第 9 章 g: 多元函数的极值

数学系 梁卓滨

2018-2019 学年 II

We are here now...

1. 多元函数的极值点

2. 条件极值

3. 求解多元函数的最值

假设
$$y = f(x)$$
 定义在区间 $[a, b]$ 上,如图

		极值点	驻点	最值点
	а			
	x_1			
	<i>X</i> ₂			
	<i>x</i> ₃			
х	<i>x</i> ₄			
	b			

	极值点	驻点	最值点
а			
x_1	极小值点		
x_2			
X ₃			
x_4			
b			
	<i>X</i> ₁ <i>X</i> ₂ <i>X</i> ₃	X1 极小值点 X2 X3	a x1 极小值点 x2 x3

	极值点	驻点	最值点
а			
<i>x</i> ₁	极小值点		
<i>x</i> ₂	极大值点		
<i>x</i> ₃			
x_4			
b			
	x ₁ x ₂ x ₃ x ₄	a x1 极小值点 x2 极大值点 x3 X4	α x ₁ 极小值点 x ₂ 极大值点 x ₃ x ₄

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点		
	<i>x</i> ₂	极大值点		
	<i>X</i> ₃	极小值点		
> X	<i>x</i> ₄			
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点		
	<i>X</i> ₂	极大值点		
	X ₃	极小值点		
χ	x_4	极大值点		
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点	√	
	<i>x</i> ₂	极大值点		
	X ₃	极小值点		
х	<i>x</i> ₄	极大值点		
	b			

		极值点	驻点	最值点
	а			
	x_1	极小值点	√	
	<i>x</i> ₂	极大值点	×(不可导)	
	X ₃	极小值点		
χ	x_4	极大值点		
	b			

	极值点	驻点	最值点
а			
<i>x</i> ₁	极小值点	√	
<i>x</i> ₂		×(不可导)	
<i>x</i> ₃		✓	
<i>x</i> ₄	极大值点		
b			
	X_1 X_2 X_3	a x1 极小值点 x2 极大值点 x3 极小值点	α x1 极小值点 √ x2 极大值点 ×(不可导) x3 极小值点 √

		极值点	驻点	最值点
	а			
	x_1	极小值点	✓	
	x_2	极大值点	×(不可导)	
	X ₃	极小值点	✓	
χ	x_4	极大值点	✓	
	b			

		极值点	驻点	最值点
	а			×
	x_1	极小值点	√	
	<i>X</i> ₂	极大值点	×(不可导)	
	<i>x</i> ₃	极小值点	√	
х	x_4	极大值点	✓	
	b			

		极值点	驻点	最值点
	а			×
	x_1	极小值点	✓	×
	x_2	极大值点	×(不可导)	
	X ₃	极小值点	✓	
χ	<i>X</i> ₄	极大值点	✓	
	b			

	极值点	驻点	最值点
а			×
<i>x</i> ₁	极小值点	√	×
<i>x</i> ₂	极大值点	×(不可导)	×
<i>X</i> ₃	极小值点	✓	
<i>x</i> ₄	极大值点	✓	
b			
	x_1 x_2 x_3	a x ₁ 极小值点 x ₂ 极大值点 x ₃ 极小值点	a x1 极小值点 √ x2 极大值点 ×(不可导) x3 极小值点 √

		极值点	驻点	最值点
	а		<u></u> ,,,,,	×
	<i>x</i> ₁	极小值点	√	×
	<i>X</i> ₂	极大值点	×(不可导)	×
	<i>X</i> ₃	极小值点	√	×
X	<i>x</i> ₄	极大值点	√	
. •	b			

	极值点	驻点	最值点
а			×
<i>x</i> ₁	极小值点	√	×
<i>X</i> ₂	极大值点	×(不可导)	×
<i>x</i> ₃	极小值点	√	×
X ₄	极大值点	✓	最大值点
b			
	X ₁ X ₂ X ₃	a x1 极小值点 x2 极大值点 x3 极小值点	α X ₁ 极小值点

		极值点	驻点	最值点
	а			×
	<i>x</i> ₁	极小值点	√	×
	<i>X</i> ₂	极大值点	×(不可导)	×
	<i>x</i> ₃	极小值点	√	×
X	<i>x</i> ₄	极大值点	✓	最大值点
	b			最小值点

定义 在点 (x_0, y_0) 的某个邻域内

• 如果总是成立

$$f(x, y) \le f(x_0, y_0)$$
, 其中 $(x, y) \ne (x_0, y_0)$

则称点 (x_0, y_0) 是函数 f(x, y) 极大值点, $f(x_0, y_0)$ 是极大值

定义 在点 (x_0, y_0) 的某个邻域内

• 如果总是成立

$$f(x, y) \le f(x_0, y_0), \quad \sharp h(x, y) \ne (x_0, y_0)$$

则称点 (x_0, y_0) 是函数 f(x, y) 极大值点, $f(x_0, y_0)$ 是极大值

• 如果总是成立

$$f(x, y) \ge f(x_0, y_0)$$
, 其中 $(x, y) \ne (x_0, y_0)$

则称点 (x_0, y_0) 是函数 f(x, y) 极小值点, $f(x_0, y_0)$ 是极小值

定义 在点 (x_0, y_0) 的某个邻域内

f(x,y)定义域 (x_0,y_0) (x,y)

• 如果总是成立

$$f(x, y) \le f(x_0, y_0), \quad \sharp h(x, y) \ne (x_0, y_0)$$

则称点 (x_0, y_0) 是函数 f(x, y) 极大值点, $f(x_0, y_0)$ 是极大值

• 如果总是成立

$$f(x, y) \ge f(x_0, y_0)$$
, 其中 $(x, y) \ne (x_0, y_0)$

则称点 (x_0, y_0) 是函数 f(x, y) 极小值点, $f(x_0, y_0)$ 是极小值

● 极大、极小值点统称极值点; 极大、极小值统称极值。

- $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是
- $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是
- z = xy 点 $p_0(0, 0)$ 是

- $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;
- $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是
- *z* = *xy* 点 *p*₀(0, 0) 是

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

•
$$z = -\sqrt{x^2 + y^2}$$

点 $p_0(0, 0)$ 是

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

• $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是极大值点;

• *z* = *xy* 点 *p*₀(0, 0) 是

- $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;
- $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是极大值点;

- $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;
- $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是极大值点;

• z = xy 点 $p_0(0, 0)$ 不是极值点。

- $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;
- $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是极大值点;

• z = xy点 $p_0(0, 0)$ 不是极值点。

- $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;
- $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是极大值点;

• z = xy 点 $p_0(0, 0)$ 不是极值点。

问题

● *z* = *xy* 是否有极值点?

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

• $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是极大值点;

z = xy点 p₀(0, 0) 不是极值点。

问题

- z = xy 是否有极值点?
- 是否有一般方法求出函数的极值点? 如:

$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$

定理 设 z = f(x, y) 在内点 (x_0, y_0) 处存在偏导数,则 (x_0, y_0) 是极值

点的必要条件是

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

定理 设
$$z = f(x, y)$$
 在内点 (x_0, y_0) 处存在偏导数,则 (x_0, y_0) 是极值 点的必要条件是

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$

定理 设 z = f(x, y) 在内点 (x_0, y_0) 处存在偏导数,则 (x_0, y_0) 是极值 点的必要条件是

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,

定理 设 z = f(x, y) 在内点 (x_0, y_0) 处存在偏导数,则 (x_0, y_0) 是极值 点的必要条件是

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$\frac{d}{dx}\left[f(x,y_0)\right]\big|_{x=x_0}=0$$

