Formale Systeme Proseminar

Tasks for Week 12

- **Task 1** Let $A = \{1, 2, 3\}$. Give an example of a binary operation * on A so that A(*) is:
 - (1) a commutative groupoid.
 - (2) a cancellative groupoid.

Task 2 Find all subgroupoids of the groupoid given by the following table

G(*)	a	b	$^{\mathrm{c}}$
a	b	\mathbf{a}	c
b	b	\mathbf{a}	$^{\mathrm{c}}$
\mathbf{c}	a	b	a

- Task 3 Give an example of a group with 3 elements. (Hint: See Task 8.)
- **Task 4** Let A be a set and consider the set $P(A) = \{f: A \to A \mid f \text{ is bijective }\}$. Prove that $P(A)(\circ)$ is a group, the group of permutations, with \circ being the usual composition of functions.
- **Task 5** Show that the group of permutations $P(A)(\circ)$ is not commutative unless |A|=1 or |A|=2.
- **Task 6** Let $A = \{0, 1\}$. Prove that none of the groupoids $(\mathcal{P}(A), \cap)$, $(\mathcal{P}(A), \cup)$, $(\mathcal{P}(A), \setminus)$ is a group.
- Task 7 Let G(*) be a nonempty semigroup with the property

$$\forall a \in G. (\exists b \in G. (\forall x \in G. axb = x)).$$

Prove that G(*) is a commutative group.

Task 8 Consider the equivalence \equiv_n on \mathbb{Z} defined (as usual) by

$$k \equiv_n m$$
 if and only if $n|(k-m)$.

Show that \equiv_n is a congruence of the ring $(\mathbb{Z}, +, -(-), 0, \cdot, 1)$. The quotient ring \mathbb{Z}/\cong_n is denoted by \mathbb{Z}_n . Write down the Cayley tables of \mathbb{Z}_n for n=3.