

1/41

Linguagens Formais e Autómatos / Compiladores

Gramáticas independentes do contexto (GIC)

Artur Pereira <artur@ua.pt>,
Miguel Oliveira e Silva <mos@ua.pt>

DETI, Universidade de Aveiro

Sumário

- 1 Gramáticas independentes do contexto (GIC)
- 2 Derivação e árvore de derivação
- 3 Ambiguidade
- 4 Projeto de gramáticas
- 6 Operações sobre GIC
- 6 Limpeza de gramáticas

Gramáticas Definição

Uma gramática é um quádruplo G = (T, N, P, S), onde

- T é um conjunto finito não vazio de símbolos terminais;
- N, com $N \cap T = \emptyset$, é um conjunto finito não vazio de símbolos não terminais;
- P é um conjunto de produções (ou regras de rescrita), cada uma da forma $\alpha \to \beta$;
- $S \in N$ é o símbolo inicial.

- α e β são designados por cabeça da produção e corpo da produção, respetivamente.
- No caso geral $\alpha \in (N \cup T)^* \times N \times (N \cup T)^*$ e $\beta = (N \cup T)^*$.

ACP/MOS (Univ. Aveiro) LFA+C-2019/2020 maio/2020 4/41

Gramáticas independentes do contexto - GIC

 ${\mathcal D}$ Uma gramática G=(T,N,P,S) diz-se **independente do contexto** se, para qualquer produção $(\alpha \to \beta) \in P$, as duas condições seguintes são satisfeitas

$$\alpha \in N$$
$$\beta \in (T \cup N)^*$$

- A linguagem gerada por uma gramática independente do contexto diz-se independente do contexto
- as gramáticas regulares são independentes do contexto
- As gramáticas independentes do contexto são fechadas sob as operações de reunião, concatenação e fecho
 - mas não o são sob as operações de intersecção e complementação.

• Note que: se $\beta \in T^* \cup T^*N$, então $\beta \in (T \cup N)^*$

Derivação Definições

 ${\mathcal D}$ Dada uma palavra lpha Aeta, com $A\in N$ e $lpha, eta\in (N\cup T)^*$, e uma produção $(A o\gamma)\in P$, com $\gamma\in (N\cup T)^*$, chama-se **derivação direta** à rescrita de lpha Aeta em $lpha\gamma\beta$, denotando-se

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

 ${\mathcal D}$ Dada uma palavra lpha Aeta, com $A\in N,\, lpha\in (N\cup T)^*$ e $eta\in T^*$, e uma produção $(A o\gamma)\in P$, com $\gamma\in (N\cup T)^*$, chama-se **derivação direta à direita** à rescrita de lpha Aeta em $lpha\gamma eta$, denotando-se

$$\alpha A\beta \stackrel{D}{\Rightarrow} \alpha \gamma \beta$$

 ${\mathcal D}$ Dada uma palavra lpha Aeta, com $A\in N,\ lpha\in T^*$ e $eta\in (N\cup T)^*$, e uma produção $(A\to\gamma)\in P$, com $\gamma\in (N\cup T)^*$, chama-se **derivação direta à esquerda** à rescrita de lpha Aeta em $lpha \gammaeta$, denotando-se

$$\alpha A\beta \overset{E}{\Rightarrow} \alpha \gamma \beta$$

- Note que, em $\alpha A\beta$, A é o símbolo não terminal mais à direita
- Note que, em $\alpha A\beta$, A é o símbolo não terminal mais à esquerda

ACP/MOS (Univ. Aveiro) LFA+C-2019/2020 maio/2020 7/41

Derivação Definições

Chama-se derivação a uma sucessão de zero ou mais derivações diretas, denotando-se

$$\alpha \Rightarrow^* \beta \equiv \alpha = \gamma_0 \Rightarrow \gamma_1 \Rightarrow \cdots \Rightarrow \gamma_n = \beta$$

onde n é o comprimento da derivação.

