

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 03/078626 A2

(19) International Patent Classification¹:

C12N 15/10

(51) International Patent Classification²:

[DK/DK]; Slutsgadevej 3, st. lh, DK-2400 København NV (DK); LINDORF, Mikkel, Dyrø [DK/DK]; Charlotte Munkvej 31, 2, tv, DK-2400 København NV (DK).

(21) International Application Number:

PCT/DK03/00174

(22) International Filing Date:

14 March 2003 (14.03.2003)

(23) Priority Data:

PA 2002 0415 15 March 2002 (15.03.2002)

PA 2002 0526 15 March 2002 (15.03.2002)

02/00419 20 June 2002 (20.06.2002)

10/175,539 20 June 2002 (20.06.2002)

10/434,427 19 December 2002 (19.12.2002)

(24) International Patent Classification²:

[DK/DK]; Iiumebakade 14, st. iv, DK-2200 København N (DK); THISTED, Thomas [DK/DK]; Fjordstræten 14, DK-3600 Frederiksund (DK).

(25) Filing Language:

English

(26) Publication Language:

English

(27) Applicant (for all designated States except US): NUEVO-LUTTON A/S [DK/DK]; Rønnegård 8, 5th floor, DK-2100 Copenhagen Ø (DK).

(28) Inventors/Applicants (for US only):

Alex Haahr [DK/DK]; Brondsted 223, DK-3670 Værs Sjælland (DK); HO, Justin [US0DK]; Mattarsgade 50, 3-26, DK-1666 København V (DK); FELDING, Jakob [DK/DK]; Ørnbjergvej 24, 1, DK-2920 Charlottenlund (DK); SAMS, Christian [DK/DK]; Jacob Damfærdsvej 4A, 1., DK-1973 Frederiksberg C (DK); PEDERSEN, Henrik [DK/DK]; Frødevej 24, DK-2880 Bagsværd (DK); JENSEN, Kim, Birtebæk [DK/DK]; Voldumvej 30C, DK-2610 Rørvig (DK); HANSEN, Anders, Holm [DK/DK]; Rørvigvej 10 (DK).

(29) Inventor/Applicant (for US only):

Published:

— without international search report and to be republished upon receipt of that report

(30) Inventor/Applicant (for US only):

GOULIAEV, Yury [US0DK]; 1000 Rockville Pike, Bethesda, MD 20852 (US).

(31) Inventor/Applicant (for US only):

GOULIAEV, Yury [US0DK]; 1000 Rockville Pike, Bethesda, MD 20852 (US).

(32) Inventor/Applicant (for US only):

GOULIAEV, Yury [US0DK]; 1000 Rockville Pike, Bethesda, MD 20852 (US).

(33) Inventor/Applicant (for US only):

GOULIAEV, Yury [US0DK]; 1000 Rockville Pike, Bethesda, MD 20852 (US).

(34) Title: A BUILDING BLOCK CAPABLE OF TRANSFERRING A FUNCTIONAL ENTITY

(35) Abstract: A building block having the dual capabilities of transferring the genetic information e.g. by recognising an encoding element and transferring a functional entity to a recipient reactive group is disclosed. The building block can be designed with an adjustable transferability taking into account the components of the building block. The building block may be used in the generation of a single complex or libraries of different complexes, wherein the complex comprises an encoded molecule linked to an encoding element. Libraries of complexes are useful in the quest for pharmaceutically active compounds.

Title
A BUILDING BLOCK CAPABLE OF TRANSFERRING A FUNCTIONAL ENTITY

Technical Field of the Invention

The present invention relates to a building block comprising a complementing ele-

ment and precursor for a functional entity. The building block is designed to transfer the functional entity with an adjustable efficiency to a recipient reactive group upon recognition between the complementing element and an encoding element associated with the reactive group. The invention also relates to a linkage between the functional entity and the complementing element as well as a method for transferring a functional entity to recipient reactive group.

Background

The transfer of a chemical entity from one mono-, di- or oligonucleotide to another has been considered in the prior art. Thus, N. M. Chung et al. (Biochim. Biophys. Acta, 1971, 228: 536-543) used a poly(U) template to catalyse the transfer of an acetyl group from 3'-O-acetyladenosine to the 5'-OH of adenosine. The reverse transfer, i.e. the transfer of the acetyl group from a 5'-O-acetyladenosine to a 3'-OH group of another adenosine, was also demonstrated.

Walder et al. Proc. Natl. Acad. Sci. USA, 1979, 76, 51-55 suggest a synthetic procedure for peptide synthesis. The synthesis involves the transfer of nascent immobilized polypeptide attached to an oligonucleotide strand to a precursor amino acid attached to an oligonucleotide. The transfer comprises the chemical attack of the amino group of the amino acid precursor on the substitution labile peptidyl ester, which in turn results in an acyl transfer. It is suggested to attach the amino acid precursor to the 5' end of an oligonucleotide with a thiol ester linkage.

The transfer of a peptide from one oligonucleotide to another using a template is disclosed in Bruylants RK et al. Chemistry & Biology, 1996, 3:49-56. The carboxy terminal of the peptide is initially converted to a thioester group and subsequently transformed to an activated thioester upon incubation with Ellman's reagent. The activated thioester is reacted with a first oligo, which is 5'-thiol-terminated, resulting in the formation of a thio-ester linked intermediate. The first oligonucleotide and a second oligonucleotide having a 3' amino group is aligned on a template such that

(57) Abstract: A building block having the dual capabilities of transferring the genetic information e.g. by recognising an encoding element and transferring a functional entity to a recipient reactive group is disclosed. The building block can be designed with an adjustable transferability taking into account the components of the building block. The building block may be used in the generation of a single complex or libraries of different complexes, wherein the complex comprises an encoded molecule linked to an encoding element. Libraries of complexes are useful in the quest for pharmaceutically active compounds.

(58) Title: A BUILDING BLOCK CAPABLE OF TRANSFERRING A FUNCTIONAL ENTITY

(59) Abstract: A building block having the dual capabilities of transferring the genetic information e.g. by recognising an encoding element and transferring a functional entity to a recipient reactive group is disclosed. The building block can be designed with an adjustable transferability taking into account the components of the building block. The building block may be used in the generation of a single complex or libraries of different complexes, wherein the complex comprises an encoded molecule linked to an encoding element. Libraries of complexes are useful in the quest for pharmaceutically active compounds.

the thioester group and the amino group are positioned in close proximity and a reaction is effected resulting in a coupling of the peptide to the second oligonucleotide through an amide bond.

- 5 In an aspect of the present invention a storable oligonucleotide conjugated to a transferable chemical moiety is provided. In another aspect of the invention an oligonucleotide conjugate which is possible to prepare in a few steps is provided. In yet another aspect an arsenal of possibilities for adjusting the transferability of a chemical moiety is provided. Adjusting the transferability of a chemical moiety may prove crucial in obtaining specific reactions.

Summary of the Invention

The present invention relates to a building block of the general formula

Complementing Element – Linker – Carrier – C-F-connecting group – Functional entity precursor

capable of transferring a functional entity to a recipient reactive group, wherein Complementing Element is a group identifying the functional entity precursor, Linker is a chemical moiety comprising a Spacer and a S-C-connecting group, wherein the Spacer is a valence bond or a group distancing the functional entity precursor to be transferred from the complementing element and the S-C-connecting group connects the spacer with the Carrier, Carrier is selected among the groups

wherein the Linker attaches to the Carrier through Y and

W = CH or N

- 30 $R^2 = -H, -Halogen, -NO_2, -CN, -C(Halogen)_2, -C(O)NR^3, -C(O)INHR^3, C(O)NR^2_2, -NC(O)R^3, -S(O)2NHR^3, -S(O)2NR^2, -S(O)2R^3, -P(O)2R^3, -P(O)2R^3, -S(O)R^3, -S(O)2R^3, -S(O)OR^3, -NR^3$, wherein p is an integer of 0 to 3, $R^3 = H, C_1-C_6 alkyl, C_1-C_6 alkenyl, C_1-C_6 alkynyl, or aryI, and Halogen is F, Cl, Br, or I,$

$Y = absent, C_1-C_6 Alkylene, C_1-C_6 Alkynylene, C_1-C_6 Arylene, Arylene, Het-eroarylene, Carbonyl, or -SO_2CH_2,$

C-F-connecting group is — Z'

where the carrier is connected to the left hand side of the formulae and

- 5 $X = -C-, -S-, -P-, -S(O)-, or -P(O)-,$
 $V = O, S, NH, or NC-C_6 alkyl, and$
 $Z = O, S, and$

Functional entity precursor is H or selected among the group consisting of a $C_1-C_6 alkyl, C_2-C_6 alkenyl, C_2-C_6 alkynyl, C_4-C_8 alkadienyl, C_3-C_7 cycloalkyl, C_3-C_7 cycloalkenyl, aryl, and heteroaryl, said group being substituted with 0-3 $R^1, 0-3 R^5$ and 0-3 R^6 , or selected among the group consisting of $C_1-C_6 alkylene-NR^4, C_1-C_6 alkylene-O-NR^4, C_1-C_6 alkylene-Q-NR^4, C_1-C_6 alkylene-O-NR^4(C(O)OR^8), and C_1-C_2 alkylene-O-NR^4(C(O)OR^8) substituted with 0-3 R^9 ,$$

where R^4 is H or selected independently among the group consisting of $C_1-C_6 alkyl, C_2-C_6 alkenyl, C_2-C_6 alkynyl, C_3-C_7 cycloalkyl, C_3-C_7 cycloalkenyl, aryl, and heteroaryl, said group being substituted with 0-3 R^9 and$

R^5 is selected independently from $-N_3, -CNO, -C(NOH)NH_2, -NHOH, -NNHNR^6, -C(O)R^8, -SnR^6_3, -B(OR^6)_2, -P(O)(OR^6)_2$ or the group consisting of $C_2-C_6 alkenyl, C_4-C_8 alkadienyl$ said group being substituted with 0-2 R^7 ,

where R^6 is selected independently from H, $C_1-C_6 alkyl, C_1-C_7 cycloalkyl, aryl or$

$C_1-C_6 alkylene-aryl$ substituted with 0-5 halogen atoms selected from F, -Cl, -Br, and -I; and R^7 is independently selected from $-NO_2, -COOR^6, -COR^6, -CN, -OSiR^6_3, -OR^6$ and $-NR^8_2$.

6 R^8 is $H, C_1-C_6 alkyl, C_2-C_6 alkenyl, C_2-C_6 alkynyl, C_3-C_7 cycloalkyl, aryl or C_1-C_6 alkylene-aryl$ substituted with 0-3 substituents independently selected from $-F, -Cl, -NO_2, -R^3, -OR^3, -SR^3$, R^9 is $=O, -F, -Cl, -Br, -I, -CN, -NO_2, -OR^6, -NR^6-C(O)OR^8, -NR^6-C(O)NR^6, -SR^6, -S(O)R^6, -S(O)2R^6, -COOR^6, -C(O)NR^6_2, and -S(O)2NR^6_2$,

In the present description and claims, the direction of connections between the various components of a building block should be read left to right. For example an S-C-connecting group $-C(=O)-NH-$ is connected to a Space through the carbon atom on the left and to a Carrier through the nitrogen atom on the right hand side.

30

4

The term "C₅-C₇ cyclooheteroalkyl" as used herein refers to a radical of totally saturated heterocycle like a cyclic hydrocarbon containing one or more heteroatoms selected from nitrogen, oxygen, phosphor, boron and sulphur independently in the cycle such as pyrrolidine (1-pyrrolidine; 2-pyrrolidine; 3-pyrrolidine; 4-pyrrolidine; 5-pyrrolidine); pyrazolidine (1-pyrazolidine; 2-pyrazolidine; 3-pyrazolidine; 4-pyrazolidine; 5-pyrazolidine); imidazolidine (1-imidazolidine; 2-imidazolidine; 3-imidazolidine; 4-imidazolidine; 5-imidazolidine); thiazolidine (2-thiazolidine; 3-thiazolidine; 4-thiazolidine; 5-thiazolidine); piperidine (1-piperidine; 2-piperidine; 3-piperidine; 4-piperidine; 5-piperidine); piperazine (1-piperazine; 2-piperazine; 3-piperazine; 4-piperazine; 5-piperazine; 6-piperazine); morpholine (2-morpholine; 3-morpholine; 4-morpholine; 5-morpholine; 6-morpholine); thiomorpholine (2-thiomorpholine; 3-thiomorpholine; 4-thiomorpholine; 5-thiomorpholine; 6-thiomorpholine); 1,2-oxathiolane (3-(1,2-oxathiolane); 4-(1,2-oxathiolane); 5-(1,2-oxathiolane); 1,3-dioxolane (2-(1,3-dioxolane); 4-(1,3-dioxolane); 5-(1,3-dioxolane); tetrahydropyran; (2-tetrahydropyran; 3-tetrahydropyran; 4-tetrahydropyran; 5-tetrahydropyran; 6-tetrahydropyran); hexahydropyridazine (1-(hexahydropyridazine); 2-(hexahydropyridazine); 3-(hexahydropyridazine); 4-(hexahydropyridazine); 5-(hexahydronitrardazine); 6-(hexahydronitrardazine)) [1,3-dihydroborolane, (hexahydronitrardazine); 3-(hexahydronitrardazine); 4-(hexahydronitrardazine); 5-(hexahydronitrardazine); 6-(hexahydronitrardazine)] [1,3-dihydroborolane,

[1.3.6.2]dioxazaborocane
The term "aryl" as used herein includes carbocyclic aromatic ring systems of 5-7 carbon atoms. Aryl is also intended to include the partially hydrogenated derivatives of the carbocyclic systems as well as up to four fused aromatic- or partially hydro-

The term "heteroaryl" as used herein includes heterocyclic unsaturated ring systems containing, in addition to 2-18 carbon atoms, one or more heteroatoms selected from nitrogen, oxygen and sulphur such as furyl, thiényl, pyrrolyl, heterocaryl is also intended to include the partially hydrogenated derivatives of the heterocyclic sys-

The terms "aryl" and "heteroaryl" as used herein refers to an aryl which can be optionally substituted or a heteroaryl which can be optionally substituted and includes phenyl, biphenyl, indenyl, naphthyl (1-naphthyl, 2-naphthyl), N-hydroxypyrazolyl, N-hydroxytriazolyl, N-hydroxymidazolyl, anthracenyl (1-anthracenyl, 2-anthracenyl, 3-anthracenyl), thiophenyl (2-thienyl, 3-thienyl), furyl (2-furyl, 3-furyl), indolyl, oxadiazolyl, isoazoxazolyl, quinazolinyl, fluorenyl, xanthenyl.

בבב"ג י"ה) תמיון מודולריים

SUBSTITUTE SHEET (RULE 26)

The Functional Entity carries elements used to interact with host molecules and optionally reactive elements allowing further elaboration of an encoded molecule of a type. Interaction with host molecules like enzymes, receptors and polymers is typi-

卷之三

四

		isindanyl, benzhydryl, acridinyl, thiazolyl, pyrrolyl (2-pyrrolyl), pyrazolyl (3-pyrazolyl), imidazolyl (1-imidazolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl), triazolyl (1,2,3-triazol-1-yl, 1,2,3-triazol-2-yl, 1,2,3-triazol-4-yl, 1,2,4-triazol-3-yl), oxazolyl (2-oxazolyl, 4-oxazolyl, 5-oxazolyl), thiazoyl (2-thiazolyl, 4-thiazolyl, 5-thiazoyl), pyridyl (2-pyridyl, 3-pyridyl, 4-pyridyl), pyrimidinyl (2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 6-pyrimidinyl), pyrazinyl, pyridazinyl (3-pyridazinyl, 4-pyridazinyl, 5-pyridazinyl), quinolyl (2-quinolyl, 3-quinolyl, 4-quinolyl, 5-quinolyl, 6-quinolyl, 7-quinolyl, 8-quinolyl), isoquinolyl (1-isoquinolyl, 3-isoquinolyl, 4-isoquinolyl), isoquinolyl, 5-isoquinolyl, 6-isoquinolyl, 7-isoquinolyl, 8-isoquinolyl),	5
10		benzol[b]furanyl (2-benzol[b]furanyl), 3-benzol[b]furanyl, 4-benzol[b]furanyl, 5-benzol[b]furanyl, 6-benzol[b]furanyl, 7-benzol[b]furanyl), 2,3-dihydro-benzol[b]furanyl (2-(2,3-dihydro-benzol[b]furanyl), 3-(2,3-dihydro-benzol[b]furanyl), 4-(2,3-dihydro-benzol[b]furanyl), 5-(2,3-dihydro-benzol[b]furanyl)), 6-(2,3-dihydro-benzol[b]furanyl), 7-(2,3-dihydro-benzol[b]furanyl), benzol[b]thiophenyl (2-benzol[b]thiophenyl, 3-benzol[b]thiophenyl, 4-benzol[b]thiophenyl, 5-benzol[b]thiophenyl, 6-benzol[b]thiophenyl, 7-benzol[b]thiophenyl), 2,3-dihydro-benzol[b]thiophenyl (2-(2,3-dihydro-benzol[b]thiophenyl), 3-(2,3-dihydro-benzol[b]thiophenyl), 4-(2,3-dihydro-benzol[b]thiophenyl), 5-(2,3-dihydro-benzol[b]thiophenyl)), 6-(2,3-dihydro-benzol[b]thiophenyl), 7-(2,3-dihydro-benzol[b]thiophenyl), indolyl (1-indolyl, 2-indolyl, 3-indolyl, 4-indolyl, 5-indolyl, 6-indolyl, 7-indolyl), indazole (1-indazolyl, 3-indazolyl, 4-indazolyl, 5-indazolyl, 6-indazolyl, 7-indazolyl), benzimidazolyl (1-benzimidazolyl, 2-benzimidazolyl, 4-benzimidazolyl, 4-benzimidazolyl, 5-benzimidazolyl, 6-benzimidazolyl, 7-benzimidazolyl, 8-benzimidazolyl), benzoxazolyl (1-benzoxazolyl, 2-benzoxazolyl), benzothiazolyl (1-benzothiazolyl, 2-benzothiazolyl, 4-benzothiazolyl, 5-benzothiazolyl, 6-benzothiazolyl, 7-benzothiazolyl), carbazolyl (1-carbazolyl, 2-carbazolyl, 3-carbazolyl, 4-carbazolyl), 5H-dibenz[b,f]azepine (5H-dibenz[b,f]azepin-1-yl, 5H-dibenz[b,f]azepin-2-yl, 5H-dibenz[b,f]azepine-3-yl, 5H-dibenz[b,f]azepine-4-yl, 5H-dibenz[b,f]azepine-5-yl), 10,11-dihydro-5H-dibenz[b,f]azepine (10,11-dihydro-5H-dibenz[b,f]azepine-1-yl, 10,11-dihydro-5H-dibenz[b,f]azepine-2-yl, 10,11-dihydro-5H-dibenz[b,f]azepine-3-yl, 10,11-dihydro-5H-dibenz[b,f]azepine-4-yl, 10,11-dihydro-5H-dibenz[b,f]azepine-5-yl).	10
15			15
20			20
25			25
30			30

cally mediated through van der waal's interactions, polar- and ionic interactions and pi-stacking effects. Substituents mediating said effects may be masked by methods known to an individual skilled in the art (Greene, T. W.; Wuts, P. G. M. *Protective Groups in Organic Synthesis*; 3rd ed.; John Wiley & Sons: New York, 1999.) to avoid undesired interactions or reactions during the preparation of the individual building blocks and during library synthesis. Analogously, reactive elements may be masked by suitably selected protection groups. It is appreciated by one skilled in the art that by suitable protection, a functional entity may carry a wide range of substituents.

