Zajęcia 24.03.2022

Biblioteki

import sys

import numpy as np

import pandas as pd

import os

import seaborn as sns

import matplotlib.pyplot as plt

import statsmodels.formula.api as sm

from sklearn import linear_model

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import classification_report

from sklearn.model_selection import train_test_split

from sklearn.feature_selection import SelectKBest

from sklearn.feature_selection import chi2

from sklearn.feature_selection import f_classif

from sklearn.feature_selection import SelectKBest, f_classif, mutual_info_classif as MIC

from sklearn.pipeline import make_pipeline

from sklearn.svm import LinearSVC

from sklearn.metrics import classification_report

import matplotlib.pyplot as plt

 $from \ sklearn.tree \ import \ Decision Tree Classifier \ as \ DTC$

from sklearn.ensemble import RandomForestClassifier as RF

from sklearn.datasets import make_classification

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

from numpy import mean

from numpy import std

from sklearn.naive_bayes import GaussianNB

CZĘŚĆ 1: Podstawowa eksploracja danych


```
# Wydruk ścieżki do bieżącego katalogu:
```

print(os.getcwd())

Wczytujemy dane

data = pd.read_excel(r'C:\\Users\\User\\Desktop\\Projekt uczenie
maszynowe\\Rice_MSC_Dataset.xlsx')

data.head()

```
AREA PERIMETER MAJOR AXIS ... ALLdaub4YY ALLdaub4ZZ
                                                      CLASS
0 7805
        437.915 209.8215 ...
                                 0.3793
                                            0.4733 Basmati
1 7503
        340.757
                 138.3361 ...
                                  0.3144
                                            0.3641 Arborio
        314.617 141.9803 ...
2 5124
                                  0.3445
                                            0.4448 Jasmine
3 7990
         437.085 201.4386 ...
                                   0.4020
                                             0.4904 Basmati
4 7433
        342.893 140.3350 ...
                                   0.3303
                                             0.3928 Arborio
[5 rows x 107 columns]
```

Sprawdzamy czy są jakieś missing values

data.isnull().values.any() # Są

ile_brakuje = data.isnull().sum()

print(ile_brakuje)

ile_brakuje[ile_brakuje > 0] # Zmienne dla których są jakies brakujące wartości

```
      skewB
      6

      kurtosisB
      6

      skewCb
      3

      skewCr
      2

      kurtosisCb
      3

      kurtosisCr
      2

      dtype:
      int64
```

Usunę wiersze z brakującymi wartosciami.

data2 = data.dropna() # Nowe dane

len(data.index) - len(data2.index) # Czyli było 8 wierszy z brakującymi zmiennymi

data2 = data2.reset_index()

Tworzymy roboczy zbiór danych bez ostatniej kolumny

data3 = data2.drop(['CLASS'], axis=1)

data3 = data3.drop(['index'], axis=1)

data4 = data2[['CLASS']]

Macierz korelacji

Zbadamy skorelowanie poszczególnych zmiennych (docelowo objasniających),

żeby zdecydować których nie ma sensu wspólnie używać przy przewidywaniu rodzaju ryżu. sns.heatmap(data3) # nie widać tutaj zbyt wiele

M = data3.corr()

Wypisujemy "Mocno" dla elementów macierzy, w których korelacja > 0.9

M[abs(M) > 0.9] = 'Mocno'

#fragment

Index	ARFA	PFRIMFTFR	MA JOR AXIS	MINOR AXIS	ECCENTRICITY	FODIASO	SOLIDITY	ONVEX ARE.	FXTFNT
AREA	Mocno	0.841377	0.626212	0.781638	0.023491	Mocno	0.0704175	Mocno	0.0994519
PERIMETER	0.841377	Mocno	Mocno	0.340601	0.486245	0.85062	-0.222881	0.846707	-0.253211
MAJOR_AXIS	0.626212	Mocno	Mocno	0.0174657	0.717269	0.637032	-0.335401	0.633218	-0.422099
MINOR_AXIS	0.781638	0.340601	0.0174657	Mocno	-0.581973	0.778685	0.359023	0.775987	0.468006
ECCENTRICITY	0.023491	0.486245	0.717269	-0.581973	Mocno	0.0234624	-0.508364	0.0325081	-0.591706
EQDIASQ	Mocno	0.85062	0.637032	0.778685	0.0234624	Mocno	0.0692171	Mocno	0.0976643
SOLIDITY	0.0704175	-0.222881	-0.335401	0.359023	-0.508364	0.0692171	Mocno	0.0496643	0.383106
CONVEX_AREA	Mocno	0.846707	0.633218	0.775987	0.0325081	Mocno	0.0496643	Mocno	0.0923332
EXTENT	0.0994519	-0.253211	-0.422099	0.468006	-0.591706	0.0976643	0.383106	0.0923332	Mocno
ASPECT_RATIO	-0.161773	0.38521	0.660746	-0.726882	0.886485	-0.152921	-0.487489	-0.15292	-0.638612

Rysujemy boxploty dotyczące AREA dla różnych rodzajów ryżu

data_powierzchnia = data2[['AREA','CLASS']]

box_area = sns.boxplot(x='CLASS', y='AREA', data=data_powierzchnia, color='#99c2a2')

lpsala = data_powierzchnia.loc[data_powierzchnia['CLASS'] == 'lpsala']

lpsala = lpsala.reset_index()

Ipsala[(Ipsala['AREA'] > 12500) & (Ipsala['AREA'] < 15000)].shape[0] # ponad połowa wartosci w srodku boxplota: 8827

Ipsala[Ipsala['AREA'] > 17000].shape[0] # 260

Ipsala[Ipsala['AREA'] > 20000].shape[0] # 1 mocny outlier

Ipsala[Ipsala['AREA'] < 10000].shape[0] # 111

Ipsala['AREA'].mean() #14048.670868347339

Ipsala['AREA'].median() #14134.0

ax2 = sns.boxplot(x='CLASS', y='AREA', data=Ipsala, color='#99c2a2')

ax = sns.boxplot(x='CLASS', y='AREA', data=data_powierzchnia, color='#99c2a2')

Boxplot stworzony dla wszystkich typów ryżu wskazuje na to, że są istotne różnice w powierzchni jeżeli chodzi o Ipsala, Karacadag, Jasmine,

natomiast zbadanie powierzchni nie odróżni nam od siebie Basmati i Arborio.

Weźmiemy jeszcze trwałosć, żeby może odróżnić dwa pozostałe rodzaje ryżu

data_trwalosc = data2[['SOLIDITY','CLASS']]

box_trwalosc = sns.boxplot(x='CLASS', y='SOLIDITY', data=data_trwalosc, color='#99c2a2')

Powinno nam odróżnić basmati od arborio

KNN

X,Y = data[['AREA','SOLIDITY']], data['CLASS']

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.1)

knn = KNeighborsClassifier()

knn.fit(X_train, Y_train)

przewidziane = knn.predict(X_test)

print(classification_report(Y_test, przewidziane))

	precision	recall	f1-score	support
Arborio	0.48	0.51	0.50	1516
Basmati	0.52	0.50	0.51	1484
Ipsala	0.99	0.98	0.98	1504
Jasmine	0.82	0.85	0.83	1479
Karacadag	0.73	0.70	0.72	1517
accuracy			0.71	7500
macro avg	0.71	0.71	0.71	7500
weighted avg	0.71	0.71	0.71	7500