Digitális technika

XIV.

Vezérlő egységek tervezése Sorrendi hálózatok tervezése II. ***

14.1. Vezérlő egységek

1. Logikai rendszer

- bonyolult logikai feladat esetén nem túl jó megoldás egyetlen bonyolult logikai hálózatot tervezni!
- → célszerű a feladatot felbontani rész feladatokra →
- → több, egyszerű logikai hálózat (LH) együttműködő rendszerét kell kialakítani →
- → logikai rendszer (LR)

- a részfeladatokat, meghatározott funkciókat ellátó logikai hálózatok → funkcionális egységek (FE)
- a funkcionális egységek működését össze kell hangolni, ütemezni kell !! → ezt a speciális feladatot látja el egy speciális funkcionális egység, a vezérlő egység (VE)

-minden funkcionális egységek szintén bonyolult lehet → felbonthatók szintén kisebb funkcionális egységekre! → ez a felosztás több szinten (mélységben) folytatható

14.1. Vezérlő egységek

2. Vezérlőegység

- bonyolult szinkron sorrendi hálózat
- vezérlő egység (VE) bemeneti, kimeneti jelei →

Vezérlő egység típusai

- 1. huzalozott (hardveres) → gyors, de bonyolult, rugalmatlan (nem módosítható egyszerűen) lehet → a, fázisregiszteres vagy b, számláló rendszerű
- 2. mikroprogramozott → rugalmas, könnyen módosítható, de lassabb program ROM-ban

1. általános felépítése

TB – bemeneti időzítők (D tárolók)

TK – kimeneti időzítők (SR tárolók)

FR – fázisregiszterek → állapot tárolók (reteszelt D tárolók)

ha kevés állapot → N-ből 1 kód

ha sok állapot → kódolt → dekódoló egység is kell!

Mivel általában sok bemeneti jel, kimeneti jel és állapot van →

→ más felépítés és tervezési módszerek mint egy egyszerű sorrendi hálózat esetén → folyamatábra

2. működés leírása folyamatábrával

$$Z_{1}:1 = y_{1}*(X_{1} + \overline{X}_{2}*\overline{X}_{3})$$

$$Z_{1}:0 = y_{1}*X_{1}*\overline{X}_{2}$$

$$Z_{2}:1 = y_{1}*(X_{2} + \overline{X}_{2}*\overline{X}_{3})$$

$$Z_{2}:0 = y_{3}*X_{1}$$

$$Z_{3}:1 = y_{2} + y_{1}*X_{1}$$

$$Z_{3}:0 = y_{3}*X_{1}$$

$$Y_{1} = y_{3}*X_{1}$$

$$Y_{2} = y_{1}*(X_{2} + \overline{X}_{2}*\overline{X}_{3})$$

$$Y_{3} = y_{2}*(\overline{X}_{1}*X_{3} + X_{1}*\overline{X}_{2})$$

4. magyarázatok

Kétfázisú órajel (C1, C2)

Folyamat ábra műveletei

- bemeneti műveletek → bemenő jel vizsgálata

- kimeneti műveletek
 - → kimenő jel értékeinek beállítása

$$Z_1 \uparrow \rightarrow Z_1 = 1$$
 $Z_1 \downarrow \rightarrow Z_1 = 0$

$$Z_1 \downarrow \qquad \qquad Z_1 = 0$$

- szekunder műveletek
 - → az állapot változók 1 értékét beállító műveletek, az állapot változást (fázis átmenetet) okozzák

Y3 1

Egy másfajta megközelítés

Tárolósor tartalmazza a vezérlőjelek állapotát kódolt formában

Tervezési példa

Tervezési példa

megvalósítás JK tárolókkal, dekódolóval

Állapotátmeneti tábla

F=0 F=1

	QΑ	Q в	qc	Qa	Qв	Qc	Qa	Qв	Qс	JΑ	KA	J в	Кв	J c	Kc
q 7	1	1	1	1	1	0	1	1	0	-	0	-	0	-	1
q 6	1	1	0	0	1	1	0	0	1	-	1	-	F	1	-
q1	0	0	1	0	0	0	0	0	0	0	-	0	-	-	1
q o	0	0	0	1	1	1	1	1	1	1	-	1	-	1	-
q з	0	1	1	0	1	0	0	1	0	0	-	-	0	-	1
q 2	0	1	0	1	1	1	1	1	1	1	-	-	0	1	-

