Trabajo Practico R

Integrantes: Agustin Elian Fuentes, Lucas Nicolas Lenza, Felipe Sastre, Jose Ramiro Gonzalez Martin.

Ejercicio de Análisis de datos:

La consigna de este ejercicio tiene cierto grado de libertad. Deben elegir un dataset de su gusto. Hacerse tres preguntas y contestarlas con las herramientas de tidyverse. Pueden usar como referencia el ejercicio de Análisis de datos. Se sugiere realizar cierta visualización de los datos previa a la respuesta de las preguntas. Por ejemplo, si mi pregunta es cómo difieren las notas de un examen según la edad del alumno, es importante hacer gráficos y verificar, por ejemplo, que no haya datos inesperados/NAs.

En pos de realizar este ejercicio se utilizó el siguiente data set: "Used Car Price Prediction Dataset" (https://www.kaggle.com/datasets/taeefnajib/used-car-price-prediction-dataset). En el mismo se observa un conjunto de datos que comprende 4,009 puntos de datos, cada uno representando un listado único de vehículo, e incluye nueve características distintas que proporcionan información valiosa sobre el mundo automotriz. Separando cada auto y categorizándolos por: marca y modelo, año del modelo, cantidad de millas, tipo de combustible, tipo de motor, transmisión, colores exterior e interior, historial de accidentes, si tiene o no un título limpio y precio.

Preguntas:

- 1) Preguntas generales del dataset:
 - a) ¿Cuántos autos se vendieron?
 - b) ¿Cuántos de cada marca se vendieron?
 - c) Clasificarlos en gama económica (a los que valen menos de 25000), media (a los que valen más de 25000 y menos de 55000) y de lujo (valen más que 55000) y modificar el data set. Y ver cuántos hay de cada gama.
- 2) Cambio de características del data set:
 - a) Modificar millas a kilómetros y cambiar de dolares a pesos, cual es el auto que más kilómetros tiene y el que más vale
 - b) Agregar las clasificaciones a las columnas
- 3) Correlaciones:
 - a) Graficar la distribución de los autos con los precios
 - b)Encontrar la correlación entre precio y kilómetros realizados
 - c)Encontrar la correlación entre precio y año

Respuestas:

1) a) Se vendieron 4009 autos para ello usamos el siguiente código:

num_autos <- nrow(cardata)
cat("Cantidad total de autos:", num_autos, "\n")</pre>

b) Para saber cuántos autos vendidos de cada marca se usa el siguiente codigo:

```
conteo_marcas <- cardata %>%
  group_by(brand) %>%
  summarise(Cantidad = n()) %>%
  arrange(desc(Cantidad))
print(head(conteo_marcas, 57), n = 57)
```


c) Para clasificar los autos usamos:

```
cardata_eco <- cardata_limp %>%
filter(price <= 25000)

num_autos_eco <- nrow(cardata_eco)
cat("Cantidad total de autos de gama baja:", num_autos_eco, "\n")
cardata_media <- cardata_limp %>%
```

```
filter(price > 25000 & price <= 55000)

num_autos_media <- nrow(cardata_media)
cat("Cantidad total de autos de gama media:", num_autos_media, "\n")

cardata_lujo <- cardata_limp %>%
filter(price > 55000)
num_autos_lujo <- nrow(cardata_lujo)
cat("Cantidad total de autos de gama alta:", num_autos_lujo, "\n")

Separando los autos:
Cantidad total de autos de gama bajo: 1571
```

Cantidad total de autos de gama baja: 1571 Cantidad total de autos de gama media: 1633 Cantidad total de autos de gama alta: 805

