0.1 H12 数学選択

[8] (1) $\pi(ab) = (ab)^2 = a^2b^2 = \pi(a)\pi(b)$ である. よって準同型.

 $(2)\pi(a)=b\in {
m Im}\,\pi$ に対して, $\pi(x)=b$ なら x は $x^2-b=0$ の根である. したがって $\pi(x)=b$ となる x は a,-a のみ.

a=-a なら a=0 \lor 2=0 \in \mathbb{F}_p^{\times} である. $a\in\mathbb{F}_p^{\times}$ より $a\neq 0$ で p は奇素数であるから $2\neq 0$ である. よって $a\neq -a$ である.

したがって位数は $\frac{p-1}{2}$ である.

 $(3)\ker \pi^2 = \{x \mid x^4 = 1\}$ である. $x^2 = 1$ となる x は 1, -1 のみ. $x \in \ker \pi^2$ で $x \neq \pm 1$ なら $x^2 = -1$ である.

したがって p-1 が 4 の倍数ならば -1 は平方剰余であるから $\ker \pi^2$ は位数 4 の群 $\{-1,1,a,-a\}$ $(a^2=-1)$ となる.

p-1 が 4 の倍数でないならば -1 は平方非剰余であるから $\ker \pi^2$ は位数 2 の群 $\{-1,1\}$ となる.

 $(4)1^2=1, 2^2=4, 3^2=9, 4^2=5, 5^2=3$ であるから, \mathbb{F}_{11}^{\times} は x^2-2 の根を持たない. よって x^2-2 は既約である.

 $x^4 - 2 = (x^2 + 4x + 8)(x^2 + 7x + 8)$ であるから既約でない.

9 (1)G による不変体を L^G とする. $G=\{\sigma,\tau,\sigma\circ\tau\}$ である. $\sigma(x^2+y^2)=y^2+x^2,\sigma(xy)=yx,\tau(x^2+y^2)=x^2+y^2,\tau(xy)=xy$ であるから $K\subset L^G$ である. $[L:L^G]=|\operatorname{Gal}(L/L^G)|=|G|=4$ である.

L=K(x) である. $(t-x)(t+x)(t-y)(t+y)=t^4-(x^2+y^2)t^2+x^2y^2$ であるから $[L:K]\leq 4$ である. したがって $K=L^G$ である. よって L/K は Galois 拡大で galois 群は G である.

(2)G の非自明な部分群は $\langle \sigma \rangle, \langle \tau \rangle, \langle \sigma \circ \tau \rangle$ である。 $\sigma(x+y) = y+x, \tau(x^2-y^2) = x^2-y^2, \sigma \circ \tau(x-y) = x-y$ であり,また $\tau(x+y) = -x-y, \sigma(x^2-y^2) = y^2-x^2, \tau(x-y) = -x+y$ である。よって $K(x+y), K(x^2-y^2), K(x-y)$ がそれぞれに対応する中間体である。これに L, K を加えたものが全ての中間体である。