1. Fuzzy Set Theory

Himpunan Fuzzy (Himpunan Alamiah)

Dikompilasi oleh: **Agust Isa Martinus**<agust.isa@umc.ac.id>

Topics of examination

- 1. Fuzzy Set Theory
- Fuzzy Rules and Fuzzy Reasoning
- 3. Fuzzy Inference System

1. Fuzzy Set Theory

- □ Intro/Motivation
- Basic Definitions and Terminology
- Set TheoreticOperations
- MF Formulation and Parameterizations
- More on FuzzyUnion, Intersection,and Complement
 - Complement
 - Intersection and Union

Motivasi

Dalam Himpunan Klasik

Crisp, tegas menyatakan bahwa suatu objek termasuk anggota himpunan atau tidak.

$$A = \{x | x \ge 170\}$$

- Misalkan:
 - $\mathbf{x} = 100$, jelas tidak termasuk ke dalam A
 - x=180, termasuk anggota A
 - x=169, bukan anggota A
- Misalkan A menyatakan himpunan orang-orang tinggi (dalam cm).
- Menurut Himpunan Klasik, x=169 cm tidak termasuk kelompok orang tinggi, tetapi x=170 cm termasuk. Bagaimana menurut rasa ukur kita?

Fuzzy v.s. Crisp

Motivasi

Dalam Himpunan Klasik

□ Crisp, tegas menyatakan bahwa suatu objek termasuk anggota himpunan atau tidak.

$$A = \{x \mid x \ge 6\}$$

Misalkan:

- x=3, jelas tidak termasuk ke dalam A
- x=6, termasuk anggota A
- x=5,99, bukan anggota A
- x=7, jelas termasuk ke dalam A
- Misalkan A menyatakan himpunan anak cukup umur s.d. 30 Juni, yang dianggap cukup umur untuk memasuki jenjang pendidikan Sekolah Dasar. Dan, x adalah usia anak s.d. 30 Juni tahun tersebut.
- Menurut Himpunan Klasik, seorang anak yang baru berulang tahun ke-6 pada tanggal 1 Juli, maka anak tersebut tidak termasuk himpunan cukup umur untuk memasuki jenjang pendidikan Sekolah Dasar. Bagaimana menurut olah rasa kita?
 - Padahal umur anak itu hanya kurang satu hari dari 6 tahun. Bisa jadi hanya kurang beberapa detik karena lahirnya jam 00 lebih beberapa detik, yang sudah dianggap tanggal 1 Juli. Jadi kurang beberapa detik sudah bisa dijadikan alasan tidak cukup umur, akibatnya bisa tidak diterima masuk SD di tahun itu. Inilah himpuanan klasik yang tegas (crisp).

Motivasi

Berbeda dengan himpunan klasik, himpunan fuzzy tidak menerapkan batas-batas himpunan secara tegas (crisp), tetapi secara gradual.

Definisi-Definisi Dasar

- Himpunan Fuzzy dan Fungsi Keanggotaan (Derajat Keanggotaan; MF, membership function)
- Variabel dan Nilai Linguistik
- □ Support
- □ Core
- Normalitas
- ☐ Titik *Crossover*
- □ Fuzzy Singletone
- \square α -cut dan strong α -cut

Himpunan Fuzzy dan Derajat Keanggotaan

Definisi: Himpunan Fuzzy dan derajat keanggotaan

Jika X adalah semesta Fuzzy dengan sekumpulan objek-objek x, maka Himpunan Fuzzy A dalam X didefinisikan sebagai himpunan pasangan berurut:

$$A = \{(x, \mu_{A}(x)) | x \in X\}$$

Dengan:

- X, Semesta Fuzzy
- A, Himpunan Fuzzy
- $\mu_A(x)$, Derajat Keanggotaan Fuzzy (MF, Membership Function), dinormalisasi menjadi [0, 1].