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,所以

$$\frac{d}{dy}[f(x_0, y)]\big|_{y=y_0} = 0$$

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,所以

$$f_y(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \Big|_{y=y_0} = 0$$

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,所以

$$f_y(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \big|_{y=y_0} = 0$$

定义 使偏导数为零的点, 称为驻点

$$f_{x}(x_{0}, y_{0}) = 0, \quad f_{y}(x_{0}, y_{0}) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,所以

$$f_y(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \big|_{y=y_0} = 0$$

定义 使偏导数为零的点, 称为驻点

注 如果函数存在偏导数,则 {极值点} ⊂ {驻点}

例 1 点 (0, 0) 是 $z = x^2 + y^2$ 的极小值点,从而也是驻点。

例 1 点 (0, 0) 是 $z = x^2 + y^2$ 的极小值点,从而也是驻点。直接验证

(0,0) 是驻点,则如下:

$$z_x = z_y =$$

$$\begin{cases} z_X = 2x \\ z_V = 2y \end{cases}$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点 (0,0) 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导
$$z_x(0,0), \quad z_y(0,0)$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导 $z_x(0,0)$, $z_y(0,0)$

$$\left. \left(\frac{d}{dx} z(x, 0) \right|_{x=0} = \right)$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导 $z_x(0,0)$, $z_y(0,0)$

$$(z(x,0) = \frac{\frac{d}{dx}z(x,0)\big|_{x=0} =$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导 $z_x(0,0)$, $z_y(0,0)$

$$(z(x,0) = -\sqrt{x^2} = \frac{\frac{d}{dx}z(x,0)|_{x=0} =$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导 $z_x(0,0)$, $z_y(0,0)$

$$(z(x,0) = -\sqrt{x^2} = -|x|, \frac{d}{dx}z(x,0)|_{x=0} =$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导 $z_x(0,0)$, $z_y(0,0)$

$$(z(x,0) = -\sqrt{x^2} = -|x|, \frac{d}{dx}z(x,0)|_{x=0} = -\frac{d}{dx}|x||_{x=0}$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导 $z_x(0,0)$, $z_y(0,0)$

$$(z(x,0) = -\sqrt{x^2} = -|x|, \frac{d}{dx}z(x,0)|_{x=0} = -\frac{d}{dx}|x||_{x=0}$$
 不存在)

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导
$$z_x(0,0), \quad z_y(0,0)$$

不存在。

$$(z(x,0) = -\sqrt{x^2} = -|x|, \frac{d}{dx}z(x,0)|_{x=0} = -\frac{d}{dx}|x||_{x=0}$$
 不存在)

例 3(驻点不一定是极值点) 设 z = xy。

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导
$$z_x(0,0), \quad z_y(0,0)$$

不存在。

$$(z(x,0) = -\sqrt{x^2} = -|x|, \frac{d}{dx}z(x,0)|_{x=0} = -\frac{d}{dx}|x||_{x=0}$$
 不存在)

例 3(驻点不一定是极值点) 设 z = xy。点 (0, 0) 是驻点:

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导
$$z_x(0,0), \quad z_y(0,0)$$

不存在。

$$(z(x,0) = -\sqrt{x^2} = -|x|, \frac{d}{dx}z(x,0)|_{x=0} = -\frac{d}{dx}|x||_{x=0}$$
 不存在)

例 3(驻点不一定是极值点) 设 z = xy。点 (0, 0) 是驻点:

$$\begin{cases} z_X = y \\ z_Y = x \end{cases}$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z=-\sqrt{x^2+y^2}$ 的极大值点,但不是驻点:一阶偏导
$$z_x(0,0),\quad z_y(0,0)$$

不存在。

$$(z(x,0) = -\sqrt{x^2} = -|x|, \frac{d}{dx}z(x,0)|_{x=0} = -\frac{d}{dx}|x||_{x=0}$$
 不存在)

例 3(驻点不一定是极值点) 设 z = xy。点 (0, 0) 是驻点:

$$\begin{cases} z_x = y \\ z_y = x \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \Longrightarrow \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$
例 2 点 (0, 0) 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导

 $Z_X(0,0)$, $Z_Y(0,0)$

不存在。 $(z(x,0) = -\sqrt{x^2} = -|x|, \frac{d}{dx}z(x,0)|_{x=0} = -\frac{d}{dx}|x||_{x=0}$ 不存在)

例 3(驻点不一定是极值点) 设 z = xy。点 (0, 0) 是驻点:

$$\begin{cases} z_x = y \\ z_y = x \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

(a) En

例 1 设 $z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$, 求驻点。

例 1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_X = \\ z_Y = \end{cases}$$

例 1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = \end{cases}$$

例 1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

例 1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases}$$

例 1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases}$$

例 1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \end{cases}$$

例 1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
,求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases}$$

例 1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = 0 \\ y = 0 \end{cases}$$

例 1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0 \end{cases}$$

例 1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

例 1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

y = 2		
y = 0		
	x = -3	x = 1

例 1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

$$y = 2$$

 $y = 0$ (-3, 0)
 $x = -3$ $x = 1$

例 1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
,求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

$$y = 2$$
 $(-3, 2)$
 $y = 0$ $(-3, 0)$
 $x = -3$ $x = 1$

例 1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
,求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

$$y = 2$$
 (-3, 2)
 $y = 0$ (-3, 0) (1, 0)
 $x = -3$ $x = 1$

例 1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

$$y = 2$$
 (-3, 2) (1, 2)
 $y = 0$ (-3, 0) (1, 0)
 $x = -3$ $x = 1$

例 1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

$$y = 2$$
 (-3, 2) (1, 2)
 $y = 0$ (-3, 0) (1, 0)
 $x = -3$ $x = 1$

例 2 求 $z = x^3 + y^3 - 3xy$,求驻点。

$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$

例 2 设 $z = x^3 + y^3 - 3xy$, 求驻点。

例 2 设
$$z = x^3 + y^3 - 3xy$$
, 求驻点。

$$\begin{cases} z_X = \\ z_y = \end{cases}$$

例 2 设
$$z = x^3 + y^3 - 3xy$$
,求驻点。

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = \end{cases}$$

例 2 设
$$z = x^3 + y^3 - 3xy$$
,求驻点。

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

例 2 设
$$z = x^3 + y^3 - 3xy$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases}$$

例 2 设
$$z = x^3 + y^3 - 3xy$$
,求驻点。

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases}$$

例 2 设
$$z = x^3 + y^3 - 3xy$$
, 求驻点。

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \end{cases}$$

例 2 设
$$z = x^3 + y^3 - 3xy$$
,求驻点。

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases}$$

例 2 设
$$z = x^3 + y^3 - 3xy$$
,求驻点。

$$\begin{cases} z_X = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x$$

例 2 设
$$z = x^3 + y^3 - 3xy$$
,求驻点。

$$\begin{cases} z_X = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x \implies x = 0, 1$$

例 2 设
$$z = x^3 + y^3 - 3xy$$
,求驻点。

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x \implies x = 0, 1$$
$$\implies \begin{cases} x = 1 \\ y = 1 \end{cases}$$

例 2 设
$$z = x^3 + y^3 - 3xy$$
,求驻点。

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x \implies x = 0, 1$$
$$\implies \begin{cases} x = 1 \\ y = 1 \end{cases} \implies \begin{cases} x = 0 \\ y = 0 \end{cases}$$

例 2 设
$$z = x^3 + y^3 - 3xy$$
,求驻点。

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x \implies x = 0, 1$$
$$\implies \begin{cases} x = 1 \\ y = 1 \end{cases} \implies \begin{cases} x = 0 \\ y = 0 \end{cases}$$

所以驻点为(1,1),(0,0)

$$z = x^3 + y^3 - 3xy$$

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

与
$$f(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$
 结论是:

3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

结论是:
$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^{2}$$

- 1. 若 $P(x_0, y_0) > 0$,
- 2. 若 $P(x_0, y_0) > 0$,
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^{2}$$

- 1. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) < 0$, 则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$,
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^{2}$$

- 1. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) < 0$, 则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) > 0$, 则 (x_0, y_0) 是极小值点;
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 1. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) < 0$, 则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) > 0$, 则 (x_0, y_0) 是极小值点;
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。
- 总结 求 z = f(x, y) 极值点的步骤:
 - 1. 求驻点:

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$f(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$
 结论是:

- 1. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) < 0$, 则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) > 0$, 则 (x_0, y_0) 是极小值点;
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。
- 总结 求 z = f(x, y) 极值点的步骤:
 - 1. 求驻点: 解方程 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$, 设解为 (x_0, y_0)

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点。定义判别式

$$f(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$
 结论是:

- 1. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) < 0$, 则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$, 且 $f_{xx}(x_0, y_0) > 0$, 则 (x_0, y_0) 是极小值点;
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定。
- 总结 求 z = f(x, y) 极值点的步骤:
 - 1. 求驻点: 解方程 $\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$, 设解为 (x_0, y_0)
 - 2. 通过 $P(x_0, y_0)$ 辨别驻点 (x_0, y_0) 是否极值点

例 1 求 $z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 的极值点。

例 1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点。

$$z_X =$$
 , $z_Y =$

例 1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点。

$$z_x = 3x^2 + 6x - 9, z_y =$$

例 1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点。

$$z_x = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$

例 1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点。

解 1. 求一阶偏导

$$z_X = 3x^2 + 6x - 9,$$
 $z_Y = -3y^2 + 6y$ 求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$

例 1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点。

解 1. 永一所偏导
$$z_X = 3x^2 + 6x - 9, \qquad z_y = -3y^2 + 6y$$
 求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

例 1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点。

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$ 得: $(-3, 0), (-3, 2), (1, 0), (1, 2)$

$$P(x, y) =$$

例 1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点。

解 1. 永一所偏寺
$$z_X = 3x^2 + 6x - 9, \qquad z_y = -3y^2 + 6y$$
 求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{XX} = \\ z_{Xy} = \\ z_{YY} = \end{cases} \Longrightarrow P(x, y) =$$

例 1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点。

解 1. 求一阶偏导
$$z_X = 3x^2 + 6x - 9, \qquad z_y = -3y^2 + 6y$$
 求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = \\ z_{yy} = \end{cases} \implies P(x, y) =$$

例 1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点。

解 1. 求一阶偏导
$$z_X = 3x^2 + 6x - 9, \qquad z_y = -3y^2 + 6y$$
 求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

例 1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点。

解 1. 汞一阶偏导
$$z_X = 3x^2 + 6x - 9, \qquad z_y = -3y^2 + 6y$$
 求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) =$$

例 1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点。

$$z_X = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$ 求解方程组 $\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$ 得: $(-3, 0), (-3, 2), (1, 0), (1, 2)$

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$

解 1. 求一阶偏导

解 1. 求一阶偏导
$$z_{x} = 3x^{2} + 6x - 9, \qquad z_{y} = -3y^{2} + 6y$$
 求解方程组
$$\begin{cases} z_{x}(x, y) = 0 \\ z_{y}(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$				
$z_{xx}(x_0, y_0)$				
是否极值点				

解 1. 求一阶偏导

解 1. 求一阶偏导
$$z_{x} = 3x^{2} + 6x - 9, \qquad z_{y} = -3y^{2} + 6y$$
 求解方程组
$$\begin{cases} z_{x}(x, y) = 0 \\ z_{y}(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0			
$z_{xx}(x_0, y_0)$				
是否极值点				

解 1. 求一阶偏导

解 1. 求一阶偏导
$$z_{x} = 3x^{2} + 6x - 9, \qquad z_{y} = -3y^{2} + 6y$$
 求解方程组
$$\begin{cases} z_{x}(x, y) = 0 \\ z_{y}(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0			
$z_{xx}(x_0, y_0)$				
是否极值点	×			

解 1. 求一阶偏导

解 1. 求一阶偏导
$$z_{x} = 3x^{2} + 6x - 9, \qquad z_{y} = -3y^{2} + 6y$$
 求解方程组
$$\begin{cases} z_{x}(x, y) = 0 \\ z_{y}(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0		
$z_{xx}(x_0, y_0)$				
是否极值点	×			

解 1. 求一阶偏导

解 1. 求一阶偏导
$$z_{x} = 3x^{2} + 6x - 9, \qquad z_{y} = -3y^{2} + 6y$$
 求解方程组
$$\begin{cases} z_{x}(x, y) = 0 \\ z_{y}(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0		
$z_{xx}(x_0, y_0)$		-12 < 0		
是否极值点	×			

解 1. 求一阶偏导

解 1. 求一阶偏导
$$z_{x} = 3x^{2} + 6x - 9, \qquad z_{y} = -3y^{2} + 6y$$
 求解方程组
$$\begin{cases} z_{x}(x, y) = 0 \\ z_{y}(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0		
$z_{xx}(x_0, y_0)$		-12 < 0		
是否极值点	×	极大值点		

解 1. 求一阶偏导

解 1. 求一阶偏导
$$z_{x} = 3x^{2} + 6x - 9, \qquad z_{y} = -3y^{2} + 6y$$
 求解方程组
$$\begin{cases} z_{x}(x, y) = 0 \\ z_{y}(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	
$z_{xx}(x_0, y_0)$		-12 < 0		
是否极值点	×	极大值点		

解 1. 求一阶偏导

解 1. 求一阶偏导
$$z_{x} = 3x^{2} + 6x - 9, \qquad z_{y} = -3y^{2} + 6y$$
 求解方程组
$$\begin{cases} z_{x}(x, y) = 0 \\ z_{y}(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	
$z_{xx}(x_0, y_0)$		-12 < 0	12 > 0	
是否极值点	×	极大值点		

解 1. 求一阶偏导

解 1. 求一阶偏导
$$z_{x} = 3x^{2} + 6x - 9, \qquad z_{y} = -3y^{2} + 6y$$
 求解方程组
$$\begin{cases} z_{x}(x, y) = 0 \\ z_{y}(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	
$z_{xx}(x_0, y_0)$		-12 < 0	12 > 0	
是否极值点	×	极大值点	极小值点	

解 1. 求一阶偏导

解 1. 求一阶偏导
$$z_X = 3x^2 + 6x - 9, \qquad z_y = -3y^2 + 6y$$
 求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	-72 < 0
$z_{xx}(x_0, y_0)$		-12 < 0	12 > 0	
是否极值点	×	极大值点	极小值点	

解 1. 求一阶偏导

解 1. 求一阶偏导
$$z_{x} = 3x^{2} + 6x - 9, \qquad z_{y} = -3y^{2} + 6y$$
 求解方程组
$$\begin{cases} z_{x}(x, y) = 0 \\ z_{y}(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$
3. 结论

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	-72 < 0
$z_{xx}(x_0, y_0)$		-12 < 0	12 > 0	
是否极值点	×	极大值点	极小值点	×

$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点。

$$z_X =$$
 , $z_y =$

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点。

$$z_x = 3x^2 - 3y, \qquad z_y =$$

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点。

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点。

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点。

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点。

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_X(x,y) = 0 \\ z_Y(x,y) = 0 \end{cases}$$
得: (1, 1), (0, 0)

$$P(x, y) =$$

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点。

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_X(x,y) = 0 \\ z_Y(x,y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = \\ z_{xy} = \\ z_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点。

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_X(x,y) = 0 \\ z_Y(x,y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = \Longrightarrow P(x, y) = \\ z_{yy} = \end{cases}$$

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点。

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_x(x,y) = 0 \\ z_y(x,y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = \\ z_{yy} = \end{cases}$$

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点。

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_x(x,y) = 0 \\ z_y(x,y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = \\ z_{yy} = 6y \end{cases}$$

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点。

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组
$$\begin{cases} z_x(x,y) = 0 \\ z_y(x,y) = 0 \end{cases}$$
 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

解 1. 求一阶偏导

$$z_{x} = 3x^{2} - 3y$$
, $z_{y} = 3y^{2} - 3x$ 求解方程组 $\begin{cases} z_{x}(x, y) = 0 \\ z_{y}(x, y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

2. 再求判别式 P(x, v)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$		
$z_{xx}(x_0, y_0)$		
是否极值点		

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组 $\begin{cases} z_x(x,y) = 0 \\ z_y(x,y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	
$z_{xx}(x_0, y_0)$		
是否极值点		

解 1. 求一阶偏导

$$z_{x} = 3x^{2} - 3y$$
, $z_{y} = 3y^{2} - 3x$ 求解方程组 $\begin{cases} z_{x}(x, y) = 0 \\ z_{y}(x, y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 & \Longrightarrow P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	
$z_{xx}(x_0, y_0)$	6 > 0	
是否极值点		

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

求解方程组 $\begin{cases} z_x(x,y) = 0 \\ z_y(x,y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 & \Longrightarrow P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	
$z_{xx}(x_0, y_0)$	6 > 0	
是否极值点	极小值点	

