# Mohanty\_R\_HW1\_Prob2\_2

February 20, 2020

### 1 Math 521 HW1

# 1.1 Computing Question 2

#### Import required python packages

```
[69]: import scipy as spy
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from scipy.io import loadmat
import math
import pandas as pd
```

#### Load face and check dimensions

```
[10]: face1 = loadmat('./HW1data/face1.mat')
face1=face1['face1']

[11]: face2 = loadmat('./HW1data/face2.mat')
face2=face2['face2']

[12]: face1.shape,face2.shape

[12]: ((22080, 21), (22080, 21))

[13]: 160*138

[13]: 22080
```

# showing some sample images from face1 data

```
[14]: fig, ax = plt.subplots(1, 3)
    ax[0].imshow(face1[:,0].reshape(138,160).T,cmap='gray')
    ax[1].imshow(face1[:,5].reshape(138,160).T,cmap='gray')
    ax[2].imshow(face1[:,20].reshape(138,160).T,cmap='gray')
```

[14]: <matplotlib.image.AxesImage at 0xb15bd1b00>



#### showing some sample images from face1 data

```
[15]: fig, ax = plt.subplots(1, 3)
    ax[0].imshow(face2[:,0].reshape(138,160).T,cmap='gray')
    ax[1].imshow(face2[:,5].reshape(138,160).T,cmap='gray')
    ax[2].imshow(face2[:,20].reshape(138,160).T,cmap='gray')
```

[15]: <matplotlib.image.AxesImage at 0xb15ce6fd0>



#### Find orthnormal matrices from face1 and face2 martices

- [16]: Qx=spy.linalg.orth(face1)
  [17]: Qy=spy.linalg.orth(face2)
- [18]: Qx.shape
- [18]: (22080, 21)
- [19]: face1.shape,Qx.shape
- [19]: ((22080, 21), (22080, 21))

[20]: face2.shape,Qy.shape

[20]: ((22080, 21), (22080, 21))

**Verify**  $Q_x^T Q_x = Q_y^T Q_Y = I$ 

[21]: Ix=np.around(np.matmul(Qx.T,Qx))

[22]: Ix.shape

[22]: (21, 21)

[23]: plt.matshow(Ix)

[23]: <matplotlib.image.AxesImage at 0xb15d65c18>



[24]: Iy=np.around(np.matmul(Qy.T,Qy))

[25]: Iy.shape

[25]: (21, 21)

[26]: plt.matshow(Iy)

[26]: <matplotlib.image.AxesImage at 0xb19c68eb8>



```
run SVD on Q<sup>T</sup><sub>x</sub>Q<sub>y</sub>
[27]: H,S,Zt=np.linalg.svd(np.matmul(Qx.T,Qy))
[28]: H.shape,S.shape,Zt.shape
[28]: ((21, 21), (21,), (21, 21))
[29]: np.linalg.matrix_rank(Qx)
[29]: 21
[30]: np.linalg.matrix_rank(Qy)
[30]: 21
```

# Calculate Y to determine principal angle from Sin

[48]: (22080, 21)

### Run SVD on Y to compute sin values of principal angles

```
[49]: Ssine=np.linalg.svd(Y,compute_uv=False)
```

#### flip the array to match with corresponding cos values

```
[56]: Ssine_flip=np.flip(Ssine)
```

#### Compute the principal angles. For very small values of principal angles use sin

```
[76]: principal_angles_deg=[]
    principal_angles_rad=[]
    for i in range(len(S)):
        if S[i]**2<0.5:
            theta_rad=math.acos(S[i])
            theta=math.degrees(math.acos(S[i]))
        elif Ssine_flip[i]**2<=0.5:
            theta_rad=math.asin(Ssine_flip[i])
            theta=math.degrees(math.asin(Ssine_flip[i]))
        principal_angles_deg.append(theta)
        principal_angles_rad.append(theta_rad)</pre>
```

#### Print the principal angles in degrees and radians

```
[77]: print("Principal Angles between Face1 and Face 2")
pd.DataFrame({'Principal Angles (in Degrees)': principal_angles_deg, 'Principal_

→Angles (in Radians)': principal_angles_rad})
```

Principal Angles between Face1 and Face 2

| [77]: |    | Principal | Angles | (in Degrees) | Principal | Angles | (in | Radians) |
|-------|----|-----------|--------|--------------|-----------|--------|-----|----------|
|       | 0  | _         |        | 17.339911    | _         |        |     | 0.302639 |
|       | 1  |           |        | 26.865253    |           |        |     | 0.468887 |
|       | 2  |           |        | 41.931173    |           |        |     | 0.731837 |
|       | 3  |           |        | 57.759428    |           |        |     | 1.008092 |
|       | 4  |           |        | 63.938597    |           |        |     | 1.115939 |
|       | 5  |           |        | 68.908976    |           |        |     | 1.202689 |
|       | 6  |           |        | 70.336297    |           |        |     | 1.227600 |
|       | 7  |           |        | 73.998328    |           |        |     | 1.291514 |
|       | 8  |           |        | 78.548064    |           |        |     | 1.370922 |
|       | 9  |           |        | 79.414259    |           |        |     | 1.386040 |
|       | 10 |           |        | 81.515991    |           |        |     | 1.422722 |
|       | 11 |           |        | 81.897028    |           |        |     | 1.429373 |
|       | 12 |           |        | 84.119862    |           |        |     | 1.468169 |
|       | 13 |           |        | 85.170744    |           |        |     | 1.486510 |
|       | 14 |           |        | 86.614458    |           |        |     | 1.511707 |
|       | 15 |           |        | 87.001927    |           |        |     | 1.518470 |
|       | 16 |           |        | 87.581047    |           |        |     | 1.528578 |
|       | 17 |           |        | 88.425331    |           |        |     | 1.543313 |
|       |    |           |        |              |           |        |     |          |

| []: |           |          |  |
|-----|-----------|----------|--|
| 20  | 89.895487 | 1.568972 |  |
| 19  | 89.225386 | 1.557277 |  |
| 18  | 88.692223 | 1.547971 |  |
|     |           |          |  |