64

MACHINE-ASSISTED TRANSLATION (MAT):

(19)【発行国】

(19)[ISSUINGCOUNTRY]

日本国特許庁(JP)

Japan Patent Office (JP)

(12)【公報種別】 公開特許公報(A)

Laid-open (Kokai) patent application number

(A)

(11)【公開番号】

特開平6-231023

(11)[UNEXAMINEDPATENTNUMBER]

Unexamined-Japanese-Patent No. 6-231023

(43)【公開日】

(43)[DATEOFFIRSTPUBLICATION]

Heisei 6 (1994). August 19

平成6年(1994)8月19 日

(54)【発明の名称】

(54)[TITLE]

Information recording device

情報記録装置

(51)【国際特許分類第5版】

(**51)[IPC]** -5B G06F12/00

520E8526-5B

G06F 12/00 520 E 8526-5B G06K 19/07

G06K19/07 H04N 5/225

Z

H04N 5/225 5/907 Z H04N B 7916- 5/907

B7916-5C

5C

[FI]

[FI]

G06K 19/00

N 8623-5L G06K19/00

N8623-5L

【審査請求】

未請求

[EXAMINATIONREQUEST] UNREQUESTED

【請求項の数】 1

[NUMBEROFCLAIMS] 1

【出願形態】

ΟL

[Application form] OL

【全頁数】 10

[NUMBEROFPAGES] 10

(21)【出願番号】

特願平5-260557

(21)[APPLICATIONNUMBER]

Japanese Patent Application No. 5-260557

(62)【分割の表示】

特願平4-326072の分割

(62)[Display of divided patent application]

A divide of Japanese Patent Application No. 4-

(C) DERWENT

326072

(22)【出願日】

平成4年(1992)11月1

(22)[DATEOFFILING]

Heisei 4 (1992) November 11

1日

(71)【出願人】

(71)[PATENTEE/ASSIGNEE]

【識別番号】

000000376

[IDCODE]

000000376

【氏名又は名称】

オリンパス光学工業株式会社

Olympus Optical Co., Ltd.

【住所又は居所】

東京都渋谷区幡ヶ谷2丁目43 番2号 [ADDRESS]

(72)【発明者】

(72)[INVENTOR]

【氏名】 斉藤 和

Kazu Saito

【住所又は居所】

東京都渋谷区幡ヶ谷2丁目43 番2号 オリンパス光学工業株 式会社内 [ADDRESS]

(57)【要約】

(57)[SUMMARY]

【目的】

ファイル名称をDOSシステム に矛盾しないように決定して付加するとともに、ファイル名称 の一部をユーザーが指定できる 情報記録装置を提供する。 [OBJECT]

The information recording device as which a user can designate one part of a file name while determining a file name so that it may not be contradictory to a DOS system and adding is provided.

【構成】

DOS形式によるメモリ管理を 行う情報記録装置におけるファ イル名の所定の部分については [SUMMARY OF THE INVENTION]

It assembles by setup arbitrary about the predetermined part of the filename in the information recording device which performs the memory management by the DOS format, and a

については自動的にファイル名 を編成する。

任意の設定により且つ他の部分 filename is automatically assembled about another part.

It is the information recording device which

assigns the filename which respectively

corresponds the recorded voice data for every

recorded image data to predetermined unit for

every predetermined unit which is recorded

data to this data, and is stored in the area of

comprised such that it had means for

assembling by setup arbitrary about the

predetermined part of this filename on the

occasion of assignment of said filename, and

assembling a filename automatically about

The information recording device characterized

to

correspond.

recording medium

① ② ③ ④ ⑤ ⑥ ⑦ ® . J6 l

マニュアル設定部分

連番

Manual setting part, Consecutive number

【特許請求の範囲】

[CLAIMS]

[CLAIM 1] --

another part.

by the above-mentioned.

【請求項1】

被記録データたる各所定単位毎 の被記録画像データ乃至各所定 単位毎の被記録音声データをこ のデータにそれぞれ対応するフ ァイル名を割り当てて当該対応 する記録媒体の領域に格納する 情報記録装置であって、

上記ファイル名の割り当てに際 しこのファイル名の所定の部分 については任意の設定により且 つ他の部分については自動的に ファイル名を編成するための手 段を備えたことを特徴とする情 報記録装置。

【発明の詳細な説明】

[DETAILED DESCRIPTION OF INVENTION]

[0001]

【産業上の利用分野】

本発明は情報記録装置に関し、 特に情報データをファイルとし て記録媒体に記録する情報記録 装置に関する。

[0001]

[INDUSTRIAL APPLICATION]

This invention relates to the information recording device.

