FPGAs Architecture

Andrew Lukefahr

Portions borrowed from:

http://www.gstitt.ece.ufl.edu/courses/fall15/eel4720_5721/index.html

Topics

- FPGA internals
- Synthesis Process

Review: RAM

Look-Up Table (LUT)

- DON'T compute a Boolean equation
- DO pre-compute <u>all</u> solutions in a table
- DO look up the Boolean result in the table

• Examples:

RAM to LUT

 Can I use a RAM to build a Half-Adder LUT?

$$s = a ^ b;$$

 $c = a & b;$

Full-Adder LUT

	Input		Output	
Α	В	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

LUT size

- Why not a 1000-input,100-output LUT?
- 3 inputs => 2^3 rows = 8 rows
- 4 inputs \Rightarrow 2⁴ rows \Rightarrow 16 rows
- 5 inputs => 2^5 rows = 32 rows
- •
- 64 inputs => 2^{64} rows = 1.85×10^{19} rows
- LUT input size does **not** scale well.

Divide and Conquer with LUTs

• 3-Bit Full Adder

Sequential Logic

- Problem: How do we handle sequential logic?
 - LUTs cannot contain state

Solution: Add a Flip-Flop

Configurable Logic Block (CLB)

Configurable Logic Block (CLB)

 What if I only want to store a value?

Improved CLB

2-Bit Ripple-Carry w/ CLB

Realistic CLB: Xilinx

• Q: How do CLBs talk to each other?

• A: Put wires everywhere!

CLB

CLB CLB

CLB

CLB

- Q: How do CLBs talk to each other?
- A: Put wires everywhere (ok, almost everywhere)!

How to connect CLBs to wires?

- "Connection box"
 - Device that allows inputs and outputs of CLB to connect to different wires

Connection Box Flexibility

*Dots represent **possible** connections

How to connect wires to each other?

Switch Box

Connects horizontal and vertical routing channels

Switch Box Connections

Programmable connections between inputs and outputs

Switch Box Connections

FPGA "Fabric"

• 2D array of CLBs + interconnects

Am I missing anything?

Block RAM

- Special blocks of just RAM
- Big CLBs without LUTs

DSPs

Input/Output (IO)

FPGAs

Field Programmable Gate Arrays

- Tackle in this order:
 - Gate Arrays
 - Field Programmable

Sometimes

Older technology / terminology

Look Up Table (LUT)

- Assume: 4 inputs, 1 output (all 1 bit)
- RAM-based array

Look Up Table (LUT)

• Assume: 4 inputs, 1 output (all 1 bit) it stream RAM-based array act O act (4.16 decolu actiq act 15 output

Configurable Logic Block (CLB)

Configurable Logic Block (CLB) set by hitstream Combinational'. CLB Out FF LUT Rst-Clk -

Fig.4 Example of Configurable Logic Cell.

```
Wire [7:0] value;
Wire max Value = ( Value = = 8'hff);
```

```
Wire [7:0] value;
wire max Value = ( Value = = 8'hff);
                                   max Valve
```

```
Wire [7:0] value;
Wire max Value = ( Value = = 8'hff);
```

Connecting CLBs

CLB Interconnect

CLB Interconnect

FPGA w/BRAM

Figure 1: Basic Spartan-II Family FPGA Block Diagram

More on FPGAs

• There is a <u>lot</u> more we could say about using FPGAs

Why synthesis takes so long:

(one hots)

- Remapping state machines
- Behavioral Verilog -> Structural Verilog
- Mapping to LUTs / CLBs
- Layout of CLBs / IOs
- Interconnection
- Generating a configuration bitstream

Busses

- Boolean Logic is bi-state:
 - 1: logical true
 - 0: logical false
 - X: The simulation tools don't know if it's 1 or 0
- So you can't do things like this:

Busses

- Boolean Logic is bi-state:
 - 1: logical true
 - 0: logical false
 - X: The simulation tools don't know if it's 1 or 0
- So you can't do things like this:

Then how does this work?

Answer: A "Tri-State" Bus

- "Tri-State" signals:
 - 1: this is logical true
 - 0: this is logical false
 - X: The simulation tools don't know if it's 1 or 0
 - Z: this is "high impedance"
- Z: High Impedance
 - Stop driving a logical value
 - Pretend I'm not connected

Tri-State logic

Tri-State Bus

Problems with Tri-State Logic

What if two signals "drive" at once?

Solution: Don't Do That!

Tri-State Look Up Table (LUT)

• Assume: 4 inputs, 1 output (all a bit) it stream

 RAM-based array act O act (4.16 decolu

Next Time

• We start designing a CPU!

• Specifically: Control / Datapath