

Теория автоматического управления

Немодальные методы стабилизации систем

С лекций: экспоненциальная устойчивость

Асимптотическая устойчивость

При всех начальных условиях x(0) выполнено $\lim_{t \to \infty} \|x(t)\| = 0$

Экспоненциальная устойчивость

Существуют положительные числа c и α такие, что при всех начальных условиях x(0) выполнено $||x(t)|| \le ce^{-\alpha t} ||x(0)||$

Для линейных стационарных систем оба типа устойчивости эквивалентны...

...но в определении экспоненциальной устойчивости дополнительно упоминается скорость сходимости, связанная со степенью устойчивости

С лекций: экспоненциальная устойчивость

Степень устойчивости (устойчивой системы) — положительное число, равное наименьшему из расстояний от собственных чисел до мнимой оси

Откуда в «Устойчивости по Ляпунову» Ляпунов? **//ТМО**

Устойчивость по Ляпунову

При всех начальных условиях
$$x(0)$$
 $||x(t)||$ ограничен

Асимптотическая устойчивость

При всех начальных условиях
$$x(0)$$
 выполнено $\lim_{t \to \infty} \lVert x(t) \rVert = 0$

Экспоненциальная устойчивость

Существуют положительные числа c и α такие, что при всех начальных условиях x(0) выполнено $||x(t)|| \le ce^{-\alpha t}||x(0)||$

Откуда в «Устойчивости по Ляпунову» Ляпунов? **//ТМО**

Устойчивость по Ляпунову

Существует такая функция Ляпунова
$$V(x)$$
, что $\dot{V}(x) \leq 0$

Асимптотическая устойчивость

Существует такая функция Ляпунова
$$V(x)$$
, что $\dot{V}(x) < 0$ при $x \neq 0$, $\dot{V}(0) = 0$

Экспоненциальная устойчивость

Существует такое положительное число
$$\alpha$$
 и такая функция Ляпунова $V(x)$, что $\dot{V}(x) \leq -2\alpha V(x)$ $\qquad \dot{\nabla} \dot{V}(x) \leq -2\alpha V(0)$

Модальное управление...

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} \dot{x} = (A + BK)x \\ y = (C + DK)x \end{cases}$$

Модальное управление – это коррекция собственных чисел матрицы системы A при помощи регулятора вида u = Kx

Для решения задачи (стабилизации) используется простейший регулятор состояния — пропорциональный, модальный или П-регулятор состояния

(A + BK) – новая матрица системы с собственными числами (а значит и модами движения), заданными при помощи регулятора

«По классике» u = -Kx, но по сути разницы нет, т.к. K задаем мы сами (и на лекциях Алексей Алексевич использует запись без минуса)

Мирошник И. В. «Теория автоматического управления. Линейные системы.»

...и не модальное управление

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} \dot{x} = (A + BK)x \\ y = (C + DK)x \end{cases}$$

Рассмотренная процедура расчета матриц <...> позволяет синтезировать регулятор (u=Kx), который обеспечивает в замкнутой системе экспоненциальную устойчивость <...>.

При этом не осуществляется строгий расчет желаемых мод <...>.
Поэтому данный алгоритм синтеза не относится к классу классических модальных методов.

Все еще та же структура, **П-регулятор состояния**

Григорьев В.В., Бойков В.И., Парамонов А.В., Быстров С.В. «Проектирование регуляторов систем управления.»

...и не модальное управление

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} \dot{x} = (A + BK)x \\ y = (C + DK)x \end{cases}$$

Рассмотренная процедура расчета матриц <...> позволяет синтезировать регулятор (u = Kx), который обеспечивает в замкнутой системе экспоненциальную устойчивость <...>.

Варианты расчета:

- 1. Линейные матричные неравенства (LMI), *рассмотрены на лекции;*
- 2. (Алгебраическое) матричное уравнение типа Риккати.

систем уппавления »

где

Общий вид:
$$XA^* + AX + XDX - C = 0$$
, где X – искомая матрица; A, C, D – известные квадратные комплексные матрицы; C, D – эрмитовы матрицы; A^* – эрмитово-сопряженная к A .

Общий вид:
$$XA^* + AX + XDX - C = 0$$
, где X – искомая матрица; A, C, D – известные квадратные комплексные матрицы; C, D – эрмитовы матрицы; A^* – эрмитово-сопряженная к A .

Матричное уравнение Риккати **квадратичное**, а не линейное!

Общий вид:
$$XA^* + AX + XDX - C = 0$$
,

B MATLAB:

icare

Implicit solver for continuous-time algebraic Riccati equations

$$[X, K, L] = icare(A, B, Q, R, S, E, G)$$

$$A^{T}XE + E^{T}XA + E^{T}XGXE - (E^{T}XB + S)R^{-1}(B^{T}XE + S^{T}) + Q = 0$$

Необходимый нам «общий вид»:
$$A^TP + PA - \nu PBR^{-1}B^TP + Q = 0$$
,

где

Р – искомая симметричная квадратная матрица;

А, В – матрицы объекта управления;

Q – симметричная положительно-полуопределенная матрица,

определяющая «штраф на вектор состояния»;

R – симметричная положительно-определенная матрица,

определяющая «штраф на управление»;

ν – параметр модификации уравнения, принимает значения 0, 1 или 2.

Григорьев В.В., Бойков В.И., Парамонов А.В., Быстров С.В. «Проектирование регуляторов систем управления.»

Необходимый нам «общий вид»:

$$A^T P + PA - 0 \cdot PBR^{-1}B^T P + Q = 0,$$

где

Р – искомая симметричная квадратная матрица;

А, В – матрицы объекта управления;

Q – симметричная положительно-полуопределенная матрица,

определяющая «штраф на вектор состояния»;

R – симметричная положительно-определенная матрица, определяющая «штраф на управление»;

$$\nu = 0$$
.

Получили матричное уравнение Ляпунова

уравнение Ляпунова ригорьев В.В., Бойков В.И., Парамонов А.В., Быстров С.В. «Проектирование регуляторов систем управления.»

Необходимый нам «общий вид»:

$$A^T P + P A = -Q,$$

где

Р – искомая симметричная квадратная матрица;

А, В – матрицы объекта управления;

Q – симметричная положительно-полуопределенная матрица,

определяющая «штраф на вектор состояния»;

R – симметричная положительно-определенная матрица,

определяющая «штраф на управление»;

$$\nu = 0$$
.

