NASA CONTRACTOR REPORT 172548

(NASA-CR-172548) CHAILENGER SIS-17 (41-G) N87-17818 FCST-FLIGHT BEST FSTIRATE TRAJECTORY PRODUCTS: DEVELOPMENT AND SUMMARY RESULTS (Analytical Mechanics Associates, Inc.) Unclas 114 p CSCL 22B G3/16 43367

Challenger STS-17 (41-G) Post-Flight Best Estimate Trajectory Products - Development and Summary Results

G. M. Kelly, M. L. Heck, J. G. McConnell, L. A. Waters, P. A. Troutman

ANALYTICAL MECHANICS ASSOCIATES, INC. 17 Research Road Hampton, Virginia 23666

J. T. Findlay

FLIGHT MECHANICS & CONTROL, INC. 47 East Queen's Way

Hampton, Virginia 23669

Contract NAS1-17707 March 1985

Date for general release March 31, 1987

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665

OF POOR QUALITY

TABLE OF CONTENTS

Section	<u>Title</u> <u>Pag</u>
	ABSTRACT ii
I	ENTRY TRAJECTORY RECONSTRUCTION 1
	I.a. Dynamic data
II	EXTENDED BET DEVELOPMENT
III	AERODYNAMIC BET DEVELOPMENT AND SUMMARY RESULTS
IV	MMLE INPUT FILE GENERATION 59
	APPENDIX A - Spacecraft and Physical Constants 63
	APPENDIX B - Final Residuals for STS-17 Trajectory Reconstruction 69
	APPENDIX C - Listing of Trajectory and Air Relative Parameters from Final STS-17 (41-G) Extended BET at Two(2) Second Intervals 76
	APPENDIX D - STS-17 (41-G) Source and Output Products for Archival 107

ABSTRACT

Development and summary results from the STS-17 (41-G) post-flight products are presented. Operational Instrumentation recorder gaps. coupled with the limited tracking coverage available for this high inclination entry profile, necessitated selection of an anchor epoch for reconstruction corresponding to an unusually low altitude of h~297 kft. The final inertial trajectory obtained, BT17N26/UN=169750N, is discussed in Section I. Therein are discussions relative to the problems encountered with the OI and ACIP recorded data on this Challenger flight. Atmospheric selection, again in view of the ground track displacement from the remote meteorological sites, constituted a major problem area as discussed in Section II. The LAIRS file provided by Langley was adopted, with NOAA data utilized over the lowermost ~7 kft. As discussed in Section II, the Extended BET, ST17BET/UN=274885C, suggests a limited upper altitude (h<230 kft) for which meaningful flight extraction can be expected. This is further demonstrated, though not considered a limitation, in Section III wherein summary results from the AEROBET (NJ0333 with NJ0346 as duplicate) are presented. GTFILEs were generated only for the selected IMU (IMU2) and the Rate Gyro Assembly/ Accelerometer Assembly data due to the loss of ACIP data. Flight summary data for future reference are:

Epoch: October 13, 1984 (57525 S 0 GMT), $h_0 = 297$ kft

Event	Time from epoch(sec)	Altitude(kft)
Entry interface	N/A	400
Maximum Mach number (31.6)	100	257
M25	422	225
Initial flight extraction	450	224
M20	654	208
M15	802	185
M10	948	168
M5	1146	121
M2	1324	75
M1	1418	48
Main gear deployment	1651	.1
Weight on wheels (WOW)	1669	2
Weight on nose (WONG)	1685	2
Stop time	1729	2

Appendices attached present inputs for the generation of the post-flight products (Appendix A), final residual plots (Appendix B), a two second spaced listing of the relevant parameters from the Extended BET (Appendix C), and an archival section (Appendix D) denoting input (source) and output files and/or physical reels.

I. Entry Trajectory Reconstruction

Special Considerations

IMU data pre-processing for this flight presented problems unlike any encountered for the first twelve entries. First, a large gap of approximately four(4) minutes in the Operational Instrumentation recorded data occurred. This gap spanned the approximate altitude interval from 415 kft to 297 kft during descent. Loss of the Aerodynamic Coefficient Identification Package (ACIP) measurements due to a power problem precluded filling in the "equivalent" IMU measurements of spacecraft dynamics in this interval, a work around for an earlier flight (STS-7). Since the High Resolution Accelerometer Package (HiRAP) data were also lost due to the same power problem, and in view of the fact that there was no tracking coverage at the uppermost altitudes, an anchor epoch was selected immediately after the major gap. Thus, the post-flight analysis for STS-17 (41-G) was restricted to altitudes below $h^{\sim}297$ kft. Though this does not present any limitations for the purposes of aerodynamic and aerothermodynamic research investigations, even over this more "restricted" time interval, many IMU problems surfaced. Discussions were held with various analysts at the JSC re the apparent IMU downlist problems. No obvious mechanism was identified, though a flight software change did affect the data during the launch phase. In any event, the recorded data during descent contained many off-scale measurements, non-orthogonal quaternions, and data gaps. Suggested were indications of non-homogeneity in the down-list, something which should not occur as these data are write-protected. Given the preceding statements as background, the remainder of this Section summarizes the IMU comparisons and selection process, tracking coverages, and the resulting trajectory solution for STS-17.

I.a. Dynamic Data

IMU2 was selected as the dynamic data source for STS-17 reconstruction principally because there were significantly less blunder points associated with this unit. This is best exemplified by referring to the following table of required manual deletions during the preprocessing activity.

MANUAL DELETIONS DURING STS-41G PRETM PROCESSING

IMU	TIME AFTER TEPOCH	CHANNEL
1	420.51 897.47 1041.47 1097.47 1147.71 1148.51 1184.19 1229.31 1312.51 1424.51 1500.03 1501.47 1567.55 1571.55 1572.51 1586.43 1615.55 1617.15 1642.11	Vx, Vy, Vz Vz Vx, Vy, Vz Vz Q(1), Q(2), Q(3), Q(4) Vy Q(1), Q(2), Q(3), Q(4) Q(1), Q(2), Q(3), Q(4) Vx, Vy, Vz Vx, Vy Q(1), Q(2), Q(3), Q(4) Vx, Vy, Vz Vz Vz Vx, Vy, Vz Vz Q(1), Q(2), Q(3), Q(4) Vy, Vz Q(1), Q(2), Q(3), Q(4) Vy, Vz Q(1), Q(2), Q(3), Q(4) Q(1), Q(2), Q(3), Q(4) Q(1), Q(2), Q(3), Q(4)
2	1097.47	Vz
3	1074.59 1263.55 1506.75 1578.59 1633.47 1658.43 1664.51 1682.43	Vz Vy Q(1), Q(2), Q(3), Q(4) Vy Q(1), Q(2), Q(3), Q(4) Q(1), Q(2), Q(3), Q(4) Vx Q(1), Q(2), Q(3), Q(4)

On the basis of mid-value selection criteria, selection of IMU2 can only be substantiated based on accelerometer performance. Gyro performance, in terms of mid-value selection, was marginally better for IMU2 (except for the important total angle, Γ , which is independent of alignment) as indicated by the following:

Accelerometer Comparisons Based on 1492 Points Percentage mid-value measurement

	IMU1	IMU2	IMU3
ΔV _{X_{M50}}	92	2	6
ΔV _{YM50}	9	90	1
$^{\Delta V}_{Z_{M50}}$	9	91	0

Gyro Comparisons Based on 1552 Points Percentage mid-value measurement

4/1,			
	IMU1	IMU2	IMU3
Euler Y	14	85	1
Euler θ	79	21	0
Euler Φ	10	52	38
Total angle,Γ	85	15	0
Total angular	33	34	33
rate, ṙ̃			

Of interest in the preceding table is the rather large number of points rejected by the IMU comparison software. Given that the data are ~1 Hz, essentially 1775 records were compared over the time interval. Unless all three IMUs contain acceptable data at the respective homogeneous times,i.e., all three ΔV components or all four quaternions for each of the IMUs, data are rejected. This test is necessary for IMU comparisons and is a somewhat more stringent requirement than the other pre-processors utilized to develop body axes dynamic data using spline methods.

There were some thirteen(13) non-orthogonal quaternions encountered during the data processing, at least in terms of the criterion of 1.E-5. These occurrences were split between the various IMUs as follows:

IMU1	6	times
IMU2	5	times
IMU3	2	times

Except for one occurrence for IMU1, the tests marginally violated the criterion. However, 1.E-5 is the usual criterion which has been utilized on all preceding flights and has never indicated any problems. These results are somewhat disconcerting since the data otherwise appear valid, causing one to speculate on data staleness, at least in some components. This should not occur since these words are write-protected.

There were various data gaps encountered during the processing. Most significant of these were ~15 second and ~7 second gaps in all measurements that occurred 326 and 1431 seconds from epoch, respectively. On a positive note, each of the IMU accelerometers sensed the same total (magnitude) ΔV change over the arc to within ± 0.5 fps.

Figure I-1 shows a time history of the derived body axes rates and accelerations during descent. These data are based on the final, edited, IMU2 data which were, as stated, utilized for trajectory reconstruction.

Ib. Tracking coverage

Tracking data taken during STS-17 entry flight were limited to only those available sites in Florida as can be seen in the ground track plot of Figure I-2. Table I defines the actual stations utilized which included four C-band stations and one S-band tracker. Thus, the altitude range over which external tracking measurements were available for reconstruction was limited to the lowermost 145 kft. Details of this tracking geometry are depicted in Figures I-3, (a) and (b). Use of a five(5) degree minimum elevation constraint results in some 4370 data points for trajectory determination. Thus, the tracking arc provides good geometry in the terminal area, and, hopefully, sufficient geometry throughout the entry in view of the rather low altitude for the selected anchor epoch due to the OI gap as discussed previously.

Ic. Reconstruction results

The final inertial trajectory, BT17N26/UN=169750N, is based on a state only fit to the tracking data and utilizes IMU2 data as the source for deterministic integration. The BET solution is summarized in Table II herein. It is seen that the degree of fit corresponds to ~1.8 weighted standard deviation fit to all the data included. Inclusion of instrument parameters in the solution set did little to improve the goodness of fit. Shown also on Table II are comparisons of the BT17N26 solution at epoch to the on/board Nav estimate as well as the JSC/TRW BET results. Though comparisons with the Nav state are in good agreement, it is observed that there are some differences versus the TRW results. Of significance is the ~3800 ft altitude discrepancy. Since there are no tracking data available over the uppermost altitudes it is difficult to resolve this difference. This is a situation very similar to STS-9, the previous high inclination entry flight which also provided for no coverage at the higher altitudes (latitudes). However, at h~160 kft the differences in altitude between the two post-flight BETs is approximately 500 ft, converging to near zero at touchdown.

Table III presents a summary of the fit statistics by station and data type. Composite range, azimuth, and elevation residuals are presented as Figures I-4, I-5, and I-6, respectively. Annotated on each of

the figures are the mean and 1σ results of the fit obtained, to include the weighted statistics as well. Individual residual plots are attached as Appendix B herein. Figure I-7 presents comparisons between the BET and survey values during rollout on Runway 33 at KSC. Actual values in runway coordinates at vehicle stop (t=1729 $^{\rm S}$) are:

	Survey	BT17N26
X, ft	+11535	+11516
Y, ft	0	-10
h-h _{RW} , FT	+16	+10
X, fps	0.	-0.10
Y, fps	0.	+0.01
h, fps	0.	-0.16

TYPE	ST NO.	STATION NO. NAME	LATITUDE (GEOD.) (DEG)	LONGITUDE (DEG)	ALT (ABOVE REF.) (FT)	MODULUS OF REFRACTION	SCALE HEIGHT (M)
S-BAND, E-W		MLXS	28,50831	279.30727	-183.1400	356.	6701.
C-BAND, MCBR		MLMC	28.62609	279.31723	-173.9800	N/A	N/A
C-BAND, FPQ-14		MLAC	28,42486	279.33564	-172.0100	N/A	N/A
C-BAND, MBR-17		CNMC	28,52888	279.40982	-195.1800	N/A	N/A
C-BAND, FPS-16		CNVC	28,48176	279.42353	-163.9100	N/A	N/A

Table I. STS-17 station locations and refraction data.

EPOCH: 10/13/84 15^h58^m45^s (57525^s) GMT

DATA TYPES: S-band, 1 radar (MLXS)

C-band, 4 radars (MLMC, MLAC, CNMC, CNVC)

Pseudo Altimeter (Post WONG); Pseudo Doppler (Post STOP)

COMMENTS: 5° Elevation constraint on C, S-band data

Tracking coverage available only from Florida stations,

i.e. for altitudes below ~145 kft

SOLUTION SET: State Only

DEGREE OF FIT: μ_{W} = +0.199 σ_{W} = 1.781

PARAMETER	Initial Estimate, NAV	JSC/TRW	Final Solution, BT17N26
V _R , fps	24949.0	24948.0	24950.730
γ_R , deg	-1.100	-1.102	-1.0926011
Ψ_{R} , deg	70.839	70.815	70.806897
h _D , ft	297365.	300866.	297082.76
Φ_{D} , deg	55.104	55.098	55.098101
λ , deg	206.911	206.882	206.86970
ψ , deg	70.602 See	70.709	70.573671
θ , deg	40.144 Appendix	40.195	40.168621
φ , deg	-0.538 A	-0.302	-0.52173029

Table II. STS-17 solution and comparisons

OBSERVATION STATISTICS BASED ON FINAL STATE

WEIGHTED STAND. DEV.	.74303054E+00	.14241266E+01	.10361065E+01	.21300241E+01	.11483031E+01	.11079261E+01	.20365063E+01	.12691733E+01	.11441031E+01	.16098960E+01	.17808799E+01	.11003613E+01	.27819889E+01	.15982667E+01	.68587073E+00	.17536777E+01	.14449298E+01	.46586254E+00	.23064671E+00	.27573352E+00	.17811440E+01
STANDARD STAND. DEV.	.35665466E+01	.14591712E+02	.10388168E+01	.25738952E-01	.13175267E-01	.33461146E+02	.23336643E-01	.18011825E-01	.34565611E+02	.18448049E-01	.20663998E-01	.33348017E+02	.31879245E-01	.19166885E-01	.20712414E+02	.20095666E-01	.17497886E-01	.13975876E+00	.69194013E-01	.82720056E-01	WGT. STD. DEV. =
AVERAGE RESIDUAL	.62735208E+01	53126951E+01	.23321693E+00	.16024830E-01	.96391045E-02	.23046634E+02	21682242E-01	50579337E-02	.40130919E+01	.61481956E-02	.57841614E-02	64516974E+01	17690785E-02	.23182389E-01	90959333E+01	.39588865E-02	30607303E-02	.75017407E+00	34120418E+00	.29068524E+00	19866866E+00
AVERAGE WEIGHT. RES.	.13069835E+01	55627516E+00	.23099101E+00	.11953500E+01	.84003160E+00	.76374241E+00	18921326E+01	36187908E+00	.13103326E+00	.53653128E+00	.42284459E+00	21614441E+00	15438122E+00	.17944159E+01	30237579E+00	.34547802E+00	23486422E+00	.25005802E+01	11373473E+01	.96895080E+00	4368 WGT. MEAN
OBSERVATIONS ACCEPTED	83	272	200	271	270	244	262	261	256	263	270	260	274	278	258	272	275	33	33	33	- NOBS =
OBSEF	83 OF	272 OF	200 OF	271 OF	270 OF	244 OF	262 OF	261 OF	256 OF	263 OF	270 OF	260 OF	274 OF	278 OF	258 OF	272 OF	275 OF	33 OF	33 OF	33 OF	STICS
OBSERVATION TYPE	ALTIMETER	KS RANGE	KS DOPPLER	KS X-ANGLE	KS Y-ANGLE	1C RANGE	IC AZIMUTH	1C ELEVATION	AC RANGE	AC AZIMUTH	AC ELEVATION	1C RANGE	IC AZIMUTH		/C RANGE	/C AZIMUTH	C ELEVATION	3V DOPPLER	3N DOPPLER	3E DOPPLER	TOTAL WEIGHTED FIT STATISTICS
STATION O. NAME		MLXS	MLXS	MLXS	MLXS	MLMC	MLMC	MLMC	MLAC	MLAC	MLAC	CNMC	CNMC	CNNC	CNVC	CNVC	CNVC	PSBV	PSBN	PSBE	AL WEIGH
ST NO.	0	9	9	9	9	7	7	7	œ	œ	œ	6	6	6	10	10	10	17	18	19	TOT

Table III. STS-17 residual summary.