Specifically, it is related with the information recording device recorded on a recording medium by considering the information data as a file:

[0002]

[0002]

【従来の技術】

例えば、電子スチルカメラでは、 メモリカード、磁気記録媒体、 光磁気記録媒体等の記録媒体に 画像データ、音声データ、制御 データ等の各種データをファイ ルとして記録する。メモリカー ド等の記録媒体にデータをファ イル形式で記録する場合には、 メモリ管理は、データの互換性 の面でパーソナルコンピュータ 等で標準的なDOS形式で行わ れることが望ましく、電子スチ ルカメラではDOS形式により メモリが管理されている。この ことは他の情報記録装置につい ても同様である。

[0003]

【発明が解決しようとする課 題】

上述のように、従来の電子スチ ルカメラ等の情報記録装置は、 DOS形式によるメモリ管理方 式を採用しているが、データを 認識するためにファイル名称が 必要となり、また管理規約上、 DOS形式によるメモリ管理 は、名称の重複を許さないとい う制限がある。一方、パーソナ ルコンピュータとのデータ互換 を容易にすると、カード内に記 録されているデータのファイル 名称は、パーソナルコンピュー タにより記録されたカメラの想 定外のファイル名称が含まれる ことがある。また、カメラで記

[PRIOR ART]

For example, in an electronic still camera, various data, such as image data, voice_data, and control data, are recorded on recording media, such as a memory card, a magnetic recording medium, and a magneto-optical recording medium, as a file.

When recording data on recording media, such as a memory card, by the file format, as for a memory management, it is desirable to be carried out in a standard DOS format with a personal computer etc. in respect of the compatibility of data, and the memory is managed according to the DOS format in the electronic still camera.

This is similar also about another information recording device.

[0003]

[PROBLEM ADDRESSED]

As mentioned above, the memory-management system by the DOS format is used for the information recording devices, such as the conventional electronic still camera.

However, a file name is needed in order to recognize data, moreover, the memory management by the DOS format has the limit of not allowing duplication of a name, on management agreement.

If a data compatibility with a personal computer is made easy on the other hand, the file name besides assumption of the camera on which the file name of the data currently recorded in the card was recorded with the personal computer may be contained.

Moreover, when utilizing the data file recorded with the camera by the personal-computer side, data are transmitted to the recording medium by the side of a personal computer.

In this case, when there is the same thing as the

filename of data, one side file may be overwritten and destroyed.

It is important to avoid duplication of this file name.

However, it is also important on use that a user can designate a file name.

[0004]

そこで、本発明の目的は、ファイル名称をDOSシステムに矛盾しないように決定して付加するとともに、ファイル名称の一るとともに、ファイル名称の情報記録装置を提供することにもを発明の他のデータ破壊の恐れがない情報記録を提供することにある。

[0005]

[0004]

Then, objective of the invention is to provide the information recording device as which a user can designate one part of a file name while determining a file name so that it may not be contradictory to a DOS system and adding.

The other objective of this invention is to provide the information recording device which does not have fear of a data destruction at the time of a data exchange with other systems, either.

[0005]

ISOLUTION OF THE INVENTION

In order to solve the above-mentioned subject, the information recording device by this invention is the information recording device which assigns the filename which respectively corresponds recorded for every predetermined unit image data to the recorded voice data for every predetermined unit which are recorded data to this data, and is stored in the area of recording medium to correspond, comprised such that in the case of assignment of said filename, it has means for assembling by setup arbitrary about the predetermined part of this filename, and assembling a filename automatically about another part, and is

分については自動的にファイル constituted. 名を編成するための手段を備え て構成される。

[0006]

[0006]

【作用】

本発明では、上記情報記録装置 におけるファイル名の所定の部 分については任意の設定により 且つ他の部分については自動的 にファイル名を編成する。つま り、ファイル名称の一部のユー ザによる指定を可能とし、残り の部分をカメラが補うことによ って重複を回避する名称を生成 できるようにしている。

[0007]

【実施例】

次に、本発明の実施例について 図面を参照しながら説明する。 図1は、本発明に関連する情報 記録装置の一例である電子スチ ルカメラの構成ブロック図であ る。光学系1を介して被写体像 は、撮像回路2の撮像素子に結 像され、電気映像信号に変換さ れる。この映像信号は、A/D 変換回路3でデジタル信号に変 換され、フレームメモリ4に格 納される。フレームメモリ4か ら読み出された映像データは、 D/A変換回路5でアナログ信 号に変換された後、ビデオエン コーダ6で映像信号に変換さ れ、液晶等から構成されるビュ ーファインダ7でモニタ表示さ れるとともに、出力端子OUT

[EFFECT]

In this invention, it assembles by setup arbitrary about the predetermined part of the filename in said information recording device, and a filename is automatically assembled about another part.

Designation by the user of one part of a file name is enabled, and when a camera supplements the remaining part, it enables it to produce the name which avoids duplication in other words.

[0007]

[Example]

Next, it demonstrates, referring drawing about the Example of this invention.

FIG. 1 is the composition block diagram of the electronic still camera which is an example of the information recording device relevant to this invention.

Through an optical system 1, a photographedobject image is image-formed by the image sensor of the imaging circuit 2, and is transformed into an electric video signal.

