Ecricome 2017 Ece

Exercice 1 1

Dans tout l'exercice, on notera $\mathcal{M}_3(\mathbb{R})$ l'ensemble des matrices carrées d'ordre 3 et I la matrice

identité d'ordre 3. On considère la matrice
$$A$$
 définie par : $A = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 2 & 2 \\ -3 & 3 & 1 \end{bmatrix}$

L'objet de cet exercice est déterminer l'ensemble des matrices M de $\mathcal{M}_3(\mathbb{R})$ telles que $M^2 = A$.

Partie A : Étude de la matrice A

- 1. Calculer les matrices $(A-I)^2$ et $(A-I)^3$.
- **2.** En déduire l'ensemble des valeurs propres de A.
- **3.** La matrice A est-elle inversible? Est-elle diagonalisable?

Partie B: Recherche d'une solution particulière

On note, pour tout $x \in]-1; 1[, \varphi(x) = \sqrt{1+x}]$.

- **4.** Justifier que la fonction φ est de classe \mathcal{C}^2 sur]-1;1[et déterminer les valeurs de $\varphi'(0)$ et $\varphi''(0)$.
- 5. En utilisant la formule de Taylor-Young pour φ en 0 à l'ordre 2, déterminer un réel α non-nul tel que : $\sqrt{1+x} = 1 + \frac{1}{2} \cdot x + \alpha \cdot x^2 + x^2 \cdot \epsilon(x)$ avec $\lim_{x \to 0} \epsilon(x) = 0$.
- **6.** On note : $P(x) = 1 + \frac{1}{2} \cdot x + \alpha \cdot x^2$ la fonction polynomiale de degré 2 ainsi obtenue. Développer $(P(x))^2$.
- **7.** Soit C = A I.

En utilisant les résultats de la question 1., vérifier que $(P(C))^2 = A$. Expliciter alors une matrice M telle que $M^2 = A$.

Partie C : Résolution complète de l'équation

On munit l'espace vectoriel \mathbb{R}^3 de sa base canonique $\mathcal{B}=(e_1,e_2,e_3).$ Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice représentative dans la base \mathcal{B} est la matrice A.

Dans cette partie, on pose : $T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

- 8. Soient u, v, w les vecteurs définis par : $\begin{cases} w = (1, 0, 1), \\ v = f(w) w, \\ u = f(v) v. \end{cases}$
 - b) Démontrer que la famille $\mathcal{B}' = (u, v, w)$ est une base de \mathbb{R}^3 .
 - c) Déterminer la matrice représentative de f dans la base \mathcal{B}' .
 - d) En déduire qu'il existe une matrice $P \in \mathcal{M}_3(\mathbb{R})$ inversible telle que $T = P^{-1} \cdot A \cdot P$.
- 9. Soit $N \in \mathcal{M}_3(\mathbb{R})$.

- a) Montrer que si $N^2=T$, alors NT=TN. En déduire que N est de la forme : $N=\begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$, où a,b,c sont trois réels.
- b) Démontrer alors que l'équation matricielle $N^2=T$ admet exactement deux solutions : N_1 et N_2 .
- 10. Montrer que l'équation matricielle $M^2=A$, d'inconnue $M\in\mathcal{M}_3(\mathbb{R})$ admet exactement deux solutions que l'on écrira en fonction de P,P^{-1},N_1 et N_2 .
- 11. L'ensemble E des matrices M appartenant à $\mathcal{M}_3(\mathbb{R})$ telles que $M^2=A$ est-il un espace vectoriel?

2 Exercice 2

Dans tout l'exercice, a est un réel strictement positif.

Partie A

On considère la fonction φ définie sur \mathbb{R}_+^* par : $\forall x > 0$, $\varphi(x) = \ln(x) - ax^{2a}$.

- 1. Déterminer $\lim_{x\to 0} \varphi(x)$ et $\lim_{x\to +\infty} \varphi(x)$.
- 2. Étudier les variations de la fonction φ et dresser son tableau de variations. On fera apparaître dans ce tableau le réel $x_0 = \left(\frac{1}{2a^2}\right)^{\frac{1}{2a}}$.
- 3. Démontrer que si $a < \sqrt{\frac{1}{2e}}$, l'équation $\varphi(x) = 0$ admet exactement deux solutions z_1 et z_2 , vérifiant $z_1 < x_0 < z_2$. Que se passe-t-il si $a = \sqrt{\frac{1}{2e}}$? Si $a > \sqrt{\frac{1}{2e}}$?

