Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»			
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,			
информационные технологии»				

Лабораторная работа №5 «Дискретное преобразование Фурье»

ДИСЦИПЛИНА: «Цифровая обработка сигналов»

Выполнил: студент гр. ИУК4-72Б			Сафронов Н.С.	
	(подпись)		(Ф.И.О.)	
Проверил:		(Тронов К.А.	
•	(подпись)		(Ф.И.О.)	
Дата сдачи (защиты):				
Результаты сдачи (защиты):				
- Балльная оценка:				
- Оценк	ca:			

Цель работы: формирование практических навыков анализа спектра дискретных сигналов с помощью дискретного преобразования Фурье (ДПФ).

Постановка задачи

- 1. Используя ДПФ построить АЧХ сигналов: заданного и отфильтрованного;
- 2. С помощью АЧХ проверить правильность процедуры фильтрации, при необходимости скорректировать параметры фильтра

Вариант 14

Значения частот: $s_1 = 20$, $s_2 = 50$, $s_3 = 60$.

Фильтр Баттерворта:

$$s_1 + s_2$$
: P Φ , s_1 ;
 $s_1 + s_2 + s_3$: Φ B Ψ , $s_2 + s_3$.

Фильтр Чебышёва 1 рода:

$$s_1 + s_2$$
: ФНЧ, s_1 ;
 $s_1 + s_2 + s_3$: ПФ, $s_2 + s_3$.

Фильтр Чебышёва 2 рода:

$$s_1 + s_2$$
: Φ BH, s_2 ;
 $s_1 + s_2 + s_3$: Φ P, $s_1 + s_2$.

Эллиптический фильтр:

$$s_1 + s_2$$
: $\Pi \Phi$, s_2 ;
 $s_1 + s_2 + s_3$: $\Phi H \Psi$, s_1 .

