Class Test No. 12 Monday (07 th Oct 2019	Duration: 10 Minutes	Closed notes
Name:		Roll No	
Choose only one optio	on which is the n	nost appropriate for questio	ns 1 - 5.
1. For a benchmark 2 nd order clo	osed loop transfe	er function, following quantit	y is infinite.
<u>(a) GM</u>			
(b) PM			
(c) GCO			
(d) ω_d			
2. For a stable minimum phase p	proper plant who	ose phase never reaches 180°,	, phase margin in
general, is			
(a) 180° for all gain values			
(b) a minimum positive nu		gain value	
(c) infinite for all gain val	ues		
(d) not defined			
3. Approximate settling time for	a benchmark 2	2 nd order closed loop system	under step input,
for a 5% ripple, is			
(a) 5/σ			
<u>(b) 3/σ</u>			
(c) 4/σ			
(d) 2/σ			
4. Benchmark 2 nd order closed lo	oop transfer fund	ction assumes that the resulta	int plant is
(a) 1 st order type 2 system			•
(b) 2 nd order type 1 systen	<u>n</u>		
(c) 2 nd order type 0 system			
(d) 2 nd order type 2 systen	n		
5. Expression for peak overshoo	ot for a benchn	nark 2 nd order closed loop s	ystem under step
input is			
(a) $\ln M_p = -(\pi \sigma)/\omega_d$			
(b) $\ln M_p = -(\pi \omega_n)/\omega_n$			
(c) $\ln M_p = -(\pi \omega_d)/\sigma$			
(d) $\ln M_p = -(\pi \omega_n)/\sigma$			
Give short (1 - 2 lines) answer to	o the questions	6-10	
6. What is the connection betwee	en the stability m	argins and closed loop domi	nant response?

Both stability margins and dominant closed loop response depend on dominant poles.

..... 2 (PTO)

7. Give the approximate expression for, ζ in terms of, γ when it is expressed in radians. (Hint: You may use the relation given alongside, as necessary).

$$\tan \gamma = \frac{2\zeta}{\sqrt{\sqrt{1 + 4\zeta^4} - 2\zeta^2}}; \quad 0 < \zeta < 0.6$$

$$\gamma \approx \frac{2\zeta}{\sqrt{1-2\zeta^2}} \approx 2\zeta \left(1+\zeta^2\right)$$

8. Give the expression for rise time, T_r , of a benchmark 2^{nd} order closed loop transfer function under unit step input. Use the time response given alongside.

$$c(t) = 1 - \frac{\omega_n}{\omega_d} e^{-\sigma t} \sin\left(\omega_d t + \tan^{-1} \frac{\omega_d}{\sigma}\right)$$

$$c(t) = 1 - \frac{\omega_n}{\omega_d} e^{-\sigma t} \sin\left(\omega_d t + \tan^{-1} \frac{\omega_d}{\sigma}\right) = 1 \rightarrow \sin\left(\omega_d t_r + \tan^{-1} \frac{\omega_d}{\sigma}\right) = 0$$

$$\omega_d t_r + \tan^{-1} \frac{\omega_d}{\sigma} = 0 \rightarrow t_r = -\frac{1}{\omega_d} \tan^{-1} \left(\frac{\omega_d}{\sigma}\right) = \frac{1}{\omega_d} \tan^{-1} \left(\frac{\omega_d}{-\sigma}\right)$$

9. Why is the assumption of benchmark closed loop transfer function to be of 2^{nd} order, unity DC gain type practically justified?

The assumption is practically justified as exact tracking is required only for a step input and 2^{nd} order behaviour provides small rise time and settling time, for small overshoot.

10. Give the expression for peak time of a benchmark 2^{nd} order closed loop system subject to unit step input, in terms of damped natural frequency.

$$t_p = \frac{\pi}{\omega_d}$$