Chapter 3 — Calculus of logarithmic functions

Exercise 3.2 - The natural logarithm

- **1 a** $\log_a x = 1$
 - $x = e^1$
 - **b** $\log_{e} x = 2$
 - $x = e^2$
 - $\mathbf{c} \log_a x = -2$
 - $x = e^{-2}$

 - ≈ 0.135
 - $\mathbf{d} \quad \log_e x = -1$
 - $x = e^{-1}$ $=\frac{1}{e}$
 - ≈ 0.368
 - **e** $\log_{a} x = 0.3$
 - $x = e^{0.3}$
 - $x \approx 1.350$
 - $\mathbf{f} \log_{e} x = -0.69$
 - $x = e^{-0.69}$
 - $x \simeq 0.502$
- **2 a** $\log_{e} 2x = 2$
 - $2x = e^2$
 - $x = \frac{1}{2}e^2$
 - $x \approx 3.695$
 - **b** $\log_a 3x = 1$
 - 3x = e
 - $x = \frac{e}{3}$
 - $x \approx 0.906$
 - **c** $\log_{a} x^{3} = 3$
 - $x^{3} = e^{3}$
 - x = e
- 3 a $\log_a(x-1) = -1$
 - $x 1 = e^{-1}$
 - x 1 = 0.368
 - x = 1.368
 - **b** $\log_e(2x+1) = -2$
 - $2x + 1 = e^{-2}$
 - 2x + 1 = 0.135
 - 2x = -0.865
 - x = -0.432
 - $c \log_e(-x) = 0.36$
 - $-x = e^{0.36}$
 - -x = 1.433
 - x = -1.433

- **d** $\log_{e}(-x) = 0.72$
 - $-x = e^{0.72}$
 - -x = 2.054
 - x = -2.054
- $e \log_{a}(1-x) = -0.54$
 - $1 x = e^{-0.54}$
 - 1 x = 0.583
 - -x = -0.417
 - x = 0.417
- $\mathbf{f} \log_{a}(2+x) = -0.83$
 - $2 + x = e^{-0.83}$
 - 2 + x = 0.436
 - x = -1.564
- **4 a** $\log_e x + \log_e 5 = 8$
 - $\log_e 5x = 8$

 - $x = \frac{e^8}{5} \approx 596.192$
 - **b** $2 \ln x \ln 5 = 9 \text{ for } x > 0$
 - $\ln x^2 \ln 5 = 9$
 - $\ln \frac{x^2}{5} = 9$

 - $x^2 = 5e^9$

 $x = \sqrt{5e^9}$ since x > 0 for log to be defined.

- $c 1 + \ln x = \ln 6$
 - $\ln e + \ln x = \ln 6$
 - $\ln ex = \ln 6$
 - ex = 6
 - $x = \frac{6}{a}$
- $2 \log_e x = \log_e 10$
 - $2\log_e e \log_e x = \log_e 10$
 - $\log_e e^2 \log_e x = \log_e 10$
 - $\log_e\left(\frac{e^2}{x}\right) = \log_e 10$ $\frac{e^2}{r} = 10$

 - $e^2 = 10x$
 - $x = \frac{e^2}{10}$
- **5 a** $\log_e x + \log_e 5 \log_e 10 = \log_e 3$
 - $\log_e \left(\frac{5x}{10}\right) = \log_e 3$ $\frac{x}{2} = 3$

b
$$\log_e x + \log_e 3 - \log_e 9 = \log_e 4$$

$$\log_e\left(\frac{3x}{9}\right) = \log_e 4$$
$$\frac{x}{3} = 4$$

$$x = 12$$

$$c \ 2 \log_e 3 + \log_e x - \log_e 2 = \log_e 3$$

$$\log_e \left(\frac{3^2 x}{2}\right) = \log_e 3$$

$$\frac{9x}{2} = 3$$

$$x = \frac{6}{9}$$

$$x = \frac{2}{3}$$

d
$$3 \log_e 2 + \log_e x - \log_e 4 = \log_e 5$$

$$\log_e \left(\frac{2^3 x}{4}\right) = \log_e 5$$

$$\frac{8x}{4} = 5$$

$$x = \frac{5}{2}$$

$$e \log_e 6 + \log_e 2 - \log_e x = \log_e 4$$

$$\log_e \left(\frac{6 \times 2}{x}\right) = \log_e 4$$

$$\frac{12}{x} = 4$$

$$x = 3$$

$$\mathbf{f} \log_e 4 + \log_e 3 - \log_e x = \log_e 2$$

$$\log_e \left(\frac{4 \times 3}{x}\right) = \log_e 2$$

$$\frac{12}{x} = 2$$

$$x = 6$$

6 a
$$\log_e x + \log_e (x+1) = \log_e 2$$

$$\log_e x(x+1) = \log_e 2$$

$$x(x+1) = 2$$

$$x^2 + x - 2 = 0$$

$$(x+2)(x-1) = 0$$

$$x = -2 \text{ or } x = 1$$

no real solution for x = -2

$$x = 1$$

b
$$\log_e x + \log_e (2x - 1) = \log_e 3$$

$$\log_e x(2x - 1) = \log_e 3$$

$$x(2x - 1) = 3$$

$$2x^2 - x - 3 = 0$$

$$(2x - 3)(x + 1) = 0$$

$$x = \frac{3}{2} \text{ or } x = -1$$

x = -1 gives no real solution.

So
$$x = \frac{3}{2} = 1.5$$

$$c \log_e(x-1) + \log_e(x+2) = \log_e 4$$
$$\log_e(x-1)(x+2) = \log_e 4$$
$$(x-1)(x+2) = 4$$
$$x^2 + x - 2 - 4 = 0$$

$$x^2 + x - 2 - 4 = 0$$

 $x^2 + x - 6 = 0$

$$x^{2} + x - 6 = 0$$
$$(x+3)(x-2) = 0$$

$$x = -3 \text{ or } x = 2$$

x = -3 gives no real solution

So
$$x = 2$$

d
$$\log_{e}(x+1) + \log_{e}(2x-1) = \log_{e} 5$$

$$\log_e(x+1)(2x-1) = \log_e 5$$

$$(x+1)(2x-1) = 5$$

$$2x^2 + x - 1 - 5 = 0$$

$$2x^2 + x - 6 = 0$$

$$(2x-3)(x+2) = 0$$

$$x = \frac{3}{2} \text{ or } x = -2$$

x = -2 gives no real solution

So
$$x = \frac{3}{2} = 1.5$$

7 $\ln y = \ln x + \ln a$

$$ln y = ln(ax)$$

$$y = ax$$

Answer is B

8
$$2 \log_{e} x - \log_{e} 3x = a$$

$$\log_e x^2 - \log_e 3x$$

$$\log_e \left(\frac{x^2}{3x}\right) = a$$

$$\frac{x}{3} = e^a, x \neq 0$$

$$x = 3e^a$$

Answer is A

9
$$2 \log_e x + 1 = \log_e y$$

$$\log_e x^2 + \log_e e = \log_e y$$

$$\log_e(ex^2) = \log_e y$$
$$y = ex^2$$

10 a Graph cuts y-axis when x = 0,

$$y = \log_e(4) = 1.386$$

Domain = $(-4, \infty)$ and Range = R

b Graph cuts x-axis when y = 0,

$$\log_e(x) + 2 = 0$$
$$\log_e(x) = -2$$
$$e^{-2} = x$$
$$0.1353 = x$$
When $x = 2$,

$$y = \log_e(2) + 2 = 2.69$$

Domain = $(0, \infty)$ and Range = R

c Graph cuts x-axis when y = 0,

$$4\log_e(x) = 0$$
$$\log_a(x) = 0$$

$$\log_e(x) = 0$$
$$e^0 = x$$

$$1 = x$$

When x = 2,

$$y = 4\log_e(2)$$

Domain = $(0, \infty)$ and Range = R

d Graph cuts the x-axis where y = 0,

$$-\log_e(x-4) = 0$$

$$\log_e(x-4) = 0$$

$$e^0 = x - 4$$

$$1 + 4 = x$$

$$5 = x$$

Domain =
$$(4, \infty)$$
 and Range = R

11 a Graph cuts x-axis when y = 0.

