Reinforcement Learning II

Agent-environment Interaction

Agent at each step t...

Encounters state, s_t Executes action a_t Receives scalar reward, r_{t+1}

Environment at each step t...

Receives action a_t Transitions to state, s_{t+1} Emits scalar reward, r_{t+1}

Actions: choices made by the agent **States**: basis on which choices are made **Rewards**: define the agent's goals

David Silver, 2015

Reinforcement Learning Components

Policy (agent behavior), $\pi(s)$

Reward function (the goal), r_t

Value functions (expected returns), v(s) State value

q(s,a) Action value

Maze Example: Policy, Value, and Reward

Each location in the maze represents a **state**

The **reward** is -1 for each step the agent is in the maze

Available **actions**: move $\uparrow,\downarrow,\leftarrow,\rightarrow$ (as long as that path is not blocked)

(which actions to take in each state)

Start

(which actions to take in each state)

Reward r_t

(rewards are received after actions are taken)

Start

Start

	1		
-1	-1	-1	-1
-1		۲-	
	-1	-1	-1
	-1		-1
-1	-1		-1
			Exit

(which actions to take in each state)

Start

Reward r_t

(rewards are received after actions are taken)

Start

	1		
-1	1	-1	-1
-1		-1	
	-1	-1	-1
	-1		-1
-1	-1		-1
			Exit

State Value $v_{\pi}(s)$

(expected cumulative rewards starting from current state if we follow the policy)

Start

	-8		
-8	-7	6	-7
-9		- 5	
	-5	-4	-3
	-6		-2
-8	-7		-1
			Exit

Adapted from David Silver, 2015

Kyle Bradbury

Policy

Policy, $\pi(s)$

- Selects an action to choose based on the state
- Determines an agent's "behavior"

Deterministic policy:

$$a = \pi(s)$$

Stochastic policy:

$$\pi(a|s) = P(a_t = a|s_t = s)$$

Helps us "explore" the state space

RL tries to learn the "best" policy

Goals and rewards

Rewards are the only way of communicating RL goals

Ex 1: Robot learning a maze

- 0 until it escapes, then +1 when it does
- -1 until it escapes (encourages it to escape quickly)

Ex 2: Robot collecting empty soda cans

- +1 for each empty soda can
- Negative rewards for bumping into things

Chess: what if we set +1 for capturing a piece? (it may not win the game and still maximize rewards)

What you want achieved not how

Returns / cumulative reward

Episodic tasks (finite number, T, of steps, then reset)

$$G_t = r_{t+1} + r_{t+2} + \dots + r_T$$

Continuing tasks with discounting $(T \rightarrow \infty)$

$$G_t=r_{t+1}+\gamma r_{t+2}+\gamma^2 r_{t+3} \ldots=\sum_{k=0}^\infty \gamma^k r_{t+k+1}$$
 where $0\leq \gamma\leq 1$ is the discount rate

This makes the agent care more about immediate rewards

Value functions

State Value function, $v_{\pi}(s)$

- How "good" is it to be in a state, s_t then follow policy π to choose actions
- Total expected rewards

$$v_{\pi}(s) = E_{\pi}[G_t|s_t = s]$$

Action Value function, $q_{\pi}(s, a)$

- How "good" is it to be in a state, s, take action a, then follow policy π to choose actions
- Total expected rewards

$$q_{\pi}(s, a) = E_{\pi}[G_t | s_t = s, a_t = a]$$

Where
$$G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

(which actions to take in each state)

Reward r_t

(rewards are received after actions are taken)

State Value $v_{\pi}(s)$

(expected cumulative rewards starting from current state **if** we follow the policy)

Action Value $q_{\pi}(s, a)$

(expected cumulative rewards starting from current state **if** we take action *a* then follow the policy)

Start

	\rightarrow		
\rightarrow	\rightarrow	\rightarrow	←
\uparrow		→	
	\rightarrow	\rightarrow	\
	←		\
\rightarrow	↑		1
			Exit

