CyberMAGICS Workshop

Aiichiro Nakano, Ken-ichi Nomura, Priya Vashishta

Collaboratory for Advanced Computing & Simulations University of Southern California

> Pratibha Dev, Tao Wei Howard University

Email: anakano@usc.edu

Supported by National Science Foundation, Award OAC-2118061

June 30, 2022

USC-Howard Cybertraining

CyberMAGICS: Cyber Training on Materials Genome Innovation for Computational Software

 This project trains a new generation of materials cyberworkforce, who will solve challenging materials genome* problems through innovative use of advanced cyberinfrastructure at the exa-quantum-AI nexus

NSF CyberTraining (2021-25) project

Nakano, Nomura, Vashishta (USC); Dev, Wei (Howard)

Exaflop/s Computer Has Just Arrived!

ORNL's Frontier First to Break the Exaflop Ceiling

May 30, 2022

The 59th edition of the TOP500 revealed the Frontier system to be the first true exascale machine with an HPL score of 1.102 Exaflop/s.

The No. 1 spot is now held by the Frontier system at Oak Ridge National Laboratory (ORNL) in the US. Based on the latest HPE Cray EX235a architecture and equipped with AMD EPYC 64C 2GHz processors, the system has 8,730,112 total cores, a power efficiency rating of 52.23 gigaflops/watt, and relies on gigabit ethernet for data transfer.

Exaflop/s: 10¹⁸ floating-point operations per second

https://www.top500.org

Changing Computing Landscape for Science

Postexascale Computing for Science

Compute Cambrian explosion

Exa-quantum-AI nexus

Quantum Computing for Science

AI for Science

DOE readies multibilliondollar Al push

U.S. supercomputing leader is the latest big backer in a globally crowded field

By Robert F. Service, in Washington, D.C.

Science 366, 559 (Nov. 1, '19)

Use all to advance science!

Training Cyber Science Workforce

• New generation of computational scientists at the nexus of exascale computing, quantum computing & AI

• Unique dual-degree program at USC: Ph.D. in materials science or physics, along with MS in computer science specialized in high-performance computing & simulations, MS in quantum information science or MS in materials engineering with AI

AIQ-XMaS Software Suite

AI & Quantum-Computing Enabled Exa Quantum Materials Simulator

Reactive & neural-network molecular dynamics

EZFF

Easy force-field parameterization & uncertain quantification

Quantum many-body dynamics on quantum computers

MAITAI

AI tools for materials design

USC-Howard Future Manufacturing

FMRG: Artificial Intelligence Driven Cybermanufacturing of Quantum Material Architectures
\$3.75M NSF project (2020-2025)

Nagpal (Princeton); Kalia, Nakano, Wang (USC); Rawat (Howard)

Agenda: June 30 – July 2, 2022

Thursday, June 30, 2022		
Time (PDT)	Topic	Instructor
8:00 - 9:00 am	Introduction and logistics	Aiichiro Nakano
9:00 - 10:00 am	Molecular dynamics simulation basics	Priya Vashishta
10:00 - 11:00 am	Reactive molecular dynamics basics	Ken-ichi Nomura
11:00 am - 12:00	Lunch break	
pm		
12:00 - 2:00 pm	Reactive molecular dynamics hands on: RXMD	Ankit, Nitish, Pranab,
	code	Ruru
2:00 - 3:00 pm	Machine learning basics	Ken-ichi Nomura
Friday, July 1, 2022		
Time (PDT)	Topic	Instructor
8:00 - 9:00 am	Machine learning hands-on	Ankit, Nitish,
		Taufeq
9:00 - 10:00 am	Quantum molecular dynamics basics	Aiichiro Nakano
10:00 - 11:00 am	Quantum molecular dynamics hands-on: QXMD	Thomas Linker, Anikeya
	code (part 1)	Aditya, Liqiu Yang
11:00 am - 12:00	Lunch break	
pm		
12:00 - 1:00 pm	Quantum molecular dynamics hands-on: QXMD	Thomas Linker, Anikeya
	code (part 2)	Aditya, Liqiu Yang
1:00 - 3:00 pm	Quantum computing basics and hands-on	Aiichiro, Shogo,
		Taufeq
Saturday, July 2, 2022		
Time (PDT)	Topic	Instructor
9:00 - 11:00 am	Participant presentations	All participants
11:00 - 11:15 am	Closing remarks	Pratibha Dev, Tao Wei

https://cybermagics.netlify.app/workshop-schedule.html

Logistics

- Workshop courseware (lecture notes & Jupyter notebooks) is available at https://cybermagics.netlify.app/workshop-resources.html
- Hands on training will use cloud resources
 - 1. Google Colab (QXMD, RXMD, AI-machine learning) https://colab.research.google.com
 - 2. IBM Quantum (quantum computing)
 https://quantum-computing.ibm.com
- Please ask questions any time during the lectures & hands-on sessions using Zoom chat