Towards Scalable Schema Mapping using Large Language Models

Christopher Buss*, Mahdis Safari*, Arash Termehchy, David Maier, Stefan Lee

*Equal Contributors

Based on True Events: Drug Repositioning Saves Lives

Patients with Castleman's disease (Rare disease)

- Potentially fatal: causes <u>severe inflammation</u>
 - Shuts down major organs
- No effective treatments currently exist

Must do something!

Unfortunate reality:

Too rare: no financial incentive for companies to develop treatments

Alternative:

Find an existing drug to treat
Castleman's disease

Consult a Reference Datasource

Identify a Candidate Drug

Next step: gather more information about Humira

Without making patients wait too long!

Castleman's causes severe inflammation...

Humira is used to treat conditions involving <u>severe inflammation</u>

Candidate drug: Humira

STOP: can't just give Humira to patients! Will it help or hurt?

Need to connect data from many sources as quickly as possibly

A lot of important things we need to know about Humira

Example: Humira's Effects on Proteins?

Proteins: fundamental to core mechanisms of body

Make sure Humira affects correct proteins in correct way

A Database for Drug-Protein Interaction

Add Drug-Target Information

Write mapping to move data from source to our database

Map Drug Information

Map Drug Information


```
Drug(mid, brand_med, _) :- meds(mid, brand_med, _).
```


Map Target Information


```
Mapping: Drug(mid, brand_med, _) :- meds(mid, brand_med, _).
```


Add Target Information


```
Drug(mid, brand_med, _) :- meds(mid, brand_med, _).

Target(bid, entity_name, _) :- bio_entity(_, bid, _, entity_name).|
```


Finally, Connect Drugs and Targets


```
Drug(mid, brand_med, _) :- meds(mid, brand_med, _).

Target(bid, entity_name, _) :- bio_entity(_, bid, _, entity_name).|
```


Consider Value of bio_entity.med_role


```
Drug(mid, brand_med, _) :- meds(mid, brand_med, _).

Target(bid, entity_name, _) :- bio_entity(_, bid, _, entity_name).|
```


Add Drug-Inhibits-Target Information


```
Drug(mid, brand_med, _) :- meds(mid, brand_med, _).

Target(bid, entity_name, _) :- bio_entity(_, bid, _, entity_name).|
```


Add Drug-Inhibits-Target Information


```
Drug(mid, brand_med, _) :- meds(mid, brand_med, _).

Target(bid, entity_name, _) :- bio_entity(_, bid, _, entity_name).

Inhibits(mid, bid) :- bio_entity(mid, bid, "Inhibits", _).
```


Add Drug-Induces-Target Information


```
Drug(mid, brand_med, _) :- meds(mid, brand_med, _).

Target(bid, entity_name, _) :- bio_entity(_, bid, _, entity_name).

Inhibits(mid, bid) :- bio_entity(mid, bid, "Inhibits", _).
```


Add Drug-Induces-Target Information


```
Drug(mid, brand_med, _) := meds(mid, brand_med, _).

Target(bid, entity_name, _) := bio_entity(_, bid, _, entity_name).

Inhibits(mid, bid) := bio_entity(mid, bid, "Inhibits", _).
Induces(mid, bid) := bio_entity(mid, bid, "Induces", _).
```


A (Populated) Database for Drug-Protein Interaction

A (Populated) Database for Drug-Protein Interaction

... Is not enough for drug repurposing!

Drugs are complicated... Drug Repurposing is complicated...

Like Reported Adverse Effects of Drugs

And the Newest Clinical Trial Data

And The Research Behind all these Facts

Keep Going and Eventually, We Have ...

A Database for **Drug Repositioning**

More Difficult: Requires Many More Sources...

...and Many More Mappings

We Write the Mappings (Time-Consuming)

"Are we Finally Done?"

"Are we Finally Done?" No! Schema Evolution

Sources change over time

"Are we Finally Done?" No! Schema Evolution

Sources change over time

Must repair mapping

"Are we Finally Done?" No! Schema Evolution

Sources change over time

- Must repair mapping
- More sources = more repairs

Writing + Maintenance = Effort + Delays!

We have first-hand experience...

Real Story: NIH Translator Consortium

- Far-reaching: ~30 teams each managing own domain-specific data integration project (database)
- Our first-hand experience: we've worked on one of these projects: drug repurposing for rare diseases
 - Uses ~73 sources
 - Need to integrate more, but hard to keep up with current sources!

High maintenance cost:

Full consortium = US\$13.5 million per year!*

Time-consuming:

Long-running: Ongoing project (10+ years and going)

Not scalable! ... Now more than ever ...

Idea: Given a Source and Our Database...

A Source:

Our Database:

Build a System that Takes Both...

...and Produces Most Promising Mappings...

...Which Someone Can Verify and Use


```
Drug(did, generic_med, _) :- meds(did, generic_med, _).
Target(bid, entity_name) :- bio_entity(bid, _, entity_name, _).
Inhibits(did, bid) :- bio_entity(bid, did, _, "Inhibits").

Target(did, entity_name) :- meds(did, _, generic_med, _).
...
...
```


How Can we Build this System?


```
Drug(did, generic_med, _) :- meds(did, generic_med, _).
Target(bid, entity_name) :- bio_entity(bid, _, entity_name, _).
Inhibits(did, bid) :- bio_entity(bid, did, _, "Inhibits").

Target(did, entity_name) :- meds(did, _, generic_med, _).
```


Supervised Learning

- Label training data
- 2. Feed to a model

3. Generate mappings

Labeling data takes a lot of time and manual effort...
...which needs to be repeated as sources evolve

Opportunity: LLMs for Schema Mapping

Some examples:

Zhang et al. "SMAT: An attention-based deep learning solution to the automation of schema matching." ADBIS. (2021) Mudgal et al. "Deep learning for entity matching: A design space exploration." SIGMOD. (2018).

Current State: Using LLMs Column Alignment

Input:

Some Examples:

Huang et al. "Transform Table to Database Using Large Language Models." TaDa @ VLDB. (2024) Sheetrit et al. "ReMatch: Retrieval Enhanced Schema Matching with LLMs." arXiv (2024)

Goal: Maximize Response Quality w/o Training

Input:

LLMs are **sensitive to task phrasing!** ... mitigate this sensitivity.

Research suggests* that effective techniques for...

- sampling candidate responses, and
- combining those responses

Can rival fine-tuned performance**

Us: develop <u>sampling</u> and <u>combining</u> techniques for column alignment

^{*}X. Wang et al., "Self-Consistency Improves Chain of Thought Reasoning in Language Models." arXiv (2023)

^{**} authors observe this trend over general reasoning benchmarks

<u>High-Level</u>: Given a Column Alignment Task

Generate n Prompts

Giving n Different Responses

Derive Most-Consistent Alignment Pairs

Generate Prompts to Offset Phrasing Noise

Techniques for Generating Prompt Variations

Want: all prompts reflect same task w/ variations in phrasing

Resample data values for each column

Take Advantage of Problem Symmetries:

Randomly <u>reorder</u> columns

Swap source table and our table

- Find <u>Stable Matching</u>
 - See paper for more details

Preliminary Experiments

Dataset: MIMIC and Synthea (clinical)

Metric: Accuracy@1

O Lower in rank = User less likely to see

LLM: we use Llama-3.1 70B Parameter (quantized INT4) [open-source]

Competitive with Methods that Use GPT-4

Dataset: MIMIC and Synthea (clinical)

Metric: Accuracy@1

Lower in rank = User less likely to see

LLM: we use Llama-3.1 70B Parameter (quantized INT4) [open-source]

Dataset	Method	Accuracy@1	
	MatchMaker *	62.20 ± 2.40	Significantly better
	Bidirectional (Stable Matching)	0.78 ± 0.00	Significantly Setter
MIMIC	Bidirectional (Average)	0.49 ± 0.01	
	Bidirectional (Multiply)	0.77 ± 0.01	
	MatchMaker *	70.20 ± 1.70	Nick discrift could be seen
	Bidirectional (Stable Matching)	0.69 ± 0.01	Not significantly worse
Synthea	Bidirectional (Average)	0.64 ± 0.01	
	Bidirectional (Multiply)	0.70 ± 0.01	

^{*}As reported in,

Competitive with Methods that Use GPT-4

Dataset: MIMIC and Synthea (clinical)

Metric: Accuracy@1

Lower in rank = User less likely to see

LLM: we use Llama-3.1 70B Parameter (quantized INT4) [open-source]

Dataset	Method		Accuracy@1	
	MatchMaker *		62.20 ± 2.40	Significantly better
	Bidirectional (Stable Matchir	ıg)	0.78 ± 0.00	oignificantly better
MIMIC	Bidirectional (Average)		0.49 ± 0.01	
	Bidirectional (Multiply)		0.77 ± 0.01	_
	MatchMaker *		70.20 ± 1.70	A
	Bidirectional (Stable Matchipa)		0.69 ± 0.01	Not significantly worse
Synthea	`	Great, but column alignments have limited usefulness		
	Bidirectional (Multiply)			

^{*}As reported in,

Column Alignments = Too Simple

Can tell us...

"Move data from this column to that one..."

Cannot tell us...

Which Drugs induce (inhibit) which Targets

Not suitable for many common mapping scenarios

How do we extend these techniques to more expressive mappings?

Moving Beyond Column Alignments (Complex!)

*See paper for more detailed discussion

Set of column pairs

Set of multi-query programs

How to Sample & Combine Responses?

- Swapping schemas = drastically change output
- Not clear how to combine outputs

How to Divide & Conquer? Give LLM...

- too many relations = poor performance
- too few relations = incorrect mapping

What Output Language?

- LLMs can generate SQL query given question and schema [Text-to-SQL]
- What about Schema Mapping?
 - Multiple queries; rigid requirements on output structure

Preliminary Results

Future Work

Experiment: Effectiveness

Dataset: Amalgam (bibliography):

8 independent mappings programs (prompt for each, individually)

Metric: Table-Overlap (Avg. 20 runs)

Average of metrics over gold vs. predicted table rows

(a) Metrics						
Prec.	Rec.	F1				
0.56 ± 0.03	0.85 ± 0.03	0.66 ± 0.03				

^{*}See paper for more experiments and results

Moves too much data

SQL seems OK.

Focus on techniques for improving output.

Thank you!

Please share your questions

Shortcomings: Existing Approaches

Provide supplemental information

- Group columns into <u>semantic categories</u> prior to matching
- Identify helpful knowledge sources, build locally or connect to API for querying

Still requires (potentially significant) human effort

Train over Synthetic Data

LLM generates training data (in-context learning)

LLMs are sensitive to phrasing, and same phrasing can still give conflicting answers!

Find most consistent response -> rivals fine-tuned performance

Some Examples:

Narayan et al. "Can Foundation Models Wrangle Your Data?." VLDB (2022) Huang et al. "Transform Table to Database Using Large Language Models." TaDa @ VLDB. (2024) Sheetrit et al. "ReMatch: Retrieval Enhanced Schema Matching with LLMs." arXiv (2024)