

MATEMÁTICA PARA INTELIGÊNCIA ARTIFICIAL

PARTE I

SISTEMAS LINEARES E MATRIZES

Uma equação linear é qualquer equação da forma

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

onde a₁₁, a₁₂,..., a_{1n} são os coeficientes das variáveis,

 $x_1, x_2, ..., x_n$ são as variáveis,

b₁ é o termo independente.

Um sistema linear é um conjunto de equações lineares

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ a_{31}x_1 + a_{32}x_2 + \dots + a_{3n}x_n = b_3 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}.$$

Uma solução do sistema linear é um conjunto de valores que satisfaz, ao mesmo tempo, todas as equações do sistema linear.

REGRA DE ESCALONAMENTO

É um método que consiste na aplicação de sucessivas operações elementares num sistema linear para transformá-lo num sistema de fácil resolução que apresenta as mesmas soluções do sistema original.

REGRA DE ESCALONAMENTO

As operações elementares são:

- Permutar duas equações;
- II) Multiplicar uma equação por uma constante não nula;
- III) Substituir uma equação por sua soma com o múltiplo de outra equação.

Resolva o sistema linear

$$\begin{cases} x - y + 2z = -9 \\ x + y + z = 0 \end{cases},$$
$$3x + y + 2z = -7$$

usando o método de Eliminação de Gauss.

$$\begin{cases} x - y + 2z = -9 \\ x + y + z = 0 \\ 3x + y + 2z = -7 \end{cases} \times (-1) \times (-3)$$

$$\begin{cases} x - y + 2z = -9 \\ 2y - z = 9 \\ 4y - 4z = 20 \end{cases} \times (-2)$$

$$\begin{cases} x - y + 2z = -9 \\ 2y - z = 9 \\ -2z = 2 \end{cases} \times \begin{pmatrix} -\frac{1}{2} \\ 2y - z = 9 \\ z = -1 \end{cases}$$

FORMA MATRICIAL

Um sistema linear

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ a_{31}x_1 + a_{32}x_2 + \dots + a_{3n}x_n = b_3 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

pode ser escrito da seguinte forma,

Substituindo z = -1, na segunda equação,

$$2y - z = 9 \Rightarrow 2y - (-1) = 9 \Rightarrow$$

$$2y = 9 - 1 \Rightarrow 2y = 8 \Rightarrow y = 4$$

Fazendo y = 4 e z = -1, na primeira equação, tem-se

$$x - y + 2z = -9 \Rightarrow x - 4 + 2(-1) = -9 \Rightarrow$$

$$x = -9 + 4 + 2 \Rightarrow x = -3$$

Portanto, (-3, 4, -1) é solução do sistema.

Uma matriz m x n (lê-se m por n) é uma tabela composta por mn elementos dispostos em m linhas e n colunas.

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \dots & & & & \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix}$$

Uma matriz é representada por letra maiúscula, enquanto seus termos são representados por letra minúscula, acompanhada de dois índices, a_{ij} , onde i representa a linha e j a coluna em que o elemento se encontra.

$$B = \begin{pmatrix} 3 & 5 & 0 \\ 2 & -1 & 3 \\ 1 & 2 & 0 \end{pmatrix}$$

é uma matriz quadrada de ordem 3, isto é, o número de linhas é igual ao número de colunas. Note que

 a_{21} é o elemento da matriz que se encontra na 2^{a} linha e na 1^{a} coluna, ou seja, a_{21} = 2.

 a_{33} é o elemento da matriz que se encontra na $3^{\underline{a}}$ linha e na $3^{\underline{a}}$ coluna, ou seja, $a_{33}=0$.

MATRIZES ESPECIAIS MATRIZ LINHA

É uma matriz que possui somente uma linha, isto é, de ordem 1xn.

$$A = \begin{pmatrix} 3 & 5 & 0 \end{pmatrix}$$

MATRIZ COLUNA

É uma matriz que possui somente uma coluna, isto é, de ordem mx1.

$$A = \begin{pmatrix} 3 \\ 5 \\ 0 \end{pmatrix}$$

MATRIZ DIAGONAL

É uma matriz em que os elementos que não pertencem a diagonal principal são nulos.

$$C = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

MATRIZ IDENTIDADE

É uma matriz em que os elementos que não pertencem a diagonal principal são nulos e, ainda, os elementos da diagonal principal são iguais a 1.

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

MATRIZ TRANSPOSTA

É uma matriz obtida trocando linhas por colunas.

OPERAÇÕES COM MATRIZES ADIÇÃO

Sejam A e B duas matrizes de mesma ordem, isto é, mesmo número de linhas e de colunas, a soma é obtida somando-se os elementos correspondentes de A e B.

Dadas as matrizes A e B,

$$A = \begin{pmatrix} 1 & 3 & 0 \\ 2 & 4 & 1 \end{pmatrix} \quad \mathsf{e} \quad B = \begin{pmatrix} -10 & 1 & 4 \\ 2 & 3 & 1 \end{pmatrix}$$

determine A + B.

$$A + B = \begin{pmatrix} 1 & 3 & 0 \\ 2 & 4 & 1 \end{pmatrix} + \begin{pmatrix} -10 & 1 & 4 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 + (-10) & 3 + 1 & 0 + 4 \\ 2 + 2 & 4 + 3 & 1 + 1 \end{pmatrix}$$
$$= \begin{pmatrix} -9 & 4 & 4 \\ 4 & 7 & 2 \end{pmatrix}$$

SUBTRAÇÃO

Sejam A e B duas matrizes de mesma ordem, isto é, mesmo número de linhas e de colunas, a subtração é obtida subtraindo-se os elementos correspondentes de A e B.

