Математический анализ, Коллоквиум 4

Балюк Игорь @lodthe, GitHub Материалы предоставил Егор Косов.

Дата изменения: 2020.09.01 в 18:14

Содержание

1	Метрические и нормированные пространства. Скалярное произведение и евклидово пространство. Неравенство Коши-Буняковского. Сходимость в метрических пространствах, открытые и замкнутые множества, предельные точки. Открытость открытого шара. Эквивалентное описание замкнутых множеств.	
	1.1 Метрические и нормированные пространства	3
	1.2 Скалярное произведение и евклидово пространство	0
	1.3 Неравенство Коши-Буняковского	3
	1.4 Сходимость в метрических пространствах, открытые и замкнутые множества, предельные точки	4
	1.5 Открытость открытого шара. Эквивалентное описание замкнутых множеств	4
2	Полные метрические пространства, полнота \mathbb{R}^k . Непрерывные отображения в метрических пространствах: определения, доказательства их эквивалентностей, основные свойства.	=
	2.1 Полные метрические пространства, полнота \mathbb{R}^k	į.
	 2.1 Полные метрические пространства, полнота № 2.2 Непрерывные отображения в метрических пространствах: определения, доказательства их эквивалент- 	٠
	ностей, основные свойства	6
3	Компакты в метрических пространствах: определение и основные свойства. Образ компакта при непрерывном отображении. Критерий компактности в \mathbb{R}^k . Свойства непрерывных на компакте функций.	6
	3.1 Компакты в метрических пространствах: определение и основные свойства. Образ компакта при непре-	·
	рывном отображении	6
	3.2 Критерий компактности в \mathbb{R}^k	7
	3.3 Свойства непрерывных на компакте функций	7
4	Дифференциру емых отображений из \mathbb{R}^k в \mathbb{R}^m , дифференциал. Непрерывность дифференциру емых отображений. Производная вдоль вектора и ее связь с дифференциалом. Частные производные.	7
	4.1 Дифференцируемость отображений из \mathbb{R}^k в \mathbb{R}^m , дифференциал	7
	4.2 Непрерывность дифференцируемых отображений	7
	4.3 Производная вдоль вектора и ее связь с дифференциалом. 4.4 Частные производные.	8
5	Градиент функции и матрица Якоби отображения. Градиент, как направление наибольшего роста	
J	функции. Достаточное условие дифференцируемости функции в точке.	8
	5.1 Градиент функции и матрица Якоби отображения.	8
	5.2 Градиент, как направление наибольшего роста функции	9
	5.3 Достаточное условие дифференцируемости функции в точке	9
6	Частные производные высоких порядков. Теоремы Шварца ($6/д$) и Юнга. Дифференциалы высоких порядков.	ç
	6.1 Частные производные высоких порядков	9
		10
		10
7	Дифференциал суммы и произведения. Дифференциал обратного отображения.	11
	7.1 Дифференциал суммы и произведения	11
	7.2 Дифференциал обратного отображения	11

8	Дифференциал композиции. Матрица Якоби композиции, правило вычисления частной произ-		
	водной сложной функции, инвариантность первого дифференциала.	12	
	8.1 Дифференциал композиции	12	
	8.2 Матрица Якоби композиции, правило вычисления частной производной сложной функции, инвариантность первого дифференциала.	12	
9	Теорема о неявной функции: постановка вопроса, формулировка общей теоремы и доказательство	ı	
Ŭ	в случае функции двух переменных.	13	
	9.1 Теорема о неявной функции: постановка вопроса, формулировка общей теоремы	13	
	9.2 Теорема о неявной функции: доказательство в случае функции двух переменных	14	
10	Многомерная формула Тейлора.	15	
	10.1 Многомерная формула тейлора	15	
11	. Локальный экстремум: необходимое условие и достаточное условие.	15	
	11.1 Определение точки локального экстремума	15	
	11.2 Необходимое условие локального экстремума	16	
	11.3 Достаточное условие локального экстремума	16	
12	График функции. Касательная плоскость и касательное пространство к графику функции. Описание касательного пространства, как множества скоростей кривых, проходящих через данную точку. 12.1 График функции. 12.2 Касательная плоскость и касательное пространство к графику функции. 12.3 Описание касательного пространства, как множества скоростей кривых, проходящих через данную точку.	17 17 17	
13	\mathbb{R} Поверхность в \mathbb{R}^k и касательное пространство к ней. Описание касательного пространства к по-		
	верхности, заданной системой уравнений (доказательство в случае одного уравнения).	18	
	13.1 Поверхность в \mathbb{R}^k и касательное пространство к ней	18	
	13.2 Описание касательного пространства к поверхности, заданной системой уравнений (доказательство в		
	случае одного уравнения)	18	
14	Формулировки теорем о неявном отображении и обратной функции. Параметрически заданные поверхности. Описание касательного пространства к поверхности, заданной параметрически. 14.1 Формулировка теоремы о неявном отображении	18 18 19 20	
15	 Условный экстремум и метод множителей Лагранжа. Достаточное условие локального экстрему- 		
	Ma.	20	
	15.1 Условный экстремум и метод множителей Лагранжа	20	
	15.2 Достаточное условие локального экстремума	21	

Исходный код предоставил Егор Косов. В данном файле я попытался исправить опечатки и облегчить некоторые моменты для понимания.

Оригинальный список вопросов

1 Метрические и нормированные пространства. Скалярное произведение и евклидово пространство. Неравенство Коши-Буняковского. Сходимость в метрических пространствах, открытые и замкнутые множества, предельные точки. Открытость открытого шара. Эквивалентное описание замкнутых множеств.

Оригинальный конспект.

1.1 Метрические и нормированные пространства.

Определение. Пусть X — множество. Функция $d: X \times X \to [0; +\infty)$ называется метрикой, если

- 1. $d(x,y) = 0 \iff x = y;$
- 2. $d(x,y) = d(y,x) \forall x, y \in X;$
- 3. $d(x,z) \leq d(x,y) + d(y,z) \forall x, y, z \in X$.

Пара (X, d) называется метрическим пространством.

Определение. Пусть X — линейное (= векторное) пространство. Функция $\|\cdot\|: X \to [0; +\infty)$ называется нормой, если:

- 1. $||x|| = 0 \iff x = 0;$
- 2. $\|\lambda x\| = |\lambda| \|x\|, \forall x \in X$;
- 3. $||x + y|| \le ||x|| + ||y|| \forall x, y \in X$.

Пара $(X, \|\cdot\|)$ называется нормированным пространством.

Нормой является привычной нам длина вектора. Аналогично метрике, мы будем часто работать с Евклидовой нормой: пусть $x \in \mathbb{R}^n$, тогда $||x|| = \sqrt{x_1^2 + \dots + x_n^2}$.

Всякое нормированное пространство является метрическим с метрикой $d(x,y) = \|x - y\|$.

1.2 Скалярное произведение и евклидово пространство.

Определение. Пусть X — линейное (= векторное) пространство. Функция $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}$ называется скалярным произведением, если для всех $x, y, z \in X$ и всех $a, b \in \mathbb{R}$ выполнены следующие условия:

- 1. $\langle x, x \rangle \geqslant 0$ и $\langle x, x \rangle = 0 \iff x = 0$;
- 2. $\langle x, y \rangle = \langle y, x \rangle$;
- 3. $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$.

Линейное пространство X со скалярным произведением называется Евклидовым.

Мы будем часто работать со следующим скалярным произведением: пусть $x, y \in \mathbb{R}^n$, тогда $\langle x, y \rangle = x_1 \cdot y_1 + \dots + x_n \cdot y_n$.

1.3 Неравенство Коши-Буняковского

Лемма. (Неравенство Коши-Буняковского) Пусть $\langle \cdot, \cdot \rangle$ скалярное произведение на линейном пространстве X, тогда $\forall x,y \in X$

$$|\langle x, y \rangle| \leqslant \sqrt{\langle x, x \rangle} \cdot \sqrt{\langle y, y \rangle}.$$

Доказательство. Заметим, что для $\lambda \in \mathbb{R}$ выполнено

$$0 \leqslant \langle x + \lambda y, x + \lambda y \rangle = \lambda^2 \langle y, y \rangle + 2\lambda \langle x, y \rangle + \langle x, x \rangle.$$

Не ограничивая общности, считаем, что $\langle y,y\rangle>0$ (иначе y — нулевой вектор, доказательство тривиально). Это означает, что ветви параболы смотрят вверх. Но парабола лежит не ниже оси Ox, поэтому дискриминант этого трехчлена неположителен, т.е. $4|\langle x,y\rangle|^2-4\langle y,y\rangle\langle x,x\rangle\leqslant 0$. Откуда получаем:

$$|\langle x, y \rangle|^2 \leqslant \langle y, y \rangle \langle x, x \rangle \implies |\langle x, y \rangle| \leqslant \sqrt{\langle x, x \rangle} \cdot \sqrt{\langle y, y \rangle}.$$

Следствие. На евклидовом пространстве функция $||x|| := \sqrt{\langle x, x \rangle}$ является нормой.

Доказательство. Первые два свойства следуют из определения скалярного произведения. Неравенство треугольника следует из неравенства Коши-Буняковского:

$$\left\| x + y \right\|^2 = \left\langle x + y, x + y \right\rangle \leqslant \left\| x \right\|^2 + 2 \cdot \left| \left\langle x, y \right\rangle \right| + \left\| y \right\|^2 \leqslant \left\| x \right\|^2 + 2 \left\| x \right\| \left\| y \right\| + \left\| y \right\|^2 = (\left\| x \right\| + \left\| y \right\|)^2.$$

Пример. На линейном пространстве \mathbb{R}^k всех упорядоченных наборов (x_1,\dots,x_k) задано скалярное произведение $\langle x,y \rangle := \sum_{j=1}^k x_j y_j$. Тем самым, на \mathbb{R}^k задана естественная евклидова метрика $\|x-y\| := \sqrt{|x_1-y_1|^2 + \dots + |x_k-y_k|^2}$.

1.4 Сходимость в метрических пространствах, открытые и замкнутые множества, предельные точки.

Определение. Пусть (X, d) метрическое пространство.

1. Множество

$$B_r(x_0) := \{x \in X \mid d(x, x_0) < r\}$$

называется **открытым шаром** радиуса r.

2. Множество

$$\overline{B_r}(x_0) := \{ x \in X \mid d(x, x_0) \leqslant r \}$$

называется **замкнутым шаром** радиуса *r*.

- 3. Последовательность точек $x_n \in X$ называется **сходящейся к точке** x, если для всякого $\varepsilon > 0$ найдется такой номер $N(\varepsilon)$, что $d(x, x_n) < \varepsilon$ для каждого $n \geqslant N(\varepsilon)$.
- 4. Последовательность точек $x_n \in X$ называется **фундаментальной**, если для всякого $\varepsilon > 0$ найдется такой номер $N(\varepsilon)$, что $d(x_k, x_n) < \varepsilon$ для всех $k, n \geqslant N(\varepsilon)$.
- 5. Точка x называется **предельной** для множества $M \subset X$, если для всякого $\varepsilon > 0$ выполнено $B_{\varepsilon}(x) \cap (M \setminus \{x\}) \neq \varnothing$.
- 6. Множество $U \subset X$ называется **открытым**, если для всякого $x \in U$ найдется такое $\varepsilon > 0$, что $B_{\varepsilon}(x) \subset U$.
- 7. Множество $F \subset X$ называется **замкнутым**, если множество $X \setminus F$ открыто.

1.5 Открытость открытого шара. Эквивалентное описание замкнутых множеств.

Лемма. Пусть (X, d) метрическое пространство. Тогда

- 1. если $x_n \to x, y_n \to y$, то $d(x_n, y_n) \to d(x, y)$;
- 2. предел сходящейся последовательности единственный;
- 3. любой открытый шар является открытым множеством;
- 4. множество F замкнуто тогда и только тогда, когда множество F содержит все свои предельные точки.

Доказательство.

1. Следует из оценки

$$|d(x_n,y_n)-d(x,y)|\leqslant |d(x_n,y_n)-d(x_n,y)|+|d(x_n,y)-d(x,y)|\leqslant d(y_n,y)+d(x_n,x)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

Для всякого $\varepsilon > 0$, для каждого $n \ge N$, для некоторого N.

2. Следует из пункта 1). Предположим обратное. Пусть $\{x_n\} \to a$ и $\{x_n\} \to b$, при этом $a \neq b$. Возьмем некоторые непересекающиеся окрестности U = U(a) и V = V(b) точек a и b соответственно. Согласно определению предела вне окрестности U точки , в частности в окрестности V точки b, содержится лишь конечное число членов последовательности $\{x_n\}$. Однако точка b также является ее пределом, и потому в ее окрестности V должны находиться бесконечно много членов последовательности $\{x_n\}$, начиная с некоторого номера, а следовательно, получилось противоречие.

3.

$$B_r(x_0) := \{ x \in X \mid d(x, x_0) < r \}$$

называется **открытым шаром** радиуса r.

Если $x \in B_r(x_0)$, то по неравенству треугольника $B_{\varepsilon}(x) \subset B_r(x_0)$ при $\varepsilon < r - d(x, x_0)$. Докажем это.

Заметим, что для для всех $t \in B_{\varepsilon}(x)$ мы имеем $d(x_0,t) \leq d(x_0,x) + d(x,t) < d(x_0,x) + (r-d(x,x_0)) = r$. Отсюда получили, что $t \in B_r(x_0)$.

- 4. Множество F замкнуто тогда и только тогда, когда $\forall x \notin F \ \exists \varepsilon > 0: \ B_{\varepsilon} \cap F = \emptyset \iff$ всякая точка $x \notin F$ не предельная для F.
- 2 Полные метрические пространства, полнота \mathbb{R}^k . Непрерывные отображения в метрических пространствах: определения, доказательства их эквивалентностей, основные свойства.
- 2.1 Полные метрические пространства, полнота \mathbb{R}^k .

Определение. Метрическое пространство называется полным, если каждая фундаментальная последовательность в нем сходится.

Замечание. На \mathbb{R}^k справедливы соотношения

$$\max_{1 \leqslant j \leqslant k} |x_j| \leqslant ||x|| \leqslant \sqrt{k} \cdot \max_{1 \leqslant j \leqslant k} |x_j|$$

для вектора $x = (x_1, ..., x_k)$.

Теорема. Для любого конечномерного пространства \mathbb{R}^m последовательность $\{x_n\} \xrightarrow{n \to \infty} a$ тогда и только тогда, когда для всякого i $\{(x_n)_i\} \xrightarrow{n \to \infty} a_i$.

Доказательство.

• Необходимость. По определению

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) > 0: \ \forall n \geqslant N(\varepsilon) \implies \sum_{i=1}^{m} ((x_n)_i - a_i)^2 < \varepsilon^2 \implies |(x_n)_i - a_i| < \varepsilon \ \forall i,$$

а это означает, что $\{(x_n)_i\} \xrightarrow{n \to \infty} a_i$.

• Достаточность. По определению для всякого i и всякого $\varepsilon > 0$ существует $N_i(\varepsilon)$: $\forall n \geqslant N_i(\varepsilon) \implies |(x_n)_i - a_i| < \frac{\varepsilon}{\sqrt{m}}$. Но если выбрать $N = \max\{N_i \mid 1 \leqslant i \leqslant m\}$, то

$$\forall n \geqslant N \implies \sum_{i=1}^{m} ((x_n)_i - a_i)^2 < m \cdot \frac{\varepsilon^2}{m} = \varepsilon^2 \iff d(x_n, a) < \varepsilon.$$

Пример. Пространство \mathbb{R}^k со стандартной евклидовой метрикой полное. Действительно. если последовательность векторов $x_n \in \mathbb{R}^k$ фундаментальна, то фундаментальны и последовательности координат $\{(x_n)_j\}_{j=1}^{\infty}$ для всякого $j \in \{1, \dots, k\}$.

Тем самым, у j-ой координаты есть предел x_j для каждого $j \in \{1, \dots, k\}$. То есть $|(x_n)_j - x_j| \to 0$. Значит, $x_n \to x := (x_1, \dots, x_k)$. В доказательстве можно сослаться на одномерный случай.

Пример. Пусть $X = [0; \pi/2)$. Пространство X не является полным с метрикой $d_1(x, y) = |x - y|$, но является полным с метрикой $d_2(x, y) = |\operatorname{tg} x - \operatorname{tg} y|$.

Доказательство. Докажем, что пространство X не является полным с метрикой $d_1(x,y) = |x-y|$. Возьмем следующую последовательность:

$$x_1 = \frac{\pi}{2} - 1$$
, $x_2 = \frac{\pi}{2} - \frac{1}{2}$, ..., $x_n = \frac{\pi}{2} - \frac{1}{n}$, ...

Тогда данная последовательность является фундаментальной, так как $|x_n - x_m| = \left| \frac{1}{n} - \frac{1}{m} \right| \leqslant \frac{1}{\min\{n, m\}}$, но она сходится к $\frac{\pi}{2}$, а оно не лежит в X.

2.2 Непрерывные отображения в метрических пространствах: определения, доказательства их эквивалентностей, основные свойства.

Определение. Пусть (X, d_X) и (Y, d_Y) — два метрических пространства. Отображение $f: X \to Y$ называется непрерывным в точке $x_0 \in X$, если для всякой последовательности $x_n \to x_0$ выполнено $f(x_n) \to f(x_0)$.

Лемма. Пусть (X, d_X) и (Y, d_Y) — два метрических пространства.

- 1. Отображение $f: X \to Y$ является непрерывным в точке $x \in X$ тогда и только тогда, когда для всякого $\varepsilon > 0$ найдется $\delta > 0$ такое, что $d_Y(f(x), f(x_0)) < \varepsilon$, если $d_X(x, x_0) < \delta$.
- 2. Отображение $f: X \to Y$ является непрерывным в каждой точке $x \in X$ тогда и только тогда, когда прообраз каждого открытого множества в Y будет открытым множеством в X (такие отображения будем называть просто непрерывными).

Доказательство.

- 1. Отображение f разрывно в точке $x_0 \iff$ найдется последовательность $x_n \to x_0$, для которой $f(x_n)$ не сходится к $f(x_0) \iff$ найдется число $\varepsilon > 0$ и последовательность $x'_n \to x_0$, для которой $d_Y(f(x'_n), f(x_0)) \geqslant \varepsilon \iff$ найдется такое число $\varepsilon > 0$, что для произвольного $\delta > 0$ существует $x_\delta \in B_\delta(x_0)$, для которого $d_Y(f(x_\delta), f(x_0)) \geqslant \varepsilon$.
- 2. Если прообраз любого открытого множества открыт, то для произвольного $\varepsilon > 0$ найдется такое $\delta > 0$, что $f^{-1}(B_{\varepsilon}(f(x_0))) \supset B_{\delta}(x_0)$, и значит отображение f непрерывно в точке x_0 . Наоборот: пусть U открыто в Y и $x_0 \in f^{-1}(U)$. Тогда в силу открытости найдется $\varepsilon > 0$, для которого $B_{\varepsilon}(f(x_0)) \subset U$. Из-за непрерывности в точке x_0 найдется такое $\delta > 0$, что $f^{-1}(B_{\varepsilon}(f(x_0))) \supset B_{\delta}(x_0)$, что дает открытость множества $f^{-1}(U)$.

Предложение. Пусть $f: X \to Y$ непрерывна в точке $a \in X, g: Y \to Z$ непрерывна в точке $f(a) \in Y$. Тогда композиция $g \circ f: X \to Z$ непрерывна в точке a.

Доказательство. Следует из определения непрерывности.

Следствие. Пусть $f,g:\mathbb{R}^k \to \mathbb{R}^m$ — непрерывные в точке a функции. Тогда f+g и $f\cdot g$ — непрерывны в точке a.

Доказательство. Следует из свойства пределов:

$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = f(x_0) + g(x_0) = (f + g)(x_0).$$

Определение. Пусть (X, d_X) и (Y, d_Y) — метрические пространства и пусть x_0 — предельная точка в X. Скажем, что предел функции $f: X \to Y$ в точке x_0 равен y_0 , если функция g, определенная соотношением g(x) = f(x) при $x \neq x_0$ и $g(x_0) = y_0$ иначе, непрерывна в точке x_0 .

- 3 Компакты в метрических пространствах: определение и основные свойства. Образ компакта при непрерывном отображении. Критерий компактности в \mathbb{R}^k . Свойства непрерывных на компакте функций.
- 3.1 Компакты в метрических пространствах: определение и основные свойства. Образ компакта при непрерывном отображении.

Определение. Множество K в метрическом пространстве называется компактным тогда и только тогда, когда из произвольной последовательности $\{x_n\}_{n=1}^{\infty} \subset K$ можно выделить сходящуюся подпоследовательность $x_{n_k} \to x \in K$.

Лемма. Пусть K — компакт. Тогда

- 1. K ограниченное множество;
- $2. \ K$ замкнутое множество;
- 3. образ K при непрерывном отображении компактен.

Доказательство.

1. Зафиксируем произвольную точку $x_0 \in K$. Если K — неограниченное множество, то найдется последовательность $x_n \in K$, $d(x_n, x_0) \to \infty$. Переходя к подпоследовательности, имеем $x_{n_k} \to x$, $d(x_{n_k}, x_0) \to d(x, x_0)$. Противоречие.

- 2. Если $x_n \in K$, $x_n \to x_0$, то переходя к подпоследовательности $x_{n_k} \to x \in K$, в силу единственности предела $x_0 = x \in K$.
- 3. Рассмотрим последовательность $\{f(x_n)\}_{n=1}^{\infty}, x_n \in K$. Переходя к подпоследовательности имеем $x_{n_k} \to x \in K$. Так как f непрерывное отображение, то $f(x_{n_k}) \to f(x) \in f(K)$.

3.2 Критерий компактности в \mathbb{R}^k .

Предложение. Множество K в \mathbb{R}^k со стандартной евклидовой метрикой компактно тогда и только тогда, когда оно замкнуто и ограничено.

Доказательство. Необходимость этого условия следует из предыдущей леммы. Проверим достаточность. Пусть множество K — замкнуто и ограничено, и пусть $x_n \in K$. В силу ограниченности K ограниченными будут и все координаты $(x_n)_j$ последовательности x_n . Тогда найдется сходящаяся подпоследовательность первых координат $(x_{n_m})_1$. Далее, из последовательности $(x_{n_m})_2$ можно также извлечь сходящуюся подпоследовательность. Повторяя процедуру, получим подпоследовательность x_n' , у которой каждая координата сходится, то есть $(x_n')_j \to x_j$ для некоторого x_j . Тем самым, $x_n' \to x = (x_1, \dots, x_k)$. В силу замкнутости K, вектор $x \in K$.

3.3 Свойства непрерывных на компакте функций.

Следствие. Пусть K — компакт, $f: K \to \mathbb{R}$ — непрерывная функция. Тогда образ f(K) — ограниченное множество и найдутся точки $x_m, x_M \in K$, для которых $f(x_m) = \inf_{x \in K} f(x), f(x_M) = \sup_{x \in K} f(x)$.

4 Дифференцируемость отображений из \mathbb{R}^k в \mathbb{R}^m , дифференциал. Непрерывность дифференцируемых отображений. Производная вдоль вектора и ее связь с дифференциалом. Частные производные.

