L'anneau des polynômes

Exercice 1 Résoudre les équations suivantes :

a)
$$Q^2 = XP^2$$
 dinconnues $P, Q \in \mathbb{K}[X]$

b)
$$P \circ P = P$$
 d'inconnue $P \in \mathbb{K}[X]$.

a) Si (P,Q) est un couple solution de polynômes non nuls alors $Q^2 = XP^2$ donne $2 \deg Q = 1 + 2 \deg P$ avec $\deg P, \deg Q \in \mathbb{N}$ ce qui est impossible. Il reste le cas où l'un des polynômes P ou Q est nul et l'autre, alors, l'est aussi. Inversement, le couple nul est effectivement solution.

b) Si $\deg P \ge 2$ alors $\deg P \circ P = (\deg P)^2 > \deg P$ et donc P n'est pas solution.

Si $\deg P \le 1$ alors on peut écrire P = aX + b et alors

$$P\circ P=P\Leftrightarrow a(aX+b)+b=aX+b\Leftrightarrow \begin{cases} a^2=a\\ab=0 \end{cases} \Leftrightarrow (a=1\text{ et }b=0)\text{ ou }(a=0\text{ et }b\text{ quelconque}).$$
 Finalement

les solutions sont le polynôme X et les polynômes constants.

Exercice 2 On définit une suite de polynôme (P_n) par $P_0=2, P_1=X$ et $\forall n\in\mathbb{N}, P_{n+2}=XP_{n+1}-P_n$.

a) Calculer P_2 et P_3 .

Déterminer degré et coefficient dominant de P_n .

- b) Montrer que, pour tout $n \in \mathbb{N}$ et pour tout $z \in \mathbb{C}^*$ on a $P_n(z+1/z) = z^n + 1/z^n$.
- c) En déduire une expression simple de $P_n(2\cos\theta)$ pour $\theta \in \mathbb{R}$.
- d) Déterminer les racines de P_n .

a)
$$P_2 = X^2 - 2$$
, $P_3 = X^3 - 3X$.

Par récurrence double sur $n \in \mathbb{N}$, on montre $\deg P_n = n$ et $\operatorname{coeff}(P_n) = 1$.

b) Par récurrence double sur $n \in \mathbb{N}$:

Pour n = 0 et n = 1 : ok

Supposons la propriété établir aux rangs n et n+1 (avec $n \ge 0$)

$$P_{n+2}(z) = (z+1/z)P_{n+1}(z) - P_n(z) = \left(z + \frac{1}{z}\right)\left(z^{n+1} + \frac{1}{z^{n+1}}\right) - \left(z^n + \frac{1}{z^n}\right) = z^{n+2} + \frac{1}{z^{n+2}}.$$

Récurrence établie.

c)
$$P_n(2\cos\theta) = P_n(e^{i\theta} + e^{-i\theta}) = e^{in\theta} + e^{-in\theta} = 2\cos n\theta$$
.

d) Soit
$$x \in [-2,2]$$
. Il existe $\theta \in [0,\pi]$ unique tel que $x = 2\cos\theta$.

$$P_n(x) = 0 \Leftrightarrow \cos n\theta = 0 \Leftrightarrow \exists k \in \{0, ..., n-1\}, \theta = \frac{\pi + 2k\pi}{2n}.$$

Par suite les $x_k = 2\cos\left(\frac{\pi + 2k\pi}{2n}\right)$ avec $k \in \{0,...,n-1\}$ constituent n racines distinctes de $a_n \neq 0$ et $a_0 \neq 0$.

Dérivation

Exercice 3 Résoudre les équations suivantes :

a)
$$P'^2 = 4P$$
 d'inconnue $P \in \mathbb{K}[X]$

b)
$$(X^2+1)P''-6P=0$$
 d'inconnue $P \in \mathbb{K}[X]$.

a) Parmi les polynômes constants, seul le polynôme nul est solution.

Parmi les polynômes non constants, si P est solution alors $2(\deg P-1)=\deg P$ et donc $\deg P=2$. On peut alors écrire $P=aX^2+bX+c$ avec $a\neq 0$.

$$P'^2 = 4P \Leftrightarrow 4a^2X^2 + 4ab + b^2 = 4aX^2 + 4bX + 4c \Leftrightarrow \begin{cases} a = 1\\ c = b^2/4 \end{cases}$$

Les solutions de l'équation sont P=0 et $P=X^2+bX+b^2/4$ avec $b\in\mathbb{K}$.

b) Parmi les polynôme de degré inférieur à 1, seul le polynôme nul est solution.

Pour P polynôme tel que deg P > 2 alors la relation $(X^2 + 1)P'' - 6P = 0$ implique, en raisonnant sur l'annulation des coefficients dominants, $\deg P(\deg P - 1) = 6$ donc $\deg P = 3$.

En cherchant P sous la forme $P = aX^3 + bX^2 + cX + d$ avec $a \in \mathbb{K}^*$, on obtient que seuls les polynômes $P = a(X^3 + X)$ avec $a \in \mathbb{K}^*$ sont solutions.

Finalement les polynômes solutions sont les $a(X^3 + X)$ avec $a \in \mathbb{K}$.

Montrer que pour tout entier naturel n, il existe un unique polynôme $P_n \in \mathbb{R}[X]$ tel que $P_n - P_n' = X^n$. Exprimer les coefficients de P_n à l'aide de nombres factoriels.

Les polynômes solutions de $P_n - P_n' = X^n$ sont nécessairement de degré n.

Cherchons ceux-ci de la forme : $P_n = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$.

$$P_n - P_n' = X^n$$
 équivaut à $a_n = 1, a_{n-1} = na_n, a_{n-2} = (n-1)a_{n-1}, \dots, a_0 = 1.a_1$.

Par suite l'équation $P_n - P_n' = X^n$ possède une et une seule solution qui est :

$$P = X^{n} + nX^{n-1} + n(n-1)X^{n-2} + \dots + n! = \sum_{k=0}^{n} \frac{n!}{k!}X^{k}.$$

Exercice 5 Déterminer dans $\mathbb{K}[X]$ tous les polynômes divisibles par leur polynôme dérivé.

Parmi les polynômes constants, seul le polynôme nul est divisible par son polynôme dérivé.

Soit P un polynôme non constant et n son degré.

Si $P' \mid P$ alors on peut écrire nP = (X - a)P' avec $a \in \mathbb{K}$ car $\deg P' = \deg P - 1$.

En dérivant nP' = (X - a)P'' + P' donc (n-1)P' = (X - a)P''.

Ainsi de suite jusqu'à $P^{(n-1)} = (X - a)P^{(n)}$.

Or, si on pose λ le coefficient dominant de P, on a $P^{(n)} = n!\lambda$ donc en remontant les précédents calculs on obtient $n!P = n!(X-a)^n \lambda$. Ainsi $P = \lambda (X-a)^n$. Inversement, un tel polynôme est solution.

Finalement les solutions sont les $P = \lambda (X - a)^n$ avec $\lambda \in \mathbb{K}$.

Soit $P \in \mathbb{K}[X]$. Montrer que $P(X+1) = \sum_{n=0}^{+\infty} \frac{1}{n!} P^{(n)}(X)$. Exercice 6

$$P(X) = \sum_{n=0}^{+\infty} \frac{P^{(n)}(0)}{n!} X^n \quad \text{donc} \quad P(1) = \sum_{n=0}^{+\infty} \frac{P^{(n)}(0)}{n!} \quad \text{et plus généralement} \quad P^{(k)}(1) = \sum_{n=0}^{+\infty} \frac{P^{(n+k)}(0)}{n!} \, .$$

$$P(X+1) = \sum_{k=0}^{+\infty} \frac{P^{(k)}(1)}{k!} X^k = \sum_{k=0}^{+\infty} \sum_{n=0}^{+\infty} \frac{1}{k!} \frac{P^{(n+k)}(0)}{n!} X^k = \sum_{n=0}^{+\infty} \sum_{k=0}^{+\infty} \frac{1}{k!} \frac{P^{(n+k)}(0)}{n!} X^k = \sum_{n=0}^{+\infty} \frac{1}{n!} P^{(n)}(X).$$

Les sommes manipulées ici se limitent toujours à un nombre fini de termes non nuls.

Arithmétique des polynômes

Montrer les divisibilités suivantes et déterminer les quotients correspondant : Exercice 7 c) $X+1 \mid X^3+3X^2-2$.

a)
$$X-1 \mid X^3-2X^2+3X-2$$
 b) $X-2 \mid X^3-3X^2+3X-2$

a)
$$X^3 - 2X^2 + 3X - 2 = (X - 1)(X^2 - X + 2)$$
.

b)
$$X^3 - 3X^2 + 3X - 2 = (X - 2)(X^2 - X + 1)$$
.

c)
$$X^3 + 3X^2 - 2 = (X+1)(X^2 + 2X - 2)$$
.

Exercice 8 Soit
$$P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$$
.

- a) Montrer que P X divise $P \circ P P$.
- b) En déduire que P X divise $P \circ P X$.

a)
$$P \circ P - P = \sum_{k=0}^{n} a_k \left(P^k - X^k \right)$$
 et $P - X \mid P^k - X^k$.

b) P-X divise $P\circ P-P$ et P-X donc la somme $P\circ P-X$.

Exercice 9 Soit $A, B \in \mathbb{K}[X]$ tels que $A^2 \mid B^2$. Montrer que $A \mid B$.

Posons $D = \operatorname{pgcd}(A,B)$. On a $D^2 = \operatorname{pgcd}(A^2,B^2)$ associé à A^2 donc $\deg D^2 = \deg A^2$ puis $\deg D = \deg A$. Or $D \mid A$ donc D et A sont associés. Puisque $D \mid B$, on obtient $A \mid B$.

Exercice 10 Soit $A, B \in \mathbb{K}[X]$ non constants et premiers entre eux.

Montrer qu'il existe un unique couple $(U,V) \in \mathbb{K}[X]^2$ tel que AU + BV = 1 et $\begin{cases} \deg U < \deg B \\ \deg V < \deg A \end{cases}$

Unicité : Soit (U,V) et (\hat{U},\hat{V}) deux couples solutions. On a $A(U-\hat{U})=B(\hat{V}-V)$.

