Untitled

me

2022-07-16

This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Cmd+Shift+Enter.

```
# lendo os dados
dados <- read_csv('data/df_join.csv')</pre>
# Formando dummys
dados <- dados %>% mutate(percent_temp = ntile(temp, 10) %% as.factor(),
                 percent_precip = ntile(precip,5) %>% as.factor())
# criando variavel de tendencia linear
df_trend <- tibble(</pre>
 data = dados$data %>% unique(),
 trend = 1:(dados$data %>% unique() %>% length())
dados <- dados %>% left_join(df_trend)
# fazendo code do municipio virar factor
dados$code_muni <- as.factor(dados$code_muni)</pre>
#dados %>% group_by(percent_temp) %>% summarise(lim_inf = min(temp),lim_sup = max(temp))
#dados %>% group_by(percent_precip) %>% summarise(lim_inf = min(precip),lim_sup = max(precip))
nomes_variaveis <- c(</pre>
  percent_temp2 = "Temperatura Celcius 13° - 15°",
  percent_temp3 = "Temperatura Celcius 15° - 16°",
  percent_temp4 = "Temperatura Celcius 16° - 18°";
  percent_temp5 = "Temperatura Celcius 18° - 19°"
  percent_temp6 = "Temperatura Celcius 19° - 21°",
  percent_temp7 = "Temperatura Celcius 21° - 22°",
  percent_temp8 = "Temperatura Celcius 22° - 24°",
  percent_temp9 = "Temperatura Celcius 24° - 25°",
  percent_temp10 = "Temperatura Celcius 25° - 31°",
  percent_precip2 = "Precipitação 6.7 - 23.1 mm",
  percent_precip3 = "Precipitação 23.1 - 56.6 mm";
  percent_precip4 = "Precipitação 56.6 - 115.7 mm",
  percent_precip5 = "Precipitação 115.7 - 694.8 mm")
```

Regressao 1

```
#### OLS
model_ols_fixed <- feols(feminicidio ~ percent_temp + percent_precip | data + code_muni, dados)

#### Poisson
model_poisson_fixed <- fepois(feminicidio ~ percent_temp + percent_precip | data + code_muni, dados)

## NOTE: 0/2,126 fixed-effects (459,216 observations) removed because of only 0 outcomes.

#### Binomial Negativo
model_bn_fixed <- fenegbin(feminicidio ~ percent_temp + percent_precip | data + code_muni, dados)

## NOTE: 0/2,126 fixed-effects (459,216 observations) removed because of only 0 outcomes.

etable(list(model_ols_fixed,model_poisson_fixed,model_bn_fixed),tex = T,dict = nomes_variaveis,notes =</pre>
```

Dependent Variable:		feminicidio	
Model:	(1)	(2)	(3)
	ÒĹS	Poisson	Neg. Bin.
Variables			
Temperatura Celcius 13° - 15°	0.0009	0.0501	0.0536
Temperatura Ceretus 15 - 15	(0.0006)	(0.0392)	(0.0402)
Temperatura Celcius 15° - 16°	0.0010	0.0526	0.0570
Temperatura Ceretus 15 - 10	(0.0008)	(0.0470)	(0.0484)
Temperatura Celcius 16° - 18°	0.0003	0.0085	0.0150
Temperatura Ceretas 10	(0.0010)	(0.0561)	(0.0581)
Temperatura Celcius 18° - 19°	0.0002	-0.0013	1.21×10^{-5}
Temperavara ceretae 10	(0.0011)	(0.0659)	(0.0682)
Temperatura Celcius 19° - 21°	-0.0001	0.0006	0.0020
	(0.0013)	(0.0754)	(0.0778)
Temperatura Celcius 21° - 22°	0.0002	0.0098	0.0049
r r	(0.0015)	(0.0877)	(0.0889)
Temperatura Celcius 22° - 24°	$0.0013^{'}$	0.0818	$0.0765^{'}$
•	(0.0019)	(0.1061)	(0.1063)
Temperatura Celcius 24° - 25°	0.0006	$0.0435^{'}$	0.0411
_	(0.0020)	(0.1154)	(0.1164)
Temperatura Celcius 25° - 31°	0.0005	0.0178	0.0047
	(0.0022)	(0.1259)	(0.1271)
Precipitação 6.7 - 23.1 mm	7.98×10^{-5}	0.0019	0.0049
	(0.0004)	(0.0296)	(0.0299)
Precipitação 23.1 - 56.6 mm	2.58×10^{-5}	-0.0057	-0.0104
	(0.0005)	(0.0316)	(0.0309)
Precipitação 56.6 - 115.7 mm	-9.38×10^{-5}	-0.0089	-0.0142
	(0.0006)	(0.0361)	(0.0357)
Precipitação 115.7 - 694.8 mm	-0.0007	-0.0498	-0.0556
	(0.0007)	(0.0415)	(0.0415)
Fixed-effects			
data	Yes	Yes	Yes
code_muni	Yes	Yes	Yes
Fit statistics			
Observations	1,202,256	743,040	743,040
Squared Correlation	0.21813	0.21155	0.20880
Pseudo R^2	-0.28275	0.24076	0.19997
BIC	-1,261,002.6	197,420.5	197,056.3
Over-dispersion		•	2.2622

