

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
08/935,844	09/23/1997	ROBERT WILSON	E0295/7021	9098
7590	10/21/2004		EXAMINER	
RICHARD F GIUNTA WOLF GREENFIELD AND SACKS FEDERAL RESERVE PLAZA 600 ATLANTIC AVENUE BOSTON, MA 022102211			MCLEAN MAYO, KIMBERLY N	
		ART UNIT	PAPER NUMBER	2187
DATE MAILED: 10/21/2004				

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)
	08/935,844	WILSON ET AL.
	Examiner	Art Unit
	Kimberly N. McLean-Mayo	2187

– The MAILING DATE of this communication appears on the cover sheet with the correspondence address –

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 09 May 2002.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-32,34-60, 62-63 and 65-67 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-32,34-60, 62-63 and 65-67 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|---|---|
| 1) <input type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____. |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08)
Paper No(s)/Mail Date _____. | 5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152) |
| | 6) <input type="checkbox"/> Other: _____. |

DETAILED ACTION

1. In view of the following, PROSECUTION IS HEREBY REOPENED. A new rejection is set forth below.

Prosecution has been reopened because it appears that the Amendment submitted on October 26, 2000 was never entered in the record and thus the current presentation of the claims in the appeal brief do not match the claims in the file. Thus the amendment has now been entered and the new rejection has been made to address the newly added limitations from the amendment submitted on October 27, 2000 (specifically for claims 31 and 37). The rejection for the newly addressed limitations have been underlined.

To avoid abandonment of the application, appellant must exercise one of the following two options:

- (1) file a reply under 37 CFR 1.111 (if this Office action is non-final) or a reply under 37 CFR 1.113 (if this Office action is final); or,
- (2) request reinstatement of the appeal.

If reinstatement of the appeal is requested, such request must be accompanied by a supplemental appeal brief, but no new amendments, affidavits (37 CFR 1.130, 1.131 or 1.132) or other evidence are permitted. See 37 CFR 1.193(b)(2).

Claim Rejections - 35 U.S.C. § 103

2. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

3. Claims 1-2, 5, 10-12, 19, 39-40, 46-48, 51-52 and 61 are rejected under 35 U.S.C. 103(a) as being unpatentable over Zarrow (USPN: 5,991,813) in view of the admitted prior art Yanai (USPN: 5,544,537).

Regarding claims 1, 10-12, 39, 46-47, 51-52 and 61, Zarrow discloses a computer system comprising a CPU (inherent to a computer; Figure 1, Reference 10); a first storage system that is coupled to the CPU to store information written from the CPU (Figure 1, Reference 16); a second storage system (Figure 1, Reference 18); at least one communication link coupling the second storage system to the CPU, the at least one communication link including a network cloud (WAN) that is shared with at least one other resource so that no portion of the network cloud is dedicated exclusively to transferring information between the CPU and the second storage system (Figure 1, Reference 14; C 2, L 1-3); and a mirror controller responsive to the information being written from the CPU to the first storage system to mirror at least some of the information written from the CPU to the first storage system in the second storage system by transferring the at least some of the information through the network cloud (C 4, L 41-67; C 5, L 1-35). Zarrow does not explicitly disclose the communication link extending between the first and second storage systems such that the second system is coupled to the CPU via the first storage system. However, Yanai does teach this feature (Figure 1, Reference 40; C 4, L 50-56).

Art Unit: 2187

Yanai teaches that this feature allows data mirroring from a primary data storage system to a secondary storage system without the intervention of the host which improves the performance of the system (C 2, L 25-33). Yanai also teaches that host (server) intervention seriously degrades the performance of the data transfer link between the host computer and the primary storage device. One of ordinary skill in the art would have also recognized that this feature allows the host to perform other task while the storage controller performs the mirroring operation, thereby improving the performance of the system. Therefore, one of ordinary skill in the art would have been motivated to add the teachings of Yanai to the teachings of Zarrow (remote mirroring over a WAN) for the desirable purpose of improved performance.

