

Learning to Evaluate Image Captioning

Yin Cui^{1,2}, Guandao Yang¹, Andreas Veit^{1,2}, Xun Huang^{1,2}, Serge Belongie^{1,2} ¹ Department of Computer Science, Cornell University ² Cornell Tech

Introduction

Captioning Evaluation Challenges

- Difficulty to correlate well with human judgements.
- 2. Lack of provision to repair targeted blind spots or targeted pathological cases.

Contributions

- A novel learning based image captioning evaluation metric that tackle both of these challenges.
- SOTA human correlation.
- Show how to train a good meric.
- Demonstrate the robustness of the proposed metric.

How to Train a Good Metric

- Image Feature: To better distinguish human and machine captions.
- Nonlinearity: The binary classifier requires nonlinearity, Compact Bilinear Pooling (CBP) or MLP.
- Data Augmentation: Adding pathologically transformed captions and Monte Carlo samples as negative examples to increase robustness.

Pathological Transformations

Capability Experiment

- Good metrics are capable of distinguishing human and machine captions.
- Using image features improves models' capability.

Experiments

Models (Feature Combination + Classifier)

Robustness Experiment

- Good metrics are robust toward pathological cases.
- Data augmentation makes model more robust.

Human Correlations

- Good metrics correlate well with human judgements.
- Achieve SOTA performance in both system level (COCO) and caption level (Flickr).

Robustness Results

Architecture

Human v.s. Metric Score (COCO)

0.5				•
0.4				humanGoogle
0.4				Montreal/TorontoBerkeley LRCNm-RNN
0.3 -				PicSOMBrno Universitym-RNN (Baidu/ UCLA)
0.1				MILMLBLNeuralTalkACVT
0.0	0.2	0.3	0.4	Tsinghua Bigeye0.50.6

Human Correlation (COCO)

0.0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

	M1		M2					
	ρ	<i>p</i> -value	ρ	<i>p</i> -value				
BLEU-1	0.124	(0.687)	0.135	(0.660)				
BLEU-2	0.037	(0.903)	0.048	(0.877)				
BLEU-3	0.004	(0.990)	0.016	(0.959)				
BLEU-4	-0.019	(0.951)	-0.005	(0.987)				
METEOR	0.606	(0.028)	0.594	(0.032)				
ROUGE-L	0.090	(0.769)	0.096	(0.754)				
CIDEr	0.438	(0.134)	0.440	(0.133)				
SPICE	0.759	(0.003)	0.750	(0.003)				
Ours (no DA)	0.821	(0.000)	0.807	(0.000)				
Ours	0.939	(0.000)	0.949	(0.000)				
M1: Percentage of captions that are evaluated as better								

or equal to human caption.

M2: Percentage of captions that pass the Turing Test.

Human Correlation (Flickr)

Expert Annotations	Crowd Flower	
0.191*	0.206	
0.212	0.212	
0.209	0.204	
0.206*	0.202	
0.308*	0.242	
0.218*	0.217	
0.289*	0.264	
0.456	0.252	
0.466	0.295	
0.736	_	
	0.191* 0.212 0.209 0.206* 0.308* 0.218* 0.289* 0.456 0.466	

Expert Annotations: experts score image-caption pairs from 1 to 4; 1 means caption doesn't describe the image.

Crowd Flower: human raters mark 1 if the candidate caption describes the image, and mark 0 if not.