Fourier Transform

April 16, 2020

D Fourier Transform (for Boundard signals of Finite time support)

- Aprilodic signals have a former transform Formier Transform: X(w)= loo x(t)e dt

ex. x(16) = u(+1) - u(+-1) $X(\omega) = \int_{-\infty}^{\infty} u_{i}(t)e^{-j\omega t} = \int_{-\infty}^{\infty} e^{-j\omega t} = \frac{i}{\omega}(e^{-j\omega t} - e^{-j\omega t})$

	Table 5.1 Basic Properties of Fourier Transform			Table 5.2 Fourier Transform Pairs		
		Time Domain	Frequency Domain	200420000000000000000000000000000000000	E	E N 4
	Signals and constants	$x(t), y(t), z(t), \alpha, \beta$	X(0), Y(0), Z(0)		Function of Time	Function of 00
P1	Linearity	$cox(t) + \beta y(t)$	$\alpha X(0) + \beta Y(0)$	(1)	$\delta(t)$	1
P2	Expansion/contraction in time	$x(\alpha t), \alpha = 0$	$\frac{1}{ x }X\left(\frac{\omega}{\alpha}\right)$	(2)	$\delta(t - \tau)$	e ^{-jas} r
P3	Reflection	x(-t)	X(- 0)	(3)	u(t)	$\frac{1}{i\alpha} + \pi \delta(\bar{\omega})$
P4	Parseval's energy relation	$E_x = \int_{-\infty}^{\infty} \left x(t) \right ^2 \! dt$	$E_x = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\mathbf{o}) ^2 d\mathbf{o}$	(4)	u(-t)	$\frac{-1}{ \omega } + \pi \delta(\omega)$
P5	Duality	X(f)	2πx(- ω)	(5)	sign(t) = 2[u(t) - 0.5]	2
P6	Time differentiation	d'x(f) a - 4 intense	(j'\o)\(^X(\o))	(6)	$A, -\infty < t < \infty$	$2\pi A\delta(0)$
P7	Frequency differentiation	$\frac{\sigma^{c}x(t)}{\sigma^{c}}, n \ge 1$, integer $-ftx(t)$	Ø(8) ₫ ©	(7)	$Ae^{-at}u(t)$, $a > 0$	<u>A</u> <u> 0+a</u>
P8	Integration	$\int_{-\infty}^{t} x(t')dt'$	$\frac{X(\omega)}{\sqrt{\omega}} + \pi X(0)\delta(\omega)$	(8)	$Ate^{-at}u(t)$, $a > 0$	$\frac{A}{(j\omega + a)^2}$
P9	Time shifting	$x(t - \alpha)$	e ^{-jar@} X(0)			(jo)+a)*
P10	Frequency shifting	$e^{i\omega_0 t}x(t)$	$X(\omega - \omega_0)$	(9)	$e^{-a t }, a > 0$	$\frac{2a}{a^2 + \omega^2}$
P11	Modulation	$x(t)\cos(\omega_c t)$	$0.5[X(\omega - \omega_c) + X(\omega + \omega_c)]$	(10)	$\cos(\omega_0 t), -\infty < t < \infty$	$\pi [\delta(\omega - \omega_0) + \delta(\omega + \omega_0)]$
P12	Periodic signals	$X(t) = \sum_{k} X_k e^{ik\omega_2 t}$	$X(\omega) = \sum_{k} 2\pi X_{k} \delta(\omega - k\omega_{0})$	(10)	cos(w ₀ t), -∞ < t < ∞	$\pi[\delta(\mathbf{w} - \mathbf{w}_0) + \delta(\mathbf{w} + \mathbf{w}_0)]$
P13	Symmetry	x(t) real	$ X(\mathbf{w}) = X(-\mathbf{w}) $	(11)	$\sin(\omega_0 t), -\infty < t < \infty$	$-j\pi[\delta(\mathbf{\omega} - \mathbf{\omega}_0) - \delta(\mathbf{\omega} + \mathbf{\omega}_0)]$
			$\angle X(\mathbf{w}) = -\angle X(-\mathbf{w})$	(4.0)	W 11 (4) 12 (5)	
P14	Convolution in time	z(t) = [x + y](t)	$Z(\omega) = X(\omega)Y(\omega)$	(12)	$p(t) = A[u(t + \tau) - u(t - \tau)], \tau > 0$	2At sin(wt) -> Pulse
	Windowing/Multiplication	X(f)y(f)	$\frac{1}{2\pi}[X * Y](\omega)$	(13)	$\frac{\sin(\omega_0 t)}{\pi t}$	$P(\mathbf{\omega}) = U(\mathbf{\omega} + \mathbf{\omega}_0) - U(\mathbf{\omega} - \mathbf{\omega}_0)$
	Cosine transform	x(t) even	$X(\mathbf{\omega}) = \int_{-\infty}^{\infty} X(t) \cos(\mathbf{\omega}t) dt$, real			
P17	Sine transform	x(t) odd	$X(\omega) = -i \int_{-\infty}^{\infty} x(t) \sin(\omega t) dt$, imaginary	(14)	$X(t) \cos(\omega_0 t)$	$0.5[X(\omega - \omega_0) + X(\omega + \omega_0)]$

