Challenge N: Crossmatching

Dr Paul Hancock

International Centre for Radio Astronomy Research

Our view into the universe

Radio Imaging: A supercomputer for a lense

Interesting Event

Transform Visibilities into Images

Correlate Voltages to form Visibilities

What changes in the sky?

Making catalogues

Making light curves = crossmatching

Our workflow

The bottleneck

Good vs Bad

Good vs Bad

Residual effects: position/flux 'jitters'

Position shifts can confuse nearby sources

A real light curve is not always flat

Your task:

Take the 50 catalogues

- crossmatch them and create light curves with a unique measurement in each epoch,
- report back the row ID for each source in each epoch,
- sort your answer key by epoch00 row ID

Save as a .csv

Celestial Coordinates and distances

- RA/Dec = Lat/Long
 - projected onto the sky
- RA/Dec are in degrees:
 - o Dec in degrees of arc
 - o RA in degrees of "time"
 - arcdeg(RA) = RA*15*cos(dec)
- Distances are Great Circle Distances
 - o <u>en.wikipedia.org/wiki/Great-circle_distance</u>
 - o <u>en.wikipedia.org/wiki/Haversine_formula</u>

