Scilab Textbook Companion for Digital Control by K. M. Moudgalya¹

Created by
Inderpreet Arora
Digital Control
Chemical Engineering
IIT Bombay
College Teacher
NA
Cross-Checked by
Chaitanya

May 28, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Digital Control

Author: K. M. Moudgalya

Publisher: Wiley, India

Edition: 1

Year: 2009

ISBN: 978-81-265-2206-4

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
2	Modelling of Sampled Data Systems	6
3	Linear Systems	8
4	Z Transform	9
5	Frequency Domain Analysis	19
6	Identification	23
7	Structures and Specifications	38
8	Proportional Integral Derivative Controllers	49
9	Pole Placement Controllers	50
10	Special Cases of Pole Placement Control	90
11	Minimum Variance Control	101
12	Model Predictive Control	118
13	Linear Quadratic Gaussian Control	130
14	State Space Techniques in Controller Design	142

List of Scilab Codes

Exa 2.1	Model of inverted pendulum
Exa 2.2	Exponential of the matrix
Exa 2.3	ZOH equivalent state space system
Exa 3.1	Energy of a signal
Exa 3.2	Convolution of two sequences
Exa 4.1	To produce a sequence
Exa 4.2	To produce a sequence
Exa 4.3	To produce pole zero plots
Exa 4.4	Discrete transfer function of the continuous state space
	system
Exa 4.5	Computation of residues
Exa 4.6	Partial fraction expansion
Exa 4.7	Partial fraction expansion
Exa 4.8	Partial fraction expansion
Exa 4.9	Partial fraction expansion
Exa 4.10	Partial fraction expansion
Exa 4.11	Long division of problems
Exa 5.1	Sinusoidal plots for increasing frequency
Exa 5.2	Bode plots
Exa 5.3	Bode plot of the moving average filter
Exa 5.4	Bode plot of the differencing filter
Exa 5.5	Bode plot of minimum and nonminimum phase filters 2
Exa 6.1	Least squares solution
Exa 6.2	ACF calculation
Exa 6.3	To demonstrate the periodicity property of ACF 2
Exa 6.4	To demonstrate the maximum property of ACF at zero
	lag
Exa. 6.5	Demonstrate the order of MA

Exa 6.6	Procedure to plot the ACF
Exa 6.7	Illustration of nonuniqueness in estimation of MA model
	parameters using ACF
Exa 6.8	Estimation with a larger order model results in large
	uncertainty
Exa 6.9	Determination of order of AR process
Exa 6.10	Determination of the PACF of AR process
Exa 6.11	Construction of square matrix required to compute PACF
	ajj
Exa 6.12	PACF plot of an MA process decays slowly
Exa 6.13	Implementation of trial and error procedure to deter-
	mine ARMA process
Exa 6.14	Determination of FIR parameters
Exa 6.15	Determination of ARX parameters
Exa 6.16	Determination of ARMAX parameters
Exa 6.17	Determination of OE parameters
Exa 7.1	Procedure to draw root locus for the problem
Exa 7.2	Procedure to draw the Nyquist plot
Exa 7.3	Procedure to draw Bode plots
Exa 7.4	A procedure to design lead controllers
Exa 7.5	Bode plot of a lead controller
Exa 7.6	Verification of performance of lead controller on antenna
	system
Exa 7.7	Illustration of system type
Exa 7.8	Solution to Aryabhatta identity
Exa 7.9	Left coprime factorization
Exa 7.10	Solution to polynomial equation
Exa 8.1	Continuous to discrete time transfer function
Exa 9.1	Pole placement controller for magnetically suspended
	ball problem
Exa 9.2	Discretization of continuous transfer function
Exa 9.3	Procedure to split a polynomial into good and bad factors
Exa 9.4	Calculation of desired closed loop characteristic polyno-
	mial
Exa 9.5	Design of 2 DOF pole placement controller
Exa 9.6	Evaluates z to the power k
Exa 9.7	Simulation of closed loop system with an unstable con-
	troller

Exa 9.8	Pole placement controller using internal model principle	59
Exa 9.9	Pole placement controller with internal model of a step	
	for the magnetically suspended ball problem	60
Exa 9.10	Pole placement controller IBM Lotus Domino server .	62
Exa 9.11	Pole placement controller for motor problem	66
Exa 9.12	Procedure to split a polynomial into good and bad factors	68
Exa 9.13	Pole placement controller without intra sample oscilla-	
	tions	70
Exa 9.14	Controller design	71
Exa 9.15	Evaluation of continuous time controller	74
Exa 9.16	System type with 2 DOF controller	76
Exa 9.17	Illustrating the benefit of cancellation	77
Exa 9.18	Anti windup control of IBM Lotus Domino server	79
Exa 9.19	Demonstration of usefulness of negative PID parameters	82
Exa 9.20	PID controller design	83
Exa 9.21	DC motor with PID control tuned through pole place-	
	ment technique	85
Exa 9.22	PD control law from polynomial coefficients	87
Exa 10.1	Effect of delay in control performance	90
Exa 10.2	Smith predictor for paper machine control	91
Exa 10.3	Splitting a polynomial B	94
Exa 10.4	Design of internal model controller	95
Exa 10.5	Flipping a vector	96
Exa 10.6	IMC design for viscosity control problem	96
Exa 10.7	IMC design for the control of van de Vusse reactor	97
Exa 10.8	IMC design for an example by Lewin	97
Exa 10.9	Design of conventional controller which is an equivalent	
	of internal model controller	98
Exa 10.10	Design of conventional controller for van de Vusse reac-	
	tor problem	99
Exa 11.1	Recursive computation of Ej and Fj	101
Exa 11.2	Recursive computation of Ej and Fj for the system pre-	
	sented in Example	102
Exa 11.3	Solution of Aryabhatta identity	102
Exa 11.4	1st control problem by MacGregor	103
Exa 11.5	Minimum variance control law design	105
Exa 11.6	Calculation of closed loop transfer functions	106

Exa 11.7	Cancellation of common factors and determination of covariance
Exa 11.8	Computing sum of squares
Exa 11.9	Minimum variance control for nonminimum phase sys-
LAG 11.0	tems
Exa 11.10	Minimum variance control for nonminimum phase ex-
	ample
Exa 11.11	
Exa 11.12	General minimum variance controller design
Exa 11.13	GMVC design of first example by MacGregor
Exa 11.14	GMVC design of viscosity problem
Exa 11.15	PID tuning through GMVC law
Exa 11.16	Value of polynomial p evaluated at x
Exa 11.17	PID tuning through GMVC law
Exa 12.1	Model derivation for GPC design
Exa 12.2	Calculates the GPC law
Exa 12.3	GPC design for the problem discussed on page 441
Exa 12.4	GPC design
Exa 12.5	Calculates the GPC law
Exa 12.6	Calculates the GPC law
Exa 12.7	GPC design for viscosity control
Exa 12.8	GPC design
Exa 12.9	Calculates the GPC law
Exa 12.10	PID controller tuned with GPC
Exa 12.11	Predictive PID tuned with GPC
Exa 13.1	Spectral factorization
Exa 13.2	Function to implement spectral factorization
Exa 13.3	Spectral factorization
Exa 13.4	LQG control design by polynomial method
Exa 13.5	LQG design
Exa 13.6	LQG control design for viscosity control problem
Exa 13.7	Simplified LQG control design
Exa 13.8	LQG control design
Exa 13.9	Performance curve for LQG control design of viscosity problem
Exa 13.10	Performance curve for GMVC design of first control problem by MacGregor
Exa. 14.1	Pole placement controller for inverted pendulum

Exa 14.2	Compensator calculation	143
Exa 14.3	Kalman filter example of estimating a constant	144
Exa 14.4	Kalman filter example of estimating a constant	144

List of Figures

7.1	Verification of performance of lead controller on antenna system	42
7.2	Verification of performance of lead controller on antenna system	43
7.3	Illustration of system type	45
7.4	Illustration of system type	45
9.1	Pole placement controller for magnetically suspended ball prob- lem	52
9.2	Pole placement controller for magnetically suspended ball prob- lem	53
9.3	Simulation of closed loop system with an unstable controller	57
9.4	Simulation of closed loop system with an unstable controller	59
9.5	Pole placement controller with internal model of a step for the magnetically suspended ball problem	63
9.6	Pole placement controller with internal model of a step for the magnetically suspended ball problem	63
9.7	Pole placement controller IBM Lotus Domino server	65
9.8	Pole placement controller IBM Lotus Domino server	66
9.9	Pole placement controller for motor problem	68
9.10	Pole placement controller for motor problem	69
9.11	Controller design	73
9.12	Controller design	74
	Demonstration of usefulness of negative PID parameters	84
9.14	Demonstration of usefulness of negative PID parameters	84
9.15	DC motor with PID control tuned through pole placement technique	88
9.16	DC motor with PID control tuned through pole placement technique	88
10.1	Smith predictor for paper machine control	93

10.2	Smith predictor for paper machine	control						94
11.1	1st control problem by MacGregor							105
11.2	1st control problem by MacGregor							106

Chapter 2

Modelling of Sampled Data Systems

Scilab code Exa 2.1 Model of inverted pendulum

```
1 // Model of inverted pendulum
2 // 2.1
3
4 \text{ Km} = 0.00767;
5 \text{ Kg} = 3.7;
6 \text{ Rm} = 2.6;
7 r = 0.00635;
8 M = 0.522;
9 m = 0.231;
10 g = 9.81;
11 L = 0.305;
12 J = 0;
13
14 D1 = (J+m*L^2)*(M+m)-m^2*L^2;
15 alpha = m*g*L*(M+m)/D1;
16 beta1 = m*L/D1;
17 gamma1 = m^2*g*L^2/D1;
18 delta = (J+m*L^2)/D1;
19
```

```
20 alpha1 = Km*Kg/Rm/r;
21 alpha2 = Km^2*Kg^2/Rm/r^2;
22
23 A = zeros(4,4);
24 A(1,3) = 1;
25 A(2,4) = 1;
26 A(3,2) = -gamma1;
27 A(3,3) = -alpha2*delta;
28 A(4,2) = alpha;
29 A(4,3) = alpha2*beta1;
30
31 B = zeros(4,1);
32 B(3) = alpha1*delta;
33 B(4) = -alpha1*beta1;
```

Scilab code Exa 2.2 Exponential of the matrix

```
1 // Exponential of the matrix
2 // 2.2
3
4 F = [-1 0;1 0];
5 expm(F)
```

Scilab code Exa 2.3 ZOH equivalent state space system

```
1 // ZOH equivalent state space system
2 // 2.3
3
4 F = [-1 0;1 0]; G = [1; 0];
5 C = [0 1]; D = 0; Ts=1;
6 sys = syslin('c',F,G,C,D);
7 sysd = dscr(sys,Ts)
```

Chapter 3

Linear Systems

Scilab code Exa 3.1 Energy of a signal

```
1 // Energy of a signal
2 // 3.1
3
4 u = [4 5 6];
5 Eu = norm(u)^2;
6 ruu = xcorr(u);
7 Lu = length(ruu);
8 Eu = ruu(ceil(Lu/2));
```

Scilab code Exa 3.2 Convolution of two sequences

```
1 // Convolution of two sequences
2 // 3.2
3
4 h = [1 2 3];
5 u = [4 5 6];
6 y = convol(u,h)
```

Chapter 4

Z Transform

Scilab code Exa 4.1 To produce a sequence

```
1 // \text{ To produce a n } 1(n)
2 // 4.1
3
4 exec('stem.sci',-1);
5 exec('label.sci',-1);
7 a = 0.9;
8 n = -10:20;
9 y = zeros(1, size(n, '*'));
10 for i = 1:length(n)
11
       if n(i) \ge 0,
12
           y(i) = a^n(i);
13
        end
14 end
15 \text{ stem(n,y)}
16 label('u1',4,'Time(n)','0.9^nn1(n)',4)
```

Scilab code Exa 4.2 To produce a sequence

```
1 // Plot of -0.9^{n1}(-n-1)
2 // 4.2
4 exec('stem.sci',-1);
5 exec('label.sci',-1);
7 a = 0.9;
8 n = -10:20;
9 y = zeros(1, size(n, '*'));
10 for i = 1: length(n)
       if n(i) \leftarrow -1,
11
12
            y(i) = -(a^n(i));
13
            else y(i) = 0;
14
       end
15 end
16 \text{ stem(n,y)}
17 label('u2',4,'Time(n)','-0.9^n1(-n-1)',4)
```

Scilab code Exa 4.3 To produce pole zero plots

```
1 // To produce pole-zero plots
2 // 4.3
3
4 exec('label.sci',-1);
5
6 zero = [0 5/12];
7 num = poly(zero,'z',"roots");
8 pole = [1/2 1/3];
9 den = poly(pole,'z',"roots");
10 h = syslin('d',num./den);
11 plzr(h);
12
13 label('Pole-Zero Plot',4,'Real(z)','Imaginary(z)',4);
;
```

Scilab code Exa 4.4 Discrete transfer function of the continuous state space system

Scilab code Exa 4.5 Computation of residues

```
1 // Computation of residues
2 // 4.5
3 // Numerator and denominator coefficients
4 // are passed in decreasing powers of z(say)
6 function [res,pol,q] = respol(num,den)
7 len = length(num);
8 \text{ if } num(len) == 0
       num = num(1:len-1);
9
10 \, \text{end}
11
12 [resi,q] = pfe(num,den);
13 \text{ res = resi(:,2)};
14 res = int(res) + (clean(res - int(res), 1.d-04));
15 \text{ pol} = resi(:,1);
16 pol = int(pol) + (clean(pol - int(pol), 1.d-04));
17 endfunction;
```

```
18
20 // Partial fraction expansion
21
22 function [resid1,q] = pfe(num,den)
23 x = poly(0, 'x');
24 s = \%s;
25
26 \text{ num2} = flip(num);
27 den2 = flip(den);
28 num = poly(num2, 's', 'coeff');
29 den = poly(den2, 's', 'coeff');
30 [fac,g] = factors(den);
31 polf = polfact(den);
32 n = 1;
33
34 r = clean(real(roots(den)),1.d-5);
35 //disp(r);
36 l = length(r);
37 r = gsort(r, 'g', 'i');
38 r = [r; 0];
39 \quad j = 1;
40 	 t1 = 1; q = [];
41 \text{ rr} = 0;
42 \text{ rr1} = [0 \ 0];
43 \text{ m} = 1;
44
45
     for i = j:1
         if abs(r(i)-r(i+1)) < 0.01 then
46
           r(i);
47
           r(i+1);
48
49
           n = n+1;
50
           m = n;
51
           //pause
52
           t1 = i;
           //disp('Repeated roots')
53
54
         else
           m = n;
55
```

```
56
            //pause
57
            n = 1;
58
        end
59
        i;
60
        if n == 1 then
          rr1 = [rr1; r(i) m];
61
62
          //pause
63
        end;
64
            j = t1 + 1;
65
      end;
66 \text{ rr2} = \text{rr1}(2:\$,:);
67 [r1,c1] = size(rr2);
68 \text{ den1} = 1;
69
70 \text{ for } i = 1:r1
      den1 = den1 * ((s-rr2(i,1))^(rr2(i,2)));
71
72 \text{ end};
73 [rem, quo] = pdiv(num, den);
74 q = quo;
75 if quo ~= 0
76
     num = rem;
77 end
78
79 	 tf = num/den1;
80 \text{ res1} = 0;
81 \text{ res3} = [s \ 0];
82 \text{ res5} = [0 \ 0];
83 \text{ for } i = 1:r1
     j = rr2(i,2) + 1;
84
85
     tf1 = tf; //strictly proper
     k = rr2(i,2);
     tf2 = ((s-rr2(i,1))^k)*tf1;
87
     rr2(i,1);
88
     res1 = horner(tf2, rr2(i,1));
89
     res2 = [(s - rr2(i,1))^(rr2(i,2)) res1];
90
     res4 = [rr2(i,1) res1];
91
92
     res3 = [res3; res2];
     res5 = [res5; res4];
93
```

```
94
     res = res1;
95
       for m = 2:j-1
96
       k;
97
       rr2(i,1);
         tf1 = derivat(tf2)/factorial(m-1); //ith
98
           derivative
         res = horner(tf1, rr2(i,1));
99
         res2 = [(s - rr2(i,1))^(j-m) res];
100
         res4 = [rr2(i,1) res];
101
        res5 = [res5; res4];
102
         res3 = [res3; res2];
103
104
         tf2 = tf1;
105
       end;
106 end;
107 resid = res3(2:$,:); //with s terms
108 resid1 = res5(2:$,:); //only poles(in decreasing no.
       of repetitions)
109 endfunction;
110 //
```

Scilab code Exa 4.6 Partial fraction expansion

Scilab code Exa 4.7 Partial fraction expansion

```
1 // Partial fraction expansion for Example 4.26
      2 // 4.7
       3
     4 // \qquad z^2 + z \qquad A \qquad B
5 // G(z) = \frac{C}{} + 
                                                                          (z - 1)^3 (z - 1)^2 (z - 1)^2
                                                 - 1)^3
       8 exec('respol.sci',-1);
      9 exec('flip.sci',-1);
   10
   11 \text{ num} = [1 \ 1 \ 0];
  12 den = convol([1 -1],convol([1 -1],[1 -1])); // poly
                                            multiplication
  13 [res,pol] = respol(num,den)
  14
  15 // Output interpretation
  16 // res =
 17 / C = 2
 18 / B = 1
 19 //A = 0
  20
 21 // pol =
```

Scilab code Exa 4.8 Partial fraction expansion

Scilab code Exa 4.9 Partial fraction expansion

```
12 den = convol(convol([1 1],[1 1]),[1 -2]);
13 [res,pol] = respol(num,den)
```

Scilab code Exa 4.10 Partial fraction expansion

Scilab code Exa 4.11 Long division of problems

```
1 // Long division of problems discussed in Example
     4.32 on page 102
2 // 4.11
3
4 exec('tf.sci',-1);
5 exec('label.sci',-1);
```

Chapter 5

Frequency Domain Analysis

Scilab code Exa 5.1 Sinusoidal plots for increasing frequency

```
// Sinusoidal plots for increasing frequency
// 5.1

exec('stem.sci',-1);

n=0:16;
subplot(2,2,1), stem(n,cos(n*%pi/8))
xgrid,xtitle('','n','cos(n*pi/8)')
subplot(2,2,2), stem(n,cos(n*%pi/4))
xgrid,xtitle('','n','cos(n*pi/4)')
subplot(2,2,3), stem(n,cos(n*%pi/2))
xgrid,xtitle('','n','cos(n*pi/2)')
xgrid,xtitle('','n','cos(n*pi/2)')
subplot(2,2,4), stem(n,cos(n*%pi))
xgrid,xtitle('','n','cos(n*pi)')
```

Scilab code Exa 5.2 Bode plots

```
1 // Bode plots for Example 5.7 on page 141
```

```
2 // 5.2
4 exec('label.sci',-1);
6 omega = linspace(0, %pi);
7 \text{ g1} = 0.5 ./ (\cos(\text{omega}) - 0.5 + \%i * \sin(\text{omega}));
8 \text{ mag1} = abs(g1);
9 angle1 = phasemag(g1);
10 g2 = (0.5+0.5*\cos(\text{omega})-1.5*\%i*\sin(\text{omega})) ...
      * 0.25 ./ (1.25-cos(omega));
12 \text{ mag2} = abs(g2);
13 angle2 = phasemag(g2);
14 subplot(2,1,1)
15 plot(omega, mag1, omega, mag2, '---');
16 label('',4,'', 'Magnitude',4);
17 subplot(2,1,2);
18 plot (omega, angle1, omega, angle2, '---');
19 label('',4,'w (rad/s)','Phase',4);
```