解 1. 求一阶偏导

$$z_{x} = 3x^{2} - 3y$$
, $z_{y} = 3y^{2} - 3x$ 求解方程组 $\begin{cases} z_{x}(x, y) = 0 \\ z_{y}(x, y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

2. 再求判别式 P(x, v)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 & \Longrightarrow P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	-9 < 0
$z_{xx}(x_0, y_0)$	6 > 0	
是否极值点	极小值点	

解 1. 求一阶偏导

$$z_{x} = 3x^{2} - 3y$$
, $z_{y} = 3y^{2} - 3x$ 求解方程组 $\begin{cases} z_{x}(x, y) = 0 \\ z_{y}(x, y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	-9 < 0
$z_{xx}(x_0, y_0)$	6 > 0	
是否极值点	极小值点	×

$$z = x^3 + y^3 - 3xy$$

- 设 u = f(x, y, z)。
- (x₀, y₀, z₀) 是驻点指在该点处偏导数全为零:

$$f_x(x_0, y_0, z_0) = 0$$
, $f_y(x_0, y_0, z_0) = 0$, $f_z(x_0, y_0, z_0) = 0$

- 设 u = f(x, y, z)。
- (x₀, y₀, z₀) 是驻点指在该点处偏导数全为零:

$$f_x(x_0, y_0, z_0) = 0$$
, $f_y(x_0, y_0, z_0) = 0$, $f_z(x_0, y_0, z_0) = 0$

• 设 (x_0, y_0, z_0) 是 u = f(x, y, z) 的极值点,则 (x_0, y_0, z_0) 一定 是驻点

- 设 u = f(x, y, z)。
- (x₀, y₀, z₀) 是驻点指在该点处偏导数全为零:

$$f_x(x_0, y_0, z_0) = 0$$
, $f_y(x_0, y_0, z_0) = 0$, $f_z(x_0, y_0, z_0) = 0$

- 设 (x_0, y_0, z_0) 是 u = f(x, y, z) 的极值点,则 (x_0, y_0, z_0) 一定是驻点
- 如何进一步判别哪些驻点为极值点?

- 设 u = f(x, y, z)。
- (x₀, y₀, z₀) 是驻点指在该点处偏导数全为零:

$$f_x(x_0, y_0, z_0) = 0$$
, $f_y(x_0, y_0, z_0) = 0$, $f_z(x_0, y_0, z_0) = 0$

- 设 (x_0, y_0, z_0) 是 u = f(x, y, z) 的极值点,则 (x_0, y_0, z_0) 一定 是驻点
- 如何进一步判别哪些驻点为极值点? 考虑矩阵

$$\begin{pmatrix}
f_{xx} & f_{xy} & f_{xz} \\
f_{yx} & f_{yy} & f_{yz} \\
f_{zx} & f_{zy} & f_{zz}
\end{pmatrix}_{(x_0, y_0, z_0)}$$

- 设 u = f(x, y, z)。
- (x₀, y₀, z₀) 是驻点指在该点处偏导数全为零:

$$f_x(x_0, y_0, z_0) = 0$$
, $f_y(x_0, y_0, z_0) = 0$, $f_z(x_0, y_0, z_0) = 0$

- 设 (x_0, y_0, z_0) 是 u = f(x, y, z) 的极值点,则 (x_0, y_0, z_0) 一定是驻点
- 如何进一步判别哪些驻点为极值点? 考虑矩阵

$$\begin{pmatrix}
f_{xx} & f_{xy} & f_{xz} \\
f_{yx} & f_{yy} & f_{yz} \\
f_{zx} & f_{zy} & f_{zz}
\end{pmatrix}_{(x_0, y_0, z_0)}$$

- 如果是正定矩阵,则(x₀,y₀,z₀)是极小值点
- 如果是负定矩阵,则(x₀, y₀, z₀)是极大值点

We are here now...

1. 多元函数的极值点

2. 条件极值

3. 求解多元函数的最值

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极大值点,是指

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极大值点,是指存在一小段曲线 C

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极大值点,是指存在一小段曲线 C 满足:

- $(x_0, y_0) \in C$
- $f(x_0, y_0) \ge f(x, y)$, $\forall (x, y) \in C$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极

大值点,是指存在一小段曲线 C 满足:

- 小
 - $(x_0, y_0) \in C$
 - $f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极

大值点,是指存在一小段曲线 C 满足:

- $(x_0, y_0) \in C$
 - $f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极

大值点,是指存在一小段曲线 C 满足:

- 小
 - $(x_0, y_0) \in C$
 - $\bullet f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设 $C \neq y = y(x)$ 的图形,

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极

大值点,是指存在一小段曲线 C 满足:

- 小
 - $(x_0, y_0) \in C$
 - $\bullet f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设 $C \ge y = y(x)$ 的图形,则 $x = x_0 \ge f(x, y(x))$ 的极值点,

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极大值点,是指存在一小段曲线 C 满足:

- 小
 - $(x_0, y_0) \in C$
 - $\bullet f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设
$$C \neq y = y(x)$$
 的图形,则 $x = x_0 \neq f(x, y(x))$ 的极值点,所以 $0 = \frac{d}{dx} f(x, y(x))|_{x=x_0}$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极大值点,是指存在一小段曲线 C 满足:

/\

- $(x_0, y_0) \in C$
- $\bullet f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设 C 是 y = y(x) 的图形,则 $x = x_0$ 是 f(x, y(x)) 的极值点,所以 $0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x + f_y \quad y'$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极大值点,是指存在一小段曲线 C 满足:

- 小
 - $(x_0, y_0) \in C$
 - $f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设
$$C$$
 是 $y = y(x)$ 的图形,则 $x = x_0$ 是 $f(x, y(x))$ 的极值点,所以
$$0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0)$$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极大值点,是指存在一小段曲线 C 满足:

- 小
 - $(x_0, y_0) \in C$
 - $\bullet f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设
$$C$$
 是 $y = y(x)$ 的图形,则 $x = x_0$ 是 $f(x, y(x))$ 的极值点,所以
$$0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot (1, y'(x_0))$$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极大值点,是指存在一小段曲线 C 满足:

- 小
 - $\bullet \ (x_0,y_0) \in C$
 - $\bullet f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设
$$C \in \mathcal{Y} = y(x)$$
 的图形,则 $x = x_0 \in f(x, y(x))$ 的极值点,所以
$$0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot \underbrace{(1, y'(x_0))}_{\longrightarrow}$$

● 整角大学

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极大值点,是指存在一小段曲线 C 满足:

- 小
 - $(x_0, y_0) \in C$
 - $\bullet f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设
$$C \in \mathcal{Y} = y(x)$$
 的图形,则 $x = x_0 \in f(x, y(x))$ 的极值点,所以
$$0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot \underbrace{(1, y'(x_0))}_{\longrightarrow}$$

● 暨南大学 派33 UMYESHY

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极

大值点,是指存在一小段曲线 C 满足:

- 小
 - $\bullet \ (x_0,y_0) \in C$
 - $\bullet f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

求解条件极值点 (列出 (x_0, y_0) 满足的方程) $\rho = 0$ 不妨设 $\rho = 0$ 不妨 $\rho = 0$ 不妨 $\rho = 0$ 不妨 $\rho = 0$ 不妨 $\rho = 0$ 不妨设 $\rho = 0$ 不妨 $\rho = 0$ 不妨债 $\rho = 0$ 不妨 $\rho = 0$ 不负 ρ

 $p(x_0, y_0)$

不妨设
$$C \ge y = y(x)$$
 的图形,则 $x = x_0 \ge f(x, y(x))$ 的极值点,所以
$$0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot \underbrace{(1, y'(x_0))}_{\overrightarrow{s}}$$

$$\Rightarrow \nabla f(p) \perp \overrightarrow{s}$$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极

大值点,是指存在一小段曲线 C 满足:

- 小
 - $\bullet \ (x_0,y_0) \in C$
 - $\bullet f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

 $p(x_0, y_0)$ y = y(x) $\varphi = 0$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设
$$C \neq y = y(x)$$
 的图形,则 $x = x_0 \neq f(x, y(x))$ 的极值点,所以
$$0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot \underbrace{(1, y'(x_0))}_{\leq x}$$

$$\Rightarrow \quad \nabla f(p) \perp \overrightarrow{s} \quad \xrightarrow{\nabla \varphi(p) \perp \overrightarrow{s}}$$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极

