Лабораторная работа № 3.5.1-3.5.2 "Изучение плазмы газового разряда в неоне"

Кирилл Шевцов Б03-402 16.09.2025

Цель работы

Изучить вольт-амперную характеристику тлеющего разряда, изучить свойства плазмы методом зондовых характеристик.

Оборудование

Стеклянная газоразрядная трубка, наполненная неоном, источник напряжения, делитель напряжения, потенциометр, амперметры, амперметры, переключатели.

Лабораторные установки

Стеклянная газоразрядная трубка имеет ненагреваемый полый катод, три анода и геттерный узелстеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка (геттер). Трубка наполнена изотопом неона при давлении 2 мм. рт. столба. Катод и один из анодов (первый или второй) с помощью переключателя P_1 подключаются через балластный резистор R_b к регулируемому ВИП.

Рис. 1: установка для исследования газового разряда

При подключении первого анода к ВИП, между ним и катодом возникает газовый разряд. Ток разряда измеряется амперметром A_1 , падение напряжения - на вольтметре V_1 , подключенным к трубке через делитель напряжения с коэффициентом, равным $\alpha = \frac{R_1 + R_2}{R_2}$. При подключении к ВИП второго

анода, возникает газовый разряд между катодами и вторым анодом, где находится двойной зонд, необходимый для диагностики плазмы. Третий анод в работе не используется.

Необходимые формулы

Электронный ток насыщения можно оценить по формуле:

$$I_0 = \frac{1}{4} n_e S \sqrt{\frac{8k_B T_e}{\pi m}} \tag{1}$$

Зависимость тока от напряжения для ВАХ газового разряда:

$$I = I_0 \tanh \frac{eU}{2k_B T_e} \tag{2}$$

Зная ток насыщения, можно определить концентрацию заряженных частиц (формула 1) и температуру электронов - установка хорошо подходит для этих измерений.

Выполнение работы

1. Настроим установку для ВАХ газового разряда согласно инструкции, плавно увеличивая показания ВИП, запишем напряжение зажигания, показание вольтметра V_1 :

$$U_0 = 152.52 \pm 0.01 \text{ B} \tag{3}$$

2. С помощью вольтметра V_1 и амперметра A_1 измерим ВАХ газового разряда $I_p(U_p)$. Ток изменяется в диапазоне 0.5-5.0 мА.

$I_p \uparrow$, MA	0.543	0.730	1.143	1.479	1.800	2.105	2.520	2.837	-	
U_p , B	26.89	26.51	26.30	26.35	26.40	26.48	26.55	26.62	_	
$I_p \uparrow$, MA	3.128	3.524	3.829	4.150	4.477	4.727	5.050	-		
U_p , B	26.67	26.72	26.75	26.77	26.79	26.80	26.81	-		
$I_p \downarrow$, MA	4.790	4.417	4.055	3.788	3.472	3.162	2.873	2.503	2.165	
U_p , B	26.80	26.78	26.76	26.74	26.71	26.66	26.61	26.54	26.47	
$I_p \downarrow$, MA	1.803	1.507	1.197	0.817	0.665	0.538	-			
U_p , B	16.41	26.35	26.31	26.41	26.65	26.90	-			

- 3. Построим ВАХ разряда в координатной сетке. По наклону кривой определим максимальное дифференциальное сопротивление $R_{dif} = \frac{dU}{dI}$ (см. рис. 2) Для этого возьмем две точки графика, для которых прямая проходит под наименьшим наклоном, тогда $R_{dif} \approx 0.031$ Ом.
- 4. Подготовим установку для анализа зондовой характеристики разряда. Измерим ВАХ двойного зонда, плавно увеличивая напряжение от $-U_0$ до U_0 при фиксированном токе разряда I_p , построим семейство зондовых характеристик на клеточной сетке (см. рис. 3)
- 5. По каждой зондовой характеристике определим ионный ток насыщения, наклон характеристики dI/dU в начале координат.
- 6. По результатам предыдущего пункта рассчитаем температуру электронов T_e , концентрацию электронов и ионов в плазме. Считам площадь поверхности зонда равной $S \approx \pi dl$, необходимые параметры указаны на установке.
- 7. Рассчитаем плазменную частоту колебаний ω_p , электронную поляризационную длину r_{D_e} и дебаевский радиус экранирования r_D .

Рис. 2: BAX газового разряда

T A	F 000 L 0 001										
I_p , MA	5.000 ± 0.001										
$I_z \downarrow$, мА	22.98	22.10	21.17	20.25	19.26	18.17	17.25	15.88	12.90	6.89	0.07
U_z , B	24.99	22.07	19.02	16.11	13.08	10.11	8.09	6.08	4.03	2.06	0.55
$I_z \uparrow$, MA	-2.66	-6.74	-12.96	-15.90	-17.13	-18.19	-19.38	-20.37	-21.34	-22.33	-23.18
U_z , B	0.00	2.02	4.07	6.20	8.08	10.13	13.04	16.04	19.08	22.19	24.99
I_p , MA	4.005 ± 0.001										
$I_z \downarrow$, MA	19.67	18.97	18.12	17.35	16.50	15.54	14.70	13.42	10.85	5.61	0.12
U_z , B	24.99	22.11	19.09	16.12	13.09	10.07	8.01	6.01	4.08	2.08	0.60
$I_z \uparrow$, MA	-0.15	-5.71	-10.78	-13.37	-14.62	-15.34	-16.29	-17.17	-18.00	-18.76	-19.56
U_z , B	0.6	2.11	4.08	6.07	8.19	10.02	13.01	16.10	19.14	22.08	25.00
I_p , MA	3.101 ± 0.001										
$I_z \downarrow$, MA	15.92	15.31	14.65	14.00	13.28	12.37	11.68	10.45	8.05	3.98	0.05
U_z , B	24.99	22.02	19.09	16.22	13.12	10.12	8.10	6.03	4.04	2.07	0.58
$I_z \uparrow$, MA	-0.04	-3.82	-8.03	-10.41	-11.56	-12.26	-13.07	-13.75	-14.42	-15.07	-15.70
U_z , B	0.58	2.01	4.06	6.07	8.12	10.10	13.24	16.09	19.11	22.18	24.99
I_p , MA	1.513 ± 0.001										
$I_z \downarrow$, MA	9.05	8.65	8.27	7.82	7.42	6.93	6.42	5.52	4.07	1.94	0.13
U_z , B	24.99	22.01	19.06	16.04	13.09	10.12	8.09	5.97	4.02	2.11	0.56
$I_z \uparrow$, MA	-0.13	-1.88	-4.06	-5.52	-6.37	-6.84	-7.34	-7.73	-8.16	-8.56	-8.95
U_z , B	0.56	2.06	4.05	6.03	8.09	10.14	13.18	16.10	19.06	22.02	24.99

Таблица 1: зондовая характеристика

Рис. 3: зондовые характеристики для разных токах разряда

- 8. Оценим степень ионизации плазмы, считая давление в трубке $P \approx 2$ торр.
- 9. Построим графики зависимости $T_e(I_p), \ n_e(I_p).$