Функционально-Стоимостный Анализ (ФСА) Основы, методы и практическое применение

Курс «Основы инженерного творчества»

Прикладная математика и информатика

Что такое ФСА?

Определение и сущность

ФСА — Функционально-Стоимостный Анализ

- Метод технико-экономического исследования систем
- Направлен на оптимизацию соотношения между потребительскими свойствами и затратами
- Системное сочетание правил, приемов и процедур
- Ориентирован на достижение оптимального соотношения полезности и затрат

Ключевая идея

Потребителя интересует не продукция как таковая, а **польза**, которую он получит от ее использования

История развития ФСА

Лоуренс Д. Майлс (США)

- 1946 г. начало исследований
- 1949 г. первая публикация
- 1952 г. разработка методики
- Экономия: 200 млн. \$ за 17 лет

Ю.М. Соболев (Россия)

- 1948 г. первый успех применения
- 1949 г. первая заявка на изобретение
- Разработка поэлементного анализа
- Влияние на методы в ГДР

Современное развитие

- 1976-1977 гг. расширение на жизненный цикл
- Design to Life Cycle Cost
- Интеграция с менеджментом качества

Цели и задачи ФСА

Основные цели

- Оптимизация соотношения качество/стоимость
- Повышение конкурентоспособности продукции
- Снижение совокупных затрат на жизненный цикл
- Улучшение потребительских свойств

Задачи ФСА

- Выявление и анализ функций объекта
- Оценка затрат на реализацию функций
- Поиск альтернативных решений
- Оптимизация функциональной структуры

Стейкхолдеры в ФСА

Ключевые заинтересованные лица

- Потребители интересуются полезностью и стоимостью
- Производители оптимизация производства и затрат
- Разработчики создание конкурентоспособных решений
- Инвесторы возврат на вложенные средства

Принцип соответствия

ФСА полностью соответствует принципам менеджмента качества ISO 9000:

- Ориентация на потребителя
- Лидерство руководства
- Вовлечение работников

Интересы стейкхолдеров в ФСА

Стейкхолдер	Интересы и требования	
Потребитель	Максимальная полезность при минимальной цене	
Производитель	Снижение затрат при сохранении качества	
Разработчик	Техническая реализуемость и инновационность	
Инвестор	Рентабельность и срок окупаемости	
Общество	Экологичность и социальная ответственность	

Баланс интересов

ФСА помогает найти **оптимальный компромисс** между противоречивыми интересами различных стейкхолдеров

Основные этапы ФСА

Классическая схема проведения ФСА

- Подготовительный этап определение целей и задач
- **② Информационный этап** сбор и анализ данных
- Аналитический этап исследование функций и затрат
- Творческий этап поиск альтернативных решений
- **5** Исследовательский этап изучение возможностей
- Рекомендательный этап разработка предложений
- Внедрение реализация оптимального решения

Методы декомпозиции и анализа

Формальные методы

- Функциональное моделирование построение функциональных схем
- Стоимостной анализ расчет затрат на функции
- Морфологический анализ систематический перебор вариантов
- Статистические методы анализ больших данных

Неформальные методы

- Мозговой штурм генерация идей в группе
- Экспертные оценки привлечение специалистов
- Метод Дельфи анонимные экспертные оценки
- ТРИЗ теория решения изобретательских задач

Функциональное моделирование

Базовые понятия

- Главная функция основное назначение объекта
- Основные функции обеспечивают выполнение главной
- Вспомогательные функции поддерживают основные
- Вредные функции негативно влияют на систему

Функционально-идеальная модель

Модель, отражающая комплекс функций объекта, реализуемых **минимальным числом** материальных элементов

Методы оценки и анализа

Качественные оценки

- Экспертные оценки
- Ранжирование функций
- Попарные сравнения
- Балльные оценки

Количественные оценки

- Стоимостной анализ
- Статистические расчеты
- Экономические показатели
- ROI и срок окупаемости

Матрица значимости функций

Соотношение важности функций и затрат на их реализацию позволяет выявить **«узкие места»** системы

Постановка задачи

Объект анализа

Система проверки лабораторных работ по проектированию БД

Проблема

- Высокие временные затраты преподавателя
- Необходимость быстрой обратной связи для студентов
- Требование объективности и стандартизации проверки
- Ограниченность человеческих ресурсов

Цель ФСА

Оптимизировать процесс проверки ЛР через автоматизацию с использованием ИИ (DeepSeek API)

