

CONTENT DELIVERY NETWORKS CLOUD COMPUTING

Dr. Atm Shafiul Alam

a.alam@qmul.ac.uk

Queen Mary University of London School of Electronic Engineering and Computer Science

QUICK RECAP...

In last lecture, we...

- Learnt about in-memory processing
- Understood how Spark works
- Learnt about stream processing

Map/Reduce is not a good fit for every case

- Rigid structure: Map, Shuffle Sort, Reduce
- No support for iterations
- Only one synchronization barrier
- See graph processing as an example...

Resillient Distributed Datasets (RDDs)

- Immutable collections distributed across the cluster
- Created generally by reading data from HDFS
- Can be transformed into other RDDs for processing
 - E.g. filter
- Can have actions performed on them
 - E.g. count
- Can be saved back to HDFS/ other programs with actions

Example: Log Mining

• Load error messages from a log into memory, then interactively search for various patterns

```
Cache 1
                                                    Transformed RDD
lines = spark.textFile("hdfs://...")
                                                                          Worker
                                                           results
errors = lines.filter(_.startsWith("ERROR"))
                                                                tasks
messages = errors.map(_.split('\t')(2))
                                                                       Block 1
                                                        Driver
cachedMsgs = messages.cache()
                                        Cached RDD
                                                       Parallel operation
cachedMsgs.filter(_.contains("foo")).count
                                                                          Cache 2
cachedMsgs.filter(_.contains("bar")).count
                                                                         Worker
                                                        Cache 3
                                                                      Block 2
                                                    Worker
  Result: full-text search of Wikipedia in <1 sec (vs
             20 sec for on-disk data)
                                                    Block 3
```


Information Streams

Unbounded sequence of messages Arrival time is not fixed

Spark Streaming: Discretized Streams

 Unlike pure stream processing, we process the incoming messages on micro batches

Chop up the live stream into batches of X seconds

Spark treats each batch of data as RDDs and processes them using RDD operations

Finally, the processed results of the RDD operations are returned in batches

Content Delivery Networks (CDNs)

- Let's set up a website..
 - Write some HTML
 - Buy a domain (e.g. www.gareth.com)
 - Buy a web server
- What happens if it becomes popular in China?
- What happens if it becomes popular across the world?
- How can we serve millions of requests?

Agenda

- DNS
- P2P
- Content delivery
- CDNs
- Deployment
- Future

DNS: Domain name system

- Used to translate domain names to IP addresses
 - E.g. <u>www.qmul.ac.uk</u> -> 161.23.10.1
- The DNS is a distributed database
- Consists of many interconnected servers
- Many applications rely on DNS
 - Including WWW, email, etc.

DNS: services, structure

DNS services

- Hostname to IP address translation
- Often used to manage load distribution
 - Replicated Web servers: many IP addresses correspond to one domain

Why not centralize DNS?

- Single point of failure
- Traffic volume
- Distant centralized database
- Maintenance

A: doesn't scale!

Content Delivery Network use DNS to "redirect" clients to the nearest web server

Client wants IP for www.amazon.com:

- client queries root server to find com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: a distributed, hierarchical database

Client wants IP for www.amazon.com:

- client queries root server to find com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: root name servers

- First point of contact when performing DNS resolution
- Root name server:
 - Contacts authoritative name server if name mapping not known
 - Gets mapping
 - Returns mapping to local name server

TLD & authoritative servers

- Top-level domain (TLD) servers:
 - Responsible for .com, .org, .net, .edu, etc.
 - And top-level country domains, e.g. .uk, .fr, .cn
 - Network Solutions maintains servers for .com TLD
 - Educause for .edu TLD
- Authoritative DNS servers:
 - Organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts

Local DNS resolver

- Client, not part of DNS hierarchy
- Each ISP (residential ISP, company, university) has one
- When host makes DNS query, query is sent to its local DNS resolver
 - Has local cache of recent name-to-address translation pairs (but may be out of date!)
 - Acts as a proxy, forwards query into DNS hierarchy

DNS name resolution example

Host at cis.poly.edu wants IP address for gaia.cs.umass.edu

Iterative query:

- Contacted server replies with name of server to contact (referral) = "I don't know this name, but ask this server"
- Resolver iterates until it finds the answer

DNS caching

- Once (any) name server/resolver learns mapping, it caches mapping
 - Cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
 - Root name servers not often visited
- Cached entries may be out-of-date (best effort name-to-address translation!)
 - If name host changes IP address, may not be known Internet-wide until all TTLs expire

DNS Caching

- Caching is used in DNS name servers
- A name server can store DNS query results for a period of time determined in the TTL field of the resource record
- Benefits of caching
 - -Reduces the burden on the root servers
 - Reduces DNS traffic across the Internet
 - Increases performance in Internet applications

