# **Supplementary:**

#### **Supplementary figures:**



**SUPPLEMENTARY Fig 1.** Correlations between telomere length, peripheral white blood cells, and lymphocytes. Mean telomere length (Telo-FISH) plotted longitudinally against peripheral white blood cell (WBC) counts (thousands per microliter) from complete blood count tests for all patients; and longitudinal correlations between mean telomere length and counts of WBC types, and proportions of lymphocyte cell types. 1 non irrad: pre-IMRT non-irradiated; 3 B: immediate post-IMRT; 4 C: 3 months post-IMRT. Pearson correlation R2 values were calculated between longitudinal values, as shown bolded in (A), on a per patient basis. Correlations between mean telomere length and WBC counts **A**); center lines denote medians, lighter bands denote confidence intervals. Correlations between mean telomere length and five main WBC types **B**), and proportions of lymphocyte cell types **C**).



**SUPPLEMENTARY Fig 2.** Correlations between chromosome aberrations and peripheral blood lymphocytes. Average frequencies of chromosome aberrations plotted longitudinally against lymphocyte cell counts (thousands per microliter) from complete blood count tests for all patients. 1 non irrad: pre-IMRT non-irradiated; 3 B: immediate post-IMRT; 4 C: 3 months post-IMRT. Excess chr fragments: counts of chromosome fragments per cell after subtracting 1 count per n observed dicentrics. Center lines denote medians, lighter bands denote confidence intervals. Pearson correlation R2 values were calculated between plotted values on a per patient basis and noted in bold on each graph. A) Inversions, B) translocations, C) dicentrics, D) chromosome fragments and lymphocyte cell counts.



### SUPPLEMENTARY Fig 3. Clustering of patients by inversions and chromosome

**fragments (deletions).** Hierarchical clustering of patients by longitudinal changes in chromosome aberrations scored by directional Genomic Hybridization (dGH). 1 non irrad: pre-IMRT non-irradiated; 2 irrad @ 4 Gy: pre-IMRT *in vitro* irradiated; 3 B: immediate post-IMRT; 4 C: 3 months post-IMRT. Excess chr fragments: counts of chromosome fragments per cell after subtracting 1 count per n observed dicentrics. Patients were clustered by inversions **A**) and chromosome fragments **B**) (z-score normalized). Patient ID 13 not clustered; 3 months post-IMRT sample failed to culture.



# SUPPLEMENTARY Fig 4. Chromosome aberrations generally failed to cluster patients.

Hierarchical clustering of patients by longitudinal changes in chromosome aberrations scored by directional Genomic Hybridization (dGH). 1 non irrad: pre-IMRT non-irradiated; 2 irrad @ 4 Gy: pre-IMRT *in vitro* irradiated; 3 B: immediate post-IMRT; 4 C: 3 months post-IMRT. Aberration index is created by summing all aberrations (inversions, translocations, dicentrics, chromosome fragments) per cell. Patients were clustered by translocations **A**), dicentrics **B**), and aberration index **C**) (z-score normalized). Patient ID 13 not clustered; 3 months post-IMRT sample failed to culture.



#### SUPPLEMENTARY Fig 5. Processing of chromosome aberration data for XGBoost

models. Schematic for machine learning pipeline using chromosome aberration (CAs) data. Preprocessed data: Feature 1: pre-IMRT counts of scored CAs; Feature 2: pre-IMRT sample labels (non-irradiated, *in vitro* irradiated, encoded as 0/1); Feature n: represents pre-IMRT counts of multiple types of CAs (for aberration index). Target: Late post-IMRT average frequencies of CAs (either specific aberration type or aberration index). Data is randomly shuffled and stratified (by patient ID and pre-IMRT sample origin) and split into training (80%) and testing (20%) datasets; patient IDs are stripped after splitting. Five-fold cross validation was used, and models were evaluated with Mean Absolute Error (MAE) and R<sup>2</sup> between predicted and true values in the test set. See Materials and Methods and Code availability for model parameters and implementations in Python.

