Chapitre 2 : Séries numériques

Séries et sommes d'une série

Définition : Soit (u_n) une suite dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

On considère $\forall N \in \mathbb{N}, S_N = \sum_{n=0}^N u_n \in \mathbb{K}.$

On a donc une suite $(S_N)_{N\in\mathbb{N}}$ associée à la suite $(u_n)_{n\in\mathbb{N}}$.

Définition: On appelle série de terme général u_n que l'on note $\sum_{n>0} u_n$ la suite $(S_N)_{N\in\mathbb{N}}$.

- 💬 Note de rédaction : Les deux définitions précédentes gagneraient à être fusionnées.
- \bigcirc Vocabulaire : On dit que (S_N) est la suite des sommes partielles de la série.
- **1** Remarque: (S_N) correspond aux N+1 premiers termes de la suite.

Correspondance suite - série

Raisonnement : Par définition une série est une suite. Expliquons comment une suite peut-être vue comme une

Si (u_n) est une suite, considérons la série de terme général $v_n = u_n - u_{n-1} \forall n \in \mathbb{N}$ (avec la convention $v_0 = u_0$). Ainsi, $u_n = \sum_{k=0}^n v_k$.

 $oldsymbol{0}$ Remarque : Cependant la série associée à une suite (u_n) va s'étudier en tant que telle (que série) grâce à u_n .

Opérations sur les séries

Propriété: Opérations sur les séries (admise)

Soient $\sum_{n\geq 0}u_n$ et $\sum_{n\geq 0}v_n$ deux séries. Alors, pour tout $\lambda\in\mathbb{K}$:

- Somme : $\sum_{n\geq 0}(u_n+v_n)=\sum_{n\geq 0}u_n+\sum_{n\geq 0}v_n$ définie comme (S_N+S_N')
- Produit par un scalaire : $\sum_{n\geq 0} \lambda u_n = \lambda \sum_{n\geq 0} u_n$ définie comme (λS_N)
- **?** Exemple: Si $u_n=0, \forall n\in\mathbb{N}$, alors $\sum_{n>0}u_n=0$ est la série nulle.

Troncature d'une série

Définition : Si (u_n) est une suite définie pour $n \geq n_0 \mid n_0 \in \mathbb{N}$. On peut considérer la série $\sum_{n \geq n_0} u_n$ où $u_0=u_1=...=u_{n_0-1}=0$, ou bien on peut écrire $\sum_{n\geq n_0}u_n$. Si $\sum_{n\geq 0}u_n$ est une série de terme général u_n , une **troncature** de la série est $\sum_{n\geq n_0}u_n$. C'est la suite (S_N) où $S_N = \sum_{n=n_0}^N u_n.$

- Note de rédaction : Cette définition pourraît être synthétisée.
- Exemple :

- · la série nulle
- la série géométrique de raison $q\in\mathbb{C}^*$: $\sum_{n\geq 0}q^n$ de terme général q^n ;
- la série harmonique : $\sum_{n\geq 1} \frac{1}{n}$ de terme général $\frac{1}{n}$;
- la série $\sum_{n\geq 1} \frac{1}{n^{\alpha}}, \alpha \in \mathbb{R}$.

Il Convergence d'une série

A Définitions et nature d'une série

Définition : Soit $\sum_{n\geq 0} u_n$ une série.

On dit que la série converge, si la suite (S_N) converge, et on note S la limite de S_N .

S s'appelle la somme de la série.

Dans ce cas, on écrit : $\sum_{n=0}^{\infty} u_n = S \in \mathbb{R}$ (c'est une "somme infinie", un objet-limite).

- $igoplus extsf{Vocabulaire}: extsf{Si} \ (S_N) \ ext{diverge}, \ ext{alors on dit que la série} \ \sum_{n\geq 0} u_n \ ext{diverge}.$
- **X** Attention **X** Si S n'existe pas, alors on écrit **jamais** la notation avec ∞
- De Vocabulaire : La convergence ou la divergence d'une série s'appelle la nature de la série.

Proposition : Stabilité de la limite par troncature (admis)

La nature d'une série n'est pas modifée par troncature.

Preuve:

🗭 Note de rédaction : Indication : les premiers termes n'influencent pas la convergence.

B Quelques applications...

© Exemple :

• Si (u_n) est nulle à partir d'un rang N_0 alors la série $\sum_{n\geq 0} u_n$ est converge, et $\sum_{n=0}^{\infty} u_n = \sum_{n=0}^{N_0} u_n$.

• Série géométrique $\sum_{n\geq 0}q^n$:

On considère la suite des sommes partielles (S_N) où $S_N=\sum_{n=0}^N q^n$ = $\frac{1-q^{N+1}}{1-q}$ avec $q\neq 1$. On a plusieurs cas :

- Si |q| < 1, $q^{N+1} \xrightarrow[N \to \infty]{} 0$ donc $S_N \xrightarrow[N \to \infty]{} \frac{1}{1-q} \Leftrightarrow \sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$. La série $\sum_{n>0} q^n$ converge et on arrive à trouver S!
- Si |q| > 1, alors $\sum_{n>0} q^n$ diverge.
- Si q=1, alors $\sum_{n\geq 0}q^n=N+1\Rightarrow \sum_{n\geq 0}q^n$ diverge.
- $\sum_{n>1} log(1+1/n)$:

On a $\forall N \geq 1, S_N = \sum_{n=1}^N log(\frac{n+1}{n}) = log(N+1)$ (télescopage). Or $log(N+1) \xrightarrow[N \to \infty]{} +\infty$, donc la série $\sum_{n\geq 1} log(1+1/n)$ diverge.

On a
$$\forall N \geq 1, S_N = \sum_{n=1}^N \frac{1}{n(n+1)} = \sum_{n=1}^N (\frac{1}{n} - \frac{1}{n+1}) = 1 - \frac{1}{N+1}$$
 (télescopage). Or $1 - \frac{1}{N+1} \xrightarrow[N \to \infty]{} 1$, donc la série $\sum_{n \geq 1} \frac{1}{n(n+1)}$ converge et $\sum_{n=1}^\infty \frac{1}{n(n+1)} = 1$.

- Important, démontré plus tard : $\sum_{n\geq 1}\frac{1}{n}$ (série harmonique) diverge.
- $\sum_{n\geq 1} \frac{(-1)^n}{n}$ converge. (idée : montrer que S_N converge en montant $A_N=S_{2N}$ et $B_N=S_{2N+1}$ sont adjacentes)
- **X** Attention **X** Ces six exemples sont à connaître et comprendre parfaitement.
- **Application**: Étudier la convergence de la série géométrique pour |q|=1 et q=-1 $(q\in\mathbb{C})$.

Propriétés des séries convergentes

Propriété: Convergence de la combinaison linéaire (admise)

Soient $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux séries convergentes. Alors $\forall \lambda, \mu \in \mathbb{K}: \sum_{n\geq 0} (\lambda u_n + \mu v_n) = \lambda \sum_{n\geq 0} u_n + \mu \sum_{n\geq 0} v_n$, cette série converge (vers la combinaison linéaire des limites).

1 Remarque: En d'autres termes, la somme de deux séries convergentes est une série $\sum_{n\geq 0}(u_n+v_n)$ qui converge.

Preuve:

La suite de sommes partielles associée à $\sum_{n\geq }(u_n+v_n)$ est $\sum_{n=0}^N(u_n+v_n)=\sum_{n=0}^N(u_n)+\sum_{n=0}^N(v_n)$ Comme $\sum_{n=0}^N(u_n)$ et $\sum_{n=0}^N(v_n)$ sont convergentes, on a $\sum_{n=0}^N(u_n+v_n)$ est convergente et sa limite est $\sum_{n=0}^\infty(u_n+v_n)=\sum_{n=0}^\infty(u_n)+\sum_{n=0}^\infty(v_n)$.

