$12n_{0502} (K12n_{0502})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^9 - 2u^8 + 5u^7 + 11u^6 - 2u^5 - 14u^4 - 15u^3 - 6u^2 + 2b - u - 1, \\ &- u^9 - 2u^8 + 7u^7 + 15u^6 - 14u^5 - 38u^4 + u^3 + 32u^2 + 4a + 11u - 3, \\ &u^{10} + 4u^9 - 2u^8 - 24u^7 - 16u^6 + 35u^5 + 44u^4 + 11u^3 - u^2 + 3u + 1 \rangle \\ I_2^u &= \langle b, \ a^3 + a^2u - a^2 - 2u + 3, \ u^2 - u - 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 16 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^9 - 2u^8 + \dots + 2b - 1, \ -u^9 - 2u^8 + \dots + 4a - 3, \ u^{10} + 4u^9 + \dots + 3u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{4}u^{9} + \frac{1}{2}u^{8} + \dots - \frac{11}{4}u + \frac{3}{4} \\ \frac{1}{2}u^{9} + u^{8} + \dots + \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{4}u^{9} + \frac{1}{2}u^{8} + \dots - \frac{11}{4}u + \frac{3}{4} \\ -\frac{1}{4}u^{9} - \frac{1}{4}u^{8} + \dots + \frac{7}{2}u^{2} - \frac{3}{4}u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{7}{4}u^{9} - \frac{13}{4}u^{8} + \dots - \frac{7}{4}u + \frac{1}{2} \\ -\frac{25}{4}u^{9} - \frac{45}{4}u^{8} + \dots - \frac{35}{4}u - 3 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{4}u^{8} - \frac{3}{4}u^{7} + \dots - 3u - \frac{3}{4} \\ -\frac{1}{4}u^{9} - \frac{1}{2}u^{8} + \dots + \frac{5}{4}u - \frac{1}{4} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{4}u^{9} - \frac{3}{4}u^{8} + \dots - \frac{7}{4}u - 1 \\ -\frac{1}{4}u^{9} - \frac{1}{2}u^{8} + \dots + \frac{5}{2}u - \frac{1}{4}u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} - 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{2}u^{8} - u^{7} + \dots + \frac{1}{2}u + \frac{3}{2} \\ \frac{3}{4}u^{9} + \frac{7}{4}u^{8} + \dots + \frac{5}{2}u^{2} - \frac{3}{4}u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-u^9 - 5u^8 + \frac{61}{2}u^6 + 29u^5 - \frac{91}{2}u^4 - 68u^3 - 15u^2 + \frac{15}{2}u - \frac{29}{2}u^4 - \frac{15}{2}u^4 -$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{10} + 29u^9 + \dots - 19u + 4$
c_2, c_5	$u^{10} + 3u^9 - 10u^8 - 34u^7 - 17u^6 + 7u^5 + 59u^4 - 55u^3 - 11u^2 - 5u - 2$
c_3, c_{11}	$u^{10} - 3u^9 + 8u^8 - 13u^7 + 18u^6 - 20u^5 + 16u^4 - 11u^3 + 3u^2 - 2u - 1$
c_4	$u^{10} - 25u^9 + \dots - 1689u - 389$
c_6, c_7, c_9 c_{10}	$u^{10} + 4u^9 - 2u^8 - 24u^7 - 16u^6 + 35u^5 + 44u^4 + 11u^3 - u^2 + 3u + 1$
c_8	$u^{10} + u^9 + \dots - 160u - 64$
c_{12}	$u^{10} - 2u^9 - 11u^8 + 16u^7 + 23u^6 + 10u^5 - u^4 + 5u^3 + 6u^2 + 4u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{10} - 301y^9 + \dots - 5681y + 16$
