

(19)

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 63128662 A

(43) Date of publication of application: 01 . 06 . 88

(51) Int. Cl

H01L 27/10
G11C 11/40

(21) Application number: 61275917

(71) Applicant: NEC CORP

(22) Date of filing: 18 . 11 . 86

(72) Inventor: ANDO MANABU

(54) STATIC MIS MEMORY CELL

rapidly discharged at earth level and the cell data are not destructed.

(57) Abstract:

PURPOSE: To activate and amplify a sense amplifier before destruction of data occurs after the data are read out on digit lines to eliminate an erroneous operation and moreover, to lessen the area of a memory cell by a method wherein the channel width/channel length ratios of the driver MISFETs and transfer gate MISFETs of the memory cell are set in roughly the same.

CONSTITUTION: A static MIS memory cell 10 provided with MISFETs Q₁~Q₄, which have a relation that the ratio γ of the value of the channel width-channel length ratio W/L of the flip-flop driver MISFETs of a memory cell to the value of the channel width/channel length ratio W/L of the transfer gate MISFETs of the memory cell is $(\gamma D/1.2) \leq \gamma \leq (\gamma D/0.8)$, is used. The memory cell is started by a strobe signal, signals read out on digit lines 2 and 3 are inputted, positive feedback amplification is conducted and a flip-flop sense amplifier 11, which is outputted on the digit lines 2 and 3, is again added. The sense amplifier 11 begins to amplify correct data being read out on the digit lines 2 and 3. Hereby, the level of the digit line 2 is rapidly charged at V_{cc} level, the level of the digit line 3 is

COPYRIGHT: (C)1988,JPO&Japio

⑩ 日本国特許庁 (JP) ⑪ 特許出願公開
⑫ 公開特許公報 (A) 昭63-128662

⑬ Int.Cl.
H 01 L 27/10
G 11 C 11/40 識別記号 381
301 厅内整理番号 8624-5F
7230-5B ⑭ 公開 昭和63年(1988)6月1日
審査請求 未請求 発明の数 1 (全 5 頁)

⑮ 発明の名称 スタティック型MISメモリセル
⑯ 特願 昭61-275917
⑰ 出願 昭61(1986)11月18日

⑱ 発明者 安藤 学 東京都港区芝5丁目33番1号 日本電気株式会社内
⑲ 出願人 日本電気株式会社 東京都港区芝5丁目33番1号
⑳ 代理人 弁理士 内原晋

明細書

1. 発明の名称

スタティック型MISメモリセル

2. 特許請求の範囲

チャネル幅チャネル長比が γ_0 のMISFETをフリップフロップの駆動トランジスタとする高抵抗負荷方式のスタティック型MISメモリセルにおいて、

チャネル相対チャネル長比 γ_1 が($\gamma_0 / 1.2$) $\leq \gamma_1 \leq (\gamma_0 / 0.8)$ のトランジスタゲートMISFETと、

ディジット線上にデータが読み出された後、データが破壊される前に活性化され、その読み出し出力を増幅するフリップフロップ型センス増幅器を有することを特徴とするスタティック型MISメモリセル。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は金属絶縁物半導体電界効果トランジスタ(以下MISFETと略記する)を用いたICメモリセル

に關し、特にスタティックメモリに関する。

【従来の技術】

従来、スタティックメモリは読み出し動作でセルデータが破壊されないようにメモリセルが設計されていた。すなわち、メモリセルのフリップフロップの交差接続点とディジット線との間に接続されているトランジスタゲートMISFETのチャネル幅(W)とチャネル長(L)との比 W/L (= γ_0) を1とする時フリップフロップのドライバMISFETの W/L (= γ_1) が 2.5~3 以上の値になるように設計されていた。

第3図は上述したスタティック型MISメモリセルの従来例のディジット線回路部分の回路図である。

プリチャージ回路12は3個のMISFET Q₁₁~Q₁₃からなり、プリチャージ信号線5によって制御されている。メモリセル13は高低抗素子 R₁, R₂ を負荷素子としたインバータを互いに交差接続してなり、MISFET Q₁₅, Q₁₆ をドライバとするフリップフロップと、該交差接続点に一端が接続され他端

特開昭63-128662(2)

がディジット線2、3に接続され、ゲートがワード線1に接続されているトランスマニフェートMISFET Q₁₄、Q₁₆とから構成されている。

第4図は、第3図のスタティック型MISメモリセルの $\gamma_0/\gamma_T = 2.5 \sim 3$ の場合の動作を示すタイムチャートである。

いま、初期状態(時刻t₀)として、メモリセル13の一方の節点Aのレベルが Vcc - Vm (VmはNチャネルMISトランジスタのスレッショルド電圧)、他の節点Bが接地レベルにあり、またディジット線2、3はプリチャージ回路12によりすでにプリチャージが完了して Vcc - Vm というレベルになっており、プリチャージ信号線5は接地レベルにあるとする。

