PANDAS

OVERVIEW

Pandas

- Panel Data Module
- objects: series and dataframes
- series similar to a table column
- dataframe similar to a table
- designed to manage indexed data (like SQL)

A Numerical Dataset

object	Height	Weight	Foot	Label
$ x_i $	(H)	(W)	(F)	$\mid L \mid$
x_1	5.00	100	6	green
$ x_2 $	5.50	150	8	green
x_3	5.33	130	7	green
$ x_4 $	5.75	150	9	green
x_5	6.00	180	13	red
$ x_6 $	5.92	190	11	red
x_7	5.58	170	12	red
x_8	5.92	165	10	red

- N = 8 items
- M = 3 (unscaled) attributes

Code for the Dataset

ipdb> data

```
id Height Weight Foot Label
     5.00
  1
0
              100
                     6
                       green
1
   2 5.50
              150
                       green
2
  3 5.33
                    7
              130
                       green
3
  4 5.75
              150
                    9
                       green
4
  5 6.00
              180
                    13
                         red
5
  6 5.92
              190
                    11
                         red
  7 5.58
6
                    12
              170
                         red
7 8 5.92
              165
                    10
                         red
```

Alternative Approach

ipdb> data

```
id Height Weight Foot Label
 1 5.00
           100
0
                   green
  2 5.50
1
           150
                 8
                   green
                 7 green
  3 5.33
           130
3
  4 5.75
           150
                9
                   green
  5 6.00
           180
4
                13
                     red
5 6 5.92
           190
                11
                     red
6 7 5.58
           170
                12
                    red
7 8 5.92
           165 10 red
```

Some Observations

- data in different shapes (dictionary, lists)
- different data types
- columns have custom names
- index can be in different formats

Typical Operations

- index values
 - > data.index
 RangeIndex(start=0, stop=8, step=1)
- column names

Data Selection

- selection via index:
 - 1..loc by label
 - 2. iloc by position

```
> data.iloc[5]
```

id 6

Height 5.92

Weight 190

Foot 11

Label red

Name: 5, dtype: object

Data Selection

- selection of multiple indices
 - > data.iloc[[5,7]]

```
    id Height Weight Foot Label
    5 6 5.92 190 11 red
    7 8 5.92 165 10 red
```

- se; ection via index object
 - > data.iloc[data.index[1:7:2]]

Label	Foot	Weight	Height	id	
green	8	150	5.50	2	1
green	9	150	5.75	4	3
red	11	190	5.92	6	5

Statistical Functions

apply statistical functions

Lambda Functions

apply lambda functions

```
> data[['Height',
    'Weight']].apply(lambda x: x**2)
   Height Weight
0 25.0000
            10000
1 30.2500 22500
2 28.4089
            16900
3 33.0625 22500
4 36.0000
           32400
5 35.0464
            36100
6 31.1364
            28900
7 35.0464 27225
```

Adding Column(s)

> data

	id	Height	Weight	Foot	Label	n_col
0	1	5.00	100	6	green	a
1	2	5.50	150	8	green	b
2	3	5.33	130	7	green	С
3	4	5.75	150	9	green	d
4	5	6.00	180	13	red	е
5	6	5.92	190	11	red	f
6	7	5.58	170	12	red	g
7	8	5.92	165	10	red	h

Dropping Column(s)

- > data.drop(['n_col'],axis=1,inplace=True
- > data

Label	Foot	Weight	Height	id	
green	6	100	5.00	1	0
green	8	150	5.50	2	1
green	7	130	5.33	3	2
green	9	150	5.75	4	3
red	13	180	6.00	5	4
red	11	190	5.92	6	5
red	12	170	5.58	7	6
red	10	165	5.92	8	7

• axis: 1-columns, 0 - rows

Desribing the Dataset

```
import pandas as pd
data = pd.DataFrame(
   {'id':[1,2,3,4,5,6,7,8]}
    'Label':['green','green','green','green',
                  'red','red','red','red'],
    'Height': [5,5.5,5.33,5.75,6.00,5.92,5.58,5.92],
    'Weight': [100,150,130,150,180,190,170,165],
    'Foot':[6, 8, 7, 9, 13, 11, 12, 10]},
    columns = ['id', 'Height', 'Weight', 'Foot', 'Label'])
ipdb> data.describe()
                    Height
                                 Weight
                                               Foot
             id
       8.00000
                  8.000000
                               8.000000
                                            8.00000
count
                 5.625000
                             154.375000
                                            9.50000
       4.50000
mean
       2.44949
                 0.343428
                              28.962722
                                            2.44949
std
min
        1.00000
                 5.000000
                             100.000000
                                            6.00000
25%
                                           7.75000
       2.75000
                 5.457500
                             145.000000
50%
       4.50000
                 5.665000
                             157.500000
                                            9.50000
75%
       6.25000
                 5.920000
                             172.500000
                                           11.25000
                             190.000000
       8.00000
                 6.000000
                                          13.00000
max
```

A Dataset Illustration

