Алгебра. Глава 12. Основы теории кодирования

Кодовое расстояние.

Введение в теорию кодирования

Основные понятия

- Для конечного **алфавита** Σ через Σ^* обозначается множество всех **слов** в этом алфавите конечных последовательностей элементов Σ .
- Пусть Σ_1 и Σ_2 два конечных алфавита. **Сообщение** произвольное слово $u \in \Sigma_1^*$.
- Мы хотим **закодировать** сообщение u в алфавите Σ_2 , то есть поставить ему в соответствие слово $F(u) \in \Sigma_2^*$, которое будет передаваться по каналам связи.
- Для этого нам нужно задать отображение $F: \Sigma_1^* \to \Sigma_2^*$, которое называется **кодирующим отображением** или просто **кодированием**.

Основные задачи теории кодирования

- **Шифрование данных:** требуется, чтобы вычисление обратного отображения F^{-1} было значительно более трудоёмким, чем вычисление F.
- Помехоустойчивое кодирование: требуется, чтобы исходное сообщение u можно было восстановить даже в том случае, если при передаче F(u) произошли ошибки (при условии, что ошибок было не слишком много).
- Сжимающие отображения: требуется, чтобы длина кодированного сообщения была как можно меньше.
- В большинстве случаев важным требованием является возможность однозначного декодирования (то есть F должно быть инъекцией). Но это требуется не всегда. Например, сжатие с потерей качества не предполагает однозначного декодирования.

Помехоустойчивое кодирование

- Мы будем рассматривать **блочное** или **равномерное** кодирование, при котором сообщение $u \in \Sigma_1^*$ разбивается на блоки длины k, каждый из которых будет закодирован словом длины n в алфавите Σ_2 .
- Для этого нам нужно задать инъекцию $c: \Sigma_1^k o \Sigma_2^n$, которая будет называться **схемой кодирования**.
- В первую очередь нас будет интересовать множество кодовых слов $C:=\mathrm{Im}(c)=\{x\in \Sigma_2^n\mid \exists u\in \Sigma_1^k(c(u)=x)\},$ которое мы будем называть просто кодом.
- Как правило, мы будем считать, что $\Sigma_1 = \Sigma_2 = \Sigma$ и k < n.

Типы ошибок

- Пусть $x=x_1\dots x_n\in \Sigma^n$. Ошибки при передаче слова x могут быть трёх типов:
 - ullet Замещение разряда: вместо символа x_i приняли другой символ x_i'
 - ullet Выпадение разряда: символ x_i не был распознан.
 - ullet Вставка разряда: между x_i и x_{i+1} прочитали "лишний" символ y.
- Мы будем рассматривать только ошибки типа замещения.

Кодовое расстояние

Определение

- Пусть Σ конечный алфавит, $n\in\mathbb{N}$ и $x=x_1\dots x_n$, $y=y_1\dots y_n\in\Sigma^n$.
- Расстоянием Хэмминга между словами x и y называется

$$d(x,y) := |\{i \in [1..n] \mid x_i \neq y_i\}|.$$

• Очевидно, выполнено неравенство треугольника:

$$d(x,y) \le d(x,z) + d(z,y).$$

• Пусть $x \in \Sigma^n$ и $r \in \mathbb{N}_0$. **Шар** с центром x и радиусом r — это множество

$$B_r(x) := \{y \in \Sigma^n \mid d(x,y) \leq r\}.$$

• Очевидно, $|B_r(x)| = \sum_{i=0}^r C_n^i (q-1)^i$, где $q = |\Sigma|$.

Определение

ullet Пусть $C\subset \Sigma^n$ — произвольный код. **Кодовое расстояние** кода C — это

$$d(C) := \min\{d(x,y) \mid x,y \in C, x \neq y\}.$$

• Кодовое расстояние схемы кодирования $c: \Sigma^k o \Sigma^n$ — это $d(c):=d(\mathrm{Im}(c)).$

Теорема 1

- Пусть при передаче сообщения длины n возникает не более r ошибок типа замещения, а для кодирования сообщений используется схема c. Тогда:
 - 1. Схема кодирования c обеспечивает гарантированное обнаружение ошибки, если и только если d(c)>r.
 - 2. Схема кодирования c обеспечивает гарантированное исправление всех ошибок, если и только если d(c)>2r.

Доказательство

- Заметим, что при передаче слова x, результат может оказаться любым словом из $B_r(x)$.
 - 1. Для гарантированного обнаружения ошибки необходимо и достаточно, чтобы никакое кодовое слово не лежало в шаре радиуса r с центром в другом кодовом слове. Но это и означает, что d(c) > r.
 - 2. Для гарантированного исправления всех ошибок необходимо и достаточно, чтобы шары радиуса r с центрами в кодовых словах не пересекались.
 - Докажем, что это эквивалентно тому, что d(c)>2r.
 - ullet Пусть $z\in B_r(x)\cap B_r(y)$. Тогда

$$d(x,y) \leq d(x,z) + d(z,y) \leq r + r = 2r.$$

Противоречие.