ЛР 1: Проектирование БД "Личная CRM"

Разработка ER-модели и проверка нормальных форм

Постановка задачи

- Предметная область: Учет контактов и взаимодействий (личная CRM)
- **Цель**: Спроектировать реляционную БД для учета личных контактов и встреч

Сущности и атрибуты

- Контакты: ФИО, место_работы, телефон
- Встречи: дата, тема, место
- Заметки: дата, текст_заметки_по_контакту

Бизнес-процессы

- Регистрация всех встреч и важных событий, связанных с контактами
- Учет истории взаимодействий с каждым контактом

ЛР 1: Проектирование БД "Личная CRM"

Выходные документы

- Список предстоящих встреч на неделю (контакты + темы)
- История встреч и заметок по конкретному контакту

Задание

- Разработать ER-модель системы (информационная модель)
- Проверить соответствие 1-3 нормальным формам (формальный критерий качества)
- Обосновать выбор ключей и связей (неформальный критерий)

Важный момент

- Выходной документ № 1 содержит информацию, требуемую для информационной модели
- Сущность «Заметки» содержит лишее поле, «кратность связи» Контакты—Встречи зависит от предположений, согласуемых с преподавателем

Подготовительный этап

Анализ текущей ситуации

- Ручная проверка одной работы: 30-60 минут
- Задержка обратной связи: 1-3 дня
- Субъективность оценок
- Невозможность индивидуального подхода

Формулировка задачи

Создать систему автоматизированной проверки формальных критериев проектирования БД с использованием DeepSeek API

Ожидаемый эффект

- Снижение времени проверки на 60-70
- Увеличение количества итераций улучшения
- Стандартизация критериев оценки

Информационный этап

Сбор данных

- Анализ 50+ прошлых лабораторных работ
- Классификация типовых ошибок студентов
- Исследование возможностей DeepSeek API
- Изучение требований стейкхолдеров

Стейкхолдеры и их потребности

- Студенты: быстрая обратная связь, понятные критерии
- Преподаватель: снижение рутины, фокус на концептуальных ошибках
- Администрация: масштабируемость, снижение нагрузки

Аналитический этап

Функциональный анализ

- Главная функция: Обеспечение качественной проверки ЛР
- Основные функции:
 - Анализ корректности ER-модели
 - Проверка ключей и связей
 - Верификация нормальных форм
 - Генерация замечаний
- Вспомогательные функции:
 - Хранение истории проверок
 - Формирование отчетов
 - Обеспечение интерфейса

Творческий этап

Генерация решений

- Вариант 1: Полная автоматизация через ИИ
- Вариант 2: Гибридная система (ИИ + преподаватель)
- Вариант 3: Peer-to-peer проверка с ИИ-модерацией

Методы творческого этапа

- Мозговой штурм генерация идей по улучшению
- Промпт-инжиниринг разработка эффективных запросов
- Морфологический анализ комбинация различных подходов

Исследовательский этап

Эксперименты и тестирование

- Тест на понимание предметной области
- Проверка способности к критическому анализу
- Оценка качества рекомендаций
- Определение границ точности

Результаты исследования

Тип проверки	Точность	Полнота	Время
Формальные критерии	95%	90%	5 сек
Концептуальный анализ	70%	60%	15 сек
Творческие предложения	50%	40%	20 сек

Рекомендательный этап

Ключевые рекомендации

- Внедрять поэтапно начать с пилотной группы
- Опециализированные промпты для разных типов проверки
- Интеграция в учебный процесс как навык работы с ИИ

Промпт-стратегия

- Промпт #1: Формальный аудит ER-модели
- Промпт #2: Архитектурный анализ
- Промпт #3: Генерация тестовых SQL-запросов

Внедрение и результаты

План внедрения

- Фаза 1: Пилот (2 недели) обучение одной группы
- Фаза 2: Масштабирование (4 недели) все группы курса
- Фаза 3: Оптимизация постоянное улучшение

Экономический эффект

Показатель	До	После
Время проверки одной работы	45 мин	10 мин
Количество итераций улучшения	1-2	3-5
Освобождение времени преподавателя	0%	60%
Стандартизация оценки	Низкая	Высокая

Концептуальная трансформация процесса

От традиционной модели к гибридной экосистеме обучения

Традиционная модель o Инверсная модель БЫЛО: СТАЛО:

- Лекции в аудитории пассивное восприятие
- Домашние задания самостоятельная борьба
- Преподаватель транслятор знаний
- Лабы формальное выполнение
- Контроль финальный экзамен

