ALPHANUMERIC DOT MATRIX LCD MODULE

H2570 · H2571 · H2572

TENTATIVE DATA

© FIFTAGEII

H2572: 40 characters

H2571: 32 characters

DESCRIPTION

The H2570, H2571, H2572 are a new line of liquied crystal display modules from Hitachi. These modules utilize 5 x 7 and 5 x 10 dot matrix characters to provide full alphanumeric capability. All control, refresh, and display functions are executed by a dedicated on-board controller. This architecture yields minimum flexibility and very high reliability.

All LCD modules are capable of displaying the full 160-character JIS font set (which includes lower case descenders) plus 32-character special font sets under user software control. The displayed characters are easily readable and gave a contrast ratio that improves as ambient light is increased.

Data interfacing is via an 8-bit bi-directional data bus or a 4-bit one. By use of simple control commands, data can be selectively written to (or read from) any cursor location, arbitrary fonts can be written to CHARACTER GENERATOR RAM, the mode of display function can be determined and so on.

H2570: 16 characters

Note: The information contained herein is tentative and way be changed without prior notice. It is therefore advisable to contact Hitachi before processing with the design of equipment in corporating this product.

FEATURES-

- 5 x 7 and 5 x 10 dot matrix with cursor
- Single +5 V power supply
- On-board control LSI (HD44780)
- Powerful control commands

Display clear

Cursor home

Display shift

Display data read/write etc.

- Microprocessor-compatible data bus interface (8 bit or 4 bit)
- Exceptionally low power consumption
- Extremely compact and light weight

APPLICATIONS

HITACHI Alphanumeric Displays can be used in a wide variety of applications including (but not limited to):

- Portable data terminals
- Handheld computers
- Telephone interconnect equipment
- Text editing devices (e.g. word-processors and typesetters)
- Automated scales and labeling equipment
- Process controllers
- TTY Terminals for the deaf

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	min.	max.	Unit
Power supply for logic	V _{DD} -V _{SS}	0	7.0	V .
Power supply for LCD drive	V _{DD} -Vo	0	13.5	V
Input voltage	Vi	V _{SS}	V _{DD}	V
Static electricity	- 11 - 11 16 5		100	V
Operating temperature	Та	0	50	°c
Storage temperature	Tstg	-20	70	°c

ELECTRIC CHARACTERISTICS

 $Ta = 25^{\circ}C$, $V_{DD} = 5.0V \pm 0.25V$

Item	Symbol	104	Condition	min.	typ.	max.	Unit
Input "high" voltage	V _{iH}		-	2.0	-	Late	V
Input "low" voltage	V _{iL}			_		0.8	V
Output "high" voltage	V _{oH}	-	-I _{oH} = 0.2 mA	2.4	-	-	V
Output "low" voltage	V _{oL}	_	I _{oL} = 1.6 mA	37 - 4 5 3	-	0.4	V
Power supply current	I _{DD}	,	V _{DD} = 5.0 V	-	0.5	2.0	mA
		-	Ta = 0°C		4.2	-	V
		H	Ta = 25°C	_	3.8	-	V
Power supply for LCD drive		$V_{iL} = 0.8$ $V_{oH} = -I_{oH} = 0.2 \text{ mA} = 2.4 0.4$ $V_{oL} = 1.6 \text{ mA} = 0.4$ $I_{DD} = - 0.5 = 2.0$ $T_{a} = 0^{\circ}C = 4.2 = 0.5$ $T_{a} = 25^{\circ}C = - 3.8 = 0.5$ $T_{a} = 50^{\circ}C = - 3.3 = $	V				
(Recommended)	V _{DD} -V _o	0	Ta = 0°C	-	4.0		V
		11	Ta = 25°C	_	3.7	- V 0.8 V 0.4 V 2.0 m - V 1 -	V
		Du	Ta = 50°C		3.3		V

