

ISDA: POSITION-AWARE INSTANCE SEGMENTATION WITH DEFORMABLE ATTENTION

Kaining Ying, Zhenhua Wang*, Cong Bai, Pengfei Zhou Zhejiang University of Technology * zhwang@zjut.edu.cn

Instance Segmentation

Difficulties: Require both instance-level (holistic and coarse) and pixel-level results (local and fine). In contrast, object detection only requires instance-level results, and semantic segmentation only requires pixel-level result.

Mask R-CNN

Challenge: RPN and NMS block end-to-end

Segmenting objects by locations

NMS still exits!

Detection Transformer

Deformable DETR

ISDA Overview

ISDA Head

Mask Head

Quantitative results

Ablation Study on mask resolution

Resolution	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
1/8	35.0	58.3	35.9	14.6	38.5	54.7
1/4	36.5	58.9	38.3	17.4	39.5	54.6
1/2	36.4	58.7	38.3	17.6	39.3	53.8

Ablation Study on positional information

MP	KP	Delta	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
		0	32.4	56.9	32.2	15.6	35.5	47.4
\checkmark		+3.7	36.1	58.5	37.9	16.6	39.0	54.5
	✓	-0.6	31.8	56.0	31.9	15.4	34.8	47.1
\checkmark	✓	+4.1	36.5	58.9	38.3	17.4	39.5	54.6

Result on MS COCO

Method	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Mask R-CNN [7]	36.1	58.2	38.5	20.1	38.8	46.4
SOLO [12]	35.1	55.9	37.4	13.7	37.6	51.6
SOLOv2 [13]	37.4	58.4	40.1	15.4	40.2	57.4
CondInst [33]	36.9	58.2	39.6	19.8	39.3	48.0
BlendMask [34]	37.0	58.0	39.4	19.5	39.9	53.1
ISTR [29]	37.6	-	-	22.1	40.4	50.6
ISDA (ours)	38.7	62.0	41.1	17.0	41.2	55.7

Compare with Mask R-CNN

Qualitative results

More results

Conclusion

- ISDA introduced a Transformer-style framework for instance segmentation, which effectively removed NMS and achieved end-toend training and inference
- ISDA is able to distinguish similar objects better by learning extra positional features
- ISDA gives SOTA results

Thank you!