- $lacksymbol{\bullet}$ Пусть $d(x,y) \leq 2r.$
- Рассмотрим те разряды, в которых слово x отличается от слова y. Пусть таких разрядов $d \leq 2r$.
- ullet Заменим в слове x какие-нибудь $\lfloor d/2
 floor$ из рассматриваемых разрядов на соответствующие разряды слова y .
- ullet Получим слово z, такое, что $d(x,z) \leq r$ и $d(z,y) \leq r$. То есть $z \in B_r(x) \cap B_r(y)$.

Пример

- Простейшим примером схемы кодирования с кодовым расстоянием d является схема, при которой каждый символ повторяется d раз.
- ullet То есть слово $u=u_1u_2\dots u_k$ кодируется как

$$c(u)=u_1\ldots u_1\ u_2\ldots u_2\ldots u_k\ldots u_k.$$

• Разумеется, такая схема очень неэкономна.

Линейные коды. Параметры. Кодовое расстояние линейного кода.

Линейные коды

Определение

- Пусть q степень простого числа p и $\Sigma = F_q$.
- Множество F_q^n всех слов длины n в этом алфавите является векторным пространством размерности n над F_q .

Линейный код

- Линейное подпространство C пространства F_q^n называется линейным q-значным кодом длины n.
- В случае q=2 линейный такой код называется двоичным.
- Линейный код ${\cal C}$ имеет следующие параметры:
 - \circ длина кода n (количество символов в каждом кодовом слове);
 - ullet размерность кода $k=\dim(C)$ (как линейного пространства над F_q);
 - \circ кодовое расстояние d.
- Код C в этом случае мы будем также называть [n,k,d]-кодом. Иногда мы будем опускать параметр d и говорить об [n,k]-кодах.

Кодирование

- Пусть дан линейный q-значный [n,k,d]-код C.
- Тогда кодовые слова представляются как векторы вида $x=(x_1,x_2,\ldots,x_n)$, где $x_i\in F_{q\cdot}$
- Поскольку $\dim_{F_a} C = k$, очевидно, что $|C| = q^k$.
- Исходные сообщения также можно представлять как векторы вида $u=(u_1,u_2,\ldots,u_k)$, где $u_i\in F_{q}$.
- Схемой кодирования тогда будет линейное отображение $c:F_q^k o F_q^n$
- Нам нужно, чтобы отображение c было инъекцией, что равносильно $\ker(c) = \{0\}.$

Эквивалентность кодов

- Линейные коды C_1 и C_2 эквивалентны, если они отличаются перестановкой координат.
- У эквивалентных кодов все кодовые параметры одинаковы.

Кодовое расстояние линейного кода

Определение

- Пусть $x=(x_1,x_2,\dots,x_n)\in F_q^n$. Весом Хэмминга w(x) вектора x называется число его ненулевых координат (то есть, $w(x)=|\{i\in[1..n]:x_i\neq 0\}|$).
- Пусть $x,y\in F_q^n$. Тогда d(x,y)=w(x-y).

Лемма 1

ullet Пусть C — линейный q-значный код с кодовым расстоянием d. Тогда $d=\min\{w(x)\mid x\in C\setminus\{0\}\}.$

Доказательство

- Пусть $\min\{w(x) \mid x \in C \setminus \{0\}\} = d'$.
- Нужно доказать, что $d=d^{\prime}$.
 - $a_0 \in d \geq d'$. Рассмотрим такие векторы $x,y \in F_q^n$, что d(x,y) = d. Тогда $d = d(x,y) = w(x-y) \geq d'$.
 - $\circ \ d \leq d'$. Рассмотрим вектор $s \in F_q^n$, такой, что w(s) = d'. Тогда $d \leq d(s,0) = w(s-0) = d'$.

Скалярное произведение и ортогональное дополнение в $F_q^n.$

Определение

- Пусть $x=(x_1,x_2,\ldots,x_n),y=(y_1,y_2,\ldots,y_n)\in F_q^n.$
- Тогда **скалярным произведением** векторов x и y будем называть величину

$$\langle x,y
angle := \sum_{i=1}^n x_i y_i.$$

- Векторы $x,y\in F_q^n$ ортогональны, если $\langle x,y
 angle = 0.$
- Пусть C линейное подпространство F_q^n . Тогда **ортогональным дополнением** к C называется множество

$$C^{\perp} := \{y \in F_q^n \mid orall x \in C(\langle x,y
angle = 0)\}.$$

Теорема 2

1.
$$C^{\perp} < F_q^n$$
. Если $\dim(C) = k$, то $\dim(C^{\perp}) = n - k$.
 2. $(C^{\perp})^{\perp} = C$.