This video signal is converted into a digital signal by the A/D converting circuit 3, and is stored in a frame memory 4.

After the video data read from the frame memory 4 are converted into an analog signal by the D/A converting circuit 5, they are converted into a video signal with the video encoder 6, while a monitor display is carried out by the view finder 7 which consists of liquid crystals etc., an is supplied to output terminal OUT.

に供給される。

[0008]

また、フレームメモリ4から読み出された映像データは、圧縮伸長回路8でデータ圧縮され、バス10及びカードインタフェース (I/F) 回路9を介してメモリカード16に記録される。

[0.009]

再生時には、メモリカード16からカードI/F回路9を行び、メモリカード16で読み出された映像データはされた映像長処理を担める。フレーはといる。カーダ6の処理を経っていまり、ビーダ6の処理を経っては、レーダ6の処理を経っていまり、ビーダ6の処理を経っていまり、ビーダインがよる。

[0010]

システムコントローラ12は、 本カメラ装置全体を制御する。 時計モジュール11は、後述す るような本例に特有な処理を行 うための日付、時刻等の情報を システムコントローラ12に供 給する。不揮発メモリ13は、 システムコントローラ12の動 作に必要な情報を記録する。表 示パネル14は、本カメラ装置 の動作状態を表示する。操作ス イッチ15は、カメラ動作を指 示する各種タクトスイッチから 成る。ブザー17は、後述する ように、カメラ動作に不適切な 状態が生じたときに警報を発す

[8000]

Moreover, the data compression of the video data read from the frame memory 4 is carried out in the compression-and-expansion circuit 8, it records on a memory card 16 through a bus 10 and the card interface (I/F) circuit 9.

[0009]

At the time of regeneration, the video data read from the memory card 16 through the card I/F circuit 9 are stored in a frame memory 4, after the extension process is carried out in the compression-and-expansion circuit 8.

The image data read from the frame memory 4 is converted into a video signal passing through a process of the D/A converting circuit 5 and the video encoder 6, it outputs to the view finder 7 or an output terminal OUT.

[0010]

The system controller 12 controls this whole camera apparatus.

The clock module 11 supplies information, such as the date, time, etc. for performing a process peculiar to the example of a book which is mentioned later, to the system controller 12.

The unvolatile memory 13 records necessary information on operation of the system controller 12.

A display panel 14 displays the operating_state of this camera apparatus.

The operation switch 15 consists of the various tact switch which indicates camera operation.

A buzzer 17 generates a warning, when an unsuitable state arises to camera operation so that it may mention later.

る。

[0011]

本例は、ファイル名称として固 定パターン、連番、日付及び時 刻データの所定の演算結果の組 み合わせで定めたファイル名称 を設定することにより従来の不 都合を解消している。 図2は、 メモリカード内のDOS規定に よる領域配置例を示す。メモリ カード記録領域は、ブートセク タ領域、FAT領域、ルートデ ィレクトリ領域及びデータファ イル記録領域から成り、ルート ディレクトリ領域は、図3に示 すように、連続するディレクト リエントリ0, 1, 2, 3, 4, …領域を有する。電子スチルカ メラでは、各エントリ領域 0, 1、2、3、4、…にコマ番号 1, 2, 3, 4, 5, …を割り 当てている。

[0012]

[0013]

ファイル名称は、図 5 に示すよ うに、主ファイル名 8 バイトの うちの 3 バイト"DSC"を固

[0011]

This example cancels the conventional problem by setting up the file name defined as a file name in the combination of the given calculation result of a fixed pattern, a consecutive number, a date, and time data. FIG. 2 shows the example of an area arrangement by DOS normal in a memory card. A memory-card recording area consists of a boot sector area, FAT area, a route directory area, and a data-file recording area, a route directory area has the direct reentries 0, 1, 2, 3, and 4... area which continue as shown in FIG. 3

In the electronic still camera, the frame numbers 1, 2, 3, 4, and 5... are assigned to each entry areas 0, 1, 2, 3, and 4...

[0012]

As shown in FIG. 4, this direct reentry is divided by a file name, an attribute, reservation, time, the date, the start cluster, and the area that shows the size of a file, a file name consists of 11 bytes, it consisting of main filename: 8 bytes and subfilename: 3 bytes.

The following description demonstrates a route directory.

However, the same is similar of a sub-directory.

[0013]

As shown in FIG. 5, a file name considers 3 bytes "DSC" of 8 bytes of main filename as fixation, 3 bytes of subfile "J6I" is considered as fixation.

