In [421]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

In [422]:

dating_clean = pd.read_csv('/home/amybirdee/hobby_projects/dating_site/dating_clean.cs
v', delimiter = ',')

In [423]:

dating_clean.head()

Out[423]:

	age	body_type	diet	drinks	drugs	education	ethnicity	height	income
0	22	a little extra	strictly anything	socially	never	working on college/university	asian, white	75	-1
1	35	average	mostly other	often	sometimes	working on space camp	white	70	80000
2	38	thin	anything	socially	no response given	graduated from masters program	no response given	68	-1
3	23	thin	vegetarian	socially	no response given	working on college/university	white	71	20000
4	29	athletic	no response given	socially	never	graduated from college/university	asian, black, other	66	-1

5 rows × 21 columns

•

In [424]:

```
#viewing column names
dating_clean.columns
```

Out[424]:

In [425]:

```
#grouping by body type - majority are average body type
body = dating_clean.groupby('body_type').size().sort_values(ascending = False).to_frame
().reset_index().rename(columns = \
{0: 'body_type_count'})
body
```

Out[425]:

	body_type	body_type_count
0	average	19947
1	fit	12711
2	athletic	11818
3	thin	4711
4	curvy	3924
5	a little extra	2629
6	skinny	1776
7	full figured	1009
8	overweight	444
9	jacked	421
10	used up	355
11	rather not say	198

In [426]:

```
#putting data in a pie chart
#don't want all percentages shown on pie as it's too cluttered - this function will avo
id this - will exclude percentages
#below 2%
def my_autopct(pct):
    return ('%.0f%%' % pct) if pct > 1 else ''
body_type = ['Average', 'Fit', 'Athletic', 'Thin', 'Curvy', 'A little extra', 'Skinny',
'Full-figured', 'Overweight',
            'Jacked', 'Used up', 'Rather not say']
colors = ['red', 'black', 'grey', 'darkgrey', 'tan', 'mediumorchid', 'purple', 'indigo',
'orangered', 'darkred', \
          'gold', 'olive']
_, _, autotexts = plt.pie(body['body_type_count'], colors = colors, radius = 2.0, autop
ct = my_autopct, \
                          counterclock = False, startangle = -270)
#bbox_to_anchor moves the Legend around depending on the numbers fed in
plt.legend(labels = body type, bbox to anchor = (2, 0.5), loc = 'right')
#setting the colour of percentage labels to white
for autotext in autotexts:
    autotext.set color('white')
    autotext.set_weight('bold')
#the y = 1.3 shifts the title up above the chart
plt.title('Body types of dating site members', y = 1.3)
plt.savefig('body_types')
```


In [427]:

```
#grouping by diet
diet = dating_clean.groupby('diet').size().sort_values(ascending = False).to_frame().re
set_index().rename(columns = \
{0: 'diet_count'})
diet.head()
```

Out[427]:

	diet	diet_count
0	no response given	24394
1	mostly anything	16585
2	anything	6183
3	strictly anything	5113
4	mostly vegetarian	3444

In [428]:

```
#diet dataframe has lots of similar diets - creating an extra column to group some of t
hese using a dictionary method
diet_dictionary = {'no response given': 'No response',
                  'mostly anything': 'Anything',
                  'anything': 'Anything',
                  'strictly anything': 'Anything',
                  'mostly vegetarian': 'Vegetarian',
                  'mostly other': 'Other',
                  'strictly vegetarian': 'Vegetarian',
                  'vegetarian': 'Vegetarian',
                  'strictly other': 'Other',
                   'mostly vegan': 'Vegan',
                   'other': 'Other',
                  'strictly vegan': 'Vegan',
                  'vegan': 'Vegan',
                  'mostly kosher': 'Kosher',
                  'mostly halal': 'Halal',
                  'strictly kosher': 'Kosher',
                  'strictly halal': 'Halal',
                  'kosher': 'Kosher',
                  'halal': 'Halal'}
diet['diet_group'] = diet['diet'].map(diet_dictionary)
diet.head()
```

Out[428]:

	diet	diet_count	diet_group
0	no response given	24394	No response
1	mostly anything	16585	Anything
2	anything	6183	Anything
3	strictly anything	5113	Anything
4	mostly vegetarian	3444	Vegetarian

In [429]:

```
#grouping by the new diet column
diet_group = diet.groupby('diet_group').diet_count.sum().sort_values(ascending = False)
.to_frame().reset_index()
diet_group
```

Out[429]:

	diet_group	diet_count
0	Anything	27881
1	No response	24394
2	Vegetarian	4985
3	Other	1789
4	Vegan	702
5	Kosher	115
6	Halal	77

In [430]:

```
#plotting diet on a bar chart
plt.figure(figsize = (6, 6))
plt.bar(diet_group['diet_group'], diet_group['diet_count'], color = 'red')
plt.xticks(rotation = 90)
plt.xlabel('Diet')
plt.ylabel('Number of site members')
plt.title('Diets of dating site members')
```