Figure I-1. STS-17 Dynamic data , IMU 2

Figure I-1. (continued)

Figure I-1. (continued)

Figure I-1. (concluded)

Figure 1-2. STS-17 ground track from epoch to touchdown.

-15-

Detailed tracking coverage for STS-17.

Figure 1-3.

Figure 1-4. Composite range residuals for STS-17.

Figure I-5. Composite azimuth residuals for STS-17.

Figure 1-6. Composite elevation residuals for STS-17.

Figure 1-7. Rollout position and velocity plots for STS-17.

II. Extended BET Development

Selection of the best atmospheric source to merge with the inertial BET for STS-17, in view of the fact that the entry profile from this high inclination mission (~57°) yields a ground track far removed from the usual meteorological sites, creates a two-fold problem, namely, the necessary latitudinal translation/extrapolation of both measurements and/or models to the Shuttle profile. As was the case for STS-9, the other high inclination entry flight flown to date, the selection process involves consideration of all the available data, giving more credence to whichever source(s) tends to substantiate previous flight experience. Here one must evoke historical (based on twelve flights) flight/data base prediction differences as a test of reasonableness.

The atmospheric sources considered (and plot symbols utilized) are:

LAIRS (ST17MET) O , NOAA "totem-poles" extracted from the JSC/TRW BET MSFC Global Reference Atmosphere Model (GRAM) Δ , and the Air Force Reference Model (AF78)

Also, included are the Shuttle derived atmospheric parameters based on the measured normal accelerations (from the IMU) and the predicted normal force coefficient (C_{Np}). The complete atmosphere is obtained from integration of the hydrostatic equation for pressure and utilizes the perfect gas law for temperature.

Density comparisons are presented as Figure II-1. Above 150 kft, all five sources are shown for comparison purposes. The continuation plot below 150 kft only reflects the two remote sources but shows, to within the expected accuracy, that either is viable. In the uppermost altitude region, the LAIRS density profile tends to support the Shuttle derived results, at least below 250 kft. The other sources seem to be better reflections of the overall structure at higher altitudes yet would suggest larger data base prediction errors below h~250 kft, by as much as 20 to 30 percent in some regions. It is noted that the Shuttle derived density for this flight reflects the (reasonably) smooth atmosphere encountered. Absent is the significant shear structure which has

generally been evident in the altitude interval, 230 kft<h<250 kft. Also, no particularly sharp structure occurs above this layer. Quite evident also is the considerable similarity in the overall structure between this October flight and that derived from the December (1983) STS-9 flight, apart, of course, from the two suggested shears in the latter results. Though two flights do not comprise a statistically significant data base, the similarities obtained so noted, one would hope that available models would more closely reflect the 50 to 60 percent (of Standard) baseline density at altitude for these latitudes. The similarities are perhaps more remarkable considering that throughout the uppermost altitude region STS-17 was over the North American Continent and the STS-9 ground track was over the Pacific.

Temperature and pressure comparisons are presented as Figure II-2 and II-3 respectively to complete the ambient parameters. On the temperature plot the LAIRS data seem to be the outlier, actually above 120 kft, but, more importantly, between 150 kft and 230 kft. However, as seen thereon, LAIRS data are substantiated by the Shuttle derived results. This is also true on the pressure comparison plot for the spread of Shuttle derived values thereon. Thus, selection of the LAIRS (ST17MET/UN-712662N) is indicated. However, the temperature discrepancies above h~220 kft sets an upper altitude threshold for which meaningful aerodynamic extraction can be expected for this flight. Use of this threshold negates comparisons above Mach~25 but provides a reasonable alternative below. This is discussed further in Section III of this report. As an alternative, one could have selected the AF'78 Model, as was the case for STS-9, which would have provided smoother aerodynamic comparisons though, as suggested previously, shifted somewhat from that expected.

Atmospheric wind comparisons are shown in Figure II-4 for the North-South component and Figure II-5 for the East-West component. In the upper altitude plots only three sources are shown, namely, NOAA, LAIRS, and the GRAM spherical harmonic model values. Below 150 kft, only the two remote sources are presented. Clearly, the NOAA winds, at least above 200 kft, approach unrealistically large levels. Below this altitude they are, and remain thereafter, virtually zero, never exceeding 50 fps except near 30 kft during subsonic flight. However, over most of

the important interval (h<100 kft) the LAIRS and NOAA winds agree quite well. Again, the use of the LAIRS winds is suggested.

Additional evaluations of the winds during subsonic flight are next presented. Here, comparisons versus in situ side probe air data can be made. The results of these comparisons are summarized in two figures herein. Both LAIRS and NOAA measured winds (magnitude, direction, and components) are superimposed in Figure II-6 to provide direct comparisons with derived winds based on the side-probe (post-flight Rockwell results) measurements of α , β , and true air speed. Both deterministic and batch estimates are shown, the deterministic being a point by point mapping algorithm and the batch a weighted-least-squares estimate assuming a break-point altitude model. Symbols utilized are as noted in the figure. The comparisons shown are well within the expected accuracy of the process. Actual air data parameter differences between the on-board air data system (ADS) and computed values based on the LAIRS measured winds (modified as footnoted) are shown in Figure II-7. Mean differences and the computed (10) standard deviation in the differences are notated thereon. Again, it is unreasonable to expect to improve on such differences, thus, the LAIRS (FLAIR17) data were adopted.

The final figures in this Section merely show the selected atmospheric data (from FLAIR17/UN=274885C). The final temperature, density, pressure, and wind profiles are given as Figures II-8 through II-11, respectively. One can observe the curvature below ~7 kft evident in the temperature profile induced wherein the NOAA data were used (necessarily) to replace the LAIRS data.

^{*}The actual LAIRS file provided by the LaRC only contained data above ~260 ft. Moreover, winds were zeroed out below ~7 kft. Thus the LAIRS file was merged with, actually replaced by, the NOAA data below ~7 kft, requiring the notation FLAIR17 on Figure II-6. Above this altitude, the adopted LAIRS winds agreed quite well with the other sources.

Fig. II-1. STS-17 (41-G) density comparisons.

Fig. II-1. (Concluded)

Fig. II-2. STS-17 (41-G) temperature comparisons.

Fig. II-2. (Concluded).

Fig. II-3. STS-17 (41-G) atmospheric pressure comparisons.

Fig. II-3. (Concluded).

Fig. II-4. North-South wind comparisons for STS-17 (41-G).

Fig. II-4. (Concluded).

Fig. II-5. East-West wind comparisons for STS-17 (41-G).

Fig. II-5. (Concluded).

- ⊕ LAIRS (FLAIR17)
- □ NOAA
- O DET-RCKWL
- ₽ BAT-RCKWL

Fig. II-6. STS-17 Measured and Derived Winds

Fig. II-7. STS-17 ADP Differences, ST17ADS-ST17BET

Fig. II-8. Final STS-17 (41-G) temperature profile.

Fig. II-9. Final STS-17 (41-G) density profile.

Fig. II-10. Final STS-17 (41-G) pressure profile.

c - Westward

 \triangle - Upward

Fig. II-11. Final STS-17 (41-G) wind profiles.

III. Aerodynamic BET Development and Summary Results

The final Extended BET (ST17BET/UN=274885C) was merged with the recorded control surface and RCS firings and the LaRC Orbiter Data Base to develop the AEROBET. The final mass properties utilized are given in Appendix A. The AEROBET was written on nine-track physical reel NJ0333 with a back-up (duplicate) copy on NJ0346. This section presents summary results plotted from the AEROBET.

Figures III-1 and III-2 depict the altitude history and descent rate (versus time and altitude), respectively. Dynamic pressure is plotted versus time and altitude as Figure III-3. Mach number is next presented plotted versus the same two parameters as Figure III-4. The dotted line shown thereon is the resulting Mach number if the Air Force 1978 Reference Model had been adopted. The Mach profile on the AEROBET clearly is a manifestation of the uppermost temperature departure for the LAIRS data discussed in the previous Section. Therein the suggested altitude threshold was h~230 kft. Even at this altitude one can see differences in the two Mach number computations of as much as three, viz ~27 for the LAIRS profile, ~24 using the AF'78 temperature. One must keep these differences in mind when analyzing flight results for this particular mission.

Figure III-5 shows \bar{V}_{∞} versus altitude with the Reynolds number profile presented as Figure III-6. Again, the Reynolds number plot reflects the alternate computation based on the AF'78 model. Air relative attitude angles (angle-of-attack, side-slip angle, and roll about the velocity vector) are given in Figure III-7 versus Mach and III-8 versus altitude, respectively. The shaded region on the plot versus Mach number reflects the range of α 's flown on the twelve(12) flights to date, that is for STS-1 through STS-14 excluding STS-10 and 12.

Spacecraft angular rates and linear accelerations in the body axes are plotted versus Mach number as Figure III-9. Control surface deflections versus both Mach and altitude are next presented. The plot versus Mach (Figure III-10) again includes the shading reflecting the range of control effectors based on the first twelve flight experience. More negative elevon opportunities are seen between Mach 9 and 18 thereon. Also, this is the second consecutive flight with the indicated hypersonic

speed brake profile, the third unique profile flown to date. To complete the configuration plots, RCS activity is presented as Figure III-12 versus Mach number.

The next three figures show the STS-17 flight/data base comparisons. Figure III-13 shows force coefficient comparison in the stability axes along with L/D performance comparisons. Again, the shading reflects the previous flight results. In this instance, the previous results are the ensemble statistics of width (± 10) about the mean prediction error. Body axes force coefficient comparisons, as well as the percentage difference in the pitching moment with respect to the 65 percent reference c.g., are presented as Figure III-14. Actual pitching moment comparisons at the flight c.g. are presented in Figure III-15. Figure III-16 shows the flight c.g. versus Mach number, indicating that this is the furthest forward location flown to date by some two(2) inches. The hypersonic pitching moment discrepancy, due principally to real gas effects, is seen in Figure III-15 to be ~0.036. It is noted that the percentage difference curve (Figure III-14) was plotted with a larger scale than previous flights but still yields regions wherein the differences are off-scale and thus truncated.

Of particular interest herein are the most noticeable force differences which occur in the interval, 5<M<10 (see Figs. III-13 and III-14). Based on examination of the configuration flown relative to all past flights, eventhough the elevon and speed brake control effectors are on or slightly outside the previous ranges flown, this could likely relate to atmospheric density differences. This Mach interval corresponds to an altitude range between 120 kft and 170 kft. Over most of this interval (see Section II) the LAIRS atmosphere is more dense than that provided by the National Weather Service, by as much as five(5) percent. Thus, less overprediction would be obtained in this interval had the NOAA data been utilized, enough in fact to place the STS-17 results within the ensemble band. However, it must be noted that the additional overprediction indicated in this Mach interval is more consistent with previous "Challenger only" statistics. Readers can refer to NASA CR-172440 wherein separate results are presented showing both Columbia and Challenger ranges of configurations flown as well as ensemble statistics

for each based on six(6) and five(5) flights, respectively. Therein, the shift in the mean difference at Mach 7 would be the approximate five(5) percent shown here. Though not simple to isolate, the difference in this Mach interval, if real, would relate to a combination of differing (on average relative to Columbia) speed brake, body flap, and α profiles flown by Challenger. No vehicular aerodynamic differences are expected, nor suggested herein.

Figure III-1. STS-17 altitude time history

Figure III-2. STS-17 descent rate versus time and altitude

Figure III-3. STS-17 dynamic pressure vs. time and altitude

Mach

Mach

Figure III-4. STS-17 Mach number versus time and altitude

h, kft

C

based on AF 78 atmosphere

Figure III-5. STS-17 Vbar versus altitude

Fig. III-6. STS-17 Rnum versus altitude.

Figure III-7. STS-17 α , β and σ vs. Mach

Figure III-8. STS-17 α , β and σ vs. h

Figure III-9. STS-17 dynamic data vs. Mach

Figure III-9. (concluded)

Figure III-10. STS-17 control surfaces vs. Mach

Figure III-11. STS-17 control surfaces vs. altitude

Figure III-12. STS-17 RCS firings vs. Mach

Figure III-13. STS-17 flight/data base differences vs. Mach (lift, drag, and L/D).

Figure III-14. STS-17 flight/data base differences vs. Mach (axial, normal, and pitching moment).

11.1

Figure III-15. STS-17 Cm comparisons vs. Mach

Figure III-16. STS-17(41-G) c.g. profiles vs. Mach

IV. MMLE Input File Generation

In view of the previously mentioned loss of ACIP data, GTFILEs for STS-17 could only be generated based on the IMU and RGA/AA measurements. The 25 Hz IMU2 file was generated and output on tape NJ0523. The RGA/AA file, output on reel number NJ0568, was generated by replacing the dynamic data on the IMU file with the measured RGA body axes angular rates and the two available AA accelerations, Ay and A_z . These data were rectified versus IMU2 as shown in Figures IV-1 and IV-2. The indicated 100 second sample differences shown thereon were removed as extraneous signal by simple sub-interval bias rectification. Investigators can refer to Table IV herein for actual maneuver specification during the STS-17 entry. Final mass properties for maneuver analysis are given in Appendix A.

