Advanced Probability Theory: Notes

YANG, Ze

March 3, 2016

Contents

1	Mea	asure S	Space, Prob Space								7
	1.1	Algebr	raic Structures on Prob Space								7
		1.1.1	Sigma Field								7
		1.1.2	Pi System and Dynkin's D System								8
		1.1.3	Dynkin's Lemma								9
	1.2	Measur	ire								9
	1.3	Events	s								9
		1.3.1	Events as Sets								9
		1.3.2	IO and EV								10
		1.3.3	Fatou's Lemma								11
		1.3.4	Borel-Cantelli 1st Lemma								11
2	Mapping, RV										
	2.1		rable Function								13
	2.2		om Variable								13
	2.3		Distribution Function								13
	2.4		ergence of RV								13
3	Inde	epende	ence								15
J	3.1	-	endence: Sets								15
	0.1	3.1.1	Indep Events								15
		3.1.1	Indep Sigma Field								15
		3.1.3	Pi System Lemma								15
		3.1.4	Borel-Cantelli 2nd Lemma								16
		3.1.4 $3.1.5$	Tail Sigma Field, Kolmogorov 0/1								16
	3.2		endence: RV								16
	5.2	3.2.1	With Expectations								16
1	T	4	Tour adation								10
4		_	n, Expectation								19
	4.1	_	ation								19
	4.0	4.1.1	Integrability, L1 Space								19
	4.2		ergence Theorems								19
		4.2.1	Monotone Convergence Thm								19
		4.2.2	Fatou's Lemma								20
		4.2.3	Dominated Convergence Thm								21
	4.0	4.2.4	Scheffe's Lemma								21
	4.3		n-Nikodyn Thm								22
	4.4	Expect	tation								22

4 CONTENTS

		4.4.1	Notation	22
		4.4.2	Convergence Theorems	23
		4.4.3	Lp Space	23
		4.4.4	Markov's Ineq	24
		4.4.5	Uniform Integrablility	25
		4.4.6	Jensen's Ineq	26
		4.4.7	On Prob Density Function	$\frac{-5}{27}$
5	Law	of La	rge Numbers	29
	5.1	Termin	nology	29
	5.2	Cheby	shev (WLLN1)	29
	5.3		mah (SLLN1)	30
	5.4		chine (WLLN2) and Kolmogorov-Feller (WLLN3)	32
		5.4.1	Equivalence of Seqs	32
		5.4.2	Big O and Small o Notations	32
		5.4.3	Khintchine's WLLN	33
		5.4.4	Kolmogorov-Feller's WLLN	34
	5.5	Kolmo	ogorov (SLLN2)	35
		5.5.1	Kronecker's Lemma	35
		5.5.2	Kolmogorov's Ineq	36
		5.5.3	Kolmogorov's SLLN	37
	5.6	Kolmo	ogorov' (SLLN3)	38
	5.7		$\widetilde{(4)}$	40
	5.8		Équivalence Thm	40
6		duct S	1	43
	6.1			43
	6.2		ct Measure, Fubini's Thm	44
	6.3		Distribution, Joint Law	46
		6.3.1	Joint * of Indep RVs	46
		6.3.2	Convolutions	47
	6.4		ct of Countably Many Spaces	47
		6.4.1	Product Measure	47
		6.4.2	Kolmogorov Extension Thm	48
7	Con	dition	ing and Martingale	51
1	7.1			51 51
	7.1		tional Expectation	51 53
	1.2	7.2.1	rties	ээ 53
		7.2.1 $7.2.2$	Simple properties	ээ 54
			Conditional Convergence Thms	
		7.2.3	Tower Property	54
		7.2.4	Taking out what is known	55
	7.0	7.2.5	Independence condition	55 5c
	7.3			56
		7.3.1	Filtration, Adaptedness	56
		7.3.2	Martingale, Sub/Sup Martingale	57
	7 1	7.3.3	Doob's Decomposition Thm	58
	7.4	Dioppi	ng Time	59
			Simple Properties of Stopping Time	59

CONTENTS 5

		7.4.2	Doob's Stopping Time Thm
		7.4.3	Hunt's Thm
		7.4.4	Wald's Identity
	7.5	Rando	m Walk
	7.6		ngale Convergence
		7.6.1	Doob's Upcrossing Inequility
		7.6.2	Martingale Convergence Thm 1 (MCT1) 61
		7.6.3	Martingale Convergence Thm 2 (MCT2) 61
		7.6.4	Doob's Maximal Inequility 61
		7.6.5	Martingale Convergence Thm 3 (MCT3) 61
		7.6.6	Converse MCT2
		7.6.7	Generalized 0-1 Law
8	Pro	blems	63
	8.1	Prob S	Space
	8.2		
	8.3		tation
	8.4	_	
	8.5		ngale

6 CONTENTS

Chapter 1

Measure Space, Prob Space

1.1 Algebraic Structures on Prob Space

1.1.1 Sigma Field

Default setting: Let S be a set.

Def. Algebra: A family of $A \subseteq S$, Σ_0 is an algebra if

- $\cdot S \in \Sigma_0.$
- · $A^c \in \Sigma_0$. (close to **Complement**)
- · n finite, $\bigcup_{i=1}^n A_i \in \Sigma_0$. (close to **Finite Union**)

Rm. 1,2,3 implies

- $\cdot \emptyset \in \Sigma_0.$
- $A \cap B, A \cup B, (A \setminus B), (A \triangle B) \in \Sigma_0.$
- $\cdot \bigcap_{i=1}^n A_i \in \Sigma_0.$

Def. Sigma-Field: A family of $A \subseteq S$, Σ is a sigma-field if 1,2 (algebra) and

· $\bigcup_{j=1}^{\infty} A_j \in \Sigma$. (close to **Countable Union**)

Def. Generated Sigma-Field: $C \subseteq S$, $\sigma(C)$ is generated sigma-field from C if

- $\cdot \ \sigma(C)$ is a sigma field.
- $\cdot C \subseteq \sigma(C).$
- · If $C \subseteq \Sigma' \neq \sigma(C)$, Σ' is another sigma field, then $\sigma(C) \subseteq \Sigma'$.

i.e. $\sigma(C)$ is the smallest sigma field that is a supset of C. Also written as,

$$\sigma(C) = \bigcap_{\Sigma: \text{ sigma field}} \{\Sigma : C \subseteq \Sigma\}$$
 (1.1)

Prop. Several Propositions.

· Intersection of sigma field is still sigma field. (No for Union.)

· To obtain a sigma field from union of sigma fields, define:

$$\bigvee_{\alpha \in I} \Sigma_{\alpha} := \sigma(\bigcup_{\alpha \in I} \Sigma_{\alpha}) \tag{1.2}$$

- $\cdot \ \sigma(\sigma(C)) = \sigma(C).$
- $A \subseteq B \Rightarrow \sigma(A) \subseteq \sigma(B).$

Def. Borel Sigma Field: S is topological space (where open sets can be defined).

$$\mathscr{B}(S) := \sigma(\{O \subseteq S : O \text{ is open}\}) \tag{1.3}$$

Rm. Borel Sigma Field on Real Line By construction of open sets, \forall open set $O \subseteq \mathbb{R}$, O can be written as: $O = \bigcup_{k=1}^{n} (a_k, b_k)$. Therefore, Borel sigma field on real line is actually:

$$\mathscr{B}(\mathbb{R}) = \sigma(\{(a,b) : a, b \in \mathbb{R}, a < b\}) \tag{1.4}$$

Def. Measurable Space: Set S equipped with sigma field Σ , i.e pair (S, Σ) is a measurable space. $A \in \Sigma$ is Σ -measurable subset of S.

1.1.2 Pi System and Dynkin's D System

Def. **Pi System**: A family of $A \subseteq S$, \mathcal{I} is a π -system if

·
$$I_1, I_2 \in \mathcal{I} \Rightarrow I_1 \cap I_2 \in \mathcal{I}$$
. (closed to **Finite Intersection**)

Rm. π systems are easier then sigma field. For example, \mathbb{R} generated π (one notion) is family of all intervals of form $(-\infty, x]$.

$$\pi(\mathbb{R}) = \{(-\infty, x] : x \in \mathbb{R}\}\tag{1.5}$$

Def. **D** System: A family of $A \subseteq S$, \mathcal{D} is Dykin's d-system if

- $\cdot S \in \mathcal{D}.$
- $A, B \in \mathcal{D}, A \subseteq B \Rightarrow B \setminus A \in \mathcal{D}.$
- $A_n \in \mathcal{D}, n \geq 1, A_n \nearrow A \Rightarrow \lim_{n \to \infty} A_n = A \in \mathcal{D}.$ (closed to **limit from below**)

Prop. Σ is a σ -algebra $\iff \Sigma$ is both π -system and d-system.

Proof. \Rightarrow is obvious.

 \Leftarrow : Check against 3 defining properties. (1) by 1-d. (2) by 2-d, pick $B = S \in \Sigma$, $A^c = B \setminus A \in \Sigma$. (3) Consider

$$U_n := \bigcup_{n \ge 1} B_n = (\bigcap_{n \ge 1} B_n^c)^c \in \Sigma$$
 (1.6)

This is ensured by 1-pi and 2-d. And $U_n \nearrow \bigcup_{n\geq 1} B_n =: U$; by 3-d, $U \in \Sigma$.

1.2. MEASURE 9

1.1.3 Dynkin's Lemma

Thm. (Dynkin) If \mathcal{I} is a π -system on S, \mathcal{D} is a d-system on S; $\mathcal{I} \subseteq \mathcal{D}$. Then $\sigma(\mathcal{I}) \subseteq \mathcal{D}$.

Proof. $d(\mathcal{I}) := d$ system generated by \mathcal{I} . Define

$$\mathcal{D}_1 := \{ B \in d(\mathcal{I}) : A \cap B \in d(\mathcal{I}), \forall A \in \mathcal{I} \}$$

$$(1.7)$$

By definition $\mathcal{D}_1 \subseteq d(\mathcal{I})$. Clearly $\mathcal{I} \subseteq \mathcal{D}_1$, so if \mathcal{D}_1 is d-system, we will have $d(\mathcal{I}) = \mathcal{D}_1$. Consider any $A \in \mathcal{I}$:

- $\cdot S \cap A = A. \Rightarrow S \in \mathcal{D}_1.$
- · $(B_1 \setminus B_2) \cap A = (B_1 \cap A) \setminus (B_2) =: D$. Both sides of setminus $\in d(\mathcal{I})$. Since $d(\mathcal{I})$ is d-system, $D \in d(\mathcal{I})$.
- $\cdot B_n \nearrow U := \bigcup_{n>1} B_n. \ A \cap B_n \nearrow A \cap U \in d(\mathcal{I}). \text{ So } U \in \mathcal{D}_1. \ Check.$

Define

$$\mathcal{D}_2 := \{ C \in d(\mathcal{I}) : B \cap C \in d(\mathcal{I}), \forall B \in d(\mathcal{I}) \}$$

$$\tag{1.8}$$

 $\mathcal{I} \subseteq \mathcal{D}_2$. Similarly, we check that \mathcal{D}_2 is indeed a d-system. So $\mathcal{D}_2 = d(\mathcal{I})$. Now we check \mathcal{D}_2 is a pi-system. Consider any $B \in d(\mathcal{I})$:

 $\cdot (C_1 \cap C_2) \cap B = C_1 \cap (C_2 \cap B) =: C_1 \cap B'$. By definition of \mathcal{D}_2 , $B' \in d(\mathcal{I})$; $C_1 \cap B' \in d(\mathcal{I})$. Check.

Now that $d(\mathcal{I}) =: \Sigma$ is both pi and d, it is a sigma field.

Since $\mathcal{I} \in \Sigma$, $\sigma(\mathcal{I}) \subseteq \Sigma$.

For any other d-system $\mathcal{D}' \supseteq \mathcal{I}$. Therefore

$$\mathcal{I} \subseteq \sigma(\mathcal{I}) \subseteq \Sigma := d(\mathcal{I}) \subseteq \mathcal{D}' \tag{1.9}$$

For any d-system $\mathcal{D}' \supseteq \mathcal{I}$.

Rm. We claim without proof that $\sigma(E) \supseteq d(E)$ for any set E. Generated sigma field is always more complex then generated d. Dynkin's suggests that, if $E = \mathcal{I}$ is pi system, then

$$d(\mathcal{I}) = \sigma(\mathcal{I}) \quad \mathcal{I} - \text{pi system.}$$
 (1.10)

1.2 Measure

1.3 Events

1.3.1 Events as Sets

Def. Events: In prob space $(\Omega, \mathcal{F}, \mathbb{P})$, set $E \in \mathcal{F}$ is an event.

· If $\mathbb{P}(E) = 1$, say E happens **Almost Surely**. If $\mathbb{P}(E) = 0$, say E happens **Almost Nowhere**.

 $^{^{1}}d(\mathcal{I})$ is d system, $d(\mathcal{I})$ subset \mathcal{I} no other d system subset $d(\mathcal{I})$ supset \mathcal{I}

1.3.2 IO and EV

Def. \mathbf{E}_n Infinitely Often: Sequence of events $\{E_n\} \in \mathcal{F}$, define:

$$\{E_n \ i.o.\} = \limsup_{n \to \infty} E_n := \bigcap_{n > 1} \bigcup_{m > n} E_m \tag{1.11}$$

Clearly $U_n = \bigcup_{m \geq n} E_m \setminus \{E_n \ i.o.\}$. Because it is a union of less and less sets. Therefore by continuity from above:

$$\{E_n \ i.o.\} = \lim_{n \to \infty} U_n \tag{1.12}$$

Def. \mathbf{E}_n Eventually Always: Sequence of events $\{E_n\} \in \mathcal{F}$, define:

$$\{E_n \ e.v.\} = \liminf_{n \to \infty} E_n := \bigcup_{n \ge 1} \bigcap_{m \ge n} E_m \tag{1.13}$$

Clearly $A_n = \bigcap_{m \geq n} E_m \nearrow \{E_n \ i.o.\}$. Because it is an intersection of less and less sets. Therefore by continuity from below:

$$\{E_n \ e.v.\} = \lim_{n \to \infty} A_n \tag{1.14}$$

Prop. Properties about limit events

Basic:

- 1. $\lim_{n\to\infty} \inf E_n \subseteq \lim_{n\to\infty} \sup E_n$
- 2. $(\limsup_{n\to\infty} E_n)^c = \liminf_{n\to\infty} E_n^c$
- 3. $\lim_{n \to \infty} E_n = E \iff \limsup_{n \to \infty} E_n = \liminf_{n \to \infty} E_n = E$

Cap/Cup:

- 4. $(\limsup_{n\to\infty} A_n) \cup (\limsup_{n\to\infty} B_n) = \limsup_{n\to\infty} (A_n \cup B_n)$
- 5. $(\limsup_{n\to\infty} A_n) \cap (\limsup_{n\to\infty} B_n) \supseteq \limsup_{n\to\infty} (A_n \cap B_n)$
- 6. $(\liminf_{n\to\infty} A_n) \cap (\liminf_{n\to\infty} B_n) = \liminf_{n\to\infty} (A_n \cap B_n)$
- 7. $(\liminf_{n\to\infty} A_n) \cup (\liminf_{n\to\infty} B_n) \subseteq \liminf_{n\to\infty} (A_n \cup B_n)$

Setminus:

8. $(\limsup_{n\to\infty} E_n) \setminus (\liminf_{n\to\infty} E_n) = \limsup_{n\to\infty} (E_n \setminus E_{n+1})$

With Measure:

- 9. $\mathbb{P}(\liminf_{n\to\infty} E_n) \leq \liminf_{n\to\infty} \mathbb{P}(E_n) \leq \limsup_{n\to\infty} \mathbb{P}(E_n) \leq \mathbb{P}(\limsup_{n\to\infty} E_n)^2$
- 10. If $\lim_{n\to\infty} E_n = E$, then $\mathbb{P}(\lim_{n\to\infty} E_n) = \mathbb{P}(E)$.

Proofs. for some of above.

²First ≤ is Fatou's lemma, third is reverse-Fatou's lemma.

1.3. EVENTS 11

8.

9. i.e.

$$\mathbb{P}(\{E_n \ e.v\}) \leq \liminf_{n \to \infty} \mathbb{P}(E_n)
\leq \limsup_{n \to \infty} \mathbb{P}(E_n) \leq \mathbb{P}(\{E_n \ i.o\})$$
(1.15)

$$\mathbb{P}(\{E_n \ i.o\}) = \mathbb{P}(\lim_{n \to \infty} U_n)$$
 Cont from above (need finiteness of \mathbb{P} !): $\mathbb{P}(\lim_{n \to \infty} U_n) = \lim_{n \to \infty} \mathbb{P}(U_n)$. Clearly $\mathbb{P}(U_n) \ge \sup_{n \ge m} \mathbb{P}(E_n)$.³ Take limit both side:
$$\mathbb{P}(\{E_n \ i.o\}) = \lim_{n \to \infty} \mathbb{P}(U_n) \ge \lim_{n \to \infty} \sup_{n \ge m} \mathbb{P}(E_n) =: \limsup_{n \to \infty} \mathbb{P}(E_n). \blacksquare$$

1.3.3 Fatou's Lemma

Lemma (Reverse FATOU - Need Finiteness of \mathbb{P})

$$\limsup_{n \to \infty} \mathbb{P}(E_n) \le \mathbb{P}(\{E_n \ i.o\}) \tag{1.16}$$

Lemma (FATOU - Apply for General Measure)

$$\mathbb{P}(\{E_n \ e.v\}) \le \liminf_{n \to \infty} \mathbb{P}(E_n) \tag{1.17}$$

1.3.4 Borel-Cantelli 1st Lemma

Thm. (BC 1) In $(\Omega, \mathcal{F}, \mathbb{P})$, $\{E_n\} \subseteq \mathcal{F}$:

$$\sum_{n>1} \mathbb{P}(E_n) < \infty \Rightarrow \mathbb{P}(\{E_n \ i.o\}) = 0 \tag{1.18}$$

Proof. Since $U_n \setminus \{E_n \ i.o\} \Rightarrow U_n \subseteq U_{n-1} \subseteq ... \subseteq U_1$.

$$\mathbb{P}(\lbrace E_n \ i.o \rbrace) = \lim_{n \to \infty} \mathbb{P}(U_n)
\leq \mathbb{P}(U_1)
\leq \sum_{m > 1} \mathbb{P}(E_m) = 0 \quad \blacksquare$$
(1.19)

³LHS is union, RHS is picking maximum from E_n .

Chapter 2

Mapping, RV

- 2.1 Measurable Function
- 2.2 Random Variable
- 2.3 Law, Distribution Function
- 2.4 Convergence of RV

Chapter 3

Independence

3.1 Independence: Sets

3.1.1 Indep Events

Def. Mutually Independent Events: Events in $\{E_n\}$ sequence are mutually indep. \iff whatever $k \geq 1$, index-subsequence $\{n_1, n_2, ... n_k\}$:

$$\mathbb{P}(E_{n_1} \cap E_{n_2} \cap \dots \cap E_{n_k}) = \prod_{j=1}^k \mathbb{P}(E_{n_j})$$
 (3.1)

$$Rm.$$
 $A \perp B \iff A^c \perp B \iff A^c \perp B^c$
 $\cdot \text{ If } \mathbb{P}(A) = 1 \text{ or } 0 \Rightarrow A \perp \forall B \in \mathcal{F}.$

Def. Pairwise Indep: $\{E_n\}$ sequence are pairwise indep if $\mathbb{P}(E_i \cap E_j) = \mathbb{P}(E_i) \mathbb{P}(E_j)$, $\forall i \neq j$.

3.1.2 Indep Sigma Field

Def. Independent Sigma Field: Sequence (Not necessarily finite) of sub sigma-fields $\mathcal{G}_1, \mathcal{G}_2...$ of \mathcal{F} are indep. if, for any k, any subsequence of k distinct members: $\{\mathcal{G}_{n_1}, \mathcal{G}_{n_2}, ..., \mathcal{G}_{n_k}\}$ ($\{n_k\}$ distinct), any choice of set $G_i \in \mathcal{G}_i$:

$$\mathbb{P}(G_{n_1} \cap G_{n_2} \cap ... \cap G_{n_k}) = \prod_{j=1}^k \mathbb{P}(G_{n_j})$$
 (3.2)

Def. Indep of Events - Redefine: Events $\{E_n\}$ are indep if sigma field $\{\mathcal{E}_n\}$ are indep, where

$$\mathcal{E}_i = \{ \emptyset, \ E_i, \ \Omega \setminus E_i, \ \Omega \}$$
 (3.3)

3.1.3 Pi System Lemma

Thm. (Study indep via generator pi systems) \mathcal{G}, \mathcal{H} are sub-sigma field of \mathcal{F} . \mathcal{I}, \mathcal{J} are pi systems, where $\sigma(\mathcal{I}) = \mathcal{G}, \sigma(\mathcal{J}) = \mathcal{H}$. Then

$$\mathcal{G} \perp \mathcal{H} \iff \mathcal{I} \perp \mathcal{J}$$

i.e.
$$\forall I \in \mathcal{I}, J \in \mathcal{J}$$
:

$$\mathbb{P}(I \cap J) = \mathbb{P}(I)\,\mathbb{P}(J) \tag{3.4}$$

Proof.

3.1.4 Borel-Cantelli 2nd Lemma

Thm. (BC 2) $\{E_n\}$ is a seq of INDEPENDENT events, then

$$\sum_{n\geq 1} \mathbb{P}(E_n) = \infty \Rightarrow \mathbb{P}(\{E_n \ i.o\}) = 1$$
(3.5)

Proof. Do the complement, i.e. $\mathbb{P}(\{E_n^c \ e.v\}) = 0$.

$$\{E_n^c \ e.v\} = \liminf_{n \to \infty} E_n^c = \bigcup_{n \ge 1} \bigcap_{m \ge n} E_m^c = \bigcup_{n \ge 1} A_n \tag{3.6}$$

$$\mathbb{P}(A_n) = \mathbb{P}\left(\bigcap_{m \ge n} E_m^c\right) = \prod_{n \ge m} (1 - \mathbb{P}(E_n))$$

$$\leq \exp\left[-\sum_{m \ge n} \mathbb{P}(E_n)\right] = 0$$
(3.7)

So
$$\mathbb{P}(\{E_n^c e.v\}) \leq \sum_{n>1} \mathbb{P}(A_n) = 0. \blacksquare$$

3.1.5 Tail Sigma Field, Kolmogorov 0/1

Def. Tail Sigma Field associated with a sequence of events:

$$\mathcal{T} := \bigcap_{n \ge 1} \sigma(\{E_m\} : m \ge n) = \bigcap_{n \ge 1} \sigma(E_n, E_{n+1}, E_{n+2}, \dots)$$
 (3.8)

Thm. (Kolmogorov 0/1) If $\{E_n\}$ is Indep sequence, \mathcal{T} is tail associated with $\{E_n\}$. Then, $\mathbb{P}(A) = 0$ or $1 \ \forall A \in \mathcal{T}$.

3.2 Independence: RV

3.2.1 With Expectations

Note: This section is introduced after chapter 4.

Lemma. X, Y are indep RV, $X \in \mathcal{L}^1$, then $\forall B \subseteq \mathscr{B}(\mathbb{R})$,

$$\mathbb{E}\left[X;Y\in B\right] = \mathbb{E}\left[X\right]\cdot\mathbb{P}\left(Y\in B\right) \quad \# \tag{3.9}$$

Proof. If $X = \mathbb{1}_A$ indicator, # is clearly true.

By linearity, # holds for $X \in SF^+$.

By (MON), # holds for $X \in m\mathcal{F}^+$.

Since $X \in \mathcal{L}^1$, so do X^{\pm} . All integrals involved in # are finite, linearlity $\Rightarrow \#$ holds for any $X \in m\mathcal{F}$.

Thm. (Indep: product in expectation is expectation of product.) If X, Y indep, $X, Y \in \mathcal{L}^1$; then $XY \in \mathcal{L}$ and $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$.

Proof. Assume $Y = \mathbb{1}_A$. By lemma #, for all $X \in m\mathcal{F}$:

$$\mathbb{E}[XY] = \mathbb{E}[X; A] = \mathbb{E}[X] \mathbb{P}(A) = \mathbb{E}[X] \mathbb{E}[Y]$$
(3.10)

Implies thm holds for Y indicator. By linearity, holds for simples.

 $(MON) \Rightarrow holds for non-negative.$

Since $X, Y \in \mathcal{L}^1$, holds for X^{\pm}, Y^{\pm} . All integrals involved in equation are finite. linearity \Rightarrow holds for all $Y \in m\mathcal{F}$.

Cor. (Composition with Borel function) X, Y indep (does not require integrability in X, Y themselves), and f, g are Borel functions, $f(X) \in \mathcal{L}^1$, $g(Y) \in \mathcal{L}^1$; then

$$\mathbb{E}\left[f(X)g(Y)\right] = \mathbb{E}\left[f(X)\right]\mathbb{E}\left[g(Y)\right] \tag{3.11}$$

Proof. Apply thm above. Note that f(X), g(Y) are indep RVs. Since $f(X) \in m\sigma(X)$, $g(Y) \in m\sigma(Y), X \perp Y$.

Cor. (Covariance): If X, Y are serially uncorrelated, then Cov[X, Y] = 0. Moreover, if process $\{X_n\} \in \mathcal{L}^2$, then define $S_n := \sum_{1}^{n} X_j$ as partial sum, we have $Var[S_n] = \sum_{1}^{n} Var[X_j]$

Chapter 4

Integration, Expectation

4.1 Integration

4.1.1 Integrability, L1 Space

Default setting: in general (abstract) measure space (S, Σ, μ) .

Def. Integrable: $f \in m\Sigma$ is μ -integrable, denote $f \in \mathcal{L}^1(S, \Sigma, \mu)$ if both $\mu(f^+)$ and $\mu(f^-)$ are finite. $\iff \mu(|f|) < \infty$

Prop. Properties of \mathcal{L}^1 Functions: if $f \in \mathcal{L}^1$

- $\cdot \ \mu(\{f = \pm \infty\}) = 0.$
- $\cdot \ |\mu(f)| \leq \mu(|f|)$
- · (linearity) if $f, g \in \mathcal{L}^1$, $a, b \in \mathbb{R}$ then $af + bg \in \mathcal{L}^1$.
- · (monotonicity) if $f \leq g$ a.e, then $\mu(f) \leq \mu(g)$.

Proof. for some

(linearity) First show $f + g \in \mathcal{L}^1$. In that $|f + g| \le |f| + |g|$ everywhere $\Rightarrow \mu(|f + g|) \le \mu(|f|) + \mu(|g|)$. Then prove linearity. Let h := f + g, $h^+ - h^- = f^+ - f^- + g^+ - g^-$. Shift to obtain plus given $h^+ + f^- + g^-$

to obtain plus sign: $h^+ + f^- + g^- = h^- + f^+ + g^+$. $\Rightarrow \mu(h^+ + f^- + g^-) = \mu(h^- + f^+ + g^+)$. Apply linearity for $m\Sigma^+$ functions both sides. Also since $h^{\pm}, f^{\pm}, g^{\pm} \in \mathcal{L}^1$, we can shift things back.

4.2 Convergence Theorems

Default setting: In general measure space (S, Σ, μ) . $f_n : S \mapsto \overline{\mathbb{R}}$ (extended real line), $f : S \mapsto \overline{\mathbb{R}}$; $f_n, f \in m\Sigma$.

4.2.1 Monotone Convergence Thm

Thm. (MON) If $f_n \nearrow f$, and $\mu(f_1^-) < \infty$; then $\mu(f_n) \nearrow \mu(f)$.

Rm. (MON) still applies if $f_n \nearrow f$ a.s. This MON is also a more general version, which only requires one support from $\mu(f_1^-)$.

Cor. (Nonnegative - MON): If $f_n \in m\Sigma^+$, $f_n \nearrow f$, then $\mu(f_n) \nearrow \mu(f)$.

Cor. (Reverse - MON): If $f_n \searrow f$, and $\mu(f_1^-) \leq \infty$; then $\mu(f_n) \searrow \mu(f)$.

Proof. Define $g_n := f_1^+ - f_n$, then $g_n \ge 0$ in that $f_1^+ \ge f_n^+ \ge f_n$. Clearly $g_n \nearrow g := f_1^+ - f$. Apply (MON) to $\{g_n\}$:

4.2.2 Fatou's Lemma

Thm. (**FATOU**): If exists $g: S \mapsto \mathbb{R}$, $g \in m\Sigma$, $\mu(g^-) < \infty$. And that $f_n \geq g$ uniformly $\forall n \geq 1$. Then,

$$\mu(\liminf_{n \to \infty} f_n) \le \liminf_{n \to \infty} (\mu(f_n)) \tag{4.1}$$

Proof. Define $g_n := \inf_{m \ge n} f_m$, clearly

$$g_n \nearrow \sup_{n \ge 1} \inf_{m \ge n} f_m =: \liminf_{n \to \infty} f_n$$
 (4.2)

 $g_n = \inf_{m \ge n} f_m \ge g^1$ for $\forall n$. So $g_n^- \le g^-$.

Thus $\{g_n\}$ are supported by $\mu(g_1^-) \leq \mu(g^-) < \infty$. Apply (MON): $\mu(g_n) \nearrow \mu(\lim_{n \to \infty} f_n)$

On the other hand, $g_n + g^- = g_n^+ + (g^- - g_n^-) \in m\Sigma^+$ non-negative. By definition of g_n : $0 \le g_n + g^- \le f_m + g^- \in m\Sigma^+ \ \forall m \ge n$. Use monotonicity/linearity for plus non-negatives:

$$\mu(g_n + g^-) \le \mu(f_m + g^-)$$

$$\mu(g_n) + \mu(g^-) \le \mu(f_m) + \mu(g^-)$$

$$\mu(g_n) \le \inf_{m > n} \mu(f_m)$$
(4.3)

Holds for all $n \geq 1$. Let $n \to \infty$ both sides in increasingly:

$$\mu(\sup_{n>1}\inf_{m\geq n}f_m) \nwarrow \mu(\inf_{m\geq n}f_m) \le \inf_{m\geq n}\mu(f_m) \nearrow \sup_{n>1}\inf_{m\geq n}\mu(f_n)$$
(4.4)

where nwarrow follows (**MON**), nearrow is just taking limit directly. Anyway, we have:

$$\mu(\sup_{n\geq 1}\inf_{m\geq n}f_m)\leq \sup_{n\geq 1}\inf_{m\geq n}\mu(f_n) \quad \blacksquare \tag{4.5}$$

 $Rm. \leq \text{in } (\mathbf{FATOU}) \text{ can be strict } <. \text{ Consider: } f_n = \mathbbm{1}_{[n,n+1]} \text{ is a moving hat to plus inf.}$ Clearly $\liminf_{n \to \infty} f_n = 0$, because for any x, after N > x, $f_n(x) \equiv 0$. But $\mu(f_n) \equiv 1$. $0 = \mu(\liminf_{n \to \infty} f_n) < \liminf_{n \to \infty} \mu(f_n) = \mu(f_n) = 1$.

Thm. (Reverse - FATOU) If exists $g: S \mapsto \overline{\mathbb{R}}, g \in m\Sigma, \mu(g^+) < \infty$. And that $f_n \leq g$ uniformly $\forall n \geq 1$. Then,

$$\underline{\mu(\limsup_{n\to\infty} f_n)} \ge \limsup_{n\to\infty} (\mu(f_n)) \tag{4.6}$$

¹Since every f_m in infimum $\geq g$ uniformly.

4.2.3 Dominated Convergence Thm

Thm. (**DOM**) $f_n \xrightarrow{a.s.} f$. For some $g \in \mathcal{L}^1$, $|f_n| \leq g$ uniformly. Then $f_n \xrightarrow{\mathcal{L}^1} f$. In particular $f \in \mathcal{L}^1$, $\mu(f_n) \to \mu(f)$.

Proof. Clearly $f_n \in \mathcal{L}^1$ for all n.

 $|f| = \lim_{n \to \infty} |f_n| \le g$. So $f \in \mathcal{L}^1$.

By pointwise (a.s.) convergence, $\limsup |f_n - f| = 0$.

Moreover $|f_n - f| \le 2|g|$ uniformly. $\mu(g^+) < \infty$. Apply (**Reverse - FATOU**):

$$0 = \mu(\limsup_{n \to \infty} |f_n - f|) \ge \limsup_{n \to \infty} (\mu(|f_n - f|)) \ge 0$$
(4.7)

So,

$$0 = \limsup_{n \to \infty} (\mu(|f_n - f|)) \ge \liminf_{n \to \infty} \mu(|f_n - f|)$$
(4.8)

i.e.
$$\limsup_{n\to\infty} (\mu(|f_n-f|)) = \liminf_{n\to\infty} \mu(|f_n-f|) = 0$$
. Therefore $f_n \xrightarrow{\mathcal{L}^1} f$.

4.2.4 Scheffe's Lemma

Thm. (SCHEFFE) $f, f_n \in \mathcal{L}^1, f_n \xrightarrow{a.s.} f$. Then

$$\mu(f_n) \to \mu(f) \iff f_n \xrightarrow{\mathcal{L}^1} f$$
 (4.9)

Proof. \Leftarrow is clear. Prove \Rightarrow .

Define $g_n := |f_n| + |f| - |f_n - f| \ge 0$ uniformly. Just for checking, $\mu(0^+) < \infty$. Apply (**FATOU**) to g_n :

$$\mu(\liminf_{n \to \infty} |f_n| + |f| - |f_n - f|) \le \liminf_{n \to \infty} \mu(|f_n| + |f| - |f_n - f|) \tag{4.10}$$

By a.s convergence $\mu(\limsup_{n\to\infty} |f_n - f|) = 0$.

$$LHS = \mu(2|f| - \limsup_{n \to \infty} |f_n - f|)$$

$$= 2\mu(|f|) - \mu(\limsup_{n \to \infty} |f_n - f|)$$
(4.11)

Note that inf is switched to sup when taking minus out.

$$RHS = 2\mu(|f|) - \limsup_{n \to \infty} \mu(|f_n - f|)$$
(4.12)

 $f \in \mathcal{L}^1$ so it can be cancelled out.

$$0 = \mu(\limsup_{n \to \infty} |f_n - f|) \ge \limsup_{n \to \infty} \mu(|f_n - f|)$$
(4.13)

$$\mu(|f_n-f|)\to 0.$$

4.3 Radon-Nikodyn Thm

Def. $f\mu$ measure: $f \in (m\Sigma)^+$ Non-negative!, $f\mu$ is a new measure on measurable space (S, Σ) defined for $A \in \Sigma$ as

$$f\mu(A) := \int_{A} f d\mu = \mu(f \mathbb{1}_{A}) \tag{4.14}$$

Easy to check that this definition is indeed a measure (contable additive).

Prop. For $h \in (m\Sigma)^+$ (Non-negative): $(f\mu)(h) = \mu(fh)$ (#).

Proof. Let $h = \mathbb{1}_A$, $A \in \Sigma$. Then

$$(f\mu)(h) := \int_{\Omega} f \mathbb{1}_A d\mu = \mu(f\mathbb{1}_A) = \mu(fh)$$
 (4.15)

holds for indicators. By linearity, (#) holds for $h \in SF^+$. By (\mathbf{MON}) , (#) holds for $h \in (m\Sigma)^+$.

Cor. For $h \in m\Sigma$ (General function now!), then,

$$h \in \mathcal{L}^1(S, \Sigma, f\mu) \iff f \cdot h \in \mathcal{L}^1(S, \Sigma, \mu)$$
 (4.16)

In particular, if this $(h \in \mathcal{L}^1)$ is the case, then $(f\mu)(h) = \mu(fh)$ (#).

