Exercise on Power Balance in a Resonant Circuit

Calculate the power balance of the system, both for the resonant and non-resonant cases. Consider:

$$R_G = R_L = 50\Omega \ V_G = 3V \ \omega = 2\pi \cdot 5 \cdot 10^9 \ L = 10nH$$

To solve the exercise, we proceed step by step to determine the system's power flow, both under resonance and off-resonance conditions.

We start with the resonance case, where the circuit frequency equals the resonance frequency ω_0 . Resonance occurs when $Z_L=Z_G^*$. In our case, this means the inductive and capacitive reactances of the load cancel each other out, since $Z_G^*=R_G$ (purely real).

$$X_{L} = \omega L_{L}$$

$$X_{C} = \frac{1}{\omega C_{L}}$$

$$X_{L} = X_{C}$$

The value of \mathcal{C}_L can be derived using the resonance frequency formula:

$$\omega_0 = \frac{1}{\sqrt{L_L C_L}}$$

$$C_L = \frac{1}{\omega_0^2 L_L} = \frac{1}{(2\pi \cdot 5 \cdot 10^9)^2 \cdot 10nH} = 1.013 \cdot 10^{-13} F$$

After determining C_L , the total impedance Z of the circuit at resonance equals R_L , since the reactances cancel out. Consequently, the absorbed power is:

$$Z = R_L$$

$$P = \frac{V_s^2}{8Z} = \frac{3V^2}{8 \cdot 50\Omega} = 0.0225W$$

In the non-resonant case, the absorbed power is computed as:

$$P = \frac{V_s^2}{8R_G} \cdot \frac{4R_G R_A}{|Z_G + Z_A|^2}$$

Here, $\rho_D=rac{4R_GR_A}{|Z_G+Z_A|^2}$ is the matching factor, which equals 1 under resonance. Substituting $Z_G=Z_A=R_A=50\Omega$, we obtain:

$$\rho_D = \frac{4 \cdot 50 \cdot 50}{100^2 + X_L^2}$$

$$X_L^2 = \left(\frac{\omega L}{1 - \omega^2 LC}\right)^2$$

Assuming a capacitance of $C=10^{-12}F$ (off-resonance), we obtain) ${X_L}^2=1255$ and $\rho_D=0.888$, leading to a power of: P=0.1998

Numerical Calculation of Radiated Power, Radiation Resistance, and Gain for an Electromagnetic Dipole

Using the Matlab script *plot_ddr_dipole_EM.m*, compute the radiated power (for unit current), the radiation resistance, and the directivity gain of an electromagnetic dipole in the following cases:

$$2l = 0.25\lambda$$

$$2l = 1.2\lambda$$

By modifying the Matlab code, the required values were obtained. Considering $\beta = \frac{2\pi}{\lambda}$, the results are:

Case $2l = 0.25\lambda$

Radiation resistance = 13.4405Ω

 $Radiated\ power = 3.3601W$

Directivity gain = 1.5318

Case $2l = 1.2\lambda$

Radiation resistance = 360.1938Ω

 $Radiated\ power = 62.222W$

 $Directivity\ gain = 3.1557$

Simulation and Analysis Using 4NEC

Using 4NEC, simulate the two dipoles at 2 GHz with a thickness of 0.5 mm. Obtain the radiation pattern, gain, SWR, and reflection coefficient around the operating frequency. For the 0.25λ dipole, determine two inductive loads that allow resonance.

Since the antenna operates in air, we assume the wavelength as $\lambda = \lambda_0 = \frac{c}{f}$. Therefore, the dipole lengths for the two cases are:

Case $2l = 0.25\lambda$

$$l = \frac{0.25}{2}\lambda = 0.01875$$
m

Inductive loads were introduced to achieve resonance:

$$l = \frac{1.2}{2}\lambda = 0.09$$
m

