Grundbegriffe der Informatik Aufgabenblatt 6

Matr.nr.:								
Nachname:								
Vorname:								
Tutorium:	Nr.	Nr.				Name des Tutors:		
Ausgabe:	2. Dezember 2015							
Abgabe:	11. Dezember 2015, 12:30 Uhr						Uhr	
						Un	tergeschoss	
	von (Gebäu	de 5	50.34	Ł			
Lösungen werderrechtzeitig,in Ihrer eigermit dieser Sein der oberer	nen Ha ite als	ndschri Deckbl	ift, att u	nd		hefte	·t	
abgegeben werde	n.							
Vom Tutor au erreichte Pu	,	llen:						
Blatt 6:					/ 20	0	(Physik: 20)	
Blätter 1 – 6:				/	104	4	(Physik: 101)	

Aufgabe 6.1 (2 + 2 + (2 + 1 + 1 + 2) + 2 + 2 = 14 Punkte)

Es sei A ein Alphabet; es sei \mathcal{L} die Menge aller formalen Sprachen über A, das heißt, $\mathcal{L} = \{L \mid L \subseteq A^*\}$; es sei $f \colon \mathcal{L} \to \mathcal{L}$ eine Abbildung derart, dass für jede formale Sprache $S \in \mathcal{L}$ und jede formale Sprache $S \in \mathcal{L}$ mit $S \subseteq T$ gilt: $f(S) \subseteq f(T)$; es seien die formalen Sprachen S0, induktiv definiert durch

$$L_0 = \{\},$$
 für jedes $n \in \mathbb{N}_0 \colon L_{n+1} = f(L_n);$

und es sei L_{∞} die formale Sprache $\bigcup_{n \in \mathbb{N}_0} L_n$.

- a) Beweisen Sie durch vollständige Induktion, dass für jedes $n \in \mathbb{N}_0$ gilt: $L_n \subseteq L_{n+1}$.
- b) Beweisen Sie, dass $f(L_{\infty}) = L_{\infty}$ gilt. Eine formale Sprache mit dieser Eigenschaft nennt man *Fixpunkt von f*. Hinweis: Für jede Menge I und alle formalen Sprachen $S_i \subseteq A^*$, $i \in I$, gilt $f(\bigcup_{i \in I} S_i) = \bigcup_{i \in I} f(S_i)$.
- c) In dieser Teilaufgabe sei $A = \{0, 1\}$ und es sei

$$f \colon \mathcal{L} \to \mathcal{L},$$

 $L \mapsto \{0,1\} \cup (\{0,1\} \cdot L).$

- (i) Geben Sie L_1 , $L_2 \setminus L_1$ und $L_3 \setminus L_2$ so explizit wie möglich in der Form $\{\dots\}$ an.
- (ii) Geben Sie einen arithmetischen Ausdruck E, in dem das Symbol n vorkommt und die Sprachen L_n , $n \in \mathbb{N}_0$, nicht vorkommen, so an, dass für jedes $n \in \mathbb{N}_0$ gilt: $|L_{n+1} \setminus L_n| = E$.
- (iii) Geben Sie L_{∞} ohne Bezug auf die formalen Sprachen L_n , $n \in \mathbb{N}_0$, an.
- (iv) Geben Sie eine kontextfreie Grammatik G so an, dass die von ihr erzeugte formale Sprache L(G) gleich L_{∞} ist.
- d) In dieser Teilaufgabe sei $A = \{0, 1, ;\}$ und es sei

$$f \colon \mathcal{L} \to \mathcal{L},$$

 $L \mapsto \{0,1\}^+ \cup (\{0,1\}^+ \cdot \{;\} \cdot L).$

Geben Sie eine kontextfreie Grammatik G so an, dass $L(G) = L_{\infty}$ gilt.

e) In dieser Teilaufgabe sei $A = \{(,)\}$ und es sei G = (N, T, S, P) die Grammatik mit den Nichtterminalsymbolen $N = \{S\}$, den Terminalsymbolen $T = \{(,)\}$ und den Produktionen

$$P = \{ \mathtt{S} \to \varepsilon \mid \mathtt{S}(\mathtt{S}) \}.$$

Geben Sie eine Abbildung $f: \mathcal{L} \to \mathcal{L}$ so an, dass $L_{\infty} = L(G)$ gilt.