Regarding claims 2, 19, 40 and 48, Zarrow teaches a WAN (Internet) (C 2, L 1-3).

Regarding claim 5, Zarrow teaches data mirroring over a WAN. A WAN comprises many resources. The protocol implemented in such a network allows for communication between any of the resources.

Regarding claims 3, 18, 41 and 49, Zarrow teaches the concept of data mirroring over a network (WAN) as cited in claims 1, 39 and 47 above. Zarrow does not explicitly teach an Intranet network. However, mirroring is well known in the art for increased reliability which is a desirable feature in a network. Therefore, it would have been obvious to one of ordinary skill in the art to use the teachings of Zarrow and Yanai in an Intranet network for the desirable purpose of reliability.

4. Claims 4 and 17 are rejected under 35 U.S.C. 103(a) as being unpatentable over Zarrow (USPN: 5,991,813) in view of the admitted prior art Yanai (USPN: 5,54,537) as applied to claim 1 and further in view of Black (Computer Networks: Protocols, Standards and Interfaces, 2nd Edition, 1993).

Zarrow and Yanai teach the limitations cited above in claim 1; however, Zarrow nor Yanai explicitly teach a packet switched and cell network communication link. Yet, it is evident that issues such as applications, cost and other factors would dictate the use of one type of communication link versus another. It is really an issue of design choice. Black teaches in Computer Networks: Protocols, Standards and Interfaces, pages 159 -161, that organizations with low to medium traffic volumes could benefit from a packet switch network because most of the carriers charge on the volume of traffic. Thus it would have been obvious to one of ordinary skill in the art to use the teachings of Zarrow and Yanai in a packet switch and cell network for a system with low to medium traffic volumes for the desirable purpose of efficiency and cost.

5. Claims 6-8, 15-16, 20-21, 42-44 and 50 are rejected under 35 U.S.C. 103(a) as being unpatentable over Zarrow (USPN: 5,991,813) in view of the admitted prior art Yanai (USPN: 5,544,537) and Vishlitzky (USPN: 5,960,216).

Zarrow and Yanai disclose the limitations cited above for claims 1 and 39. However, Zarrow nor Yanai explicitly disclose a communication link comprising a plurality of communication paths for parallel transfer of packets. Vishlitzky discloses using a plurality of communication paths for parallel transfer of packets (Figure 3a, Reference 21a-21b; C 4, L 62-67; C 6, L 27-47). It also

Art Unit: 2187

known in the art to transfer data on parallel paths for increased throughput (such as Packet switch networks). Vishlitzky teaches that this feature enhances reliability by providing more than one path(channel) in case of a failure in one of the channels and this feature increases bandwidth by transferring data on all the channels compared to just a single channel. Thus, it would have been obvious to one of ordinary skill in the art to use a communication link comprising a plurality of communication paths to the system taught by Zarrow and Yanai for increased throughput, reliability and improved system performance.

6. Claims 9 and 14 are rejected under 35 U.S.C. 103(a) as being unpatentable over Zarrow (USPN: 5,991,813) in view of the admitted prior art Yanai (USPN: 5,544,537) as applied to claim 1 and further in view of Sparks (USPN: 5,212,784).

Zarrow and Yanai teach the limitations cited above for claim 1, however, neither explicitly teach a communication link including a wireless connection. Sparks does suggest using a wireless connection as a communication link in a backup/mirroring system (C 7, L 28-36). Sparks teaches that such a configuration would allow transmitting backup/mirroring data offsite immediately thus improving the reliability of the system. It is also well known that wireless connections such as satellites provide a large transmission capacity and improve reliability due to the lack of wires. Thus, it would have been obvious to one of ordinary skill in the art to use a wireless connection in the system taught by Zarrow and Yanai for increased reliability and increased throughput.