Scilab code Exa 5.3 Bode plot of the moving average filter

Scilab code Exa 5.4 Bode plot of the differencing filter

```
1 // Bode plot of the differencing filter, discussed
     in Example 5.6 on page 130
2 // 5.4
3
4 exec('label.sci',-1);
5
6 w = 0.01:0.01:%pi;
7 G = 1-exp(-%i*w);
8 subplot(2,1,1)
9 plot2d1("gll",w,abs(G),style = 2);
10 label('',4,'','Magnitude',4);
11 subplot(2,1,2)
12 plot2d1("gln",w,phasemag(G),style = 2);
13 label('',4,'w','Phase',4)
```

Scilab code Exa 5.5 Bode plot of minimum and nonminimum phase filters

```
// Bode plot of minimum and nonminimum phase filters
    , discussed in Example 5.9 on page 145

// 5.5

exec('label.sci',-1);

omega = linspace(0, %pi);

ejw = exp(-%i*omega);

G1 = 1.5*(1-0.4*ejw);

mag1 = abs(G1); angle1 = phasemag(G1);

G2 = -0.6*(1-2.5*ejw);

mag2 = abs(G2); angle2 = phasemag(G2);
```

```
12 subplot(2,1,1);
13 plot(omega,mag1,omega,mag2,'--');
14 label('',4,'','Magnitude',4);
15 subplot(2,1,2);
16 plot(omega,angle1,omega,angle2,'--');
17 label('',4,'w (rad/s)','Phase',4);
```

Chapter 6

Identification

Scilab code Exa 6.1 Least squares solution

```
1 // Least squares solution of the simple problem
          discussed in Example 6.4 on page 164
2 // 6.1
3
4 Mag = 10; V = 10; No_pts = 100; theta = 2;
5 Phi = Mag * (1-2*rand(No_pts,1));
6 E = V * (1-2*rand(No_pts,1));
7 Z = Phi*theta + E;
8 LS = Phi \ Z
9 Max = max(Z ./ Phi), Min = min(Z ./ Phi)
```

Scilab code Exa 6.2 ACF calculation

```
5 r = xcov(u);
6 rho = xcov(u, "coeff");
```

Scilab code Exa 6.3 To demonstrate the periodicity property of ACF

```
1 // To demonstrate the periodicity property of ACF as
       discussed in Example 6.7 on page 173
2 // 6.3
3
4 exec('plotacf.sci',-1);
5 exec('label.sci',-1);
7 L = 500;
8 n = 1:L;
9 w = 0.1;
10 S = sin(w*n);
11 \ m = 1;
12 xi = m*rand(L,1,'normal');
13 Spxi = S+xi';
14 xset('window',0);
15 plot(Spxi);
16 label('',4,'n','y',4)
17 xset('window',1);
18 plotacf(Spxi,1,L,1);
```

Scilab code Exa 6.4 To demonstrate the maximum property of ACF at zero lag

```
1 // To demonstrate the maximum property of ACF at zero lag, as discussed in Example 6.8 on page 175.
2 // 6.4
3
```

```
4 exec('label.sci',-1);
5
6 S1 = [1 2 3 4];
7 \text{ S2} = [1, -2, 3, -4];
8 S3 = [-1, -2, 3, 4];
9 len = length(S1)-1;
10 \text{ xv} = -len:len;
11 m = 1;
12 xi = rand(4,1, 'normal');
13 Spxi1 = S1 + m*xi';
14 \text{ Spxi2} = S2 + m*xi';
15 \text{ Spxi3} = S3 + m*xi';
16 n = 1:length(S1);
17 plot(n,Spxi1,'o-',n,Spxi2,'x--',n,Spxi3,'*:');
18 label('',4,'n','y',4);
19 ACF1 = xcov(Spxi1, "coeff");
20 ACF2 = xcov(Spxi2, "coeff");
21 ACF3 = xcov(Spxi3, "coeff");
22 xset('window',1);
23 \ a = gca();
24 \text{ a.data\_bounds} = [-len -1; len 1];
25 plot(xv,ACF1, 'o-',xv,ACF2, 'x--',xv,ACF3, '*:');
26 label('',4,'Lag','ACF',4);
```

Scilab code Exa 6.5 Demonstrate the order of MA

```
9 d = [1 1 -0.5];
10 ar = armac(a,b,d,1,1,1);
11 v = arsimul(ar,xi);
12 z = [v xi];
13
14 // Plot noise, plant output and ACF
15 subplot(2,1,1), plot(v(1:500))
16 label('',4,'','v',4)
17 subplot(2,1,2), plot(xi(1:500))
18 label('',4,'n','xi',4)
19 xset('window',1)
20 plotacf(v,1,11,1);
```

Scilab code Exa 6.6 Procedure to plot the ACF

```
1 // Procedure to plot the ACF, as discussed in Sec.
      6.4.3. An example usage is given in 6.5.
2 // 6.6
3
  // PLOTACF: Plots normalized autocorrelation
     function
5 //
  // USAGE:: [acf] = plotacf(x, errlim, len, print_code)
8 // WHERE:: acf = autocorrelation values
9 // x = time series data
10 // errlim > 0; error limit = 2/sqrt(data_len)
11 // len = length of acf that need to to be plotted
12 // NOTE: if len=0 then len=data_length/2;
13 // print_code = 0 ==> does not plot OR ELSE plots
14 //
15 // Pranob Banerjee
16
17 function [x]=plotacf(y,errlim,len,code)
18 exec('label.sci',-1)
```

```
19 x = xcov(y); 1 = length(y); x = x/x(1);
20 r=1:2*(1-1); lim=2/sqrt(1); rl=1:length(r);
21 N=length(rl); x=x(r);
22 if len > 0 & len < N, rl = 1:len; x = x(rl); N = len; end;
23 if (code > 0 )
24
     if(errlim > 0 )
25
       rl=rl-1;
       plot(rl,x,rl,x,'o', rl,lim*ones(N,1),'--', ...
26
             rl,-lim*ones(N,1),'---')
27
       xgrid
28
29
     else
30
       plot(rl,x)
31
     end
32 \text{ end};
33 \ a = gca();
34 a.data_bounds = [0 min(min(x),-lim-0.1); len-1 1.1];
35 label(' ',4,'Lag','ACF',4)
36 endfunction;
```

Scilab code Exa 6.7 Illustration of nonuniqueness in estimation of MA model parameters using ACF

```
12  v1 = arsimul(m1,xi);
13  M1 = armax1(0,0,2,v1,zeros(1,10000))
14  disp(M1)
15
16  // Simulation and estimation of second model
17  m2 = armac(1,0,[1,-0.9,0.2],1,1,1);
18  v2 = arsimul(m2,xi);
19  M2 = armax1(0,0,2,v2,zeros(1,10000))
20  disp(M2)
21
22  // ACF and PACF of both models
23  plotacf(v1,1,11,1);
24  xset('window',1), plotacf(v2,1,11,1);
25  xset('window',2), pacf(v1,11);
26  xset('window',3), pacf(v2,11);
```

Scilab code Exa 6.8 Estimation with a larger order model results in large uncertainty

Scilab code Exa 6.9 Determination of order of AR process

```
1 // Determination of order of AR(p) process, as
      discussed in Example 6.18 on page 189.
2 // 6.9
3
4 exec('pacf.sci',-1);
5 exec('label.sci',-1);
7 // Define model and generate data
8 m = armac([1,-1,0.5],0,1,1,1,1);
9 \text{ xi} = 0.1*\text{rand}(1,10000, 'normal');
10 v = arsimul(m,xi);
11
12 // Plot noise, plant output and PACF
13 subplot(2,1,1), plot(v(1:500));
14 label('',6,'','v',6);
15 subplot(2,1,2), plot(xi(1:500));
16 label('',6,'n','xi',6);
17 xset ('window',1)
18 pacf(v,10);
```

Scilab code Exa 6.10 Determination of the PACF of AR process

Scilab code Exa 6.11 Construction of square matrix required to compute PACF ajj

```
1 // Construction of square matrix required to compute
      PACF ajj, useful for the calculations in Sec.
      6.4.5.
2 // 6.11
4 function ajj = pacf_mat(rvv0,rvv_rest,p,k)
5 \text{ if } argn(2) == 3,
6
     k = 1;
7 end
8 \text{ for } i = 1:p
     for j = 1:p
10
       index = (k+i-1)-j;
11
       if index == 0,
         A(i,j) = rvv0;
12
13
       elseif index < 0,</pre>
14
         A(i,j) = rvv_rest(-index);
15
       else
16
          A(i,j) = rvv_rest(index);
17
       end
```

```
18    end
19    b(i) = -rvv_rest(k+i-1);
20    end
21    a = A\b;
22    ajj = a(p);
23    endfunction;
```

Scilab code Exa 6.12 PACF plot of an MA process decays slowly

Scilab code Exa 6.13 Implementation of trial and error procedure to determine ARMA process

```
1 // Implementation of trial and error procedure to
    determine ARMA(1,1) process, presented in Example
    6.20 on page 191.
2 // 6.13
3
4 exec('plotacf.sci',-1);
```

```
5 exec('pacf.sci',-1);
6 exec('label.sci',-1);
8 // Set up the model for simulation
9 \text{ arma_mod} = \frac{\text{armac}([1 - 0.8], 0, [1 - 0.3], 1, 1, 1)};
10
11 // Generate the inputs for simulation
12 // Deterministic Input can be anything
13 \ u = zeros(1,2048);
14 e = rand(1,2048, 'normal');
15
16 // Simulate the model
17 v = arsimul(arma_mod,[u e]);
18
19 // Plot ACF and PACF for 10 lags
20 plotacf(v,1e-03,11,1);
21 xset('window',1), pacf(v,10);
22
23 // Estimate AR(1) model and present it
24 // compute the residuals
25 \quad [mod\_est1, err\_mod1] = armax1(1,0,0,v,zeros(1,length(
     v)));
26 disp(mod_est1);
27
28 // Plot ACF and PACF for 10 lags
29 xset('window',2), plotacf(err_mod1,1e-03,11,1);
30 xset('window',3), pacf(err_mod1,10);
31
32 // Check ACF and PACF of residuals
33 [mod_est2,err_mod2] = armax1(1,0,1,v,zeros(1,length(
     v)));
34 disp(mod_est2);
35
36 // Plot ACF and PACF for 10 lags
37 xset('window',4), plotacf(err_mod2,1e-03,11,1);
38 xset('window',5), pacf(err_mod2,10);
```

Scilab code Exa 6.14 Determination of FIR parameters

```
1 // Determination of FIR parameters as described in
      Example 6.22 on page 200.
2 // 6.14
3
4 exec('cra.sci',-1);
5 exec('filt.sci',-1);
6 exec('covf.sci',-1);
8 \text{ sig} = 0.05;
9 process_mod = armac([1 -0.5], [0 0.6 -0.2], 1, 1, 1, sig)
10
11 u = prbs_a(2225, 40);
12 xi = rand(1,2225, 'normal');
13 y = arsimul(process_mod,[u xi]);
14 u = [u zeros(1,length(y)-length(u))];
15 z = [y' u'];
16
17 // Plot y as a function of u and xi
18 exec('label.sci',-1)
19 subplot(3,1,1), plot(y(1:500)),
20 label('',4,'','y',4)
21 subplot (3,1,2), plot (u(1:500))
22 label('',4,'','u',4)
23 subplot(3,1,3), plot(sig*xi(1:500))
24 label('',4,'n','xi',4)
25
26 xset ('window',1);
27 [ir,r,cl_s] = cra(detrend(z,'constant'));
28 \text{ ir_act = filt([0 0.6 -0.2],[1 -0.5],...}
29
                  [1 zeros(1,9)]);
30 replot([0,min(min(ir),min(ir_act)) - 0.1,9,max(max(
```

```
ir),max(ir_act)) + 0.1]);
31 t = 0:9;
32 plot(t,ir_act,'ko');
33 plot2d3(t,ir_act);
34 legends(['Estimated'; 'Actual'], [2;-9],'ur');
```

Scilab code Exa 6.15 Determination of ARX parameters

```
1 // Determination of ARX parameters as described in
      Example 6.25 on page 203.
2 // 6.15
4 exec('armac1.sci',-1);
5 exec('cra.sci',-1);
6 exec('arx.sci',-1);
7 exec('filt.sci',-1);
8 exec('covf.sci',-1);
9 exec('stem.sci',-1);
10
11 process_arx = armac1([1 -0.5], [0 0 0.6]
      -0.2],1,1,1,0.05);
12 u = prbs_a(5000, 250);
13 xi = rand(1,5000, 'normal');
14 y = arsimul(process_arx,[u xi]);
15 z = [y(1:length(u)), u];
16 zd = detrend(z, 'constant');
17
18 // Compute IR for time-delay estimation
19 [ir,r,cl_s] = cra(detrend(z, 'constant'));
20
21 // \text{Time-delay} = 2 \text{ samples}
22 // Estimate ARX model (assume known orders)
23 \text{ na} = 1; \text{ nb} = 2; \text{ nk} = 2;
24 [theta_arx,cov_arx,nvar,resid] = arx(zd,na,nb,nk);
25
```

```
// Residual plot
[cov1,m1] = xcov(resid,24,"coeff");
xset('window',1);
subplot(2,1,1)
stem(0:24,cov1(25:49)');xgrid();
xtitle('Correlation function of residuals from output y1','lag');
[cov2,m2] = xcov(resid, zd(:,2),24,"coeff");
subplot(2,1,2)
stem(-24:24,cov2');xgrid();
xtitle('Cross corr. function between input u1 and residuals from output y1','lag');
```

Scilab code Exa 6.16 Determination of ARMAX parameters

```
1 // Determination of ARMAX parameters as described in
       Example 6.27 on page 206.
2 // 6.16
4 exec('cra.sci',-1);
5 exec('stem.sci',-1);
6 exec('filt.sci',-1);
7 exec('covf.sci',-1);
9 process_armax = armac([1 -0.5], [0 0 0.6 -0.2], [1
      -0.3],1,1,0.05);
10 \ u = prbs_a(5000, 250);
11 \text{ xi} = \text{rand}(1,5000);
12 y = arsimul(process_armax,[u xi]);
13 z = [y(1:length(u)), u'];
14 zd = detrend(z, 'constant');
15
16 //Compute IR for time-delay estimation
17 [ir,r,cl_s] = cra(detrend(z,'constant'));
18
```

```
19 //Estimate ARMAX model (assume known orders)
20 na = 1; nb = 3; nc = 1; nk = 2;
21 [theta_armax,resid] = armax1(na,nb,nc,zd(:,1)',zd
      (:,2),1);
22 disp(theta_armax)
23
24 // Residual plot
25 \text{ [cov1,m1]} = xcov(resid,24,"coeff");
26 xset('window',1);
27 subplot (2,1,1)
28 stem(0:24,cov1(25:49)); xgrid();
29 xtitle ('Correlation function of residuals from
      output y1', 'lag');
30 \text{ [cov2,m2]} = xcov(resid, zd(:,2),24,"coeff");
31 subplot (2,1,2)
32 stem(-24:24,cov2); xgrid();
33 xtitle ('Cross corr. function between input u1 and
      residuals from output y1', 'lag');
```

Scilab code Exa 6.17 Determination of OE parameters

```
// Determination of OE parameters as described in
Example 6.28 on page 209.
// 6.17

exec('armac1.sci',-1);
exec('oe.sci',-1);
exec('cra.sci',-1);
exec('stem.sci',-1);
exec('filt.sci',-1);
exec('covf.sci',-1);
exec('deconvol.sci',-1);
f = [0 0 0.6 -0.2];
f = [1 -0.5];
```

```
14 c = 1; d = 1;
15 process_oe = armac1(1,b,c,d,f,0.05);
16 \ u = prbs_a(2555, 250);
17 \text{ xi} = \text{rand}(1,2555, 'normal');
18 y = arsimul(process_oe,[u xi]);
19 z = [y(1:length(u)), u];
20 zd = detrend(z, 'constant');
21
22 // Compute IR for time-delay estimation
23 [ir,r,cl_s] = cra(zd);
24
25 // \text{Time-delay} = 2 \text{ samples}
26 // Estimate ARX model (assume known orders)
27 \text{ nb} = 2; \text{ nf} = 1; \text{ nk} = 2;
28 [thetaN,covfN,nvar,resid] = oe(zd,nb,nf,nk);
29
30 // Residual plot
31 \quad [cov1,m1] = xcov(resid,24,"coeff");
32 xset('window',1);
33 subplot (2,1,1)
34 stem(0:24,cov1(25:49)'); xgrid();
35 xtitle ('Correlation function of residuals from
      output y1', 'lag');
36 \text{ [cov2,m2]} = xcov(resid, zd(:,2),24,"coeff");
37 subplot (2,1,2)
38 stem(-24:24,cov2'); xgrid();
39 xtitle ('Cross corr. function between input u1 and
      residuals from output y1', 'lag');
```

Chapter 7

Structures and Specifications

Scilab code Exa 7.1 Procedure to draw root locus for the problem

```
1 // Procedure to draw root locus for the problem
         discussed in Example 7.1 on page 247.
2 // 7.1
3
4 exec('tf.sci',-1);
5
6 H = tf(1,[1 -1 0],-1);
7 evans(H)
```

Scilab code Exa 7.2 Procedure to draw the Nyquist plot

```
1 // Procedure to draw the Nyquist plot, as discussed
    in Example 7.2 on page 250.
2 // 7.2
3
4 exec('tf.sci',-1);
5
6 H = tf(1,[1 -1 0],-1);
7 nyquist(H,0.1,0.5)
```

Scilab code Exa 7.3 Procedure to draw Bode plots

Scilab code Exa 7.4 A procedure to design lead controllers

```
11
       zero = a(i);
12
       pole = 0.9*zero;
       sys = tf([1 -zero],[1 -pole],-1);
13
       frq = w/(2*\%pi);
14
15
       [frq,repf]=repfreq(sys, frq);
16
       [db,phase] =dbphi(repf);
17
       [y,j] = \max(phase);
       omega = [omega w(j)];
18
19
       lead = [lead y];
       comega = (pole+zero)/(pole*zero+1);
20
21
       clead = zero-pole;
       clead1 = sqrt((1-zero^2)*(1-pole^2));
22
23
       clead = clead/clead1;
24 //
          [w(j) \ acos(comega) \ y \ atan(clead)*180/pi]
25 end
26 subplot(2,1,1), plot(lead,omega)
27 xtitle('',',','Frequency, in radians'), xgrid;
28 halt;
29 subplot(2,1,2), plot(lead,a)
30 xtitle('', 'Lead generated, in degrees', 'Zero
      location'), xgrid;
```

Scilab code Exa 7.5 Bode plot of a lead controller

```
1 // Bode plot of a lead controller, as shown in Fig.
7.13 on page 257.
2 // 7.5
3
4 exec('tf.sci',-1);
5
6 w = linspace(0.001,0.5,1000);
7 G = tf([1 -0.8],[1 -0.24],-1);
8 bode(G,w)
```

