

-Zeynep Cevik

Matrisler

#m, n E IN olmak üzere mxn tane reel veya kompleks sayıdan meydana gelen

 $A = \begin{bmatrix} a_{11} & a_{12} & --- & a_{1n} \\ a_{21} & a_{22} & --- & a_{2n} \\ a_{m1} & a_{m2} & --- & a_{mn} \end{bmatrix} \xrightarrow{m \times n} \xrightarrow{satir}$

tablosuna bir mxn matris denir.

A matrisi kısaca A = [aij]mxn (i = 1,2,-.m; j = 1,2...n) seklinde gosterilir

matrisin mertebeleri ya da tipi denin

a; sayılarının her birine A matrisinin bir elemanı denis.

Ayrıca aiz, aiz, ... ain (i = 1,2, ..., m)
ele man larının oluşturduğu yatay sıraya

A matrisinin i. satırı

ais, a25, --- ams (J = 1,2, ---, n)

elemanlarının oluşturduğu dikey sıraya da A matrisinin J. sütunu veya kolon o denir # Bir matris, yalnız bir satır veya sütundan meydana gelebilir.

Bu durumda matris, sırasıyla satır matrisi veya sūtun matrisi adını alır.

bu matrise situr matris denir

A = [aij]mxn ve B = [bij]mxn matrislerii iain eger $\forall i, j$ iain

qij =bij

ise A ve B matrislerine eşit denir ve A=B

reklin de gösterilir.

Matrislerde Toplama ve Skalerle Garpma İşlemi

A = [aij] mxn ve B = [bij] mvn matrislerinin

toplami bu matrislerin karşılıklı bilesenleri toplanarak

elde edilen yeni bir matristir.

NOT: ik: matrisin farkı da toplamın bir özel hali olduğundan

Bir $A = [ais] m \times n$ seklinde tanımlı Bir $A = [ais] m \times n$ matrisi verilsin. -A = [-a;] mxn matrisine A'nın toplamsal tersi denis.

Bir k skaleri ile A matrisinin garpımı,
A'nın her bir elemanının k ile garpımından elde
edilen yeni bir C matrisidir. Yani,

C = k A = [k. aij]mxn 'dir.

Matrislerde Garpma islemi

A matrisi mxn tipinde, B matrisi nxp tipinde olsun A = [ais]mxn ve B = [bis]nxp oldugunu varsayalım

 $C = i.k = \sum_{J=1}^{n} = aiJ bJL$

esitligiyle tanımlı olan [cij] mxp matrisine

A ile B matrisinin carpımı denir ve AB ile
gösterilir.

TUYARI: Herhangi Ave B matrisleri için garpım tanımlı değildir. Bu matrislerin garpımları olabilmesi için A'nın sütun sayısının B'nin satır sayısına eşit olmalıdır. A matrisinin 1. satır elemanı B matrisinin

1. sütun elemanları ile karşılıklı olarak garpılarak
toplanır. Böylece A.B garpım matrisinin a ıı elemanı
bulunur. Bu işlem A matrisinin būtūn satırları
B matrisinin būtūn sütunlarıyla garpılın caya kadar
devam ettirilip AB bulunur.

Bir Matrisin Transpozu

A matrisi mxn tipinde olsun. A'nın satırları

sütun yapılarak elde edilen yeni matrise

A'nın transpozu denir. A' seklinde gösteri

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} M \times n$$
 ise

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix} \cap x_{m}$$

V Lyarı:

- 1) A matrisi man tipin deyse AT nam tipin dedic
- 2) A = [aij]mxn ve AT = [bij]nxm ise

3) $(A^T)^T = A$

DRNEK:
$$A = \begin{bmatrix} 3 & 1 \\ 0 & -2 \\ 4 & 3 \end{bmatrix}_{3\times 2}$$
 $A^{T} = \begin{bmatrix} 3 & 0 & 4 \\ 1 & -2 & 3 \end{bmatrix}_{2\times 3}$

- 1) A ve B matrisleri mxn tipinde ve C bir skaler ise $(A+B)^T = A^T + B^T 7$ $(C.A)^T = C.A^T$
- 2) A matrisi mxn tipinde B matrisi nxp tipinde ise BTAT tanımlı olup

(AB) = B.AT dur.

Bir A matrisi igin eger

AT = A ise A'ya simetrik matris;

AT = -A ise A'ya antisimetrik (tersmatris) denir.

Karesel Matrisler

Satur sayısı sütun sayısına eşit olan matrislere kare ya da karesel matris denir.

- n. mertebeden bir kare matriste a11, a22, --- ann sayı larının olusturduğu sıralı sayı n lisine kore matrisin Kösegeni denir.
- n. mertebeden bir kare matrisin kösegenindek:
 elemanlarının tümü bir (1), kösegen dısındaki
 elemanların tümü sıfır (0) ise bu matrise n. mertebeden
 birim matris denir. In ile gösterilir.

