Your Name:	Signature:	
TA Name:	Drill Time:	
Quiz 10 (Take Home) Math 2574: Calculus III <u>Due:</u> Submit via Gradescope by Thursday, 4/30/20		
Instructions: CLEARLY SHOW ALL YOUR WORK. Put a box around your final answer.		

This quiz is due by **Tuesday, April 21.** You will submit your work via Gradescope. Remember, the *process* and techniques for finding the right answer are typically more important than the answer itself.

1. [4 points] Let S be the portion of the plane z=8-x-2y that lies in the first octant. Evaluate the surface integral

 $\iint_{S} e^{z} dS.$

2. [4 points] Let S be the portion of the surface $z = \cos y$ with $0 \le x \le 4$ and $-\pi \le y \le \pi$. Find the flux of $\vec{F} = \langle e^{-y}, 2z, xy \rangle$ through S:

$$\iint_{S} \vec{F} \cdot \vec{n} \ dS.$$

3. [4 points] Let $\vec{F} = \langle 2z, -4x, 3y \rangle$ and let S be the portion of the sphere $x^2 + y^2 + z^2 = 169$ that lies above the plane z = 12. Use any results you wish to compute

$$\iint_{S} (\nabla \times \vec{F}) \cdot \vec{n} \ dS.$$

4. [4 points] Let $\vec{F} = \langle x^2 - z^2, y, 2xz \rangle$ and let C be the triangle in \mathbb{R}^3 with vertices (4,0,0), (0,4,0), (0,0,4), oriented counterclockwise. Use any results you wish to compute

$$\oint_C \vec{F} \cdot d\vec{r}.$$

5. [4 points] Let S be the boundary of the solid region in the first octant that lies between the planes z=4-x-y and z=2-x-y; S has five "sides". Let $\vec{F}=\langle x^2,-y^2,z^2\rangle$. Use any results you wish to compute the flux of \vec{F} through S:

$$\iint_{S} \vec{F} \cdot \vec{n} \ dS.$$