

FCC PART 15C TEST REPORT No. I14Z45243-GTE03

for

VSN Technologies Inc.

Dual GSM/Dual WCDMA Smart Phone

Model Name: V2001

Marketing Name: R.45

FCC ID: 2AA9WV2001

IC ID: 11665A-V2001

with

Hardware Version: P3

Software Version: TBW972323_898B_V007253

Issued Date: 2014-03-10

DAR accreditation (DIN EN ISO/IEC 17025): No. D-PL-12123-01-01

FCC 2.948 Listed: No.733176
IC O.A.T.S listed: No.6629B-1

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of Ministry of Industry and Information Technology Shouxiang Science Building, No 51, Xueyuan Road, Haidian District, Beijing, P.R.China 100191 Tel:+86(0)10-62304633, Fax:+86(0)10-62304633-2054 Email:welcome@emcite.com. www.emcite.com

CONTENTS

1. T	EST LABORATORY	3
1.1.	TESTING LOCATION	3
1.2.	TESTING ENVIRONMENT	3
1.3.	Project data	3
1.4.	SIGNATURE	3
2. C	LIENT INFORMATION	4
2.1.	APPLICANT INFORMATION	4
2.2.	MANUFACTURER INFORMATION	4
3. E	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	5
3.1.	ABOUT EUT	5
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	5
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	5
3.4.	NORMAL ACCESSORY SETTING	6
3.5.	GENERAL DESCRIPTION	6
4. R	EFERENCE DOCUMENTS	7
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	7
4.2.	REFERENCE DOCUMENTS FOR TESTING	7
5. L	ABORATORY ENVIRONMENT	8
6. SU	UMMARY OF TEST RESULTS	9
6.1.	SUMMARY OF TEST RESULTS	9
6.2.	STATEMENTS	9
7. T	EST EQUIPMENTS UTILIZED	10
ANNE	X A: MEASUREMENT RESULTS	11
A.1.	MEASUREMENT METHOD	11
A.2.	PEAK OUTPUT POWER - CONDUCTED	13
A.3.	Frequency Band Edges - Conducted	14
A.4.	CONDUCTED EMISSION	21
A.5.	RADIATED EMISSION	46
	TIME OF OCCUPANCY (DWELL TIME)	
	20dB Bandwidth	
	CARRIER FREQUENCY SEPARATION	
	NUMBER OF HOPPING CHANNELS	
). AC Powerline Conducted Emission	
A 11	RECEIVER RADIATION EMISSION	93

1. Test Laboratory

1.1. Testing Location

Company Name: TMC Beijing, Telecommunication Metrology Center of MIIT

Address: Shouxiang Science Building, No 51, Xueyuan Road, Haidian District,

Beijing, P.R.China

Postal Code: 100191

Telephone: 00861062304633 Fax: 00861062304793

1.2. Testing Environment

Normal Temperature: $15-35^{\circ}$ C Extreme Temperature: $-20/+55^{\circ}$ C Relative Humidity: 20-75%

1.3. Project data

Project Leader: Zi Xiaogang
Testing Start Date: 2014-02-23
Testing End Date: 2014-03-10

1.4. Signature

2

Zi Xiaogang (Prepared this test report)

豹向前

Sun Xiangqian (Reviewed this test report)

Lu Bingsong

附城村

Deputy Director of the laboratory (Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: VSN Technologies Inc.

Address / Post: 1975 E. Sunrise Blvd., #400 Fort Lauderdale, FL

City: fort lauderdale

Postal Code: 33323

Country: United States
Contact Person: Donghailun

Contact Email amit.verma@vsnmobil.com

Telephone: 9546094912 Fax: 9543068450

2.2. Manufacturer Information

Company Name: Beijing Benywave Technology Co. Ltd.

NO.55 Jiachang 2 Road, OPTO-Mechatronics

Address /Post: Industrial Park, Tongzhou District

City: Beijing
Postal Code: 100111
Country: China

Telephone: +86-10-58928917

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description Dual GSM/Dual WCDMA Smart Phone

Model Name V2001 Marketing Name R.45

FCC ID 2AA9WV2001 IC ID 11665A-V2001

Frequency Band ISM 2400MHz~2483.5MHz Type of Modulation GFSK/π/4 DQPSK/8DPSK

Number of Channels 79

Power Supply 3.8V DC by Battery

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
UT08a	354694028010736	P3	TBW972323_898B_V007253
UT01a	354694028010694	P3	TBW972323_898B_V007253

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description		
AE1	Battery	1	1445243BA004
AE2	Battery	1	1445243BA005
AE3	Travel charger	1	1445243CH002
AE4	USB cable	1	1445243DC001
AE1, AE2			
Model		TBT9608	
Manufact	urer	REVEL	
Capacita	nce	1700mAh	
Nominal	voltage	3.7V	
AE3			
Model		1	
Manufact	urer	REVEL	
Length of	cable	1	
AE4			
Model		1	
Manufact	urer	REVEL	
Length of	cable	98cm	

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. Normal Accessory setting

Fully charged battery should be used during the test.

