1 Trasformata di Fourier di distribuzioni

Problema: Data $T \in \mathcal{D}'(\mathbb{R}^n)$, come definire \hat{T} ?

Idea: Scaricare \mathcal{F} sulle funzioni test, dal momento che sappiamo

$$\int_{\mathbb{R}^n} \hat{v}u = \int_{\mathbb{R}^n} v\hat{u}$$

Data $\varphi \in \mathcal{D}(\mathbb{R}^n)$, potremmo definire \hat{T}

$$\langle \hat{T}, \varphi \rangle := \langle T, \hat{\varphi} \rangle$$

La definizione posta non ha senso, perché

$$\varphi \in \mathcal{D}(\mathbb{R}^n) \implies \hat{\varphi} \in \mathcal{D}(\mathbb{R}^n)$$

cio
é $\mathcal{F}:\mathcal{D}(\mathbb{R}^n)\not\to\mathcal{D}(\mathbb{R}^n),$ la trasformata di una $\varphi\in\mathcal{D}(\mathbb{R}^n)$ è analitica, quindi non può avere supporto compat
to.

Si utilizzano quindi funzini test in $\mathcal{S}(\mathbb{R}^n)$. Si introduce quindi una convergenza in $\mathcal{S}(\mathbb{R}^n)$

Definizione: Data $\{\varphi_h\} \subseteq \mathcal{S}(\mathbb{R}^n)$, e $\varphi \in \mathcal{S}(\mathbb{R}^n)$, diciamo che $\varphi_h \to \varphi$ in $\mathcal{S}(\mathbb{R}^n)$ se

$$\forall \alpha, \beta, \ x^{\alpha} D^{\beta} \varphi_h \to x^{\alpha} D^{\beta} \varphi \text{ uniformemente su } \mathbb{R}^n$$

Osservazioni

1. Data $\{\varphi_h\} \subseteq \mathcal{D}(\mathbb{R}^n) \subseteq \mathcal{S}(\mathbb{R}^n)$ (Riferimento a convergenza in \mathcal{D})

$$\varphi_h \to \varphi \text{ in } \mathcal{D}(\mathbb{R}^n) \quad \varphi_h \to \varphi \text{ in } \mathcal{S}(\mathbb{R}^n)$$

2. $\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ è lineare e continuo, ovvero $\varphi_h \to \varphi$ in $\mathcal{S}(\mathbb{R}^n) \implies \hat{\varphi}_h \to \hat{\varphi}$ in $\mathcal{S}(\mathbb{R}^n)$.

 $\xi^{\alpha}D^{\beta}\hat{\varphi}_h \to \xi^{\alpha}D^{\beta}\hat{\varphi}$ uniformemente su \mathbb{R}^n , rispettivamente $D^{\alpha}(\hat{x}^{\beta}\varphi_h)$ $D^{\alpha}(\hat{x}^{\beta}\varphi)$

perché $D^{\alpha}(x^{\beta}\varphi_h) \to D^{\alpha}(x^{\beta}\varphi)$ in $L^1(\mathbb{R}^n)$ completare con esempio

1.1 Spazio delle funzioni temperate

Definizione: Una distribuzione $T \in \mathcal{D}'(\mathbb{R}^n)$ si dice distribuzione temperata se

$$\varphi_h \subseteq \mathcal{D}(\mathbb{R}^n) : \varphi_h \to 0 \text{ in } \mathcal{S}(\mathbb{R}^n) \implies \langle T, \varphi_h \rangle \to 0$$

Definizione: $S'(\mathbb{R}^n) := \{\text{distribuzioni temperate}\}$

Esempi

1. u(x) = p(x) polinomio $\in L^1_{loc}(\mathbb{R}) \subseteq \mathcal{D}'(\mathbb{R}^n)$, dico che $u(x) \in \mathcal{S}'(\mathbb{R}^n)$

$$\int_{\mathbb{R}} u\varphi_h \le \int_{\mathbb{R}} |\frac{u}{p}p\varphi_h| dx \le \|\frac{u}{p}\|_{L^1} \|p\varphi_h\|_{L^\infty} \to 0 \text{ se } h \to 0$$

dove p polinomio tale che $u/p \in L^1(\mathbb{R})$

2. $u \in L^1_{loc}(\mathbb{R})$ si dice a crescita lenta se u = qw con q polinomio e $w \in L^1(\mathbb{R})$, Tutte le funzioni a crescita lenta stanno in \mathcal{S}' . Per ogni $\varphi \in \mathcal{D}(\mathbb{R})$

$$|\int_{\mathbb{R}} u\varphi| \le \int_{\mathbb{R}} |wq\varphi| \le ||w||_{L^{1}} ||q\varphi||_{L^{\infty}}$$

Quindi, se $\varphi_h \to 0$ in $\mathcal{S}(\mathbb{R}^n)$, $||q\varphi_h||_{\infty} \to 0$

3. Come caso particolare: $u \in L^p(\mathbb{R}) \implies$ u è a crescita lenta, e quindi sta in $\mathcal{S}'(\mathbb{R}^n)$.

