Анализ данных в MATLAB для начинающих

Проанализируем статистику цунами из Excel-файла в MATLAB без использования команд

Содержание

Главное окно MATLAB	1
Импорт данных из файла Excel	1
Поиск файла	
Мастер импорта данных	
Анализ данных	
Работа с переменной	
Построение графиков	
Сохранение результатов работы	8
COMPANION POOLS PACCIDITION	

Главное окно MATLAB

Центральную область занимает **окно команд**, сюда вы будете писать свои команды и тут же получать результат. Слева находится содержимое **текущей рабочей папки**, путь к ней задается в строке над окном команд (**путь к рабочей папке**). Это та папка, в которой для удобства лежат ваши рабочие файлы и ваши MATLAB-программы. В **рабочую область** будут выводиться все переменные MATLAB, с которыми вы работаете.

Импорт данных из файла Excel

Поиск файла

Статистика цунами записана в файле tsunamis.xlsx, который идет вместе с MATLAB для примера и лежит в папке его установки.

```
winopen(fullfile(matlabroot, 'toolbox\matlab\demos'))
```

Скопируем её путь, и вставим в строку **пути к рабочей папке** в главном окне, чтобы сделать папку рабочей и упростить доступ к файлу.

Либо можно сменить путь командой

```
cd(fullfile(matlabroot, 'toolbox\matlab\demos'))
```

Находим в окне **содержимого рабочей папки** файл tsunamis.xlsx, и кликаем по нему 2 раза, чтобы загрузить, откроется окно мастера импорта.

Также открыть окно импорта нашего файла можно командой

```
uiimport('tsunamis.xlsx')
```

Мастер импорта данных

По виду он чем-то напоминает Excel, вы можете изучить данные и настроить параметры импорта. Например, вы можете вручную указать, какую часть таблицу хотите импортировать. По умолчанию она будет импортирована в переменную типа table - это самый удобный формат в MATLAB для хранения разнородных массивов данных. А у нас разные столбики имеют разный тип - число, категория, это может быть текст, дата или другой тип. Тип столбика можно поменять здесь же. Как и тип итоговой

переменной. В таблице есть пропущенные значения, подсвеченные желтым, по-умолчанию они будут заменены на значение NaN (Not a Number).

После настройки жмем зеленую кнопку и получаем переменную tsunamis, с которой будем работать. Обратите внимание, что под кнопкой импорта есть дополнительные функции. Мы можем сгенерировать MATLAB скрипт или функцию, которая автоматически сделает все то, что мы настроили мышкой и выдаст такую же переменную. Таким образом мы можем свою работу автоматизировать и применить полученную функцию к другим файлам с такой же структурой.

Анализ данных

Работа с переменной

После импорта в **рабочей области** главного окна появилась переменная tsunamis. Откроем её двойным кликоми и изучим таблицу, которая в ней хранится.

Также переменную можно открыть командой

Видим что переменная имеет тип данных table, т.е. таблица, 162 строчки, т.е. измерения, и 20 столбцов, т.е. параметров цунами. Каждый столбик имеет свое название, считанное из исходной таблицы.

С таблицей можно работать с помощью мышки и клавиатуры. Например, можно изменять значения в ячейках (заменять пропуски). Можно переименовать или поменять местами столбцы, удалить лишние, вставить новые. Так же можно вставлять и удалять строки. По любому столбцу можно сортировать всю таблицу.

Обратите внимание, что все манипуляции с таблицей отражаются в виде кода в окне команд. Таким образом MATLAB подталкивает нас к освоению команд. А ещё мы можем копировать эти команды и использовать в алгоритмах.