 \P Exemple: Retour: Divergence de la série harmonique $\sum_{n\geq 1}rac{1}{n}$

But : minorer $\sum_{n\geq 1}^{N} \frac{1}{n} \forall N \in \mathbb{N}$.

$$n \le t \in \mathbb{R} \le n+1 \Rightarrow \frac{1}{n+1} \le \frac{1}{t} \le \frac{1}{n}$$

But : minorer $\sum_{n\geq 1}^{N} \frac{1}{n} \forall N \in \mathbb{N}$. $n \leq t \in \mathbb{R} \leq n+1 \Rightarrow \frac{1}{n+1} \leq \frac{1}{t} \leq \frac{1}{n}$ Intégrons entre n et $n+1: \int_{n}^{n+1} \frac{1}{t} dt \leq \frac{1}{n}$ Donc en sommant : $\sum_{n=1}^{N} \int_{n}^{n+1} \frac{1}{t} dt \leq \sum_{n=1}^{N} \frac{1}{n}$ donc par Chasles : $\int_{1}^{N+1} \frac{1}{t} dt \leq \sum_{n=1}^{N} \frac{1}{n} \forall n \in \mathbb{N}$ Or $\int_{1}^{N+1} \frac{1}{t} dt = \ln(N+1) \xrightarrow[N \to \infty]{N \to \infty} + \infty$ donc $\sum_{n=1}^{N} \frac{1}{n} \xrightarrow[N \to \infty]{N \to \infty} + \infty$.

Donc la série harmonique diverge.

Propriété : Divergence de la combinaison linéaire (admise)

Soient $\sum_{n\geq 0} u_n$ une série convergente et $\sum_{n\geq 0} v_n$ une série divergente. Alors $\sum_{n>0}^{-} (u_n + v_n)$ diverge.

Preuve:

$$\sum_{n=0}^{N} (u_n + v_n) = \sum_{n=0}^{N} (u_n) + \sum_{n=0}^{N} (v_n)$$

 $\begin{array}{l} \sum_{n=0}^N (u_n+v_n) = \sum_{n=0}^N (u_n) + \sum_{n=0}^N (v_n) \\ \text{Comme } \sum_{n=0}^N (u_n) \text{ est convergente et } \sum_{n=0}^N (v_n) \text{ est divergente, on a } \sum_{n=0}^N (u_n+v_n) \text{ est divergente.} \end{array}$

X Attention X Quand on considère deux séries divergentes, la situation est à étudier au cas par cas.

© Exemple : Considérons $\sum_{n\geq 1}u_n$ avec $u_n=1\forall n\in\mathbb{N}$ et $\sum_{n\geq 1}v_n$ avec $v_n=-1\forall n\in\mathbb{N}$. D'une part $\sum_{n\geq 1}u_n$ diverge, et $\sum_{n\geq 1}v_n$ diverge aussi. Mais $\sum_{n\geq 1}(u_n+v_n)=\sum_{n\geq 1}0=0$ converge.

Mais si on considère $v_n = u_n$, alors $\sum_{n \ge 1} (u_n + v_n) = \sum_{n \ge 1} 2u_n$ diverge.

X Attention **X** Source d'erreur classique : Si $\sum_{n\geq 0}u_n+v_n$ est convergente, **a** priori on ne peut pas écrire que $\sum_{n=0}^{\infty}u_n+v_n=\sum_{n=0}^{\infty}u_n+\sum_{n=0}^{\infty}v_n$ car les séries de termes généraux u_n et v_n peuvent être divergentes (il faut donc vérifier leur convergence).

Proposition: (admis)

Soit $\sum_{n\geq 0}u_n$ une série numérique où $u_n\in\mathbb{C}\ \forall n\in\mathbb{N}.$ On a $\sum_{n\geq 0}u_n$ converge \Leftrightarrow les suites $(Re(u_n))$ et $(Im(u_n))$ sont convergentes.

Application : Montrer la proposition précédente.

Indication pour la preuve:

écrire $u_n = Re(u_n) + iIm(u_n)$ et utiliser la propriété sur les combinaisons linéaires.

Théorème : Lien entre convergence et limite des termes

Si $\sum_{n\geq 0} u_n$ converge, alors $u_n \xrightarrow[n\to\infty]{} 0$.

Preuve:

Considérons (S_N) la suite des sommes partielles associée à $\sum_{n\geq 0} u_n$.

On a $S_{N+1} - S_N = u_{N+1} \ \forall N \in \mathbb{N}$.

Or $\sum_{n>0} u_n$ converge \Rightarrow (S_N) converge. Donc $\lim_{N\to\infty} S_N - \lim_{N\to\infty} S_{N+1} = 0 \Rightarrow \lim_{N\to\infty} u_N = 0$.

X Attention X La réciproque est fausse. Par exemple la série harmonique $\sum_{n\geq 1}\frac{1}{n}$ diverge mais $\frac{1}{n}$ $\longrightarrow 0$.

Description Vocabulaire: Si $u_n \nrightarrow 0$, on dit que la série $\sum_{n>0} u_n$ diverge grossièrement.

Reste d'une série

Définition : On suppose que $\sum_{n>0}u_n$ converge. On note $S=\sum_{n=0}^\infty u_n$ sa somme et (S_N) la suite des sommes partielles.

Le **reste** de la série au rang N est $R_N = S - S_N = \sum_{n=N+1}^{\infty} u_n$.

Proposition: Comportement du reste

Si $\sum_{n\geq 0} u_n$ converge, alors $R_N \xrightarrow[N\to\infty]{} 0$.

Preuve:

Par définition, $R_N = S - S_N$. Or $S_N \xrightarrow[N \to \infty]{} S$. Donc $R_N \xrightarrow[N \to \infty]{} 0$.

Série absolument convergente (ACV)

Critère de Cauchy pour les séries numériques

Ce qui a été fait dans le Chapitre 1 - Suites de Cauchy sur les suites réelles reste valable si on considère des suites complexes.

Définition : On dit que la série $\sum_{n>0} u_n$ vérifie le **critère de Cauchy** si :

$$\forall \varepsilon > 0, \exists N_\varepsilon \in \mathbb{N}, \forall N \geq N_\varepsilon, \forall p \in \mathbb{N}, |\sum_{k=N}^{N+p} u_k| < \varepsilon$$

Proposition : Convergence et critère de Cauchy

 $\sum_{n\geq 0} u_n$ vérifie le critère de Cauchy $\Leftrightarrow \sum_{n\geq 0} u_n$ converge.

Preuve: (par équivalence)

 $\sum_{n\geq 0}u_n$ converge $\Leftrightarrow (S_N)$ converge $\Leftrightarrow (S_N)$ est une suite de Cauchy (car l'espace est complet) $\Leftrightarrow orall arepsilon > 0, \exists N_arepsilon \in S_N$ $\mathbb{N}, \forall N \geq N_{\varepsilon}, \forall p \in \mathbb{N}, |S_{N+p} - S_N| < \varepsilon \Leftrightarrow \forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}, \forall N \geq N_{\varepsilon}, \forall p \in \mathbb{N}, |\sum_{n=N}^{N+p} u_n| < \varepsilon$

Remarque : Autre preuve de la divergence de la série harmonique :

Soit $\varepsilon=1/2$. Pour tout $N\in\mathbb{N}$, on peut choisir p=N et on a : $|\sum_{k=N}^{2N}\frac{1}{k}|\geq\sum_{k=N}^{2N}\frac{1}{2N}=\frac{1}{2}$. Donc la série harmonique ne vérifie pas le critère de Cauchy, donc elle diverge.

Définitions et propriétés В

Définition : On dit que la série $\sum_{n>0} u_n$ est absolument convergente (ACV) si la série $\sum_{n>0} |u_n|$ converge.

Théorème : Série ACV et convergence

Série ACV \Rightarrow série convergente et $|\sum_{n=0}^{\infty} u_n| \leq \sum_{n=0}^{\infty} |u_n|$.

Preuve:

Soit $\sum_{n\geq 0} u_n$ une série ACV. Donc $\sum_{n\geq 0} |u_n|$ converge.

Donc $\sum_{n\geq 0}|u_n|$ vérifie le critère de Cauchy : $\forall \varepsilon>0, \exists N_\varepsilon\in\mathbb{N}, \forall N\geq N_\varepsilon, \forall p\in\mathbb{N}, |\sum_{k=N+1}^{N+p}|u_k||<\varepsilon$

 $\begin{array}{l} \sum_{k=0}^{N-p} |u_k| \leq \sum_{k=N+1}^{N+p} |u_k| \leq \sum_{k=N+1}^{N+p} |u_k| < \varepsilon \\ \text{Ainsi } \forall \varepsilon > 0, \exists N_\varepsilon \in \mathbb{N}, \forall N \geq N_\varepsilon, \forall p \in \mathbb{N}, |\sum_{k=N}^{N+p} u_k| < \varepsilon \\ \text{Page } \sum_{k=N}^{N-p} |u_k| \leq \varepsilon \end{array}$

Donc $\sum_{n>0} u_n$ vérifie le critère de Cauchy.