 $A \mid B(\hat{V} - V)$ et $A \land B = 1$ donc $A \mid \hat{V} - V$. Or $\deg(\hat{V} - V) < \deg A$ donc $\hat{V} - V = 0$.

Par suite $\hat{V} = V$ et de même $\hat{U} = U$.

Existence : Puisque $A \wedge B = 1$, il existe $U, V \in \mathbb{K}[X]$ tels que AU + BV = 1.

Réalisons la division euclidienne de U par B : $U = BQ + \hat{U}$ avec $\deg \hat{U} < \deg B$.

Posons ensuite $\hat{V} = V + AQ$. On a $A\hat{U} + B\hat{V} = AU + BV = 1$ avec $\deg \hat{U} < \deg B$.

Comme $\deg A \hat{U} + B \hat{V} < \max(\deg A \hat{U}, \deg B \hat{V})$ on a $\deg A \hat{U} = \deg B \hat{V}$

ďoù $\deg \hat{V} = \deg A + \deg \hat{U} - \deg B < \deg A$.

Exercice 11 Soit $(A, B) \in \mathbb{K}[X]^2$ non nuls. Montrer que les assertions suivantes sont équivalentes :

- (i) A et B ne sont pas premiers entre eux.
- (ii) $\exists (U,V) \in (\mathbb{K}[X]-\{0\})^2$ tel que AU+BV=0, $\deg U < \deg B$ et $\deg V < \deg A$.

(i) \Rightarrow (ii) Posons $D = \operatorname{pgcd}(A, B)$ qui est non constant.

Puisque $D \mid A$ et $D \mid B$ on peut écrire A = DV et -B = DU avec $\deg V < \deg A$ et $\deg U < \deg B$.

de sorte que AU + BV = DUV - DUV = 0.

 $(ii) \Rightarrow (i)$ Supposons (ii)

Si par l'absurde $A \wedge B = 1$ alors, puisque $A \mid -BV$ on a $A \mid V$.

Or $V \neq 0$ donc $\deg A \leq \deg V$ ce qui est exclu. Absurde.

Exercice 12 Soit $A, B \in \mathbb{K}[X]$ non nuls.

Montrer: A et B sont premiers entre eux ssi A+B et AB le sont.

Si $A \wedge B = 1$ alors il existe $U, V \in \mathbb{K}[X]$ tels que AU + BV = 1.

On a alors A(U-V)+(A+B)V=1 donc $A \wedge (A+B)=1$. De même $B \wedge (A+B)=1$.

Par suite $AB \wedge (A+B) = 1$.

Si $AB \wedge (A+B) = 1$ alors puisque $\operatorname{pgcd}(A,B) \mid AB$ et $\operatorname{pgcd}(A,B) \mid A+B$ on a $\operatorname{pgcd}(A,B) = 1$ puis $A \wedge B = 1$.

Exercice 13 Soit $A, B, C \in \mathbb{K}[X]$ tels que A et B soient premiers entre eux.

Montrer: pgcd(A, BC) = pgcd(A, C).

$$\begin{split} &\operatorname{pgcd}(A,C) \mid A \text{ et } \operatorname{pgcd}(A,C) \mid C \text{ donc } \operatorname{pgcd}(A,C) \mid BC \text{ puis } \operatorname{pgcd}(A,C) \mid \operatorname{pgcd}(A,BC) \text{ .} \\ &\operatorname{Inversement. Posons } D = \operatorname{pgcd}(A,BC) \text{ . On a } D \mid A \text{ et } A \wedge B = 1 \text{ donc } D \wedge B = 1 \text{ .} \\ &\operatorname{De plus } D \mid BC \text{ donc par le th\'eor\`eme de Gauss, } D \mid C \text{ et finalement } D \mid \operatorname{pgcd}(A,C) \text{ .} \end{split}$$

Division euclidienne

Exercice 14 En réalisant une division euclidienne, former une condition nécessaire et suffisante sur $(\lambda, \mu) \in \mathbb{K}^2$ pour que $X^2 + 2$ divise $X^4 + X^3 + \lambda X^2 + \mu X + 2$.

 $X^4 + X^3 + \lambda X^2 + \mu X + 2 = (X^2 + 2)(X^2 + X + (\lambda - 2)) + (\mu - 2)X + 6 - 2\lambda \ .$ Le polynôme $X^2 + 2$ divise $X^4 + X^3 + \lambda X^2 + \mu X + 2$ ssi $\lambda = 3, \mu = 2$.

Exercice 15 Soit $(a,b) \in \mathbb{K}^2$ tel que $a \neq b$ et $P \in \mathbb{K}[X]$. Exprimer le reste de la division euclidienne de P par (X-a)(X-b) en fonction de P(a) et P(b).

Cette division euclidienne s'écrit P = Q(X - a)(X - b) + R avec deg R < 2.

On peut écrire $R = \alpha X + \beta$. En évaluant en a et b, on obtient un système dont la résolution donne

$$\alpha = \frac{P(b) - P(a)}{b - a} \ \ \text{et} \ \ \beta = \frac{bP(a) - aP(b)}{b - a} \,.$$

Exercice 16 Soit $a \in \mathbb{K}$ et $P \in \mathbb{K}[X]$. Exprimer le reste de la division euclidienne de P par $(X-a)^2$ en fonction de P(a) et P'(a).

Cette division euclidienne s'écrit $P = Q(X - a)^2 + R$ avec $\deg R < 2$.

On peut écrire $R = \alpha X + \beta$. En évaluant en a, puis en dérivant avant d'évaluer à nouveau en a, on obtient un système dont la résolution donne $\alpha = P'(a)$ et $\beta = P(a) - aP'(a)$.

Exercice 17 Soit $t \in \mathbb{R}$ et $n \in \mathbb{N}^*$.

Déterminer le reste de la division euclidienne dans $\mathbb{R}[X]$ de $(X\cos t + \sin t)^n$ par $X^2 + 1$.

 $(X\cos t + \sin t)^n = (X^2 + 1)Q + R$ avec $\deg R < 2$ ce qui permet d'écrire R = aX + b avec $a, b \in \mathbb{R}$.

Cette relation doit être aussi vraie dans $\mathbb{C}[X]$ et peut donc être évaluée en i:

 $(i\cos t + \sin t)^n = R(i) = ai + b$ or $(i\cos t + \sin t)^n = e^{i(n\pi/2 - nt)}$ donc $a = \sin n(\pi/2 - t)$ et $b = \cos n(\pi/2 - t)$.

Exercice 18 Soit $k, n \in \mathbb{N}^*$ et r le reste de la division euclidienne de k par n.

Montrer que le reste de la division euclidienne de X^k par X^n-1 est X^r .

k = nq + r avec $0 \le r < n$. On a $X^k - X^r = X^r(X^{nq} - 1)$ or $X^n - 1 \mid X^{nq} - 1$ donc on peut écrire $X^{nq} - 1 = (X^n - 1)Q(X)$ puis $X^k = (X^n - 1)X^rQ(X) + X^r$ avec $\deg X^r < \deg(X^n - 1)$ ce qui permet de reconnaître le reste de division euclidienne cherchée.

Exercice 19 Soit $n, m \in \mathbb{N}^*$.

- a) De la division euclidienne de n par m, déduire celle de X^n-1 par X^m-1 .
- b) Etablir que $\operatorname{pgcd}(X^n 1, X^m 1) = X^{\operatorname{pgcd}(n,m)} 1$

a) n = mq + r avec $0 \le r < m$.

$$X^{n} - 1 = X^{mq+r} - 1 = X^{mq+r} - X^{r} + X^{r} - 1 = X^{r} (X^{mq} - 1) + X^{r} - 1$$

or $X^{mq} - 1 = (X^m - 1)(1 + X^m + \dots + X^{m(q-1)})$ donc $X^n - 1 = (X^m - 1)Q + R$ avec

 $Q = X^{r}(1 + X^{m} + \dots + X^{m(q-1)})$ et $R = X^{r} - 1$.

Puisque $\deg R < \deg X^m - 1$, R est le reste de la division euclidienne de $X^n - 1$ par $X^m - 1$.

b) Suivons l'algorithme d'Euclide calculant le pgcd de n et m.

 $a_0=n$, $a_1=m$ puis tant que $a_k
eq 0$, on pose a_{k+1} le reste de la division euclidienne de a_{k-1} par a_k .

Cet algorithme donne $\operatorname{pgcd}(m,n) = a_{\scriptscriptstyle p}$ avec $a_{\scriptscriptstyle p}$ le dernier reste non nul.

Par la question ci-dessus on observer que si on pose $A_k = X^{a_k} - 1$ alors $A_0 = X^n - 1$, $A_1 = X^m - 1$ et pour tout k tel que $a_k \neq 0$, $A_k \neq 0$ et A_{k+1} est le reste de la division euclidienne de A_{k-1} par A_k .

 $\begin{aligned} & \text{Par suite } \operatorname{pgcd}(X^{^{n}}-1,X^{^{m}}-1) = \operatorname{pgcd}(A_{_{0}},A_{_{1}}) = \operatorname{pgcd}(A_{_{1}},A_{_{2}}) = \cdots = \operatorname{pgcd}(A_{_{p}},A_{_{p+1}}) = A_{_{p}} = X^{\operatorname{pgcd}(m,n)} - 1 \ \operatorname{car}(A_{_{p+1}}) = 0 \ \operatorname{puisque}(A_{_{p+1}}) = 0 \ \operatorname{puisque}(A_{$

L'espace vectoriel des polynômes

Exercice 20 Soit $P_1 = X^2 + 1$, $P_2 = X^2 + X - 1$ et $P_3 = X^2 + X$. Montrer que la famille (P_1, P_2, P_3) est une base de $\mathbb{K}_2[X]$.

 $\text{Supposons } \lambda_{\text{I}}P_{\text{I}} + \lambda_{\text{2}}P_{\text{2}} + \lambda_{\text{3}}P_{\text{3}} = 0 \text{ . Par \'egalit\'e de coefficients de polynômes : } \begin{cases} \lambda_{\text{I}} - \lambda_{\text{2}} = 0 \\ \lambda_{\text{2}} + \lambda_{\text{3}} = 0 \\ \lambda_{\text{I}} + \lambda_{\text{2}} + \lambda_{\text{3}} = 0 \end{cases}$

Après résolution $\lambda_1 = \lambda_2 = \lambda_3 = 0$.