Scilab code Exa 7.6 Verification of performance of lead controller on antenna system

```
1 // Verification of performance of lead controller on
       antenna system, as discussed in Example 7.3.
2 // 7.6
4 // Continuous time antenna model
5 a = 0.1;
6 F = [0 1; 0 -a]; g = [0; a]; c = [1 0]; d = 0;
7 Ga = syslin('c', F, g, c, d); [ds, num, den] = ss2tf(Ga);
8 Num = clean(num); Den = clean(den);
9 \text{ Ts} = 0.2;
10 G = dscr(Ga, Ts);
11
12 // lead controller
13 \text{ beta1} = 0.8;
14 N = [1 -0.9802]*(1-beta1)/(1-0.9802); Rc = [1 -beta1]
      ];
15
16 // simulation parameters using g_s_cl2.cos
17 \text{ gamm} = 1; Sc = 1; Tc = 1; C = 0; D = 1;
18 \text{ st} = 1; \text{ st}1 = 0;
19 t_init = 0; t_final = 20;
20
21 // u1: -4 to 11
22 // y1: 0 to 1.4
23 \operatorname{exec}('\operatorname{cosfil_ip}.\operatorname{sci}',-1);
24 [Tcp1,Tcp2] = cosfil_ip(Tc,1); // Tc/1
25 [Np,Rcp] = cosfil_ip(N,Rc); // N/Rc
26 [Scp1,Scp2] = cosfil_ip(Sc,1); // Sc/1
27 [Cp,Dp] = cosfil_ip(C,D); // C/D
```


Figure 7.1: Verification of performance of lead controller on antenna system

This code can be downloaded from the website wwww.scilab.in

Scilab code Exa 7.7 Illustration of system type

```
1 // Illustration of system type, as explained in
        Example 7.10 on page 275.
2 // 7.7
3
4 exec('rowjoin.sci',-1);
```


Figure 7.2: Verification of performance of lead controller on antenna system

```
5 exec('zpowk.sci',-1);
6 exec('polmul.sci',-1);
7 exec('polsize.sci',-1);
8 exec('indep.sci',-1);
9 exec('t1calc.sci',-1);
10 exec('makezero.sci',-1);
11 exec('move_sci.sci',-1);
12 exec('clcoef.sci',-1);
13 exec('colsplit.sci',-1);
14 exec('seshft.sci',-1);
15 exec('left_prm.sci',-1);
16 exec('cindep.sci',-1);
17 exec('xdync.sci',-1);
18 exec('pp_pid.sci',-1);
19 exec('cosfil_ip.sci');
20
21 // Plant
22 B = 1; A = [1 -1]; zk = [0 1]; Ts = 1; k = 1;
23 // Value of k absent in original code
24 // Specify closed loop characteristic polynomial
```

```
25 \text{ phi} = [1 -0.5];
26
27 // Design the controller
28 \text{ reject\_ramps} = 1;
29
     if reject_ramps == 1,
30
       Delta = [1 -1]; // to reject ramps another Delta
31
     else
       Delta = 1; // steps can be rejected by plant
32
          itself
33
     end
34 [Rc,Sc] = pp_pid(B,A,k,phi,Delta);
35
36 // parameters for simulation using stb_disc.mdl
37 \text{ Tc} = \text{Sc}; \text{ gamm} = 1; \text{ N} = 1;
38 C = 0; D = 1; N_var = 0;
39 st = 1; t_init = 0; t_final = 20;
40
41 [Tcp1,Tcp2] = cosfil_ip(Tc,1); // Tc/1
42 [Rcp1,Rcp2] = cosfil_ip(1,Rc); // 1/Rc
43 [Scp1,Scp2] = cosfil_ip(Sc,1); // Sc/1
44 [Bp,Ap] = cosfil_ip(B,A); // B/A
45 [zkp1,zkp2] = cosfil_ip(zk,1); // zk/1
46 [Cp,Dp] = cosfil_ip(C,D); // C/D
47
48 // Give appropriate path
49 //x\cos('stb_disc.xcos');
```

Scilab code Exa 7.8 Solution to Aryabhatta identity

```
1 // Solution to Aryabhatta's identity, presented in Example 7.12 on page 293.
```


Figure 7.3: Illustration of system type

Figure 7.4: Illustration of system type

```
2 // 7.8
4 exec('indep.sci',-1);
5 exec('rowjoin.sci',-1);
6 exec('polsize.sci',-1);
7 exec('makezero.sci',-1);
8 exec('clcoef.sci',-1);
9 exec('cindep.sci',-1);
10 exec('seshft.sci',-1);
11 exec('move_sci.sci',-1);
12 exec('colsplit.sci',-1);
13 \operatorname{exec}('\operatorname{left\_prm.sci}', -1);
14 exec('t1calc.sci',-1);
15 exec('xdync.sci',-1);
16
17 N = convol([0 1],[1 1]);
18 D = convol([1 -4], [1 -1]);
19 \, dN = 2; \, dD = 2;
20 C = [1 -1 0.5];
21 \text{ dC} = 2;
[Y,dY,X,dX,B,dB,A,dA] = xdync(N,dN,D,dD,C,dC)
```

Scilab code Exa 7.9 Left coprime factorization

```
11  exec('move_sci.sci',-1);
12  exec('tlcalc.sci',-1);
13  exec('left_prm.sci',-1);
14
15  D = [1  0  0  0  0  0
16  0  1  0  1  0  0
17  0  0  1  1  1  0];
18  N = [
19  1  0  0
20  0  1  0
21  0  0  1];
22  dD = 1;
23  dN = 0;
24  [B,dB,A,dA] = left_prm(N,dN,D,dD)
```

Scilab code Exa 7.10 Solution to polynomial equation

```
1 // Solution to polynomial equation, as discussed in
      Example 7.14 on page 295.
2 / / 7.10
4 exec('move_sci.sci',-1);
5 exec('makezero.sci',-1);
6 exec('seshft.sci',-1);
7 exec('colsplit.sci',-1);
8 exec('clcoef.sci',-1);
9 exec('cindep.sci',-1);
10 exec('indep.sci',-1);
11 exec('t1calc.sci',-1);
12 \operatorname{exec}('\operatorname{left\_prm}.\operatorname{sci}',-1);
13 exec('polsize.sci',-1);
14 exec('rowjoin.sci',-1);
15 exec('xdync.sci',-1);
16
17 N = [0 4 0 1]
```

Chapter 8

Proportional Integral Derivative Controllers

Scilab code Exa 8.1 Continuous to discrete time transfer function

```
1 // Continuous to discrete time transfer function
2 // 8.1
3
4 exec('tf.sci');
5
6 sys = tf(10,[5 1]);
7 sysd = ss2tf(dscr(sys,0.5));
```

Chapter 9

Pole Placement Controllers

Scilab code Exa 9.1 Pole placement controller for magnetically suspended ball problem

```
1 // Pole placement controller for magnetically
     suspended ball problem, discussed in Example 9.3
     on page 331.
2 // 9.1
3
4 exec('myc2d.sci',-1);
5 exec('desired.sci',-1);
6 exec('zpowk.sci',-1);
7 exec('polsplit2.sci',-1);
8 exec('polsize.sci',-1);
9 exec('t1calc.sci',-1);
10 exec('indep.sci',-1);
11 exec('move_sci.sci',-1);
12 exec('colsplit.sci',-1);
13 exec('clcoef.sci',-1);
14 exec('cindep.sci',-1);
15 exec('polmul.sci',-1);
16 exec('seshft.sci',-1);
17 exec('makezero.sci',-1);
18 exec('xdync.sci',-1);
```

```
19 \operatorname{exec}('\operatorname{left}_{-}\operatorname{prm}.\operatorname{sci}',-1);
20 exec ('rowjoin.sci', -1);
21 exec('pp_basic.sci',-1);
22 exec ('polyno.sci',-1);
23 exec('cosfil_ip.sci',-1);
24
25 // Magnetically suspended ball problem
26 // Operating conditions
27 \text{ M} = 0.05; L = 0.01; R = 1; K = 0.0001; g = 9.81;
28
29 // Equilibrium conditions
30 hs = 0.01; is = sqrt(M*g*hs/K);
31
32 // State space matrices
33 a21 = K*is^2/M/hs^2; a23 = - 2*K*is/M/hs; a33 = - R/M
      L;
34 \ b3 = 1/L;
35 \text{ a1} = [0 \ 1 \ 0; \ a21 \ 0 \ a23; \ 0 \ 0 \ a33];
36 	 b1 = [0; 0; b3]; c1 = [1 0 0]; d1 = 0;
37
38 // Transfer functions
39 G = syslin('c', a1, b1, c1, d1); Ts = 0.01;
40 \quad [B,A,k] = myc2d(G,Ts);
41
42 //polynomials are returned
43 [Ds, num, den] = ss2tf(G);
44 num = clean(num); den = clean(den);
45
46 // Transient specifications
47 \text{ rise} = 0.15; \text{ epsilon} = 0.05;
48 phi = desired(Ts, rise, epsilon);
49
50 // Controller design
51 [Rc,Sc,Tc,gamm] = pp_basic(B,A,k,phi);
52
53 // Setting up simulation parameters for basic.xcos
54 st = 0.0001; // desired change in h, in m.
55 t_init = 0; // simulation start time
```


Figure 9.1: Pole placement controller for magnetically suspended ball problem

```
t_final = 0.5; // simulation end time
57
  // Setting up simulation parameters for c_ss_cl.xcos
58
59 N_var = 0; xInitial = [0 0 0]; N = 1; C = 0; D = 1;
60
   [Tc1,Rc1] = cosfil_ip(Tc,Rc); // Tc/Rc
61
   [Sc2,Rc2] = cosfil_ip(Sc,Rc); // Sc/Rc
62
63
64
   [Tcp1,Tcp2] = cosfil_ip(Tc,1); // Tc/1
   [Np,Rcp] = cosfil_ip(N,Rc); // 1/Rc
65
66 [Scp1,Scp2] = cosfil_ip(Sc,1); // Sc/1
67 [Cp,Dp] = cosfil_ip(C,D); // C/D
```

can be downloaded from the website wwww.scilab.in

Figure 9.2: Pole placement controller for magnetically suspended ball problem

Scilab code Exa 9.2 Discretization of continuous transfer function

```
1 // Discretization of continuous transfer function.
    The result is numerator and denominator in powers
    of z^{-1} and the delay term k.
2 // 9.2
3 // function [B,A,k] = myc2d(G,Ts)
4 // Produces numerator and denominator of discrete
    transfer
5 // function in powers of z^{-1}
6 // G is continuous transfer function; time delays
    are not allowed
7 // Ts is the sampling time, all in consistent time
    units
8
9 function [B,A,k] = myc2d(G,Ts)
```

Scilab code Exa 9.3 Procedure to split a polynomial into good and bad factors

```
1 // Procedure to split a polynomial into good and bad
      factors, as discussed in Sec. 9.2.
2 // 9.3
3 // function [goodpoly, badpoly] = polsplit2(fac, a)
4 // Splits a scalar polynomial of z^{-1} into good
     and bad
5 // factors.
6 // Input is a polynomial in increasing degree of z
      ^{-1}
7 // Optional input is a, where a \leq 1.
8 // Factor that has roots of z^{-1} outside a is
      called
9 // good and the rest bad.
10 // If a is not specified, it will be assumed as
     1 - 1.0e - 5
11
12 function [goodpoly,badpoly] = polsplit2(fac,a)
13 if argn(2) == 1, a = 1-1.0e-5; end
14 if a>1 error('good polynomial is unstable'); end
15 fac1 = poly(fac(length(fac):-1:1), 'z', 'coeff');
16 rts1 = roots(fac1);
```

```
17 rts = rts1(length(rts1):-1:1);
18
19 // extract good and bad roots
20 badindex = find(abs(rts)>=a); // mtlb_find has been
      replaced by find
21 badpoly = coeff(poly((rts(badindex)), "z", "roots"));
22 goodindex = find(abs(rts)<a); // mtlb_find has been
      replaced by find
23 goodpoly = coeff(poly(rts(goodindex),"z","roots"));
24
25 // scale by equating the largest terms
26 \quad [m, index] = max(abs(fac));
27 goodbad = convol(goodpoly, badpoly);
28 goodbad1 = goodbad(length(goodbad):-1:1); //--
29 factor1 = fac(index)/goodbad1(index); //--
30 goodpoly = goodpoly * factor1;
31 goodpoly = goodpoly(length(goodpoly):-1:1);
32 badpoly = badpoly(length(badpoly):-1:1);
33 endfunction;
```

Scilab code Exa 9.4 Calculation of desired closed loop characteristic polynomial

```
// Calculation of desired closed loop characteristic
    polynomial, as discussed in Sec. 7.7.
// 9.4

// 9.4

// function [phi,dphi] = desired(Ts,rise, epsilon)
// Based on transient requirements,
// calculates closed loop characteristic polynomial

function [phi,dphi] = desired(Ts,rise,epsilon)
// Section [phi,dphi] = desi
```

```
)-1;
11 endfunction;
```

Scilab code Exa 9.5 Design of 2 DOF pole placement controller

```
1 // Design of 2-DOF pole placement controller, as
      discussed in Sec. 9.2.
  // 9.5
3
4 // function [Rc, Sc, Tc, gamma] = pp_basic(B, A, k, phi)
5 // calculates pole placement controller
8 function [Rc,Sc,Tc,gamm] = pp_basic(B,A,k,phi)
10 // Setting up and solving Aryabhatta identity
11 [Ag, Ab] = polsplit2(A); dAb = length(Ab) - 1;
12 [Bg,Bb] = polsplit2(B); dBb = length(Bb) - 1;
13
14 [zk,dzk] = zpowk(k);
15
16 [N,dN] = polmul(Bb,dBb,zk,dzk);
17 dphi = length(phi) - 1;
18
19 [S1,dS1,R1,dR1] = xdync(N,dN,Ab,dAb,phi,dphi);
20
21 // Determination of control law
22 \text{ Rc} = \text{convol}(Bg,R1); \text{ Sc} = \text{convol}(Ag,S1);
23 Tc = Ag; gamm = sum(phi)/sum(Bb);
24
25 endfunction;
```

Scilab code Exa 9.6 Evaluates z to the power k

Figure 9.3: Simulation of closed loop system with an unstable controller

```
1 // Evaluates z^-k.
2 // 9.6
3
4 function [zk,dzk] = zpowk(k)
5 zk = zeros(1,k+1); zk(1,k+1) = 1;
6 dzk = k;
7 endfunction
```

can be downloaded from the website wwww.scilab.in

Scilab code Exa 9.7 Simulation of closed loop system with an unstable controller

1 // Simulation of closed loop system with an unstable

```
controller, as discussed in Example 9.5 on page
      335.
2 // 9.7
3
4 exec('desired.sci',-1);
5 exec('zpowk.sci',-1);
6 exec('polmul.sci',-1);
7 \text{ exec}('polsplit2.sci',-1);
8 exec('polsize.sci',-1);
9 exec('xdync.sci',-1);
10 exec('rowjoin.sci',-1);
11 \operatorname{exec}('\operatorname{left\_prm.sci}', -1);
12 exec('t1calc.sci',-1);
13 exec('indep.sci',-1);
14 exec ('makezero.sci',-1);
15 \operatorname{exec}('\operatorname{move\_sci.sci}', -1);
16 exec('colsplit.sci',-1);
17 exec('clcoef.sci',-1);
18 exec('cindep.sci',-1);
19 exec('seshft.sci',-1);
20 exec('cosfil_ip.sci',-1);
21 \operatorname{exec}('pp\_basic.sci',-1);
22
23 Ts = 1; B = [1 -3]; A = [1 2 -8]; k = 1;
24 // Since k=1, tf is of the form z^-1
25
  [zk, dzk] = zpowk(k); // int1 = 0;//--- int1
26
27
  // Transient specifications
28 \text{ rise} = 10; \text{ epsilon} = 0.1;
29 phi = desired(Ts, rise, epsilon);
30
31 // Controller design
32 [Rc,Sc,Tc,gamm] = pp_basic(B,A,k,phi);
33
34 // simulation parameters for basic_disc.xcos
  //While simulating for t_final = 100, set the limit
      of Y axis of each scope
36 //u1: -0.2 \text{ to } 3
```


Figure 9.4: Simulation of closed loop system with an unstable controller

```
37 //y1: -0.1 \text{ to } 1.2
38 st = 1.0; // Desired change in setpoint
39 t_init = 0; // Simulation start time
40 t_final = 1000; // Simulation end time
41
42 // Simulation parameters for stb_disc.xcos
43 \text{ N_var} = 0; C = 0; D = 1; N = 1;
44
45
  [Tcp1,Tcp2] = cosfil_ip(Tc,1); // Tc/1
  [Rcp1,Rcp2] = cosfil_ip(1,Rc); // 1/Rc
46
47 [Scp1,Scp2] = cosfil_ip(Sc,1); // Sc/1
48 [Bp,Ap] = cosfil_ip(B,A); // B/A
49 [zkp1,zkp2] = cosfil_ip(zk,1); // zk/1
50 [Cp,Dp] = cosfil_ip(C,D); // C/D
51
52 \text{ [Tcp,Rcp]} = \text{cosfil_ip(Tc,Rc); } // \text{ Tc/Rc}
[Scp_b, Rcp_b] = cosfil_ip(Sc, Rc); // Sc/Rc
```

Scilab code Exa 9.8 Pole placement controller using internal model principle

```
1 // Pole placement controller using internal model
      principle, as discussed in Sec. 9.4.
2 // 9.8
3
4 // function [Rc, Sc, Tc, gamma, phit] = pp_im(B, A, k, phi,
     Delta)
  // Calculates 2-DOF pole placement controller.
7 function [Rc,Sc,Tc,gamm] = pp_im(B,A,k,phi,Delta)
9 // Setting up and solving Aryabhatta identity
10 [Ag, Ab] = polsplit3(A); dAb = length(Ab) - 1;
   [Bg,Bb] = polsplit3(B); dBb = length(Bb) - 1;
12
13 [zk,dzk] = zpowk(k);
14
15 [N,dN] = polmul(Bb,dBb,zk,dzk);
16 dDelta = length(Delta)-1;
17 [D,dD] = polmul(Ab,dAb,Delta,dDelta);
18 dphi = length(phi)-1;
19
20 \quad [S1,dS1,R1,dR1] = xdync(N,dN,D,dD,phi,dphi);
21
22 // Determination of control law
23 Rc = convol(Bg,convol(R1,Delta)); Sc = convol(Ag,S1)
24 Tc = Ag; gamm = sum(phi)/sum(Bb);
25 endfunction;
```

Scilab code Exa 9.9 Pole placement controller with internal model of a step for the magnetically suspended ball problem

```
1 // Pole placement controller, with internal model of
       a step, for the magnetically suspended ball
      problem, as discussed in Example 9.8 on page 339.
2 // 9.9
3
4 // PP control with internal model for ball problem
5 exec('desired.sci',-1);
6 exec('pp_im.sci',-1);
7 exec('myc2d.sci',-1);
8 exec('polsplit3.sci',-1);
9 exec('zpowk.sci',-1);
10 exec('rowjoin.sci',-1);
11 \operatorname{exec}('\operatorname{left\_prm.sci}', -1);
12 \operatorname{exec}('t1\operatorname{calc.sci}',-1);
13 exec('indep.sci',-1);
14 exec('cindep.sci',-1);
15 exec('seshft.sci',-1);
16 exec ('makezero.sci',-1);
17 exec('move_sci.sci',-1);
18 \operatorname{exec}('\operatorname{colsplit}.\operatorname{sci}',-1);
19 exec('clcoef.sci',-1);
20 exec('polmul.sci',-1);
21 exec('polsize.sci',-1);
22 exec('xdync.sci',-1);
23 \operatorname{exec}('\operatorname{cosfil}_{-i}\operatorname{p.sci}', -1);
24 exec ('polyno.sci',-1);
25
26 // Operating conditions
27 M = 0.05; L = 0.01; R = 1; K = 0.0001; g = 9.81;
28
29 // Equilibrium conditions
30 hs = 0.01; is = sqrt(M*g*hs/K);
31
32 // State space matrices
33 a21 = K*is^2/M/hs^2; a23 = - 2*K*is/M/hs; a33 = - R/
      L;
34 \ b3 = 1/L;
35 	 a1 = [0 	 1 	 0; 	 a21 	 0 	 a23; 	 0 	 0 	 a33];
```

```
36 \text{ b1} = [0; 0; \text{b3}]; \text{c1} = [1 \ 0 \ 0]; \text{d1} = 0;
37
38 // Transfer functions
39 G = syslin('c', a1, b1, c1, d1); Ts = 0.01; [B,A,k] =
      myc2d(G,Ts);
40
41 // Transient specifications
42 \text{ rise} = 0.1; \text{ epsilon} = 0.05;
43 phi = desired(Ts, rise, epsilon);
45 // Controller design
46 Delta = [1 -1]; //internal model of step used
47 [Rc,Sc,Tc,gamm] = pp_im(B,A,k,phi,Delta);
48
49 // simulation parameters for c_ss_cl.xcos
50 st = 0.0001; //desired change in h, in m.
51 t_init = 0; // simulation start time
52 t_final = 0.5; //simulation end time
53 \text{ xInitial} = [0 \ 0 \ 0];
54 N = 1; C = 0; D = 1; N_var = 0;
55
56 [Tcp1,Tcp2] = cosfil_ip(Tc,1); // Tc/1
57 [Np,Rcp] = cosfil_ip(N,Rc); // 1/Rc
[Scp1,Scp2] = cosfil_ip(Sc,1); // Sc/1
59 [Cp,Dp] = cosfil_ip(C,D); // C/D
```

