

# UNIVERSIDAD DE GRANADA

Inteligencia de Negocio

Práctica 1

# Análisis predictivo mediante clasificación

David Carrasco Chicharro

davidcch@correo.ugr.es

# ${\bf \acute{I}ndice}$

| 1. | Intr                                                                                                | oducción                                                                                                     | 1                          |
|----|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------|
| 2. | Res                                                                                                 | ultados obtenidos                                                                                            | 2                          |
|    | 2.1.                                                                                                | C4.5                                                                                                         | 2                          |
|    | 2.2.                                                                                                | Naïve-Bayes                                                                                                  | 4                          |
|    | 2.3.                                                                                                | OneR                                                                                                         | 5                          |
|    | 2.4.                                                                                                | K-NN                                                                                                         | 7                          |
|    | 2.5.                                                                                                | Random Forest                                                                                                | 8                          |
|    | 2.6.                                                                                                | Gradient Boosted                                                                                             | 10                         |
| 3. | Aná                                                                                                 | lisis de resultados                                                                                          | 11                         |
|    |                                                                                                     |                                                                                                              |                            |
| 4. | Con                                                                                                 | figuración de algoritmos                                                                                     | 13                         |
| 4. |                                                                                                     | figuración de algoritmos                                                                                     |                            |
| 4. | 4.1.                                                                                                |                                                                                                              | 13                         |
| 4. | 4.1.<br>4.2.                                                                                        | C4.5                                                                                                         | 13<br>14                   |
| 4. | <ul><li>4.1.</li><li>4.2.</li><li>4.3.</li></ul>                                                    | C4.5                                                                                                         | 13<br>14<br>15             |
| 4. | <ul><li>4.1.</li><li>4.2.</li><li>4.3.</li></ul>                                                    | C4.5          Naïve-Bayes          OneR                                                                      | 13<br>14<br>15<br>15       |
| 4. | <ul><li>4.1.</li><li>4.2.</li><li>4.3.</li><li>4.4.</li><li>4.5.</li></ul>                          | C4.5          Naïve-Bayes          OneR          K-NN                                                        | 13<br>14<br>15<br>15       |
|    | 4.1.<br>4.2.<br>4.3.<br>4.4.<br>4.5.<br>4.6.                                                        | C4.5          Naïve-Bayes          OneR          K-NN          Random Forest                                 | 13<br>14<br>15<br>15       |
|    | <ul><li>4.1.</li><li>4.2.</li><li>4.3.</li><li>4.4.</li><li>4.5.</li><li>4.6.</li><li>Pro</li></ul> | C4.5          Naïve-Bayes          OneR          K-NN          Random Forest          Gradient Boosted Trees | 13<br>14<br>15<br>15<br>15 |

|    | 5.3. | OneR                           | 25 |
|----|------|--------------------------------|----|
|    | 5.4. | K-NN                           | 26 |
|    | 5.5. | Random Forest                  | 27 |
|    | 5.6. | Gradient Boosted               | 29 |
|    |      |                                |    |
| 6. | Inte | rpretación de resultados       | 31 |
|    | 6.1. | Análisis general de resultados | 31 |
|    | 6.2. | Modelos generados              | 32 |
|    | 6.3. | WorkFlow                       | 34 |
| 7. | Con  | tenido adicional               | 35 |
| 8. | Bib  | liografía                      | 35 |

#### 1. Introducción

El problema abordado en esta práctica trata de utilizar algoritmos de aprendizaje supervisado de clasificación como herramienta para realizar un análisis predictivo. Se evaluarán los distintos algoritmos utilizados en función de sus resultados ejecutándolos con su configuración por defecto y con ciertos ajustes paramétricos después. Además se realizará un preprocesado de datos para intentar conseguir una mejor solución. Para este problema en concreto se dispone de un conjunto con 59400 instancias con 39 variables cada una. El análisis se realizará para predecir qué bombas de extracción de agua funcionan, cuáles necesitan algunas reparaciones y cuáles no funcionan, centrándonos sobre todo en estas últimas (clase positiva). Los algoritmos de clasificación elegidos para la práctica son de distintos tipos:

- C4.5 (árboles): es uno de los algoritmos basados en árboles de decisión más populares, capaz de manejar tanto variables continuas como discretas. Se basa en la utilización del criterio de proporción de ganancia, de modo que consigue evitar que variables con mayor número de posibles valores salgan beneficiadas en la selección. Proporciona un árbol de decisión como resultado relativamente fácil de entender.
- Naïve-Bayes (probabilístico): al igual que el algoritmo anterior, es bastante conocido en la literatura dentro del conjunto de algoritmos de clasificación probabilísticos. Utiliza métodos bayesianos para estimar cada variable de manera independiente al resto, lo cual es interesante para este problema dada la gran cantidad de variables con las que se cuentan.
- OneR (reglas): es un algoritmo extremadamente sencillo que puede servir como base para determinar que el resto de algoritmos deben superar los resultados de éste.
- K-NN (distancias): dado que el conjunto de instancias no es extremadamente grande, este algoritmo es interesante por su capacidad de generar un modelo en base a sus vecinos más cercanos, de modo que no resulta demasiado costoso evaluar varios k-vecinos y comparar con todas las instancias. Además realiza suposiciones sobre los conceptos relevantes que afectan a la clase final, lo cual es un punto a favor dado el gran conjunto de variables que se presentan.

- Random Forest (multiclasificador bagging): se trata de uno de los algoritmos de clasificación más utilizados y presenta muy buenos resultados, especialmente cuando hay datos suficientes como es el caso de esta práctica. La preparación de datos necesaria es mínima y es capaz de identificar las variables más significativas.
- Grandien Boosting (multiclasificador boosting): es un algoritmo extremadamente popular en machine learning y uno de los métodos líderes entre los ganadores de las competiciones de Kaggle. No requiere gran preprocesamiento de datos y funciona bien tanto con variables categóricas como numéricas, como es nuestro caso práctico. Además maneja valores perdidos sin requerir imputación, lo cual nos resulta favorecedor dado que en nuestro ejemplo hay una gran cantidad de estos.

