

SENIORSERTIFIKAAT-EKSAMEN/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

MEGANIESE TEGNOLOGIE: SWEIS- EN METAALWERK

2022

NASIENRIGLYNE

PUNTE: 200

Hierdie nasienriglyne bestaan uit 19 bladsye.

VRAAG 1: MEERVOUDIGEKEUSE-VRAE (GENERIES)

1.1	A✓	(1)
1.2	B✓	(1)
1.3	C✓	(1)
1.4	D✓	(1)
1.5	A✓	(1)
1.6	C✓	(1) [6]

(2)

VRAAG 2: VEILIGHEID (GENERIES)

2.1 Voorgeskrewe spoed van die slypwiel:

- Omdat die wiel kan bars/breek as dit vinniger as die voorgeskrewe spoed draai. / Om 'n ongeluk te vermy. ✓
- Doeltreffendheid van die bankslypproses sal in die gedrang kom. ✓ (Enige 1 x 1) (1)

2.1 Voorgeskrewe spoed van die slypwiel:

- Moet nooit die bandsaag alleen los nie. ✓
- Gebruik 'n stootstok wanneer gesaag word. ✓
- Hou die werkstuk stewig en plat vas op die blad. ✓
- Moenie die masjien verstel terwyl daar gewerk word nie. ✓
- Moenie enige skerms oopmaak terwyl die masjien aan is nie. ✓
- Maak voorafsnitte voordat jy ingewikkelde krultipe saagwerk doen. ✓
- Moenie die materiaal op die lem forseer nie. ✓
- Hou hande weg van aksiepunte. ✓
- Hou hande stewig teen tafel. ✓
- Hou hande weerskande van lem en nie in lyn met die snylyn van die lem nie. ✓
- Hou los klere weg van aksiepunt. ✓ (Enige 2 x 1) (2)

2.3 Stadiums waarin noodhulp toegepas word:

- Ondersoek ✓
- Diagnose ✓
- Behandeling ✓

(3)

2.4 Oorsake van ongelukke:

- Onveilige handelinge ✓
- Onveilige toestande ✓

2.5 TWEE voordele van die produkuitleg:

- Hantering van materiaal word tot die minimum beperk. ✓
- Tydsduur van die vervaardigingsiklus is minder. ✓
- Produksiebeheer is bykans outomaties. ✓
- Beheer oor werksaamhede is makliker. ✓
- Groter gebruik van ongeskoolde arbeid is moontlik. ✓
- Minder totale inspeksie is nodig. ✓
- (2) Minder totale vloerruimte per produksie-eenheid is nodig. ✓ (Enige 2 x 1) [10]

VRAAG 3: MATERIAAL (GENERIES)

3.1	Tempering:

Tempering is 'n proses wat in die algemeen op staal toegepas word om die spanning/brosheid/verbeter smeebaarheid ✓ wat gedurende die verhardingsproses opgewek is, te verminder. ✓

(2)

3.2 **Uitgloeiing:**

- Om interne spannings te verlig wat dalk tydens vorige bewerkings van die metaal plaasgevind het. ✓
- Om staal te versag ten einde die masjineringsproses te fasiliteer. ✓
- Om die korrelstruktuur te verfyn. ✓
- Om brosheid te verminder. ✓ (Enige 3 x 1) (3)

3.3 **Normaliseringstemperatuur:**

- Bo ✓ die boonste kritieke temperatuur. ✓
- Bo ✓ AC₃ lyn. ✓ (Enige 1 x 2)

(2)

3.4 Vonkpatrone op koolstofstale:

- 3.4.1 Hoë-koolstofstaal ✓ (1)
- 3.4.2 Lae-koolstofstaal / Sagte staal ✓ (1)
- 3.4.3 Gietyster ✓ (1)

3.5 **Koolstof diagram:**

- A Temperatuur reeks / °C ✓
- B AC₃ lyn ✓
- C AC₁ lyn ✓
- D Koolstof inhoud / % koolstof ✓

(4) **[14]**

VRAAG 4: MEERVOUDIGEKEUSE-VRAE (SPESIFIEK)

4.1	A✓	(1)
4.2	C✓	(1)
4.3	A✓	(1)
4.4	A✓	(1)
4.5	A✓	(1)
4.6	C✓	(1)
4.7	D✓	(1)
4.8	D✓	(1)
4.9	D✓	(1)
4.10	C✓	(1)
4.11	C✓	(1)
4.12	B✓	(1)
4.13	A✓	(1)
4.14	D✓	(1) [14]

(5)

VRAAG 5: TERMINOLOGIE (MAATVORMS) (SPESIFIEK)