Scilab code Exa 9.10 Pole placement controller IBM Lotus Domino server

Figure 9.5: Pole placement controller with internal model of a step for the magnetically suspended ball problem

Figure 9.6: Pole placement controller with internal model of a step for the magnetically suspended ball problem

```
1 // Pole placement controller IBM Lotus Domino server
      , discussed in Example 9.9 on page 341.
2 // 9.10
3
4 exec('desired.sci',-1);
5 exec('pp_im.sci',-1);
6 exec('zpowk.sci',-1);
7 \operatorname{exec}('\operatorname{cosfil}_{-i}\operatorname{p.sci}', -1);
8 exec('polsplit3.sci',-1);
9 exec('polmul.sci',-1);
10 exec('polsize.sci',-1);
11 exec('xdync.sci',-1);
12 exec('rowjoin.sci',-1);
13 \operatorname{exec}('\operatorname{left_prm.sci}', -1);
14 \operatorname{exec}('t1calc.sci',-1);
15 exec('polmul.sci',-1);
16 exec ('indep.sci', -1);
17 exec('seshft.sci',-1);
18 exec('makezero.sci',-1);
19 exec('move_sci.sci',-1);
20 exec('colsplit.sci',-1);
21 exec('clcoef.sci',-1);
22 exec ('cindep.sci', -1);
23 exec('polyno.sci',-1);
24
25 // Control of IBM lotus domino server
26 // Transfer function
27 B = 0.47; A = [1 -0.43]; k = 1;
28 [zk,dzk] = zpowk(k);
29
30 // Transient specifications
31 \text{ rise} = 10; \text{ epsilon} = 0.01; \text{ Ts} = 1;
32 phi = desired(Ts, rise, epsilon);
33
34 // Controller design
35 Delta = [1 -1]; // internal model of step used
36 [Rc,Sc,Tc,gamm] = pp_im(B,A,k,phi,Delta);
37
```


Figure 9.7: Pole placement controller IBM Lotus Domino server

```
38  // Simulation parameters for stb_disc.xcos
39  st = 1; // desired change
40  t_init = 0; // simulation start time
41  t_final = 40; // simulation end time
42  C = 0; D = 1; N_var = 0;
43
44  [Tcp1,Tcp2] = cosfil_ip(Tc,1); // Tc/1
45  [Rcp1,Rcp2] = cosfil_ip(1,Rc); // 1/Rc
46  [Scp1,Scp2] = cosfil_ip(Sc,1); // Sc/1
47  [Bp,Ap] = cosfil_ip(B,A); // B/A
48  [zkp1,zkp2] = cosfil_ip(zk,1); // zk/1
49  [Cp,Dp] = cosfil_ip(C,D); // C/D
```


Figure 9.8: Pole placement controller IBM Lotus Domino server

Scilab code Exa 9.11 Pole placement controller for motor problem

```
14 exec('left_prm.sci',-1);
15 exec('t1calc.sci',-1);
16 exec('indep.sci',-1);
17 exec('seshft.sci',-1);
18 exec('makezero.sci',-1);
19 \operatorname{exec}('\operatorname{move\_sci.sci}', -1);
20 exec('colsplit.sci',-1);
21 exec('clcoef.sci',-1);
22 exec('cindep.sci',-1);
23 exec ('polyno.sci',-1);
24
25 // Motor control problem
26 // Transfer function
27 	 a1 = [-1 	 0; 	 1 	 0]; 	 b1 = [1; 	 0]; 	 c1 = [0 	 1]; 	 d1 = 0;
28 G = syslin('c', a1, b1, c1, d1); Ts = 0.25;
29 \quad [B,A,k] = myc2d(G,Ts);
30
31 // Transient specifications
32 \text{ rise} = 3; \text{ epsilon} = 0.05;
33 phi = desired(Ts,rise,epsilon);
34
35 // Controller design
36 Delta = 1; // No internal model of step used
37 [Rc,Sc,Tc,gamm] = pp_im(B,A,k,phi,Delta);
38
39 // simulation parameters for c_ss_cl.xcos
40 st = 1; //\text{desired change in position}
41 t_{init} = 0; //simulation start time
42 \text{ t_final} = 10; //\text{simulation} \text{ end time}
43 xInitial = [0 0]; //initial conditions
44 N = 1; C = 0; D = 1; N_var = 0;
45
46 [Tcp1,Tcp2] = cosfil_ip(Tc,1); // Tc/1
47 [Np,Rcp] = cosfil_ip(N,Rc); // 1/Rc
48 [Scp1,Scp2] = cosfil_ip(Sc,1); // Sc/1
49 [Cp,Dp] = cosfil_ip(C,D); // C/D
```


Figure 9.9: Pole placement controller for motor problem

Scilab code Exa 9.12 Procedure to split a polynomial into good and bad factors

```
1 // Procedure to split a polynomial into good and bad
factors, as discussed in Sec. 9.5. The factors
that have roots outside unit circle or with
negative real parts are defined as bad.
2 // 9.12
3
4 // function [goodpoly, badpoly] = polsplit3(fac,a)
5 // Splits a scalar polynomial of z^{-1} into good
and bad
6 // factors. Input is a polynomial in increasing
degree of
7 // z^{-1}. Optional input is a, where a <= 1.</pre>
```


Figure 9.10: Pole placement controller for motor problem

```
8 // Factors that have roots outside a circle of
      radius a or
9 // with negative roots will be called bad and the
10 // good. If a is not specified, it will be assumed
     as 1.
11
12 function [goodpoly,badpoly] = polsplit3(fac,a)
13 if argn(2) == 1, a = 1; end
14 if a>1 error('good polynomial also is unstable');
     end
15 fac1 = poly(fac(length(fac):-1:1), 'z', 'coeff');
16 rts = roots(fac1);
17 rts = rts(length(rts):-1:1);
18
19 // extract good and bad roots
20 badindex = mtlb_find((abs(rts)>=a-1.0e-5)|(real(rts)
      <-0.05));
21 badpoly = coeff(poly(rts(badindex), 'z'));
22 goodindex = mtlb_find((abs(rts) <a-1.0e-5)&(real(rts)
      >=-0.05));
23 goodpoly = coeff(poly(rts(goodindex), 'z'));
24
```

```
// scale by equating the largest terms
[m,index] = max(abs(fac));
goodbad = convol(goodpoly,badpoly);
goodbad = goodbad(length(goodbad):-1:1);
factor1 = fac(index)/goodbad(index);
goodpoly = goodpoly * factor1;
goodpoly = goodpoly(length(goodpoly):-1:1);
badpoly = badpoly(length(badpoly):-1:1);
endfunction;
```

Scilab code Exa 9.13 Pole placement controller without intra sample oscillations

```
1 // Pole placement controller without intra sample
      oscillations, as discussed in Sec. 9.5.
2 // 9.13
3
4 // function [Rc, Sc, Tc, gamma, phit] = pp_im2(B, A, k, phi
      , Delta, a)
5 // 2-DOF PP controller with internal model of Delta
     and without
  // hidden oscillations
  function [Rc,Sc,Tc,gamm,phit] = pp_im2(B,A,k,phi,
     Delta, a)
9
10 if argn(2) == 5, a = 1; end
11 dphi = length(phi)-1;
12
13 // Setting up and solving Aryabhatta identity
[Ag,Ab] = polsplit3(A,a); dAb = length(Ab) - 1;
15 [Bg,Bb] = polsplit3(B,a); dBb = length(Bb) - 1;
16
17
   [zk,dzk] = zpowk(k);
18
```

```
19 [N,dN] = polmul(Bb,dBb,zk,dzk);
20 dDelta = length(Delta)-1;
21 [D,dD] = polmul(Ab,dAb,Delta,dDelta);
22
23 [S1,dS1,R1,dR1] = xdync(N,dN,D,dD,phi,dphi);
24
25 // Determination of control law
26 Rc = convol(Bg,convol(R1,Delta)); Sc = convol(Ag,S1);
27 Tc = Ag; gamm = sum(phi)/sum(Bb);
28
29 // Total characteristic polynomial
30 phit = convol(phi,convol(Ag,Bg));
31 endfunction;
```

Scilab code Exa 9.14 Controller design

```
15 exec('indep.sci',-1);
16 exec('pp_im2.sci',-1);
17 exec('seshft.sci',-1);
18 exec('makezero.sci',-1);
19 \operatorname{exec}('\operatorname{move\_sci.sci}', -1);
20 exec('colsplit.sci',-1);
21 exec('clcoef.sci',-1);
22 exec('cindep.sci',-1);
23 exec('cosfil_ip.sci',-1);
24
25 \text{ num} = 200;
26 \text{ den} = \text{convol}([0.05 1], [0.05 1]);
27 den = convol([10 1], den);
28 G = tf(num, den); Ts = 0.025;
29 num = G('num'); den = G('den');
30 // iodel = 0;
[B,A,k] = myc2d(G,Ts);
32 [zk, dzk] = zpowk(k); //int1 = 0;
33
34 // Transient specifications
35 \text{ a} = 0.9; rise = 0.24; epsilon = 0.05;
36 phi = desired(Ts, rise, epsilon);
37
38 // Controller design
39 Delta = [1 -1]; // internal model of step is present
40 [Rc,Sc,Tc,gamm] = pp_im2(B,A,k,phi,Delta,a);
41
42 // margin calculation
43 Lnum = convol(Sc, convol(B, zk));
44 Lden = convol(Rc, A);
45 L = tf(Lnum, Lden, Ts);
46 Gm = g_margin(L); //--- Does not match
                ---- (in dB)
47 Pm = p_margin(L); //---- Convergence problem
                 ---- (in degree)
48
49 \text{ num1} = 100; \text{ den1} = [10 1];
50 Gd = tf(num1,den1); //---
```


Figure 9.11: Controller design

```
51 [C,D,k1] = myc2d(Gd,Ts);
52 [zk,dzk] = zpowk(k);
53 C = convol(C,zk);
54
55 // simulation parameters g_s_cl2.xcos
56 N = 1;
57 st = 1; // desired change in setpoint
58 st1 = 0; // magnitude of disturbance
59 t_init = 0; // simulation start time
60 t_final = 1.5; // simulation end time
61
62 [Tcp1,Tcp2] = cosfil_ip(Tc,1); // Tc/1
63 [Np,Rcp] = cosfil_ip(N,Rc); // N/Rc
64 [Scp1,Scp2] = cosfil_ip(Sc,1); // Sc/1
65 [Cp,Dp] = cosfil_ip(C,D); // C/D
```


Figure 9.12: Controller design

can be downloaded from the website wwww.scilab.in

Scilab code Exa 9.15 Evaluation of continuous time controller

```
11 \text{ num} = 200;
12 den = convol([0.05 1], [0.05 1]);
13 den = convol([10 1],den);
14 G = tf(num, den); Ts = 0.005;
15 [B,A,k] = myc2d(G,Ts);
16 [zk, dzk] = zpowk(k); //int = 0;
17
18 // Sigurd's feedback controller'
19 numb = 0.5*convol([1 2],[0.05 1]);
20 \text{ denb} = \text{convol}([1 \ 0], [0.005 \ 1]);
21 Gb = tf(numb,denb);
22 [Sb,Rb,kb] = myc2d(Gb,Ts);
23 \quad [zkb, dzkb] = zpowk(kb);
24 \text{ Sb} = \text{convol}(Sb, zkb);
25
26 // Sigurd's feed forward controller'
27 \text{ numf} = [0.5 1];
28 \text{ denf} = \text{convol}([0.65 1], [0.03 1]);
29 Gf = tf(numf,denf);
30 [Sf,Rf,kf] = myc2d(Gf,Ts);
31 [zkf,dzkf] = zpowk(kf);
32 Sf = convol(Sf,zkf);
33
34 // Margins
35 simp_mode(%f);
36 L = G*Gb;
37 Gm = g_margin(L); // -----
38 Pm = p_margin(L); // -----
39 Lnum = convol(Sb, convol(zk,B));
40 Lden = convol(Rb, A);
41 L = tf(Lnum, Lden, Ts);
42 DGm = g_margin(L); // -
43 DPm = p_margin(L); // -----
44
45 // Noise
46 \text{ num1} = 100; \text{ den1} = [10 \ 1];
47
48 // simulation parameters for
```

```
// entirely continuous simulation: g_s_cl3.xcos
// hybrid simulation: g_s_cl6.xcos
st = 1; // desired change in setpoint
st st1 = 0;
st1 = 0;
st_init = 0; // simulation start time
st_final = 5; // simulation end time
start time
st_final = 5; // simulation end time
start time
st_final = 5; // simulation end time
start time
st_final = 5; // simulation end time
start time
st_final = 5; // simulation end time
start time
st_final = 5; // simulation end time
st_final = 5; // simulation en
```

Scilab code Exa 9.16 System type with 2 DOF controller

```
15 exec('colsplit.sci',-1);
16 exec('clcoef.sci',-1);
17 exec('cindep.sci',-1);
18 exec('seshft.sci',-1);
19 exec('zpowk.sci',-1);
20 exec('cosfil_ip.sci',-1);
21 exec('polyno.sci',-1);
22
23 B = 1; A = [1 -1]; k = 1; zk = zpowk(k); Ts = 1;
24 \text{ phi} = [1 -0.5];
25
26 Delta = 1; // Choice of internal model of step
27 [Rc,Sc,Tc,gamm] = pp_im(B,A,k,phi,Delta);
28
29 // simulation parameters for stb_disc.xcos
30 st = 1; // desired step change
31 t_init = 0; // simulation start time
32 t_final = 20; // simulation end time
33 \times Initial = [0 \ 0];
34 C = 0; D = 1; N_var = 0;
35
36 \quad [Tcp1,Tcp2] = cosfil_ip(Tc,1); // Tc/1
[Rcp1,Rcp2] = cosfil_ip(1,Rc); // 1/Rc
38 [Scp1,Scp2] = cosfil_ip(Sc,1); // Sc/1
39 [Bp,Ap] = cosfil_ip(B,A); // B/A
40 [zkp1,zkp2] = cosfil_ip(zk,1); // zk/1
41 [Cp,Dp] = cosfil_ip(C,D); // C/D
```

Scilab code Exa 9.17 Illustrating the benefit of cancellation

```
1 // Illustrating the benefit of cancellation. It is
     used to arrive at the results of Example 9.15.
2 // 9.17
3
4 exec('pp_im.sci',-1);
```

```
5 exec('pp_pid.sci',-1);
 6 exec('zpowk.sci',-1);
 7 exec('polmul.sci',-1);
8 exec('polsize.sci',-1);
 9 exec('xdync.sci',-1);
10 exec('rowjoin.sci',-1);
11 \operatorname{exec}('\operatorname{left\_prm}.\operatorname{sci}',-1);
12 exec('t1calc.sci',-1);
13 exec('indep.sci',-1);
14 exec('seshft.sci',-1);
15 exec('makezero.sci',-1);
16 exec('move_sci.sci',-1);
17 exec('colsplit.sci',-1);
18 exec('clcoef.sci',-1);
19 exec('cindep.sci',-1);
20 exec('polyno.sci',-1);
21 \operatorname{exec}('\operatorname{cosfil}_{-i}\operatorname{p.sci}', -1);
22
23
24 // test problem to demonstrate benefits of 2_dof
  // \text{ Ts} = 1; B = \begin{bmatrix} 1 & 0.9 \end{bmatrix}; A = \text{conv}(\begin{bmatrix} 1 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -0.8 \end{bmatrix}); k
        = 1;
26 \text{ Ts} = 1; k = 1;
27 B = convol([1 0.9], [1 -0.8]); A = convol([1 -1], [1 -1])
       -0.5]);
28
29 // closed loop characteristic polynomial
30 \text{ phi} = [1 -1 0.5];
31
32 Delta = 1; // Choice of internal model of step
33 \text{ control} = 1;
34 if control == 1, // 1-DOF with no cancellation
        [Rc,Sc] = pp_pid(B,A,k,phi,Delta);
35
36
       Tc = Sc; gamm = 1;
   else // 2-DOF
37
38
        [Rc,Sc,Tc,gamm] = pp_im(B,A,k,phi,Delta);
39
   end
40
```

```
41  // simulation parameters for stb_disc.mdl
42  [zk,dzk] = zpowk(k);
43  st = 1; // desired step change
44  t_init = 0; // simulation start time
45  t_final = 20; // simulation end time
46  xInitial = [0 0];
47  C = 0; D = 1; N_var = 0;
48
49  [Tcp1,Tcp2] = cosfil_ip(Tc,1); // Tc/1
50  [Rcp1,Rcp2] = cosfil_ip(1,Rc); // 1/Rc
51  [Scp1,Scp2] = cosfil_ip(Sc,1); // Sc/1
52  [Bp,Ap] = cosfil_ip(B,A); // B/A
53  [zkp1,zkp2] = cosfil_ip(zk,1); // zk/1
54  [Cp,Dp] = cosfil_ip(C,D); // C/D
```