Листинг программы

```
amp = 0.1;

sr = 1000;

step = 1/sr;

t = (0:step:0.25);

freq1 = 20;

freq2 = 50;

freq3 = 60;

s1 = amp*sin(2*pi*freq1*t);

s2 = amp*sin(2*pi*freq2*t);

s3 = amp*sin(2*pi*freq3*t);

%% Фильтр Баттерворта, s1 + s2
```

```
s = s1 + s2;
subplot(4, 1, 1)
plot(t, s);
legend("s");
n = 4;
[z, p, k] = buttap(n);
[b, a] = zp2tf(z, p, k);
w0 = 0.1;
[b1, a1] = lp2lp(b, a, w0);
f = abs(filter(b1, a1, t));
sf = s1.*f + s2;
subplot(4, 1, 2);
plot(t, sf);
legend("Результат фильтрации");
N_s = length(s);
ft = fft(s);
frequencies = (0:N_s-1)*(sr/N_s);
subplot(4, 1, 3)
plot(frequencies(1:31), ft(1:31))
legend("Спектр исходного сигнала");
N_sf = length(sf);
ftf = fft(sf);
frequencies = (0:N_sf-1)*(sr/N_sf);
subplot(4, 1, 4)
plot(frequencies(1:31), ftf(1:31))
legend("Спектр отфильтрованного сигнала");
%% Фильтр Чебышева 1 рода, s1 + s2
s = s1 + s2;
subplot(4, 1, 1);
plot(t, s);
legend("s");
n = 4;
Rp = 0.1;
[z, p, k] = cheb1ap(n, Rp);
[b, a] = zp2tf(z, p, k);
w0 = 0.1;
[b1, a1] = lp2lp(b, a, w0);
f = abs(filter(b1, a1, t));
sf = s1.*f + s2;
subplot(4, 1, 2);
plot(t, sf);
legend("Результат фильтрации");
N_s = length(s);
ft = fft(s);
frequencies = (0:N_s-1)*(sr/N_s);
subplot(4, 1, 3)
plot(frequencies(1:31), ft(1:31))
legend("Спектр исходного сигнала");
N_sf = length(sf);
ftf = fft(sf);
frequencies = (0:N_sf-1)*(sr/N_sf);
subplot(4, 1, 4)
plot(frequencies(1:31), ftf(1:31))
```

```
legend("Спектр отфильтрованного сигнала");
\%\% Фильтр Чебышева 2 рода, s1 + s2
s = s1 + s2;
subplot(4, 1, 1);
plot(t, s);
legend("s");
n = 4;
Rs = 45;
w0 = 0.2;
[z, p, k] = cheb2ap(n, Rs);
[b, a] = zp2tf(z, p, k);
[b1, a1] = lp2hp(b, a, w0);
f = abs(filter(b1, a1, t));
sf = s1 + s2.*f;
subplot(4, 1, 2)
plot(t, sf);
legend("Результат фильтрации");
N s = length(s);
ft = fft(s);
frequencies = (0:N_s-1)*(sr/N_s);
subplot(4, 1, 3)
plot(frequencies(1:31), ft(1:31))
legend("Спектр исходного сигнала");
N_sf = length(sf);
ftf = fft(sf);
frequencies = (0:N_sf-1)*(sr/N_sf);
subplot(4, 1, 4)
plot(frequencies(1:31), ftf(1:31))
legend("Спектр отфильтрованного сигнала");
%% Эллиптический фильтр, s1 + s2
s = s1 + s2;
subplot(4, 1, 1);
plot(t, s);
legend("s");
n = 4;
Rp = 0.1;
Rs = 45;
w1 = 0.05;
w2 = 0.15;
[z, p, k] = ellipap(n, Rp, Rs);
[b, a] = zp2tf(z, p, k);
w0 = sqrt(w1 * w2);
Bw = w2 - w1;
[b1, a1] = lp2bp(b, a, w0, Bw);
f = abs(filter(b1, a1, t));
sf = s1 + s2.*f;
subplot(4, 1, 2)
plot(t, sf);
legend("Результат фильтрации");
N_s = length(s);
ft = fft(s);
frequencies = (0:N s-1)*(sr/N s);
subplot(4, 1, 3)
plot(frequencies(1:31), ft(1:31))
legend("Спектр исходного сигнала");
```

```
N_sf = length(sf);
ftf = fft(sf);
frequencies = (0:N_sf-1)*(sr/N_sf);
subplot(4, 1, 4)
plot(frequencies(1:31), ftf(1:31))
legend("Спектр отфильтрованного сигнала");
%% Фильтр Баттерворта, s1 + s2 + s3
s = s1 + s2 + s3;
subplot(4, 1, 1);
plot(t, s);
legend("s");
n = 4;
[z, p, k] = buttap(n);
[b, a] = zp2tf(z, p, k);
w0 = 0.15;
[b1, a1] = lp2hp(b, a, w0);
f = abs(filter(b1, a1, t));
sf = s1 + s2.*f + s3.*f;
subplot(4, 1, 2)
plot(t, sf);