10

The Functional Entity Precursor may be masked Functional Entity that is incorporated into an encoded molecule. After incorporation, reactive elements of the Functional Entity may be revealed by un-masking allowing further synthetic operations. Finally, elements mediating recognition of host molecules may be un-masked.

15

The function of the carrier is to adjust the transferability of the functional entity, playing the role of a leaving group. Substituents on the carrier after the leaving group efficiency. The stronger the electron withdrawing effect the easier the functional entity is cleaved from the remainder of the building block. However the cleavage can occur too fast which will result in unspecific transfer or hydrolysis. To adjust the transferability a skilled chemist can design suitable substitutions of the carrier by evaluation of initial attempts. The transferability may be adjusted in response to the chemical composition of the functional entity, to the nature of the complementing element, to the conditions under which the transfer and recognition is performed, etc.

According to a preferred embodiment of the invention the carrier is of the general formula:

30

wherein W, Y, R², and p are as defined above. The transferability of the functional entity can be adjusted by suitable selection of the ring member. When the identity of W are fixed the transferability of the carrier may be adjusted by selecting type, position and amount of the ring substituents R². As an example, an unsubstituted ben-

zene ring (W = CH for the entire ring structure) may be provided with an increased ability to transfer a functional entity by attaching a Cl in the *ortho* position. The ability to transfer functional entities may also be adjusted by proper selection of one, two or three nitrogen atoms in the ring structure. Finally, the identity and position of Y or alternatively the S-C-connecting group may have an influence of the transferability of the functional entity. Thus, attaching a carbonyl at the *para* position of the ring structure relative to the attachment point of the functional C-F-connecting group confers an increased ability to transfer the functional entity over a position in e.g. the *meta* position.

10

In a preferred aspect of the invention the carrier is

and attaches to the linker through Y and

W = CH

R² = -H, halogen, -NO₂, -CN, -C(Halogen)₃, -C(O)R³, -C(O)NR³, -S(O)NR³, -S(O)₂NR³, -S(O)₂R³, -N⁺R³, wherein halogen is selected from the group consisting of -Cl, -F, -Br, and -I, p is an integer of 0 to 3, and R¹ = H, C₁-C₆ alkyl, or aryl.

Y = absent, C₁-C₆ Alkylene, or carbonyl.

The spacer serves to distance the functional entity to be transferred from the bulky complementing element. Thus, when present, the identity of the spacer is not crucial for the function of the building block. It may be desired to have a spacer which can be cleaved by light. In this occasion, the spacer is provided with e.g. the group

In the event an increased hydrophilicity is desired the spacer may be provided with a polyethylene glycol part of the general formula:

30

In a certain aspect of the invention the **Spacer** is a valence bond, C₁-C₆ alkylene-A-, or C₁-C₆ alkenylene-A-, C₂-C₆ alkynylene-A-, or

5 said spacer optionally being connected through A to a linker selected from

10 where A is -C(O)NR¹-, -NR¹-, -O-, -S-, or -C(O)-O-; B is -O-, -S-, -NR¹- or -C(O)NR¹- and connects to S-C-connecting group; R¹ is selected independently from H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, C₁-C₆ alkylene-aryl, or aryl substituted with 0-5 halogen atoms selected from -F, -Cl, -Br and -I; and n and m independently are integers ranging from 1 to 10.

15 More preferred the **Spacer** is C₁-C₆ alkenylene-A-, C₁-C₆ alkynylene-A-, C₂-C₆ alkyne-A-, or

20 said spacer optionally being connected through A to a moiety selected from

25 where A is -C(O)NR¹-, or -S-, B is -S-, -NR¹- or -C(O)NR¹- and connects to S-C-connecting group; R¹ is selected independently from H, C₁-C₆ alkyl, C₁-C₆ alkyne-aryl, or aryl; and n and m independently are integers ranging from 1 to 6.

In certain other aspects of the invention the **Spacer** is -A-, a group C₁-C₆ alkyne-A-, C₂-C₆ alkynylene-A-, or C₂-C₆ alkynylene-A- optionally substituted with 1 to 3 hydroxy groups, or

9

In a certain aspect of the invention the **Spacer** is a valence bond, C₁-C₆ alkylene-A-, or

5 said spacer optionally being connected through A to a linker selected from

10 where A is a valence bond, -NR¹⁰-, -C(O)NR¹⁰-, -NR¹⁰-C(O)-, -O-, -S-, -C(O)-O- or -OP(=O)(O)-O-; B is a valence bond, -O-, -S-, -NR¹⁰-, -C(O)- or -C(O)NR¹⁰; and connects to S-C-connecting group; R¹⁰ is selected independently from H, C₁-C₆ al-

15 kyl, C₃-C₇ cycloalkyl, aryl, C₁-C₆ alkylene-aryl, -G-, -N(G)-G-, -O(G)-G-, -S(G)-G-, or -G(G)-G-, and n and m independently are integers ranging from 1 to 10.

20 In a preferred aspect of the invention, the **Spacer** is C₂-C₆ alkynylene-A, said spacer being connected through A to a moiety selected from

25 where A is a valence bond, -C(O)NR¹⁰-, -NR¹⁰-C(O)-, -S-, -C(O)-O- or -OP(=O)(O)-O-; B is a valence bond, -S-, -NR¹⁰-, or -C(O)- and connects to S-C-connecting group; n and m independently are integers ranging from 1 to 10 and

30 R¹⁰ is selected independently from H, -G-, or -N(G)-G-, wherein G is H or C₁-C₆ alkyl; and the spacer is connected to the complementing element through a nucleobase.

35 Usually, the spacer connects to the 5 position of a pyrimidine or the 7 position of a purine or deaza-purine. However, other attachment point on the nucleobase may be contemplated.

40 In another preferred aspect the spacer connects to the back bone of the complementing element. In this case the spacer is -A-,

said spacer being connected through A to a moiety selected from

$-B_2$, $-(CH_2)_n-B-$, or $\begin{array}{c} G \\ \diagdown \\ O \\ \diagup \\ G \end{array}_n$, where A is a valence bond, $NR^{10}-C(O)-$, $-O-$, or $-S-$; B is a valence bond, $-S_2$, $-NR^{10}-$, or $-C(O)-$ and connects to S-C-connecting group; n and m independently are integers ranging from 1 to 10 and R^{10} is selected independently from H, $\begin{array}{c} G \\ \diagdown \\ O \\ \diagup \\ G \end{array}_n$ or $\begin{array}{c} G \\ \diagup \\ O \\ \diagdown \\ G \end{array}_m$, wherein G is H or C_1-C_6 alkyl; and the spacer is connected to the complementing element via a phosphorus group.

-NR¹⁰, -OR¹¹, or -C(O)- and connects to S-C-connecting group;
 n and m independently are integers ranging from 1 to 10 and
 $\begin{array}{c} G \\ | \\ \text{O} \\ | \\ \text{N}_n \text{ or } \text{N}_m \text{G} \end{array}$, wherein G is H or
 R¹⁰ is selected independently from H, C₁-C₆ alkyl; and the spacer is connected to the complementing element via a phosphorus group.

The phosphorus group is preferably a phosphate or a thiophosphate group attached to a 3' or a 5' end of a complementary element.

In a preferred embodiment, the complementing element serves the function of trans-
ferring genetic information e.g. by recognising a coding element. The recognition
implies that the two parts are capable of interacting in order to assemble a comple-
menting element - coding element complex. In the biotechnological field a variety of
interacting molecular parts are known which can be used according to the invention.
Examples include, but are not restricted to protein-protein interactions, protein-
carbohydrate interactions, RNA-protein interactions, DNA-DNA interactions, DNA-
RNA interactions, RNA-RNA interactions, biotin-streptavidin interactions, enzyme-
and interactions, antibody-ligand interaction, protein-oligand interaction, ect.

The interaction between the complementing element and coding element may result in a strong or a weak bonding. If a covalent bond is formed between the parties of opposite affinity pair the binding between the parts can be regarded as strong, whereas the establishment of hydrogen bondings, interactions between hydrophobic domains, and metal chelation in general results in weaker bonding. In general relatively weak bonding is preferred. In a preferred aspect of the invention, the complementing element is capable of reversibly interacting with the coding element so as in

said spacer being connected through A to a moiety selected from

$$-\text{B}-, -(\text{CH}_2)_n-\text{B}-, \text{ or }$$

where A is a valence bond, $-\text{NR}^{10}-\text{C}(=\text{O})-$, $-\text{O}-$, or $-\text{S}-$; B is a valence bond, $-\text{S}-$, $-\text{NR}^{10}-$, or $-\text{C}(\text{O})-$ and connects to S-C-connecting group;

n and m independently are integers ranging from 1 to 10 and

R^{10} is selected independently from H , $\text{C}_1\text{-C}_6$ alkyl; and the spacer is connected to the complementing element via a phosphorus group.

The phosphorus group is preferably a phosphate or a thiophosphate group attached to a 3' or a 5' end of a complementing element.

In a preferred embodiment, the complementing element serves the function of trans-acting genetic information e.g. by recognising a coding element. The recognition implies that the two parts are capable of interacting in order to assemble a complementing element – coding element complex. In the biotechnological field a variety of interacting molecular parts are known which can be used according to the invention. Examples include, but are not restricted to protein-protein interactions, protein-polysaccharide interactions, RNA-protein interactions, DNA-DNA interactions, DNA-NA interactions, RNA-RNA interactions, biotin-streptavidin interactions, enzyme-ligand interactions, antibody-ligand interaction, protein-ligand interaction, ect.

The interaction between the complementing element and coding element may result a strong or a weak bonding. If a covalent bond is formed between the parties of an affinity pair the binding between the parts can be regarded as strong, whereas the establishment of hydrogen bondings, interactions between hydrophobic domains, and metal chelation in general results in weaker bonding. In general relatively weak bonding is preferred. In a preferred aspect of the invention, the complementing element is capable of reversible interacting with the coding element so as to

In a preferred aspect of the invention, the interaction is based on nucleotides, i.e. the complementing element is a nucleic acid. Preferably, the complementing element is a sequence of nucleotides and the coding element is a sequence of nucleotides capable of hybridising to the complementing element. The sequence of nucleotides carries a series of nucleobases on a backbone. The nucleobases may be any chemical entity able to be specifically recognized by a complementing entity. The nucleobases are usually selected from the natural nucleobases (adenine, guanine, uracil, thymine, and cytosine) but also the other nucleobases obeying the Watson-Crick hydrogen-bonding rules may be used, such as the synthetic nucleobases disclosed in US 6,037,120. Examples of natural and non-natural nucleobases able to perform a specific pairing are shown in Figure 2. The backbone of the sequence of nucleotides may be any backbone able to aggregate the nucleobases is a sequence. Examples of backbones are shown in figure 4. In some aspects of the invention the addition of non-specific nucleobases to the complementing element is advantageous, figure 3.

The coding element can be an oligonucleotide having nucleobases which complements and is specifically recognised by the complementing element, i.e. in the event the complementing element contains cytosine, the coding element part contains guanine and visa versa, and in the event the complementing element contains thymine or uracil the coding element contains adenine.

The complementing element may be a single nucleobase. In the generation of a library, this will allow for the incorporation of four different functional entities into the template-directed molecule. However, to obtain a higher diversity a complementing element preferably comprises at least two and more preferred at least three nucleotides. Theoretically, this will provide for 4^2 and 4^3 , respectively, different functional entities uniquely identified by the complementing element. The complementing element will usually not comprise more than 100 nucleotides. It is preferred to have complementing elements with a sequence of 3 to 30 nucleotides.

The spacer part of the linker is attached to the carrier through a S-C-connecting group (short for Spacer-Carrier-connecting group). The S-C-connecting may have any chemical composition which provides for an attachment of the spacer with the

SUBSTITUTE SHEET (BIII E 26)

SUBSTITUTIVE SENTENCES

In certain aspect of the invention the S-C-connecting group is a valence carrier. In certain aspect of the invention the S-C-connecting group is a valence bond, -NH-C(=O)- , $\text{-NH-C(=O)-C}_6\text{ alkylene-}$, -S-S- , $\text{-S-S-C}_1\text{-C}_6\text{ alkylene-}$, $\text{-C}_1\text{-C}_6$

$$\text{O} \quad \text{H} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{C}$$

$\text{-NH-C(=O)-Arylene-C(R}^{10}\text{)-Z-NH-C(=O)-}$, -C(=O)- , $\text{-C(=O)-C}_1\text{-C}_6\text{ alkylene- or -C(=O)-}$
Arylene-C(R¹⁰)-Z-NR¹⁰-C(=O)-, where the right hand side of the formula connects to
the carrier.

In a preferred aspect the S-C-connecting group is -S-S-, -C₁-C₆ alkylene-S-S-, -C(=O)-NH-(C₁-C₆ alkylene)-, -C(=O)-, or -C(=O)-Arylene-C(R¹⁰), or -NR¹⁰-C(=O),

where the right hand side of the formulae connects to the carrier.
In a still more preferred aspect the **S-C-connecting group** is a valence bond, –NH-C(=O)-, –S-S-, or –C(=O)-NH-, where the right hand side of the formulae connects to the carrier.

The building blocks of the present invention can be used in a method for transferring a functional entity to a recipient reactive group, said method comprising the steps of

providing one or more building blocks as described above and contacting the one or more building blocks with a corresponding encoding element associated with a recipient reactive group under conditions which allow for a recognition between the one or more complementing elements and the encoding elements, said contacting being performed prior to, simultaneously with, or subsequent to a transfer of the functional entity to the recipient reactive group.

The encoding element may comprise one, two, three or more codons, i.e. sequence elements which are separated by one or more insertion elements.

the codons may be separated by a suitable spacer group. Preferably, all or at least a majority of the codons of the template are arranged in sequence and each of the codons are separated from a neighbouring codon by a spacer group. Generally, it is preferred to have more than two codons on the template to allow for the synthesis of more complex encoded molecules. In a preferred aspect of the invention the number of codons of the encoding element is 2 to 100. Still more preferred are encoding elements comprising 3 to 10 codons. In another aspect, a codon comprises 1 to 50 nucleotides and the complementing element comprises a sequence of nucleotides complementary to one or more of the encoding sequences.

The recipient reactive group may be associated with the encoding element in any appropriate way. Thus, the reactive group may be associated covalently or non-covalently to the encoding element. In one embodiment the recipient reactive group is linked covalently to the encoding element through a suitable linker which may be separately cleavable to release the reactor product. In another embodiment, the reactive group is coupled to a complementing element, which is capable of recognising a sequence of nucleotides on the encoding element, whereby the recipient reactive group becomes attached to the encoding element by hybridisation. Also, the recipient reactive group may be part of a chemical scaffold, i.e. a chemical entity having one or more reactive groups available for receiving a functional entity from a building block.

The recipient reactive group may be any group able to cleave the C-F-connecting group to release the functional entity. Usually, the reactive group is nucleophilic, such as a hydroxyl, a thiol, an amine etc. A preferred recipient reactive group is an amine group. The nucleophile usually attacks the C-F-connecting group between Z and X=V or between the carrier and X=V, thereby causing the carrier group with an optional Z group to be the leaving group of the reaction and transferring the X=V-Functional entity precursor to the recipient. The chemical structure formed has, in the event the nucleophilic group is an amine attached to a scaffold, the general formula:

Scaffolds-NH₂-X(=Y)-Functional entity precursor

Institut

卷之三

$X = -C_-, -S_-, -P_-, -S(O)_-, -P(O)_-$, and
 $V = O, S, NH, N-C_1-C_6\text{alkyl}$.

In a preferred aspect X is $-C-$ and V is O .

5

The conditions which allow for transfer to occur are dependent upon the building block, notable the carrier and the C-F-connecting group, as well as the receiving reactive group. Below various examples of the conditions for a transfer to occur are depicted together with the reaction product formed.

10

A. Acylating building blocks - principle

15

B. Amide formation by reaction of amines with activated esters

10

C. Pyrazolone formation by reaction of hydroxylamines with β -Ketoesters

D. Isooxazolone formation by reaction of hydroxylamines with β -Ketoesters

E. Pyrimidine formation by reaction of thioles with β -Ketoesters

F. Pyrimidine formation by reaction of ureas with Malonates

5

G. Coumarine or quinolinolin formation by a Heck reaction followed by a nucleophilic substitution

10

H. Phthalhydrazide formation by reaction of Hydrazines and Phthalimides

15

I. Diketopiperazine formation by reaction of Amino Acid Esters**J. Hydantoin formation by reaction of Urea and α -substituted Esters**

5

According to a preferred aspect of the invention the building blocks are used for the formation of a library of compounds. The complementing element of the building block is used to identify the functional entity. Due to the enhanced proximity between reactive groups when the complementing entity and the encoding element are contacted, the functional entity together with the identity programmed in the complementing element is transferred to the encoding element associated with recipient reactive group. Thus, it is preferred that the sequence of the complementing element is unique in the sense that the same sequence is not used for another functional entity. The unique identification of the functional entity enable the possibility of decoding the encoding element in order to determine the synthetic history of the molecule formed. In the event two or more functional entities have been transferred to a scaffold, not only the identity of the transferred functional entities can be determined. Also the sequence of reaction and the type of reaction involved can be determined by decoding the encoding element. Thus, according to a preferred embodiment of the invention, each different member of a library comprises a complementing element having a unique sequence of nucleotides, which identifies the functional entity.

Brief description of the drawings

- Fig. 1 shows to setups for functional entity transfer.
- Fig. 2 shows examples of specific base pairing.
- Fig. 3 shows examples of non-specific base-pairing
- Fig. 4 shows examples of backbones.
- Fig. 5 shows a gel with the results of the experiments reported in example 22.
- Fig. 6 shows three examples of building block according to the present invention.

30

Detailed Description of the Invention

A building block of the present invention is characterized by its ability to transfer its functional entity to a receiving chemical entity. This is done by forming a new covalent bond between the receiving chemical entity and cleaving the bond between the carrier moiety and the functional entity of the building block.

