INTRO TO MACHINE LEARNING

SESSION - 1

What is a shoe???

pixtastock.com - 64031702

What is Machine Learning?(Defn)

"Learning is any process by which a system improves performance from experience" -- Herbert Simon

Machine Learning is the study of algorithms that improves their performance P at some task T with experience E.

Traditional Programming Vs Machine Learning

Traditional Programming

Machine Learning

Why now?

- Flood of available data (especially with the advent of the Internet)
- Increasing computational power
- Growing progress in available algorithms and theory developed by researchers
- Increasing support from industries

Some more examples of tasks that are best solved by using a learning algorithm

- Recognizing patterns:
 - Facial identities or facial expressions
 - Handwritten or spoken words
 - Medical images
- Generating patterns:
 - Generating images or motion sequences
- Recognizing anomalies:
 - Unusual credit card transactions
 - Unusual patterns of sensor readings in a nuclear power plant
- Prediction:
 - Future stock prices or currency exchange rates

Types of Learning

Types of Learning

- Supervised (inductive) learning
 - Given: training data + desired outputs (labels)
- Unsupervised learning
 - Given: training data (without desired outputs)
- Semi-supervised learning
 - Given: training data + a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

Supervised Learning: Regression

- Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Learn a function f(x) to predict y given x
 - -y is real-valued == regression

Supervised Learning: Classification

- Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Learn a function f(x) to predict y given x
 - -y is categorical == classification

Supervised Learning: Classification

- Given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Learn a function f(x) to predict y given x
 - -u is categorical == classification

Supervised Learning

- x can be multi-dimensional
 - Each dimension corresponds to an attribute

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape

. . .

- Given $x_1, x_2, ..., x_n$ (without labels)
- Output hidden structure behind the x's
 - E.g., clustering

 Independent component analysis – separate a combined signal into its original sources

 Independent component analysis – separate a combined signal into its original sources

While **dimensionality reduction** is an important tool in machine learning/data mining, we must always be aware that it can distort the data in misleading ways.

Above is a two dimensional projection of an intrinsically three dimensional world....

Reinforcement Learning

- Given a sequence of states and actions with (delayed) rewards, output a policy
 - Policy is a mapping from states □ actions that tells you what to do in a given state

Examples:

- Credit assignment problem
- Game playing
- Robot in a maze
- Balance a pole on your hand

Reinforcement Learning

https://www.youtube.com/watch?v=4cgWya-wigY

The Learning Process

Evaluation metrics for an regression

Mean squared error	$MSE = \frac{1}{n} \sum_{t=1}^{n} e_t^2$
Root mean squared error	$RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} e_t^2}$
Mean absolute error	$MAE = \frac{1}{n} \sum_{t=1}^{n} e_t $
Mean absolute percentage error	$MAPE = \frac{100\%}{n} \sum_{t=1}^{n} \left \frac{e_t}{y_t} \right $

Evaluation metrics for classification

Fig.1 - True Positive

Fig.3 - False Positive

Fig.2 - True Negative

Fig.4 - False Negative

CONFUSION MATRIX

Accuracy

Accuracy = Number of correct predictions / Total number of predictions.

Now, let's consider 50,000 passengers travel per day on an average. Out of which, 10 are actually COVID positive. If our learned model predicted everyone as a covid -ve. Lets check the accuracy of this model

		ACTUAL	
		Positive	Negative
PREDICTED	Positive	TP = 0	FP = 0
	Negative	FN =10	TN 50,000 - 10 = 49,990

Accuracy for this case will be:

Precision and Recall

F1 Score

ACTUAL

Negative **Positive** Positive TP FP = 0= 1 Vegative FΝ TN = 9 50,000 - 9 = 49,991 So Here precision is P=1(TP)/1(TP)+0(FP)

P=1

So here Recall is R=1(TP)/1(TP)+9(FN) R=0.1

F1 Score = 2 * Precision * Recall Precision + Recall

PREDICTED

F1=2*(1*0.1)/(1+0.1) F1=0.18