1. Conventions

Item	Convention	Examples
Top level structures	Lower case bold Greek	σ , the world state μ , the machine state.
Functions on highly structured values	Upper case Greek	Υ , the Ethereum state transition function.
Most functions	Upper case letters, possibly subscripted	C , the general cost function C_{SSTORE} , the cost function for the sstore operation.
Specialised functions	Typewriter	KEC, the Keccak-256 hash KEC512, the Keccak-512 hash function.
Tuple	Upper case letter	T, a transaction.
Component of a Tuple	Subscripted upper-case letter. A capital subscript refers to a component that is a tuple.	T_n , the transaction nonce I_H , The header of the current block (a tuple).
Scalars, fixed size byte sequences/arrays	Usually a lower-case letter Sometimes Greek	n , a transaction's nonce δ , the number of stack items required.
Arbitrary length sequences	Bold lower-case	o, output data of message call.
Sets	Double struck capitals	\mathbb{P}_{256} , positive integers less than 2^{256} \mathbb{B}_{32} , byte sequences of length 32.
Components or subsequences of sequences	Square brackets	$\mu_{\mathbf{s}}[0]$, the first item on the stack $\mu_{\mathbf{m}}[031]$ the first 32 items in memory.
Modified (and utilisable) value	Prime mark	g' gas remaining.
Intermediate values	Asterisk superscripts	g^* gas to be refunded g^{**} available gas remaining after code execution.
Element-wise transformations	Asterisk superscript on a function	$f^*((x_0, x_1,)) \equiv (f(x_0), f(x_1),)$ for any function f .

2. Symbols

Name	Description	
High level constructs		
σ	The world-state, comprising all accounts' nonces, balances, storage and code.	
$oldsymbol{\sigma}_t$	World-state at time t .	
μ	Machine-state tuple, $(g, pc, \mathbf{m}, i, \mathbf{s})$, which are gas, program counter, memory, memory size, stack.	
T	An Ethereum transaction	
$T_0, T_1,$	Individual transactions within a block	
B	A block: $B \equiv (, (T_0, T_1,))$	
Υ	The Ethereum state transition function: $\sigma_{t+1} \equiv \Upsilon(\sigma_t, T)$	
Ω	The block-finalisation state transition function (pays out the mining reward).	
П	The block-level state-accumulation function: $\Pi(\boldsymbol{\sigma}, B) \equiv \Omega(B, \Upsilon(\Upsilon(\boldsymbol{\sigma}, T_0), T_1))$	

${\bf World\ state}$

 $\begin{array}{ll} \pmb{\sigma}[a] & \text{The account state of account a, being a tuple of (nonce, balance, storageRoot, codeHash).} \\ \pmb{\sigma}[a]_n & \text{The nonce of account a.} \\ \pmb{\sigma}[a]_b & \text{The balance of account a.} \\ \pmb{\sigma}[a]_s & \text{A 256-bit hash of the root node of a Merkle Patricia tree that encodes the storage contents of account a. Note that <math>\text{TRIE}(L_I^*(\pmb{\sigma}[a]_s)) \equiv \pmb{\sigma}[a]_s \end{array}$

 $\sigma[a]_c$ The hash of the EVM code of account a. Equal to $\mathtt{KEC}(\mathbf{b})$ where \mathbf{b} is the account's code.

Name Description

Machine state

 $\begin{array}{ll} \mu_g & \qquad \text{The gas available.} \\ \mu_{pc} & \qquad \text{The program counter.} \\ \mu_{\mathbf{m}} & \qquad \text{The memory contents.} \end{array}$

 μ_i The number of memory words allocated.

 $\mu_{\rm s}$ The stack.

 $\mu_{\mathbf{s}}[n]$ Item at stack depth n.

Substate

A Transaction substate during execution: $A \equiv (A_s, A_l, A_t, A_r) \equiv (s, l, t, r)$.

 $A_{\mathbf{s}}$ The self-destruct set. These accounts will be discarded following the transaction's completion.

 A_1 The log series.

 A_{t} The set of touched accounts. Empty ones are deleted at the end of the transaction.

 A_r The gas refund balance. Can partially offset execution costs.

 $A_{\mathbf{a}}$ The set of accessed account addresses (EIP-2929).

