Himpunan (set)

- Himpunan (set) adalah kumpulan objek-objek yang berbeda.
- Objek di dalam himpunan disebut **elemen**, **unsur**, atau **anggota**.

Cara Penyajian Himpunan

1. Enumerasi

Contoh 1.

- Himpunan empat bilangan asli pertama: $A = \{1, 2, 3, 4\}$.
- Himpunan lima bilangan genap positif pertama: $B = \{4, 6, 8, 10\}$.
- $C = \{\text{kucing}, a, \text{Amir}, 10, \text{paku}\}\$
- $-R = \{a, b, \{a, b, c\}, \{a, c\}\}$
- $C = \{a, \{a\}, \{\{a\}\}\}\}$
- $-K = \{ \{ \} \}$
- Himpunan 100 buah bilangan asli pertama: {1, 2, ..., 100 }
- Himpunan bilangan bulat ditulis sebagai {..., -2, -1, 0, 1, 2, ...}.

Keanggotaan

 $x \in A : x$ merupakan anggota himpunan A;

 $x \notin A : x$ bukan merupakan anggota himpunan A.

Contoh 2.

Misalkan:
$$A = \{1, 2, 3, 4\}, R = \{a, b, \{a, b, c\}, \{a, c\}\}$$

 $K = \{\{\}\}$
maka

$$3 \in A$$

 $5 \notin B$
 $\{a, b, c\} \in R$
 $c \notin R$
 $\{\} \in K$
 $\{\} \notin R$

```
Contoh 3. Bila P_1 = \{a, b\}, P_2 = \{\{a, b\}\}, P_3 = \{\{\{a, b\}\}\}\}, maka a \in P_1 a \notin P_2 P_1 \in P_2 P_1 \notin P_3 P_2 \in P_3
```

2. Simbol-simbol Baku

 \mathbf{P} = himpunan bilangan bulat positif = { 1, 2, 3, ... }

 $N = \text{himpunan bilangan alami (natural)} = \{1, 2, ...\}$

 $Z = himpunan bilangan bulat = \{ ..., -2, -1, 0, 1, 2, ... \}$

Q = himpunan bilangan rasional

 \mathbf{R} = himpunan bilangan riil

C = himpunan bilangan kompleks

• Himpunan yang universal: **semesta**, disimbolkan dengan U. Contoh: Misalkan U = $\{1, 2, 3, 4, 5\}$ dan A adalah himpunan bagian dari U, dengan $A = \{1, 3, 5\}$.

3. Notasi Pembentuk Himpunan

Notasi: $\{x \mid \text{syarat yang harus dipenuhi oleh } x\}$

Contoh 4.

(i) A adalah himpunan bilangan bulat positif yang kecil dari 5

 $A = \{ x \mid x \text{ adalah bilangan bulat positif lebih kecil dari } 5 \}$ atau

$$A = \{ x \mid x \in P, x < 5 \}$$

yang ekivalen dengan $A = \{1, 2, 3, 4\}$

(ii) $M = \{ x \mid x \text{ adalah mahasiswa yang mengambil kuliah IF2151} \}$

4. Diagram Venn

Contoh 5.

Misalkan U = $\{1, 2, ..., 7, 8\}$, $A = \{1, 2, 3, 5\}$ dan $B = \{2, 5, 6, 8\}$. Diagram Venn:

Kardinalitas

- Jumlah elemen di dalam A disebut kardinal dari himpunan A.
- Notasi: n(A) atau A

Contoh 6.

- (i) $B = \{ x \mid x \text{ merupakan bilangan prima yang lebih kecil dari } 20 \}$, atau $B = \{2, 3, 5, 7, 11, 13, 17, 19 \}$ maka |B| = 8
- (ii) $T = \{\text{kucing, } a, \text{Amir, } 10, \text{ paku}\}, \text{ maka } |T| = 5$
- (iii) $A = \{a, \{a\}, \{\{a\}\}\}$, maka |A| = 3

Himpunan Kosong

- Himpunan dengan kardinal = 0 disebut himpunan kosong (*null set*).
- Notasi : Ø atau {}

Contoh 7.