定とし、副ファイル3バイト"J 6 I"を固定とする。主ファイ ル名の残りの6バイトのうち3 バイト ((1)~(3)) に日付、時刻 の後述演算結果を割り当てて、 2 バイト ((4)と(5)) に連番を割 り当てている。上記桁数、位置 は規格内で自由に選定できる。 連番は、名称の連番以外の部分 が決定した時点からの連番とす れば良い。また、エントリ番号 等の加工データでも良い。バイ ト(1)~(3)は、メモリカードが装 着された時点の日付、時刻デー タを用いつつ後述するような演 算を行うことにより決定され る。メモリカードが脱着される まで、そのデータは保持される。 この演算は、パワーオン時に計 算し直しても良いし、撮影のた びに計算しても良い。

[0014]

上記演算は、例えば、ハッシュ 関数を用いて図6のように行わ れる。図6の例は、'92.09. 26の13:19 (1992年 9月26日、13時19分)に ついてのもので、各数字を縦一 列に並べ、各数字を2進数で表 現し、1ビットずつずらして配 置した後、各2進数値を縦方向 にEX-OR(排他的論理和) をとる。この場合のEX-OR 演算は、各桁の"1"の総和が 奇数のとき"1"とし、偶数の とき"0"とする。結果は、最 下段に表示され、これを上位側 から4ビットずつに区切って読 み替え、0~9、A~F(16 進数)で読み、ASCIIコー ドに読み替える。このとき、最

The below-mentioned calculation result of the date-and-time-is-assigned-to-the-three=((:1:)=(3)) of 6 bytes of the main filename remaining, and the consecutive number is assigned to 2 bytes ((4) and (5)).

Said number of beams and a position can be freely specified within a specification.

What is sufficient is just to make a consecutive number into a consecutive number from the time of determining the part besides the consecutive number of a name.

Moreover, the machining data, such as an entry number, are also good.

Byte (1)-(3)—is—determined—by—performing a calculation which is mentioned—later,—using—the date and time-data-at-the-time-of-a memory card being-mounted.

The data is maintained until a memory card-is desorbed.

This calculation may be recalculated at every imaging.

[0014]

Said calculation is performed like FIG. 6 using a hash function.

The example of FIG. 6 is a thing about '92.09.26 13:19 (13:19 on September 26, 1992), arranges several each in a longitudinal single tier, and expresses several each by the binary number, after shifting 1 binary digit at a time and arranging, EX-OR (exclusive OR) is taken for each binary numerical value to a vertical direction.

EX-OR operation in this case is set to "1" when the number of sum total of each beam of "1" is odd, it is referred to as "0" when even-numbered.

A result is displayed by the starting step, it divides and reads this at a time as 4 binary digits from a higher-order side, and it reads by 0-9 and A-F (sexadecimal numeral), and is read as an ASCII code.

The last byte does not use at this time.

The result is set to "937" like illustration.

終バイトは使用しない。その結 果は、図示の如く、"937"と なる。

[0015]

したがって、記録されたファイル名称は、図7に示すような名称となり、決定されたファイル名称はビューファインダや外部モニタ画面に表示することができる。

[0016]

上述ファイル名称の決定方法において、名称はアルファベットのコードに読み替えても良にいいるがある。また、ファイル名称の変の際の演算は、ハッシュ関数法以外の他の任意の手法で行っともできる。

[0017]

次に、ファイル名称の重複時の問題を解決して回避する例について説明する。パーソナルコンピュータ等の外部機器とデータ互換を行うと媒体内のデータファイルとしてどのような名を可能性は常に存在する。本のは、このような問題を回避するものである。

[0018]

本例では、先ず、上記の如く決定したファイル名称を保持するとともに、表示可能であれば表示する。次に、ディレクトリ内のファイル名称を検索して一致するファイル名称があるかない

[0015]

Therefore, the recorded file name turns into a name as shown in FIG. 7, the determined file name can be displayed on a view finder or an external monitor screen.

[0016]

In the determination method of an abovementioning file name, a name may be read as a code of an alphabet and the bit of a paragraph can be set up arbitrarily.

Moreover, it may perform the calculation in the case of file name determination by other arbitrary approaches other than a hash function method, a random number etc. can also be used.

[0017]

Next, the example which solves and avoids the problem at the time of duplication of a file name is demonstrated.

Whenever_it-performs a data-compatibility-with external—apparatuses, such as a personal computer, it cannot estimate what kind of name there is as a data file in a medium, and duplicating possibility exists.

This-example-avoids-such a problem.

[0018]

In this example, while maintaining the file name first determined as mentioned above, if displayable, it will display.

Next, if it investigates whether there is any file name which searches the file name in a directory and corresponds and there is nothing corresponding, the file name will be used as it

かを調べ、一致するものがなければ、そのままそのファイル名称を使用し、一致するものがあれば連番部分をインクリメントして、再び上記ファイル名称の検索処理に戻るような処理を行う。

is, a consecutive part will be incremented if there are some corresponding, a process which returns to a search process of said file name again-is performed.

