MIE562 Project - Truck Scheduling - MIP Model

Team 5 - Dylan Camus, Ryan Do, Fan Jia, Matheus Magalhaes, Sugumar Prabhakaran

Date: 8 Nov 2020

```
import numpy as np
import pandas as pd
import plotly.express as px

import gurobipy as gp
from gurobipy import Model, GRB, quicksum, max_
```

Introduction

1. Sets

- $k \in K$: A container, k in a set of containers, K (Ex. $K = \{1, 2, 3, \ldots\}$).
- $j \in J$: A carrier, j, in a set of carriers, J (Ex. $J = \{1, 2, 3, \ldots\}$).
- $c \in C$: A chassis, c, in a set of chassis, C (Ex. $C = \{1, 2, 3, \ldots\}$).
- $L = \{1, 2, 3\}$: is the set of travel legs, where:
 - 1 : terminal to transloading facility leg
 - 2 : terminal to stack leg
 - 3 : stack to transloading facility leg

2. Parameters

- $\bullet \ \ n_k = |K| \hbox{:} \quad \ \mbox{number of containers}$
- $n_j = |J|$: number of carriers
- $n_c = |C|$: number of chassis
- S: fixed cost at stack [\$/container]
- S': variable cost at stack [(\$/day)/container]
- R_k : Release date for container k [days]
- ullet P_k : Transload processing time for container k [days]
- ρ_k : priority factor of container k (higher value is higher priority)
- $\bullet \ \ Y_{jk}\hbox{:}\qquad \qquad \text{binary parameter = 1 if container k belongs to carrier j}$
- T_{j}^{\prime} : Demurrage free period before cost for carrier j at terminal [days]
- T_j : Demurrage daily cost per container for carrier j at terminal [(\$/days)/container]
- δ_j' : free period before detention cost for containers of carrier j [days]
- δ_j : detention cost/unit time for containers of carrier j [(\$/days)/container]