Una vez elegidos los algoritmos, la primera ejecución de ellos se realizará con la configuración por defecto y sin ningún preprocesado de datos. La siguiente ejecución se realizará con un mínimo preprocesado y con la configuración óptima de cada algoritmo.

#### 2. Resultados obtenidos

#### 2.1. C4.5



Figura 1: Flujo de trabajo de C4.5

|           | TP    | FP   | TN    | FN   | Precis  | TPR     | TNR     | <b>F</b> 1 | Accur   |
|-----------|-------|------|-------|------|---------|---------|---------|------------|---------|
| funct     | 26409 | 6565 | 20315 | 5612 | 0,80090 | 0,82474 | 0,75577 | 0,81265    |         |
| non funct | 17514 | 5045 | 31260 | 5082 | 0,77636 | 0,77509 | 0,86104 | 0,77573    |         |
| funct nr  | 1451  | 1917 | 52700 | 2833 | 0,43082 | 0,33870 | 0,96490 | 0,37925    |         |
| Overall   |       |      |       |      |         |         |         |            | 0,77034 |

Tabla 1: Resultados de C4.5

|        | Error in % | Size of Test Set | Error Count |
|--------|------------|------------------|-------------|
| fold 0 | 23,737     | 11880            | 2820        |
| fold 1 | 23,586     | 11880            | 2802        |
| fold 2 | 23,998     | 11880            | 2851        |
| fold 3 | 23,645     | 11880            | 2809        |
| fold 4 | 23,098     | 11880            | 2744        |

Tabla 2: Tabla de error de C4.5

| row ID                  | functional | non functional | functional needs repair |
|-------------------------|------------|----------------|-------------------------|
| functional              | 26409      | 4264           | 1348                    |
| non functional          | 4513       | 17514          | 569                     |
| functional needs repair | 2052       | 781            | 1451                    |

Tabla 3: Matriz de confusión de C4.5



Figura 2: Curva ROC de C4.5

La complejidad de este modelo se mide por el número de hojas. Mediante el nodo "Decision Tree to Ruleset" se puede comprobar que tiene 6368 reglas.

# 2.2. Naïve-Bayes



Figura 3: Flujo de trabajo de Naïve-Bayes

|           | TP    | FP   | TN    | FN    | Precis  | TPR     | TNR     | F1      | Accur   |
|-----------|-------|------|-------|-------|---------|---------|---------|---------|---------|
| funct     | 19275 | 6325 | 20816 | 12984 | 0,75293 | 0,59751 | 0,76696 | 0,66627 |         |
| non funct | 14696 | 7231 | 29345 | 8128  | 0,67022 | 0,64388 | 0,80230 | 0,65679 |         |
| funct nr  | 2159  | 9714 | 45369 | 2158  | 0,18184 | 0,50012 | 0,82365 | 0,26671 |         |
| Overall   |       |      |       |       |         |         |         |         | 0,60825 |

Tabla 4: Resultados de Naïve-Bayes

|        | Error in % | Size of Test Set | Error Count |
|--------|------------|------------------|-------------|
| fold 0 | 39,562     | 11880            | 4700        |
| fold 1 | 41,322     | 11880            | 4909        |
| fold 2 | 36,406     | 11880            | 4325        |
| fold 3 | 40,598     | 11880            | 4823        |
| fold 4 | 37,988     | 11880            | 4513        |

Tabla 5: Tabla de error de Naïve-Bayes

| row ID                  | functional | non functional | functional needs repair |
|-------------------------|------------|----------------|-------------------------|
| functional              | 19275      | 6291           | 6693                    |
| non functional          | 5107       | 14696          | 3021                    |
| functional needs repair | 1218       | 940            | 2159                    |

Tabla 6: Matriz de confusión de Naïve-Bayes



Figura 4: Curva ROC de Naïve-Bayes

# 2.3. OneR



Figura 5: Flujo de trabajo de OneR

|           | TP    | FP    | TN    | $\mathbf{FN}$ | Precis  | TPR     | TNR     | $\mathbf{F1}$ | Accur   |
|-----------|-------|-------|-------|---------------|---------|---------|---------|---------------|---------|
| funct     | 31889 | 20476 | 6665  | 370           | 0,60898 | 0,98853 | 0,24557 | 0,75366       |         |
| non funct | 6614  | 421   | 36155 | 16210         | 0,94016 | 0,28978 | 0,98849 | 0,44302       |         |
| funct nr  | 0     | 0     | 55083 | 4317          |         | 0,00000 | 1,00000 |               |         |
| Overall   |       |       |       |               |         |         |         |               | 0,64820 |

Tabla 7: Resultados de OneR

|        | Error in % | Size of Test Set | Error Count |
|--------|------------|------------------|-------------|
| fold 0 | 35,067     | 11880            | 4166        |
| fold 1 | 35,177     | 11880            | 4173        |
| fold 2 | 35,37      | 11880            | 4202        |
| fold 3 | 35,455     | 11880            | 4212        |
| fold 4 | 34,832     | 11880            | 4138        |

Tabla 8: Tabla de error de OneR

| row ID                  | functional | non functional | functional needs repair |
|-------------------------|------------|----------------|-------------------------|
| functional              | 31889      | 370            | 0                       |
| non functional          | 16210      | 6614           | 0                       |
| functional needs repair | 4266       | 51             | 0                       |

Tabla 9: Matriz de confusión de OneR



Figura 6: Curva ROC de OneR

Este algoritmo tiene sólo una regla (tal y como indica su propio nombre.