Longitudinal

Start times			Stop times		
(H: M: S)	(sec from e	poch)	(H: M: S)	(sec from epoch)	
16:06:20.0	635	A	16:06:35.0	650	
16:09:49.0	664		16:10:01.0	676	
16:12:50.0	845		16:12:59.0	854	
16:15:26.0	1001		16:15:35.0	1010	
16:17:56.0	1151	÷.	16:18:02.0	1157	
16:18:34.0	1189		16:18:40.0	1195	
16:21:27.0	1362		16:21:31.0	1366	
16:22:11.0	1406		16:22:14.5	1409.5	

Lateral

Sta	art times	Stop times			
(H: M: S)	(sec from epoch)	(H: M: S)	(sec from epoch)		
16:06:30.0	645	16:06:41.0	656		
16:09:41.0	656	16:09:52.0	667		
16:12:42.0	837	16:12:53.0	848		
16:15:18.0	993	16:15:28.0	1003		
16:17:46.5	1141.5	16:17:58.0	1153		
16:18:29.5	1184.5	16:18:35.0	1190		
16:20:27.0	1302	16:20:37.0	1312		
16:21:19.5	1354.5	16:21:26.0	1361		
16:22:05.0	1400	16:22:10.0	1405		
16:22:28.0	1423	16:22:36.0	1431		

Table IV Maneuvers specified for STS-17 (41-G).

Figure IV-1. STS-17 angular rate differences between derived values from IMU2 and RGA measurements.

Figure IV-2. STS-17 lateral and normal acceleration differences between IMU2 derived and AA measurements.

 $\label{eq:APPENDIX} \mbox{\sc APPENDIX A}$ Spacecraft and Physical Constants

ORIGINAL PAGE IS OF POOR QUALITY

+++++IMU NBR 1 ATTITUDE INFORMATION++++

INERTIAL (EE50) TO ROT	ATING (ETUD)	
14543044E+00	98936635E+00	•49878366E-03
•98936281E+00	14543129E+00	33118982E-02
.33492267E-G2	•11832144E-04	.9999439E+00
ROTATING (ETOD) TO N-E	- D	
•72976142E+00	.37039789E+00	•57467701E+00
•45259873E+00	89171430E+00	0•
•51244771E+00	•26009808E+00	81838031E+00
NAV BASE TO SIC BODY		
•98291057E+00	•36562364E-03	18408337E+00
37935496E-03	•99999 93 E+30	39375571E-04
•1840°334E+00	.10853560E-03	•98291063E+00
NAV BASE TO DUTER ROLL		
.99999950E+00	91449388E-03	.40092134E-03
•91449381E-03	•99999958E+00	•36664027E-06
40092151E-03	0.	.99999992E+00
PLATFORM TO DUTER ROLL		
•36293020E+00	•60981031E+00	•70456559E+00
92777276E+00	•16612G24E+0G	•33412762E+00
.86712100E-01	77494190E+00	•62605578E+00
INERTIAL (EE50) TO PLA	TFORM	
•21106833E+0U	73014283E+00	.64987814E+00
38499874E+00	•549U1433E+00	•74186200E+00
89845765E+00	40678579E+00	16522455E+00
S/C BODY TO N-E-0		
•25402087E+00	94505243E+00	•20578854E+00
•72094569E+00	•32684604E+00	•61107175E+00
64475594E+00	68626949E-02	.76435737E+00

TABLE A-1
STS-17 IMU attitude matrices @ epoch

ORIGINAL PAGE IS OF POOR QUALITY

+++++IMU NBR 2 ATTITUDE INFORMATION+++++

INERTIAL (EE50) TO ROTA	ATING (ETOD)	
14543044E+00	98936835E+00	•49878866F-03
•98936281E+00	14543129E+00	33118982E-02
•33492267E-02	•11832144E-04	.99999439E+00
ROTATING (ETOD) TO N-E-	-D	
•72976142E+00	•37039789E+00	•57467701E+00
•45259873E+00	89171430E+00	0.
51244771E+Q0	.26009808E+00	81838031E+00
NAV BASE TO S/C BODY		
•98291057E+00	.36562364E-03	18408337E+00
-•37935496E-03	•9999993E+00	39375571E-04
•18408334E+00	•10853560E-03	•98291063E+00
NAV BASE TO OUTER POLL		
•9999530E+00	74577054E-03	62278928E-03
.74578641E-03	.99999972E+00	•25249802E-04
•62277028E-03	25714258E-04	.99999981E+00
PLATFORM TO OUTER ROLL		
•97982388E+00	65858486E-02	19975430E+00
.96825932E-01	85869512E+00	•50325616E+00
17484248E+00	51244380E+00	84073230E+00
INERTIAL (EE50) TO PLAT	TFORM	
78582752E+00	19800540E-01	•61812366E+00
•61265671E+00	16135889F+00	•77370220E+00
•84420860E-01	•98669714E+00	•13893121E+00
S/C BODY TO N-E-D		
•25399721E+00	94515516E+00	•20534315F+00
•72048986E+00	•32653591E+00	•61177J16E+00
64526863E+00	74402805E-02	.76391790E+00

TABLE A-1 (continued)

+++++IMU NBR 3 ATTITUDE INFORMATION+++++

INERTIAL (EE50) TO ROTA	ATING (ETOD)	
14543044E+00	98936835E+00	.49878866E-03
.98936281E+00	14543129E+00	33118982E-02
•33492267E - 02	•11832144E-04	.99999439E+00
	·	
ROTATING (ETOD) TO N-E-	-D	
•72976142E+00	•37039789E+00	•57467701E+00
•45259873E+00	89171430E+00	0 •
•51244771E+00	.26009808E+00	81838031E+00
NAM DASE TO SAC DODY		
NAV BASE TO S/C BODY	2.5/22//5 22	10/000075/00
•98291057E+00	•36562364E-03	18408337E+00
37935496E-03	.9999993E+00	39375571E-04
•18408334E+3G	•10853560E-03	•98291063E+00
NAV BASE TO DUTER POLL		
.99999429E+00	•12891322E-02	•31251399E-02
12891429E-02	•99999917E+00	•14160325E-05
31251355E-02	54447762E-05	•99999512E+00
PLATFORM TO OUTER ROLL		
	955220725100	- 505 70 4 3 45400
•11215776E+00 -•31062602E+00	.85533072E+00 45332064E+00	50579636E+00
		83547101E+00
94389198E+00	•25081805E+00	.21484459E+00
INERTIAL (EE50) TO PLA	TEORM	
•31395340E+00	•47914213E+00	.81966829E+00
48728257E+00	65962714E+60	•57223046E+00
•81485516E+ 0 0	57906377E+00	.26385400E-01
S/C BODY TO N-E-D		
•25363640E+00	94540721E+00	.20463060E+00
•72165165E+C0	•32581066E+00	•61079148E+00
64411758E+00	72469672E-02	•76489219E+00
#04411170E400	1124070122-02	•104036136400

TABLE A-1 (concluded)

Planet Parameters

Physical Model

 Polar Radius:
 20,855,591.48 ft

 Equatorial Radius:
 20,925,741.47 ft

 Rotational Rate:
 .7292115147E-4 rad/sec

Gravity Model

Central mass, μ: .1407646853E17 ft³/sec²

J₂: .10827E-2
C₃₀: .256E-5
C₄₀: .158E-5
C₂₂: .157E-5
S₂₂: -.897E-6

Runway 33 Location:

Altitude: -199 ft (above ellipsoid)
Geodetic Latitude: 28.597182 deg
Longitude: 279.317350 deg
Azimuth: 329.999488 deg

Location of IMU relative to center-of-gravity in Body coordinates

(Assumed constant for entry reconstruction)

 $\begin{array}{cccc} X_B & & 56 & \text{ft} \\ Y_B & & 0.0 & \text{ft} \\ Z_B & & -4 & \text{ft} \end{array}$

Spacecraft aerodynamic reference parameters

Reference Area 2690 ft²
Span 78.057 ft
Chord 39.567 ft

Average Attitude Computations @ Epoch (57525 sec)

	IMU1	IMU2	IMU3	<u> </u>	<u> </u>
ψ(deg)	70.5904	70.5807	70.6351	70.6021	0.0290
θ(deg)	40.1474	40.1859	40.0995	40.1443	0.0433
φ(deg)	-0.5144	-0.5580	-0.5428	-0.5384	0.0221

TABLE A-2

Planet and Spacecraft Data Used for BT17N26, ST17BET, and AEROBET Generation

Weight and Center-of-Gravity (c.g.) Location

Event	(sec from epoch)	$\frac{\text{Weight}}{(\text{lbs})}$	Xc.g. (inches in Orbiter	Y.c.g. Structural	Zc.g. Reference)
EI	-220	203651.1	1085.4	-0.2	371.9
Mach 3	1262	202829.1	1083.7	-0.2	371.3
Landing	1669	202266.1	1084.8	-0.1	368.4

Moments and Products of Inertia

Event	Time (sec from epoch)	$\frac{I_{XX}}{}$	$\frac{I_{YY}}{}$	IZZ	<u>I_{XY}</u>	XZ	<u>I_{YZ}</u>
EI	-220	907968.0	7000453.8	7299405.9	966.6	160902.9	-1678.0
Mach 3	1262	902777.9	6959429.3	7260768.4	888.1	149561.6	-1769.3
Landing	1669	930280.0	6973554.2	7250596.6	2039.5	139903.3	-1372.8

Notes:

- EI time relative to epoch approximated due to gap in OI data
- Mach 3 values held constant until gear deploy (1651 sec), landed values adopted thereafter.

APPENDIX B

Final residuals for STS-17 trajectory reconstruction

Fig. B-1. Smoothed residuals versus time for MLXS

Y-ANGLE

Y-ANGLE

Fig. B-2. Smoothed residuals versus time for MLMC

Fig. B-3. Smoothed residuals versus time for MLAC

Fig. B-4. Smoothed residuals versus time for CNMC

Fig. B-5. Smoothed residuals versus time for CNVC

Fig. B-6. Smoothed residuals for altimeter and Doppler (pseudo data).

APPENDIX C

Listing of trajectory and air relative parameters from final STS-17 (41-G) Extended BET at two(2) second intervals LAPC "EXTENDED" BET HEADER RECORD

		:	E +	- A - C - C - C - C - C - C - C - C - C	_ (_ L	ت د -		α Σ	ETA	スコヌー	9-9I	1-9I	10	18-P	16-V	AC	I.	S			7	0/	Z.	00	
<u>-</u>	•	,	3)	66											(38)										
N. DATA. (TREF=57525) npblep (post sta		•	 €	T (u r	ו ניני	T/SE	1	w	1	T/SE	ü	ندا	m.	-	Z	ш	S	EG/SEC	T/SEC	S		Š	E G	
NN0137 DY /BT17N26/ ICNS (1-4)	2 3 C	i	؛ اب رس	ALIDE	5 5	3		급	IGMA	ZIZI	16-	1 G-	S-91	I 6-	16-U	AC	T.		O	_	۲B	a s	Ŧ	DOT	
	0E0 P	1	5)	2 5											38)										
A (46-WORDS) IRI7, INERTIAL-BT 773 STS-17 INERTI ONS FROM EARLIER Q 1 (TAPE NCO423)	TATE ONLY, EXTEN	S FOR	ا نا		ايد	ند	E G	₩	E G		-	E G	u	ij,		-	SF	S	EG/SE	1	ONE	0	S	E G	C SHANITA 77
RIPTIVE DAT T USING FLA 1013 1014 INDIA INDIA INDIA INDIA INDIA INDIA SE NOR SENDO INDIA INDIA SE INDIA INDI	UTION SETS	AND UNIT		90H	S.C.	<u>э</u>	<u>חר</u>	3	90	LPHA	ZIXI	H-91	1-9I	IG-A	SIG-RE	-9 I	-		a		×8			Dat	MERICAL DATA
STLYE STLYE INI	• •	LAE													(37)										21

DEG FT/SEC

DE G DE G DEG DEG

DEG

FT/SEC

DEG DEG

.72921151E-04

JMEGA

.20855591E+08

RADP

.20925741E+0R

RADE

.57525000E+05

I SERNO EPOCH

FT/SEC/SEC

NONE

DEG/SEC

DEG/SEC2

NONE NON

SLUGS/FT3 PSF

FT/SEC NONE

DEG DEG

0A (PSF)	.618	7.0	74	80	30 00	92	96.	000	• 05	60.	• 14	•19	• 24	930	• 35	. 41	.47	• 54	•64	• 76	• 98	•01	•14	• 23	44.	•61
MACHA	27.139	7.14	7.13 7.13	7.13	7.13 7.13	7.13	7.13	7.12	7.12	7.12	7.12	7.12	7.12	7.12	7.11	7.11	7.11	7.22	7.47	7.76	8.04	8.32	8.58	8.84	9.08	9.32
ALPHAA (DEG)	41.262	1.08	0.98	0.74	0.59	0.25	90.0	9.84	9.57	9.28	9.96	8.99	60.6	67.6	9.58	0.01	0.59	1.19	1.37	1.51	1.48	1.23	0.75	0.08	9.46	9.13
BETAA (DEG)	111	29	30	36	4 -	351	25	Q	44	56	72	• 60	33	• 14	• 03	02	• 06	16	•17	.16	16	18	.24	59	32	34
SIGMAA (DEG)	397	• 84 • 95	1.10	1.42	.60	1.73	1.55	1.63	1.60	1.52	1.17	• 56	.07	• 65	.11	• 45	52	.41	. 24	۰0	90	71	52	35	24	⇔
HDGA (DEG)	70.807	1.19	1.59	1.99	2.18	2.58	2.78	5.99	3.19	3.39	3.59	3.79	4.00	4.20	4.41	4.61	4.82	5.02	5.35	5.54	5.73	5.92	6.11	6.31	6.50	6.70
64 MA (D E G)	-1.093 -1.093	1.08 1.08	1.08	1.07	1.07	1.06	1.05	1.06	1.05	1.05	1.05	1.04	1.04	1.04	1.03	1.03	1.02	1.02	1.01	1.01	1.00	1.00	66	90	90	.97
VELA (FPS)	24950.7 24950.8	4950. 4950.	4950.	4950	4950.	4950	4949	.6465	.6465	. 646 5	4948.	4948.	4947.	4947.	4946.	4945.	. 7767	4943.	4905	4907	4909	4910.	4911.	4912.	4913.	4914.
AL TDE	297682.8 296183.0	95285. 94388.	93493	91709.	93820.	89049	86166	87285.	86407.	85531.	84657.	83736.	82917.	82052.	81189.	8330	79474	78622.	77774.	76936	76091.	75257	74427	73602	72783.	71968.
rine (Sec)	0°0 5°0	• •	70 C	2 %	•	• •	o	2	4	9	80	o	2	•	9	· 20	.5	· ~	• •	. 9	00	C		• 5		000