[0019]

[0020]

図10には、本例の処理手順の フローチャートが示されてい る。メモリカードが装着される と、先ずカード管理エリアを読 み出し(ステップS1)、カード フォーマットが適正か、記録容 量が充分か等を判断し、記録可 能か否かを判定する(ステップ S2)。記録可能ではないと判定 されると警告処理を実行し(ス テップS11)、記録可能であれ ば、管理エリアのデータから記 録開始アドレスを計算する(ス テップS3)。次に連番カウンタ を初期化し(ステップS4)、時 計モジュール11から日付、時 刻データ(本例では、92.0. 9.26 13:19) を読み 出し(ステップS5)、前述のよ

[0019]

For example, if the imaging data of the 1st sheet are recorded when the content of the directory of the mounted memory card is content as shown in FIG. 8, the data of the 1st sheet will be recorded on A area of FIG. 9. Since the file name "DSC93702.J61" of the 2nd sheet already exists in case the data of the 2nd sheet are recorded (C parts of FIG. 9), a consecutive part is incremented and it records on B area.

[0020]

The flowchart of the process procedure of this example is shown by FIG. 10.

First, a mounting of a memory card reads card management area (step_S1), it-judges fitness and recording capacity has an enough card format, or etc., and it-determines whether it is recordable (step S2).

If it determines that it is not recordable, a warning process will be performed (step S11), and if recordable, a recording start address will be calculated from the data of management area (step S3).

Next, a consecutive counter is initialized (step S4), the date and time data (this example '92.09.26 13:19) are read from the clock module 11 (step-S5), it changes into a file name by the above calculations ("937"), and maintains (step S6).

Then,—a—file—name—("DSC93701:J6I")—is produced:(step=S7), this file name is compared with the filename in a directory (step=S8), and-it-determines—whether there is any same name

うな演算によりファイル名称に 変換し("937")、保持する(ステップS6)。続いて、ファイル6 インプS6)。続いて、ファイル6 インプSC93701. J6 インプSC93701. J6 インプSC93701. J6 インプSC93701. J6 インプSC93701. J6 インクステンディレーののののでは、 インクステンジンがでいるのである。 に、インクスがのファイルののでは、 インクスがのファイルののでは、 インクスがのファイルののでは、 インクスを使用するに、 インクステップS10)、 ステップS10)、 ステップS10) ステ

(step_S9).

変換し("937")、保持する(ス Here-if-a process will be completed if there is アップS6)。続いて、ファイル no_same_name (the-file-name_is_used), and there is the same name, a consecutive part will be incremented (step S10) and it will return to a process of step S8.

[0021]

ステップS11の警告処理は、図11に示すようにモニタ画面上のコマ番号部分を点滅させるとともにブザーを鳴動させる等の処理である。図10において、ファイル名称の重複を回避する処理がステップS8~S10の処理である。

[0022]

 [0022]
The flowchart of the process procedure at the time of recording is shown by FIG. 12.

First, at the time of recording, a recording start address is set up from the data of management area (step S21), and imaging is processed at it (step S22), after performing compression and the transmission process (step S23), writing-in of a directory and FAT is performed (step S24). If the next recording process is started, a recording start address will be calculated (step S25), it determines whether recording with the enough remaining recording_capacity is possible (step S26).

Here, if it determines that it is not recordable, a warning is processed like the above-mentioned (step S30), if recordable, a consecutive number will be incremented (step S27) and a file name

A warning process of step S11 is a process of etc. which rings a buzzer while, blinking the frame number part on a monitor screen as shown in FIG. 11.

In FIG. 10, the process which avoids duplication of a file name is a process of step S8-S10.

でないと判定されると、前述と同様に警告処理を行い(ステップS30)、記録可能であればスチップS27)、ファイル名称をセップS27)、ファイル名称を生成する(ステップS28)。その後、図11に示す重複回避処理を施して(ステップS29)、処理を終了する。

will be produced (step S28).

process is completed.

[0023]

[0023]

Next, as an Example of this invention, a manual setup of one part of a file name is enabled, an electronic still camera which adds the fixed pattern which a user sets up, and a consecutive number is demonstrated.

After that, the duplication avoidance process

shown in FIG. 11 is performed (step S29), and a

A manual setup makes possible 6 bytes (character) of the main filename which constitutes a file name as shown in FIG. 13, let 2 bytes be a consecutive number like an above-mentioning Example, let remaining 3 bytes be a fixed pattern "J6I."

[0024]

マニュアル設定時には、マニュ アル設定指示スイッチを操作す ると、図14(A)に示す如く モニタ上に表示されている第1 バイト対応の第1桁目の表示が 点滅して1桁目の設定を促す。 操作スイッチ15のUP/DO WNスイッチを押すと、図14 (B) のように、アルファベッ トが順次点滅表示される。ユー ザの希望するアルファベットが 表示されたら、設定スイッチを 押すと確定し、点滅表示は図1 4 (C) のように次の桁に移る。 各桁の設定が完了したときの表 示が図14(D)に示されてい る。本例では、ユーザによるフ

[0024]

If a manual setting indication switch is operated in a manual setup time, the display of the 1st beam of the 1st byte correspondence displayed on the monitor as shown in FIG.14(A) blinks, and a setup of a single figure is urged.

