Patter Recognition CS - 669

ASSIGNMENT 2 GMM and K-Means Clustering

Group Number 13

Suryavanshi Virendrasingh B16037 Abhishek Pal B15203 Nemani Sri Hari B15224

Contents

	Pa	age
Co	ontents	i
Li	st of Plots	ii
Li	st of Tables	iv
1.	Problem Description	1
2.	Solution Approach	2
	1 Feature Extraction	2
	1.1 Colour histogram feature	2
	1.2 Bag-of-visual-words (BoVW) feature using K-means clustering	2
	1.3 K-Means Clustering	2
	1.4 GMM (Gaussian Mixture Model)	3
3.	Results and Plots	5
	1 Data Set 1 : Non Linearly Separable Data	5
	2 Data Set 2 : Real World Data	11
	3 Data Set 3: Three class scene image data set	28
	3.1 Classifier 1 : Histogram feature vector based	28
	3.2 Classifier 2 : BoVW feature vector based	38
	4 Data Set 4 : Cell Data Segmentation	48
	4.1 Segmentation 1 : K-means based segmentation	48
	4.2 Segmentation 2 : GMM based segmentation	50
4.	Observations and Inferences	52
5.	Conclusions	53

List of Plots

31 Non Linearly Separable Data Classifier Using GMM	5
32 Convergence plots for class1 using different number of clusters	6
33 Convergence plots for class2 using different number of clusters	7
34 Contour plots for class1 and class2 using different number of clusters	8
35 Real World Data Classifier Using GMM with 1 cluster	11
36 Real World Data Classifier Using GMM with 2 clusters	12
37 Real World Data Classifier Using GMM with 4 clusters	13
38 Real World Data Classifier Using GMM with 8 clusters	14
39 Real World Data Classifier Using GMM with 16 clusters	15
310 Real World Data Classifier Using GMM with 32 clusters	16
311 Real World Data Classifier Using GMM with 64 clusters	17
312 Convergence plots for class 1 using different number of clusters	18
313 Convergence plots for class 2 using different number of clusters \dots	19
314 Convergence plots for class 3 using different number of clusters \dots	20
315 Histogram feature based classifier for 1 cluster	28
8	30
317 Histogram feature based classifier for 4 clusters	32
318 Histogram feature based classifier for 8 clusters	34
319 Histogram feature based classifier for 16 clusters	36
320 BoVW feature based classifier for 1 cluster	38
321 BoVW feature based classifier for 2 clusters	40
322 BoVW feature based classifier for 4 clusters	42
	44
324 BoVW feature based classifier for 16 clusters	46
325 Segmentation using K-means clustering	48
326 Segmentation using K-means clustering without normalization	49
327 Segmentation using GMM with normalized features	50
328 Segmentation using GMM without normalization	51

List of Tables

31	Bayes classifier using GMM for 1 cluster	9
32	Bayes classifier using GMM for 2 clusters	9
	Bayes classifier using GMM for 4 clusters	9
34	Bayes classifier using GMM for 8 clusters	9
35	Bayes classifier using GMM for 16 clusters	10
36	Bayes classifier using GMM for 32 clusters	10
37	Bayes classifier using GMM for 64 clusters	10
38	Real World data classifier for 1 cluster : Class1 and Class2	21
39	Real World data classifier for 1 cluster : Class1 and Class3	21
310	Real World data classifier for 1 cluster : Class2 and Class3	21
311	Real World data classifier for 1 cluster: Class1 and Class2 and Class3	21
312	Real World data classifier for 2 clusters : Class1 and Class2	22
313	Real World data classifier for 2 clusters : Class1 and Class3	22
314	Real World data classifier for 2 clusters : Class2 and Class3	22
315	Real World data classifier for 2 clusters: Class1 and Class2 and	
	Class3	22
316	Real World data classifier for 4 clusters : Class1 and Class2	23
317	Real World data classifier for 4 clusters: Class1 and Class3	23
318	Real World data classifier for 4 clusters : Class2 and Class3	23
	Real World data classifier for 4 clusters: Class1 and Class2 and	
	Class3	23
320	Real World data classifier for 8 clusters : Class1 and Class2	24
321	Real World data classifier for 8 clusters : Class1 and Class3	24
322	Real World data classifier for 8 clusters : Class2 and Class3	24
323	Real World data classifier for 8 clusters: Class1 and Class2 and	
	Class3	24
324	Real World data classifier for 16 clusters: Class1 and Class2	25
325	Real World data classifier for 16 clusters: Class1 and Class3	25
326	Real World data classifier for 16 clusters: Class2 and Class3	25
327	Real World data classifier for 16 clusters: Class1 and Class2 and	
	Class3	25
328	Real World data classifier for 32 clusters : Class1 and Class2	26
	Real World data classifier for 32 clusters: Class1 and Class3	26
330	Real World data classifier for 32 clusters: Class2 and Class3	26
331	Real World data classifier for 32 clusters: Class1 and Class2 and	
	Class3	26
332	Real World data classifier for 64 clusters : Class1 and Class2	27
333	Real World data classifier for 64 clusters : Class1 and Class3	27
334	Real World data classifier for 64 clusters: Class2 and Class3	27
	Real World data classifier for 64 clusters: Class1 and Class2 and	
	Class3	27
336	Histogram feature based classifier: Class1 and Class2	29
	Histogram feature based classifier: Class1 and Class3	29
	Histogram feature based classifier: Class 2 and Class 3	20

339 Histogram feature based classifier: Classif and Classize and Classize 2	29
340 Histogram feature based classifier: Class1 and Class2	31
341 Histogram feature based classifier: Class1 and Class3	31
342 Histogram feature based classifier: Class2 and Class3	31
$343\mathrm{Histogram}$ feature based classifier: Class1 and Class2 and Class3	31
344 Histogram feature based classifier: Class1 and Class2	33
345 Histogram feature based classifier: Class1 and Class3	33
346 Histogram feature based classifier: Class2 and Class3	33
$347\mathrm{Histogram}$ feature based classifier: Class1 and Class2 and Class3	33
	35
349 Histogram feature based classifier: Class1 and Class3	35
350 Histogram feature based classifier: Class2 and Class3	35
$351\mathrm{Histogram}$ feature based classifier: Class1 and Class2 and Class3	35
352 Histogram feature based classifier: Class1 and Class2	37
353 Histogram feature based classifier: Class1 and Class3	37
354 Histogram feature based classifier: Class2 and Class3	37
$355\mathrm{Histogram}$ feature based classifier: Class1 and Class2 and Class3	37
356 BoVW feature based classifier: Class1 and Class2	39
357 BoVW feature based classifier: Class1 and Class3	39
358 BoVW feature based classifier: Class2 and Class3	39
$359~\mathrm{BoVW}$ feature based classifier: Class1 and Class2 and Class3	39
360 BoVW feature based classifier: Class1 and Class2	41
361 BoVW feature based classifier: Class1 and Class3	41
362 BoVW feature based classifier: Class2 and Class3	41
363 BoVW feature based classifier: Class1 and Class2 and Class3	41
364 BoVW feature based classifier: Class1 and Class2	43
365 BoVW feature based classifier: Class1 and Class3	43
	43
367 BoVW feature based classifier: Class1 and Class2 and Class3	43
368 BoVW feature based classifier: Class1 and Class2	45
369 BoVW feature based classifier: Class1 and Class3	45
370 BoVW feature based classifier: Class2 and Class3	45
371 BoVW feature based classifier: Class1 and Class2 and Class3	45
372 BoVW feature based classifier: Class1 and Class2	47
373 BoVW feature based classifier: Class1 and Class3	47
374 BoVW feature based classifier: Class2 and Class3	47
$375~\mathrm{BoVW}$ feature based classifier: Class1 and Class2 and Class3	47

1. Problem Description

Data-sets:

- Data-set 1: 2-dimensional artificial data of 3 or 4 classes: nonlinearly separable data set used in Assignment 1:
- Data-set 2: Real world data set:
 - Two dimensional speech dataset used in Assignment 1
 - 3 class scene image dataset
 - Cervical cytology (cell) image dataset

Dataset 1 and Dataset 2(a), 75% of data of a class is to be used as training data for that class, and the remaining data is to be used as test data for that class. For Dataset 2(b) and Dataset 2(c), training and test sets are given.

Classifiers:

- GMM
- K-Means Clustering

Objective:

- 1. Build Bayes classifier using GMM to classify data points of given data-sets on the basis of specified classifiers. Parameters of GMM are to be initialized using K-means clustering.
- 2. Segment the cell images by clustering the local feature vectors from cell image datasets into 3 groups using (a) K-means clustering and (b) clustering using GMM. GMM is built using the K-means clustering to initialize the parameters.
- 3. For each classifier and each data-set we do:
 - Classification accuracy, precision for every class, mean precision, recall for every class, mean recall, F-measure for every class and mean F-measure on test data.
 - Confusion matrix based on the performance for test data.
 - Constant density contour plot for all the classes together with the training data superposed.
 - Decision region plot with the training data superposed (only for Dataset-1 and Dataset 2(a)) superposed.
 - Result should also consist of plot of 3 clusters on training data of Dataset 2(c) and the result of cluster projected on test images.
 - Graph of iterations vs log likelihood for all the datasets with different number of components.

2. Solution Approach

1 Feature Extraction

1.1 Colour histogram feature

We extract 64 x 64 non overlapping patches on every image from the training and test sets. Extracting 8-bin colour histogram from each R, G and B from a patch, results in 3, 8-dimensional feature vectors. Concatenating them we form a 24-dimensional feature vector. Doing similar computation on all, every image is represented as a set of 24-dimensional colour histogram vectors.

When the given image is read, it will be read as 3-dimensional matrix of pixel values. Each dimension is corresponding to a colour channel. The pixel values in each colour channel are in the range 0 to 255. For a colour channel,

- Divide this range into 8 equal bins.
- Count the number of pixels falling into each bins. This results in a vector of 8 values.
- This is the 8-dimensional colour histogram (from a colour channel) feature vector. Do the same for other colour channels. Concatenate those three 8-dimensional colour histogram vectors to form 24-dimensional vector.

1.2 Bag-of-visual-words (BoVW) feature using K-means clustering

Take the 24-dimensional colour histogram feature vectors of all the training examples of all the classes. Group them into 64 clusters using K-means clustering algorithms. Now take an image, assign each 24-dimensional colour histogram feature vector to a cluster. Count the number of feature vectors assigned to each of the 64 clusters. This results in a 64-dimensional BoVW representation for that image. Repeat this for every images in training and test set.

1.3 K-Means Clustering

K-Means clustering is the simplest clustering algorithm. We have to specify the number of clusters and it gives a decent approximation of the different partitions. K-Means is mostly used as a pre-clustering algorithm to get a decent starting point for the actual clustering algorithm.

In this assignment also, we use K-Means for pre-clustering the data that is then classified using GMM.

For Dataset 1 (2-dimensional artificial data of 3 or 4 classes), we did K-means clustering to obtain means and covariances of the k clusters. The value of k was taken as 1,2,4,8,16,32 and 64 and for each value of k taken, the points were classified into the respective clusters using minimum distance measure. The means of these clusters were updated depending upon the points that are categorised into the clusters. This was repeated several times, till convergence criteria was achieved.

Method

Using K-Means clustering, we assign data points to clusters, as well as a set of vectors μ_k , such that the sum of the squares of the distances of each data point to its closest vector μ_k , is minimum. This sum is given by,

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2$$
 (2..1)

The steps of K-means clustering are as follows:

First we choose some initial values for the μ_k . In the first phase, we minimize J with respect to the r_{nk} , keeping the μ_k fixed. This tells us which point belongs to which cluster .This is given by the formula,

$$r_{nk} = \begin{cases} 1, & \text{if } k = argmin_j ||x_n - \mu_k||^2 \\ 0, & \text{otherwise} \end{cases}$$
 (2..2)

In the second phase we minimize J with respect to the μ_k , keeping r_{nk} fixed. This gives us the new k for each cluster. This is given by,

$$\mu_{\mathbf{k}} = \frac{\sum_{n} r_{nk} x_{n}}{\sum_{n} r_{nk}} \tag{2..3}$$

This two-stage optimization is then repeated until convergence criteria is satisfied. (i.e. Log likelihood is lesser than a certain threshold).

1.4 GMM (Gaussian Mixture Model)

In K-Means, we assume each point is a part of a single cluster only. In Gaussian Mixture Model, we find the responsibility that each cluster takes in generating each point. Basically, we find the probability of each point being in each cluster. Even in the GMM technique, the way of initialising means is not specified. Since we already have a decent approximation from the K-means algorithm, we use the results of the K-means clustering only. Taking the final means and variances of the different clusters from the K-means clustering results, we apply GMM to it.