# 2.4. K-NN



Figura 7: Flujo de trabajo de K-NN

|           | TP    | FP   | TN    | FN   | Precis  | TPR         | TNR     | F1      | Accur   |
|-----------|-------|------|-------|------|---------|-------------|---------|---------|---------|
| funct     | 24458 | 9768 | 17373 | 7801 | 0,71460 | 0,75818     | 0,64010 | 0,73574 |         |
| non funct | 14372 | 7472 | 29104 | 8452 | 0,65794 | 0,62969     | 0,79571 | 0,64350 |         |
| funct nr  | 1155  | 2175 | 52908 | 3162 | 0,34685 | $0,\!26755$ | 0,96051 | 0,30208 |         |
| Overall   |       |      |       |      |         |             |         |         | 0,67315 |

Tabla 10: Resultados de K-NN

|        | Error in $\%$ | Size of Test Set | Error Count |
|--------|---------------|------------------|-------------|
| fold 0 | 33,485        | 11880            | 3978        |
| fold 1 | 32,104        | 11880            | 3814        |
| fold 2 | 32,34         | 11880            | 3842        |
| fold 3 | 32,5          | 11880            | 3861        |
| fold 4 | 32,997        | 11880            | 3920        |

Tabla 11: Tabla de error de K-NN

| row ID                  | functional | non functional | functional needs repair |
|-------------------------|------------|----------------|-------------------------|
| functional              | 24458      | 6469           | 1332                    |
| non functional          | 7609       | 14372          | 843                     |
| functional needs repair | 2159       | 1003           | 1155                    |

Tabla 12: Matriz de confusión de K-NN



Figura 8: Curva ROC de KNN

En K-NN es imposible determinar la complejidad del algoritmo.

# 2.5. Random Forest



Figura 9: Flujo de trabajo de Random Forest

|           | TP    | FP   | TN    | FN   | Precis  | TPR     | TNR     | <b>F</b> 1 | Accur   |
|-----------|-------|------|-------|------|---------|---------|---------|------------|---------|
| funct     | 29486 | 7936 | 19205 | 2773 | 0,78793 | 0,91404 | 0,70760 | 0,84631    |         |
| non funct | 17125 | 2891 | 33685 | 5699 | 0,85557 | 0,75031 | 0,92096 | 0,79949    |         |
| funct nr  | 1189  | 773  | 54310 | 3128 | 0,60601 | 0,27542 | 0,98597 | 0,37872    |         |
| Overall   |       |      |       |      |         |         |         |            | 0,80471 |

Tabla 13: Resultados de Random Forest

|        | Error in % | Size of Test Set | Error Count |
|--------|------------|------------------|-------------|
| fold 0 | 19,529     | 11880            | 2320        |
| fold 1 | 19,562     | 11880            | 2324        |
| fold 2 | 19,705     | 11880            | 2341        |
| fold 3 | 19,588     | 11880            | 2327        |
| fold 4 | 19,259     | 11880            | 2288        |

Tabla 14: Tabla de error de Random Forest

| row ID                  | functional | non functional | functional needs repair |
|-------------------------|------------|----------------|-------------------------|
| functional              | 29486      | 2292           | 481                     |
| non functional          | 5407       | 17125          | 292                     |
| functional needs repair | 2529       | 599            | 1189                    |

Tabla 15: Matriz de confusión de Random Forest



Figura 10: Curva ROC de Random Forest

# 2.6. Gradient Boosted



Figura 11: Flujo de trabajo de Gradient Boosted

|           | TP    | FP   | TN    | FN   | Precis  | TPR     | TNR     | F1      | Accur   |
|-----------|-------|------|-------|------|---------|---------|---------|---------|---------|
| funct     | 29426 | 9851 | 17290 | 2833 | 0,74919 | 0,91218 | 0,63704 | 0,82269 |         |
| non funct | 15666 | 3274 | 33302 | 7158 | 0,82714 | 0,68638 | 0,91049 | 0,75022 |         |
| funct nr  | 754   | 429  | 54654 | 3563 | 0,63736 | 0,17466 | 0,99221 | 0,27418 |         |
| Overall   |       |      |       |      |         |         |         |         | 0,77182 |

Tabla 16: Resultados de Gradient Boosted

|        | Error in %         | Size of Test Set | Error Count |
|--------|--------------------|------------------|-------------|
| fold 0 | 22.929292929293    | 11880            | 2724        |
| fold 1 | 22.66835016835017  | 11880            | 2693        |
| fold 2 | 23.114478114478114 | 11880            | 2746        |
| fold 3 | 22.59259259259     | 11880            | 2684        |
| fold 4 | 22.786195286195287 | 11880            | 2707        |

Tabla 17: Tabla de error de Gradient Boosted

| row ID                  | functional | non functional | functional needs repair |
|-------------------------|------------|----------------|-------------------------|
| functional              | 29426      | 2575           | 258                     |
| non functional          | 6987       | 15666          | 171                     |
| functional needs repair | 2864       | 699            | 754                     |

Tabla 18: Matriz de confusión de Gradient Boosted



Figura 12: Curva ROC de Gradient Boosted

# 3. Análisis de resultados

A continuación se muestra una tabla resumen con todos los algoritmos, centrándonos en la clase positiva (non functional). Se han añadido las medidas "Accuracy" (precisión para la clase positiva), "G-mean" (media geométrica de TPR y TNR) y "AUC" (Área Bajo la Curva – Area Under the Curve–). También se muestra una figura con la curva ROC de cada algoritmo.

| Algoritmo   | TP    | FP   | TN    | FN    | TPR    | TNR    | PPV    |
|-------------|-------|------|-------|-------|--------|--------|--------|
| C4.5        | 17514 | 5045 | 31260 | 5082  | 0,7751 | 0,8610 | 0,7764 |
| Naïve-Bayes | 14696 | 7231 | 29345 | 8128  | 0,6439 | 0,8023 | 0,6702 |
| OneR        | 6614  | 421  | 36155 | 16210 | 0,2898 | 0,9885 | 0,9402 |
| K-NN        | 14372 | 7472 | 29104 | 8452  | 0,6297 | 0,7957 | 0,6579 |
| Random      | 17125 | 2891 | 33685 | 5699  | 0,7503 | 0,9210 | 0,8556 |
| Forest      | 17120 | 2091 | 33063 | 5099  | 0,7505 | 0,9210 | 0,0000 |
| Gradient    | 15666 | 3274 | 33302 | 7158  | 0,6864 | 0,9105 | 0,8271 |
| Boosted     | 19000 | 0214 | 00002 | 1190  | 0,0004 | 0,9100 | 0,0271 |

