

UNIVERSIDAD COMPLUTENSE

MADRID

Teoría de juegos: En búsqueda de estabilidad (y robustez)

por

Manuel Grau Roldán

Objetivos

- 1. Adquirir los principios básicos de teoría de juegos.
- 2. Investigar el análisis de sensibilidad enfocado a teoría de juegos.
- 3. Estudiar un caso de economía de mercado.
- 4. Realizar diferentes técnicas de análisis de sensibilidad para estudiar la estabilidad y la incertidumbre de la solución del modelo.

Metodología

- Búsqueda y estudio de libros y artículos científicos.
- Redacción en Latex de textos científicos.
- Planteamiento y modelización de un caso práctico.
- Uso del lenguaje de programación R.

Métodos resolutivos

Usaremos código de R para resolver el caso práctico que tendrá partes secuenciales y partes mixtas

- 1. Programaremos un método basado en el algoritmo de coordenadas cíclicas con el objetivo de resolver el modelo de Bertrand.
- 2. Usaremos la función *support_enumeration* del paquete Nashpy de Python para resolver los problemas bimatriciales (llamaremos a la función desde R usando el paquete *replicate*).
- 3. Para resolver los juegos secuenciales usaremos el algoritmo de inducción hacia atrás.

Teoría de juegos

Un problema de teoría de juegos queda definido mediante los siguientes puntos:

- 1. **Los jugadores:** Serán los que tomarán decisiones que modifiquen el juego.
- 2. **Las reglas:** Definirá lo que puede y no puede hacer cada jugador y en qué momento.
- 3. **Las consecuencias:** Definirán cuáles son las consecuencias de cada acción de cada jugador.
- 4. **Los beneficios:** Definen las preferencias de cada jugador sobre los posibles resultados.

Forma normal

Jugador B

		Opción 1	Opción 2
Jugador A	Opción 1	$A_{1,1}, B_{1,1}$	$A_{1,2}, B_{1,2}$
ougador m	Opción 2	$A_{2,1}, B_{2,1}$	$A_{2,2}, B_{2,2}$

Forma extensiva

Forma BAID

Resolución de juegos:

Algoritmo de enumeración de los soportes

Para cada $k \in \{1, ..., min(m, n)\}$ y para cada par $(I, J) \subseteq (N, M)$, resolvemos el siguiente sistema de ecuaciones:

$$\sum_{i \in I} (x_i B_{i,j}) = v \quad \forall j \in J \qquad \sum_{i \in I} x_i = 1 \qquad \forall i \in I \qquad x_i \ge 0$$
$$\sum_{j \in J} (A_{i,j} y_j) = u \quad \forall i \in I \qquad \sum_{j \in J} y_j = 1 \qquad \forall j \in J \qquad y_j \ge 0$$

Donde $u = max\{(Ay)_k | k \in N\} \ y \ v = max\{(x^T B)_k | k \in M\}.$

Resolución de juegos: Problema de Bertrand

Para ser considerado un problema de Bertrand se requiere que se cumplan los siguientes requisitos

- 1. Dos empresas compiten en un mercado.
- 2. Cada empresa vende productos de calidades diferentes, puede elegir el precio al que los vende.
- 3. La demanda de los productos de cada empresa es menor cuanto mayor sea el precio de estos y menor sea en comparación con la otra empresa
- 4. Cada empresa tiene a su vez un coste de producción del artículo
- 5. No hay retrasos en el envío del producto y solo se produce lo que se vende.
- 6. Las empresas no pueden pactar el precio del productor

Algoritmo resolutivo del problema de Bertrand

- 1. Iniciamos en un punto $(p_{1,0}, p_{2,0})$ e iniciamos el bucle.
- 2. Calculamos el precio óptimo de la empresa 1 usando el precio de la empresa 2 del paso anterior.
- 3. Calculamos el precio óptimo de la empresa 2 usando el precio de empresa 1 del paso anterior.
- 4. Finalizamos cuando la distancia entre los puntos de las dos últimas iteraciones sea menor que un $\epsilon>0$.