 $\label{local_condition} Clustered~(code_muni)~standard\text{-}errors~in~parentheses\\ Signif.~Codes:~***:~0.01,~**:~0.05,~*:~0.1$

Notes: Ola

Lead

```
### Com efeitos fixos
#### OLS
model_ols_fixed <- feols(feminicidio ~ lead_temp + lead_precip| data + code_muni, dados_lead)</pre>
## NOTE: 1 observation removed because of NA values (RHS: 1).
model_poisson_fixed <- fepois(feminicidio ~ lead_temp + lead_precip| data + code_muni, dados_lead)
## NOTES: 1 observation removed because of NA values (RHS: 1).
          0/2,126 fixed-effects (459,216 observations) removed because of only 0 outcomes.
#### Binomial Negativo
model_bn_fixed <- fenegbin(feminicidio ~ lead_temp + lead_precip| data + code_muni, dados_lead)</pre>
## NOTES: 1 observation removed because of NA values (RHS: 1).
          0/2,126 fixed-effects (459,216 observations) removed because of only 0 outcomes.
etable(list(model_ols_fixed,model_poisson_fixed,model_bn_fixed),tex = T,notes = 'Ola',se = 'cluster',cl
## \begin{tabular}{lccc}
## \tabularnewline\midrule\midrule
## Dependent Variable: &\multicolumn{3}{c}{feminicidio}\\
## Model:&(1) & (2) & (3)\\
## & OLS & Poisson & Neg. Bin.\\
## \midrule \emph{Variables}& &
                                   & \\
## lead\_temp10 & -0.0011 & -0.0661 & -0.0658\\
   &(0.0023) & (0.1294) & (0.1257)\\
## lead\_temp2 & 0.0017$^{***}$ & 0.1033$^{**}$ & 0.1123$^{***}$\\
    &(0.0006) & (0.0410) & (0.0409)\\
## lead\_temp3 & 0.0014 & 0.0907 & 0.0901\\
    &(0.0010) & (0.0566) & (0.0572)\\
## lead\_temp4 & 0.0011 & 0.0547 & 0.0625\\
    &(0.0011) & (0.0631) & (0.0646)\\
## lead\_temp5 & 0.0008 & 0.0414 & 0.0465\\
    &(0.0013) & (0.0765) & (0.0753)\\
## lead\_temp6 & 0.0006 & 0.0477 & 0.0549\\
    &(0.0015) & (0.0869) & (0.0853)\\
## lead\ temp7 & $9.24\times 10^{-5}$ & 0.0098 & 0.0160\\
    &(0.0017) & (0.0948) & (0.0928)\\
## lead\_temp8 & 0.0002 & 0.0300 & 0.0286\\
    &(0.0019) & (0.1090) & (0.1057)\\
## lead\_temp9 & -0.0002 & 0.0035 & 0.0092\\
     &(0.0021) & (0.1212) & (0.1172)\\
## lead\_precip2 & 0.0006 & 0.0358 & 0.0264\\
    &(0.0004) & (0.0284) & (0.0283)\\
## lead\_precip3 & -0.0006 & -0.0364 & -0.0414\\
   &(0.0005) & (0.0324) & (0.0325)\\
## lead\_precip4 & 0.0002 & 0.0008 & -0.0102\\
## &(0.0006) & (0.0366) & (0.0362)\\
## lead\_precip5 & 0.0003 & 0.0080 & -0.0032\\
    &(0.0007) & (0.0419) & (0.0418)\\
## \midrule \emph{Fixed-effects}& & & \\
## data & Yes & Yes & Yes\\
```

code_muni & Yes & Yes & Yes\\

```
## \midrule \emph{Fit statistics}& & & \\
## Observations & 1,202,255&743,039&743,039\\
## Squared Correlation & 0.21818&0.21193&0.20914\\
## Pseudo R$^2$ & -0.28282&0.24083&0.20003\\
## BIC & -1,261,072.9&197,407.0&197,045.5\\
## Over-dispersion & &&2.2714\\
## \midrule\midrule\multicolumn{4}{1}{\cdot emph{Clustered (code\_muni) standard-errors in parentheses}}\\
## \multicolumn{4}{1}{\cdot emph{Signif. Codes: ***: 0.01, **: 0.05, *: 0.1}}\\
## \medskip \emph{Notes:} Ola
```

