Funções hiperbólicas

A função seno hiperbólico é definida por

$$senh x = \frac{e^x - e^{-x}}{2}$$

O domínio e a imagem da função seno hiperbólico é o conjunto de todos os números reais.

A função cosseno hiperbólico é definida por

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

O domínio da função cosseno hiperbólico é o conjunto de todos os números reais e a imagem é o intervalo $[1, +\infty)$.

Proposição:

$$senh(-x) = -senh x e cosh(-x) = cosh x e$$

Demonstração:

$$senh(-x) = \frac{e^{-x} - e^{-(-x)}}{2} = \frac{e^{-x} - e^{x}}{2} = -\frac{e^{x} - e^{-x}}{2} =$$

- senh x.

$$cosh(-x) = \frac{e^{-x} + e^{-(-x)}}{2} = \frac{e^{-x} + e^{x}}{2} = cosh x$$

Assim, seno hiperbólico é uma função ímpar e o cosseno hiperbólico é uma função par.

Observe que
$$\frac{e^x + e^{-x}}{2} > 0$$
 , isto é, $\cosh x > 0$

Por outro lado temos

i)
$$e^x - e^{-x} = 0 \Leftrightarrow e^x = e^{-x} \Leftrightarrow e^{2x} = 1 \Leftrightarrow 2x = 0 \Leftrightarrow x = 0.$$

ii)
$$e^x - e^{-x} > 0 \Leftrightarrow e^x > e^{-x} \Leftrightarrow e^{2x} > 1 \Leftrightarrow 2x > 0 \Leftrightarrow x > 0$$
.

iii)
$$e^x - e^{-x} < 0 \Leftrightarrow e^x < e^{-x} \Leftrightarrow e^{2x} < 1 \Leftrightarrow 2x < 0 \Leftrightarrow x < 0$$

Observe os gráficos abaixo:

Como
$$senh x = \frac{e^x - e^{-x}}{2}$$
, temos

$$Senh x = 0 \Leftrightarrow x = 0$$

Senh
$$x > 0 \Leftrightarrow x > 0$$

Senh
$$x < 0 \Leftrightarrow x < 0$$

Portanto, o sinal da função seno hiperbólico é

Derivadas:

$$D_{x}(senh x) = D_{x}\left(\frac{e^{x}-e^{-x}}{2}\right) = \frac{e^{x}+e^{-x}}{2} = cosh x$$

$$D_{x}(\cosh x) = D_{x}\left(\frac{e^{x} + e^{-x}}{2}\right) = \frac{e^{x} - e^{-x}}{2} = \operatorname{senh} x$$

Teorema:

Se u é uma função de x, que é derivável, então

$$D_x(senh u) = cosh u D_x u$$

$$D_{x}(\cosh u) = \operatorname{senh} u D_{x}u$$

Como $D_x(senh x) = cosh x > 0$, a função seno hiperbólico é crescente.

A derivada segunda do seno hiperbólico é $D_x cosh x = senh x$. Observando sinal de senh x, vemos que o gráfico da função seno hiperbólico é côncavo para baixo se x < 0 e é côncavo para cima se x > 0.

Portanto o gráfico da função seno hiperbólico é

Como $D_x(\cosh x) = \operatorname{senh} x$, a função cosseno hiperbólico é decrescente no intervalo $(-\infty,0]$ e é crescente no intervalo $[0,+\infty)$. Portanto a função cosseno hiperbólico assume um valor mínimo quando x=0. Como $\cosh 0 = \frac{e^0 + e^{-0}}{2} = 1$, temos $\cosh \geq 1$ para todo $x \in R$.

A derivada segunda do cosseno hiperbólico é $D_x senh x = cosh x > 0$. Portanto o gráfico da função cosseno hiperbólico é sempre côncavo para cima.

Portanto o gráfico da função cosseno hiperbólico é

As funções tangente hiperbólica, cotangente hiperbólica, secante hiperbólica e cossecante hiperbólica são definidas por:

$$tgh x = \frac{senh x}{\cosh x}$$

$$\cot gh \ x = \frac{\cosh x}{\sinh x}$$

$$sech x = \frac{1}{\cosh x}$$

$$cossech x = \frac{1}{\operatorname{senh} x}$$

Em termos das exponenciais, estas funções podem ser escritas da seguinte forma:

$$tgh \ x = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

$$cotgh x = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

$$sech x = \frac{2}{e^{x} + e^{-x}}$$

$$cossech x = \frac{2}{e^{x} - e^{-x}}$$

Observe que o domínio da função tangente hiperbólica e da função secante hiperbólica é o conjunto de todos os números reais enquanto que o domínio da função cotangente hiperbólica e da cossecante hiperbólica é o conjunto dos números reais não nulos.