Chama-se derivação à direita a uma sucessão de zero ou mais derivações diretas à direita, denotando-se

$$\alpha \stackrel{D}{\Rightarrow} {}^*\beta \qquad \equiv \qquad \alpha = \gamma_0 \stackrel{D}{\Rightarrow} \gamma_1 \stackrel{D}{\Rightarrow} \cdots \stackrel{D}{\Rightarrow} \gamma_n = \beta$$

onde n é o comprimento da derivação.

Chama-se derivação à esquerda a uma sucessão de zero ou mais derivações diretas à esquerda, denotando-se

$$\alpha \stackrel{E}{\Rightarrow} {}^*\beta \qquad \equiv \qquad \alpha = \alpha_0 \stackrel{E}{\Rightarrow} \alpha_1 \stackrel{E}{\Rightarrow} \cdots \stackrel{E}{\Rightarrow} \alpha_n = \beta$$

onde n é o comprimento da derivação.

Derivação Exemplo

 $\mathcal Q$ Considere, sobre o alfabeto $T=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$, a gramática seguinte

$$S \rightarrow \varepsilon \mid \mathsf{a} \; B \mid \mathsf{b} \; A \mid \mathsf{c} \; S$$

$$A \rightarrow \mathsf{a} \; S \mid \mathsf{b} \; A \; A \mid \mathsf{c} \; A$$

$$B \rightarrow \mathsf{a} \; B \; B \mid \mathsf{b} \; S \mid \mathsf{c} \; B$$

Determine as derivações à direita e à esquerda da palavra aabcbc

 \mathcal{R}

à direita

$$S\Rightarrow aB\Rightarrow aaBB\Rightarrow aaBbS\Rightarrow aaBbcS$$

 $\Rightarrow aaBbc\Rightarrow aabSbc\Rightarrow aabcSbc\Rightarrow aabcbc$

à esquerda

$$S \Rightarrow aB \Rightarrow aaBB \Rightarrow aabSB \Rightarrow aabcSB$$

 $\Rightarrow aabcB \Rightarrow aabcbS \Rightarrow aabcbcS \Rightarrow aabcbc$

• Note que se usou \Rightarrow em vez de $\stackrel{D}{\Rightarrow}$ e $\stackrel{E}{\Rightarrow}$

Derivação Alternativas de derivação

 O grafo seguinte capta as alternativas de derivação. Considera-se novamente a palavra aabcbc e a gramática anterior

Identifique os caminhos que correspondem às derivações à direita e à esquerda

ACP/MOS (Univ. Aveiro) LFA+C-2019/2020 maio/2020

Derivação Árvore de derivação

- ${\cal D}$ Uma **árvore de derivação** (*parse tree*) é uma representação de uma derivação onde os nós-ramos são elementos de N e os nós-folhas são elementos de T.
 - A árvore de derivação da palavra aabcbc na gramática anterior é

Ambiguidade

Ilustração através de um exemplo

Considere a gramática

$$S \rightarrow S + S \mid S$$
 . $S \mid \neg S \mid$ (S) \mid 0 \mid 1

e desenhe a árvore de derivação da palavra $1+1 \cdot 0$.

 \mathcal{R} Podem-se obter duas árvores diferentes

Pode-se por isso dar duas interpretações diferentes à palavra

Ambiguidade Definição

- Diz-se que uma palavra é derivada ambiguamente se possuir duas ou mais árvores de derivação distintas
- Diz-se que uma gramática é ambígua se possuir pelo menos uma palavra gerada ambiguamente
 - Frequentemente é possível definir-se uma gramática não ambígua que gera a mesma linguagem que uma ambígua
- No entanto, há gramáticas inerentemente ambíguas

Por exemplo, a linguagem

$$L = \{ \mathbf{a}^i \mathbf{b}^j \mathbf{c}^k \mid i = j \lor j = k \}$$

não possui uma gramática não ambígua que a represente.