Agenda

- DNS
- P2P
- Content delivery
- CDNs
- Deployment
- Future

Peer-to-Peer (P2P) Systems

- A distributed system architecture
- In a P2P network, every node is both a client and a server
 - Provide and consume data
 - Any node can initiate a connection
- No centralized data source
 - The ultimate form of democracy on the Internet
- As no. of clients increases, no. of servers also increases
 - Perfectly scalable
 - Distributed costs
 - Increased privacy

Categories of P2P systems

- Unstructured
 - No restriction on overlay structures and data placement
 - Representative systems
 - Napster, Gnutella, Kazza, Freenet, Bittorrent
- Structured
 - Distributed hash tables (DHTs)
 - put(k,v) and v=get(k) interface
 - Place restrictions on overlay structures and data placement
 - Representative systems
 - Chord, Pastry, Tapestry, and CAN

P2P Network Benefits

- Efficient use of resources
 - B/W, storage, and processing power at the edge of the network
- Scalability
 - Consumers of resources also donate resources
 - Aggregate resources grow naturally, as more peers join
- Reliability
 - Replicas
 - Geographic distribution
 - No single point of failure
- Ease of administration
 - Self-organization
 - No need for server deployment and provisioning
 - Built-in fault tolerance, replication, and load balancing

P2P: Server selection

Why is P2P popular?

- Easy to share content
- Storage scales cheaply
- Issues:
 - Reliability
 - Performance
 - Control (lots of copyright content)

P2P vs. Web: who dominates?

P2P vs. Web: reality

Agenda

- DNS
- P2P
- Content delivery
- CDNs
- Deployment
- Future

Web 1.0

Pathan Mukaddim. Ongoing Trends and Future Directions in Content Delivery Networks (CDNs)

http://amkpathan.wordpress.com/article/ongoing-trends-and-future-directions-in-3uxfz2buz8z1w-2/

CDN 1.0

CDN 2.0

CDN 3.0

Agenda

- DNS
- P2P
- Content delivery
- CDNs
- Deployment
- Future

Web caches

- Cache servers to improve efficiency – the precursor to CDNs
- Browser sends all HTTP requests to cache
 - If object in cache: cache returns object
 - else cache requests object from origin server

Web caches

- Cache acts as both client and server
 - server for original requesting client
 - client to origin server
- Typically cache is installed by ISP (university, company, residential ISP)

Why Web caching?

- Reduce response time for client request
- Reduce traffic in the access network

Problems with web caching

- Caching proxies do not serve all Internet users
 - Size of all Web content is too large
 - Over 50% of all HTTP objects are uncacheable
- Content providers (say, Web servers) cannot rely on existence and correct implementation of caching proxies.
- Web content is dynamic and customized
 - E.g., can't cache banking content
- Accounting issues with caching proxies:
 - Example: www.cnn.com needs to know the number of hits to the advertisements displayed on the web page.

Content Delivery Networks (CDNs)

- Also sometimes called Content Distribution Network
- Infrastructure: large distributed system of servers deployed in multiple data centers across the Internet
- Goal: distribute content to end-users on a large-scale with high availability and high performance
- Simply put...
 - A CDN provides a mechanism for
 - Replicating content on multiple servers in the Internet
 - Providing clients with a means to determine the servers that can deliver the content fastest.

Content Delivery Networks (CDNs)

- The content providers are the CDN customers.
 - Media companies and e-commerce vendors pay CDN operators to deliver their content
 - CDN pays ISPs, carriers, and network operators for hosting its servers
- Usually associated with large web platforms
 - Netflix, Facebook, Google etc.

Contents served by CDNs

- Serve a large fraction of the Internet content:
 - Web objects (text, graphics and scripts)
 - Downloadable objects (media files, software, documents)
 - Applications (e-commerce, portals)
 - Live/on-demand streaming media (movies)
 - Social networks (images)
- At least half of the world's bits are delivered by CDNs
 - Probably closer to 80/90%

CDN vs Non-CDN model

Non-CDN model

CDN model

CDN deployments

- CDN company deploys hundreds of CDN servers around the world, often deep inside ISP networks
 - Close to users
- CDN replicates its customers' content in CDN servers.
- When provider updates content, CDN updates servers

Examples of CDNs

- Akamai
 - 147K+ servers, 1200+ networks, 650+ cities, 92 countries
- Limelight
 - Well provisioned delivery centers, interconnected via a private fiber-optic connected to 700+ access networks
- ChinaCache
 - 30K+ servers, 150+ major cities
- Edgecast
 - 30+ PoPs, 5 continents, 2000+ direct connections
- Others
 - Google, Facebook, AWS, AT&T, Level3, Brokers

A Big Picture

Why use a CDN?