Out[430]:

Text(0.5, 1.0, 'Diets of dating site members')

In [431]:

```
#grouping by drinks column
drinks = dating_clean.groupby('drinks').size().sort_values(ascending = False).to_frame
().reset_index().rename(columns = \
{0: 'count_of_drinks'})
drinks
```

Out[431]:

	drinks	count_of_drinks
0	socially	41778
1	rarely	5957
2	often	5164
3	not at all	3266
4	no response given	2985
5	very often	471
6	desperately	322

In [432]:

```
#creating a pie chart - high proportion are social drinkers
def my_autopct(pct):
    return ('%.0f%%' % pct) if pct > 1 else ''
drinks_labels = ['Socially', 'Rarely', 'Often', 'Not at all', 'No response', 'Very ofte
n', 'Desperately']
colors = ['red', 'black', 'grey', 'darkgrey', 'tan', 'mediumorchid', 'purple']
_, _, autotexts = plt.pie(drinks['count_of_drinks'], colors = colors, radius = 2.0, aut
opct = my_autopct, \
                          counterclock = False, startangle = -270)
#bbox_to_anchor moves the Legend around depending on the numbers fed in
plt.legend(labels = drinks labels, bbox to anchor = (2, 0.5), loc = 'right')
#setting the colour of percentage labels to white
for autotext in autotexts:
    autotext.set_color('white')
    autotext.set_weight('bold')
#the y = 1.3 shifts the title up above the chart
plt.title('Drinking patterns of dating site members', y = 1.4)
plt.savefig('drinking_patterns')
```

Drinking patterns of dating site members

In [433]:

```
#grouping drugs data
drugs = dating_clean.groupby('drugs').size().sort_values(ascending = False).to_frame().
reset_index().rename(columns = \
{0: 'count_of_drugs'})
drugs
```

Out[433]:

	drugs	count_of_drugs
0	never	37722
1	no response given	14079
2	sometimes	7732
3	often	410

In [434]:

```
#plotting on bar chart
labels = ['Never', 'No response', 'Sometimes', 'Often']

plt.figure(figsize = (6, 6))
plt.bar(drugs['drugs'], drugs['count_of_drugs'], color = 'red')
plt.xticks(drugs['drugs'], labels)
plt.xlabel('Do you take drugs?')
plt.ylabel('Number of site members')
plt.title('Drug taking habits of dating site members')
plt.savefig('Drugs')
```


In [435]:

```
#grouping by education
education = dating_clean.groupby('education').size().sort_values(ascending = False).to_
frame().reset_index().rename(columns\
= {0: 'education_count'})
education.head()
```

Out[435]:

	education	education_count
0	graduated from college/university	23957
1	graduated from masters program	8961
2	no response given	6628
3	working on college/university	5712
4	working on masters program	1683

In [436]:

```
#education dataframe has lots of similar educations - creating an extra column to group
some of these using a dictionary
#method
education dictionary = {'graduated from college/university': 'Graduated - higher educat
ion',
                       'graduated from masters program': 'Graduated - higher education'
                       'no response given': 'No response',
                       'working on college/university': 'Currently studying - higher ed
ucation',
                       'working on masters program': 'Currently studying - higher educa
tion',
                       'graduated from two-year college': 'Graduated - lower education'
                       'graduated from high school': 'Graduated - lower education',
                       'graduated from ph.d program': 'Graduated - higher education',
                       'graduated from law school': 'Graduated - higher education',
                       'working on two-year college': 'Currently studying - lower educa
tion',
                       'dropped out of college/university': 'Dropped out',
                       'working on ph.d program': 'Currently studying - higher educatio
n',
                       'college/university': 'Currently studying - higher education',
                       'graduated from space camp': 'Graduated - higher education',
                       'dropped out of space camp': 'Dropped out',
                       'graduated from med school': 'Graduated - higher education',
                       'working on space camp': 'Currently studying - higher education'
                       'working on law school': 'Currently studying - higher education'
                       'two-year college': 'Currently studying - lower education',
                       'working on med school': 'Currently studying - higher education'
                       'dropped out of two-year college': 'Dropped out',
                       'dropped out of masters program': 'Dropped out',
                       'masters program': 'Currently studying - higher education',
                       'dropped out of ph.d program': 'Dropped out',
                       'dropped out of high school': 'Dropped out',
                       'high school': 'Currently studying - lower education',
                       'working on high school': 'Currently studying - lower education'
                       'space camp': 'Currently studying - higher education',
                       'ph.d program': 'Currently studying - higher education',
                       'law school': 'Currently studying - higher education',
                       'dropped out of law school': 'Dropped out',
                       'dropped out of med school': 'Dropped out',
                       'med school': 'Currently studying - higher education'}
education['education group'] = education['education'].map(education dictionary)
education.head()
```

