Explainability in RL

Based on the XRL review article of:
Alexandre Heuillet, Fabien Couthouis, Natalia Díaz-Rodríguez

Explainable Machine Learning course, 21.05.2020

1 minute RL primer

- Actor and critic functions usually approximated by some parametric models
- Usually trained by:
 - regressing towards critic consistency equations (Belman backups) or
 - directly optimizing for expected sum of rewards of actor (policy gradients)

Taxonomy of explanation methods in RL

Explainable RL via Reward Decomposition

- Manually divide rewards gained into c interesting categories
- Separately learn critic for each category
- local explanations as expected future reward for each category
- can be useful for debugging reward shaping

$$L(\theta_c) = \sum_{i=1}^{k} (y_{c,i} - Q_c(s_i, a_i; \theta_c))^2$$

$$y_{c,i} = \begin{cases} r_c, & \text{for terminal } s_i' \\ r_c + \gamma Q_c(s_i', a_i^+; \theta_c'), & \text{for non-terminal } s_i' \end{cases}$$

$$a_i^+ = \arg\max_{a'} \sum_{c \in C} Q_c(s_i', a', \theta_c')$$

Explainable Reinforcement Learning Through a Causal Lens

- Learns jointly specific model of the environment (casual model):
 - given state how action and features influence themselves

- To generate explanation:
 - traverse graph backward from reward nodes

Formally, a signature S is a tuple $(\mathcal{U}, \mathcal{V}, \mathcal{R})$, where \mathcal{U} is the set of exogenous variables, \mathcal{V} the set of endogenous variables, and \mathcal{R} is a function that denotes the range of values for every variable $\mathcal{Y} \in \mathcal{U} \cup \mathcal{V}$.

Definition 1. A structural causal model is a tuple $M = (\mathcal{S}, \mathcal{F})$, where \mathcal{F} denotes a set of structural equations, one for each $X \in \mathcal{V}$, such that $F_X : (\times_{U \in \mathcal{U}} \mathcal{R}(U)) \times (\times_{Y \in \mathcal{V} - \{X\}} \mathcal{R}(Y)) \to \mathcal{R}(X)$ give the value of X based on other variables in $\mathcal{U} \cup \mathcal{V}$. That is, defines the value of X based on some the requation F_X other variables in the model.

State variables:

W - Worker number

S - Supply depot number

B - barracks number

E - enemay location

 A_n - Ally unit number

 A_h - Ally unit health

 A_l - Ally unit location

 D_u - Destoryed units

 D_b - Destroyed buildings

Actions:

 A_s - build supply depot

 A_b - build barracks

 A_m - train offensive unit

 A_a - attack

Those we will learn!

Improving instruction following with Hindsight Generation for Experience Replay

- Text-conditioned grid-world like agent
- For failed episodes generate and learn to predict final state textual description for additional learning signal (as classical in HER)
- Profit? Textual explanation of failed episodes helpful for model debugging!

Explanations through saliency maps

Critic explanation

Actor explanation

References

- Explainability in deep reinforcement learning Alexandre Heuillet and Fabien Couthouis and Natalia Díaz-Rodríguez
- Explainable Reinforcement Learning via Reward Decomposition Zoe Juozapaitis, et. al
- Explainable Reinforcement Learning Through a Causal Lens Prashan Madumal, et. al
- HIGHER: Improving instruction following with Hindsight Generation for Experience Replay Geoffrey Cideron, et. al.
- Visualizing and understanding atari agents S. Greydanus, A. Koul, J. Dodge, A. Fern
- Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps Karen Simonyan, et. al.

Thanks!

& discussion