УДК 512.54

D.I. Morozov, researcher working on habilitation.

Upper approximation of spherical-transitive elements' centralizers in $FAutT_2$

In this work the centralizer of spherical-

E-mail: denis.morozov178@gmail.com Article presented by Dr. Yu. Bodnarchuk

1 Introduction

In this paper, we shall use the following definitions:

Definition 1.1. T_2 - binary rooted tree,

 $AutT_2$ - group of automorphisms of T_2 ,

 $FAutT_2$ - group of finite-state automorphisms T_2 ,

x*a - effect of the automorphism a onto the end x of a tree T_2 ,

 $a\circ b$ - superposition of the automorphisms a and b of a tree $T_2,$

 Z_2 - ring of integer 2-adic numbers,

we shall state, that an automorphism χ_0 is a 0-solution of an equation $a^{\chi_0} = b$, if $0 * \chi_0 = 0$

Let's identify an automorphism a of a tree T_2 as a function $f_a: Z_2 \to Z_2$ in the following way:

$$x * a = f_a(x)$$

In study [1] the author has proved the following theorem:

Theorem 1.1. Let x be a spherical-transitive automorphism. Then

$$C_{AutT_2}(x) = \{x^p | p \in Z_2\}$$

The aim of this study is to research the centralizers of the spherical-transitive elements in $FAutT_2$, as there is no result for $FAutT_2$, similar to the theorem 1.1.

2 Centralizers of the spherical-transitive elements in $FAutT_2$

Let ε be an adding machine, that is $x * \varepsilon = x + 1$. Then, we have the following lemma: $transitive\ finite$ -state automorphisms is investigated.

Key Words: rooted tree, automorphism group, state, centralizer.

Lemma 1. For $p \in Z_2$ we have an equality:

$$0 * \varepsilon^p = p$$

Proof. Since $t * \varepsilon^p = t + p$, therefore $0 * \varepsilon^p = 0 + p = p$.

Theorem 2.1. Let χ_x be a θ -solution of the conjugacy equation $\varepsilon^t = x$ with respect to the automorphism t. Then we have an equality:

$$0 * x^p = p * \chi_x$$

Proof. Since $\varepsilon^{\chi_x} = x$, therefore we have a correspondence:

$$x^p = (\chi_x^{-1} \circ \varepsilon \circ \chi_x)^p = \chi_x^{-1} \circ \varepsilon^p \circ \chi_x$$

That is, according to the lemma 1 and the equation $0 * \chi_x = 0$ we have:

$$0 * x^p = 0 * (\chi_x^{-1} \circ \varepsilon^p \circ \chi_x) =$$

$$= ((0 * \chi_x^{-1}) * \varepsilon^p) * \chi_x) = (0 * \varepsilon^p) * \chi_x = p * \chi_x$$

$$q. e. d.$$

We have the following lemma:

Lemma 2. Let x be a spherical-transitive automorphism. Then

$$0 * C_{AutT_2}(x) = Z_2$$

Proof. According to the theorem 1.1

$$C_{AutT_2}(x) = \{x^p | p \in Z_2\}$$

Then, using the theorem 2.1, we obtain:

$$0 * x^{Z_2} = Z_2 * \chi_x$$

where χ_x is a 0-solution of the conjugacy equation $\varepsilon^t = x$ with respect to the automorphism t. Since χ_x is an automorphism, therefore

$$Z_2 * \chi_x = Z_2$$

q.e.d.

Definition 2.1. Let us define a set $F_p(p \in Z_2)$ in Since $|a_i| \leq 1$, we have the following estimation: the following way:

 $p \in F_p$

if $2t + 1 \in F_p$, then $t \in F_p$, $t + 1 \in F_p$,

if $2t \in F_p$, then $t \in F_p$.

We shall state, that t_k belongs to the k-th level in F_p , if obtained from p in k steps.

Definition 2.2. Let us define a set $P_{m,n}(m \in$ $\mathbb{Z}, n \in \mathbb{Z}^+ \cup 0$) in the following way:

 $m \in P_{m,n}$

if $2t+1 \in P_{m,n}$, then $t-n \in P_{m,n}$, $t+n+1 \in$

if $2t \in P_{m,n}$, then $t \in P_{m,n}$.

We shall state, that t_k belongs to the k-th level in $P_{m,n}$, if obtained from m in k steps.

Lemma 3. Let a 2-adic quasiperiodic number p equals to $\frac{m}{2n+1}$, where $m \in \mathbb{Z}, n \in \mathbb{Z}^+ \cup 0$. Then the sets $P_{m,n}$ and F_p are both finite or infinite.

Proof. Since we have the following equalities:

$$\frac{2m+1}{2n+1} = 2\frac{m-n}{2n+1} + 1$$

$$\frac{2m}{2n+1} = 2\frac{m}{2n+1}$$

therefore in F_p $\frac{2m+1}{2n+1}$ generates $\frac{m-n}{2n+1}$ and $\frac{m+n+1}{2n+1}$ and $\frac{2m}{2n+1}$ generates $\frac{m}{2n+1}$.

Therefore, if t_k belongs to the k-th level in F_p , then $t_k(2n+1)$ belongs to the k-th level in $P_{m,n}$, and vice versa, if t'_k belongs to the k-th level in $P_{m,n}$, then $\frac{t_k'}{2n+1}$ belongs to the k-th level in F_p . Therefore, we have an equality:

$$|P_{m,n}| = |F_p|$$

q.e.d.

Lemma 4. A set $P_{m,n}(m \in \mathbb{Z}, n \in \mathbb{Z}^+ \cup 0)$ is

Proof. According to the definition, if $t \in P_{m,n}$, then either $\frac{t}{2}$ or $\frac{t-1}{2} - n$ and $\frac{t-1}{2} + n + 1$. Let t_k belong to the k-th level in $P_{m,n}$, then we have an equality:

$$t_k = \frac{t_{k-1} + a * (2n+1)}{2}, a = 0, 1, -1$$

After applying this equality k times, we obtain:

$$t_k = \frac{m}{2^k} + (2n+1)(\frac{a_0}{2^k} + \dots + \frac{a_{k-1}}{2})$$

$$|t_k| = \left| \frac{m}{2^k} + (2n+1)(\frac{a_0}{2^k} + \dots + \frac{a_{k-1}}{2}) \right| \le$$

$$\le \left| \frac{m}{2^k} \right| + |2n+1| \le |m| + 2n + 1$$

Thus, the number of elements of the set $P_{m,n}$ is limited by an inequality:

$$|P_{m,n}| \le 2(|m| + 2n + 1)$$

so the set $P_{m,n}$ is finite, g.e.d.

Lemma 5. A set F_p is finite if and only if p is a quasiperiodic number.

Proof. \Rightarrow For 2t+1 and 2t a number t is obtained by skipping the last digit of the binary representation, therefore F_p contains all numbers, obtained from p by skipping several last digits. If p is not quasiperiodic, then we have an infinite amount of such numbers, thus F_p is not finite.

 $\Leftarrow p$ is a quasiperiodic number if and only if $p = \frac{m}{2n+1} (m \in \mathbb{Z}, n \in \mathbb{Z}^+ \cup 0)$. Therefore, according to the lemmas 3 and 4 the set F_p is finite.