Proof.
$$h \in \mathcal{L}^1(S, \Sigma, \mu) \iff f\mu(h^+) = \mu(fh^+) < \infty \text{ and } f\mu(h^-) = \mu(fh^-) < \infty.$$

Since $f \in m\Sigma^+$, above $\iff \mu(fh^+) = \mu((fh)^+) < \infty$, $\mu(fh^-) = \mu((fh)^-) < \infty$.
 $\iff \mu(fh) < \infty \iff f \cdot h \in \mathcal{L}^1(S, \Sigma, \mu)$. The equality is clearly true.

Thm. (**Radon-Nikodyn**) If μ , λ are measures on (S, Σ) , both are σ -finite. Moreover, if λ is absolutely continous wrt μ , ² *Then*,

Exists $f \in (m\Sigma)^+$, such that $\lambda = f\mu$. Define Radon-Nikodyn derivative of λ wrt μ as this f. Denote

$$f =: \frac{d\lambda}{d\mu}$$

4.4 Expectation

4.4.1 Notation

Def. Expectation: $(\Omega, \mathcal{F}, \mathbb{P}), X : \Omega \mapsto \overline{\mathbb{R}}.$

$$\mathbb{E}[X] := \int_{\Omega} X d\mathbb{P} \tag{4.17}$$

Def. Integrability: $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ if $\mathbb{E}[X] < \infty$.

²i.e.(**ab.cont**) $\forall A \in \Sigma, \ \mu(A) = 0 \Rightarrow \lambda(A) = 0.$

4.4. EXPECTATION 23

4.4.2 Convergence Theorems

Default setting: in prob space $(\Omega, \mathcal{F}, \mathbb{P})$. Sequence of RVs $X_n : \Omega \mapsto \overline{\mathbb{R}}$, $X : \Omega \mapsto \overline{\mathbb{R}}$ and $X_n, X \in \mathcal{mF}$. (Note: **NOT** imposing $X_n, X \in \mathcal{L}^1$ here in general.)

- Thm. (MON): $X_n \nearrow X \xrightarrow{a.s.}$, $\mathbb{E}[X_1^-] < \infty$; then $\mathbb{E}[X_n] \nearrow \mathbb{E}[X]$.
- Thm. (**FATOU**): $\mathbb{E}[X^-] < \infty$, $X_n \ge X$ for all $n \ge 1$ for some X; then $\mathbb{E}[\liminf_{n \to \infty} X_n] \le \liminf_{n \to \infty} \mathbb{E}[X_n]$. (liminf inside < liminf outside)
- Thm. (Revserse. FATOU) $\mathbb{E}[X^+] < \infty$, $X_n \leq X$ for all $n \geq 1$ for some X; then $\mathbb{E}[\limsup_{n \to \infty} X_n] \geq \limsup_{n \to \infty} \mathbb{E}[X_n]$. (limsup inside < limsup outside)
- Thm. (**DOM**) $X_n \xrightarrow{a.s.} X$, $|X_n| \leq Y$ for some $Y \in \mathcal{L}^1$; then $X_n \xrightarrow{\mathcal{L}^1} X$, i.e. $\mathbb{E}[|X_n X|] \to 0$.
- Thm. (SCHEFFE) $X_n, X \in \mathcal{L}^1, X_n \xrightarrow{a.s.} X$; then $\mathbb{E}[X_n] \to \mathbb{E}[X] \iff X_n \xrightarrow{\mathcal{L}^1} X$. (\Leftarrow is trivial)
- Rm. (Strengthened version of convergence thms in Prob space) $X_n \xrightarrow{a.s.} X$ in **MON**, **DOM**, **SCHEFFE** can be replaced with $X_n \xrightarrow{i.p.} X$, same result can be obtained nevertheless.

4.4.3 Lp Space

- Def. \mathcal{L}^p Integrable, p-th Moment, \mathcal{L}^p Norm: $1 \leq p < \infty$
 - · Define $X \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ if $|X|^p \in \mathcal{L}^1$, i.e. $\mathbb{E}[|X|^p] < \infty$.
 - · For $X \in \mathcal{L}^p$, define $\mathbb{E}[X^p]$ as p-th moment of X.
 - · Define \mathcal{L}^p norm of X as:

$$||X||_p := (\mathbb{E}[|X|^p])^{\frac{1}{p}} \tag{4.18}$$

Prop. Properties of \mathcal{L}^p

- $\cdot \mathcal{L}^p$ is a vector space in \mathbb{R} .
- $\cdot ||X||_p$ satisfies defining properties of norm:

$$||X||_p \ge 0.$$

$$||X||_p = 0 \Rightarrow X = 0 \ a.s.$$

 $||cX||_p = |c|||X||_p$, constant c.

 $||X+Y||_p \le ||X||_p + ||Y||_p$ (triangle ineq.) Equal sign achieved at: Y = cX, constant $c \ge 0$.

- · (Minkowski ineq.) Another name for the triangular built-in property of vector space (as \mathcal{L}_p space).
- · (Cauchy-Schwartz ineq.) If $X, Y \in \mathcal{L}^2$, then $XY \in \mathcal{L}^1$. And $\mathbb{E}[|XY|] \le ||X||_2 ||Y||_2$. Equal sign achieved at Y = cX.
- · (Holder's ineq.) For $1 < p, q < \infty$, and 1/p + 1/q = 1, $X \in \mathcal{L}^p$, $Y \in \mathcal{L}^q$; then $XY \in \mathcal{L}^1$, and $\mathbb{E}[|XY|] \leq ||X||_p ||Y||_q$. This a generalized version of Cauchy-Schwartz.

- Monotonicity of $\|\cdot\|_p$. If $1 \le p < q < \infty$, $X \in \mathcal{L}^q$; then $X \in \mathcal{L}^p$. Moreover $\|X\|_p \le \|X\|_q$. Equal sign is achieved at X = c constant a.s.
- · \mathcal{L}^p is Banach Space i.e. \mathcal{L}^p is complete under metric $d(X,Y) = ||X Y||_p$. In particular, \mathcal{L}^2 is Hilbert Space: $\forall X, Y \in \mathcal{L}^2$, inner product:

$$\langle X, Y \rangle_2 = \int_{\Omega} XY d\mathbb{P}$$
 (4.19)

Def Variance: Define the second moment of quantity $X - \mathbb{E}[X]$ (centered X): $\operatorname{Var}[X] := \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}^2[X] \geq 0$ by monotonicity: $(\mathbb{E}[X^2])^{\frac{1}{2}} \geq \mathbb{E}[X]$.

Rm. Monotonicity of $\|\cdot\|_p$ can be proved by Holder's ineq. taking Y=1, we do need the prob space where $\mathbb{P}(\Omega)=1$.

4.4.4 Markov's Ineq.

Non-negative valued mapping $g: \mathbb{R} \mapsto [0, +\infty]$ is non-decreasing Borel function $(g \in m\mathscr{B})$. Then for all constant $c \in \mathbb{R}$:

$$\mathbb{E}[g(X)] \ge \mathbb{E}[g(X); X \ge c] = \int_{\{X \ge c\}} g(X) d\mathbb{P} \ge g(c) \mathbb{P}(X \ge c) \tag{4.20}$$

Rearrange this ineq, we estimate the upper bound of probability $\mathbb{P}(X \geq c)$ by \mathbb{E} and some pre-determined function evaluated at this constant c, i.e.

$$\mathbb{P}(X \ge c) \le \frac{\mathbb{E}[g(X); X \ge c]}{g(c)} \le \frac{\mathbb{E}[g(X)]}{g(c)} \tag{4.21}$$

gives Markov's Ineq.

Rm. This upperbound is meaningful only if at least $g(X) \in \mathcal{L}^1$. Also, the second \leq uses the fact that g is non-negative valued.

EX.1 g(X) = X identity. $X \in \mathcal{L}^1$, $X \ge 0$ (non-negative) then:

$$\mathbb{P}(X \ge c) \le \frac{\mathbb{E}[X]}{c} \tag{4.22}$$

EX.2 Take $g(X) = |X|^p \cdot \mathbb{1}_{(0,+\infty)}$. If $X \in \mathcal{L}^p$, then:

$$\mathbb{P}(X \ge c) = \mathbb{P}(|X|^p \ge c^p) \le \frac{\mathbb{E}[|X|^p]}{c^p} \tag{4.23}$$

EX.3 Take $g(X) = e^{a|X|} \cdot \mathbb{1}_{(0,+\infty)}$ for some a. If $e^{a|X|} \in \mathcal{L}^1$, then:

$$\mathbb{P}(X \ge c) = \mathbb{P}(e^{a|X|} \ge e^{ac}) \le \frac{\mathbb{E}[e^{a|X|}]}{e^{ac}}$$
(4.24)

Prop. $X_n \xrightarrow{\mathcal{L}^p} X \Rightarrow X_n \xrightarrow{i.p} X$.

4.4. EXPECTATION 25

Proof. Use Markov's ineq. $\forall \epsilon > 0$

$$\mathbb{P}(|X_n - X| \ge \epsilon) = \mathbb{P}(|X_n - X|^p \ge \epsilon^p) \le \frac{\mathbb{E}[|X_n - X|^p]}{\epsilon^p}$$
(4.25)

$$X_n \xrightarrow{\mathcal{L}^p} X \Rightarrow \mathbb{E}[|X_n - X|^p] \xrightarrow{n \to \infty} 0 = RHS. \blacksquare$$

 $Rm. X_n \xrightarrow{\mathcal{L}^p} X Does not imply X_n \xrightarrow{a.s.} X.$

- $X_n \xrightarrow{a.s.} X$ Does not imply $X_n \xrightarrow{\mathcal{L}^p} X$ either. DOM, SHEFFE supports this arrow because they imposes extra condtions.
- $\cdot X_n \xrightarrow{i.p.} X$ Does not imply $X_n \xrightarrow{\mathcal{L}^p} X$.
- · However $X_n \xrightarrow{i.p.} X$ plus some extra conditions can lead to $X_n \xrightarrow{\mathcal{L}^p} X$. Conditions can be: **DOM**, **SCHEFFE** (note that i.p. and a.s. are equivalent hypothesis for these two in $(\Omega, \mathcal{F}, \mathbb{P})$), or **Unifrom Integrable**.

4.4.5 Uniform Integrablility

Prop. (Motivation for Unif.Integrability)

$$X \in \mathcal{L}^1 \iff \lim_{M \to \infty} \mathbb{E}[|X|; |X| > M] = 0$$

Proof. \Leftarrow : Let $C:=\sup_{M>1}\mathbb{E}[|X|;|X|\geq M]$. By hypothesis, this is bounded, i.e. $C<\infty$. And

$$\mathbb{E}[|X|] = \mathbb{E}[|X|; |X| > M] + \mathbb{E}[X; |X| \le M]$$

$$< M + C < \infty$$
(4.26)

 \Rightarrow : Consider $X_M := |X| \cdot \mathbb{1}_{\{|X| \leq M\}} \nearrow |X|$. Clearly $X_1 \in \mathcal{L}^1$. By (MON): $\mathbb{E}[|X|; |X| \leq M] = \mathbb{E}[|X_M|] \nearrow \mathbb{E}[|X|] < \infty$.

$$\lim_{M \to \infty} \mathbb{E}[|X|; |X| > M] = \lim_{M \to \infty} \mathbb{E}[|X|] - \mathbb{E}[|X|; |X| \le M]$$

$$= 0 \quad \blacksquare$$
(4.27)

Def. Unifrom Integrable: Sequence of RV $\{X_n\}$ is U.I. if

$$\lim_{M \to \infty} \sup_{n \ge 1} \mathbb{E}[|X_n|; |X_n| > M] = 0 \tag{4.28}$$

Rm. U.I. says that for all $\epsilon > 0$, exists M large, such that $\mathbb{E}[|X_n|; |X_n| > M] < \epsilon$ uniformly for all $n \geq 1$.

Prop. (Strength of U.I. hypothesis)

- $\cdot X_n \text{ U.I.} \Rightarrow \{|X_n|\} \text{ is unifromly bounded in } \mathcal{L}^1.$
- · $\{|X_n|\}$ is unifromly bounded in \mathcal{L}^p for all $p \geq 1 \Rightarrow X_n$ U.I.

Rm. Say $\{|X_n|\}$ is unifromly bounded in \mathcal{L}^p if: $\forall n \geq 1, \exists M < \infty$ is irrelevant to n; such that $\mathbb{E}[|X_n|^p] < M$. OR just:

$$\sup_{n} \mathbb{E}[|X_n|^p] < M \tag{4.29}$$

Proof. (1): By hypothesis, $\exists M \text{ large, } \sup_{n} \mathbb{E}[|X_n|; |X_n| > M] < \epsilon$.

$$\mathbb{E}[|X_n|] = \mathbb{E}[|X_n|; |X_n| \le M] + \mathbb{E}[|X_n|; |X_n| > M]$$

$$\le M + \sup_n \mathbb{E}[|X_n|; |X_n| > M]. \quad \blacksquare$$
(4.30)

(2): By hypothesis, $\sup_{n} \mathbb{E}[|X_n|^p] < C < \infty$.

$$\mathbb{E}[|X_n|; |X_n| > M] \le \mathbb{E}\left[\frac{|X_n|^{p-1}}{M^{p-1}} \cdot |X_n|; |X_n| > M\right]$$

$$= \frac{1}{M^{p-1}} \mathbb{E}\left[|X_n|; |X_n|^p > M\right]$$

$$\le \frac{\sup_{n} \mathbb{E}\left[|X_n|^p\right]}{M^{p-1}} \le \frac{C}{M^{p-1}} \xrightarrow{M \to \infty} 0. \quad \blacksquare$$

$$(4.31)$$

Thm. (the **Exact Gap** between i.p. and \mathcal{L}^1 convergence)

$$X_n \xrightarrow{\mathcal{L}^1} X \iff X_n \xrightarrow{i.p} X \text{ and } \{X_n\} \text{ is U.I.}$$
 (4.32)

Proof.

4.4.6 Jensen's Ineq.

Def. Convex Mapping: $\phi : \mathbb{R} \to \mathbb{R}$, if $x, y \in \mathbb{R}$, $p, q \in (0, 1)$, p + q = 1. ϕ is a convex function if:

$$\phi(px + qy) \le p\phi(x) + q\phi(y) \tag{4.33}$$

Prop. Support Line: If phi is convex, then $\forall x \in \mathbb{R}$, \exists a line l crosses $(x, \phi(x))$; l stays entirely below the graph of ϕ .

 $X \in \mathcal{L}^1, \, \phi : \mathbb{R} \mapsto \mathbb{R}$ is a convex mapping, $\phi \in \mathcal{L}^1$; then:

$$\phi(\mathbb{E}[X]) \le \mathbb{E}[\phi(X)] \tag{4.34}$$

gives **Jensen's Ineq.**, average inside \leq average outside.

Proof. Using support line. Exists l passes $(\mathbb{E}[X], \phi(\mathbb{E}[X]))$, say y = ax + b, that supports ϕ ; i.e. $\forall w \in \Omega$:

$$aX(w) + b \le \phi(X(w)) \tag{4.35}$$

Take expectation both sides, and notice $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b = \phi(\mathbb{E}[X])$:

$$\phi(\mathbb{E}[X]) = \mathbb{E}[aX + b] \le \mathbb{E}[\phi(X)]. \quad \blacksquare$$
 (4.36)

Cor. Popular Convex: |X|, X^2 , e^{aX} , $X^+ := \max\{X,0\}$, $X^- := \max\{-X,0\}$ are convex, satisfy jensen.

4.4.7 On Prob Density Function

Recall law of X, $\mathcal{L}_X(B) := \mathbb{P}(X \in B)$, $B \in \mathscr{B}(\mathbb{R})$ is a new prob measure on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$. For default setting in this subsection, consider $f : \mathbb{R} \to \mathbb{R}$ is a *Borel mapping*. And RV $X : \Omega \to \mathbb{R}$.

Also recall distribution function: $F_X(x) := \mathcal{L}_X(-\infty, x]$.

Prop. (Transference of Integrability/Integral against \mathbb{P} and \mathcal{L}_X measure):

$$f(X) = f \circ X(w) \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P}) \iff f(x) \in \mathcal{L}^1(\mathbb{R}, \mathscr{B}(\mathbb{R}), \mathcal{L}_X)$$

In particular, if $f \circ X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$:

$$\int_{\Omega} f(X(w))d\mathbb{P} = \int_{\mathbb{R}} f(x)d\mathcal{L}_X \quad (\#)$$
(4.37)

Rm. This thing is in fact transferring the relationship on sets level, i.e. $\mathcal{L}_X(B) = \mathbb{P}(X \in B)$ to integral level.

Proof. Let $f = \mathbb{1}_B$. Define preimage $X^{-1}(B) := \{ w \in \Omega : X(w) \in B \} \subseteq \Omega$.

$$LHS = \int_{\Omega} \mathbb{1}_{B}(X(w))d\mathbb{P} = \int_{\Omega} \mathbb{1}_{X^{-1}(B)}d\mathbb{P} = \mathbb{P}(X^{-1}(B))$$
(4.38)

$$RHS = \int_{\mathbb{R}} \mathbb{1}_B(x) d\mathcal{L}_X = \mathcal{L}_X(B) = \mathbb{P}(X \in B) = \mathbb{P}(X^{-1}(B))$$
 (4.39)

(#) holds for indicators.

By linearity \Rightarrow (#) holds for $f \in SF^+$.

By (MON) \Rightarrow (#) holds for $f \in [m\mathscr{B}(\mathbb{R})]^+$.

For general $f = f^+ - f^- \in \mathcal{L}^1$, $\int f^{\pm} < \infty$. By linearity, (#) holds for general f.

Cor. ($\mathbb{E}[X]$ and Var[X]) For $X \in \mathcal{L}^1$, $X \in \mathcal{L}^2$ respectively:

$$\mathbb{E}\left[X\right] = \int_{\mathbb{R}} x d\mathcal{L}_X \tag{4.40}$$

$$\operatorname{Var}[X] = \int_{\mathbb{R}} (x - E[X])^2 d\mathcal{L}_X \tag{4.41}$$

Cor. (Law as a lower level object) If X, Y has identical Law \mathcal{L} , then $\forall f \in m\mathscr{B}$:

- $f(X) \in \mathcal{L}^1 \Rightarrow f(Y) \in \mathcal{L}^1$
- · If $f(X) \in \mathcal{L}^1$:

$$\mathbb{E}[X] = \mathbb{E}[Y] = \int_{\mathbb{D}} f(x) d\mathcal{L} \tag{4.42}$$

Notation. (Lebesgue-Stieltjes version of $\mathbb{E}[X]$ using dist function)

$$\mathbb{E}[X] = \int_{\mathbb{R}} f(x)d\mathcal{L}_X = \int_{\mathbb{R}} f(x)dF_X \tag{4.43}$$

Def. Probability Density Function: RV X has p.d.f f_X , if

- $f_X: \mathbb{R} \mapsto [0, +\infty]$ is measurable.
- · The Radon-Nikodyn derivative of measure \mathcal{L}_X with respect to lebesgue measure μ exists. I.e. \mathcal{L}_X is absolutely continous wrt μ .

Use dx as abbr of $d\mu_{leb}$, for f_X , if exists, we have:

$$f_X = \frac{d\mathcal{L}_X}{dx} \tag{4.44}$$

Prop. (Transference of Integrability/Integral against \mathbb{P} and lebesgue measure via p.d.f): If f_X exists, and $h: \mathbb{R} \mapsto \mathbb{R}$ is Borel function, we have:

$$h(X) = h \circ X(w) \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P}) \iff hf_X \in \mathcal{L}^1(\mathbb{R}, \mathscr{B}(\mathbb{R}), \mu_{leb})$$

In particular, if $h \circ X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$:

$$\int_{\Omega} h(X(w))d\mathbb{P} = \int_{\mathbb{R}} h(x)f_X(x)dx \tag{4.45}$$

Rm. Existance of p.d.f

 $\cdot f_X \text{ exists} \Rightarrow F_X \text{ is continous } everywhere.$

Assume otherwise with discontinuity $\{x_0\}$, $F(x_0^+) - F(x_0^-) > 0$. Then $\mathcal{L}_X(\{x_0\}) > 0$, not absolutely cont wrt μ_{leb} .

· f_X exists $\Rightarrow F_X$ is differentiable a.e.

$$F_X(y) = \int_{-\infty}^y f_X(x) dx$$

$$F_X'(y) = f_X(y) \quad a.e.$$

· F_X is differentiable a.e. **Does not imply** f_X exists.

Counter Example: $\mathcal{L}_X = \delta_0$ is Dirac Delta function. \mathcal{L}_X is not absolutely cont wrt μ_{leb} .

· F_X is differentiable everywhere $\Rightarrow f_X$ exists.

$$F'_X(y) = f_X(y)$$
 a.e.

· F_X is continuous everywhere **Does not imply** f_X exists.

Counter Example: \mathcal{L}_X is Cantor function (fractal structured), \mathcal{L}_X is not absolutely cont wrt μ_{leb} .

Chapter 5

Law of Large Numbers

5.1 Terminology

Given process $\{X_n\}$, define partial sum $S_n := \sum_{j=1}^n X_j$. The **Strong/Weak Law of Large Number** is said to hold for $\{X_n\}$ in following two cases,

· In Classical Setting, say WLLN holds if

$$\frac{S_n - \mathbb{E}\left[S_n\right]}{n} \xrightarrow{i.p} 0 \tag{5.1}$$

Say SLLN holds if

$$\frac{S_n - \mathbb{E}\left[S_n\right]}{n} \xrightarrow{a.s.} 0 \tag{5.2}$$

· In General Setting consider $\{a_n\} \in \mathbb{R}$, $\{b_n\} > 0$, $b_n \nearrow \infty$. WLLN for $\{X_n\}$ normalized by a_n, b_n , if

$$\frac{S_n - a_n}{b_n} \xrightarrow{i.p} 0 \tag{5.3}$$

SLLN if

$$\frac{S_n - a_n}{b_n} \xrightarrow{a.s} 0 \tag{5.4}$$

We study the conditions under which WLLN and SLLN can hold. There are two types of them:

- · Estimates/Controls on Moments (i.e. Integrability)
- · Estimates/Controls on **Distributions**.

5.2 Chebyshev (WLLN1)

Thm. (Chebyshev) $\{X_n\}$ is a seq of RVs, satisfying

- · (Dist) $\{X_n\}$ are uncorrelated, i.e. $Cov[X_i, X_j] = 0 \ \forall i \neq j$.
- · (Moments) $\{X_n\}$ is bounded by \mathcal{L}^2 , i.e. $\sup_n \mathbb{E}[X_n^2] < \infty$.

Then WLLN holds for $\{X_n\}$.

Proof. WLOG assume $\mathbb{E}[X_n] = 0$.

Otherwise we can always take $Z_n = X_n - \mathbb{E}[X_n]$ be centerred X_n , which has zero means. Under this, $\mathbb{E}[X_i X_j] = \mathbb{E}[X_i] \mathbb{E}[X_j] = 0$.

$$\mathbb{E}\left[S_n^2\right] = \sum_{j=1}^n \mathbb{E}\left[X_j^2\right] + \sum_{1 \le i \ne j \le n} \mathbb{E}\left[X_i X_j\right]$$

$$\le n \cdot \sup_n \mathbb{E}\left[X_n^2\right]$$
(5.5)

For all $\epsilon > 0$, using Markov's ineq,

$$\mathbb{P}\left(\left|\frac{S_n}{n}\right| \ge \epsilon\right) \le \frac{\mathbb{E}\left[S_n^2\right]}{n^2 \epsilon^2} \le \frac{n \sup_{n \to \infty} \mathbb{E}\left[X_n^2\right]}{n^2 \epsilon^2} \xrightarrow{n \to \infty} 0 \tag{5.6}$$

So WLLN $(\xrightarrow{i.p})$ holds.

Rm. Chebyshev's ineq: If $X \in \mathcal{L}^2$, then

$$\mathbb{P}\left(\left|X - \mathbb{E}\left[X\right]\right| > c\right) \le \frac{\operatorname{Var}\left[X\right]}{c^2} \tag{5.7}$$

Says exactly same thing as Markov's.

5.3 Rajchmah (SLLN1)

Thm. (Rajchmah) Same hypothesis,

- · (Dist) $\{X_n\}$ are uncorrelated, i.e. $Cov[X_i, X_j] = 0 \ \forall i \neq j$.
- · (Moments) $\{X_n\}$ is bounded by \mathcal{L}^2 , i.e. $\sup_n \mathbb{E}[X_n^2] < \infty$.

In fact we have SLLN.

Proof. WLOG assume $\mathbb{E}[X_n] = 0$. By proof of SLLN, we already have:

$$\mathbb{P}\left(\left|\frac{S_n}{n}\right| \ge \epsilon\right) \le \frac{M}{n\epsilon^2} \tag{5.8}$$

Where $M = \sup_{n} \mathbb{E}[X_n^2]$. But the whole thing (order $\frac{1}{n}$) is not summable. Consider subsequence $\{X_{n^2}\} \subseteq \{X_n\}$,

$$\mathbb{P}\left(\left|\frac{S_{n^2}}{n^2}\right| \ge \epsilon\right) \le \frac{\mathbb{E}\left[S_{n^2}^2\right]}{n^4 \epsilon^2} \le \frac{n^2 M}{n^4 \epsilon^2} = \frac{M}{n^2 \epsilon^2} \tag{5.9}$$

is summable, i.e. for all $\epsilon > 0$,

$$\sum_{n\geq 1} \mathbb{P}\left(\left|\frac{S_{n^2}}{n^2}\right| \geq \epsilon\right) < \infty \tag{5.10}$$

By (BC1): $\mathbb{P}\left(\left|\frac{S_{n^2}}{n^2}\right| \geq \epsilon \ i.o.\right) = 0$, which is $\iff \left|\frac{S_{n^2}}{n^2}\right| \xrightarrow{a.s.} 0$. Holds for subsequence n^2 .

Then define

$$D_n := \max_{n^2 \le k \le (n+1)^2} |S_k - S_{n^2}| \tag{5.11}$$

which somehow captures the worst deviation from n^2 subsequence.

$$\mathbb{E}\left[D_{n}^{2}\right] \leq \sum_{k=n^{2}+1}^{(n+1)^{2}-1} \mathbb{E}\left[\left(S_{k} - S_{n^{2}}\right)^{2}\right]$$

$$= \sum_{k=n^{2}+1}^{(n+1)^{2}-1} \sum_{l=n^{2}+1}^{k} \mathbb{E}\left[X_{l}^{2}\right]$$

$$\leq 2n \cdot 2n \cdot M = \Theta(n^{2})$$
(5.12)

Where $M = \sup_{n} \mathbb{E}[X_n^2]$, Second equal sign follows that $\{X_n\}$ are uncorrelated. Final leq is just counting the terms. We now has the idea to estimate D_n by its order n^2 . For all $\epsilon > 0$, markov:

$$\mathbb{P}\left(\frac{|D_n|}{n^2} > \epsilon\right) \le \frac{\mathbb{E}\left[D_n^2\right]}{n^4 \epsilon^2} \le \frac{4n^2 M}{n^4 \epsilon} = \frac{4M}{n^2 \epsilon^2} \tag{5.13}$$

Which is summable $(\frac{1}{n^2})$.

$$\sum_{n\geq 1} \mathbb{P}\left(\frac{|D_n|}{n^2} > \epsilon\right) < \infty \tag{5.14}$$

BC1:
$$\mathbb{P}\left(\frac{|D_n|}{n^2} > \epsilon \ i.o.\right) = 0 \Rightarrow \frac{|D_n|}{n^2} \xrightarrow{a.s.} 0.$$

For every $w \in \Omega$ such that both $\frac{|D_n|}{n^2} \to 0$ and $\left|\frac{S_{n^2}}{n^2}\right| \to 0$ occurs¹, for every $k \ge 1$, $\exists ! \ n(k)$ such that $n^2(k) \le k < (n(k) + 1)^2$, and

$$\frac{|S_k|}{k} \le \frac{|S_k - S_{n^2(k)}| + |S_{n^2(k)}|}{n^2(k)}
\le \frac{|D_n|}{n^2(k)} + \frac{|S_{n^2(k)}|}{n^2(k)} \xrightarrow{k \to \infty} 0$$
(5.15)

Which holds for a.e.. So $\frac{|S_k|}{k} \xrightarrow{a.s.} 0$.

Rm. (Cantelli)

- · (Dist) $\{X_n\}$ are indep.
- · (Moments) $\{X_n\}$ is bounded by \mathcal{L}^4 .

Supports SLLN, much weaker then the one above.

 $^{^{1}}$ Since these two are a.s. convergence, w is in fact also a.s.

5.4 Khintchine (WLLN2) and Kolmogorov-Feller (WLLN3)

5.4.1 Equivalence of Seqs

Def. Equivalence: Two sequence $\{X_n\}, \{Y_n\}$ are called equivalent, if

$$\sum_{n>1} \mathbb{P}\left(X_n \neq Y_n\right) < \infty \tag{5.16}$$

Prop. If X_n, Y_n are equivalent, then $\sum_{n\geq 1} (X_n - Y_n)$ converges almost everywhere. And $\forall b_n > 0, b_n \nearrow \infty$,

$$\frac{1}{b_n} \sum_{k=1}^{n} (X_k - Y_k) \xrightarrow{a.s.} 0 \tag{5.17}$$

Proof. BC1: $\mathbb{P}(X_n \neq Y_n \ i.o.) = 0 \Rightarrow \mathbb{P}(X_n = Y_n \ e.v.) = 1$. Which means X_n and Y_n are eventually the same.

For almost every $w \in \Omega$, $\exists N(w) > 0$, such that $\forall n > N(w)$, $X_n(w) = Y_n(w)$. So clearly

$$\sum_{n>1} (X_n(w) - Y_n(w)) = \sum_{k=1}^{N(w)} (X_k(w) - Y_k(w)) < \infty$$
 (5.18)

i.e. $\sum_{n\geq 1} (X_n(w) - Y_n(w))$ a.s. converges.

Moreover, for a.e. w,

$$\frac{1}{b_n} \sum_{n>1} (X_n(w) - Y_n(w)) = \frac{1}{b_n} \sum_{k=1}^{N(w)} (X_k(w) - Y_k(w)) \xrightarrow{b_n \to \infty} 0$$
 (5.19)

i.e.
$$\frac{1}{h_n} \sum_{n>1} (X_n - Y_n) \xrightarrow{a.s.} 0$$
.

5.4.2 Big O and Small o Notations

Def. Big O and Small o Notations: Assume $a_n \subseteq \mathbb{R}$, $\{b_n\} \subseteq \mathbb{R}^+$. $b_n \nearrow +\infty$.

· We write $a_n = O(b_n) \iff \exists c > 0, \exists N \text{ large, such that } \forall n > N$:

$$\frac{1}{c}b_n \le a_n \le cb_n \tag{5.20}$$

· We write $a_n = o(b_n) \iff$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0 \tag{5.21}$$

Lemma (Sum of converge-to-zero seq is o(n)): If $\lim_{n\to\infty} a_n = 0$, then $\sum_{j=1}^n a_i = o(n)$, i.e.

$$\lim_{n \to \infty} \frac{\sum_{j=1}^{n} a_j}{n} = 0 \tag{5.22}$$

Proof. Since a_n converges to zero $\Rightarrow \forall \epsilon, \exists N_1, \forall n > N_1, |a_n| < \frac{\epsilon}{2}$.

$$\left| \frac{1}{n} \sum_{j=1}^{n} a_j \right| \le \frac{1}{n} \sum_{j=1}^{N_1} |a_j| + \frac{1}{n} \sum_{j=N_1+1}^{n} |a_j|$$
 (5.23)

Clearly the second term $<\frac{\epsilon}{2}$ and the first term converges to zero, i.e. $\exists N_2 > 0$, $\forall n > N_2$: $\frac{1}{n} \sum_{j=1}^{N_1} |a_j| < \frac{\epsilon}{2}$. Take $N = \max\{N_1, N_2\}$, the whole thing $< \epsilon$.

5.4.3 Khintchine's WLLN

From now we are using the general sense of LLNs, specified in the first section.

Thm. (Khintchine) $\{X_n\}$ be a seq of RVs satisfying

- · (Dist) $\{X_n\}$ are pairwise indep., and identically distributed.
- · (Moments) $m := \mathbb{E}[X_n] < \infty$. (\mathcal{L}^1).

Then,

$$\frac{S_n - nm}{n} \xrightarrow{i.p} 0; \text{ i.e. } \frac{S_n - \mathbb{E}[S_n]}{n} \xrightarrow{i.p} 0; \text{ i.e. } \frac{S_n}{n} \xrightarrow{i.p} m = \mathbb{E}[X_n]$$
 (5.24)

Proof. Consider truncated sequence $\{Y_n\}$,

$$Y_n = \begin{cases} X_n & \text{if } |X_n| \le n, \\ 0 & \text{otherwise.} \end{cases}$$

We hope that X_n and Y_n are equivalent. By definiton,

$$\sum_{n\geq 1} \mathbb{P}(X_n \neq Y_n) = \sum_{n\geq 1} \mathbb{P}(|X_n| > n) = \sum_{n\geq 1} \mathbb{P}(|X_1| > n)$$
 (5.25)

$$\infty > \mathbb{E}[|X_1|] = \int_0^\infty \mathbb{P}(|X_1| > t) dt$$

$$= \sum_{n > 1} \int_{n-1}^n \mathbb{P}(|X_1| > t) dt \ge \sum_{n > 1} \mathbb{P}(|X_1| > n)$$
(5.26)

Therefore they are indeed equivalent. And clearly $\{Y_n\}$ are also pairwise indep. Define $T_n := \sum_{j=1}^n Y_j$

$$\operatorname{Var}[T_n] = \sum_{j=1}^n \operatorname{Var}[Y_j] \le \sum_{j=1}^n \mathbb{E}[Y_j^2] = \sum_{j=1}^n \mathbb{E}[X_j^2; |X_j| \le j]$$
 (5.27)

Note that we can easily obtain a *crude* estimate of Var $[T_n]$. $RHS \leq \sum_{1}^{n} j \cdot \mathbb{E}[|X_j|] \leq \mathbb{E}[|X_1|] \sum_{1}^{n} j = O(n^2)$, which is not sufficient. To show any WLLN, we **always** somehow need Var $[S_n] = o(n^2)$.

