Organizatorzy: Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Oddział Kujawsko-Pomorski Polskiego Towarzystwa Informatycznego Centrum Kształcenia Ustawicznego TODMiDN w Toruniu

|        | TRODIVI            | Z EGZAMIN MA                                              |               |           |        |          |             |               | 2221 ( 2020 |      |
|--------|--------------------|-----------------------------------------------------------|---------------|-----------|--------|----------|-------------|---------------|-------------|------|
|        |                    |                                                           | Arkı          | ısz I     |        |          |             |               |             |      |
| Czas   | pracy: <b>60 m</b> | iinut                                                     | Lic           | zba pun   | któw   | do uz    | zyska       | nia: <b>1</b> | 5           |      |
| Instr  | rukcja dla z       | dającego                                                  |               |           |        |          |             |               |             |      |
| 1.     |                    | czy arkusz egzan<br>ewodniczącemu z                       | • • •         |           |        | •        | nia 1       | − 3).         | Ewentualny  | brak |
| 2.     | Rozwiąza           | nia i odpowiedzi                                          | zamieść w m   | iejscu n  | a to p | rzezn    | aczoi       | nym.          |             |      |
| 3.     | Pisz czyte         | elnie. Używaj dłu                                         | gopisu/pióra  | tylko z o | czarny | ym tu    | szem        | 'atran        | nentem.     |      |
| 4.     | Nie używ           | aj korektora, a bł                                        | ędne zapisy v | vyraźnie  | prze   | kreśl.   |             |               |             |      |
| 5.     | Pamiętaj,          | że zapisy w brud                                          | nopisie nie p | odlegają  | ocen   | ie.      |             |               |             |      |
| 6.     |                    | niżej zadeklarowa<br>owe, kompilator j                    | ` •           |           |        |          | _           |               |             |      |
| 7.     | przez sieb         | wiązaniem zadan<br>pie notacji: listy k<br>eś na egzamin. |               |           |        |          |             |               |             | ej   |
| Dane   | uzupełnia          | uczeń:                                                    |               |           |        |          |             |               |             |      |
| XX/X/I | DDANE.             |                                                           |               |           |        |          |             |               |             |      |
| WII    | BRANE:             |                                                           | (śro          | odowisk   | (o)    | ••••••   |             |               |             |      |
|        |                    |                                                           | (kc           | mpilato   | r)     | •••••    | · <b>··</b> |               |             |      |
|        |                    |                                                           | (pr           | ogram u   | żytko  | )<br>wy) |             |               |             |      |
| PESI   | EL:                |                                                           |               |           |        |          |             |               |             |      |

Klasa:

# Zadanie 1. Test (0-5)

Oceń, czy poniższe zdania są prawdziwe. Zaznacz **P**, jeśli zdanie jest prawdziwe, albo **F**, jeśli zdanie jest fałszywe. W każdym zadaniu uzyskasz punkt, jeśli poprawnie odpowiesz na wszystkie jego części.

### Zadanie 1.1. (0-1)

Wartość wyrażenia 2 5 7 – \* 6 3 – + zapisanego w Odwrotnej Notacji Polskiej (ONP) jest równa:

| 1. | 1   | P | F |
|----|-----|---|---|
| 2. | 18  | P | F |
| 3. | -1  | P | F |
| 4. | -11 | P | F |

### Zadanie 1.2. (0-1)

Przyporządkuj definicje do poleceń.

Polecenia:

Definicje:

| 1. | ping                      |
|----|---------------------------|
| 2. | tracert lub<br>traceroute |
| 3. | ipconfig lub<br>ifconfig  |
| 4. | nslookup                  |

| A | polecenie używane w sieciach komputerowych TCP/IP i służące do diagnozowania połączeń sieciowych |
|---|--------------------------------------------------------------------------------------------------|
| В | polecenie służące do śledzenia trasy pakietów do określonego hosta                               |
| С | polecenie służące do wyszukiwania informacji<br>odnoszących się do serwerów DNS                  |
| D | polecenie służące m.in. do wyświetlenia konfiguracji interfejsów sieciowych                      |

W poniższej tabeli, w kolumnie Definicja, wpisz odpowiednie litery.

| Polecenie | Definicja |
|-----------|-----------|
| 1.        |           |
| 2.        |           |
| 3.        |           |
| 4.        |           |