Testando com cidades + 100.000

```
# lendo os dados
dados <- read_csv('data/df_join.csv') %>% filter(populacao > 100000)
## -- Column specification -----
## cols(
     unique_key = col_character(),
##
     code_muni = col_double(),
##
##
    ano = col double(),
    data = col_date(format = ""),
##
    mes = col_double(),
##
    temp = col_double(),
##
    precip = col_double(),
     feminicidio = col_double(),
##
##
     populacao = col_double()
## )
# Formando dummys
dados <- dados %>% mutate(percent_temp = ntile(temp, 10) %>% as.factor(),
                 percent_precip = ntile(precip,5) %>% as.factor())
# criando variavel de tendencia linear
df_trend <- tibble(</pre>
 data = dados$data %>% unique(),
 trend = 1:(dados$data %>% unique() %>% length())
dados <- dados %>% left_join(df_trend)
## Joining, by = "data"
# fazendo code do municipio virar factor
dados$code_muni <- as.factor(dados$code_muni)</pre>
model_ols_fixed <- feols(feminicidio ~ percent_temp + percent_precip | data + code_muni, dados)</pre>
#### Poisson
model_poisson_fixed <- fepois(feminicidio ~ percent_temp + percent_precip | data + code_muni, dados)</pre>
```

NOTE: 0/267 fixed-effects (4,224 observations) removed because of only 0 outcomes.

```
#### Binomial Negativo
model_bn_fixed <- fenegbin(feminicidio ~ percent_temp + percent_precip | data + code_muni, dados)
## NOTE: 0/267 fixed-effects (4,224 observations) removed because of only 0 outcomes.
etable(list(model_ols_fixed,model_poisson_fixed,model_bn_fixed),tex = T,notes = 'Ola',se = 'cluster',cl
## \begin{tabular}{lccc}
## \tabularnewline\midrule\midrule
## Dependent Variable:&\multicolumn{3}{c}{feminicidio}\\
## Model:&(1) & (2) & (3)\\
## & OLS & Poisson & Neg. Bin.\\
## \midrule \emph{Variables}& &
                                  & \\
## percent\_temp2 & 0.0156$^{**}$ & 0.1057$^{**}$ & 0.1077$^{**}$\\
    &(0.0067) & (0.0491) & (0.0513)\\
## percent\_temp3 & 0.0129$^{*}$ & 0.0806 & 0.0702\\
    &(0.0073) & (0.0519) & (0.0527)\\
## percent\_temp4 & 0.0114 & 0.0632 & 0.0558\\
    &(0.0100) & (0.0725) & (0.0747)\\
## percent\_temp5 & 0.0140 & 0.0671 & 0.0640\\
    &(0.0118) & (0.0808) & (0.0850)\\
## percent\_temp6 & 0.0110 & 0.0529 & 0.0432\\
   &(0.0145) & (0.0978) & (0.1016)\\
## percent\_temp7 & 0.0299$^{*}$ & 0.1679 & 0.1638\\
    &(0.0181) & (0.1099) & (0.1150)\\
## percent\_temp8 & 0.0303 & 0.1698 & 0.1683\\
    &(0.0229) & (0.1324) & (0.1376)\\
## percent\_temp9 & 0.0501$^{*}$ & 0.2744$^{*}$ & 0.2734$^{*}$\\
    &(0.0279) & (0.1530) & (0.1583)\\
## percent\ temp10 & 0.0529$^{*}$ & 0.2945$^{*}$ & 0.2881\\
    &(0.0316) & (0.1711) & (0.1755)\\
## percent\_precip2 & 0.0082 & 0.0576 & 0.0504\\
    &(0.0058) & (0.0403) & (0.0408)\\
## percent\_precip3 & 0.0057 & 0.0411 & 0.0397\\
     &(0.0064) & (0.0449) & (0.0457)\\
## percent\_precip4 & 0.0091 & 0.0623 & 0.0544\\
    &(0.0077) & (0.0529) & (0.0528)\\
## percent\_precip5 & 0.0018 & 0.0122 & 0.0086\\
   &(0.0087) & (0.0580) & (0.0591)\\
## \midrule \emph{Fixed-effects}&
## data & Yes & Yes & Yes\\
## code\_muni & Yes & Yes & Yes\\
## \midrule \emph{Fit statistics}& & & \\
## Observations & 59,448&55,224&55,224\\
## Squared Correlation & 0.28213&0.28502&0.28084\\
## Pseudo R$^2$ & 0.22116&0.20460&0.16118\\
## BIC & 78,418.0&51,895.5&51,781.8\\
## Over-dispersion & &&4.2741\\
## \midrule\midrule\multicolumn{4}{1}{\emph{Clustered (code\_muni) standard-errors in parentheses}}\\
## \multicolumn{4}{1}{\emph{Signif. Codes: ***: 0.01, **: 0.05, *: 0.1}}\\
## \end{tabular}
##
## \medskip \emph{Notes:} Ola
```