Resolución de juegos: Algoritmo de inducción hacia atrás

- 1. Considera todos los subjuegos que no contienen otros subjuegos además de sí mismos.
- 2. Obtén el equilibrio de Nash de cada uno de los subjuegos que no contienen otros subjuegos además de sí mismos.
- 3. Sustituye dichos subjuegos por los beneficios resultantes de aplicar sus equilibrios de Nash, conservando la estrategia en el conjunto de estrategias.
- 4. Con el juego que quede repite 2 y 3 hasta que se llegue al nodo inicial.
- 5. El conjunto de estrategias que ha llegado hasta el nodo inicial es el equilibrio de Nash en subjuegos.

Análisis de sensibilidad e incertidumbre.

- 1. Cuantificar la incertidumbre de las entradas o factores. Esto puede ser complicado ya que las entradas pueden ser subjetivas o no estar cuantificadas.
- 2. Identificar el resultado o resultados que se quieren analizar.
- 3. Resolver el problema para distintas entradas, normalmente dictado por la incertidumbre de las entradas; suele depender del problema.
- 4. Usar los resultados de los problemas anteriores para calcular o estudiar la influencia de las distintas entradas.

Caso práctico

- ullet c_i es la decisión de hacer cross-play.
- ullet p_i es el precio de la consola decidido.
- $egin{aligned} ullet q_i(p_i, p_j, c_i, c_j, k, m) &= f_i(p_i, p_j, k) \ *g_i(p_i, c_i, c_j, m) *h_i(c_i, c_j) \end{aligned}$
- $ullet V_i \sim Bn(q_i(p_i,p_j,c_p,c_x,k,m),n)$
- $ullet b_i = v_i * (p_i C)$

Función f_i

$$f_i(p_i,p_j,k) = 1 - \left(rac{e^{p_i/k}}{e^{p_i/k} + e^{p_j/k}}
ight)$$

Función
$$h_i$$

$$h_p(c_p,c_x) = egin{cases} 0.75 \; si \; c_p = c_x = 0 \ 0.9 \; si \; c_p = 1 \; y \; c_x = 0 \ 0.3 \; si \; c_p = 0 \; y \; c_x = 1 \ 0.8 \; si \; c_p = c_x = 1 \end{cases}$$

 $h_x(c_p,c_x) = egin{cases} 0.7 & si & c_p = c_x = 0 \ 0.4 & si & c_p = 1 & y & c_x = 0 \ 0.8 & si & c_p = 0 & y & c_x = 1 \ 0.9 & si & c_p = c_x = 1 \end{cases}$

Función g_i

$$g_i(p_i, c_i, c_j, m) = egin{cases} \left(1 - rac{p_i}{m*h_i(c_p, c_x)}
ight)^2 & si \ 0 \leq p_i \leq (m*h_i(c_p, c_x)) \ 0 \ caso \ contrario \end{cases}$$

Solución del caso práctico

Calculando la utilidad esperada:

$$egin{aligned} E[B_i] &= E[v_i*(p_i-C)] = \ E[v_i]*E[p_i-C] &= (p_i-C)*E[v_i] \end{aligned}$$

Es decir:

$$E[B_i] = (p_i - C_i) * q_i * n$$

Gráfica de los beneficios

Solución del caso práctico

Solución del caso práctico

Tras resolver los cuatro problemas de Bertrand nos quedaría el siguiente juego simultáneo que resolverémos mediante el algoritmo de enumeración de los soportes

Xbox

	Cross-play	No	Si
Playstation	No	3.000M€ 2.747M€	460M€ 2.749M€
1 Taystation	Si	3.605M€ 916M€	3.665M€ 4.376M€

Resultado

• Para cp = 1 de estrategia para Playstation y cx = 1 para Xbox.

• Con un beneficio esperado para cada caso de 3.665.411.948€ para Playstation y de 4.376.168.454€ para Xbox.

Con unos precios por consola de pp = 440€ para Playstation y de px
= 460 € para Xbox.

Análisis de incertidumbre de $h_p(1,1)$

La variable $h_p(1,1)$ sigue una distribución $Beta(\alpha=8,\beta=2)$, muestreamos 100 veces $h_p(1,1)$ y estudiaremos la estabilidad de las decisiones obtenidas.

En todos los casos el equilibrio de Nash para la decisión de hacer cross-play no cambia.

Análisis de incertidumbre de $\ h_p(1,1)$: Beneficios de *Playstation.*

Media: 3.802M€

Moda: 4.302M€

q_{0.025}: 1.615M€

q_{0.925}: 5.198M€

Análisis de incertidumbre de $h_p(1,1)$: Beneficios de Xbox .