Two setups for generalized functional entity transfer from a building block are depicted in figure 1. In the first example, one complementing element of a building block recognizes a template carrying another functional entity, hence bringing the functional entities in close proximity. This results in a reaction between functional entity precursor 1 and 2 forming a covalent bond between these concurrent with the cleavage of the bond between functional entity precursor 2 and its linker. In the second example, a template brings together two building blocks resulting in functional entity transfer from one building block to the other.

15

Fig. 6 discloses three examples of building blocks. For illustrative purposes the individual features used in the claims are indicated. In the upper compound the spacer part of the linker connects to a 3'-phosphate group of an oligonucleotide. The first part of the linker, i.e. the spacer, is an aliphatic chain ending in a nitrogen atom. The nitrogen atom bridges to the S-C-connecting group, which is an N-acylated arylmethylamine. The carrier attached to the left hand side carbonyl group of the S-C-connecting group is a nitrophenyl group. In the para position of the nitrophenyl group, the C-F-connecting group is attached. When the building block is presented to a nucleophilic group, the functional entity precursor and the carbonyl group of the C-F-connecting group is transferred. In the event the nucleophilic group is an amine, the bond formed is an amide bond.

The middle compound of Fig. 6 discloses a linker attached to the 5' position of an oligonucleotide. The linker is attached through a 5' phosphate group and extends into a short 3 member aliphatic chain to another phosphate group which is connected to a linker terminal nitrogen group via a PEG part. The linker nitrogen group is connected to the carrier via a carbonyl group. The carrier is of the thiophenyl type as the sulphur of the C-F-connecting group connects to the ring structure. When the building block is presented to a nucleophilic group, such as an amine, the functional entity precursor together with the carbonyl group of the C-F-connecting group is

18

19

transferred to said recipient group forming an amide bond when the nucleophile is an amine.

5

Two setups for generalized functional entity transfer from a building block are depicted in figure 1. In the first example, one complementing element of a building block recognizes a template carrying another functional entity, hence bringing the functional entities in close proximity. This results in a reaction between functional entity precursor 1 and 2 forming a covalent bond between these concurrent with the cleavage of the bond between functional entity precursor 2 and its linker. In the second example, a template brings together two building blocks resulting in functional entity transfer from one building block to the other.

15

The lower compound shown on Fig. 6 illustrates an example of the linker being connected to the nucleobase of the oligonucleotide complementing element. More specifically, the linker connects to the 5 position of a pyrimidine. The linker extends through an α - β unsaturated N-methylated amide to the S-C-connecting group, which is a 4-amino methyl benzoic acid derivative. The carrier is of the phenol type and the functional entity precursor together with the thiocarbonyl group or the C-F-connecting group may be transferred to a recipient reactive group forming an amide in the event the recipient reactive group is an amine.

15

In a library synthesis, several building blocks are mixed in a reaction vessel and the added templates ensure that the building blocks - consequently the functional entities - are combined in the desired manner. As several building blocks are employed at the same time, the use of *in situ* generated building blocks is disfavoured for practical reasons.

15

Building blocks for library synthesis should possess the necessary reactivity to enable the transfer of the functional entity but should also be stable enough to endure storage and the conditions applied during library synthesis. Hence fine tuning of the reactivity for a particular building block is vital. The reactivity of a building block depends partly on the characteristics of the functional entity and the characteristics of the carrier. E.g. a highly reactive functional entity attached to a highly reactive carrier would form a building block that may be susceptible to hydrolysis during the library synthesis thus preventing successful transfer of one functional entity to another. Further, if transfer of a functional entity precursor is faster than coding element - complementing element recognition unspecific reactions may result. Therefore, the present invention particularly relates to practically useful library building blocks capable of acting as acylating agents, thioacetylating agents or amidinoylating agents with a balanced reactivity. Such building blocks may be assembled by several different pathways as described below.

35

Formation of an amide bond between a carboxylic acid of the Carrier and an amine group of a Spacer.

The Carrier-Functional Entity Precursor ensemble may be bound to the Spacer by several different reactions as illustrated below.

X = -C₁-S-, -P-, -S(O)- or -P(O)-
V = O, S, or NR, wherein R = H or C₁-C₆ alkyl

Examples of Carrier-Functional Entity Precursor reagents:

10

Functional Entity	Functional Entity
	$X = -C, -S, -P, -S(O), -P(O)$ $V = O, S, NR, R = H, C_1-C_6\text{alkyl}$ $R' = -H, -\text{Halogen}, -NO_2, -CN, -C(\text{Halogen})_3, -C(O)R'', -C(O)NR'', C(O)NR''_2, -NC(O)R'', -S(O)NR'', -S(O)NR''_2, -S(O)R'', -P(O)_2R'', -P(O)_2R'', -P(O)R'', -S(O)R'', P(O)-OR'', -S(O)-OR'', -NR'', R'' = H, C_1-C_6\text{alkyl}, C_1-C_6\text{alkynyl}, C_1-C_6\text{alkenyl} \text{ or aryl, chosen independently}$ $Y = \text{nothing, } C_1-C_6\text{ Alkylene, } C_1-C_6\text{ Alkenylene, } C_1-C_6\text{ Alkynylene, } \text{Arylene, Heteroarylene, Carbonyl, } -SO_2CH_2$

Functional Entity

$X = -C, -S, -P, -S(O), -P(O)$
 $V = O, S, NR, R = H, C_1-C_6\text{alkyl}$
 $R' = -H, -\text{Halogen}, -NO_2, -CN, -C(\text{Halogen})_3, -C(O)R'', -C(O)NR'', C(O)NR''_2, -NC(O)R'', -S(O)NR'', -S(O)NR''_2, -S(O)R'', -P(O)_2R'', -P(O)_2R'', -P(O)R'', -S(O)R'', P(O)-OR'', -S(O)-OR'', -NR'', R'' = \text{alkyl, alkynyl, alkenyl, aryI}$
 $Y = \text{nothing, } C_1-C_6\text{ Alkyl, } C_1-C_6\text{ Alkenyl, } C_1-C_6\text{ Alkynyl, } \text{Aryl Heteroaryl, Carbonyl, } -SO_2CH_2$

$Z = O, S$
 $X = -C, -S, -P, -S(O), -P(O)$
 $V = O, S, NR, R = H, C_1-C_6\text{alkyl}$
 $W = CH \text{ or } N, \text{ chosen independently}$
 $R' = -H, -\text{Halogen}, -NO_2, -CN, -C(\text{Halogen})_3, -C(O)R'', -C(O)NR'', C(O)NR''_2, -NC(O)R'', -S(O)NR'', -S(O)NR''_2, -S(O)R'', -P(O)_2R'', -P(O)_2R'', -P(O)R'', -S(O)R'', P(O)-OR'', -S(O)-OR'', -NR'', p = 0, 1, 2, 3 \text{ or } 4$
 $Y = \text{absent, } C_1-C_6\text{ Alkylene, } C_1-C_6\text{ Alkenylene, } C_1-C_6\text{ Alkynylene, } \text{Arylene, Heteroarylene, Carbonyl, } -SO_2CH_2$

$X = -C, -S, -P, -S(O), -P(O)$
 $V = O, S, NR, R = H, C_1-C_6\text{alkyl}$
 $R' = -H, -\text{Halogen}, -NO_2, -CN, -C(\text{Halogen})_3, -C(O)R'', -C(O)NR'', C(O)NR''_2, -NC(O)R'', -S(O)NR'', -S(O)NR''_2, -S(O)R'', -P(O)_2R'', -P(O)_2R'', -P(O)R'', -S(O)R'', P(O)-OR'', -S(O)-OR'', -NR'', R'' = H, C_1-C_6\text{alkyl, C}_1\text{-C}_6\text{alkynyl or aryl, chosen independently}$
 $Y = \text{nothing, } C_1-C_6\text{ Alkylene, } C_1-C_6\text{ Alkenylene, } C_1-C_6\text{ Alkynylene, } \text{Arylene, Heteroarylene, Carbonyl, } -SO_2CH_2$

$Z = O, S$
 $X = -C, -S, -P, -S(O), -P(O)$
 $V = O, S, NR, R = H, C_1-C_6\text{alkyl}$
 $W = CH \text{ or } N, \text{ chosen independently}$
 $R' = -H, -\text{Halogen}, -NO_2, -CN, -C(\text{Halogen})_3, -C(O)R'', -C(O)NR'', C(O)NR''_2, -NC(O)R'', -S(O)NR'', -S(O)NR''_2, -S(O)R'', -P(O)_2R'', -P(O)_2R'', -P(O)R'', -S(O)R'', P(O)-OR'', -S(O)-OR'', -NR'', p = 0, 1, 2, 3 \text{ or } 4$
 $Y = \text{absent, } C_1-C_6\text{ Alkylene, } C_1-C_6\text{ Alkenylene, } C_1-C_6\text{ Alkynylene, } \text{Arylene, Heteroarylene, Carbonyl, } -SO_2CH_2$

Stepwise loading of the carrier and the functional entity

$X = \text{leaving group}$
Sequential loading of the carrier and the functional entity allows other types of chemistries to be used.

Carrier introduced via amide bond formation

5

$X = -C, -S, -P, -S(O), -P(O)$
 $V = O, S, NR, R = H, C_1-C_6\text{alkyl}$
 $R' = -H, -\text{Halogen}, -NO_2, -CN, -C(\text{Halogen})_3, -C(O)R'', -C(O)NR'', C(O)NR''_2, -NC(O)R'', -S(O)NR'', -S(O)NR''_2, -S(O)R'', -P(O)_2R'', -P(O)_2R'', -P(O)R'', -S(O)R'', P(O)-OR'', -S(O)-OR'', -NR'', R'' = \text{alkyl, alkynyl, alkenyl, aryI}$
 $Y = \text{nothing, } C_1-C_6\text{ Alkyl, } C_1-C_6\text{ Alkenyl, } C_1-C_6\text{ Alkynyl, } \text{Aryl Heteroaryl, Carbonyl, } -SO_2CH_2$

10

Examples of Carrier reactants:

$\begin{array}{c} \text{Z} = \text{O}, \text{S} \\ \text{Y} = \text{nothing, C}_1\text{-C}_6 \text{ Alkyl, C}_1\text{-C}_6 \text{ Alkenyl, C}_1\text{-C}_6 \text{ Alkynyl,} \\ \text{Anyl, Heteroaryl, Carbonyl, -SO}_2\text{CH}_2\text{r} } \end{array}$	$\begin{array}{c} \text{R} \\ \parallel \\ \text{X}-\text{NH}_2 \\ \\ \text{OH} \\ \\ \text{N}=\text{N} \\ \\ \text{W} \\ \\ \text{N}=\text{N} \\ \\ \text{H}_2\text{N} \end{array}$	$\begin{array}{l} \text{W} = \text{CH or N} \\ \text{R}' = \text{-H, -Halogen, -NO}_2, \text{-CN, -C(Halogen)}_3, \text{-C(O)R}', \\ \text{-C(O)NR''}_2, \text{C(O)NR''}_2, \text{-NC(O)R'', -S(O)_2\text{NHR}'',} \\ \text{-S(O)_2\text{NR''}_2, -S(O)_2\text{R}'', -P(O)\text{r}_2\text{R}'', -P(O)\text{r}\text{R}'', -S(O)\text{R}'',} \\ \text{P(O)-OR'', -S(O)-OR'', -N^+\text{R''}_3,} \\ \text{R''} = \text{H, C}_1\text{-C}_6 \text{ alkyl, C}_1\text{-C}_6 \text{ alkenyl, C}_1\text{-C}_6 \text{ alkynyl or aryl,} \\ \text{chosen independently} \\ \text{Y} = \text{nothing, C}_1\text{-C}_6 \text{ Alkyline, C}_1\text{-C}_6 \text{ Alkenylene, C}_1\text{-C}_6 \\ \text{Alkynylene, Arylene, Heteroarylene, Carbonyl,} \\ \text{-SO}_2\text{CH}_2\text{r} } \end{array}$
$\begin{array}{c} \text{R} \\ \parallel \\ \text{Y} \\ \\ \text{H}_2\text{N} \end{array}$	$\begin{array}{c} \text{R}^1 \\ \parallel \\ \text{N} \\ \\ \text{Y} \\ \\ \text{H}_2\text{N} \end{array}$	$\begin{array}{l} \text{W} = \text{CH or N} \\ \text{R}' = \text{-H, -Halogen, -NO}_2, \text{-CN, -C(Halogen)}_3, \text{-C(O)R}', \\ \text{-C(O)NR''}_2, \text{C(O)NR''}_2, \text{-NC(O)R'', -S(O)_2\text{NHR}'',} \\ \text{-S(O)_2\text{NR''}_2, -S(O)_2\text{R}'', -P(O)\text{r}_2\text{R}'', -P(O)\text{r}\text{R}'', -S(O)\text{R}'',} \\ \text{P(O)-OR'', -S(O)-OR'', -N^+\text{R''}_3,} \\ \text{R''} = \text{H, C}_1\text{-C}_6 \text{ alkyl, C}_1\text{-C}_6 \text{ alkenyl, C}_1\text{-C}_6 \text{ alkynyl or aryl,} \\ \text{chosen independently} \\ \text{Y} = \text{nothing, C}_1\text{-C}_6 \text{ Alkyline, C}_1\text{-C}_6 \text{ Alkenylene, C}_1\text{-C}_6 \\ \text{Alkynylene, Arylene, Heteroarylene, Carbonyl,} \\ \text{-SO}_2\text{CH}_2\text{r} } \end{array}$
$\begin{array}{c} \text{R} \\ \parallel \\ \text{Y} \\ \\ \text{H}_2\text{N} \end{array}$	$\begin{array}{c} \text{R} \\ \parallel \\ \text{Y} \\ \\ \text{H}_2\text{N} \end{array}$	$\begin{array}{l} \text{W} = \text{CH or N} \\ \text{R}' = \text{-H, -Halogen, -NO}_2, \text{-CN, -C(Halogen)}_3, \text{-C(O)R}', \\ \text{-C(O)NR''}_2, \text{C(O)NR''}_2, \text{-NC(O)R'', -S(O)_2\text{NHR}'',} \\ \text{-S(O)_2\text{NR''}_2, -S(O)_2\text{R}'', -P(O)\text{r}_2\text{R}'', -P(O)\text{r}\text{R}'', -S(O)\text{R}'',} \\ \text{P(O)-OR'', -S(O)-OR'', -N^+\text{R''}_3,} \\ \text{R''} = \text{H, C}_1\text{-C}_6 \text{ alkyl, C}_1\text{-C}_6 \text{ alkenyl, C}_1\text{-C}_6 \text{ alkynyl or aryl,} \\ \text{chosen independently} \\ \text{Y} = \text{nothing, C}_1\text{-C}_6 \text{ Alkyline, C}_1\text{-C}_6 \text{ Alkenylene, C}_1\text{-C}_6 \\ \text{Alkynylene, Arylene, Heteroarylene, Carbonyl,} \\ \text{-SO}_2\text{CH}_2\text{r} } \end{array}$

Examples of Carrier reactants:

SUBSTITUTE SHEET (B) (E 26)

	-SO ₂ CH ₂ N
	<p>W = CH or N R' = -H, -Halogen, -NO₂, -CN, -C(Halogen)₃, -C(O)R'', -C(O)NR'', -C(O)NR''₂, -NC(O)R'', -S(O)NR'', -S(O)NR''₂, -S(O)R'', -S(O)R''₂R'', -P(O)zR'', -P(O)zR'', -S(O)zR'', -P(O)-OR'', -S(O)-OR'', -NR''₃, R'' = H, C₁-C₆ alkyl, C₁-C₆ alkenyl, C₁-C₆ alkynyl or aryl, chosen independently Y = nothing, C₁-C₆ Alkylene, C₁-C₆ Alkenylene, C₁-C₆ Alkynylene, Arylene, Heteroarylene, Carbonyl, Alkyne, Arylene, Heteroarylene, Carbonyl, -SO₂CH₂,</p>
	<p>R' = -H, -Halogen, -NO₂, -CN, -C(Halogen)₃, -C(O)R'', -C(O)NR'', -C(O)NR''₂, -NC(O)R'', -S(O)NR'', -S(O)NR''₂, -S(O)zR'', -P(O)zR'', -P(O)-OR'', -S(O)-OR'', -NR''₃, R'' = H, C₁-C₆ alkyl, C₁-C₆ alkenyl, C₁-C₆ alkynyl or aryl, chosen independently Y = nothing, C₁-C₆ Alkylene, C₁-C₆ Alkenylene, C₁-C₆ Alkynylene, Arylene, Heteroarylene, Carbonyl, -SO₂CH₂</p>

Functional Entity introduced as a thioacid

27

Lg = leaving group

Examples of Carrier reactants:

5

As discussed above the C-F-connecting group may be selected from a large group of compounds of the general formula -Z-(X=Y)- or -(X=Y)-. In certain aspects of the invention X = C, S, P, S(=O), or P(=O), in another preferred embodiment X = C, S, or S(=O), and in still another preferred embodiment X = C. In certain aspects of the invention V = O, S, NR¹⁰ or NOR¹⁰, in another preferred embodiment V = O or NR¹⁰, and in still another preferred embodiment V = O. In a certain aspect of the invention Z = O, or S, in another preferred embodiment, Z = O, and in still another preferred embodiment, Z = S.

15

Wherein R¹⁰ is H, alkyl, alkenyl, alkynyl, cycloalkyl, cycloheteroalkyl, aryl or heterocyl, optionally substituted with one or more substituents selected from the group consisting of SnR¹¹R¹², R¹³, Sn(OR¹¹)R¹²R¹³, Sn(OR¹¹)(OR¹²)R¹³, BR¹¹R¹², B(OR¹¹)(OR¹²), halogen, CN, CNO, C(halogen)₃, OR¹¹, OC(=O)R¹¹, B(OR¹¹)R¹², B(OR¹¹)OR¹², SR¹¹, S(=O)R¹¹, S(=O)zR¹¹, S(=O)zNR¹¹R¹², NO₂, N₃, OC(=O)OR¹¹, OC(=O)NR¹¹R¹², NR¹¹OR¹², NR¹¹zR¹², NR¹¹C(=O)R¹², NR¹¹C(=O)OR¹², NR¹¹C(=O)NR¹²R¹³, NC, P(=O)(OR¹¹)OR¹², P(=O)zR¹²R¹³, Cl=OR¹¹, Cl=NR¹¹R¹², C(=N)NR¹¹R¹², C(=O)OR¹¹, C(=O)NR¹¹OR¹², C(=O)NR¹¹NR¹²R¹³, C(=N)R¹¹NR¹²R¹³ or R¹⁴, wherein,

25

88

R^1 , R^{12} and R^{13} independently is H, alkyl, alkenyl, alkynyl, alkadienyl, cycloalkyl, cycloheteroalkyl, ary or heteroaryl, optionally substituted with one or more substituents selected from the group consisting of halogen, CN, CNO, C(halogen)₃, OR¹⁴, OC(=O)R¹⁴, OC(=O)OR¹⁴, OC(=O)NR¹⁴R¹⁵, SR¹⁴, S(=O)R¹⁴, S(=O)OR¹⁴, S(=O)NR¹⁴R¹⁵, NO₂, N₃, NR¹⁴R¹⁵, NR¹⁴R¹⁶, NR¹⁴C(=O)NR¹⁵R¹⁶, NR¹⁴C(=O)OR¹⁵, NR¹⁴C(=O)R¹⁵, NR¹⁴C(=O)R¹⁶, NR¹⁴C(=O)NR¹⁵R¹⁶, NC, P(=O)(OR¹⁴)OR¹⁵, P(=O)R¹⁴, C(=O)R¹⁴, C(=O)OR¹⁴, C(=O)NR¹⁴R¹⁵, C(=O)NR¹⁴R¹⁶, C(=O)NR¹⁴R¹⁵, C(=O)NR¹⁴R¹⁶, C(=O)NR¹⁴R¹⁵, C(=O)NR¹⁴R¹⁶, C(=O)NR¹⁴R¹⁵, C(=O)NR¹⁴R¹⁶, wherein R¹¹ and R¹² may together form a 3-8 membered heterocyclic ring or R¹¹ and R¹³ may together form a 3-8 membered heterocyclic ring or R¹² and R¹³ may together form a 3-8 membered heterocyclic ring, wherein,

R^{14} , R^{15} and R^{16} independently is H, alkyl, alkenyl, alkynyl, alkadienyl, cycloalkyl, cycloheteroalkyl, aryl or heteroaryl and wherein R^{14} and R^{15} may together form a 3-8 membered heterocyclic ring or R^{14} and R^{16} may together form a 3-8 membered heterocyclic ring or R^{15} and R^{16} may together form a 3-8 membered heterocyclic ring.