Finer estimate is made by following. Consider l_n , such that, $0 < l_n \nearrow \infty$, $l_n < n$, and $l_n = o(n)$. For example, $l_n = \lfloor \sqrt{n} \rfloor$. Then,

$$\operatorname{Var}\left[T_{n}\right] \leq \left(\sum_{j=1}^{l_{n}} + \sum_{j=l_{n}+1}^{n}\right) \mathbb{E}\left[X_{j}^{2}; |X_{j}| \leq j\right]$$

$$\leq \mathbb{E}\left[|X_{1}|\right] \sum_{j=1}^{l_{n}} j + \sum_{j=l_{n}+1}^{n} \left(\mathbb{E}\left[X_{j}^{2}; |X_{j}| \leq l_{n}\right] + \mathbb{E}\left[X_{j}^{2}; l_{n} < |X_{j}| \leq j\right]\right)$$

$$\leq \mathbb{E}\left[|X_{1}|\right] O(l_{n}^{2}) + \sum_{j=l_{n}+1}^{n} l_{n} \cdot \mathbb{E}\left[|X_{1}|\right] + \sum_{j=l_{n}+1}^{n} j \cdot \mathbb{E}\left[|X_{1}|; |X_{1}| > l_{n}\right]$$

$$= \mathbb{E}\left[|X_{1}|\right] \cdot O(l_{n}^{2}) + \mathbb{E}\left[|X_{1}|\right] \cdot O(nl_{n}) + \mathbb{E}\left[|X_{1}|; |X_{1}| > l_{n}\right] \cdot O(n^{2})$$

$$= o(n^{2})$$

$$(5.28)$$

For the last equal sign to $o(n^2)$, notice that the first two terms are clearly $o(n^2)$, and since $X_1 \in \mathcal{L}^1 \Rightarrow \mathbb{E}[|X_1|; |X_1| > l_n] \xrightarrow{l_n \to \infty} 0$, so the third term is also $o(n^2)$ (actually zero at infinity). We have

$$\lim_{n \to \infty} \frac{\operatorname{Var}\left[T_n\right]}{n^2} = 0 \tag{5.29}$$

Apply (Chebyshev), for all $\epsilon > 0$,

$$\mathbb{P}\left(\frac{|T_n - \mathbb{E}[T_n]|}{n} > \epsilon\right) \le \frac{\operatorname{Var}[T_n]}{n^2 \epsilon^2} \xrightarrow{n \to \infty} 0 \tag{5.30}$$

Implies

$$\frac{T_n - \mathbb{E}\left[T_n\right]}{n} \xrightarrow{i.p} 0 \tag{5.31}$$

Now we are going from T_n to S_n .

$$\frac{\left|S_{n} - \mathbb{E}\left[S_{n}\right]\right|}{n} \leq \frac{\left|S_{n} - T_{n}\right|}{n} + \frac{\left|T_{n} - \mathbb{E}\left[T_{n}\right]\right|}{n} + \frac{\left|\mathbb{E}\left[T_{n}\right] - \mathbb{E}\left[S_{n}\right]\right|}{n}$$

$$= Q_{1} + Q_{2} + Q_{3}$$
(5.32)

- · For Q_1 , since $\{X_n\}, \{Y_n\}$ are equivalent, use the property of equivalent sequence, $Q_1 \xrightarrow{a.s.} 0$.
- · For Q_2 , we already know $Q_2 \xrightarrow{i.p} 0$.
- · For Q_3 ,

$$Q_3 \le \frac{1}{n} \sum_{j=1}^n \mathbb{E}\left[|X_j|; |X_j| > j\right] = \frac{1}{n} \sum_{j=1}^n \mathbb{E}\left[|X_1|; |X_1| > j\right]$$
 (5.33)

By lemma in last subsection, sum of converge-to-zero seq is o(n). Since $\lim_{n\to\infty} \mathbb{E}[|X_1|;|X_1|>n]=0$, the sum is o(n), implies $Q_3\to 0$ (pointwise).

Pick the weakest convergence of three sub-quantities, $\frac{|S_n-nm|}{n} \xrightarrow{i.p} 0$.

Rm. To show any WLLN, we always somehow need $Var[S_n] = o(n^2)$.

5.4.4 Kolmogorov-Feller's WLLN

Thm. (Kolmogorov-Feller) $\{X_n\}$ are pairwise indep., some seq of numbers $\{b_n\}$, $0 < b_n \nearrow \infty$. $\{X_n\}$ satisfies,

$$\lim_{n \to \infty} \sum_{j=1}^{n} \mathbb{P}(|X_j| > b_n) = 0$$
 (5.34)

$$\lim_{n \to \infty} \sum_{j=1}^{n} \mathbb{E}\left[\frac{|X_j|^2}{b_n^2}; |X_j| \le b_n\right] = 0$$
 (5.35)

Then, if a_n is defined by $a_n := \sum_{j=1}^n \mathbb{E}[X_j; |X_j| \leq b_n]$, we have

$$\frac{S_n - a_n}{b_n} \xrightarrow{i.p} 0 \tag{5.36}$$

5.5 Kolmogorov (SLLN2)

5.5.1 Kronecker's Lemma

Lemma (Kronecker) Two sequences of numbers, $\{x_n\} \subseteq \mathbb{R}, \{a_n\} \subseteq \mathbb{R}^+, a_n \nearrow \infty$, then

$$\sum_{n\geq 1} \frac{x_n}{a_n} \quad \text{Converges to finite value} \ \Rightarrow \frac{1}{a_n} \sum_{j=1}^n x_j \xrightarrow{n \to \infty} 0$$

Note the reverse direction (\Leftarrow) is **Not** true.

Proof. For $1 \le n < \infty$, define

$$b_n := \sum_{j=1}^n \frac{x_j}{a_j} \tag{5.37}$$

By hypothesis, $\lim_{n\to\infty} b_n = b < \infty$. Let $b_0 = a_0 = 0$, clearly by definition $x_n = a_n(b_n - b_{n-1})$, so

$$\frac{1}{a_n} \sum_{j=1}^n x_j = \frac{1}{a_n} \sum_{j=1}^n a_j (b_j - b_{j-1})$$

$$= (b_n - b_{n-1}) + \frac{1}{a_n} \sum_{j=1}^{n-1} a_j b_j - \frac{1}{a_n} \sum_{j=1}^{n-1} a_j b_{j-1}$$

$$= (b_n - b_{n-1}) + \frac{1}{a_n} \sum_{j=1}^{n-1} a_j b_j - \frac{1}{a_n} \sum_{j=0}^{n-2} a_{j+1} b_j$$

$$= (b_n - b_{n-1}) + \frac{1}{a_n} \sum_{j=1}^{n-1} (a_j - a_{j+1}) b_j + \frac{a_{n-1} b_{n-1}}{a_n}$$

$$= (b_n - b_{n-1}) + \frac{1}{a_n} \sum_{j=1}^{n-1} (a_j - a_{j+1}) b_j + \frac{a_{n-1} b_{n-1}}{a_n}$$

$$= b_n - \frac{1}{a_n} (a_n - a_{n-1}) b_{n-1} + \frac{1}{a_n} \sum_{j=1}^{n-1} (a_j - a_{j+1}) b_j$$

$$= b_n - \frac{1}{a_n} \sum_{j=1}^{n-1} (a_{j+1} - a_j) b_j \quad (\#)$$
(5.38)

This bunch of thing,

$$\frac{1}{a_n} \sum_{j=1}^n a_j (b_j - b_{j-1}) = b_n - \frac{1}{a_n} \sum_{j=1}^{n-1} (a_{j+1} - a_j) b_j$$
 (5.39)

is actually **Abel Summation Formula** (discrete version of integration by parts). Note the telescoping sum $\frac{1}{a_n} \sum_{0}^{n-1} (a_{j+1} - a_j) = 1$, so $b_n = \frac{1}{a_n} \sum_{0}^{n-1} b_n (a_{j+1} - a_j)$, therefore

$$(\#) = \frac{1}{a_n} \sum_{j=1}^{n-1} (b_n - b_j)(a_{j+1} - a_j)$$
 (5.40)

Since $\lim_{n \to \infty} b_n = b < \infty$, $\{b_n\}$ is Cauchy-sequence. I.e. $\forall \epsilon > 0$, $\exists N$, such that $\forall n, m > N, |b_n - b_m| < \epsilon.$ Split (#) into two parts,

$$(\#) = \frac{1}{a_n} \sum_{j=1}^{n-1} (b_n - b_j) (a_{j+1} - a_j)$$

$$= \frac{1}{a_n} \left(\sum_{j=1}^{N-1} + \sum_{j=N}^n (b_n - b_j) (a_{j+1} - a_j) \right)$$

$$< 2\epsilon$$

$$(5.41)$$

Where the first part is taken care by $\frac{1}{a_n} \to 0$, second is due to $|b_n - b_j| \to 0$.

5.5.2Kolmogorov's Ineq

Lemma. (Kolmogorov's Ineq) Seq $\{X_n\}$. Define S_n as partial sum, $\{X_n\}$ satisfy

- $\{X_n\}$ is Mutually Indep. (Pairwise Not sufficient!)
- $\cdot \mathbb{E}[X_n] = 0, \mathbb{E}[X^2] < \infty \text{ for all } n.$

Then, $\forall \epsilon > 0$,

$$\mathbb{P}\left(\max_{1 \le j \le n} |S_j| > \epsilon\right) \le \frac{\mathbb{E}\left[S_n^2\right]}{\epsilon^2} \tag{5.42}$$

Proof. Define $A := \{ \max_{1 \le j \le n} |S_j| > \epsilon \}$ the event inside LHS.

Define $A_j := \{|S_i| \le \epsilon, \text{ for } i = 1, 2, ..., j - 1\} \cap \{|S_j| > \epsilon\}$ the larger one pops up at exactly index j.

 $A_i \cap A_j = \emptyset$, for $i \neq j$ ($\{A_j\}$ are disjoint), clearly.

We have

$$A = \bigcup_{j=1}^{n} A_j \tag{5.43}$$

$$\mathbb{E}\left[S_{n}^{2}\right] \geq \mathbb{E}\left[S_{n}^{2}; A\right] = \sum_{j=1}^{n} \mathbb{E}\left[S_{n}^{2}; A_{j}\right]$$

$$= \sum_{j=1}^{n} \mathbb{E}\left[\left(S_{j} + \left(S_{n} - S_{j}\right)\right)^{2}; A_{j}\right]$$

$$= \sum_{j=1}^{n} \mathbb{E}\left[S_{j}^{2}; A_{j}\right] + 2 \sum_{j=1}^{n} \mathbb{E}\left[S_{j}(S_{n} - S_{j}); A_{j}\right] + \sum_{j=1}^{n} \mathbb{E}\left[\left(S_{n} - S_{j}\right)^{2}; A_{j}\right] \quad (5.44)$$

$$= \sum_{j=1}^{n} \mathbb{E}\left[S_{j}^{2}; A_{j}\right] + \sum_{j=1}^{n} \mathbb{E}\left[\left(S_{n} - S_{j}\right)^{2}\right]$$

$$\geq \sum_{j=1}^{n} \mathbb{E}\left[S_{j}^{2}; A_{j}\right] > \epsilon^{2} \sum_{j=1}^{n} \mathbb{P}\left(A_{j}\right) = \epsilon^{2} \mathbb{P}\left(A\right)$$

Two things in this derivation,

- · The cross term $S_j(S_n S_j)$ is removed because $S_n S_j = \sum_{k=j+1}^n X_k$, indepent wrt X_l for any $l \leq j$, thus indep wrt S_j . $\mathbb{E}[S_j(S_n S_j)] = \mathbb{E}[S_j] \mathbb{E}[S_n S_j]$, and clearly $\mathbb{E}[S_n S_j] = 0$.
- · The final estimate of expectation by probability. Since A_j contains constraint $|S_j| > \epsilon$, so $\mathbb{E}\left[S_j^2; A_j\right] > \mathbb{E}\left[\epsilon^2; A_j\right] = \epsilon^2 \mathbb{P}\left(A_j\right)$.

Therefore $\mathbb{P}(A) \leq \frac{\mathbb{E}[S_n^2]}{\epsilon^2}$.

5.5.3 Kolmogorov's SLLN

Thm. (Kolmogorov-Prelude) $\{Y_n\}$ satisfy

- $\cdot \{Y_n\}$ Mutually indep.
- · $\sum_{n\geq 1} \operatorname{Var}[Y_n] < \infty$, (automatically have $Y_n \in \mathcal{L}^2$).

Then, $\sum_{n\geq 1}(Y_n-\mathbb{E}\left[Y_n\right])$ converges almost surely.

Proof. Denote partial sum S_n . Fix some N > 0, consider $\{Y_{N+n} : n \ge 1\}$. Denote tail of summation $T_m := \sum_{j=1}^m Y_{N+j} = S_{N+m} - S_N$.

Clearly $\{T_m\}$ mutually indep, apply Kolmogorov's ineq to sequence $T_m - \mathbb{E}[T_m]$,

$$\mathbb{P}\left(\max_{1\leq j\leq m} |T_j - \mathbb{E}\left[T_j\right]| > \epsilon\right) \leq \frac{\operatorname{Var}\left[T_m\right]}{\epsilon^2} = \frac{1}{\epsilon^2} \sum_{j=N+1}^{N+m} \operatorname{Var}\left[Y_j\right]$$
 (5.45)

We are allowed to take $m \to \infty$ (?)

$$\mathbb{P}\left(\sup_{j\geq 1}|T_{j} - \mathbb{E}\left[T_{j}\right]| > \epsilon\right) = \mathbb{P}\left(\bigcup_{m\geq 1}\left\{\max_{1\leq j\leq m}|T_{j} - \mathbb{E}\left[T_{j}\right]| > \epsilon\right\}\right)$$

$$= \lim_{m\to\infty}\mathbb{P}\left(\max_{1\leq j\leq m}|T_{j} - \mathbb{E}\left[T_{j}\right]| > \epsilon\right)$$

$$\leq \frac{1}{\epsilon^{2}}\sum_{j=N+1}^{\infty}\operatorname{Var}\left[Y_{j}\right] \xrightarrow{N\to\infty} 0$$
(5.46)

Convergence to 0 when $N \to \infty$ follows the hypothesis that $\sum_{n\geq 1} \operatorname{Var}[Y_n] < \infty$. Now we have an important intermediate result,

$$\lim_{N \to \infty} \mathbb{P}\left(\sup_{j \ge 1} |T_j - \mathbb{E}[T_j]| > \epsilon\right) = 0 \tag{5.47}$$

i.e.

$$\lim_{N \to \infty} \mathbb{P}\left(\sup_{j \ge 1} \left| (S_{N+j} - S_N) - \mathbb{E}\left[S_{N+j} - S_N\right] \right| > \epsilon \right) = 0$$
 (5.48)

This line says that for all ϵ , we can somehow control the **maximum oscillation** of tail sequence. We will see that this statement *always* implies convergence a.s. Consider

 $\{S_n - \mathbb{E}[S_n] \text{ does not converge in } \mathbb{R}\} \subseteq \{S_n - \mathbb{E}[S_n] \text{ is not Cauchy}\}$

$$= \bigcup_{k \ge 1} \bigcap_{N \ge 1} \{ \sup_{j \ge N} |(S_j - \mathbb{E}[S_j]) - (S_N - \mathbb{E}[S_N])| > \frac{1}{k} \}$$
(5.49)

We hope that this has zero probability. Fix k

$$\mathbb{P}\left(\bigcap_{N\geq 1} \left\{ \sup_{j\geq N} |(S_j - \mathbb{E}[S_j]) - (S_N - \mathbb{E}[S_N])| > \frac{1}{k} \right\} \right)$$

$$= \mathbb{P}\left(\bigcap_{N\geq 1} \left\{ \sup_{j\geq N} |T_j - \mathbb{E}[T_j]| > \frac{1}{k} \right\} \right)$$

$$\leq \lim_{N\to\infty} \mathbb{P}\left(\sup_{j\geq 1} |T_j - \mathbb{E}[T_j]| > \epsilon \right) = 0$$
(5.50)

Therefore

$$\mathbb{P}\left(\left\{S_n - \mathbb{E}\left[S_n\right] \text{ converges in } \mathbb{R}\right\}\right) = 1 \tag{5.51}$$

i.e. $\sum_{n\geq 1} (Y_n - \mathbb{E}\left[Y_n\right])$ converges almost surely. \blacksquare

Thm. (Kolmogorov) $\{X_n\}$ satisfies

- · Mutually indep.
- $\cdot \sum_{n>1} \operatorname{Var}\left[X_n\right]/n^2 < \infty$

then,

$$\sum_{n\geq 1} \frac{X_n - \mathbb{E}[X_n]}{n}$$
 Converges almost surely.

Apply Kronecker's Lemma, we have SLLN:

$$\frac{1}{n} \sum_{n \ge 1} (X_n - \mathbb{E}[X_n]) \xrightarrow{a.s.} 0 \text{ i.e. } \frac{S_n - \mathbb{E}[S_n]}{n} \xrightarrow{a.s.} 0$$

Proof. Let $Y_n := \frac{X_n}{n}$. Check Y_n satisfying hypothesis of prelude thm, then we have desired result by prelude thm.

5.6 Kolmogorov' (SLLN3)

Thm. (Kolmogorov') $\{X_n\}$ is i.i.d. sequence. Following two statement holds,

$$\mathbb{E}\left[|X_1|\right] < \infty \Rightarrow \frac{S_n - \mathbb{E}\left[S_n\right]}{n} \xrightarrow{a.s.} 0 \text{ i.e. } \frac{S_n}{n} \xrightarrow{a.s.} \mathbb{E}\left[X_1\right] \quad (\#1)$$
 (5.52)

$$\mathbb{E}\left[|X_1|\right] = \infty \Rightarrow \limsup_{n \to \infty} \frac{|S_n|}{n} = \infty \quad \text{a.s. } (\#2)$$
 (5.53)

Proof. First do (#2). Assume $\mathbb{E}[|X_1|] = \infty$. Fix any A > 0, $\mathbb{E}[|\frac{X_1}{A}|] = \infty$. Then

$$\sum_{n>1} \mathbb{P}\left(\left|\frac{X_1}{A}\right| > n\right) = \infty \tag{5.54}$$

(Because, in more general case,

$$\infty = \mathbb{E}\left[|X|\right] = \int_0^\infty \mathbb{P}\left(|X| > t\right) dt$$

$$= \sum_{n>1} \int_{n-1}^n \mathbb{P}\left(|X| > t\right) dt \le \sum_{n>1} \mathbb{P}\left(|X| > n-1\right)$$
(5.55)

In fact, $\mathbb{E}[|X|] < \infty \iff \sum_{1}^{\infty} \mathbb{P}(|X| > n) < \infty$) Apply (**BC2**), $\mathbb{P}(|X_n| > nA \ i.o) = 1$, i.e.

$$\mathbb{P}\left(\frac{|S_n - S_{n-1}|}{n} > A \ i.o\right) = 1 \tag{5.56}$$

Consider,

$$\{|S_{n} - S_{n-1}| > nA\} \subseteq \left\{|S_{n}| > \frac{n}{2}A\right\} \cup \left\{|S_{n-1}| > \frac{n}{2}A\right\}$$

$$\subseteq \left\{\frac{|S_{n}|}{n} > \frac{A}{2}\right\} \cup \left\{\frac{|S_{n-1}|}{n-1} > \frac{A}{2}\right\}$$
(5.57)

Two parts at RHS says same thing, so actually we have

$$\mathbb{P}\left(\frac{|S_n|}{n} > \frac{A}{2} \quad i.o\right) = 1 \tag{5.58}$$

This is true for $\forall A > 0$. So take intersection over A, the statement still holds.

$$\bigcap_{m\geq 1} \left\{ \frac{|S_n|}{n} > m \ i.o \right\} \subseteq \bigcap_{m\geq 1} \left\{ \limsup_{n\to\infty} \frac{|S_n|}{n} > m \right\}$$

$$= \left\{ \limsup_{n\to\infty} \frac{|S_n|}{n} = \infty \right\} \qquad (5.59)$$

Now show (#1), assume $\mathbb{E}[|X_1|] < \infty$, truncate X_n ,

$$Y_n := \begin{cases} X_n & \text{if } |X_n| \le n, \\ 0 & \text{otherwise.} \end{cases}$$

By same argument in WLLN(Khintchine), we can come to $\sum \mathbb{P}(Y_n \neq X_n) < \infty$, i.e. X_n, Y_n are equivalent. Clearly $\{Y_n\}$ is also indep. We want to refer to (SLLN2), i.e. $\sum \frac{1}{n^2} \text{Var}[Y_n] < \infty$, consider this quantity

$$\sum_{n\geq 1} \frac{\operatorname{Var}[Y_n]}{n^2} \leq \sum_{n\geq 1} \frac{\mathbb{E}[Y_n^2]}{n^2} = \sum_{n\geq 1} \frac{\mathbb{E}[X_n^2; |X_n| < n]}{n^2}$$

$$= \sum_{n\geq 1} \frac{\mathbb{E}[X_1^2; |X_1| < n]}{n^2}$$

$$= \sum_{n\geq 1} \left(\frac{1}{n^2} \sum_{j=1}^n \mathbb{E}[X_1^2; j - 1 \le |X_1| \le j]\right)$$

$$= \sum_{j=1}^n \left(\mathbb{E}[X_1^2; j - 1 \le |X_1| \le j] \sum_{n\geq j} \frac{1}{n^2}\right)$$

$$= \sum_{j=1}^n \mathbb{E}[X_1^2; j - 1 \le |X_1| \le j] \cdot O\left(\frac{1}{j}\right)$$

$$\leq C \sum_{j=1}^n \frac{1}{j} \cdot j \cdot \mathbb{E}[|X_1|; j - 1 \le |X_1| \le j] = C\mathbb{E}[|X_1|] < \infty$$
(5.60)

In which we swich the order of summation at the forth equal sign, noticing that $\sum_{n\geq j} 1/n^2 = O(1/j)$, and apply definition of O notation at the end, $0 < C < \infty$ is constant.

Apply (SLLN2) for $\{Y_n\}$, we have

$$\frac{\sum_{j=1}^{n} |Y_j - \mathbb{E}[Y_j]|}{n} \xrightarrow{a.s.} 0 \tag{5.61}$$

Split target quantity in similar fashion as WLLN2:

$$\frac{|S_n - \mathbb{E}[S_n]|}{n} \le \frac{|\sum_{1}^{n} X_j - Y_j|}{n} + \frac{|\sum_{1}^{n} Y_j - \mathbb{E}[Y_j]|}{n} + \frac{|\sum_{1}^{n} \mathbb{E}[Y_j] - \mathbb{E}[X_j]|}{n}
= Q_1 + Q_2 + Q_3$$
(5.62)

We proved $Q_2 \xrightarrow{a.s.} 0$.

By property of equivalent seqs $Q_1 \xrightarrow{a.s.} 0$.

$$Q_3 = \frac{\sum_{1}^{n} \mathbb{E}\left[X_j : |X_j| > j\right]}{n} = \frac{1}{n} \sum_{1}^{n} \mathbb{E}\left[X_1; |X_1| > j\right]$$
 (5.63)

By lemma, $a_n \to 0 \Rightarrow \sum a_n = o(n)$. We have $Q_3 \to 0$ pointwise. Therefore $Q_1 + Q_2 + Q_3 \xrightarrow{a.s.} 0$ as desired.

5.7 (SLLN4)

Thm. (SLLN4) Let $\{X_n : n \geq 1\}$ be sequence of \mathcal{L}^1 , indep RVs; S_n be partial sum. Let $\phi : \mathbb{R} \to \mathbb{R}$ be positive and continuous even function such that $\frac{\phi(x)}{|x|}$ is non-decreasing in x and $\frac{\phi(x)}{x^2}$ is non-increasing in x. Assume for some sequence $\{b_n : n \geq 1\}$ of positive real numbers with $b_n \nearrow \infty$,

$$\sum_{n>1} \frac{\mathbb{E}\left[\phi(X_n)\right]}{\phi(b_n)} < \infty \tag{5.64}$$

Show that $\sum_{n\geq 1} \frac{X_n - \mathbb{E}[X_n]}{b_n}$ converges a.s., hence

$$\frac{S_n - \mathbb{E}\left[S_n\right]}{b_n} \xrightarrow{a.s.} 0 \tag{5.65}$$

Proof. See problem 8-4-3.

5.8 Levy's Equivalence Thm

Thm. (Levy) $\{X_n\}$ indep. S_n is partial sum, then

$$S_n \xrightarrow{i.p} S \iff S_n \xrightarrow{a.s.} S$$
 (5.66)

In fact (won't prove)

$$S_n \xrightarrow{dist} S \iff S_n \xrightarrow{a.s.} S$$
 (5.67)

Rm. Intuition is that, in general, it is so hard for sum of independent RV to converge that as long as it converges, it converges in all sense.

Proof. Only for the in.prob part. \Rightarrow :

By i.p; $\forall \epsilon > 0$, $\exists N$, for all m, n > N,

$$\mathbb{P}(|S_m - S_n| > \epsilon) \leq \mathbb{P}\left(|S_n - S| > \frac{\epsilon}{2}\right) + \mathbb{P}\left(|S_m - S| > \frac{\epsilon}{2}\right) \leq \epsilon$$

$$\epsilon \geq \mathbb{P}(|S_m - S_n| > \epsilon)$$

$$\geq \mathbb{P}\left(|S_m - S_n| > \epsilon & \max_{n+1 \leq k \leq m} |S_k - S_n| > 2\epsilon\right)$$
(5.68)

$$= \sum_{k=n+1}^{m} \mathbb{P}(|S_m - S_n| > \epsilon \& |S_j - S_n| \le 2\epsilon, \forall j = n+1, ..., k-1 \& |S_k - S_n| > 2\epsilon)$$

$$\geq \sum_{k=n+1}^{m} \mathbb{P}(|S_m - S_k| \leq \epsilon \& |S_j - S_n| \leq 2\epsilon, \forall j = n+1, ..., k-1 \& |S_k - S_n| > 2\epsilon)$$
(5.69)

Notice that

$$\{|S_m - S_k| \le \epsilon\} \in \sigma(X_{k+1}, ..., X_m)$$

$$\{|S_j - S_n| \le 2\epsilon, \forall j = n+1, ..., k-1 \& |S_k - S_n| > 2\epsilon\} \in \sigma(X_{n+1}, ..., X_k)$$

(5.70)

Are independent, so

$$\epsilon \ge \sum_{k=n+1}^{m} \mathbb{P}(|S_m - S_k| \le \epsilon \& |S_j - S_n| \le 2\epsilon, \forall j = n+1, ..., k-1 \& |S_k - S_n| > 2\epsilon)$$

$$= \sum_{k=n+1}^{m} \mathbb{P}(|S_m - S_k| \le \epsilon) \cdot \mathbb{P}(|S_j - S_n| \le 2\epsilon, \forall j = n+1, ..., k-1 \& |S_k - S_n| > 2\epsilon)$$

$$\ge (1 - \epsilon) \sum_{k=n+1}^{m} \mathbb{P}(|S_j - S_n| \le 2\epsilon, \forall j = n+1, ..., k-1 \& |S_k - S_n| > 2\epsilon)$$

$$= (1 - \epsilon) \cdot \mathbb{P}\left(\max_{n+1 \le k \le m} |S_k - S_n| > 2\epsilon\right)$$
(5.71)

we have, $\forall \epsilon > 0$, for all m, n > N,

$$\mathbb{P}\left(\max_{n+1\leq k\leq m}|S_k - S_n| > 2\epsilon\right) \leq \frac{\epsilon}{1-\epsilon} \tag{5.72}$$

Let $m \to \infty$.

$$\mathbb{P}\left(\sup_{k>n+1}|S_k - S_n| > 2\epsilon\right) \le \frac{\epsilon}{1-\epsilon} \tag{5.73}$$

Therefore

$$\lim_{n \to \infty} \mathbb{P}\left(\sup_{k > n+1} |S_k - S_n| > 2\epsilon\right) = 0 \tag{5.74}$$

Which implies

$$\mathbb{P}\left(\lim_{n\to\infty} S_n \text{ exists in } \mathbb{R} \ (<\infty)\right) = 1 \text{ i.e. } S_n \xrightarrow{a.s.} S \quad \blacksquare \tag{5.75}$$

Chapter 6

Product Space

6.1 Basic Structure

Def Product Space: Let $(S_1, \Sigma_1), (S_2, \Sigma_2)$ be two measurable spaces. Define

$$S := S_1 \times S_2$$

$$\Sigma := \sigma(\{B_1 \times B_2; B_i \in \Sigma_i \text{ (rectangles), } i=1,2\})$$

And coordinate maps $\rho_i: S \to S_i$, $\rho_i(s) = s_i$ for $\forall s \in S$. (S, Σ) is called product space by $(S_1, \Sigma_1) \times (S_2, \Sigma_2)$.

Rm. • In fact $\Sigma = \sigma(\rho_1, \rho_2)$, i.e. preimage of $\rho_i \in \Sigma$, which is clearly the case, for example, pick any $B_1 \in \Sigma_1$, $\rho_1^{-1}(B_1) = B_1 \times S_2 \in \Sigma$.

· The generator set in $\sigma(\cdot)$, collection of rectangles, is a π system.

Lemma (Measurability on prod space implies that at each, fix another coordinate.) $(S, \Sigma) = (S_1, \Sigma_1) \times (S_2, \Sigma_2)$. Consider $m\Sigma \ni f : S \to \mathbb{R}$, then

- · Fix $\bar{s_1} \in S_1$ then $m\Sigma_2 \ni f(\bar{s_1}, \cdot) : S_2 \to \mathbb{R}, s_2 \mapsto f(\bar{s_1}, s_2)$.
- · Fix $\bar{s_2} \in S_2$ then $m\Sigma_1 \ni f(\cdot, \bar{s_2}) : S_1 \to \mathbb{R}, s_1 \mapsto f(s_1, \bar{s_2}).$

Proof. We use **Monotone Class Thm**. Let \mathcal{H} be the class of real-valued functions, such that results in lemma holds. It suffices to show $m\Sigma \subseteq \mathcal{H}$, i.e. $\forall f \in m\Sigma$, $f \in \mathcal{H}$, lemma holds.

One can easily show \mathcal{H} is a vector space¹, and $1 \in \mathcal{H}$.

Consider $\{f_n\} \subseteq \mathcal{H}, f_n \nearrow f, f_n > 0$. Then, for all $s \in S$, $f(s) = \lim_{n \to \infty} f_n(s)^2$, $f \in m\Sigma$. Hence \mathcal{H} is monotone class.

 π system $\mathcal{I} = \{B_1 \times B_2, B_i \in \Sigma_i, i = 1, 2\}, \ \sigma(\mathcal{I}) = \Sigma, \text{ for all } A \in \mathcal{I},$

$$\mathbb{1}_{A}(s) = \mathbb{1}_{B_1 \times B_2}((s_1, s_2)) = \mathbb{1}_{B_1}(s_1) \cdot \mathbb{1}_{B_2}(s_2)$$
(6.1)

Clearly, $\mathbb{1}_A$ is Σ_i measurable fixing the other coordinate, i.e. $\mathbb{1}_A \in \mathcal{H}$. By monotone class thm, $m(\sigma(\mathcal{I})) \in \mathcal{H}$.

¹Since linearity preserves measurability.

²Since limiting preserves measurability.

6.2 Product Measure, Fubini's Thm

Motivation: We want to define measure on product space (S, Σ) .

Def. Slice Integral: Assume μ_i is finite measure on (S_i, Σ_i) . For pointwise mapping $f: S \to \mathbb{R}$ for either $f \in b\Sigma$ or $(m\Sigma)^+$, for all $s_1 \in S_1$ and $s_2 \in S_2$, define two slice integrals of f:

$$I_1^f(s_1) := \int_{S_2} f(s_1, s_2) \mu_2(ds_2)$$
 (6.2)

$$I_2^f(s_2) := \int_{S_1} f(s_1, s_2) \mu_1(ds_1)$$
(6.3)

Lemma (Integrate slice against another coordinate) Assume $f \in b\Sigma$, then $I_i^f \in b\Sigma_i$, i = 1, 2And

$$\int_{S_1} I_1^f(s_1)\mu_1(ds_1) = \int_{S_2} I_2^f(s_2)\mu_2(ds_2) \quad (\dagger)$$
(6.4)

i.e.

$$\int_{S_1} \int_{S_2} f(s_1, s_2) d\mu_1 d\mu_2 = \int_{S_2} \int_{S_1} f(s_1, s_2) d\mu_2 d\mu_1$$
 (6.5)

Proof. Let \mathcal{H} be class of bounded functions s.t. lemma holds. Verify that \mathcal{H} is a monotone class (1,2 omitted here, for 3, $f_n \nearrow f$, † holds on f by (**DOM**)) Choose same π system \mathcal{I} ($B_1 \times B_2$), indicator $\mathbb{1}_A$:

$$I_1^{\mathbb{I}_A}(s_1) = \int_{S_2} \mathbb{1}_A(s_1, s_2) d\mu_2 = \int_{S_2} \mathbb{1}_{B_1}(s_1) \cdot \mathbb{1}_{B_2}(s_2) d\mu_2 = \mathbb{1}_{B_2}(s_2) \mu_2(B_2)$$
 (6.6)

Similarly

$$I_2^{\mathbb{I}_A}(s_2) = \mathbb{I}_{B_1}(s_1)\mu_1(B_1) \tag{6.7}$$

(†) integrate out remaining coordinate, both are $\mu_1(B_1)\mu_2(B_1)$. Therefore $\mathbb{1}_A \in \mathcal{H}$. By monotone class thm, $\sigma(\mathcal{I}) = b\Sigma \subseteq \mathcal{H}$.

Cor. (Tonelli) $f \in (m\Sigma)^+$, then † holds for $I_i^f \in (m\Sigma)^+$.

Proof. For each k > 0, define $f_k := f \wedge k := f \cdot \mathbb{1}_{\{f \le k\}}$. Clearly $f_k \in b\Sigma$, moreover $f_k \nearrow f$. Apply lemma for f_k , we have $I_i^{f_k} \in b\Sigma_i$. Since $f = \lim_{k \to \infty} f_k$, by $(\mathbf{MON}) \Rightarrow I_i^f = \lim_{k \to \infty} I_i^{f_k}$, i = 1, 2. So $I_i^f \in (m\Sigma)^+$.

Thm. (**Fubini**) Measure space (S_i, Σ_i, μ_i) , $i = 1, 2, \mu_i$ are finite measure. Define (S, Σ) same as section 1, define $\mu : S \to \mathbb{R}$, s.t. for all $A \in \Sigma$,

$$\mu(A) := \int_{S_1} I_1^{\mathbb{I}_A} d\mu_1 = \int_{S_2} I_2^{\mathbb{I}_A} d\mu_2 \tag{6.8}$$

Denote $(S, \Sigma, \mu) = (S_1, \Sigma_1, \mu_1) \times (S_2, \Sigma_2, \mu_2)$, denote $\mu = \mu_1 \times \mu_2$, Then

- $\cdot \mu$ is a measure on (S, Σ) (contable additive).
- \cdot μ is the unique measure on (S, Σ) , such that $\mu(B_1 \times B_2) = \mu_1(B_1) \cdot \mu_2(B_2)$.

· If $f \in (m\Sigma)^+$, then

$$\int_{S} f d\mu = \int_{S_1} I_1^f d\mu_1 = \int_{S_2} I_2^f d\mu_2 \quad (\#)$$
 (6.9)

· If $f \in \mathcal{L}^1(S, \Sigma, \mu)$, then $I_i^f \in \mathcal{L}^1(S_i, \Sigma_i, \mu_i)$, and (#) holds

Proof. • Part-1, μ is measure.

Pick $A, B \in \Sigma$, disjoint $\Rightarrow \mathbb{1}_{A \cup B} = \mathbb{1}_A + \mathbb{1}_B$. By definition

$$\mu(A \cup B) := \int_{S_1} (I_1^{\mathbb{I}_A} + I_1^{\mathbb{I}_B}) d\mu_1 =: \mu(A) + \mu(B)$$
 (6.10)

So we have finite additivity. Now consider $\mu(U), U := \bigcup_{n \geq 1} E_n, U_n := \bigcup_{j=1}^n E_j, E_n \in \Sigma$. We have $\mathbb{1}_{U_n} \nearrow \mathbb{1}_U$. By (MON): $I_1^{\mathbb{1}_{U_n}} \nearrow I_1^{\mathbb{1}_U}$. By (MON) again: $\int I_1^{\mathbb{1}_{U_n}} \to \int I_1^{\mathbb{1}_U}$. Therefore

$$\mu(U) := \int_{S_1} I_1^{\mathbb{I}_U} = \lim_{n \to \infty} \int_{S_1} I_1^{\mathbb{I}_{U_n}} = \int_{S_1} \lim_{n \to \infty} I_1^{\mathbb{I}_{U_n}} = \int_{S_1} \sum_{n \ge 1} I_1^{\mathbb{I}_{E_n}} = \sum_{n \ge 1} \mu(E_n) \quad \blacksquare$$
(6.11)

• Part-2, μ is unique.

If μ' is another measure satisfies hypothesis $(\mu(B_1 \times B_2) = \mu_1(B_1) \cdot \mu_2(B_2))$. Clearly $\mu = \mu'$ on \mathcal{I} , rectangles. \mathcal{I} is π system. By π -system thm, $\mu = \mu'$ on Σ .

• Part-3, (#) eq for $f \in (m\Sigma)^+$.

The second equal sign is clear, (**Tonelli**), show the first one.

For $f = \mathbb{1}_A$,

$$\int_{S} f d\mu = \int_{S} \mathbb{1}_{A} d\mu = \mu(A) := \int_{S_{1}} I_{1}^{\mathbb{1}_{A}} d\mu_{1}$$
 (6.12)

Holds just by definition of μ .

