Amazon Reviews Mobile Phones

```
import smtplib
from matplotlib import style
import seaborn as sns
sns.set(style='ticks', palette='RdBu')
import pandas as pd
import numpy as np
import time
import datetime
%matplotlib inline
import matplotlib.pyplot as plt
```

Read the data

```
In [32]:

data = pd.read_csv('Amazon_Unlocked_Mobile.csv', encoding='utf-8')

df = data
    df.columns = ['ProductName', 'BrandName', 'Price', 'Rating', 'Reviews', 'Re
    df.head().T

Out[32]:

O 1 2 3 4

"CLEAR "CLEAR "CLEAR "CLEAR "CLEAR "CLEAR "CLEAR CLEAN ESN" CLEAN ESN" CLEAN ESN" CLEAN ESN" CLEAN ESN"

ProductName Sprint EPIC Sprin
```

ProductName	"CLEAR CLEAN ESN" Sprint EPIC 4G Galaxy SPH-D7				
BrandName	Samsung	Samsung	Samsung	Samsung	Samsung
Price	199.99	199.99	199.99	199.99	199.99
Rating	5	4	5	4	4
Reviews	I feel so LUCKY to have found this used (phone	nice phone, nice up grade from my pantach revu	Very pleased	It works good but it goes slow sometimes but i	Great phone to replace my lost phone. The only
ReviewVotes	1.0	0.0	0.0	0.0	0.0

Describe the data

```
In [34]:
            data.head(n=2)
Out [34]:
                          ProductName BrandName
                                                       Price Rating
                                                                              Reviews
                                                                                        ReviewVotes
                                                                        I feel so LUCKY
                    "CLEAR CLEAN ESN"
                                                                         to have found
           0
                   Sprint EPIC 4G Galaxy
                                            Samsung 199.99
                                                                   5
                                                                                                 1.0
                                                                             this used
                               SPH-D7...
                                                                              (phone...
                                                                       nice phone, nice
                    "CLEAR CLEAN ESN"
                                                                         up grade from
                   Sprint EPIC 4G Galaxy
                                            Samsung 199.99
                                                                                                 0.0
                                                                           my pantach
                               SPH-D7...
                                                                                revu...
```

In [35]:	<pre>df['Price'] = df['Price'].fillna(0) df['ReviewVotes'] = df['ReviewVotes'].fillna(0) data.describe()</pre>
----------	--

Out[35]:		Price	Rating	ReviewVotes
	count	413840.000000	413840.000000	413840.000000
	mean	223.614684	3.819578	1.462454
	std	272.380590	1.548216	9.030315
	min	0.000000	1.000000	0.000000
	25%	78.000000	3.000000	0.000000
	50%	139.950000	5.000000	0.000000
	75%	269.100000	5.000000	1.000000
	max	2598.000000	5.000000	645.000000

Categorical features

```
In [36]:
          categorical_features = (data.select_dtypes(include=['object']).columns.valu
          categorical features
         array(['ProductName', 'BrandName', 'Reviews'], dtype=object)
Out[36]:
```

Numerical Features

```
In [37]:
          numerical_features = data.select_dtypes(include = ['float64', 'int64']).col
          numerical features
         array(['Price', 'Rating', 'ReviewVotes'], dtype=object)
Out[37]:
```

```
In [38]: len(list(set(df['ProductName'])))
Out[38]: 4410
```

Pivot tables

Out [39]: sum mean count_nonzero

Rating ReviewVotes Rating ReviewVotes Rating ReviewVotes

	Rating	ReviewVotes	Rating	ReviewVotes	Rating	ReviewVotes	Rating
BrandName							
AKUA	20	0.0	5.000000	0.000000	4	0	0.0
AMM Global Enterprises	44	1.0	4.888889	0.111111	9	1	0.333333
ARGOM TECH	6	0.0	3.000000	0.000000	2	0	2.828427
ASUS	2165	838.0	4.482402	1.734990	483	185	1.070735
ASUS Computers	2896	831.0	4.027816	1.155772	719	228	1.386085
AT&T	5	0.0	5.000000	0.000000	1	0	
ATT	160	25.0	3.636364	0.568182	44	17	1.792632
Acer	68	27.0	3.090909	1.227273	22	14	1.715728
Aeku	10	8.0	5.000000	4.000000	2	1	0.0
AeroAntenna	5	0.0	5.000000	0.000000	1	0	

Which are the top 10 prominent brands?

And how many ratings do they have?

Out[40]:		sum			mean		count_nonzero	
		Rating	ReviewVotes	Rating	ReviewVotes	Rating	ReviewVotes	Ratinç
	BrandName							
	All	1330128	499722	3.814873	1.433228	348669	102770	1.545507
	Samsung	260513	97903	3.962356	1.489087	65747	18602	1.48531
	BLU	239853	58430	3.792262	0.923824	63248	15985	1.502263
	Apple	228346	112280	3.924415	1.929674	58186	18388	1.57606
	LG	86114	23070	3.841460	1.029130	22417	5912	1.534323
	BlackBerry	63126	21114	3.741465	1.251422	16872	4058	1.59993
	Nokia	64187	25964	3.819291	1.544924	16806	5530	1.490946
	Motorola	51157	23107	3.812849	1.722218	13417	4392	1.524914
	нтс	44094	12803	3.465420	1.006209	12724	3184	1.660243
	CNPGD	39176	20151	3.106002	1.597637	12613	3502	1.618294
	OtterBox	35022	2276	4.383778	0.284892	7989	743	1.16456

Lets extract data only for top 10 brands.

```
In [41]:
    top_10_brands = top_10_brands.reset_index()
    tt_brand = top_10_brands['BrandName']
    tt_brand2 = tt_brand.reset_index()
    top_10_brand_list = list(set(tt_brand2['BrandName']))
    top_10_brand_list.remove('All')
In [42]:
top_10_brand_list
```

```
['Apple',
Out[42]:
           'OtterBox',
           'CNPGD',
           'BlackBerry',
           'BLU',
           'HTC',
           'Nokia',
           'LG',
           'Samsung',
           'Motorola'
In [43]:
          df_small=df.loc[df['BrandName'].isin(top_10_brand_list)]
          pivot = pd.pivot table(df small,
                       values = ['Rating'],
                       index = ['BrandName'],
                                   columns= [],
                                   aggfunc=[np.mean, np.std],
                                   margins=True, fill value=0).sort values(by=('mean',
          pivot
Out[43]:
                                   std
                        mean
                       Rating
                                 Rating
          BrandName
            OtterBox 4.383778
                              1.164561
            Samsung 3.962356 1.485313
               Apple 3.924415 1.576060
                 LG 3.841460 1.534323
                 All 3.832811 1.540667
               Nokia 3.819291 1.490946
            Motorola 3.812849 1.524914
                BLU 3.792262 1.502263
          BlackBerry 3.741465 1.599935
```

How do average ratings look like for top 10 brands?

```
cmap = sns.cubehelix_palette(start = 1.5, rot = 1.5, as_cmap = True)
plt.subplots(figsize = (15, 8))
sns.heatmap(pivot.T,linewidths=0.2,xticklabels=True, yticklabels=True)
```

