$\label{lem:machine-learning-cheat-sheet} soulmachine@gmail.com$

Machine Learning Cheat Sheet

Classical equations, diagrams and tricks in machine learning

November 27, 2013

©2013 soulmachine

Except where otherwise noted, This document is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA3.0) license

(http://creativecommons.org/licenses/by/3.0/).

Preface

This cheat sheet contains many classical equations and diagrams on machine learning, which will help you quickly recall knowledge and ideas on machine learning.

The cheat sheet will also appeal to someone who is preparing for a job interview related to machine learning. This cheat sheet has three significant advantages:

- 1. Strong typed. Compared to programming languages, mathematical formulas are weekly typed. For example, *X* can be a set, a random variable, or a matrix. This causes difficulty in understanding the meaning of formulas. In this cheat sheet, I try my best to standardize symbols used, see section §.
- 2. More parentheses. In machine leaning, authors are prone to omit parentheses, brackets and braces, this usually causes ambiguity in mathematical formulas. In this cheat sheet, I use parentheses(brackets and braces) at where they are needed, to make formulas easy to understand.
- 3. Less thinking jumps. In many books, authors are prone to omit some steps that are trivial in his option. But it often makes readers get lost in the middle way of derivation.

At Tsinghua University, May 2013

soulmachine

Contents

Co	Contents							
No	tation .			хi				
1	Intro	Introduction						
	1.1		of machine learning	1				
	1.2	• 1	elements of a machine learning model	1				
		1.2.1	Representation	1				
		1.2.2	Evaluation	1				
		1.2.3	Optimization	3				
	1.3	Cross	validation	3				
	1.4		Regression	3				
2	Prob	ahility		5				
_	2.1		entists vs. Bayesians	5				
	2.2		f review of probability theory	5				
	2.2	2.2.1	Basic concepts	5				
		2.2.2	Mutivariate random variables	6				
		2.2.3	Bayes rule	6				
		2.2.4	Independence and conditional independence	7				
		2.2.5	Quantiles	7				
		2.2.6	Mean and variance	7				
	2.3		common discrete distributions	7				
		2.3.1	The Bernoulli and binomial distributions	8				
		2.3.2	The multinoulli and multinomial distributions	8				
		2.3.3	The Poisson distribution	8				
		2.3.4	The empirical distribution	9				
	2.4	Some of	common continuous distributions	9				
		2.4.1	Gaussian (normal) distribution	9				
		2.4.2	Student's t-distribution	9				
		2.4.3	The Laplace distribution	10				
		2.4.4		11				
		2.4.5	The beta distribution	11				
		2.4.6	Pareto distribution	12				
	2.5	Joint p	robability distributions	13				
		2.5.1	Covariance and correlation	13				
		2.5.2	Multivariate Gaussian distribution	14				
		2.5.3	Multivariate Student's t-distribution	15				
		2.5.4	Dirichlet distribution	15				

vi	Preface

	2.6		ormations of random variables				
		2.6.1	Linear transformations				
		2.6.2	General transformations				
		2.6.3		18			
	2.7		11	18			
	2.8		•	18			
		2.8.1	1 🗸	18			
		2.8.2	KL divergence				
		2.8.3	Mutual information	19			
3	Perce	eptron		21			
	3.1		entation				
	3.2	-	tion				
	3.3		zation				
		3.3.1	Primal form				
		3.3.2	Dual form				
4			ighbors				
	4.1		entation				
	4.2		tion				
	4.3	Optimi	zation	25			
5	K-M	Means Clustering					
	5.1		entation				
	5.2		tion				
	5.3		zation				
	5.4						
		5.4.1	Choosing <i>k</i>	28			
		5.4.2	Choosing the initial centroids(seeds)				
	5.5	Referer	nce	28			
	NT - !	. D		20			
6							
	6.1		entation				
	6.2		tion				
	6.3	Optimi	zation	29			
7	Decis	sion Tree		31			
8	Line	ar Regre	ssion	33			
	8.1	U		33			
	8.2	-		33			
	8.3			34			
		8.3.1		34			
		8.3.2	*	35			
0		-41 - D		27			
9	Logis 9.1			37 37			
	7.1	9.1.1		37			
		9.1.1	•	37			
		9.1.2		37			
		1.1.3	Ориниганон	31			

Prefa	ace		vii
10	Supp	ort Vector Machines	39
10	10.1		39
	1011		39
		1	39
	10.2		39
			39
		10.2.2 Evaluation	39
	10.3	Primal form with regularization	40
	10.0	10.3.1 Representation	40
		10.3.2 Evaluation	40
	10.4	Dual form with regularization	40
		10.4.1 Representation	40
		10.4.2 Evaluation	40
	10.5	Hinge Loss.	40
	10.6	Kernels	41
	10.7		41
	10.7	Optimization	••
11	AdaB	oost	43
	11.1	Representation	43
	11.2	Evaluation	43
	11.3	Optimization	43
			43
		11.3.2 Output	
		11.3.3 Algorithm	
	11.4	The upper bound of the training error of AdaBoost	44
12	DM a	Leavister.	15
12		lgorithm	
	12.1	Jensen's inequality	45 45
			45
	12.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45
	12.2 12.3	EM algorithm	45
	12.3	Examples	47
	12.4	12.4.1 Gaussian mixture model	47
	12.5	Generalization of EM Algorithm	
	12.3	12.5.1 F function's maximization-maximization algorithm	
		12.5.2 The Generalized EM Algorithm(GEM)	52
	12.6	Reference	
	12.0	Reference	32
13	Hidde	en markov Model	53
14	•		55
	14.1	Chain rule	55
	14.2		55
	14.3	DGM	55
	14.4	Inference	55
	14.5	Learning	55
		14.5.1 MAP	55
		14.5.2 Learning from complete data	56
		14.5.3 Multinoulli Learning	56
	14.6	T	56
	14.7		56
	14.8	Reference	56
15	Cond	itional Dandom Field	57
15	Cona	itional Random Field	3/

4	Opti	nization	methods	59
	A.1	Gradier	nt descent	59
		A.1.1	Stochastic gradient descent	59
		A.1.2	Batch gradient descent	59
	A.2		ge duality	
		A.2.1	Primal form	59
		A.2.2	Dual form	59

List of Contributors

Wei Zhang

PhD candidate at the Institute of Software, Chinese Academy of Sciences (ISCAS), Beijing, P.R.CHINA, e-mail: zh3feng@gmail.com, has written chapters of Naive Bayes and SVM.

Fei Pan

Master at Beijing University of Technology, Beijing, P.R.CHINA, e-mail: example@gmail.com, has written chapters of KMeans, AdaBoost.

Yong Li

PhD candidate at the Institute of Automation of the Chinese Academy of Sciences (CASIA), Beijing, P.R.CHINA, e-mail: liyong3forever@gmail.com, has written chapters of Logistic Regression.

Jiankou Li

PhD candidate at the Institute of Software, Chinese Academy of Sciences (ISCAS), Beijing, P.R.CHINA, e-mail: lijiankoucoco@163.com, has written chapters of BayesNet.

Notation

Introduction

It is very difficult to come up with a single, consistent notation to cover the wide variety of data, models and algorithms that we discuss. Furthermore, conventions difer between machine learning and statistics, and between different books and papers. Nevertheless, we have tried to be as consistent as possible. Below we summarize most of the notation used in this book, although individual sections may introduce new notation. Note also that the same symbol may have different meanings depending on the context, although we try to avoid this where possible.

General math notation

Symbol	Meaning
x	Floor of <i>x</i> , i.e., round down to nearest integer
$\begin{bmatrix} x \end{bmatrix}$	Ceiling of x , i.e., round down to nearest integer
$oldsymbol{x} \otimes oldsymbol{y}$	Convolution of x and y
$oldsymbol{x}\odotoldsymbol{y}$	Hadamard (elementwise) product of x and y
$a \wedge b$	logical AND
$a \lor b$	logical OR
$\neg a$	logical NOT
$\mathbb{I}(x)$	Indicator function, $\mathbb{I}(x) = 1$ if x is true, else $\mathbb{I}(x) = 0$
∞	Infinity
\rightarrow	Tends towards, e.g., $n \rightarrow \infty$
∝	Proportional to, so $y = ax$ can be written as $y \propto x$
x	Absolute value
$ \mathcal{S} $	Size (cardinality) of a set
n!	Factorial function
∇	Vector of first derivatives
$ abla^2$	Hessian matrix of second derivatives
\triangleq	Defined as
$O(\cdot)$	Big-O: roughly means order of magnitude
\mathbb{R}	The real numbers
1 : <i>n</i>	Range (Matlab convention): $1: n = 1, 2,, n$
\approx	Approximately equal to
$arg \max f(x)$	Argmax: the value x that maximizes f
B(a,b)	Beta function, $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$

xii Notation

$B(oldsymbol{lpha})$	Multivariate beta function, $\frac{\prod\limits_{k}\Gamma(lpha_{k})}{\Gamma(\sum\limits_{k}lpha_{k})}$
$\binom{n}{k}$	n choose k , equal to $n!/(k!(nk)!)$
$\delta(x)$	Dirac delta function, $\delta(x) = \infty$ if $x = 0$, else $\delta(x) = 0$
exp(x)	Exponential function e^x
$\Gamma(x)$	Gamma function, $\Gamma(x) = \int_0^\infty u^{x-1} e^{-u} du$
$\Psi(x)$	Digamma function, $Psi(x) = \frac{d}{dx} \log \Gamma(x)$
\mathcal{X}	A set from which values are drawn (e.g., $\mathcal{X} = \mathbb{R}^D$)

Linear algebra notation

We use boldface lower-case to denote vectors, such as x, and boldface upper-case to denote matrices, such as X. We denote entries in a matrix by non-bold upper case letters, such as X_{ij} . Vectors are assumed to be column vectors, unless noted otherwise.

Symbol	Meaning
$X \succ 0$	X is a positive definite matrix
$tr(\boldsymbol{X})$	Trace of a matrix
det(X)	Determinant of matrix X
$ m{X} $	Determinant of matrix X
$oldsymbol{X}^{-1}$	Inverse of a matrix
$oldsymbol{X}^\dagger$	Pseudo-inverse of a matrix
$oldsymbol{X}^T$	Transpose of a matrix
$oldsymbol{x}^T$	Transpose of a vector
diag(x)	Diagonal matrix made from vector x
diag(X)	Diagonal vector extracted from matrix X
$oldsymbol{I}$ or $oldsymbol{I}_d$	Identity matrix of size $d \times d$ (ones on diagonal, zeros of)
1 or 1_d	Vector of ones (of length d)
0 or 0_d	Vector of zeros (of length d)
x = x	Euclidean or ℓ_2 norm $\sqrt{\sum_{j=1}^d x_j^2}$
$\left \left oldsymbol{x} ight ight _{1}$	$\ell_1 \text{ norm } \sum_{i=1}^d x_i $
$oldsymbol{X}_{:,j}$	jth column of matrix
$X_{i,:}$	transpose of ith row of matrix (a column vector)
$oldsymbol{X}_{i,j}$	Element (i, j) of matrix X
$oldsymbol{x} \otimes oldsymbol{y}$	Tensor product of x and y

Probability notation

We denote random and fixed scalars by lower case, random and fixed vectors by bold lower case, and random and fixed matrices by bold upper case. Occasionally we use non-bold upper case to denote scalar random variables. Also, we use p() for both discrete and continuous random variables

Symbol	Meaning
X,Y	Random variable

Notation xiii

P()	Probability of a random event
F()	Cumulative distribution function(CDF), also called distribution function
p(x)	Probability mass function(PMF)
f(x)	probability density function(PDF)
F(x,y)	Joint CDF
p(x,y)	Joint PMF
f(x,y)	Joint PDF
p(X Y)	Conditional PMF, also called conditional probability
$f_{X Y}(x y)$	Conditional PDF
$X \perp Y$	X is independent of Y
$X \not\perp Y$	X is not independent of Y
$X \perp Y Z$	X is conditionally independent of Y given Z
$X \not\perp Y Z$	X is not conditionally independent of Y given Z
$X \sim p$	X is distributed according to distribution <i>p</i>
lpha	Parameters of a Beta or Dirichlet distribution
cov[X]	Covariance of X
$\mathbb{E}[X]$	Expected value of X
$\mathbb{E}_q[X]$	Expected value of X wrt distribution q
	Entropy of distribution $p(X)$
$\mathbb{I}(X;Y)$	Mutual information between X and Y
$\mathbb{KL}(p q)$	KL divergence from distribution p to q
$\ell(oldsymbol{ heta})$	Log-likelihood function
$L(\theta,a)$	Loss function for taking action a when true state of nature is θ
λ	Precision (inverse variance) $\lambda = 1/\sigma^2$
Λ	Precision matrix $\Lambda = \Sigma^{-1}$
$mode[m{X}]$	Most probable value of X
μ	Mean of a scalar distribution
$\mu_{ar{-}}$	Mean of a multivariate distribution
Φ	cdf of standard normal
$oldsymbol{\phi}$	pdf of standard normal
π	multinomial parameter vector, Stationary distribution of Markov chain
ρ	Correlation coefficient
sigm(x)	Sigmoid (logistic) function, $\frac{1}{1+e^{-x}}$
σ^2	Variance
${oldsymbol \Sigma}$	Covariance matrix
var[x]	Variance of <i>x</i>
ν	Degrees of freedom parameter
Z	Normalization constant of a probability distribution

Machine learning/statistics notation

In general, we use upper case letters to denote constants, such as C, K, M, N, T, etc. We use lower case letters as dummy indexes of the appropriate range, such as c=1:C to index classes, i=1:M to index data cases, j=1:N to index input features, k=1:K to index states or clusters, t=1:T to index time, etc.

We use x to represent an observed data vector. In a supervised problem, we use y or y to represent the desired output label. We use z to represent a hidden variable. Sometimes we also use q to represent a hidden discrete variable.

Symbol	Meaning
\overline{C}	Number of classes
D	Dimensionality of data vector (number of features)

xiv Notation

```
N
               Number of data cases
N_c
               Number of examples of class c, N_c = \sum_{i=1}^{N} \mathbb{I}(y_i = c)
               Number of outputs (response variables)
R
\mathcal{D}
               Training data \mathcal{D} = \{(\boldsymbol{x}_i, y_i) | i = 1 : N\}
\mathcal{D}_{test}
               Test data
\mathcal{X}
               Input space
\mathcal{Y}
               Output space
K
               Number of states or dimensions of a variable (often latent)
               Kernel function
k(x,y)
\boldsymbol{K}
               Kernel matrix
\mathcal{H}
               Hypothesis space
L
               Loss function
J(\boldsymbol{\theta})
               Cost function
               Decision function
f(\boldsymbol{x})
P(y|x)
               TODO
λ
               Strength of \ell_2 or \ell_1 regularizer
\phi(x)
               Basis function expansion of feature vector x
Φ
               Basis function expansion of design matrix X
q()
               Approximate or proposal distribution
Q(\boldsymbol{\theta}, \boldsymbol{\theta}_{old}) Auxiliary function in EM
               Length of a sequence
T(\mathcal{D})
               Test statistic for data
\boldsymbol{T}
               Transition matrix of Markov chain
\theta
               Parameter vector
\boldsymbol{\theta}^{(s)}
               s'th sample of parameter vector
\hat{\boldsymbol{\theta}}
               Estimate (usually MLE or MAP) of \theta
\hat{\boldsymbol{\theta}}_{MLE}
               Maximum likelihood estimate of \theta
\hat{m{	heta}}_{MAP}
               MAP estimate of \theta
               Estimate (usually posterior mean) of \theta
               Vector of regression weights (called \beta in statistics)
\boldsymbol{w}
b
               intercept (called \varepsilon in statistics)
W
               Matrix of regression weights
               Component (i.e., feature) j of data case i, for i = 1: N, j = 1: D
x_{ij}
               Training case, i = 1:N
\boldsymbol{x}_i
\boldsymbol{X}
               Design matrix of size N \times D
               Empirical mean \bar{\boldsymbol{x}} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_i
ar{m{x}}
	ilde{m{x}}
               Future test case
               Feature test case
oldsymbol{x}_*
               Vector of all training labels y = (y_1, ..., y_N)
\boldsymbol{y}
               Latent component j for case i
z_{ij}
```

Chapter 1 Introduction

1.1 Types of machine learning

1.2 Three elements of a machine learning model

Model = Representation + Evaluation + Optimization¹

1.2.1 Representation

In supervised learning, a model must be represented as a conditional probability distribution P(y|x) (usually we call it classifier) or a decision function f(x). The set of classifiers (or decision functions) is called the hypothesis space of the model. Choosing a representation for a model is tantamount to choosing the hypothesis space that it can possibly learn.

1.2.2 Evaluation

In the hypothesis space, an evaluation function (also called objective function or risk function) is needed to distinguish good classifiers(or decision functions) from bad ones.

1.2.2.1 Loss function and risk function

Definition 1.1. In order to measure how well a function fits the training data, a **loss function** $L: Y \times Y \to R \ge 0$ is defined. For training example (x_i, y_i) , the loss of predicting the value \hat{y} is $L(y_i, \hat{y})$.

¹ Domingos, P. A few useful things to know about machine learning. Commun. ACM. 55(10):7887 (2012).

The following is some common loss functions:

1. 0-1 loss function
$$L(Y, f(X)) = I(Y, f(X)) = \begin{cases} 1, & Y = f(X) \\ 0, & Y \neq f(X) \end{cases}$$

- 2. Quadratic loss function $L(Y, f(X)) = (Y f(X))^2$
- 3. Absolute loss function L(Y, f(X)) = |Y f(X)|
- 4. Logarithmic loss function $L(Y, P(Y|X)) = -\log P(Y|X)$

Definition 1.2. The risk of function f is defined as the expected loss of f:

$$R_{exp}(f) = E_p[L(Y, f(X))] = \int_{X \times Y} L(y, f(x)) P(x, y) dx dy$$
 (1.1)

which is also called expected loss or risk function.

Definition 1.3. The risk function $R_{exp}(f)$ can be estimated from the training data as

$$R_{emp}(f) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i))$$
 (1.2)

which is also called empirical loss or empirical risk.

You can define your own loss function, but if you're a novice, you're probably better off using one from the literature. There are conditions that loss functions should meet²:

- 1. They should approximate the actual loss you're trying to minimize. As was said in the other answer, the standard loss functions for classification is zero-one-loss (misclassification rate) and the ones used for training classifiers are approximations of that loss.
- 2. The loss function should work with your intended optimization algorithm. That's why zero-one-loss is not used directly: it doesn't work with gradient-based optimization methods since it doesn't have a well-defined gradient (or even a subgradient, like the hinge loss for SVMs has).

The main algorithm that optimizes the zero-one-loss directly is the old perceptron algorithm(chapter §3).

1.2.2.2 ERM and SRM

Definition 1.4. ERM(Empirical risk minimization)

$$\min_{f \in \mathcal{F}} R_{emp}(f) = \min_{f \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i))$$
(1.3)

Definition 1.5. Structural risk

$$R_{smp}(f) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i)) + \lambda J(f)$$
(1.4)

Definition 1.6. SRM(Structural risk minimization)

$$\min_{f \in \mathcal{F}} R_{srm}(f) = \min_{f \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i)) + \lambda J(f)$$
(1.5)

² http://t.cn/zTrDxLO

1.2.3 Optimization

Finally, we need a **training algorithm**(also called **learning algorithm**) to search among the classifiers in the the hypothesis space for the highest-scoring one. The choice of optimization technique is key to the **efficiency** of the model.

1.3 Cross validation

Definition 1.7. Cross validation, sometimes called *rotation estimation*, is a *model validation* technique for assessing how the results of a statistical analysis will generalize to an independent data set³.

Common types of cross-validation:

- 1. K-fold cross-validation. In k-fold cross-validation, the original sample is randomly partitioned into k equal size subsamples. Of the k subsamples, a single subsample is retained as the validation data for testing the model, and the remaining k 1 subsamples are used as training data.
- 2. 2-fold cross-validation. Also, called simple cross-validation or holdout method. This is the simplest variation of k-fold cross-validation, k=2.
- 3. Leave-one-out cross-validation(*LOOCV*). k=M, the number of original samples.

1.4 Linear Regression

Given

$$\mathcal{D} = \{(\boldsymbol{x}_{i}, y_{i}) | i = 1 : M\}$$

$$\mathcal{H} = \{f(\boldsymbol{x}_{i}) = \boldsymbol{w}^{T} \boldsymbol{x}_{i} + b | i = 1 : M\}$$

$$L(\boldsymbol{w}, b) = \sum_{i=1}^{M} (y_{i} - f(\boldsymbol{x}_{i}) - b)^{2}$$

$$(1.6)$$

Let $\widehat{\boldsymbol{w}} = \left(\boldsymbol{w}^T, b\right)^T$, and

$$\widehat{\boldsymbol{X}} = \begin{pmatrix} \widehat{\boldsymbol{x}}_{1}^{T} \\ \widehat{\boldsymbol{x}}_{2}^{T} \\ \vdots \\ \widehat{\boldsymbol{x}}_{M}^{T} \end{pmatrix}, where \ \widehat{\boldsymbol{x}}_{i} = \left(\boldsymbol{x}_{i}^{T}, 1\right)^{T}$$

$$(1.7)$$

We can get

$$L(\widehat{\boldsymbol{w}}) = \left(\boldsymbol{y} - \widehat{\boldsymbol{X}}\widehat{\boldsymbol{w}}\right)^T \left(\boldsymbol{y} - \widehat{\boldsymbol{X}}\widehat{\boldsymbol{w}}\right)$$

$$\frac{\partial L}{\partial \widehat{\boldsymbol{w}}} = -2\widehat{\boldsymbol{X}}^T \boldsymbol{y} + 2\widehat{\boldsymbol{X}}^T \widehat{\boldsymbol{X}}\widehat{\boldsymbol{w}} = 0$$

$$\widehat{\boldsymbol{X}}^T \boldsymbol{y} = \widehat{\boldsymbol{X}}^T \widehat{\boldsymbol{X}}\widehat{\boldsymbol{w}}$$

$$\widehat{\boldsymbol{w}} = \left(\widehat{\boldsymbol{X}}^T \widehat{\boldsymbol{X}}\right)^{-1} \widehat{\boldsymbol{X}}^T \boldsymbol{y}$$

$$(1.8)$$

If $\widehat{X}^T \widehat{X}$ is singular, the pseudo-inverse can be used, or else the technique of ridge regression described below can be applied.

http://en.wikipedia.org/wiki/Cross-validation_(statistics)

Chapter 2 Probability

2.1 Frequentists vs. Bayesians

what is probability? **frequentist** interpretation vs. **Bayesian** interpretation.

One big advantage of the Bayesian interpretation is that it can be used to model our uncertainty about events that do not have long term frequencies.

Therefore most machine learning books adopt the Bayesian interpretation. Fortunately, the basic rules of probability theory are the same, no matter which interpretation is adopted.

2.2 A brief review of probability theory

2.2.1 Basic concepts

We denote a random event by defining a **random variable** X.

Descrete random variable: X can take on any value from a finite or countably infinite set.

Continuous random variable: the value of *X* is real-valued.

2.2.1.1 CDF

$$F(x) \triangleq P(X \le x) = \begin{cases} \sum_{u \le x} p(u), & \text{descrete random variable} \\ \int_{-\infty}^{x} f(u) du, & \text{continuous random variable} \end{cases}$$
 (2.1)

2.2.1.2 PMF and PDF

For descrete random variable, We denote the probability of the event that X = x by P(X = x), or just p(x) for short. Here p(x) is called a **probability mass function** or **PMF**.A probability mass function is a function that gives the probability that a discrete random variable is exactly equal to some value⁴. This satisfies the properties $0 \le p(x) \le 1$ and $\sum_{x \in \mathcal{X}} p(x) = 1$.

For continuous variable, in the equation $F(x) = \int_{-\infty}^{x} f(u)du$, the function f(x) is called a **probability density function** or **PDF**. A probability density function is a function that describes the relative likelihood for this random variable to take on a given value⁵. This satisfies the properties $f(x) \ge 0$ and $\int_{-\infty}^{\infty} f(x)dx = 1$.

⁴ http://en.wikipedia.org/wiki/Probability_mass_function

⁵ http://en.wikipedia.org/wiki/Probability_density_function

2.2.2 Mutivariate random variables

2.2.2.1 Joint CDF

We denote joint CDF by $F(x,y) \triangleq P(X \le x \cap Y \le y) = P(X \le x, Y \le y)$.

$$F(x,y) \triangleq P(X \le x, Y \le y) = \begin{cases} \sum_{u \le x, v \le y} p(u, v), & \text{descrete} \\ \int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) du dv, & \text{continuous} \end{cases}$$
 (2.2)

product rule:

$$p(X,Y) = P(X|Y)P(Y)$$
(2.3)

Chain rule:

$$p(X_{1:N}) = p(X_1)p(X_2|X_1)p(X_3|X_2,X_1)...p(X_N|X_{1:N-1})$$
(2.4)

2.2.2.2 Marginal distribution

Marginal CDF:

$$\begin{cases} F_X(x) \triangleq F(x, +\infty) = \begin{cases} \sum_{x_i \leq x} P(X = x_i) = \sum_{x_i \leq x} \sum_{j=1}^{+\infty} P(X = x_i, Y = y_j), & \text{descrete} \\ \int_{-\infty}^x f_X(u) du = \int_{-\infty}^x \int_{-\infty}^{+\infty} f(u, v) du dv, & \text{continuous} \end{cases} \\ F_Y(y) \triangleq F(+\infty, y) = \begin{cases} \sum_{y_j \leq y} P(Y = y_j) = \sum_{i=1}^{+\infty} \sum_{y_j \leq y} P(X = x_i, Y = y_j), & \text{descrete} \\ \int_{-\infty}^y f_Y(v) dv = \int_{-\infty}^{+\infty} \int_{-\infty}^y f(u, v) du dv, & \text{continuous} \end{cases}$$
(2.5)

Marginal PMF or PDF:

$$\begin{cases}
P(X = x_i) = \sum_{j=1}^{+\infty} P(X = x_i, Y = y_j), & \text{descrete} \\
f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy, & \text{continuous} \\
P(Y = y_j) = \sum_{i=1}^{+\infty} P(X = x_i, Y = y_j), & \text{descrete} \\
f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx, & \text{continuous}
\end{cases} \tag{2.6}$$

2.2.2.3 Conditional distribution

Conditional PMF:

$$p(X = x_i | Y = y_j) = \frac{p(X = x_i, Y = y_j)}{p(Y = y_j)} \text{ if } p(Y) > 0$$
(2.7)

The pmf p(X|Y) is called **conditional probability**.

Conditional PDF:

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$
 (2.8)

2.2.3 Bayes rule

$$p(Y = y|X = x) = \frac{p(X = x, Y = y)}{p(X = x)} = \frac{p(X = x|Y = y)p(Y = y)}{\sum_{y'} p(X = x|Y = y')p(Y = y')}$$
(2.9)

2.2.3.1 Example: Generative classifiers

$$p(y = c|X, \boldsymbol{\theta}) = \frac{p(X|y = c, \boldsymbol{\theta})p(y = c|\boldsymbol{\theta})}{\sum_{c'} p(X|y = c', \boldsymbol{\theta})p(y = c'|\boldsymbol{\theta})}$$
(2.10)

This is called a **generative classifier**, since it specifies how to generate the data using the class conditional density p(x|y=c) and the class prior p(y=c). An alternative approach is to directly fit the class posterior, p(y=c|x); this is known as a **discriminative classifier**.

2.2.4 Independence and conditional independence

We say X and Y are unconditionally independent or marginally independent, denoted $X \perp Y$, if we can represent the joint as the product of the two marginals, i.e.,

$$X \perp Y = P(X,Y) = P(X)P(Y) \tag{2.11}$$

We say X and Y are conditionally independent(CI) given Z if the conditional joint can be written as a product of conditional marginals:

$$X \perp Y|Z = P(X,Y|Z) = P(X|Z)P(Y|Z)$$
 (2.12)

2.2.5 Quantiles

Since the cdf F is a monotonically increasing function, it has an inverse; let us denote this by F^{-1} . If F is the cdf of X, then $F^{-1}(\alpha)$ is the value of x_{α} such that $P(X \le x_{\alpha}) = \alpha$; this is called the α quantile of F. The value $F^{-1}(0.5)$ is the **median** of the distribution, with half of the probability mass on the left, and half on the right. The values $F^{-1}(0.25)$ and $F^{1}(0.75)$ are the lower and upper **quartiles**.

