MULTIPLE INTEGRALS

Jerzy Szulga

Department of Mathematics and Statistics Auburn University

MATH 5670-6670 FALL 2019

PROBABILITY I

November 1, 2019

Outline

- Double integrals Overview
- 2 Probability
- How to compute a double integral
 - Rectangular system
 - Polar system
- 4 HD

± Volume

An equation z = f(x, y) represents a surface in 3-space.

Let D be a region in the xy-plane within the domain of f.

If $f(x, y) \ge 0$ then D cuts off a 3D solid: above D ("floor"), below the surface ("roof").

Its volume can be approximated like in the 1D case.

If f takes also negative values, then we assign "minus volume" for the part of the surface below the xy-plane.

The usual procedure

- partition the xy-plane into small simple shapes such as rectangles or other figures,
- on each small base of area ΔA build a narrow block reaching the surface with the volume $f(x, y) \Delta A$ (height \times base),
- sum up the volumes: $\sum_{x} \sum_{y} f(x, y) \Delta A$,
- Increase the resolution and pass to the limit, denoted by

$$\iint\limits_{D}\,f(x,y)\,dA$$

Normalized mass

Let $f(x, y) \ge 0$ be a density of the lamina of the plane.

It has a physical dimension, e.g. $\left[\frac{g}{cm^2}\right]$.

Denote $S = \{(x, y) : f(x, y) > 0\}$, called the **support**.. The mass of a lamina D equals

$$M(D) = \iint_{D} f(x,y) dA = \iint_{D \cap S} f(x,y) dA$$

The normalization yields the dimensionless (scalar) quantity

$$P(D) \stackrel{\text{def}}{=} \frac{M(D \cap S)}{M(S)}$$
, where, obviously $P(S) = 1$.

Probability = normalized mass

We interpret P(D) as the probability that a random point (X, Y) falls into or occurs in the region D.

Typography: The capital X and Y indicate randomness of the coordinates or variables in contrast to lower case x and y that indicate non-random (deterministic) variables.

Normalization is equivalent to the assumption that a dimension-less function $f(x) \geq 0$ and $\int\limits_{\mathbb{R}^2} \int\limits_{\mathbb{R}^2} f \, dA = 1.$

Traditionally, f(x, y) is called the **joint density**. (However, the plain "density" would suffice).

Example

Let
$$f(x, y) = 3(x + y)$$
, $x \ge 0$, $y \ge 0$, $x + y \le 1$.

The support S is the triangle with vertices (0,0), (1,0), (0,1).

The constant "3" is needed to ensure that $\iint_S f(x,y) dA = 1$.

Let us set up the double integral to compute $P\left(X \leq \frac{3}{4}, Y \leq \frac{3}{4}\right)$.

We see that $D = \left[0, \frac{3}{4}\right] \times \left[0, \frac{3}{4}\right]$, partially "sticking out" of S:

$$P\left(X \le \frac{3}{4}, Y \le \frac{3}{4}\right) = \iint_{D \cap S} 3(x+y) dA.$$

Why constant 3?

It takes a while to compute $\iint_{S} (x+y) dA = \frac{1}{3}$.

However, the given solid is a pyramid from the vertex (0,0,0) to the rectangular base with four vertices

The area of the base is $\sqrt{2}$ and the height of the pyramid is $\frac{\sqrt{2}}{2}$. Thus the volume equals

$$\frac{1}{3}\left(\sqrt{2}\times\frac{\sqrt{2}}{2}\right)=\frac{1}{3}.$$

Rectangles

If $D = [a, b] \times [c, d]$ is rectangular, then we also use the rectangular partition of the plane. Then

$$dA = dx dy$$
 or $dA = dy dx$,

and the double integral becomes either iterated integral

$$\int_{c}^{d} \left(\int_{a}^{b} f(x, y) \, dx \right) \, dy \quad \text{or} \quad \int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) \, dx.$$

That's Calculus 1 or 2 done twice.

A normal region

Let D lie between graphs of two functions, top and bottom:

$$a \le x \le b$$
, $b(x) \le y \le t(x)$.

Then the double integral is again the iterated integral

$$\int_a^b \left(\int_{b(x)}^{t(x)} f(x,y) \, dy \right) \, dx.$$

Reverse order

By symmetry, let D lie between a left graph x = I(y) and a right graph x = r(y):

$$c \le y \le d$$
, $l(y) \le x \le r(y)$.

