教学单元10.2

飲短公式和平面图的判断

本节内容提要

■欧拉公式

(平面图的必要条件)

■库拉图斯基定理

(平面图的充要条件)

图形编号	顶点数V	面数F	棱数 E
(1)	4	4	6
(2)	8	6	12
(3)	6	8	12
(4)	9	8	15
(5)	9	9	16

$$V + F - E = 2$$

欧拉公式

欧拉公式: 设 G 是连通平面图,则

$$n-m+r=2$$

其中r是G的面数

$$n = 7, m = 11, r = 6$$
: $7 - 11 + 6 = 2$

欧拉公式的证明

$$n = 9, m = 8, r = 1$$

$$n = 8, m = 7, r = 1$$

$$n = 9, m = 12, r = 5$$

$$n = 9, m = 11, r = 4$$

欧拉公式的证明

对边数 m 做归纳法

m=0,G 为平凡图,结论为真

设 $m=k(k\geq 1)$ 时成立, 当m=k+1:

(1) 若 G 是树,设 v 为树叶,令 G'=G-v,则 G' 仍然是连通图,且 G' 的边数 m'=m-1=k

设n', m', r'分别为G'的顶点数、边数和面数

由归纳假设可知 n'-m'+r'=2

m n'=n-1, r'=r, 于是

$$n-m+r=(n'+1)-(m'+1)+r'=n'-m'+r'=2$$

欧拉公式的证明

(2) 若 G 不是树,则 G 中含圈

设边
$$e$$
 在 G 中某个圈上,令 $G' = G - e$

则
$$G'$$
 仍连通且 $m'=m-1=k$

由归纳假设有:
$$n'-m'+r'=2$$

$$m n' = n, r' = r - 1,$$
 于是

$$n-m+r=n'-(m'+1)+(r'+1)=n'-m'+r'=2$$

欧拉公式(推广形式)

欧拉公式:设 G 是平面图,则

n-m+r=1+p

其中r是G的面数, p是G的连通分支数

欧拉公式(推广形式)的证明

$$n_t - m_t + r_t = 2, t = 1, 2, ..., p$$

$$n = \sum_{i=1}^{p} n_i$$
 $m = \sum_{i=1}^{p} m_i$ $r = \sum_{i=1}^{p} r_i - p + 1$

$$2p = \sum_{i=1}^{p} (n_i - m_i + r_i)$$

$$= \sum_{i=1}^{p} n_i - \sum_{i=1}^{p} m_i + \sum_{i=1}^{p} r_i$$

$$= n-m+r+p-1 \Rightarrow n-m+r=p+1$$

欧拉公式(推广形式)的证明

(破圈法)

任选一个回路。删除回路上 1 边。m'=m-1这边分隔的 2 个面合并。r'=r-1所以 n-m+r=n-m'+r'到最后无回路时是森林。m''=n-p,r''=1p p n - m + r = n - m'' + r'' = 1 + p

定理11.8

设 G 是连通平面图, 其各面次数至少是 $\ell(\ell \geq 3)$

则
$$m \leq (n-2) \frac{\ell}{\ell-2}$$

$$r=2+m-n$$

$$2m = \sum_{i=1}^{r} deg(R_i) \ge \ell \cdot r = \ell \cdot (2 + m - n)$$

所以
$$m \leq (n-2)\frac{\ell}{\ell-2}$$

定理11.9

设 平面图
$$G$$
 有 p 个连通分支
$$G$$
 的各面的次数至少是 $\ell(\ell \geq 3)$ 则 $m \leq (n-p-1)\frac{\ell}{\ell-2}$

推论: K_5 和 $K_{3.3}$ 都不是平面图

(反证) 假设 K_5 和 $K_{3,3}$ 都是平面图

(1) K_5 是简单图,所以 $\ell=3$

$$10 = m \le (n-2)\frac{\ell}{\ell-2} = (5-2)\frac{3}{3-2} = 9$$
, 矛盾

(2) $K_{3,3}$ 是偶图,无奇圈,所以 $\ell = 4$

$$9=m\leq (n-2)rac{\ell}{\ell-2}=(6-2)rac{4}{4-2}=8$$
, 矛盾

定理11.10: $战 n (\geq 3)$ 阶简单平面图 G 有 m 条边,则 $m \leq 3n-6$

G是简单图 $\Rightarrow \ell \geq 3$

$$m \leq (n-p-1) \frac{\ell}{\ell-2} \leq (n-2)3 = 3n-6$$

其中 $p \ge 1$, $\frac{\ell}{\ell-2}$ 在 $\ell=3$ 时达到最大值

定理11.11: 设 $n(\geq 3)$ 阶简单极大平面图 G 有m条边,则m=3n-6

G 是极大平面图 $\Rightarrow 2m = 3r$

G一定连通 $\Rightarrow r = 2 + m - n$

定理 11.12: 设G是简单平面图

(反证)

设
$$n \ge 6$$
 并且 $\delta \ge 6$

则
$$2m = \sum d(v) \ge n\delta \ge 6n \Longrightarrow m \ge 3n$$

与
$$m \leq 3n - 6$$
 矛盾

因题

设 G 是 $n(\geq 4)$ 阶连通简单平面图,G 中不含长度为3的回路,则 $\delta(G)\leq 3$

基手定理: $2m = \Sigma d(v) \geq 4n$

 $\delta(G) \geq 4$ 面的握手定理: $2m = \Sigma deg(R) \geq 4r$

 $4m \geq 4n + 4r$,与n-m+r=2矛盾

简单平面二部图的最小度不超过3

过题

设 G是n阶m条边的简单连通平面图,

$$n=7, m=15$$
时, G 是极大平面图

极大平面图 $\Leftrightarrow \forall R_i, deg(R_i) = 3$

简单图
$$\Rightarrow deg(R_i) \geq 3$$

$$n=7, m=15, \ \text{Han}-m+r=2 \Longrightarrow r=10$$

面的握手定理:
$$2m = 30 = \Sigma deg(R_i), r = 10$$
 $\Rightarrow deg(R_i) = 3$

同胚

■ 插入 2 度顶点: 把(u,v)变成(u,w),(w,v)

■ 删除 2 度顶点: deg(w) - 2

把(u, w), (w, v) 变成(u, v)

同胚: 反复插入或删除 2 度顶点后同构

Kuratowski定理

定理11.13 图 G 是平面图

 \Leftrightarrow

G 没有与 K_5 或 $K_{3,3}$ 同胚的子图

定理11.14 图 G 是平面图

 \Leftrightarrow

G 没有可以边收缩到 K_5 或 $K_{3,3}$ 的子图

1到11.3

到11.3(1)

到11.3(2)

到11.3(3)

倒11.6

 K_6 的含 $K_{3,3}$ 的非同构子图有哪些?

解: K_6 有 15 条边, $K_{3,3}$ 有 9 条边

分别给 $K_{3,3}$ 加 0,1,2,3,4,5,6 条边: 共 10 种

小结

☞ 欧拉公式

☞ Kuratowski 定理

