Low Drop-out Voltage Regulators with SKY130PDK

- Nithin P

Gmail: nithinpurushothama@gmail.com

Linkedin: https://www.linkedin.com/in/nithin-purushothama-70664727b/

Acknowledgement:

- I'm grateful to the constant mentoring and support of Manjunath Kareppagoudar and Soumya Kanta Rana.
- I'm thankful to Ahmed Tawfiq for the help on Ngspice and Xschem software, it simplified much of my work.
- This project wouldn't have been possible without all the help I got.

Linear Regulators

- Regulations is achieved by dropping voltage
- Switches are in saturation region.
- Higher losses and low efficiency when dropout is high.
- We select linear regulators when there is a need of small voltage drop.
- Efficiency is inversely proportional to Voltage drop.
- LDO have less noise, so they are preferred for RF sensors and others.

Important Concepts:

- Line transient and Load transient.
- Concept of negative feedback and why is it necessary ???
- Second order system.
- Why pole splitting is required????
- Why do we need a phase margin of 60degree or greater???
- How to stabilize a system ???
- How to analyze the stability ??
- How to get poles and decide which is significant and which is not (dominant and non dominant poles) ???
- Types of Compensation employed.

Line transient

Load transient

Specifications:

Specifications ($V_{out} = 1.35V$, Load capacitor=0.1nF, and Full load=40mA):

Specs	Description	Value
V _{IN} (max)	Maximum input voltage range	3V
V _{IN} (min)	Minimum input voltage range	1.5V
VDO	Dropout voltage for 40mA load current (error loop gain = 20dB)	150mV
lo	Quiescent current (no load current) (Vin = 3V)	≤ 50 µA
t _{Set} (Load)	Average of settling time to ±1% of final value of 20mA to 40mA and 40mA to 20mA load changes (100ns rise and fall time)	≤ 1µs
t _{Set} (Line)	Average of settling time to $\pm 1\%$ of final value for $\varDelta V_{IN}$ from 2V to 3V and 3V to 2V for 10mA load (100ns rise and fall time)	≤ 2µs
PSRR	Magnitude of power supply rejection (vout/vin) at 100Hz (10mA)	≥ 60dB
Isc	Short circuit current with a 10Ω load resistor (V _{in} = 3V)	≤50mA
PM	Phase margin of main feedback loop (10mA)	≥ 60°
η	Efficiency for full load and V_{IN} =1.5V	≥ 90%
WC+ Vout	Max V_O with 10mA load ($V_{in} = 1.5-3V$, $-40^{\circ}C \le T \le 125^{\circ}C$, Process)	≤ 1.36V
WC- Vout	Min V_O with 10mA load ($V_{in} = 1.5-3V$, $-40^{\circ}C \le T \le 125^{\circ}C$, Process)	≥ 1.34V

<u>Credits</u>: Soumya Kanta rana, Analog Engineer (Texas Instruments)

Error Amplifier

- Here I've used a simple differential amplifier because If we use a single stage Error Amplifier, We will handle less poles as a whole and the design will be easy for us.
- The design of the Error amplifier must be robust and good so that the regulated output voltage doesn't deviate more than 5% of the specified Vreg.
- Should provide a good gain and have a good PSRR.

Design

This is a linear regulator so all the Mosfets operate in saturation region.

Design of Error Amplifier:

- The Aspect ratio of Differential Pair:
- gm1 is the one that contributes to the gain and bandwidth of the error amplifier so
- gm1,2 = 2pi(GBW*CL)

$$rac{W}{L}\cdot 1, 2 = rac{g_{m1}^2}{\mu_n C_{ox}\cdot 2I_1}$$

- The Aspect ratio of the Current Mirror:
- Before finding the W/L3,4 we need to find the Vt max of current mirrors and Vtnmax, Vtnmin of Differential pairs
- For Simplicity I've used the mosfet nfet_01v8_lvt and pfet_01v8_lvt whose Vt doesn't change much unlike nfet 01v8 and pfet 01v8.
- Vsg3=Vdd-lcmr(+)+Vtn1min

$$W/L\cdot 3.4=2I_3/\mu_p C_{ox}(V_{sg3}-V_{tpmax})^2$$

The aspect ratio of the biasing mosfets:

$$V_{dsat5} = I_{crm}^- - \sqrt{rac{I_5}{eta}} - V_{tnmin}$$
 $rac{W}{I_1 \cdot 5 \cdot 6} = rac{2I_5}{\mu \cdot C \cdot V^2}$