Ambiguidade Remoção da ambiguidade

 ${\cal R}\,$ Considere-se novamente a gramática

$$S \rightarrow S + S \mid S$$
 . $S \mid \neg S \mid$ (S) \mid 0 \mid 1

e obtenha-se uma gramática não ambígua equivalente

 \mathcal{R}

$$S \rightarrow K \mid S + K \mid S$$
 . $K \mid \neg S$
 $K \rightarrow 0 \mid 1 \mid (S)$

 $\mathcal Q$ Desenhe a árvore de derivação da palavra 1+1.0 na nova gramática

maio/2020

Exemplo #1, solução #1

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b\}$, determine uma gramática independente do contexto que represente a linguagem

$$L_1 = \{ \omega \in T^* : \#(a, \omega) = \#(b, \omega) \}$$

 \mathcal{R}_1

$$S
ightarrow arepsilon \mid$$
 a S b S \mid b S a S

 $\mathcal Q$ A gramática é ambígua? Analise a palavra aabbab.

17/41

maio/2020

Exemplo #1, solução #2

 \mathcal{R}_2

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b\}$, determine uma gramática independente do contexto que represente a linguagem

$$L_1 = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) \}$$

Q A gramática é ambígua? Analise a palavra aababb.

• Falta expandir alguns nós.

Exemplo #1, solução #3

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b\}$, determine uma gramática independente do contexto que represente a linguagem

$$L_1 = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) \}$$

 \mathcal{R}_3

$$S \to \varepsilon$$
 | a B S | b A S
$$A \to {\tt a} \mid {\tt b} \mid A$$
 A
$$B \to {\tt a} \mid B \mid {\tt b}$$

Q A gramática é ambígua? Analise a palavra aababb.

Projeto de gramáticas Exemplo #2

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática independente do contexto que represente a linguagem

$$L_2 = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) \}$$

 \mathcal{R}

$$S
ightarrow \varepsilon \mid$$
 a B S \mid b A S \mid c S $A
ightarrow$ a \mid b A A \mid c A $B
ightarrow$ a B B \mid b \mid c B

Q A gramática é ambígua?

Exemplo #3, solução #1

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática independente do contexto que represente a linguagem

$$\begin{array}{c} L_3 \,=\, \{\omega \in T^* \,:\, \#(\mathtt{a},\omega) = \#(\mathtt{b},\omega) \,\wedge \\ \forall_{i \leq |\omega|} \,\, \#(\mathtt{a},\mathsf{prefix}(i,\omega)) \geq \#(\mathtt{b},\mathsf{prefix}(i,\omega))\} \end{array}$$

 \mathcal{R}_1

$$S
ightarrow arepsilon \mid$$
 a S b $S \mid$ c S

Q A gramática é ambígua? (Analise a palavra aababb.)

- Esta linguagem faz-vos lembrar algo que conheçam?
- Solução inspirada na do exemplo 1.1 removendo a produção $S
 ightarrow \mathtt{b} \ S \ \mathtt{a} \ S$

Exemplo #3: solução #2

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática independente do contexto que represente a linguagem

$$\begin{array}{c} L_3 \,=\, \{\omega \in T^* \,:\, \#(\mathbf{a},\omega) = \#(\mathbf{b},\omega) \wedge \\ \forall_{i \leq |\omega|} \,\, \#(\mathbf{a}, \mathsf{prefix}(i,\omega)) \geq \#(\mathbf{b}, \mathsf{prefix}(i,\omega)) \} \end{array}$$

 \mathcal{R}_2

$$S \to \varepsilon$$
 | a B | c S
$$B \to \text{a } B \ B \ | \ \text{b } S \ | \ \text{c } B$$

Q A gramática é ambígua? (Analise a palavra aababb.)

• Solução inspirada na do exemplo 1.2 removendo a produção $S \to \mathsf{b} \ A$ e as começadas por A

Exemplo #3: solução #3

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática independente do contexto que represente a linguagem

$$\begin{array}{c} L_3 \,=\, \{\omega \in T^* \,:\, \#(\mathbf{a},\omega) = \#(\mathbf{b},\omega) \wedge \\ \forall_{i \leq |\omega|} \,\, \#(\mathbf{a}, \mathsf{prefix}(i,\omega)) \geq \#(\mathbf{b}, \mathsf{prefix}(i,\omega)) \} \end{array}$$

 \mathcal{R}_3

$$S \to \varepsilon$$
 | a B S | c S | $B \to$ a B B | b | c B

Q A gramática é ambígua? (Analise a palavra aababb.)

