SYDE 556/750

Simulating Neurobiological Systems Lecture 5: Feed-Forward Transformation

Andreas Stöckel

January 30, 2020

NEF Principle 2: Transformation

NEF Principle 2 – Transformation

Connections between populations describe *transformations* of neural representations. Transformations are functions of the variables represented by neural populations.

A Tale of Two Populations (I)

Population A

A Tale of Two Populations (I)

Communication Channel Experiment: Same input signal

A Tale of Two Populations (II)

A Tale of Two Populations (II)

Communication Channel Experiment: Populations in series

Communication Channel Experiment: Populations in series

Computing Synaptic Weights: Step 1 – Encoding Matrix

Computing Synaptic Weights: Step 1 – Encoding Matrix

Computing Synaptic Weights: Step 2 – Scaled Encoding Matrix

Computing Synaptic Weights: Step 3 - W = ED

Computing Functions

Computing Functions

Computing Functions

Function Decoder $\mathbf{D}^f = \left((\mathbf{A}\mathbf{A}^\mathsf{T} + N\sigma^2\mathbf{I})^{-1}\mathbf{A}\mathbf{Y}^\mathsf{T} \right)^\mathsf{T}$, where $\left(\mathbf{Y} \right)_{ik} = \left(f(\mathbf{x}_k) \right)_i$

Decoding Functions – Using a Few Neurons

Decoding Functions - Using More Neurons

Decoding Functions - Using More Neurons

Decoding Functions - Using More Neurons

Computing Functions – Weight Matrix

$$\mathbf{W}^f = \mathbf{E} \mathbf{D}^f$$

Computing Multivariate Functions

→ Homogenous population
→ Linear connection
→ Inh. connection
→ Exc. connection

Linear Superposition

$$W^{\mathit{f}_{1}}\mathbf{a}_{1}(\mathbf{x}) + W^{\mathit{f}_{2}}\mathbf{a}_{2}(\mathbf{y})$$

Computing Multivariate Functions

Homogenous population
→ Linear connection
→ Inh. connection
→ Exc. connection

Linear Superposition

$$W^{f_1}\mathbf{a}_1(\mathbf{x}) + W^{f_2}\mathbf{a}_2(\mathbf{y})$$

Nonlinear Functions

Multi-dimensional z

Computing Multivariate Functions

→ Homogenous population
→ Linear connection
→ Inh. connection
→ Exc. connection

Linear Superposition

$$W^{f_1}\mathbf{a}_1(\mathbf{x}) + W^{f_2}\mathbf{a}_2(\mathbf{y})$$

Nonlinear Functions

Multi-dimensional z

(Dendritic Computation)

Exploit dendritic nonlinearity

Computing Multivariate Functions – Linear Superposition

Linear Superposition

Computing Multivariate Functions – Multiplication

Nonlinear Functions

Multi-dimensional z

Computing Multivariate Functions – Multiplication

Nonlinear Functions

Multi-dimensional z

Multiplication is useful...

- Gating of signals
- ► Attention effects
- Binding
- Statistical inference

Image sources

Title slide

"Yellow Butterfly"

Author: Albert Bierstadt, circa 1890.

From Wikimedia.