Chapitre 16. Analyse asymptotique

<u>Cadre</u>: Dans tout le chapitre, on regardera des fonctions $f: I \to \mathbb{R}$ et un point $a \in \overline{I} \cup \{\pm \infty\}$ en lequel il est pertinent de s'intéresser à la limite de f. En pratique, I sera un intervalle (et a un point ou une extrémité de I) ou I sera \mathbb{N} (et $a = +\infty$) dans le cas des suites.

1 Équivalence

1.1 Définitions

Définition 1.1. Soit $f,g:I\to\mathbb{R}$. On dit que f et g sont équivalentes au voisinage de a et on note $f(x)\underset{x\to a}{\sim} g(x)$ ou $f\underset{a}{\sim} g$ s'il existe un voisinage V de a dans I et $\mu:V\to\mathbb{R}$ telle que :

$$\begin{cases} \forall x \in V, g(x) = \mu(x) f(x) \\ \mu(x) \xrightarrow[x \to a]{} 1 \end{cases}$$

En pratique, on sera dans l'un des 2 cas suivants :

- * f et g ne s'annulent pas au voisinage de a
- * f(a) = g(a) = 0 et il existe un voisinage de a tel que f et g ne s'annulent pas sur $V \setminus \{a\}$ (On dit que a est un zéro isolé de f et g).

Dans ce cas, la définition devient simplement :

$$f(x) \underset{x \to a}{\sim} g(x) \iff \frac{g(x)}{f(x)} \xrightarrow[x \to a]{} 1$$

<u>Avertissement</u>: En particulier : $f(x) \underset{x \to a}{\sim} 0$ signifie que f est nulle au voisinage de a. C'est une assertion que l'on lit souvent après des erreurs de calculs.

Proposition 1.2. \sim est une relation d'équivalence : Soit f, g, h : $I \rightarrow \mathbb{R}$

- * <u>Réflexivité</u> : On a $f(x) \sim_{x \to a} f(x)$
- * Symétrie: Si $f \sim g$, alors $g \sim f$
- * Transitivité : Si $f \sim g$ et $g \sim h$, alors $f \sim h$

1.2 Propriétés multiplicatives

Proposition 1.3. Soit $f_1, f_2, g_1, g_2 : I \to \mathbb{R}$ tels que : $\begin{cases} g_1(x) \underset{x \to a}{\sim} f_1(x) \\ g_2(x) \underset{x \to a}{\sim} f_2(x) \end{cases}$

- * Alors $g_1g_2(x) \underset{x \to a}{\sim} f_1f_2(x)$
- * Si g_1 et g_2 ne sont pas nulles au voisinage de a, $\frac{g_1(x)}{g_2(x)} \sim \frac{f_1(x)}{f_2(x)}$
- * On peut élever un équivalent à une puissance (constante). Soit $\alpha \in \mathbb{R}$, on a $f_1(x)^{\alpha} \sim g_1(x)^{\alpha}$ (à conditions que ces fonctions soient définis au voisinage de a).

1

1.3 Propriétés de l'équivalence

Proposition 1.4. Soit $f, g: I \to \mathbb{R}$

* Si
$$\begin{cases} f(x) \underset{x \to a}{\sim} g(x) \\ f(x) \xrightarrow[x \to a]{} l \in \overline{\mathbb{R}} \end{cases}$$
 alors $g(x) \xrightarrow[x \to a]{} l$

$$* \, \operatorname{Si} \, l \in \mathbb{R}^* \, (\operatorname{ni} \, \pm \infty, \operatorname{ni} \, 0) \text{ et tel que } \begin{cases} f(x) \xrightarrow[x \to a]{} l \\ g(x) \xrightarrow[x \to a]{} l \end{cases} \quad \operatorname{alors} \, f(x) \underset{x \to a}{\sim} g(x)$$

Proposition 1.5. Soit $f,g:I\to\mathbb{R}$ telles que $f(x)\sim_{\mathcal{A}}g(x)$

Alors f et g ont le même signe au voisinage de a.