• Solução inspirada na do exemplo 1.3 removendo a produção $S \to \mathsf{b} \ A \ S$ e as começadas por A

Projeto de gramáticas Exercícios

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c,\ (\tt,)\ ,+,\star\}$, determine uma gramática independente do contexto que represente a linguagem

```
L = \{\, \omega \in T^* \, : \\ \omega \text{ \'e uma expressão regular sobre o alfabeto } \{\mathtt{a},\mathtt{b},\mathtt{c}\} \}
```

Operações sobre GICs Reunião

 \mathcal{D} Sejam $G_1=(T_1,N_1,P_1,S_1)$ e $G_2=(T_2,N_2,P_2,S_2)$ duas gramáticas independentes do contexto quaisquer, com $N_1\cap N_2=\emptyset$.

A gramática G = (T, N, P, S) onde

é independente do contexto e gera a linguagem $L = L(G_1) \cup L(G_2)$.

- As novas produções $S \to S_i$, com i=1,2, permitem que G gere a linguagem $L(G_i)$
- Esta definição é idêntica à que foi dada para a operação de reunião nas gramáticas regulares

Reunião de GIC Exemplo

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática independente do contexto que represente a linguagem

$$L_4 = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) \lor \#(\mathbf{a}, \omega) = \#(\mathbf{c}, \omega) \}$$

 \mathcal{R}

• Para
$$X_1=\{\,\omega\in T^*\,:\,\#(\mathtt{a},\omega)=\#(\mathtt{b},\omega)\,\}$$
 tem-se
$$S_1\to\varepsilon\mid\mathtt{a}\ S_1\ \mathtt{b}\ S_1\mid\mathtt{b}\ S_1\ \mathtt{a}\ S_1\mid\mathtt{c}\ S_1$$

• Para
$$X_2=\{\,\omega\in T^*\,:\,\#(\mathtt{a},\omega)=\#(\mathtt{c},\omega)\,\}$$
 tem-se
$$S_2\to\varepsilon\mid\mathtt{a}\ S_2\ \mathtt{c}\ S_2\mid\mathtt{c}\ S_2\ \mathtt{a}\ S_2\mid\mathtt{b}\ S_2$$

• Finalmente, para $L_4 = X_1 \cup X_2$ tem-se

$$\begin{split} S \rightarrow S_1 &\mid S_2 \\ S_1 \rightarrow \varepsilon \mid \text{a } S_1 \text{ b } S_1 \mid \text{b } S_1 \text{ a } S_1 \mid \text{c } S_1 \\ S_2 \rightarrow \varepsilon \mid \text{a } S_2 \text{ c } S_2 \mid \text{c } S_2 \text{ a } S_2 \mid \text{b } S_2 \end{split}$$

• Mesmo que as gramáticas de X_1 e X_2 fossem não ambíguas, a de L_4 seria ambígua. Porquê?

Operações sobre gramáticas: Concatenação

 \mathcal{D} Sejam $G_1=(T_1,N_1,P_1,S_1)$ e $G_2=(T_2,N_2,P_2,S_2)$ duas gramáticas independentes do contexto quaisquer, com $N_1\cap N_2=\emptyset$.

A gramática G = (T, N, P, S) onde

$$\begin{split} T &= T_1 \, \cup \, T_2 \\ N &= N_1 \, \cup \, N_2 \, \cup \, \{S\} \quad \mathsf{com} \quad S \not\in (N_1 \cup N_2) \\ P &= \{S \to S_1 S_2\} \, \cup \, P_1 \, \cup \, P_2 \end{split}$$

é independente do contexto e gera a linguagem $L = L(G_1) \cdot L(G_2)$.

