Pontos mais próximos Projeto e Análise de Algoritmos

Eric Azevedo de Oliveira¹,

¹Instituto de Ciências Exatas e Informática - Pontifícia Universidade Católica Minas Gerais

1. Pontos mais próximos

O problema dos Pontos mais próximos consiste em um conjunto de **n** pontos em um plano com o intuito de encontrar o par de pontos mais proximos.

1.1. Representação

Figura 1. Pontos no Plano.

2. Sobre o Documento

Esse documento será dividido em oito partes abaixo discriminadas: [2.1] referenciando a máquina utilizada, [2.2] e [2.3] serão relacionados a dois diferentes custos computacionais na procura dos pontos mais próximos, sendo eles O(nlogn) e $O(n^2)$ com seus códigos, e a seção [2.4] sera as comparações desses dois métodos com os resultados de ambos, [2.5] como compilar e executar o código e a [2.6] como o trabalho foi separado.

2.1. Máquinas Utilizada

Processador: i5-3317U (4).

Memória: 8Gb.

GPU: Intel 3rd gen Core processador Grap.

Algorithm design —Jon Kleinberg, Éva Tardos

2.2. O(nlogn)

Com objetivo de alcançar a complexidade de $\mathbf{O}(nlogn)$, foi utilizado a estratégia de divisão e conquista, na qual se consiste em pegar o problema completo e dividi-lo em vários problemas menores, os quais são independentes, para não processar \mathbf{n} dados com outros \mathbf{n} .

Em virtude da divisão e conquista, com base na figura a cima, nosso plano foi dividido em 2 quadrantes, o ${\bf R}$ e o ${\bf Q}$, nessa divisão é realizado somente a ordenação por meio do algorítimo heapSort do array contendo os pontos do eixo ${\bf X}$ e lançado a mão ao ponto que está caracterizado na metade desse array.

Porém analisando somente analisando o eixo \mathbf{X} , temos um problema que aumenta a complexidade final de nosso algorítimo, conforme a imagem a seguir demonstra.

Algorithm design — Jon Kleinberg, Éva Tardos

Tentando evitar esse aumento de complexidade, além da realização da ordenação do eixo **X**, analisaremos a ordenação do eixo **Y**, tendo o foco de calcular menor distância de ambos quadrantes, por meio da recursão que é chamado delta.

Entretanto a utilização pos ordenacao do Y não dispensará que alguma distância na volta da recursão seja desconsiderada, impedindo que seja feita o cálculo desnecessário da distância dos pontos dos quadrantes com a distância delta.

Conforme relatado acima, utilizando a divisão e conquista, foi obtido as complexidades do heapShort() que é $\mathbf{O}(nlogn)$, quando reconstruimos o heap, e na utilização do algoritímo na parte da recursão , utilizando os eixos \mathbf{X} e \mathbf{Y} , é obtido a complexidade de $\mathbf{O}(\mathbf{n})$. Por esse motivo o algoritímo terá uma ordem de complexidade de $\mathbf{O}(nlogn)$.

Algorithm 1 Divisão e conquista

```
0: quantidade \leftarrow entrada

0: Pontos[] \leftarrow rand() * quantidade

0: y[] \leftarrow HeapSort(Pontos.Y)

0: M[] \leftarrow HeapSort(Pontos.X)

0: meio \leftarrow EncontrarPontoMID()

0: m
```

2.3. $O(n^2)$

Para alcançar a complexidade de $\mathbf{O}(n^2)$, é utilizado o algorítimo de força bruta, no qual irá calcular todas as distâncias entre pares de pontos e selecionar o par que tiver menor distância. Tendo a fórmula matemática para \mathbf{n} pontos, descrita como: n2

$$\frac{n!}{(n-2)! * 2!} = O(n^2)$$

Algorithm 2 força bruta

```
0: quantidade \leftarrow entrada

0: Pontos[] \leftarrow rand() * quantidade

0: X \leftarrow 0

0: \mathbf{while}\ quantidade \neq X\ \mathbf{do}

0: Y \leftarrow X

\mathbf{for}\ quantidade \neq Y\ \mathbf{do}

\mathbf{if}\ Ponto[X] == Ponto[Y]\ \mathbf{then}

menorDistancia \leftarrow distancia(Ponto[Y], Ponto[X])

\mathbf{end}\ \mathbf{if}

\mathbf{end}\ \mathbf{for}

\mathbf{end}\ \mathbf{while}

\mathbf{return}\ menorDistancia = 0
```

2.4. Resultados

 $\mathbf{O}(n^2)$

Pontos	tempo
10	0,055193s
1000	0,960028s
10000	5,399122s
100000	529,0015s

 $\mathbf{O}(nlogn)$

Pontos	tempo
10	0,000197s
1000	0,000237s
10000	0,000956s
100000	0,005584s

Com os resultados, utilizando a ideia de divisão e conquista, foi possível obter uma diferença gigantesca em relação ao tempo, contra os de força bruta, mas, em contrapartida o algorítimo de força bruta é muito mais simples de ser implementado, e quando utilizamos uma quantidade de pontos pequenas ele mesmo demorando um tempo maior seria funcional, pois ele da solução ótima.

2.5. Execução

Para executar o código basta compilar no terminal, e seguir as instruções que forem aparecendo.

2.6. Separação do trabalho

A separação do trabalho entre os integrantes do grupo foi: Eric Azevedo de Oliveira - Algoritmo e texto.

Referências

Jon Kleinberg and Eva Tardos. 2006. Algorithm design. Pearson Education India.