Tourmaline Chemistry and the Flexible B-site

Vandivier, Connor J. and Clark, Christine M.

Department of Geography and Geology, Eastern Michigan University

cvandivi@emich.edu // cclark7@emich.edu

Abstract

Tourmaline is a complex borosilicate mineral group with over 30 species currently approved by the IMA. Due to its complex chemistry and difficulties with full chemical analysis, assumptions are commonly made during formulae normalizations, often with little corroborative support. This include Fe²⁺/Fe³⁺ ratios and amounts of the light elements Li, B and H. These assumptions can lead to misidentification of tourmaline species and resulting interpretation of geochemical environment of formation. Past research has shown the stereochemistry of the *B*-site to be sensitive to variations in chemistry, responding to the occupancy of the *Y*- and *Z*-sites in particular. We are further investigating this relationship to better understand why the (*B*O₃) triangle responds to the chemistry of the octahedral sites, and what has the strongest effect. This will allow crystallographic data to support assumptions made during the tourmaline normalizations. This information can also be used to validate, identify, and differentiate similar species among the tourmaline group.

Tourmaline Structure

Structure Fragment

Statement of Problem

- Previous studies suggest the octahedral Z-site greatly influences the stereochemistry of the BO₃ triangle. Multiple new tourmaline species have been discovered recently, and this trend has not yet been confirmed in them
- It is unclear how the variation in the B-site stereochemistry is geometrically accommodated in the rest of the tourmaline structure

Methods

- Compile a database of tourmalines, including chemistry and crystal structure
- Create two subsets from the database, one with Z≥5.00 apfu AI, and one with Z=6.00 apfu AI
- Run statistical analysis on the above data subsets to better understand how Z-site occupancy is responsible for fluctuations in B-site bond-lengths

Bond-valence Relationships and Statistics

Results and Conclusions

- Statistical analyses show that even when the Z-site occupancy is uniform across multiple samples, the Z'-bond is still the bond most responsible in influencing the B-site's bond-lengths
- A potential explanation is that the bond-angles/geometry are responsible for this occurrence, where the Z'-O8 bond has a straighter alignment to, and therefore greater effect on, the BO₃ stereochemistry

Future Work

- Determine which of the possible geometry scenarios is occurring in and around the boron triangle
- Continue running statistical analysis on new tourmaline species as they are discovered/more data becomes available
- Further develop our understanding of the relationship between tourmaline's chemistry and crystal structure

Possible Geometries

Scenario 1: The boron shifts, and the oxygen remain fixed.

Scenario 3: Both the boron and oxygen shift.

Scenario 2: The oxygen shift, and the boron remains in place.

References & Acknowledgements

Thank you to the Department of Geography and Geology and the College of Arts and Sciences at Eastern Michigan University for their support. CJV also thanks the GSA for their Student Volunteer Program.

•Bačík, Peter, *et al.* (2013) Oxy-schorl, Na(Fe22+Al)Al₆Si₆O₁₈(BO₃)₃(OH)₃O, a new mineral from Zlatá Idka, Slovak Republic and Přibyslavice, Czech Republic. *American Mineralogist*, 98, 485-492

•Bosi, Ferdinando, et al. (2012) Oxy-chromium-dravite, NaCr₃(Cr₄Mg₂)(Si₆O₁₈)(BO₃)₃(OH)₃O, a new mineral species of the tourmaline supergroup. American Mineralogist, 97, 2024-2030 •Bosi, Ferdinando, et al. (2013) Fluor-elbaite, Na(Li_{1.5}Al_{1.5})Al₆(Si₆O₁₈)(BO₃)₃(OH)₃F, a new mineral species of the tourmaline supergroup. American Mineralogist, 98, 297-303

•Bosi, Ferdinando, et al. (2013) Vanadio-oxy-dravite, NaV₃(Al₄Mg₂)(Si₆O₁₈)(BO₃)₃(OH)₃O, a new mineral species of the tourmaline supergroup. American Mineralogist, 98, 501-505

•Bosi, Ferdinando and Skogby, Henrik (2013) Oxy-dravite, Na(Al₂Mg)(Al₅Mg)(Si₆O₁₈)(BO₃)₃(OH)₃O, a new mineral species of the tourmaline supergroup. American Mineralogist, 98, 1442-1448

•Brown, I. D. (1981) The Bond Valence Method: An Emperical Approach to Chemical Structure and Bonding. Structure and Bonding in Crystals, Vol. 2, 1-29

•Cempírek, J., et al. (2013): Crystal structure and compositional evolution of vanadium-rich oxy-dravite from graphite quartzite at Bítovánky, Czech Republic. Journal of Geosciences, 58, 149-162
•Clark, Christine M., et al. (2011) Fluor-dravite, NaMg₃Al₆Si₆O₁₈(BO₃)₃(OH)₃F, a new mineral species of the tourmaline group from the Crabtree emerald mine, Mitchell County, North Carolina: description and crystal structure. Canadian Mineralogist, 49, 57-62

•Ertl, Andreas, et al. (2006) The F-analogue of schorl from Grasstein, Trentino South Tyrol, Italy: crystal structure and chemistry. European Journal of Mineralogy, 18, 583-588

•Novák, Milan, et al. (2013) Darrellhenryite, Na(LiAl₂)Al₆(BO₃)₃Si₆O₁₈(OH)₃O, a new mineral from the tourmaline supergroup. American Mineralogist, 98, 1886-1892