

FIGURE 1

BEST AVAILABLE COPY

Figure 2

BEST AVAILABLE COPY

Figure 3

BEST AVAILABLE COPY

Figure 4

BEST AVAILABLE COPY

4° 15° 25° 37° 45°

Figure 5

BEST AVAILABLE COPY

Figure 6

BEST AVAILABLE COPY

Figure 7

BEST AVAILABLE COPY

Figure 8

BEST AVAILABLE COPY

Figure 9

BEST AVAILABILITY COPI

Figure 10

BEST AVAILABLE COPY

Figure 11

BEST AVAILABLE COPY

Figure 12

Oligonucleotide Sequence of the Kan^r Target

1 CAGGGGATCA AGATCTGATC AAGAGACAGG ATGAGGATCG TTTCGCATGA
51 TTGAACAAGA TGGATTGCAC GCAGGTTCTC CGGCCGCTTG GGTGGAGAGG
101 CTATTCGGCT ATGACTGGGC ACAACAGACA ATCGGCTGCT CTGATGCCGC
151 CGTGTTCGG CTGTCAGCGC AGGGGCGCCC GGTTCTTTT GTCAAGACCG
201 ACCTGTCCGG TGCCCTGAAT GAACTGCAGG ACGAGGCAGC GCGGCTATCG
251 TGGCTGCCA CGACGGCGT TCCTTGCGCA GCTGTGCTCG ACGTTGTCAC
301 TGAAGC

FIGURE 13

Effect of Annealing Oligo on Targeting Efficiency

FIGURE 14

Oligonucleotide Sequence of the Hyg^r Target

1 cgctgagata ggtgcctcac tgattaagca ttggtaactg tcagaccaag
51 tttactcata tatacttttag attgatttaa aacttcattt ttaatttaaa
101 aggatctagg tgaagatcct ttttgataat ctcatgacca aaatccctta
151 acgtgagttt tcgttccact gagcgtcaga ccccgtagaa aagatcaaag
201 gatcttcttg agatcctttt tttctgcgcg taatctgctg cttgcaaaca
251 aaaaaaccac cgctaccaggc ggtggtttgt ttgccggatc aagagctacc
301 aactctttt ccgaaggtaa ctggcttcag cagagcgcag ataccaaata
351 ctgtccttct agtgttagccg tagttaggcc accacttcaa gaactctgta
401 gcaccgccta catacctcgc tctgctaatc ctgttaccag tggctgctgc
451 cagtggcgat aagtcgtgtc ttaccggg

FIGURE 15

FIGURE 16

Effect of Annealing oligo on dD-loop formation in Hyg(rep)

FIGURE 17