Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Институт Информационных технологий, математики и механики Кафедра: программной инженерии

Тема:

«Циклический алгоритм управления конфликтными потоками с адаптивной длинной цикла»

Выполнил: студент группы 381603-3

Кумин Алексей Александрович

Научный руководитель:

Профессор Федоткин Михаил Андреевич

Ассистент Кудрявцев Евгений Владимирович

Актуальность данной работы

• Пробки и заторы на улицах города

Постановка задачи

- Требуется исследовать модель перекрестка с двумя очередями.
- Рассмотрим перекресток как обслуживающее устройство (ОУ), которое имеет 4 состояния, и на обслуживание поступают 2 пуассоновских потока.

Описание состояний ОУ

- Г1 обслуживание заявок(автомобилей) по первому потоку, длительность пребывания ОУ в состоянии Г1 равна случайной величине принимающей значения на отрезке [Т1, 2Т1].
- Г2 дообслуживание заявок по первому потоку, длительность пребывания ОУ в состоянии Г2 равна Т2(обслуживается 1 заявка)
- Г3 обслуживание заявок по второму потоку, длительность пребывания ОУ в состоянии Г3 равна случайной величине принимающей значения на отрезке [Т3, 2Т3]
- Г4 дообслуживание заявок по второму потоку, длительность Т4

Аналитическое исследование и описание случайных величин

В данной задаче рассматриваются 2 пуассоновских потока, это означает, что вероятность поступления k требований за промежуток длительности t:

$$P(X = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

Обозначим вероятность того, что на n+1 промежутке времени в первой очереди окажется k заявок:

$$P(\varkappa_{1,n+1} = k) = Q_{1,n+1}(k)$$

$$\varkappa_{1,n+1} = \varkappa_{1,n} + \eta_{1,n} - \xi_{1,n}$$

где: $\varkappa_{1,n+1}$ –длина очереди на n +1 промежутке времени, $\eta_{1,n}$ – кол-во заявок, пришедших на n промежутке времени, $\xi_{1,n}$ – кол-во заявок, обслуженных в течение n-го промежутка

$$P(\eta_{1,n} = k) = \frac{(\lambda_1 t)^k}{k!} e^{-\lambda t} = \varphi_1(k, t)$$

Эти случайные величины независимы. Аналогично и для второй очереди.

Обозначим вероятность того, что на n+1 промежутке времени в первой очереди окажется k заявок, а во второй l заявок:

$$Q_{n+1}(k,l) = P(\varkappa_{1,n+1} = k, \varkappa_{2,n+1} = l)$$

Пример рекуррентного соотношения

Рассмотрим рекуррентные соотношения вероятностей $Q_{n+1}(k,l)$ двух потоков.

Состояние Г1 обслуживающего устройства:

$$\begin{split} &Q_{n+1}(0,l)\\ &=\sum_{\substack{p=0\\2n_1}}^{l}\varphi_1(0,\mathsf{T}1)\sum_{\substack{q=0\\l}}^{l}\varphi_2(l-q,\mathsf{T}1)Q_n(p,q)\\ &+\sum_{\substack{p=0\\2n_1}}^{l}\varphi_1(0,\frac{T1}{n_1}p)\sum_{\substack{q=0\\q=0}}^{l}\varphi_2\left(l-q,\frac{T1}{n_1}p\right)Q_n(p,q)\\ &=\sum_{\substack{p=0\\2n_1+k-1}}^{l}\varphi_1(n_1+k-p,\mathsf{T}1)\sum_{\substack{q=0\\q=0}}^{l}\varphi_2(l-q,\mathsf{T}1)Q_n(p,q)\\ &+\sum_{\substack{p=0\\2n_1+k-1}}^{l}\varphi_1\left(k,\frac{T1}{n_1}p\right)\sum_{\substack{q=0\\q=0}}^{l}\varphi_2\left(l-q,\frac{T1}{n_1}p\right)Q_n(p,q)\\ &+\sum_{\substack{p=0\\2n_1+k-1}}^{l}\varphi_1(2n_1+k-p,\mathsf{T}1)\sum_{\substack{q=0\\q=0}}^{l}\varphi_2(l-q,\mathsf{T}1)Q_n(p,q)\\ &=\sum_{\substack{p=0\\2n_1+k-1}}^{l}\varphi_1(2n_1+k-p,\mathsf{T}1)\sum_{\substack{q=0\\q=0}}^{l}\varphi_2(l-q,\mathsf{T}1)Q_n(p,q) \end{split}$$

Имитационная модель

Исследуем задачу с помощью программы, имитирующей перекресток.

- Исходные данные: время Т1, Т2, Т3, Т4, параметры очередей λ1, λ2, время обслуживания одной заявки по потокам t1, t2, исходное кол-во заявок в очереди х1, х2, количество шагов системы N.
- Выходные данные: среднее число заявок в очередях за время действия системы midX1, midX2, среднее время ожидания заявки в очередях mid T x1, mid T x2, таблица состояний в каждый момент времени (T1, T2, T3, T4) и количество заявок в очередях в эти моменты времени.

Скриншоты

На данном скриншоте видно, что очереди неограниченно растут, при данном наборе параметров.

Скриншоты

На данном скриншоте видно, что если увеличить параметр Т1, то по первому потоку не будет наблюдаться увеличения очереди, а по второму наблюдается увеличение с еще большей скоростью.

Скриншоты

Начнем контролировать время обслуживания первого потока в состоянии Г1 (при те же параметрах что и в скр. 1)

Выводы

Можно подобрать такой набор параметров, при котором очереди не будут увеличиваться и в системе будет наблюдаться стационар, т.е. размер очередей будет постоянным.

Литература

- 1) Зорин А.В, Зорин В.А, Федоткин М.А. «Теория управляемых систем массового обслуживания: Учебное пособие.» Нижний Новгород: Издательство Нижегородского госуниверситета, 2007 г. 47 с.
- 2) Гнеденко Б.В., Коваленко И.Н. «Введение в теорию массового обслуживания» М.: Наука, 1966. 432 с.
- 3) Зорин А.В, Зорин В.А, Федоткин М.А «Моделирование случайных величин и проверка гипотез о виде распределения» Учебно-методическое пособие. Нижний Новгород: Нижегородский госуниверситет, 2017. 19 с.
- 4) Некруткин В.В «Моделирование распределений» Материалы специального курса и специального семинара 4 февраля 2013 г. 90 с.