大值点,是指存在一小段曲线 C 满足:

- 小
 - $(x_0, y_0) \in C$
 - $\bullet f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

求解条件极值点 (列出 (x_0, y_0) 满足的方程) $\rho = 0$

 $p(x_0, y_0)$

不妨设
$$C \ge y = y(x)$$
 的图形,则 $x = x_0 \ge f(x, y(x))$ 的极值点,所以
$$0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot \underbrace{(1, y'(x_0))}_{\exists c}$$

$$\Rightarrow \quad \nabla f(p) \perp \overrightarrow{s} \quad \xrightarrow{\nabla \varphi(p) \perp \overrightarrow{s}} \quad \nabla f(p) \parallel \nabla \varphi(p)$$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极

大值点,是指存在一小段曲线 C 满足:

- 小
 - $(x_0, y_0) \in C$
 - $\bullet f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

求解条件极值点 (列出 (x_0, y_0) 满足的方程) $\phi = 0$

 $p(x_0, y_0)$

不妨设
$$C \ge y = y(x)$$
 的图形,则 $x = x_0 \ge f(x, y(x))$ 的极值点,所以
$$0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot \underbrace{(1, y'(x_0))}_{\rightarrow}$$

$$\Rightarrow \quad \nabla f(p) \perp \overrightarrow{s} \quad \stackrel{\nabla \varphi(p) \perp s}{\Longrightarrow} \quad \nabla f(p) \parallel \nabla \varphi(p)$$

$$\Rightarrow \exists \lambda \in \mathbb{R} \text{ s.t. } \nabla f(p) + \lambda \nabla \varphi(p) = 0$$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极

大值点,是指存在一小段曲线 C 满足:

小

• $(x_0, y_0) \in C$

• $f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

 $p(x_0, y_0)$ y = y(x) $\varphi = 0$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设 C 是 y = y(x) 的图形,则 $x = x_0$ 是 f(x, y(x)) 的极值点,所以 $0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot (1, y'(x_0))$

$$\Rightarrow \quad \nabla f(p) \perp \overrightarrow{s} \quad \stackrel{\nabla \varphi(p) \perp s}{\Longrightarrow} \quad \nabla f(p) \parallel \nabla \varphi(p)$$

$$\Rightarrow \exists \lambda \in \mathbb{R} \text{ s.t. } \nabla f(p) + \lambda \nabla \varphi(p) = 0 \Rightarrow \nabla (f + \lambda \varphi)(p) = 0$$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极

大值点,是指存在一小段曲线 C 满足:

- $(x_0, y_0) \in C$
 - $f(x_0, y_0) \ge f(x, y)$, $\forall (x, y) \in C$

不妨设
$$C \neq y = y(x)$$
 的图形,则 $x = x_0 \neq f(x, y(x))$ 的极值点,所以
$$0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot \underbrace{(1, y'(x_0))}_{-}$$

$$\Rightarrow \quad \nabla f(p) \perp \overrightarrow{s} \quad \xrightarrow{\nabla \varphi(p) \perp s} \quad \nabla f(p) \parallel \nabla \varphi(p)$$

$$\Rightarrow \exists \lambda \in \mathbb{R} \text{ s.t. } \nabla f(p) + \lambda \nabla \varphi(p) = 0 \Rightarrow \nabla (\underline{f} + \lambda \varphi)(p) = 0$$

拉格朗日函数

 $p(x_0, y_0)$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极

求解条件极值点 (列出 (x_0, y_0) 满足的方程) $\rho = 0$

不妨设
$$C \ge y = y(x)$$
 的图形,则 $x = x_0 \ge f(x, y(x))$ 的极值点,所以
$$0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot \underbrace{(1, y'(x_0))}_{\exists c}$$

$$\Rightarrow \quad \nabla f(p) \perp \overrightarrow{s} \quad \stackrel{\nabla \varphi(p) \perp \overrightarrow{s}}{=\!\!\!=\!\!\!=\!\!\!=} \quad \nabla f(p) \parallel \nabla \varphi(p)$$

$$\Rightarrow \exists \lambda \in \mathbb{R} \text{ s.t. } \nabla f(p) + \lambda \nabla \varphi(p) = 0 \quad \Rightarrow \quad \nabla (\underline{f} + \lambda \varphi)(p) = 0$$

所以条件极值点 (x_0, y_0) 满足方程组 $\begin{cases} \nabla (f + \lambda \varphi) = 0 & \text{拉格朗日函数} \\ \varphi = 0 & \text{ } \end{cases}$

p(x₀, y₀) 为条件极值点 ⇒ ∇f(p) || ∇φ(p)。图示如下:

p(x₀, y₀) 为条件极值点 ⇒ ∇f(p) || ∇φ(p)。图示如下:

p(x₀, y₀) 为条件极值点 ⇒ ∇f(p) || ∇φ(p)。图示如下:

● 但反过来, $\nabla f(p) \parallel \nabla \varphi(p) \not\Rightarrow p(x_0, y_0)$ 为条件极值点, 图示如下:

● 但反过来, $\nabla f(p) \parallel \nabla \varphi(p) \not\Rightarrow p(x_0, y_0)$ 为条件极值点,图示如下:

p是条件极(大)值点

p是条件极(大)值点

p是条件极(大)值点

● 但反过来, $\nabla f(p) \parallel \nabla \varphi(p) \not\Rightarrow p(x_0, y_0)$ 为条件极值点,图示如下:

p是条件极(大)值点

p不是条件极值点 @ 题点类

条件极值(二元函数+一个附加条件)求解

问题 求解二元函数 u = f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极值点。

求解步骤(拉格朗日乘数法)

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi$, 其中 λ 是待定常数。
- 2. 求解方程组

$$\begin{cases} \nabla L = 0 \\ \varphi = 0 \end{cases}$$

3. 条件极值点(如果存在的话)包含在上述解 {(x, y)} 中。 (至于如何判断解是否条件极值点,需另行分析。)

条件极值(二元函数+一个附加条件)求解

问题 求解二元函数 u = f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极值点。

求解步骤(拉格朗日乘数法)

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi$, 其中 λ 是待定常数。
- 2. 求解方程组

$$\left\{ \begin{array}{l} \nabla L = 0 \\ \varphi = 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} L_{x} = f_{x} + \lambda \varphi_{x} = 0 \\ L_{y} = f_{y} + \lambda \varphi_{y} = 0 \\ \varphi = 0 \end{array} \right.$$

3. 条件极值点(如果存在的话)包含在上述解 {(x, y)} 中。 (至于如何判断解是否条件极值点,需另行分析。)

条件极值(二元函数+一个附加条件)求解

问题 求解二元函数 u = f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极值点。

求解步骤(拉格朗日乘数法)

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi$, 其中 λ 是待定常数。
- 2. 求解方程组

$$\begin{cases} \nabla L = 0 \\ \varphi = 0 \end{cases} \Rightarrow \begin{cases} L_{x} = f_{x} + \lambda \varphi_{x} = 0 \\ L_{y} = f_{y} + \lambda \varphi_{y} = 0 \\ \varphi = 0 \end{cases}$$

3. 条件极值点(如果存在的话)包含在上述解 {(x, y)} 中。 (至于如何判断解是否条件极值点,需另行分析。)

注 求最大、最小值时,只需要在条件极值点中挑选函数值最大、最小

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) =$$

2. 求解方程组:
$$\begin{cases} L_x = 0 \\ L_y = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases}$$

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 0 \\ L_y = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases}$$

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases}$$

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases}$$

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_{x} = 2x + 6\lambda x^{5} = 0 \\ L_{y} = 2y + 6\lambda y^{5} = 0 \\ \varphi = x^{6} + y^{6} - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^{4}) = 0 \\ y(1 + 3\lambda y^{4}) = 0 \\ x^{6} + y^{6} - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \\ x^6 - 1 = 0 \end{cases}$$