Then the double integral is again the iterated integral

$$\int_{c}^{d} \left(\int_{l(y)}^{r(y)} f(x, y) \, dx \right) \, dy.$$

More complicated regions

Some regions are not normal but usually they can be divided into u union of normal regions.

Then the overall integral is just the sum of partial integrals.

Which order of integration is better - "dx dy" or "dy dx"?

It depends.

Sometimes it doesn't matter.

Sometimes one order yields impossible or hard integrals while the other order yields easy ones.

Polar regions

Some regions *D* cooperate poorly with the rectangular partition. A round pizza or cake is cut not into rectangles but to slices!

Concentric circles and polar semi-axes yield the polar partition (a.k.a. **tessellation**) of the plain.

Polar dA

The pair (x, y) of rectangular coordinates is replaced by the pair (r,θ) of polar coordinates, r>0 and $\theta\in[0,2\pi)$:

$$x = r \cos \theta$$
 or $r^2 = x^2 + y^2$
 $y = r \sin \theta$ $\theta = \arctan \frac{y}{x}$

The polar infinitesimal piece of the area:

$$dA = r dr d\theta$$

WARNING

A quite frequent error:

writing dA in polar coordinates as " $dr d\theta$ ", skipping the factor "r".

Apart from a common negligence, this error may have semantic and psychological reasons. The phrase

"replace
$$(x, y)$$
 by (r, θ) "

might be incorrectly understood as

"replace x by r and replace y by θ "

Example 1

Compute
$$\int_{-\infty}^{\infty} e^{-x^2/2} dx$$
.

Answer. It's $\sqrt{2\pi}$. See Slides 6-7 in the presentation 'BP_11_normal'.

This example shows that sometimes double integrals are much simpler than single integrals.

Exercise 2a

Find c to make $f(x,y) = \frac{c}{(1+x^2+y^2)^3}$ a 2D (a.k.a. joint) pdf of a random pair (X,Y).

Solution. The support is the whole plane: $r \ge 0, 0 \le \theta < 2\pi$.

$$1 = \int_{\mathbb{R}^2} \int \frac{c}{(1+x^2+y^2)^3} dA = c \int_0^{2\pi} \int_0^{\infty} \frac{1}{(1+r^2)^3} r dr d\theta$$
$$= c \cdot 2\pi \cdot \frac{-1}{2(1+r^2)^2} \Big|_0^{\infty} = \pi c$$

Hence $c = 1/\pi$.

Exercise 2b

Find P($X/\sqrt{3} < Y < X\sqrt{3}$).

Solution. The event of interest:

$$\left\{ x/\sqrt{3} < y < x\sqrt{3} \right\} : \quad r \ge 0, \pi/6 < \theta < \pi/3.$$

Hence

$$P(X/\sqrt{3} < Y < X\sqrt{3}) = \frac{1}{\pi} \int_{\pi/6}^{\pi/3} \int_{0}^{\infty} \frac{1}{(1+r^2)^3} r dr d\theta = \frac{1}{12}$$

A quick alternative. Angles of the same measure have equal probability. Ours measures $\pi/6$ radians, i.e., 1/12 of the full 2π .

Comment on the setup

The set is framed by two straight lines $y=\frac{1}{\sqrt{3}}x$ and $y=x\sqrt{3}$, lying in the 1th and 3rd quadrant and passing through the origin.

However, the implicit inequality

$$\frac{x}{\sqrt{3}} < x$$
 yields $x > 0$, so $y > 0$ also.

Therefore, the region lies entirely in the first quadrant.

Exercise 2c: Find EX, EY, EXY.

Quick Solution: All quantities seem to be 0 by symmetry.

Warning: They might not exist! The existence needs proof!

Hard Solution: Three double integrals must be set up and calculated. For example, for the third quantity,

$$EXY = \iint_{\mathbb{R}^2} xy \frac{1}{\pi (1 + x^2 + y^2)^3} dA$$

$$= \int_0^{2\pi} \int_0^\infty \frac{r \cos \theta \cdot r \sin \theta}{\pi (1 + r^2)^3} r dr d\theta$$

$$= \int_0^{2\pi} \left(\int_0^\infty \frac{r^3}{\pi (1 + r^2)^3} dr \right) \cos \theta \sin \theta d\theta = \dots = 0$$

Triple and multiple integrals and pdfs

The concept: continues without change.

Probabilities - like diamonds - are forever.

Formalization: still the same but longer, more tedious or technical

Visualization: gone, no more.

No graphing in 4D or HD, only limited projections possible.