- A nova produção $S \to S_1S_2$ justapõe palavras de $L(G_2)$ às de $L(G_1)$
- Esta definição é diferente da que foi dada para a operação de concatenação nas gramáticas regulares

ACP/MOS (Univ. Aveiro) LFA+C-2019/2020 maio/2020 28/41

Concatenação de GIC Exemplo

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática independente do contexto que represente a linguagem

$$L_5 = \{\omega_1 \omega_2 : \omega_1, \omega_2 \in T^*$$

$$\wedge \#(\mathbf{a}, \omega_1) = \#(\mathbf{b}, \omega_1) \wedge \#(\mathbf{a}, \omega_2) = \#(\mathbf{c}, \omega_2)\}$$

- \mathcal{R} Atendendo a que $L_5 = X_1 \cdot X_2$ (gramáticas do exemplo anterior)
 - Para $X_1=\{\,\omega\in T^*\,:\,\#(\mathtt{a},\omega)=\#(\mathtt{b},\omega)\,\}$ tem-se $S_1\to\varepsilon\mid\mathtt{a}\ S_1\ \mathtt{b}\ S_1\mid\mathtt{b}\ S_1\ \mathtt{a}\ S_1\mid\mathtt{c}\ S_1$
 - Para $X_2=$ { $\omega\in T^*$: $\#(\mathtt{a},\omega)=\#(\mathtt{c},\omega)$ } tem-se $S_2\to\varepsilon\ |\ \mathtt{a}\ S_2\ \mathtt{c}\ S_2\ |\ \mathtt{c}\ S_2\ \mathtt{a}\ S_2\ |\ \mathtt{b}\ S_2$
 - Finalmente, para $L_4 = X_1 \cdot X_2$ tem-se

$$\begin{array}{l} S \to S_1 \ S_2 \\ \\ S_1 \to \varepsilon \ | \ \text{a} \ S_1 \ \text{b} \ S_1 \ | \ \text{b} \ S_1 \ \text{a} \ S_1 \ | \ \text{c} \ S_1 \\ \\ S_2 \to \varepsilon \ | \ \text{a} \ S_2 \ \text{c} \ S_2 \ | \ \text{c} \ S_2 \ \text{a} \ S_2 \ | \ \text{b} \ S_2 \end{array}$$

Operações sobre gramáticas

Seja $G_1=(T_1,N_1,P_1,S_1)$ uma gramática independente do contexto qualquer. A gramática G=(T,N,P,S) onde

$$T = T_1$$

 $N = N_1 \cup \{S\}$ com $S \notin N_1$
 $P = \{S \rightarrow \varepsilon, S \rightarrow S_1 S\} \cup P_1$

é independente do contexto e gera a linguagem $L = (L(G_1))^*$.

- A produção $S \to \varepsilon$, per si, garante que $L^0(G_1) \subseteq L(G)$
- As produções $S \to S_1 S$ e $S \to \varepsilon$ garantem que $L^i(G_1) \subseteq L(G)$, para qualquer i>0
- Esta definição é diferente da que foi dada para a operação de fecho nas gramáticas regulares

ACP/MOS (Univ. Aveiro) LFA+C-2019/2020 maio/2020 30/41

Fecho de Kleene de GIC Exemplo

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática independente do contexto que represente a linguagem

$$L_6 = \{ \omega \in T^* : \#(\mathbf{a}, \omega) \ge \#(\mathbf{b}, \omega) \}$$

 \mathcal{R} Considere-se as linguagens $A \in X$, dadas por

$$A = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) + 1 \}$$
$$X = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) \}$$

Tem-se que $L_6 = A^* \cup X$. Donde

$$S_6 \rightarrow \varepsilon \mid A \mid S_6 \mid X$$

com

• O fecho de A inclui a palavra vazia mas não as outras palavras com $\#_a = \#_b$

Símbolos produtivos e improdutivos Exemplo de ilustração

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d}\}$, considere a gramática

$$\begin{split} S &\to \mathsf{a} \ A \ \mathsf{b} \ | \ \mathsf{b} \ B \\ A &\to \mathsf{c} \ C \ | \ \mathsf{b} \ B \ | \ \mathsf{d} \\ B &\to \mathsf{d} \ D \ | \ \mathsf{b} \\ C &\to A \ C \ | \ B \ D \ | \ S \ D \\ D &\to A \ D \ | \ B \ C \ | \ C \ S \\ E &\to \mathsf{a} \ A \ | \ \mathsf{b} \ B \ | \ \varepsilon \end{split}$$