2.2.6 Mean and variance

The most familiar property of a distribution is its **mean**,or **expected value**, denoted by μ . For discrete rvs, it is defined as $\mathbb{E}[X] \triangleq \sum_{x \in \mathcal{X}} xp(x)$, and for continuous rvs, it is defined as $\mathbb{E}[X] \triangleq \int_{\mathcal{X}} xp(x)dx$. If this integral is not finite, the mean is not defined (we will see some examples of this later).

The **variance** is a measure of the spread of a distribution, denoted by σ^2 . This is defined as follows:

$$var[X] = \mathbb{E}[(X - \mu)^2] = \int (x - \mu)^2 p(x) dx$$
 (2.13)

$$= \int x^2 p(x) dx \int \mu^2 p(x) dx - 2\mu \int x p(x) dx = \mathbb{E}[X^2] - \mu^2$$
 (2.14)

from which we derive the useful result

$$\mathbb{E}[X^2] = \sigma^2 + \mu^2 \tag{2.15}$$

The standard deviation is defined as

$$std[X] \triangleq \sqrt{var[X]}$$
 (2.16)

This is useful since it has the same units as *X* itself.

2.3 Some common discrete distributions

In this section, we review some commonly used parametric distributions defined on discrete state spaces, both finite and countably infinite.

2.3.1 The Bernoulli and binomial distributions

Definition 2.1. Now suppose we toss a coin only once. Let $X \in \{0,1\}$ be a binary random variable, with probability of success or heads of θ . We say that X has a **Bernoulli distribution**. This is written as $X \sim \text{Ber}(\theta)$, where the pmf is defined as

$$p(x) \triangleq \theta^{\mathbb{I}(x=1)} (1-\theta)^{\mathbb{I}(x=0)}$$
(2.17)

Definition 2.2. Suppose we toss a coin n times. Let $X \in \{0, 1, \dots, n\}$ be the number of heads. If the probability of heads is θ , then we say X has a **binomial distribution**, written as $X \sim \text{Bin}(n, \theta)$. The pmf is given by

$$p(k) \triangleq \binom{n}{k} \theta^k (1 - \theta)^{n-k} \tag{2.18}$$

2.3.2 The multinoulli and multinomial distributions

Definition 2.3. The Bernoulli distribution can be used to model the outcome of one coin tosse. To model the outcome of tossing a K-sided die, let $x = (\mathbb{I}(x=1), \cdots, \mathbb{I}(x=K)) \in \{0,1\}^K$ be a random vector(this is called **dummy encoding** or **one-hot encoding**), then we say X has a **multinoulli distribution**(or **categorical distribution**), written as $X \sim \text{Cat}(\theta)$. The pmf is given by:

$$p(\boldsymbol{x}) \triangleq \prod_{k=1}^{K} \theta_{j}^{\mathbb{I}(x_{j}=1)}$$
 (2.19)

Definition 2.4. Suppose we toss a K-sided die n times. Let $x = (x_1, x_2, \dots, x_K) \in \{0, 1, \dots, n\}^K$ be a random vector, where x_j is the number of times side j of the die occurs, then we say X has a **multinomial distribution**, written as $X \sim \text{Mu}(n, \theta)$. The pmf is given by

$$p(\boldsymbol{x}) \triangleq \binom{n}{x_1 \cdots x_k} \prod_{k=1}^K \theta_j^{x_j} \quad \text{where} \binom{n}{x_1 \cdots x_k} \triangleq \frac{n!}{x_1! x_2! \cdots x_K!}$$
 (2.20)

Bernoulli distribution is just a special case of a Binomial distribution with n = 1, and so is multinoulli distribution as to multinomial distribution. See Table 2.2 for a summary.

Table 2.1: Summary of the multinomial and related distributions.

Name	K	n	X
Bernoulli	1	1	$x \in \{0,1\}$
Binomial	1	-	$\boldsymbol{x} \in \{0, 1, \cdots, n\}$
Multinoulli	-	1	$x \in \{0,1\}^K, \sum_{k=1}^K x_k = 1$
Multinomial	-	-	$\boldsymbol{x} \in \{0, 1, \cdots, n\}^K, \sum_{k=1}^K x_k = n$

2.3.3 The Poisson distribution

Definition 2.5. We say that $X \in \{0, 1, 2, \dots\}$ has a **Poisson distribution** with parameter $\lambda > 0$, written $X \sim \text{Poi}(\lambda)$, if its pmf is

$$p(x|\lambda) = e^{-\lambda} \frac{\lambda^x}{x!}$$
 (2.21)

The first term is just the normalization constant, required to ensure the distribution sums to 1.

The Poisson distribution is often used as a model for counts of rare events like radioactive decay and traffic accidents.

 $\begin{array}{|c|c|c|c|c|}\hline \text{Name} & \text{Written as} & X & p(x)(\text{or }p(x)) & \mathbb{E}[X] \text{ var}[X]\\ \hline \\ \text{Bernoulli} & X \sim \text{Ber}(\theta) & x \in \{0,1\} & \theta^{\mathbb{I}(x=1)}(1-\theta)^{\mathbb{I}(x=0)} & \theta & \theta(1-\theta)\\ \\ \text{Binomial} & X \sim \text{Bin}(n,\theta) & x \in \{0,1,\cdots,n\} & \binom{n}{k} \theta^k (1-\theta)^{n-k} & n\theta & n\theta(1-\theta)\\ \\ \text{Multinoulli} & X \sim \text{Cat}(\theta) & x \in \{0,1\}^K, \sum_{k=1}^K x_k = 1 & \prod\limits_{k=1}^K \theta^{\mathbb{I}(x_j=1)}_j & - & -\\ \\ \text{Multinomial} & X \sim \text{Mu}(n,\theta) & x \in \{0,1,\cdots,n\}^K, \sum_{k=1}^K x_k = n \begin{pmatrix} n \\ x_1 \cdots x_k \end{pmatrix} \prod\limits_{k=1}^K \theta^{x_j}_j & - & -\\ \\ \text{Poisson} & X \sim \text{Poi}(\lambda) & x \in \{0,1,2,\cdots\} & e^{-\lambda} \frac{\lambda^x}{x!} & \lambda & \lambda \\ \hline \end{array}$

Table 2.2: Summary of Bernoulli, binomial multinoulli and multinomial distributions.

2.3.4 The empirical distribution

2.4 Some common continuous distributions

In this section we present some commonly used univariate (one-dimensional) continuous probability distributions.

2.4.1 Gaussian (normal) distribution

Table 2.3: Summary of Gaussian distribution.

Name	Written as	f(x)	$\mathbb{E}[X]$	mode	var[X]
Gaussian distribution	n $X \sim \mathcal{N}(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$	μ	μ	σ^2

If $X \sim N(0, 1)$, we say X follows a **standard normal** distribution.

The Gaussian distribution is the most widely used distribution in statistics. There are several reasons for this.

- 1. First, it has two parameters which are easy to interpret, and which capture some of the most basic properties of a distribution, namely its mean and variance.
- 2. Second,the central limit theorem (Section TODO) tells us that sums of independent random variables have an approximately Gaussian distribution, making it a good choice for modeling residual errors or noise.
- Third, the Gaussian distribution makes the least number of assumptions (has maximum entropy), subject to the constraint of having a specified mean and variance, as we show in Section TODO; this makes it a good default choice in many cases.
- 4. Finally, it has a simple mathematical form, which results in easy to implement, but often highly effective, methods, as we will see.

See (Jaynes 2003, ch 7) for a more extensive discussion of why Gaussians are so widely used.

2.4.2 Student's t-distribution

Table 2.4: Summary of Student's t-distribution.

Name	Written as	f(x)	$\mathbb{E}[X]$	mode	var[X]
Student's t-distributio	n $X \sim \mathcal{T}(\mu, \sigma^2, v)$	$\frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})}\left[1+\frac{1}{\nu}\left(\frac{x-\mu}{\nu}\right)^2\right]$	μ	μ	$\frac{v\sigma^2}{v-2}$

where $\Gamma(x)$ is the gamma function:

$$\Gamma(x) \triangleq \int_0^\infty u^{x-1} e^{-u} dx \tag{2.22}$$

 μ is the mean, $\sigma^2 > 0$ is the scale parameter, and $\nu > 0$ is called the **degrees of freedom**. See Figure 2.1 for some plots.

Fig. 2.1: (a) The pdfs for a $\mathcal{N}(0,1)$, $\mathcal{T}(0,1,1)$ and $Lap(0,1/\sqrt{2})$. The mean is 0 and the variance is 1 for both the Gaussian and Laplace. The mean and variance of the Student is undefined when v = 1.(b) Log of these pdfs. Note that the Student distribution is not log-concave for any parameter value, unlike the Laplace distribution, which is always log-concave (and log-convex...) Nevertheless, both are unimodal.

The variance is only defined if v > 2. The mean is only defined if v > 1.

As an illustration of the robustness of the Student distribution, consider Figure 2.2. We see that the Gaussian is affected a lot, whereas the Student distribution hardly changes. This is because the Student has heavier tails, at least for small ν (see Figure 2.1).

If v = 1, this distribution is known as the **Cauchy** or **Lorentz** distribution. This is notable for having such heavy tails that the integral that defines the mean does not converge.

To ensure finite variance, we require v > 2. It is common to use v = 4, which gives good performance in a range of problems (Lange et al. 1989). For $v \gg 5$, the Student distribution rapidly approaches a Gaussian distribution and loses its robustness properties.

2.4.3 The Laplace distribution

Table 2.5: Summary of Laplace distribution.

Name	Written as	f(x)	$\mathbb{E}[X]$	mode	var[X]
Laplace distribution	$X \sim \text{Lap}(\mu, b)$	$\frac{1}{2b} \exp\left(-\frac{ x-\mu }{b}\right)$	μ	μ	$2b^2$

Fig. 2.2: Illustration of the effect of outliers on fitting Gaussian, Student and Laplace distributions. (a) No outliers (the Gaussian and Student curves are on top of each other). (b) With outliers. We see that the Gaussian is more affected by outliers than the Student and Laplace distributions.

Here μ is a location parameter and b > 0 is a scale parameter. See Figure 2.1 for a plot.

Its robustness to outliers is illustrated in Figure 2.2. It also put mores probability density at 0 than the Gaussian. This property is a useful way to encourage sparsity in a model, as we will see in Section TODO.

2.4.4 The gamma distribution

Table 2.6: Summary of gamma distribution

Name	Written as	X	f(x)	$\mathbb{E}[X]$	mode	var[X]
Gamma distribution	$X \sim \operatorname{Ga}(a,b)$	$x \in \mathbb{R}^+$	$\frac{b^a}{\Gamma(a)} x^{a-1} e^{-xb}$	$\frac{a}{b}$	$\frac{a-1}{b}$	$\frac{a}{b^2}$

Here a > 0 is called the shape parameter and b > 0 is called the rate parameter. See Figure 2.3 for some plots.

2.4.5 The beta distribution

Table 2.7: Summary of Beta distribution

Name	Written as	X	f(x)	$\mathbb{E}[X]$	mode	var[X]
Beta distribution	$X \sim \operatorname{Beta}(a,b)$	$\alpha \in [0,1]$	$\frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1}$	$\frac{a}{a+b}$	$\frac{a-1}{a+b-2}$	$\frac{ab}{(a+b)^2(a+b+1)}$

Here B(a,b) is the beta function,

$$B(a,b) \triangleq \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$
 (2.23)

See Figure 2.4 for plots of some beta distributions. We require a, b > 0 to ensure the distribution is integrable (i.e., to ensure B(a,b) exists). If a = b = 1, we get the uniform distribution. If a and b are both less than 1, we get a bimodal distribution with spikes at 0 and 1; if a and b are both greater than 1, the distribution is unimodal.

Fig. 2.3: Some Ga(a, b = 1) distributions. If $a \le 1$, the mode is at 0, otherwise it is > 0. As we increase the rate b, we reduce the horizontal scale, thus squeezing everything leftwards and upwards. (b) An empirical pdf of some rainfall data, with a fitted Gamma distribution superimposed.

Fig. 2.4: Some beta distributions.

2.4.6 Pareto distribution

Table 2.8: Summary of Pareto distribution

Name	Written as	X	f(x)	$\mathbb{E}[X]$	mode	var[X]
Pareto distribution	$X \sim \operatorname{Pareto}(k, m)$	$x \ge m$	$km^k x^{-(k+1)} \mathbb{I}(x \ge m)$	$\frac{km}{k-1} \text{ if } k > 1$	m	$\frac{m^2k}{(k-1)^2(k-2)} \text{ if } k > 2$

The **Pareto distribution** is used to model the distribution of quantities that exhibit **long tails**, also called **heavy tails**.

As $k \to \infty$, the distribution approaches $\delta(x-m)$. See Figure 2.5(a) for some plots. If we plot the distribution on a log-log scale, it forms a straight line, of the form $\log p(x) = a \log x + c$ for some constants a and c. See Figure 2.5(b) for an illustration (this is known as a **power law**).

Fig. 2.5: (a) The Pareto distribution Pareto(x|m,k) for m=1. (b) The pdf on a log-log scale.

2.5 Joint probability distributions

Given a multivariate random variable or random vector ${}^6X \in \mathbb{R}^D$, the joint probability distribution 7 is a probability distribution that gives the probability that each of X_1, X_2, \dots, X_D falls in any particular range or discrete set of values specified for that variable. In the case of only two random variables, this is called a **bivariate distribution**, but the concept generalizes to any number of random variables, giving a **multivariate distribution**.

The joint probability distribution can be expressed either in terms of a **joint cumulative distribution function** or in terms of a **joint probability density function** (in the case of continuous variables) or **joint probability mass function** (in the case of discrete variables).