Кстати, считать таблицу можно командой:

```
tsunamis = readtable('tsunamis.xlsx')
```

Например, после сортировки по столбцу Year прописывается команда

tsunamis = sortrows(tsunamis, 'Year', 'ascend')

tsunamis = 162×19 table

	Latitude	Longitude	Year	Month	Day	Hour
1	-3.8000	128.3000	1950	10	8	3
2	19.5000	-156.0000	1951	8	21	10
3	-9.0200	157.9500	1951	12	22	NaN
4	42.1500	143.8500	1952	3	4	1
5	19.1000	-155.0000	1952	3	17	3
6	43.1000	-82.4000	1952	5	6	NaN
7	52.7500	159.5000	1952	11	4	16
8	50.0000	156.5000	1953	3	18	NaN
9	-2.4000	147.4000	1953	6	27	NaN
10	-18.3000	178.2000	1953	9	14	0

После удаления столбца Second прописывается

tsunamis = removevars(tsunamis, 'Second')

 $tsunamis = 162 \times 18 table$

. .

	Latitude	Longitude	Year	Month	Day	Hour
1	-3.8000	128.3000	1950	10	8	3
2	19.5000	-156.0000	1951	8	21	10
3	-9.0200	157.9500	1951	12	22	NaN
4	42.1500	143.8500	1952	3	4	1
5	19.1000	-155.0000	1952	3	17	3
6	43.1000	-82.4000	1952	5	6	NaN
7	52.7500	159.5000	1952	11	4	16
8	50.0000	156.5000	1953	3	18	NaN
9	-2.4000	147.4000	1953	6	27	NaN
10	-18.3000	178.2000	1953	9	14	0

:

Построение графиков

В переменной tsunamis выделим столбец MaxHeight, кликнув на его заголовок. Затем в главном окне MATLAB на вкладке **PLOTS** кликаем на график **plot**. Получаем простой график, где по оси абсцисс отложены порядковые номера точек, по оси ординат - значения столбца MaxHeight.

При этом прописывается команда

plot(tsunamis.MaxHeight)

Теперь выделим столбец Year и с зажатой клавишей Ctrl выделим также MaxHeight. Для двух выделенных столбцов на кладке **PLOTS** доступен график **scatter**, построим его.

При этом прописывается команда

scatter(tsunamis.Year, tsunamis.MaxHeight)

График можно настроить, например, выбрав Insert -> Title, подписать его.

В меню File -> Save As... график можно сохранить на диск, чтобы потом, например, вставить в отчет.

Кроме того, *выбрав File -> Generate Code...*, вы получите MATLAB-код, который строит в точности такой же график со всеми настройками и оформлением.

Теперь выделим 3 столбца (с зажатым Ctrl): Latitude, Longitude, MaxHeight. Строим график **geobubble** (на вкладке **PLOTS**).

При этом прописывается команда

geobubble(tsunamis.Latitude,tsunamis.Longitude,tsunamis.MaxHeight);

Карта позволяет проанализировать, где цунами случаются чаще всего, и где они самые высокие.

Выделим столбец Country и построим график wordcloud.

При этом прописывается команда

wordcloud(tsunamis.Country);

Облако слов наглядно показывает, в каких странах цунами наблюдаются чаще всего.

Оценим количественно, построив гистограмму - график histogram.

При этом прописывается команда

histogram(tsunamis.Country)

В России с 1950 по 2006 года было зафиксировано 19 цунами.

Сохранение результатов работы

Если закрыть MATLAB, переменная tsunamis удалится. Чтобы сохранить её на диск можно на складке **HOME** нажать кнопку **Save Workspace**, при этом все переменные из **рабочей области** будут сохранены в файл с расширением *.mat*.

Сохранить все переменные в файл matlab.mat в текущую рабочую папку можно также командой

save

Saving to: D:\MATLAB\Data Analysis\COURSE\2. Анализ данных в MATLAB для начинающих\matlab.mat

Чтобы загрузить все данные из .mat-файла, надо на него 2 раза кликнуть в окне **содержимого** рабочей папки.

Загрузить данные из файла matlab.mat можно также командой

load

Loading from: D:\MATLAB\Data Analysis\COURSE\2. Анализ данных в MATLAB для начинающих\matlab.mat

Pavel Roslovets, ETMC Exponenta © 2018