

Analytic Functions

Definition:

A function f(z) is called analytic at a point z_{θ} if it is differentiable at z_{θ} and on a

Harmonic Functions

Definition:

A function u(x,y) is called harmonic on a certain domain " D" if it satisfies Laplace's

equation $u_{xx} + u_{yy} = 0$ on D

mean vale

Differentiation in polar coordinates

In polar coordinates
$$f(z) = u(r, \theta) + iv(r, \theta)$$

Cauchy - Riemann equations are
$$ru_r = v_\theta$$
 & $rv_r = -u_\theta$

Proof: $U_x = Vy$ $U_y = -Vx$ $v_y = v_\theta$
 $v_y = v_\theta$ $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 $v_y = v_\theta$
 v_y

Differentiation in polar coordinates

Laplace's equation is

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$$

$$u_{rr} + \frac{u_r}{r} + \frac{u_r}{r^2} u_{\theta\theta} - 0$$

$$f'(z) = \frac{r}{z} \left(u_r + i v_r \right) = \frac{1}{z} \left(v_\theta - i u_\theta \right)$$

$$g'(z) = Uz + iVz$$

$$= (080 = isin 0)(Ur + iVr)$$

$$= e^{i0} = e^{i0} = e^{i0}$$

$$= e^{i0} = e^{i0} = e^{i0}$$

 $(r \cdot u_r) = v_\theta$ & $rv_r = -u_\theta$

$$U_{x} = U_{r} \frac{\partial Y}{\partial x} + U_{\theta} \frac{\partial \delta}{\partial x}$$

$$= U_{r} \frac{\partial V}{\partial x} + \frac{U_{\theta}}{\partial x} \frac{\partial \delta}{\partial x}$$

$$= V_{r} \frac{\partial V}{\partial x} + \frac{\partial V}{\partial x} \frac{\partial V}{\partial x}$$

Example 7:

Show that
$$\frac{d}{dz}(\ln z) = \frac{1}{z}$$

Solution:

$$\ln z = \ln(re^{i\theta}) = \ln r + i\theta$$

$$u_r = \frac{1}{r}$$
, $v_\theta = 1 \implies r u_r = v_\theta$

$$v_r = 0$$
, $u_\theta = 0$ \Rightarrow $rv_r = -u_\theta$

 \Rightarrow $f(z) = \ln z$ is differentiable everywhere except at z = 0 or the negative real axis.

$$f'(z) = \frac{r}{z} \left(u_r + i v_r \right) = \frac{r}{z} \left(\frac{1}{r} \right) = \frac{1}{z}$$

Exponential Function

$$w = e^{x+iy} = e^x (\cos y + i \sin y)$$

$$u(x,y) = e^x \cos y$$
 $v(x,y) = e^x \sin y$

Entire Function

Periodic Function

principal region

org(w) = 4

Exponential Function

$$w = e^{x+iy} = e^x (\cos y + i \sin y)$$

Example 1:

Find all the values of z such that $e^{4z}=1+i$ and Specify principle value.

Solution:

Take In to both sides

$$4z = ln(1+i) = ln(\sqrt{2} e^{i(\frac{\pi}{4}+2\pi k)}) = ln\sqrt{2} + i(\frac{\pi}{4}+2\pi k)$$

$$\Rightarrow z = \frac{1}{4} \left(\ln \sqrt{2} + i \left(\frac{\pi}{4} + 2\pi k \right) \right)$$

Trigonometric and Hyperbolic Function

$$e^{ix} = \cos x + i \sin x,$$

$$e^{-ix} = \omega_{S(-x)} + i \sin(-x)$$

$$\cos z = \frac{1}{2} (e^{iz} + e^{-iz}),$$

$$\sin z = \frac{1}{2i} (e^{iz} - e^{-iz}).$$

$$chx = \frac{e^{x} + e^{-x}}{z}$$

$$Shx = \frac{e^x e^{-x}}{2}$$

$$\sin iz = i \sinh z$$
, $\cos iz = \cosh z$, $\tan iz = i \tanh z$
 $\sinh iz = i \sin z$, $\cosh iz = \cos z$, $\tanh iz = i \tan z$

Example 2:

$$a_{-cos} z = (\cos x \cosh y - i \sin x \sinh y)$$

$$b_{-cos} z|^2 = (\cos x \cosh y + \sinh^2 y)$$

L.H.S =
$$1(e^{ix}e^{-y} + e^{e^{y}}) = 1(e^{ix}e^{-y} + e^{-ix}e^{y}) = 1(e^{ix}e^{-y} + e^{-ix}e^$$

$$e^{\frac{y}{4}}e^{-\frac{y}{2}} = R.H.$$

$$b - 16321^{2} = (csx chy)^{2} + (sin x shy)^{2}$$

$$= (csx chy)^{2} + (sin x shy)^{2}$$

Example 3:

Show that $f(z) = \sin z$ is differentiable everywhere and $\frac{d}{dz}(\sin z) = \cos z$. Solution:

$$\frac{d}{dz}(\sin z) = \cos z.$$

$$w = \sin z = \sin(x + iy) = \sin x \cos iy + \cos x \sin iy$$
$$= \sin x \cosh y + i \cos x \sinh y$$

$$u_x = \cos x \cosh y$$
, $v_y = \cos x \cosh y$ $\Rightarrow u_x = v_y$ everywhere

$$u_y = \sin x \sinh y$$
, $v_x = -\sin x \sinh y$ $\Rightarrow u_y = -v_x$ everywhere

$$\Rightarrow f(z) = \sin z$$
 is differentiable everywhere.

$$\Rightarrow f'(z) = u_x + iv_x = \cos x \cosh y - i \sin x \sinh y$$

$$= \cos x \cos iy - \sin x \sin iy$$

$$= cos(x + iy)$$

$$\therefore \frac{d}{dz}(\sin z) = \cos z.$$

Example 4:

Find all the values of z such that $\sin z = \cosh 2$

Solution:

$$sin z = sin(x + iy) = sin x cos iy + cos x sin iy$$
 $\rightarrow sin x cosh y + i cos x sinh y = cosh 2$

$$\cos x \sinh y = 0 \qquad \text{and} \qquad \sin x \cosh y = \cosh 2$$

$$\cos x \sinh y = 0 \qquad \Rightarrow y = 0 \qquad \text{or} \qquad x = (2n+1)\frac{\pi}{2}$$

$$\cos x \sinh y = 0$$
 $\Rightarrow y = 0$ or $x = (2n+1)\frac{\pi}{2}$

in 2
$$y \neq 0 \Rightarrow \sin x = \cosh 2$$
 (Refused) $|x| \leq |x| \leq |x|$

$$x = (2n+1)\frac{\pi}{2} \Rightarrow \sin((2n+1)\frac{\pi}{2})\cosh y = \cosh 2$$

$$(-1)^n \cosh y = \cosh 2$$

If n is odd,
$$\cosh y = -\cosh 2$$
 (Refused)

If n is even,
$$\cosh y = \cosh 2 \implies y = \pm 2$$

$$y \neq 0 \implies \sin x = \cosh 2 \quad (Refused)_{1 \leq in \times 1 \leq 1}$$

$$x = (2n+1)\frac{\pi}{2} \implies (\sin(2n+1)\frac{\pi}{2})\cosh y = \cosh 2$$

$$(-1)^n \cosh y = \cosh 2 \qquad \Rightarrow 1, -1, 1, -1 \qquad (-1)^n = (-1, 1, -1, -1)^n = 1, 2, 3 - 1$$
If n is o odd, c os h $y = -\cosh 2 \quad (Refused)$
If n is even, c os h $y = \cosh 2 \implies y = \pm 2$

$$y = \pm 2$$

Logarithmic Function

$$\ln z = \ln r + i\theta$$

multivalued

$$In z = Ln z \pm 2n\pi i$$

Remark

$$e^{\ln z} = z$$
 $\ln (e^z) = z \pm 2n\pi i$,

Logarithmic Function

Remarks.

- 1. Since arg(z) has infinitely many possible values, so does log(z).
- 2. $\log(0)$ is not defined. (Both because $\arg(0)$ is not defined and $\log(|0|)$ is not defined.)
- 3. Choosing a branch for arg(z) makes log(z) single valued. The usual terminology is to say we have chosen a branch of the log function.
- 4. The principal branch of log comes from the principal branch of arg. That is,

$$\log(z) = \log(|z|) + i \arg(z)$$
, where $-\pi < \arg(z) \le \pi$ (principal branch).

Logarithmic Function

Example 6:

Find
$$log(1)$$
 = $ln(e^{i0})$ = $i0$ lne = $l*0=0$ principle branch $ln(e^{i2\pi})$ = $i(2\pi)$ lne = $2\pi i$ $2\pi \pi i$

Compute all the values of
$$\log(i)$$
.

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \int_{-\infty}^{$$

Logarithmic Function

$$z^a = e^{a \log(z)}$$
.

Example 5:

