INDIAN INSTITUTE OF TECHNOLOGY GANDHINAGAR

GRÖBNER BASES OF RATIONAL NORMAL CURVES

AMOGH PARAB (14110089) KSHITEEJ JITESH SHETH (14110068)

SUPERVISOR: DR. INDRANATH SENGUPTA

November 25, 2015

Abstract

Let $n \geq 3$ be a natural number. Let $R = k[x_0, \ldots, x_n]$ be the polynomial ring in the indeterminates x_0, x_1, \ldots, x_n over a field k. Let $A = \begin{bmatrix} x_0 & x_1 & \cdots & x_{n-1} \\ x_1 & x_2 & \cdots & x_n \end{bmatrix}$. Let \mathcal{G}_n denote the set of all 2×2 minors of the matrix A, i.e., $\mathcal{G}_n = \{x_i x_{j+1} - x_{i+1} x_j \mid 0 \leq i < j \leq n\}$. Let I denote the ideal generated by \mathcal{G}_n in $k[x_0, x_1, \ldots, x_n]$. Suppose that the monomial ordering in $R = k[x_0, x_1, \ldots, x_n]$ is given by $x_{i_0} > x_{i_1} > \ldots > x_{i_n}$, with the lexicographic ordering of monomials in R, where (i_0, i_1, \ldots, i_n) denotes a permutation of the set $\{0, 1, \ldots, n\}$. We have classified all possible permutations (i_0, i_1, \ldots, i_n) of $\{0, 1, \ldots, n\}$ such that \mathcal{G}_n is a Gröbner basis of the ideal I.

Definitions

Definition 1. Set $S_k \subset \mathbb{N}$:

If monomial ordering in $R = k[x_0, x_1, \ldots, x_n]$ is given by $x_{i_0} > x_{i_1} > \ldots > x_{i_k}, \ldots, x_{i_n}$, then the set S_k is defined as $S_k = \{i_k, i_{k+1}, i_{k+2}, \ldots, i_n\}$; $k = 0, 1, \ldots, n$

Remark: S_0 is full set $\{0, 1, ..., n\}$ and S_1 is singleton set $\{i_n\}$.

Definition 2. Property P_j for given monomial order:

If the monomial ordering in $R = k[x_0, x_1, ..., x_n]$ is given by $x_{i_0} > x_{i_1} > ... > x_{i_j} > ... > x_{i_n}$, where $0 \le j \le n$ then the given monomial order is said to satisfy property P_j if i_k is either $max(S_k)$ or $min(S_k) \ \forall k \le j$

Remark: If the given monomial order satisfies the property P_j , $0 \ge j \le n$ then it satisfies property $P_k \ \forall k < j$.

Theorem:

Suppose that the monomial ordering in $k[x_0 > x_1 > ... > x_n]$ is given by $(n \ge 3)$. $x_{i_0} > x_{i_1} > ... > x_{i_n}$ with the lexicographic ordering. Let \mathcal{G}_n denote the set of all 2×2 minors of the matrix A, i.e., $\mathcal{G}_n = \{x_i x_{j+1} - x_{i+1} x_j \mid 0 \le i < j \le n\}$. Let I denote the ideal generated by \mathcal{G}_n in $k[x_0, x_1, ..., x_n]$. The set \mathcal{G}_n is a Gröebner basis with respect to the said monomial order if and only if

given monomial order satisfies the property P_{n-3} . That is i_k is either $\min(S_k)$ or $\max(S_k)$

for
$$0 < k < n - 3$$

And for n = 2 G_n forms a Gröbner basis.

Remark: There is relaxation on properties P_{n-2} , P_{n-1} and P_n . The monomial order may or may not satisfy the Properties P_{n-2} , P_{n-1} and P_n .

Proof for Only If part:

The set \mathcal{G}_n ; n > 2; is a Gröebner basis with respect to the said monomial order only if

given monomial order satisfies the property P_{n-3} .

Theorem 1. Suppose that the monomial ordering in $k[x_0, x_1, ..., x_n]$ is given by $(n \ge 3)$. $x_{i_0} > x_{i_1} > ... > x_{i_n}$ with the lexicographic ordering. Let \mathcal{G}_n denote the set of all 2×2 minors of the matrix A, i.e., $\mathcal{G}_n = \{x_i x_{j+1} - x_{i+1} x_j \mid 0 \le i < j \le n\}$. Let I denote the ideal generated by \mathcal{G}_n in $k[x_0, x_1, ..., x_n]$. The set \mathcal{G}_n a Groebner basis with respect to the said monomial order only if i_0 is either 0 or n.