3.5. General Description

The Equipment Under Test (EUT) is a model of Dual GSM/Dual WCDMA Smart Phone with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfil the test.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

•	•	
	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	10–1–13
FCC Part15	15.209 Radiated emission limits, general requirements;	Edition
	15.247 Operation within the bands 902–928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz.	
FCC Dort 2	Frequency Allocations and Radio Treaty Matters;	10–1–13
FCC Part 2	General Rules and Regulations	Edition
ANCI 062 40	American National Standard for Testing Unlicensed	
ANSI C63.10	Wireless Devices	2009
	Spectrum Management and Telecommunications - Radio	
	Standards Specification	laaa0
RSS - Gen	General Requirements and Information for the	lssue3
	Certification of Radiocommunication Equipment	
DCC 240	Licence-exempt Radio Apparatus (All Frequency Bands):	laaa0
RSS -210	Category I Equipment	Issue8

5. LABORATORY ENVIRONMENT

Control room / conducted chamber did not exceed following limits along the EMC testing:

	<u> </u>
Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =20 %, Max. = 80 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 2 MΩ
Ground system resistance	< 0.5 Ω

Fully-anechoic chamber 2 (8.6 meters × 6.1 meters × 3.85 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 ℃, Max. = 30 ℃
Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 2 MΩ
Ground system resistance	<1 Ω
Site voltage standing-wave ratio (S _{VSWR})	Between 0 and 6 dB, from 1GHz to 18GHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 4000 MHz

Semi-anechoic chamber 2 / Fully-anechoic chamber 3 (10 meters × 6.7 meters × 6.15 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 $^{\circ}$ C, Max. = 30 $^{\circ}$ C
Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 2 MΩ
Ground system resistance	< 0.5 Ω
Normalised site attenuation (NSA)	$<\pm3.5$ dB, 3 m distance
Site voltage standing-wave ratio (S_{VSWR})	Between 0 and 6 dB, from 1GHz to 18GHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 3000 MHz

6. SUMMARY OF TEST RESULTS

6.1. Summary of Test Results

Abbreviations used in this clause:

- P Pass, The EUT complies with the essential requirements in the standard.
- **F** Fail, The EUT does not comply with the essential requirements in the standard
- NA Not Applicable, The test was not applicable
- NP Not Performed, The test was not performed by TMC

SUMMARY OF MEASUREMENT RESULTS	Sub-clause	IC	Verdict
Peak Output Power - Conducted	15.247 (b)(1)	RSS-210 A8.4 (2)	Р
Frequency Band Edges	15.247 (d)	RSS-210 A8.5	Р
Conducted Emission	15.247 (d)	RSS-210 A8.5	Р
Radiated Emission	15.247, 15.205, 15.209	RSS-210 A8.5	Р
Time of Occupancy (Dwell Time)	15.247 (a) (1)(iii)	RSS-210 A8.1 (4)	Р
20dB Bandwidth	15.247 (a)(1)	RSS-210 A8.1 (1)	NA
Carrier Frequency Separation	15.247 (a)(1)	RSS-210 A8.1 (2)	Р
Number of hopping channels	15.247 (a)(b)(iii)	RSS-210 A8.1 (4)	Р
AC Powerline Conducted Emission	15.107, 15.207	RSS-Gen 7.2.2	Р

Please refer to ANNEX A for detail.

The measurement is made according to ANSI C63.10.

6.2. Statements

TMC has evaluated the test cases requested by the applicant /manufacturer as listed in section 6.1 of this report for the EUT specified in section 3 according to the standards or reference documents listed in section 4.2

7. Test Equipments Utilized

Conducted test system

No.	Equipment	Model Serial Man		Manufacturer	Calibration Due date
1	Vector Signal Analyzer	FSU26	200030	Rohde & Schwarz	2014-06-12
2	Bluetooth Tester	CBT32	100649	Rohde & Schwarz	2015-02-09

Radiated emission test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date
1	Test Receiver	ESU26	100376	Rohde & Schwarz	2014-11-05
2	EMI Antenna	VULB 9163	9163 175	Schwarzbeck	2014-07-13
3	EMI Antenna	3117	00119021	ETS-Lindgren	2014-04-19
4	Dual-Ridge Waveguide Horn Antenna	3116	2663	ETS-Lindgren	2014-06-30
5	Dual-Ridge Waveguide Horn Antenna	3116	2661	ETS-Lindgren	2014-06-30
6	Bluetooth Tester	CBT	100153	Rohde & Schwarz	2014-09-15
7	LISN	ESH2-Z5	829991/012	Rohde & Schwarz	2014-03-17
8	Loop Antenna	HFH2-Z2	829324/007	Rohde & Schwarz	2014-12-12
9	Pre-amplifier(18GHz)	SCU18	1005277	Rohde & Schwarz	1
10	Pre-amplifier(26.5GHz)	SCU26	1006788	Rohde & Schwarz	1

Anechoic chamber

Fully anechoic chamber by Frankonia German.

ANNEX A: MEASUREMENT RESULTS

A.1. Measurement Method

A.1.1. Conducted Measurements

The measurement is made according to ANSI C63.10.

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode (Transmitter, receiver or transmitter & receiver).
- 3). Set the EUT to the required channel.
- 4). Set the EUT hopping mode (hopping or hopping off).
- 5). Set the spectrum analyzer to start measurement.
- 6). Record the values. Vector Signal Analyzer

A.1.2. Radiated Emission Measurements

The measurement is made according to ANSI C63.10

The radiated emission test is performed in semi-anechoic chamber. The distance from the EUT to the reference point of measurement antenna is 3m. The test is carried out on both vertical and horizontal polarization and only maximization result of both polarizations is kept. During the test, the turntable is rotated 360° and the measurement antenna is moved from 1m to 4m to get the maximization result.

In the case of radiated emission, the used settings are as follows,

Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz;

Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 1MHz;

A.2. Peak Output Power - Conducted

Measurement Limit:

Standard	Limit (dBm)
FCC Part 15.247(b)(1)/ / RSS-210 A8.4 (2)	< 30

The measurement is made according to ANSI C63.10.

Test Condition

Hopping Mode	RBW	VBW	Span	Sweeptime
Hopping OFF	3MHz	3MHz	5MHz	2.5ms

Measurement Results:

For GFSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted				
Output Power	6.81	7.50	7.66	Р
(dBm)				

Forπ/4 DQPSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted				
Output Power	6.59	7.34	7.53	Р
(dBm)				

For 8DPSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted				
Output Power	6.81	7.55	7.72	Р
(dBm)				

Conclusion: PASS

A.3. Frequency Band Edges - Conducted

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	> 20
RSS-210 A8.4(2)	> 20

The measurement is made according to ANSI C63.10.

