EXPERIMENT-7

Aim:

Write a program to implement the Naive Bayesian classifier for the given dataset and compute the accuracy of the classifier.

Requirements:

Algorithm:

- 1. Naive Bayes algorithm is a supervised learning algorithm, which is based on Bayes theorem and used for solving classification problems.
- 2. It is a probabilistic classifier, which means it predicts on the basis of the probability of an object.

Dataset:

- 'user_data' contains the information of various users obtained from the social networking sites. There is a car making company that has recently launched a new car. So the company wanted to check whether the user can purchase a car or not.
- 2. For this problem, we will build a Machine Learning model using the Naive Bayes algorithm.

Importing the libraries:

- 1. pandas is imported to read the csv file.
- 2. From sklearn.naive_bayes we should import GaussianNB ,it is used to fit it to the training dataset.
- 3. from sklearn.metrics we should import confusion_matrix ,it is used to test the accuracy of the result.

Procedure:

- 1. Data Pre-processing step: In this step, we will pre-process/prepare the data so that we can use it efficiently in our code.
- 2. Fitting Naive Bayes to the Training set: After the pre-processing step, now we will fit the Naive Bayes model to the Training set.

- 3. Predicting the test result: Now we will predict the test set result. For this, we will create a new predictor variable y_red, and will use the predict function to make the predictions.
- 4. Test accuracy of the result (Creation of Confusion matrix): Now we will check the accuracy of the Naive Bayes classifier using the Confusion matrix.

Code:

```
import pandas as pd
import numpy as nm
# Importing the dataset
dataset = pd.read csv('user data.csv')
dataset
x = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values
# Splitting the dataset into the Training set and Test set
from sklearn.model selection import train test split
x train, x test, y train, y test = train test split(x, y, test size = 0.25, random state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x \text{ test} = \text{sc.transform}(x \text{ test})
```

Output:

G·		User ID	Gender	Age	EstimatedSalary	Purchased
	0	15624510	Male	19	19000	0
	1	15810944	Male	35	20000	0
	2	15668575	Female	26	43000	0
	3	15603246	Female	27	57000	0
	4	15804002	Male	19	76000	0
	5	15728773	Male	27	58000	0
	6	15598044	Female	27	84000	0
	7	15694829	Female	32	150000	1
	8	15600575	Male	25	33000	0
	9	15727311	Female	35	65000	0
	10	15570769	Female	26	80000	0
	11	15606274	Female	26	52000	0
	12	15746139	Male	20	86000	0
	13	15704987	Male	32	18000	0
	14	15628972	Male	18	82000	0
	15	15697686	Male	29	80000	0
	16	15733883	Male	47	25000	1
	17	15617482	Male	45	26000	1
	18	15704583	Male	46	28000	1
	19	15621083	Female	48	29000	1

1.

Fitting Naive Bayes to the Training set

from sklearn.naive_bayes import GaussianNB

classifier = GaussianNB()

classifier.fit(x_train, y_train)

Predicting the Test set results

y_pred = classifier.predict(x_test)

y_pred

Output:

array([1, 0, 1, 0, 0])

```
# Making the Confusion Matrix
```

from sklearn.metrics import confusion_matrix

```
cm = nm.array(confusion_matrix(y_test, y_pred))
```

cm

Output:

```
array([[3, 0],
```

[0, 2]])

Result:

The above Naive Bayesian classifier program is successfully executed and successfully computed the accuracy of the classifier.