ASE 389P.4 Methods of Orbit Determination Homework 3: The Batch and Sequential Processor

Junette Hsin

Masters Student, Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, TX 78712

The numeric propagation of the state transition matrix (STM) and the batch processor were explored. A state transition matrix (STM) for a two-dimensional, two-body orbit was first gnerated and verified by comparing the mapped deviations to differences in the nonlinear solution. Finally, a nonlinear batch processor and the sequential processor for a simple problem were implemented.

Problem 1

Assume an orbit plane coordinate system with a gravitational parameter of 1, i.e., $\mu=1$. The equations of motion are:

$$\ddot{x} = -\frac{x}{r^3}$$

$$\ddot{y} = -\frac{y}{r^3}$$

$$r^2 = x^2 + y^2$$

Problem 1a

Generate a "true" solution by numerically integrating the equations of motion for the initial conditions:

$$\underline{X}(t_0) = \begin{bmatrix} x \\ y \\ \dot{x} \\ \dot{y} \end{bmatrix}_{t=t_0} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Save the values of the state vector $\underline{X}(t_i)$ for $t_i=i\cdot 10$ time units (TU); $i=0,\ldots,10$. Provide $\underline{X}(t_i)$ for t_1 and t_{10} in the writeup.

In your write-up, please indicate which integrator you used, what the tolerance was set to, and any other details necessary. Note, if you use a fixed time-step integrator, set the time-step to be smaller than 10 TU, but only save the data at 10 TU intervals.

Solution

The derivation by hand is included in the appendix. The hand-derived and MATLAB results were the same. The final equation for $\partial U/\partial x$ is:

$$\partial U/\partial x = -J_2 \mu R_E^2 \left(\frac{3x}{2}\right) \frac{x^2 + y^2 - 4z^2}{(x^2 + y^2 + z^2)^{7/2}} \tag{1}$$

The MATLAB code used for the entire homework, including calculating the partial derivatives is included in the Appendix, but the snippet used to solve Problem 1a is shown here:

```
syms x y z
global mu RE J2
4 % constants
                       % G * M1 * M2
% Earth radius
5 \% \text{ mu} = 398600.4;
6 % RE = 6378.145; % Ea
7 % J2 = 0.00108248; % J2
9 % for symbolic representation
10 syms mu RE J2
11
12 % radius
13 r = sqrt(x^2 + y^2 + z^2);
15 % U point mass
Up = mu/r;
17
18 % latitude
phi = a \sin (z/r);
21 % U J2
22 UJ2 = -mu/r * J2 * (RE/r)^2 * (3/2 * (sin(phi))^2 - 1/2);
24 % gradient
```

Appendix

$\partial U/\partial x$ derivation

$$U = U_{point mass} + U_{J_2} = \frac{\mu}{r} \left[1 - J_2 \left(\frac{R_{Earth}}{r} \right)^2 \left(\frac{3}{2} \sin^2(\phi) - \frac{1}{2} \right) \right]$$

$$U_p = \frac{\mu}{r} \qquad \nabla U_p = -\frac{\mu}{r^3} \qquad \left(\text{done in previous homework} \right)$$

$$U_{J_2} = -\frac{\mu}{r} \int_{2} \left(\frac{R_E}{r} \right)^2 \left(\frac{3}{2} \sin^2(\phi) - \frac{1}{2} \right)$$

$$= \left[-J_2 \right] \left[\mu r^{-1} \right] \left[R_E^2 r^{-2} \right] \left[\frac{3}{2} \sin^2(\alpha r \sin(\frac{z}{r})) - \frac{1}{2} \right]$$

$$= \left[-J_2 \mu R_E^2 \right] \left[r^{-3} \right] \left[\frac{3}{2} \sin^2(\alpha r \sin(\frac{z}{r})) - \frac{1}{2} \right]$$

$$= \left[-J_2 \mu R_E^2 \right] \left[r^{-3} \right] \left[\frac{3}{2} \sin^2(\alpha r \sin(\frac{z}{r})) - \frac{1}{2} \right]$$