Testando com distribuicao a priori cidade + 100000

```
# lendo os dados
dados <- read_csv('data/df_join.csv') #%>% filter(populacao > 100000)
##
## -- Column specification -----
## cols(
##
    unique_key = col_character(),
##
     code_muni = col_double(),
##
    ano = col_double(),
    data = col date(format = ""),
##
##
    mes = col_double(),
    temp = col_double(),
##
##
    precip = col_double(),
##
    feminicidio = col_double(),
    populacao = col_double()
##
## )
dados <- dados %>% mutate(x_temp = case_when(
  temp <= 15 ~ 'Inverno',</pre>
  (temp > 15) & (temp <= 24) ~ 'Outono',
  (temp > 24) & (temp <= 30) ~ 'Primavera',
  temp > 30 ~ 'Verão'),
  x_precip = case_when(
  precip <= 5 ~ 'Fraca',</pre>
  (precip > 5) & (precip <= 25) ~ 'Moderada',</pre>
  (precip > 25) & (precip <= 50) ~ 'Forte',
  precip > 50 ~ 'Torrencial'))
# criando variavel de tendencia linear
df_trend <- tibble(</pre>
 data = dados$data %>% unique(),
 trend = 1:(dados$data %>% unique() %>% length())
dados <- dados %>% left_join(df_trend)
## Joining, by = "data"
# fazendo code do municipio virar factor
dados$code_muni <- as.factor(dados$code_muni)</pre>
# Fazendo com que
dados$x temp <- factor(dados$x temp,ordered = F)</pre>
dados <- dados %>% mutate(x_temp = relevel(x_temp,ref = 'Primavera'))
model_ols_fixed <- feols(feminicidio ~ x_temp + x_precip | data + code_muni, dados)</pre>
#### Poisson
model_poisson_fixed <- fepois(feminicidio ~ x_temp + x_precip | data + code_muni, dados)</pre>
## NOTE: 0/2,126 fixed-effects (459,216 observations) removed because of only 0 outcomes.
#### Binomial Negativo
model_bn_fixed <- fenegbin(feminicidio ~ x_temp + x_precip | data + code_muni, dados)</pre>
```

Testando por raca preta

```
# lendo os dados
dados <- read_csv('data/df_join_negro.csv') #%>% filter(populacao > 100000)
##
## -- Column specification ------
## cols(
##
     unique_key = col_character(),
     code_muni = col_double(),
##
##
    ano = col_double(),
    data = col date(format = ""),
##
    mes = col_double(),
##
##
    temp = col double(),
##
    precip = col_double(),
##
    feminicidio = col_double(),
    populacao = col_double()
##
## )
# Formando dummys
dados <- dados %>% mutate(percent_temp = ntile(temp, 10) %>% as.factor(),
                 percent_precip = ntile(precip,5) %>% as.factor())
# criando variavel de tendencia linear
df_trend <- tibble(</pre>
 data = dados$data %>% unique(),
 trend = 1:(dados$data %>% unique() %>% length())
dados <- dados %>% left_join(df_trend)
## Joining, by = "data"
# fazendo code do municipio virar factor
dados$code_muni <- as.factor(dados$code_muni)</pre>
#### OLS
model_ols_fixed <- feols(feminicidio ~ percent_temp + percent_precip | data + code_muni, dados)</pre>
```

```
#### Poisson
model_poisson_fixed <- fepois(feminicidio ~ percent_temp + percent_precip | data + code_muni, dados)

## NOTE: 0/4,881 fixed-effects (1,054,296 observations) removed because of only 0 outcomes.

#### Binomial Negativo
model_bn_fixed <- fenegbin(feminicidio ~ percent_temp + percent_precip | data + code_muni, dados)

## NOTE: 0/4,881 fixed-effects (1,054,296 observations) removed because of only 0 outcomes.
etable(list(model_ols_fixed,model_poisson_fixed,model_bn_fixed),tex = T,dict = nomes_variaveis,notes =</pre>
```

