EDA Coverage Summary - Banking Dataset

#	Main Section	Sub-section	Purpose / Description	In Notebook
1	Introduction to EDA	What, Why, When	Explain EDA's role and importance in the ML pipeline	
2	Load Dataset	Upload or Select Sample Da	a Passevide data for exploration	
3	Dataset Overview	Shape, Types, Head, Nulls	Stdigmlæryel snapshot of structure, types, and missing data	
4	Univariate Analysis	Categorical & Numerical Fe	சூர்அத் re distributions, class counts, value ranges	
5	Bivariate Analysis	Feature vs Feature or Targe	Analyze pairwise relationships	
6	Multivariate Analysis	3+ Feature Interactions	Spot complex patterns involving multiple features	
7	Missing Value Analysis	Pattern and % Missing	Detect missingness patterns, visualize nulls	
8	Outlier Detection	Identify Outliers	Detect extreme values using Z-score, IQR, etc.	
9	Skewness & Transformation	Shape Analysis & Normaliza	atidentify skewed distributions and apply corrections	
10	Target Analysis	Target Distribution / Class E	allantere the response variable for regression or classificatio	n
11	Correlation Analysis	Correlation Matrix + Heatma	piscover linear relationships between features	
12	Class Imbalance	Frequency & Alerts	Flag major class imbalance for classification tasks	
13	Cardinality Check	High-cardinality Categorical	Detectifyocategorical variables with too many unique values	
14	Data Quality Check	Duplicates, Anomalies, Zero	Obciencer duplicates, constant columns, invalid formats	
15	Time Series Profiling	Trend, Seasonality, Time G	analyze features with temporal behavior	
16	Multicollinearity	Variance Inflation Factor (V	E)etect redundant, highly-correlated features	
17	Interaction Effects	Feature Interactions	Detect new features via interactions	
18	Data Leakage Check	Future Knowledge Leaks	Flag features too predictive or derived from target	
19	Feature Engineering Hints	Derivable Feature Suggesti	p6sggest potentially useful derived variables	
20	Clustering Patterns	Discover Row Patterns	Use unsupervised learning for initial segmentation	
21	AutoEDA Tools	Full Auto Profile	Generate quick summary reports	
22	Statistical EDA	Skewness, Outliers, Tests	Deep dive into statistical measures and assumptions	