- Лекции дома интерактивный контент + ИИ-ассистент
- Лабы в классе командная работа + мгновенная проверка
- Преподаватель фасилитатор и ментор
- Проекты реальные кейсы с итеративными улучшениями
- Оценка процессная, на основе итераций

Концептуальная трансформация процесса

От традиционной модели к гибридной экосистеме обучения

Роль ИИ в новой экосистеме

- Персональный ассистент 24/7 помощь в освоении теории
- Автоматический ревьюер мгновенная обратная связь по лабам
- **Тьютор по промптингу** обучение эффективному взаимодействию с ИИ
- Генератор кейсов создание персонализированных задач

Архитектура инверсрованного обучения с ИИ

Экосистема взаимодополняющих компонентов

Домашняя работа	Инструменты	Результат
Изучение теории	Видеолекции + ИИ-ассистент	Базовое понимание
Подготовка вопросов	Интерактивные симуляторы	Глубокое погружение
Предварительная проверка	DeepSeek API	Самодиагностика

Аудиторная работа	Инструменты	Результат
Разбор сложных тем	Групповые дискуссии	Концептуальное понимание
Практические задания	Командные проекты	Навыки коллаборации
Экспертная проверка	Преподаватель + ИИ	Профессиональный рост

Ключевой принцип

«Не запрещать ИИ, а научить его использовать как суперсилу» - формирование цифровой грамотности как образовательного результата

Метрики эффективности новой модели

Оценка трансформации образовательного процесса

Количественные метрики

- Время до фидбека: 3 дня ightarrow 10 минут
- ullet Количество итераций: 1-2 o 5-7
- Освоение темпа: 70% o 90% +
- Вовлеченность: 40% → 85%+
- Глубина проработки: +300%

Качественные метрики

- **Самостоятельность**: решение сложных задач
- **Критическое мышление**: анализ ответов ИИ
- **Командная работа**: совместные проекты
- Цифровая грамотность: работа с Al-инструментами
- Инновационность:
 нестандартные решения

Метрики эффективности новой модели

Оценка трансформации образовательного процесса

Долгосрочный эффект

- Для студентов: готовность к работе в АІ-насыщенной среде
- Для преподавателей: переход от контроля к менторству
- Для вуза: позиционирование как инновационной площадки
- Для индустрии: выпускники с актуальными компетенциями

Проектный подход: Лабораторная 2.0

От изолированных заданий к сквозному проекту

Новая структура лабораторной работы

- Наследование контекста: продолжение отчета из Лабы 1
- ② Генерация DDL: создание классической схемы по согласованной модели
- Подготовка данных: генерация реалистичного дампа для загрузки
- Практика запросов: самостоятельное написание + ИИ-анализ корректности
- **Концептуальный анализ**: исследование 4NF/5NF с обоснованием целесообразности
- Итоговая оценка: комплексный анализ работы ИИ с саморефлексией студента

Проектный подход: Лабораторная 2.0

От изолированных заданий к сквозному проекту

Ключевые улучшения

- Сквозная логика: от модели до работающей БД с данными
- **Реалистичный контекст**: работа с "живыми" данными, а не абстрактными 4 строками
- Интеграция проверки: ИИ анализирует не только синтаксис, но и семантику запросов
- Профессиональный подход: отчет как полноценная проектная документация

Конкретная реализация этапов

Детализация нового подхода

Этап 1-2: Генерация DDL и дампа

- **Вход**: согласованная ER-модель из Лабы 1
- **Процесс**: генерация через ИИ классического DDL + реалистичного дампа (20-30 строк на таблицу)
- Результат: работающая БД с осмысленными данными

Этап 3: Практика запросов с ИИ-анализом

- Студент пишет запросы по ТЗ из Лабы 1
- ИИ анализирует:
 - Синтаксическую корректность
 - Семантическую правильность (решает ли запрос задачу)
 - Оптимальность выполнения
- Ответ сервера БД как объективный критерий работы

Конкретная реализация этапов

Детализация нового подхода

Этап 4-5: Анализ и отчет

- Исследование: "Нужны ли 4NF/5NF в данном конкретном случае?"
- **Отчет**: обоснование архитектурных решений + финальная оценка ИИ с рефлексией

