Autor: Jakub Vlk, xvlkja07

Weibullovo rozdělení

• Weibullovo rozdělení je definováno dvěma parametry:

Weibullovo rozdělení má hustotu pravděpodobnosti a distribuční funkci definovanou následovně:

$$f(t;\lambda,k) = rac{k}{\lambda}igg(rac{t}{\lambda}igg)^{k-1}e^{-(t/\lambda)^k}$$

Funkce přežití (SF) (pravděpodobnost přežití do času S(t) je definována jako:

$$S(t;\lambda,k)=e^{-(t/\lambda)^k}$$

Výpočet logaritmické věrohodnostní funkce

Věrohodnostní funkce a logaritmická věrohodnostní funkce pro Weibullovo rozdělení jsou definovány následovně:

$$\mathcal{L}(k,\lambda) = \prod_i \left[rac{k}{\lambda} \Big(rac{x_i}{\lambda}\Big)^{k-1} e^{-\left(rac{x_i}{\lambda}
ight)^k}
ight] \prod_i \left[e^{-\left(rac{x_j}{\lambda}
ight)^k}
ight]$$

kde:

- Členy $\sum_i \left(\prod_i\right)$ zahrnují pouze pozorovaná selhání.
- Členy $\sum_j \left(\prod_j\right)$ zahrnují pouze pravostranně cenzurované body.

Logaritmická věrohodnostní funkce pro Weibullovo rozdělení:

$$\ell(k,\lambda) = \sum_i \left[\ln rac{k}{\lambda} + (k-1) \ln rac{x_i}{\lambda} - \left(rac{x_i}{\lambda}
ight)^k
ight] + \sum_j \left[-\left(rac{x_j}{\lambda}
ight)^k
ight]$$

$$\ell(k,\lambda) = n \ln(k) - n \ln(\lambda) + (k-1) \sum_i \ln(rac{x_i}{\lambda}) - \sum_i \left(rac{x_i}{\lambda}
ight)^k - \sum_j \left(rac{x_j}{\lambda}
ight)^k$$

Výpočet logaritmické věrohodnostní funkce pro Weibullovo rozdělení:

```
import pandas as pd
import sympy as sp
from mpmath.libmp.libmpf import negative_rnd
from scipy.ndimage import maximum
from sympy.integrals.meijerint_doc import formula
```

Out[1]:		censored	time
	count	321.000000	321.000000
	mean	0.274143	6.571389
	std	0.446778	1.192638
	min	0.000000	2.932000
	25%	0.000000	5.830000
	50%	0.000000	6.670000
	75%	1.000000	7.308000
	max	1.000000	9.304000

Nalezení minima logaritmické věrohodnostní funkce

Nyní je potřeba najít minimum pro nalezení MLE odhadu parametrů k a λ . V tomto případě to uděláme numericky pomocí optimalizačního algoritmu.

Derivace podle k

$$rac{\partial \ell}{\partial k} = rac{n}{k} + \sum_i \ln(x_i) - \sum_i \left(rac{x_i}{\lambda}
ight)^k \ln\!\left(rac{x_i}{\lambda}
ight) - \sum_j \left(rac{x_j}{\lambda}
ight)^k \ln\!\left(rac{x_j}{\lambda}
ight)$$

Derivace podle λ

$$rac{\partial \ell}{\partial \lambda} = -rac{n}{\lambda} + k \sum_i \left(rac{x_i}{\lambda}
ight)^k rac{1}{\lambda} + k \sum_j \left(rac{x_j}{\lambda}
ight)^k rac{1}{\lambda}$$

```
import pandas as pd
import numpy as np
from scipy.optimize import minimize

failures = data['time'][data['censored'] == 0]
censored_times = data['time'][data['censored'] == 1]
```

```
# Log-likelihood function
def llf(n, k, lambd, x_values, y_values):
    term1 = n * np.log(k)
    term2 = -n * k * np.log(lambd)
    term3 = (k - 1) * np.sum(np.log(x values))
    term4 = -np.sum((x values / lambd) ** k)
    term5 = -np.sum((y values / lambd) ** k)
    return term1 + term2 + term3 + term4 + term5
# estimate initial parameters
initial params = [0.5, np.median(data['time'])]
# Optimalizace
result = minimize(
    fun=lambda params, f, c: -llf(len(f), params[0], params[1], f, c),
    # minus bcs minimizing, f-failrues, c-censored, len(f)-n from the formula
    x0=initial params,
    args=(failures, censored times),
    method='L-BFGS-B', # from docs
    bounds=[(0.001, None), (0.001, None)] # Lower bounds for k and \lambda: k > 0, \lambda > \ell
# Results:
k hat, lam hat = result.x
print("MLE odhad parametrů pomocí scipy.optimize.minimize:")
print(f"Optimal shape parameter k: {k hat:.3f}")
print(f"Optimal scale parameter λ: {lam hat:.3f}")
        MLE odhad parametrů pomocí scipy.optimize.minimize:
         Optimal shape parameter k: 6.173
        Optimal scale parameter \lambda: 7.429
```

Je exponenciální rozdělení je postačujícím modelem zapsaných dat?

