classe $\omega_2:0.5$,	- (-)	ahahilitá d'erren	r de Bayes ϵ^* , en t	itilisant la form	ule de la ques-
Estimer null 2 (on a $\phi(0.4)$	heriquement in properties $\phi(0.9)$	≈ 0.8).	r de bayos e , our .		
Estimer la	probabilité d'erre	eur de la règle du	ı plus proche voisi	n, par la méthc	ode "leave-one-
I anti-	natione a. at Tin	of on supposant	cant dans l'expres $\pi_1 = \pi_2$. Estimer l'expres intermédiaire	a probabilite u	errear ac a ba
I anti-	natione a. at Tin	of on supposant	$\pi_1 = \pi_2$. Estimer 1	a probabilite u	errear ac a ba
I anti-	natione a. at Tin	of on supposant	$\pi_1 = \pi_2$. Estimer 1	a probabilite u	errear ac a ba
I oati	natione a. at Tin	of on supposant	$\pi_1 = \pi_2$. Estimer 1	a probabilite u	errear ac a ba
I noti	natione a. at Tin	of on supposant	$\pi_1 = \pi_2$. Estimer 1	a probabilite u	errear ac a ba
I noti	natione a. at Tin	of on supposant	$\pi_1 = \pi_2$. Estimer 1	a probabilite u	errear ac a ba
I noti	natione a. at Tin	et en supposant présentera les ca	$\pi_1 = \pi_2$. Estimer 1	a probabilite u	errear ac a ba
par leurs esti néthode "leav	mations $\widehat{\mu}_1$ et $\widehat{\mu}_2$ re-one-out". (On p	et en supposant présentera les ca	$\pi_1 = \pi_2$. Estimer 1	a probabilite u	errear ac a ba
par leurs esti néthode "leav	mations $\widehat{\mu}_1$ et $\widehat{\mu}_2$ re-one-out". (On)	et en supposant présentera les ca	$\pi_1 = \pi_2$. Estimer 1	a probabilite u	errear ac a ba
par leurs esti néthode "leav	mations $\widehat{\mu}_1$ et $\widehat{\mu}_2$ re-one-out". (On)	et en supposant présentera les ca	$\pi_1 = \pi_2$. Estimer 1	a probabilite u	errear ac a ba
par leurs esti néthode "leav	mations $\widehat{\mu}_1$ et $\widehat{\mu}_2$ re-one-out". (On)	et en supposant présentera les ca	$\pi_1 = \pi_2$. Estimer 1	a probabilite u	errear ac a ba
par leurs esti néthode "leav	mations $\widehat{\mu}_1$ et $\widehat{\mu}_2$ re-one-out". (On)	et en supposant présentera les ca	$\pi_1 = \pi_2$. Estimer 1	a probabilite u	errear ac a ba
par leurs esti néthode "leav	mations $\widehat{\mu}_1$ et $\widehat{\mu}_2$ re-one-out". (On)	et en supposant présentera les ca	$\pi_1 = \pi_2$. Estimer 1	a probabilite u	errear ac a ba
par leurs esti néthode "leav	mations $\widehat{\mu}_1$ et $\widehat{\mu}_2$ re-one-out". (On)	et en supposant présentera les ca	$\pi_1 = \pi_2$. Estimer 1	a probabilite u	errear ac a ba
par leurs esti méthode "leav	mations $\widehat{\mu}_1$ et $\widehat{\mu}_2$ re-one-out". (On)	et en supposant présentera les ca	$\pi_1 = \pi_2$. Estimer 1	a probabilite u	errear ac a ba
par leurs esti méthode "leav	mations $\widehat{\mu}_1$ et $\widehat{\mu}_2$ re-one-out". (On)	et en supposant présentera les ca	$\pi_1 = \pi_2$. Estimer 1	a probabilite u	errear ac a ba
par leurs esti méthode "leav	mations $\widehat{\mu}_1$ et $\widehat{\mu}_2$ re-one-out". (On)	et en supposant présentera les ca	$\pi_1 = \pi_2$. Estimer 1	a probabilite u	errear ac a ba