2.5.1 Covariance and correlation

Definition 2.6. The **covariance** between two rvs X and Y measures the degree to which X and Y are (linearly) related. Covariance is defined as

$$Cov[X,Y] \triangleq \mathbb{E}\left[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) \right] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$
(2.24)

Definition 2.7. If *X* is a *D*-dimensional random vector, its **covariance matrix** is defined to be the following symmetric, positive definite matrix:

$$Cov[X] \triangleq \mathbb{E}\left[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T \right]$$
 (2.25)

$$= \begin{pmatrix} \operatorname{var}[X_{1}] & \operatorname{Cov}[X_{1}, X_{2}] & \cdots & \operatorname{Cov}[X_{1}, X_{D}] \\ \operatorname{Cov}[X_{2}, X_{1}] & \operatorname{var}[X_{2}] & \cdots & \operatorname{Cov}[X_{2}, X_{D}] \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}[X_{D}, X_{1}] & \operatorname{Cov}[X_{D}, X_{2}] & \cdots & \operatorname{var}[X_{D}] \end{pmatrix}$$

$$(2.26)$$

Definition 2.8. The (Pearson) **correlation coefficient** between *X* and *Y* is defined as

$$\operatorname{corr}[X,Y] \triangleq \frac{\operatorname{Cov}[X,Y]}{\sqrt{\operatorname{var}[X],\operatorname{var}[Y]}}$$
 (2.27)

A correlation matrix has the form

⁶ http://en.wikipedia.org/wiki/Multivariate_random_variable

⁷ http://en.wikipedia.org/wiki/Joint_probability_distribution

$$\mathbf{R} \triangleq \begin{pmatrix} \operatorname{corr}[X_1, X_1] & \operatorname{corr}[X_1, X_2] & \cdots & \operatorname{corr}[X_1, X_D] \\ \operatorname{corr}[X_2, X_1] & \operatorname{corr}[X_2, X_2] & \cdots & \operatorname{corr}[X_2, X_D] \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{corr}[X_D, X_1] & \operatorname{corr}[X_D, X_2] & \cdots & \operatorname{corr}[X_D, X_D] \end{pmatrix}$$

$$(2.28)$$

The correlation coefficient can viewed as a degree of linearity between X and Y, see Figure 2.6.

Fig. 2.6: Several sets of (x, y) points, with the Pearson correlation coefficient of x and y for each set. Note that the correlation reflects the noisiness and direction of a linear relationship (top row), but not the slope of that relationship (middle), nor many aspects of nonlinear relationships (bottom). N.B.: the figure in the center has a slope of 0 but in that case the correlation coefficient is undefined because the variance of Y is

zero.Source:http://en.wikipedia.org/wiki/Correlation

Uncorrelated does not imply independent. For example, let $X \sim U(-1,1)$ and $Y = X^2$. Clearly Y is dependent on X (in fact, Y is uniquely determined by X), yet one can show that $\operatorname{corr}[X,Y] = 0$. Some striking examples of this fact are shown in Figure 2.6. This shows several data sets where there is clear dependence between X and Y, and yet the correlation coefficient is 0. A more general measure of dependence between random variables is mutual information, see Section TODO.

2.5.2 Multivariate Gaussian distribution

The **multivariate Gaussian** or **multivariate normal**(MVN) is the most widely used joint probability density function for continuous variables. We discuss MVNs in detail in Chapter 4; here we just give some definitions and plots. The pdf of the MVN in *D* dimensions is defined by the following:

$$\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) \triangleq \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right]$$
(2.29)

where $\mu = \mathbb{E}[X] \in \mathbb{R}^D$ is the mean vector, and $\Sigma = \text{Cov}[X]$ is the $D \times D$ covariance matrix. The normalization constant $(2\pi)^{D/2} |\Sigma|^{1/2}$ just ensures that the pdf integrates to 1.

Figure 2.7 plots some MVN densities in 2d for three different kinds of covariance matrices. A full covariance matrix has A D(D+1)/2 parameters (we divide by 2 since Σ is symmetric). A diagonal covariance matrix has D parameters, and has 0s in the off-diagonal terms. A spherical or isotropic covariance, $\Sigma = \sigma^2 I_D$, has one free parameter.

Fig. 2.7: We show the level sets for 2d Gaussians. (a) A full covariance matrix has elliptical contours.(b) A diagonal covariance matrix is an axis aligned ellipse. (c) A spherical covariance matrix has a circular shape. (d) Surface plot for the spherical Gaussian in (c).

2.5.3 Multivariate Student's t-distribution

A more robust alternative to the MVN is the multivariate Student's t-distribution, whose pdf is given by

$$\mathcal{T}(x|\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{v}) \triangleq \frac{\Gamma(\frac{\boldsymbol{v}+\boldsymbol{D}}{2})}{\Gamma(\frac{\boldsymbol{v}}{2})} \frac{|\boldsymbol{\Sigma}|^{-\frac{1}{2}}}{(\boldsymbol{v}\boldsymbol{\pi})^{\frac{D}{2}}} \left[1 + \frac{1}{\boldsymbol{v}} (\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) \right]^{-\frac{\boldsymbol{v}+\boldsymbol{D}}{2}}$$
(2.30)

$$= \frac{\Gamma\left(\frac{\mathbf{v}+D}{2}\right)}{\Gamma\left(\frac{\mathbf{v}}{2}\right)} \frac{|\Sigma|^{-\frac{1}{2}}}{(\mathbf{v}\pi)^{\frac{D}{2}}} \left[1 + (\mathbf{x} - \boldsymbol{\mu})^T \mathbf{V}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right]^{-\frac{\mathbf{v}+D}{2}}$$
(2.31)

where Σ is called the scale matrix (since it is not exactly the covariance matrix) and $V = v\Sigma$. This has fatter tails than a Gaussian. The smaller v is, the fatter the tails. As $v \to \infty$, the distribution tends towards a Gaussian. The distribution has the following properties

mean =
$$\mu$$
, mode = μ , Cov = $\frac{v}{v-2}\Sigma$ (2.32)

2.5.4 Dirichlet distribution

A multivariate generalization of the beta distribution is the **Dirichlet distribution**, which has support over the probability simplex, defined by

$$S_K = \left\{ x : 0 \le x_k \le 1, \sum_{k=1}^K x_k = 1 \right\}$$
 (2.33)

The pdf is defined as follows:

$$Dir(\boldsymbol{x}|\boldsymbol{\alpha}) \triangleq \frac{1}{B(\boldsymbol{\alpha})} \prod_{k=1}^{K} x_k^{\alpha_k - 1} \mathbb{I}(\boldsymbol{x} \in S_K)$$
 (2.34)

where $B(\alpha_1, \alpha_2, \dots, \alpha_K)$ is the natural generalization of the beta function to K variables:

$$B(\alpha) \triangleq \frac{\prod k = 1^K \Gamma(\alpha_k)}{\Gamma(\alpha_0)} \text{ where } \alpha_0 \triangleq \sum_{k=1}^K \alpha_k$$
 (2.35)

Figure 2.8 shows some plots of the Dirichlet when K=3, and Figure 2.9 for some sampled probability vectors. We see that α_0 controls the strength of the distribution (how peaked it is), and thekcontrol where the peak occurs. For example, Dir(1,1,1) is a uniform distribution, Dir(2,2,2) is a broad distribution centered at (1/3,1/3,1/3), and Dir(20,20,20) is a narrow distribution centered at (1/3,1/3,1/3). If $\alpha_k < 1$ for all k, we get spikes at the corner of the simplex.

Fig. 2.8: (a) The Dirichlet distribution when K=3 defines a distribution over the simplex, which can be represented by the triangular surface. Points on this surface satisfy $0 \le \theta_k \le 1$ and $\sum_{k=1}^K \theta_k = 1$. (b) Plot of the Dirichlet density when $\alpha = (2,2,2)$. (c) $\alpha = (20,2,2)$.

For future reference, the distribution has these properties

$$\mathbb{E}(x_k) = \frac{\alpha_k}{\alpha_0}, \, \mathsf{mode}[x_k] = \frac{\alpha_k - 1}{\alpha_0 - K}, \, \mathsf{var}[x_k] = \frac{\alpha_k(\alpha_0 - \alpha_k)}{\alpha_0^2(\alpha_0 + 1)}$$
 (2.36)

Fig. 2.9: Samples from a 5-dimensional symmetric Dirichlet distribution for different parameter values. (a) $\alpha = (0.1, \cdots, 0.1)$. This results in very sparse distributions, with many 0s. (b) $\alpha = (1, \cdots, 1)$. This results in more uniform (and dense) distributions.

2.6 Transformations of random variables

If $x \sim P()$ is some random variable, and y = f(x), what is the distribution of Y? This is the question we address in this section.

2.6.1 Linear transformations

Suppose g() is a linear function:

$$g(x) = Ax + b \tag{2.37}$$

First, for the mean, we have

$$\mathbb{E}[y] = \mathbb{E}[Ax + b] = A\mathbb{E}[x] + b \tag{2.38}$$

this is called the linearity of expectation.

For the covariance, we have

$$Cov[y] = Cov[Ax + b] = A\Sigma A^{T}$$
(2.39)

2.6.2 General transformations

If X is a discrete rv, we can derive the pmf for y by simply summing up the probability mass for all the xs such that f(x) = y:

$$p_Y(y) = \sum_{x:g(x)=y} p_X(x)$$
 (2.40)

If X is continuous, we cannot use Equation (2.40) since $p_X(x)$ is a density, not a pmf, and we cannot sum up densities. Instead, we work with cdfs, and write

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = \int_{g(X) \le y} f_X(x) dx$$
 (2.41)

We can derive the pdf of *Y* by differentiating the cdf:

$$f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right| \tag{2.42}$$

This is called **change of variables** formula. We leave the proof of this as an exercise.

For example, suppose $X \sim U(1,1)$, and $Y = X^2$. Then $p_Y(y) = \frac{1}{2}y^{-\frac{1}{2}}$.

2.6.3 Central limit theorem

Theorem 2.1. Given N random variables X_1, X_2, \dots, X_N , each variable is **independent and identically distributed**(iid for short), and each has the same mean μ and variance σ^2 , then

$$\frac{\sum\limits_{i=1}^{n} X_i - N\mu}{\sqrt{N}\sigma} \sim \mathcal{N}(0,1) \tag{2.43}$$

this can also be written as

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{N}} \sim \mathcal{N}(0, 1) \text{ where } \bar{X} \triangleq \frac{1}{N} \sum_{i=1}^{n} X_i$$
 (2.44)

2.7 Monte Carlo approximation

In general, computing the distribution of a function of an rv using the change of variables formula can be difficult. One simple but powerful alternative is as follows. First we generate S samples from the distribution, call them x_1, \dots, x_S . (There are many ways to generate such samples; one popular method, for high dimensional distributions, is called Markov chain Monte Carlo or MCMC; this will be explained in Chapter TODO.) Given the samples, we can approximate the distribution of f(X) by using the empirical distribution of f(X) by using the empirical distribution of f(X) and f(X) by using the empirical distribution of f(X) are called a **Monte Carlo approximation**, named after a city in Europe known for its plush gambling casinos.

We can use Monte Carlo to approximate the expected value of any function of a random variable. We simply draw samples, and then compute the arithmetic mean of the function applied to the samples. This can be written as follows:

$$\mathbb{E}[g(X)] = \int g(x)p(x)dx \approx \frac{1}{S} \sum_{s=1}^{S} f(x_s) \text{, where } x_s \sim p(X)$$
 (2.45)

This is called **Monte Carlo integration**⁹, and has the advantage over numerical integration (which is based on evaluating the function at a fixed grid of points) that the function is only evaluated in places where there is non-negligible probability.

2.8 Information theory

2.8.1 Entropy

The entropy of a random variable X with distribution p, denoted by $\mathbb{H}(X)$ or sometimes $\mathbb{H}(p)$, is a measure of its uncertainty. In particular, for a discrete variable with K states, it is defined by

⁸ http://en.wikipedia.org/wiki/Monte_Carlo_method

⁹ http://en.wikipedia.org/wiki/Monte_Carlo_integration

$$\mathbb{H}(X) \triangleq -\sum_{k=1}^{K} p(X=k) \log_2 p(X=k)$$
(2.46)

Usually we use log base 2, in which case the units are called **bits**(short for binary digits). If we use log base e, the units are called **nats**.

The discrete distribution with maximum entropy is the uniform distribution (see Section XXX for a proof). Hence for a K-ary random variable, the entropy is maximized if p(x = k) = 1/K; in this case, $\mathbb{H}(X) = \log_2 K$.

Conversely, the distribution with minimum entropy (which is zero) is any **delta-function** that puts all its mass on one state. Such a distribution has no uncertainty.

2.8.2 KL divergence

One way to measure the dissimilarity of two probability distributions, p and q, is known as the **Kullback-Leibler divergence**(**KL divergence**)or **relative entropy**. This is defined as follows:

$$\mathbb{KL}(P||Q) \triangleq \sum_{x} p(x) \log_2 \frac{p(x)}{q(x)}$$
(2.47)

where the sum gets replaced by an integral for pdfs¹⁰. The KL divergence is only defined if P and Q both sum to 1 and if q(x) = 0 implies p(x) = 0 for all x(absolute continuity). If the quantity $0 \ln 0$ appears in the formula, it is interpreted as zero because $\lim_{x\to 0} x \ln x$. We can rewrite this as

$$\mathbb{KL}(p||q) \triangleq \sum_{x} p(x) \log_2 p(x) - \sum_{k=1}^{K} p(x) \log_2 q(x) = \mathbb{H}(p) - \mathbb{H}(p,q)$$
(2.48)

where $\mathbb{H}(p,q)$ is called the **cross entropy**,

$$\mathbb{H}(p,q) = \sum_{x} p(x) \log_2 q(x) \tag{2.49}$$

One can show (Cover and Thomas 2006) that the cross entropy is the average number of bits needed to encode data coming from a source with distribution p when we use model q to define our codebook. Hence the regular entropy $\mathbb{H}(p) = \mathbb{H}(p,p)$, defined in section §2.8.1,is the expected number of bits if we use the true model, so the KL divergence is the difference between these. In other words, the KL divergence is the average number of *extra* bits needed to encode the data, due to the fact that we used distribution q to encode the data instead of the true distribution p.

The extra number of bits interpretation should make it clear that $\mathbb{KL}(p||q) \ge 0$, and that the KL is only equal to zero if q = p. We now give a proof of this important result.

Theorem 2.2. (*Information inequality*) $\mathbb{KL}(p||q) \ge 0$ with equality iff p = q.

One important consequence of this result is that the discrete distribution with the maximum entropy is the uniform distribution.

