# Monte Carlo parameter estimation in the Lorenz 63 system

Noah D. Brenowitz

May 12, 2015

#### Outline

|   |    |   |    |   | luction |  |   |        |   |
|---|----|---|----|---|---------|--|---|--------|---|
| П | ۱n | 1 | rn | М | ш       |  | h |        | n |
| П |    | ı | ıv | u | u       |  | u | $\sim$ | ш |

Parameter Fitting procedure

Sampling strategy

Code Architecture

Results

Conclusions

## Lorenz63 system

This system is one of the earliest examples of what would later become known as *chaotic* dynamical systems. It is obtained by projection of the Rayleigh-Benard equations for convection of a thin layer onto three orthogonal modes. The system is given by

$$\dot{X} = \sigma(Y - X) \tag{1}$$

$$\dot{Y} = -XZ + rX - Y \tag{2}$$

$$\dot{Z} = XY - bZ. \tag{3}$$

The parameters used by Lorenz are  $\sigma = 10$ , b = 8/3 and r = 28.



#### Notation

► Let *U* be given by the dynamics

$$\dot{U} = F(U;\theta) + \epsilon \dot{W}$$

where  $\theta$  is some set of parameters.

Let  $\Psi_t^{\theta}$  be the *propagator*, defined by

$$\Psi_t^{\theta}U(s)=U(t+s).$$

▶ Temporal grid: Let T > 0, N, and define  $\tau = T/(N+1)$ . Then, a temporal grid  $t_j = j\tau$  can be defined for j = 0...N.



# Dynamic Residuals

Given a set of point estimates  $U_j$  and parameters, define the dynamic residual for a time  $t_j$  to be

$$e_j(\theta) := e(U_{j-1}, U_j, \theta) := \Psi_{\tau}^{\theta} U_{j-1} - U_j.$$

Then, a sensible way to choose the parameters is so that they minimize

$$\sum_{j=1}^{N} |e_j|^2.$$

Because  $\theta$  is a potentially high dimensional object, Monte Carlo techniques can be used to perform this optimization.

## Equilibrium distribution

- ▶ Vector of parameters  $\theta = [\sigma, r, b]$
- Generate samples  $\theta_k$  from

$$f( heta) \propto \exp\left(-rac{eta}{N} \sum_{j=1}^N |e_j( heta)|^2
ight).$$

The mode of  $f(\theta)$  is the value that minimizes the dynamic residuals

# Proposal Distribution

▶ Independent gaussian proposal function:

$$P(\theta_0, \theta_1) \propto \exp\left(-\frac{1}{2}(\theta_1 - \theta_0)^T C^{-1}(\theta_1 - \theta_0)\right)$$

► Covariance matrix:  $C_{11} = .5^2$ ,  $C_{22} = .1^2$ ,  $C_{33} = 1.0^2$ ,  $C_{ij} = 0$  if  $i \neq j$ .

# Acceptance Probability

Metropolis-Hastings acceptance probability:

$$A(\theta_0, \theta_1) = \min \left\{ 1, \frac{f(\theta_1)P(\theta_1, \theta_0)}{f(\theta_0)P(\theta_0, \theta_1)} \right\}$$

## Languages and Libraries

- ▶ Language: C++ for sampler, Python for plotting/analysis
- C++ Libraries:
  - ► Armadillo++ for convenient vector arithmetic
  - GNU Scientific Library for random number generation

## Code Architecture



#### $\tau = .5$ Traces





#### $\tau = .5$ Distributions





## $\tau = .5$ Autocorrelation functions



#### $\tau = 1.0$ Traces

2000 Samples; tau=1.0; nt=10; noise=0.0; beta=2.0



#### $\tau = 5.0$ Traces

2000 Samples; tau=5.0; nt=10; noise=0.0; beta=2.0



#### $\tau = 5.0$ Distributions



# Reducing $\beta$ gives large drift and autocorrelations

3000 Samples; tau=0.5; nt=10; noise=0.0; beta=0.1



# Model Error can help

▶ Let  $\epsilon = 5.0$ 



## Model error can help a little





## Model error can help a little



#### Conclusions

- ▶ Using the dynamic residuals method to find parameters works well for short observations times  $\tau \leq .5$ .
- ▶ MCMC performance is very poor for larger  $\tau$ .
- Making a model error can help regularize the fit
- $ightharpoonup \sigma$  is the most difficult parameter to estimate

#### **Future Directions**

- Use dynamic residuals might work better for the data assimilation problem
- ► Parameter fitting might be better done by matching equilbrium *statistics* of the attractor rather than exact paths.