For each data point x_n we define a set of binary indicator variables p_{ik} which describe which cluster the point belongs to. To find π_k , we need to know which

data points belong to which cluster, and how many data points belong to which cluster. So, using K-means clustering, we first classify them according to minimum distance measure and calculate π_k for each cluster. Once we have initial values for mean, variance and π for each cluster, we find the responsibility term γ for each data point π with respect to each cluster k, using the formula,

$$\gamma(\mathbf{z}_{nk}) = \frac{\pi_k N(\mathbf{x}_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(\mathbf{x}_n | \mu_j, \Sigma_j)}$$
(2..4)

This is known as the expectation step of the EM algorithm. Using γ , we estimate the parameters μ_k , Σ_k and π_k again such that the total data likelihood is maximized.

$$\mu_k^{new} = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) x_n \tag{2..5}$$

$$\Sigma_k^{new} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (x_n - \mu_k^{new}) (x_n - \mu_k^{new})^T$$
 (2..6)

$$\pi_k^{new} = \frac{N_k}{N} \tag{2..7}$$

where,

$$N_k = \sum_{n=1}^{N} \gamma(z_{nk}) \tag{2..8}$$

This is known as the Maximization step of the EM algorithm.

After every iteration, we have to find log likelihood value using,

$$\ln p(X|\mu, \Sigma, \pi) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(x_n | \mu_k, \Sigma_k) \right\}$$
 (2..9)

And we repeat the process till l_{new} - l_{old} is less than a particular threshold value. This is called **Convergence Criteria**.

3. Results and Plots

1 Data Set 1: Non Linearly Separable Data

Decision boundary plots

(a) Plot between class 1 and 2 for 1 cluster.

(c) Plot between class 1 and 2 for 4 clusters.

(e) Plot between class 1 and 2 for 16 clusters.

(b) Plot between class 1 and 2 for 2 clusters.

(d) Plot between class 1 and 2 for 8 clusters.

(f) Plot between class 1 and 2 for 32 clusters.

(g) Plot between class 1 and 2 for 64 clusters.

Figure 3..1. Non Linearly Separable Data Classifier Using $$\operatorname{GMM}$$

Convergence plots class1

(a) convergence plot for class 1 for 1 cluster.

(c) Convergence plot for class 1 for 4 clusters.

(e) Convergence plot for class 1 for 16 clusters.

(b) Convergence plot for class 1 for 2 clusters.

(d) Convergence plot for class 1 for 8 clusters.

(f) Convergence plot for class 1 for 32 clusters.

(g) Convergence plot for class 1 for 64 clusters.

Figure 3..2. Convergence plots for class1 using different number of clusters

Convergence plots class2

(a) Convergence plot for class 2 for 1 cluster.

(c) Convergence plot for class 2 for 4 clusters.

(e) Convergence plot for class 2 for 16 clusters.

(b) Convergence plot for class 2 for 2 clusters.

(d) Convergence plot for class 2 for 8 clusters.

(f) Convergence plot for class 2 for 32 clusters.

(g) Convergence plot for class 2 for 64 clusters.

Figure 3..3. Convergence plots for class2 using different number of clusters

Contours

(a) Contour plot for class1 and class2 for 1 cluster.

(c) Contour plot for class1 and class2 for 4 clusters.

(e) Contour plot for class1 and class2 for 16 clusters.

(b) Contour plot for class1 and class2 for 2 clusters.

(d) Contour plot for class1 and class2 for 8 clusters.

(f) contour plot for class1 and class2 for 32 clusters.

(g) Contour plot for class1 and class2 for 64 clusters.

Figure 3..4. Contour plots for class1 and class2 using different number of clusters

Confusion Matrix, Precision, Recall and F-measure

Accuracy=55.06%

	Class1	Class 2
Class1	189	137
Class2	156	170

	Class1	Class2
Precision	0.55	0.55
Recall	0.58	0.52
F-Measure	0.56	0.54

(a) Confusion Matrix

(b) Analysis

Table 3..1. Bayes classifier using GMM for 1 cluster

Accuracy=58.74%

	Class2	Class 3
Class2	191	135
Class3	134	192

 Class2
 Class3

 Precision
 0.59
 0.59

 Recall
 0.59
 0.59

 F-Measure
 0.59
 0.59

(a) Confusion Matrix

(b) Analysis

Table 3..2. Bayes classifier using GMM for 2 clusters

Accuracy = 84.20%

	Class1	Class 3
Class1	264	62
Class3	41	285

	Class1	Class3
Precision	0.87	0.82
Recall	0.81	0.87
F-Measure	0.84	0.85

(a) Confusion Matrix

(b) Analysis

Table 3..3. Bayes classifier using GMM for 4 clusters

Accuracy=84.05%

	Class1	Class2
Class1	280	46
Class2	58	268

	Class1	Class2
Precision	0.83	0.85
Recall	0.86	0.82
F-Measure	0.84	0.84

(b) Analysis

Table 3..4. Bayes classifier using GMM for 8 clusters

$Accuracy{=}100\%$

	Class1	Class2
Class1	326	0
Class2	0	326

	Class1	Class2
Precision	1.0	1.0
Recall	1.0	1.0
F-Measure	1.0	1.0

(a) Confusion Matrix

(b) Analysis

Table 3..5. Bayes classifier using GMM for 16 clusters

Accuracy = 100%

	Class1	Class2
Class1	326	0
Class2	0	326

 Class1
 Class2

 Precision
 1.0
 1.0

 Recall
 1.0
 1.0

 F-Measure
 1.0
 1.0

(a) Confusion Matrix

(b) Analysis

Table 3..6. Bayes classifier using GMM for 32 clusters

Accuracy=100%

	Class1	Class2
Class1	326	0
Class2	0	326

	Class1	Class2
Precision	1.0	1.0
Recall	1.0	1.0
F-Measure	1.0	1.0

(a) Confusion Matrix

(b) Analysis

Table 3..7. Bayes classifier using GMM for 64 clusters

2 Data Set 2 : Real World Data

Decision boundary plots for 1 cluster

(a) Plot between class 1 and 2 for 1 cluster.

(c) Plot between class 2 and 3 for 1 cluster.

(b) Plot between class 1 and 3 for 1 cluster.

(d) Plot between class 1 and 2 and 3 for 1 cluster.

Figure 3..5. Real World Data Classifier Using GMM with 1 cluster

Group 13

Decision boundary plots for 2 clusters

(a) Plot between class 1 and 2 for 2 clusters.

(c) Plot between class 2 and 3 for 2 clusters.

(b) Plot between class 1 and 3 for 2 clusters.

(d) Plot between class 1 and 2 and 3 for 2 clusters.

Figure 3..6. Real World Data Classifier Using GMM with 2 clusters $\,$

Group 13

Decision boundary plots for 4 clusters

(a) Plot between class 1 and 2 for 4 clusters.

(c) Plot between class 2 and 3 for 4 clusters.

(b) Plot between class 1 and 3 for 4 clusters.

