PPT Full Version

베이지안 구조 시계열 모형의 예측력 향상을 위한 연구

중앙대학교 통계학과 김동현

(지도교수: 성병찬)

목차

<u>1. 서론</u>

2. 주요 시계열 모형

- 2.1. ETS 모형
- 2.2. ARIMA 모형
- 2.3. BSTS 모형

3. BSTS 모형 성질 및 예측 결과

- 3.1. BSTS 모형 성질
- 3.2. 예측 결과

4. 결론 및 참고문헌

Part 1:1/2

- 1990년대 이후 시계열 예측 분야에서는 지수평활모형(ETS)의 다양한 형태가 등장하기 시작했다.
- 특히, 지수평활모형은 자동화 예측 기능으로써 빅데이터 시계열 예측에 편리함을 더해주었다.

• <u>ETS 모형</u>

- ➤ 데이터의 추세(Trend)와 계절성(Seasonality)으로 이루어진 지수평활모형
- ➤ 상태 공간 모형(State Space Model) 형태를 이루고 있으며, 단일 오차(Single Error)로 설명이 가능하다.
- 장점: 다양한 종류의 시계열 자료에 대해 예측을 빠르게 수행할 수 있다.
- ▶ 단점 : 특정 모형 하에서만 최적일 수 있으며, 장기간 예측하는 데에 있어서 높은 예측 성능을 보여주지 못한다.

• 일반화된 ETS 모형

- ▶ 상태 공간 모형 형태를 보이는 ETS 모형의 속성을 바탕으로 다중 오차(Multiple Error)로 확장할 수 있다.
- ➤ 다중 계절성(Multiple Seasonality)으로도 확장 가능하며, 설명변수가 존재한다면 회귀 효과(Regression Effect)도 추가할 수 있다.

Part 1: 2/2

- 베이지안 구조 시계열(BSTS: Bayesian Structural Time Series) 모형
 - ➤ 지수평활모형의 일반적 형태로 알려져 있다.
 - ▶ 구조 시계열(STS) 모형은 시계열 데이터로 구성된 상태 공간 모형이며, 여기에 베이지안 이론이 도입된 모형이다.
 - ▶ 추세, 계절성만 사용할 수 있는 ETS 모형과 대비하여 다양한 상태 요소들을 모형에 추가할 수 있기에 유연성 있게 분석할 수 있다.
- 상대적으로 자동화 예측을 포함한 예측 분야의 활용성 연구가 매우 부족하다.
- 본 연구는 베이지안 구조 시계열 모형의 예측력 개선을 위한 것이다.

〈연구목표〉

- BSTS 모형과 ETS 모형의 비교
- ② ETS 결과(모형 형태, Prior)를 이용한 BSTS 모형 예측
- ③ 시계열 길이에 따른 예측력 비교
- ARIMA(Autoregressive Integrated Moving Average) 모형
 - 시계열을 예측할 수 있는 또 다른 모형 중 하나이다.
 - ➤ ETS, BSTS 모형과 같이 비교하여 예측 성능을 확인하고자 위 모형도 함께 사용하였다.
 - ➤ ARIMA 모형은 데이터에 나타나는 자기상관(Autocorrelation)을 표현하는데 목적을 둔 모형이다.

<u>2.1. ETS 모형</u>

- 지수평활법
 - ➤ ETS 모형의 기반으로, 최근 자료에 큰 가중치를 부여하고 과거 자료로 갈수록 가중치를 지수적으로 줄여나가는 방법
 - ▶ 시계열이 생성되는 시스템에 어떤 변화가 존재하는 경우에 이 변화에 쉽게 대응할 수 있고, 계산 방법이 쉬우며 많은 자료를 저장하지 않아도 된다는 장점이 있다.

• ETS 모형 역사

2.1. ETS 모형

• 지수평활법을 추세 성분과 계절 성분의 종류로 나누어서 나타내면 9가지로 분류할 수 있다.

추세 성분		계절 성분	
구세 경正	N(없음)	A(덧셈)	<i>M</i> (곱셈)
N(없음)	(N, N)	(N, A)	(N, M)
A(덧셈)	(A, N)	(A, A)	(A, M)
A_d (덧셈 감쇠)	(A_d, N)	(A_d, A)	(A_d, M)

- 위 기법을 토대로 통계 모형으로 확장할 수 있게 된다.
 - ▶ 이를 통해, 점 예측값만 낼 수 있는 지수평활법과 달리 예측 구간도 생성 가능하다.

2.1. ETS 모형

- 앞서 나온 표에 제시된 각 모형에 대해 관측 방정식과 상태 방정식으로 표현할 수 있다.
 - ➤ <u>관측 방정식(Measurement Equation)</u>: 관측된 데이터를 표현하는 식
 - ▶ 상태 방정식(State Equation): 아직 관측되지 않은 성분이나 상태가 시간에 따라 어떻게 변하는지 설명하는 식
 - ▶ 이 둘을 합쳐 <u>상태 공간 모형(SSM : State Space Model)</u>
 - ➤ 위 SSM을 덧셈 오차(Additive Error)와 곱셈 오차(Multiplicative Error)에 따라 2가지로 또 나눌 수 있다.
- 지수평활법의 기초인 추세(Trend)와 계절(Seasonal) 성분에서 오차(Error)를 구분하기 위해 문자를 하나 더 추가하게 되는데, 이 모형이 바로 ETS 모형이다.
 - ightharpoonup <u>혁신 상태 공간 모형(ISSM : Innovation State Space Model)</u>이라고도 부르는데, 모든 식에서 같은 오차 과정 ϵ_t 를 사용하기 때문이다.
 - ▶ 이러한 이유로 식을 세우는 과정을 **오차의 단일 원천(SSOE : Single Source of Error)**이라고도 부른다.