5.1 Masjiengereedskappe vir templaatgalery:

- Skaaf ✓
- Sirkelsaag ✓
- Boormasjien ✓
- Figuursaag ✓
- Skuurmasjien ✓
- Skêre om karton te sny ✓
- Enige ander toepaslike masjiengereedskap. ✓ (Enige 4 x 1)

5.2 Dakkap:

- A Kaplat ✓
- B Dakbalk ✓
- C Koppeldeel ✓
- D Hoofbint / bintbalk ✓
- E Hoekplate ✓

5. 3 **Sweissimbool:**

5.4 **Aanvullende simbole:**

5.4.1

5.4.2

5.4.3 (1)

5.5 **Staalring materiaal:**

Gemiddelde \emptyset = Buitediam \det – plaatdikte

$$\checkmark \checkmark$$
= 600 - 30
= 570 mm \checkmark

Gemiddelde omtrek = $\pi \times$ gemiddelde Ø

$$= \pi \times 570$$
 ✓
= 1790,71 mm
OF ✓
= 1791 mm

(5) **[23]**

(3) **[18]**

VRAAG 6: GEREEDSKAP EN TOERUSTING (SPESIFIEK)

6.1 Handguillotine: A – Geveerde af-pedaal ✓ B - Snyblad ✓ C – Drukplaat ✓ (3)6.2 **Tapdraaiers:** T- of dubbelhandvatseltapdraaier. ✓ Enkelhandvatseltapdraaier/Rateltapssleutel. ✓ (2)6.3 **Hoekslypers:** Sny ✓ Slyp ✓ Polering ✓ Skuur ✓ (Enige 3 x 1) (3)Voordele van omskakelaar-boogsweismasjien: 6.4 Omskakelaar-boogsweismasjien kan 'n wyer verskeideheid van materiale ✓as konvensionele WS sweismasjiene sweis. (2)6.5 **Puntsweis:** Gebruik nie verbruikbare elektrodes nie ✓ Effektief ✓ Vinnige sweisproses ✓ Ideaal vir massaproduksie ✓ Koste-effektief ✓ Ideaal vir liggewig/dunner materiaal ✓ Dit kan op 'n verskeidenheid metale gebruik word ✓ Verseker eenvormige lasse ✓ (Enige 2 x 1) (2)6.6 MIG sweis prosedures: Vorentoe-sweiswerk ✓ Loodregte-sweiswerk ✓ Agteruit-sweiswerk ✓ (3)6.7 **Plasmasnyer:** Plasmasny is 'n proses wat deur elektries-geleidende ✓ materiale sny met

Kopiereg voorbehou Blaai om asseblief

behulp van 'n versnellende uitspuiting ✓ van warm plasma. ✓

(7)

(8)

VRAAG 7: KRAGTE (SPESIFIEK)

7.1 Staalraamwerk:

7.1.1 Ruimtediagram:

SKAAL: 10 mm = 1 m

7.1.2 **Vektordiagram:**

SKAAL: 1 mm = 10 N

LID	GROOTTE
BD	510 N ✓
CD	590 N ✓
AD	590 N ✓

LW: Nasiener moet die diagram volgens gegewe skaal oorteken. Gebruik 'n toleransie van ±2 mm wanneer u nasien.

7.2 Spanning en vervorming:

7.2.1 **Dwarssnitarea**:

Area =
$$\frac{\pi(D^2 - d^2)}{4}$$

= $\frac{\pi(0,06^2 - 0,05^2)}{4}$
= $8,64 \times 10^{-4} \text{ m}^2$ (3)

7.2.2 **Spanning:**

Spanning =
$$\frac{\text{Krag / Las}}{\text{Area}}$$

= $\frac{500 \checkmark}{8,639 \times 10^{-4}} \checkmark$
= 578770,6911 Pa
= 0,58 MPa \checkmark (3)

7.2.3 **Vervorming:**

$$E = \frac{\text{Spanning}}{\text{Vervorming}}$$

$$\text{Vervorming} = \frac{\text{Spanning}}{E} \checkmark$$

$$= \frac{578770,6911}{90 \times 10^{9}} \checkmark$$

$$= 6,43 \times 10^{-6} \checkmark$$
(4)

7.3 **Momente:**

FIGUUR 7.3

7.3.1 Reaksies by LR en RR: Bereken LR Neem momente om RR

$$\Sigma ROM = \Sigma LOM$$

LR×13 =
$$(250 \times 10,5) + (40 \times 8) + (60 \times 3)$$

= $2625 + 320 + 180$
= $\frac{3125}{13}$
LR = $240,38$ N

Bereken RR Neem momente om LR

$$\Sigma LOM = \Sigma ROM$$

RR×13=
$$(60\times10)+(40\times5)+(250\times2.5)$$

= $600+200+625$
= $\frac{1425}{13}$
RR=109,62N \checkmark (8)

7. 3. 2 BUIGMOMENTE:

$$BM_A = (240,38 \times 2,5) \checkmark$$

= 600,95 Nm \checkmark

$$BM_{B} = (240,38 \times 5) - (250 \times 2,5) \checkmark$$

$$= 1201,90 - 625$$

$$= 576,90 \text{ Nm } \checkmark$$

$$BM_{C} = (240,38 \times 10) - (250 \times 7,5) - (40 \times 5) \checkmark$$

$$= 2403,8 - 1875 - 200$$

$$= 328,80 \text{ Nm} \checkmark$$
(6)

7.3.3 **BM diagram:**

SKAAL: 1 mm = 10 Nm

NB: Nasiener moet die diagram volgens gegewe skaal oorteken.

