→ AG3 - Python y Javascript

Autor: Pablo García

Carga de datos y Visaulización del dataset Titanic

```
# Importamos modulos
import pandas as pd
import io
import requests
import seaborn as sns
import timeit
import matplotlib.pyplot as plt
import numpy as np
# Cargamos el data set de los pasajeros del Titanic
url="https://raw.githubusercontent.com/mwaskom/seaborn-data/master/titanic.csv"
s=requests.get(url).content
titanic=pd.read_csv(io.StringIO(s.decode('utf-8')))
# Mostramos las 10 primeras filas del Dataset Titanic
titanic.head(10)
MOSTRAR RESULTADO OCULTO
# Mostramos los campos y sus tipos de datos
titanic.info()
 C→ <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 891 entries, 0 to 890
     Data columns (total 15 columns):
                    891 non-null int64
     survived
                    891 non-null int64
     pclass
                    891 non-null object
     sex
                    714 non-null float64
     age
     sibsp
                    891 non-null int64
                    891 non-null int64
     parch
                    891 non-null float64
     fare
     embarked
                    889 non-null object
                    891 non-null object
     class
     who
                    891 non-null object
                    891 non-null bool
     adult_male
                    203 non-null object
     deck
     embark_town
                   889 non-null object
                    891 non-null object
     alive
                    891 non-null bool
     alone
     dtypes: bool(2), float64(2), int64(4), object(7)
     memory usage: 92.4+ KB
# Mostrar valores estadísticos de variable cuantitativas
titanic.describe()
```

	survived	pclass	age	sibsp	parch	fare	class_num
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208	2.308642
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429	0.836071
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000	1.000000
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400	2.000000
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200	3.000000
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000	3.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200	3.000000

▼ Operaciones con columnas

С

С⇒

```
# Renombramos la columna class a clase
titanic.rename(columns={'class': 'clase'},
inplace=True)
# Muestra los valores distintos para class (clase)
titanic.clase.unique()
 ray(['Third', 'First', 'Second'], dtype=object)
# Muestra los valores distintos para el campo pclass
titanic.pclass.unique()
 _→ array([3, 1, 2])
# Añadimos nuevas columnas: is_old, is_baby
# Creamos una función para añadir una nueva columna is_old, para pasajeros > 60 años
def is_old_func(row):
  return row['age'] > 60
titanic['is_old'] = titanic.apply(is_old_func, axis='columns')
# Otra forma de definir una nueva columna. Creamos la columna is_baby, para pasajeros < 15 años
titanic.eval ( ' is_baby = age< 15 ' , inplace = True)</pre>
titanic.head(10)
```

	survived	pclass	sex	age	sibsp	parch	fare	embarked	clase	who	adult_male	deck	embark_town	alive	alone	is_old	is_baby
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False	False	False
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False	False	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True	False	False
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False	False	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True	False	False
5	0	3	male	NaN	0	0	8.4583	Q	Third	man	True	NaN	Queenstown	no	True	False	False
6	0	1	male	54.0	0	0	51.8625	S	First	man	True	Е	Southampton	no	True	False	False
7	0	3	male	2.0	3	1	21.0750	S	Third	child	False	NaN	Southampton	no	False	False	True
8	1	3	female	27.0	0	2	11.1333	S	Third	woman	False	NaN	Southampton	yes	False	False	False
9	1	2	female	14.0	1	0	30.0708	С	Second	child	False	NaN	Cherbourg	yes	False	False	True

#del titanic['class_num']
#titanic

Creamos una función que crea una nueva columna "class_num" numérica, con valores Third:3,First:1,Second:2

según el valor del campo clase.

def class_num_func(row):

Clase={'Third':3,'First':1,'Second':2}

return Clase[row.clase]

titanic['class_num'] = titanic.apply(class_num_func, axis='columns')

titanic.head(10)

₽	survived	pclass	sex	age	sibsp	parch	fare	embarked	clase	who	adult_male	deck	embark_town	alive	alone	is_old	is_baby	class_num
	0 0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False	False	False	3
	1 1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False	False	False	1
	2 1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True	False	False	3
	3 1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False	False	False	1
	4 0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True	False	False	3
	5 0	3	male	NaN	0	0	8.4583	Q	Third	man	True	NaN	Queenstown	no	True	False	False	3
	6 0	1	male	54.0	0	0	51.8625	S	First	man	True	Е	Southampton	no	True	False	False	1
	7 0	3	male	2.0	3	1	21.0750	S	Third	child	False	NaN	Southampton	no	False	False	True	3
	B 1	3	female	27.0	0	2	11.1333	S	Third	woman	False	NaN	Southampton	yes	False	False	False	3
	9 1	2	female	14.0	1	0	30.0708	С	Second	child	False	NaN	Cherbourg	yes	False	False	True	2

[#] Cambiamos el formato númerio del campo class_num a float64
titanic["class_num"] = titanic.class_num.astype('float64')
titanic.info()

```
C→ <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 891 entries, 0 to 890
   Data columns (total 18 columns):
   survived
                  891 non-null int64
   pclass
                  891 non-null int64
                  891 non-null object
   sex
                  714 non-null float64
   age
                  891 non-null int64
   sibsp
                  891 non-null int64
   parch
   fare
                  891 non-null float64
                  889 non-null object
   embarked
   clase
                  891 non-null object
                  891 non-null object
   who
                  891 non-null bool
   adult_male
                  203 non-null object
   deck
                  889 non-null object
   embark_town
                  891 non-null object
   alive
                  891 non-null bool
   alone
                  891 non-null bool
   is_old
                  891 non-null bool
   is_baby
                  891 non-null float64
   class_num
   dtypes: bool(4), float64(3), int64(4), object(7)
   memory usage: 101.1+ KB
```

