# Convolutional Neural Network (CNN)

2021. 8

Yongjin Jeong, KwangWoon University

[참고] 본 자료에는 인터넷이나 강의자료, 책 등에서 다운받아 사용한 그림이나 수식들이 있으니 다른 용도로 사용하거나 외부로 유출을 금해 주시기 바랍니다.

### **Motivation**

#### Hubel and Wiesel observed that:

- Many neurons react only to visual stimuli located in a limited region.
- Some neurons react only to specific patterns (horizontal lines, lines with different orientations (two neurons may have the same receptive field but react to different line orientations).
- Some neurons have larger receptive fields, and they react to more complex patterns that are combinations of the lower-level patterns.

#### These observation led to the Idea:

- Higher-level neurons are based on the outputs of neighboring lower-level neurons.
- Notice that each neuron is connected only to a few neurons from the previous layer.





# **Convolutional Layer**

### The most important building block of CNN

- Neurons are connected only to their receptive fields of the previous layer
- Allowing the network to concentrate on small low-level features
- Then, assembled into larger higher-level features in the next layer
- This hierarchical architecture is very common in real-world images.



# **Convolutional Layer**

 Connection between layers and zero padding  Reducing dimensionality using Stride of 2





### **Filters**

Filters and Feature Maps



Applying two different filters to get two feature maps

### **Filters**

Stacking Multiple Feature Maps



## **CNN** operation

### Get one number using the filter



### Convolution

15

6

16

15

입력 데이터(height, width)에 대해 <mark>필터(커널)</mark>을 일정 간격(Stride) 만큼 이동해 가며 행렬 곱셈 연산 수행







필터



| 1 | 2 | 3 | 0 |
|---|---|---|---|
| 0 | 1 | 2 | 3 |
| 3 | 0 | 1 | 2 |
| 2 | 3 | 0 | 1 |



| 1 | 2 | 3 | 0 |  |
|---|---|---|---|--|
| 0 | 1 | 2 | 3 |  |
| 3 | 0 | 1 | 2 |  |
| 2 | 3 | 0 | 1 |  |



| 1 | 2 | 3 | 0 |
|---|---|---|---|
| 0 | 1 | 2 | 3 |
| 3 | 0 | 1 | 2 |
| 2 | 3 | 0 | 1 |



| 1 | 2 | 3 | 0 |
|---|---|---|---|
| 0 | 1 | 2 | 3 |
| 3 | 0 | 1 | 2 |
| 2 | 3 | 0 | 1 |





### 3-dimensional data convolution



### **Different views of Convolution**





Convolution 층 연산의 3차원적 이해

NLP 형태로 본 Convolution 층 연산

# **Pooling Layer**

#### Max Pooling layer

- The goal is to subsample (i.e. shrink) the input image (to reduce computational load, the memory usage, and the number of parameters) \_ limiting the risk of overfitting
- No weights
- Also, some level of invariance (shifting or rotational) to small translations





Max Pooling layer (2 x 2 pooling kernel, stride 2, no padding)

Invariance to small translations

# **Implementing CNN**

- 컨볼루션 연산
  - 컨볼루션은 해당하는 요소끼리 곱하고 결과를 모두 더하는 선형 연산
  - 식 (4.10)과 식 (4.11)에서 u는 커널, z는 입력, s는 출력(특징 맵)



|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |        |   |   |    | 특정 | 당 만 |    |   |   |
|---|---|---|---|---|---|---|---|---|--------|---|---|----|----|-----|----|---|---|
| 0 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 |        | - | - | -  | -  | -   | -  | - | - |
| 1 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 커널     | - | 0 | 0  | 0  | -3  | -3 | 0 | - |
| 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 |        | - | 0 | 0  | 0  | -3  | -3 | 0 | - |
| 3 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 |        | - | 0 | 7  | 7  | -2  | -2 | 0 | - |
| 4 | 2 | 2 | 2 | 9 | 9 | 9 | 9 | 9 | 1 0 1  | - | 0 | 14 | 14 | -1  | -1 | 0 | - |
| 5 | 2 | 2 | 2 | 9 | 9 | 9 | 9 | 9 | -1 0 1 | - | 0 | 21 | 21 | 0   | 0  | 0 | - |
| 6 | 2 | 2 | 2 | 9 | 9 | 9 | 9 | 9 |        | - | 0 | 21 | 21 | 0   | 0  | 0 | - |
| 7 | 2 | 2 | 2 | 9 | 9 | 9 | 9 | 9 |        | - | - | -  | -  | -   | -  | - | - |

(a) 1차원 컨볼루션

(b) 2차원 컨볼루션

# **Implementing CNN**

#### 1-D convolutions in Image Processing







Fully connected

#### 1-D convolutions for Text Processing

Embedding dimension of the words



- Used in Inception module (GoogleNet, 2014)
- Can resize feature map (e.g. (k,k,128) -> (k,k,32))

kernel size 3 -> referencing 3-gram

### **Up-sampling - Transposed Convolution**



### **Transposed Convolution – 1D**





### **Detecting patterns in CNN**

- 궁간상의 위치를 픽셀 단위로 일 대 일 비교하면
  - 이 두 그림에서 흰 점이 일치하는 부분은 거의 없다.
  - 따라서 이미지를 벡터로 환산(즉, 1차원 벡터로 변환)하 여 비교하면 서로 다르다고 판단
- 3x3 픽셀 단위로 나누어 관찰하면
  - 절대적인 위치는 다르지만 일치하는 패턴이 여러 곳에 나 타나므로
  - 다른 위치에 있는 같은 패턴을 찾아낼 수 있다
- CNN의 필터는 바로 이러한 패턴의 활성화 성분 크기 즉, 활성 값을 찾아준다.
- 이러한 원리를 이용하여 CNN은 어떤 패턴의 크기, 절대적 위치, 두께, 회전 각도 등이 다르더라도 이를 찾아서 다음 계층으로 전달할 수 있다.



### **Detecting patterns in CNN**

- CNN에서는 특성맵을 한가지만 만드는 것이 아니라 수십~수백 가지를 만든다. (처음에 는 3원색인 경우 3에서 출발)
- 왜냐하면 찾아내야 할 패턴이 가로 성분, 세성분, 대각성분, X-형 성분, 색상 정보, 엣지
  등 여러 가지가 있기 때문
- · 어떤 계층의 합성곱 필터의 종류 수가 32라면 이 계층에서 생산되는 특성맵은 32개가 된다.
- 합성곱 필터를 커널(kernel)이라고 부르는데 커널 수가 많을수록 다양한 패턴을 찾아낼 수 있다
- 그러나 모델의 복잡도가 너무 커지면 과대적합의 원인
  - 내부 parameter 수가 많아 학습 데이터를 너무 정교하게 모델링하기 때문

### **CNN Architecture**

Typical CNN architecture



Feature extractor

Classifier



(ex) LeNet-5

### **CNN Architecture**

- CNN은 일반적으로 커널 필터링과 활성화 함수 그리고 최대 풀링을 묶어서 하나의 계 층을 형성한다.
  - 참고) MLP에서는 전결합망과 활성화함수를 묶어서 한 계층을 형성
- CNN에서도 다양한 구조의 활성화 함수를 사용하고 필요하면 전결합망을 사용한다.
- 분류를 수행하는 경우 최종 계층에서는 전결합망을 만들고 그 결과에 소프트맥스 함수 (또는 시그모이드함수)를 적용

### Case Study: LeNet-5

[LeCun et al., 1998]



Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

### Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)



#### Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%



Case Study: ResNet [He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)



(slide from Kaiming He's recent presentation)