2.8.3 Mutual information

Definition 2.9. Mutual information or MI, is defined as follows:

$$\mathbb{I}(X;Y) \triangleq \mathbb{KL}(P(X,Y)||P(X)P(X)) = \sum_{x} \sum_{y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$
(2.50)

¹⁰ The KL divergence is not a distance, since it is asymmetric. One symmetric version of the KL divergence is the **Jensen-Shannon divergence**, defined as $JS(p_1, p_2) = 0.5 \mathbb{KL}(p_1||q) + 0.5 \mathbb{KL}(p_2||q)$, where $q = 0.5p_1 + 0.5p_2$

We have $\mathbb{I}(X;Y) \ge 0$ with equality if P(X,Y) = P(X)P(Y). That is, the MI is zero if the variables are independent.

To gain insight into the meaning of MI, it helps to re-express it in terms of joint and conditional entropies. One can show that the above expression is equivalent to the following:

$$\mathbb{I}(X;Y) = \mathbb{H}(X) - \mathbb{H}(X|Y) \tag{2.51}$$

$$= \mathbb{H}(Y) - \mathbb{H}(Y|X) \tag{2.52}$$

$$= \mathbb{H}(X) + \mathbb{H}(Y) - \mathbb{H}(X,Y) \tag{2.53}$$

$$= \mathbb{H}(X,Y) - \mathbb{H}(X|Y) - \mathbb{H}(Y|X) \tag{2.54}$$

where $\mathbb{H}(X)$ and $\mathbb{H}(Y)$ are the **marginal entropies**, $\mathbb{H}(X|Y)$ and $\mathbb{H}(Y|X)$ are the **conditional entropies**, and $\mathbb{H}(X,Y)$ is the **joint entropy** of X and Y, see Fig. 2.10¹¹.

Fig. 2.10: Individual $\mathbb{H}(X)$, $\mathbb{H}(Y)$, joint $\mathbb{H}(X,Y)$, and conditional entropies for a pair of correlated subsystems X,Y with mutual information $\mathbb{I}(X;Y)$.

Intuitively, we can interpret the MI between X and Y as the reduction in uncertainty about X after observing Y, or, by symmetry, the reduction in uncertainty about Y after observing X.

A quantity which is closely related to MI is the **pointwise mutual information** or **PMI**. For two events (not random variables) *x* and *y*, this is defined as

$$PMI(x,y) \triangleq \log \frac{p(x,y)}{p(x)p(y)} = \log \frac{p(x|y)}{p(x)} = \log \frac{p(y|x)}{p(y)}$$

$$(2.55)$$

This measures the discrepancy between these events occurring together compared to what would be expected by chance. Clearly the MI of X and Y is just the expected value of the PMI. Interestingly, we can rewrite the PMI as follows:

$$PMI(x,y) = \log \frac{p(x|y)}{p(x)} = \log \frac{p(y|x)}{p(y)}$$
 (2.56)

This is the amount we learn from updating the prior p(x) into the posterior p(x|y), or equivalently, updating the prior p(y) into the posterior p(y|x).

¹¹ http://en.wikipedia.org/wiki/Mutual_information

Chapter 3

Perceptron

3.1 Representation

$$\mathcal{H}: y = f(\boldsymbol{x}) = \operatorname{sign}(\boldsymbol{w}^T \boldsymbol{x} + b)$$
(3.1)

where $sign(x) = \begin{cases} +1, & x \ge 0 \\ -1, & x < 0 \end{cases}$, see Fig. 3.1¹².

Fig. 3.1: Perceptron

3.2 Evaluation

$$L(\boldsymbol{w},b) = -y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) \tag{3.2}$$

$$L(\boldsymbol{w},b) = -y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b)$$

$$R_{emp}(f) = -\sum_i y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b)$$
(3.2)
(3.3)

(3.4)

¹² https://en.wikipedia.org/wiki/Perceptron

3.3 Optimization

3.3.1 Primal form

Stochastic gradient descent, the pseudo code is as follows:

```
\begin{array}{l} \boldsymbol{w} \leftarrow 0; \ b \leftarrow 0; \ k \leftarrow 0; \\ \textbf{while } \textit{no mistakes made within the for loop } \textbf{do} \\ \textbf{for } i \leftarrow 1 \ \textbf{to } N \ \textbf{do} \\ \textbf{if } y_i(\boldsymbol{w} \cdot \boldsymbol{x}_i + b) \leq 0 \ \textbf{then} \\ \boldsymbol{w} \leftarrow \boldsymbol{w} + \eta y_i \boldsymbol{x}_i; \\ \boldsymbol{b} \leftarrow \boldsymbol{b} + \eta y_i; \\ \boldsymbol{k} \leftarrow \boldsymbol{k} + 1; \\ \textbf{end} \\ \textbf{end} \\ \textbf{end} \end{array}
```

Algorithm 1: Perceptron learning algorithm, primal form

3.3.1.1 Convergency

Theorem 3.1. (*Novikoff*) *If traning data set* \mathcal{D} *is linearly separable, then*

1. There exists a hyperplane denoted as $\hat{w}_{opt} \cdot x + b_{opt} = 0$ which can correctly seperate all samples, and

$$\exists \gamma > 0, \, \forall i, \, y_i(\boldsymbol{w}_{opt} \cdot \boldsymbol{x}_i + b_{opt}) \ge \gamma \tag{3.5}$$

2.

$$k \le \left(\frac{R}{\gamma}\right)^2$$
, where $R = \max_{1 \le i \le N} ||\widehat{x}_i||$ (3.6)

Proof. (1) let $\gamma = \min_{i} y_i(\boldsymbol{w}_{opt} \cdot \boldsymbol{x}_i + b_{opt})$, then we get $y_i(\boldsymbol{w}_{opt} \cdot \boldsymbol{x}_i + b_{opt}) \ge \gamma$.

(2) The algorithm start from $\hat{x}_0 = 0$, if a instance is misclassified, then update the weight. Let \hat{w}_{k-1} denotes the extended weight before the k-th misclassified instance, then we can get

$$y_i(\widehat{\boldsymbol{w}}_{k-1} \cdot \widehat{\boldsymbol{x}}_i) = y_i(\boldsymbol{w}_{k-1} \cdot \boldsymbol{x}_i + b_{k-1}) \le 0$$
(3.7)

$$\widehat{\boldsymbol{w}}_k = \widehat{\boldsymbol{w}}_{k-1} + \eta y_i \widehat{\boldsymbol{x}}_i \tag{3.8}$$

We could infer the following two equations, the proof procedure are omitted.

1.
$$\widehat{\boldsymbol{w}}_k \cdot \widehat{\boldsymbol{w}}_{opt} \ge k \eta \gamma$$

2. $||\widehat{\boldsymbol{w}}_k||^2 \le k \eta^2 R^2$

From above two equations we get

$$k\eta\gamma \leq \widehat{w}_k \cdot \widehat{w}_{opt} \leq ||\widehat{w}_k|| ||\widehat{w}_{opt}|| \leq \sqrt{k\eta}R$$
 $k^2\gamma^2 \leq kR^2$
i.e. $k \leq \left(\frac{R}{\gamma}\right)^2$

3.3.2 Dual form

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i \tag{3.9}$$

$$b = \sum_{i=1}^{N} \alpha_i y_i \tag{3.10}$$

$$w = \sum_{i=1}^{N} \alpha_i y_i x_i$$

$$b = \sum_{i=1}^{N} \alpha_i y_i$$

$$f(x) = \operatorname{sign} \left(\sum_{j=1}^{N} \alpha_j y_j x_j \cdot x + b \right)$$
(3.10)

$$\begin{array}{l} \boldsymbol{\alpha} \leftarrow 0; \ b \leftarrow 0; \ k \leftarrow 0; \\ \textbf{while } no \ mistakes \ made \ within \ the \ for \ loop \ \textbf{do} \\ \textbf{for } i \leftarrow 1 \ \textbf{to} \ N \ \textbf{do} \\ \textbf{if } y_i \left(\sum\limits_{j=1}^N \alpha_j y_j \boldsymbol{x}_j \cdot \boldsymbol{x}_i + b \right) \leq 0 \ \textbf{then} \\ \boldsymbol{\alpha} \leftarrow \boldsymbol{\alpha} + \boldsymbol{\eta}; \\ \boldsymbol{b} \leftarrow \boldsymbol{b} + \boldsymbol{\eta} y_i; \\ \boldsymbol{k} \leftarrow \boldsymbol{k} + 1; \\ \textbf{end} \\ \textbf{end} \\ \textbf{end} \end{array}$$

Algorithm 2: Perceptron learning algorithm, dual form

K-Nearest Neighbors

4.1 Representation

$$y = f(\boldsymbol{x}) = \arg\min_{c} \sum_{\boldsymbol{x}_i \in N_k(\boldsymbol{x})} \mathbb{I}(y_i = c)$$
(4.1)

where $N_k(x)$ is the set of k points that are closest to point x.

Usually use **k-d tree** to accelerate the process of finding k nearest points.

4.2 Evaluation

No training is needed.

4.3 Optimization

No training is needed.

K-Means Clustering

5.1 Representation

$$y_j = k \text{ if } \|\boldsymbol{x}_j - \boldsymbol{\mu}_k\|_2^2 \text{ is minimal}$$
 (5.1)

where μ_k is the centroid of cluster k.

5.2 Evaluation

$$\arg\min_{\mu} \sum_{j=1}^{N} \sum_{k=1}^{K} \gamma_{jk} \| \boldsymbol{x}_{j} - \boldsymbol{\mu}_{k} \|_{2}^{2}$$
 (5.2)

The hidden variable is γ_{jk} , which's meanining is:

$$\gamma_{jk} = \begin{cases} 1, & \text{if } \|\boldsymbol{x}_j - \boldsymbol{\mu}_k\|_2 \text{ is minimal for } \boldsymbol{\mu}_k \\ 0, & \text{otherwise} \end{cases}$$

5.3 Optimization

E-Step:

$$\gamma_{jk}^{(i+1)} = \begin{cases} 1, & \text{if } \|\boldsymbol{x}_j - \boldsymbol{\mu}_k^{(i)}\|_2 \text{ is minimal for } \boldsymbol{\mu}_k^{(i)} \\ 0, & \text{otherwise} \end{cases}$$
 (5.3)

M-Step:

$$\mu_k^{(i+1)} = \frac{\sum_{j=1}^N \gamma_{jk}^{(i+1)} x_j}{\sum \gamma_{jk}^{(i+1)}}$$
(5.4)

5.4 Tricks

5.4.1 Choosing *k*

5.4.2 Choosing the initial centroids(seeds)

5.4.2.1 K-means++

The intuition that spreading out the k initial cluster centers is a good thing is behind this approach: the first cluster center is chosen uniformly at random from the data points that are being clustered, after which each subsequent cluster center is chosen from the remaining data points with probability proportional to its squared distance from the point's closest existing cluster center¹³.

The exact algorithm is as follows:

- 1. Choose one center uniformly at random from among the data points.
- 2. For each data point x, compute D(x), the distance between x and the nearest center that has already been chosen.
- 3. Choose one new data point at random as a new center, using a weighted probability distribution where a point x is chosen with probability proportional to $D(x)^2$.
- 4. Repeat Steps 2 and 3 until *k* centers have been chosen.
- 5. Now that the initial centers have been chosen, proceed using standard k-means clustering.

5.5 Reference

1. cheat-sheet: Algorithm for supervised and unsupervised learning by Emanuel Ferm http://t.cn/hD0Stf

¹³ http://en.wikipedia.org/wiki/K-means++

Chapter 6 Naive Bayes

6.1 Representation

$$y_i = f(\mathbf{x}_i) = \arg\max_{c_k} P(c_k | \mathbf{x}_i) = P(y = c_k) \prod_{j=1}^{D} P(x_{ij} | y = c_k)$$
 (6.1)

6.2 Evaluation

$$R_{exp}(f) = E_{(X,Y)} \sum_{k=1}^{K} [L(Y, f(X))] P(c_k | X)$$
(6.2)

where L(Y, f(X)) is 0-1 loss function.

6.3 Optimization

The likelihood function is:

$$P(\mathcal{D}|\boldsymbol{\pi},\boldsymbol{\theta}) = \prod_{i=1}^{N} P(\boldsymbol{x}_i, y_i)$$
$$= \prod_{i=1}^{N} \left[P(y_i) \prod_{j=1}^{D} P(x_{ij}|y_i) \right]$$

For discrete distributions, we have MLE solution as follows:

$$\pi_k = P(Y = c_k) = \frac{\sum_{i=1}^N \mathbb{I}(y_i = c_k)}{N}$$
(6.3)

$$\theta_{kij} = P(x_{ij} = a_{ij}|Y = c_k) = \frac{\sum_{i=1}^{N} \mathbb{I}(x_{ij} = a_{ij}, y_i = c_k)}{\sum_{i=1}^{N} \mathbb{I}(y_i = c_k)}$$
(6.4)

Chapter 7 **Decision Tree**

Linear Regression

8.1 Representation

$$y = f(x) = \boldsymbol{w}^T \boldsymbol{x} + b \quad , \boldsymbol{x} \in \mathbb{R}^D, y \in \mathbb{R}$$
 (8.1)

If we extend $x^T = (1, x_1, x_2, \dots, x_D), w^T = (b, w_1, w_2, \dots, w_D)$, then

$$y = f(x) = \boldsymbol{w}^T \boldsymbol{x} \tag{8.2}$$

Fig. 8.1: Example of simple linear regression, which has one independent variable, from Wikipedia

8.2 Evaluation

$$R_{emp}(f) = \frac{1}{2N} \sum_{i=1}^{N} (y - f(x))^{2} = \frac{1}{2N} \sum_{i=1}^{N} (y - w^{T} x)^{2}$$
(8.3)

$$J(\boldsymbol{w}) \triangleq R_{emp}(f) \tag{8.4}$$

Prerequisite: define error term $\varepsilon_i \triangleq y_i - \boldsymbol{w}^T \boldsymbol{x}_i$, ε_i are IID (independently and identically distributed) according to a Gaussian distribution.