Tabla 19: Resumen (1) de resultados de todos los algoritmos

| Algoritmo   | Accuracy | F1-score | G-mean | AUC    |
|-------------|----------|----------|--------|--------|
| C4.5        | 0,8281   | 0,7757   | 0,8169 | 0,8405 |
| Naïve-Bayes | 0,7414   | 0,6568   | 0,7187 | 0,7925 |
| OneR        | 0,7200   | 0,4430   | 0,5352 | 0,6391 |
| K-NN        | 0,7319   | 0,6435   | 0,7078 | 0,7590 |
| Random      | 0,8554   | 0,7995   | 0,8313 | 0,9190 |
| Forest      | 0,0004   | 0,7990   | 0,0313 | 0,9190 |
| Gradient    | 0,8244   | 0,7502   | 0,7905 | 0,8885 |
| Boosted     | 0,0244   | 0,1502   | 0,1900 | 0,0000 |

Tabla 20: Resumen (2) de resultados de todos los algoritmos



Figura 13: Curvas ROC de todos los algoritmos

A priori se pueden diferenciar dos grupos: uno con resultados relativamente malos, conformado por OneR, K-NN y Naïve-Bayes, y otro que ofrece mejor rendimiento, formado por el resto de algoritmos.

Era de esperar que OneR tuviera los valores más bajos de la segunda tabla, ya que con una única regla poca precisión se puede alcanzar. Siguiendo con esta medida, Naïve-Bayes no alcanza una gran precisión debido a que quizás las variables del dataset estén relacionadas, y este algoritmo penaliza la correlación entre ellas. K-NN es muy probable que necesite aumentar la distancia con el número vecinos para poder obtener un modelo mejor.

En cuanto al grupo de los tres mejores hay poca diferencia en los resultados, aunque destaca levemente Random Forest ya que es un algoritmo que trata bien los valores perdidos y halla correlaciones entre variables encontrando las más relevantes, de modo que tiene sin optimización alguna una tasa de aciertos muy superior al resto. Gradient Boosted, dada su robustez y flexibilidad, consigue una buena precisión y AUC, y sorprende que C4.5 logre resultados similares, seguramente porque lidia muy bien contra el ruido y los valores perdidos.

Por último cabe destacar que los valores de TPR son inferiores a los de TNR, lo cual es un indicativo de que existe un gran desbalanceo de las clases. Esto nos hace ver que C4.5 y Random Forest sufren menos ante tal desbalanceo, algo lógico teniendo en cuenta que son algoritmos que en la literatura se muestran robustos ante este problema. Sin embargo, Gradient Boosted, que ofrece buenos resultados, se muestra débil ante el desbalanceo, probablemente porque no realiza una buena generalización tras el boosting.

# 4. Configuración de algoritmos

#### 4.1. C4.5

Con los nodos de "Parameter Optimization" he variado "min number records per node" en el nodo "Decision Tree Learner" con valores entre 2 y 15, combinando los dos valores de "quality measure" y "pruning method" para maximizar la precisión. El resultado ha sido que se obtiene mejor precisión con "gini index" y "no pruning" con un valor de 8 en "min number records per node".

Sin embargo, tal y como se puede ver en la tabla, la diferencia de los mejores resultados de cada configuración indica que podría usarse poda para mejorar la interpretabilidad del árbol sin sacrificar excesivamente la precisión.

|         |            | Min number of records | Accuracy |  |
|---------|------------|-----------------------|----------|--|
| Default | Gini index | 2                     | 0,7703   |  |
| Delault | No pruning |                       | 0,7703   |  |
| Gini    | No pruning | 8                     | 0,7757   |  |
| index   | MDL        | 2                     | 0,7716   |  |
| Gain    | No pruning | 12                    | 0,7695   |  |
| ratio   | MDL        | 11                    | 0,7676   |  |

Tabla 21: Mejores resultados para cada configuración de C4.5

#### 4.2. Naïve-Bayes

Con los nodos de "Parameter Optimization" he variado los valores de "default probability" entre 0,00001 y 1,00001 y de "maximum number of unique nominal values per attribute" con valores entre 13 y 21 en el nodo "Naïve Bayes Learner" para maximizar la precisión. Dado el gran número de combinaciones realizadas sólo se muestran los resultados para "default probability" con los valores 0,00001, 0,05 y 1, puesto que todos los resultados son muy similares.

| Max Nom      | Def.  | Accuracy | Def.  | Acc.    | Def.  | Acc.    |
|--------------|-------|----------|-------|---------|-------|---------|
| Values       | Prob. | Accuracy | Prob. | Acc.    | Prob. | Acc.    |
| Default (20) | 1E-04 | 0,608    |       |         |       |         |
| 13           | 1E-05 | 0,6279   | 0,05  | 0,67916 | 1     | 0,67449 |
| 14           | 1E-05 | 0,6279   | 0,05  | 0,67916 | 1     | 0,67449 |
| 15           | 1E-05 | 0,6279   | 0,05  | 0,67916 | 1     | 0,67449 |
| 16           | 1E-05 | 0,6279   | 0,05  | 0,67916 | 1     | 0,67449 |
| 17           | 1E-05 | 0,6279   | 0,05  | 0,67916 | 1     | 0,67449 |
| 18           | 1E-05 | 0,6318   | 0,05  | 0,67369 | 1     | 0,66655 |
| 19           | 1E-05 | 0,6318   | 0,05  | 0,67369 | 1     | 0,66655 |
| 20           | 1E-05 | 0,6318   | 0,05  | 0,67369 | 1     | 0,66655 |
| 21           | 1E-05 | 0,6242   | 0,05  | 0,66554 | 1     | 0,66135 |

Tabla 22: Resultados de Naïve-Bayes

Un valor de "default probability" bajo, pero no cercano a cero, mejora la precisión. A su vez, el número máximo de valores nominales da resultados iguales en la mayoría de ocasiones en el rango de 13 a 17, donde arroja mayor precisión. Los mejores valores paramétricos se han obtenido con 13 valores nominales como máximo y una probabilidad por defecto de 0,05.