!tem	Symbol	Test condition	min.	typ.	max.	Unit
Enable cycle time	tcyc	Fig. 1, Fig. 2	1.0	- 1	-	<i>μ</i> :
Enable pulse width	PwEH	Fig. 1, Fig. 2	450		-	ns
Enable rise/fall time	t _{Er} , t _{Ef}	Fig. 1, Fig. 2		- 11	25	ns
RS, R/W set up time	t _{AS}	Fig. 1, Fig. 2	140		_	ns
Data delay time	¹ DDR	Fig. 2	_	-	300	ns
Data set up time	^t DSW	Fig. 1	225	-	-	ns
Hold time	t _H	, Fig. 1, Fig. 2	10		_ ,	ns

Fig. 1 Interface timing (Data write)

Fig. 2 Interface timing (Data read)

Item	Symme	Cata	mune -	typ.	nax.	, Unit	1.com
Viewing area	c2-c1	K 1.4	20			deg.	1,2
Contrast ratio	К	φ = 25 θ = 0	3		-		3
-Response time (tise)	t,	φ = 25°	-	150	250	ms	4
Response time (fall)	tf	¢ = 25°		150	250	ms	4

Note 1. Definition of θ and ϕ

Note 2. Definition of viewing angle ϕ 1, and ϕ 2:

Contrast ratio K vs viewing angle ϕ

Note 3. Definition of contrast "K" $K = \frac{Brightness on non-selected segment (B_2)}{Brightness on selected segment (B_1)}$

Note 4 Definition of optical response

DIMENSIONAL OUTLINE

Type No.	H2570	H2571	H2572
Number of display character	16 x 1 line with cursor	32 x 1 line with cursor	40 x 1 line with curso
Module size (mm) width x height x thickness	80 x 36 x 12	174.5 x 31.0 x 13.4	182 x 33.5 x 13
Effective display area . width x height (mm)	64.5 x 13.8	132.5 x 14.0	154.4 x 15.8
Weight (g)	25	60	65

H2571

(1) HITACHI

DETAILED DRAWINGS OF MATRIX PATTERN OF H2570, H2571 and H2572

@HITACHI

INTERFACE PIN CONNECTION

Pin No.	Symbol	Level		Function
1	V _{SS}	- v	OV	Power supply
2	V _{DD}		5V	- Fower supply
. 3	V _{o.}	_	-	
4	RS	H/L	L: Instruction cod H: Data input	le input
5	R/W	H/L	H: Data read (LCC L: Data write (LC) module→MPU) D module←MPU)
6	E	H, H→L	Enable signal	
7	DB0	H/L		,
8	DB1	H/L		
9	DB2	H/L		
10	DB3	H/L	Data bus line	
11	DB4	H/L	Note (1), Note ((2)
12	DB5	H/L		
13	. DB6	H/L		
14	DB7	H/L		

Note:

In the HD44780, the data can be sent in either 4-bit 2-operation or 8-bit 1-operation so that it can interface to both 4 and 8 bit MPU's.

When interface data is 4 bits long, data is transferred using only 4 buses of $DB_4 \sim DB_7$ and $DB_0 \sim DB_3$ are not used. Data transfer between the HD44780 and the MPU completes when 4-bit data is transferred twice. Data of the higher order 4 bits (contents of $DB_4 \sim DB_7$ when interface data is 8 bits long) is transferred first and then lower order 4 bits (contents of $DB_0 \sim DB_3$ when interface data is 8 bits long).

(2) When interface data is 8 bits long, data is transferred using 8 data buses of $DB_0 \sim DB_7$.