- (i) $E = \{ x \mid x < x \}$, maka n(E) = 0
- (ii) $P = \{ \text{ orang Indonesia yang pernah ke bulan } \}$, maka n(P) = 0
- (iii) $A = \{x \mid x \text{ adalah akar persamaan kuadrat } x^2 + 1 = 0 \}, n(A) = 0$

3

- himpunan {{ }} dapat juga ditulis sebagai {∅}
- himpunan $\{\{\}, \{\{\}\}\}\$ dapat juga ditulis sebagai $\{\emptyset, \{\emptyset\}\}\$
- $\{\emptyset\}$ bukan himpunan kosong karena ia memuat satu elemen yaitu himpunan kosong.

Himpunan Bagian (Subset)

- Himpunan A dikatakan himpunan bagian dari himpunan B jika dan hanya jika setiap elemen A merupakan elemen dari B.
- Dalam hal ini, *B* dikatakan *superset* dari *A*.
- Notasi: $A \subseteq B$
- Diagram Venn:

Contoh 8.

- (i) $\{1, 2, 3\} \subseteq \{1, 2, 3, 4, 5\}$
- (ii) $\{1, 2, 3\} \subseteq \{1, 2, 3\}$
- (iii) $N \subseteq Z \subseteq R \subseteq C$
- (iv) Jika $A = \{ (x, y) | x + y < 4, x \ge, y \ge 0 \}$ dan $B = \{ (x, y) | 2x + y < 4, x \ge 0 \text{ dan } y \ge 0 \}, \text{ maka } B \subseteq A.$

TEOREMA 1. Untuk sembarang himpunan *A* berlaku hal-hal sebagai berikut:

- (a) A adalah himpunan bagian dari A itu sendiri (yaitu, $A \subseteq A$).
- (b) Himpunan kosong merupakan himpunan bagian dari A ($\emptyset \subseteq A$).
- (c) Jika $A \subseteq B$ dan $B \subseteq C$, maka $A \subseteq C$
- $\emptyset \subseteq A$ dan $A \subseteq A$, maka \emptyset dan A disebut himpunan bagian tak sebenarnya (*improper subset*) dari himpunan A. Contoh: $A = \{1, 2, 3\}$, maka $\{1, 2, 3\}$ dan \emptyset adalah *improper subset* dari A.
- $A \subseteq B$ berbeda dengan $A \subseteq B$
 - (i) $A \subset B : A$ adalah himpunan bagian dari B tetapi $A \neq B$. A adalah himpunan bagian sebenarnya (*proper subset*) dari B.

Contoh: {1} dan {2, 3} adalah proper subset dari {1, 2, 3}

(ii) $A \subseteq B$: digunakan untuk menyatakan bahwa A adalah himpunan bagian (subset) dari B yang memungkinkan A = B.

Himpunan yang Sama

- A = B jika dan hanya jika setiap elemen A merupakan elemen B dan sebaliknya setiap elemen B merupakan elemen A.
- A = B jika A adalah himpunan bagian dari B dan B adalah himpunan bagian dari A. Jika tidak demikian, maka $A \neq B$.
- Notasi : $A = B \leftrightarrow A \subseteq B \operatorname{dan} B \subseteq A$

Contoh 9.

- (i) Jika $A = \{ 0, 1 \}$ dan $B = \{ x \mid x (x 1) = 0 \}$, maka A = B
- (ii) Jika $A = \{3, 5, 8, 5\}$ dan $B = \{5, 3, 8\}$, maka A = B
- (iii) Jika $A = \{3, 5, 8, 5\}$ dan $B = \{3, 8\}$, maka $A \neq B$

Untuk tiga buah himpunan, A, B, dan C berlaku aksioma berikut:

- (a) A = A, B = B, dan C = C
- (b) jika A = B, maka B = A
- (c) jika A = B dan B = C, maka A = C

Himpunan yang Ekivalen

- Himpunan A dikatakan ekivalen dengan himpunan B jika dan hanya jika kardinal dari kedua himpunan tersebut sama.
- Notasi : $A \sim B \leftrightarrow |A| = |B|$

Contoh 10.