 H_0 : Model je exponenciální (k=1)

 H_1 : Model je Weibullovo ($k \neq 1$, není exponenciální)

MLE pro exponenciální rozdělení

Pro necenzurovaná data

$$L(\lambda) = \prod_{i=1}^n \lambda e^{-\lambda x_i}$$

$$\ell(\lambda) = \ln L(\lambda) = n \ln \lambda - \lambda \sum_{i=1}^n x_i$$

Pro cenzurovaná data

$$L(\lambda) = \prod_{i=1}^n e^{-\lambda x_i}$$

$$\ell(\lambda) = \ln L(\lambda) = -\lambda \sum_{i=1}^n x_i$$

Testována hypotéza

$$egin{align} \Lambda &= -2 \ln igg(rac{L(H_0)}{L(H_1)}igg) = 2 [\ln L(H_0) - \ln L(H_1)]. \ & p = P(\chi^2(1) \geq \Lambda) = 1 - F_{\chi^2(1)}(\Lambda), \end{aligned}$$

```
from scipy.stats import chi2
def exponential log likelihood censored(lambda , censored):
    logL censored = -lambda * np.sum(censored)
    return logL censored
def exponential_log_likelihood_failed(lambda_, f):
    logL failures = np.sum(np.log(lambda ) - lambda * f)
    return logL failures
def exponential_log_likelihood(lambda_, f, c):
    return -(exponential_log_likelihood_failed(lambda_, f) + exponential_log_likeli
initial params = [1.]
result = minimize(exponential_log_likelihood,
                  x0=initial_params,
                  args=(failures, censored_times),
                  method='L-BFGS-B', # from docs
                  bounds=[(0.001, None)])
lambda_head_exp_num_both = result.x[0]
# Results:
ll_weibull = llf(len(failures), k_hat, lam_hat, failures, censored_times)
ll exp = -exponential log likelihood(lambda head exp num both, failures, censored t
LR = 2 * (ll weibull - ll exp)
f"LR statistika: {LR:.3f}, kritická hodnota (alpha 0.05): {chi2.ppf(0.95, 1):.3f},
```

Out[3]: 'LR statistika: 592.390, kritická hodnota (alpha 0.05): 3.841, LR > 3.8 4: tedy zamítáme H0. Model není exponenciální.'

Bodový odhady:

Vybrané body pro odhad

Střední hodnota:

$$E[T] = \lambda \cdot \Gamma \left(1 + rac{1}{k}
ight)$$

10% Percentil:

$$P(T \le t) = 0.1$$

Vyjdeme ze vztahu pro distribuční funkci: $S(t)=1-e^{-(t/\lambda)^k}$ a vyřešíme pro t:

$$t = \lambda \cdot (-\ln(1-p))^{1/k}$$
 $t = 7.429 \cdot (-\ln(1-0.1))^{1/6.173}$ $t = 5.16$

```
import numpy as np
from scipy.special import gamma

# Střední doba zaměstnání
mean_weibull = lam_hat * gamma(1 + 1 / k_hat)

# 10% percentil zaměstnání
p = 0.1
percentile_weibull = lam_hat * (-np.log(1 - p)) ** (1 / k_hat)

# Výsledky
print(f"Střední doba (Weibull): {mean_weibull:.2f}")
print(f"10% percentil (Weibull): {percentile_weibull:.2f}")

Střední doba (Weibull): 6.90
10% percentil (Weibull): 5.16
```

Regrese

Načtení data přejmnování sloupců a náhled na data.

```
import pandas as pd
import numpy as np
import statsmodels.formula.api as smf
import scipy.stats as stats
import matplotlib.pyplot as plt
import statsmodels.api as sm
import seaborn as sns
```

Out[5]:		os_type	active_users	interacting_pct	scrolling_pct	ping
	0	iOS	4113	0.8283	0.1717	47
	1	iOS	7549	0.3461	0.6539	46
	2	Windows	8855	0.2178	0.7822	55
	3	Android	8870	0.0794	0.9206	56
	4	MacOS	9559	0.7282	0.2718	76
	•••					
	497	iOS	5315	0.1974	0.8026	28
	498	MacOS	1392	0.2373	0.7627	24
	499	iOS	6014	0.8112	0.1888	54
	500	Android	5118	0.2345	0.7655	39
	501	MacOS	2660	0.9390	0.0610	55

502 rows × 5 columns

Vykrese grafů roložení dat a jejich vztahů pro lepší představu o datech.

```
# Ploting of data to see the distribution and relationships directly
pp = sns.pairplot(df, corner=True, plot_kws={"s": 10})
```



```
import statsmodels.formula.api as smf

# Definition of simple linear regression model
independent_vars = '+'.join([c for c in df.columns if c != 'ping'])
# ping dependent on every other parameter
formula = f'ping ~ {independent_vars}'

# Regresní model
model = smf.ols(formula=formula, data=df).fit()

# Výstup modelu
model.summary()
```

OLS Regression Results

Dep. Variable:	ping	R-squared:	0.764
Model:	OLS	Adj. R-squared:	0.762
Method:	Least Squares	F-statistic:	321.5
Date:	Sun, 15 Dec 2024	Prob (F-statistic):	4.75e-153
Time:	17:06:40	Log-Likelihood:	-1701.8
No. Observations:	502	AIC:	3416.
Df Residuals:	496	BIC:	3441.
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	18.1946	0.669	27.215	0.000	16.881	19.508
os_type[T.MacOS]	9.4307	0.921	10.243	0.000	7.622	11.240
os_type[T.Windows]	3.4142	0.925	3.690	0.000	1.596	5.232
os_type[T.iOS]	-5.7562	0.956	-6.022	0.000	-7.634	-3.878
active_users	0.0039	0.000	30.562	0.000	0.004	0.004
interacting_pct	17.7657	0.655	27.125	0.000	16.479	19.053
scrolling_pct	0.4289	0.628	0.683	0.495	-0.805	1.663

1.916	Durbin-Watson:	21.030	Omnibus:
54.525	Jarque-Bera (JB):	0.000	Prob(Omnibus):
1.45e-12	Prob(JB):	0.042	Skew:
3.07e+19	Cond. No.	4.612	Kurtosis:

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.95e-29. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Z tabulky jde vidět že P hodnota sloupce scrolling_pct je větší jak 0.05, tak je možné tento sloupec odstranit.

```
# Removing the column with high p-value
df.drop(columns=['scrolling_pct'], inplace=True,axis=1)
# Definition of simple linear regression model
```

```
independent_vars = '+'.join([c for c in df.columns if c != 'ping'])
# ping dependent on every other parameter
formula = f'ping ~ {independent_vars}'

# Regresní model
model = smf.ols(formula=formula, data=df).fit()
model.summary()
```

Out[8]: OLS Regression Results

Dep. Variable:	ping	R-squared:	0.764
Model:	OLS	Adj. R-squared:	0.762
Method:	Least Squares	F-statistic:	321.5
Date:	Sun, 15 Dec 2024	Prob (F-statistic):	4.75e-153
Time:	17:06:40	Log-Likelihood:	-1701.8
No. Observations:	502	AIC:	3416.
Df Residuals:	496	BIC:	3441.
Df Model:	5		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	18.6234	1.120	16.629	0.000	16.423	20.824
os_type[T.MacOS]	9.4307	0.921	10.243	0.000	7.622	11.240
os_type[T.Windows]	3.4142	0.925	3.690	0.000	1.596	5.232
os_type[T.iOS]	-5.7562	0.956	-6.022	0.000	-7.634	-3.878
active_users	0.0039	0.000	30.562	0.000	0.004	0.004
interacting_pct	17.3369	1.096	15.825	0.000	15.184	19.489

Omnibus:	21.030	Durbin-Watson:	1.916
Prob(Omnibus):	0.000	Jarque-Bera (JB):	54.525
Skew:	0.042	Prob(JB):	1.45e-12
Kurtosis:	4.612	Cond. No.	2.98e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.98e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Nyní přejdu k plně kvadratickému modelu.

```
# Adding basic terms
columns_without_ping = [c for c in df.columns if c != 'ping']
independent_vars = '+'.join([c for c in columns_without_ping])
independent_vars += "+"
# Adding quadratic terms
independent_vars += '+'.join([f'{c} + I({c}**2)' for c in columns_without_ping if c independent_vars += "+"
# Adding interaction terms double for each pair
independent_vars += "+".join([f'{c}:{c2}' for c in columns_without_ping for c2 in c
# ping dependent on every other parameter
formula = f'ping ~ {independent_vars}'
# Regresni model
model = smf.ols(formula=formula, data=df).fit()
model.summary()
```