JOURNAL OF CLIMATE

R^{11} , R^{12} , R^{13} and R^{14} independently is H, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_3 - C_7 cycloalkyl, C_3 - C_7 cycloheteroalkyl, aryl or heteroaryl and C_4 - C_8 alkadienyl; C_3 - C_7 cycloalkenyl, C_3 - C_7 cycloheteroalkenyl, aryl or heteroaryl and wherein R^{11} and R^{12} may together form a 3-8 membered heterocyclic ring or R^{11} and R^{13} may together form a 3-8 membered heterocyclic ring or R^{12} and R^{13} may together form a 3-8 membered heterocyclic ring.

四

in still another preferred embodiment,

R¹⁰ is H, C₁-C₈ alkyl, C₃-C₇ cycloalkyl, C₃-C₇ cycloheteroalkyl, aryl or heteroaryl, optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹, OC{=O})OR¹¹, OC(=O)NR¹¹R¹², SR¹¹, Si(O)R¹¹, Si{=O})₂R¹¹, Si{=O}NR¹¹R¹², NO₂, NR¹¹OR¹², NR¹¹NR¹²R¹³, NR¹¹C{=O}R¹², NR¹¹C{=O})OR¹², NR¹¹C{=O})NR¹²R¹³, P{=O}(OR¹¹)OR¹², C{=O}R¹¹, C{=O}NR¹¹R¹², C{=O}NR¹¹R¹², C{=O}NR¹¹R¹², C{=O})OR¹¹, C{=O})NR¹¹R¹², C{=O})NR¹¹R¹³, C{=O}NR¹¹)NR¹²R¹³, C{=O}NR¹¹)NR¹²R¹³ or R¹⁴, wherein, R¹¹, R¹², R¹³ and R¹⁴ independently is H, C₁-C₈ alkyl, C₃-C₇ cycloalkyl, C₃-C₇ cyclo-heteroalkyl, aryl or heteroaryl and wherein R¹¹ and R¹² may together form a 3-8 membered heterocyclic ring or R¹¹ and R¹³ may together form a 3-8 membered heterocyclic ring or R¹² and R¹³ may together form a 3-8 membered heterocyclic ring.

30 In still another preferred embodiment, R¹⁰ is H, C₁-C₈ alkyl, C₃-C₇ cycloalkyl, or linearly substituted with one or more substitutionally substituted with one or more substituents of F, Cl, CN, CF₃, OR¹¹, S(=O)R¹¹, S(=O)OR¹¹, C(=O)R¹², NR¹¹C(=O)R¹², NR¹¹C(=O)NR¹¹R¹², C(=O)NR¹¹, C(=O)NR¹¹R¹², C(=O)NR¹¹R¹², C(=O)NR¹¹R¹²

卷之三

32

$\text{NR}^{11}\text{C}(\text{=O})\text{OR}^{12}$, $\text{NR}^{11}\text{C}(\text{=O})\text{NR}^{12}\text{R}^{13}$, $\text{C}(\text{=O})\text{R}^{11}$, $\text{C}(\text{=NOR}^{11})\text{R}^{12}$, $\text{C}(\text{=O})\text{OR}^1$,

wherein,

5 R^{11} , R^{12} , R^{13} and R^{14} independently is H, C₁-C₈ alkyl, C₃-C₇ cycloalkyl, C₃-C₇ cyclo-heteroalkyl, aryl or heteroaryl and wherein R^{11} and R^{12} may together form a 3-8 membered heterocyclic ring or R^{11} and R^{13} may together form a 3-8 membered heterocyclic ring or R^{12} and R^{13} may together form a 3-8 membered heterocyclic ring,

in still another preferred embodiment,

10 R^{10} is H, methyl, ethyl, propyl, butyl, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹, S(=O)₂R¹¹, S(=O)NR¹¹R¹², NO₂, NR¹¹R¹², NR¹¹C(=O)R¹², NR¹¹C(=O)NR¹²R¹³, C(=O)R¹¹, C(=NOR¹¹)R¹², C(=O)OR¹¹, C(=O)OR¹², C(=O)NR¹¹R¹², C(=O)NR¹¹OR¹² or R¹⁴,

wherein,

15 R^{11} , R^{12} , R^{13} and R^{14} independently is H, methyl, ethyl, propyl, butyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, naphtyl, thienyl, furyl, pyridinyl, quinolinyl or isoquinolinyl and wherein R^{11} and R^{12} may together form a 3-8 membered heterocyclic ring or R^{11} and R^{13} may together form a 3-8 membered heterocyclic ring or R^{12} and R^{13} may together form a 3-8 membered heterocyclic ring,

20 in still another preferred embodiment, R^{10} is H, aziridinyl, azetidinyl, pyrrolidinyl, piperidinyl or morpholinyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹, S(=O)R¹¹, S(=O)₂R¹¹, S(=O)NR¹¹R¹², NO₂, NR¹¹C(=O)R¹², NR¹¹C(=O)NR¹²R¹³, C(=O)R¹¹, C(=NOR¹¹)R¹², C(=O)NR¹¹R¹², C(=O)NR¹¹OR¹² or R¹⁴,

wherein,

25 R^{11} , R^{12} , R^{13} and R^{14} independently is H, methyl, ethyl, propyl, butyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, naphtyl, thienyl, furyl, pyridinyl, quinolinyl or isoquinolinyl and wherein R^{11} and R^{12} may together form a 3-8 membered heterocyclic ring or R^{11} and R^{13} may together form a 3-8 membered heterocyclic ring or R^{12} and R^{13} may together form a 3-8 membered heterocyclic ring,

in still another preferred embodiment,

30 R^{11} , R^{12} , R^{13} and R^{14} independently is H, methyl, ethyl, propyl, butyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, naphtyl, thienyl, furyl, pyridinyl, quinolinyl or isoquinolinyl and wherein R^{11} and R^{12} may together form a 3-8 membered heterocyclic ring or R^{11} and R^{13} may together form a 3-8 membered heterocyclic ring,

in still another preferred embodiment,

35 R^{11} , R^{12} , R^{13} and R^{14} independently is H, methyl, ethyl, propyl, butyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, naphtyl, thienyl, furyl, pyridinyl, quinolinyl or isoquinolinyl and wherein R^{11} and R^{12} may together form a 3-8 membered

33

R^{10} is H, phenyl, naphtyl, thienyl, furyl, pyridyl, quinolinyl or isoquinolinyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹, S(=O)R¹¹, S(=O)₂NR¹¹, S(=O)NR¹¹R¹², NO₂, NR¹¹C(=O)R¹², NR¹¹C(=O)NR¹²R¹³, C(=O)R¹¹, C(=NOR¹¹)R¹², C(=O)OR¹¹, C(=O)NR¹¹R¹², C(=O)NR¹¹OR¹²,

wherein,

5 R^{11} , R^{12} , R^{13} and R^{14} independently is H, C₁-C₈ alkyl, C₃-C₇ cycloalkyl, C₃-C₇ cyclo-heteroalkyl, aryl or heteroaryl and wherein R^{11} and R^{12} may together form a 3-8 membered heterocyclic ring or R^{11} and R^{13} may together form a 3-8 membered heterocyclic ring or R^{12} and R^{13} may together form a 3-8 membered heterocyclic ring,

10 in still another preferred embodiment, R^{10} is H, phenyl, naphtyl, thienyl, furyl, pyridyl, quinolinyl or isoquinolinyl and wherein R^{11} and R^{12} may together form a 3-8 membered heterocyclic ring or R^{11} and R^{13} may together form a 3-8 membered heterocyclic ring or R^{12} and R^{13} may together form a 3-8 membered heterocyclic ring,

15 in still another preferred embodiment, R^{10} is H, phenyl or naphthyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹, S(=O)R¹¹, S(=O)₂NR¹¹, S(=O)NR¹¹R¹², NO₂, NR¹¹C(=O)R¹², NR¹¹C(=O)NR¹²R¹³, C(=O)R¹¹, C(=NOR¹¹)R¹², C(=O)OR¹¹, C(=O)NR¹¹R¹², C(=O)NR¹¹OR¹²,

20 wherein, R^{11} , R^{12} , R^{13} and R^{14} independently is H, methyl, ethyl, propyl, butyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, naphtyl, thienyl, furyl, pyridinyl, quinolinyl or isoquinolinyl and wherein R^{11} and R^{12} may together form a 3-8 membered heterocyclic ring or R^{11} and R^{13} may together form a 3-8 membered heterocyclic ring or R^{12} and R^{13} may together form a 3-8 membered heterocyclic ring,

25 in still another preferred embodiment, R^{10} is H, phenyl, naphtyl, thienyl, furyl, pyridyl, quinolinyl or isoquinolinyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹, S(=O)R¹¹, S(=O)₂NR¹¹, S(=O)NR¹¹R¹², NO₂, NR¹¹C(=O)R¹², NR¹¹C(=O)NR¹²R¹³, C(=O)R¹¹, C(=NOR¹¹)R¹², C(=O)NR¹¹R¹², C(=O)NR¹¹OR¹²,

30 wherein, R^{11} , R^{12} , R^{13} and R^{14} independently is H, methyl, ethyl, propyl, butyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, naphtyl, thienyl, furyl, pyridinyl, quinolinyl or isoquinolinyl and wherein R^{11} and R^{12} may together form a 3-8 membered heterocyclic ring or R^{11} and R^{13} may together form a 3-8 membered heterocyclic ring or R^{12} and R^{13} may together form a 3-8 membered heterocyclic ring,

heterocyclic ring or R¹¹ and R¹³ may together form a 3-8 membered heterocyclic ring or R¹² and R¹³ may together form a 3-8 membered heterocyclic ring.

in still another preferred embodiment,

R¹⁰ is H, methyl, ethyl, propyl, butyl, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹, S(=O)R¹¹, S(=O)₂R¹¹, S(=O)C(=O)NR¹¹R¹², NO₂, NR¹¹R¹², NR¹¹C(=O)OR¹², NR¹¹C(=O)NR¹²R¹³, C(=O)OR¹¹, C(=O)NR¹¹OR¹² or R¹⁴, wherein,

R¹¹, R¹², R¹³ and R¹⁴ independently is H, methyl, ethyl, propyl or butyl and wherein R¹¹ and R¹² may together form a 3-8 membered heterocyclic ring or R¹¹ and R¹³ may together form a 3-8 membered heterocyclic ring or R¹² and R¹³ may together form a 3-8 membered heterocyclic ring,

in still another preferred embodiment,

R¹⁰ is H, azidinyl, azetidinyl, pyrrolidinyl, piperidinyl or morpholinyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹, S(=O)R¹¹, S(=O)₂R¹¹, S(=O)₂NR¹¹R¹², NO₂, NR¹¹C(=O)R¹², NR¹¹C(=O)NR¹²R¹³, C(=O)OR¹¹, C(=O)NR¹¹OR¹² or R¹⁴, wherein,

R¹¹, R¹², R¹³ and R¹⁴ independently is H, methyl, ethyl, propyl or butyl and wherein R¹¹ and R¹² may together form a 3-8 membered heterocyclic ring or R¹¹ and R¹³ may together form a 3-8 membered heterocyclic ring or R¹² and R¹³ may together form a 3-8 membered heterocyclic ring,

in still another preferred embodiment,

R¹⁰ is H, phenyl, naphthyl, furyl, pyridyl, quinolinyl or isoquinolinyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹, S(=O)R¹¹, S(=O)₂R¹¹, S(=O)₂NR¹¹R¹², NO₂, NR¹¹C(=O)R¹², NR¹¹C(=O)OR¹², NR¹¹C(=O)NR¹², C(=O)NR¹¹OR¹², C(=O)NR¹¹OR¹³, C(=O)NR¹¹OR¹⁴, wherein,

wherein,

35

R¹¹, R¹², R¹³ and R¹⁴ independently is H, methyl, ethyl, propyl or butyl and wherein R¹¹ and R¹² may together form a 3-8 membered heterocyclic ring or R¹¹ and R¹³ may together form a 3-8 membered heterocyclic ring or R¹² and R¹³ may together form a 3-8 membered heterocyclic ring,

5

in still another preferred embodiment,

R¹⁰ is H, phenyl or naphthyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹, S(=O)R¹¹, S(=O)₂R¹¹, S(=O)₂NR¹¹R¹², NO₂, NR¹¹C(=O)R¹², NR¹¹C(=O)OR¹², NR¹¹C(=O)NR¹²R¹³, C(=O)R¹¹, C(=O)NR¹¹OR¹², C(=O)NR¹¹OR¹³, C(=O)NR¹¹OR¹⁴, wherein,

R¹¹, R¹², R¹³ and R¹⁴ independently is H, methyl, ethyl, propyl or butyl and wherein R¹¹, R¹², R¹³ and R¹⁴ independently is H, methyl, ethyl, propyl or butyl and wherein R¹¹ and R¹² may together form a 3-8 membered heterocyclic ring or R¹¹ and R¹³ may together form a 3-8 membered heterocyclic ring or R¹² and R¹³ may together form a 3-8 membered heterocyclic ring,

in still another preferred embodiment,

R¹⁰ is H, thienyl, furyl, pyridyl, quinolinyl or isoquinolinyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹, S(=O)R¹¹, S(=O)₂R¹¹, S(=O)₂NR¹¹R¹², NO₂, NR¹¹C(=O)R¹², NR¹¹C(=O)OR¹², NR¹¹C(=O)NR¹²R¹³, C(=O)R¹¹, C(=O)NR¹¹OR¹², C(=O)NR¹¹OR¹³, C(=O)NR¹¹OR¹⁴, wherein,

R¹¹, R¹², R¹³ and R¹⁴ independently is H, methyl, ethyl, propyl or butyl and wherein R¹¹ and R¹² may together form a 3-8 membered heterocyclic ring or R¹¹ and R¹³ may together form a 3-8 membered heterocyclic ring or R¹² and R¹³ may together form a 3-8 membered heterocyclic ring,

in still another preferred embodiment,

R¹⁰ is methyl, ethyl, propyl, butyl, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹, S(=O)R¹¹, S(=O)₂R¹¹, S(=O)₂NR¹¹R¹², NO₂, NR¹¹C(=O)R¹², NR¹¹C(=O)OR¹², NR¹¹C(=O)NR¹²R¹³, C(=O)R¹¹, C(=O)NR¹¹OR¹², C(=O)NR¹¹OR¹³, C(=O)NR¹¹OR¹⁴, wherein,

30

35

60

R^{11} , R^{12} , R^{13} and R^{14} independently is H, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.

In still another prefected embodiment,

R^{10} is azidodimyl, azetidinyl, pyrrolidinyl, piperidinyl or morpholinyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹, Si=O)R¹¹, S(O)R¹¹, Si=O)NR¹¹R¹², NO₂, NR¹¹R¹², NR¹¹C(=O)R¹², NR¹¹C(=O)OR¹², NR¹¹C(=O)NR¹²R¹³, C(=O)R¹¹, C(=NOR¹¹)R¹², C(=O)OR¹¹, C(=O)NR¹¹R¹², C(=O)NR¹¹OR¹² or R¹⁴,

wherein,

R^{11} , R^{12} , R^{13} and R^{14} independently is H, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.

卷之三

R¹⁰ is phenyl, naphyl, thiényl, furyl, pyridyl, quinolinyl or isoquinolinyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹, S(O)R¹¹, S(=O)NR¹¹R¹², S{O₂)NR¹¹R¹², NO₂, NR¹¹C(=O)R¹¹, NR¹¹C(=O)OR¹², NR¹¹C(=O)NR¹²R¹³, C(=O)R¹¹, C(=NOR¹¹)R¹², C(=O)OR¹¹, C(=O)NR¹¹R¹², C(=O)NR¹¹OR¹² or R¹⁴,

wherein,

R¹¹, R¹², R¹³ and R¹⁴ independently is H, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.

三

R¹⁰ is phenyl or naphthyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, OF₃, OR¹¹, S(=O)R¹¹, S(=O)OR¹¹, S(=O)₂NR¹¹R¹², NO₂, NR¹¹C(=O)R¹², NR¹¹C(=O)OR¹², NR¹¹C(=O)NR¹²R¹³, C(=O)R¹¹, C(=NOR¹¹)R¹², C(=O)OR¹¹, C(=O)NR¹¹R¹², C(=O)NR¹¹OR¹² or R¹⁴, wherein, R¹¹, R¹², R¹³ and R¹⁴ independently is H, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.

Information

In still another preferred embodiment, R¹⁰ is thieryl, furyl, pyridyl, quinolinyl or isoquinolinyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹,

三

$\text{Si}=\text{OR}^{11}, \text{Si}=\text{O}_2\text{R}^{11}, \text{Si}=(\text{O})_2\text{NR}^{11}\text{R}^{12}, \text{NO}_2, \text{NR}^{11}\text{R}^{12}, \text{NR}^{11}\text{C}=\text{OR}^{12},$
 $\text{NR}^{11}\text{C}=\text{O})\text{OR}^{12}, \text{NR}^{11}\text{C}=(\text{O})\text{NR}^{11}\text{R}^{13}, \text{C}=(\text{O})\text{R}^{11}, \text{C}=(\text{NOR}^{11})\text{R}^{12}, \text{C}=(\text{O})\text{OR}^{11},$
 $\text{C}=(\text{ONR}^{11})\text{R}^{12}, \text{C}=(\text{O})\text{NR}^{11}\text{OR}^{12}, \text{or R}^{14}$

wherein, R¹¹, R¹², R¹³ and R¹⁴ independently is H, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.

in still another preferred embodiment, R¹⁰ is methyl, ethyl, propyl, butyl, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹, SR¹¹, S(=O)R¹¹, S(=O)₂R¹¹, S(=O)NR¹¹R¹², NO₂, NR¹¹R¹², NR¹¹C(=O)R¹², NR¹¹C(=O)OR¹², NR¹¹C(=O)NR¹²R¹³, C(=O)R¹¹, C(=NOR¹¹)R¹², C(=O)OR¹¹, C(=O)NR¹¹R¹², C(=O)NR¹¹OB¹¹, or R¹⁴.

in still another preferred embodiment.