2) a) y b)

brand ÷	model ÷	model_year	† milage	fuel_type	engine ÷	transmission	ext_col ‡	int_col [‡]	accident [‡]	clean_title + p	price ÷	clasificacion
Ford	Utility Police Interceptor Base	20	13 82076.340	E85 Flex Fuel	300.0HP 3.7L V6 Cylinder Engine Flex Fuel Capability	6-Speed A/T	Black	Black	At least 1 accident or damage reported		10300	Económico
2 Hyundai	Palisade SEL	20	21 55911.690	3 Gasoline	3.8L V6 24V GDI DOHC	8-Speed Automatic	Moonlight Cloud	Gray	At least 1 accident or damage reported		38005	Medio
Lexus	RX 350 RX 350		22 36004.154	Gasoline Gasoline	3.5 Liter DOHC	Automatic		Black	None reported		54598	Medio
INFINITI	Q50 Hybrid Sport	20	15 143070.326	Hybrid	354.0HP 3.5L V6 Cylinder Engine Gas/Electric Hybrid	7-Speed A/T	Black	Black	None reported		15500	Económico
5 Audi	Q3 45 S line Premium Plus		21 15827.858	9 Gasoline	2.0L I4 16V GDI DOHC Turbo	8-Speed Automatic	Glacier White Metallic	Black	None reported		34999	Medio
6 Acura		20	116 219509.148	Gasoline			Silver	Ebony.	None reported		14798	Económico
7 Audi	S3 2.0T Premium Plus		17 135184.560	Gasoline	292.0HP 2.0L 4 Cylinder Engine Gasoline Fuel	6-Speed A/T		Black	None reported			Medio
8 BMW		20	01 389460.280	Gasoline	282.0HP 4.4L 8 Cylinder Engine Gasoline Fuel		Green	Green	None reported			Económico
9 Lexus	RC 350 F Sport		21 37716.492	2 Gasoline	311.0HP 3.5L V6 Cylinder Engine Gasoline Fuel	6-Speed A/T	Black	Black	None reported			Medio
Tesla	Model X Long Range Plus		20 54717.560		534.0HP Electric Motor Electric Fuel System		Black	Black	None reported		69950	
Land	Rover Range Rover Sport 3.0 Supercharged HST		21 44430.658	7 Gasoline		Automatic	Fuji White	Pimento / Ebony	None reported		73897	
2 Aston	Martin DBS Superleggera		119 36644.671	3 Gasoline	715.0HP 5.2L 12 Cylinder Engine Gasoline Fuel	8-Speed A/T	Silver	Black	None reported		184606	
3 Toyota	Supra 3.0 Premium		21 20116.750	Gasoline	382.0HP 3.0L Straight 6 Cylinder Engine Gasoline Fuel		Yellow	Black	None reported		53500	Medio
4 Lincoln	Aviator Reserve AWD		22 29283.550	5 Gasoline	400.0HP 3.0L V6 Cylinder Engine Gasoline Fuel	Transmission w/Dual Shift Mode	Black	Brown	None reported		62000	
5 Jaguar			20 25593.334	Gasoline	2.0 Liter Supercharged	Automatic		Black	None reported		47998	Medio
6 Land	Rover LR4 HSE	20	13 128425.332) Gasoline	375.0HP 5.0L 8 Cylinder Engine Gasoline Fuel		White	Black	None reported		29990	Medio
Mercedes-Benz	: Metris Base		2711.737	9 Gasoline	2.0L I4 16V GDI DOHC Turbo	9-Speed Automatic		White	None reported		250000	
8 Dodge	Challenger SXT	20	13 98288.831.	2 Gasoline	305.0HP 3.6L V6 Cylinder Engine Gasoline Fuel		Black	Gray	None reported		16800	Económico
Nissan	350Z Enthusiast		03 119091.160	Gasoline	287.0HP 3.5L V6 Cylinder Engine Gasoline Fuel	6-Speed M/T	Purple		None reported			Económico
Jaguar	F-TYPE R	20	18 56729.235	Gasoline	550.0HP 5.0L 8 Cylinder Engine Gasoline Fuel	8-Speed A/T	Green	Black	None reported		68750	
1 Genesis	GV70 3.5T Sport		23 8690,436	Gasoline	375.0HP 3.5L V6 Cylinder Engine Gasoline Fuel	8-Speed A/T	Green	Beige			60000	
Chevrolet		20	00 214862.983	E85 Flex Fuel	120.0HP 2.2L 4 Cylinder Engine Flex Fuel Capability		Blue	Black	None reported		4500	Económico
3 BMW	440 Gran Coupe 440i xDrive		20 41826,746	5 Gasoline	3.0 Liter Turbo	Automatic	White	Beige	None reported		38598	Medio
4 Ford		20	23 4543.166	3 Gasoline	3.5L V6 24V PDI DOHC Twin Turbo	Automatic	Iconic Silver Metallic	Black	None reported		58504	
Chevrolet	Suburban RST		21 83685.680	Gasoline	355.0HP 5.3L 8 Cylinder Engine Gasoline Fuel	10-Speed A/T		Black	None reported		61000	
5 Hyundai	Elantra N Base	20	22 18748.811	Gasoline	276.0HP 2.0L 4 Cylinder Engine Gasoline Fuel	Transmission w/Dual Shift Mode	Black	Black	None reported		32300	Medio
7 Nissan	Sentra SR		16 155367.292	Gasoline Gasoline		Automatic		Black	None reported		13998	Económico
Mercedes-Benz	AMG CLA 45 Base 4MATIC	20	21 28163.450	Gasoline	382.0HP 2.0L 4 Cylinder Engine Gasoline Fuel		Gray	Black	None reported		59995	
BMW	650 Gran Coupe i xDrive		115 111044.460	Gasoline	445.0HP 4.4L 8 Cylinder Engine Gasoline Fuel	8-Speed A/T		Black	None reported			Medio
Audi	Q5 2.0T Premium Plus		17 131772.759	E85 Flex Fuel	2.0L I4 16V GDI DOHC Turbo Flexible Fuel	8-Speed Automatic	Mythos Black Metallic	Black	None reported			Económico
Mercedes-Benz	AMG C 43 Base 4MATIC		118 46348.992	Gasoline	362.0HP 3.0L V6 Cylinder Engine Gasoline Fuel	9-Speed A/T		Black	None reported		48000	Medio
2 Dodge	Ram 1500 Laramie Mega Cab		06 483096.509	2 Gasoline	345.0HP 5.7L 8 Cylinder Engine Gasoline Fuel		Silver	Gray	At least 1 accident or damage reported		10900	Económico

