Training Logs and Model Evaluation Notes

Training Log Table

Model	Key Changes	Accuracy	Loss	Notes and Observations
Variant		(Val)	(Val)	
LSTM v1	2 stacked LSTM layers (128 + 64), batch size = 128	86.3%	0.41	Strong accuracy, but training time was long; showed signs of overfitting.
GRU v1	Replaced LSTM with GRU layers (same size)	84.9%	0.45	Trained ~25% faster; slight accuracy drop; less overfitting.
LSTM v2	Reduced to 1 LSTM layer (64 units), batch size = 256	85.7%	0.39	Faster training and more stable validation loss; improved runtime efficiency.
LSTM v3 + XLA	Enabled XLA JIT + mixed precision	85.5%	0.40	Training speed improved significantly with no loss in accuracy.
LSTM v4 (final)	Same as v3 with learning rate tuning (0.001 → 0.0005)	86.8%	0.38	Best performance; balanced training time, accuracy, and generalisation.

Observations

- Increasing dropout to 0.4 led to underfitting; validation accuracy dropped to ~83%.
- Using mixed precision and XLA together resulted in \sim 40% reduction in training time.
- GRU layers offered a faster alternative, but LSTM consistently performed better on WISDM data.
- Larger batch sizes (256) helped improve training throughput without hurting performance.
- Early stopping with patience = 3 helped prevent overfitting and saved training time.

Parameter	Values Tried	Best Performing Value	Parameter
Learning Rate	0.01, 0.001, 0.0005	0.0005	Learning Rate
Dropout Rate	0.2, 0.3, 0.4	0.3	Dropout Rate
Batch Size	64, 128, 256	256	Batch Size
Optimizer	Adam, RMSprop	Adam	Optimizer
Parameter	Values Tried	Best Performing Value	Parameter

This table summarizes the hyperparameter tuning process carried out during model optimization. The selected best-performing values were chosen based on validation accuracy and training time trade-offs. These results demonstrate my iterative tuning and model refinement efforts