Donc $\sum_{n>0} u_n$ converge et on a $|\sum_{n=0}^N u_n| \le \sum_{n=0}^N |u_n| \implies |\sum_{n=0}^\infty u_n| \le \sum_{n=0}^\infty |u_n|$.

X Attention **X** La réciproque est fausse.

Exemple: La série $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ est convergente, mais elle n'est pas absolument convergente car $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge.

Convergence absolue d'une série IV

Note de rédaction : Correspond à II. dans le plan de cours du prof.

Séries à termes positifs

Théorème:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{R}^+ .

Alors la série $\sum_{n\geq 0} u_n$ ($u_n\geq 0$) converge \Leftrightarrow la suite (S_N) des sommes partielles est bornée.

En effet, $S_{N+1} - S_N = u_{N+1} \ge 0$ donc (S_N) est croissante (à termes positifs).

Ainsi (S_N) converge $\Leftrightarrow (S_N)$ est bornée (théorème de convergence monotone).

Or $\sum_{n\geq 0} u_n$ converge $\Leftrightarrow (S_N)$ converge.

Donc $\sum_{n>0} u_n$ converge $\Leftrightarrow (S_N)$ est bornée.

1 Remarque : Si (S_N) n'est pas bornée, alors $S_N \xrightarrow[N \to \infty]{} +\infty$. On tolère la notation $\sum_{n=0}^{\infty} u_n = +\infty$.

Application : Application du théorème.

Soit $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux séries à termes positifs. Montrons que la série $\sum_{n\geq 0} \sqrt{u_n v_n}$ converge. En effet, utilisons l'inégalité de Cauchy-Schwarz.

$$\forall N \in \mathbb{N}, \sum_{n=0}^{N} \sqrt{u_n v_n} \le \sqrt{\sum_{n=0}^{N} u_n} \sqrt{\sum_{n=0}^{N} v_n}.$$

Or les deux termes de droite sont bornés, donc $\forall N \in \mathbb{N}, \sum_{n=0}^{N} \sqrt{u_n v_n}$ est bornée.

Donc $\sum_{n>0} \sqrt{u_n v_n}$ converge.

Autre preuve (sans Cauchy-Schwarz):

$$(a-b)^2 \ge 0 \Leftrightarrow ab \le \frac{a^2+b^2}{2} \forall a, b \in \mathbb{R}$$

Latter precise (sails Catterly-Schwarz):
$$(a-b)^2 \geq 0 \Leftrightarrow ab \leq \frac{a^2+b^2}{2} \forall a,b \in \mathbb{R}.$$
 Donc
$$\sum_{n=0}^{N} \sqrt{u_n v_n} \leq \frac{1}{2} (\sum_{n=0}^{N} u_n + \sum_{n=0}^{N} v_n).$$

Or les deux termes de droite sont bornés, donc $\forall N \in \mathbb{N}, \sum_{n=0}^{N} \sqrt{u_n v_n}$ est bornée.

Donc $\sum_{n>0} \sqrt{u_n v_n}$ converge.

Note de rédaction : On a pas encore abordé Cauchy-Schwarz.

Proposition:

Soient $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux séries convergentes (pas forcément à termes positifs mais réels). Si $u_n\leq v_n \forall n\in\mathbb{N}$, alors $\sum_{n=0}^\infty u_n\leq \sum_{n=0}^\infty v_n$.

Preuve:

On considère la série à termes positifs $\sum_{n\geq 0}(v_n-u_n)$. C'est une série convergente.

On a $\sum_{n=0}^{\infty}(v_n-u_n)\geq 0$. Or $\sum_{n\geq 0}v_n$ et $\sum_{n\geq 0}u_n$ sont convergentes.

Donc on peut écrire :
$$\sum_{n=0}^{\infty}v_n-\sum_{n=0}^{\infty}u_n=\sum_{n=0}^{\infty}(v_n-u_n)\geq 0$$
. Donc $\sum_{n=0}^{\infty}u_n\leq\sum_{n=0}^{\infty}v_n$.

Critère de comparaison

Tout cela est fait pour des séries à termes positifs.

Théorème : Critère de comparaison ("Hyper important")

Soit $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux séries à termes positifs.

Supposons que $\forall n \in \mathbb{N}, 0 \leq u_n \leq v_n$.

- Si $\sum_{n>0} v_n$ converge, alors $\sum_{n>0} u_n$ converge.
- Si $\sum_{n\geq 0} u_n$ diverge, alors $\sum_{n\geq 0} v_n$ diverge.

Preuve:

- On a $\forall N \in \mathbb{N}, 0 \leq \sum_{n=0}^N u_n \leq \sum_{n=0}^N v_n$. Or $\sum_{n\geq 0} v_n$ converge, donc la suite des sommes partielles $(\sum_{n=0}^N v_n)$ est bornée. Donc la suite des sommes partielles $(\sum_{n=0}^{N} u_n)$ est bornée et donc $\sum_{n>0} u_n$ converge.
- Comme $\sum_{n>0} u_n$ diverge, la suite des sommes partielles $(\sum_{n=0}^N u_n)$ n'est pas bornée. Et comme $\forall N \in \mathbb{N}, 0 \leq \sum_{n=0}^N u_n \leq \sum_{n=0}^N v_n$, la suite des sommes partielles $(\sum_{n=0}^N v_n)$ n'est pas bornée. Et donc par le théorème de convergence des séries à termes positifs on a que $\sum_{n\geq 0} v_n$ diverge.

Corollaire:

Soient $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux séries à termes positifs. $\exists n_0 \in \mathbb{N}, \forall n\geq n_0, \frac{u_{n+1}}{u_n} \leq \frac{v_{n+1}}{v_n}$.

$$\exists n_0 \in \mathbb{N}, \forall n \geq n_0, \frac{u_{n+1}}{u_n} \leq \frac{v_{n+1}}{v_n}.$$

- Si $\sum_{n\geq 0} v_n$ converge, alors $\sum_{n\geq 0} u_n$ converge.
- Si $\sum_{n\geq 0} u_n$ diverge, alors $\sum_{n\geq 0} v_n$ diverge.

Preuve:

$$\begin{array}{l} \frac{u_{n+1}}{u_n} \times \frac{u_n}{u_{n-1}} \times \ldots \times \frac{u_{n_0+1}}{u_{n_0}} \leq \frac{v_{n+1}}{v_n} \times \frac{v_n}{v_{n-1}} \times \ldots \times \frac{v_{n_0+1}}{v_{n_0}} \\ \Rightarrow \frac{u_{n+1}}{u_{n_0}} \leq \frac{v_{n+1}}{v_{n_0}} \Rightarrow u_{n+1} \leq k v_{n+1} \text{ avec } k = \frac{u_{n_0}}{v_{n_0}} \in \mathbb{R}_+^* \end{array}$$

- On suppose que $\sum_{n\geq 0} v_n$ converge.

Donc $\sum_{n\geq 0} kv_n$ converge. Donc par le théorème précédent, comme $\forall n\geq n_0, 0\leq u_n\leq kv_n$, on a que $\sum_{n\geq 0} u_n$ converge.

- (non démontré en cours)
- Application : applications aux séries absolument convergentes

Proposition:

Soit $\sum_{n\geq 0} u_n$ une série à termes réels.

Définissons $u_n^+ = \max(u_n, 0) \ge 0$ et $u_n^- = \max(-u_n, 0) \ge 0$.

On a $\sum_{n>0} u_n$ est ACV.

 $\sum_{n\geq 0} |u_n|$ converge $\Leftrightarrow \sum_{n\geq 0} u_n^+$ et $\sum_{n\geq 0} u_n^-$ convergent.