Data $u \in L^p(\mathbb{R}), u = qw \text{ con } q \text{ polinomio } e w \in L^1(\mathbb{R}).$

- $u \in L^1(\mathbb{R}) \to \text{prendo } q = 1, w \text{ completare}$
- $u\in L^\infty(\mathbb{R}) \implies$ prendo $q:1/q\in L^1(\mathbb{R}),\, u=q\cdot \frac{u}{q},\, w=u/q\in L^1(\mathbb{R})$ applicando Holder.
- $u \in L^p(\mathbb{R}) \implies \text{prendo } q: 1/q \in L^{p'}(\mathbb{R}), \ u = q \cdot \frac{u}{q}, \ w = \frac{u}{q} \in L^p(\mathbb{R}),$ sempre per Holder.
- 4. $\delta_0 \in \mathcal{S}'(\mathbb{R}), D^{(k)}\delta_0 \in \mathcal{S}'(\mathbb{R})$

$$\{\varphi_h\}\subseteq \mathcal{D}(\mathbb{R}), \ \varphi_h\to 0 \text{ in } \mathcal{S}(\mathbb{R}) \implies \langle \delta_0,\varphi_h\rangle\to 0$$

Avendo la convergenza uniforme di φ_h , si avrà anche la convergenza puntuale (in $\varphi_h(0)$.

Altre osservazioni su S'

1. $T \in \mathcal{S}'(\mathbb{R}^n) \implies T$ può agire più in generale su funzioni test di $\mathcal{S}(\mathbb{R})$ Infatti, se $T \in \mathcal{S}'(\mathbb{R}^n)$, posso definire

$$\langle T, \varphi \rangle \ \forall \varphi \in \mathcal{S}(\mathbb{R}^n) \ \text{come} \ \lim_{h \to +\infty} \langle T, \varphi_h \rangle \ \text{dove} \ \varphi_h \subseteq \mathcal{D}(\mathbb{R}^n) : \varphi_h \to \varphi \ \text{in} \ \mathcal{S}(\mathbb{R}^n)$$

Se $T \in \mathcal{S}'(\mathbb{R}^n)$, allora vale:

$$\{\varphi_h\}\subset\mathcal{S}(\mathbb{R}^n)$$
 tale che $\varphi_h\to 0$ in $\mathcal{S}(\mathbb{R}^n)\implies \langle T,\varphi_h\rangle\to 0$

Trasformata di Fourier in S'(Rn)

Data $T \in \mathcal{S}'(\mathbb{R}^n)$, definisco $\tilde{T} \in \mathcal{S}'(\mathbb{R}^n)$ come

$$\langle \hat{T}, \varphi \rangle := \langle T, \hat{\varphi} \rangle \ \forall \varphi \in \mathcal{D}(\mathbb{R}^n)$$

Osservazioni

1. $\varphi \in \mathcal{D}(\mathbb{R}^n) \implies \varphi \in \mathcal{S}(\mathbb{R}^n) \implies \hat{\varphi} \in \mathcal{S}(\mathbb{R}^n)$. Quindi $\langle T, \hat{\varphi} \rangle$ ha senso perché $T \in \mathcal{S}'(\mathbb{R}^n)$

2. Verifichiamo che $\hat{T} \in \mathcal{D}'(\mathbb{R}^n)$

$$\{\varphi_h \to 0 \text{ in } \mathcal{D}(\mathbb{R}^n) \implies \left\langle \hat{T}, \varphi_h \right\rangle \to 0\}$$

Infatti $\{\varphi_h\} \to 0$ in $\mathcal{S}(\mathbb{R}^n) \implies \hat{\varphi_h} \to 0$ in $\mathcal{S}(\mathbb{R}^n) \implies \langle T, \hat{\varphi_h} \rangle \to 0$ perché $T \in \mathcal{S}'(\mathbb{R}^n)$

3. Si ha anche $\hat{T} \in \mathcal{S}'(\mathbb{R}^n)$ (vedere sopra)

Le **proprietà** della trasformata valgono anche in $\mathcal{S}'(\mathbb{R}^n)$, tutte le proprietò di \mathcal{F} in $\mathcal{S}(\mathbb{R}^n)$

Inversione:

$$\hat{\mathcal{T}} = (2\pi)^{-n} \hat{\hat{T}}$$

Dimostrazione

$$\left\langle \hat{T}, \varphi \right\rangle = \left\langle T, \hat{\varphi} \right\rangle = (2\pi)^{-n} \left\langle T, \hat{\hat{\varphi}} \right\rangle = (2\pi)^{-n} \left\langle \hat{T}, \varphi \right\rangle$$

Esempi

1.
$$T = \delta_0$$

$$\langle \hat{\delta_0}, \varphi \rangle = \langle \delta_0, \hat{\varphi} \rangle = \int_{\mathbb{R}} \varphi = \int_{\mathbb{R}} 1 \cdot \varphi = \langle 1, \varphi \rangle$$

 $\implies \hat{\delta_0} = 1$

2.
$$\hat{1} = \hat{\hat{\delta_0}} = 2\pi \ \delta_0 = (2\pi)\delta_0$$
, poiché

$$\delta_0, \varphi = \langle \delta_0, \not \varphi \rangle = \langle \delta_0, \varphi \rangle$$

3.
$$\hat{x} = \mathcal{F}(x \cdot 1) = i(\hat{1})' = 2\pi i(\delta_0)'$$