Out[436]:

	education	education_count	education_group
0	graduated from college/university	23957	Graduated - higher education
1	graduated from masters program	8961	Graduated - higher education
2	no response given	6628	No response
3	working on college/university	5712	Currently studying - higher education
4	working on masters program	1683	Currently studying - higher education

In [437]:

```
#grouping by new column in education table
education_grouped = education.groupby('education_group').education_count.sum().sort_val
ues().to_frame().reset_index()
education_grouped
```

Out[437]:

	education_group	education_count
0	Currently studying - lower education	1479
1	Dropped out	2108
2	Graduated - lower education	2959
3	No response	6628
4	Currently studying - higher education	10355
5	Graduated - higher education	36414

In [438]:

```
#plotting on a bar chart - many of the sites's members are highly educated
plt.figure(figsize = (6, 6))
plt.barh(education_grouped['education_group'], education_grouped['education_count'], co
lor = 'red')
plt.xlabel('Number of site members')
plt.ylabel('')
plt.title('Education status of dating site members')
plt.savefig('Education')
```


In [439]:

#is there a link between those who dropped out of education and their drink/drugs takin
g? Filtering the main dataframe to
#find out
dropped_out = dating_clean[dating_clean['education'].str.contains('dropped')]
dropped_out.head()

Out[439]:

	age	body_type	diet	drinks	drugs	education	ethnicity	height	incon
48	31	thin	strictly anything	socially	sometimes	dropped out of space camp	no response given	67	100000
96	34	skinny	mostly other	very often	no response given	dropped out of space camp	white	75	
117	55	athletic	no response given	not at all	never	dropped out of college/university	white	67	
128	26	average	no response given	often	never	dropped out of space camp	white	71	
130	30	average	no response given	socially	sometimes	dropped out of college/university	white	69	

5 rows × 21 columns

file:///C:/Users/owner/Documents/Hobby projects/Dating site/Python code 2 - analysing categorical values.html

In [440]:

```
#grouping by the dropped out column
dropped = dropped_out.groupby('education').size().sort_values(ascending = False).to_fra
me().reset_index().rename(columns \

= {0: 'dropped_count'})
dropped
```

Out[440]:

education dropped_count

	'' =	
0	dropped out of college/university	995
1	dropped out of space camp	523
2	dropped out of two-year college	191
3	dropped out of masters program	140
4	dropped out of ph.d program	127
5	dropped out of high school	102
6	dropped out of law school	18
7	dropped out of med school	12

In [441]:

```
#splitting these between dropping out of higher and lower eduction by applying a functi
def set value(row number, assigned value):
    return(assigned value[row number])
dropped out dict = {'dropped out of college/university': 'dropped out - higher educatio
n',
                    'dropped out of space camp': 'dropped out - higher education',
                    'dropped out of two-year college': 'dropped out - lower education',
                    'dropped out of masters program': 'dropped out - higher education',
                    'dropped out of ph.d program': 'dropped out - higher education', 'dropped out of high school': 'dropped out - lower education',
                    'dropped out of law school': 'dropped out - higher education',
                    'dropped out of med school': 'dropped out - higher education'}
#there is a comma after dropped out dict below - without this there was an error saying
the function expected 2 arguments
#but 9 were given
dropped_out['dropped_group'] = dropped_out['education'].apply(set_value, args = (droppe
d_out_dict, ))
dropped out.head()
```

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:17: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

Out[441]:

	age	body_type	diet	drinks	drugs	education	ethnicity	height	incon
48	31	thin	strictly anything	socially	sometimes	dropped out of space camp	no response given	67	100000
96	34	skinny	mostly other	very often	no response given	dropped out of space camp	white	75	
117	55	athletic	no response given	not at all	never	dropped out of college/university	white	67	
128	26	average	no response given	often	never	dropped out of space camp	white	71	
130	30	average	no response given	socially	sometimes	dropped out of college/university	white	69	

5 rows × 22 columns

In [442]:

Out[442]:

	drinks	drugs	education	dropped_group
0	socially	sometimes	dropped out of space camp	dropped out - higher education
1	very often	no response given	dropped out of space camp	dropped out - higher education
2	not at all	never	dropped out of college/university	dropped out - higher education
3	often	never	dropped out of space camp	dropped out - higher education
4	socially	sometimes	dropped out of college/university	dropped out - higher education

In [443]:

```
#grouping by education and drinking - higher education people who dropped out drink mor
e
dropped_drink = dropped_out.groupby(['dropped_group', 'drinks']).dropped_group.count()
dropped_drink
```