Доказательство

- 1. Пусть g_1, g_2, \dots, g_k базис C.
 - ullet Тогда $y\in C^\perp\iff \langle g_1,y
 angle=\langle g_2,y
 angle=\dots=\langle g_k,y
 angle=0.$
 - ullet Рассмотрим матрицу G, строками которой являются векторы g_1,g_2,\ldots,g_k . Её элементы будем обозначать g_{ij} .
 - ullet Это означает, что вектор y является решением ОСЛУ yG=0.
 - ullet Пространство решений этой ОСЛУ (а это C^\perp) линейное подпространство F_q^n размерности

$$n - \operatorname{rk}(G) = n - k.$$

- 2. $\,$ Из определения очевидно, что $C\subset (C^\perp)^\perp$.
 - С другой стороны,

$$\dim((C^{\perp})^{\perp}) = n - (n-k) = k = \dim(C),$$

следовательно, $C=(C^\perp)^\perp$.

Порождающая и проверочная матрицы линейного кода

Порождающая матрица линейного кода

Определение

- Пусть C линейный q-значный [n,k]-код. **Порождающей** матрицей кода C называется матрица $G \in M_{k,n}(F_q)$ (с k строками и n столбцами), строки которой образуют базис C.
- Из определения очевидно, что у любого линейного кода есть порождающая матрица и её строки линейно независимы (т.е. $\mathrm{rk}(G)=k$).
- Понятно, что порождающая матрица неединственна.

Схема кодирования

- Порождающая матрица G задаёт схему кодирования. Действительно, пусть g_1,g_2,\dots,g_k строки G и $u\in F_a^k$
- Тогда отображение \emph{c} можно определить следующим образом:

$$c(u) := \sum_{i=1}^k g_i u_i.$$

- $oldsymbol{\cdot}$ Это же отображение задаётся формулами c(u)=uG или $c(u)^T=G^Tu^T.$
- Любая схема кодирования должна переводить стандартный базис пространства F_q^k в некоторый базис подпространства C.
- Следовательно, любая схема кодирования представляется в описанном выше виде для некоторой порождающей матрицы кода C.

Проверочная матрица линейного кода

Определение

- Проверочной матрицей кода C называется матрица H размером (n-k) imes n, удовлетворяющая следующему условию:

$$orall x \in F_q^n \ (x \in C \iff Hx^T = 0).$$

• В отличие от порождающей матрицы, существование проверочной матрицы не является очевидным. Это следует из Теоремы 2.

Следствие 1

- У любого линейного q-значного кода C есть проверочная матрица.

Доказательство

- Пусть H матрица, строки которой образуют базис подпространства C^\perp .
- Поскольку $\dim(C^\perp) = n-k$, матрица H имеет размеры (n-k) imes n.
- Векторы, удовлетворяющие условию $Hx^T=0$, это в точности векторы, принадлежащие подпространству $(C^\perp)^\perp=C$.

Теорема о столбцах проверочной матрицы. Граница Синглтона.

Теорема о столбцах проверочной матрицы

Теорема 3

• Пусть H — проверочная матрица линейного кода C. Тогда код C имеет кодовое расстояние d, если и только если любые d-1 столбцов матрицы H линейно независимы и найдутся d линейно зависимых столбцов.

Доказательство

- Пусть h_1, h_2, \ldots, h_n столбцы матрицы H.
- ullet Существует вектор $a=(a_1,a_2,\ldots,a_n)\in C\setminus\{0\}$ с w(a)=d.
- Пусть $a_{i_1}, a_{i_2}, \ldots, a_{i_d}$ все ненулевые координаты a. Тогда

$$\sum_{i=1}^d a_{i_j} h_{i_j} = Ha^T = 0.$$

- Следовательно, столбцы $h_{i_1}, h_{i_2}, \ldots, h_{i_d}$ линейно зависимы.
- Наоборот, если столбцы $h_{i_1},h_{i_2},\dots,h_{i_s}$ линейно зависимы, то найдётся такой вектор $a\in F_q^n\setminus\{0\}$, что $Ha^T=0$ и $w(a)\leq s$ (ненулевые коэффициенты у a могут быть только среди $a_{i_1},a_{i_2},\dots,a_{i_s}$).
- Следовательно, $s \geq d$.

Граница Синглтона

Следствие 2

ullet (R.C.Singleton, 1964.) Для любого линейного кода C с параметрами [n,k,d] выполнено соотношение

$$n-k \ge d-1$$
.