Preuve:

 \Rightarrow / On a $\forall n \in \mathbb{N}0 \leq u_n^+ \leq |u_n|$ et $0 \leq u_n^- \leq |u_n|$. Donc par le théorème de comparaison, $\sum_{n \geq 0} u_n^+$ et $\sum_{n \geq 0} u_n^-$ convergent.

 \Leftarrow / On remarque que $|u_n| = u_n^+ + u_n^-$.

Si $\sum_{n\geq 0} u_n^+$ et $\sum_{n\geq 0} u_n^-$ convergent, alors $\sum_{n\geq 0} |u_n|$ converge $\Rightarrow \sum_{n\geq 0} u_n$ est ACV.

Proposition:

Soit $\sum_{n\geq 0} u_n$ une série à termes complexes. On a $\sum_{n\geq 0} u_n$ est ACV $\Leftrightarrow \sum_{n\geq 0} Re(u_n)$ et $\sum_{n\geq 0} Im(u_n)$ sont ACV.

Application : Montrer la proposition précédente.

Domination, convergence et équivalence

• Rappel: Soient (u_n) et (v_n) deux suites.

- $u_n = O(v_n)$ ssi $\exists M > 0, |u_n| \le M|v_n|$ au voisinage de l'infini (n assez grand) $\Leftrightarrow |\frac{u_n}{v_n}|$ est bornée.
- $u_n = o(v_n)$ ssi $\frac{u_n}{v_n} \xrightarrow[n \to \infty]{} 0$. $(u_n \text{ est n\'egligeable devant } v_n)$
- $u_n = o(v_n) \Rightarrow u_n = O(v_n)$
- $u_n \sim v_n$ ssi $\frac{u_n}{v_n} \xrightarrow[n \to \infty]{} 1$. $(u_n \text{ est équivalent à } v_n)$

Proposition: (admis)

Soient $\sum_{n\geq 0}u_n$ et $\sum_{n\geq 0}v_n$ deux séries à termes positifs. On suppose $u_n=O_{+\infty}(v_n)$.

- Si $\sum_{n\geq 0} v_n$ converge, alors $\sum_{n\geq 0} u_n$ converge.
- Si $\sum_{n\geq 0} u_n$ diverge, alors $\sum_{n\geq 0} v_n$ diverge.

Indication pour la preuve:

Il suffit de remarquer que $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} Mv_n$ sont de même nature ; et M est tel que $u_n\leq Mv_n$

X Attention **X** Si on sait que $\sum_{n\geq 0} v_n$ alors pour montrer que $\sum_{n\geq 0} u_n$ converge, il suffit de montrer que $u_n=0$

(en réalité il faudrait montrer grand O, mais $o \Rightarrow O$ donc c'est plus fort et plus simple à montrer)

Corollaire: (admis)

Soit $\sum_{n\geq 0} u_n$ une série à terme général dans $\mathbb C$ et soit $\sum_{n\geq 0} v_n$ une série à terme général positif tel que $\sum_{n\geq 0} v_n$

Si $u_n = O_{+\infty}(v_n)$, alors $\sum_{n>0} u_n$ converge absolument (ACV).

Application : Montrer le corollaire précédent.

Théorème: "Hyper² important"

Soit $\sum_{n\geq 0} u_n$ une série à terme général dans $\mathbb C$ et soit $\sum_{n\geq 0} v_n$ une série à termes positifs.

On suppose $u_n \sim_{+\infty} v_n$.

(on pourrait mettre une constante)

On a:

- Si $\sum_{n\geq 0} v_n$ converge alors $\sum_{n\geq 0} u_n$ converge absolument (ACV).
- Si $\sum_{n\geq 0} v_n$ diverge alors $\sum_{n\geq 0} u_n$ diverge.

1 Remarque : Si $u_n \ge 0$ alors $\sum_{n\ge 0} u_n$ et $\sum_{n\ge 0} v_n$ sont de même nature.

Séries de références

Série de Riemann

Théorème:

Soit $\alpha \in \mathbb{R}$. Soit la série $\sum_{n \geq 1} \frac{1}{n^{\alpha}}$, dite série de Riemann.

Preuve:

On a vu que pour $\alpha = 1$, la série diverge (série harmonique).

- Si $\alpha \leq 1, \frac{1}{n^{\alpha}} \geq \frac{1}{n}$. Donc par le théorème de comparaison, $\sum_{n \geq 1} \frac{1}{n^{\alpha}}$ diverge.
- \Leftarrow / Supposons $\alpha > 1$.

Considérons la série $\sum_{n>1} u_n$ de terme général $u_n = \frac{1}{n^{\alpha-1}} - \frac{1}{(n+1)^{\alpha-1}}$.

Observation 1: $\forall N \in \mathbb{N}^*, \sum_{n=1}^N u_n = 1 - \frac{1}{(N+1)^{\alpha-1}} \text{ donc } \sum_{n\geq 1} u_n \text{ converge (car } \alpha-1>0).$ (téléscopage)

Observation 2 : Déterminons un équivalent de u_n .

$$\begin{array}{l} \text{Observation 2: Determinons un equivalent de u_n.} \\ u_n = \frac{1}{n^{\alpha-1}} - \frac{1}{(n+1)^{\alpha-1}} = \frac{1}{n^{\alpha-1}} \big(1 - \big(\frac{n}{n+1}\big)^{\alpha-1}\big). \\ \text{On a } \big(\frac{n}{n+1}\big)^{\alpha-1} = \big(\frac{n+1-1}{n+1}\big)^{\alpha-1} = \big(1 - \frac{1}{n+1}\big)^{\alpha-1} = 1 - \frac{\alpha-1}{n} + o_{+\infty}\big(\frac{1}{n}\big) \text{ (DL ordre 1).} \\ \Rightarrow 1 - \big(\frac{n}{n+1}\big)^{\alpha-1} = \frac{\alpha-1}{n} + o_{+\infty}\big(\frac{1}{n}\big) \sim_{+\infty} \frac{\alpha-1}{n}. \\ \text{Donc } u_n \sim_{+\infty} \frac{1}{n^{\alpha-1}} \times \frac{\alpha-1}{n} = \frac{\alpha-1}{n^{\alpha}} > 0. \end{array}$$

On a deux séries à termes positifs $\sum_{n>1}u_n$ et $\sum_{n>1}rac{\alpha-1}{n^{\alpha}}$ qui sont de même nature car équivalentes ($u_n\sim_{+\infty}$ $\frac{\alpha-1}{n^{\alpha}}).$ On en déduit que $\sum_{n\geq 1}\frac{\alpha-1}{n^{\alpha}}$ converge pour $\alpha>1$ par le théorème sur les équivalents. De plus la nature d'une série n'est pas modifiée quand le terme général est multiplié par un scalaire non nul. Donc $\sum_{n\geq 1}\frac{1}{n^{\alpha}}$ est de même nature que $\sum_{n\geq 1}\frac{\alpha-1}{n^{\alpha}}$. Donc $\sum_{n\geq 1}\frac{1}{n^{\alpha}}$ converge.

★ Attention ★ Démonstration probablement en question de cours au partiel/CC:)

Règles de comparaisons avec les séries de Riemann :

Soient $\sum u_n$ une série de terme général dans \mathbb{C} .

- 1. Si $u_n \sim_{+\infty} k \frac{1}{n^{\alpha}}$ avec $k \in \mathbb{C}^*$.
 - Si $\alpha>1$ alors $\sum_{n\geq 1}u_n$ converge absolument (ACV).
 - Si $\alpha \leq 1$ alors $\sum_{n \geq 1} u_n$ diverge.
- 2. Si $\exists \alpha>1, n^{\alpha}|u_n|$ bornée (i.e. $u_n=O(\frac{1}{n^{\alpha}})$), alors $\sum u_n$ converge absolument (ACV). Il suffit de montrer que $u_n=o(\frac{1}{n^{\alpha}})$
- 3. On se restreint à $u_n \in \mathbb{R}$. Si $\exists \alpha \leq 1, n^{\alpha}u_n \xrightarrow[n \to \infty]{} +\infty$, alors $\sum u_n$ diverge.

 $oldsymbol{0}$ Remarque : Penser u_n à terme réel positif et $k \in \mathbb{R}_+^*$ pour la compréhension. (suffisant pour la compréhension et la plupart des exercices)

Application: Montrer les règles de comparaison avec les séries de Riemann.