- Aspect ratio of the Pass Transistor:
- Pass transistors are typically PowerFETs which are large in width.
- From the specifications we know that Vdrop=150mV, so Vsd of Mpass is 150mV, so I targeted an overdrive voltage of 100mV.
- (W/L)pass=2IL/upCoxVov^2
- From this for IL of 40mA I got a W/L ratio of 145454.5
- (W/L)pass = 145455
- Here I used pfet_01v8 because of all the parasitic capacitance the gate cap will be quite large and can have an effect on the stability and add over miller cap, So I designed the error amp for a CL=50pF, the Mosfet pfet_01v8 offers the least Cgg (approx 20pF).

Design Concessions I made

- I chose a bias current of 50uA because the specification needed a settling time of 1us which will be very much affected if we decrease Slew rate but the quiescent current (IQ) should be less than 50uA.
- Only way to not hamper the settling time was to choose a good Slew-Rate, the only solution to do that was burn more current as I cannot change the load cap.
- This has an affect of increasing the quiescent current (IQ) to more than 50uA, the final result showed a IQ of around 100uA, this cannot be avoided because of the PDK.

Intuitive Analysis of poles and Zeros

Loop Gain (s) = $(-A_1A_2)x(1-S_1)$ $(1+S_1)(1+S_1)$ $(1+S_1)(1+S_1)$

Error Amplifier Schematics

Spec Achieved:

$$(W/L)1,2 = 207$$

$$(W/L)3,4 = 7$$

$$(W/L)5,8 = 5$$

VSS VSS

LOW DROP-OUT REGULATOR

/home/nithinpuru/.xschem/simulations/Low drop regulator Project/LDO/Regulator.sch

Final Results

- Gain: 62dB (hand calculated)
- **Pole1**(dominant): 4kHz, **Pole2**(non dominant): 100MHz (hand calculated)
- **GBW**: 4.8MHz(hand calculated)
- Phase margin: 82degree (hand calculated)
- | PSRR |: greater than 60dB
- **Iq**: 104uA
- **Efficiency:** 89.77%

Things I learnt from this Project

- This project helped me strengthen my concepts on Compensation,
 Pole zero Analysis and Stability.
- I learnt how to approach the design for the topology with Mosfets in saturation.
- Relearnt the concepts of small signal analysis and Transfer functions
- Improved my problem solving approach after many attempts.
- Learnt all the wrong approaches to do the design and learnt the correct way.
- Improved my concepts of Analog and avoid silly mistakes.

References

- [1]. A Low Drop Regulator (LDO) in UMC 180 nm Technology by Mohammed Rizwan
- [2]. Low Drop-Out Voltage Regulators: Capacitor-less Architecture Comparison by Joselyn Torres, Mohamed El-Nozahi, Ahmed Amer, Seenu Gopalraju, Reza Abdullah, Kamran Entesari, and Edgar Sánchez-Sinencio.
- [3]. Full On-Chip CMOS Low-Dropout Voltage Regulator Robert J. Milliken, Jose Silva-Martínez
- [4]. IC Design of Power Management Circuits (IV) Wing-Hung Ki Integrated Power Electronics Laboratory ECE Dept., HKUST Clear Water Bay, Hong Kong.
- [5]. Design of low-dropout voltage regulator Miroslav Čermák.
- [6]. LDO Linear Regulator to Charge Battery by Ahmed tawfiq.

Thank you