次に時刻t₁でワード線1のレベルが上昇し始め、時刻t₂でワード線1のレベルがトランスマニフェートMISFET Q₁₆のスレッショルド電圧Vmを越えると節点Bに接続されたトランスマニフェートMISFET Q₁₆がオンして節点Bのレベルが上昇し始めるとともにディジット線3のレベル

まず、時刻t₁でワード線1が上昇し始め時刻t₂でワード線1のレベルがスレッショルド電圧Vmを越えるとトランスマニフェートMISFET Q₁₆がオンし、節点Bのレベルが上昇し始める。時刻t₃で節点Bのレベルがスレッショルド電圧Vmを越えると、ドライバMISFET Q₁₅がオンして節点Aのレベルが低下し始める。時刻t₄でワード線1のレベルと節点Aのレベルとの差がスレッショルド電圧Vmを越えると、トランスマニフェートMISFET Q₁₄がオンしてディジット線2のレベルも低下し始める。ワード線1のレベルがさらに上がるとメモリセル13の低レベルはさらに上昇し、やがて時刻t₅でメモリセル13の高レベルと低レベルが反転してしまう。メモリセルが完全に対称であれば反転することはないが、現実にはそのようなことはないので必ず反転してしまう。時刻t₅でメモリセル13の出力が反転してしまうとディジット線2、3のレベル低下速度もディジット線2の方がディジット線3よりも速くなり、ワード線1が活性化された後20~25ナノ秒後の時刻t₆にはディジット線1の

レベルが下がり始める。ワード線1のレベルは時刻t₆で Vcc レベルに到達するが、節点Bのレベルはこの直前に最も高くなる。時刻t₆以後はディジット線3の電荷がメモリセル13を介して放電されてディジット線3のレベルが低下するため節点Bのレベルも低下していく。従来、メモリセルの低レベルは最も高い時でもスレッショルド電圧Vmを越えないように γ_0/γ_T の値を2.5~3程度にしているのでメモリセルの高レベルは読み出し動作によって低下することなく Vcc - Vm を保持している。

第5図は、第3図のスタティック型MISメモリセルの γ_0/γ_T がほぼ1の場合の動作を示すタイムチャートである。

第4図の場合と同様に、初期時(時刻t₀)、ディジット線2、3のプリチャージは完了してディジット線2、3とともに Vcc - Vm のレベルに、またプリチャージ信号線5は接地レベルになっており、メモリセル13内節点Aのレベルは Vcc - Vm 、節点Bは接地レベルにあるとする。

データも反転してしまう。

このようメモリセル13のドライバ MISFET Q₁₅、Q₁₇とトランスマニフェートMISFET Q₁₄、Q₁₆のチャネル幅対チャネル長比 W/L の値の比 γ_0/γ_T を小さくすると読み出しの際にメモリセルデータが破壊されてしまい誤動作が起きてしまう。

一方、メモリセル13の面積という観点に立つとメモリセル13内のMISFET Q₁₄~Q₁₇はできる限り小さいことが好ましい。特にスタティックメモリにおいてはメモリセル部分の面積がチップ面積の50~80%を占めており、メモリセル面積を小さくすることは、低コスト化、大容量化には必須である。

【発明が解決しようとする問題点】

上述した従来のスタティックメモリは、メモリセルのトランスマニフェート MISFET のチャネル幅対チャネル長比 W/L の値に対するフリップフロップのドライバ MISFET のチャネル幅対チャネル長比 W/L の値の比を 2.5~3 以上にしている

特開昭63-128662(3)

のでメモリセルの面積、ひいてはチップサイズが大きくなり、低コスト化、大容量化が困難であるという欠点がある。

(問題点を解決するための手段)

本発明のスタティック型MISメモリセルは、チャネル幅対チャネル長比の値が α のMISFETをフリップフロップの駆動トランジスタとする高抵抗負荷方式のスタティック型MISメモリセルにおいて、

チャネル幅対チャネル長比 γ_1 が($\alpha/\gamma_1 < 1.2$) $\leq \gamma_1 \leq (\alpha/\gamma_1 + 0.8)$ のトランスマッタゲートMISFETと、ディジット線上にデータが読み出された後、データが破壊される前に活性化され、その読み出し出力を増幅するフリップフロップ型センス增幅器を有することを特徴とする。