Dirichlet Canditions for Convergence

- 26 (4) is integrable (area under is finite) 26 th has finite # of discontinuities & minima linexima

@ FT from LT (Fer infinite time signals, contain in -axis)

-16 X(s)=1{ n (t) } curtains jw-axis, FT of n (t):

ROC: Re(s) >2: neludes jus-axis -> X.(w) = F{x.(t)}= jus+2

@ FT from FS (for periodic signals)

Forcer Pair: re(t) = Exac Kwot -> XK(w) = E 2R XyS(w-Kwo)

ex.
$$x_i(t) = A \longrightarrow X_i(\omega) = 272AS(\omega)$$
 (table 5.2)

ex.
$$x_{i}(t) = A \rightarrow X_{i}(w) = 12A_{i}(w)$$
 (table 5.2)
ex. $x_{i}(t) = A \rightarrow X_{i}(w) = 12A_{i}(w)$ (table 5.2)
ex. $x_{i}(t) = \frac{4\cos\left(\frac{6\pi}{7}t\right) + \cos\left(\frac{3\pi}{8}t - \frac{\pi}{2}\right)}{7\cos\left(\frac{3\pi}{7}t\right) + \cos\left(\frac{3\pi}{8}t - \frac{\pi}{2}\right)} = \frac{1(e^{\frac{1}{7}t} + e^{-\frac{1}{7}t}) + \frac{1}{2}(e^{\frac{1}{7}t} - \frac{1}{2}e^{-\frac{1}{7}t})}{1(e^{\frac{1}{7}t} + e^{-\frac{1}{7}t}) + \frac{1}{2}(e^{\frac{1}{7}t} - \frac{1}{2}e^{-\frac{1}{7}t})} = \frac{1}{2}(e^{\frac{1}{7}t} + e^{-\frac{1}{7}t}) + \frac{1}{2}(e^{\frac{1}{7}t} - \frac{1}{2}e^{-\frac{1}{7}t})}{1(e^{\frac{1}{7}t} + e^{-\frac{1}{7}t}) + \frac{1}{2}(e^{\frac{1}{7}t} - \frac{1}{2}e^{-\frac{1}{7}t})} = \frac{1}{2}(e^{\frac{1}{7}t} + e^{-\frac{1}{7}t}) + \frac{1}{2}(e^{\frac{1}{7}t} - \frac{1}{2}e^{-\frac{1}{7}t})}{1(e^{\frac{1}{7}t} + e^{-\frac{1}{7}t}) + \frac{1}{2}(e^{\frac{1}{7}t} - \frac{1}{2}e^{-\frac{1}{7}t})} = \frac{1}{2}(e^{\frac{1}{7}t} + e^{-\frac{1}{7}t}) + \frac{1}{2}(e^{\frac{1}{7}t} - \frac{1}{2}e^{-\frac{1}{7}t})}{1(e^{\frac{1}{7}t} + e^{-\frac{1}{7}t}) + \frac{1}{2}(e^{\frac{1}{7}t} - \frac{1}{2}e^{-\frac{1}{7}t})} = \frac{1}{2}(e^{\frac{1}{7}t} + e^{-\frac{1}{7}t}) + \frac{1}{2}(e^{\frac{1}{7}t} - \frac{1}{2}e^{-\frac{1}{7}t})}{1(e^{\frac{1}{7}t} + e^{-\frac{1}{7}t}) + \frac{1}{2}(e^{\frac{1}{7}t} - \frac{1}{2}e^{-\frac{1}{7}t})} = \frac{1}{2}(e^{\frac{1}{7}t} + e^{-\frac{1}{7}t}) + \frac{1}{2}(e^{\frac{1}{7}t} - \frac{1}{2}e^{-\frac{1}{7}t})}{1(e^{\frac{1}{7}t} + e^{-\frac{1}{7}t}) + \frac{1}{2}(e^{\frac{1}{7}t} - \frac{1}{2}e^{-\frac{1}{7}t})}{1(e^{\frac{1}{7}t} + e^{-\frac{1}{7}t})} = \frac{1}{2}(e^{\frac{1}{7}t} + e^{-\frac{1}{7}t}) + \frac{1}{2}(e^{\frac{1}{7}t} - \frac{1}{2}e^{-\frac{1}{7}t})}{1(e^{\frac{1}{7}t} + e^{-\frac{1}{7}t})} = \frac{1}{2}(e^{\frac{1}{7}t} + e^{\frac{1}{7}t}) + \frac{1}{2}(e^{\frac{1}{7}t} - \frac{1}{2}e^{-\frac{1}{7}t})}{1(e^{\frac{1}{7}t} + e^{-\frac{1}{7}t})} = \frac{1}{2}(e^{\frac{1}{7}t} + e^{\frac{1}{7}t}) + \frac$