- Φ_{kl} : Time duration transporting container k on leg I, which includes a variable processing time for legs 1 and 3 [days]
- $D_{ll'}$: Delay required for a chassis to start leg l' after completing l (including travel) [days]
- M: Some large number

```
def read_instance(instance_csv_path: str):
In [2]:
             reads instance file into a pandas dataframe for easy viewing
             ARGS:
             (str) instance_csv_path: file name stored in variable
             RETURN:
             (df) df:
                          output a pandas dataframe with appropriate rows
             df = pd.read_csv(instance_csv_path) # read csv file into dataframe
             #rename dataframe rows:
             df.rename(index={0:"header_data",
                              1:"container (k)",
                              2: "carrier (j)",
                              3:"rel_date (R_k)"
                              4:"proc_time (P_k)"
                               5: "priority (rho_k)",
                               6:"free_demurrage (T'_j)",
                              7: "demurrage_cost (T_j)",
                               8:"free_detention (delta'_j)",
                               9: "detention_cost (delta_j)",
                               10:"leg_travel_times"}, inplace=True)
             return df
```

```
In [3]:
      def generate_parameters(df):
         generate all necessary parameters from instance file that is read into a df
         ARGS:
         (df) df:
                     a pandas dataframe in specific format containing info
         RETURN:
         (int) nK:
                       number of containers
         (dict) Delta_prime: detention free period per carrier j (key)
         (int) M:
                        Some large constant
         1.1.1
         #header data from instance: (nk, nJ, nC, S, S_prime):
         nK, nJ, nC, S, S_prime = tuple((df.iloc[0].dropna()).astype(float).astype(int))
```

```
#create sets K, J, C and L:
K = [k for k in df.iloc[1].dropna().astype(float).astype(int)]
assert nK >= len(K)
J = list(set(df.iloc[2].dropna()))
assert nJ >= len(J)
C = list(range(nC))
L = [1, 2, 3]
#Y stores carrier j for each container k:
Y = \{j:\{k: 0 \text{ for } k \text{ in } K\} \text{ for } j \text{ in } J\}
for i, k in enumerate(K):
    Y[df.iloc[2].dropna()[i]][k] = 1
#read rows 3 to 5 from df to R, p, rho for each container k:
R = {k: int(df.iloc[3].dropna()[i]) for i, k in enumerate(K)}
p = {k: int(float(df.iloc[4].dropna()[i])) for i, k in enumerate(K)}
rho = {k: int(df.iloc[5].dropna()[i]) for i, k in enumerate(K)}
T_{prime} = {df.iloc[6].dropna()[i]: int(df.iloc[6].dropna()[i+1])}
           for i in range(0, len(df.iloc[6].dropna()), 2)}
T = \{df.iloc[7].dropna()[i]: int(df.iloc[7].dropna()[i+1])\}
     for i in range(0, len(df.iloc[7].dropna()), 2)}
Delta_prime = {df.iloc[8].dropna()[i]: int(df.iloc[8].dropna()[i+1])
               for i in range(0, len(df.iloc[8].dropna()), 2)}
Delta = {df.iloc[9].dropna()[i]: int(df.iloc[9].dropna()[i+1])
         for i in range(0, len(df.iloc[9].dropna()), 2)}
#generate Phi from leg_times and processing times for each container k:
leq_times = \{1: float(df.iloc[10][i*2+1]) for i, 1 in enumerate(L)\}
Phi = \{k: \{1: 2*leg\_times[1] + p[k], 2: leg\_times[2], \}
           3: leg\_times[3] + p[k] + leg\_times[1] for k in K} # duration of leg \ l (ind
D = \{1:\{1: 0, 2: 0, 3: leg\_times[2]\},\
     2:{1: leg_times[2], 2: leg_times[2], 3: 0},
     3:{1: 0, 2: 0, 3: leg_times[2]}}
M = 1000 #some large integer
return nK, nJ, nC, S, S_prime, K, J, C, L, R, p, rho, Y, T_prime, T, Delta, Delta_prim
```

3. Decision Variables

- Binary Variable: $x_{klc} = \left\{ egin{array}{ll} 1, & ext{if container k travels leg l on chassis c} \\ 0, & ext{otherwise} \end{array} \right.$
- Start time s of container k on leg l on chassis c: s_{klc} , where $s_{klc} \geq 0$
- Binary Variable: $z_{klk'l'c}$ = $\begin{cases} 1, & \text{if transporting container } k' \text{ on chassis c along leg } l' \text{ is scheduled after transporting container } k' \text{ on chassis c along leg } l' \text{ is scheduled after transporting container } k' \text{ on chassis c along leg } l' \text{ is scheduled after transporting container } k' \text{ on chassis c along leg } l' \text{ is scheduled after transporting container } k' \text{ on chassis c along leg } l' \text{ is scheduled after transporting container } k' \text{ on chassis c along leg } l' \text{ is scheduled after transporting container } k' \text{ on chassis c along leg } l' \text{ is scheduled after transporting container } k' \text{ on chassis c along leg } l' \text{ is scheduled after transporting container } k' \text{ on chassis c along leg } l' \text{ is scheduled after transporting container } k' \text{ on chassis c along leg } l' \text{ is scheduled after transporting container } k' \text{ on chassis c along leg } l' \text{ is scheduled after transporting container } k' \text{ on chassis c along leg } l' \text{ is scheduled after transporting container } k' \text{ on chassis c along leg } l' \text{ is scheduled after transporting container } k' \text{ on chassis c along leg } l' \text{ is scheduled after transporting container } k' \text{ on chassis c along leg } l' \text{ is scheduled after transporting } k' \text{ on chassis c along leg } l' \text{ on chassis c alon$

4. Objective Function

We want to minimize the Total Cost (c) = (Demurrage cost) + (Detention cost) + (Stack cost) + (Priority penalty cost)

- objective function: $min\left(c\right)$
- c = demurrage cost + detention cost + stack cost + priority cost

(1) Demurrage Cost:

The Demurrage Cost refers to cost associated with keeping containers in the terminal beyond the free period allotedin days (T_i'') that is different for each carrier.