Measurement Result:

For GFSK

Channel	Hopping	Band Edge Power (dBc)		Conclusion
0	Hopping OFF	Fig.1	-55.44	Р
0	Hopping ON	Fig.2	-56.37	Р
70	Hopping OFF	Fig.3	-61.18	Р
78	Hopping ON	Fig.4	-62.43	Р

Forπ/4 DQPSK

Channel	Hopping	Band Edge Power (dBc)		Conclusion
0	Hopping OFF	Fig.5	-54.42	Р
U	Hopping ON	Fig.6	-52.79	Р
70	Hopping OFF	Fig.7	-60.44	Р
78	Hopping ON	Fig.8	-59.61	Р

For 8DPSK

Channel	Hopping	Band Edge Power (dBc)		Conclusion
0	Hopping OFF	Fig.9	-55.53	Р
0	Hopping ON	Fig.10	-54.36	Р
70	Hopping OFF	Fig.11	-58.92	Р
78	Hopping ON	Fig.12	-58.70	Р

Conclusion: PASS
Test graphs as below

Date: 4.MAR.2014 10:18:04

Fig.1. Frequency Band Edges: GFSK, Channel 0, Hopping Off

Date: 4.MAR.2014 10:20:23

Fig.2. Frequency Band Edges: GFSK, Channel 0, Hopping On

Date: 4.MAR.2014 10:18:21

Fig.3. Frequency Band Edges: GFSK, Channel 78, Hopping Off

Date: 4.MAR.2014 10:22:26

Fig.4. Frequency Band Edges: GFSK, Channel 78, Hopping On

Date: 4.MAR.2014 10:27:42

Fig.5. Frequency Band Edges: π/4 DQPSK, Channel 0, Hopping Off

Date: 4.MAR.2014 10:30:01

Fig.6. Frequency Band Edges: $\pi/4$ DQPSK, Channel 0, Hopping On

Date: 4.MAR.2014 10:27:59

Fig.7. Frequency Band Edges: π/4 DQPSK, Channel 78, Hopping Off

Date: 4.MAR.2014 10:32:04

Fig.8. Frequency Band Edges: $\pi/4$ DQPSK, Channel 78, Hopping On

Date: 4.MAR.2014 10:37:19

Fig.9. Frequency Band Edges: 8DPSK, Channel 0, Hopping Off

Date: 4.MAR.2014 10:39:39

Fig.10. Frequency Band Edges: 8DPSK, Channel 0, Hopping On

Date: 4.MAR.2014 10:37:37

Fig.11. Frequency Band Edges: 8DPSK, Channel 78, Hopping Off

Date: 4.MAR.2014 10:41:42

Fig.12. Frequency Band Edges: 8DPSK, Channel 78, Hopping On

A.4. Conducted Emission

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247 (d)	20dB below peak output power in 100 kHz	
RSS-210 A8.5	bandwidth	

The measurement is made according to ANSI C63.10

Measurement Results:

For GFSK

Channel	Frequency Range	Test Results	Conclusion
	Center Frequency	Fig.13	Р
Ch O	30 MHz ~ 1 GHz	Fig.14	Р
Ch 0 2402 MHz	1 GHz ~ 3 GHz	Fig.15	Р
2402 111112	3 GHz ~ 10 GHz	Fig.16	Р
	10 GHz ~ 26 GHz	Fig.17	Р
	Center Frequency	Fig.18	Р
Oh 20	30 MHz ~ 1 GHz	Fig.19	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.20	Р
2441 1011 12	3 GHz ~ 10 GHz	Fig.21	Р
	10 GHz ~ 26 GHz	Fig.22	Р
	Center Frequency	Fig.23	Р
Oh 70	30 MHz ~ 1 GHz	Fig.24	Р
Ch 78 2480 MHz	1 GHz ~ 3 GHz	Fig.25	Р
2400 1011 12	3 GHz ~ 10 GHz	Fig.26	Р
	10 GHz ~ 26 GHz	Fig.27	Р

For $\pi/4$ DQPSK

Channel	Frequency Range	Test Results	Conclusion
	Center Frequency	Fig.28	Р
Ch O	30 MHz ~ 1 GHz	Fig.29	Р
Ch 0 2402 MHz	1 GHz ~ 3 GHz	Fig.30	Р
2402 11112	3 GHz ~ 10 GHz	Fig.31	Р
	10 GHz ~ 26 GHz	Fig.32	Р
	Center Frequency	Fig.33	Р
Ch 39	30 MHz ~ 1 GHz	Fig.34	Р
2441 MHz	1 GHz ~ 3 GHz	Fig.35	Р
	3 GHz ~ 10 GHz	Fig.36	Р
	10 GHz ~ 26 GHz	Fig.37	Р
Ch 78	Center Frequency	Fig.38	Р
2480 MHz	30 MHz ~ 1 GHz	Fig.39	Р

1 GHz ~ 3 GHz	Fig.40	Р
3 GHz ~ 10 GHz	Fig.41	Р
10 GHz ~ 26 GHz	Fig.42	Р

For 8DPSK

Channel	Frequency Range	Test Results	Conclusion
	Center Frequency	Fig.43	Р
Ch 0	30 MHz ~ 1 GHz	Fig.44	Р
2402 MHz	1 GHz ~ 3 GHz	Fig.45	Р
2402 111112	3 GHz ~ 10 GHz	Fig.46	Р
	10 GHz ~ 26 GHz	Fig.47	Р
	Center Frequency	Fig.48	Р
Oh 20	30 MHz ~ 1 GHz	Fig.49	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.50	Р
211111112	3 GHz ~ 10 GHz	Fig.51	Р
	10 GHz ~ 26 GHz	Fig.52	Р
	Center Frequency	Fig.53	Р
Oh 70	30 MHz ~ 1 GHz	Fig.54	Р
Ch 78 2480 MHz	1 GHz ~ 3 GHz	Fig.55	Р
2.00 1/11/2	3 GHz ~ 10 GHz	Fig.56	Р
	10 GHz ~ 26 GHz	Fig.57	Р

Conclusion: PASS

Note:

The conducted spurious emission measurement over 9kHz - 30MHz had been investigated. All spurious emissions were attenuated at least 20dB compared to the limit.

Test graphs as below

Date: 4.MAR.2014 10:22:45

Fig.13. Conducted spurious emission: GFSK, Channel 0,2402MHz

Date: 4.MAR.2014 10:23:01

Fig.14. Conducted spurious emission: GFSK, Channel 0, 30MHz - 1GHz

Date: 4.MAR.2014 10:23:33

Fig.15. Conducted spurious emission: GFSK, Channel 0, 1GHz - 3GHz

Date: 4.MAR.2014 10:23:50

Fig.16. Conducted spurious emission: GFSK, Channel 0, 3GHz - 10GHz

Date: 4.MAR.2014 10:24:06

Fig.17. Conducted spurious emission: GFSK, Channel 0,10GHz - 26GHz

Fig.18. Conducted spurious emission: GFSK, Channel 39, 2441MHz

Date: 4.MAR.2014 10:24:40

Fig.19. Conducted spurious emission: GFSK, Channel 39, 30MHz - 1GHz

Date: 4.MAR.2014 10:25:11

Fig.20. Conducted spurious emission: GFSK, Channel 39, 1GHz – 3GHz

Date: 4.MAR.2014 10:25:28

Fig.21. Conducted spurious emission: GFSK, Channel 39, 3GHz – 10GHz

Date: 4.MAR.2014 10:25:44

Fig.22. Conducted spurious emission: GFSK, Channel 39, 10GHz – 26GHz

Fig.23. Conducted spurious emission: GFSK, Channel 78, 2480MHz

Fig.24. Conducted spurious emission: GFSK, Channel 78, 30MHz - 1GHz

Date: 25.FEB.2014 08:10:38

Fig.25. Conducted spurious emission: GFSK, Channel 78, 1GHz - 3GHz

Date: 25.FEB.2014 08:10:54

Fig.26. Conducted spurious emission: GFSK, Channel 78, 3GHz - 10GHz

Date: 25.FEB.2014 08:11:10

Fig.27. Conducted spurious emission: GFSK, Channel 78, 10GHz - 26GHz

Date: 4.MAR.2014 10:32:23

Fig.28. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0,2402MHz

Date: 4.MAR.2014 10:32:39

Fig.29. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0, 30MHz - 1GHz

Date: 4.MAR.2014 10:33:11

Fig.30. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0, 1GHz - 3GHz

Date: 4.MAR.2014 10:33:27

Fig.31. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0, 3GHz - 10GHz

Date: 4.MAR.2014 10:33:44

Fig.32. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0,10GHz - 26GHz

Date: 4.MAR.2014 10:34:01

Fig.33. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 2441MHz

Date: 4.MAR.2014 10:34:17

Fig.34. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 30MHz - 1GHz

Date: 4.MAR.2014 10:34:49

Fig.35. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 1GHz - 3GHz

Date: 4.MAR.2014 10:35:06

Fig.36. Conducted spurious emission: π/4 DQPSK, Channel 39, 3GHz - 10GHz

Date: 4.MAR.2014 10:35:22

Fig.37. Conducted spurious emission: π/4 DQPSK, Channel 39, 10GHz – 26GHz

Date: 4.MAR.2014 10:35:39

Fig.38. Conducted spurious emission: $\pi/4$ DQPSK, Channel 78, 2480MHz

Date: 4.MAR.2014 10:35:55

Fig.39. Conducted spurious emission: $\pi/4$ DQPSK, Channel 78, 30MHz - 1GHz

Date: 4.MAR.2014 10:36:27

Fig.40. Conducted spurious emission: $\pi/4$ DQPSK, Channel 78, 1GHz - 3GHz

Date: 4.MAR.2014 10:36:44

Fig.41. Conducted spurious emission: π/4 DQPSK, Channel 78, 3GHz - 10GHz

Date: 4.MAR.2014 10:37:00

Fig.42. Fig.30 Conducted spurious emission: $\pi/4$ DQPSK, Channel 78, 10GHz - 26GHz