(6) **[45]**

VRAAG 8: HEGTINGSMETODES (INSPEKSIE VAN SWEISLASSE) (SPESIFIEK)

8.1 **Sweislasmeter:**

Om te kyk vir:

- hoek van penetrasie. ✓
- sweislasbelyning. ✓
- beenlengte/afstande van 'n hoeksweislas. ✓
- oormatige sweismetaal. ✓
- keel van hoeksweislas. ✓
- insnyding. ✓
- porositeit. ✓

(Enige 4 x 1) (4)

8.2 Oorsake van sweisdefekte:

8.2.1 **Onvolledige penetrasie:**

- Te lae sweisstroom ✓
- Te lae sweisspoed ✓
- Verkeerde blaasvlamhoek ✓
- Onvoldoende wortelgaping ✓
- Swak rand/las voorbereiding ✓
- Oormatige wortelgaping ✓
- Te vinnige sweisspoed ✓
- Te groot elektrode deursnee ✓
- Booglengte te lank ✓
- Nat/vuil elektrodes ✓

(Enige 2 x 1) (2)

(2)

8.2.2 **Sweisspatsels:**

- Versteuring in die gesmelte sweispoel ✓
- Te lae sweisstroom ✓
- Te hoë sweisstroom ✓
- Booglengte te lank ✓
- Nat/vuil elektrode ✓
- Verkeerde polariteit ✓
- Booglengte te kort ✓
- Verkeerde elektrode gebruik ✓
- Verkeerde ingeslote hoek ✓
- Sweisspoed te hoog ✓
- Vuil oppervlakte ✓
- Wisselvallige draadvoering ✓ (Enige 2 x 1)

(2)

8.3 Voorkoming van sweisdefekte:

8.3.1 **Porositeit/Poreusheid:**

- Deur die sweisoppervlakte skoon te maak. ✓
- Verseker dat elektrodes droog is. ✓
- Deur nie in winderige toestande te sweis nie. ✓
- Onvoldoende wortelgaping ✓
- Verseker dat die toevoer van afskermingsgas nie onderbreek word nie. ✓
- Gebruik regte tipe elketrode. ✓
- Verminder booglengte/-afstand. ✓
- Verminder boogsweisspoed. ✓ (Enige 2 x 1)

8.3.2 **Insnyding:**

- Handhaaf die korrekte boogsweisspoed. ✓
- Deur die boogspanning te verhoog. ✓
- Gebruik 'n ingrypvlamhoek/sweisvlam hoek. ✓ (Enige 2 x 1) (2)

8.4 **Tipe vlamme:**

- 8.4.1 Neutrale vlam ✓ (1)
- 8.4.2 Inkoolvlam ✓ (1)
- 8.4.3 Oksiderende vlam ✓ (1)

8.5 **Sweiskraters**:

- Word op die einde van die sweislopie ✓ gevorm wanneer die elektrode ✓ te gou verwyder word. ✓
- Om nie genoeg vulmateriaal ✓ in die krater ✓ toe te laat nie. ✓
- Om 'n te groot/wisselvallige ✓ sweisaksie ✓ te hê. ✓ (Enige 1 x 3)

8.6 **Inkeepbreek-toetsing:**

- Maak 'n snit met 'n ystersaag aan albei kante deur die middel van die sweislas. ✓
- Plaas die monster op twee staalstutte. ✓
- Gebruik 'n voorhamer om die monster te breek deur dit in die sone waar jy die snitte gesaag het te slaan.√
- Inspekteur die blootgestelde sweislas in die breuk ✓ vir onvolledige samesmelting, slakinsluitings (of ander sweisdefekte). ✓

(5) **[23]**

(1)