Misalkan $A = \{ 1, 3, 5, 7 \}$ dan $B = \{ a, b, c, d \}$, maka $A \sim B$ sebab |A| = |B| = 4

Himpunan Saling Lepas

- Dua himpunan A dan B dikatakan saling lepas (*disjoint*) jika keduanya tidak memiliki elemen yang sama.
- Notasi : *A* // *B*
- Diagram Venn:

Contoh 11.

Jika $A = \{ x \mid x \in P, x < 8 \} \text{ dan } B = \{ 10, 20, 30, ... \}, \text{ maka } A // B.$

Himpunan Kuasa

- Himpunan kuasa (*power set*) dari himpunan *A* adalah suatu himpunan yang elemennya merupakan semua himpunan bagian dari *A*, termasuk himpunan kosong dan himpunan *A* sendiri.
- Notasi : P(A) atau 2^A
- Jika |A| = m, maka $|P(A)| = 2^m$.

Contoh 12.

Jika
$$A = \{ 1, 2 \}$$
, maka $P(A) = \{ \emptyset, \{ 1 \}, \{ 2 \}, \{ 1, 2 \} \}$

Contoh 13.

Himpunan kuasa dari himpunan kosong adalah $P(\emptyset) = {\emptyset}$, dan himpunan kuasa dari himpunan ${\emptyset}$ adalah $P({\emptyset}) = {\emptyset}$, ${\emptyset}$.

Operasi Terhadap Himpunan

- a. Irisan (intersection)
 - Notasi : $A \cap B = \{ x \mid x \in A \text{ dan } x \in B \}$

Contoh 14.

- (i) Jika $A = \{2, 4, 6, 8, 10\}$ dan $B = \{4, 10, 14, 18\}$, maka $A \cap B = \{4, 10\}$
- (ii) Jika $A = \{ 3, 5, 9 \}$ dan $B = \{ -2, 6 \}$, maka $A \cap B = \emptyset$. Artinya: A // B

b. Gabungan (union)

• Notasi : $A \cup B = \{ x \mid x \in A \text{ atau } x \in B \}$

Contoh 15.

- (i) Jika $A = \{ 2, 5, 8 \}$ dan $B = \{ 7, 5, 22 \}$, maka $A \cup B = \{ 2, 5, 7, 8, 22 \}$
- (ii) $A \cup \emptyset = A$

c. Komplemen (complement)

• Notasi : $\overline{A} = \{ x \mid x \in U, x \notin A \}$

Contoh 16.

Misalkan $U = \{ 1, 2, 3, ..., 9 \},$

- (i) jika $A = \{1, 3, 7, 9\}$, maka $\overline{A} = \{2, 4, 6, 8\}$
- (ii) jika $A = \{ x \mid x/2 \in P, x < 9 \}$, maka $\overline{A} = \{ 1, 3, 5, 7, 9 \}$

Contoh 17. Misalkan:

A = himpunan semua mobil buatan dalam negeri

B = himpunan semua mobil impor

C = himpunan semua mobil yang dibuat sebelum tahun 1990

D = himpunan semua mobil yang nilai jualnya kurang dari Rp 100 juta

E = himpunan semua mobil milik mahasiswa universitas tertentu

- (i) "mobil mahasiswa di universitas ini produksi dalam negeri atau diimpor dari luar negeri" \rightarrow $(E \cap A) \cup (E \cap B)$ atau $E \cap (A \cup B)$
- (ii) "semua mobil produksi dalam negeri yang dibuat sebelum tahun 1990 yang nilai jualnya kurang dari Rp 100 juta" $\rightarrow A \cap C \cap D$
- (iii) "semua mobil impor buatan setelah tahun 1990 mempunyai nilai jual lebih dari Rp 100 juta" $\rightarrow \overline{C} \cap \overline{D} \cap B$

d. Selisih (difference)

• Notasi : $A - B = \{ x \mid x \in A \text{ dan } x \notin B \} = A \cap \overline{B}$

Contoh 18.

(i) Jika $A = \{1, 2, 3, ..., 10\}$ dan $B = \{2, 4, 6, 8, 10\}$, maka $A - B = \{1, 3, 5, 7, 9\}$ dan $B - A = \emptyset$

(ii) $\{1, 3, 5\} - \{1, 2, 3\} = \{5\}$, tetapi $\{1, 2, 3\} - \{1, 3, 5\} = \{2\}$

e. Beda Setangkup (Symmetric Difference)

• Notasi: $A \oplus B = (A \cup B) - (A \cap B) = (A - B) \cup (B - A)$

Contoh 19.

