Name	Umar Hayyat
Roll No	2019-EE-360

Complex Engineering Problem(CEP) Session 2019 Fall 2021 Power Distribution System

Circuit:

Simulation:

Results:

MEASUREMENTS:

```
1: 'I Ia ' = 33.33 A
2: 'I Current in Branch FB' = -111.67 A
3: 'I Current in Branch EF' = -71.67 A
4: 'I Current in Branch DE' = -41.67 A
5: 'I Current in Branch CD' = 8.33 A
6: 'I Current in Load E ' = 30.00 A
7: 'I Current in Load C ' = 25.00 A
8: 'I Current in Load D ' = 50.00 A
9: 'I Current In Load F ' = 40.00 A
```

Calculation:

Resistance of 2 wires of 1k m length = $2 * 0.3 = 0.6 \Omega$ Resistance of branch AC = $0.6 \left(\frac{50}{1000}\right) = 0.03 \Omega$

Resistance of branch CD = 0.6 $\left(\frac{25}{1000}\right)$ = 0.015 Ω

Resistance of branch DE = $0.6 \left(\frac{25}{1000} \right) = 0.015 \Omega$

Resistance of branch EF = $0.6 \left(\frac{50}{1000} \right) = 0.03 \Omega$

Resistance of branch FB = $0.6 \left(\frac{50}{1000} \right) = 0.03 \Omega$

Voltage drops using Exact Method

$$V_B = V_A - (I_{A^*}R_{AC} + (I_A - 25)^* R_{CD} + (I_A - 75)^* R_{DE} + (I_A - 105)^* R_{EF} + (I_A - 145)^* R_{FB})$$

Put values of V_A , V_B , R_{AC} , R_{CD} , R_{DE} , R_{EF} and R_{FB} in Equ $235 = 230 - (0.03 \; I_A + 0.015 \; (I_A - 25) + 0.015 \; (I_A - 75) + 0.03 \; (I_A - 105)$

$$+0.03 (I_A - 145)$$

$$235 = 230 - (0.12 I_A - 9)$$

$$I_{A} = \frac{239 - 235}{0.12} = 33.34$$

$$I_A = 33.34 \text{ A}$$

$$I_{AC} = I_A = 33.34 A$$

$$I_{CD} = I_A - 25 = 33.34 - 25 = 8.34 A$$

$$I_{DE} = I_A - 75 = 33 \cdot 34 - 75 = -41.66 A$$

$$I_{EF} = I_A - 105 = 33.34 - 105 = -71.66 A$$

$$I_{FB} = I_A - 145 = 33.34 - 145 = -111.66 A$$

Voltage at point $C = V_C = V_A - I_A R_{AC} = 230 - (33.34 * 0.03) = 228.998$

Voltage at point D = $V_D = V_A - (I_{AC} R_{AC} + I_{CD} R_{CD})$

$$V_D = 230 - (33.34 * 0.03 + 8.34 * 0.015)$$

$$V_D = 230 - 1.125$$

$$V_D = 228.875$$

Voltage at point $E = V_E = V_B - (I_{BF} R_{FB} + I_{FE} R_{EF})$

$$V_E = 235 - (111.66 * 0.03 + 71.66 * 0.03)$$

$$V_E = 229.5$$

Voltage at point $F = V_F = V_B - I_{BF}R_{FB}$

$$V_F = 235 - (111.66 * 0.03)$$

$$V_F = 231.65$$

Voltage drop of
$$C = V_A - V_C = 230 - 228.998 = 1.002$$

Voltage drop of $D = V_A - V_D = 230 - 228.875 = 1.125$
Voltage drop of $E = V_B - V_E = 235 - 229.5 = 5.5$
Voltage drop of $E = V_B - V_F = 235 - 231.65 = 3.35$

Voltage drop by using approximate method

Voltage drop VD = IR

 $VD_C = 25*0.03$

 $VD_C = 0.75V$

 $VD_D = 50*(0.03 + 0.015)$

 $VD_D = 2.25V$

 $VD_E = 30*(0.03 + 0.03)$

 $VD_E = 1.8V$

 $VD_F = 40*0.03$

 $VD_F = 1.2V$

Total voltage drop b/w point A and B is:

 $\sum VD = VD_C + VD_D + VD_E + VD_F$

 $\overline{\Sigma}$ VD = 0.75 + 2.25 + 1.8 + 1.2

 Σ VD = 3.15V

Comparision:

Currents	Simulation result	Calculated result
Iac	33.33A	33.34A
Icd	8.33A	8.34A
I _{DE}	-41.67A	-41.66A
I _{EF}	-71.67A	-71.66A
I _{FB}	-111.67A	-111.66A

The result of simulation are same as I calculated. The values that I calculate by using exact method are same as simulated. So, simulation use exact method.