Dadas as matrizes A e B,

$$A = \begin{pmatrix} 1 & 3 & 0 \\ 2 & 4 & 1 \end{pmatrix} \quad \mathbf{e} \quad B = \begin{pmatrix} 1 & 8 & 4 \\ 0 & 6 & 3 \end{pmatrix}$$

determine A - B.

$$A - B = \begin{pmatrix} 1 & 3 & 0 \\ 2 & 4 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 8 & 4 \\ 0 & 6 & 3 \end{pmatrix} = \begin{pmatrix} 1-1 & 3-8 & 0-4 \\ 2-0 & 4-6 & 1-3 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & -5 & -4 \\ 2 & -2 & -2 \end{pmatrix}$$

MULTIPLICAÇÃO POR UM NÚMERO REAL

Seja A uma matriz mxn, a multiplicação λ um número real não nulo, é obtida multiplicando-se os elementos correspondentes da matriz por λ .

Dadas a matriz $A = \begin{pmatrix} 1 & 3 & 0 \\ 2 & 4 & 1 \end{pmatrix}$. Determine 2A.

$$2A = 2 \begin{pmatrix} 1 & 3 & 0 \\ 2 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 2.1 & 2.3 & 2.0 \\ 2.2 & 2.4 & 2.1 \end{pmatrix} = \begin{pmatrix} 2 & 6 & 0 \\ 4 & 8 & 2 \end{pmatrix}$$

MULTIPLICAÇÃO DE MATRIZES

A multiplicação de duas matrizes só irá existir se o número de colunas da primeira matriz for igual ao número de linhas da segunda matriz.

$$A_{mxp}.B_{pxn} = C_{mxn}$$

O elemento c_{ij} é resultado da soma dos produtos dos elementos da linha i da matriz A pelos elementos da coluna j da matriz B.

Dadas a matriz
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 e $B = \begin{pmatrix} -1 & 3 \\ 4 & 2 \end{pmatrix}$.

O elemento c₁₁ é

O elemento c₁₂ é

O elemento c₂₁ é

$$\begin{pmatrix} 1 & 2 \\ \hline 3 & 4 \end{pmatrix} \begin{pmatrix} -1 & 3 \\ 4 & 2 \end{pmatrix} = \begin{pmatrix} 3 \cdot (-1) + 4 \cdot 4 \end{pmatrix}$$

O elemento c₂₂ é

Assim,

$$AB = \begin{pmatrix} 7 & 7 \\ 13 & 17 \end{pmatrix}$$

O determinante é um número real que está associado a uma matriz quadrada e esse número é único, ou seja, para cada matriz quadrada de ordem n há um único número real associado a ela.

Notação: det(A) ou |A|.

REGRA DE SARRUS

As operações são:

- I) Repetir à direita as duas primeiras colunas da matriz;
- II) Multiplicar os elementos da diagonal principal e de suas paralelas;
- III) Multiplicar os elementos da diagonal secundária e suas paralelas;

- IV) Somar os resultados obtidos pelas multiplicações dos elementos da diagonal principal e de suas paralelas;
- V) Somar os resultados obtidos pelas multiplicações dos elementos da diagonal secundária e de suas paralelas;
- VI) Subtrair os resultados encontrados.

Dada a matriz B =
$$\begin{pmatrix} -1 & 5 & 0 \\ 0 & -1 & 3 \\ 1 & 2 & 0 \end{pmatrix}$$
. Encontre B⁻¹, se existir.

$$1^{\circ}) \det(B) = \begin{bmatrix} -1 & 5 & 0 & -1 & 5 \\ 0 & -1 & 3 & 0 & -1 \\ 1 & 2 & 0 & 1 & 2 \end{bmatrix}$$

$$0 -6 \ 0 \qquad 0 \ 15 \ 0$$

Logo,
$$det(B) = (0+15+0)-(0-6+0) = 21$$
.

Seja A uma matriz de ordem n, a matriz inversa de A é dada e denotada por

$$AA^{-1} = I_n$$

onde I_n é a matriz identidade de ordem n. Se o determinante da matriz A for diferente de zero, A é dita uma matriz invertível.

Considere a matriz $A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$. Como det(A) = 2, ou seja, é diferente de zero, A possui uma matriz inversa, isto é, existe $A^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ tal que

$$AA^{-1} = I_2$$

Isto é,

$$\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 2a+c & 2b+d \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

E consequentemente,

$$\begin{cases} 2a+c=1 \\ c=0 \end{cases} \Rightarrow 2a=1 \Rightarrow a=\frac{1}{2}$$

е

$$\begin{cases} 2b+d=0 \\ d=1 \end{cases} \Rightarrow 2b+1=0 \Rightarrow 2b=-1 \Rightarrow b=-\frac{1}{2}.$$

Logo,

$$A^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{pmatrix}.$$

Cofator é um número associado a um elemento qualquer de uma matriz quadrada.

$$C_{ij} = (-1)^{i+j} D_{ij}$$

onde D_{ij} é o determinante da matriz que se obtém eliminando-se a iésima linha e a j-ésima coluna da matriz.

Dada a matriz B =
$$\begin{pmatrix} -1 & 5 & 0 \\ 0 & -1 & 3 \\ 1 & 2 & 0 \end{pmatrix}$$
. Encontre os cofatores da matriz B.

$$C_{11} = (-1)^{1+1} \begin{pmatrix} -1 & 3 \\ 2 & 0 \end{pmatrix} = 1(0-6) = -6$$

$$C_{12} = (-1)^{1+2} \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix} = (-1)(0-3) = 3$$

$$C_{13} = (-1)^{1+3} \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} = 1(0-(-1)) = 1$$

$$C_{21} = (-1)^{2+1} \begin{pmatrix} 5 & 0 \\ 2 & 0 \end{pmatrix} = (-1)(0-0) = 0$$

$$C_{22} = (-1)^{2+2} \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix} = 1(0-0) = 0$$

$$C_{23} = (-1)^{2+3} \begin{pmatrix} -1 & 5 \\ 1 & 2 \end{pmatrix} = (-1)(5-(-2)) = -7$$

$$C_{31} = (-1)^{3+1} \begin{pmatrix} 5 & 0 \\ -1 & 3 \end{pmatrix} = 1(15-0) = 15$$

$$C_{32} = (-1)^{3+2} \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix} = (-1)(-3-0) = 3$$

$$C_{33} = (-1)^{3+3} \begin{pmatrix} -1 & 5 \\ 0 & -1 \end{pmatrix} = 1(1-0) = 1$$

Portanto, a matriz dos cofatores é

$$\begin{pmatrix} -6 & 3 & 1 \\ 0 & 0 & -7 \\ 15 & 3 & 1 \end{pmatrix}.$$

DEFINIÇÃO

A matriz adjunta é a matriz quadrada que se obtém fazendo a transposta da matriz dos cofatores de uma matriz original.

