Faculdade de Computação Universidade Federal de Uberlândia

TOPOLOGIA DA IMAGEM DIGITAL

Sumário

- Vizinhança de um pixel
- □ O que é conectividade?
- Algoritmo para rotular componentes conectadas
- □ Relação de adjacência
- □ Medidas de distância

Valor de um pixel

- Uma imagem é tratada como uma matriz de pixels
- Um pixel p na coordenada (x,y) está associado a um valor de intensidade V(p) correspondente a f(x,y)
 - □ Imagem de 8 bits: $V(p) = \{k \mid 0 \le k \le 255\}$

Vizinhança de um pixel

- □ Vizinhança-4 de um pixel p $(N_4(p))$
 - Um pixel p na coordenada (x,y) tem 4 vizinhos cujas coordenadas são dadas por
 - $N_4(p) = \{(x+1, y), (x-1, y), (x, y+1), (x, y-1)\}$
 - Se p é um pixel da borda, então ele terá um numero menor de vizinhos

Vizinhança de um pixel

- Um pixel p na coordenada (x,y) tem 4 vizinhos na diagonal cujas coordenadas são dadas por
 - $N_D(p) = \{(x+1, y+1), (x+1,y-1), (x-1,y+1), (x-1, y-1)\}$

Vizinhança de um pixel

- □ Vizinhança-8 de um pixel p $(N_8(p))$
 - Os 8-vizinhos de um pixel p é o conjuntos dos vizinhos $N_4(p)$ e dos $N_D(p)$.
 - $N_8(p) = N_4(p) \cup N_D(p)$

Adjacência

- É um conceito distinto de vizinhança
 - Serão observados, além da vizinhança, os valores dos pixels vizinhos
 - Estabelece limites de objetos e componentes de regiões

Adjacência

- Os valores dos pixels vizinhos devem estar contidos dentro de um conjunto Q de valores de intensidades. Ex:
 - □ Imagens binárias: $Q = \{1\}$
 - □ Imagens tons de cinza: $Q = \{v \mid v > 127\}$
 - Três tipos de adjacência
 - Adjacência-4
 - Adjacência-8
 - Adjacência-m

Adjacência

- □ Adjacência-4 $\rightarrow A_4(p)$
 - □ O pixel q está na vizinhança-4 de p
 - $q \in N_4(p)$
 - □ p e q estão na mesma faixa de valores
 - $V(p) \in Q \ e \ V(q) \in Q$

Adjacência

- □ Adjacência-8 $\rightarrow A_8(p)$
 - □ O pixel q está na vizinhança-8 de p
 - $q \in N_8(p)$
 - □ p e q estão na mesma faixa de valores
 - $V(p) \in Q \ e \ V(q) \in Q$

Adjacência

- □ Adjacência-m $\rightarrow A_m(p)$
 - Conectividade mista
 - $q \in N_4(p)$ ou
 - $q \in N_8(p) \ e \ V(N_4(p) \cap N_4(q)) \notin Q$
 - □ p e q estão na mesma faixa de valores
 - $V(p) \in Q \ e \ V(q) \in Q$

$$Q = \{1\}$$

$$p = (x, y), V(p) = 1$$

$$A_m(p) = \{(x - 1, y - 1), (x, y - 1), (x + 1, y + 1)\}$$

Adjacência

- □ Adjacência-m $\rightarrow A_m(p)$
 - □ A adjacência mista é uma modificação adjacência-8;
 - □ Foi criada para eliminar ambiguidades que frequentemente ocorrem com adjacencia-8

Relação de Adjacência

- □ Um caminho digital do pixel p(x,y) ao pixel p(s,t) é uma sequência de pixels distintos $(x_0,y_0), (x_1,y_1),..., (x_n,y_n)$, em que
 - $(x_0,y_0) = (x,y) e (x_n,y_n) = (s,t);$
 - □ os pixels (x_i, y_i) e (x_{i-1}, y_{i-1}) são adjacentes para $1 \le i \le n$
- □ Se $(x_0,y_0) = (x_n,y_n)$ então o caminho é fechado

