QUANTUM FIELD THEORY PHYS40481 2012: Prof A Pilaftsis

EXAMPLES SHEET III: Quantum Electrodynamics

1 Weyl Spinors and Lorentz Symmetry

- (i) Show that $\bar{\xi}\bar{\sigma}^{\mu}\eta \equiv \bar{\xi}_{\dot{\alpha}}(\bar{\sigma}^{\mu})^{\dot{\alpha}\beta}\eta_{\beta} = -\eta^{\alpha}(\sigma^{\mu})_{\alpha\dot{\beta}}\bar{\xi}^{\dot{\beta}} \equiv -\eta\sigma^{\mu}\bar{\xi} ,$ where $\sigma^{\mu} = (\mathbf{1}_{2}, \ \boldsymbol{\sigma})$ and $\bar{\sigma}^{\mu} = (\mathbf{1}_{2}, \ -\boldsymbol{\sigma}).$
- (ii) Use (i) to verify that up to a total derivative $\propto \partial_{\mu}(\bar{\eta}\bar{\sigma}^{\mu}\eta)$, we get

$$\mathcal{L}_{\text{Dirac}} = \overline{\Psi}_D i \gamma^{\mu} \partial_{\mu} \Psi_D - m_D \overline{\Psi}_D \Psi_D = \overline{\xi} i \overline{\sigma}^{\mu} \partial_{\mu} \xi + \overline{\eta} i \overline{\sigma}^{\mu} \partial_{\mu} \eta - m_D (\xi \eta + \overline{\eta} \overline{\xi}).$$

- (iii)* Show that $M\sigma_{\mu}M^{\dagger} = \Lambda^{\nu}_{\ \mu}\,\sigma_{\nu} \quad \text{and} \quad M^{\dagger-1}\bar{\sigma}_{\mu}M^{-1} = \Lambda^{\nu}_{\ \mu}\,\bar{\sigma}_{\nu}\,,$ where $\Lambda^{\mu}_{\ \nu} \in \mathrm{SO}(1,3)^{\uparrow}$, satisfying $\eta^{\mu\nu} = \Lambda^{\mu}_{\ \alpha}\Lambda^{\nu}_{\ \beta}\,\eta^{\alpha\beta}$ (with $\Lambda^{0}_{\ 0} > 0$), and $M \in \mathrm{SL}(2,\mathbf{C})$, with $\varepsilon_{\alpha\beta} = M_{a}{}^{\gamma}M_{\beta}{}^{\delta}\varepsilon_{\gamma\delta}$.
- (iv) Use (iii) to show that \mathcal{L}_{Dirac} is invariant under a Lorentz transformation:

$$x^{\mu} \rightarrow x'^{\mu} = \Lambda^{\mu}_{,\nu} x^{\nu}.$$

(v) Show that

$$\begin{array}{lcl} (\sigma^{\mu})_{\alpha\dot{\alpha}}(\bar{\sigma}^{\nu})^{\dot{\alpha}\beta} \; + \; (\sigma^{\nu})_{\alpha\dot{\alpha}}(\bar{\sigma}^{\mu})^{\dot{\alpha}\beta} & = \; 2\eta^{\mu\nu}\delta_{\alpha}^{\;\;\beta} \; , \\ (\bar{\sigma}^{\mu})^{\dot{\alpha}\beta}(\sigma^{\nu})_{\beta\dot{\beta}} \; + \; (\bar{\sigma}^{\nu})^{\dot{\alpha}\beta}(\sigma^{\mu})_{\beta\dot{\beta}} \; = \; 2\eta^{\mu\nu}\delta_{\;\;\dot{\beta}}^{\dot{\alpha}} \; , \end{array}$$

implying that

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2 \eta^{\mu\nu} \mathbf{1}_4.$$

(vi) Use (iii) and (v) to prove that

$$\Lambda^{\mu}_{\ \nu} = \frac{1}{2} \operatorname{Tr} \left(M^{\dagger} \bar{\sigma}^{\mu} M \sigma_{\nu} \right) ,$$

and hence the isomorphism: $SO(1,3)^{\uparrow} \simeq SL(2,\mathbf{C})/\mathbf{Z}_2$, with $\mathbf{Z}_2 = \{\mathbf{1}_2\,,\,-\mathbf{1}_2\}$.

2 Quantization of Dirac Fermion Fields

(i) If $u(\mathbf{0}, s)$ and $v(\mathbf{0}, s)$ are the positive and negative energy solutions of the Dirac equation at the rest frame $p_{\text{rest}}^{\mu} = (m, \mathbf{0})$ in momentum representation, show that

$$u(\mathbf{p}, s) = \frac{\not p + m}{\sqrt{2m(E_{\mathbf{p}} + m)}} u(\mathbf{0}, s), \qquad v(\mathbf{p}, s) = \frac{-\not p + m}{\sqrt{2m(E_{\mathbf{p}} + m)}} v(\mathbf{0}, s)$$

are the general solutions in an arbitrary Lorentz frame, with $p^{\mu} = \Lambda^{\mu}_{\ \nu} p^{\nu}_{\rm rest}$

[Hint: More details may be found in Appendix A of the textbook by S. Pokorski (see page 3 of lecture notes).]

(ii) Given that $\Pi_{\Psi}(x) = i\bar{\Psi}(x)\gamma^0$ is the momentum operator conjugate to the Dirac field operator $\Psi(x)$, prove the equal-time anti-commutation relation:

$$\left\{\Psi_{\alpha}(t,\mathbf{x}), \left[i\bar{\Psi}(t,\mathbf{y})\gamma_{0}\right]_{\beta}\right\} = i\delta_{\alpha\beta} \,\delta^{(3)}(\mathbf{x}-\mathbf{y}) ,$$

where $\alpha, \beta = 1, 2, 3, 4$ are Dirac spinor indices.