HTC 3.465420 1.660243

CNPGD 3.106002 1.618294

Lets find out their topmost products: For 10 Brands, what are top 10 products?

```
In [46]:
```

```
def plot one company(company, n=20):
    df_one_company = df_small.loc[df_small['BrandName'].isin([company])]
    pivot = pd.pivot_table(df_one_company,
            values = ['Rating', 'ReviewVotes'],
            index = ['ProductName'],
                       columns= [],
                       aggfunc=[np.sum, np.mean, np.count_nonzero, np.std]
                       margins=True, fill value=0).sort values(by=('count i
    top_10_prods = pivot.reindex().head(n=20)
    top_10_prods = top_10_prods.reset_index()
    tt prods = top 10 prods['ProductName']
    tt_prods2 = tt_prods.reset_index()
    top 10 prods list = list(set(tt prods2['ProductName']))
    #top 30 prod list
    try:
        aa= df one company[df one company['ProductName'].isin(top 10 prods
        g = sns.factorplot(x='ProductName',
                           y='Rating',
                           data=aa,
                           saturation=1,
                           kind="bar",
                           ci=None,
                           aspect=4,
                           linewidth=1)
        locs, labels = plt.xticks()
        plt.setp(labels, rotation=90)
    except:
        pass
for i in top 10 brand list:
    plot_one_company(i, 20)
    break
```

/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packag es/seaborn/categorical.py:3714: UserWarning: The `factorplot` function has been renamed to `catplot`. The original name will be removed in a future re lease. Please update your code. Note that the default `kind` in `factorplot` (`'point'`) has changed `'strip'` in `catplot`.

Correlations

```
def heat_map(corrs_mat):
    sns.set(style="white")
    f, ax = plt.subplots(figsize=(10, 10))
    mask = np.zeros_like(corrs_mat, dtype=np.bool)
    mask[np.triu_indices_from(mask)] = True
    # Generate a custom diverging colormap
    cmap = sns.diverging_palette(220, 10, as_cmap=True)
    sns.heatmap(corrs_mat, mask=mask, cmap=cmap, ax=ax)

variable_correlations = df.corr()
    #variable_correlations
heat_map(variable_correlations)
```

/var/folders/t5/9m9lvjj92gqf_0pwjzljb7xr0000gn/T/ipykernel_75110/3007583381 .py:4: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scala r type, use `np.bool_` here.

Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations

mask = np.zeros_like(corrs_mat, dtype=np.bool)

In [48]: df.columns.values
Out[48]: array(['ProductName', 'BrandName', 'Price', 'Rating', 'Reviews',

How the reviews of the products depends over the price and the brand name?

'ReviewVotes'], dtype=object)

/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packag es/seaborn/axisgrid.py:1969: UserWarning: The `size` parameter has been ren amed to `height`; please update your code.

warnings.warn(msg, UserWarning)

<seaborn.axisgrid.PairGrid at 0x7faa1b6a3880>

Out[49]:

Complex plots

```
In [50]:
```

```
sns.set(style="white", palette="muted", color_codes=True)
f, axes = plt.subplots(2, 3, figsize=(20,20))
sns.despine(left=True)
sns.distplot(df['Price'],
                                     color="b", ax=axes[0, 0])
sns.distplot(df['Rating'],
                                     color="r", ax=axes[0, 1])
sns.distplot(df['ReviewVotes'],
                                     color="g", ax=axes[0, 2])
                                     kde=False, color="b", ax=axes[1, 0])
sns.distplot(df['Price'],
                                     kde=False, color="r", ax=axes[1, 1])
sns.distplot(df['Rating'],
sns.distplot(df['ReviewVotes'],
                                     kde=False, color="g", ax=axes[1, 2])
#sns.distplot(df['hour'],
                                           kde=False, color="b", ax=axes[1
plt.tight_layout()
```

/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packag es/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packag es/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packag es/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packag es/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Lets find out something about the products and rating of the Apple.

```
In [52]:
    tt_brand = topmost_prods['ProductName']
    tt_brand2 = tt_brand.reset_index()
    top_10_prod_list = list(set(tt_brand2['ProductName']))
```

Is Apple is earning more income from customer or its Samsung

/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packag es/seaborn/axisgrid.py:1969: UserWarning: The `size` parameter has been ren amed to `height`; please update your code.

warnings.warn(msg, UserWarning)

Out[53]: <seaborn.axisgrid.PairGrid at 0x7faa79b61e80>

In []:		