Partie B

Soit f la fonction définie sur l'ouvert $U = (\mathbb{R}_+^*)^2$ par : $\forall (x,y) \in U$, $f(x,y) = \ln(x) \ln(y) - (xy)^a$.

- **4.** Justifier que f est de classe C^2 sur U.
- 5. Calculer les dérivées partielles premières de f.
- **6.** Démontrer que pout tout $(x,y) \in U$: (x,y) est un point critique de $f \iff \begin{cases} x=y, \\ \varphi(y)=0. \end{cases}$
- 7. Démontrer que si $a < \sqrt{\frac{1}{2e}}$, la fonction f admet exactement deux points critiques : (z_1, z_1) et (z_2, z_2) , où z_1 et z_2 sont les réels définies dans la partie A. Déterminer aussi les eventuels points critiques de f dans les cas où $a = \sqrt{\frac{1}{2e}}$ et $a > \sqrt{\frac{1}{2e}}$.

Partie C

Dans cette partie, on suppose que $a < \sqrt{\frac{1}{2e}}$. On rappelle alors que la fonction f admet exactement deux points critiques :

- 8. Calculer les dérivées partielles d'ordre 2 de la fonction f.
- 9. Calculer la matrice hessienne de f au point (z_1, z_1) . Vérifier que cette matrice peut s'écrire sous la forme : $\nabla^2(f)(z_1, z_1) = \begin{pmatrix} -a^2 z_1^{2a-2} & \frac{1}{z_1^2} a^2 z_1^{2a-2} \\ \frac{1}{z_1^2} a^2 z_1^{2a-2} & -a^2 z_1^{2a-2} \end{pmatrix}.$
- **10.** On pose $M = \nabla^2(f)(z_1, z_1), X_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, et $X_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

Calculer MX_1 et MX_2 , et en déduire les valeurs propres de M.

- 11. La fonction f présente-t-elle un extremum local en (z_1, z_1) ? Si oui, est-ce un minimum? Un maximum?
- 12. La fonction f présente-t-elle un extremum local en (z_2, z_2) ? Si oui, est-ce un minimum? Un maximum?

3 Exercice 3

Soit n un entier naturel non-nul.

On effectue une série illimitée de tirages d'une boule avec remise dans une urne contenant n boules numérotées de 1 à n.

Pour tout entier k non-nul, on note X_k la variable aléatoire égale au numéro de la boule obtenue au $k^{\text{ème}}$ tirage.

Pour tout entier naturel k non-nul, on note S_k la somme des numéros des boules obtenues lors des k premiers tirages : $S_k = \sum_{i=1}^k X_i$.

On considère enfin la variable aléatoire T_n égale au nombre de tirages nécessaires pour que, pour la première fois, la somme des numéros des boules obtenues soit supérieurs ou égale à n. Exemple : avec n = 10, si les numéros obtenus aux cinq premiers tirages sont dans cet ordre ?????????? alors

Partie A

- 1. Pour $k \in \mathbb{N}^*$, déterminer la loi de X_k , ainsi que son espérance.
- **2.** a) Déteminer $T_n(\Omega)$
 - **b)** Calculer $\mathbb{P}(T_n = 1)$.
 - c) Montrer que : $\mathbb{P}(T_n = n) = \left(\frac{1}{n}\right)^{n-1}$.
- 3. Dans cette question, n=2. Déterminer la loi de T_2 .
- **4.** Dans cette question, n=3. Donner la loi de T_3 . Vérifier que $\mathbb{E}[T_3] = \frac{16}{9}$.