If the start time for a container (s_{klc}) is higher than the release date (R_k) + the free period $(T_j^{''})$, there will be a variable cost per extra day (T_j) per container.

• demurrage cost =
$$\sum_{k \in K} \sum_{c \in C} \sum_{l \in \{1,2\}} \sum_{j \in J} T_j x_{klc} Y_{jk} \cdot max \left[(s_{klc} - R_k - T_j''), 0 \right]$$

(2) Detention Cost

The terminal also charges a detention cost for containers that are not returned to the terminal for processing before return to the carrier. Similar to demurrage, there is a free period before which the containers must be returned to the terminal (δ_i'') .

If the start time for a container (s_{klc}) and the total travel time of a container back to the terminal including processing time (ϕ_{kl}) is greater than the release date (R_k) + the free period (δ_j'') , there will be a variable cost per extra day (T_i) per container.

• detention cost =
$$\sum_{k \in K} \sum_{c \in C} \sum_{l \in \{1,3\}} \sum_{j \in J} \delta_j x_{klc} Y_{jk} \cdot max \left[(s_{klc} + \phi_{kl} - (R_k + \delta_j'')), 0 \right]$$

(3) Stack Storage Cost

The stack cost (c_{stk}) is the sum of the fixed cost percontainer (S) and the variable cost per day per container (S') x the number of days that a container is in the stack, which is the difference between leg 3 and leg 2 start times (s_{klc}) .

• stack cost =
$$\sum_{k \in K} \sum_{c \in C} x_{k2c} \cdot (S + S'(s_{k3c} - (s_{k2c} + \phi_{k2})))$$

(4) Priority Penalty Cost

The priority penalty cost (c_{pri}) is applied for every day that a container sits in the terminal beyond the release day (R_k) . Since the priority factor per container (ρ_k) is higher for higher priority containers, the associated penalty costs will be higher.

• priority cost
$$=\sum_{k\in K}\sum_{c\in C}\sum_{l\in\{1,2\}}
ho_k\cdot(s_{klc}-R_k)\cdot x_{klc}$$

5. Constraints

(1) Resource constraints

For each chassis, transport jobs can't overlap and chassis (resources) may have to travel between jobs. For the case where job klc scheduled after job k'l'c, i.e. $s_{klc}>s_{k'l'c}$:

$$M(1-x_{klc})+M(1-x_{k'l'c})+(s_{klc}-s_{k'l'c})\geq \phi_{k'l'}+D_{l'l}-M\cdot z_{klk'l'c}, \quad orall k,k'\in K, l,l'\in L,c\in C \ s.\ t. \ (k=k'
eg \wedge l=l') \wedge k\leq k'$$

For the case where job $k^{\prime}l^{\prime}c$ scheduled after job klc, i.e. $s_{klc}>s_{k^{\prime}l^{\prime}c}$:

$$M(1-x_{klc})+M(1-x_{k'l'c})+(s_{k'l'c}-s_{klc})\geq \phi_{kl}+D_{ll'}-M\cdot(1-z_{klk'l'c}),\quad orall k,k'\in K,l,l'\in L, a,k'$$
 $s.\ t.\ \ (k=k'
eg \wedge l=l')\wedge k\leq k'$

(2) Release date constraint

Start time (s_{klc}) must be after release date (R_k) for every container that leaves terminal on either leg 1 or leg 2 (ie. $x_{klc}=1$):

•
$$s_{klc} \geq R_k x_{klc}$$
, $\forall k \in K, l \in L, c \in C$

(3) Containers going through leg 2 must go through leg 3

Each container k will have a x_klc value of 1 or 0 for both leg 2 and leg 3 depending on if they travel through them or not:

•
$$\sum_{c \in C} (x_{k2c}) = \sum_{c \in C} (x_{k3c}), \quad \forall k \in K$$

(4) Container must go through leg 1 OR (leg 2 AND 3)

Each container (k) will have $x_k lc = 1$ for either leg 1 or leg 2 so the sum of the two must be 1 for all containers (k) on all chassis (c).

