

Serial No.: 10/728,705

Docket No.: ECC - 5774

Amendment dated October 20, 2006

Responsive to Office Action of July 20, 2006

RECEIVED
CENTRAL FAX CENTER

OCT 20 2006

I. CLAIM LISTING

The following listing of claims replaces the pending claims.

1. (Original): A method for determining a parameter proportional to the cardiac stroke volume of a subject comprising:

sensing an input signal that is proportional to arterial blood pressure;
calculating the standard deviation of the input signal over a measurement interval; and

calculating an estimate of the cardiac stroke volume as a function of the standard deviation of the input signal.

2. (Original): A method as in claim 1, further comprising:

measuring the heart rate of the subject; and
estimating current cardiac output of the subject by calculating the product of the heart rate and the standard deviation and scaling the product by a calibration constant.

3. (Original): A method as in claim 2, further comprising:

measuring a calibration cardiac output value; and
calculating the calibration constant as the quotient between a calibration cardiac output estimate and the product of the heart rate and the standard deviation.

4. (Original): A method as in claim 1, further comprising sensing the input signal non-invasively.

5. (Original): A method as in claim 1, in which the measurement interval extends over more than one cardiac cycle.

6. (Original): A method as in claim 5, in which the measurement interval is a plurality of cardiac cycles.

Serial No.: 10/728,705

Docket No.: ECG - 5774

Amendment dated October 20, 2006

Responsive to Office Action of July 20, 2006

7. (Original): A method as in claim 5, further comprising:
calculating a component standard deviation value of the input signal for
each of a plurality of measurement intervals;
computing a composite standard deviation value as an average of the
component standard deviation values; and
using the composite standard deviation value in calculating the estimate of
the cardiac stroke volume.

8. (Original): A method as in claim 5, further comprising:
for each of a plurality of cardiac cycles, calculating a mean pressure value;
and adjusting the measurement interval as a function of change in the mean pressure value.

9. (Original): A method as in claim 5, further comprising high-pass filtering the input
signal before the step of calculating the standard deviation.

10.(Original): A method as in claim 1, in which the input signal is a measurement of the
arterial blood pressure.

11. (Original): A method as in claim 10, further comprising:
determining a maximum value and a minimum value of the arterial blood
pressure; and
calculating the standard deviation as a function of the difference between
the maximum and minimum values.

12. (Original): A method as in claim 1, in which the step of calculating the estimate of the
cardiac stroke volume as a function of the standard deviation of the input signal comprises
calculating the product of the standard deviation and a calibration factor

13.(Original): A method for determining cardiac stroke volume of a subject comprising:
sensing arterial blood pressure;

Serial No.: 10/728,705

Docket No.: ECC - 5774

Amendment dated October 20, 2006

Responsive to Office Action of July 20, 2006

converting the sensed arterial blood pressure to a pressure signal;
calculating the standard deviation of the pressure signal over a
measurement interval;

calculating an estimate of the stroke volume as a function of the standard
deviation of the pressure signal.

14. (Original): A method as in claim 13, further comprising:

measuring the heart rate of the subject; and

estimating current cardiac output of the subject by calculating the product of the
heart rate and the standard deviation and scaling the product by a calibration constant.

15. (Original): A method as in claim 14, further comprising:

measuring a calibration cardiac output value; and

calculating the calibration constant as the quotient between a calibration
cardiac output estimate and the product of the heart rate and the standard deviation.

16. (Orginal): A method for estimating cardiac output of a subject comprising:

sensing arterial blood pressure;

converting the sensed arterial blood pressure to a pressure signal;

calculating the standard deviation of the pressure signal over a
measurement interval;

calculating an estimate of stroke volume as a function of the standard
deviation of the pressure signal;

measuring the heart rate of the subject; and

estimating current cardiac output of the subject by calculating the product
of the heart rate and the standard deviation and scaling the product by a calibration constant.

17. (Original): A system for determining a parameter proportional to the cardiac stroke
volume of a subject comprising:

Serial No.: 10/728,705

Docket No.: ECC - 5774

Amendment dated October 20, 2006

Responsive to Office Action of July 20, 2006

a sensor located in or on the body of the subject and generating a sensor signal that is proportional to arterial blood pressure;

conversion circuitry that receives the sensor signal and converts it to an input signal;

a processing system that receives the input signal and that includes processing modules for calculating the standard deviation of the input signal over a measurement interval and for calculating an estimate of the cardiac stroke volume as a function of the standard deviation of the input signal; and

a display for presenting the estimate of the cardiac stroke volume to a user.

18. (Original): A system as in claim 17, further comprising a heart rate monitor measuring the heart rate of the subject;

the processing system estimating current cardiac output of the subject by calculating the product of the heart rate and the standard deviation and scaling the product by a calibration constant.

19. (Original): A system as in claim 17, further comprising a high pass filter connected between the sensor and the processing system.

20. (Original): A system as in claim 17, in which the sensor is a direct blood pressure sensor.

21. (Original): A system for determining a parameter proportional to the cardiac stroke volume of a subject comprising:

a sensor located in or on the body of the subject and generating a sensor signal that is proportional to arterial blood pressure;

conversion circuitry that receives the sensor signal and converts it to an input signal;

Serial No.: 10/728,705

Docket No.: ECC - 5774

Amendment dated October 20, 2006

Responsive to Office Action of July 20, 2006

a processing system including computer-executable code for calculating the standard deviation of the input signal over a measurement interval; and for calculating an estimate of the cardiac stroke volume as a function of the standard deviation of the input signal; and

a display for presenting the estimate of the cardiac stroke volume to a user.

22. (Original): A system as in claim 21, further comprising a heart rate monitor measuring the heart rate of the subject, the processing system further including computer-executable code for estimating current cardiac output of the subject by calculating the product of the heart rate and the standard deviation and scaling the product by a calibration constant.

23. (Original): A system as in claim 22, further comprising a calibration system measuring a calibration cardiac output value, the processing system further including computer-executable code for calculating the calibration constant as the quotient between a calibration cardiac output estimate and the product of the heart rate and the standard deviation.

24. (Original): A system as in claim 1, in which the sensor is non-invasive.

25. (Cancelled)