Proof. By method of contradiction.

Case I: n=3
$$A = \begin{bmatrix} x_0 & x_1 & x_2 \\ x_1 & x_2 & x_3 \end{bmatrix}.$$

$$\mathcal{G}_3 = x_0 x_2 - x_1^2, x_0 x_3 - x_2 x_1, x_1 x_3 - x_2^2$$
Assume i_0 is neither 0 or 3.
$$\Rightarrow i_0 = 1 \text{ or } i_0 = 2$$

Subcase I] $i_0 = 1$ i.e. x_1 largest consider the S polynomial $S(x_0x_3 - x_2x_1, x_1x_3 - x_2^2) = x_2^3 - x_0x_3^2$ $x_2^3 - x_0x_3^2$ does not tend to 0 as LT of each polynomial in \mathcal{G}_3 contains x_1 which is not present in $x_2^3 - x_0x_3^2$ thus \mathcal{G}_3 does not form a Groebner Basis for $i_0 = 1$.

Subcase II] $i_0 = 2$ i.e. x_2 is largest.

Consider the S polynomial
$$S(x_0x_3 - x_2x_1, x_0x_2 - x_1^2) = x_1^3 - x_3x_0^2$$

 $x_2^3 - x_0 x_3^2$ does not tend to 0

as LT of each polynomial in \mathcal{G}_3 contains x_2 which is not present in $x_0^2x_3 - x_1^3$ thus \mathcal{G}_3 does not form a Groebner Basis for $i_0 = 2$.

Thus \mathcal{G}_3 does not form a Groebner Basis if i_0 is neither 0 nor 3 which is a contradiction for n=3

Case II: n = 4

Assume i_0 is neither 0 nor 4

$$\Rightarrow i_0 = 1 \text{ or } i_0 = 2 \text{ or } i_0 = 3$$

$$\mathcal{G}_3 = \{x_0x_2 - x_1^2, x_0x_3 - x_1x_2, x_0x_4 - x_1x_3, x_1x_3 - x_2^2, x_1x_4 - x_2x_3, x_2x_4 - x_2x_4 - x_2x_3\}$$

Subcase I] $i_0 = 1$ i.e. x_1 is largest.

Consider the S polynomial

$$S(x_1x_3 - x_2^2, x_0x_4 - x_1x_3) = x_0x_4 - x_2^2$$

which does not tend to 0 as except for $x_2x_4 - x_3^2$ all other polynomials LT contains x_1 which is not present in $x_0x_4 - x_2^2$ and $x_2x_4 - x_3^2$ does not divide the S polynomial. $\Rightarrow \mathcal{G}_3$ does not form a Groebner Basis for $i_0 = 1$

Subcase II] $i_0 = 2$ i.e. x_2 is largest.

Consider the S polynomial $S(x_0x_3 - x_1x_2, x_1x_4 - x_2x_3) = x_0x_3^2 - x_1^2x_4$ which does not tend to 0 as except for $x_0x_4 - x_1x_3$, all other polynomial's LT contain x_2 which is not present in $x_0x_4 - x_1x_3$.

Thus \mathcal{G}_3 does not form a Gröebner Basis for $i_0 = 2$.

Subcase III] $i_0 = 3$ i.e. x_3 is largest.

Consider the S polynomial $S(x_3x_1 - x_4x_0, x_3x_1 - x_2^2) = x_2^2 - x_4x_0$ which do not tend to 0 as except for $x_0x_2 - x_1^2$, all other polynomial's LT contain x_3 which is not present in $x_2^2 - x_4x_0$.

Thus \mathcal{G}_3 does not form a Gröebner Basis for $i_0 = 3$.

Thus \mathcal{G}_3 does not form a Gröebner Basis if i_0 is neither 0 nor 4 which is a contradiction.

Lemma 1. Let $x_{i_0} > x_{i_1} > \ldots > x_{i_n}$ be monomial ordering such that $S(x_i x_{i-2} - x_{i+1} x_{i-3}, x_i x_{i-2} - x_{i-1}^2) = x_{i+1} x_{i-3} - x_{i-1}^2$ where $4 \le i \le n-2$. And $LT(x_{i-1}^2 - x_i x_{i-2}) = x_i x_{i-2}$.