Lösung 6.1

Nebenbei: Jede Abbildung $g: A^* \to A^*$ induziert eine Abbildung $f: \mathcal{L} \to \mathcal{L}$ vermöge $L \mapsto g(L)$ mit der gewünschten Eigenschaft. Und für jedes $n \in \mathbb{N}_0$ gilt $L_n = f^n(\{\})$. Und $L_\infty = \bigcup_{n \in \mathbb{N}_0} f^n(\{\})$. Und $f(L_\infty) = \bigcup_{n \in \mathbb{N}_0} f^{n+1}(\{\})$.

a) Induktionsanfang: Die leere Menge ist Teilmenge jeder Menge. Insbesondere gilt $L_0 = \{\} \subseteq f(\{\}) = L_1$.

Induktionsschritt: Es sei $n \in \mathbb{N}_0$ derart, dass $L_n \subseteq L_{n+1}$. Dann gilt $L_{n+1} = f(L_n) \subseteq f(L_{n+1}) = L_{(n+1)+1}$.

Schlussworte: Nach dem Prinzip der vollständigen Induktion gilt die Behauptung.

Korrektur: 0,5 Punkte für den Induktionsanfang; 1,5 Punkte für den Induktionsschritt und davon 0,5 Punkte für die Induktionsvoraussetzung.

b) Es gilt

$$f(L_{\infty}) = f(\bigcup_{n \in \mathbb{N}_{0}} L_{n}) = \bigcup_{n \in \mathbb{N}_{0}} f(L_{n}) = \bigcup_{n \in \mathbb{N}_{0}} L_{n+1} = \bigcup_{k \in \mathbb{N}_{+}} L_{k}$$
$$= \{\} \cup \bigcup_{k \in \mathbb{N}_{+}} L_{k} = L_{0} \cup \bigcup_{k \in \mathbb{N}_{+}} L_{k} = \bigcup_{k \in \mathbb{N}_{0}} L_{k} = L_{\infty}.$$

- c) (a) $L_1 \setminus L_0 = \{0, 1\}, L_2 \setminus L_1 = \{00, 01, 10, 11\}, L_3 \setminus L_2 = \{000, 001, 010, 011, 100, 101, 110, 111\}.$ **Korrektur:** Jeweils 0,5 Punkte für L_1 und L_2 ; 1 Punkt für L_3 .
 - (b) $E = 2^{n+1}$.
 - (c) $L_{\infty} = \{0,1\}^+$ oder $L_{\infty} = \{0,1\} \cdot \{0,1\}^*$ oder $L_{\infty} = \{w \in \{0,1\}^* \mid |w| \ge 1\}$ oder ...
 - (d) Die Grammatik G=(N,T,B,P) mit den Nichtterminalsymbolen $\{B\}$, den Terminalsymbolen $\{0,1\}$ und den Produktionen $\{B\to 0\mid 1\mid 0B\mid 1B\}$ leistet das Gewünschte.

Nebenbei: Für jedes $L \in \mathcal{L}$ gilt $f(L) = \{0\} \cup \{1\} \cup \{0\} \cdot L \cup \{1\} \cdot L$. Entfernt man aus diesem Ausdruck die Symbole $\{,\}$ und \cdot , ersetzt \cup durch |, L durch B, = durch \to und f(L) durch B, so erhält man die Produktionen in P.

d) Die Grammatik G = (N, T, S, P) mit den Nichtterminalsymbolen $\{S, B\}$, den Terminalsymbolen $\{0, 1, ;\}$ und den Produktionen

$$\{S \rightarrow B \mid B; S, \\ B \rightarrow 0 \mid 1 \mid 0B \mid 1B\}$$

leistet das Gewünschte.

e) Die Abbildung

$$f: \mathcal{L} \to \mathcal{L},$$

 $L \mapsto \{\varepsilon\} \cup L \cdot \{(\} \cdot L \cdot \{)\},$

leistet das Gewünschte.