#### 4.3. OneR

No presenta ningún tipo de mejora, ya que utiliza siempre la misma regla.

#### 4.4. K-NN

Como en el resto de algoritmos, he utilizado "Parameter Optimization" para encontrar el valor óptimo de k-vecinos, variando entre 1 y 15, para maximizar la precisión. El número de vecinos óptimo es 14. En este caso la complejidad del modelo no es relevante, ya que al aumentar el número de vecinos sólo aumenta el cómputo.

| Número de vecinos | Accuracy |
|-------------------|----------|
| Default (3)       | 0,673    |
| 1                 | 0,75372  |
| 2                 | 0,75423  |
| 3                 | 0,76892  |
| 4                 | 0,77268  |
| 5                 | 0,77655  |
| 6                 | 0,77855  |
| 7                 | 0,77976  |
| 8                 | 0,78     |
| 9                 | 0,78103  |
| 10                | 0,78163  |
| 11                | 0,78163  |
| 12                | 0,78177  |
| 13                | 0,7817   |
| 14                | 0,78189  |
| 15                | 0,78187  |

Tabla 23: Mejores resultados para cada vecino de K-NN

#### 4.5. Random Forest

Para encontrar los parámetros óptimos del algoritmo he comenzado iterando "split criterion" con la opción "Information Gain Ratio" con diferentes

números de modelos y límites en cuanto al número de niveles. Los valores por defecto de este algoritmo son "Gini Index" con 100 modelos y sin límite en el número de niveles, dando una precisión de 0,805.

| Núm. modelos | Límit. núm. niveles | Accuracy |
|--------------|---------------------|----------|
| 5            | 5                   | 0,698    |
| 50           | 5                   | 0,70345  |
| 100          | 5                   | 0,70635  |
| 150          | 5                   | 0,70699  |
| 200          | 5                   | 0,70673  |
| 250          | 5                   | 0,70687  |
| 50           | 10                  | 0,71852  |
| 100          | 10                  | 0,71761  |
| 150          | 10                  | 0,7183   |
| 200          | 10                  | 0,71867  |
| 250          | 10                  | 0,71848  |
| 50           | 15                  | 0,73379  |
| 100          | 15                  | 0,73362  |
| 150          | 15                  | 0,73375  |
| 200          | 15                  | 0,73407  |
| 250          | 15                  | 0,73404  |
| 200          | _                   | 0,80633  |

Tabla 24: Resultados de Random Forest con Information Gain Ratio

Las diferencias en los resultados son mínimas y se puede comprobar que el número de modelos a utilizar no afecta tanto al resultado como sí lo hace el número de niveles máximo, siendo mejor el resultado cuanto mayor es el límite. Utilizando 200 modelos sin límite de niveles el incremento de precisión es bastante más notorio.

Con "Gini index" he realizado las mismas iteraciones, pero en vista de los resultados anteriores he decidido no comprobar el número de modelos ni el límite al número de niveles con valores de 50 ni 5, respectivamente.

| Núm. modelos | Límit. núm. niveles | Accuracy |
|--------------|---------------------|----------|
| 5            | 5                   | 0,719    |
| 100          | 10                  | 0,76608  |
| 150          | 10                  | 0,76487  |
| 200          | 10                  | 0,76582  |
| 250          | 10                  | 0,76559  |
| 100          | 15                  | 0,79648  |
| 150          | 15                  | 0,79613  |
| 200          | 15                  | 0,79633  |
| 250          | 15                  | 0,79658  |

Tabla 25: Resultados de Random Forest con Gini Index

Se puede comprobar que para los mismos valores en cada parámetro "Gini index" arroja mejores resultados que "Information Gain Ratio", pero al igual que antes no es el número de modelos el que más afecta al resultado, sino el límite del número de niveles. Aún así no se ha conseguido ni si quiera alcanzar la precisión obtenida con el valor por defecto del algoritmo (sólo al no utilizar límite en el número de niveles con "Gain Ratio"), y por ello, siguiendo con "Gini index" he eliminado el límite al número de niveles y comprobado cómo variaba la precisión conforme aumentaba el número de modelos desde 100 hasta 110 con incremento de 5; hasta 150 con incrementos de 10; y hasta 300 con saltos de 50.

| Núm. modelos | Accuracy |
|--------------|----------|
| 100          | 0,80956  |
| 105          | 0,80911  |
| 110          | 0,80919  |
| 120          | 0,80916  |
| 130          | 0,80889  |
| 140          | 0,80894  |
| 150          | 0,80911  |
| 200          | 0,80929  |
| 250          | 0,80973  |
| 300          | 0,8098   |

Tabla 26: Resultados de Random Forest con Gini Index sin límite en el número de niveles

La diferencia de precisión entre el valor más alto y el más bajo es del 0,1 %. No hay un aumento lineal respecto al incremento en el número de

modelos, excepto a partir de los 200, donde sí se logran valores más altos, obteniéndose la mejor precisión con 300 modelos, aunque la diferencia con el valor obtenido con 100 modelos es del  $0.024\,\%$ .

| Gini Index   | Núm. modelos | Accuracy |
|--------------|--------------|----------|
| Por defecto  | 100          | 0,805    |
| Optimización | 300          | 0,8098   |

Tabla 27: Resultados de Random Forest

En resumen, aumentando el número de modelos se logra mejorar algo el resultado, pero es el límite en el número de niveles donde más se gana, aunque conlleva perder intepretabilidad, por lo que con pocos modelos y limitando el número de niveles a 10 se podría conseguir un buen resultado con cierta interpretabilidad del modelo.