•
$$\sum_{c \in C} (x_{k1c}) + \sum_{c \in C} (x_{k2c}) = 1$$
, $\forall k \in K$

(5) Precedence Constraint: Leg 2 must be before Leg 3

Each container k will have a x_{klc} value of 1 for either leg 1 or leg 2 so the sum of the two must be 1 for all containers (k) on all chassis (c).

•
$$M \sum_{c \in C} (x_{k1c}) + \sum_{c \in C} (s_{k3c}) \ge = \sum_{c \in C} (s_{k2c}) + \Phi_{k2}, \quad \forall k \in K$$

(6) Bind x=0 to s=0

When $x_{klc}=0, s_{klc}=0$

•
$$Mx_{klc} \geq s_{klc}, \quad orall k \in K$$
, $l \in L$, $c \in C$

(7) Domain of s_{klc}

The start time (s_{klc}) must be greater than 0:

•
$$s_{klc} \geq 0$$
, $\forall k \in K, l \in L, c \in C$

```
#Create decision variables
x = model.addVars(K, L, C, vtype=GRB.BINARY, name="x_klc")
s = model.addVars(K, L, C, vtype=GRB.CONTINUOUS, name="s_klc")
z = model.addVars(K, L, K, L, C, vtype=GRB.BINARY, name="z_klk'l'c")
#Max variables
max_expression_resource_constraint_1 = model.addVars(
    K, L, K, L, C, vtype=GRB.CONTINUOUS, name="max resource a")
max_expression_resource_constraint_2 = model.addVars(
    K, L, K, L, C, vtype=GRB.CONTINUOUS, name="max resource b")
max_expression_demurrage = model.addVars(
    K, L, C, J, vtype=GRB.CONTINUOUS, name="max_expression_demurrage")
max_expression_detention = model.addVars(
    K, L, C, J, vtype=GRB.CONTINUOUS, name="max_expression_detention")
# demurrage cost days max calculated for objective function:
model.addConstrs(max_expression_demurrage[k,1,c,j] >=
                 (s[k,l,c] - R[k] - T_prime[j])
                 for k in K for c in C for l in [1, 2] for j in J)
model.addConstrs(max_expression_demurrage[k,l,c,j] >= 0
                 for k in K for c in C for l in [1, 2] for j in J)
# detention cost days max calculated for objective function:
model.addConstrs(max_expression_detention[k,1,c,j] >=
                 (s[k,l,c] + Phi[k][l] - (R[k] + Delta_prime[j]))
                 for k in K for c in C for l in [1, 3] for j in J)
model.addConstrs(max_expression_detention[k,1,c,j] >= 0
                 for k in K for c in C for l in [1, 3] for j in J)
#Define objective function elements:
demurrage\_cost = quicksum(x[k,l,c]*T[j]*Y[j][k]*max\_expression\_demurrage[k,l,c,j]
                          for k in K for c in C for l in [1, 2] for j in J)
detention\_cost = quicksum(x[k,l,c]*Delta[j]*Y[j][k]*max\_expression\_detention[k,l,c,j]
                          for k in K for c in C for l in [1, 3] for j in J)
stack\_cost = quicksum(x[k,2,c]*(S + S\_prime*(s[k,3,c] -
                                             (s[k,2,c] + Phi[k][2]))) for k in K for (
priority_cost = quicksum(x[k,1,c]*rho[k]*(s[k,1,c] - R[k])
                         for k in K for c in C for l in [1, 2])
#Set Objective Function:
model.setObjective(demurrage_cost + detention_cost
                   + stack_cost + priority_cost, GRB.MINIMIZE)
#constraint #1: resource (chassis c) constraints:
model.addConstrs(
    M*(1 - x[k,l,c]) + M*(1 - x[kp,lp,c]) + (s[k,l,c] - s[kp,lp,c]) >=
    Phi[kp][lp] + D[lp][l] - M * z[k, l, kp, lp, c]
    for k in K for l in L for kp in K for lp in L for c in C if
    (not(k == kp and l == lp) and (k <= kp)))
model.addConstrs(
    M*(1 - x[k,l,c]) + M*(1 - x[kp,lp,c]) + (s[kp,lp,c] - s[k,l,c]) >=
    Phi[k][1] + D[1][1p] - M * (1-z[k, 1, kp, 1p, c])
    for k in K for l in L for kp in K for lp in L for c in C if
    (not(k == kp and 1 == lp) and (k <= kp)));
#constraint #2: release date constraint:
model.addConstrs(
    s[k,l,c] >= R[k]*x[k,l,c] for k in K for l in L for c in C);
#constraint #3: containers going through leg 2 must go through leg 3:
model.addConstrs(
    quicksum(x[k,2,c] for c in C)==quicksum(x[k,3,c] for c in C) for k in K);
#constraint #4: container must go through leg 1 OR leg 2/leg 3:
```

```
model.addConstrs(
    (quicksum(x[k,1,c] for c in C) + quicksum(x[k,2,c] for c in C))==1 for k in K);
#constraint #5: precedence constraint - leg 2 must be before leg 3:
model.addConstrs(
    M^*(quicksum(x[k,1,c] \text{ for } c \text{ in } C)) + quicksum(s[k,3,c] \text{ for } c \text{ in } C) >=
    (quicksum(s[k,2,c] for c in C) + Phi[k][2]) for k in K);
#constraint #6: Bind x_klc = 0 to s_klc = 0:
model.addConstrs(M*x[k,l,c] >= s[k,l,c]  for k in K for l in L for c in C);
#constraint #7: Domain of start time must be >= 0
model.addConstrs(s[k,l,c] >=0 for k in K for l in L for c in C);
model.optimize()
x_values = {}
s_values = {}
for k in K:
    for l in L:
        for c in C:
            x_{values}[(k,l,c)] = int(x[k,l,c].X)
            if x[k,1,c].X >= 0.9:
                s_{values[(k,1,c)]} = s[k,1,c].X
total_dem_cost = int(demurrage_cost.getValue())
total_det_cost = int(detention_cost.getValue())
total_stk_cost = int(stack_cost.getValue())
total_pri_cost = int(priority_cost.getValue())
total_cost = int(model.ObjVal)
gap = model.MIPGap*100
print("\nBEST SOLUTION FOUND:\n")
print("Total Demurrage Cost: ", total_dem_cost)
print("Total Detention Cost: ", total_det_cost)
print("Total Stack Cost: ", total_stk_cost)
print("Total Priority Penalty Cost: ", total_pri_cost)
print("Total Overall Cost: ", total_cost)
print("Gap at Best Solution: (%)", gap)
return x_values, s_values
```

```
# Visualize optimized schedule
In [5]:
          from datetime import datetime, timedelta
          import plotly.graph_objects as go
          def plot_schedule(x, s):
              produce schedule for each container and each chassis over time horizon based on gurobi
              ARGS:
              (dict) x:
              (dict) s:
              RETURN:
              None:
                        plots only
              \mathbf{I}_{-}\mathbf{I}_{-}\mathbf{I}_{-}
              raw_df = []
              start_date = datetime(2020, 11, 1, 0, 0)
              for k in K:
                   for 1 in L:
                       for c in C:
```

```
if (x[k,1,c] != 0):
                    raw_df.append(dict(Chassis=str(c),
                                       Start=start_date + timedelta(days=int(s[k,1,c]),
                                                                     hours=(s[k,l,c] % 1 *
                                       Finish=start_date + timedelta(days=int(s[k,l,c] + f
                                                                      hours=((s[k,1,c] + P)
                                       Leg=str(1),
                                       Container=str(k))
    df = pd.DataFrame(raw_df)
    fig_chassis = px.timeline(df, x_start="Start", x_end="Finish", y="Chassis", color="Leq
    fig_chassis.show()
    fig_container = px.timeline(df, x_start="Start", x_end="Finish", y="Container", color=
    for k in K:
        fig_container.add_trace(
            go.Scatter(
                x = [start_date + timedelta(days=int(R[k]), hours=(R[k] % 1 * 24)),
                     start_date + timedelta(days=int(R[k]), hours=(R[k] % 1 * 24))],
                y = [k-0.4, k+0.4],
                mode = "lines",
                line = go.scatter.Line(color = "black", width = 1),
                showlegend = False
    fig_container.show()
#fig_chassis.write_html(f"{instance_csv_path}_schedule_.html")
#fig_container.write_html("")
```

