FIT5047 Second Theory Assignment

Due date: 23rd April 2021 (23:59).

Evaluation: 100 marks = 5%.

Submission: Moodle.

Propositional Logic - Syntax and Semantics

[5+5+5+5=20]

Decide whether the following propositional logic sentences are either valid, satisfiable (but not valid), or unsatisfiable. Justify your answer.

(a)
$$\neg B \rightarrow (A \land \neg B)$$
 [5]

(b)
$$((\neg A \lor B) \land (\neg C \rightarrow \neg B)) \rightarrow (A \rightarrow C)$$
 [5]

Convert the following propositional logic sentences into Conjunctive Normal Form (CNF):

- (c) $(C \rightarrow D) \rightarrow \neg (D \rightarrow B)$ [5]
- (d) $(A \leftrightarrow B) \rightarrow (\neg A \land C)$ [5]
- (a) $\neg(\neg B) \lor (A \land \neg B) \equiv B \lor (A \land \neg B) \equiv (B \lor A) \land (B \lor \neg B)$

A	В	$\neg B$	$(B \lor A)$	(<i>B</i> ∨¬ <i>B</i>)	$(B \lor A) \land (B \lor \neg B)$
					V¬B)
Т	Т	F	Т	Т	Т
Т	F	Т	Т	Т	Т
F	Т	F	Т	Т	Т
F	F	Т	F	Т	F

Because $\neg B \to (A \land \neg B)$ is equal to $(B \lor A) \land (B \lor \neg B)$. According to the table, $(B \lor A) \land (B \lor \neg B)$ has 3 true models and 1 false model, so $\neg B \to (A \land \neg B)$ is satisfiable (but not valid).

(b)
$$((\neg A \lor B) \land (\neg C \to \neg B)) \to (A \to C) \equiv \neg ((\neg A \lor B) \land (\neg (\neg C) \land \neg B)) \land (\neg A \land C) \equiv ((A \land \neg B) \lor (\neg C \lor B)) \land (\neg A \land C)$$

A	В	С	$\neg A$	¬В	¬С	(A ∧ ¬B)	(¬CVB)	$((A \land \neg B) \\ \lor (\neg C \lor B))$	(¬ <i>A</i> ∧C)	(a) ((A ∧ ¬B) ∨(¬C∨B)) ∧(¬A∧C)
T	Т	Т	F	F	F	F	T	Т	F	F
T	Т	F	F	F	T	F	T	Т	F	F
Т	F	Т	F	Т	F	T	F	Т	F	F
Т	F	F	F	Т	Т	Т	T	Т	F	F
F	T	Т	Т	F	F	F	T	Т	T	Т
F	F	Т	Т	Т	F	F	F	F	T	F
F	Т	F	Т	F	Т	F	T	Т	F	F
F	F	F	Т	T	T	F	T	Т	F	F

Because $((\neg A \lor B) \land (\neg C \to \neg B)) \to (A \to C)$ is equal to $((A \land \neg B) \lor (\neg C \lor B)) \land (\neg A \land C)$. According to the table, has 1 true model and 7 false models, so $((\neg A \lor B) \land (\neg C \to \neg B)) \to (A \to C)$ is satisfiable (but not valid).

(c)
$$(C \to D) \to \neg (D \to B) \equiv (\neg (\neg C \lor D)) \lor (\neg (\neg D \lor B)) \equiv (C \land \neg D) \lor (D \land \neg B)$$

С	D	¬B	¬D	(C ∧¬D)	(<i>D</i> ∧ ¬B)	$ \begin{array}{c} (C \wedge \neg D) \vee \\ (D \wedge \neg B) \end{array} $
Т	Т	Т	F	F	Т	T
Т	Т	F	F	F	F	F
Т	F	Т	Т	Т	F	Т
F	Т	Т	F	F	Т	T
F	F	Т	Т	F	F	F
F	Т	F	F	F	F	F
F	F	F	Т	F	F	F

According to the table, has 3 true models and 4 false models, so $(C \to D) \to \neg(D \to B)$ is satisfiable (but not valid).

(d)
$$(A \leftrightarrow B) \rightarrow (\neg A \land C) \equiv \neg ((\neg A \lor B) \land (\neg B \lor A)) \lor (\neg A \land C) \equiv (A \land \neg B) \lor (B \land \neg A) \lor (\neg A \land C)$$

A	В	С	¬ A	¬ B	(A∧¬B)	(В ∧¬	(¬A ∧	(A∧¬B)
						A)	<i>C</i>)	V(B ∧¬
								A) V
								$(\neg A \land$
								<i>C</i>)
T	T	T	F	F	F	F	F	F
T	T	F	F	F	F	F	F	F
T	F	T	F	T	T	F	F	T
F	T	Т	T	F	F	T	T	T
F	F	Т	T	T	F	F	T	T
F	T	F	T	F	F	T	F	T
F	F	F	T	T	F	F	F	F

According to the table, has 4true models and 3 false models, so $(A \leftrightarrow B) \rightarrow (\neg A \land C)$ is satisfiable (but not valid).