Suppose we divide this polynomial with G_n if first 2×2 minor to divide is

$$x_{i+1}x_{i-3} - x_{i+2}x_{i-4}$$

(Remark: That means $LT(x_{i+1}x_{i-3} - x_{i+2}x_{i-4}) = x_{i+1}x_{i-3}$), then remainder after division is non zero.

Proof. Let's divide $x_{i+1}x_{i-2} - x_{i-1}^2$ by $x_{i+1}x_{i-3} - x_{i+2}x_{i-4}$. Thus quotient is 1 and remainder is $x_{i+2}x_{i-4} - x_{i-1}^2$. Now there are two possibilities

1.
$$LT(x_{i+2}x_{i-4} - x_{i-1}^2) = x_{i-1}^2$$
; this will give a nonzero remainder as $LT(x_{i-1}^2 - x_i x_{i-2}) = -x_i x_{i-2}$

2.
$$LT(x_{i+2}x_{i-4} - x_{i-1}^2) = x_{i+2}x_{i-4};$$
 only possible divisor is $x_{i+2}x_{i-4} - x_{i+3}x_{i-5};$

We observe that $x_{i+2}x_{i-4}$ is replaced by $x_{i+3}x_{i-5}$. If we carry out this process then difference between subscripts will go on increasing and finally will terminate at either one of them becomes x_0 or x_n .

Thus the term x_{i-1}^2 will not cancel leaving a nonzero remainder.

This proves our hypothesis.

Case III: n > 5

Assume i_0 is neither 0 nor n

Let $i_0 = i$ i.e. x_i is largest. such that 0 < i < n

$$\Rightarrow$$
 either $i-3 \ge 0$ or $i+3 \le n$

for if
$$i - 3 < 0$$

$$\Rightarrow i + 3 < 6$$

$$\Rightarrow i+3 \le 5 \le n \dots$$
 as i is an integer.

Subcase I] $i-3 \geq 0$

Consider the S polynomial

$$S(x_i x_{i-2} - x_{i+1} x_{i-3}, x_i x_{i-2} - x_{i-1}^2) = x_{i-1}^2 - x_{i+1} x_{i-3}$$

 $S(x_i x_{i-2} - x_{i+1} x_{i-3}, x_i x_{i-2} - x_{i-1}^2) = x_{i-1}^2 - x_{i+1} x_{i-3}$ Only possible divisors are $x_{i-1}^2 - x_i x_{i-2}, x_{i+1} x_{i-3} - x_i x_{i-2}$ and $x_{i+1} x_{i-3} - x_i x_{i-2}$

In this $x_{i-1}^2 - x_i x_{i-2}$ and $x_{i+1} x_{i-3} - x_i x_{i-2}$ will not divide the S-Polynomial as the leading term of S-Polynomial is not divisible by the leading terms of 2×2 minor.

Whereas $x_{i+1}x_{i-3} - x_{i+2}x_{i-4}$ gives nonzero remainder after division from lemma 1.

Thus S-Polynomial does not tend to 0 on division by \mathcal{G} . Thus \mathcal{G} does not form a Gröebner Basis.

Subcase II] $i + 3 \le n$

Consider the S polynomial

$$S(x_i x_{i-2} - x_{i+1} x_{i-3}, x_i x_{i-2} - x_{i-1}^2) = x_{i-1}^2 - x_{i+1} x_{i-3}$$

By same reasons as above S-Polynomial does not tend to 0 on division by \mathcal{G} . Thus \mathcal{G} does not form a Gröoebner Basis.

Thus \mathcal{G} does not form a gröoebner basis for $n \geq 5$.

Thus \mathcal{G} does not form a gröebner basis for any $n \geq 3$,

if i_0 is neither 0 nor n.

Hence the contradiction.

$$\Rightarrow i_0 = 0 \text{ or } i_0 = n.$$

Lemma 2. If monomial ordering is $x_{i_0} > \ldots > x_{i_n}$, with property P_{j-1} ; $1 \le j \le n$ and if $min(S_j) \le m \le max(S_j)$; then $m \in S_j$ That is all the integers in between $min(S_j)$ and $max(S_j)$ are contained in S_j , i.e. S_j is of the form $\{i, i+1, \ldots i+k\}$.