Conectividade

- Conectividade entre pixels é um conceito muito importante
- É útil para
 - Estabelecer os limites dos objetos
 - Identificar as componentes de uma imagem
 - obtenção de propriedades especificas do objeto para processamento de mais alto nível

Conectividade

- Precisamos identificar quais pixels pertencem a cada componente da imagem I
 - Para isto precisamos saber quais pixels são conexos

Conectividade

 Dois pontos p e q ε S são conexos se existe um caminho entre p e q tal que todos os pontos deste caminho também pertencem a S

- Para qualquer pixel p em S, o conjunto de pixles conexos a ele em S é chamado de um componente conexo de S
- Se existir apenas um componente conexo entao S é dito ser um conjunto conexo

Conectividade

- Seja R um subconjunto de pixels em uma imagem I
 - R é uma região de I se R for um conjunto conexo
 - Duas regiões R_i e R_j são adjacentes se sua união formar um conjunto conexo
 - Para definir um conjunto conexo o tipo de adjacência utilizada precisa ser especificado

Conectividade

- Exemplo
 - R1 U R2 formam uma região se a adjacência-8 for utilizada
 - Usando adjacência-4, R1 e R2 são duas regiões disjuntas

Conectividade

Neste exemplo as regiões Si e Sj são disjuntas para qualquer adjacência (não existe caminho entre p e q)

Fronteira ou contorno de uma região

- □ Seja R uma região
 - A fronteira de R é o conjunto de pixels adjacentes aos pixels do complemento de R

Rotular Componentes Conectadas

- Rotular componentes conectadas é um passo fundamental para analise automática de imagens:
 - identificar forma, calcular área, definir fronteira da região
 - obter características de forma ou contorno

Algoritmo para Rotular Componentes Conectadas

 Considere que desejamos rotular componentes 4-conectadas

- Seja p um pixel a ser analisado. A varredura se dá da esquerda para a direita, de cima para baixo.
- Seja r e t o pixel de cima e a esquerda respectivamente.
- Dada a natureza da varredura, r e t já foram rotulados se satisfizeram o critério de similaridade (Cs=1; considere que estamos tratando com uma imagem binária).

Algoritmo para Rotular Componentes Conectadas

Procedimento:

- Se p = 0 então verifica o próximo pixel;
- Se p = 1, examinar r e t
 - Se (r == 0 e t == 0) então rotula p com novo rótulo;
 - Se (r == 1 e t == 0) ou (r == 0 e t == 1) rotula p com o rótulo de r ou de t;
 - Se (r == 1 e t == 1) e possuem o mesmo rótulo então rotula p com este rótulo;
 - Se (r == 1 e t == 1) e possuem rótulos diferentes então rotula p com um dos rótulos e indica equivalência de rótulos;

Algoritmo para Rotular Componentes Conectadas

- No final do processo todos que satisfazem o critério de similaridade estarão rotulados, mas alguns com rótulos equivalentes
- Neste caso:
 - transformar todos os pares de rótulos equivalentes em classes de equivalência, atribuindo um rótulo diferente para cada classe;
 - varrer novamente a imagem e substituir cada rótulo pelo rótulo atribuído a sua classe de equivalência.

Demonstração do algoritmo

Resultado

Rotular Componentes Conectadas - Exercício

Considere Sc={1} e a imagem abaixo:

1	1	0	0	0	0	0	Os eq po 4-c
0	1	1	0	0	0	0	eq
0	0	0	1	0	0	0	ро
0	0	0	1	1	0	1	4-0
0	0	0	0	0	1		
0	0	0	0	0	1	1	

Os rótulos C e D são equivalentes. Temos, portanto, 3 componentes 4-conectadas.

Componentes 4-conectadas:

00111	3011011100	1 0011001	uuuu.		
Α	Α	0	0	0	0
0	Α	Α	0	0	0
0	0	0	В	0	0
0	0	0	В	В	0
0	0	0	0	0	D
0	0	0	0	0	D

Como o procedimento de rotular deve ser alterado para obtermos componentes 8-conectadas???