### Zadanie 1.3. (0-1)

W komórkach arkusza kalkulacyjnego umieszczone zostały poniższe wartości i formuły:

|   | B2 | • ( | f | ⊊ =A\$2+\$ | =A\$2+\$B1 |  |  |
|---|----|-----|---|------------|------------|--|--|
|   | Α  | В   | С | D          | Е          |  |  |
| 1 | 1  | 2   | 3 |            |            |  |  |
| 2 | 2  | 4   |   |            |            |  |  |
| 3 | 3  |     |   |            |            |  |  |
| 4 | 4  |     |   |            |            |  |  |

Następnie formuła z komórki B2 została skopiowana do komórek C2, B3, B4. Ustal, które z poniższych stwierdzeń są prawdziwe?

| 1. | W komórce C2 została umieszczona formuła B\$2+\$B1. | P | F |
|----|-----------------------------------------------------|---|---|
| 2. | W komórce B4 została umieszczona formuła A\$2+\$B3. | P | F |
| 3. | Wartość w komórce B3 wynosi 8.                      | P | F |
| 4. | Wartość w komórce C2 wynosi 6.                      | P | F |

### Zadanie 1.4. (0-1)

Protokół sieciowy ethernet do adresowania interfejsu karty sieciowej stosuje adres MAC (ang. MAC address) w postaci 48-bitowej liczby.

Wskaż poprawny zapis podanego powyżej adresu MAC zapisanego binarnie w postaci heksadecymalnej (szesnastkowo):

| 1. | 00:0A:E6:3B:FD:C1 | P | F |
|----|-------------------|---|---|
| 2. | 80:0A:E6:3B:FD:C1 | P | F |
| 3. | 10:0A:E6:3B:00:01 | P | F |
| 4. | 80:0A:E6:3B:FC:81 | P | F |

# Zadanie 1.5. (0–1)

Sortowaniem w miejscu (in situ) jest:

| 1. | Sortowanie bąbelkowe      | P | F |
|----|---------------------------|---|---|
| 2. | Sortowanie przez wybór    | P | F |
| 3. | Sortowanie przez scalanie | P | F |
| 4. | Sortowanie szybkie        | P | F |

|                         | Numer zadania                | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | Suma |
|-------------------------|------------------------------|-----|-----|-----|-----|-----|------|
| Wypełnia<br>egzaminator | Maksymalna liczba<br>punktów | 1   | 1   | 1   | 1   | 1   | 5    |
|                         | Uzyskana liczba<br>punktów   |     |     |     |     |     |      |

### Zadanie 2. Względna pierwszość (0-5)

Rozważamy algorytm Euklidesa służący do wyznaczania największego wspólnego dzielnika dwóch liczb.

Zapis  $a \mod b$  oznacza w nim obliczenie reszty z dzielenia liczby a przez liczbę b.

**Dane:** a, b – liczby całkowite dodatnie

**Wynik:** NWD(a, b) – największy wspólny dzielnik liczb a i b

Algorytm:

**Krok 1.** Wczytaj a, b.

**Krok 2.** Dopóki  $b \neq 0$  wykonuj

**Krok 2.1.**  $c \leftarrow a \mod b$ 

**Krok 2.2.**  $a \leftarrow b$ 

**Krok 2.3.**  $b \leftarrow c$ 

**Krok 3.** Wypisz *a*.

**Uwaga 1.** Dwie liczby całkowite, dodatnie *a* i *b* nazywamy liczbami **względnie pierwszymi**, jeśli ich największy wspólny dzielnik jest równy 1.

Uwaga 2. Liczby Fibonacciego są określone wzorem rekurencyjnym:

$$\begin{cases} F_1 = F_2 = 1 \\ F_n = F_{n-1} + F_{n-2} & \text{dla } n \geq 3 \end{cases}$$

### Zadanie 2.1 (0-2)

Uzupełnij tabelkę. Dla każdej pary liczb a i b podaj, czy jest ona parą liczb względnie pierwszych oraz ile razy zostanie wykonany **Krok 2.1.** w podanym powyżej algorytmie.

| Dane                                                                    | Para liczb<br>względnie<br>pierwszych<br>TAK / NIE | Liczba operacji<br>mod |
|-------------------------------------------------------------------------|----------------------------------------------------|------------------------|
| a = 3, b = 5                                                            | TAK                                                | 4                      |
| a = 12, b = 8                                                           |                                                    |                        |
| a = 121, b = 13                                                         |                                                    |                        |
| $a = F_n, b = F_{n+1},$ gdzie $F_n$ oznacza $n$ -tą liczbę Fibonacciego |                                                    |                        |

# Zadanie 2.2 (0-3)

Napisz program w wybranej przez siebie notacji (schemat blokowy, lista kroków, język programowania), zgodny z poniższą specyfikacją. Przyjmij, że algorytm obliczania NWD(a,b) jest znany i nie trzeba go ponownie zapisywać.