La famille (P_1,P_2,P_3) est une famille libre formée de $3=\dim\mathbb{K}_2[X]$ polynômes de $\mathbb{K}_2[X]$, c'est donc une base de $\mathbb{K}_2[X]$.

Exercice 21 Pour $k \in \{0,...,n\}$, on pose $P_k = (X+1)^{k+1} - X^{k+1}$.

Montrer que la famille $(P_0,...,P_n)$ est une base de $\mathbb{K}_n[X]$.

On remarque que $\deg P_{\scriptscriptstyle k} = k \ \operatorname{donc} \ P_{\scriptscriptstyle k} \in \mathbb{K}_{\scriptscriptstyle n} \big[X \big]$.

Supposons $\lambda_0 P_0 + \cdots + \lambda_n P_n = 0$.

Si $\lambda_n \neq 0$ alors $\deg(\lambda_0 P_0 + \dots + \lambda_n P_n) = n$ car $\deg(\lambda_0 P_0 + \dots + \lambda_{n-1} P_{n-1}) \leq n-1$ et $\deg \lambda_n P_n = n$

Ceci est exclu, donc $\lambda_n = 0$.

Sachant $\lambda_n = 0$, le même raisonnement donne $\lambda_{n-1} = 0$ et ainsi de suite $\lambda_{n-2} = \ldots = \lambda_0 = 0$.

La famille $(P_0,...,P_n)$ est une famille libre de $n+1=\dim\mathbb{K}_n\big[X\big]$ éléments de $\mathbb{K}_n\big[X\big]$, c'est donc une base de $\mathbb{K}_n\big[X\big]$.

Exercice 22 Pour $k \in \{0,...,n\}$, on pose $P_k = X^k (1-X)^{n-k}$. Montrer que la famille $(P_0,...,P_n)$ est une base de $\mathbb{K}_n[X]$.

Supposons $\lambda_0 P_0 + \cdots + \lambda_n P_n = 0$.

En évaluant en 0, on obtient $\lambda_0 = 0$ et alors $\lambda_1 X (1 - X)^{n-1} + \dots + \lambda_n X^n = 0$.

En simplifiant par X (ce qui est possible car $X \neq 0$) on obtient $\lambda_1(1-X)^{n-1}+\cdots+\lambda_nX^{n-1}=0$ qui évaluée en 0 donne $\lambda_1=0$. On reprend ce processus jusqu'à obtention de $\lambda_2=\ldots=\lambda_n=0$.

La famille (P_0,\ldots,P_n) est une famille libre de $n+1=\dim\mathbb{K}_n\left[X\right]$ éléments de $\mathbb{K}_n\left[X\right]$ (car $\deg P_k=n$), c'est donc une base de $\mathbb{K}_n\left[X\right]$.

Exercice 23 On pose
$$P_k = \frac{X(X-1)...(X-k+1)}{k!}$$
 pour $k \in \{0,...,n\}$.

- a) Montrer que $(P_0, P_1, ..., P_n)$ est une base de $\mathbb{R}_n[X]$.
- b) Montrer que $\forall x \in \mathbb{Z}, \forall k \in \mathbb{Z}, P_{k}(x) \in \mathbb{Z}$.
- c) Trouver tous les polynômes P tels que $\forall x \in \mathbb{Z}, P(x) \in \mathbb{Z}$.

a) polynôme de degrés étagés.

b) Quand
$$k \le m : P_k(m) = {m \choose k}$$
.

Quand $0 \le m \le k-1 : P_k(m) = 0$.

Quand
$$m < 0$$
, $P_k(m) = (-1)^k \binom{m+k-1}{k}$.

c) Soit P non nul solution, $P = \lambda_0 P_0 + \cdots + \lambda_n P_n$ (avec $n = \deg P$).

 $P(0) \in \mathbb{Z}$ donne $\lambda_0 \in \mathbb{Z}$.

 $P(1) \in \mathbb{Z}$ sachant $\lambda_0 P_0(1) \in \mathbb{Z}$ donne $\lambda_1 \in \mathbb{Z}$ etc... Inversement ok

Finalement les polynômes solutions sont ceux se décomposant en coefficients entiers sur les P_k .

Exercice 24 Soit E l'espace vectoriel des applications de $\mathbb R$ dans $\mathbb R$.

On considère $\,F\,$ la partie de $\,E\,$ constituée des applications de la forme :

$$x \mapsto P(x)\sin x + Q(x)\cos x \text{ avec } P, Q \in \mathbb{R}_n[X].$$

- a) Montrer que F un sous-espace vectoriel de E.
- b) Montrer que F est de dimension finie et déterminer $\dim F$.

a) $F \subset E$ et la fonction nulle appartient à F (en prenant $P = Q = 0 \in \mathbb{R}_n[X]$)

Soit $f,g \in F$ et $\lambda,\mu \in \mathbb{R}$. On peut écrire $f(x) = P(x)\sin x + Q(x)\cos x$ et $g(x) = \hat{P}(x)\sin x + \hat{Q}(x)\cos x$ avec $P,Q,\hat{P},\hat{Q} \in \mathbb{R}_n[X]$.

On a alors $\lambda f + \mu g = (\lambda P + \mu \hat{P})(x) \sin x + (\lambda Q + \mu \hat{Q})(x) \cos x$ avec $\lambda P + \mu \hat{P}, \lambda Q + \mu \hat{Q} \in \mathbb{R}_n[X]$ donc

 $\lambda f + \mu g \in F$ et finalement F est un sous-espace vectoriel de E .

b) Posons $f_k(x) = x^k \sin x$ et $g_k(x) = x^k \cos x$ avec $k \in \{0, ..., n\}$.

Les fonctions $f_0, \dots, f_n, g_0, \dots, g_n$ sont des fonctions de F formant clairement une famille génératrice.

Supposons $\lambda_0 f_0 + \dots + \lambda_n f_n + \mu_0 g_0 + \dots + \mu_n g_n = 0$ alors pour tout $x \in \mathbb{R}$ on a :

$$(\lambda_0 + \lambda_1 x + \dots + \lambda_n x^n) \sin x + (\mu_0 + \mu_1 x + \dots + \mu_n x^n) \cos x \quad (1)$$

Pour x = 0, on obtient $\mu_0 = 0$

En dérivant (1) et en prenant x = 0, on obtient $\lambda_0 = 0$.

En reprenant (1) et en simplifiant par x:

$$\forall x \in \mathbb{R}^* \ (\lambda_1 + \lambda_2 x + \dots + \lambda_n x^{n-1}) \sin x + (\mu_1 + \mu_2 x + \dots + \mu_n x^{n-1}) \cos x.$$

Cette relation se prolonge encore à x = 0 par continuité.

Ceci permet d'itérer le processus et de conclure que $(f_0, ..., f_n, g_0, ..., g_n)$ est libre.

Finalement $(f_0, ..., f_n, g_0, ..., g_n)$ est une base de F et par suite $\dim F = 2(n+1)$.

Exercice 25 Soit $n \in \mathbb{N}$ et $A \in \mathbb{K}_n[X]$ un polynôme non nul.

Montrer que $F = \{P \in \mathbb{K}_n[X]/A \mid P\}$ est un sous-espace vectoriel de $\mathbb{K}_n[X]$ et en déterminer la dimension et un supplémentaire.

 $F \subset \mathbb{K}_{n}[X], 0 \in F \text{ car } A \mid 0.$

Soit $\lambda, \mu \in \mathbb{K}$ et $P, Q \in F$. $A \mid P$ et $A \mid Q$ donc $A \mid \lambda P + \mu Q$ puis $A \mid F$.

Ainsi F est un sous-espace vectoriel de $\mathbb{K}_n[X]$. Notons $p=\deg A$. On a $F\oplus\mathbb{K}_{p-1}[X]=\mathbb{K}_n[X]$ ce qui détermine un supplémentaire de F et donne $\dim F=n+1-p$.

Endomorphisme opérant sur les polynômes

Exercice 26 Soit $n \in \mathbb{N}^*$ et $\Delta : \mathbb{K}_{n+1}[X] \to \mathbb{K}_n[X]$ l'application définie par : $\Delta(P) = P(X+1) - P(X)$. a) Montrer que Δ est bien définie et que Δ est une application linéaire.

- b) Déterminer le noyau de Δ .
- c) En déduire que cette application est surjective.
- a) P(X+1) et P(X) sont de polynômes de mêmes degré et de coefficients dominants égaux donc $\deg P(X+1)-P(X)<\deg P$ à moins que P=0. Par suite $\forall P\in\mathbb{K}_{n+1}\big[X\big],\ \Delta(P)\in\mathbb{K}_n\big[X\big]$.

Soit $\lambda, \mu \in \mathbb{K}$ et $P, Q \in \mathbb{K}_{n+1}[X]$.

 $\Delta(\lambda P + \mu Q) = (\lambda P + \mu Q)(X+1) - (\lambda P + \mu Q)(X) = \lambda(P(X+1) - P(X)) + \mu(Q(X+1) - Q(X))$ donc $\Delta(\lambda P + \mu Q) = \lambda\Delta(P) + \mu\Delta(Q).$

b) $P \in \ker \Delta \Leftrightarrow P(X+1) - P(X)$.

En écrivant $P \in \ker \Delta \Leftrightarrow P(X+1) = P(X) \Leftrightarrow a_0 + a_1(X+1) + \dots + a_n(X+1)^n = a_0 + a_1X + \dots + a_nX^n$ En développant et en identifiant les coefficients, on obtient successivement, $a_n = 0, \dots, a_1 = 0$ et donc $\ker \Delta = \mathbb{K}_0[X]$.