A nxn tipinde bir matris olmak üzere $A \cdot I_n = I_n \cdot A = A$ $T_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}_{2 \times 2}$ $T_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{3 \times 3}$ II = [1] 1x1 A, n. mertebeden bir kare matris olmak üzere i + J i 4 in a i J = 0 ise A matrisine to segen matris denir A = [a11 0 --- 0] Kósegen Matris
0 0 --- 0] NXN (dia gonal) Bir közegen matrisin közegendeki elemanları ezit ise bu matrise skaler matris denir co--o skaler Matris
(c=1 ise -> birim matris)

A = [ais] nxn matris olmak üzere i > J iain ai = 0 ise A ust uagensel id J idin aid = 0 ise A alt orgensel matristic Bir Kare Matrisin Determinanti det A veya IAI ile gosterilir. Sadece kare matrislerin determinanti hesaplana bilir A = [ai, 9,2] (+) 2. mertebeden matris ise A = (a,1 . a22) - (a21 . a,2) Sarrus Kurali: 3. mertebeden bir determinant ilk iki satırı A = a,, 0,2 a,3 determinantin altina ilave Q21 Q22 Q23 Q31 Q32 Q33 ederek yeniden yaz.

Determinantin Laplace Agilimi

Bu metod en basit sekliyle yüksek mertobeden bir determinantı alt determinantların toplamı seklinde ifade etmektedis. Örnegin 1. dereceden bir determinant 2. mertebeden alt determinantların toplamı olarak yazılabilis.

A = [qi] nxn kare matrisi verilsin Mij ile

A'nın i. satırı ve j. sütununun silinmesiyle elde

edilen (n-1) x (n-1). mertebeden bir matris gösterilsin.

Mij matrisinin determinantına A'nın aij

elemannın minörü ve

Aij = (-1)^{i+j}. det Mij degerine de aij elemaninin Kofaktōrū (işaretl: minōr veya eş garpan) denir.

Laplace Agilimi

 $A = [a_{ij}] nxn$ $(n \ge 2)$ kare matrisi vecilsin.

A'nın her hangi bir <u>i. satırın</u> göre Laplace Det. Ayılımı : $det A = a_{ij} A_{ij} + a_{i2} A_{i2} + ... + a_{in} A_{in} = \sum_{i=1}^{n} a_{ij} A_{ij}$

```
ÖRNEK! A =
                        1 2 3
3 4 5
5 6 7
det A = a11 . A11 + a12 . A12 + a13 . A13
A11 = C-13+1 | 4.5' | 67.1+
                        A_{12} = (-1)^{1+2} \begin{vmatrix} 35 \\ 57 \end{vmatrix}
     _ 2
A13 = (-1)+3 | 34 | 56 |
    = -2
       det A = 1. (-2) + 2. 4 + 3. (-2)
                = 0
                  deter? 2. sūtuna gōre
  ÖRNEK:
  | B|= | 1 0 1
2 4 2
3 1 -2
  1B1 = 912 A12 + 922 A22 + 032 . A32
```

Determinantların Özellikleri

- Bir determinantın herhangi bir satırını veya sütununu bir sayıyla garparsan determinantı da aynı sayıyla garp.
- Bir determinantın bir satvını veya sütununun tamamı sıfır (o) ise determinantın sonucu sıfır olur.
- Herhangi iki satırı veya sütunu yer değistirirsek determinantın işareti değişir.
- iki satırı veya sütunu birbirinin aynısı veya katı olan determinantın değeri sıfırdır.
- Bir determinantın bir satır veya sütununun elemanları iki ya da daha fazla terimin toplamı ise bu determinant iki ya da daha fazla determinantın toplamı seklinde yazılabilir.
- Bir determinantta herhangi bir satırın veya sütunun elemanları aynı bir sayı ile garpılıp başka bir sütuna eklenirse determinantın değeri değismez.
- Bir determinantın herhangi bir satıra veya sütuna ait elemanları baska bir satıra veya sütuna ait elemanların kofaktörüyle (es garpanıyla) garpılıp toplanırsa sonug sıfır olur.

M UYARI

Anxn tipinde ortagonal bir motris ise det A = 71

Eger det A = 1 ise pozitif ortagonal;

det A = -1 ise negatif ortagonal matris denir.

Özel Matrisler

Determinanti sifira esit olan bir karesel matrise singüler matris, determinanti sifirdan farklı olan bir karesel matrise de regüler matris denir.

Yani A, karesel bir matris olmak üzere;

det A = 0 => A'ya singüler,

det A + 0 => A ya reguler denis.