Dependent Variable:	feminicidio		
Model:	(1)	(2)	(3)
Wiodol.	OLS	Poisson	Neg. Bin.
	022	1 0100011	11081 2111
Variables	4.9 10=5	0.0474	0.0001
Temperatura Celcius 13° - 15°	4.3×10^{-5}	0.0474	0.0661
T	(0.0001)	(0.1959)	(0.1953)
Temperatura Celcius 15° - 16°	9.54×10^{-5}	0.0914	0.1087
T C-1-: 160 100	$ (0.0002) \\ -4.7 \times 10^{-5} $	(0.2116) -0.0265	(0.2129) -0.0232
Temperatura Celcius 16° - 18°	-4.7×10^{-3} (0.0002)		
Townsensture Coloins 100 100	(0.0002) -5.93×10^{-5}	(0.2605) -0.0575	(0.2567) -0.0537
Temperatura Celcius 18° - 19°			
T C-1-: 100 210	(0.0003) -0.0002	(0.2863) -0.1169	(0.2850) -0.1187
Temperatura Celcius 19° - 21°			
T C-1-: 019 009	(0.0003)	(0.3230) -0.2835	(0.3225) -0.2962
Temperatura Celcius 21° - 22°	-0.0005		
T	(0.0004)	(0.3719)	(0.3706)
Temperatura Celcius 22° - 24°	-0.0005	-0.3476	-0.3533
T C-1-: 049 979	(0.0004) -0.0006	(0.4095) -0.4329	(0.4090) -0.4287
Temperatura Celcius 24° - 25°			
T C-1-: 25° 21°	(0.0005) -0.0003	(0.5125)	(0.5079)
Temperatura Celcius 25° - 31°		-0.0178	-0.0147
D::t~- 6.7 02.1	$ (0.0005) \\ -2.98 \times 10^{-5} $	(0.5564) -0.0295	(0.5514) -0.0299
Precipitação 6.7 - 23.1 mm			
D	$(0.0001) \\ 1.34 \times 10^{-5}$	(0.1068)	(0.1071)
Precipitação 23.1 - 56.6 mm		0.0228	0.0231
Draginitação 56.6 115.7 mm	$(0.0001) \\ 0.0001$	(0.1065) 0.1295	$(0.1074) \\ 0.1324$
Precipitação 56.6 - 115.7 mm	(0.0001)	(0.1295)	(0.1324)
Precipitação 115.7 - 694.8 mm	0.0001	0.1293) 0.1634	0.1623
Precipitação 115.7 - 094.8 mm	(0.0002)	(0.1605)	(0.1525)
	(0.0002)	(0.1003)	(0.1599)
Fixed-effects			
data	Yes	Yes	Yes
code_muni	Yes	Yes	Yes
Fit statistics			
Observations	1,202,256	147,960	147,960
Squared Correlation	0.02661	0.02066	0.01982
Pseudo \mathbb{R}^2	-0.00683	0.09382	0.08968
BIC	-4,699,096.4	24,223.7	24,205.7
Over-dispersion	, ,	, .	0.85449