Hint: You may find useful to know that

$$\{b(\mathbf{k},s), b^{\dagger}(\mathbf{k}',s')\} = \{d(\mathbf{k},s), d^{\dagger}(\mathbf{k}',s')\} = \delta_{ss'}(2\pi^3) 2E_{\mathbf{k}}\delta^{(3)}(\mathbf{k}-\mathbf{k}').$$

(iii) Show that the Feynman propagator for a Dirac fermion field is given by

$$i S_F(x-y) \equiv \langle 0|T\{\Psi(x)\bar{\Psi}(y)\}|0\rangle = \int \frac{d^4k}{(2\pi)^4} \frac{i(\not k+m) e^{-ik\cdot(x-y)}}{k^2 - m^2 + i\varepsilon}.$$

(iv)* Why does the quantization of fermions in (ii) require equal-time anti-commutators, rather than commutators? What would go wrong in the quantization of the theory?

3 Gauge Symmetry and Photons

As discussed in the lectures, the Lagrange density of Quantum Electrodynamics includes the interaction of the photon with the electron and is given by:

$$\mathcal{L}_{\text{QED}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i \not \partial - m - e \not A) \psi,$$

where $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ is the electromagnetic field strength tensor and we used the convention: $\not a \equiv \gamma_{\mu}a^{\mu}$.

- (i) Derive the equation of motions with respect to the photon and electron fields.
- (ii) Derive the conserved current and charge from \mathcal{L}_{QED} .
- (iii) How should the Lagrangian describing a complex scalar field $\phi(x)$,

$$\mathcal{L} = (\partial^{\mu} \phi)^* (\partial_{\mu} \phi) - m^2 \phi^* \phi,$$

be extended so as to become gauge symmetric under a U(1) local transformations? Derive the Feynman rules for this extended theory of Scalar Quantum Electrodynamics.

- (iv)* The Stueckelberg Model: A Lorentz-invariant photon mass term is described by the Lagrangian $\mathcal{L}_{\text{mass}} = \frac{1}{2} m_A^2 A^{\mu} A_{\mu}$. Find a renormalizable gauge-symmetric extension of $\mathcal{L}_{\text{mass}}$.
- (v)* Like in (iv), find a gauge-symmetric (non-renormalizable) extension of \mathcal{L}_{D} without the need of introducing a vector field A^{μ} . What are the physical consequences of such an extension?

4 The Photon Propagator and Gauge Fixing

As discussed in the lectures, the gauge-fixing part of the QED Lagrange density reads:

$$\mathcal{L}_{\rm GF} = -\frac{1}{2\xi} \left(\partial_{\mu} A^{\mu} \right)^2,$$

where ξ is the so-called gauge-fixing parameter.

- (i) Derive the Euler-Lagrange equation of the photon in the presence of \mathcal{L}_{GF} .
- (ii) Show that the photon propagator is given by the Green function:

$$\Delta_{\mu\nu}(x-y) = \int \frac{d^4k}{(2\pi)^4} \left(-\eta_{\mu\nu} + (1-\xi) \frac{k_{\mu}k_{\nu}}{k^2} \right) \frac{e^{-ik\cdot(x-y)}}{k^2 + i\varepsilon} .$$

(iii) Use the equal-time commutators to show that

$$\langle 0|T[A_{\mu}(x)A_{\nu}(y)]|0\rangle = i\Delta_{\mu\nu}(x-y)$$

in the Feynman gauge $\xi = 1$.

5 COURSEWORK III: Scattering Processes in Quantum Electrodynamics

- (i) Show that
 - (a) $Tr(\gamma_{\mu}\gamma_{\nu}) = 4 \eta_{\mu\nu}$,
 - (b) $\operatorname{Tr}(\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}) = 4(\eta_{\mu\nu}\eta_{\rho\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho} \eta_{\mu\rho}\eta_{\nu\sigma}),$
 - (c) $\operatorname{Tr}(\gamma_{\alpha_1}\gamma_{\alpha_2}\cdots\gamma_{\alpha_{2n+1}})=0$ (Hint: you may use the properties: $\{\gamma_5, \gamma_\mu\}=0$ and $\gamma_5^2=\mathbf{1}_4$, where $\gamma_5\equiv i\gamma_0\gamma_1\gamma_2\gamma_3$.),
 - (d) $\sum_{s=\pm 1/2} \bar{u}(p,s) M u(p,s) = \text{Tr} [M(\not p+m)]$, where M is any arbitrary 4×4 matrix.
- (ii) Use the Feynman rules for QED to write down the matrix element \mathcal{M}_{fi} for the reaction $e^-(p_1)e^+(p_2) \to \mu^-(k_1)\mu^+(k_2)$.
- (iii) With the aid of trace techniques given in (i), calculate $\overline{|\mathcal{M}_{fi}|}^2$, where the long bar indicates averaging over the spins of the electrons in the initial state.
- (iv) Calculate analytically the differential cross section $d\sigma/d\Omega$ for $e^-e^+ \to \mu^-\mu^+$ which was taking place at the CERN LEP collider at CMS energies $\sqrt{s} = M_Z = 90$ GeV. Draw an accurate graph of $d\sigma/d\Omega$ as a function of $\cos \theta$.
- (v) Supersymmetry predicts that in addition to muons μ^{\pm} there should be scalar muons $\tilde{\mu}^{\pm}$. Calculate $d\sigma/d\Omega$ for the process $e^-e^+ \to \tilde{\mu}^-\tilde{\mu}^+$. Plot $d\sigma/d\Omega$ as a function of $\cos\theta$ and comment on your results.