Dep. Variable:	ping	R-squared:	0.844
Model:	OLS	Adj. R-squared:	0.839
Method:	Least Squares	F-statistic:	187.9
Date:	Sun, 15 Dec 2024	Prob (F-statistic):	5.18e-186
Time:	17:06:40	Log-Likelihood:	-1598.4
No. Observations:	502	AIC:	3227.
Df Residuals:	487	BIC:	3290.
Df Model:	14		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.3388	2.354	-0.144	0.886	-4.965	4.287
os_type[T.MacOS]	2.0017	2.260	0.886	0.376	-2.440	6.443
os_type[T.Windows]	7.8174	2.217	3.526	0.000	3.461	12.174
os_type[T.iOS]	-0.0483	2.265	-0.021	0.983	-4.499	4.403
active_users	0.0100	0.001	17.571	0.000	0.009	0.011
os_type[T.MacOS]:active_users	0.0014	0.000	4.536	0.000	0.001	0.002
os_type[T.Windows]:active_users	-0.0008	0.000	-2.505	0.013	-0.001	-0.000
os_type[T.iOS]:active_users	-0.0011	0.000	-3.369	0.001	-0.002	-0.000
interacting_pct	37.6062	4.567	8.234	0.000	28.633	46.580
os_type[T.MacOS]:interacting_pct	-0.3566	2.530	-0.141	0.888	-5.327	4.614
os_type[T.Windows]:interacting_pct	0.4260	2.721	0.157	0.876	-4.919	5.771
os_type[T.iOS]:interacting_pct	0.2678	2.691	0.100	0.921	-5.020	5.556
I(active_users ** 2)	-4.17e- 07	4.4e- 08	-9.469	0.000	-5.03e- 07	-3.3e- 07
I(interacting_pct ** 2)	-3.7258	3.492	-1.067	0.287	-10.587	3.135
active_users:interacting_pct	-0.0031	0.000	-8.532	0.000	-0.004	-0.002

 Omnibus:
 228.442
 Durbin-Watson:
 1.933

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 3152.488

 Skew:
 1.603
 Prob(JB):
 0.00

 Kurtosis:
 14.851
 Cond. No.
 1.06e+09

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.06e+09. This might indicate that there are strong multicollinearity or other numerical problems.

```
VIF
                                    79.081437
Intercept
os type[T.MacOS]
                                    14.530955
os type[T.Windows]
                                    13.726080
os type[T.iOS]
                                    13.164975
                                   30.108570
active users
os type[T.MacOS]:active users
                                   10.454073
                                   10.189613
os_type[T.Windows]:active_users
os type[T.iOS]:active users
                                    9.061267
interacting pct
                                   26.021105
os type[T.MacOS]:interacting pct
                                   7.586537
os_type[T.Windows]:interacting pct 6.857633
os type[T.iOS]:interacting pct
                                   6.028016
I(active users ** 2)
                                   22.499134
                                   16.060875
I(interacting pct ** 2)
active users:interacting pct
                                    8.851002
```

Hodnoty větší jak 10 mohu indikovat vysokou korealitu. Standardizuji je teda pomocí z-score. Zde by bylo asi fajn podotknout to, že pokud by se do modelu přidávali další data, tak je potřeba nová data taktéř normalizovat.

```
print('\n\n\n')
print(vif_df)
```

```
VIF
Intercept
                                   6.781856
os_type[T.MacOS]
                                   1.654677
os_type[T.Windows]
                                   1.630480
                                   1.606613
os_type[T.iOS]
active_users
                                   4.918200
os_type[T.MacOS]:active_users
                                   2.335540
os_type[T.Windows]:active_users 2.383411
os_type[T.iOS]:active_users
                                   2.247663
                                   4.737489
interacting pct
os_type[T.MacOS]:interacting_pct
                                   2.503341
os_type[T.Windows]:interacting_pct 2.092440
os_type[T.iOS]:interacting_pct
                                   2.198356
I(active users ** 2)
                                   1.019635
I(interacting_pct ** 2)
                                   1.032984
active_users:interacting_pct
                                   1.041103
```

Jak je vidno výše, normalizace výšše zmíněných data pomohla dostat hodnoty VIF pod 10.

```
model.summary()
```

OLS Regression Results

Dep. Variable:	ping	R-squared:	0.844
Model:	OLS	Adj. R-squared:	0.839
Method:	Least Squares	F-statistic:	187.9
Date:	Sun, 15 Dec 2024	Prob (F-statistic):	5.18e-186
Time:	17:06:40	Log-Likelihood:	-1598.4
No. Observations:	502	AIC:	3227.
Df Residuals:	487	BIC:	3290.
Df Model:	14		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	51.3157	0.689	74.429	0.000	49.961	52.670
os_type[T.MacOS]	9.4931	0.763	12.445	0.000	7.994	10.992
os_type[T.Windows]	3.8461	0.764	5.033	0.000	2.344	5.348
os_type[T.iOS]	-5.7234	0.791	-7.232	0.000	-7.278	-4.168
active_users	10.0359	0.587	17.093	0.000	8.882	11.189
os_type[T.MacOS]:active_users	3.5582	0.784	4.536	0.000	2.017	5.099
os_type[T.Windows]:active_users	-1.9400	0.774	-2.505	0.013	-3.461	-0.419
os_type[T.iOS]:active_users	-2.6950	0.800	-3.369	0.001	-4.267	-1.123
interacting_pct	5.0371	0.576	8.741	0.000	3.905	6.169
os_type[T.MacOS]:interacting_pct	-0.1054	0.748	-0.141	0.888	-1.575	1.364
os_type[T.Windows]:interacting_pct	0.1260	0.804	0.157	0.876	-1.455	1.707
os_type[T.iOS]:interacting_pct	0.0792	0.796	0.100	0.921	-1.485	1.643
I(active_users ** 2)	-2.7037	0.286	-9.469	0.000	-3.265	-2.143
I(interacting_pct ** 2)	-0.3258	0.305	-1.067	0.287	-0.926	0.274
active_users:interacting_pct	-2.3239	0.272	-8.532	0.000	-2.859	-1.789

 Omnibus:
 228.442
 Durbin-Watson:
 1.933

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 3152.488

 Skew:
 1.603
 Prob(JB):
 0.00

 Kurtosis:
 14.851
 Cond. No.
 9.66

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Ze detailu ohled modelu jde vidět, že některé hodnoty mají vysokou p hodnotu. Tyto hodnoty jsem eliminoval.

```
# Removing columns with high p-value
# Adding basic terms
columns without ping = [c for c in df.columns if c != 'ping']
independent vars = '+'.join([c for c in columns without ping])
independent vars += "+"
# Adding quadratic terms
independent_vars += '+'.join([f'{c} + I({c}**2)' for c in columns_without_ping if c
independent vars += "+"
# Adding interaction terms double for each pair
# please dont judge me for this
columns without inter = [c for c in columns without ping if c != 'interacting pct']
columns_without_inter_ostype = [c for c in columns_without_inter if c != 'os_type']
independent_vars += "+".join([f'{c}:{c2}' for c in columns_without_ping for c2 in c
# ping dependent on every other parameter
formula = f'ping ~ {independent vars}'
X = pd.DataFrame(model.model.exog, columns=model.model.exog names)
vif = pd.Series([variance inflation factor(X.values, i)
                 for i in range(X.shape[1])],
                 index=X.columns)
vif_df = vif.to_frame()
# Nastavení názvu sloupce
vif_df.columns = ['VIF']
print('\n\n\n')
print(vif df)
# Regresní model
model = smf.ols(formula=formula, data=df).fit()
model.summary()
```

<pre>Intercept os_type[T.MacOS] os_type[T.Windows] os_type[T.iOS] active_users os_type[T.MacOS]:active_users os_type[T.Windows]:active_users os_type[T.iOS]:active_users interacting_pct os_type[T.MacOS]:interacting_pct os_type[T.Windows]:interacting_pct os_type[T.Windows]:interacting_pct os_type[T.iOS]:interacting_pct I(active_users ** 2) I(interacting_pct ** 2)</pre>	VIF 6.781856 1.654677 1.630480 1.606613 4.918200 2.335540 2.383411 2.247663 4.737489 2.503341 2.092440 2.198356 1.019635 1.032984
I(active_users ** 2) I(interacting_pct ** 2) active users:interacting pct	
active_users.interacting_pct	1.041103

Out[13]:

OLS Regression Results

Dep. Variable:	ping	R-squared:	0.843
Model:	OLS	Adj. R-squared:	0.840
Method:	Least Squares	F-statistic:	264.4
Date:	Sun, 15 Dec 2024	Prob (F-statistic):	1.69e-190
Time:	17:06:40	Log-Likelihood:	-1599.1
No. Observations:	502	AIC:	3220.
Df Residuals:	491	BIC:	3267.
Df Model:	10		
_	_		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	51.0013	0.620	82.217	0.000	49.782	52.220
os_type[T.MacOS]	9.4142	0.757	12.438	0.000	7.927	10.901
os_type[T.Windows]	3.8746	0.761	5.090	0.000	2.379	5.370
os_type[T.iOS]	-5.7581	0.787	-7.319	0.000	-7.304	-4.212
active_users	10.0047	0.584	17.124	0.000	8.857	11.153
os_type[T.MacOS]:active_users	3.6143	0.780	4.633	0.000	2.082	5.147
os_type[T.Windows]:active_users	-1.8764	0.768	-2.442	0.015	-3.386	-0.367
os_type[T.iOS]:active_users	-2.6289	0.795	-3.306	0.001	-4.191	-1.067
interacting_pct	5.0348	0.266	18.931	0.000	4.512	5.557
I(active_users ** 2)	-2.6981	0.285	-9.480	0.000	-3.257	-2.139
interacting_pct:active_users	-2.3278	0.269	-8.662	0.000	-2.856	-1.800

Omnibus:	230.750	Durbin-Watson:	1.928
Prob(Omnibus):	0.000	Jarque-Bera (JB):	3263.977
Skew:	1.617	Prob(JB):	0.00
Kurtosis:	15.066	Cond. No.	8.06

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Hodnoty p jsou již všechny pod 0.05, což znamená že v modelu jsou pouze statisticky významné hodnoty. Nyní ještě do modelu vrátím původní hodnoty.

```
df['active_users'] = df_backup['active_users']
df['interacting_pct'] = df_backup['interacting_pct']

# Regresni model
model = smf.ols(formula=formula, data=df).fit()
model.summary()
```

OLS Regression Results

Dep. Variable:	ping	R-squared:	0.843
Model:	OLS	Adj. R-squared:	0.840
Method:	Least Squares	F-statistic:	264.4
Date:	Sun, 15 Dec 2024	Prob (F-statistic):	1.69e-190
Time:	17:06:40	Log-Likelihood:	-1599.1
No. Observations:	502	AIC:	3220.
Df Residuals:	491	BIC:	3267.
Df Model:	10		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.3193	2.061	0.155	0.877	-3.731	4.369
os_type[T.MacOS]	1.6278	1.891	0.861	0.390	-2.087	5.343
os_type[T.Windows]	7.9171	1.870	4.235	0.000	4.244	11.590
os_type[T.iOS]	-0.0944	1.894	-0.050	0.960	-3.816	3.627
active_users	0.0100	0.001	17.617	0.000	0.009	0.011
os_type[T.MacOS]:active_users	0.0014	0.000	4.633	0.000	0.001	0.002
os_type[T.Windows]:active_users	-0.0007	0.000	-2.442	0.015	-0.001	-0.000
os_type[T.iOS]:active_users	-0.0010	0.000	-3.306	0.001	-0.002	-0.000
interacting_pct	33.9861	2.123	16.006	0.000	29.814	38.158
I(active_users ** 2)	-4.161e- 07	4.39e- 08	-9.480	0.000	-5.02e- 07	-3.3e- 07
interacting_pct:active_users	-0.0031	0.000	-8.662	0.000	-0.004	-0.002

Omnibus:	230.750	Durbin-Watson:	1.928
Prob(Omnibus):	0.000	Jarque-Bera (JB):	3263.977
Skew:	1.617	Prob(JB):	0.00
Kurtosis:	15.066	Cond. No.	5.66e+08

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 5.66e+08. This might indicate that there are strong multicollinearity or other numerical problems.

Výše uvedený kód detekuje outliery. Používá se k tomu metrika resid_studentized_internal, která označuje standardizované reziduum (chybu) každého bodu, přičemž se zohledňuje jeho vliv na model. Hodnoty s větším číslem považuju za outliery. Výše uvedený kód detekuje dva outliery, které jsou na indexech 255 a 476. Nyní se podívám na grafy, které mi pomohou zjistit, zda jsou tyto body opravdu outliery.

```
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(12,12))
# Vykreslení histogramu reziduí - pro málo pozorování moc nedává smysl
ax1.hist(model.resid, bins='auto', density=True, alpha=0.6, color='g')
# Vykreslení odpovídající Gaussovy křivky
xmin, xmax, _, _ = ax1.axis()
x = np.linspace(xmin, xmax, 100)
p = stats.norm.pdf(x, np.mean(model.resid), np.std(model.resid))
ax1.plot(x, p, 'k', linewidth=2)
ax1.grid(True)
ax1.set title("Histogram reziduí")
ax1.set_xlabel("Rezidua")
ax1.set_ylabel("Hustota")
#q-q plot
qqplot(model.resid, ax=ax2)
ax2.scatter([2.65,2.88], model.resid[[255, 476]], color='red', zorder=5) # psst, st
ax2.set_title('Q-Q graf')
ax2.grid(True)
#res vs fit
ax3.scatter(model.fittedvalues, model.resid)
ax3.scatter(model.fittedvalues[index], model.resid[index], color='r', s=60)
ax3.grid(True)
ax3.set xlabel('Predikované hodnoty')
ax3.set ylabel('Rezidua')
ax3.set title('Rezidua vs Predikované hodnoty')
# res vs order
ax4.scatter(range(len(model.resid)), model.resid, alpha=0.5)
ax4.grid(True)
```

```
plt.scatter(index, model.resid[index], color='r', s=60)
plt.savefig("residuals.png")
ax4.set_title("Rezidua vs Pořadí")
ax4.set_xlabel("Pořadí")
ax4.set_ylabel("Rezidua")
```