### CNN 성능 개선

- 신경망은 파라미터 갯수가 많아서 과대적합 가능성이 항상 높다. 훈련 데이터 양이 많지 않을 때에는 특히 주의해야
  - 과대적합이 발생하면 신경망의 구조를 단순하게 만들어야 한다.
- 과대적합을 줄이는 작업을 일반확(generalize)를 위한 규제확(Regularize) 라고 부르는데,
  - 대표적인 규제확로 L2규제를 적용 네트워크를 구성하는 파라미터 값이 가능한 균등하게 분포하도록 제한
  - 케라스에서는 regularizers.12() 함수를 사용

### **Drop Out**

- 신호가 계층을 통과할 때 랜덤하게 유닛을 선택하여 신호를 전달하지 않도록 하는 방법
- 즉, 모든 신호를 다 사용하지 않고 고의적으로 신호의 일부를 누락시킨 다
- 앙상블 효과를 얻어서 과대적합을 효과적으로 줄일 수 있다.
- 드롭아웃을 하면 입력과 출력간의 특정한 관계를 기억하지 못하게 하는 효과가 있어서 신경망이 보다 일반적인 학습을 할 수 있게 한다
- 네트워크의 기억을 랜덤하게 지우는 것이라고 볼 수 있다. 입출력의 특별한 관계를 평준화시키고 다양한 신경망 구조를 이용한 효과(즉, 앙상블 효과를 얻어 성능을 개선하는 방법)

### **Drop Out**

- 드롭아웃은 학습을 하는 동안에만 적용
- 학습이 종료된 후 예측을 하는 단계에서는 모든 유닛을 사용하여 예측



### How to find Good CNN architecture

- 최적의 신경망을 구성하는 계층의 수, 유닛의 수, 배치 크기, 학습률의 설정 등이 어려운 가제
- 기본 전략: 처음에는 구조를 간단히 출발
- 일단 동작을 확인하고 성능을 개선한다.
  - 계층이 2~3만으로도 동작하는지를 확인
  - 만일 2~3개의 계층으로 모델이 동작하지 않으면 계층 수를 늘려도 동작하지 않는다고 알려져 있다.
- 입력 데이터를 간단히 만들어 보는 것도 필요
  - 예를 들어 10가지 동물 이미지를 구분하는 모델이 필요하다고 하여도 우선 몇 가지 대표적 인 동물들을 구분하는 모델을 먼저 만들어보는 것

### **Batch Size**

- 배치 크기 : 신경망이 한번에 학습하는 입력 데이터 수
- 배치 크기가 클수록 학습이 정교하고, 기울기를 정확히 구할 수 있으나 계산량이 많아진다.
  - 필요한 메모리 사용량이 많아 메모리 오류가 날 가능성이 높다(특히 GPU를 사용할 때). 처음에는 배치 크기를 작게 16~32정도로 적게 잡고 시작
- 배치 크기가 작을 때에는 기울기가 상대적으로 정확하게 계산되지 못하므로 학습률도 작게 잡아야 한다.
  - 일단 작은 값의 학습률로 동작하는 것을 확인하고 학습률을 조금씩 크게 한다

### Batch Normalization (배치 정규확)

- 딥러닝 학습에서 해결해야할 어려운 문제 중 하나
  - Vanishing Gradient Problem
- 이는 기울기 값에 비례하여 학습시킬 때 기울기 즉, 미분값이 0에 가까워지면 변화량이 매우 적어지고 이것이 앞단의 계층으로 전파되는 양이 급속히 줄어들어 학습이 잘되지 않는 현상
- 이러한 문제를 해결하기 위해 배치 정규화가 제시됨
  - 이는 "계층별로", 주어진 배치 데이터를 대상으로 정규확를 다시 수행하여 데이터의 분포가 너무 작거나 너무 커지지 않게 하는 방식
  - 학습 시 미니배치 단위로 정규확 : (평균 0, 분산 1)

