Subsets

Subsets

```
Office Hours (unusual schedule)
```

- · M 4:45 ~ 6:15
- · T 9:00 ~ 10:30

Subsets

IF ASB, A can be the same as B/

Definition 1 (Subsets)

Let A and B be sets.

- To say that A is a subset of B (denoted $A \subseteq B$) means that for each x, if $x \in A$, then $x \in B$.
- To say that A is a proper subset of B (denoted $A \subseteq B$) means that $\underline{A \subseteq B}$ and $A \neq B$.

e.g.
$$A = \{1,2,3\}$$
, $B = \{1\}$: B is a proper subset of A.

Notes.

- The relation ⊆ is called *set inclusion*.
- The notation $B\supseteq A$ means the same as $A\subseteq B$ and is read "B is a superset of A."

Set Inclusion

Defin $A \subseteq B \iff (\forall x) [x \in A \Rightarrow x \in B]$.

Proposition 1 (Set Inclusion as Relation)

1 For each set A, we have $A \subseteq A$. (Reflexivity.)

Set inclusion is reflexive, antisymmetric, and transitive. In other words

- **2** For all sets A and B, if $A \subseteq B$ and $B \subseteq A$, then A = B. (Antisymmetry.)
- **3** For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$. (Transitivity.)

- 1 Let A be a set. Let x be an element. Then if A & A, then clearly XEA. Thus, A SA.
- B) Let A and B be sets. Suppose that A S B and B S A. Let 2 be an element. Suppose $A \in A$. Then $A \in B$, because $A \subseteq B$. Conversely, Suppose LEB. Then olfA, because BSA. Thus, for each ol, acA iff xeB That is, A = B.

(ta) rea (IEB)]

(∀A,B,C)[A∈B ∧ B⊆C ⇒ A⊆C]

3 Let A, B, and C be sets. Suppose ASB and BSC,

Let x be an arbitrary element. Suppose that x ∈ A.

Then $\angle B$, because $A \subseteq B$. But then $\angle B \in C$, because $B \subseteq C$. Thus, for each $\angle B$, if $\angle B \in A$, then $\angle B \in C$.

In other words, ASC.

AeC

Work to Show

Empty Set

Proposition 2

For each set A, we have $\emptyset \subseteq A$.

- The proof involves a vacuously true statement.
- Conversely, if a set is a subset of any set, then it must be the empty set. In other words.

(S10E05) Let A be a set such that for each set B, we have $A \subseteq B$. Then

$$A = \emptyset$$
.

Let A be a set. WTS: $\phi \subseteq A$. In other words, we wish to show

that

for each x, if x & p, then x & A.

Let x be arbitrary. But the antecedent of the conditional sentence, 260, 75 false. Therefore, the conditional sentence is true. Thus, $\phi \subseteq A$.

Exercise 1 (Subsets)

Answer the following questions.

- **1** Is $\{3,5\}$ a subset of $\{2,3,5\}$?
- Is $\{2, \{3,5\}\}\$ a subset of $\{2,3,5\}$? No, because $\{3,5\}$ $\in A$ but $\{3,5\}$ $\notin B$.

 Write down all subsets of $\{1,2,3\}$.

Exercise 2 (\in vs. \subseteq)

Find two sets A and B such that:

 $\mathbf{2} \ A \in B \text{ and } A \nsubseteq B.$

 $A \notin B \text{ and } A \nsubseteq B.$