Einst Names	Look Names	Ct., don't ID.
First Name:	Last Name:	Student ID:

Applications of vectors

- **1.** Calculate the dot product, $\vec{u} \cdot \vec{v}$, to one decimal place accuracy, given that
- a. $|\vec{u}| = 10, |\vec{v}| = 2$, and the angle between \vec{u} and \vec{v} is 40°
- b. $\vec{u} = 3\hat{\imath} \hat{\jmath} + 4\hat{k}$ and $\vec{v} = -\hat{\imath} + 2\hat{\jmath} + 5\hat{k}$

2. Use the dot product to prove the relation: $(\vec{a} + \vec{b})(\vec{a} - \vec{b}) = |\vec{a}|^2 - |\vec{b}|^2$

$$(\vec{a} + \vec{b})(\vec{a} - \vec{b}) = |\vec{a}|^2 - |\vec{b}|^2$$

3. If the vectors $\overrightarrow{2a} + \overrightarrow{b}$ and $\frac{1}{2}\overrightarrow{a} - \overrightarrow{b}$ are perpendicular to each other and 2 $|\overrightarrow{b}| = 3 |\overrightarrow{a}|$ find the angle

$$\theta = \angle \; (\vec{a}, \vec{b}).$$

4. Find the angle between each pair of vectors:

a.
$$\vec{u} = 3\hat{i} - \hat{j}$$
 and $\vec{v} = -\hat{i} + 2\hat{j}$

5. For each of the following pairs of vectors, find the value of a which makes $u^{\vec{}}$ orthogonal to $v^{\vec{}}$:

a.
$$\vec{u} = (3,-4)$$
 and $\vec{v} = (a,6)$

b.
$$\vec{u} = 2\hat{i} + \hat{j} + 3\hat{k}$$
 and $\vec{v} = a\hat{i} + 2\hat{j} - \hat{k}$

c.
$$\vec{u} = (3, a, -2)$$
 and $\vec{v} = (1-a, -3, 4)$

6. Use the dot product to determine if $\triangle ABC$ is right-angled, given the coordinates of its vertices. If it is, state which angle measured 90 \circ .

a.
$$A(3,-1)$$
, $B(0,-2)$, $C(2,0)$

- 7. The parallelogram PQRS has vertices P(7,12), R(20,5), and S(4,3).
 - a. Find the coordinates of Q.
 - b. Find the measure of $\angle PSR$
 - c. Calculate the area of the parallelogram.

8. If \vec{u} has magnitude 11, \vec{v} has magnitude 5, and the angle between \vec{u} and \vec{v} is 140°, what is the magnitude of $\vec{u} \times \vec{w}$ to one decimal place accuracy?

9. Find the cross product $\vec{u} \times \vec{v}$ given that

a.
$$\vec{u} = 3\hat{i} - \hat{j} + 4\hat{k}$$
 and $\vec{v} = -\hat{i} + 2\hat{j} + 5\hat{k}$

b.
$$\vec{u} = (1,2,3)$$
 and $\vec{v} = (4,-1,5)$

c.
$$\vec{u} = (-2,1,3)$$
 and $\vec{v} = (4,-2,-6)$

- **10.** Given the vectors $\vec{u} = (-2,1,-1)$ and $\vec{v} = (-1,2,-1)$
- a. Find a unit vector perpendicular to both \vec{u} and \vec{v} .
- b. Find two vectors of magnitude 11 which are perpendicular to both \vec{u} and \vec{v} .

11. For each pair of vectors \vec{u} and \vec{v} , find the vector projection of \vec{u} on \vec{v} .

a.
$$\vec{u} = (-2,1)$$
 and $\vec{v} = (3,4)$

b.
$$\vec{u} = (1,5)$$
 and $\vec{v} = (-5,1)$

c.
$$\vec{u} = (-2,1,-1)$$
 and $\vec{v} = (2,1,3)$

d.
$$\vec{u} = (-2,1,-1)$$
 and $\vec{v} = (4,-2,2)$

12. For each pair of vectors \vec{u} and \vec{v} in Question 11, find the scalar projection of \vec{u} on \vec{v} .

13. Determine if the vectors (1, 3, 2), (5,0,-1), and (-4,3,3) are coplanar.

14. Find the volume of the parallelepiped defined by the vectors \vec{a} = (0, 1, -3), \vec{b} = (1, 2, 3) and \vec{c} = (-1,0,1).

15. Vectors \vec{u} , \vec{v} , \vec{w} are perpendicular to each other and $|\vec{u}|=1$, $|\vec{v}|=3$, $|\vec{w}|=4$. Find the magnitude of the vector $(\vec{u} \times \vec{v}) + (\vec{v} \times \vec{w}) + (\vec{w} \times \vec{u})$.

16. Consider the vectors \vec{a} , \vec{b} , and \vec{c} . If $\vec{u} = (\vec{a} \cdot \vec{b})\vec{c} - (\vec{a} \cdot \vec{c})\vec{b}$, prove that \vec{a} is perpendicular to \vec{u} .

17. Find all unit vectors perpendicular to (1, 2, 3) that make equal angles with the unit vectors \hat{i} and \hat{j} .