- Tente expandir (através de uma derivação) o símbolo não terminal A para uma sequência apenas com símbolos terminais ($S \Rightarrow^* u$, com $u \in T^*$)
 - $A \Rightarrow d$
- Faça o mesmo com o símbolo C
 - Não consegue
- A é um símbolo produtivo; C é um símbolo improdutivo

Símbolos produtivos e improdutivos Definição

- Seja G = (T, N, P, S) uma gramática qualquer
- Um símbolo não terminal A diz-se produtivo se for possível expandi-lo para uma expressão contendo apenas símbolos terminais
- Ou seja, A é produtivo se

$$A \Rightarrow^+ u \quad \land \quad u \in T^*$$

- Caso contrário, diz-se que A é improdutivo
- Uma gramática é improdutiva se o seu símbolo inicial for improdutivo
- Na gramática

$$S \rightarrow a b \mid a S b \mid X$$
 $X \rightarrow c X$

- $S \not\in \mathsf{produtivo}$, porque $S \Rightarrow \mathsf{ab} \land \mathsf{ab} \in T^*$
- $X \neq \text{improdutivo}$, porque $X \Rightarrow cX \Rightarrow ccX \Rightarrow^* c \cdots cX$

Símbolos produtivos Algoritmo de cálculo

• O conjunto dos símbolos produtivos, N_p , pode ser obtido por aplicação sucessiva das seguintes regras construtivas

if
$$(A \to \alpha) \in P$$
 and $\alpha \in T^*$ then $A \in N_p$ if $(A \to \alpha) \in P$ and $\alpha \in (T \cup N_p)^*$ then $A \in N_P$

- A 1ª regra é um caso particular da 2ª, pelo que poderia ser retirada
- Algoritmo de cálculo:

```
let N_p := \emptyset, P_p := P # N_p - símbolos produtivos repeat nothingAdded := true foreach (A \to \alpha) \in P_p do if \alpha \in (T \cup N_p)^* then if A \not\in N_p then N_p := N_p \cup \{A\} nothingAdded := false P_p := P_p - \{A \to \alpha\} until nothingAdded or N_p = N
```

Símbolos acessíveis e inacessíveis Exemplo de ilustração

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d}\}$, considere a gramática

$$\begin{split} S &\to \mathsf{a} \ A \ \mathsf{b} \ | \ \mathsf{b} \ B \\ A &\to \mathsf{c} \ C \ | \ \mathsf{b} \ B \ | \ \mathsf{d} \\ B &\to \mathsf{d} \ D \ | \ \mathsf{b} \\ C &\to A \ C \ | \ B \ D \ | \ S \ D \\ D &\to A \ D \ | \ B \ C \ | \ C \ S \\ E &\to \mathsf{a} \ A \ | \ \mathsf{b} \ B \ | \ \varepsilon \end{split}$$

- Tente alcançar (através de uma derivação) o símbolo não terminal C a partir do símbolo inicial (S) $(S \Rightarrow^* \alpha C \beta, \text{ com } \alpha, \beta \in (T \cup N)^*)$
 - $S \Rightarrow b B \Rightarrow b d D \Rightarrow b d B C$
- Faça o mesmo com o símbolo E
 - Não consegue
- C é um símbolo acessível; E é um símbolo inacessível