Model Results on Test Instances

1. test_instance (base)

• Number of containers (k): 10

Number of carriers (j): 3

• Number of chassis (c): 5

```
In [6]: instance_csv_path = "./instances/test_instance.csv"
    df = read_instance(instance_csv_path)
    df
```

Out[6]:		test_instance	Unnamed: 1	Unnamed: 2	Unnamed:	Unnamed: 4	Unnamed: 5	Unnamed: 6	Unnamed: 7	Uı
_	header_data	10	3	5	300	15	NaN	NaN	NaN	
	container (k)	1	2	3	4	5	6	7	8	
	carrier (j)	a	a	a	b	b	b	b	С	
	rel_date (R_k)	0	0	0	0	0	4	4	6	
	proc_time (P_k)	10	10	20	30	40	1	2	1	
	priority (rho_k)	1	2	3	4	5	6	7	8	
	free_demurrage (T'_j)	а	3	b	2	С	5	NaN	NaN	

	test_instance	Unnamed:	Unnamed: 2	Unnamed:	Unnamed:	Unnamed: 5	Unnamed: 6	Unnamed: U
demurrage_cost (T_j)	а	1000	b	1400	С	1800	NaN	NaN
free_detention (delta'_j)	а	21	b	14	С	18	NaN	NaN
detention_cost (delta_j)	а	50	b	75	С	100	NaN	NaN
leg_travel_times	leg_1	0.125	leg_2	0.125	leg_3	0.125	NaN	NaN

In [7]:

nK, nJ, nC, S, S_prime, K, J, C, L, R, p, rho, Y, T_prime, T, Delta, Delta_prime, Phi, D, x, s = run_gurobi_model(S, S_prime, K, J, C, L, R, p, rho, Y, T_prime, T, Delta, Delta_pri

Warning: your license will expire in 11 days

Using license file /home/sugumarprabhakaran/gurobi.lic Academic license - for non-commercial use only Changed value of parameter TimeLimit to 60.0 Prev: inf Min: 0.0 Max: inf Default: inf

BEST SOLUTION FOUND:

Total Demurrage Cost: 0
Total Detention Cost: 3206
Total Stack Cost: 256

Total Priority Penalty Cost: 53

Total Overall Cost: 3517

Gap at Best Solution: (%) 2.0897750293207595

In [8]: plot_schedule(x,s)

2. 20_instance

• Number of containers (k): 20

• Number of carriers (j): 5

• Number of chassis (c): 5

• Time Horizon: 7 days

```
In [9]: instance_csv_path = "./instances/20_instance.csv"
    df = read_instance(instance_csv_path)
    df
```