$$= 2\pi \left[\frac{1}{2} \left(3 \left(\omega + \frac{3n}{5} \right) - 3 \left(\omega - \frac{3n}{5} \right) + 2 \left(3 \left(\omega + \frac{6n}{7} \right) + 3 \left(\omega - \frac{6n}{7} \right) \right) \right]$$

@ Duality (For unclassified signals)

@ Duality (For malassified signals)

- When f = w/see in H3: $\hat{X}(f) = \int_{0}^{\infty} \frac{z(t)e^{-ize_{t}ft}}{z(t)e^{-ize_{t}ft}}dt \longrightarrow z(t) = \int_{0}^{\infty} \hat{X}(f)e^{-ize_{t}ft}dt$

-> Uze table 5.1

ex. Henriside: ult) = \int \delta \(\tau \rangle \tau \rangle \frac{\tau(t)\frac{2}{3}}{\tau \tau \tau(\tau)} + \tau D(0) d(w) = \frac{1}{\tau \tau \tau \tau \tau(\tau)}

ex Sinc: 21(6) = 4(6+1)-4(t-1) - X,(w) = 2sinc(₩) K(w) = sinc(6) = 212 2(-w) = 212 [(-1) - w(-1)] = w(w+1) - w(w-12)

Persevul's Energy Relation for Energy Signals $E_{12} = \int_{-\infty}^{\infty} |x(t)|^{2} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^{2} d\omega$

Frequency Response

- System has fing. Response: H(jw) = 7 { hlt)} where h(t) is the impulse response
- Output of LTI system is y(t)=(*h)(t) w/ FT Y(w)=X(w)+(jw)
- If input alt) periodic; output has FT: Ylw = I ITEXXH(jkwo) f(w-kwo)

& Webnork 5

Problem Set 5: Problem 1

Probler

User Settings

Problems

Problem 1

Problem 2

Problem 3

Problem 4

Grades

a) Time shift: 2(ta) = -iau $z_1 = -2[u(t+2)+u(t)]+6[u(t)-u(t-2)]$ $X_1 = -2[e^{i\omega}z_{sh}c(\omega)]+6[e^{-i\omega}A_{sh}c(\omega)]$ 4 x(t) = u(t+1) - u(t-1) (-) X(w) = 2 sinc(w)