4.1 Дифференцируемость отображений из \mathbb{R}^k в \mathbb{R}^m , дифференциал.

Определение. Отображение $f: \mathbb{R}^k \to \mathbb{R}^m$ называется дифференцируемым в точке x, если для каждого $h \in \mathbb{R}^k$

$$f(x + h) = f(x) + Lh + \alpha(h) ||h||,$$

где $L: \mathbb{R}^k \to \mathbb{R}^m$ — линейное отображение, $\lim_{\|h\| \to 0} \|\alpha(h)\| = 0$. Линейное отображение L называют дифференциалом f в точке x и обозначают df.

Замечание. Напомним, что отображение $L: \mathbb{R}^k \to \mathbb{R}^m$ называется линейным, если

$$L(a_1h_1 + a_2h_2) = a_1Lh_1 + a_2Lh_2$$

для произвольных векторов $h_1, h_2, \in \mathbb{R}^k$ и произвольных чисел $a_1, a_2 \in \mathbb{R}$.

Если в \mathbb{R}^k фиксирован базис $e := \{e_1, \dots, e_k\}$, а в \mathbb{R}^m фиксирован $e' := \{e'_1, \dots, e'_m\}$, то линейное отображение L представимо в виде $L(h) = L(e_1)h_1 + \dots + L(e_k)h_k$, где $h = (h_1, \dots, h_k)$ в базисе e, а векторы $L(e_j) = (a_{1,j}, \dots, a_{m,j})$ в базисе e'.

В частности, каждое линейное отображение при фиксированных базисах e и e' в \mathbb{R}^k и \mathbb{R}^m соответственно записывается с помощью матрицы $A = (a_{ij})$. Кроме того,

$$||Lh|| \le (||L(e_1)|| + \dots + ||L(e_k)||) \cdot \max_{1 \le j \le k} |h_j| \le C ||h||$$

и каждое линейное отображение непрерывно на \mathbb{R}^k .

4.2 Непрерывность дифференцируемых отображений.

Следствие. Если отображение $f: \mathbb{R}^k \to \mathbb{R}^m$ дифференцируемо в точке x, то оно непрерывно в точке x.

Доказательство. Действительно, $||f(x+h)-f(x)|| = ||df(h)+\alpha(h)||h||| \leqslant C ||h||$ (перенесли f(x) влево, взяли норму от обеих частей) при h из некоторой окрестности нуля.

Замечание. Так как дифференцируемость f в точке x равносильна тому, что

$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - Lh\|}{\|h\|} = 0,$$

и так как сходимость по норме равносильна покоординатной сходимости, то при фиксированном базисе $e':=\{e'_1,\ldots,e'_m\}$ в \mathbb{R}^m дифференцируемость отображения f равносильна дифференцируемости каждой координаты f_j в точке x. В этом случае $Lh=(L_1h,\ldots,L_mh)$ в базисе e', где $L_j=df_j$ — дифференциал j-ой координаты.

Лемма. Если отображение $f: \mathbb{R}^k \to \mathbb{R}^m$ дифференцируемо в точке x, то для каждого вектора $h \in \mathbb{R}^k$ функция $t \to f(x+th)$ дифференцируема в точке 0 и $\frac{d}{dt}f(x+th)\Big|_{t=0} = df(h)$.

Доказательство. По определению

$$f(x+th) - f(x) = t df(h) + \alpha(th) \cdot |t| ||h||.$$

Разделив на t и перейдя к пределу при $t \to 0$, получаем требуемое соотношение.

$$\lim_{t \to 0} \frac{f(x+th) - f(x)}{t} = \lim_{t \to 0} (df(h) + \alpha(th) ||h||) = df(h).$$

Мы явно нашли df, поэтому функция дифференцируема по определению.

4.3 Производная вдоль вектора и ее связь с дифференциалом.

Определение. Производная $\frac{\partial f}{\partial h}(x) := \frac{d}{dt} f(x+th) \Big|_{t=0}$ называется производной вдоль вектора h и может существовать и в случае, когда сама функция f не дифференцируема в точке x.

Как мы уже поняли, для дифференцируемости отображения достаточно исследовать дифференцируемость его координат, то есть дифференцируемость функции $f: \mathbb{R}^k \to \mathbb{R}$. Зафиксировав базис $e:=\{e_1,\ldots,e_k\}$ в \mathbb{R}^k , условие дифференцируемости в точке $x=(x_1,\ldots,x_k)$ переписывается в виде

$$f(x_1 + h_1, \dots, x_k + h_k) = f(x_1, \dots, x_k) + c_1 h_1 + \dots + c_k h_k + \bar{o}(\|h\|),$$

то есть $df(h) = c_1 h_1 + \dots + c_k h_k$. Из уже доказанного ясно, что $\frac{\partial f}{\partial e_j}(x) = df(e_j) = c_j$.

4.4 Частные производные.

Определение. Частной производной $\frac{\partial f}{\partial x_j}$ функции $f: \mathbb{R}^k \to \mathbb{R}$ в точке $x = (x_1, \dots, x_k)$ называется производная вдоль вектора e_j , то есть

$$\left. \frac{\partial f}{\partial x_j}(x) = \left. \frac{d}{dt} f(x_1, \dots, x_{j-1}, t, x_{j+1}, \dots, x_k) \right|_{t=x_j}.$$

Замечание. При фиксированно базисе $e=\{e_1,\ldots,e_k\}$ в \mathbb{R}^k линейные функционалы dx_1,\ldots,dx_k оказываются сопряженным базисом к e. То есть $dx_i(e_j)=\delta_{i,j}$. Таким образом, $df=\frac{\partial f}{\partial x_1}\,dx_1+\cdots+\frac{\partial f}{\partial x_k}\,dx_k$.

Замечание. В случае отображения $f: \mathbb{R}^k \to \mathbb{R}^m$ при фиксированных базисах e и e' в \mathbb{R}^k и в \mathbb{R}^m соответственно, компоненты матрицы дифференциала df имеют вид $a_{i,j} = \frac{\partial f_i}{\partial x_j}(x)$, то есть по строкам написаны градиенты $\nabla f_i(x)$.

5 Градиент функции и матрица Якоби отображения. Градиент, как направление наибольшего роста функции. Достаточное условие дифференцируемости функции в точке.

5.1 Градиент функции и матрица Якоби отображения.

Определение. При фиксированных базисах e в \mathbb{R}^k и e' в \mathbb{R}^m матрицу, соответствующую линейному отображению df, называют матрицей Якоби отображения f в точке x и обозначают $J_f(x)$.

Определение. Градиентом функции
$$f$$
 называется вектор $\nabla f := \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$.

5.2 Градиент, как направление наибольшего роста функции.

Лемма. Если f дифференцируема в точке x и $df \neq 0$, то наибольшее значение производной вдоль единичного вектора v (т.е. ||v|| = 1) достигается на векторе $||\nabla f(x)||^{-1} \nabla f(x)$.

Доказательство. Так как $\frac{\partial f}{\partial v}(x) = df(v) = \langle \nabla f(x), v \rangle$, то по неравенству Коши–Буняковского $\left| \frac{\partial f}{\partial v}(x) \right| \leqslant \|\nabla f(x)\| \|v\| = \|\nabla f(x)\|$. Если $v = \|\nabla f(x)\|^{-1} \nabla f(x)$, то в неравенстве достигается равенство.

Заметим, что наличия частных производных в точке недостаточно для дифференцируемости функции в этой точке.

Пример. Пусть

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Функция f разрывна в нуле, а значит не дифференцируема, но в точке (0,0) существуют обе частных производных. Действительно, если $x = r\cos\varphi, y = r\sin\varphi$, то функция $f(x,y) = \sin 2\varphi$. Таким образом, f(x,y) в любой окрестности точки (0,0) принимает значения из [-1;1], но $\frac{\partial f}{\partial x}(0,0) = \frac{d}{dx}f(x,0) = 0$. Аналогично $\frac{\partial f}{\partial y}(0,0) = 0$.

5.3 Достаточное условие дифференцируемости функции в точке.

В следующей теореме сформулировано достаточное условие дифференцируемости.

Теорема. Если все частные производные $\frac{\partial f}{\partial x_j}$ существуют в окрестности точки x_0 и непрерывны в этой точке, то f — дифференцируема в точке x_0 .

Доказательство. Для сокращения выкладок докажем теорему в случае k=2. Заметим, что по теореме Лагранжа

$$f(x_1 + h_1, x_2 + h_2) - f(x_1, x_2) = f(x_1 + h_1, x_2 + h_2) - f(x_1, x_2 + h_2) + f(x_1, x_2 + h_2) - f(x_1, x_2)$$

$$= \frac{\partial f}{\partial x_1} (\xi_1, x_2 + h_2) h_1 + \frac{\partial f}{\partial x_2} (x_1, \xi_2) h_2,$$

где ξ_1 принадлежит интервалу с концами $x_1, x_1 + h_1,$ а ξ_2 — с концами $x_2, x_2 + h_2$. Запишем теперь последнюю сумму в виде

 $\frac{\partial f}{\partial x_1}(x_1, x_2)h_1 + \frac{\partial f}{\partial x_2}(x_1, x_2)h_2 + \alpha(h)||h||,$

где

$$\alpha(h) = \left(\frac{\partial f}{\partial x_1}(\xi_1, x_2 + h_2) - \frac{\partial f}{\partial x_1}(x_1, x_2)\right) \frac{h_1}{\|h\|} + \left(\frac{\partial f}{\partial x_2}(x_1, \xi_2) - \frac{\partial f}{\partial x_2}(x_1, x_2)\right) \frac{h_2}{\|h\|}.$$

При малой $\|h\|$ выражения в скобках будут малы в силу непрерывности частных производных. Тем самым, $\lim_{h\to 0}\|\alpha(h)\|=0$, потому что $|h_1|\leqslant \|h\|$ и $|h_2|\leqslant \|h\|$ (потому что $\|h\|=\sqrt{h_1^2+h_2^2}$).

6 Частные производные высоких порядков. Теоремы Шварца (б/д) и Юнга. Дифференциалы высоких порядков.

6.1 Частные производные высоких порядков.

Определение. Пусть $f \colon \mathbb{R}^k \to \mathbb{R}$ и предположим, что в некоторой окрестности $B_r(x_0)$ точки x_0 существует частная производная $\frac{\partial f}{\partial x_j}$. Если функция $x \mapsto \frac{\partial f}{\partial x_j}(x)$ в точке x_0 имеет частную производную по переменной x_i , то эта частная производная $\frac{\partial}{\partial x_i} \Big(\frac{\partial f}{\partial x_j} \Big)(x_0)$ называется *частной производной второго порядка* по переменным x_j и x_i и обозначается $\frac{\partial^2 f}{\partial x_i \partial x_j}(x_0)$.

Замечание. Заметим, что частные производные $\frac{\partial^2 f}{\partial x_i \partial x_j}$ и $\frac{\partial^2 f}{\partial x_j \partial x_i}$ являются разными объектами и, вообще говоря, не совпадают (пример будет в рамках семинарских задач).

6.2 Теоремы Шварца и Юнга.

О совпадении смешанных частных производных позволяют судить следующие две теоремы, которые мы для простоты сформулируем в двумерном случае (общий случай, по сути, ничем не отличается).

Теорема 1 (Шварц). Пусть смешанные частные производные $\frac{\partial^2 f}{\partial x \partial y}$ и $\frac{\partial^2 f}{\partial y \partial x}$ существуют в окрестности точки (x_0, y_0) и непрерывны в этой точке. Тогда их значения в точке (x_0, y_0) совпадают.