Out[443]:

dropped_group	drinks	
dropped out - higher education	desperately	41
	no response given	50
	not at all	147
	often	264
	rarely	246
	socially	1027
	very often	40
dropped out - lower education	desperately	7
	no response given	5
	not at all	35
	often	44
	rarely	41
	socially	143
	very often	18
Names discussed assessed discusses discussed	C 1	

Name: dropped_group, dtype: int64

In [444]:

```
#grouping by education and drugs - higher education people who dropped out do more drug
s
dropped_drugs = dropped_out.groupby(['dropped_group', 'drugs']).dropped_group.count()
dropped_drugs
```

Out[444]:

dropped_group	drugs	
dropped out - higher education	never	817
	no response given	454
	often	43
	sometimes	501
dropped out - lower education	never	139
	no response given	48
	often	19
	sometimes	87

Name: dropped_group, dtype: int64

In [445]:

```
#creating pie charts to show the comparison
drink_labels = ['Desperately', 'Very often', 'Often', 'Socially', 'Rarely', 'Not at al
1', 'No response']
drinks_higher = [41, 40, 264, 1027, 246, 147, 50]
drinks_lower = [7, 18, 44, 143, 41, 35, 5]
colors = ['red', 'black', 'grey', 'darkgrey', 'tan', 'mediumorchid', 'purple']
def drinks_autopct(pct):
    return ('%.0f%%' % pct) if pct > 2.5 else ''
ax = plt.subplot(1, 2, 1)
_, _, autotexts = (plt.pie(drinks_higher, colors = colors, radius = 8.0, autopct = drin
ks_autopct, counterclock = False, \
                           startangle = -270)
#setting the colour of percentage labels to white
for autotext in autotexts:
    autotext.set color('white')
    autotext.set_weight('bold')
plt.title('Drinking patterns of dating site \n members who dropped out of higher educat
ion', y = 4.0
ax = plt.subplot(1, 2, 2)
_, _, autotexts = plt.pie(drinks_lower, colors = colors, radius = 8.0, autopct = drinks
_autopct, counterclock = False, \
                          startangle = -270)
#adjusting space between pie charts
plt.subplots_adjust(wspace = 7.0)
#bbox_to_anchor moves the legend around depending on the numbers fed in
plt.legend(labels = drink_labels, bbox_to_anchor = (7, 0.5), loc = 'right')
#setting the colour of percentage labels to white
for autotext in autotexts:
    autotext.set color('white')
    autotext.set_weight('bold')
plt.title('Drinking patterns of dating site \n members who dropped out of lower educati
on', v = 4.0)
plt.savefig('drinking_patterns_by education')
```


In [446]:

```
#pie chart hides the true numbers - trying a bar chart
drink_labels = ['Desperately', 'Very often', 'Often', 'Socially', 'Rarely', 'Not at al
1', 'No response']
drinks_higher = [41, 40, 264, 1027, 246, 147, 50]
drinks_lower = [7, 18, 44, 143, 41, 35, 5]
fig = plt.figure(figsize = (10, 5))
ax = fig.add_subplot(1, 2, 1)
plt.bar(drink labels, drinks higher, color = 'red')
plt.xticks(drink_labels, rotation = 90)
plt.ylim(0, 1050)
plt.xlabel('')
plt.ylabel('Number of site members')
plt.title('Drinking patterns of dating site \n members who dropped out of higher educat
ax = fig.add_subplot(1, 2, 2)
plt.bar(drink_labels, drinks_lower, color = 'red')
plt.xticks(drink_labels, rotation = 90)
plt.ylim(0, 1050)
plt.xlabel('')
plt.ylabel('Number of site members')
plt.title('Drinking patterns of dating site \n members who dropped out of lower educati
plt.subplots_adjust(wspace = 0.4)
plt.savefig('drinking patterns by education bar chart')
```


In [447]:

```
#creating bar charts for drug use
drug_labels = ['Often', 'Sometimes', 'Never', 'No response']
drugs_higher = [43, 501, 817, 454]
drugs_lower = [19, 87, 139, 48]
fig = plt.figure(figsize = (10, 5))
ax = fig.add_subplot(1, 2, 1)
plt.bar(drug_labels, drugs_higher, color = 'red')
plt.xticks(drug labels, rotation = 90)
plt.xlabel('')
plt.ylim(0, 850)
plt.ylabel('Number of site members')
plt.title('Drug use patterns of dating site \n members who dropped out of higher educat
ion')
ax = fig.add_subplot(1, 2, 2)
plt.bar(drug_labels, drugs_lower, color = 'red')
plt.xticks(drug_labels, rotation = 90)
plt.xlabel('')
plt.ylim(0, 850)
plt.ylabel('Number of site members')
plt.title('Drug use patterns of dating site \n members who dropped out of lower educati
on')
plt.subplots_adjust(wspace = 0.4)
plt.savefig('drug_use_patterns_by_education')
```


In [448]:

#next up: analysing ethnicity data