#### 4.6. Gradient Boosted Trees

Los parámetros a configurar con este algoritmo han sido el número de modelos, el límite al número de niveles (profundidad del árbol) y la tasa de aprendizaje. Por defecto el algoritmo establece estos valores en 100 modelos, 4 niveles y 0,1 la tasa de aprendizaje. Para la optimización he variado el número de modelos entre 100 y 300 en saltos de 50; el número de niveles máximo lo he establecido en 4, 7 y 10; por último, la tasa de aprendizaje la he establecido en 0,1 y 0,05.

| Num.<br>modelos | Num.<br>niveles | Learn. | Accur.  | Num.<br>modelos | Num.<br>niveles | Learn. | Accur.  |
|-----------------|-----------------|--------|---------|-----------------|-----------------|--------|---------|
| Default (100)   | 4               | 0,1    | 0,772   |                 |                 |        |         |
| 100             | 4               | 0,1    | 0,78253 | 100             | 4               | 0,05   | 0,77227 |
| 150             | 4               | 0,1    | 0,78717 | 150             | 4               | 0,05   | 0,77806 |
| 200             | 4               | 0,1    | 0,78998 | 200             | 4               | 0,05   | 0,78120 |
| 250             | 4               | 0,1    | 0,79318 | 250             | 4               | 0,05   | 0,78396 |
| 300             | 4               | 0,1    | 0,79497 | 300             | 4               | 0,05   | 0,78648 |
| 100             | 7               | 0,1    | 0,80145 | 100             | 7               | 0,05   | 0,79374 |
| 150             | 7               | 0,1    | 0,80402 | 150             | 7               | 0,05   | 0,79911 |
| 200             | 7               | 0,1    | 0,80537 | 200             | 7               | 0,05   | 0,80157 |
| 250             | 7               | 0,1    | 0,80551 | 250             | 7               | 0,05   | 0,80318 |
| 300             | 7               | 0,1    | 0,80530 | 300             | 7               | 0,05   | 0,80391 |
| 100             | 10              | 0,1    | 0,80808 | 100             | 10              | 0,05   | 0,80621 |
| 150             | 10              | 0,1    | 0,80790 | 150             | 10              | 0,05   | 0,80796 |
| 200             | 10              | 0,1    | 0,80822 | 200             | 10              | 0,05   | 0,80843 |
| 250             | 10              | 0,1    | 0,80746 | 250             | 10              | 0,05   | 0,80803 |
| 300             | 10              | 0,1    | 0,80621 | 300             | 10              | 0,05   | 0,80786 |
| 600             | 10              | 0,1    | 0,80429 | 600             | 10              | 0,05   | 0,80675 |
| 800             | 10              | 0,1    | 0,80365 | 800             | 10              | 0,05   | 0,80692 |

Tabla 28: Resultados de Gradient Boosted Trees

Tras ejecutar todas estas combinaciones se puede comprobar que aumentar el número de modelos no aumenta significativamente la precisión; de hecho, tras comprobar que a partir de los 200 modelos la precisión descendía ligeramente, probé con 600 y 800 modelos y ésta seguía descendiendo. El aumento de la profundidad del árbol sí que influye algo más en dicho aumento, aunque hace que el modelo resultante sea más complejo. La tasa de aprendizaje, tal y como indica la propia descripción del algoritmo en la documentación de KNIME, debería mejorar los resultados cuanto menor sea este valor al aumentar el número de modelos. En efecto, los resultados son algo mejores con una tasa de 0,05 en lugar de 0,1 para un número de modelos mayor, pero sólo en aquellos casos donde el número de niveles máximo también es más grande. Una vez analizadas todas estas características he escogido para la optimización 200 modelos, 10 niveles de profundidad como máximo y una tasa de aprendizaje de 0,05.

#### 5. Procesados de datos

En primer lugar he podido comprobar mediante histogramas que dentro de cada variable los valores no suelen encontrarse repartidos de manera uniforme dentro del conjunto. Algunos ejemplos son:



Figura 14: Histogramas de amount\_tsh, district\_code y num\_private

Mediante una tabla con las correlaciones lineales se pueden observar cuáles son las variables que más influyen en el resultado de la clase. Aquellas que presenten una correlación nula podrán ser buenas candidatas a ser eliminadas si así fuera necesario.

Habiendo hecho un análisis del conjunto de datos he podido determinar que hay muchas variables que parece razonable eliminar por diversos motivos, muchos de los cuales son comunes en varios de dichos atributos. Apoyándome además en su importancia en cuanto a la matriz de correlaciones anterior se describen a continuación cuáles he decidido quitar y los motivos:

- date\_recorded: parece irrelevante para el resultado en qué fecha se tomó el dato, haciendo que la cantidad de valores distintos sea de 356.
- funder: presenta más de 1000 valores únicos y 3662 valores perdidos (6.16%).
- installer: contiene más de 1000 valores distintos y 3696 valores perdidos  $(6,22\,\%)$ .
- wpt\_name: presenta más de 1000 valores únicos y 3575 valores perdidos  $(6,02\,\%)$ .
- num\_private: no tiene ninguna descripción en www.drivendata.org y tiene un valor igual a 0 en el 98,73 % de las filas.
- subvillage: tiene más de 17000 valores distintos.



Figura 15: Matriz de correlaciones

- region\_code: se corresponde con region y además tiene fallos de codificación (los valores 90 y 99 se corresponden con 9; 80 con 8; 60 con 6; y 24 con 2.
- ward: presenta más de 1000 valores únicos. Además cada ward se incluye en un lga.
- recorded\_by: sólo contiene un único valor.
- $\bullet$ scheme\_name: presenta más de 1000 valores únicos y 28174 valores perdidos (47,43 %).
- payment: es igual que payment\_type.
- quantity\_group: es igual que quantity.

Para eliminar dichas columnas he hecho uso de un "Column Filter" entre el "File Reader" y la entrada al metanodo de cada algoritmo.