For $f \in SF^+$, by linearity, # holds.

For $f \in (m\Sigma)^+$ by (MON), # holds.

• Part-4, (#) eq for $f \in \mathcal{L}^1$.

 $f = f^+ - f^-$, $f \in \mathcal{L}^1 \Rightarrow f^{\pm} < \infty$ a.s. So # holds for f^{\pm} . All relevant integrals are finite, we can rearrange terms by linearity. So # holds for f.

Rm. Remarks on (Fubini)

- 1. The condition in statement says μ_i are finite. We actually have Fubini for μ_i that are σ -finite.
- 2. Since we can extend product of two to product of finitely many, Fubini holds for $n < \infty$ product space, i.e. $\prod_{k=1}^{n} (S_k, \Sigma_k, \mu_k)$.
- 3. Lemma in section 1 says measurability on product space implies that at each factor space. But other direction is not true. i.e. $f(\bar{s_1}, \cdot) \in m\Sigma_1, f(\cdot, \bar{s_2}) \in m\Sigma_2$ **Does Not Imply** $f \in m\Sigma$.

4. Fubini says integrability on product space implies that at each factor space. But other direction is not true. i.e. $I_i^f \in \mathcal{L}^1(S_i, \Sigma_i, \mu_i)$ **Does Not Imply** $f \in \mathcal{L}^1(S, \Sigma, \mu)$.

Two examples of 3 and 4:

6.3 Joint Distribution, Joint Law

Def. Joint Distribution: Prob space $(\Omega, \mathcal{F}, \mathbb{P})$, real valued RV X, Y, define joint distribution function as

$$F_{(X,Y)}(x,y) := \mathbb{P}\left(X \le x, Y \le y\right) \tag{6.13}$$

Def. Joint Law: Define $\mathcal{L}_{(X,Y)}$ as joint law of (X,Y). $\mathcal{L}_{(X,Y)}$ is then a prob measure on product image space $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$, s.t. for all $A \in \mathcal{B}(\mathbb{R}^2)$,

$$\mathcal{L}_{(X,Y)}(A) := \mathbb{P}\left((X,Y) \in A\right) \tag{6.14}$$

Def. Joint PDF: If $\mathcal{L}_{(X,Y)}$ is absolutely continuous with respect to lebesgue measure on \mathbb{R}^2 (denote as dxdy), then the joint pdf of (X,Y) exists, denote $f_{(X,Y)}$, $f_{(X,Y)} \in m\mathscr{B}(\mathbb{R}^2)$, and is defined as Radon-Nikodym derivative of joint law wrt lebesgue measure on product image space,

$$f_{(X,Y)} := \frac{d\mathcal{L}_{(X,Y)}}{dxdy} \tag{6.15}$$

Prop. If $f_{(X,Y)}$ is joint pdf, then by (**Fubini**), then

$$f_X(x) := \int_{\mathbb{R}} f_{(X,Y)}(x,y) dy$$
 is pdf of X .

$$f_Y(y) := \int_{\mathbb{R}} f_{(X,Y)}(x,y) dx$$
 is pdf of Y.

6.3.1 Joint * of Indep RVs

Prop. X, Y are RV with respective cdf and law $\mathcal{L}_X, \mathcal{L}_Y$; F_X, F_Y . Then $TFAE^3$:

- $\cdot X, Y$ are independent.
- $\cdot \mathcal{L}_{(X,Y)} = \mathcal{L}_X \times \mathcal{L}_Y.$
- $F_{XY}(x,y) = F_X(x) \cdot F_Y(y)$ for all $(x,y) \in \mathbb{R}^2$.
- · (If respective pdf f_X , f_Y exists) $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$ for a.e. $(x,y) \in \mathbb{R}^2$.

Statement four is special, in that respective pdf may not exist. And there is allowance for a.e. form every (x, y), because integration eliminates aberrant null sets.

³Jargon: The followings are equivalent (\iff).

Proof. Proof is straightforward, noticing all four statements $\iff \mathbb{P}(X \leq x, Y \leq y) = \mathbb{P}(X \leq x) \cdot \mathbb{P}(Y \leq y)$.

Prop. X, Y indep, X + Y is a new RV. Then Law of X + Y is given by

$$\mathcal{L}_{X+Y}(c) = \int_{\mathbb{R}} \mathcal{L}_Y([-\infty, c-x]) \mathcal{L}_X(dx) = \int_{\mathbb{R}} \mathcal{L}_X([-\infty, c-y]) \mathcal{L}_Y(dy)$$

Proof.

$$\mathcal{L}_{X+Y}(c) = \mathbb{P}(X+Y \leq c) = \iint_{\{(x,y):x+y\leq c\}} d\mathcal{L}_{(X,Y)}$$

$$= \iint_{\{(x,y):x+y\leq c\}} d(\mathcal{L}_X \times \mathcal{L}_Y)$$

$$= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \mathbb{1}_{(-\infty,c-x]}(y) \mathcal{L}_Y(dy) \right] \mathcal{L}_X(dx)$$

$$= \int_{\mathbb{P}} \mathcal{L}_Y([-\infty,c-x]) \mathcal{L}_X(dx) \quad \blacksquare$$
(6.16)

6.3.2 Convolutions

Def. Convolution of Function: for $f \in \mathcal{L}^1$, g is bounded, define

$$(f * g)(x) := \int_{\mathbb{R}} f(x - y)g(y)dy$$

Def. Convolution of Measure: Given two finite measures μ, ν on (S, Σ) , $\mu * \nu = \nu * \mu$ is a measure, for all $A \in (S, \Sigma)$, given by

$$(\mu * \nu)(A) := \int_{S} \mu(A - s)\nu(ds) = \int_{S} \nu(A - s)\mu(ds) =: (\nu * \mu)(A)$$

Where A-s is s translation of A, i.e. $A-s=\{t\in S, t+s\in A\}$.

Rm. By prop in last section, we actually have: (when X, Y indep)

$$\mathcal{L}_{X+Y} = \mathcal{L}_X * \mathcal{L}_Y$$

If f_X, f_Y exists, we have

$$f_{X+Y} = f_X * f_Y$$

6.4 Product of Countably Many Spaces

6.4.1 Product Measure

We are now considering product of countably many spaces. i.e. $\prod_{n\geq 1}(\Omega_n, \mathcal{F}_n, \mathbb{P}_n)$. Define

$$\Omega := \prod_{n \ge 1} \Omega_n$$

representative element $w = (w_1, w_2, ...), w_i \in \Omega_i$. Consider **Cylinder Sets** E, defined by

$$E := \prod_{n \ge 1} F_n = \prod_{k=1}^N F_{n_k} \times \prod_{j \notin \{n_k\}_1^N} \Omega_j$$
 (6.17)

Where $F_{n_k} \subseteq \Omega_{n_k}$, other $F_j = \Omega_j$ for $j \notin \{n_k\}$. This is saying that All but finitely many factors of E are Ω_s .

Define

$$\Sigma_0 := \left\{ \bigcup_{k>1}^K E^{[k]} : E^{[k]} \text{ are disjoint cylinder sets} \right\}$$
 (6.18)

It can be shown (omitted) that Σ_0 is an algebra. Let $\mathcal{F} := \sigma(\Sigma_0)$. Define set function $\mathbb{P}: \Sigma_0 \to [0,1]$, such that for all $A = \bigcup_{k\geq 1}^K E^{[k]} \in \Sigma_0$,

$$\mathbb{P}(A) := \sum_{k=1}^{K} \left[\prod_{j>1} \mathbb{P}_{j} \left(F_{j} \right) \right]$$

$$(6.19)$$

Where \mathbb{P}_j is measure on factor space. Then one can prove (omitted) that \mathbb{P} is well-defined, \mathbb{P} is a measure (countable additive).

Thus by Caratheodory extension thm, \mathbb{P} can be uniquely extended to $\mathcal{F} = \sigma(\Sigma_0)$. So we define $(\Omega, \mathcal{F}, \mathbb{P}) := \prod_{n>1} (\Omega_n, \mathcal{F}_n, \mathbb{P}_n)$.

6.4.2 Kolmogorov Extension Thm

Thm. (**Prelude**) Let $\{\mu_n : n \geq 1\}$ be a countable sequence of prob measures on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$. Then there exists $(\Omega, \mathcal{F}, \mathbb{P})$ and a seq of **indep** RVs $\{X_n\}$, such that $\mathcal{L}_{X_n} = \mu_n$ for all $n \geq 1$.

Proof. Previous result, for all $n \geq 1$, exists $(\Omega_n, \mathcal{F}_n, \mathbb{P}_n)$, RV $Y_n : \Omega_n \to \mathbb{R}$, s.t $Y_n = \mu_n$. Construct such spaces and Y_n for all n, and together, define

$$(\Omega, \mathcal{F}, \mathbb{P}) := \prod_{n>1} (\Omega_n, \mathcal{F}_n, \mathbb{P}_n)$$
(6.20)

Define in product space $X_n : \Omega \to \mathbb{R}$, $w \in \Omega \mapsto Y_n(w_n) \in \mathbb{R}$, i.e. $X_n(w) = Y(w_n)$. Now for all $B \in \mathcal{B}(\mathbb{R})$, by definition of product measure in countably product space,

$$\mathbb{P}(X_n \in B) = \prod_{j=1}^{n-1} \mathbb{P}_j(\Omega_j) \cdot \mathbb{P}_n(Y_n \in B) \cdot \prod_{j=n+1}^{\infty} \mathbb{P}_j(\Omega_j)$$

$$= \mathbb{P}_n(Y_n \in B) = \mu_n(B)$$
(6.21)

Then show $\{X_n\}$ indep, i.e. $\forall L \geq 1, n_1, n_2, ..., n_L$ disjoint,

$$\mathbb{P}(X_{n_1} \in B_1, X_{n_2} \in B_2, ..., X_{n_L} \in B_L) = \mathbb{P}\left(\prod_{j \notin n_{k_1}} \Omega_j \times \prod_{l=1}^L \{Y_{n_l} \in B_l\}\right)$$

$$= \prod_{l=1}^L \mathbb{P}(Y_{n_l} \in B_l)$$

$$= \prod_{l=1}^L \mathbb{P}(X_{n_l} \in B_l) \quad (indep) \quad \blacksquare$$

$$(6.22)$$

Thm. (**Kolmogorov's Extension**) For $n \geq 1$, $\mu^{(n)}$ is prob measure on $(\mathbb{R}^n, \mathscr{B}(\mathbb{R}^n))$. For $1 \leq m \leq n$, define $\pi_{m,n}$ as extension mapping, $\forall B \in \mathscr{B}(\mathbb{R}^m)$, $\pi_{m,n}(B) := \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n, (x_1, x_2, ..., x_m) \in B\}$, i.e.

$$\pi_{m,n}(B) = B \times \mathbb{R}^{n-m}$$

Assume $\mu^{(n)}$ satisfies consistency condition: $\forall n \geq 1, \forall 1 \leq m \leq n, \forall B \in \mathscr{B}(\mathbb{R}^m),$

$$\mu^{(n)}(\pi_{m,n}(B)) = \mu^{(n)}(B)$$

Then, exists prob space $(\Omega, \mathcal{F}, \mathbb{P})$, sequence of RV (Not necessarily indep) $\{X_n : n \geq 1\}$, such that $\mu^{(n)} = \mathcal{L}_{(X_1, X_2, \dots, X_n)}$.

Rm. The prelude is a particular case of (Kolmogorov).

Chapter 7

Conditioning and Martingale

7.1 Conditional Expectation

- Def. Conditional Expectation: Define $(\Omega, \mathcal{F}, \mathbb{P})$ be probability space and $X : \Omega \to \mathbb{R}$ RV, $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. $\mathcal{G} \subseteq \mathcal{F}$ is a sub σ algebra Then, $Y \in \mathcal{L}^1$ is the conditional expectation of X given \mathcal{G} (actually an RV), denoted by $Y := \mathbb{E}[X|\mathcal{G}]$ if
 - $Y \in m\mathcal{G}$.
 - · For all $A \in \mathcal{G}$,

$$\int_{A} X d\mathbb{P} = \int_{A} Y d\mathbb{P}$$

- Rm. The intuition of $\mathbb{E}[X|\mathcal{G}]$ is, given the partial information contained in \mathcal{G} , the best prediction of X on whole space.
- Rm. Conditional expectation can be defined for X, Y not necessarily in \mathcal{L}^1 . It is ok as long as for all $A \in \mathcal{G}$, integral of X, Y on A are defined.
- Rm. The defining condition can be replaced by if $\mathcal{G} = \sigma(\mathcal{I})$, where \mathcal{I} is a π system, then $\forall A \in \mathcal{I}$, the integrals are equal. Because $A \in \mathcal{G} \mapsto \int_A X d\mathbb{P}$ can be viewed as a signed measure on \mathcal{G} , we can apply π system lemma.
- *Prop.* (Monotonicity) If $X_1 \leq X_2$ a.s. then $Y_1 := \mathbb{E}[X_1 | \mathcal{G}] \leq \mathbb{E}[X_2 | \mathcal{G}] =: Y_2$ a.s.

Proof. Let $A := \{Y_2 > Y_1\}$, clearly $A \in \mathcal{G}$, by definition

$$\int_{A} Y_1 d\mathbb{P} = \int_{A} X_1 d\mathbb{P} \le \int_{A} X_2 d\mathbb{P} = \int_{A} Y_2 d\mathbb{P}$$
 (7.1)

$$\int_{A} (Y_1 - Y_2) d\mathbb{P} \le 0 \tag{7.2}$$

But $(Y_1 - Y_2) > 0$ on A, so $\mathbb{P}(A) = 0$.

- Thm. (Existence and Uniqueness) Given $(\Omega, \mathcal{F}, \mathbb{P})$, $\mathcal{G} \subseteq \mathcal{F}$, $X \in \mathcal{L}^1$, then $\mathbb{E}[X|\mathcal{G}]$ exists and is unique a.s.
 - *Proof.* Prove uniqueness first, assume Y_1, Y_2 both satisfies definition. Since X = X, by monotonicity, $Y_1 \leq Y_2$; $Y_2 \leq Y_1$.

Then existence. We have two approaches.

Version 1. (Radon-Nikodyn thm) the idea is that we view conditional expectation as a signed measure.

Define $\mu_{\mathcal{G}}^X$ on \mathcal{G} , such that $\forall A \in \mathcal{G}$,

$$\mu_{\mathcal{G}}^{X}(A) := \int_{A} X d\mathbb{P} \tag{7.3}$$

One can check this is a measure. Besides, when $\mathbb{P}(A) = 0$, $\mu_{\mathcal{G}}^{X}(A) = 0$. Moreover, $\mu_{\mathcal{G}}^{X}(A)$ is absolutely continous wrt $\mathbb{P}\lceil_{\mathcal{G}}$ (probability measure restricted on \mathcal{G}). Apply **Radon-Nikodyn**, $\exists Y \in m\mathcal{G}$, s.t.

$$Y = \frac{d\mu_{\mathcal{G}}^X}{d\mathbb{P}\lceil_{\mathcal{G}}}$$
 i.e. the R-N derivative (7.4)

So, for all $A \in \mathcal{G}$, (view Y as the density)

$$\int_{A} X d\mathbb{P} =: \mu_{\mathcal{G}}^{X}(A) = \int_{A} Y d\mathbb{P} \lceil_{\mathcal{G}} = \int_{A} Y d\mathbb{P}$$
 (7.5)

Version 2. $(\mathcal{L}^2 \text{ projection})$ We first assume $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P}) =: \mathcal{L}^2(\mathcal{F})$. Then for $\mathcal{G} \subseteq \mathcal{F}$, $\mathcal{L}^2(\mathcal{G}) = \{Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P}) : Y \in m\mathcal{G}\}$ is a Hilbert space, and a subspace of $\mathcal{L}^2(\mathcal{F})$. Because

- · $\mathcal{L}^2(\mathcal{G})$ is complete. Given any Cauchy $\{Y_n\}$ in it, $\{Y_n\}$ admits a limit in $\mathcal{L}^2(\mathcal{G})$, itself. Because
- · $\{Y_n\}$ is also a Cauchy in $\mathcal{L}^2(\mathcal{F}) \Rightarrow \exists Y_\infty \in \mathcal{F}$, s.t. $Y_n \xrightarrow{\mathcal{L}^2} Y_\infty \Rightarrow Y_n \xrightarrow{i.p} Y_\infty$.
- Exists subsequence $\{Y_{n_k}\}$, $Y_{n_k} \xrightarrow{a.s.} Y_{\infty}$. Since $Y_{n_k} \in m\mathcal{G}$, a.s. convergence preserves measurability, so $Y_{\infty} \in m\mathcal{G}$, i.e. $Y_{\infty} \in \mathcal{L}^2(\mathcal{G})$.

For any $X \in \mathcal{L}^2(\mathcal{F})$, consider projection of X onto $\mathcal{L}^2(\mathcal{G})$, denoted by $P_{\mathcal{G}}X$, by projection, we mean

- $P_{\mathcal{G}}X \in m\mathcal{G}.$
- $\cdot (X P_{\mathcal{G}}X)$ is orthogonal to $P_{\mathcal{G}}X$, i.e. for all $Y \in \mathcal{L}^2(\mathcal{G})$:

$$\int_{\Omega} Y(X - P_{\mathcal{G}}X)d\mathbb{P} = 0 \tag{7.6}$$

For any $A \in \mathcal{G}$, take $Y = \mathbb{1}_A$, we have

$$\int_{\Omega} \mathbb{1}_A(X - P_{\mathcal{G}}X)d\mathbb{P} = 0 \tag{7.7}$$

The conditional expection is exactly $P_{\mathcal{G}}X$.

Now for general $X \in \mathcal{L}^1$, take $X_n^{\pm} \in SF^+$, such that $X_n^{\pm} \nearrow X^{\pm}$. By simple function we have $X_n^{\pm} \in \mathcal{L}^2$ for free. By previous arguments we define $\mathbb{E}[X_n^{\pm}|\mathcal{G}] := P_{\mathcal{G}}X_n^{\pm}$.

 $P_{\mathcal{G}}X_n^{\pm} \nearrow Y^{\pm}$ for some $Y^{\pm} \in m\mathcal{G}$ (since limit transfers measurability). We can verify by (MON) that Y^{\pm} has defining property of $\mathbb{E}[X^{\pm}|\mathcal{G}]$.

Finally since everything are finite, by linearity, $Y = Y^+ - Y^- =: \mathbb{E}[X|\mathcal{G}]$.

¹Note: here we get correct measurability of Y for free.

7.2. PROPERTIES 53

Ex Examples of conditional expection.

1. $\mathcal{G} = \sigma(A) = \sigma(\mathbb{1}_A) = \{\emptyset, \Omega, A, A^c\}, A \in \mathcal{F}.$ Then for every $X \in \mathcal{L}^1$,

$$\mathbb{E}\left[X|\mathcal{G}\right] = \mathbb{1}_A \frac{\mathbb{E}\left[X;A\right]}{\mathbb{P}\left(A\right)} + \mathbb{1}_{A^c} \frac{\mathbb{E}\left[X;A^c\right]}{\mathbb{P}\left(A^c\right)}$$
(7.8)

Rm. Since $\mathbb{E}[X|\mathcal{G}] \in m\sigma(A) = m\sigma(\mathbb{1}_A$, think about it, $\mathbb{E}[X|\mathcal{G}]$ must be somehow a function *composed* with $\mathbb{1}_A$.

2. (Conditioning of events) If $X = \mathbb{1}_B$, $B \in \mathcal{F}$, ($\mathbb{E}[B|A]$)

$$\mathbb{E}\left[\mathbb{1}_{B}|\sigma(A)\right] = \mathbb{1}_{A} \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} + \mathbb{1}_{A^{c}} \frac{\mathbb{P}(B \cap A^{c})}{\mathbb{P}(A^{c})}$$

$$= \mathbb{1}_{A}\mathbb{P}(B|A) + \mathbb{1}_{A^{c}}\mathbb{P}(B|A^{c})$$
(7.9)

3. (Conditioning of RVs) $\mathcal{G} = \sigma(Y)$, X, Y have joint pdf $f_{(X,Y)}$, $\mathbb{E}[X|\mathcal{G}] =: \mathbb{E}[X|Y]$, define conditional pdf of X given Y as

$$f_{X|Y}(x|y) := \frac{f_{(X,Y)}(x,y)}{f_Y(y)}$$
 if $f_Y(y) \neq 0$, else 0 (7.10)

Assume $h: \mathbb{R} \to \mathbb{R}$ is Borel function s.t. $h(X) \in \mathcal{L}^1$, define

$$g(y) := \int_{\mathbb{R}} h(x) f_{X|Y}(x, y) dx \tag{7.11}$$

Then conditional expection of X given Y is g composed with Y. (again, c.f. remark in example 1, since $\mathbb{E}[X|Y] \in m\sigma(Y)$, it must be a function composed with Y.)

$$\mathbb{E}\left[h(X)|Y\right] = g(Y) = \int_{\mathbb{R}} h(x)f_{X|Y}(x,Y)dx \tag{7.12}$$

7.2 Properties

7.2.1 Simple properties

Prop. (Expectation) a special case of tower property:

$$\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]\right] = \mathbb{E}\left[X\right] \tag{7.13}$$

Prop. If $X \in m\mathcal{G}$, then

$$\mathbb{E}\left[X|\mathcal{G}\right] = X\tag{7.14}$$

Prop. (Linearlity)

$$\mathbb{E}\left[aX + bY|\mathcal{G}\right] = a\mathbb{E}\left[X|\mathcal{G}\right] + b\mathbb{E}\left[Y|\mathcal{G}\right] \tag{7.15}$$

Prop. (Monotonicity) If $X_1 \leq X_2$, then

$$\mathbb{E}\left[X_1|\mathcal{G}\right] \le \mathbb{E}\left[X_2|\mathcal{G}\right] \tag{7.16}$$

7.2.2 Conditional Convergence Thms

Prop. (cMON) If $X_n \nearrow X$, $X_n, X \in \mathcal{L}^1$; then $\mathbb{E}[X_n | \mathcal{G}] \nearrow \mathbb{E}[X | \mathcal{G}]$.

Proof. Take $X_n - X_1 \nearrow X - X_1$, clearly $X_n - X_1 \in (m\mathcal{F})^+$. Define $Y_n := \mathbb{E}[X_n | \mathcal{G}]$, for all $A \in \mathcal{G}$,

$$\int_{A} (X - X_{1}) d\mathbb{P} = \lim_{n \to \infty} \int_{A} (X_{n} - X_{1}) d\mathbb{P} \quad (\mathbf{MON})$$

$$= \lim_{n \to \infty} \int_{A} (\mathbb{E} [X_{n} | \mathcal{G}] - \mathbb{E} [X_{1} | \mathcal{G}]) d\mathbb{P} \quad (\text{definition})$$

$$= \int_{A} \lim_{n \to \infty} \mathbb{E} [X_{n} | \mathcal{G}] - \mathbb{E} [X_{1} | \mathcal{G}] d\mathbb{P} \quad (\mathbf{MON}) \text{ again}$$
(7.17)

Cancel out X_1 , we have

$$\int_{A} X d\mathbb{P} = \int_{A} \lim_{n \to \infty} \mathbb{E} \left[X_{n} | \mathcal{G} \right] d\mathbb{P} \tag{7.18}$$

So by definition, $\mathbb{E}[X|\mathcal{G}] := \lim_{n \to \infty} \mathbb{E}[X_n|\mathcal{G}]$.

Prop. (**cFatou**) If $X_n \geq 0$, then

$$\mathbb{E}\left[\liminf_{n\to\infty} X_n | \mathcal{G}\right] \le \liminf_{n\to\infty} \mathbb{E}\left[X_n | \mathcal{G}\right] \tag{7.19}$$

Prop. (**cDOM**) If $|X_n| \leq Y \in \mathcal{L}^1$, $X_n \xrightarrow{a.s.} X$, then $\mathbb{E}[X_n | \mathcal{G}] \xrightarrow{a.s.} \mathbb{E}[X | \mathcal{G}]$.

Prop. (cJensen) $\phi : \mathbb{R} \to \mathbb{R}$, convex. $\phi(x) \in \mathcal{L}^1$. Then $\mathbb{E}[\phi(X)|\mathcal{G}] \ge \phi(\mathbb{E}[X|\mathcal{G}])$.

Cor. If $X \in \mathcal{L}^p$, then $|\mathbb{E}[X|\mathcal{G}]|^p \leq \mathbb{E}[|X|^p|\mathcal{G}]$. Moreover we take p norm of both sides,

$$\left(\mathbb{E}\left[\left|\mathbb{E}\left[X|\mathcal{G}\right]\right|^{p}\right]\right)^{\frac{1}{p}} \leq \left(\mathbb{E}\left[\mathbb{E}\left[\left|X\right|^{p}|\mathcal{G}\right]\right]\right)^{\frac{1}{p}} = \mathbb{E}\left[\left|X\right|^{p}\right]^{\frac{1}{p}} \tag{7.20}$$

i.e., $X \in \mathcal{L}^p$ automatically guarantees that $\mathbb{E}[X|\mathcal{G}] \in \mathcal{L}^p$, and

$$\|\mathbb{E}\left[X|\mathcal{G}\right]\|_{\mathcal{L}^p} \le \|X\|_{\mathcal{L}^p} \tag{7.21}$$

7.2.3 Tower Property

Prop. (Tower property) Suppose $\mathcal{H} \subseteq \mathcal{G}$ is a sub σ algebra, then

$$\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{H}\right]|\mathcal{G}\right] = \mathbb{E}\left[X|\mathcal{H}\right] = \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]|\mathcal{H}\right] \tag{7.22}$$

Proof. The first equal sign is trivial, because $\mathbb{E}[X|\mathcal{H}] \in m\mathcal{H} \subseteq m\mathcal{G}$. By property 2, $\mathbb{E}[\mathbb{E}[X|\mathcal{H}]|\mathcal{G}] = \mathbb{E}[X|\mathcal{H}]$ can be taken out from outer expectation. The second one. For all $A \in \mathcal{H} \subseteq \mathcal{G}$,

$$\int_{A} X d\mathbb{P} = \int_{A} \mathbb{E} \left[X | \mathcal{G} \right] d\mathbb{P} = \int_{A} \mathbb{E} \left[\mathbb{E} \left[X | \mathcal{G} \right] | \mathcal{H} \right] d\mathbb{P}$$
 (7.23)

The first equal sign follows that $A \in \mathcal{G}$, second follows that $A \in \mathcal{H}$. By definition, $\mathbb{E}[X|\mathcal{H}] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}]$.

7.2. PROPERTIES 55

7.2.4Taking out what is known

Prop. Suppose $Z \in m\mathcal{G}$ and $XZ \in \mathcal{L}^1$, then $\mathbb{E}[XZ|\mathcal{G}] = Z\mathbb{E}[X|\mathcal{G}]$.

Proof. Follow the definition, it suffices to show that for all $A \in \mathcal{G}$,

$$\int_{A} XZd\mathbb{P} = \int_{A} Z\mathbb{E} \left[X|\mathcal{G} \right] d\mathbb{P} \quad (\dagger) \tag{7.24}$$

Where $Z \in m\mathcal{G}$. First we assume $Z = \mathbb{1}_B$ for $B \in \mathcal{G}$, then

$$LHS = \int_{A \cap B} X d\mathbb{P} = \int_{A \cap B} \mathbb{E} [X|\mathcal{G}] d\mathbb{P} = RHS$$
 (7.25)

Equal sign in the middle follows the definition, where $A \cap B \in \mathcal{G}$.

By linearity, dagger holds for all $Z \in S\mathcal{G}^+$ (simple function measurable on \mathcal{G}).

By (MON), holds for all $Z \in (m\mathcal{G})^+$ with X^{\pm} .

$$|XZ| = (X^{+} + X^{-})(Z^{+} + Z^{-}) < \infty$$
(7.26)

So $X^{\pm}Z^{\pm}\in\mathcal{L}^1$ for any combinations of plus minus, thus all integrals involved in dagger are finite, by linearity, dagger holds for general X, Z.

7.2.5Independence condition

Prop. (Drop the independent sigma algebra) If $\mathcal{H} \subseteq \mathcal{F}$ is another sub sigma algebra; \mathcal{H} is indep. of $\sigma(\mathcal{G}, \sigma(X))$, then

$$\mathbb{E}\left[X|\sigma(\mathcal{G},\mathcal{H})\right] = \mathbb{E}\left[X|\mathcal{G}\right] \quad (\triangle) \tag{7.27}$$

In particular, if \mathcal{H} is indep of $\sigma(X)$,

$$\mathbb{E}\left[X|\mathcal{H}\right] = \mathbb{E}\left[X\right] \tag{7.28}$$

Proof. Define

$$\mathcal{I} := \{ G \cap H : G \in \mathcal{G}, H \in \mathcal{H} \} \tag{7.29}$$

One can verify that \mathcal{I} is a pi system. Moreover $\sigma(I) = \sigma(\mathcal{G}, \mathcal{H})$. Examine eq triangle, we can see that LHS is the conditional expectation of X given $\sigma(\mathcal{G},\mathcal{H})$. So it suffices to estabilish: for all $A \in \sigma(\mathcal{G}, \mathcal{H})$

$$\int_{A} X d\mathbb{P} = \int_{A} \mathbb{E} \left[X | \mathcal{G} \right] d\mathbb{P} \tag{7.30}$$

It futher suffices to show this only on pi system. For $A \in \mathcal{I}$, say $A = G \cap H$ for $G \in \mathcal{G}, H \in \mathcal{H}$. We have

$$\int_{G \cap H} X d\mathbb{P} = \int_{\Omega} \mathbb{1}_{G} \mathbb{1}_{H} X d\mathbb{P} = \mathbb{E} \left[\mathbb{1}_{G} \mathbb{1}_{H} X \right]
= \mathbb{E} \left[\mathbb{1}_{H} \right] \cdot \mathbb{E} \left[\mathbb{1}_{G} X \right] = \mathbb{P} \left(H \right) \int_{G} X d\mathbb{P}
= \mathbb{P} \left(H \right) \int_{G} \mathbb{E} \left[X | \mathcal{G} \right] d\mathbb{P} \quad \text{(By definition for } G \in \mathcal{G} \right)
= \int_{G \cap H} \mathbb{E} \left[X | \mathcal{G} \right] d\mathbb{P}$$
(7.31)

Apply extension theorem, for $A \in \sigma(\mathcal{I})$, this also holds.

²we don't know the sign of X, so we pose constraint to X^{\pm} such that XZ is positive.

Prop. (Two coordinates) Assume X, Y indep RVs, law $\mathcal{L}_X, \mathcal{L}_Y$. $h : \mathbb{R}^2 \to \mathbb{R}$ is Borel function s.t. $h(X, Y) \in \mathcal{L}^1$. Define function γ^h ,

$$\gamma^h(x) := \mathbb{E}\left[h(x, Y)\right] \tag{7.32}$$

(taking expectation wrt second coordinate; integrate second coordinate out). Then, $\mathbb{E}[h(X,Y)|\sigma(X)] = \gamma^h(X)$. $(\gamma^h(X) \in m\sigma(X)$ follows this.)

Rm. This proposition is saying, for borel function h(X,Y), the best predition of h given $\sigma(X)$ is just integrate Y out.

Proof. It is sufficient to show that for all $A \in \sigma(X)$ (the preimage set, for $B \in \mathcal{B}(\mathbb{R}), A = \{w : X(w) \in B\}$)

$$\int_{A} h(X,Y)d\mathbb{P} = \int_{A} \gamma^{h}(X)d\mathbb{P} \tag{7.33}$$

We start from LHS, $A := \{ w \in \Omega : X(w) \in B \}$

$$\int_{\{w:X(w)\in B\}} h(X,Y)d\mathbb{P} = \iint_{B\times\mathbb{R}} h(x,y)d\mathcal{L}_{(X,Y)}$$

$$= \iint_{B\times\mathbb{R}} h(x,y)d(\mathcal{L}_X \times \mathcal{L}_Y) \text{ (using indep.)}$$

$$= \int_{B} \left(\int_{\mathbb{R}} h(x,y)d\mathcal{L}_Y\right)d\mathcal{L}_X$$

$$= \int_{B} \gamma^h(x)d\mathcal{L}_X = \int_{A} \gamma^h(X)d\mathbb{P} \quad \blacksquare$$
(7.34)

7.3 Martingale

Def. Stochastic Process: A sequence of RVs from initial state X_0 , $\{X_n : n \geq 0\}$ is called a stochastic process.

7.3.1 Filtration, Adaptedness

Def. Filtration: given $(\Omega, \mathcal{F}, \mathbb{P})$. $\{\mathcal{F}_n : n \geq 0\}$ is a filtration if

- $\cdot \mathcal{F}_n \in \mathcal{F}$ is sub sigma algebra.
- $\cdot \mathcal{F}_n \subseteq \mathcal{F}_{n+1} \text{ for all } n \geq 0 \text{ (nested)}.$
- Def. Filtered Space: The probability space equipped with a filtration structure, i.e. $(\Omega, \mathcal{F}, \{\mathcal{F}_n : n \geq 0\}, \mathbb{P})$ is a filtered space.
- Def. Adaptedness: A stochastic process $\{X_n : n \geq 0\}$ on filtered space is adapted if $X_n \in m\mathcal{F}_n$.

In particular, process $\{X_n\}$ is always adapted wrt the Natural Filtration $\{\mathcal{F}_n : n \geq 0\}$, where $\mathcal{F}_n := \sigma(X_0, X_1, ..., X_n)$.

7.3. MARTINGALE 57

7.3.2 Martingale, Sub/Sup Martingale

Def. Martingale: Given $(\Omega, \mathcal{F}, \mathbb{P})$. $\{\mathcal{F}_n : n \geq 0\}$, a adapted process $\{X_n : n \geq 0\}$ is a martingale if

- $X_n \in \mathcal{L}^1$.
- $\mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n$, for all $n \geq 0$.

Ex. Popular examples.

· Partial sum of a indep, 0-mean sequence of RVs forms a martingale. Rigorously, $\{Y_n : n \geq 1\}$ is indep, $\mathbb{E}[Y_n] = 0$. $X_0 := 0$, $X_n := \sum_{j=1}^n Y_j$, $\mathcal{F}_0 = \{\Omega, \emptyset\}$, $\mathcal{F}_n := \sigma(Y_1, Y_2, ..., Y_n)$, then $\{X_n\}$ is martingale wrt $\{\mathcal{F}_n\}$, we can check:

$$\mathbb{E}\left[X_{n+1}|\mathcal{F}_n\right] = \mathbb{E}\left[X_n + Y_{n+1}|\mathcal{F}_n\right] = X_n + \mathbb{E}\left[Y_{n+1}\right] = X_n \tag{7.35}$$

- · In addition to the first example, if $\operatorname{Var}[Y_n] = 1$, then $\{X_n^2 n : n \geq 0\}$ is martingale. $(X_n^2 \text{ is square of partial sum})$. On top of this one, if Y_n are i.i.d standard normal, then $\forall \lambda \in \mathbb{R}$, $\{e^{\lambda X_n \frac{\lambda^2 n}{2}} : n \geq 0\}$ is martingale.
- · If $X \in \mathcal{L}^1$, define $X_n := \mathbb{E}[X|\mathcal{F}_n]$, $\{X_n : n \geq 0\}$ is martingale. Check it inserting X_n , use tower property:

$$\mathbb{E}\left[X_{n+1}|\mathcal{F}_n\right] = \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{F}_{n+1}\right]|\mathcal{F}_n\right] = \mathbb{E}\left[X|\mathcal{F}_n\right] =: X_n \tag{7.36}$$

- Def. Sub-Martingale: $\{X_n : n \geq 0\}$ is a sub-martingale if $X_n \in \mathcal{L}^1$ and $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \geq X_n$. Similarly we define Sup-Martingale: $\mathbb{E}[X_{n+1}|\mathcal{F}_n]$.
- Rm. Martingale is the model of fair game, sub-martingale says the future is better than present, the game is biased for us. Sup martingale says game is biased against us. Given $\{X_n\}$ a Sup-Martingale, than $\{-X_n\}$ is a sub-martingale.
- Rm. (Any future is same as one step forward): For (sub) martingale, $\forall m \geq n+1$ (any future), by tower property and definition,

$$\mathbb{E}\left[X_m|\mathcal{F}_n\right] = \mathbb{E}\left[\mathbb{E}\left[X_m|\mathcal{F}_{m-1}\right]|\mathcal{F}_n\right] = \mathbb{E}\left[X_{m-1}|\mathcal{F}_n\right] \tag{7.37}$$

Repeat this until \mathcal{F}_{n+1} , we get $\mathbb{E}[X_m|\mathcal{F}_n] = X_n$.