Out[9]:	base_instance 20 containers 5 carriers 25 chassis 7- day horizon	Unnamed: 1	Unnamed: 2	Unnamed: 3	Unnamed: 4	Unnamed: 5	Unnamed: 6	Unnamed: 7	ι
header_data	20.0	5.0	5.0	400.0	15.0	NaN	NaN	NaN	
container (k)	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	
carrier (j)	d	d	d	d	d	d	а	a	
rel_date (R_k)	5	5	5	5	5	5	4	4	
proc_time (P_k)	3	3	3	3	2	3	2	4	

	base_instance 20 containers 5 carriers 25 chassis 7- day horizon	Unnamed: 1	Unnamed: 2	Unnamed: 3	Unnamed: 4	Unnamed: 5	Unnamed: 6	Unnamed: 7	ι
priority (rho_k)	19	2	20	9	11	18	7	14	
free_demurrage (T'_j)	a	6	b	4	С	2	d	2	
demurrage_cost (T_j)	a	100	b	300	С	300	d	150	
free_detention (delta'_j)	a	21	b	28	С	28	d	21	
detention_cost (delta_j)	a	100	b	50	С	100	d	100	
leg_travel_times	leg_1	0.0625	leg_2	0.125	leg_3	0.125	NaN	NaN	

In [10]: nK, nJ, nC, S, S_prime, K, J, C, L, R, p, rho, Y, T_prime, T, Delta, Delta_prime, Phi, D,
 x, s = run_gurobi_model(S, S_prime, K, J, C, L, R, p, rho, Y, T_prime, T, Delta, Delta_pri

Changed value of parameter TimeLimit to 60.0 Prev: inf Min: 0.0 Max: inf Default: inf

BEST SOLUTION FOUND:

Total Demurrage Cost: 168
Total Detention Cost: 0
Total Stack Cost: 2329

Total Priority Penalty Cost: 476

Total Overall Cost: 2974

Gap at Best Solution: (%) 99.999999999999

In [11]: plot_schedule(x,s)

3. 15_instance

• Number of containers (k): 15

• Number of carriers (j): 5

• Number of chassis (c): 6

• Time Horizon: 30 days

```
in [12]: instance_csv_path = "./instances/15_instance.csv"
    df = read_instance(instance_csv_path)
    df
```

Out[12]:

	15_instance 15 containers 5 carriers 6 chassis 30-day horizon	Unnamed: 1	Unnamed: 2	Unnamed: 3	Unnam
header_data	15.0	5.0	6.0	400	
container (k)	1.0	2.0	3.0	4.0	
carrier (j)	е	a	d	d	
rel_date (R_k)	21	9	18	23	
proc_time (P_k)	2.6731484892945785	3.1512902868403145	2.8166907028228287	2.6630357717677327	2.37014403285
priority (rho_k)	2	7	9	10	

	15_instance 15 containers 5 carriers 6 chassis 30-day horizon	Unnamed: 1	Unnamed: 2	Unnamed: 3	Unnam
free_demurrage (T'_j)	a	6	b	4	
demurrage_cost (T_j)	a	100	b	300	
free_detention (delta'_j)	a	21	b	28	
detention_cost (delta_j)	a	100	b	50	
leg_travel_times	leg_1	0.0625	leg_2	0.125	

In [13]: NK, nJ, nC, S, S_prime, K, J, C, L, R, p, rho, Y, T_prime, T, Delta, Delta_prime, Phi, D, x, s = run_gurobi_model(S, S_prime, K, J, C, L, R, p, rho, Y, T_prime, T, Delta, Delta_pri

Changed value of parameter TimeLimit to 60.0 Prev: inf Min: 0.0 Max: inf Default: inf

BEST SOLUTION FOUND:

Total Demurrage Cost: 0 Total Detention Cost: 0 Total Stack Cost: -21

Total Priority Penalty Cost: 14

Total Overall Cost: -7

Gap at Best Solution: (%) 0.0

In [14]: | plot_schedule(x,s)

4. 14_instance

• Number of containers (k): 14

• Number of carriers (j): 3

• Number of chassis (c): 4

• Total time horizon: 10 days

```
instance_csv_path = "./instances/14_instance.csv"
df = read_instance(instance_csv_path)
df
```

