Regresión múltiple y otras técnicas multivariadas | Semestre 2019-2

Fecha de entrega: 27 de marzo

1. Considerar las siguientes matrices

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \qquad \mathbf{y} \qquad \mathbf{X} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}$$

Calcular lo siguiente:

- $a) \mathbf{X}^T \mathbf{X}.$
- b) $\mathbf{X}^T \mathbf{y}$.
- $c) |\mathbf{X}^T \mathbf{X}|.$
- d) $(\mathbf{X}^T\mathbf{X})^{-1}$, ¿qué se debe cumplir para que tal inversa exista?.
- $e) (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}.$

2. Considerar la matriz sombrero $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ del análisis del modelo RLM. Mostrar que las siguientes matrices son simétricas e idempotentes.

- a) $\mathbf{I}_n \mathbf{H}$.
- b) $\mathbf{I}_n \frac{1}{n} \mathbf{J}_n$.
- c) $\mathbf{H} \frac{1}{n} \mathbf{J}_n$.

3. En un estudio clínico se registró la edad (años), el peso (kg) y la presión sistólica (mmHg) de nueve voluntarios con estilos de vida similares. Los datos se muestran en la siguiente tabla.

Edad	Peso	Presión
25	73.5	112
25	83.5	144
42	75.4	138
55	68.1	145
30	87.2	152
40	70.4	110
66	83.5	118
60	91.7	160
38	79.0	108

- a) Graficar la presión sistólica contra la edad y contra el peso. ¿Se aprecia una relación lineal entre estos pares de variables?
- b) Ajustar un modelo RLM para explicar la distribución de la presión sistólica como función de la edad y el peso. Interpretar las estimaciones en el contexto de los datos.
- c) Estimar el valor esperado de la presión de un individuo de 35 años y 80 kg.
- 4. El siguiente conjunto de datos sobre trasplantes de corazón relaciona el tiempo de supervivencia (en días) de pacientes que recibieron un trasplante con su edad (en años) al momento del trasplante y un llamado puntaje de incompatibilidad o discrepancia que se usa como indicador de qué tan bien recibido será el corazón trasplantado por el receptor.

Tiempo de	Puntaje de	Edad en
supervivencia	discrepancia	años
624	1.32	51.0
46	0.61	42.5
64	1.89	54.6
1350	0.87	54.1
280	1.12	49.5
10	2.76	55.3
1024	1.13	43.4
39	1.38	42.8
730	0.96	58.4
136	1.62	52.0
836	1.58	45.0
60	0.69	64.5

Ajustar un modelo RLM para explicar la distribución del logaritmo del tiempo de supervivencia como función de la edad y el puntaje de discrepancia.

- a) Reportar las estimaciones de los coeficientes del modelo e interpretarlas en el contexto de los datos.
- b) Si se sabe que el índice de discrepancia involucra en su cómputo, entre otros factores, a la edad del paciente, ¿tiene sentido la interpretación que acaba de dar sobre el coeficiente β_j de la edad? ¿y del coeficiente β_j del propio índice? Argumente y justifique su respuesta.
- c) Reportar la estimación de σ^2 .
- d) Estimar la media del tiempo de supervivencia de un paciente que recibió un trasplante de corazón a los 46 años y tenía un índice de discrepancia de 1.43.