Question 1

Suppose $X_1, X_2, ..., X_n$ are independent and identically distributed random variables following a normal distribution with mean μ and variance σ^2 . The value of μ is unknown, but σ^2 is known to be $\sigma^2 = 16$. Suppose we observe $\mathbf{X} = (X_1, X_2, ..., X_n)$ as $\mathbf{x} = (x_1, x_2, ..., x_n)$. Given that $\overline{x} = 7$ and n = 50, construct a 99% confidence interval for μ .

Question 2

Suppose $Y_1, Y_2, ..., Y_n$ are independent and identically distributed random variables following a normal distribution with mean μ and variance σ^2 . The values of μ and σ^2 are both unknown. Suppose we observe $\mathbf{Y} = (Y_1, Y_2, ..., Y_n)$ as $\mathbf{y} = (y_1, y_2, ..., y_n)$. Given that the sample mean is $\overline{y} = 11$, the sample variance is $s^2 = 18$ and n = 8, construct a 90% confidence interval for μ .

Question 3

Suppose Z_1, Z_2, \ldots, Z_n are independent and identically distributed random variables following an unknown distribution F_Z . The mean μ of the distribution F_Z is unknown, but the variance of F_Z is known to be $\sigma^2 = 7$. Suppose we observe $\mathbf{Z} = (Z_1, Z_2, \ldots, Z_n)$ as $\mathbf{z} = (z_1, z_2, \ldots, z_n)$. Given that the sample mean is $\overline{z} = 6$ and n = 12, construct a 95% confidence interval for μ .

Question 4

Suppose the heights of two groups of people are recorded. Group A consists of n people and their heights are recorded (in cm) as x_1, x_2, \ldots, x_n with n = 10, sample mean $\overline{x} = 171.5$ and sample variance $s_x^2 = 2$. Group B consists of m people and their heights are recorded as y_1, y_2, \ldots, y_m , with m = 12, $\overline{y} = 170$ and sample variance $s_y^2 = 3$. We wish to test if the average heights of the two groups are significantly different or not. We start by assuming that the measurements x_1, x_2, \ldots, x_n are observations of the independent random variables X_1, X_2, \ldots, X_n , respectively, which follow a normal distribution with unknown mean μ_1 and unknown variance σ_1^2 . We also assume that the y_1, y_2, \ldots, y_m are observations of the independent random variables Y_1, Y_2, \ldots, Y_m , respectively, following a normal distribution with unknown mean μ_2 and unknown variance σ_2^2 . We also assume that although the variances are unknown, they are equal i.e. $\sigma_1^2 = \sigma_2^2 = \sigma^2$.

- (a) What is the null hypothesis for this test?
- (b) Assuming the null hypothesis is true, use Student's two-sample t-test to compute a p-value and decide whether or not the average heights of the two groups are significantly different or not.

Question 5

A pharmaceutical company conducts a number of clinical trials simultaneously to test the effectiveness of different drug treatments for a particular disease. In each clinical trial $i \in \{1, 2, ..., n\}$, a group of patients is randomly divided into two subgroups, one of which is given drug treatment i while the other is given a placebo (a substance that has no effect on the disease, such as a sugar pill). After a period of time, the patients are examined and declared either to be cured or not to be cured. For each clinical trial, a statistical analysis is performed on the resulting data from the two subgroups.

- (a) If the goal is to determine if a drug treatment is effective, what should the null hypothesis be for each statistical test?
- (b) The results of the n = 15 statistical tests were the following p-values (in increasing order):

0.0001,	0.0004,	0.0019,	0.0095,	0.0201,	0.0278,	0.0298,	0.0344,
0.0459,	0.3240,	0.4262,	0.5719,	0.6528,	0.7590,	1.000.	

If the pharmaceutical company declared in advance that a significance level of $\alpha = 0.05$ would be used, which of the *p*-values should be considered as significant (and therefore, which corresponding hypotheses should be rejected)?