Получили матричное уравнение Ляпунова

уравнение Ляпунова ригорьев В.В., Бойков В.И., Парамонов А.В., Быстров С.В. «Проектирование регуляторов систем управления.»

Необходимый нам «общий вид»:

$$A^T P + PA - 1 \cdot PBR^{-1}B^T P + Q = 0,$$

где

Р – искомая симметричная квадратная матрица;

А, В – матрицы объекта управления;

 ${\it Q}$ – симметричная положительно-полуопределенная матрица,

определяющая «штраф на вектор состояния»;

R – симметричная положительно-определенная матрица,

определяющая «штраф на управление»;

$$\nu = 1$$
.

Классическое уравнение типа Риккати, используется в задачах

оптимального управления

C.B.

Необходимый нам «общий вид»:

$$A^T P + PA - PBR^{-1}B^T P + Q = 0,$$

где

Р – искомая симметричная квадратная матрица;

А, В – матрицы объекта управления;

 ${\it Q}$ – симметричная положительно-полуопределенная матрица,

определяющая «штраф на вектор состояния»;

R – симметричная положительно-определенная матрица,

определяющая «штраф на управление»;

$$\nu = 1$$
.

Классическое уравнение типа Риккати, используется в задачах

оптимального управления

C.B.

С вводного занятия: Темы курса

Лекционный материал:

- Управляемость и наблюдаемость;
- Модальное управление;
- Управление с желаемой степенью сходимости;
- Управление по линейноквадратичным критериям;
- \mathcal{H}_2 и \mathcal{H}_∞ -управление;
- Слежение и компенсация (посредством виртуального выхода).

Темы *оптимального управления,* курс магистратуры

Необходимый нам «общий вид»:

$$A^T P + PA - PBR^{-1}B^T P + Q = 0,$$

Линейно-квадратичный регулятор (LQR)

Объект

Регулятор

Критерий качества

$$\dot{x} = Ax + Bu$$

$$u = Kx$$

$$J = \int_0^\infty (x^T Q x + u^T R u) dt$$

Уравнения LQR-регулятора

$$\begin{cases} A^T P + PA + Q - PBR^{-1}B^T P = 0 \\ K = -R^{-1}B^T P \end{cases}$$

Лекция 10: «LQR и фильтр Калмана»

Классическое уравнение типа Риккати, используется в задачах

оптимального управления

C.B.

.>>

Необходимый нам «общий вид»:

$$A^{T}P + PA - PBR^{-1}B^{T}P + Q = 0,$$

Синтез \mathcal{H}_2 -регулятора

Объект

$$\begin{cases} \dot{x} = Ax + B_1 w + B_2 u \\ z = C_2 x + D_2 u \end{cases}$$

Регулятор

$$u = Kx$$

Целевой критерий

$$\left\| \underset{w \to z}{W}(s) \right\|_{\mathcal{H}_2} \to \min$$

Уравнения \mathcal{H}_2 -регулятора

$$\begin{cases} A^T Q + QA + C_2^T C_2 - QB_2 (D_2^T D_2)^{-1} B_2^T Q = 0 \\ K = -(D_2^T D_2)^{-1} B_2^T Q \end{cases}$$

Лекция 11:

« \mathcal{H}_2 и \mathcal{H}_∞ управление»

Классическое уравнение типа Риккати, используется в задачах

оптимального управления

C.B.

.))

$$A^T P + PA - 2PBR^{-1}B^T P + Q = 0,$$

где

Р – искомая симметричная квадратная матрица;

А, В – матрицы объекта управления;

 ${\it Q}$ – симметричная положительно-полуопределенная матрица,

определ

R – симN

определ

 $\nu = 2$.

Задача нахождения управления по принципу

оптимальности по принуждению

Фурасов В.Д.

«Устойчивость движения, оценки и стабилизация.»

Григорьев В.В., Бойков В.И., Парамонов А.В., Быстров С.В. «Проектирование регуляторов систем управления.»

Уравнения искомого регулятора с заданной степенью устойчивости:

$$\begin{cases} A^{T}P + PA - 2PBR^{-1}B^{T}P + 2\alpha P + Q = 0 \\ K = -R^{-1}B^{T}P, \end{cases}$$

где

P – искомая симметричная квадратная матрица;

А, В – матрицы объекта управления;

Q – симметричная положительно-полуопределенная матрица, определяющая «штраф на вектор состояния»;

R – симметричная положительно-определенная матрица, определяющая «штраф на управление»;

 α – желаемая степень устойчивости/скорость сходимости.

Григорьев В.В., Бойков В.И., Парамонов А.В., Быстров С.В. «Проектирование регуляторов систем управления.»

LMI-критерий экспоненциальной устойчивости

С лекции:

Линейная система

$$\dot{x} = Ax \quad A \in \mathbb{R}^{n \times n}$$

LMI-критерий

$$A^TQ + QA + 2\alpha Q \leq 0$$

Доказательство
$$\dot{V}(t) + 2\alpha V(t) \leq 0$$

Вспомогательный математический факт #1

Если бы было уравнение, то его решение было бы таким

$$\dot{V}(t) + 2\alpha V(t) = 0$$
 \Rightarrow $V(t) = e^{-2\alpha t}V(0)$

$$V(t) =$$

$$V(t) = e^{-2\alpha t}V(0)$$

У нас неравенство, поэтому $V(t) \leq e^{-2\alpha t}V(0)$

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x$$

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x \begin{cases} A^T P + PA - 2PBR^{-1}B^T P + 2\alpha P + Q = 0 \\ K = -R^{-1}B^T P \end{cases}$$

Функция Ляпунова:

$$V(t) = x^T P x$$

$$\dot{V}(t) = \dot{x}^T P x + x^T P \dot{x}$$

Целевое неравенство: $\dot{V}(t) + 2\alpha V(t) \leq 0$

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x$$

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x \begin{cases} A^T P + PA - 2PBR^{-1}B^T P + 2\alpha P + Q = 0 \\ K = -R^{-1}B^T P \end{cases}$$

Функция Ляпунова:

$$V(t) = x^T P x$$

$$\dot{V}(t) = \dot{x}^{T} P x + x^{T} P \dot{x} = x^{T} (A + BK)^{T} P x + x^{T} P (A + BK) x = x^{T} ((A + BK)^{T} P + P(A + BK)) x$$

