

WORK2VEC

JuHyeong Kim

WORD2VEC

• The basic idea is that either a word is used to predict the context of it or the other way around-to use the context to predict a current word.

WORD2VEC

- Input : word (ONE-HOT Vector)
- output : word (Distributed Representation)
- window size : 2
- Hidden layer : 1
- loss function : cross-entropy

ONE-HOT VECTOR

- A one hot encoding is a representation of categorical variables as binary vectors.
- Each integer value is represented as a binary vector that is all zero values except the index of the integer, which is marked with a 1.

DISTRIBUTED REPRESENTATION

- as humans speaking some language, we know that words are these rich entities with many layers of connotation and meaning.
- Let's hand-craft some semantic features for these 5 words.
- Specifically, let's represent each word as having some sort of value between 0 and 1 for four semantic qualities, "animal", "fluffiness", "dangerous", and "spooky":

	anim	al Ruffir	less dands	arous spooks
aardvark	0.97	0.03	0.15	0.04
black	0.07	0.01	0.20	0.95
cat	0.98	0.98	0.45	0.35
duvet	0.01	0.84	0.12	0.02
zombie	0.74	0.05	0.98	0.93

DOINTE (DIO COTTIPULITE CE IVIACITITE LEATITITE LAU)

WORD2VEC

Word2Vec has two methods: Continuous Bag of Words (CBOW) and Skip-Gram.

window size : 2

The fat cat sat on the mat

중심 단어	주변 단어
[1, 0, 0, 0, 0, 0, 0]	[0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0]	[1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]
[0, 0, 1, 0, 0, 0, 0]	[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0, 0]
[0, 0, 0, 1, 0, 0, 0]	[0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0]
[0, 0, 0, 0, 1, 0, 0]	[0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1]
[0, 0, 0, 0, 0, 1, 0]	[0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1]
[0, 0, 0, 0, 0, 0, 1]	[0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0]

The value of M is set **arbitrarily.**

Softmax

- Probability values of all classes are obtained by normalizing the results of multiple operations
- Convert the input to a value between 0 and 1
- Make the total for the converted result equal to 1

$$\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$

- Weight learning
 - Learning by minimizing loss function using Backpropagation
- cross entropy

$$H(\hat{y}, y) = -\sum_{j=1}^{|V|} y_j \log(\hat{y}_j)$$

$$H(\hat{y}, y) = -\log(0.7)$$

BIO COMPUTING & MACHINE LEARNING LAB (BCML)

- Backpropagation
 - Update the weight value using the loss function.

SKIP-GRAM

Skip-gram predicts surrounding words from the central word.

REFERENCE

- https://wikidocs.net/22660
- http://www.claudiobellei.com/2018/01/06/backprop-word2vec/
- https://operatingsystems.tistory.com/entry/Data-Mining-Word2vec-CBOW
- https://ronxin.github.io/wevi/