En la imagen se observa las millas pasadas a kilómetros y la nueva columna de clasificación. Para realizar esto utilizamos la código mutate:

```
#A)
cardata_limp <- cardata_limp %>%
mutate(milage = milage * 1.60934) # Sobrescribe la variable original
view(cardata_limp)

#B)
cardata_limp <- cardata_limp %>%
    mutate(
        clasificacion = case_when(
            price <= 25000 ~ "Económico",
            price > 25000 & price <= 55000 ~ "Medio",
            price > 55000 ~ "Lujo"
        )
    )
view(cardata_limp)
```

3) a) El gráfico de la distribución de los precios de los autos nos queda:

Sin embargo, en el gráfico la distribución está estirado debido a que existen ciertos autos que su precio es relativamente muy alto como por ejemplo el Bugatti haciéndolos difíciles de visualizar. Y para ellos acotamos los precios de 200000.

- b) La correlación entre precios y kilómetros realizados es:-0.3055281 Encontramos una correlación negativa entre precio kilometros realizados, lo cual tiene sentido
- c) La correlación entre precio y año del modelo es : 0.1994962 Es decir, cuanto más nuevo es el auto los precios son mayores.

Ejercicio: Análisis econométrico con datos de gapminder

1. Grafica la evolución temporal de la variable income per person en Argentina. Comenta brevemente la tendencia observada.