Date: 4.MAR.2014 10:42:01

Fig.43. Conducted spurious emission: 8DPSK, Channel 0,2402MHz

Date: 4.MAR.2014 10:42:17

Fig.44. Conducted spurious emission: 8DPSK, Channel 0, 30MHz - 1GHz

Date: 4.MAR.2014 10:42:49

Fig.45. Conducted spurious emission: 8DPSK, Channel 0, 1GHz - 3GHz

Date: 4.MAR.2014 10:43:05

Fig.46. Conducted spurious emission: 8DPSK, Channel 0, 3GHz - 10GHz

Date: 4.MAR.2014 10:43:22

Fig.47. Conducted spurious emission: 8DPSK, Channel 0,10GHz - 26GHz

Date: 4.MAR.2014 10:43:39

Fig.48. Conducted spurious emission: 8DPSK, Channel 39, 2441MHz

Date: 4.MAR.2014 10:43:55

Fig.49. Conducted spurious emission: 8DPSK, Channel 39, 30MHz - 1GHz

Date: 4.MAR.2014 10:44:27

Fig.50. Conducted spurious emission: 8DPSK, Channel 39, 1GHz - 3GHz

Date: 4.MAR.2014 10:44:43

Date: 4.MAR.2014 10:45:00

Fig.51. Conducted spurious emission: 8DPSK, Channel 39, 3GHz - 10GHz

Fig.52. Conducted spurious emission: 8DPSK, Channel 39, 10GHz – 26GHz

Date: 4.MAR.2014 10:45:17

Fig.53. Conducted spurious emission: 8DPSK, Channel 78, 2480MHz

Date: 4.MAR.2014 10:45:33

Fig.54. Conducted spurious emission: 8DPSK, Channel 78, 30MHz - 1GHz

Date: 4.MAR.2014 10:46:05

Fig.55. Conducted spurious emission: 8DPSK, Channel 78, 1GHz - 3GHz

Date: 4.MAR.2014 10:46:21

Fig.56. Conducted spurious emission: 8DPSK, Channel 78, 3GHz - 10GHz

Date: 4.MAR.2014 10:46:38

Fig.57. Conducted spurious emission: 8DPSK, Channel 78, 10GHz - 26GHz

A.5. Radiated Emission

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power	
RSS-210 A8.5		

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

The measurement is made according to ANSI C63.10

Limit in restricted band:

Frequency of emission	Field strength(uV/m)	Field strength(dBuV/m)
(MHz)		
0.009-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Test Condition

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission	RBW/VBW	Sweep Time(s)
(MHz)		
0.009-1000	100KHz/300KHz	5
1000-4000	1MHz/1MHz	15
4000-18000	1MHz/1MHz	40
18000-26500	1MHz/1MHz	20

Measurement Results:

Result=P_{Mea}+ARPL

For GFSK

Channel	Frequency Range	Test Results	Conclusion
01.0	30 MHz ~ 1 GHz	Fig.58	Р
Ch 0 2402 MHz	1 GHz ~ 3 GHz	GHz ~ 3 GHz Fig.59	
2402 1011 12	3 GHz ~ 18 GHz	Fig.60	
	9 KHz ~ 30 MHz	Fig.61	
Ch 39 2441 MHz	30 MHz ~ 1 GHz	Fig.62	Р
	1 GHz ~ 3 GHz	Fig.63	Р
	3 GHz ~ 18 GHz	Fig.64	
Ch 78	30 MHz ~ 1 GHz	Fig.65	Р

2480 MHz	1 GHz ~ 3 GHz	Fig.66	Р
	3 GHz ~ 18 GHz	Fig.67	
Power	2.38GHz~2.4GHzL	Fig.68	Р
Power	2.45GHz~2.5GHzH	Fig.69	Р
For all channels	18 GHz ~ 26 GHz	Fig.70	Р

Forπ/4 DQPSK

Channel	Frequency Range	Test Results	Conclusion
01.0	30 MHz ~ 1 GHz	Fig.71	Р
Ch 0 2402 MHz	1 GHz ~ 3 GHz	Fig.72	Р
Z+0Z WII IZ	3 GHz ~ 18 GHz	Fig.73	
01.00	30 MHz ~ 1 GHz	Fig.74	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.75	Р
2441 1011 12	3 GHz ~ 18 GHz	Fig.76	
Ch 78 2480 MHz	30 MHz ~ 1 GHz	Fig.77	Р
	1 GHz ~ 3 GHz	Fig.78	Р
	3 GHz ~ 18 GHz	Fig.79	
Power	2.38GHz~2.4GHzL	Fig.80	Р
Power	2.45GHz~2.5GHzH	Fig.81	Р
For all channels	18 GHz ~ 26 GHz	Fig.82	Р

For 8DPSK

101001010			
Channel	Frequency Range	Test Results	Conclusion
OL O	30 MHz ~ 1 GHz	Fig.83	Р
Ch 0 2402 MHz	1 GHz ~ 3 GHz	Fig.84	Р
Z+0Z WII IZ	3 GHz ~ 18 GHz	Fig.85	
01.00	30 MHz ~ 1 GHz	Fig.86	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.87	Р
Z++ I IVII IZ	3 GHz ~ 18 GHz	Fig.88	
Ch 78 2480 MHz	30 MHz ~ 1 GHz	Fig.89	Р
	1 GHz ~ 3 GHz	Fig.90	Р
	3 GHz ~ 18 GHz	Fig.91	
Power	2.38GHz~2.4GHzL	Fig.92	Р
Power	2.45GHz~2.5GHzH	Fig.93	Р
For all channels	18 GHz ~ 26 GHz	Fig.94	Р

GFSK Ch 0 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	PMea(dBuv/m)	Polarization
2390.000	34.3	-11.10	45.4	Н
17802.000	46.4	27.10	19.3	Н
17967.000	45.5	27.90	17.6	V
17769.000	45.1	27.10	18.0	Н

17770.500	44.8	27.10	17.7	V
17794.500	44.7	27.10	17.6	Н

GFSK Ch 39 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
17967.000	46.0	27.90	18.1	V
17877.000	45.5	27.10	18.4	V
17773.500	45.3	27.10	18.2	V
17850.000	45.1	27.10	18.0	Н
17998.500	45.1	27.90	17.2	Н
17797.500	45.0	27.10	17.9	V

GFSK Ch 78 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
2483.500	42.8	-11.20	54.0	V
17958.000	45.3	27.90	17.4	Н
17977.500	45.3	27.90	17.4	V
17961.000	45.2	27.90	17.3	Н
17892.000	45.2	27.10	18.1	V
17818.500	45.1	27.10	18.0	Н

π/4 DQPSK Ch 0 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
2390.000	34.6	-11.10	45.7	Н
17997.000	46.5	27.90	18.6	Н
17856.000	45.5	27.10	18.4	V
17809.500	45.4	27.10	18.3	V
17931.000	45.1	27.90	17.2	Н
17820.000	44.9	27.10	17.8	V

π/4 DQPSK Ch 39 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
17985.000	45.4	27.90	17.5	Н
17799.000	45.3	27.10	18.2	V
17643.000	45.2	26.70	18.5	Н
17622.000	45.0	26.70	18.3	V
17848.500	44.9	27.10	17.8	Н
17962.500	44.9	27.90	17.0	Н