Application: Etudier la nature de la série de terme général $u_n = \sqrt{n^2 + n + 1} - \sqrt[3]{n^3 + an^2 + bn + c}$ avec $a, b, c \in \mathbb{R}$.

Série géométrique

① Rappel : La série $\sum_{n\geq 0}q^n$ converge $\Leftrightarrow |q|<1$ et dans ce cas $\sum_{n=0}^{\infty}q^n=rac{1}{1-q}$.

Preuve:
$$\Leftarrow \operatorname{Si} |q| < 1$$
, alors $S_N = \sum_{n=0}^N q^n = \frac{1-q^{N+1}}{1-q} \xrightarrow[N \to \infty]{} \frac{1}{1-q}$.

 \Rightarrow Si $|q| \ge 1$, alors $q^n \ne 0$ donc la série diverge (grossièrement).

Règle de Cauchy:

Soit $\sum_{n\geq 0} u_n$ une série à terme général dans $\mathbb C.$

On suppose que $\lim_{n\to\infty} |u_n|^{\frac{1}{n}} = l$ (existe et égale à $l \in [0,+\infty]$, $+\infty$ autorisé).

- 1. Si l < 1, alors $\sum_{n > 0} u_n$ converge absolument (ACV).
- 2. Si l > 1, alors $\sum_{n>0} u_n$ diverge.
- 3. Si l=1, on ne peut rien conclure.

Remarque : Comprendre la règle précédente dans le cas réel, terme positif.

Preuve:

1. Si l < 1, prenons $\varepsilon > 0$ tel que $l + \varepsilon < 1$.

$$\text{Or } |u_n|^{\frac{1}{n}} \xrightarrow[n \to \infty]{} l \text{, donc } \exists N \in \mathbb{N}, \forall n \geq N, |u_n|^{\frac{1}{n}} \leq l + \varepsilon.$$

Donc
$$|u_n| \leq (l+\varepsilon)^n$$
 pour $n \geq N$.

Or la série de terme général $(l+\varepsilon)^n$ est une série géométrique de raison $l+\varepsilon<1$, donc elle converge. Donc $\sum_{n\geq 0} u_n$ converge.

- 2. Laissée à la douce appréciation du lecteur.
- 3. Trouvons une série $\sum_{n\geq 0} u_n$ où $|u_n|^{\frac{1}{n}}\xrightarrow[n\to\infty]{} 1$ et où on ne peut rien conclure sur la nature de la série.

Si on prend
$$u_n=\frac{1}{n^{\alpha}}=e^{-\alpha\ln(n)},$$
 on a bien $u_n^{\frac{1}{n}}=e^{-\alpha\frac{\ln(n)}{n}}\xrightarrow{n\to\infty}1\forall\alpha.$

Or on a convergence pour $\alpha > 1$ et divergence pour $\alpha \le 1$, on ne peut rien conclure.

Application: Etudier la nature de la série de terme général $u_n = \cosh(\frac{1}{n})^{-n^3}$.

Règle de d'Alembert :

Soit $\sum u_n$ une série à terme général dans $\mathbb C$. On suppose que $\lim_{n \to \infty} |\frac{u_{n+1}}{u_n}| = l$ (existe et égale à $l \in [0,+\infty]$, $+\infty$ autorisé).

- 1. Si l < 1, alors $\sum_{n \geq 0} u_n$ converge absolument (ACV).
- 2. Si l > 1, alors $\sum_{n>0} u_n$ diverge.
- 3. Si l=1, on ne peut rien conclure.

Preuve:

 $\begin{array}{l} \text{1. Si } l<1, \text{ prenons } \varepsilon>0 \text{ tel que } l+\varepsilon<1. \\ \text{Or } |\frac{u_{n+1}}{u_n}| \xrightarrow[n \to \infty]{} l, \text{ donc } \exists N \in \mathbb{N}, \forall n \geq N, |\frac{u_{n+1}}{u_n}| \leq l+\varepsilon. \\ \text{Posons } q=l+\varepsilon<1. \\ \text{Ainsi, } |\frac{u_{n+1}}{u_n}| \leq \frac{q^{n+1}}{q^n} \text{ pour } n \geq N. \end{array}$

On a une comparaison du type $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$. On a vu que dans ce cas, $sumb_n$ converge $\Rightarrow \sum a_n$ converge.

Or $\sum q^n$ converge (série géométrique de raison q < 1) donc $\sum u_n$ converge (ACV).

- 2. Comme $\lim_{n\to\infty}|\frac{u_{n+1}}{u_n}|=l>1, \exists N\in\mathbb{N}, \forall n\geq N, |\frac{u_{n+1}}{u_n}|\geq 1\Rightarrow |u_n|$ est minorée par n assez grand. Donc $\sum u_n$ diverge.
- 3. Prendre $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$. On a bien $\frac{(n+1)^{\alpha}}{n} \xrightarrow[n\to\infty]{} 1$ et la nature dépend de α .
- **Application**: Etudier la nature de la série de terme général $u_n = \frac{n!}{n^n}$.

🗭 Note de rédaction : On a évoqué en cours la formule de Stirling pour la culture, mais elle est hors programme : $n! \sim \sqrt{2\pi n(\frac{n}{a})^n}$.

Proposition: Comparaison des règles de d'Alembert et de Cauchy

Soit $\sum u_n$ une série à terme général positif ou nul. On suppose que $\frac{u_{n+1}}{u_n}\xrightarrow[n\to\infty]{}l\in[0,+\infty].$

Alors $u_n^{\frac{1}{n}} \xrightarrow[n \to \infty]{} l$.

Preuve:

On suppose $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = l, l>0, l\neq +\infty$.

On a $\forall l_1, 0 < l_1 < l, \sum_{n \geq 0}^{u_n} \frac{l_1^n}{u_n}$ converge par la règle de d'Alembert. En effet, $\frac{l_1^{n+1}}{u_{n+1}} \times \frac{u_n}{l_1^n} = l_1 \times \frac{u_n}{u_{n+1}} \xrightarrow[n \to \infty]{l_1} \frac{l_1}{l} < 1.$

Par convergence de la série on a que $\frac{l_1^n}{u_n} \xrightarrow[n \to \infty]{} 0$.

À partir d'un certain rang, $\frac{l_1^n}{u_n} \leq 1 \Rightarrow l_1^n \leq u_n \Rightarrow l_1 \leq u_n^{\frac{1}{n}}$.

On a $\forall l_2, 0 < l < l_2, \sum_{n \geq 0} rac{u_n}{l_n^n}$ converge par la règle de d'Alembert.

À partir d'un certain rang (même argument que pour l_1), $u_n \leq l_2^n \Rightarrow u_n^{\frac{1}{n}} \leq l_2$.

Donc $l_1 \le u_n^{\frac{1}{n}} \le l_2$, $\forall l_1 < l < l_2$ pour un n assez grand.

On fait tendre n vers ∞ puis l_1 et l_2 vers l et on en déduit que $u_n^{\frac{1}{n}} \xrightarrow[n \to \infty]{} l$.

X Attention **X** La réciproque est fausse.

Exemple : Contre-exemple.

Soit 0 < a < b. Posons :

$$u_n = \begin{cases} a^p b^p & \text{si n = 2p} \\ a^{p+1} b^p & \text{si n = 2p + 1} \end{cases}$$

On a $u_n^{\frac{1}{n}} \xrightarrow[n \to \infty]{} ab$ (peu importe la parité de n).

Mais $\frac{u_{n+1}}{u_n}$ dépend de la parité de n.

Remarque: Donc on préfère la règle de d'Alembert à celle de Cauchy. Mais si la règle d'Alembert ne donne rien, la règle de Cauchy ne donnera rien non plus.

Séries semi-convergentes

Mais on a pas les outils pour voir si elle est "seulement" convergente. *Idem* pour la série $\sum_{n\geq 1} \frac{(-1)^n}{n}$.

Donc le but ici, c'est de trouver des critères de convergence pour des séries qui ne sont pas ACV.

Définitions et premières propriétés

Définition: Une série est dite semi-convergente (SCV) si elle est convergente mais pas absolument convergente.

f 0 Remarque : On considère ici les les séries à terme général $u_n\in\mathbb{C}$ ou \mathbb{R} (on a pas $u_n\geq 0$).