290 -380 39.091 29.965 3.17 290 -377 40.815 30.495 3.37 290 -372 40.815 30.495 3.82 1.080 -372 41.193 30.495 3.82 1.081 -254 41.309 30.785 4.81 1.081 -254 41.309 30.785 4.81 1.082 -351 41.309 30.785 4.81 1.081 -321 40.599 31.025 4.81 1.082 -321 40.599 31.025 4.81 1.083 -321 40.599 31.217 5.43 1.084 -321 40.884 31.217 5.43 1.095 -327 40.884 31.558 8.15 1.016 -325 40.884 31.558 8.15 1.017 -304 40.337 31.548 8.51 1.018 -325 40.884 31.554 8.51 1.019 -331 39.071 31.495 10.90 2973 -303 39.257 31.545 10.10 2916 -220 39.557 31.394 11.31 2011 -120 -220 39.557 31.353 11.72	EG)	
550378	77.297	7.09 7.29 7.60
909 -372 41.193 30.647 40.909 145 -254 41.309 30.785 4.8309 1021 -321 40.599 31.025 4.88 1815 -450 39.982 31.127 5.1 587 -536 39.524 31.217 5.4 735 -356 39.524 31.205 5.7 878 -424 39.524 31.205 5.7 148 -359 39.574 31.205 5.7 172 -359 39.574 31.465 6.7 172 -358 39.574 31.558 6.7 172 -270 40.194 31.558 7.4 172 -328 41.110 31.558 7.4 172 -326 41.110 31.554 8.1 173 -31 41.118 31.554 8.2 101 -325 40.889 31.554 8.2 103 -304 40.889 31.517 9.3 104 -303 39.360 31.465 <td>7.90</td> <td>37 77.69</td>	7.90	37 77.69
145	8.10	18 78.10
021 -450 39.982 31.027 5.4 815 -450 39.982 31.217 5.4 735 -565 39.224 31.217 5.4 878 -424 39.224 31.217 5.4 878 -424 39.295 31.419 6.3 148 -328 39.295 31.419 6.3 172 -272 40.194 31.528 7.4 172 -272 40.194 31.528 7.4 172 -272 40.194 31.528 7.4 172 -272 40.194 31.528 7.4 172 -305 41.110 31.545 7.4 105 -31 40.889 31.554 8.5 105 -305 40.889 31.554 8.5 105 -306 40.889 31.554 8.5 107 -303 39.360 31.574 10.1 108 -303 39.236 31.465 10.1 101 -303 39.236 31.465	8.51	.899 78.51
-587536 39.511 31.217 5.4 735424 39.224 31.295 5.7 878424 39.224 31.295 5.7 148328 39.295 31.465 6.7 211272 40.194 31.528 7.4 172270 40.739 31.528 7.7 095311 41.188 31.554 8.1 016325 40.889 31.554 8.5 027303 39.360 31.517 9.7 973303 39.360 31.517 9.7 973310 39.238 31.465 10.5 974310 39.257 31.354 10.1 874310 39.257 31.354 10.3 001118 40.062 31.353 11.7	8.33	.878 78.72 .878 78.93
.735 565 39.224 31.295 5.7 .878 424 39.148 31.363 6.0 .935 359 39.295 31.465 6.3 .148 328 39.574 31.465 6.3 .211 272 40.194 31.528 7.0 .172 305 41.110 31.528 7.0 .095 311 41.188 31.545 7.0 .016 325 40.889 31.554 8.5 .015 304 40.889 31.554 8.5 .015 304 40.889 31.554 8.5 .015 304 40.889 31.554 8.5 .015 303 39.360 31.554 8.5 .018 313 39.238 31.494 10.1 .018 310 39.238 31.432 10.9 .016 220 39.557 31.304 11.3 .001 118 40.0645 31.308 11.7	9.14	867 79.14
.878 424 39.148 31.553 5.0 .935 359 39.295 31.419 6.3 .148 328 39.574 31.465 6.3 .211 272 40.194 31.528 7.4 .172 270 40.739 31.528 7.4 .095 311 41.110 31.545 7.7 .016 325 40.889 31.554 8.5 .015 304 40.337 31.554 8.5 .027 304 40.337 31.554 8.9 .027 303 39.360 31.535 9.3 .918 313 39.360 31.535 9.3 .918 310 39.238 31.445 10.1 .916 310 39.238 31.432 10.9 .916 220 39.557 31.394 11.3 .001 118 40.0645 31.353 11.7 .001 220 39.557 31.308 12.1	9.35	.856 79.35
148 328 39.574 31.465 6.7 211 272 40.194 31.501 7.0 172 270 40.194 31.528 7.4 .095 305 41.110 31.528 7.7 .049 311 41.188 31.558 8.1 .016 325 40.889 31.554 8.5 .015 304 40.337 31.554 8.5 .027 282 39.752 31.554 8.9 .027 282 39.360 31.535 9.3 .918 313 39.360 31.517 9.7 .918 310 39.238 31.494 10.1 .973 310 39.238 31.432 10.9 .916 220 39.557 31.394 11.3 .001 118 40.0645 31.353 11.7 .001 138 40.0645 31.308 12.1	9.56	.845 79.56 .834 79.77
-272	66.6	.822 79.99
.172	0.20	10 80.20
0.92 41.188 31.553 8.1 0.049 325 40.889 31.554 8.5 0.016 304 40.889 31.554 8.5 0.015 304 40.337 31.548 8.9 0.027 282 39.752 31.535 9.3 9.73 313 39.360 31.517 9.7 9.18 313 39.081 31.494 10.1 874 310 39.238 31.465 10.5 916 292 39.557 31.394 11.3 916 220 39.557 31.394 11.3 916 205 39.557 31.394 11.3 916 220 39.557 31.353 11.7 916 280 39.557 31.353 11.7 91 001 068 40.645 31.308 12.1	0.42	97 80.42
016	0.63	84 80•63 70 80 85
.015 304 40.337 31.548 8.9 .027 282 39.752 31.535 9.3 .973 303 39.360 31.517 9.7 .918 313 39.081 31.494 10.1 .874 310 39.238 31.465 10.5 .857 292 39.238 31.465 10.9 .916 220 39.557 31.394 11.3 .001 118 40.062 31.353 11.7 .001 068 40.645 31.308 12.1	1.07	6 81.07
.027 282 39.752 31.535 9.3 .973 303 39.360 31.517 9.7 .918 313 39.081 31.494 10.1 .874 310 39.071 31.465 10.5 .857 292 39.238 31.432 10.9 .916 220 39.557 31.394 11.3 .001 118 40.062 31.353 11.7 .001 068 40.645 31.308 12.1	1.28	41 81.28
.973303 39.360 31.517 9.7 .918313 39.081 31.494 10.1 .874310 39.071 31.465 10.5 .857292 39.238 31.432 10.9 .916220 39.557 31.394 11.3 .001118 40.062 31.353 11.7 .001068 40.645 31.308 12.1	1.50	27 81,50
.918313 39.081 31.494 10.1 .374310 39.071 31.465 10.5 .857292 39.238 31.432 10.9 .916220 39.557 31.394 11.3 .001118 40.062 31.353 11.7 .001068 40.645 31.308 12.1	1.72	13 81.72
.874310 39.071 31.465 10.5 .957292 39.238 31.432 10.9 .916220 39.557 31.394 11.3 .001118 40.062 31.353 11.7 .001068 40.645 31.308 12.1	1.94	99 81,94
.916220 39.238 31.432 10.9 .916220 39.557 31.394 11.3 .001118 40.062 31.353 11.7 .001068 40.645 31.308 12.1	2.16	84 82,16
.916220 39.557 31.394 11.3 .001118 40.062 31.353 11.7 .001068 40.645 31.308 12.1	2.38	69 82,38
.001118 40.062 31.353 11.7 .001068 40.645 31.308 12.1	2.60	54 82.60
.001068 40.645 31.308 12.1	2.82	37 82,82
	3.04	1 83.04

0A (PSF)	12.531	3.32	3.71	4.10	4.48	4.85	5.22	5.57	5.95	6.25	6.57	6.89	7.19	7.49	7.78	8.07	8.35	8.62	8.89	9.16	9.45	9.68	9.93	0.18	0.43	0.67	0.92	1.15	1.39
MACHA	31.260	1.15	1.10	1.05	66.0	96.0	0.89	0.83	0.78	0.72	0.67	0.62	0.57	0.52	0.47	0.42	0.37	0.32	0.27	0.23	0.18	0.13	0.08	0.04	66.6	96.6	06.6	9.85	9.81
ALPHAA (DEG)	41.283	1.14	0.78	0.29	9.16	44.6	9.48	9.81	0.29	0.58	0.88	0.80	0.52	86.6	6.45	9.13	96.8	00.6	9.24	4.4	0.35	0.76	0.90	0.77	94.0	0.11	9.83	9.70	9.71
BETAA (DEG)	078	.06	.04	.02	1.10	• 75	• 78	•25	•14	.12	.23	• 18	• C4	69	0	12	.17	21	28	26	29	25	27	24	21	U,	13	9	9
SIGMAA (DEG)	. 913	. 69	57	42	Ę	18	0.04	6.20	2.17	7.93	3.70	9.59	45	0.08	2.73	66.4	7.77	0.55	2.67	4.22	5.33	6.14	6.52	6.93	7.14	7.32	7.49	7.85	8.41
HDGA (DEG)	83.270	3.71	3.93	4.16	4.38	4.60	4.82	5.05	5.28	5.51	5.75	5.99	6.23	6.47	6.71	6.95	7.19	7.44	7.68	7.92	8.17	8.42	8.66	8.91	9.16	9.40	9.65	36.6	0.14
GAMA (DEG)	- 603 - 585	50.00	.54	.53	.51	449	647	• 45	.43	.41	.40	.38	•37	.35	.34	.33	.32	.31	.31	.36	.29	•29	•28	.27	.27	.26	•26	.25	25
VELA (FPS)	24795.3	4779.	4771.	4763.	4755.	4747.	4740.	4731.	4723.	4714.	4704.	4695.	4686.	4677.	4668.	4659.	4651.	4642.	4633.	4623.	4614.	4604.	4593.	4583.	4572.	4562.	4552.	4542.	4531.
ALTDE (FT)	250852.4	**************************************	49408.	48958.	48522.	481C3.	47699.	47312.	4694C.	46584.	45243.	45915.	45601.	45297.	45003.	44717.	44440.	44170.	43906.	43648.	43395.	43147.	42905.	42667.	42433.	42205.	41980.	41760.	41544.
TIME (SEC)	120.0	2 r 2 r	26.	28.	30.	32.	34.	36.	30.	40.	42.	44	46.	43.	50.	52.	54.	56.	58	50.	52.	64.	66.	89	70.	72.	74.	76.	78.

OA (PSF)	1.62 2.085 3.085	10000000000000000000000000000000000000	4 4 B B B B B B B B B B B B B B B B B B	4 7 7 7 7 7	25.682 25.881 26.079 26.276 26.473	77.7
MACHA (-)	9.76 9.72 9.67		9.33 9.28 9.24 9.24	9.11 9.11 9.07 9.03	28.954 28.873 28.833 28.791 28.791	8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9
ALPHAA (Deg)	9.86 0.03 0.17	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.91 0.01 0.10 0.14 0.14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.890 39.917 39.976 40.029 40.051	00000 00000 000000
BETAA (DEG)	108 26 26	12222	110 100 130 14	10001	000000000000000000000000000000000000000	000000
SIGMAA (DEG)	9.07 9.89 0.62	144222 144324 144344 144344 144344 144344 144344 144344 144344 144344 14434 14	1.86 1.65 1.65 1.61 1.61		71.720 71.980 72.386	18888888888888888888888888888888888888
HDGA (DEG)	0.39	20.000	2.62 3.12 3.32 4.42	0 0 4 4 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99999999999999999999999999999999999999	000 000 000 000 000 000 000
GAMA (DEG)	4466	122222	120000		1184	
VELA (FPS)	4521. 4510. 4499.	44444 44444 446643 446643	4422. 4410. 4399. 4387.	4444 448 448 448 448 448 448 448 448 44	24268.4 24256.0 24256.0	42330 4217 4204 4191
ALTDE (FT)	41332. 41123. 40918.	40716. 40318. 40318. 40123. 39929.	399544 399364 399176 39906 39906	38630. 38452. 38277. 38164.	237762.7 237794.1 237726.6 237260.2 237694.6	36765. 36601. 36437. 36273. 36110.
TIME (SEC)	8 8 0 8 0 8 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	80000 80000	000000000000000000000000000000000000000	2224.0 2224.0 2224.0 2224.0 2224.0	3 3 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

OA (PSF)	7 8 8 9 0 4 4 8	90.00	9.63 9.83 0.02 0.21	0.39	30.939 31.115 31.289 31.462 31.662	11.80 12.94 2.130 2.130	3,42,62,63,63,63,63,63,63,63,63,63,63,63,63,63,
MACHA	8 . 50 8 . 40 8 . 42 8 . 42	88888888888888888888888888888888888888	88888888888888888888888888888888888888	7.95 7.91 7.87	27.838 27.797 27.757 27.717 27.677		7.39
ALPHAA (DEG)	9.91 9.96 9.99 0.03	00000 00000 140000	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.41 9.45 9.49	40.027 40.048 40.038 39.991 39.991	99.99.99.99.99.99.99.99.99.99.99.99.99.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BETAA (DEG)	0000	107400	2000	133	1 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 0 4 0		00.00
SIGMAA (DEG)	3.45 3.34 3.18	12.00 12.00 14.50 14.50 14.50	9.10 9.10 8.67 8.22 7.35	7.73 7.36 8.10	68.386 68.529 68.789 68.949 68.915	9.00 9.00 9.00 9.10	9.01 9.01 8.81 8.67
HDGA (DEG)	7.82 8.07 8.32	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00.04 00.24 00.53 00.53	01.62 01.26 01.50	101.750 101.992 102.234 102.475 102.717	002.95 003.19 03.44	0 4 • 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GA MA (DEG)	71. 71.		1444 00004	4444		2222	
VELA (FPS)	4165. 4151. 4138.	40005 40005 40066	4037. 4022. 4007.	3977. 3962. 3946.	23931.2 23915.4 23899.6 23883.6 23867.5	3851. 3854. 3818. 3801.	3767. 3750. 3732. 3715.
ALTDE (FT)	35 946. 35 782. 356 8.	35200 35200 35200 3500 3500 3600	34 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	33863. 33714. 33567.	233421.9 233276.1 233135.6 232994.3 232854.1	32715. 32577. 32439. 32303.	32633. 32633. 31898. 31764.
TIME (SEC)	0 0 4 4	4 W W W W	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	655 68 70	272.0 276.0 276.0 278.0 280.0	2 4 5 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 0 0 0 0 0 0 0 0

*	#	*
*****	•	****
*********	PAGE	****
****************		米华华华米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米
****	DATA.	****
****	7N26, NNO137 DYN. DATA.	****

***	R17, INERTI	****
***	STITBET USING FLAIRIT,	***
经转换存货 经存货 经存货 医牙疮 经存货 经存货 经存存 医医疗 医医疗 医医疗 医医疗 医	STITBET	***************************************
*	*	×