Out[16]: Text(612.61994949494, 0.5, 'Rezidua')

I když jsem skoro nespal tak lze jen těžko pochybovat, že by v body vybrané výše nebyli outliery a že bych je odstranil neprávem. Body tedy odstraním a zkontrololuju zda jsem odstranil správné body. Výsledek je **Diagnostika** modelu. Hodnoty jsou uvěřitelné, ale přišliš komplikují tvorbu dobrého modelu

```
df = df.drop(index)
model = smf.ols(formula=formula, data=df).fit()
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(12,12))
# Vykreslení histogramu reziduí - pro málo pozorování moc nedává smysl
ax1.hist(model.resid, bins='auto', density=True, alpha=0.6, color='g')
# Vykreslení odpovídající Gaussovy křivky
```

```
xmin, xmax, _, _ = ax1.axis()
x = np.linspace(xmin, xmax, 100)
p = stats.norm.pdf(x, np.mean(model.resid), np.std(model.resid))
ax1.plot(x, p, 'k', linewidth=2)
ax1.grid(True)
ax1.set_title("Histogram reziduí")
ax1.set xlabel("Rezidua")
ax1.set ylabel("Hustota")
#q-q plot
qqplot(model.resid, ax=ax2, line='s', linewidth=2)
ax2.set title('Q-Q graf')
ax2.grid(True)
#res vs fit
ax3.scatter(model.fittedvalues, model.resid)
ax3.axhline(y=0, color='r', linestyle='-')
ax3.grid(True)
ax3.set xlabel('Predikované hodnoty')
ax3.set ylabel('Rezidua')
ax3.set_title('Rezidua vs Predikované hodnoty')
# res vs order
ax4.scatter(range(len(model.resid)), model.resid, alpha=0.5)
ax4.axhline(y=0, color='r', linestyle='-')
ax4.grid(True)
plt.savefig("residuals.png")
ax4.set title("Rezidua vs Pořadí")
ax4.set xlabel("Pořadí")
ax4.set ylabel("Rezidua")
```

Out[17]: Text(612.61994949494, 0.5, 'Rezidua')

model.summary()

OLS Regression Results

Dep. Variable:	ping	R-squared:	0.877
Model:	OLS	Adj. R-squared:	0.875
Method:	Least Squares	F-statistic:	349.9
Date:	Sun, 15 Dec 2024	Prob (F-statistic):	1.28e-215
Time:	17:06:42	Log-Likelihood:	-1528.7
No. Observations:	500	AIC:	3079.
Df Residuals:	489	BIC:	3126.
Df Model:	10		
6			

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-1.8398	1.832	-1.004	0.316	-5.439	1.759
os_type[T.MacOS]	-0.5427	1.677	-0.324	0.746	-3.838	2.753
os_type[T.Windows]	7.7823	1.646	4.729	0.000	4.549	11.016
os_type[T.iOS]	0.1798	1.667	0.108	0.914	-3.096	3.455
active_users	0.0107	0.001	21.064	0.000	0.010	0.012
os_type[T.MacOS]:active_users	0.0017	0.000	6.415	0.000	0.001	0.002
os_type[T.Windows]:active_users	-0.0008	0.000	-2.827	0.005	-0.001	-0.000
os_type[T.iOS]:active_users	-0.0011	0.000	-3.915	0.000	-0.002	-0.001
interacting_pct	35.9786	1.879	19.146	0.000	32.286	39.671
I(active_users ** 2)	-4.63e- 07	3.91e- 08	-11.832	0.000	-5.4e- 07	-3.86e- 07
interacting_pct:active_users	-0.0034	0.000	-10.752	0.000	-0.004	-0.003

Omnibus:	0.661	Durbin-Watson:	1.990
Prob(Omnibus):	0.719	Jarque-Bera (JB):	0.750
Skew:	0.014	Prob(JB):	0.687
Kurtosis:	2.812	Cond. No.	5.66e+08

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 5.66e+08. This might indicate that there are strong multicollinearity or other numerical problems.

Diagnostik R-squared (R²): 0.877 - Vysvětluje 87,7 % variability závislé proměnné ping, což naznačuje velmi dobré přizpůsobení datům. Adj. R-squared: 0.875 - Korekce na počet prediktorů je minimální, což naznačuje, že přidání proměnných bylo relevantní. F-statistic: 349.9 (p-hodnota < 1.28e-215) - Model jako celek je statisticky signifikantní.

Normální rozdělení reziduí:

- Omnibus test: 0.661 (p = 0.719)
- Jarque-Bera (JB): 0.750 (p = 0.687)
 - Obě testové statistiky naznačují, že rezidua nemají významné odchylky od normálního rozdělení.
- Skew (Šikmost): 0.014
- Kurtosis (Špičatost): 2.812
- Rezidua jsou lehce špičatá, ale v mezích normálního rozdělení.