(d) Plot between class 1 and 2 and 3 for 4 clusters.

Figure 3..7. Real World Data Classifier Using GMM with 4 clusters $\,$

8 clusters.

3 for 8 clusters.

Decision boundary plots for 8 clusters

Figure 3..8. Real World Data Classifier Using GMM with 8 clusters $\,$

Group 13

Decision boundary plots for 16clusters

(a) Plot between class 1 and 2 for 16 clusters.

(c) Plot between class 2 and 3 for 16 clusters.

(b) Plot between class 1 and 3 for 16 clusters.

(d) Plot between class 1 and 2 and 3 for 16 clusters.

Figure 3..9. Real World Data Classifier Using GMM with 16 clusters

32 clusters.

3 for 32 clusters.

Decision boundary plots for 32 clusters

Figure 3..10. Real World Data Classifier Using GMM with 32 clusters

Decision boundary plots for 64 clusters

Figure 3..11. Real World Data Classifier Using GMM with 64 clusters

Convergence plots for class1

(a) convergence plot for class 1 for 1 cluster.

(c) Convergence plot for class 1 for 4 clusters.

(e) Convergence plot for class 1 for 16 clusters.

(b) Convergence plot for class 1 for 2 clusters.

(d) Convergence plot for class 1 for 8 clusters.

(f) Convergence plot for class 1 for 32 clusters.

(g) Convergence plot for class 1 for 64 clusters.

Figure 3..12. Convergence plots for class1 using different number of clusters

Convergence plots for class2

(a) convergence plot for class 2 for 1 cluster.

(c) Convergence plot for class 2 for 4 clusters.

(e) Convergence plot for class 2 for 16 clusters.

(b) Convergence plot for class 2 for 2 clusters.

(d) Convergence plot for class 2 for 8 clusters.

(f) Convergence plot for class 2 for 32 clusters.

(g) Convergence plot for class 2 for 64 clusters.

Figure 3..13. Convergence plots for class2 using different number of clusters

Convergence plots for class3

(a) convergence plot for class 3 for 1 cluster.

(c) Convergence plot for class 3 for 4 clusters.

(e) Convergence plot for class 3 for 16 clusters.

(b) Convergence plot for class 3 for 2 clusters.

(d) Convergence plot for class 3 for 8 clusters.

(f) Convergence plot for class 3 for 32 clusters.

(g) Convergence plot for class 3 for 64 clusters.

Figure 3..14. Convergence plots for class3 using different number of clusters

Real World data classifier for 1 cluster

Accuracy=100%

	Class1	Class 2
Class1	622	0
Class2	0	597

 Class1
 Class2

 Precision
 1.00
 1.00

 Recall
 1.00
 1.00

 F-Measure
 1.00
 1.00

(a) Confusion Matrix

(b) Analysis

Table 3..8. Real World data classifier for 1 cluster : Class1 and Class2

Accuracy=99.75%

	Class1	Class 3
Class1	621	1
Class3	2	571

	Class1	Class3
Precision	1.00	1.00
Recall	1.00	1.00
F-Measure	1.00	1.00

(a) Confusion Matrix

(b) Analysis

Table 3..9. Real World data classifier for 1 cluster : Class1 and Class3

Accuracy = 88.20%

	Class2	Class 3
Class2	581	16
Class3	122	451

	Class2	Class3
Precision	0.83	0.88
Recall	0.97	0.79
F-Measure	0.89	0.87

(a) Confusion Matrix

(b) Analysis

Table 3..10. Real World data classifier for 1 cluster : Class2 and Class3

	Class1	Class2	Class 3
Class1	621	0	1
Class2	0	581	16
Class3	2	122	449

	Class1	Class2	Class3
Accuracy	99.83	92.30	92.13
Precision	1.00	0.83	0.96
Recall	1.00	0.97	0.78
F-Measure	1.00	0.89	0.86

(b) Analysis

Table 3..11. Real World data classifier for 1 cluster: Class1 a nd Class2 and Class3

Real World data classifier for 2 clusters

Accuracy=99.92%

	Class1	Class 2
Class1	621	1
Class2	0	597

	Class1	Class2
Precision	1.00	1.00
Recall	1.00	1.00
F-Measure	1.00	1.00

(a) Confusion Matrix

(b) Analysis

Table 3..12. Real World data classifier for 2 clusters : Class1 and Class2

Accuracy=99.75%

	Class1	Class 3
Class1	621	1
Class3	2	571

	Class1	Class3
Precision	1.00	1.00
Recall	1.00	1.00
F-Measure	1.00	1.00

(a) Confusion Matrix

(b) Analysis

Table 3..13. Real World data classifier for 2 clusters : Class1 and Class3

Accuracy=94.19%

	Class2	Class 3
Class2	570	27
Class3	41	532

	Class2	Class3
Precision	0.93	0.95
Recall	0.95	0.92
F-Measure	0.94	0.94

(a) Confusion Matrix

(b) Analysis

Table 3..14. Real World data classifier for 2 clusters : Class2 and Class3

	Class1	Class2	Class 3
Class1	621	0	1
Class2	0	570	27
Class3	2	41	530

	Class1	Class2	Class3
Accuracy	99.83	96.21	96.04
Precision	1.00	0.93	0.95
Recall	1.00	0.95	0.92
F-Measure	1.00	0.94	0.94

(b) Analysis

Table 3..15. Real World data classifier for 2 clusters : Class1 and Class2 and Class3

Real World data classifier for 4 clusters

Accuracy=100%

	Class1	Class 2
Class1	622	0
Class2	0	597

 Class1
 Class2

 Precision
 1.00
 1.00

 Recall
 1.00
 1.00

 F-Measure
 1.00
 1.00

(a) Confusion Matrix

(b) Analysis

Table 3..16. Real World data classifier for 4 clusters : Class1 and Class2

Accuracy=99.83%

	Class1	Class 3
Class1	622	10
Class3	2	571

	Class1	Class3
Precision	1.00	1.00
Recall	1.00	1.00
F-Measure	1.00	1.00

(a) Confusion Matrix

(b) Analysis

Table 3..17. Real World data classifier for 4 clusters : Class1 and Class3

Accuracy = 94.96%

	Class2	Class 3
Class2	575	22
Class3	37	536

	Class2	Class3
Precision	0.94	0.96
Recall	0.96	0.94
F-Measure	0.95	0.95

(a) Confusion Matrix

(b) Analysis

Table 3..18. Real World data classifier for 4 clusters : Class2 and Class3

	Class1	Class2	Class 3
Class1	622	0	0
Class2	0	575	22
Class3	2	37	534

	Class1	Class2	Class3
Accuracy	99.89	96.71	96.60
Precision	1.00	0.94	0.96
Recall	1.00	0.96	0.93
F-Measure	1.00	0.95	0.95

