Bayesova statistika

Domača naloga 1

Sara Bizjak | 27202020

Oktober 2021

1. naloga

Na spodnjih grafih so preizkušani različni parametri α in β . Na prvem grafu lahko vidimo obe porazdelitvi za apriorno porazdelitev Beta(1, 1), nadalje pa sta v isti vrsti prikazana grafa za oba para izbranih parametrov (α, β) in (β, α) .

Figure 1: Graf z apriorno in aposteriorno porazdelitev za $\alpha=\beta=1.$

Figure 2: Grafa z apriorno in aposteriorno porazdelitvijo z vrednostma 0.2 in 0.5.

Figure 3: Grafa z apriorno in aposteriorno porazdelitvijo z vrednostma 0.7 in 2.

Figure 4: Grafa z apriorno in aposteriorno porazdelitvijo z vrednostma 5 in 10.

Figure 5: Grafa z apriorno in aposteriorno porazdelitvijo z vrednostma 50 in 100.

Figure 6: Grafa z apriorno in aposteriorno porazdelitvijo z vrednostma 500 in 1000.

Ugotovitve in opazke:

- \bullet Za α in β manjša od 1 je apriorna porazdelitev konveksne oblike.
- Če je ali α ali pa β manjši od 1, predstavlja graf apriorne funkcije "polovico konveksne oblike" iz prejšnjega primera.
- Za α in β večja od 1 je graf apriorne funkcije konkaven.
- Graf aposteriorne funkcije je v vseh primerih konkaven.
- Hitro opazimo, da sta si grafa funkcij apriorne porazdelitve na levi in desni sliki v vsaki vrstici simetrični glede na os x = 0.5 (torej če zamenjamo vrednosti za α in β), aposterirno porazdelitev pa se, zaradi premika apriorne, zamakne v isto smer, kamor se preslika aposteriorna, torej v vseh teh primerih bolj v desno.

- Z večanjem α in β hkrati opazimo, da sta si tudi obe porazdelitvi na grafu bližje (vrha sta vedno bolj "enotna"), saj na takšen način simuliramo večje zaupanje v predhodno znanje in bolj verjamemo apriorni porazdelitvi.
- Podobno kot prej sta si z manjšanjem α in β porazdelitvi na grafu različni in bolj narazen.

2. naloga

Vemo, da je pričakovana vrednost apriorne porazdlitve enaka 0.25 in v skladu s tem izberemo primerna α in β .

Rešujemo torej enačbo z dvema neznankama

$$E_{aprior} = \frac{1}{4} = \frac{\alpha}{\alpha + \beta}$$
$$\frac{1}{4}\alpha + \frac{1}{4}\beta = \alpha$$
$$\frac{1}{4}\beta = \frac{3}{4}\alpha$$
$$\beta = 3\alpha$$

zato lahko parametra α in β izberemo na neskončno načinov tako, da ustrezata linearni zvezi $\beta = 3\alpha$.

Na spodnjih grafih je prikazanih nekaj takih možnosti za izbiro parametrov α in β .

Oceno pričakovane vrednosti lahko izrazimo kot pričakovano vrednost za aposteriorno porazdelitev:

$$\frac{\alpha + k}{\alpha + k + \beta + n - k} = \frac{\alpha + k}{\alpha + \beta + n}$$

$$= \frac{(\alpha + \beta)\frac{\alpha}{\alpha + \beta} + n\frac{k}{n}}{\alpha + \beta + n}$$

$$= \frac{\alpha + \beta}{\alpha + \beta + n} \cdot \frac{\alpha}{\alpha + \beta} + \frac{n}{\alpha + \beta + n} \cdot \frac{k}{n},$$

kar je konveksna kombinacija števil $\frac{\alpha}{\alpha+\beta}$ in $\frac{k}{n}.$ Spomnimo se, da je $E_{aprior}=\frac{\alpha}{\alpha+\beta},$ izraz $\frac{k}{n}$ pa predstavlja frekventistično oceno. Označimo $\gamma(\alpha,\beta) = \alpha + \beta$. Tedaj lahko zgornjo enačbo zapišemo kot

$$E_{apost} = \frac{\gamma(\alpha, \beta)}{\gamma(\alpha, \beta) + n} \cdot E_{aprior} + \frac{n}{\gamma(\alpha, \beta) + n} \cdot \frac{k}{n}$$

Figure 7: Grafi z apriorno in aposteriorno porazdelitvijo za parametra, ki zadoščata $\beta=3\alpha$.

Ocene pričakovanih vrednosti za vse tri grafe, po vrsti:

- [1] 0.2310606
- [2] 0.2333333
- [3] 0.2424242

Figure 8: Grafi z apriorno in aposteriorno porazdelitvijo za parametra, ki zadoščata $\beta = 3\alpha$.

Ocene pričakovanih vrednosti za vse tri grafe, po vrsti:

- [1] 0.2313433
- [2] 0.2352941
- [3] 0.245283

Figure 9: Grafi z apriorno in aposteriorno porazdelitvijo za parametra, ki zadoščata $\beta = 3\alpha$.

Ocene pričakovanih vrednosti za vse tri grafe, po vrsti:

- [1] 0.2316176
- [2] 0.2368421

[3] 0.2465753

Nadalje opazimo, da s funkcijo $\gamma(\alpha,\beta)$ kalibriramo verjetje v apriorno porazdelitev: z večanjem $\gamma(\alpha,\beta)$ bolj verjamemo apriorni porazdelitvi (takrat je manjša disperzija). Konkretno za ta primer: z večanjem $\gamma(\alpha,\beta)$ se ocena približuje vrednosti $\frac{1}{4}=0.25$. To je razvidno tudi iz priloženih grafov.

3. naloga

Vzemimo sedaj vzorec študentov velikosti 30 izmed katerih jih je 21 odgovorilo pravilno. Privzamemo apriorno porazdelitev Beta(1, 1) in izračunajmo aposteriorno porazdelitev. Prikažimo jo na grafu.

Figure 10: Graf aposteriorne porazdelitve pri danih podatkih.

4. naloga

Primerjajmo aposteriorno porazdelitev iz naloge 3, označimo jo Z_1 , z aposteriorno porazdelitvijo porazdelitve Beta(7, 21), ki smo jo izračunali na vajah. Ocenimo verjetnost $P(Z_2 < Z_1)$. Ocenjeno verjetnost izračunamo s cenilko na tak način, da primerjamo Z_1 in Z_2 po elementih. Natančneje, za vsak istoležni element preverimo ali je element iz porazdelitve Z_2 manjši od elementa iz porazdelitve Z_1 . Vsoto oz. seštevek za ta pogoj na koncu delimo s 10000 (toliko kot je generiranih vrednosti v obeh porazdelitvah).

Ocenjena verjetnost znaša:

[1] 0.9998

Na podlagi simulacije izračunajmo še 95% interval zaupanja, poročamo kar 2.5% in 97.5% kvan-

til simuliranih podatkov.

Izračunajmo najprej interval zaupanja za vsako od obeh aposteriornih porazdelitev.

 Z_1 :

2.5% 97.5%

0.5214762 0.8337051

 Z_2 :

2.5% 97.5%

0.1110932 0.4164294

Za interval zaupanja na podlagi simulacije za primerjanje obeh porazdelite vzamemo kar razliko (po komponentah) vektorjev s 10000 generiranimi vrednostmi iz obeh aposteriornih porazdelitev, kar je sorodno zgornji cenilki, s pomočjo katere smo prišli do ocene verjetnosti. Dobimo:

2.5% 97.5%

0.2024990 0.6452275