{cases} (0, \dots, 1, \dots 0) & x_i > 0 \\ (0, \dots, [-1, 1], \dots 0) & x_i = 0 \\ (0, \dots, -1, \dots 0) & x_i < 0 \end{cases}$$

Единица и минус единица стоят на i-ом месте. Уравнение похоже на функцию знака, кроме точки x=0. В ней для каждого x_i все координаты кроме і равны 0, а она сама имеет значения из [-1,1]. Так как в задаче спрашивают про $\partial f(x)$, то для случая, когда часть из координат равна нулю, а часть нет, то $A:i\in A,\ if\ x_i=0$ и в этом случае A считаем непустым.

$$\partial f_i(x) = \begin{cases} \prod_{i=1}^n [-1, 1] & x = 0\\ (sign(x_1), \dots sign(x_n)) & x_i \neq 0; \ \forall i \text{ from 1 to n}\\ \prod\limits_{i \notin A} (sign(x_i)) \times \prod\limits_{i \in A} [-1, 1] & A \neq \varnothing \end{cases}$$

2. p = 2

Рассмотрим функцию f(x) = ||x||, она дифференцируема, если $x \in \mathbb{R}^n \setminus \{0\}$, и тогда $\partial \|\cdot\| = x \cdot \|x\|^{-1}.$

Сначала скажем, что Евклидова норма самосопряженная и X*=X, а сопряженная норма имеет вид $||n||_* = \sup_{\|m\| < 1} \langle n, m \rangle$

Предположим, что в нуле $\partial \|\cdot\|(0) = SHAR_1(0)$, то есть шар радиуса 1. В обратную сторону очевидно, используя неравенство Коши-Буняковского-Шварца, $|\langle y, x \rangle| \leq ||y||$. $||x|| \Leftrightarrow 1 = f(x)$. Поэтому $y \in \partial f(0)$.

Прямо: предположим, что $y \in \partial f(0)$ и норма y лежит вне единичного шара, но тогда есть точка, где скалярное произведение больше 1, так как рассмотрим сопряженную норму $\sup_{\|x\|,1}\langle y,x\rangle=\|y\|>1$. Тогда для некой точки x_a , для которой это верно, имеем, что $||x_a|| \le 1 < \langle y, x_a \rangle$. Но возникает противоречие для нашей точки.

$$\partial f(x) = \begin{cases} SHAR_1(0) & \mathbf{x} = 0\\ e^{\|x\|} \cdot x \cdot \|x\|^{-1} & \mathbf{x} \neq 0 \end{cases}$$

3. $\mathbf{p} = \infty$

Вернёмся к р = 1, и снова применим теорему Дубовицкого-Милютина о поточечном максимуме. Рассмотрим наш вектор х. Когда вектор равен нулю, то берём выпуклую оболочку, согласно теореме, а именно $\prod_{i=1}^{n} [-1, 1]$.

Когда он не равен нулю, то есть 2 варианта, то пусть максимум достигается не в одной точке, а на нескольких $f_i(x)$, ответ будет выпуклой оболочкой всех

$$\partial f_i(x) = egin{cases} (0,...,1,...,0) & x_i > 0 \\ (0,...,-1,...,0) & x_i < 0 \end{cases}$$

Если максимум один, т.е на одной $f_i(x)$, то жизнь проще, берем значение

$$\partial f_i(x) = \begin{cases} (0, ..., 1, ..., 0) & x_i > 0 \\ (0, ..., -1, ..., 0) & x_i < 0 \end{cases}$$

Ответом будет объединение трёх вариантов выше.

4 Find $\partial f(x)$, if $f(x) = ||Ax - b||_1$

 $g(x) = ||x||_1$, тогда $\partial g(x) = \partial ||x||_1(x)$ and $\phi = x$ и 0, если x < 0, тогда $\partial f(x) = \partial (||Ax - b||_1) = 0$ $A^T \partial \|\cdot\|_1 (Ax-b)$, так как g выпуклая и я использовал chain rule.

Ответ: $A^T \partial \|\cdot\|_1 (Ax - b)$, а $\partial \|\cdot\|_1$ был найден в задаче 3.

5 Find $\partial f(x)$, if $f(x) = e^{\|x\|}$

Chain rule, я выбираю тебя! Мне кажется очевидным, что $\|\cdot\|$ выпукла, по крайней мере так сказали на функане. Пусть $\phi = exp$ тоже выпукла, тогда найдём по правилу:

$$\partial f(x) = e^{\|x\|} \cdot \partial \|\cdot\|(x)$$

Ответ: $\partial f(x) = e^{\|x\|} \cdot \partial \|\cdot\|(x)$, а $\partial \|\cdot\|$ был найден в задаче 3.