- c) Par le théorème du rang $\operatorname{rg} \Delta = \dim \mathbb{K}_{n+1} \big[X \big] \dim \ker \Delta = n+2-1 = n+1 = \dim \mathbb{K}_n \big[X \big] \operatorname{donc} \Delta$ est surjectif.
- *Exercice* 27 Soit $\Delta: \mathbb{C}[X] \to \mathbb{C}[X]$ l'application définie par $\Delta(P) = P(X+1) P(X)$
 - a) Montrer que Δ est un endomorphisme et que pour tout polynôme P non constant $\deg \big(\Delta(P)\big) = \deg P 1$.
 - b) Déterminer $\ker \Delta$ et $\operatorname{Im} \Delta$.
 - c) Soit $P \in \mathbb{C}\big[X\big]$ et $n \in \mathbb{N}$. Montrer que $\Delta^n(P) = (-1)^n \sum_{k=0}^n (-1)^k \binom{n}{k} P(X+k)$.
 - d) En déduire que si $\deg P < n$ alors on a $\sum_{k=0}^n \binom{n}{k} (-1)^k P(k) = 0$.
- a) Δ est clairement linéaire.

Soit $P\in\mathbb{C}\big[X\big]$ non nul et $n=\deg P$. On peut écrire $P=a_0+a_1X+\cdots+a_nX^n$ avec $a_n\neq 0$.

 $\Delta(P) = a_1 \Delta(X) + \dots + a_n \Delta(X^n) \text{ or } \deg \Delta(X), \dots, \deg \Delta(X^{n-1}) \leq n-1 \text{ et } \deg \Delta(X^n) = n-1 \text{ donc}$ $\deg \Delta(P) = n-1.$

b) Si P est constant alors $\Delta(P) = 0$ et sinon $\Delta(P) \neq 0$ donc $\ker \Delta = \mathbb{C}_0[X]$.

Soit $P \in \mathbb{C}_n[X]$. La restriction $\tilde{\Delta}$ de Δ au départ $\mathbb{C}_{n+1}[X]$ et à l'arrivée dans $\mathbb{C}_n[X]$ est bien définie, de noyau de dimension 1 et en vertu du théorème du rang surjective. Il s'en suit que Δ est surjective. c) Notons $T \in \mathcal{L}(\mathbb{C}[X])$ défini par T(P) = P(X+1).

$$\Delta = T - I$$
 donc $\Delta^n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} T^k$ avec $T^k(P) = P(X+k)$ donc

$$\Delta^{n}(P) = (-1)^{n} \sum_{k=0}^{n} (-1)^{k} {n \choose k} P(X+k)$$

d) Si $\deg P < n$ alors $\Delta^n(P) = 0$ donc $\sum_{k=0}^n C_n^k (-1)^k P(k) = 0$.

- **Exercice 28** Soit $\varphi: \mathbb{K}_{n+1}[X] \to \mathbb{K}_n[X]$ définie par $\varphi(P) = (n+1)P XP'$.
 - a) Justifier que $\,arphi\,$ est bien définie et que c'est une application linéaire.
 - b) Déterminer le noyau de φ .
 - c) En déduire que φ est surjective.
- a) Si $P \in \mathbb{K}_n[X]$ alors $\varphi(P) \in \mathbb{K}_n[X]$.

Si $\deg P=n+1$ alors (n+1)P et XP' ont même $\deg (n+1)$ et même coefficient dominant dont $\deg (n+1)P-XP' < n+1$ puis $(n+1)P-XP' \in \mathbb{K}_n[X]$.

Finalement $\forall P \in \mathbb{K}_{n+1}[X]$, $\varphi(P) \in \mathbb{K}_n[X]$ et donc l'application φ est bien définie.

Pour $\lambda, \mu \in \mathbb{K}$ et tout $P, Q \in \mathbb{K}_n \big[X \big]$: $\varphi(\lambda P + \mu Q) = (n+1)(\lambda P + \mu Q) - X(\lambda P + \mu Q)' = \lambda((n+1)P - XP') + \mu((n+1)Q - XQ')$ et donc $\varphi(\lambda P + \mu Q) = \lambda \varphi(P) + \mu \varphi(Q)$. b) Soit $P = \sum_{k=0}^{n+1} a_k X^k \in \mathbb{K}_{n+1} \big[X \big]$. $\varphi(P) = 0 \Leftrightarrow \forall k \in \big\{ 0, 1, \dots, n+1 \big\}$, $(n+1)a_k = ka_k$. Ainsi $P \in \ker \varphi \Leftrightarrow \forall k \in \big\{ 0, 1, \dots, n \big\}, a_k = 0$. Par suite $\ker \varphi = \operatorname{Vect}(X^{n+1})$. c) Par le théorème du rang $\operatorname{rg}(\varphi) = \dim \mathbb{K}_{n+1} \big[X \big] - \dim \ker \varphi = n+1 = \dim \mathbb{K}_n \big[X \big]$ donc φ est surjective.

Exercice 29 a) Montrer que $\varphi:\mathbb{R}_n[X] \to \mathbb{R}_n[X]$ définie par $\varphi(P) = P(X) + P(X+1)$ est bijective. On en déduit qu'il existe un unique $P_n \in \mathbb{R}_n[X]$ tel que : $P_n(X) + P_n(X+1) = 2X^n$. Montrer que pour tout $n \in \mathbb{N}$, il existe $P_n \in \mathbb{R}_n[X]$ unique tel que : $P_n(X) + P_n(X+1) = 2X^n$. b) Justifier qu'on peut exprimer $P_n(X+1)$ en fonction de P_0, \dots, P_n . c) En calculant de deux façons $P_n(X+2) + P_n(X+1)$ déterminer une relation donnant P_n en fonction de P_0, \dots, P_{n-1} .

a) φ est linaire. Si $\deg P = k \in \mathbb{N}$ alors $\deg \varphi(P) = k$ donc $\ker \varphi = \{0\}$. Par suite φ est bijective.

b) $(P_0,...,P_n)$ est une famille de polynômes de degrés étagés, c'est donc une base de $\mathbb{R}_n[X]$.

Puisque $P_n(X+1) \in \mathbb{R}_n[X]$, on peut écrire $P_n(X+1) = \sum_{k=0}^n \lambda_k P_k$.

c) $P_n(X+2) + P_n(X+1) = 2(X+1)^n$ et $P_n(X+2) + P_n(X+1) = \sum_{k=0}^n 2\lambda_k X^k$ donc $\lambda_k = C_n^k$.

 $P_{n}=2X^{n}-P_{n}(X+1)=2X^{n}-\sum_{k=0}^{n-1}C_{n}^{k}P_{k}-P_{n} \text{ puis } P_{n}=X^{n}-\frac{1}{2}\sum_{k=0}^{n-1}C_{n}^{k}P_{k} \; .$

Exercice 30 Soit A un polynôme non nul de $\mathbb{R}[X]$ et $r:\mathbb{R}[X] \to \mathbb{R}[X]$ l'application définie par : $\forall P \in \mathbb{R}[X]$, r(P) est le reste de la division euclidienne de P par A. Montrer que r est un endomorphisme de $\mathbb{R}[X]$ tel que $r^2 = r \circ r = r$. Déterminer le noyau et l'image de cet endomorphisme.

Soit $\lambda, \mu \in \mathbb{R}$ et $P_1, P_2 \in \mathbb{R}[X]$. On a $P_1 = AQ_1 + r(P_1), P_2 = AQ_2 + r(P_2)$ avec $\deg r(P_1), \deg r(P_2) < \deg A$. Donc $\lambda P_1 + \mu P_2 = A(\lambda Q_1 + \mu Q_2) + \lambda r(P_1) + \mu r(P_2)$ avec $\deg(\lambda r(P_1) + \mu r(P_2)) < \deg A$. Par suite $r(\lambda P_1 + \mu P_2) = \lambda r(P_1) + \mu r(P_2)$. Finalement r est un endomorphisme de $\mathbb{R}[X]$. De plus pour tout $P \in \mathbb{R}[X]$, on a $r(P) = A \times 0 + r(P)$ avec $\deg r(P) < \deg A$ donc r(r(P)) = r(P). Ainsi $r^2 = r$. r est un projecteur. $\forall P \in \mathbb{R}[X], \ r(P) = 0 \Leftrightarrow A \mid P$, donc $\ker r = A.\mathbb{R}[X]$. $\forall P \in \mathbb{R}[X], \ r(P) \in \mathbb{R}_{n-1}[X]$ en posant $n = \deg A$. Donc $\operatorname{Im} r \subset \mathbb{R}_{n-1}[X]$. Inversement, $\forall P \in \mathbb{R}_{n-1}[X], \ r(P) = P \in \operatorname{Im} r$. Donc $\mathbb{R}_{n-1}[X] \subset \operatorname{Im} r$.

Racines d'un polynôme

Exercice 31 a) Soit $P=a_nX^n+a_{n-1}X^{n-1}+...+a_1X+a_0$ un polynôme à coefficients entiers tel que $a_n\neq 0$ et $a_0\neq 0$.

On suppose que P admet une racine rationnelle r = p/q exprimée sous forme irréductible.

Montrer que $p \mid a_0$ et $q \mid a_n$.

- b) Factoriser $P = 2X^3 X^2 13X + 5$.
- c) Le polynôme $P = X^3 + 3X 1$ est-il irréductible dans $\mathbb{Q}[X]$?

a)
$$P(p/q) = 0$$
 donne $a_n p^n + a_{n-1} p^{n-1} q + \dots + a_1 p q^{n-1} + a_0 q^n = 0$.

Puisque $p \mid a_n p^n + \dots + a_1 p q^{n-1}$, on a $p \mid a_0 q^n$ or $p \land q = 1$ donc $p \mid a_0$. De même $q \mid a_n$.

b) Si P admet un racine rationnelle $r=\frac{p}{q}$ alors $p\in\left\{ -5,-1,1,5\right\}$ et $q\in\left\{ 1,2\right\} .$ $-\frac{5}{2}$ est racine de P .

$$P = 2X^3 - X^2 - 13X + 5 = (2X + 5)(X^2 - 3X + 1) = (2X + 5)\left(X - \frac{3 + \sqrt{5}}{2}\right)\left(X - \frac{3 - \sqrt{5}}{2}\right).$$

c) Si P est composé dans $\mathbb{Q}[X]$ alors P possède une racine rationnelle, or ce n'est pas le cas.

Donc P est irréductible dans $\mathbb{Q}[X]$.

Exercice 32 Soit a,b,c trois éléments, non nuls et distincts, du corps \mathbb{K} .