Proposition: "étrange"

Soit $\sum_{n\geq 0} u_n$ une série à terme général dans \mathbb{R} .

On considère la série $\sum_{n>0} u_n^+$ et $\sum_{n>0} u_n^-$.

On a $\sum_{n\geq 0} u_n$ est SCV $\Rightarrow \sum_{n\geq 0} u_n^+$ et $\sum_{n\geq 0} u_n^-$ divergent.

On rappelle que $u_n^+ = \max(u_n, 0)$ et $u_n^- = \max(-u_n, 0)$ et donc $u_n = u_n^+ - u_n^-$ (2) et $|u_n| = u_n^+ + u_n^-$ (1).

- Si $\sum_{n\geq 0} u_n^+$ et $\sum_{n\geq 0} u_n^-$ convergent, alors $\sum_{n\geq 0} u_n$ ACV par (1) : **absurde**.
- Si l'une des séries converge et l'autre diverge, alors $\sum_{n\geq 0} u_n$ diverge par (2).
- Seule possibilité donc : $\sum_{n\geq 0} u_n^+$ et $\sum_{n\geq 0} u_n^-$ divergent.

Proposition:

Considérons $\sum_{n>0} u_n$ une série à terme général dans \mathbb{C} .

 $\sum_{n\geq 0} u_n$ est SCV $\Leftrightarrow \sum_{n\geq 0} Re(u_n)$ et $\sum_{n\geq 0} Im(u_n)$ sont CV et l'une d'entre elles est SCV.

 $\Rightarrow / \operatorname{Si} \textstyle \sum_{n \geq 0} u_n \text{ est CV, alors } \sum n = 0^N u_n = \sum_{n = 0}^N Re(u_n) + i \sum_{n = 0}^N Im(u_n).$ Donc on a la CV des séries $\sum_{n \geq 0} Re(u_n)$ et $\sum_{n \geq 0} Im(u_n)$.

Montrons que l'une des deux séries n'est pas ACV.

En effet on a $\forall n \in \mathbb{N}, |u_n| \leq |Re(u_n)| + |Im(u_n)|$ si $\sum_{n>0} |Re(u_n)|$ et $\sum_{n>0} |Im(u_n)|$ ACV.

- ⇒ une des deux séries n'est pas ACV.
- ⇒ une des deux séries est ACV.

 \Leftarrow / On a que $\sum_{n\geq 0} Re(u_n)$ et $\sum_{n\geq 0} Im(u_n)$ sont CV.

Donc $\sum_{n>0} u_n$ est CV

Montrons que $\sum_{n\geq 0} u_n$ est SCV.

On a : $|Re(u_n)| \leq \overline{|u_n|}$ et $|Im(u_n)| \leq |u_n|$, $\forall n \in \mathbb{N}$.

Si $\sum_{n\geq 0}u_n$ était ACV, alors $\sum_{n\geq 0}Re(u_n)$ et $\sum_{n\geq 0}Im(u_n)$ seraient ACV ce qui est contraite à l'hypothèse "l'une d'entre elles est SCV".

Critère d'Abel

Application: On veut donner un critère pour la convergence d'une série du type $\sum_{n\geq 1} \frac{e^{in\theta}}{n} = a_n b_n$ avec $a_n = e^{in\theta}$ et $b_n = \frac{1}{n}$.

Théorème: Critère d'Abel

On considère la série $\sum_{n>0}u_n$ où $\sum_{n>0}u_n\in\mathbb{C}$, avec $u_n=a_nb_n$ tels quels :

- 1. (a_n) est réelle, décroissante, et $\lim_{n\to\infty} a_n = 0$.
- 2. (b_n) est complexe telle que $B_N = \sum_{n=0}^N b_n$, i.e. (B_N) est bornée.

Alors la série $\sum_{n>0} a_n b_n$ converge.

① Rappel: Une suite complexe est bornée: $\exists M>0, \forall n\in\mathbb{N}, |z_n|\leq M$, où $|z_n|=\sqrt{Re(z_n)^2+Im(z_n)^2}$.

Preuve:

On va utiliser la "transformation d'Abel". On a $B_N = \sum_{n=0}^N b_n$.

Alors $B_k - B_{k-1} = b_k$, $\forall k \ge 1$ et $B_0 = b_0$.

$$\forall n \in \mathbb{N}, \sum_{k=1}^{N} a_k b_k = a_0 b_0 + \sum_{k=1}^{N} a_k (B_k - B_{k-1})$$

$$= a_0 b_0 + \sum_{k=1}^{N} a_k B_k - \sum_{k=1}^{N} a_k B_{k-1}$$

$$= a_0 b_0 + \sum_{k=1}^{N} a_k B_k - \sum_{k=0}^{N-1} a_{k+1} B_k$$

On part de la somme partielle de la série :
$$\forall n \in \mathbb{N}, \sum_{k=1}^{N} a_k b_k = a_0 b_0 + \sum_{k=1}^{N} a_k (B_k - B_{k-1})$$

$$= a_0 b_0 + \sum_{k=1}^{N} a_k B_k - \sum_{k=1}^{N} a_k B_{k-1}$$

$$= a_0 b_0 + \sum_{k=1}^{N} a_k B_k - \sum_{k=0}^{N-1} a_{k+1} B_k$$

$$= a_0 b_0 + \sum_{k=1}^{N-1} (a_k - a_{k+1}) B_k + a_N B_N - a_1 b_0 = \sum_{k=0}^{N} (a_k - a_{k+1}) B_k + a_n B_N \text{ avec } a_n \text{ tend vers 0 et } B_n \text{ bornée}$$

Etude de $\sum_{k=0}^N (a_k-a_{k+1})B_k$, séries à termes dans $\mathbb C.$ Etudions donc l'ACV :

$$|a_k - a_{k+1}B_k||a_k - a_{k+1}||B_k| \le (a_k - a_{k+1})M \text{ car } |B_k| \le M$$

Or la série $\sum_{k=0}^N (a_k-a_{k+1})M$ est de même nature que $\sum_{k=0}^N a_k-a_{k+1}$ (car M est un scalaire non nul). Et la CV de cette série téléscopique est évidente.

🗭 Note de rédaction : Il y avait beaucoup d'indices et d'infos, j'attends la vérification de Laurent pour être sûr que c'est correct (j'ai un doute sur la fin).

Donc la série $\sum_{n>1} \frac{e^{in\theta}}{n}$ converge, mais pas ACV, donc elle est SCV.

 $m \Delta$ Application : Etudier la convergence, l'absolue convergence et la semi-convergence de la série $\sum_{n\geq 1} rac{e^{in heta}}{n^{lpha}}$ avec $\theta \in \mathbb{R}, \alpha \in \mathbb{R}_+^*$.

① Remarque : Dans le critère d'Abel, comme (a_n) est décroissante et $a_n \xrightarrow[n \to \infty]{} 0$, $a_n \ge 0$ (car $a_n \in \mathbb{R}$).

C Séries alternées

Définition : Une série $\sum_{n>0} u_n$ est dite **alternée** si $u_n = (-1)^n a_n$ ou $u_n = (-1)^{n+1} a_n$ avec $a_n \ge 0$.

Exemple: $\sum_{n\geq 0} \frac{(-1)^n}{n}$, $\sum_{n\geq 0} (-1)^n$ sont des séries alternées.

1 Remarque: $(-1)^n \cdot u_n = (-1)^{2n} a_n = a_n$ ou $u_n = -a_n \Rightarrow (-1)^n u_n$ est de signe constant

1 Remarque : Une définition équivalente est : une série est alternée si le signe de $(-1)^n \cdot u_n$ est constant.

Théorème : Critère spécial des séries alternées (CSSA)

Soit $\sum_{n\geq 0}u_n$ une série de terme général $u_n=(-1)^na_n$, avec $a_n\geq 0$. Si :

- 1. (a_n) est décroissante.
- $2. \lim_{n\to\infty} a_n = 0.$

Alors la série $\sum_{n>0} u_n$ converge.

Preuve:

On applique le critère d'Abel avec $a_n = a_n$ et $b_n = (-1)^n$.

On a bien $a_n \xrightarrow[n \to \infty]{} 0$ et (a_n) décroissante.