Scilab code Exa 9.18 Anti windup control of IBM Lotus Domino server

```
// Anti windup control (AWC) of IBM Lotus Domino
    server, studied in Example 9.16 on page 357. It
    can be used for the follwoing situations: with
    and without saturation, and with and without AWC.
// 9.18

exec('pp_im2.sci',-1);
exec('desired.sci',-1);
exec('zpowk.sci',-1);
exec('zpowk.sci',-1);
exec('polsplit3.sci',-1);
exec('polsplit3.sci',-1);
exec('polsize.sci',-1);
exec('xdync.sci',-1);
exec('rowjoin.sci',-1);
```

```
13 \operatorname{exec}('\operatorname{left_prm.sci}', -1);
14 exec('t1calc.sci',-1);
15 exec('indep.sci',-1);
16 exec('seshft.sci',-1);
17 exec('makezero.sci',-1);
18 exec('move_sci.sci',-1);
19 exec('colsplit.sci',-1);
20 exec('clcoef.sci',-1);
21 exec('polyno.sci',-1);
22 exec('cindep.sci',-1);
23 exec('poladd.sci',-1);
24
25 // Transfer function
26 B = 0.47; A = [1 -0.43]; k = 1;
27 [zk,dzk] = zpowk(k);
28
29 // Transient specifications
30 \text{ rise} = 10; \text{ epsilon} = 0.01; \text{ Ts} = 1;
31 phi = desired(Ts, rise, epsilon);
32
33 // Controller design
34 delta = [1 -1]; // internal model of step used
35 [Rc,Sc,Tc,gamm,F] = pp_im2(B,A,k,phi,delta);
36
37 // Study of Antiwindup Controller
38
39 key = x_{choose}(['Simulate without any saturation])
      limits';
             'Simulate saturation, but do not use AWC';
40
             'Simulate saturation with AWC in place';
41
             'Simulate with AWC, without saturation
42
                limits'],...
             ['Please choose one of the following']);
43
44
45 if key ==0
     disp('Invalid choice');
46
47
     return;
48 elseif key == 1
```

```
49
     U = 2; L = -2; P = 1; F = Rc; E = 0; PSc = Sc; PTc
         = Tc;
50 elseif key == 2
51
     U = 1; L = -1; P = 1; F = Rc; E = 0; PSc = Sc; PTc
         = Tc;
52 else
     if key == 3 // Antiwindup controller and with
53
        saturation
        U = 1; L = -1;
54
     elseif key == 4 // Antiwindup controller, but no
55
        saturation
        U = 2; L = -2;
56
57
     end
58
     P = A;
59
     dF = length(F) - 1;
     PRc = convol(P,Rc); dPRc = length(PRc) - 1;
60
     [E,dE] = poladd(F,dF,-PRc,dPRc);
61
62
     PSc = convol(P,Sc); PTc = convol(P,Tc);
63 end
64
65 // Setting up simulation parameters for stb_disc_sat
66 t_init = 0; // first step begins
67 st = 1; // height of first step
68 \text{ t\_init2} = 500; // \text{ second step begins}
69 \text{ st2} = -2; // height of second step
70 t_final = 1000; // simulation end time
71 st1 = 0; // no disturbance input
72 C = 0; D = 1; N_var = 0;
73
74 [PTcp1,PTcp2] = cosfil_ip(PTc,1); // PTc/1
75 [Fp1,Fp2] = cosfil_ip(1,F); // 1/F
76 [Ep,Fp] = cosfil_ip(E,F); // E/F
77 [PScp1, PScp2] = cosfil_ip(PSc,1); // PSc/1
78 [Bp,Ap] = cosfil_ip(B,A); // B/A
79 [zkp1,zkp2] = cosfil_ip(zk,1); // zk/1
80 [Cp,Dp] = cosfil_ip(C,D); // C/D
```

can be downloaded from the website wwww.scilab.in

Scilab code Exa 9.19 Demonstration of usefulness of negative PID parameters

```
1 // Demonstration of usefulness of negative PID
      parameters, discussed in Example 9.17 on page
      361.
2 // 9.19
4 exec ('iodelay.sci',-1);
5 exec('delc2d.sci',-1);
6 exec('desired.sci',-1);
7 exec('pp_pid.sci',-1);
  exec('cosfil_ip.sci',-1);
9 exec('tf.sci',-1);
10 exec('flip.sci',-1);
11 exec('zpowk.sci',-1);
12 exec('polmul.sci',-1);
13 exec('polsize.sci',-1);
14 exec('xdync.sci',-1);
15 exec('rowjoin.sci',-1);
16 \operatorname{exec}('\operatorname{left_prm.sci}', -1);
17 exec('t1calc.sci',-1);
18 exec('indep.sci',-1);
19 exec('seshft.sci',-1);
20 exec('makezero.sci',-1);
21 exec('move_sci.sci',-1);
22 exec('colsplit.sci',-1);
23 exec('clcoef.sci',-1);
```

```
24 exec('cindep.sci',-1);
25
26 // Discretize the continuous plant
27 \text{ num} = 1; \text{ den} = [2 \ 1]; \text{ tau} = 0.5;
28 \text{ G1} = \text{tf(num,den)};
29 G = iodelay(G1,tau);
30 \text{ Ts} = 0.5;
31 \quad [B,A,k] = delc2d(G,G1,Ts);
32
33 // Specify transient requirements
34 \text{ epsilon} = 0.05; \text{ rise} = 5;
35 phi = desired(Ts, rise, epsilon);
36
37 // Design the controller
38 \text{ Delta} = [1 -1];
39 [Rc,Sc] = pp_pid(B,A,k,phi,Delta);
40
41 // parameters for simulation using g_s_cl
42 Tc = Sc; gamm = 1; N = 1;
43 C = 0; D = 1; N_var = 0;
44 st = 1; t_init = 0; t_final = 20;
45
46 [Tcp1,Tcp2] = cosfil_ip(Tc,1); // Tc/1
47 [Np,Rcp] = cosfil_ip(N,Rc); // N/Rc
48 [Scp1,Scp2] = cosfil_ip(Sc,1); // Sc/1
49 [Cp,Dp] = cosfil_ip(C,D); // C/D
50 \text{ Num} = \text{numer}(G1);
51 \text{ Den} = \text{denom}(G1);
```

Scilab code Exa 9.20 PID controller design

Figure 9.13: Demonstration of usefulness of negative PID parameters

Figure 9.14: Demonstration of usefulness of negative PID parameters

```
// Solution to Aryabhatta's identity arising in PID
    controller design, namely Eq. 9.37 on page 363.
// 9.20

function [Rc,Sc] = pp_pid(B,A,k,phi,Delta)

// Setting up and solving Aryabhatta identity
dB = length(B) - 1; dA = length(A) - 1;
[zk,dzk] = zpowk(k);
[N,dN] = polmul(B,dB,zk,dzk);
dDelta = length(Delta)-1;
[D,dD] = polmul(A,dA,Delta,dDelta);
dphi = length(phi)-1;
Sc,dSc,R,dR] = xdync(N,dN,D,dD,phi,dphi);
Rc = convol(R,Delta);
endfunction;
```

can be downloaded from the website wwww.scilab.in

Scilab code Exa 9.21 DC motor with PID control tuned through pole placement technique

```
// DC motor with PID control, tuned through pole
    placement technique, as in Example 9.18.
// 9.21

exec('desired.sci',-1);
exec('pp_pid.sci',-1);
exec('cosfil_ip.sci',-1);
exec('pd.sci',-1);
exec('pd.sci',-1);
```

```
9 exec('myc2d.sci',-1);
10 exec('zpowk.sci',-1);
11 exec('polmul.sci',-1);
12 exec('polsize.sci',-1);
13 exec('xdync.sci',-1);
14 exec('rowjoin.sci',-1);
15 \operatorname{exec}('\operatorname{left\_prm.sci}',-1);
16 exec('t1calc.sci',-1);
17 exec('indep.sci',-1);
18 exec('seshft.sci',-1);
19 exec('makezero.sci',-1);
20 \operatorname{exec}('\operatorname{move\_sci.sci}', -1);
21 exec('colsplit.sci',-1);
22 exec('clcoef.sci',-1);
23 exec ('cindep.sci', -1);
24
25 // Motor control problem
26 // Transfer function
27
28 \ a = [-1 \ 0; \ 1 \ 0]; \ b = [1; \ 0]; \ c = [0 \ 1]; \ d = 0;
29 G = syslin('c',a,b,c,d); Ts = 0.25;
30 \quad [B,A,k] = myc2d(G,Ts);
31 \quad [Ds,num,den] = ss2tf(G);
32
33 // Transient specifications
34 \text{ rise} = 3; \text{ epsilon} = 0.05;
35 phi = desired(Ts, rise, epsilon);
36
37 // Controller design
38 Delta = 1; //No internal model of step used
39 [Rc,Sc] = pp_pid(B,A,k,phi,Delta);
40
41 // continuous time controller
42 [K,taud,N] = pd(Rc,Sc,Ts);
43 numb = K*[1 taud*(1+1/N)]; denb = [1 taud/N];
44 \text{ numf} = 1; \text{ denf} = 1;
45
46 // simulation parameters
```

```
47 st = 1; // desired change in position
48 t_init = 0; // simulation start time
49 t_final = 20; // simulation end time
50 \text{ st1} = 0;
51
52 // continuous controller simulation: g_s_cl3.xcos
53 \text{ num1} = 0; \text{ den1} = 1;
54
55 // discrete controller simulation: g_s_cl2.xcos
56 // u1: -0.1 to 0.8
57 // y1: 0 to 1.4
58 C = 0; D = 1; N = 1; gamm = 1; Tc = Sc;
59
60 [Tcp1,Tcp2] = cosfil_ip(Tc,1); // Tc/1
61 [Np,Rcp] = cosfil_ip(N,Rc); // N/Rc
62 [Scp1,Scp2] = cosfil_ip(Sc,1); // Sc/1
63 [Cp,Dp] = cosfil_ip(C,D); // C/D
64 Numb = polyno(numb, 's');
65 Denb = polyno(denb, 's');
66 Numf = polyno(numf, 's');
67 Denf = polyno(denf, 's');
68 Num1 = polyno(num1, 's');
69 Den1 = polyno(den1, 's');
```

Scilab code Exa 9.22 PD control law from polynomial coefficients

Figure 9.15: DC motor with PID control tuned through pole placement technique $\,$

Figure 9.16: DC motor with PID control tuned through pole placement technique

```
5
6 // Both Rc and Sc have to be degree one polynomials
7
8 s0 = Sc(1); s1 = Sc(2);
9 r1 = Rc(2);
10 K = (s0+s1)/(1+r1);
11 N = (s1-s0*r1)/r1/(s0+s1);
12 taudbyN = -Ts*r1/(1+r1);
13 taud = taudbyN * N;
14 endfunction;
```

Chapter 10

Special Cases of Pole Placement Control

Scilab code Exa 10.1 Effect of delay in control performance

```
1 // Effect of delay in control performance
2 // 10.1
3
4 exec('zpowk.sci',-1);
5 exec('pp_im.sci',-1);
6 exec('cosfil_ip.sci',-1);
7 exec('polsplit3.sci',-1);
8 exec('polmul.sci',-1);
9 exec('polsize.sci',-1);
10 exec('xdync.sci',-1);
11 exec('rowjoin.sci',-1);
12 \operatorname{exec}('\operatorname{left\_prm.sci}', -1);
13 exec('t1calc.sci',-1);
14 exec('indep.sci',-1);
15 exec('seshft.sci',-1);
16 exec('makezero.sci',-1);
17 exec('move_sci.sci',-1);
18 exec('colsplit.sci',-1);
19 exec('clcoef.sci',-1);
```

```
20 exec('cindep.sci',-1);
21 exec('polyno.sci',-1);
22
23 Ts = 1; B = 0.63; A = [1 - 0.37];
24 k = input('Enter the delay as an integer: ');
25 \text{ if } k \le 0, k = 1; end
26 [zk,dzk] = zpowk(k);
27
28 // Desired transfer function
29 \text{ phi} = [1 -0.5];
30 delta = 1; // internal model of step introduced
31
32 // Controller design
33 [Rc,Sc,Tc,gamm] = pp_im(B,A,k,phi,delta);
34
35 // simulation parameters for stb_disc.xcos
36 // y1: 0 to 1; u1: 0 to 1.2
37 st = 1.0; // desired change in setpoint
38 t_init = 0; // simulation start time
39 t_final = 20; // simulation end time
40
41 // simulation parameters for stb_disc.xcos
42 \text{ N_var} = 0; C = 0; D = 1; N = 1;
43
44 [Tcp1,Tcp2] = cosfil_ip(Tc,1); // Tc/1
45 [Rcp1,Rcp2] = cosfil_ip(1,Rc); // 1/Rc
46 [Scp1,Scp2] = cosfil_ip(Sc,1); // Sc/1
47 [Bp,Ap] = cosfil_ip(B,A); // B/A
48 [zkp1,zkp2] = cosfil_ip(zk,1); // zk/1
49 [Cp,Dp] = cosfil_ip(C,D); // C/D
```

Scilab code Exa 10.2 Smith predictor for paper machine control

```
1 // Smith predictor for paper machine control in
      Example 10.2 on page 385.
2 // 10.2
3
4 exec('zpowk.sci',-1);
5 exec('poladd.sci',-1);
6 exec('polsize.sci',-1);
7 exec('pp_im.sci',-1);
8 exec('polsplit3.sci',-1);
9 exec('polmul.sci',-1);
10 exec('xdync.sci',-1);
11 exec('rowjoin.sci',-1);
12 \operatorname{exec}('\operatorname{left\_prm.sci}', -1);
13 \operatorname{exec}('t1\operatorname{calc.sci}',-1);
14 exec('indep.sci',-1);
15 exec('makezero.sci',-1);
16 exec('move_sci.sci',-1);
17 exec('colsplit.sci',-1);
18 exec('clcoef.sci',-1);
19 exec('cindep.sci',-1);
20 \operatorname{exec}(\operatorname{'seshft.sci'},-1);
21 exec('cosfil_ip.sci',-1);
22 exec('polyno.sci',-1);
23
24 \text{ Ts} = 1; B = 0.63; A = [1 -0.37]; k = 3;
25 Bd = convol(B,[0 1]);
26 \text{ kd} = \text{k} - 1;
27 [zkd,dzkd] = zpowk(kd);
28 [mzkd,dmzkd] = poladd(1,0,-zkd,dzkd);
29
30 // Desired transfer function
31 \text{ phi} = [1 -0.5]; \text{ delta} = 1;
32
33 // Controller design
34 [Rc,Sc,Tc,gamm] = pp_im(B,A,1,phi,delta);
35
36 // simulation parameters for smith_disc.xcos
37 st = 1.0; // desired change in setpoint
```


Figure 10.1: Smith predictor for paper machine control

```
38 t_init = 0; // simulation start time
39 t_final = 20; // simulation end time
40
41 // simulation parameters for smith_disc.xcos
42 N_var = 0; C = 0; D = 1; N = 1;
43
44 [Tcp1,Tcp2] = cosfil_ip(Tc,1); // Tc/1
45 [Rcp1,Rcp2] = cosfil_ip(1,Rc); // 1/Rc
46 [Scp1,Scp2] = cosfil_ip(Sc,1); // Sc/1
47 [Bdp,Ap] = cosfil_ip(Bd,A); // Bd/Ad
48 [zkdp1,zkdp2] = cosfil_ip(zkd,1); // zkd/1
49 [mzkdp1,mzkdp2] = cosfil_ip(mzkd,1); // mzkd/1
50 [Cp,Dp] = cosfil_ip(C,D); // C/D
```


Figure 10.2: Smith predictor for paper machine control

Scilab code Exa 10.3 Splitting a polynomial B

```
// Splitting a polynomial B(z)
// 10.3
// Splits a polynomial B into good, nonminimum with
// positive real & with negative real parts.
// All are returned in polynomial form.
// Gain is returned in Kp and delay in k.

function [Kp,k,Bg,Bnmp,Bm] = imcsplit(B,polynomial)
k = 0;
Kp = 1;
if(polynomial)
rts = roots(B);
```

```
Kp = sum(B)/sum(coeff(poly(rts, 'z')));
13
14 else
15
     rts = B;
16 end
17 \text{ Bg} = 1; \text{ Bnmp} = 1; \text{ Bm} = 1;
18 for i = 1:length(rts),
19
       rt = rts(i);
20
        if rt == 0,
21
           k = k+1;
22
        elseif (abs(rt)<1 & real(rt)>=0)
          Bg = convol(Bg,[1 -rt]);
23
        elseif (abs(rt)>=1 & real(rt)>=0)
24
25
          Bnmp = convol(Bnmp,[1 -rt]);
26
        else
27
          Bm = convol(Bm,[1 -rt]);
28
29 end
```

Scilab code Exa 10.4 Design of internal model controller

```
// Design of internal model controller
// 10.4
// Designs Discrete Internal Model Controller
// for transfer function z^{-k}B(z^{-1})/A(z^{-1})
// Numerator and Denominator of IMC HQ are outputs
// Controller is also given in R,S form

function [k,HiN,HiD] = imc_stable1(B,A,k,alpha)

[Kp,d,Bg,Bnmp,Bm] = imcsplit(B,mtlb_logical(1));
Bg = Kp * Bg;
Bnmpr = flip(Bnmp);
Bms = sum(Bm);
HiN = A;
HiD = Bms * convol(Bg,Bnmpr);
```

```
16 k = k+d;
17 endfunction;
```

Scilab code Exa 10.5 Flipping a vector

```
1 // 10.5
2 function b = flip(a)
3 b = a(length(a):-1:1);
4 endfunction;
```

Scilab code Exa 10.6 IMC design for viscosity control problem

```
1 // IMC design for viscosity control problem
2 // 10.6
4 \operatorname{exec}('\operatorname{imc\_stable1.sci}', -1);
5 exec('zpowk.sci',-1);
6 exec('imcsplit.sci',-1);
7 exec('flip.sci',-1);
9 B = [0.51 1.21];
10 A = [1 -0.44];
11 k = 1;
12 \text{ alpha} = 0.5;
13
14 [k,GiN,GiD] = imc_stable1(B,A,k,alpha);
15
16 [zk,dzk] = zpowk(k);
17 Bp = B; Ap = A;
18 \text{ Ts} = 0.1; t0 = 0; tf = 20; Nvar = 0.01;
```

Scilab code Exa 10.7 IMC design for the control of van de Vusse reactor

```
1 // IMC design for the control of van de Vusse
      reactor
2 // 10.7
4 exec('tf.sci');
5 exec('myc2d.sci');
6 exec('imc_stable1.sci');
7 exec('imcsplit.sci',-1);
8 exec('flip.sci',-1);
9 exec('zpowk.sci',-1);
10
11 num = [-1.117 \ 3.1472]; den = [1 \ 4.6429 \ 5.3821];
12 G = tf(num, den);
13 \text{ Ts} = 0.1;
14 [B,A,k] = myc2d(G,Ts);
15 \text{ alpha} = 0.9;
16 [k,GiN,GiD] = imc_stable1(B,A,k,alpha);
17 [zk,dzk] = zpowk(k);
18 \text{ Bp} = B; \text{ Ap} = A;
19 	 t0 = 0; 	 tfi = 10; 	 st = 1; 	 Nvar = 0;
```

Scilab code Exa 10.8 IMC design for an example by Lewin

```
1 // IMC design for Lewin's example
2 // 10.8
3
4 exec('tf.sci');
5 exec('myc2d.sci');
6 exec('imc_stable1.sci');
7 exec('zpowk.sci',-1);
8 exec('imcsplit.sci',-1);
9 exec('flip.sci',-1);
```

```
11  num = 1; den = [250 35 1]; Ts = 3;
12  G = tf(num,den);
13
14  [B,A,k] = myc2d(G,Ts);
15
16  alpha = 0.9;
17  [k,GiN,GiD] = imc_stable1(B,A,k,alpha);
18
19  [zk,dzk] = zpowk(k);
20  Bp = B; Ap = A;
21  t0 = 0; tfi = 100; st = 1; Nvar = 0;
```

Scilab code Exa 10.9 Design of conventional controller which is an equivalent of internal model controller

```
1 // Design of conventional controller which is an
      equivalent of internal model controller
2 / / 10.9
4 // Designs Discrete Internal Model Controller
5 // for transfer function z^{-k}B(z^{-1})/A(z^{-1})
6 // Numerator and Denominator of IMC HQ are outputs
7 // Controller is also given in R,S form
8
9
10 function [k, HiN, HiD, R, S, mu] = imc_stable(B, A, k, alpha
      )
11
12 [Kp,d,Bg,Bnmp,Bm] = imcsplit(B,mtlb_logical(1));
13 \text{ Bg} = \text{Kp} * \text{Bg};
14
15 Bnmpr = flip(Bnmp);
16 Bms = sum(Bm);
17 \text{ HiN} = A;
18 HiD = Bms * convol(Bg,Bnmpr);
```

```
19 k = k+d;
20
21 [zk,dzk] = zpowk(k);
22 Bf = (1-alpha);
23 Af = [1 -alpha];
24 S = convol(Bf,A);
25 R1 = convol(Af,convol(Bnmpr,Bms));
26 R2 = convol(zk,convol(Bf,convol(Bnmp,Bm)));
27
28 [R,dR] = poladd(R1,length(R1)-1,-R2,length(R2)-1);
29 R = convol(Bg,R);
30 endfunction;
```