Jika $A = \{ 2, 4, 6 \}$ dan $B = \{ 2, 3, 5 \}$, maka $A \oplus B = \{ 3, 4, 5, 6 \}$

Contoh 20. Misalkan

U = himpunan mahasiswa

P = himpunan mahasiswa yang nilai ujian UTS di atas 80

Q = himpunan mahasiswa yang nilain ujian UAS di atas 80

Seorang mahasiswa mendapat nilai A jika nilai UTS dan nilai UAS keduanya di atas 80, mendapat nilai B jika salah satu ujian di atas 80, dan mendapat nilai C jika kedua ujian di bawah 80.

- (i) "Semua mahasiswa yang mendapat nilai A" : $P \cap Q$
- (ii) "Semua mahasiswa yang mendapat nilai B" : $P \oplus Q$
- (iii) "Ssemua mahasiswa yang mendapat nilai C" : $U (P \cup Q)$

TEOREMA 2. Beda setangkup memenuhi sifat-sifat berikut:

(a) $A \oplus B = B \oplus A$

(hukum komutatif)

(b) $(A \oplus B) \oplus C = A \oplus (B \oplus C)$

(hukum asosiatif)

f. Perkalian Kartesian (cartesian product)

• Notasi: $A \times B = \{(a, b) \mid a \in A \text{ dan } b \in B \}$

Contoh 20.

- (i) Misalkan $C = \{ 1, 2, 3 \}$, dan $D = \{ a, b \}$, maka $C \times D = \{ (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) \}$
- (ii) Misalkan A = B = himpunan semua bilangan riil, maka $A \times B$ = himpunan semua titik di bidang datar

Catatan:

- 1. Jika A dan B merupakan himpunan berhingga, maka: $|A \times B| = |A| \cdot |B|$.
- 2. Pasangan berurutan (a, b) berbeda dengan (b, a), dengan kata lain $(a, b) \neq (b, a)$.
- 3. Perkalian kartesian tidak komutatif, yaitu $A \times B \neq B \times A$ dengan syarat A atau B tidak kosong.

Pada Contoh 20(i) di atas, $D \times C = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\} \neq C \times D$.

4. Jika $A = \emptyset$ atau $B = \emptyset$, maka $A \times B = B \times A = \emptyset$

Contoh 21. Misalkan

 $A = \text{himpunan makanan} = \{ s = \text{soto}, g = \text{gado-gado}, n = \text{nasi goreng}, m = \text{mie rebus} \}$

 $B = \text{himpunan minuman} = \{ c = \text{coca-cola}, t = \text{teh}, d = \text{es} \\ \text{dawet} \}$

Berapa banyak kombinasi makanan dan minuman yang dapat disusun dari kedua himpunan di atas?

Jawab:

 $|A \times B| = |A| \cdot |B| = 4 \cdot 3 = 12$ kombinasi dan minuman, yaitu $\{(s, c), (s, t), (s, d), (g, c), (g, t), (g, d), (n, c), (n, t), (n, d), (m, c), (m, t), (m, d)\}.$

Contoh 21. Daftarkan semua anggota himpunan berikut:

(a)
$$P(\emptyset)$$

(b)
$$\varnothing \times P(\varnothing)$$

(b)
$$\emptyset \times P(\emptyset)$$
 (c) $\{\emptyset\} \times P(\emptyset)$ (d) $P(P(\{3\}))$

(d)
$$P(P({3}))$$

Penyelesaian:

$$(a)P(\emptyset) = \{\emptyset\}$$

(b)
$$\emptyset \times P(\emptyset) = \emptyset$$
 (ket: jika $A = \emptyset$ atau $B = \emptyset$ maka $A \times B = \emptyset$)

$$(c)\{\varnothing\} \times P(\varnothing) = \{\varnothing\} \times \{\varnothing\} = \{(\varnothing,\varnothing)\}$$

(d)
$$P(P(\{3\})) = P(\{\emptyset, \{3\}\}) = \{\emptyset, \{\emptyset\}, \{\{3\}\}, \{\emptyset, \{3\}\}\}$$

