RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU) I Semester B. E. Examinations May-2023

(Common to Al & ML, BT, CS, CY, CD and JS) FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND STATISTICS

Time: 03 Hours Instructions to candidates:

Maximum Marks: 100

- Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.
- 3. Use of mathematics Handbook is permitted. Do not write anything on handbook.

PART-A

The reduced system of set of linear equations is $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$. Then the solution for the systems is 1.2 If two characteristic roots of a singular matrix A of order 3 are 4,5 then the third characteristic root is 1.3 The circle $x^2 + y^2 - 2ax = 0$ in polar form is The coefficient of $\left(x - \frac{\pi}{4}\right)$ in the Taylor's series expansion of $\sin x$ is 1.5 The curvature of the curve $y = e^x$ at the point where it crosses the y -axis is The matrices taken for the computation are $A = \begin{bmatrix} 2 & 2 \\ 3 & 0 \\ -4 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 6 \end{bmatrix}$, then the rank of the matrix $A - B$. 1.7 If the temperature of a thin wire of finite length is $u = e^{-c^2p^2t}[a\cos(px) + b\sin(px)]$, where a, b, p and c are constants, then $u_{xx} = \frac{a}{b}$.
Then the solution for the systems is If two characteristic roots of a singular matrix A of order 3 are 4,5 then the third characteristic root is The circle $x^2 + y^2 - 2ax = 0$ in polar form is The coefficient of $\left(x - \frac{\pi}{4}\right)$ in the Taylor's series expansion of $\sin x$ is The curvature of the curve $y = e^x$ at the point where it crosses the y-axis is The matrices taken for the computation are $A = \begin{bmatrix} 2 & 2 \\ 3 & 0 \\ -4 & 1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 6 \end{bmatrix}$, then the rank of the matrix $A - B$. If the temperature of a thin wire of finite length is $a = e^{-c^2p^2t}[a\cos(px) + b\sin(px)]$, where a, b, p and c are constants, then
then the third characteristic root is The circle $x^2 + y^2 - 2ax = 0$ in polar form is The coefficient of $\left(x - \frac{\pi}{4}\right)$ in the Taylor's series expansion of $\sin x$ is The curvature of the curve $y = e^x$ at the point where it crosses the y-axis is The matrices taken for the computation are $A = \begin{bmatrix} 2 & 2 \\ 3 & 0 \\ -4 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 6 \end{bmatrix}$, then the rank of the matrix $A - B$. 1.7 If the temperature of a thin wire of finite length is $u = e^{-c^2p^2t}[a\cos(px) + b\sin(px)]$, where a, b, p and c are constants, then
then the third characteristic root is The circle $x^2 + y^2 - 2ax = 0$ in polar form is The coefficient of $\left(x - \frac{\pi}{4}\right)$ in the Taylor's series expansion of $\sin x$ is The curvature of the curve $y = e^x$ at the point where it crosses the y-axis is The matrices taken for the computation are $A = \begin{bmatrix} 2 & 2 \\ 3 & 0 \\ -4 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 6 \end{bmatrix}$, then the rank of the matrix $A - B$. If the temperature of a thin wire of finite length is $u = e^{-c^2p^2t}[a\cos(px) + b\sin(px)]$, where a, b, p and c are constants, then
The coefficient of $\left(x - \frac{\pi}{4}\right)$ in the Taylor's series expansion of $\sin x$ is The curvature of the curve $y = e^x$ at the point where it crosses the y-axis is The matrices taken for the computation are $A = \begin{bmatrix} 2 & 2 \\ 3 & 0 \\ -4 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 6 \end{bmatrix}$, then the rank of the matrix $A - B$. If the temperature of a thin wire of finite length is $u = e^{-c^2p^2t}[a\cos(px) + b\sin(px)]$, where a, b, p and c are constants, then
The curvature of the curve $y = e^x$ at the point where it crosses the y-axis is The matrices taken for the computation are $A = \begin{bmatrix} 2 & 2 \\ 3 & 0 \\ -4 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 6 \end{bmatrix}$, then the rank of the matrix $A - B$. If the temperature of a thin wire of finite length is $u = e^{-c^2p^2t}[a\cos(px) + b\sin(px)]$, where a, b, p and c are constants, then
The curvature of the curve $y = e^x$ at the point where it crosses the y-axis is The matrices taken for the computation are $A = \begin{bmatrix} 2 & 2 \\ 3 & 0 \\ -4 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 6 \end{bmatrix}$, then the rank of the matrix $A - B$. If the temperature of a thin wire of finite length is $u = e^{-c^2p^2t}[a\cos(px) + b\sin(px)]$, where a, b, p and c are constants, then
The matrices taken for the computation are $A = \begin{bmatrix} 2 & 2 \\ 3 & 0 \\ -4 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 6 \end{bmatrix}$, then the rank of the matrix $A - B$. 1.7 If the temperature of a thin wire of finite length is $u = e^{-c^2p^2t}[a\cos(px) + b\sin(px)]$, where a, b, p and c are constants, then
The matrices taken for the computation are $A = \begin{bmatrix} 2 & 2 \\ 3 & 0 \\ -4 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 6 \end{bmatrix}$, then the rank of the matrix $A - B$. 1.7 If the temperature of a thin wire of finite length is $u = e^{-c^2p^2t}[a\cos(px) + b\sin(px)]$, where a, b, p and c are constants, then
$B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 6 \end{bmatrix}, \text{ then the rank of the matrix } A - B.$ 1.7 If the temperature of a thin wire of finite length is $u = e^{-c^2p^2t}[a\cos(px) + b\sin(px)], \text{ where } a, b, p \text{ and } c \text{ are constants, then}$
$B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 6 \end{bmatrix}, \text{ then the rank of the matrix } A - B.$ 1.7 If the temperature of a thin wire of finite length is $u = e^{-c^2p^2t}[a\cos(px) + b\sin(px)], \text{ where } a, b, p \text{ and } c \text{ are constants, then}$
If the temperature of a thin wire of finite length is $u = e^{-c^2p^2t}[a\cos(px) + b\sin(px)]$, where a, b, p and c are constants, then
If the temperature of a thin wire of finite length is $u = e^{-c^2p^2t}[a\cos(px) + b\sin(px)]$, where a, b, p and c are constants, then
If the temperature of a thin wire of finite length is $u = e^{-c^2p^2t}[a\cos(px) + b\sin(px)]$, where a, b, p and c are constants, then
$u = e^{-c^2p^2t}[a\cos(px) + b\sin(px)]$, where a, b, p and c are constants, then
1.8 For the implicit function $e^x - e^y = 2xy$, $\frac{dy}{dx}$ using partial differentiation
To the implicit function $e^{-e^{x}} = 2xy$, $\frac{1}{dx}$ using partial differentiation
$ \begin{array}{c c} & \text{is} \\ \hline 1.9 & \overline{} \\ \hline \end{array} $
Evaluate the integral $\int_0^2 \int_0^2 r^2 \sin\theta dr d\theta$.
Sketch the domain of integral $\int_{-\infty}^{1} \int_{-\infty}^{2-x} dy dy$
1.11 If the first three moments of a distribution about the value 2 of the variable are 3, 16 and -20, then mean and variance of the distribution
1.12 In a partially destroyed laboratory record of an analysis of a
correlation data, the following results were noted: variance of $r = 9$
equations of lines of regression of y on x is $4x - 5y + 33 = 0$ and x on
y is $20x - 9y = 107$. For the given data the value of correlation
coefficient is