Out[18]:		14_instance 14 containers 3 carriers 4 chassis 10-day horizon	Unnamed: 1	Unnamed: 2	Unnamed: 3
	header_data	14.0	3.0	4.0	300
	container (k)	1.0	2.0	3.0	4.0
	carrier (j)	a	b	a	b
	rel date (R k)	3	5	3	5

container (k)	1.0	2.0	3.0	4.0	
carrier (j)	a	b	a	b	
rel_date (R_k)	3	5	3	5	
proc_time (P_k)	2.6731484892945785	3.1512902868403145	2.8166907028228287	2.6630357717677327	2.37014403285
priority (rho_k)	9	7	5	12	
free_demurrage (T'_j)	a	6	b	4	

Unnam

	14_instance 14 containers 3 carriers 4 chassis 10-day horizon	Unnamed: 1	Unnamed: 2	Unnamed: 3	Unnam
demurrage_cost (T_j)	a	100	b	300	
free_detention (delta'_j)	a	21	b	28	
detention_cost (delta_j)	a	100	b	50	
leg_travel_times	leg_1	0.0625	leg_2	0.125	

In [19]:

nK, nJ, nC, S, S_prime, K, J, C, L, R, p, rho, Y, T_prime, T, Delta, Delta_prime, Phi, D, x, s = run_gurobi_model(S, S_prime, K, J, C, L, R, p, rho, Y, T_prime, T, Delta, Delta_pri

Changed value of parameter TimeLimit to 60.0 Prev: inf Min: 0.0 Max: inf Default: inf

BEST SOLUTION FOUND:

Total Demurrage Cost: 37
Total Detention Cost: 0
Total Stack Cost: 0

Total Priority Penalty Cost: 104

Total Overall Cost: 141

Gap at Best Solution: (%) 99.7352162400706

In [20]: plot_schedule(x,s)

5. 12_instance

• Number of containers (k): 12

• Number of carriers (j): 3

• Number of chassis (c): 3

• Total time horizon: 21 days

```
instance_csv_path = "./instances/12_instance.csv"
    df = read_instance(instance_csv_path)
    df
```

Out[15]:		12_instance 12 containers 3 carriers 3 chassis 21-day horizon	Unnamed: 1	Unnamed: 2	Unnamed: 3	Unnam
	header_data	12.0	3.0	3.0	200	
	container (k)	1.0	2.0	3.0	4.0	
	carrier (j)	a	b	a	b	
	rel_date (R_k)	9	7	7	7	
	proc_time (P_k)	2.6731484892945785	3.1512902868403145	2.8166907028228287	2.6630357717677327	2.37014403285
	priority (rho_k)	7	12	5	11	
	free_demurrage (T'_j)	a	6	b	4	
	demurrage_cost (T_j)	a	100	b	300	

	12_instance 12 containers 3 carriers 3 chassis 21-day horizon	Unnamed: 1	Unnamed: 2	Unnamed: 3	Unnam
free_detention (delta'_j)	a	21	b	28	
detention_cost (delta_j)	a	100	b	50	
leg_travel_times	leg_1	0.0625	leg_2	0.125	

In [16]: nK, nJ, nC, S, S_prime, K, J, C, L, R, p, rho, Y, T_prime, T, Delta, Delta_prime, Phi, D, x, s = run_gurobi_model(S, S_prime, K, J, C, L, R, p, rho, Y, T_prime, T, Delta, Delta_pri

Changed value of parameter TimeLimit to 60.0 Prev: inf Min: 0.0 Max: inf Default: inf

BEST SOLUTION FOUND:

Total Demurrage Cost: 0 Total Detention Cost: 0 Total Stack Cost: -287

Total Priority Penalty Cost: 114 Total Overall Cost: -173 Gap at Best Solution: (%) 0.0

In [17]: | plot_schedule(x,s)

