Treatment of Special Mathematics

G. Cagnac, E. Ramis, J. Commeau Translated by Joel Andrepont

2018-12-18

The Real Numbers

1 Cuts in the set \mathbb{Q} of rational numbers

1.1 Introduction

- 1° We admit the notion of the natural numbers, which are designated by $\{0, 1, 2,...\}$ for the group \mathbb{N} .
- 2° We have constructed (Tome I, 34°) \mathbb{Z} by applying the theorem on the symmetrical property of an associative law, commutative and regular to the addition on \mathbb{N} . \mathbb{Z} has been endowed with a ring structure that is commutative, unitary, without division by 0.
- 3°. We have studied (I, 36) the body \mathbb{Q} of fractions of the ring \mathbb{Z} under the name of rational numbers. // We will define a set \mathbb{R} which we endow a structure, such that \mathbb{R} will be isomorphic to \mathbb{Q} , allowing identification in \mathbb{Q} . For this we essentially use the relation of strict inequality < defined on \mathbb{Q} in deg n 36, deg 7 in tome I. We will also use the fact that \mathbb{Q} is archimedian (I, 36, deg 8).

1.2 Cuts in the set \mathbb{Q} of rational numbers(1).

- 1° <u>Definition</u>: We say that we have effectively made a cut in \mathbb{Q} when formed, by some mathematical procedure, 2 non-empty, disjoint subsets of \mathbb{Q} , called the lower (a) and greater class (A), which have the three following properties:
 - α) All rational numbers less than an element of (a) is a member of (a),
 - β) All rational numbers greater than an element of (A) is a member of (A),
 - γ) The two classes are adjacent, which signifies that, whatever positive rational number ϵ , there exists a couple of elements a of (a) and A of (A) such that $|A-a| < \epsilon$.

We say that the subsets (a) and (A) are disjoints, which is to say that the have no common element.

A cut is not necessarily a partition (I, 5, $\deg 4$) of \mathbb{Q} , since all rational numbers are not necessarily a class.

2° Consequences of the definition -

- a) All elements A_0 of (A) is greater than all elements of (a), otherwise A_0 belongs to (a) according to property α , which would be a contradiction in their being disjoint. b) If $r \in \mathbb{Q}$ and is not in a class, it is greater than all elements in (a) by (α) and lesser than all elements of (A) by (β)
- c) There can not be two rational numbers, r and r', which are both not in a class. If we suppose that r < r' we have:

$$a < r < r' < A$$

$$A - a > r' - r$$

$$\forall a \in (a) \text{ and } \forall A \in (A)$$

which is a contradiction of property (γ) .

- 3° Theorem. If A partition of \mathbb{Q} consists of two non-empty classes (a) and (A) containing elements a and A, then the following properties hold:
 - (α) All rational numbers less than an element of (a) belongs to (a),
 - (β) All rational numbers greater than an element of (A)n belongs to (A)

This partition is a cut.

The word partition implies, we recall (I, 10, 3°) that (a) and (A) are disjoint and that all rational numbers are in a class. It is sufficient to show that the property (γ) is a consequence of this hypothesis.

- (α) 1
- (β) 2
- (γ) 3
- (δ) 4
- (ε) 5
- (ζ) 6
- (η) 7