Lista 4 - Inteligência Artificial Avançada INF05004

Henrique Lorentz Trein 00341853 henrique.trein@ufrgs.br

Junho 2025

1

(a) a graph G1 which is isomorphic to G but not the same.

Graph G1 is isomorphic to G because there exists a one-to-one correspondence between their vertices and edges that preserves adjacency and edge costs.

(b) a graph G2 which is graph equivalent to G but not isomorphic to it.

Graph G2 is equivalent to G in terms of state reachability and path costs, but it is not isomorphic to G because there is no bijective mapping between their edges. This means G2 have a different structure.

(c) a graph G3 which is a strict homomorphism of G but not graph equivalent to it.

Graph G3 is a strict homomorphism of G because it has some collapsed states. However, G3 is not graph equivalent to G because the homomorphism introduces ambiguity, paths in G that pass through collapsed states become indistinguishable in G3.

(d) a graph G4 which is a non-strict homomorphism of G but not graph equivalent to it.

Graph G4 is a non-strict homomorphism of G formed by collapsing states in G and introducing new structural feature, such as loops between the collapsed states and edges whose costs match the total cost of corresponding paths in G. However, G4 is not graph equivalent to G because the homomorphism introduces ambiguity, paths in G that pass through collapsed states become indistinguishable in G4.

(e) a graph G5 that is the transition system induced by the abstraction α that maps states that are in the column i in the image above to the abstract state si. For example, the two states in the first column are mapped to an abstract state t1, the two states in the second column to an abstract state t2, and so on.

G5 is an abstraction of G because it merges concrete states into abstract states while preserving the start and goal states and all feasible paths in G. The abstraction reduces the state space, but may introduce additional paths not present in the original graph G.

(f) graph G6 that is the induced transition system of an abstraction β that is a non-trivial coarsening of α .

G6 is a coarsening of α because it merges multiple abstract states of α into fewer, higher-level states, resulting in a graph with fewer nodes.

(g) a graph G7 that is the induced transition system of an abstraction γ that is a non-trivial refinement of β but different from α .

G7 is a refinement of β but different from α because it takes G6 and splits one abstract state into two finer states but still has one less abstract state than α .

Inst.	k		Built-in		PlanOpt			
		Exp.	Search (s)	Total (s)	Exp.	Search (s)	Total (s)	
1	1000	943826	4.424353	4.457238	943826	4.683070	4.715 875	
2	1000	6173897	28.489807	28.513475	6173897	30.616732	30.652934	
3	1000	2284135	11.041830	11.079869	2284135	11.526330	11.569610	
4	1000	3718	0.015964	0.043914	3718	0.015432	0.056103	
5	1000	2083481	9.899735	9.927014	2083481	9.050854	9.085184	
7	1000	1212763	6.279156	6.309217	1212763	6.030910	6.070430	
8	1000	2191432	8.142075	8.168178	2191432	8.558267	8.594373	
9	1000	591954	2.861611	2.888598	591954	2.952509	2.987937	
10	1000	744	0.003999	0.028135	744	0.004000	0.040074	
11	1000	1377703	6.274891	6.300601	1377703	6.565093	6.598007	
13	1000	6742	0.028038	0.063145	6742	0.023985	0.061072	
14	1000	20956	0.072000	0.097862	20956	0.084004	0.122449	
16	1000	3182046	15.643438	15.670407	3182046	16.077517	16.114954	
17	1000	5635414	27.040702	27.066666	5635414	28.835301	28.875325	
18	1000	23009	0.071979	0.099076	23009	0.063965	0.100284	
20	1000	106	0.000000	0.030445	106	0.000000	0.036706	
1	100000	163463	0.715982	0.780647	163463	0.935878	3.201653	
2	100000	2077437	9.062695	9.121986	2077437	8.407127	10.310130	
3	100000	691046	2.944942	2.994934	691046	3.673197	5.603470	
4	100000	3718	0.015984	0.076664	3718	0.011982	2.059844	
5	100000	1085453	4.538357	4.597049	1085453	4.732100	6.642116	
7	100000	349735	1.778836	1.832960	349735	1.843430	3.760264	
8	100000	1158937	4.359375	4.408301	1158937	4.016208	5.965860	
9	100000	138527	0.771521	0.832222	138527	0.956302	3.290714	
10	100000	744	0.003998	0.057253	744	0.000000	2.036362	
11	100000	314669	1.342557	1.393098	314669	1.443269	3.358631	
13	100000	6742	0.019992	0.075708	6742	0.024002	2.289447	
14	100000	20966	0.076018	0.133002	20966	0.073780	2.314452	
16	100000	698947	4.127077	4.188149	698947	4.295223	6.650090	
17	100000	1045506	5.975606	6.026135	1045506	5.804918	8.060154	
18	100000	22996	0.079863	0.143936	22996	0.075632	2.365021	
20	100000	106	0.004004	0.056136	106	0.000000	2.005761	

Inst.	k	Built-in			Built-in PDB			PlanOpt		
		Exp.	Search (s)	Total (s)	Exp.	Search (s)	Total (s)	Exp.	Search (s)	Total (s)
1	1000	43	0.000 000	0.005 253	43	0.000 000	0.004 183	43	0.000 000	0.005 331
2	1000	2406	0.006558	0.014664	10405	0.015742	0.023795	2406	0.003117	0.011143
3	1000	2231	0.006182	0.013076	31011	0.053739	0.059924	2231	0.004525	0.010735
4	1000	31350	0.078655	0.088893	1379615	2.861466	2.871270	31350	0.087995	0.098506
5	1000	391698	1.278120	1.298026	-	-	-	391698	1.792831	1.813321
6	1000	3323144	15.168941	15.215360	-	-	-	3323144	17.780021	17.812364
7	1000	-	-	-	-	-	-	-	-	-