Perampatan Operasi Himpunan

$$A_1 \cap A_2 \cap ... \cap A_n = \bigcap_{i=1}^n A_i$$

$$A_1 \cup A_2 \cup ... \cup A_n = \bigcup_{i=1}^n A_i$$

$$A_1 \cup A_2 \cup ... \cup A_n = \bigcup_{i=1}^n A_i$$

$$A_{1} \times A_{2} \times ... \times A_{n} = \sum_{i=1}^{n} A_{i}$$
 $A_{1} \oplus A_{2} \oplus ... \oplus A_{n} = \bigoplus_{i=1}^{n} A_{i}$

$$A_1 \oplus A_2 \oplus ... \oplus A_n = \bigoplus_{i=1}^n A_i$$

Contoh 22.

(i)
$$A \cap (B_1 \cup B_2 \cup ... \cup B_n) = (A \cap B_1) \cup (A \cap B_2) \cup ... \cup (A \cap B_n)$$

 $A \cap (\bigcup_{i=1}^n B_i) = \bigcup_{i=1}^n (A \cap B_i)$

(ii) Misalkan
$$A = \{1, 2\}, B = \{a, b\}, \text{dan } C = \{\alpha, \beta\}, \text{ maka}$$

 $A \times B \times C = \{(1, a, \alpha), (1, a, \beta), (1, b, \alpha), (1, b, \beta), (2, a, \alpha),$
 $(2, a, \beta), (2, b, \alpha), (2, b, \beta)\}$

Hukum-hukum Himpunan

1. Hukum identitas:	2. Hukum <i>null</i> /dominasi:			
$-A\cup\varnothing=A$	$-A\cap\varnothing=\varnothing$			
$-A \cap U = A$	$-A \cup U = U$			
3. Hukum komplemen:	4. Hukum idempoten:			
$-A \cup \overline{A} = U$	$A \cup A = A$			
$-A\cap \bar{A}=\emptyset$	$A \cap A = A$			
5. Hukum involusi:	6. Hukum penyerapan (absorpsi):			
$-\overline{(\overline{A})} = A$	$- A \cup (A \cap B) = A$			
	$-A\cap (A\cup B)=A$			
7. Hukum komutatif:	8. Hukum asosiatif:			
$- A \cup B = B \cup A$	$- A \cup (B \cup C) = (A \cup B) \cup C$			
$-A\cap B=B\cap A$	$-A\cap (B\cap C)=(A\cap B)\cap C$			
9. Hukum distributif:	10. Hukum De Morgan:			
$- A \cup (B \cap C) = (A \cup B)$	$- \frac{A \cap B}{A \cap B} = \frac{A \cup B}{A}$			
$ \cap (A \cup C) $	$-\frac{A \cap B}{A \cup B} = \frac{A \cup B}{A \cap B}$			
$-A \cap (B \cup C) = (A \cap B)$	$-A \cup B = A \cap B$			
$\cup (A \cap C)$				
11. Hukum 0/1				
$-\overline{\varnothing}=U$				
$- \overset{\sim}{\overline{U}} = \varnothing$				

Prinsip Dualitas

• Prinsip dualitas: dua konsep yang berbeda dapat dipertukarkan namun tetap memberikan jawaban yang benar.

Contoh: AS → kemudi mobil di kiri depan Inggris (juga Indonesia) → kemudi mobil di kanan depan

Peraturan:

- (a) di Amerika Serikat,
 - mobil harus berjalan di bagian kanan jalan,
 - pada jalan yang berlajur banyak, lajur *kiri* untuk mendahului,
 - bila lampu merah menyala, mobil belok *kanan* boleh langsung

(b) di Inggris,

- mobil harus berjalan di bagian kiri jalan,
- pada jalur yang berlajur banyak, lajur *kanan* untuk mendahului,
- bila lampu merah menyala, mobil belok *kiri* boleh langsung

Prinsip dualitas:

Konsep kiri dan kanan dapat dipertukarkan pada kedua negara tersebut sehingga peraturan yang berlaku di Amerika Serikat menjadi berlaku pula di Inggris.