8.3 Optimization

8.3.1 Normal Equation

When dataset is small, use Normal Equation to compute w directly.

$$y = f(x) = \boldsymbol{w}^T \boldsymbol{x} \boldsymbol{w} = (X^T X)^{-1} X^T \boldsymbol{y}$$
(8.5)

where

$$X = \begin{bmatrix} \boldsymbol{x}_1^T, \boldsymbol{x}_2^T, \cdots, \boldsymbol{x}_N^T \end{bmatrix}^T$$
$$\boldsymbol{y} = (y_1, y_2, \cdots, y_N)^T$$

Proof. We now state without proof some facts of matrix derivatives (we wont need all of these at this section).

$$trA \triangleq \sum_{i=1}^{n} A_{ii}$$

$$\frac{\partial}{\partial A} AB = B^{T}$$
(8.6)

$$\frac{\partial}{\partial A^T} f(A) = \left[\frac{\partial}{\partial A} f(A) \right]^T \tag{8.7}$$

$$\frac{\partial}{\partial A}ABA^{T}C = CAB + C^{T}AB^{T} \tag{8.8}$$

$$\frac{\partial}{\partial A}|A| = |A|(A^{-1})^T \tag{8.9}$$

$$\begin{split} J(\boldsymbol{w}) &= \frac{1}{2N} (\boldsymbol{X} \boldsymbol{w} - \boldsymbol{y})^T (\boldsymbol{X} \boldsymbol{w} - \boldsymbol{y}) \\ \frac{\partial J}{\boldsymbol{w}} &= \frac{1}{2N} \frac{\partial}{\boldsymbol{w}} (\boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w} - \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{w} + \boldsymbol{y}^T \boldsymbol{y}) \\ &= \frac{1}{2N} \frac{\partial}{\boldsymbol{w}} (\boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w} - \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{w}) \\ &= \frac{1}{2N} \frac{\partial}{\boldsymbol{w}} tr(\boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w} - \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{w}) \\ &= \frac{1}{2N} \frac{\partial}{\boldsymbol{w}} (tr \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w} - 2tr \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{w}) \end{split}$$

Combining Equations (8.7) and (8.8), we find that

$$\frac{\partial}{\partial A^T} A B A^T C = B^T A^T C^T + B A^T C$$

Let $A^T = w$, $B = B^T = X^T X$, and C = I, Hence,

$$\frac{\partial J}{w} = \frac{1}{2N} (X^T X w + X^T X w - 2X^T y)$$

$$= \frac{1}{2N} (X^T X w - X^T y)$$

$$\frac{\partial J}{w} = 0 \Rightarrow X^T X w - X^T y = 0$$

$$X^T X w = X^T y$$

$$w = (X^T X)^{-1} X^T y$$

8.3.2 SGD

When dataset is large, use stochastic gradient descent(SGD).

$$\frac{\partial}{\partial w}J(w) = [y_i - f(x_i)]x_i \tag{8.10}$$

$$\frac{\partial}{\partial w} J(w) = [y_i - f(x_i)] x_i$$

$$w = w - \alpha \frac{\partial}{\partial w} f(w)$$

$$= w - \alpha [y_i - f(x_i)] x_i$$
(8.10)

Logistic Regression

9.1 Binomial Logistic Regression Model

9.1.1 Representation

$$P(Y=1|\mathbf{x}) = \frac{\exp(\mathbf{w}^T \mathbf{x})}{1 + \exp(\mathbf{w}^T \mathbf{x})}$$
(9.1)

$$P(Y = 0|x) = \frac{1}{1 + \exp(w^T x)}$$
(9.2)

where $w = (w_1, w_2, \dots, w_n, b), x = (x_1, x_2, \dots, 1).$

9.1.2 Evaluation

$$\max_{\boldsymbol{w}} \ell(\boldsymbol{w}) \tag{9.3}$$

where $\ell(w)$ is log likelihood function

$$\pi(\boldsymbol{x}_i) \triangleq P(Y = 1|\boldsymbol{x}_i)$$

$$\ell(\boldsymbol{w}) = \log \left\{ \prod_{i=1}^{N} \left[\pi(\boldsymbol{x}_i) \right]^{y_i} \left[1 - \pi(\boldsymbol{x}_i) \right]^{1-y_i} \right\}$$

$$= \sum_{i=1}^{N} \left[y_i \log \pi(\boldsymbol{x}_i) + (1 - y_i) \log (1 - \pi(\boldsymbol{x}_i)) \right]$$

$$= \sum_{i=1}^{N} \left[y_i \log \frac{\pi(\boldsymbol{x}_i)}{1 - \pi(\boldsymbol{x}_i)} + \log (1 - \pi(\boldsymbol{x}_i)) \right]$$

$$= \sum_{i=1}^{N} \left[y_i (\boldsymbol{w} \cdot \boldsymbol{x}_i) - \log (1 + \exp(\boldsymbol{w} \cdot \boldsymbol{x}_i)) \right]$$

9.1.3 Optimization

We can use stochastic gradient ascent(SGA) and quasi Newton method, etc.

9.1.3.1 SGA

$$\frac{\partial}{\partial \boldsymbol{w}} \ell(\boldsymbol{w}) = [y_i - \pi(\boldsymbol{x}_i)] \boldsymbol{x}_i \tag{9.4}$$

$$\frac{\partial}{\partial \boldsymbol{w}} \ell(\boldsymbol{w}) = [y_i - \pi(\boldsymbol{x}_i)] \boldsymbol{x}_i \qquad (9.4)$$

$$\boldsymbol{w} = \boldsymbol{w} + \alpha \frac{\partial}{\partial \boldsymbol{w}} \ell(\boldsymbol{w})$$

$$= \boldsymbol{w} + \alpha [y_i - \pi(\boldsymbol{x}_i)] \boldsymbol{x}_i \qquad (9.5)$$

Support Vector Machines

10.1 Primal form

10.1.1 Representation

$$\mathcal{H}: y = f(x) = \operatorname{sign}(wx + b)$$
(10.1)

10.1.2 Evaluation

$$\min_{\boldsymbol{w},b} \qquad \frac{1}{2} \|\boldsymbol{w}\|^2 \tag{10.2}$$

s.t.
$$y_i(wx_i + b) \ge 1, i = 1, 2, ..., N$$
 (10.3)

10.2 Dual form

10.2.1 Representation

$$\mathcal{H}: y = f(\boldsymbol{x}) = \operatorname{sign}\left(\sum_{i=1}^{N} \alpha_{i} y_{i}(\boldsymbol{x} \cdot \boldsymbol{x}_{i}) + b\right)$$
(10.4)

10.2.2 Evaluation

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (\boldsymbol{x}_i \cdot \boldsymbol{x}_j) - \sum_{i=1}^{N} \alpha_i$$
(10.5)

s.t.
$$\sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$
 (10.6)
$$\alpha_{i} \ge 0, i = 1, 2, ..., N$$
 (10.7)

$$\alpha_i \geqslant 0, i = 1, 2, \dots, N \tag{10.7}$$

10.3 Primal form with regularization

10.3.1 Representation

$$\mathcal{H}: y = f(x) = \operatorname{sign}(wx + b) \tag{10.8}$$

10.3.2 Evaluation

$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^{N} \xi_i$$

$$s.t. \quad y_i(\boldsymbol{w}\boldsymbol{x}_i + b) \geqslant 1 - \xi_i, i = 1, 2, ..., N$$
(10.9)

s.t.
$$y_i(\boldsymbol{w}\boldsymbol{x}_i + b) \geqslant 1 - \xi_i, i = 1, 2, ..., N$$
 (10.10)

$$\xi_i \geqslant 0, i = 1, 2, \dots, N$$
 (10.11)

10.4 Dual form with regularization

10.4.1 Representation

$$\mathcal{H}: y = f(\boldsymbol{x}) = \operatorname{sign}\left(\sum_{i=1}^{N} \alpha_{i} y_{i}(\boldsymbol{x} \cdot \boldsymbol{x}_{i}) + b\right)$$
(10.12)

10.4.2 Evaluation

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (\boldsymbol{x}_i \cdot \boldsymbol{x}_j) - \sum_{i=1}^{N} \alpha_i$$
(10.13)

$$s.t. \quad \sum_{i=1}^{N} \alpha_i y_i = 0 \tag{10.14}$$

$$0 \leqslant \alpha_i \leqslant C, i = 1, 2, \dots, N \tag{10.15}$$

$$\alpha_i = 0 \Rightarrow y_i(\boldsymbol{w} \cdot \boldsymbol{x}_i + b) \geqslant 1 \tag{10.16}$$

$$\alpha_i = C \Rightarrow y_i(\boldsymbol{w} \cdot \boldsymbol{x}_i + b) \leqslant 1$$
 (10.17)

$$0 < \alpha_i < C \Rightarrow y_i(\boldsymbol{w} \cdot \boldsymbol{x}_i + b) = 1 \tag{10.18}$$

10.5 Hinge Loss

Linear support vector machines can also be interpreted as hinge loss minimization:

$$\min_{\boldsymbol{w},b} \sum_{i=1}^{N} [1 - y_i(\boldsymbol{w} \cdot \boldsymbol{x}_i + b)]_+ + \lambda \|\boldsymbol{w}\|^2$$
(10.19)

where L(X,Y) is a hinge loss function

$$[z]_{+} = \begin{cases} z, & z > 0 \\ 0, & z \leqslant 0 \end{cases}$$
 (10.20)

Proof. We can write equation (10.19) as equations (10.9) \sim (10.11).

Define

$$\xi_i \triangleq 1 - y_i(\boldsymbol{w} \cdot \boldsymbol{x}_i + b), \xi_i \geqslant 0$$
 (10.21)

Then w, b, ξ_i satisfy the constraints (10.9) and (10.10). And objective function (10.11) can be written as

$$\min_{oldsymbol{w},b}\sum_{i=1}^N \xi_i + \lambda \|oldsymbol{w}\|^2$$

If
$$\lambda = \frac{1}{2C}$$
, then

$$\min_{\boldsymbol{w},b} \frac{1}{C} \left(\frac{1}{2} \| \boldsymbol{w} \|^2 + C \sum_{i=1}^{N} \xi_i \right)$$
(10.22)

It is equivalent to equation (10.9).

10.6 Kernels

10.7 Optimization

SMO, QP, SGD, etc.

Chapter 11 AdaBoost

11.1 Representation

$$y = sign(f(x)) = sign\left(\sum_{i=1}^{m} \alpha_m G_m(x)\right)$$
(11.1)

where $G_m(x)$ are sub classifiers.

11.2 Evaluation

 $L(y, f(x)) = \exp[-yf(x)]$ i.e., exponential loss function

$$(\alpha_m, G_m(x)) = \arg\min_{\alpha, G} \sum_{i=1}^{N} \exp\left[-y_i(f_{m-1}(x_i) + \alpha G(x_i))\right]$$
(11.2)

Define $\bar{w}_{mi} = \exp[-y_i(f_{m-1}(x_i))]$, which is constant w.r.t. α, G

$$(\alpha_m, G_m(x)) = \arg\min_{\alpha, G} \sum_{i=1}^N \bar{w}_{mi} \exp\left(-y_i \alpha G(x_i)\right)$$
(11.3)

11.3 Optimization

11.3.1 Input

$$\mathcal{D} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \dots, (\boldsymbol{x}_N, y_N)\} \text{ ,where } \boldsymbol{x}_i \in \mathbb{R}^D, \ y_i \in \{-1, +1\}$$
 Weak classifiers $\{G_1, G_2, \dots, G_m\}$

11.3.2 Output

Final classifier: G(x)

11.3.3 Algorithm

1. Initialize the weights' distribution of training data(when m = 1)

$$\mathcal{D}_1 = (w_{11}, w_{12}, \cdots, w_{1n}) = (\frac{1}{N}, \frac{1}{N}, \cdots, \frac{1}{N}), i = 1, 2, \cdots, N$$

- 2. Iterate over $m = 1, 2, \dots, M$
 - (a) Use training data with current weights' distribution \mathcal{D}_m to get a classifier $G_m(x)$
 - (b) Compute the error rate of $G_m(x)$ over the training data

$$e_m = P(G_m(\mathbf{x}_i) \neq y_i) = \sum_{i=1}^{N} w_{mi} \mathbb{I}(G_m(\mathbf{x}_i) \neq y_i)$$
 (11.4)

(c) Compute the coefficient of classifier $G_m(x)$

$$\alpha_m = \frac{1}{2} \log \frac{1 - e_m}{e_m} \tag{11.5}$$

(d) Update the weights' distribution of training data

$$w_{m+1,i} = \frac{w_{mi}}{Z_m} \exp(-\alpha_m y_i G_m(x_i))$$
 (11.6)

where Z_m is the normalizing constant

$$Z_{m} = \sum_{i=1}^{N} w_{mi} \exp(-\alpha_{m} y_{i} G_{m}(\boldsymbol{x}_{i}))$$
(11.7)

3. Ensemble *M* weak classifiers

$$G(x) = \operatorname{sign} f(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$$
 (11.8)

11.4 The upper bound of the training error of AdaBoost

Theorem 11.1. The upper bound of the training error of AdaBoost is

$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(G(\boldsymbol{x}_i) \neq y_i) \le \frac{1}{N} \sum_{i=1}^{N} \exp(-y_i f(\boldsymbol{x}_i)) = \prod_{m=1}^{M} Z_m$$
(11.9)

Note: the following equation would help proof this theorem

$$w_{mi} \exp(-\alpha_m v_i G_m(x_i)) = Z_m w_{m+1,i}$$
(11.10)

EM algorithm

12.1 Jensen's inequality

12.1.1 Convex function

Definition 12.1. A real valued function $f: X \to R$ defined on a convex set X in a vector space is called **convex function** if, for any two points x_1 and x_2 in X and any $X \in [0, 1]$,

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) \tag{12.1}$$

The function f is said to be **strictly convex** if

$$f(\lambda x_1 + (1 - \lambda)x_2) < \lambda f(x_1) + (1 - \lambda)f(x_2)$$

$$(12.2)$$

Definition 12.2. A function f is said to be (strictly) **concave** if -f is (strictly) convex.

Theorem 12.1. If f(x) is twice differentiable on [a,b] and $f''(x) \ge 0$ on [a,b] then f(x) is convex on [a,b].

Proposition 12.1. $\log(x)$ is strictly convex on $(0, \infty)$.

12.1.2 Jensen's inequality

Theorem 12.2. Let f be a convex function defined on a convex set X. If $x_1, x_2, \dots, x_n \in X$ and $\lambda_1, \lambda_2, \dots, \lambda_n \geq 0$ with $\sum_{i=1}^n \lambda_i = 1$,

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \le \sum_{i=1}^{n} \lambda_i f(x_i)$$
(12.3)

Proposition 12.2.

$$\log\left(\sum_{i=1}^{n} \lambda_i x_i\right) \ge \sum_{i=1}^{n} \lambda_i \log(x_i)$$
(12.4)

12.2 EM algorithm

The EM algorithm is an efficient iterative procedure to compute the Maximum Likelihood (ML) estimate in the presence of missing or hidden data.