_	ORIGINAL PAGE IS OF POOR QUALITY	
OA (PSF		7.2
MACHA (-)	27. 27. 27. 27. 27. 27. 27. 27. 27. 27.	5.20
ALPHAA (DEG)	399.051 390.051 390.051 390.051 390.051 390.051 390.051 390.051 390.051 390.051 390.051 390.051 390.051 390.051 390.051 390.051 390.055 390.055	3.78
BETAA (DEG)		23
STGMAA (DEG)	58 58 59 50 50 50 50 50 50 50 50 50 50	1.68 2.24
HDGA (DEG)	105.334 105.334 105.330 106.301 106.301 106.533 107.003 107.003 108.633 109.095 109.095 110.012 110.691 111.139	11.58
GAMA (DEG)	1	·^ -+
VELA (FPS)	23698 0 236698 0 236663 0 236663 0 236669 0 23574 0 23574 0 23576 0 23576 0 23576 0 23576 0 23576 0 23576 0 23576 0 23576 0 23576 0 23577 0 23	3171. 3151.
ALTDE (FT)	231498-2 231353-9 231162-9 231162-9 230972-8 230972-8 230973-1 220972-8 220972-9 229974-3-1 2299694-9-1 229445-3 229445-3 229445-3 229445-3 229445-3 229445-3 229445-3 229445-3 228854-3 228854-3 228854-3	28137. 28045.
TIME (SEC)		9 8

TIME (SEC)	ALTDE (FT)	VELA (FPS)	GAMA (DEG)	HDGA (DEG)	SIGMAA (DEG)	BETAA (DEG)	ALPHAA (DEG)	MACHA (-)	QA (PSF)
360.0 362.0	227953.8 227803.6	23132.0 23111.8		112.027	62.912 63.318	223 131	38.991	26.133 26.098 26.063	37.416 37.506 37.595
• • •	27685. 27685.	3071.	400	12.69	3.84	16	8.83	5.02	7.69
.00	27506. 27506. 27416.	3030. 3030.	40.	13°13	4 • 4 5 4 6 4 6 4 6 6 7 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9	- 7 ~	8.81 8.85	5.95 5.95	7.94
74.	27325	2989.	40.	13.58	4.25	91.	68.89	5.89	8.03 8.13
80 0	27142.	2948	40	14.02	4.00	17	8.89	5.81	8.22
8 2	26955	2905.	00.	14.45	3.73	.22	88 % 4 % 4 % 4 % 4 % 4 % 4 % 4 % 4 % 4 %	5.74	8 4 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
8 4 8 6	26861. 25766.	2885. 2864.	40.	14.67 14.89	3.75 3.75	16 12	8 · 46	5.67	8.50
800	26671.	2842	400	15.11	3.55	14	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5.64	8.69
25.	25476	2799.	40.	15.54	3.64	800	80.00	5.56	8.89
9.4 9.6 •	26377. 26276.	2778. 2756.	.04	15.97	3.38 3.38	1 1 4	8.8U	5.49	60.6
98	26174.	2734.	•04	16.19	3.28	13	8.33	5.45	9.20
22.	25966.	2690.	0.05	16.61	3.01	•13	8 3 3	5.38	9.42
400	25861 • 25754•	2668. 2645.		16.83 17.04	2.39	0 0	8.84 4.84	5.30	7.04 9.64
80	25647	2622.	30.00	17.26	2.40	40.	8.86	5.26	9.76
27	25429°	2576.	0.0	17.68	0.95	32	8.92	5.18	66.6
4	25320.	2553.	05	17.89	0.47	12	8.95	5.14	0.10
16.	25212.	2529.	• 0 5	18.10	ğ 6 • 6	• 10	8.95	5.11	0.21
8	25105	2505.	40.	18.31	9.33	.10	8 · 8 · 9	5.07	0.32

A O		40.437	0.54	0.64	94.0	0.84	0.93	1.02	1.11	1.20	1.29	1.37	1.46	1.54	1.62	1.69	1.77	1.85	1.92	2.00	2.07	5.14	2.21	2.29	2.36	5.44	2.52	2.59	2.66	2.73	2.80
MACHA	٢	25.032	66.4	4.95	4.91	4.87	4.84	4.80	4.76	4.72	4.69	4.65	4.61	4.57	4.54	4.50	4.46	4.43	4.39	4.35	4.31	4.28	4.24	4.20	4.16	4.13	60.4	4.05	4.02	3.98	3.94
ALPHAA	19 10	. 7	8.57	8.43	8.20	8.15	8.33	8.50	8.56	8.55	8.53	8.55	8.59	8.53	8.62	8.58	8.55	8.60	8.53	8.54	9.28	9.11	6.39	8.05	8.39	8.49	8.68	8.91	9.11	55.6	9.57
BETAA	(DE	•	7	.15	24	• 24	13	.15	• 13	œ	24	$\boldsymbol{\circ}$	24	.26	30	20	.25	29	.32	35	29	35	4	•37	∞	43	.92	• 36	6 8	• 39	28
SIGMAA	DEG	8.78	8.34	7.83	7.67	7.98	8.34	58.621	8.79	8.77	8.65	8.60	8.41	8.21	8.02	8.38	8.22	8.24	8.27	8.36	8.23	7.91	7.5R	7.42	7.22	R.14	6.57	6.51	6.75	8.64	9.91
HDGA	ш О	18.52	18.73	18.94	19.14	19,34	19,55	119.760	19.96	20.17	20.37	20.58	20.78	50.99	21.19	21.39	21.60	21.80	22.00	22.20	22.40	22.60	22.80	23.00	23.20	23,40	23.60	23.79	23,99	24.18	24.38
GAMA	ш О	40	40	04	03	03	03	033	.03	.03	• 02	•02	.02	C 2	• 32	•05	• 02	.01	Ü	.01	.01	.01	01	.01	.01	01	.01	.01	~	.01	-
VELA	S	2482.	2458.	2435.	2410.	2387.	2364.	22340.4	2316.	2292.	2268.	2243.	2219.	2194.	2170.	2145.	2121.	2096.	2071.	2046.	2022.	1996.	1970.	1945.	1921.	1896.	1871.	1846.	1820.	1794.	767•
ALTOE	L L	24999.	24895.	24792.	24691.	24592.	24494	2439	24301.	24205.	24110.	24016.	23923.	23831.	23739.	23648.	23558.	23468.	23378.	23289.	23198.	23109.	23019.	22930.	22840.	22749.	22658.	22567	22477.	22386.	5
TIME	N m	20.	22.	24.	25.	28.	30.	32.	34.	36.	38	• 0 •	42.	44	46.	43.	50.	52.	54.	56.	58	909	62.	64.	.99	68	70.	72.	74.	76.	478.0

TIME (SEC)	ALTDE (FT)	VELA (FPS)	GAMA (DEG)	HDGA (DEG)	SIGMAA (DEG)	BETAA (Deg)	ALPHAA (DEG)	MACHA	0A (PSF)
1	1		•		(•		•	•
က	22201.	1740.	0.7	24.58	0.71	3	04.0	3.40	00.7
82.	22104.	1713.	.02	24.78	1.23	.31	9.31	3.86	2.96
9.4	22004.	1686.	.02	24.98	1.51	33	9.23	3.82	3.04
96	21899.	1659.	0	25.18	1.81	m	9.25	3.78	3.14
ж ж	21791.	1632.	• 03	25.38	2.02	29	9.28	3.74	3.24
90	21677.	1604.	40.	25.5R	1.96	34	9.28	3.70	3.35
92.	21559.	1577.	0.5	25.78	1.91	9	9.23	3.66	3.47
94.	21436	1548.	.05	25.98	1.95	29	9.20	3.61	3.59
95.	21308.	1520.	•06	26.18	1.64	C	9.22	3.57	3.73
98	21175.	1492.	90.	26.37	1.30	33	9.26	3.53	3.83
• 00	21038.	1464.	• 07	26.57	1.00	31	9.28	3.48	4.03
02.	20897.	1435.	.07	26.77	0.70	2	9.28	3.44	4.19
. 40	23752.	1406.	80	26.97	0.31	2.5	9.25	3.39	4.36
96.	20603.	1377.	.08	27.16	9.85	4	9.23	3.35	4.53
38.	20450.	1340.	6C.	27,36	0.30	25	9.25	3.30	4.72
10.	20295.	1320.	60.	27.56	8.58	27	9.27	3.26	4.91
12.	20136.	1290.	.10	27.75	8.08	-	9.26	3.21	5.11
14.	19076.	1260.	110	27.95	7.47	4	9.25	3.16	5.30
16.	19815.	1230.	.10	28.14	7.03	~	9.21	3.12	5.50
83	19654.	1200.	.10	28.34	6.59	9	9.31	3.07	5.70
2	1949	1170	101	128.540	56.054	372	38.845	23.027	45.903
22.	19332.	1140.	.10	28.73	5.45	40	8.76	2.98	6.10
24.	19172.	1109.	• 00	28.92	4.85	\sim	8.72	2.93	6.30
9	19014.	1078.	• 00	29.12	4.27	4	8.55	2.88	6 * 4 9
28	18858.	1048.	000	29.31	3.78	4	8.46	2.84	6.68
30.	18704.	1017.	ж Э	29.51	3.34	2	8.31	2.79	6.87
32.	18554.	.7860	0.8	29.70	3.01	Œ	8.23	2.75	1.05
34.	18406.	0957.	.07	29.89	2.87	54	8.26	2.70	7.23
90	18261.	.956°	.07	30.08	3.26	.51	8.28	2.66	4.39
538.0	÷	•	•07	30.28	3.82	4.8	8.23	2.61	7.56

	(PSF)	7.72	7.88	8.03	8.19	8.34	8.50	8.66	8.82	8.98	9.15	9.32	64.6	9.65	49.843	0.02	0.20	0.39	0.58	0.77	16.0	1.16	1.34	1.53	1.72	1.90	5.09	2.27	2.47	2.66	. 85
	<u> </u>	2.57	2.53	2.48	2.44	2.40	2,35	2,31	2.27	2.22	2.18	2.14	5.09	2.05	22.007	1.96	1.91	1.87	1,83	1.78	1.74	1.69	1.65	1.60	1.56	1.51	1.47	1.42	1.38	1.34	1.29
PHA	(DEG)	8.20	8.20	8.23	8.23	8.19	8.14	8.16	8.19	8.23	8.26	8.29	8.28	8.26	38.279	8.29	8.27	8.30	8.40	8.49	8.49	8.47	8.46	8.48	8.48	8.47	8.47	8.47	8.46	8.46	•46
IA	(DEG)	.41	.41	35	.34	• 33	28	• 20	24	24	22	• 20	16	.11	.10	50	.07	01	• 11	.11	19	21	28	54	23	œ	14	12	90	92	0
GMA	(DEG)	4.28	4.69	5.17	5.46	5.79	6.21	6.53	6.50	44.9	6.49	6.53	69.9	6.48	56,358	6.16	5.93	5.59	5.21	4.78	4.32	4.09	3.95	4.22	4.57	5.02	5.40	5.79	6.23	26.9	.34
90	(DEG)	30.47	30.67	30.86	31.05	31.24	31.43	31.63	31.82	32.01	32.20	32.40	32.59	32.78	32.97	33.16	33.36	33.55	33.74	33.92	34.11	34,30	34.49	34.68	34.87	35.06	35.25	35.44	35.63	35.82	0
¥.	(DEG)	• 0 6	9	•	•	Ý	•	\$	9	~	~	.07	.07	.07	∞	0.8	.08	0.08	•08	.08	08	80.	в О	.08	.08	∞	.08	œ	• 08	60.	+60*-
П	(FPS)	0865	0835.	0804.	0773.	0742.	0711.	0686.	.6490	0618.	0586.	0554.	0522.	0490.	0458	0426.	0393.	0361.	0328.	0295.	0262.	0229.	0195.	0162.	0128.	. 7600	.0900	0025.	1666	9956.	19921.9
-	(FT)	17979.	17846.	17702.	17564.	17426.	17288.	17149.	17009.	16868.	16725.	16581.	16435.	16288.	16140.	15990.	15839.	15686.	15532.	15378.	15223.	15069.	14915.	14762.	14610.	14457.	14305.	14151.	13997.	13840.	213681.6
E	(SEC)	40	42.	44.	46.	48	50.	52.	54.	55.	58.	• 09	62.	64.	99	63.	70.	72.	74.	76.	78.	80.	82.	84.	86.	88	90.	92.	• 46	.96	598.0

QA (PSF)	33.07	5.44	5.01	8 . 4 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6	58.701 59.085 59.485 59.900 60.328 61.232 61.712 62.204
MACHA (-)	1.25	0.93	0.70	0 • 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20.336 20.291 20.291 20.200 20.115 20.015 20.065 19.976 19.931
ALPHAA (DEG)	00000000000000000000000000000000000000	88.54 8.60 8.40 8.40 8.40 8.40	8.81		38.923 38.931 38.931 39.081 39.159 39.192 39.273 39.351
BETAA (DEG)	00000	200 200 200 200	444	4 5 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
SIGMAA (DEG)	6.36 6.83 6.59 6.21	00000 0000 0000 0000 0000	6.16 6.26 6.26	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	56.099 56.099 56.099 56.099 56.099 56.099 56.099
HDGA (DEG)	36.20 36.30 36.39 36.58	34.00 37.00 37.00 37.00 37.00	38.08 38.27 38.46	88888888888888888888888888888888888888	139.969 140.157 140.345 140.722 140.909 141.097 141.657
GAMA (DEG)	00111		444 8644		1.181 1.188 1.202 1.202 1.221 1.228 1.234
VELA (FPS)	9887. 9851. 9816. 9781.	9467197 9467197 94698 95698	9529 9450 9453 9416	9378. 9340. 9302. 9264. 9225.	19148.7 19110.2 19032.9 18993.4 18954.0 18914.4 13875.1
ALTDE (FT)	13519. 13354. 13187.	12668 12491 12312 12131	11763. 11575. 11365.	10994 10795 10592 10336 10177	209748.5 209527.9 209362.8 209073.2 208601.6 208601.6 208359.8 207863.7
TIME (SEC)	00000	80 4 00 c	2220	20000000000000000000000000000000000000	650 650 650 650 650 650 650 650 650 650

Z.	-	Ę	X	90	GMA	IA	PHA	Ç	Ö
(SEC)	(FT)	(FPS)	(DEC)	(DEG)	(DEG)	(DEC)	(DEG)	<u>.</u>	(PSF)
• 09	07352.	8752.	5	41.85	0.24	11	9.43	9.88	3.23
62.	07085.	8711.	9	42.04	9.25	.10	9.27	9.84	3.78
64.	06811.	8670.	~	42.23	46.6	.83	9.27	62.6	4.37
0.999	206530.4	18629.2	288	142.434	60.893	272	39.395	19.740	64.902
68.	05240.	8585.	0	42.63	1.38	.13	44.0	9.67	5.37
70.	05941.	8542.	-	42.83	1.80	•10	8.69	09.6	5.87
72.	05631.	8503.	3	43.02	2.27	.08	8.55	9.53	5.43
74.	05309.	8461.	3	43.22	2.59	21	9.41	9.46	7.01
76.	04975.	8418.	~	43.43	9.28	24	9.58	6.39	7.61
78.	04636.	8374.	7	43.62	5.12	90	9.43	9.31	8.23
A.O.	04297.	8330.	~	43.81	1.41	•20	9.20	9.24	8.85
82.	03964.	8286.	9	44.00	0.29	20	6.01	9.17	9.45
£ 4 •	03640.	6241.	4	44.19	9.63	•13	8.30	9.10	0.03
86.	03326.	8197.	n	44.38	8.99	.11	8.58	9.03	0.59
A 3.	03022.	9204.	.31	44.45	8.51	O	8.50	9.02	1.53
90.	02729.	8158.	•30	44.65	8.35	24	8.39	8.95	2.01
92.	02446.	8111.	Œ	44.84	8.93	•29	8.30	8.88	2.47
94.	02172.	8666.	7	42.04	0.32	O .	8.27	8.81	2.91
95.	01904.	8020.	9	45.23	1.89	.27	8.30	8.75	3.34
9.6	01640.	7974.	9	45.44	4.56	• 14	8.55	8.68	3.75
00	01375.	7927.	9	45.64	6.28	3	8.71	8.61	4.15
02.	01108.	7886.	~	45.85	7.17	\boldsymbol{x}	8.79	8.55	4.56
04.	00838.	7832.	280	46.06	7.98	3	8.89	8.48	86.7
.90	00563.	7785.	290	46.27	8.36	CT.	8.95	8.41	5.45
08.	00282.	7737.	363	46.48	8.71	Ċ	6.03	8.35	5.87
10.	.96666	7688.	-,310	46.70	8.95	2	9.13	8.28	6.33
12.	99705.	7638.	-,318	46.92	9.05	•05	9.18	8.21	62.9
14.	60766	7587.	326	47.14	8.47	~	9.14	8.14	7.27
16.	99110.	7536.	331	47.36	7.24	4	00.6	8.07	7.75
18.	98809	7486.	332	47.57	5.96	2	8.89	8.00	8.24