Art Unit: 2187

7. Claims 13 and 45 are rejected under 35 U.S.C. 103(a) as being unpatentable over Zarrow (USPN: 5,991,813) in view of the admitted prior art Yanai (USPN: 5,544,537) as applied to claim 1 and further in view of Sparks (USPN: 5,212,784).

Zarrow and Yanai teach the limitations cited above in claims 1 and 39, however, neither explicitly teaches a third storage system having a third communication link wherein information from the primary storage unit is mirrored thereto. However, Sparks suggest using a third storage system and a third communication link for coupling the storage device to the CPU as an additional backup systems, wherein some of the information stored in the CPU would be mirrored/copied thereto (C 7, L 12-36). Sparks teaches that the additional backup system would provide simultaneous backup copies, thus increasing the reliability of the system (C 7, L 17-20). This concept is also known in RAID technology. Therefore, it would have been obvious to one of ordinary skill in the art to add a third storage device and a third communication link for storing mirrored information of the first storage device to the system taught by Zarrow and Yanai for increased reliability.

8. Claims 22-30 and 53-55 are rejected under 35 U.S.C. 103(a) as being unpatentable over Zarrow (USPN: 5,991,813) in view of Sparks (USPN: 5,212,784) and the admitted prior art Yanai (USPN: 5,544,537).

Regarding claims 22, 24-26 and 53, Zarrow discloses a computer system comprising a CPU (inherent to a computer; Figure 1, Reference 10); a first storage system that is coupled to the CPU to store information written from the CPU (Figure 1, Reference 16); a second storage system (Figure 1, Reference 18); at least one communication link coupling the second storage

Art Unit: 2187

system to the CPU (Figure 1, Reference 14; C 2, L 1-3); and a mirror controller responsive to the information being written from the CPU to the first storage system to mirror at least some of the information written from the CPU to the first storage system in the second storage system by transferring the at least some of the information over the at least one communication link (C 4, L 41-67; C 5, L 1-35). Zarrow does not explicitly disclose the at least one communication link comprising at least one wireless connection. However, Sparks does suggest using a wireless connection as a communication link in a backup/mirroring system (C 7, L 28-36). Sparks teaches that such a configuration would allow transmitting backup/mirroring data offsite immediately thus improving the reliability of the system. It is also well known that wireless connections such as satellites provide a large transmission capacity and improve reliability due to the lack of wires. Thus, it would have been obvious to one of ordinary skill in the art to use a wireless connection in Zarrow's system for increased reliability and increased throughput.

Zarrow nor Sparks explicitly discloses the communication link extending between the first and second storage systems such that the second system is coupled to the CPU via the first storage system. However, Yanai does teach this feature (Figure 1, Reference 40; C 4, L 50-56). Yanai teaches that this feature allows data mirroring from a primary data storage system to a secondary storage system without the intervention of the host which improves the performance of the system (C 2, L 25-33). Yanai also teaches that host (server) intervention seriously degrades the performance of the data transfer link between the host computer and the primary storage device. One of ordinary skill in the art would have also recognized that this feature allows the host to perform other task while the storage controller performs the mirroring operation, thereby improving the performance of the system. Therefore, one of ordinary skill in the art would have

Art Unit: 2187

been motivated to add the teachings of Yanai to the teachings of Zarrow and Sparks for the desirable purpose of improved performance.

Claim 23 is rejected for the same rationale as applied to claim 3 above.

Regarding claims 27-30 and 54-55, it is well known to use satellites and microwave systems for a wireless communication link. It would have been obvious to use either for the desirable purpose of design choice.

9. Claims 31-32 and 35-38 are rejected under 35 U.S.C. 103(a) as being unpatentable over Zarrow (USPN: 5,991,813) in view of Sparks (USPN: 5,212,784) and the admitted prior art Yanai (USPN: 5,544,537).