Доказательство

- Пусть H проверочная матрица C.
- В этой матрице n-k строк, следовательно,

$$\operatorname{rk}(H) \leq n - k$$
.

- Тогда любые n-k+1 столбцов матрицы H линейно зависимы.
- По Теореме 3 (о столбцах проверочной матрицы) получаем, что $d \le n-k+1$.
- Существуют коды, для которых граница Синглтона достигается. Они называются MDS-кодами (maximum distance separable).

Граница Хэмминга и код Хэмминга.

Граница Хэмминга

Теорема 4

• Пусть $A_q(n,d)$ — наибольшая мощность q-значного кода длины n с кодовым расстоянием d и $r=\left\lfloor \frac{d-1}{2}\right\rfloor$. Тогда:

$$A_q(n,d) \leq rac{q^n}{\sum_{i=0}^r C_n^i (q-1)^i}.$$

Доказательство

- Для каждого кодового слова $x \in C$ рассмотрим шар радиуса r с центром в x:

$$B_r(x)=\{y\in F_q^n\mid d(x,y)\leq r\}.$$

• Такие шары не могут пересекаться.

Утверждение

•
$$|B_r(x)| = \sum_{i=0}^r C_n^i (q-1)^i$$
.

Доказательство

- Для каждого i от 0 до r-1 можно C_n^i способами выбрать i координат вектора x, которые будут изменены.
- Каждую координату можно изменить на q-1 другую.
- Утверждение теоремы очевидно следует из доказанного.

Совершенные коды

• Коды, для которых достигается граница Хэмминга, называются совершенными или плотно упакованными.

Двузначный код Хэмминга

Определение

- ullet Пусть q=2 и $n=2^m-1$, где $m\in\mathbb{N}.$
- Рассмотрим линейный код, задаваемый проверочной матрицей $H_m \in M_{m,n}(F_2)$, столбцы которой все 2^m-1 ненулевые векторы длины m.
- (і-й столбец представляет из себя двоичную запись числа i из m разрядов. В случае необходимости, в её начало дописывается нужное число нулей. Разряды записываются "сверху вниз" самый младший разряд должен оказаться в нижней строчке.)

Пример

H₃:

$$H_3 = egin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \ 0 & 1 & 1 & 0 & 0 & 1 & 1 \ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

Свойства

- Поскольку все столбцы различны, d=3. Получился линейный двузначный код с параметрами $[2^m-1,2^m-m-1,3]$.
- ullet Линейный код, заданный определённой выше проверочной матрицей H_m , называется кодом Хэмминга.
- Код Хэмминга является совершенным кодом.
- Действительно, $|B_1(u)| = n+1 = 2^m$ и $rac{2^n}{|B_1(u)|} = 2^k.$

Циклические коды. Теорема об идеале.

Циклические коды

Определение

• Линейный код C длины n называется циклическим, если

$$orall x_1, x_2, \ldots, x_n \ ((x_1, x_2, \ldots, x_n) \in C \implies (x_2, \ldots, x_n, x_1) \in C).$$

- Циклические коды удобно представлять при помощи многочленов.
- Будем использовать в качестве алфавита конечное поле F_p .
- Пусть $a=(a_0,a_1,\ldots,a_{n-1})\in F_p^n$ некоторое сообщение.
- Поставим ему в соответствие многочлен

$$a(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} \in F_p[x].$$

- Такие многочлены удобно рассматривать по модулю многочлена x^n-1 .
- То есть мы будем смотреть на сообщение a как на класс вычетов $\overline{a(x)} \in F_p[x]/(x^n-1).$
- Для обозначения этого класса вычетов мы, как правило, будем использовать многочлен a(x), степень которого меньше n (в каждом классе вычетов по модулю x^n-1 есть ровно один такой многочлен).
- Далее мы будем считать, что $C \subset F_p[x]/(x^n-1)$.

Циклические коды и идеалы

Теорема 5

• Подмножество $C\subset F_p[x]/(x^n-1)$ является циклическим кодом, если и только если C — идеал.

- В кольце $F_p[x]/(x^n-1)$ циклический сдвиг коэффициентов многочлена происходит при домножении на x.
- ullet А именно, если $c(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1} \in F_p[x]$, то

$$xc(x) = c_0x + c_1x^2 + \dots + c_{n-1}x^n \equiv c_{n-1} + c_0x + \dots + c_{n-2}x^{n-1} \pmod{x^n-1}.$$

Прямое доказательство (⇐)

- Пусть C идеал в $F_p[x]/(x^n-1)$.
- Тогда C линейное подпространство в $F_p[x]/(x^n-1)$.
- ullet Так как $c(x)\in C\implies xc(x)\in C$, C циклический код.

