Ship Detection with SAR: Shanghai Andrew Sager & Andrew Spangler

Problem Statement

Objective:

• Create a binary mask of ships from SAR image

Challenges:

- Delineation of Coast & Buildings with Similar Attributes
- SAR Speckle
- SAR Error in Ocean Image

Selection of Methods

Thresholding & Morphology

- Denoise to reduce the effect of speckle
- Otsu thresholding to determine the optimal cutoff for water/non water classes
- Removal of large regions to separate ships from land
- Removal of regions with a high perimeter/area ratio to eliminate long thin non ship objects (bridge segments)

K-Means Clustering:

- Denoise to reduce speckle
- Select optimal k-means cluster count to separate noise
- Create binary mask from feature class

Methodology (River Image)

Threshold

Ratio Filtering

Area-Perimeter

Remove large

regions

Results (River Image)

Original Image

Resulting Ship Mask

Methodology (Ocean Image)

Results (Ocean Image)

Original Image

Resulting Ship Mask

Discussion

• Summary of ships & average vessel size

	River	Ocean
Number of Vessels	184	207
Average Size	8709m²	8199m²

- Accuracy of final masks
- Merits/drawbacks of each method
- Lessons learned

Question & Answer