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 - 1 = 0 \end{cases}$$

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \\ x^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_{x} = 2x + 6\lambda x^{5} = 0 \\ L_{y} = 2y + 6\lambda y^{5} = 0 \\ \varphi = x^{6} + y^{6} - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^{4}) = 0 \\ y(1 + 3\lambda y^{4}) = 0 \\ x^{6} + y^{6} - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 - 1 = 0 \end{cases}$$

解 (x, y)	$(0, \pm 1)$	

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_{x} = 2x + 6\lambda x^{5} = 0 \\ L_{y} = 2y + 6\lambda y^{5} = 0 \\ \varphi = x^{6} + y^{6} - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^{4}) = 0 \\ y(1 + 3\lambda y^{4}) = 0 \\ x^{6} + y^{6} - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 - 1 = 0 \end{cases}$$

	解 (x, y)	(0, ±1)	(±1, 0)	
Ì				
l				

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \\ x^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

解 (x, y)	$(0, \pm 1)$	(±1, 0)	$(\pm \sqrt[6]{1/2}, \pm \sqrt[6]{1/2})$

解 等价求: $z = f(x, y) = x^2 + y^2$ 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

1. 构造拉格朗日函数:

D造拉格朗日函数:
$$(-\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$$
 $(-\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$ $(-\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$ $(-\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$ $(-\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$ $(-\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$ $(-\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$ $(-\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 - 1 = 0 \end{cases}$$

$$\mathbb{H}(x,y)$$
 $(0,\pm 1)$ $(\pm 1,0)$ $(\pm \sqrt[6]{1/2},\pm \sqrt[6]{1/2})$

(0,1)

 $(\sqrt[6]{\frac{1}{2}}, \sqrt[6]{\frac{1}{2}})$

 $(-\sqrt[6]{\frac{1}{2}}, \sqrt[6]{\frac{1}{2}})$

解 等价求: $z = f(x, y) = x^2 + y^2$ 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值。

(x, y) = x + y - - 1 = 1. 构造拉格朗日函数:

可造拉格朗日函数:
$$(-\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$$
 $(\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$ $(\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$ $(\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$ $(\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$ $(\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$ $(\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$

 $(-\sqrt[6]{\frac{1}{2}}, \sqrt[6]{\frac{1}{2}})$

(0,1)

 $(\sqrt[6]{\frac{1}{2}}, \sqrt[6]{\frac{1}{2}})$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \\ x^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

解 (x, y)	$(0, \pm 1)$	(±1, 0)	$(\pm \sqrt[6]{1/2}, \pm \sqrt[6]{1/2})$
函数值 f(x, y)	1	1	2 ³ √1/2

解 等价求: $z = f(x, y) = x^2 + y^2$ 在条件 $\varphi(x, v) = x^6 + y^6 - 1 = 0$ 下的最值。

1. 构造拉格朗日函数:

阿造拉格朗日函数:
$$(-\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$$

$$(\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$$

$$(\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$$

$$(\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$$

$$(\sqrt[6]{\frac{1}{2}},-\sqrt[6]{\frac{1}{2}})$$

 $(-\sqrt[6]{\frac{1}{2}}, \sqrt[6]{\frac{1}{2}})$

(0,1)

 $(\sqrt[6]{\frac{1}{2}}, \sqrt[6]{\frac{1}{2}})$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \\ x^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

解 (x, y)	$(0, \pm 1)$	(±1, 0)	$(\pm \sqrt[6]{1/2}, \pm \sqrt[6]{1/2})$
函数值 f(x, y)	1	1	$2\sqrt[3]{1/2} \approx 1.59$

条件极值(三元函数+一个附加条件)求解

问题 求三元函数 u = f(x, y, z) 在附加条件 $\varphi(x, y, z) = 0$ 下的极值点。

求解步骤(拉格朗日乘数法)

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi$, 其中 λ 是待定常数。
- 2. 求解方程组

$$\begin{cases} \nabla L = 0 \\ \varphi = 0 \end{cases}$$

3. 条件极值点(如果存在的话)包含在上述解 {(x, y, z)} 中。 (至于如何判断解是否条件极值点,需另行分析。)

条件极值(三元函数+一个附加条件)求解

问题 求三元函数 u = f(x, y, z) 在附加条件 $\varphi(x, y, z) = 0$ 下的极值点。

求解步骤(拉格朗日乘数法)

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi$, 其中 λ 是待定常数。
- 2. 求解方程组

$$\left\{ \begin{array}{l} \nabla L = 0 \\ \varphi = 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} L_x = f_x + \lambda \varphi_x = 0 \\ L_y = f_y + \lambda \varphi_y = 0 \\ L_z = f_z + \lambda \varphi_z = 0 \\ \varphi = 0 \end{array} \right.$$

3. 条件极值点(如果存在的话)包含在上述解 {(x, y, z)} 中。 (至于如何判断解是否条件极值点,需另行分析。)

条件极值(三元函数+一个附加条件)求解

问题 求三元函数 u = f(x, y, z) 在附加条件 $\varphi(x, y, z) = 0$ 下的极值点。

求解步骤(拉格朗日乘数法)

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi$, 其中 λ 是待定常数。
- 2. 求解方程组

$$\left\{ \begin{array}{l} \nabla L = 0 \\ \varphi = 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} L_x = f_x + \lambda \varphi_x = 0 \\ L_y = f_y + \lambda \varphi_y = 0 \\ L_z = f_z + \lambda \varphi_z = 0 \\ \varphi = 0 \end{array} \right.$$

3. 条件极值点(如果存在的话)包含在上述解 {(x, y, z)} 中。 (至于如何判断解是否条件极值点,需另行分析。)

注 求最大、最小值时,只需要在条件极值点中挑选函数值最大、最小

最大和最小的点。

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\phi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\phi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

1. 拉格朗日函数: $L = \rho + \lambda \varphi =$

2. 求解:
$$\begin{cases} L_x &= 0 \\ L_y &= 0 \\ L_z &= 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases}$$

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$

2. 求解:
$$\begin{cases} L_x &= 0 \\ L_y &= 0 \\ L_z &= 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases}$$

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$

2. 求解:
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 0 \\ L_z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases}$$

解求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2. 求解:
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases}$$

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2. 求解:
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases}$$

$$\begin{array}{l}
L_z = x + 2\lambda z = 0 \\
\varphi = x^2 + y^2 + z^2 - 4
\end{array}$$

$$\mathbf{m}$$
 求: $\rho(x, y, z) = 3 + xz + y^2$ 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2. 求解:
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\phi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2.
$$\pi$$
:
$$\begin{cases}
L_x = z + 2\lambda x = 0 \\
L_y = 2y + 2\lambda y = 0 \\
L_z = x + 2\lambda z = 0 \\
\varphi = x^2 + y^2 + z^2 - 4 = 0
\end{cases}
\Rightarrow
\begin{cases}
z = -2\lambda x \implies z = 4\lambda^2 z \\
y(1+\lambda) = 0 \\
x = -2\lambda z \\
x^2 + y^2 + z^2 = 4
\end{cases}$$

解求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$

2.
$$\vec{x}$$
 \mathbf{R} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1+\lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

若 z = 0,则

解求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$

2.
$$\vec{x}$$
 \mathbf{R} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1+\lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

• 若 z = 0,则x = 0,

解求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$

2.
$$\vec{x}$$
 \vec{m} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

若 z = 0, 则x = 0, y = ±2,

解求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$

2. 求解:
$$\begin{cases} L_{x} = z + 2\lambda x = 0 \\ L_{y} = 2y + 2\lambda y = 0 \\ L_{z} = x + 2\lambda z = 0 \\ \varphi = x^{2} + y^{2} + z^{2} - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^{2}z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^{2} + y^{2} + z^{2} = 4 \end{cases}$$

• 若 z = 0, 则x = 0, $y = \pm 2$, 所以此时 $(x, y, z) = (0, \pm 2, 0)$

解求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2.
$$\vec{x}$$
 \vec{m} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1+\lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

- $\exists z = 0$, $y = \pm 2$, $\exists x = 0$, $y = \pm 2$, $\exists x = 0$, $y = \pm 2$, $\exists x = 0$, $y = \pm 2$, $\exists x = 0$
- 若 z ≠ 0, 则