Each iteration of the EM algorithm consists of two processes: The E-step, and the M-step. In the expectation, or E-step, the missing data are estimated given the observed data and current estimate of the model parameters. This is achieved using the conditional expectation, explaining the choice of terminology. In the M-step, the likelihood function is maximized under the assumption that the missing data are known. The estimate of the missing data from the E-step are used in lieu of the actual missing data.

```
\begin{array}{l} \textbf{input} : \textbf{observed data} \ \mathcal{X} = \{ \boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \cdots, \boldsymbol{x}^{(n)} \}, \textbf{joint distribution} \ P(\mathcal{X}, \boldsymbol{z} | \boldsymbol{\theta}) \\ \textbf{output} : \textbf{model's parameters} \ \boldsymbol{\theta} \\ \# 1. \ \textbf{identify hidden variables} \ \boldsymbol{z}, \textbf{ write out the log likelihood function} \ \ell(\mathcal{X}, \boldsymbol{z} | \boldsymbol{\theta}) \\ \theta^{(0)} = \dots \# \textbf{initialize} \\ \textbf{while} \ (!\textbf{convergency}) \ \textbf{do} \\ \# 2. \ \textbf{E-step: plug in} \ P(\mathcal{X}, \boldsymbol{z} | \boldsymbol{\theta}), \textbf{ derive the formula of} \ Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(i)}) \\ Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(i)}) = \mathbb{E}_{\boldsymbol{z} \mid \mathcal{X}, \boldsymbol{\theta}^{(i)}} \left[ \log P(\mathcal{X}, \boldsymbol{z} | \boldsymbol{\theta}) \right] \\ \# 3. \ \textbf{M-step: find} \ \boldsymbol{\theta} \ \textbf{ that maximizes the value of} \ Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(i)}) \\ \boldsymbol{\theta}^{(i+1)} = \arg \max_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(i)}) \\ \textbf{end} \end{array}
```

Algorithm 3: EM algorithm

12.3 Derivation of the EM algorithm

The log likelihood function is given by

$$\begin{split} \ell(\boldsymbol{\theta}) &= \log P(\mathcal{X}|\boldsymbol{\theta}) \text{ ,where } \log P(\mathcal{X}|\boldsymbol{\theta}) = \sum_{i=1}^{n} \log P(\boldsymbol{x}^{(i)}|\boldsymbol{\theta}) \\ &= \log \sum_{\boldsymbol{z}} P(\mathcal{X}, \boldsymbol{z}|\boldsymbol{\theta}) \\ &= \log \sum_{\boldsymbol{z}} P(\mathcal{X}|\boldsymbol{z}, \boldsymbol{\theta}) P(\boldsymbol{z}|\boldsymbol{\theta}) \\ \ell(\boldsymbol{\theta}) - \ell(\boldsymbol{\theta}^{(i)}) &= \log \left[\sum_{\boldsymbol{z}} P(\mathcal{X}|\boldsymbol{z}, \boldsymbol{\theta}) P(\boldsymbol{z}|\boldsymbol{\theta}) \right] - \log P(\mathcal{X}|\boldsymbol{\theta}^{(i)}) \\ &= \log \left[\sum_{\boldsymbol{z}} P(\mathcal{X}|\boldsymbol{z}, \boldsymbol{\theta}) P(\boldsymbol{z}|\boldsymbol{\theta}) \frac{P(\boldsymbol{z}|\mathcal{X}, \boldsymbol{\theta}^{(i)})}{P(\boldsymbol{z}|\mathcal{X}, \boldsymbol{\theta}^{(i)})} \right] - \log P(\mathcal{X}|\boldsymbol{\theta}^{(i)}) \\ &= \log \left[\sum_{\boldsymbol{z}} P(\boldsymbol{z}|\mathcal{X}, \boldsymbol{\theta}^{(i)}) \frac{P(\mathcal{X}|\boldsymbol{z}, \boldsymbol{\theta}) P(\boldsymbol{z}|\boldsymbol{\theta})}{P(\boldsymbol{z}|\mathcal{X}, \boldsymbol{\theta}^{(i)})} \right] - \log P(\mathcal{X}|\boldsymbol{\theta}^{(i)}) \\ &\geq \sum_{\boldsymbol{z}} P(\boldsymbol{z}|\mathcal{X}, \boldsymbol{\theta}^{(i)}) \log \left[\frac{P(\mathcal{X}|\boldsymbol{z}, \boldsymbol{\theta}) P(\boldsymbol{z}|\boldsymbol{\theta})}{P(\boldsymbol{z}|\mathcal{X}, \boldsymbol{\theta}^{(i)})} \right] - \log P(\mathcal{X}|\boldsymbol{\theta}^{(i)}) \\ &= \sum_{\boldsymbol{z}} P(\boldsymbol{z}|\mathcal{X}, \boldsymbol{\theta}^{(i)}) \log \left[\frac{P(\mathcal{X}|\boldsymbol{z}, \boldsymbol{\theta}) P(\boldsymbol{z}|\boldsymbol{\theta})}{P(\boldsymbol{z}|\mathcal{X}, \boldsymbol{\theta}^{(i)}) P(\mathcal{X}|\boldsymbol{\theta}^{(i)})} \right] \\ &\triangleq B(\boldsymbol{\theta}, \boldsymbol{\theta}^{(i)}) \end{split}$$

$$\begin{split} \boldsymbol{\theta}^{(i+1)} &= \arg\max_{\boldsymbol{\theta}} \left[\ell(\boldsymbol{\theta}^{(i)}) + B(\boldsymbol{\theta}, \boldsymbol{\theta}^{(i)}) \right] \\ &= \arg\max_{\boldsymbol{\theta}} \left\{ \ell(\boldsymbol{\theta}^{(i)}) + \sum_{\boldsymbol{z}} P(\boldsymbol{z}|\mathcal{X}, \boldsymbol{\theta}^{(i)}) \log \left[\frac{P(\mathcal{X}|\boldsymbol{z}, \boldsymbol{\theta}) P(\boldsymbol{z}|\boldsymbol{\theta})}{P(\boldsymbol{z}|\mathcal{X}, \boldsymbol{\theta}^{(i)}) P(\mathcal{X}|\boldsymbol{\theta}^{(i)})} \right] \right\} \\ & \text{Now drop terms which are constant w.r.t. } \boldsymbol{\theta} \\ &= \arg\max_{\boldsymbol{\theta}} \left\{ \sum_{\boldsymbol{z}} P(\boldsymbol{z}|\mathcal{X}, \boldsymbol{\theta}^{(i)}) \log [P(\mathcal{X}|\boldsymbol{z}, \boldsymbol{\theta}) P(\boldsymbol{z}|\boldsymbol{\theta})] \right\} \\ &= \arg\max_{\boldsymbol{\theta}} \left\{ \sum_{\boldsymbol{z}} P(\boldsymbol{z}|\mathcal{X}, \boldsymbol{\theta}^{(i)}) \log [P(\mathcal{X}, \boldsymbol{z}|\boldsymbol{\theta})] \right\} \\ &= \arg\max_{\boldsymbol{\theta}} \left\{ \mathbb{E}_{\boldsymbol{z}|\mathcal{X}, \boldsymbol{\theta}^{(i)}} \log [P(\mathcal{X}, \boldsymbol{z}|\boldsymbol{\theta})] \right\} \end{aligned} \tag{12.5}$$

$$\triangleq \arg\max_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(i)})$$

Fig. 12.1: Graphical interpretation of a single iteration of the EM algorithm: The function $B(\theta, \theta^{(i)})$ is bounded above by the log likelihood function $\ell(\theta)$. The functions are equal at $\theta = \theta^{(i)}$. The EM algorithm chooses $\theta^{(i)}$ as the value of θ for which $B(\theta, \theta^{(i)})$ is a maximum. Since $\ell(\theta) \geq B(\theta, \theta^{(i)})$ increasing $B(\theta, \theta^{(i)})$ ensures that the value of the log likelihood function $\ell(\theta)$ is increased at each step.

12.4 Examples

12.4.1 Gaussian mixture model

Definition 12.3. In Gaussian mixture model(GMM) model, each base distribution in the mixture is a multivariate Gaussian with mean μ_k and covariance matrix σ_k . Thus the model has the form

$$P(x_i|\boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \phi(x_i|\mu_k, \sigma_k)$$
 (12.7)

Figure 12.2 shows a mixture of 3 Gaussians in 2D. Each mixture component is represented by a different set of eliptical contours. Given a sufficiently large number of mixture components, a GMM can be used to approximate any density defined on \mathbb{R}^D .

Fig. 12.2: A mixture of 3 Gaussians in 2d. (a) We show the contours of constant probability for each component in the mixture. (b) A surface plot of the overall density.

12.4.1.1 Identify hidden variable, write out the log likelihood function

Denote the hidden variable as γ_{ik} , which's meanining is:

$$\gamma_{jk} = \begin{cases} 1, & \text{the j-th sample comes from the k-th model} \\ 0, & \text{otherwise} \end{cases}$$

Given observed sample x_j and hidden variable γ_{jk} , the complete sample is $(x_j, \gamma_{j1}, \gamma_{j1}, \cdots, \gamma_{jk})$. Then the log likelihood function can be written as follows:

$$P(\mathcal{X}, \gamma | \theta) = \prod_{j=1}^{N} P(x_{j}, \gamma_{j1}, \gamma_{j1}, \cdots, \gamma_{jk} | \theta)$$

$$= \prod_{j=1}^{N} \left\{ \prod_{k=1}^{K} \left[\pi_{k} \phi(x_{i} | \mu_{k}, \sigma_{k}) \right]^{\gamma_{jk}} \right\}$$

$$= \prod_{k=1}^{K} \left\{ \prod_{j=1}^{N} \left[\pi_{k} \phi(x_{i} | \mu_{k}, \sigma_{k}) \right]^{\gamma_{jk}} \right\}$$

$$= \prod_{k=1}^{K} \left\{ \pi_{k}^{n_{k}} \prod_{j=1}^{N} \left[\phi(x_{i} | \mu_{k}, \sigma_{k}) \right]^{\gamma_{jk}} \right\}$$

$$= \prod_{k=1}^{K} \left\{ \pi_{k}^{n_{k}} \prod_{j=1}^{N} \left[\frac{1}{\sqrt{2\pi} \Sigma_{k}} \exp\left(-\frac{(x_{j} - \mu_{k})^{2}}{2\sigma_{k}^{2}}\right) \right]^{\gamma_{jk}} \right\}$$
where $n_{k} = \sum_{j=1}^{N} \gamma_{jk}, \sum_{k=1}^{K} n_{k} = N$.
$$\Rightarrow \log P(\mathcal{X}, \gamma | \theta) = \sum_{k=1}^{K} \left\{ n_{k} \log \pi_{k} + \sum_{j=1}^{N} \gamma_{jk} \left[\log(\frac{1}{\sqrt{2\pi}} - \log \sigma_{k} - \frac{(x_{j} - \mu_{k})^{2}}{2\sigma_{k}^{2}}) \right] \right\}$$
(12.8)

12.4.1.2 E-step: derive the formula of $Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(i)})$

$$Q(\theta, \theta^{(i)}) = \mathbb{E}_{z|\mathcal{X}, \theta^{(i)}} \log [P(\mathcal{X}, z|\theta)]$$

$$= \mathbb{E}_{\gamma|\mathcal{X}, \theta^{(i)}} \left\{ \sum_{k=1}^{K} \left\{ n_{k} \log \pi_{k} + \sum_{j=1}^{N} \gamma_{jk} \left[\log \left(\frac{1}{\sqrt{2\pi}} - \log \sigma_{k} - \frac{(x_{j} - \mu_{k})^{2}}{2\sigma_{k}^{2}} \right) \right] \right\} \right\}$$

$$= \sum_{k=1}^{K} \left\{ \left(\sum_{j=1}^{N} E \gamma_{jk} \right) \log \pi_{k} + \sum_{j=1}^{N} E \gamma_{jk} \left[\log \left(\frac{1}{\sqrt{2\pi}} - \log \sigma_{k} - \frac{(x_{j} - \mu_{k})^{2}}{2\sigma_{k}^{2}} \right) \right] \right\}$$
denote $E \gamma_{jk}$ as $\hat{\gamma}_{jk}$

$$= \sum_{k=1}^{K} \left\{ \left(\sum_{j=1}^{N} \hat{\gamma}_{jk} \right) \log \pi_{k} + \sum_{j=1}^{N} \hat{\gamma}_{jk} \left[\log \left(\frac{1}{\sqrt{2\pi}} - \log \sigma_{k} - \frac{(x_{j} - \mu_{k})^{2}}{2\sigma_{k}^{2}} \right) \right] \right\}$$
(12.9)

$$\begin{split} \hat{\gamma}_{jk} &= E\gamma_{jk} = E(\gamma_{jk}|x_j, \boldsymbol{\theta}) = E(\gamma_{jk} = 1|x_j, \boldsymbol{\theta}) \\ &= \frac{P(\gamma_{jk} = 1, x_j|\boldsymbol{\theta})}{\sum\limits_{k=1}^K P(\gamma_{jk} = 1, x_j|\boldsymbol{\theta})} \\ &= \frac{P(x_j|\gamma_{jk} = 1, \theta)P(\gamma_{jk} = 1, \boldsymbol{\theta})}{\sum\limits_{k=1}^K P(x_j|\gamma_{jk} = 1, \boldsymbol{\theta})P(\gamma_{jk} = 1, \boldsymbol{\theta})} \\ &= \frac{\phi(x_i|\mu_k, \sigma_k)\pi_k}{\sum\limits_{k=1}^K \phi(x_i|\mu_k, \sigma_k)\pi_k} \\ &= \frac{\pi_k \phi(x_i|\mu_k, \sigma_k)}{\sum\limits_{k=1}^K \pi_k \phi(x_i|\mu_k, \sigma_k)} \end{split}$$

Use this formula to update $\hat{\gamma}_{jk}$.

