

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Фундаментальные науки»

ОТЧЕТ по лабораторной работе Классификация изображений

Студент группы ФН12-33М Д.С. Тихонова

Оглавление 2

Оглавление

1.	Описание датасета	3
2.	Описание архитектуры	3
3.	Функция потерь, точность	6
4.	Матрица ошибок	7
5.	Примеры тестовых данных, на которых нейронная сеть ощибается	7

1. Описание датасета

Данные разбили на тренировочный набор данных и тестовый в соотношении 80% на 20%. Также была проведена аугментация данных, для увеличения тренировочной выборки.

2. Описание архитектуры

Для классификации изображений использовали свертночную нейронную сеть resnet18.

```
ResNet(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=le-05, momentum=0.1, affine=True, track running stats=True)
   (relu): ReLU(inplace=True)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
     (0): BasicBlock(
        (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(64, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
     (1): BasicBlock(
        (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
       (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (layer2): Sequential(
     (0): BasicBlock(
       (conv1): Conv2d(64, 128, kernel size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
        (relu): ReLU(inplace=True)
       (conv2): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
       (downsample): Sequential(
         (0): Conv2d(64, 128, kernel size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
     (1): BasicBlock(
       (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
       (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True)
       (conv2): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (layer3): Sequential(
     (0): BasicBlock(
       (conv1): Conv2d(128, 256, kernel size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn1): BatchNorm2d(256, eps=1e-0\overline{5}, momentum=0.1, affine=True, track_running_stats=True)
       (relu): ReLU(inplace=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)
       (downsample): Sequential(
          (0): Conv2d(128, 256, kernel size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
```

Рис. 2.1.

```
(1): BasicBlock(
    (conv1): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (relu): ReLU(inplace=True)
    (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
(layer4): Sequential(
  (0): BasicBlock(
    (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (relu): ReLU(inplace=True)
    (conv2): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (downsample): Sequential(
  (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
      (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
  (1): BasicBlock(
    (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
    (relu): ReLU(inplace=True)
    (conv2): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
(avgpool): AdaptiveAvgPool2d(output size=(1, 1))
(fc): Linear(in_features=512, out_features=4, bias=True)
```

Рис. 2.2.

Сначала использовали архитектуру со случайной инициализацией весов, получили точность 0.72, далее использовалась архитектра с предобученными весами. Ниже будет приведена информация по нейронной сети с предобученными весами.

3. Функция потерь, точность

Рис. 3.1. Зависимость функции потери от эпохи

Рис. 3.2. Зависимость точности от эпохи

Точность на лучшей эпохе: 0.9113

F1 на лучшей эпохе: 0.9115

4. Матрица ошибок

Число неверных предсказаний на тестовых данных: 115

5. Примеры тестовых данных, на которых нейронная сеть ошибается

predicted: Soup, true: Dessert

Рис. 5.1.

predicted: Dessert, true: Bread

Рис. 5.2.

predicted: Meat, true: Bread

Рис. 5.3.

predicted: Bread, true: Meat

Рис. 5.4.

predicted: Dessert, true: Bread

Рис. 5.5.

predicted: Soup, true: Meat

Рис. 5.6.

predicted: Bread, true: Soup

Рис. 5.7.

predicted: Meat, true: Dessert

Рис. 5.8.