Целевое неравенство:

$$\dot{V}(t) + 2\alpha V(t) \leq 0$$

Целевое неравенство:

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x$$
$$\begin{cases} A^T P + PA - 2PBR^{-1}B^T P + 2\alpha P + Q = 0 \\ K = -R^{-1}B^T P \end{cases}$$

Функция Ляпунова:

Функция ляпунова:
$$\dot{V}(t) + 2\alpha V(t) \leq 0$$
 $V(t) = x^T P x$

$$\dot{V}(t) = \dot{x}^T P x + x^T P \dot{x} = x^T (A + BK)^T P x + x^T P (A + BK) x =$$

$$= x^T ((A + BK)^T P + P (A + BK)) x = x^T (A^T P + P A + K^T B^T P + P BK) x =$$

$$= x^T (A^T P + P A - (R^{-1} B^T P)^T B^T P - P B (R^{-1} B^T P)) x$$

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x$$

$$\begin{cases} A^TP + PA - 2PBR^{-1}B^TP + 2\alpha P + Q = 0 \\ K = -R^{-1}B^TP \end{cases}$$
Целевое неравенство:

Функция Ляпунова:

Функция Ляпунова:
$$\dot{V}(t) = x^T P x$$

$$\dot{V}(t) = x^T P x + x^T P \dot{x} = x^T (A + BK)^T P x + x^T P (A + BK) x =$$

$$= x^T ((A + BK)^T P + P (A + BK)) x = x^T (A^T P + P A + K^T B^T P + P BK) x =$$

$$= x^T (A^T P + P A - (R^{-1}B^T P)^T B^T P - P B (R^{-1}B^T P)) x =$$

$$= x^T (A^T P + P A - P B R^{-1} B^T P - P B R^{-1} B^T P) x =$$

$$= x^T (A^T P + P A - 2P B R^{-1} B^T P) x$$

$$= x^T (A^T P + P A - 2P B R^{-1} B^T P) x$$

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x \begin{cases} A^T P + PA - 2PBR^{-1}B^T P + 2\alpha P + Q = 0 \\ K = -R^{-1}B^T P \end{cases}$$

Функция Ляпунова:

$$V(t) = x^{T} P x$$

$$\dot{V}(t) = x^{T} (A^{T} P + P A - 2P B R^{-1} B^{T} P) x$$

Целевое неравенство: $\dot{V}(t) + 2\alpha V(t) \leq 0$

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x$$
$$\begin{cases} A^T P + PA - 2PBR^{-1}B^T P + 2\alpha P + Q = 0 \\ K = -R^{-1}B^T P \end{cases}$$

$$\begin{cases} A^T P + PA - 2PBR^{-1}B^T P + 2\alpha P + Q = 0 \\ K = -R^{-1}B^T P \end{cases}$$

Функция Ляпунова:

$$V(t) = x^{T} P x$$

$$\dot{V}(t) = x^{T} (A^{T} P + P A - 2P B R^{-1} B^{T} P) x$$

$$\dot{V}(t) + 2\alpha V(t) = ?$$

Целевое неравенство:

$$\dot{V}(t) + 2\alpha V(t) \le 0$$

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x$$

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x \begin{cases} A^T P + PA - 2PBR^{-1}B^T P + 2\alpha P + Q = 0 \\ K = -R^{-1}B^T P \end{cases}$$

Функция Ляпунова:

$$V(t) = x^T P x$$

$$\dot{V}(t) = x^T (A^T P + PA - 2PBR^{-1}B^T P)x$$

$$\dot{V}(t) + 2\alpha V(t) = x^{T} (A^{T}P + PA - 2PBR^{-1}B^{T}P)x + 2\alpha x^{T}Px =$$

$$= x^{T} (A^{T}P + PA - 2PBR^{-1}B^{T}P + 2\alpha P)x$$

Целевое неравенство:

$$\dot{V}(t) + 2\alpha V(t) \leq 0$$

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x$$

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x \begin{cases} A^T P + PA - 2PBR^{-1}B^T P + 2\alpha P + Q = 0 \\ K = -R^{-1}B^T P \end{cases}$$

Функция Ляпунова:

$$V(t) = x^T P x$$

$$\dot{V}(t) = x^T (A^T P + PA - 2PBR^{-1}B^T P) x$$

$$\dot{V}(t) + 2\alpha V(t) = x^{T} (A^{T}P + PA - 2PBR^{-1}B^{T}P)x + 2\alpha x^{T}Px =$$

$$= x^{T} (A^{T}P + PA - 2PBR^{-1}B^{T}P + 2\alpha P)x \leq$$

$$\leq x^{T}(A^{T}P + PA - 2PBR^{-1}B^{T}P + 2\alpha P + Q)x$$

Целевое неравенство: $\dot{V}(t) + 2\alpha V(t) \leq 0$

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x$$

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x \begin{cases} A^T P + PA - 2PBR^{-1}B^T P + 2\alpha P + Q = 0 \\ K = -R^{-1}B^T P \end{cases}$$

Функция Ляпунова:

$$V(t) = x^T P x$$

$$\dot{V}(t) = x^T (A^T P + PA - 2PBR^{-1}B^T P)x$$

$$\dot{V}(t) + 2\alpha V(t) = x^{T} (A^{T}P + PA - 2PBR^{-1}B^{T}P)x + 2\alpha x^{T}Px =$$

$$= x^T (A^T P + PA - 2PBR^{-1}B^T P + 2\alpha P)x \leq$$

$$\leq x^{T}(A^{T}P + PA - 2PBR^{-1}B^{T}P + 2\alpha P + Q)x = 0$$

Целевое неравенство:

$$\dot{V}(t) + 2\alpha V(t) \leq 0$$

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x$$

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x \begin{cases} A^T P + PA - 2PBR^{-1}B^T P + 2\alpha P + Q = 0 \\ K = -R^{-1}B^T P \end{cases}$$

Функция Ляпунова:

$$V(t) = x^T P x$$

$$\dot{V}(t) = x^T (A^T P)$$

$$\dot{V}(t) = x^T (A^T P + PA - 2PBR^{-1}B^T P)x$$

$$\dot{V}(t) + 2\alpha V(t) \leqslant 0$$

Регулятор, синтезированный данным

Целевое неравенство:

 $\dot{V}(t) + 2\alpha V(t) \leq 0$

методом, будет работать, если P > 0

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x$$

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x \begin{cases} A^T P + PA - 2PBR^{-1}B^T P + 2\alpha P + Q = 0 \\ K = -R^{-1}B^T P \end{cases}$$

Функция Ляпунова:

$$V(t) = x^T P x$$

$$\dot{V}(t) = x^T (A^T P + PA - 2PBR^{-1}B^T P)x$$

$$\dot{V}(t) + 2\alpha V(t) \leqslant 0$$

Целевое неравенство: $\dot{V}(t) + 2\alpha V(t) \leqslant 0$

Регулятор, синтезированный данным методом, будет работать, если P > 0

Уравнение квадратичное, так что решений в общем случае больше одного (и чем выше порядок системы, тем больше), выбираем те, что нам подходят

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x$$
$$\begin{cases} A^T P + PA - 2PBR^{-1}B^T P + 2\alpha P + Q = 0 \\ K = -R^{-1}B^T P \end{cases}$$

Функция Ляпунова:

$$V(t) = x^{T} P x$$

$$\dot{V}(t) = x^{T} (A^{T} P + P A - 2P B R^{-1} B^{T} P) x$$

$$\dot{V}(t) + 2\alpha V(t) \le 0$$

Целевое неравенство:

$$\dot{V}(t) + 2\alpha V(t) \leq 0$$

Критерии существования единственного P > 0:

- 1. Пара (A, B) стабилизируема;
- 2. Пара (*Q*, *A*) наблюдаема.

При этом в лабораторной вам будет предложено попытаться найти регулятор для Q=0...

$$\begin{cases} A^T P + PA - 2PBR^{-1}B^T P + 2\alpha P + Q = 0 \\ K = -R^{-1}B^T P \end{cases}$$

Использование данной процедуры синтеза <...> ограничивается **трудностью** в назначении элементов матриц штрафов Q и R <..>. Также существуют сложности в установлении связи значений матриц Q и R с показателями качества переходных процессов в замкнутой системе (колебательность, перерегулирование, время переходного процесса)

Опять «творческий процесс» выбора матриц

Григорьев В.В., Бойков В.И., Парамонов А.В., Быстров С.В. «Проектирование регуляторов систем управления.»

<...> Для преодоления указанных проблем удобно использовать понятие экспоненциально устойчивой системы.

Но в целом то, что мы предъявляем требования по заданной скорости сходимости, сглаживают неоднозначность

Григорьев В.В., Бойков В.И., Парамонов А.В., Быстров С.В. «Проектирование регуляторов систем управления.»

Регулятор с заданной степенью устойчивости: доказательство

Целевое неравенство:

 $\dot{V}(t) + 2\alpha V(t) \le 0$

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x$$

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \dot{x} = (A + BK)x \begin{cases} A^T P + PA - 2PBR^{-1}B^T P + 2\alpha P + Q = 0 \\ K = -R^{-1}B^T P \end{cases}$$

Функция Ляпунова:

$$V(t) = x^T P x$$

$$\dot{V}(t) = x^T (A^T P + PA - 2PBR^{-1}B^T P)x$$

$$\dot{V}(t) + 2\alpha V(t) \leqslant 0$$

 $\dot{V}(t) + 2\alpha V(t) \leqslant 0$ Система (пара (A,B)) должна быть стабилизируемой (с оговорками на достижимые α)

Но лучше работать с полностью управляемыми системами (см. процедуру «усечения» с прошлой практики), т.к. иначе иногда машинные методы вычисления «захлебываются»

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} u \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{cases}$$

0. Проверить управляемость;

Уже проверяли на прошлой практике!

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{cases}$$

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R = 1, \alpha = 2$$

Bариант 1: vpasolve()

```
Q=eye(3);
R=1;
a=2;
syms P_ [3 3]
eqs = [A'*P_+P_*A-2*P_'*B*inv(R)*B'*P_+2*a*P_+Q==0]
```

```
Задаем уравнение A^T P + PA - 2PBR^{-1}B^T P + 2\alpha P + Q = 0
```


Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{cases}$$

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R = 1, \alpha = 2$$

Bариант 1: vpasolve()

```
s=vpasolve(eqs,[P_])
P=[s.P_1_1 s.P_1_2 s.P_1_3;
    s.P_2_1 s.P_2_2 s.P_2_3;
    s.P_3_1 s.P_3_2 s.P_3_3];
K=-inv(R)*B'*P;
e=eig(A+B*K)
```

Считаем регулятор!

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{cases}$$

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R = 1, \alpha = 2$$

Bариант 1: vpasolve()

```
s=vpasolve(eqs,[P_])
P=[s.P_1_1 s.P_1_2 s.P_1_3;
    s.P_2_1 s.P_2_2 s.P_2_3;
    s.P_3_1 s.P_3_2 s.P_3_3];
K=-inv(R)*B'*P;
e=eig(A+B*K)
```

...а он не работает

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{cases}$$

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R = 1, \alpha = 2$$

Bариант 1: vpasolve()

```
s=vpasolve(eqs,[P_])
P=[s.P_1_1 s.P_1_2 s.P_1_3;
    s.P_2_1 s.P_2_2 s.P_2_3;
    s.P_3_1 s.P_3_2 s.P_3_3];
K=-inv(R)*B'*P;
e=eig(A+B*K)
```

Нам нашло не то решение

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{cases}$$

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R = 1, \alpha = 2$$

Bариант 1: vpasolve()

```
s=vpasolve(eqs,[P_])
P=[s.P_1_1 s.P_1_2 s.P_1_3;
    s.P_2_1 s.P_2_2 s.P_2_3;
    s.P_3_1 s.P_3_2 s.P_3_3];
K=-inv(R)*B'*P;
e=eig(A+B*K)
```

Нам нашло не то решение

vpasolve(...,...,init_param)

Можно было бы задаться интервалом, на котором искать решение, но кто бы знал этот интервал...