• (Prinsip Dualitas pada Himpunan). Misalkan S adalah suatu kesamaan (*identity*) yang melibatkan himpunan dan operasioperasi seperti \cup , \cap , dan komplemen. Jika S^* diperoleh dari S dengan mengganti $\cup \to \cap$, $\cap \to \cup$, $\varnothing \to U$, $U \to \varnothing$, sedangkan komplemen dibiarkan seperti semula, maka kesamaan S^* juga benar dan disebut dual dari kesamaan S.

4 YY 1 11 11	D 1		
1. Hukum identitas:	Dualnya:		
$A \cup \varnothing = A$	$A \cap U = A$		
2. Hukum <i>null</i> /dominasi:	Dualnya:		
$A \cap \emptyset = \emptyset$	$A \cup U = U$		
3. Hukum komplemen:	Dualnya:		
$A \cup \bar{A} = \hat{\mathbf{U}}$	$A \cap \overline{A} = \emptyset$		
4. Hukum idempoten:	Dualnya:		
$A \cup A = A$	$A \cap A = A$		
5. Hukum penyerapan:	Dualnya:		
$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$		
6. Hukum komutatif:	Dualnya:		
$A \cup B = B \cup A$	$A \cap B = B \cap A$		
$\mathbf{n} \circ \mathbf{b} = \mathbf{b} \circ \mathbf{n}$	$\mathbf{H} + \mathbf{D} = \mathbf{D} + \mathbf{H}$		
7. Hukum asosiatif:	Dualnya:		
$A \cup (B \cup C) = (A \cup B) \cup C$	$A \cap (B \cap C) = (A \cap B) \cap C$		
8. Hukum distributif:	Dualnya:		
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$		
9. Hukum De Morgan:	Dualnya:		
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$		
$II \cup D = II + D$	D = D		
10. Hukum 0/1	Dualnya:		
$\overline{\varnothing} = U$	$\overline{\overline{U}} = \emptyset$		
$\wp = 0$	$U = \varnothing$		

Contoh 23. Dual dari
$$(A \cap B) \cup (A \cap \overline{B}) = A$$
 adalah $(A \cup B) \cap (A \cup \overline{B}) = A$.

Prinsip Inklusi-Eksklusi

Untuk dua himpunan A dan *B*:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$|A \oplus B| = |A| + |B| - 2|A \cap B|$$

Contoh 24. Berapa banyaknya bilangan bulat antara 1 dan 100 yang habis dibagi 3 atau 5?

Penyelesaian:

A = himpunan bilangan bulat yang habis dibagi 3,

B = himpunan bilangan bulat yang habis dibagi 5,

 $A \cap B$ = himpunan bilangan bulat yang habis dibagi 3 dan 5 (yaitu himpunan bilangan bulat yang habis dibagi oleh KPK – Kelipatan Persekutuan Terkecil – dari 3 dan 5, yaitu 15),

yang ditanyakan adalah $|A \cup B|$.

$$\begin{vmatrix} A & = 100/3 \\ B & = 100/5 \\ A \cap B & = 100/15 \\$$

$$|A \cup B| = |A| + |B| - |A \cap B| = 33 + 20 - 6 = 47$$

Jadi, ada 47 buah bilangan yang habis dibagi 3 atau 5.

Untuk tiga buah himpunan A, B, dan C, berlaku

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Untuk himpunan $A_1, A_2, ..., A_r$, berlaku:

$$\begin{vmatrix} A_1 \cup A_2 \cup \dots \cup A_r \end{vmatrix} = \sum_{i} \begin{vmatrix} A_i \end{vmatrix} - \sum_{1 \le i \le j \le r} \begin{vmatrix} A_i \cap A_j \end{vmatrix} + \sum_{1 \le i \le j \le k \le r} \begin{vmatrix} A_i \cap A_j \cap A_k \end{vmatrix} + \dots + (-1)^{r-1} \begin{vmatrix} A_1 \cap A_2 \cap \dots \cap A_r \end{vmatrix}$$

Partisi

- Partisi dari sebuah himpunan A adalah sekumpulan himpunan bagian tidak kosong A_1, A_2, \dots dari A sedemikian sehingga:
 - (a) $A_1 \cup A_2 \cup \ldots = A$, dan
 - (b) $A_i \cap A_j = \emptyset$ untuk $i \neq j$

Contoh 25. Misalkan $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$, maka $\{\{1\}, \{2, 3, 4\}, \{7, 8\}, \{5, 6\}\}$ adalah partisi A.

