12.10 Hausman's Specification Error Test

Hausman's specification error test⁴⁵ is a general and widely used test for the hypothesis of no misspecification in the model.

Let H_0 denote the null hypothesis that there is no misspecification and let H_1 denote the alternative hypothesis that there is a misspecification (of a particular type). For instance, if we consider the regression model

$$y = \beta x + u \tag{12.20}$$

in order to use the OLS procedure, we specify that x is independent of u. Thus the null and alternative hypotheses are:

 $H_0: x$ and u are independent

 $H_1: x$ and u are not independent

To implement Hausman's test, we have to construct two estimators β_0 and β_1 , which have the following proporties:

 μ_0 is consistent and efficient under H_0 but is not consistent under H_1 . β_1 is consistent under both H_0 and H_1 but is not efficient under H_0

Then we consider the difference $\hat{q}=\hat{p}_1+\hat{p}_0$. Hausman first shows that

$$var(\hat{q}) = V_1 - V_0$$

where $V_1 = \text{var}(\hat{\beta}_1)$ and $V_0 = \text{var}(\hat{\beta}_0)$, both variances being computed under H_0 . Let $\hat{V}(\hat{q})$ be a consistent estimate of $var(\hat{q})$. Then we use

$$m = \frac{\hat{q}^2}{\hat{V}(\hat{q})}$$

as a χ^2 -distribution with d.f. 1 to test H_0 against H_1 . This is an asymptotic test

We have considered only a single parameter β . In the general case where β is a vector of k parameters, V_1 and V_0 will be matrices, $\hat{\beta}_1,\hat{\beta}_0$, and \hat{q} will all be vectors, and the Hausman test statistic is

 $m = \tilde{\mathbf{q}}' [\hat{\mathbf{V}}(\tilde{\mathbf{q}})]^{-1} \tilde{\mathbf{q}}$

which has (asymptotically) a χ^2 -distribution with d.f. λ

Since a consideration of the k-parameter case involves vectors and matrices, we discoun the single-parameter case. The derivations in the k-parameter case are all similar. To prove the result $var(\hat{q}) = V_1 - V_6$, we first have to prove the result that

$$cov(\beta_0, \hat{q}) = 0$$

The proof proceeds as follows. Under H_0 , both $\hat{\beta}_0$ and \hat{p}_1 are consistent estimates for β Hence we get

plim $\hat{q} = \text{plim } \hat{\beta}_1 - \text{plim } \hat{\beta}_2 = \beta - \beta = 0$

Consider a new estimator for β defined by

$$\hat{a} = \hat{\mu}_0 + \lambda \hat{q}$$

where λ is any constant. Then plim $d = \beta$. Thus d is a consistent estimates of β for all values of λ . values of \(\lambda_{\text{-}}\)

 $V(\hat{d}) = V_0 + \lambda^2 \operatorname{vac}(\hat{q}) + 2\lambda \operatorname{cov}(\hat{p}_0, \hat{q}) \ge V_0$

Since Bu is efficient. Thus

$$\lambda^2 \operatorname{var}(\hat{\eta}) + 2\lambda \operatorname{cov}(\hat{\eta}_0, \hat{\eta}) \ge 0$$

for all values of \(\lambda\). We will show that the relationship (12.21) can be seisted for solves of 1 and 2. values of λ only if $cov(f_0, q) = 0$

Suppose that $cov(\hat{\beta}_0, \hat{q}) > 0$. Then by choosing λ negative and equal to $-cov(\hat{\beta}_0, \hat{q})$ var (\hat{q}) , we can show that the relationship (12.21) is violated. Thus $cov(\hat{\beta}_0, \hat{q})$ is not greater than zero.

Similarly, suppose that $cov(\hat{\beta}_0, \hat{q}) < 0$. Then by choosing λ positive and equal to $-cov(\hat{\beta}_0, \hat{q})/var(\hat{q})$, we show that the relationship (12.21) is violated. Thus $cov(\hat{\beta}_0, \hat{q})/var(\hat{q})$ cannot be greater than or less than zero. Hence we get $cov(\hat{\beta}_0, \hat{q}) = 0$.

Now since $\hat{\beta}_1 = \hat{\beta}_0 + \hat{q}$ and $cov(\hat{\beta}_0, \hat{q}) = 0$, we get

$$\operatorname{var}(\hat{\beta}_1) = \operatorname{var}(\hat{\beta}_0) + \operatorname{var}(\hat{q})$$

or

$$\operatorname{var}(\hat{q}) = \operatorname{var}(\hat{\beta}_1) - \operatorname{var}(\hat{\beta}_0) = V_1 - V_0$$

which is the result on which Hausman's test is based.