$$\log_{e}(x) + 3 = 0$$

$$\log_e(x) = -3$$

$$e^{-3} = x$$

$$0.05 = x$$

When
$$x = 1$$
, $y = \log_e 1 + 3 = 3$

b Graph cuts x-axis when y = 0.

$$\log_e(x) - 5 = 0$$

$$\log_e(x) = 5$$

$$e^5 = x$$

$$1.484 \simeq x$$

When
$$x = 200$$
, $y = \log_{e}(200) - 5 = 0.298$

c Graph cuts x-axis when y = 0.

$$\log_e(x) + 0.5 = 0$$

$$\log_e(x) = -0.5$$
$$e^{-0.5} = x$$

$$0.6 = x$$

$$\frac{0.0 - \lambda}{10.0 + 1.0$$

12 a Graph cuts x-axis when y = 0.

$$\log_e(x-4) = 0$$

$$e^0 = x - 4$$

$$1 \simeq x - 4$$

$$5 = x$$

When
$$x = 10$$
,

$$y = \log_e (10 - 4) = \log_e (6) = 1.8$$

b Graph cuts *x*-axis when y = 0.

$$\log_e(x+2) = 0$$
$$e^0 = x+2$$
$$1 \simeq x+2$$
$$-1 = x$$

When
$$x = 0$$
,

$$y = \log_e (0 + 2) = \log_e (2) = 0.7$$

c Graph cuts *x*-axis when y = 0.

$$\log_e(x+0.5) = 0$$

$$e^0 = x + 0.5$$

$$1 \simeq x + 0.5$$

$$0.5 = x$$
When $x = 0$

When
$$x = 0$$
,

$$y = \log_e (0 + 0.5) = \log_e (0.5) = -0.7$$

= $-\log_e (2)$

13 a Graph cuts x-axis when y = 0.

$$\frac{1}{4}\log_e(x) = 0$$
$$\log_e(x) = 0$$

$$e^0 = x$$
$$1 = x$$

Graph does not cut the y.

When
$$x = 2$$
, $y = \frac{1}{4} \log_e 2$

$$\approx 0.17$$

b Graph cuts x-axis when y = 0.

$$3 \log_e(x) = 0$$
$$\log_e(x) = 0$$
$$e^0 = x$$
$$1 = x$$

Graph does not cut the y.

When
$$x = 2$$
, $y = 3 \log_e 2$

c Graph cuts x-axis when y = 0.

$$6 \log_e(x) = 0$$
$$\log_e(x) = 0$$
$$e^0 = x$$
$$1 = x$$

Graph does not cut the y.

When
$$x = 2$$
, $y = 6 \log_e(2)$

$$\approx 4.16$$

14 a Graph cuts x-axis when y = 0.

$$\log_e (3x) = 0$$

$$e^0 = 3x$$

$$1 = 3x$$

$$\frac{1}{3} = x$$

Graph does not cut the y.

$$x = 1$$

$$y = \log_e 3$$

$$\approx 1.10$$

$$y$$

$$(1, \log_e 3)$$

$$y = \log_e (3x)$$

$$(\frac{1}{3}, 0)$$

b Graph cuts *x*-axis when y = 0.

$$\log_e \left(\frac{x}{4}\right) = 0$$

$$e^0 = \frac{x}{4}$$

$$1 = \frac{x}{4}$$

$$4 = x$$

Graph does not cut the y.

$$x = 1$$

$$y = \log_e \frac{1}{4}$$

$$= -\log_e 4$$

$$\approx -1.39$$

c Graph cuts *x*-axis when y = 0.

$$\log_e (4x) = 0$$

$$e^0 = 4x$$

$$1 = 4x$$

$$\frac{1}{4} = x$$

Graph does not cut the y.

Graph doe
$$x = 1$$

 $y = \log_e 4$
 ≈ 1.39

15 a Graph cuts x-axis when y = 0.

$$1 - 2\log_{e}(x - 1) = 0$$

$$2\log_{e}(x - 1) = 1$$

$$\log_{e}(x - 1) = \frac{1}{2}$$

$$e^{\frac{1}{2}} = x - 1$$

$$e^{\frac{1}{2}} + 1 = x$$

$$2.6487 = x$$

Graph does not cut the y.

When
$$x = 2$$
: $y = 1 - 2 \log_e (1)$
= 1

point (2, 1)

b Graph cuts x-axis when y = 0.

$$\log_e (2x + 4) = 0$$
$$e^0 = 2x + 4$$
$$1 - 4 = 2x$$
$$-\frac{3}{2} = x$$

Graph cuts the y-axis where x = 0.

$$\log_e (2(0) + 4) = y$$
$$\log_e (4) = y$$
$$1.3862 = y$$

c Graph cuts x-axis when
$$y = 0$$
.

$$\frac{1}{2} \log_e \left(\frac{x}{4}\right) + 1 = 0$$

$$\frac{1}{2} \log_e \left(\frac{x}{4}\right) = -1$$

$$\log_e \left(\frac{x}{4}\right) = -2$$

$$e^{-2} = \frac{\pi}{4}$$
$$4e^{-2} = x$$

$$4e^{-2} = x$$
$$0.5413 = x$$

Graph does not cut the y-axis.

When x = 4

$$y = \frac{1}{2} \log_e (1) + 1$$

 \therefore point (4, 1)

16 $y = \log_{e}(x - m) + n$

Vertical asymptote is x = 2 so m = 2.

$$y = \log_e(x - 2) + n$$

When
$$x = e + 2$$
, $y = 3$

$$3 = \log_e(e + 2 - 2) + n$$

$$3 = \log_e(e) + n$$

$$n = 3 - 1$$

$$n = 2$$

$$y = \log_e (x - 2) + 2$$

$$m = 2, n = 2$$

17 $y = p \log_e(x - q)$

When
$$x = 0$$
, $y = 0$

$$0 = p \log_e(-q) \dots \dots \dots (1)$$

When
$$x = 1$$
, $y = -0.35$

$$-0.35 = p \log_{e}(1-q) \dots (2)$$

From (1)

$$0 = \log_e(-q)$$

$$e^{0} = -q$$

$$q = -1$$

Substitute q = -1 into (2)

$$-0.35 = p \log_e(1 - (-1))$$

$$-0.35 = p \log_{a}(2)$$

$$\frac{-0.35}{\log_e(2)} = p$$

$$p = \frac{-7}{20\log_a(2)}$$

$$p = \frac{-7}{20 \ln 2}, q = -1$$

18 $y = a \log_a(x - h) + k$

Graph asymptotes to x = -1 so h = -1 and

$$y = a \log_{e}(x+1) + k$$

Graph cuts the y-axis at y = -2

$$(0,-2) \Rightarrow -2 = a \log_e(1) + k$$
$$k = -2$$

 $\therefore y = a \log_a(x+1) - 2$

Graph cuts the *x*-axis at x = 1

$$(1,0) \Rightarrow 0 = a \log_e(2) - 2$$

$$2 = a \log_e(2)$$

$$a = \frac{2}{\log(2)}$$

Thus
$$y = \frac{2}{\log_e(2)} \log_e(x+1) - 2$$

$$a = \frac{2}{\ln 2}$$
, $h = -1$, $k = -2$

19 $y = m \log_2(nx)$

When

$$x = -2$$
, $y = 3$ so $3 = m \log_2(-2n) \dots (1)$

When

$$x = -\frac{1}{2}$$
, $y = \text{so } \frac{1}{2} = m \log_2 \left(-\frac{n}{2} \right) \dots (2)$

$$(1) - (2) \quad 3 - \frac{1}{2} = m \log_2(-2n) - m \log_2\left(-\frac{n}{2}\right)$$

$$\frac{5}{2} = m \left(\log_2(-2n) - \log_2\left(-\frac{n}{2}\right)\right)$$

$$\frac{5}{2} = m \left(\log_2\left(-2n \div -\frac{n}{2}\right)\right)$$

$$\frac{5}{2} = m \log_2(4)$$

$$\frac{5}{2} = m \log_2(2)^2$$

$$\frac{5}{2} = m \log_2(2)^2$$
$$\frac{5}{2} = 2m$$

$$m = \frac{5}{4}$$

Substitute $m = \frac{5}{4} \text{ into (1) } 3 = \frac{5}{4} \log_2(-2n)$

$$\frac{12}{5} = \log_2(-2n)$$

$$2^{\frac{12}{5}} = -2n$$

$$-\frac{2^{\frac{12}{5}}}{2} = n$$

Thus m = 1.25 and $n = -2^{\frac{1}{5}}$ as required.

20 $f(x) = 2 \log_{e}(3x + 3)$

$$f(x) = 2\log_e(3(x+1))$$

a for log function to exist:

$$3(x+1) > 0$$

$$x > -1$$
 and $x = -1$ is an asymptote

Domain of f(x): x > -1

Range of $f(x): y \in R$

b for inverse function:

$$x = 2 \ln(3y + 3)$$

$$ln(3y + 3) = \frac{x}{2}$$

$$3y + 3 = e^{\frac{x}{2}}$$

$$3y = e^{\frac{x}{2}} - 3$$

$$f^{-1}(x) = \frac{1}{3}e^{\frac{x}{2}} - 1$$

c for inverse function: Domain of $f^{-1}(x)$: $x \in R$ Range of $f^{-1}(x): y > -1$

e Read the points of intersection for the graph. (-0.77, -0.77) and (6.12, 6.12) to two decimal places.

(-0.77, -0.77)

 $(2\log_e(3), 0)$

Exercise 3.3 – The derivative of $y = \log_{a} x$

1 a
$$y = \log_e 10x$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{10}{10x}$$
$$= \frac{1}{10x}$$

b
$$y = \log_e 5x$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{5}{5x}$$
$$= \frac{1}{-}$$

$$\mathbf{c} \qquad y = \log_e(-x), \ x < 0$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{-x}$$
$$= \frac{1}{x}$$

d
$$y = \log_e(-6x), x < 0$$

$$\frac{dy}{dx} = \frac{-6}{-6x}$$
$$= \frac{1}{x}$$

$$\mathbf{e} \qquad y = 3\log_e 4x$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3 \times 4}{4x}$$
$$= \frac{3}{3}$$

$$\mathbf{f} \qquad y = -6\log_e 9x$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -6 \times \frac{9}{9x}$$
$$= \frac{-6}{x}$$

$$\begin{array}{ccc}
\mathbf{2} & \mathbf{a} & y = \log_e\left(\frac{x}{2}\right) \\
 & \text{dy } & \frac{1}{2}
\end{array}$$

$$\frac{dy}{dx} = \frac{\frac{1}{2}}{\frac{x}{2}}$$

$$= \frac{1}{x}$$

b
$$y = \log_e\left(\frac{x}{3}\right)$$

$$\frac{dy}{dx} = \frac{\frac{1}{3}}{\frac{x}{3}}$$

$$= \frac{1}{x}$$

$$\mathbf{c}$$
 $y = 4 \log_e \left(\frac{x}{5}\right)$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4 \times \frac{1}{5}}{\frac{x}{5}}$$
$$= \frac{4}{x}$$

$$\mathbf{d} \qquad y = -5\log_e\left(-\frac{2x}{3}\right), x < 0$$

$$\frac{dy}{dx} = \frac{-5\left(-\frac{2}{3}\right)}{\left(-\frac{2x}{3}\right)}$$
$$= \frac{-5}{x}$$

$$3 \quad y = \log_e 8x$$

y = -1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8}{8x}$$
$$= \frac{1}{x}$$

Answer is C

4 a
$$y = \log_e(2x + 5)$$

$$Let u = 2x + 5$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = 2$$

$$y = \log_e u$$

$$\frac{dy}{du} = \frac{1}{u}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{u}$$

$$=\frac{2}{2m+5}$$

b
$$y = \log_{e}(6x + 1)$$

$$Let u = 6x + 1$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = 6$$

$$y = \log_e u$$

$$\frac{\mathrm{d}y}{\mathrm{d}u} = \frac{1}{u}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6}{u}$$

$$=\frac{6}{6r+1}$$

c	$y = \log_e(3x - 4)$
	Let $u = 3x - 4$
	$\frac{\mathrm{d}u}{\mathrm{d}x} = 3$
	$y = \log_e u$
	$\frac{\mathrm{d}y}{\mathrm{d}u} = \frac{1}{u}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$
	dy _ 3
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{u}$
	$=\frac{3}{3x-4}$
_	
d	$y = \log_e(8x - 1)$
	Let u = 8x - 1
	$\frac{\mathrm{d}u}{\mathrm{d}x} = 8$
	$y = \log_e u$
	$\frac{\mathrm{d}y}{\mathrm{d}u} = \frac{1}{u}$
	du u dv dv du
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8}{u}$
	$=\frac{8}{8x-1}$
e	J CE C
	Let u = 3 - 5x
	$\frac{\mathrm{d}u}{\mathrm{d}x} = -5$
	$y = \log_e u$
	$\frac{dy}{du} = \frac{1}{u}$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
	dv dv du
	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{dx}{dx}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-5}{u}$
	$\frac{dx}{dx} = \frac{1}{u}$
	$=\frac{-5}{3-5x}$
	3-5x
	or
	$\frac{5}{5x-3}$
e	
Ī	$y = \log_e(2 - x)$
	Let $u = 2 - x$

 $\frac{\mathrm{d}u}{\mathrm{d}x} = -1$

 $y = \log_e u$

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$

$$\frac{dy}{dx} = \frac{-1}{u}$$

$$= \frac{-1}{2 - x}$$
or
$$\frac{1}{x - 2}$$
5 a $y = 6 \log_e(5x + 2)$
Let $u = 5x + 2$

$$\frac{du}{dx} = 5$$

$$y = 6 \log_e u$$

$$\frac{dy}{dx} = \frac{6}{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = 5 \times \frac{6}{4}$$

$$= \frac{30}{5x + 2}$$
b $y = 8 \log_e(4x - 2)$
Let $u = 4x - 2$

$$\frac{du}{dx} = 4$$

$$y = 8 \log_e u$$

$$\frac{dy}{dx} = \frac{8}{u}$$

$$\frac{dy}{dx} = \frac{4}{u} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = 4 \times \frac{8}{u}$$

$$= \frac{32}{4x - 2}$$

$$= \frac{16}{2x - 1}$$
c $y = -4 \log_e(12x + 5)$
Let $u = 12x + 5$

$$\frac{du}{dx} = 12$$

$$y = -4 \log_e u$$

$$\frac{dy}{dx} = \frac{-4}{u}$$

$$\frac{dy}{dx} = \frac{12}{u} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = 12 \times \frac{-4}{u}$$

$$= \frac{-48}{12x + 5}$$
d $y = -7 \log_e(8 - 9x)$
Let $u = 8 - 9x$

$$\frac{du}{dx} = -9$$

$$y = -7\log_e u$$

$$\frac{dy}{du} = \frac{-7}{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = -9 \times \frac{-7}{u}$$

$$= \frac{63}{8 - 9x}$$
6 a $y = \log_e 3x^4$

$$\text{Let } u = 3x^4$$

$$\frac{du}{dx} = 12x^3$$

$$y = \log_e u$$

$$\frac{dy}{dx} = \frac{1}{u}$$

$$\frac{dy}{dx} = \frac{12x^3}{u}$$

$$= \frac{12x^3}{3x^4}$$

$$= \frac{4}{x}$$
b $y = \log_e(x^2 + 3)$

$$\text{Let } u = x^2 + 3$$

$$\frac{du}{dx} = \frac{1}{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{1}{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{2x}{u}$$

