

The 25th IEEE International Conference on Intelligent Transportation Systems (IEEE ITSC 2022)

DeFIX: Detecting and Fixing Failure Scenarios with Reinforcement Learning in Imitation Learning Based Autonomous Driving

October 8-12, 2022, Macau, China

Resul Dagdanov, Feyza Eksen, Halil Durmus, Ferhat Yurdakul, and Nazim Kemal Ure

- Istanbul Technical University
- ITU Artificial Intelligence and Data Science Research Center
- Eatron Technologies

Problem Statement

- Decision making in adversarial urban driving scenarios is a hard problem.
- Designing a perfect rule-based agent would necessitate a lot of hard-coding to tackle these scenarios.
- Objective is to come up with a methodology that solves shortcomings of suboptimal policy.
- CARLA Challenge environment is chosen as it features state-of-the-art urban driving scenarios:
 - vehicles run in red lights
 - pedestrians cross the road irregularly
 - decisions in uncontrolled traffic intersections occur
 - vehicles get stuck on the road

Motivation

autopilot vehicle gets stuck

autopilot vehicle brakes late

- Hard-coded autopilot is sensitive to predefined rules.
- Impossible to **generalize** with rule-based system.
- Imitating a suboptimal policy will result in a lack of performance of trained model.
- General methodology / framework is required to efficiently solve safe autonomous driving tasks.

Methodology (Stage-1)

Stage-2

Stage-1:

- Dataset is created from autopilot demonstrations.
- Imitation Learning agent is trained with behavioral cloning.
- Trained model is continuously improved with DAgger technique.
- IL agent is freezed after multiple
 DAgger approaches until performance
 reaches an autopilot performance.

Methodology (Stage-2)

Stage-2:

- Trained IL model is freezed and tested in the simulation.
- Mini-scenarios are constructed from infraction locations.
- Online RL agent is trained on one of the mini-scenarios.
- Library of trained policies is extended with newly trained RL agent.
- Policy classifier network is trained in a supervised manner with ground truth determined from reward function.

Network Architectures

Network Architectures

- DQN model is trained.
- Image backbone is **completely frozen**.
- State-space of RL agents is an image backbone features.
- Low-level **PID controllers** for throttle and steering movements.
- Generalized action states are:
 - Left lane change
 - Right lane change
 - Lane Keep
 - Stop

Experiments (Reward Function)

$$\mathcal{R}(s_i) = \delta(s_i) + [1 - \xi_{c_s}] \cdot [(1 - \phi(s_i)) \cdot V(s_i) + 50 \cdot \phi(s_i) \cdot \beta(s_i) - \phi(s_i) \cdot V(s_i)] + \xi_{c_s} \cdot V(s_i) - 100 \cdot \tau(s_i) - 1500 \cdot \zeta(s_i)$$

- s_i : observation state at a given step i
- $V(s_i)$: speed of the agent vehicle in m/s
- ξ_{c_s} : 1 if $c_s(s_i, t_i) = 2$; 0 otherwise
- $\beta(s_i)$: brake command of an agent vehicle [0 or 1]
- $\phi(s_i)$: 1 if an affecting traffic light is red or yellow, existence of vehicles and pedestrians in the field of influence of a rule-based agent; 0 - otherwise
- $\delta(s_i)$: Euclidean distance between agent's location and latest passed waypoint location in meters
- $\tau(s_i)$: 1 if agent velocity is 0.0 m/s for 60 consecutive seconds; 0 - otherwise
- $\zeta(s_i)$: boolean function revealing any collisions

GENERAL LIST OF DEPICTED CARLA SCENARIOS

ID $c_s(s_i,t_i)$	Scenario Name
0	Dynamic Vehicle Collision
1	Emerging Pedestrian Collision
2	Stuck Vehicle & Static Objects
3	Vehicle Running Red Light
4	Crossing Signalized Traffic Intersections
5	Crossing Un-signalized Intersections

$$label(s_i) = \begin{cases} IL \ Agent, & \text{if} \quad \mathcal{R}(s_i) > 0.0 \\ c_s(s_i, t_i), & \text{if} \quad \mathcal{R}(s_i) \leq 0.0 \end{cases}$$