<u>2.1. ETS 모형</u>

• <u>덧셈 오차 모형(Additive Error Model)</u>

<u> </u>	오차 모델	계 저 사	
ナベ	N	계절성 A	M
N	$y_t = \ell_{t-1} + \varepsilon_t$ $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$y_t = \ell_{t-1} + s_{t-m} + \varepsilon_t$ $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$ $s_t = s_{t-m} + \gamma \varepsilon_t$	$y_t = \ell_{t-1} s_{t-m} + \varepsilon_t$ $\ell_t = \ell_{t-1} + \alpha \varepsilon_t / s_{t-m}$ $s_t = s_{t-m} + \gamma \varepsilon_t / \ell_{t-1}$
A	$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$ $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$ $b_t = b_{t-1} + \beta \varepsilon_t$	$\begin{aligned} y_t &= \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t \\ \ell_t &= \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t \\ b_t &= b_{t-1} + \beta \varepsilon_t \\ s_t &= s_{t-m} + \gamma \varepsilon_t \end{aligned}$	$\begin{aligned} y_t &= (\ell_{t-1} + b_{t-1}) s_{t-m} + \varepsilon_t \\ \ell_t &= \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t / s_{t-m} \\ b_t &= b_{t-1} + \beta \varepsilon_t / s_{t-m} \\ s_t &= s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + b_{t-1}) \end{aligned}$
A _d	$y_t = \ell_{t-1} + \phi b_{t-1} + \varepsilon_t$ $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$ $b_t = \phi b_{t-1} + \beta \varepsilon_t$	$y_t = \ell_{t-1} + \phi b_{t-1} + s_{t-m} + \varepsilon_t$ $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$ $b_t = \phi b_{t-1} + \beta \varepsilon_t$ $s_t = s_{t-m} + \gamma \varepsilon_t$	$y_{t} = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} + \varepsilon_{t}$ $\ell_{t} = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_{t} / s_{t-m}$ $b_{t} = \phi b_{t-1} + \beta \varepsilon_{t} / s_{t-m}$ $s_{t} = s_{t-m} + \gamma \varepsilon_{t} / (\ell_{t-1} + \phi b_{t-1})$

• 곱셈 오차 모형(Multiplicative Error Model)

곱셈	오차 모델		
추세		계절성	
	N	Α	M
N	$y_t = \ell_{t-1}(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = \ell_{t-1} s_{t-m} (1 + \varepsilon_t)$
	$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + \alpha(\ell_{t-1} + s_{t-m})\varepsilon_t$	$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$
	$y_t = (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + b_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_t)$
\mathbf{A}	$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t$	$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$
	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t$	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + b_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$
	$y_t = (\ell_{t-1} + \phi b_{t-1})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + \phi b_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} (1 + \varepsilon_t)$
A_d	$\ell_t = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$	$\ell_t = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t)$
	$b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_t$	$b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$	$b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_t$
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$

Part 2:5/17

2.2. ARIMA 모형

- 정상성(Stationarity)
 - ▶ 시계열의 확률적인 성질들이 시간의 흐름에 따라 변하지 않는 것
 - ▶ 평균, 분산 등에 체계적인 변화가 없고 주기적인 변화도 없는 경우
 - ➢ 종류 : 엄격한 의미의 정상성 & 약한 의미의 정상성
- 약한 의미의 정상성
 - ▶ 일반적으로 정상성이라고 칭하면 약한 의미의 정상성을 말한다.
 - ➤ 평균과 분산은 각각 상수로써 시간 t에 의존하지 않고 동일하다.
 - \triangleright 자기공분산(Autocovariance)은 시차(lag)에만 의존하고 시점 t와는 무관하다.

2.2. ARIMA 모형

• 차분(Differencing)

$$\nabla Y_t = (1 - B)Y_t = Y_t - Y_{t-1}$$

$$\nabla^2 Y_t = (1 - B)^2 Y_t = (1 - 2B + B^2)Y_t = Y_t - 2Y_{t-1} + Y_{t-2}$$
...
$$\nabla^d Y_t = (1 - B)^d Y_t$$

- 결정적 추세(Deterministic Trend)
 - ▶ 장기간에 걸쳐 지속적으로 나타나는 추세
 - ➤ 추세제거(Detrending)를 통하여 정상 시계열로 만들 수 있다.
- 확률적 추세(Stochastic Trend)
 - 예측할 수 없는 추세, 즉 확정적이지 않고 확률적인 성격을 지닌 추세
 - ▶ 차분을 통하여 정상 시계열로 만들 수 있다.

Part 2:7/17

2.2. ARIMA 모형

● AR(Autoregressive) 모형

- ightharpoonup 시계열 $Y_{t-1}, Y_{t-2}, ...$ 로 회귀시킨 모형
- ➤ Yule(1927)이 제안한 모형
- ▶ 정상성을 만족하는지 확인할 수 있다.

② MA(Moving Average) 모형

- ▶ 회귀처럼 보이는 모형에서 과거 예측 오차(Forecast Error)를 이용하는 모형
- ➤ 가역성(Invertibility)을 만족하는지 확인할 수 있다.

ARMA 모형

- ➤ ARMA 모형 = AR 모형 + MA 모형
- 정상적이고 가역적인 시계열은 AR 모형이나 MA 모형만을 사용하여 적합할 수 있다.
 -> 문제: 너무 많은 모수를 포함할 수도 있으며, 이로 인해 추정에 있어 효율성을 감소시킬 수 있다.
- ➤ AR 항과 MA 항을 혼합한 모형의 설정이 ARMA 모형

2.2. ARIMA 모형

- ARIMA 모형
 - ➤ ARMA 모형을 일반화한 모형
 - ▶ 비정상 시계열에 대하여 차분을 통해 정상 시계열로 만들어 ARMA 모형으로 만든 모형
- 후진 연산자를 사용하여 표현한 ARIMA 모형식 : ARIMA(p,d,q)

$$(1 - \phi_1 B - \dots - \phi_p B^p)(1 - B)^d y_t = c + (1 + \theta_1 B + \dots + \theta_q B^q) \epsilon_t$$