Símbolos acessíveis e inacessíveis Definição

- Seja G = (T, N, P, S) uma gramática qualquer
- Um símbolo terminal ou não terminal x diz-se **acessível** se for possível expandir S (o símbolo inicial) para uma expressão que contenha x
- Ou seja, x é acessível se

$$S \Rightarrow^* \alpha x \beta$$

- Caso contrário, diz-se que x é inacessível
- Na gramática

$$S \to \varepsilon$$
 | a S b | c C c
$$C \to \mathsf{c} \ S \ \mathsf{c}$$

$$D \to \mathsf{d} \ X \ \mathsf{d}$$

$$X \to C \ C$$

- D, d, e X são inacessíveis
- Os restantes são acessíveis

Símbolos acessíveis Algoritmo de cálculo

 O conjunto dos seus símbolos acessíveis, V_A, pode ser obtido por aplicação das seguintes regras construtivas

$$S \in V_A$$
 if $A o lpha B eta \in P$ and $A \in V_A$ then $B \in V_A$

Algoritmo de cálculo:

```
let V_A := \{S\} # V_A - símbolos acessíveis
let N_A := \{S\} # N_A - não terminais a processar
repeat
let A := \text{element-of } N_A
N_A := N_A \setminus \{A\}
foreach (A \to \alpha) \in P do
foreach x in \alpha do
if x \not\in V_A then
V_A := V_A \cup \{x\}
if x \in N then
N_A := N_A \cup \{x\}
until N_A = \emptyset
```

Gramáticas limpas Algoritmo de limpeza

- Numa gramática, os símbolos inacessíveis e os símbolos improdutivos são símbolos inúteis
- Se tais símbolos forem removidos obtém-se uma gramática equivalente
- Diz-se que uma gramática é limpa se não possuir símbolos inúteis
- Para limpar uma gramática deve-se:
 - começar por a expurgar dos símbolos improdutivos
 - só depois remover os inacessíveis

Gramáticas limpas Exemplo #1

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c,\mathtt d\}$, determine uma gramática limpa equivalente à seguinte

$$\begin{split} S &\to \mathsf{a} \ A \ \mathsf{b} \ | \ \mathsf{b} \ B \\ A &\to \mathsf{c} \ C \ | \ \mathsf{b} \ B \ | \ \mathsf{d} \\ B &\to \mathsf{d} \ D \ | \ \mathsf{b} \\ C &\to A \ C \ | \ B \ D \ | \ S \ D \\ D &\to A \ D \ | \ B \ C \ | \ C \ S \\ E &\to \mathsf{a} \ A \ | \ \mathsf{b} \ B \ | \ \varepsilon \end{split}$$

- Cálculo dos símbolos produtivos
 - 1 Inicialmente $N_p = \emptyset$
 - $\mathbf{2} \ A \to \mathbf{d} \ \land \ \mathbf{d} \in T^* \quad \Longrightarrow \quad N_p = N_p \cup \{A\}$
 - $3 B \to b \land b \in T^* \implies N_p = N_p \cup \{B\}$
 - $4 E \to \varepsilon \land \varepsilon \in T^* \implies N_p = N_p \cup \{E\}$
 - 5 $S \to aAb \land a, S, b \in (T \cup N_p)^* \implies N_p = N_p \cup \{S\}$
 - 6 Nada mais se consegue acrescentar a ${\cal N}_p$

Gramáticas limpas Exemplo #1, cont.

Gramática após a remoção dos símbolos improdutivos

$$S \to \mathbf{a} \ A$$
 b $|$ b B
$$A \to \mathbf{b} \ B \mid \mathbf{d}$$

$$B \to \mathbf{b}$$

$$E \to \mathbf{a} \ A \mid \mathbf{b} \ B \mid \varepsilon$$

- Cálculo dos símbolos não terminais acessíveis sobre a nova gramática
 - 1 S é acessível, porque é o inicial
 - 2 sendo S acessível, de $S \to \mathsf{a} \ A$ b, tem-se que A é acessível
 - ${\tt 3}\;\;{\tt sendo}\; S\;{\tt acessível},$ de $S\to{\tt b}\;\;B,$ tem-se que B é acessível
 - 4 de A só se chega a B, que já foi marcado como acessível
 - 5 de B não se chega a nenhum não terminal
 - 6 Logo E não é acessível, pelo que a gramática limpa é

$$S \rightarrow \mathbf{a} \ A \ \mathbf{b} \ | \ \mathbf{b} \ B$$

$$A \rightarrow \mathbf{b} \ B \ | \ \mathbf{d}$$

$$B \rightarrow \mathbf{b}$$