Theorem 2.2. Let ε be an adding machine. Then

$$C_{FAutT_2}(\varepsilon) = \{ \varepsilon^p | p \in Z_2 \cap \mathbb{Q} \}$$

Proof. Since we have an equality

$$C_{FAutT_2}(\varepsilon) = C_{AutT_2}(\varepsilon) \cap FAutT_2$$

therefore, according to the theorem 1.1, the elements of the centralizer $C_{FAutT_2}(\varepsilon)$ are described as $\{\varepsilon^p|\varepsilon^p\in FAutT_2\}$. Obviously, if p is not a quasiperiodic number, then ε^p is infinite-state, as it translates a quasiperiodic number 0 into a nonquasiperiodic number p. Then, let $p \in \mathbb{Z}_2 \cap \mathbb{Q}$, or be quasiperiodic. According to the lemma 5 the set F_p is finite. On the other hand, we have the equalities:

$$\varepsilon^{2t+1} = (\varepsilon^t, \varepsilon^{t+1}) \circ \sigma$$
$$\varepsilon^{2t} = (\varepsilon^t, \varepsilon^t)$$

Thus, the states of the automorphism ε^p are limited to the automorphisms, described as

$$\varepsilon^t, t \in F_p$$

Since F_p is finite, therefore ε^p is a finite-state automorphism, q.e.d.

Theorem 2.3. Let ε be an adding machine. Then

$$0 * C_{FAutT_2}(\varepsilon) = (Z_2 \cap \mathbb{Q})$$

Proof. According to the theorem 2.2

$$C_{FAutT_2}(\varepsilon) = \{ \varepsilon^p | p \in Z_2 \cap \mathbb{Q} \}$$

Then, using the lemma 1, we obtain:

$$0 * \varepsilon^{Z_2 \cap \mathbb{Q}} = Z_2 \cap \mathbb{Q}$$

q.e.d.

The theorems 2.2 and 2.3 can be applied to research of finite-state conjugacy with the automorphism ε (an adding machine). The following theorem illustrates that:

Theorem 2.4. If a 0-solution t_0 of a conjugacy equation with respect to t

$$\varepsilon^t = a$$

is not finite-state, then this equation has no finitestate solutions.

Proof. Let us assume, that t_0 is infinite-state, and the equation $\varepsilon^t = a$ has a finite-state solution $t': p \to 0$, where p is a quasiperiodic number. Since each solution can be uniquely represented as

$$t' = x \circ t_0, x \in C_{FAutT_2}(\varepsilon)$$

ma $p * \varepsilon^{-p} = 0$, then, according to the theorem 2.2 $t' = \varepsilon^{-p} \circ t_0$. Since t_0 is infinite-state, and ε^{-p} is finite-state, therefore t' is infinite-state. We've come to a contradiction.

Theorem 2.5. Let a be a spherical-transitive automorphism. Then

$$C_{FAutT_2}(a) \subseteq \{a^{(p*\chi_a^{-1})}|p \in Z_2 \cap \mathbb{Q}\}$$

where χ_a is a 0-solution of the conjugacy equation $\varepsilon^t = a$ with respect to t.

Proof. We have the following equality:

$$0 * a^{(p*\chi_a^{-1})} = p$$

Indeed, according to the theorem 2.1 we obtain:

$$0 * a^{(p*\chi_a^{-1})} = (p * \chi_a^{-1}) * \chi_a = p * (\chi_a^{-1} \circ \chi_a) = p$$

$$C_{FAutT_2}(a) = C_{AutT_2}(a) \cap FAutT_2$$

we obtain an inclusion

$$C_{FAutT_2}(a) \subseteq \{a^{(p*\chi_a^{-1})}|p \in Z_2 \cap \mathbb{Q}\}$$

q.e.d.

Theorem 2.6. Let x be a spherical-transitive finite-state automorphism. Then

$$0 * C_{FAutT_2}(x) \subseteq (Z_2 \cap \mathbb{Q})$$

Proof. According to the theorem 2.5 we have an inclusion:

$$0*C_{FAutT_2}(x) \subseteq \{0*a^{(p*\chi_a^{-1})}|p \in Z_2 \cap \mathbb{Q}\} = Z_2 \cap \mathbb{Q}$$

References

 Морозов Д.І. Централізатори шаровооднорідних автоморфізмів однорідного дерева валентності р./ Д.І. Морозов// Вісник Київського ун-ту. Серія: фізикоматематичні науки. - 2007.— вип.№4 — С.52-54.

2014