

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO

Controle Digital - SEL0620

Relatório das aulas 7 e 8

Matheus Henrique Dias Cirillo - 12547750

Gustavo Moura Scarenci de Carvalho Ferreira - 12547792

Docente responsável: Dr. Valdir Grassi Jr.

São Carlos 2º semestre/2024

Sumário

1	Introdução	1
2		2
	2.1 Questão 1	2
	2.2 Questão 2	2
	2.3 Questão 3	3
	2.4 Questão 4	3
	2.5 Questão 5	4
	2.6 Questão 6	4
	2.7 Questão 7	4
	2.8 Questão 8	5
	2.9 Questão 9	6
	2.10 Questão 10	7
Re	eferências Bibliográficas	10

1 Introdução

Uma vez que o controlador proporcional não elimina o erro de regime permanente, um controlador PID será implementado nesta prática para zerar esse erro. O objetivo é projetar um sistema de controle que atenda a requisitos específicos de desempenho, como tempos de pico e acomodação, e sobressinal.

Utilizando ferramentas como o RLTOOL do Matlab e os conhecimentos passados em aula [1], foram realizados ajustes no controlador PID e depois foi feita uma comparação ao controlador P. A implementação do sistema de malha fechada com o controlador PID foi realizada no Simulink, assim como do controlador P, permitindo a simulação e análise das respostas do sistema para validar o desempenho do controlador projetado.

No final, obteve-se sucesso no projeto do controle PID e verificou-se que o controlador PID pode ser melhor em alguns parâmetros quando comparado ao controlador proporcional.

2 Desenvolvimento

2.1 Questão 1

Mostre no início do relatório desta etapa, os seguintes dados que das experiências anteriores, e que serão utilizados como base para o projeto do controlador PID:

a. Período de amostragem, T_{08} , utilizado no laboratório anterior para a malha fechada com controlador proporcional para K=8. O período de amostragem T_{08} não deve ser inferior a 0,2 segundos.

Conforme a prática 4 e 5, o período de amostragem T_{08} é de 0,2030s.

b. Função de transferência da planta do sistema discretizada com retentor de ordem zero para o período de amostragem T_{08} (indicado no item anterior).

A função de transferência a planta do sistema discretizada com retentor de ordem zero para o período de amostragem T_{08} pode ser vista na equação 2.1.

$$G(z) = \frac{0.01401z + 0.01243}{z^2 - 1.672z + 0.698}$$
 (2.1)

c. Tempo de pico, t_{p1} , do sinal de saída da planta obtido com o sistema de malha fechada com controlador proporcional K=1.

Tempo de pico: 3,4517s

d. Tempo de subida, t_{r1} , do sinal de saída da planta obtido com o sistema de malha fechada com controlador proporcional K=1.

Tempo de subida: 1.6243s

e. Tempo de acomodação t_{s1} , do sinal de saída da planta obtido com o sistema de malha fechada com controlador proporcional K=1.

Tempo de acomodação: 4,8730s

2.2 Questão 2

Utilizando a ferramenta RLTOOL do Matlab, projete um controlador PID discreto que proporcione além do erro de regime nulo, um tempo de pico semelhante (não mais que 20% maior) a t_{p1} , e um sobresinal máximo M_p de 6%. Ao invés de projetar para um tempo de pico semelhante, você pode também projetar para um tempo de subida e um tempo de acomodação semelhante a t_{r1} e t_{s1} , respectivamente.

A função de transferência do controlador PID deve ter o seguinte formato:

$$G_{PID}(z) = \frac{q_0 z^2 + q_1 z + q_2}{z^2 - z} = \frac{q_0 + q_1 z^{-1} + q_2 z^{-2}}{1 - z^{-1}}$$
(2.2)

Lembre-se que ao projetar o PID, a saída do controlador não deve ultrapassar os limites de entrada da planta quando o sistema de malha fechada é submetido ao degrau de amplitude r, ou seja, a entrada da planta deve ficar sempre dentro do intervalo -10 < u(k) < 10.

Na Imagem 1 pode ser vista a interface do RLTOOL com gráfico da resposta ao degrau com as medidas relevantes no domínio do tempo e o gráfico do local das raízes do controlador PID projetado.

Figura 1: Interface do RLTOOL com local das raízes e resposta ao degrau do controlador PID.

2.3 Questão 3

Mostre no relatório a função de transferência discreta do controlador projetado $G_{PID}(z)$.

A função de transferência obtida ao exportar o controlador do RLTOOL para a Workspace do Matlab é mostrada na Equação 2.3.

$$\frac{5,1923 \cdot (z - 0,8613) \cdot (z - 0.7243)}{z^2 - z} \tag{2.3}$$

Manipulando a Equação 2.3 para colocá-la no formato requerido pelo professor, obtemos a Equação 2.4.

$$\frac{5,1923-8,2329\cdot z^{-1}+3,2392\cdot z^{-2}}{1-z^{-1}} \tag{2.4}$$

2.4 Questão 4

Mostre no relatório a função de transferência discreta do sistema de malha fechada (desconsiderando o distúrbio).