Notes: Ola

Testando por raca branco

```
# lendo os dados
dados <- read_csv('data/df_join_branco.csv') #%>% filter(população > 100000)
```

```
## -- Column specification -----
## cols(
##
     unique key = col character(),
     code_muni = col_double(),
##
##
     ano = col_double(),
    data = col date(format = ""),
##
    mes = col double(),
##
     temp = col_double(),
##
##
    precip = col_double(),
##
     feminicidio = col_double(),
     populacao = col_double()
## )
# Formando dummys
dados <- dados %>% mutate(percent_temp = ntile(temp, 10) %>% as.factor(),
                 percent_precip = ntile(precip,5) %>% as.factor())
# criando variavel de tendencia linear
df_trend <- tibble(</pre>
 data = dados$data %>% unique(),
 trend = 1:(dados$data %>% unique() %>% length())
dados <- dados %>% left_join(df_trend)
## Joining, by = "data"
# fazendo code do municipio virar factor
dados$code_muni <- as.factor(dados$code_muni)</pre>
#### OLS
model_ols_fixed <- feols(feminicidio ~ percent_temp + percent_precip | data + code_muni, dados)</pre>
model_poisson_fixed <- fepois(feminicidio ~ percent_temp + percent_precip | data + code_muni, dados)</pre>
## NOTE: 0/3,405 fixed-effects (735,480 observations) removed because of only 0 outcomes.
#### Binomial Negativo
model_bn_fixed <- fenegbin(feminicidio ~ percent_temp + percent_precip | data + code_muni, dados)</pre>
## NOTE: 0/3,405 fixed-effects (735,480 observations) removed because of only 0 outcomes.
etable(list(model_ols_fixed,model_poisson_fixed,model_bn_fixed),tex = T,dict = nomes_variaveis,notes =
```

Dependent Variable:	feminicidio		
Model:	(1)	(2)	(3)
1125 4611	OLS	Poisson	Neg. Bin.
T7 . 11	<u> </u>		
Variables	0.0005	0.0411	0.0420
Temperatura Celcius 13° - 15°	0.0005	0.0411	(0.0430
Temperatura Celcius 15° - 16°	$(0.0005) \\ 0.0002$	(0.0458) 0.0325	(0.0469) 0.0386
Temperatura Celcius 15 - 16	(0.0002)	(0.0525)	(0.0622)
Town and tune Coloine 160 100	(0.0007) -0.0005	(0.0025) -0.0255	-0.0070
Temperatura Celcius 16° - 18°	(0.0009)	-0.0255 (0.0847)	(0.0819)
Town and tune Coloine 100 100	-0.0010	-0.0869	(0.0819) -0.0697
Temperatura Celcius 18° - 19°			
T C-1-: 108 918	(0.0009) -0.0006	(0.0995) -0.0364	(0.0973) -0.0191
Temperatura Celcius 19° - 21°	(0.0010)		
T C-1-: 218 228	(0.0010) -2.93×10^{-5}	(0.1164)	$(0.1137) \\ 0.0658$
Temperatura Celcius 21° - 22°		0.0589	
TI / C.1: 900 940	(0.0011)	(0.1370)	(0.1326)
Temperatura Celcius 22° - 24°	-9.7×10^{-5}	0.0440	0.0553
T C-1-: 248 258	(0.0012) -0.0006	(0.1675) -0.1235	(0.1648) -0.1094
Temperatura Celcius 24° - 25°			
T C-1-: 25° 21°	(0.0013)	(0.1892)	(0.1863)
Temperatura Celcius 25° - 31°	-0.0009	-0.2433	-0.2293
D:::::::::::::::::::::::::::::::::	$ (0.0014) \\ -5.74 \times 10^{-5} $	(0.2224) -0.0093	(0.2204)
Precipitação 6.7 - 23.1 mm			-0.0141
D : '4 ~ 02.1 FC.C	(0.0003)	(0.0446)	(0.0457)
Precipitação 23.1 - 56.6 mm	-4.01×10^{-5}	-0.0152	-0.0235
D : ' ~ FCC 11F 7	(0.0003)	(0.0469)	(0.0477)
Precipitação 56.6 - $115.7~\mathrm{mm}$	-0.0003	-0.0336	-0.0441
D ' ' ~ 1157 0040	(0.0004)	(0.0545)	(0.0554)
Precipitação 115.7 - 694.8 mm	-0.0007	-0.0704	-0.0838
	(0.0005)	(0.0649)	(0.0654)
Fixed-effects			
data	Yes	Yes	Yes
code_muni	Yes	Yes	Yes
Fit statistics			
Observations	1,202,256	466,776	466,776
Squared Correlation	0.15202	0.15052	0.14746
Pseudo R ²	-0.09055	0.19391	0.16603
BIC	-2,306,487.9	103,442.4	103,307.5
Over-dispersion	=,000,20.10	-55,112.1	1.8576