## Overfitting (과대적합)

- 신경망은 파라미터가 많아서 과대적합되기 쉽다. 즉, 상세한 모델링이 가능하여, 훈련 데이터 수가 적으면 이 훈련 데이터의 속성을 모두 기억할 수 있어 과대적합되기 쉬운 것이다.
- 훈련데이터에 대해서는 계속 성능이 좋아지지만 검증 데이터에 대해서 는 오히려 성능이 나빠진다면 과대적합한 것이다.
- 성능의 개선되는지를 측정하는 방법
  - 정확도 등 최종 성능 지표를 관찰
  - 손실 함수가 줄어드는지를 관찰

# **Overfitting**



# How to avoid or reduce Overfitting

- 학습조기중단 (Early Stopping)
- L1 이나 L2 규제 (Regularization)
- 드롭아웃(Dropout)
- 데이터 확장(Data Augmentation)
  - 훈련 데이터가 많은 것처럼 보이는 효과

### **Data Augmentation**

- 과대적합이 일어나는 이유 중 하나
  - 훈련데이터가 부족하기 때문
- 훈련 데이터가 충분히 많다면 과대적합을 줄일 수 있다.
- 데이터 확장이라 훈련 데이터를 다양하게 변형하여 변형된 새로운 훈련 데이터처럼 사용함으로써 마지 훈련 데이터 수가 늘어난 효과를 얻는 것이다.
- 데이터 확장을 사용하면 여러 이포크를 수행해도 똑같은 데이터를 가지고 학습하지 않 게 된다.
- Affine Transform
  - Rotation, shifting, rescaling, flipping, shearing, stretching

### **Data Augmentation**

- 과대적합이 일어나는 이유 중 하나
  - 훈련데이터가 부족하기 때문
- 훈련 데이터가 충분히 많다면 과대적합을 줄일 수 있다.
- 데이터 확장이라 훈련 데이터를 다양하게 변형하여 변형된 새로운 훈련 데이터처럼 사용함으로써 마지 훈련 데이터 수가 늘어난 효과를 얻는 것이다.
- 데이터 확장을 사용하면 여러 이포크를 수행해도 똑같은 데이터를 가지고 학습하지 않 게 된다.
- Affine Transform
  - Rotation, shifting, rescaling, flipping, shearing, stretching

# Data Augmentation (example)



Figure 11-10. Generating new training instances from existing ones



# Transfer Learning (전이학습)

- 전이학습 이란 다른 데이터 셋을 사용하여 이미 학습한 모델을 유사한 다른 데이터를 인식하는데 사용하는 기법이다.
- 이 방법은 특히 새로 훈련시킬 데이터가 충분히 확보되지 못한 경우에 학습 효율을 높 여준다.
- 이미지넷(imagenet)에는 동물이나 일상생활의 물건들을 주로 포함하여 1000종의 이미 지를 갖고 있으며 140만장의 사진이 있다.
- 이미지넷에는 고양이 강아지를 포함한 많은 동물 이미지도 들어 있으며, 이를 강아지 고양이 분류 문제에 사용할 수 있다.
  - 예제코드에서는 2014년에 소개된 VGG16 모델을 사용하겠다.
- 사전학습모델을 이용하는 방법은 특성 추출(feature extraction) 방식과 미세조정(finetuning) 방식이 있다.

### Transfer Learning (전이학습)



# Transfer Learning (전이학습)



### Transfer Learning - 특성 추출 방식

- 특성 추출이란 이전의 네트워크로부터 배운 표현 방식을 사용하여 새로운 데이터 샘플에서 추가로 흥미로운 특성들을 추출하는 것
- 이렇게 얻은 특성들을 사용하여 새로운 분류기를 작동시키고 학습을 수행한다.
- 이미지 분류기는 특성추출 부분(컨볼류션 네트워트와 풀링 계층의 조합)과 분류기 부분(전결합망) 으로 크게 두 부분으로 구성된다.
- 컨볼류션과 풀링으로 구성된 부분을 컨볼류션 베이스라고한다
- 특성 추출 방식은 컨볼류션 베이스를 그대로 사용하고, 새로운 데이터를 여기에 적용 하여 훈련시키는 방식이다.