TIME (SEC)	ALTDE (FT)	VELA (FPS)	GAMA (DEG)	HDGA (DEG)	SIGMAA (DEG)	BETAA (DEG)	ALPHAA (DEG)	MACHA (-)	0A (PSF)
20.	98510.	7435.	n	47.79	5.05	• 04	8.84	7.93	•73
200	98213	7387	2	47.99	4.59	90	8.76	7.86	9.24
2 4	97918	7337	2	48.20	4.73	.11	8.75	7.79	9.72
726.0	197625.4	17286.7	323	148.417	55.158	960	38.777	17.727	80.199
28	97333.	7236.	32	48.63	5.73	12	8.33	7.65	0.65
30	97042.	7184.	.32	48.84	6.54	.12	8.89	7.59	1.13
32.	96750.	7133.	32	49.06	7.59	• 14	8.36	7.52	1.59
34.	96455.	7060.	.33	49.28	8.53	•00	40.6	7.45	2.05
30.	96156.	7.28.	34	49.51	9,15	60.	9.37	7.38	2 • 53
80	95852.	6975	.35	49.73	9.56	. 08	9.13	7.31	3.02
40	95541.	6922.	40	49.96	9.92	08	9.19	7.24	3.54
42.	95224.	6868.	.38	50.19	0.24	.08	9.25	7.17	4.07
* 5 5	94899	6814.	•39	50.41	0.54	.07	9.34	7.10	4.62
46.	94566.	6760.	41	50.64	0.81	•06	9.45	7.02	5.20
40	942240	6765.	•43	50.87	1.04	00	6.49	6.95	5.81
50.	93873.	6650.	44.	51,11	0.97	10	9.52	6.88	944
52.	93513.	6594.	46	51.34	10.0	20	9.46	6.81	7.10
54.	93147.	6538.	.47	51.58	8.71	16	9.43	6.73	7.79
56	92777.	6481.	.47	51.82	7.55	16	9.45	6.66	8.48
80	92406	6425.	4 B	52.06	6.54	13	9.36	6.59	9.18
09	92036.	5368.	48	52.29	5.87	H	9.29	6.51	9.83
5.5	91667.	6311.	~	52.54	5.42	14	9.21	9.44	0.58
40	91301.	6254.	47	52.78	5.13	07	61.6	6.37	1.26
99	90939.	6197.	/	53.02	5.31	60	9.16	6.29	1.93
8	90579.	6139.		53.26	5.65	60	9.14	6.22	2.60
70.	93221.	6081	46	53.50	6.13	04	9.14	6.15	3.24
72.	89866	6022		53.75	6.50	07	9.13	6.07	3.87
74.	89512.	5963		54.00	6.28	03	9.11	00.9	4.50
76.	89160.	5903		54.25	6.20	10	90.6	5.93	5.11
8	86811.	5844		54.51	6.44	• 06	8.99	5.86	5.72
	!								

	Σ	_	Ē	Σ	و د	P	4	Z Z	٥
	SEC)	(FT)	(FPS)	(DEG)	(DEG)	(DEG)	(DEG)	(DEG)	(-)
2	80.	88463.	5782.	46	54.75	6.75	•02	8.98	5.78
7	82.	88116.	5722.	•46	55.01	7.44	01	8.99	5.71
. ~	84.	87768	5663.	46	55.27	8.19	40.	9.00	5.64
^	86.	87418.	5403.	.47	55.53	8.62	.03	9.37	5.57
. ~	80	87666.	5542.	4	55.80	8.27	0.5	9.25	5.49
· ~	06	86711.	5481.	48	56.07	1	.091	39,315	5.42
7	92.	86358.	5421.	. 48	56.34	5.24	0	9,31	5.35
2	94.	86008	5360.	.47	56.60	3.61	02	9.33	5.28
7	96	85667.	529B.	• 45	56.86	2.23	10	9,31	5.20
7	96	85337.	5237.	.43	57.13	0.70	04	9.23	5.13
œ	00	85022.	5179.	40	57.40	9.17	04	9.11	5.07
ac	02.	84723.	5117.	.37	57.65	8.20	06	6.30	5.00
10	40	84444.	5055.	34	57.90	7.61	08	8.34	4.93
æ	05.	84184.	4993.	.30	58.15	7.10	65	8.57	4.86
30	08.	83944.	4932.	.27	58.39	7.14	• 04	8.56	4.7
യ	10.	83722.	4870.	•23	58.64	8.28	.02	8.51	4.72
80	12.	83516.	4808.	.21	58.89	0.47	00	8.47	4.65
10	14.	83324.	4747.	•19	59.14	0.51	•04	8.41	4.59
80	16.	83142.	4686.	.17	29.40	1.54	• 05	6.38	4.52
80	18.	82967	4624.	•16	59.66	2.53	.11	8.38	4.46
60	20.	82797.	4563.	15	59.95	3.80	.07	8.41	4.39
8	22.	82629.	4502.	.16	60.18	4.91	• 08	44.8	4.33
	24.	82459.	4441.	•16	60.45	5.85	12	8.48	4.26
Œ	26.	82265.	4380.	.17	60.72	6.78	• 10	8.54	4.20
80	28.	82106.	4319.	19	66.09	7.48	15	E . 55	4.13
ю	30.	81919.	4256.	.21	61.27	7.74	•1C	8.68	4.07
6 0	32.	81724.	420C.	23	61.54	7.83	08	8.68	4.01
30	34.	81520.	4139.	25	61.81	7.71	00	8.73	3.94
900	36.	81306.	4078.	.27	65.09	7.45	H	8.78	3.88
'n	138.0	181084.4	14016.6	289	162,368	.+	£00.	.80	81

101.955

101.799 101.741

102.266 102.134

102,938 102.789 102.618 102.440

103.054

101.718 101.718

TIME (SEC)	ALTDE (FT)	VELA (FPS)	GAMA (DEG)	HDGA (DEG)	SIGMAA (DEG)	BETAA (DEG)	ALPHAA (DEG)	MACHA (-)	0A (PSF)
840.0	180854.6	13954.8 13892.1		162.644 162.931	58.220	250	38.369 38.328	13.748	101.743
1 7 7	80360.	3829	90	63.21	8.33	20	8.58	3.61	01.90
4 4 0 00	80045• 79814•	3705	• 54	63.79	9.91	000	9.32	3.47	02.25
50.	79520.	3639.	.45	64.08	9.30	• 20	8.65	3.40	02.46
52.	79213.	3578.	• 4 9 c 7	64.37	9.29 27.8	ပ (၁ (၁	8.42	3.34	02.78
56.	78558.	3440	• • • • • • •	64.00	5.19	• •	8.85	3.20	03.48
500	78220.	3383.	.53	65.20	7.32	37	8.81	3.12	03.86
.09	77895.	3318.	.50	65.45	3.84	17	8.48	3.05	04.17
62.	77589.	3253.	•46	69.59	2.12	• 25	e.1.3	2.98	04.43
64.	77302.	3189.	• 42	65.93	2.08	22	8.36	26.2	04.60
.99	77034.	3125.	•38	66.16	3.32	•16	66.2	2.85	69.40
68.	76784.	3666.	•35	66.41	4.76	• 11	7.98	2.78	04.70
70.	76547	9667	•33	66.67	6.15	0	7.97	2.71	04.64
72.	76321.	2931.	.31	66.93	7.31	• 05	7.95	2.65	04.54
74.	75103.	2867.	•30	67.19	8.03	• 05	46.7	2.58	04.39
76.	75891.	2802.	•29	57.46	8.71	• 04	7.95	2.51	04.22
78.	75683.	2738.	• 2 R	67.73	4.27	04	1.96	2.45	04.03
90	75478.	2675.	•28	68.00	6.65	• 0 4	4.99	2.38	03.85
32.	75273.	2609.	.29	68.27	0.32	•16	8.06	2.31	03.60
84.	75067	2545.	.29	68.55	1.35	.11	8.14	2.25	03.39
86.	74858.	2480.	.31	68.83	2.10	07	8.23	2.18	03.19
88	74643.	2415.	.32	69.12	2.40	• 00	8.55	2.11	02.97
0.6	74423.	2349.	•34	69.41	2.65	•00	8.73	2.05	02.77
92.	74196.	2283.	.36	69.70	2.61	08	8,71	1.98	05.60
94.	73962.	2216.	.38	66.69	2.45	• 06	8.57	1.91	02.44
96	73721.	2150.	•39	70.28	2.20	• 06	8.66	1.84	05.30
98	73474.	2083.	.41	70.57	1.90	•01	8.62	1.77	02.18

Color
IME ALTDE VELA GAMA HOGA DIGMA BETAA APPHAA MACHAA SEC) (FT) (FPS) (DEG)
ME
ME
IME ALTDE VELA GAMA HUGA SIGNAA SEC) (FPS) (DEG)
IME ALTDE VELA GAMA HOGA SEC) (FT) (FT) (PS) (DEG) (DEG) (DCG) (DC
IME ALTDE VELA GAMA SEC) (FT) (FPS) (DEG) 00.0 173220.4 12C17.643 02.0 172258.9 11683.942 08.0 172258.9 11681.9127 120.0 171870.3 11618.9127 120.0 171870.3 11618.9127 120.0 171870.3 11648.9127 120.0 171870.3 11648.9127 120.0 171870.3 11648.9127 120.0 171870.3 11648.9127 120.0 171870.3 11648.9127 120.0 171870.3 11648.9127 120.0 171870.3 11648.9127 120.0 171870.3 11648.9127 120.0 171870.3 11648.9127 120.0 171870.3 11648.9127 120.0 170389.3 10755.044 120.0 169539.5 10508.6 -1.25 122 122 122 122 122 122 122 122 122 1
IME ALTDE VELA SEC) (FT) (FPS) (FPS) (FPS) (FPS) (FPS) (FPS) (O. 0. 0. 172959.6 11951.0 (O. 0. 0. 172959.6 11951.0 (O. 0. 0. 172959.6 11951.0 (O. 0. 0. 172959.9 (O. 0. 0. 172959.9 (O. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
IME ALTDE SEC) (FT) 00.0 173220. 02.0 172959. 04.0 172702. 10.0 172702. 110.0 172702. 110.0 172702. 110.0 172702. 110.0 172702. 110.0 172702. 110.0 172702. 110.0 172702. 110.0 172702. 110.0 172702. 110.0 172702. 110.0 172702. 110.0 172703.
NO 304080N4080N4080N4080N4080N4080N4080N408

_	*
<u>.</u>	-
Ξ	
Ξ	
Ξ	
*	_
#	_
在江北安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安	PAGE 17
*	
×	
*	
*	w
ä	G
ŝ	~
-	~
<u>~</u>	
=	
*	
#	
*	
*	
*	
*	
*	
ű.	
-	
Ξ	
ੜ	
*	
*	
*	
*	
*	
*	
*	
*	
*	
<u> </u>	
×	
- X	
7	
*	
*	
*	•
*	⋖
*	-
ä	-
£	$\bar{}$
ũ	_
<u> </u>	_
₹	
7	Z
*	_
*	
*	_
*	-
*	G
*	-
*	0
*	Z
*	Z
*	
*	•
*	9
*	N
*	Z
*	~
Ĵ.	
- Ã	
×	~
	7
*	٠,
7	_
#	<4
#	-
*	_
#	INERTIAL-BILINS6, NNOL37 DYN. DATA.
#	<u>u</u>
*	Z
*	•
*	
₩	
₩	7
*	_
*	α
*	-
*	<1
*	
*	
*	
×	
7F	
*	
#	USTNG FLATRIZ.
*	6
*	_
*	
#	۰
#	u
*	ā
*	~
, A.	
TAT M	
*	STIZAFT
*	~
*	
#	
** ** ** ** ** ** ** ** ** ** ** ** **	
*	
*	*

ST178ET USING FLAIR17, INERTIAL-BT17N26, NNO137 DYN. DATA.