 $A_{\mathbf{K}}$ The set of accessed storage keys (EIP-2929, more accurately, each element of $A_{\mathbf{K}}$ is a tuple of a 20-byte

account address and a 32-byte storage slot).

 A^0 The empty substate: $A^0 \equiv (\varnothing, (), \varnothing, 0, \pi, \varnothing)$.

Execution environment

7	•	TD1	C +1 1	C - 11:	: 4		4 - 41		environment.	
- 1		- rubie o	it the i	tonowing.	items	provided	to the	execution	environment.	

 I_a The address of the account which owns the code that is executing.

 I_o The sender address of the transaction that originated this execution.

 I_p The price of gas in the transaction that originated this execution.

I_d The byte array that is the input data to this execution; if the execution agent is a transaction, this would be the transaction data.

The address of the account with the

 I_s The address of the account which caused the code to be executing; if the execution agent is a transac-

tion, this would be the transaction sender.

 I_v The value, in Wei, passed to this account as part of the same procedure as execution; if the execution

agent is a transaction, this would be the transaction value.

 $I_{\mathbf{b}}$ The byte array that is the machine code to be executed.

 I_H The block header of the present block.

 I_e The depth of the present message-call or contract-creation (i.e. the number of CALLs or CREATES

being executed at present).

 I_w Flag for permission to make modifications to the state. See EIP-214, STATICCALL

Execution

 Ξ The code execution function $(\sigma', g', A, \mathbf{o}) \equiv \Xi(\sigma, g, I)$.

o The output data of a message call, $\mathbf{o} \equiv H(\boldsymbol{\mu}, I)$.

At contract creation, the contract bytecode to be deployed.

The initialisation EVM code for newly deployed contract (contract constructor).

 $H(\mu,I)$ The normal halting function, usually the value provided by the RETURN or REVERT opcodes, or

empty in the case of STOP.

 $Z(\boldsymbol{\sigma}, \boldsymbol{\mu}, I)$ The exceptional halting function.

W The current operation to be executed: $w \equiv I_{\mathbf{b}}[\boldsymbol{\mu}_{pc}]$ if $\boldsymbol{\mu}_{pc} < \|I_{\mathbf{b}}\|$, and STOP otherwise.

Blocks

B A block: $B \equiv (B_H, B_T, B_U)$.

 B_H The block's header. B_T The block's transactions.

 $B_{\mathbf{U}}$ Headers of ommer/uncle blocks of this block.

 $B_{\mathbf{R}}$ Transaction receipts.

D(H) The difficulty of the block with header H. P(H) The parent block of the block with header H.

Name	Description
V(H)	The block header validity function.
Block header	r
H_p	parentHash: The Keccak 256-bit hash of the parent block's header, in its entirety.
H_o	ommersHash The Keccak 256-bit hash of the ommers list portion of this block.
H_c	beneficiary The 160-bit address to which all fees collected from the successful mining of this block be transferred.
H_r	stateRoot The Keccak 256-bit hash of the root node of the state trie, after all transactions are executed and finalisations applied.
H_t	transactionsRoot The Keccak 256-bit hash of the root node of the trie structure populated with each transaction in the transactions list portion of the block.
H_e	receiptsRoot The Keccak 256-bit hash of the root node of the trie structure populated with the receipts of each transaction in the transactions list portion of the block.
H_b	logsBloom The Bloom filter composed from indexable information (logger address and log topics) contained in each log entry from the receipt of each transaction in the transactions list.
H_d	difficulty A scalar value corresponding to the difficulty level of this block.
H_i	number A scalar value equal to the number of ancestor blocks. The genesis block has a number of
	zero.
H_l	gasLimit A scalar value equal to the current limit of gas expenditure per block.
H_g	gasUsed A scalar value equal to the total gas used in transactions in this block.
H_s	timestamp A scalar value equal to the reasonable output of Unix's time() at this block's inception.
H_x	extraData An arbitrary byte array containing data relevant to this block. This must be 32 bytes or
	fewer.
H_m	mixHash A 256-bit hash which proves combined with the nonce that a sufficient amount of compu-
	tation has been carried out on this block.
H_n	nonce A 64-bit hash which proves combined with the mix-hash that a sufficient amount of computation
	has been carried out on this block.