R¹⁰ is phenyl, naphthyl, furyl, pyridyl, quinuolinyl or isoquinuolinyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹, S(O)R¹¹, S(O=O)R¹¹, NO₂, NR¹¹R¹², NR¹¹C(=O)R¹², NR¹¹C(=O)OR¹³, NR¹¹C(=O)NR¹², C(=O)R¹¹, C(=NOR¹¹)R¹², C(=O)OR¹¹.

C(=O)NR

wherein, R^1 , R^{12} , R^3 and R^{14} independently is H, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl,

in still another preferred embodiment, R¹⁰ is phenyl or naphyl optionally substituted.

from the

$\text{S}(\text{=O})\text{NR}^{11}\text{R}^2$, NO_2 , $\text{NR}^{11}\text{R}'^2$, $\text{NR}^{11}\text{C}=\text{O}\text{R}'^2$, $\text{NR}^{11}\text{C}=\text{O}\text{OR}'^2$, $\text{NR}^{11}\text{C}=\text{O}\text{NR}^{12}\text{R}'^3$,
 $\text{C}(\text{=O})\text{R}'^1$, $\text{C}(\text{=NOR}^{11})\text{R}'^2$, $\text{C}(\text{=O})\text{OR}'^1$, $\text{C}(\text{=O})\text{NR}^{11}\text{R}'^2$, $\text{C}(\text{=O})\text{NR}^{11}\text{OR}'^2$ or R'^4 ,
wherein,
 R'^1 , R'^2 , R'^3 and R'^4 independently is H, cyclopropyl, cyclobutyl, cyclopentyl, or
cyclohexyl,

In still another preferred embodiment, R¹⁰ is thiényl, furyl, pyridyl, quinolinyl or isoquinolinyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹,

PCT/DK03/00174

R^{10} is cyclohexyl, cycloheptyl, cyclooctyl or cyclo-

In still another preferred embodiment, R¹⁰ is phenyl or naphthyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹, S(=O)R¹¹, S(=O)₂R¹¹, S(=O)NR¹¹R¹², NO₂, NR¹¹R¹², NR¹¹C(=O)OR¹², NR¹¹C(=O)NR¹²R¹³, C(=O)R¹¹, C(=NOR¹¹)R¹², C(=O)NR¹¹R¹², C(=O)NR¹¹OR¹² or R¹⁴.

R^{11} , R^{12} , R^{13} and R^{14} independently is H, phenyl, naphthyl, thiényl, furyl, pyridinyl, quinolinyl or isoquinolinyl.

in still another preferred embodiment,

or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹¹, S(=O)R¹¹, S(=O)²R¹¹, Si=O₂NR¹¹R¹², NO₂, NR¹¹R¹², NR¹¹C(=O)R¹², NR¹¹C(=O)OR¹², NR¹¹C(=O)NR¹²R¹³, C(=O)R¹¹, C(=NOR¹¹)R¹², C(=O)OR¹¹, C(=O)NR¹¹R¹², C(=O)NR¹¹OR¹², or R¹⁴,

R^{11} , R^{12} , R^{13} and R^{14} independently is H, phenyl, naphthyl, thiényl, furyl, pyridinyl, quinolinyl or isoquinolinyl.

R^0 is H, C_rC_8 alkyl, C_3C_7 cycloalkyl, C_3-C_7 cycloheteroalkyl, aryl or heteroaryl;

in still another preferred embodiment, R^{10} is H_1 .

is still another preferred embodiment.

* still another preferred embodiment, ¹⁰ is methyl, ethyl, propyl or butyl

in still another preferred embodiment

SUBSTITUTE SHEET / VIII 200

40

R^{18} , R^{19} and R^{20} independently is H, alkyl, alkenyl, alkynyl, alkadienyl, cycloalkyl, cycloalkenyl, cycloalkynyl, aryl or heteroaryl, optionally substituted with one or more substituents selected from the group consisting of halogen, CN, CNO, C(halogen)₃, OR²¹, OC(=O)R²¹, OC(=O)OR²¹, OC(=O)NR²¹R²², SR²¹, S(=O)R²¹, S(=O)OR²¹, S(=O)NR²¹R²², NO₂, N₃, NR²¹R²², N¹R²¹R²², NR¹⁸OR¹⁹, NR¹⁸NR¹⁹R²⁰, NR²¹C(=O)R²², NR²¹C(=O)OR²², NR²¹C(=O)NR²²R²³, NC, P(=O)(OR²¹)OR²², P(=O)R¹⁸R²⁰, C(=O)R²¹, C(=NR²¹)R²², C(=NNR²¹)R²², C(=O)NR²¹R²², Cl(=O)NR²¹OR²², Cl(=O)NR²¹OR²²C(=NR¹⁸)NR¹⁹R²⁰, Cl(=NOR¹⁸)NR¹⁹R²⁰ or Cl(=O)NR²¹NR²²R²³, wherein R¹⁸ and R¹⁹ may together form a 3-8 membered heterocyclic ring or R¹⁸ and R²⁰ may together form a 3-8 membered heterocyclic ring.

wherein,

R^{21} , R^{22} and R^{23} independently is H, alkyl, alkenyl, alkynyl, alkadienyl, cycloalkyl, cycloalkenyl, cycloalkynyl, aryl or heteroaryl and wherein R²¹ and R²² may together form a 3-8 membered heterocyclic ring or R²¹ and R²³ may together form a 3-8 membered heterocyclic ring.

R^{18} , R^{19} and R^{20} independently is H, C₁-C₆ alkyl, C₂-C₇ cycloalkyl, C₂-C₇ cycloalkenyl, C₂-C₇ cycloalkynyl, aryl or heteroaryl, optionally substituted with one or more substituents selected from the group consisting of halogen, CN, CNO, C(halogen)₃, OR¹⁸, OC(=O)R¹⁸, OC(=O)OR¹⁸, S(=O)R¹⁸, S(=O)OR¹⁸, S(=O)NR¹⁸R¹⁹, NO₂, NR¹⁸R¹⁹, NR¹⁸OR¹⁹, NR¹⁸NR¹⁹R²⁰, NR¹⁸C(=O)OR¹⁹, NR¹⁸C(=O)NR¹⁹R²⁰, P(=O)(OR¹⁸)OR¹⁹, Cl(=O)R¹⁸, Cl(=NR¹⁸)R¹⁹, Cl(=NNR¹⁸)R¹⁹, C(=O)OR¹⁸, Cl(=O)NR¹⁸R¹⁹, Cl(=O)NR¹⁸OR¹⁹, Cl(=O)NR¹⁸NR¹⁹R²⁰, Cl(=O)NR¹⁸NR¹⁹R²¹,

wherein,

R^{17} and R^{24} independently is H, C₁-C₆ alkyl, C₂-C₇ cycloalkyl, C₂-C₇ cycloalkenyl, C₂-C₇ cycloalkynyl, aryl or heteroaryl, optionally substituted with one or more substituents selected from the group consisting of halogen, CN, CF₃, OR¹⁸, OC(=O)R¹⁸, OC(=O)OR¹⁸, OC(=O)NR¹⁸R¹⁹, SR¹⁸, S(=O)R¹⁸, S(=O)OR¹⁸, S(=O)NR¹⁸R¹⁹, NO₂, NR¹⁸R¹⁹, NR¹⁸OR¹⁹, NR¹⁸NR¹⁹R²⁰, NR¹⁸C(=O)OR¹⁹, NR¹⁸C(=O)NR¹⁹R²⁰, P(=O)(OR¹⁸)OR¹⁹, Cl(=O)R¹⁸, Cl(=NR¹⁸)R¹⁹, Cl(=NNR¹⁸)R¹⁹, C(=O)OR¹⁸, Cl(=O)NR¹⁸R¹⁹, Cl(=O)NR¹⁸OR¹⁹, Cl(=O)NR¹⁸NR¹⁹R²⁰, Cl(=O)NR¹⁸NR¹⁹R²¹,

R^{18} , R^{19} and R^{20} independently is H, C₁-C₆ alkyl, C₂-C₇ cycloalkyl, C₂-C₇ cycloalkenyl, C₂-C₇ cycloalkynyl, aryl or heteroaryl and wherein R¹⁸ and R¹⁹ may together form a 3-8 membered heterocyclic ring or R¹⁸ and R²⁰ may together form a 3-8 membered heterocyclic ring or R¹⁸ and R¹⁹ may together form a 3-8 membered heterocyclic ring.

35

$$\begin{aligned}
 \text{NO}_2, \text{NR}^{19}\text{R}^{18}, \text{NR}^{18}\text{C}(\text{=O})\text{R}^{19}, \text{NR}^{18}\text{C}(\text{=O})\text{OR}^{19}, \text{NR}^{18}\text{C}(\text{=O})\text{NR}^{19}\text{R}^{20}, \text{C}(\text{=O})\text{R}^{18}, \\
 \text{C}(\text{=O})\text{NR}^{19}\text{R}^{18}, \text{C}(\text{=O})\text{OR}^{18}, \text{C}(\text{=O})\text{NR}^{18}\text{R}^{19}, \text{C}(\text{=O})\text{NR}^{18}\text{OR}^{19} \text{ or } \text{R}^{21}
 \end{aligned}$$

wherein.

R^{18} , R^{19} , R^{20} and R^{21} independently is H , C_1-C_6 alkyl, C_3-C_7 cycloalkyl, C_3-C_7 cyclo-heteroalkyl, aryl or heteraryl and wherein R^{18} and R^{19} may together form a 3-8 membered heterocyclic ring or R^{18} and R^{20} may together form a 3-8 membered heterocyclic ring or R^{19} and R^{20} may together form a 3-8 membered heterocyclic ring.

In still another embodiment, R^1 and R^{24} independently is H, methyl, ethyl, propyl, butyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, aziridinyl, azetidinyl, pyrrolidinyl, piperidinyl, morpholinyl, phenyl, naphthyl, thienyl, furyl, pyridyl, quinolinyl or isoquinolinyl optionally substituted

with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹⁸, S(=O)R¹⁸, S(=O)₂R¹⁸, S(=O)NR¹⁸R¹⁹, NO₂, NR¹⁸R¹⁹, NR¹⁸C(=O)R¹⁹, N(R¹⁸)C(=O)OR¹⁹, R¹⁸C(=O)NR¹⁸R²⁰, C(=O)R¹⁸, C(=NOR¹⁸)R¹⁹, C(=O)OR¹⁸, C(=ONR¹⁸)R¹⁹, C(=O)NR¹⁸OR¹⁹ or R²¹, wherein,

R^{18} , R^{19} , R^{20} and R^{21} independently is H, C_1-C_8 alkyl, C_3-C_7 cycloalkyl, C_3-C_7 cycloalkoxyalkyl, aryl or heteroaryl and wherein R^{18} and R^{19} may together form a 3-8 membered heterocyclic ring or R^{18} and R^{21} may together form a 3-8 membered heterocyclic ring or R^{19} and R^{20} may together form a 3-8 membered heterocyclic ring or R^{18} and R^{20} may together form a 3-8 membered heterocyclic ring.

in still another embodiment, R^{17} and R^{24} independently is H, methyl, ethyl, propyl, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹⁸, Si=O|R¹⁸, S=O₂R¹⁸

¹⁸, R¹⁹, R²⁰ and R²¹ independently is H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, C₃-C₇ cyclo-
aeroalkyl, aryl or heteroaryl and wherein R¹⁸ and R¹⁹

R^{18} and R^{20} may together form a 3-8 membered heterocyclic ring or R^{18} and R^{20} may together form a 3-8 membered heterocyclic ring or R^{18} and R^{20} may together form a 3-8 membered heterocyclic ring or R^{18} and R^{20} may together form a 3-8 membered heterocyclic ring.

卷之三

R^{17} and R^{24} independently is H, azidinyl, azetidinyl, pyrrolidinyl, piperidinyl or morpholinyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹⁸, Si=O|R¹⁹, S(O)=O|R¹⁸, S(=O)OR¹⁸, S(=O)²O|R¹⁹, NO₂, NR¹⁸R¹⁹, NR¹⁸C(=O)OR¹⁹, NR¹⁸C(=O)NR¹⁸R²⁰, NR¹⁸C(=O)NR¹⁸R²¹, C(=O)R¹⁸, C(=O)NR¹⁸R¹⁹, C(=O)OR¹⁸, C(=O)NR¹⁸OR¹⁹ or R²¹.

heteroalkyl, aryl or heteroaryl, and wherein R¹⁸ and R¹⁹ may together form a 3-8 membered heterocyclic ring or R¹⁸ and R²⁰ may together form a 3-8 membered heterocyclic ring or R¹⁸ and R²⁰ may together form a 3-8 membered heterocyclic ring

In still another embodiment,

R' and R'' independently is H, phenyl, naphthyl, furyl, pyridyl, quinolinyl or isoquinolinyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹⁸, S(O)OR¹⁸, S(=O)₂R¹⁸, S(=O)₂NR¹⁹, NO₂, NR¹⁸R¹⁹, NR¹⁸C(=O)R¹⁹, NR¹⁸C(=O)OR¹⁹, NR¹⁸C(=O)NR¹⁹R²⁰, C(=O)R¹⁸, C(=N)R¹⁸, C(=O)OR¹⁸, C(=O)NR¹⁸R¹⁹, C(=O)NR¹⁸OR²¹

wherein,
 R^{18} , R^{19} , R^{20} and R^{21} independently is H, C_1-C_8 alkyl, C_3-C_7 cycloalkyl, C_3-C_7 cycloalkyl, aryl or heteroaryl and wherein R^{18} and R^{19} may together form a 3-8 membered heterocyclic ring or R^{16} and R^{20} may together form a 3-8 membered heterocyclic ring or R^{18} and R^{20} may together form a 3-8 membered heterocyclic ring.

In still another embodiment, R¹⁷ and R²⁴ independently is H, phenyl or naphyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹⁸, Si=O[R¹⁹ S(=O)₂R²⁰], S(=O)₂N(R²¹)₂, NO₂, NR¹⁸R²⁰, ND¹⁹C(=O)R¹⁹

$\text{NR}^1\text{C}(\text{=O})\text{OR}^{18}$, $\text{NR}^{18}\text{C}(\text{=O})\text{NR}^{19}\text{R}^{20}$, $\text{C}(\text{=O})\text{R}^{18}$, $\text{C}(\text{=NOR}^{18})\text{R}^{19}$, $\text{C}(\text{=O})\text{OR}^{18}$, $\text{C}(\text{=O})\text{NR}^{19}\text{R}^{19}$, $\text{C}(\text{=O})\text{NR}^{11}\text{OR}^{19}$ or R^{21} , wherein,
 R^{18} , R^{19} , R^{20} and R^{21} independently is H, $\text{C}_1\text{-C}_6$ alkyl, $\text{C}_3\text{-C}_6$ cycloalkyl, $\text{C}_6\text{-C}_7$ cyclo-
 heteroalkyl, aryl or heteroaryl and wherein R^{18} and R^{19} may together form a 5- to 8-

membered heterocyclic ring or R¹⁸ and R²⁰ may together form a 3-8 membered heterocyclic ring or R¹⁹ and R²⁰ may together form a 3-8 membered heterocyclic ring.

SUBSTITUTE SHEET (RULE 26)

卷之三

R^{18} , R^{19} , R^{20} and R^{21} independently is H, methyl, ethyl, propyl, butyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, naphthyl, thienyl, furyl, pyridinyl, quinolinyl or isoquinolinyl and wherein R^{18} and R^{19} may together form a 3-8 membered heterocyclic ring or R^{18} and R^{20} may together form a 3-8 membered heterocyclic ring or R^{18} and R^{20} may together form a 3-8 membered heterocyclic ring, wherein,

La still another combination

R^{17} and R^{21} independently is H, methyl, ethyl, propyl, butyl, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹⁸, S(=O)R¹⁸, S(=O)NR¹⁸R¹⁹, NO₂, NR¹⁸R¹⁹, NR¹⁸C(=O)R¹⁹, NR¹⁸C(=O)NR¹⁸R²⁰, C(=O)R¹⁸, C(=NOR¹⁸)R¹⁹, C(=O)OR¹⁸, C(=O)NR¹⁸OR¹⁹ or R²¹, wherein,

R^{18} , R^{19} , R^{20} and R^{21} independently is H, methyl, ethyl, propyl or butyl and wherein R^{18} and R^{19} may together form a 3-8 membered heterocyclic ring or R^{18} and R^{20} may together form a 3-8 membered heterocyclic ring or R^{19} and R^{20} may together form a 3-8 membered heterocyclic ring.

