TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2020

Reinforcement Learning

Q-Learning

Review

- A Policy π is a stochastic way of selection an action at a state.
- Imitation Learning (cross entropy imitation of action given state).
- Imitation Learning is **off-policy**.
- The value function $V^{\pi}(s)$.
- Value Iteration $V_{i+1}(s) = \operatorname{argmax}_a R(s, a) + \gamma E_{s'} \gamma V_i(s')$

The Q Function

For discounted reward:

$$Q^{\pi}(s, a) = E_{\pi} \sum_{t} \gamma^{t} r_{t} \mid \pi, \ s_{0} = s, \ a_{0} = a$$

$$Q^{*}(s, a) = \sup_{\pi} Q^{\pi}(s, a)$$

$$\pi^{*}(a|s) = \underset{a}{\operatorname{argmax}} Q^{*}(s, a)$$

$$Q^{*}(s, a) = R(s, a) + \gamma E_{s' \sim P_{T}(\cdot|s, a)} \max_{a'} Q^{*}(s', a')$$

Q Function Iteration

It is possible to define Q-iteration by analogy with value iteration, but this is generally not discussed.

Value iteration is typically done for finite state spaces. Let S be the number of states and A be the number of actions.

One update of a Q table takes $O(S^2A^2)$ time while one update of value iteration is $O(S^2A)$.

Q-Learning

When learning by updating the Q function we typically assume a parameterized Q function $Q_{\Phi}(s, a)$.

Bellman Error:

$$Bell_{\Phi}(s, a) \doteq \left(Q_{\Phi}(s, a) - \left(R(s, a) + \gamma E_{s' \sim P_T(s'|s, a)} \max_{a'} Q_{\Phi}(s', a')\right)\right)^2$$

Theorem: If $Bell_{\Phi}(s, a) = 0$ for all (s, a) then the induced policy is optimal.

Algorithm: Generate pairs (s, a) from the policy $\operatorname{argmax}_a \ Q_{\Phi}(s_t, a)$ and repeat

$$\Phi = \eta \nabla_{\Phi} \operatorname{Bell}_{\Phi}(s, a)$$

Issues with Q-Learning

Problem 1: Nearby states in the same run are highly correlated. This increases the variance of the cumulative gradient updates.

Problem 2: SGD on Bellman error tends to be unstable. Failure of Q_{Φ} to model unused actions leads to policy change (exploration). But this causes Q_{Φ} to stop modeling the previous actions which causes the policy to change back ...

To address these problems we can use a **replay buffer**.

Using a Replay Buffer

We use a replay buffer of tuples (s_t, a_t, r_t, s_{t+1}) .

Repeat:

- 1. Run the policy $\operatorname{argmax}_a Q_{\Phi}(s, a)$ to add tuples to the replay buffer. Remove oldest tuples to maintain a maximum buffer size.
- $2. \Psi = \Phi$
- 3. for N times select a random element of the replay buffer and do

$$\Phi = \eta \nabla_{\Phi} \left(Q_{\Phi}(s_t, a_t) - (r_t + \gamma \max_{a} Q_{\Psi}(s_{t+1}, a))^2 \right)$$

Replay is Off-Policy

Note that the replay buffer is from a **mixture of policies** and is **off-policy** for $\operatorname{argmax}_a Q_{\Phi}(s, a)$. This seems to be important for stability.

This seems related to the issue of stochastic vs. deterministic policies. More on this later.

Multi-Step Q-learning

$$\Phi = \sum_{t} \nabla_{\Phi} \left(Q_{\Phi}(s_t, a_t) - \sum_{\delta=0}^{D} \gamma^{\delta} r_{(t+\delta)} \right)^{2}$$

Asynchronous Q-Learning (Simplified)

No replay buffer. Many asynchronous threads each repeating:

$$\tilde{\Phi} = \Phi \text{ (retrieve } \Phi)$$

using policy $\operatorname{argmax}_a Q_{\tilde{\Phi}}(s, a)$ compute

$$s_t, a_t, r_t, \dots, s_{t+K}, a_{t+K}, r_{t+K}$$

$$\Phi = \eta \sum_{i=t}^{t+K-D} \nabla_{\tilde{\Phi}} \left(Q_{\tilde{\Phi}}(s_i, a_i) - \sum_{\delta=0}^{D} \gamma^{\delta} r_{i+\delta} \right)^2 \text{ (update } \Phi)$$

Human-level control through deep RL (DQN) Mnih et al., Nature, 2015. (Deep Mind)

We consider a CNN $Q_{\Phi}(s, a)$.

Watch The Video

https://www.youtube.com/watch?v=V1eYniJ0Rnk

\mathbf{END}