Aufgabe 6.2 (2 + 4 = 6 Punkte)

Es sei $G=(N,T,\mathtt{S},P)$ die Grammatik mit den Nichtterminalsymbolen $N=\{\mathtt{S},\mathtt{U},\mathtt{X},\mathtt{Q}\}$, den Terminalsymbolen $T=\{\mathtt{a}\}$ und den Produktionen

$$P = \{ exttt{S}
ightarrow exttt{aU} \mid exttt{aXa} \mid exttt{Qaa}, \ U
ightarrow exttt{aaU} \mid arepsilon, \ X
ightarrow exttt{Qaaa} \mid exttt{a}, \ Q
ightarrow exttt{aXa} \mid exttt{a}\}$$

- a) Leiten Sie aus dem Startsymbol das Wort a⁷ ab. Geben Sie dabei jeden Ableitungsschritt an.
- b) Zeichnen Sie den Ableitungsbaum für das Wort a¹⁶.

Lösung 6.2

Aus dem Nichtterminalsymbol U sind alle Wörter über T gerader Länge ableitbar. Somit sind aus aU alle Wörter über T ungerader Länge ableitbar. Aus den Nichtterminalsymbolen X und Q sind alle Wörter über T der Längen x_n beziehungsweise q_n , $n \in \mathbb{N}_0$, ableitbar, wobei die nicht-negativen ganzen Zahlen x_n und q_n , $n \in \mathbb{N}_0$, wechselseitig induktiv definiert sind durch

$$x_0 = 1,$$

$$q_0 = 1,$$
 für jedes $n \in \mathbb{N}_0$:
$$\begin{cases} x_{n+1} = q_n + 3, \\ q_{n+1} = 1 + x_n + 1. \end{cases}$$

Somit sind aus aXa und Qaa alle Wörter über T der Längen $1 + x_n + 1$ beziehungsweise $q_n + 2$, $n \in \mathbb{N}_0$, ableitbar. Es gelten $x_0 = 1$, $q_0 = 1$, $x_1 = q_0 + 3 = 4$, $q_1 = 1 + x_0 + 1 = 3$, $x_2 = 6$, $q_2 = 6$, $x_3 = 9$, $q_3 = 8$, $x_4 = 11$, $q_4 = 11$, $x_5 = 14$, $q_5 = 13$.

a) Da das Wort ungerade Länge hat kann es über aU aus S wie folgt abgeleitet werden:

$$\mathtt{S}\Rightarrow\mathtt{aU}\Rightarrow\mathtt{aaaU}\Rightarrow\mathtt{aaaaaaU}\Rightarrow\mathtt{aaaaaaaU}\Rightarrow\mathtt{aaaaaaa}$$

b) Da das Wort gerade Länge hat, ist es nicht über aU aus S ableitbar. Da $1 + x_5 + 1 = 16$ gilt, ist das Wort über aXa aus S ableitbar.

Korrektur: Es gibt viele Punkte (4) zu verteilen.

- Ziehen Sie für Fehler auch viel ab ;-).
- 2 Punkte dafür, dass irgendwie erkennbar ist, wie man zu dem Wort kommen kann
- 2 Punkte dafür, dass wirklich ein Ableitungsbaum da steht Standardfehler bei Ableitungsbäumen (oder dem, was Studenten dafür halten):
 - von einem Nichterminal nach unten nicht drei oder vier oder ... Striche, sondern nur einer, also z. B. S

oder noch kreativere Varianten davon; dafür 0/2 Punkte mehr.

Baum passt gar nicht zu dem Produktionen;
 je nicht passendem Ableitungsschritt 0.5 Punkte abziehen