Теорема 2 (Юнг). Пусть $f - \partial u \phi \phi$ еренцируема в окрестности точки (x_0, y_0) , а ее частные производные $\frac{\partial f}{\partial x}$ и $\frac{\partial f}{\partial y}$ дифференцируемы в точке (x_0, y_0) . Тогда смешанные частные производные $\frac{\partial^2 f}{\partial x \partial y}$ и $\frac{\partial^2 f}{\partial y \partial x}$ в точке (x_0, y_0) совпадают.

Приведем доказательство второй из этих теорем.

Доказательство. Не ограничивая общности, будем считать, что $(x_0, y_0) = (0, 0)$. Рассмотрим функцию

$$F(t,t) = f(t,t) - f(0,t) - f(t,0) + f(0,0).$$

Применяя теорему Лагранжа к функции g(u) = f(t, u) - f(0, u), получаем

$$F(t,t) = g(t) - g(0) = g'(\xi)t = \left(\frac{\partial f}{\partial u}(t,\xi) - \frac{\partial f}{\partial u}(0,\xi)\right)t.$$

Дифференцируемость $\frac{\partial f}{\partial y}$ в точке (0,0) означает, что

$$\frac{\partial f}{\partial y}(x,y) = \frac{\partial f}{\partial y}(0,0) + \frac{\partial^2 f}{\partial x \partial y}(0,0)x + \frac{\partial^2 f}{\partial y^2}(0,0)y + \bar{\bar{o}}(\sqrt{x^2+y^2}).$$

Таким образом,

$$\frac{\partial f}{\partial y}(t,\xi) = \frac{\partial f}{\partial y}(0,0) + \frac{\partial^2 f}{\partial x \partial y}(0,0)t + \frac{\partial^2 f}{\partial y^2}(0,0)\xi + \bar{\bar{o}}(\sqrt{t^2 + \xi^2}).$$

И

$$\frac{\partial f}{\partial u}(0,\xi) = \frac{\partial f}{\partial u}(0,0) + \frac{\partial^2 f}{\partial u^2}(0,0)\xi + \bar{\bar{o}}(\xi).$$

Т.к. $\xi\leqslant t$, то $\bar{\bar{o}}(\sqrt{t^2+\xi^2})=\bar{\bar{o}}(t)$ и $\bar{\bar{o}}(\xi)=\bar{\bar{o}}(t)$. Таким образом,

$$F(t,t) = \frac{\partial^2 f}{\partial x \partial y}(0,0)t^2 + \bar{\bar{o}}(t^2).$$

Аналогично,

$$F(t,t) = \frac{\partial^2 f}{\partial u \partial x}(0,0)t^2 + \bar{o}(t^2).$$

Приравняв полученные выражения, поделив на t^2 и устремив t к нулю, получаем

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \frac{\partial^2 f}{\partial y \partial x}(0,0).$$

6.3 Дифференциалы высоких порядков.

Предположим, что $f\colon \mathbb{R}^k \to \mathbb{R}$ — дифференцируема в окрестности точки a и предположим, что ее частные производные $\frac{\partial f}{\partial x_j}$ дифференцируемы в точке a. Тогда при каждом $h\in \mathbb{R}^k$ возникает функция $x\mapsto df\big|_x(h)=\frac{\partial f}{\partial x_1}(x)h_1+\ldots+\frac{\partial f}{\partial x_k}(x)h_k$, дифференцируемая в точке a.

Ее дифференциал
$$d(df(h))|_a(q) = \left(\sum_{j=1}^k \frac{\partial^2 f}{\partial x_j \partial x_1}(a)q_j\right) h_1 + \ldots + \left(\sum_{j=1}^k \frac{\partial^2 f}{\partial x_j \partial x_k}(a)q_j\right) h_k.$$

То есть получена билинейная форма $d(df(h))\big|_a(q) = \sum_{i,j=1}^k \frac{\partial^2 f}{\partial x_j \partial x_i}(a)q_jh_i$. Эта билинейная форма оказывается симметричной по теореме Юнга, а т.к. симметричная билинейная форма однозначно задается своей квадратичной формой $d(df(h))\big|_a(h) = \sum_{i,j=1}^k \frac{\partial^2 f}{\partial x_j \partial x_i}(a)h_jh_i = \sum_{i,j=1}^k \frac{\partial^2 f}{\partial x_j \partial x_i}(a)dx_j(h)dx_i(h)$, то эту квадратичную форму $d^2f:=$

$$\sum_{i,j=1}^k \frac{\partial^2 f}{\partial x_j \partial x_i}(a) dx_j dx_i$$
 и называют **вторым дифференциалом** функции f .

Аналогично определяется дифференциал *n*-го порядка:

Определение. Если f-n раз дифференцируема в точке a, то

$$d^n f|_a := \sum_{1 \leq j_1, \dots, j_n \leq k} \frac{\partial^n f}{\partial x_{j_1} \dots \partial x_{j_n}} (a) dx_{j_1} \dots dx_{j_n}.$$

Последняя запись означает лишь то, что при вычислении n-го дифференциала на векторе $h \in \mathbb{R}^k$ надо воспользоваться линейностью, а $[dx_{j_1} \dots dx_{j_n}](h) := dx_{j_1}(h) \dots dx_{j_n}(h) = h_{j_1} \dots h_{j_n}$.

7 Дифференциал суммы и произведения. Дифференциал обратного отображения.

7.1 Дифференциал суммы и произведения.

Теорема. Пусть функции $f,g:\mathbb{R}^k \to \mathbb{R}$ дифференцируемы в некоторой точке x. Тогда, для произвольных чисел $a,b\in\mathbb{R}$, функции af+bg и fg дифференцируемы в точке x и $d(af+bg)=a\,df+b\,dg$ и $d(fg)=f\,dg+g\,df$.

Доказательство. Заметим, что

$$(af + bg)(x + h) - (af + bg)(x) = a(f(x + h) - f(x)) + b(g(x + h) - g(x))$$
$$= a(df(h) + \bar{o}(||h||)) + b(dg(h) + \bar{o}(||h||)) = a df(h) + b dg(h) + \bar{o}(||h||).$$

Таким образом, d(af + bg) = a df + b dg.

Для доказательства второго равенства заметим, что

$$\begin{split} (fg)(x+h) - (fg)(x) &= (f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x)) \\ &= (df(h) + \bar{o}(\|h\|))(g(x) + \bar{o}(1)) + f(x)(dg(h) + \bar{o}(\|h\|)) \\ &= g(x) \, df(h) + f(x) \, dg(h) + (df(h))\bar{o}(1) + g(x)\bar{o}(\|h\|) + f(x)\bar{o}(\|h\|) + \bar{o}(\|h\|). \end{split}$$

Мы использовали непрерывность функции g, т.е. $g(x+h)-g(x)=\bar{o}(1)$ при $\|h\|\to 0$, в силу ее дифференцируемости в точке x.

Так как df — линейное отображение, то для некоторого числа C>0 выполнено $|df(h)|\leqslant C\|h\|$, а значит $(df(h))\bar{\bar{o}}(1)=\bar{\bar{o}}(\|h\|)$. Т.к. f(x) и g(x) просто числа, то $g(x)\bar{\bar{o}}(\|h\|)+f(x)\bar{\bar{o}}(\|h\|)=\bar{\bar{o}}(\|h\|)$. Таким образом, теорема доказана.

7.2 Дифференциал обратного отображения.

Теорема. Пусть $f \colon \mathbb{R}^k \to \mathbb{R}^k$ — есть непрерывная биекция между окрестностями U(a) и V(f(a)), причем обратное отображение $f^{-1} \colon V(f(a)) \to U(a)$ также непрерывно (т.е. f — гомеоморфизм между U(a) и V(f(a))). Предположим, что f — дифференцируемо в точке a и df — обратимое линейное отображение. Тогда f^{-1} — диф-

Предположим, что f — дифференцируемо в точке a и df — обратимое линейное отображение. Тогда f^{-1} — дифференцируемо в точке f(a) и $df^{-1}\big|_{f(a)} = \left(df\big|_a\right)^{-1}$.

Доказательство. Нам нужно проверить, что

$$\lim_{\|q\| \to 0} \frac{\|f^{-1}(f(a) + q) - f^{-1}(f(a)) - (df)^{-1}(q)\|}{\|q\|} = 0.$$

Пусть $h = f^{-1}(f(a) + q) - f^{-1}(f(a)) = f^{-1}(f(a) + q) - a$, тогда q = f(a + h) - f(a) и $||q|| \to 0$ тогда и только тогда, когда $||h|| \to 0$.

Так как f — дифференцируемо в точке a, то

$$f(a+h) - f(a) = df(h) + \alpha(h)||h||,$$

где $\lim_{\|h\| \to 0} \|\alpha(h)\| = 0.$

Таким образом,

$$\lim_{\|q\|\to 0} \frac{\|f^{-1}(f(a)+q)-f^{-1}(f(a))-(df)^{-1}(q)\|}{\|q\|} = \lim_{\|h\|\to 0} \frac{\left\|h-(df)^{-1}(df(h)+\alpha(h)\|h\|)\right\|}{\left\|df(h)+\alpha(h)\|h\|\right\|}.$$

Числитель в последнем выражении равен $||h|| ||(df)^{-1}(\alpha(h))||$. Для линейного отображения $(df)^{-1}$ найдется число C > 0, для которого $||(df)^{-1}(p)|| \le C||p||, \forall p \in \mathbb{R}^k$.

Отсюда, подставив p = df(h), получаем $C^{-1}||h|| \le ||df(h)||$. Тем самым

$$||df(h) + \alpha(h)||h||| \ge ||df(h)|| - ||h||||\alpha(h)|| \ge ||h||(C^{-1} - ||\alpha(h)||).$$

Таким образом,

$$\frac{\left\|h - (df)^{-1}(df(h) + \alpha(h)\|h\|)\right\|}{\left\|df(h) + \alpha(h)\|h\|\right\|} \leqslant \frac{C\|h\|\|\alpha(h)\|}{\|h\|\left(C^{-1} - \|\alpha(h)\|\right)} = \frac{C\|\alpha(h)\|}{\left(C^{-1} - \|\alpha(h)\|\right)} \to 0$$

при $||h|| \to 0$.

Замечание. Отметим, что матрица обратного линейного отображения есть обратная матрица к матрице исходного линейного отображения. Тем самым, матрица Якоби обратного отображения $J_{f^{-1}}(y)$ является обратной к матрице Якоби исходного отображения, т.е. равна $(J_f(f^{-1}(y)))^{-1}$.

8 Дифференциал композиции. Матрица Якоби композиции, правило вычисления частной производной сложной функции, инвариантность первого дифференциала.

8.1 Дифференциал композиции.

Теорема. Пусть $f: \mathbb{R}^k \to \mathbb{R}^m$, $g: \mathbb{R}^m \to \mathbb{R}^n$, причем отображение f дифференцируемо в точке a, отображение g дифференцируемо в точке a и $d(g \circ f)|_a = dg|_{f(a)} \circ df|_a$.