Plus précisément : il existe un voisinage V de a dans I tel que, pour tout $x \in V$, f(x) et g(x) ont le même signe (< 0, nul, > 0).

Négligeabilité et domination 2

2.1 Définitions

Définition 2.1. Soit $f, g: I \to \mathbb{R}$

- * On dit que \underline{f} est négligeable devant g au voisinage de \underline{a} , et on note $f(x) = \underset{x \to a}{\text{o}}(g(x))$ (ou $f = \underset{a}{\text{o}}(g)$ s'il existe un voisinage V de a dans I et $\varepsilon(x) \xrightarrow[x \to a]{} 0$
- * On dit que \underline{f} est dominée par g au voisinage de \underline{a} et on note $f(x) = \mathop{\rm O}_{x \to a}(g(x))$ (ou $f = \mathop{\rm O}_{a}(g)$) s'il existe un voisinage V de a dans I et $c:V\to\mathbb{R}$ bornée tels que $\forall x\in V$, f(x)=c(x)g(x)

Remarque important : Dans les cas usuels, on a

- * $f(x) = \underset{x \to a}{\text{o}}(g(x)) \text{ ssi } \frac{f(x)}{g(x)} \xrightarrow[x \to a]{} 0$ * $f(x) = \underset{x \to a}{\text{O}}(g(x)) \text{ ssi } x \mapsto \frac{f(x)}{g(x)} \text{ est bornée au voisinage de } a$

2.2 Opérations

Proposition 2.2. Soit $f, g: I \to \mathbb{R}$

- * Si $f(x) \underset{x \to a}{\sim} g(x)$ alors $f(x) = \underset{x \to a}{O} (g(x))$ * Si $f(x) = \underset{x \to a}{O} (g(x))$ alors $f(x) = \underset{x \to a}{O} (g(x))$

Proposition 2.3. Soit $f, g, h : I \to \mathbb{R}$

- * Si $f(x) = \mathop{\rm O}_{x \to a}(g(x))$ et $g(x) = \mathop{\rm O}_{x \to a}(h(x))$ alors $f(x) = \mathop{\rm O}_{x \to a}(h(x))$ * Si l'une des relations de dominations est remplacée par une relation de négligeabilité, on obtient $f(x) = \underset{x \to a}{\text{o}}(h(x))$

Proposition 2.4. Soit $f_1, f_2, g : I \to \mathbb{R}$ et $\lambda, \mu \in \mathbb{R}$

Si
$$\begin{cases} f_1(x) = \underset{x \to a}{\text{o}}(g(x)) \\ f_2(x) = \underset{x \to a}{\text{o}}(g(x)) \end{cases} \text{ alors } \lambda f_1(x) + \mu f_2(x) = \underset{x \to a}{\text{o}}(g(x))$$

Proposition 2.5. Soit $f_1, f_2, g_1, g_2 : I \to \mathbb{R}$

Si
$$\begin{cases} f_1(x) = \underset{x \to a}{O}(g_1(x)) \\ f_2(x) = \underset{x \to a}{O}(g_2(x)) \end{cases}$$
 alors $f_1(x)f_2(x) = \underset{x \to a}{O}(g_1(x)g_2(x))$

Si l'une de deux relations de domination est remplacée par une relation de négligeabilité, on a $f_1(x)f_2(x) = \underset{x \to a}{o} (g_1(x)g_2(x))$

Proposition 2.6. Soit $\varphi: J \to I$ une fonction telle que $\varphi(t) \xrightarrow{t \to b} a$ et $b \in \overline{J} \cup \{\pm \infty\}$ et $f, g: I \to \mathbb{R}$ Alors, si $f(x) \underset{x \to a}{\sim} g(x)$ on a $f(\varphi(t)) \underset{t \to b}{\sim} g(\varphi(t))$ Idem avec o ou O.

2.3 Notations de Landau

On utilisera $\underset{x \to a}{\text{o}}(g(x))$ et $\underset{x \to a}{\text{O}}(g(x))$ dans des égalités pour designer une fonction non nommée, dont on garantit qu'elle est négligeable ou dominée par g(x).

