厄米矩阵与复对称矩阵的自由度

显然,一个 n×n 的复矩阵,它的自由度是 2n² 请问:

- •一个n×n的厄米矩阵,它的自由度是多少?
- •一个n×n的复对称矩阵,它的自由度是多少?

一个n×n的厄米矩阵的自由度是 n²

考虑一个 $n \times n$ 厄米矩阵A,由定义: $A^{\dagger} = A$,即 $A_{ij} = A_{ji}^{*}$

· 当 i j 时,例如
$$A_{12} = A_{21}^*$$
,有 $\begin{cases} Re A_{12} = Re A_{21} \\ Im A_{12} = -Im A_{21} \end{cases}$

一共有 Cn×2条约束方程.

·当证j时,例如 An=Ann,有 Im Ann=0 一类有n条约束方程

合计有 $C_n^2 \times 2 + n = \frac{n(n-1)}{2} \times 2 + n = n^2$ 新旗,

而 nxn 复矩阵原有参数且是 2n²,

因此, nxn厄米矩阵的自由度是 2n²-n²=n²

一个 n×n 的厄米矩阵的自由度是 n²

证明方法二:直接数自由度

- · 当 i=j 时,例如 $A_{ii}=A_{ii}^* \rightarrow A_{ii} \in \mathbb{R}$ n个实对第元—共有 n个自由度
- ·当许j时,例如 A2=A21 → A2完全由 A2次定 而 A2有实部、虚部这2个自由度

总自由度是 n+n(n-1)= n2

一个 n×n 的复对称矩阵的自由度是 n²+n

证明方法一: 考虑约束方程数目

考虑一个nxn复对称矩阵B,由定义,BT=B,即Bj=Bji

· 当 i + j 时, 例如 $B_{12} = B_{21}$, 有 $\left\{ Re B_{12} = Re B_{21} \right\}$ $\left\{ I_m B_{12} = I_m B_{21} \right\}$

一共有 Cn×2条约束方程.

·当江j 时,例如 B, = B, 它自动成立,无约束方程。

因此, $n \times n$ 复对称矩阵的自由度是 $2n^2 - C_n^2 \times 2 = 2n^2 - n(n-1)$ $= n^2 + n$

一个 n×n 的复对称矩阵的自由度是 n²+n

证明方法二:直接数自由度

由
$$B^T = B$$
,即 $B_{ij} = B_{ji}$

- ·当 运)时,例如 B₁₁ = B₁₁ ,自动成立, n个复对角元 - 共有 2n 个自由度

所有的 B_{ij} $(i < j) - 共有 <math>C_n^2 \times 2 = n(n-1)$ 个自由度 总自由度是 $2n + n(n-1) = n^2 + n$