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{cases}$$

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R = 1, \alpha = 2$$

Bариант 1: vpasolve()

```
s=vpasolve(eqs, P_ | Random=true)
P=[s.P_1_1 s.P_1_2 s.P_1_3;
    s.P_2_1 s.P_2_2 s.P_2_3;
    s.P_3_1 s.P_3_2 s.P_3_3];
K=-inv(R)*B'*P;
e=eig(A+B*K)
```

Придется положиться на случай

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{cases}$$

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R = 1, \alpha = 2$$

Bариант 1: vpasolve()

```
s=vpasolve(eqs,[P_],Random=true)
P=[s.P_1_1 s.P_1_2 s.P_1_3;
    s.P_2_1 s.P_2_2 s.P_2_3;
    s.P_3_1 s.P_3_2 s.P_3_3];
K=-inv(R)*B'*P;
e=eig(A+B*K)
```

Прогоняем, пока не найдет подходящее решение

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{cases}$$

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R = 1, \alpha = 2$$

Bариант 1: vpasolve()

```
s=vpasolve(eqs,[P_],Random=true)
P=[s.P_1_1 s.P_1_2 s.P_1_3;
    s.P_2_1 s.P_2_2 s.P_2_3;
    s.P_3_1 s.P_3_2 s.P_3_3];
K=-inv(R)*B'*P;
e=eig(A+B*K)
```

Прогоняем, пока не найдет подходящее решение

```
s = struct with fields:

P_1_1: 2.8721378037450949935866828586806

P_2_1: -9.80827800554554753812918118586

P_3_1: 0.45380261375602399326949995275883

P_1_2: -9.80827800554554753812918118586

P_2_2: 42.566370090787780344741025122606

P_3_2: -1.2700002834474539176253266356547

P_1_3: 0.45380261375602399326949995275883

P_2_3: -1.2700002834474539176253266356547

P_3_3: 0.31216653769058368349334703653876
```

(-2.9997729308074258632868883127172 + 6.4958011104484673162355285602426 i) -2.9997729308074258632868883127172 - 6.4958011104484673162355285602426 i -3.1806928116503053143783881467786

```
K \approx [0.2843 -10.6015 -0.7157]
```


Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{cases}$$

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R = 1, \alpha = 2$$

Bариант 1: vpasolve()

```
s=vpasolve(eqs,[P_],Random=true)
P=[s.P_1_1 s.P_1_2 s.P_1_3;
    s.P_2_1 s.P_2_2 s.P_2_3;
    s.P_3_1 s.P_3_2 s.P_3_3];
K=-inv(R)*B'*P;
e=eig(A+B*K)
```

А можно без казино?

```
s = struct with fields:

P_1_1: 2.8721378037450949935866828586806

P_2_1: -9.80827800554554753812918118586

P_3_1: 0.45380261375602399326949995275883

P_1_2: -9.80827800554554753812918118586

P_2_2: 42.566370090787780344741025122606

P_3_2: -1.2700002834474539176253266356547

P_1_3: 0.45380261375602399326949995275883

P_2_3: -1.2700002834474539176253266356547

P_3_3: 0.31216653769058368349334703653876
```

```
K \approx [0.2843 -10.6015 -0.7157]
```


Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{cases}$$

Вариант 2: **icare()**

icare() находит P > 0, но нужно установить соответствия между «его» уравнением и «нашим»

Q

B MATLAB:

icare

$$A^T P + PA - 2PBR^{-1}B^T P + 2\alpha P + Q = 0$$

Implicit solver for continuous-time algebraic Riccati equations

$$[X, K, L] = icare(A, B, Q, R, S, E, G)$$

$$A^{T}XE + E^{T}XA + E^{T}XGXE - (E^{T}XB + S)R^{-1}(B^{T}XE + S^{T}) + Q = 0$$

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{cases}$$

Вариант 2: **icare()**

icare() находит P > 0, но нужно установить соответствия между «его» уравнением и «нашим»

$$A^{T}P + PA - 2PBR^{-1}B^{T}P + 2\alpha P + Q = 0$$

icare Implie
$$A^T P + PA - (\sqrt{2})^2 PBR^{-1}B^T P + (\alpha I)^T P + P(\alpha I) + Q = 0$$

$$(A + \alpha I)^T P + P(A + \alpha I) - P(\sqrt{2}B)R^{-1}(\sqrt{2}B)^T P + Q = 0$$

$$A^{T}XE + E^{T}XA + E^{T}XGXE - (E^{T}XB + S)R^{-1}(B^{T}XE + S^{T}) + Q = 0$$

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{cases}$$

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R = 1, \alpha = 2$$

Вариант 2: **icare()**

```
Q=eye(3);
R=1;
a=2;
nu=2;
Aa=A+eye(3)*a;
[P,K,e]=icare(Aa,sqrt(nu)*B,Q,R);
K=-inv(R)*B'*P
e=eig(A+B*K)
```

```
K = 1×3
      0.2843 -10.6015 -0.7157

e = 3×1 complex
      -2.9998 + 6.4958i
      -2.9998 - 6.4958i
      -3.1807 + 0.0000i
```

Сразу корректный ответ!

$$K \approx [0.2843 -10.6015 -0.7157]$$

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{cases}$$

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R = 1, \alpha = 2$$

Тот K, что нам дает icare(), не подойдет, его игнорируем!

Вариант 2: **icare()**

```
Q=eye(3);
R=1;
a=2;
nu=2;
Aa=A+eye(3)*a;
[PK,e]=icare(Aa,sqrt(nu)*B,Q,R);
K=-inv(R)*B'*P
e=eig(A+B*K)
```

Сразу корректный ответ!

$$K \approx \begin{bmatrix} 0.2843 & -10.6015 & -0.7157 \end{bmatrix}$$

Наблюдатель с заданной степенью устойчивости: матричные уравнения Риккати

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} \dot{\hat{x}} = A\hat{x} + Bu + L(\hat{y} - y) \\ \hat{y} = C\hat{x} + Du \end{cases}$$

 $\begin{cases} AP + PA^{T} - 2PC^{T}R^{-1}CP + 2\alpha P + Q = 0 \\ L = -PC^{T}R^{-1} \end{cases}$

Без доказательств – верю, что при желании вы сами их выведите!