Medida de distância ou Métrica

0

0

D D

28

- Dados os pixels p, q e z com coordenadas (x,y), (s,t) e (u,v), respectivamente, D é uma função de distância se
 - D(p,q) = D(q,p), simetria
 - □ $D(p,q) \ge 0$, não negatividade
 - $\square D(p,p) = 0$
- Além dessas 3 propriedades, também valem
 - D(p,q) = 0, se e somente se p = q
 - □ $D(p,z) \le D(p,q) + D(q,z)$, também conhecida como desigualdade do triângulo

Medida de distância ou Métrica

29

Desigualdade triangular

Medidas de distância

Distância Euclidiana:

$$D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

 $S = \{q | \ D_e(p,q) \leq r\}$ forma um círculo centrado em p

Medidas de distância

- Distancia D₄ ou City-block distance ou distância de Manhattan:
 - $D_4(p,q) = |x-s| + |y-t|$

 $S = \{q \mid D4(p,q) \le r\}$ forma um diamante centrado em p

Comparando com a distância Euclideana

Medidas de distância

- Distancia D₈ ou Chessboard distance ou Distancia de Chebyshev
 - $\square D_8(p,q) = \max(|x-s|, |y-t|)$
 - $S = \{q \mid D_8(p,q) \le r\}$ forma um quadrado centrado em p

Medidas de distância

$$D_M(p,q) = [(x-s)^p + (y-t)^p]^{1/p}$$

distância de Manhattan

$$p = 2$$

distância Euclideana

distância de Chebyshev

$$d(x,y) = \sqrt[p]{\sum_{i=1}^n |x_i - y_i|^p}$$

Distância de Minkowski para diferentes valores de p

Aplicações: shape matching

Como obter o esqueleto da forma?

- Imagine uma região cujo material pega fogo de forma uniforme
- Coloque fogo simultaneamente em cada ponto do contorno e veja o fogo se alastrar para o interior da região;
- Sempre que fogo se encontra vindo de pontos diferentes, ele apaga formando uma linha
- □ Esta linha é o esqueleto

Esqueletonização

- O esqueleto pode ser obtido via transformada de distância
- Transformada de distância
 - Calcula um campo escalar (ou vetorial) que representa as distâncias mínimas entre o objeto e os pontos do espaço no qual ele está envolvido
 - A transformada de distância é normalmente utilizada em imagens binárias

Transformada de distância

O resultado da transformação é uma imagem similar à original, exceto que os níveis de cinza dentro da região são alterados para identificar a menor distância de cada ponto ao contorno da forma

Transformada de distância

Esqueletonização

 O esqueleto ocorre nas regiões de singularidade da transformada (cristas e descontinuidade de curvatura)

Esqueletonização

Outros exemplos

Esqueletonização

- □ O uso de diferentes métricas → diferentes esqueletos
- O esqueleto é útil:
 - produz uma representação simples e compacta da forma;
 - preserva características topológicas e de tamanho da forma original

Outros exemplos para o uso de distancia: Método de Interpolação - SIDITRANS (dissertação de Walter A.A. Oliveira)

Exercícios

- 1- Na figura abaixo, quais opções estão corretas?
 - a) q ϵ N₄(p)
 - b) q ϵ N₈(p)
 - c) q $\epsilon N_D(p)$

- 2 Calcule a distância entre os pixels $p \in q$
 - a) Euclidiana
 - b) City block
 - c) Chess board

Exercícios

- 3 Determine se S1 e S2 são:
 - a) 4-conectadas
 - b) 8-conectadas
 - c) m-conectadas

	S1			5	S2			
0 0 0	0	0	0	0 0 1 0	0	1	1	
0	0	1	0	0	1	0	0	
0	0	1	0	1	1	0	0	
0	1	1	1	0	0	0	0	

Exercícios

4 - Encontre o esqueleto para a imagem binária abaixo (a parte clara é fundo). Use distância

