MT251P - Euclidean Geometry

Homework #1

Angel Cervera Roldan 21319203

a)

Prove that $\sqrt[3]{2}$ is irrational, for this we will use contradiction. Assume that $\sqrt[3]{2} = \frac{a}{b}$, where the fraction is in its simplest form, meaning that a and b are coprimes.

$$\sqrt[3]{2} = \frac{a}{b}$$

$$2 = \frac{a^3}{b^3}$$

$$2b^3 = a^3$$

This shows that a^3 is an even number, and therefore, a is an even number. This can be proven: An odd number 2n + 1 times an odd number will always be an odd number: $(2n + 1)(2n + 1) = 4n^2 + 4n + 1 = 2(2n^2 + 2n) + 1$. Therefore an odd times an odd is an odd, and that times an odd is also an odd.

We can now re-write a as 2n

$$\sqrt[3]{2} = \frac{2n}{b}$$

$$2 = \frac{(2n)^3}{b^3}$$

$$2b^3 = (2n)^3$$

$$2b^3 = (2n)(4n^2)$$

$$2b^3 = 8n^3$$

$$b^3 = 4n^3 = 2(2n^3)$$

Therefore b^3 is an even number, and therefore b is an even number. But b and a cannot have 2 as a common factor, as the fraction was in the simplest form.

b)

 $\frac{x}{y}$ is irrational for all irrational numbers x, y with $x \neq y$

This is not true, we can disprove it with a counter example: $x = \sqrt{5}$, $y = 2\sqrt{5}$. Because $\sqrt{5} \neq 2\sqrt{5}$, $x \neq y$, but $\frac{\sqrt{5}}{2\sqrt{5}} = \frac{1}{2}$, which is a rational number.

We know that x is irrational (as $\sqrt{5}$ is proven to be irrational in the next question), and y is also irrational as $\sqrt{5}$ is irrational, and an integer multiple of an irrational is an irrational.

c)

There exist rational numbers m, t, w such that $m - 2w + t\sqrt{2} = 0$.

A rational number n, where $n \neq 0$ times an irrational number will return an irrational, therefore, the only possible value for t is 0.

Therefore, the equation above can be rewritten as m - 2w + 0 = 0

$$m - 2w = 0$$
$$m = 2w$$

Therefore there are an infinite number of rational solutions for the above equation. For any rational x, the equation will hold for m = x, $w = \frac{x}{2}$.

Example: m = 1, $w = \frac{1}{2}$, t = 0, then $1 - 2\frac{1}{2} + 0\sqrt{2} = 1 - 1 + 0 = 0$.

Prove that $\sqrt{5}$ is irrational

Proof by contradiction:

Assume that $\sqrt{5}$ is a rational number, then $\sqrt{5} = \frac{a}{b}$ for some two integers a and b, where the fraction is in its simplest form (a and b are co-primes).

$$\sqrt{5} = \frac{a}{b}$$

$$5 = \frac{a^2}{b^2}$$

$$5b^2 = a^2$$

Since $b^2 \in \mathbb{Z}$, then a is a multiple of 5. Because a^2 is a multiple of 5, then a must be a multiple of 5. Therefore $\exists n \in \mathbb{Z}$ such that a = 5n.

We can therefore rewrite the above equation as:

$$\sqrt{5} = \frac{5n}{b}$$

$$5 = \frac{(5n)^2}{b^2}$$

$$5b^2 = (5n)^2$$

$$5b^2 = 25n^2$$

$$b^2 = 5n^2$$

Therefore, both a and b are multiples of 5. This contradicts the beginning assumption that $\frac{a}{b}$ was in its simplest form.

Prove that $\neg(\neg P \lor Q) \lor (P \land Q) \sim P$

Is $(\neg P \land Q) \Rightarrow (Q \lor \neg P)$ a tautology?

Do two integers x, y exist such that $9y - x^2 + 3 = 0$?

To solve this, we will use proof by contradiction. Assume that there exist two integers such that the above holds.

$$9y - x^{2} + 3 = 0$$

$$9y - x^{2} = -3$$

$$\frac{9y - x^{2}}{3} = 3y - \frac{x^{2}}{3}$$

$$3y - \frac{x^{2}}{3} = -1 \in \mathbb{Z}$$

Because -1 is an integer, then $3y - \frac{x^2}{3}$ must also be an integer.

Given we have assumed that y is an integer, then we know that 3y is also an integer. Because 3y is an integer, and $3y - \frac{x^2}{3}$ is also an integer, then $\frac{x^2}{3}$ must also be an integer.

Because of this, we know that x^2 must be a multiple of 3. This implies that x is also a multiple of 3. Therefore $\exists n \in \mathbb{Z}$ such that x = 3m.

Now we can rewrite the original equation as:

$$9y - (3n)^{2} + 3 = 0$$

$$9y - 9n^{2} = -3$$

$$9(y - n^{2}) = -3$$

$$y - n^{2} = -\frac{3}{9}$$

$$y - n^{2} = -\frac{1}{3}$$

But because we have assumed that y and n are both integers, then we know that n^2 is also an integer, since an integer times an integer is an integer. We also know that $y - n^2$ is an integer because an integer minus another integer is an integer. Since $-\frac{1}{3}$ is equal to $y - n^2$, this wrongly implies that $-\frac{1}{3}$ is an integer.

This is a contradiction, meaning that there exists no two integers that satisfy the above equation.