Lecture 33: Trees, queues and stacks

To search a graph G systematically, it helps to have a spanning tree T, together with an ordering of the vertices of T.

Breadth first ordering

The easiest ordering to understand is called *breadth first*, because it orders vertices "across" the tree in "levels."

Level 0 is a given "root" vertex.

Level 1 is the vertices one edge
away from the root.

Level 2 are the vertices two edges
away from the root,
... and so on.

Example.

A, B, C, D, E, F, G is a breadth first ordering of

Queues

Breadth first ordering amounts to putting vertices in a *queue* - a list processed on a "first come, first served" or "first in, first out" basis.

- The root vertex is first in the queue (hence first out).
- Vertices adjacent to the head vertex v in the queue go to the tail of the queue (hence they come out after v), if they are not already in it.
- ▶ The head vertex *v* does not come out of the queue until all vertices adjacent to *v* have gone in.

Breadth first algorithm

For any connected graph G, this algorithm not only orders the vertices of G in a queue Q, it also builds a spanning tree T of G by attaching each vertex v to a "predecessor" among the adjacent vertices of v already in T. An arbitrary vertex is chosen as the root V_0 of T.

- 1. Initially, T= tree with just one vertex V_0 , Q= the queue containing only V_0 .
- 2. While Q is nonempty
 - 2.1 Let V be the vertex at the head of Q
 - 2.2 If there is an edge e = VW in G where W is not in T
 - 2.2.1 Add e and W to T
 - 2.2.2 Insert W in Q (at the tail).
 - 2.3 Else remove V from Q.

Remarks

- If the graph G is not connected, the algorithm gives a spanning tree of the connected component containing the root vertex A, the part of G containing all vertices connected to A.
- 2. Thus we can recognise whether *G* is connected by seeing whether all its vertices are included when the algorithm terminates.
- 3. Being able to recognise connectedness enables us, e.g., to recognise bridges.

If G = Dwith root vertex A.

Then Q and T grow as shown on the right:

Step	Q	T
1	А	• A
2	AB	B ◆ A
3	ABC	$B \bullet A C$
4	BC	
5	BCD	B C
6	BCDE	B C C E
7	CDE	
8	DE	
Q	F	

Depth first algorithm

This is the same except it has a *stack* S instead of a queue Q. S is "last in, first out," so we insert and remove vertices from the same end of S (called the top of the stack).

- 1. Initially, T= tree with just one vertex V_0 , S= the stack containing only V_0 .
- 2. While *S* is nonempty
 - 2.1 Let V be the vertex at the top of S
 - 2.2 If there is an edge e = VW in G where W is not in T
 - 2.2.1 Add e and W to T
 - 2.2.2 Insert W in S (at the top).
 - 2.3 Else remove *V* from *S*.

Remark. The breadth first and depth first algorithms give two ways to construct a spanning tree of a connected graph.

Example. We use the same G, and take the top of S to be its right hand end.

$$G = \bigcup_{D} \bigcap_{E} G$$
with root vertex

with root vertex A.

Step	S	T
1	А	• A
2	AB	в • А
3	ABC	$B \stackrel{\bullet}{\longleftarrow} C$
		$B \overset{\bullet}{\longleftrightarrow} A C$
4	ABCE	• <i>E</i>
		$B \stackrel{\bullet}{\longleftarrow} A$
4	ABCED	$D \longrightarrow E$
6	ABCE	
7	ABC	
8	AB	
Ω	Λ	

Questions

33.1 The following list gives the state, at successive stages, of either a queue or a stack.

Α

AB

ABC

BC

BCD

CD

D

Which is it: a queue or a stack?

ANS: It is a queue. Notice that items are entering at the right hand end and leaving at the left hand end, which is characteristic of a queue.

In a stack, things would enter and leave at the same end.

Questions

33.2 Construct a breadth first spanning tree for the graph

The queue follows the steps shown, producing the spanning tree shown far right.

Questions

33.3 Construct a depth first spanning tree for the graph

The stack trace is as shown, producing the spanning tree shown far right.

