Solutions to Sheet 12

Exercise 1

Let I be an ideal of a number field K. Show that htere is a finite field extension L of K such that $I\mathcal{O}_L$ is a principal ideal of \mathcal{O}_L .

Solution. By finiteness of Cl(K) there is some integer m such that $[I]^m = [I^m] = [(1)] \in Cl(K)$, i.e., $I^m = (\alpha)$ is a principal ideal. We put $L = K(\alpha^{1/m})$. Now $\alpha^{1/m} \in \mathcal{O}_L$, and we have

$$(I\mathcal{O}_L)^m = I^m \mathcal{O}_L = \alpha \mathcal{O}_L = (\alpha^{1/m})^m \mathcal{O}_L.$$

After decomposing $I\mathcal{O}_L$ and $\alpha^{1/m}\mathcal{O}_L$ into prime factors, we see that this equation implies $I\mathcal{O}_L = \alpha^{1/m}\mathcal{O}_L$.

Exercise 2

Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ and set

$$\Gamma = \{ (1 + \sqrt{2})^i (2 + \sqrt{3})^j (\sqrt{2} + \sqrt{3})^k \mid i, j, k \in \mathbb{Z} \}.$$

Show that Γ is a subgroup of \mathcal{O}_K^{\times} and that $[\mathcal{O}_K^{\times}:\Gamma]<\infty$.

Solution. Write u, v, w for the respective factors, so that $\Gamma = u^{\mathbb{Z}}v^{\mathbb{Z}}w^{\mathbb{Z}}$. Note that $N_{K/\mathbb{Q}}(u) = N_{K/\mathbb{Q}}(v) = 1$ and $N_{K/\mathbb{Q}}(w) = -1$, so that indeed, u, v, w are units and Γ is a subgroup of \mathcal{O}_K^{\times} . One quickly verifies that K is totally real. Indeed, it is Galois and there is a embedding $K \hookrightarrow \mathbb{R}$ (now all other embeddings are obtained by shifting with elements in the Galois group). Hence, by Dirichlet's unit theorem,

$$\mathcal{O}_K^{\times} \cong \mu(K) \times \mathbb{Z}^{r+s-1} = \pm 1 \times \mathbb{Z}^3.$$

On the other hand, Γ is free of rank 3. Indeed, $u \in \mathbb{Q}(\sqrt{2})^{\times}$, $v \in \mathbb{Q}(\sqrt{3})^{\times}$ and $w \in \mathbb{Q}(\sqrt{2}, \sqrt{3})^{\times} \setminus (\mathbb{Q}(\sqrt{2})^{\times} \cup \mathbb{Q}(\sqrt{3})^{\times}) \cup \{1\}$. These multiplicative subsets of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ only have trivial intersection.

Let $\mathcal{O}_{K,>0}^{\times} \cong \mathbb{Z}^3$ be the (free) group of positive units (here we implicitly fix a inclusion $K \hookrightarrow \mathbb{R}$). Now Γ is a free subgroup of full rank this group, and in particular, its has finite index. The inclusion $\mathcal{O}_{K,>0}^{\times} \hookrightarrow \mathcal{O}_{K}^{\times}$ also has finite index, hence $\Gamma \hookrightarrow \mathcal{O}_{K}^{\times}$ has finite index.

Exercise 3

Let K be a totally real number field, i.e., one that has **only** real embeddings. Let

$$T \subset \operatorname{Hom}(K, \mathbb{R}) = \{ \tau : K \to \mathbb{R} \mid \tau \text{ is a field homomorphism} \}$$

be a proper non-mepty subset. Show that there exists $u \in \mathcal{O}_K^{\times}$ such that $0 < \tau(u) < 1$ for $\tau \in T$ and $\tau(u) > 1$ for $\tau \in \text{Hom}(K, \mathbb{R}) \setminus T$.

Solution. Let $\sigma_1, \ldots, \sigma_r : K \to \mathbb{R}$ be the real embeddings of K (in our case $r = n = [K : \mathbb{Q}]$). From the proof of Dirichlet's unit theorem, we know that the map

$$\mathcal{L}: \mathcal{O}_K^{\times} \to \mathbb{R}^r, \quad u \mapsto (\log |\sigma_1(u)|, \dots, \log |\sigma_r(u)|)$$

is a group homomorphism from \mathcal{O}_K to \mathbb{R}^{r-1} . It's image lies in the sub vector space V given by

$$V = \left\{ (x_1, \dots, x_r)^t \in \mathbb{R}^r \mid \sum_{i=1}^r x_i = 0 \right\},$$

and its kernel is given by $\mu(K)$, the group of roots of unity in K (in our case this is $\cong \{\pm 1\}$). Also, the image $\mathcal{L}(\mathcal{O}_K^{\times})$ has full rank in V, i.e., $\mathcal{L}(\mathcal{O}_K^{\times}) \otimes_{\mathbb{Z}} \mathbb{R} \cong V$ (it is a lattice in V).