Contoh: Semesta Diskrit Tak-terurut

Contoh: Himpunan Fuzzy dengan Semesta Diskrit Tak-terurut

Misalkan: X = {Bandung, Cirebon,
 Jakarta, Surabaya, Makassar} adalah
 himpunan beberapa kota besar di
 Indonesia. Himpunan Fuzzy B =
 "kepadatan hunian kota" sebagai
 berikut:

□ B = {(Bandung, 1.0), (Cirebon, 0.3),
 (Jakarta, 0.9), (Surabaya, 0.7),
 (Makassar, 0.5)}

Contoh: Semesta Diskrit Terurut

Contoh: Himpunan Fuzzy dengan Semesta Diskrit Terurut

Misalkan

X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} adalah himpunan jumlah kamar dalam satu rumah tinggal yang mungkin dibuat orang.

Himpunan Fuzzy C = "jumlah kamar dalam satu rumah tinggal" yang dipilih sebuah keluarga.

Contoh: Semesta Kontinyu

Misalkan: X = R+ adalah kemungkinan usia manusia, maka himpunan fuzzy D = "berusia sekitar 50 tahun" dapat dinyatakan sebagai:

$$D = \{(x, \mu_{\mathbf{B}}(x)) | x \in \mathbf{X}\}$$

Dengan:

☐ Misalkan: X = R+ adalah bilangan real, maka himpunan fuzzy E = "bilangan real dekat angka 10" dapat dinyatakan sebagai:

$$E = \{(x, \mu_{C}(x)) | x \in X\}$$

Dengan:

'Around noon'

https://image1.slideserve.com/2824240/around-noon-n.jpg

Pembentukan Himpunan Fuzzy

- Pembentukan
 himpunan fuzzy
 bergantung pada
 dua hal:
- Identifikasi
 semesta
 pembahasan yang
 cocok (tepat), dan
- Penentuan derajat keanggotaan yang sesuai.

- Penentuan derajat keanggotaan bersifat subjektif, artinya untuk satu konsep yang sama (misalkan jumlah anak dalam satu keluarga), penentuan derajat keanggotaannya dapat berbeda oleh masing-masing orang.
- Derajat keanggotaan tidak harus dalam [0, 1], derajat keanggotaan normal.
 - Untuk menormalisasi menjadi [0, 1], derajat keanggotaan dibagi nilai derajat keanggotaan yang terbesar.

Penulisan Himpunan Fuzzy

Jika X adalah semesta Fuzzy dengan sekumpulan objekobjek x, dengan derajat keanggotaan $\mu_A(x)$, maka himpunan fuzzy A dapat dituliskan sebagai,

1. Fungsi Karakteristik (himpunan pasangan berurut) $A = \{(x, \mu_A(x)) | x \in X\}$

Alternatif Penulisan

- $\blacksquare \quad A = \sum \mu_{A}(x_{i}) / x_{i}$
- $\blacksquare A = \int \mu_{A}(x) / x$

Simbol " Σ " dan " \int " berarti gabungan (union) dari pasangan (x, $\mu_A(x)$), bukan penjumlahan atau integral, dan simbol "/" hanya sebagai penanda (pemisah), bukan untuk pembagian.

- lacksquare Σ , gabungan untuk derajad keanggotaan diskrit.

Alternatif Penulisan Himpunan Fuzzy

Menggunakan alternatif penulisan himpunan fuzzy sebagai berikut,

- $\blacksquare \quad \mathsf{A} = \sum \mu_{\mathsf{A}}(x_i) / x_i$
- $\blacksquare \quad A = \int \mu_{A}(x) / x$
- □ Dari contoh himpunan fuzzy "jumlah kamar dalam satu rumah tinggal", penulisannya menjadi,

$$C = 0.1/0 + 0.3/1 + 0.5/2 + 0.8/3 + 1.0/4 + 1.0/5 + 0.9/6 + 0.5/7 + 0.4/8 + 0.1/9 + 0.1/10$$

- □ tanda "+" berarti gabungan (union), bukan penjumlahan.
- Contoh lain, himpunan fuzzy A="bilangan real yang mendekati 10"

$$\Box. \quad A = \int_{R} \frac{1}{1 + (\frac{x - 10}{0.5})^{2}} / x$$

Support

- Support
- Support dari suatu himpunan fuzzy A adalah himpunan semua titik x dalam X yang memenuhi $\mu_A(x) > 0$:

$$support(A) = \{x | \mu_A(x) > 0\}$$

Core

- □ Core
- Core dari suatu himpunan fuzzy A adalah himpunan semua titik x dalam X yang memenuhi $\mu_A(x) = 1$:

$$core(A) = \{x | \mu_A(x) = 1\}$$

Normalitas

- Normalitas
- Suatu himpunan fuzzy A dikatakan normal jika core-nya tidak kosong. Kita selalu dapat menemukan titik $x \in X$ yang memenuhi $\mu_A(x) = 1$.

Titik Crossover

- Crossover Point
- □ Titik crossover suatu himpunan fuzzy A adalah titik $x \in X$ yang memenuhi $\mu_A(x) = 0,5$.

Fuzzy Singletone (nilai tunggal)

- Fuzzy Singletone
- Himpunan fuzzy yang hanya memiliki support satu titik tunggal dalam X dengan $\mu_A(x) = 1$ disebut fuzzy singletone (nilai tunggal).

α -cut dan strong α -cut

α-cut

Himpunan α-cut atau α-level dari himpunan fuzzy A adalah himpunan crisp yang didefinisikan sebagai:

$$A_{\alpha} = \{x \mid \mu_{A}(x) \geq \alpha\}$$

strong α -cut

Himpunan strong αcut atau strong αlevel dari himpunan
fuzzy A adalah
himpunan crisp yang
didefinisikan sebagai:

$$A'_{\alpha} = \{x \mid \mu_{A}(x) > \alpha\}$$

Contoh α -cut dan strong α -cut

- ☐ Misalkan ada himpunan Fuzzy **C**= {(0, 0.1), (1, 0.3), (2, 0.5), (3, 0.8), (4, 1), (5, 1), (6, 0.9), (7, 0.5), (8, 0.4), (9, 0.1), (10, 0.1)}
- α -cut, dengan α =0.5.

$$C_{\alpha} = \{(2, 0.5), (3, 0.8), (4, 1), (5, 1), (6, 0.9), (7, 0.5)\}$$

- Dan α = 0.5, maka α -cut dan strong α -cut dari himpunan C adalah:
- □ Strong α -cut, dengan α =0.5.

$$C'_{\alpha} = \{(3, 0.8), (4, 1), (5, 1), (6, 0.9)\}$$

Variabel dan Nilai Linguistik

- Jika semesta X adalah kontinyu, dalam praktik kita membaginya menjadi beberapa himpunan fuzzy. Himpunan-himpunan fuzzy tersebut memenuhi sifatsifat dalam penggunaan sehari-hari, seperti besar, cepat, tinggi, mahal, dsb... Atau, dalam satu kelompok ada sifat-sifat tinggi, sedang, dan rendah. Sifatsifat itu disebut *nilai* linguistik atau label linguistik.
- Semesta Fuzzy X kontinyu,
 - Variabel Linguistik
 - Nama dari semesta fuzzy X.
 - Nilai Linguistik
 - ☐ Himpunan-himpunan bagian dari semesta fuzzy X.

Contoh:

- □ Semesta Fuzzy X = "Berat Badan"
 - Variabel Linguistiknya, "Berat Badan"
 - Nilai Linguistiknya, misalkan dibagi lima:
 - underweight, kurus, normal, gemuk, dan overweight.

Variabel dan Nilai Linguistik

Contoh:

Misalkan satu variabel linguistik (Tekanan Darah) dengan tiga kelompok nilai linguistik (Rendah, Normal, dan Tinggi).

- Variabel Linguistik
 - **Tekanan Darah** (Sistole)
- Nilai LinguistikDerajad Keanggotaan (MF)
 - µRendah
 - □ Sigmoid terbuka kiri
 - µNormal
 - Generalized Bell
 - μTinggi
 - ☐ Sigmoid terbuka kanan

Variabel dan Nilai Linguistik

Contoh:

Misalkan satu variabel linguistik (Detak Jantung Manusia) dengan tiga kelompok nilai linguistik (Lambat, Normal, dan Cepat).