$$= \frac{2x}{x^2 + 3}$$
c $y = \log_e u$

$$\frac{dy}{dx} = \frac{1}{u}$$

$$\frac{dy}{dx} = \frac{1$$

d	$y = \log_e(x^2 - 3x + 2)$
	$Let u = x^2 - 3x + 2$
	$\frac{\mathrm{d}u}{\mathrm{d}x} = 2x - 3$
	$y = \log_e u$
	$\frac{\mathrm{d}y}{\mathrm{d}u} = \frac{1}{u}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x - 3}{x^2 - 3x + 2}$
e	$y = \log_e(x^3 + 2x^2 - 1)$

$$\frac{dy}{dx} = \frac{2x - 3}{x^2 - 3x + 2}$$

$$e \quad y = \log_e(x^3 + 2x^2 - 7x)$$

$$Let \quad u = x^3 + 2x^2 - 7x$$

$$\frac{du}{dx} = 3x^2 + 4x - 7$$

$$y = \log_e u$$

$$\frac{dy}{du} = \frac{1}{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{3x^2 + 4x - 7}{x^3 + 2x^2 - 7x}$$

$$= \frac{3x^2 + 4x - 7}{x(x^2 + 2x - 7)}$$

 $\mathbf{f} \ \ y = \log_a(x^2 - 2x^3 + x^4)$

Let
$$u = x^2 - 2x^3 + x^4$$

$$\frac{du}{dx} = 2x - 6x^2 + 4x^3$$

$$y = \log_e u$$

$$\frac{dy}{du} = \frac{1}{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{2x - 6x^2 + 4x^3}{x^2 - 2x^3 + x^4}$$

$$= \frac{4x^3 - 6x^2 + 2x}{x^4 - 2x^3 + x^2}$$

$$= \frac{2x(2x^2 - 3x + 1)}{x^2(x^2 - 2x + 1)}$$

$$= \frac{2(2x^2 - 3x + 1)}{x(x^2 - 2x + 1)}$$

$$= \frac{2(2x - 1)(x - 1)}{x(x - 1)(x - 1)} = \frac{2(2x - 1)}{x(x - 1)}$$

7 a
$$y = \ln \sqrt{2x + 1}$$
$$y = \ln(2x + 1)^{\frac{1}{2}}$$
$$y = \frac{1}{2} \times \ln(2x + 1)$$
$$\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{(2x + 1)} \times 2$$
$$\frac{dy}{dx} = \frac{1}{(2x + 1)}$$

CHAPTER 3 Calc
b
$$y = \ln \sqrt{3 - 4x}$$

 $y = \ln(3 - 4x)^{\frac{1}{2}}$
 $y = \frac{1}{2} \times \ln(3 - 4x)$
 $\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{(3 - 4x)} \times (-4)$
 $\frac{dy}{dx} = \frac{-2}{(3 - 4x)}$
c $y = \ln \sqrt{x^2 + 2}$
 $y = \frac{1}{2} \times \ln(x^2 + 2)$

$$\mathbf{c} \qquad y = \ln \sqrt{x^2 + 2}$$

$$y = \ln(x^2 + 2)^{\frac{1}{2}}$$

$$y = \frac{1}{2} \times \ln(x^2 + 2)$$

$$\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{(x^2 + 2)} \times 2x$$

$$\frac{dy}{dx} = \frac{x}{(x^2 + 2)}$$

$$\mathbf{d} \qquad y = \ln(x + 3)^{\frac{1}{4}}$$

$$\mathbf{d} \quad y = \ln(x+3)^{\frac{1}{4}}$$

$$y = \frac{1}{4} \times \ln(x+3)$$

$$\frac{dy}{dx} = \frac{1}{4} \times \frac{1}{(x+3)}$$

$$\frac{dy}{dx} = \frac{1}{4(x+3)}$$

$$\mathbf{e} \qquad y = \ln(5x+2)^{\frac{1}{3}}$$

$$y = \frac{1}{3} \times \ln(5x+2)$$

$$\frac{dy}{dx} = \frac{1}{3} \times \frac{1}{(5x+2)} \times (5)$$

$$\frac{dy}{dx} = \frac{5}{3(5x+2)}$$

$$f y = \ln(2 - 3x)^{\frac{1}{5}}$$

$$y = \frac{1}{5} \times \ln(2 - 3x)$$

$$\frac{dy}{dx} = \frac{1}{5} \times \frac{1}{(2 - 3x)} \times (-3)$$

$$\frac{dy}{dx} = \frac{-3}{5(2 - 3x)}$$

8 a
$$f(x) = \log_e \left(\frac{1}{x+3}\right)$$

 $f(x) = \log_e(1) - \log_e(x+3)$
 $f(x) = -\log_e(x+3)$
 $f'(x) = \frac{-1}{(x+3)}$
b $f(x) = \log_e(3x-2)^4$
 $f(x) = 4\log_e(3x-2)$

$$f(x) = 4 \log_e(3x - 2)$$

$$f'(x) = 4 \times \frac{1}{(3x - 2)} \times 3$$

$$f'(x) = \frac{12}{(3x - 2)}$$

$$f(x) = \log_e (5x + 8)^{-2}$$

$$f(x) = -2\log_e (5x + 8)$$

$$f'(x) = -2 \times \frac{1}{(5x + 8)} \times 5$$

$$f'(x) = \frac{-10}{(5x + 8)}$$

d
$$f(x) = \log_e \left(\frac{2}{4+3x}\right)$$

 $f(x) = \log_e(2) - \log_e(4+3x)$
 $f'(x) = \frac{-1}{(4+3x)} \times 3$
 $f'(x) = \frac{-3}{(4+3x)}$

9
$$f(x) = y = \log_e(x^2 - 5x + 2)$$
Let $u = x^2 - 5x + 2$

$$\frac{du}{dx} = 2x - 5$$

$$y = \log_e u$$

$$\frac{dy}{du} = \frac{1}{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{(2x - 5)}{x^2 - 5x + 2}$$

Answer is D 10 $y = \log_a(3x - 2)$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{3x - 2}$$

Answer is D

11
$$y = 2\log_e(x^2 + x)$$

 $\frac{dy}{dx} = \frac{2(2x+1)}{x^2 + x}$

Answer is A

12 a
$$f(x) = 7\log_e\left(\frac{x}{3}\right)$$

$$f(x) = 7\log_e(x) - 7\log_e(3)$$

$$f'(x) = 7 \times \frac{1}{x}$$

$$f'(x) = \frac{7}{x}$$

b
$$f(x) = 2 \ln(x^3 + 2x^2 - 1)$$

Let $u = x^3 + 2x^2 - 1$ $y = 2 \ln u$

$$\frac{du}{dx} = 3x^2 + 4x$$

$$\frac{dy}{du} = \frac{2}{u}$$

$$\frac{du}{dx} = 3x^2 + 4x$$

$$\frac{dy}{du} = \frac{2}{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{2}{u} \times (3x^2 + 4x)$$

$$f'(x) = \frac{2(3x^2 + 4x)}{(x^3 + 2x^2 - 1)} = \frac{2x(3x + 4)}{(x^3 + 2x^2 - 1)}$$

c $f(x) = 3 \ln(e^x + 1)$

$$Let u = e^x + 1 \qquad y = 3 \ln u$$

$$\frac{du}{dx} = e^x \qquad \frac{dy}{du} = \frac{3}{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{3}{u} \times (e^x)$$

$$f'(x) = \frac{3e^x}{(e^x + 1)}$$

 $\mathbf{d} \quad f(x) = -5\log_a(2x)$

$$f'(x) = -5 \times \frac{1}{(2x)} \times 2$$

$$f'(x) = \frac{-5}{x}$$

13 $y = \ln \sqrt{x^2 - 6x + 9}$

$$y = \ln(x^2 - 6x + 9)^{\frac{1}{2}}$$

$$y = \frac{1}{2} \times \ln(x^2 - 6x + 9)$$

$$\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{(x^2 - 6x + 9)} \times (2x - 6)$$

$$\frac{dy}{dx} = \frac{(x-3)}{(x-3)(x-3)} = \frac{1}{(x-3)}$$

14 The function $y = \ln(100x)$ can be simplified to

 $y = \ln(100) + \ln(x)$. The differential of a constant is zero, hence the differential of $y = \ln(100x)$ and $y = \ln(x)$ will be the same. This would be true for any logarithmic function of the form $y = \ln(kx)$ where k is a constant.