## **Supplementary tables:**

| Α  | patient id | pre-therapy sample origin | individual telomeres (RFI) | 4 C telo means    | В | encoded sample origin | individual telomeres (RFI) | 4 C telo means     |
|----|------------|---------------------------|----------------------------|-------------------|---|-----------------------|----------------------------|--------------------|
|    | 1          | 1 non irrad               | 52.79329603949808          | 99.34629891451401 |   | 1.0                   | 71.84704355757034          | 90.6803515449468   |
|    | 1          | 2 irrad @ 4 Gy            | 100.30726247504634         | 99.34629891451401 |   | 0.0                   | 58.01948086775996          | 108.91532697997721 |
| Ī  | 1          | 1 non irrad               | 59.12849156423784          | 99.34629891451401 |   | 0.0                   | 125.05216035895008         | 93.35225326745208  |
|    | 1          | 2 irrad @ 4 Gy            | 106.64139157520613         | 99.34629891451401 |   | 0.0                   | 99.84003125432304          | 93.35225326745208  |
|    | 1          | 1 non irrad               | 69.68715077213746          | 99.34629891451401 |   | 0.0                   | 157.34096506511176         | 108.91532697997721 |
|    | 1          | 2 irrad @ 4 Gy            | 107.69724693733689         | 99.34629891451401 |   | 1.0                   | 59.127900279322205         | 99.34629891451401  |
| c  | patient id | pre-therapy sample origin | individual telomeres (RFI) | 4 C # short telos | D | encoded sample origin | individual telomeres (RFI) | 4 C # short telos  |
| ٦  | 1          | 1 non irrad               | 52.79329603949808          | 372               |   | 0.0                   | 39.80714575487005          | 319.0              |
|    | 1          | 2 irrad @ 4 Gy            | 100.30726247504634         | 372               |   | 0.0                   | 84.7669312523909           | 2028.0             |
|    | 1          | 1 non irrad               | 59.12849156423784          | 372               |   | 0.0                   | 48.569832356338225         | 372.0              |
|    | 1          | 2 irrad @ 4 Gy            | 106.64139157520613         | 372               |   | 1.0                   | 99.34779587017763          | 829.0              |
|    | 1          | 1 non irrad               | 69.68715077213746          | 372               |   | 1.0                   | 104.85784735429183         | 319.0              |
|    | 1          | 2 irrad @ 4 Gy            | 107.69724693733689         | 372               |   | 1.0                   | 92.25878757956735          | 124.0              |
|    |            |                           |                            |                   |   |                       |                            |                    |
| Εļ | patient id | pre-therapy sample origin | individual telomeres (RFI) | 4 C # long telos  | F | encoded sample origin | individual telomeres (RFI) | 4 C # long telos   |
|    | 1          | 1 non irrad               | 52.79329603949808          | 1987              |   | 0.0                   | 56.551567152220926         | 2026.0             |
|    | 1          | 2 irrad @ 4 Gy            | 100.30726247504634         | 1987              |   | 0.0                   | 103.18180673387677         | 2026.0             |
|    | 1          | 1 non irrad               | 59.12849156423784          | 1987              |   | 0.0                   | 69.58478047400733          | 365.0              |
|    | 1          | 2 irrad @ 4 Gy            | 106.64139157520613         | 1987              |   | 0.0                   | 56.18104859876975          | 1078.0             |
|    | 1          | 1 non irrad               | 69.68715077213746          | 1987              |   | 1.0                   | 137.72889825629034         | 1002.0             |
| Ī  | 1          | 2 irrad @ 4 Gy            | 107.69724693733689         | 1987              |   | 1.0                   | 84.46927366319693          | 1987.0             |

**SUPPLEMENTARY Table 1. Example views of individual telomere length data matrices used to train XGBoost models.** XGBoost models were trained on 103,040 individual telomere length measurements (one telomere per row) (Telo-FISH) from pre-IMRT non-irradiated (1 non irrad) and *in vitro* irradiated (2 irrad @ 4 Gy) samples to predict 3 months post-IMRT (4 C) telomeric outcomes. Matrices represent examples of pre- (A/C/E) and post-processed (B/D/F) training data. Patient IDs are stripped after data is shuffled and stratified. The 'encoded sample origin' column contains numerical encodings denoting individual telomeres' pre-IMRT sample of origin (0: non-irradiated, 1: *in vitro* irradiated). XGBoost models were trained to predict mean telomere length (A/B) and numbers of short (C/D) and long (E/F) telomeres at 3 months post-IMRT with data in the format as shown.

| Average MAE of CV folds | Std dev of MAE of CV folds | MAE predicted vs. test values | R2 predicted vs. test values | N samples training data |
|-------------------------|----------------------------|-------------------------------|------------------------------|-------------------------|
| 11.4602                 | 1.6502                     | 13.4903                       | -0.8393                      | 100.0                   |
| 10.6657                 | 0.4454                     | 10.3646                       | -0.2049                      | 500.0                   |
| 8.0423                  | 0.486                      | 7.9009                        | 0.1788                       | 1000.0                  |
| 6.7089                  | 0.3895                     | 6.0449                        | 0.5126                       | 2000.0                  |
| 4.8488                  | 0.2224                     | 4.642                         | 0.7094                       | 4000.0                  |
| 3.9282                  | 0.0988                     | 3.7677                        | 0.8215                       | 8000.0                  |
| 3.6385                  | 0.0447                     | 3.5413                        | 0.851                        | 16000.0                 |
| 3.3792                  | 0.0626                     | 3.3483                        | 0.8755                       | 32000.0                 |
| 3.2944                  | 0.051                      | 3.2521                        | 0.881                        | 64000.0                 |
| 3.233                   | 0.052                      | 3.2596                        | 0.8817                       | 103040.0                |

| В | Average MAE of CV folds | Std dev of MAE of CV folds | MAE predicted vs. test values | R2 predicted vs. test values | N samples training data |
|---|-------------------------|----------------------------|-------------------------------|------------------------------|-------------------------|
|   | 705.0956                | 48.4789                    | 680.9499                      | -0.5887                      | 100.0                   |
|   | 573.3922                | 25.5422                    | 521.0982                      | -0.0162                      | 500.0                   |
|   | 440.9283                | 22.7264                    | 425.5251                      | 0.2572                       | 1000.0                  |
|   | 366.4338                | 19.0126                    | 326.1635                      | 0.5396                       | 2000.0                  |
|   | 315.2925                | 5.9607                     | 292.0579                      | 0.6593                       | 4000.0                  |
|   | 269.2991                | 6.6633                     | 260.4209                      | 0.7433                       | 8000.0                  |
|   | 257.6623                | 3.5097                     | 247.6769                      | 0.7747                       | 16000.0                 |
|   | 243.5729                | 4.1386                     | 241.8505                      | 0.7987                       | 32000.0                 |
|   | 233.7408                | 5.251                      | 231.1663                      | 0.803                        | 64000.0                 |
|   | 236.2825                | 2.0593                     | 234.1744                      | 0.8112                       | 103040.0                |

| C | Average MAE of CV folds | Std dev of MAE of CV folds | MAE predicted vs. test values | R2 predicted vs. test values | N samples training data |
|---|-------------------------|----------------------------|-------------------------------|------------------------------|-------------------------|
|   | 1056.6558               | 219.1554                   | 953.2471                      | -0.4405                      | 100.0                   |
|   | 763.7998                | 38.9092                    | 727.2706                      | 0.0447                       | 500.0                   |
|   | 629.6607                | 49.9928                    | 627.9304                      | 0.2945                       | 1000.0                  |
|   | 548.353                 | 24.8756                    | 481.5782                      | 0.5641                       | 2000.0                  |
|   | 409.3232                | 4.8234                     | 415.0895                      | 0.674                        | 4000.0                  |
|   | 382.1325                | 11.974                     | 376.8821                      | 0.7505                       | 8000.0                  |
|   | 353.0249                | 6.234                      | 348.5064                      | 0.7981                       | 16000.0                 |
|   | 343.0401                | 4.5386                     | 329.2967                      | 0.8128                       | 32000.0                 |
|   | 331.0765                | 3.7999                     | 331.8519                      | 0.813                        | 64000.0                 |
|   | 330.3521                | 2.0857                     | 335.931                       | 0.8191                       | 103040.0                |