											•	•		•	Ų	UA	1	ı T												
0A (PSF)	•	19.9	06.9	7.11	7.32	7.55	7.79	8.05	8.41	8.72	6.03	9.34	69.6	26.66	00.00	00.63	00.87	01.14	01.50	01.86	02.24	2.62	05.96	03.28	03.71	04.18	04.57	04.98	05.44	05.97
MACHA	.63	.57	• 50	44.	• 38	.31	• 25	•19	.13	• 07	.01	• 95	• 89	.83	.77	.71	• 65	• 20	.53	• 48	• 45	8.372	.31	• 26	.21	.16	.11	.05	00.	• 95
ALPHAA (DEG)	C. 09	9.98	9.86	9.84	9.18	69.6	9.54	9.55	9.46	9.34	9.23	9.11	8.90	8.59	8.50	8.39	8.32	8.23	8.14	8.32	7.96	37.393	8.37	7.55	7.41	7.48	7.46	7.38	7.28	7.26
BETAA (DEG)	90	5	03	00.	05	65	.02	02	08	12	18	15	13	28	36	~	45	39	39	59	22	.532	41	77	44	9	9	~	7	Ŝ
SIGMAA (DEG)	29.11	4.56	38.46	41.22	43.16	44.1P	4.58	44.37	43.82	3.48	43.11	42.75	41.74	40.27	39.74	36.68	40.84	41.62	39,31	38.18	38.79	-37,733	37.58	37.27	36.94	36.58	40.49	3.97	5.27	• 48
HDGA (DEG)	66.00	65.81	65.60	65.37	65.12	64.87	64.61	64.35	64.11	63.86	63.61	63.35	63.09	52.85	62.60	62.36	62.11	61.87	61.61	61.36	61.11	60.86	99.09	60.34	6C.08	59.81	59.55	59.25	58.94	158.622
GAMA (DEG)	.97	4	2	~	93	95	4	1.00	1.02	1.04	1.06	1.08	1.09	1.10	1.11	1.11	1.12	1.14	1.16	1.16	1.17	.17	1.17	1.17	1.18	1.18	1.19	1.23	1.28	-1.337
VELA (FPS)	961.	898	835.	772.	709.	£48	586.	525	467.	407	340.	285.	224.	164.	104.	044.	982.	920.	F62.	805.	749.	692.	636.	579.	527.	477.	424.	372.	32C.	8269.3
4LTDE (FT)	65240.	64849	64469	64095	63722	63346.	62965	62579.	621 ⁸ 7.	61791	61391.	63988	60582	60176	59770.	59366.	58961.	58556.	58146.	57737	57329.	56921	56515	56113.	55712	55313	54915	54513	54100	153676.1
TIME (SEC)	60.	52.	4	99	00 00 00	70.	72.	74.	75.	78.	80.	92.	4.0	96	000	0	92.	40	96	86	000	002.	. 400	000	008	010	012	014.	9 - 0	1018.0

QA (PSF)	06.55 07.22 08.13	08.91 09.75	111.514	14.01	15.79 16.66	17.51 18.37	19.21 20.07	20.93 21.78	22.64 23.53	24.31	26.31	28.55	29.75	31,36	33.60
MACHA (-)	. 90 . 86 . 81	. 75	7.617	. 45	300	.19	.14	.04 .99	.94 .89	84	.74	.65	09.	-57 - 57	14
ALPHAA (DEG)	7.23 7.16 7.10	6.77	36.438 36.254 95.954	5.43	5.17	4.93 4.57	4.43 4.14	3.92	3.64	3.29	2.96 2.78	2.60	2.39	2.22	7 * * * * * * * * * * * * * * * * * * *
BETAA (DEG)	ω40	44.0	601	73	52 52	⇔ ←	78 80	0 1	60 52	52 58	2 5	S	62	S	3 00
SIGMAA (DEG)	.66	4 • 4 • 4 • 4 • 4 • 4 • 4 • 4 • 4 • 4 •	449	8.32	38.26 39.01	3 9.02 38.52	37.91 37.60	38.36 39.76	1.142.09	2.45	2.39	1.46	1.12	40.62	7.70
HDGA (DEG)	58.29 57.95 57.62	50.04	156.279	55.27	54.66 54.34	54.02 53.71	53.42 53.11	52.79 52.45	52.10 51.73	51.33	50.55	49.76	40.36	48.99	48.15
GAMA (DEG)	1.39 1.46	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1.760 -1.760	1.80	1.62	1.84 1.85	1.86	1.87	1.92	1.99	2.07	2.13	2.16	2.17	2.17
VELA (FPS)	218. 167.	672. 021.	7916.8 7863.1 7799.1	749.	641. 586.	532.	423 . 369.	316.	210.	101.	666	900	853.	815.	715.
ALTDE (FT)	53237. 52782. 52312.	51827	150304.3 150304.3 149761.5	48726. 48198.	47671. 47145.	46620. 46095.	45572. 45652.	44533. 44016.	43497.	42446.	41374	40.282.	39731.	39179.	38083.
TIME (SEC)	020.	022	1032.C 1034.0	038.	042.	046. 648.	050.	054.	058.	062.	066.	070	072.	074.	0 7 8 •

OA (PSF)	134.647	37.14	38.81	40.59	42.22	43.09	45.59	41.04	48.61	50.55	52.41	53.62	54.53	55.15	55.52	55.73	55.80	55.64	55.86	56.27	56.80	57.49	58.37	50.42
MACHA	6.435 6.388 6.340	2.8	.18	0.09	66.	994	.85	.81	•77	• 74	.71	.67	•63	• 59	• 55	• 51	244	. 42	•38	• 34	• 30	.26	.22	•17
ALPHAA (DEG)	31.028 36.587	000	9.89 9.73	9.57	9.24	9.07 8.91	8.79	8.74	8.55	8.49	8.18	7.81	7.52	7.30	7.02	6.74	6.63	6.55	6.15	5.98	6.01	5.92	5.79	5.81
BETAA (DEG)	. 901	62	32	322	37	3 3 3 3	56	4	14	37	41	33	21	14	08	• 05	60	11	14	14	20	22	13	02
SIGMAA (DEG)	-35.457	39.95	43.32	43.39	42.37	42.50	42.51	42.33	36.07	26.24	16.53	7.03	2.33	1.84	1.36	0.31	0.66	8.30	0.97	2.41	3.13	2.85	1.63	0.25
HDGA (DEG)	147.761	46.42	40.40 44.46	44.47	43.52	43.05	42.11	41.63	41.17	40.84	40.58	40.44	40.41	40.51	40.73	41.05	41.50	42.03	42.61	43.19	43.79	04.44	44.99	45.55
GAMA (DEG)	-2.158 -2.140	2.14.	2000	2.31	2.40	2.44	2.53	2.58	2.60	2.54	2 • 4 2	2.27	2.12	1.96	1.84	1.77	1.77	1.86	1,99	2.14	2.30	2.47	2.63	2.78
VELA (FPS)	6665.5 6614.5 4663.6	505 505 552	4000	296.	187	133.	030	966	954.	920.	887.	846.	eo3 .	759.	715.	671.	626.	576.	532.	487.	443.	398	353	308
ALTDE (FT)	137543.8 137013.6	35 9 7 C .	34927°	33861.	32774.	32224.	31111	30547	29973.	29418.	28879.	28371.	2789R.	27460.	27053.	26669.	26294	25914.	25515.	25092	24642	24164	23660	23130
TIME (SEC)				400	960	100.	100	105.	109	110.	112.	114.	116.	118.	120.	122.	124	126	28.	30	132	126.	7 7 7	000

OA (PSF)	160.069 161.455 163.046	64.87	70.11 72.85 75.53	78.15 81.19	83.77 86.99	90.31	96.93	40.00	02.82 05.35	07.59	09.10	11.17	14.58	16.14	17.64	10.05	20.38	21.67	25.95	24.15
MACHA	5.129	98	.98 .93	.86 .82	.78	.70	.63 •63	.59	• 56 • 52	.48	44.	4.0	. u	•29	•25	• 25	.18	• 14	.11	.0.
ALPHAA (DEG)	25.908 25.859 25.783	5.59	5.15 5.00 4.61	4.41	3.54	3.58	3.23 2.78	2.18	1.79	19.1	1.04	9 0 0	0.00	9.30	9.71	6.43	0.14	9.35	8.93	8.73
BETAA (DEG)	28.0	32	841 149 134	.07	.20	•10	t m	.85	.17	1.15	.37	81,	2 C	72	.12	60	.13	8	• 05	00
SIGMAA (Deg)	9.22 8.65	6.32	48.464 53.036 54.601	5.05	4.70	9.38	8.90 2.77	44.0	9.82	8.14	0.89	3.09	7,77	3.34	7.73	7.15	6.51	6.56	40.7	7.50
HDGA (DEG)	46.01 46.59 47.21	47.84	149.328 150.085 150.815	51.55 52.21	52.69	53.96	54.46 54.93	55.23	55.54	56.29	57.58	58.06	50°17	59.76	60.37	61.03	61.70	62.38	63.05	63.72
GAMA (DEG)	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.26	-3.443 -3.585 -3.767	3.93	4.35	4.55	4.49	4.17	4.02	3.79	3.72	3.65		3.49	3.47	3.46	3.42	3.38	3.38	3.39
VELA (FPS)	254. 210.	127. 090.	5066.1 5033.9 4997.2	956. 918.	869.	783.	740.	658.	617.	5.00	487.	• 2 4 4	406.	324	284	244.	204.	166.	128.	• ეგე
ALTDE (FT)	22579. 22007.	20816. 20201.	119574.0 118930.8 118262.9	17569. 15849.	16098.	14535.	13758.	12289.	11662.	10310	09695	04041.	08514	07388	06842	05304	05772.	05252.	04739.	04231.
TIME (SEC)	140.	146. 148.	1150.0 1152.0	156 158	166.	164.	166.	170.	172.	176.	178.	180.	182.	. 49 186	188	190.	192.	194.	196.	198.

40		25.33	26.44	27.57	28.75	29.84	30.80	31.82	32.90	33.83	34.59	35,39	36.15	37.17	38.42	39.51	40.47	41.32	41.98	45.62	43.24	43.73	44.13	44.79	45.62	46.17	46.37	46.25	45.88	44.975	43 • 82
MACHA	<u>-</u>	.045	600•	.975	.941	.907	.872	.837	. 864	.769	• 733	269.	.661	.627	.595	.561	.527	.492	.455	.419	.383	.347	.311	•276	•244	.210	.177	.144	.111	3.078 2	•044
PHA	(DEG)	8.53	8.37	8.28	8.16	8.37	8.30	7.90	7.17	7.76	7.70	7.59	7.47	7.40	7.36	7.28	7.14	7.01	6.86	6.57	6.44	6.19	5.45	5.66	5.61	5.61	5.47	5.25	5.15	15,003	4.84
T	(53ũ)	0	.12	.02	00.	.03	• 06	12	.13	•14	.15	.14	70	.20	.19	.34	.16	.11	15	• C8	.07	•06	90	34	54	0.	07	•02	07	.153	<u>ت</u> 0
GM A	(DEG)	7.22	6.73	7.55	7.77	7.85	8.07	8.01	8.34	8.32	0.46	0.11	0.60	9.75	9.74	9.19	9.57	9.33	8.51	8.38	7.59	96.9	6.12	4.82	6.58	6.48	6.31	3.40	12.89	-22.538	31.43
90	(DEG)	64.40	65.08	65.77	56.47	67,17	67.86	68.54	59.23	69.92	70.63	71.36	72.11	72.86	73.61	74.37	75.17	75.99	76.82	77.65	78.47	79.30	179.86	179.03	178.29	177.76	177.46	177,39	177.57	-177.978	178.60
X	(DEG)	3.40	3.42	3.44	3.46	3.49	3.52	3.56	3.60	3.65	3.69	3.75	3.82	3.89	3.96	4.02	4.08	4.14	4.19	4.23	4.26	4.30	4.34	4.38	4.36	4.24	4.04	3.82	3.61	-3.473	3.43
VEL	(FPS)	052.	014.	977.	.076	903	866.	829.	792.	755.	716.	678.	640.	. 709	569.	533.	.965	458.	420.	382.	344.	305.	267.	230.	196.	161.	126.	091.	057.	022.	2987.5
⊢	(FT)	03726.	03223.	02723.	32224	01726.	01229.	0732.	00233.	99734.	9235.	3733.	8229.	7720.	7208.	6692.	5175.	5656.	5136.	4617.	100.	3584.	3070.	2557.	2048.	1552.	1079.	0635.	2219.	3826.	80448.5
E	(SEC)	200	202	204	206	208.	210.	212.	214.	216.	218.	220.	222.	224.	226.	228.	230.	232.	234.	36.	38	240	242	244.	245	248	250.	252	254.	256.	1258.0

0A (PSF)	242.642 241.545 240.412	39.47	38.01	36.68 36.29	36.33	36.00	35.87	35.63	35.23	34.39	33.65	32.98	32.18	31.18	29.71	27.93	25.96	23.88	21.72	19.50	17.22	14.88	12.56	10.32
MACHA	3.010 2.977	91	.84 .81	.77	.71	.65	.62	•59	. 55	.52	• 48	• 45	• 45	• 39	• 35	• 32	• 5 9	•26	•23	• 20	.17	.14	.11	0.0
ALPHAA (DEG)	14.675	4.71	4.35	4.84	4-74	4.32	4.20	4.17	4.27	4.48	4.48	4.33	3.88	3.84	3.66	3,33	3.00	2.71	2.52	2.41	2.21	2.07	1.85	1.49
BETAA (DEG)	.223	217	07	40.	.03	• 14 • 16	90	•06	•10	.25	17	24	16	23	58	31	22	46	60	6	22	14	5	60
SIGMAA (DEG)	-34.995 -37.276 -38.832	39.53	41.14	41.58	41.44	41.88 41.68	41.11	40.39	38.01	32.29	22.00	13.48	09.6	7.18	5.39	4.72	5.59	5.63	3.92	.29	05	36	5	O·
HDGA (DEG)	-179.354 179.844 178.083	78.09 77.17	76.21	74.13	71.95	/0.85 69.71	68.62	67.52	66.46	65.48	64.74	64.30	64.03	63.85	63.72	63.59	63.48	63.38	63.28	63.21	63.21	63.19	63.14	63.10
GAMA (DEG)	-3.496 -3.623	3.04	4.21	4.63	46.4	5.29	5.50	5.70	5.87	96.9	5 . 38	5.72	5.54	5.34	5.14	96.4	4.82	4 • 73	4.69	4.67	4.67	.70	4.75	. 85
VELA (FPS)	2952.9 2918.6	840°	782.	713.	649	617. 585.	552.	518.	483.	446.	411.	377.	345.	313.	280.	248.	216.	185.	154.	123.	093.	063.	034.	005.
ALTNE (FT)	89673.2 88692.6 88301.7	7 8 9 9 •	7058.	6172.	5246.	4770.	3786.	3277.	2758.	2235.	1720.	1222.	0745.	3290.	9858.	9447.	9055.	8676.	8308.	7947.	7592.	7241.	6893	0544.
TIME (SEC)	1260.C 1262.0	266.	273.	274.	278.	280 282	284.	286.	288.	290.	292.	294.	296.	298.	300.	302.	304.	306.	308.	310.	312.	314.	316.	318.

STITBET USING FLAIRIT, INERTIAL-BTITNZ6, NNO137 DYN. DATA.

