Избрани задачи върху (не)определимост

Тодор Дуков

1 Структури с числов универсум

Задача 1.1. Разглеждаме предикатния език \mathcal{L} , съставен от един триместен предикатен символ p, заедно с \mathcal{L} -структурата $\mathcal{N} = \langle \mathbb{N}, p^{\mathcal{N}} \rangle$, където:

$$p^{\mathcal{N}}(n, m, k) \stackrel{\partial e\phi.}{\longleftrightarrow} n + m = k.$$

Да се докаже, че:

а) всяко едно от множествата

$$\{0\}, \{1\}, \{3\}, \{\langle n, m \rangle \mid 5 \text{ дели } n-m\}$$

e определимо в \mathcal{N} с формула от езика \mathcal{L} ;

б) идентитетът е единственият автоморфизъм в \mathcal{N} .

Задача 1.2. Разглеждаме предикатния език \mathcal{L} , съставен от един триместен предикатен символ p, заедно с \mathcal{L} -структурата $\mathcal{M} = \langle \mathbb{Z}^{>0}, p^{\mathcal{M}} \rangle$, където:

$$p^{\mathcal{M}}(n, m, k) \stackrel{\partial e \phi}{\longleftrightarrow} n^m = k.$$

Да се докаже, че всяко от следните множества е определимо с формула от езика \mathcal{L} :

- $a) \{1\};$
- 6) $\{\langle n, m, k \rangle \mid n \cdot m = k\};$
- $e) \ \{\langle n, m, k \rangle \mid n+m=k\};$
- $\textit{e) } \{\langle n, m \rangle \mid n < m \}.$

Задача 1.3. Разглеждаме предикатния език \mathcal{L} , съставен от един двуместен функционален символ f и символ \doteq за формално равенство, заедно с \mathcal{L} -структурата $\mathcal{N} = \langle \mathbb{N}, f^{\mathcal{N}} \rangle$, където:

$$f^{\mathcal{N}}(n,m) = k \stackrel{\partial e \phi}{\longleftrightarrow} 3^n(m+1) = k.$$

Да се докаже, че всяко от следните множества е определимо с формула от езика \mathcal{L} :

- $a) \{0\};$
- б) {1};
- $e) \ \{3^n \mid n \in \mathbb{N}\};$
- $z) \{\langle n, m, k \rangle \mid n+m=k\}.$

 \mathcal{A} а се намерят всички автоморфизми в \mathcal{N} .

Задача 1.4. Разглеждаме предикатния език \mathcal{L} , съставен от един триместен предикатен символ p, заедно с \mathcal{L} -структурата $\mathcal{N} = \langle \mathbb{N}, p^{\mathcal{N}} \rangle$, където:

$$p^{\mathcal{N}}(n,m,k) \stackrel{\partial e \oplus .}{\longleftrightarrow} n - m = k^2.$$

- а) Да се докаже, че всеки синглетон е определим.
- б) Да се определят $\{\langle n, n \rangle \mid n \in \mathbb{N}\}$ и $\{\langle n, m \rangle \mid n < m\}$.

Задача 1.5. Разглеждаме предикатния език \mathcal{L} , съставен от един двуместен предикатен символ p, заедно с \mathcal{L} -структурата $\mathcal{N} = \langle \mathbb{N}, p^{\mathcal{N}} \rangle$, където:

$$p^{\mathcal{N}}(n,m) \stackrel{\partial e \phi}{\longleftrightarrow} n + m \geq 3.$$

Да се докаже, че всяко от следните множества е определимо с формула от езика \mathcal{L} :

- a) $\{0\};$
- б) {1};
- $e) \{2\}.$

Задача 1.6. Разглеждаме предикатния език \mathcal{L} , съставен от един едноместен функционален символ f, двуместен функционален символ g и символ $\dot{=}$ за формално равенство, заедно с \mathcal{L} -структурата $\mathcal{N} = \langle \mathbb{N}, f^{\mathcal{N}}, g^{\mathcal{N}} \rangle$, където:

$$f^{\mathcal{N}}(n) = m \stackrel{\text{деф.}}{\longleftrightarrow} n$$
 дава остатък т при деление на 5 $g^{\mathcal{N}}(n,m) = k \stackrel{\text{деф.}}{\longleftrightarrow} n \cdot m = k$.

а) Да се докаже, че всяко едно от множествата

$$\{2\}, \{3\}, \{4\}, \{5\}$$

e определимо в \mathcal{N} с формула от езика \mathcal{L} .