### SUPPLEMENTARY Table 2. Metrics of XGBoost models for predicting post-IMRT

**telomeric outcomes.** XGBoost models were trained on pre-IMRT individual telomere length measurements (Telo-FISH) to predict 3 months post-IMRT telomeric outcomes. Metrics assess model performance during (five) cross-fold validation (CV) (columns 1-2 from left) and when challenged with the test set (test) (columns 3-4 from left). Model performance was evaluated with mean absolute error (MAE) (std dev: standard deviation) across a range of samples in the training data (n=100 to 103,040). R<sup>2</sup>: correlation metric. Metrics of XGBoost models for predicting 3 months post-IMRT (4 C) mean telomere length **A**), numbers of short **B**) and long **C**) telomeres.

| Α | patient id | pre-therapy sample origin | # inversions | 4 C # inversions    |
|---|------------|---------------------------|--------------|---------------------|
|   | 5          | 1 non irrad               | 0            | 0.7083333333333333  |
|   | 11         | 2 irrad @ 4 Gy            | 2            | 0.4583333333333333  |
|   | 1          | 1 non irrad               | 0            | 0.5                 |
|   | 9          | 1 non irrad               | 0            | 0.70833333333333334 |
|   | 11         | 1 non irrad               | 0            | 0.4583333333333333  |
|   | 16         | 1 non irrad               | 0            | 0.791666666666666   |

| В | encoded sample origin | # inversions | 4 C # inversions   |
|---|-----------------------|--------------|--------------------|
|   | 0.0                   | 0.0          | 0.7083333333333334 |
|   | 1.0                   | 0.0          | 0.5                |
|   | 1.0                   | 0.0          | 0.5                |
|   | 0.0                   | 1.0          | 0.7083333333333334 |
|   | 1.0                   | 0.0          | 0.5                |
|   | 1.0                   | 1.0          | 0.7916666666666666 |

| С | patient id | pre-therapy sample origin | # inversions | # translocations | # dicentrics | # excess chr fragments | 4 C aberration index |
|---|------------|---------------------------|--------------|------------------|--------------|------------------------|----------------------|
|   | 9          | 1 non irrad               | 0            | 0                | 0            | 0                      | 1.125                |
|   | 7          | 2 irrad @ 4 Gy            | 1            | 0                | 1            | 1                      | 0.8333333333333333   |
|   | 11         | 2 irrad @ 4 Gy            | 0            | 1                | 0            | 0                      | 0.666666666666666    |
|   | 1          | 1 non irrad               | 0            | 0                | 0            | 0                      | 0.95833333333333334  |
|   | 16         | 1 non irrad               | 0            | 0                | 0            | 0                      | 1.08333333333333333  |
|   | 6          | 1 non irrad               | 0            | 0                | 0            | 0                      | 1.375                |

| D | encoded sample origin | # inversions | # translocations | # dicentrics | # excess chr fragments | 4 C aberration index |
|---|-----------------------|--------------|------------------|--------------|------------------------|----------------------|
|   | 0.0                   | 0.0          | 0.0              | 0.0          | 0.0                    | 1.0833333333333333   |
|   | 0.0                   | 0.0          | 0.0              | 0.0          | 0.0                    | 0.9583333333333333   |
|   | 1.0                   | 0.0          | 0.0              | 0.0          | 0.0                    | 1.4166666666666667   |
|   | 0.0                   | 0.0          | 0.0              | 0.0          | 0.0                    | 1.2083333333333333   |
|   | 1.0                   | 2.0          | 0.0              | 0.0          | 0.0                    | 1.2083333333333333   |
|   | 0.0                   | 0.0          | 0.0              | 0.0          | 0.0                    | 0.9166666666666666   |

**SUPPLEMENTARY Table 3. Example views of chromosome aberration data matrices used to train XGBoost models.** XGBoost models were trained on chromosome aberration count data (one cell per row, n=672) from pre-IMRT non-irradiated (1 non irrad) and *in vitro* irradiated (2 irrad @ 4 Gy) samples to predict 3 months post-IMRT (4 C) chromosome aberration frequencies. Matrices represent pre- (A/C) and post-processed (B/D) training data. Patient IDs are stripped after data is shuffled and stratified. The 'encoded sample origin' column contains numerical encodings denoting cells' pre-IMRT sample of origin (0: non-irradiated, 1: *in vitro* irradiated). XGBoost models shown were trained to predict average inversion frequencies (**A/B**) and aberration index frequencies (**C/D**).

