

Plotting Predictions and Prediction Uncertainty

Mark Kurzeja

Overview

- Most modeling in statistics is concerned with estimating the mean function and the prediction of the model
- Today: Visualization of uncertainty is often as important (or more so) than the prediction!

Imagine I'm working on a project.
 I plotted my data and saw the scatterplot to the right

- I plotted my data and saw the scatterplot to the right
- Then my boss says, "Hmm..
 a linear model seems OK.
 You should fit one"

- I plotted my data and saw the scatterplot to the right
- Then my boss says, "Hmm..
 a linear model seems OK.
 You should fit one"
- $\bullet \quad Y = a + bx$
- $b \approx 2.97, a \approx 5.43!$

 Before I go home, I get some more data from a different sensor or data source. We plot it and get the scatterplot to the right.

- Before I go home, I get some more data from a different sensor or data source. We plot it and get the scatterplot to the right.
- I fit the linear model again, and get the line in blue.
- Y = a + bx

They have the same linear regression line – but widely different variances!

Estimation Uncertainty

Plot your uncertainty!

Estimation Uncertainty

- We can determine most of our uncertainty using a notion of Standard Errors
- Standard Errors provide how far we expect our estimates to deviate from the truth

Estimate	Estimate	First Model SE	Second Model SE
a	2.97	0.92	3.36
b	5.43	0.15	0.56

Estimation Uncertainty

- If possible, plot your data and fits
- If using a model, always try to determine what the variance is on your estimates
- High variance of estimates →
 Caution in using estimates

Estimate	Estimate	First Model SE	Second Model SE
a	2.97	0.92	3.36
b	5.43	0.15	0.56