Scilab code Exa 10.10 Design of conventional controller for van de Vusse reactor problem

```
1 // Design of conventional controller for van de
      Vusse reactor problem
  // 10.10
3
4 exec('tf.sci');
5 exec('myc2d.sci');
6 exec('imcsplit.sci',-1);
7 exec('imc_stable.sci');
8 exec('zpowk.sci',-1);
9 exec('flip.sci',-1);
10 exec('poladd.sci',-1);
11 exec('polsize.sci',-1);
12
13 num = [-1.117 \ 3.1472]; den = [1 \ 4.6429 \ 5.3821];
14 G = tf(num, den);
15 \text{ Ts} = 0.1;
16 [B,A,k] = myc2d(G,Ts);
17 \text{ alpha} = 0.5;
18 [k,HiN,HiD,R,S] = imc_stable(B,A,k,alpha);
```

```
19 [zk,dzk] = zpowk(k);
20 Bp = B; Ap = A;
```

$$20$$
 Bp = B; Ap = A

Chapter 11

Minimum Variance Control

Scilab code Exa 11.1 Recursive computation of Ej and Fj

```
1 // Recursive computation of Ej and Fj
2 // 11.1
4 function [Fj,dFj,Ej,dEj] = recursion(A,dA,C,dC,j)
5 \text{ Fo = C; dFo = dC;}
6 \text{ Eo} = 1; dEo = 0;
7 A_z = A(2:dA+1); dA_z = dA-1;
8 zi = 1; dzi = 0;
9 \text{ for } i = 1:j-1
10
       if (dFo == 0)
            Fn1 = 0;
11
12
       else
13
            Fn1 = Fo(2:(dFo+1));
14
       end
       dFn1 = \max(dFo-1,0);
15
16
       Fn2 = -Fo(1)*A_z; dFn2 = dA-1;
17
       [Fn,dFn] = poladd(Fn1,dFn1,Fn2,dFn2);
18
       zi = convol(zi,[0,1]); dzi = dzi + 1;
       En2 = Fn(1)*zi; dEn2 = dzi;
19
20
       [En,dEn] = poladd(Eo,dEo,En2,dEn2);
       Eo = En; Fo = Fn;
21
```

```
22     dEo = dEn; dFo = dFn;
23     end
24     if (dFo == 0)
25         Fn1 = 0;
26     else
27     Fn1 = Fo(2:(dFo+1));
28     end;
29     dFn1 = max(dFo-1,0);
30     Fn2 = -Fo(1)*A_z; dFn2 = dA-1;
31     [Fn,dFn] = poladd(Fn1,dFn1,Fn2,dFn2);
32     Fj = Fn; dFj = dFn;
33     Ej = Eo; dEj = dEo;
34     endfunction;
```

Scilab code Exa 11.2 Recursive computation of Ej and Fj for the system presented in Example

Scilab code Exa 11.3 Solution of Aryabhatta identity

```
1 // Solution of Aryabhatta's identity Eq. 11.8, as
     discussed in Example 11.3 on page 409.
2 // 11.3
3
4 exec('xdync.sci',-1);
5 exec('rowjoin.sci',-1);
6 exec('polsize.sci',-1);
7 exec('left_prm.sci',-1);
8 exec('t1calc.sci',-1);
9 exec('indep.sci',-1);
10 exec('seshft.sci',-1);
11 exec('makezero.sci',-1);
12 exec('move_sci.sci',-1);
13 exec('colsplit.sci',-1);
14 exec('clcoef.sci',-1);
15 exec('cindep.sci',-1);
16
17 C = [1 0.5]; dC = 1; j=2;
18 A = [1 -0.6 -0.16]; dA = 2;
19 zj = zeros(1, j+1); zj(j+1) = 1;
20 [Fj,dFj,Ej,dEj] = xdync(zj,j,A,dA,C,dC)
```

Scilab code Exa 11.4 1st control problem by MacGregor

```
11 exec('left_prm.sci',-1);
12 exec('t1calc.sci',-1);
13 exec('indep.sci',-1);
14 exec('seshft.sci',-1);
15 exec('makezero.sci',-1);
16 \quad \text{exec} (\text{'move\_sci.sci',-1});
17 exec('colsplit.sci',-1);
18 exec('clcoef.sci',-1);
19 exec('cindep.sci',-1);
20 exec('polmul.sci',-1);
21 exec('poladd.sci',-1);
22 exec ('tfvar.sci',-1);
23 exec('l2r.sci',-1);
24 exec ('transp.sci', -1);
25 exec('tf.sci',-1);
26 exec('covar_m.sci',-1);
27 exec ('polyno.sci',-1);
28
29 // MacGregor's first control problem
30 A = [1 -1.4 0.45]; dA = 2; C = [1 -0.5]; dC = 1;
31 B = 0.5*[1 -0.9]; dB = 1; k = 1; int1 = 0;
32 [Sc,dSc,Rc,dRc] = mv(A,dA,B,dB,C,dC,k,int1);
[Nu,dNu,Du,dDu,Ny,dNy,Dy,dDy,yvar,uvar] = ...
34 \text{ cl}(A,dA,B,dB,C,dC,k,Sc,dSc,Rc,dRc,int1);
35
36 // Simulation parameters for stb_disc.xcos
37 \text{ Tc} = \text{Sc}; \text{ gamm} = 1; [zk,dzk] = zpowk(k);
38 D = 1; N_var = 1; Ts = 1; st = 0;
39 t_init = 0; t_final = 1000;
40
41 [Tcp1,Tcp2] = cosfil_ip(Tc,1); // Tc/1
42 [Rcp1, Rcp2] = cosfil_ip(1, Rc); //
                                        1/Rc
43 [Scp1,Scp2] = cosfil_ip(Sc,1); // Sc/1
44 [Bp,Ap] = cosfil_ip(B,A); // B/A
45 [zkp1,zkp2] = cosfil_ip(zk,1); // zk/1
46 [Cp,Dp] = cosfil_ip(C,D); // C/D
```


Figure 11.1: 1st control problem by MacGregor

This code can be downloaded from the website wwww.scilab.in

Scilab code Exa 11.5 Minimum variance control law design

Figure 11.2: 1st control problem by MacGregor

```
7 // it is not integrated noise
8
9 function [S,dS,R,dR] = mv(A,dA,B,dB,C,dC,k,int1)
10 zk = zeros(1,k+1); zk(k+1) = 1;
11 if int1>=1, [A,dA] = polmul([1 -1],1,A,dA); end
12 [Fk,dFk,Ek,dEk] = xdync(zk,k,A,dA,C,dC);
13
14 [Gk,dGk] = polmul(Ek,dEk,B,dB);
15 S = Fk; dS = dFk; R = Gk; dR = dGk;
16 endfunction;
```

Scilab code Exa 11.6 Calculation of closed loop transfer functions

```
1 // Calculation of closed loop transfer functions
2 // 11.6
3
4 // function [Nu,dNu,Du,dDu,Ny,dNy,Dy,dDy,yvar,uvar]
= ...
```

```
cl (A, dA, B, dB, C, dC, k, S, dS, R, dR, int)
5 //
6 // int>=1 means integrated noise and control law:
7 // delta u = - (S/R)y
8 // Evaluates the closed loop transfer function and
9 // variances of input and output
10
11 function [Nu,dNu,Du,dDu,Ny,dNy,Dy,dDy,yvar,uvar] =
12
      cl(A,dA,B,dB,C,dC,k,S,dS,R,dR,int1)
13
   [zk,dzk] = zpowk(k);
14
15 [BS,dBS] = polmul(B,dB,S,dS);
16 [zBS,dzBS] = polmul(zk,dzk,BS,dBS);
17 [RA,dRA] = polmul(R,dR,A,dA);
18 if int1>=1, [RA,dRA] = polmul(RA,dRA,[1 -1],1); end
19
20 [D, dD] = poladd(RA, dRA, zBS, dzBS);
21
   [Ny,dNy] = polmul(C,dC,R,dR);
22
23
   [Nu,dNu] = polmul(C,dC,S,dS);
24
25
   [Nu,dNu,Du,dDu,uvar] = tfvar(Nu,dNu,D,dD);
26 [Ny,dNy,Dy,dDy,yvar] = tfvar(Ny,dNy,D,dD);
27
28 endfunction;
```

Scilab code Exa 11.7 Cancellation of common factors and determination of covariance

```
1 // Cancellation of common factors and determination of covariance 2 // 11.7  
3  
4 // function [N,dN,D,dD,yvar] = tfvar(N,dN,D,dD)  
5 // N and D polynomials in z^{-1} form; discrete case
```

```
function [N,dN,D,dD,yvar] = tfvar(N,dN,D,dD)

function [N,dN,D,dD,yvar] = tfvar(N,dN,D,dD)

[N,dN,D,dD] = 12r(N,dN,D,dD);

N = N/D(1); D = D/D(1);

LN = length(N); LD = length(D);

D1 = D;

if LD<LN, D1 = [D zeros(1,LN-LD)]; dD1 = dD+LN-LD;
end

H = tf(N,D1,1);//TS=1 (sampling time) has been taken
constant in tfvar

yvar = covar_m(H,1);
endfunction;</pre>
```

Scilab code Exa 11.8 Computing sum of squares

Scilab code Exa 11.9 Minimum variance control for nonminimum phase systems

```
// function [Sc,dSc,Rc,dRc] = mv_mv(A,dA,B,dB,C,dC,k,int)
// implements the minimum variance controller
// if int>=1, integrated noise is assumed; otherwise
// it is not integrated noise

function [Sc,dSc,Rc,dRc] = mv_nm(A,dA,B,dB,C,dC,k,int1)
if int1>=1, [A,dA] = polmul([1 -1],1,A,dA); end
[zk,dzk] = zpowk(k);
[Bzk,dBzk] = polmul(B,dB,zk,dzk);
[Bg,Bb] = polsplit3(B); Bbr = flip(Bb);
RHS = convol(C,convol(Bg,Bbr)); dRHS = length(RHS)
-1;
[Sc,dSc,Rc,dRc] = xdync(Bzk,dBzk,A,dA,RHS,dRHS);
endfunction;
```

Scilab code Exa 11.10 Minimum variance control for nonminimum phase example

```
14 exec('t1calc.sci',-1);
15 exec('indep.sci',-1);
16 exec('seshft.sci',-1);
17 exec('makezero.sci',-1);
18 exec('move_sci.sci',-1);
19 exec('colsplit.sci',-1);
20 exec('clcoef.sci',-1);
21 exec('cindep.sci',-1);
22 exec('poladd.sci',-1);
23 exec('tfvar.sci',-1);
24 exec('l2r.sci',-1);
25 exec('transp.sci',-1);
26 exec('tf.sci',-1);
27 exec('covar_m.sci',-1);
28
29 A = convol([1 -1], [1 -0.7]); dA = 2;
30 B = [0.9 1]; dB = 1; k = 1;
31 \ C = [1 \ -0.7]; \ dC = 1; \ int1 = 0;
32 [Sc,dSc,Rc,dRc] = mv_nm(A,dA,B,dB,C,dC,k,int1);
33 [Nu,dNu,Du,dDu,Ny,dNy,Dy,dDy,yvar,uvar] = ...
34 cl(A,dA,B,dB,C,dC,k,Sc,dSc,Rc,dRc,int1);
```

Scilab code Exa 11.11 Minimum variance control of viscosity control problem

```
// Minimum variance control of viscosity control
problem
// 11.11
// Viscosity control problem of MacGregor

exec('mv_nm.sci',-1);
exec('polmul.sci',-1);
exec('polsize.sci',-1);
exec('zpowk.sci',-1);
```

```
10 \operatorname{exec}('\operatorname{polsplit}3.\operatorname{sci}',-1);
11 exec('flip.sci',-1);
12 exec('xdync.sci',-1);
13 exec('rowjoin.sci',-1);
14 \operatorname{exec}('\operatorname{left_prm.sci}', -1);
15 exec('t1calc.sci',-1);
16 exec('indep.sci',-1);
17 exec('seshft.sci',-1);
18 exec('makezero.sci',-1);
19 exec('move_sci.sci',-1);
20 exec('colsplit.sci',-1);
21 exec('clcoef.sci',-1);
22 exec('cindep.sci',-1);
23 \operatorname{exec}('\operatorname{cl.sci}', -1);
24 exec('poladd.sci',-1);
25 exec('tfvar.sci',-1);
26 exec('l2r.sci',-1);
27 exec('transp.sci',-1);
28 exec('tf.sci',-1);
29 exec('covar_m.sci',-1);
30
31 A = [1 -0.44]; dA = 1; B = [0.51 1.21]; dB = 1;
32 \text{ C} = [1 -0.44]; \text{ dC} = 1; \text{ k} = 1; \text{ int1} = 1;
33 [Sc,dSc,Rc,dRc] = mv_nm(A,dA,B,dB,C,dC,k,int1);
[Nu,dNu,Du,dDu,Ny,dNy,Dy,dDy,yvar,uvar] = ...
35 cl(A,dA,B,dB,C,dC,k,Sc,dSc,Rc,dRc,int1);
```

Scilab code Exa 11.12 General minimum variance controller design

Scilab code Exa 11.13 GMVC design of first example by MacGregor

```
15 exec ('makezero.sci',-1);
16 exec('move_sci.sci',-1);
17 exec('colsplit.sci',-1);
18 exec('clcoef.sci',-1);
19 exec('cindep.sci',-1);
20 exec('polmul.sci',-1);
21 exec('zpowk.sci',-1);
22 exec('poladd.sci',-1);
23 exec ('tfvar.sci',-1);
24 exec('l2r.sci',-1);
25 exec('transp.sci',-1);
26 exec('tf.sci',-1);
27 exec('covar_m.sci',-1);
28
29 A = [1 -1.4 0.45]; dA = 2; C = [1 -0.5]; dC = 1;
30 B = 0.5*[1 -0.9]; dB = 1; k = 1; int1 = 0;
31 \text{ rho} = 1;
32 [Sc,dSc,Rc,dRc] = gmv(A,dA,B,dB,C,dC,k,rho,int1);
[Nu,dNu,Du,dDu,Ny,dNy,Dy,dDy,yvar,uvar] = ...
34
           cl(A,dA,B,dB,C,dC,k,Sc,dSc,Rc,dRc,int1);
```

Scilab code Exa 11.14 GMVC design of viscosity problem

```
// GMVC design of viscosity problem, as described in
Example 11.10 on page 423.
// 11.14

// MacGregor's Viscosity control problem by gmv

exec('gmv.sci',-1);
exec('cl.sci',-1);
exec('polmul.sci',-1);
exec('polsize.sci',-1);
exec('xdync.sci',-1);
exec('rowjoin.sci',-1);
```

```
12 exec('left_prm.sci',-1);
13 \operatorname{exec}('t1\operatorname{calc.sci}',-1);
14 exec('indep.sci',-1);
15 exec('seshft.sci',-1);
16 exec('makezero.sci',-1);
17 exec('move_sci.sci',-1);
18 exec('colsplit.sci',-1);
19 exec('clcoef.sci',-1);
20 exec('cindep.sci',-1);
21 exec('poladd.sci',-1);
22 exec('zpowk.sci',-1);
23 exec('tfvar.sci',-1);
24 exec('l2r.sci',-1);
25 exec('transp.sci',-1);
26 exec('tf.sci',-1);
27 exec('covar_m.sci',-1);
28
29 A = [1 -0.44]; dA = 1; B = [0.51 1.21]; dB = 1;
30 \text{ C} = [1 -0.44]; \text{ dC} = 1; \text{ k} = 1; \text{ int1} = 1;
31 \text{ rho} = 1;
32 [Sc,dSc,R1,dR1] = gmv(A,dA,B,dB,C,dC,k,rho,int1);
   [Nu,dNu,Du,dDu,Ny,dNy,Dy,dDy,yvar,uvar] = ...
34
            cl(A,dA,B,dB,C,dC,k,Sc,dSc,R1,dR1,int1);
```

Scilab code Exa 11.15 PID tuning through GMVC law

```
9 exec('xdync.sci',-1);
10 exec('rowjoin.sci',-1);
11 exec('left_prm.sci',-1);
12 \operatorname{exec}('t1calc.sci',-1);
13 exec('indep.sci',-1);
14 exec('seshft.sci',-1);
15 exec('makezero.sci',-1);
16 \quad \text{exec} (\text{'move\_sci.sci',-1});
17 exec('colsplit.sci',-1);
18 exec('clcoef.sci',-1);
19 exec('cindep.sci',-1);
20 exec('filtval.sci',-1);
21 exec('polyno.sci',-1);
22
23 // GMVC PID tuning of example given by Miller et al.
24 // Model
25 A = [1 -1.95 0.935]; B = -0.015; k = 1; Ts = 1;
26
27 // Transient specifications
28 N = 15; epsilon = 0.1;
29 T = ch_pol(N,epsilon);
30
31 // Controller Design
32 [Kc,tau_i,tau_d,L] = gmvc_pid(A,B,k,T,Ts);
33 L1 = filtval(L,1);
34 \text{ zk} = \text{zpowk(k)};
```

Scilab code Exa 11.16 Value of polynomial p evaluated at x

```
1 // Value of polynomial p(x), evaluated at x 2 // 11.16 3 4 // finds the value of a polynomial in powers of z ^{-1} 5 // function Y = filtval(P, z)
```

```
function Y = filtval(P,z)
N = length(P)-1;
Q = polyno(P,'x');
Y = horner(Q,z)/z^N;
endfunction;
```

Scilab code Exa 11.17 PID tuning through GMVC law

```
1 // PID tuning through GMVC law
2 // 11.17
4 // function [Kc, tau_i, tau_d, L] = gmvc_pid(A, B, k, T, Ts
5 // Determines p,i,d tuning parameters using GMVC
6 // Plant model: Integrated white noise
7 // A, B in discrete time form
9 function [Kc,tau_i,tau_d,L] = gmvc_pid(A,B,k,T,Ts)
10
11 dA = length(A) -1; dB = length(B) -1;
12 	 dT = length(T)-1;
13 if dA > 2,
14
      disp('degree of A cannot be more than 2')
15
16 \text{ elseif } dB > 1,
      disp('degree of B cannot be more than 1')
17
18
      exit
19 elseif dT > 2,
      disp('degree of T cannot be more than 2')
20
21
      exit
22 end
23 \text{ delta} = [1 -1]; \text{ ddelta} = 1;
24
25 [Adelta, dAdelta] = polmul(A, dA, delta, ddelta);
```

```
26
27 [Q,dQ,P,dP] = ...
28 xdync(Adelta,dAdelta,B,dB,T,dT);
29 PAdelta = P(1)*Adelta;
30
31 [zk,dzk] = zpowk(k);
32 \quad [E, degE, F, degF] = \dots
33 xdync(PAdelta,dAdelta,zk,dzk,P,dP);
34 \text{ nu} = P(1)*E(1)*B(1);
35 Kc = -1/nu*(F(2)+2*F(3));
36 \text{ tau_i} = -(F(2)+2*F(3))/(F(1)+F(2)+F(3))*Ts;
37 \text{ tau_d} = -F(3)/(F(2)+2*F(3))*Ts;
38 L(1) = 1+Ts/tau_i+tau_d/Ts;
39 L(2) = -(1+2*tau_d/Ts);
40 L(3) = tau_d/Ts;
41 L = Kc * L';
42 endfunction;
```

