Calcul matriciel

William Hergès ¹

31 janvier 2025

Table des matières

1	Définition	2
	1.1 Opérations	2
2	Matrices spéciales	3
3	Système linéaire	5
1	Déterminent	7

Définition

Une matrice est un l'ensemble de nombre $\{a_{p,q}\in E, p,q\in\mathcal{SN}\}$ où \mathcal{SN} est un intervale de \mathbb{N}^* . On note l'ensemble de ces matrices $\mathcal{M}_{p,q}(E)$.

Définition 2

Une matrice carrée est l'ensemble des matrices $\mathcal{M}_{k,k}(\mathbb{K})$ $(k \in \mathbb{N}^*)$.

On utilise l'abus de notation $\mathcal{M}_k(\mathbb{K})$ pour parler des matrices carrées d'ordre

1.1. **Opérations**

Définition 3

Somme de matrices

Une somme de matrice est la somme des nombres des matrices.

$$A + B = \{a_{p,q} + b_{p,q}, p, q \in \mathcal{SN}\}$$

One somme de matrice est la somme des nombres des matrices.
$$Si \text{ on note } (a_{p,q}) \text{ les nombres de la matrice } A \text{ et } (b_{p,q}) \text{ les nombres de la matrice } B, \text{ alors}$$

$$A + B = \{a_{p,q} + b_{p,q}, p, q \in \mathcal{SN}\}$$

$$Alors:$$

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,q} \\ \vdots & & \vdots \\ a_{p,1} & \cdots & a_{p,q} \end{pmatrix} + \begin{pmatrix} b_{1,1} & \cdots & b_{1,q} \\ \vdots & & \vdots \\ b_{p,1} & \cdots & b_{p,q} \end{pmatrix} = \begin{pmatrix} a_{1,1} + b_{1,1} & \cdots & a_{1,q} + b_{1,q} \\ \vdots & & \vdots \\ a_{p,1} + b_{p,1} & \cdots & a_{p,q} + b_{p,q} \end{pmatrix}$$

Produit externe

Soit
$$A \in \mathcal{M}_{p,q}(\mathbb{K})$$
 et $t \in \mathbb{K}$

$$tA = (ta_{p,q})_{p,q \in \mathcal{SN}}$$

$$\begin{array}{l} \textbf{Proposition 4.1} \\ \textbf{On a:} \\ & - s(tA) = t(sA) \\ & - t(A+B) = tA + tB \\ & - (t+s)A = tA + sA \\ \textbf{pour } t,s \in \mathbb{K} \text{ et } A,B \in \mathcal{M}_{p,q}(\mathbb{K}). \end{array}$$

☐ Démonstration. AQT

Proposition 4.2

L'élément neutre pour l'addition est $\tilde{0}$, i.e. l'ensemble $(a_{p,q})_{p,q\in\mathcal{SN}}=0.$

☐ Démonstration. AQT

Produit matriciel

$$\begin{array}{l} \textbf{D\'efinition 5} & \textbf{Proc}\\ \textbf{Soient } p,q,r\in\mathbb{N}^*. \ \textbf{Soient } A\in\mathcal{M}_{p,r}(\mathbb{K}) \ \text{et } B\in\mathcal{M}_{r,q}(\mathbb{K}). \\ \textbf{Le produit } AB \ \text{est :} \\ & \forall (i,k)\in[|1,p|]\times[|1,q|], \quad (ab)_{i,k}=\sum_{j=1}^r a_{i,j}b_{j,k} \end{array}$$

Attention

On a besoin que le nombre de colonnes de la matrice ${\cal A}$ soit égal au nombre de lignes de la matrice ${\cal B}.$

C'est une forme de produit scalaire!

Matrices spéciales

Une matrice de $\mathcal{M}_p(\mathbb{K})$ est dite diagonale si et seulement si : $\forall (i,j) \in [|1,p|]^2, \quad i \neq j \implies a_{i,j} = 0$

$$\forall (i,j) \in [|1,p|]^2, \quad i \neq j \implies a_{i,j} = 0$$

Proposition 6.1

La multiplication matricielle des matrices diagonales est commutative et se fait très simplement.