Замечание. Поясним запись $d(g \circ f)\big|_a = dg\big|_{f(a)} \circ df\big|_a$. Здесь $df\big|_a \colon \mathbb{R}^k \to \mathbb{R}^m$ есть линейное отображение и $dg\big|_{f(a)} \colon \mathbb{R}^m \to \mathbb{R}^n$ есть линейное отображение. Тогда их композиция $dg\big|_{f(a)} \circ df\big|_a \colon \mathbb{R}^k \to \mathbb{R}^n$ есть линейное отображение, действующее по правилу

$$dg\big|_{f(a)} \circ df\big|_a(h) = dg\big|_{f(a)} (df\big|_a(h)).$$

Доказательство. По условию $f(a+h)-f(a)=df(h)+\alpha(h)\|h\|$, где $\lim_{\|h\|\to 0}\|\alpha(h)\|=0$ и $g(f(a)+q)-g(f(a))=dg(q)+\beta(q)\|q\|$, где $\lim_{\|q\|\to 0}\|\beta(q)\|=0$. Мы также доопределим α и β в точке нуль нулем (т.е. считаем $\alpha(0)=0$ и $\beta(0)=0$). Тогда

$$g(f(a+h)) - g(f(a)) = g(f(a) + [f(a+h) - f(a)]) - g(f(a))$$

$$= dg[f(a+h) - f(a)] + \beta(f(a+h) - f(a)) ||f(a+h) - f(a)||$$

$$= dg[df(h) + \alpha(h)||h||] + \beta(f(a+h) - f(a)) ||df(h) + \alpha(h)||h|||.$$

Тем самым.

$$g(f(a+h)) - g(f(a)) = dg[df(h)] + \gamma(h)||h||,$$

где

$$\|\gamma(h)\| = \|dg[\alpha(h)] + \beta (f(a+h) - f(a))\| df(h/\|h\|) + \alpha(h)\| \|$$

$$\leq \|dg[\alpha(h)]\| + \|\beta (f(a+h) - f(a))\| (\|df(h/\|h\|)\| + \|\alpha(h)\|).$$

Напомним, что для линейных отображений dg и df существуют такие постоянные A и B, что $\|df(h)\| \leqslant A\|h\|$ и $\|dg(q)\| \leqslant B\|q\|$, поэтому $\|df(h/\|h\|)\| + \|\alpha(h)\| \leqslant A + \|\alpha(h)\|$ и $\|dg[\alpha(h)]\| \leqslant B\|\alpha(h)\|$.

Так как
$$\|\beta(f(a+h)-f(a))\|\to 0$$
 при $\|h\|\to 0$, получаем, что $\lim_{\|h\|\to 0}\|\gamma(h)\|=0$.

8.2 Матрица Якоби композиции, правило вычисления частной производной сложной функции, инвариантность первого дифференциала.

Замечание. При фиксированных базисах $e = \{e_1, \dots, e_k\}, e' = \{e'_1, \dots, e'_m\}, e'' = \{e''_1, \dots, e''_n\}$ в \mathbb{R}^k , \mathbb{R}^m и \mathbb{R}^n соответственно, матрица композиции линейных отображений есть произведение матриц этих линейных отображений.

Таким образом, в нашем случае для композиции функций $g \circ f$, где $f \colon \mathbb{R}^k \to \mathbb{R}^m$ и $g \colon \mathbb{R}^m \to \mathbb{R}^n$, по предыдущей теореме выполнено

$$\begin{pmatrix} \frac{\partial (g \circ f)_1}{\partial y_1}(a) & \dots & \frac{\partial (g \circ f)_1}{\partial y_k}(a) \\ \dots & & & \\ \frac{\partial (g \circ f)_n}{\partial y_1}(a) & \dots & \frac{\partial (g \circ f)_n}{\partial y_k}(a) \end{pmatrix} = \begin{pmatrix} \frac{\partial g_1}{\partial x_1}(f(a)) & \dots & \frac{\partial g_1}{\partial x_m}(f(a)) \\ \dots & & & \\ \frac{\partial g_n}{\partial x_1}(f(a)) & \dots & \frac{\partial g_n}{\partial x_m}(f(a)) \end{pmatrix} \begin{pmatrix} \frac{\partial f_1}{\partial y_1}(a) & \dots & \frac{\partial f_1}{\partial y_k}(a) \\ \dots & & & \\ \frac{\partial f_m}{\partial y_1}(a) & \dots & \frac{\partial f_m}{\partial y_k}(a) \end{pmatrix}$$

В частности, в случае, когда n=1, для функции $q(x_1,\ldots,x_m)$ и отображения

$$f(y_1,\ldots,y_k) = (f_1(y_1,\ldots,y_k),\ldots,f_m(y_1,\ldots,y_k)),$$

выполнено:

$$\left(\frac{\partial(g \circ f)}{\partial y_1}(a) \quad \dots \quad \frac{\partial(g \circ f)}{\partial y_k}(a)\right) = \left(\frac{\partial g}{\partial x_1}(f(a)) \quad \dots \quad \frac{\partial g}{\partial x_m}(f(a))\right) \left(\begin{array}{ccc} \frac{\partial f_1}{\partial y_1}(a) & \dots & \frac{\partial f_1}{\partial y_k}(a) \\ \dots & & \\ \frac{\partial f_m}{\partial y_1}(a) & \dots & \frac{\partial f_m}{\partial y_k}(a) \end{array}\right)$$

Отсюда, во-первых получаем правило вычисления частной производной сложной функции:

$$\frac{\partial (g \circ f)}{\partial y_j}(a) = \frac{\partial g}{\partial x_1}(f(a))\frac{\partial f_1}{\partial y_j}(a) + \ldots + \frac{\partial g}{\partial x_m}(f(a))\frac{\partial f_m}{\partial y_j}(a)$$

. Во-вторых, получаем следующее свойство инвариантности первого дифференциала: для дифференциала выполнено равенство $dg=rac{\partial g}{\partial x_1}\,dx_1+\ldots+rac{\partial g}{\partial x_m}\,dx_m$, где нам не важно, являются ли dx_1,\ldots,dx_m — дифференциалами независимых переменных или же являются дифференциалами некоторых функций $x_j=f_j(y_1,\ldots,y_k).$

Пример. Пусть $f(x,y) = \varphi(u,v,w)$, где u = xy, v = x + y, w = x - y. Тогда

$$df = \frac{\partial \varphi}{\partial u} du + \frac{\partial \varphi}{\partial v} dv + \frac{\partial \varphi}{\partial w} dw = \frac{\partial \varphi}{\partial u} d(xy) + \frac{\partial \varphi}{\partial v} d(x+y) + \frac{\partial \varphi}{\partial w} d(x-y)$$
$$= \frac{\partial \varphi}{\partial u} (x dy + y dx) + \frac{\partial \varphi}{\partial v} (dx + dy) + \frac{\partial \varphi}{\partial w} (dx - dy).$$

В частности, $\frac{\partial f}{\partial x} = y \frac{\partial \varphi}{\partial u}(xy, x+y, x-y) + \frac{\partial \varphi}{\partial v}(xy, x+y, x-y) + \frac{\partial \varphi}{\partial w}(xy, x+y, x-y)$ и $\frac{\partial f}{\partial y} = x \frac{\partial \varphi}{\partial u}(xy, x+y, x-y) + \frac{\partial \varphi}{\partial v}(xy, x+y, x-y)$ $\frac{\partial \varphi}{\partial v}(xy, x+y, x-y) - \frac{\partial \varphi}{\partial w}(xy, x+y, x-y).$

9 Теорема о неявной функции: постановка вопроса, формулировка общей теоремы и доказательство в случае функции двух переменных.

9.1 Теорема о неявной функции: постановка вопроса, формулировка общей теоремы.

Пусть в \mathbb{R}^2 у нас имеется соотношение F(x,y)=0. Нам бы хотелось понять при каких условиях данное уравнение возможно разрешить относительно y в виде явной зависимости y = f(x).

Рассмотрим например $F(x,y) = x^2 + y^2 - 1$. Тогда уравнение F(x,y) = 0 задает обычную окружность и все решения данного уравнения относительно y имеют вид $y = \pm \sqrt{1 - x^2}$. Ясно, что произвольный выбор знаков в разных точках х будет давать бесконечно много решений данного уравнения.

В тоже время в малой окрестности произвольной точки (x_0, y_0) на окружности (кроме $x_0 = \pm 1$) кривая F(x, y) = 0единственным образом представима в виде графика непрерывной функции y = f(x). В окрестности же точек $(\pm 1, 0)$ никакая дуга окружности не может быть представлена в виде графика функции y = f(x). Зато эти дуги в окрестности точек $(\pm 1,0)$ хорошо расположены относительно оси y и могут быть представлены в виде графика x=g(y).

Чем же обусловлена такая особенность точек $(\pm 1,0)$ в случае окружности? Заметим, что локально функция F(x,y) представима в виде $F(x,y)=\frac{\partial F}{\partial x}(x_0,y_0)(x-x_0)+\frac{\partial F}{\partial y}(x_0,y_0)(y-y_0)+\bar{o}(\sqrt{|x-x_0|^2+|y-y_0|^2}).$

Таким образом, пренебрегая малыми более высокого порядка, наше уравнение F(x,y)=0 в окрестности точки (x_0,y_0) похоже на линейное уравнение $\frac{\partial F}{\partial x}(x_0,y_0)(x-x_0)+\frac{\partial F}{\partial y}(x_0,y_0)(y-y_0)=0$, которое в свою очередь разрешимо относительно y только в случае $\frac{\partial F}{\partial u}(x_0, y_0) \neq 0$.

В частности, в случае окружности как раз $\frac{\partial F}{\partial y}(\pm 1,0)=0$. Из данного эвристического рассуждения возникает гипотеза, что уравнение F(x,y)=0 разрешимо относительно переменной y в некоторой окрестности данной точки (x_0,y_0) , если производная $\frac{\partial F}{\partial y}(x_0,y_0)$ отлична от нуля. Именно это мы и докажем в следующей теореме уже в строго сформулированном виде.

Для сокращения всех записей будем использовать обозначение $F_y'(x,y):=\frac{\partial F}{\partial x}(x,y).$

Теорема. Пусть $F \colon \mathbb{R}^2 \to \mathbb{R}$ — определена и непрерывно дифференцируема (т.е. частные производные непрерывно зависят от точки) в некоторой окрестности U точки $(a,b) \in \mathbb{R}^2$. Пусть 1) F(a,b) = 0 и 2) $F'_u(a,b) \neq 0$.

Тогда найдутся промежутки $I_x=(a-\alpha,a+\alpha)$ и $I_y=(b-\beta,b+\beta)$ и непрерывно дифференцируемая функция $f\colon I_x\to I_y$, для которых $I_x\times I_y\subset U$ и для каждой точки $(x,y)\in I_x\times I_y$ выполнено $F(x,y)=0\Leftrightarrow y=f(x)$. Кроме того, $f'(x)=-\frac{F'_x(x,f(x))}{F'_y(x,f(x))}$.

9.2 Теорема о неявной функции: доказательство в случае функции двух переменных.

Доказательство.

1. Для определенности считаем, что $F_y'(a,b)>0$. Так как производные функции F непрерывны в U, то в малой окрестности $\{(x,y)\colon \sqrt{|x-a|^2+|y-b|^2}<2\beta\}$ точки (a,b) также выполнено $F_y'(x,y)>0$.

Так как $F_y'(a,y)>0$ на отрезке $[b-\beta,b+\beta]$, то функция $y\mapsto F(a,y)$ монотонно возрастает на этом отрезке, откуда

$$F(a, b - \beta) < F(a, b) = 0 < F(a, b + \beta).$$

Так как F непрерывна в U, то найдется такое число $\alpha < \beta$, что $F(x,b-\beta) < 0 < F(x,b+\beta)$ при $x \in (a-\alpha,a+\alpha)$. При каждом $x \in (a-\alpha,a+\alpha)$ рассмотрим функцию $y \mapsto F(x,y)$, заданную на отрезке $[b-\beta,b+\beta]$. Рассматриваемая функция есть непрерывная строго возрастающая функция на отрезке, причем на концах отрезка данная функция принимает значения разных знаков. Поэтому при каждом $x \in (a-\alpha,a+\alpha)$ существует единственная точка y = f(x), для которой F(x,f(x)) = 0. Тем самым построена окрестность точки (a,b) вида $I_x \times I_y$ в которой построено единственное решение уравнения F(x,y) = 0 относительно переменной y.