De plus, $B_N = \sum_{n=0}^N (-1)^n = \frac{1-(-1)^{N+1}}{1-(-1)}$ est bornée (égale à 0 ou 1).

Donc la série $\sum_{n>0} u_n$ converge.

Proposition:

Soit $\sum_{n\geq 0} (-1)^n a_n$ une série alternée vérifiant les hypothèses du CSSA (donc (a_n) est décroissante et $\lim_{n\to\infty} a_n = 0$).

On considère la suite des sommes partielles (S_N) avec $S_N = \sum_{k=0}^N (-1)^k a_k$.

Soit S la somme de la série.

Alors

$$S_{2N+1} \le S \le S_{2N}$$
 et $|R_N| = |S - S_N| \le a_{N+1}$.

Preuve

On pouse $A_N = S_{2N}$ et $B_N = S_{2N+1}$.

On observe que $S_{2N+1} - S_{2N} = -a_{2N+1} \le 0$

 $\Leftrightarrow S_{2N+1} \leq S_{2N}$.

Variations de (A_N) *et* (B_N)

 $A_{N+1}-A_N=S_{2N+2}-S_{2N}=a_{2N+2}-a_{2N+1}\leq 0$ car (a_n) décroissante.

 $\Leftrightarrow A_{N+1} \leq A_N$. Donc (A_N) est décroissante et $B_{N+1} - B_N = S_{2N+3} - S_{2N+1} = a_{2N+2} - a_{2N+3} \geq 0$ car (a_n) décroissante.

 $\Leftrightarrow B_{N+1} \geq B_N$. Donc (B_N) est croissante.

De plus, on a $B_N-A_N \xrightarrow[N \to \infty]{} 0$ donc (A_N) et (B_N) sont adjacentes, et convergent vers la même limite S. et donc $B_N \le S \le A_N$ où $S = \lim_{N \to \infty} A_N = \lim_{N \to \infty} B_N$.

On a bien $S_{2N+1} \leq S \leq S_{2N}, \forall N \in \mathbb{N}.$

Etudions maintenant le reste.

 $R_N = S - S_N$, on veut montrer que $|R_N| \le a_{N+1}$.

Séparons le cas N pair et impair :

- Si N=2p+1, alors $S_{2p+1} \leq S \implies S-S_{2p+1} \geq 0$. $\Rightarrow |R_{2p+1}| = S-S_{2p+1} \leq S_{2p+2}-S_{2p+1} = a_{2p+2} = a_{N+1}$.
- Laissé en exercice au lecteur :) □

× Attention ×

- 1. Si deux suites sont équivalentes (\sim) et l'une monotone, l'autre ne l'est pas forcément. \P Exemple : $a_n =$ $\frac{1}{\sqrt{n}+(-1)^n}$ et $b_n=\frac{1}{\sqrt{n}}$. On a $a_n\sim b_n$ mais (a_n) n'est pas monotone (on le montre en encadrant/calculant 3 termes consécutifs (2p, 2p+1, 2p+2), alors que (b_n) l'est).
- 2. Considérons $\sum_{n\geq 0} (-1)^n a_n$. On remarque que $\sum_{n\geq 0} (-1)^n a_n$ n'est pas ACV. Est-elle semi-convergente ? Le CSSA ne s'applique pas. Mais $(-1)^n a_n \sim \frac{(-1)^n}{\sqrt{n}}$ QUI N'IMPLIQUE PAS " $\sum_{n\geq 0} (-1)^n a_n$ CV car $\sum_{n\geq 0} \frac{(-1)^n}{\sqrt{n}}$ CV" (car $\sum_{n\geq 0} \frac{(-1)^n}{\sqrt{n}}$ n'est pas positive).

À faire : Montrer que $(-1)^n a_n = \frac{(-1)^n}{\sqrt(n)} + b_n$, où $b_n = \frac{-1}{\sqrt{n}(\sqrt{n}+(-1)^n)}$ et en déduire que $\sum u_n$ DV.

Donc $u_n \sim v_n$, $\sum v_n$ CV $\implies \sum u_n CV$ que si $v_n est \geq 0 ou \leq 0$

VII Produit de Cauchy de deux séries

Définition : Soient $\sum_{n\geq 0} a_n$ et $\sum_{n\geq 0} b_n$ deux séries.

La série produit (de Cauchy) est définie par la série $\sum_{n>0} c_n$ où $c_n = \sum_{p+q=n} a_p b_q = \sum_{k=0}^n a_k b_{n-k}, \forall n \in \mathbb{N}$.

1 Remarque: Supposons que $a_n=0=b_n$ pour $n>N\in\mathbb{N}$. Considérons $P(X)=a_0+a_1X+...+a_nX^n$ et $Q(X) = b_0 + b_1 X + \dots + b_n X^n.$

Alors $(PQ)(X) = c_0 + c_1X + ... + c_{2N}X^{2N}$. On peut penser au produit de Cauchy comme une "généralisation".

Proposition:

On considère $\sum_{n>0} a_n$ et $\sum_{n>0} b_n$ deux séries à termes positifs et convergentes.

Alors la série produit $\sum_{n>0} c_n$ est convergente et on a : $\sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n)$.

Soient $A_n = \sum_{n=0}^N a_n$ et $B_N = \sum_{n=0}^N b_n$. Notons $C_N = \sum_{n=0}^N c_n = \sum_{n=0}^N \sum_{k=0}^n a_k b_{n-k}$.

On veut monrer que (C_N) converge et déterminer sa limite.

 (C_n) est une somme partielle à termes positifs, donc (C_N) est croissante.

Posons $I_N = \{0, \dots, N\} \subset \mathbb{N}$

 \bigcirc Note de rédaction : Dessin $I_N x I_N$

Considérons $A_N B_N = \sum_{(p,q) \in I_N x I_N} a_p b_q$.

Mais $C_N = \sum_{n=0}^N c_n = \sum_{n=0}^N \sum_{p+q=n} a_p b_q = \sum_{(p,q) \in I_N^2, p+q \le N} a_p b_q.$ On a $\{(p,q) \mid p+q \le N\} \subset \{(p,q) \mid p,q \in I_N\}$, donc $C_N \le A_N B_N$ (1) qui est bornée car A_N CV et B_N CV $\implies C_N$ bornée.

On a aussi l'inégalité : $A_N B_N \leq C_{2N}(2)$

Note de rédaction : Deuxième schema

car $\{(p,q) \mid p+q \leq N\} \supset \{(p,q) \mid 0 \leq p,q \leq N\}$. On obtient $\lim_{n \to \infty} c_n = \lim_{n \to \infty} (A_N B_N) = (\lim_{n \to \infty} A_N)$. $(\lim_{+\infty} B_N)$. \square

Théorème:

Soient $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux séries à termes dans $\mathbb C.$

Si les séries sont ACV, alors la série produit $\sum_{n\geq 0} c_n$ est ACV.

Preuve:

On considère $A_N = \sum_{n=0}^N |a_n|, \ B_N = \sum_{n=0}^N |b_n|$ et $C_N = \sum_{n=0}^N |c_n|$. D'après la proposition précédente et sa démonstration, on a $A_N B_N - C_N \xrightarrow[N \to \infty]{} 0$. (on va utiliser cette propriété)

On a $\forall N \in \mathbb{N}, |(\sum_{n=0}^N a_n)(\sum_{n=0}^N |b_n|) - (\sum_{n=0}^N |c_n|)|.$

On peut donc écrire :

$$|(\sum_{n=0}^{N}a_n)(\sum_{n=0}^{N}|b_n|)-(\sum_{n=0}^{N}|c_n|)| = |\sum_{p\in I_N}\sum_{q\in I_N}a_pb_q - \sum_{(p,q)\in I_N^2, p+q\leq N}a_pb_q| = |\sum_{(p,q)\in I_N^2}a_pb_q - \sum_{(p,q)\in J_N^2}a_pb_q| \text{ où } J_N = \{(p,q)\mid p+q\leq N\}$$

Or $J_N \subset I_N^2$, donc

$$|\sum_{(p,q)\in I_N^2} a_p b_q - \sum_{(p,q)\in J_N^2} a_p b_q| = |\sum_{(p,q)\in I_N^2\backslash J_N^2} a_p b_q| = \sum_{(p,q)\in K_N} |a_p b_q|$$

où $K_N=I_N^2\setminus J_N^2=\{(p,q)\mid p+q>N\}$

$$\leq \sum_{\substack{(p,q) \in K_N \\ N \to \infty}} |a_p| |b_q| = (\sum_{n=0}^N |a_n|) (\sum_{n=0}^N |b_n|) - \sum_{n=0}^N |c_n| = A_N B_N - C_N \xrightarrow[N \to \infty]{} 0$$

par la proposition précédente et l'inégalité triangulaire.

