Red Wine Quality

Link alla repo del progetto su Github.

Membri del Gruppo

Il Gruppo è formato da:

- Mattia Pezzotti (885965) m.pezzotti3@campus.unimib.it
- Thomas Howard-Grubb (869248) t.howardgrubb@campus.unimib.it
- Alaa Eddine Ghanimi (856573) a.ghanimi@campus.unimib.it

Introduzione al Dataset

Link al dataset su Kaggle.

Il dataset Red Wine Quality comprende una serie di proprietà fisiche e chimiche che rappresentano le caratteristiche dei vini rossi e che vengono utilizzate per determinarne la qualità.

Il dataset è relativo alla variante rossa del vino portoghese "Vinho Verde"; è stato chiesto a diversi esperti di valutare diverse tipologie di vino di diverse cantine e di dare un voto da 0 (pessimo) a 10 (eccellente).

Ogni osservazione contiene 11 diverse proprietà chimiche e il relativo punteggio di qualità.

Variabili

Acidità Fissa: influenza il sapore del vino. Una riduzione significativa degli acidi può portare a vini dal sapore piatto. Esempi di acidi fissi sono il tartarico, il malico, il citrico e il succinico, che si trovano nell'uva (tranne il succinico). Si misura in g/dm3.

Acidità Volatile: la quantità di acido acetico presente in un vino. Viene espressa in g/l. Secondo gli esperti, rappresenta un difetto se presenta in quantità superiore a 0,7 g/l.

Acido Citrico: La quantità di acido citrico presente nel vino, la cui maggior parte viene solitamente consumata durante il processo di fermentazione. Agisce come conservante e piccole quantità possono aggiungere freschezza e sapore. Si misura in g/l.

Residuo Zuccherino: La quantità di zucchero che rimane al termine della fermentazione più quello che viene aggiunto (se viene aggiunto). L'obiettivo è ottenere un perfetto equilibrio tra dolcezza e asprezza. Si misura in g/l. I vini con più di 50 g/l sono considerati dolci, sotto i 10 g/l sono considerati secchi.

Cloruri: La quantità di sale presente nel vino in g/l.

Anidride Solforosa Libera: La quantità di anidride solforosa (SO2) in forma libera. Una quantità eccessiva è indesiderabile e dà un odore pungente. Si misura in g/dm3.

Anidride Solforosa Totale: La quantità totale di SO2 nel vino. Viene aggiunta per uccidere i batteri nocivi e preservare la qualità e la freschezza. Si misura in mg/l ed è regolamentata dallo Stato.

Densità: Si usa come misura della conversione dello zucchero in alcol. I vini più dolci hanno una densità maggiore.

Ph: Descrive il grado di acidità o basicità di un vino su una scala che va da 0 (molto acido) a 14 (molto basico).

Solfiti: La quantità di sali minerali contenenti zolfo nel vino. È un additivo che può contribuire ai livelli di anidride solforosa (S02) e agisce come antimicrobico e antiossidante. Sono legati al processo di fermentazione e influenzano l'aroma e il sapore del vino.

Gradazione Alcoolica: L'alcol si forma come risultato della conversione dello zucchero da parte del lievito durante il processo di fermentazione. Viene solitamente misurato in % di volume o in volume alcolico (ABV).

Qualità: Valutazione di qualità che va da 0 (pessimo) a 10 (eccellente). È la mediana di almeno tre valutazioni effettuate da esperti di vino su quel vino.

Prima esplorazione

Esploriamo il dataset:

df.head(10)

#	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
5	7.4	0.66	0.00	1.8	0.075	13.0	40.0	0.9978	3.51	0.56	9.4	5
6	7.9	0.60	0.06	1.6	0.069	15.0	59.0	0.9964	3.30	0.46	9.4	5
7	7.3	0.65	0.00	1.2	0.065	15.0	21.0	0.9946	3.39	0.47	10.0	7
8	7.8	0.58	0.02	2.0	0.073	9.0	18.0	0.9968	3.36	0.57	9.5	7
9	7.5	0.50	0.36	6.1	0.071	17.0	102.0	0.9978	3.35	0.80	10.5	5

df.info()

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

df.isnull().sum()

# Column Null Count	#	Column	Null Count
---------------------	---	--------	------------

#	Column	Null Count
0	fixed acidity	0
1	volatile acidity	0
2	citric acid	0
3	residual sugar	0
4	chlorides	0
5	free sulfur dioxide	0
6	total sulfur dioxide	0
7	density	0
8	рН	0
9	sulphates	0
10	alcohol	0
11	quality	0

Il dataset non presenta elementi nulli.

