BREVE INTRODUCCIÓN A gnuplot

1. INTRODUCCIÓN

gnuplot es un programa de visualización gráfica de datos científicos. Permite realizar gráficos 2D y 3D de curvas, lineas de nivel y superficies, tanto a partir de funciones como de datos discretos.

gnuplot es software libre, lo cual significa que cualquier persona lo puede utilizar y distribuir gratuitamente. Está disponible para casi todas la plataformas. La primera versión data de 1986. La última versión es la 4.0. Información sobre el programa se puede encontrar en su página web: http://www.gnuplot.info

gnuplot funciona mediante comandos, que pueden usarse tanto en modo interactivo como escribiendo **scripts** (secuencia de comandos escritos en un fichero).

En estas notas se expone brevemente cómo utilizar **gnuplot** para dibujar curvas planas. El sistema operativo de referencia es Linux. Algunas distribuciones de Linux (por ejemplo RedHat) traen gnuplot entre los paquetes que se instalan por defecto. La versión dependerá de la versión de RedHat que se instale.

1.1 ¿ Cómo se ejecuta gnuplot ?

a) Desde un terminal, escribiendo en la línea de comandos

>> gnuplot

se ejecuta el programa en modo interactivo. Aparecerá, tras unas lineas de información, el prompt

gnuplot>

en el que se pueden escribir los comandos.

b) Ejecutando directamente un script: para ello, en la línea de comandos del terminal de Linux se escribe

>> gnuplot "fichero_script"

siendo "fichero_script" un fichero conteniendo comandos de **gnuplot**. Se ejecutarán de forma inmediata las ordenes contenidas en el fichero. Cuando éstas se terminan, se devolverá el control al Sistema Operativo, es decir, se termina la ejecución de gnuplot.

1.2 Algunos comandos utilitarios

COMANDOS UTILITA	ARIOS
pwd	De " P rint W orking D irectory". Indica cual es el directorio por defecto.
	Importante porque es en ese directorio donde gnuplot buscará los ficheros cuando se lo indiquemos.
cd "directorio"	De "Change Directory". Cambia el directorio por defecto. El path del directorio se puede indicar en forma absoluta o relativa.
	Ejemplos: gnuplot> cd "/home/roger/graficos" gnuplot> cd "/pruebas" gnuplot> cd "antiguos"
load "fichero"	Si "fichero " es un script, es decir, contiene comandos gnuplot , esta orden ejecuta dichos comandos. Cuando se termina, se vuelve al modo interactivo.
	Aunque no es obligatorio, es muy recomendable para el usuario que el fichero lleve una extensión que nos recuerde qué contiene. Se puede usar, por ejemplo, la extension ***.gnu, para recordarnos que contiene un script de gnuplot.
clear	Borra el terminal gráfico.
exit / quit	En la línea de comandos de gnuplot , terminan la ejecución del programa.

En un **script**, se pueden escribir varias órdenes en una misma línea, separándolas por un punto y coma. Las lineas que comienzan por el carácter **#** son ignoradas. ATENCIÓN: **gnuplot** distingue entre mayúsculas y minúsculas.

1.3 Comandos básicos de dibujo

COMANDOS BÁSICOS DE DIBUJO	
plot	Para dibujar curvas planas y gráficos 2D
splot	Para dibujar superficies
replot	Para hacer modificaciones de un plot o un splot anterior.

1.4 Dibujo de curvas definidas por funciones

Con el comando **plot** se pueden dibujar curvas definidas por una función. Para ello se utiliza el comando en la forma:

gnuplot> plot funcion

donde **funcion** es la expresion de una funcion f(x). En las expresiones, las operaciones aritméticas y la inmensa mayoría de las funciones se escriben como en **FORTRAN**. La lista de las funciones matemáticas intrínsecas disponibles en **gnuplot**, así como su descripción se puede obtener tecleando el comando

gnuplot> help functions

1.5 Dibujo de curvas definidas por puntos

Con el comando **plot** se pueden dibujar curvas definidas por un conjunto discreto de puntos cuyas coordenadas están almacenadas en un fichero.

gnuplot> plot "fichero.dat"

(la extension ***.dat no es obligatoria). El fichero "fichero.dat" debe contener, en cada línea, la abscisa y la ordenada de uno de los puntos. La orden anterior dibujará, en un rectangulo que contenga todos los puntos del fichero, un marcador en el lugar de cada punto. Si no se ha indicado expresamente, no se unirán los puntos entre sí con ninguna clase de línea.

1.6 Modificadores del comando plot

Hay una serie de parámetros opcionales que se pueden utilizar para modificar el resultado del comando **plot**. Se exponen a continuación algunos (pocos) de ellos.

Para ver las características por defecto de las gráficas **gnuplot**, se puede usar el comando **test**.

