Shoenfield 絶対性の応用としての Σ_1^1 Lebesgue 可測性

でぃぐ

2022年12月8日

本稿では、Shoenfield 絶対性定理を使って、任意の Σ_1^1 集合が Lebesgue 可測であることを示す.

次が Shoenfield 絶対性と呼ばれる定理である. 証明は Kanamori [Kan08] の Theorem 13.15 か, Jech [Jec03] の Theorem 25.20 を参照せよ.

定理 1 (Shoenfield). ZF の推移的内部モデル M について, Σ_2^1 関係と Π_2^1 関係は絶対的である.

ランダム強制法を Bと書く. すなわち,

$$\mathbb{B} = \{F : F \subseteq 2^{\omega}, F \text{ は閉集合かつ } \mu(F) > 0\}$$

で順序は通常の包含関係である.

次の補題を準備しておく.

補題 2 ([Kho11, Lemma 2.1.10]). 実数の集合 A について A が Lebesgue 測度 0 であることは次と同値である:

$$(\forall B \in \mathbb{B})(\exists C \in \mathbb{B})(C \le B \land C \cap A = \varnothing). \tag{*}$$

証明. A が Lebesgue 測度 0 であると仮定し, $B \in \mathbb{B}$ とする. すると $B \setminus A$ は Lebesgue 測度 正である. よって測度の正則性によって,測度正な閉集合 $C \in B \setminus A$ がとれる. これで (*) が 導かれた.

逆に (*) を仮定する. $D=\{B\in\mathbb{B}:B\cap A=\varnothing\}$ とおくと,D は \mathbb{B} の稠密集合である.そこで極大反鎖 $A\subseteq D$ をとる. \mathbb{B} は可算鎖条件を満たすので,E は可算集合である.よって, $C=2^\omega\setminus\bigcup E$ は Borel 集合であり, $A\subseteq C$ となる.C はどの $B\in E$ とも disjoint なので,測度 0 集合でないといけない(そうでないとすれば,E の極大性に反する).したがって,A も測度 0 である.

ランダム実数についての知識は仮定する. アメーバ強制法とは

$$\mathbb{A} = \{U : U \subseteq 2^{\omega}, U \text{ は開集合かつ } \mu(U) < 1/2\}$$

で $U' \leq U \iff U \subseteq U'$ と定義される強制法である. 重要な性質は次である:

証明は [BJ95, p.106] を見よ.

また、Borel コードに関する知識も仮定する.Borel コード c の解釈を本稿では \hat{c} と書く.

補題 3. $A = \{x : \varphi(x)\}$ を実数の Σ_2^1 集合とする. このとき Borel コード c が存在して

$$\mathbb{A} \Vdash \mu(A \triangle \hat{c}) = 0$$

となる.

証明. 標準的なランダム実数の名前を \dot{r} として,ランダム強制法によるブール値 $[\![\varphi(\dot{r})]\!]_{\mathbb{B}}$ を考える.これは Borel 集合なのでその Borel コード c を取る.このとき

$$\mathbb{A} \Vdash (\forall x : V \perp \mathcal{O} \ni \mathcal{V} \not\subseteq \mathcal{A}) (x \in A \iff x \in \hat{c})$$

である.

実際, G を (V, \mathbb{A}) ジェネリックフィルターとして, x を V 上のランダム実数とする. このとき

$$\begin{split} V[G] &\models x \in A \iff V[G] \models \varphi(x) \\ &\iff V[x] \models \varphi(x) \\ &\iff V[x] \models x \in \hat{c} \\ &\iff V[G] \models x \in \hat{c} \end{split}$$

である.2 つ目は Shoenfield 絶対性,3 つ目は $\mathbb{B} \Vdash \varphi(\dot{r}) \leftrightarrow \dot{r} \in \hat{c}$ であることと,x のランダム性を使った.4 つ目は Borel 関係の絶対性を使った.

ここで式 1 を使うと,ある測度 1 な集合の全ての元 x について, $x \in A \iff x \in \hat{c}$ なので,(V[G] の中で)

$$\mu(A \triangle \hat{c}) = 0$$

である.

定理 4. Σ_1^1 集合はすべて Lebesgue 可測である.

証明. A を Σ_1^1 集合とする. c を補題 3 の Borel コードとする. すると $V^{\mathbb{A}}$ において, $0 = \mu(A \triangle \hat{c}) = \mu(A \setminus \hat{c}) + \mu(\hat{c} \setminus A)$ である.

今, $A \setminus \hat{c}$ は Σ_1^1 である. すると $\mu(A \setminus \hat{c}) = 0$ という式は Σ_2^1 で書ける. 実際, B を Σ_1^1 集合として, 測度が 1/n 以下の開集合のコードたちの集合を G_n とおくと

$$\mu(B) = 0 \iff (\forall n \ge 1)(\exists a \in G_n)(B \subseteq \hat{a})$$

であり、この式の右辺は Σ_2^1 である $(G_n$ という集合が Borel 集合なことに注意). よって、Shoenfield 絶対性により、V でも $\mu(A \setminus \hat{c}) = 0$ である.

他方で、 $V^{\mathbb{A}}$ で $\mu(\hat{c} \setminus A) = 0$ だが $\hat{c} \setminus A$ が Π_1^1 集合なので、 $\mu(\hat{c} \setminus A) = 0$ は Π_3^1 式で書ける、実際、補題 2 より、

$$(\forall B \in \mathbb{B})(\exists C \in \mathbb{B})(C \leq B \land C \cap (\hat{c} \setminus A) = \varnothing)$$

を考えればよいが, $\mathbb B$ の元を渡る量化を Borel コードを渡る量化と見て,閉集合の測度は Borel に計算できるだとか,閉集合のコード同士の解釈したときの包含関係が Borel に計算できると いったことを使えば,この式は Π_3^1 になっている.今,Shoenfield 絶対性より Σ_2^1 関係は絶対的なので, Π_3^1 関係は下向きに絶対的である.よって, $V^{\mathbb A}$ で成り立つ $\mu(\hat c \setminus A) = 0$ は V でも成り立つ

以上より V でも $\mu(A \setminus \hat{c}) = \mu(\hat{c} \setminus A) = 0$ となる.よって,V で $\mu(A \triangle \hat{c}) = 0$ だから,A は Lebesgue 可測である.

参考文献

- [BJ95] Tomek Bartoszynski and Haim Judah. Set Theory: on the structure of the real line. CRC Press, 1995.
- [Jec03] Thomas Jech. Set theory. Vol. 14. Springer, 2003.
- [Kan08] Akihiro Kanamori. The higher infinite: large cardinals in set theory from their beginnings. Springer Science & Business Media, 2008.
- [Kho11] Yurii Khomskii. Regularity Properties and Definability in the Real Number Continuum: idealized forcing, polarized partitions, Hausdorff gaps and mad families in the projective hierarchy. University of Amsterdam, 2011.