Community Detection in Multi layer Networks

16CS60R58 Prishni Rateria Under guidance of Dr. Bivas Mitra

- Introduction
 - Background
 - Motivation
 - Problem Statement
 - Contribution
- Related Work
- Multilayer Modularity
- Community Detection Algorithm
- Evaluation
- Summary and future work

Introduction

Background

Community: Groups of nodes densely connected to each other than to the rest of the network.

Community Detection: partitioning the networks into groups of nodes.

Multi-Layer network:

- Comprises of multiple independent networks.
- Functionality of edges and nodes in different layer is different

• Community detection in homogeneous network has been studied extensively.

Figure 1. Homogeneous network

- An entity in general is associated with multiple aspects of relationships,
- Multiple aspects of interactions can be modeled as a multi-layer graph

Layer2

Figure2. Multi-layer network

An example of Multi-layer network.

- Layer 1 represents a friendship network, with nodes as people
- Layer 2 represents a location based social network, with nodes as locations and connected by proximity links

Motivation

• Can single layer community detection algorithm be used in multi-layer network?

Motivation

• Can single layer community detection algorithm be used in multi-layer network?

Motivation

Can single layer community detection algorithm be used in multi-layer network?

<u>Figure4. Cross layer edges in multilayer</u> <u>networks have a different meaning</u>

Location based network

Cont.

 Single layer community detection algorithm fails for networks having low density of coupling links

Figure 5. Network with low density of coupling edges

cont.

With single layer community detection algorithm,

Total communities detected = 6

• Desired number of communities = 3

<u>Figure6. Communities detected my</u> <u>single-layer community detection algorithm</u>

Figure 7. Desired community structure

Problem Statement

Detecting communities in a multi-layer network comprising:

- Single type of nodes
- Multiple type of nodes

Figure 8. Multi-layer community structure

- Introduction
- Related Work
- Multilayer Modularity
- Community Detection Algorithm
- Evaluation
- Summary and future work

Related Work

- There has been several work done on this problem, but most of them suffer from several limitations
 - o Example:
 - Forced to detect communities comprising only multiple types of Nodes.
 - Desired number of communities are required to be fixed apriori.

- Discovering community structure in multi layer network(DSAA) :
 - We found this work closest to the problem addressed
 - o Proposes a new multi-layer modularity metric,
 - Uses a single layer community detection algorithm which work on the principle of maximizing the modularity of network partition.

P. J. Mucha et al. "Community structure in time-dependent, multiscale, and multiplex networks," science, 2010.

Y.-R. Lin et al. Metafac: community discovery via relational hypergraph factorization. SIGKDD, 2009.

X. Liu et al. A framework for community detection in heterogeneous multi-relational networks. Advances in Complex Systems, 2014.

J. Song et al. "A modularity based method reveals mixed modules from chemical-gene heterogeneous network,", PLoS ONE, 2015

- Introduction
- Related Work
- Multilayer Modularity
- Community Detection Algorithm
- Evaluation
- Summary and future work

MultiLayer Modularity:

For a multi layer community

$$Q_M^C = \forall i, j \in C\left[\frac{1}{3}\left\{\frac{1}{2|E_1|}\sum_{i,j\in V_1}(A_{ij} - \frac{h_i * h_j}{2|E_1|})+\right.\right]$$

$$\frac{1}{2|E_1|+2|E_2|+|E_{12}|} \sum_{i \in V_1, j \in V_2} (A_{ij} - \frac{c'_i * c'_j}{2|E_1|+2|E_2|+|E_{12}|})$$

$$+\frac{1}{2|E_2|}\sum_{i,j\in V_2}(A_{ij}-\frac{h_i*h_j}{2|E_2|})]$$

For a single layer community

$$Q_M^C = \forall i, j \in C\left[\frac{1}{3} \left\{ \frac{1}{2||E_1||} \sum_{i,j \in V_1} \left(A_{ij} - \frac{h_i * h_j}{2||E_1||} \right) \right\}\right]$$

Soumajit Pramanik, Raphael Tackx, Anchit Navelkar, Jean-Loup Guillaume and Bivas Mitra. In the Proceedings of the The 4th IEEE International Conference on Data Science and Advanced Analytics (DSAA) accepted in DSAA2017, October 19-21, Tokyo, Japan.

Methodology

Results of DSAA

Figure 9 shows: The method proposed in DSAA works better that other state-of-art algorithms.

But it also has some limitations.

(a) Varying α values for p = 0.8, $\mu = 0.4$ and d = 0.04

(b) Varying p values for $\mu = 0.4$, $\alpha = 0.6$ and d = 0.04

<u>Figure 9. NMI of obtained and ground truth communities for various alpha and P values</u>

Limitations of DSAA

- The method uses Louvain algorithm for community detection.
- However, Louvain is a single layer community detection algorithm.

Louvain Algorithm

- 1. Assign a different community to each node
- 2. For each node i
 - For each neighbor j of i, consider removing i from its community and placing it to j's community
- 3. Repeat until no improvement can be done

Louvain Algorithm:

- Initially every node is in its own community
- We merge nodes which are densely connected and form one single node representing that community.
- Recursively apply the same steps

Limitations of DSAA

- The method uses Louvain algorithm for community detection.
- However, Louvain is a single layer community detection algorithm.

Louvain algorithm merges nodes and modifies the network structure, So, if we apply it on multi-layer network:

- 1. We would lose the layer information after first the merge.
- 2. The network no more remains multi-layered.

- Introduction
- Related Work
- Multilayer Modularity
- Community Detection Algorithm
- Evaluation
- Summary and future work

Algorithm: MixMod

The multi-layer network structure is preserved

While merging nodes and constructing new network.

- If the community has multiple types of node, we form multiple nodes for each type.
- Keep the information of them being in one community

Jianglong Song, Shihuan Tang, Xi Liu, Yibo Gao, Hongjun Yang, and Peng Lu.A modularity-based method reveals mixed modules from chemical-gene hetero-geneous network. PloS one, 10(4):e0125585, 2015

- Introduction
- Related Work
- Multilayer Modularity
- Community Detection Algorithm
- Evaluation
- Summary and future work

Figure 11. Modularity plot using Louvain QM algorithm for two different values of alpha (0.4,0.9) and varying P

Figure 12. Modularity plot using Louvain QM algorithm for two different values of p (0.5,0.85) and varying alpha

Figure 13. Modularity plot using MixMod algorithm for two different values of alpha (0.4,0.9) and varying P

Figure 14. Modularity plot using MixMod algorithm for two different values of p (0.5,0.85) and varying alpha

Further Analysis

The plot also shows that

- 1. Algorithm performs well for high values of α , means when maximum communities in the ground truth are multi-layer.
- 2. Performs poorly for $\alpha = 0.4$ and performs well for $\alpha = 0.9$

The multi-layer modularity measure QM described is kind of biased towards detecting multi-layer communities. So, it have a scope of improvement

- Introduction
- Related Work
- Multilayer Modularity
- Community Detection Algorithm
- Evaluation
- Summary and future work

Summary and Future work:

- The MixMod algorithm when pluged with QM performs better than Louvain
- The Modularity index QM has some bias towards detecting multi-layer communities.

Future Work:

• Improvising the modularity index to overcome the bias