(b) Analysis

Table 3..19. Real World data classifier for 4 clusters : Class1 and Class2 and Class3

Real World data classifier for 8 clusters

Accuracy=100%

	Class1	Class 2
Class1	622	0
Class2	0	597

 Class1
 Class2

 Precision
 1.00
 1.00

 Recall
 1.00
 1.00

 F-Measure
 1.00
 1.00

(a) Confusion Matrix

(b) Analysis

Table 3..20. Real World data classifier for 8 clusters : Class1 and Class2

Accuracy=99.83%

	Class1	Class 3
Class1	622	0
Class3	2	571

	Class1	Class3
Precision	1.00	1.00
Recall	1.00	1.00
F-Measure	1.00	1.00

(a) Confusion Matrix

(b) Analysis

Table 3..21. Real World data classifier for 8 clusters : Class1 and Class3

Accuracy=94.70%

	Class2	Class 3
Class2	567	30
Class3	32	541

	Class2	Class3
Precision	0.95	0.95
Recall	0.95	0.94
F-Measure	0.95	0.95

(a) Confusion Matrix

(b) Analysis

Table 3..22. Real World data classifier for 8 clusters : Class2 and Class3

	Class1	Class2	Class 3
Class1	623	0	0
Class2	0	567	30
Class3	2	32	539

	Class1	Class2	Class3
Accuracy	99.89	96.54	96.43
Precision	1.00	0.95	0.95
Recall	1.00	0.95	0.94
F-Measure	1.00	0.95	0.94

(b) Analysis

Table 3..23. Real World data classifier for 8 clusters : Class1 and Class2 and Class3

Real World data classifier for 16 clusters

Accuracy=100%

	Class1	Class 2
Class1	622	0
Class2	0	597

 Class1
 Class2

 Precision
 1.00
 1.00

 Recall
 1.00
 1.00

 F-Measure
 1.00
 1.00

(a) Confusion Matrix

(b) Analysis

Table 3..24. Real World data classifier for 16 clusters : Class1 and Class2

Accuracy=99.67%

	Class1	Class 3
Class1	619	3
Class3	1	572

	Class1	Class3
Precision	1.00	0.99
Recall	1.00	1.00
F-Measure	1.00	1.00

(a) Confusion Matrix

(b) Analysis

Table 3..25. Real World data classifier for 16 clusters : Class1 and Class3

Accuracy = 94.87%

	Class2	Class 3
Class2	575	22
Class3	38	535

	Class2	Class3
Precision	0.94	0.96
Recall	0.96	0.93
F-Measure	0.95	0.95

(a) Confusion Matrix

(b) Analysis

Table 3..26. Real World data classifier for 16 clusters : Class2 and Class3

	Class1	Class2	Class 3
Class1	622	0	0
Class2	0	575	22
Class3	1	38	534

	Class1	Class2	Class3
Accuracy	99.94	96.65	96.60
Precision	1.00	0.94	0.96
Recall	1.00	0.96	0.93
F-Measure	1.00	0.95	0.95

(b) Analysis

Table 3..27. Real World data classifier for 16 clusters: Class1 and Class2 and Class3

Real World data classifier for 32 clusters

Accuracy=100%

	Class1	Class 2
Class1	622	0
Class2	0	597

 Class1
 Class2

 Precision
 1.00
 1.00

 Recall
 1.00
 1.00

 F-Measure
 1.00
 1.00

(a) Confusion Matrix

(b) Analysis

Table 3..28. Real World data classifier for 32 clusters : Class1 and Class2

Accuracy=99.33%

	Class1	Class 3
Class1	615	7
Class3	1	572

	Class1	Class3
Precision	1.00	1.00
Recall	1.00	1.00
F-Measure	1.00	1.00

(a) Confusion Matrix

(b) Analysis

Table 3..29. Real World data classifier for 32 clusters : Class1 and Class3

Accuracy = 95.56%

	Class2	Class 3
Class2	571	26
Class3	26	547

	Class2	Class3
Precision	0.96	0.95
Recall	0.96	0.95
F-Measure	0.96	0.95

(a) Confusion Matrix

(b) Analysis

Table 3..30. Real World data classifier for 32 clusters : Class2 and Class3

	Class1	Class2	Class 3
Class1	615	0	7
Class2	0	571	26
Class3	1	26	546

	Class1	Class2	Class3
Accuracy	99.55	97.10	96.65
Precision	1.00	0.96	0.94
Recall	1.00	0.96	0.95
F-Measure	0.99	0.96	0.95

(b) Analysis

Table 3..31. Real World data classifier for 32 clusters: Class1 and Class2 and Class3

Real World data classifier for 64 clusters

Accuracy=100%

	Class1	Class 2
Class1	622	0
Class2	0	597

 Class1
 Class2

 Precision
 1.00
 1.00

 Recall
 1.00
 1.00

 F-Measure
 1.00
 1.00

(a) Confusion Matrix

(b) Analysis

Table 3..32. Real World data classifier for 64 clusters : Class1 and Class2

Accuracy=99.33%

	Class1	Class 3
Class1	615	7
Class3	1	572

	Class1	Class3
Precision	1.00	1.00
Recall	1.00	1.00
F-Measure	0.99	0.99

(a) Confusion Matrix

(b) Analysis

Table 3..33. Real World data classifier for 64 clusters : Class1 and Class3

Accuracy = 95.04%

	Class2	Class 3
Class2	572	25
Class3	33	540

	Class2	Class3
Precision	0.95	0.96
Recall	0.96	0.94
F-Measure	0.95	0.95

(a) Confusion Matrix

(b) Analysis

Table 3..34. Real World data classifier for 64 clusters : Class2 and Class3

	Class1	Class2	Class 3
Class1	615	0	7
Class2	0	572	25
Class3	1	33	539

	Class1	Class2	Class3
Accuracy	99.55	96.76	96.32
Precision	1.00	0.95	0.94
Recall	0.99	0.96	0.94
F-Measure	0.99	0.95	0.94

(b) Analysis

Table 3..35. Real World data classifier for 64 clusters : Class1 and Class2 and Class3

3 Data Set 3 : Three class scene image data set

3.1 Classifier 1: Histogram feature vector based

Convergence plots for 1 cluster

(a) Convergence plot for Class1 for 1 cluster.

(b) Convergence plot for Class2 for 1 cluster.

(c) Convergence plot for Class3 for 1 cluster.

Figure 3..15. Histogram feature based classifier for 1 cluster.

