Simple rules for estimating bin width

Various proposed methods for choosing optimal bin width typically suggest a value proportional to some estimate of the distribution's scale, and decreasing with the sample size. The most popular choice is "Scott's rule" which prescribes a bin width

$$\Delta_b = \frac{3.5\sigma}{N^{1/3}},\tag{4.78}$$

where σ is the sample standard deviation, and N is the sample size. This rule asymptotically minimizes the mean integrated square error (see eq. 4.14) and assumes that the underlying distribution is Gaussian; see [22]. An attempt to generalize this rule to non-Gaussian distributions is the Freedman–Diaconis rule,

$$\Delta_b = \frac{2(q_{75} - q_{25})}{N^{1/3}} = \frac{2.7\sigma_G}{N^{1/3}},\tag{4.79}$$

which estimates the scale ("spread") of the distribution from its interquartile range (see [12]). In the case of a Gaussian distribution, Scott's bin width is 30% larger than the Freedman–Diaconis bin width. Some rules use the extremes of observed values to estimate the scale of the distribution, which is clearly inferior to using the interquartile range when outliers are present.

Although the Freedman–Diaconis rule attempts to account for non-Gaussian distributions, it is too simple to distinguish, for example, multimodal and unimodal distributions that have the same σ_G