Jeb) 2.1.

Justing shockley model

Vis (Ven

Vis (Ven

Vis (Ven

Vis (Ven

Vis) Ven

Vis > Ven

· graph plabled in onother file.

1

DJ(Hw.3.

$$\frac{1}{2} = \begin{cases}
0 \\
\beta ((Vover)^{V_{DS}} - \frac{1}{2}V_{DS}^{2})
\end{cases}$$
Vos (Vover)
$$\frac{1}{2}\beta ((Vover)^{2})$$
Vps > Vover,

herce,
$$\beta(V_{08}r(V_{05}-V_{n})-\frac{1}{2}(V_{05}-V_{n})^{2})=\beta(V_{08}rV_{n}-\frac{1}{2}V_{n}^{2})$$

$$\sqrt{\text{over}}\left(\sqrt{\text{ps}-2\text{Vn}}\right) = \frac{1}{2} \cdot \left(\sqrt{\text{ps}-\text{Vn}} + \text{Vn}\right) \left(\sqrt{\text{ps}}\right)$$

$$= \frac{1}{2} \left(\sqrt{\text{ps}-2\text{Vn}}\right) \sqrt{\text{ps}}$$

here,
$$(V_{over} - \frac{1}{2}V_{DS}) \cdot (V_{DS} - 2V_{D}) = 0$$

firelly, Id, ~ Ida

Ptob 2.37.3 by the budy effect · V+ = V+ + + (/ /5 + /5 - / /5) Vo (17.12') Vos (onsidering previous prob. 2.2, . the threshold voltage of MI will be increased (V+h = V+n + 8) . but still, the circuit stey kch hence, -tdo + tdo/ = 0. also, [Ide = \$ ((Vover - S) (Vos- Vn) - 2 (Vos- Vn)2) $\left(\frac{1}{1} \right) = \beta \left(\left(\text{Voer} \right) \text{Vn} - \frac{1}{2} \text{Vn}^2 \right)$ (.: holy effect affect the 4th of M, as V++ 8) but, Ma's Source vertege is god as body. Vover (Vos-Vn) + & Vos-Vn) - = (Vos-Vn)2 = Vover (Vn) - = Un2 VOICE (VB-JVX) = & (VDS-VX) = = = = (VDS) (VDS-2VX) -8(Vps-Vn)=(1 Vps-Vover) (Vps-2vn) - S(Vn-V18) = (2 Vover - Vns) (Vn - 2 Vos) region tence, Vores >> Vos, there fore, 2 Vover-Vos >0, 8>0 owe assumed, finer firelly we can know that new Va (2 Ves finelly, we can know that new Va 75 Ves

(3v)

1) it mans that the is smaller than previous prob 2.2 · by hel we can know that the time will be smaller from Fosi.

prob) 224

assume MOSFFT,

. for gonn process, &=45 nm

and the eaparitone of gale (g= kox for WL.

honce, Commicton = hon · fon L

Prob) 2.5.

· for diffusion capacitions

$$(Jb) = AS. (Jb) + PS. (Jb) + MJ.$$

$$(Jb) = (Je) + (Je) + MJ.$$

· (] = 0.42 f Flum2, MJ = 0.44

· P. = 0 agv at poonthemp.

. Since, no constant are defined for (jbssup, on the or sv) of the use (*) equation, and define
$$V_{1b}$$
 as n (n will be 0 or sv) hence, ($a_{1b} = 20 \times 2^{2} \cdot 0.42 f F/um^{2} \cdot (1 + \frac{n}{0.98})^{-0.44}$
 $+ 18 \times 0.83 f F/um \cdot (1 + \frac{n}{0.98})^{-0.44}$

$$= 20. (0.3 \text{ Jum})^{2} \cdot 0.42 + 1 / \text{Jum}^{2} \cdot (H \frac{\text{N}}{0.98})^{-0.44}$$

$$+ 18 \cdot (0.3 \text{ Jum}) \cdot 0.33 + 1 / \text{Jum} \cdot (H \frac{\text{N}}{0.98})^{-0.12}$$

Ptob) = 1924/2.

NMOS of Motor,

Item, $k = (1.4 - V) \cdot V'$ Then, $k = (1.4 - V) \cdot V + \int V dV$