c_2, c_5	$y^{10} - 29y^9 + \dots + 19y + 4$
c_3, c_{11}	$y^{10} + 7y^9 + 22y^8 + 31y^7 - 76y^5 - 144y^4 - 141y^3 - 67y^2 - 10y + 1$
c_4	$y^{10} - 169y^9 + \dots - 1357405y + 151321$
c_6, c_7, c_9 c_{10}	$y^{10} - 20y^9 + \dots - 11y + 1$
c_8	$y^{10} - 35y^9 + \dots - 5120y + 4096$
c_{12}	$y^{10} - 26y^9 + \dots - 4y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.770282 + 0.350441I		
a = -0.175699 + 0.338848I	-0.295773 + 0.495817I	-13.91306 - 1.36095I
b = 0.722401 + 0.709455I		
u = -0.770282 - 0.350441I		
a = -0.175699 - 0.338848I	-0.295773 - 0.495817I	-13.91306 + 1.36095I
b = 0.722401 - 0.709455I		
u = 0.238689 + 0.328179I		
a = 0.29003 - 2.34120I	2.64731 + 2.28565I	-6.52151 - 0.97940I
b = -0.187083 + 0.681344I		
u = 0.238689 - 0.328179I		
a = 0.29003 + 2.34120I	2.64731 - 2.28565I	-6.52151 + 0.97940I
b = -0.187083 - 0.681344I		
u = -0.293390		
a = 0.935254	-0.595897	-16.6550
b = 0.468829		
u = 1.78423 + 0.22622I		
a = -0.335255 + 0.782997I	-9.27245 - 2.54510I	-15.8897 + 2.0711I
b = -1.44386 + 1.68806I		
u = 1.78423 - 0.22622I		
a = -0.335255 - 0.782997I	-9.27245 + 2.54510I	-15.8897 - 2.0711I
b = -1.44386 - 1.68806I		
u = -2.03029 + 0.17685I		
a = 1.52970 + 0.03504I	15.1518 + 6.6636I	-15.1690 - 2.5369I
b = 3.31663 - 1.27082I		
u = -2.03029 - 0.17685I		
a = 1.52970 - 0.03504I	15.1518 - 6.6636I	-15.1690 + 2.5369I
b = 3.31663 + 1.27082I		
u = -2.15130		
a = -1.55281	10.4531	-17.3580
b = -4.28499		

II.
$$I_2^u = \langle b, a^3 + a^2u - a^2 - 2u + 3, u^2 - u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u-1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a \\ -au-a \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} a^{2}u + a - u + 1 \\ -au-a \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a^{2}u + a - u + 1 \\ -au-a \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2a^{2}u - a^{2} + u \\ -2a^{2}u - a^{2} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a^{2}u - au - u + 1 \\ -au - a \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $a^2 2au + a + u 17$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_{11}	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
c_3	$(u^3 + u^2 + 2u + 1)^2$
C4	$u^6 + 2u^5 + 5u^4 - 2u^3 + 3u^2 + 3u - 1$
<i>C</i> ₅	$(u^3 - u^2 + 1)^2$
c_6, c_7	$(u^2 + u - 1)^3$
<i>c</i> ₈	u^6
c_9, c_{10}	$(u^2-u-1)^3$
c_{12}	$u^6 + u^5 - u^4 - 4u^3 + 3u^2 - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_{11}	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_5	$(y^3 - y^2 + 2y - 1)^2$
