

A legritkább bogarak

Pak Blangkon háza körül N bogár futkározik. A bogarakat 0-tól N-1-ig sorszámozzuk. Minden bogárnak van típusa, ami egy legalább 0 és legfeljebb 10^9 értékű egész szám. Több bogárnak is lehet ugyanaz a típusa.

A bogarak típusuk alapján csoportokba sorolhatók. Annak a csoportnak az elemszámát, amelyben a legtöbb bogár van, a **leggyakoribb** bogártípus elemszámának nevezzük. Hasonlóképpen, annak a csoportnak az elemszámát, amelyben a legkevesebb bogár van, a **legritkább** bogártípus elemszámának nevezzük.

Például, tegyük fel, hogy 11 bogarunk van, amelyek típusai rendre [5,7,9,11,11,5,0,11,9,100,9]. Ebben az esetben a **leggyakoribb** bogártípus elemszáma 3. A 9-es és a 11-es típusú bogárból is 3 van. A **legritkább** bogártípus elemszáma 1. Ez a 7-es, 0-ás és 100-as típusú csoport, mindegyik 1 bogarat tartalmaz.

Pak Blangkon egyetlen bogár típusát sem ismeri. Van viszont egy gépe, amellyel információt szerezhet a bogarak típusáról. Kezdetben a gép üres. A géppel az alábbi három művelet végezhető:

- 1. Egy adott bogár gépbe helyezése.
- 2. Egy adott bogár kivétele a gépből.
- 3. Kérdező gomb megnyomása a gépen.

Mindegyik művelet legfeljebb 40 000-szer alkalmazható.

A kérdező gomb megnyomásával a gép megadja a benne lévő bogarak közül a **leggyakoribb** bogártípus elemszámát.

A feladatod az összes bogárra vonatkozóan meghatározni a **legritkább** bogártípus elemszámát a gép segítségével. Néhány részfeladat esetén a pontszámod függ a három művelet végrehajtásainak maximális számától (lásd a Részfeladatok fejezetet a további részletekért).

Megvalósítás

A következő függvényt kell elkészítened:

int min_cardinality(int N)

- *N*: a bogarak száma.
- A függvénynek az összes bogárra vonatkozó legritkább bogártípus elemszámát kell visszaadnia.
- A függvényt pontosan egyszer hívják meg.

A fenti függvény a következő három függvényt hívhatja meg a három művelet végrehajtására:

```
void move_inside(int i)
```

- i: a gépbe helyezi az i. sorszámú bogarat. Az i értéke legalább 0 és legfeljebb N-1 lehet.
- Ha az i. bogár már a művelet előtt a gépben van, akkor a művelet hatástalan, de beleszámít az elvégzett műveletekbe.
- Ez a függvény legfeljebb 40 000-szer hívható.

```
void move_outside(int i)
```

- i: kiveszi a gépből az i. sorszámú bogarat. Az i értéke legalább 0 és legfeljebb N-1 lehet.
- Ha az i. bogár a művelet előtt nincs a gépben, akkor a művelet hatástalan, de beleszámít az elvégzett műveletekbe.
- Ez a függvény legfeljebb 40 000-szer hívható.

```
int press_button()
```

- Ez a függvény megadja a gépben lévő bogarak közül a **leggyakoribb** bogártípus elemszámát.
- Ez a függvény legfeljebb 40 000-szer hívható.
- ullet Az értékelő **nem adaptív**. Vagyis mind az N bogár típusa rögzítve van a min_cardinality hívása előtt.

Példa

Tekintsük azt az esetet, amikor 6 bogár van, amelyek típusai rendre [5,8,9,5,9,9]. A min_cardinality függvényt a következőképpen hívjuk meg:

```
min_cardinality(6)
```

A függvény a move_inside, move_outside és press_button függvényeket az alábbi sorrendben hívja:

Hívás	Visszatérési érték	A gépben lévő bogarak	A gépben lévő bogárak típusai
		{}	
<pre>move_inside(0)</pre>		{0}	[5]
<pre>press_button()</pre>	1	{0}	[5]
<pre>move_inside(1)</pre>		$\{0,1\}$	[5,8]
<pre>press_button()</pre>	1	$\{0,1\}$	[5,8]
move_inside(3)		$\{0, 1, 3\}$	[5, 8, 5]
<pre>press_button()</pre>	2	$\{0, 1, 3\}$	[5, 8, 5]
move_inside(2)		$\{0,1,2,3\}$	[5, 8, 9, 5]
move_inside(4)		$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]
move_inside(5)		$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
press_button()	3	$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
move_inside(5)		$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
press_button()	3	$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
move_outside(5)		$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]
press_button()	2	$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]

Ekkor már elegendő információ áll rendelkezésre, hogy kikövetkeztessük, hogy a legritkább bogártípus elemszáma 1. Ekképpen a min_cardinality függvény 1-gyel tér vissza.

Ebben a példában a move_inside 7-szer, a move_outside 1-szer, a press_button pedig 6-szor lett hívva.

Korlátok

• $2 \le N \le 2000$

Részfeladatok

- 1. (10 pont) $N \leq 200$
- 2. (15 pont) $N \leq 1000$
- 3. (75 pont) Nincsenek további megkötések.

Ha bármelyik teszt esetén a move_inside, move_outside vagy press_button függvények valamelyike nem teljesíti a Megvalósítás fejezetben kirótt feltételeket, vagy a min_cardinality

függvény visszatérése értéke helytelen, akkor arra a részfeladatra 0 pontot kapsz.

Legyen q a move_inside hívások, a move_outside hívások és a press_button hívások számának ${\bf maximuma}$.

A 3. részfeladat esetén részpontszámot kaphatsz. Legyen m a tesztesetenkénti $\frac{q}{N}$ értékek maximuma. A részfeladatra kapott pontszámodat az alábbi táblázat szerint számítják:

Feltétel	Pontszám		
20 < m	0 (A CMS-ben "Output isn't correct" üzenetként szerepel)		
$6 < m \leq 20$	$rac{225}{m-2}$		
$3 < m \le 6$	$81-rac{2}{3}m^2$		
$m \leq 3$	75		

Mintaértékelő

Legyen T egy N elemű, egész számokból álló tömb, ahol T[i] az i. bogár típusa.

A mintaértékelő a standard bemenetről a következő formában olvas be:

- 1. sor: *N*
- 2. sor: T[0] T[1] ... T[N-1]

Ha a mintaértékelő protokollhibát érzékel, akkor a mintaértékelő kimenetén a Protocol Violation: <MSG> üzenet jelenik meg, ahol <MSG> a következők egyike lehet:

- \bullet invalid parameter: i<0 vagy i>N-1 a move_inside vagy move_outside függvények hívásakor.
- too many calls: a move_inside, move_outside vagy press_button **bármelyikét** 40 000-nél többször hívták meg.

Egyébként a mintaértékelő kimenete a következő formátumú:

- 1. sor: min_cardinality függvény visszatérési értéke
- 2. sor: *q*