Evolución del ingreso por persona en Argentina

Fuente: gapminder

En este ejercicio primero se filtraron los datos de argentina y se separaron del resto del data set asignado. Esto se logró gracias a los siguientes comandos:

```
argentina <- gapminder %>%
filter(country == "Argentina")
```

A continuación, usando ggplot graficamos la evolución temporal del ingreso per cápita en la Argentina:

```
ggplot(argentina, aes(x = year, y = income_per_person)) +
  geom_line(color = "red", linewidth = 1.1) +
  labs(
    title = "Evolución del ingreso por persona en Argentina",
    x = "Año",
    y = "Ingreso por persona (USD)",
    caption = "Fuente: gapminder"
}
```

En este mismo gráfico observamos la tendencia Argentina. Esta misma se podría llegar a separar en 2 partes; la primera de 1960 a mediados de los setenta, donde la tendencia es

claramente positiva y el crecimiento del ingreso per cápita es innegable. A partir de 1980 se observa periodos de crecimiento y decrecimiento alternados (provocados por una volatilidad e incertidumbre constantes), se destacan los descensos pronunciados durante la hiperinflación de 1989-1990 y la crisis de 2001-2002. Tras la crisis de 2001, el gráfico vuelve a su tendencia creciente antes mencionada.

2. Para este ejercicio, antes de realizar los diferentes modelos regresivos, primero separamos los datos para training y para testear. Para hacer ello utilizamos:

arg_train <- argentina %>% filter(year <= max(year) - 10)
arg_test <- argentina %>% filter(year > max(year) - 10)
Primer modelo, modelo lineal:

Al ser un modelo lineal, presenta constantemente una pendiente positiva, resultado de que en esos años existió un crecimiento del ingreso per cápita. Segundo modelo, modelo polinómico de grado 2:

En el modelo polinómico de grado 2 observamos al igual que en el lineal una pendiente positiva; sin embargo, este modelo reconoce que no siempre creció igual y muestra una tendencia positiva pero cada vez más lenta (con 2da derivada negativa).

Tercer modelo, modelo polinómico de grado 10:

En el modelo polinómico de grado 10 se rompe con una predicción capaz de reconocer cuando hubo decrecimiento o crecimientos, esto se ve reflejado tanto es sus cambios de convexidades y de pendientes.

Al juntarlos se observa que los 3 modelos se ajustan al crecimiento del ingreso por persona que tuvo argentina desde 1960 hasta el año 2000. Sin embargo, es clara la diferencia en la eficiencia del training con los datos, siendo el modelo polinómico de grado 10 el que más se ajusta de manera correcta.

Sin embargo, si decidimos usar estos modelos sobre los últimos 10 años entendemos que podríamos estar ante un caso de overfitting en el polinomio de grado 10. El código que utilizamos para ver esto es muy parecido al que usamos para el testeo pero cambiando los datos a los últimos 10 años.

Comentario: Capaz esta última predicción no es muy buena referencia por tener un n chico siendo igual a 10

3. Selecciona cuatro países sudamericanos distintos de Argentina.

Con ellos, arma:

- (a) Una matriz de correlaciones entre los ingresos (income per person) de los cinco países.
- (b) Una matriz de correlaciones entre las variaciones porcentuales anuales (crecimiento interanual, Y /Y) de dichos ingresos.

Discute brevemente las similitudes y diferencias encontradas.

Para este ejercicio seleccionamos los siguientes países: Argentina, Paraguay, Bolivia, Guyana y Uruguay. Y a partir del siguiente código filtramos los datos de dichos países:

```
paises <- c("Argentina", "Guyana", "Paraguay", "Bolivia", "Uruguay")
```

```
gap_sud <- gapminder %>%
filter(country %in% paises) %>%
select(country, year, income = income_per_person)
Luego, construimos la matriz de correlación entre los ingresos por persona de los 5 países:
cor_ingresos <- gap_wide %>%
select(-year) %>%
cor(use = "pairwise.complete.obs")
```

print("Matriz de correlaciones entre ingresos (niveles):") print(round(cor_ingresos, 3))

Matriz de varianzas y covarianzas:

	Argentina	Bolivia	Guyana	Paraguay	Uruguay	
Argentina	1.000	0.924	0.869	0.673	0.829	
Bolivia	0.924	1.000	0.875	0.710	0.799	
Guyana	0.869	0.875	1.000	0.573	0.851	
Paraguay	0.673	0.710	0.573	1.000	0.856	
Uruguay	0.829	0.799	0.851	0.856	1.000	

