Problem 1: Longest Common Sub*!?*

Given two strings $X = x_1, x_2, ..., x_n$ and $Y = y_1, y_2, ..., y_m$ give a dynamic programming algorithm to find the length k of the longest string $Z = z_1, ..., z_k$ where Z appears as a substring of X and as a subsequence of Y. Recall, a substring is consecutive elements.

For example, for the following input:

$$X = a, \mathbf{b}, \mathbf{d}, \mathbf{b}, \mathbf{a}, b, f, g, d$$

 $Y = \mathbf{b}, e, t, f, \mathbf{d}, \mathbf{b}, f, \mathbf{a}, f, r$

then the answer is 4 (since, b, d, b, a is a substring of X and it is also a subsequence of Y). You do not need to output the actual substring, just its length.

(Faster (and correct) in asymptotic $O(\cdot)$ notation is worth more credit.)

(a) Define the entries of your table in words. E.g., T(i) or T(i,j) is ...

Solution.

T(i, j) is the length of the longest substring of $x_1 x_2 \dots x_i$ and includes x_i that is also a subsequence of $y_1 y_2 \dots y_j$.

(b) State recurrence for entries of table in terms of smaller subproblems.

Solution.

$$T(i,j) = \begin{cases} T(i-1, j-1) + 1 & \text{if } x_i = y_j \\ T(i, j-1) & \text{if } x_i \neq y_j \end{cases}$$

(c) Write pseudocode for your algorithm to solve this problem.

```
Solution. \begin{aligned} &\text{for } i \coloneqq 1 \text{ to } n \text{ set } T(i,0) \coloneqq 0 \\ &\text{for } j \coloneqq 1 \text{ to } m \text{ set } T(0,j) \coloneqq 0 \\ &\text{for } i \coloneqq 1 \text{ to } n \text{ do} \\ &\text{for } j \coloneqq 1 \text{ to } m \text{ do} \\ &\text{ if } x_i = y_j \text{ then} \\ &T(i,j) \coloneqq T(i-1,j-1) + 1 \\ &\text{ else} \\ &T(i,j) \coloneqq T(i,j-1) \end{aligned}
```

(d) Analyze the running time of your algorithm.

Solution.

Each entry in T(i, j) takes constant time to compute, since each is one of two expressions. There are nm entries in T, so this algorithm takes O(nm) time.

Problem 2: Maximum Product

The input to the problem is a string $Z = z_1 z_2 \dots z_n$ where each $z_i \in \{1, 2, \dots, 9\}$ and an integer k where $0 \le k < n$. An example string is Z = 8473817, which is of length n = 7. We want to insert k multiplication operators \times into the string so that the mathematical result of the expression is the largest possible. There are n-1 possible locations for the operators, namely, after the i-th character where $i = 1, \dots, n-1$. For example, for input Z = 21322 and k = 2, then one possible way to insert the \times operators is: $2 \times 1 \times 322 = 644$, another possibility is $21 \times 3 \times 22 = 1386$.

Design a dynamic programming to **output the maximum product** obtainable from inserting exactly k multiplication operators \times into the string. You can assume that all the multiplication operations in your algorithm take O(1) time.

(Faster (and correct) algorithm in $O(\cdot)$ notation is worth more credit.)

(a) Define the entries of your table in words. E.g., T(i) or T(i,j) is ...

Solution.

T(i,j) is the maximum product obtainable from inserting exactly j multiplication operators \times into the prefix $z_1z_2...z_i$, for $0 \le j < i \le n$. The answer to the original problem is T(n,k).

(b) State recurrence for entries of table in terms of smaller subproblems.

Solution.

$$T(i,j) = \max_{\ell} \{ T(\ell, j-1) \times (z_{\ell+1} \dots z_i) : j \le \ell < i \}$$

(c) Write pseudocode for your algorithm to solve this problem.

Solution.

for
$$i=1 o n$$
 set $T(i,0)=z_1\dots z_i$ for $j=1 o k$ for $i=j+1 o n$ set $T(i,j)=\max_{j\leq \ell < i}\{T(\ell,j-1)\times (z_{\ell+1}\dots z_i)\}\}$ return $(T(n,k))$

(d) Analyze the running time of your algorithm.

Solution.

Each entry in T(i,j) takes O(n) time to compute, since each is the maximum over up to n expressions. There are nk entries in T, so this algorithm takes $O(n^2k)$ time.

Problem 3: Coin Changing Variant

This is a different variant of the coin changing problem. You are given denominations x_1, x_2, \ldots, x_n and you want to make change for a value B. You can **use each denomination** at most once and you can use at most k coins.

Input: Positive integers x_1, \ldots, x_n, B, k .

Output: True/False whether or not there is a subset of coins with value B where each denomination is used at most once and at most k coins are used.

Design a dynamic programming algorithm for this problem. (Faster (and correct) algorithm in $O(\cdot)$ notation is worth more credit.)

(a) Define the entries of your table in words. E.g., T(i) or T(i, j) is ...

Solution.

$$T(i,b) = \begin{cases} \text{minimum number of coins with denominations } \{x_1, \dots, x_i\}, \text{ whose values} \\ \text{add up to exactly } b, \text{ where each denomination is used at most once} \\ \infty, \text{ if there is no combination of coins with denominations } \{x_1, \dots, x_i\} \\ \text{whose values add up to exactly } b \end{cases}$$

For the answer, if $T(n, B) \leq k$ then return(TRUE), while if T(n, B) > k then return(FALSE).

(b) State recurrence for entries of table in terms of smaller subproblems.

Solution.

$$T(i,b) = \begin{cases} \min\{T(i-1,b), T(i-1,b-x_i) + 1\} & x_i \le b \\ T(i-1,b) & x_i > b \end{cases}$$

(c) Write pseudocode for your algorithm to solve this problem.

Solution.

```
\begin{array}{l} \text{for } i := 0 \text{ to } n \text{ set } T(i,0) := 0 \\ \text{for } b := 1 \text{ to } B \text{ set } T(0,b) := \infty \\ \text{for } i := 1 \text{ to } n \text{ do} \\ \text{ for } b := 1 \text{ to } B \text{ do} \\ \text{ if } x_i \leq b \text{ then} \\ T(i,b) := \min\{T(i-1,b),T(i-1,b-x_i)+1\} \\ \text{ else} \\ T(i,b) := T(i-1,b) \\ \text{if } T(n,B) \leq k \text{ then } \\ \text{ return(TRUE)} \\ \text{else} \\ \text{return(FALSE)} \end{array}
```

(d) Analyze the running time of your algorithm.

Solution.

Each entry in T(i, j) takes constant time to compute, since each is one of two expressions. There are nB entries in T, so this algorithm takes O(nB) time.