Preventing web-based attacks through Hidden Markov models

Proposed by Martiniuc Alexandru Coordinator Conf. Dr. Dragoș-Teodor Gavriluț

Table of Contents

- Problem description
- About HMMs
- Proposed Solution
- Results
- Improving the model

Context

Scams transmitted

using spam, aimed at

dishonestly obtaining

a financial advantage

Genuine but non-compliant electronic direct Nuisance marketing Spam Scams & **Malware** Phishing

Malware transmitted using spam, aimed at dishonestly obtaining a financial advantage through extortion or access to information

Problem description - Status quo

"Phishing is the simplest kind of cyberattack and, at the same time, the most dangerous and effective. That is because it attacks the most vulnerable and powerful computer on the planet: the human mind,"

Adam Kujawa

Director of Malwarebytes Labs

The increasing number of malicious url:

Phishing URLs	Malware URLs			
> 35.000 per week	> 6.000 per week			

Google Safe Browsing Analysis 01/06/2018 - 01/06/2019

Problem description

Proportion of spam in mail traffic

Problem description

Problem description

Worm:Win32 Conficker

Hidden Markov model

$$\lambda = (A, B, \pi) \longrightarrow \text{ini}$$

initial state distribution

Hidden Markov model

The 3 basic problems of HMMs

Problem 1 - What is the probabily of the observations sequence?

- The forward-backward algorithm

Problem 2 - Optimal hidden states sequence?

- The Viterbi algorithm

Problem 3 - How to training the model?

- The Baum-Welch algorithm

Proposed solution - System diagram

Proposed solution - Flow 1

Proposed solution

Proposed solution

Proposed solution

$|\pi|$

Proposed solution - Flow 2

Results

Two subsytems:

- ☐ Subsystem 1 : Frequency based static Hidden Markov model
- → Subsystem 1.1: trained with alphabet [a-z0-9\∅]*
- → Subsystem 1.2: trained with alphabet [a-zA-Z0-9\∅]*

π Results

• Subsystem 1.1:

Туре	Se	Sp	TN	TP	Acc	FN	FP
Unigram	70.15%	69.78%	7015	6978	70.13%	29.15%	30.22%
Bigrams	69.8%	70.70%	6980	7070	70.25%	30.2%	29.3%
Trigrams	71.78%	71.80%	7178	7180	71.79%	28.22%	28.2%

π Results

• Subsystem 1.2:

Туре	Se	Sp	TN	TP	Acc	FN	FP
Unigram	70%	70.87%	7000	7087	70.435%	30%	29.13%
Bigrams	71.9%	70.9%	7190	7090	71.4%	28.1%	29.1%
Trigrams	72.12%	71.21%	7212	7121	71.665%	27.88%	28.79%

Proposed solution

Two subsytems:

- Subsystem 2 : Dynamic Hidden Markov model
- → Subsystem 2.1: trained with alphabet [a-z0-9\Ø]*
- → Subsystem 2.2: trained with alphabet [a-zA-Z0-9\∅]*

π Results

• Subsystem 2.1:

Туре	Se	Sp	TN	TP	Acc	FN	FP
Unigram	99.82%	97.72%	9772	9982	99.72%	2.28%	0.18%
Bigrams	100%	99.4%	10000	9940	99.7%	0%	0.3%
Trigrams	88.92%	86.91%	8892	8691	89.35%	11.08%	13.09%

π Results

• Subsystem 2.2:

Туре	Se	Sp	TN	TP	Acc	FN	FP
Unigram	99.05%	90.90%	9905	9090	94.975%	0.95%	9.1%
Bigrams	100%	91.14%	10000	9114	95.57%	0%	8.86%
Trigrams	97.22%	93.12%	9722	9312	95.179%	2.78%	6.88%

Conclusions

Туре	Se	Sp	TN	TP	Acc	FN	FP
Unigram	99.82%	97.72%	9772	9982	99.72%	2.28%	0.18%
Bigrams	100%	99.4%	10000	9940	99.7%	0%	0.3%
Trigrams	88.92%	86.91%	8892	8691	89.35%	11.08%	13.09%

- prefilter
- postfilter
- future work

Future work

- Increase n-grams size
 - → n = 4,5 ...
 - → more unknown information
- Increase number of hidden states
 - \rightarrow N = 2 ...10
 - → suspicion score

π Q&A

Thank you!