$$J_A = q_0 + q_2$$
 $K_A = q_6$
 $J_B = q_0$

$$K_B = q_6 * F$$

$$J_C = K_C = 1$$

Tervezési példa

megvalósítás

1. felépítése

2. jellemzői

- a művelet végrehajtás lépéseit mikroprogram írja le (mikroprogram tárban, memóriában)
- mikroutasítás felépítése

mikroutasítás

megoldás

Memória cím	Állapot, MK	СМ	CIM
000	q7	INC	-
001	q6	JF	q1
010	q3	INC	-
011	q2	JMP	q7
100	q1	INC	-
101	q0	JMP	q7

kódolás

Mem. cím	Bináris kód
000	111 01
001	110 11 100
010	011 01
011	010 00 000
100	001 01
101	000 00 000

mikroutasítás

kódolás

Memória cím	Állapot, MK	СМ	CIM
000	q6	INC	-
001	q4	JF	q5
010	q1	INC	-
011	q3	JMP	q6
100	q5	JMP	q3

Mem. cím	Bináris kód
000	110 01
001	100 00 100
010	001 01
011	011 10 000
100	101 10 011

1. mikroprogramozott vezérlő másképp

Kiindulás fázisregiszteres vezérlőből, de a kombinációs hálózatot memóriával valósítjuk meg!

→ rugalmas, könnyen módosítható vezérlés (a folyamatábra alapján a memóriában lévő programot kell módosítani)

TB – bemeneti időzítők (D tárolók) TK – kimeneti időzítők (SR tárolók)

FR – fázisregiszterek → állapot tárolók (reteszelt D tárolók)

<u>egyszerűsítve</u>

2. jellemzői

- memória tartalom módosításával különböző vezérlési folyamatábrákat valósíthatunk meg
- folyamatábra módosítása → elemi műveletek → egyszerre csak egy bemeneti jel vizsgálata, illetve csak egy kimenet beállítása
- az elemi műveleteknek megfelelő memóriabeli információegységek → mikroutasítások
- folyamatábra → mikroutasítások sorozata → mikroprogram

3. mikroutasítás

4. minta

Vizsgálat vagy beállítás értéke

14.6. Párbeszéd jellegű működés

Hand-shaking (kézfogás)

- Minden bemeneti változás létrehoz egy kimeneti változást, és új bemeneti változás csak azután következik be, miután az azt közvetlenül megelőző kimeneti változás már kifejtette hatását →
- bemeneti várakozó műveletek és kimeneti műveletek váltakozva következnek egymás után
- nyugtázó bemeneti kombinációk, minden kimeneti jelnek van egy nyugtázó párja a bemenetek között

Jelenkénti hand-shaking jellegű működés

14.6. Párbeszéd jellegű működés

Működés a környezet szempontjából

- Előnye: a jelforgalom nagy sebességgel és biztonságosan játszódhat le két egység között
- Akkor célszerű használni, ha viszonylag nagy késleltető hatású összeköttetéseken keresztül történik információ átvitel gyors működésű egységek között
- ha az összeköttetés jel késleltető hatása kicsi akkor kerülni kell !! → különösen aszinkron egységek esetén okozhat ugyanis hazárd jelenségeket

Tervezés funkcionális elem felhasználásával

1. mintafeladat

közlekedési jelzőlámpa vezérlő áramkör tervezése

4 állapot → 16 állapot

piros → piros-sárga → zöld → sárga → piros → ...

piros-sárga és sárga állapot rövid ideig tart → 1 állapot

piros és zöld állapot hosszabb ideig tart → 7 állapot

<u>Kimenetek:</u> vezérelni kell a három lámpát → P, S és Z

<u>A tervezés</u> → 4 bites szinkron számlálót (16 állapot)

+ kiegészítő kapuáramköröket használhatunk

állapotdiagram

1. mintafeladat, megoldás

A kombinációs hálózat igazságtáblázata:

	QD	Q c	Qв	QΑ	Р	S	Z
0.	0	0	0	0	1	0	0
1.	0	0	0	1	1	0	0
2.	0	0	1	0	1	0	0
3.	0	0	1	1	1	0	0
4.	0	1	0	0	1	0	0
5.	0	1	0	1	1	0	0
6.	0	1	1	0	1	0	0
7.	0	1	1	1	1	1	0
8.	1	0	0	0	0	0	1
9.	1	0	0	1	0	0	1
10.	1	0	1	0	0	0	1
11.	1	0	1	1	0	0	1
12.	1	1	0	0	0	0	1
13.	1	1	0	1	0	0	1
14.	1	1	1	0	0	0	1
15.	1	1	1	1	0	1	0

