

Occ. TP

Étude des systèmes de laboratoire

Sciences
Industrielles de
l'Ingénieur

Doc. TP

Étude du robot MaxPID

1	Modélisation cinématique du bras Maxpid	2
1.1	Schéma cinématique	2
1.2	Détermination de la loi Entrée / Sortie	2
1.3	Détermination de la loi en vitesse	3
1 /	Tracá des courbes	3

1 Modélisation cinématique du bras Maxpid

1.1 Schéma cinématique

1.2 Détermination de la loi Entrée / Sortie

La fermeture de chaîne cinématique s'écrit ainsi:

$$\overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{0} \iff \lambda \overrightarrow{x_1} - b \overrightarrow{x_4} - a \overrightarrow{x_0'} = \overrightarrow{0}$$

Projetons cette relation dans le repère $\mathcal{R}_{0'}$:

$$\lambda \left(\cos\beta \overrightarrow{x_0'} + \sin\beta \overrightarrow{y_0'}\right) - b \left(\cos\theta' \overrightarrow{x_0'} + \sin\theta' \overrightarrow{y_0'}\right) - a \overrightarrow{x_0'} = \overrightarrow{0} \Longrightarrow \left\{ \begin{array}{c} \lambda \cos\beta - b \cos\theta' - a = 0 \\ \lambda \sin\beta - b \sin\theta' = 0 \end{array} \right.$$

Pour exprimer la loi entrée sortie, commençons par déterminer θ' en fonction de λ :

$$\lambda^2 = a^2 + b^2 \cos^2 \theta' + 2ab \cos \theta' + b^2 \sin^2 \theta' = a^2 + b^2 + 2ab \cos \theta' \Longleftrightarrow \theta' = \arccos\left(\frac{\lambda^2 - a^2 - b^2}{2ab}\right)$$

Une fermeture angulaire nous permet d'exprimer θ : $\theta' = \alpha + \theta$, on a donc :

$$\theta = \arccos\left(\frac{\lambda^2 - a^2 - b^2}{2ab}\right) - \alpha$$

Lorsque $\theta = 0$, on a $\lambda_0 = \sqrt{d^2 + (c+b)^2}$.

Notons γ la position angulaire du moteur et p le pas de la liaison hélicoïdale. On a donc $\lambda=\lambda_0-p\frac{\gamma}{2\pi}=\sqrt{d^2+(c+b)^2}-p\frac{\gamma}{2\pi}$. Au final,

$$\theta = \arccos\left(\frac{\left(\sqrt{d^2 + (c+b)^2} - p\frac{\gamma}{2\pi}\right)^2 - a^2 - b^2}{2ab}\right) - \arctan\left(\frac{d}{c}\right)$$

1.3 Détermination de la loi en vitesse

On a:

$$\dot{\theta} = -\frac{2\left(\sqrt{d^2 + (c+b)^2} - p\frac{\gamma}{2\pi}\right)\left(-p\frac{\dot{\gamma}}{2\pi}\right)}{2ab} - \frac{2ab}{1 - \left(\frac{\left(\sqrt{d^2 + (c+b)^2} - p\frac{\gamma}{2\pi}\right)^2 - a^2 - b^2}{2ab}\right)^2}$$

1.4 Tracé des courbes

Application numérique :

- $a = 106, 3 \,\mathrm{mm}$;
- $b = 59 \,\mathrm{mm}$;
- $c = 70 \, \text{mm}$;
- $d = 80 \, \text{mm}$.

Loi Entrée Sortie – Position angulaire du bras en fonction de la position du moteur

3