$\pi/4$ DQPSK Ch 78 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
2483.500	44.3	-11.20	55.5	V
17980.500	45.3	27.90	17.4	Н
17881.500	45.3	27.10	18.2	Н
17887.500	44.8	27.10	17.7	V

17944.500	44.8	27.90	16.9	Н
17781.000	44.7	27.10	17.6	V

8DPSK Ch 0 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
2390.000	34.4	-11.10	45.5	Н
17836.500	45.8	27.10	18.7	Н
17826.000	45.5	27.10	18.4	V
17832.000	45.5	27.10	18.4	V
17833.500	45.1	27.10	18.0	V
17703.000	45.1	26.70	18.4	Н

8DPSK Ch 39 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
17962.500	46.2	27.90	18.3	Н
17845.500	45.7	27.10	18.6	V
17772.000	45.5	27.10	18.4	V
17853.000	45.5	27.10	18.4	V
17790.000	45.1	27.10	18.0	Н
17788.500	45.1	27.10	18.0	Н

8DPSK Ch 78 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
2483.500	43.0	-11.20	54.2	Н
17967.000	45.3	27.90	17.4	Н
17937.000	45.3	27.90	17.4	Н
17811.000	45.2	27.10	18.1	V
17925.000	45.1	27.90	17.2	Н
17920.500	45.1	27.90	17.2	V

Conclusion: PASS

Note: The worst case is given.

Test graphs as below:

Fig.58. Radiated emission: GFSK, Channel 0, 30 MHz - 1 GHz

Fig.59. Radiated emission: GFSK, Channel 0, 1 GHz - 3 GHz

Fig.60. Radiated emission: GFSK, Channel 0, 3 GHz - 18 GHz

Fig.61. Radiated emission: GFSK, Channel 39, 9 KHz - 30 MHz

Fig.62. Radiated emission: GFSK, Channel 39, 30 MHz - 1 GHz

Fig.63. Radiated emission: GFSK, Channel 39, 1 GHz - 3 GHz

Fig.64. Radiated emission: GFSK, Channel 39, 3 GHz - 18 GHz

Fig.65. Radiated emission: GFSK, Channel 78, 30 MHz - 1 GHz

Fig.66. Radiated emission: GFSK, Channel 78, 1 GHz - 3 GHz

Fig.67. Radiated emission: GFSK, Channel 78, 3 GHz - 18 GHz

Fig.68. Radiated emission (Power): GFSK, low channel

Fig.69. Radiated emission (Power) GFSK, high channel

Fig.70. Radiated emission: GFSK, 18 GHz – 26.5 GHz

Fig.71. Radiated emission: $\pi/4$ DQPSK, Channel 0, 30 MHz - 1 GHz

Fig.72. Radiated emission: $\pi/4$ DQPSK, Channel 0, 1 GHz - 3 GHz

Fig.73. Radiated emission: $\pi/4$ DQPSK, Channel 0, 3 GHz - 18 GHz

Fig.74. Radiated emission: $\pi/4$ DQPSK, Channel 39, 30 MHz - 1 GHz

Fig.75. Radiated emission: $\pi/4$ DQPSK, Channel 39, 1 GHz - 3 GHz

Fig.76. Radiated emission: $\pi/4$ DQPSK, Channel 39, 3 GHz - 18 GHz

Fig.77. Radiated emission: $\pi/4$ DQPSK, Channel 78, 30 MHz - 1 GHz

Fig.78. Radiated emission: $\pi/4$ DQPSK, Channel 78, 1 GHz - 3 GHz

Fig.79. Radiated emission: $\pi/4$ DQPSK, Channel 78, 3 GHz - 18 GHz

Fig.80. Radiated emission (Power): $\pi/4$ DQPSK, low channel

Fig.81. Radiated emission (Power): π/4 DQPSK, high channel

Fig.82. Radiated emission: $\pi/4$ DQPSK, 18 GHz - 26 GHz

Fig.83. Radiated emission: 8DPSK, Channel 0, 30 MHz - 1 GHz

Fig.84. Radiated emission: 8DPSK, Channel 0, 1 GHz - 3 GHz

Fig.85. Radiated emission: 8DPSK, Channel 0, 3 GHz - 18 GHz

Fig.86. Radiated emission: 8DPSK, Channel 39, 30 MHz - 1 GHz

Fig.87. Radiated emission: 8DPSK, Channel 39, 1 GHz - 3 GHz

Fig.88. Radiated emission: 8DPSK, Channel 39, 3 GHz - 18 GHz

Fig.89. Radiated emission: 8DPSK, Channel 78, 30 MHz - 1 GHz

Fig.90. Radiated emission: 8DPSK, Channel 78, 1 GHz - 3 GHz

Fig.91. Radiated emission: 8DPSK, Channel 78, 3 GHz - 18 GHz

Fig.92. Radiated emission (Power): 8DPSK, low channel

Fig.93. Radiated emission (Power): 8DPSK, high channel

Normal RE_18G-26.5GHz

Fig.94. Radiated emission: 8DPSK, 18 GHz - 26 GHz

A.6. Time of Occupancy (Dwell Time)

Measurement Limit:

Standard	Limit (ms)
FCC 47 CFR Part 15.247(a) (1)(iii)	~ 400
RSS-210 A8.1 (4)	< 400

The measurement is made according to ANSI C63.10

According to Part 15.247(a) (1)(iii),the average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. So the dwell time results below are calculated by the width per pulse (Fig.85 e.g.) \times 0.4s \times 79.

