1. Computations:

- (a) Find gcd(77,49).
- (b) Express $\gcd(77,49)$ as $\alpha \cdot 77 + \beta \cdot 49 = \gcd(77,49)$.
- (c) Find an integer b so that $b \cdot 7 \equiv 1 \pmod{10}$
- (d) Find an integer b so that $b \cdot 7 \equiv 1 \pmod{10}$
- (e) Find an integer b so that $b \cdot 137 \equiv 1 \pmod{532}$
- (f) Find an integers b so that $b \cdot 138 \equiv 1 \pmod{532}$
- (g) Find an integer b so that $b \cdot 7 \equiv 1 \pmod{10}$
- (h) Find d=gcd(177,48) and express d as $\alpha \cdot 177 + \beta \cdot 48 = d$.
- (i) Express gcd(177,49) as $\alpha \cdot 177 + \beta \cdot 49 = gcd(177,49)$.
- 2. Computations ($mod\ 15$). Always express your answer in the set $\{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14\}$. Make sure that you show enough work.
 - (a) $5 \cdot 2 \equiv \underline{\hspace{1cm}} \pmod{15}$
 - (b) $5 \cdot 6 \equiv \underline{\hspace{1cm}} \pmod{15}$
 - (c) $5 + 6 \equiv ___ \pmod{15}$
 - (d) $9 \cdot 10 \equiv \underline{\hspace{1cm}} \pmod{15}$
 - (e) $5^2 \equiv ___ \pmod{15}$
 - (f) $5^3 \equiv \underline{\hspace{1cm}} \pmod{15}$
 - (g) $5^4 \equiv \underline{\hspace{1cm}} \pmod{15}$
 - (h) $32 \cdot 6 \equiv \underline{\hspace{1cm}} \pmod{15}$
 - (i) $32^3 \equiv ___ \pmod{15}$
 - (j) $151^7 \equiv \underline{\hspace{1cm}} \pmod{15}$
 - (k) $149^7 \equiv \underline{\hspace{1cm}} \pmod{15}$
 - (l) $1/7 \equiv ___ \pmod{15}$
 - (m) $4/7 \equiv \underline{\hspace{1cm}} \pmod{15}$
- 3. Solve the following congruences:
 - (a) $5x \equiv 6 \pmod{7}$
 - (b) $5x \equiv 6 \pmod{35}$
 - (c) $5x \equiv 10 \pmod{35}$
 - (d) $15x \equiv 6 \pmod{35}$
 - (e) $15x \equiv 10 \pmod{35}$

- (f) $153x \equiv 10 \pmod{35}$
- 4. Find the greatest common divisors qcd and least common multiples lcm for the following pairs of numbers:
 - (a) $gcd(5,7) = \underline{\qquad} lcm(5,7) = \underline{\qquad}$
 - (b) $gcd(1,27) = \underline{\qquad} lcm(1,27) = \underline{\qquad}$
 - (c) $\gcd(5^3 \cdot 7^2, 7 \cdot 11 \cdot 13^4) = \underline{\qquad} \qquad lcm(5^3 \cdot 7^2, 7 \cdot 11 \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm(5^{123} \cdot 7^2, 5^2 \cdot 7^{11} \cdot 13^4) = \underline{\qquad} \qquad lcm($

 - (e) $gcd(p^5, p^7) = \underline{\hspace{1cm}} lcm(p^5, p^7) = \underline{\hspace{1cm}}$ (here p is a prime).

 - (g) $gcd(56,77) = \underline{}, lcm(56,77) = \underline{}$
- 5. Find all the divisors of 15.
- 6. Find all the divisors of 27.
- 7. Find the prime factorization of 15.
- 8. Find the prime factorization of 27.
- 9. Find the prime factorization of 360.
- 10. True -False Sometimes
 - T F S 5 has multiplicative inverse (mod 11)
 - T F S 6 has multiplicative inverse (mod 11)
 - T F S Let $a \in \mathbb{Z}_{>0}$. Then a has multiplicative inverse (mod 11)
 - T F S 5 has multiplicative inverse (mod 10)
 - T F S 6 has multiplicative inverse (mod 10)
 - T F S 7 has multiplicative inverse (mod 10)
 - T F S Let $a \in \mathbb{Z}_{>0}$. Then a has multiplicative inverse (mod 10)
 - T F S Let $10x \equiv 23 \pmod{41}$. There is a unique solution mod 41 for x.
 - T F S Let $10x \equiv 20 \pmod{40}$. There is a unique solution $\mod{40}$ for x.
 - T F S Let $10x \equiv 20 \pmod{40}$. There are 10 distinct solutions $\mod{40}$ for x.
 - T F S Let $10x \equiv c \pmod{41}$. There is a unique solution $mod\ 41$ for x.
 - T F S Let $10x \equiv c \pmod{40}$. There is a unique solution $mod\ 40$ for x.
 - T F S Let $10x \equiv c \pmod{40}$. There are 10 distinct solutions $mod\ 40$ for x.
 - T F S Let $10x \equiv c \pmod{40}$. There are no solutions $mod\ 40$ for x.

11. Make the table for the addition of equivalence classes (mod 8) which are given as

$$\mathbb{Z}_8 = \{[0]_8, [1]_8, [2]_8, [3]_8, [4]_8, [5]_8, [6]_8, [7]_8\}.$$

12. Make the table for the multiplication of equivalence classes $(mod\ 8)$ which are given as

$$\mathbb{Z}_8 = \{[0]_8, [1]_8, [2]_8, [3]_8, [4]_8, [5]_8, [6]_8, [7]_8\}.$$

- 13. Make the table for the addition of equivalence classes (mod 3)
- 14. Make the table for the multiplication of equivalence classes (mod 3)
- 15. Examples
 - (a) Give an example of a prime number.
 - (b) Give an example of a number which is not prime number.
 - (c) Give an example of two integers which are relatively prime.
 - (d) Give an example of two integers which are not relatively prime.
 - (e) Give an example of two integers a, b such that qcd(a,b) = 12.
 - (f) Give an example of two integers a, b such that lcm(a, b) = 12.
 - (g) Give an example of two integers a, b such that lcm(a, b) = 12.
 - (h) Give an example of two integers a, b such that lcm(a, b) = 5.
 - (i) Give an example of two integers a, b such that gcd(a,b) = 5.
 - (j) Give an example of two integers a, b such that gcd(a,b) = lcm(a,b).
 - (k) Give an example of two integers a, b such that $[a]_7 + [b]_7 = [0]_7$.
 - (l) Give an example of two integers $a, b \neq 0$ such that $[a]_6[b]_6 = [0]_6$.

HAVE FUN!