Propositional Logic - Resolution

[10+10=20]

Use resolution-refutation to decide whether or not the following goals can be proved, from the Knowledge Bases given below.

- (a) Goal: *C* [10]
 - $1: (A \rightarrow B) \rightarrow B$
 - $2: (A \rightarrow A) \rightarrow C$
 - $3:(C \rightarrow D) \rightarrow \neg(D \rightarrow B)$
- (b) Goal: $\neg (D \rightarrow A)$ [10]
 - $1: A \vee B \vee \neg C$
 - $2: A \vee B \vee C$
 - $3: D \lor \neg B$
 - $4: \neg A \lor \neg B$
 - (a) Goal: C
 - 1: $(A \rightarrow B) \rightarrow B \equiv (A \land \neg B) \lor B$
 - 2: $(A \rightarrow A) \rightarrow C \equiv (A \land \neg A) \lor C \equiv C$
 - 3: $(C \rightarrow D) \rightarrow \neg (D \rightarrow B) \equiv (C \land \neg D) \lor (D \land \neg B)$

Negated goal: 4: ¬C

4 and 2: 4: ¬C 2: C

resolvent: NIL

This case can proved

- (b)Goal: $\neg (D \rightarrow A) \equiv D \land \neg A$ [10]
- $1: A \vee B \vee \neg C$
- $2: A \vee B \vee C$
- $3: D \vee \neg B$
- 4: ¬*A* ∨ ¬*B*

Negated goal: 5: ¬ D ∨ A

5 and 4: 5. \neg D \vee A 4. \neg A \vee \neg B

resolvent:6: ¬ D ∨¬B

6 and 3: 6. \neg D $\lor \neg B$ 3. D $\lor \neg B$

resolvent:7. ¬BV¬B

7 and 1: 7. $\neg B \lor \neg B$ 1. $A \lor B \lor \neg C$

resolvent: 8: A $\vee \neg B \vee \neg C$

8 and 2:8: $A \lor \neg B \lor \neg C$ 2: $A \lor B \lor C$

resolvent: 9 : A

This case can't proved

Propositional Logic - Forward Chaining

[5+5+5+5 = 20]

This question is about Horn clauses and Forward chaining.

R1: $L \rightarrow P$

R2: $(A \wedge B) \rightarrow L$

R3: $P \rightarrow Q$

R4: $L \rightarrow A$

Α

В

Apply forward reasoning to the Horn clauses above in order to prove *Q*. After each rule application, show the values to be inserted in the columns named:

(a) AGENDA [5] (b) COUNT [5](c)INFERRED [5]

in the table provided below, in the way seen in the lectures. Also,

(d)show the search graph resulting from the application of the rules. [5]

R1:
$$\neg L \lor P$$
 R2: $\neg A \lor \neg B \lor L$ R3: $\neg P \lor Q$ R4: $\neg L \lor A$

AGENDA		INFERRED			
	R1	R2	R3	R4	
A,B	1	2	1	1	
В	1	1	1	1	A
L	1	0	1	1	A,B
P	0	0	1	1	A,B,L
Q	0	0	0	1	A,B,L,P

First Order Logic - Substitution and Unification

[5+5+5+5=20]

- (a) Calculate the composition of substitutions s_1s_2 and s_2s_1 , given the two substitutions $s_1 = \{x | f(y,A), y | B, z | g(B,w)\}$ and $s_2 = \{x | A, y | h(B,z), z | C, w | D\}$ [5]
- (b) Apply the composed substitutions s_1s_2 and s_2s_1 of part (a) to P(x,f(y),z,g(w)), that is, calculate predicates $P(x,f(y),z,g(w))s_1s_2$ and $P(x,f(y),z,g(w))s_2s_1$. [5]

The following questions are about unification. Are the following literals unifiable? If so, provide the most general unifier (mgu). If not unifiable, explain why not.

```
(c) PREDICATE(x,f(7,3),g(z),z) and PREDICATE(f(3,7),y,g(w),5) [5]
```