Hint:

If $X_1, X_2, \dots, X_n \sim N(\mu_1, \sigma^2)$ are independent and if $Y_1, Y_2, \dots, Y_n \sim N(\mu_2, \sigma^2)$ are independent (and each X_i is independent of each Y_j), then defining

$$T = \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}},$$

where

$$s_p^2 = \frac{1}{n+m-2} \left(\sum_{i=1}^n (X_i - \overline{X})^2 + \sum_{j=1}^m (Y_j - \overline{Y})^2 \right) = \frac{1}{n+m-2} \left((n-1)S_X^2 + (m-1)S_Y^2 \right),$$

it can be shown that $T \sim t_{n+m-2}$.

Values of t for P(T < t), where T has Student's t-distribution with ν degrees of freedom

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
2 0.289 0.500 0.816 1.061 1.604 1.886 2.920 4.303 6.965 9.925 22.327 3 0.277 0.476 0.765 0.978 1.423 1.638 2.353 3.182 4.541 5.841 10.215 5 0.267 0.457 0.727 0.920 1.301 1.476 2.015 2.571 3.365 4.032 5.893 6 0.265 0.443 0.711 0.896 1.273 1.440 1.943 2.447 3.143 3.707 5.208 7 0.263 0.449 0.711 0.896 1.254 1.415 1.895 2.365 2.998 3.499 4.785 8 0.262 0.444 0.700 0.883 1.230 1.383 1.236 2.862 2.896 3.355 4.501 10 0.260 0.444 0.700 0.879 1.221 1.372 1.812 2.228 2.764 3.169 4.144		0.60	0.667	0.75	0.80	0.87	0.90	0.95	0.975	0.99	0.995	0.999
3 0.277 0.476 0.765 0.978 1.423 1.638 2.353 3.182 4.541 5.841 10.215 4 0.271 0.464 0.741 0.941 1.344 1.533 2.132 2.776 3.747 4.604 7.173 5 0.265 0.455 0.718 0.906 1.273 1.440 1.943 2.447 3.143 3.707 5.208 7 0.263 0.449 0.711 0.896 1.254 1.415 1.895 2.365 2.998 3.499 4.785 8 0.262 0.447 0.706 0.889 1.240 1.397 1.860 2.306 2.896 3.355 4.501 9 0.261 0.444 0.700 0.879 1.221 1.363 1.796 2.201 2.718 3.169 4.144 11 0.260 0.444 0.697 0.876 1.214 1.363 1.796 2.201 2.718 3.166 4.144 <												
4 0.271 0.464 0.741 0.941 1.344 1.533 2.132 2.776 3.747 4.604 7.173 5 0.267 0.457 0.727 0.920 1.301 1.476 2.015 2.571 3.365 4.032 5.893 6 0.265 0.443 0.711 0.896 1.254 1.415 1.895 2.365 2.998 3.499 4.785 8 0.262 0.447 0.706 0.889 1.240 1.397 1.860 2.306 2.896 3.355 4.501 9 0.261 0.445 0.703 0.883 1.230 1.383 1.833 2.262 2.821 3.250 4.297 10 0.260 0.444 0.607 0.876 1.214 1.363 1.796 2.201 2.718 3.106 4.025 12 0.259 0.442 0.699 0.868 1.209 1.356 1.789 2.681 3.055 3.930 13												
5 0.267 0.457 0.727 0.920 1.301 1.476 2.015 2.571 3.365 4.032 5.893 6 0.265 0.453 0.711 0.896 1.273 1.440 1.943 2.447 3.143 3.707 5.208 8 0.262 0.447 0.706 0.889 1.240 1.397 1.860 2.365 2.998 3.355 4.501 9 0.261 0.444 0.700 0.889 1.240 1.389 2.262 2.821 3.250 4.297 10 0.260 0.444 0.700 0.876 1.214 1.363 1.796 2.201 2.718 3.106 4.025 12 0.259 0.442 0.695 0.873 1.204 1.350 1.771 2.160 2.651 3.012 3.930 13 0.259 0.441 0.694 0.870 1.204 1.350 1.771 2.160 2.650 3.012 3.852 14 <td>3</td> <td></td>	3											