Notes: Ola

Testando por ate 12 anos

```
# lendo os dados
dados <- read_csv('data/df_join_ate_12anos.csv') #%>% filter(população > 100000)
```

```
## -- Column specification -----
## cols(
     unique_key = col_character(),
##
     code_muni = col_double(),
##
##
     ano = col_double(),
    data = col_date(format = ""),
##
    mes = col double(),
##
     temp = col_double(),
##
##
    precip = col_double(),
##
     feminicidio = col_double(),
     populacao = col_double()
## )
# Formando dummys
dados <- dados %>% mutate(percent_temp = ntile(temp, 10) %>% as.factor(),
                 percent_precip = ntile(precip,5) %>% as.factor())
# criando variavel de tendencia linear
df_trend <- tibble(</pre>
 data = dados$data %>% unique(),
 trend = 1:(dados$data %>% unique() %>% length())
dados <- dados %>% left_join(df_trend)
## Joining, by = "data"
# fazendo code do municipio virar factor
dados$code_muni <- as.factor(dados$code_muni)</pre>
#### OLS
model_ols_fixed <- feols(feminicidio ~ percent_temp + percent_precip | data + code_muni, dados)</pre>
model_poisson_fixed <- fepois(feminicidio ~ percent_temp + percent_precip | data + code_muni, dados)</pre>
## NOTE: 0/2,941 fixed-effects (635,256 observations) removed because of only 0 outcomes.
#### Binomial Negativo
model_bn_fixed <- fenegbin(feminicidio ~ percent_temp + percent_precip | data + code_muni, dados)</pre>
## NOTE: 0/2,941 fixed-effects (635,256 observations) removed because of only 0 outcomes.
etable(list(model_ols_fixed,model_poisson_fixed,model_bn_fixed),tex = T,dict = nomes_variaveis,notes =
```

Dependent Variable:	feminicidio		
Model:	(1)	(2)	(3)
1125 4611	OLS	Poisson	Neg. Bin.
T7 . 11	<u> </u>		
Variables	0.0000	0.0600	0.0796
Temperatura Celcius 13° - 15°	0.0008	0.0692	0.0786
T C-1-: 150 160	(0.0005)	(0.0516)	(0.0517)
Temperatura Celcius 15° - 16°	0.0005	0.0302	0.0267
TD / C.1: 100 100	$ \begin{array}{c} (0.0006) \\ 4.17 \times 10^{-5} \end{array} $	(0.0622)	(0.0627)
Temperatura Celcius 16° - 18°		-0.0348	-0.0447
TD / C.1: 100 100	(0.0007)	(0.0750)	(0.0749)
Temperatura Celcius 18° - 19°	-5.83×10^{-5}	-0.0515	-0.0637
T	(0.0008)	(0.0862)	(0.0866)
Temperatura Celcius 19° - 21°	-0.0008	-0.0957	-0.1077
T	(0.0010)	(0.0965)	(0.0982)
Temperatura Celcius 21° - 22°	0.0004	0.0014	-0.0129
TI (C.1.: 222 242	(0.0011)	(0.1078)	(0.1095)
Temperatura Celcius 22° - 24°	-0.0006	-0.0851	-0.0986
TD	(0.0014)	(0.1301)	(0.1312)
Temperatura Celcius 24° - 25°	-0.0013	-0.1399	-0.1513
T	(0.0015)	(0.1425)	(0.1450)
Temperatura Celcius 25° - 31°	-0.0011	-0.1491	-0.1642
B	(0.0016)	(0.1576)	(0.1597)
Precipitação 6.7 - 23.1 mm	-0.0001	-0.0221	-0.0196
	(0.0003)	(0.0367)	(0.0374)
Precipitação 23.1 - 56.6 mm	-1.35×10^{-5}	-0.0189	-0.0265
D	(0.0004)	(0.0381)	(0.0385)
Precipitação 56.6 - 115.7 mm	-0.0002	-0.0237	-0.0299
D	(0.0004)	(0.0441)	(0.0443)
Precipitação 115.7 - 694.8 mm	-0.0003	-0.0369	-0.0431
	(0.0005)	(0.0515)	(0.0521)
Fixed-effects			
data	Yes	Yes	Yes
code_muni	Yes	Yes	Yes
Fit statistics			
Observations	1,202,256	567,000	567,000
Squared Correlation	0.21056	0.20056	0.19593
Pseudo R ²	-0.16961	0.23611	0.19553 0.19752
BIC	-1,879,064.1	132,429.6	132,246.4
Over-dispersion	1,010,004.1	102, 120.0	2.4567
O ver-dispersion			4.4001