解求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2.
$$\vec{\pi}$$
:
$$\begin{cases}
L_x = z + 2\lambda x = 0 \\
L_y = 2y + 2\lambda y = 0 \\
L_z = x + 2\lambda z = 0 \\
\varphi = x^2 + y^2 + z^2 - 4 = 0
\end{cases}
\Rightarrow
\begin{cases}
z = -2\lambda x \implies z = 4\lambda^2 z \\
y(1 + \lambda) = 0 \\
x = -2\lambda z \\
x^2 + y^2 + z^2 = 4
\end{cases}$$

- 若 $z \neq 0$, 则 $\lambda = \pm \frac{1}{2}$,

$$\mathbf{m}$$
 求: $\rho(x, y, z) = 3 + xz + y^2$ 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2.
$$\vec{x}$$
 \vec{m} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\phi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2.
$$\vec{x}$$
 \vec{m} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1+\lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

- $\exists z \neq 0$, $\exists \lambda = \pm \frac{1}{2}$, y = 0, $x = \pm z$, $\exists \lambda \in \mathbb{Z}$, $\exists \lambda$

$$\mathbf{m}$$
 求: $\rho(x, y, z) = 3 + xz + y^2$ 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2.
$$\vec{x}$$
 \vec{m} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1+\lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

- 若 z = 0, 则x = 0, $y = \pm 2$, 所以此时 $(x, y, z) = (0, \pm 2, 0)$

$$R(x, y, z) = \{0, \pm 2, 0\} = \{\pm \sqrt{2}, 0, \pm \sqrt{2}\} = \{\pm \sqrt{2}, 0, \mp \sqrt{2}\}$$

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2.
$$\vec{x}$$
 \vec{m} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

- 若 z = 0, 则x = 0, $y = \pm 2$, 所以此时 $(x, y, z) = (0, \pm 2, 0)$
- $\exists z \neq 0$, $\exists \lambda = \pm \frac{1}{2}$, y = 0, $x = \pm z$, $\exists \lambda \in \mathbb{Z}$, $\exists \lambda$

$$R(x, y, z) = (0, \pm 2, 0) = (\pm \sqrt{2}, 0, \pm \sqrt{2}) = (\pm \sqrt{2}, 0, \mp \sqrt{2})$$

$$\rho(x, y, z) = 7$$

$$\mathbf{H}$$
 求: $\rho(x, y, z) = 3 + xz + y^2$ 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2.
$$\vec{x}$$
 \vec{m} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

- $\exists z = 0$, $y = \pm 2$, $y = \pm 2$

$$m(x, y, z)$$
 $(0, \pm 2, 0)$
 $(\pm \sqrt{2}, 0, \pm \sqrt{2})$
 $(\pm \sqrt{2}, 0, \mp \sqrt{2})$
 $\rho(x, y, z)$
 7
 5

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值。

2.
$$\vec{x}$$
 \vec{m} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

- 若 z = 0, 则x = 0, $y = \pm 2$, 所以此时 $(x, y, z) = (0, \pm 2, 0)$

解 (x, y, z)	$(0, \pm 2, 0)$	$(\pm \sqrt{2}, 0, \pm \sqrt{2})$	$(\pm\sqrt{2},0,\mp\sqrt{2})$	
$\rho(x, y, z)$	7	5	1	和士學

条件极值(三元函数+两个附加条件)求解

问题 求三元函数 u = f(x, y, z) 在附加条件 $\begin{cases} \varphi(x, y, z) = 0 \\ \psi(x, y, z) = 0 \end{cases}$ 下的极值点。

求解步骤(拉格朗日乘数法)

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi + \mu \psi$, 其中 λ , μ 是待定常数。
- 2. 求解方程组 $\begin{cases} L_x = f_x + \lambda \varphi_x + \mu \psi_x = 0 \\ L_y = f_y + \lambda \varphi_y + \mu \psi_y = 0 \\ L_z = f_z + \lambda \varphi_z + \mu \psi_z = 0 \\ \varphi = 0 \\ \psi = 0 \end{cases}$
- 3. 条件极值点(如果存在的话)包含在上述解 {(x, y, z)} 中。 (至于如何判断解是否条件极值点,需另行分析。)

We are here now...

1. 多元函数的极值点

2. 条件极值

3. 求解多元函数的最值

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点。

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点。

分析

● 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在。

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点。

分析

连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在。记 p ∈ D 为最值点。

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点。

- 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在。记 $p \in D$ 为最值点。
- 若 p 是 D 的内点,
- 若 p 是 D 的边界点,

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点。

- 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在。记 $p \in D$ 为最值点。
- 若 p 是 D 的内点,
- 若 p 是 D 的边界点,

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点。

- 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在。记 $p \in D$ 为最值点。
- 若 p 是 D 的内点,则 p 是 z = f(x, y) 的极值点,
- 若 p 是 D 的边界点,

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点。

- 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在。记 $p \in D$ 为最值点。
- 若 $p \neq D$ 的内点,则 $p \neq z = f(x, y)$ 的极值点,从而是驻点: $f_x(p) = f_y(p) = 0$
- 若 p 是 D 的边界点,

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点。

- 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在。记 $p \in D$ 为最值点。
- 若 $p \neq D$ 的内点,则 $p \neq z = f(x, y)$ 的极值点,从而是驻点: $f_x(p) = f_y(p) = 0$
- 若 p 是 D 的边界点,

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点。

- 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在。记 $p \in D$ 为最值点。
- 若 p 是 D 的内点,则 p 是 z = f(x, y) 的极值点,从而是驻点: $f_x(p) = f_y(p) = 0$
- 若 $p \neq D$ 的边界点,则 $p \neq z = f(x, y)$ 在条件 $\varphi(x, y) = 0$ 下的条件极值点

求解步骤

1. 求驻点:

2. 求条件极值:

- 1. 求驻点: 在 D 内部求解方程组 $\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$
- 2. 求条件极值:

- 1. 求驻点: 在 D 内部求解方程组 $\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$ 。设驻点为 p_1, p_2, \ldots, p_m
- 2. 求条件极值:

- 1. 求驻点: 在 D 内部求解方程组 $\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$ 。设驻点为 p_1, p_2, \ldots, p_m
- 2. 求条件极值: z = f(x, y) 在条件 $\varphi(x, y) = 0$ 下的条件极值。

- 1. 求驻点: 在 D 内部求解方程组 $\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$ 。设驻点为 p_1, p_2, \ldots, p_m
- 2. 求条件极值: z = f(x, y) 在条件 $\varphi(x, y) = 0$ 下的条件极值。设条件极值点为 $q_1, q_2, ..., q_n$

- 1. 求驻点: 在 D 内部求解方程组 $\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$ 。设驻点为 p_1, p_2, \ldots, p_m
- 2. 求条件极值: z = f(x, y) 在条件 $\varphi(x, y) = 0$ 下的条件极值。设条件极值点为 q_1, q_2, \ldots, q_n
- 3. 比较 $p_1, p_2, ..., p_m; q_1, q_2, ..., q_n$ 的函数值,最大者对应最大值点,最小者对应最小值点。

例 1 求函数 $f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 在区域 $D = \{(x, y) | x^2 + y^2 \le 3\}$ 内的最值。

例 1 求函数
$$f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x, y) | x^2 + y^2 \le 3\}$ 内的最值。

解 1. 求驻点:

2.
$$x f = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 $\varphi(x, y) = x^2 + y^2 - 3 = 0$ 下的条件极值:

在条件

3. 比较函数值:

例 1 求函数
$$f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x, y) | x^2 + y^2 \le 3\}$ 内的最值。

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases}$$

3. 比较函数值:

在条件

例 1 求函数
$$f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x, y) | x^2 + y^2 \le 3\}$ 内的最值。

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

2. 求
$$f = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$

 $\varphi(x, y) = x^2 + y^2 - 3 = 0$ 下的条件极值:

3. 比较函数值:

在条件

例 1 求函数
$$f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x, y) | x^2 + y^2 \le 3\}$ 内的最值。

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

只有驻点 (1,0) 是 D 的内点。

2.
$$x f = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 $\varphi(x, y) = x^2 + y^2 - 3 = 0$ 下的条件极值:

3. 比较函数值:

