9/19

$Nathan\ Keough$ Acknowledgements: None

Wade 1.3.8

Suppose that $E, A, B \subset \mathbb{R}$ and $E = A \cup B$. Prove that if E has a supremum and both A and B are nonempty, then $\sup A$ and $\sup B$ both exist, and $\sup E$ is one of the numbers $\sup A$ or $\sup B$.

Proof.

Let $a \in A$, then $a \in A \cup B$.

Now, let $b \in B$, then $b \in A \cup B$.

if $\sup E$ exists, $\sup E \leq M \ \forall$ upper bounds $M \in E$.

so $\forall a, b \in A, B$ respectively, $a, b \leq M$.

Since $A, B \neq \emptyset$ and bounded above, $\exists \sup A, \sup B$. [Completeness Axiom]

Let $S_1, S_2 = \sup A, \sup B$ respectively.

 $S_1 \ge S_2 \implies \forall x \in E, x \le S_1 \implies \sup E = \sup A.$

 $S_2 \ge S_1 \implies \forall x \in E, x \le S_2 \implies \sup E = \sup B.$

 \therefore sup E and $A, B \neq \emptyset \implies \exists \sup A, \sup B$ and sup $E = \sup A$ or sup B.