CLAIMS

What is claimed is:

1.	A real-time, optoelectronic (OE) alignment system, comprising:
	a first OE device;
	a second OE device optically coupled to said first OE device;
	a capturing means for maintaining said second OE device in a fixed
position, said	capturing means further retaining said first OE device in optical
engagement v	with said second OE device, and said first OE device further having a
plurality of de	egrees of positional freedom associated therewith;
	an error detection means for generating a positional error signal, whenever
either of said	first and second OE devices has deviated from a desired optical alignment
with respect t	to the other; and
	an actuation means, responsive to said error detection means, said
actuation me	ans for automatically adjusting the position of said first OE device so as to
bring said fir	st OE device in said desired optical alignment with said second OE device.
2.	The OE alignment system of claim 1, wherein:
	said second OE device is affixed to a reference plane;
	said first OE device is movably disposed within a housing; and
	said housing is affixed with respect to said second OE device.
3.	The OE alignment system of claim 2, wherein said actuation means is

disposed within said housing.

1	4. The OE alignment system of claim 2, wherein said first OE device further
2	comprises one of:
3	an active device emitter; and
4	an emitting end of a fiber optic cable.
1	5. The OE alignment system of claim 1, wherein said error detection means
2	further comprises:
3	a beam position structure, affixed to one of said first and second OE
4	devices, said beam position structure located so as to reflect a portion of an incident
5	optical beam originating from the other of said first and second OE devices; and
6	an optical sensing device, said optical sensing device located so as to
7 -	detect said reflected portion of said incident optical beam;
8	wherein said optical sensing device generates said positional error signal,
9	said positional error signal having a magnitude proportional to the degree of deviation
10	from said desired optical alignment.
1	6. The OE alignment system of claim 5, further comprising:
2	a controller, said controller converting said positional error signal to
3	correction signal, said correction signal being inputted to said actuation means.
1	7. The OE alignment system of claim 6, further comprising:
2.	a driver, said driver having said correction signal as an input thereto and
3	an output for providing a controlled current to said actuation means.

1	8.	The OE angiment system of claim 5, wherein said actuation means further
2	comprises:	
3		a plurality of actuator mechanisms, each of said plurality of actuator
4	mechanisms	capable of imparting a translating motion upon said first OE device.
1	9.	The OE alignment system of claim 8, further comprising:
2		a first actuator mechanism having a first linkage directly coupled to said
3	first OE devi	ce;
4		a second actuator mechanism having a second linkage directly coupled to
5	said first actu	uator mechanism; and
6		a third actuator mechanism having a third linkage directly coupled to said
7	second actua	tor mechanism, said third actuator mechanism being affixed within said
8	housing.	
1	10.	The OE alignment system of claim 9, wherein:
2		said first actuator is capable of translating said first OE device along a first
3	axis;	
4	·	said second actuator is capable of translating said first OE device along a
5	second axis	which is orthogonal to said first axis; and
6		said third actuator is capable of translating said first OE device along a
7	third axis wh	nich is orthogonal to both said first and second axes.
1	11.	The OE alignment system of claim 5, wherein said error detection means
1		e magnitude of optical power received by said second OE device to a desired
2	-	
3	optical power	er ievei.

1

12.

2	generates said positional error signal whenever said magnitude of optical power received
3	by said second OE device is less than said desired optical power level.
1	13. A method for automatically adjusting the optical alignment of devices
2	within an active, optoelectronic (OE) system, the method comprising:
3	optically coupling a first OE device to a second OE device in a desired
4	optical alignment;
5	maintaining said second OE device in a fixed position while retaining said
6	first OE device in moveable optical engagement with said second OE device, said first
7	OE device further having a plurality of degrees of positional freedom associated
8	therewith;
9	generating a positional error signal whenever either of said first and
10	second OE devices has deviated from said desired optical alignment with respect to the
11	other; and
12	responsive to said error detection means, automatically adjusting the
13	position of said first OE device so as to bring said first OE device in said desired optical
14	alignment with said second OE device.
1	14. The method of claim 13, wherein:
2	said second OE device is affixed to a reference plane;
3	said first OE device is movably disposed within a housing; and
4	said housing is affixed with respect to said second OE device.
1	15. The method of claim 14, wherein the position of said first OE device is
2	adjusted within said housing.

The OE alignment system of claim 11, wherein said error detection means

1	16. The method of claim 14, wherein said first OE device further comprises
2	one of:
3	an active device emitter; and
4	an emitting end of a fiber optic cable.
1	17. The method of claim 13, further comprising:
2	affixing a beam position structure to one of said first and second OE
3	devices, said beam position structure located so as to reflect a portion of an incident
4	optical beam originating from the other of said first and second OE devices; and
5	locating an optical sensing device so as to detect said reflected portion of
6	said incident optical beam;
7	wherein said optical sensing device generates said positional error signal
8	said positional error signal having a magnitude proportional to the degree of deviation
9	from said desired optical alignment.
1	18. The method of claim 17, further comprising:
2	converting said positional error signal to a correction signal, said
3	correction signal being used to adjust the position of said first OE device.
1	19. The method of claim 18, further comprising:
2	generating a controlled current from a driver, said driver having said
3	correction signal as an input thereto and an output coupled to an actuation means.

	20.	The method of claim 19, wherein said actuator means further comprises:
		a first actuator mechanism having a first linkage directly coupled to said
first OE device;		
		a second actuator mechanism having a second linkage directly coupled to
said first actuator mechanism; and		
		a third actuator mechanism having a third linkage directly coupled to said
	second actuat	for mechanism, said third actuator mechanism being affixed within said
	housing.	