Chapter 12

Model Predictive Control

Scilab code Exa 12.1 Model derivation for GPC design

```
1 // Model derivation for GPC design in Example 12.1
      on page 439.
2 // 12.1
4 exec('xdync.sci',-1);
5 exec('polmul.sci',-1);
6 exec('flip.sci',-1);
7 exec('rowjoin.sci',-1);
8 exec('polsize.sci',-1);
9 exec('left_prm.sci',-1);
10 exec('t1calc.sci',-1);
11 exec('indep.sci',-1);
12 \operatorname{exec}(\operatorname{'seshft.sci',-1});
13 exec('makezero.sci',-1);
14 exec('move_sci.sci',-1);
15 exec('colsplit.sci',-1);
16 exec('clcoef.sci',-1);
17 exec('cindep.sci',-1);
18
  // Camacho and Bordon's GPC example; model formation
19
20
```

```
21 A = [1 -0.8]; dA = 1; B = [0.4 0.6]; dB = 1; N = 3; k = 1;
22 D=[1 -1]; dD=1; AD=convol(A,D); dAD=dA+1; Nu=N+k;
23 zj = 1; dzj = 0; G = zeros(Nu);
24 H1 = zeros(Nu,k-1+dB); H2 = zeros(Nu,dA+1);
25
26 \text{ for } j = 1:Nu,
       zj = convol(zj,[0,1]); dzj = dzj + 1;
27
28
       [Fj,dFj,Ej,dEj] = xdync(zj,dzj,AD,dAD,1,0);
       [Gj,dGj] = polmul(B,dB,Ej,dEj);
29
       G(j,1:dGj) = flip(Gj(1:dGj));
30
       H1(j,1:k-1+dB) = Gj(dGj+1:dGj+k-1+dB);
31
       H2(j,1:dA+1) = Fj;
32
33 end
34
35~\mathrm{G}, H1, H2
```

Scilab code Exa 12.2 Calculates the GPC law

```
1 // Calculates the GPC law given by Eq. 12.19 on page
       441.
  // 12.2
3
4 function [K,KH1,KH2,Tc,dTc,Sc,dSc,R1,dR1] = ...
5 gpc_bas(A,dA,B,dB,N,k,rho)
6 D=[1 -1]; dD=1; AD=convol(A,D); dAD=dA+1; Nu=N+1;
7 	 zj = 1; dzj = 0; G = zeros(Nu, Nu);
8 H1 = zeros(Nu,k-1+dB); H2 = zeros(Nu,dA+1);
9 \text{ for } j = 1:Nu,
10
       zj = convol(zj,[0,1]); dzj = dzj + 1;
11
       [Fj,dFj,Ej,dEj] = xdync(zj,dzj,AD,dAD,1,0);
12
       [Gj,dGj] = polmul(B,dB,Ej,dEj);
13
       G(j,1:dGj) = flip(Gj(1:dGj));
14
       H1(j,1:k-1+dB) = Gj(dGj+1:dGj+k-1+dB);
       H2(j,1:dA+1) = Fj;
15
16 end
```

```
17 K = inv(G'*G+rho*eye(Nu,Nu))*G';
18 // Note: inverse need not be calculated
19 KH1 = K * H1; KH2 = K * H2;
20 R1 = [1 KH1(1,:)]; dR1 = length(R1)-1;
21 Sc = KH2(1,:); dSc = length(Sc)-1;
22 Tc = K(1,:); dTc = length(Tc)-1;
23 endfunction;
```

Scilab code Exa 12.3 GPC design for the problem discussed on page 441

```
1 // GPC design for the problem discussed in Example
      12.2 on page 441.
  // 12.3
2
3
4 exec('gpc_bas.sci',-1);
5 exec('xdync.sci',-1);
6 exec('rowjoin.sci',-1);
7 exec('polsize.sci',-1);
8 \operatorname{exec}('\operatorname{left\_prm.sci}', -1);
9 exec('t1calc.sci',-1);
10 exec('indep.sci',-1);
11 exec('seshft.sci',-1);
12 exec('makezero.sci',-1);
13 exec('move_sci.sci',-1);
14 exec('colsplit.sci',-1);
15 exec('clcoef.sci',-1);
16 exec('cindep.sci',-1);
17 exec('polmul.sci',-1);
18 exec('flip.sci',-1);
19 exec('filtval.sci',-1);
20
21 // Camacho and Bordon's GPC example; Control law
22 A = [1 -0.8]; dA = 1; B = [0.4 0.6]; dB = 1; N = 3; k = 1; rho
  [K,KH1,KH2,Tc,dTc,Sc,dSc,R1,dR1] = ...
23
```

```
24 gpc_bas(A,dA,B,dB,N,k,rho)  
25 // C=1; dC=0; [K,KH1,KH2,Tc,dTc,Sc,dSc,R1,dR1] = ...  
26 // gpc_col(A,dA,B,dB,C,dC,N,k,rho)
```

Scilab code Exa 12.4 GPC design

```
1 // GPC design for the problem discussed in Example
       12.3.
2
  // 12.4
3
4 exec('gpc_N.sci',-1);
5 exec('xdync.sci',-1);
6 exec('rowjoin.sci',-1);
7 exec('polsize.sci',-1);
8 \operatorname{exec}('\operatorname{left\_prm.sci}', -1);
9 \operatorname{exec}('t1\operatorname{calc.sci}',-1);
10 exec('indep.sci',-1);
11 exec('seshft.sci',-1);
12 exec('makezero.sci',-1);
13 exec ('move_sci.sci',-1);
14 exec('colsplit.sci',-1);
15 exec('clcoef.sci',-1);
16 exec('cindep.sci',-1);
17 exec('polmul.sci',-1);
18 exec('flip.sci',-1);
19
20 A = [1 -0.8]; dA = 1; B = [0.4 0.6]; dB = 1;
21 \text{ rho} = 0.8; k = 1;
22 \text{ N1} = 0; \text{ N2} = 3; \text{ Nu} = 2;
23
[K,KH1,KH2,Tc,dTc,Sc,dSc,R1,dR1] = ...
25 \text{ gpc_N}(A,dA,B,dB,k,N1,N2,Nu,rho)
```

Scilab code Exa 12.5 Calculates the GPC law

```
1 // Calculates the GPC law given by Eq. 12.36 on page
       446.
2 // 12.5
4 function [K,KH1,KH2,Tc,dTc,Sc,dSc,R1,dR1] = ...
5 \text{ gpc}_N(A,dA,B,dB,k,N1,N2,Nu,rho)
6 D=[1 -1]; dD=1; AD=convol(A,D); dAD=dA+1;
7 zj = 1; dzj = 0;
8 \text{ for } i = 1:N1+k-1
       zj = convol(zj,[0,1]); dzj = dzj + 1;
10 \text{ end}
11 G = zeros(N2-N1+1, Nu+1);
12 H1 = zeros(N2-N1+1,k-1+dB); H2 = zeros(N2-N1+1,dA+1)
13 for j = k+N1:k+N2
       zj = convol(zj,[0,1]); dzj = dzj + 1;
15
       [Fj,dFj,Ej,dEj] = xdync(zj,dzj,AD,dAD,1,0);
16
       [Gj,dGj] = polmul(B,dB,Ej,dEj);
17
       if (j-k >= Nu)
       G(j-(k+N1-1),1:Nu+1) = flip(Gj(j-k-Nu+1:j-k+1));
18
19 else
       G(j-(k+N1-1),1:j-k+1) = flip(Gj(1:j-k+1));
20
21 end
22
       H1(j-(k+N1-1),1:k-1+dB) = Gj(j-k+2:j+dB);
23
       H2(j-(k+N1-1),1:dA+1) = Fj;
24 end
25 K = inv(G'*G+rho*eye(Nu+1,Nu+1))*G';
26 // Note: inverse need not be calculated
27 \text{ KH1} = \text{K} * \text{H1}; \text{KH2} = \text{K} * \text{H2};
28 R1 = [1 \text{ KH1}(1,:)]; dR1 = length(R1)-1;
29 Sc = KH2(1,:); dSc = length(Sc)-1;
30 Tc = K(1,:); dTc = length(Tc)-1;
31 endfunction;
```

Scilab code Exa 12.6 Calculates the GPC law

```
1 // Calculates the GPC law given by Eq. 12.36 on page
       446.
  // 12.6
4 function [K, KH1, KH2, Tc, dTc, Sc, dSc, R1, dR1] = ...
5 \text{ gpc\_col}(A,dA,B,dB,C,dC,N,k,rho)
6 D = [1 -1]; dD = 0; AD = convol(A, D); dAD = dA + 1; zj = 1;
      dzj=0;
7 Nu = N+1; G=zeros(Nu,Nu); H1=zeros(Nu,2*k+N-2+dB);
8 \text{ H2} = zeros(Nu,k+N+dA);
9 \text{ for } j = 1:Nu,
        zj = convol(zj,[0,1]); dzj = dzj + 1;
10
11
        [Fj,dFj,Ej,dEj] = \dots
12
            xdync(zj,dzj,AD,dAD,C,dC);
13
        [Nj,dNj,Mj,dMj] = ...
            xdync(zj,dzj,C,dC,1,0);
14
15
        [Gj,dGj] = polmul(Mj,dMj,Ej,dEj);
16
        [Gj,dGj] = polmul(Gj,dGj,B,dB);
17
        [Pj,dPj] = polmul(Mj,dMj,Fj,dFj);
        [Pj,dPj] = poladd(Nj,dNj,Pj,dPj);
18
19
        j, Fj, Ej, Mj, Nj, Gj, Pj
       G(j,1:j) = flip(Gj(1:j));
20
21
       H1(j,1:dGj-j+1) = Gj(j+1:dGj+1);
       H2(j,1:dPj+1) = Pj;
22
23 end
24 K = inv(G'*G+rho*eye(Nu,Nu))*G'
25 // Note: inverse need not be calculated
26 \text{ KH1} = \text{K} * \text{H1}; \text{KH2} = \text{K} * \text{H2};
27 R1 = [1 KH1(1,:)]; dR1 = length(R1)-1;
28 Sc = KH2(1,:); dSc = length(Sc)-1;
29 Tc = K(1,:); dTc = length(Tc)-1;
30 endfunction;
```

Scilab code Exa 12.7 GPC design for viscosity control

```
// GPC design for viscosity control in Example 12.4
      on page 446.
   // 12.7
4 \operatorname{exec}('\operatorname{gpc\_col.sci}', -1);
5 exec('poladd.sci',-1);
6 exec('xdync.sci',-1);
7 exec('rowjoin.sci',-1);
8 exec('polsize.sci',-1);
9 \operatorname{exec}('\operatorname{left\_prm.sci}', -1);
10 exec('t1calc.sci',-1);
11 exec('indep.sci',-1);
12 \operatorname{exec}(\operatorname{'seshft.sci'},-1);
13 exec('makezero.sci',-1);
14 exec('move_sci.sci',-1);
15 exec('colsplit.sci',-1);
16 exec('clcoef.sci',-1);
17 exec('cindep.sci',-1);
18 exec('polmul.sci',-1);
19 exec('flip.sci',-1);
20
21 // GPC control of viscosity problem
22 A = [1 -0.44]; dA = 1; B = [0.51 1.21]; dB = 1; N = 2; k = 1;
23 C = [1 -0.44]; dC = 1; rho = 1;
24
25 \quad [K,KH1,KH2,Tc,dTc,Sc,dSc,R1,dR1] = \dots
26 \text{ gpc\_col}(A,dA,B,dB,C,dC,N,k,rho)
```

Scilab code Exa 12.8 GPC design

```
1 // GPC design for the problem discussed in Example
      12.3.
2 // 12.8
3
4 exec('gpc_Nc.sci',-1);
5 exec('xdync.sci',-1);
6 exec('rowjoin.sci',-1);
7 exec('polsize.sci',-1);
8 exec('left_prm.sci',-1);
9 exec('t1calc.sci',-1);
10 exec('indep.sci',-1);
11 exec('seshft.sci',-1);
12 exec('makezero.sci',-1);
13 exec('move_sci.sci',-1);
14 exec('colsplit.sci',-1);
15 exec('clcoef.sci',-1);
16 exec('cindep.sci',-1);
17 exec('polmul.sci',-1);
18 exec('poladd.sci',-1);
19 exec('flip.sci',-1);
20
21 A = [1 -0.44]; dA = 1; B = [0.51 1.21]; dB = 1;
22 C = [1 -0.44]; dC = 1;
23 k=1; N1 = 0; N2 = 2; Nu = 0; rho = 1;
24
25 \quad [K,KH1,KH2,Tc,dTc,Sc,dSc,R1,dR1] = \dots
26 \text{ gpc_Nc}(A,dA,B,dB,C,dC,k,N1,N2,Nu,rho)
```

Scilab code Exa 12.9 Calculates the GPC law

```
1 // Calculates the GPC law for different prediction
        and control horizons
2 // 12.9
3
4 function [K,KH1,KH2,Tc,dTc,Sc,dSc,R1,dR1] = ...
```

```
5 \text{ gpc}_{NC}(A, dA, B, dB, C, dC, k, N1, N2, Nu, rho)
6 D=[1 -1]; dD=1; AD=convol(A,D); dAD=dA+1;
7 zj = 1; dzj = 0;
8 \text{ for } i = 1:N1+k-1
9
       zj = convol(zj,[0,1]); dzj = dzj + 1;
10 end
11 M = 2*k+N2-2+dB; P = \max(k+N2+dA-1, dC-1)
12 G = zeros(N2-N1+1, Nu+1); H1 = zeros(N2-N1+1, M);
13 H2 = zeros(N2-N1+1,P+1);
14 \text{ for } j = k+N1:k+N2
       zj = convol(zj,[0,1]); dzj = dzj + 1;
15
       [Fj,dFj,Ej,dEj] = xdync(zj,dzj,AD,dAD,C,dC);
16
17
        [Nj,dNj,Mj,dMj] = xdync(zj,dzj,C,dC,1,0);
18
       [Gj,dGj] = polmul(Mj,dMj,Ej,dEj);
19
        [Gj,dGj] = polmul(Gj,dGj,B,dB);
20
        [Pj,dPj] = polmul(Mj,dMj,Fj,dFj);
21
        [Pj,dPj] = poladd(Nj,dNj,Pj,dPj);
22
       if (j-k >= Nu)
       G(j-(k+N1-1),1:Nu+1) = flip(Gj(j-k-Nu+1:j-k+1));
23
24 else
25
       G(j-(k+N1-1),1:j-k+1) = flip(Gj(1:j-k+1));
26 \text{ end}
27
       H1(j-(k+N1-1),1:j+k-2+dB) = Gj(j-k+2:2*j+dB-1);
       dPj = \max(j-1+dA, dC-1);
28
29
       H2(j-(k+N1-1),1:dPj+1) = Pj;
30 end
31 K = inv(G'*G+rho*eye(Nu+1,Nu+1))*G';
32 // Note: inverse need not be calculated
33 \text{ KH1} = \text{K} * \text{H1}; \text{KH2} = \text{K} * \text{H2};
34 R1 = [1 KH1(1,:)]; dR1 = length(R1)-1;
35 Sc = KH2(1,:); dSc = length(Sc)-1;
36 \text{ Tc} = K(1,:); dTc = length(Tc)-1;
37 endfunction:
```

Scilab code Exa 12.10 PID controller tuned with GPC

```
1 // PID controller, tuned with GPC, as discussed in
      Example 12.5 on page 452.
2 // 12.10
3
4 exec('gpc_pid.sci',-1);
5 exec('zpowk.sci',-1);
6 exec('xdync.sci',-1);
7 exec('rowjoin.sci',-1);
8 exec('polsize.sci',-1);
9 exec('left_prm.sci',-1);
10 \operatorname{exec}('t1\operatorname{calc.sci}',-1);
11 exec('indep.sci',-1);
12 exec('seshft.sci',-1);
13 exec('makezero.sci',-1);
14 exec('move_sci.sci',-1);
15 exec('colsplit.sci',-1);
16 exec('clcoef.sci',-1);
17 exec('cindep.sci',-1);
18
19 A = [1 -1.95 0.935];
20 B = -0.015;
21 C=1;
22 degA=2;
23 \text{ degB=0};
24 \text{ degC=0};
25 \text{ N1=1};
26 \text{ N2=5};
27 \text{ Nu} = 2;
28 \text{ gamm} = 0.05;
29 gamma_y=1;
30 \quad lambda=0.02;
31
32 \quad [Kp,Ki,Kd] = \dots
33 gpc_pid(A,degA,B,degB,C,degC,N1,N2,Nu,lambda,gamm,
      gamma_y)
```

Scilab code Exa 12.11 Predictive PID tuned with GPC

```
1 // Predictive PID, tuned with GPC, as explained in
      Sec. 12.2.3.
2 // 12.11
3
4 \quad function \quad [Kp,Ki,Kd] = ...
5 gpc_pid(A,dA,B,dB,C,dC,N1,N2,Nu,lambda,gamm,gamma_y)
6 Adelta=convol(A,[1 -1]); G=[];
7 \quad for \quad i = N1:N2
8
       zi=zpowk(i);
9
       [E, dE, F, dF] = xdync(Adelta, dA+1, zi, i, C, dC);
10
       [Gtilda, dGtilda, Gbar, dGbar] = ...
          xdync(C,dC,zi,i,E*B,dE+dB);
11
12
       for j = 1:i, Gtilda1(j)=Gtilda(i+1-j); end
       Gtilda2 = Gtilda1.'; // Added because Scilab
13
           forms a column vecor
       // while Matlab forms a row vector, by default
14
15
            if i \le Nu-1
16
           G=[G;[Gtilda2,zeros(1,Nu-i)]];
17
       else
18
           G=[G;Gtilda2(1:Nu)];
19
       end
20 end
  es=sum(C)/sum(A); gs=sum(B)/sum(A); F_s=es*A; G_s
      =[];
22
  for i=1:Nu
       if ((Nu - i) == 0)
23
24
       row=gs*ones(1,i);
25
       row=gs*ones(1,i); row=[row,zeros(Nu-i,Nu-i)];
26
27
       end:
28
       G_s=[G_s;row];
29 \text{ end}
```

```
30 lambda_mat=lambda*(diag(ones(1,Nu)));
31 gamma_mat=gamm*(diag(ones(1,Nu)));
32 gamma_y_mat = gamma_y*(diag(ones(1,N2-N1+1)));
33 mat1=inv(G'*gamma_y_mat*G+lambda_mat+G_s'*gamma_mat*
      G_s);
34 mat2=mat1*(G',*gamma_y_mat);
35 mat2_s=mat1*(G_s'*gamma_mat);
36 \text{ h_s=sum}(\text{mat2_s}(1,:)); \text{ h=mat2}(1,:);
37 T=C; R=C*(sum(h(:))+h_s); S=0;
38 for i=N1:N2
39
       zi=zpowk(i);
        [E, dE, F, dF] = xdync(Adelta, dA+1, zi, i, C, dC);
40
41
        [Gtilda, dGtilda, Gbar, dGbar] = ...
          xdync(C,dC,zi,i,E*B,dE+dB);
42
       S=S+F*h(i);
43
44 end
45 \quad S=S+F_s*h_s;
46 if length(A) == 3
      Kp=S(1)-R-S(3); Ki=R; Kd=S(3);
47
48 else
49
      Kp=S(1)-R; Ki=R; Kd=0;
50 end
51
52 endfunction;
```