Media: 4.374M€

Moda: 4.482M€

q_{0.025}: 3.883M€

q_{0.925}: 4.605M€

Análisis de sensibilidad de las variables k y m.

Observaremos el comportamiento de las variables k y m, crearemos un mallado con las distintas soluciones al problema anterior para 9 valores de k equidistantes entre 200 y 600 y para 9 valores de m equidistantes entre 1000 y 3000.

Llamamos p y q al valor que define la estrategia mixta de hacer cross-play de *Playstation* y de *Xbox*, siendo (p,1-p) y (q,1-q) sus respectivas estrategias.

Análisis de sensibilidad de las variables k y m: Evolución de la p y la q.

Playstation

Xbox

	M= 1000	M= 1250	M= 1500	M= 1750	M= 2000	M= 2250	M= 2500	M= 2750	M= 3000		M= 1000	M= 1250	M= 1500	M= 1750	M= 2000	M= 2250	M= 2500	M= 2750	M=3000
k= 200	0	0	0	0	0.8752	0.848	0.8250	0.8056	0.7898	k= 200	0	0	0	0	0.9928	0.977	0.9651	0.9548	0.9470
k= 250	0	0	0	0	0.0000	0.000	0.8726	0.8519	0.8328	k= 250	0	0	0	0	0.0000	0.000	0.9920	0.9796	0.9689
k= 300	0	0	0	0	0.0000	0.000	0.0000	0.0000	0.8721	k= 300	0	0	0	0	0.0000	0.000	0.0000	0.0000	0.9917
k= 350	0	0	0	0	0.0000	0.000	0.0000	0.0000	0.0000	k= 350	0	0	0	0	0.0000	0.000	0.0000	0.0000	0.0000
k= 400	0	0	0	0	0.0000	0.000	0.0000	0.0000	0.0000	k= 400	0	0	0	0	0.0000	0.000	0.0000	0.0000	0.0000
k= 450	0	0	0	0	0.0000	0.000	0.0000	0.0000	0.0000	k= 450	0	0	0	0	0.0000	0.000	0.0000	0.0000	0.0000
k= 500	0	0	0	0	0.0000	0.000	0.0000	0.0000	0.0000	k= 500	0	0	0	0	0.0000	0.000	0.0000	0.0000	0.0000
k= 550	0	0	0	0	0.0000	0.000	0.0000	0.0000	0.0000	k= 550	0	0	0	0	0.0000	0.000	0.0000	0.0000	0.0000
k= 600	0	0	0	0	0.0000	0.000	0.0000	0.0000	0.0000	k= 600	0	0	0	0	0.0000	0.000	0.0000	0.0000	0.0000

Análisis de sensibilidad de las variables *k y m*: Evolución de los precios.

Playstation

Xbox

	M= 1000	M= 1250	M= 1500	M= 1750	M= 2000	M= 2250	M= 2500	M= 2750	M= 3000		M= 1000	M= 1250	M= 1500	M= 1750	M= 2000	M= 2250	M= 2500	M= 2750	M= 3000
k= 200	262.54	290.32	312.87	331.48	346.95	359.97	371.05	380.59	388.87	k= 200	273.54	300.44	322.04	339.78	354.46	366.76	377.25	386.25	394.13
k= 250	274.02	306.94	334.62	358.20	378.23	395.51	410.39	423.46	434.87	k= 250	287.86	320.31	347.22	369.85	389.01	405.43	419.60	431.91	442.73
k= 300	282.32	319.34	351.29	379.04	403.09	424.29	442.75	459.27	473.89	k= 300	298.52	335.58	367.05	393.95	417.26	437.50	455.14	470.86	484.71
k= 350	288.62	328.83	364.15	395.57	423.31	447.84	469.87	489.49	507.09	k= 350	306.74	347.59	382.89	413.54	440.64	464.39	485.49	504.27	521.04
k= 400	293.51	336.33	374.72	409.05	439.89	467.57	492.61	515.12	535.52	k= 400	313.27	357.20	395.95	430.06	460.41	487.34	511.54	533.22	552.76
k= 450	297.44	342.45	383.21	420.17	453.75	484.18	511.85	537.17	560.23	k= 450	318.52	365.17	406.73	443.80	477.12	507.07	533.99	558.45	580.76
k= 500	300.68	347.47	390.30	429.49	465.45	498.32	528.41	556.22	581.63	k= 500	322.81	371.77	415.78	455.54	491.49	524.07	553.66	580.73	605.37
k= 550	303.40	351.69	396.29	437.39	475.37	510.47	542.75	572.72	600.44	k= 550	326.50	377.29	423.56	465.59	503.91	538.93	570.82	600.27	627.40
k= 600	305.64	355.32	401.43	444.19	483.92	520.97	555.28	587.21	617.02	k= 600	329.59	382.16	430.22	474.35	514.80	551.95	586.29	617.64	646.92