In still another embodiment,
R¹⁷ and R²⁴ independently is H, azidinyl, azetidinyl, pyrrolidinyl, piperidinyl or morpholinyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹⁸, S(=O)R¹⁸, S(=O)₂NR¹⁹R¹⁸, NO₂, NR¹⁸R¹⁹, NR¹⁸C(=O)OR¹⁹, NR¹⁸Cl, NR¹⁸C(=O)NR¹⁹R²⁰, C(=O)R¹⁸, C(=NO)R¹⁹, C(=O)NR¹⁹OR²¹ or R²¹

R^{18} , R^{19} , R^{20} and R^{21} independently is H, methyl, ethyl, propyl or butyl and wherein R^{18} and R^{19} may together form a 3-8 membered heterocyclic ring or R^{18} and R^{20} may together form a 3-8 membered heterocyclic ring or R^{19} and R^{20} may together form a 3-8 membered heterocyclic ring,

R¹⁷ and R²⁴ independently is H, phenyl, naphthyl, furyl, pyridyl, quinolinyl or isoquinolinyl; optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹⁸, Si=O|R¹⁸, S(=O)R¹⁸, S(=O)=O|R¹⁸, NR¹⁸

NO_2 , $\text{NR}^{18}\text{R}^{19}$, $\text{NR}^{18}\text{C}(=\text{O})\text{R}^{18}$, $\text{NR}^{18}\text{C}(=\text{O})\text{OR}^{18}$, $\text{NR}^{18}\text{C}(=\text{O})\text{NR}^{18}\text{R}^{20}$, $\text{C}(=\text{O})\text{R}^{18}$,
 $\text{C}(\text{=NR}^{18})\text{R}^{18}$, $\text{C}(\text{=O})\text{OR}^{18}$, $\text{C}(\text{=O})\text{NR}^{18}\text{R}^{18}$, $\text{C}(\text{=O})\text{NR}^{18}\text{OR}^{18}$ or R^{21}

wherein, R^{18} , R^{19} , R^{20} and R^{21} independently is H, methyl, ethyl, propyl or butyl and wherein R^{18} and R^{19} may together form a 3-8 membered heterocyclic ring or R^{18} and R^{20} may together form a 3-8 membered heterocyclic ring or R^{18} and R^{20} may together form a

In still another embodiment,
 R^{17} and R^{24} independently is H, phenyl or naphthyl optionally substituted with one or
more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹⁸,
S(O)R¹⁸, S(O)₂NR¹⁸R¹⁹, NO₂, NR¹⁸R¹⁹, NR¹⁸C(=O)R¹⁹,
NR¹⁸C(=O)OR¹⁹, NR¹⁸C(=O)NR¹⁹R²⁰, C(=O)R¹⁸, C(=NOR¹⁹)R¹⁸, C(=O)OR¹⁸,
C(=O)NR¹⁸OR¹⁹ or R²¹

wherein,
 R^{18} , R^{19} , R^{20} and R^{21} independently is H, methyl, ethyl, propyl or butyl and wherein
 R^{18} and R^{19} may together form a 3-8 membered heterocyclic ring or R^{18} and R^{20} may

3-8 membered heterocyclic rings

In still another embodiment, R¹⁷ and R²⁴ independently is H, thienyl, furyl, pyridyl, quinoliny or isoquinoliny optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹⁸, Si=O)R¹⁸, Si(O)R¹⁸, Si(=O)₂R¹⁸, Si(=O)NR¹⁹R¹⁸, NR¹⁸C(=O)R¹⁹, NR¹⁸C(=O)OR¹⁹, NR¹⁸C(=O)NR¹⁹R²⁰, C(=O)R¹⁸, C(=O)NR¹⁸)R¹⁹, C(=O)NR¹⁸)C(=O)NR¹⁹R²⁰, C(=O)NR¹⁸)C(=O)NR¹⁹R²¹, C(=O)NR¹⁸)C(=O)NR¹⁹R²².

wherein,
 R^{18} , R^{19} , R^{20} and R^{21} independently is H, methyl, ethyl, propyl or butyl and wherein
 R^{16} and R^{19} may together form a 3-8 membered heterocyclic ring or R^{18} and R^{20} may
together form a 3-8 membered heterocyclic ring or R^{19} and R^{20} may together form a
3-8 membered heterocyclic ring.

In still another embodiment, R^{17} and R^{24} independently is methyl, ethyl, propyl, butyl, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl optionally substituted with one or more substituents as

48

lected from the group consisting of F, Cl, CN, CF₃, OR¹⁸, S(=O)R¹⁸, S(=O)OR¹⁸, S(=O)₂R¹⁸, S(=O)₂NR¹⁸R¹⁹, NO₂, NR¹⁸C(=O)R¹⁹, NR¹⁸C(=O)NR¹⁹, NR¹⁸C(=O)OR¹⁹, C(=O)R¹⁸, C(=NOR¹⁸)R¹⁸, C(=O)OR¹⁸, C(=O)NR¹⁸R¹⁹, C(=O)NR¹⁸OR¹⁹ or R²¹, wherein,

5 R¹⁸, R¹⁹, R²⁰ and R²¹ independently is H, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl,

In still another embodiment,
R¹⁷ and R²⁴ independently is azetidinyl, pyrrolidinyl, piperidinyl or morpholinyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹⁸, S(=O)R¹⁸, S(=O)₂R¹⁸, NO₂, NR¹⁸C(=O)R¹⁹, NR¹⁸C(=O)NR¹⁹, NR¹⁸C(=O)OR¹⁹, C(=O)R¹⁸, C(=NOR¹⁸)R¹⁸, C(=O)OR¹⁸, C(=O)NR¹⁸R¹⁹, C(=O)NR¹⁸OR¹⁹ or R²¹, wherein,

10 R¹⁸, R¹⁹, R²⁰ and R²¹ independently is H, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl,

In still another embodiment,

15 R¹⁷ and R²⁴ independently is thienyl, furyl, pyridyl, quinolinyl or isoquinolinyl or ally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹⁸, S(=O)R¹⁸, S(=O)₂R¹⁸, NR¹⁸C(=O)R¹⁹, NR¹⁸C(=O)OR¹⁹, NR¹⁸C(=O)NR¹⁹, C(=O)R¹⁸, C(=O)OR¹⁸, C(=O)NR¹⁸OR¹⁹ or R²¹,

wherein,

20 R¹⁸, R¹⁹, R²⁰ and R²¹ independently is H, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl,

25 R¹⁷ and R²⁴ independently is methyl, ethyl, propyl, butyl, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹⁸, S(=O)R¹⁸, S(=O)₂R¹⁸, NR¹⁸C(=O)R¹⁹, NR¹⁸C(=O)OR¹⁹, NR¹⁸C(=O)NR¹⁹, C(=O)R¹⁸, C(=NOR¹⁸)R¹⁸, C(=O)OR¹⁸, C(=O)NR¹⁸OR¹⁹ or R²¹,

wherein,

30 R¹⁸, R¹⁹, R²⁰ and R²¹ independently is H, phenyl, naphthyl, thiophenyl, furyl, pyridinyl, quinolinyl or isoquinolinyl,

In still another embodiment,

35 R¹⁷ and R²⁴ independently is azetidinyl, pyrrolidinyl, piperidinyl, morpholinyl or ally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹⁸, S(=O)R¹⁸, S(=O)₂R¹⁸, NR¹⁸C(=O)R¹⁹, NR¹⁸C(=O)OR¹⁹, NR¹⁸C(=O)NR¹⁹, C(=O)R¹⁸, C(=O)OR¹⁸, C(=O)NR¹⁸OR¹⁹ or R²¹,

wherein,

40 R¹⁸, R¹⁹, R²⁰ and R²¹ independently is H, phenyl, naphthyl, thiophenyl, furyl, pyridinyl, quinolinyl or isoquinolinyl,

In still another embodiment,

50

R^{17} and R^{24} independently is phenyl, naphthyl, thienvyl, furyl, pyridyl, quinoliny or isoquinoliny or optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹⁸, S(=O)R¹⁸, S(=O)₂R¹⁸, S(=O)NR¹⁸R¹⁹, NO₂, NR¹⁸R¹⁹, NR¹⁸C(=O)OR¹⁹, NR¹⁸C(=O)NR¹⁹R²⁰, C(=O)R¹⁸, C(=O)OR¹⁸, C(=O)NR¹⁸R¹⁹, C(=O)NR¹⁸OR¹⁹ or R²¹, wherein, R¹⁸, R¹⁹, R²⁰ and R²¹ independently is H, phenyl, naphthyl, thienvyl, furyl, pyridiny, quinoliny or isoquinoliny,

In still another embodiment,

R^{17} and R^{24} independently is phenyl or naphthyl optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹⁸, S(=O)R¹⁸, S(=O)₂R¹⁸, S(=O)NR¹⁸R¹⁹, NR¹⁸C(=O)R¹⁹, NR¹⁸C(=O)NR¹⁸R²⁰, C(=O)R¹⁸, C(=O)OR¹⁸, NR¹⁸C(=O)NR¹⁸R²⁰, C(=O)R¹⁸, C(=O)NR¹⁸R¹⁹, C(=O)NR¹⁸OR¹⁹ or R²¹, wherein,

R¹⁸, R¹⁹, R²⁰ and R²¹ independently is H, phenyl, naphthyl, thienvyl, furyl, pyridiny, quinoliny or isoquinoliny,

In still another embodiment,

R^{17} and R^{24} independently is thienvyl, furyl, pyridyl, quinoliny or isoquinoliny or optionally substituted with one or more substituents selected from the group consisting of F, Cl, CN, CF₃, OR¹⁸, S(=O)R¹⁸, S(=O)₂R¹⁸, S(=O)NR¹⁸R¹⁹, NO₂, NR¹⁸R¹⁹, NR¹⁸C(=O)OR¹⁹, NR¹⁸C(=O)NR¹⁸R²⁰, C(=O)R¹⁸, C(=O)OR¹⁸, C(=O)NR¹⁸R¹⁹, C(=O)NR¹⁸OR¹⁹ or R²¹, wherein,

R¹⁸, R¹⁹, R²⁰ and R²¹ independently is H, phenyl, naphthyl, thienvyl, furyl, pyridiny, quinoliny or isoquinoliny,

In still another embodiment, R^{17} and R^{24} independently is H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, C₃-C₇ cycloheteroalkyl, aryl or heteroaryl.

In still another embodiment, R^{17} and R^{24} independently is H,

Toluene (10 mL) was added and the solution was evaporated *in vacuo*. The crude

51

In still another embodiment, R^{17} and R^{24} independently is C₁-C₆ alkyl, C₃-C₇ cycloalkyl or C₃-C₇ cycloheteroalkyl,

5 In still another embodiment, R^{17} and R^{24} independently is methyl, ethyl, propyl or butyl

In still another embodiment, R^{17} and R^{24} independently is cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl

In still another preferred embodiment R^{17} and R^{24} independently is azidiny, pyrrolidiny, piperidiny or morpholiny

In still another embodiment, R^{17} and R^{24} independently is aryl or heteroarylIn still another embodiment, R^{17} and R^{24} independently is phenyl or naphthylIn still another embodiment, R^{17} and R^{24} independently is thienvyl, furyl, pyridinyIn still another embodiment, R^{17} and R^{24} independently is aryl or heteroaryl

10 In still another embodiment, R^{17} and R^{24} independently is thienvyl, furyl, pyridiny, quinoliny or isoquinoliny

15 In still another embodiment, R^{17} and R^{24} independently is phenyl or naphthyl

Experiments**General Procedure 1: Synthesis of benzoic acid derivatives for building blocks:**

The benzoic acid derivative (1 mmol) was dissolved in THF (5 mL) and pyridine (3 mmol). The mixture was cooled to 0°C and treated with an acid chloride (1.2 mmol). The cooling bath was removed and the reaction mixture was stirred for 1 hour at rt. Toluene (10 mL) was added and the solution was evaporated *in vacuo*. The crude

30 In still another embodiment, R^{17} and R^{24} independently is H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, C₃-C₇ cycloheteroalkyl,

In still another embodiment,

35 R^{17} and R^{24} independently is H,

52

was redissolved in EtOAc (10 mL), washed with water and brine. The organic phase was dried over MgSO₄ and evaporated *in vacuo*. The pure product was obtained by silica gel purification using a gradient of heptane to EtOAc as eluent.

Example 1 (General procedure 1, wherein Z=S, R=H, and R=CH₃)

5 4-Acetyl/sulfanyl-benzoic acid

Yield = 70%: ¹H-NMR (DMSO-d₆): 8.00 (d, 2H); 7.55 (d, 2H); 2.46 (s, 3H).**Example 2** (General procedure 1, wherein Z=S, R=H, and R=CH₂CH₃)

10 4-Propionyl/sulfanyl-benzoic acid

Yield = 85%: ¹H-NMR (CDCl₃): 8.12 (d, 2H); 7.58 (d, 2H); 2.76 (q, 2H); 1.28 (t, 3H).**Example 3** (General procedure 1, wherein Z=S, R=H, and R=(CH₂)₂CH₃)

15 4-Butyrylsulfanyl-benzoic acid

Yield = 95%: ¹H-nmr (CDCl₃): 8.20 (d, 1H); 8.05 (dd, 1H); 7.25 (d, 1H); 2.40 (s, 3H).

15

53

Yield = 98%: ¹H NMR (CDCl₃): 8.15 (d, 2H); 7.56 (d, 2H); 2.70 (t, 2H); 1.81 (sixtet, 2H); 1.04 (t, 3H).**Example 4** (General procedure 1, wherein Z=S, R=H, and R=(CH₂)₂CHCH₂)

5 4-Pent-4-enoylsulfanyl-benzoic acid

Yield = 71%: ¹H-NMR (CDCl₃): 8.15 (d, 2H); 7.55 (d, 2H); 5.85 (m, 1H); 5.11 (dd, 2H); 2.82 (t, 2H); 2.47 (q, 2H).

10

Example 5 (General procedure, wherein Z=O, R=Cl, and R=CH₃)

4-Acetoxy-3-chloro-benzoic acid

Yield = 95%: ¹H nmr (CDCl₃): 8.20 (d, 1H); 8.05 (dd, 1H); 7.25 (d, 1H); 2.40 (s, 3H).

15

54

General Procedure 2: Synthesis of nicotinic acid derivative for building blocks:

The nicotinic acid derivative (6.44 mmol) was dissolved in THF (10 mL) and triethylamine (5 mL). The mixture was cooled to 0°C and treated with an acid chloride (12.88 mmol). The cooling bath was removed and the reaction mixture was stirred overnight at rt. After removal of the solvents, toluene (10 mL) was added to the crude and evaporated *in vacuo*. The pure product was obtained by silica gel purification using a gradient starting from dichloromethane going to 2% methanol in dichloromethane as eluent.

Example 6 (General procedure 2, wherein Z=S, R=H, and R=CH₃)

Yield = 5%: ¹H-NMR (CDCl₃): 8.76 (dd, 1H); 8.64 (dd, 1H); 7.40 (dd, 1H); 2.79 (s, 3H).

Yield = 5%: ¹H-NMR (CDCl₃): 8.76 (dd, 1H); 8.64 (dd, 1H); 7.40 (dd, 1H); 2.79 (s, 3H).

55

25 μ L of a 150 mM benzoic acid derivative in DMF was mixed with 25 μ L of a 150 mM solution of EDC in DMF. The mixture was left for 30 min at 25°C. 50 μ L of an aminooligo (10 nmol) in 100 mM HEPES buffer pH 7.5 was added and the reaction mixture was left for 20 min at 25°C. The excess building block was removed by extraction with EtOAc (500 μ L) and remaining EtOAc was removed *in vacuo* by spinning 10 min in a speedvac. The aminooligo loaded with the benzoic acid derivative was ethanol precipitated twice using NH₄OAc and analysed by electron spray mass spectrometry (ES-MS).

5 Aminooligo's used:

- A: 5'-XXXXXXXXXXXXTACGACTACGGCAAGTB
- B: 5'-XXXXXXXXXXXXTTTACGACTACGGCAAGTB
- C: 5'-XXXXXXXXXXXXTTTACGACTACGGCAAGTB
- D: 5'-BGACCTGTGAGCATCCAGCZ
- E: 5'-BGCATCCATCGY

- X = 5' amino C6 (Glen# 10-1906-90)
- Y = C2 amino dT phosphate (Glen# 10-1037-90)
- Z = C5 amino dT phosphate (Glen# 10-1039)
- B = Biotin (Glen # 10-1953-95)

Example 7 (General procedure (3))

Oligo A loaded with compound of Example 1

MS (calc., M-1) = 11,560,87; MS (found) = 11,557,89

Example 8 (General procedure (3))

Oligo B loaded with compound of Example 1

56

Example 9 (General procedure (3))
Oligo C loaded with compound of Example 1

5 Oligo C
MS (calc., M-1) = 14.602,86; MS (found) = 14.599,66

Example 10 (General procedure (3))
Oligo D loaded with compound of Example 1

10 Oligo D
MS (calc., M-1) = 6892,85; MS (found) = 6893,29

Example 11 (General procedure (3))
Oligo E loaded with compound of Example 1

SUBSTITUTE SHEET (RULE 26)

Example 12 (General procedure (3))
Oligo E loaded with compound of Example 5

5 Oligo E
MS (calc., M-1) = 4069,84; MS (found) = 4070,20

General Procedure 4: Preparation of building blocks by step wise loading of a carrier and a functional entity onto an oligonucleotide containing a nucleotide derivative comprising an amino group.

15

40 μ L of a 20 mM SPD-P solution in DMSO was mixed with an amino oligo (5 nmol), 200 mM HEPES buffer pH 7.5 was added (80 μ L) and water to a final volume of 160 μ L. the reaction mixture was left for 2 hours at 30°C. The excess building block was removed by extraction with EtOAc (500 μ L). Remaining EtOAc was removed *in*

¹ The difference observed in the calculated and found MS of around 16 is probably due to an oxidation of the sulphur atom of the biotin moiety

SUBSTITUTE SHEET (RULE 26)

58

vacuo by spinning 10 min in a speedvac. The SPDP activated amino-oligo was purified using a micro bio-spin column (equilibrated with 200 mM HEPES buffer pH 7.5).

10 μ L of a 50 mM thio acid derivate solution in DMSO was added to the purified SPDP activated amino-oligo solution and the reaction mixture was left for 30 min at 5 $^{\circ}$ C. The building block loaded amino-oligo was ethanol precipitated twice using NH₄OAc and analysed by electron spray mass spectrometry (ES-MS).

Amino-oligo used:

A2: 5'-GACCTGTCGAAAGCATCCAGCTTCATGGAAATTCCCTCGTCACAAATGZ

Z = Amino-Modifier C6 DT phosphate (Glen# 10-1039-)**Example 13 (General procedure (4))**

Oligo A2 loaded with thiobenzoic acid

MS (calc., M-1) = 14518.76; MS (found) = 14516.78

Example 14: Loading of a trisamine scaffold on an oligonucleotide containing a nucleotide derivative comprising an amino group:

A hexameric scaffold peptide with the sequence, CysPhePheLysLysLys, was synthesised by standard solid-phase Fmoc peptide chemistry. The scaffold peptide comprises a -SH group on the cysteine side chain, said -SH group being used for coupling the scaffold peptide to a amine-bearing oligonucleotide serving as anti-codon and linker. Each of the three lysin moieties comprises an amino group in the side chain. The amine groups are used as reactive groups for the formation of a connection to functional entities emanating from building blocks.