$$= \left[-J_2 \mu R_E^2 \right] \left[r^{-3} \right] \left[\frac{3}{2} z^2 r^{-2} - \frac{1}{2} \right]$$

$$= \left[-J_2 \mu R_E^2 \right] \left[\frac{3}{2} z^2 r^{-5} - \frac{1}{2} r^{-3} \right]$$

$$A$$

$$\nabla U_{J_2} = \frac{\partial U_{J_2}}{\partial r} \hat{U} + \frac{\partial U_{J_2}}{\partial r} \hat{U} + \frac{\partial U_{J_2}}{\partial r} \hat{U} \right]$$

$$A$$

$$A = \frac{3}{2} z^2 r^{-5} - \frac{1}{2} r^{-3} = \frac{3}{2} z^2 \left(x^2 + y^2 + z^2 \right)^{-\frac{5}{2}} - \frac{1}{2} \left(x^2 + y^2 + z^2 \right)^{-\frac{3}{2}}$$

$$\frac{\partial \hat{\Theta}}{\partial x} = \left(\frac{3}{2}z^{2}\right)\left(-\frac{5}{2}\right)\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{7}{2}}\left(2x\right) + \left(\frac{1}{2}\right)\left(+\frac{3}{2}\right)\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}}\left(2x\right) \\
= -\frac{15xz^{2}}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{7}{2}} + \frac{3x}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}}$$

$$\frac{\partial A}{\partial x} = \left(\frac{3x}{2}\right)\frac{\left(x^{2}+y^{2}+z^{2}\right)^{-5}z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{7}{2}}} \quad \hat{\wedge} \quad \rightarrow \quad \frac{3x}{2} \quad \frac{r^{2}-5z^{2}}{r^{7}}$$

$$\frac{\partial \hat{\Theta}}{\partial y} = \left(\frac{3y}{2}\right)\frac{\left(x^{2}+y^{2}+z^{2}\right)^{-5}z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{7}{2}}} \quad \hat{\wedge} \quad \rightarrow \quad \frac{3y}{2} \quad \frac{r^{2}-5z^{2}}{r^{7}}$$

$$\frac{\partial \hat{\Theta}}{\partial z} = \frac{3}{7}z^{2}\left(-\frac{5}{2}\right)\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{7}{2}}\left(2z\right) + 3z\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}}$$

$$+ \left(\frac{1}{7}\right)\left(\frac{3}{2}\right)\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{7}{2}}\left(2z\right) + 3z\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}}$$

$$+ \left(\frac{1}{7}\right)\left(\frac{3}{2}\right)\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{7}{2}}\left(2z\right)$$

$$= -\frac{15z^{3}}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{7}{2}} + \frac{3z}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{5}{2}}$$

$$+ \frac{3z}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{7}{2}}$$

$$+ \frac{3z}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-$$

$$\begin{split} \frac{\partial U\rho}{\partial x} &= -\frac{\mu x}{(x^2 + y^2 + z^2)^{3/2}} \\ \frac{\partial UJz}{\partial \chi} &= \left[-J_2 \mu R_b^2 \right] \left(\frac{3\chi}{2} \frac{r^2 - 5z^2}{r^7} \right) \\ &= \left[-J_2 \mu R_b^2 \right] \left[\frac{3\chi}{2} \frac{x^2 + y^2 - 4z^2}{(x^2 + y^2 + z^2)^{3/2}} \right] \quad \text{matches} \\ \frac{\partial U}{\partial \chi} &= \frac{\partial U\rho}{\partial \chi} + \frac{\partial UJz}{\partial \chi} \end{split}$$

HW2 MATLAB code

- 1 % ASE 389 Orbit Determination
- 2 % HW 3
- 3 % Junette Hsin

S

References

- [1] Bob Schutz, G. H. B., Byron Tapley, Statistical Orbit Determination, Academic Press, 2004.
- [2] Jah, M. K., "ASE 389P.4 Methods of Orbit Determination Module 3," , January 2021.