- Variabel Linguistik
 - Detak Jantung Manusia
- Nilai LinguistikDerajad Keanggotaan (MF)
 - µLambat
 - □ Sigmoid terbuka kiri
 - µNormal
 - □ Generalized Bell
 - µCepat
 - □ Sigmoid terbuka kanan

Concentration and Dilation

Concentration

 \square CON(A) = A^2

Dilation

 \square DIL(A) = A $^0.5$

Intensifier and Diminisher

Intensifier

Diminisher

$$INT(A) = \begin{cases} 2A^2, untuk \ 0 \le \mu_A(x) \le 0.5\\ -2(\neg A)^2, untuk \ 0.5 \le \mu_A(x) \le 1.0 \end{cases}$$

$$DIM(A) = \begin{cases} \frac{1}{2} (2A)^{0.5}, untuk \ 0 \le \mu_A(x) \le 0.5\\ \frac{1}{2} (2(\neg A))^{0.5}, untuk \ 0.5 \le \mu_A(x) \le 1.0 \end{cases}$$

Example: Age

25

https://image1.slideserve.com/2824240/example-age-n.jpg

Operations

Here is a whole vocabulary of seven words.

Each operates on a membership function and returns a membership function. They can be combined serially, one after the other, and the result will be a membership function.

$$\mu_{very A}(x) = \mu_A^2(x)$$

$$\mu_{mort A}(x) = \mu_A^{1/2}(x)$$

$$\mu_{extremely A}(x) = \mu_A^3(x)$$

$$\mu_{slightly A}(x) = \mu_A^{1/3}(x)$$

$$\mu_{not A}(x) = 1 - \mu_A(x)$$

$$\mu_{A and B}(x) = \min(\mu_A(x), \mu_B(x))$$

$$\mu_{A or B}(x) = \max(\mu_A(x), \mu_B(x))$$

26

https://image1.slideserve.com/2824240/operations-n.jpg

Set Theoritic Operations

Subset (containment)

Union (disjunction)

Intersection (conjunction)

Complement (negation)

Cartesian Product and Coproduct

Himpunan Fuzzy yang digunakan

- Untuk keperluan contoh Semesta Diskrit, digunakan yang berikut:
 - Semesta $X = \{0,1,2,3,4,5,6,7,8,9\}$
 - Semesta Y={a,b,d,e,f,g,h,i}
 - Himpunan Fuzzy A, B, C, D dalam X
 - \square A={(0, 0.3), (1, 0.6), (3, 0.5), (7, 1), (8, 0.9)}
 - $\square B=\{(0,0.5), (1,0.2), (2,0.8), (4,1), (6,1), (8,0.3), (9,0.7)\}$
 - \square C={(0, 0.2), (1, 0.5), (7, 0.7)}
 - Himpunan Fuzzy P, Q, R dalam Y
 - \square P={(a, 0.3), (b, 0.6)}
- Penulisan P={(a, 0.3), (b, 0.6)} dalam semesta Y={a,b,c,d,e,f,g,h,i} atau himpunan Fuzzy lainnya dalam semestanya hanya menampilkan Support. Himpunan Fuzzy P secara lengkap adalah:
 - P={(a, 0.3), (b, 0.6), (c, 0), (d, 0), (e, 0), (f, 0), (g, 0), (h, 0), (i, 0)}

Subset (containment)

Himpunan Bagian (Subset/Containment)

□ Himpunan Fuzzy A merupakan bagian dari Himpunan Fuzzy B, jika dan hanya jika $\mu_A(x) \le \mu_B(x)$ untuk semua x.

$$A \subseteq B \Leftrightarrow \mu_{A}(x) \leq \mu_{B}(x)$$

Dengan:

A dan B adalah Himpunan Fuzzy dalam Semesta Fuzzy X.

 $\mu_A(x)$ dan $\mu_B(x)$ masing-masing adalah derajad keanggotaan A dan B.

Contoh: Subset

Diskrit

- Himpunan Fuzzy A,B, C dalam X
 - A={(0, 0.3), (1, 0.6), (3, 0.5), (7, 1), (8, 0.9)}
 - B={(0, 0.5), (1, 0.2), (2, 0.8), (4, 1), (6, 1), (8, 0.3), (9, 0.7)}
 - C={(0, 0.2), (1, 0.5), (7, 0.7)}

Maka,

- $C \subset A$
- C ⊄ B

Kontinyu

Union

Gabungan (Union/Disjunction)

□ Jika himpunan fuzzy C adalah gabungan dari himpunan fuzzy A dan himpunan fuzzy B, ditulis $C = A \cup B$ atau $C = A \cup B$, maka derajat keanggotaan himpunan fuzzy C, $\mu_C(x)$ adalah:

$$\mu_{C}(x) = \max(\mu_{A}(x), \mu_{B}(x))$$

$$\mu_{C}(x) = \mu_{A}(x) \vee \mu_{B}(x)$$

Dengan

A, B, dan C adalah Himpunan Fuzzy dalam Semesta Fuzzy X. $\mu_A(x)$ dan $\mu_B(x)$ masing-masing adalah derajad keanggotaan A dan B.

Contoh: Union

Diskrit

- Himpunan Fuzzy A, B, C,D, E dalam X
 - A={(0, 0.3), (1, 0.6), (3, 0.5), (7, 1), (8, 0.9)}
 - B={(0, 0.5), (1, 0.2), (2, 0.8), (4, 1), (6, 1), (8, 0.3), (9, 0.7)}
 - C={(0, 0.2), (1, 0.5), (7, 0.7)}

Maka,

- D=A∪B={(0, 0.5), (1, 0.6), (2, 0.8), (3, 0.5), (4, 1), (6, 1), (7, 1), (8, 0.9), (9, 0.7)}
- E=A∪C={(0, 0.3), (1, 0.6), (3, 0.5), (7, 1), (8, 0.9)}

Kontinus

Intersection

Irisan (Intersection/Conjunction)

Jika himpunan fuzzy C adalah irisan dari himpunan fuzzy A dan himpunan fuzzy B, ditulis $C = A \cap B$ atau C = A AND B, maka derajat keanggotaan himpunan fuzzy C, $\mu_C(x)$ adalah:

$$\mu_{C}(x) = \min(\mu_{A}(x), \mu_{B}(x))$$

$$\mu_{C}(x) = \mu_{A}(x) \wedge \mu_{B}(x)$$

Dengan

A, B, dan C adalah Himpunan Fuzzy dalam Semesta Fuzzy X.

 $\mu_A(x)$ dan $\mu_B(x)$ masing-masing adalah derajad keanggotaan A dan B.

Contoh: Intersection

Diskrit

- Himpunan Fuzzy A, B,C, D, E dalam X
 - A={(0, 0.3), (1, 0.6), (3, 0.5), (7, 1), (8, 0.9)}
 - B={(0, 0.5), (1, 0.2), (2, 0.8), (4, 1), (6, 1), (8, 0.3), (9, 0.7)}
 - C={(0, 0.2), (1, 0.5), (7, 0.7)}

Maka,

- $D=A \cap B=\{(0, 0.3), (1, 0.2), (8, 0.3)\}$
- $E=A \cap C=\{(0, 0.2), (1, 0.5), (7, 0.7)\}$

Kontinyus

Complement

Komplemen (Complement/Negation)

□ Jika komplemen dari himpunan fuzzy A, ditulis A' $(\neg A, NOT A)$, maka derajad keanggotaan A', $\mu_{A'}(x)$ didefinisikan sebagai:

$$\mu_{A'}(x) = 1 - \mu_{A}$$

Dengan

A dan A' adalah Himpunan Fuzzy dalam Semesta Fuzzy X. $\mu_{A}(x)$ dan $\mu_{A'}(x)$ masing-masing adalah derajad keanggotaan A dan A'.

Contoh: Complement

Diskrit

Himpunan Fuzzy A, B, C, D, E dalam X

- A={(0, 0.3), (1, 0.6), (3, 0.5), (7, 1), (8, 0.9)}
- B={(0, 0.5), (1, 0.2), (2, 0.8), (4, 1), (6, 1), (8, 0.3), (9, 0.7)}
- C={(0, 0.2), (1, 0.5), (7, 0.7)}

Maka,

- ¬A={(0, 0.7), (1, 0.4), (2, 1), (3, 0.5), (4, 1), (5, 1), (6, 1), (8, 0.1), (9, 1)}
- ¬B={(0, 0.5), (1, 0.8), (2, 0.2), (3, 1), (5, 1), (7, 1), (8, 0.7), (9, 0.3)}
- -C={(0, 0.8), (1, 0.5), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 0.3), (8, 1), (9, 1)}}

Kontinyus

Fuzzy set theoritic operations

https://image1.slideserve.com/2405230/slide9-n.jpg

Cartesian Product

Perkalian Kartesian (Cartesian Product)

Misalkan himpunan fuzzy A dan B masing-masing dalam semesta X dan Y, maka perkalian kartesian A dan B, ditulis A × B, adalah himpunan fuzzy dalam ruang X × Y dengan derajat keanggotaan ,

$$\mu_{A\times B}(x, y) = \min(\mu_A(x), \mu_B(y))$$

Dengan

A adalah Himpunan Fuzzy dalam Semesta Fuzzy X. B adalah Himpunan Fuzzy dalam Semesta Fuzzy Y. $\mu_A(x)$ dan $\mu_B(y)$ masing-masing adalah derajad keanggotaan A dan B.

Contoh: Cartesian Product

Diskrit

- Himpunan Fuzzy C dalam semesta X
 - C={(0, 0.2), (1, 0.5), (7, 0.7)}
- Himpunan Fuzzy P dalam semesta Y
 - \blacksquare P={(a, 0.3), (b, 0.6)}

Maka,

CxP={((0,a), 0.2),
 ((0,b), 0.2),
 ((1,a), 0.3),
 ((1,b), 0.5),
 ((7,a), 0.3),
 ((7,b), 0.6)}

Kontinyus

Cartesian Product

27

https://image1.slideserve.com/2824240/cartesian-product-n.jpg

Cartesian Co-Product

Penjumlahan Kartesian (Cartesian Co-Product)

Misalkan himpunan fuzzy A dan B masing-masing dalam semesta X dan Y, maka penjumlahan kartesian A dan B, ditulis A + B, adalah himpunan fuzzy dalam ruang X x Y dengan derajat keanggotaan ,

$$\mu_{A+B}(x, y) = \max(\mu_{A}(x), \mu_{B}(y))$$

Dengan

A adalah Himpunan Fuzzy dalam Semesta Fuzzy X. B adalah Himpunan Fuzzy dalam Semesta Fuzzy Y. $\mu_A(x)$ dan $\mu_B(y)$ masing-masing adalah derajad keanggotaan A dan B.

Contoh: Cartesian Co-Product

Diskrit

- Himpunan Fuzzy C dalam semesta X
 - C={(0, 0.2), (1, 0.5), (7, 0.7)}
- Himpunan Fuzzy P dalam semesta Y
 - \blacksquare P={(a, 0.3), (b, 0.6)}

Maka,

C+P={((0,a), 0.3),
 ((0,b), 0.6),
 ((1,a), 0.5),
 ((1,b), 0.6),
 ((7,a), 0.7),
 ((7,b), 0.7)}

Kontinyus

More on Some Fuzzy Set Operations

Union, Intersection, and Complement

Union, Intersection, and Complement

Operasi himpunan fuzzy (gabungan, irisan, dan komplemen) selain menggunakan operator min/max dan komplemen klasik Zadeh seperti yang sudah dibahas, masih ada beberapa operator lainnya.

- □ Irisan (T-norm)
 - min
 - algebraic product
 - bounded product
 - drastic product
 - Einstein product
 - Hamacher product
- Gabungan (S-norm / T-conorm)
 - max
 - algebraic sum
 - bounded sum
 - drastic sum
 - Einstein sum
 - Hamacher sum
- □ Komplemen
 - Classic Zadeh
 - Sugeno
 - Yager

MF dan Complement yang digunakan untuk menguji.

Fungsi keangotaan yang digunakan untuk menampilkan operasi Himpunan Fuzzy (Intersection dan Union) adalah **trapezoid**, trapmf(x, [3, 8, 12, 17]), dengan parameter "[3, 8, 12, 17]" mengambil dari buku Roger Jang, "Neuro-Fuzzy and Soft Computing," dan menggunakan komplemen Klasik Zadeh, N(A) = 1 - A atau $\mu_{\bar{a}}(x) = 1 - \mu_{\bar{a}}(x)$

Operator T-norm dan T-conorm

Enam Operator T-norm dan S-norm (T-conorm)

		T-norm (Product) (Intersection/Conjunction)	S-norm (Sum) (Union/Disjunction)
1	Min/Max	$T_{\min}(a,b) = \min(a,b) = a \wedge b$	$S_{MAX}(a,b) = max(a,b) = a \lor b$
2	Algebraic Product/Sum	$T_{ap}(a,b) = a b$	$S_{as}(a,b) = (a+b-a\ b)$
3	Bounded Product/Sum	$T_{bp}(a,b) = 0 \lor (a+b-1)$	$S_{bs}(a,b) = 1 \wedge (a+b)$
4	Drastic Product/Sum	$T_{dp}(a,b) = \begin{cases} & a, & \text{if } b=1\\ & b, & \text{if } a=1\\ & 0, & \text{if } a,b<1 \end{cases}$	$S_{ds}(a,b) = \begin{cases} & a, & \text{if } b = 0 \\ & b, & \text{if } a = 0 \\ & 1, & \text{if } a,b > 0 \end{cases}$
5	Einstein Product/Sum	$T_{ep}(a,b) = \frac{a b}{2 - [a+b-a b]}$	$S_{es}(a,b) = \frac{a+b}{1+a b}$
6	Hamacher Product/Sum	$T_{hp}(a,b) = \frac{a b}{a + b - a b}$	$S_{hs}(a,b) = \frac{a+b-2 a b}{1-a b}$

(1) Min/Max

T-norm

$$T_{min}(a,b) = min(a,b) = a \wedge b$$

$$S_{MAX}(a,b) = max(a,b) = a \lor b$$

(2) Algebraic Product/Sum

T-norm

$$T_{ap}(a,b) = a b$$

$$S_{as}(a,b) = (a + b - a b)$$

(3) Bounded Product/Sum

T-norm

$T_{bp}(a,b) = 0 \lor (a + b - 1)$

$$S_{bs}(a,b) = 1 \wedge (a + b)$$

(4) Drastic Product/Sum

T-norm

	a,	if b=1
$T_{dp}(a,b) = \langle$	b,	if a=1
- 1		if a,b<1

(5) Einstein Product/Sum

T-norm

(6) Hamacher Product/Sum

T-norm

T-norm, Cartesian Product

T-conorm, Cartesian Coproduct

Komplemen Fuzzy

Komplemen Fuzzy, $N(\mu)$

	Nama	Fuzzy
1	Klasik (Zadeh)	$1-\mu$
2	Sugeno	$\frac{1-\mu}{1+s\mu}$
3	Yager	$(1-\mu^w)^{1/w}$

Complement

Makin kecil nilai 's' atau 'w', kurva komplemen Sugeno atau Yager mendekati komplemen Zadeh.

Pustaka Acuan

- H.-J Zimmermann. Fuzzy Set Theory and Its Applications.
 2nd, Revised ed. 1991. Kluwer Academic. Norwell,
 Massachusetts USA.
- J.-S. R. Jang, C.-T. Sun, dan E. Mizutani. Neuro-Fuzzy and Soft Computing, Int'l ed. 1997. Prentice-Hall Int'l, Inc. Upper Saddle River, New Jersey USA.
- Herman Tolle, ST. MT. "Pengantar Sistem Pakar (Expert System)".
- Stuart Russell dan Peter Norvig. Artificial Intelligent: A Modern Approach, Int'l Ed. 2nd Edition. 2003. Pearson Education, Inc. Upper Saddle River, New Jersey USA.
- Peter Jackson. *Introduction to Expert Systems*, 3rd Edition. 1999. Addison Wesley Longman Limited. Edinburgh Gate, Essex England.

Please, visit the website associated with the book: <aima.cs.berkeley.edu>

SEKIAN

Diskusi:

Agust Isa Martinus

<agust.isa@umc.ac.id>