Обратное доказательство (\Rightarrow)

- Пусть C циклический код.
- ullet Тогда $0\in C$. Если $f(x),g(x)\in C$, то $f(x)\pm g(x)\in C$ и $xf(x)\in C$.
- Из этого следует, что C идеал.

Порождающий многочлен циклического кода

Порождающий многочлен циклического кода

Теорема 6

• Пусть $C\subset F_p[x]/(x^n-1)$ — циклический код, а r — минимальная степень ненулевого многочлена из C. Тогда: 1. В C есть ровно один унитарный многочлен g(x) степени r.

2.
$$x^n - 1$$
: $g(x)$.
3. $C = (g) = \{ga: a \in F_p[x], \deg(a) < n - r\}$.

Доказательство

- 1. ho Пусть $g_1,g_2\in C$, $\deg(g_1)=\deg(g_2)=r$ и g_1,g_2 унитарны.
 - ullet Тогда $g_1 g_2 \in C$ и $\deg(g_1 g_2) < r$. Следовательно, $g_1 = g_2$.
- 2. \qquad Пусть $x^n-1=g(x)h(x)+s(x)$, где $\deg(s)<\deg(g)=r$.
 - ullet Тогда $s(x)\in C$, следовательно, s(x)=0, то есть $x^n-1\dot{:}g(x).$
- - ullet Если c(x) = g(x)a(x) + s(x), где $\deg(s) < \deg(g)$, то $s(x) \in C$, откуда s(x) = 0.
 - ullet Значит, c(x) = g(x)a(x). Очевидно, $\deg(a) < n-r$.

Определение

ullet Определённый выше многочлен g(x) называется порождающим многочленом циклического кода C.

Следствие 3

• Любой унитарный делитель g(x) многочлена x^n-1 является порождающим многочленом некоторого циклического кода длины n.

- Рассмотрим идеал C:=(g) в кольце $F_p[x]/(x^n-1)$.
- Нужно доказать, что g имеет наименьшую степень среди всех ненулевых элементов этого идеала.
- Пусть $\deg(g) = r$.
- ullet Рассмотрим многочлен $f\in C.$ Тогда f=g(x)a(x), где $a\in F_p[x].$
- Поделим с остатком f=g(x)a(x) на x^n-1 :

$$g(x)a(x) = (x^n - 1)q(x) + s(x).$$

ullet Тогда $s(x)\in C$. Следовательно, $s(x)\dot{g}(x)$, а значит, либо s=0, либо $\deg(s)\geq \deg(g)=r$.

Теорема о размерности циклического кода. Порождающая матрица циклического кода.

Теорема 7

ullet Пусть $C\subset F_p[x]/(x^n-1)$ — циклический код с порождающим многочленом g и $\deg(g)=r$. Тогда $\dim(C)=n-r$.

Доказательство

• Пусть k=n-r и

$$a(x) = a_0 + a_1 x + \dots + a_{k-1} x^{k-1}$$
.

Тогда

$$g(x)a(x) = a_0 \cdot g(x) + a_1 \cdot xg(x) + \dots + a_{k-1} \cdot x^{k-1}g(x),$$

- линейная комбинация многочленов $g(x), xg(x), \ldots, x^{k-1}g(x)$.
- По пункту 3 Теоремы 6 все многочлены из C представляются в виде таких линейных комбинаций. Таким образом, $g(x), xg(x), \dots, x^{k-1}g(x)$ порождающая система в C.
- Докажем, что $g(x), xg(x), \dots, x^{k-1}g(x)$ линейно независимы.
- Если это не так, существует такой многочлен $a \neq 0$, $\deg(a) \leq k$, что

$$g(x)a(x) = a_0 \cdot g(x) + a_1 \cdot xg(x) + \dots + a_{k-1} \cdot x^{k-1}g(x) = 0$$

в $F_p[x]/(x^n-1)$. Это означает, что g(x)a(x): x^n-1 .

- Но $\deg(g(x)a(x)) < \deg(x^n-1)$, поэтому g(x)a(x) $\not|x^n-1$. Противоречие.
- ullet Таким образом, $g(x), xg(x), \ldots, x^{k-1}g(x)$ базис в C, откуда $\dim(C) = k$.

Порождающая матрица циклического кода

Теорема 8

- Пусть $g(x)=g_0+g_1x+\cdots+g_rx^r$ — порождающий многочлен циклического кода C. Тогда матрица

$$G = egin{pmatrix} g_0 & g_1 & g_2 & \dots & g_r & 0 & 0 & \dots & 0 \ 0 & g_0 & g_1 & g_2 & \dots & g_r & 0 & \dots & 0 \ dots & dots \ 0 & \dots & 0 & g_0 & g_1 & g_2 & \dots & g_r \end{pmatrix}$$

является порождающей матрицей кода C. (Матрица имеет размеры (n-r) imes n: в каждой её строке стоят r+1 коэффициент многочлена g и n-r-1 нулей.)