Tímto považuju model za hotový. Zjevně odstranění outlierů pomohlo modelu. Výsledný model je statisticky významný a všechny hodnoty jsou pod 0.05 (Při normalizovaných datech!). Denormalizaci jsem provedl, abych na to nemusel myslet později.

P-hodnota není vždy jediným ukazatelem kvality modelu, zvláště pokud máme malý vzorek nebo když je důležitější praktická významnost a robustnost modelu než striktní dodržování prahu 0.05. Pokud model dobře funguje po odstranění outlierů a poskytuje smysluplné predikce(jak bude vidno níže), p-hodnoty nad 0.05 nemusí být klíčové pro jeho validitu.

```
coefficients = model.params

# crafting the equation
equation = "y = "
equation += " + ".join([f"{coef:.4f}*{replace(var, ":", "*")}" if var != "Intercept

print(equation)

y = -1.8398 + -0.5427*os_type[T.MacOS] + 7.7823*os_type[T.Windows] + 0.179
    8*os_type[T.iOS] + 0.0107*active_users + 0.0017*os_type[T.MacOS]*active_us
    ers + -0.0008*os_type[T.Windows]*active_users + -0.0011*os_type[T.iOS]*act
    ive users + 35.9786*interacting pct + -0.0000*I(active users ** 2) + -0.00
```

Vzniklý model lze vidět ve výpisu předešlého bloku.

34*interacting_pct*active_users

```
predictions = model.predict(df)

df['Predicted'] = predictions

max_pred = df.loc[df['Predicted'].idxmax()]

print("Nastavení parametrů s nejvyšší predikovanou hodnotou:")
print(max_pred)
```

```
Nastavení parametrů s nejvyšší predikovanou hodnotou:
os_type MacOS
active_users 9657
interacting_pct 0.973
ping 72
Predicted 77.504628
Name: 10, dtype: object
```

```
avg values = df[df['os type'] == "Windows"].drop('os type', axis=1).mean()
tmp df mean = pd.DataFrame({
    'active users': [avg values['active users']],
    'interacting pct': [avg values['interacting pct']],
    'os type': "Windows"
})
# Prediction of the ping for the average Windows user (with 95% confidence interval
predicted windows = model.get prediction(tmp df mean).summary frame(1-0.95)
confidence interval lower = predicted windows.iloc[0]['mean ci lower']
confidence interval upper = predicted windows.iloc[0]['mean ci upper']
prediction interval lower = predicted windows.iloc[0]['obs ci lower']
prediction interval upper = predicted windows.iloc[0]['obs ci upper']
print("Konfidečníni interval se spolehlivosti 95%: <" + str(confidence_interval_low</pre>
      + ", " + str(confidence interval upper) + ">")
print("Predikcni interval se spolehlivosti 95%: <" + str(prediction interval lower)</pre>
      + ", " + str(prediction interval upper) + ">")
print("Predikovany ping: " + str(predicted_windows.iloc[0]['mean']))
        Konfidečníni interval se spolehlivosti 95%: <53.825074148475224, 55.886356
```

Konfidečníni interval se spolehlivosti 95%: <53.825074148475224, 55.886356 3291313> Predikcni interval se spolehlivosti 95%: <44.577709516025855, 65.133720961 58068>

Výpočet hodnoty odezvy uživatele s Windows, při průměrném nastavení ostatních spolu s výpočtem parametrů a vypočtětem konfidenčního intervalu a predikčního interval pro toto nastavení. Je realizován tak že je vytvořen df. pro požadované hodnoty (průměrné hodnoty pro Windows) a následně je použit model.get_prediction() pro výpočet intervalů a hodnoty.

Predikovany ping: 54.85571523880326

Závěr:

Vyrobený model se zdá že je schopný uvěřitelně předpovídat hodnoty. Problém modelu je, ale to, že nemáme moc hodnot. Lze se na to dívat statisticky a to sice tak, že to není dostatek hodnot na kvalitní predikce. Hodilo by se mi dostatek dat na vytvoření více modelů z části dat a následně porovnání jejich výsledků, tedy podobný princip jako v ML kde se data rozdělí na trénovací a testovací data (a případně validační).

Pokud se podíváme na model.summary () tak můžeme videt R-squared: 0.87 což znamená že model vysvětluje ~88% variability dat. To je dobrý výsledek, vzhledem k tomu, že máme jen 500 hodnot.

Ačkoliv je příklad náhodný a nemusí dávat smysl tak by se asi hodilo i uvážit to, že jakožto konkurence twitteru nebo facebooku by jsme chtěli miliony uživatelů. Protože by jsem rádiu testovali co se stane s odevzvou při milionech užitevatelů a i více .