VRAAG	9: HEGTI	NGSMETODES (SPANNING EN VERVORMING) (SPESIFIEK)			
9.1	Elastiese deformasie: Dis die vermoë van 'n las/materiaal om na sy oorspronklike posisie/ dimensie ✓ terug te keer wanneer die spanning verlig is. ✓				
9.2	Krimping by staal.: Krimping is 'n vorm van plastiese vervorming waar die metaal vervorm ✓ het as gevolg van inkrimping met afkoeling. ✓				
9.3	Vervorming:				
	9.3.1	Dwarskrimping ✓	(1)		
	9.3.2	Oorlangse krimping ✓	(1)		
9.4	Effek van krimping:				
	9.4.1	Elektrodegrootte:			
		 Groter elektrodes ✓verlang hoër stroom en veroorsaak dan hoër sweistemperature ✓ wat vervorming / inkrimping veroorsaak. Kleiner elektrodes ✓verlang laer stroom en veroorsaak dan laer sweistemperature ✓ wat vervorming / inkrimping verminder.	(2)		
	9.4.2	 Sweisspoed: Verlaging ✓ in sweisspoed verhoog die gelokaliseerde hitte wat neig om vervorming te verhoog. ✓ Verhoging ✓ in sweisspoed verlaag die gelokaliseerde hitte wat neig om vervorming te verlaag. ✓ (Enige 1 x 2) 	(2)		
9.5	Nadele van setmate: Dit verhoog ✓ die interne spanning ✓ in die sweislas want die metaal se beweging word beperk. ✓		(3)		
9.6	Koolstofinhoud van metaal:				
	9.6.1	Gereedskapstaal: • 0,71 - 1,5% ✓	(1)		
	9.6.2	Veerstaal: • 0,31 − 0,70% ✓	(1)		

Kopiereg voorbehou Blaai om asseblief

Sagtestaal:

• 0,07 − 0, 30% ✓

9.6.3

9.7 Blusmediums:

- Water ✓
- Olie ✓
- Pekelwater ✓
- Vloeibare sout ✓
- Sand ✓
- Lug ✓
- As ✓
- Kalk ✓
- Gesmelte lood ✓
- Toegediende stikstoflug ✓

(Enige 2 x 1) (2)

[18]

VRAAG 10: INSTANDHOUDING (SPESIFIEK)

10.1 Onvoldoende smering:

Staanboor:

- Roes op komponente sal voorkom. ✓
- Beweging tussen dele sal geaffekteer word. ✓
- Oormatige slytasie en vasslaan van bewegende dele. ✓
- Oormatige hitte word gevorm. ✓ (Enige 3 x 1) (3)

10.2 **Oorbelasting van bankslyper:**

- Veroorsaak dat die masjien wanfunksioneer. ✓
- Oormatige slytasie en vermindering van masjien se leeftyd. ✓
- Skade aan slypwiel. ✓
- Skade aan slypwielaslaers. ✓
- Skade aan werkstuk. ✓ (Enige 3 x 1) (3)

10.3 Algemene instandhoudings riglyne:

- Die masjien moet getoets word vir korrekte werksverrigting. ✓
- Alle skerms moet in plek en diensbaar wees. ✓
- Die masjien moet stewig aan die vloer vas gemaak wees. ✓
- Alle boute, moere en skroeftappe moet styf vas en in plek wees. ✓
- Die masjien moet in 'n skoon kondisie wees. ✓
- Smeringspunte moet gediens word. ✓
- Alle bewegende dele moet vrylik kan beweeg. ✓ (Enige 2 x 1) (2)

[8]

VRAAG 11: TERMINOLOGIE (ONTWIKKELING) (SPESIFIEK)

11.1 Transformators:

Transformators word gebruik om ventilasieskagte ✓ van verskillende vorms ✓ aanmekaar te heg. ✓ (3)

11.2 **Geutbak:**

11.2.1 Vierkantige na reghoekige ✓ geutbak – van middelpunt af. ✓ (2)

11.2.2 **Ware lengte A-2:**

$$A - 2 = \sqrt{500^2 + 400^2 + 500^2}$$

$$= \sqrt{250000 + 160000 + 250000}$$

$$= 812,4 \text{ mm } \checkmark$$
(5)

11.2.3 **Ware lengte B-2:**

$$B-2 = \sqrt{500^2 + 300^2 + 500^2}$$

$$= \sqrt{250000 + 90000 + 250000} \quad \checkmark$$

$$= 768,11 \text{mm} \quad \checkmark$$
(5)

11.3 Afgeknotte keël:

11.3.1 **Ware lengte: A- B:**

$$A - B = \frac{\pi \times D}{12} \checkmark$$

$$= \frac{\pi \times 920}{12} \checkmark$$

$$= 240,85 \,\text{mm}$$

$$= 241 \,\text{mm} \checkmark$$
(3)

11.3.2 Ware lengte: 0-1:

$$0-1 = \frac{\pi \times D}{12} \quad \checkmark$$

$$= \frac{\pi \times 860}{12} \quad \checkmark$$

$$= 225,15 \text{ mm}$$

$$= 225 \text{ mm} \checkmark$$

[21]

(3)

TOTAAL: 200