Sets:

N nodes

A arcs

T time

G antigens

B bundles (vaccines)

P producers (origin nodes)

M markets (destination nodes)

W warehouses (transshipment nodes)

Parameters:

 $e_{nb} \qquad \text{set up cost to process bundle } b \in B \text{ at node } n \in N$

 c_{nb} unit cost to process bundle $b \in B$ at node $n \in N$

 r_{ab} unit cost to deliver bundle $b \in B$ on arc $a \in A$

 L_{ab} lead time to deliver bundle $b \in B$ on arc $a \in A$

 d_{mgt} demand for antigen $g \in G$ at node $m \in M$ during time $t \in T$

 u_{nb} inventory capacity to hold bundle $b \in B$ at node $n \in N$

 q_{nb} production capacity to process bundle $b \in B$ at node $n \in N$

 h_{nb} holding cost for bundle $b \in B$ at node $n \in N$

 s_{mg} shortage cost for antigen $g \in G$ at node $m \in M$

 I_{nb0} initial inventory of bundle $b \in B$ at node $n \in N$

 map_{bg} boolean indicating if bundle $b \in B$ supplies antigen $g \in G$

 o_g number of doses of antigen $g \in G$ required per demand unit

 f_n profit margin (%) desired at node $n \in N$

 v_{mt} vaccine budget at node $m \in M$ during time $t \in T$

Variables:

 x_{abt} units of bundle $b \in B$ sent on arc $a \in A$ during time $t \in T$

 y_{abt} unit price of bundle $b \in B$ sent on arc $a \in A$ during time $t \in T$

 z_{nbt} units of bundle $b \in B$ made at node $n \in N$ during time $t \in T$

 I_{nbt} units of bundle $b \in B$ held in inventory of node $n \in N$ during time $t \in T$

Program:

■ Minimize holding costs for MFG's and WH's, and shortage costs for Markets

$$\text{Minimize: Cost} = \sum_{t \in T} \sum_{b \in B} \sum_{j \in \{P \ U \ W\}} \left(h_{jb} I_{jbt} \right) + \sum_{t \in T} \sum_{g \in G} \sum_{j \in M} \left(s_{jg} \left(d_{jgt} o_g - \sum_{b \in B} \left(I_{jbt} map_{bg} \right) \right) \right)$$

■ Inventory levels depend on previous inventory, production, and transportation

$$I_{jbt} = I_{jb(t-1)} + z_{jbt} + \sum_{i \in N} \left(x_{(i,j)b\left(t-L_{(i,j)b}\right)}\right) - \sum_{k \in N} \left(x_{(j,k)bt}\right) \qquad \text{ i, j, } k \in N, b \in B, t \in T$$

■ Prices are non-decreasing when transporting bundles downstream to Markets

$$y_{(j,k)bt} \ge \left(1 + f_j\right) \left(y_{(i,j)b\left(t - L_{(i,j)b}\right)} + \frac{e_{jb}}{u_{jb}} + c_{jb} + r_{(j,k)b}\right) \qquad \text{ i, j, } k \in \mathbb{N}: k > i, b \in \mathbb{B}, t \in \mathbb{T}$$

■ Tiered pricing for Markets is enforced based on their income

$$y_{(i,j)bt} \ge y_{(i,k)bt}$$
 $j, k \in M: k > j, i \in N, b \in B, t \in T$

■ Market budget is not exceeded (non-linear)

$$\sum_{i \in N} \sum_{b \in R} \left(y_{(i,j)b\left(t - L_{(i,j)b}\right)} x_{(i,j)b\left(t - L_{(i,j)b}\right)} \right) \le v_{jt} \qquad \qquad j \in M, t \in T$$

■ Inventory capacity is not exceeded, Inventory is non-negative

$$0 \le I_{nbt} \le u_{nb} \qquad \qquad b \in B, n \in N, t \in T$$

■ Production capacity is not exceeded, Production is non-negative

$$0 \leq z_{nbt} \leq q_{nb} \qquad \qquad b \in B, n \in N, t \in T$$

■ Transportation is non-negative

$$x_{abt} \ge 0$$
 $a \in A, b \in B, t \in T$