2. Проверим непрерывность построенного решения в точке a. Ясно, что f(a)=b в силу единственности нуля у функции $y\mapsto F(a,y)$ на I_y . Пусть теперь фиксировано некоторое $\varepsilon\in(0,\beta)$. Повторяя рассуждения первой части для интервала $(b-\varepsilon,b+\varepsilon)$ найдем интервал $(a-\delta,a+\delta)$ с $\delta<\alpha$ и функцию $\tilde{f}\colon(a-\delta,a+\delta)\to(b-\varepsilon,b+\varepsilon)$ для которых F(x,y)=0 при $(x,y)\in(a-\delta,a+\delta)\times(b-\varepsilon,b+\varepsilon)$ $\Leftrightarrow y=\tilde{f}(x),x\in(a-\delta,a+\delta)$.

Так как $(a - \delta, a + \delta) \subset I_x$ и $(b - \varepsilon, b + \varepsilon) \subset I_y$, то в силу единственности решения f в $I_x \times I_y$ получаем, что $f(x) = \tilde{f}(x)$ при $x \in (a - \delta, a + \delta)$. Это означает, что $|f(x) - b| < \varepsilon$ при $|x - a| < \delta$.

Теперь проверим непрерывность f в произвольной точке $x \in I_x$. Для этого просто примем за начальную точку построения произвольную точку (x,y) с $x \in I_x, y \in I_y$ и повторим рассуждение выше.

3. Докажем непрерывную дифференцируемость f на I_x и докажем формулу для вычисления производной. Пусть $x \in I_x$ и рассмотрим достаточно малое Δx , для которого $x + \Delta x \in I_x$. Пусть $y = f(x) \in I_y$ и $\Delta y = f(x + \Delta x) - f(x)$. Применим теорему Лагранжа к функции $t \mapsto F(x + t\Delta x, y + t\Delta y)$:

$$0 = F(x + \Delta x, y + \Delta y) - F(x, y) = F'_x(x + \xi \Delta x, y + \xi \Delta y) \Delta x + F'_y(x + \xi \Delta x, y + \xi \Delta y) \Delta y,$$

где $\xi \in (0,1)$. Т.к. $F_y' \neq 0$ в $I_x \times I_y$, то

$$\frac{\Delta y}{\Delta x} = -\frac{F_x'(x + \xi \Delta x, y + \xi \Delta y)}{F_y'(x + \xi \Delta x, y + \xi \Delta y)}.$$

В силу непрерывности f при $\Delta x \to 0$ выполнено, что и $\Delta y \to 0$, поэтому, в силу непрерывности производных функции F в $I_x \times I_y$, получается, что $f'(x) = -\frac{F_x'(x,y)}{F_y'(x,y)}$, где y = f(x). Из формулы следует и непрерывность производной.

Аналогично доказывается следующий многомерный аналог предыдущей теоремы.

Теорема. Пусть $F: \mathbb{R}^{k+1} \to \mathbb{R}$ — определена и непрерывно дифференцируема (то есть частные производные непрерывно зависят от точки) в некоторой окрестности U точки $(a,b) = (a_1,\ldots,a_k,b) \in \mathbb{R}^{k+1}$.

Пусть 1) F(a,b) = 0 и 2) $F_y'(a,b) \neq 0$. Найдутся $I_x = (a_1 - \alpha_1, a_1 + \alpha_1) \times \ldots \times (a_k - \alpha_k, a_k + \alpha_k)$ и $I_y = (b - \beta, b + \beta)$ и непрерывно дифференцируемая функция $f \colon I_x \to I_y$, для которых $I_x \times I_y \subset U$ и для каждой точки $(x,y) \in I_x \times I_y$ выполнено $F(x,y) = 0 \Leftrightarrow y = f(x)$.

выполнено
$$F(x,y)=0 \Leftrightarrow y=f(x).$$
 Кроме того, $\frac{\partial f}{\partial x_j}(x)=-\frac{F'_{x_j}(x,f(x))}{F'_y(x,f(x))}.$

Доказательство. Существование $I_x \times I_y$ и функции f, а также ее непрерывность, дословно повторяют рассуждение из предыдущей теоремы.

Если теперь фиксировать все переменные, кроме x_j и y, мы попадем в ситуацию предыдущей теоремы, откуда следует формула для вычисления частной производной. Из формулы следует непрерывность этой частной производной, а значит и непрерывная дифференцируемость f.

Замечание. Отметим, что формула для подсчет производной берется из дифференцирования тождества F(x,f(x))=0. Действительно, $\frac{\partial F}{\partial x_1}dx_1+\ldots+\frac{\partial F}{\partial x_k}+\frac{\partial F}{\partial y}df=0$, откуда выражая df и получаем нужную нам формулу.

10 Многомерная формула Тейлора.

10.1 Многомерная формула тейлора.

Лемма. Пусть функция f m раз дифференцируема в окрестности точки $a \in \mathbb{R}^k$. Рассмотрим функцию $\varphi(t) := f(a+th)$. Тогда φ m раз дифференцируема в окрестности точки нуль и $\varphi^{(m)}(t) = d^m f \big|_{a+th}(h)$.

Доказательство. Утверждение доказывается по индукции. База m=1:

$$\varphi'(t) = \frac{\partial f}{\partial x_1}(a+th)h_1 + \ldots + \frac{\partial f}{\partial x_n}(a+th)h_n = df\big|_{a+th}(h).$$

Индуктивный переход:

$$\varphi^{(m+1)}(t) = \frac{d}{dt} \left[\sum_{j_1, \dots, j_m} \frac{\partial^m f}{\partial x_{j_1} \dots \partial x_{j_m}} (a+th) h_{j_1} \cdot \dots \cdot h_{j_m} \right]$$

$$= \sum_{j_1, \dots, j_m} \left[\sum_{j=1}^k \frac{\partial^{m+1} f}{\partial x_j \partial x_{j_1} \dots \partial x_{j_m}} (a+th) h_j \right] h_{j_1} \cdot \dots \cdot h_{j_m} = d^{m+1} f \big|_{a+th}(h).$$

Теорема. Пусть функция f m раз непрерывно дифференцируема в окрестности точки a Тогда справедлива следующая формула Тейлора:

$$f(a+h) = f(a) + df|_a(h) + \frac{1}{2!} d^2 f|_a(h) + \dots + \frac{1}{m!} d^{(m)} f|_a(h) + \bar{o}(\|h\|^m).$$

Доказательство. Запишем для функции $\varphi(t) := f(a+th)$ формулу Тейлора с остаточным членом в интегральной форме:

$$f(a+h) = \varphi(1) =$$

$$\varphi(0) + \varphi'(0)(1-0) + \frac{1}{2!}\varphi''(0)(1-0)^2 + \dots + \frac{1}{(m-1)!}\varphi^{(m-1)}(0)(1-0)^{m-1} + \frac{1}{(m-1)!}\int_0^1 (1-t)^{m-1}\varphi^{(m)}(t) dt$$

$$= f(a) + df\big|_a(h) + \frac{1}{2!}d^2f\big|_a(h) + \dots + \frac{1}{(m-1)!}d^{m-1}f\big|_a(h) + \frac{1}{m!}d^mf\big|_a(h) + R_m(h),$$

где

$$R_m(h) := \frac{1}{(m-1)!} \int_0^1 (1-t)^{m-1} \varphi^{(m)}(t) \ dt - \frac{1}{m!} \varphi^{(m)}(0) = \frac{1}{(m-1)!} \int_0^1 (1-t)^{m-1} \left(\varphi^{(m)}(t) - \varphi^{(m)}(0) \right) \ dt.$$

Отсюда

$$\frac{|R_{m}(h)|}{\|h\|^{m}} \leqslant \frac{1}{m!} \frac{1}{\|h\|^{m}} \sup_{[0,1]} |\varphi^{(m)}(t) - \varphi^{(m)}(0)|$$

$$\leqslant \frac{1}{m!} \sup_{[0,1]} \sum_{i_{1},\dots,i_{m}} \left| \frac{\partial^{m} f}{\partial x_{j_{1}} \dots \partial x_{j_{m}}} (a+th) - \frac{\partial^{m} f}{\partial x_{j_{1}} \dots \partial x_{j_{m}}} (a) \left| \frac{|h_{j_{1}}|}{\|h\|} \cdot \dots \cdot \frac{|h_{j_{m}}|}{\|h\|} \right| \to 0$$

при $\|h\| \to 0$ в силу непрерывности частных производных m-го поряка.

11 Локальный экстремум: необходимое условие и достаточное условие.

11.1 Определение точки локального экстремума.

Определение. Точка a называется точкой локального минимума (максимума) функции f если всех точек x из некоторой окрестности U(a) точки a выполнено $f(x) \ge f(a)$ ($f(x) \le f(a)$).

Если для всех точек $x \in U(a), x \neq a$, выполнено f(x) > f(a) (f(x) < f(a)), то точка a называется точкой строгого локального минимума (максимума).

Точки локального минимума и максимума называются точками локального экстремума.

11.2 Необходимое условие локального экстремума.

Теорема (Необходимое условие локального экстремума). Пусть a — точка локального экстремума функции f и предположим, что f дифференцируема в точке a. Тогда $df\big|_a = 0$ (или, что тоже самое, $\frac{\partial f}{\partial x_i}(a) = 0 \, \forall j$).

Доказательство. Зафиксируем вектор h и функцию $\varphi(t) := f(a+th)$. Так как a — точка локального экстремума функции f, 0 — точка локального экстремума функции φ . Из одномерного случая известно, что $\varphi'(0) = 0$. Но $\varphi'(t) = df\big|_{a+th}(h)$, поэтому

$$df\big|_a(h) = \varphi'(0) = 0.$$

11.3 Достаточное условие локального экстремума.

Теорема (Достаточное условие локального экстремума). Пусть f дважды непрерывно дифференцируема в окрестности точки a и предположим, что в точке a выполнено необходимое условие локального экстремума: $df\big|_a(h)=0\,\forall h$. Тогла

- 1. если $d^2f|_a(h)>0\,\forall h\neq 0,$ то a точка строгого локального минимума;
- 2. если $d^2 f|_a(h) < 0 \,\forall h \neq 0$, то a точка строгого локального максимума.

Доказательство. Докажем пункт 1), пункт 2) получается рассмотрением функции -f. По формуле Тейлора

$$f(a+h) - f(a) = \frac{1}{2} d^2 f \big|_a(h) + \bar{\bar{o}}(\|h\|^2) = \|h\|^2 \left(\frac{1}{2} d^2 f \big|_a(\|h\|^{-1}h) + \bar{\bar{o}}(1)\right).$$

Заметим, что квадратичная функция $d^2f|_a(q)=\sum_{i,j}\frac{\partial^2f}{\partial x_i\partial x_j}(a)q_iq_j$ непрерывна (как функция аргумента q). Единичная сфера $\{q\colon \|q\|=1\}$ — замкнутое и ограниченное множество, а значит компакт. Поэтому непрерывная функция $d^2f|_a(q)$ достигает на сфере своего минимума:

$$\min_{\|a\|=1} d^2 f|_a(q) = m = d^2 f|_a(q_0) > 0.$$

Поэтому

$$f(a+h) - f(a) \ge ||h||^2 (\frac{m}{2} + \bar{o}(1)).$$

Существует такое δ , что при $\|h\|<\delta$ выполнено $|\bar{o}(1)|<\frac{m}{4}.$ Поэтому при $\|h\|<\delta$

$$f(a+h) - f(a) \ge ||h||^2 \left(\frac{m}{2} - \frac{m}{4}\right) = \frac{m||h||^2}{2} > 0.$$

Замечание. Отметим, что $\left. d^2 f \right|_a(h)$ — есть квадратичная форма, заданная матрицей

$$\begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(a) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(a) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_k}(a) \\ \frac{\partial^2 f}{\partial x_1 \partial x_2}(a) & \frac{\partial^2 f}{\partial x_2^2}(a) & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_k}(a) \\ \dots & \dots & \dots \end{pmatrix}$$

Предположения из предыдущей теоремы $d^2f|_a(h)>0$ или $d^2f|_a(h)<0$ $\forall h\neq 0$ означают положительную или отрицательную определенность квадратичной формы. Как известно из курса линейной алгебры, за положительную или отрицательную определенность квадратичной формы отвечает критерий Сильвестра:

- отрицательную определенность квадратичной формы отвечает *критерий Сильвестра*: 1) все угловые миноры матрицы квадратичной формы $d^2f\big|_a$ положительны $\leftrightarrow d^2f\big|_a$ положительно определена (т.е. $d^2f\big|_a(h)>0$ при каждом $h\neq 0$);
- 2) угловые миноры матрицы квадратичной формы $d^2f|_a$ начинаются с отрицательного, а затем чередуют знаки $\leftrightarrow d^2f|_a$ отрицательно определена (т.е. $d^2f|_a(h) < 0$ при каждом $h \neq 0$).