6 0.265 0.453 0.718 0.906 1.273 1.440 1.943 2.447 3.143 3.707 5.208 7 0.263 0.449 0.711 0.896 1.254 1.415 1.895 2.365 2.998 3.499 4.785 8 0.262 0.444 0.700 0.883 1.230 1.383 1.262 2.821 3.250 4.297 10 0.260 0.444 0.700 0.879 1.221 1.372 1.812 2.228 2.764 3.169 4.144 11 0.260 0.443 0.697 0.876 1.214 1.363 1.796 2.201 2.718 3.106 4.025 12 0.259 0.441 0.694 0.870 1.204 1.350 1.771 2.160 2.651 3.012 3.852 14 0.258 0.439 0.691 0.866 1.197 1.341 1.753 2.131 2.602 2.947 3.733 16 <td></td>												
7 0.263 0.449 0.711 0.896 1.254 1.415 1.895 2.365 2.998 3.499 4.785 8 0.262 0.447 0.706 0.889 1.240 1.397 1.860 2.306 2.896 3.355 4.501 9 0.261 0.445 0.703 0.883 1.230 1.383 1.833 2.262 2.821 3.250 4.297 10 0.260 0.444 0.700 0.876 1.214 1.363 1.796 2.201 2.718 3.106 4.025 12 0.259 0.442 0.694 0.870 1.204 1.350 1.771 2.160 2.650 3.012 3.852 14 0.258 0.440 0.692 0.868 1.200 1.341 1.753 2.131 2.602 2.947 3.787 15 0.258 0.439 0.690 0.865 1.194 1.337 1.746 2.120 2.583 2.921 3.686												
8 0.262 0.447 0.706 0.889 1.240 1.397 1.860 2.306 2.896 3.355 4.501 9 0.261 0.445 0.703 0.883 1.230 1.383 1.833 2.262 2.821 3.250 4.297 10 0.260 0.444 0.700 0.879 1.221 1.372 1.812 2.228 2.764 3.169 4.144 11 0.260 0.443 0.697 0.876 1.214 1.363 1.796 2.201 2.718 3.106 4.025 12 0.259 0.441 0.694 0.870 1.204 1.350 1.771 2.160 2.650 3.012 3.852 14 0.258 0.440 0.692 0.868 1.200 1.345 1.761 2.145 2.624 2.977 3.787 15 0.258 0.439 0.690 0.865 1.191 1.331 1.753 2.131 2.602 2.947 3.733												
9 0.261 0.445 0.703 0.883 1.230 1.383 1.833 2.262 2.821 3.250 4.297 10 0.260 0.444 0.700 0.879 1.221 1.372 1.812 2.228 2.764 3.169 4.144 11 0.260 0.443 0.697 0.876 1.214 1.363 1.796 2.201 2.718 3.106 4.025 12 0.259 0.442 0.695 0.873 1.209 1.356 1.772 2.160 2.650 3.012 3.852 14 0.258 0.440 0.694 0.870 1.204 1.350 1.771 2.160 2.650 3.012 3.852 14 0.258 0.449 0.691 0.866 1.197 1.341 1.753 2.131 2.602 2.947 3.733 16 0.258 0.439 0.690 0.865 1.194 1.337 1.746 2.120 2.583 2.921 3.686			0.449					1.895				4.785
10 0.260 0.444 0.700 0.879 1.221 1.372 1.812 2.228 2.764 3.169 4.144 11 0.260 0.443 0.697 0.876 1.214 1.363 1.796 2.201 2.718 3.106 4.025 12 0.259 0.441 0.695 0.873 1.209 1.356 1.782 2.179 2.681 3.055 3.930 13 0.259 0.441 0.694 0.870 1.204 1.350 1.771 2.160 2.650 3.012 3.852 14 0.258 0.440 0.692 0.868 1.200 1.341 1.753 2.131 2.602 2.977 3.787 15 0.258 0.439 0.690 0.865 1.194 1.337 1.746 2.120 2.583 2.921 3.686 17 0.257 0.438 0.688 0.862 1.189 1.330 1.734 2.101 2.552 2.878 3.610												
