BÀI TẬP TRẮC NGHIỆM THAM KHẢO MÔN GIẢI TÍCH III

Tuần 5

Các câu hỏi có một đáp án đúng

Bài 1. Tính khai triển thành chuỗi Taylor của hàm $\frac{x-10}{x^2-2x-8}$ tại x=1.

A.
$$\sum_{n=0}^{\infty} \frac{2(-1)^n - 1}{3^{n+1}} (x-1)^n.$$

C.
$$\sum_{n=0}^{\infty} \frac{2(-1)^{n+1} + 1}{3^{n+1}} (x-1)^n.$$

B.
$$\sum_{n=0}^{\infty} \frac{2(-1)^n + 1}{3^{n+1}} (x-1)^n.$$

D.
$$\sum_{n=0}^{\infty} \frac{2(-1)^{n+1} - 1}{3^{n+1}} (x-1)^n.$$

Bài 2. Tính hệ số của $(x-3)^2$ trong khai triển chuỗi Taylor của hàm $f(x) = \sqrt{1+x}$ tại x=3.

A.
$$\frac{1}{32}$$
.

C.
$$\frac{-1}{32}$$
.

B.
$$\frac{-1}{64}$$
.

D.
$$\frac{-1}{8}$$
.

Bài 3. Sử dụng khai triển Maclaurin tính tích phân $\int_{0}^{1} \frac{e^{x^{5}}-1}{x^{2}} dx.$

A.
$$\sum_{n=0}^{\infty} \frac{1}{n!(5n-1)}$$
.

C.
$$\sum_{n=1}^{\infty} \frac{1}{n!(5n-1)}$$
.

B.
$$\sum_{n=1}^{\infty} \frac{1}{(5n)!(5n-1)}$$
.

D.
$$\sum_{n=0}^{\infty} \frac{1}{(5n)!(5n-1)}$$
.

Bài 4. Chuỗi nào sau đây là chuỗi lượng giác?

A.
$$\sum_{n=0}^{\infty} \cos(\sqrt{n}x).$$

C.
$$\sum_{n=0}^{\infty} (\cos(2nx) + \sin(nx^2)).$$

B.
$$\sum_{n=0}^{\infty} \left(\frac{1}{2^n} \cos(nx) + n \sin x \right).$$

D.
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} \cos(nx) + \frac{1}{n+1} \sin(nx) \right).$$

Bài 5. Cho f(x) là hàm liên tục trên $\mathbb R$ với chu kì 2π và chuỗi Fourier của f

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right).$$

Mệnh đề nào sau đây sai?

A.
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos x dx$$
.

C.
$$a_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(x) dx$$
.

B.
$$b_1 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(x) dx$$
.

D.
$$a_2 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(2x) dx$$
.

Bài 6. Tính hệ số a_0 trong khai triển chuỗi Fourier của hàm f tuần hoàn chu kì 2π ,

$$f(x) = 3x^3, -\pi < x < \pi.$$

A. $\frac{3\pi^3}{4}$.

C. 0.

B. $\frac{3\pi^3}{2}$.

D. $\frac{1}{2}$.

Bài 7. Tính hệ số b_3 trong khai triển chuỗi Fourier của hàm f tuần hoàn chu kì 2π ,

$$f(x) = x + 1, \pi < x < \pi.$$

A. $\frac{2\pi}{3}$.

C. $\frac{2}{3\pi}$.

B. $\frac{2}{3}$.

D. 0.

Các câu hỏi có nhiều đáp án đúng

Bài 8. Cho f(x) xác định trên \mathbb{R} , tuần hoàn chu kì 2π thỏa mãn điều kiện của Định lí Dirichlet. Gọi

$$S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$

là chuỗi Fourier của f. Mệnh đề nào sau đây đúng?

A. Miền hôi tu của S(x) là \mathbb{R} .

E. $\forall n \ge 1, b_n = \int_{-\pi}^{\pi} f(x) \sin(nx) dx$.

- B. $\forall x \in \mathbb{R}, S(x) = f(x)$.
- C. $\forall n \geq 1, a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$.
- F. $\forall n \geq 1, b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx.$
- D. $\forall n \ge 1, a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx.$
- G. $\forall x \in \mathbb{R}, S(x) = \frac{1}{2} \left(\lim_{x \to x_0^+} f(x) + \lim_{t \to x_0^-} f(x) \right)$.

Bài 9. Cho hàm f(x) tuần hoàn chu kì 2π ,

$$f(x) = \begin{cases} -1, -\pi < x < 0 \\ 1, 0 < x < \pi \end{cases}$$

Mệnh đề nào sau đây đúng về các hệ số Fourier a_n, b_n của hàm f(x).

A. $\forall n \geq 0, a_n = 0.$

- $D. \lim_{n \to \infty} b_n = 0.$
- B. $\forall n \ge 1, a_n = \frac{2}{n\pi} (1 \cos(n\pi)).$
- E. $\forall n \ge 1, b_n = \frac{1}{n\pi} (1 \cos(n\pi)).$

C. $\forall n > 0, b_n = 0.$

F. $\forall n \ge 0, b_{2n+1} = \frac{4}{2n+1}$.

Bài 10. Cho hàm f(x) tuần hoàn chu kì 2π ,

$$f(x) = \begin{cases} 0, -\pi < x \le 0 \\ x, 0 < x < \pi \end{cases}.$$

Mệnh đề nào sau đây là đúng về chuỗi Fourier S(x) của f.

- A. Chuỗi Fourier của f hội tụ về f(x) tại mọi $x \in \mathbb{R}$.
- B. Chuỗi Fourier của f hội tụ về f(x) tại mọi $x \in \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}$.
- C. Chuỗi Fourier của f hội tụ về f(x) tại mọi $x \in \mathbb{R} \setminus \{2k\pi, k \in \mathbb{Z}\}$.
- D. Chuỗi Fourier của f hội tụ về f(x) tại mọi $x \in \mathbb{R} \setminus \{(2k+1)\pi, k \in \mathbb{Z}\}.$
- E. Chuỗi Fourier của f hội tụ về 0 tại mọi $x=(2k+1)\pi, k\in Z.$
- F. Chuỗi Fourier của f hội tụ về $\frac{\pi}{2}$ tại mọi $x=(2k+1)\pi, k\in Z$.

Bài 11. Cho hàm $f(x) = \frac{17 + 3x}{3 - 2x - x^2}$. Mệnh đề nào sau đây đúng?

- A. Khai triển chuỗi Maclaurin của f là $\sum_{n=0}^{\infty} \left(5 + \frac{2(-1)^n}{3^n}\right) x^n$.
- B. Khai triển chuỗi Maclaurin của f là $\sum_{n=0}^{\infty} \left(5 + \frac{2(-1)^n}{3^{n+1}}\right) x^n$.
- C. Bán kính hội tụ của chuỗi Maclaurin của hàm f là 1.
- D. Bán kính hội tụ của chuỗi Maclaurin của hàm f là 3.
- E. Khai triển chuỗi Taylor tại x=2 của f là $\sum_{n=0}^{\infty} (-1)^n \left(\frac{2}{5^{n+1}}-5\right) (x-2)^n$.
- F. Khai triển chuỗi Taylor tại x=2 của f là $\sum_{n=0}^{\infty} (-1)^n \left(\frac{2}{5^{n+1}}+5\right) (x-2)^n$.