Como $1 \le \cosh x$, $0 < \operatorname{sech} x \le 1$

Teorema

i)
$$tgh x = \frac{1}{cotg x}$$

ii)
$$cosh^2 x - senh^2 x = 1$$

iii)
$$sech^2x = 1 - tgh^2x$$

iv)
$$cossech^2x = cotgh^2x - 1$$

Demonstração:

i)
$$tgh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1}{\frac{e^x + e^{-x}}{e^x - e^{-x}}} = \frac{1}{\cot gh x}$$

ii)
$$\cosh^2 x - \sinh^2 x = \left(\frac{e^x + e^{-x}}{2}\right)^2 - \left(\frac{e^x - e^{-x}}{2}\right)^2 = \frac{e^{2x} + 2 + e^{-2x}}{4} - \frac{e^{2x} - 2 + e^{-2x}}{4} = \frac{4}{4} = 1$$

iii)
$$sech^2x + tgh^2x = \left(\frac{2}{e^x + e^{-x}}\right)^2 + \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)^2 = \frac{4}{e^{2x} + 2 + e^{-2x}} + \frac{e^{2x} - 2 + e^{-2x}}{e^{2x} + 2 + e^{-2x}} = \frac{e^{2x} + 2 + e^{-2x}}{e^{2x} + 2 + e^{-2x}} = 1$$
. Logo $sech^2x = 1 - tgh^2x$

$$\begin{array}{ll} \text{iv)} & cossech^2x - cotgh^2 \ x = \left(\frac{2}{e^x - e^{-x}}\right)^2 - \left(\frac{e^x + e^{-x}}{e^x - e^{-x}}\right)^2 = \\ & \frac{4}{e^{2x} - 2 + e^{-2x}} - \frac{e^{2x} + 2 + e^{-2x}}{e^{2x} - 2 + e^{-2x}} = \frac{-e^{2x} + 2 - e^{-2x}}{e^{2x} - 2 + e^{-2x}} = -\frac{e^{2x} - 2 + e^{-2x}}{e^{2x} - 2 + e^{-2x}} = -1. \\ & \text{Logo} \ cossech^2x = cotgh^2 \ x - 1 \end{array}$$

Como vimo, as funções hiperbólicas possuem propriedades análogas às funções trigonométricas. Elas possuem as mesmas relações com a hipérbole, que as funções trigonométricas têm com o círculo, por isso o nome de funções hiperbólicas.

A identidade $sen^2x + cos^2x = 1$, implica que o ponto (cos x, sen x) pertence ao círculo $x^2 + y^2 = 1$.

A identidade $cosh^2 x - senh^2 x = 1$, implica que o ponto (cosh x, senh x) pertence à hipérbole $x^2 - y^2 = 1$.

Teorema

- i) $D_x tgh x = sech^2 x$
- ii) $D_x \cot gh x = -\cosh^2 x$
- iii) $D_x sech x = -sech x tgh x$
- iv) $D_x cossech x = -cossech x cotgh x$

Demonstração de (i)

$$tgh \ x = \frac{sen \ x}{\cos} \Rightarrow D_x tgh \ x = D_x \frac{senh \ x}{\cosh} = \frac{\cosh^2 x - sen^2 x}{\cosh^2 x} = \frac{1}{\cosh^2 x} = \frac{1}{\cosh^2 x}$$

Demonstração de (iii)

$$sech x = \frac{1}{\cosh x} \Rightarrow D_x sech x = D_x \frac{1}{\cosh x} = \frac{-senh x}{\cosh^2 x} = -\frac{1}{\cosh x} \cdot \frac{senh x}{\cosh x} = -sech x tgh x$$

Como consequência da regra da cadeia, temos o seguinte Teorema:

Teorema:

Se u é uma função de x, derivável, então:

$$D_x tgh u = sech^2 u D_x u$$

$$D_x cotgh u = -cosech^2 u D_x u$$

$$D_x$$
 sech $u = -$ sech $u \, tgh \, u \, D_x u$

$$D_x cossech u = -cossech u cotgh u D_x u$$

Como

 $D_x tgh \ x = sech^2 x > 0$, o gráfico da função tangente hiperbólica é crescente.

Assim o gráfico da função tangente hiperbólica é côncavo para cima, se $x < 0\,$ e é côncavo para baixo, se $x > 0\,$.

Do sinal de
$$e^x - e^{-x}$$
, concluímos que $|e^x - e^{-x}| = \begin{cases} e^x - e^{-x}, se \ x \ge 0 \\ e^{-x} - e^x, se \ x < 0 \end{cases}$ e daí $\left| \frac{e^x - e^{-x}}{e^x + e^{-x}} \right| < 1$. Assim $-1 < tgh \ x < 1$

Portanto, o gráfico da tangente hiperbólica é o seguinte:

A partir do gráfico da função seno hiperbólica obtemos um esboço do Gráfico da função cossecante hiperbólica

A partir do gráfico da função cosseno hiperbólica obtemos um esboço do gráfico do função da secante hiperbólica

A partir do gráfico da função tangente hiperbólica obtemos um esboço do gráfico da função cotangente hiperbólica

Integrais resultantes das derivadas das funções hiperbólicas

$$1. \int \cosh x \, dx = \operatorname{senh} x + c$$

$$2. \int \operatorname{senh} x \, dx = \cosh x + c$$

$$3. \int \operatorname{sech}^2 x \, dx = tgh \, x + c$$

$$4. \int \cosh^2 x \, dx = -\cot gh \, x + c$$

$$5. \int \operatorname{sech} x \, tgh \, x \, dx = -\operatorname{sech} x + c$$

6.
$$\int \operatorname{cossech} x \operatorname{cot} gh x dx = -\operatorname{cossech} x + c$$