

Comunicación entre Microcontroladores PIC y NI LabVIEW

Sánchez Heredia Godo

Telf:922206796

orreo: godo.electronica@gmail.com

Comunicación entre Microcontroladores PIC y NI LabVIEW

Sánchez Heredia Godo

https://github.com/GodoSanchezH

Introducción a las nuevas Familias de Microchip

8-bit PIC

Arquitectura PIC18

CORE INDEPENDENT PERIPHERALS

- Reduce carga de procesamiento en CPU
 - Libera a la CPU de enfocarse en la aplicación
- Reduce consumo de energía
 - CPU puede correr a velocidades más lentas
 - CPU puede estar en modo SLEEP
- Módulos de Hardware autónomos (Funcionan independientes al núcleo del Microcontrolador).

CIP

Intelligent Analog

Sensor Interfacing & Signal Conditioning

Waveform Control

PWM Drive & Waveform Generation

Timing & Measurements

Signal Measurement with Timing & Counter Control

Logic & Math

Customizable Logic & Math Functions

Safety & Monitoring

Hardware Monitoring & Fault Detection

Communications

Wired, Wireless & Encryption

User Interface

Capacitive Touch Sensing & LCD Control

Low Power & System Flexibility

XLP Low Power Technology, Peripheral & Interconnects

8-bit PIC® and AVR® Microcontrollers				
CPU		Memory		
8-/10-/12-bit ADC	(Enhanced) Capture/ Compare/ PWM	Input Capture	Direct Memory Access Controller	Configurable Custom Logic
ADC with Gain Stage	Complementary Output Generator	Angular Timer	High Endurance Flash (Data)	Configurable Logic Cell
ADC with Computation*	Complementary Waveform Generator	Charge Time Measurement	Event System	Crypto Engine AES/DES
Comparators	Data Signal Modulator	RTC/C	IDLE & DOZE	CAN
DAC	Numerically Ctld Oscillator	Signal	Peripheral Module	(E)USART
High Speed Comparators*	Programmable Switch Mode Cntlr	Measurement Timer 8-/12-/16-/20-/24-bit	Disable Peripheral Pin	ETHERNET MAC
Operational Amplifiers*	10b/12b/16b PWM	Timers	Select eXtreme Low Power	I ² C/TWI
Ramp Generator*	Waveform Extension	Quadrature Decoder	XLP Technology	LIN
Slope Compensation*	Clock Failure Detection	Output Compare	picoPower	SPI™
Voltage Reference	Cyclical Redundancy Check	mTouch® solution	EEPROM	Keeloq® Sub-GHz RF
Zero Cross Detect*	Hardware Limit Timer	Qtouch Solution	External Bus Interface	Crystal Free USB
High Current I/O*	Windowed WDT	Peripheral Touch Controller	Hardware Multiply	Full-Speed USB Device w/w/o OTG
TEMP Indicator/Sensor	Brown-Out Detection	LCD	Math Accelerator	IRCOM

Herramientas de Software

Entorno de desarrollo oficial para desarrollar aplicaciones con Microcontroladores PIC ,AVR, dsPIC, ATSAM Y PIC32. Compatible con Windows, Linux y Mac.

MPLAB® Code Configurator (MCC) es un entorno de programación gráfico gratuito que genera código C transparente y fácil de entender para insertarlo en su proyecto. Usando una interfaz intuitiva, habilita y configura un amplio conjunto de periféricos y funciones específicas para su aplicación.

Compilador XC , tiene 3 disponibles , para 8 bit,16 bit y 32 bits.

Compilador XC

¿Cuál es la función de un compilador?

Traducir el lenguaje de alto nivel (Lenguaje C, Basic, etc.) a lenguaje ensamblador.

MCC MELODY

Es la evolución de MCC Classic. Es una herramienta de configuración gráfica que ofrece una arquitectura mejorada y más flexible para configurar de manera más sencilla los dispositivos.

*MPLAB Xpress only supports MCC Melody.

MCC Melody Components

El MCC Melody consta de muchos componentes.

Las bibliotecas de periféricos de bajo nivel (PLIB) son funciones simples para inicializar y controlar periféricos y funciones básicas de dispositivos.

Los controladores del sistema permiten la configuración de la funcionalidad general.

Los controladores dependen de los PLIB y abstraen los detalles del hardware de las bibliotecas y las aplicaciones. Las bibliotecas usan controladores y servicios del sistema para la independencia del dispositivo y brindan soporte para redes, USB, criptografía y otras capacidades que a menudo requieren las aplicaciones integradas de hoy.

MCC Melody Components

PIC18F57Q43

http://ww1.microchip.com/downloads/en/DeviceDoc/PIC18F57Q43-Curiosity-Nano-HW-UserGuide-DS40002186B.pdf

http://ww1.microchip.com/downloads/en/DeviceDoc/PIC18F57Q43 Curiosity Nano Schematics.pdf

https://ww1.microchip.com/downloads/aemDocuments/documents/MCU08/ProductDocuments/DataSheets/PIC 18F27-47-57Q43-Data-Sheet-40002147F.pdf

NI - LabVIEW

LabVIEW es un software de ingeniería de sistemas para aplicaciones que requieren pruebas, medidas y control con acceso rápido a hardware e información de datos.

NI - LabVIEW

NI Labview - Conexión Hardware

PLC SIEMENS

C2000 Real- Time

FPGA

ALLEN BRADLEY

PLC ADAM

STM32

DAQ

NI Labview - Protocolos de Comunicación

IEEE

- -Stack TCP-IP
- -TCP/UDP
- -Serial TTL- RS232-RS485-RS422
- -GPIB
- -Can Bus
- -Modbus RTU / TCP
- -HTTP
- -SMTP
- -FTP
- -IrDA
- -Bluetooth
- -Web Dav

Tipos de Datos Labview

0

I

hola mundo

F

- Numericos
 - Enteros
 - Int.
 - Uint
 - Double 0
- ▶ Booleano
- ▶ Cluster
- ▶ String
- ▶ Variant.

VISA Serial