Наблюдатель с заданной степенью устойчивости: матричные уравнения Риккати

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \Rightarrow \begin{cases} \dot{\hat{x}} = A\hat{x} + Bu + L(\hat{y} - y) \\ \hat{y} = C\hat{x} + Du \end{cases}$$
$$\begin{cases} AP + PA^T - 2PC^TR^{-1}CP + 2\alpha P + Q = 0 \\ L = -PC^TR^{-1} \end{cases}$$

Критерии существования единственного P > 0:

- 1. Пара (C, A) обнаруживаема;
- 2. Пара (*A*, *Q*) управляема.

icare() Aa=A+eye(n)*a; [P,K,e]=icare(Aa',sqrt(nu)*Cj1',Q,R); L=-P*C'*inv(R);

Пара (A, B) должна быть обнаруживаемой (с оговорками на достижимые α), но лучше работать с полностью наблюдаемыми

На лекции разбирали, как за счет минимизации управления «прижать» полученные собственные числа замкнутой регулятором системы к желаемой степени устойчивости

Объект наблюдения:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{cases}$$

```
cvx_begin sdp
variable Q(3,3)
variable Y(3,1)
Q>0.0001*eye(3);
A'*Q+Q*A+2*a*Q+C'*Y'+Y*C<=0;
cvx_end

L=inv(Q)*Y
e=eig(A+L*C)</pre>
```

Нашли какой-то наблюдатель

$$L \approx [-18.119 \quad 70.2247 \quad 50.1626]^T$$

Объект наблюдения:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{cases}$$

$$x(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \hat{x}(0) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \alpha = 2$$

```
x0=[1;1;1];
xh0=[0;0;0];
e0=x0-xh0;
cvx begin sdp
variable Q(3,3)
variable Y(3,1)
variable mumu
minimize mumu
0 \ge 0.0001 * eye(3);
A'*Q + Q*A + 2*a*Q + C'*Y' + Y*C <= 0;
[Q e0;
    e0' 1]>0;
[Q Y;
  Y' mumu]≥0;
cvx end
L=inv(Q)*Y
e=eig(A+L*C)
```

```
L = 3×1

-8.0000

1.6000

-1.6000

e = 3×1 complex

-2.0000 + 4.1231i

-2.0000 - 4.1231i

-2.0000 + 0.0000i
```

$$L \approx [-8 \ 1.6 \ -1.6]^T$$

Нашли наблюдатель, минимизировав!

Объект наблюдения:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{cases}$$

$$x(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \hat{x}(0) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \alpha = 2$$

```
x0=[1;1;1];
xh0=[0;0;0];
e0=x0-xh0;
cvx begin sdp
variable Q(3,3)
variable Y(3,1)
variable mumu
minimize mumu
0 > 0.0001 * eye(3);
A'*Q + Q*A + 2*a*Q + C'*Y' + Y*C <= 0;
[Q e0;
   e0' 1]>0;
[Q Y;
  Y' mumu]≥0;
cvx end
L=inv(Q)*Y
e=eig(A+L*C)
```

$$L \approx [-8 \ 1.6 \ -1.6]^T$$

А что минимизировали то?

Объект наблюдения:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x \end{cases}$$

$$x(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \hat{x}(0) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \alpha = 2$$

В некотором смысле – начальный бросок ошибки

(перерегулирование?),

$$e(0) = x(0) - \hat{x}(0)$$

```
x0=[1;1;1];
xh0=[0;0;0];
e0=x0-xh0;
cvx begin sdp
variable Q(3,3)
variable Y(3,1)
variable mumu
minimize mumu
0>0.0001*eye(3);
A'*0 + 0*A + 2*a*0 + C'*Y' + Y*C <= 0;
[Q e0;
    e0' 1]>0;
[Q Y;
    Y' mumu]≥0;
cvx end
L=inv(Q)*Y
e=eig(A+L*C)
```

```
L = 3×1

-8.0000

1.6000

-1.6000

e = 3×1 complex

-2.0000 + 4.1231i

-2.0000 + 0.0000i
```

$$L \approx [-8 \ 1.6 \ -1.6]^T$$

А что минимизировали то?

 $L = 3 \times 1$

-8.0000

1,6000 -1.6000

-2.0000 + 4.1231i

-2.0000 + 0.0000i

 $e = 3 \times 1$ complex

Объект наблюдения:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} A \text{ откуд} \end{cases}$$

$$x(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \hat{x}(0) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

```
x0=[1;1;1];
xh0=[0;0;0];
e0=x0-xh0;
cvx begin sdp
variable Q(3,3)
variable Y(3,1)
variable mumu
```

 $y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ А откуда мы знаем начальные $x(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \hat{x}(0) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ условия на объекте? Тот же вопрос и к минимизации управления для регулятора!

В некотором смысле начальный бросок ошибки

(перерегулирование?),

$$e(0) = x(0) - \hat{x}(0)$$

e=eig(A+L*C)

$$L \approx [-8 \ 1.6 \ -1.6]^T$$

А что минимизировали то?

LMI: другой взгляд на «минимизацию»

Начальные условия с точки зрения практической задачи вам (почти?) никогда не известны, следовательно на практике ни о какой «минимизации управления» речи идти (почти?) не может


```
\chi_1
                                                              % Finding controller matrix
                          % Solving LMI
    Задача
                                                              % and upper bound on control
                           cvx_begin sdp
минимизации
                           variable P(2,2)
                                                              K = Y*inv(P);
                           variable Y(1,2)
                                                              mu = sqrt(mumu);
% Plant parameters
                           variable mumu
                          minimize mumu
                                                                        Результат
A = [0 1; 0 0];
                           P > 0.0001*eye(2);
B = [0; 1];
                           P*A'+A*P+2*a*P+Y'*B'+B*Y <= 0;
                                                                     K = [-6 \quad -4]
                           [P x0;
                            x0' 1 > 0;
                                                               \sigma(A + BK) = \{-2 \pm \sqrt{2}i\}
                                               Точно!
% Desired decay rate
                           [P Y';
                            Y mumu > 0;
                                                                        \mu = 10.39
                           cvx end
```

LMI: другой взгляд на «минимизацию»

Начальные условия с точки зрения практической задачи вам (почти?) никогда не известны, следовательно на практике ни о какой «минимизации управления» речи идти (почти?) не может

Однако если ваша цель именно что просто «прижать» собственные числа замкнутой регулятором системы или наблюдателя к желаемой степени устойчивости, т.е. не делать «слишком быструю» систему, то в качестве e(0) и x(0) можно использовать любую вещественную величину (хоть ноль)

Экспоненциальная устойчивость

Существует такое положительное число α и такая функция Ляпунова V(x),

что
$$\dot{V}(x) \le -2\alpha V(x)$$
 $\dot{V}(x) \le -2\alpha V(0)$

$$\dot{V}(x) \leq -2\alpha V(0)$$

Существует и другой подход к экспоненциальной устойчивости.