Notação: adj(A).

Dada a matriz B =
$$\begin{pmatrix} -1 & 5 & 0 \\ 0 & -1 & 3 \\ 1 & 2 & 0 \end{pmatrix}$$
. Como a matriz dos cofatores é igual a

$$\begin{pmatrix} -6 & 3 & 1 \\ 0 & 0 & -7 \\ 15 & 3 & 1 \end{pmatrix}.$$

Por definição, a adj(B)=
$$\begin{pmatrix} -6 & 0 & 15 \\ 3 & 0 & 3 \\ 1 & -7 & 1 \end{pmatrix}$$
.

INVERSÃO POR MATRIZ ADJUNTA

- Calcular det(A);
- II) Calcular a matriz dos cofatores de A;
- III) Determinar a matriz adjunta;
- IV) Calcular $A^{-1} = \frac{1}{\det(A)} adj(A)$.

Dada a matriz B =
$$\begin{bmatrix} -1 & 5 & 0 \\ 0 & -1 & 3 \\ 1 & 2 & 0 \end{bmatrix}$$
. Encontre B⁻¹, se existir.

1º) det(B) = 21, então B é uma matriz invertível.

$$2^{\circ}$$
) $\begin{pmatrix} -6 & 3 & 1 \\ 0 & 0 & -7 \\ 15 & 3 & 1 \end{pmatrix}$ é a matriz dos cofatores de B.

$$3^{\circ}$$
) $\begin{pmatrix} -6 & 0 & 15 \\ 3 & 0 & 3 \\ 1 & -7 & 1 \end{pmatrix}$. é a matriz adjunta de B.

Logo,

$$B^{-1} = \frac{1}{21} \begin{pmatrix} -6 & 0 & 15 \\ 3 & 0 & 3 \\ 1 & -7 & 1 \end{pmatrix}$$

Portanto

$$\mathsf{B}^{-1} = \begin{pmatrix} \frac{-6}{21} & 0 & \frac{15}{21} \\ \frac{3}{21} & 0 & \frac{3}{21} \\ \frac{1}{21} & \frac{-7}{21} & \frac{1}{21} \end{pmatrix}.$$

FORMA MATRICIAL

Um sistema linear

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ a_{31}x_1 + a_{32}x_2 + \dots + a_{3n}x_n = b_3 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

pode ser escrito da seguinte forma,

matriz dos coeficientes
$$\begin{pmatrix}
a_{11} a_{12} a_{13} \dots a_{1n} \\
a_{21} a_{22} a_{23} \dots a_{2n} \\
a_{31} a_{32} a_{33} \dots a_{3n} \\
\dots \\
a_{m1} a_{m2} a_{m3} \dots a_{mn}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
\dots \\
x_n
\end{pmatrix} = \begin{pmatrix}
b_1 \\
b_2 \\
b_3 \\
\dots \\
b_m
\end{pmatrix}$$
matriz dos termos independentes

matriz das incógnitas

REGRA DE CRAMER

Seja um sistema de n equações lineares em n incógnitas tal que det(A) ≠ 0, então o sistema linear tem uma única solução. Essa solução é

$$x_1 = \frac{\det(A_1)}{\det(A)}, x_2 = \frac{\det(A_2)}{\det(A)}, ..., x_n = \frac{\det(A_n)}{\det(A)}$$

em que A_j é a matriz obtida substituindo a j-ésima coluna da matriz dos coeficientes pela matriz dos termos independentes.

Resolva o sistema linear

$$\begin{cases} x - y + 2z = -9 \\ x + y + z = 0 \end{cases},$$
$$3x + y + 2z = -7$$

usando a regra de Cramer.

Primeiro, o sistema linear pode ser expresso como

matriz dos coeficientes
$$\leftarrow$$

$$\begin{pmatrix}
1 & -1 & 2 \\
1 & 1 & 1 \\
3 & 1 & 2
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} = \begin{pmatrix}
-9 \\
0 \\
-7
\end{pmatrix}$$
matriz dos termos independentes matriz das incógnitas

Logo, $det(A) = (2+(-3)+2) - (6+1+(-2)) = -4 \neq 0$, então o sistema tem uma única solução.

Pela regra de Cramer

$$x = \frac{\det(A_1)}{\det(A)}$$

onde
$$A_1 = \begin{pmatrix} -9 & -1 & 2 \\ 0 & 1 & 1 \\ -7 & 1 & 2 \end{pmatrix}$$
 e det $(A_1) = 12$.

Logo,

$$x = \frac{12}{-4} = -3$$

$$y = \frac{\det(A_2)}{\det(A)}$$

onde
$$A_2 = \begin{pmatrix} 1 & -9 & 2 \\ 1 & 0 & 1 \\ 3 & -7 & 2 \end{pmatrix}$$
 e det $(A_2) = -16$.

Logo,

$$y = \frac{-16}{-4} = 4$$

$$z = \frac{\det(A_3)}{\det(A)}$$

onde
$$A_3 = \begin{pmatrix} 1 & -1 & -9 \\ 1 & 1 & 0 \\ 3 & 1 & -7 \end{pmatrix}$$
 e det $(A_3) = 4$.

Logo,

$$z = \frac{4}{-4} = -1$$

Portanto, (-3, 4, -1) é solução do sistema.

CLASSIFICAÇÃO

O sistema linear

$$\begin{cases} x - y + 2z = -9 \\ x + y + z = 0 \\ 3x + y + 2z = -7 \end{cases}$$

é um sistema determinado.