- Все строки матрицы принадлежат C: строка номер i соответствует многочлену $x^{i-1}g(x)$.
- Строки G линейно независимы. Действительно, $g_r=1$, поэтому последние n-r столбцов G образуют нижнетреугольную матрицу с единицами на главной диагонали.

• Поскольку $\dim(C) = n - r$, строки G образуют базис в C.

Проверочный многочлен и проверочная матрица циклического кода.

Проверочный многочлен циклического кода

Определение

- Проверочный многочлен циклического кода C это такой многочлен $h(x) \in F_p[x]$, что $g(x)h(x) = x^n 1$ (где g порождающий многочлен кода C).
- Легко видеть, что $\deg(h) = n r = k$, где $r = \deg(g)$ и $k = \dim(C)$.

Лемма 2

 $oldsymbol{\cdot}$ Пусть $c \in F_p[x]$, $\deg(c) < n$. Тогда $c \in C$, если и только если h(x)c(x): x^n-1 .

Доказательство

- ullet (\Rightarrow) Пусть $c\in C$. Тогда c(x)=g(x)a(x), где $a\in F_p[x]$.
 - Следовательно,

$$h(x)c(x)=h(x)g(x)a(x)=(x^n-1)a(x)\dot{x}^n-1.$$

- ullet (\Leftarrow) Пусть $h(x)c(x)=(x^n-1)f(x)$, где $f\in F_p[x].$
 - ullet Тогда $h(x)c(x)=(x^n-1)f(x)=h(x)g(x)f(x)$, откуда

$$c(x)=g(x)f(x)\in C.$$

Проверочная матрица циклического кода

Теорема 9

• Пусть $h(x) = h_0 + h_1 x + \dots + h_k x^k$ — проверочный многочлен циклического кода C. Тогда матрица

$$H = egin{pmatrix} 0 & 0 & \dots & 0 & h_k & \dots & h_2 & h_1 & h_0 \ 0 & \dots & 0 & h_k & \dots & h_2 & h_1 & h_0 & 0 \ dots & dots &$$

является проверочной матрицей кода C. (Матрица имеет размеры r imes n (напомним, что r=n-k), в каждой её строке стоят k+1 коэффициент многочлена h и r-1 нулей.)

- Все строки матрицы линейно независимы, поскольку $h_k = 1.$
- Пусть $c(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1} \in C$.
- По Лемме 2, c(x)h(x): x^n-1 . При этом, $\deg(ch) < n+k$.

Утверждение

• Коэффициенты при $x^k, x^{k+1}, \dots, x^{n-1}$ многочлена ch равны нулю.

Доказательство

- ullet По Лемме 2, c(x)h(x) \dot{x}^n-1 . При этом, $\deg(ch) < n+k$.
- ullet Тогда $ch=f\cdot (x^n-1)$, где $f\in F_p[x]$, $\deg(f)\leq k-1$.
- Значит, $ch = f \cdot x^n f$. Непосредственным вычитанием легко убедиться, что все коэффициенты этого многочлена степеней от $\deg(f) + 1 \le k$ до n-1 равны 0.
- Заметим, что коэффициент при x^{k+t} многочлена ch равен

$$\sum_{i=0}^{k+t} c_i h_{k+t-i}.$$

Таким образом,

$$\sum_{i=0}^{k+t} c_i h_{k+t-i} = 0$$
 при $t \in [0..r-1].$

- Но написанная выше сумма это скалярное произведение вектора c на (r-t)-ю строку матрицы H.
- Таким образом, для любого $c \in C$ вектор из коэффициентов c ортогонален всем строкам матрицы H.
- Следовательно, строки H это n-r линейно независимых векторов из C^{\perp} .
- Это означает, что строки H это базис C^{\perp} .
- По Следствию 1 тогда H проверочная матрица кода C.

Методы кодирования и декодирования циклического кода.

Циклические коды: кодирование

Несистематический кодер

- Пусть $a(x) = a_0 + a_1 x + \dots + a_{k-1} x^{k-1}$ исходное сообщение.
- Есть два способа закодировать его в сообщение $c(x) \in C.$
- Пусть g(x) порождающий многочлен кода C.
- 1. Несистематический кодер: $c(x) := a(x)g(x) \in C$.
 - \circ Этот кодер несистематический в том смысле, что коэффициенты многочлена a(x) не обязаны присутствовать среди коэффициентов многочлена c(x). Тем не менее, способ часто оказывается удобным из-за простоты кодирования.