Bir A matrisinin determinant, sıfırdan farklı olan en yüksek mertebeden alt matrisinin mertebesine A matrisinin rankı denir.

n. mertebeden bir karesel matrisin rankı en fazla n olabilir. Eger karesel bir matrisin determinantı sıfırdan farklı ise rankı karesel matrisin mertebesine eşittir.

(Rank O olamaz. En az 1 olur. Matrisler en az 1 x 1 olduğundan 1. mertebe olabilir.

Adjoint Matris

A = [aij] bir kare matris ve bu kare matrisin aij elemanının eş garpanı (kofaktörü) da Aij olsun. Aij lerden elde edilen [Aij] matrisinin transpozu olan [Aji] matrisine A kare matrisinin adjoint matrisi denif adjA veya à sembolüyle gösterilif

_, ōzellikleri

A ve B n. mertebeden bir kare matrisler

In de bir birim matris olmak üzere

A (adJ A) = IAI In

adj (A.B) = adjB. adjA

Ters Matrisin Bulunması

A, n. dereceden bir karesel matris ve

In birim matris olmak üzere;

A.B = B.A = In

bağıntısını sağlayan B matrisine A'nın tersi

(inversi) ve B = A ile gosterilir Boylece

A.A = In olduğu görülür.

A'nın tersi de n. mertebeden bir karesel matristir.

A = adJA |A|

Ters Matrisin Hesaplanması

Bir karesel matrisin tersinin bulunmasında iki farklı yol izlenecektir.

on. mertebeden bir A matrisinin tersi B matrisi ise A.B = In...(*) yazılır ve bu işlem yapılarak B ters matrisinin elemanları bulunur. Lineer Denklem Sistemlerinin Matris Yardımıyla Gözümü

a11.X11 + 912. X12 + ... + ain X10 = b1

 $q_{21}.X_{21} + q_{22}.X_{22} + \cdots + q_{2n}X_{2n} = b_2$

ani. Xni + anz. xnz + ... + ann Xnn = bn

denklem sistemini göz önüne alalım. Bilinmeyenlerin katsayılar matrisini A, bilinmeyenlerin matrisini x ve ezitliğin sağındaki sabit sayıların matrisini de B ile gösterirsek

 $A = \begin{bmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & \vdots & \vdots \\ a_{01} & \cdots & a_{0N} \end{bmatrix} \quad X = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \quad B = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \quad dic.$

Böylece soldaki denklem sistemi Ax = B seklinde ifade edilebilir. Bu esitligin her iki tarafı soldan A-1 ters matrisi ile garpılırsa $x = A^{-1}$. B elde edilir.

Matris esitligi tanımından XI, X2, ... Xn bilin meyenleri popur.

ORNEK:
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & -2 \\ 1 & 5 & -1 \end{bmatrix}$$
 det $A = 36 \neq 0$ oldugundan

X₁ -2x₂ + 3x₃ = -1 $\begin{bmatrix} 2 & 1 & -2 \\ 1 & 5 & -1 \end{bmatrix}$ tersi vardır.

 $2x_1 + x_2 - 2x_3 = -5$

verilen denklem sistemini gözünüz.

Bir Matrisin Exolon Formu

A = [ai] mxn tipinde bir matris olsun.

A sagidaki özellikleri sagliyor ise A'ya satırca
indirgenmis esolon formda bir matris denir.

- A'nın sıfır satırları (būtūn elemanları sıfır olan satırları) varsa bunlar matrisin en alt satırlarıdır.
- Sifirdan farklı bir satırın soldan iti baren sıfırdan farklı ilk elemanı 1 'dir.
- Sıfırdan farklı her satırı igin ilk 1 önceki satırların herhangi ilk 1 lerinin sağında ve altında yer alır.
- Bir sūtun bir ilk 1 igeriyorsa bu sūtundaki diğer būtūn elemanları 0 (sıfır)'dır

Satırca indirgenmiş eşolon formdaki bir matris, bu matrisin üst sol köşesinden azalan ilk 1'lerin merdiven (eşolon) örneği olarak duşur.

NOT: Yukarıdaki tanımda 1. 2. ve 3.

özellikleri sağlayan mxn tipindeki bir matris satırca eşolon formdadır. Bu tanımlarda hiq sıfır satırı olmayabilir. Benzer tanım sütunca eşolon form için de gegerlidir.

ORNEK:

[15 0 2 -2 5] 0 1 0 3 4 6] -> Satirca exolon form 0 0 0 1 6 3 0 0 0 0 0 0 0 0 0 0 0

Elemanter Operasyonlar

Bir A E IRM (A = [aij] mxn matrisinin satırlarını;

αι, α2, ··· ve sütunlarını βι, β2, ··· ile gösterelim.

