Módulo 5 Pipeline: Princípios Fundamentais

A duração de ciclo de relógio (Tcc) de um processador com uma organização encadeada é determinada pela latência da lógica combinatória do estágio mais demorado somada com a latência do registo que preserva os resultados de cada estágio.

T_{estagio i} – latência da lógica combinatória do estágio i

T_{registo} – latência dos registos

$$T_{cc} = \max(T_{\text{estagio } i}) + T_{\text{registo}}$$

Assumindo que a instrução não é atrasada devido à ocorrência de anomalias, então:

- A **frequência do relógio** determina a taxa à qual o sistema pode mudar de estado. Se o CPI==1 então é igual ao débito de instruções, isto é, número de instruções executadas por unidade de tempo.
- O tempo de execução de uma instrução é o produto do número de estágios pelo período do relógio

Exercício 1

Considere que a lógica combinatória de um processador pode ser decomposta em 4 blocos de igual duração (60 ps) conforme ilustrado na figura.

Sabendo que a latência dos registos é de 20 ps calcule o tempo de execução de uma instrução e a frequência máxima para uma organização de ciclo único (isto é, um *pipeline* degenerado num único estágio) e organizações com 2 e 4 estágios encadeados.

1 estágio (SEQ)		2 estágios		4 estágios	
Тсс	240+20=260 ps	Тсс	120 + 20 = 140 ps	Тсс	60 + 20 = 80 ps
Tinst	260 ps	Tinst	2*140 = 280 ps	Tinst	4*80 = 320 ps
f	1/260E-12 = 3.8 GHz	f	1/140E-12 = 7.1 GHz	f	1/80E-12 = 12.5 GHz

Exercício 2

Considere que a lógica combinatória de um processador pode ser decomposta em 5 blocos com a duração indicada na figura.

Sabendo que a latência dos registos é de 20 ps calcule:

i) Para uma organização encadeada com 2 estágios como deve ser agrupados os blocos para maximizar a frequência? Qual a frequência máxima do relógio possível para esta organização e o tempo de execução de cada instrução?

Res(LPS): Agrupar A+B+C (80 ps) e D+E (70 ps). O Tcc será o máximo, dado por 80+20=100 ps. f=1/100E-12=10 GHz; latência instrução = 2*100=200 ps

ii) Qual a máxima frequência que pode ser obtida e a quantos estágios corresponde.

Res(LPS): 4 estágios: A; B+C; D; E; Tcc = 70 ps; f = 1/70E-12 = 14.2 GHz

Exercício 3

Pretende-se analisar o desempenho de um programa com 1000 instruções a executar nas organizações propostas abaixo.

Considere que a lógica combinatória de uma organização sequencial tem uma latência de 500 ps. Um bloco de registos tem uma latência de 20 ps. Considere também que a lógica combinatória pode ser dividida em qualquer ponto, permitindo sub-blocos com latências arbitrárias (exigindo-se apenas que a soma das latências de todos os sub-blocos combinatórios seja de 500 ps).

A partir das condições descritas acima pretende-se desenhar várias versões encadeadas, criando sub-blocos de lógica combinatória e acrescentando os registos necessários. Cada novo estágio de *pipeline* criado a partir da versão sequencial incorre em 2 custos:

- 1. tempo de registo e,
- 2. para este programa, 100 ciclos adicionais devido a dependências de dados e de controlo (causados por eventuais injecções de bolhas (*pipeline staling*)).
- i) Para uma organização sequencial: qual a frequência máxima, qual o tempo de execução de uma instrução e qual o tempo de execução do programa?

Res(LPS): Tcc = $T_{instruction}$ = 520 ps; f = 1.9 Ghz; Texec = #I * CPI * Tcc = 1000 * 1 * 520E-12 = 520 ns

ii) Para organizações com 2, 4 e 10 estágios calcule o tempo de execução deste programa.

iii) Não esquecendo nunca o custo associado ao *stalling* do *pipeline* , qual o número de estágios que minimiza o tempo de execução?

Sugestão: Preencha a tabela abaixo usando uma folha de cálculo.

Estágios	Tcc (ps)	Ciclos		Tempo
1		20	1000	520000
2	2 27	70	1100	297000
3	3 18	37	1200	224000
4	14	15	1300	188500
5	5 12	20	1400	168000
ϵ	5 10)3	1500	155000
7	7	91	1600	146286
8	3 8	33	1700	140250
9)	76	1800	136000
10)	70	1900	133000
11	. 6	55	2000	130909
12	2	52	2100	129500
13	3	58	2200	128615
14	ļ <u>.</u>	56	2300	128143
15	5	53	2400	128000
16	5	51	2500	128125
17	7	19	2600	128471
18	3	18	2700	129000
19		16	2800	129684
20) 4	15	2900	130500

Alternativamente podemos derivar a expressão de Texec e igualar a zero para descobrir o mínimo:

$$\begin{split} T_{exec}(e) &= (\frac{500}{e} + 20)(1000 + 100(e - 1)) = 2000e + 68000 + \frac{450000}{e} \\ \frac{\partial T_{exec}}{\partial e} &= 2000 - \frac{450000}{e^2} = 0 \\ e &= \sqrt{\frac{450000}{2000}} = \sqrt{225} = 15 \end{split}$$