# Transfer Learning – 특성 추출 방식



### Transfer Learning - 특성 추출 방식

- 컨볼류션 베이스 부분만 재사용하는 이유는 이 부분은 상당히 일반적인 학습정보를 포함하고 있기 때문이다.
- 컨볼류션 계층에서도 재사용할 수 있는 정보의 수준은 몇 번째 계층인지에 따라 다르다. 모델의 앞단의 계층일수록 에지, 색상, 텍스처 등 일반적인 정보를 담는다.
- 반면에 뒷 부분의 깊은 계층일수록 추상적인 정보를 담는다 (예를 들어 고양이 귀, 강 아지 귀 등)
- 새롭게 분류할 클래스의 종류가 사전 학습에 사용된 데이터와 특성이 매우 다르면, 컨 볼류션 베이스 전체를 재사용해서는 안되고 앞단의 일부 계층만을 재사용해야 한다.

### Transfer Learning - 미세 조정 방식

- 모델 베이스 중 상위 몇개의 계층은 전결합층 분류기와 함께 새로 학습시키는 방식이다.
- 최종 분류기의 계수가 랜덤하게 초기확 되어 있으므로 이를 먼저 학습시키며 이때 VGG16 모델의 컨볼류션 베이스를 초기에는 고정해야 한다.
- 먼저 분류기를 계수를 학습시킨 다음에 (즉, 이 동안은 미세조정을 하지 않도록 상위계층의 계수를 고정시켜 두고), 그 이후에 미세조정을 해야 한다.
- 처음부터 베이스 상위계층의 계수를 같이 훈련시키면 분류기에서 발생하는 큰 에러 값으로 인해, 사전 학습된 정보가 많이 손실된다.

### Transfer Learning - 미세 조정 절차

- 1. 사전 학습된 기본 네트워크 상단에 새로운 네트워크를 추가한다.
- 2. 기본 네트워크를 고정시킨다.
- 3. 새로 추가한 부분을 학습시킨다.
- 4. 기본 계층 중에 학습시킬 상위 부분의 고정을 푼다
- 5. 고정을 푼 계층과 새로 추가한 계층을 함께 훈련시킨다.
- 6. 미세 조정을 천천히 수행하기 위해서 느린 학습 속도를 선택한다. 갑자기 큰 변화를 주면 사전 학습된 내용이 훼손되기 때문이다.

### Callback (콜백)

- 케라스, 콜백 함수
  - 모델 학습을 하는 동안 중간 결과를 저장하거나
  - 조기 종료를 시키거나 할 수 있는 기능
- 콜백은 여러 가지를 동시에 지정할 수 있으며 이를 fit 함수의 callbacks 인자로 넘겨줄 수 있다.
- History()
  - 훈련중에 발생하는 여러 이벤트를 History 객체에 저장
  - keras.callbacks.History()

### Callback (콜백)

- 모델 저장: 매 이포크마다 모델을 저장
  - 저장하는 주기(period)와 베스트 모델만 저장 등을 지정
  - keras.callbacks.ModelCheckpoint(filepath, monitor='val\_loss', verbose=0, save\_best\_only=False, save\_weights\_only=False, mode='auto', period=1)
- 조기 종료 (Early Stopping)
  - 손실값, 성능 등 관찰 중인 지표가 어떤 조건을 만족하면 이포크 실행을 종료
  - 조기 종료 조건들을 인자로 지정
  - keras.callbacks.EarlyStopping(
     monitor='val\_loss',
     min\_delta=0, patience=0, verbose=0, mode='auto',
     baseline=None, restore\_best\_weights=False)
- <u>참고) https://keras.io/callbacks/#modelcheckpoint</u>