O sistema linear
$$\begin{cases} x-y+2z=5\\ 2x-2y+4z=10,\\ 3x-3y+6z=15 \end{cases}$$
 pode ser escrito como
$$\begin{pmatrix} 1 & -1 & 2\\ 2 & -2 & 4\\ 3 & -3 & 6 \end{pmatrix}\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 5\\ 10\\ 15 \end{pmatrix}, \text{ note que det(A) = 0. Pela}$$
 regra de Cramer, é possível afirmar que o sistema **não é determinado**.

$$\begin{cases} x - y + 2z = 5 & x(-2) & x(-3) \\ 2x - 2y + 4z = 10 & 0 = 0 \\ 3x - 3y + 6z = 15 & 0 = 0 \end{cases}$$

Seja y = 1 e z = -1, então x = 5 + (1) – 2(-1) = 8. Portanto, (8, 1, -1) é solução do sistema.

Seja y = 0 e z = 2, então x = 5 + 0 - 2(2) = 1. Portanto, (1, 0, 2) também é solução do sistema.

O sistema linear

$$\begin{cases} x - y + 2z = 5 \\ 2x - 2y + 4z = 10, \\ 3x - 3y + 6z = 15 \end{cases}$$

é indeterminado.

DEFINIÇÃO

Vetor é uma classe de equipolência de segmentos de reta orientados, que possuem todos o mesmo comprimento, mesma direção e mesmo sentido.

SOMA DE VETORES

Sejam u e v dois vetores quaisquer.

SOMA DE VETORES

Sejam u e v dois vetores quaisquer.

PROPRIEDADE DA SOMA DE VETORES

- Associativa;
- II) Comutativa;
- III) Existência de elemento neutro, denotado por 0;
- IV) Existência do elemento oposto (ou simétrico), representado por –v.

SUBTRAÇÃO DE VETORES

Sejam u e v dois vetores quaisquer.

MULTIPLICAÇÃO POR ESCALAR

Sejam u um vetor qualquer e α um escalar qualquer.

PROPRIEDADE DA MULTIPLICAÇÃO POR ESCALAR

- I) Associativa;
- II) Existência de elemento neutro, denotado por 1;
- III) Distributiva em relação a soma de vetores;
- IV) Distributiva em relação a soma de escalares.

PAR ORDENADO VERSUS VETOR

COORDENADAS DE UM VETOR

$$\overrightarrow{AB} = (x_B - x_A, y_B - y_A)$$

Sejam A = (1, 7) e B = (5, 2), então as coordenadas do vetor AB são (4, -5).

NORMA DE UM VETOR

$$||v|| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Sejam A = (1, 7) e B = (5, 2), então a norma do vetor AB é igual a

$$||AB|| = \sqrt{4^2 + (-5)^2} = \sqrt{41}$$

DEFINIÇÃO

Sejam V e W espaços vetoriais. Diz-se que uma função T:

V → W é uma **transformação linear** se a função T preserva as operações de adição e multiplicação por escalar, isto é, se satisfaz os seguintes axiomas:

I) Para quaisquer $u, v \in V$,

$$T(u + v) = T(u) + T(v)$$

II) Para todo $u \in V$ e para todo $\alpha \in IR$,

$$T(\alpha u) = \alpha T(u)$$

A função T: $IR^2 \rightarrow IR^2$ definida por T(x, y) = (-x, -y) é um exemplo de transformação linear.

De fato, sejam u = (1, 2), v = (-1, 3) e u + v = (0, 5). Veja que

$$T(u) = T(1, 2) = (-1, -2),$$

$$T(v) = T(-1, 3) = (1, -3),$$

$$T(u) + T(v) = (0, -5),$$

$$T(u + v) = T(0, 5) = (0, -5).$$

Logo,
$$T(u + v) = T(u) + T(v)$$
.

Sejam
$$u = (1, 2), \alpha = 3 e \alpha u = (3, 6)$$
. Note que

$$T(\alpha u) = T(3, 6) = (-3, -6) = 3(-1, -2).$$

Assim, $T(\alpha u) = \alpha T(u)$.

Portanto, T é uma transformação linear (ou melhor é um operador linear).

REPRESENTAÇÃO GRÁFICA

Seja T: V → W uma transformação linear. O conjunto dos vetores em V que T transforma em é denominado **núcleo** de T e é denotado por N(T). O conjunto de todos os vetores em W que são imagens por T de pelo menos um vetor em V é denominado **imagem** de T e é denotado por Im(T).

Seja T: $IR^2 \rightarrow IR^2$ definida por T(x, y) = (-x, -y).

a) Qual é o núcleo de T?

Como (0, 0) é o único vetor que T transforma em (0, 0), segue que $N(T) = \{(0, 0)\}$. E ainda, T é **injetora**.

b) Qual é a imagem de T?

Im(T) é o conjunto de vetores da forma (-x, -y), segue que Im(T)

= $\{(-x, -y) | (x, y) \in IR^2\}$. E ainda, T é sobrejetora.

Logo, T é bijetora, ou ainda, é um isomorfismo.

OBSERVAÇÃO

Dada a transformação linear

T:
$$IR^2 \rightarrow IR^2$$

$$(x, y) \rightarrow (-x, -y)$$

Passando da forma vetorial para a forma matricial,

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

matriz associada à transformação linear

Um espaço vetorial é um conjunto não vazio de vetores, que podem ser somados um a outro e multiplicados por um número real não nulo.

As operações de adição de vetores e de multiplicação por escalar precisam satisfazer certas propriedades, denominadas axiomas.

- Associativa da adição;
- II) Comutativa da adição;
- III) Existência de elemento neutro da adição;
- IV) Existência de elemento oposto da adição;
- V) Associativa da multiplicação por escalar;
- VI) Existência do elemento neutro da multiplicação;
- VII) Distributiva de um escalar em relação à soma de vetores;
- VIII) Distributiva de soma de escalares em relação a um vetor.

O conjunto das matrizes reais mxn, denotado por M_{mxn} (IR), de adição entre matrizes e multiplicação por escalar usuais é um espaço vetorial.