Figura 16: Filtrado de columnas

Hay otras variables que también son susceptibles de no ser consideradas, ya que tienen aproximadamente un  $35\,\%$  de valores igual a cero, como son gps\_height, population y construction\_year, y con un  $70\,\%$  amount\_tsh. No está muy claro el motivo de tener un cero en cada celda, por lo que he decidido mantener estas columnas.

#### 5.1. C4.5

Se ha realizado una imputación básica de valores perdidos: la media para los números enteros y decimales, y el valor más frecuente para las cadenas de texto.



Figura 17: Preprocesado de C4.5

Los resultados de aplicar dicha optimización son:

|                        | TP    | FP   | TN    | FN   | TPR    | TNR    |
|------------------------|-------|------|-------|------|--------|--------|
| C4.5                   | 17514 | 5045 | 31260 | 5082 | 0,7751 | 0,8610 |
| C4.5 (opt)<br>+ [prep] | 17178 | 4545 | 31872 | 5500 | 0,7575 | 0,8752 |

Tabla 29: Comparación (1) de C4.5 por defecto vs. optimizado+preprocesado

|                        | PPV    | Accuracy | F1-score | G-mean | AUC    |
|------------------------|--------|----------|----------|--------|--------|
| C4.5                   | 0,7764 | 0,8281   | 0,7757   | 0,8169 | 0,8405 |
| C4.5 (opt)<br>+ [prep] | 0,7908 | 0,8300   | 0,7738   | 0,8142 | 0,8830 |

Tabla 30: Comparación (2) de C4.5 por defecto vs. optimizado+preprocesado

Estos resultados, aunque mínimos, son ligeramente mejores que los resultados por defecto, aunque se aprecia una pequeña disminución del TPR, F1-score y G-mean, debido a que la cantidad de "True Positives" es también menor. A pesar de esto aumenta en unas décimas el área bajo la curva.



Figura 18: Comparación Curva ROC C4.5

#### 5.2. Naïve-Bayes

He añadido un nodo "Column Filter" para eliminar la variable "lga", puesto que tiene demasiados valores distintos para este algoritmo. Además he realizado una imputación de valores perdidos igual que la realizada con C4.5.



Figura 19: Preprocesado de Naïve-Bayes

|                        | TP    | FP   | TN    | FN   | TPR    | TNR    |
|------------------------|-------|------|-------|------|--------|--------|
| C4.5                   | 17514 | 5045 | 31260 | 5082 | 0,7751 | 0,8610 |
| C4.5 (opt)<br>+ [prep] | 17178 | 4545 | 31872 | 5500 | 0,7575 | 0,8752 |

Tabla 31: Comparación (1) de Naïve-Bayes por defecto vs. optimiza-do+preprocesado

|                            | PPV    | Accuracy | F1-score | G-mean | AUC    |
|----------------------------|--------|----------|----------|--------|--------|
| Naïve-Bayes                | 0,6702 | 0,7414   | 0,6568   | 0,7187 | 0,7925 |
| Naïve-Bayes (opt) + [prep] | 0,7430 | 0,7608   | 0,6498   | 0,7109 | 0,7934 |

Tabla 32: Comparación (2) de Naïve-Bayes por defecto vs. optimiza-do+preprocesado

Al igual que ha ocurrido con C4.5, hay un descenso en la tasa de TPR, F1-socre y prácticamente el mismo resultado en G-mean y AUC; sí que mejora PPV y la precisión.



Figura 20: Comparación Curva ROC Naïve-Bayes

# 5.3. OneR

He utilizado un nodo "Column Filter" para eliminar, por la misma razón que con el algoritmo de Naïve-Bayes, la variable "lga".



Figura 21: Preprocesado de OneR

Como la única regla utilizada es "quantity" el modelo queda exactamente igual.

#### 5.4. K-NN

En primer lugar utilizo "Category to Number" para tratar con "lga", estableciendo el máximo de categorías a 125. El siguiente paso es utilizar "One to Many" para tratar con el resto de variables categóricas debido a que presentan un número menor de variables distintas y no hacen crecer extremadamente el dataset.



Figura 22: Preprocesado de K-NN

|           | TP    | FP   | TN    | FN   | TPR    | TNR    |
|-----------|-------|------|-------|------|--------|--------|
| KNN       | 14372 | 7472 | 29104 | 8452 | 0,6297 | 0,7957 |
| KNN (opt) | 17228 | 4169 | 32407 | 5596 | 0,7548 | 0,8860 |

Tabla 33: Comparación (1) de K-NN por defecto vs. optimizado+preprocesado

|                         | PPV    | Accuracy | F1-score | G-mean | AUC    |
|-------------------------|--------|----------|----------|--------|--------|
| KNN                     | 0,6579 | 0,7319   | 0,6435   | 0,7078 | 0,7590 |
| KNN (opt)<br>  + [prep] | 0,8052 | 0,8356   | 0,7792   | 0,8178 | 0,8906 |

Tabla 34: Comparación (2) de K-NN por defecto vs. optimizado+preprocesado

Mejoran todas las medidas analizadas.



Figura 23: Comparación Curva ROC K-NN

# 5.5. Random Forest

Para evitar un "warning" he utilizado un nodo "Domain Calculator" para averiguar todos los posibles valores de todas las variables categóricas con menos de 125 valores distintos, y el mínimo y máximo en variables numéricas.



Figura 24: Preprocesado de Random Forest

|                                                                                           | TP    | FP   | TN    | FN   | TPR    | TNR    |
|-------------------------------------------------------------------------------------------|-------|------|-------|------|--------|--------|
| Random Forest                                                                             | l     | l    |       |      | ,      | ,      |
| $\begin{array}{c} \textbf{Random Forest} \\ \textbf{(opt)} + \textbf{[prep]} \end{array}$ | 17398 | 2863 | 33713 | 5426 | 0,7623 | 0,9217 |

Tabla 35: Comparación (1) de Random Forest por defecto vs. optimizado+preprocesado

|                                                                                     | PPV    | Accuracy | F1-score | G-mean | AUC    |
|-------------------------------------------------------------------------------------|--------|----------|----------|--------|--------|
| Random Forest                                                                       | 0,8556 | 0,8554   | 0,7995   | 0,8313 | 0,9190 |
| $\begin{array}{c} \text{Random Forest} \\ \text{(opt)} + \text{[prep]} \end{array}$ | 0,8587 | 0,8605   | 0,8076   | 0,8382 | 0,9231 |

Tabla 36: Comparación (2) de Random Forest por defecto vs. optimizado+preprocesado

Se consigue una leve mejora de todas las medidas.



