

National University
Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

AI 2002 Artificial Intelligence <u>Course Instructor</u> Ms. Mahzaib Younas						
Time allowed = 40 min	Quiz 7	Total Marks	= 30			
BCS Section E						
Roll No	Name	Signature				

Question No 01: Choose the correct one.	[6]	
1. What type of network is the Multi Layer	2. What advantage does the sigmoid function have	
Perceptron (MLP)?	over the perceptron unit?	
a) Convolutional neural network	a) It uses binary output	
b) Hopfield network	b) It is faster to train	
c) Recurrent neural network	(c) It's continuous and differentiable	
d) Feedforward neural network	d) It's more accurate	
3. What does the elbow method help determine in	4. The sigmoid function maps any real number input	
clustering?	into what output range?	
a) Cluster density	a) $(-\infty, \infty)$	
b) Optimal number of features	b) [-1, 1]	
c) Type of distance function to use	() [0, 1]	
d) Ideal number of clusters (K)	d) Depends on the weights	
5. Which of the following scenarios is K-means least	6. Which of the following measures is not typically	
suitable for?	used to compute similarity or distance in K-	
	means?	
a) Data without outliers	a) Cosine similarity	

Question No 02: [10 Marks]

(a) Draw a multilayer perceptron with two input neurons, three hidden layers where each hidden layer has 2 neurons, and an output layer with 1 neuron. Also compute the total number of trainable **parameters** in the network (weights + biases).

b) Manhattan distance

c) Euclidean distance

d) Jaccard index

Input neurons = 2Hidden layer $1 = (2 \times 2) + 2 = 6$ Hidden layer $2 = (2 \times 2) + 2 = 6$ Hidden layer $3 = (2 \times 2) + 2 = 6$ Output layer = $(2 \times 1) + 1 = 3$ Total Parameters = 6 + 6 + 6 + 3 = 21

b) Large datasets that have well-separated clusters

c) Clusters with different densities and shapes

d) Spherical-shaped clusters

National University

Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

Question No 02:

You are given a dataset containing the following six points in a two-dimensional space: $\{(1,2), (3,4), (6,1), (7,5), (9,3), (10,6), (12,4)\}$

Your task is to perform k-medoid clustering on this dataset with k-2 using the first and the fourth data points as initial medoids and Manhattan distance. Perform two iterations. [14 Marks]

Manhattan distance: $|x_2 - x_1| + |y_2 - y_1|$

Data point	Manhattan distance (1,2) C1	Manhattan distance (7,5) C2	Cluster
(1,2)	0	9	C1
(3,4)	4	5	C1
(6,1)	6	5	C2
(7,5)	9	0	C2
(9,3)	9	4	C2
(10,6)	13	4	C2
(12,4)	13	6	C2

Compute the error:

$$C1 = (0 + 4) = 4$$

 $C2 = (5 + 0 + 4 + 4 + 6) = 19$

Cluster 2: (9.3)

Data point	Manhattan distance (1,2) C1	Manhattan distance (9,3) C2	Cluster
(1,2)	0	9	C1
(3,4)	4	7	C1
(6,1)	6	5	C2
(7,5)	9	4	C2
(9,3)	9	0	C2
(10,6)	13	4	C2
(12,4)	13	4	C2

Compute the error:

$$C1 = (0 + 4) = 4$$

 $C2 = (5 + 4 + 0 + 4 + 4) = 17$