Experiments (RL Training)

- An autopilot and an imitation learning agent gets stuck in these scenarios and could not make lane changing maneuvers.
- One mini-scenario of stuck vehicle case is constructed and DQN agent is trained on this scenario.
- To generalize, weather conditions are dynamically changed at every 20 steps while training RL agent.
- At each training episode, RL agent is initialized randomly at a distance 3 meters to 10 meters to the infraction location.

Stuck Vehicle Scenarios in Town05 Map

Blue: Training Scenario
Orange: Evaluation Scenarios

Results

RC: Route Completion (higher is better)IS: Infraction Score (higher is better)DS: Driving Score (higher is better)

Total Number of Infractions

IMITATION LEARNING AGENT PERFORMANCE ON TOWN05

Trained Dataset	RC ↑	IS ↑	DS ↑
$D_0 \rightarrow 22K$	89.8±2.27	0.74 ± 0.01	64.95 ± 1.3
$D_1 \rightarrow 24K$	90.0 ± 2.57	0.68 ± 0.01	62.91 ± 3.4
$D_2 \to 26K$	90.1 ± 1.12	0.76 ± 0.02	68.47 ±2.9
N/A	90.94	0.91	82.75
-	$D_1 \to 24K$ $D_2 \to 26K$	$D_1 \to 24K$ 90.0 ± 2.57 $D_2 \to 26K$ 90.1 ± 1.12	$D_1 \to 24K$ 90.0 ± 2.57 0.68 ± 0.01 $D_2 \to 26K$ 90.1 ± 1.12 0.76 ± 0.02

Town05-Long	Trained Dataset	RC ↑	IS ↑	DS ↑
Imitation	$D_0 \rightarrow 22K$	75.1 ± 0.33	0.39 ± 0.09	25.59 ± 4.8
Learning	$D_1 o 24K$	75.4 ± 0.03	0.41 ± 0.03	30.91 ± 2.2
Agent	$D_2 \rightarrow 26K$	75.4 ±0.06	0.44 ± 0.03	33.17±2.2
Autopilot Agent	N/A	75.41	0.693	48.60

Results

RC: Route Completion (higher is better)

DS: Driving Score (higher is better)

- DeFIX outperforms **state-of-the-art** benchmark.
- Better RC score than autopilot with only relying on sensor information without privileged knowledge.
- Achieve **%15** better RC score and **%3** closer DS.
- Town05 is the most challenging map of CARLA challenge environment.

BENCHMARK COMPARISON OF DRIVING PERFORMANCE SCORES

Method	Town05-Short		Town05-Long	
	RC ↑	DS ↑	RC ↑	DS ↑
LBC [7]	55.01	30.97	32.09	7.05
Late Fusion [22]	83.66	51.56	68.05	31.30
CILRS [23]	13.40	7.47	7.19	3.68
AIM [22]	81.07	49.00	60.66	26.50
TransFuser [22]	78.41	54.52	56.36	33.15
NEAT [3]	69.34	58.21	88.78	57.49
Geometric Fusion [22]	86.91	54.32	69.17	25.30
World on Rails [9]	52.60	38.14	60.57	32.18
DeFIX (ours)	96.34	72.41	89.61	39.42
IL Agent (ours)	90.10	68.47	75.40	33.17
RL Agent (ours)	30.14	24.65	5.17	4.15
Autopilot Agent	90.94	82.75	75.41	48.60

- Imitation learning policy is **limited** with the performance of the demonstrator policy.
- Proposed and tested a new methodology called **DeFIX**.
- Achieved better **DS** and **RC** scores than the methods in the literature on the most challenging map.
- The **future** of this research:
 - Extensive tests on different maps.
 - Expand the library of RL agents and breaden the effectiveness.
 - Carry the evaluation of DeFIX method into official CARLA challenge.