Zarrow discloses a computer system comprising a CPU (inherent to a computer; Figure 1, Reference 10); a first communication link (Figure 1, Reference 32); a first storage system coupled to the CPU via the first communication link to store information written from the CPU (Figure 1, Reference 16); a second storage system (Figure 1, Reference 18); a second communication link coupling the second storage system to the CPU (Figure 1, Reference 14); and a mirror controller responsive to the information being written from the CPU to the first storage system to mirror at least some of the information written from the CPU to the first storage system in the second storage system over the second communication link through the network cloud (C 4, L 41-67; C 5, L 1-35). Zarrow does not explicitly disclose a third storage system and a third communication link coupling the third storage system to the CPU. However,

Art Unit: 2187

Sparks suggest using a third storage system and a third communication link (link coupling the device to the network described in C 7, L 28-36) for coupling the storage device to the CPU as an additional backup systems, wherein some of the information stored in the CPU would be mirrored/copied thereto over the third communication link through the network cloud (C 7, L 12-36). Sparks teaches that the additional backup system would provide simultaneous backup copies, thus increasing the reliability of the system (C 7, L 17-20). This concept is also known in RAID technology. Therefore, it would have been obvious to one of ordinary skill in the art to add a third storage device and a third communication link for storing mirrored information of the first storage device to Zarrow's system for increased reliability. Zarrow nor Sparks explicitly discloses the communication link extending between the first and second storage systems and the first and third storage system such that the second system and third storage system is coupled to the CPU via the first storage system. However, Yanai does teach the concept of extending the communication link between a primary and secondary (backup) storage systems such that the secondary storage system is coupled to the host via the first storage system (Figure 1, Reference 40; C 4, L 50-56). Yanai teaches that this feature allows data mirroring from a primary data storage system to a secondary storage system without the intervention of the host which improves the performance of the system (C 2, L 25-33). Yanai also teaches that host (server) intervention seriously degrades the performance of the data transfer link between the host computer and the primary storage device. One of ordinary skill in the art would have also recognized that this feature allows the host to perform other task while the storage controller performs the mirroring operation, thereby improving the performance of the system. Therefore, it would have been obvious to one of ordinary skill in the art to add the teachings of Yanai to the

Art Unit: 2187

teachings of Zarrow and Sparks for the desirable purpose of improved performance.

Additionally the system taught by Zarrow, Sparks and Yania provides a second and third communications links each comprising a network cloud that is shared by the first, second and third storage system. By adding the third storage system and the third communication link, the third communication link comprising the LAN or wireless network [network cloud] is coupled to the second communication link comprising the WAN [network cloud]. The WAN network is also coupled to the first communication link via Reference 36 in Figure 1 (Zarrow). Thus the communication links transfer data to and from the storage systems via the network cloud comprising the LAN/wireless network comprised in the third communication link and the WAN comprised in the second communication link], thereby establishing a shared network cloud between the first, second and third storage system.

Regarding claims 35 and 38, multicasting is known in the art. It is an efficient way of transferring data to simultaneously to multiple devices. Thus it would have been obvious to one of ordinary skill in the art to use multicasting in the system taught by Zarrow and Sparks for the desirable purpose of efficiency.

10. Claim 34 is rejected under 35 U.S.C. 103(a) as being unpatentable over Zarrow (USPN: 5,991,813) in view of Sparks (USPN: 5,212,784) as applied to claim 31 above and further in view of Black (Computer Networks: Protocols, Standards and Interfaces, 2nd Edition, 1993). Zarrow and Sparks teach the limitations cited above in claim 34, however, Zarrow and Sparks do not explicitly teach a packet switched and cell network communication link. However, it is

Art Unit: 2187

evident that issues such as applications, cost and other factors would dictate the use of one type of communication link versus another. It is really an issue of design choice. Black teaches in Computer Networks: Protocols, Standards and Interfaces, pages 159 -161, that organizations with low to medium traffic volumes could benefit from a packet switch network because most of the carriers charge on the volume of traffic. Thus it would have been obvious to one of ordinary skill in the art to use the teachings of Zarrow and Sparks in a packet switch and cell network for a system with low to medium traffic volumes for the desirable purpose of efficiency and cost.