- Thm. (Composition with Convex Function) Given $\{X_n : n \geq 0\}$ is adapted, let $\phi : \mathbb{R} \to \mathbb{R}$ convex, such that $\phi(X_n) \in \mathcal{L}^1 \ \forall n \geq 0$. If either
 - $\{X_n : n \ge 0\}$ is a martingale.
 - · $\{X_n : n \ge 0\}$ is a submartingale, ϕ is non-decreasing

Then $\{\phi(X_n): n \geq 0\}$ is a submartingale.

Proof. By (**cJensen**), $\forall n \geq 0$:

$$\mathbb{E}\left[\phi(X_{n+1})|\mathcal{F}_n\right] \ge \phi(\mathbb{E}\left[X_{n+1}|\mathcal{F}_n\right]) = \phi(X_n) \quad \text{for the first condition.}$$
 (7.38)

For the second condition, $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \geq X_n$, since ϕ is non-decreasing, we have $\phi(\mathbb{E}[X_{n+1}|\mathcal{F}_n]) \geq \phi(X_n)$.

Cor. Use thm above:

- · If $\{X_n : n \ge 0\}$ is martingale, then $\{|X_n|^p : n \ge 0\}$ is a submartingale for all $p \ge 1$.
- · If $\{X_n : n \geq 0\}$ is submartingale, then $\{X_n^+ : n \geq 0\}$ is submartingale.
- · If $\{X_n : n \geq 0\}$ is non-negative submartingale, then $\{X_n^p : n \geq 0\}$ is submartingale.

Proof. First one is clear. For the second one, view ϕ as $X_n^+ = \mathbb{1}_{(0,+\infty)}X_n$. non-decreasing. Same argument for third.

7.3.3 Doob's Decomposition Thm

Thm. (**Doob Decomposition**) $\{X_n : n \geq 0\}$ is a submartingale, then there exists a process $\{Y_n : n \geq 0\}$ such that

- $Y_0 = 0, Y_n \in \mathcal{L}^1, Y_{n+1} \in m\mathcal{F}_n \text{ for all } n \geq 0, \text{ i.e. } \{Y_n : n \geq 0\} \text{ is a previsable process. } (Y_{n+1} \text{ is known at } n).$
- · Y_n is non-decreasing, i.e. $Y_n \leq Y_{n+1}$ a.s.
- $M_n := X_n Y_n$ is a martingale.
- · If Y_n exists, it's unique.

Proof. First show the uniqueness. Assume Y_n exists, assume not unique, i.e. exists another $\{W_n : n \geq 0\}$ also satisfies 1,2,3. Define $\Delta := Y_n - W_n$, clearly $\Delta_0 = 0$. Manipulate Δ_n :

$$\Delta_n = Y_n - W_n = (X_n - W_n) - (X_n - Y_n) \tag{7.39}$$

By linearity, and by (3), Δ_n is martingale. Hence $\Delta_n = \mathbb{E} [\Delta_{n+1} | \mathcal{F}_n]$. However since $Y_{n+1}, W_{n+1} \in m\mathcal{F}_n$, Δ_n is also previsible, $\Delta_{n+1} \in m\mathcal{F}_n$.

$$\Delta_n = \mathbb{E}\left[\Delta_{n+1}|\mathcal{F}_n\right] = \Delta_{n+1} = \dots = \Delta_0 \equiv 0 \quad \blacksquare \tag{7.40}$$

(We can come up with a remark: if a process is a martingale and also previsible, then it is a constant.)

Now show the existence of Y_n . $Y_0 = 0$, for $n \ge 0$, define

$$Y_{n+1} := \sum_{j=0}^{n} \left(\mathbb{E} \left[X_{j+1} | \mathcal{F}_j \right] - X_j \right)$$
 (7.41)

The increment part of submartingale. Since $\mathbb{E}[X_{j+1}|\mathcal{F}_j] \in m\mathcal{F}_j$, clearly $Y_{n+1} \in m\mathcal{F}_n$. By property of submartingale, every term in the summation is positive, so

 $Y_n \leq Y_{n+1}$. Now only need to prove $X_n - Y_n$ is martingale.

$$\mathbb{E}\left[X_{n+1} - Y_{n+1}|\mathcal{F}_{n}\right] = \mathbb{E}\left[X_{n+1} - \sum_{j=0}^{n} \left(\mathbb{E}\left[X_{j+1}|\mathcal{F}_{j}\right] - X_{j}\right)|\mathcal{F}_{n}\right]$$

$$= \mathbb{E}\left[X_{n+1}|\mathcal{F}_{n}\right] - \sum_{j=0}^{n} \left(\mathbb{E}\left[X_{j+1}|\mathcal{F}_{j}\right] - X_{j}\right)$$

$$= \mathbb{E}\left[X_{n+1}|\mathcal{F}_{n}\right] - \left(\mathbb{E}\left[X_{n+1}|\mathcal{F}_{n}\right] - X_{n}\right) - \sum_{j=0}^{n-1} \left(\mathbb{E}\left[X_{j+1}|\mathcal{F}_{j}\right] - X_{j}\right)$$

$$= X_{n} - \sum_{j=0}^{n-1} \left(\mathbb{E}\left[X_{j+1}|\mathcal{F}_{j}\right] - X_{j}\right) = X_{n} - Y_{n} \quad \blacksquare$$

$$(7.42)$$

7.4 Stopping Time

- Def. Stopping Time: Given $(\Omega, \mathcal{F}, \{\mathcal{F}_n\}, \mathbb{P})$. A Random variable $\tau : \Omega \to \{0, 1, 2, ..., \infty\}$ is a stopping time if $\{\tau \leq n\} \in \mathcal{F}_n$. Using $\{\tau > n\}, \{\tau < n\}, \{\tau \geq n\}, \{\tau = n\}$ are equivalent, if τ is a stopping time, all these sets $\in \mathcal{F}_n$.
- Def. (Sigma algebra with stopping time subscript): τ is a stopping time, $\mathcal{F}_{\tau} := \{A \in \mathcal{F}, A \cap \{\tau \leq n\} \in \mathcal{F}_n \ \forall n \geq 0\}$. One can verify that \mathcal{F}_{τ} is a sigma algebra, but note that $\mathcal{F}_{\tau} \neq \sigma(\tau)$.
- Def. (RV with stopping time subscript): $\{X_n : n \geq 0\}$ is adapted, for $w \in \Omega$ define

$$X_{\tau}(w) := X_{\tau(w)}(w) := \begin{cases} X_n(w) & \text{if } \tau(w) = n < +\infty \\ \lim_{n \to \infty} X_n(w) & \text{if } X_n \text{ admits limit} \\ \text{undefined} & \text{if limit does not exist} \end{cases}$$
 if $\tau(w) = +\infty$

7.4.1 Simple Properties of Stopping Time

- *Prop.* 1. If τ is stopping time, n is any fixed positive integer, then $\tau \wedge n := \min\{\tau, n\}$ is a stopping time.
 - 2. If τ_1, τ_2 are stopping times, then $(\tau_1 \wedge \tau_2), (\tau_1 + \tau_2), (\tau_1 \vee \tau_2)$ are all stopping times.
 - 3. If $\{X_n : n \geq 0\}$ is adapted, $\mathbb{P}(\tau < \infty) = 1$ then $X_\tau \in m\mathcal{F}_\tau$.
 - *Proof.* Since $\tau < \infty$ a.s, X_{τ} is defined a.s. Working out only a pi system is enough, for all $x \in \mathbb{R}$, we want to show that $\{X_{\tau} \leq x\} \in \mathcal{F}_{\tau}$. By definition

$$\{X_{\tau} \le x\} \cap \{\tau \le n\} = \bigcup_{j=0}^{n} \{\tau = j, X_{j} \le x\} \in \mathcal{F}_{n}$$
 (7.43)

- 4. τ_1, τ_2 are stopping times, then $\mathcal{F}_{\tau_1 \wedge \tau_2} = \mathcal{F}_{\tau_1} \cap \mathcal{F}_{\tau_2}$.
- 5. τ_1, τ_2 are stopping times, deterministically $\tau_1 \leq \tau_2$, then $\mathcal{F}_{\tau_1} \subseteq \mathcal{F}_{\tau_2}$.

Proof. First show (5). $\forall A \in \mathcal{F}_{\tau_1}$, It suffices to show that $A \in \mathcal{F}_{\tau_2}$, i.e. $\forall n \in \mathbb{N}$, $A \cap \{\tau_2 \leq n\} \in \mathcal{F}_n$. This is true, since $\{\tau_2 \leq n\} \subseteq \{\tau_1 \leq n\}$,

$$A \cap \{\tau_2 \le n\} = A \cap \{\tau_1 \le n\} \cap \{\tau_2 \le n\} \in \mathcal{F}_n \tag{7.44}$$

Because $A \cap \{\tau_1 \leq n\} \in \mathcal{F}_n$.

For (4), $LHS \subseteq RHS$ is clear, since $LHS \subseteq \mathcal{F}_{\tau_1}, \mathcal{F}_{\tau_2}$. Only need to show (\supseteq) for all $A \in \mathcal{F}_{\tau_1} \cap \mathcal{F}_{\tau_2}$,

$$A \cap \{\tau_1 \wedge \tau_2 \le n\} = A \cap (\{\tau_1 \le n\} \cup \{\tau_2 \le n\})$$

= $(A \cap \{\tau_1 \le n\}) \cup (A \cap \{\tau_2 \le n\})$ (7.45)

6· $\{X_n : n \geq 0\}$ is adapted, τ is stopping time, then $\{X_{\tau \wedge n} : n \geq 0\}$ is also an adapted process.

7.4.2 Doob's Stopping Time Thm

Thm. (**Doob**) If $\{X_n : n \geq 0\}$ is a martingale/submartingale, τ is a stopping time, then $\{X_{\tau \wedge n} : n \geq 0\}$ is still a martingale/submartingale.

Proof. Clearly, $X_{n\wedge\tau} \in \mathcal{L}^1$, because $X_{n\wedge\tau} = \sum_{j=0}^n \mathbb{1}_{(\tau=j)} X_j + \mathbb{1}_{(\tau>n)} X_n$. Now we show $\{X_{\tau\wedge n} : n \geq 0\}$ is a martingale. Concretely, we want to show $\mathbb{E}\left[X_{(n+1)\wedge\tau}|\mathcal{F}_n\right] = X_{n\wedge\tau}$. For all $A \in \mathcal{F}_n$,

$$\int_{A} X_{(n+1)\wedge \tau} d\mathbb{P} = \int_{A \cap \{\tau \le n\}} X_{\tau} d\mathbb{P} + \int_{A \cap \{\tau > n\}} X_{n+1} d\mathbb{P}$$

$$= \int_{A \cap \{\tau \le n\}} X_{\tau} d\mathbb{P} + \int_{A \cap \{\tau > n\}} X_{n+1} d\mathbb{P} \text{ (since } X_n \text{ is martingale)}$$

$$= \int_{A} X_{\tau \wedge n} d\mathbb{P} \quad \blacksquare$$
(7.46)

7.4.3 Hunt's Thm

Thm. (**Hunt**) $\{X_n : n \geq 0\}$ is a martingale/submartingale. τ_1, τ_2 are stopping times, $\tau_1 \leq \tau_2$. If one of following conditions holds

- $\cdot \tau_1, \tau_2$ are bounded, i.e. $\exists T > 0, \tau_1, \tau_2 \leq T$.
- $\{X_n : n \geq 0\}$ is uniformly integrable. And τ_1, τ_2 are finite a.s.
- · $\mathbb{E}\left[\tau_{1}\right] \leq \mathbb{E}\left[\tau_{2}\right] < \infty$. And exists constant k > 0, s.t. $|X_{n+1} X_{n}| \leq k$, $\forall n \geq 0$.

Then, $\mathbb{E}[X_{\tau_2}|\mathcal{F}_{\tau_1}] = X_{\tau_1}$. (\geq for submartingale case)

7.5. RANDOM WALK

7.4.4	Wald's	Identity

- 7.5 Random Walk
- 7.6 Martingale Convergence
- 7.6.1 Doob's Upcrossing Inequility
- 7.6.2 Martingale Convergence Thm 1 (MCT1)
- 7.6.3 Martingale Convergence Thm 2 (MCT2)
- 7.6.4 Doob's Maximal Inequility
- 7.6.5 Martingale Convergence Thm 3 (MCT3)
- 7.6.6 Converse MCT2
- 7.6.7 Generalized 0-1 Law

Chapter 8

Problems

Problem 1. (Equivalent Generating pi of Borel on Real Line) Show that

$$\mathcal{B}(\mathbb{R}) = \sigma(\{[a,b) : a,b \in \mathbb{R}, a < b\})$$

$$= \sigma(\{[a,b] : a,b \in \mathbb{R}, a < b\})$$

$$= \sigma(\{(-\infty,x) : x \in \mathbb{Q}\})$$

$$= \sigma(\{(-\infty,x] : x \in \mathbb{Q}\})$$

$$(8.1)$$

Proof. Clearly, RHS $\subseteq \mathcal{B}(\mathbb{R})$. It's sufficient to show \supseteq . The target is to rewrite original pi (a,b) to be these 4 alternative pi. But for the first one we just show both.

.

$$(a,b) = \bigcup_{n\geq 1} [a + \frac{1}{n}, b] \quad \Rightarrow \mathscr{B}(\mathbb{R}) \subseteq RHS1$$

$$[a,b) = \bigcap_{n\geq 1} [a, b + \frac{1}{n}] \quad \Rightarrow RHS1 \subseteq \mathscr{B}(\mathbb{R})$$

$$(8.2)$$

$$(a,b) = \bigcup_{n>1} \left[a + \frac{1}{n}, b - \frac{1}{n}\right] \Rightarrow \mathscr{B}(\mathbb{R}) \subseteq RHS2$$
 (8.3)

3 and 4; For any $a \in \mathbb{R}$, $\exists \{q_n\}, n \geq 1$ be a seq of rationals s.t. $q_n \nearrow a$ (increasingly) So,

$$(-\infty, a) = \bigcup_{n>1} (-\infty, q_n) \nwarrow (-\infty, q_n)$$
 (8.4)

Therefore we also find $p_n \nearrow b$, $\{p_n\} \subseteq \mathbb{Q}$:

$$[a,b) = (-\infty,b) \setminus (-\infty,a)$$

$$= \bigcup_{n\geq 1} (-\infty,q_n) \cap \left(\bigcup_{n\geq 1} (-\infty,q_n)\right)^c$$
(8.5)

Implies $RHS3 \subseteq RHS1 \subseteq \mathscr{B}(\mathbb{R})$. For 4:

$$(-\infty, x) = \bigcup_{n \ge 1} (-\infty, x - \frac{1}{n}) \quad \Rightarrow RHS4 \subseteq RHS3 \subseteq \mathscr{B}(\mathbb{R}) \tag{8.6}$$

Problem 2. (Singletons are not enough to generate Borel sigma) Show $\mathscr{B}(\mathbb{R})$ is not generated by all singletons of \mathbb{R} . I.e show that

$$\mathscr{B}(\mathbb{R}) \neq \sigma(\{x\}, x \in \mathbb{R}) := \mathcal{S} \tag{8.7}$$

Proof. Define

$$\mathcal{A} := \{\emptyset\} \cup \{\bigcup_{n \ge 1} \{r_n\} : r_n \in \mathbb{R}\}$$

$$\mathcal{B} := \{B \in \mathbb{R} : B^c \in \mathcal{A}\}$$
(8.8)

i.e. \mathcal{A} is collection of countable unions of singletons. \mathcal{B} is collection of complements of things in \mathcal{A} . We claim that $\Sigma := \mathcal{A} \cup \mathcal{B}$ is a sigma-field.

- $\cdot \emptyset \in \Sigma.$
- $\cdot \ \forall A \in \Sigma, A^c \in \Sigma.$
- · Consider countably many $A_n \in \Sigma, n \geq 1$. A_n should be either in \mathcal{A} or \mathcal{B} . Denote $\mathcal{I} := \{i : A_i \in \mathcal{A}\}; \ \mathcal{J} := \{j : A_i \in \mathcal{B}\}$ as indices sets marking whether collection A_n belongs. Then,

$$\bigcup_{n>1} A_n = \left(\bigcup_{i \in \mathcal{I}} A_i\right) \cup \left(\bigcup_{j \in \mathcal{J}} A_j\right) =: U_1 \cup U_2 =: U \tag{8.9}$$

where $U_1 \in \mathcal{A} \subseteq \Sigma$. $U_2 = (\bigcap_{j \in \mathcal{J}} A_j^c)^c$, $\bigcap_{j \in \mathcal{J}} A_j \in \mathcal{A}$. So $U_2 \in \mathcal{B} \subseteq \Sigma$. So $U \in \mathcal{A} \cup \mathcal{B} = \Sigma$. Check: Σ is a sigma field.

Clearly all singletions contained in \mathcal{A} , therefore Σ . So $\sigma(\{x:x\in\mathbb{R}\})\subseteq\Sigma$. But $\mathscr{B}(\mathbb{R}) \supset (0,1) \notin \Sigma$.

Problem 3. (Defining properties of Measure) S = (0, 1], define

$$\Sigma := \left\{ \bigcup_{i=1}^{k} (a_i, b_i] : k \in \mathbb{N}, 0 \le a_1 \le b_1 \le a_2 \le \dots \le a_k \le b_k \le 1 \right\}$$
 (8.10)

(Shown) Σ is sigma field. Define $\mu: \Sigma \mapsto [0, \infty]$, for $A \in \Sigma$,

$$\mu(A) = \begin{cases} 1 & \text{if } A \supseteq (\frac{1}{2}, \frac{1}{2} + \epsilon] \text{ for some } \epsilon > 0, \\ 0 & \text{otherwise} \end{cases}$$
 (8.11)

Show (1) μ is finite additive. (2) μ is not countable additive.

Proof. For $A_n \in \Sigma$, n = 1, 2, ..., N. A_n disjoint.

Then there is at most one A_k s.t. $A_k \supseteq (\frac{1}{2}, \frac{1}{2} + \epsilon]$ i.e. $\mu(A_k) = 1$ and $\mu(A_j) = 0$ for $j \neq k$. Clearly $\mu(\bigcup_{j=1}^N A_j) = \sum_{j=1}^N \mu(A_j)$. \blacksquare For the second part, it suffices to show μ is not continous (from above) at emptyset.

Pick $\{A_n\}$, $A_n := (\frac{1}{2}, \frac{1}{2} + \frac{1}{n}]$. Clearly $A_n \searrow \emptyset$. But $\epsilon := \frac{1}{2n}$ for any $n \ge 1$, $\mu(A_n) \equiv 1$.

Problem 4. (Indep.) S = (0, 1],

8.1. PROB SPACE 65

8.1 Prob Space

8.2 RV

8.3 Expectation

Problem 1. On (S, Σ, μ) $f_n, g_n \in \mathcal{L}^1(S, \Sigma, \mu)$. $|f_n| \leq g_n$ for all $n \geq 1$. $\forall s \in S$, $f_n \to f$, $g_n \to g$.

Show that if $\mu(g_n) \to \mu(g) < \infty$, then $\mu(f)$ is defined, and $\mu(f_n) \to \mu(f)$

Proof. $|f_n| \le g_n \Rightarrow g_n + f_n \ge 0$ and $g_n - f_n \ge 0$. Apply (**FATOU**), and by linearly of Fatou's LHS:

$$\mu(g) + \mu(f) = \mu(\liminf_{n \to \infty} (g_n + f_n)) \le \liminf_{n \to \infty} \mu(g_n + f_n)$$

$$= \mu(g) + \liminf_{n \to \infty} \mu(f_n)$$
(8.12)

$$-\mu(g) + \mu(f) = -\mu(\liminf_{n \to \infty} (g_n - f_n)) \ge -\liminf_{n \to \infty} \mu(g_n - f_n)$$

$$= -\mu(g) + \limsup_{n \to \infty} \mu(f_n)$$
(8.13)

Since $g \in \mathcal{L}^1$, $\mu(g)$ can be cancelled out from both sides:

$$\liminf_{n \to \infty} \mu(f_n) \le \limsup_{n \to \infty} \mu(f_n) \le \mu(f) \le \liminf_{n \to \infty} \mu(f_n) \tag{8.14}$$

Therefore $\mu(f) := \liminf_{n \to \infty} \mu(f_n)$ is defined. Moreover $\lim_{n \to \infty} \mu(f_n)$ exists, and $\mu(f) = \lim_{n \to \infty} \mu(f_n)$.

Problem 2. $(\Omega, \mathcal{F}, \mathbb{P}), X_n, X \in \mathcal{L}^1, X_n \xrightarrow{i.p} X, \mathbb{E}[X_n] \to \mathbb{E}[X]$, show that

$$X_n \xrightarrow{\mathcal{L}^1} X$$

(Strengthened **SCHEFFE**)

Proof. Assume opposite, NOT $X_n \xrightarrow{\mathcal{L}^1} X$, i.e. $\exists \epsilon > 0$ and subsequence $\{n_l\}$, such that $\mathbb{E}[X_{n_l} - X] \geq \epsilon$. (#)

Clearly $X_{n_l} \xrightarrow{i.p} X$. By theorem, there exists a further subsequence $X_{n_{l_m}}$ such that $X_{n_{l_m}} \xrightarrow{a.s.} X$. Moreover $\mathbb{E}\left[X_{n_{l_m}}\right] \xrightarrow{m\to\infty} \mathbb{E}\left[X\right]$ and $X_{n_{l_m}} \in \mathcal{L}^1$ for any subscript, because $\{X_{n_{l_m}}\} \subseteq \{X_n\}$.

Apply original (**Scheffe**) to $X_{n_{l_m}}$, we have $X_{n_{l_m}} \xrightarrow{\mathcal{L}^1} X$, i.e. $\forall \epsilon > 0$, $\exists M$, for all n > M, $\mathbb{E}\left[X_{n_{l_m}} - X\right] < \epsilon$, which contradicts (#).

Problem 3.

 $\{X_n\}, \{Y_n\}$ are uniformly integrable $\Rightarrow \{X_n + Y_n\}$ is uniformly integrable

Proof. For M > 0, consider:

$$\sup_{n} \mathbb{E}\left[|X_{n} + Y_{n}|; |X_{n} + Y_{n}| > M\right]
\leq \sup_{n} \mathbb{E}\left[|X_{n} + Y_{n}|; |X_{n}| > \frac{M}{2} \& |Y_{n}| > \frac{M}{2} \& |X_{n} + Y_{n}| > M\right] +
\sup_{n} \mathbb{E}\left[|X_{n} + Y_{n}|; |X_{n}| \leq \frac{M}{2} \& |Y_{n}| > \frac{M}{2} \& |X_{n} + Y_{n}| > M\right] +
\sup_{n} \mathbb{E}\left[|X_{n} + Y_{n}|; |X_{n}| > \frac{M}{2} \& |Y_{n}| \leq \frac{M}{2} \& |X_{n} + Y_{n}| > M\right]$$
(8.15)

In which first term $\leq \sup_{n} \mathbb{E}\left[|X_n|; |X_n| > \frac{M}{2}\right] + \sup_{n} \mathbb{E}\left[|Y_n|; |Y_n| > \frac{M}{2}\right],$

Second term $\leq 2 \sup_{n} \mathbb{E}\left[|Y_n|; |Y_n| > \frac{M}{2}\right],$

Third term $\leq 2 \sup_{n}^{\infty} \mathbb{E}\left[|X_n|; |X_n| > \frac{M}{2}\right].$

$$LHS \leq 3 \sup_{n} \mathbb{E}\left[|X_{n}|; |X_{n}| > \frac{M}{2}\right] + 3 \sup_{n} \mathbb{E}\left[|Y_{n}|; |Y_{n}| > \frac{M}{2}\right]$$

$$\xrightarrow{M \to \infty} 3 \times 0 + 3 \times 0 = 0 \quad \blacksquare$$
(8.16)

Problem 4. Non-trivial RV X ($\mathbb{P}(X > 0) > 0$). Show that if $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$, then for every $\lambda \in [0, 1]$,

$$\mathbb{P}(|X| \ge \lambda \mathbb{E}[|X|]) \ge \frac{(1-\lambda)^2 \mathbb{E}^2[|X|]}{\mathbb{E}[X^2]}$$

Proof. Consider

$$\mathbb{E}\left[|X|\right] = \mathbb{E}\left[|X| \cdot 1; |X| \ge \lambda \mathbb{E}\left[|X|\right]\right] + \mathbb{E}\left[|X|; |X| < \lambda \mathbb{E}\left[|X|\right]\right]$$

$$\le \mathbb{E}^{\frac{1}{2}}\left[X^{2}; |X| \ge \lambda \mathbb{E}\left[|X|\right]\right] \cdot \mathbb{E}^{\frac{1}{2}}\left[1^{2}; |X| \ge \lambda \mathbb{E}\left[|X|\right]\right] + \lambda \mathbb{E}\left[|X|\right]$$

$$\le \mathbb{E}^{\frac{1}{2}}\left[X^{2}\right] \cdot \mathbb{P}^{\frac{1}{2}}\left(|X| \ge \lambda \mathbb{E}\left[X\right]\right) + \lambda \mathbb{E}\left[|X|\right]$$
(8.17)

Where the first leq applys (Holders) ineq. Rearrange terms we have

$$(1 - \lambda)\mathbb{E}\left[X\right] \le \mathbb{E}^{\frac{1}{2}}\left[X^2\right] \mathbb{P}^{\frac{1}{2}}\left(|X| \ge \lambda \mathbb{E}\left[|X|\right]\right) \tag{8.18}$$

Take square both sides,

$$\mathbb{P}\left(|X| \ge \lambda \mathbb{E}\left[|X|\right]\right) \ge \frac{(1-\lambda)^2 \mathbb{E}^2\left[|X|\right]}{\mathbb{E}\left[X^2\right]} \quad \blacksquare \tag{8.19}$$

Problem 5. $\{X_n\} \in \mathcal{L}^2$; suppose $\mathbb{E}[X_i X_j] = 0$ for $i \neq j$, and $\sup_n \mathbb{E}[X_n^2] < \infty$. Show that for every $\alpha > \frac{1}{2}$:

$$\frac{\sum_{j=1}^{n} X_j}{n^{\alpha}} \xrightarrow{i.p} 0$$

Proof. By (Markov):

$$\mathbb{P}\left(\left|\frac{S_{n}}{n^{\alpha}} - 0\right| > \epsilon\right) = \mathbb{P}\left(\left(\frac{S_{n}}{n^{\alpha}}\right)^{2} > \epsilon^{2}\right) \\
< \epsilon^{-2}\mathbb{E}\left[\frac{S_{n}^{2}}{n^{2\alpha}}\right] \\
= \epsilon^{-2}n^{-2\alpha} \cdot \mathbb{E}\left[\sum_{j=1}^{n} X_{n}^{2} + \sum_{i \neq j} X_{i}X_{j}\right] \\
\le \epsilon^{-2}n^{-2\alpha} \cdot n \sup_{n} \mathbb{E}\left[X_{n}^{2}\right] \\
= n^{1-2\alpha} \frac{\sup_{n} \mathbb{E}\left[X_{n}^{2}\right]}{\epsilon^{2}}$$
(8.20)

Since $\sup_{n} \mathbb{E}[X_n^2] < \infty$, we conclude that for all $\epsilon > 0$, if $\alpha > 1/2$, eq $(4.11) \xrightarrow{n \to \infty} 0$; i.e.

$$\lim_{n \to \infty} \mathbb{P}\left(\left| \frac{S_n}{n^{\alpha}} - 0 \right| > \epsilon \right) = 0 \tag{8.21}$$

We conclude that $\frac{S_n}{n^{\alpha}} \xrightarrow{i.p} 0$.

Problem 6. $\{X_n\}$: identically distributed RV. $\mathbb{E}[X_1^2] < \infty$.

Show: (1) for all $\epsilon > 0$:

$$\lim_{n \to \infty} n \cdot \mathbb{P}\left(|X_1| \ge \epsilon \sqrt{n}\right) = 0$$

(2):

$$\frac{1}{\sqrt{n}} \max_{1 \le k \le n} |X_k| \xrightarrow{i.p} 0$$

(1) Proof. $X_1^2 \in \mathcal{L}^1 \Rightarrow \lim_{n \to \infty} \mathbb{E}\left[X_1^2; X_1^2 > n\right] = \lim_{n \to \infty} \mathbb{E}\left[X_1^2; |X_1| > \sqrt{n}\right] = 0$. To be precise, $\forall \delta > 0$, $\exists N$ large, s.t. $\forall n > N$: $\mathbb{E}\left[X_1^2; |X_1| > \sqrt{n}\right] < \delta$. So, for **Any Fixed** $\epsilon > 0$, $\exists N' = \frac{N}{\epsilon^2}$ s.t. $\forall n > N'$:

$$\mathbb{E}\left[X_1^2; |X_1| > \epsilon \sqrt{n}\right] < \mathbb{E}\left[X_1^2; |X_1| > \epsilon \sqrt{\frac{N}{\epsilon^2}}\right]$$

$$= \mathbb{E}\left[X_1^2; |X_1| > \sqrt{N}\right] \le \delta$$
(8.22)

i.e. for **every fixed** $\epsilon > 0$, $\lim_{n \to \infty} \mathbb{E}[X_1^2; |X_1| > \epsilon \sqrt{n}] = 0$.

$$\mathbb{E}\left[X_1^2; |X_1| > \epsilon \sqrt{n}\right] = \int_{|X_1| > \epsilon \sqrt{n}} X_1^2 d\mathbb{P}$$

$$> (\epsilon \sqrt{n})^2 \cdot \mathbb{P}\left(|X_1| > \epsilon \sqrt{n}\right)$$
(8.23)

i.e.

$$n \cdot \mathbb{P}\left(|X_1| > \epsilon \sqrt{n}\right) < \epsilon^{-2} \cdot \mathbb{E}\left[X_1^2; |X_1| > \epsilon \sqrt{n}\right]$$
 (8.24)

Let $n \to \infty$, we get $\lim_{n \to \infty} n \cdot \mathbb{P}(|X_1| > \epsilon \sqrt{n}) < \epsilon^{-2} \cdot 0 = 0$ as desired.

(2) *Proof.* For any fixed ϵ , by the fact that $\{X_n\}$ have same law: $\mathbb{P}(X_k > c) = \mathbb{P}(X_1 > c)$ for all $c \in \mathbb{R}$, all $1 \le k \le n$.

$$\mathbb{P}\left(\left|\frac{1}{\sqrt{n}}\max_{1\leq k\leq n}|X_{k}|-0\right|>\epsilon\right) = \mathbb{P}\left(\max_{1\leq k\leq n}|X_{k}|>\epsilon\sqrt{n}\right) \\
= \mathbb{P}\left(\left\{X_{k}>\epsilon\sqrt{n} \text{ for some } 1\leq k\leq n\right\}\right) \\
= \mathbb{P}\left(\bigcup_{k=1}^{n}\left\{X_{k}>\epsilon\sqrt{n}\right\}\right) \\
\leq \sum_{k=1}^{n}\mathbb{P}\left(X_{k}>\epsilon\sqrt{n}\right) \\
= n \cdot \mathbb{P}\left(X_{1}>\epsilon\sqrt{n}\right) \\
\xrightarrow{n\to\infty,\text{By (1)'s result}} 0 \quad \blacksquare$$
(8.25)

Problem 7. $\{X_n\}$ seq of indep. RVs. $\mathbb{E}[X_n] = 0$, $\operatorname{Var}[X] = 1$ uniformly. Show that for every $Y \in \mathcal{L}^2$,

$$\mathbb{E}\left[X_nY\right] \to 0$$

Proof. By $\mathbb{E}[X] = 0$, $\text{Var}[X] = 1 \Rightarrow \mathbb{E}[X^2] = 1$. Define $Y_n := \sum_{k=1}^n \mathbb{E}[X_k Y] X_k$, $\forall n \geq 1$, consider second moment

$$\mathbb{E}\left[Y_n^2\right] = \mathbb{E}\left[\sum_{k=1}^n \mathbb{E}^2\left[X_k Y\right] X_k^2 + \sum_{1 \le i \ne j \le n} \mathbb{E}\left[X_i Y\right] \mathbb{E}\left[X_j Y\right] X_i X_j\right]$$

$$= \sum_{k=1}^n \mathbb{E}^2\left[X_k Y\right] + \sum_{1 \le i \ne j \le n} \mathbb{E}\left[X_i Y\right] \mathbb{E}\left[X_j Y\right] \mathbb{E}\left[X_i\right] \mathbb{E}\left[X_j\right]$$

$$= \sum_{k=1}^n \mathbb{E}^2\left[X_k Y\right]$$

$$= \sum_{k=1}^n \mathbb{E}^2\left[X_k Y\right]$$
(8.26)

Which follows that $\{X_n\}$ are independent, $\mathbb{E}[X_i X_j] = \mathbb{E}[X_i] \mathbb{E}[X_j]$ for $i \neq j$. Now it suffices to show that $\mathbb{E}[Y_n^2] < \infty$ when $n \to \infty$, i.e. $\sup \mathbb{E}[Y_n^2] < \infty$.

Consider

$$\mathbb{E}\left[YY_n\right] = \mathbb{E}\left[Y\sum_{k=1}^n \mathbb{E}\left[X_kY\right]X_k\right] = \sum_{k=1}^n \mathbb{E}^2\left[X_kY\right] = \mathbb{E}\left[Y_n^2\right]$$
(8.27)

And

$$0 \le \mathbb{E}\left[(Y - Y_n)^2 \right] = \mathbb{E}\left[Y^2 \right] - 2\mathbb{E}\left[Y Y_n \right] + \mathbb{E}\left[Y_n^2 \right]$$

$$= \mathbb{E}\left[Y^2 \right] - 2\mathbb{E}\left[Y_n^2 \right] + \mathbb{E}\left[Y_n^2 \right] = \mathbb{E}\left[Y^2 \right] - \mathbb{E}\left[Y_n^2 \right]$$
(8.28)

Which implies $\mathbb{E}[Y_n^2] \leq \mathbb{E}[Y^2]$, i.e. $\sup_n \mathbb{E}[Y_n^2] \leq \mathbb{E}[Y^2] < \infty$, since $Y \in \mathcal{L}^2$ by hypothesis. Therefore

$$\sum_{k=1}^{\infty} \mathbb{E}^2 \left[X_k Y \right] < \infty \tag{8.29}$$

So $\mathbb{E}\left[X_kY\right] \xrightarrow{n\to\infty} 0$.