Measurement Result:

For GFSK

Channel	Packet	Dwell Time (ms)		Conclusion
	DIA	Fig.95	108.14	Р
	DH1	Fig.96		
39	DH3	Fig.97	181.98	Р
		Fig.98		
	DH5	Fig.99	179.68	Р
		Fig.100		

For $\pi/4$ DQPSK

Channel	Packet	Dwell Time (ms)		Conclusion
	DH1	Fig.101	102.43	Р
		Fig.102		
39	DH3	Fig.103	185.85	Р
		Fig.104		
	DH5	Fig.105	206.14	Р
		Fig.106		

For 8DPSK

Channel	Packet	Dwell Time (ms)		Conclusion
	DH1	Fig.107	104.62	Р
		Fig.108		
20	DUIS	Fig.109	182.56	Р
39	DH3	Fig.110		
	DH5	Fig.111	150.70	Р
		Fig.112		

Conclusion: PASS
Test graphs as below:

Date: 25.FEB.2014 08:29:46

Fig.95. Time of occupancy (Dwell Time): Channel 39, Packet DH1

Date: 25.FEB.2014 08:29:35

Fig.96. Number of Transmissions Measurement: Channel 39, Packet DH1

Date: 25.FEB.2014 08:31:05

Fig.97. Time of occupancy (Dwell Time): Channel 39, Packet DH3

Date: 25.FEB.2014 08:30:54

Fig.98. Number of Transmissions Measurement: Channel 39, Packet DH3

Date: 25.FEB.2014 08:32:23

Fig.99. Time of occupancy (Dwell Time): Channel 39, Packet DH5

Fig.100. Number of Transmissions Measurement: Channel 39, Packet DH5

Fig.101. Time of occupancy (Dwell Time): Channel 39, Packet 2-DH1

Fig.102. Number of Transmissions Measurement: Channel 39, Packet 2-DH1

Date: 25.FEB.2014 08:36:46

Fig.103. Time of occupancy (Dwell Time): Channel 39, Packet 2-DH3

Fig.104. Number of Transmissions Measurement: Channel 39, Packet 2-DH3

Date: 25.FEB.2014 08:38:01

Fig.105. Time of occupancy (Dwell Time): Channel 39, Packet 2-DH5

Fig.106. Number of Transmissions Measurement:Channel 39,Packet 2-DH5

Date: 25.FEB.2014 08:41:01

Fig.107. Time of occupancy (Dwell Time): Channel 39, Packet 3-DH1

Fig.108. Number of Transmissions Measurement: Channel 39, Packet 3-DH1

Date: 25.FEB.2014 08:42:20

Fig.109. Time of occupancy (Dwell Time): Channel 39, Packet 3-DH3

Fig.110. Number of Transmissions Measurement: Channel 39, Packet 3-DH3

Date: 25.FEB.2014 08:43:38

Fig.111. Time of occupancy (Dwell Time): Channel 39, Packet 3-DH5

Date: 25.FEB.2014 08:43:26

Fig.112. Number of Transmissions Measurement: Channel 39, Packet 3-DH5

A.7. 20dB Bandwidth

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(a)(1)	NA *

The measurement is made according to ANSI C63.10

* Comment: This test case is not required according to the latest FCC 47 CFR Part 15.247. But the test results are necessary for "carrier frequency separation" test case, in Annex A.8.

Measurement Results:

For GFSK

Channel	20dB Bandwidth (kHz)		Conclusion
0	Fig.113	870.19	NA
39	Fig.114	870.19	NA
78	Fig.115	870.19	NA

Forπ/4 DQPSK

Channel	20dB Bandwidth (kHz)		Conclusion
0	Fig.116	1259.62	NA
39	Fig.117	1269.23	NA
78	Fig.118	1254.81	NA

For 8DPSK

Channel	20dB Bandwidth (kHz)		Conclusion
0	Fig.119 1254.81		NA
39	Fig.120	1283.65	NA
78	Fig.121	1259.62	NA

Conclusion: NA Test graphs as below:

Fig.113. 20dB Bandwidth: GFSK, Channel 0

Date: 25.FEB.2014 09:21:10

Date: 25.FEB.2014 09:21:42

Fig.114. 20dB Bandwidth: GFSK, Channel 39

Fig.115. 20dB Bandwidth: GFSK, Channel 78

Date: 25.FEB.2014 09:26:23

Fig.116. 20dB Bandwidth: π/4 DQPSK, Channel 0

Date: 25.FEB.2014 09:26:54

Fig.117. 20dB Bandwidth: π/4 DQPSK, Channel 39

Date: 25.FEB.2014 09:27:25

Fig.118. 20dB Bandwidth: π/4 DQPSK, Channel 78

Date: 25.FEB.2014 09:32:06

Fig.119. 20dB Bandwidth: 8DPSK, Channel 0

Date: 25.FEB.2014 09:32:38

Fig.120. 20dB Bandwidth: 8DPSK, Channel 39

Date: 25.FEB.2014 09:33:09

Fig.121. 20dB Bandwidth: 8DPSK, Channel 78

A.8. Carrier Frequency Separation

Measurement Limit:

Standard	Limit(kHz)	
FCC 47 CFR Part 15.247(a)(1)	over 25 kl la er (2/2) * 20dD handwidth	
RSS-210 A8.1 (2)	over 25 kHz or (2/3) * 20dB bandwidth	

The measurement is made according to ANSI C63.10

Date: 25.FEB.2014 09:19:17

* Comment: This limit should be over 25 kHz or (2/3) * 20dB bandwidth, whichever is greater.

