

# Python

Les deux parties sont indépendantes.

#### Partie A

On considère la suite  $(v_n)$  définie sur  $\mathbb{N}$  par :

$$v_0 = 1 \text{ et } v_{n+1} = \frac{3}{4}v_n.$$

- 1. Préciser la nature de la suite  $(v_n)$  et ses éléments caractéristiques.
- 2. Donner, pour tout entier naturel n, l'expression de  $v_n$  en fonction de n.
- 3. Étudier le sens de variation de la suite  $(v_n)$ .
- 4. Calculer la somme  $\mathscr{S}$  des n premiers termes de la suite  $(v_n)$ .

### Partie B

On modélise une suite  $(w_n)$  à l'aide de la fonction suivante écrite en langage Python :

- 1. Que renvoie l'exécution de terme(5)?
- 2. En vous inspirant de la fonction terme(n), proposer une fonction  $somme\_termes(n)$ , écrite en langage Python, qui renvoie la somme des n premiers termes de la suite  $(w_n)$ .



#### Python

En 1995, le taux de scolarisation des jeunes de 18 ans atteignait 84,8%, du fait d'une forte progression de la poursuite d'études dans le second cycle général et technologique jusqu'au baccalauréat. Une étude de l'INSEE montre que ce taux de scolarisation a régulièrement diminué au cours des dix années suivantes. On considère que la diminution du taux de scolarisation à 18 ans est chaque année de 1% à partir de 1995. Pour tout entier naturel n, on modélise le taux de scolarisation des jeunes de 18 ans en 1995 + n, par une suite  $(u_n)$ ; ainsi  $u_0 = 84, 8$ .

- 1. Quel est le taux de scolarisation des jeunes âgés de 18 ans en 1996?
- 2. Déterminer, en justifiant, la nature de la suite  $(u_n)$ .
- 3. On donne le programme suivant en langage Python :

- (a) Déterminer la valeur numérique que contient la variable n à l'issue de l'exécution du programme.
- (b) Interpréter cette valeur dans le contexte de l'énoncé.

- 4. Exprimer, pour tout entier naturel n,  $(u_n)$  en fonction de n.
- 5. Quel sera le taux de scolarisation des jeunes de 18 ans en 2021 selon ce modèle? Arrondir le résultat au dixième.



## Tableur

Soit u la suite définie par  $u_0 = 2$  et, pour tout entier naturel n, par

$$u_{n+1} = 2u_n + 2n^2 - n.$$

On considère également la suite v définie, pour tout entier naturel n, par

$$v_n = u_n + 2n^2 + 3n + 5.$$

1. Voici un extrait de feuille de tableur :

|    | A | В  | С  |
|----|---|----|----|
| 1  | n | u  | v  |
| 2  | 0 | 2  | 7  |
| 3  | 1 | 4  | 14 |
| 4  | 2 | 9  | 28 |
| 5  | 3 | 24 | 56 |
| 6  | 4 | 63 |    |
| 7  |   |    |    |
| 8  |   |    |    |
| 9  |   |    |    |
| 10 |   |    |    |

Quelles formules a-t-on écrites dans les cellules C2 et B3 et copiées vers le bas pour afficher les termes des suites u et v?

2. Déterminer, en justifiant, une expression de  $v_n$  et de  $u_n$  en fonction de n uniquement.



### Liste et Python

On considère le programme suivant écrit en Python :

```
1    def liste(N):
2        U=1
3        L=[1]
4        for i in range(1,N):
5        U=2*U+3
6        L.append(U)
7        return L
```

- 1. Que contient la variable L à la fin de l'exécution dans le cas où on choisit N=4? Justifier.
- 2. Soit la suite  $(u_n)$  définie sur  $\mathbb{N}$  par  $u_0 = 1$  et  $u_{n+1} = 2u_n + 3$  et la suite  $(v_n)$  définie sur  $\mathbb{N}$  par  $v_n = u_n + 3$ .
  - (a) Démontrer que la suite  $(v_n)$  est une suite géométrique. Préciser sa raison et son premier terme.
  - (b) Exprimer pour tout entier naturel n,  $v_n$  en fonction de n.
  - (c) Déterminer l'expression de  $S_n = \sum_{k=0}^n v_k$ .
- (d) En déduire l'expression de  $S'_n = \sum_{k=0}^n u_k$ .