このように、メモリセルのドライバMISFETとトランスマッタゲートMISFETのチャネル幅対チャネル長比をほぼ同一にし、それによって、ディジット線上にデータが読み出された後データの破壊が起る前にセンス增幅器を活性化して正しい

C MOSインバータの出力と入力を交差接続して構成されているフリップフロップと、ストローブ信号(センス增幅器活性化信号)を入力するために、フリップフロップを構成するP型MISFET Q₄、Q₇とN型MISFET Q₆、Q₈のソース回路にそれぞれ接続されているP型スイッチMISFET Q₉とN型スイッチMISFET Q₁₀によって構成されている。フリップフロップの出力はそれぞれディジット線2、3に接続され、N型MISFET Q₁₀のゲートはストローブ信号入力8に、またP型MISFET Q₉のゲートはインバータ4を介してストローブ信号入力6に接続されている。

次に、本実施例の動作について説明する。

本実施例においては、節点BのレベルがV_{TH}を越え、ドライバMISFET Q₂がオンして節点Aのレベルが下り始める時刻t₃までの動作は第5図の従来の場合と同様である。しかし、ストローブ信号6が時刻t₄から立ち始め、センス增幅器11が、節点Aと節点Bの電位レベルがほぼ等しくなる時刻t₅付近で動作を開始してディジット線2、3に

データを増幅することにより、誤動作がなく、かつメモリセル面積の小さいスタティック型MISメモリを提供することができる。

(実施例)

次に、本発明の実施例について図面を参照して説明する。

第1図は本発明のスタティック型MISメモリセルの一実施例の回路図、第2図は本実施例の動作を示すタイムチャートである。

本実施例は第3図のメモリセル13のMISFET Q₁₄～Q₁₇の代りに、それぞれのチャネル幅対チャネル長比が同じ(したがって $\alpha/\gamma_1 = 1$)で、かつ製造上許容される最小寸法のMISFET Q₁～Q₆を備えたメモリセル16が用いられ、またストローブ信号によって起動され、ディジット線2、3上に読み出された信号を入力し、正帰還増幅して、再びディジット線2、3上に出力するフリップフロップ型センス增幅器11が付加されたものである。

フリップフロップセンス増幅器11は、2つの

読み出されている正しいデータを増幅し始める。これによりディジット線2のレベルはV_{cc}レベルに、またディジット線3のレベルは接地レベルに急速に充放電される。このため時刻t₆でいったん反転してしまったセルデータは時刻t₇で再び元に戻り、セルデータは結局破壊されない。この動作で重要なのはセンス増幅器11を活性化させる時刻である。つまり、ディジット線2、3にデータが出ないうちに活性化したり、逆にディジット線にいったん読み出された正しいデータが反転してから活性化すると、誤ったデータを増幅してしまい、メモリセルデータを破壊してしまうのである。従って、ワード線1のレベルが上昇し始めてディジット線2、3に正しいデータが読み出され始めてから、そのデータが消えるまでの間にセンス増幅器を活性化する必要がある。この時間は約20～25ナノ秒程度である。

(発明の効果)

以上説明したように本発明は、各ディジット線毎にフリップフロップ型センス増幅器を設け、

ワード線が活性化した後20ナノ秒以内に該センス増幅器を活性化させることにより、メモリセルの γ_0/γ_1 の値を1程度にしても読み出し動作でセルデータが破壊されないため、メモリセルのドライブMISFETのチャネル幅を従来のものの半分以下にすることでき、メモリセル面積の縮小化ひいてはチップの縮小化、低コスト化ができ、またチップサイズを同一とするならばより大容量のスタティックメモリを実現できる効果がある。

4. 図面の簡単な説明

第1図は本発明のスタティック型MISメモリセルの一実施例の回路図、第2図は本実施例の動作を示すタイムチャート、第3図はスタティック型MISメモリセルの従来例のディジット線回路部分の回路図、第4および第5図は、それぞれ第3図のスタティック型MISメモリセルの $\gamma_0/\gamma_1 = 2.5 \sim 3$ および γ_0/γ_1 がほぼ1の場合の動作を示すタイムチャートである。

1 … ワード線。
2, 3 … ディジット線。

5 … プリチャージ信号線。
6 … ストローブ信号線。
10 … メモリセル。
11 … センス増幅器。
12 … プリチャージ回路。

特許出願人 日本電気株式会社
代理人 弁理士 内原晋 (弁理士
内原晋)

第1図

第2図

第3図

第5図

第4図