O conjunto das funções reais, denotado por F(IR), com a operação de adição definida por

$$(f+g)(x) = f(x)+g(x), \forall f, g \in F(IR)$$

e a operação de multiplicação por escalar definida por

$$(\alpha f)(x) = \alpha f(x), \forall f \in F(IR) \in \forall \alpha \in IR$$

é um espaço vetorial.

Base é um conjunto de vetores que gera todo o espaço vetorial e é linearmente independente.

 $\{(1, 0), (0, 1)\}$ é base canônica do IR²

 $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ é base canônica do IR³

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \text{ é uma base do M}_{2x2}(IR)$$

Transformação linear é uma função entre espaços vetoriais que preservam a adição e a multiplicação por escalar.

A função T de IR^2 em IR definida por T(x, y) = x + y é uma transformação linear.

A função T de IR^2 em IR^2 definida por T(x, y) = (3x + y, 2x)

– 2y) é um operador linear.

Um escalar λ é dito um autovalor de um operador linear

T: $V \rightarrow V$ se existir um vetor v diferente de zero tal que

 $T(v) = \lambda v$. O vetor v é denominado autovetor de T.

Considere o operador linear T(x, y) = (4x + 3y, x + 2y).

Note que o vetor (1,-1) é um autovetor de T associado ao autovalor $\lambda = 1$.

De fato, $T(1, -1) = (4.1 + 3.(-1), 1 + 2.(-1)) = (1, -1) = \mathbf{1}(1, -1)$

Considere o operador linear T(x, y) = (4x + 3y, x + 2y).

Note que o vetor (3,1) é um autovetor de T associado ao autovalor $\lambda = 5$.

De fato, T(3, 1) = (4.3 + 3.1, 3 + 2.1) = (15, 5) = 5(3,1).

 λ é um autovalor se, e somente se, a matriz (T - $\lambda I)$ for singular.

AUTOVALORES E AUTOVETORES

- I) Econtrar a matriz $(T \lambda I)$;
- II) Determinar o polinômio característico;
- III) Obter as raízes do polinômio característico;
- IV) Achar os autovetores de T.

Considere T: $IR^2 \rightarrow IR^2$ um operador linear definido por

$$T(x, y) = (4x + 3y, x + 2y).$$

1º) T(1, 0) = (4, 1) e T(0, 1) = (3, 2). Assim, a matriz $[T]_{can}$ é

$$\begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix}$$
 e, consequentemente, [T - λ I] é dada por

$$\begin{pmatrix} 4-\lambda & 3 \\ 1 & 2-\lambda \end{pmatrix}$$
.

$$2^{2} \begin{vmatrix} 4-\lambda & 3 \\ 1 & 2-\lambda \end{vmatrix} = (4-\lambda)(2-\lambda) - 3 =$$

$$= 8 - 4\lambda - 2\lambda + \lambda^{2} - 3 =$$

$$= \lambda^{2} - 6\lambda + 5$$

3º)
$$\lambda^2 - 6\lambda + 5 = 0 \Rightarrow \lambda = \frac{-(-6) \pm \sqrt{(-6)^2 - 4.1.5}}{2} =$$

3º)
$$\lambda = \frac{6 \pm \sqrt{16}}{2} = \frac{6 \pm 4}{2} \implies \lambda = 1 \text{ e } \lambda = 5$$

 4°) Para encontrar o autovetor associado com o autovalor $\lambda = 1$, isto é, T(v) = 1v e, consequentemente, [T - 1](v) = 0.

$$\begin{bmatrix} \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

O que implica resolver o sistema,

$$\begin{cases} 3x + 3y = 0 \\ x + y = 0 \end{cases} \Rightarrow x = -y$$

Os autovetores associados a $\lambda = 1$ são da forma (-y, y), ou ainda, y(-1, 1) sendo y um número real qualquer.

Para encontrar o autovetor associado com o autovalor $\lambda = 5$, isto é, T(v) = 5v e, consequentemente, [T - 5I](v) = 0. O que implica resolver o sistema

$$\begin{cases} -x+3y=0 \\ x-3y=0 \end{cases} \Rightarrow x=3y$$

Os autovetores associados a $\lambda = 5$ são da forma (3y, y), ou ainda, y(3, 1) sendo y um número real qualquer.

OBSERVAÇÃO

$$[T]_{can} = \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix}, P = \begin{pmatrix} -1 & 3 \\ 1 & 1 \end{pmatrix} e P^{-1} = \begin{pmatrix} -\frac{1}{4} & \frac{3}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}, tem-se que$$

$$P^{-1}[T]_{can}P = \begin{pmatrix} -\frac{1}{4} & \frac{3}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} \begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} -1 & 3 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$$

PARTE III CÁLCULO DIFERENCIAL

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

é a derivada de f no ponto a.

OBSERVAÇÃO

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

é a derivada de f(x).

Sendo
$$f(x) = \frac{1}{x}$$
, calcule $f'(x)$.

Por definição,

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

Como
$$f(x + \Delta x) = \frac{1}{x + \Delta x}$$
 e $f(x) = \frac{1}{x}$, segue que

$$\frac{1}{x+\Delta x} - \frac{1}{x} = \frac{x - (x + \Delta x)}{x(x+\Delta x)} = \frac{-\Delta x}{x(x+\Delta x)}$$

Logo,

$$\frac{f(x+\Delta x)-f(x)}{\Delta x} = \frac{\frac{-\Delta x}{x(x+\Delta x)}}{\Delta x} = \frac{-\Delta x}{x(x+\Delta x)} \frac{1}{\Delta x} = \frac{-1}{x(x+\Delta x)}$$

Fazendo $\Delta x \rightarrow 0$, tem-se

$$f'(x) = -\frac{1}{x^2}$$
.