Confusion Matrix, Precision, Recall and F-measure

Accuracy=62.31%

	Class1	Class 2
Class1	15793	39571
Class2	13975	72747

 Class1
 Class2

 Precision
 0.53
 0.65

 Recall
 0.29
 0.84

 F-Measure
 0.37
 0.73

(a) Confusion Matrix

(b) Analysis

Table 3..36. Histogram feature based classifier: Class1 and Class2

Accuracy=63.41%

	Class1	Class 3
Class1	0	55364
Class3	0	95956

	Class1	Class3
Precision	0.50	0.63
Recall	0	1
F-Measure	0	0.78

(a) Confusion Matrix

(b) Analysis

Table 3..37. Histogram feature based classifier: Class1 and Class3

Accuracy = 58.18%

	Class2	Class 3
Class2	73229	13493
Class3	62896	33060

	Class2	Class3
Precision	0.54	0.71
Recall	0.84	0.34
F-Measure	0.66	0.46

(a) Confusion Matrix

(b) Analysis

Table 3..38. Histogram feature based classifier: Class2 and Class3

	i		
	Class1	Class2	Class 3
Class1	22423	28552	4389
Class2	19519	6258	4622
Class3	31782	53828	10346

	Class1	Class2	Class3
Accuracy	64.61	55.25	60.25
Precision	0.30	0.43	0.53
Recall	0.41	0.72	0.12
F-Measure	0.35	0.54	0.18

(b) Analysis

Table 3..39. Histogram feature based classifier: Class1 and Class2 and Class3

Convergence plots for 2 clusters

(a) Convergence plot for Class1 for 2 clusters.

(b) Convergence plot for Class2 for 2 clusters.

(c) Convergence plot for Class3 for 2 clusters.

Figure 3..16. Histogram feature based classifier for 2 clusters.

Confusion Matrix, Precision, Recall and F-measure

Accuracy=43.68%

	Class1	Class 2
Class1	31540	23824
Class2	56196	30526

	Class1	Class2
Precision	0.36	0.56
Recall	0.57	0.35
F-Measure	0.44	0.43

(a) Confusion Matrix

(b) Analysis

Table 3..40. Histogram feature based classifier: Class1 and Class2

Accuracy=63.10%

	Class1	Class 3
Class1	78	55286
Class3	544	95412

	Class1	Class3
Precision	0.13	0.63
Recall	0.00	0.99
F-Measure	0.00	0.77

(a) Confusion Matrix

(b) Analysis

Table 3..41. Histogram feature based classifier: Class1 and Class3

Accuracy = 40.55%

	Class2	Class 3
Class2	31855	54867
Class3	53722	42234

	Class2	Class3
Precision	0.37	0.43
Recall	0.37	0.44
F-Measure	0.37	0.44

(a) Confusion Matrix

(b) Analysis

Table 3..42. Histogram feature based classifier: Class2 and Class3

	Class1	Class2	Class 3
Class1	13162	22660	19542
Class2	14714	28711	43297
Class3	12269	50676	33011

	Class1	Class2	Class3
Accuracy	70.94	44.82	47.16
Precision	0.33	0.28	0.34
Recall	0.23	0.33	0.34
F-Measure	0.28	0.30	0.34

(b) Analysis

Table 3..43. Histogram feature based classifier: Class1 and Class2 and Class3

Convergence plots for 4 clusters

(a) Convergence plot for Class1 for 4 clusters.

(b) Convergence plot for Class2 for 4 clusters.

(c) Convergence plot for Class3 for 4 clusters.

Figure 3..17. Histogram feature based classifier for 4 clusters.

Accuracy=58.05%

	Class1	Class 2
Class1	18851	36513
Class2	23088	63634

 Class1
 Class2

 Precision
 0.45
 0.64

 Recall
 0.34
 0.73

 F-Measure
 0.39
 0.68

(a) Confusion Matrix

(b) Analysis

Table 3..44. Histogram feature based classifier: Class1 and Class2

Accuracy=63.26%

	Class1	Class 3
Class1	49	55315
Class3	275	95681

	Class1	Class3
Precision	0.15	0.63
Recall	0.00	1.00
F-Measure	0.00	0.77

(a) Confusion Matrix

(b) Analysis

Table 3..45. Histogram feature based classifier: Class1 and Class3

Accuracy = 57.62%

	Class2	Class 3
Class2	61046	25676
Class3	51736	44220

	Class2	Class3
Precision	0.54	0.63
Recall	0.70	0.46
F-Measure	0.61	0.53

(a) Confusion Matrix

...

Table 3..46. Histogram feature based classifier: Class2 and Class3

	Class1	Class2	Class 3
Class1	17616	28120	9628
Class2	19805	53861	13056
Class3	32053	45317	18586

	Class1	Class2	Class3
Accuracy	62.36	55.34	57.97
Precision	0.25	0.42	0.45
Recall	0.32	0.62	0.19
F-Measure	0.28	0.50	0.27

(b) Analysis

(b) Analysis

Table 3..47. Histogram feature based classifier: Class1 and Class2 and Class3

Convergence plots for 8 clusters

(a) Convergence plot for Class1 for 8 clusters.

(b) Convergence plot for Class2 for 8 clusters.

(c) Convergence plot for Class3 for 8 clusters.

Figure 3..18. Histogram feature based classifier for 8 clusters.

Accuracy=57.86%

	Class1	Class 2
Class1	19965	35399
Class2	24462	62260

 Class1
 Class2

 Precision
 0.45
 0.64

 Recall
 0.36
 0.72

 F-Measure
 0.40
 0.68

(a) Confusion Matrix

(b) Analysis

Table 3..48. Histogram feature based classifier: Class1 and Class2

Accuracy=62.91%

	Class1	Class 3
Class1	85	55279
Class3	850	95106

	Class1	Class3
Precision	0.09	0.63
Recall	0.00	0.99
F-Measure	0.00	0.77

(a) Confusion Matrix

(b) Analysis

Table 3..49. Histogram feature based classifier: Class1 and Class3

Accuracy = 57.34%

	Class2	Class 3
Class2	62584	24138
Class3	53791	42165

	Class2	Class3
Precision	0.54	0.64
Recall	0.72	0.44
F-Measure	0.62	0.52

(a) Confusion Matrix

(b) Analysis

Table 3..50. Histogram feature based classifier: Class2 and Class3

	Class1	Class2	Class 3
Class1	21812	25639	7913
Class2	26432	49633	10657
Class3	33428	43340	19188

	Class1	Class2	Class3
Accuracy	60.76	55.44	59.95
Precision	0.27	0.42	0.51
Recall	0.39	0.57	0.20
F-Measure	0.32	0.48	0.29

(b) Analysis

Table 3..51. Histogram feature based classifier: Class1 and Class2 and Class3

Convergence plots for 16 clusters

(a) Convergence plot for Class1 for 16 clusters.