c_4	$y^6 + 6y^5 + 39y^4 + 12y^3 + 11y^2 - 15y + 1$
c_6, c_7, c_9 c_{10}	$(y^2 - 3y + 1)^3$
c ₈	y^6
c_{12}	$y^6 - 3y^5 + 15y^4 - 24y^3 + 11y^2 - 6y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = -1.22142	-2.10041	-18.8570
b = 0		
u = -0.618034		
a = 1.41973 + 1.20521I	2.03717 - 2.82812I	-13.8803 + 6.1171I
b = 0		
u = -0.618034		
a = 1.41973 - 1.20521I	2.03717 + 2.82812I	-13.8803 - 6.1171I
b = 0		
u = 1.61803		
a = -0.542287 + 0.460350I	-5.85852 + 2.82812I	-14.0872 - 1.5287I
b = 0		
u = 1.61803		
a = -0.542287 - 0.460350I	-5.85852 - 2.82812I	-14.0872 + 1.5287I
b = 0		
u = 1.61803		
a = 0.466540	-9.99610	-16.2080
b = 0		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^3 - u^2 + 2u - 1)^2)(u^{10} + 29u^9 + \dots - 19u + 4)$
c_2	$(u^3 + u^2 - 1)^2 \cdot (u^{10} + 3u^9 - 10u^8 - 34u^7 - 17u^6 + 7u^5 + 59u^4 - 55u^3 - 11u^2 - 5u - 2)$
c_3	$(u^{3} + u^{2} + 2u + 1)^{2}$ $\cdot (u^{10} - 3u^{9} + 8u^{8} - 13u^{7} + 18u^{6} - 20u^{5} + 16u^{4} - 11u^{3} + 3u^{2} - 2u - 1)$
c_4	$(u^6 + 2u^5 + \dots + 3u - 1)(u^{10} - 25u^9 + \dots - 1689u - 389)$
c_5	$(u^3 - u^2 + 1)^2 \cdot (u^{10} + 3u^9 - 10u^8 - 34u^7 - 17u^6 + 7u^5 + 59u^4 - 55u^3 - 11u^2 - 5u - 2)$
c_6, c_7	$(u^{2} + u - 1)^{3}$ $\cdot (u^{10} + 4u^{9} - 2u^{8} - 24u^{7} - 16u^{6} + 35u^{5} + 44u^{4} + 11u^{3} - u^{2} + 3u + 1)$
C ₈	$u^6(u^{10} + u^9 + \dots - 160u - 64)$
c_9, c_{10}	$(u^{2} - u - 1)^{3}$ $\cdot (u^{10} + 4u^{9} - 2u^{8} - 24u^{7} - 16u^{6} + 35u^{5} + 44u^{4} + 11u^{3} - u^{2} + 3u + 1)$
c_{11}	$(u^{3} - u^{2} + 2u - 1)^{2}$ $\cdot (u^{10} - 3u^{9} + 8u^{8} - 13u^{7} + 18u^{6} - 20u^{5} + 16u^{4} - 11u^{3} + 3u^{2} - 2u - 1)$
c_{12}	$(u^{6} + u^{5} - u^{4} - 4u^{3} + 3u^{2} - 1)$ $\cdot (u^{10} - 2u^{9} - 11u^{8} + 16u^{7} + 23u^{6} + 10u^{5} - u^{4} + 5u^{3} + 6u^{2} + 4u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^3 + 3y^2 + 2y - 1)^2)(y^{10} - 301y^9 + \dots - 5681y + 16)$
c_{2}, c_{5}	$((y^3 - y^2 + 2y - 1)^2)(y^{10} - 29y^9 + \dots + 19y + 4)$
c_3, c_{11}	$(y^3 + 3y^2 + 2y - 1)^2$ $\cdot (y^{10} + 7y^9 + 22y^8 + 31y^7 - 76y^5 - 144y^4 - 141y^3 - 67y^2 - 10y + 1$
c_4	$(y^6 + 6y^5 + 39y^4 + 12y^3 + 11y^2 - 15y + 1)$ $\cdot (y^{10} - 169y^9 + \dots - 1357405y + 151321)$
c_6, c_7, c_9 c_{10}	$((y^2 - 3y + 1)^3)(y^{10} - 20y^9 + \dots - 11y + 1)$
c_8	$y^6(y^{10} - 35y^9 + \dots - 5120y + 4096)$
c_{12}	$(y^6 - 3y^5 + \dots - 6y + 1)(y^{10} - 26y^9 + \dots - 4y + 1)$