REGRAS DE DERIVAÇÃO

$$1^{\underline{a}}$$
) $f(x) = x^n$, n inteiro positivo $\Longrightarrow f'(x) = nx^{n-1}$

Exemplo:

$$f(x) = x \Longrightarrow f'(x) = 1x^{1-1} = x^0 = 1$$

$$f(x) = x^3 \Longrightarrow f'(x) = 3x^{3-1} = 3x^2$$

2ª) f(x) é uma função e c é uma constante ⇒ $(cf(x))^{'}=cf^{'}$ (x)

$$f(x) = 2x^3 \Longrightarrow f'(x) = 2(x^3)' = 2(3x^{3-1}) = 6x^2$$

$$f(x) = -3x^5 \Longrightarrow f'(x) = -3(5x^{5-1}) = -15x^4$$

$$3^{a}$$
) $(f(x) + g(x))' = f'(x) + g'(x)$

$$f(x) = 2x^3 + 3x^5 \implies f'(x) = (2x^3)' + (3x^5)' = 6x^2 + 15x^4$$

$$f(x) = x^3 + 2x \Longrightarrow f'(x) = (x^3)' + (2x)' = 3x^2 + 2$$

$$4^{a}$$
) $(f(x) - g(x))' = f'(x) - g'(x)$

$$f(x) = x^3 - x^2 \implies f'(x) = (x^3)' - (x^2)' = 3x^2 - 2x$$

 $5^{\underline{a}}$) f(x) = c, c é uma constante $\Rightarrow f'(x) = 0$

$$f(x) = -98 \implies f'(x) = 0$$

6a)
$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

$$f(x) = (x^2 + x + 2)(3x - 1) \Rightarrow f'(x) = (x^2 + x + 2)'(3x - 1) + (x^2 + x + 2)(3x - 1)' = (2x + 1)(3x - 1) + (x^2 + x + 2)3 = 9x^2 + 4x + 5$$

7
$$=$$
) $\left(\frac{f(x)}{g(x)}\right)^{-} = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$

$$f(x) = \frac{8 - x + 3x^2}{2 - 9x} \Rightarrow f'(x) = \frac{\left(8 - x + 3x^2\right)'(2 - 9x) - (8 - x + 3x^2)(2 - 9x)'}{\left(2 - 9x\right)^2}$$

$$f'(x) = \frac{(-1+6x)(2-9x)-(8-x+3x^2)(-9)}{(2-9x)^2}$$

$$f'(x) = \frac{27x^2 - 24x + 70}{(2 - 9x)^2}$$

CRESCIMENTO E DECRESCIMENTO

f'(x) > 0 nos pontos do intervalo (a, b) $\Rightarrow f(x)$ é crescente no intervalo [a, b];

f'(x) < 0 nos pontos do intervalo (a, b) $\Rightarrow f(x)$ é decrescente no intervalo [a, b].

CASO 2

Considere a função $f(x) = x^3 - 6x^2 + 9x$.

$$f'(x) = 3x^2 - 12x + 9 \Rightarrow f'(x) = 3x^2 - 12x + 9 = 0 \Rightarrow x = 1 e$$

 $x = 3$.

Assim, f(x) é crescente no intervalo $(-\infty, 1)$ e $(3, +\infty)$, sendo decrescente no intervalo (1, 3).

CONCAVIDADE

f''(x) > 0 nos pontos do intervalo (a, b) $\Rightarrow f(x)$ é côncava para cima no intervalo [a, b];

f''(x) < 0 nos pontos do intervalo (a, b) $\Rightarrow f(x)$ é côncava para baixo no intervalo [a, b].

CASO 3

Considere a função $f(x) = x^3 - 6x^2 + 9x$.

$$f'(x) = 3x^2 - 12x + 9 \Rightarrow f''(x) = 6x - 12 = 0 \Rightarrow x = 2.$$

Assim, f(x) é côncava para baixo no intervalo $(-\infty, 2)$ e côncava para cima $(2, +\infty)$.

MÁXIMOS E MÍNIMOS

 x_0 é um ponto no intervalo (a, b) e é um ponto de mínimo local de $f(x) \Rightarrow f'(x_0) = 0$;

 x_0 é um ponto no intervalo (a, b) e é um ponto de máximo local de $f(x) \Rightarrow f'(x_0) = 0$;

 $f'(x_0) = 0$ ou $f'(x_0)$ não existe, x_0 é dito ponto crítico de f.

$$f'(x_0) = 0$$
 e $f''(x_0) > 0 \Rightarrow x_0$ é um ponto de mínimo local de $f'(x_0)$;

$$f'(x_0) = 0$$
 e $f''(x_0) < 0 \Rightarrow x_0$ é um ponto de máximo local de $f'(x_0)$.

CASO 4

Uma grande caixa deve ser construída cortando-se quadrados iguais dos quatro cantos de uma folha retangular de zinco, de 3 m por 8 m, dobrando-se os quatro lados (abas laterais) para e soldando-se as arestas verticais que justapostas. Encontre o maior volume possível para esta caixa.

O volume da caixa é dado por

$$V(x) = x(8-2x)(3-2x) = 4x^3 - 22x^2 + 24x$$

com $0 \le x \le 3/2$.

 $V(x) = 4x^3 - 22x^2 + 24x \Rightarrow V'(x) = 12x^2 - 44x + 24 = 0 \Rightarrow x = 2/3$ e x = 3 (pontos críticos de f (x)).

$$V'(x) = 12x^2 - 44x + 24 \implies V''(x) = 24x - 44$$

 $V''(2/3) = 24(2/3) - 44 = 16 - 44 = -28 < 0 \implies x = 2/3 \text{ é ponto}$ de máximo de V(x).

Portanto, as dimensões da caixa de volume máximo são 20/3, 5/3 e 2/3.

DEFINIÇÃO

A derivada parcial de uma função de várias variáveis é a sua derivada com respeito aquela variável, com as demais mantidas constantes.