Transactions

T_n	Transaction nonce.
T_p	Gas price for the transaction.
T_g	The maximum gas for a transaction.
T_t	The "to" address for the transaction.
T_v	The value to be transferred by the transaction.
T_w, T_r, T_s	The v, r, s values of the transaction signature.
$T_{\mathbf{i}}$	EVM-code for account initialisation (i.e. contract deployment).
$T_{\mathbf{d}}$	Input data of a message call.
S(T)	Sender function—recovers the sender address from the transaction:
. ,	$S(T) \equiv \mathcal{B}_{96255} (\texttt{KEC}(\texttt{ECDSARECOVER}(h(T), T_w, T_r, T_s))).$

Transaction Receipt

R	A transaction receipt: $R \equiv (R_z, R_u, R_b, R_l)$
R_z	The status code of the transaction.
R_u	The cumulative gas used so far in the block.
R_b	The bloom filter composed from the information in the transaction logs.
$R_{\mathbf{l}}$	The log entries created by the transaction, $(O_0, O_1,)$.
O	A log entry: $O \equiv (O_a, (O_{\mathbf{t}_0}, O_{\mathbf{t}_1}, \dots), O_{\mathbf{d}}).$
O_a	The logger's address.
$O_{\mathbf{t}}$	A 32-byte log topic.
$O_{\mathbf{d}}$	The log data for this entry.
Υ^g	The total gas used in this transaction.
Υ^{1}	The logs created by this transaction.
Υ^z	The status code of this transaction, z .

Miscellaneous functions

 $\begin{array}{ll} \ell(\mathbf{x}) & \text{The last item in sequence } \mathbf{x} \colon \ell(\mathbf{x}) \equiv \mathbf{x}[\|\mathbf{x}\| - 1] \\ L(n) & \text{The "all but one 64th" function: } L(n) \equiv n - \lfloor n/64 \rfloor. \end{array}$

Name	Description
$L_I((k,v))$	Representation of key-value pairs in the trie: $L_I((k,v)) \equiv (\texttt{KEC}(k), \texttt{RLP}(v))$
L_R	TODO
L_S	World-state collapse function. TODO: expand. Seems to have a different function in computing the
	message hash.
L_T	TODO
M(s,f,l)	Memory expansion function. s is the current top of memory; f is the start of writing; l is the number
	of bytes to be written.
$\mathcal B$	Bit reference function such that $\mathcal{B}_j(\mathbf{x})$ equals the bit of index j (indexed from 0) in the byte array \mathbf{x}
$\mathtt{EMPTY}(oldsymbol{\sigma},a)$	An account a is $empty$ when it has no code, zero nonce and zero balance, $\sigma[a]_c = \texttt{KEC}(()) \wedge \sigma[a]_n =$
	$0 \wedge oldsymbol{\sigma}[a]_b = 0.$
$\mathtt{DEAD}(oldsymbol{\sigma},a)$	An account a is dead when its account state is non-existent or empty: $\emptyset \vee \text{EMPTY}(\sigma, a)$.
TRIE	The root hash of the Merkle Patricia tree constructed from its arguments.
KEC	TODO
RLP	TODO
PoW	TODO

Operators and symbols

,	Length of a sequence. These seem to be used interchangeably, but I may have missed something.
\wedge	Logical "And".
\vee	Logical "Or".
Ø	The empty set.
•	Concatenation, $(a, b, c, d) \cdot e \equiv (a, b, c, d, e)$, or scalar multiplication depending on context.

Todo	
\mathbb{B}	The set of all sequences of bytes.
\mathbb{B}_n	The set of all byte sequences of length n bytes: $\mathbb{B}_n = \{B : B \in \mathbb{B} \land B = n\}$
\mathbb{P}	The set of positive integers [what's wrong with N??? Grrr].
\mathbb{P}_n	The set of all positive integers smaller than 2^n : $\mathbb{P}_n = \{P : P \in \mathbb{P} \land P < 2^n\}$
$M_{3:2048}$	Specialised Bloom filter.
$\Lambda()$	Contract creation function.
$\Theta()$	"Message call"/contract execution function? Not very clearly defined anywhere, but used extensively.
$\Gamma(B)$	The "initiation state" of block B. Usually σ_i : TRIE $(L_S(\sigma_i)) = P(B_H)_{H_r}$.
$\Psi(B)$	A block transition function that maps an incomplete block B to a complete block B' (adds in mixHash,
	nonce, stateRoot).
r()	Calculates stateRoot? Used once but not defined.
etc.	