National University of Computer and Emerging Sciences, Lahore Campus

STONAL UNIVERS
Saliton Case
EN CE
Seam Stills
SHEMENGING STATES

Course Name:	Parallel and Distributing Computing	Course Code:	CS3006
Degree Program:	BS (CS)	Semester:	Spring 2022
Exam Duration:	180 Minutes	Total Marks:	70
Paper Date:	23/06/22	Weight	45
Exam Type:	Final	Page(s):	9

Student : Name:		Roll No	Section:	
Instructions:	1.	Attempt all question of Section A on the giv	en answer sheet (submit in the first 30	
		minutes), and Section B questions on this qu	uestion paper.	
	2.	Rough sheets can be used but it should not I	be attached.	
	3.	If you think some information is missing the	n make some appropriate assumptions.	

Section A [marks: 20, CLO: 1]

Mark your answers for all MCQs on the Answer Sheet [submit in the first 30 minutes]

Questions 1 – 10 are worth 1 mark each

1.	OpenN	IP allows the following operations in the reduction clause:
	a.	Sum, product
	b.	Bitwise AND, bitwise OR

- c. Logical AND, logical OR
- d. Sum, product, bitwise AND, bitwise OR, logical AND, logical OR

2.	A hype	rcube has	
	a.	d nodes	
	b.	2d nodes	
	c.	2 ^d nodes	

- d. None of the above
- 3. There are N processors. Computations of a matrix are divided among N processors. Once they are done, each one of them sends their computed result to a single processor (part of N processors) and it is summed there. How many All-to-One reductions are required?
 - a. 1b. N 1c. N/2
 - d. N
- 4. For task dependency graphs that are trees, the maximum degree of concurrency is:
 - a. The ratio of the total amount of work to the critical path length
 - b. Equal to the sum of the weights of nodes/tasks on the critical path
 - c. Equal to the sum of the weights of leaves/number of leaves in a tree
 - d. Equal to the weight of the leaf with the largest weight (among leafs) in a tree

5. An example of hybrid decomposition, assuming we want the minimum value within a 16 integer array, using 4 processors, would be: a. Sending equal chunks (size 4) to each processor, and then using recursive decomposition to find the overall minimum b. Finding the minimum value using a recursive algorithm on just one processor, and then broadcasting this value to all remaining processors c. Sending equal chunks (size 4) to each processor, and then selecting a random number out of 4 on each processor, and then randomly choosing one of the processors' selection. d. Decomposing data based on the output desired 6. Speedups can become _____ when we use exploratory decomposition, because of the ____ position of the goal state within the search space a. anomalous; deterministic b. anomalous; uncertain c. deterministic; uncertain d. deterministic; random 7. With the naïve solution for one-to-all broadcast on a ring, we would expect to send ____ messages to the other _____ processes, and this may lead to an _____ of the communication network a. p; p-1; overutilization b. p-1; p-1; underutilization c. p-1; p-1; overutilization d. (p-1)²; p-1; underutilization 8. On a ring, if we move from the naïve solution to recursive doubling for one-to-all broadcast, we would decrease the number of cycles consumed by approximately (assuming p processors): a. $(p-1) - \log(p)$ b. $(p-1)^2 - \log(p)$ c. (p-1) - (2*log(p))d. ((p-1)/2) - (2*log(p))9. Using OpenMP, if we don't use the OpenMP for construct, loop work-sharing can be done by: a. Modifying the start and end values of the for loop, using a combination of omp_get_thread_num() and omp_get_num_threads() b. Modifying the start and end values of the for loop, using a combination of omp_set_thread_num() and omp_set_num_threads() c. Modifying the start and end values of the for loop, using a combination of omp get thread ID() and omp get num threads() d. Modifying the start and end values of the for loop, with the random() function and omp_get_num_threads()

10. In OpenMP, a private variable has _____ address in the ____ context of every thread:

- b. the same; memory c. a different; execution

a. the same; execution

d. a different; variable

Questions 11 – 15 are worth 2 marks each

11.	. Assume a sequential program S has an execution time of 650 seconds. Now assume a paralle
	variant of S takes 85.55 seconds to complete when we have 8 processors available. The Karp-Flatt
	metric is approximately equal to:

- a. 1.15
- b. 0.129
- c. 0.99
- d. 0.007

12. Cons	sidering a 2-D me	sh (without wraparound)	with M rows and N	columns, we would	expect arc
conr	nectivity of	_, bisection width of	, and link cost _	•	

- a. 3; minimum(M, N); 2MN (M+N)
- b. 4; minimum(M, N); 2MN + (MN)
- c. 2; maximum(M, N); 2MN (M+N)
- d. 2; minimum(M, N); 2MN (M+N)
- 13. If we use the schedule(static, 8) clause within the #pragma omp parallel for, we are enabling:
 - a. Each thread is assigned 1/8th of the total iterations of the for loop in round-robin manner
 - b. Each thread is assigned 8 contiguous iterations of the for loop in round-robin manner
 - c. Each idle thread is dynamically assigned 1/8th of the remaining iterations of the for loop
 - d. Each idle thread is dynamically assigned the 8 leftmost contiguous remaining iterations of the for loop
- 14. We would use the lastprivate() clause in OpenMP when we want the master thread:
 - a. To copy the private copy of the variable from the thread that executed the last iteration
 - b. To copy the private copy of the variable from the thread that executed the first iteration
 - c. To copy the private copy of the variable from the thread that was created last
 - d. To copy the private copy of the variable from the thread that has the largest thread ID
- 15. Assume a sequential program S has an execution time of 400 seconds. Now assume a parallel variant of S takes 55.55 seconds to complete when we have 8 processors available. The speedup approximately equal to:
 - a. 50
 - b. 7.2
 - c. 0.9
 - d. 57.6

Section B (50 marks – 5 questions)

Qι	uesti	on No. 1:	[marks: 9, CLO: 2]
Ex	plain	the following terms. You can draw a diagram if required to provide further deta	il.
		Fat Tree:	
	,		
	b)	Non-uniform Memory Access	
	c)	Amdahl's law and its shortcomings	

Question No. 2: [marks: 8, CLO: 2]

Write output for the following OpenMP-based piece of code. Assume the code does not have any syntax error and is written in the main function. If you think, there is some logical error then identify the error and propose a solution to correct it.

Output:

Question No. 3: [marks: 10, CLO: 2]

Parallelize following piece of code using OpenMP with a team of 8 threads.

Hint: Sometimes the parallelism is not inherent in original formulation.

```
int brr[1000];
int i;
brr[0]=5;
for (i = 1; i < 1000; ++i)
{
brr[i]=brr[i-1]+1;
}
printf("Sum at last index=%d\n", brr[999]);
Parallel Code:
```

Question No. 4: [marks: 8, CLO: 2] Write output for following piece of code assuming that that there are 4 MPI processes. [Assume there is no syntax error]

```
int main(intargc, char** argv) {
MPI_Init(&argc,&argv);
MPI_Statusstatus;
int p;
int i;
MPI_Comm_size(MPI_COMM_WORLD, &p);
int my_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
int a = my_rank;
int b;
int sendTag=1;
int recvTag=1;
int next=(my_rank+1)%p; //determine my right node
int previous=((my_rank-1+p)%p); //determine my left node
MPI_Sendrecv(&a,1,MPI_INT,next,sendTag,
&b,1,MPI_INT,previous,recvTag, MPI_COMM_WORLD, &status );
printf("I\'m %d: Received:%d from %d and Sent:%d to %d\n ",
my_rank ,b,previous, a,next);
MPI_Finalize();
}
```

Output:

		5: [marks: 4+6+5, CLU: 3]
a)	Briefly	y describe the following parameters to evaluate static interconnections:
		Diameter
		Diameter
	>	Bisection Width
	_	
		Arc connectivity
	A	Cost (No. of links)
		Cost (170. of mins)
	_	
b)	Draw	a 2-D mesh without wraparound having 16 nodes and calculate the values of above
	param	ectors by first montioning or deriving the formulas for those narrometers for a 2.D mash
	P	ieters by first mentioning or deriving the formulas for these parameters for a 2-D mesh
		neters by first mentioning or deriving the formulas for these parameters for a 2-D mesh at wraparound.
		it wraparound.

c)	Suppose we have to perform one-to-all broadcast in this mesh where the source is node 0. How this operation could be performed using recursive doubling with minimum number of steps. Explain with details and mention the cost of this operation!