11. Claims 56-58 are rejected under 35 U.S.C. 103(a) as being unpatentable over Zarrow (USPN: 5,991,813) in view of Staheli (USPN: 5,537,533) and Yanai (USPN: 5,544,537). Zarrow discloses a computer system comprising a CPU (inherent to a computer; Figure 1, Reference 10); a first storage system that is coupled to the CPU to store information written from the CPU (Figure 1, Reference 16); a second storage system (Figure 1, Reference 18); at least one communication link coupling the second storage system to the CPU (Figure 1, Reference 14; C 2, L 1-3); and a mirror controller responsive to the information being written from the CPU to the first storage system to mirror at least some of the information written from the CPU to the first storage system in the second storage system by transferring the at least some of the information over the at least one communication link (C 4, L 41-67; C 5, L 1-35). Zarrow discloses the at least one communication link consisting of the Internet (Figure 1, Reference 14). Zarrow does not explicitly disclose the communication link consisting of the Intranet, however, Zarrow teaches mirroring data over a WAN for improved reliability. The Intranet is a smaller and secured network system compared to the WAN. However, it is well known in the art,

particularly in networks used at a company, for devices (computers, storages, etc) to communicate over an Intranet. One of ordinary skill in the art would have recognized the benefits of Zarrow teachings and would have been motivated to use Zarrow's teachings in a system with devices communicating over an Intranet for the desirable purpose of improved reliability. Additionally, Zarrow does not disclose the communication link extending between the first and second storage systems such that the second system is coupled to the CPU via the first storage system. However, Yanai does teach this feature (Figure 1, Reference 40; C 4, L 50-56). Yanai teaches that this feature allows data mirroring from a primary data storage system to a secondary storage system without the intervention of the host which improves the performance of the system (C 2, L 25-33). Yanai also teaches that host (server) intervention seriously degrades the performance of the data transfer link between the host computer and the primary storage device. One of ordinary skill in the art would have also recognized that this feature allows the host to perform other task while the storage controller performs the mirroring operation, thereby improving the performance of the system. Therefore, one of ordinary skill in the art would have been motivated to add the teachings of Yanai to the teachings of Zarrow for the desirable purpose of improved performance.

12. Claim 59-60 are rejected under 35 U.S.C. 103(a) as being unpatentable over Zarrow (USPN: 5,991,813) in view of Black (Computer Networks: Protocols, Standards and Interfaces, 2nd Edition, 1993) and the admitted prior art Yanai (USPN: 5,544,537). Zarrow discloses a computer system comprising a CPU (inherent to a computer; Figure 1, Reference 10); a first storage system that is coupled to the CPU to store information written from

Art Unit: 2187

the CPU (Figure 1, Reference 16); a second storage system (Figure 1, Reference 18); at least one communication link coupling the second storage system to the CPU (Figure 1, Reference 14; C 2, L 1-3); and a mirror controller responsive to the information being written from the CPU to the first storage system to mirror at least some of the information written from the CPU to the first storage system in the second storage system by transferring the at least some of the information over the at least one communication link (C 4, L 41-67; C 5, L 1-35). Zarrow does not explicitly disclose the at least one communication link being one of a packet switched and cell switch network. However, it is evident that issues such as applications, cost and other factors would dictate the use of one type of communication link versus another. It is really an issue of design choice. Black teaches in Computer Networks: Protocols, Standards and Interfaces, pages 159 -161, that organizations with low to medium traffic volumes could benefit from a packet switch network because most of the carriers charge on the volume of traffic. Thus it would have been obvious to one of ordinary skill in the art to use the teachings of Zarrow in a packet switch and cell network for a system with low to medium traffic volumes for the desirable purpose of efficiency and cost. Zarrow nor Black explicitly discloses the communication link extending between the first and second storage systems such that the second system is coupled to the CPU via the first storage system. However, Yanai does teach this feature (Figure 1, Reference 40; C 4, L 50-56). Yanai teaches that this feature allows data mirroring from a primary data storage system to a secondary storage system without the intervention of the host which improves the performance of the system (C 2, L 25-33). Yanai also teaches that host (server) intervention seriously degrades the performance of the data transfer link between the host computer and the primary storage device. One of ordinary skill in the art would have also