A push on the UP/DOWN switch of the operation switch 15 carries out the blink display of the alphabet like FIG.14(B) at order.

If the alphabet which a user wishes is displayed, it will decide, if a setting switch is pushed, and it moves from a blink display to the following beam like FIG.14(C).

The display when a setup of each beam is finalized is shown by FIG. 14 (D).

In this example, the setting character as a file name by the user is "BIRTH."

After that, the display on a monitor serves as a direct reentry position (this example "01") which is a display usually as shown in FIG. 14 (E).

ァイル名称としての設定文字が "BIRTH"である。その後、モニタ上の表示は、図14(E)に示す如く、通常表示であるディレクトリエントリ位置(本例では"01")となる。

[0025]

[0026]

次に説明する例は、画像等のデ ータファイルのサイズが変更さ れた場合に記録領域の媒体上の ・位置を変更する例である。例え ば、映像データを圧縮処理する ときの圧縮率、モノクロ/カラ ー、フィールド/フレーム、単 写/連写やこれらの組み合わせ が変化する等の場合のように動 作モードやシステムデータが変 更されると、記録に要するメモ リ容量(目標ファイルサイズ) が変化する。本例は、かかる目 標ファイルサイズの変化に対応 して、未記録ブロックの再検索 を行い、記録領域の媒体上の位 置を適宜変更する。

[0027]

図16 (A) には、メモリカー ドの記録領域が示され、メモリ

[0025]

In this way, a file name is set up and recorded. The state where recording of three sheets was finalized is shown by FIG. 15.

When duplication of a file name occurs, duplication is avoided by incrementing a consecutive number like above-mentioning.

This Example of the ability to also apply a subdirectory is needless to say.

A setup of a sub- directory name is performed similarly.

[0026]

The example demonstrated below is an example into which the position on the medium of a recording area is altered, when the size of data files, such as an image, is altered.

If an operation mode and a system data are altered like in the compression rate, monochrome/color, the field/frame, the single frames/continuous frames, and such combination when carrying out the compression process for example, of the video data changing etc.

The memory capacity (target file size) which recording takes changes.

This example is corresponding to the change of this target file size, a non-recorded block is rereferred and the position on the medium of a recording area is altered suitably.

[0027]

The recording area of a memory card is shown by FIG.16(A), the management area which is

管理の単位である管理エリアと、斜線部で示される記録済エリアが存在する。各記録ファイルサイズは、1個分が同図(B)に示すようなファイルサイズAに相当し、同図(C)に示すファイルサイズBはファイルサイズAの2倍のサイズとする。

[0028]

今、記録する映像データのファイルは、A にいければ、 (A) のおれば、 (A) がは、 (

[0029]

未記録エリアが図17に示すように、ファイルサイズAしかない場合には、ファイルサイズAの記録であればポインタAを設定し、ファイルサイズBの記録時には未記録エリアは不充分なため、警告を行う。

[0030]

図18には、ファイルサイズを 切り換える例における処理手順 のフローチャートが示されてい る。ファイルサイズが切り換え られると、設定条件によるファ イルサイズのデータテーブルを 参照してファイルサイズを決定 the unit of a memory management, and the recording settled area shown in an oblique-line part exist.

Each recording file size, it corresponds to file size A as the amount of 1 piece shows to this figure (B), let the file size B shown to this figure (C) be size of the double of file size A.

[0028]

Now, non-recorded area will be re-referred if the file size of the video data to record is A, although it is recordable on sheep recording area #1 as which the recording start position is designated with the pointer A of this figure (A), when file size is B, since sheep recording area #1 is insufficient as for recording_capacity, Pointer B will be set up that it should record on sheep recording area #2.

In the case of a continuous frame, since as big non-recorded area as possible is desirable, Pointer B is set up.

[0029]

When non-recorded area has only file size A as shown in FIG. 17, Pointer A will be set up if it is recording of file size A, since non-recorded area is inadequate at the time of recording of file size B, it warns.

[0030]

The flowchart of the process procedure in the example which switches file size is shown by FIG. 18.

If file size is switched, file size will be determined with reference to the data table of the file size by setting conditions (step S41), the non-recording area by FAT search will be searched (step S42), and the existence of a

し (ステップS41)、FAT検 索による未記録領域の検索を行 い (ステップS42)、未記録領 域の有無を判定する(ステップ S43)。ここで、未記録領域が なければ、警告処理を実行し(ス テップS46)、未記録領域があ れば、ファイルサイズ以上の充 分な連続領域か否を判定する (ステップS44)。ステップS 44で充分な連続領域でないと 判定されるとステップS42の 処理に戻り、充分な連続領域で あると判定されれば、記録開始 領域のポインタを設定して(ス テップS45)、処理を終了す る。ポインタは、図12の記録 開始アドレス設定時に使用され る。

[0031]

上述説明の例では、ファイル名称として日付、時刻の加工データを含む名称を生成し、ファイル名称の重複回避機能を有する。また、データサイズが変わる操作が行われたときには、媒体の記録可能領域の再検索を行って使用性を改善している。

[0032]

【発明の効果】

以上説明したように、本発明の情報記録装置によれば、DOSシステムに矛盾しないファイル名称の生成が可能であり、ファイル名称の重複に伴うデータ破壊の問題も解決できるだけでなく、ファイル名称の一部をユーザが指定でき、残りの部分をカ

non-recording area will be determined (step S43).