Por ejemplo, se puede ver así el color por defecto asignado a cada curva, según su número de orden: roja la primera, verde la segunda, azul la tercera, ... etc. También se pueden ver los grosores de línea correspondientes a los distintos índices, los marcadores, etc.

1.6.1 Modificadores del aspecto de las líneas

Los modificadores siguientes de escriben a continuación de la orden **plot** y sirven para elegir el estilo con que se dibujará la curva.

with lines (w l) se unen los puntos con líneas rectas

with points (w p) se marcan sólo los puntos

with linespoints (w lp) se marcan los puntos y se unen con lineas rectas

linewidth k (lw k) determina el grosor de la línea

linetype n (It n) determina el tipo de línea, lo que a su vez determina el color

```
gnuplot> plot "fichero.dat" with lines gnuplot> plot "fichero.dat" w l (equivalentes) se dibujará la gráfica de datos, uniendo los puntos mediante segmentos rectos

gnuplot> plot sin(x)*cos(x) linewidth 2 gnuplot> plot sin(x)*cos(x) lw 2 (equivalentes) se dibujará la gráfica de la función con línea de grosor 2

gnuplot> plot sin(x)*cos(x) linetype 14 linewidth 2 gnuplot> plot sin(x)*cos(x) lt 14 lw 2 (equivalentes) se dibujará la gráfica de la función con línea tipo 14 (color cyan) de grosor 2
```

1.6.1 Modificador index

En un mismo fichero puede haber más de un conjunto de puntos, definiendo más de una curva. Conjuntos de puntos definiendo distintas curvas deben estar separados por 2 LINEAS EN BLANCO. El modificador index sirve para indicar qué conjuntos se deben representar. Los conjuntos se consideran numerados, pero ATENCIÓN: el primero es el CERO.

```
gnuplot> plot "fichero.dat" index 0:1
indica que se dibujen los dos primeros conjuntos de datos del fichero "fichero.dat".
gnuplot> plot "fichero.dat" index 3
indica que se dibuje el cuarto conjunto de datos del fichero
```

1.7 El comando set

Las características de la gráfica se pueden modificar también utilizando el comando **set**. De esta forma las modificaciones se aplicarán a todas las gráficas que se realicen posteriormente. Algunos ejemplos:

establece el estilo "lines" para todas las graficas de datos set style data lines set style function linespoints establece "linespoints" para las graficas de funciones set style line 1 linewidth 2 establece que las líneas de tipo 1 tengan grosor 2 set xrange [xmin:xmax] establece el rango x para todas las gráficas posteriores set xrange restore restaura el rango en x por defecto ídem para y set yrange [ymin:ymax] set yrange restore set title "Titulo" establece el título para todas las gráficas posteriores set title "Titulo" tc lt k título con el texto en el color de la linea tipo 4 set title restaura el título a su valor por defecto (vacío) restaura todas las características gráficas a sus valores por defecto reset

1.8 Cómo salvar a fichero una gráfica gnuplot

Se puede hacer que una gráfica **gnuplot** se almacene en un fichero, para luego incluirla en un texto o imprimirla. Para ello hay que redirigir la salida del programa hacia el dispositivo o driver adecuado. Explicamos aquí cómo dirigir la salida hacia un fichero **postscript.** La orden

gnuplot> set terminal

nos mostrará la lista de los terminales disponibles en nuestro sistema. Para más información consultar, en **gnuplot**,

```
gnuplot> help set terminal
gnuplot> help set output
```

En primer lugar hay que elegir el **terminal postscript** (por defecto el terminal de salida de **gnuplot** es **X11**)

gnuplot> set terminal postscript

En segundo lugar hay que re-dirigir la salida hacia un fichero:

gnuplot> set output "grafica.ps"

A continuación se dan las órdenes adecuadas para conseguir la gráfica que nos interese. Ésta no generará una ventana gráfica, sino un fichero de nombre **grafica.ps**.

Como todos los comandos **set**, seguirán estando activos hasta que no se restauren, por ejemplo, con el comando **reset**.

1.9 Un ejemplo de script para dibujar curvas de datos contenidos en un fichero

El siguiente script puede ser usado para dibujar una curvas a partir de las coordenadas de una serie de puntos, contenidos en un fichero de nombre puntos.dat

```
curvawin.gnu
                              PARA
                                     DIBUJAR
                                                         CURVA
       set lmargin 6
set rmargin 6
set title "Aquí se puede poner un titulo" tc lt 1
plot "datos.dat" with lines lt 3 lw 2
        .
pause mouse
        reset
El fichero datos.dat tendrá un contenido como, por ejemplo, el siguiente:
                          .000000
        .000000
        .300000
                          .295520
         .600000
                          .564642
         900000
                           783327
         .200000
                           932039
       1.500000
                           997495
       1.800000
       2.100000
                          .863209
       2.400000
2.700000
                          .675463
.427380
```

Si las órdenes anteriores se almacenan en un fichero de nombre, por ejemplo, **curvawin.gnu**, cuando se disponga de un fichero **datos.dat** conteniendo las coordenadas de los puntos que determinan la curva que se desea dibujar, bastará escribir, en un terminal de Linux

>> gnuplot curvawin.gnu

para obtener la gráfica en una ventana. La ventana permanecerá activa hasta que se "pinche" en ella con el ratón.