**Dane:** n – liczba całkowita dodatnia nie większa niż 100,

 $a_1, a_2, \dots, a_n$  – ciąg n liczb całkowitych dodatnich

**Wynik:** Liczba par  $a_i$ ,  $a_j$ , gdzie i < j, liczb względnie pierwszych w ciągu  $a_1$ ,  $a_2$ , ...,  $a_n$ .

Miejsce na obliczenia



|                         | Numer zadania                | 2.1 | 2.2 | Suma |
|-------------------------|------------------------------|-----|-----|------|
| Wypełnia<br>egzaminator | Maksymalna liczba<br>punktów | 2   | 3   | 5    |
|                         | Uzyskana liczba<br>punktów   |     |     |      |

### Zadanie 3. Sumy (0-5)

Dany jest nieuporządkowany ciąg liczb całkowitych, elementy ciągu są indeksowane od jedynki. Interesuje nas znalezienie sumy elementów o indeksach z określonego przedziału. Na przykład, jeśli dla ciągu składającego się z pięciu liczb 2, 3, 6, 5, 1 zapytamy o sumę elementów o indeksach z przedziału [1,3], to jest ona równa 2+3+6=11.

Zapoznaj się z poniższą specyfikacją i rozwiąż zadania.

### Dane:

n – liczba elementów rozważanego ciągu

k<sub>1</sub>, k<sub>2</sub>, k<sub>3</sub>, ..., k<sub>n</sub> – n liczb całkowitych tworzących ten ciąg

m – liczba zapytań o sumę elementów ciągu o indeksach z określonego przedziału

 $a_1$ ,  $b_1$ ,  $a_2$ ,  $b_2$ , ...,  $a_m$ ,  $b_m-m$  par liczb naturalnych, gdzie para  $a_i$ ,  $b_i$  oznacza przedział indeksów  $[a_i, b_i]$ , wartości  $a_i$ ,  $b_i$  znajdują się w przedziale [1, n] oraz  $a_i \le b_i$ .

### Wynik:

 $s_1$ ,  $s_2$ , ...,  $s_m$  – m liczb całkowitych, gdzie  $s_i$  oznacza sumę elementów o indeksach z przedziału  $[a_i, b_i]$  w rozważanym ciągu liczb całkowitych

### Zadanie 3.1 (0-2)

Uzupełnij poniższą tabelkę. Dla każdego ciągu i zestawu par liczb oblicz sumę elementów o indeksach z podanego przedziału, zgodnie z przykładem.

| N | Ciąg liczb             | M | Przedział | Suma    |
|---|------------------------|---|-----------|---------|
| 5 | 1, 5, -3, 2, -5        | 3 |           |         |
|   |                        |   | [1, 3]    | 1+5-3=3 |
|   |                        |   | [2,3]     |         |
|   |                        |   | [3,5]     |         |
| 8 | 8, 2, 6, 1, 2, 9, 3, 4 | 3 |           |         |
|   |                        |   | [3,6]     |         |
|   |                        |   | [6,8]     |         |
|   |                        |   | [2,5]     |         |

# Zadanie 3.2 (0-3)

W wybranej notacji (schemat blokowy, lista kroków, język programowania), zapisz algorytm rozwiązujący problem określony specyfikacją na początku tego zadania. Przy ocenie będzie również brana pod uwagę złożoność obliczeniowa Twojego rozwiązania.

# Miejsce na obliczenia



|                         | Numer zadania                | 3.1 | 3.2 | Suma |
|-------------------------|------------------------------|-----|-----|------|
| Wypełnia<br>egzaminator | Maksymalna liczba<br>punktów | 2   | 3   | 5    |
|                         | Uzyskana liczba punktów      |     |     |      |

# BRUDNOPIS (nie podlega ocenie)