Start

- Ctart			
	-1		
-1	1	-1	-1
-1		-1	
	-1	-1	-1
	-1		-1
-1	-1		-1

Start

	-8		
-8	-7	-6	-7
-9		-5	
	-5	-4	-3
	-6		-2
-8	-7		-1

↑ -9 → -7 ← -9

Adapted from David Silver, 2015

Exit

Exit

Model

s_t Agent action a_t reward r_t Environment

Model (of the environment)

Transitions: predicts what state the environment will transition to next

$$P_{ss'}^a = P(s_{t+1} = s' | s_t = s, a_t = a)$$

Rewards: predicts the next reward given an action

$$R_s^a = E[r_{t+1}|s_t = s, a_t = a]$$

"Planning" is the process of using a model to create or improve a policy

We don't always have a full model of the environment

Model-based RL uses a model
Model-free RL does not use a model

Reinforcement Learning Components

Policy (determines agent behavior), $\pi(s)$

- Determines action given current state
- Agent's way of behaving at a given time

Reward function (sets the goal), r_t

- Maps state of the environment to a reward that describes the state desirability
- Objective is to maximize total rewards

Value (estimates expected returns), v(s), q(s,a)

- Expected returns from a state and following a specific policy
- How "good" is each state

Environment

Markov Decision Process

(assumed form for most RL problems)

Goal Maximize returns (expected rewards)

Find the best policy to guide our actions in an environment

Here, environment is modeled as a Markov Decision Process

Reinforcement Learning Roadmap

Environment Knowledge

Perfect knowledge

Known Markov Decision Process

No knowledge

Must learn from experience

Dynamic Programming

What's a Markov Decision Process? How do we find optimal policies?

Monte Carlo Control

How do we estimate our value functions? How do we use the value functions to choose actions?

Towards Markov Decisions Processes (MDPs)

History

The record of all that has happened in this system

Step 0: s_0 , a_0

Step 1: r_1, s_1, a_1

Step 2: r_2, s_2, a_2

•

Step T: r_t, s_t, a_t

History at time $t: H_t = \{s_t, a_t, r_{t-1}, s_{t-1}, a_{t-1}, \dots r_1, s_1, a_1, s_0, a_0\}$

Markov property

Instead of needing the full history:

$$H_t = \{s_t, a_t, r_{t-1}, s_{t-1}, a_{t-1}, \dots r_1, s_1, a_1, s_0, a_0\}$$

We can summarize everything in the current state

$$H_t = \{s_t, a_t\}$$

The future is independent of the past given the present

Another way of saying this is:

$$P(s_{t+1}|s_t) = P(s_{t+1}|s_t, s_{t-1}, \dots, s_1, s_0)$$

Example: student life

Two components: $\{S, P\}$

State space, S Transition matrix, P

State transition probabilities

			To state	
		1	2	3
state	1	p_{11}	p_{12}	p_{13}
ım st	2	p_{21}	p_{22}	p_{23}
F	3	P_{31}	p_{32}	p_{33}

Transitions out of each state sum to 1

			Io state		
		Netflix	Eat	Study	
ate	Netflix	8.0	0.2	0]	
m sta	Netflix Eat	0.3	0.1	0.6	
Froi	Study	L0.4	0.1	0.5	

Reinforcement Learning II

Example: student life

If we start in state 1, what's the probability we'll be in each state after one step?

$$P_1 = \begin{bmatrix} 0.8 & 0.2 & 0 \end{bmatrix}$$

This is the first row of the state transition probability matrix

Example: student life

If we started in state 1, we can calculate the probabilities of being in each state at step 1 as:

$$P_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^T \quad P_1 = P_0 P_{SS'}$$

$$P_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$

$$\mathbf{0.1} \qquad P_1 = \begin{bmatrix} 0.8 & 0.2 & 0 \end{bmatrix}$$

To state

$$\mathbf{1} P_1 = P_0 P_{ss'}$$

$$P_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$

$$P_1 = [0.8 \quad 0.2 \quad 0]$$

$$P_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^T = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^{0.4}$$
Study
$$\begin{bmatrix} \text{Study} \\ 3 \end{bmatrix} = \begin{bmatrix} 0.2 \\ 0.1 \end{bmatrix}$$