Himpunan Ganda

• Himpunan yang elemennya boleh berulang (tidak harus berbeda) disebut **himpunan ganda** (*multiset*).

- **Multiplisitas** dari suatu elemen pada himpunan ganda adalah jumlah kemunculan elemen tersebut pada himpunan ganda. Contoh: $M = \{0, 1, 1, 1, 0, 0, 0, 1\}$, multiplisitas 0 adalah 4.
- Himpunan (*set*) merupakan contoh khusus dari suatu *multiset*, yang dalam hal ini multiplisitas dari setiap elemennya adalah 0 atau 1.
- Kardinalitas dari suatu *multiset* didefinisikan sebagai kardinalitas himpunan padanannya (ekivalen), dengan mengasumsikan elemen-elemen di dalam *multiset* semua berbeda.

Operasi Antara Dua Buah Multiset:

Misalkan *P* dan *Q* adalah *multiset*:

1. $P \cup Q$ adalah suatu *multiset* yang multiplisitas elemennya sama dengan multiplisitas maksimum elemen tersebut pada himpunan P dan Q.

Contoh:
$$P = \{ a, a, a, c, d, d \} \text{ dan } Q = \{ a, a, b, c, c \},$$

 $P \cup Q = \{ a, a, a, b, c, c, d, d \}$

2. $P \cap Q$ adalah suatu *multiset* yang multiplisitas elemennya sama dengan multiplisitas minimum elemen tersebut pada himpunan P dan Q.

Contoh:
$$P = \{ a, a, a, c, d, d \} \text{ dan } Q = \{ a, a, b, c, c \}$$

 $P \cap Q = \{ a, a, c \}$

- 3. P Q adalah suatu *multiset* yang multiplisitas elemennya sama dengan:
 - multiplisitas elemen tersebut pada P dikurangi multiplisitasnya pada Q, jika selisihnya positif
 - 0, jika selisihnya nol atau negatif.

Contoh:
$$P = \{ a, a, a, b, b, c, d, d, e \} \text{ dan } Q = \{ a, a, b, b, b, c, c, d, d, f \} \text{ maka } P - Q = \{ a, e \}$$

4. P + Q, yang didefinisikan sebagai jumlah (*sum*) dua buah himpunan ganda, adalah suatu *multiset* yang multiplisitas elemennya sama dengan penjumlahan dari multiplisitas elemen tersebut pada P dan Q.

Contoh:
$$P = \{ a, a, b, c, c \} \text{ dan } Q = \{ a, b, b, d \},$$

 $P + Q = \{ a, a, a, b, b, b, c, c, d \}$

Pembuktian Pernyataan Perihal Himpunan

- Pernyataan himpunan adalah argumen yang menggunakan notasi himpunan.
- Pernyataan dapat berupa:
 - 1. Kesamaan (identity)

Contoh: Buktikan " $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ "

2. Implikasi

Contoh: Buktikan bahwa "Jika $A \cap B = \emptyset$ dan $A \subseteq (B \cup C)$ maka selalu berlaku bahwa $A \subseteq C$ ".

1. Pembuktian dengan menggunakan diagram Venn

Contoh 26. Misalkan A, B, dan C adalah himpunan. Buktikan $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ dengan diagram Venn. *Bukti:*

Kedua digaram Venn memberikan area arsiran yang sama. Terbukti bahwa $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- Diagram Venn hanya dapat digunakan jika himpunan yang digambarkan tidak banyak jumlahnya.
- Metode ini *mengilustrasikan* ketimbang membuktikan fakta. Diagram Venn tidak dianggap sebagai metode yang valid untuk pembuktian secara formal.