12 График функции. Касательная плоскость и касательное пространство к графику функции. Описание касательного пространства, как множества скоростей кривых, проходящих через данную точку.

12.1 График функции.

Для начала рассмотрим график функции z = f(x,y), где $f: G \to \mathbb{R}$ — непрерывно дифференцируемая функция, и G — некоторая область в \mathbb{R}^2 (открытый круг, открытый прямоугольник).

График функции — это множество

$$\Gamma_f := \{(x, y, z) \in \mathbb{R}^3 \colon z - f(x, y) = 0, \ (x, y) \in G\} \subset \mathbb{R}^3.$$

Так как график f запараметризован парами чисел (x,y), то его естественно считать двумерной поверхностью в \mathbb{R}^3

Так как f — дифференцируемая функция, то в окрестности любой точки (x_0, y_0, z_0) справедливо равенство

$$f(x,y) = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) + \bar{o}(\sqrt{(x - x_0)^2 + (y - y_0)^2}).$$

То есть расстояние от точки $(x,y,f(x,y))\in\Gamma_f$ до точки плоскости

$$z - z_0 = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

есть $\bar{o}(\sqrt{(x-x_0)^2+(y-y_0)^2}).$

12.2 Касательная плоскость и касательное пространство к графику функции.

Плоскость

$$z - z_0 = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

естественно назвать касательной плоскостью к графику Γ_f в точке (x_0, y_0, z_0) .

Линейное подпространство

$$\left\{ h = (h_x, h_y, h_z) \in \mathbb{R}^3 \colon h_z = \frac{\partial f}{\partial x}(x_0, y_0) h_x + \frac{\partial f}{\partial y}(x_0, y_0) h_y \right\}$$

будем называть касательным пространством к Γ_f в точке (x_0,y_0,z_0) и обозначать $T_{(x_0,y_0,z_0)}\Gamma_f$.

Из сказанного ранее ясно, что точка (x, y, z) принадлежит касательной плоскости к графику функции f в точке (x_0, y_0, z_0) тогда и только тогда, когда вектор

$$(x-x_0, y-y_0, z-z_0) \in T_{(x_0, y_0, z_0)}\Gamma_f.$$

12.3 Описание касательного пространства, как множества скоростей кривых, проходящих через данную точку.

Определение. Кривой в \mathbb{R}^k будем называть непрерывно дифференцируемое отображение $\gamma\colon (a,b)\to\mathbb{R}^k$.

Если $\gamma(t)=(\gamma_1(t),\ldots,\gamma_k(t))$, то вектор $\dot{\gamma}(t_0)=(\dot{\gamma_1}(t_0),\ldots,\dot{\gamma_k}(t_0))$ называют вектором скорости кривой γ в точке t_0 .

Для касательной плоскости к графику функции существует инвариантное (относительно выбора базиса) описание.

Предложение. Вектор $h \in T_{(x_0,y_0,z_0)}\Gamma_f$ тогда и только тогда, когда найдется кривая $\gamma \colon (-\varepsilon,\varepsilon) \to \mathbb{R}^3$ для которой $\gamma(0) = (x_0,y_0,z_0), \, \gamma(t) \in \Gamma_f \, \forall t \in (-1,1)$ и $h = \dot{\gamma}(0)$.

Доказательство. Пусть γ — кривая из условия.

Тогда она имеет вид $\gamma(t)=(\gamma_x(t),\gamma_y(t),\gamma_z(t)),$ причем $\gamma_z(t)=f(\gamma_x(t),\gamma_y(t)).$ Тогда вектор

$$\dot{\gamma}(0) = \left(\dot{\gamma}_x(0), \dot{\gamma}_y(0), \frac{\partial f}{\partial x}(\gamma_x(0), \gamma_y(0))\dot{\gamma}_x(0) + \frac{\partial f}{\partial y}(\gamma_x(0), \gamma_y(0))\dot{\gamma}_y(0)\right) \in T_{(x_0, y_0, z_0)}\Gamma_f.$$

Наоборот, пусть $h \in T_{(x_0,y_0,z_0)}\Gamma_f$.

Рассмотрим кривую

$$\gamma(t) = (x_0 + th_x, y_0 + th_y, f(x_0 + th_x, y_0 + th_y)).$$

Тогда

$$\dot{\gamma}(0) = \left(h_x, h_y, \frac{\partial f}{\partial x}(x_0, y_0)h_x + \frac{\partial f}{\partial y}(x_0, y_0)h_y\right) = (h_x, h_y, h_z).$$

13 Поверхность в \mathbb{R}^k и касательное пространство к ней. Описание касательного пространства к поверхности, заданной системой уравнений (доказательство в случае одного уравнения).

13.1 Поверхность в \mathbb{R}^k и касательное пространство к ней.

Теперь мы можем дать общее определение (k-1)-мерной поверхности в \mathbb{R}^k и касательного пространства к ней.

Определение. Подмножество $M \subset \mathbb{R}^k$ называется (k-1)-мерной поверхностью, если для каждой точки $a = (a_1, \dots, a_k) \in M$ найдется номер j, окрестности

$$I = (a_1 - \alpha_1, a_1 + \alpha_1) \times \ldots \times (a_{j-1} - \alpha_{j-1}, a_{j-1} + \alpha_{j-1}) \times (a_{j+1} - \alpha_{j+1}, a_{j+1} + \alpha_{j+1}) \times \ldots \times (a_k - \alpha_k, a_k + \alpha_k)$$

и $J=(a_j-\alpha_j,a_j+\alpha_j)$ и непрерывно дифференцируемая функция $f\colon I\to J$, для которых для каждой точки $b\in I\times J$ выполнено $b\in M\Leftrightarrow x_j=f(x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_k).$

То есть (k-1)-мерной поверхностью называют такое подмножество $M\subseteq\mathbb{R}^k$, что у каждой точки $a\in M$ есть окрестность, в которой M совпадает с графиком некоторой функции относительной одной из координатных гипер-плоскостей

Пример. Пусть $F: \mathbb{R}^k \to \mathbb{R}$, причем для каждой точки $a \in \mathbb{R}^k$, в которой F(a) = 0, выполнено условие $\mathrm{rk} \nabla F = 1$. Тогда по теореме о неявной функции $\{a \in \mathbb{R}^k : F(a) = 0\}$ является (k-1)-мерной поверхностью в \mathbb{R}^k .

Определение. Касательным пространством T_aM к поверхности M в точке $a \in M$ называется линейное пространство, состоящее из векторов скоростей кривых на M, проходящих через точку a. Касательной плоскостью называется плоскость $a + T_aM$.

13.2 Описание касательного пространства к поверхности, заданной системой уравнений (доказательство в случае одного уравнения).

Из определения (k-1)-мерной поверхности ясно, что касательное пространство действительно есть (k-1)-мерное линейное подпространство в \mathbb{R}^k .

Предложение. Пусть M задана уравнением F(x)=0 и $\mathrm{rk}\nabla F(x)=1$ $\forall x\in M.$ Тогда $h\in T_aM\Leftrightarrow \langle \nabla F(a),h\rangle=dF|_a(h)=0.$

Доказательство. Пусть γ — кривая на M, проходящая через точку a при t=0 (т.е. $\gamma(0)=a$). Тогда $F(\gamma(t))=0$ и

$$\langle \nabla F(a), \dot{\gamma}(0) \rangle = \frac{\partial F}{\partial x_1}(\gamma(0))\dot{\gamma_1}(0) + \ldots + \frac{\partial F}{\partial x_k}(\gamma(0))\dot{\gamma_k}(0) = \frac{d}{dt}[F(\gamma(t))] = 0.$$

Значит $T_a M$ входит в пространство решений уравнения $\langle \nabla F(a), h \rangle = 0$. С другой стороны, т.к. $\mathrm{rk} \nabla F(A) = 1$, то пространство решений данного уравнения (k-1)-мерное, поэтому пространство $T_a M$ совпадает с пространством решений уравнения $\langle \nabla F(a), h \rangle = 0$.

В конце отметим, что аналогичным образом можно было определить график отображения

$$f(x_1, \ldots, x_k) = (f_1(x_1, \ldots, x_m), \ldots, f_{k-m}(x_1, \ldots, x_m))$$

и назвать m-мерной поверхностью в \mathbb{R}^k множество M, у каждой точки которого есть окрестность в которой M совпадает с графиком некоторого такого отображения.

Например, при таком определении по теореме о неявном отображении m-мерной поверхностью будет множество решений системы уравнений $F_1(x)=0,\ldots,F_{k-m}(x)=0$, при условии, что $\mathrm{rk}J_F=k-m$, где $F=(F_1,\ldots,F_{k-m})$. Определение касательного пространства остается тем же самым, а в случае поверхности, заданной системой уравнений касательное пространство задается системой линейных уравнений $\langle \nabla F_1(a),h\rangle=0,\ldots,\langle \nabla F_{k-m}(a),h\rangle=0$.

14 Формулировки теорем о неявном отображении и обратной функции. Параметрически заданные поверхности. Описание касательного пространства к поверхности, заданной параметрически.

14.1 Формулировка теоремы о неявном отображении.

Пусть мы рассматриваем систему уравнений

$$\begin{cases} F_1(x_1, \dots, x_k, y_1, \dots, y_n) = 0, \\ \dots \\ F_n(x_1, \dots, x_k, y_1, \dots, y_n) = 0. \end{cases}$$

Обозначим $x = (x_1, \ldots, x_k)$, $y = (y_1, \ldots, y_n)$, $F(x,y) = (F_1(x,y), \ldots, F_n(x,y))$. По аналогии с предыдущей лекцией нам бы хотелось научиться локально, то есть в окрестности некоторой точки $(a,b) = (a_1, \ldots, a_k, b_1, \ldots, b_n)$, для которой F(a,b) = 0, научиться решать данную систему относительно переменных y_1, \ldots, y_n , то есть находить функции f_1, \ldots, f_n , для которых система

$$\begin{cases} y_1 = f_1(x_1, \dots, x_k), \\ \dots \\ y_n = f_n(x_1, \dots, x_k) \end{cases}$$

равносильна исходной системе в рассматриваемой окрестности

Приведем теперь строгую формулировку теоремы:

Теорема (О неявном отображении). Пусть отображение $F: \mathbb{R}^{k+n} \to \mathbb{R}^n$ — определено и непрерывно дифференцируемо в некоторой окрестности U точки $(a,b) = (a_1, \dots, a_k, b_1, \dots, b_n) \in \mathbb{R}^{k+n}$. Пусть

1. F(a,b) = 0;

2. матрица
$$F_y'(a,b) := \begin{pmatrix} \frac{\partial F_1}{\partial y_1}(a,b) & \dots & \frac{\partial F_1}{\partial y_n}(a,b) \\ \dots & \dots & \dots \\ \frac{\partial F_n}{\partial y_1}(a,b) & \dots & \frac{\partial F_n}{\partial y_n}(a,b) \end{pmatrix}$$
 — обратима.

