习题讨论课10题目:数项级数

热身:应该熟知一些例子

例 1. 设级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则必收敛的级数为(

(A)
$$\sum_{n=1}^{\infty} (-1)^n \frac{u_n}{n}$$
 (B) $\sum_{n=1}^{\infty} u_n^2$ (C) $\sum_{n=1}^{\infty} (u_n - u_{2n})$ (D) $\sum_{n=1}^{\infty} (u_n + u_{n+1})$

例 2. 设 $0 < a_n < \frac{1}{n}$ 则下列级数中肯定收敛的是(

(A)
$$\sum_{n=1}^{\infty} a_n$$
; (B) $\sum_{n=1}^{\infty} (-1)^n a_n$; (C) $\sum_{n=1}^{\infty} \sqrt{a_n}$; (D) $\sum_{n=1}^{\infty} a_n^2 \ln n$

例 3. 设正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 则()。
(A) 极限 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ 小于1;
(B) 极限 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ 小于等于1;
(C) 若极限 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ 存在, 其值小于1;
(D) 若极限 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ 存在, 其值小于等于1。

Cauchy 收敛准则

例 4. 设常数 $\lambda \neq 0$, $a_n > 0$, 级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 则级数 $\sum_{n=1}^{\infty} (-1)^n (n \tan \frac{\lambda}{n}) a_{2n}$

(A) 绝对收敛。(B) 条件收敛。(C) 发散。(D) 收敛性与λ有关。

例 5. 设正项级数 $\sum_{n=0}^{\infty} x_n$ 收敛, $\{x_n\}$ 单调减,利用 Cauchy 收敛原理证明: $\lim_{n\to+\infty} nx_n = 0$

D'Alembert 比值判别法与 Cauchy 根式判别法

例 6. 判断 $\sum_{n=1}^{\infty} \frac{a^n n!}{n^n}$ 的收敛性。

例 7.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4^n \sin^{2n} x}{n}$$

比较法对条件收敛失效

例 8. 若级数 $\sum_{n=1}^{\infty} x_n$ 收敛, $\lim_{n\to+\infty} \frac{x_n}{y_n} = 1$ 。 问级数 $\sum_{n=1}^{\infty} y_n$ 是否收敛?

Leibniz, Dirichlet, Abel 判别法

例 9. 设 $a_n > 0$,单调减,且级数 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散,试问 $\sum_{n=1}^{\infty} \left(\frac{1}{a_n+1}\right)^n$ 是否收

例 10.
$$\sum_{n=1}^{\infty} \frac{\sin(n+1)x\cos(n-1)x}{n^p}$$

例 11.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \frac{a}{1+a^n} (a>0).$$

例 12. 已知任意项级数 $\sum_{n=1}^{\infty} x_n$ 发散,证明级数 $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right) x_n$ 也发散。

Taylor 展开和比阶法

例 13. 设 $a_n > 0$, p > 0, $\lim_{n \to \infty} \left[n^p (e^{\frac{1}{n}} - 1) a_n \right] = 1$, 若级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则 p 的取值范围是()。

例 14. 设参数 $a \neq 0$,则 $\sum\limits_{n=1}^{\infty} \sin(\pi \sqrt{n^2 + a^2})$ 收敛性的结论是((A) 绝对收敛。(B) 条件收敛。(C) 发散。(D) 与参数a取值有关。

例 15. 设 p > 0。 讨论级数 $\sum_{n=1}^{\infty} \ln \left(1 + \frac{(-1)^n}{n^p}\right)$ 的收敛性。

例 16. 设 $f \in \mathcal{C}^2[-1,1]$,且 $\lim_{x\to 0} \frac{f(x)}{x} = 0$ 。证明级数 $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ 绝对收敛。

例 17. $\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{x}{n}$;

例 18. (常数项级数和积分的估值) 设 $a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$, 讨论级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^p}$ 的收 敛性。

计算级数的和

例 19. 己知
$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n = 2$$
, $\sum_{n=1}^{\infty} u_{2n-1} = 5$,则 $\sum_{n=1}^{\infty} u_n = ($

例 20. 设两条抛物线 $y = nx^2 + \frac{1}{n}$ 和 $y = (n+1)x^2 + \frac{1}{n+1}$,记它们交点坐标的 绝对值为 a_n 。

- (1) 求这两条抛物线所围成的平面图形的面积; (2) 求级数 $\sum_{n=1}^{\infty} \frac{S_n}{a_n}$ 的和。

例 21. 利用 $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n \to \gamma \ (n \to \infty)$, 其中 γ 是 Euler 常数,求 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ 的下述更序级数的和: $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + \dots$ 。