Homework #4

Databases and File Structures

Illya Starikov, Jason Young, Claire Trebing

Due Date: April 21, 2016

1 Closures, Candidate Keys

- $A^+ = \{A\}$
- $AB^+ = \{A, B, C, D, E\}$ Candidate Key
- $AC^+ = \{A, B, D, C, E\}$ Candidate Key
- $ACD^+ = \{A, B, C, D, E\}$ Candidate Key
- $B^+ = \{B, D\}$
- $BC^+ = \{A, B, C, D, E\}$ Candidate Key
- $C^+ = \{C\}$
- $CD^+ = \{A, B, C, D, E\}$ Candidate Key
- $E^+ = \{A, B, C, D, E\}$ Candidate Key
- $DE^+ = \{A, B, C, D, E\}$ Candidate Key

2 Functional Dependence Equivalence

No, because there is no occurrence of $C \to D$ in G, but there is one in F.

3 Minimal Cover

Step 1

- $A \rightarrow B, A \rightarrow C, A \rightarrow D$
- $\bullet \ E \to G, E \to H$
- \bullet $C \to D$
- $AE \rightarrow J$

Step 2

- $A \rightarrow B, A \rightarrow C, A \rightarrow D$
- $E \rightarrow G, E \rightarrow H$
- $\bullet \ C \to D$
- \bullet $AE \rightarrow J$

Step 3

- $A \rightarrow B, A \rightarrow C$
- $E \to G, E \to H$
- \bullet $C \to D$
- \bullet $AE \rightarrow J$

4 3NF and BCNF

- 1. $F = \{AB \rightarrow C, C \rightarrow D, C \rightarrow A\}$, Candidate Keys: (AB), (BC)
 - No, because the in the functional dependency $C \to D$, D is not a part of any candidate key and A is not a super key.
 - No, because $\{C \to D\}$ is neither trivial nor a superkey.
- 2. $F = ACE \rightarrow BD, B \rightarrow C$, Candidate Key: (ACE)
 - \bullet Yes, because ACE is a super key and C is part of the candidate key.
 - No, because $\{B \to C\}$ is neither trivial nor a superkey.