Measurement Result:

For GFSK

Channel	Carrier frequency separation (kHz)		Conclusion
39	Fig.122	985.58	Р

For π/4 DQPSK

Channel	Carrier frequency separation (kHz)		Conclusion
39	Fig.123	1307.69	Р

For 8DPSK

Channel	Carrier frequency separation (kHz)		Conclusion
39	Fig.124	1177.88	Р

Conclusion: PASS
Test graphs as below:

Fig.122. Carrier frequency separation measurement: GFSK, Channel 39

Date: 24.FEB.2014 22:16:49

Fig.123. Carrier frequency separation measurement: π/4 DQPSK, Channel 39

Date: 24.FEB.2014 22:38:17

Fig.124. Carrier frequency separation measurement: 8DPSK, Channel 39

A.9. Number of Hopping Channels

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247(a) (1)(iii)	At least 15 pen averlanning channels	
RSS-210 A8.1 (4)	At least 15 non-overlapping channels	

The measurement is made according to ANSI C63.10

Date: 4.MAR.2014 10:01:29

Measurement Result:

For GFSK

Channel	Number of hopping channels		Conclusion
0~39	Fig.125	70	D
40~78	Fig.126	79	r

Forπ/4 DQPSK

Channel	Number of hopping channels		Conclusion
0~39	Fig.127	70	D
40~78	Fig.128	79	P

For 8DPSK

Channel	Number of hopping channels		Conclusion
0~39	Fig.129	70	D
40~78	Fig.130	79	F

Conclusion: PASS
Test graphs as below:

Fig.125. Number of hopping frequencies: GFSK, Channel 0 - 39

Date: 4.MAR.2014 10:03:31

Fig.126. Number of hopping frequencies: GFSK, Channel 40 - 78

Date: 4.MAR.2014 10:05:36

Fig.127. Number of hopping frequencies: $\pi/4$ DQPSK, Channel 0 - 39

Date: 4.MAR.2014 10:07:38

Fig.128. Number of hopping frequencies: $\pi/4$ DQPSK, Channel 40 - 78

Date: 4.MAR.2014 10:09:42

Fig.129. Number of hopping frequencies: 8DPSK, Channel 0 - 39

Date: 4.MAR.2014 10:11:44

Fig.130. Number of hopping frequencies: 8DPSK, Channel 40 - 78

A.10. AC Powerline Conducted Emission

Test Condition

Voltage (V)	Frequency (Hz)
120	60

The measurement is made according to ANSI C63.10

Measurement Method:

The EUT is connected to the travel adapter, and travel adapter is connected to the LISN directly. EUT is under test mode, and the modulation method is GFSK.

Measurement Result and limit:

Bluetooth (Quasi-peak Limit)

Frequency range (MHz)	Quasi-peak Limit (dBμV)	Conclusion
0.15 to 0.5	66 to 56	
0.5 to 5	56	Р
5 to 30	60	

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Bluetooth (Average Limit)

ziaciocai (ritorago zinia)		
Frequency range (MHz)	Average Limit (dB _μ V)	Conclusion
0.15 to 0.5	56 to 46	
0.5 to 5	46	Р
5 to 30	50	

NOTE: The limit decreases linearly with the logarithm of the frequency in the range $0.15\,\mathrm{MHz}$ to $0.5\,\mathrm{MHz}$.

The measurement is made according to ANSI C63.10

Conclusion: PASS
Test graphs as below:

Traffic:

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.163500	50.9	GND	L1	9.8	14.4	65.3
0.172500	44.2	GND	L1	9.8	20.7	64.8
0.231000	43.7	GND	L1	9.8	18.7	62.4
0.253500	43.7	GND	L1	9.8	18.0	61.6
0.262500	42.7	GND	L1	9.8	18.7	61.4
0.330000	40.1	GND	L1	9.8	19.4	59.5

Final Result 2

Frequency (MHz)	Average (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.163500	35.9	GND	L1	9.8	19.4	55.3
0.172500	33.3	GND	L1	9.8	21.6	54.8
0.195000	32.6	GND	L1	9.8	21.3	53.8
0.415500	32.4	GND	L1	9.8	15.1	47.5
0.438000	21.5	GND	L1	9.8	25.6	47.1
0.501000	26.6	GND	L1	9.8	19.4	46.0

Idle:

Final Result 1

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.168000	47.9	GND	L1	9.8	17.2	65.1
0.186000	46.1	GND	L1	9.8	18.1	64.2
0.213000	44.6	GND	L1	9.8	18.5	63.1
0.424500	41.4	GND	L1	9.8	16.0	57.4
0.442500	39.3	GND	L1	9.8	17.7	57.0
0.771000	38.3	GND	L1	9.8	17.7	56.0

Final Result 2

Frequency (MHz)	Average (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.177000	32.1	GND	L1	9.8	22.5	54.6
0.303000	28.3	GND	L1	9.8	21.9	50.2
0.420000	30.6	GND	L1	9.8	16.9	47.4
0.442500	27.5	GND	L1	9.8	19.5	47.0
0.496500	25.0	GND	L1	9.8	21.0	46.1
0.771000	27.2	GND	L1	9.8	18.8	46.0

A.11.Receiver Radiation Emission

Reference

FCC: CFR Part 15.109, 2.1053/ RSS-Gen 7.2.2

A.11.1 Method of Measurement

The measurement procedure in ANSI C63.10-2009 is used. The EUT is placed on a 80cm height non-conductive table locating on the center of turntable. From 30MHz-1GHz, the measurement distance is 10m. For frequency range above 1GHz, the measurement distance is 3m.

The EUT is measured with travel charger and the operating mode is idle without CMU200's signaling.

A.11.2 Method of Measurement

Frequency of Emission (MHz)	Limit (dBμV/m)	Measurement Distance (m)
30-88	30	10
88-216	33.5	10
216-960	36	10
960-1000	44	10
>1000	54	3

A. 11.3 Measurement results

IF bandwidth: 120 kHz

Idle Mode: 30MHz-1GHz

Normal RE_30M-1GHz_10m

RBW / VBW 1 MHz

Idle Mode: 1GHz-3GHz

RE_BT_1G-3GHz

RBW / VBW 1 MHz

Idle Mode: 3GHz-18GHz

Normal RE_3G-18GHz

*** END OF REPORT BODY ***