Proof. Assume $m \notin S_j$

then $x_m > x_l \quad \forall l \in S_j \dots$ if $x_m < x_l$ for some $l \in S_j$ then $m \in S_j$ by definition.

```
\Rightarrow m = i_p \text{ for some } p < j \dots \text{ as } i_p \in S_j \text{ for } p \geq j
```

$$\Rightarrow m = min(S_p) \text{ or } m = max(S_p)$$

From definition of the set S_k we know that $S_j \subset S_p$ but $m \geq \min(S_j) \in S_j \subset S_p$

thus m can't be $min(S_p)$

Similarly $m \leq max(S_j) \in S_j \subset S_p$

 $\therefore m \neq max(S_p)$

Which is a contradiction.

Theorem 2. Suppose that the monomial ordering in $k[x_0 > x_1 > ... > x_n]$ is given by $(n \ge 3)$. $x_{i_0} > x_{i_1} > ... > x_{i_n}$ with the lexicographic ordering. Let \mathcal{G}_n denote the set of all 2×2 minors of the matrix A, i.e., $\mathcal{G}_n = \{x_i x_{j+1} - x_{i+1} x_j \mid 0 \le i < j \le n\}$. Let I denote the ideal generated by \mathcal{G}_n in $k[x_0, x_1, ..., x_n]$. The set \mathcal{G}_n a Gröebner basis with respect to the said monomial order only if

 i_k is either $min(S_k)$ or $max(S_k)$

for $0 \le k \le n-3$

that is given monomial order satisfies the property P_{n-3}

Remark: Monomial ordering need not satisfy the property P_{n-2}, P_{n-1} or P_n

5

Proof.

Using the method of induction on subscript number of the property P_k True for k = 0 from Theorem I

Consider true for $k = j - 1; 1 \le j \le n - 3$. i.e property P_{j-1} is satisfied and we have to show that property P_i is also satisfied by the monomial ordering. Assume not true for $k = j \le n - 3$

$$\therefore min(S_j) < i_j < max(S_j)$$

Now, $j \le n - 3 \Rightarrow$ cardinality of S_j is at least 4

Case I: $|S_i| = 4$

From induction hypothesis, property P_{j-1} is satisfied and from lemma 2 we can say that S_i is of the form $\{i, i+1, i+2, i+3\}$.

Because $min(S_j) < i_j < max(S_j)$ there are only two possibilities of S_j as follows.

$$S_i = \{i_i - 1, i_j, i_j + 1, i_j + 2\}$$
 or $S_i = \{i_j - 2, i_{j-1}, i_j, i_j + 1\}$

Now, consider
$$S_j = \{i_j - 1, i_j, i_j + 1, i_j + 2\}$$
 then consider $S(x_{i_j-1}x_{i_j+2} - x_{i_j}x_{i_j+1}, x_{i_j}x_{i_j+2} - x_{i_j+1}^2) = x_{i_j-1}x_{i_j+2}^2 - x_{i_j+1}^3$

if
$$LT(x_{i_j-1}x_{i_j+2}^2-x_{i_j+1}^3)=x_{i_j+1}^3$$
 then $S \to 0$ as only divisor to $x_{i_j+1}^3$ is $x_{i_j+1}^2-x_{i_j+2}x_{i_j}$ who's leading term is $x_{i_j+2}x_{i_j}$

if
$$LT(x_{i_j-1}x_{i_j+2}^2 - x_{i_j+1}^3) = x_{i_j-1}x_{i_j+2}^2$$

if $LT(x_{i_j-1}x_{i_j+2}^2-x_{i_j+1}^3)=x_{i_j-1}x_{i_j+2}^2$ Then only possible divisors are $x_{i_j+2}^2-x_{i_j+1}x_{i_j+3}, x_{i_j-1}x_{i_j+2}-x_{i_j}x_{i_j+1}$ and $x_{i_i-1}x_{i_i+2} - x_{i_i-2}x_{i_i+3}$ (if exists)

In the case of $x_{i_j-1}x_{i_j+2} - x_{i_j}x_{i_j+1}$, $LT(x_{i_j-1}x_{i_j+2} - x_{i_j}x_{i_j+1}) = -x_{i_j}x_{i_{j+1}}$ which does not divide $x_{i_i-1}x_{i_i+2}$.

