Avmyndom Sum við 2D, so avmynda vil ein vektor $\underline{v} \in \mathbb{R}^3$ $\underline{V} = V_1 \underline{e}_1 + V_2 \underline{e}_2 + V_3 \underline{e}_3,$

við at fara úr $[e_1, e_2, e_3]$ í $[a_1, a_2, a_3]$. Vit fáa ein nýggjan veltor \underline{v}' $\underline{v}' = v_1 \underline{a}_1 + v_2 \underline{a}_2 + v_3 \underline{a}_3.$

Sum lineera avmyndan A er uppsetamin heilt einfalt

$$\underbrace{A}_{=} \ \ = \ \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} v_1 a_{11} + v_2 a_{12} + v_3 a_{13} \\ v_1 a_{21} + v_2 a_{22} + v_3 a_{23} \\ v_1 a_{31} + v_2 a_{32} + v_3 a_{33} \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \underbrace{v}_{1}$$

Linear maps Skalering er ein avmyndan

$$\tilde{\zeta} \quad \tilde{\lambda} \quad = \quad \begin{bmatrix} \zeta^{11} & 0 & 0 \\ 0 & 2^{75} & 0 \\ 0 & 2^{75} & 0 \end{bmatrix} \begin{bmatrix} \lambda^{1} \\ \lambda^{2} \\ \lambda^{2} \end{bmatrix} \quad = \quad \begin{bmatrix} 2^{75} & \lambda^{2} \\ 2^{75} & \lambda^{2} \end{bmatrix}$$

Refleksion shal sum so megna at avmynda t.d. um e_x $\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \mapsto \begin{bmatrix} v_1 \\ -v_2 \\ v_3 \end{bmatrix}, so \underbrace{A}_{=} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Umbýtan av koordinatásir framleiða spegling um 45°, so um $\approx 1.2 \times 3$ er matrican $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$

Shears eru enn fyri mesta partin um at flyta parallelt við koordinatásirnar. Sjónarmiðið kann tahast frá [e., ez, ez], ella hvussu vit ynshja at manipulera \underline{v} . Bæði ganga út uppá tað sama.

Um ein dimensión skal flytast:

1.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
2.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
3.
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

1.
$$\underline{e}_1 \mapsto \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $\underline{e}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\underline{e}_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ Shear $i \in [\underline{e}_2, \underline{e}_3]$ plant

2.
$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 $e_2 = \begin{bmatrix} a \\ 1 \\ 0 \end{bmatrix}$ $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ shear $[e_1, e_3]$ pland

3.
$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $e_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $e_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ shear $[e_2, e_3]$ pland

Val av a og b, so at vit enda á e; , i=1,2,3.

1.
$$a = -\frac{V_2}{V_1}$$
 og $b = -\frac{V_3}{V_1}$

2.
$$\alpha = -\frac{V_1}{V_2}$$
 og $\sigma = -\frac{V_3}{V_2}$

3.
$$\alpha = -\frac{v_1}{v_3}$$
 of $b = -\frac{v_2}{v_3}$

Domi

Lat
$$\underline{V} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$
 so er $\underline{A} = \begin{bmatrix} 1 - \frac{V_1}{V_2} & 0 \\ 0 & 1 & 0 \\ 0 - \frac{V_3}{V_2} & 1 \end{bmatrix}$ sum er parallelt vid $[\underline{e}_1, \underline{e}_3]$ og sendir \underline{V} til $\begin{bmatrix} 0 \\ V_2 \\ 0 \end{bmatrix}$.

Tak $y = \begin{bmatrix} 4 \\ 6 \\ 3 \end{bmatrix}$ of $A = \begin{bmatrix} 1 & -\frac{4}{6} & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{3}{2} & 1 \end{bmatrix}$

Shear eftir einstakar ásir hava fylgjandi skap

$$\begin{bmatrix}
1 & a & b \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
a & 1 & b \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
a & b & 1
\end{bmatrix}$$

Her verður biðið um input frá tvey koordinat. Tað er mæguligt at gera shear eftir eini ás við antin a ella b =0.