在条件

例 1 求函数
$$f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x, y) | x^2 + y^2 \le 3\}$ 内的最值。

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

只有驻点 (1,0) 是 D 的内点。

2. 求
$$f = x^3 - y^3 + 3x^2 + 3y^2 - 9x = x^3 - y^3 - 9x + 9$$
在条件 $\varphi(x, y) = x^2 + y^2 - 3 = 0$ 下的条件极值:

3. 比较函数值:

例 1 求函数
$$f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x, y) | x^2 + y^2 \le 3\}$ 内的最值。

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

只有驻点 (1,0) 是 D 的内点。

2. 求
$$f = x^3 - y^3 + 3x^2 + 3y^2 - 9x = x^3 - y^3 - 9x + 9$$
在条件 $\varphi(x, y) = x^2 + y^2 - 3 = 0$ 下的条件极值: 令 $L = f + \lambda \varphi$,求解

3. 比较函数值:

例 1 求函数
$$f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x, y) | x^2 + y^2 \le 3\}$ 内的最值。

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

只有驻点 (1,0) 是 D 的内点。

2. 求
$$f = x^3 - y^3 + 3x^2 + 3y^2 - 9x = x^3 - y^3 - 9x + 9$$
在条件 $\varphi(x,y) = x^2 + y^2 - 3 = 0$ 下的条件极值: 令 $L = f + \lambda \varphi$,求解

$$\begin{cases} L_x = 3x^2 - 9 + 2\lambda x = 0 \\ L_y = -3y^2 + 2\lambda y = 0 \\ \varphi = x^2 + y^2 - 3 = 0 \end{cases}$$

3. 比较函数值:

例 1 求函数 $f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 在区域 $D = \{(x, v) | x^2 + v^2 < 3\}$ 内的最值。

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

只有驻点(1,0)是D的内点。

2. 求
$$f = x^3 - y^3 + 3x^2 + 3y^2 - 9x = x^3 - y^3 - 9x + 9$$
在条件 $\varphi(x,y) = x^2 + y^2 - 3 = 0$ 下的条件极值: 令 $L = f + \lambda \varphi$, 求解

$$\varphi(x,y) = x^{2} + y^{2} - 3 = 0 \text{ Fins } A \text{ Fins }$$

比较函数值:

例 1 求函数 $f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 在区域 $D = \{(x, y) | x^2 + y^2 < 3\}$ 内的最值。

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

只有驻点 (1,0) 是 D 的内点。

2. 求
$$f = x^3 - y^3 + 3x^2 + 3y^2 - 9x = x^3 - y^3 - 9x + 9$$
在条件

$$\varphi(x,y) = x^2 + y^2 - 3 = 0$$
 下的条件极值: 令 $L = f + \lambda \varphi$, 求解
$$\begin{cases} L_x = 3x^2 - 9 + 2\lambda x = 0 \\ L_y = -3y^2 + 2\lambda y = 0 \\ \varphi = x^2 + y^2 - 3 = 0 \end{cases} \Rightarrow (x,y) = (\pm \sqrt{3}, 0), (\sqrt{3/2}, \sqrt{3/2}), (-\sqrt{3/2}, -\sqrt{3/2})$$

, 比於丞粉店

5. 化双四双恒:						
(x,y)	(1,0)	(√3,0)	(-√3,0)	$(\sqrt{1.5}, \sqrt{1.5})$	$(-\sqrt{1.5}, -\sqrt{1.5})$	
f(x,y)	-5	≈-1.4	≈19.4	≈ 20.0	≈-2.0	

$$\begin{cases} z_x = \\ z_y = \end{cases}$$

$$\begin{cases} z_X = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} \\ z_y = \end{cases}$$

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} \end{cases}$$

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0\\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases}$$

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x = 0 & \begin{cases} x = 0 \\ y = 0 \end{cases} & \begin{cases} 1 - 2x^2 - 3y^2 = 0 \end{cases} & \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ 2 - 2x^2 - 3y^2 = 0 \end{cases} & \begin{cases} 1 - 2x^2 - 3y^$$

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x = 0 & \{x = 0 \\ y = 0 \end{cases} \begin{cases} x = 0 & \{1 - 2x^2 - 3y^2 = 0 \\ y = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \end{cases}$$

$$(x, y) = (0, 0)$$

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x = 0 & \begin{cases} x = 0 \\ y = 0 \end{cases} & \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ y = 0 \end{cases} & \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ 2 - 2x^2 - 3y^2 = 0 \end{cases}$$

$$(x,y) = (0,0)$$
 或 $(0, \pm \sqrt{2/3})$

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x = 0 & \{x = 0 \\ y = 0 \end{cases} \begin{cases} x = 0 & \{1 - 2x^2 - 3y^2 = 0 \\ y = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \end{cases}$$

$$(x,y) = (0,0)$$
 或 $(0, \pm \sqrt{2/3})$ 或 $(\pm \sqrt{1/2}, 0)$

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x=0 & \begin{cases} x=0 \\ y=0 \end{cases} & \begin{cases} 1-2x^2-3y^2=0 \\ y=0 \end{cases} & \begin{cases} 1-2x^2-3y^2=0 \\ 2-2x^2-3y^2=0 \end{cases} \end{cases}$$

$$(x,y) = (0,0)$$
 或 $(0, \pm \sqrt{2/3})$ 或 $(\pm \sqrt{1/2}, 0)$

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)			

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x = 0 & x = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ 2 - 2x^2 - 3y^2 = 0 \end{cases}$$

$$(x,y) = (0,0)$$
 或 $(0, \pm \sqrt{2/3})$ 或 $(\pm \sqrt{1/2}, 0)$

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72		

$$\frac{\text{M 2}}{D}$$
 求 $z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$ 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x = 0 & x = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ 2 - 2x^2 - 3y^2 = 0 \end{cases}$$

$$(x,y) = (0,0)$$
 或 $(0, \pm \sqrt{2/3})$ 或 $(\pm \sqrt{1/2}, 0)$

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x = 0 & x = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ 2 - 2x^2 - 3y^2 = 0 \end{cases}$$

$$(x,y) = (0,0)$$
 或 $(0, \pm \sqrt{2/3})$ 或 $(\pm \sqrt{1/2}, 0)$

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x = 0 & \begin{cases} x = 0 \\ y = 0 \end{cases} & \begin{cases} 1 - 2x^2 - 3y^2 = 0 \end{cases} & \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ 2 - 2x^2 - 3y^2 = 0 \end{cases} & \begin{cases} 2 - 2x^2 - 3y^2 = 0 \end{cases} \end{cases}$$

$$(x,y) = (0,0)$$
 或 $(0, \pm \sqrt{2/3})$ 或 $(\pm \sqrt{1/2}, 0)$

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值。

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x = 0 & x = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ y = 0 & 2 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ 2 - 2x^2 - 3y^2 = 0 \end{cases}$$

$$(x,y) = (0,0)$$
 或 $(0,\pm\sqrt{2/3})$ 或 $(\pm\sqrt{1/2},0)$

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值: 此时

$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值: 此时

$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2} = 3 + y^2$$

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值: 此时

$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2} = 3 + y^2 \implies 3 \le z \le 4$$

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值: 此时

$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2} = 3 + y^2 \implies 3 \le z \le 4$$

可见在边界上,在 $(\pm 1,0)$ 处取得最小值 z=3;

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值: 此时

$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2} = 3 + y^2 \implies 3 \le z \le 4$$

可见在边界上,在 $(\pm 1, 0)$ 处取得最小值 z = 3; 在 $(0, \pm 1)$ 处取得最大值 z = 4

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值:此时

$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2} = 3 + y^2 \implies 3 \le z \le 4$$

可见在边界上,在 $(\pm 1, 0)$ 处取得最小值 z = 3; 在 $(0, \pm 1)$ 处取得最大值 z = 4

3. 点 (0,0) 处得最小值 z=e,点 $(0,\pm\sqrt{2/3})$ 处得最大值 $z=3e^{\frac{1}{3}}$

$$z=(1+2x^2+3y^2)e^{1-x^2-y^2}$$

$$z=(1+2x^2+3y^2)e^{1-x^2-y^2}$$

$$z=(1+2x^2+3y^2)e^{1-x^2-y^2}$$