Exercise 3.4 – Applications of logarithmic **functions**

- **1 a** Dom = $(2, \infty)$ and Ran = R
 - **b** Graph cuts the x-axis where y = 0

$$2\log_{e}(x-2) = 0$$

$$\log_e(x-2) = 0$$

$$e^0 = x - 2$$

$$1 = r - 3$$

$$x = 3$$

Thus (a, 0) = (3, 0) so a = 3

 $\mathbf{c} \qquad y = 2\log_e(x-2)$

$$\frac{dy}{dx} = \frac{2}{x - 2}$$

When x = 3, $m_T = \frac{dy}{dx} = \frac{2}{(3-2)} = 2$

Equation of tangent with $m_T = 2$ which passes through $(x_1, y_1) = (3, 0)$ is given by

$$y - y_1 = m_T(x - x_1)$$

$$y - 0 = 2(x - 3)$$

$$y = 2x - 6$$

d Equation of perpendicular line with $m_P = -\frac{1}{2}$ which passes through $(x_1, y_1) = (3, 0)$ is given by

$$y - y_1 = m_P (x - x_1)$$

$$y - 0 = -\frac{1}{2}(x - 3)$$

$$y = -\frac{1}{2}x + \frac{3}{2}$$

2 a $y = 2 \ln(x)$

$$\frac{dy}{dx} = 2 \times \frac{1}{x}$$

$$\frac{dy}{dt} = \frac{2}{3}$$

At
$$x = 5$$
:

$$\frac{dy}{dx} = \frac{2}{5}$$

At x = 5: $\frac{dy}{dx} = \frac{2}{5}$ $\mathbf{b} \quad y = \frac{1}{3} \ln(4x + 1)$

$$\frac{dy}{dx} = \frac{1}{3} \times \frac{1}{(4x+1)} \times 4$$

$$\frac{dy}{dx} = \frac{4}{3(4x+1)}$$

At
$$x = 2$$
:

At
$$x = 2$$
:
$$\frac{dy}{dx} = \frac{4}{27}$$

c $y = \ln(x^2 + 3)$

$$\frac{dy}{dx} = \frac{1}{(x^2 + 3)} \times 2x$$

$$\frac{dy}{dx} = \frac{2x}{(x^2 + 3)}$$

At
$$x = 3$$

$$\frac{dy}{dx} = \frac{6}{12} = \frac{1}{2}$$

3 **a** $y = \log_a(2x - 2)$

Gradient of tangent is $m_T = \frac{dy}{dx} = \frac{2}{2x-2} = \frac{1}{x-1}$

When
$$x = 1.5$$
, $m_T = \frac{1}{1.5 - 1} = 2$

Equation of tangent with $m_T = 2$ which passes through $(x_1, y_1) = (1.5, 0)$ is given by

$$y - y_1 = m_T (x - x_1)$$

$$y - 0 = 2(x - 1.5)$$

$$y = 2x - 3$$

 $\mathbf{b} \ \ y = 3\log_e(x)$

Gradient of tangent is $m_T = \frac{dy}{dx} = \frac{3}{x}$

When
$$x = e$$
, $m_T = \frac{3}{e}$

Equation of tangent with $m_T = \frac{3}{e}$ which passes through $(x_1, y_1) = (e, 3)$ is given by

$$y - y_1 = m_T(x - x_1)$$

$$y-3=\frac{3}{e}(x-e)$$

$$y - 3 = \frac{3}{e}x - 3$$

$$y = \frac{3}{e}x$$

$$\mathbf{c} \ \ y = \frac{1}{2} \log_e(x^2) = \log_e(x)$$

Gradient of tangent
$$m_T = \frac{dy}{dx} = \frac{1}{x}$$

When
$$x = e$$
, $m_T = \frac{1}{e}$

Equation of tangent with $m_T = \frac{1}{2}$ which passes through $(x_1, y_1) = (e, 1)$ is given by

$$y - y_1 = m_T(x - x_1)$$

$$y - 1 = \frac{1}{e}(x - e)$$

$$y - 1 = \frac{1}{a}x - 1$$

$$y = \frac{1}{e}x$$

4 a
$$y = 3 \ln(x - 5)$$

$$\frac{dy}{dx} = 3 \times \frac{1}{(x-5)}$$

$$\frac{dy}{dx} = \frac{3}{(x-5)}$$

At
$$x = 6$$
:

$$\frac{dy}{dx} = 3$$

b At the point
$$x = 6$$
: $y = 3 \ln(6 - 5)$

$$y = 0$$

Equation of tangent at (6, 0) m = 3

$$y - 0 = 3(x - 6)$$

$$y = 3x - 18$$

Equation of perpendicular line

at (6, 0)
$$m = \frac{-1}{3}$$

 $y - 0 = \frac{-1}{3}(x - 6)$

$$y = \frac{-1}{3}x + 2$$

$$x + 3y - 6 = 0$$

5
$$y = 4 \log_{e}(3x - 1)$$

$$\frac{dy}{dx} = \frac{12}{3x - 1}$$

If the tangent is parallel to 6x - y + 2 = 0 or y = 6x + 2 then

$$m_T = \frac{12}{3r-1} = 6$$

$$12 = 6(3x - 1)$$

$$12 = 18x - 6$$

$$18 = 18x$$

$$1 = x$$

When x = 1, $y = 4 \log_{e}(3(1) - 1) = 4 \log_{e}(2)$

Equation of tangent with $m_T = 6$ which passes through

 $(x_1, y_1) = (1, 4 \log_a(2))$ is given by

$$y - y_1 = m_T(x - x_1)$$

$$y - 4\log_{e}(2) = 6(x - 1)$$

$$y - 4 \log_{e}(2) = 6x - 6$$

$$y = 6x + 4\log_{e}(2) - 6$$

6
$$y = 7 \ln(2x + 3)$$

$$\frac{dy}{dx} = 7 \times \frac{1}{(2x+3)} \times 2$$

$$\frac{dy}{dx} = \frac{14}{(2x+3)}$$

Gradient of the line 2x - y + 4 = 0: m = 2

Parallel lines have the same gradients.

$$\frac{dy}{dx} = \frac{14}{(2x+3)}$$
 must equal 2.

$$\frac{14}{(2x+3)} = 2$$

$$14 = 2(2x + 3)$$

$$7 = 2x + 3$$

$$x = 2$$

At
$$x = 2$$
: $y = 7 \ln 7$

Equation of tangent at $(2, 7 \ln 7)$ and m = 2

$$y - 7 \ln 7 = 2(x - 2)$$

$$y = 2x - 4 + 7 \ln 7$$

Equation of the perpendicular at (2, 7 ln 7) and $m = \frac{-1}{2}$

$$y - 7 \ln 7 = \frac{-1}{2} (x - 2)$$
$$y = \frac{-1}{2} x + 1 + 7 \ln 7$$

7 **a**
$$y = 2 \log_e(2x)$$

$$\frac{dy}{dx} = \frac{2}{x}$$

b Gradient of tangent at
$$\left(\frac{e}{2}, 2\right)$$
 is $m_T = 2 \div \frac{e}{2} = \frac{4}{e}$.

