In [1]: import pyspark.pandas as ps
 from pyspark.sql import SparkSession
 import pandas as pd
 import numpy as np
 import warnings
 warnings.filterwarnings('ignore')

WARNING:root:'PYARROW_IGNORE_TIMEZONE' environment variable was not set. It is required to set this environment variable to '1' in both driver and executor sides if you use pyarrow>=2.0.0. pandas-on-Spark will set it for you but it do es not work if there is a Spark context already launched.

Create Pandas on Spark DataFrame

Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties Setting default log level to "WARN".

To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). 22/01/14 11:47:59 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

Out[2]:

	Country	Population	GDP
0	France	50M	3T
1	India	30M	30T
2	Kenya	70M	25T
3	Nigeria	90M	60T
4	China	20M	2T
5	USA	80M	30T
6	UK	70M	25T
7	USA	20M	30T
8	China	70M	25T
9	France	50M	3T
10	China	70M	25T

Out[3]:

	Department	Staff	Salary
0	Finance	Tom	90000.0
1	Technology	Peter	57000.0
2	Finance	Simon	40000.0
3	Technology	Mary	34000.0
4	Technology	Jane	12000.0

Create Spark DataFrame

+	
Country Po	opulation GDP
+	+
France	50M 3T
India	30M 30T
Kenya	70M 25T
Nigeria	90M 60T
China	20M 2T
USA	80M 30T
UK	70M 25T
USA	20M 30T
China	70M 25T
France	50M 3T
China	70M 25T
+	+

Create Pandas DataFrame

Out[5]:

	Country	Population	GDP
0	France	50M	3T
1	India	30M	30T
2	Kenya	70M	25T
3	Nigeria	90M	60T
4	China	20M	2T
5	USA	80M	30T
6	UK	70M	25T
7	USA	20M	30T
8	China	70M	25T
9	France	50M	3T
10	China	70M	25T

Read external csv file with Pandas-on-SPark

```
In [6]: df=ps.read_csv("titanic.csv")
In [7]: df.head()
```

Read csv data with Pandas-on-Saprk

In [8]: ps_to_pd_df=ps_df.to_pandas()
 ps_to_pd_df

Out[8]:

	Country	Population	GDP
0	France	50M	3T
1	India	30M	30T
2	Kenya	70M	25T
3	Nigeria	90M	60T
4	China	20M	2T
5	USA	80M	30T
6	UK	70M	25T
7	USA	20M	30T
8	China	70M	25T
9	France	50M	3T
10	China	70M	25T

Convert Pandas DataFrame to Pandas-on-Spark DataFrame

In [9]: pd_to_ps_df=ps.from_pandas(pd_df)
pd_to_ps_df

Out[9]:

	Country	Population	GDP
0	France	50M	3T
1	India	30M	30T
2	Kenya	70M	25T
3	Nigeria	90M	60T
4	China	20M	2T
5	USA	80M	30T
6	UK	70M	25T
7	USA	20M	30T
8	China	70M	25T
9	France	50M	3T
10	China	70M	25T

Convert Pandas DataFrame to Spark DataFrame

```
In [10]: | pd_to_sdf=spark.createDataFrame(pd_df)
          pd_to_sdf.show()
          +----+
          |Country|Population|GDP|
                           50M| 3T|
            Francel
             India
                           30M|30T|
             Kenya|
                           70M | 25T |
          |Nigeria|
                           90M | 60T |
             China
                           20M| 2T|
                           80M | 30T |
               USA
                UK l
                           70M | 25T |
               USA|
                           20M | 30T |
             China|
                           70M | 25T |
            France
                           50M| 3T|
             China|
                           70M | 25T |
```

Pandas on Spark Functions

In [11]: salary_df

Out[11]:

	Department	Staff	Salary
0	Finance	Tom	90000.0
1	Technology	Peter	57000.0
2	Finance	Simon	40000.0
3	Technology	Mary	34000.0
4	Technology	Jane	12000.0

Check rows and columns

```
In [12]: salary_df.shape
Out[12]: (5, 3)
```

Check DataFrame types

Check Statistical Summary

```
In [14]: salary_df.describe()
```

Out[14]:

	Salary
count	5.000000
mean	46600.000000
std	29117.005341
min	12000.000000
25%	34000.000000
50%	40000.000000
75%	57000.000000
max	90000.000000

Calculate Sum

```
In [15]: salary_df['Salary'].sum()
```

Out[15]: 233000.0

Calculate Mean

```
In [16]: salary_df['Salary'].mean()
```

Out[16]: 46600.0

Calculate Standard Deviation

```
In [17]: salary_df['Salary'].std()
Out[17]: 29117.005340522228
```

Calculate Variance of Salary

```
In [18]: salary_df['Salary'].var()
Out[18]: 847800000.0
```

Calculate Skewnes of Salary

```
In [19]: salary_df['Salary'].skew()
```

Out[19]: 0.44342185901218767

Group Salary by Department

```
In [20]: salary_df.groupby('Department')['Salary'].sum()
```

Out[20]: Department

Finance 130000.0 Technology 103000.0

Name: Salary, dtype: float64

Ploting Visualizations in Pandas on Spark

Pandas on Spark leverages plotly in the backend for visualization

Let's plot Salary for each Staff on a bar graph

In [21]: salary_df.plot.bar(x='Staff',y='Salary',color='Staff')

In [22]: salary_df.groupby('Department')['Salary'].sum().plot.pie()

In [23]: ps.DataFrame(np.random.normal(10,2,10000)).plot.kde(bw_method=3)

22/01/14 11:48:38 WARN InstanceBuilder\$NativeBLAS: Failed to load implementation from:dev.ludovic.netlib.blas.JNIBLAS 22/01/14 11:48:39 WARN InstanceBuilder\$NativeBLAS: Failed to load implementation from:dev.ludovic.netlib.blas.Foreign LinkerBLAS