In the case of $x_{i_j-1}x_{i_j+2} - x_{i_j-2}x_{i_j+3}$;

$$LT(x_{i_j-1}x_{i_j+2} - x_{i_j-2}x_{i_j+3} = x_{i_j-2}x_{i_j+3} \text{ as } x_{i_j+3} > x_{i_j-1}, x_{i_j+2}$$

and in the case of $x_{i_j+2}^2 - x_{i_j+1}x_{i_j+3}$; $LT(x_{i_j+2}^2 - x_{i_j+1}x_{i_j+3}) = x_{i_j+1}x_{i_j+3}$

Similar arguments goes for $S_j = \{i_j - 2, i_j - 1, i_j, i_j + 1\}$

Thus for cardinality of $S_j = 4$, G_n does not form a Gröbner Basis. Hence contradiction.

case II: $n(S_i) = 5$

From assumption and lemma 2 only possible cases are,

$$S(j) = i_j - 1, i_j, i_j + 1, i_j + 2, i_j + 3$$

$$S(j) = i_j - 2, i_j - 1, i_j, i_j + 1, i_j + 2$$

$$S(j) = i_j - 3, i_j - 2, i_j - 1, i_j, i_j + 1$$

Consider following examples in each cases respectively.

$$S(f_{i_{j-1},i_{j}+2}, f_{i_{j},i_{j}+1}) = x_{i_{j-1}}x_{i_{j+3}} - x_{i_{j}+1}^{2}$$

$$S(f_{i_{j-2},i_{j}}, f_{i_{j-1},i_{j}+1}) = x_{i_{j-2}}x_{i_{j}+1}^{2} - x_{i_{j}-1}^{2}$$

$$S(f_{i_{j-1},i_{j}+2}, f_{i_{j},i_{j}+1}) = x_{i_{j-1}}x_{i_{j}+3} - x_{i_{j}+1}^{2}$$

are counter examples to each case respectively. Arguments for example 1 and 3 are similar as in case I.

For case 2

If LT is $x_{i_j-1}^2$, then LT of only possible divisor i.e. $LT(x_{i_j-1}^2 - x_{i_j}x_{i_j-2}) = x_{i_j}x_{i_j-2}$ for the reason $x_{i_j} > x_{i_j-2}$. Thus does not divide.

And is LT is $x_{i_j-2}x_{i_j+1}^2$; then from lemma 1 we can say that G_n does not divide.

Thus for cardinality of $S_j = 5$, G_n does not form a Gröbner Basis. Hence contradiction.

Case III: $n(S_j) \ge 6$

From assumption and lemma 1.1 we can say that either $\{i_j - 1, i_j, i_j + 1, i_j + 2, i_j + 3\} \in S_j$ or $\{i_j - 3, i_j - 2, i_j - 1, i_j, i_j + 1\} \in S_j$

Consider the case where,

$${i_j - 3, i_j - 2, i_j - 1, i_j, i_j + 1} \in S_j$$

Consider,

$$S(f_{i_j,i_j-3},f_{i_j-2,i_j-1})=x_{i_j-1}^2-x_{i_j+1}x_{i_j-3}$$
 if $LT(S)=x_{i-1}^2$ then only possible divisor is $x_{i_j-1}^2-x_{i_j}x_{i_j-2}$ who's leading term is $x_{i_j}x_{i_j-2}$

if $LT(S) = x_{i_j+1}x_{i_j-3}$ then possible divisors are $x_{i_j+1}x_{i_j-3} - x_{i_j}x_{i_j-2}$ and $x_{i_j+1}x_{i_j-3} - x_{i_j+2}x_{i_j-4}$

The first one is not possible as leading term is $x_{i_j}x_{i_j-2}$. For second possibility; from lemma 1 we can say that remainder after division by G_n is non zero.

Similar arguments will go for other possibility of the set S_j .

Thus for cardinality of $S_j \geq 6$, G_n does not form a Gröbner Basis. Hence

contradiction.

So, the assumption we made was wrong \therefore the set " G_n " forms a Gröbner basis only if monomial order satisfies the property P_{n-3} . i.e. i_j is either $max(S_j)$ or $min(S_j)$; $\forall i_j \leq n-3$.

Definition 3. Mapping ϕ Suppose that the monomial ordering in $R_{n+1} = k[x_0, x_1, \ldots, x_{n+1}]$ is given by $x_{i_0} > x_{i_1} > \ldots > x_{i_{n+1}}$. Consider subset $A_{n+1} = \{x_0, x_1, \ldots, x_{n+1}\}$ of R_{n+1} and subset $A_n = \{x_0, x_1, \ldots, x_n\}$ of R_n . Let $i_a \in A_{n+1}$ then mapping ϕ is defined as,

$$\begin{split} \phi: A_{n+1}/\{i_a\} &\to A_n \\ \phi(x_i) &= x_i & \text{if } i < i_a \\ \phi(x_i) &= x_{i-1} & \text{if } i > i_a \end{split}$$

It is easy to show that this is a one-to-one and onto map.