Notação:
$$\frac{\partial f}{\partial x_i}$$

CASO 5

A temperatura em uma placa de metal em cada ponto (x, y) é dada por T (x, y) = $9x^2 + 4y^2$.

a) Qual a taxa de variação da temperatura quando y permanece constante?

$$T_x(x, y) = 9(2x^{2-1}) = 18x$$

b) Qual a taxa de variação da temperatura quando x permanece constante?

$$T_y(x, y) = 4(2y^{2-1}) = 8y$$

DEFINIÇÃO

Um ponto crítico é um ponto no domínio da função em que a derivada é nula ou não está definida.

Os extremos locais, ou seja, um ponto é um máximo ou um mínimo relativo se e, só se, for um ponto crítico.

CASO 6

Seja $f(x, y) = x^2 + y^2 - 2x - 4y + 7$. As derivadas parciais de f(x, y) são

$$f_{x}(x, y) = 2x^{2-1} - 2x^{1-1} = 2x - 2$$

$$f_y(x, y) = 2y^{2-1} - 4y^{1-1} = 2y - 4$$

Assim, o ponto crítico ocorre quando

$$f_{x}(x, y) = 2x - 2 = 0 \implies x = 1$$

$$f_y(x, y) = 2y - 4 = 0 \implies y = 2$$

(1, 2) é o ponto crítico de f(x, y), ou seja, um ponto de mínimo ou um ponto de máximo da função.

Note que

$$f(x, y) = x^{2} + y^{2} - 2x - 4y + 7$$

$$= x^{2} - 2x + y^{2} - 4y + 7$$

$$= (x^{2} - 2x + 1) + (y^{2} - 4y + 4) + 7 - 1 - 4$$

$$= (x - 1)^{2} + (y - 2)^{2} + 2$$

Assim,

$$f(x, y) \ge 2$$

Logo, (1, 2) é um ponto de mínimo absoluto de f(x, y).

MULTIPLICADORES DE LAGRANGE

É um método que permite encontrar extremos (máximos e mínimos) de uma função de uma ou mais variáveis suscetíveis a uma ou mais restrições.

O método dos Multiplicadores de Lagrange consiste em introduzir uma variável nova λ , chamada de Multiplicador de Lagrange.

A partir disso, estuda-se a função de Lagrange, assim definida

$$\nabla f(\mathsf{x},\,\mathsf{y}) = \lambda \nabla g(\mathsf{x},\,\mathsf{y})$$

o que resulta em resolver o sistema

$$\begin{cases} \frac{\partial f}{\partial x} = \lambda \frac{\partial g}{\partial x} \\ \frac{\partial f}{\partial y} = \lambda \frac{\partial g}{\partial y} \\ g(x, y) = 0 \end{cases}$$

CASO 7

Considere a função $f(x, y) = x^2 + y^2 - 2x - 2y + 3$ sobre a

curva C: $4x^2 - 8x + y^2 - 2y + 1$.

$$\nabla f(x, y) = (2x - 2, 2y - 2) \in \nabla g(x, y) = (8x - 8, 2y - 2)$$

Logo, $\nabla f(x, y) = \lambda \nabla g(x, y)$ resulta no sistema

$$\begin{cases} 2x - 2 = \lambda(8x - 8) \\ 2y - 2 = \lambda(2y - 2) \\ 4x^2 - 8x + y^2 - 2y + 1 = 0 \end{cases} \Rightarrow \begin{cases} 2(x - 1) = 8\lambda(x - 1) \\ 2(y - 1) = 2\lambda(y - 1) \\ 4x^2 - 8x + y^2 - 2y + 1 = 0 \end{cases} \Rightarrow \begin{cases} x - 1 = 4\lambda(x - 1) \\ y - 1 = \lambda(y - 1) \\ 4x^2 - 8x + y^2 - 2y + 1 = 0 \end{cases}$$

Da segunda equação do sistema, tem-se que $\lambda=1$, substituindo na primeira equação

$$x - 1 = 4(1)(x - 1) \Rightarrow x - 4x = -4 + 1 \Rightarrow x = 1$$
.

Fazendo x = 1, na terceira equação do sistema,

$$4(1)^2 - 8(1) + y^2 - 2y + 1 = 0 \Rightarrow y^2 - 2y - 3 = 0.$$

Resolvendo

$$y = \frac{-(-2) \pm \sqrt{(-2)^2 - 4.1.(-3)}}{2} = \frac{2 \pm 4}{2} \Rightarrow y = -1 \text{ e } y = 3.$$

Logo, (1, -1) e (1, 3) são os pontos críticos de f(x, y).

Fazendo x = 1, na terceira equação do sistema,

$$4(1)^2 - 8(1) + y^2 - 2y + 1 = 0 \Rightarrow y^2 - 2y - 3 = 0.$$

Resolvendo

$$y = \frac{-(-2) \pm \sqrt{(-2)^2 - 4.1.(-3)}}{2} = \frac{2 \pm 4}{2} \Rightarrow y = -1 \text{ e } y = 3.$$

Logo, (1, -1) e (1, 3) são os pontos críticos de f(x, y).

Substituindo y = 1, na terceira equação do sistema,

$$4x^2 - 8x + (1)^2 - 2(1) + 1 = 0 \implies 4x^2 - 8x = 0$$

$$4x(x-2) = 0 \implies 4x = 0 e x - 2 = 0 \implies x = 0 e x = 2.$$

Logo, (0, 1) e (2, 1) são os demais pontos críticos de f(x, y).

$$f(1, -1) = (1)^2 + (-1)^2 - 2(1) - 2(-1) + 3 = 5$$

$$f(1, 3) = (1)^2 + (3)^2 - 2(1) - 2(3) + 3 = 5$$

$$f(0, 1) = (0)^2 + (1)^2 - 2(0) - 2(1) + 3 = 2$$

$$f(2, 1) = (2)^2 + (1)^2 - 2(2) - 2(1) + 3 = 2$$

Logo, (1, -1) e (1, 3) são pontos de máximo e (0, 1) e (2, 1) são pontos de mínimo de f(x, y).