Démontrer que le polynôme
$$P = \frac{X(X-b)(X-c)}{a(a-b)(a-c)} + \frac{X(X-c)(X-a)}{b(b-c)(b-a)} + \frac{X(X-a)(X-b)}{c(c-a)(c-b)}$$
 peut s'écrire sous la forme $P = \lambda(X-a)(X-b)(X-c) + 1$ où λ est une constante que l'on

s'écrire sous la forme $P = \lambda(X-a)(X-b)(X-c)+1$ où λ est une constante que l'on déterminera.

$$P(a) = P(b) = P(c) = 1$$
 et a, b, c deux à deux distincts donc $(X - a)(X - b)(X - c) \mid P - 1$.

De plus deg $P \le 3$ donc $\exists \lambda \in \mathbb{K}$ tel que $P = \lambda (X - a)(X - b)(X - c) + 1$.

Puisque
$$P(0) = 0$$
, on a $\lambda = \frac{1}{abc}$.

Exercice 33 Soit $P \in \mathbb{C}[X]$ un polynôme non nul tel que $P(X^2) + P(X)P(X+1) = 0$.

- a) Montrer que si a est racine de P alors a^2 l'est aussi
- b) En déduire que a = 0 ou bien a est racine de l'unité.

a) Si
$$P(a) = 0$$
 alors $P(a^2) = -P(a)P(a+1) = 0$ donc a^2 est racine de P .

b) Si $a \neq 0$ et a non racine de l'unité alors la suite des a^{2^n} est une suite de complexe deux à deux distincts, or tous les termes de cette suite sont racines de P or $P \neq 0$ donc ce polynôme ne peut avoir une infinité de racines. Absurde.

- **Exercice 34** Soit P un polynôme de degré $n+1 \in \mathbb{N}^*$ à coefficients réels, possédant n+1 racines réelles distinctes.
 - a) Montrer que son polynôme dérivé P' possède exactement n racines réelles distinctes.
 - b) En déduire que les racines du polynôme $P^2 + 1$ sont toutes simples dans $\mathbb C$.
- a) Notons $a_0 < a_1 < ... < a_n$ les racines de P.

En appliquant le théorème de Rolle à $x \mapsto P(x)$ sur $[a_{i-1}, a_i]$ on obtient $\exists b_i \in [a_{i-1}, a_i]$ tel que $P'(b_i) = 0$.

Puisque $a_0 < b_1 < a_1 < b_2 < \ldots < b_n < a_n$, on obtient ainsi n racines réelles pour P'.

Puisque $\deg P' = \deg P - 1 = n$, il ne peut y en avoir d'autres.

b) Une racine multiple de $P^2 + 1$ est racine de $(P^2 + 1)' = 2PP'$. Or les racines de P ne sont pas racines de $P^2 + 1$ et les racines de P' sont réelles et ne peuvent donc être racines de $P^2 + 1$. Par suite $P^2 + 1$ et $(P^2 + 1)'$ n'ont pas de racines communes : les racines de $P^2 + 1$ sont simples.

Exercice 35 Soit a_0, a_1, \dots, a_n des éléments deux à deux distincts de \mathbb{K} .

Montrer que l'application $\varphi: \mathbb{K}_n[X] \to \mathbb{K}^{n+1}$ définie par $\varphi(P) = (P(a_0), P(a_1), ..., P(a_n))$ est un isomorphisme de \mathbb{K} -espace vectoriel.

Soit $\lambda, \mu \in \mathbb{K}$ et $P, Q \in \mathbb{K}_n \big[X \big]$. Clairement $\varphi(\lambda P + \mu Q) = \lambda \varphi(P) + \mu \varphi(Q)$. Soit $P \in \ker \varphi$. On a $\varphi(P) = (0, \ldots, 0)$ donc $P(a_0) = P(a_1) = \ldots = P(a_n) = 0$. deg $P \le n$ et P admet au moins n+1 racines distinctes donc P=0. ker $\varphi = \big\{ 0 \big\}$ donc φ est injectif. De plus dim $\mathbb{K}_n \big[X \big] = \dim \mathbb{K}^{n+1}$ donc φ est un isomorphisme.

Exercice 36 Soit $a_0, ..., a_n$ des réels distincts et $\varphi : \mathbb{R}_{2n+1}[X] \to \mathbb{R}^{2n+2}$ définie par $\varphi(P) = (P(a_0), P'(a_0), ..., P(a_n), P'(a_n))$. Montrer que φ est bijective.

 φ est clairement linéaire et si $P \in \ker \varphi$ alors P a plus de racines (comptés avec multiplicité) que son degré donc P = 0. Ainsi φ est injective et puisque $\dim \mathbb{R}_{2n+1}[X] = \dim \mathbb{R}^{2n+2}$, φ est un isomorphisme.

Exercice 37 Soit $P \in \mathbb{R}[X]$ un polynôme scindé de degré supérieur à 2. Montrer que P' est scindé.

Posons $n=\deg P\geq 2$, $a_1< a_2< \ldots < a_p$ les racines réelles distinctes de P et $\alpha_1,\alpha_2,\ldots,\alpha_p$ leurs ordres respectifs. On a $\alpha_1+\alpha_2+\cdots+\alpha_p=n$ car P est supposé scindé.

En appliquant le théorème de Rolle à $x \mapsto \tilde{P}(x)$ sur chaque $\left[a_i, a_{i+1}\right]$ on justifie l'existence de racines distinctes $b_1, b_2, \ldots, b_{v-1}$ disposée de sorte que $a_1 < b_1 < a_2 < b_2 < \ldots < b_{v-1} < a_v$.

Comme les $a_1, a_2, ..., a_p$ sont des racines d'ordres $\alpha_1 - 1, \alpha_2 - 1, ..., \alpha_p - 1$ de P' et que $b_1, b_2, ..., b_{p-1}$ sont des racines au moins simples de P', on vient de déterminer $(n-1) = \deg P'$ racines de P' comptées avec leur multiplicité. Finalement P' est scindé.

Racines et arithmétique

Exercice 38 Soit p et q deux entiers supérieurs à 2 et premiers entre eux.

Montrer que : $(X^p - 1)(X^q - 1) | (X - 1)(X^{pq} - 1)$.

Les racines de $X^p - 1$ sont simples et toutes racines de $X^{pq} - 1$.

Les racines de $X^q - 1$ sont simples et toutes racines de $X^{pq} - 1$.

En dehors de 1, les racines de $X^p - 1$ et $X^q - 1$ sont distinctes.

Comme 1 racine double de $(X-1)(X^{pq}-1)$, on peut conclure $(X^p-1)(X^q-1) \mid (X-1)(X^{pq}-1)$.

Exercice 39 Justifier les divisibilités suivantes :

a)
$$\forall n \in \mathbb{N}$$
, $X^2 | (X+1)^n - nX - 1$

b)
$$\forall n \in \mathbb{N}^*$$
, $(X-1)^3 \mid nX^{n+2} - (n+2)X^{n+1} + (n+2)X - n$

a) Posons $P = (X+1)^n - nX - 1$. On a P(0) = 0 et $P' = n(X+1)^{n-1} - n$ donc P'(0) = 0.

0 est au moins racine double de P donc $X^2 \mid P$.

b) Posons $P = nX^{n+2} - (n+2)X^{n+1} + (n+2)X - n$. On observe P(1) = P'(1) = P''(1) = 0.

1 est au moins racine triple de P donc $(X-1)^3 \mid P$.

Exercice 40 Montrer qu'il existe un unique polynôme P de degré inférieur à 3 tel que : $(X-1)^2 | P-1$ et $(X+1)^2 | P+1$. Déterminer celui-ci.

1 est au moins racine double de P-1 donc 1 est au moins racine simple de (P-1)'=P'.

De même -1 est au moins racine simple de P'. Par suite $X^2 - 1 \mid P'$.

Puisque deg $P' \le 2$, on peut écrire $P' = \lambda(X^2 - 1)$ avec $\lambda \in \mathbb{K}$.

Par suite
$$P = \frac{\lambda}{3}X^3 - \lambda X + \mu$$
. $P(1) = 1$ et $P(-1) = -1$ permettent de déterminer λ et μ .

On obtient :
$$\lambda = -\frac{3}{2}$$
 et $\mu = 0$.

Exercice 41 Justifier: $\forall (n, p, q) \in \mathbb{N}^3$, $1 + X + X^2 \mid X^{3n} + X^{3p+1} + X^{3q+2}$.

$$\begin{split} 1 + X + X^2 &= (X - j)(X - j^2) \,. \\ j \ \text{ et } \ j^2 \ \text{ sont racines de } \ X^{3n} + X^{3p+1} + X^{3q+2} \ \text{ donc } \ 1 + X + X^2 \mid X^{3n} + X^{3p+1} + X^{3q+2} \,. \end{split}$$

Exercice 42 Déterminer une condition nécessaire et suffisante sur $n \in \mathbb{N}$ pour que $X^2 + X + 1 \mid X^{2n} + X^n + 1$.

$$X^{2} + X + 1 = (X - j)(X - j^{2}).$$

$$X^2 + X + 1 \mid X^{2n} + X^n + 1 \Leftrightarrow j$$
 et j^2 sont racines de $X^{2n} + X^n + 1$.

Puisque $X^{2n} + X^n + 1$ est polynôme réel j en est racine ssi j^2 l'est.

$$(X^{2n} + X^n + 1)(j) = j^{2n} + j^n + 1 = \begin{cases} 3 \text{ si } n = 0 \\ 0 \text{ sinon} \end{cases}$$
 [3].

Finalement
$$X^2 + X + 1 \mid X^{2n} + X^n + 1 \Leftrightarrow n \neq 0$$
 [3].

