SYSTEMY WBUDOWANE AGH DOKUMENTACJA OGÓLNA

PROJEKCJA ZEGARKA PRZY POMOCY NEOPIXELI NA WAHDLE. MAREK FUDALIŃSKI MARCIN SOŚNIAK

1) Materialy:

- Arduino Pro Mini (dalej zwane arduino)
- Cewka do indukcyjnego zasilania Arduino pro Mini
- Zasilacz do zasilania indukcyjnego
- Neopixele (w zależności od chęci od 6 do 12 sztuk)
- Silnik elektryczny bez szczotkowy D1811-2000
- Zasilacz do silnika wraz z przyciskiem (HOME MADE)
- Czujnika Hala
- Magnes
- Podstawa
- Programator AVR Dragon (dalej zwany dragon)

2) Wykonanie:

- Część fizyczna:
 - 1. Do podstawy należy przymocować silnik.
 - 2. Silnik należy podpiąć do zasilacza.
 - 3. Jedną część cewki umieścić nieruchomo względem podstawy połączyć z zasilaczem indukcyjnym.
 - 4. Na godzinie 12 przymocuj magnes tak aby znajdował się możliwie blisko czujnika hala
 - 5. Skonstruować WYWAŻONE wahadło w którym:
 - o na jednym końcu znajduje się Arduino wraz z przeciwwagą.
 - o na drugim znajdują się od góry Neopixele wraz z czujnikiem Hala od spodu.
 - zamocować nieruchomo cewkę względem wahadła tak aby jej rzut. pokrywał się z cewką na podstawie oraz znajdowała się możliwie blisko.
 - Wyjście RX1 na arduino podpiąć do DIN na listwie z neopixelami.
 - Wyjście 5V podpiąć do 5 V na listwie z neopixelami .
 - o Wyjście GND podpiąć do GND na listwie z neopixelami.
 - o GND hallotronu spiąć z GND na listwie z neopixelami.
 - o 5V hallotronu spiąć z 5V na listwie z neopixelami.
 - o Q hallotronu spiąć z TX0 na arduino.
 - 6. Przymocować tak skonstruowane wahadło do silnika.
 - 7. Zaprogramować arduino przy pomocy dragona
 - 8. Zaprogramować zasilacz.
 - 9. Podpiąć oba do zasilania
 - 10. Uruchomić silnik przy pomocy przycisku

- Część programowa:
 - Do realizacji zadania użyliśmy języka C++ oraz asemblera.
 - Przy obsłudze wyświetlania wykorzystaliśmy język C++ oraz assemblera.
 - Do obsługi silnika wykorzystaliśmy assembler.
- Szczegóły części programowej:
 - 1. Pseudokod działania programu na arduino:
 - Zainicjalizuj wszystkie możliwe linie do wyświetlenia.
 - Zainicjalizuj timer aktualizujący godzinę.
 - Ustal rozdzielczość
 - Ustal przerwania
 - Zainicjalizuj timer wywołujący wyświetlenie linii
 - Ustal rozdzielczość
 - Ustal przerwanie
 - Zainicjalizuj startowa godzinę
 - while(True):
 - oczekuj na synchronizacje z godzina 12 (używając czujnika hala oraz magnesu)
 - ustaw gotować do wyświetlenia klatki
 - 2. Wyświetlanie linii jest wykonywane w przerwaniach i działa następująco:
 - Timer1 (16bit) ustawiony na:
 - Prescaler 1
 - Liczy do 8888
 - To przerwanie jest DŁUGIE ponieważ obsługuje całość IO (~530 μs)
 - Wyświetl aktualną linię.
 - Zaktualizuj numer linii do wyświetlenia
 - Wylicz następująco linię do wyświetlenia
 - 3. Aktualizowanie godziny jest wykonywane w przerwaniu i działa następująco:
 - Timer ustawiony następująco
 - Prescaler 1024
 - Liczy do 125
 - To przerwanie jest krótkie jednak musi odbywać się rządniej niż raz na 530 μs z uwagi na brak obsługi zagnieżdżonych przerwań.
 - Przerwanie aktualizuje licznik modulo 125 gdy zliczy do 0 aktualizuje godzinę (dodaje jedna sekundę do aktualnej godziny)
 - 4. Modyfikacja stałych globalnych pozwala na:
 - Zmianę koloru wskazówek (najlepszy efekt przy najjaśniej ustawionych kolorach)
 - Zmianę wielkości wskazówek
 - Zmianę początkowej godziny

3) Możliwe poprawki:

- Dodanie RTC aby wyświetlać prawdziwa godzinę (raczej dość małe, żeby wybalansować ramie)
- Możliwe jest tez znaczne zwiększenie ilości diod poprzez zrównoleglenie i inny sposób wysyłania (do 12*8=96) nie zwiększając potrzebnej ilości pamięci na każda diodę (uważać na ilość pamięci, ale można tez w segmencie kodu powstawać prewyliczone ramki, i zyskać tym kilka KB pamięci)
- pojawia się tez problem z zasilaniem, trzeba zmodyfikować zasilanie indukcyjne (więcej mocy)
- Rozważyć przesyłanie danych bez przewodowo, ale możliwe zbyt duże zakłócenia od zasilacza indukcyjne