$\mathrm{EE}531$ - Turma S

Familizarização com instrumentos de medida

 $Laborat\'orio\ de\ Eletr\^onica\ B\'asica\ I\ -\ Segundo\ Semestre\ de\ 2010$

Professor: José Cândido Silveira Santos Filho

RAQUEL MAYUMI KAWAMOTO RA: 086003 TIAGO CHEDRAOUI SILVA RA: 082941

17 de agosto de 2010

Para este experimento inicial da disciplina de laboratório de eletrônica básica I, tem-se como objetivo a familiarização dos alunos com os diversos instrumentos que serão utilizados ao longo do curso. Estas ferramentas são a fonte de alimentação dual, um gerador de funções e um osciloscópio digital. Para este presente experimento utilizam-se ainda um protoboard, dois resistores de $100k\Omega$ e dois capacitores de 100pF.

Parte Experimental

1. Para esta parte inicial do experimento, a saída do gerador de funções é conectada ao canal 1 do osciloscópio. O gerador é ajustado para produzir um sinal de tensão com sua forma de onda triangular, com amplitude $10V_{pp}$, com offset de 0V e frequência de 10kHz.

Com o recurso cursor do osciloscópio, foi medida a amplitude de pico-apico, o período, o tempo de subida e o tempo de descida do sinal de tensão. Tais dados encontram-se na tabela 1.

Figura 1: Medição do tempo de subida

Tabela 1: Dados experimentais obtidos através do recurso cursor

Descrição	Valor
Amplitude pico-a-pico	9,8V
Período	$100\mu s$
Tempo de subida	$40\mu s$
Tempo de descida	$40\mu s$

Ao configurar o canal para medida a.c. e, posteriomente, para medida c.c, não se constatou grandes diferenças entre os valores. Ou seja, ao aplicar um filtro sobre o sinal de entrada, de forma a obter somente sua componente variável, verificou-se que a componente contínua do sinal é mínima.

Além disso, ao alterar a tensão de offset para 1 volts, a componente contínua do sinal de entrada aumentou 2 volts, e ao alterar para -1 volts, a componente contínua do sinal de entrada diminui 2 volts.

Em seguida, os mesmos valores da tabela 1 foram medidos, porém usandose o recurso measure (figura 2), além de também ser necessário medir o valor médio e o valor RMS (ambos os valores obtidos também com o recurso measure). Tais dados encontram-se na tabela 2.

Figura 2: Caracterização da onda através do recurso measure

Tabela 2: Dados experimentais obtidos através do recurso measure

· · · · · · · · · · · · · · · · · · ·	
Descrição	Valor
Amplitude pico-a-pico	9,92V
Período	$100\mu s$
Tempo de subida	$42\mu s$
Tempo de descida	$42\mu s$
V_{avg}	$-57,1~\mathrm{mV}$
V_{rms}	$2,\!88V$

Os valores obtidos através do recurso cursor com os dos obtidos com o do recurso measure são valores bem semelhantes e próximo um do outro, com a diferença de que os dados adquiridos com o cursor são menos precisos do que os do medidos com o measure.

2. Para a segunda parte do experimento, calcula-se, através da equação 1,

$$f_c = \frac{1}{2\pi RC} \tag{1}$$

a frequência de corte para cada filtro do circuito esquemático da figura 3, na qual o circuito à esquerda da fonte de sinal é um filtro passa-altas com constante de tempo simples (CTS), e à direita da fonte é um circuito passa-baixas, também CTS. Assim, obtém-se para os circuitos uma frequência de corte equivalente a 15,92 KHz.

Figura 3: Circuito

3. Para a parte três, foi montado, no protoboard, o circuito da figura do item anterior. Inicialmente, a onda triangular foi substituída por uma onda senoidal de amplitude $10V_{pp}$, offset de 0V e frequência de 16kHz. Este sinal foi aplicado ao nó 1 do circuito. Sendo assim, efetuou-se as medidas necessárias, completando a tabela 3 (tabela de medidas de filtro CTS).

Figura 4: Sinal no nó 3

Tabela 3: Medidas do filtro CTS

Nó	1	2	3
Amplitude pico-a-pico	9,92V	6,28V	$6,\!48V$
Valor médio	$2,40 \mathrm{mV}$	-13,5mV	-12,7 mV
Valor RMS	$3,\!56V$	2,26V	$2,\!32V$
Valor máximo	4,96V	3,12V	3,24V
Valor mínimo	-4,96V	-3,16V	-3.24V

4. Em seguida, aplicando-se um sinal senoidal de amplitude $10V_{pp}$, um offset de 0V e variando-se a frequência segundo a tabela 4, obtiveram-se os dados contidos na mesma tabela (tabela 4). Em baixas frequências, a fase no nó 2 aumenta sendo o seu máximo, para os casos considerados, de 90° . Já o nó 3 apresenta uma diminuição na fase. Para a mínima frequencia considerada, sua fase é de 0° . Aumentando-se a frequência, a fase do nó 2 relativa ao nó 1 diminui e, para a máxima frequencia, ela atinge uma fase mínima de 0° . Diferentemente a este nó, a fase relativa do nó 3 em relação ao nó 1 aumenta – em módulo – atingindo 90° para a frequencia de 1MHz. Com relação a variação na frequência de entrada V_{in} , quando há um aumento em sua frequência, a amplitude (pico a pico) do nó 2 aumenta, enquanto que a do nó 3 diminui.

Tabela 4: Medidas realizadas variando-se a frequência do sinal

Nó	frequência	100 Hz	1kHz	$10 \mathrm{kHz}$	16kHz	$100 \mathrm{kHz}$	1MHz
1	Amplitude pico-a-pico	10,2V	10,2V	10,2V	10,2V	10,2V	10,2V
	Amplitude pico-a-pico	$100 \mathrm{mV}$	$656 \mathrm{mV}$	4,8V	6,24V	8,40V	$8,\!48V$
2	Ganho em dB	-40,17	-23,83	-6,55	-4,27	-1,69	-1,60
	Fase relativa ao nó 1	90°	86°	56°	41°	7°	0°
3	Amplitude pico-a-pico	10,4v	9,8V	7,76V	6,32V	1,42V	$180 \mathrm{mV}$
	Ganho em dB	0,17	-0,35	-2,37	-4,16	-17,13	-35,07
	Fase relativa ao nó 1	0°	-3°	-36°	-46°	-72°	-90°

5. Ao comparar um circuito passa-baixa e um passa-alta determina-se que as diferenças de fases, independentemente da frequência, vale 90 -3°. Portanto, quando o valor do sinal em um circuito estiver em seu máximo, no outro estará no zero. Assim, ao realizar uma diferença de nas medidas da tensão diferencial entre o nó 2 e o nó 3, devemos obter uma senóide cujo pico valha a soma do maior dos picos entre as ondas no nós 2 e 3. Como o valor pico-a-pico do nó 2 vale 4,80V e no nó 3 7,76V, o valor pico a pico da onda resultante da diferença entre elas possuiria valor de 7,76V. Contudo, conforme a figura 5, a diferença de fase obtida é um pouco maior que 90°. Logo o valor pico a pico ficou um pouco acima do esperado, atingido em módulo 9,12V, o que pode ser explicado já que ao aumentar a diferença entre as fases, quando um está no máximo o outro está abaixo do eixo das abscissas, o que incrementa o valor da senóide resultante.

Figura 5: Medida da tensão diferencial entre os nós 2 e 3