Partie B

- 5. Déterminer $S_k(\Omega)$ pour tout $k \in \mathbb{N}^*$.
- **6.** Soit $k \in [1, n-1]$.
 - a) Exprimer S_{k+1} en fonction de S_k et de X_{k+1} .
 - b) En utilisant un système complet d'événements lié à la variable aléatoire S_k , démontrer alors que : $\forall i \in [\![k+1,n]\!], \quad \mathbb{P}(S_{k+1}=i) = \frac{1}{n} \cdot \sum_{i=k}^{i-1} \mathbb{P}(S_k=j).$
- 7. a) Pour $k \in \mathbb{N}^*$ et $j \in \mathbb{N}^*$, rappeler la formule du triangle de Pascal liant les nombres $\binom{j-1}{k-1}$ et $\binom{j-1}{k}$ à $\binom{j}{k}$.
 - **b)** En déduire que pour tout $k \in \mathbb{N}^*$ et pour tout entier naturel $i \geqslant k+1$: $\sum_{j=k}^{i-1} {j-1 \choose k-1} = {i-1 \choose k}$.
 - c) Pour tout entier $k \in [1, n]$, on note \mathcal{H}_k la proposition :

$$\forall i \in [k, n] \quad \mathbb{P}(S_k = i) = \frac{1}{n^k} \cdot {i-1 \choose k-1}$$
».

Démontrer par récurrence, pour tout entier $k \in [1, n]$, que \mathcal{H}_k est vraie.

- **8.** a) Soit $k \in [1, n-1]$. Comparer les événements : $[T_n > k]$ et $[S_k \leqslant n-1]$.
 - **b)** En déduire que : $\forall n \in [0, n-1], \quad \mathbb{P}(T_n > k) = \frac{1}{n^k} \cdot \binom{n-1}{k}.$
- **9.** Démontrer que $\mathbb{E}[T_n] = \sum_{k=0}^n \mathbb{P}(T_n > k)$, puis que $\mathbb{E}[T_n] = \left(1 + \frac{1}{n}\right)^{n-1}$.
- **10.** Calculer $\lim_{n\to\infty} \mathbb{E}[T_n]$.

Partie C

Dans cette partie, on fait varier l'entier n et on étudie la convergence en loi de la suite de variables $(T_n)_{n\geqslant 1}$ obtenue.

- **11.** Soit Y une variable aléatoire à valeurs dans N^* telle que : $\forall k \in \mathbb{N}^*$, $\mathbb{P}(Y=k) = \frac{k-1}{k!}$.
 - a) Vérifier par le calcul que $\sum_{k=1}^{+\infty} \mathbb{P}(Y=k) = 1$.
 - b) Montrer que Y admet une espérance et calculer cette espérance.
- **12.** Pour tout entier naturel k non-nul, démontrer que : $\lim_{n\to\infty} \mathbb{P}(T_n > k) = \frac{1}{k!}$.
- 13. Démontrer alors que $(T_n)_{n\geqslant 1}$ converge en loi vers la variable aléatoire Y.
- 14. On rappelle qu'en langage Scilab, l'instruction grand(1,1,'uin',1,n) renvoie un entier aléatoire de [1,n]. Compléter la fonction ci-dessous, qui prend en argument le nombre n de boules contenues dans l'urne, afin qu'elle simule la variable aléatoire T_n .

```
function y=T(n)
S=.....
y=.....
while .....
tirage = grand(1,1,'uin',1,n)
S=S+tirage
y=.....
end
endfunction
```

15. On suppose déclarée la fonction précédente, et on écrit le script ci-dessous :

```
function y=freqT(n)
     y=zeros(1,n)
     for i=1:100000
       k=T(n)
       y(k)=y(k)+1
     end
  endfunction
  function y=loitheoY(n)
    y=zeros(1,n)
10
     for k=1:n
11
       y(k)=(k-1)/prod(1:k)
     end
  endfunction
14
15
  clf()
  n=input('n=?')
  plot2d(loitheoY(6),style=-2)
  x=freqT(n)
  bar(x(1:5))
```

L'exécution de ce script pour les valeurs de n indiquées a permis d'obtenir les graphes ci-dessous.

a) Expliquer ce que représentent les vecteurs renvoyés par les fonctions freqT et loitheoY. Comment ces vecteurs sont-ils représentés graphiquement dans chaque graphique obtenu? b) Expliquer en quoi cette succession de graphiques permet d'illustrer le résultat de la question 13.