The N-terminus of the peptide was acetylated and the C-terminus was initially capped as an amide to avoid any participation in the reactions to follow and subsequently purified by reverse phase-HPLC. The scaffold peptide was covalently attached to DNA oligonucleotide using the scheme shown schematically below. For illustrative purposes, the scaffold is indicated as HS — Scaffold

59

- 5 nmol of oligodeoxynucleotide F: 5'-XTCGTAACGACTGAATGACGT where X = 5' amino C6 (Glen# 10-1906-90) in 100 mM Hepes-OH pH 7.5 is incubated with 20 mM Succinimidyl-propyl-2-dithiopyridyl (SPDP, Molecular probes) dissolved in DMSO for 3 hours at 25 $^{\circ}$ C. Excess SPDP is removed by triple extraction using 5 volumes of ethylacetate. The sample is further purified using a Bio-rad Microspin 6 column equilibrated in H₂O.
- 10 The oligonucleotides-scaffold conjugate is synthesised by incubating 1 μ mol hexapeptide with 5 nmol SPDP activated oligonucleotide in 100 mM Hepes-OH pH 7.5 for 2 hours at 25 $^{\circ}$ C. Excess peptide is removed by double sodium-acetate/ethanol precipitation of the scaffold-DNA complex according to standard procedure. The loading was verified by Electrospray Mass Spectrometry (ES-MS).
- 15 Loading of trisamine scaffold on oligo F: MS (calc., M-1) = 7247.45 MS (found) = 7244.80

Example 15: Transfer of a functional entity from a building block to a scaffold:

20

- A template oligo G: 5'-ACGTCAATTCTAGTCGTTACGAAACATGGATGCTCCAGGTCGC (1 nmol) was mixed with scaffold oligo F (1.5 nmol) in MES-buffer (20 μ L of a 100 mM MES, pH=6) and water (added to a final volume of 100 μ L). Scaffold oligo F was annealed to the template by heating to 80 $^{\circ}$ C and cooled (-2 $^{\circ}$ C/10 second) to room temperature and functional entity oligo E (Example 11) (1.5 nmol) was added. The mixture was left on at room temperature. The oligo complex was attached to

60

streptavidine by addition of streptavidine sepharose beads (50 μ L, prewashed with 2x1 mL 100 mM MES buffer, pH=6). The beads were washed with water (4 x 200 μ L). Oligo F was separated from the streptavidine bound complex by addition of water (200 μ L) followed by heating to 80 °C for 5 minute. The beads were filtered off and the water was evaporated. Oligo F was redissolved in water and building block transfer verified by electron spray mass spectrometry (ES-MS).

Transfer of acetyl to iridamine scaffold oligo F from example I attached to oligo E:
MS (calc.) = 7289.49; MS (found) = 7286.58

10

Section 3: Transfer efficiencies of functional entities from building blocks to amine scaffolds

Carrier coupled functional entities were loaded onto oligos (oligonucleotides) containing a nucleotide derivative comprising an amino group (General procedure 5) or a nucleotide derivative comprising a thiol (General procedure 6) and the transfer was conducted to a scaffold oligo with a nucleotide derivative comprising an amino group. Transfer efficiencies were analyzed by ES-MS (electrospray mass spectroscopy) (General procedure 7).

20

General Procedure 5: Loading of a carrier coupled functional entity onto an amino oligo:

25 μ L 100 mM carrier coupled functional entity dissolved in DMF (dimethyl formamide) was mixed with 25 μ L 100 mM EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride) in DMF for 30 minutes at 25° C. The mixture was added to 50 μ L amino oligo in H₂O with 100 mM HEPES (2-[4-(2-hydroxyethyl)-piperazin-1-yl]-ethanesulfonic acid) pH 7.5 and the reaction was allowed to proceed for 20 minutes at 25° C. Unreacted carrier coupled functional entity was removed by extraction with 500 μ L EtOAc (ethyl acetate), and the oligo was purified by gel filtration through a microspin column equilibrated with 100 mM MES (2-(N-morpholino) ethanesulfonic acid) pH 6.0.

Oligonucleotide used:

Oligo G: 5'-GGGACCTGGAGCATCCATCGY

Y = Amino-Modifier C2 dT phosphate (Gen# 10-1037)

61

Example 16 (General procedure 5, using compound of Example 5 as carrier coupled functional entity)

5 Carrier coupled functional entity: 4-Acetoxy-3-chloro-benzoic acid

Mass: 6738.23 (observed using ES-MS), 6738.31 (calculated) (The carrier coupled functional entity oligo is hydrolyzed in the mass spectrometer during analysis).

Example 17 (General procedure 5, using compound of example 1 as carrier coupled functional entity)

5 Carrier coupled functional entity: 4-Acetyl/sulfanyl-benzoic acid

Mass: 6738.48 (observed using ES-MS), 6738.31 (calculated) (The carrier coupled functional entity oligo is hydrolyzed in the mass spectrometer during analysis).

Example 18 (General procedure 1, wherein Z=O, R=NO₂, and R=CH₃ and general procedure 5)

5 Carrier coupled functional entity: 4-Acetoxy-3-nitro-benzoic acid

62

Mass: 6748.31 (observed using ES-MS), 6748.42 (calculated) (The carrier coupled functional entity oligo is hydrolyzed in the mass spectrometer during analysis).

- General Procedure 6: Loading of a carrier coupled functional entity onto a thiol oligo:**
- 5 10 nmol thiol oligo was lyophilized and redissolved in 50 μ l H₂O with 100 mM dithiothreitol and 100 mM sodium phosphate pH 8.0 and incubated at 37 °C for 1 hour. The reduced oligo was purified using a microspin column equilibrated with HEPES (100 mM, 100 mM, pH 7.5). Then 100 mM NHM (N-hydroxymaleimide) in HEPES (100 mM, pH 7.5) was added to the thiol oligo and the mixture was incubated at 25°C for 2 hours. The resulting NHS (N-hydroxysuccinimide)-oligo was purified using a microspin column equilibrated with H₂O, 1 mol% NHS-oligo was lyophilized and redissolved in 10 μ l 100 mM MES, pH 6. 50 μ l carrier coupled functional entity (100 mM) in dimethyl formamide was activated with 50 μ l 100 mM EDC in DMF for 30 min at 25 °C. 10 μ l of the EDC-activated carrier coupled functional entity was mixed with the NHS-oligo and incubated for 5 min at 25 °C. 30 μ l 100 mM MES pH 6 was added and following an extraction with 500 μ l EtOAc the oligo was purified using a microspin column equilibrated with 100 mM MES pH 6.
- 10 15

Oligo H: 5'-GCGACCTGGAGCATCCATCGTX

X = Thiol-Modifier C6 S-S (Glen# 10-1936)**Example 19 (General procedure 6)**

Mass "X": 6723.21 (observed using ES-MS), 6723.52 (calculated) (Compound "Z" is hydrolyzed to compound "X" in the mass spectrometer during analysis).

WO 03/078626

63

General procedure 7: Transfer of functional entity from a carrier oligo to a scaffold oligo.

Scaffold oligo I: 5'-ZACGATGGATGCTCCAGGTGCGC
Z = 5' Amino-modifier C6 (Glen Research cat. # 10-1906)

- 10 A carrier coupled functional entity oligo (Examples 16, 17, 18, 19) (250 pmol) was added to a scaffold oligo I (200 pmol) in 50 μ l 100 mM MES, pH 6. The mixture was incubated overnight at 25 °C. Subsequently, the mixture was purified by gel filtration using a microspin column equilibrated with H₂O and transfer of the functional entity was verified by electron spray mass spectrometry (ES-MS). Transfer efficiencies are expressed in percent and were calculated by dividing the abundance of scaffold oligo carrying transferred functional entities to total abundance of scaffold oligos (with and without transferred functional entities).
- 15

Example 20 (General procedure 7):

- Mass ("X"): 6624.70 (observed), 6625.42 (calculated). Abundance: 73.16 (arbitrary units)
- 25 Mass ("Y"): 6666.09 (observed), 6667.46 (calculated). Abundance: 26.15 (arbitrary units)
- Mass ("Z'): 6738.01 (observed), 6738.31 (calculated) (carrier coupled functional entity oligos are hydrolyzed in the mass spectrometer during analysis).

64

Transfer efficiency calculated as: $26.15 / (26.15 + 73.16) = 0.2633 \sim 26\%$

Transfer efficiencies:

5

Scaffold oligo	Building block oligo	Example 16	Example 17	Example 18	Example 19
26	Oligo G = O				

Oligo G = O
32 >60 58**Example 21: Stability of building block oligonucleotides during storage and handling**

- Carrier coupled functional entities were loaded onto oligonucleotides containing a nucleotide derivative comprising an amino group (General Procedure 7). The resulting carrier coupled functional entity oligos were either mixed immediately with scaffold oligo 1 at 25°C (condition 1) or subjected to different conditions before mixing: (condition 2) -80°C for 14 days, (condition 3) 25°C for 1 hour. For condition 4 the scaffold oligo and the building block oligo were heated to 80°C for 30 seconds, mixed, and then cooled to 25°C (-5°C / minute). The functional entity of the building block oligo was transferred to a scaffold oligo by incubation at 25°C overnight and analyzed by ES-MS (General procedure 3).

- Transfer efficiencies (in percent) in reactions involving the same building block were normalized to facilitate comparison, e.g. the observed transfer efficiency when scaffold oligo was mixed with building block oligo immediately after production was set to 100:

- 65
- | Condition | Description | Ex. 16 | Ex. 17 | Ex. 18 | Ex. 19 |
|-----------|-------------------|--------|--------|--------|--------|
| 1 | Immediate mixing | 100 | 100 | 100 | 100 |
| 2 | -80°C for 14 days | 96 | 97 | 89 | 92 |
| 3 | 25°C for 1 hour | 97 | 98 | 93 | 71 |
| 4 | From 80°C to 25°C | 106 | 105 | 87 | 60 |
- The results indicate that all the building blocks may be stored in a freezer at -80°C for several weeks without losing significant reactivity. Under practical handling conditions at room temperature the NHS ester of example 19, which is not according to the invention, loses a considerable amount of reactivity. The tendency of spontaneous hydrolysis of the building block according to example 18 is reinforced under the condition simulating an actual experiment (condition 4), while the building blocks of example 16 to 18 have an acceptable stability or even a slightly increased activity. Activities above 100 observed under condition 4 might be due to experimental variation or facilitation of annealing of the carrier coupled functional entity oligo and scaffold oligo at elevated temperatures.
- Example 22: Preparation of Building blocks.**
- The following oligo containing a nucleobase modified with an amino group was synthesised, using the conventional phosphoramidite approach:
- N: 5'-ZGT AAC ACC TGT GTA AGC TCC CTG TCA GTC GGT ACT GAC CTG TCG AGC ATC CAG CT
- Z depicts the nucleobase modified with an aminogroup, incorporated using the commercially available amino modifier C8 dT phosphoramidite (10-1039-90 from Glen research)
- The loading with a functional entity proceeds using the general method:
An amino oligo (3 pmol) was mixed with a phosphate buffer (3 uL of a 0.1 M solution, pH=6) and NaBH₃CN (3 uL of a 1 M solution in MeOH). A chemical entity com-

prising the functional entity (3 μ l. of a 1 M solution in MeOH) was added and the mixture was left o/n at room temperature. The product formation was analysed by PAGE gel.

5 Exemplary chemical entities are 4-acetoxybenzaldehyde (24,260-8 from Sigma-Aldrich),

Propionic acid 4-formyl-phenyl ester, Butanoic acid 4-formyl-phenyl ester, and

Figure 5 shows a PAGE analysis of the loading of an oligo with butanoic acid 4-formyl-phenyl ester. Lane 1 shows the reference amino oligo (N). Lane 2 show the amino oligo (N) after loading with a the chemical entity comprising the functional entity, and Lane 3 shows removal of the functional entity, attached in lane 2, by treatment with pH=11 for 1 hour.

10 The above examples are intended to help illustrate the invention, and are not intended to, nor should they be construed to, limit the scope of the invention. Indeed, various modifications of the invention and many further embodiments thereof, in addition to those shown and described herein, will become apparent to those skilled in the art from the full content of this document, including the examples shown above and the references to the scientific a patent literature cited herein. It should further be appreciated that the contents of those cited references are incorporated herein by reference to help illustrate the state of the art. The examples above contain important additional information that can be adapted to the practice of this invention in its various embodiments and the equivalents thereof.

15

20 The above examples are intended to help illustrate the invention, and are not intended to, nor should they be construed to, limit the scope of the invention. Indeed, various modifications of the invention and many further embodiments thereof, in addition to those shown and described herein, will become apparent to those skilled in the art from the full content of this document, including the examples shown above and the references to the scientific a patent literature cited herein. It should further be appreciated that the contents of those cited references are incorporated herein by reference to help illustrate the state of the art. The examples above contain important additional information that can be adapted to the practice of this invention in its various embodiments and the equivalents thereof.

25

prising the functional entity (3 μ l. of a 1 M solution in MeOH) was added and the mixture was left o/n at room temperature. The product formation was analysed by PAGE gel.

Abbreviations

DCC	N,N'-Dicyclohexylcarbodiimide
DhI-OH	3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine
DIC	Diisopropylcarbodiimide
DIEA	Diethylisopropylamin
DMAP	4-Dimethylaminopyridine
DNA	Deoxyribonucleic Acid
EDC	1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide-HCl
HATU	2-(1H-7-Azabenzotriazole-1-yl)-1,3,3-tetramethyluronium hexafluorophosphate
HBTU	2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
HOAt	N-Hydroxy-7-azabenzotriazole
HOBT	N-Hydroxybenzotriazole
LNA	Locked Nucleic Acid
NHS	N-Hydroxysuccinimid
OTf	Trifluoromethylsulfonate
OTs	Toluenesulfonate
PNA	Peptide Nucleic Acid
PyBOP	Benzotriazole-1-yl-oxy-tris-pyrrrolidino-phosphonium hexafluorophosphate
PyBOP	Bromo-tris-pyrrolidino-phosphonium hexafluorophosphate
RNA	Ribonucleic acid
TBTU	2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetra-fluoroborate
TEA	Triethylamine
RP-HPLC	Reverse Phase High Performance Liquid Chromatography
TBDMS-Cl	Ter-Butyl(dimethylsilyl)chloride
5-Iodo-dL	5-iodo-deoxyriboseuracil
TLC	Thin layer chromatography
(Boc) ₂ O	Boc anhydride, di-tert-butyl dicarbonate
TBAF	Tetrabutylammonium fluoride
SPDP	Succinimidyl-propyl-2-dithiopyridyl

68

Claims

1. A building block of the general formula

Complementing Element – Linker – Carrier – C-F-connecting group – Functional entity precursor

capable of transferring a functional entity to a recipient reactive group, wherein Complementing Element is a group identifying the functional entity precursor,

Linker is a chemical moiety comprising **Spacer** and a **S-C-connecting group**, wherein the Spacer is a valence bond or a group distancing the functional entity precursor to be transferred from the complementing element and the S-C-connecting group connects the spacer with the Carrier,

Carrier is selected among the groups

wherein the Linker attaches to the Carrier through Y and

W = CH or N

R² = -H, -Halogen, -NO₂, -CN, -C(Halogen)₃, -C(O)NHR³, -C(O)NR², -NCO(R)³, -S(O)NHR³, -S(O)NR³, -P(O)R³, -P(O)R³, -S(OR³), P(O)OR³, -S(O)-OR³, -NR³, wherein p is an integer of 0 to 3, R³ = H, C₁-C₆ alkyl, C₁-C₆ alkenyl, C₁-C₆ alkynyl, or aryl, and Halogen is F, Cl, Br, or I, Y = absent, C₁-C₆ Alkenylenes, C₁-C₆ Alkynylene, Arylene, Het-erocylene, Carbonyl, or -SO₂CH₂,

25 **C-F-connecting group** is —Z—X— or —X— where the carrier is connected to the left hand side of the formulae and
X = -C-, -S-, -P-, -S(O)- or -P(O),
V = O, S, NH, or N-C₁-C₆ alkyl, and
Z = O, S; and

30 **Functional entity precursor** is H or selected among the group consisting of a C₁-C₆ alkyl, C₂-C₆ alkynyl, C₄-C₆ alkenyl, C₄-C₇ alkadienyl, C₃-C₇ cycloalkyl, C₃-C₇ cycloalkenyl, C₃-C₇ cycloalkene, C₃-C₇ cycloalkenyl, C₃-C₇ cycloalkylene, C₃-C₇ cycloalkylene-A-, C₂-C₆ alkynylene-A-, C₂-C₆ alkynylene-A-, or

69

R⁶ and 0-3 R⁹, or selected among the group consisting of C₁-C₃ alkylene-NR⁴, C₁-C₃ alkylene-NR⁴C(O)OR⁸, C₁-C₂ alkylene-O-NR⁴C(O)R⁸, and C₁-C₂ alkylene-O-NR¹C(O)OR⁸ substituted with 0-3 R⁹.

where R⁴ is H or selected independently among the group consisting of C₁-C₆ alkyl, C₂-C₆ alkynyl, C₂-C₆ alkenyl, C₂-C₇ alkadienyl, C₃-C₇ cycloalkyl, aryl, heteroaryl, said group being substituted with 0-3 R⁹ and

R⁵ is selected independently from -N₃, -CNO, -C(NOH)NH₂, -NHOH, -NHNHR⁶, -C(O)R⁶, -SiR⁶, -B(OR⁶)₂, -P(O)(OR⁶)₂ or the group consisting of C₂-C₆ alkenyl, C₄-C₆ alkadienyl said group being substituted with 0-2 R⁷, where R⁶ is selected independently from H, C₁-C₆ alkyl, C₃-C₇ cycloalkyl, aryl or C₁-C₆ alkylene-aryl substituted with 0-5 halogen atoms selected from -F, -Cl, -Br, and -I; and R⁷ is independently selected from -NO₂, -COOR⁶, -COR⁶, -CN, -OSiR⁶, -OR⁶ and -NR⁶.

R⁸ is H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl, aryl or C₁-C₆ alkylene-aryl substituted with 0-3 substituents independently selected from -F, -Cl, -O₂, -R³, -SiR³, R⁹ is =O, -F, -Cl, -Br, -I, -CN, -NO₂, -OR⁶, -NR⁶-C(O)OR⁶, -SR⁶, -S(OR⁶), -Si(OR⁶)₂, -COOR⁶, -COR⁶, -C(O)NR⁶ and -Si(O)NR⁶,

20 The compound according to claim 1, wherein the Spacer is a valence bond, C₁-C₆ alkylene-A-, C₁-C₆ alkynylene-A-, C₂-C₆ alkynylene-A-, or

said spacer optionally being connected through A to a linker selected from

25 where A is -C(O)NR¹, -NR¹, -O-, -S-, or -C(O)-O-, Bis -O-, -S-, -NR¹- or -C(O)NR¹- and connects to S-C-connecting group; R¹ is selected independently from H, C₁-C₆ alkyl, C₂-C₇ alkadienyl, C₃-C₇ cycloalkyl, aryl or any substituted with 0-5 halogen atoms selected from -F, -Cl, -Br and -I, and n and m independently are integers ranging from 1 to 10.

70

3. The compound according to claim 1, wherein the spacer is $C_1\text{-}C_6$ alkylene- A , $C_1\text{-}C_6$ alkenylene- A , $C_2\text{-}C_6$ alkyne- A , or

said spacer optionally being connected through A to a moiety selected from

5 $-(CH_2)_n-B-$, $\begin{array}{c} \diagup \\ \diagdown \end{array} O \begin{array}{c} \diagdown \\ \diagup \end{array} B$, and

$-(CH_2)_n-S-(CH_2)_m-B-$

where A is $-C(O)NR^1$, or $-S$; B is $-S$, $-NR^1$, or $-C(O)NR^1$ and connects to $S\text{-}C$ -connecting group; R^1 is selected independently from H , $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ alkenyl, or $C_1\text{-}C_6$ alkyne-aryl, and n and m independently are integers ranging from 1 to 6.

