Final Project Report

Title: Predictive Modelling for Road Traffic Management: A Data-Driven Approach **Presented by:** Shaik Karishma

1. Abstract

Urban traffic congestion remains one of the most critical challenges in modern transportation systems, impacting travel time, fuel efficiency, and air quality. This project introduces a data-driven approach to traffic volume forecasting by leveraging historical traffic data and advanced predictive modeling techniques. The study implements three distinct models — ARIMA, LSTM, and XGBoost — to identify trends and predict future traffic volume accurately. The findings demonstrate how intelligent forecasting can enable authorities and planners to optimize road usage, reduce congestion, and make informed infrastructure decisions.

2. Objectives

- To forecast hourly traffic volume using machine learning and time-series analysis.
- To assist urban traffic authorities in proactively managing congestion and resource deployment.
- To evaluate and compare multiple predictive models for accuracy and performance.
- To visualize and interpret the forecasting results using statistical and graphical methods.

3. Dataset Description

- Filename: Sample_Traffic_Data.csv
- Scope: Simulated traffic volume data collected over 60 days at hourly intervals.

Features:

- o date_time: Timestamp for each traffic observation.
- o traffic_volume: Number of vehicles observed per hour.

This dataset serves as a reliable proxy for real-world data, allowing the evaluation of different modeling strategies in a controlled environment.

4. Methodology

Step 1: Data Preprocessing

- Handled missing or duplicate entries.
- · Converted datetime fields to a uniform format.
- Resampled and normalized data where necessary.

Step 2: Feature Engineering

 Extracted features such as hour of day and day of week to capture time-related patterns.

Step 3: Model Development

- ARIMA: A statistical model designed to capture linear time-series patterns.
- **LSTM:** A deep learning architecture capable of learning from sequential dependencies and long-term temporal patterns.
- **XGBoost:** A high-performance ensemble learning algorithm optimized for tabular datasets with engineered features.

Step 4: Model Evaluation

- Metrics used:
 - MAE (Mean Absolute Error)
 - o **RMSE** (Root Mean Squared Error)
 - o **R**² (Coefficient of Determination)

Step 5: Visualization

- Time-series plots
- Actual vs predicted comparisons
- Error distribution graphs

5. Tools and Technologies Used

- **Programming Language:** Python
- **Development Environment:** Jupyter Notebook
- Libraries & Frameworks:

- Data Handling: pandas, numpy
- o Visualization: matplotlib, seaborn
- Modeling: statsmodels (ARIMA), tensorflow (LSTM), xgboost, scikit-learn

6. Experimental Results

Model MAE RMSE R² Score Remarks

ARIMA ~320 Moderate Fair Simple model, useful for baseline results

LSTM ~230 Low High Best performance, captures nonlinearities

XGBoost ~250 Low High Fast, robust with engineered features

Each model provides different benefits. ARIMA is interpretable and lightweight; LSTM excels in learning time-based sequences; and XGBoost balances performance with training efficiency.

7. Visualization Insights

- **Time-Series Trends:** Clear temporal patterns were detected in daily traffic volumes.
- Prediction Plots: All three models provided close alignment with actual values.
- **Error Distribution:** LSTM showed the narrowest error band, indicating more consistent accuracy.

8. Conclusion

This project successfully demonstrates the application of data science techniques in traffic volume forecasting. The LSTM model outperforms traditional and tree-based approaches in predictive accuracy, though XGBoost offers faster performance and easier deployment. Results show that time-based features alone are strong indicators for traffic volume forecasting when processed with appropriate models.

9. Future Scope

• **Data Enrichment:** Incorporate external factors such as weather conditions, road incidents, and public holidays to improve forecasting accuracy.

- **Real-Time Deployment:** Build a web application (e.g., using Streamlit or Flask) for live forecasting and dashboard visualization.
- **Scalability:** Extend the system to handle city-wide or regional traffic networks for smart city integration.
- **Model Optimization:** Apply hyperparameter tuning, deep stacking, or hybrid models for enhanced performance.