Par exemple, on écrira $\sin(x) = x - \frac{x^3}{6} + \mathop{\text{o}}_{x \to 0}(x^4)$ pour dire $\sin(x) = x - \frac{x^3}{6} + f_1(x)$, où $f_1(x) = \mathop{\text{o}}_{x \to 0}(x^4)$ Attention! Cette pratique a des conséquences surprenantes :

- * Par exemple, on ne peut pas simplifier $\underset{x \to 0}{\circ}(x) \underset{x \to 0}{\circ}(x)$ Cette expression veut dire $f_1(x) - f_2(x)$ où $f_1(x)$, $f_2(x) = \underset{x \to 0}{\circ}(x)$ On remplacera par un unique $\underset{x \to 0}{\circ}(x)$
- * On sait que $x^4 = \underset{x \to 0}{\text{o}}(x^3)$. On en déduit que si $f_1(x) = \underset{x \to 0}{\text{o}}(x^4)$ alors $f_1(x) = \underset{x \to 0}{\text{o}}(x^3)$. Dans un calcul :

$$\sin(x) = x - \frac{x^3}{6} + \underset{x \to 0}{\text{o}}(x^4)$$
$$= x - \frac{x^3}{6} + \underset{x \to 0}{\text{o}}(x^3)$$

On a en fait écrit $\underset{x\to 0}{\mathrm{o}}(x^4)=\underset{x\to 0}{\mathrm{o}}(x^3)$ mais cette égalité n'est pas symétrique : on ne peut pas remplacer $\underset{x\to 0}{\mathrm{o}}(x^3)$ par un $\underset{x\to 0}{\mathrm{o}}(x^4)$

Théorème 2.7. Soit $f, g : I \to \mathbb{R}$ LASSÉ :

- (i) $f(x) \underset{x \to a}{\sim} g(x)$
- (ii) $f(x) = g(x) + o_{x \to a}(g(x))$
- (iii) $g(x) = f(x) + o_{x \to a}(f(x))$

3 Développements limités

3.1 Définition et premières propriétés

Définition 3.1. Soit $f: I \to \mathbb{R}$ et $a \in I$

On dit que f admet $\underline{\text{un développement limité à l'ordre n en a}}: \mathrm{DL}_n(a)$ s'il existe $c_0, \dots, c_n \in \mathbb{R}$ tels que $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots + c_n(x-a)^n + \underset{x \to a}{\mathrm{o}}((x-a)^n)$ (ou $f(a+h) = c_0 + c_1h + c_2h^2 + \dots + c_nh^n + \underset{h \to 0}{\mathrm{o}}(h^n)$)

Proposition 3.2 (Troncature de DL). Soit $m \le n$ deux entiers naturels.

Si f admet un $DL_n(a) : f(a+h) = c_0 + c_1h + ... + c_nh^n + o(h^n)$ alors elle admet un $DL_m(a) : f(a+h) = c_0 + c_1h + ... + c_mh^m + o(h^m)$

Proposition 3.3. Soit $f: I \to \mathbb{R}$ admettant un $DL_n(a): f(a+h) = c_0 + c_1h + ... + c_nh^n + o(h^n)$ Si $c_0, c_1, ..., c_n$ ne sont pas tous nuls, on note $\mu = \min\{i \in [0, n] \mid c_i \neq 0\}$ et on $a: f(a+h) \underset{h \to 0}{\sim} c_{\mu}h^{\mu}$

Proposition 3.4. Soit $f: I \to \mathbb{R}$ et $a \in I$

- * f est continue et a ssi elle admet un $DL_0(a)$ (le DL est alors f(a+h)=f(a)+o(1))
- * f est dérivable en a ssi elle admet un $DL_1(a)$ (le DL est alors f(a+h)=f(a)+f'(a)h+o(h))

Proposition 3.5 (Unicité du DL). Soit $f: I \to \mathbb{R}$ et $b_0, ..., b_n, c_0, ..., c_n \in \mathbb{R}$ tels que

$$f(a+h) = b_0 + b_1 h + \dots + b_n h^n + o(h^n)$$

= $c_0 + c_1 h + \dots + c_n h^n + o(h^n)$

Alors $\forall i \in [0, n], b_i = c_i$

Corollaire 3.6. Soit $f: I \to \mathbb{R}$ admettant un $DL_n(0): f(h) = c_0 + c_1 h + ... + c_n h^n + o(h^n)$

- * Si f est paire, on a $c_1 = c_3 = ... = 0$
- * Si f est impaire, alors $c_0 = c_2 = ... = 0$

3.2 Lemme de primitivation des DL

Lemme 3.7. Soit $f: I \to \mathbb{R}$ dérivable et $a \in I$

On suppose que f' admet un $DL_n(a): f'(a+h) = c_0 + c_1h + ... + c_nh^n + o(h^n)$ Alors f admet un $DL_{n+1}(a): f(a+h) = f(a) + c_0h + c_1\frac{h^2}{2} + ... + c_n\frac{h^{n+1}}{n+1} + o(h^{n+1})$

3.3 Théorème de Taylor-Young

<u>Rappel</u> : Si $f: I \to \mathbb{R}$ est n fois dérivable et $a \in I$, il existe un unique polynôme P de $\mathbb{R}_n[X]$ tel que $\forall k \in [0, n]$, $f^{(k)}(a) = P^{(k)}(a)$ c'est le n-ième polynôme de Taylor de f en a:

$$\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (X - a)^{k}$$

Théorème 3.8 (Taylor-Young). Soit $f \in C^n(I)$ et $a \in I$

Alors

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + \underset{x \to a}{\text{o}} ((x - a)^{n})$$

càd

$$f(a+h) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} h^{k} + \underset{h \to 0}{\text{o}} (h^{n})$$

Notamment, f admet un $DL_n(a)$

Théorème 3.9 (Formulaire). Pour tout $n \in \mathbb{N}$, on a :

$$\begin{split} \frac{1}{1-h} &= 1+h+h^2+\ldots+h^n+o(h^n) \\ \frac{1}{1+h} &= 1-h+h^2-h^3+\ldots+(-1)^nh^n+o(h^n) \\ (1+h)^\alpha &= 1+\alpha h+\frac{\alpha(\alpha-1)}{2!}h^2+\frac{\alpha(\alpha-1)(\alpha-2)}{3!}h^3+\ldots+\frac{\alpha(\alpha-1)(\alpha-2)\ldots(\alpha-n+1)}{n!}h^n+o(h^n) \\ \ln(1+h) &= h-\frac{h^2}{2}+\frac{h^3}{3}+\ldots+(-1)^{n-1}\frac{h^n}{n}+o(h^n) \\ \arctan(h) &= h-\frac{h^3}{3}+\frac{h^5}{5}+\ldots+(-1)^n\frac{h^{2n+1}}{2n+1}+o(h^{2n+1}) \\ \exp(h) &= 1+h+\frac{h^2}{2!}+\frac{h^3}{3!}+\ldots+\frac{h^n}{n!}+o(h^n) \\ \cosh(h) &= 1+\frac{h^2}{2!}+\frac{h^4}{4!}+\ldots+\frac{h^{2n}}{(2n)!}+o(h^{2n}) \\ \sinh(h) &= h+\frac{h^3}{3!}+\frac{h^5}{5!}+\ldots+\frac{h^{2n+1}}{(2n+1)!}+o(h^{2n+1}) \\ \cos(h) &= 1-\frac{h^2}{2!}+\frac{h^4}{4!}+\ldots+(-1)^n\frac{h^{2n}}{(2n)!}+o(h^{2n}) \\ \sin(h) &= h-\frac{h^3}{3!}+\frac{h^5}{5!}+\ldots+(-1)^n\frac{h^{2n+1}}{(2n+1)!} \end{split}$$

4 Calculs pratiques

4.1 Somme et produit

On retrouve le DL de cosh:

$$e^{h} = 1 + h + \frac{h^{2}}{2!} + \dots + \frac{h^{2n-1}}{(2n-1)!} + \frac{h^{n}}{n!} + o(h^{n})$$

$$e^{-h} = 1 - h + \frac{h^{2}}{2!} + \dots - \frac{h^{2n-1}}{(2n-1)!} + \frac{h^{n}}{n!} + o(h^{n})$$

Donc

$$\cosh(h) = \frac{e^h + e^{-h}}{2} = 1 + \frac{h^2}{2!} + \dots + \frac{h^{2n}}{(2n)!} + o(h^{2n})$$

Cela marche plus généralement pour les parties paire ($x\mapsto \frac{f(x)+f(-x)}{2}$) et impaire ($x\mapsto \frac{f(x)-f(-x)}{2}$) d'une fonction f.

 $DL_3(0)$ de $x \mapsto e^x \sinh(x)$:

$$e^{x} \sinh(x) = \left(1 + x + \frac{x^{2}}{2} + o(x^{2})\right) \left(x + \frac{x^{3}}{6} + o(x^{3})\right)$$
$$= x + x^{2} + \frac{x^{3}}{2} + \frac{x^{3}}{6} + o(x^{3})$$
$$= x + x^{2} + \frac{2}{3}x^{3} + o(x^{3})$$

Si un facteur a une valuation > 0, on peut développer l'autre à une précision moindre.

4.2 Composition

On peut facilement composer un DL avec une puissance de x: par exemple, donnons un DL $_5(0)$ de $x \mapsto \sin(x^2)\cos(x)$

$$\sin(x^2)\cos(x) = (x^2 + o(x^5))(1 - \frac{x^2}{2} + o(x^3))$$
$$= x^2 - \frac{1}{2}x^4 + o(x^5)$$

On peut aussi composer avec des fonction plus compliquées. Donnons un $\mathrm{DL}_2(0)$ de $x\mapsto e^{\sin(x)}$

$$e^{\sin(x)} = 1 + \sin(x) + \frac{(\sin(x))^2}{2} + o(x^2)$$
$$= 1 + (x + o(x^2)) + \frac{(x + o(x))^2}{2} + o(x^2)$$
$$= 1 + x + \frac{1}{2}x^2 + o(x^2)$$

4.3 Quotient

Pas besoin de nouvelle technique : on utilise le DL de $u\mapsto \frac{1}{1+u}$

 $DL_4(0)$ de $\frac{1}{cos}$

$$\begin{split} \frac{1}{\cos(x)} &= \frac{1}{1 + (\cos(x) - 1)} \\ &= 1 - \left(-\frac{x^2}{2} + \frac{x^4}{24} + o(x^4) \right) + \left(-\frac{x^2}{2} + o(x^2) \right)^2 + o(x^4) \\ &= 1 + \frac{x^2}{2} - \frac{x^4}{24} + \frac{x^4}{4} + o(x^4) \\ &= 1 + \frac{1}{2}x^2 + \frac{5}{24}x^4 + o(x^4) \end{split}$$

 $DL_5(0)$ de tan

$$\tan(x) = \frac{\sin(x)}{\cos(x)} = \left(x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5)\right) \left(1 + \frac{x^2}{2} + \frac{5x^4}{24} + o(x^4)\right)$$
$$= x + \frac{x^3}{2} - \frac{x^3}{6} + \frac{5x^5}{24} - \frac{x^5}{12} + \frac{x^5}{120} + o(x^5)$$
$$= x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^5)$$

Remarque: Selon le programme officiel,

$$\tan(x) = x + \frac{1}{3}x^3 + o(x^3)$$

est à connaître.

5 Applications

5.1 Limites et équivalents

Déterminons la limite en 0 de $\frac{1}{\sin^2(x)} - \frac{1}{x^2}$

$$\frac{1}{\sin^2(x)} - \frac{1}{x^2} = \frac{x^2 - \sin^2(x)}{x^2 \sin^2(x)}$$

Or

$$x^{2} - \sin^{2}(x) = \frac{x^{4}}{3} + o(x^{4})$$
$$x^{2} - \sin^{2}(x) \underset{x \to 0}{\sim} \frac{x^{4}}{3}$$

Donc

$$\frac{x^2 - \sin^2(x)}{x^2 \sin^2(x)} \underset{x \to 0}{\sim} \frac{x^4}{3x^4} = \frac{1}{3}$$

Donc

$$\frac{x^2 - \sin^2(x)}{x^2 \sin^2(x)} \xrightarrow[x \to 0]{} \frac{1}{3}$$

Équivalent en 0 de $x \mapsto (\cosh(x))^x - (\cos(x))^x$

$$(\cosh(x))^{x} = \exp(x \ln(\cosh(x)))$$

$$= \exp\left(x \left(\left(\frac{x^{2}}{2} + o(x^{3})\right) + o(x^{3})\right)\right)$$

$$= 1 + \frac{x^{3}}{2} + o(x^{3})$$

De même

$$(\cos(x))^x = 1 - \frac{x^3}{2} + o(x^3)$$

Donc

$$(\cosh(x))^{x} - (\cos(x))^{x} = x^{3} + o(x^{3})$$

 $\underset{x \to 0}{\sim} x^{3}$

5.2 Étude locale d'une fonction

On rappelle que $f: I \to \mathbb{R}$ admet un $DL_0(a)$ ssi f est continue en a.

 $DL_1(a)$ ssi f est dérivable en a.

Un DL de la forme $f(a+h)=f(a)+f'(a)h+\lambda h^{\nu}+\mathrm{o}(h^{\nu})$ permet de déterminer la position de f par rapport à sa tangente :

$$f(a+h) - (f(a) + f'(a)h) \underset{h \to 0}{\sim} \lambda h^{\nu}$$

et deux fonctions équivalentes ont localement le même signe.

Cela montre notamment le résultat suivant :

Proposition 5.1. Soit $f \in C^2(I)$ et $a \in I$ un point intérieur.

- * Si f a un minimum local en a, alors f'(a) = 0 et $f''(a) \ge 0$
- * Si f'(a) = 0 et f''(a) > 0, f admet un minimum local en a.

5.3 Asymptotes

On peut calculer des développements asymptotiques plus généraux que des DL.

Donnons un DA à la précision $\underset{x\to 0}{\text{o}}(x)$ de $x\mapsto \frac{1}{e^x-1}$

$$\frac{1}{e^x - 1} = \frac{1}{x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)}$$

$$= \frac{1}{x} \frac{1}{1 + \frac{x}{2} + \frac{x^2}{6} + o(x^2)}$$

$$= \frac{1}{x} \left(1 - \left(\frac{x}{2} + \frac{x^2}{6} + o(x^2) \right) + \left(\frac{x}{2} + o(x) \right)^2 + o(x^2) \right)$$

$$= \frac{1}{x} \left(1 - \frac{x}{2} + \frac{x^2}{12} + o(x^2) \right)$$

$$= \frac{1}{x} - \frac{1}{2} + \frac{x}{12} + o(x)$$

<u>Remarque</u>: On peut calculer certains DA quand $x \to +\infty$ en passant par la fonction $h \mapsto f(\frac{1}{h})$

Considérons $x \mapsto x^2 \ln \left(\frac{x}{x-1} \right)$

$$f\left(\frac{1}{h}\right) = \frac{1}{h^2} \ln\left(\frac{\frac{1}{h}}{\frac{1}{h} - 1}\right)$$

$$= \frac{1}{h^2} \ln\left(\frac{1}{1 - h}\right)$$

$$= -\frac{1}{h^2} \ln(1 - h)$$

$$= -\frac{1}{h^2} \left(-h - \frac{h^2}{2} - \frac{h^3}{3} + o(h^3)\right)$$

$$= \frac{1}{h} + \frac{1}{2} + \frac{h}{3} + o(h)$$

Donc

$$f(x) = x + \frac{1}{2} + \frac{1}{3x} + \underset{x \to \pm \infty}{\text{o}} \left(\frac{1}{x}\right)$$

Graphiquement, cela dit que la droite d'équation $y = x + \frac{1}{2}$ est une asymptote du graphe de f et cela donne la position relative du graphe et de l'asymptote.