Partie 1

Exercices

1.1 Exercice 0:

1.1.1 suites arithmétiques

Une suite arithmétique (u_n) de raison r peut être définie par la formule de récurence :

$$u_{n+1} = u_n + r$$

Le tableau suivant montre 2 listes calculées à partir de suites arithmétiques.

B10	*	: ×	√ f _x	=89+4
4	Α	В	С	D
1	0	2		
2	1	6		
3	2	10		
4	3	14		
5	4	18		
6	5	22		
7	6	26		
8	7	30		
9	8	34		
10	9	38		
11		200		
12				

FIGURE 1 - tableau Excel

- 1. Proposer une formule générale pour le calcul de la somme des termes d'une suite arithmétique.
- 2. Calculer la somme des termes de la colonne de gauche
- 3. Calculer la somme des termes de la colonne de droite
- 4. Soit u(n) la fonction python qui calcule et retourne la valeur de u au rang n. Ecrire une fonction somme_arithmetique en python qui calcule la somme des n premiers termes de la suite u(n) et retourne la valeur calculée. Cette fonction utilisera une boucle bornée, et non la formule proposée au 1.

1.1.2 Fonction logarithmique

Le logarithme en base a d'un nombre x strictement positif peut être calculé à partir de :

$$log_a(x) = \frac{log(x)}{log(a)}$$

En informatique, on uitlise préferentiellement la fonction logarithmique en base 2.

1 Calculer les logarithmes en base 2 de 8, 16, 32, 64. Que remarquez-vous? 2. Combien de fois successives faut-il diviser 8 par 2 pour arriver à 1? 3. Même question pour 16 puis 32. Conclure : Exprimer d'une autre manière ce que signifie le logarithme en base 2 d'un nombre.

1.2 Exercice 1

```
def multiplie1(b,n):
   L=[]
   for i in range(n):
      L.append(b*i)
   return L
```

Le programme execute n fois la ligne 4. Le nombre d'opérations significatives effectuée est $T(n) = 2 \times n$: On aura pour multiplie1une classe de compléxité algorithmique

O(n)

•

Si on ajoute des lignes dans la boucle for, pour faire par exemple :

```
def multiplie2(b,n):
    L=[]
    for i in range(n):
        y = b * i
        L.append(y)
    return L
```

Le nombre d'opérations significatives effectuée par multiplie2 est $T(n) = 3 \times n$.

C'est deux fois plus que multiplie1. Or cette différence ne vient que d'une différence des **details d'implémentation** du même algorithme, et ne doit pas être considérée pour le calcul de la complexité.

On aura aussi pour multiplie2 une classe de compléxité algorithmique

O(n)

.

Enfin, ce même algorithme peut être implémenté avec une boucle non bornée :

```
def multiplie3(b,n):
    L=[]
    i = n - 1
    while i >=0:
        y = b * i
        L.append(y)
        i -= 1
    return L
```

- 1. Pour les fonctions multiplie1 et multiplie2 : Enoncer un ensemble de règles pour déterminer T(n).
- 2. Pour les fonctions multiplie1 et multiplie2 : Enoncer une règle pour évaluer la complexité algorithmique O(g(n)) à partir de T(n).
- 3. Déterminer T(n) pour multiplie 3. Vérifier que l'on obtient aussi une classe de complexité O(n) pour multiplie 3.

1.3 Exercice 2

```
def truc(n):
    res=0
    for i in range(0,n):
        res = res + 1
    return res

def chose(n):
    res=0
    for i in range(n):
        res = res + truc(i)
    return res
```

- 1. Déterminer T(n) et O(g(n)) pour la fonction truc
- 2. Idem pour la fonction chose

1.4 Exercice 3

On donne l'une des fonctions de l'interface de programmation du serpent dans le jeu Snake :

```
def supprime_queue(S):
    # decale toutes les valeurs de la liste S vers la gauche:
    # copie toutes les valeurs S[i+1] dans S[i]
    # puis supprime le dernier element
    for i in range(len(S)-1):
        S[i] = S[i+1]
    S.pop()
```

- 1. Determiner la fonction T(n) qui exprime le nombre d'opérations effectuées par la fonction pour une liste de taille n
- 2. Déterminer la classe de complexité algorithmique O(g(n)) de cette fonction.

1.5 Exercice 4 : Recherche dans un jeu de cartes

FIGURE 2 – cartes triées

- 1. Ecrire une liste L représentant le jeu de cartes de l'image. La carte qui a pour valeur 7 sera représentée par l'entier 1, puis celle de valeur 8 aura la valeur 2, etc ... jusqu'à l'As qui vaut 8.
- 2. Expliquer avec une méthode de votre choix comment l'algorithme de recherche réduit cette liste jusqu'à trouver la carte de la Dame de Coeur. Comparer ainsi l'efficacité des 2 algorithmes, celui de recherche sequentielle et celui de recherche dichotomique.

1.6 Exercice 5 : Tri par selection

1.6.1 Principe:

On recherche le plus petit élément et on le met à sa place (en l'échangeant avec le premier). On recherche le second plus petit et on le met à sa place, etc.

Figure 3 – illustration du tri par selection

```
def tri_selection(L):
    n = len(L)
2
    for i in range(0, n - 1):
3
       #recherche le plus petit élément de i à la fin
       mini = i
5
       for j in range(i + 1, n):
6
           if L[j] < L[mini]:</pre>
             mini = j
       #échanger les cases i et mini
       tmp = L[i]
10
       L[i] = L[mini]
11
       L[mini] = tmp
12
```

- 1. Dans un tableau : Représenter la liste L entre les étapes 1 et 5. Indiquer à chaque fois le nombre d'opérations effectuées.
- 2. Supposons maintenant que les éléments de la liste L à trier sont rangés en sens inverse. Cela va-t-il augmenter ou diminuer le nombre d'opérations effectuées pour trier cette liste?
- 3. Calculer la complexité dans le pire des cas O(g(n)) de cet algorithme.

1.6.2 Travaux pratiques : implémentation en Python

- 1. Recopier le script de la fonction tri_selection dans une cellule du notebook (celui sur la recherche sequentielle et dicho dans un dictionnaire).
- 2. Tester la fonction avec une petite liste L dans laquelle vous mettrez quelques entiers dans un ordre qualconque. Observer la liste après execution de tri_selection(L). On dit que la liste est triée *en place*. Qu'est ce que cela signifie? Tester à nouveau avec une liste contenant des caractères. Cette liste est-elle bien ordonnée après tri selection(L)?
- 3. Charger le dictionnaire ods.txt, qui comprend des mots non accentués.
- 4. reduire la liste mots à 200 mots. Stocker dans une liste mots_reduite
- 5. Chronométrer le temps mis pour trier cette liste.
- 6. Tester si la liste a (ou n'a pas) été modifiée : mots_reduite == mots[:200]. Conclure.
- 7. Inverser les mots de la liste : mots_reduite.reverse(). La méthode de liste reverse va inverser la liste en place.
- 8. Refaire le point 5. (trier et chronométrer). Le temps est-il identique ou supérieur à celui mesuré précedemment? Expliquez.