Образовательные преимущества нового подхода

Что это дает студентам

Практические навыки

- Работа с полным циклом: от модели до работающей системы
- Навыки генерации: DDL, тестовых данных
- Отладка запросов: анализ и исправление ошибок
- Проектная документация: ведение сквозного отчета

Концептуальное понимание

- Осознанный выбор: когда применять разные NF
- Понимание trade-offs: простота vs гибкость
- **Критическое мышление**: оценка рекомендаций ИИ
- Саморефлексия: анализ собственных ошибок

Образовательные преимущества нового подхода

Что это дает студентам

Профессиональный уровень

Студенты работают как **junior разработчики БД**, а не как ученики, выполняющие упражнения:

- Реальные данные вместо абстрактных примеров
- Сквозной проект вместо изолированных заданий
- Профессиональные инструменты (ИИ) вместо только учебных материалов

Выводы и перспективы

Достигнутые результаты

- Создана эффективная система автоматизированной проверки
- Обеспечена значительная экономия времени преподавателя
- Повышено качество обратной связи для студентов
- Развиты навыки работы с AI-инструментами

Перспективы развития

- Расширение на другие курсы и дисциплины
- Разработка библиотеки стандартных промптов
- Интеграция с системами управления обучением
- Автоматизация более сложных типов проверок

Заключение

Ключевые преимущества ФСА

- Системный подход к оптимизации затрат и качества
- Учет интересов всех стейкхолдеров
- Инструменты для творческого поиска решений
- Практическая ориентированность на результат

ФСА в современном образовании

Методология ФСА позволяет эффективно решать задачи автоматизации образовательных процессов, обеспечивая оптимальное соотношение качества обучения и затрат ресурсов

Решенные противоречия в задаче автоматизации

Противоречие 1: Качество vs Скорость

Проблема: Если увеличить **точность проверки** o увеличивается **время ответа** ИИ

Решение: Принцип дробления - разделить проверку на этапы:

- Этап 1: Быстрая проверка формальных критериев (5 сек)
- Этап 2: Углубленный анализ архитектуры (15 сек)
- Этап 3: Творческие рекомендации (20 сек)

Результат: Оптимальное соотношение скорость/качество

Решенные противоречия в задаче автоматизации

Противоречие 2: Автоматизация vs Контроль

Проблема: Если увеличить **степень автоматизации** \to уменьшается контроль преподавателя

Решение: Принцип вынесения - выделить только нужное:

- ИИ проверяет: синтаксис, ключи, нормальные формы
- Преподаватель проверяет: концептуальные решения, архитектурные trade-offs

Результат: Гибридная модель с распределением ответственности

Решенные противоречия (продолжение)

Творческие решения технических и организационных противоречий

Противоречие 3: Стандартизация vs Индивидуальность

Проблема: Если ввести **единые стандарты** проверки o теряется **индивидуальный подход**

Решение: Принцип универсальности - многоуровневая система промптов:

- Базовые промпты: стандартная проверка для всех
- Специализированные промпты: для сложных/нестандартных решений
- Адаптивные промпты: учитывают контекст конкретной работы

Результат: Гибкая система, сочетающая стандарты и индивидуальность

Решенные противоречия (продолжение)

Противоречие 4: Запрет ИИ vs Неконтролируемое использование

Проблема: Если **запретить ИИ** o теряем преимущества; если **разрешить без контроля** o риски качества

Решение: Принцип объединения - конструктивная интеграция:

- Не запрещать, а научить эффективному использованию
- Контролировать не процесс, а результат
- Оценивать умение работать с ИИ как образовательный результат

Результат: Превращение угрозы в возможность развития

Извлеченные методические принципы

Универсальные подходы для решения подобных задач

Принцип 1: Итеративная декомпозиция

Сложную задачу ightarrow в последовательность простых проверок

Пример: Проверка БД = [Синтаксис] ightarrow [Ключи] ightarrow [НФ] ightarrow [Архитектура]

Принцип 2: Распределение ответственности

ИИ - рутина и стандарты, Человек - экспертиза и творчество

Пример: ИИ проверяет нормальные формы, преподаватель - концептуальные решения

Принцип 3: Контроль результата, а не процесса

Важен не факт использования ИИ, а качество финального решения **Пример**: Студент может использовать любые инструменты, но работа должна соответствовать критериям

Извлеченные методические принципы

Главный вывод

Любое техническое или организационное противоречие можно преодолеть через системный анализ функций и затрат!

Спасибо за внимание!

Альтшуллер Г.С. и др. Профессия - поиск нового, 1985, 196 с., ил.