A piros 1-es ha
$$Q_D = 0$$

 $\rightarrow P = \overline{Q}_D$

A sárga 1-es ha Qc = 1 ÉS QB = 1 ÉS QA = 1

$$\rightarrow$$
 S = Qc * QB * QA

A zöld 1-es ha QD = 1 ÉS (NEM sárga)

$$\rightarrow$$
 Z = QD * \overline{S}

1. mintafeladat, megoldás

2. minta feladat: forgalmi jelzőlámpa vezérlő áramkör tervezése másképp

4 állapot van: → 2 állapotváltozó (Q² és Q¹) piros → piros+sárga → zöld → sárga → piros → ... Piros és zöld állapotból csak hosszabb késleltetés után lép tovább !! → K bemenet jelzi (1-el) hogy a késleltetés letelt

Kimenetek:

- vezérelni kell a három lámpát →
 P, S és Z kimenetek
- indítani kell a késleltető áramkört, ha zöld
 vagy piros állapotba lépünk → I kimenetre 1-es

4 állapot → pl. piros=00, zöld=11, sárga=10, piros+sárga=01

állapotdiagram

kódolt állapotdiagram

2. minta feladat, a hálózat felépítése:

Attól függően, hogy milyen tárolókat használunk → változik a kimenetek száma

- → T vagy D tárolók esetén 2 kimenet kell a két tároló vezérléséhez (T1, T2 vagy D1, D2)
- → JK tárolók esetén 4 kimenet kell a két tároló vezérléséhez (J₁, J₂, K₁, K₂) és változik a kombinációs hálózat felépítése is !!

megvalósítás JK tárolókkal

A JK tárolók vezérlési függvényeinek és a kimenetek függvényeinek meghatározása

kódolt állapotdiagram

állapot átmeneti tábla

K	q 2	q1	Q ₂	Q ₁	J 2	K ₂	J ₁	K ₁	I	Р	S	Z
0	0	0	0	0	?	?	?	?	?	?	?	?
0	0	1	1	1	?	?	?	?	?	?	?	?
0	1	0	0	0	?	?	?	?	?	?	?	?
0	1	1	1	1	?	?	?	?	?	?	?	?
1	0	0	0	1	?	?	?	?	?	?	?	?
1	0	1	1	1	?	?	?	?	?	?	?	?
1	1	0	0	0	?	?	?	?	?	?	?	?
1	1	1	1	0	?	?	?	?	?	?	?	?

A JK tárolók vezérlési függvényeinek és a kimenetek függvényeinek meghatározása

kódolt állapotdiagram

állapot átmeneti tábla

K	q 2	q1	Q ₂	Q ₁	J 2	K ₂	J ₁	K ₁	I	Р	S	Z
0	0	0	0	0	0	Х	0	Х	1	1	0	0
0	0	1	1	1	1	Х	Х	0	0	1	1	0
0	1	0	0	0	Х	1	0	Х	0	0	1	0
0	1	1	1	1	Х	0	Х	0	1	0	0	1
1	0	0	0	1	0	Х	1	Х	1	1	0	0
1	0	1	1	1	1	Х	Х	0	0	1	1	0
1	1	0	0	0	Х	1	0	Х	0	0	1	0
1	1	1	1	0	Х	0	X	1	1	0	0	1

vezérlési táblák

J_2 K	00	01	11	10
0	0	1	Х	X
1	0	1	Х	Х

vezérlési függvények

$$J_1 = K^*\overline{q}_2 \qquad K_1 = K^*q_2$$

$$K_1 = K^*q$$

$$J_2 = q_1$$

$$K_2 = \overline{q_1}$$

Kimeneti függvények

P K q20	00	01	11	10
$\frac{0}{q_2}$	1	1	0	0
1	1	1	0	0

kimeneti függvények

$$I = q_1 * q_2 + \overline{q}_1 * \overline{q}_2$$
 $P = \overline{q}_2$ $S = q_1 * \overline{q}_2 + \overline{q}_1 * q_2 = \overline{I}$ $Z = q_1 * q_2$

XOR

<u>megoldás</u>

14.8. Sorrendi hálózatok modellezése

<u>Kimenet előállításának módja</u>

Mealy-modell

$$Z = f_z(X,q)$$

$$Q = f_q(X,q)$$

A kimenetek és az új állapotok a bemenetektől és a jelenlegi állapotoktól is függenek

Moore-modell

$$Z = f_z(q)$$

$$Q = f_q(X,q)$$

A kimenetek közvetlenül csak a jelenlegi állapotoktól függenek!!