Problem 8. Show that following formula of the standard Gaussian rv: $X \sim N(0,1)$, then

$$\mathbb{E}\left[X^{n}\right] = \begin{cases} 0 & n \text{ odd,} \\ (n-1)!! & n \text{ even.} \end{cases}$$

Further, for every $k \geq 0$, $\mathbb{E}\left[|X|^{2k+1}\right] = 2^k k! \sqrt{2/\pi}$

(1) *Proof.* For standard gaussian, we have density function:

$$\phi(x) := f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$
(8.30)

Notice that $\phi' = -x \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} = -x\phi$. For $n \ge 2$, applying integration by parts,

$$\mathbb{E}\left[X^{n-1}\right] = \int_{\mathbb{R}} x^{n-1}\phi(x)dx$$

$$= \frac{x^n}{n-1}\Big|_{-\infty}^{+\infty} - \int_{\mathbb{R}} \frac{x^n}{n-1}\phi'(x)dx$$

$$= \frac{x^n \cdot e^{-\frac{x^2}{2}}}{\sqrt{2\pi}(n-1)}\Big|_{-\infty}^{+\infty} + \frac{1}{n-1}\int_{\mathbb{R}} x^{n+1}\phi(x)dx$$

$$= \frac{1}{n-1}\mathbb{E}\left[X^{n+1}\right]$$
(8.31)

So $\mathbb{E}[X^{n+1}] = (n-1)\mathbb{E}[X^{n-1}], n \ge 2.$ Since $\mathbb{E}[X] = 0$, $\mathbb{E}[X^2] = 1 \Rightarrow$

$$\mathbb{E}\left[X^{n}\right] = \begin{cases} 0 & n \text{ odd,} \\ (n-1)!! & n \text{ even.} \end{cases}$$

(2) Proof. Similar as (1),

$$\mathbb{E}\left[|X|^{n-1}\right] = 2\int_{\mathbb{R}^{+}} x^{n-1}\phi(x)dx$$

$$= 2\left[\frac{x^{n}}{n-1}\Big|_{0}^{+\infty} - \int_{0}^{+\infty} \frac{x^{n}}{n-1}\phi'(x)dx\right]$$

$$= \frac{1}{n-1} \cdot 2\int_{0}^{+\infty} x^{n+1}\phi(x)dx$$

$$= \frac{1}{n-1} \mathbb{E}\left[|X|^{n+1}\right]$$
(8.32)

Since $\mathbb{E}[|X|] = \sqrt{2/\pi}$, $\mathbb{E}[|X|^2] = \mathbb{E}[X^2] = 1 \Rightarrow$

$$\mathbb{E}\left[|X|^n\right] = \begin{cases} \sqrt{\frac{2}{\pi}} \cdot (n-1)!! & n \text{ odd,} \\ (n-1)!! & n \text{ even.} \end{cases}$$

Take n = 2k + 1 (odd), clearly $\mathbb{E}\left[|X|^{2k+1}\right] = 2^k k! \sqrt{2/\pi}$.

Problem 9. $X \in m\mathcal{F}^+$, show that

$$\mathbb{E}\left[X\right] = \int_{0}^{\infty} \mathbb{P}\left(X > t\right) dt = \int_{0}^{\infty} \mathbb{P}\left(X \ge t\right) dt$$

Proof. Firstly note that $X \in \mathbb{R}$ can be approached from below or above, i.e. $X = X^- = X^+$

$$X(w) = \int_{0}^{X(w)^{-}} 1 \cdot dt = \int_{0}^{X(w)^{+}} 1 \cdot dt$$

$$\mathbb{E}[X] = \int_{\Omega} \left[\int_{0}^{X(w)^{-}} 1 \cdot dt \right] d\mathbb{P}$$

$$= \int_{\Omega} \left[\int_{0}^{\infty} \mathbb{1}_{[-\infty, X(w))}(t) \cdot dt \right] d\mathbb{P}$$

$$= \int_{0}^{\infty} \left[\int_{\Omega} \mathbb{1}_{[-\infty, X(w))}(t) \cdot d\mathbb{P} \right] dt$$

$$= \int_{0}^{\infty} \left[\int_{\Omega} \mathbb{1}_{\{t < X(w)\}}(w) \cdot d\mathbb{P} \right] dt$$

$$= \int_{0}^{\infty} \mathbb{P}(X > t) dt$$
(8.34)

The interchangeability of two integrals wrt t and \mathbb{P} follows (*Tonelli*), since X is non-negative.

To prove the second equal sign with $\mathbb{P}(X \geq t)$, we just replace upper bound of integration form of X(w) with $X(w)^+$. And indicator will become $\mathbb{1}_{[-\infty,X(w)]}$.

Problem 10. $\{X_n\}$ identically distributed. $\mathbb{E}[|X_n|] < \infty$. Show that

$$\lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\max_{1 \le j \le n} |X_j| \right] = 0$$

Proof. By result of (9),

$$\frac{1}{n}\mathbb{E}\left[\max_{1\leq j\leq n}|X_j|\right] = \int_0^\infty \frac{1}{n} \cdot \mathbb{P}\left(\max_{1\leq j\leq n}|X_j| > t\right) dt \tag{8.35}$$

Denote $f_n := n^{-1} \mathbb{P}\left(\max_{1 \leq j \leq n} |X_j| > t\right)$, clearly $f_n \to 0$. It suffices to show

$$\lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\max_{1 \le j \le n} |X_j| \right] = \lim_{n \to \infty} \int f_n = \int \lim_{n \to \infty} f_n = 0$$
 (8.36)

For all $n \geq 1$, $\forall t \geq 0$, consider

$$f_{n} := \frac{1}{n} \mathbb{P}\left(\max_{1 \le j \le n} |X_{j}| > t\right) \le \frac{1}{n} \sum_{j=1}^{n} \mathbb{P}\left(|X_{j}| > t\right)$$

$$= \frac{1}{n} \cdot \sum_{j=1}^{n} \mathbb{P}\left(|X_{1}| > t\right) = \mathbb{P}\left(|X_{1}| > t\right)$$
(8.37)

71

Which follows that $\{X_n\}$ are identically distributed. Take supremum wrt n,

$$\sup_{n} \frac{1}{n} \mathbb{P}\left(\max_{1 \le j \le n} |X_j| > t\right) \le \mathbb{P}\left(|X_1| > t\right) =: g \tag{8.38}$$

By result of (9), $\mathbb{E}[X_1] < \infty \Rightarrow \text{LHS} \in \mathcal{L}^1$. So f_n is bounded by $g \in \mathcal{L}^1$. Apply (**DOM**), we have

$$\lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\max_{1 \le j \le n} |X_j| \right] = \lim_{n \to \infty} \int_0^\infty \frac{1}{n} \cdot \mathbb{P} \left(\max_{1 \le j \le n} |X_j| > t \right) dt$$

$$= \int_0^\infty \lim_{n \to \infty} \frac{1}{n} \mathbb{P} \left(\max_{1 \le j \le n} |X_j| > t \right) dt = 0 \quad \blacksquare$$
(8.39)

8.4 LLN

Problem 1. (WLLN3) Let $\{X_n : n \geq 1\}$ be a sequence of pairwise indep RV on $(\Omega, \mathcal{F}, \mathbb{P})$, and S_n is partial sum. Let $\{b_n : n \geq 1\}$ be seq of positive real numbers such that $b_n \nearrow \infty$, suppose

$$\lim_{n \to \infty} \sum_{j=1}^{n} \mathbb{P}(|X_j| > b_n) = 0$$
(8.40)

$$\lim_{n \to \infty} \sum_{j=1}^{n} \mathbb{E}\left[\frac{|X_j|^2}{b_n^2}; |X_j| \le b_n\right] = 0$$
 (8.41)

If we set

$$a_n := \sum_{j=1}^n \mathbb{E}[X_j; |X_j| \le b_n]$$
 (8.42)

Then

$$\frac{S_n - a_n}{b_n} \xrightarrow{i.p} 0 \tag{8.43}$$

1. For every $n \ge 1$ and $1 \le j \le n$, truncate X_n at b_n , i.e. define

$$Y_{n,j} = \begin{cases} X_j & \text{if } |X_j| \le b_n, \\ 0 & \text{otherwise.} \end{cases}$$

Let $T_n := \sum_{j=1}^n Y_{n,j}$. Show $\lim_{n \to \infty} \mathbb{P}(S_n \neq T_n) = 0$

2. Show $\operatorname{Var}[T_n] = o(b_n^2)$ as $n \to \infty$. Further show that

$$\frac{T_n - \mathbb{E}\left[T_n\right]}{b_n} \xrightarrow{i.p} 0 \tag{8.44}$$

3. Show WLLN3 based on 1,2.

Proof. (1) Since S_n is partial sum of $\{X_j\}$, and T_n is partial sum of $\{Y_{n,j}\}$. So

$$\{S_n \neq T_n\} \subseteq \{Y_{n,j} = X_j, \forall 1 \le j \le n\}^{\complement} = \{Y_{n,j} \neq X_j, \exists 1 \le j \le n\}.$$

$$\mathbb{P}(S_n \neq T_n) = \mathbb{P}(\{Y_{n,j} \neq X_j, \exists 1 \leq j \leq n\}) = \mathbb{P}\left(\bigcup_{j=1}^n \{Y_{n,j} \neq X_j\}\right)$$

$$\leq \sum_{j=1}^n \mathbb{P}(Y_{n,j} \neq X_j) = \sum_{j=1}^n \mathbb{P}(|X_j| > b_n)$$
(8.45)

Take limit on both sides, notice that RHS is given by hypothesis (1):

$$\lim_{n \to \infty} \mathbb{P}\left(S_n \neq T_n\right) \le \lim_{n \to \infty} \sum_{j=1}^n \mathbb{P}\left(|X_j| > b_n\right) = 0 \quad \blacksquare \tag{8.46}$$

Proof. (2) Since $\{X_n\}$ are pairwise indep, it is clear that for any fixed n, $\{Y_{n,j}\}$ are also pairwise indep. So $\operatorname{Var}[T_n] = \sum_{j=1}^n \operatorname{Var}[Y_{n,j}]$.

$$\sum_{j=1}^{n} \text{Var}\left[Y_{n,j}\right] \le \sum_{j=1}^{n} \mathbb{E}\left[Y_{n,j}^{2}\right] = \sum_{j=1}^{n} \mathbb{E}\left[X_{j}^{2}; |X_{j}| \le b_{n}\right]$$
(8.47)

For any fixed n, b_n is constant with respect to summation and expectation.

$$\operatorname{Var}[T_{n}] \leq \sum_{j=1}^{n} \mathbb{E}\left[X_{j}^{2}; |X_{j}| \leq b_{n}\right] = \sum_{j=1}^{n} \mathbb{E}\left[b_{n}^{2} \cdot \frac{X_{j}^{2}}{b_{n}^{2}}; |X_{j}| \leq b_{n}\right]$$

$$= b_{n}^{2} \sum_{j=1}^{n} \mathbb{E}\left[\frac{X_{j}^{2}}{b_{n}^{2}}; |X_{j}| \leq b_{n}\right]$$
(8.48)

i.e.

$$\frac{\operatorname{Var}\left[T_{n}\right]}{b_{n}^{2}} \leq \sum_{j=1}^{n} \mathbb{E}\left[\frac{X_{j}^{2}}{b_{n}^{2}}; |X_{j}| \leq b_{n}\right]$$

$$(8.49)$$

Take limit on both sides, by the second hypothesis, we get exactly the definition of $\operatorname{Var}[T_n] = o(b_n^2)$.

$$\lim_{n \to \infty} \frac{\operatorname{Var}\left[T_n\right]}{b_n^2} \le \lim_{n \to \infty} \sum_{j=1}^n \mathbb{E}\left[\frac{X_j^2}{b_n^2}; |X_j| \le b_n\right] = 0 \tag{8.50}$$

Apply **Markov**'s ineq, for all $\epsilon > 0$:

$$\mathbb{P}\left(\frac{|T_n - \mathbb{E}[T_n]|}{b_n} > \epsilon\right) = \mathbb{P}\left(\frac{|T_n - \mathbb{E}[T_n]|^2}{b_n^2} > \epsilon^2\right)
\leq \frac{\mathbb{E}[|T_n - \mathbb{E}[T_n]|^2]}{b_n^2 \cdot \epsilon^2}
= \frac{\operatorname{Var}[T_n]}{b_n^2} \cdot \frac{1}{\epsilon^2} \xrightarrow{n \to \infty} 0$$
(8.51)

i.e.

$$\frac{T_n - \mathbb{E}\left[T_n\right]}{b_n} \xrightarrow{i.p} 0 \quad \blacksquare \tag{8.52}$$

Proof. (3) Notice that, by its definition, $a_n = \mathbb{E}[T_n]$, so

$$\frac{|S_n - a_n|}{b_n} = \frac{|S_n - \mathbb{E}[T_n]|}{b_n} \le \frac{|S_n - T_n|}{b_n} + \frac{|T_n - \mathbb{E}[T_n]|}{b_n}
:= Q_1 + Q_2$$
(8.53)

Since $S_n \neq T_n$ on \mathbb{P} -null set when $n \to \infty$, $Q_1 \xrightarrow{a.s.} 0$. And we have shown that $Q_2 \xrightarrow{i.p} 0$. So the their summation $\xrightarrow{i.p} 0$.

Problem 2. Let $\{X_n : n \geq 1\}$ be a sequence of i.i.d. RV with common distribution

$$\mathbb{P}(X_1 = k) = \mathbb{P}(X_1 = -k) = \frac{c}{k^2 \log k}, k = 3, 4, \dots$$
 (8.54)

where c is a constant and $c = \frac{1}{2} \left(\sum_{k \geq 3} \frac{1}{k^2 \log k} \right)^{-1}$. Let S_n be partial sum.

- 1. Show $\frac{S_n}{n} \xrightarrow{i.p} 0$.
- 2. Show that $\mathbb{P}\left(\frac{|S_n|}{n} > \frac{1}{2} i.o.\right) = 1$. Therefore, this is an example for which WLLN holds but SLLN does not hold.
- 3. Show

$$\mathbb{P}\left(\limsup_{n\to\infty}\frac{S_n}{n}=\infty\right)=\mathbb{P}\left(\liminf_{n\to\infty}\frac{S_n}{n}=-\infty\right)=1$$
(8.55)

i.e. the amplitude of oscillation of $\frac{S_n}{n}$ is unbounded.

Proof. (1) Check for WLLN3, let $b_n := n$, firstly

$$\sum_{j=1}^{n} \mathbb{P}(|X_{j}| > n) = n \mathbb{P}(|X_{1}| > n) = n \sum_{k \ge n+1} \frac{2c}{k^{2} \log k}$$

$$\leq \frac{n}{\log n} \sum_{k \ge n+1} \frac{2c}{k^{2}} \leq \frac{n}{\log n} \int_{n}^{\infty} \frac{2c}{x^{2}} dx$$

$$= \frac{2cn}{\log n} \cdot \left(-\frac{1}{x}\right) \Big|_{n}^{\infty} = \frac{2c}{\log n} \xrightarrow{n \to \infty} 0$$
(8.56)

Secondly

$$\sum_{j=1}^{n} \mathbb{E}\left[\frac{X_{j}^{2}}{n^{2}}; |X_{j}| \le n\right] = n\mathbb{E}\left[\frac{X_{1}^{2}}{n^{2}}; |X_{1}| \le n\right]$$

$$= n\sum_{k=3}^{n} \frac{k^{2}}{n^{2}} \cdot \frac{2c}{k^{2} \log k} = \frac{2c}{n} \cdot \sum_{k=3}^{n} \frac{1}{\log k}$$
(8.57)

Now we estimate $\sum_{k=3}^{n} \frac{1}{\log k}$, consider

$$li(n) - li(3) = \int_{3}^{n} \frac{dx}{\log x} < \sum_{k=3}^{n} \frac{1}{\log k} < \int_{4}^{n+1} \frac{dx}{\log x} = li(n+1) - li(4)$$
 (8.58)

Where $li(n) := \int_0^n dx/\log(x)$. Use the estimation of li(n), we have

$$\sum_{k=3}^{n} \frac{1}{\log k} \sim li(n) = O\left(\frac{n}{\log n}\right)$$
(8.59)

Therefore,

$$\frac{2c}{n} \cdot \sum_{k=3}^{n} \frac{1}{\log k} = O\left(\frac{1}{\log n}\right) \xrightarrow{n \to \infty} 0 \tag{8.60}$$

So the condtions for WLLN3 holds. Apply WLLN3, define

$$a_n := \sum_{j=1}^n \mathbb{E}[X_j; |X_j| \le n] = 0$$
 (8.61)

$$\frac{S_n - a_n}{b_n} = \frac{S_n}{n} \xrightarrow{i.p} 0 \quad \blacksquare \tag{8.62}$$

Proof. (2) It is clear that

$$\mathbb{E}[|X_1|] = \sum_{k>3} k \cdot \frac{2c}{k^2 \log k} = \sum_{k>3} \frac{2c}{k \log k} = \infty$$
 (8.63)

- Fix any A > 0, $\mathbb{E}\left[\left|\frac{X_1}{A}\right|\right] = \infty$.
- · Follow the proof of second part of (**SLLN3**) on lecture, $\Rightarrow \sum_{j\geq 1} \mathbb{P}(|X_1| > jA) = \infty$. Since $\{X_n\}$ are i.i.d, $\Rightarrow \sum_{j\geq 1} \mathbb{P}(|X_j| > jA) = \infty$
- By (**BC2**), $\mathbb{P}(|X_n| > nA \ i.o.) = 1$, i.e.

$$\mathbb{P}\left(\frac{|S_n - S_{n-1}|}{n} > A \ i.o\right) = 1 \tag{8.64}$$

Since $\left\{\frac{|S_n - S_{n-1}|}{n} > A\right\} \subseteq \left\{\frac{|S_n|}{n} > \frac{A}{2}\right\} \cup \left\{\frac{|S_{n-1}|}{n-1} > \frac{A}{2}\right\} = \left\{\frac{|S_n|}{n} > \frac{A}{2}\right\}$. Take A = 1, we have

$$\mathbb{P}\left(\frac{|S_n|}{n} > \frac{1}{2} \ i.o\right) = 1 \quad \blacksquare \tag{8.65}$$

Proof. (3) By (**SLLN3**), second part, $\mathbb{E}[|X_1|] = \infty \Rightarrow$

$$\mathbb{P}\left(\limsup_{n\to\infty}\frac{|S_n|}{n}=\infty\right)=1\tag{8.66}$$

Define $X'_n := -X_n$, $S'_n = \sum X'_n$. Since $\{X_n\}$ is **symmetrically** distributed about 0. X_n and X'_n are essentially identically distributed, so do S_n and S'_n . Therefore,

$$\left\{ \frac{|S_n|}{n} > m \ i.o \right\} = \left\{ \frac{S_n}{n} > m \ i.o \right\} \cup \left\{ \frac{S'_n}{n} > m \ i.o \right\}
= \left\{ \frac{S_n}{n} > m \ i.o \right\} \subseteq \left\{ \limsup_{n \to \infty} \frac{S_n}{n} > m \right\}$$
(8.67)

¹From wikipedia.

By (2), LHS has probability 1 holds for $\forall m > 1$, take intersection with respect to m, we have

$$\mathbb{P}\left(\limsup_{n\to\infty} \frac{S_n}{n} = \infty\right) = 1\tag{8.68}$$

For the infimum side, note that S_n, S'_n are identically distributed,

$$\mathbb{P}\left(\liminf_{n\to\infty} \frac{S_n}{n} = -\infty\right) = \mathbb{P}\left(\limsup_{n\to\infty} \frac{-S_n}{n} = \infty\right) \\
= \mathbb{P}\left(\limsup_{n\to\infty} \frac{S_n'}{n} = \infty\right) = \mathbb{P}\left(\limsup_{n\to\infty} \frac{S_n}{n} = \infty\right) = 1 \quad \blacksquare \tag{8.69}$$

Problem 3. (SLLN4) Let $\{X_n : n \geq 1\}$ be sequence of \mathcal{L}^1 , indep RVs; S_n be partial sum. Let $\phi : \mathbb{R} \to \mathbb{R}$ be positive and continuous even function such that $\frac{\phi(x)}{|x|}$ is non-decreasing in x and $\frac{\phi(x)}{x^2}$ is non-increasing in x. Assume for some sequence $\{b_n : n \geq 1\}$ of positive real numbers with $b_n \nearrow \infty$,

$$\sum_{n>1} \frac{\mathbb{E}\left[\phi(X_n)\right]}{\phi(b_n)} < \infty \tag{8.70}$$

Show that $\sum_{n\geq 1} \frac{X_n - \mathbb{E}[X_n]}{b_n}$ converges a.s., hence

$$\frac{S_n - \mathbb{E}\left[S_n\right]}{b_n} \xrightarrow{a.s.} 0 \tag{8.71}$$

Proof. We start from ϕ .

• Since $\frac{\phi(x)}{|x|}$ is non-decreasing in x, for $|X_n| \geq b_n$, we have

$$\frac{\phi(b_n)}{b_n} \le \frac{\phi(X_n)}{|X_n|} \tag{8.72}$$

Besides since ϕ is positive, everything above are all positive, thus we can rearrange it without changing sign, i.e.

$$\frac{|X_n|}{b_n} \le \frac{\phi(X_n)}{\phi(b_n)} \tag{8.73}$$

Take expectation on bothsides, note that we have constrained ourselves by $|X_n| \ge b_n$,

$$\frac{\mathbb{E}\left[|X_n|;|X_n| \ge b_n\right]}{b_n} \le \frac{\mathbb{E}\left[\phi(X_n);|X_n| \ge b_n\right]}{\phi(b_n)} \le \frac{\mathbb{E}\left[\phi(X_n)\right]}{\phi(b_n)} \quad (\triangle)$$
(8.74)

• Since $\frac{\phi(x)}{x^2}$ is non-increasing in x, for $|X_n| \leq b_n$, we have

$$\frac{\phi(b_n)}{b_n^2} \le \frac{\phi(|X_n|)}{|X_n|^2} = \frac{\phi(X_n)}{|X_n|^2} \quad \text{i.e.} \quad \frac{|X_n|^2}{b_n^2} \le \frac{\phi(X_n)}{\phi(b_n)}$$
(8.75)

The equal sign from $\phi(|X_n|)$ to $\phi(X_n)$ follows that ϕ is a even function.

Take expectation on bothsides, note that we have constrained ourselves by $|X_n| \le b_n$,

$$\frac{\mathbb{E}\left[|X_n|^2; |X_n| \le b_n\right]}{b_n^2} \le \frac{\mathbb{E}\left[\phi(X_n); |X_n| \le b_n\right]}{\phi(b_n)} \le \frac{\mathbb{E}\left[\phi(X_n)\right]}{\phi(b_n)} \quad (\dagger) \tag{8.76}$$

Now trancate X_n at the level of b_n . Define

$$Y_n = \begin{cases} X_n & \text{if } |X_n| \le b_n, \\ 0 & \text{otherwise.} \end{cases}$$

And define $T_n := \sum_{1}^{n} Y_n$. By same argument as before, X_n, Y_n are equivalent. Moreover $\{Y_n\}$ are also indep.

Consider sequence $\{\frac{Y_n}{b_n}\}$ (clearly also indep.),

$$\sum_{n\geq 1} \operatorname{Var}\left[\frac{Y_n}{b_n}\right] = \sum_{n\geq 1} \frac{\operatorname{Var}\left[Y_n\right]}{b_n^2} \leq \sum_{n\geq 1} \frac{\mathbb{E}\left[Y_n^2\right]}{b_n^2}$$

$$= \sum_{n\geq 1} \frac{\mathbb{E}\left[X_n^2; |X_n| \leq b_n\right]}{b_n^2} \leq \sum_{n\geq 1} \frac{\mathbb{E}\left[\phi(X_n)\right]}{\phi(b_n)} < \infty$$
(8.77)

The last \leq is due to (†). Apply (**SLLN2-Prelude**) to $\frac{Y_n}{b_n}$ then apply (**Kronecker**) \Rightarrow

$$\frac{1}{b_n} \sum_{n \ge 1} (Y_n - \mathbb{E}[Y_n]) \xrightarrow{a.s.} 0 \quad \text{i.e.} \quad \frac{T_n - \mathbb{E}[T_n]}{b_n} \xrightarrow{a.s.} 0 \quad (\#)$$
 (8.78)

Finally consider

$$\frac{|S_n - \mathbb{E}[S_n]|}{b_n} \le \frac{|S_n - T_n|}{b_n} + \frac{|T_n - \mathbb{E}[T_n]|}{b_n} + \frac{|\mathbb{E}[T_n] - \mathbb{E}[S_n]|}{b_n}
= Q_1 + Q_2 + Q_3$$
(8.79)

Since X_n, Y_n are equivalent, $b_n \nearrow \infty \Rightarrow Q_1 \xrightarrow{a.s.} 0$. By $(\#), Q_2 \xrightarrow{a.s.} 0$. For Q_3 ,

$$Q_3 = \frac{1}{b_n} \sum_{n>1} \mathbb{E}\left[|X_n|; |X_n| \ge b_n\right]$$
 (8.80)

By (\triangle) ,

$$\sum_{n\geq 1} \frac{\mathbb{E}\left[|X_n|; |X_n| \geq b_n\right]}{b_n} \leq \sum_{n\geq 1} \frac{\mathbb{E}\left[\phi(X_n)\right]}{\phi(b_n)} < \infty \tag{8.81}$$

Apply again (**Kronecker**), $Q_3 \xrightarrow{a.s.} 0$. Therefore,

$$\frac{|S_n - \mathbb{E}[S_n]|}{b_n} = Q_1 + Q_2 + Q_3 \xrightarrow{a.s.} 0 \quad \blacksquare$$
 (8.82)

Problem 4. (Inverting Laplace Transform) Let f be bounded continuous function on $[0, \infty)$, Laplace transform of f is the function L on $(0, \infty)$ by

$$L(\lambda) := \int_0^\infty e^{-\lambda x} f(x) dx \tag{8.83}$$

Let $\{X_n\}$ be indep RVs with exponential dist of rate λ , S_n be partial sum. So $\mathbb{P}(X > x) = e^{-\lambda x}$, $\mathbb{E}[X] = \frac{1}{\lambda}$, $\operatorname{Var}[X] = \frac{1}{\lambda^2}$.

1. Show

$$(-1)^{n-1} \frac{\lambda^n L^{(n-1)}(\lambda)}{(n-1)!} = \mathbb{E}\left[f(S_n)\right]$$
 (8.84)

2. f can be recovered from L by: for y > 0

$$f(y) = \lim_{n \to \infty} (-1)^{n-1} \frac{\left(\frac{n}{y}\right)^n L^{(n-1)}\left(\frac{n}{y}\right)}{(n-1)!}$$
(8.85)

Proof. (1) Denote pdf of X by ϕ_X , we claim that for $\{X_n\}$ i.i.d. exponential(λ), the pdf of partial sum evaluated at any x > 0 is

$$\phi_{S_n}(x) = \lambda e^{-\lambda x} \frac{(\lambda x)^{n-1}}{(n-1)!} \quad (\#)$$
(8.86)

We prove by induction. Basic case n=1, $\phi_{S_1}=\phi_X=\lambda e^{-\lambda x}$. Assume (#) holds for n, then for n+1:

$$\phi_{S_{n+1}}(x) = (\phi_X * \phi_{S_n})(x) = \int_0^\infty \phi_X(x - y)\phi_{S_n}(y)dy$$

$$= \int_0^\infty \lambda e^{-\lambda(x-y)} \lambda e^{-\lambda y} \frac{(\lambda y)^{n-1}}{(n-1)!} dy$$

$$= \lambda e^{-\lambda x} \int_0^\infty \lambda^n \frac{y^{n-1}}{(n-1)!} dy$$

$$= \lambda e^{-\lambda x} \frac{(\lambda x)^n}{n!}$$
(8.87)

Now look at LHS of equation to prove. Since $\partial_{\lambda}^{n-1}(e^{-\lambda x}f(x))$ exists and is continuous, we are allowed to take ∂_{λ}^{n-1} inside integral.

$$(-1)^{n-1} \frac{\lambda^{n} L^{(n-1)}(\lambda)}{(n-1)!} = (-1)^{n-1} \frac{\lambda^{n}}{(n-1)!} \int_{0}^{\infty} \partial_{\lambda}^{n-1}(e^{-\lambda x}) f(x) dx$$

$$= \int_{0}^{\infty} \lambda e^{-\lambda x} \frac{(\lambda x)^{n-1}}{(n-1)!} f(x) dx = \int_{0}^{\infty} f(x) \phi_{S_{n}}(x) dx$$

$$= \mathbb{E} [f(S_{n})] = RHS \quad \blacksquare$$
(8.88)

Proof. (2) By (WLLN2), since $\{X_n\}$ i.i.d. exponential, $X_n \in \mathcal{L}^1$, we have

$$\frac{S_n}{n} \xrightarrow{i.p} \mathbb{E}[X_1] = \frac{1}{\lambda} \text{ i.e. } S_n \xrightarrow{i.p} \frac{n}{\lambda} =: y$$
 (8.89)

Composition with continuous function f preserves convergence in probability, so $f(S_n) \xrightarrow{i.p} f(y)$.

Since f is bounded (by some $g \in \mathcal{L}^1[0,\infty)$?), by (**DOM**): $f(S_n) \xrightarrow{\mathcal{L}^1} f(y)$, i.e. for any fixed y such that $\lambda = \frac{n}{y}$,

$$f(y) = \mathbb{E}[f(y)] = \lim_{n \to \infty} \mathbb{E}[f(S_n)] = \lim_{n \to \infty} (-1)^{n-1} \frac{\left(\frac{n}{y}\right)^n L^{(n-1)}\left(\frac{n}{y}\right)}{(n-1)!} \quad \blacksquare$$
 (8.90)

Problem 5. Let $\{X_n : n \geq 1\}$ be sequence of i.i.d RV with common distribution

$$\mathbb{P}(X_1 = k) = p_k \text{ where } p_k \in (0, 1), 1 \le k \le L, \text{ and } \sum_{k=1}^{L} p_k = 1$$
 (8.91)

For every $n \ge 1$ and $1 \le k \le L$, let S_n be partial sum and $N_k^{(n)} := \sharp \{j : 1 \le j \le n, X_j = k\}$. (i.e. the number of X_j among the first n terms of sequence which take value k). Show that, if

$$P(n) := \prod_{k=1}^{L} p_k^{N_k^{(n)}}$$
(8.92)

Then

$$\lim_{n \to \infty} \frac{1}{n} \cdot \log(P(n)) \quad \text{exists a.s. (find it.)}$$
 (8.93)

Proof. Define

$$Y_{k,j} = \begin{cases} 1 & \text{if } X_j = k, \\ 0 & \text{otherwise.} \end{cases}$$

Clearly for any fixed $1 \le k \le L$, $\{Y_{k,j} : j \ge 1\}$ is a sequence of i.i.d RVs due to the fact that $\{X_j\}$ are i.i.d. And $N_k^{(n)} = \sum_{j=1}^n Y_{k,j}$ is a partial sum of $Y_{k,j}$. Fix k, for all $j \ge 1$,

$$\mathbb{E}\left[Y_{k,i}\right] = \mathbb{E}\left[Y_{k,1}\right] = 1 \cdot \mathbb{P}\left(X_1 = k\right) = p_k < \infty \tag{8.94}$$

So by (SLLN3),

$$\frac{N_k^{(n)}}{n} \xrightarrow{a.s.} \mathbb{E}\left[Y_{k,1}\right] = p_k \tag{8.95}$$

Therefore,

$$\frac{1}{n} \cdot \log(P(n)) = \frac{1}{n} \sum_{k=1}^{L} N_k^{(n)} \log p_k = \sum_{k=1}^{L} \frac{N_k^{(n)}}{n} \log p_k
\xrightarrow{a.s.} \sum_{k=1}^{L} p_k \log p_k$$
(8.96)

i.e. $\lim_{n\to\infty} \frac{1}{n} \cdot \log(P(n))$ exists almost surely. It equals to $\sum_{k=1}^{L} p_k \log p_k$ with 1 probability.

Problem 6. Let $\{X_n : n \geq 1\}$ be sequence of i.i.d RVs with $\mathbb{E}[|X_1|] < \infty$, and S_n be partial sum. Show that if $\mathbb{E}[X_1] \neq 0$,

$$\frac{\max\limits_{1 \le k \le n} |X_k|}{|S_n|} \xrightarrow{a.s.} 0 \tag{8.97}$$

Proof. For all $\epsilon > 0$,

$$\infty > \mathbb{E}\left[|X_{1}|\right] = \int_{0}^{\infty} \mathbb{P}\left(|X_{1}| > t\right) dt
= \left(\int_{0}^{\epsilon} + \int_{\epsilon}^{2\epsilon} + \int_{2\epsilon}^{3\epsilon} + ...\right) \mathbb{P}\left(|X_{1}| > t\right) dt
= \sum_{n \ge 1} \int_{(n-1)\epsilon}^{n\epsilon} \mathbb{P}\left(|X_{1}| > t\right) dt
\ge \sum_{n \ge 1} \epsilon \cdot \mathbb{P}\left(|X_{1}| > n\epsilon\right)
= \epsilon \cdot \sum_{n \ge 1} \mathbb{P}\left(\frac{|X_{1}|}{n} > \epsilon\right)$$
(8.98)

Therefore $\sum_{n\geq 1} \mathbb{P}\left(\frac{|X_1|}{n} > \epsilon\right) < \infty$. By (**BC1**), $\mathbb{P}\left(\frac{|X_1|}{n} > \epsilon \ i.o.\right) = 0$ for all $\epsilon > 0 \Rightarrow \frac{|X_1|}{n} \xrightarrow{a.s.} 0$.

Now consider

$$\frac{\max_{1 \le k \le n} |X_k|}{|S_n|} = \frac{\max_{1 \le k \le n} |X_k|}{n} \cdot \frac{n}{|S_n|}$$
(8.99)

For the second factor, apply (SLLN3, since mutually indep, $\mathbb{E}[|X_1|] < \infty$),

$$\frac{S_n}{n} \xrightarrow{a.s.} \mathbb{E}\left[X_1\right] \neq 0 \tag{8.100}$$

So,

$$\frac{n}{|S_n|} \xrightarrow{a.s.} \left| \frac{1}{\mathbb{E}[X_1]} \right| < \infty \quad (1)$$

For the first factor, we already have $\mathbb{P}\left(\frac{|X_1|}{n} > \epsilon \ i.o.\right) = 0$. For any ϵ ,

$$\mathbb{P}\left(\frac{\max\limits_{1\leq k\leq n}|X_k|}{n} > \epsilon \ i.o.\right) = \mathbb{P}\left(\bigcup_{k=1}^n \left\{\frac{|X_k|}{n} > \epsilon \ i.o.\right\}\right) \\
= \sum_{k=1}^n \mathbb{P}\left(\frac{|X_k|}{n} > \epsilon \ i.o.\right) \\
= n \cdot \mathbb{P}\left(\frac{|X_1|}{n} > \epsilon \ i.o.\right) = 0$$
(8.102)

Therefore $\frac{\max\limits_{1 \le k \le n} |X_k|}{n} \xrightarrow{a.s.} 0$ (2). By (1) and (2),

$$\frac{\max\limits_{1 \le k \le n} |X_k|}{|S_n|} \xrightarrow{a.s.} 0 \cdot \left| \frac{1}{\mathbb{E}[X_1]} \right| = 0 \quad \blacksquare$$
 (8.103)

Problem 7. Let $\{X_n\}$ be i.i.d RVs, $\mathbb{E}[X_1] = 0$, $\mathbb{E}[X_1^2] = 1$. S_n is partial sum. Show that for every $c \in \mathbb{R}$ and $n \ge 1$,

$$\mathbb{P}\left(\max_{1 \le j \le n} S_j \ge c\right) \le 2\mathbb{P}\left(S_n \ge c - \sqrt{2n}\right) \tag{8.104}$$

Proof. For any $c \in \mathbb{R}$,

$$\frac{1}{2}RHS = \mathbb{P}\left(S_n \ge c - \sqrt{2n}\right)$$

$$\ge \mathbb{P}\left(S_n \ge c - \sqrt{2n} \text{ and } \max_{1 \le j \le n} S_j \ge c\right)$$

$$= \sum_{k=1}^n \mathbb{P}\left(S_n \ge c - \sqrt{2n} \text{ and } S_j < c, \forall j = 1, 2, ..., k - 1 \text{ and } S_k \ge c\right)$$

$$\ge \sum_{k=1}^n \mathbb{P}\left(S_k - S_n \le \sqrt{2(n-k)} \text{ and } S_j < c, \forall j = 1, 2, ..., k - 1 \text{ and } S_k \ge c\right) \quad (\dagger)$$
(8.105)

The last geq sign holds, because given $\{S_k - S_n \leq \sqrt{2(n-k)} \text{ and } S_k \geq c\}$, we have $\sqrt{2(n-k)} \ge S_k - S_n \ge c - S_n$.

 $\Rightarrow S_n \geq c - \sqrt{2(n-k)} \geq c - \sqrt{2n}$, i.e. this event implies the original one:

$${S_k - S_n \le \sqrt{2(n-k)} \text{ and } S_k \ge c} \subseteq {S_n \ge c - \sqrt{2n} \text{ and } S_k \ge c}$$
 (8.106)

Since $\{S_j < c, \forall j = 1, 2, ..., k - 1 \text{ and } S_k \ge c\} \in \sigma(X_1, X_2, ..., X_k)$ And $\{S_k - S_n \leq \sqrt{2(n-k)}\} \in \sigma(X_{k+1}, X_{k+2}, ..., X_n)$, these two events are independent, so,

$$(\dagger) = \sum_{k=1}^{n} \mathbb{P}\left(S_k - S_n \le \sqrt{2(n-k)}\right) \cdot \mathbb{P}\left(S_j < c, \forall j = 1, 2, ..., k-1 \text{ and } S_k \ge c\right)$$

$$\ge \sum_{k=1}^{n} \mathbb{P}\left(|S_k - S_n| \le \sqrt{2(n-k)}\right) \cdot \mathbb{P}\left(S_j < c, \forall j = 1, 2, ..., k-1 \text{ and } S_k \ge c\right)$$

$$(8.107)$$

By (Markov), note that $\{X_n\}$ are indep, $\mathbb{E}[X_i^2] = 1$, $\mathbb{E}[X_i] = 0$,

$$\mathbb{P}\left(|S_{k} - S_{n}| > \sqrt{2(n-k)}\right) < \frac{\mathbb{E}\left[\left(\sum_{j=k}^{n} X_{j}\right)^{2}\right]}{2(n-k)} \\
= \frac{1}{2(n-k)} \left[\sum_{j=k}^{n} \mathbb{E}\left[X_{j}^{2}\right] + \sum_{k \leq i \neq j \leq n} \mathbb{E}\left[X_{i} X_{j}\right]\right] (8.108) \\
= \frac{1}{2(n-k)} \cdot \left[(n-k) + 0\right] = \frac{1}{2}$$

Therefore,

$$\mathbb{P}\left(|S_k - S_n| \le \sqrt{2(n-k)}\right) \ge 1 - \frac{1}{2} = \frac{1}{2} \tag{8.109}$$

$$(\dagger) \ge \sum_{k=1}^{n} \frac{1}{2} \cdot \mathbb{P}\left(S_j < c, \forall j = 1, 2, ..., k-1 \text{ and } S_k \ge c\right)$$

$$= \frac{1}{2} \mathbb{P}\left(\max_{1 \le j \le n} S_j \ge c\right) = \frac{1}{2} LHS$$

$$(8.110)$$

So we have LHS < RHS.

Problem 8.

1. Let X be non-negative RV on $(\Omega, \mathcal{F}, \mathbb{P})$, $p \in (1, \infty)$, show

$$\mathbb{E}\left[X^{p}\right] = p \int_{0}^{\infty} t^{p-1} \mathbb{P}\left(X > t\right) dt = p \int_{0}^{\infty} t^{p-1} \mathbb{P}\left(X \ge t\right) dt \tag{8.111}$$

2. Let $\{X_n : n \geq 1\}$ is sequence of square-integrable indep random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathbb{E}[X_n] = 0$ for all $n \geq 1$. Set $S_n := \sum_{j=1}^n X_j$ for each $n \geq 1$, assume that $\sum_{n\geq 1} \mathbb{E}[X_n^2] < \infty$. It is known from theorem that $S_n \xrightarrow{a.s.} S$ for some RV S. Moreover, due to the completeness of \mathcal{L}^2 , we know that $S \in \mathcal{L}^2$ and $S_n \to S$ also in \mathcal{L}^2 . Show that for every $t \geq 0$,

$$\mathbb{P}\left(\sup_{n\geq 1}|S_n|^2 > t\right) \leq \frac{1}{t}\mathbb{E}\left[S^2; \sup_{n\geq 1}|S_n|^2 > t\right]$$
(8.112)

3. With (1) and (2), show

$$\left(\mathbb{E}\left[\sup_{n\geq 1}|S_n|^{2p}>t\right]\right)^{\frac{1}{p}}\leq \frac{p}{p-1}\left(\mathbb{E}\left[|S|^{2p}\right]\right)^{\frac{1}{p}} \tag{8.113}$$

4. Based on (3), conclude that if $S \in L^q$ for some $q \in (2, \infty)$, then $S_n \to S$ also in \mathcal{L}^q .

Proof. (1), $X \in (m\mathcal{F})^+$, use result of HW3-9 (**Tonelli**), $\forall M > 0$,

$$\mathbb{E}\left[X^{p}; X < M\right] = \int_{\{X < M\}} \left[\int_{0}^{X^{p}(w)^{-}} 1 \cdot dt\right] d\mathbb{P}$$

$$= \int_{\Omega} \mathbb{1}_{\{X(w) < M\}}(w) \left[\int_{0}^{\infty} \mathbb{1}_{[-\infty, X^{p}(w))}(t) \cdot dt\right] d\mathbb{P}$$

$$= \int_{\Omega} \left[\int_{0}^{\infty} \mathbb{1}_{\{X(w) < M\}}(w) \cdot \mathbb{1}_{[-\infty, X^{p}(w))}(t) \cdot dt\right] d\mathbb{P}$$

$$= \int_{0}^{\infty} \left[\int_{\Omega} \mathbb{1}_{\{t^{\frac{1}{p}} < X(w) < M\}}(w) \cdot d\mathbb{P}\right] dt$$

$$= \int_{0}^{\infty} \mathbb{P}\left(M > X > t^{\frac{1}{p}}\right) dt$$

$$= \int_{0}^{M^{p}} \left[\mathbb{P}\left(X > t^{\frac{1}{p}}\right) - \mathbb{P}\left(X > M\right)\right] dt$$

$$= \int_{0}^{M^{p}} \left[\mathbb{P}\left(X > t^{\frac{1}{p}}\right) - \mathbb{P}\left(X > M\right)\right] dt$$

 $\mathbb{P}\left(X > t^{\frac{1}{p}}\right)$ is montonic function w.r.t t, thus integrable on finite interval $[0, M^p]$.

 $\mathbb{P}(X > M)$ is constant. Define

$$f_M(t) := \mathbb{P}\left(M > X > t^{\frac{1}{p}}\right) \nearrow \mathbb{P}\left(X > t^{\frac{1}{p}}\right) =: f(t) \tag{8.115}$$

By our argument above, $\mu(f_M(t)) = \mathbb{E}[X^p; X < M] < \infty$. By (MON), $\mu(f_M(t)) \to \mu(f)$, i.e.

$$\mathbb{E}\left[X^{p}\right] = \lim_{M \to \infty} \int_{0}^{\infty} \mathbb{P}\left(M > X > t^{\frac{1}{p}}\right) dt$$

$$= \int_{0}^{\infty} \lim_{M \to \infty} \mathbb{P}\left(M > X > t^{\frac{1}{p}}\right) dt$$

$$= \int_{0}^{\infty} \mathbb{P}\left(X > t^{\frac{1}{p}}\right) dt \quad (\text{let } z := t^{\frac{1}{p}})$$

$$= \int_{0}^{\infty} pz^{p-1} \mathbb{P}\left(X > z\right) dz$$
(8.116)

The second equal sign is the same, just replace upper bound of integral form of $X^p(w)$ with $X^p(w)^+$, and all relevant indicators will become $\mathbb{1}_{[-\infty,X^p(w)]}$.

Proof. (2) The structure is similar to Kolmogorov 's inequality. Define

$$A_j := \{ |S_i|^2 \le t, \forall i = 1, 2, ..., j - 1 \text{ and } |S_j|^2 > t \}$$
 (8.117)

$$A := \{ \max_{1 \le j \le n} |S_j|^2 > t \} = \bigcup_{j=1}^n A_j$$
 (8.118)

Note that A_j 's are disjoint, then consider

$$\mathbb{E}\left[S_{n}^{2};A\right] = \sum_{j=1}^{n} \mathbb{E}\left[S_{n}^{2};A_{j}\right] = \sum_{j=1}^{n} \mathbb{E}\left[\left(S_{j} + \left(S_{n} - S_{j}\right)\right)^{2};A_{j}\right]$$

$$= \sum_{j=1}^{n} \mathbb{E}\left[S_{j}^{2};A_{j}\right] + \sum_{j=1}^{n} \mathbb{E}\left[\left(S_{n} - S_{j}\right)^{2};A_{j}\right] + 2\sum_{j=1}^{n} \mathbb{E}\left[\left(S_{n} - S_{j}\right)S_{j};A_{j}\right] \quad (\triangle)$$
(8.119)

By same argument as the proof of Kolmogorov's ineq, RV $S_j \in m\sigma(X_1, X_2, ..., X_j)$; $(S_n - S_j) \in m\sigma(X_{j+1}, ..., X_n)$, thus independent. Therefore the cross term is $2\sum_{j=1}^n \mathbb{E}\left[(S_n - S_j); A_j\right] \mathbb{E}\left[S_j; A_j\right] = 0$, by $\mathbb{E}\left[X_n\right] = 0$, so

$$(\triangle) = \sum_{j=1}^{n} \mathbb{E}\left[S_j^2; A_j\right] + \sum_{j=1}^{n} \mathbb{E}\left[\left(S_n - S_j\right)^2; A_j\right]$$

$$\geq \sum_{j=1}^{n} \mathbb{E}\left[S_j^2; A_j\right] > t \sum_{j=1}^{n} \mathbb{P}\left(A_j\right) = t \cdot \mathbb{P}\left(A\right)$$

$$(8.120)$$

i.e.

$$\mathbb{P}\left(\max_{1\leq j\leq n}|S_j|^2 > t\right) \leq \frac{1}{t}\mathbb{E}\left[S_n^2; \max_{1\leq j\leq n}|S_j|^2 > t\right]$$
(8.121)

By theorem, $S_n \xrightarrow{a.s.} S$. Since X_n are **non-negative**, so $S_n^2 \nearrow S^2$. Take limit on both sides and apply (**MON**) on RHS,

$$\mathbb{P}\left(\sup_{n\geq 1}|S_n|^2 > t\right) \leq \lim_{n\to\infty} \frac{1}{t} \mathbb{E}\left[S_n^2; \max_{1\leq j\leq n}|S_j|^2 > t\right] \\
= \frac{1}{t} \mathbb{E}\left[S^2; \sup_{n\geq 1}|S_n|^2 > t\right] \quad \blacksquare$$
(8.122)

Proof. (3) Since $|S_n| \ge 0$, $\sup_{n \ge 1} |S_n|^{2p} = (\sup_{n \ge 1} |S_n|^2)^p$. For non-negative RV $\sup_{n \ge 1} |S_n|^2$, apply (1), then apply (2),

$$\mathbb{E}\left[\left(\sup_{n\geq 1}|S_n|^2\right)^p\right] = p \int_0^\infty t^{p-1} \mathbb{P}\left(\sup_{n\geq 1}|S_n|^2 > t\right) dt$$

$$\leq p \int_0^\infty t^{p-1} \frac{1}{t} \mathbb{E}\left[S^2; \sup_{n\geq 1}|S_n|^2 > t\right] dt$$

$$= p \mathbb{E}\left[S^2 \int_0^{\sup|S_n|^2} t^{p-2} dt\right]$$

$$= \frac{p}{p-1} \mathbb{E}\left[\left(\sup_{n\geq 1}|S_n|^2\right)^{p-1} S^2\right] \quad (\triangle)$$
(8.123)

Apply (**Holders**) to (\triangle), since $\frac{1}{p} + \frac{p-1}{p} = 1$,

$$\mathbb{E}\left[\sup_{n\geq 1}|S_{n}|^{2p}\right] \leq (\Delta) \leq \frac{p}{p-1} \mathbb{E}\left[\left((\sup_{n\geq 1}|S_{n}|^{2})^{p-1}\right)^{\frac{p}{p-1}}\right]^{\frac{p-1}{p}} \mathbb{E}\left[S^{2p}\right]^{\frac{1}{p}} \\
= \frac{p}{p-1} \mathbb{E}\left[\sup_{n\geq 1}|S_{n}|^{2p}\right]^{\frac{p-1}{p}} \mathbb{E}\left[S^{2p}\right]^{\frac{1}{p}} \tag{8.124}$$

If $\mathbb{E}\left[\sup_{n\geq 1}|S_n|^{2p}\right]<\infty$, we can divide it from both sides, which yields

$$\mathbb{E}\left[\sup_{n\geq 1}|S_n|^{2p}\right]^{\frac{1}{p}} \leq \frac{p}{p-1}\mathbb{E}\left[S^{2p}\right]^{\frac{1}{p}} \quad \blacksquare \tag{8.125}$$

Proof. (4) This is a direct result from (3). Suppose $S \in \mathcal{L}^q$ for some $q \in (2, \infty)$, let $p := \frac{q}{2} \in (1, \infty)$.

$$\mathbb{E}\left[\sup_{n>1}|S_n|^q\right]^{\frac{2}{q}} \le \frac{q}{q-2}\mathbb{E}\left[S^q\right]^{\frac{2}{q}} < \infty \tag{8.126}$$

So $\sup_{n\geq 1} |S_n| \in \mathcal{L}^q$, S_n is bounded, thus in \mathcal{L}^q for all $n\geq 1$.

8.5 Martingale

Problem 1. Let $\{\mu_n : n \geq 1\}$ and $\{\nu_n : n \geq 1\}$ be two sequences of probability measures on some measurable space (S, Σ) . Assume that for each $n \geq 1$, μ_n is absolutely continuous with respect to ν_n and denote the Radon-Nikodym derivative

$$Y_n := \frac{d\mu_n}{d\nu_n} \tag{8.127}$$

Set $\Omega := S \times S \times ...$, let \mathcal{F} be sigma algebra generated by cylinder sets, i.e

$$\mathcal{F} := \sigma \left(\left\{ \prod_{n \ge 1} F_n : F_n \subseteq S, F_n = S \text{ for all but finitely many n} \right\} \right)$$
 (8.128)

Let \mathbb{P} be the prob measure on (Ω, \mathcal{F}) given by $\mathbb{P} = \bigotimes_{n \geq 1} \mu_n$, \mathbb{Q} is product measure corresponding to ν , $\mathbb{Q} = \bigotimes_{n \geq 1} \nu_n$.

- 1. Define $\mathbb{P}_n := \bigotimes_{j=1}^n \mu_j$, $\mathbb{Q}_n := \bigotimes_{j=1}^n \nu_j$, show \mathbb{P}_n is absolutely continous wrt \mathbb{Q}_n , (i.e. $\mathbb{Q}_n(A) = 0 \Rightarrow \mathbb{P}_n(A) = 0$). Further show that if define $X_n(w) := \prod_{j=1}^n Y_j(w_j)$, then $X_n = \frac{d\mathbb{P}_n}{d\mathbb{Q}_n}$ is R-N derivative of \mathbb{P}_n wrt \mathbb{Q}_n .
- 2. Let $X_0 = 1$. Show $\{X_n : n \ge 0\}$ is a martingale wrt natural filtration associated with $\{X_n : n \ge 0\}$; and $\lim_{n \to \infty} X_n$ exists $\mathbb{Q} a.s.$
- 3. Show $\mathbb{P}(X > 0)$ is either 0 or 1.
- 4. Show either \mathbb{P} , \mathbb{Q} are continuous wrt to each other, or they are entirely singular wrt each other.

Proof. (1) We first show that $\mu \ll \nu$, $\mu' \ll \nu' \Rightarrow \mu \times \mu' \ll \nu \times \nu'$. For any two pairs of measures

For $A \in S \times S'$, given $(\nu \times \nu')(A) = 0$, we want to show $(\mu \times \mu')(A) = 0$. For $w \in S, w' \in S'$, define

$$I^{\mathbb{I}_{A}}(\bar{w}) := \int_{S'} \mathbb{I}_{A}(\bar{w}, w') \mu'(dx) = \mu'(\{w' \in S' : (\bar{w}, w') \in A\}) := \mu'(A'(\bar{w}))$$

$$J^{\mathbb{I}_{A}}(\bar{w}) := \int_{S'} \mathbb{I}_{A}(\bar{w}, w') \nu'(dx) = \nu'(\{w' \in S' : (\bar{w}, w') \in A\}) := \nu'(A'(\bar{w}))$$

$$(8.129)$$

Since all μ, ν 's are probability measures (finite), then by (**Fubini**),

$$(\nu \times \nu')(A) := \int_{S} J^{\mathbb{I}_{A}}(w)\nu(dw) = 0 \quad (\triangle)$$
$$(\mu \times \mu')(A) := \int_{S} I^{\mathbb{I}_{A}}(w)\mu(dw)$$
(8.130)

By (Δ) , $J^{\mathbb{T}_A}(w) = 0$ a.s. w, i.e. $\nu'(A'(\bar{w})) = 0$ a.s. \bar{w} . Define $O_{\nu} := \{w \in S : \nu'(A'(w)) = 0\}$, then $\nu(O_{\nu}) = 1$. By $\mu' \ll \nu'$, $O_{\nu} \subseteq O_{\mu} := \{w \in S : \mu'(A'(w)) = 0\}$, hence $\mu(O_{\mu}) = 1$;

 $\mu(S \setminus O_{\mu}) = 0$; in another word $I^{\mathbb{I}_A}(w) = 0$ a.s. w. Therefore

$$(\mu \times \mu')(A) := \int_{S} I^{\mathbb{I}_{A}}(w)\mu(dw)$$

$$= \left(\int_{O_{\mu}} + \int_{S \setminus O_{\mu}}\right) I^{\mathbb{I}_{A}}(w)\mu(dw)$$

$$\leq 0 + 1 \cdot \mu(S \setminus O_{\mu}) = 0$$

$$(8.131)$$

Now take $\mu, \mu' = \mu_1, \mu_2 \Rightarrow \mu_1 \times \mu_2 \ll \nu_1 \times \nu_2$.

Then take $\mu := \mu_1 \times \mu_2, \mu' = \mu_3 \Rightarrow \mu_1 \times \mu_2 \times \mu_3 \ll \nu_1 \times \nu_2 \times \nu_3$. Do this recursively, finally we conclude that for finite n,

$$\mathbb{P}_n := \bigotimes_{j=1}^n \mu_j \ll \bigotimes_{j=1}^n \nu_j =: \mathbb{Q}_n \quad \blacksquare \tag{8.132}$$

By definition, for $A_n \in S$, $\mu_n(A_n) = \mathbb{E}^{\nu_n} [Y_n \mathbb{1}_{A_n}]$. Define $X_n(w) := \prod_{j=1}^n Y_j(w_j)$ for $w \in S^n =: \Omega$, consider measurable $A := A_1 \times ... \times A_n \subseteq \Omega$,

$$\mathbb{E}^{\mathbb{Q}_{n}}\left[X_{n}(w)\mathbb{1}_{A}(w)\right] = \mathbb{E}^{\mathbb{Q}_{n}}\left[\prod_{j=1}^{n}Y_{j}(w_{j})\prod_{j=1}^{n}\mathbb{1}_{A_{j}}(w_{j})\right]$$

$$= \int \cdots \int_{S^{n}} \left(\prod_{j=1}^{n}Y_{j}(w_{j})\mathbb{1}_{A_{j}}(w_{j})\right) d\mathbb{Q}_{n}$$

$$= \int \cdots \int_{S^{n-1}} \left(\prod_{j=1}^{n-1}Y_{j}(w_{j})\mathbb{1}_{A_{j}}(w_{j})\left(\int_{A_{n}}Y_{n}(w_{n})d\nu_{n}\right) d\mathbb{Q}_{n-1}\right)$$

$$= \int \cdots \int_{S^{n}} \left(\prod_{j=1}^{n-1}Y_{j}(w_{j})\mathbb{1}_{A_{j}}(w_{j})\left(\int_{S}\mathbb{1}_{A_{n}}(w_{n})d\mu_{n}\right) d\mathbb{Q}_{n-1}\right)$$

$$= \dots = \int \cdots \int_{S^{n}} \left(\prod_{j=1}^{n}\mathbb{1}_{A_{j}}(w_{j})\right) d\bigotimes_{j\geq 1}^{n} \mu_{j}$$

$$= \int \cdots \int_{S^{n}}\mathbb{1}_{A}(w_{1}, \dots, w_{n}) d\bigotimes_{j\geq 1}^{n} \mu_{j}$$

$$= \int_{\Omega}\mathbb{1}_{A}(w)d\mathbb{P}_{n} = \mathbb{P}_{n}(A)$$

$$(8.133)$$

So by definition of R-N derivative, at every $w \in \Omega$, $\frac{d\mathbb{P}_n}{d\mathbb{Q}_n}(w) := X_n(w)$.

(2) In filtered space $(\Omega, \mathcal{F}, \{\mathcal{F}_n := \sigma(X_0, X_1, ..., X_n) : n \geq 0\}, \mathbb{Q})$, clearly Y_{n+1} is independent wrt \mathcal{F}_n for all $n \geq 0$ and $X_n \in m\mathcal{F}_n$. Now consider

$$\mathbb{E}^{\mathbb{Q}}\left[X_{n+1}|\mathcal{F}_{n}\right] = \mathbb{E}^{\mathbb{Q}}\left[Y_{n+1}\prod_{k=1}^{n}Y_{k}\middle|\mathcal{F}_{n}\right]$$

$$= X_{n}\mathbb{E}^{\mathbb{Q}}\left[Y_{n+1}\cdot 1\right] = X_{n}\mathbb{E}^{\mathbb{Q}}\left[Y_{n+1}\cdot 1_{S}\right]$$

$$= X_{n}\mathbb{P}\left(w_{n+1}\in S\right)$$

$$= X_{n}\mu_{n+1}(S) = X_{n}$$

$$(8.134)$$

Since μ_n is a probability measure, hence positive. For any $w \in S$, $0 \le \mu_n(\{w\}) = \mathbb{E}^{\nu_n}[Y_n; \{w\}] = Y_n(w)$. So $Y_n \ge 0$ everywhere for all $n \ge 1$. So $X_n = \prod_{k=1}^n Y_k \ge 0$ everywhere too.

There are two cases.

- · First, if $\exists Y_m = 0 \ a.s$ for some m, then clearly $X_n = 0$ \mathbb{Q} -as for all $n \geq m$. We can just define $X_n \xrightarrow{a.s.} X := 0$.
- · Second, if the first case does not happen, then $\{X_n : n \geq 0\}$ is \mathbb{Q} -martingale. Hence for any $n \geq 1$, $\mathbb{E}^{\mathbb{Q}}[X_n] = \mathbb{E}^{\mathbb{Q}}[X_0] = 1 < \infty$, so $\{X_n\}$ is uniformly integrable. By $(\mathbf{MCT2}) \Rightarrow \exists X \in \mathcal{L}^1$, such that $X_n \xrightarrow{a.s.} X$, $X_n \xrightarrow{\mathcal{L}^1} X$.

In both cases, X exists \mathbb{Q} -a.s. \blacksquare .

(3) In $(\Omega, \mathcal{F}, \{\mathcal{F}_n := \sigma(X_0, X_1, ..., X_n) : n \ge 0\}, \mathbb{P})$, by definition,

$$X := \lim_{n \to \infty} X_n = \prod_{n > 1} Y_n \tag{8.135}$$

Note that $Y_n = \frac{X_n}{X_{n-1}}$, for all $n \ge 1$ if everything is positive. Hence for any $m \ge 1$, X can be regarded as

$$X = X_m \prod_{n \ge m+1} Y_n = \begin{cases} X_m \prod_{n \ge m+1} \frac{X_n}{X_{n-1}} & \text{If } X_n > 0 \ \forall n \ge m \\ 0 & \text{If } X_n = 0 \ \exists n \ge m \end{cases} \in m\sigma(X_m, X_{m+1}, \dots)$$
(8.136)

So $\forall m \geq 1$:

$${X > 0} \in \sigma(X_m, X_{m+1}, ...)$$
 (8.137)

i.e.

$$\{X > 0\} \in \bigcap_{m > 1} \sigma(X_m, X_{m+1}, ...) =: \mathcal{T}_{X_n}$$
 (8.138)

 $\{X > 0\}$ is an event that is a member in the tail sigma algebra associated with $\{X_n\}$. By (**Kolmogorov 0-1 Law**), $\mathbb{P}(X > 0) = 0$ or 1.

(4) Part-1. Define

$$\mathcal{I} = \left\{ F, F \in \bigcup_{n > 1} \mathcal{F}_n \right\} \tag{8.139}$$

Then \mathcal{I} is a pi system. Because $\forall F_i \in \mathcal{F}_i, F_j \in \mathcal{F}_j$, we have $(F_i \cap F_j) \in \mathcal{F}_{i \vee j} \subseteq \mathcal{I}$. Moreover, \mathcal{F} is generated by \mathcal{I} , which is clear since $\sigma(\mathcal{I}) = \bigvee_{n \geq 1} \mathcal{F}_n =: \mathcal{F}$. Now assume $\mathbb{Q}(X > 0) = 1$, i.e. case two in (2), where $\{X_n : n \geq 0\}$ is a \mathbb{Q} -martingale.

For any $n \geq 1$, any $A \in \mathcal{F}_n$,

$$\mathbb{P}(A) = \mathbb{E}^{\mathbb{Q}} [X_n; A] = \mathbb{E}^{\mathbb{Q}} [\mathbb{E}^{\mathbb{Q}} [X_{n+1} | \mathcal{F}_n]; A]$$

$$= \mathbb{E}^{\mathbb{Q}} [X_{n+1}; A] = \mathbb{E}^{\mathbb{Q}} [\mathbb{E}^{\mathbb{Q}} [X_{n+2} | \mathcal{F}_{n+1}]; A] = \dots$$

$$= \mathbb{E}^{\mathbb{Q}} [X; A]$$
(8.140)

I.e. two measures $X\mathbb{Q} = \mathbb{P}$ on all $A \in \mathcal{F}_n$. This is true for all $n \geq 1$. Hence $X\mathbb{Q} = \mathbb{P}$ for $A \in \mathcal{I}$. By extension theorem, finally we know $X\mathbb{Q} = \mathbb{P}$ on

 $F \in \mathcal{F} = \sigma(\mathcal{I}).$ So, by definition, $\frac{d\mathbb{P}}{d\mathbb{Q}} := X$, so $\mathbb{P} \ll \mathbb{Q}$.

Part-2. Since $\nu_n \ll \mu_n$ is also assumed to be true, we have $d\mu_n/d\nu_n = 1/Y_n$. We can also show $\mathbb{Q}_n \ll \mathbb{P}_n$ by exactly same argument as in (1). Similarly, we construct the reverse R-N derivative

$$\frac{d\mathbb{Q}_n}{d\mathbb{P}_n} := \frac{1}{X_n} \tag{8.141}$$

as we done in (1). Now consider

$$\mathbb{E}^{\mathbb{P}}\left[\frac{1}{X_{n+1}}\middle|\mathcal{F}_{n}\right] = \mathbb{E}^{\mathbb{P}}\left[\frac{1}{Y_{n+1}}\prod_{k=1}^{n}\frac{1}{Y_{k}}\middle|\mathcal{F}_{n}\right]$$

$$= \frac{1}{X_{n}}\mathbb{E}^{\mathbb{P}}\left[\frac{1}{Y_{n+1}}\cdot 1\right] = \frac{1}{X_{n}}\mathbb{E}^{\mathbb{P}}\left[\frac{1}{Y_{n+1}}\cdot \mathbb{1}_{S}\right]$$

$$= \frac{1}{X_{n}}\mathbb{Q}\left(w_{n+1}\in S\right)$$

$$= \frac{1}{X_{n}}\nu_{n+1}(S) = \frac{1}{X_{n}}$$
(8.142)

We have already shown that $X_n, Y_n \geq 0$ everywhere for all $n \geq 1$. By same argument in (2) there are also two cases in reverse direction. Define $Z_n := 1/X_n$:

- · First, if $\exists Y_m = 0 \ \nu_m$ -as for some m, then $1/Y_m = \infty \ \mu_m$ -as. Clearly $Z_n = \infty \ \mathbb{P}$ -as for all $n \geq m$. We can define $Z_n \xrightarrow{a.s.} Z := \infty$.
- · Second, if the first case does not happen, then $\{Z_n : n \geq 0\}$ is \mathbb{P} martingale. Hence for any $n \geq 1$, $\mathbb{E}^{\mathbb{P}}[Z_n] = \mathbb{E}^{\mathbb{P}}[Z_0] = 1 < \infty$. Clearly $\{Z_n\}$ is uniformly integrable. By $(\mathbf{MCT2}) \Rightarrow \exists Z \in \mathcal{L}^1$, such that $Z_n \xrightarrow{a.s.} X$, $Z_n \xrightarrow{\mathcal{L}^1} Z$.

Now assume $\mathbb{Q}(X > 0) = 1$, then $Z_n = 1/X_n < \infty$ for all $n \geq 1$. $\mathbb{E}^{\mathbb{P}}[Z_n]$ exists. For all $A \in \mathcal{F}_n$, by same argument as part-1:

$$\mathbb{Q}(A) = \mathbb{E}^{\mathbb{P}} [Z; A] \tag{8.143}$$

By same pi-system argument, $\mathbb{ZP} = \mathbb{Q}$ on $F \in \mathcal{F} = \sigma(\mathcal{I})$. So, by definition, $\frac{d\mathbb{Q}}{d\mathbb{P}} := \mathbb{Z}$, so $\mathbb{Q} \ll \mathbb{P}$.

In summary:

- If X>0 Q-as, then $\frac{1}{X}<\infty$ P-as. $X=d\mathbb{P}/d\mathbb{Q}; \frac{1}{X}=d\mathbb{Q}/d\mathbb{Q}$, which implies $\mathbb{Q}\ll\mathbb{P}$ and $\mathbb{P}\ll\mathbb{Q}$.
- If X = 0 Q-as, $\mathbb{Q}(X > 0) = 0$. But $\mathbb{P}(X > 0) = \mathbb{E}^{\mathbb{Q}}[X] = 1$.

There are only these two cases since $X \geq 0$. Dichotomous states.

Problem 2. $X, Y \text{ RV}, \mathcal{G}$ is sub sigma algebra, show

- 1. If $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$, then $\text{Var}\left[\mathbb{E}\left[X|\mathcal{G}\right]\right] \leq \text{Var}\left[X\right]$.
- 2. If X is integrable, Y is bounded, then

$$\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]Y\right] = \mathbb{E}\left[X\mathbb{E}\left[Y|\mathcal{G}\right]\right] \tag{8.144}$$

3. If $X, Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$, $\mathbb{E}[X^2|\mathcal{G}] = Y^2$, $\mathbb{E}[X|\mathcal{G}] = Y$, then X = Y a.s.

Proof. (1)

$$\operatorname{Var}\left[\mathbb{E}\left[X|\mathcal{G}\right]\right] = \mathbb{E}\left[\mathbb{E}^{2}\left[X|\mathcal{G}\right]\right] - \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]\right]^{2} \quad (\triangle) \tag{8.145}$$

By (**cJensen**), x^2 is convex, so $\mathbb{E}^2[X|\mathcal{G}] \leq \mathbb{E}[X^2|\mathcal{G}]$, by monotonicity of integral, and also note that $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[X]$:

$$(\triangle) \le \mathbb{E}\left[\mathbb{E}\left[X^2 | \mathcal{G}\right]\right] - \mathbb{E}\left[X\right]^2 = \mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right]^2 = \operatorname{Var}\left[X\right] \quad \blacksquare \tag{8.146}$$

(2) For $A \in \mathcal{G}$, X integrable, let $Z := \mathbb{1}_A$, then

$$\mathbb{E}[XZ] = \int_{A} X d\mathbb{P} = \int_{A} \mathbb{E}[X|\mathcal{G}] d\mathbb{P} = \mathbb{E}[\mathbb{E}[X|\mathcal{G}] Z]$$
(8.147)

Denote equility $\mathbb{E}[XZ] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]Z]$ as (†).

By linearity, (†) holds for $Z \in S\mathcal{G}^+$.

By (MON), (†) holds for $Z \in m\mathcal{G}^+$.

Now suppose $Z \in b\mathcal{G}$, i.e. $\exists \ 0 < M < \infty, \ |Z| \leq M$. Write $Z = Z^+ - Z^-$, then both positive and negative parts should be bounded by M, i.e. $Z^{\pm} \in b\mathcal{G}^+$. Hence for Z^{\pm} :

$$\mathbb{E}\left[XZ^{+}\right] + \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]Z^{-}\right] = \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]Z^{+}\right] + \mathbb{E}\left[XZ^{-}\right] \tag{8.148}$$

 $\mathbb{E}[XZ^{\pm}] \leq M\mathbb{E}[X] < \infty$ since $X \in \mathcal{L}^1$, all integrals involved in the formula above are finite. By linearity:

$$\mathbb{E}\left[XZ^{+}\right] - \mathbb{E}\left[XZ^{-}\right] = \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]Z^{+}\right] - \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]Z^{-}\right] \tag{8.149}$$

i.e. $\mathbb{E}[XZ] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]Z]$ for $X \in \mathcal{L}^1$, $Z \in b\mathcal{G}$. Now for any Y bounded, $Z := \mathbb{E}[Y|\mathcal{G}] \in m\mathcal{G}$ and is bounded. Hence $\mathbb{E}[X\mathbb{E}[Y|\mathcal{G}]] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]\mathbb{E}[Y|\mathcal{G}]]$.

• Now consider $\mathbb{E}[YW] = \mathbb{E}[\mathbb{E}[Y|\mathcal{G}]W]$ (\triangle) for Y bounded, |Y| < M.

Again (\triangle) holds for $W := \mathbb{1}_A$, $A \in \mathcal{G}$.

By linearity, (\triangle) holds for $W \in S\mathcal{G}^+$.

By (MON), (\triangle) holds for $W \in m\mathcal{G}^+$.

For $W \in \mathcal{L}^1$, write $W = W^+ - W^-$, for W^{\pm} :

$$\mathbb{E}\left[YW^{+}\right] + \mathbb{E}\left[\mathbb{E}\left[Y|\mathcal{G}\right]W^{-}\right] = \mathbb{E}\left[\mathbb{E}\left[Y|\mathcal{G}\right]W^{+}\right] + \mathbb{E}\left[YW^{-}\right] \tag{8.150}$$

 $\mathbb{E}[YW^{\pm}] \leq M\mathbb{E}[W^{\pm}] < \infty$ all integrals involved in the formula above are finite. By linearity:

$$\mathbb{E}\left[YW^{+}\right] - \mathbb{E}\left[YW^{-}\right] = \mathbb{E}\left[\mathbb{E}\left[Y|\mathcal{G}\right]W^{+}\right] - \mathbb{E}\left[\mathbb{E}\left[Y|\mathcal{G}\right]W^{-}\right] \tag{8.151}$$

i.e. $\mathbb{E}[YW] = \mathbb{E}[\mathbb{E}[Y|\mathcal{G}]W]$ for $W \in m\mathcal{G}, W \in \mathcal{L}^1$, Y bounded. Let $W := \mathbb{E}[X|\mathcal{G}]$, we have $\mathbb{E}[Y\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[\mathbb{E}[Y|\mathcal{G}]\mathbb{E}[X|\mathcal{G}]]$. We conclude that

$$\mathbb{E}\left[Y\mathbb{E}\left[X|\mathcal{G}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[Y|\mathcal{G}\right]\mathbb{E}\left[X|\mathcal{G}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]Y\right] \tag{8.152}$$

for $X \in \mathcal{L}^1$, Y bounded.