Систематический кодер

- ullet $c(x)=x^ra(x)-s(x)$, где s(x) остаток от деления $x^ra(x)$ на g(x).
- При таком кодировании мы заменяем вектор (a_0,a_1,\ldots,a_k) на вектор $(\lambda_0,\ldots,\lambda_{r-1},a_0,a_1,\ldots,a_k)$, где

$$-s(x)=\lambda_0+\lambda_1x+\cdots+\lambda_{r-1}x^{r-1}.$$

• Поскольку $\deg(s) < r$, все коэффициенты многочлена a(x) являются коэффициентами многочлена c(x). А именно, $a_i = c_{i+r}$.

Декодирование циклического кода

- Пусть:
 - \circ a(x) исходное сообщение;
 - c(x) кодированное сообщение;
 - $\circ \ c'(x)$ принятое сообщение (возможно, содержит ошибки);
 - ullet arepsilon(x):=c'(x)-c(x) вектор ошибки.

Свойства

Тогда:

$$\varepsilon(x) \equiv c'(x) \pmod{g(x)}.$$

- Мы знаем, что количество ошибок невелико (ограничение на количество ошибок соответствует параметрам кода).
- Тогда w(arepsilon(x)) мал (не превосходит количества ошибок).
- Следовательно, многочлен $\varepsilon(x)$ можно найти, перебирая все векторы малого веса.

Нули циклического кода.

Определение

- Пусть $p\in P$. Мы будем рассматривать циклические коды над полем F_p длины $n=p^m-1$, где $m\in \mathbb{N}.$
- Тогда $(x^n-1)x=x^q-x$, где $q=p^m$. Следовательно, многочлен x^n-1 не имеет кратных корней, и его корнями являются все ненулевые элементы поля F_q .
- Нулями циклического кода ${\cal C}$ называются корни его порождающего многочлена.

Теорема 10

• Пусть C — циклический код над F_p длины $n=p^m-1$, $q=p^m$, g(x) — порождающий многочлен кода C, $\deg(g)=r$, а $\beta_1,\beta_2,\ldots,\beta_r\in F_q$ — все нули C. Пусть $f(x)\in F_p[x]$, $\deg(f)< n$. Тогда:

$$f \in C \iff f(\beta_1) = f(\beta_2) = \cdots = f(\beta_r) = 0.$$

Доказательство

- (⇒)
 - ullet По Теореме 6, $f=g\cdot a$, где $a\in F_p[x]$.
 - ullet Следовательно, $f(eta_i) = g(eta_i) \cdot a(eta_i) = 0$ при всех $i \in [1..r]$.
- (⇐)
 - ullet Разделим f на g с остатком: $f = g \cdot a + s$, где $\deg(s) < r$.
 - ullet Тогда $s(eta_i) = f(eta_i) g(eta_i) \cdot a(eta_i) = 0$ при всех $i \in [1..r]$.
 - \circ Таким образом, многочлен s(x) имеет r различных корней и при этом $\deg(s) < r.$
 - ullet Следовательно, s=0. Тогда $f(x)=g(x)\cdot a(x)\in C.$

Граница БЧХ.

Теорема 11

• Пусть C-p-значный циклический код длины $n, \alpha \in F_{p^n}$ — примитивный элемент, а g(x) — порождающий многочлен кода C. Пусть $b, \delta \in \mathbb{Z}$ таковы, что $b \geq 0, \delta > 1$ и

$$g(lpha^b)=g(lpha^{b+1})=\cdots=g(lpha^{b+\delta-2})=0.$$

Тогда кодовое расстояние $d(C) \geq \delta$.

Доказательство

- Предположим противное: пусть в C есть ненулевой элемент, вес Хэмминга которого меньше δ .
- Этому элементу соответствует многочлен

$$f(x) = c_1 x^{k_1} + c_2 x^{k_2} + \dots + c_{\delta-1} x^{k_{\delta-1}} \in C,$$

где $c_1, c_2, \dots, c_{\delta-1} \in F_p$ — не все нули.

• По Теореме 10,

$$f(lpha^b)=f(lpha^{b+1})=\cdots=f(lpha^{b+\delta-2})=0.$$

• Получаем следующие равенства:

$$egin{cases} c_1lpha^{k_1b}+c_2lpha^{k_2b}+\cdots+c_{\delta-1}lpha^{k_{\delta-1}b}=0,\ c_1lpha^{k_1(b+1)}+c_2lpha^{k_2(b+1)}+\cdots+c_{\delta-1}lpha^{k_{\delta-1}(b+1)}=0,\ \ldots\ c_1lpha^{k_1(b+\delta-2)}+c_2lpha^{k_2(b+\delta-2)}+\cdots+c_{\delta-1}lpha^{k_{\delta-1}(b+\delta-2)}=0. \end{cases}$$