12.4.1.3 M-step: find θ that maximizes the value of $Q(\theta, \theta^{(i)})$

Take partial derivatives of Eqn.(12.9) with respect to μ_k , σ_k^2 and let them equal to 0, we can get μ_k , σ_k^2 .

$$\frac{\partial}{\partial \mu_k} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(i)}) = \sum_{j=1}^N \hat{\gamma}_{jk} \left[-\frac{1}{2\sigma_k^2} \cdot 2(x_j - \mu_k) \cdot (-1) \right] = 0$$

$$\sum_{j=1}^N \hat{\gamma}_{jk} [(x_j - \mu_k)] = 0$$

$$\hat{\mu}_k = \frac{\sum_{j=1}^N \hat{\gamma}_{jk} x_j}{\hat{\gamma}_{jk}}$$
(12.10)

$$\frac{\partial}{\partial \sigma_k^2} Q(\theta, \theta^{(i)}) = \sum_{j=1}^N \hat{\gamma}_{jk} \left[-\frac{1}{2\sigma_k^2} + \frac{1}{2\sigma_k^4} (x_j - \mu_k)^2 \right] = 0$$

$$\sum_{j=1}^N \hat{\gamma}_{jk} \left[-\sigma_k^2 + (x_j - \mu_k)^2 \right] = 0$$

$$\hat{\sigma}_k^2 = \frac{\sum_{j=1}^N \hat{\gamma}_{jk} (x_j - \mu_k)^2}{\hat{\gamma}_{ik}}$$
(12.11)

Grouping together only the terms that depend on π_k , we find that we need to maximize $\sum_{k=1}^K \left(\sum_{j=1}^N \hat{\gamma}_{jk}\right) \log \pi_k$. However, there is an additional constraint $\sum_{k=1}^K \pi_k = 1$, since they represent the probabilities $\pi_k = P(x^{(i)} = k | \pi)$. To deal with the constraint we construct the Lagrangian

$$\mathcal{L}(oldsymbol{\pi}) = \sum_{k=1}^K \left(\sum_{j=1}^N \hat{\gamma}_{jk}\right) \log \pi_k + eta \left(\sum_{k=1}^K \pi_k - 1\right)$$

where β is the Lagrange multiplier. Taking derivatives, we find

$$\hat{\boldsymbol{\pi}}_k = \frac{\sum\limits_{k=1}^K \hat{\gamma}_{jk}}{N} \tag{12.12}$$

12.4.1.4 EM algorithm for GMM

```
input : observed data \mathcal{X} = \{\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \cdots, \boldsymbol{x}^{(n)}\},GMM output: GMM's parameters \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\sigma}
// 1. initialize \boldsymbol{\pi}^{(0)} = \dots
\boldsymbol{\mu}^{(0)} = \dots
\boldsymbol{\sigma}^{(0)} = \dots
while (!convergency) do
// 2. E-step
\hat{\gamma}_{jk} = \frac{\pi_k \phi(x_i | \mu_k, \sigma_k)}{\sum\limits_{k=1}^{K} \pi_k \phi(x_i | \mu_k, \sigma_k)}
// 3. M-step
\hat{\mu}_k = \frac{\sum\limits_{j=1}^{N} \hat{\gamma}_{jk} x_j}{\hat{\gamma}_{jk}}
\hat{\sigma}_k^2 = \frac{\sum\limits_{j=1}^{K} \hat{\gamma}_{jk} (x_j - \mu_k)^2}{\hat{\gamma}_{jk}}
\hat{\sigma}_k^2 = \frac{\sum\limits_{j=1}^{K} \hat{\gamma}_{jk}}{N}
```

Algorithm 4: EM algorithm for GMM

12.5 Generalization of EM Algorithm

EM algorithm can be interpreted as F function's maximization-maximization algorithm, based on this interpretation there are many variations and generalization, e.g., generalized EM Algorithm(GEM).

12.5.1 F function's maximization-maximization algorithm

Definition 12.4. Given the probability distribution of the hidden variable Z is $\tilde{P}(Z)$, define **F function** as the following:

$$F(\tilde{P}, \boldsymbol{\theta}) = \mathbb{E}_{\tilde{P}}[\log P(X, Z|\boldsymbol{\theta})] + H(\tilde{P})$$
(12.13)

Where $H(\tilde{P}) = -\mathbb{E}_{\tilde{P}} \log \tilde{P}(Z)$, which is $\tilde{P}(Z)$'s entropy. Usually we assume that $P(X,Z|\theta)$ is continuous w.r.t. θ , therefore $F(\tilde{P}, \theta)$ is continuous w.r.t. \tilde{P} and θ .

Lemma 12.1. For a fixed θ , there is only one distribution \tilde{P}_{θ} which maximizes $F(\tilde{P}, \theta)$

$$\tilde{P}_{\theta}(Z) = P(Z|X, \theta) \tag{12.14}$$

and \tilde{P}_{θ} is continuous w.r.t. θ .

Proof. Given a fixed θ , we can get \tilde{P}_{θ} which maximizes $F(\tilde{P}, \theta)$, we construct the Lagrangian

$$\mathcal{L}(\tilde{P}, \boldsymbol{\theta}) = \mathbb{E}_{\tilde{P}}\left[\log P(X, Z|\boldsymbol{\theta})\right] - \mathbb{E}_{\tilde{P}}\log \tilde{P}_{\boldsymbol{\theta}}(Z) + \lambda \left[1 - \sum_{Z} \tilde{P}(Z)\right]$$
(12.15)

Take partial derivative with respect to $\tilde{P}_{\theta}(Z)$ then we get

$$\frac{\partial \mathcal{L}}{\partial \tilde{P}_{\theta}(Z)} = \log P(X, Z | \theta) - \log \tilde{P}_{\theta}(Z) - 1 - \lambda$$

Let it equal to 0, we can get

$$\lambda = \log P(X, Z|\theta) - \log \tilde{P}_{\theta}(Z) - 1$$

Then we can derive that $\tilde{P}_{\theta}(Z)$ is proportional to $P(X,Z|\theta)$

$$\begin{split} \frac{P(X,Z|\theta)}{\tilde{P}_{\theta}(Z)} &= e^{1+\lambda} \\ \Rightarrow \tilde{P}_{\theta}(Z) &= \frac{P(X,Z|\theta)}{e^{1+\lambda}} \\ \sum_{Z} \tilde{P}_{\theta}(Z) &= 1 \Rightarrow \sum_{Z} \frac{P(X,Z|\theta)}{e^{1+\lambda}} = 1 \Rightarrow P(X|\theta) = e^{1+\lambda} \\ \tilde{P}_{\theta}(Z) &= \frac{P(X,Z|\theta)}{e^{1+\lambda}} = \frac{P(X,Z|\theta)}{P(X|\theta)} = P(Z|X,\theta) \end{split}$$

Lemma 12.2. If $\tilde{P}_{\theta}(Z) = P(Z|X,\theta)$, then

$$F(\tilde{P}, \boldsymbol{\theta}) = \log P(X|\boldsymbol{\theta}) \tag{12.16}$$

Theorem 12.3. One iteration of EM algorithm can be implemented as F function's maximization-maximization. Assume $\theta^{(i)}$ is the estimation of θ in the i-th iteration, $\tilde{P}^{(i)}$ is the estimation of \tilde{P} in the i-th iteration. Then in the (i+1)-th iteration two steps are:

- 1. for fixed $\boldsymbol{\theta}^{(i)}$, find $\tilde{P}^{(i+1)}$ that maximizes $F(\tilde{P}, \boldsymbol{\theta}^{(i)})$; 2. for fixed $\tilde{P}^{(i+1)}$, find $\boldsymbol{\theta}^{(i+1)}$ that maximizes $F(\tilde{P}^{(i+1)}, \boldsymbol{\theta})$.

Proof. (1) According to Lemma 12.1, we can get

$$\tilde{P}^{(i+1)}(Z) = P(Z|X, \boldsymbol{\theta}^{(i)})$$

(2) According above, we can get

$$\begin{split} F(\tilde{P}^{(i+1)}, \boldsymbol{\theta}) &= \mathbb{E}_{\tilde{P}^{(i+1)}} \left[\log P(X, Z | \boldsymbol{\theta}) \right] + H(\tilde{P}^{(i+1)}) \\ &= \sum_{Z} P(Z | X, \boldsymbol{\theta}^{(i)}) \log P(X, Z | \boldsymbol{\theta}) + H(\tilde{P}^{(i+1)}) \\ &= Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(i)}) + H(\tilde{P}^{(i+1)}) \end{split}$$

Then

$$\boldsymbol{\theta}^{(i+1)} = \arg\max_{\boldsymbol{\theta}} F(\tilde{\boldsymbol{P}}^{(i+1)}, \boldsymbol{\theta}) = \arg\max_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(i)})$$

12.5.2 The Generalized EM Algorithm(GEM)

In the formulation of the EM algorithm described above, $\boldsymbol{\theta}^{(i+1)}$ was chosen as the value of $\boldsymbol{\theta}$ for which $Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(i)})$ was maximized. While this ensures the greatest increase in $\ell(\boldsymbol{\theta})$, it is however possible to relax the requirement of maximization to one of simply increasing $Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(i)})$ so that $Q(\boldsymbol{\theta}^{(i+1)}, \boldsymbol{\theta}^{(i)}) \geq Q(\boldsymbol{\theta}^{(i)}, \boldsymbol{\theta}^{(i)})$. This approach, to simply increase and not necessarily maximize $Q(\boldsymbol{\theta}^{(i+1)}, \boldsymbol{\theta}^{(i)})$ is known as the Generalized Expectation Maximization (GEM) algorithm and is often useful in cases where the maximization is difficult. The convergence of the GEM algorithm is similar to the EM algorithm.

12.6 Reference

[1] Dempster AP, Laird NM, Rubin DB. Maximum-likelihood from incomplete data via the EM algorithm. J.Royal Statist. Soc. Ser.B., 1977, 39

[2] Sean Borman. The Expectation Maximization Algorithm A short tutorial. 2009. http://www.seanborman.com/publications/EM_algorithm.pdf

Chapter 13 Hidden markov Model

Chapter 14 BayesNets

14.1 Chain rule

$$p(x) = p(x_1) \prod_{\nu=2}^{V} p(x_{\nu}|x_{1:\nu-1})$$
(14.1)

14.2 Markov chain

$$p(x) = p(x_1) \prod_{\nu=2}^{V} p(x_{\nu}|x_{\nu-1})$$
(14.2)

14.3 DGM

$$p(x|G) = \prod_{\nu=1}^{V} p(x_{\nu}|x_{pa(\nu)})$$
(14.3)

14.4 Inference

$$p(x_h|x_v,\theta) = \frac{p(x_h, x_v|\theta)}{\sum_{x_h'} p(x_h', x_v|\theta)}$$
(14.4)

$$p(x_q|x_v,\theta) = \sum_{x_n} p(x_q, x_n|x_v,\theta)$$
(14.5)

14.5 Learning

14.5.1 MAP

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} p(\theta) \prod_{n=1}^{N} p(x_n | \theta)$$
(14.6)

14.5.2 Learning from complete data

$$p(D|\theta) = \prod_{n=1}^{N} p(x_n|\theta) = \prod_{n=1}^{N} \prod_{\nu=1}^{V} p(x_{n\nu}|x_{n,pa(\nu)}, \theta_{\nu}) = \prod_{\nu=1}^{V} p(D_{\nu}|\theta_{\nu})$$
(14.7)

14.5.3 Multinoulli Learning

Multinoulli Distribution

$$Cat(x|\mu) = \prod_{k=1}^{K} \mu_k^{x_k}$$
 (14.8)

then from 14.3 and 14.8:

$$p(x|G,\theta) = \prod_{v=1}^{V} \prod_{c=1}^{C_v} \prod_{k=1}^{K} \theta_{vck}^{y_{vck}}$$
(14.9)

Likelihood

$$p(D|G,\theta) = \prod_{n=1}^{N} p(x_n|G,\theta) = \prod_{n=1}^{N} \prod_{v=1}^{V} \prod_{c=1}^{C_{mv}} \prod_{k=1}^{K} \theta_{vck}^{y_{mvck}}$$
(14.10)

where $y_{nv} = f(pa(x_{nv}))$, f(x) is a map from x to a vector, there is only one element in the vector is 1.

14.6 d-separation

1. P contains a chain

$$p(x,z|y) = \frac{p(x,y,z)}{p(y)} = \frac{p(x)p(y|x)p(z|y)}{p(y)} = \frac{p(x,y)p(z|y)}{p(y)} = p(x|y)p(z|y)$$
(14.11)

2. P contains a fork

$$p(x,z|y) = \frac{p(x,y,z)}{p(y)} = \frac{p(y)p(x|y)p(z|y)}{p(y)} = p(x|y)p(z|y)$$
(14.12)

3. P contains v-structure

$$p(x,z|y) = \frac{p(x,y,z)}{p(y)} = \frac{p(x)p(z)p(y|x,z)}{p(y)} \neq p(x|y)p(z|y)$$
(14.13)

14.7 Markov blanket

$$mb(t) = ch(t) \cup pa(t) \cup copa(t)$$
 (14.14)

14.8 Reference

Mlapp chapter 10 Bayes nets

Chapter 15 Conditional Random Field

Appendix A

Optimization methods

A.1 Gradient descent

A.1.1 Stochastic gradient descent

```
input : Training data \mathcal{D} = \{(\boldsymbol{x}_i, y_i) | i = 1 : N\} output: A linear model: y_i = \boldsymbol{\theta}^T \boldsymbol{x} \boldsymbol{w} \leftarrow 0; \ b \leftarrow 0; \ k \leftarrow 0; while no mistakes made within the for loop do for i \leftarrow 1 to N do if y_i(\boldsymbol{w} \cdot \boldsymbol{x}_i + b) \leq 0 then \boldsymbol{w} \leftarrow \boldsymbol{w} + \boldsymbol{\eta} y_i \boldsymbol{x}_i; b \leftarrow b + \boldsymbol{\eta} y_i; k \leftarrow k + 1; end end
```

Algorithm 5: Stochastic gradient descent

A.1.2 Batch gradient descent

A.2 Lagrange duality

A.2.1 Primal form

Consider the following, which we'll call the **primal** optimization problem:

$$xyz$$
 (A.1)

A.2.2 Dual form

Glossary

feture vector A feture vector to represent one data.

loss function a function that maps an event onto a real number intuitively representing some "cost" associated with the event.

glossary term Write here the description of the glossary term. Write here the description of the glossary term. Write here the description of the glossary term.