11 0.260 0.443 0.697 0.876 1.214 1.363 1.796 2.201 2.718 3.106 4.025 12 0.259 0.442 0.695 0.873 1.209 1.356 1.782 2.179 2.681 3.055 3.930 13 0.259 0.441 0.694 0.870 1.204 1.350 1.771 2.160 2.650 3.012 3.852 14 0.258 0.440 0.692 0.868 1.200 1.345 1.761 2.145 2.624 2.977 3.783 16 0.258 0.439 0.690 0.865 1.194 1.337 1.746 2.120 2.583 2.921 3.686 17 0.257 0.438 0.689 0.863 1.191 1.333 1.740 2.110 2.552 2.878 3.610 19 0.257 0.438 0.688 0.861 1.187 1.328 1.729 2.093 2.539 2.861 3.579	9	0.261	0.445	0.703	0.883	1.230	1.383	1.833	2.262	2.821	3.250	4.297
12 0.259 0.442 0.695 0.873 1.209 1.356 1.782 2.179 2.681 3.055 3.930 13 0.259 0.441 0.694 0.870 1.204 1.350 1.771 2.160 2.650 3.012 3.852 14 0.258 0.440 0.692 0.868 1.200 1.345 1.761 2.145 2.624 2.977 3.787 15 0.258 0.439 0.691 0.866 1.197 1.341 1.753 2.131 2.602 2.947 3.733 16 0.258 0.439 0.690 0.865 1.194 1.337 1.746 2.120 2.583 2.921 3.686 17 0.257 0.438 0.688 0.862 1.181 1.330 1.734 2.101 2.552 2.878 3.610 19 0.257 0.438 0.686 0.859 1.185 1.325 1.725 2.093 2.539 2.861 3.579	10		0.444		0.879					2.764	3.169	4.144
13 0.259 0.441 0.694 0.870 1.204 1.350 1.771 2.160 2.650 3.012 3.852 14 0.258 0.440 0.692 0.868 1.200 1.345 1.761 2.145 2.624 2.977 3.787 15 0.258 0.439 0.691 0.866 1.197 1.341 1.753 2.131 2.602 2.947 3.733 16 0.258 0.439 0.690 0.865 1.194 1.337 1.746 2.120 2.583 2.921 3.686 17 0.257 0.438 0.688 0.862 1.189 1.330 1.734 2.101 2.567 2.898 3.646 18 0.257 0.438 0.688 0.861 1.187 1.328 1.729 2.093 2.539 2.861 3.577 20 0.257 0.437 0.686 0.859 1.183 1.323 1.721 2.086 2.528 2.845 3.552		0.260	0.443	0.697	0.876	1.214	1.363	1.796	2.201	2.718	3.106	4.025
14 0.258 0.440 0.692 0.868 1.200 1.345 1.761 2.145 2.624 2.977 3.787 15 0.258 0.439 0.691 0.866 1.197 1.341 1.753 2.131 2.602 2.947 3.733 16 0.258 0.439 0.690 0.865 1.194 1.337 1.746 2.120 2.583 2.921 3.686 17 0.257 0.438 0.689 0.863 1.191 1.333 1.740 2.110 2.567 2.898 3.646 18 0.257 0.438 0.688 0.862 1.189 1.330 1.734 2.101 2.552 2.878 3.610 19 0.257 0.437 0.687 0.860 1.185 1.325 1.725 2.086 2.528 2.845 3.552 21 0.257 0.437 0.686 0.859 1.183 1.323 1.721 2.080 2.518 2.819 3.505	12	0.259	0.442	0.695	0.873	1.209	1.356	1.782	2.179	2.681	3.055	3.930
15 0.258 0.439 0.691 0.866 1.197 1.341 1.753 2.131 2.602 2.947 3.733 16 0.258 0.439 0.690 0.865 1.194 1.337 1.746 2.120 2.583 2.921 3.686 17 0.257 0.438 0.689 0.863 1.191 1.333 1.740 2.110 2.567 2.898 3.646 18 0.257 0.438 0.688 0.862 1.189 1.330 1.734 2.101 2.552 2.878 3.610 19 0.257 0.438 0.688 0.861 1.187 1.328 1.729 2.093 2.539 2.861 3.579 20 0.257 0.437 0.686 0.859 1.183 1.323 1.721 2.080 2.518 2.811 3.527 21 0.256 0.437 0.686 0.858 1.182 1.321 1.717 2.074 2.508 2.819 3.505												3.852
16 0.258 0.439 0.690 0.865 1.194 1.337 1.746 2.120 2.583 2.921 3.686 17 0.257 0.438 0.689 0.863 1.191 1.333 1.740 2.110 2.567 2.898 3.646 18 0.257 0.438 0.688 0.861 1.187 1.328 1.729 2.093 2.539 2.861 3.579 20 0.257 0.437 0.687 0.860 1.185 1.325 1.725 2.086 2.528 2.845 3.552 21 0.257 0.437 0.686 0.859 1.183 1.323 1.721 2.080 2.518 2.811 3.527 22 0.256 0.436 0.685 0.858 1.182 1.321 1.717 2.074 2.508 2.819 3.505 23 0.256 0.436 0.685 0.857 1.179 1.318 1.711 2.069 2.500 2.807 3.485					0.868							
17 0.257 0.438 0.689 0.863 1.191 1.333 1.740 2.110 2.567 2.898 3.646 18 0.257 0.438 0.688 0.862 1.189 1.330 1.734 2.101 2.552 2.878 3.610 19 0.257 0.438 0.688 0.861 1.187 1.328 1.729 2.093 2.539 2.861 3.579 20 0.257 0.437 0.686 0.859 1.183 1.323 1.721 2.080 2.518 2.831 3.527 22 0.256 0.437 0.686 0.858 1.182 1.321 1.717 2.074 2.508 2.819 3.505 23 0.256 0.436 0.685 0.858 1.180 1.319 1.714 2.069 2.500 2.807 3.485 24 0.256 0.436 0.684 0.856 1.178 1.316 1.708 2.060 2.485 2.787 3.450			0.439		0.866	1.197		1.753		2.602		3.733
18 0.257 0.438 0.688 0.862 1.189 1.330 1.734 2.101 2.552 2.878 3.610 19 0.257 0.438 0.688 0.861 1.187 1.328 1.729 2.093 2.539 2.861 3.579 20 0.257 0.437 0.686 0.859 1.183 1.325 1.725 2.086 2.528 2.845 3.552 21 0.256 0.437 0.686 0.858 1.182 1.321 1.717 2.074 2.508 2.819 3.505 23 0.256 0.436 0.685 0.858 1.180 1.319 1.714 2.069 2.500 2.807 3.485 24 0.256 0.436 0.685 0.857 1.179 1.318 1.711 2.064 2.492 2.797 3.467 25 0.256 0.436 0.684 0.856 1.178 1.316 1.708 2.060 2.485 2.787 3.450	16	0.258	0.439	0.690	0.865	1.194	1.337	1.746	2.120	2.583	2.921	3.686
19 0.257 0.438 0.688 0.861 1.187 1.328 1.729 2.093 2.539 2.861 3.579 20 0.257 0.437 0.687 0.860 1.185 1.325 1.725 2.086 2.528 2.845 3.552 21 0.257 0.437 0.686 0.859 1.183 1.323 1.721 2.080 2.518 2.831 3.527 22 0.256 0.437 0.686 0.858 1.182 1.321 1.717 2.074 2.508 2.819 3.505 23 0.256 0.436 0.685 0.858 1.180 1.319 1.714 2.069 2.500 2.807 3.485 24 0.256 0.436 0.684 0.856 1.178 1.316 1.708 2.060 2.485 2.787 3.450 26 0.256 0.436 0.684 0.855 1.176 1.314 1.703 2.052 2.473 2.771 3.421					0.863	1.191		1.740		2.567	2.898	3.646
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	0.257	0.438	0.688	0.862	1.189	1.330	1.734	2.101	2.552	2.878	3.610
21 0.257 0.437 0.686 0.859 1.183 1.323 1.721 2.080 2.518 2.831 3.527 22 0.256 0.437 0.686 0.858 1.182 1.321 1.717 2.074 2.508 2.819 3.505 23 0.256 0.436 0.685 0.858 1.180 1.319 1.714 2.069 2.500 2.807 3.485 24 0.256 0.436 0.685 0.857 1.179 1.318 1.711 2.064 2.492 2.797 3.467 25 0.256 0.436 0.684 0.856 1.178 1.316 1.708 2.060 2.485 2.787 3.450 26 0.256 0.436 0.684 0.856 1.177 1.315 1.706 2.056 2.479 2.779 3.435 27 0.256 0.435 0.683 0.855 1.175 1.313 1.701 2.048 2.467 2.763 3.408	19	0.257	0.438	0.688	0.861	1.187	1.328	1.729	2.093	2.539	2.861	3.579
22 0.256 0.437 0.686 0.858 1.182 1.321 1.717 2.074 2.508 2.819 3.505 23 0.256 0.436 0.685 0.858 1.180 1.319 1.714 2.069 2.500 2.807 3.485 24 0.256 0.436 0.685 0.857 1.179 1.318 1.711 2.064 2.492 2.797 3.467 25 0.256 0.436 0.684 0.856 1.178 1.316 1.708 2.060 2.485 2.787 3.450 26 0.256 0.436 0.684 0.856 1.177 1.315 1.706 2.056 2.479 2.779 3.435 27 0.256 0.435 0.684 0.855 1.176 1.314 1.703 2.052 2.473 2.771 3.421 28 0.256 0.435 0.683 0.854 1.174 1.311 1.699 2.045 2.462 2.756 3.396	20		0.437	0.687	0.860	1.185		1.725	2.086	2.528		3.552
23 0.256 0.436 0.685 0.858 1.180 1.319 1.714 2.069 2.500 2.807 3.485 24 0.256 0.436 0.685 0.857 1.179 1.318 1.711 2.064 2.492 2.797 3.467 25 0.256 0.436 0.684 0.856 1.178 1.316 1.708 2.060 2.485 2.787 3.450 26 0.256 0.436 0.684 0.856 1.177 1.315 1.706 2.056 2.479 2.779 3.435 27 0.256 0.435 0.684 0.855 1.176 1.314 1.703 2.052 2.473 2.771 3.421 28 0.256 0.435 0.683 0.854 1.175 1.313 1.701 2.048 2.467 2.763 3.498 29 0.256 0.435 0.683 0.854 1.174 1.311 1.699 2.045 2.462 2.756 3.396				0.686	0.859	1.183		1.721	2.080	2.518		3.527
24 0.256 0.436 0.685 0.857 1.179 1.318 1.711 2.064 2.492 2.797 3.467 25 0.256 0.436 0.684 0.856 1.178 1.316 1.708 2.060 2.485 2.787 3.450 26 0.256 0.436 0.684 0.856 1.177 1.315 1.706 2.056 2.479 2.779 3.435 27 0.256 0.435 0.684 0.855 1.176 1.314 1.703 2.052 2.473 2.771 3.421 28 0.256 0.435 0.683 0.855 1.175 1.313 1.701 2.048 2.467 2.763 3.408 29 0.256 0.435 0.683 0.854 1.174 1.311 1.699 2.045 2.462 2.756 3.396 30 0.256 0.435 0.683 0.854 1.173 1.310 1.697 2.042 2.457 2.750 3.385												3.505
25 0.256 0.436 0.684 0.856 1.178 1.316 1.708 2.060 2.485 2.787 3.450 26 0.256 0.436 0.684 0.856 1.177 1.315 1.706 2.056 2.479 2.779 3.435 27 0.256 0.435 0.684 0.855 1.176 1.314 1.703 2.052 2.473 2.771 3.421 28 0.256 0.435 0.683 0.855 1.175 1.313 1.701 2.048 2.467 2.763 3.408 29 0.256 0.435 0.683 0.854 1.174 1.311 1.699 2.045 2.462 2.756 3.396 30 0.256 0.435 0.683 0.854 1.173 1.310 1.697 2.042 2.457 2.750 3.385 35 0.255 0.434 0.682 0.852 1.170 1.306 1.690 2.030 2.438 2.724 3.340					0.858					2.500		3.485
26 0.256 0.436 0.684 0.856 1.177 1.315 1.706 2.056 2.479 2.779 3.435 27 0.256 0.435 0.684 0.855 1.176 1.314 1.703 2.052 2.473 2.771 3.421 28 0.256 0.435 0.683 0.855 1.175 1.313 1.701 2.048 2.467 2.763 3.408 29 0.256 0.435 0.683 0.854 1.174 1.311 1.699 2.045 2.462 2.756 3.396 30 0.256 0.435 0.683 0.854 1.173 1.310 1.697 2.042 2.457 2.750 3.385 35 0.255 0.434 0.682 0.852 1.170 1.306 1.690 2.030 2.438 2.724 3.340 40 0.255 0.434 0.681 0.851 1.167 1.303 1.684 2.021 2.423 2.704 3.307												
27 0.256 0.435 0.684 0.855 1.176 1.314 1.703 2.052 2.473 2.771 3.421 28 0.256 0.435 0.683 0.855 1.175 1.313 1.701 2.048 2.467 2.763 3.408 29 0.256 0.435 0.683 0.854 1.174 1.311 1.699 2.045 2.462 2.756 3.396 30 0.256 0.435 0.683 0.854 1.173 1.310 1.697 2.042 2.457 2.750 3.385 35 0.255 0.434 0.682 0.852 1.170 1.306 1.690 2.030 2.438 2.724 3.340 40 0.255 0.434 0.681 0.851 1.167 1.303 1.684 2.021 2.423 2.704 3.307 45 0.255 0.434 0.680 0.850 1.165 1.301 1.679 2.014 2.412 2.690 3.281 50 0.255 0.433 0.679 0.848 1.163 1.297										2.485		
28 0.256 0.435 0.683 0.855 1.175 1.313 1.701 2.048 2.467 2.763 3.408 29 0.256 0.435 0.683 0.854 1.174 1.311 1.699 2.045 2.462 2.756 3.396 30 0.256 0.435 0.683 0.854 1.173 1.310 1.697 2.042 2.457 2.750 3.385 35 0.255 0.434 0.682 0.852 1.170 1.306 1.690 2.030 2.438 2.724 3.340 40 0.255 0.434 0.681 0.851 1.167 1.303 1.684 2.021 2.423 2.704 3.307 45 0.255 0.434 0.680 0.850 1.165 1.301 1.679 2.014 2.412 2.690 3.281 50 0.255 0.433 0.679 0.849 1.164 1.299 1.676 2.009 2.403 2.678 3.261 55 0.255 0.433 0.679 0.848 1.163 1.297		0.256			0.856	1.177		1.706	2.056	2.479	2.779	3.435
29 0.256 0.435 0.683 0.854 1.174 1.311 1.699 2.045 2.462 2.756 3.396 30 0.256 0.435 0.683 0.854 1.173 1.310 1.697 2.042 2.457 2.750 3.385 35 0.255 0.434 0.682 0.852 1.170 1.306 1.690 2.030 2.438 2.724 3.340 40 0.255 0.434 0.681 0.851 1.167 1.303 1.684 2.021 2.423 2.704 3.307 45 0.255 0.434 0.680 0.850 1.165 1.301 1.679 2.014 2.412 2.690 3.281 50 0.255 0.433 0.679 0.849 1.164 1.299 1.676 2.009 2.403 2.678 3.261 55 0.255 0.433 0.679 0.848 1.163 1.297 1.673 2.004 2.396 2.668 3.245 60 0.254 0.433 0.679 0.848 1.162 1.296												