| Α | Features                                | Target                     | Average MAE of CV folds | Std dev of MAE of CV folds | MAE predicted vs. test values | R2 predicted vs. test values |
|---|-----------------------------------------|----------------------------|-------------------------|----------------------------|-------------------------------|------------------------------|
|   | # inversions, encoded samples           | 4 C # inversions           | 0.1746                  | 0.0445                     | 0.2724                        | -0.213                       |
|   | # translocations, encoded samples       | 4 C # translocations       | 0.0412                  | 0.0188                     | 0.1327                        | -0.3905                      |
|   | # dicentrics, encoded samples           | 4 C # dicentrics           | 0.1171                  | 0.0461                     | 0.2508                        | 0.0019                       |
|   | # excess chr fragments, encoded samples | 4 C # excess chr fragments | 0.0939                  | 0.0334                     | 0.1787                        | -0.1228                      |
|   | all aberrations, encoded samples        | 4 C aberration index       | 0.2541                  | 0.0496                     | 0.5137                        | -0.05                        |

| В | Features                                | Target                     | Average MAE of CV folds | Std dev of MAE of CV folds | MAE predicted vs. test values | R2 predicted vs. test values |
|---|-----------------------------------------|----------------------------|-------------------------|----------------------------|-------------------------------|------------------------------|
|   | # inversions, encoded samples           | 4 C # inversions           | 0.1759                  | 0.0332                     | 0.2187                        | -1.5965                      |
|   | # translocations, encoded samples       | 4 C # translocations       | 0.0375                  | 0.0096                     | 0.1096                        | -0.004                       |
|   | # dicentrics, encoded samples           | 4 C # dicentrics           | 0.1167                  | 0.0463                     | 0.2023                        | -0.0215                      |
|   | # excess chr fragments, encoded samples | 4 C # excess chr fragments | 0.084                   | 0.0103                     | 0.202                         | -0.1071                      |
|   | all aberrations, encoded samples        | 4 C aberration index       | 0.3294                  | 0.1258                     | 0.3596                        | -0.0256                      |

| С | Features                                | Target                     | Average MAE of CV folds | Std dev of MAE of CV folds | MAE predicted vs. test values | R2 predicted vs. test values |
|---|-----------------------------------------|----------------------------|-------------------------|----------------------------|-------------------------------|------------------------------|
|   | # inversions, encoded samples           | 4 C # inversions           | 0.15                    | 0.0573                     | 0.1977                        | -0.0709                      |
|   | # translocations, encoded samples       | 4 C # translocations       | 0.0448                  | 0.0145                     | 0.0977                        | -0.0346                      |
|   | # dicentrics, encoded samples           | 4 C # dicentrics           | 0.1123                  | 0.034                      | 0.2177                        | -0.0558                      |
|   | # excess chr fragments, encoded samples | 4 C # excess chr fragments | 0.0681                  | 0.0155                     | 0.194                         | -0.0372                      |
|   | all aberrations, encoded samples        | 4 C aberration index       | 0.3255                  | 0.0528                     | 0.5078                        | -0.0259                      |

**SUPPLEMENTARY Table 4.** Metrics of trained XGBoost models for predicting post-IMRT average frequencies of chromosome aberrations. Multiple iterations of XGBoost models (A-C) were trained on pre-IMRT chromosome aberration counts per cell (n=672 cells) to predict late post-IMRT average chromosome aberration frequencies. Time points for pre-IMRT data were encoded (0/1: non-irradiated, *in vitro* irradiated). Metrics assess model performance during (five) cross-fold validation (CV) and when challenged with the test set (test). Model performance was evaluated with mean absolute error (MAE) (std dev: standard deviation). R<sup>2</sup>: correlation metric. Performance of models with identical initializations and hyperparameters for predicting average frequencies of inversions, translocations, dicentrics, chromosome fragments, and aberration index are shown (A-C).