- Reduces latency to users
- Increase security against Denial of Service attacks
- Increases scalability
- Can be cheaper and easier to manage
- Bypass traffic jams on the web
 - Requested data is close to the clients
 - Avoid traversing bottleneck links
- Reduce load on the original server easy load balancing

How does CDN work?

- Users send requests to origin server
- Requests somehow intercepted by redirection service
- Redirection service forwards user's request to the "best" CDN content server
- Content served from the CDN content server

Server Selection

- Which server?
 - Lowest load: to balance load on servers
 - Best performance: to improve client performance
 - Based on Geography? RTT? Throughput? Load?
 - Any alive node: to provide fault tolerance
- How to direct clients to a particular server?
 - As part of routing: anycast, cluster load balancing
 - As part of application: HTTP redirect
 - As part of naming: DNS

Trade-offs between approaches

- Routing based (IP anycast)
 - Pros: Transparent to clients, works when browsers cache failed addresses, circumvents many routing issues
 - Cons: Little control, complex, scalability, TCP can't recover,
- Application based (HTTP redirects)
 - Pros: Application-level, fine-grained control
 - Cons: Additional load and RTTs, hard to cache
- Naming based (DNS selection)
 - Pros: Well-suitable for caching, reduce RTTs
 - Cons: Request by resolver not client, request for domain not URL, hidden load factor of resolver's population
 - Much of this data can be estimated "over time"

CNAME redirection via DNS

- Used to redirect clients to "nearby" server
- Based on many criteria
 - Latency to client
 - Load balancing
 - Available servers
- Load balancing tries to balance clients across many servers to avoid hotspot

CNAME redirection via DNS

- CNAME = canonical name
- Popular for large CDNs, e.g., Akamai

```
; <<>> DiG 9.8.3-P1 <<>> www.whitehouse.gov
:: Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 11921
;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 0, ADDITIONAL: 0
:: QUESTION SECTION:
;www.whitehouse.gov.
                                   IN
                                              Α
;; ANSWER SECTION:
                                                          www.whitehouse.gov.edgesuite.net.
www.whitehouse.gov.
                       3596
                                   IN
                                              CNAME
www.whitehouse.gov.edgesuite.net. 896 IN
                                                          www.eop-edge-lb.akadns.net.
                                              CNAME
www.eop-edge-lb.akadns.net. 300
                                                          a1128.dsch.akamai.net.
                                   IN
                                              CNAME
a1128.dsch.akamai.net. 20
                                   IN
                                              Α
                                                          195.59.54.235
a1128.dsch.akamai.net. 20
                                   IN
                                              Α
                                                          195.59.126.161
```


Vendors: Adero(Full), Akami and Digital Island (Partial)

Two DNS Redirection Types

- Full redirection
 - Any request for origin server is redirected to CDN
 - Basically, CDN takes control of content provider's DNS zone
 - Benefit: All requests are automatically redirected
 - Disadvantage: May send lots of traffic to CDN, hence expensive for the content provider, \$ per byte
- Partial redirection
 - Content provider marks which objects are to be served from CDN
 - Typically, larger objects like images are selected
 - Refer to images as:
 - When client wants to retrieve image, DNS request for cdn.com gets resolved by CDN and image is fetched from the selected content server
 - Pro: Fine-grained control over what gets delivered
 - Con: Have to (manually) mark content for CDN

Agenda

- DNS
- P2P
- Content delivery
- CDNs
- Deployment
- Future

Where is popular content hosted?

- Rely on active measurements:
- Sample popular hostnames from Alexa.com
- Ask DNS from multiple vantage points (150+ ISPs around the world)
- Sample different types of "objects"
 - Popular hostnames
 - Embedded files
 - Unpopular

Where is popular content?

• 1st: California

• 2nd: China

USA: 9 among top20

 Other Westerns countries: limited own content

Rank	Country	Potential	Normalized potential
1	USA (CA)	0.254	0.108
2	China	0.128	0.107
3	USA (TX)	0.190	0.061
4	Germany	0.183	0.058
5	Japan	0.163	0.051
6	France	0.146	0.034
7	Great Britain	0.157	0.030
8	Netherlands	0.144	0.029
9	USA (WA)	0.135	0.027
10	USA (unknown)	0.164	0.027
11	Russia	0.038	0.027
12	USA (NY)	0.130	0.026
13	Italy	0.122	0.018
14	USA (NJ)	0.125	0.016
15	Canada	0.028	0.015
16	USA (IL)	0.116	0.014
17	Australia	0.118	0.013
18	Spain	0.116	0.013
19	USA (UT)	0.111	0.012
20	USA (CO)	0.113	0.012