A função de transferência discreta do sistema de malha fechada sem distúrbio pode ser vista na equação 2.5.

$$\frac{0.07276z^3 - 0.05083z^2 - 0.05694z + 0.04026}{z^4 - 2.599z^3 + 2.319z^2 - 0.7549z + 0.04026}$$
(2.5)

2.5 Questão 5

Mostre no relatório os polos e zeros de malha fechada em z.

Os polos e zeros de malha fechada podem ser vistos nas Tabelas 1 e 2.

Tabela 1: Zeros de Malha Fechada.

Tabela 2: Polos de Malha Fechada.

2.6 Questão 6

Implemente no Simulink o sistema de malha fechada com controlador PID discreto projetado. Mostre no relatório o diagrama de Simulink implementado.

O diagrama do Simulink do sistema de malha fechada com controlador PID é mostrado na figura 2.

Figura 2: Sistema de malha fechada com controlador PID no Simulink.

2.7 Questão 7

Repita nesta experiência o Simulink do sistema de malha fechada com controlador P para K=1, mas utilize na simulação o período de amostragem T08.

O diagrama do Simulink do sistema de malha fechada com controlador P, com Kp = 1, é mostrado na figura 3.

Figura 3: Sistema de malha fechada com controlador P, com Kp = 1, no Simulink.

2.8 Questão 8

Mostre no relatório as curvas discretas de resposta do sistema (sinal de erro, sinal de controle, e sinal de saída do sistema) do sistema de malha fechada no Simulink controlado pelo PID sobrepostas às respectivas curvas para o sistema com controlador proporcional com ganho K=1.

As curvas da resposta, da planta de controle e do erro dos sistemas de malha fechada com o controle PID e P podem ser vistas nos gráficos das Imagens 4 à 6, respectivamente.

Figura 4: Sinal da Resposta.

Figura 5: Sinal da Planta.

Figura 6: Sinal do Erro.

2.9 Questão 9

Quais os valores do erro de regime permanente antes do distúrbio e após o distúrbio para o sistema controlado com o PID (utilize o gráfico obtido pelo Simulink para obter os valores)? O que se pode observar comparando esses erros com o sistema de malha fechada com controle proporcional?

Usando as medidas mostradas na Imagem 7, é possível montar as tabelas 3 e 4. Observando essas tabelas, fica evidente que o controlador PID tem erro de regime permanente baixíssimo, praticamente zero, enquanto controlador P com Kp = 1 apresenta erros muito consideráveis, podendo chegar a metade do valor da referência.

Além disso, após o distúrbio o PID retorna ao estado original depois de um tempo, enquanto o controlador P se mantém em um nível diferente do original após o distúrbio, conforme Imagens 4 à 6.

	e_{rp}	e_{rp} %
Antes do Distúrbio	$-1,4122\cdot 10^{-5}$	0,0013
Depois do Distúrbio	$-1,8672 \cdot 10^{-5}$	0,0015

Tabela 3: Erros de regime permanente para o controlador PID, R = 1, 25.

	e_{rp}	e_{rp} %
Antes do Distúrbio	0.59004	47, 2
Depois do Distúrbio	0.47001	37, 6

Tabela 4: Erros de regime permanente para o controlador P, R = 1, 25.

Figura 7: Medida dos pontos de erro antes e após o distúrbio nos controles PID e P.

2.10 Questão 10

Mostre uma tabela comparando o tempo de acomodação (t_s) da resposta do sistema discreto considerando o critério de $\pm 2\%$, o tempo de subida (t_r) da resposta do sistema discreto, o tempo de pico t_p , e o sobresinal M_p para o sistema controlado com o PID e para o sistema com o controlador proporcional K=1. Comente se o controlador PID atende os requisitos de projeto.

Usando as medidas mostradas nas Imagems 8 à 10, é possível montar a Tabela 5.

	PID	P(Kp = 1)
Tempo de acomodação	4,75	4,87
Tempo de subida	1,71	1,69
Tempo de pico	3,65	3,45
% de sobressinal	3,24	5,32

Tabela 5: Parâmetros no Tempo relevantes dos controladores PID e P.

Analisando os resultados da Tabela 5, tendo em vista os requisitos do controlador presentes na Questão 2 da Seção 2.2, é possível dizer que o controlador PID atende os requisitos de projeto:

- Erro de regime permanente nulo;
- Tempos de pico, acomodação e subida semelhantes;
- Sobressinal abaixo de 6%.

Figura 8: Medidas do tempo de acomodação dos controles PID e P.

Figura 9: Medidas do tempo de subida dos controles PID e P.

Figura 10: Medidas do sobressinal dos controles PID e P.

Referências Bibliográficas

[1] Prof. Valdir Grassi Jr, "Roteiro de prática 6 e aulas teóricas e práticas," 2024. Disciplina de Controle Digital (SEL0620), Universidade de São Paulo, São Carlos.