legend("Результат фильтрации");
N_s = length(s);
ft = fft(s);
frequencies = (0:N_s-1)*(sr/N_s);
subplot(4, 1, 3)
plot(frequencies(1:31), ft(1:31))
legend("Спектр исходного сигнала");
N_sf = length(sf);
ftf = fft(sf);
frequencies = (0:N_sf-1)*(sr/N_sf);
subplot(4, 1, 4)
plot(frequencies(1:31), ftf(1:31))
legend("Спектр отфильтрованного сигнала");
%% Фильтр Чебышева 1 рода, s1 + s2 + s3
s = s1 + s2 + s3;
subplot(4, 1, 1);
plot(t, s);
legend("s");
n = 4;
Rp = 0.1;
[z, p, k] = cheb1ap(n, Rp);
[b, a] = zp2tf(z, p, k);
w1 = 0.05;
w2 = 0.15;
w0 = sqrt(w1 * w2);
Bw = w2 - w1;
[b1, a1] = lp2bp(b, a, w0, Bw);
f = abs(filter(b1, a1, t));
sf = s1 + s2.*f + s3.*f;
subplot(4, 1, 2)
plot(t, sf);
legend("Результат фильтрации");
N_s = length(s);
ft = fft(s);
```

```
frequencies = (0:N_s-1)*(sr/N_s);
subplot(4, 1, 3)
plot(frequencies(1:31), ft(1:31))
legend("Спектр исходного сигнала");
N_sf = length(sf);
ftf = fft(sf);
frequencies = (0:N_sf-1)*(sr/N_sf);
subplot(4, 1, 4)
plot(frequencies(1:31), ftf(1:31))
legend("Спектр отфильтрованного сигнала");
%% Фильтр Чебышева 2 рода, s1 + s2 + s3
s = s1 + s2 + s3;
subplot(4, 1, 1);
plot(t, s);
legend("s");
n = 4;
Rs = 45;
[z, p, k] = cheb2ap(n, Rs);
[b, a] = zp2tf(z, p, k);
w1 = 0.05;
w2 = 0.1;
w0 = 2 * pi * sqrt(w1 * w2);
Bw = 2 * pi * (w2 - w1);
[b2, a2] = 1p2bs(b, a, w0, Bw);
f = abs(filter(b1, a1, t));
sf = s1.*f + s2.*f + s3;
subplot(4, 1, 2)
plot(t, sf);
legend("Результат фильтрации");
N_s = length(s);
ft = fft(s);
frequencies = (0:N_s-1)*(sr/N_s);
subplot(4, 1, 3)
plot(frequencies(1:31), ft(1:31))
legend("Спектр исходного сигнала");
N_sf = length(sf);
ftf = fft(sf);
frequencies = (0:N_sf-1)*(sr/N_sf);
subplot(4, 1, 4)
plot(frequencies(1:31), ftf(1:31))
legend("Спектр отфильтрованного сигнала");
%% Эллиптический фильтр, s1 + s2 + s3
s = s1 + s2 + s3;
subplot(4, 1, 1);
plot(t, s);
legend("s");
n = 4;
Rp = 0.1;
Rs = 45;
w0 = 0.05;
[z, p, k] = ellipap(n, Rp, Rs);
[b, a] = zp2tf(z, p, k);
[b1, a1] = lp2lp(b, a, w0);
f = abs(filter(b1, a1, t));
sf = s1.*f + s2 + s3;
```

```
subplot(4, 1, 2)
plot(t, sf);
legend("Результат фильтрации");

N_s = length(s);
ft = fft(s);
frequencies = (0:N_s-1)*(sr/N_s);
subplot(4, 1, 3)
plot(frequencies(1:31), ft(1:31))
legend("Спектр исходного сигнала");

N_sf = length(sf);
ftf = fft(sf);
frequencies = (0:N_sf-1)*(sr/N_sf);
subplot(4, 1, 4)
plot(frequencies(1:31), ftf(1:31))
legend("Спектр отфильтрованного сигнала");
```

Результаты выполнения программы

Рисунок 1 — Фильтр Баттерворта, $s_1 + s_2$

Рисунок 2 — Фильтр Чебышёва первого рода, $s_1 + s_2$

Рисунок 3 — Фильтр Чебышёва второго рода, $s_1 + s_2$

Рисунок 4 – Эллиптический фильтр, $s_1 + s_2$

Рисунок 5 – Фильтр Баттерворта, $s_1 + s_2 + s_3$

Рисунок 6 – Фильтр Чебышёва первого рода, $s_1 + s_2 + s_3$

Рисунок 7 — Фильтр Чебышёва второго рода, $s_1 + s_2 + s_3$

Рисунок 8 – Эллиптический фильтр, $s_1 + s_2 + s_3$

Вывод: в ходе выполнения лабораторной работы были получены практические навыки анализа спектра дискретных сигналов с помощью дискретного преобразования Фурье.