TECE progress meeting

Richèl JC Bilderbeek

University of Groningen

2017-09-13

http://github.com/richelbilderbeek/Science

Table of Contents

- Problem
- 2 Research question
- Introduction
- 4 Preliminary results
- 5 Preliminary conclusions
- 6 Work in progress

Tree of life²

Uses RAxML¹

¹Stamatakis, Alexandros. 2014. Bioinformatics 30.9 (2014).

²Hug, Laura A., et al. 2016. Nature Microbiology 1 (2016).

New giraffe species ... 34

³Fennessy, Julian, et al. 2016. Current Biology 26.18.

⁴Picture by Julian Fennessy RJC Bilderbeek (University of Groningen)

... for quite some time⁵

Table of Contents

- Problem
- Research question
- Introduction
- 4 Preliminary results
- 5 Preliminary conclusions
- 6 Work in progress

Research question

What is the error we make today ...

- in inferring phylogenies
- caused by ignoring that speciation takes time to complete?

Table of Contents

- Problem
- Research question
- Introduction
- 4 Preliminary results
- 5 Preliminary conclusions
- 6 Work in progress

Common: from DNA to phylogeny⁶⁷

⁶Bouckaert, Remco, et al. 2014. PLoS computational biology 10.4.

⁷Nee, Sean, et al. 1994. Philos Trans R Soc Lond B Biol Sci 344.1309.

Novel: simulating DNA⁸⁹

⁸Etienne, Rampal S., and James Rosindell. 2012. Systematic Biology 61.2.

⁹Schliep, Klaus Peter. 2010. Bioinformatics btq706.

Measuring error using nLTT statistic¹⁰

using

Table of Contents

- Problem
- Research question
- Introduction
- Preliminary results
- 5 Preliminary conclusions
- 6 Work in progress

Longer duration of speciation

Longer duration of speciation

Effect of bad estimation

original species tree

posterior tree

Longer DNA alignments

Longer duration of speciation

Table of Contents

- Problem
- Research question
- Introduction
- 4 Preliminary results
- 6 Preliminary conclusions
- 6 Work in progress

Preliminary conclusions

It is shown that:

- ◆ protractedness leads to ↑ error
- \downarrow DNA sequence leads to \uparrow error
- (not shown) sampling subspecies has no effect
- (not shown) number of taxa has no effect

if $t \ge 16$: 00, then done

Table of Contents

- Problem
- Research question
- Introduction
- 4 Preliminary results
- 5 Preliminary conclusions
- 6 Work in progress

Current problem

Incomplete documentation

Parameter estimation

- λ : speciation rate
- \bullet μ : extinction rate

Parameter estimation

takes a

and creates

a distribution of
$$\left\{\mathcal{T},\hat{\lambda},\hat{\mu},\hat{t_0},
ight\}$$

- ullet \mathcal{T} : a phylogeny
- $\hat{\lambda}$: estimated speciation rate
- $\hat{\mu}$: estimated extinction rate
- $\hat{t_0}$: estimated crown age

Naive expectation

Parameters to create phylogenies:

λ	speciation rate	0.3
μ	extinction rate	0.2
t_0	crown age	15

Expected parameter estimates:

$\hat{\lambda}$	estimated speciation rate	0.31	0.29	0.28
$\hat{\mu}$	estimated extinction rate	0.19	0.21	0.2
$\hat{t_0}$	estimated crown age	14.9	15.1	15.2

Real results

Parameters to create phylogenies:

λ	speciation rate	0.3
μ	extinction rate	0.2
t_0	crown age	15

Parameter estimates:

birthRate2	18.591	23.7402	16.1756	22.7706	24.0203
relativeDeathRate2	0.69492	0.3817	0.60621	0.49113	0.29777
TreeHeight	0.1515	0.14719	0.14579	0.15033	0.1514

relativeDeathRate2

Parameters to create phylogenies:

λ	speciation rate	0.3
μ	μ extinction rate	
t_0	t ₀ crown age	

Parameter estimates:

b	birthRate2	18.59	23.740	16.176	22.771	24.020
d	relativeDeathRate2	0.6949	0.382	0.6062	0.4911	0.2978
<i>z</i> ₀	TreeHeight	0.152	0.1472	0.1458	0.1503	0.151

Hypothesis:

$$d = \frac{\mu}{\lambda} \approx 0.67$$

relativeDeathRate2

"This derivation conditions directly on fixed N taxa. $\mbox{\ensuremath{\mbox{chr}}}\mbox{\ensuremath{\mbox{chr}}\mbox{\ensuremath{\mbox{chr}}}\mbox{\ensuremath{\mbox{chr}}}\mbox{\ensuremath{\mbox{chr}}}\mbox{\ensuremath{\mbox{chr}}}\mbox{\ensuremath{\mbox{chr}}}\mbox{\ensuremath{\mbox{chr}}}\mbox{\ensuremath{\mbox{chr}}}\mbox{\ensuremath{\mbox{chr}}}\mbox{\ensuremath{\mbox{chr}}}\mbox{\ensuremath{\mbox{chr}}}\mbox{\ensuremath{\mbox{chr}}}\mbox{\ensuremath{\mbox{chr}}}\mbox{\ensuremath{\mbox{chr}}}\mbox{\ensuremath{\mbox{chr}}}\mbox{\ensuremath{\mbox{chr}}}\mbox{\ensuremath{\mbox{chr}}}\mbox{\$

"The inference is directly on b-d (strictly positive) and d/b (constrained in [0,1))
" + "Verified using simulated trees generated by Klass tree sample. (http://www.klaashartmann.com/treesa

```
final public Input<RealParameter> relativeDeathRateParameterInput =
new Input<>("relativeDeathRate", "relative death rate parameter, mu/lambda in birth death model"
```


birthRate2 and TreeHeight

Parameters to create phylogenies:

λ	speciation rate	0.3
μ	extinction rate	0.2
t ₀	crown age	15

Parameter estimates:

b	birthRate2	18.59	23.740	16.176	22.771	24.020
d	relativeDeathRate2	0.6949	0.382	0.6062	0.4911	0.2978
<i>z</i> ₀	TreeHeight	0.152	0.1472	0.1458	0.1503	0.151

Hypothesis 🕲:

$$b = \lambda - \mu = 0.1$$

TreeHeight

17

birthRate2 and TreeHeight

The three parameters λ , μ , ρ are non-identifyable, meaning that the probability density of a time tree is determined by two parameters λ – mu and $\lambda \cdot \rho^{11}$.

¹¹Stadler, Tanja. 2009. Journal of theoretical biology 26H1

Discussion

Bayesian Evolutionary Analysis with BEAST

- Two out of three estimated parameters are unknown ...
- ... even with access to the BEAST book, online documentation and source code

Thanks