Тогда найдутся

$$I_x = (a_1 - \alpha_1, a_1 + \alpha_1) \times \ldots \times (a_k - \alpha_k, a_k + \alpha_k)$$
 if $I_y = (b_1 - \beta_1, b_1 + \beta_1) \times \ldots \times (b_n - \beta_n, b_n + \beta_n)$

и непрерывно дифференцируемое отображение $f=(f_1,\ldots,f_n)\colon I_x\to I_y$, для которых $I_x\times I_y\subset U$ и для каждой точки $(x,y)\in I_x\times I_y$ выполнено

$$F(x,y) = 0 \Leftrightarrow y = f(x).$$

Следствием предыдущей теоремы является следующая теорема об обратной функции.

Теорема (Об обратной функции). Пусть отображение $f\colon \mathbb{R}^k \to \mathbb{R}^k$ — определено и непрерывно дифференцируемо в некоторой окрестности G точки $a\in \mathbb{R}^k$. Пусть $df\big|_a$ — обратимое линейное отображение. Тогда найдутся такие окрестности U(a) и V(f(a)), что f есть диффеоморфизм этих окрестностей, то есть f — биекция окрестностей U(a) и V(f(a)) и отображения f и f^{-1} непрерывно дифференцируемы на U(a) и V(f(a)) соответственно.

14.2 Параметрически заданные поверхности.

Из определения (k-1)-мерной поверхности ясно, что касательное пространство действительно есть (k-1)-мерное линейное подпространство в \mathbb{R}^k .

Предложение. Пусть G — область в \mathbb{R}^{k-1} и пусть $f \colon G \to \mathbb{R}^k$ — непрерывно дифференцируемое отображение, причем $\mathrm{rk} J_f(z) = k-1 \ \forall z \in G$. Тогда для каждой точки $z_0 \in G$ найдется окрестность $U(z_0)$, для которой образ $f\big(U(z_0)\big)$ есть (k-1)-мерная поверхность в \mathbb{R}^k .

Кроме того, касательное пространство к данной поверхности в точке $a=f(z_0)$ совпадает с линейной оболочкой векторов $\frac{\partial}{\partial z_1} f(z_0), \dots, \frac{\partial}{\partial z_{k-1}} f(z_0).$

Доказательство. Без ограничения общности считаем, что $\det J_{f_1,...,f_{k-1}}(z_0) \neq 0$. По теореме об обратной функции в некоторой окрестности $U(z_0)$ точки z_0 система

$$\begin{cases} x_1 = f_1(z_1, \dots, z_{k-1}), \\ \dots \\ x_{k-1} = f_{k-1}(z_1, \dots, z_{k-1}) \end{cases}$$

равносильна системе

$$\begin{cases} z_1 = \varphi_1(x_1, \dots, x_{k-1}), \\ \dots \\ z_{k-1} = \varphi_{k-1}(x_1, \dots, x_{k-1}) \end{cases}$$

для некоторых непрерывно дифференцируемых функции φ_j .

Отсюда, для этой окрестности образ $f(U(z_0))$ совпадает с графиком функции

$$x_k = f_k(\varphi_1(x_1, \dots, x_{k-1}), \dots, \varphi(x_1, \dots, x_{k-1})).$$

Перейдем к доказательству утверждения про касательное пространство. Заметим, что в силу условия $\mathrm{rk}J_f=k-1$ размерность указанной линейной оболочки равна k-1. Пусть γ — кривая на построенной поверхности M, имеющая вид $\gamma(t)=f(z(t))$, где z(t) — кривая в G, $z(0)=z_0$. Тогда

$$\dot{\gamma}(0) = \frac{\partial}{\partial z_1} f(z(0)) \dot{z}_1(0) + \ldots + \frac{\partial}{\partial z_{k-1}} f(z(0)) \dot{z}_{k-1}(0),$$

что является элементом линейно оболочки векторов $\frac{\partial}{\partial z_1} f(z_0), \dots, \frac{\partial}{\partial z_{k-1}} f(z_0).$

14.3 Описание касательного пространства к поверхности, заданной параметрически.

Если поверхность $M \subset \mathbb{R}^3$ задана параметрически x = x(u,v), y = y(u,v), z = z(u,v), то касательная плоскость задается уравнением

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x'_u(u_0, v_0) & y'_u(u_0, v_0) & z'_u(u_0, v_0) \\ x'_v(u_0, v_0) & y'_v(u_0, v_0) & z'_v(u_0, v_0) \end{vmatrix} = 0.$$

15 Условный экстремум и метод множителей Лагранжа. Достаточное условие локального экстремума.

15.1 Условный экстремум и метод множителей Лагранжа.

Пусть $f: \mathbb{R}^k \to \mathbb{R}$ — непрерывно дифференцируемая функция и пусть $F: \mathbb{R}^k \to \mathbb{R}$ — также непрерывно дифференцируемая функция, $\mathrm{rk} \nabla F(x) = 1$ при F(x) = 0. Предположим, что мы хотим найти точки экстремума функции f при условии, что F(x) = 0. Тем самым мы ищем точки экстремума функции f на поверхности $\{x: F(x) = 0\}$.

Определение. Пусть M — поверхность в \mathbb{R}^k и пусть f — функция в \mathbb{R}^k .

Точка $a \in M$ называется точкой условного локального минимума (максимума), если для некоторой окрестности U(a) точки a выполнено $f(b) \ge f(a)$ ($f(b) \le f(a)$) $\forall b \in M \cap U(a)$. Если неравенство при $b \ne a$ строгое, то a называется точкой строгого условного локального минимума (максимума).

Предложение (Необходимое условие условного локального экстремума). Если a — точка условного локального экстремума, то $\nabla f(a) \bot T_a M$.

Доказательство. Пусть $h \in T_a M$, тогда $h = \dot{\gamma}(0)$ для некоторой кривой γ на M, $\gamma(0) = a$. Одномерная функция $f(\gamma(t))$ имеет в точке нуль локальный экстремум, поэтому

$$\langle \nabla f(a), \dot{\gamma}(0) \rangle = \frac{\partial f}{\partial x_1}(\gamma(0))\dot{\gamma_1}(0) + \ldots + \frac{\partial f}{\partial x_k}(\gamma(0))\dot{\gamma_k}(0) = \frac{d}{dt}f(\gamma(t))\big|_{t=0} = 0.$$

В частности, в случае, когда M задано уравнением F(x)=0, получаем, что в точке условного локального экстремума $\nabla f(a) \perp h \ \forall h \colon h \perp \nabla F(a)$. Отсюда следует, что $\nabla f(a)$ и $\nabla F(a)$ пропорциональны, то есть существует число $\lambda \colon \nabla f(a) = \lambda \nabla F(a)$.

В случае, когда поверхность задана системой уравнений $F_1(x) = 0, \ldots, F_{k-m}(x) = 0$ (условный экстремум при нескольких ограничениях), условие $\nabla f(a) \perp T_a M$ в точке условного локального экстремума равносильно тому, что $\nabla f(a)$ лежит в линейной оболочке векторов $\nabla F_1(a), \ldots, \nabla F_{k-m}(a)$, то есть найдутся числа $\lambda_1, \ldots, \lambda_{k-m}$, для которых $\nabla f(a) = \lambda_1 \nabla F_1(a) + \ldots + \lambda_{k-m} \nabla F_{k-m}(a)$.

Заметим, что условие $\nabla f(a) = \lambda \nabla F(a)$ ($\nabla f(a) = \lambda_1 \nabla F_1(a) + \ldots + \lambda_{k-m} \nabla F_{k-m}(a)$) равносильно тому, что у функции

$$L_{\lambda}(x) := f(x) - \lambda F(x) \quad \left(L_{\lambda_1, \dots, \lambda_{k-m}}(x) = f(x) - \lambda_1 F_1(x) - \dots - \lambda_{k-m} F_{k-m}(x) \right)$$

в точке a дифференциал обращается в нуль $dL_{\lambda}|_a=0$ (то есть все частные производные обращаются в нуль). Функцию $L_{\lambda}(x)$ называют функцией Лагранжа. Для поиска кандидатов в точки условного локального экстремума используют следующий метод множителей Лагранжа: по функции Лагранжа составляется система уравнений относительно переменных $a=(a_1,\dots a_k)$ и λ

$$\begin{cases} \frac{\partial}{\partial x_1} L_{\lambda}(a) = 0 \\ \dots \\ \frac{\partial}{\partial x_k} L_{\lambda}(a) = 0 \\ F(x) = 0, \end{cases}$$

где в случае нескольких условий $\lambda = (\lambda_1, \dots, \lambda_{k-m}), F = (F_1, \dots, F_{k-m}).$

15.2 Достаточное условие локального экстремума.

Теорема (Достаточное условие условного локального экстремума). Пусть в точке $a \in M$ выполнено необходимое условие условного локального экстрмума, т.е. при некотором $\lambda \ dL_{\lambda}|_{a} = 0$. Тогда

- 1. если $d^2L_\lambda\big|_a(h)>0\,\forall h\neq 0, h\in T_aM,$ то a точка строгого локального минимума;
- 2. если $d^2L_{\lambda}|_a(h)<0\,\forall h\neq 0, h\in T_aM$, то a точка строгого локального максимума.

Доказательство. Доказательство проведем в случае, когда M-(k-1)-мерная поверхность в \mathbb{R}^k (одно условие). Заметим, что $L_{\lambda}(x)=f(x)$ на M. По определению в некоторой окрестности точки a поверхность M совпадает с графиком некоторой функции относительно одной из координатных осей. Без ограничения общности, считаем, что это график функции $x_k=\varphi(x_1,\ldots,x_{k-1})$. Тогда для функции

$$g(x_1,\ldots,x_{k-1}) := L_{\lambda}(x_1,\ldots,x_{k-1},\varphi(x_1,\ldots,x_{k-1}))$$

точка $\tilde{a} := (a_1, \dots, a_{k-1})$ является точкой обычного локального экстремума. Заметим, что

$$dg = \sum_{i=1}^{k-1} \left[\frac{\partial L_{\lambda}}{\partial x_j} + \frac{\partial L_{\lambda}}{\partial x_k} \frac{\partial \varphi}{\partial x_j} \right] dx_j$$

и, так как $\frac{\partial L_{\lambda}}{\partial x_k}(a) = 0$,

$$d^{2}g\big|_{\tilde{a}} = \sum_{i,j=1}^{k-1} \frac{\partial^{2}L_{\lambda}}{\partial x_{i}\partial x_{j}}(a) dx_{i} dx_{j} + 2\sum_{i,j=1}^{k-1} \frac{\partial^{2}L_{\lambda}}{\partial x_{i}\partial x_{k}}(a) \frac{\partial \varphi}{\partial x_{j}}(\tilde{a}) dx_{i} dx_{j} + \sum_{i,j=1}^{k-1} \frac{\partial^{2}L_{\lambda}}{\partial^{2}x_{k}}(a) \frac{\partial \varphi}{\partial x_{i}}(\tilde{a}) \frac{\partial \varphi}{\partial x_{j}}(\tilde{a}) dx_{i} dx_{j}.$$

Таким образом,

$$d^2g\big|_{\tilde{a}}(q) = d^2L_\lambda\big|_a(h),$$

где
$$h = \left(q_1, \dots, q_{k-1}, \sum_{j=1}^{k-1} \frac{\partial \varphi}{\partial x_j}(\tilde{a}) q_j\right)$$
. Остается применить достаточное условие локального экстремума.