recognized that this feature allows the host to perform other task while the storage controller performs the mirroring operation, thereby improving the performance of the system. Therefore, one of ordinary skill in the art would have been motivated to add the teachings of Yanai to the teachings of Zarrow and Black for the desirable purpose of improved performance.

13. Claims 62-63 and 65-67 are rejected under 35 U.S.C. 103(a) as being unpatentable over Zarrow (USPN: 5,991,813) in view of the admitted prior art Yanai (USPN: 5,544,537) and Vishlitzky (USPN: 5,960,216).

Regarding claims 62-63 and 65-67, Zarrow discloses a computer system comprising a CPU (Figure 1, Reference 10); a first storage system that is coupled to the CPU to store information written from the CPU (Figure 1, Reference 16); a second storage system (Figure 1, Reference 18); at least one communication link coupling the second storage system to the CPU, the at least one communication link including a network cloud (WAN) that is shared with at least one other resource so that no portion of the network cloud is dedicated exclusively to transferring information between the CPU and the second storage system (Figure 1, Reference 14; C 2, L 1-3); and a mirror controller responsive to the information being written from the CPU to the first storage system to mirror at least some of the information written from the CPU to the first storage system in the second storage system by transferring the at least some of the information through the network cloud (C 4, L 41-67; C 5, L 1-35). Zarrow does not explicitly disclose the communication link extending between the first and second storage systems such that the second system is coupled to the CPU via the first storage system. However, Yanai does teach this feature (Figure 1, Reference 40; C 4, L 50-56). Yanai teaches that this feature allows data

Art Unit: 2187

mirroring from a primary data storage system to a secondary storage system without the intervention of the host which improves the performance of the system (C 2, L 25-33). Yanai also teaches that host (server) intervention seriously degrades the performance of the data transfer link between the host computer and the primary storage device. One of ordinary skill in the art would have also recognized that this feature allows the host to perform other task while the storage controller performs the mirroring operation, thereby improving the performance of the system. Therefore, one of ordinary skill in the art would have been motivated to add the teachings of Yanai to the teachings of Zarrow for the desirable purpose of improved performance. Zarrow nor Yanai explicitly disclose a communication link comprising a plurality of communication paths for parallel transfer of packets. Vishlitzky discloses using a plurality of communication paths for parallel transfer of packets (Figure 3a, Reference 21a-21b; C 4, L 62-67; C 6, L 27-47). It is also known in the art to transfer data on parallel paths for increased throughput (such as Packet switch networks). Vishlitzky teaches that this feature enhances reliability by providing more than one path(channel) in case of a failure in one of the channels and this feature increases bandwidth by transferring data on all the channels compared to just a single channel. Thus, it would have been obvious to one of ordinary skill in the art to use a communication link comprising a plurality of communication paths to the system taught by Zarrow and Yanai for increased throughput, reliability and improved system performance.

Conclusion

14. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Kimberly N. McLean-Mayo whose telephone number is 703-308-9592. The examiner can normally be reached on M (10:00 - 6:30); Tues, Thr (10:00 - 4:00).

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Donald Sparks can be reached on 703-308-1756. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

KIMBERLY MCLEAN-MAYO
PRIMARY EXAMINER

Kimberly N. McLean-Mayo
Examiner
Art Unit 2187

KNM

October 4, 2004.

DONALD SPARKS
SUPERVISORY PATENT EXAMINER