Vehicle Path Guidance

Lee Thompson 3/15/2022

Goal

 Develop a steering solution that allows a vehicle to follow a straight line, perform a U-Turn, and then follow line again in opposite direction

Assumptions

- Kinematic Bicycle Model
 - Surface is perfectly planer/flat
 - Front and Rear wheels connected by rigid link of fixed length
 - Front wheels are steerable and act together
 - Pure rolling constraint
 - No slip or skidding
 - Non holonomic constraint
 - Move only along direction of heading, no lateral movements
- Longitudinal control
 - Perfect velocity control, only concerned with lateral control for this exercise
- Steering angle is only control input to plant
- No limitations on steering command rate of change
- No restriction how available space outside of line
- Parameters:
 - Wheel Base = 2.5 m
 - Max Steering Angle = 30 deg
 - Velocity Magnitude = 20 kph

System Overview

Guidance Handler

- State machine to handle different operation modes
 - Line & U-Turn guidance modes
- Always starts in Line Mode
- Transition to next mode when progress criteria is met
 - "Progress" variable defined by guidance object, ranges 0-1

Main Control Loop

- Current Guidance object determined by Guidance Handler
- Assuming perfect velocity control, holding a constant velocity

Line Guidance

- Describe Body frame orientation and position with respect to Guidance Frame
- Output CTE, Heading Error, Heading Rate error, and Progress
- Fully defined by points A and B

U-Turn Guidance: Path Definition

- U-Turn Path made up of 6 line segments
 - Segment 1,6: Straight Lines
 - Segment 2-5: Constant Radius Curves
- Two Parameters define U-Turn shape
 - o d: Length of straight segments 1 & 6
 - R: Radius of curved sections
- Transform U-Turn Path to World Frame
 - Based on end point and orientation of guidance line and
- Fit X and Y of path using Cubic Splines
 - Independant variable (t) ranges from 0-1
 - (x,y) for each waypoint
- Use derivative of Cubic Spline path to calculate heading at each waypoint
 - Heading for each waypoint
 - Heading = arctan2(dy,dx)
- Waypoint heading rate for constant radius turn
 - \circ ψ '= vMag / R
 - Left turn (+), Right turn (-)

U-Turn Guidance: Error Calculation

Two Steps:

- 1. Find the closest waypoint
- 2. Compute error

U-Turn Guidance: Finding Closest Waypoint

- Look at window of waypoints around previous waypoint
 - Size of window is tuneable but based on percentage
- Choose closest waypoint (x,y) without ever choosing a previous waypoint
- Purpose of windowing is to not accidentally skip ahead
 - Window size = 25% is good, main trade off is computation speed

U-Turn Guidance: Error Calculation

- Same as linear guidance but transform applied based on current waypoint position and heading
- Output CTE, Heading Error, Heading Rate error, and Progress
- Progress defined by current waypoint
- No interpolation between waypoints
 - If distance between waypoints is too large, causes undesirable behavior
 - Set point not smooth

Setting U-Turn Guidance Parameters

Parameter	Description	Notes
d	Sets length of straight segment that connects with Line Guidance	Want this to be long enough to allow CTE to be minimized before start of Guidance Line
R	Sets turning radius If too small, will be difficult to track at speed. Will either need to decrease vMa or increase R	
spline_dt	Sets step size for spline independent parameter	U-Turn Guidance does not interpolate between waypoints. If spline_dt is too large this will introduce undesirable behavior
Window size	Sets number of waypoints to look at when searching for nearest waypoint. Window size defined as % of number of waypoints	25% should be good for most cases unless using a small number of waypoints

Lateral Control

Based on Stanely Contoller

 Can be shown to be globally asympotically stable at zero CTE^[1]

Recommended Tuning Strategies

Gain Parameter	Good Starting Point	Notes
k_{ψ}	1	Used used to decrease CTE during turns and reduce path overshoot
$k_{CTE,v_{mag}}$	1	Use to enable/disable CTE error component while debugging.
k_{CTE}	1	Used to null CTE
k_d	0	Used to dampen response, more important at high speeds

"Starting" Gains

$$\delta = k_{\psi} \Delta \psi + k_{CTE, v_{mag}} \arctan(\frac{k_{CTE}CTE}{1 + V_{mag}}) + k_d \dot{\Delta \psi}$$

Increase K_cte

Increase Kd to add rate damping

$$\delta = k_{\psi} \Delta \psi + k_{CTE, v_{mag}} \arctan(\frac{k_{CTE}CTE}{1 + V_{mag}}) + k_d \dot{\Delta \psi}$$

Increase K_psi to further reduce overshoot on turns

$$\delta = k_{\psi} \Delta \psi + k_{CTE, v_{mag}} \arctan(\frac{k_{CTE}CTE}{1 + V_{mag}}) + k_d \dot{\Delta \psi}$$

Limitations

- U-Turn Guidance does not interpolate between waypoints
 - Need to "smooth" response by using many waypoints
- U-Turn Guidance results in step change in desired yaw rate
- Vehicle dynamics not modeled
 - Kinematic controllers are known to have poor tracking at high speeds where assumptions may no longer be valid

Gain tuning at 260 kph

"Starting" Gains

$\delta = k_{\psi} \Delta \psi + k_{CTE, v_{mag}} \arctan(\frac{k_{CTE}CTE}{1 + V_{mag}}) + k_d \dot{\Delta \psi}$

Increase K_cte

$$\delta = k_{\psi} \Delta \psi + k_{CTE,v_{mag}} \arctan(\frac{k_{CTE}CTE}{1 + V_{mag}}) + k_{d} \dot{\Delta \psi}$$

Increase Kd to add rate damping

$$\delta = k_{\psi} \Delta \psi + k_{CTE, v_{mag}} \arctan(\frac{k_{CTE}CTE}{1 + V_{mag}}) + k_d \dot{\Delta \psi}$$

Increase K_psi to further reduce CTE during turns

$$\delta = k_{\psi} \Delta \psi + k_{CTE, v_{mag}} \arctan(\frac{k_{CTE}CTE}{1 + V_{mag}}) + k_d \dot{\Delta \psi}$$