$$P_2 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$
 As $n \to \infty$, we identify our steady state probabilities

$$P_2 = \begin{bmatrix} 0.7 & 0.18 & 0.12 \end{bmatrix}$$

$$P_n = P_0 P_{ss'}^n$$

$$P_{\infty} = [0.64 \quad 0.16 \quad 0.20]$$

Markov Chains with absorbing state

Example: student life

Kyle Bradbury

Example: student life

Markov chains can be used to represent sequential discrete-time data

Can estimate long-term state probabilities

Can simulate state sequences based on the model

Markov property applies (current state gives you all the information you need about future states)

$$P(s_{t+1}|s_t) = P(s_{t+1}|s_t, s_{t-1}, \dots, s_1, s_0)$$

Valid if the system is **autonomous** and the states are **fully observable**

Hidden Markov Models

Example: student life

What if we don't directly observe what state the system is in, but instead observe a quantity that depends on the state?

Example: the student wears an EEG monitor, and we see readings of brain **0.1** activity.

Eat

Study

Netflix

States are hidden or latent variables

Markov Models

States are Fully Observable

States are **Partially Observable**

Autonomous

(no actions; make predictions)

Markov Chain, Markov Reward Process Hidden Markov Model (HMM)

Controlled

(can take actions)

Markov Decision Process (MDP)

Partially Observable
Markov Decision
Process (POMDP)

Applications

HMMs: time series ML, e.g. speech + handwriting recognition, bioinformatics

MDPs: used extensively for reinforcement learning

Building blocks for the full RL problem

1	Markov Chain	{state space <i>S</i> , transition probabilities <i>P</i> }
2	Markov Reward Process (MRP)	$\{S, P, + \text{ rewards } R, \text{ discount rate } \gamma\}$ adds rewards (and values)
3	Markov Decision Process (MDP)	$\{S, P, R, \gamma, + \text{ actions } A\}$ adds decisions (i.e. the ability to control)

MDPs form the basis for most reinforcement learning environments

Components: State space *S*,

Transition probabilities P

$$-P_{46} = P_{ss'}$$

Sample Episodes:

C1,C2,Sleep

C1,FB,FB,FB,C1,C2,C3,Pass,Sleep

*C*3

*C*2

State transition probability matrix, $P_{ss'}$

Pass

Pub

FΒ

0.4

Pub

R = +1

Components:

State space S, Transition probabilities, P

Rewards, R

Discount rate, γ

Recall that returns, let's call G_t , are the total discounted rewards from time t:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Components:

State space S, Transition probabilities, P

Rewards, R

Discount rate, γ

$$v(s)$$
 for $\gamma = 0$

State value function v(s)is the expected total reward (into the future)

$$v(s) = E[G_t | S = s_t]$$

Example from David Silver, UCL, 2015

33

R = +1

Components:

State space S, Transition probabilities, P

Rewards, R

Discount rate, γ

$$v(s)$$
 for $\gamma = 0.9$

State value function v(s)is the expected total reward (into the future)

$$v(s) = E[G_t | S = s_t]$$

Example from David Silver, UCL, 2015

0.4

0.9

-7.6

R = -1

0.5

R = -2

-5.0

Kyle Bradbury

"Backup" property of state value functions

$$v(s_t) = E[G_t|S = s_t] \quad \text{where } G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \dots$$

$$= E[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \dots |S = s_t]$$

$$= E[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} \dots) |S = s_t]$$

$$= E[R_{t+1} + \gamma G_{t+1} |S = s_t]$$

$$= E[R_{t+1} + \gamma v(s_{t+1}) |S = s_t]$$

This recursive relationship is a version of the **Bellman Equation**

State values are related to neighboring states

$$s \cap v(s)$$
 $r \cap v(s')$

possible states we could transition to from s

$$v(s) = E[R_s + \gamma v(s')|s]$$

$$v(s) = R_s + \gamma \sum_{s'} P_{ss'} v(s')$$

$$4.3 = -2 + 0.6 \times 10 + 0.4 \times 0.8$$

Notation:
$$s = s_t$$
 and $s' = s_{t+1}$
 $R_s = E[R_{t+1}|S_t = s]$

Example from David Silver, UCL, 2015

R = +1

3 Markov Decision Process **Facebook** R = -1Actions Facebook Quit Sleep R = 0R = 0R = -1Study Study Study R = +10R = -2R = -2Pub R = +10.4 0.2

