Quiz 5

Name: Time: March 1, 2016

Instructions: Please write down the correct answer for each question in the following box.

1	2	3	4	5	Total Score

- 1. Let us define an equivalence relation \equiv on strings with respect to a language L as follows: $x \equiv_L y$ if and only if $\operatorname{suffix}(L,x) = \operatorname{suffix}(L,y)$. Let L be the set of all strings with odd number of 1s. Which of the following is true?
 - (A) $0 \equiv_L 1$
 - (B) $00 \equiv_L 10$
 - (C) $01 \equiv_L 00$
 - (D) $01 \equiv_L 10$
- 2. Let \equiv_L be as defined in Problem 1. We define an equivalence class $[x]_{\equiv_L}$ of a string x with respect to the relation \equiv_L as follows: $[x]_{\equiv_L} = \{y \mid x \equiv_L y\}$. Let $L = \mathbf{L}((0 \cup 1)^*11(0 \cup 1)^*)$. Then, $[1]_{\equiv_L}$ is the set
 - (A) $\mathbf{L}((0 \cup 1)^*1(0 \cup 1)^*)$
 - (B) $\mathbf{L}((0 \cup 1)^*1)$
 - (C) $\mathbf{L}((0 \cup \epsilon)(10 \cup 0)^*1)$
 - (D) $\mathbf{L}((01 \cup 0)^*1)$
- 3. Let $C_{\text{equiv}}(L) = \{[x]_{\equiv_L} | x \in \Sigma^*\}$, it is the set of all equivalence classes of \equiv_L . Let L_{odd} be the set of all strings with odd number of 1s, and L_{even} the set of all strings with even number of 1s. Then $C_{\text{equiv}}(L_{odd})$ is:
 - (A) $\{L_{odd}\}$
 - (B) $\{L_{odd}, L_{even}\}$
 - (C) $\{L_{even}\}$
 - (D) {}
- 4. Recall $C_{\text{suf}}(L)$ is the set of all suffix languages of L. Let |S| denote the number of elements in S. Which of the following is true?
 - (A) $|\mathcal{C}_{\text{equiv}}(L)| \geq |\mathcal{C}_{\text{suf}}(L)|$
 - (B) $|\mathcal{C}_{\text{equiv}}(L)| = |\mathcal{C}_{\text{suf}}(L)|$
 - (C) $|\mathcal{C}_{\text{equiv}}(L)| \leq |\mathcal{C}_{\text{suf}}(L)|$
 - (D) $|\mathcal{C}_{\text{equiv}}(L)| \ge 2^{|\mathcal{C}_{\text{suf}}(L)|}$
- 5. Which of the following is false?
 - (A) For every regular language L, $C_{\text{equiv}}(L)$ is finite.
 - (B) If $C_{\text{equiv}}(L)$ is finite, then L is regular.
 - (C) $\mathcal{C}_{\text{equiv}}(L)$ is finite for some non-regular languages.
 - (D) $C_{\text{equiv}}(L)$ is infinite for all non-regular languages.