

Text Classification

Text, Web and Social Media Analytics Lab

Prof. Dr. Diana Hristova

Exercise 4: Representation (2)

Can one group present please?

Summary

What did we learn last week?

Treasury map: Text Classification

Course structure

Date	Lecture	Exercise
12.04.2021	Introduction	Technical Installation
19.04.2021	Text Preprocessing	Projects kick-off
26.04.2021	Text Representation	Preprocessing Newsgroups
03.05.2021	Text Representation (2)	Text Representation Newsgroups
10.05.2021	Text Classification	Text Representation Newsgroups (2)
17.05.2021	Text Clustering	Newsgroups Topic Classification
31.05.2021	Text Mining in Social Media	Newsgroups Topic Clustering
07.06.2021	Mining Social Graphs	Sentiment Analysis and Time Series in Twitter
14.06.2021	Projects Status Update	Projects Status Update
21.06.2021	Web Analytics	Mining Social Graphs in Twitter
28.06.2021	Mock Exam	Web Analytics in E-commerce
05.07.2021	Final Presentation	Final Presentation
19.07.2021	Submit Code & Written report	
t.b.a.	Exam	

What will we learn today?

At the end of this lecture, you will:

- 1. Learn the motivation behind applying classification and clustering approaches in text analytics
- 2. Know the mechanics and pros and cons of important classification approaches for text analytics
- 3. Understand how to split the dataset to effectively train a classification model

Motivation: Why do we need text classification and clustering?

https://www.wallpaperflare.com/search?wallpaper=review

 After cleaning and structuring text data, we can analyse it to derive knowledge from it.

Important questions:

- Is an e-mail a spam?
- Is a movie review positive or negative?
- What is the credit rating of a company based on its annual report?
- Which are the most discussed topics on Twitter this week?
- Which documents match best a search term?
- How can I group Yelp reviews based on their topics?

Trends for you

Trending in Germany #**Taiwan**

10.9K Tweets

 $\mathsf{Music} \cdot \mathsf{Trending}$

#CantYouSeeMeMV

183K Tweets

Trending in Germany

Vorsatz

 ${\sf Politics} \cdot {\sf Trending}$

#China

52.8K Tweets

Trending in Germany
Billigfleisch

Motivation: Why do we need text classification and clustering?

For which tasks is the set of values of the target variable known in advance?

- a. E-mail spam, movie review sentiment, annual report credit rating
- b. Document search, hot topics on Twitter, topics in reviews

Introduction: Text Classification and Clustering

Supervised approaches

 Idea: the set of values of the target variable is known and the text data is annotated with them.

Example:

- "I require your financial assistance to transform you the heritage of the late Sir Johnson." → spam
- "We are meeting tomorrow at 5 o'clock." → not spam
- Aim: build a model that can classify each document in one of the categories.
- → Text classification

Unsupervised approaches

 Idea: the set of values of the target variable are not known, but need to be derived from the data.

Example:

- A: "The restaurant has terrible service."
- B: "The meals were very satisfactory.
- C: "The food was fantastic."
- D: "The waitress took forever."
- → A and D are similar as well as B and C
- Aim: build a model that can derive the unknown categories in each document.

→ Text clustering

Introduction: Text Classification and Clustering

Focus today

Supervised approaches

 Idea: the set of values of the target variable is known and the text data is annotated with them.

Example:

- "I require your financial assistance to transform you the heritage of the late Sir Johnson." → spam
- "We are meeting tomorrow at 5 o'clock." → not spam
- Aim: build a model that can classify each document in one of the categories.
- → Text classification

Unsupervised approaches

 Idea: the set of values of the target variable are not known, but need to be derived from the data.

Example:

- A: "The restaurant has terrible service "
- B: "The meals were very satisfactory.
- C: "The food was fantastic."
- D: "The waitress took forever."
- → A and D are similar as well as B and C
- Aim: build a model that can derive the unknown categories in each document.

→ Text clustering

Text Classification: Main Idea

1. Annotated corpus for training

target_names	target	content	
rec.autos	7	From: lerxst@wam.umd.edu (where's my thing)\nS	0
comp.sys.mac.hardware	4	From: guykuo@carson.u.washington.edu (Guy Kuo)	1
comp.sys.mac.hardware	4	From: twillis@ec.ecn.purdue.edu (Thomas E Will	2
comp.graphics	1	From: jgreen@amber (Joe Green)\nSubject: Re: W	3
sci.space	14	From: jcm@head-cfa.harvard.edu (Jonathan McDow	4

2. Preprocessed corpus for training

preprocessed	target_names	target
lerxst wam umd edu thing subject car nntp post	rec.autos	7
guykuo carson washington edu gui kuo subject c	comp.sys.mac.hardware	4

Text Classification: Main Idea (2)

3. Structure corpus for training

	0	1	2	3	4	5	6	7	8	9	 55273	55274	55275	55276	55277	55278	55279	55280	55281	target
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4

X

Classification approach

The Fiat 500 EV has been revealed and, despite being on a whole new platform, the car looks very similar to before. There are some neat new styling touches, though, and the 500 EV will offer a range of 199 miles.

