

Image enhancement (GW-Ch. 3)

Process of improving image quality so that the result is more suitable for a specific application.

- contrast stretching
- histogram processing
- smoothing
- sharpening: spatial filtering for edge enhancement

Point operations

(a) Contrast stretching. (b) Thresholding.

Classification of image operations

- Point operation: output pixel value depends only on corresponding input pixel (e.g. contrast stretch): $f_{out}(x,y) = \mathfrak{O}\left(f_{in}(x,y)\right) \text{ where } \mathfrak{O} \text{ denotes the grey scale transformation (GST) function.}$
- Local operation: output pixel value depends on neighbourhood $\mathcal{B}(x,y)$ of input pixel: $f_{out}(x,y) = \mathcal{O}\left(\{f_{in}(x',y'): (x',y') \in \mathcal{B}(x,y)\}\right)$.
- Global operation: output pixel value depends on all input pixels. Example: (discrete) Fourier transform.
- Geometric operation: spatial transformation (scaling, translation)

2

Neighbourhood operation

Transforming an image by moving a neighbourhood over the image.

3

Linear contrast stretching

Contrast stretch (normalize)

- Used if features of interest occupy only a small range of the available grey levels
- Let the input image f_{in} have minimum and maximum grey level m and M ($M>m\geq 0$), respectively. Then the following operation stretches the image to full grey level range [0..255]:

$$f_{out}(x,y) = \frac{255}{M-m} (f_{in}(x,y) - m).$$

5

Histogram processing

The histogram of the image I is defined as

$$h(m) = \#\{(r,c) \in D : I(r,c) = m\}$$

In words, h(m) is the number of times the grey value m occurs in the image I.

input

contrast stretched

Histogram equalisation

- Goal: flat histogram in the output, i.e., on average an equal number of pixels at each grey level.
- If the image has N pixels and grey level range [0,L-1], the output image will have N/(L-1) pixels at each grey level.
- The grey scale transformation achieving histogram equalisation is $\mathcal{O}(f(x,y)) = (L-1) \, \mathsf{P}(f(x,y))$, where

$$\mathsf{P}(\ell) = \frac{1}{N} \sum_{m=0}^{\ell} h(m)$$

is the normalised cumulative histogram function.

Contrast stretching & histogram equalisation

(a): input image. (b): contrast stretch of (a). (c): histogram equalisation of (a).

11

Spatial filtering

- A filter kernel or filter mask is a set of coefficients w(s,t)where (s,t) runs over small neighbourhood N of the origin: $\mathcal{N} = \{(s,t) : -a \leq s \leq a, -b \leq t \leq b\}$. Usually $\sum_{(s,t)\in\mathcal{N}} w(s,t) = 1.$
- Spatial filtering transforms an input image f to an output image q by moving the mask to each pixel (x, y)and summing the pixel values in the neighbourhood of multiplied by the corresponding filter coefficient:

$$g(x,y) = \sum_{-a}^{a} \sum_{-b}^{b} w(s,t) f(x+s,y+t)$$

Spatial filtering

10

12

Spatial filtering

• The expression

$$g(x,y) = (w \not r f)(x,y) = \sum_{-a}^{a} \sum_{-b}^{b} w(s,t) f(x+s,y+t)$$

is called the correlation of w and f.

• The expression

$$g(x,y) = (w \star f)(x,y) = \sum_{a=0}^{a} \sum_{b=0}^{b} w(s,t) f(x-s,y-t)$$

is called the convolution of w and f.

Spatial filtering

Smoothing filters

 Note that these operations can be easily mapped to one another:

$$g(x,y) = (w \not \approx f)(x,y) = (\tilde{w} \star f)(x,y)$$

where $\tilde{w}(s,t) = w(-s,-t)$ is the mirrored version of w.

13

Local averaging

	1	1	1
$\frac{1}{9}$ ×	1	1	1
	1	1	1

	1	2	1
$\frac{1}{16}$ ×	2	4	2
	1	2	1

Left: uniform. Right: nonuniform.

- Local averaging: lowpass filtering within a small neighbourhood or mask surrounding each pixel (discrete convolution).
- Order statistic (percentile) filters: rank the pixel values within the mask surrounding the center pixel (e.g., median filtering) for noise reduction without blurring of the edges.
- Morphological filters: general class of nonlinear filters.

university of groningen

Uniform filter in Matlab

```
function [g] = uniform (f)
A=im2double(f);
                      % convert image to double
nr=size(A,1);
                      % number of rows
nc=size(A,2);
                      % number of columns
% Shift A cyclically in four directions
A_{up}=[A(2:nr,:); A(1,:)];
                                   % one row up
A_{\text{down}}=[A(nr,:); A(1:nr-1,:)]; % one row down
A_{\text{left}} = [A(:,2:nc) \ A(:,1)];
                                   % one column to left
A_{right} = [A(:,nc) \ A(:,1:nc-1)]; % one column to right
B=0.2*(A+A_up+A_down+A_left+A_right); % uniform filter
g=im2uint8(B);
                                        % convert to 8-bit
```

14

Smoothing filters

Sharpening filters

(a): Original. (b): uniform filter. (c): percentile filter.

• Goal is to enhance fine details such as edges

 Can be performed by using highpass filters based upon spatial differentiation

• Can be implemented by discrete convolution with appropriate masks.

18

university of groningen

Prewitt operator

-1	-1	-1
0	0	0
+1	+1	+1

-1	0	+1
-1	0	+1
-1	0	+1

 $\frac{\partial f}{\partial y}$ (discrete)

 $\frac{\partial f}{\partial x}$ (discrete)

Kernels for the Prewitt operator.

Sobel operator

- Each point is convolved with two kernels, one for detecting horizontal edges and the other for vertical edges.
- Output of the operator is the maximum or square root of the two convolutions.

-1	-2	-1
0	0	0
+1	+2	+1

-1	0	+1
-2	0	+2
-1	0	+1

Kernels for the Sobel operator.

17

Laplace operator

0	-1	0
-1	4	-1
0	-1	0

-1	-1	-1
-1	8	-1
-1	-1	-1

21

Laplacian convolution kernels (discrete 2^{nd} derivative)

Sharpening filters

Effect of sharpening filters.

(a): Original. (b): Laplace filter. (c): Sobel filter.