In [1]:

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

```
df=pd.read_csv('AirQualityodisha.csv')
```

In [3]:

df

Out[3]:

	Stn Code	Sampling Date	State	City	Location of Monitoring Station	Agency	Type of Location	SO2	NO2	RSPM/F
0	68	02-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	11	24	
1	68	06-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	10	23	
2	68	09-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	8	25	
3	68	13-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	10	25	
4	68	16-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	9	26	
2387	819	15-12-15	Odisha	Kalinga Nagar	Roof of RO OFFICE BUILDING	Odisha State Pollution Control Board	Industrial Area	2	10	
2388	819	17-12-15	Odisha	Kalinga Nagar	Roof of RO OFFICE BUILDING	Odisha State Pollution Control Board	Industrial Area	2	10	
2389	819	22-12-15	Odisha	Kalinga Nagar	Roof of RO OFFICE BUILDING	Odisha State Pollution Control Board	Industrial Area	2	10	
2390	819	26-12-15	Odisha	Kalinga Nagar	Roof of RO OFFICE BUILDING	Odisha State Pollution Control Board	Industrial Area	2	10	
2391	819	29-12-15	Odisha	Kalinga Nagar	Roof of RO OFFICE BUILDING	Odisha State Pollution Control Board	Industrial Area	2	10	

2392 rows × 11 columns

In [4]:

df.head(5)

Out[4]:

	Stn Code	Sampling Date	State	City	Location of Monitoring Station	Agency	Type of Location	SO2	NO2	RSPM/PM1
0	68	02-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	11	24	14
1	68	06-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	10	23	13
2	68	09-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	8	25	12
3	68	13-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	10	25	13
4	68	16-01-15	Odisha	Talcher	T.T.P.S.Colony, Talcher	Odisha State Pollution Control Board	Industrial Area	9	26	18
4										

In [5]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2392 entries, 0 to 2391

Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Stn Code	2392 non-null	int64
1	Sampling Date	2392 non-null	object
2	State	2392 non-null	object
3	City	2392 non-null	object
4	Location of Monitoring Station	2392 non-null	object
5	Agency	2392 non-null	object
6	Type of Location	2392 non-null	object
7	S02	2392 non-null	int64
8	NO2	2392 non-null	int64
9	RSPM/PM10	2392 non-null	int64
10	PM 2.5	2060 non-null	float64

dtypes: float64(1), int64(4), object(6)

memory usage: 205.7+ KB

```
In [7]:
```

```
df.shape
```

Out[7]:

(2392, 11)

In [9]:

```
#histogram
plt.figure(figsize=(8,6))
sns.histplot(df['S02'],bins=10,kde=True,color='green')
plt.show()
```


In [13]:

```
#scatterplot
plt.figure(figsize=(10,20))
sns.scatterplot(df['S02'])
sns.scatterplot(df['N02'])
plt.show()
```


2500

0 500 1000 1500 2000

```
In [16]:
```

```
#barpLot
plt.figure(figsize=(10,10))
sns.barplot(x='RSPM/PM10',y='PM 2.5',data=df)
```

```
born\algorithms.py:98: RuntimeWarning: Mean of empty slice
  boot_dist.append(f(*sample, **func_kwargs))
C:\Users\Madhuri Wavhal\AppData\Roaming\Python\Python311\site-packages\sea
born\algorithms.py:98: RuntimeWarning: Mean of empty slice
  boot_dist.append(f(*sample, **func_kwargs))
C:\Users\Madhuri Wavhal\AppData\Roaming\Python\Python311\site-packages\sea
born\algorithms.py:98: RuntimeWarning: Mean of empty slice
  boot_dist.append(f(*sample, **func_kwargs))
```

C:\Users\Madhuri Wavhal\AppData\Roaming\Python\Python311\site-packages\sea

C:\Users\Madhuri Wavhal\AppData\Roaming\Python\Python311\site-packages\sea
born\algorithms.py:98: RuntimeWarning: Mean of empty slice
boot_dist.append(f(*sample, **func_kwargs))

C:\Users\Madhuri Wavhal\AppData\Roaming\Python\Python311\site-packages\sea
born\algorithms.py:98: RuntimeWarning: Mean of empty slice
boot_dist.append(f(*sample, **func_kwargs))

C:\Users\Madhuri Wavhal\AppData\Roaming\Python\Python311\site-packages\sea
born\algorithms.py:98: RuntimeWarning: Mean of empty slice
boot_dist.append(f(*sample, **func_kwargs))

C:\Users\Madhuri Wavhal\AppData\Roaming\Python\Python311\site-packages\sea
born\algorithms.py:98: RuntimeWarning: Mean of empty slice
boot_dist.append(f(*sample, **func_kwargs))

C:\Users\Madhuri Wavhal\AppData\Roaming\Python\Python311\site-packages\sea
born\algorithms.py:98: RuntimeWarning: Mean of empty slice
boot_dist.append(f(*sample, **func_kwargs))

C:\Users\Madhuri Wavhal\AppData\Roaming\Python\Python311\site-packages\sea
born\algorithms.py:98: RuntimeWarning: Mean of empty slice
boot_dist.append(f(*sample, **func_kwargs))

C:\Users\Madhuri Wavhal\AppData\Roaming\Python\Python311\site-packages\sea
born\algorithms.py:98: RuntimeWarning: Mean of empty slice
boot_dist.append(f(*sample, **func_kwargs))

Out[16]:

<Axes: xlabel='RSPM/PM10', ylabel='PM 2.5'>

In [22]:

```
#distplot
plt.figure(figsize=(8,6))
sns.displot(df['SO2'],bins=10,kde=False,color='yellow')
sns.displot(df['NO2'],bins=10,kde=False,color='PINK')
```

Out[22]:

<seaborn.axisgrid.FacetGrid at 0x17e0c4388d0>

<Figure size 800x600 with 0 Axes>

In []: