

### T5 - Band Pass Filter using OPAMP

Integrated Master in Physics Engineering

João Lehodey (96538), Jorge Silva (96545), Pedro Monteiro (93156)

June 6th, 2021

#### **Contents**

| 1 | Introduction                                         |    |  |
|---|------------------------------------------------------|----|--|
| 2 | Presential Lab                                       | 2  |  |
| 3 | Theoretical Analysis 3.1 Input and output impedances |    |  |
|   | 3.2 Transfer function                                |    |  |
| 4 | Simulation Analysis                                  | 7  |  |
| 5 | Conclusion                                           | 11 |  |

#### 1 Introduction

In this laboratory assignment we seek to build a bandpass filter using an OP-AMP. Particularly we seek to maximize our **merit figure**, M, given by:

$$M = \frac{1}{Cost(VoltageGainDeviation + CentralFreqDeviation + 10^{-6})}$$

where the voltage gain deviation is the absolute value of the difference between the gain at 1000 Hz and 40 dB; and the central frequency deviation is the absolute value of the difference between the central frequency and 1000 Hz. The central frequency,  $f_c$ , is given by the geometric mean of the low cut-off frequency and the high cut-off frequency:

$$f_c = \sqrt{f_H f_L}$$

The circuit used was the following:



Figure 1: Circuito utilizado

#### 2 Presential Lab

In this lab assignment we were also able to implement this circuit in real life, where we able to measured the gain and the cut-off frequencies. For the circuit configuration, we chose the following components:

| R1        | R2    | R3             | R4           | C3    | C4    |
|-----------|-------|----------------|--------------|-------|-------|
| 1000K $Ω$ | 500 Ω | 1000K $\Omega$ | 500 $\Omega$ | 220nF | 220nF |

With these components we were able to get a voltage gain of approximately Gain=40 dbs, and cut-off frequencies of  $330\,Hz$  and  $2.23\,KHz$ , corresponding  $f_L$  and  $f_H$ , respectively. Using ngpsice, we simulated the same circuit, where we obtained the following results:

| Cost                                       | 13426.472038661       |
|--------------------------------------------|-----------------------|
| Central frequency, $f_0$                   | 847.6288757705225     |
| Central frequency deviation $(diff_{F_0})$ | 152.3711242294775     |
| gain at $1000Hz$ , G (db)                  | 42.42502              |
| Gain deviation, $Diff_G$                   | 2.425020000000004     |
| Merit                                      | 1.649708859507576e-07 |
| Low Cut off                                | 3.95392e+02           |
| High Cut off                               | 1.81712e+03           |
|                                            | •                     |

### 3 Theoretical Analysis

#### 3.1 Input and output impedances.

To determine the input and output impedances, we first replace the Op-Amp with its equivalent circuit, as shown in figure (2).



Figure 2: Pass-band circuit, with the amp-pop replaced with its equivalent circuit.

Considering the amp-op configuration is a non-inverting amplifier(and the ideal amp-op model), we get that the output and input impedances,  $Z_O$  and  $Z_I$ , are 0 and  $\infty$ , respectively, and that the gain A is equal to :  $(1+\frac{R_3}{R_4})$ . Therefore we get the following circuit, in figure (3)



Figure 3: Pass-band circuit, with the amp-pop replaced with its equivalent circuit, using the ideal model aproximation.

Finally, we can deduce the expressions for the input and output impedances for the circuit,  $Z_I$  and  $Z_{0ut}$ , (as seen by  $V_{in}$  and  $V_{out}$ , respectively). From the circuit in figure (3), we get that ( there is no effect on the first part of the circuit, by  $V_{out2}$ , therefore it is not required to short-circuit the output):

$$Z_I(\omega) = Z_{C_4} + R_4 = \frac{1}{j\omega C_4} + R_4 \tag{1}$$

As for the output impedance, we need to short-circuit the input, hence we get the circuit in figure (4), from the  $V_{out_2}$  terminals:



Figure 4: Equivalent circuit seen by the terminals of  $V_{out_2}$ , when  $V_I=0$ .

Therefore we get that:

$$Z_O(\omega) = R_2 || C_3 = \frac{R_2}{j\omega C_3 R_2 + 1}$$
 (2)

,

#### 3.2 Transfer function

The transfer function is defined as the ration between the output and the input. In our case, the output is v0 and the input vs:

$$T(s) = \frac{v0}{vs}$$

after a little algebra, we get to the following expression:

$$T(s) = \frac{R_1 C_1 s}{1 + R_1 C_1 s} (1 + \frac{R_3}{R_4}) (\frac{1}{1 + R_2 C_2 s})$$
(3)

where, as usual

$$s = j\omega$$

#### 3.3 Cut-off frequencies

The theoretical cut-off frequencies,  $f_L$  and  $f_H$ , can be calculated by the Short Circuit Time Constants Method. They are given by 1:

$$f_L = \frac{1}{R_1 C_1} \tag{4}$$

$$f_H = \frac{1}{R_2 C_2} \tag{5}$$

where  $f_H$  is the hight cut-off frequency and  $f_L$  is the low cut-off frequency. Experimentally, the cut off frequencies will be calculated through the following expression:

$$f = \frac{V_{max}}{\sqrt{2}}$$

where f can be either  $f_H$  or  $f_L$ .

The Results obtained using octave were the following:

| Total Cost                  | 13458.69203866100 |
|-----------------------------|-------------------|
| Central Freq                | 714.25510087083   |
| Central Frequency diference | 285.74489912917   |
| Gain                        | 39.72291000000    |
| Gain Theoric                | 98.42407740711    |
| Cut off low                 | 222.94100000000   |
| Cut off high                | 2288.32000000000  |
| Gain Diference              | 0.27709000000     |
| ZO                          | 474.82104761502   |
| ZI                          | 1000.00000000000  |
| Merit                       | 0.00000097900     |
|                             |                   |

Table 1: Values used as parameters for the circuit studied.



Figure 5: Forced sinusoidal response.



Figure 6: Forced sinusoidal response.

# 4 Simulation Analysis

The Operating point analysis is the following: The graphs are the following:



Figure 7: Time analysis



Figure 8: Frequency analysis



Figure 9: —-



Figure 10: v(out)/v(in)

# 5 Conclusion