Экспоненциальная устойчивость

Существует такое положительное число α и такая функция Ляпунова V(x),

что
$$\dot{V}(x) \le -2\alpha V(x)$$
 $\dot{V}(x) \le -2\alpha V(0)$

$$\dot{V}(x) \le -2\alpha V(0)$$

Качественная экспоненциальная устойчивость

Существует такая функция Ляпунова V(x) и такие числа r>0и β , что $\beta+r<0$ и $V(\dot{x} - \beta x) \leq rV(x)$

Еще иногда уточняется, что

«Качественная экспоненциальная устойчивость в большом»

Экспоненциальная устойчивость

Существуют положительные числа
$$c$$
 и α такие, что при всех начальных условиях $x(0)$ выполнено $\|x(t)\| \le ce^{-\alpha t} \|x(0)\|$

Качественная экспоненциальная устойчивость

Существуют числа
$$c>0$$
, $r>0$ и β такие, что $\beta+r<0$ и при всех начальных условиях $x(0)$ выполнено $\|x(t)-e^{\beta t}x(0)\|\leq c\big(e^{(\beta-r)t}-e^{\beta t}\big)\|x(0)\|$

Еще иногда уточняется, что «Качественная экспоненциальная устойчивость *в большом*»

Понятие введено во времена существования «кафедры систем управления и информатики» в **ИТМО**, профессором Григорьевым Валерием Владимировичем (материал докторской)

Григорьев В.В., Лукьянова Г.В., «Сергеев К.А. Анализ систем автоматического управления.»

Григорьев В.В., Бойков В.И., Парамонов А.В., Быстров С.В. «Проектирование регуляторов систем управления.»

Качественная экспоненциальная устойчивость

Существуют числа c>0, r>0 и β такие, что $\beta+r<0$ и при всех начальных условиях x(0) выполнено $\|x(t)-e^{\beta t}x(0)\|\leq c\big(e^{(\beta-r)t}-e^{\beta t}\big)\|x(0)\|$

Экспоненциальная устойчивость

Геометрический смысл: Сойдется не медленнее, чем экспонента $e^{-\alpha t}$.

Качественная экспоненциальная устойчивость

Геометрический смысл: $ce^{\beta t}$ – «средняя траектория затухания», r – разброс траекторий от среднего.

Качественная экспоненциальная устойчивость

Геометрический смысл:

 $ce^{\beta t}$ – «средняя траектория затухания», r — разброс траекторий от среднего.

 t_{Π} — время сходимости

Качественная экспоненциальная устойчивость

Геометрический смысл:

 $ce^{\beta t}$ – «средняя траектория затухания», r — разброс траекторий от среднего.

По сути процесс сходится «ни слишком быстро, ни слишком медленно», и требования выполняем, и лишнюю энергию не тратим

Качественная экспоненциальная устойчивость

Геометрический смысл:

 $ce^{\beta t}$ – «средняя траектория затухания»,

r — разброс траекторий от среднего.

Собственные числа системы, замкнутой регулятором, обеспечивающим качественную экспоненциальную устойчивость, оказываются в пределах круга на комплексной плоскости!

Качественная экспоненциальная устойчивость

Геометрический смысл:

 $ce^{\beta t}$ – «средняя траектория затухания»,

r — разброс траекторий от среднего.

Собственные числа системы, замкнутой

попилатором обоспошивающим

Также не классический модальный метод, поскольку нет строгого расчета мод

круга на комплексной плоскости!

Качественная экспоненциальная устойчивость

Геометрический смысл:

 $ce^{\beta t}$ – «средняя траектория затухания»,

r — разброс траекторий от среднего.

Собственные числа системы, замкнутой **регулятором**, обеспечивающим

Как этот регулятор синтезировать? устойчивость, оказываются в пределах круга на комплексной плоскости!

Качественная экспоненциальная устойчивость: Матричное уравнение типа Риккати

Уравнения искомого регулятора с качественной экспоненциальной устойчивостью:

$$\begin{cases} (A + BK - \beta I)^T P (A + BK - \beta I) - r^2 P + Q = 0, \\ K = -(R + B^T P B)^{-1} B^T P (A - \beta I), \end{cases}$$

где

Р – искомая симметричная квадратная матрица;

A, B – матрицы объекта управления;

Q, R – симметричные положительно-полуопределенные матрицы;

 β – желаемая средняя скорость сходимости;

r – разброс траекторий от среднего.

Григорьев В.В., Бойков В.И., Парамонов А.В., Быстров С.В. «Проектирование регуляторов систем управления.»

Качественная экспоненциальная устойчивость: Матричное уравнение типа Риккати

Уравнения искомого регулятора с качественной экспоненциальной устойчивостью:

$$\begin{cases} (A + BK - \beta I)^T P (A + BK - \beta I) - r^2 P + Q = 0, \\ K = -(R + B^T P B)^{-1} B^T P (A - \beta I), \end{cases}$$

Пара (A, B) должна быть стабилизируемой (с

где

P – искомая

оговорками на достижимые β и r), но лучше A, B – матрі Q, R – симметричные положительно-полуопределенные матрицы;

 β – желаемая средняя скорость сходимости;

r – разброс траекторий от среднего.

Григорьев В.В., Бойков В.И., Парамонов А.В., Быстров С.В. «Проектирование регуляторов систем управления.»