Moreover, we extend the definition to all polynomials not containing i_a as, $\phi(Ax^{\alpha} + Bx^{\beta}) = A\phi(x^{\alpha}) + B\phi(x^{\beta})$ where $\alpha_{i_a} = \beta_{i_a} = 0$ $\phi(Af + Bg) = A\phi(f) + B\phi(g)$ $f, g \in k[x_0, \dots, x_n]$ $\phi(x_0^{\alpha_0} x_1^{\alpha_1} \dots x_{n+1}^{\alpha_{n+1}}) = \phi(x_0)^{\alpha_0} \phi(x_1)^{\alpha_1} \dots \phi(x_{n+1})^{\alpha_{n+1}}$ where $\alpha_{i_a} = 0$ This is also a one to one and onto map.

Definition 4. Mapping ϕ on the order Suppose that the monomial ordering $>_{n+1}$ in $R_{n+1} = k[x_0, x_1, \ldots, x_{n+1}]$ is given by $x_{i_0} > x_{i_1} > \ldots > x_{i_{n+1}}$. Then the monomial ordering $\phi(>_{n+1})$ in $R_n = k[x_0, x_1, \ldots, x_n]$ is defined by $\phi(x_{i_0}) > \phi(x_{i_1}) > \ldots > \phi(x_{i_{n+1}})$ where nothing maps at the pace of i_a .

Lemma 3. Let $f = x_i x_{j+1} - x_{i+1} x_j$ be 2×2 minor of from G_{n+1} such that f does not contain x_{i_a} , then $\phi(f)$ is also a 2×2 minor from G_n .

Proof. Consider $x_i x_{j+1} - x_j x_{i+1}$ which is a 2×2 minor and neither of i, i+1, j, j+1 is i_a . It is enough to show that if x_i maps to $x_{i'}$ then x_{i+1} maps to $x_{i'+1}$.

Case 1
$$i < i_a$$

 $\Rightarrow i + 1 < i_a$
Thus i maps to i and i+1 maps to i+1

Case 2
$$i > i_a$$

 $\Rightarrow i+1 > i_a$

Thus i maps to i-1 and i+1 maps to i

Thus if x_i maps to $x_{i'}$ then x_{i+1} maps to $x_{i'} + 1$, which proves that polynomials are nothing but 2×2 minor of $2 \times n$ Matrix.

Lemma 4. Suppose that $<_1$ and $<_2$ denote the monomial orders of $k[x_0, x_1, \ldots, x_{n+1}]$ and $k[x_0, x_1, \ldots, x_n]$ respectively, such that $\phi(<_1) = <_2$. If $0 \neq f \in k[x_0, \ldots, x_{n+1}]$ and x_{i_a} does not occur in f then, $\phi(LT_{<_1}(f)) = LT_{<_2}(\phi(f))$

```
Proof. Let <_1 = (x_{i_0} > x_{i_1} > \ldots > x_{i_{n+1}}).

Let x = x_{i_0}x_{i_1}\ldots x_{i_{n+1}}.

Let \alpha = (\alpha_0\alpha_1\ldots\alpha_{n+1}) such that \alpha_a = 0. Let LT_{<_1}(f) = x^\alpha.

Let x^{\alpha_1} be any arbitrary term in f other than x^\alpha

Let i^{th} entry of \alpha - \alpha_1 be non zero.

As x^\alpha = LT_{<_1}(f), \alpha(i) - \alpha_1(i) > 0.

We have <_2 = (\phi(x_{i_0}) > \phi(x_{i_1}) > \ldots > \phi(x_{i_{n+1}}))

and \phi(x) = \phi(x_{i_0})\phi(x_{i_1})\ldots\phi(x_{i_{n+1}}).

Then from definition 3 we have, \phi(x^\alpha) = \phi(x)^\alpha which is a term of \phi(f).

Similarly \phi(x^{\alpha_1}) = \phi(x)^{\alpha_1} is also a term of \phi(f).

Now, as first non-negative entry of \alpha - \alpha_1 is positive and as \alpha hence \alpha_1 is arbitrary \phi(x^\alpha) is leading term of \phi(f) with respect to monomial order <_2.

Hence, \phi(LT_{<_1}(f)) = LT_{<_2}(\phi(f)) is proved.
```