Top western CDNs "clusters"

CDN "cluster" ~ set of servers that serve the same hostnames

Rank	# hostnames	# ASes	# prefixes	owner	content mix	
1	476	79	294	Akamai		
2	161	70	216	Akamai		
3	108	1	45	Google		
4	70	35	137	Akamai		
5	70	1	45	Google		
6	57	6	15	Limelight		
7	57	1	1	ThePlanet		
8	53	1	1	ThePlanet		
9	49	34	123	Akamai		
10	34	1	2	Skyrock		
11	29	6	17	Cotendo		
12	28	4	5	Wordpress		
13	27	6	21	Footprint		
14	26	1	1	Ravand		
15	23	1	1	Xanga		
16	22	1	4	Edgecast		
17	22	1	1	ThePlanet		
18	21	1	1	ivwbox.de		
19	21	1	5	AOL		
20	20	1	1	Leaseweb		
on mon	on hoth on mon and manupupup lanks on manupupup lanks					

only on TOP, both on TOP and EMBEDDED, only on EMBEDDED, TAIL.

Who has power?

Who serves content?

Who serves content that no one else has?

Rank	AS name	CMI	Rank AS name		CMI
1	NTT America	0.070	1	Chinanet	0.699
2	Tinet	0.029	2	Google	0.996
3	Global Crossing	0.034	3	ThePlanet.com	0.985
4	KDDI	0.025	4	SoftLayer	0.967
5	Akamai Europe	0.019	5	China169 Backbone	0.576
6	TeliaNet Global	0.027	6	Level 3	0.109
7	Deutsche Telekom	0.033	7	China Telecom	0.470
8	Korea Telecom	0.030	8	Rackspace	0.954
9	Qwest	0.036	9	1&1 Internet	0.969
10	Bandeon	0.045	10	OVH	0.969
11	Cable and Wireless	0.021	11	NTT America	0.070
12	SingTel Optus	0.019	12	EdgeCast	0.688
13	Akamai	0.018	13	GoDaddy.com	0.969
14	France Telecom - Orange	0.017	14	Savvis	0.785
15	Internode	0.017	15	China169 Beijing	0.706
16	Comeast	0.017	16	Amazon.com	0.895
17	StarHub	0.018	17	LEASEWEB	0.942
18	nLayer	0.020	18	Cogent	0.687
19	Beyond The Network	0.018	19	Hetzner Online	0.962
20	TATA	0.023	20	AOL	0.932

The "P2P CDN"

#	Country	U. Peers
1	US	1379462
2	ES	887480
3	GB	800308
4	CA	551820
5	IN	514246
6	AU	322009
7	BR	318294
8	IT	295339
9	PL	288780
10	PT	220124

TOP 10 ISPS (BT VIDEO USER)

	AS#	Peers	AS Name-Internet Service Provider
1	3352	165469	TELEFONICA-DATA-ESPANA(TDE)
2	3662	129047	DNEO-OSP7-COMCAST CABLE
3	6461	127297	MFNX MFN-METROMEIDA FIBER
4	2119	113597	TELENOR-NEXTEL T.NET
5	19262	101390	VZGNI-TRANSIT-Verizon ISP
6	3301	97658	TELIANET-SWEDEN TELIANET
7	3462	96564	HINET-DATA CBG
8	4134	87392	CHINANET-BACKBONE
9	6327	86964	SHAW-SHAW COMMUNICATION
10	174	74453	COGENT COGENT/PSI

LET'S LOOK AT SOME MAPS...

World data centers

Google

Windows Azure

Netflix

CDNs in China

- Selected top 100 Chinese websites (Alexa.com)
- Which CDNs serve content from these websites?

ChinaCache

Largest China Network by Coverage and Capacity

ChinaCache's content delivery network covers over 120 cities throughout China with over 350 nodes and 12,000 servers.

We're 15x larger in both capacity and reach compared to all other global content delivery network providers in China combined.

ChinaNetCenter

Agenda

- DNS
- P2P
- Content delivery
- CDNs
- Deployment
- Future

Key future challenges

- Mobile networks
 - Latency in cell networks is higher
 - Internal network structure is more opaque
- Video
 - 4k/8k UHD = 16-30K Kbps compressed
 - 25K Tbps projected
 - Big data center networks not enough (5 Tbps each)
 - Multicast (from end systems) potential solution

CDN 2.0

- Hybrid CDNs:
 Akamai, PPTV
- Cloud-based VoD: NetFlix
- Meta-CDNs, e.g.,
 Conviva
- Virtual CDNs through ISP microdatacenters