(3) by hypothesis

$$\mathbb{E}\left[(X-Y)^{2}\right] = \mathbb{E}\left[X^{2}\right] + \mathbb{E}\left[Y^{2}\right] - 2\mathbb{E}\left[XY\right]$$

$$= \mathbb{E}\left[X^{2}\right] + \mathbb{E}\left[Y^{2}\right] - 2\mathbb{E}\left[\mathbb{E}\left[XY|\mathcal{G}\right]\right]$$

$$= \mathbb{E}\left[X^{2}\right] + \mathbb{E}\left[Y^{2}\right] - 2\mathbb{E}\left[Y\mathbb{E}\left[X|\mathcal{G}\right]\right]$$

$$= \mathbb{E}\left[X^{2}\right] - \mathbb{E}\left[Y^{2}\right] = 0$$

$$(8.153)$$

That implies $(X - Y)^2 = 0$ a.s., hence X = Y a.s.

Problem 3. X, Y RVs with joint distribution being bivariate centered Gaussian N(0, C), with mean $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, covariance matrix $C = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$, where a, b > 0, $ab - c^2 > 0$. That is, the joint density of (X, Y) is given by

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sqrt{\det C}} \exp\left(-\frac{1}{2}\mathbf{x}^T C^{-1}\mathbf{x}\right)$$
(8.154)

- 1. Determine $\mathbb{E}[X|Y]$.
- 2. Determine $\mathbb{E}\left[\exp\left(X-a/2\right)|Y\right]$.

Proof. (1) Define $Z:=X-\frac{c}{b}\cdot Y$, by linearity Z is still a centerred Gaussian, $\mathbb{E}\left[Z\right]=0$. We have

$$\operatorname{Cov}\left[Z,Y\right] = \operatorname{Cov}\left[X,Y\right] - \frac{c}{b} \cdot \operatorname{Var}\left[Y\right] = c - \frac{c}{b} \cdot b = 0 \tag{8.155}$$

Moreover, since $\operatorname{Cov}[Z,Y] = \mathbb{E}[ZY] - \mathbb{E}[Z]\mathbb{E}[Y] = \mathbb{E}[ZY] = 0$, by result in hint, since Z,Y has joint bivariate centerred Gaussian distribution $\Rightarrow Z,Y$ independent. Hence we can write

$$\mathbb{E}[X|Y] = \mathbb{E}\left[Z + \frac{c}{b} \cdot Y|Y\right] = \mathbb{E}[Z|Y] + \mathbb{E}\left[\frac{c}{b} \cdot Y|Y\right]$$
$$= \mathbb{E}[Z] + \frac{c}{b} \cdot Y = \frac{c}{b} \cdot Y \quad \blacksquare$$
(8.156)

(2) Still using $Z = X - \frac{c}{b} \cdot Y$, $\mathbb{E}[Z] = 0$, $\operatorname{Var}[Z] = a + \frac{c^2}{b^2} \cdot b - 2 \cdot \frac{c}{b} \cdot c = a - \frac{c^2}{b}$. Therefore, $\exp(Z) \sim \ln \mathcal{N}(0, a - \frac{c^2}{b})$, by wikipedia,

$$\mathbb{E}\left[\exp(Z)\right] = \exp\left(\mu + \frac{1}{2}\sigma^2\right) = \exp\left(\frac{a}{2} + \frac{c^2}{2b}\right) \tag{8.157}$$

We can write

$$\mathbb{E}\left[\exp\left(X - \frac{a}{2}\right)|Y\right] = \frac{1}{\exp\left(\frac{a}{2}\right)} \mathbb{E}\left[\exp\left(Z + \frac{c}{b} \cdot Y\right)|Y\right]$$

$$= \frac{1}{\exp\left(\frac{a}{2}\right)} \mathbb{E}\left[\exp\left(Z\right) \exp\left(\frac{c}{b} \cdot Y\right)|Y\right]$$

$$= \frac{\mathbb{E}\left[\exp(Z)\right]}{\exp\left(\frac{a}{2}\right)} \exp\left(\frac{c}{b} \cdot Y\right)$$

$$= \exp\left(\frac{cY}{b} + \frac{c^2}{2b}\right) \quad \blacksquare$$
(8.158)

Problem 4. T is a stopping time such that for some $N \in \mathbb{N}$, and some $\epsilon > 0$, we have, for every n:

$$\mathbb{P}\left(T \le n + N | \mathcal{F}_n\right) > \epsilon, \quad a.s. \tag{8.159}$$

Show by induction using $\mathbb{P}(T > kN) = \mathbb{P}(T > kN; T > (k-1)N)$ that for k = 1, 2, 3...

$$\mathbb{P}\left(T > kN\right) \le (1 - \epsilon)^k \tag{8.160}$$

Show that $\mathbb{E}[T] < \infty$.

Proof. Since $\mathbb{P}(T \leq n + N | \mathcal{F}_n) > \epsilon$, for all $A \in \mathcal{F}_n$, we have

$$\int_{A} \mathbb{1}_{\{T \le n+N\}} d\mathbb{P} \ge \int_{A} \epsilon d\mathbb{P} \tag{8.161}$$

Since T is a stopping time, clearly $\{T > n\} \in \mathcal{F}_n$, so

$$\mathbb{P}\left(n < T \le n + N\right) = \int_{\{T > n\}} \mathbb{1}_{\{T \le n + N\}} d\mathbb{P} \ge \int_{\{T > n\}} \epsilon d\mathbb{P} = \epsilon \mathbb{P}\left(T > n\right)$$
(8.162)

Hence, for every n,

$$\mathbb{P}(T > n + N) = \mathbb{P}(n < T) - \mathbb{P}(n < T \le n + N)$$

$$< (1 - \epsilon) \cdot \mathbb{P}(n < T)$$
(8.163)

Pick n := (k-1)N, we have

$$\mathbb{P}(T > kN) < (1 - \epsilon) \cdot \mathbb{P}(T > (k - 1)N) \tag{8.164}$$

Note that $\mathbb{P}(T > 0) = 1$, hence for the basic case (k = 1) we have $\mathbb{P}(T > N) \le (1 - \epsilon) \cdot 1$. Then for any k > 1, proceed recursively for 2, 3, ..., k, we have $\mathbb{P}(T > kN) \le (1 - \epsilon)^k$ as desired. Now we bound T by:

$$T \le \sum_{k=0}^{\infty} (k+1)N \cdot \mathbb{1}_{\{(kN < T \le (k+1)N\}} \le N \sum_{k=0}^{\infty} (k+1) \cdot \mathbb{1}_{\{(kN < T\}}$$
 (8.165)

Take expectation both sides

$$\mathbb{E}\left[T\right] \leq \mathbb{E}\left[N\sum_{k=0}^{\infty}(k+1)\cdot\mathbb{1}_{\{(kN< T)\}}\right]$$

$$= N\sum_{k=0}^{\infty}(k+1)\cdot\mathbb{P}\left(kN < T\right) = N\sum_{k=0}^{\infty}(k+1)(1-\epsilon)^{k}$$
(8.166)

clearly, for $0 < \epsilon < 1$, the summation above converges, hence $\mathbb{E}[T] < \infty$ a.s..

Problem 5. Let $\{X_n : n \ge 0\}$ be i.i.d RVs with common distribution $\mathbb{P}(X_n = 1) = p$, $\mathbb{P}(X_n = -1) = q = 1 - p$, $0 . Define <math>S_0 := 0$, S_n partial sum. Then say $\{S_n : n \ge 1\}$ is a (p-q) random walk on \mathbb{Z} . In particular if p = q = 0.5, $\{S_n : n \ge 1\}$ is a symmetric random walk. Given two positive integers a, b, consider

$$\tau := \inf\{n \ge 1 : S_n = -a \text{ or } S_n = b\}$$
(8.167)

- 1. Show that $\mathbb{E}[\tau] < \infty$.
- 2. Assume $p \neq 1/2$, compute $\mathbb{P}(S_{\tau} = -a)$.
- 3. Assume $p \neq 1/2$, compute $\mathbb{E}[\tau]$.
- 4. Assume p = 1/2, a = b, compute $\mathbb{E}[e^{t\tau}]$ for $t \leq 0$.

Proof. (1) Since a, b finite, the walking band has finite width $a + b < \infty$. Consider any staring time position $n \ge 0$, $S_n \in (-a, b)$, we have $\{\tau \le a + b + n\} \supseteq \bigcap_{k=n+1}^{n+a+b} \{X_k = 1\}$. That is, S_τ must hits b before $\tau = (n+a+b)$ if it takes (a+b) consecutive positive steps from (n+1). Hence for all $n \ge 1$, let $\{\mathcal{F}_n : n \ge 0\}$ be natural filtration associated with $\{X_n : n \ge 0\}$,

$$\mathbb{P}\left(\tau \le a + b + n | \mathcal{F}_n\right) \ge p^{a+b} > 0 \tag{8.168}$$

Clearly, $\{\tau \leq a+b+n\} \in \mathcal{F}_n$. Apply problem 4's conclusion, with constant $N := a+b, \epsilon := p^{a+b}$, we conclude that $\mathbb{E}[\tau] < \infty$ a.s..

(2) Stay in the same filtered space for the rest of the proof, i.e. $(\Omega, \mathcal{F}, \{\mathcal{F}_n : n \geq 0\}, \mathbb{P})$, where $\mathcal{F}_n := \sigma(X_0, X_1, ..., X_n)$. Clearly $S_n \in \mathcal{F}_n$. As hint suggests, consider $(\frac{q}{p})^{S_n} (\in m\mathcal{F}_n)$. Noticing that $(\frac{q}{p})^{X_{n+1}}$ is independent wrt \mathcal{F}_n , we have

$$\mathbb{E}\left[\left(\frac{q}{p}\right)^{S_{n+1}}\middle|\mathcal{F}_{n}\right] = \mathbb{E}\left[\left(\frac{q}{p}\right)^{S_{n}}\left(\frac{q}{p}^{X_{n+1}}\right)\middle|\mathcal{F}_{n}\right]$$

$$= \left(\frac{q}{p}\right)^{S_{n}}\mathbb{E}\left[\left(\frac{q}{p}\right)^{X_{n+1}}\right]$$

$$= \left(\frac{q}{p}\right)^{S_{n}}\mathbb{E}\left[\frac{q}{p}\cdot\mathbb{1}_{\{X_{n+1}=1\}} + \frac{p}{q}\cdot\mathbb{1}_{\{X_{n+1}=-1\}}\right]$$

$$= \left(\frac{q}{p}\right)^{S_{n}}\cdot(p+q) = \left(\frac{q}{p}\right)^{S_{n}}$$

$$(8.169)$$

Hence, define $Z_n := \left(\frac{q}{p}\right)^{S_n}$, $\{Z_n : n \geq 0\}$ is a martingale. Consider $|Z_{n+1} - Z_n|$:

$$|Z_{n+1} - Z_n| = \left| \left(\frac{q}{p} \right)^{S_n} \left[\left(\frac{q}{p} \right)^{X_{n+1}} - 1 \right] \right|$$

$$\leq \left\{ \left(\frac{q}{p} \right)^b \left(\frac{q}{p} + 1 \right), & \text{If } q \geq p \\ \left(\frac{p}{q} \right)^a \left(\frac{p}{q} + 1 \right), & \text{If } q < p. \right.$$

$$\leq \max \left\{ \left(\frac{q}{p} \right)^b \left(\frac{q}{p} + 1 \right), \left(\frac{p}{q} \right)^a \left(\frac{p}{q} + 1 \right) \right\} < \infty$$

$$(8.170)$$

Also by (1)'s result, $\mathbb{E}[\tau] < \infty$. Apply (**Hunt**'s, case-3): $\mathbb{E}[Z_{\tau}] = \mathbb{E}[Z_0] = 1$. Now since $\mathbb{P}(S_{\tau} = -a) + \mathbb{P}(S_{\tau} = b) = 1$, and

$$1 = \mathbb{E}\left[Z_{\tau}\right] = \left(\frac{q}{p}\right)^{-a} \cdot \mathbb{P}\left(S_{\tau} = -a\right) + \left(\frac{q}{p}\right)^{b} \cdot \mathbb{P}\left(S_{\tau} = b\right) \tag{8.171}$$

we get

$$\mathbb{P}(S_{\tau} = -a) = \frac{p^{b}q^{a} - q^{a}q^{b}}{p^{a}p^{b} - q^{a}q^{b}} \quad q \neq p \quad \blacksquare$$
 (8.172)

(3) Consider

$$\mathbb{E}[S_{n+1}|\mathcal{F}_n] = S_n + \mathbb{E}[X_{n+1}] = S_n + p - q \tag{8.173}$$

Substract (p-q)(n+1) from both sides, we get

$$\mathbb{E}\left[S_{n+1} - (p-q)(n+1)|\mathcal{F}_n\right] = S_n - (p-q)n \tag{8.174}$$

Hence define $\{M_n : n \geq 0\} := \{S_n - (p-q)n : n \geq 0\}$, M_n is a martingale. Moreover, for any fixed $N \geq 0$, $(\tau \wedge N)$, $(\tau \wedge 0)$ are bounded stopping times. Apply (**Hunt**'s, case-1): $\mathbb{E}[M_{\tau \wedge N}] = \mathbb{E}[M_{\tau \wedge 0}] = \mathbb{E}[M_0] = 0$. Therefore for any fixed $N \geq 0$:

$$(p-q)\mathbb{E}\left[\tau \wedge N\right] = \mathbb{E}\left[S_{\tau \wedge N}\right]$$
$$= \mathbb{E}\left[S_{\tau}; \tau \leq N\right] + \mathbb{E}\left[S_{n}; \tau > N\right]$$
(8.175)

In which the first part $\mathbb{E}[S_{\tau}; \tau \leq N] = \mathbb{E}[S_{\tau} \cdot \mathbb{1}_{\{\tau \leq N\}}] \nearrow \text{(by MON)} \mathbb{E}[S_{\tau}].$ The second part $\mathbb{E}[S_n; \tau > N] \leq (a \vee b) \mathbb{P}(\tau > N) \xrightarrow{N \to \infty} 0.$ So we are allowed to take $N \to \infty$ on both sides,

$$\mathbb{E}\left[\tau\right] = \frac{1}{p-q} \mathbb{E}\left[S_{\tau}\right]$$

$$= \frac{1}{p-q} \left(-a \cdot \frac{q^{a}(p^{b}-q^{b})}{p^{a}p^{b}-q^{a}q^{b}} + b \cdot \frac{p^{b}(p^{a}-q^{a})}{p^{a}p^{b}-q^{a}q^{b}}\right)$$

$$= \frac{bp^{b}(p^{a}-q^{a}) - aq^{a}(p^{b}-q^{b})}{(p-q)(p^{a}p^{b}-q^{a}q^{b})} \quad \blacksquare$$
(8.176)

(4) For any fixed $r \in \mathbb{R}$, consider e^{rS_n} , clearly $e^{rS_n} \in m\mathcal{F}_n$.

$$\mathbb{E}\left[e^{rS_{n+1}}\middle|\mathcal{F}_{n}\right] = e^{rS_{n}}\mathbb{E}\left[e^{rX_{n+1}}\right] = e^{rS_{n}}\frac{e^{r} + e^{-r}}{2}$$
(8.177)

Divide both sides by $\cosh^{n+1} r$,

$$\mathbb{E}\left[e^{rS_{n+1}}\operatorname{sech}^{n+1}r\middle|\mathcal{F}_n\right] = e^{rS_n}\operatorname{sech}^n r \tag{8.178}$$

Hence $\{e^{rS_n} \operatorname{sech}^n r : n \geq 0\}$ is a martingale. Similar as (3), for any fixed $N \geq 0$, $\tau \wedge n$, $\tau \wedge 0$ are bounded stopping times. Apply (**Hunt**'s, case-1), we have

$$\mathbb{E}\left[e^{rS_{\tau\wedge N}}\operatorname{sech}^{\tau\wedge N}r\right] = \mathbb{E}\left[e^{rS_0}\operatorname{sech}^0r\right] = 1 \tag{8.179}$$

In LHS, for all $N > 0, r \in \mathbb{R}, r < \infty$, note that sech $r \leq 1$. We have followings:

e nave followings:

- $\cdot e^{rS_{\tau \wedge N}} \operatorname{sech}^{\tau \wedge N} r \xrightarrow{a.s.} e^{rS_{\tau}} \operatorname{sech}^{\tau} r.$
- · $e^{rS_{\tau \wedge N}} \operatorname{sech}^{\tau \wedge N} r \leq e^{rS_{\tau}}$ · 1. Moreover, by symmetry: $\mathbb{P}(S_{\tau} = \pm a) = \frac{1}{2}$, hence we can compute $\mathbb{E}\left[e^{rS_{\tau}}\right] = \frac{e^{ra} + e^{-ra}}{2} = \cosh ra < \infty$, i.e. $e^{rS_{\tau}} \in \mathcal{L}^1$.

Apply (**DOM**): $e^{rS_{\tau \wedge N}} \operatorname{sech}^{\tau \wedge N} r \xrightarrow{\mathcal{L}^1} e^{rS_{\tau}} \operatorname{sech}^{\tau} r$. Hence

$$1 = \mathbb{E}\left[e^{rS_{\tau}}\operatorname{sech}^{\tau}r\right]$$

$$= \mathbb{E}\left[e^{rS_{\tau}}\operatorname{sech}^{\tau}r; S_{\tau} = a\right] + \mathbb{E}\left[e^{rS_{\tau}}\operatorname{sech}^{\tau}r; S_{\tau} = -a\right]$$

$$= e^{ra}\mathbb{E}\left[\operatorname{sech}^{\tau}r; S_{\tau} = a\right] + e^{-ra}\mathbb{E}\left[\operatorname{sech}^{\tau}r; S_{\tau} = -a\right]$$

$$= \frac{e^{ra}}{2}\mathbb{E}\left[\operatorname{sech}^{\tau}r\right] + \frac{e^{-ra}}{2}\mathbb{E}\left[\operatorname{sech}^{\tau}r\right] \quad \text{(Since distribution of } S_{\tau} \text{ is symmetric)}$$

$$= \cosh(ra) \cdot \mathbb{E}\left[\operatorname{sech}^{\tau}r\right]$$

$$= \cosh(ra) \cdot \mathbb{E}\left[\operatorname{sech}^{\tau}r\right]$$

$$(8.180)$$

Change variable, denote $x := \operatorname{sech} r$, $r = \operatorname{arcsech} x = \log \left(\frac{1}{x} + \sqrt{\frac{1}{x^2} - 1}\right)$,

$$\operatorname{sech}(a\operatorname{arcsech} x) = \mathbb{E}[x^{\tau}]$$
 (8.181)

Hence for $t \leq 0$, $\mathbb{E}\left[e^{t\tau}\right] = \operatorname{sech}(a \cdot \operatorname{arcsech}(e^t))$.

Problem 6. Build a sequence $\{X_n : n \geq 1\}, X_n \in \mathcal{L}^1$, such that

$$\mathbb{E}\left[X_{n+1}|X_n\right] = X_n \text{ for all } n \ge 1, \text{ but } \mathbb{E}\left[X_{n+1}|\mathcal{F}_n\right] \ne X_n \text{ for } n \ge 2.$$
 (8.182)

Where $\mathcal{F}_n := \sigma(X_j : 1 \le j \le n)$

Proof. $Z_1, Z_2 \sim \mathcal{N}(0, 1)$, are two independent standard gaussians, we have $\mathbb{E}[Z_1] = 0$, $\mathbb{E}[Z_1^2] = 1$. Now consider $a(Z_1 + Z_2)$ and $b(Z_1 - Z_2)$ for any constant numbers $a, b < \infty$; these two are both gaussians, and has joint bavariate Gaussian distribution, moreover

$$\operatorname{Cov}\left[a(Z_1 + Z_2), b(Z_1 - Z_2)\right] = \mathbb{E}\left[ab(Z_1^2 - Z_2^2)\right] - ab\mathbb{E}\left[Z_1 + Z_2\right]\mathbb{E}\left[Z_1 - Z_2\right]$$
$$= ab(1 - 1) - 0 = 0$$
(8.183)

Hence $a(Z_1 + Z_2)$, $b(Z_1 - Z_2)$ are independent for any $a, b < \infty$. We construct $\{X_n : n \ge 1\}$ as follows

$$X_n = \begin{cases} 2^{\frac{n+1}{2}} \cdot Z_1, & \text{if n is odd} \\ 2^{\frac{n}{2}} \cdot (Z_1 - Z_2), & \text{if n is even} \end{cases}$$
 (8.184)

That is, $\{X_n : n \geq 1\} := \{2Z_1, 2(Z_1 - Z_2), 4Z_1, 4(Z_1 - Z_2), 8Z_1, 8(Z_1 - Z_2), ...\}$ $\mathcal{F}_2 = \sigma(2Z_1, 2(Z_1 - Z_2))$, then for any $n \geq 2$, $X_n \in m\mathcal{F}_2 \subseteq m\mathcal{F}_3 \subseteq ... \subseteq m\mathcal{F}_{n-1}$. (actually equal signs). Now check required properties of X, for $n \geq 2$:

$$\mathbb{E}\left[X_{n+1}\middle|\mathcal{F}_n\right] = X_{n+1} \neq X_n \tag{8.185}$$

For $n \ge 1$, n + 1 odd:

$$\mathbb{E}\left[X_{n+1}|X_n\right] = \mathbb{E}\left[2^{\frac{n+2}{2}}Z_1\Big|2^{\frac{n}{2}}(Z_1 - Z_2)\right]$$

$$= \mathbb{E}\left[2^{\frac{n}{2}}(Z_1 + Z_2) + 2^{\frac{n}{2}}(Z_1 - Z_2)\Big|2^{\frac{n}{2}}(Z_1 - Z_2)\right]$$

$$= \mathbb{E}\left[2^{\frac{n}{2}}(Z_1 + Z_2)\right] + \mathbb{E}\left[2^{\frac{n}{2}}(Z_1 - Z_2)\Big|2^{\frac{n}{2}}(Z_1 - Z_2)\right]$$

$$= 0 + 2^{\frac{n}{2}}(Z_1 - Z_2) = X_n$$
(8.186)

For $n \ge 1$, n + 1 even:

$$\mathbb{E}\left[X_{n+1}|X_n\right] = \mathbb{E}\left[2^{\frac{n+1}{2}}(Z_1 - Z_2) \left| 2^{\frac{n+1}{2}}Z_1\right]\right]$$

$$= \mathbb{E}\left[2^{\frac{n}{2}}Z_1 \left| 2^{\frac{n}{2}}Z_1\right] - \mathbb{E}\left[2^{\frac{n}{2}}Z_2\right]\right]$$

$$= 2^{\frac{n}{2}}Z_1 - 0 = X_n \quad \blacksquare$$
(8.187)

Problem 7. Given filtered space $(\Omega, \mathcal{F}, \{\mathcal{F}_n : n \geq 0\}, \mathbb{P})$, let $\{Y_n : n \geq 1\}$ adapted, such that $Y_n \in \mathcal{L}^2$, $\mathbb{E}[Y_n | \mathcal{F}_{n-1}] = 0$. Further assume that $\sum_{n \geq 1} \mathbb{E}[Y_n^2] / n^2 < \infty$. Define $X_0 := 0$, $X_n := \sum_{j=1}^n Y_j / j$, S_n be partial sum of Y_n .

- 1. Show that $\{X_n : n \ge 0\}$ is a martingale wrt $\{\mathcal{F}_n : n \ge 0\}$.
- 2. Based on (1) show that SLLN holds for sequence Y_n , i.e.

$$\frac{S_n}{n} \xrightarrow{a.s.} 0 \tag{8.188}$$

Proof. (1) Since $\{\mathcal{F}_n : n \geq 0\}$ is filtration, $\{Y_n : n \geq 1\}$ is adapted, we have $Y_n \in m\mathcal{F}_n$. Moreover, for all $1 \leq j \leq n$, $\mathcal{F}_j \subseteq \mathcal{F}_n$, hence $Y_j \in m\mathcal{F}_j \subseteq m\mathcal{F}_n$, $S_n \in m\mathcal{F}_n$, $X_n \in m\mathcal{F}_n$ are also adapted.

$$\mathbb{E}\left[X_{n+1}|\mathcal{F}_n\right] = \mathbb{E}\left[\sum_{j=1}^{n+1} \frac{Y_j}{j} \middle| \mathcal{F}_n\right]$$

$$= \mathbb{E}\left[\sum_{j=1}^{n} \frac{Y_j}{j} \middle| \mathcal{F}_n\right] + \mathbb{E}\left[\frac{Y_{n+1}}{n+1} \middle| \mathcal{F}_n\right] = X_n \quad \blacksquare$$
(8.189)

(2) We first calculte second moment of X_n ,

$$\mathbb{E}\left[X_{n}^{2}\right] = \mathbb{E}\left[\left(\sum_{j=1}^{n} \frac{Y_{j}}{j}\right)^{2}\right] = \mathbb{E}\left[\left(\sum_{j=1}^{n} \frac{Y_{j}^{2}}{j^{2}} + \sum_{i=1}^{n} \sum_{k=1, k \neq i}^{n} \frac{Y_{i}Y_{k}}{ik}\right)\right]$$

$$= \sum_{j=1}^{n} \frac{\mathbb{E}\left[Y_{j}^{2}\right]}{j^{2}} + \sum_{i=1}^{n} \sum_{k=1, k \neq i}^{n} \frac{\mathbb{E}\left[Y_{i}Y_{k}\right]}{ik}$$

$$= \sum_{j=1}^{n} \frac{\mathbb{E}\left[Y_{j}^{2}\right]}{j^{2}} + \sum_{i=1}^{n} \left(\sum_{k=1, k \leq i-1}^{n} \frac{\mathbb{E}\left[\mathbb{E}\left[Y_{i}Y_{k}|\mathcal{F}_{i-1}\right]\right]}{ik} + \sum_{k=1, i \leq k-1}^{n} \frac{\mathbb{E}\left[\mathbb{E}\left[Y_{i}Y_{k}|\mathcal{F}_{k-1}\right]\right]}{ik}\right)$$

$$(8.190)$$

Now look at $\mathbb{E}\left[\mathbb{E}\left[Y_{i}Y_{k}|\mathcal{F}_{i-1}\right]\right]$ in the first part (where $k \leq i-1$) in the second layer of the cross terms' summation. Clearly, $Y_{k} \in m\mathcal{F}_{k} \subseteq m\mathcal{F}_{i-1}$, so it can be taken out from inner conditional expectation, i.e.

$$\mathbb{E}\left[\mathbb{E}\left[Y_{i}Y_{k}|\mathcal{F}_{i-1}\right]\right] = \mathbb{E}\left[Y_{k}\mathbb{E}\left[Y_{i}|\mathcal{F}_{i-1}\right]\right] = \mathbb{E}\left[Y_{k}\cdot 0\right] = 0 \tag{8.191}$$

Same story for the second part (where $i \leq k-1$),

$$\mathbb{E}\left[\mathbb{E}\left[Y_i Y_k | \mathcal{F}_{k-1}\right]\right] = \mathbb{E}\left[Y_i \mathbb{E}\left[Y_k | \mathcal{F}_{k-1}\right]\right] = \mathbb{E}\left[Y_i \cdot 0\right] = 0 \tag{8.192}$$

Hence the cross terms are actually zero. That is $\mathbb{E}[X_n^2] = \sum_{j=1}^n \frac{\mathbb{E}[Y_j^2]}{j^2} < \infty$. We conclude that $\{X_n : n \geq 0\}$ is bounded by \mathcal{L}^2 .

By (MCT3), there exists $X \in \mathcal{L}^2$, such that $X_n \xrightarrow{a.s.} X$; $X_n \xrightarrow{\mathcal{L}^2} X$. Since $X \in \mathcal{L}^2$, |X| must be finite, so is X. That is to say:

$$X_n := \sum_{j=1}^n \frac{Y_j}{j} \xrightarrow{a.s.} X < \infty \tag{8.193}$$

By (Kronecker)'s lemma,

$$\frac{1}{n} \sum_{j=1}^{n} Y_n = \frac{S_n}{n} \xrightarrow{a.s.} 0 \quad \blacksquare \tag{8.194}$$

Problem 8. A branching process $\{Z_n : n \geq 0\}$ is constructed in following way. I.e., for a family $\{X_k^{(n)} : n, k \geq 1\}$ of i.i.d \mathbb{Z}^+ -valued RVs, define $Z_0 := 1$, then define recursively for $n \geq 0$,

$$Z_{n+1} := \sum_{k=1}^{Z_n} X_k^{(n+1)} \tag{8.195}$$

For any one of $X_k^{(n)}$, denoted by X, $\mu := \mathbb{E}[X] < \infty$, $0 < \sigma^2 := \operatorname{Var}[X] < \infty$. Show that $M_n := Z_n/\mu^n$ is a martingale wrt filtration $\mathcal{F}_n := \sigma(Z_0, Z_1, ..., Z_n)$. Further show that

$$\mathbb{E}\left[Z_{n+1}^2|\mathcal{F}_n\right] = \mu^2 Z_n^2 + \sigma^2 Z_n \tag{8.196}$$

And deduce that $\{M_n\}$ is bounded in \mathcal{L}^2 iff $\mu > 1$. Show that when $\mu > 1$,

$$\operatorname{Var}\left[M_{\infty}\right] = \frac{\sigma^2}{\mu(\mu - 1)} \tag{8.197}$$

Proof. For any $n, k \geq 1$, $X_k^{(n+1)}$ is independent to $\mathcal{F}_n = \sigma(Z_0, Z_1, ..., Z_n)$. Moreover $\{X_k^{(n+1)} : k \geq 1\}$ are i.i.d for all n. So $\mathbb{E}\left[X_k^{(n+1)} | \mathcal{F}_n\right] = \mathbb{E}\left[X_k^{(n+1)}\right] = \mu$.

Now Consider

$$\mathbb{E}\left[Z_{n+1}|\mathcal{F}_{n}\right] = \mathbb{E}\left[\sum_{k=1}^{Z_{n}} X_{k}^{(n+1)} \middle| \mathcal{F}_{n}\right] = \mathbb{E}\left[\sum_{k\geq 1} X_{k}^{(n+1)} \mathbb{1}_{(Z_{n}\geq k)} \middle| \mathcal{F}_{n}\right]$$

$$= \sum_{k\geq 1} \mathbb{E}\left[X_{k}^{(n+1)}|\mathcal{F}_{n}\right] \cdot \mathbb{E}\left[\mathbb{1}_{(Z_{n}\geq k)}|\mathcal{F}_{n}\right]$$

$$= \mu \sum_{k\geq 1} \mathbb{E}\left[\mathbb{1}_{(Z_{n}\geq k)}|\mathcal{F}_{n}\right] \quad \text{(Next: since } \mathbb{1}_{(Z_{n}\geq k)} \in m\mathcal{F}_{n}\text{)}$$

$$= \mu \sum_{k\geq 1} \mathbb{1}_{(Z_{n}\geq k)} = \mu \sum_{k=1}^{Z_{n}} 1 = \mu Z_{n}$$

$$(8.198)$$

Hence, multiply both sides by $\mu^{-(n+1)}$, we get

$$\mathbb{E}\left[\frac{Z_{n+1}}{\mu^{n+1}}\middle|\mathcal{F}_n\right] = \frac{Z_n}{\mu^n} \tag{8.199}$$

i.e. $\{M_n : n \geq 0\} := \{Z_n \mu^{-n} : n \geq 0\}$ is a martingale. Now calculate conditional second moment of Z_{n+1} . Note that $\operatorname{Var}\left[X_k^{(n)}\right] = \sigma^2$, hence $\mathbb{E}\left[(X_k^{(n)})^2\right] = \mu^2 + \sigma^2$ for any $n, k \geq 1$.

$$\mathbb{E}\left[Z_{n+1}^{2}|\mathcal{F}_{n}\right] = \mathbb{E}\left[\left(\sum_{k=1}^{Z_{n}}X_{k}^{(n+1)}\right)^{2}\middle|\mathcal{F}_{n}\right] = \mathbb{E}\left[\left(\sum_{k\geq1}X_{k}^{(n+1)}\mathbb{1}_{(Z_{n}\geq k)}\right)^{2}\middle|\mathcal{F}_{n}\right] \\
= \mathbb{E}\left[\sum_{k\geq1}(X_{k}^{(n+1)})^{2}\mathbb{1}_{(Z_{n}\geq k)} + \sum_{i\geq1}\sum_{j\geq1,j\neq i}X_{i}^{(n+1)}X_{j}^{(n+1)}\mathbb{1}_{(Z_{n}\geq i\vee j)}\middle|\mathcal{F}_{n}\right] \\
= (\mu^{2} + \sigma^{2})\sum_{k\geq1}\mathbb{1}_{(Z_{n}\geq k)} + \mu^{2}\sum_{i\geq1}\sum_{j\geq1,j\neq i}\mathbb{1}_{(Z_{n}\geq i\vee j)} \\
= (\mu^{2} + \sigma^{2})\sum_{k=1}^{Z_{n}}\mathbb{1} + \mu^{2}\sum_{i=1}^{Z_{n}}\sum_{j=1,j\neq i}^{Z_{n}}\mathbb{1} \\
= (\mu^{2} + \sigma^{2})Z_{n} + \mu^{2}(Z_{n}^{2} - Z_{n}) \\
= \mu^{2}Z_{n}^{2} + \sigma^{2}Z_{n} \tag{8.200}$$

Now devide both sides by μ^{2n+2} ,

$$\mathbb{E}\left[M_{n+1}^2\middle|\mathcal{F}_n\right] := \mathbb{E}\left[\frac{Z_{n+1}^2}{\mu^{2n+2}}\middle|\mathcal{F}_n\right] = \frac{Z_n^2}{\mu^{2n}} + \frac{\sigma^2 Z_n}{\mu^{2n+2}} =: M_n^2 + \frac{\sigma^2 Z_n}{\mu^{2n+2}}$$
(8.201)

Take expectation both sides,

$$\mathbb{E}\left[M_{n+1}^2\right] = \mathbb{E}\left[M_n^2\right] + \frac{\sigma^2 \mathbb{E}\left[Z_n\right]}{\mu^{2(n+1)}} \tag{8.202}$$

Expectation of Z_n is given by M_n :

$$\mathbb{E}\left[\frac{Z_n}{\mu^n}\right] = \mathbb{E}\left[\frac{Z_0}{\mu^0}\right] \quad \text{i.e. } \mathbb{E}\left[Z_n\right] = \mu^n \tag{8.203}$$

Hence

$$\mathbb{E}\left[M_n^2\right] = \mathbb{E}\left[M_0^2\right] + \sum_{k=1}^n \frac{\sigma^2 \mathbb{E}\left[Z_{k-1}\right]}{\mu^{2k}}$$

$$= 1 + \sum_{k=1}^n \frac{\sigma^2}{\mu^{k+1}} = 1 + \frac{\sigma^2}{\mu(\mu - 1)} \left(1 - \frac{1}{\mu^{n+1}}\right)$$
(8.204)

Clearly $\mathbb{E}[M_n^2]$ converges if and only if $\mu > 1$. When $\mu \geq 1$, $\mathbb{E}[M_n^2] < 1 + \frac{\sigma^2}{\mu(\mu - 1)} < \infty$, i.e. M_n is bounded by \mathcal{L}^2 . By (MCT3), $\exists M \in \mathcal{L}^2$, $M_n \xrightarrow{a.s.} M$ and $M_n \xrightarrow{\mathcal{L}^2} M$, therefore

$$\mathbb{E}\left[M^2\right] = \lim_{n \to \infty} \mathbb{E}\left[M_n^2\right] = 1 + \frac{\sigma^2}{\mu(\mu - 1)} \tag{8.205}$$

Note that $\mathbb{E}[M] = \mathbb{E}[M_0] = 1$, So $\operatorname{Var}[M] = \frac{\sigma^2}{\mu(\mu-1)}$.