En la matriz de covarianzas observamos que todos los países tienen una correlación positiva, se podría decir que los ingresos per cápita de los países de la región se mueven más o menos de similar manera en el tiempo, creemos que es razonable porque ocupan un mismo espacio geopolítico y que las decisiones políticas de cada país tienden a afectar a los otros paises tambien.

b) Primero calculamos variaciones porcentuales interanuales (crecimiento Y/Y) y para eso usamos el siguiente código:

```
gap_var <- gap_sud %>%
    arrange(country, year) %>%
    group_by(country) %>%
    mutate(growth = (income - lag(income)) / lag(income) * 100) %>%
    ungroup()
Luego calculamos la matriz de correlaciones entre variaciones:
cor_growth <- gap_wide_growth %>%
    select(-year) %>%
```

cor(use = "pairwise.complete.obs") (sirve para que no se descarte el país completo
cuando hay datos faltantes)

Matriz de varianzas y covarianzas:

	Argentina	Bolivia	Guyana	Paraguay	Uruguay	
Argentina	1.000	0.207	0.385	0.147	0.513	
Bolivia	0.207	1.000	0.321	0.261	0.265	
Guyana	0.385	0.321	1.000	0.094	0.460	
Paraguay	0.147	0.261	0.094	1.000	0.324	
Uruguay	0.513	0.265	0.460	0.324	1.000	
,						

En este caso vemos que todas las covarianzas son positivas, al igual que el caso anterior, sin embargo, presentan covarianzas más bajas, creemos que esto puede estar dado porque las variaciones interanuales de los ingresos no dependen tanto de los países externos, si no que esto sería un problema sobretodo interno de cada país. Notar el caso de Guyana y Paraguay que su correlación es relativamente muy baja, dando a entender, justamente, que la evolución del ingreso seguramente dependa mucho más de factores internos que externos.

Parte 2 : Esperanza y género

Inciso 5:

El gráfico de dispersión muestra una relación lineal positiva muy fuerte entre ambas variables. Los países con mayor esperanza de vida femenina es un buen indicador del nivel general de salud y desarrollo de cada país, ya que ambos indicadores evolucionan de manera conjunta.

Esperanza de vida total vs femenina (2010)

Inciso 6:

Se estimó un modelo de regresión lineal simple donde la variable dependiente es la esperanza de vida total y la variable explicativa es la esperanza de vida femenina.

Resultados:

Intercepto (β_0): 5.2225 Coeficiente (β_1): 0.9037

R2: 0.8743

EL coeficiente β_1 resulta positivo y cercano a 1, lo cual implica que la esperanza de vida total correlaciona positivamente con la esperanza de vida femenina. Por otra parte, vemos un R2 muy alto, lo cual implica que la variable femenina explica casi toda la variabilidad de la esperanza total. El promedio de la longevidad femenina predice casi completamente el promedio general de cada país.

Inciso 7:

Se contrastó la hipótesis de igualdad de medias entre life_expectancy_female y life expectancy. Resultados obtenidos:

Valor del estadístico t: -3.79

P-valor: 2e-04

El resultado arroja un p-valor muy bajo (menor a 0.05), por lo que se rechaza la hipótesis nula. Esto significa que, en promedio, las mujeres viven significativamente más que el total de la población.

Inciso 8:

Estimamos una regresión múltiple de life_expectancy sobre life_expectancy_female e income per person. Los resultados obtenidos:

```
\beta_1 (vida femenina):8.663e-01
```

```
\beta_2 (ingreso):3.202e-05
```

R2: 0.8772

La esperanza de vida femenina sigue siendo la variable más influyente, pero el ingreso per cápita también contribuye positivamente: los países con mayor nivel de desarrollo económico tienden a tener mayor longevidad.

El R2 se mantiene elevado confirmando que la combinación de factores de género y nivel de vida explica prácticamente toda la variación en la esperanza de vida total.