Tabulação e Estatística Descritiva

Exemplo 8

Suponhamos termos feitos uma coleta de dados relativos às estruturas de 40 alunos, que compõem uma amostra dos alunos de um colégio **A**, resultando os seguintes valores:

Dados em Rol:

150	151	152	154	155	155	155	155
156	156	156	157	158	158	158	160
160	160	160	160	161	161	161	161
162	162	163	163	164	164	164	165
166	167	168	168	169	170	172	173

Correlação e Regressão Linear Simples

A tabela a baixo mostra o consumo de combustível e o número de quilômetros rodados de um carro

Υ	Consumo (litros)	1	2	3	4	5	6
χ	Km rodados	6	13	18	25	33	40

- a) Faça o diagrama de Dispersão
- b)Calcule o coeficiente de correlação caso exista uma correlação significante, encontre a reta de regressão y=a + b*x e estime o consumo (em litros) para 100 quilômetros rodados.
- c) Se o carro só dispõe de 8 litros de combustível, quantos quilômetros podem ser rodados?
- d)Calcule o coeficiente de determinação.

Análise de Componentes Principais: Uma Aplicação da Análise multivariada

```
> print(coxinha)
# A tibble: 8 x 5
 Marca Sabor Aroma Massa Recheio
  <chr> <db1> <db1> <db1>
                          \langle db1 \rangle
 M1
        2.75
              4.03
                           2.62
                        3.52
2 M2
     3.9
              4.12
     3.12 3.97
                         3.05
                   3.62
     4.58
              4.86
                   4.34
                         4.82
5 M5
     3.97 4.34
                   4.28
                         4.98
     3.01 3.98
                   2.9 2.82
     4.19
              4.65
                   4.52
                         4.77
        3.82 4.12
                   3.62
                         3.71
> #Calculo da matriz de variância e covariância
> S=cov(coxinha[-1])
> 5
           Sabor
                                      Recheio
                     Aroma
                              Massa
       0.4069071 0.1822107 0.3573571 0.5504750
Sabor
Aroma
       0.1822107 0.1104411 0.1796357 0.2713804
       0.3573571 0.1796357 0.4242000 0.5897357
Massa
Recheio 0.5504750 0.2713804 0.5897357 0.9105696
>
```


Aplicação de estatística: Análise multivariada com o foco no uso de Análise de Componentes Principais


```
> #Proporção da variância total captada por cada componente
> (pcp1=a1[1]/sum(a1)*100) # indica quanto o lambda1 capta da variabilidade total
[1] 93.77604
> (pcp2=a1[2]/sum(a1)*100) # indica quanto o lambda2 capta da variabilidade total
[1] 3.50329
> (pcp3=a1[3]/sum(a1)*100) # indica quanto o lambda3 capta da variabilidade total
[1] 1.507116
> (pcp4=a1[4]/sum(a1)*100) # indica quanto o lambda4 capta da variabilidade total
[1] 1.213549
```


Aplicação de estatística: Análise multivariada com o foco no uso de Análise de Componentes Principais

```
> #Correlação entre componentes e variáveis originais
> y1=c((ry1x1=(a2[1,1]*sqrt(a1[1]))/sqrt(R[1,1])),(ry1x2=(a2[2,1]*sqrt(a1[1]))/sqrt(R[2,2])),
(ry1x3=(a2[3,1]*sqrt(a1[1]))/sqrt(R[3,3])),(ry1x4=(a2[4,1]*sqrt(a1[1]))/sqrt(R[4,4])))
> y2=c((ry2x1=(a2[1,2]*sqrt(a1[2]))/sqrt(R[1,1])),(ry2x2=(a2[2,2]*sqrt(a1[2]))/sqrt(R[2,2])),
(ry2x3=(a2[3,2]*sqrt(a1[2]))/sqrt(R[3,3])), (ry2x4=(a2[4,2]*sqrt(a1[2]))/sqrt(R[4,4])))
> y3=c((ry3x1=(a2[1,3]*sqrt(a1[3]))/sqrt(R[1,1])),(ry3x2=(a2[2,3]*sqrt(a1[3]))/sqrt(R[2,2])),
(ry3x3=(a2[3,3]*sqrt(a1[3]))/sqrt(R[3,3])), (ry3x4=(a2[4,3]*sqrt(a1[3]))/sqrt(R[4,4])))
> y4=c((ry4x1=(a2[1,4]*sqrt(a1[4]))/sqrt(R[1,1])),(ry4x2=(a2[2,4]*sqrt(a1[4]))/sqrt(R[2,2])),
(ry4x3=(a2[3,4]*sqrt(a1[4]))/sqrt(R[3,3])), (ry4x4=(a2[4,4]*sqrt(a1[4]))/sqrt(R[4,4])))
> COR=matrix(c(y1,y2,y3,y4),byrow=F,ncol=4) # correlação entre as componentes principais e as
variáveis originais para observar o quão
> #relacionadas as variáveis estão.
> COR
 > colnames(COR)=c("CP1","CP2","CP3","CP4") #nomeia as colunas
 > rownames(COR)=c("sabor", "aroma", "massa", "recheio") # nomeia as linhas
 > COR
                  CP1
                               CP2
                                             CP3
 sabor
          -0.6006552 0.20787993 -0.01873660 -0.05054996
 aroma -0.2945063 0.05475124 -0.04496693 0.13670176
          -0.6286509 -0.11626198 -0.11992312 -0.03316016
 massa
 recheio -0.9455793 -0.07180842 0.10563584 0.01157992
```


Aplicação de estatística: Análise multivariada com o foco no uso de Análise de Componentes Principais

```
> escore=matrix(c(coxinha$Marca,y1),byrow=F,ncol=2)
> escore
       [,1] [,2]
[1,] "M1" "5.36940472614669"
[2,] "M2" "6.84560233936193"
[3,] "M3" "6.22430313020207"
[4,] "M4" "8.7020235735629"
[5,] "M5" "8.39397940387794"
[6,] "M6" "5.66793115640963"
[7,] "M7" "8.52733290532396"
[8,] "M8" "7.05040711389358"
```

De acordo com a análise as três melhores marcas de coxinhas de frango são: M4, M7 e M5

Obrigada!