- На эти равенства можно смотреть как на ОСЛУ, в которой $c_1, c_2, \dots, c_{\delta-1}$ неизвестные, а степени lpha коэффициенты.
- Так как эта ОСЛУ имеет нетривиальное решение, матрица системы вырожденная. Следовательно,

$$0 = \begin{vmatrix} \alpha^{k_1b} & \alpha^{k_2b} & \dots & \alpha^{k_{\delta-1}b} \\ \alpha^{k_1(b+1)} & \alpha^{k_2(b+1)} & \dots & \alpha^{k_{\delta-1}(b+1)} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha^{k_1(b+\delta-2)} & \alpha^{k_2(b+\delta-2)} & \dots & \alpha^{k_{\delta-1}(b+\delta-2)} \end{vmatrix} = \alpha^{(k_1+k_2+\dots+k_{\delta-1})b} \begin{vmatrix} 1 & 1 & \dots & 1 \\ \alpha^{k_1} & \alpha^{k_2} & \dots & \alpha^{k_{\delta-1}} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha^{k_1(\delta-2)} & \alpha^{k_2(\delta-2)} & \dots & \alpha^{k_{\delta-1}(\delta-2)} \end{vmatrix} \cdot = \alpha^{(k_1+k_2+\dots+k_{\delta-1})b}$$

- Последнее из написанных выше равенств это определитель Вандермонда.
- Выражение в правой части не может быть равно нулю, так как $lpha^{k_i}
 eq lpha^{k_j}$ ведь lpha примитивный элемент поля.
- Полученное противоречие завершает доказательство.

Коды БЧХ

Определение

- Кодом БЧХ над полем F_p длины $n=p^m-1$ с конструктивным расстоянием $\delta>1$ называется циклический код с порождающим многочленом наименьшей степени, корнями которого являются элементы $\alpha^b, \alpha^{b+1}, \dots, \alpha^{b+\delta-2}$, где α примитивный элемент поля F_{p^m} и $b\in\mathbb{Z}$ некоторое неотрицательное число.
- Это определение можно эквивалентно переформулировать следующим образом:
 - \circ Обозначим через $M^{(s)}(x)$ минимальный многочлен $lpha^s$.
 - ullet Пусть $d\in \mathbb{N}$ минимальное такое, что $lpha^{p^ds}=lpha^s.$
 - По Теореме 10.13 имеем:

$$M^{(s)}(x) = \prod_{i=0}^{d-1} (x - lpha^{p^i s}), \quad \deg(M^{(s)}) = d \leq m.$$

• Тогда код БЧХ над полем F_p длины $n=p^m-1$ с конструктивным расстоянием $\delta>1$ — это циклический код с порождающим многочленом:

$$g(x) := \operatorname{lcm}(M^{(b)}(x), M^{(b+1)}(x), \dots, M^{(b+\delta-2)}(x)),$$

где $b\in\mathbb{Z},b\geq0$.

Следствие 4

- Код БЧХ C над полем F_p длины $n=p^m-1$ с конструктивным расстоянием $\delta>1$ имеет параметры:

$$d > \delta$$
, $k > n - (\delta - 1)m$.

Доказательство

- По Теореме 11, $d \geq \delta$.
- Рассмотрим порождающий многочлен:

$$g(x) = ext{lcm}(M^{(b)}(x), M^{(b+1)}(x), \dots, M^{(b+\delta-2)}(x))$$

кодаC.

• Заметим, что по доказанному выше:

$$\deg(g) \leq \deg(M^{(b)}) + \deg(M^{(b+1)}) + \cdots + \deg(M^{(b+\delta-2)}) \leq (\delta-1)m.$$

Тогда:

$$k = n - \deg(g) \ge n - (\delta - 1)m$$
.

Коды Рида-Соломона

Определение

- Пусть $p \in P, m \in \mathbb{N}, q = p^m > 2, lpha$ примитивный элемент поля F_q .
- Код Рида-Соломона это код БЧХ длины q-1 над полем F_p с порождающим многочленом:

$$g(x) = (x - \alpha^b)(x - \alpha^{b+1})\dots(x - \alpha^{b+\delta-2}),$$

где $b,\delta\in\mathbb{Z},b\geq 0$ и $\delta>1$.

Следствие 5

• Код Рида-Соломона имеет параметры:

$$n=q-1, \quad k=n-\delta+1, \quad d=\delta=n-k+1.$$

- $k = n \deg(g) = n \delta + 1$.
- $d \geq \delta$ по Теореме 11 (о границе БЧХ).
- Вспомним, что $n-k \geq d-1$ по Следствию 2 (о границе Синглтона). Следовательно, $d \leq \delta$.
- Таким образом, $d=\delta$.
- ullet Код Рида-Соломона является MDS-кодом: он достигает границу Синглтона.