• 후진 연산자를 사용하여 표현한 <u>계절성 ARIMA 모형식 : $ARIMA(p,d,q)(P,D,Q)_m$ </u>

$$\begin{split} \phi_p(B) \Phi_P(B^m) (1-B)^d (1-B^m)^D y_t &= c + \theta_q(B) \Theta_Q(B^m) \epsilon_t \\ \phi_p(B) &= 1 - \phi_1 B - \dots - \phi_p B^p, \quad \Phi_P(B^m) = 1 - \Phi_1 B^m - \dots - \Phi_P B^{Pm} \\ \theta_q(B) &= 1 + \theta_1 B + \dots + \theta_q B^q, \quad \Theta_Q(B^m) = 1 + \Theta_1 B^m + \dots + \Theta_Q B^{Qm} \end{split}$$

Part 2: 9/17

- BSTS 모형
 - ➤ 구조 시계열(STS: Structural Time Series) 모형에 베이지안 이론이 추가된 모형
- 베이지안(Bayesian)
 - ➤ 추세(Trend), 기울기(Slope), 계절성(Seasonality) 등 구성요소의 오차 분산(Error Variance)을 추정할 때 마르코프 연쇄 몬테칼로(MCMC: Markov Chain Monte Carlo) 알고리즘(Algorithm)을 이용한다.
- 마르코프 연쇄 몬테칼로(MCMC: Markov Chain Monte Carlo)
 - ➤ 몬테칼로(Monte Carlo)는 샘플링(Sampling) 목적에서 나온 표현이며, 반복적인 무작위 샘플링에 의존한다는 뜻이다.
 - ▶ 마르코프 연쇄(Markov Chain)는 샘플을 얻는 방법에 대한 표현이며, 샘플링을 시행할 때 이전 상태에 의존한다는 뜻이다.
 - → MCMC 알고리즘을 통해 각 구성요소에 대한 표본을 생성하는 것

Part 2:10/17

- 구조 시계열(STS: Structural Time Series) 모형
 - ➤ 시계열 데이터로 구성된 상태 공간 모형(SSM : State Space Model)
 - ➤ 직접 관측할 수 없는 상태에 대해 여러 가정과 실제 데이터를 사용하여 예측 가능하며, 칼만필터(Kalman Filter) 방법을 사용한다.

$$y_t = Z_t^T \alpha_t + \epsilon_t, \epsilon_t \sim N(0, H_t) \cdots (\boldsymbol{a})$$

$$\alpha_t = T_t \alpha_t + R_t \eta_t, \eta_t \sim N(0, Q_t) \cdots (\boldsymbol{b})$$

- (a): 관측 방정식(Observation Equation)
 - \triangleright y_t : 관측된 데이터, α_t : 관측되지 않은 잠재(Latent) 상태
- (b): 상태 방정식(State Equation), 전이 방정식(Transition Equation)
 - ➤ 잠재 상태가 시간에 따라 어떻게 변화하는지 설명하는 방정식
- \triangleright 모형의 행렬들인 Z_t, T_t, R_t 는 일반적으로 0과 1처럼 알려진 값과 알려져 있지 않은 모수들을 포함한다.
- ▶ 이 두 방정식을 합쳐 상태 공간 형태(State Space Form)이라고 부르며, ETS 모형의 형태와 유사하다.
- > 장점: SSM은 모듈 형식으로, 추세, 기울기, 계절성 등 상태 요소들을 모형에 추가하여 유연성 있는 분석을 가능하게 한다.

- STS 모형 종류
 - ① Local Level(LL) 모형
 - 2 Local Linear Trend(LLT) 모형
 - ③ Semi-local Linear Trend(SLT) 모형
 - ▶ 모듈 형식이므로, 계절성이 존재한다면 모형마다 계절성을 추가할 수 있다.

① Local Level(LL) 모형

$$y_t = \mu_t + \varepsilon_t, \varepsilon_t \sim N(0, \sigma^2)$$

$$\mu_{t+1} = \mu_t + \eta_t, \eta_t \sim N(0, \tau^2)$$

- Z_t, T_t, R_t 가 모두 스칼라(Scalar) 형태로 값이 1이고, $\alpha_t = \mu_t$ 인 모형
- ETS(A, N, N)의 형태와 유사하며, 계절성이 존재하면 ETS(A, N, A)의 형태와 유사하다.
- $\tau^2 = 0$ 이면, μ_t 는 상수(Constant)이며, 데이터는 IID Gaussian Noise가 된다.
 - $\rightarrow y_{t+1}$ 최적 추정량(Best Estimator) = \bar{y}
- $\sigma^2 = 0$ 이면, 데이터는 랜덤워크(Random Walk)를 따른다.
 - $\rightarrow y_{t+1}$ 최적 추정량 = y_t
- 두 분산이 모두 양수이면, 과거 데이터가 두 분산의 비율에 따라 결정되는 지수 비율로 잊혀지는 지수평활이 y_{t+1} 의 최적 추정량이다.

① Local Level(LL) 모형

$$y_t = \mu_t + \varepsilon_t, \varepsilon_t \sim N(0, \sigma^2)$$

$$\mu_{t+1} = \mu_t + \eta_t, \eta_t \sim N(0, \tau^2)$$

- 유의점
- (1) 어떤 경우에는 추정량이 동일한 가중치가 부여되는 모든 과거 데이터에 의존하는 반면, 다른 경우에는 가장 최근 데이터에만 의존하여 과거 데이터에 가중치 0을 부여할 수도 있다.
- (2) 이 모형의 상태는 이전 상태에만 의존하는 마르코프(Markov)이지만, 관찰된 데이터 간의 의존성은 시계열 자료의 시작까지 확장된다.

② Local Linear Trend(LLT) 모형

$$y_t = \mu_t + \varepsilon_t, \varepsilon_t \sim N(0, \sigma^2)$$

$$\mu_{t+1} = \mu_t + \delta_t + \eta_{\mu,t}, \eta_{\mu,t} \sim N(0, \sigma_{\mu,t}^2)$$

$$\delta_{t+1} = \delta_t + \eta_{\delta,t}, \eta_{\delta,t} \sim N(0, \sigma_{\delta,t}^2)$$

- LL 모형 형태와 유사하지만 δ_t 항이 추가되었으며, 이는 추세에 기울기(Slope)가 추가된 형태의 모형
- *ETS*(*A*, *A*, *N*)의 형태와 유사하다.
- $\sigma_{\mu,t}^2$ 와 $\sigma_{\delta,t}^2$ 는 서로 독립이며, μ_t = 확률적 수준(Stochastic Level), δ_t = 확률적 기울기(Stochastic Slope)를 나타낸다.
- 확률적 요인을 사용하면 시간에 따라 서서히 변하는 기울기를 가지는 추세를 표현할 수 있다.
- $\sigma_{\delta,t}^2=0$ 인 경우 : $\delta_t=\delta_0$ 의 절편을 가지는 랜덤워크(Random Walk) 모형
- $\sigma_{\mu,t}^2 = \sigma_{\delta,t}^2 = 0$ 인 경우 : 결정적 선형 추세(Deterministic Linear Trend) 모형(형태 : $y_t = \mu_0 + \delta_0 t + \varepsilon_t$)

③ 계절성이 있는 Local Linear Trend(LLT) 모형

$$y_{t} = \mu_{t} + \tau_{t} + \varepsilon_{t}, \varepsilon_{t} \sim N(0, \sigma^{2})$$

$$\mu_{t+1} = \mu_{t} + \delta_{t} + \eta_{\mu,t}, \eta_{\mu,t} \sim N(0, \sigma_{\mu,t}^{2})$$

$$\delta_{t+1} = \delta_{t} + \eta_{\delta,t}, \eta_{\delta,t} \sim N(0, \sigma_{\delta,t}^{2})$$

$$\tau_{t+1} = -\sum_{s=1}^{S-1} \tau_{t} + \eta_{\tau,t}, \eta_{\tau,t} \sim N(0, \sigma_{\tau,t}^{2})$$

- 계절성이 추가된다면 계절 성분을 모형에 추가하면 된다.
- 계절 더미 변수(Dummy Variable)를 사용하여 표현할 수 있다.
 - \rightarrow 예 : 분기별 데이터 \rightarrow S = 4로 지정할 수 있고, 3개의 더미 변수 사용
- *ETS*(*A*, *A*, *A*)의 형태와 유사하다.

- 4 Semi-local Linear Trend(SLT) 모형
- LL 모형에서 상태는 랜덤워크(Random Walk)에 따라 진화한다.

$$\mu_{t+1} = \mu_t + \eta_t$$

- \triangleright 0 시점을 기준으로 t 시점의 분포는 $\mu_t \sim N(\mu_0, t\sigma_\eta^2)$ 이며, 분산은 t와 함께 $t=\infty$ 까지 계속 증가한다.
- LLT 모형에서는 훨씬 더 변동성이 큰데, 먼 미래를 예측할 때 이러한 모형이 제공하는 유연성은 단기적인 상태에서의 지역적 유연성(Local Flexibility)이 장기적인 상태에서는 극단적인 변화로 변환된다.
- 이러한 문제를 해결하기 위해 랜덤워크를 정상적인 AR 프로세스(Process)로 바꿀 수 있다.

$$\mu_{t+1} = \rho \mu_t + \eta_t$$

$$\eta_t \sim N(0, \sigma_\eta^2), |\rho| < 1$$

- ightharpoonup 이 모형은 정상적 분포 $\mu_{\infty} \sim N(0, \frac{\sigma_{\eta}^2}{1-\rho^2})$ 를 가지며, 불확실성이 먼 미래에 유한한 점근점으로 커진다는 것을 의미한다.
- ➤ 프로세스 수준에 대해 랜덤워크를 유지하면서 기울기의 랜덤워크를 정상적인 AR(1) Process로 대체하여 LLT 모형을 수정한다.
- → BSTS에서는 이를 SLT 모형이라고 부른다.

Part 2:17/17

2.3. BSTS 모형

◆ Semi-local Linear Trend(SLT) 모형

$$y_t = \mu_t + \varepsilon_t, \varepsilon_t \sim N(0, \sigma^2)$$

$$\mu_{t+1} = \mu_t + \delta_t + \eta_{\mu,t}, \eta_{\mu,t} \sim N(0, \sigma_{\mu,t}^2)$$

$$\delta_{t+1} = D + \rho(\delta_t - D) + \eta_{\delta,t}, \eta_{\delta,t} \sim N(0, \sigma_{\delta,t}^2)$$

- $ETS(A, A_d, N)$ 의 형태와 유사하며, 계절성이 존재하면 $ETS(A, A_d, A)$ 와 유사하다.
- D는 추세 성분의 장기적 기울기 모수이며, δ_t 는 이 기울기로 되돌아간다.
- δ_t 는 장기 추세(Long Term Trend)에서 단기적인 자기회귀(AR) 편차를 가질 수 있으며, 메모리는 ho로 결정된다.

Part 3:1/22

〈사용 프로그램 및 데이터〉

• 프로그래밍 언어: R

• 데이터: Mcomp 패키지(버전 2.8, 2018)에서 제공하는 3,003개의 시계열 자료로 구성된 M3 Competition

〈데이터 구성 형태〉

Interval	Micro	Industry	Macro	Finance	Demog	Other	Total
Yearly	146	102	83	58	245	11	645
Quarterly	204	83	336	76	57	0	756
Monthly	474	334	312	145	111	52	1,428
Other	4	0	0	29	0	141	174
Total	828	519	731	308	413	204	3,003

- BSTS 모형 적합 과정
 - ① M3 Competition 데이터에 대해 ETS 모형을 우선 적합하고, 그에 대응하는 BSTS 모형을 적합하였다.
 - \triangleright BSTS 모형은 덧셈 오차(Additive Error) 형태만을 보이므로 ETS(A, Z, Z) 형태로 적합하였다.
 - \triangleright 예시 : ETS(A, A, A) -> LLT Model with Seasonality
 - \triangleright 적합 가능한 ETS 모형 : ETS(A, N, N), ETS(A, A, N), $ETS(A, A_d, N)$, ETS(A, N, A), ETS(A, A, A), $ETS(A, A_d, A)$
 - ② 위에서 적합한 BSTS 모형에 대해 MCMC 시뮬레이션을 10,000번 시행하고, 관측 방정식의 관측 데이터 y_t 를 정규분포(Gaussian)로 설정하였다.
 - ③ MCMC를 통해 각 상태 요소(Component)에 대한 표본(Sample) 추출이 완료되면, 초기 부분은 사후분포를 정확히 나타내지 못할 수도 있기에 버리는 부분(Burn-in Period)은 1 ~ 5,000번째 값들로 설정하였다. 즉, 사용한 표본은 5,001 ~ 10,000번째 값들이다.
 - ④ 예측은 최종적으로 선택된 표본들의 평균(Mean) 값으로 사용하였다.

• Monthly Data: M650(Industry) Series

ETS(A, N, A)BSTS: LL Model with Seasonality $x = u + \tau + \epsilon$

$$\begin{aligned} y_t &= l_{t-1} + s_{t-12} + \epsilon_t \\ l_t &= l_{t-1} + 0.9994 \epsilon_t \\ s_t &= s_{t-12} + 0.0001 \epsilon_t \end{aligned} \qquad \begin{aligned} y_t &= \mu_t + \tau_t + \epsilon_t \\ \mu_{t+1} &= \mu_t + \eta_{\mu,t} \\ \tau_{t+1} &= -\sum_{s=1}^{11} \tau_t + \eta_{\tau,t} \end{aligned}$$

$$\epsilon_t \sim N(0, 37.56^2)$$

 $\eta_{\mu,t} \sim N(0, 167.65^2)$
 $\eta_{\tau,t} \sim N(0, 6.39^2)$

Quarterly Data : Q509(Macro) Series

ETS(A, A, A)

$$y_{t} = l_{t-1} + b_{t-1} + s_{t-4} + \epsilon_{t}$$

$$l_{t} = l_{t-1} + b_{t-1} + 0.0003\epsilon_{t}$$

$$b_{t} = b_{t-1} + 0.0001\epsilon_{t}$$

$$s_{t} = s_{t-4} + 0.0001\epsilon_{t}$$

$$\epsilon_t \sim N(0, 30.72^2)$$

BSTS: LLT Model with Seasonality

$$y_t = \mu_t + \tau_t + \epsilon_t$$

$$\mu_{t+1} = \mu_t + \delta_t + \eta_{\mu,t}$$

$$\delta_{t+1} = \delta_t + \eta_{\delta,t}$$

$$\tau_{t+1} = -\sum_{s=1}^{3} \tau_t + \eta_{\tau,t}$$

$$\epsilon_t \sim N(0, 27.77^2)$$

 $\eta_{\mu,t} \sim N(0, 4.51^2)$
 $\eta_{\delta,t} \sim N(0, 2.78^2)$
 $\eta_{\tau,t} \sim N(0, 5.58^2)$

ETS(A, N, A)	BSTS: LL Model with Seasonalit
$y_t = l_{t-1} + s_{t-12} + \epsilon_t$ $l_t = l_{t-1} + 0.9994\epsilon_t$ $s_t = s_{t-12} + 0.0001\epsilon_t$ $\epsilon_t \sim N(0, 180.50^2)$	$y_{t} = \mu_{t} + \tau_{t} + \epsilon_{t}$ $\mu_{t+1} = \mu_{t} + \eta_{\mu,t}$ $\tau_{t+1} = -\sum_{s=1}^{11} \tau_{t} + \eta_{\tau,t}$
	$\epsilon_t \sim N(0, 37.56^2)$ $\eta_{\mu,t} \sim N(0, 167.65^2)$ $\eta_{\tau,t} \sim N(0, 6.39^2)$

ETS(A, A, A) BSTS: LLT Model with Seasonality

$$\begin{array}{ll} y_t = l_{t-1} + b_{t-1} + s_{t-4} + \epsilon_t \\ l_t = l_{t-1} + b_{t-1} + 0.0003\epsilon_t \\ b_t = b_{t-1} + 0.0001\epsilon_t \\ s_t = s_{t-4} + 0.0001\epsilon_t \\ \epsilon_t \sim N(0, 30.72^2) \end{array} \qquad \begin{array}{ll} y_t = \mu_t + \tau_t + \epsilon_t \\ \mu_{t+1} = \mu_t + \delta_t + \eta_{\mu,t} \\ \delta_{t+1} = \delta_t + \eta_{\delta,t} \\ \tau_{t+1} = -\sum_{s=1}^3 \tau_t + \eta_{\tau,t} \end{array}$$

$$\begin{array}{ll} \epsilon_t \sim N(0, 27.77^2) \\ \eta_{\mu,t} \sim N(0, 4.51^2) \\ \eta_{\delta,t} \sim N(0, 2.78^2) \\ \eta_{\tau,t} \sim N(0, 5.58^2) \end{array}$$

- ETS 모형과 비교한 BSTS 모형 성질
- ① 모든 식에서 같은 오차 ε_t 를 사용하는 ETS 모형과 달리 BSTS 모형은 각 구성요소마다 오차를 사용한다.
- ② ETS 모형식 ETS(A,A,A)에서 y_t 를 포함한 관측 방정식에서는 기울기(Slope)를 포함하고 있으나, BSTS 모형식에서는 포함하지 않는다.
- ③ ETS 모형식에서는 평활모수(Smoothing Parameter)를 사용하지만, BSTS 모형식에서는 사용하지 않는다.

Part 3:6/22

<u>3.2. 예측 결과</u>

• 예측 결과 비교에 사용한 모형

No.	모형	설명
0	ETS 모형	• BSTS 모형이 덧셈 오차(Additive Error) 형태만을 보이므로 $ETS(A,Z,Z)$ 형태로 적합
2	ARIMA 모형	• R forecast 패키지(버전 8.21.1, 2023)에서 제공하는 'auto.arima()' 함수를 사용하여 ARIMA 모형 적합
3	BSTS 모형	• <i>ETS(A, Z, Z)</i> 모형에 대응하는 BSTS 모형 적합
4	Hybrid 모형	 ETS 모형과 BSTS 모형을 합친 Hybrid 모형 목적: BSTS 모형을 활용해 더 높은 예측 성능을 도출해내기 위함 예측값 = ¹/₂ (ETS 모형 예측값 + BSTS 모형 예측값)
6	BSTS 모형 (Prior 지정)	 ETS(A, Z, Z) 모형에 대응하는 BSTS 모형에 Prior를 지정하여 적합 목적: 기존 BSTS 모형에서 예측 성능을 더 향상시키기 위함
6	Hybrid 모형 (Prior 지정)	 ETS 모형과 Prior를 지정한 BSTS 모형을 합친 Hybrid 모형 목적: 기존 Hybrid 모형에서 예측 성능을 더 향상시키기 위함 예측값 = ¹/₂ (ETS 모형 예측값 + Prior를 지정한 BSTS 모형 예측값)

3. BSTS 모형 성질 및 예측 결과

<u>3.2. 예측 결과</u>

- 오차 분산 Prior를 지정한 BSTS 모형
 - 앞서 설명한 BSTS 모형 적합 과정에서 MCMC 시뮬레이션을 시행하기 전에 Prior를 지정하는 하나의 과정이 추가된다.
 - ➤ 각 상태 요소(Component)의 분산에 대해 Prior를 ETS 모형의 오차 분산과 평활모수를 바탕으로 하여 지정하였다.
 - > 오차 분산 Prior 지정시 사용되는 분포는 역감마분포(Inverse Gamma Distribution)이다.
- ❖ 예시: Monthly Data M650(Industry) Series

ETS(A, N, A)	BSTS: LL Model with Seasonality
$y_t = l_{t-1} + s_{t-12} + \epsilon_t$ $l_t = l_{t-1} + \alpha \epsilon_t$	$y_t = \mu_t + \tau_t + \epsilon_t$ $\mu_{t+1} = \mu_t + \eta_{\mu,t}$
$s_t = s_{t-12} + \frac{\gamma}{\gamma} \epsilon_t$	<u>11</u>
$\epsilon_t \sim N(0, \sigma^2)$	$\tau_{t+1} = -\sum_{s=1} \tau_t + \eta_{\tau,t}$
	$\epsilon_t \sim N(0, \sigma^2)$
	$\eta_{\mu,t} \sim N(0, (\alpha\sigma)^2)$
	$\eta_{\tau,t} \sim N(0, (\gamma \sigma)^2)$

3. BSTS 모형 성질 및 예측 결과

<u>3.2. 예측 결과</u>

• 예측 결과 비교에 사용한 Error 지표

Error	정의	수식
MAPE	Mean Absolute Percentage Error	$\frac{1}{n} \sum_{i=1}^{n} \frac{ y_i - \widehat{y}_i }{y_i} \times 100$
sMAPE	symmetric Mean Absolute Percentage Error	$\frac{1}{n} \sum_{i=1}^{n} \frac{ y_i - \hat{y_i} }{\frac{1}{2} (y_i + \hat{y_i})} \times 100$
MASE	Mean Absolute Scaled Error	$\frac{1}{n} \sum_{i=1}^{n} \left(\frac{ y_i - \widehat{y_i} }{\frac{1}{n-1} \sum_{i=2}^{n} y_i - y_{i-1} } \right) = \frac{\sum_{i=1}^{n} y_i - \widehat{y_i} }{\frac{n}{n-1} \sum_{i=2}^{n} y_i - y_{i-1} }$
sMAE	scaled Mean Absolute Error	$\frac{1}{n} \sum_{i=1}^{n} \frac{ y_i - \hat{y}_i }{\frac{1}{n} y_i} = \frac{1}{n} \sum_{i=1}^{n} \frac{ y_i - \hat{y}_i }{\bar{y}}$

● 표본 개수가 적을 때 예측 결과

• Case 1: 0 < n ≤ 20 (데이터 개수: 504개)

Model	MAPE	sMAPE	MASE	sMAE
ETS	17.5930 (3)	14.3111 (5)	2.5894 (6)	0.2402 (3)
ARIMA	18.9671 (6)	14.8303 (6)	2.5828 (5)	0.2529 (6)
BSTS	17.7933 (4)	13.9070 (4)	2.4925 (2)	0.2408 (5)
BSTS(Prior)	17.8101 (5)	13.8837 (3)	2.4896 (1)	0.2403 (4)
Hybrid	17.4650 (1)	13.8808 (2)	2.4930 (3)	0.2370 (2)
Hybrid(Prior)	17.4709 (2)	13.8664 (1)	2.4960 (4)	0.2367 (1)

- ➤ BSTS 모형은 ETS 모형 대비 sMAPE, MASE 관점에서 예측 성능이 높게 나타났으며, Prior를 지정한 경우에는 기존보다 전반적으로 예측 성능이 개선되었다.
- ➤ Hybrid 모형은 기존 BSTS 모형 대비 예측 성능이 전반적으로 높게 나타났으며, Prior를 지정한 경우에는 전반적으로 예측 성능을 더 높여주었다.

● 표본 개수가 적을 때 예측 결과

• Case 2:20 < n ≤ 40 (데이터 개수:397개)

Model	MAPE	sMAPE	MASE	sMAE
ETS	21.5929 (5)	15.7095 (5)	1.8397 (5)	0.2396 (5)
ARIMA	23.1232 (6)	15.8089 (6)	1.8888 (6)	0.2543 (6)
BSTS	21.5867 (4)	15.4055 (4)	1.7916 (4)	0.2368 (4)
BSTS(Prior)	21.5235 (3)	15.2528 (1)	1.7813 (1)	0.2352 (2)
Hybrid	21.3057 (2)	15.2839 (3)	1.7881 (3)	0.2353 (3)
Hybrid(Prior)	21.2993 (1)	15.2599 (2)	1.7868 (2)	0.2348 (1)

- ➤ BSTS 모형은 ETS 모형에 비해 모든 Error 관점에서 예측 성능이 높게 나타났으며, Prior를 지정한 경우에는 기존 BSTS 모형의 예측 성능을 더 끌어올린 것으로 나타났다.
- ➤ Hybrid 모형은 기존 BSTS 모형 대비 예측 성능이 좋았으며, Prior를 지정한 경우에는 기존 Hybrid 모형에서 예측 성능을 더 높여주었다.

♪ BSTS 모형은 표본 개수가 적을 때 전반적으로 예측 성능이 높게 나타났으며, Prior를 지정한 경우에는 예측 성능이 향상되었다.

❷ 주기별 예측 결과

• Case 1: All Data

Model	MAPE	sMAPE	MASE	sMAE
ETS	17.6936 (3)	13.0667 (3)	1.4252 (5)	0.1662 (3)
ARIMA	18.7217 (6)	13.5683 (6)	1.4541 (6)	0.1772 (6)
BSTS	17.8610 (4)	13.4807 (5)	1.4182 (4)	0.1721 (5)
BSTS(Prior)	17.9196 (5)	13.2042 (4)	1.4059 (3)	0.1698 (4)
Hybrid	17.4048 (1)	12.9241 (2)	1.3926 (2)	0.1658 (2)
Hybrid(Prior)	17.5240 (2)	12.8705 (1)	1.3911 (1)	0.1652 (1)

- ➤ BSTS 모형은 ETS 모형 대비 MASE 관점에서 예측 성능이 높게 나타났고, Prior를 지정한 경우에는 기존보다 예측 성능이 전반적으로 개선되었다.
- ➤ Hybrid 모형은 다른 모형들에 비해 예측 성능이 좋게 나타났으며, Prior를 지정한 Hybrid 모형은 예측 성능을 더 높여주어 대부분의 오차 지표에서 예측 성능 1위를 차지하였다.

❷ 주기별 예측 결과

• Case 2: Yearly Data

Model	MAPE	sMAPE	MASE	sMAE
ETS	21.0164 (3)	17.0027 (5)	2.8598 (5)	0.3052 (1)
ARIMA	22.0507 (6)	17.1040 (6)	2.9594 (6)	0.3377 (6)
BSTS	21.4057 (5)	16.4817 (4)	2.8120 (4)	0.3183 (5)
BSTS(Prior)	21.3878 (4)	16.4637 (1)	2.8037 (3)	0.3173 (4)
Hybrid	20.9596 (2)	16.4816 (3)	2.7890 (2)	0.3085 (3)
Hybrid(Prior)	20.9460 (1)	16.4668 (2)	2.7877 (1)	0.3079 (2)

- ➤ BSTS 모형은 ETS 모형 대비 sMAPE, MASE 관점에서 예측 성능이 높게 나타났으며, Prior를 지정한 경우에는 기존보다 예측 성능이 개선되었다.
- ➤ Hybrid 모형은 BSTS 모형 대비 예측 성능이 좋게 나타났으며, Prior를 지정한 경우에는 예측 성능을 더 높여주었다.

3. BSTS 모형 성질 및 예측 결과

<u>3.2. 예측 결과</u>

❷ 주기별 예측 결과

Case 3: Quarterly Data

Model	MAPE	sMAPE	MASE	sMAE
ETS	12.1527 (3)	9.6843 (4)	1.1701 (4)	0.1194 (3)
ARIMA	13.2409 (6)	10.0061 (6)	1.1888 (6)	0.1265 (6)
BSTS	12.3941 (5)	9.8118 (5)	1.1714 (5)	0.1218 (5)
BSTS(Prior)	12.2342 (4)	9.6444 (3)	1.1619 (3)	0.1201 (4)
Hybrid	12.0428 (2)	9.5901 (2)	1.1450 (1)	0.1179 (2)
Hybrid(Prior)	11.9974 (1)	9.5458 (1)	1.1462 (2)	0.1174 (1)

- ▶ BSTS 모형은 ETS 모형 대비 성능이 좋지 않게 나왔으나, Prior를 지정한 BSTS 모형은 기존보다 예측 성능이 전반적으로 개선되었다.
- ➤ Hybrid 모형은 다른 모형들에 비해 예측 성능이 좋게 나타났으며, Prior를 지정한 경우에는 예측 성능을 더 높여주어 MASE를 제외한 모든 Error 관점에서 예측 성능 1위를 차지하였다.

2 주기별 예측 결과

Case 4: Monthly Data

Model	MAPE	sMAPE	MASE	sMAE
ETS	20.6976 (3)	14.1389 (3)	0.8649 (5)	0.1439 (3)
ARIMA	21.8046 (6)	14.9605 (5)	0.8675 (6)	0.1485 (5)
BSTS	20.7263 (4)	15.1583 (6)	0.8632 (4)	0.1489 (6)
BSTS(Prior)	20.9471 (5)	14.6790 (4)	0.8491 (3)	0.1456 (4)
Hybrid	20.1745 (1)	14.1250 (2)	0.8433 (2)	0.1424 (2)
Hybrid(Prior)	20.4555 (2)	14.0431 (1)	0.8401 (1)	0.1417 (1)

- ➤ Prior를 지정한 BSTS 모형은 기존 BSTS 모형에 비해 예측 성능이 개선되었다.
- ➤ Prior를 지정한 Hybrid 모형은 대부분의 오차 지표에서 예측 성능이 가장 높게 나타났다.

- ➡ BSTS 모형은 주기가 짧을수록 예측 성능이 높게 나타났으며, Prior를 지정한 경우에는 주기가 길어질수록 ETS, ARIMA 모형 대비 예측 성능이 떨어지는 기존 BSTS 모형에 비해 예측 성능이 전반적으로 개선되었다.
- ◆ Hybrid 모형은 전반적으로 예측 성능이 가장 높았으며, Prior를 지정한 경우에는 예측 성능이 더욱 향상되었다.

Part 3:15/22

<u>3.2. 예측 결과</u>

이 미래 예측시점에 따른 적합 결과 비교 모형: ETS, ARIMA, BSTS, Hybrid

• Case 1: All Data

- ❖ Prior를 지정한 BSTS와 Hybrid 모형은 각 기존 모형에서 예측 성능을 더 향상시키기 위함에 있으며, Prior를 직접 지정하지 않은 경우에도 Hybrid 모형은 예측 성능이 전반적으로 높게 나타났다.
- → Prior를 고려하지 않은 모형에 대해 미래 예측시점에 따른 적합 결과를 비교하였다.

- **3** 미래 예측시점에 따른 적합 결과
- Case 1: All Data

▶ 미래 예측시점이 길어질수록, 모든 Error 관점에서 Hybrid 모형의 예측 성능이 가장 높게 나타났다.

- **3** 미래 예측시점에 따른 적합 결과
- Case 2: Yearly Data

- **3** 미래 예측시점에 따른 적합 결과
- Case 2: Yearly Data

➤ 주기가 1년 단위(Yearly)인 경우에 미래 예측시점이 길어질수록, sMAE를 제외한 모든 Error 관점에서 Hybrid 모형의 예측 성능이 가장 높게 나타났다.

- **3** 미래 예측시점에 따른 적합 결과
- Case 3: Quarterly Data

- **3** 미래 예측시점에 따른 적합 결과
- Case 3: Quarterly Data

➤ 주기가 분기 단위(Quarterly)인 경우에 미래 예측시점이 길어질수록, 모든 Error 관점에서 Hybrid 모형의 예측 성능이 가장 높게 나타났다.

- **3** 미래 예측시점에 따른 적합 결과
- Case 4: Monthly Data

- ❸ 미래 예측시점에 따른 적합 결과
- Case 4: Monthly Data

sMAE Graphs for all methods in "MONTHLY"

➤ 주기가 월 단위(Monthly)인 경우에 미래 예측시점이 길어질수록, 모든 Error 관점에서 Hybrid 모형의 예측 성능이 가장 높게 나타났다.

○ 주기에 상관없이 Hybrid 모형의 예측 성능이 전체적으로 가장 높게 나타났다.

• ETS, ARIMA, BSTS 모형의 형태를 확인하고, M3 Competition 데이터를 활용하여 확장된 ETS 모형인 BSTS 모형의 성질을 파악하고 예측 성능을 비교하였다.

1 BSTS 모형 성질

- ETS 모형에 있는 평활모수(Smoothing Parameter)를 사용하지 않으며, 상태 공간 모형의 형태를 지니고 있기에 추세, 계절성 등 각 상태 요소를 자유롭게 추가할 수 있다.
- 각 요소마다 오차가 존재하므로 Prior를 사용하게 되며, 이를 통해 사후분포(Posterior Distribution)를 개선할 수 있다.

② 예측 결과

- 시계열 자료의 개수가 많지 않은 경우에는 BSTS 모형이 다른 모형에 비해 예측이 가장 잘 되었으며, Prior를 지정한 경우에는 기존 BSTS 모형 대비 예측 성능이 개선되었다.
- 주기가 짧을수록 BSTS 모형의 예측 성능이 가장 높게 나타났으며, Prior를 지정한 경우에는 기존 BSTS 모형보다 예측 성능이 개선되었다.
- 예측 성능을 높이기 위해 사용한 Hybrid 모형은 미래 예측시점이 길어질수록 예측 성능이 가장 높게 나타났으며, 다른 부문에서도 전반적으로 예측 성능이 가장 높게 나타났다.
- Prior를 지정한 Hybrid 모형은 기존 Hybrid 모형 대비 예측 성능을 더욱 향상시켜 가장 적합이 잘 되었음을 확인하였다.

Part 4: 2/3

③ 향후 과제

- M3 Competition 데이터를 활용하여 예측 성능을 비교해보았다. 본 연구에서 사용한 데이터가 아닌 다양한 변수가 존재하는데이터를 사용하여 BSTS 모형에 회귀효과 구성요소를 추가할 수 있다는 점을 활용하면 예측 성능을 향상시킬 수 있을 것으로 보인다.
- 본 연구에서는 ETS 모형에 대응하는 BSTS 모형을 적합하였으나, 자동으로 최적의 모형을 적합할 수 있도록 설정하면 예측 성능이 더 향상시킬 수 있을 것으로 보인다.

- 성병찬, & 이승경. (2011). 비관측요인모형을 이용한 한국의 국내총생산 분석. 한국데이터정보과학회지, 22(5), 829-837.
- 이우리. (2016). 시계열 분석과 예측 이해와 응용 (2판). 탐진.
- 조신섭, 손영숙, & 성병찬. (2019). SAS/ETS와 R을 이용한 시계열 분석 (5판). 율곡출판사.
- Hyndman, R. J. (2022. 10. 12). Package 'Mcomp'. Retrieved from https://cran.r-project.org/web/packages/Mcomp/Mcomp.pdf
- Hyndman, R. J. (2023. 7. 18). Forecast comparisons using the Mcomp package. Retrieved from https://pkg.robjhyndman.com/Mcomp/articles/Comparisons.html
- Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice (2nd ed.). OTexts.
- Proietti, T. (2004). Forecasting with Structural Time Series Models. A Companion to Economic Forecasting (pp. 105-132). Wiley.
- Rocca, J. (2019. 2. 25). Introduction to Markov chains. Retrieved from https://towardsdatascience.com/brief-introduction-to-markov-chains-2c8cab9c98ab
- Rocca, J. (2019. 7. 1). Bayesian inference problem, MCMC and variational inference. Retrieved from https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29
- Scott, S. L., & Varian, H. (2013). Predicting the Present with Bayesian Structural Time Series. International Journal of Mathematical Modelling and Numerical Optimisation, 5(1–2), 4–23.
- Scott, S. L. (2017. 7. 11). Fitting Bayesian structural time series with the bsts R package. Retrieved from https://www.unofficialgoogledatascience.com/2017/07/fitting-bayesian-structural-time-series.html
- Scott, S. L. (2022. 11. 7). Package 'bsts'. Retrieved from https://cran.r-project.org/web/packages/bsts/bsts.pdf

