

Integrales dobles

- 1. Calcular, la integral doble $I(f,\mathcal{R}) = \iint_{\mathcal{R}} f(x,y) dx \, dy$ en el recinto $\mathcal{R} \subset \mathcal{D} \subset \mathbb{R}^2$ del campo escalar $f: \mathcal{D} \to \mathbb{R}$. Graficar el recinto \mathcal{R} en el que se integra.
- a. $\mathcal{R} = [0, 1] \times [0, 2], f: \mathbb{R}^2 \to \mathbb{R} \ tal \ que \ f(x, y) = 3x^2 + 2y$
- b. $\mathcal{R} = [0, 1] \times [1, 2], f: \mathcal{R} \to \mathbb{R} \ tal \ que \ f(x, y) = 2 \ (x + 2y)^{-1}$
- c. \mathcal{R} es la región acotada del plano comprendida entre las curvas de ecuación $y=\frac{1}{x}, y=x, x=2, f:\mathcal{R}\to\mathbb{R}/f(x,y)=4\frac{x^2}{v^2}$
- d. \mathcal{R} es la región acotada del plano definida por las imágenes de las funciones $\bar{\gamma} \colon [0,\pi] \to \mathbb{R}^2$ tal que $\bar{\gamma}(t) = (2\cos(t), 2-2\cos(t)), \bar{h} \colon [0,1] \to \mathbb{R}^2$ tal que $\bar{h}(t) = (2-4t,0), \bar{w} \colon [0,1] \to \mathbb{R}^2$ tal que $\bar{w}(t) = (-2,4t)$ siendo $f \colon \mathbb{R}^2 \to \mathbb{R}$ tal que f(x,y) = -3x
- 2. Para cada uno de los siguientes recintos, calcular el valor de su área planteando las integrales dobles en las coordenadas más apropiadas.

- 3. Graficar el macizo $\mathcal M$ y calcular su volumen $V(\mathcal M)$, mediante integrales dobles, adoptando el sistema de coordenadas más conveniente.
- a. $\mathcal{M} = \{(x, y, z) \in \mathbb{R}^3 : 0 \le z \le 4 x y, x \ge 0, y \ge 0 \}.$

b.
$$\mathcal{M} = \{(x, y, z) \in \mathbb{R}^3 : 0 \le z \le x^2 - y^2, 0 \le x \le 1\}.$$

c. \mathcal{M} es el conjunto de puntos del espacio \mathbb{R}^3 por encima del paraboloide de ecuación $x^2+y^2=z$ y por debajo del plano de ecuación z=4

d.
$$\mathcal{M} = \left\{ (x, y, z) \in \mathbb{R}^3 : 0 \le z \le 4 - \sqrt{x^2 + y^2}, \ 1 \le x^2 + y^2 \right\}$$

- 4. Masa de una lámina plana. Si δ es la densidad superficial de una lámina \mathcal{R} , su masa es $m(\mathcal{R}) = \iint_{\mathcal{R}} \delta dA$, y su densidad media es el valor medio de δ en \mathcal{R} . Determinar la densidad media de una lámina circular centrada en el origen de coordenadas, de radio α , si su densidad es $\delta(x,y) = k(\alpha + x)$.
- 5. Centro de masa de una lámina plana. Si δ es la densidad superficial de una lámina \mathcal{R} , entonces su centro de masas 1 G $_0$ = (x $_0$, y $_0$) se obtiene de $x_0 = \frac{\iint_{\mathcal{R}} x\delta \, dS}{\iint_{\mathcal{R}} \delta \, dS}$, $y_0 = \frac{\iint_{\mathcal{R}} y\delta \, dS}{\iint_{\mathcal{R}} \delta \, dS}$. Determinar el centro de masas de la lámina dada por $\mathcal{R} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = a^2, y > 0, a > 0\}$ con densidad $\delta(x,y) = ky$, siendo k una constante positiva. Graficar la lámina \mathcal{R} y el centro de masas obtenido.