Equation of tangent with $m_T = \frac{4}{e}$ which passes through

$$(x_1, y_1) = \left(\frac{e}{2}, 2\right)$$
 is given by

$$y - y_1 = m_T(x - x_1)$$

$$y - 2 = \frac{4}{e} \left(x - \frac{e}{2} \right)$$

$$y-2=\frac{4}{e}x-2$$

$$y = \frac{4x}{e}$$

8
$$y = x$$
 is a tangent to $y = \log_e(x - 1) + b$

Gradient of tangent is $m_T = 1$

Also gradient of tangent is $m_T = \frac{dy}{dx} = \frac{1}{x-1}$

Thus

$$\frac{1}{x-1} = 1$$

$$1 = x - 1$$

$$x = 2$$

When
$$x = 2$$
, $y = 2$

$$2 = \log_e (2 - 1) + b$$

$$2 = \log_e(1) + b$$

$$b = 2$$

Thus
$$y = \log_{1}(x - 1) + 2$$

- 9 y = -2x + k is perpendicular to $y = \log_e(2(x 1))$ Gradient of perpendicular line is $m_P = -2$
 - Gradient of tangent is $m_T = \frac{1}{2}$
 - Also gradient of tangent is $m_T = \frac{dy}{dx} = \frac{1}{x-1}$
 - Thus

$$\frac{1}{x-1} = \frac{1}{2}$$

$$x - 1 = 2$$

$$x = 3$$

When
$$x = 3$$
, $y = \log_e(2(3 - 1)) = \log_e(4) \approx 1.3863$

$$1.3863 = -2(3) + k$$

$$7.3863 = k$$

$$k = 7.4$$

Thus
$$y = -2x + 7.4$$

- **10** $f(x) = \ln(3 x)$
 - **a** For f(x) to exist, 3 x > 0

Domain: x < 3

- Range: $y \in R$
- **b** *y*-intercepts: x = 0

$$(0, \ln 3)$$

x-intercepts: y = 0

$$\ln(3-x) = 0$$

$$3 - x = e^{0}$$

$$3 - x = 1$$

Axis intercepts: (2, 0) and (0, ln 3)

c for inverse function:

$$x = \ln(3 - y)$$

$$3 - y = e^x$$

$$y = 3 - e^{x}$$

$$f^{-1}(x) = 3 - e^x$$

Domain of $f^{-1}(x)$: $x \in R$

Range of $f^{-1}(x)$: y < 3

d Axis intercepts: (0, 2) and (ln 3, 0)

e

- **f** Point of intersection from the graph: (0.792, 0.792)
- **11** $f(x) = \log_{e} (2x 1)$
 - **a** For f(x) to exist, 2x 1 > 0

Domain: $x > \frac{1}{2}$

Range: $y \in R$

- **b** *y*-intercepts: x = 0
 - f(0) is undefined

x-intercepts: y = 0

$$\ln\left(2x-1\right) = 0$$

$$2x - 1 = e^0$$

$$2x - 1 = 1$$

$$(1, 0)$$
 $x = 1$

Axis intercept: (1, 0)

c for inverse function:

$$x = \ln\left(2y - 1\right)$$

$$2y - 1 = e^x$$

$$2y = e^x + 1$$

$$f^{-1}(x) = \frac{1}{2}(e^x + 1)$$

Domain of $f^{-1}(x)$: $x \in R$

Range of
$$f^{-1}(x)$$
: $y > \frac{1}{2}$

d Axis intercept: (0, 1)

e

- **f** Inverse functions are reflections in the line y = x. The functions $y = \ln x$ and $y = e^x$ lie on either side of y = x, so do not intersect. The functions $f(x) = \log_e(2x 1)$ and $f^{-1}(x) = \frac{1}{2}(e^x + 1)$ have been translated further away from the line of symmetry, so no point of intersection.
- **12** $f(x) = -2 \ln(2 x) 1$
 - **a** For f(x) to exist, 2 x > 0

Domain: x < 2

Range: $y \in R$

b *y*-intercepts: x = 0

$$(0, -1 - 2 \ln 2)$$

x-intercepts: y = 0

$$-2 \ln(2 - x) - 1 = 0$$

$$\ln\left(2-x\right) = \frac{-1}{2}$$

$$2 - x = e^{\frac{-1}{2}}$$

$$2 - x = \frac{1}{\sqrt{e}}$$

$$x = 2 - \frac{1}{\sqrt{e}}$$

$$\left(0, 2 - \frac{1}{\sqrt{e}}\right)$$

Axis intercepts:

$$\left(2 - \frac{1}{\sqrt{e}}, 0\right)$$
 and $(0, -1 - 2 \ln 2)$

[approximately (1.4, 0), (0, -2.4)]

c for inverse function:

$$x = -2 \ln (2 - y) - 1$$

$$\frac{-1}{2} (x + 1) = \ln (2 - y)$$

$$2 - y = e^{\frac{-1}{2}(x+1)}$$

$$y = 2 - e^{\frac{-1}{2}(x+1)}$$

$$f^{-1}(x) = 2 - e^{\frac{-1}{2}(x+1)}$$

Domain of $f^{-1}(x)$: $x \in R$ Range of $f^{-1}(x) : y < 2$

d Axis intercepts:

$$\left(0, 2 - \frac{1}{\sqrt{e}}\right)$$
 and $(-1 - 2 \ln 2, 0)$

f Points of intersection: (-4.85, -4.85) and (1.75, 1.75)

13
$$f(x) = 6 \log_e(x^2 - 4x + 8)$$

a Let
$$u = x^2 - 4x + 8$$
 $y = 6 \ln u$

$$\frac{du}{dx} = 2x - 4$$

$$\frac{dy}{du} = \frac{6}{u}$$

By the chain rule:

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{6}{u} \times (2x - 4)$$

$$\frac{dy}{dx} = \frac{6}{(x^2 - 4x + 8)} \times 2(x - 2)$$

$$f'(x) = \frac{12(x - 2)}{(x^2 - 4x + 8)}$$

b stationary points
$$f'(x) = 0$$

$$\frac{12(x-2)}{(x^2-4x+8)} = 0$$

$$x = 2$$

$$f(2) = 6\log_e (2^2 - 4 \times 2 + 8)$$

$$f(2) = 6\log_e (4)$$

Stationary point at (2, 6 log_e 4)

$$\mathbf{c} \ f'(x) = \frac{12(x-2)}{(x^2-4x+8)}$$

х	1	2	3
f'(x)	-2.4	0	2.4
	\	_	/

Local minimum stationary point.

14
$$N = 25 + 95 \log_e(t+1)$$

a at
$$t = 0$$
: $N = 25 + 95 \log_e 1$
 $N = 25$

25 rats initially in the derelict house.

to double:
$$N = 50$$

 $50 = 25 + 95 \log_e (t + 1)$
 $95 \log_e (t + 1) = 25$
 $\log_e (t + 1) = \frac{25}{95}$
 $\log_e (t + 1) = \frac{5}{19}$
 $t + 1 = e^{\frac{5}{19}} - 1$
 $t = 0.30103213$

It takes 0.3 months for the rat population to double.

$$\mathbf{c} \qquad N = 25 + 95 \log_e(t+1)$$

$$\frac{dN}{dt} = 95 \times \frac{1}{(t+1)}$$
$$\frac{dN}{dt} = \frac{95}{(t+1)}$$

at
$$t = 4$$
: $\frac{dN}{dt} = \frac{95}{(4+1)} = 19$

rate of change after 4 months is 19 rats/month.