Factorisation de polynômes

Exercice 43 Factoriser dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$ les polynômes suivants :

a)
$$X^4 - 1$$

b)
$$X^5 - 1$$

c)
$$(X^2 - X + 1)^2 + 1$$
.

a)
$$X^4 - 1 = (X - 1)(X + 1)(X - i)(X + i)$$
 dans $\mathbb{C}[X]$ et $X^4 - 1 = (X - 1)(X + 1)(X^2 + 1)$ dans $\mathbb{R}[X]$.

b)
$$X^5 - 1 = \prod_{k=0}^{4} (X - e^{\frac{2ik\pi}{5}})$$
 dans $\mathbb{C}[X]$

et
$$X^5 - 1 = (X - 1)(X^2 - 2\cos\frac{2\pi}{5}X + 1)(X^2 - 2\cos\frac{4\pi}{5}X + 1)$$
 dans $\mathbb{R}[X]$.

c)
$$(X^2 - X + 1)^2 + 1 = (X^2 - X + 1 + i)(X^2 - X + 1 - i) = (X - i)(X - 1 + i)(X + i)(X - 1 - i)$$
 dans $\mathbb{C}[X]$ et $(X^2 - X + 1)^2 + 1 = (X^2 + 1)(X^2 - 2X + 2)$ dans $\mathbb{R}[X]$.

Exercice 44 Factoriser dans $\mathbb{R}[X]$ les polynômes suivants :

a)
$$X^4 + X^2 + 1$$

b)
$$X^4 + X^2 - 6$$

c)
$$X^8 + X^4 + 1$$
.

a)
$$X^4 + X^2 + 1 = (X^2 + 1)^2 - X^2 = (X^2 + X + 1)(X^2 - X + 1)$$

b)
$$X^4 + X^2 - 6 = (X^2 + 1/2)^2 - 25/4 = (X^2 - 2)(X^2 + 3) = (X - \sqrt{2})(X + \sqrt{2})(X^2 + 3)$$

c)
$$X^8 + X^4 + 1 = (X^4 + 1)^2 - (X^2)^2 = (X^4 - X^2 + 1)(X^4 + X^2 + 1)$$
 puis

$$X^{8} + X^{4} + 1 = = (X^{2} + X + 1)(X^{2} - X + 1)(X^{3} + \sqrt{3}X + 1)(X^{2} - \sqrt{3}X + 1)$$
.

Exercice 45 Factoriser le polynôme $(X+i)^n - (X-i)^n$ pour $n \in \mathbb{N}^*$.

Les racines de
$$(X+i)^n - (X-i)^n$$
 sont les $z_k = \cot \frac{k\pi}{n}$ avec $k \in \{1, 2, ..., n-1\}$.

Par suite
$$\prod_{k=1}^{n-1} (X - \cot \frac{k\pi}{n}) | (X+i)^n - (X-i)^n$$
 et par suite $\lambda \in \mathbb{K}$ tel que

$$(X+i)^n - (X-i)^n = \lambda \prod_{k=1}^{n-1} (X - \cot \frac{k\pi}{n})$$

Le coefficient dominant de $(X+i)^n - (X-i)^n$ étant 2ni, on obtient :

$$(X+i)^{n} - (X-i)^{n} = 2ni \prod_{k=1}^{n-1} (X - \cot \frac{k\pi}{n})$$

Exercice 46 Former la décomposition primaire dans $\mathbb{R}[X]$ de $P = X^{2n+1} - 1$ (avec $n \in \mathbb{N}$).

Les racines complexes de P sont les $\omega_k = \mathrm{e}^{\frac{2ik\pi}{2n+1}}$ avec $k \in \{0,\dots,2n\}$.

On observe $\overline{\omega_k} = \omega_{2n-k}$ pour $k \in \{1, ..., n\}$ donc

$$P = (X-1)\prod_{k=1}^{n}(X-\omega_k)(X-\overline{\omega_k}) = (X-1)\prod_{k=1}^{n}X^2 - 2\cos\frac{2k\pi}{2n+1} + 1.$$

Exercice 47 Soit $a \in]0,\pi[$ et $n \in \mathbb{N}^*$. Factoriser dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$ le polynôme $X^{2n} - 2\cos aX^n + 1.$

Les racines de $X^2 - 2\cos aX + 1$ sont e^{ia} et e^{-ia} donc $X^{2n} - 2\cos aX^n + 1 = (X^n - e^{ia})(X^n - e^{-ia})$.

Les racines de $X^n - e^{ia}$ sont les $e^{i\frac{a+2k\pi}{n}}$ avec $k \in \{0,...,n-1\}$ et de même pour $X^n - e^{-ia}$.

Ainsi
$$X^{2n} - 2\cos aX^n + 1 = \prod_{k=0}^{n-1} (X - e^{\frac{i^{a+2k\pi}}{n}}) \prod_{k=0}^{n-1} (X - e^{\frac{i^{-a+2k\pi}}{n}})$$
 dans $\mathbb{C}[X]$ puis

$$X^{2n} - 2\cos aX^n + 1 = \prod_{k=0}^{n-1} (X - e^{i\frac{a+2k\pi}{n}})(X - e^{-\frac{a+2k\pi}{n}}) = \prod_{k=0}^{n-1} (X^2 - 2\cos\frac{a+2k\pi}{n}X + 1) \text{ dans } \mathbb{R}[X].$$

Relations entre racines et coefficients

Exercice 48 Trouver les racines dans \mathbb{C} du polynôme $X^4 + 12X - 5$ sachant qu'il possède deux racines dont la

Notons x_1, x_2, x_3, x_4 les racines du polynôme considéré avec $x_1 + x_2 = 2$.

$$\sigma_1 = x_1 + x_2 + x_3 + x_4 = 0$$

$$\sigma_2 = x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4 = 0$$

$$\begin{cases} \sigma_1 = x_1 + x_2 + x_3 + x_4 = 0 \\ \sigma_2 = x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4 = 0 \\ \sigma_3 = x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4 = -12 \\ \sigma_4 = x_1 x_2 x_3 x_4 = -5 \end{cases}$$

$$\sigma_4 = x_1 x_2 x_3 x_4 = -5$$

 σ_1 donne $x_3+x_4=-2$, σ_2 donne $x_1x_2+x_3x_4=4$ et σ_3 donne $x_1x_2-x_3x_4=6$.

On obtient $x_1 x_2 = 5$ et $x_3 x_4 = -1$.

 x_1 et x_2 sont les racines de $X^2 - 2X + 5$ i.e. $1 \pm 2i$.

 x_3 et x_4 sont les racines de $X^2 + 2X - 1$ i.e. $-1 \pm \sqrt{2}$.

Exercice 49 Donner une condition nécessaire et suffisante sur $\lambda \in \mathbb{C}$ pour que $X^3 - 7X + \lambda$ admette une racine qui soit le double d'une autre. Résoudre alors l'équation.

Notons x_1, x_2, x_3 les racines de $X^3 - 7X + \lambda$. On peut supposer $x_2 = 2x_1$.

Les relations entre coefficients et racines donnent :

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 x_2 + x_2 x_3 + x_3 x_1 = -7 \text{ doù } \begin{cases} x_3 = -3x_1 \\ 2x_1^2 - 6x_1^2 - 3x_1^2 = -7 \text{ puis } \begin{cases} x_3 = -3x_1 \\ x_1^2 = 1 \end{cases} \\ -6x_1^3 = -\lambda \end{cases}$$

Pour que $X^3 - 7X + \lambda$ admette une racine double d'une autre il est nécessaire que $\lambda = 6$ ou -6.

Pour $\lambda = 6$, $X^3 - 7X + 6$ admet 1,2 et -3 pour racines.

Pour $\lambda = -6$, $X^3 - 7X - 6$ admet -1, -2 et 3 pour racines.

Exercice 50 Résoudre $x^3 - 8x^2 + 23x - 28 = 0$ sachant que la somme de deux des racines est égale à la troisième.

Notons x_1, x_2, x_3 les racines de $X^3 - 8X^2 + 23X - 28$. On peut supposer $x_1 + x_2 = x_3$.

Les relations entre coefficients et racines donnent :

$$\begin{cases} x_1 + x_2 + x_3 = 8 \\ x_1 x_2 + x_2 x_3 + x_3 x_1 = 23 & \text{d'où} \\ x_1 x_2 x_3 = 28 \end{cases} \begin{cases} x_3 = 4 \\ x_1 x_2 + 4(x_2 + x_1) = 23 \\ 4x_1 x_2 = 28 \end{cases}.$$

Pour déterminer x_1 et x_2 il reste à résoudre $x^2 - 4x + 7 = 0$.

Finalement $x_1 = 2 + i\sqrt{3}, x_2 = 2 - i\sqrt{3}$ et $x_3 = 4$.

Exercice 51 On considère l'équation : $x^3 - (2 + \sqrt{2})x^2 + 2(\sqrt{2} + 1)x - 2\sqrt{2} = 0$ de racines x_1, x_2 et x_3 .

- a) Former une équation dont x_1^2, x_2^2 et x_3^2 seraient racines.
- b) En déduire les valeurs de x_1, x_2, x_3 .

a)
$$\begin{cases} \sigma_1 = x_1 + x_2 + x_3 = 2 + \sqrt{2} \\ \sigma_2 = x_1 x_2 + x_2 x_3 + x_3 x_1 = 2\sqrt{2} + 2, \\ \sigma_3 = x_1 x_2 x_3 = 2\sqrt{2} \end{cases}$$

On en déduit $x_1^2 + x_2^2 + x_3^2 = \sigma_1^2 - 2\sigma_2 = 2$, $x_1^2 x_2^2 + x_2^2 x_3^2 + x_3^2 x_1^2 = \sigma_2^2 - 2\sigma_3 \sigma_1 = 4$ et $x_1^2 x_2^2 x_3^2 = 8$.

Donc x_1^2, x_2^2 et x_3^2 sont racines de $x^3 - 2x^2 + 4x - 8 = 0$.

b) 2 est racine de l'équation ci-dessus : $x^3 - 2x^2 + 4x - 8 = (x - 2)(x^2 + 4) = (x - 2)(x + 2i)(x - 2i)$.

Quitte à réindexer : $x_1^2 = 2$, $x_2^2 = 2i$ et $x_3^2 = -2i$ d'où $x_1 = \pm \sqrt{2}$, $x_2 = \pm (1+i)$ et $x_3 = \pm (1-i)$.

Puisque $x_1 + x_2 + x_3 = 2 + \sqrt{2}$, on a $x_1 = \sqrt{2}, x_2 = 1 + i$ et $x_3 = 1 - i$.