Notes: Ola

Testando por + 12 anos

```
# lendo os dados
dados <- read_csv('data/df_join_12anos+.csv') #%>% filter(população > 100000)
```

```
## -- Column specification -----
## cols(
##
     unique key = col character(),
     code_muni = col_double(),
##
##
     ano = col_double(),
    data = col date(format = ""),
##
    mes = col double(),
##
     temp = col_double(),
##
##
    precip = col_double(),
##
     feminicidio = col_double(),
     populacao = col_double()
## )
# Formando dummys
dados <- dados %>% mutate(percent_temp = ntile(temp, 10) %>% as.factor(),
                 percent_precip = ntile(precip,5) %>% as.factor())
# criando variavel de tendencia linear
df_trend <- tibble(</pre>
 data = dados$data %>% unique(),
 trend = 1:(dados$data %>% unique() %>% length())
dados <- dados %>% left_join(df_trend)
## Joining, by = "data"
# fazendo code do municipio virar factor
dados$code_muni <- as.factor(dados$code_muni)</pre>
#### OLS
model_ols_fixed <- feols(feminicidio ~ percent_temp + percent_precip | data + code_muni, dados)</pre>
model_poisson_fixed <- fepois(feminicidio ~ percent_temp + percent_precip | data + code_muni, dados)</pre>
## NOTE: 5/5,111 fixed-effects (1,106,251 observations) removed because of only 0 outcomes.
#### Binomial Negativo
model_bn_fixed <- fenegbin(feminicidio ~ percent_temp + percent_precip | data + code_muni, dados)</pre>
## NOTE: 5/5,111 fixed-effects (1,106,251 observations) removed because of only 0 outcomes.
etable(list(model_ols_fixed,model_poisson_fixed,model_bn_fixed),tex = T,dict = nomes_variaveis,notes =
```

Dependent Variable:	feminicidio		
Model:	(1)	(2)	(3)
1.10 do1.	OLS	Poisson	Neg. Bin.
Variables			
	-3.59×10^{-6}	0.0000	0.0200
Temperatura Celcius 13° - 15°		-0.0266 (0.2067)	-0.0322 (0.2044)
Temperatura Celcius 15° - 16°	(0.0002) -0.0003	(0.2067) -0.2962	(0.2044) -0.2879
Temperatura Celcius 15 - 16	(0.0003)	(0.2524)	(0.2420)
Temperatura Celcius 16° - 18°	-0.0004	(0.2324) -0.4352	-0.4286
Temperatura Cercius 10 - 18	(0.0003)	(0.2808)	(0.2755)
Temperatura Celcius 18° - 19°	-0.0003	-0.3525	-0.3490
Temperatura Celcius 16 - 19	(0.0003)	(0.3339)	(0.3271)
Temperatura Celcius 19° - 21°	-0.0003	-0.3171	-0.2972
Temperatura Celeius 19 - 21	(0.0003)	(0.3669)	(0.3607)
Temperatura Celcius 21° - 22°	-0.0005	-0.4984	-0.4953
Temperatura Celeius 21 - 22	(0.0004)	(0.4535)	(0.4385)
Temperatura Celcius 22° - 24°	-0.0004)	-0.3834	-0.3813
Temperatura Celeius 22 - 24	(0.0004)	(0.5124)	(0.5018)
Temperatura Celcius 24° - 25°	-0.0003	-0.3193	-0.3189
Tomperavara Cereras 21 20	(0.0004)	(0.5564)	(0.5445)
Temperatura Celcius 25° - 31°	-0.0004	-0.5446	-0.5615
	(0.0005)	(0.6170)	(0.6015)
Precipitação 6.7 - 23.1 mm	6.11×10^{-5}	0.0878	0.0855
1 3	(8.53×10^{-5})	(0.1305)	(0.1328)
Precipitação 23.1 - 56.6 mm	6.39×10^{-5}	$0.0765^{'}$	$0.0642^{'}$
1 3	(0.0001)	(0.1512)	(0.1516)
Precipitação 56.6 - 115.7 mm	-3.72×10^{-5}	-0.0121	-0.0189
	(0.0001)	(0.1659)	(0.1665)
Precipitação 115.7 - 694.8 mm	-0.0001	-0.1362	-0.1498
	(0.0002)	(0.2018)	(0.2008)
Fixed-effects			
data	Yes	Yes	Yes
code muni	Yes	Yes	Yes
	100	105	
Fit statistics	1 000 050	00.005	00.005
Observations	1,202,256	96,005	96,005
Squared Correlation Pseudo R ²	0.05704	0.05913	0.05648
Pseudo R ² BIC	-0.01402	0.15502	0.14475
_	-5,024,650.2	16,999.3	16,993.3 1.9137
Over-dispersion			1.9131

Clustered (code_muni) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: Ola