CHANNEL SELECTION FOR DISTANT AUTOMATIC SPEECH RECOGNITION

on the CHiME-5 dataset

Hannes Unterholzner, BSc

Supervisor:

Assoc.Prof. Dipl.-Ing. Dr. Franz Pernkopf

Graz, March 14th, 2019

- → Background: CHiME-5 challenge
- -**№** Baseline
- -**¼** Oracle
- -**¼** Features
- ← Channel Selection Results
- ← Conclusion and Future Work

Challenge:

- ► **Topic**: Distant multi-microphone conversational speech recognition in everyday home environments
- ► Baseline: GMM-HMM, DNN-HMM, Fnd-to-Fnd

Baseline	Dev (Kinect)	Dev (Binaural)
GMM-HMM	91.0	71.9
DNN-HMM	82.5	48.9
E2E	94.7	67.2

► Floor plan: Conventional and open-space apartments (e.g. session S09)

- \triangleright 20 sessions duration of \sim 2h,
- ► Characteristics: noise, far-field
- ► Simultaneous speech (dev):

LIVING

DINING Joit 1 KITCHEN 116

→ CHiME-5 Challenge and Dataset

Challenge:

- ► **Topic**: Distant multi-microphone conversational speech recognition in everyday home environments
- ► Baseline: GMM-HMM, DNN-HMM, End-to-End

Baseline	Dev (Kinect)	Dev (Binaural)
GMM-HMM	91.0	71.9
DNN-HMM	82.5	48.9
E2E	94.7	67.2

► Floor plan: Conventional and open-space apartments (e.g. session S09)

Dataset:

- 20 sessions duration of ~ 2h, 4 participants, three rooms (kitchen, dining, living),
 - 6 Kinect arrays, 4 binaural mic's $\rightarrow (6 \times 4) + (4 \times 2) = 32$ ch.

- Characteristics: noise, far-field recordings, simultaneous and spontaneous speech, deviations within/among session/s
- ► Simultaneous speech (dev):

LIVING

DINING Uni

→ DNN-HMM Baseline System

Three stages:

- ► Array synchronisation (correct clock drifts)
- Speech enhancement (beamforming)
- ► ASR system
 - several AM retraining stages
 - ► data, feature and model transformations

DNN-HMM BL: WER = 82.5%

WER [%] performance of the dev-set among channels (variance, gain):

- ▶ Ref. Kinect channels U_ref (4): min = 82.36%, $max = 82.72\% \rightarrow 0.36\%/0.26\%$
- ▶ Beamformed Kinects U+Bflt (5): min = 82.61%, $max = 85.32\% \rightarrow 2.74\%/-0.09\%$
- ► Kinects channels U (20): min = 83.39%, $max = 85.68\% \rightarrow 2.29\%/-0.87\%$

On utterance-level → Oracle WER [%] results

Performance gain: 18.9%

20 single ch. (WER/ranks):

WER [%] performance of the dev-set among channels (variance, gain):

- ► Ref. Kinect channels U_ref (4): min = 82.36%, $max = 82.72\% \rightarrow 0.36\%/0.26\%$
- ▶ Beamformed Kinects U+Bflt (5): min = 82.61%, $max = 85.32\% \rightarrow \frac{2.74\%}{-0.09\%}$
- ► Kinects channels U (20): min = 83.39%, $max = 85.68\% \rightarrow 2.29\%/-0.87\%$

On utterance-level \rightarrow Oracle WER [%] results:

Channels	S02	Dev S09	Overall
Baseline: U_ref + Bflt (1)	83.4	81.1	82.5
U_ref (4)	76.1	72.8	74.8
U + Bflt (5)	70.8	68.2	69.3
U (20)	66.3	63.3	65.1
U + Bflt, U (25)	65.5	62.3	64.3
U_ref , $U + Bflt$, U (29)	64.6	62.2	63.6

Performance gain: 18.9%

20 single ch. (WER/ranks):

Channel selection:

- ► Method: Deep Neural Network to classify "oracle channels"
- ightharpoonup Labels: Oracle results ightharpoonup multi-label, multi-class problem
- ► Features: Signal-based and/or decoder-based features correlating with oracle results

Signal-based features:

► Signal energy:

$$x_m^u[n] = \frac{1}{N_e - N_s + 1} \sum_{n=1}^{N_e} |s_m^u[n]|^2$$

► Peak of GCC-PHAT:

$$\hat{R}_{i,ref}(d) = \mathcal{F}^{-1}\left(\frac{X_i(f)X_{ref}^*(f)}{|X_i(f)X_{ref}^*(f)|}\right)$$