Exercise 3.5 - Review: exam practice

$$\mathbf{1} \quad \ln 2x = a \\
2x = e^{a} \\
x = \frac{e^{a}}{2}$$

Answer is C

2
$$\ln(1-x) = 3$$

 $1-x = e^3$
 $x = 1 - e^3$
Answer is **B**

3 $\ln(x-3) + \ln(x-2) = \ln 12$ ln(x-3)(x-2) = ln 12(x-3)(x-2) = 12

$$(x-3)(x-2) = 12$$

$$x^{2} - 5x + 6 = 12$$

$$x^{2} - 5x + 6 = 12$$

$$x^{2} - 5x - 6 = 0$$

$$(x-6)(x+1) = 0$$

$$x - 6)(x + 1) = 0$$

$$x = 6, x = -1$$

But x = -1 is not valid so x = 6 is the only possible answer. Answer is A

4
$$4 - \ln x = 2 \ln y$$

$$2 - \frac{1}{2} \ln x = \ln y$$

$$\ln y = 2 \ln e - \frac{1}{2} \ln x$$

$$\ln y = \ln e^2 - \ln \sqrt{x}$$

$$\ln y = \ln \left(\frac{e^2}{\sqrt{x}} \right)$$
$$y = \frac{e^2}{\sqrt{x}}$$

Answer is C

5 a
$$y = \ln(x+4)$$

Domain: x > -4

Range: $y \in R$

Asymptote: x = -4

Transformation: horizontal translation of 4 units to the left (in the negative direction).

b $y = \ln(x - 4)$

Domain: x > 4

Range: $y \in R$

Asymptote: x = 4

Transformation: horizontal translation of 4 units to the right (in the positive direction).

$$\mathbf{c} \quad y = \ln(x) + 4$$

Domain: x > 0

Range: $y \in R$

Asymptote: x = 0

Transformation: vertical translation of 4 units upwards (in

the positive direction).

d $y = 4 - \ln(x)$

Domain: x > 0

Range: $y \in R$

Asymptote: x = 0

Transformation: vertical translation of 4 units upwards (in

the positive direction) and reflection in the *x*-axis.

6 a $y = \ln(2x)$

Domain: x > 0

Range: $y \in R$

Asymptote: x = 0

Transformation: dilation of half from the y-axis.

$\mathbf{b} \quad y = -2 \, \ln(x)$

Domain: x > 0

Range: $y \in R$

Asymptote: x = 0

Transformation: dilation of 2 from the x-axis and a

reflection in the x-axis.

c
$$y = \ln(2 - x)$$

Domain: $x < 2$
Range: $y \in R$
Asymptote: $x = 2$

Transformation: horizontal translation of 2 units to the right (in the positive direction) and a reflection in the y-axis.

d
$$y = -\ln(-2x)$$

Domain: $x < 0$
Range: $y \in R$
Asymptote: $x = 0$

Transformation: dilation of half from the y-axis, reflection in the y-axis, and reflection in the x-axis.

7 a
$$y = \frac{1}{2} \log_e(x^2 - 2x + 7)$$
Let $u = x^2 - 2x + 7$

$$\frac{du}{dx} = 2x - 2$$

$$y = \frac{1}{2} \log_e u$$

$$\frac{dy}{du} = \frac{1}{2} \times \frac{1}{u} = \frac{1}{2u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{1}{2u} \times (2x - 2)$$

$$\frac{dy}{dx} = \frac{(x - 1)}{(x^2 - 2x + 7)}$$

$$x^2 - 2x + 7 = (x - 1)^2 + 6$$

$$\therefore (x^2 - 2x + 7) > 0 \text{ for all } x$$

$$\therefore \text{ no restrictions on } x.$$
Domain: all real x .

b
$$y = \log_e \left(\frac{x+2}{x-3}\right)$$

 $y = \ln(x+2) - \ln(x-3)$
 $\frac{dy}{dx} = \frac{1}{(x+2)} - \frac{1}{(x-3)}$
 $\frac{dy}{dx} = \frac{(x-3) - (x+2)}{(x+2)(x-3)}$
 $\frac{dy}{dx} = \frac{-5}{(x+2)(x-3)}$
For function to be defined: $\frac{x+2}{x-3} > 0$

For function to be defined
$$\frac{x+2}{x-3} > 0$$
If $x > 3$: $x + 2 > 0$, true
If $x < 3$: $x + 2 < 0$

$$x < -2$$
so $x < -2$
restrictions on x :
$$x < -2 \text{ or } x > 3$$

$$x < -2 \text{ or } x > 3$$

$$y = \log_e(x+2)^2$$

$$y = 2\log_e(x+2)$$

$$\frac{dy}{dx} = 2 \times \frac{1}{(x+2)}$$

$$\frac{dy}{dx} = \frac{2}{(x+2)}$$

For function to be defined: $(x+2)^2 > 0$ which is true for all x, $x \neq -2$ restrictions on x: $x \in R, x \neq -2$

8 a
$$y = \log_e \left(\frac{2x+1}{x-5}\right)$$

 $y = \ln(2x+1) - \ln(x-5)$
 $\frac{dy}{dx} = \frac{1}{(2x+1)} \times 2 - \frac{1}{(x-5)}$
 $\frac{dy}{dx} = \frac{2(x-5) - (2x+1)}{(2x+1)(x-5)}$
 $\frac{dy}{dx} = \frac{-11}{(2x+1)(x-5)}$

$$\mathbf{b} \quad y = \log_e \left(\frac{7}{x-3}\right)$$
$$y = \ln(7) - \ln(x-3)$$
$$\frac{dy}{dx} = -\frac{1}{(x-3)}$$
$$\frac{dy}{dx} = \frac{-1}{(x-3)}$$

$$dx (x-3)$$

$$c y = \log_e(9x^2 - 6x + 7)$$
Let $u = 9x^2 - 6x + 7$

$$\frac{du}{dx} = 18x - 6$$

$$y = \log_e u$$

$$\frac{dy}{du} = \frac{1}{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{1}{u} \times (18x - 6)$$

$$\frac{dy}{dx} = \frac{6(3x-1)}{(9x^2 - 6x + 7)}$$

$$9 \quad f(x) = \log_e(3x)$$

$$f'(x) = \frac{1}{3x} \times 3$$

$$f'(x) = \frac{1}{x}$$

$$f'(1) = 1$$

Answer is **A**

10
$$y = \log_e \left(\frac{2}{x}\right)$$

 $y = \ln(2) - \ln(x)$
 $\frac{dy}{dx} = -\frac{1}{x}$

Answer is **D**

$$11 y = 3 \log_a(x)$$

$$\frac{dy}{dx} = 3 \times \frac{1}{x}$$

$$\frac{dy}{dx} = \frac{3}{x}$$

$$at x = 7: \frac{dy}{dx} = \frac{3}{7} \approx 0.42857$$

12
$$y = \log_e(2x)$$

$$\frac{dy}{dx} = \frac{1}{2x} \times 2$$

$$\frac{dy}{dx} = \frac{1}{x}$$
at $x = 4$: $\frac{dy}{dx} = \frac{1}{4}$
for perpendicular gradient, $m = -4$

13
$$y = \log_e \sqrt{x^2 + 8x + 16}$$

 $y = \frac{1}{2} \log_e (x^2 + 8x + 16)$

Answer is A

Let
$$u = x^2 + 8x + 16$$

$$\frac{du}{dx} = 2x + 8$$

$$y = \frac{1}{2} \log_e u$$

$$\frac{dy}{du} = \frac{1}{2} \times \frac{1}{u} = \frac{1}{2u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{1}{2u} \times (2x + 8)$$

$$\frac{dy}{dx} = \frac{(x + 4)}{(x^2 + 8x + 16)}$$

$$\frac{dy}{dx} = \frac{(x + 4)}{(x + 4)^2}$$

$$\frac{dy}{dx} = \frac{1}{(x + 4)}$$

Answer is D $14 \quad y = \log_e(e^x + e^{-x})$ Let $u = e^x + e^{-x}$ $\frac{du}{dx} = e^x - e^{-x}$

$$dx$$

$$y = \log_e u$$

$$\frac{dy}{du} = \frac{1}{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{1}{u} \times (e^x - e^{-x})$$

$$\frac{dy}{dx} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Answer is C

15
$$y = \log_e(x+5)$$

$$\frac{dy}{dx} = \frac{1}{(x+5)}$$
At $x = e-5$, $y = \ln(e) = 1$
Point $(e-5, 1)$
At $x = e-5$, $\frac{dy}{dx} = \frac{1}{e}$