Here, if there is no non-recording area, a warning process will be performed (step S46), and if there is a non-recording area, sufficient continuous area or no more than file size will be determined (step S44).

If it determines that it is not continuous area sufficient in step S44, it will return to a process of step S42, and if it determines that it is sufficient continuous area, the pointer of a recording start area will be set up (step S45), and a process will be completed.

A pointer is used by the recording start address setup time of FIG. 12.

[0031]

In the example of above-mentioning description, the name which contains the machining data of the date and time as a file name is produced, it has the duplication avoidance function of a file name.

Moreover, when operation in which data size changes is performed, the recordable area of a medium was re-referred and usability is improved.

[0032]

[EFFECT OF THE INVENTION]

As explained above, according to the information recording device of this invention, the production of a file name which is not contradictory to a DOS system can be performed, the problem of the data destruction accompanied to duplication of a file name is not only also solvable, but a user can designate one part of a file name, when a camera supplements the remaining part, the name which avoids

メラが補うことによって重複を 回避する名称を生成できる。

メラが補うことによって重複を duplication can be produced.

【図面の簡単な説明】

[BRIEF EXPLANATION OF DRAWINGS]

[図1]

本発明に関連する情報記録装置 の一例を示す電子スチルカメラ のブロック図である。

[FIG.1]

It is the block diagram of the electronic still camera which shows an example of the information recording device relevant to this invention.

[図2]

図1の例におけるメモリカード 内の領域配置図である。

[FIG.2]

It is an area layout in the memory card in the example of FIG. 1.

【図3】

図2のルートディレクトリの構造を示す図である。

[FIG.3]

It is the figure which shows the structure of the route directory of FIG. 2.

【図4】

図3のディレクトリエントリの 構造を示す図である。

[FIG.4]

It is the figure which shows the structure of the direct reentry of FIG. 3.

【図5】

上述の例におけるファイル名称 の構成例を示す図である。

[FIG.5]

It is the figure which shows the example of composition of the file name in the example of above-mentioning.

【図6】

上述の例におけるファイル名称 生成処理を説明するための図で ある。

[FIG.6]

It is a figure for demonstrating the file name production process in the example of above-mentioning.

【図7】

図6の処理により生成されたファイル名称を示す図である。

[FIG.7]

It is the figure which shows the file name produced by the process of FIG. 6.

【図8】

上述の例における装置されたメ モリカードのディレクトリ例を 示す図である。

[FIG.8]

It is the figure which shows the example of a directory of the equipped memory card in the example of above-mentioning.

[図9]

[FIG.9]

録した後のディレクトリを示す 図である。

図8のカードに2枚の画像を記 It is the figure which shows the directory of the back on which was recorded the image of two sheets on the card of FIG. 8.

【図10】

上述の例におけるメモリカード 装着時の処理手順を示すフロー チャートである。

【図11】

図10に示す例における警告処 理時のモニタ上の表示例を示す 図である。

【図12】

上述の例における記録時の処理 手順を示すフローチャートであ る。

【図13】

本発明の実施例におけるファイ ル名称をマニュアル設定可能と したファイル名称の構成例を示 す図である。

【図14】

図13に示す実施例における動 作指示、設定時のモニタ上の表 示例の変化を示す図である。

【図15】

図13に示す実施例における記 録終了時のディレクトリを示す 図である。

【図16】

本発明に関連する他の例におけ る目標ファイルサイズの変更時 の処理を説明するための図であ る。

【図17】

[FIG.10]

It is the flowchart which shows the process procedure at the time of the memory-card mounting in the example of above-mentioning.

[FIG.11]

It is the figure which shows the example of a display on the monitor at the time of the warning process in the example shown in FIG. 10.

[FIG.12]

It is the flowchart which shows the process procedure at the time of recording in the example of above-mentioning.

[FIG.13]

It is the figure which shows the example of composition of the file name whose manual setup of the file name in the Example of this invention was enabled.

[FIG.14]

It is the figure which shows the change of the example of a display on the operation indication in the Example shown in FIG. 13, and the monitor of a setup time.

[FIG.15]

It is the figure which shows the directory at the time of the recording completion in the Example shown in FIG. 13.

IFIG.161

It is a figure for demonstrating the process at the time of alteration of the target file size in the other example relevant to this invention.

[FIG.17]

上述の例における未記録エリア が足りない状態を説明するため の図である。

It is a figure for demonstrating the state where the non-recorded area in the example of abovementioning is insufficient.