Proposition 6.2

L'élément neutre de $M_p(\mathbb{K})$ est la matrice diagonale notée I_p telle que :

$$\forall (i,j) \in [|1,p|]^2, \quad i = j \implies 1$$

Définition 7 $\label{eq:continuous} \text{On note } A^{-1} \text{ la matrice inverse de } A \text{, i.e.}$ $AA^{-1} = A^{-1}A = I_p$

$$AA^{-1} = A^{-1}A = I_n$$

$$ad - bc = 0$$

Théorème 7.1 Soit
$$A\in\mathcal{M}_2(\mathbb{K})$$
.
$$A^{-1} \text{ existe si et seulement si :}$$

$$ad-bc=0$$
 où $A=\begin{pmatrix}a&b\\c&d\end{pmatrix}, a,b,c,d\in\mathbb{K}$ Ainsi,
$$A^{-1}=\frac{1}{ad-bc}\begin{pmatrix}d&-b\\-c&a\end{pmatrix}$$

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Mais qu'est-ce ad - bc?

Il s'agit d'un déterminant de la matrice A. C'est une notion essentielle que l'on retrouve partout en maths.

Théorème 7.2 Si A et B sont inversibles, alors AB l'est aussi et : $(AB)^{-1} = B^{-1}A^{-1}$

$$(AB)^{-1} = B^{-1}A^{-1}$$

3. Système linéaire

Théorème 7.3

On peut remplacer un système linéaire à x inconnu par une matrice $A \in \mathcal{M}_x$ contenant les coefficiants, $X \in \mathcal{M}_{x,1}$ contenant les inconnues et $B \in \mathcal{M}_{x,1}$ contenant les résultats. On a alors :

$$AX = B$$

Si $\cal A$ est inversible, alors il existe une unique solution à ce système linéaire tel que :

$$X = A^{-1}B$$

Exemple 1

Le système

$$a_{1,1}x_1 + a_{1,2}x_2 + \ldots + a_{1,p}x_p$$
 = b_1
 \vdots = $a_{p,1}x_1 + a_{p,2}x_2 + \ldots + a_{p,p}x_p$ = b_1

est équivalent à

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,p} \\ \vdots & & & \vdots \\ a_{p,1} & a_{p,2} & \dots & a_{p,p} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_p \end{pmatrix}$$

Opérations élémentaires

Ce sont les opérations qui ne font perdre aucune information au système. Il y a :

- permutation de deux lignes, notée $P_{i_1 \to i_2}$ (échange des lignes i_1 et i_2)
- dilatation d'une ligne, notée $D_{i,\alpha\in\mathbb{R}^*}$ (dilatation de la ligne i par α)
- transvection (somme de deux lignes), notée $T_{i_1,i_2,t\in\mathbb{R}}$ (transvection de la ligne i_1 par i_2 avec comme facteur t)

C'est-à-dire, on peut faire des combinaisons linéaires!

Faire cette opération, c'est équivalent à multiplier par une matrice carrée inversible.

Par exemple, pour $P_{2\rightarrow 3}$, on a la matrice :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

ou
$$D_{2,\alpha\in\mathbb{R}^*}$$
 est :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

ou encore $T_{2,3,t}$ est :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix}$$

Théorème 7.4

Si r est le rang de A|B (voir le pivot de Gauss), si p est le nombre de colonnes de A et q le nombre de lignes de A, alors :

— si r=p, alors pour tout B il existe une solution (existence)

— si r=q, alors il existe une unique solution (unicité)

Déterminent

Théorème 7.5

A est inversible si et seulement si le rang de A est égal au nombre de colomnes (et de lignes) et si et seulement si le déterminent de A est différent de 0. (On note det(A) le déterminent de A.)

Proposition 7.6

- det(D), où D est une matrice diagonale, est la multiplication des coef-
- ficiants de la diagonale $\det(T)$, où T est une matrice triangulaire, est aussi la multiplication des coefficiants de la diagonale
- si on multiplie une colonne par α , alors $\det(A') = \alpha \det(A)$ (pour tout
- le déterminent ne change pas avec une transvection ou une transposée

Ces propriétés suffisent à calculer tous les déterminents

Exemple 2

Calculons le déterminent de $\begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$.

$$\det \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} = \det \begin{pmatrix} 1 & 3 \\ 0 & -5 \end{pmatrix}$$
$$= -5 \times \det \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$$
$$= -5 \times \det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= -5$$