Components:

State space S, Transition probabilities, P Rewards, R Discount rate, γ Actions, A

Adds interaction with the environment

An agent in a state chooses an action, the environment (the MDP) provides a reward and the next state

3 Markov Decision Process

Policy (how we choose actions)

(can be stochastic or deterministic)

$$\pi(a|s) = P(a|s)$$

State value function

(expected return from state s, and following policy π)

$$v_{\pi}(s) = E[G_t|s]$$

$$v_{\pi}(s) = E[R_s^a + \gamma v_{\pi}(s')|s]$$

Action value function

(expected return from state s, taking action a, and following policy π)

$$q_{\pi}(s,a) = E[G_t|s,a]$$

$$q_{\pi}(s,a) = E[R_s^a + \gamma q_{\pi}(s',a')|s,a]$$

$$R_s^a = E[r_{t+1}|S_t = s, A_t = a]$$

Bellman Expectation Equations for the state value function

(expected return from state s, and following policy π)

$$v_{\pi}(s) = E[G_t|s]$$

$$v_{\pi}(s) = E[R_s^a + \gamma v_{\pi}(s')|s]$$

$$R_s^a = E[R_{t+1}|S_t = s, A_t = a]$$

Expectation over the possible actions

Expectation over the rewards

(based on state and choice of action)

Expectation over the next possible states

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left(R_s^a + \gamma \sum_{s'} P_{ss'}^a v_{\pi}(s') \right)$$

Bellman Expectation Equations for the action value function

(expected return from state s, taking action a, then following policy π)

$$q_{\pi}(s,a) = E[G_t|s,a]$$

$$q_{\pi}(s,a) = E[R_s^a + \gamma q_{\pi}(s',a')|s,a]$$

$$R_s^a = E[R_{t+1}|S_t = s, A_t = a]$$

Expectation over the rewards

(based on state and choice of action)

Expectation over the next possible states

Expectation over the possible actions

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s'} P_{ss'}^a \sum_{a'} \pi(a'|s') q_{\pi}(s',a')$$

Bellman Expectation Equations

State value function

(expected return from state s, and following policy π)

$$v_{\pi}(s) = E[G_t|s]$$

$$v_{\pi}(s) = E[R_s^a + \gamma v_{\pi}(s')|s]$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left(R_s^a + \gamma \sum_{s'} P_{ss'}^a v_{\pi}(s') \right) \qquad q_{\pi}(s,a) = R_s^a + \gamma \sum_{s'} P_{ss'}^a \sum_{a'} \pi(a'|s') q_{\pi}(s',a')$$

Action value function

(expected return from state s, taking action a, then following policy π)

$$q_{\pi}(s,a) = E[G_t|s,a]$$

$$q_{\pi}(s,a) = E[R_s^a + \gamma q_{\pi}(s',a')|s,a]$$

$$q_{\pi}(s, a) = R_s^a + \gamma \sum_{s'} P_{ss'}^a \sum_{a'} \pi(a'|s') q_{\pi}(s', a')$$

Optimal state-value function, $v_*(s)$

Maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

Optimal state-value

function, $v_*(s)$ Maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

Optimal action-value function, $q_*(s,a)$

Maximum value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

Optimal **policy**, $\pi_*(s)$

Which action to take at each moment

$$\pi_*(s) = \arg\max_{a} q_*(s, a)$$

Once we have the optimal value functions, we've "solved" the MDP!

Reinforcement Learning Roadmap

Environment Of Knowledge

Perfect knowledge

Known Markov Decision Process

No knowledge

Must learn from experience

Dynamic Programming

What's a Markov Decision Process? How do we find optimal policies?

Monte Carlo Control

How do we estimate our value functions?

How do we use the value functions to choose actions?