Análisis de sensibilidad de las variables *k y m*: Evolución de los beneficios esperados

Playstation

	M= 1000	M= 1250	M=1500	M= 1750	M= 2000	M= 2250	M= 2500	M= 2750	M=3000
k= 200	1507584083	1965591008	2380143772	2752750928	2652873864	2906595062	3140921257	3354637132	3551799715
k= 250	1546131330	2041127306	2501788127	2926159824	3314630443	3669686131	3444385258	3695436686	3929660465
k= 300	1568107579	2087385417	2579991822	3041689354	3472337098	3871936572	4241712304	4585411821	4236637708
k= 350	1581317042	2116865447	2631766986	3120899396	3583849435	4018537734	4426469866	4808418765	5165654640
k= 400	1589610198	2136159879	2667660319	3178076864	3665411948	4127766690	4566005972	4979761959	5370182729
k= 450	1594821540	2149494742	2692764130	3218917373	3725420728	4210351901	4672534439	5113045012	5532264982
k= 500	1598154405	2158630791	2710735907	3249232976	3770762571	4273313057	4755872762	5218676287	5660733657
k= 550	1600444871	2164962963	2724059154	3271892288	3805303363	4322349683	4820988533	5302190893	5765104296
k= 600	1601867661	2169741342	2733853579	3289212343	3832239148	4360797813	4874107560	5369454961	5849185658

Análisis de sensibilidad de las variables *k y m*: Evolución de los beneficios esperados

Xbox

	M= 1000	M= 1250	M= 1500	M= 1750	M= 2000	M= 2250	M= 2500	M= 2750	M= 3000
k= 200	1839819353	2361427842	2830308934	3249545230	2194850974	2395607578	2577488075	2744601586	2898366183
k= 250	1901269854	2468318160	2991746669	3472061795	3909612095	4308629825	2858576629	3059381206	3243179154
k= 300	1941150950	2539320374	3101782734	3626632952	4112964205	4564244623	4979848153	5365708599	3527160129
k= 350	1968901134	2588896408	3179063504	3737922487	4262993529	4754425596	5215309730	5645356619	6046917677
k= 400	1989055132	2625235912	3237404138	3821430326	4376168454	4900972430	5397094732	5864128281	6304138902
k= 450	2004316972	2652984610	3281296274	3885561098	4464085862	5015532028	5540123887	6039106288	6512146528
k= 500	2016297824	2674562585	3315837431	3936115123	4533714984	5106978440	5655492205	6180745235	6681047097
k= 550	2025885318	2691853692	3343519388	3976700336	4589626178	5181138827	5749669826	6296532312	6821040583
k= 600	2033627763	2706077134	3366207940	4010024095	4635529465	5242055425	5827721737	6392924016	6938014217

Análisis de incertidumbre de las variables k y m

Tras realizarse un estudio se ha descubierto que la distribución conjunto de las variables $k \ y \ m$ es la siguiente:

$$(K,M)^t \sim Nigg(\mu = (400,2000)^t, \Sigma = egin{pmatrix} 10^4 & 2\cdot 10^4 \ 2\cdot 10^4 & 10^5 \end{pmatrix}igg)$$

Muestraremos 100 veces y estudiaremos la estabilidad de las soluciones obtenidas.

Análisis de incertidumbre de las variables k y m

Tras realizar el muestreo de las 100 muestras que hemos tomado solamente hay un caso en el que la estrategia del equilibrio de Nash para el cross-play sea diferente del original y toma en su lugar como equilibrio de Nash en estrategias mixtas, (0.8518, 0.1482) y (0.9769, 0.0231).

Análisis de incertidumbre de las variables *k y m*: Beneficios de *Playstation*.