► Envelope variance:

$$C^* = \underset{m}{\operatorname{argmax}} \sum_{k} w_m[k] \frac{V_m[k]}{\underset{m}{\operatorname{max}}(V_m[k])}$$

► Mel-filterbank

Decoder-based features:

Average posterior entropy:

$$H_t^m = -\sum_{S} \boldsymbol{p}_t^m \cdot \log_2\left(\boldsymbol{p}_t^m\right)$$

$$H_{avg}^m = \frac{1}{T} \sum_{t=0}^T H_t^m$$

► Average posterior moments: mean, variance, skewness, kurtosis

Channel selection:

- ► Method: Deep Neural Network to classify "oracle channels"
- lacktriangle Labels: Oracle results ightarrow multi-label, multi-class problem
- ► Features: Signal-based and/or decoder-based features correlating with oracle results

Signal-based features:

► Signal energy:

$$x_m^u[n] = \frac{1}{N_e - N_s + 1} \sum_{n=1}^{N_e} |s_m^u[n]|^2$$

► Peak of GCC-PHAT:

$$\hat{R}_{i,ref}(d) = \mathcal{F}^{-1}\left(\frac{X_i(f)X_{ref}^*(f)}{|X_i(f)X_{ref}^*(f)|}\right)$$

► Envelope variance:

$$C^* = \underset{m}{\operatorname{argmax}} \sum_{k} w_m[k] \frac{V_m[k]}{\underset{m}{\operatorname{max}}(V_m[k])}$$

► Mel-filterbank

Decoder-based features:

► Average posterior entropy:

$$H_t^m = -\sum_{s} oldsymbol{p}_t^m \cdot log_2(oldsymbol{p}_t^m)$$

$$H_{avg}^m = \frac{1}{T} \sum_{t=0}^T H_t^m$$

► Average posterior moments: mean, variance, skewness, kurtosis

Channel Selection – Results

Feature direct classification:

Channels	Feature	S02	Dev S09	Overall
U+Bflt (5)	Energy	81.2	81.6	81.3
	GCC-PHAT	81.1	81.7	81.4
U (20)	Energy	82.2	82.0	82.1
	Avg. Entropy	81.1	81.8	81.4

DNN classification

Channel Selection – Results

Feature direct classification:

- Cl I	F /	Dev		
Channels	Feature	S02	S09	Overall
U+Bflt (5)	Energy	81.2	81.6	81.3
	GCC-PHAT	81.1	81.7	81.4
U (20)	Energy	82.2	82.0	82.1
	Avg. Entropy	81.1	81.8	81.4

DNN classification:

Channels	Feature	S02	Dev S09	Overall
∪ (20)	Energy	82.2	82.7	82.8
	EV	83.7	82.6	82.7
	Fbank	83.8	83.5	83.7
	Avg. Entropy	81.7	82.8	82.1
	Avg. Moments	82.8	81.3	82.3
	Stacked	82.3	82.3	82.3
U+Bflt (5)	Avg. Entropy	80.8	80.1	80.5
	Avg. Moments	81.1	80.7	81.0

Hypothesis fusion:

- ► ROVER combination of the {3, 5, 10, 20}-best hypothesis as determined from the DNN-classifier
- ► Combination for all features
- ► Upper baseline: combine hypothesis from oracle ranking
- ► Lower baseline: random combination of N hypothesis

# Channels	3	5	10	20
Energy	82.00	81.08	79.96	79.65
EV	80.02	79.21	79.08	79.54
Avg. Entropy	79.36	78.25	78.10	79.40
Avg. Moments	79.73	78.53	78.17	79.51
Stacked	79.99	78.89	78.63	79.49
Fbank	81.71	80.41	79.56	79.52
Oracle Random	67.67 81.92	68.81 80.90	72.46 79.88	78.82 79.67

Summary:

utterance-level based channel selection.

▶ The oracle results show a high possible theoretical performance gain from a on

► Channel selection does not deliver notable improvements in WER → Informative value of the extracted features, difficulty of the dataset, bad network generalisation.

Ideas:

- ► Investigation on a curated dataset to trace back the problem to the channel selection stage rather conflicting with a difficult dataset.
- ► Application of other/more informative features, having a stronger correlation with the oracle labels.

-₩-Thank you!