Chapter 13

Linear Quadratic Gaussian Control

Scilab code Exa 13.1 Spectral factorization

Scilab code Exa 13.2 Function to implement spectral factorization

```
1 // Function to implement spectral factorization, as
      discussed in sec. 13.1.
2 // 13.2
3
4 function [r,b,rbbr] = spec1(A,dA,B,dB,rho)
5 \text{ AA} = \text{rho} * \text{convol}(A, \text{flip}(A));
6 BB = convol(B,flip(B));
7 \text{ diff1} = dA - dB;
8 	 dBB = 2*dB;
9 \text{ for } i = 1:diff1
        [BB,dBB] = polmul(BB,dBB,[0 1],1);
10
12 [rbbr,drbbr] = poladd(AA,2*dA,BB,dBB);
13 rts = roots(rbbr); // roots in descending order of
      magnitude
14 rts = flip(rts);
15 rtsin = rts(dA+1:2*dA);
16 b = 1;
17 \text{ for } i = 1:dA,
       b = convol(b, [1 - rtsin(i)]);
19 end
20 \text{ br = flip(b)};
21 bbr = convol(b,br);
22 r = rbbr(1) / bbr(1);
23 endfunction;
```

Scilab code Exa 13.3 Spectral factorization

```
1 // Spectral factorization , to solve Eq. 13.47 on page 471.  
2 // 13.3  
3  
4 // function [r,b,dAFW] = ...  
5 // specfac (A,degA,B,degB,rho,V,degV,W,degW,F,degF)
```

```
6 // Implements the spectral factorization for use
      with LQG control
7 // design method of Ahlen and Sternard
9 function [r,b,dAFW] = ...
       specfac(A,degA,B,degB,rho,V,degV,W,degW,F,degF)
10
11 AFW = convol(A, convol(W,F));
12 \text{ dAFW} = \text{degA} + \text{degF} + \text{degW};
13 AFWWFA = rho * convol(AFW, flip(AFW));
14 BV = convol(B,V);
15 \text{ dBV} = \text{degB} + \text{degV};
16 BVVB = convol(BV, flip(BV));
17 \text{ diff1} = \text{dAFW} - \text{dBV};
18 \text{ dBVVB} = 2*\text{dBV};
19 \quad for \quad i = 1:diff1
        [BVVB,dBVVB] = polmul(BVVB,dBVVB,[0 1],1);
20
21 end
22 [rbb,drbb] = poladd(AFWWFA,2*dAFW,BVVB,dBVVB);
23 Rbb = polyno(rbb, z');
24 rts = roots(Rbb);
25 rtsin = rts(dAFW+1:2*dAFW);
26 b = 1;
27 \text{ for } i = 1:dAFW,
28
        b = convol(b, [1 - rtsin(i)]);
29 end
30 b = real(b);
31 \text{ br = flip(b)};
32 bbr = convol(b,br);
33 r = rbb(1) / bbr(1);
34 endfunction;
```

Scilab code Exa 13.4 LQG control design by polynomial method

```
1 // LQG control design by polynomial method, to solve Eq. 13.51 on page 472.
```

```
2 // 13.4
4 // LQG controller design by method of Ahlen and
      Sternad
5 // \text{ function } [R, \deg R, S, \deg S] = \dots
6 // lqg(A, degA, B, degB, C, degC, k, rho, V, degV, W, degW, F,
      degF)
7
8 function [R, degR, S, degS] = ...
9 lqg1(A,degA,B,degB,C,degC,k,rho,V,degV,W,degW,F,degF
      )
10
11 [r,b,degb] = ...
12 specfac(A,degA,B,degB,rho,V,degV,W,degW,F,degF);
13
14 WFA = flip(convol(A, convol(F, W)));
15 \text{ dWFA} = \text{degW} + \text{degF} + \text{degA};
16
17 [rhs1,drhs1] = polmul(W,degW,WFA,dWFA);
18 [rhs1, drhs1] = polmul(rhs1, drhs1, C, degC);
19 \text{ rhs1} = \text{rho} * \text{rhs1};
20 rhs2 = convol(C, convol(V, flip(convol(B, V))));
21 \text{ drhs2} = \text{degC} + 2*\text{degV} + \text{degB};
22 for i = 1:degb-degB-degV,
23
     rhs2 = convol(rhs2,[0,1]);
24 end
25 drhs2 = drhs2 + degb-degB-degV;
26 \text{ C1} = zeros(1,2);
27
28 [C1,degC1] = putin(C1,0,rhs1,drhs1,1,1);
29 [C1, degC1] = putin(C1, degC1, rhs2, drhs2, 1, 2);
30 \text{ rbf} = r * flip(b);
31 D1 = zeros(2,2);
32 [D1,degD1] = putin(D1,0,rbf,degb,1,1);
33 \text{ for } i = 1:k,
        rbf = convol(rbf,[0 1]);
34
35 end
36 \quad [D1, degD1] = putin(D1, degD1, rbf, degb+k, 2, 2);
```

```
37 N = zeros(1,2);
38 [N,degN] = putin(N,0,-B,degB,1,1);
39 [AF,dAF] = polmul(A,degA,F,degF);
40 [N,degN] = putin(N,degN,AF,dAF,1,2);
41
42 [Y,degY,X,degX] = xdync(N,degN,D1,degD1,C1,degC1);
43
44 [R,degR] = ext(X,degX,1,1);
45 [S,degS] = ext(X,degX,1,2);
46 X = flip(Y);
47
48 endfunction;
```

Scilab code Exa 13.5 LQG design

```
1 // LQG design for the problem discussed in Example
     13.4 on page 472.
2
  // 13.5
3
4 // MacGregor's first control problem
6 exec('lqg1.sci',-1);
7 exec('cl.sci',-1);
8 exec('specfac.sci',-1);
9 exec('flip.sci',-1);
10 exec('polmul.sci',-1);
11 exec('polsize.sci',-1);
12 exec('poladd.sci',-1);
13 exec('polyno.sci',-1);
14 exec ('putin.sci',-1);
15 exec('xdync.sci',-1);
16 exec('rowjoin.sci',-1);
17 exec('left_prm.sci',-1);
18 exec('t1calc.sci',-1);
19 exec('indep.sci',-1);
```

```
20 exec('seshft.sci',-1);
21 exec('makezero.sci',-1);
22 exec('move_sci.sci',-1);
23 exec('colsplit.sci',-1);
24 \operatorname{exec}('\operatorname{clcoef}.\operatorname{sci}',-1);
25 exec('cindep.sci',-1);
26 exec('ext.sci',-1);
27 exec ('zpowk.sci',-1);
28 exec('tfvar.sci',-1);
29 exec('l2r.sci',-1);
30 exec('transp.sci',-1);
31 exec('tf.sci',-1);
32 exec ('covar_m.sci',-1);
33
34 A = [1 -1.4 0.45]; dA = 2; C = [1 -0.5]; dC = 1;
35 B = 0.5*[1 -0.9]; dB = 1; k = 1; int1 = 0; F = 1; dF
       = 0;
36 V = 1; W = 1; dV = 0; dW = 0;
37 \text{ rho} = 1;
   [R1,dR1,Sc,dSc] = lqg1(A,dA,B,dB,C,dC,k,rho,V,dV,W,
      dW,F,dF)
39
   [Nu,dNu,Du,dDu,Ny,dNy,Dy,dDy,yvar,uvar] = ...
          cl(A,dA,B,dB,C,dC,k,Sc,dSc,R1,dR1,int1);
40
```

Scilab code Exa 13.6 LQG control design for viscosity control problem

```
1 // LQG control design for viscosity control problem
         discussed in Example 13.5.
2 // 13.6
3
4
5 exec('lqg1.sci',-1);
6 exec('cl.sci',-1);
7 exec('specfac.sci',-1);
8 exec('flip.sci',-1);
```

```
9 exec('polmul.sci',-1);
10 exec('polsize.sci',-1);
11 exec('poladd.sci',-1);
12 exec ('polyno.sci',-1);
13 exec('putin.sci',-1);
14 exec ('xdync.sci',-1);
15 exec('rowjoin.sci',-1);
16 \operatorname{exec}('\operatorname{left\_prm.sci}', -1);
17 exec('t1calc.sci',-1);
18 exec('indep.sci',-1);
19 exec('seshft.sci',-1);
20 exec('makezero.sci',-1);
21 exec('move_sci.sci',-1);
22 exec('colsplit.sci',-1);
23 exec('clcoef.sci',-1);
24 exec('cindep.sci',-1);
25 exec('ext.sci',-1);
26 exec('zpowk.sci',-1);
27 exec('tfvar.sci',-1);
28 exec('l2r.sci',-1);
29 exec('transp.sci',-1);
30 \, \text{exec}('tf.sci',-1);
31 exec('covar_m.sci',-1);
32
33 // Viscosity control problem of MacGregor
34 A = [1 -0.44]; dA = 1; B = [0.51 1.21]; dB = 1;
35 \text{ C} = [1 -0.44]; \text{ dC} = 1; \text{ k} = 1; \text{ int1} = 1; \text{ F} = [1 -1];
      dF = 1;
36 V = 1; W = 1; dV = 0; dW = 0;
37 \text{ rho} = 1;
38
   [R1,dR1,Sc,dSc] = lqg1(A,dA,B,dB,C,dC,k,rho,V,dV,W,
      dW,F,dF);
39
   [Nu,dNu,Du,dDu,Ny,dNy,Dy,dDy,yvar,uvar] = ...
40
       cl(A,dA,B,dB,C,dC,k,Sc,dSc,R1,dR1,int1);
```

Scilab code Exa 13.7 Simplified LQG control design

```
1 // Simplified LQG control design, obtained by the
      solution of Eq. 13.53 on page 476.
2 // 13.7
4 // LQG controller simple design by method of Ahlen
      and Sternad
  // function [R1, dR1, S, dS] = ...
  // \log_{-} \sin p \log (A, dA, B, dB, C, dC, k, rho, V, dV, W, dW, F, dF)
8 \text{ function } [R1,dR1,S,dS] = \dots
9 lqg_simple(A,dA,B,dB,C,dC,k,rho,V,dV,W,dW,F,dF)
10 [r,b,db] = specfac(A,dA,B,dB,rho,V,dV,W,dW,F,dF);
11 [D, dD] = polmul(A, dA, F, dF);
12 [zk,dzk] = zpowk(k);
[N,dN] = polmul(zk,dzk,B,dB);
14 [RHS, dRHS] = polmul(C, dC, b, db);
15 [S,dS,R1,dR1] = xdync(N,dN,D,dD,RHS,dRHS);
16 endfunction;
```

Scilab code Exa 13.8 LQG control design

```
// LQG control design for the problem discussed in
Example 13.6 on page 474.
// 13.8
// Solves Example 3.1 of Ahlen and Sternad in Hunt's
book
exec('lqg1.sci',-1);
exec('specfac.sci',-1);
exec('flip.sci',-1);
exec('polmul.sci',-1);
exec('polmul.sci',-1);
exec('polsize.sci',-1);
exec('poladd.sci',-1);
```

```
11 exec ('polyno.sci',-1);
12 exec('putin.sci',-1);
13 exec('clcoef.sci',-1);
14 exec ('xdync.sci',-1);
15 exec('rowjoin.sci',-1);
16 \operatorname{exec}('\operatorname{left_prm.sci}', -1);
17 \operatorname{exec}('\operatorname{tlcalc.sci}', -1);
18 exec('indep.sci',-1);
19 exec('seshft.sci',-1);
20 exec('makezero.sci',-1);
21 exec('move_sci.sci',-1);
22 exec('colsplit.sci',-1);
23 exec('cindep.sci',-1);
24 \operatorname{exec}(\operatorname{'ext.sci'},-1);
25
26 A = [1 -0.9]; dA = 1; B = [0.1 0.08]; dB = 1;
27 \text{ k} = 2; \text{ rho} = 0.1; \text{ C} = 1; \text{ dC} = 0;
28 V = 1; dV = 0; F = 1; dF = 0; W = [1 -1]; dW = 1;
29 [R1, dR1, Sc, dSc] = ...
30 lqg1(A,dA,B,dB,C,dC,k,rho,V,dV,W,dW,F,dF)
```

Scilab code Exa 13.9 Performance curve for LQG control design of viscosity problem

```
// Performance curve for LQG control design of
    viscosity problem
// 13.9

exec('lqg1.sci',-1);
exec('specfac.sci',-1);
exec('flip.sci',-1);
exec('polmul.sci',-1);
exec('polsize.sci',-1);
exec('polsize.sci',-1);
exec('poladd.sci',-1);
exec('polyno.sci',-1);
```

```
11 exec('putin.sci',-1);
12 exec('clcoef.sci',-1);
13 exec('xdync.sci',-1);
14 exec('rowjoin.sci',-1);
15 \operatorname{exec}('\operatorname{left_prm}.\operatorname{sci}',-1);
16 exec('t1calc.sci',-1);
17 exec('indep.sci',-1);
18 exec('seshft.sci',-1);
19 exec('makezero.sci',-1);
20 exec('move_sci.sci',-1);
21 exec('colsplit.sci',-1);
22 exec('cindep.sci',-1);
23 exec('ext.sci',-1);
24 exec('cl.sci',-1);
25 exec ('zpowk.sci',-1);
26 exec('tfvar.sci',-1);
27 exec('l2r.sci',-1);
28 exec('transp.sci',-1);
29 exec('tf.sci',-1);
30 exec('covar_m.sci',-1);
31
32 // MacGregor's Viscosity control problem
33 A = [1 -0.44]; dA = 1; B = [0.51 1.21]; dB = 1;
34 \ C = [1 -0.44]; \ dC = 1; \ k = 1; \ int1 = 1; \ F = [1 -1];
      dF = 1;
35 V = 1; W = 1; dV = 0; dW = 0;
36 u_lqg = []; y_lqg =[]; uy_lqg = [];
37
38 \text{ for } \text{rho} = 0.001:0.1:3,
        [R1, dR1, Sc, dSc] = lqg1(A, dA, B, dB, C, dC, k, rho, V, dV)
39
           , W , dW , F , dF );
40
        [Nu,dNu,Du,dDu,Ny,dNy,Dy,dDy,yvar,uvar] = ...
            cl(A,dA,B,dB,C,dC,k,Sc,dSc,R1,dR1,int1);
41
42
       u_lqg = [u_lqg uvar]; y_lqg = [y_lqg yvar];
       uy_lqg = [uy_lqg; [rho uvar yvar]];
43
44 end
45 plot(u_lqg,y_lqg,'g')
46 save('lqg_visc.dat','uy_lqg');
```

Scilab code Exa 13.10 Performance curve for GMVC design of first control problem by MacGregor

```
// Performance curve for GMVC design of MacGregor's
      first control problem
  // 13.10
3
4 exec('gmv.sci',-1);
5 exec('xdync.sci',-1);
6 exec('rowjoin.sci',-1);
7 exec('polsize.sci',-1);
8 exec('left_prm.sci',-1);
9 exec('t1calc.sci',-1);
10 exec('indep.sci',-1);
11 exec('seshft.sci',-1);
12 exec('makezero.sci',-1);
13 exec('move_sci.sci',-1);
14 exec('colsplit.sci',-1);
15 exec('clcoef.sci',-1);
16 exec('cindep.sci',-1);
17 exec('polmul.sci',-1);
18 exec('poladd.sci',-1);
19 exec('cl.sci',-1);
20 exec('zpowk.sci',-1);
21 exec('tfvar.sci',-1);
22 exec('l2r.sci',-1);
23 exec('transp.sci',-1);
24 exec('tf.sci',-1);
25 exec('covar_m.sci',-1);
26
27 // MacGregor's first control problem
28 A = [1 -1.4 0.45]; dA = 2; C = [1 -0.5]; dC = 1;
29 B = 0.5*[1 -0.9]; dB = 1; k = 1; int1 = 0;
30 \text{ u\_gmv} = []; \text{ y\_gmv} = []; \text{ uy\_gmv} = [];
```

Chapter 14

State Space Techniques in Controller Design

Scilab code Exa 14.1 Pole placement controller for inverted pendulum

```
1 // Pole placement controller for inverted pendulum,
      discussed in Example 14.1 on page 490. 2.1 should
       be executed before starting this code
2 // 14.1
4 exec('pol2cart.sci',-1);
6 \ C = eye(4,4);
7 D = zeros(4,1);
8 \text{ Ts} = 0.01;
9 G = syslin('c', A, B, C, D);
10 H = dscr(G,Ts);
11 [a,b,c,d] = H(2:5);
12 rise = 5; epsilon = 0.1;
13 N = rise/Ts;
14 omega = \%pi/2/N;
15 r = epsilon^(omega/%pi);
16 \text{ r1} = \text{r}; \text{r2} = 0.9*\text{r};
17 [x1,y1] = pol2cart(omega,r1);
```

```
18 [x2,y2] = pol2cart(omega,r2);
19 p1 = x1+%i*y1;
20 p2 = x1-%i*y1;
21 p3 = x2+%i*y2;
22 p4 = x2-%i*y2;
23 P = [p1;p2;p3;p4];
24 K = ppol(a,b,P)
```

Scilab code Exa 14.2 Compensator calculation

```
1 // Compensator calculation for Example 14.6 on page
      507.
2 // 14.2
3
4 exec('polyno.sci',-1);
5 exec('polmul.sci',-1);
6 exec('polsize.sci',-1);
8 A = [1 2; 0 3]; c = [1 0];
9 p = roots(polyno([1 -0.5 0.5], 'z'));
10 b = [0; 1];
11 K = ppol(A,b,p);
12
13 p1=0.1+0.1*\%i; p2=0.1-0.1*\%i;
14 phi = real(convol([1 -p1],[1 -p2]));
15 Obs = [c; c*A];
16 alphae = A^2-0.2*A+0.02*eye(2,2);
17 Lp = alphae*inv(Obs)*[0; 1];
18 Lp = ppol([1 0;2 3], ...
19 [1; 0], [0.1+0.1*%i 0.1-0.1*%i]);
20 Lp = Lp';
21
22 C = [1 0 0.5 2; 0 1 -4.71 2.8];
23 \text{ dC} = 1;
24
```

```
25 [HD,dHD] = polmul(K,0,C,dC);
26 [HD,dHD] = polmul(HD,dHD,Lp,0);
```

Scilab code Exa 14.3 Kalman filter example of estimating a constant

```
1 // Kalman filter example of estimating a constant,
      discussed in Example 14.7.
2 // 14.3
3
4 exec('kal_ex.sci',-1);
6 \times = 5; xhat = 2; P = 1; xvec = x;
7 xhat_vec = xhat; Pvec = P; yvec = x;
8 \text{ for } i = 1:200,
9
       xline = xhat; M = P;
       [xhat,P,y] = kal_ex(x,xline,M);
10
11
       xvec = [xvec;x];
12
       xhat_vec = [xhat_vec;xhat];
       Pvec = [Pvec;P]; yvec = [yvec;y];
14 end
15 n = 1:201;
16 plot(Pvec);
17 xtitle('', 'n');
18 halt();
19 clf();
20 plot(n,xhat_vec',n,yvec',n,xvec');
21 xtitle('', 'n');
```

Scilab code Exa 14.4 Kalman filter example of estimating a constant

```
1 // Kalman filter example of estimating a constant 2 // 14.4 3
```

```
4 function [xhat,P,y] = kal_ex(x,xline,M)
5 y = x + rand();
6 Q = 0; R = 1;
7 xhat_ = xline;
8 P_ = M + Q;
9 K = P_/(P_+R);
10 P = (1-K)*P_;
11 xhat = xhat_ + K*(y-xhat_);
12 endfunction;
```