Equation of tangent at (e - 5, 1), $m = \frac{1}{e}$ $y - 1 = \frac{1}{e}(x - (e - 5))$ $y - 1 = \frac{1}{e}x - 1 + \frac{5}{e}$ $y = \frac{1}{e}x + \frac{5}{e}$ or x - ey + 5 = 0

16
$$h(x) = 2 \log_a(1 - 3x)$$

a for domain:
$$1 - 3x > 0$$

 $1 > 3x$
 $x < \frac{1}{3}$
 $D = \left\{ x : x \in \left(-\infty, \frac{1}{3} \right) \right\}$

b for *x*-intercepts:
$$h(x) = 0$$

$$0 = 2 \log_e(1 - 3x)$$

$$\log_e(1 - 3x) = 0$$

$$1 - 3x = e^0$$

$$1 - 3x = 1$$

$$x = 0$$

Axis intercept: (0, 0)

$$\mathbf{c} \quad \frac{dh}{dx} = 2 \times \frac{1}{(1 - 3x)} \times -3$$

$$\frac{dh}{dx} = \frac{-6}{(1-3x)^2}$$

for $x < \frac{1}{3}$, 1 - 3x > 0, hence the rate of change $\frac{dh}{dx}$ is always negative.

d i for inverse function:
$$x = 2 \log_e(1 - 3y)$$

$$\frac{x}{2} = \log_e(1 - 3y)$$

$$1 - 3y = e^{\frac{x}{2}}$$

$$3y = 1 - e^{\frac{x}{2}}$$

$$h^{-1}(x) = \frac{1}{3} - \frac{1}{3}e^{\frac{x}{2}}$$
ii Domain: $x \in R$
Range: $y < \frac{1}{3}$

ii Domain:
$$x \in I$$

Range:
$$y < \frac{1}{2}$$

17 a
$$y = m \log_{e}(n(x+p))$$

vertical asymptote at x = -2, so p = 2passes through the point (0, 0):

$$0 = m \log_a(n(2))$$

$$m \log_a(2n) = 0$$

$$m \neq 0, : \log_e(2n) = 0$$

$$2n = e^{0}$$

$$2n = 1$$

$$n=\frac{1}{2}$$

passes through the point $(-1, 2 \log_a 2)$:

$$2 \ln 2 = m \ln \left(\frac{1}{2} \left(-1 + 2 \right) \right)$$

$$2 \ln 2 = m \ln \left(\frac{1}{2}\right)$$

$$2 \ln 2 = m (\ln 1 - \ln 2)$$

$$2 \ln 2 = -m \ln 2$$

$$m = -2$$

 $m = -2, n = \frac{1}{2}, p = 2$

b Dilation of 2 from the y-axis, dilation of 2 from the x-axis, a reflection in the x-axis, and horizontal translation in the negative direction of 2 units.

c
$$y = -2 \log_e \left(\frac{1}{2} (x+2) \right)$$

for inverse function: $x = -2 \log_e \left(\frac{1}{2} (y+2) \right)$

$$\frac{x}{-2} = \log_e \left(\frac{1}{2}(y+2)\right)$$

$$\frac{1}{2}(y+2) = e^{\frac{-x}{2}}$$

$$y+2 = 2e^{\frac{-x}{2}}$$

$$f^{-1}(x) = 2e^{\frac{-x}{2}} - 2$$

Domain: $x \in R$

Range: y > -2

Asymptote: y = -2

Point of intersection (0, 0)

18
$$N = 3000 - 500 \log_{o}(8t + 1)$$

$$\mathbf{a} \quad \text{at } t = 0$$

$$N = 3000 - 500 \log_e(1)$$

$$N = 3000$$

3000 people infected before vaccine introduced.

b at
$$t = 5$$

$$N = 3000 - 500 \log_{e} (8 \times 5 + 1)$$

$$N = 3000 - 500 \log_{e} (41)$$

$$N = 1143.214$$

1143 people infected after 5 days.

c rate of change,
$$\frac{dN}{dt}$$

$$\frac{dN}{dt} = -500 \times \frac{1}{(8t+1)} \times 8$$

$$\frac{dN}{dt} = \frac{-4000}{(8t+1)}$$

d at
$$t = 5$$

$$\frac{dN}{dt} = \frac{-4000}{(41)}$$

$$\frac{dN}{dt} = -97.560976$$

Rate of change after 5 days is a decrease of 98 people/day, to nearest whole number

(or
$$-98$$
 people/day).

19
$$A = 15 \log_{e}(t-2)$$

a if
$$A = 15$$
:

$$15 = 15 \log_e (t - 2)$$

$$\log_e(t-2) = 1$$

$$t - 2 = e^1$$

$$t = e + 2$$

 $t = 4.7182818$

time is 4.7 minutes, correct to one decimal place.

b at t = 5

$$A = 15 \log_{e} (5 - 2)$$

$$A = 15 \log_{e} (3)$$

$$A = 16.479184$$

Alertness is 16.5 units, correct to one decimal place.

c $A = 15 \log_{a}(t-2)$

$$\frac{dA}{dt} = 15 \times \frac{1}{(t-2)}$$

$$\frac{dA}{dt} = \frac{15}{(t-2)}$$

when
$$\frac{dA}{dt} = 2$$
:

$$2 = \frac{15}{(t-2)}$$

$$2(t-2) = 15$$

$$2t - 4 = 15$$

$$2t = 19$$

$$t = 9.5$$

Takes 9.5 minutes to rate of increase of alertness to reach 2 units/minute.

20 $v = \ln(x^2 + 1)$

$$\mathbf{a} \quad \frac{dy}{dx} = \frac{1}{(x^2 + 1)} \times (2x)$$

$$\frac{dy}{dx} = \frac{2x}{(x^2 + 1)}$$

b Point *A*: (2, ln(5))

gradient of tangent at A: $m_A = \frac{4}{5}$

tangent at A:

$$y - \ln(5) = \frac{4}{5}(x - 2)$$

$$y - \ln(5) = \frac{4}{5}x - \frac{8}{5}$$

$$y = \frac{4}{5}x - \frac{8}{5} + \ln(5)$$

Point *B*: $(-2, \ln(5))$

gradient of tangent at B: $m_B = \frac{-4}{5}$

tangent at B:

$$y - \ln(5) = \frac{-4}{5}(x+2)$$

$$y - \ln(5) = \frac{-4}{5}x - \frac{8}{5}$$
$$y = \frac{-4}{5}x - \frac{8}{5} + \ln(5)$$

Point of intersection of tangents: solve simultaneously.

$$\frac{4}{5}x - \frac{8}{5} + \ln(5) = \frac{-4}{5}x - \frac{8}{5} + \ln(5)$$

$$\frac{8}{5}x = 0$$

$$x =$$

Therefore, the point of intersection, T, lies on the y-axis.

$$T = \left(0, \ln(5) - \frac{8}{5}\right)$$

c tangent at A:

$$y = \frac{4}{5}x - \frac{8}{5} + \ln(5)$$

For point P: y = 0

$$0 = \frac{4}{5}x - \frac{8}{5} + \ln(5)$$

$$4x - 8 + 5 \ln(5) = 0$$

$$4x = 8 - 5 \ln(5)$$

$$x = 2 - \frac{5}{4} \ln(5)$$

tangent at B

$$y = \frac{-4}{5}x - \frac{8}{5} + \ln(5)$$

For point Q: y = 0

$$0 = \frac{-4}{5}x - \frac{8}{5} + \ln(5)$$

$$4x + 8 - 5 \ln(5) = 0$$

$$4x = 5 \ln(5) - 8$$

$$x = -2 + \frac{5}{4} \ln(5)$$

Distance PQ: =
$$\left(-2 + \frac{5}{4}\ln(5)\right) - \left(2 - \frac{5}{4}\ln(5)\right)$$

= $\frac{5}{2}\ln(5) - 4$ units
= $0.02359...$

Therefore the distance is less than 0.1 units.