STOCK PRICE PREDICTOR

Submitted By: Saima Siddiqui Shreya

Project Overview

Investment firms, hedge funds and even individuals have been using financial models to better understand market behavior and make profitable investments and trades. A wealth of information is available in the form of historical stock prices and company performance data, suitable for machine learning algorithms to process.

Can we actually predict stock prices with machine learning? Investors make educated guesses by analyzing data. They'll read the news, study the company history, industry trends and other lots of data points that go into making a prediction. The prevailing theories is that stock prices are totally random and unpredictable.

Problem Statement

The challenge of this project is to accurately predict the future closing value of a given stock across a given period of time in the future. For this project I will use a **Linear Regression and Random Forest Regression** to predict the closing ¹ price using a dataset of past prices

GOALS

- 1. Explore stock prices.
- 2. Implement basic model using linear regression and Random Forest Regression.
- 3. Compare the results and submit the report.

Metrics

For this project measure of performance will be using score.

Data Exploration

My goal was to predict the closing price for any given date after training. The prediction has to be made for Closing (Adjusted closing) price of the data.

Code

import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns dataset=pd.read_csv('Stock_Market.csv') dataset.index=dataset['Date'] dataset.shape

Out: (4392, 7)

X=dataset.iloc[:,[1,2,3,5,6]] Y=dataset.iloc[:,4]

X.head()

Out:	Open	High	Low	Adj_Close	Volume		
Date							
2000/	3/27	3.812	500	4.156250	3.812500	4.125000	3675600
2000/	3/28	4.125	000	4.125000	4.000000	4.015625	1077600
2000/	3/29	4.000	000	4.031250	3.953125	4.000000	437200

2000/3/30	4.000000	4.000000	3.843750	3.843750	1883600
2000/3/31	3.734375	3.734375	3.390625	3.390625	7931600

d=dataset.drop(["Date"],axis=1)
d.head()

Out: Open	High Low	Close Adj_C	lose Volun	ne	
Date					
2000/3/27	3.812500	4.156250	3.812500	4.125000	4.125000
36756	<mark>00</mark>				
2000/3/28	4.125000	4.125000	4.000000	4.015625	4.015625
10776	<mark>000</mark>				
2000/3/29	4.000000	4.031250	3.953125	4.000000	4.000000
43720	00				
2000/3/30	4.000000	4.000000	3.843750	3.843750	3.843750
18836	<mark>000</mark>				
2000/3/31	3.734375	3.734375	3.390625	3.390625	3.390625
79316	00				

import seaborn as sns sns.pairplot(d)

<seaborn.axisgrid.PairGrid at 0x1898ae46390>

#correlation of features with each other plt.figure(figsize=(7,4)) sns.heatmap(d.corr(),annot=True,cmap='cubehelix_r')

Y.head()

Date 2000/3/27 4.125000 2000/3/28 4.015625 2000/3/29 4.000000 2000/3/30 3.843750 2000/3/31 3.390625 Name: Close, dtype: float64

from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,random_state=0)

from sklearn.linear_model import LinearRegression regressor=LinearRegression() regressor.fit(X_train,Y_train)
Y pred=regressor.predict(X test)

regressor.score(X_test,Y_test)

```
X_new=[[3.45,3.98,3.76,4.43,2163600]]
d=pd.DataFrame(X new)
```

result=regressor.predict(X_new) result

array([4.43])

X_new=[[3.8125,4.15625,3.8125,4.125,3675600]] d=pd.DataFrame(X_new) result=regressor.predict(X_new) result array([4.125])

Y test.head()

Date

2016/5/2 106.860001 2005/4/13 10.630000 2003/3/4 6.630000 2007/4/19 13.000000 2007/5/17 12.297500 Name: Close, dtype: float64

from sklearn.ensemble import RandomForestRegressor regressor1=RandomForestRegressor(n_estimators=10,random_state=0) regressor1.fit(X_train,Y_train) Y_pred=regressor1.predict(X_test) regressor1.score(X_test,Y_test)

0.9999902087205729

dataset['Close'].plot(color='orange', linewidth=3)
plt.xlabel('Date')
plt.ylabel('Price')
plt.show()

Conclusion

We predicted the close value of stock using linear regression and random forest regression and calculated the accuracy for used model.

The close value should be nearly equal to the adjusted close.

Linear Model Accuracy: 100% Random Forest Accuracy: 99%