df.duplicated().sum()

240

Questo significa che ci sono 240 entry duplicate, questo tuttavia non significa che i dati siano inutili, semplicemente ci dice che in quelle osservazioni diversi giudici hanno dato lo stesso voto di qualità a uno stesso vino.

df.describe().T

	count	mean	std	min	25%	50%	75%	max
fixed acidity	1599.0	8.319637	1.741096	4.60000	7.1000	7.90000	9.200000	15.90000
volatile acidity	1599.0	0.527821	0.179060	0.12000	0.3900	0.52000	0.640000	1.58000
citric acid	1599.0	0.270976	0.194801	0.00000	0.0900	0.26000	0.420000	1.00000
residual sugar	1599.0	2.538806	1.409928	0.90000	1.9000	2.20000	2.600000	15.50000
chlorides	1599.0	0.087467	0.047065	0.01200	0.0700	0.07900	0.090000	0.61100
free sulfur dioxide	1599.0	15.874922	10.460157	1.00000	7.0000	14.00000	21.000000	72.00000
total sulfur dioxide	1599.0	46.467792	32.895324	6.00000	22.0000	38.00000	62.000000	289.00000
density	1599.0	0.996747	0.001887	0.99007	0.9956	0.99675	0.997835	1.00369
рН	1599.0	3.311113	0.154386	2.74000	3.2100	3.31000	3.400000	4.01000
sulphates	1599.0	0.658149	0.169507	0.33000	0.5500	0.62000	0.730000	2.00000
alcohol	1599.0	10.422983	1.065668	8.40000	9.5000	10.20000	11.100000	14.90000
quality	1599.0	5.636023	0.807569	3.00000	5.0000	6.00000	6.000000	8.00000

Notiamo subito che, nonostante i voti potessero essere da 0 a 10, esistono solo voti tra il 3 e l'8. Analizziamo meglio quality.

Studio della qualità

df["quality"].value_counts()

quality	count
3	10
4	53
5	681
6	638
7	199
8	18

Come vediamo, c'è un forte **central bias**, i giudici non si esponevano troppo nelle loro valutazioni e tendevano a giudicare con un valore centrale. Per questo possiamo dire che un vino è **Buono** se è di qualità *6.5* o superiore.

Possiamo studiare la qualità in due modi:

- Singolarmente, quindi utilizzando i valori originali
- Categorizzando, avendo solo 6 qualità contigue, possiamo unire a due a due, trasformando la qualità in "scadente" (3-4), "normale" (5-6), "ottimo" (7-8).

Studio utilizzando le sei qualità

```
df.corr()['quality']
```

quality	correlation
alcohol	0.476166
sulphates	0.251397
citric acid	0.226373
fixed acidity	0.124052
residual sugar	0.013732
free sulfur dioxide	-0.050656
рН	-0.057731
chlorides	-0.128907
density	-0.174919
total sulfur dioxide	-0.185100
volatile acidity	-0.390558

Notiamo che ci sono delle forti correlazioni tra alcuni elementi e la qualità del vino, cosa che noi non vogliamo avere.

Notiamo che ci sono notevoli **Outlier** tra alcuni elementi, cosa che noi non vogliamo avere.

Studio con categorie

```
df["qualityRange"] = pd.cut(df["quality"], bins=[-np.inf, 4, 6, np.inf], labels=["3-4","5-6","7-
8"])
```


3-4 5-6 7-8 qualityRange

PCA

Il dataset è ovviamente di grande dimensioni (11), cerchiamo di trovare quali sono effettivamente utili cosi da ridurne la complessità. Per evitare che le correlazioni tra variabili possano influenzare i risultati, prima di applicare PCA, standardizziamo i risultati e riduciamo la dimensione del dataset.

```
scaler = StandardScaler()
scaled_data = scaler.fit_transform(df[columns])

x_train, x_test, y_train, y_test = train_test_split(scaled_data, qualityColumn, test_size = 0.25, random_state=42)

pca = PCA(n_components=None)

x_train = pca.fit_transform(x_train)
x_test = pca.transform(x_test)
explained_variance = pca.explained_variance_ratio_
```

La **explained variance** è quindi:

```
[0.27590, 0.17191, 0.13659, 0.11815, 0.09029, 0.06029, 0.05433, 0.03969, 0.031056, 0.01621, 0.00555]
```

Studiando i risultati in un grafico:

Vediamo come non tutte le componenti sono fondamentali per lo studio della qualità del vino, potendo quindi ridurre le componenti da 11 a 6.

```
newDF = PCA(n_components=6).fit_transform(scaled_data)
```