Math 357 Exam 01M

2024-02-23 (F)

Instructions

- 1. In the space above, please legibly write your name and the Rice Honor Pledge, then sign.
- 2. You have exactly 50 minutes for this exam. No resources are allowed.

Exercise	Total	(a)	(b)	(c)
1	/4	/4	/4	/4
2	/4	/4	/4	
3	/4	/4	/4	/4
4	/4	/4	/4	
5	/4			
Total	/20			

(4 pt) Let R be an integral domain. For each of the following statements, state whether it is true or false, and prove it (if true) or give a counterexample (if false).

- (a) The product of two units is a unit.
- (b) If $r \in R$ is prime, then it is irreducible.
- (c) If $r \in R$ is irreducible, then it is prime.

(4 pt) Let F be a field, let t be an indeterminate, and let $I \subseteq F[t]$ be an ideal.

- (a) Characterize I as completely as possible.
- (b) For each of the following algebraic structures, state whether there exists an ideal $I \subseteq F[t]$ such that the quotient ring F[t]/I has that structure. If yes, then give an example. If no, then justify why.
 - (i) field (ii) integral domain but not field (iii) ring but not integral domain

(4 pt) Let \mathbf{Q} denote the field of rational numbers; given a prime $\mathfrak{p} \in \mathbf{Z}_{>0}$, let $F_{\mathfrak{p}} \cong \mathbf{Z}/(\mathfrak{p})$ denote the finite field with \mathfrak{p} elements; and let \mathfrak{t} be an indeterminate. For each of the following polynomials, state whether it is irreducible or reducible. Justify your assertions.

(a)
$$f_1 = t^4 - 2t^3 + t + 1 \in F_5[t]$$

(b)
$$f_2 = 6t^4 + 11t^3 + 8t^2 - 6t - 4 \in \mathbf{Q}[t]$$

(c)
$$f_3 = t^4 + 4t^3 + t + 16 \in \mathbf{Q}[t]$$

(4 pt) Let F be a field, let G be a finite group, and let V be an F-vector space.

- (a) Given a representation $\rho: G \to GL(V)$, describe how to define an FG-module structure on V that extends the F-action of the F-vector space V and that affords the representation ρ .
- (b) Given an FG-module V, describe how to recover a representation ρ of G on V.

(4 pt) Consider three matrix representations $\rho_j: \mathbf{Z}/4\mathbf{Z} \to GL_2(\mathbf{C}), j \in \{1,2,3\}$, defined by

$$\rho_1(m) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^m \qquad \qquad \rho_2(m) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^m \qquad \qquad \rho_3(m) = \begin{pmatrix} \mathfrak{i} & 0 \\ 0 & -\mathfrak{i} \end{pmatrix}^m$$

(Here $i \in C$ denotes a square root of -1.) State which of these matrix representations are faithful, which are irreducible, and which are equivalent. Briefly justify your assertions.

 $^{^{1}}$ More precisely, we should write $\rho_{i}(m+4\mathbf{Z})$. To keep notation simple, I have written what I have written.