Buna göre asağıdaki tanım verilebilir;

Bir mxn tipinde A matrisi üzerinde tanımlanan asağıdaki işlemlere matrisler için elemanter satır (sütun) operasyonu denir ve & ile gösterilir.

A matrisinin herhangi iki satırını (veya sütununu) kendi oralarında yer değistirmek

 $E: \alpha: \leftrightarrow \alpha_J$

- A matrisinin herhangi iki satırını (veya sütununu) sıfırdan farklı bir sayı ile garpmak
- A matrisinin her hangi bir satırını (veya sütununu)
 bir sayı ile garpıp diğer bir satırına (veya sütununa)
 eklemek

E : \(\alpha \); + C \(\alpha \)

E: 04; -7 C. 04-

Bir A matrisine sonlu sayıda satır veya sütun elemanter operasyonu uygulayarak bir B matrisi elde ediliyorsa; A ve B matrislerine satırca veya sütunca denk matrisler denir $A \approx B$ seklinde gösterilir.

- Her matris kendisine denktir.
- Eger B, A matrisine satırca denk ise

A dan B'ye satırca denktir.

- Eger C, B'ye satırca denk ise B'de

A'ya denk ise A ve C de satirca denktir.

Elemanter Operasyonların Uygulamaları

Bir matrisin tersinin bulunması A nxn matrisi In matrisine satırca denk olsun. Yani

Ex (... &2 (E1A)) = In olsun.

Simdi Ek ... Ei elemanter operasyonları [A!In]
matrisine uygulayalım.

Bu durum da

Dolayisiyla [A: In] & [In: A] elde edilic.

NOT: ifade edilen (1) denklem sistemi igin eger;

rank A # rank [A:B] ise sistemin gözümü
yoktur ve bu denklem sistemine tutarsız denklem
sistemi denir.

orank A = rank [A:B] ise sistemin gözümű vardır.

Bu denklem sistemine tutarlı denklem sistemi denis.

Bu durum da rank A = r;

_7 r = n ise tek gözüm var.

-> r< n ise sonsuz gözüm var. Bu gözümler n-r parametreye bağlı olarak bulunur. (n bilinmeyen)

ORNEK: -x + 3y = 2

2x - 6y = C

lineer denk. sistemi verilsin.

C'nin hangi degeri iain denklem sistemi tutarsız olur?

 $A = \begin{bmatrix} -1 & 3 \\ 2 & -6 \end{bmatrix}_{2 \times 2}$

[A:B] = [-1 3 ; 2]

rank A = 1

denklem sisteminin tutarlı olması yani ilaveli katsayılar matrisinin 1 olması igin C = -4 olmalıdır; o halde C E R- 8-43 tutarsız olur.

CRAMER DENKLEM SISTEMLERI

A mxn tipinde bir matris olmak üzere Ax = B lineer denklem sistemi verilsin. Eger m = n ve det $A \neq 0$ ise Ax = B lineer denk sistemine cramer denklem sistemi denic

Ax = B daha aqık sekilde

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{n1} & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots & \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots & \vdots \\ b_n \end{bmatrix}$$

denklem sistemi verilsin det $A \neq 0$ ise bu lineer denklem sisteminin bir tek Gōzūmū vardır. $x = (x_1, x_2, \dots x_n)$ olacak sekilde ve bu gōzūm

$$\Delta 1 = \begin{vmatrix} b_1 & a_{12} & \cdots & a_{10} \\ b_2 & a_{22} & a_{20} \\ \vdots & \vdots & \vdots \\ b_n & a_{n2} & a_{n0} \end{vmatrix} = \begin{vmatrix} a_{11} & b_1 & \cdots & a_{10} \\ a_{21} & b_2 & a_{20} \\ \vdots & \vdots & \vdots \\ a_{n1} & b_n & a_{n0} \end{vmatrix}$$

$$\Delta n = \begin{vmatrix} a_{11} & a_{12} & \dots & b_1 \\ a_{21} & a_{22} & b_2 \\ \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & b_n \end{vmatrix}$$

olmak üzere
$$X_1 = \frac{\Delta_1}{\det A}$$
, $X_2 = \frac{\Delta_2}{\det A}$

$$x_0 = \Delta_0$$

ÖRNEK: 2x + y = 5 lineer denklem sisteminin -x + 3y = 1 qözümünü bulalım.

A = [21] det A = 7 = 0 olduğundan cramer Yöntemiyle tek bir gözümű vardır.

 $\Delta_1 = \begin{vmatrix} 5 & 1 \\ 1 & 3 \end{vmatrix}$ -7 det = 14 $\Delta_2 = \begin{vmatrix} 2 & 5 \\ -1 & 1 \end{vmatrix}$ -7 det = 7

 $x_1 = 14 = 2$ $x_2 = \frac{7}{7} = 1$