1

Assignment-8

Pooja H AI20MTECH14003

Abstract—In this document, we present the solution to the QR factorization with an example.

Download all python codes from

https://github.com/poojah15/

EE5609_AI20MTECH14003/tree/master/ Assignment 8

Download all latex-tikz codes from

https://github.com/poojah15/

EE5609_AI20MTECH14003/tree/master/ Assignment 8

1 Problem Statement

Given a matrix $\mathbf{A} = \begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix}$, find its **QR** decomposition

2 Solution

Given

$$\mathbf{A} = \begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix} \tag{2.0.1}$$

Let us use the Gram-Schmidt approach to obtain QR decomposition of A. Consider column vectors say \mathbf{a}_1 and \mathbf{a}_2 of A which is given by

$$\mathbf{a}_1 = \begin{pmatrix} 3\\4 \end{pmatrix} \tag{2.0.2}$$

$$\mathbf{a}_2 = \begin{pmatrix} -2\\ -2 \end{pmatrix} \tag{2.0.3}$$

$$\mathbf{u}_1 = \mathbf{a}_1 = \begin{pmatrix} 3\\4 \end{pmatrix} \tag{2.0.4}$$

$$\mathbf{e}_1 = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} = \begin{pmatrix} \frac{3}{5} \\ \frac{4}{5} \end{pmatrix} \tag{2.0.5}$$

$$\mathbf{u}_2 = \mathbf{a}_2 - \left(\mathbf{a}_2^T \cdot \mathbf{e}_1\right) \mathbf{e}_1 \tag{2.0.6}$$

$$= \begin{pmatrix} -2\\ -2 \end{pmatrix} - \left(-\frac{14}{5} \right) \begin{pmatrix} \frac{3}{5}\\ \frac{4}{5} \end{pmatrix} \tag{2.0.7}$$

$$= \begin{pmatrix} -2 \\ -2 \end{pmatrix} - \begin{pmatrix} -\frac{42}{25} \\ -\frac{56}{25} \end{pmatrix} = \begin{pmatrix} -\frac{8}{25} \\ \frac{6}{25} \end{pmatrix}$$
 (2.0.8)

$$\mathbf{e}_2 = \frac{\mathbf{u}_2}{\|\mathbf{u}_2\|} = \begin{pmatrix} -\frac{4}{5} \\ \frac{3}{5} \end{pmatrix} \tag{2.0.9}$$

The matrix \mathbf{Q} and \mathbf{R} is given by,

$$\mathbf{Q} = \begin{pmatrix} \mathbf{e}_1 & \mathbf{e}_2 \end{pmatrix} = \begin{pmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix}$$
 (2.0.10)

$$\mathbf{R} = \begin{pmatrix} \mathbf{a}_1^T \cdot \mathbf{e}_1 & \mathbf{a}_2^T \cdot \mathbf{e}_1 \\ 0 & \mathbf{a}_2^T \cdot \mathbf{e}_2 \end{pmatrix} = \begin{pmatrix} 5 & -\frac{14}{5} \\ 0 & \frac{2}{5} \end{pmatrix}$$
(2.0.11)

Hence, the $\mathbf{Q}\mathbf{R}$ decomposition of matrix \mathbf{A} is as follows:

$$\begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix} = \begin{pmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} 5 & -\frac{14}{5} \\ 0 & \frac{2}{5} \end{pmatrix}$$
 (2.0.12)