14.9. Jelterjedési késleltetések hatása

- aszinkron hálózatok esetén lehetnek problémák
- statikus és dinamikus hazárd (kapuk késleltetése miatti hibák) kiküszöböltnek tekintett

1. funkcionális hazárd

- a bemeneti változók közötti versenyhelyzet okozza
- nem szomszédos bemeneti kombináció változás

2. versenyhelyzet

- nem jön létre hibás stabil állapot csak az változhat, hogy a helyes stabil állapotot milyen instabil állapotok közbeiktatásával éri el a hálózat

3. kritikus versenyhelyzet

- a szekunder változók (állapot változók) közötti versenyhelyzet
- ha a szekunder változók nem egyszerre változnak → hibás állapot-átmenet jöhet létre! → esetleg hibás stabil állapot is kialakulhat!!
- kiküszöbölése → állapot kódolás megfelelő megválasztása (egyszerre csak egy állapot változó változzon)

14.9. Jelterjedési késleltetések hatása

4. lényeges hazárd

- a bemeneti változók és a szekunder változók közötti versenyhelyzet okozza (késleltetési viszonyok miatt)

> hiba lehetőség, Olyan instabil állapot jöhet létre, amely hibás stabil állapotba vezeti a hálózatot

- kiküszöbölése

- a megfelelő visszacsatoló ágakba megfelelő értékű késleltetés beépítése
- aszinkron hálózatoknál feltételeztük ugyanis, hogy a hálózatot először a bemeneti változás éri, majd ezután érvényesül a szekunder változók változása

Minta feladat 1.: pozitív él-vezérelt D tároló tervezése Megvalósítás visszacsatolt kombinációs hálózattal → C rendes bemenet)

Amikor a C bemenet $0 \rightarrow 1$ átmenetet csinál akkor Q = D (a kimenet felveszi a bemenet értékét), egyébként Q = q (tárolja az előző állapotot)

C – clock ---> órajel bemenet

1. előzetes állapottábla

stabil állapot

Minden sorban egy stabil állapot legyen! Nem szomszédos bemeneti változás ne legyen egy sorban! → határozatlan

2. állapot összevonás

a, b,
$$d \rightarrow A$$

$$e, f, g \rightarrow C$$

$$C \rightarrow B$$

$$h \rightarrow D$$

3. összevont állapottábla

4. állapot kódolás

4 állapot → 2 állapot változó Minden állapotváltozás esetén egyszerre csak egy állapot változó változzon !!

	y 1	y 2	
Α	0	0	kódolt állapot tábla
В	0	1	
С	1	1	
D	1	0	

állapotdiagram

\ DC				`	Y1Y2Q
y1 y2	00	01	11	10	•
00	000	000	000	01 0	
01	00 0	-	11 -	010	
11	10 1	111	111	111	
10	101	00 -	-	11 1	

5. vezérlési tábla összeállítása

6. logikai függvények egyszerűsítése

7. kapcsolási rajz

Minta feladat 2.:

A bemenet (A) állapot változásait számoljuk két biten (Z2 Z1)

4 állapot a, b, c, d (0, 1, 2, 3), ahol éppen tart a számolásban

1. állapotdiagram

2. előzetes állapottábla

3. állapot összevonás

Most nem lehet állapotokat összevonni

4. állapot kódolás

Minden állapotváltozás esetén egyszerre csak egy állapot változó változzon !!

→ ellenkező esetben hibás állapot-átmenet lehetséges (kritikus versenyhelyzet)

5. kódolt állapottábla

A		
y2 y1	0	1
00	00 00	01 10
01	11 01	01 10
11	11 01	10 11
10	00 00	10 11

Egy cella tartalma: Y₂ Y₁ Z₁ Z₂

6. vezérlési tábla

Először dönteni a megvalósításról: aszinkron tárolókkal, vagy visszacsatolt kombinációs hálózattal

Ha visszacsatolt, akkor vezérlési tábla = kódolt állapot tábla

Karnaugh táblákba átírni az Y2 Y1 Z1 Z2 értékeket

7. függvények egyszerűsítése

		Y 1
Α _	١	
y2 y1	0	1
y2 y1 \ 00	0	1
01	1	1
11	1	0
10	0	0

$$Y_2 = \overline{A} * y_1 + y_1 * y_2 + A * y_2$$

$$Y_1 = \overline{A} * y_1 + y_1 * \overline{y}_2 + A * \overline{y}_2$$

$$Z_1 = A$$
 $Z_2 = \overline{A} * y_1 + y_1 * y_2 + A * y_2$

$$Z_2 = Y_2$$