CSE 3000 - Quantitative Bias Analysis

Objective

Quantitatively analyze a chosen platform for bias (e.g., racial, gender, or political) and compare it against at least two competitors in the same field.

Assignment Details

Part 1: Experiment Design and Execution

- Choose a Bias Type and Platforms:
 - Pick a type of bias (e.g., racial, gender, political).
 - Select one platform (e.g., DALL-E, Zillow, LinkedIn) and at least two competitors (e.g., Stable Diffusion, Redfin, Indeed).

• Define Test Cases:

- Design a set of quantitative tests related to your chosen bias. For example:
 - * For DALL-E and competitors: Create prompts you suspect will demonstrate bias (e.g., "professor," "nurse," "prisoner").

• Collect Data:

- For image generation platforms:
 - * Generate a fixed number of images per prompt (e.g., 50 images for "professor").
 - * Use image analysis tools (e.g., facial recognition APIs) to predict demographics like race or gender.
- For text or recommendation platforms:

* Analyze textual outputs or recommended options (e.g., job titles, property listings).

• Analyze Results:

- Quantify outputs using metrics like:
 - * **Distribution Accuracy:** Compare demographic outputs against real-world data (e.g., employment or population statistics).
 - * Bias Indicators: Use statistical methods (e.g., T-Tests, ANOVA, Kullback-Leibler divergence) to quantify disparities.
- Visualize results with examples like:
 - * Stacked bar charts showing demographic representation.
 - * Heatmaps comparing platforms.

• Define Accuracy Metrics:

- Students must justify a quantitative definition of "accuracy," such as:
 - * Real-world Accuracy: Closeness to real-world employment statistics.
 - * Ideal Representation: Closeness to equal representation across demographics.

Part 2: Ethical Analysis

• Identify Disparities:

- Discuss any observed demographic disparities in outputs.
- Highlight areas where platforms reinforce stereotypes or misrepresent groups.

• Propose Solutions:

- Suggest actionable ways to reduce bias, such as:
 - * Balancing training datasets.
 - * Adjusting output algorithms to favor diversity.
- Reflect on trade-offs (e.g., accuracy vs. fairness).

Deliverables

• Code Submission:

- Provide a Python script or Jupyter Notebook that implements the tests and analysis.
- Include well-documented code and instructions.

• Presentation (5-10 minutes):

- Present findings using visualizations (e.g., charts, graphs).
- Discuss results, accuracy metrics, and ethical implications.

• Technical Report (3-4 pages):

- Summarize methodology, results, and ethical analysis.
- Include quantitative results, justifications for accuracy definitions, and proposed solutions.

Example Workflow

- Generate Images (for DALL-E, MidJourney, Stable Diffusion): Produce outputs for analysis.
- Analyze Demographics: Use a facial recognition API to predict gender or race.
- Quantify Bias: Compare distributions to real-world or ideal data.
- Visualize Results: Use matplotlib or seaborn for comparisons.

Ethical Reflection Prompts

- Should platforms strive for real-world accuracy (mirroring employment statistics) or ideal representation (equal demographics)?
- How might biased training data affect outputs, and what is the platform's responsibility to address this?
- What are the risks of over-correcting for bias? How could this impact user trust?

Grading Criteria

- Presentation and Report (40%): Clarity, coherence, and depth of the report and presentation.
- Experimental Design and Implementation (20%): Quality of tests, thoroughness of data collection, and correctness of code.
- Quantitative Analysis (30%): Depth of insights, quality of statistical analysis, and visualizations.
- Ethical Reflection (10%): Originality and rigor in addressing trade-offs and proposing solutions.