30 0.256 0.435 0.683 0.854 1.173 1.310 1.697 2.042 2.457 2.750 3.385 35 0.255 0.434 0.682 0.852 1.170 1.306 1.690 2.030 2.438 2.724 3.340 40 0.255 0.434 0.681 0.851 1.167 1.303 1.684 2.021 2.423 2.704 3.307 45 0.255 0.434 0.680 0.850 1.165 1.301 1.679 2.014 2.412 2.690 3.281 50 0.255 0.433 0.679 0.849 1.164 1.299 1.676 2.009 2.403 2.678 3.261 55 0.255 0.433 0.679 0.848 1.163 1.297 1.673 2.004 2.396 2.668 3.245 60 0.254 0.433 0.679 0.848 1.162 1.296 1.671 2.000 2.390 2.660 3.232					0.855	1.175				2.467		3.408
35 0.255 0.434 0.682 0.852 1.170 1.306 1.690 2.030 2.438 2.724 3.340 40 0.255 0.434 0.681 0.851 1.167 1.303 1.684 2.021 2.423 2.704 3.307 45 0.255 0.434 0.680 0.850 1.165 1.301 1.679 2.014 2.412 2.690 3.281 50 0.255 0.433 0.679 0.849 1.164 1.299 1.676 2.009 2.403 2.678 3.261 55 0.255 0.433 0.679 0.848 1.163 1.297 1.673 2.004 2.396 2.668 3.245 60 0.254 0.433 0.679 0.848 1.162 1.296 1.671 2.000 2.390 2.660 3.232												
40 0.255 0.434 0.681 0.851 1.167 1.303 1.684 2.021 2.423 2.704 3.307 45 0.255 0.434 0.680 0.850 1.165 1.301 1.679 2.014 2.412 2.690 3.281 50 0.255 0.433 0.679 0.849 1.164 1.299 1.676 2.009 2.403 2.678 3.261 55 0.255 0.433 0.679 0.848 1.163 1.297 1.673 2.004 2.396 2.668 3.245 60 0.254 0.433 0.679 0.848 1.162 1.296 1.671 2.000 2.390 2.660 3.232												
45 0.255 0.434 0.680 0.850 1.165 1.301 1.679 2.014 2.412 2.690 3.281 50 0.255 0.433 0.679 0.849 1.164 1.299 1.676 2.009 2.403 2.678 3.261 55 0.255 0.433 0.679 0.848 1.163 1.297 1.673 2.004 2.396 2.668 3.245 60 0.254 0.433 0.679 0.848 1.162 1.296 1.671 2.000 2.390 2.660 3.232												
50 0.255 0.433 0.679 0.849 1.164 1.299 1.676 2.009 2.403 2.678 3.261 55 0.255 0.433 0.679 0.848 1.163 1.297 1.673 2.004 2.396 2.668 3.245 60 0.254 0.433 0.679 0.848 1.162 1.296 1.671 2.000 2.390 2.660 3.232												
55 0.255 0.433 0.679 0.848 1.163 1.297 1.673 2.004 2.396 2.668 3.245 60 0.254 0.433 0.679 0.848 1.162 1.296 1.671 2.000 2.390 2.660 3.232												
60 0.254 0.433 0.679 0.848 1.162 1.296 1.671 2.000 2.390 2.660 3.232												
∞ 0.253 0.431 0.674 0.842 1.150 1.282 1.645 1.960 2.326 2.576 3.090	60											
	$-\infty$	0.253	0.431	0.674	0.842	1.150	1.282	1.645	1.960	2.326	2.576	3.090

Table showing P(Z < z) where $Z \sim N(0, 1)$ for values of z between 0.00 and 3.99

\overline{z}	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
•										

Table showing selected values of z for $\mathrm{P}(Z < z),$ where Z has a standard normal distribution

z	P(Z < z)	
1.281	0.900	
1.645	0.950	
1.960	0.975	
2.326	0.990	
2.576	0.995	