En el **script** anterior, las órdenes **set Imargin** y **set rmargin** fijan la anchura de los márgenes izquierdo y derecho. De forma análoga existen las órdenes **set tmargin** y **set bmargin** para fijar la anchura del margen superior (top) e inferior (bottom).

La orden set title establece el título "Aquí se puede poner un titulo" para la gráfica.

La orden **pause mouse** detiene la ejecución del **script** hasta que pulsemos el botón izquierdo del ratón. Si no se incluyera, no daría tiempo de ver la gráfica, ya que la ventana sería eliminada al finalizar la ejecución de gnuplot.

La orden final **reset** restaura todas las características cambiadas con **set** a sus valores por defecto

1.10 Procedimiento para ordenar la realización de una gráfica gnuplot desde dentro de un programa FORTRAN

Supongamos que se desea dibujar la gráfica de una curva a partir de una serie de puntos que se calculan en un programa FORTAN. Se puede hacer esto desde el mismo programa, siguiendo los pasos siguientes:

- Escribir el script **curvawin.gnu** descrito en el apartado anterior y ponerlo en el mismo directorio en el que se vaya a ejecutar el programa FORTRAN.
- Escribir también el script curvaps.gnu que se describe a continuación y ponerlo en el mismo directorio. Este script es una variante de curvawin.gnu para generar la gráfica en formato postscript.

```
SCRIPT curvaps.gnu PARA DIBUJAR UNA CURVA DE DATOS EN FORMATO postscript

set terminal postscript set output "datos.ps" set lmargin 6 set rmargin 6 set rmargin 6 set title " Aquí se puede poner un titulo " tc lt 1 plot "datos.dat" with lines lt 3 lw 2 pause mouse reset
```

- En el programa FORTRAN:
 - Crear el fichero de datos datos.dat con el formato indicado más arriba. Para ello las operaciones a realizar son las siguientes:
 - Abrir el fichero open(66, file='datos.dat')
 Escribir cada línea write(66,*) x,y
 Cerrar el fichero close(66)
 - Incluir la siguiente instrucción (LINUX) si se desea la gráfica en una ventana call system('gnuplot curvawin.gnu')
 - Incluir la siguiente instrucción (LINUX) si se desea la gráfica en un fichero **postscript** call system('gnuplot curvaps.gnu')

ATENCIÓN: La orden OPEN anterior creará un fichero nuevo de nombre **datos.dat**. Si ya existe en el directorio por defecto un fichero con ese nombre, la orden anterior lo "machacará".

```
A FORTRAN PARA DIBUJAR LA FUNCION

K)*SIN(3*X) EN EL INTERVALO [0,10]

INUX)
program dibujo
n=50
a=0.
b=10.
h=(b-a)/n
nfich=77
x=a
open(nfich,file='datos.dat')
do i=1,n+1
x=a+(i-1)*h
  y=x*exp(-x)*sin(3.*x)
write(nfich,*) x,y
enddo
close(nfich)
call system('gnuplot curvawin.gnu')
stop
end program dibujo
```

1.11 Subrutina para ordenar la realización de una gráfica gnuplot desde dentro de un programa FORTRAN

La siguiente subrutina, en función del parámetro **iout**, y utilizando los vectores de entrada \mathbf{x} e \mathbf{y} , lleva a cabo las acciones anteriores.

```
SUBRUTINA PARA CREAR EL FICHERO DE DATOS Y EJECUTAR gnuplot
          subroutine plotdat(x,y,n,iout)
      Creacion del fichero de datos para dibujar una curva con
1
gnuplot
    y lanzamiento de gnuplot para generar la gráfica
ATENCION: adaptada a LINUX
En otro sistema habría que modificar la orden call system
1----
    Argumentos de entrada:
x (vector real*4) abscisas de los puntos que definen la
ļ
! x ¯
gráfica
               (vector real*4) ordenadas de los puntos longitud de los vectores {\bf x} e {\bf y}
     n
               parámetro:
     iout
               si iout=0 solamente se crea el fichero de datos
si iout=1 se genera, además, la grafica en una ventana
si iout=2 se genera la gráfica en formato postscript
          real*4 x(*), y(*)
ļ
          open(77,file='datos.dat',form='formatted')
write(77,*) (x(i),y(i),i=1,n)
close(77)
ļ
          if (iout.eq.1) then
  call system('gnuplot curvawin.gnu')
else if (iout.eq.2) then
  call system('gnuplot curvaps.gnu')
          endif
!
          return
          end
```