(d) PREDICATE(f(x,y)) and PREDICATE(g(3,7)) [5]

```
(a) s1s2 = \{x \mid f(y,A), y \mid B, z \mid g(B,w)\} \{x \mid A, y \mid h(B,z), z \mid C, w \mid D\} = \{x \mid f(B,A), y \mid B, z \mid g(B,D), w \mid D\}
     s2s1 = \{x \mid A, y \mid h(B, z), z \mid C, w \mid D\} \{x \mid f(y, A), y \mid B, z \mid g(B, w)\} = \{x \mid A, y \mid h(B, C), z \mid C, w \mid D\}
(b) P(x, f(y), z, g(w)) s_1s_2 = P(f(B,A), f(B), g(B, D), g(D)) \{ x \mid f(B,A), y \mid B, z \mid g(B, D), w \mid D \}
     P(x, f(y), z, g(w))s_2s_1 = P(A, f(h(B,C)), C, g(D)) \{x \mid A, y \mid h(B,C), z \mid C, w \mid D\}
(c) Unify (PREDICATE (x, f (7,3), g (z), z), PREDICATE (f (3,7), y, g (w), 5))
     Z1 <- Unify(P,P)
      P and P are identical -> return NIL
     Z2 \leftarrow Unify((x, f(7,3), g(z), z), (f(3,7), y, g(w), 5)))
           Z1 <- Unify(x,f(3,7))
           Return \{x \mid f(3,7)\}
           G1 \leftarrow (f(7,3), g(z), z) \{x | f(3,7)\} \rightarrow (f(7,3), g(z), z)
           G2 \leftarrow (y, g(w), 5) \{x \mid f(3,7)\} \rightarrow (y, g(w), 5)
           Z2 \leftarrow Unify((f(7,3), g(z), z), (y, g(w), 5)))
                 Z1 <- Unify(f(7,3),y)
                 Return \{y \mid f(7,3)\}
                 G1 \leftarrow (g(z), z) \{y | f(7,3)\} \rightarrow (g(z), z)
                 G2 \leftarrow (g(w), 5) \{ y | f(7,3) \} \rightarrow (g(w), 5) \}
                 Z2 \leftarrow Unify((g(z), z), (g(w), 5))
                       Z1 \leftarrow Unify((g(z), g(w)))
                            Z1 \leftarrow Unify(g, g)
                            g and g are identical return{}
                            Z2 <- Unify ((z), (w))
                                  Z1 <- Unify(z, w)
                                  Return {z | w}
                                  G1 <- (z) \{z \mid w\} -> (w)
```

G2<- (5)) { z| w} ->(5)) Z1 <- Unify (w, 5) Return {w|5}

Return $\{x \mid f(3,7)\} \{y \mid f(7,3)\} \{z \mid w\} \{w \mid 5\} = \{x \mid f(3,7),y \mid f(7,3),z \mid 5,w \mid 5\}$

```
(d) Unify (PREDICATE(f(x, y)), PREDICATE(g(3,7)))

Z1<- Unify(P,P)

P and P are identical -> return NIL

Z2 <- Unify (f(x, y), g(3,7))

Z1<- Unify(f, g)

f is a symbol and g is a symbol, but they aren't identical return fail

So UNIFICATION FAILS.
```

First Order Logic - Resolution

[10+10=20]

Use resolution refutation to show the goal "G" below and show:

- (a) how you construct all necessary clauses, and [10]
- (b) which most general unifiers are used. [10]

```
1: P(A) \rightarrow Q(B)
```

 $2: \forall x[P(x)]$

3:
$$\forall y \left[\exists z \left[R(y,z) \right] \rightarrow \neg Q(y) \right]$$

G: $\forall z [\neg R(B,z)]$

(a) 1:
$$P(A) \rightarrow Q(B) \equiv \neg P(A) \lor Q(B)$$

$$2: \forall x [P(x)] \equiv P(x)$$

3:
$$\forall y \ [\exists z \ [R \ (y, z)] \rightarrow \neg Q(y)] \equiv \forall y \ [\neg \ (\exists z \ [R \ (y, z)]) \lor \neg Q(y)] \equiv \forall y \ [\forall z \ [\neg R \ (y, z)] \lor \neg Q(y)] \equiv \neg R \ (y, z) \lor \neg Q(y)$$

G:
$$\forall z [\neg R (B, z)] \equiv \neg R (B, z)$$

(b) Negated goal: 4: *R* (*B*, *z*)

4 and 3: 4:
$$R(B, z)$$
 3: $\neg R(y, z) \lor \neg Q(y)$

 $mgu: \{y \mid B\}$

resolvent: 5. $\neg Q(B)$

5 and 1: 5. $\neg Q(B)$ 1. $\neg P(A) \lor Q(B)$

resolvent: 6. $\neg P(A)$

6 and 2: 6. $\neg P(A)$ 2. P(x)

 $mgu:\{x|A\}$

resolvent: NIL

so mgu = $\{x|A,y|B\}$