- б) Да се докаже, че съществува естествено число n, което не е определимо в \mathcal{N} с формула от езика \mathcal{L} .
- в) Да се намерят всички автоморфизми в \mathcal{N} .

Задача 1.7. Разглеждаме предикатния език \mathcal{L} , съставен от един триместен предикатен символ p, заедно с \mathcal{L} -структурите:

$$\mathcal{Z} = \langle \mathbb{Z}, p^{\mathcal{Z}} \rangle, \ \mathcal{Q} = \langle \mathbb{Q}, p^{\mathcal{Q}} \rangle \ u \ \mathcal{R} = \langle \mathbb{R}, p^{\mathcal{R}} \rangle,$$

където за всяко $\mathcal{A} \in \{\mathcal{Z}, \mathcal{Q}, \mathcal{R}\}$ е изпълнено, че:

$$p^{\mathcal{A}}(a,b,c) \stackrel{\partial e\phi.}{\longleftrightarrow} a+b=c.$$

 \mathcal{A} а се докаже, че в структурите \mathcal{Z}, \mathcal{Q} и \mathcal{R} единственото нетривиално множество, което е определимо, е $\{0\}$.

Задача 1.8. Разглеждаме предикатния език \mathcal{L} , съставен от един триместен предикатен символ p, заедно с \mathcal{L} -структурите:

$$\mathcal{Z} = \langle \mathbb{Z}, p^{\mathcal{Z}} \rangle, \ \mathcal{Q} = \langle \mathbb{Q}, p^{\mathcal{Q}} \rangle \ u \ \mathcal{R} = \langle \mathbb{R}, p^{\mathcal{R}} \rangle,$$

където за всяко $\mathcal{A} \in \{\mathcal{Z}, \mathcal{Q}, \mathcal{R}\}$ е изпълнено, че:

$$p^{\mathcal{A}}(a,b,c) \stackrel{\partial e \phi}{\longleftrightarrow} a \cdot b = c.$$

 \mathcal{A} а се докаже, че в структурите \mathcal{Z} , \mathcal{Q} и \mathcal{R} единствените нетривиални множества, които са определими, са $\{-1\}$, $\{0\}$ и $\{1\}$.

Задача 1.9. Нека с $\{F_n\}_{n\in\mathbb{N}}$ бележим редицата от естествени числа, дефинирана по следния начин:

$$F_0 = 0, \ F_1 = 1 \ u \ F_{n+2} = F_{n+1} + F_n$$
 за всяко естествено n .

Разглеждаме предикатния език \mathcal{L} , съставен от един двуместен функционален символ f и един едноместен предикатен символ p, заедно с \mathcal{L} -структурата $\mathcal{S} = \langle \mathbb{N}, f^{\mathcal{S}}, p^{\mathcal{S}} \rangle$, където:

$$f^{\mathcal{S}}(n,m) = k \stackrel{\partial e \phi.}{\longleftrightarrow} n + F_{m+1} = k$$
 $p^{\mathcal{S}}(n) \stackrel{\partial e \phi.}{\longleftrightarrow} n \ e \ \text{член на редицата } F.$

Да се докаже, че в структурата \mathcal{S} са определими:

$$\{0\}, \{1\} \ u \{\langle n, n \rangle \mid n \in \mathbb{N}\}.$$

Вярно ли e, че в S e определимо множеството:

$$\{\langle F_n, F_{n+1} \rangle \mid n \in \mathbb{N}\}$$
?

Да се намерят всички автоморфизми в \mathcal{S} .

Задача 1.10. Нека с \mathbb{Q}^+ бележим множеството от всички положителни рационални числа, а с \mathcal{F} – множеството от всички функции $f: \mathbb{N} \to \mathbb{Q}$. Разглеждаме предикатния език \mathcal{L} , съставен от два триместни предикатни символа shift u mult, заедно с \mathcal{L} -структурата $\mathcal{S} = \langle \mathbb{Q}^+ \cup \mathcal{F}, \text{ shift}^{\mathcal{S}}, \text{ mult}^{\mathcal{S}} \rangle$, където:

 $\mathrm{shift}^{\mathcal{S}}(f,n,g) \overset{\text{def.}}{\longleftrightarrow} f,g \in \mathcal{F}, \ n \in \mathbb{N} \ u \ за всяко \ k \in \mathbb{N} \ e \ изпълнено, че \ f(n+k) = g(k)$ $\mathrm{mult}^{\mathcal{S}}(f,n,g) \overset{\text{def.}}{\longleftrightarrow} f \in \mathcal{F}, \ n \in \mathbb{N}, \ q \in \mathbb{Q}^+ \ u \ f(0) = \frac{q}{n}.$

 \mathcal{A} а се докаже, че следните множества са определими в \mathcal{S} с формули от \mathcal{L} :

- a) $\{0\};$
- 6) $\{\langle n, m, k \rangle \in \mathbb{N}^3 \mid n+m=k\};$
- $e) \ \{\langle n, m \rangle \in \mathbb{N}^2 \mid n \le m\};$
- $\varepsilon) \ \{\langle a, b \rangle \in (\mathbb{Q}^+)^2 \mid a \le b\};$
- д) $\{f \in \mathcal{F} \mid \text{за всяко } n \in \mathbb{N} \text{ е изпълнено, че } f(n) \leq f(n+1)\}.$

 $Heкa\ зa\ X\subseteq\mathbb{R}\ deфинираме\ множеството:$

$$\operatorname{Conv}(X) = \{ f \in \mathcal{F} \mid \operatorname{cъществува} x \in X, \text{ за което } \lim_{n \to \infty} f(n) = x \}.$$

 $Onpe deлими ли ca Conv(\mathbb{Q}^+) u Conv(\mathbb{R})$?

2 Структури с теоретико-множествен универсум

Задача 2.1. Нека фиксираме крайна азбука Σ . Разглеждаме предикатния език \mathcal{L} , съставен от два триместни предикатен символ \circ и \sqcap , заедно с \mathcal{L} -структурата $\mathcal{M} = \langle \mathcal{P}(\Sigma^*), \circ^{\mathcal{M}}, \sqcap^{\mathcal{M}} \rangle$, където:

$$\circ^{\mathcal{M}}(L_1, L_2, L_3) \stackrel{\partial e \not b.}{\longleftrightarrow} L_1 \cdot L_2 = L_3$$
$$\sqcap^{\mathcal{M}}(L_1, L_2, L_3) \stackrel{\partial e \not b.}{\longleftrightarrow} L_1 \cap L_2 = L_3.$$

Да се докаже, че всяко от следните множества е определимо с формула от езика \mathcal{L} :

- a) $\{\langle L_1, L_2, L_3 \rangle \mid L_1 \cup L_2 = L_3 \};$
- 6) $\{\langle L, L^* \rangle \mid L \in \mathcal{P}(\Sigma^*)\};$

За кои естествени числа n е определимо множеството $\{\Sigma^n\}$? Да се определят всички автоморфизми в \mathcal{M} .

Задача 2.2. Разглеждаме предикатния език \mathcal{L} , съставен от един двуместен предикатен символ р и символ \doteq за формално равенство, заедно с фамилията от \mathcal{L} -структури $\{S_A\}_{A\in\mathcal{P}(\mathbb{N})}$, където за всяко $A\in\mathcal{P}(\mathbb{N})$:

$$|\mathcal{S}_A| = \mathcal{P}(A)$$
 $p^{\mathcal{S}_A}(X,Y) \overset{\partial e.g.}{\longleftrightarrow} c$ ъществува инекция от X в Y .

 \mathcal{A} а се докаже, че за всяко $A \in \mathcal{P}(\mathbb{N})$ в \mathcal{S}_A са определими:

- $a) \{\varnothing\};$
- б) $\{\langle X,Y\rangle \mid$ има биекция от X в $Y\};$
- в) $\{\langle X, Y \rangle \mid$ има сюрекция от X в $Y\};$
- г) за всяко естествено число n, множеството $F_{A,n}=\{X\in\mathcal{P}(A)\mid |X|=n\}.$

Измежду всички $A \in \mathcal{P}(\mathbb{N})$, които съдържат елемента 0, да се намерят тези, за които е вярно, че:

- a) $\{\{0\}\}$ е определимо в \mathcal{S}_A ;
- б) $\{A \setminus \{0\}\}$ е определимо в \mathcal{S}_A .

 \mathcal{A} а се намерят онези $A \in \mathcal{P}(\mathbb{N})$, за които $\{A\}$ е определимо в \mathcal{S}_A .