(b) Convergence plot for Class2 for 16 clusters.

(c) Convergence plot for Class3 for 16 clusters.

Figure 3..19. Histogram feature based classifier for 16 clusters.

Accuracy=59.90%

	Class1	Class 2
Class1	21091	34273
Class2	22702	64020

 Class1
 Class2

 Precision
 0.48
 0.65

 Recall
 0.38
 0.74

 F-Measure
 0.43
 0.69

(a) Confusion Matrix

(b) Analysis

Table 3..52. Histogram feature based classifier: Class1 and Class2

Accuracy=63.35%

	Class1	Class 3
Class1	18	55346
Class3	112	95844

	Class1	Class3
Precision	0.14	0.63
Recall	0.00	1.00
F-Measure	0.00	0.78

(a) Confusion Matrix

(b) Analysis

Table 3..53. Histogram feature based classifier: Class1 and Class3

Accuracy = 57.71%

	Class2	Class 3
Class2	60945	25777
Class3	51478	44478

	Class2	Class3
Precision	0.54	0.63
Recall	0.70	0.46
F-Measure	0.61	0.54

(a) Confusion Matrix

(b) Analysis

Table 3..54. Histogram feature based classifier: Class2 and Class3

	Class1	Class2	Class 3
Class1	15257	19323	20784
Class2	15779	42255	28688
Class3	22477	33631	39848

	Class1	Class2	Class3
Accuracy	67.08	59.07	55.65
Precision	0.29	0.44	0.45
Recall	0.28	0.49	0.42
F-Measure	0.28	0.46	0.43

(b) Analysis

Table 3..55. Histogram feature based classifier: Class1 and Class2 and Class3

3.2 Classifier 2: BoVW feature vector based

Convergence plots for 1 cluster

(a) Convergence plot for Class1 for 1 cluster.

(b) Convergence plot for Class2 for 1 cluster.

(c) Convergence plot for Class3 for 1 cluster.

Figure 3..20. BoVW feature based classifier for 1 cluster.

Accuracy=52%

	Class1	Class 2
Class1	35	15
Class2	33	17

 Class1
 Class2

 Precision
 0.51
 0.53

 Recall
 0.7
 0.34

 F-Measure
 0.59
 0.41

(a) Confusion Matrix

(b) Analysis

Table 3..56. BoVW feature based classifier: Class1 and Class2

Accuracy=48%

	Class1	Class 3
Class1	20	30
Class3	22	28

	Class1	Class3
Precision	0.48	0.48
Recall	0.4	0.56
F-Measure	0.43	0.52

(a) Confusion Matrix

(b) Analysis

Table 3..57. BoVW feature based classifier: Class1 and Class3

Accuracy=49%

	Class2	Class 3
Class2	24	26
Class3	25	25

	Class2	Class3
Precision	0.49	0.49
Recall	0.48	0.5
F-Measure	0.48	0.50

(a) Confusion Matrix

(b) Analysis

Table 3..58. BoVW feature based classifier: Class2 and Class3

	Class1	Class2	Class 3
Class1	18	8	24
Class2	19	7	24
Class3	21	6	23

	Class1	Class2	Class3
Accuracy	52	62	50
Precision	0.31	0.33	0.33
Recall	0.36	0.14	0.46
F-Measure	0.33	0.20	0.38

(b) Analysis

Table 3..59. BoVW feature based classifier: Class1 and Class2 and Class3

Convergence plots for 2 clusters

(a) Convergence plot for Class1 for 2 clusters.

(b) Convergence plot for Class2 for 2 clusters.

(c) Convergence plot for Class3 for 2 clusters.

Figure 3..21. BoVW feature based classifier for 2 clusters.

Accuracy=52%

	Class1	Class 2
Class1	40	10
Class2	38	12

 Class1
 Class2

 Precision
 0.51
 0.55

 Recall
 0.8
 0.24

 F-Measure
 0.63
 0.33

(a) Confusion Matrix

(b) Analysis

Table 3..60. BoVW feature based classifier: Class1 and Class2

Accuracy=52%

	Class1	Class 3
Class1	45	5
Class3	43	7

	Class1	Class3
Precision	0.51	0.58
Recall	0.9	0.14
F-Measure	0.65	0.23

(a) Confusion Matrix

(b) Analysis

Table 3..61. BoVW feature based classifier: Class1 and Class3

${\bf Accuracy}{=}52\%$

	Class2	Class 3
Class2	43	7
Class3	41	9

	Class2	Class3
Precision	0.51	0.56
Recall	0.86	0.18
F-Measure	0.64	0.27

(a) Confusion Matrix

(b) Analysis

Table 3..62. BoVW feature based classifier: Class2 and Class3

	Class1	Class2	Class 3
Class1	38	8	4
Class2	36	12	2
Class3	41	5	4

	Class1	Class2	Class3
Accuracy	40.67	66	65.33
Precision	0.33	0.48	0.4
Recall	0.76	0.24	0.08
F-Measure	0.46	0.32	0.13

(b) Analysis

Table 3..63. BoVW feature based classifier: Class1 and Class2 and Class3

Convergence plots for 4 clusters

(a) Convergence plot for Class1 for 4 clusters.

(b) Convergence plot for Class2 for 4 clusters.

(c) Convergence plot for Class 3 for 4 clusters.

Figure 3..22. BoVW feature based classifier for 4 clusters.

Accuracy=49%

	Class1	Class 2
Class1	41	9
Class2	42	8

 Class1
 Class2

 Precision
 0.49
 0.47

 Recall
 0.82
 0.16

 F-Measure
 0.62
 0.24

(a) Confusion Matrix

(b) Analysis

Table 3..64. BoVW feature based classifier: Class1 and Class2

Accuracy=45%

	Class1	Class 3
Class1	33	17
Class3	38	12

 Class1
 Class3

 Precision
 0.46
 0.41

 Recall
 0.66
 0.24

 F-Measure
 0.55
 0.30

(a) Confusion Matrix

(b) Analysis

Table 3..65. BoVW feature based classifier: Class1 and Class3

Accuracy=52%

	Class2	Class 3
Class2	38	12
Class3	36	14

	Class2	Class3
Precision	0.52	0.54
Recall	0.76	0.37
F-Measure	0.61	0.37

(a) Confusion Matrix

(b) Analysis

Table 3..66. BoVW feature based classifier: Class2 and Class3

	Class1	Class2	Class 3
Class1	27	6	17
Class2	36	8	6
Class3	37	2	11

	Class1	Class2	Class3
Accuracy	36	66.67	58.67
Precision	0.27	0.5	0.32
Recall	0.54	0.16	0.22
F-Measure	0.36	0.24	0.26

(b) Analysis

Table 3..67. BoVW feature based classifier: Class1 and Class2 and Class3

Convergence plots for 8 clusters

(a) Convergence plot for Class1 for 8 clusters.