Rotatión spælir eftir tær somn reglurnar sum í 2D, men vit mugn halda eine dineusión í stat og rotera um hesa! Rotera vit í [e.,e.] flatanum, so skrivast hetta

rotera ($[e_1,e_3]$ og $[e_2,e_3]$! Rotatiónin i $[e_1,e_2]$ er givin, men samstundis shal e_3 vera i stad, altso rotera vit um e_3 . Vit siga, at R_i er rotatión um e_i , har i=1,2,3.

$$\mathbb{R}_{3} = \begin{bmatrix}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & c \\
0 & 0 & 1
\end{bmatrix} \qquad
\mathbb{R}_{2} = \begin{bmatrix}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{bmatrix} \qquad
\mathbb{R}_{1} = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{bmatrix}$$

Dani

Ein rotation à 90° um e_z er i $[e_1,e_3]$ planinum, og lat okkum rotere $\underline{v} = \begin{bmatrix} z \\ 3 \end{bmatrix}$

$$\underbrace{\mathbb{R}_{2}}_{2} \underline{Y} = \begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix} = \begin{bmatrix}
3 \\
2 \\
-1
\end{bmatrix}.$$

Alburat 90° rotatión kann eisini samanberast við at gera tværvehtorin í roteraða planinum.

Sí Rí (9.10) fyri rotatión av y um ein vehtor a við vinhulin a.

Projektión kann sun áður gerast eftir koordinatásunum, men eisini eftir einum ávísum vehtori.

Fløt projektion i ein flata kann t.d. skrivast [0 0 0].

Vit projektera ortognalt, men visa i h 07. kap. 10, hvunn vit gera oblique projektiónic.

Nú hava vit møguleikan at gera projektión í 10 eka 20! Vel ortonormal vehtor u, ella bæði u, og uz.

Lat $\underline{A}_1 = \underline{u}_1$ og $\underline{A}_2 = [\underline{u}_1 \ \underline{u}_2]$, so er $\underline{P}_1 = \underline{A}_1 \underline{A}_1^T = \underline{u}_1 \ \underline{u}_1^T \quad \text{projektion ortogonal viol} \quad \underline{u}_1, \quad \text{og}$ $\underline{P}_2 = \underline{A}_2 \underline{A}_2^T = [\underline{u}_1 \ \underline{u}_2] \quad [\underline{u}_1^T] \quad \text{ortogonal projektion a } [\underline{u}_1, \underline{u}_2].$

Determinant í 3D avmyndar A [ɛ,,e,,e,] til [a,,a,a,a] í rúminum. Tí skal determinanturin svara til eitt volumen mát. Forteknið vísir enn á um standard orienteringin broytist.

Givið
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, so es determinanturin

$$|A| = a_{11} \begin{vmatrix} a_{12} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

Hetta eitur Cofactor expansion. Fortelmið fylgir $(-1)^{i*j}$ hjá a_{ij} , og 2×2 matrican er cofaltorurin (við fortelm).

Sorrus Vit lennn eisini brûka diagonelarnar

$$\left| \underbrace{A}_{-} \right| = \begin{vmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{N1} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{vmatrix} = \alpha_{11} \alpha_{21} \alpha_{33} + \alpha_{12} \alpha_{23} \alpha_{31} + \alpha_{13} \alpha_{21} \alpha_{32} \\ -\alpha_{31} \alpha_{22} \alpha_{13} - \alpha_{32} \alpha_{23} \alpha_{11} - \alpha_{33} \alpha_{21} \alpha_{12}$$

Domi 9.8' Her er cofaletor útvilding "skjótari"! Volumen, sum

$$\underline{\alpha}_{1} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}$$
, $\underline{\alpha}_{2} = \begin{bmatrix} -17 \\ 4 \\ 4 \end{bmatrix}$ of $\underline{\alpha}_{3} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ útsperma.

Ovora tributsmatrix: $\begin{vmatrix} 4 & -1 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 2 \end{vmatrix} = 4 \begin{vmatrix} 4 & 1 \\ 0 & 2 \end{vmatrix} = 4 \cdot 4 \cdot 2 = 32$

Produkt av diagonal elementini! Hesi ern hóast alt eginvirðini.

$$\mathbf{E} = \begin{bmatrix}
1 & 2 & 3 \\
3 & 2 & 1 \\
4 & 5 & 6
\end{bmatrix}, \quad n\tilde{u} \quad \text{ex} \quad \text{Sarrus} \quad \text{eins} \quad \text{shj\'ett}$$

$$|\underline{B}| = 1 \cdot 2 \cdot 6 + 2 \cdot 1 \cdot 4 + 3 \cdot 3 \cdot 5$$

$$- 4 \cdot 2 \cdot 3 - 5 \cdot 1 \cdot 1 - 6 \cdot 3 \cdot 2$$

$$= 12 + 8 + 45 - 24 - 5 - 36$$

$$= 0$$