Задача 2.3. Разглеждаме предикатния език \mathcal{L} , съставен от един триместен предикатен символ p, заедно с \mathcal{L} -структурата $\mathcal{S} = \langle \mathcal{P}(\mathbb{N}), p^{\mathcal{S}} \rangle$, където:

$$p^{\mathcal{S}}(A, B, C) \stackrel{\partial e\phi.}{\longleftrightarrow} A \cap B = C.$$

 \mathcal{A} а се докаже, че в \mathcal{S} са определими:

- $a) \{\emptyset\};$
- 6) $\{\mathbb{N}\};$
- *b*) $\{\langle A, B \rangle \mid A \subseteq B\}$;
- $\varepsilon) \{\langle A, B, C \rangle \mid A \cup B = C\}.$

Да се докаже, че ако $A \subseteq \mathbb{N}$, $A \neq \emptyset$ и $A \neq \mathbb{N}$, то $\{A\}$ не е определимо в S.

Задача 2.4. Сума на две множества от точки в равнината $A, B \subseteq \mathbb{R}^2$ ще наричаме множеството:

$$A + B = \{ \langle a_1 + b_1, a_2 + b_2 \rangle \mid \langle a_1, a_2 \rangle \in A \ u \ \langle b_1, b_2 \rangle \in B \}.$$

Разглеждаме предикатния език \mathcal{L} , съставен от един триместен предикатен символ sum и един двуместен предикатен символ check, заедно с \mathcal{L} -структурата $\mathcal{S} = \langle \mathcal{P}(\mathbb{R}^2), \text{ sum}^{\mathcal{S}}, \text{ check}^{\mathcal{S}} \rangle$, където:

$$\operatorname{sum}^{\mathcal{S}}(A, B, C) \stackrel{\partial e\phi.}{\longleftrightarrow} A + B = C$$
$$\operatorname{check}^{\mathcal{S}}(A, B) \stackrel{\partial e\phi.}{\longleftrightarrow} A \cap B \neq \varnothing.$$

 \mathcal{A} а се докаже, че в \mathcal{S} :

- а) равенството на множества от точки е определимо;
- б) множествата $\{\{\langle 0,0\rangle\}\}$ и $\{\mathbb{R}^2\}$ са определими;
- в) множеството от всички едноточкови множества е определимо;
- r) множеството от централно симетрични множества 1 е определимо.

Определимо ли е множеството $\{\{\langle 0, 1 \rangle, \langle 0, -1 \rangle\}\}$ в S? Кои са автоморфизмите в S?

¹Множество $A\subseteq\mathbb{R}^2$ е централно симетрично, ако $A=\{\langle -a,\, -b\rangle\mid \langle \, a,\, b\, \rangle\in A\}.$

Задача 2.5. Разглеждаме език \mathcal{L} , съставен от един предикатен символ p. За естествено число n > 3, с \mathcal{G}_n означаваме класа от неориентирани графи с точно n върха. За граф $G = \langle V, E \rangle$ с $\mathcal{F}(E)$ означаваме фамилията от онези подмножества $F \subseteq E$ от ребра на графа G, за които графът $\langle V, F \rangle$ е гора, т.е. ацикличен граф. За всеки граф $G \in \mathcal{G}_n$, където $G = \langle V, E \rangle$, със \mathcal{S}_G бележим \mathcal{L} -структурата, за която:

$$|\mathcal{S}_G| = \mathcal{F}(E)$$
$$p^{\mathcal{S}_G}(A, B) \stackrel{\partial e \phi.}{\longleftrightarrow} A \subseteq B.$$

Да се докаже, че за всеки фиксиран граф $G \in \mathcal{G}_n$, където $G = \langle V, E \rangle$, следните множества са определими в \mathcal{S}_G :

- $a) \{\emptyset\};$
- 6) $\{\{e\} \mid e \in E\}.$

Да се докаже, че за всяко n > 3 има затворени формули $\varphi_{forest}^{(n)}$ и $\varphi_{tree}^{(n)}$ над езика \mathcal{L} , за които е вярно следното:

- а) за всеки граф $G \in \mathcal{G}_n$, $\mathcal{S}_G \models \varphi_{forest}^{(n)}$ точно когато G е гора;
- б) за всеки граф $G \in \mathcal{G}_n$, $\mathcal{S}_G \models \varphi_{tree}^{(n)}$ точно когато G е дърво.

В зависимост от броя на ребрата, за кои гори $G \in \mathcal{G}_n$ е вярно, че всяко ребро на G е определимо в \mathcal{S}_G ?