Theorem 3. Suppose that the monomial ordering in $k[x_0, x_1, ..., x_n]$ is given by $(n \ge 3)$. $x_{i_0} > x_{i_1} > ... > x_{i_n}$ with the lexicographic ordering. Let \mathcal{G}_n denote the set of all 2×2 minors of the matrix A, i.e., $\mathcal{G}_n = \{x_i x_{j+1} - x_{i+1} x_j \mid 0 \le i < j \le n\}$. Let I denote the ideal generated by \mathcal{G}_n in $k[x_0, x_1, ..., x_n]$. The set \mathcal{G}_n a Gröbner basis with respect to the said monomial order if given monomial order satisfy the property P_{n-3}

Proof. The proof will follow the method of induction over the number of variables "N".

The statement is trivial in the case N=2 but we will go one step ahead and show that using a computer program (appended below) that the statement is also true for $N=1,2,\ldots,7$.

Lets assume the statement is True for N=n, then we have to show that the statement is also True for N=n+1.

9

Now, consider the S-Polynomial of 2×2 Minors $f = x_i x_{j+1} - x_j x_{i+1}$ and $g = x_l x_{m+1} - x_m x_{l+1}$ as S(f, g)

As n > 7, there exists a x_{i_a} such that x_{i_a} does not occur in any one of the 4 monomials appearing in f and g, for the reason that there can be as the most 8 distinct variables that may occur in 4 monomials.

Now consider x_{i_a} is not present in given pair of S-polynomial where monomial ordering is $<_1 = x_{i_0} > \ldots > x_{i_{a-1}} > x_{i_a} > x_{i_{a+1}} > \ldots > x_{i_{n+1}}$. Here we can apply mapping ϕ as defined in the definition 3. Lemma 2 tells that $\phi(f)$ and $\phi(g)$ are both 2×2 minors from set G_n . As $\phi(f)$ and $\phi(g)$ are both 2×2 minors from set G_n , using Induction Hypothesis we can say that the S-Polynomial of $\phi(f)$ and $\phi(g)$ is divisible by G_n . More precisely

$$S(\phi(f), \phi(g)) = \sum_{i} a_{i,j',k'} f_{j'} g_{k'} \quad a_{i,j',k'} \in k[x_0, \dots, x_n].$$

Division algorithm tells that $multideg(a_{i'j'k'}) \leq multideg(S(\phi(f), \phi(g)))$

As ϕ being a one to one and onto map from $A_{n+1}/\{i_a\}$ to A_n . We can define ϕ^{-1} .

Applying
$$\phi^{-1}$$
 to above equation, we get $\phi^{-1}(S(\phi(f),\phi(g))) = \phi^{-1}(\sum_{i} a_{i,j',k'} f_{j'} g_{k'})$

But $\phi^{-1}(S(\phi(f), \phi(g)))$ is nothing but S(f, g) and $\phi^{-1}(\sum_i a_{i,j',k'}f_{j'}g_{k'})$ is nothing but $\sum_i a'_{i,j,k}f_jg_k$ where f_j and g_k are both 2×2 minors in R_{n+1}

Applying lemma 3 to above in-equation we will get $multideg(a'_{i,j,k}) \leq multideg(S(f,g))$ This shows that S(f,g) is divisible by G_{n+1} . Hence G_{n+1} is also a Gröbner basis. This completes the proof

Result

Using Theorem 2 and Theorem 3 we can state the following.

Suppose that the monomial ordering in $k[x_0 > x_1 > \ldots > x_n]$ is given by $(n \geq 3)$. $x_{i_0} > x_{i_1} > \ldots > x_{i_n}$ with the lexicographic ordering. Let \mathcal{G}_n denote the set of all 2×2 minors of the matrix A, i.e., $\mathcal{G}_n = \{x_i x_{j+1} - x_{i+1} x_j \mid 0 \leq i < j \leq n\}$. Let I denote the ideal generated by \mathcal{G}_n in $k[x_0, x_1, \ldots, x_n]$. The set \mathcal{G}_n a Gröebner basis with respect to the said monomial order if and only if

 i_k is either $\min(S_k)$ or $\max(S_k)$ for $0 \ge k \ge n-3$

that is given monomial order satisfies the property P_{n-3}