Теорема 11. Пусть K(t,s) непрерывная функция по переменным t и s. Тогда для любой непрерывной функции y(t) при любом значении параметра λ в пространстве C[a,b] существует единственное решение уравнения (2.12), которое можно представить в виде

$$x(t) = y(t) + \lambda \int_{a}^{b} R(t,s;\lambda) y(s) ds, \qquad (2.17)$$

где

$$R(t,s;\lambda) = \sum_{i=1}^{\infty} \lambda^{i-1} \mathcal{K}_i(t,s), \qquad (2.18)$$

$$\mathcal{K}_1(t,s) = \mathcal{K}(t,s),$$

$$\mathcal{K}_{i}(t,s) = \int_{t}^{b} \mathcal{K}(t,\tau)\mathcal{K}_{i-1}(\tau,s) d\tau, i = 2,3,\dots$$
(2.19)

Замкнутые операторы. Пусть X и Y – банаховы пространства, $A: X \to Y$ линейный оператор с областью определения $\mathcal{D}(A) \subset X$. Множество $\{(x,Ax): x \in \mathcal{D}(A), Ax \in \mathcal{R}(A)\}$ называется графиком оператора A и обозначается Gr_A . Поскольку A – линейный оператор, то Gr_A представляет собой линейное многообразие в пространстве $X \times Y$, однозначно определяемое оператором A. Если оператор A непрерывен, то линейное многообразие Gr_A замкнуто, т. е. является подпространством в $X \times Y$.

Определение 1. Линейный оператор $A: X \to Y$ называется замкнутым, если его график Gr_A является замкнутым множеством в $X \times Y$.

Лемма 2. Пусть $A:X\to Y$, $A\in \mathscr{B}(X,Y)$, причем $\mathscr{D}(A)=X$. Тогда A замкнут.

Лемма 3. Если A замкнут и обратный оператор A^{-1} существует, то A^{-1} также замкнут.

Лемма 4. Если $A \in \mathcal{B}(X,Y)$ и A^{-1} существует, то A^{-1} замкнут.