Poly Note de rédaction : À changer dans la démo A_N en A'_N et B_N en B'_N . De plus, il faut mettre $C'_N = \sum_{n=0}^N |c'_n| = \sum_{n=0}^N |a_k| |b_{n-k}|$ et pas $|\sum_{n=0}^N a_k b_{n-k}|$.

f 0 Remarque : L'hypothèse d'absolue convergence pour $\sum a_n$ et $\sum b_n$ est très importante dans le théorème. L'hypothèse de positivité dans la proposition qui précède le théorème est fondamentale.

§ Exemple: On considère la série de terme général $u_n = \frac{(-1)^n}{\sqrt{n}}$.

- u_n n'est pas positive.
- On a pas l'absolue convergence.
- Le CSSA s'applique car $a_n = \frac{1}{\sqrt{n}}$ est positive, décroissante et tend vers 0.

Considérons le produit de Cauchy. $(\sum_{n\geq 1}u_n)(\sum_{n\geq 1}u_n)=\sum_{n\geq 1}c_n$ où $c_n=\sum_{k=1}^{n-1}\frac{(-1)^k}{\sqrt{k}}\cdot\frac{(-1)^{n-k}}{\sqrt{n-k}}$ Montrons que $\sum_{n\geq 1}c_n$ diverge (en montrant que ça ne tend pas vers 0). On a $|c_n|=|\sum_{k=1}^{n-1}\frac{1}{\sqrt{k\cdot(n-k)}}|$

On a $k(n-k) \le kn - k^2 \le kn \le (n-1)n$.

$$\mathsf{Donc}\ |c_n| = |\sum_{k=1}^{n-1} \frac{1}{\sqrt{k \cdot (n-k)}}| \ge \sum_{k=1}^{n-1} \frac{1}{\sqrt{(n-1)n}} = \frac{n-1}{\sqrt{(n-1)n}} = \sqrt{\frac{n-1}{n}}.$$

Conclusion : Pour faire le produit de Cauchy de deux séries, il faut :

- 1. Que les deux séries soient ACV.
- 2. ou Que les deux séries soient à termes positifs et CV.

Application: Fixons $z \in \mathbb{C}$. Etudions la convergence de la série $\sum_{n \geq 0} \frac{z^n}{n!}$.

1. Montrons que $\forall n \in \mathbb{N}$ la série ACV.

On va utiliser la règle de d'Alembert : $\frac{|u_{n+1}|}{|u_n|} = \frac{|z|}{(n+1)}$

Donc $\forall z \in \mathbb{C}, \frac{z^n}{n!} \xrightarrow[n \to \infty]{} 0.$

Donc $\forall z \in \mathbb{C}, \sum_{n>0} u_n(z)$ est ACV.

1 Remarque : On a le bon goût de pouvoir appeller $\sum_{n\geq 0}\frac{z^n}{n!}:=exp(z)$. (je dis bon goût mais ça risque de faire

mal bientôt)

2. Calculons $exp(z) \cdot exp(z')$ avec $z, z' \in \mathbb{C}$.

Comme les deux séries sont ACV, on peut faire le produit de Cauchy.

$$\begin{array}{l} \exp(z) \cdot \exp(z') = \sum_{n \geq 0} c_n \text{ où } c_n = \sum_{k=0}^n \frac{z^k}{k!} \cdot \frac{(z')^{n-k}}{(n-k)!} \\ \text{On a } c_n = \frac{1}{n!} \sum_{k=0}^n \frac{n!}{k!(n-k)!} z^k (z')^{n-k} = \frac{(z+z')^n}{n!} \text{ par le binôme de Newton.} \\ \text{Donc } \exp(z) \cdot \exp(z') = \sum_{n \geq 0}^{+\infty} \frac{(z+z')^n}{n!} = \exp(z+z'). \end{array}$$

VIII Compléments

A Hors-programme : Séries commutativement convergentes

Note de rédaction : On a traité de ça en parlant rapidement de permutations. À voir chez Laurent si c'est nécessaire à mettre, mais je l'omets ici pour l'instant.

B Introduction aux séries de Taylor d'une fonction

Définition : Considérons $f:I\to\mathbb{R}$ où I est un intervalle ouvert contenant o. Supposons que $f\in\mathcal{C}^\infty(I)$. (i.e. f est dérivable autant de fois qu'on veut sur I et les dérivées sont continues). La série de Taylor associée à f au voisinage de 0 est la série $\sum_{n\geq 0} \frac{f^{(n)}(0)}{n!} x^n$.

Ici, $x \in \mathcal{V}(0)$ (cela peut être I tout entier). Et il s'agit en fait d'une série de fonctions: $x \in \mathcal{V}(0) \subset I \mapsto \frac{f^{(n)}(0)}{n!}x^n$. À ce stade du cours, on y pense comme une série numérique à x fixé.

Deux questions se posent :

- 1. Pour quels $x \in I$ la série de Taylor $\sum_{n \geq 0} \frac{f^{(n)}(0)}{n!} x^n$ converge-t-elle ?
- 2. Si elle converge "pour des x", a-t-elle pour somme f(x) ?

(1) Remarque : Plus généralement, si I est quelconque et que on prend $a < b \in I$, les mêmes questions se posent de la façon suivante : $f(b) = \sum_{n \geq 0} \frac{(b-a)^n}{n!} f^{(n)}(a)$?

1 Remarque : Les sommes partielles de la série de Taylor associée à f, i.e. $\sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} x^n, x \in I$ sont appelées polynômes de Taylor

Réponses partielles aux questions.

- 1. Utiliser les règles de d'Alembert ou de Cauchy pour déterminer les $x \in I$ tels que $\sum_{n \geq 0} \frac{f^{(n)}(0)}{n!} x^n$ converge.
- 2. Utilisons la formule de Taylor avec reste intégral si on veut montrer que pour les x où $\sum_{n\geq 0} \frac{f^{(n)}(0)}{n!} x^n$ converge, on a $f(x)=\sum_{n\geq 0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$.

 Ou de manière équivalente $\sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} x^n \xrightarrow[N \to \infty]{} f(x)$. (convergence à x fixé !)
- Application : Retrouvons la formule de Taylor avec reste intégral.

Théorème fondamental de l'analyse : Rappel (admis)

Soit
$$x \in I, x > 0$$
.
Alors $f(x) - f(0) = \int_0^x f'(t)dt$.

$$\int_0^x f'(t)dt = \int_0^x (t-x)'f'(t)dt = [(t-x)f'(t)]_0^x - \int_0^x (t-x)f''(t)dt.$$

$$= -xf'(0) + \int_0^x (x-t)f''(t)dt.$$
Ce qui se réécrit : $f(x) - f(0) - xf'(0) = \int_0^x (x-t)f''(t)dt.$
On refait la même chose pour f'' :
$$\int_0^x (x-t)f''(t)dt = \int_0^x ((x-t)^2/2)'f''(t)dt = -[(x-t)^2/2f''(t)]_0^x + \int_0^x (x-t)^2/2f^{(3)}(t)dt.$$

$$=-x^2/2f''(0)+\int_0^x(x-t)^2/2f^{(3)}(t)dt$$

= $-x^2/2f''(0) + \int_0^x (x-t)^2/2f^{(3)}(t)dt$. Ce qui se réécrit : $f(x) - f(0) - xf'(0) - x^2/2f''(0) = \int_0^x (x-t)^2/2f^{(3)}(t)dt$. Puis on continue par récurrence et on a :

Théorème : Taylor avec R.I.

$$f \in \mathcal{C}^{\infty}(I), I \ni 0$$

On a
$$\forall x \in I, x > 0, f(x) - \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$