0A (PSF)	184.695 185.320 186.448	87.95	89.95	91.19	92.54	95.73	97.79	99.82	01.79	03.52	05.04	96.90	08.84	11.49	14.84	18.25	21.81	24.32	26.54	27.92	29.76	30.76	30.82	29.90	29.21	28.27
MACHA	. 840 . 832 . 875	81	8 80 80	4	79	78	77	11	92	92	75	22	74	14	74	74	73	73	73	72	2	-	O	0	9	œ
ALPHAA (DEG)	6.955	20.	.82 .78	.74	.67		.55	• 55	44.	• 55	.27	• 31	•29	• 27	• 18	.25	• 18	• 79	•77	• 58	• 40	.52	.67	46.	• 29	•59
BETAA (DEG)	- 223 - 633	.02	4 6 8	<u>ئ</u>	400	20 20 20 20 20 20 20 20 20 20 20 20 20 2	α (C)	26	50	35	27	16	18	52	38	400	S	5	O	~	~	-	2	~	5	~
SIGMAA (DEG)	3,333	.26	17	2.11	1.46	76	1.26	4.2.	1.70	2.24	1.77	1.80	1.30	1.30	1.74	1.38	1.40	1.24	•77	• 62	•10	•05	4.07	14.04	49	26.55
HDGA (DEG)	160.603	60.97	60.98 60.37	60.72	69.09	60.44 60.80	60.72	60.70	60.66	66.49	60.33	66.21	60.21	60.22	60.18	60.17	60.19	60.13	60.07	29.90	59.64	59.46	59.16	58.35	56.58	54.14
GAMA (DEG)	-16.535 -16.761	17.1C	17.14 17.30	17.43	17.59	17.69 17.85	17.92	18.02	18.05	13.06	18.14	18,32	18.47	18.60	18.68	18.58	18.37	18.23	18.37	18.41	18.64	18.87	19,11	19.25	10.47	10.70
VELA (FPS)	811.6	900	91.	81.0	77.	72.	66	63	• 09	57.	53.	50.	47.	45.	44.	44.	44.	42.	39.	35.	32.	28	22.	14.	80	00
ALTDĒ (FT)	42781.2 42313.6	1371.	0900.	9956.	9483.	9009	80.58	7582.	7106.	6631.	615F.	5684.	5207.	4729.	4248	3768	3292.	2822	2352.	1883.	1413.	0939	0463.	9999	9512	9036.
TIME (SEC)	1440.0		448.	452.	454.	456. 456.	4 0 C C C C C C C C C C C C C C C C C C	462	464.	466	466	470.	472.	474	476.	478.	480.	482	484	486.	488	067	492	767	406	498

C	R 10 15-	4 1 1	10
OF	POUR	QUALI	TY

					:	i			
TIME (SEC)	ALTDE (FT)	VELA (FPS)	GAMA (DEG)	HDGA (DEG)	SIGMAA (DEG)	BETAA (DEG)	ALPHAA (DEG)	MACHA (-)	(PSF)
500.	8560.	95.	19.93	51.35	33.54	01	.74	67	28.15
502.	£081.	06	20.23	47.86	38.59	.08	. 35	19	28.86
504	7597	86.	20.56	43.94	39,71	11	.32	99	29.75
506	7112.	62.	20.74	39.87	40.19	14	.57	99	30.70
508	6624.	78	-21.036	135,305	-45.903	123	7.677	•655	232.033
510.	6129.	74.	21.63	29.97	50.11	12	.36	65	33.30
512.	5627	71.	21.94	24.04	49.47	0	•39	64	35.20
514	5123.	20.	21.98	18.37	46.47	35	14.	64	38.01
516.	4621.	68	21.83	12.77	45.84	46	•46	49	40.53
518.	4124.	66.	21.75	07.44	45.08	22	.36	63	43.30
520.	3631	62.	21.61	32.27	42.61	29	.34	63	44.12
522.	3147	56.	21.38	97.09	41.80	03	.72	62	43.45
524.	2674.	50.	21,06	1.84	40.60	.33	.50	61	45.58
526.	2210.	45.	20.87	6.87	39.22	16	.55	61	42.23
528.	1755.	41.	20.61	1.83	40.02	• 05	• 59	9	43.00
530.	1308.	39.	20.29	6.76	39.30	• 0 •	• 56	60	45.00
532.	3869.	37.	20.03	1.74	40.52	12	• α 5	9	46.72
534.	0436.	34.	10.79	6.57	41.21	21	.03	59	47.77
536.	0013.	30.	19.44	1.31	40.34	35	•30	59	46.24
538	9602.	24.	18.92	5.98	39.34	54	• 36	58	46.76
540.	9206.	18	18.38	0.84	38.20	59	• 32	57	44.81
542	8826.	12.	17,93	40.9	36.95	47	.91	57	43.23
544.	8453.	80	17.81	1.71	36.06	25	.18	96	45.70
546.	8086.	04.	17.67	7.41	35.99	75	• 45	56	45.18
548	7727.	00	17.16	2.82	35,29	62	.51	55	41.73
550.	7380.	96	16.82	8.37	35.68	9	• 45	55	41.44
552.	7043.	. 46	16.46	3.87	34.49	39	. 92	52	41.77
554.	6708	92.	16.51	9.86	33.52	59	• 66	54	43.17
556.	6376.	92.	16.49	5.99	32,99	41	• 2 B	4	45.31
1558.U	16037.9	592.7	16.98	.32	33.80	43	• 32	54	48.06

STITBET USING FLAIRIT, INERTIAL-BTITN26, NN0137 DYN. DATA.

V O		51.24	54.18	57.01	60.88	67.37	14.54	81.27	85.43	87.15	87.45	86.75	86.06	85.45	84.47	83.11	80 • 86	78.62	74.76	70.86	68.10	67.74	268.859	71.34	76.54	80.54	82.51	81.82	81.33	82.51	83.48
MACHA		54	4	54	54	54	55	55	55	55	54	54	53	53	2	52	51	51	50	49	40	54	.488	4 8	49	O-	49	48	8	œ	~
PHA	(DEG)	.93	.29	.59	•59	. 55	. 32	•54	.91	.25	.58	• 15	.07	• 95	.32	• 38	• 32	• 18	5 5 6	.87	. 37	• 78	4.655	.41	•35	• 33	68.	.71	•68	.77	• 92
×		22	02	.15	90	04	0	90	07	07	21	38	23	3	•18	H	300	35	40	33	5	00	314	• 48	•68	4	• 35	.37	0	37	O
GMA	(DEG)	35.24	35.55	37.58	39.98	39.23	40.30	43.55	40.05	35.29	• 58	17.93	5.11	• 73	.15	.63	• 54	• 79	• 55	.10	• 08	• 25	5.549	• 06	.79	.32	• 84	3	1.41	133	15
ŋĠ	(DEG)	. 45	.29	40.	.17	7.83	11,99	16.50	22.04	27.35	31.41	34.33	35.93	36.10	35.87	35.09	34.00	33.21	32,39	31.72	31.40	31.52	-31.459	31.19	31.31	31.09	30.87	30.58	30.19	30.00	29.80
Σ	(DEG)	17.48	17.84	18.03	18.98	20.62	21.52	22.38	22.36	21.71	21.31	20.73	20.34	20.02	19.75	19.38	19.00	18.18	16.46	15.14	14.91	15.54	-16.462	17.57	19.44	19.00	18.97	18.72	18.80	18.97	18.99
T L	(FPS)	93.	93.	93.	94.	9 8	02.	05.	05.	03.	66	95.	91.	86.	82.	77.	72.	66.	90	53.	48	45.	7	44.	45.	45.	44.	39.	36.	33.	
_	(FT)	5689.	5331.	4969	4597.	4195.	3767.	3317.	2857.	2406.	1968.	1541.	1127.	0724.	328.	9941.	566.	203.	876.	570.	289.	00.4.	90	390.	055.	766.	354.	.900	661.	317.	973
). 	(SEC)	560.	562.	564.	566.	568.	570.	572.	574.	576.	578.	580.	582.	584.	586.	588	590.	592.	594.	595.	598.	.000	502	504.	.909	508	510.	512.	14.	516.	•

ORIGINAL PAGE IS OF POOR QUALITY

									Ç	H ,	P	UU	K	Q	UA	L	IY	•												
QA (PSF)	281.685	79.12	78.01	77.35	78.05	78.83	78.79	78.26	79.70	84.93	95.64	98.26	06.66	95.91	88.83	19.68	67.05	50.12	32,99	16.38	01.74	87.18	73.00	66.09	64.64	39.25	30.84	22,86	15.61	08.52
MACHA	~	9	9	•	9	5	5	S	S	2	5	5	3	45	44	3	N	-4	.397	00	9	5	•	N	_	0	O.	8	~	~
ALPHAA (DEG)	.08	.85	•22	.14	•24	*33	.91	.98	.85	.86	• 74	.36	.43	.32	46	.59	.51	•64	8.217	.58	•26	.75	.54	•56	.43	+24	.91	.80	.36	.84
BETAA (DEG)	11	•26	.40	43	.42	27	α	53	54	34	90	.21	.52	56	.33	.62	600	• 65	500	34	.77	~	•13	.77	.34	63	• 66	H	69.	~
SIGMAA (DEG)	.48	.87	.65	.37	.60	23	45	1.33	.15	2.42	1.73	.77	.91	.72	.51	.51	.29	20	061	90	70	66	08	66	54	07	~	.52	Ŋ	
HDGA (DEG)	29.42	29,28	28.95	28.58	28.34	27.92	27.82	28.00	28.26	28.69	29.17	29.58	29.86	30.11	30.08	29,91	29.67	29.78	-29.682	29.67	29.77	29.74	29.66	29.48	29.20	28.94	9.24	30.01	29.78	29.82
GAMA (DEG)	18.76	18.69	18.71	18.55	18,48	18,38	8.29	18.48	18,51	18.51	19.13	18.03	15.42	12.61	26.6	8.12	6.17	4.29		2.20	5.09	1.37	.13	.22	•24	00	22	49	07	25
VELA (FPS)	26.	21.	18.	14.	12.	11.	08	90	05	07.	12.	15.	14.	60	02.	93.	81.	65	66	32.	17.	02.	86.	72.	59.	46.	36.	25.	15.	306.0
ALTDĒ (FT)	632.	299.	967.	639.	315.	993	76.	358	039.	720.	393.	065.	770.	24.	27.	74.	56.	26.	84.	121.	151.	75.	182.	184.	186.	186.	182.	183.	180.	-180.6
TIME	620.	622.	624.	626.	628.	630.	632.	634	636.	638	640.	642.	044	646.	648.	650.	552	654.	656.	658	660.	652.	664.	666.	668.	670.	672.	674.	676.	1678.0

TIME	ALTDE	VELA	GAMA	HOGA	SIGMAA	BETAA	ALPHAA	ت	V O
N. m	FT)	2	D E	(DEG)	က ယ (၁	<u>п</u>	S S	<u> </u>	
680.	182.	96	161	9.54	0	C	•	.262	1.68
682.	183.	84.	3	29.29	21	64	9.5	~	3.64
684.	183.	69	٦.	29.74	35	76	.38	.238	3.93
686.	184.	58	3	29.95	-4	~	3.34	.228	7.53
688	183.	48	਼	29.67	41	67	.85	.220	1.76
690.	183.	39.	-4	8.76	30	.54	3.74	2	6.55
692.	183.	30.	~	28.80	63	03	3.86	.204	1.74
694.	183.	22.	4	29.66	43	(7)	3.72	~	7.33
1696.0	-184.2	214.6	164	-29.498	•336	.867	-3.774	.190	53.389
698	184.	04.	٦	29.76	26	54	3.82	-4	8.22
700.	185.	87.	7	29.87	12	31	3.76		0.62
702.	185	72.	7	20.48	α	12	3.85	~	4.60
704.	1 2 2	56.	~4	29.20	ij	45	* * 4		8.51
706.	135	42.		29.08	O	ന	3.35		3.38

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX D

STS-17 (41-G) Source and Output Products for Archival

D.1 STS-17 Output Products

(a)	FILES

NAME	USER CATALOG	DESCRIPTION
BT17N26	169750N	Final reconstructed trajectory (40 word format per AMA 81-1)
ST17BET	274885C	Final extended BET (66 word format per AMA 81-11)
NAVB41G	389102C	STS-17 onboard nav BET (66 word format)
FLAIR17	274885C	Final LAIRS file (ST17MET/ UN=712662N with NOAA atmosphere below 7.25 kft)
TRWS41G	274885C	Reformatted JSC/TRW BET (66 word format)
IMRGA17	274885C	Signal difference file (IMU2 - RGA1/AA1)

(b) TAPES

REEL NO.	DESCRIPTION
NJ0333	STS-17 AEROBET (201 words per AMA 82-9)
NJ0346	Duplicate of above
NJ0523	25 Hz IMU2 GTFILE (62 words per AMA 81-20)
NJ0568	25 Hz RGA1/AA1 GTFILE (62 words per AMA 81-20)
NN0259	25 Hz RGA1/AA1 for NJ0568
NP1167	25 Hz bias rectified RGA1/AA1 file for GTFILE generation
NB0923	Final STS-17 residuals for BT17N26
NN0136	Edited tracking tape
NN0231	1 Hz OI-2 for AEROBET
NN0137	20 Hz IMU2 file in body axes for ST17BET, AEROBET, and GTFILE (uncalibrated)
NC0423	Dynamic data (input for trajectory reconstruction)- 20 Hz IMU2 data in platform coordinates (second CDC record)

D.2 Source Tapes Received via NASA LaRC

(a) T/M TAPES

 REEL NO.
 DESCRIPTION

 NL1067
 OI-1

 NL0756/NB0486
 OI-2

 NS0515
 OI-3 (source for RGA1/AA1 data)

NX0485 OI-4

NN0138 OI-1 from CBET1F

(b) TRACKING TAPES

NL1180 DESCRIPTION

NK1135 Goddard Space Flight Center data

(c) OTHER

REEL NO. DESCRIPTION

NH0106 JSC/TRW Descent BET

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
NASA CR-172548		
	Post-Flight Best Estimate	5. Report Date March 1985
Trajectory Products - De	velopment and Summary Results	6. Performing Organization Code
7. Author(s)	T. C. M.C. all J. A. Water	8. Performing Organization Report No.
	J. G. McConnell, L. A. Waters	, AMA 85-1
P. A. Troutman, J. T. Fi	ndlay	10. Work Unit No.
9. Performing Organization Name and Address		
Analytical Mechanics Ass	ociates, Inc.	11. Contract or Grant No.
17 Research Road Hampton, VA. 23666		NAS1-17707
nampton, vx. 23000		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address National Aeronautics and	Space Administration	Contractor Report
Washington, DC 20546	Space Manifestation	14. Sponsoring Agency Code
, asing 101, 20 200 to		506-51-13-06
15. Supplementary Notes		

Langley Technical Monitor: Harold R. Compton

16. Abstract

Development and summary results from the STS-17 (41-G) post-flight products are presented. Operational Instrumentation recorder gaps, coupled with the limited tracking coverage available for this high inclination entry profile, necessitated selection of an anchor epoch for reconstruction corresponding to an unusually low altitude of h~297 kft. The final inertial trajectory obtained, BT17N26/UN=169750N, is discussed in Section I. Therein are discussions relative to the problems encountered with the OI and ACIP recorded data on this Challenger flight. Atmospheric selection, again in view of the ground track displacement from the remote meteorological sites, constituted a major problem area as discussed in Section II. The LAIRS file provided by Langley was adopted, with NOAA data utilized over the lowermost ~7 kft. As discussed in Section II, the Extended BET, ST17BET/UN=274885C, suggests a limited upper altitude (h~230 kft) for which meaningful flight extraction can be expected. This is further demonstrated, though not considered a limitation, in Section III wherein summary results from the AEROBET (NJ0333 with NJ0346 as duplicate) are presented. GTFILEs were generated only for the selected IMU (IMU2) and the Rate Gyro Assembly/Accelerometer Assembly data due to the loss of ACIP data. Appendices attached present inputs for the generation of the post-flight products (Appendix A), final residual plots (Appendix B), a two second spaced listing of the relevant parameters from the Extended BET (Appendix C), and an archival section (Appendix D) denoting input (source) and output files and/or physical reels.

STS-17, Mission 41-G, Trajectory, aerodynam atmosphere evaluation	Best Estimate ic comparisons,		March 31, 1	1987 Subject Ca	itegory 16
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this Unclassified	page)	21. No. of Pages 113	22. Price	