					Co	de			Description	Execution time (when fcp or fosc		
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	is 250 KHz
Clear display	0	0	0	0	0	0	0	0	0	1	Clears all display and returns the cursor to the home position (Address 0).	82 μs ~ 1.64 ms
Return home	0	0	0	0	0	0	0	0	1	. •	Returns the cursor to the home position (Address 0). Also returns the display being shifted to the original position. DD RAM contents remain unchanged.	40 μs ~ 1.6 ms
Entry mode set	0	0	0	0	0	0	0	1	I/D	S	Sets the cursor move direction and specifies or not to shift the display. These operations are performed during data write and read.	40 μs
Display ON/ OFF control	0	0	0	0	0	0	1	D	С	В	Sets ON/OFF of all display (D), cursor ON/OFF (C), and blink of cursor position character (B).	40 μs
Cursor of display shift	0	0	0	0	0	1	s/c	R/L			Moves the cursor and shifts the display without changing DD RAM contents	40 μs
Function set	0	0	0	0	1	DL	N	F			Sets interface data length (DL) number of display lines (L) and character font (F).	40 μs
Set CG RAM address	0	0	0	1	o reset		Acc	3			Sets the CG RAM address. CG RAM data is sent and received after this setting.	40 μs
Set DD RAM address	0	0	1		-		ADI)			Sets the DD RAM address. DD RAM data is sent and received after this setting.	. 40 μs
Read busy flag & address	0	. 1	BF				AC				Reads Busy flag (BF) indicating inter- nal operation is being performed and reads address counter contents.	. 40 μs
Write data to CG or DD RAM	1	0				١	Write D	ata			Writes data into DD RAM or CG RAM.	40 μs
Read data to CG or DD RAM	1	1		Read Data							Reads data from DD RAM or CG RAM.	40 μs
		I/D = 1: Increment I/D = 0: Decrement S = 1: Accompanies display shift. S/C = 1: Display shift S/C = 0: Cursor move R/L= 1: Shift to the right. R/L= 0: Shift to the left. DL = 1: 8 bits DL = 0: 4 bits N = 1: 2 lines N = 0: 1 line F = 1: 5 x 10 dots F = 0: 5 x 7 dots BF = 1: Internally operating BF = 0: Can accept instruction								DD RAM: Display data RAM CG RAM: Character generator RAM Acg: CG RAM address ADD: DD RAM address Corresponds to cursor address. AC: Address counter used for both of DD and CG RAM address.	Execution time changes when frequency changes (Example) When fcp or fosc is 270 KHz : 40 μ s x $\frac{250}{270}$ = 37	

^{*}Dont' care

For details, refer to "HITACHI MICROCOMPUTER SYSTEM: DOT MATRIX LIQUID CRYSTAL DISPLAY CONTROLLER & DRIVER LCD-11 (HD44780) USER'S MANUAL".

Higher wer 4bit	0000	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	111
4 bit	CG		: ":	•***	1	٠.					***		
××××00000.	RAM (1)									:	••••	1	
××××0001	(2)					:	-:::				::		
<×××0010	(3)	!!									::		
×××001j	(4)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			::	i	·					:::.	::-
××××0100	(5)	****			2		·	٠.					::
<>××0101	16:	·:	:			::	1	::			***		
«×××0110	(7)				I.,i		1,,1				**************************************		
<×××0]]]	(8)	:				:	1,,1	:		:::			.:
××××1 0 0 0	(1)				×		<u>;×;</u>	·i'					
××××1001	(2))	:				·!	::::				:	
××××1010	(3)	::::	::	***			:::						
××××1011	(4)		::					::				×	
××××1100	(5)	:						***	::.:			:::.	
××××1101	(6)	••••	****		9 E E E E E E E E E E E E E E E E E E E	! ::	}	.::.		···:	: :		
××××1110	(7)				٠٠.			****		*****	·		
××××1111	(8)					::::	-i	:::	٠!	**	:::		

PRECAUTIONS IN DESIGN

1. Mounting method

Since H2570, H2571 and H2572 are so constructed as to be fixed by utilizing fitting holes in the printed circuit board as shown below, it is necessary to take consideration the following items on attachment to a frame.

Example of mounting

- (1) Use of a protective plate, made of an acrylic plate, etc. in order to protect a polarizer and LC cell.
- (2) To prevent the module cover from being pressed, the spacers between the module and the fitting plates should be longer than 5.5 in mm.
- LC driving voltage (Vo) and viewing angle range Setting Vo out of the recommended condition will be a cause for a change of viewing angle range.

3. Caution against static charge

As this module is provided with C-MOS LSI, the care to take such a precaution as to grounding the operator's body is required when handling it.