•

rec.autos

https://www.carbuyer.co.uk/news/167673/best-new-cars-coming-in-2020

Text Classification: Main Idea (2)

Which classification models have you used?

Naive Bayes (NB)

 Main idea: use Bayes theorem to determine which words contribute to the probability of which class.

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

• For a given document representation $doc_1 = (v_1, v_2)$ and two possible classes A and B, determine:

$$\begin{aligned} & \max_{x \in A,B} P(class \ x | v_1, v_2) = \max_{x \in A,B} P(class \ x | v_1) P(class \ x | v_2) \\ &= \max_{x \in A,B} (P(v_1 | class \ x) P(v_2 | class \ x) P(class \ x)^2) / P(v_1) P(v_2) \\ & \iff \max_{x \in A,B} P(v_1 | class \ x) P(v_2 | class \ x) P(class \ x)^2 \end{aligned}$$

→ Assign the document to the class with the higher probability, assuming independence between the features.

Classification approaches: Naïve Bayes

Naive Bayes (NB)

 Main idea: use Bayes theorem to determine which words contribute to the probability of which class.

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

• For a given document representation $doc_1 = (v_1, v_2)$ and two possible classes A and B, determine:

$$\max_{x \in A,B} P(class \ x | v_1, v_2) = \max_{x \in A,B} P(class \ x | v_1) P(class \ x | v_2)$$

$$= \max_{x \in A,B} (P(v_1 | class \ x) P(v_2 | class \ x) P(class \ x)^2) / P(v_1) P(v_2)$$

$$\iff \max_{x \in A,B} P(v_1 | class \ x) P(v_2 | class \ x) P(class \ x)^2$$

- Assign the document to the class with the higher probability, assuming independence between the features.
- Advantage: simple, quick and interpretable
- Disadvantage: strong assumptions, often not fulfilled

Classification approaches: Decision Trees

Decision Trees (DT)

 Main idea: build a tree which nodes are the features and branches are conditions on their values. The leaves represent the classes of the target.

Classification approaches: Decision Trees (2)

Decision Trees (DT)

A new document is classified by following the tree paths.

Advantage: Efficient and interpretable

Disadvantage: Overfitting

Classification approaches: Random Forests

Random Forest (RF)

- Main idea: combine multiple trees together and average their result.
- Each tree is build on a subsample of data and features and thus too deep trees are avoided.

→ Less overfitting

Classification approaches: Random Forests (2)

football

Classification approaches: Random Forests (3)

What is a disadvantage of random forests?

- A. Not efficient
- B. Problems with complex non-linear relationships

Hochschule für Wirtschaft und Recht Berlin Berlin School of Economics and Law

Classification approaches: Random Forests (3)

Football

- Advantage: Efficient and (somehow) interpretable
- Disadvantage: Not able to model complex, non-linear relationships

Text Classification: Training a model

- The classification model should be chosen such that it:
 - 1. Performs best among all alternatives
 - Does so on unseen data
 - ? How do you achieve 1. and 2.?

Text Classification: Training a model

- The classification model should be chosen such that it:
 - 1. Performs best among all alternatives
 - 2. Does so on **unseen** data
 - ? How do you achieve 1. and 2.?
 - ✓ Train the model on a training set, test it on an independent test set
 - ✓ Use a validation set to determine the best model and parameters.

Training a model: Validation set

Validation set

- Most of the classification models have different parameters that can be set.
- For example, in a Random Forest the following (hyper)parameters can vary:
 - Number of trees
 - Splitting criterion
 - Maximum tree depth
 - Minimum samples for splitting
 - Minimum samples in a leaf
 - **L**
- Using the default setting rarely provides the best performance.
- How do you choose the best hyperparameters?
- → Validation set

Training a model: Validation set (2)

Validation set

One possibility is to randomly split the training set:

Training a model: Validation set (3)

What is a disadvantage of this approach?

Training a model: Cross validation

Cross validation

- Sometimes the data set is too small to be able to conduct a Training/Validation split i.e. the Training set is too small and the model cannot be adequately estimated.
- Cross validation
- K-fold cross validation splits randomly the Training set into k parts.
- First k-1 parts are used for training, last part for hyper parameter estimation
- This is repeated until each part was used once for hyper parameter estimation
- → k accuracies
- The best hyperparameters are the ones with the highest average performance

Summary and Outlook

Summary:

- Classification approaches can be used to conduct supervised learning on text representation
- The Naive Bayes approach is based on the Bayes' Theorem
- Decision Trees and Random Forests use tree representation to split the solution space
- Model training should consider the performance on the validation and test set
- Cross validation can be applied for small datasets
- Outlook: many text datasets are not labelled → clustering

Questions?

Exercise 5

In a minute, six break-out rooms will be created. Choose the room that corresponds to your group in Moodle e.g. Room 1= Group 1. In your project group discuss and document the solution for Exercise 5 (in Moodle).