2. Pembuktikan dengan menggunakan tabel keanggotaan

Contoh 27. Misalkan A, B, dan C adalah himpunan. Buktikan bahwa $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Bukti:

A	В	C	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup (A \cap C)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Karena kolom $A \cap (B \cup C)$ dan kolom $(A \cap B) \cup (A \cap C)$ sama, maka $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

3. Pembuktian dengan menggunakan aljabar himpunan.

Contoh 28. Misalkan A dan B himpunan. Buktikan bahwa $(A \cap B) \cup (A \cap \overline{B}) = A$

Bukti:

$$(A \cap B) \cup (A \cap \overline{B}) = A \cap (B \cup \overline{B})$$
 (Hukum distributif)
= $A \cap U$ (Hukum komplemen)
= A (Hukum identitas)

Contoh 29. Misalkan A dan B himpunan. Buktikan bahwa $A \cup (B - A) = A \cup B$

Bukti:

$$A \cup (B - A) = A \cup (B \cap \overline{A})$$
 (Definisi operasi selisih)
= $(A \cup B) \cap (A \cup \overline{A})$ (Hukum distributif)
= $(A \cup B) \cap U$ (Hukum komplemen)
= $A \cup B$ (Hukum identitas)

Contoh 30. Buktikan bahwa untuk sembarang himpunan *A* dan *B*, bahwa

(i)
$$A \cup (\bar{A} \cap B) = A \cup B$$
 dan
(ii) $A \cap (\bar{A} \cup B) = A \cap B$

Bukti:

(i)
$$A \cup (\overline{A} \cap B) = (A \cup \overline{A}) \cap (A \cap B)$$
 (H. distributif)
= $U \cap (A \cap B)$ (H. komplemen)
= $A \cup B$ (H. identitas)

(ii) adalah dual dari (i)

$$A \cap (\overline{A} \cup B) = (A \cap \overline{A}) \cup (A \cap B)$$
 (H. distributif)
= $\emptyset \cup (A \cap B)$ (H. komplemen)
= $A \cap B$ (H. identitas)

4. Pembuktian dengan menggunakan definisi

• Metode ini digunakan untuk membuktikan pernyataan himpunan yang tidak berbentuk kesamaan, tetapi pernyataan yang berbentuk implikasi. Biasanya di dalam implikasi tersebut terdapat notasi himpunan bagian (⊆ atau ⊂).

Contoh 31. Misalkan A dan B himpunan. Jika $A \cap B = \emptyset$ dan $A \subseteq (B \cup C)$ maka $A \subseteq C$. Buktikan!

Bukti:

- (i) Dari definisi himpunan bagian, $P \subseteq Q$ jika dan hanya jika setiap $x \in P$ juga $\in Q$. Misalkan $x \in A$. Karena $A \subseteq (B \cup C)$, maka dari definisi himpunan bagian, x juga $\in (B \cup C)$. Dari definisi operasi gabungan (\cup) , $x \in (B \cup C)$ berarti $x \in B$ atau $x \in C$.
- (ii) Karena $x \in A \operatorname{dan} A \cap B = \emptyset$, maka $x \notin B$

Dari (i) dan (ii), $x \in C$ harus benar. Karena $\forall x \in A$ juga berlaku $x \in C$, maka dapat disimpulkan $A \subseteq C$.

Tipe Set dalam Bahasa Pascal

• Bahasa Pascal menyediakan tipe data khusus untuk himpunan, yang bernama *set*. Tipe *set* menyatakan himpunan kuasa dari tipe ordinal (*integer*, *character*).

Contoh:

```
type
   HurufBesar = 'A'..'Z'; { enumerasi }
   Huruf = set of HurufBesar;
var
   HurufKu : Huruf;
```

Nilai untuk peubah HurufKu dapat diisi dengan pernyataan berikut:

 Operasi yang dapat dilakukan pada tipe himpunan adalah operasi gabungan, irisan, dan selisih seperti pada contoh berikut:

```
{gabungan}
HurufKu:=['A', 'C', 'D'] + ['C', 'D', 'E'];

{irisan}
HurufKu:=['A', 'C', 'D'] * ['C', 'D', 'E'];

{selisih}
HurufKu:=['A', 'C', 'D'] - ['C', 'D', 'E'];
```

• Uji keanggotaan sebuah elemen di dalam himpunan dilakukan dengan menggunakan opeator *in* seperti contoh berikut:

```
if 'A' in HurufKu then ...
```

• Di dalam kakas pemrograman *Delphi*, *set* sering digunakan untuk mengindikasikan *flag*. Misalnya himpunan *icon* untuk *window*:

type