4. The compound according to claim 1, wherein spacer is $-A$, a group $C_1\text{-}C_6$ alkenylene- A , or $C_2\text{-}C_6$ alkyne- A optionally substituted with 1 to 3 hydroxy groups, or

said spacer being connected through A to a linker selected from

$-B$, $-(CH_2)_n-B-$, $\begin{array}{c} \diagup \\ \diagdown \end{array} O \begin{array}{c} \diagdown \\ \diagup \end{array} B$, and

$-(CH_2)_n-S-(CH_2)_m-B-$

where A is a valence bond, $-NR^{10}$, $-C(O)NR^{10}$, $-NR^{10}C(O)-$, $-O$, $-S$, $-C(O)-O$, or $-OP(=O)O$; B is a valence bond, $-O$, $-S$, $-NR^{10}$, $-C(O)$ or $-C(O)NR^{10}$ and connects to $S\text{-}C$ -connecting group; R^{10} is selected independently from H , $C_1\text{-}C_6$ alkyl,

6 G , $C_3\text{-}C_7$ cycloalkyl, aryl, $C_1\text{-}C_6$ alkylene-aryl, $\begin{array}{c} \diagup \\ \diagdown \end{array} O \begin{array}{c} \diagdown \\ \diagup \end{array} G$, and n and m independently are integers ranging from 1 to 10.

5. A compound according to claim 4, wherein the spacer is $C_2\text{-}C_6$ alkenylene- A , said spacer being connected through A to a moiety selected from

$-B$, $-(CH_2)_n-B-$, or $\begin{array}{c} \diagup \\ \diagdown \end{array} O \begin{array}{c} \diagdown \\ \diagup \end{array} B$,

7 G , $C_3\text{-}C_7$ cycloalkyl, aryl, $C_1\text{-}C_6$ alkylene-aryl, $\begin{array}{c} \diagup \\ \diagdown \end{array} O \begin{array}{c} \diagdown \\ \diagup \end{array} G$, and n or m ; G is H or

$C_1\text{-}C_6$ alkyl; and n and m independently are integers ranging from 1 to 10.

8. SUBSTITUTE SHEET (RULE 26)

71

where A is a valence bond, $-C(O)NR^{10}$, $-NR^{10}C(O)-$, $-S$, $-C(O)-O$, or $-OP(=O)O$; B is a valence bond, $-S$, $-NR^{10}$, or $-C(O)-O$ and connects to $S\text{-}C$ -connecting group; n and m independently are integers ranging from 1 to 10 and

R^{10} is selected independently from H , $\begin{array}{c} \diagup \\ \diagdown \end{array} O \begin{array}{c} \diagdown \\ \diagup \end{array} n$ or $\begin{array}{c} \diagup \\ \diagdown \end{array} N \begin{array}{c} \diagdown \\ \diagup \end{array} G$, wherein G is H or $C_1\text{-}C_6$ alkyl; and the spacer is connected to the complementing element through a nucleobase.

6. A compound according to claim 4, wherein the spacer is $-A$,

5 $\begin{array}{c} \diagup \\ \diagdown \end{array} O \begin{array}{c} \diagdown \\ \diagup \end{array} A$, or

6. A compound according to claim 4, wherein the spacer is $-A$,

R^{10} is selected independently from H , $\begin{array}{c} \diagup \\ \diagdown \end{array} O \begin{array}{c} \diagdown \\ \diagup \end{array} n$ or $\begin{array}{c} \diagup \\ \diagdown \end{array} N \begin{array}{c} \diagdown \\ \diagup \end{array} G$, wherein G is H or $C_1\text{-}C_6$ alkyl; and the spacer is connected to the complementing element via a phosphorus group.

7. A compound according to claim 6, wherein the phosphorus group is a phosphate valence bond, $-NH-C(=O)-$, $-NH-C(=O)-C_1\text{-}C_6$ alkylene, $-SS-$, $-S-S-C_1\text{-}C_6$ alkylene, $-C_1\text{-}C_6$ alkylene-S-S-, $-C(=O)-NH(C_1\text{-}C_6$ alkylene),

25

8. A compound according to claims 1 to 7, wherein the $S\text{-}C$ -connecting group is a

valence bond, $-NH-C(=O)-$, $-NH-C(=O)-C_1\text{-}C_6$ alkylene, $-SS-$, $-S-S-C_1\text{-}C_6$ alkylene, $-C_1\text{-}C_6$ alkylene-S-S-, $-C(=O)-NH(C_1\text{-}C_6$ alkylene),

9. SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

9. A compound according to claims 1 to 8, wherein the **S-C-connecting group** is a valence bond, $-\text{NH}-\text{C}(=\text{O})-$, $-\text{NH}-\text{C}(=\text{O})-\text{C}_1-\text{C}_3$ alkylene-, $-\text{S}-\text{S}$, $-\text{S}-\text{S}-\text{C}_1-\text{C}_6$ alkylene-, $-\text{C}(=\text{O})-\text{NH}-\text{C}_1-\text{C}_6$ alkylene-.

5

10 $-\text{NH}-\text{C}(=\text{O})-\text{Arylene}-\text{C}(\text{R}^{10})_2-\text{NH}-\text{C}(=\text{O})-$, where the right hand side of the formulae connects to the carrier.

10. A compound according to claims 1 to 9, wherein the **S-C-connecting group** is $-\text{S}-\text{S}$, $-\text{C}_1-\text{C}_6$ alkylene- $\text{S}-\text{S}-$, $-\text{C}(=\text{O})-\text{NH}-\text{(C}_1-\text{C}_6 \text{ alkylene})-$, $-\text{C}(=\text{O})-$, or $-\text{C}(=\text{O})-\text{O}-$. Arylene- $\text{C}(\text{R}^{10})_2-\text{NR}^{10}-\text{C}(=\text{O})-$, where the right hand side of the formulae connects to the carrier.

15

11. A compound according to claims 1 to 10, wherein the **S-C-connecting group** is $-\text{S}-\text{S}$, $-\text{C}(=\text{O})-$, or $-\text{C}(=\text{O})-\text{Arlyens}-\text{C}(\text{R}^{10})_2-\text{NR}^{10}-\text{C}(=\text{O})-$, where the right hand side of the formulae connects to the carrier.

20

12. The compound according to any of the claims 1 to 11, wherein the **S-C-connecting group** is a valence bond, $-\text{NH}-\text{C}(=\text{O})-$, $-\text{S}-\text{S}$, or $-\text{C}(=\text{O})-\text{NH}-$, where the right hand side of the formulae connects to the carrier.

25

13. A compound according to claims 1 to 12, wherein the carrier is

and attaches to the linker through Y, and W, Y, R², and p are as defined in claim 1.

14. A compound according to claims 1 to 13, wherein the carrier is

5

and attaches to the linker through Y and

5 $-\text{W}-\text{W}'-\text{Y}'-\text{(R}^2\text{)}_p$

$\text{W} = \text{CH}$
 $\text{R}^2 = \text{-H, halogen, }-\text{NO}_2, \text{-CN, }-\text{C}(\text{O})\text{R}^3, \text{-C}(\text{O})\text{NR}^3, \text{C}(\text{O})\text{NHR}^3,$
 $-\text{S}(\text{O})_2\text{NHR}^3, \text{-S}(\text{O})_2\text{NR}^3, \text{-S}(\text{O})_2\text{R}^3, \text{-N}^+\text{R}^3$, wherein halogen is selected from the group consisting of $-\text{Cl}, \text{-F, -Br, and -I}$, p is an integer of 0 to 3, and $\text{R}^2 = \text{H, C}_1\text{-C}_6$ alkyl, or aryl,

$\text{Y}' = \text{absent, C}_1\text{-C}_6$ Alkylenes, or carbonyl.

15. A compound according to any of the claims 1 to 14, wherein the **C-F-connecting group** is — $Z'-\overset{\text{Y}}{\underset{\text{X}}{\text{X}}}'-$, in which

10 $\text{Z}' = \text{O, S}$
 $\text{X}' = \text{-C, and}$
 $\text{V} = \text{O.}$

20 16. A compound according to any of the claims 1 to 15, wherein Complementing element is a nucleic acid.

17. A compound according to any of the claims 1 to 16, wherein Complementing element is a sequence of nucleotides selected from the group of DNA, RNA, LNA PNA, morpholino derivatives, or combinations thereof.

25 18. A compound according to any of the claims 1 to 17, wherein the **Functional entity precursor** is H or selected among the group consisting of a $\text{C}_1\text{-C}_6$ alkyl, $\text{C}_2\text{-C}_6$ alkyl, $\text{C}_2\text{-C}_6$ alkylenes, $\text{C}_4\text{-C}_8$ alkadienyl, $\text{C}_3\text{-C}_7$ cycloalkyl, $\text{C}_3\text{-C}_7$ cyclohexenoal-

74

5 kyl, aryl, and heteroaryl, said group being substituted with 0-3 R⁵ and 0-3 R⁹, or selected among the group consisting of C₁-C₃ alkylene-NR⁴, C₁-C₃ alkylene-NR'C(O)R⁸, C₁-C₃ alkylene-NR'C(O)OR⁸, C₁-C₂ alkylene-O-NR⁴, C₁-C₂ alkylene-O-NR'C(O)OR⁸, and C₁-C₂ alkylene-O-NR'C(O)OR⁸ substituted with 0-3 R⁹.

5

19. A compound according to claims 1 to 18, wherein the **Functional entity precursor** is H or selected among the group consisting of C₁-C₃ alkylyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₂-C₆ alkadienyl, C₃-C₇ cycloalkyl, C₃-C₇ cyclohexenyl, aryl, and heteroaryl, said group being substituted with 0-3 R⁵ and 0-3 R⁹.

10

20. A compound according to any of the claims 1 to 19, wherein **Functional entity precursor** is selected among the group consisting of C₁-C₃ alkylene-NR⁴, C₁-C₃ alkylene-NR'C(O)R⁸, C₁-C₃ alkylene-NR'C(O)OR⁸, C₁-C₂ alkylene-O-NR⁴, C₁-C₂ alkylene-O-NR'C(O)R⁸, and C₁-C₂ alkylene-O-NR'C(O)OR⁸ substituted with 0-3 R⁹.

15

21. A library of compounds according to any of the claims 1 to 20, wherein each different member of the library comprises a complementing element having a unique sequence of nucleotides, which identifies the functional entity.

20 22. A method for transferring a functional entity to a recipient reactive group,

comprising the steps of providing one or more building blocks according to any of the claims 1 to 20, contacting the one or more building blocks with a corresponding encoding element associated with a recipient reactive group under conditions which allow for a recognition between the one or more complementing elements and the encoding elements, said contacting being performed prior to, simultaneously with, or subsequent to a transfer of the functional entity to the recipient reactive group.

25 23. The method according to claim 22, wherein the encoding element comprises one or more encoding sequences comprised of 1 to 50 nucleotides and the one or more complementing elements comprise a sequence of nucleotides complementary to one or more of the encoding sequences.

30

Fig. 1**Fig. 2****Synthetic Base Pairs****Synthetic purine bases**

36

Fig. 3.
I = Inosine**A:I**

46

Fig. 4

56

Fig. 5

Fig. 6

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

25 September 2003 (25.09.2003)

(10) International Publication Number

WO 03/078626 A3

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7

C07H21/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Maintained documentation searched (classification system followed by classification symbols)

IPC 7

C07H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Thomas [DK/DK]; Humlegårdsgade 14, st., rv., DK-2200

København N (DK); THISTED, Thomas [DK/DK];

Fjordkanten 14, DK-3600 Frederiksund (DK).

EPO-Internal, MPI Data, PAJ

(51) International Patent Classification¹:

C07H 21/00

HUSEMOEN, Gitte, Nystrup [DK/DK]; Bregenzergade 18, 1. th., DK-2200 København N (DK); FRANCH, Thomas [DK/DK]; Humlegårdsgade 14, st., rv., DK-2200 København N (DK); THISTED, Thomas [DK/DK]; Fjordkanten 14, DK-3600 Frederiksund (DK).

(22) International Filing Date:

14 March 2003 (14.03.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Date:

PA 2002 0415

15 March 2002 (15.03.2002)

DK

60/064,056

15 March 2002 (15.03.2002)

US

02/00419

20 June 2002 (20.06.2002)

DK

10/175,359

20 June 2002 (20.06.2002)

US

60/034,927

19 December 2002 (19.12.2002)

US

(71) Applicant for all designated States except (US): NUEVO-
LUTION A/S [DK/DK]; Røringsgade 8, 5th floor, DK-2100
Copenhagen Ø (DK).

(72) Inventors and
(73) Inventors/Applicants (for US only): GOULIAEV,
Alex, Haahr [DK/DK]; Brændsted 223, DK-3670 Veksse
Sjælland (DK). HO, Justin [US/DK]; Matheusgade 50,
3-26, DK-1666 København V (DK). FELDING, Jakob
[DK/DK]; Ordningshøjvej 24, 1., DK-2920 Charlottenlund
(DK). SAMS, Christian [DK/DK]; Jacob Daunfærdsgade
4A, 1., DK-1973 Frederiksberg C (DK). PEDERSEN,
Henrik [DK/DK]; Frødsvej 24, DK-2880 Bagsværd
30C, DK-2610 Rødovre (DK). HANSEN, Anders, Holm
[DK/DK]; Slotsgadevej 3, st. th., DK-2400 København
NV (DK). LUNDORF, Mikkel, Dybro [DK/DK]; Char-
lotte Munksgaard 31, 2. rv., DK-2400 København NV (DK).

(74) Date of publication of the international search report:

4 December 2003

(75) Further documents are listed in the continuation of box C.

(76) Further documents are listed in annex.

(77) Title: A BUILDING BLOCK CAPABLE OF TRANSFERRING A FUNCTIONAL ENTITY

(78) Abstract: A building block having the dual capabilities of transferring the genetic information e.g. by recognising an encoding element and transferring a functional entity to a recipient reactive group is disclosed. The building block can be designed with an adjustable transferability taking into account the components of the building block. The building block may be used in the generation of a single complex or libraries of different complexes, wherein the complex comprises an encoded molecule linked to an encoding element. Libraries of complexes are useful in the quest for pharmaceutically active compounds.

PCT/DK 03/00174

WO 03/078626 A3

PCT/DK 03/00174

Form PCT/ISA/210 (Second sheet) (July 1992)

B. FIELDS SEARCHED	
Minimum documentation searched (classification system followed by classification symbols)	
IPC 7	C07H
Documented searched other than minimum documentation to the extent that such documents are included in the fields searched	
Electronic data base consulted during the International search (name of data base and, where practical, search terms used)	
EPO-Internal, MPI Data, PAJ	

C. DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages
X	W0 98 07734 A (HYBRIDON INC) 26 February 1998 (1998-02-26) figures
X	US 6 326 478 B1 (CHERUVALLATH ZACHARIA S ET AL) 4 December 2001 (2001-12-04) column 17
	-/-

D. DOCUMENTS RECEIVED AT THE INTERNATIONAL SEARCHING AUTHORITY WHICH MAY BE CONSIDERED AS PERTINENT	
X	Patent family members are listed in annex.
	** late document published after the international filing date or priority date and not in conflict with the application but which nevertheless may be considered as pertinent
X*	document containing the general state of the art which is not considered to be of particular relevance
X*	earlier document but published on or after the International filing date
X*	document of particular relevance; the claimed invention cannot be considered new or cannot be considered to involve an inventive step when the claimed invention is compared with one or more other such documents
X*	document which may throw doubts on novelty, claim(s) or inventive step of the claimed invention
X*	document which is cited to establish the publication date of another citation or other special reasons (as specified)
X*	document referring to an oral disclosure, use, exhibition or other means
X*	document published prior to the international filing date but later than the priority date of the claimed invention
	*& document member of the same patent family
	Date of mailing of the International search report
22 September 2003	06/10/2003

Name and mailing address of the ISA
European Patent Office, P.O. Box 5016 Patentlan
NL - 2220 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 65 epo nl
Fax. (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

PCT/DK 03/00174

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WALDER J A ET AL: "COMPLEMENTARY CARRIER PEPTIDE SYNTHESIS: GENERAL STRATEGY AND IMPLICATIONS FOR PREBIOTIC ORIGIN OF PEPTIDE SYNTHESIS" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE, WASHINGTON, US, Vol. 76, no. 1, January 1979 (1979-01), pages 51-55, XP000857351 ISSN: 0027-8424 the whole document	22
A	BRUICK R K ET AL: "TEMPLATE-DIRECTED LIGATION OF PEPTIDES TO OLIGONUCLEOTIDES" CHEMISTRY AND BIOLOGY, CURRENT BIOLOGY, LONDON, GB, vol. 3, no. 1, January 1996 (1996-01), pages 49-56, XP000856876 ISSN: 1074-5521 the whole document	22
A	US 5 693 773 A (AGRANAL SUDHIR ET AL.) 2 December 1997 (1997-12-02) figure 11	1
A	WO 00 14102 A (FUJISAWA KAZUHIKO ; JAPAN SCIENCE & TECH CORP (JP); MAKATANI KAZUHI) 16 March 2000 (2000-03-16) abstract	1

PCT/DK 03/00174

INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

- SCIENCE, WASHINGTON, US,
Vol. 76, no. 1, January 1979 (1979-01),
pages 51-55, XP000857351
ISSN: 0027-8424
2. 1-25 (in part) Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 8.4(a).

Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims. It is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.

- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

PCT/DK 03/00174

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
WO 9807734	A	26-02-1998	AU 4156197 A WO 9807734 A1	06-03-1998 26-02-1998
US 6326478	B1	04-12-2001	AU 4977999 A US 2002055623 A1 WO 0002896 A1 US 2003149260 A1 US 6399756 B1	01-02-2000 09-05-2002 20-01-2000 07-03-2003 04-06-2002
US 5693773	A	02-12-1997	AU 625896 A WO 9640710 A1	30-12-1996 19-12-1996
WO 0014102	A	16-03-2000	JP 2000086692 A WO 0014102 A1	28-03-2000 16-03-2000

INTERNATIONAL SEARCH REPORT
PCT/DK 03/00174
International Application No. PCT/DK 03/00174

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box 1.2
Claims Nos.: 1-25 (In part)

Present claims 1-25 relate to an extremely large number of possible building blocks. In fact, the claims contain so many options that a lack of clarity within the meaning of Article 6 PCT arises to such an extent as to render a meaningful search of the claims impossible. Moreover, support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found for only a very small proportion of the building blocks claimed. Consequently, the search has been carried out for those parts of the application which do appear to be clear and supported, namely those parts of the application relating to the building blocks of claim 1 where the complementing element is a nucleic acid or a derivative thereof as in claims 16 and 17 AND where the C-F connecting group is as defined in claim 15.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.