Inciso 9:

Construimos un modelo alternativo de regresión múltiple usando las variables child_mortality, life_expectancy_male y log(population). Tomamos el logaritmo de la población, ya que permite reducir asimetrías en variables muy grandes.Los resultados obtenidos:

```
β<sub>1</sub> (mortalidad infantil): -0.06549
```

β₂ (vida masculina):0.71097

β₃ (población):0.16660

R2:0.9016

El modelo presenta un alto poder explicativo, ya que presenta un R2 alto. Por otro lado, vemos que los coeficientes son coherentes, el B1 es decir cuanto explica la mortalidad infantil a la expectativa de vida es negativa (mientras mayor sea la mortalidad infantil menor será la expectativa de vida). La esperanza de vida masculina es positiva y significativa. Y el coeficiente de la población (en log) es positivo pero es muy pequeño, lo que quiere decir que el tamaño de la población total no está tan relacionado con la expectativa de vida de la población.

Ejercicio: Simulación de ataque en el juego, TEG

Este ejercicio busca simular el proceso de ataque en el juego TEG, donde un jugador atacante enfrenta a un defensor que busca defender su país; todo esto se lleva a cabo mediante una tirada de dados.

Inciso 1:

La función "resultado_ataque "recibe la cantidad de dados que tira el atacante y el defensor, genera tiradas aleatorias de 1 a 6 y compara los resultados ordenados de mayor a menor.

Se evalúan tantos enfrentamientos como el mínimo entre los dados lanzados de cada uno. En cada comparación de acuerdo a las reglas del TEG:

Si el dado del atacante es mayor, el defensor pierde una ficha.

En caso de empate o dado menor, pierde el atacante.

La función "resultado_ataque" devuelve un vector con las pérdidas de ambos jugadores ("perdidas_ataque", "perdidas_defensa"). Los resultados que obtuvimos de un ataque donde el atacante tiene 3 fichas y el defensor 2 (usando set.seed(1)) es:

```
resultado_ataque(3,2)
perdidas_ataque perdidas_defensa
2
0
```

En estos resultados, vemos que en un ataque el atacante pierde 2 fichas mientras que el defensor no pierde ninguna. Esta salida representa cuántas fichas pierde cada jugador en esa ronda puntual. No implica el resultado total de la batalla, solo la tirada.

Inciso 2:

La función "simular_batalla" simula una batalla completa, repitiendo enfrentamientos consecutivos hasta que según las reglas del TEG:

El atacante queda con una sola ficha (no puede seguir atacando).

El defensor pierde todas sus fichas (el territorio es conquistado).

En cada ronda se aplican las reglas del inciso anterios. El atacante tira como máximo 3 dados, pero nunca más que fichas_atacante - 1. El defensor tira hasta 3 dados, sin superar ni su cantidad de fichas ni los dados del atacante.

La función simular_ataque devuelve una lista con las fichas finales de cada jugador y un indicador lógico conquistó que vale TRUE si el atacante logra vencer. El resultado que usamos de ejemplo es uno donde el atacante posee 3 fichas y el defensor 2, usando set.seed(1) obtuvimos que:

Inciso 3:

Finalmente, la función probabilidad_ataque ejecuta muchas simulaciones (en el ejemplo B=1000) de batallas con el mismo número inicial de fichas para ambos jugadores (A=5, D=5). En cada una se registra si el atacante conquista o no, y se calcula la proporción de sobre las 1000 simulaciones.

```
> probabilidad_ataque <- function(B = 1000, A = 5, D = 5) {
+
+ conquistas <- replicate (B , simular_batalla(A, D)$conquistó)
+
+ mcon <- mean(conquistas) # Media conquistas
+
+ list( estimación = mcon )
+ }
> set.seed(1)
> probabilidad_ataque(B=1000)
$estimación
[1] 0.223
```

Según esta simulación vemos que el atacante gana solo en torno al 22.3% de las veces en este caso. Con 5 fichas de cada lado, el atacante tiene una probabilidad relativamente baja de conquistar, lo que coincide con la intuición de que los empates y las limitaciones de los dados benefician al defensor.