Figura 25: Comparación Curva ROC Random Forest

# 5.6. Gradient Boosted

He seguido el mismo preproceso que con Random Forest.



Figura 26: Preprocesado de Gradient Boosted

|                                                                                              | TP    | FP   | TN    | FN   | TPR    | TNR    |
|----------------------------------------------------------------------------------------------|-------|------|-------|------|--------|--------|
| Gradient Boosted                                                                             | 15666 | 3274 | 33302 | 7158 | 0,6864 | 0,9105 |
| $\begin{array}{c} \textbf{Gradient Boosted} \\ \textbf{(opt)} + \textbf{[prep]} \end{array}$ | 17756 | 3332 | 33244 | 5068 | 0,7780 | 0,9089 |

Tabla 37: Comparación (1) de Gradient Boosted por defecto vs. optimizado+preprocesado

|                  | PPV    | Accuracy | F1-score | G-mean | AUC    |
|------------------|--------|----------|----------|--------|--------|
| Gradient Boosted | 0,8271 | 0,8244   | 0,7502   | 0,7905 | 0,8885 |
| Gradient Boosted | 0,8420 | 0.8586   | 0.8087   | 0,8409 | 0,9239 |
| (opt) + [prep]   | 0,0420 | 0,8580   | 0,0007   | 0,0409 | 0,9239 |

Tabla 38: Comparación (2) de Gradient Boosted por defecto v<br/>s. optimizado+preprocesado  $\,$ 



Figura 27: Comparación Curva ROC Gradient Boosted

# 6. Interpretación de resultados

### 6.1. Análisis general de resultados



Figura 28: Comparación Curva ROC algoritmos optimizados con preprocesado

Los resultados parecen indicar que para los algoritmos C4.5 y Naïve-Bayes la optimización y el preprocesado mejoran por lo general sus resultados, pero la eliminación de ciertas variables hacen descender la tasa de aciertos, aunque globalmente mejoran el modelo.

En K-NN la mejora es muy buena debido a que se ha conseguido encontrar un número de vecinos óptimo para poder predecir a qué clase pertenece cada instancia, logrando ser así el tercer algoritmo con mejores resultados entre los analizados y del cual se ha logrado una mejora mayor.

En Random Forest apenas se consigue mejora debido a que es un algoritmo muy potente por sí solo que no necesita de mucho ajuste paramétrico para alcanzar obtener el máximo rendimiento.

Por último Gradient Boosted consigue una ligera mejora que hace que obtenga los mejores resultados en comparación con el resto de algoritmos, aunque queda prácticamente empatado con Random Forest a costa de haber hecho más complejo el modelo.

#### 6.2. Modelos generados

El algoritmo C4.5 elige como primer nodo la variable "quantity".



Figura 29: Primer nodo del árbol de C4.5

La única regla utilizada por OneR también es la variable "quantity".

quantity:

dry -> nonfunctional
enough -> functional
insufficient -> functional
seasonal -> functional
unknown -> nonfunctional
(30761/47520 instances correct)

Figura 30: Única regla de OneR

A continuación se muestran los "splits" más frecuentes en Random Forest

| Row ID                          | #splits (lvl 0) | #splits (lvl 1)                    | #splits (lvl 2) |  |
|---------------------------------|-----------------|------------------------------------|-----------------|--|
| quantity                        | 41              | 99                                 | 149             |  |
| region                          | 12              | 42                                 | 100             |  |
| $waterpoint\_type$              | 44              | 43                                 | 84              |  |
| lga                             | 13              | 44                                 | 65              |  |
| $payment\_type$                 | 8               | 45                                 | 64              |  |
| $extraction\_type$              | 36              | 34                                 | 60              |  |
| $construction\_year$            | 14              | 20                                 | 59              |  |
| waterpoint                      | 51              | 47                                 | 55              |  |
| _type_group                     | 91              | 41                                 | 00              |  |
| source                          | 2               | 37                                 | 52              |  |
| $\mathrm{amount\_tsh}$          | 14              | 24                                 | 52              |  |
| $source\_type$                  | 0               | 13                                 | 52              |  |
| $extraction_{-}$                | 31              | $\begin{vmatrix} 44 \end{vmatrix}$ | 51              |  |
| ${ m type\_group}$              | 91              | 44                                 | 01              |  |
| $\operatorname{extraction}_{-}$ | 24              | 24                                 | 47              |  |
| type_class                      | <i>2</i> €      | 24                                 |                 |  |
| management                      | 4               | 20                                 | 42              |  |
| basin                           | 1               | 5                                  | 41              |  |
| scheme_management               | 1               | 7                                  | 35              |  |
| longituide                      | 0               | 6                                  | 32              |  |
| quality_group                   | 1               | 11                                 | 29              |  |
| latitude                        | 0               | 6                                  | 24              |  |

Tabla 39: Número de "splits" más frecuentes en Random Forest

Se puede apreciar por tanto que la variable "quantity" es la más importante para determinar en primera instancia cómo clasificar la clase a la que pertenece cada fila.

#### 6.3. WorkFlow



Figura 31: Flujo de trabajo general

# 7. Contenido adicional

# 8. Bibliografía

- 1. KNIME
- 2. NodePit
- 3. Algoritmos de aprendizaje: KNN & KMEANS
- 4. Ensambladores: Random Forest
- 5. Gradient Boosting Machines
- 6. Pros and cons of random forests
- 7. Decision Trees -C4.5
- 8. Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset