

Introduction

Machine Learning

Edwin Puertas, Ph.D(c). epuerta@utb.edu.co

Definition of Machine Learning

Arthur Samuel (1959): Machine Learning is the field of study that gives the computer the ability to learn without being explicitly programmed.

Tom Mitchell (1998): a computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Taxonomy of Machine Learning

Supervised Learning

Housing Price Prediction

 \triangleright Given: a dataset that contains n samples

$$(x^{(1)}, y^{(1)}), ... (x^{(n)}, y^{(n)})$$

 \rightarrow Task: if a residence has x square feet, predict its price?

Housing Price Prediction

Given: a dataset that contains n samples

$$(x^{(1)}, y^{(1)}), ... (x^{(n)}, y^{(n)})$$

Task: if a residence has x square feet, predict its price?

More Features

- Suppose we also know the lot size
- Task: find a function that maps

features/input $x \in \mathbb{R}^2$

label/output $y \in \mathbb{R}$

- ➤ Dataset: $(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})$ where $x^{(i)} = (x_1^{(i)}, x_2^{(i)})$
- \triangleright "Supervision" refers to $y^{(1)}, ..., y^{(n)}$

High-dimensional Features

- $x \in \mathbb{R}^d$ for large d
- E.g.,

Regression vs Classification

- regression: if $y \in \mathbb{R}$ is a continuous variable
 - e.g., price prediction
- classification: the label is a discrete variable
 - e.g., the task of predicting the types of residence

(size, lot size) \rightarrow house or townhouse?

Lecture 3&4: classification

Supervised Learning in Computer Vision

Image Classification

x = raw pixels of the image, y = the main object

Supervised Learning in Computer Vision

Object localization and detection

x = raw pixels of the image, y = the bounding boxes

kit fox

croquette

froc

Supervised Learning in Natural Language Processing

Universidad Tecnológica de Bolívar

CARTAGENA DE INDIAS

Machine translation

Unsupervised Learning

Unsupervised Learning

- Dataset contains no labels: $x^{(1)}$, ... $x^{(n)}$
- Goal (vaguely-posed): to find interesting structures in the data

Clustering

k-mean clustering, mixture of Gaussians

Clustering Genes

Individuals

Identifying Regulatory Mechanisms using Individual Variation Reveals Key Role for Chromatin Modification. [Su-In Lee, Dana Pe'er, Aimee M. Dudley, George M. Church and Daphne Koller. '06]

Latent Semantic Analysis (LSA) documents

Principal component analysis (tools used in LSA)

Word Embeddings

Represent words by vectors

> relation encode direction

Unlabeled dataset

Word2vec [Mikolov et al'13] GloVe [Pennington et al'14]

Clustering Words with Similar Meanings (Hierarchically) de Bolivar

	logic	graph	boson	polyester	acids
	deductive	$\operatorname{subgraph}$	massless	polypropylene	amino
	propositional	bipartite	particle	resins	biosynthesis
	semantics	vertex	higgs	epoxy	peptide
tag	logic	graph theory	particle physics	polymer	biochemistry

[Arora-Ge-Liang-M.-Risteski, TACL'17,18]

Universidad Tecnológica

Reinforcement Learning

Iteration 10

Iteration 20

Iteration 80

Iteration 210

Reinforcement Learning

The algorithm can collect data interactively

Improve the strategy based on the feedbacks

Pipeline Machine Learning Model

Define Objectives

- Define measurable and quantifiable goals
- Use this stage to learn about the problem

Data Preparation

- Normalization
- Transformation
- Missing Values
- Outliers

- Study models accuracy
 - Work better than the naïve approach or previous system
- Do the results make sense in the context of the problem

Model Evaluation

Model Building

- Data Splitting
- Features Engineering
- Estimating Performance
- Evaluation and Model Selection

ML as a Process: Data Preparation

- Needed for several reasons
 - Some Models have strict data requirements
 - Scale of the data, data point intervals, etc
 - Some characteristics of the data may impact dramatically on the model performance
- Time on data preparation should not be underestimated

ML as a Process: Feature engineering

- Determine the predictors (features) to be used is one of the most critical questions
- Sometimes we need to add predictors
- Reduce Number:
 - Fewer predictors more interpretable model and less costly
 - Most of the models are affected by high dimensionality, specially for noninformative predictors

Binning predictors

ML as a Process: Model Building

- Data Splitting
 - Allocate data to different tasks
 - model training
 - performance evaluation
 - Define Training, Validation and Test sets
- Feature Selection (Review the decision made previously)
- Estimating Performance
 - Visualization of results discovery interesting areas of the problem space
 - Statistics and performance measures
- Evaluation and Model selection
 - The 'no free lunch' theorem no a priory assumptions can be made
 - Avoid use of favorite models if NEEDED

