Resolução de Exercícios

1 – Determine o sistema LTI tal que para a entrada x[n] = $\left(\frac{1}{2}\right)^n$ μ[n] – $\frac{1}{4}\left(\frac{1}{2}\right)^{n-1}$ μ[n – 1] dê como resposta y[n] = $\left(\frac{1}{3}\right)^n$ μ[n].

a) Desenhe um diagrama de blocos do sistema com o número mínimo de atrasos unitários (unidades de memória).

Resolução de Exercícios

- 2 Considere o sistema LTI causal descrito pela seguinte equação de diferenças y[n] + $\frac{1}{2}$ y[n 1] = x[n].
 - a) Determine a resposta em frequência do sistema.
 - b) Qual a resposta do sistema às seguintes entradas:

i)
$$x[n] = \left(\frac{1}{2}\right)^{n} \mu[n]$$

ii) $x[n] = \left(-\frac{1}{2}\right)^{n} \mu[n]$
iii) $x[n] = \delta[n] + \frac{1}{2}\delta[n-1]$
iv) $x[n] = \delta[n] - \frac{1}{2}\delta[n-1]$

Resolução de Exercícios

c) Determine a respostas às entradas cuja DTFT é dada por:

i)
$$X(\Omega) = \frac{1 - 1/4e^{-j\Omega}}{1 + 1/2e^{-j\Omega}}$$

ii) $X(\Omega) = \frac{1}{\left(1 + \frac{1}{2}e^{-j\Omega}\right)\left(1 - \frac{1}{4}e^{-j\Omega}\right)}$