Teorema de Green

6. Aplicando el Teorema de Green, calcular:

a)
$$\oint_{C} 2(x^2 + y^2) dx + (x + y)^2 dy$$

b)
$$\oint_{c} -x^2 y \, dx + xy^2 \, dy$$

c) $\oint_c x dx + xy dy$

- 7. Verificar el Teorema de Green en los siguientes casos:
- a) $\oint_c (x^2 + y^2) dx + 2xy dy$

b) $\oint_c (x + y^2) dx + (1 + x^2) dy$

Integrales triples

- 8. Calcular, siempre que exista, la integral triple $I(f,\mathcal{M}) = \iiint_{\mathcal{M}} f(x,y,z) dx dy dz$ en el recinto $\mathcal{M} \subset \mathcal{D} \subset \mathbb{R}^3$ del campo escalar $f: \mathcal{D} \to \mathbb{R}$. Graficar el recinto \mathcal{M} en el que se integra y calcular su volumen $V(\mathcal{M})$
- a. $\mathcal{M} = \{(x, y, z) \in \mathbb{R}^3 : 0 \le x \le 2 y, x^2 + z^2 \le 4, y \ge 0, z \ge 0 \}, f : \mathbb{R}^3 \to \mathbb{R} \text{ tal que } f(x, y, z) = 3 \}$
- b. $\mathcal{M} = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le a^2, y \ge 0 \}, f : \mathbb{R}^3 \to \mathbb{R} \text{ tal que } f(x, y, z) = x + z \}$
- c. $\mathcal{M} = \{(x, y, z) \in \mathbb{R}^3: z^2 \le x^2 + y^2 \le a^2, a > 0 \}, f: \mathbb{R}^3 \to \mathbb{R} \text{ tal que } f(x, y, z) = x + y + z + 1 \}$
- 9. Baricentro de un macizo. Si δ es la densidad volumétrica de un macizo \mathcal{M} , entonces su baricentro es el punto $\begin{aligned} \mathsf{G}_0 &= (\mathsf{x}_0, \mathsf{y}_0, \mathsf{z}_0) \, \mathsf{siendo} \, x_0 = \frac{\iiint_{\mathcal{M}} x \delta \, dV}{\iiint_{\mathcal{M}} \delta \, dV}, y_0 = \frac{\iiint_{\mathcal{M}} y \delta \, dV}{\iiint_{\mathcal{M}} \delta \, dV}, z_0 = \frac{\iiint_{\mathcal{M}} z \delta \, dV}{\iiint_{\mathcal{M}} \delta \, dV}. \, \mathsf{Graficar} \, \mathcal{M} \, \mathsf{y} \, \mathsf{determinar} \, \mathsf{su} \, \mathsf{baricentro}, \, \mathsf{siendo} \\ \mathcal{M} &= \{(x, y, z) \in R^3 \colon x^2 + z^2 + y^2 \leq a^2, z \geq 0, \ a > 0\} \, \mathsf{con} \, \, \mathsf{densidad} \, \, \delta(x, y, z) = kz, \, \mathsf{donde} \, \, \mathsf{kes} \, \, \mathsf{una} \, \, \mathsf{constante} \end{aligned}$ positiva.
- 10. Centro geométrico de un macizo \mathcal{M} . Es $P_0 = (x_0, y_0, z_0)$ siendo $x_0 = \frac{\iiint_{\mathcal{M}} x \, dv}{\iiint_{\mathcal{M}} dv}, y_0 = \frac{\iiint_{\mathcal{M}} y \, dv}{\iiint_{\mathcal{M}} dv}, z_0 = \frac{\iiint_{\mathcal{M}} z \, dv}{\iiint_{\mathcal{M}} dv}$ (coincide con el baricentro si el macizo es homogéneo). Determinar el centro geométrico del macizo) $\mathcal{M}=$ $\left\{ (x, y, z) \in R^3 : \frac{h}{a} \sqrt{z^2 + y^2} \le x \le h, h > 0, a > 0 \right\}$
- 11. Los depósitos para granos a granel son silos de metal, hormigón o madera. Generalmente tienen un fondo cónico que permite la descarga del silo por la gravedad. Determinar el volumen del silo determinado por el cono de ecuación $z = \sqrt{x^2 + y^2}$ y el cilindro de altura 2 de ecuación $x^2 + y^2 = 4$.