#### Lecture 11

#### **Confidence Intervals. Power.**

The development of a methodology for testing whether the mean value is equal to  $\mu_0$  leads to providing a plausible range for the true value of the mean.

A so called interval estimate or Confidence Interval

Suppose I estimate the Modulus of Rupture (MOR) for planks of a certain origin to be  $15\text{N/mm}^2$ . I have calculated  $\overline{X}$  to be 15.

But was this the average MOR of 3 planks, 300 or 3mln? What is the variance (SD)? Were the instruments used accurate to within 0.1, 1 or 10 or 100N?

It is reasonable to argue that without some statement of precision the estimate is useless.

If I take another sample am I likely to get a value close to 15 eg 14.5 or 16 or might I get 3 or 37?

A *confidence interval* gives a plausible range for the mean. The extent of the plausibility is defined by the confidence level  $1-\alpha$ .

It is stated in this way because it is precisely the set of values  $\mu_0$  for which we would not reject the hypothesis  $\mu = \mu_0$  vs the not equal alternative at significance level  $\alpha$ 

If we test:

 $H_0 \mu = \mu_0$  vs  $\mu \neq \mu_0$  and do not reject this at 5%.

There are other  $\mu_0$  for which we would not reject  $H_0$ , on the basis of this data. The set of all those  $\mu_0$  is the 95% confidence interval.

Formally the confidence interval covers (includes) the mean with probability  $1-\alpha$ .

The only point is that the interval is random not the value of the mean

Frequentists make a strong point about any parameter being an unknown constant not a random variable. Because another school called Bayesian's make a very strong point about it being a random variable!

So  $P(L \le \mu \le U) = 0.95$  is a valid statement, but it is U and L that are random.

#### Construction of a confidence interval for a mean

 $\alpha$  =5% , assume known variance.

We do not reject H<sub>0</sub> if:

$$-1.96 \le T \le 1.96$$

$$-1.96 \le \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \le 1.96$$
 where  $\mu$  is the

hypothesised mean.

$$-1.96 \frac{\sigma}{\sqrt{n}} \le \overline{x} - \mu \le 1.96 \frac{\sigma}{\sqrt{n}}$$

$$1.96 \frac{\sigma}{\sqrt{n}} \ge \mu - \overline{x} \ge -1.96 \frac{\sigma}{\sqrt{n}}$$

$$\overline{x} + 1.96 \frac{\sigma}{\sqrt{n}} \ge \mu \ge \overline{x} - 1.96 \frac{\sigma}{\sqrt{n}}$$

In practice, I would use 
$$\bar{x} \pm 2\frac{\sigma}{\sqrt{n}}$$
.

For different  $\alpha$  we have a number different than 1.96, for 90% confidence use 1.64. etc. If variance is unknown use the appropriate value from TINV( $\alpha$ ,df).

# Example

Suppose that the to sample of planks with  $\overline{X} = 15$  we add the information that the sample size n = 49 and that the standard deviation was 8.4.

95% confidence interval then is:

With n = 49 it will not make much difference whether we use the normal or the T distribution.

The standard error = 
$$s.d.(\overline{X}) = \frac{\sigma}{\sqrt{n}} = 1.2$$

The "quick" 95% confidence interval is:

$$\bar{X} \pm 2 * s.e. = 15 \pm 2.4$$

We are 95% confident that the mean is in the range:

Precisely: the interval (12.6,17.4) includes the mean with probability 0.95. (near enough 0.95)

For the "exact" normal confidence interval we use 1.96 rather than 2.

12.648 to 17.352 but I suggest the accuracy is spurious.

Finally for the proper T based interval we use:

$$TINV(0.05,49) = 2.009574$$

The confidence interval not only tells us what we think the mean is but also gives a measure of the precision of the estimate.

### Comments

Confidence intervals are probabilistically centred. If the parameter is outside the interval, the chances of it being either side of the interval are equal  $(=\frac{\alpha}{2})$ .

For the mean (based on a normal) they are also numerically centred – estimate in the middle.

### Power of a test.

When testing a hypothesis we control for the probability of type I error by deciding on a significance level.

P(Reject 
$$H_0 \mid H_0 \text{ true}) = \alpha$$
.

#### Again:

The reason we do this is so that we only have to compute the distribution of the test statistic only for the case  $H_0$  true. This allows the alternative,  $H_1$ , to be a general hypothesis such as >,< or  $\neq$  and makes the approach usable in practice.

We chose the test statistics in such a way so that probability of type II error is minimised.

P(fail to reject 
$$H_0 \mid H_0$$
 is false).

In the special (artificial) case where  $H_1$  specifies a single value for the parameter we can compute P(Type II error).

The power of a test is:

$$\beta = 1 - P(type \text{ II } error).$$

Lets go back to our wire example.

We had a sample of 25 observations and the standard deviation is known to be 150.

We observed  $\overline{X} = 1312$  and were able to reject  $H_0$  vs  $H_1$   $\mu > 1250$  at a significance level of 2%. So all worked out OK. Had we failed to reject we would have learned nothing – the conclusion would have been insufficient evidence to reject  $H_0$ .

It is obviously desirable to avoid such situations. Can we get some assurance that we will reject H<sub>0</sub> when it is false?

Yes if we opt for a *simple* alternative. A simple hypothesis is one that specifies the values of the parameter(s).  $H_0$  is always simple,  $H_1$  usually isn't, it is a *compound* hypothesis. It consists of an infinity of simple hypotheses.

 $H_1$ :  $\mu > 1250$  is equivalent to the set of hypotheses

H<sub>1</sub>: 
$$\mu = \mu_1$$
 for all  $\mu_1 > 1250$ .

For each simple hypothesis we can compute the power.

For example:

$$n=25$$
,  $\sigma = 150$ ,  $\alpha = 0.05$ .

$$H_0$$
:  $\mu = 1250$  vs  $H_1$ :  $\mu = 1300$ 

The power is the probability of rejecting  $H_0$  when the mean is 1300.

We reject  $H_0$  if the T statistic is big enough. (one tailed test because small T would not suggest mean = 1300)

With the significance level at 5%, the rule is reject  $H_0$  if :

$$\frac{\overline{X} - 1250}{s.d.(\overline{X})} > 1.64$$
 the only variable here is  $\overline{X}$ .

If H<sub>1</sub> is true, the mean of X is 1300, the mean of  $\overline{X}$  is 1300 and the standard deviation hasn't changed =  $\frac{150}{\sqrt{25}} = 30$ .

So

P(reject) = 
$$P(\frac{\overline{X} - 1250}{30} > 1.64)$$
 where  $\overline{X} \sim N(1300, 30^2)$   
=  $P(\overline{X} > 1250 + 30*1.64)$ 

$$= P(\frac{\overline{X} - 1300}{30} > \frac{1250 + 30 * 1.64 - 1300}{30})$$

$$= P(N(0,1) > \frac{-50}{30} + 1.64) ***$$

$$= P(N(0,1) > -0.027) = 0.5106$$

So if the true mean were 1300 we would need to be lucky (toss of a coin) to reject at 5% with 25 observations.

We can do this for other  $H_1$  1260, 1275, 1400 etc. the general form of the \*\*\* equation is:

$$P(N(0,1) > 1.64 - \frac{\Delta\mu}{sd(\overline{X})})$$

where:  $\Delta \mu = \mu_{H_1} - \mu_{H_0}$ 

## Power as a function of true mean



Designing the experiment.

Before we collect the data we want to ensure that we have reasonable power.

The power depends on:

- $\Delta\mu$  the difference in means the bigger this is the easier it is to reject. We can chose this to be sensible. Not demand too much from the data.
- $\alpha$  The significance level. How sure we want to be that  $H_0$  is false before we reject it? The numbers are:

10% 
$$Z_{\alpha} = 1.28$$
  
5%  $Z_{\alpha} = 1.64$   
1%  $Z_{\alpha} = 2.33$ 

The bigger the  $Z_{\alpha}$ , the lower the power.

$$sd(\overline{X}) = \frac{sd(X)}{\sqrt{n}}$$
. Probably not much you can do about  $sd(X)$  but more accurate measuring might help.

What you can do is increase  $n = get$  more data.

What sample size (n) do you need to guarantee an acceptable level of power?

Suppose we pre-assign the power to be at least  $\beta$ .

The we have:

$$P(N(0,1) > Z_{\alpha} - \frac{\Delta \mu}{\sigma / \sqrt{n}}) \ge \beta$$

If we want,  $P(N(0,1) > x) \ge \beta$  then we have to have

$$x \le -W_{\beta}$$
. where  $W_{\beta} = NORMSINV(\beta)$ 

So: 
$$Z_{\alpha} - \frac{\Delta \mu}{\sigma / \sqrt{n}} \le -W_{\beta}$$
$$Z_{\alpha} + W_{\beta} \le \frac{\Delta \mu}{\sigma} \sqrt{n}$$
$$(Z_{\alpha} + W_{\beta}) \frac{\sigma}{\Delta \mu} \le \sqrt{n}$$

Note:  $W_{\beta} = Z_{1-\beta}$ 

Example:

To be 90% sure that we will reject  $H_0$  (significance =5%) if the mean is 10 higher than the hypothesised mean, sd(X)=150 we need:

$$Z_{\alpha} = 1.64, W_{\beta} = 1.28, \Delta \mu = 10, \sigma = 150$$
  
 $\sqrt{n} \ge 31.488 \implies n \ge 991.5 \text{ i.e n} = 992 \text{ observations.}$ 

Don't demand to much of the poor data.

If we are considering alternatives less than  $H_0$  everything reflects about 0. The formula is the same as long as  $\Delta\mu$  measures the distance (positive) from the  $H_0$  mean.  $Z_{\alpha}$  is also treated as a positive value. (for this case reject  $H_0$  if if  $T < -Z_{\alpha}$ )

With a two sided test,  $(\neq)$ ,  $Z_{\alpha}$  will be different because of the two tailed test (5% -> 1.96). There is also the possibility of rejecting  $H_0$  on the "wrong side", but as the probability of this is tiny it can be ignored.

#### Comments.

We need to know  $\sigma$ . If we don't know  $\sigma$  the test should be a t-test, unless n>30. Try as Z-test if n comes out less than 30, use n=30 or if the data are very expensive use the proper method. Requires non-central t distribution but is all done for you in MINITAB.

But you still need an estimate of  $\sigma$ . This is got from a pilot sample (small just to get  $\sigma$ ). This can be used as part of the sample later.

However as estimates of  $\sigma$  are lousy unless you have a lot of observations you would usually allow some safety factor using the  $\sigma$  bigger than it really is will give you a larger n and hence a better  $\beta$  than you require. That is not as bad as concluding nothing.