			1
2	a	Show that the equations $-2x + y + z = l$	
		x-2y+z=m	
		x + y - 2z = n	
		have a solution only if $l + m + n = 0$. Find all possible solutions when	05
		l = 1, m = 1, n = -2. Apply Gauss-Seidel iterative method, to solve the system of	1.743
	b	Apply Gauss-Scidel iterative method, to solve	
		equations: $x + y + 54z = 110$	
		27x + 6y - z = 85	
		6x + 15y + 2z = 72	
		Carry out three iterations using initial solution as $(0,0,0)$.	. 05
	C	Find the dominant eigenvalue and the corresponding eigenvector of	
		the matrix $\begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & 4 \end{bmatrix}$ by Rayleigh power method taking the initial	
		the matrix 1 3 0 by Rayleigh power metrical same	
		vector as $[1\ 0\ 0]^T$. Perform four iterations.	06
3	2	Find the angle of intersection of the curves $r = a \cos \theta$ and $2r = a$.	08
S	a b	If ρ_1 and ρ_2 be the radii of curvature at the extremities of two	
		conjugate semi-diameters of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, prove that	
		$\left(\rho_1^{\frac{2}{3}} + \rho_2^{\frac{2}{3}}\right)(ab)^{2/3} = a^2 + b^2.$	08
		OR	
4	а	Find the curvature and the circle of curvature of the curve	
		$\sqrt{x} + \sqrt{y} = \sqrt{a}$ at the point $(\frac{a}{4}, \frac{a}{4})$.	08
	b	Obtain the Maclaurin's series expansion of $log_e(1 + e^x)$ up to the term	
		containing x^4 and hence deduce the series expansion of $\frac{e^x}{1+e^x}$.	08
		1+e ^x	08
5	а	i) If $u = x^2 + y^2$, where $x = at^2$, $y = 2at$, show that	
		$\frac{du}{dt} = 4a^2t(t^2+2)$ using partial derivatives.	
		ii) If $u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$, find the value of $x^2u_x + y^2u_y + z^2u_z$.	
	h	,,	08
	b	Find the volume of the greatest rectangular parallelepiped that can be	
		inscribed in the ellipsoid, $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, using Lagrange's method of	
		undetermined multipliers. OR	08
		OR	
6	a	If u and v are the real and imaginary parts of a complex function	
		$f(z) = u + iv$; where $u = e^{r\cos\theta}\cos(r\sin\theta)$, $v = e^{r\cos\theta}\sin(r\sin\theta)$ then prove	
		that u and v satisfy the Cauchy-Reimann equations $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ and	
		$\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}.$	0.0
	b	Prove that the functions $u = x + y + z$, $u = x^2 + y^2 + z^2$, $w = xy + yz + z^2$	08
		zx are functionally dependent using the concept of Jacobians and	
		hence find the relation between them.	08
7		- ag a2g-x	
7	а	Evaluate $\int_0^a \int_{\frac{x^2}{a}}^{2a-x} xy dy dx$ by changing the order of integration.	
		Represent the region of integration graphically.	08
	b	Compute the volume of the tetrahedron formed by the planes	00
		x = 0, y = 0, z = 0 and $6x + 4y + 3z = 12$ using triple integration.	08