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R = 1, \\ \beta = -3, r = 1.5 \end{cases}$$

0. Проверить управляемость;

Уже проверяли на прошлой практике! Стабилизируема, -2 не управляемо

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R = 1, \\ \beta = -3, r = 1.5 \end{cases}$$

0. Проверить управляемость;

Рекомендую усечь, при размерности 3 × 3 считать, возможно, будет очень долго

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x, \\ \dot{\hat{x}} = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \hat{x} + \begin{bmatrix} -1 \\ -3 \end{bmatrix} u, \\ P = \begin{bmatrix} -1 & -1.5 & -0.5 \\ 0 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \\ Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, R = 1, \\ \beta = -3, r = 1.5 \end{cases}$$

Рекомендую усечь, при размерности 3 × 3 считать, возможно, будет очень долго

```
[P,Aj]=jordan(A);
P(:,2)=real(P(:,2));
P(:,3)=imag(P(:,3));
Aj=P^-1*A*P
Bj=P^-1*B

Aj1=Aj;
Aj1(1,:)=[];
Aj1(:,1)=[];
Bj1=Bj;
Bj1(1,:)=[]
```


Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x, \\ \dot{\hat{x}} = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \hat{x} + \begin{bmatrix} -1 \\ -3 \end{bmatrix} u, \\ P = \begin{bmatrix} -1 & -1.5 & -0.5 \\ 0 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \\ Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, R = 1, \\ \beta = -3, r = 1.5 \end{cases}$$

Вариантов, кроме «казино», у меня для вас нет: уравнения сложные, специфичные, специальных пакетов под это мне неизвестно

Если найдете способ лучше – прошу поделиться в конференции предмета

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x, \end{cases}$$

$$\dot{\hat{x}} = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \hat{x} + \begin{bmatrix} -1 \\ -3 \end{bmatrix} u, \\ P = \begin{bmatrix} -1 & -1.5 & -0.5 \\ 0 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, R = 1, \\ \beta = -3, r = 1.5$$

Bариант: vpasolve()

```
syms P_ [2 2]
K_ = -(inv(R+Bj1'*P_*Bj1)*Bj1'*P_*(Aj1-b*eye(2)))
eqs = (Aj1+Bj1*K_-b*eye(2))'*P_*(Aj1+Bj1*K_-b*eye(2))-r^2*P_==-Q;
```

Задаем уравнения

$$\begin{cases} (A + BK - \beta I)^T P (A + BK - \beta I) - r^2 P + Q = 0, \\ K = -(R + B^T P B)^{-1} B^T P (A - \beta I) \end{cases}$$

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x, \end{cases}$$

$$\dot{\hat{x}} = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \hat{x} + \begin{bmatrix} -1 \\ -3 \end{bmatrix} u, \\ P = \begin{bmatrix} -1 & -1.5 & -0.5 \\ 0 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, R = 1,$$

$$\beta = -3, r = 1.5$$

Bapиaнт: vpasolve()

```
s=vpasolve(eqs,[P_],Random=true)
P_=[s.P_1_1 s.P_1_2;
    s.P_2_1 s.P_2_2];
K=[0 -(inv(R+Bj1'*P_*Bj1)*Bj1'*P_*(Aj1-b*eye(2)))]*P^-1;
e=eig(A+B*K)
```

Задаем уравнения

$$\begin{cases} (A + BK - \beta I)^T P (A + BK - \beta I) - r^2 P + Q = 0, \\ K = -(R + B^T P B)^{-1} B^T P (A - \beta I) \end{cases}$$

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x, \end{cases}$$

$$\dot{\hat{x}} = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \hat{x} + \begin{bmatrix} -1 \\ -3 \end{bmatrix} u, \\ P = \begin{bmatrix} 1 & -1.5 & -0.5 \\ 0 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, R = 1, \\ \beta = -3, r = 1.5$$

Bapиaнт: vpasolve()

```
S=vpasolve(eqs,[P_],Random=true)
P_=[s.P_1_1 s.P_1_2;
s.P_2_1 s.P_2_2];
K=[0 -(inv(R+Bj1'*P_*Bj1)*Bj1'*P_*(Aj1-b*eye(2)))]*P^-1;
e=eig(A+B*K)

e =
( 2.2557726276480658636715357350106 )
```

-2.2426160945123384157649809587639】

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x, \end{cases}$$

$$\dot{\hat{x}} = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \hat{x} + \begin{bmatrix} -1 \\ -3 \end{bmatrix} u, \\ P = \begin{bmatrix} 1 & -1.5 & -0.5 \\ 0 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, R = 1, \\ \beta = -3, r = 1.5$$

Bapиaнт: vpasolve()

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x, \end{cases}$$

$$\dot{\hat{x}} = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \hat{x} + \begin{bmatrix} -1 \\ -3 \end{bmatrix} u, \\ P = \begin{bmatrix} 1 & -1.5 & -0.5 \\ 0 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, R = 1, \\ \beta = -3, r = 1.5$$

Bapиaнт: vpasolve()

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x, \end{cases}$$

$$\dot{\hat{x}} = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \hat{x} + \begin{bmatrix} -1 \\ -3 \end{bmatrix} u, \\ P = \begin{bmatrix} 1 & -1.5 & -0.5 \\ 0 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, R = 1, \\ \beta = -3, r = 1.5$$

Bapиaнт: vpasolve()

```
S=vpasolve(eqs,[P_],Random=true)
P_=[s.P_1_1 s.P_1_2;
s.P_2_1 s.P_2_2];
K=[0 -(inv(R+Bj1'*P_*Bj1)*Bj1'*P_*(Aj1-b*eye(2)))]*P^-1;
e=eig(A+B*K)

e =

(2.773246364568617631865437520648 + 0.85095501187389670603275832256603 i)
2.773246364568617631865437520648 - 0.85095501187389670603275832256603 i)
-2.0
```


Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x, \end{cases}$$

$$\dot{\hat{x}} = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \hat{x} + \begin{bmatrix} -1 \\ -3 \end{bmatrix} u, \\ P = \begin{bmatrix} -1 & -1.5 & -0.5 \\ 0 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, R = 1, \\ \beta = -3, r = 1.5$$

Bapиaнт: vpasolve()

$$K \approx -[1.3538 \quad 6.6718 \quad 1.3538]$$

Похоже на правду

Объект управления:

$$\begin{cases} \dot{x} = \begin{bmatrix} 5 & 2 & 7 \\ 2 & 1 & 2 \\ -2 & -3 & -4 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x, \end{cases}$$

$$\dot{\hat{x}} = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \hat{x} + \begin{bmatrix} -1 \\ -3 \end{bmatrix} u, \\ P = \begin{bmatrix} -1 & -1.5 & -0.5 \\ 0 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, R = 1, \\ \beta = -3, r = 1.5$$

Bариант: vpasolve()

```
th = 0:pi/50:2*pi;
xunit = r * cos(th) + b;
yunit = r * sin(th);
plot(xunit, yunit);
hold on
plot(real(e),imag(e),"o")
axis equal
grid on
xlabel("Re")
ylabel("Im")
hold off
```


 $K \approx -[1.3538 \quad 6.6718 \quad 1.3538]$

Похоже на правду