【図18】

上述の例におけるファイルサイ ズ切り換え時の処理手順を示す フローチャートである。

[FIG.18]

1 2

It is the flowchart which shows the process procedure at the time of the file size switch in the example of above-mentioning.

【符号の説明】

【符号の訳	」 明】
1	光学系
2	撮像回路
3	A/D変換回路
4 .	フレームメモリ
5	D/A変換回路
6	ビデオエンコーダ
7	ビューファインダ
8 ·	圧縮伸長回路
9 .	カードインタフェー
ス(I/F)回路
1 0	バス
1 1	時計モジュール
1 2	システムコントロー
ラ	
1 3	不揮発メモリ
1 4	表示パネル
1 5	操作スイッチ
1.6	メモリカード

[EXPLANATION OF DRAWING]

Optical system

Imaging circuit

3	A/D converting circuit
4 ·	Frame memory
5	D/A converting circuit
6	Video encoder
7	View finder
8	Compression-and-expansion circuit
9	Card interface (I/F) circuit
10	Bus
11	Clock module
12	System controller
13 ·	Unvolatile memory
14	Display panel
15	Operation switch
16	Memory card
17	Buzzer

【図2】

1 7

[FIG.2]

Boot sector
Route directory
Data-file recording area

【図3】

[FIG.3]

Route directory Frame No.

Entry 0

Entry 1

Entry 2

Entry 3

Entry 4

【図4】

[FIG.4]

() GEH		OCH 16H					_	
	ファイル名称	属性	(予約)	時間	日付		開始	ファイルの	IFH D
١						クラスタ	大きさ	١	

File name, Attribute, (Reservation), Time, Data, Start cluster, Size of file

【図5】

[FIG.5]

Fixed, Calculation result of date and time, Consecutive number,

【図6】.

[FIG.6]

In the case of 92. 09. 26 13:19

It does not use.

【図7】

[FIG.7]

DSC	9	3	7	0	1	•	J	6	1
DSC	9	3	7	0	2		J	6	i
		;							

【図8】

[FIG.8]

Entry

【図11】

[FIG.11]

Frame number partial blink

【図13】

[FIG.13]

```
① ② ③ ④ ⑤ ⑥ ① ⑤ . Jf!
```

Manual setting part, Consecutive number

【図15】

[FIG.15]

【図1】

[FIG.1]

1 Optical system

Photographed object

- 2 Imaging circuit
- 3 A/D converting circuit
- 4 Frame memory
- 5 D/A converting circuit

JP6-231023-A

- 6 Video encoder
- 7 View finder
- 8 Compression-and-expansion circuit
- 9 Card (I/F)
- 11 Clock module
- 12 System controller
- 13 Unvolatile memory
- 14 Display panel
- 15 Operation switch
- 16 Memory card
- 17 Buzzer

【図9】

[FIG.9]

DSC93702.J6I duplicated.

【図10】

[FIG.10]

Card mounting

- S1 Card management area read-out
- S2 Recordable
- S11 Warning process
- S3 Recording start address computation
- S4 Consecutive counter initialization
- S5 A date and time data read-out
- S6 It changed and maintained to the name by calculation.
- S7 File name production
- S8 The filename and comparison in a directory

S9 Those with the same name?
S10 Increment of a consecutive part
S8-S10 Duplication avoidance process
Completion

【図16】

[FIG.16]

(A)

FAT directory

Pointer A

Pointer B

Management area

Recorded

Recorded

The unit of a memory management

(B)

File size A

Recorded

(C)

File size B

【図17】

[FIG.17]

Management area Recorded Pointer A

【図12】

[FIG.12]

Recording

- S21 Recording start address setup
- S22 Imaging process
- S23 Compression / transmission process
- S24 Writing-in of a directory and FAT

The next recording

- S25 Recording start address computation
- S26 Recording start

S30 Warning process

S27 Consecutive increment

S28 File name production

S29 Duplication avoidance process

Completion

【図14】

[FIG.14]

Manual setting indication SW

The single figure blinked.

An alphabet is displayed one by one by pushing UP/DOWN SW.

29/32

(B)

Blink

It will decide, if Setup SW is pushed,

blink moves to the following digit.

(C)

Blink

(D)

A setup was finalized.

The display of a consecutive number and a fixed pattern (E)

It returns to a normal display.

【図18】

[FIG.18]

A change of file size

S41 Determination of file size

S42 Search of non recording area

JP6-231023-A

S43 Those with non recording area.
S46 Warning process
S44 Continuous area more than file size
S45 The pointer of a recording start area was set up.
Completion

DERWENT TERMS AND CONDITIONS

Derwent shall not in any circumstances be liable or responsible for the completeness or accuracy of any Derwent translation and will not be liable for any direct, indirect, consequential or economic loss or loss of profit resulting directly or indirectly from the use of any translation by any customer.

Derwent Information Ltd. is part of The Thomson Corporation

Please visit our home page:

"WWW.DERWENT.CO.UK" (English)
"WWW.DERWENT.CO.JP" (Japanese)