		OR	
8	а	A plate is in the form of a positive quadrant of the circle $x^2 + y^2 = 1$, the thickness ρ at any point is constant. Find the	00
	b	co-ordinates of the centre of gravity of the plate. Find the area bounded by the cardioid $r = a(1 + cos\theta)$ above the initial line using double integration. Represent the area graphically.	08
9	a	The growth of bacteria (y) in a community after x -hours is given by the following table.	
	b	Find the best value of a and b in the formula $y = ab^x$ to fit this data and estimate the number of bacteria y at $x = 6$ hours by the method of least squares. Physiological tests of intelligence and of engineering ability were applied to 10 students. Here is a record of ungrouped data showing intelligence ratio $(I.R)$ and engineering ability $(E.R)$. Calculate the coefficient of correlation between intelligence ratio $(I.R)$ and engineering ability $(E.R)$ and engineering ability $(E.R)$ and engineering ability $(E.R)$ and engineering ability $(E.R)$ on intelligence ratio $(I.R)$ on engineering ability $(E.R)$ and engineering ability $(E.R)$ on intelligence ratio $(I.R)$.	08
		Student A B C D E F G H I J I.R 105 104 102 101 100 99 98 96 93 92 E.R 101 103 100 98 95 96 104 92 97 94	08
10	a	If the velocity V (km/hr) and Resistance R (kg/tonne) are related by a relation of the form $R = a + bV^2$, find a and b by the method of least squares with the use of the following data.	
			08
-	b	Compute the value of R when $V=35$. The following table gives the distribution of marks in Mathematics of 50 students in an examination. Compute $\mu_1, \mu_2, \mu_3, \mu_4$ for the following distribution. Also find β_1 and β_2 .	