PIONIERKRAFT 💹

STM32 H7 43 ZI Ethernet Implementirung

Bewerbung Ing. Marinero

Ethernet Implementierung

- Allgemeines:
 - Zu verwendende Entwicklungsumgebung: STM32CubeIDE
 - Implementierung in neuem STM32-Projekt
 - Implementierung ohne Operation System (RTOS, o.ä.), falls möglich
- Aufgabenstellung:
 - Implementierung von Ethernet auf einem STM32H743ZIT6 Microcontroller
 - Entweder TCP oder UDP. Please implement the safer one.
 - Senden von Daten (25 Werte (float 32 bit)) zu einer Adresse
 - Werte vor dem Senden in JSON-Format umwandeln (besser für Backend, Web)
 - Empfangen von Daten (25 Werte (float 32 bit)) von einer Adresse
 - Werte wieder in float zurück wandeln

- Zusätzliche Fragestellungen:
 - Unterschied TCP und UDP erklären.
 - Aufbau JSON-Nachricht
 - Wie k\u00f6nnen die im JSON-Format gesendeten Daten in einem Backend abgelegt werden (Schrittfolge aufzeigen, kein Code)?
- Präsentation (in Powerpoint):
 - Vorstellung der Aufgabenstellung in STM32CubeIDE
 - Vorstellung der zusätzlichen Fragestellungen

STM32 H7 43 ZI T6

Order code	Board reference	User manual	Target STM32	Differentiating features
NUCLEO-F767ZI	MB1137	UM1974	STM32F767ZIT6U	 Arm[®] Mbed Enabled[™] Ethernet On-board USB OTG USB OTG FS on Micro-AB connector ST-LINK/V2-1
NUCLEO-H743ZI			STM32H743ZIT6U	 Arm[®] Mbed Enabled[™] Ethernet USB OTG FS on Micro-AB connecto ST-LINK/V2-1
NUCLEO-H743ZI2		UM2407	STM32H743ZIT6U	USB OTG FS on Micro-AB connector STLINK-V3E
NUCLEO-H753ZI	MB1364		STM32H753ZIT6U	 Ethernet USB OTG FS on Micro-AB connecto STLINK-V3E Cryptography

https://www.st.com/resource/en/data_brief/nucleo-h743zi.pdf

STM32 H7 43 ZI T6

Board MB1137

Figure 19. Ethernet PHY with RJ45 connector

STM32 H7 43 ZI

Ethernet – main bibliography

RM0433 Reference manual

STM32H742, STM32H743/753 and STM32H750 Value line advanced Arm[®]-based 32-bit MCUs

https://www.st.com/content/ccc/resource/technical/document/reference_manual/group0/c9/a3/76/fa/55/46/45/fa/DM00314099/files /DM00314099.pdf/jcr:content/translations/en.DM00314099.pdf

Chapter 57:

Ethernet (ETH): media access control (MAC) with DMA controller

Ethernet vocabulary

ETH: Ethernet

IP: volatile address

MAC: fixed address

PHY: physical device port

Ethernet

Figure 776. Ethernet high-level block diagram

MAC - media access control modul: to implement Eth protocol

MTL - mac transaction layer: to control data flow between application and MAC

RMII: Reduced media independent interface

DMA: direct memory access interface, to communicate without bodering the CPU

Ethernet pins

57.3 Ethernet pins and internal signals

Table 506 lists the Ethernet inputs and output signals connected to package pins or balls, while *Table 507* shows the internal Ethernet signals.

Table 506. Ethernet peripheral pins

Table 300. Ethernet peripheral pilis				
Alternate function name (mapped on AF11)				
ETH_MII_CRS				
ETH_MII_RX_CLK/ETH_RMII_REF_CLK				
ETH_MDIO				
ETH_MII_COL				
ETH_MII_RX_DV/ETH_RMII_CRS_DV				
ETH_TX_ER				
ETH_MII_RXD2				
ETH_MII_RXD3				
ETH_TX_ER				
ETH_PPS_OUT				
ETH_MII_TXD3				
ETH_MII_RX_ER				
ETH_MII_TX_EN/ETH_RMII_TX_EN				
ETH_MII_TXD0/ETH_RMII_TXD0				
ETH_MII_TXD1/ETH_RMII_TXD1				
ETH_MDC				
ETH_MII_TXD2				
ETH_MII_TX_CLK				
ETH_MII_RXD0/ETH_RMII_RXD0				
ETH_MII_RXD1/ETH_RMII_RXD1				
ETH_MII_TXD3				
ETH_PPS_OUT				
ETH_MII_TX_EN/ETH_RMII_TX_EN				

Table 506. Ethernet peripheral pins (continued)

Pin name	Alternate function name (mapped on AF11)	
PG12	ETH_MII_TXD1/ETH_RMII_TXD1	
PG13	ETH_MII_TXD0/ETH_RMII_TXD0	
PG14	ETH_MII_TXD1/ETH_RMII_TXD1	
PH2	ETH_MII_CRS	
PH3	ETH_MII_COL	
PH6	ETH_MII_RXD2	
PH7	ETH_MII_RXD3	
PI10	ETH_MII_RX_ER	
PI12	ETH_TX_ER	

Table 507. Ethernet internal input/output signals

Signal name Signal type		Description	
eth_hclk	Digital input	AHB clock	
eth_sbd_intr_it	Digital output	Main Ethernet interrupt	
lpi_intr_o	Digital output	Sideband signal generated when the transmitter or receiver enters or exits the LPI state.	
pmt_intr_o	Digital output	Sideband signal generated when a valid remote wakeup packet is received	
eth_mii_tx_clk	Digital input	MII Tx kernel clock	
eth_mii_rx_clk	Digital input	MII Rx kernel clock	
eth_rmii_ref_clk	Digital input	RMII reference kernel clock	

Ethernet pins

Figure 776. Ethernet high-level block diagram

Ethernet pins

DMA

Figure 777. DMA transmission flow (standard mode)

Figure 776. Ethernet high-level block diagram

DMA

25 DWORDS = 25*4bytes

(imposed specification)

FIFO: Threshold & Burst mode

- Threshold level triggers the data transfers to/from Memory.
- Each stream has independent configurable threshold levels:
 - Four threshold levels available: ¼ FIFO Full, 1/2 FIFO Full, ¾ FIFO Full, and FIFO Full
- · Burst mode:
 - Burst mode is available only when FIFO mode is enabled (Direct mode disabled)
 - Available Burst modes:
 - INC4: 1 burst = 4 beats (4 Words, 8 Half-Words or 16 Bytes)
 - INC8: 1 burst = 8 beats (8 Half-Words or 16 Bytes)
 - INC16: 1 burst = 16 beats (16 Bytes)

Memory data size	Burst Size	Allowed threshold levels
	4 beats (INC4)	¼, ½, ¾ and Full
Byte	8 beats (INC8)	½ & Full
	16 beats (INC16)	Full
Half-Word	4 beats (INC4)	½ & Full
Hall-Word	8 beats (INC8)	Full
Word	4 beats (INC4)	Full

FIFO threshold should be compatible with Burst size

Ethernet + RMII

TCP vs UDP

- UDP: no guarantee you are getting all the packets.
- TCP: guarantees the recipient will receive the packets in order by numbering them.

TCP vs UDP

LWIP Mode and Configuration

In LwIP General Settings...

Disable: UDP

Enable: TCP

PHY configure

PIONIERKRAFT

<u> IP</u>

DCHP disabled → insert IP address

Real-time optimization (RTO)

C code generator → STM32CubelDE

Follow STM32CubeMX "User Manual" (tutorial 1):

Tutorial 1: From pinout to project C code generation using an MCU of the STM32F4 Series

10.7 Generating a complete C project

10.7.1 Setting project options

Default project settings can be adjusted prior to C code generation as shown in Figure 216.

- 1. Select the **Project Manager** view to update project settings and generation options.
- Select the Project Tab and choose a Project name, location and a toolchain to generate the project (see Figure 216).
- 3. Select the **Code Generator** tab to choose various C code generation options:
 - The library files copied to Projects folder.
 - C code regeneration (e.g. what is kept or backed up during C code regeneration).
 - HAL specific action (e.g. set all free pins as analog I/Os to reduce MCU power consumption).

MX STM32CubeMX Untitled: STM32F407VGTx 🚳 🖪 🔼 🏏 📐 🐬 Window Help Home > STM32F407VGTx > Untitled - Project Manager > **GENERATE CODE Clock Configuration** Project Manager Tools Pinout & Configuration Project Settings Project Name C:\STM32CubeMX_Projects\ Application Structure Do not generate the main() C:\STM32CubeMX_Projects\ Toolchain / IDE → Generate Under Root EWARM V8 EWARM V8 **EWARM V7** MDK-ARM V4 STM32CubeIDE MDK-ARM V5 STM32CubeIDE Advanced Settings TrueSTUDIO Makefile (IDE imposed specification) Mcu Reference Firmware Package Name and Version STM32Cube FW F4 V1.24.0

Figure 216. Project Settings and toolchain selection

code build

code debug

Run/Debug

Es fehlt noch

- Allgemeines:
 - Zu verwendende Entwicklungsumgebung: STM32CubeIDE
 - Implementierung in neuem STM32-Projekt
 - Implementierung ohne Operation System (RTOS, o.ä.), falls möglich
- Aufgabenstellung:
 - Implementierung von Ethernet auf einem STM32H743ZIT6 Microcontroller
 - Entweder TCP oder UDP. Please implement the safer one.
 - Senden von Daten (25 Werte (float 32 bit)) zu einer Adresse
 - Werte vor dem Senden in JSON-Format umwandeln (besser für Backend, Web)
 - o Empfangen von Daten (25 Werte (float 32 bit)) von einer Adresse
 - Werte wieder in float zurück wandeln

- Zusätzliche Fragestellungen:
 - Unterschied TCP und UDP erklären.
 - Aufbau JSON-Nachricht
 - Wie können die im JSON-Format gesendeten Daten in einem Backend abgelegt werden (Schrittfolge aufzeigen, kein Code)?
- Präsentation (in Powerpoint):
 - Vorstellung der Aufgabenstellung in STM32CubeIDE
 - Vorstellung der zusätzlichen Fragestellungen