Задача 2.6. Нека \mathcal{L} е най-много изброим предикатен език и \mathcal{A} е \mathcal{L} -структура с безкраен универсум.

 \mathcal{A} а се докаже, че съществува множество, което не е определимо в \mathcal{A} с формула от \mathcal{L} .

3 Структури с геометричен универсум

Задача 3.1. Нека с \mathbb{P} бележим множеството от всички точки в равнината, а с \mathbb{T} – множеството от всички (неизродени) триъгълници в равнината. Разглеждаме предикатния език \mathcal{L} , съставен от един двуместен предикатен символ p, заедно с \mathcal{L} -структурата $\mathcal{M} = \langle \mathbb{P} \cup \mathbb{T}, p^{\mathcal{M}} \rangle$, където:

$$p^{\mathcal{M}}(A,t) \stackrel{\partial e\phi.}{\longleftrightarrow} A \in \mathbb{P}, \ t \in \mathbb{T} \ u \ A \in t.$$

 \mathcal{A} а се докаже, че в \mathcal{M} са определими:

- а) $\{\langle A, t \rangle \in \mathbb{P} \times \mathbb{T} \mid A \text{ лежи на контура на } t\};$
- б) $\{\langle A, t \rangle \in \mathbb{P} \times \mathbb{T} \mid A \ e \ връх на \ t\};$
- в) $\{\langle A, B, C, D \rangle \mid npaвume \ AB \ u \ CD \ ca \ ycnopedни \};$
- ∂) { $\langle A, B, C \rangle \mid A \ e \ cpeda \ на \ omceчката \ BC$ }.

Задача 3.2. Между два кръга възможностите за взаимни положения са шест:

Разглеждаме предикатния език \mathcal{L} , съставен от един двуместен предикатен символ p, заедно с фамилията от \mathcal{L} -структури $\{\mathcal{C}_i\}_{i\in\{1,2,3,4\}}$, където за всяко $i\in\{1,2,3,4\}$:

 $|\mathcal{C}_i|$ е множеството от всички кръгове в Евклидовата равнина $p^{\mathcal{C}_i}(c_1,c_2) \stackrel{def.}{\longleftrightarrow} c_1$ и c_2 са във взаимно положение (i).

Да се докаже, че за всяко $i \in \{1, 2, 3, 4\}$ в структурата C_i са определими всички взаимни положения между два кръга.

Задача 3.3. Разглеждаме предикатния език \mathcal{L} , съставен от един четириместен предикатен символ p, заедно с \mathcal{L} -структурата $\mathcal{S} = \langle \mathbb{E}_2, p^{\mathcal{S}} \rangle$, където:

$$p^{\mathcal{S}}(A,B,C,D) \stackrel{\text{def.}}{\longleftrightarrow}$$
отсечките $AB\ u\ CD\$ имат обща точка.

 \mathcal{A} а се определи кои от следните множества са определими в \mathcal{S} :

- а) $\{\langle A, B, C, D \rangle \mid omceчката AB се съдържа в omceчката <math>CD\};$
- б) $\{\langle A, B, C, D \rangle \mid npaвите AB \ u \ CD \ ca \ ycnopeдни \};$
- в) $\{\langle A, B, C \rangle \mid m$ очката C лежи на отсечката AB и $C \neq A, B\};$
- ϵ) { $\langle A, B, C, D \rangle \mid ABCD \ e \ ycnoped$ ник };
- ∂) { $\langle A, B, C \rangle \mid C \ e \ cpeda$ на отсечката AB};
- e) $\{\langle A, B, C \rangle \mid \angle ABC = 60^{\circ}\}.$

Задача 3.4. Разглеждаме предикатния език \mathcal{L} , съставен от един двуместен предикатен символ p, заедно с \mathcal{L} -структурата \mathcal{B} , където:

 $|\mathcal{B}|$ е множеството от всички полета в шахматна дъска (от al до h8) $p^{\mathcal{B}}(a,b) \stackrel{\text{деф.}}{\longleftrightarrow}$ от полето а с кон може да се стигне до полето b.

 \mathcal{A} а се докаже, че в структурата \mathcal{B} са определими:

- а) множеството от ъгловите полета;
- б) множеството от периферните полета.

 \mathcal{A} а се докаже, че в структурата \mathcal{B} не е определимо множеството $\{a2\}$.