Exercice 52 Déterminer les triplets : $(x, y, z) \in \mathbb{C}^3$ tel que

a)
$$\begin{cases} x + y + z = 1 \\ 1/x + 1/y + 1/z = 1 \\ xyz = -4 \end{cases}$$

b)
$$\begin{cases} x(y+z) = 1\\ y(z+x) = 1\\ z(x+y) = 1 \end{cases}$$

c)
$$\begin{cases} x+y+z=2\\ x^2+y^2+z^2=14\\ x^3+y^3+z^3=20 \end{cases}$$

a) Soit (x, y, z) un triplet solution

On a
$$\sigma_1 = x + y + z = 1$$
, $\sigma_3 = xyz = -4$ et $\sigma_2 = xy + yz + zx = xyz(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}) = -4$.

Par suite x, y, z sont les racines de : $X^3 - \sigma_1 X^2 + \sigma_2 X - \sigma_3 = X^3 - X^2 - 4X + 4 = (X - 1)(X - 2)(X + 2)$.

Donc $\{x, y, z\} = \{1, -2, 2\}$.

Inversement de tels triplets sont solutions.

b) Soit
$$(x, y, z)$$
 un triplet solution de
$$\begin{cases} x(y+z) = 1 & (1) \\ y(z+x) = 1 & (2) \\ z(x+y) = 1 & (3) \end{cases}$$

(1) – (2) donne xz = yz, (3) donne $z \neq 0$ donc x = y.

De même on obtient x = z.

Ainsi
$$x = y = z = 1/\sqrt{2}$$
 ou $-1/\sqrt{2}$.

Inversement de tels triplets sont solutions.

c) Soit (x, y, z) un triplet solution.

Posons
$$S_1 = x + y + z = 2$$
, $S_2 = x^2 + y^2 + z^2 = 14$ et $S_3 = x^3 + y^3 + z^3$.

Déterminons $\sigma_1 = x + y + z$, $\sigma_2 = xy + yz + zx$ et $\sigma_3 = xyz$.

On a
$$\sigma_1 = 2$$
.

$$S_1^2 - S_2 = 2\sigma_2$$
. Par suite $\sigma_2 = -5$.

Posons
$$t = x^2y + yx^2 + y^2z + zy^2 + z^2x + xz^2$$
.

On a
$$S_1S_2=S_3+t$$
 ďoù $t=S_1S_2-S_3=8$

On a
$$S_1^3 = S_3 + 3t + 6\sigma_3$$
 d'où $\sigma_3 = \frac{1}{6}(S_1^3 - S_3 - 3t) = -6$

Par suite x, y, z sont les racines de : $X^3 - \sigma_1 X^2 + \sigma_2 X - \sigma_3 = X^3 - 2X^2 - 5X + 6 = (X - 1)(X + 2)(X - 3)$.

Donc $\{x, y, z\} = \{1, -2, 3\}$.

Inversement de tels triplets sont solutions.

Exercice 53 Soit $x, y, z \in \mathbb{C}^*$ tel que x + y + z = 0. Montrer que $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)^2$.

Posons $\sigma_1 = x + y + z$, $\sigma_2 = xy + yz + zx$ et $\sigma_3 = xyz$

$$\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{y^2 z^2 + z^2 x^2 + x^2 y^2}{(xyz)^2}$$

Or
$$\sigma_2^2 = x^2y^2 + y^2z^2 + z^2x^2 + 2(xyz^2 + yzx^2 + zxy^2) = x^2y^2 + y^2z^2 + z^2x^2 + 2\sigma_1\sigma_3$$
.

$$\text{Donc } \frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{\sigma_2^2 - 2\sigma_1\sigma_3}{\sigma_3^2} = \left(\frac{\sigma_2}{\sigma_3}\right)^2 = \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)^2 \text{ car } \sigma_1 = 0 \,.$$

Exercice 54 Pour $n \in \mathbb{N}^*$ on pose $P_n = \sum_{k=0}^n X^k$.

- a) Former la décomposition primaire de P_n dans $\mathbb{C}[X]$.
- b) En déduire la valeur de $\prod_{k=1}^{n} \sin \frac{k\pi}{n+1}$.

a)
$$(X-1)P_n = X^{n+1} - 1 = \prod_{k=0}^n (X - e^{2ik\pi/(n+1)})$$
 donc $P_n = \prod_{k=1}^n (X - e^{2ik\pi/(n+1)})$.

$$\text{b)} \ \ P_n(1) = n+1 \ \ \text{et} \ \ P_n(1) = \prod_{k=1}^n (1-\mathrm{e}^{2ik\pi/(n+1)}) = (-2i)^n \prod_{k=1}^n \sin\left(\frac{k\pi}{n+1}\right) \prod_{k=1}^n \mathrm{e}^{i\frac{k\pi}{n+1}} \ \ \text{mais} \ \ \prod_{k=1}^n \mathrm{e}^{i\frac{k\pi}{n+1}} = \exp(in\pi/2) = i^n = (-2i)^n \prod_{k=1}^n \exp(in\pi/2) = i^n = (-2i)^n \exp(in\pi/2) = i^n = (-2i)^n = (-2i)^n = i^n = i^n = (-2i)^n = i^n = i^n$$

donc
$$\prod_{k=1}^{n} \sin \frac{k\pi}{n+1} = \frac{n+1}{2^n}$$
.

Exercice 55 Soit $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Résoudre dans \mathbb{C} féquation $(1+z)^n = \cos(2na) + i\sin(2na)$.

En déduire la valeur de $\prod_{k=0}^{n-1} \sin\left(a + \frac{k\pi}{n}\right)$.

$$(1+z)^n = \cos(2na) + i\sin(2na) = e^{2ina} \Leftrightarrow 1+z = e^{\frac{i^2a+2k\pi}{n}} \text{ avec } k \in \{0,1,\dots,n-1\}.$$

Cette équation possède donc n solutions distinctes qui sont $z_k = \mathrm{e}^{\frac{i^{2a+2k\pi}}{n}} - 1$ avec $k \in \{0,1,\ldots,n-1\}$.

On observe alors $\prod_{k=0}^{n-1} z_k = (-1)^n (1 - e^{2ina})$.

$$\operatorname{Or}: \prod_{k=0}^{n-1} z_k = \prod_{k=0}^{n-1} (e^{\frac{i^{2a+2k\pi}}{n}} - 1) = \prod_{k=0}^{n-1} e^{\frac{i(a+\frac{k\pi}{n})}{n}} 2i \sin(a + \frac{k\pi}{n}) = 2^n i^n e^{\frac{ina+i\frac{(n-1)\pi}{2}}{n}} \prod_{k=0}^{n-1} \sin(a + \frac{k\pi}{n})$$

$$\operatorname{donc} \ \prod_{k=0}^{n-1} z_k = 2^n i^{-1} (-1)^n \operatorname{e}^{\operatorname{ina}} \prod_{k=0}^{n-1} \sin(a + \frac{k\pi}{n}) \ \operatorname{puis} \ \prod_{k=0}^{n-1} \sin(a + \frac{k\pi}{n}) = \frac{i}{2^n} \frac{1 - \operatorname{e}^{2\operatorname{ina}}}{\operatorname{e}^{\operatorname{ina}}} = \frac{1}{2^{n-1}} \sin na \ .$$

Exercice 56 Soit $P \in \mathbb{C}[X]$ non nul et $n = \deg P$.

Montrer que les sommes des zéros de $P, P', \dots, P^{(n-1)}$ sont en progression arithmétique.

$$P = \sum_{k=0}^{n} a_k X^k \text{ avec } a_n \neq 0.$$

Notons α_k la somme des zéros de $P^{(k)}$.

$$\alpha_0 = -\frac{a_{n-1}}{a_n}, \ \alpha_1 = -\frac{(n-1)a_{n-1}}{na_n}, \ \alpha_2 = -\frac{(n-2)a_{n-1}}{na_n}, ..., \ \alpha_k = -\frac{(n-k)a_{n-1}}{na_n}, ..., \ \alpha_{n-1} = -\frac{a_{n-1}}{na_n}.$$

Les $\alpha_0, \alpha_1, \dots, \alpha_{n-1}$ sont en progression arithmétique de raison $-a_{n-1}/a_n$.

Familles de polynômes classiques

Exercice 57 Polynômes de Tchebychev (1821-1894):

Soit $n \in \mathbb{N}$. On pose $f_n : [-1,1] \to \mathbb{R}$ Tapplication définie par $f_n(x) = \cos(n \arccos x)$.

- a) Calculer f_0, f_1, f_2 et f_3 .
- b) Exprimer $f_{n+1}(x) + f_{n-1}(x)$ en fonction de $f_n(x)$.
- c) Etablir qu'il existe un unique polynôme T_n de $\mathbb{R}[X]$ dont la fonction polynomiale associée coïncide avec f_n sur [-1,1].
- d) Donner le degré de T_n ainsi que son coefficient dominant.
- e) Observer que T_n possède exactement n racines distinctes, que l'on exprimera, toutes dans]-1,1[.

a)
$$f_0: x \mapsto 1, f_1: x \mapsto x, f_2: x \mapsto 2x^2 - 1$$
 et $f_3: x \mapsto 4x^3 - 3x$

b)
$$f_{n+1}(x) + f_{n-1}(x) = \cos((n+1)\theta) + \cos((n-1)\theta) = 2\cos\theta\cos n\theta = 2xf_n(x)$$
 en posant $\theta = \arccos x$.

c) Existence : Par récurrence double sur $n \in \mathbb{N}$.

Pour n = 0 et n = 1: $T_0 = 1$ et $T_1 = X$ conviennent.

Supposons le résultat établi aux rangs n-1 et $n \ge 1$.

Soit T_{n+1} le polynôme défini par $T_{n+1} = 2XT_n - T_{n-1}$.

On a
$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) = 2xf_n(x) - f_{n-1}(x) = f_{n+1}(x)$$
.

C polynôme T_{n+1} convient. Récurrence établie.

Unicité : Si T_n et R_n conviennent, alors ceux-ci prennent mêmes valeurs en un infinité de points, ils sont donc égaux.

