DOCIMA DE HIPÓTESIS

Primera parte

INFERENCIA

Pruebas de Hipótesis o dócimas de hipótesis

Introducción

En la vida todos tomamos decisiones, para ello se analizan alternativas y luego se decide en función de convicciones o preferencias personales. Las pruebas de hipótesis siguen casi el mismo proceso, salvo que necesitamos información estadística.

La experiencia sobre el comportamiento de algún índice, o la exigencia del cumplimiento de alguna norma nos lleva a realizar proposiciones sobre el valor de algún parámetro estadístico.

Estas proposiciones se deben contrastar con la realidad (mediante el muestreo de datos) para tomar una decisión entre aceptar o rechazar la proposición.

Estas proposiciones se denominan Hipótesis y el procedimiento para decidir si se aceptan o se rechazan se denomina Prueba de Hipótesis.

Pruebas de Hipótesis

Introducción

Una prueba de hipótesis es una herramienta de análisis de datos que puede en general formar parte de un experimento comparativo más completo.

Una hipótesis Estadística es una proposición (una afirmación de que algo es verdadero). Las hipótesis se realizan, sobre los parámetros de una población o sobre la distribución de probabilidad de una variable aleatoria.

1ro se identifica algo de interés y luego se plantean 2 hipótesis, que se denominan hipótesis nula H_0 y hipótesis alternativa H_1 .

La H_0 por lo general es una afirmación sobre un parámetro poblacional que tiene un valor específico. Se llama nula porque es el punto inicial de una investigación.

La H_1 es el complemento de lo planteado en la H_0 .

Pruebas de Hipótesis

Introducción

Una vez que se establecen las hipótesis nula y alternativa, se trabaja bajo el supuesto de que la primera es una afirmación verdadera hasta que hay suficientes evidencias para rechazarla.

Para entender mejor el proceso, suele establecerse un paralelismo entre el contraste de hipótesis y el juicio a una persona.

En nuestro país se parte de la premisa de que el acusado es inocente. Planteamos las hipótesis:

H₀: El acusado es inocente H₁: El acusado no es inocente

El acusado es inocente hasta que se presentan suficientes hechos que demuestren lo contrario. Si se consiguen evidencias que demuestren que el acusado es culpable, se "rechaza la hipótesis nula" de que el acusado es inocente por lo tanto corresponde considerar que el acusado no es inocente (hipótesis alternativa), y se decide condenarlo.

En el caso de que "no se rechace H₀" se considera que el acusado es inocente y se decide no condenar o absolver al acusado.

La decisión se toma en función de la hipótesis nula (si se rechaza o no se rechaza la hipótesis nula).

Hipótesis nula e hipótesis alternativa

Resumen de formas para hipótesis nula y alterna (μ valor de interés)

$$\begin{cases} H_0: \mu \ge \mu_0 & H_0: \mu \le \mu_0 \\ H_1: \mu < \mu_0 & H_1: \mu > \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \ne \mu_0 \end{cases}$$

- La igualdad siempre aparece vinculada al la hipótesis nula.
- Una forma de facilitar la selección adecuada de las hipótesis es asignando a la hipótesis nula H₀ la desigualdad que contiene en signo igual.

Error tipo I y Error de tipo II

- Son 4 los resultados posibles que pueden obtenerse por el hecho de que la hipótesis nula sea verdadera o falsa y que la decisión sea rechazar H₀ o no rechazar H₀.
- Recordemos que las hipótesis nula y alternativa son aseveraciones sobre la población que se complementan.
- No siempre es posible que las conclusiones sean verdaderas o correctas, entonces puede suceder lo que se muestra en el gráfico siguiente:

Decisión	H ₀ verdadera	H ₀ es falsa
No se rechaza H ₀	Decisión Correcta	Error tipo II
Rechazar H ₀	Error tipo I	Decisión Correcta

Error tipo I y error de tipo II

- No se puede eliminar la posibilidad de errores en la prueba de hipótesis, pero si es posible considerar su probabilidad
- Se define como:
 - α =probabilidad de cometer un error tipo I (Probabilidad de rechazar H_0 siendo verdadera)
 - β =probabilidad de cometer error tipo II (Probabilidad de No rechazar H_0 siendo falsa).
- La máxima probabilidad permisible se le llama nivel de significación para la prueba. Los valores acostumbrados son de 0,05 y 0,01
- El valor de α (nivel de significación) debemos fijarlo previamente a la realización de la prueba estadística.

Error tipo I y error de tipo II

Para comprender como varían los errores, consideremos las siguientes hipótesis:

$$H_0: \mu = 20 u$$

 $H_1: \mu = 30 u$

Si consideramos que $\sigma^2 = (15)^2 = 225$, n=25 y el punto crítico Pc = 24

Calculemos α y β ¿qué relación hay entre ellos?

 α Está bajo la curva μ_0 =20 (zona pintada de rojo)

$$P(\bar{X} > 24) = P(z > \frac{24-\mu}{\frac{\sigma}{\sqrt{n}}}) = P(z > \frac{24-20}{\frac{15}{\sqrt{25}}}) =$$

Como la zona está a la derecha del punto crítico

$$P(z > 4/3) = 1 - 0.9082 = 0.0918$$

 β Está bajo la curva μ_1 =30 (zona pintada de amarillo)

$$P(\bar{X} < 24) = P(z < \frac{24-\mu}{\frac{\sigma}{\sqrt{n}}}) = P(z < \frac{24-30}{\frac{15}{\sqrt{25}}}) =$$

$$P(z < -2) = 0.0228$$

¿Qué pasa con a y β si se corre el punto crítico a la derecha?

1.- Dadas las siguientes afirmaciones identifique el parámetro que corresponda a cada afirmación y exprese la hipótesis nula y la alternativa de forma simbólica.

frase	Completar las hipótesis nula y alternativa
1 El gasto promedio es por lo menos \$50	∫ H ₀ :
El gasto promedio no es menor que \$50	^L Η ₁ :
2 A lo sumo el 25% de los estudiantes concurre a la	
universidad en auto.	
3 La edad promedio es 13 años	
4 La duración media de las baterías de celular es	
menor que 800 horas.	
5 Para cumplir con la normativa, la varianza del nivel	
de impurezas en tanto por ciento en los envíos de un	
cierto producto químico no puede superar el valor (no	
más que) 4.	
6 Cuanto mucho la inversión promedio fue de \$1000	
La inversión promedio no supera los \$1000	
7 La proporción de conductores que admite pasar en	
luz roja supera el 50%.	
8 La estatura media de los jugadores de básquet es al	
menos de 1,75m	

2.- Dadas las frases anteriores, indique según el parámetro correspondiente, la variable pivotal o estadístico de la prueba a utilizar, dibújela y señale la región crítica use un nivel de significación del 5%.

Parámetro	Variable pivotal	Gráfico de la variable y región crítica
(μ, π, σ²)	(z, t, χ²)	