Media: 3.632M€

Moda: 3.681M€

q_{0.025}: 2.320M€

q_{0.925}: 5.058M€

Análisis de incertidumbre de las variables k y m: Precios de Playstation.

Media: 438€

Moda: 412€

q_{0.025}: 320€ q_{0.925}: 547€

Análisis de incertidumbre de las variables *k* y *m*: Beneficios de *Xbox*.

Media: 4.320M€

Moda: 4.400M€

 $q_{0.025}$: 2.534M \in

q_{0.925}: 6.001M€

Análisis de incertidumbre de las variables k y m : Precios de Xbox.

Media: 460€

Moda: 427€

 $q_{0.025}$: 332€ $q_{0.925}$: 572€

Análisis de incertidumbre de las variables k y m

Tras observar la gráficas hemos realizado un test de Lilliefors con el objetivo de estudiar la normalidad de los datos obtenidos

- Para los beneficios de *Playsation* obtenemos un p-valor de 0.5958.
- Para los beneficios de *Xbox* obtenemos un p-valor de 0.7924.
- Para los precios de *Playsation* obtenemos un p-valor de 0.1615.
- Para los precios de *Xbox* obtenemos un p-valor de 0.1212.

En todos los test no hay evidencias para rechazar la hipótesis nula con un nivel de significancia de 10%.

Conclusiones

- He interiorizado las capacidades de búsqueda bibliográfica.
- El gran costo computacional no permitió profundizar más.
- El caso práctico, pese a no representar a la perfección la realidad, si que nos da una intuición de cómo funciona la industria.
- El análisis de sensibilidad nos ha servido para estudiar la robustez de la decisiones
- Se podría haber estudiado la evolución de las ventas a lo largo del tiempo y añadir otra empresa.

Libros

- Neumann, John von y Oskar Morgenstern (1944). Theory of Games and Economic Behavior. E.E.U.U.: Princeton University Press. ISBN: 978-0691130613.
- Mas-Colell, Andreu, Michael D.Whinston y Jerry R.Green (1995). *Microeconomic Theory*. New York, U.S.A: Oxford University Press. ISBN: 0-19-507340.
- Pérez-Navarro, Joaquín, José Luis Jimeno-Pastor y Emilio Cerdá (2004). *Teoría de Juegos*. Madrid, España: Pearson Education. ISBN: 978-84-832-2799-2.
- Vitoriano, Begoña (2007). Teoría de la Decisión: Decisión con Incertidumbre, Decisión Multicriterio y Teoría de Juegos. Madrid, España: Universidad Complutense de Madrid. URL: https://gc.scalahed.com/recursos/files/r161r/w25298w/teoria_decesion.pdf.
- Nisan, Noam et al. (2007). Algorithmic Game Theory. U.S.A: Cambridge University Press, ISBN: 978-0-521-87282-9.
- Vega-Redondo, Fernando (2000). *Economía y Juegos*. Barcelona, España: Antoni Bosch. ISBN: 84-85855-88-4.
- Saltelli, Andrea et al. (2008). Global Sensitivity Analysis. The Primer. Gran Bretaña: John Wiley y Sons Ltd. ISBN: 0-19-507340.

Otras fuentes

- Nash, John Forbes (1951). «Non-cooperative Games». En: Annals of Mathematics 54.2, págs. 286-295.
- Shachter, Ross D. (1986). «Evaluating influence diagrams». En: *Operations Research* 34.6, págs. 871-882.
- Gracia Blázquez-Vallejo, María de y Carmen Virginia Gámez-Jiménez (2006). *Teoría de juegos y aplicaciones: El dilema del prisionero*. El archivo original no es accesible. URL: https://studylib.es/doc/5270226/teor%C3%ADa-de-juegos-y-aplicaciones--el-dilema-del-prisionero.
 - González-Ortega, Jorge, David Ríos-Insua y Javier Cano (2018). «Adversarial risk analysis for bi-agent influence diagrams: An algorithmic approach». En: *European Journal of Operational Research* 273, págs. 1085-1096.
 - Koller, Daphne y Brian Milch (2003). «Multi-agent influence diagrams for representing and solving games». En: Games and economic behavior 45, págs. 181-221.
 - Esmaeili, M., MirBahador Aryanezhad y P. Zeephongsekul (2008). «A game theory approach in seller—buyer supply chain». En: European Journal of Operational Research 195, págs. 442-448.