Il est alors aisé de montrer, par récurrence simple que deg $T_0 = 0$ et $\forall n \in \mathbb{N}^*$, deg $T_n = 2^{n-1}$

e) Résolvons l'équation $T_n(x) = 0$ sur [-1,1]:

$$\cos(n\arccos x) = 0 \Leftrightarrow n\arccos x = \frac{\pi}{2} \quad [\pi] \Leftrightarrow \arccos x = \frac{\pi}{2n} \quad \left[\frac{\pi}{n}\right]$$

Posons
$$x_0, x_1, \dots, x_{n-1}$$
 définis par $x_k = \cos \frac{(2k+1)\pi}{2n}$.

 x_0, x_1, \dots, x_{n-1} forment n racines distinctes appartenant à]-1,1[du polynôme T_n .

Or $\deg T_n = n$ donc il ne peut y avoir d'autres racines et celles-ci sont nécessairement simples.

Exercice 58 Polynômes d'interpolation de Lagrange (1736-1813):

Soit $(a_0, a_1, ..., a_n)$ une famille d'éléments de \mathbb{K} deux à deux distincts.

$$\text{Pour tout } i \in \left\{0,1,\ldots,n\right\} \text{ on pose } L_i = \frac{\displaystyle\prod_{0 \leq j \leq n, j \neq i} (X - a_j)}{\displaystyle\prod_{0 \leq j \leq n, j \neq i} (a_i - a_j)} \,.$$

a) Observer que, pour tout $j \in \{0,1,...,n\}$, on a $L_i(a_j) = \delta_{i,j}$

(où $\delta_{i,j}$ est le symbole de Kronecker (1823-1891) qui est égal à 1 lorsque i=j et 0 sinon).

b) Montrer que
$$\forall P \in \mathbb{K}_n[X]$$
 on a $P(X) = \sum_{i=0}^n P(a_i) L_i(X)$.

a)
$$a_0,\ldots,a_{i-1},a_{i+1},\ldots,a_n$$
 sont racines de L_i donc $\forall j\neq i,L_i(a_j)=0$.

$$\text{De plus } L_i(a_i) = \frac{\prod\limits_{0 \leq j \leq n, j \neq i} (a_i - a_j)}{\prod\limits_{0 < j < n, j \neq i} (a_i - a_j)} = 1 \text{ . Donc } \forall j \in \left\{0, 1, ..., n\right\}, \ L_i(a_j) = \delta_{i, j} \text{ .}$$

b) Posons
$$Q = \sum_{i=0}^n P(a_i) L_i(X)$$
 , on a $Q(a_j) = \sum_{i=0}^n P(a_i) L_i(a_j) = \sum_{i=0}^n P(a_i) \delta_{i,j} = P(a_j)$.

P et Q sont deux polynômes de degré inférieur à n et prenant mêmes valeurs aux n+1 points $a_0, a_1, ..., a_n$ ils sont donc égaux.

Exercice 59 Polynômes de Legendre (1752-1833) :

Pour tout entier naturel n on pose $L_n = \frac{n!}{(2n)!} \left((X^2 - 1)^n \right)^{(n)}$.

- a) Montrer que L_n est un polynôme unitaire de degré n .
- b) Montrer que $\,\, \forall \, Q \in \mathbb{R}_{\,n-1} \big[X \big] \,$ on a $\, \int_{\,\, 1}^{\,\, 1} L_n(t) Q(t) \mathrm{d}t = 0$.
- c) En déduire que L_n possède n racines simples toutes dans]-1,1[.
- a) $L_{\scriptscriptstyle n}$ est le polynôme dérivé d'ordre $\,n\,$ d'un polynôme de degré $\,2n\,$ donc $\,\deg L_{\scriptscriptstyle n}=n\,$.

De plus sont coefficient dominant est le même que celui de $\frac{n!}{(2n)!}(X^{2n})^{(n)}$ à savoir 1.

b) 1 et -1 sont racines d'ordre n de $(X^2-1)^n$. Par intégration par parties :

$$\frac{n!}{(2n)!} \int_{-1}^{1} L_n(t)Q(t) dt = \int_{-1}^{1} (t^2 - 1)^{(n)} Q(t) dt = \left[(t^2 - 1)^{(n-1)} Q(t) \right]_{-1}^{1} - \int_{-1}^{1} (t^2 - 1)^{(n-1)} Q'(t) dt$$

donc
$$\frac{n!}{(2n)!} \int_{-1}^{1} L_n(t)Q(t)dt = -\int_{-1}^{1} (t^2 - 1)^{(n-1)} Q'(t)dt$$

puis en reprenant le processus $\int_{-1}^{1} L_n(t)Q(t)dt = (-1)^n \int_{-1}^{1} (t^2 - 1)^{(0)} \tilde{Q}^{(n)}(t)dt = 0$

c) Soit $a_1, a_2, ..., a_n$ les racines d'ordres impairs de L_n appartenant à]-1,1[.

Soit $Q = (X - a_1)(X - a_2) \dots (X - a_p)$. La fonction $t \mapsto L_n(t)Q(t)$ est continue, de signe constant sur [-1,1]

sans être la fonction nulle donc $\int_{-1}^{1} L_n(t)Q(t)dt \neq 0$.

Compte tenu de b) on a nécessairement $p \ge n$ puis p = n car le nombre de racines ne peut excéder n. De plus les racines a_1, a_2, \ldots, a_n sont simples car la somme de leurs multiplicités ne peut excéder n.

Exercice 60 Polynômes de Fibonacci (~1180~1250):

Soit $(P_n)_{n\geq 0}$ la suite de $\mathbb{K}[X]$ définie par : $P_0=0, P_1=1$ et $\forall n\in\mathbb{N}, P_{n+2}=XP_{n+1}-P_n$.

- a) Montrer que $\forall n \in \mathbb{N}, P_{n+1}^2 = 1 + P_n P_{n+2}$.
- b) En déduire : $\forall n \in \mathbb{N}, P_n$ et P_{n+1} sont premiers entre eux.
- c) Etablir pour que pour tout $m\in\mathbb{N}$ et pour tout $n\in\mathbb{N}^*$ on a : $P_{m+n}=P_nP_{m+1}-P_{n-1}P_m$.
- d) Montrer que pour tout $m \in \mathbb{N}$ et pour tout $n \in \mathbb{N}^*$ on a : $\operatorname{pgcd}(P_{m+n}, P_n) = \operatorname{pgcd}(P_n, P_m)$.

En déduire que $\operatorname{pgcd}(P_m,P_n)=\operatorname{pgcd}(P_n,P_r)$ où r est le reste de la division euclidienne de m par n .

e) Conclure que $pgcd(P_n, P_m) = P_{pgcd(m,n)}$.

a) Par récurrence sur $n \in \mathbb{N}$

Pour n = 0: ok avec $P_2 = X$.

Supposons la propriété établie au rang $n-1 \in \mathbb{N}$.

$$1 + P_{n+2}P_n = 1 + XP_{n+1}P_n - P_n^2 = 1 + X(XP_n + P_{n-1})P_n - P_n^2 = X^2P_n^2 - XP_{n-1}P_n + P_{n-1}P_{n+1}$$

donc
$$1 + P_{n+2}P_n = X^2P_n^2 - XP_{n-1}P_n - P_{n-1}(XP_n - P_{n-1}) = X^2P_n^2 - 2XP_{n-1}P_n + P_{n-1}^2 = P_{n+1}^2$$

Récurrence établie

- b) La relation ci-dessus peut se relire : $UP_n + VP_{n+1} = 1$. Donc P_n et P_{n+1} sont premiers entre eux.
- c) Par récurrence sur $m\in\mathbb{N}$, établissons la propriété : $\forall n\in\mathbb{N}^*$, $P_{m+n}=P_nP_{m+1}-P_{n-1}P_m$.

Pour m = 0: ok

Supposons la propriété établie au rang $m \ge 0$. Pour tout $n \in \mathbb{N}^*$

$$P_{m+n+1} = P_{n+1}P_{m+1} - P_nP_m = (XP_n - P_{n-1})P_{m+1} - P_nP_m = (XP_{m+1} - P_m)P_n - P_{n-1}P_{m+1}$$

donc $P_{m+n+1} = P_{m+2}P_n - P_{n-1}P_{m+1}$. Récurrence établie.

d) Posons $D = \operatorname{pgcd}(P_n, P_{n+m})$ et $E = \operatorname{pgcd}(P_n, P_m)$.

Comme $P_{n+m} = P_n P_{m+1} - P_{n-1} P_m$ on a $E \mid D$.

Comme $P_{n-1}P_m = P_nP_{m+1} - P_{m+n}$ et $P_n \wedge P_{n-1} = 1$ on a $D \mid E$. Finalement D = E.

En notant r le reste de la division euclidienne de m par n on a m=nq+r avec $q\in\mathbb{N}$ et $\operatorname{pgcd}(P_n,P_m)=\operatorname{pgcd}(P_n,P_{n-m})=\operatorname{pgcd}(P_n,P_{n-2m})=\ldots=\operatorname{pgcd}(P_n,P_r)$.

e) En suivant l'algorithme d'Euclide menant le calcul de $\operatorname{pgcd}(m,n)$ simultanément avec celui menant le calcul de $\operatorname{pgcd}(P_m,P_n)$, on observe que $\operatorname{pgcd}(P_n,P_m)=P_{\operatorname{pgcd}(m,n)}$.

Exercice 61 Polynômes de Laguerre (1834-1886) :

Pour $n \in \mathbb{N}$, on définit $L_n : \mathbb{R} \to \mathbb{R}$ par $L_n(x) = \mathrm{e}^x \frac{\mathrm{d}^n}{\mathrm{d} x^n} (\mathrm{e}^{-x} x^n)$. Observer que L_n est une fonction polynomiale dont on déterminera le degré et le coefficient dominant.

Par la formule de dérivation de Leibniz
$$\frac{d^n}{dx^n} (e^{-x}x^n) = \sum_{k=0}^n \binom{n}{k} (x^n)^{(n-k)} (e^{-x})^{(k)} = \sum_{k=0}^n (-1)^k \frac{n!}{k!(n-k)!} \frac{n!}{k!} x^k e^{-x}$$

donc $L_n = \sum_{k=0}^n (-1)^k \frac{(n!)^2}{(k!)^2 (n-k)!} X^k$ est un polynôme de degré n et de coefficient dominant $(-1)^n$.

david Delaunay http://mpsiddl.free.fr