(b) Convergence plot for Class2 for 8 clusters.

(c) Convergence plot for Class3 for 8 clusters.

Figure 3..23. BoVW feature based classifier for 8 clusters.

Accuracy=59%

	Class1	Class 2
Class1	44	6
Class2	35	15

 Class1
 Class2

 Precision
 0.56
 0.72

 Recall
 0.88
 0.3

 F-Measure
 0.68
 0.42

(a) Confusion Matrix

(b) Analysis

Table 3..68. BoVW feature based classifier: Class1 and Class2

Accuracy=53%

	Class1	Class 3
Class1	49	1
Class3	46	4

	Class1	Class3
Precision	0.52	0.8
Recall	0.98	0.08
F-Measure	0.68	0.15

(a) Confusion Matrix

(b) Analysis

Table 3..69. BoVW feature based classifier: Class1 and Class3

Accuracy=54%

	Class2	Class 3
Class2	46	4
Class3	42	8

	Class2	Class3
Precision	0.52	0.67
Recall	0.92	0.16
F-Measure	0.67	0.26

(a) Confusion Matrix

(b) Analysis

Table 3..70. BoVW feature based classifier: Class2 and Class3

	Class1	Class2	Class 3
Class1	35	10	5
Class2	32	14	4
Class3	36	6	8

	Class1	Class2	Class3
Accuracy	44.67	65.33	66
Precision	0.34	0.47	0.47
Recall	0.7	0.28	0.16
F-Measure	0.46	0.35	0.23

(b) Analysis

Table 3..71. BoVW feature based classifier: Class1 and Class2 and Class3

Convergence plots for 16 clusters

(a) Convergence plot for Class1 for 16 clusters.

(b) Convergence plot for Class2 for 16 clusters.

(c) Convergence plot for Class3 for 16 clusters.

Figure 3..24. BoVW feature based classifier for 16 clusters.

Accuracy=50%

	Class1	Class 2
Class1	50	0
Class2	50	0

 Class1
 Class2

 Precision
 0.5
 0.5

 Recall
 1.00
 0.00

 F-Measure
 0.67
 0.00

(a) Confusion Matrix

(b) Analysis

Table 3..72. BoVW feature based classifier: Class1 and Class2

Accuracy=50%

	Class1	Class 3
Class1	50	0
Class3	50	0

 Class1
 Class3

 Precision
 0.5
 0.5

 Recall
 1.00
 0.00

 F-Measure
 0.67
 0.00

(a) Confusion Matrix

(b) Analysis

Table 3..73. BoVW feature based classifier: Class1 and Class3

Accuracy = 50%

	Class2	Class 3
Class2	50	0
Class3	50	0

	Class2	Class3
Precision	0.5	0.5
Recall	1.00	0.00
F-Measure	0.67	0.00

(a) Confusion Matrix

(b) Analysis

Table 3..74. BoVW feature based classifier: Class2 and Class3

	Class1	Class2	Class 3
Class1	50	0	0
Class2	47	1	2
Class3	46	1	3

	Class1	Class2	Class3
Accuracy	38	66.67	67.33
Precision	0.35	0.5	0.6
Recall	1.00	0.02	0.06
F-Measure	0.52	0.04	0.11

(b) Analysis

Table 3..75. BoVW feature based classifier: Class1 and Class2 and Class3

4 Data Set 4: Cell Data Segmentation

4.1 Segmentation 1 : K-means based segmentation

Images formed by K-means clustering with normalized features

Figure 3..25. Segmentation using K-means clustering

Images formed by K-means clustering without normalization

Figure 3..26. Segmentation using K-means clustering without normalization.

4.2 Segmentation 2 : GMM based segmentation

Images formed by GMM with normalized features

Figure 3..27. Segmentation using GMM with normalized features

Images formed by GMM without normalization

Figure 3..28. Segmentation using GMM without normalization

4. Observations and Inferences

- 1. As the Number of cluster increases the accuracy of Bayes Classifier using GMM also increases.
- 2. Number of Iterations for Convergence increases with the increase in number of Clusters.
- 3. A contour plot is a graphical technique for representing a 3-dimensional surface by plotting constant z slices, called contours, on a 2-dimensional format. The three dimesional surface formed in our case is gaussian surface, so the 2d format of this surface will either be circle or ellipse depending on the covariance matrix. Since the convariance matrix is not diagonal, so the 2d shapes formed are ellipses with there centres at the peak of different gaussians. For each cluster, a seperate gaussian is formed and therefore a seperate group of concentric ellipses will be formed for each cluster. The orientation of the ellipse will be determined by the covariance matrix and the spread of the data. The major axis of the ellipse also tell us about the direction in which the variance will be more.
- 4. The reason behind the low accuracy in Histogram representation is as follows
 - 1.) We assumed the covariance matrix as diagonal (to counter the overflow error). Also, while doing the iterations, if our determinant was coming out to as zero, we used to tweak the covariance matrix a bit in order to make it non zero. Due to this, the originality of the distributions was lost to a certain extent which gave rise to misclassification.
 - 2.) The data distribution was assumed to be coming from two normal distributions (as a mixture of them). This might not be the case. So this may also adds to error generation.
- 5. In case of BoVW representation the classification accuracy is low. This is because many approximation techniques were used to counter the overflow error and the division by zero error. We considered the covariance matrix as diagonal instead of full covariance matrix. Moreover, the no of training examples were quite few and thus GMM wasn't able to estimate the parameters efficiently.
- 6. We have normalized the features and tried to cluster the data as we are getting boundaries as one cluster because very high variance at boundaries which is very different from the other data points. We have observed that K-means clustering with normalized features is giving better results than original one where as in GMM the original one is giving better results than that of with normalized features.

5. Conclusions

- 1. We came to know that K-Means is really a computationally expensive algorithm because it took nearly 40 minutes for the computation of 300000x32 sized array to get clustered.
- 2. As the variance is considered as one of the feature, the model is considering the boundary as one cluster as it has high variance features which is very different from the other points such as in cytoplasm and nucleus which have very low variance because of which they might be considered as same cluster.
- 3. We came to know that GMM with using K-Means provides the better segmentation results because of the factor of the responsibility term.