Without loss of generality we can assume that $T = \{\sigma_1, \dots, \sigma_q\}$ for some $1 \leq q < r$. Let $Q \subset \mathbb{R}^r$ be the quadrant given by

$$Q = \{(x_1, \dots, x_r)^t \in \mathbb{R}^r \mid x_i < 0 \text{ for } i = 1, \dots, q \text{ and } x_i > 0 \text{ for } i = q + 1, \dots, r\}.$$

The intersection $Q \cap V$ is non-empty by construction, and one readily verifies that there is a point $x \in Q \cap \mathcal{L}(\mathcal{O}_K^{\times})$. Now choose some preimage $u \in \mathcal{O}_K^{\times}$ of x. As u satisfies $|\sigma_i(u)| < 1$ for $1 \le i \le q$ and $|\sigma_i(u)| > 1$ for $q < i \le r$, the element u^2 satisfies all constraints.

Exercise 4

Let K be a number field, let I be a non-zero ideal of \mathcal{O}_K and let $C \in \mathrm{Cl}(K)$. Use theorem 5.3 to show that there exists a non-zero ideal J of \mathcal{O}_K such that $I + J = \mathcal{O}_K$ and C = [J].

Solution. Theorem 5.3 counts the number of objects in an ideal class up to some given norm t. For $C \in Cl(K)$, let i(K,C,t) be the set of ideal in the given ideal class C with norm $\leq t$ (just as in the statement). Then theorem 5.3 reads

$$i(K, C, t) = \kappa t + O(t^{1-1/d}) = \kappa t + o(t).$$

Here we used big-O-notation, the equation above means essentially is that i(K, C, t) is of size κt up to an error that is bounded by some multiple of $t^{1-1/d}$. Let's solve the exercise. We will show that the set of ideals

$${J \subset \mathcal{O}_K \mid J \in C\&J + I = \mathcal{O}_K\&N(J) \le t}$$

is non-epty for t sufficiently large. Note that two ideals are coprime if and only if they don't share a prime factor.

If we assume that $I = \mathfrak{p}$ is prime, we use that

$$\begin{split} \#\{J \mid \mathcal{N}(J) & \leq t \wedge J + I = \mathcal{O}_K \wedge [J] = C\} \\ & = \#\{J \mid \mathcal{N}(J) \leq t \wedge [J] = C\} - \#\{J \mid \mathcal{N}(J) \leq t \wedge \mathfrak{p} \mid J \wedge [J] = C\} \\ & = \#\{J \mid \mathcal{N} J \leq t \wedge [J] = C\} - \#\{J \mid \mathcal{N}(J) \leq t / \mathcal{N}(\mathfrak{p}) \wedge [J] = C[p^{-1}]\} \\ & = i(K,C;t) - i(K,[p^{-1}]C;t/\mathcal{N}(\mathfrak{p}))\kappa t - \kappa \frac{t}{\mathcal{N}(\mathfrak{p})} + O(t^{1-1/d}) \\ & = \kappa \left(1 - \frac{1}{\mathcal{N}(\mathfrak{p})}\right)t + O(t^{1-1/d}). \end{split}$$

If $I = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r}$, we use the same idea and inclusion-exclusion to find that

$$\#\{J \mid \mathcal{N}(J) \leq t \wedge J + I = \mathcal{O}_K \wedge [J] = C\}
= \sum_{k=0}^{n} \sum_{S \subset \{1, \dots, n\}, |S| = k} (-1)^k \# \left\{ J \mid \mathcal{N}(J) \leq \frac{t}{\prod_{s \in S} \mathcal{N}(\mathfrak{p}_s)} \wedge [J] = \left[\prod_{s \in S} \mathfrak{p}_s^{-1} \right] C \right\}
= \sum_{k=0}^{n} (-1)^k \sum_{S \subset \{1, \dots, n\}, |S| = k} (-1)^k \kappa t \prod_{s \in S} \mathcal{N}(\mathfrak{p}_s)^{-1} + O(t^{1-1/d})
= \kappa t \prod_{\mathfrak{p} \mid I} \left(1 - \frac{1}{\mathcal{N}(\mathfrak{p})} \right) + O(t^{1-1/d}).$$

If t is sufficiently large, this is positive. This result has a nice interpretation, the factor $\prod (1 - \frac{1}{N(\mathfrak{p})})$ is (in some sense) the probability of a random ideal to be coprime to I. So the result is what we would expect.