→ Consulta de datos con condiciones

```
# Consulta con condiciones. Pasajeros cuyo sexo sea "Mujer", su clase "First" o "Third", su edad > 45 años y que no hayan sobrevivido
titanic[(titanic.sex == 'female')
  & (titanic['clase'].isin(['First','Third']))
  & (titanic.age > 45 )
  & (titanic.survived == 0)]
```

₽		survived	pclass	sex	age	sibsp	parch	fare	embarked	clase	who	adult_male	deck	embark_town	alive	alone	is_old	is_baby	class_num
	132	0	3	female	47.0	1	0	14.5000	S	Third	woman	False	NaN	Southampton	no	False	False	False	3.0
	177	0	1	female	50.0	0	0	28.7125	С	First	woman	False	С	Cherbourg	no	True	False	False	1.0
	736	0	3	female	48.0	1	3	34.3750	S	Third	woman	False	NaN	Southampton	no	False	False	False	3.0

▼ Gráficos

```
# Distribución de las clases
sns.countplot(x="pclass", data=titanic)
```

С→

<matplotlib.axes._subplots.AxesSubplot at 0x7f331f886ef0>


```
# Distribución de la edad (age)
sns.distplot(titanic.age.dropna( ))
plt.show( )
```


BoxPlot de la edad por sexo y clase
with sns.axes_style(style='ticks'):
 ax = sns.catplot("sex", "age", "clase",
data=titanic, kind="box")

Distribución cruzada de Edad y Tarifa
sns.jointplot(x='fare',y='age',data=titanic)


```
# Cambiamos el font
sns.set(font_scale=0.5)
# Distribución de la edad según la categorías: survived, clase
g = sns.FacetGrid(titanic, row='survived',col='clase')
g.map(sns.distplot, "age")
plt.show()
```


Diagrama de dispersion con Distribucion de cada variable: fare(precio)/age(edad)
sns.jointplot(data=titanic, x='age', y='fare',kind='reg', color='b')
plt.show()


```
# Mapa de calor de correlaciones
tc = titanic.corr()
sns.heatmap(tc,cmap='coolwarm')
plt.title('titanic.corr()')
```

Text(0.5, 1, 'titanic.corr()')

Mapa de calor de correlaciones, motsrndo los valors de correlación
sns.heatmap(titanic.corr(), annot=True, fmt=".2f")
plt.show()

#Define un subconjuto de datos con las variables numéricas
titanic_num =titanic[['survived','pclass','sibsp','parch','fare']]
#Hace una matriz de diagramas de dispersión de parejas de variables.
sns.pairplot(titanic_num, hue="survived")
plt.show()

/usr/local/lib/python3.6/dist-packages/statsmodels/nonparametric/kde.py:487: RuntimeWarning: invalid value encountered in true_divide binned = fast_linbin(X, a, b, gridsize) / (delta * nobs)

/usr/local/lib/python3.6/dist-packages/statsmodels/nonparametric/kdetools.py:34: RuntimeWarning: invalid value encountered in double_scalars FAC1 = 2*(np.pi*bw/RANGE)**2


```
#Define un subconjuto de datos con las variables numéricas (cuantitativas)
titanic_num = titanic[['survived','pclass','sibsp','parch','fare']]
#Hace una matriz de diagramas de dispersión de parejas de variables.
g = sns.PairGrid(titanic_num,hue="survived", palette="husl")
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
g.add_legend()
```

▼ Gráficos Dataset IRIS

```
9.00
df = sns.load_dataset("iris")
df
```

₽		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa
	145	6.7	3.0	5.2	2.3	virginica
	146	6.3	2.5	5.0	1.9	virginica
	147	6.5	3.0	5.2	2.0	virginica
	148	6.2	3.4	5.4	2.3	virginica
	149	5.9	3.0	5.1	1.8	virginica

#Establece el estilo estético de las tramas sns.set(style="ticks") #Carga el data set

df = sns.load_dataset("iris")

150 rows × 5 columns

#matriz de diagramas de dispersion

sns.pairplot(df, hue="species")

▼ Diferentes formatos de gráfico del Dataset IRIS

```
g = sns.PairGrid(df,hue="species", palette="husl")
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
g.add_legend()
```


df = sns.load_dataset('iris') # temporarily using a different dataset for this one
sns.pairplot(df, palette='Blues', hue='species')
sns.plt.show()


```
g = sns.PairGrid(df, hue="species")
g.map_diag(plt.hist)
```

g.map_offdiag(plt.scatter)

g.add_legend()

▼ Python. Ampliación de la Práctica (10/10)

Diagramas de distribución de clase/edad y supervivientes

```
# Diagramas de distribución de clase/edad y supervivientes
import numpy as np
bins = np.arange(0, 80, 5)
g = sns.FacetGrid(titanic, row='sex', col='pclass', hue='survived', margin_titles=True, size=3, aspect=1.1)
g.map(sns.distplot, 'age', kde=False, bins=bins, hist_kws=dict(alpha=0.6))
g.add_legend()
plt.show()
```

/usr/local/lib/python3.6/dist-packages/seaborn/axisgrid.py:230: UserWarning: The `size` paramter has been renamed to `height`; please update your code. warnings.warn(msg, UserWarning)

