1

6.

What is claimed is:

1	1.	A meth	nod for use in a receiver for detecting and demodulating at least one signal
2	of M-	ary ortho	ogonal symbols (MOK) comprising the steps of:
3		a.	receiving coded M-ary orthogonally modulated symbols over a channel;
4		b.	demodulating said M-ary orthogonally modulated symbols;
5		c.	calculating a metric;
6		d.	decoding said symbols;
7		e.	calculating probabilities of different symbols for each symbol instance;
8		f.	estimating a fading channel responsive to calculating the probabilities;
9			and
10		g.	iteratively feeding said metric, said decoded symbols, said probabilities
11			and said estimate back into said demodulating step to re-demodulate said
12			symbols coherently.
1	2.	The m	nethod according to claim 1, wherein said coded M-ary orthogonally
2	modu	lated syr	mbols are convolutionally coded.
1	3.	The m	ethod according to claim 1, wherein a first instance of said demodulating
2	step is	perforn	ned noncoherently and each succesive instance of said demodulating step
3	for sai	id signal	is performed coherently.
1	4.	The m	ethod according to claim 1, further comprising the steps of:
2		a.	testing the decoded signal for recognition improvement; and
3		b.	repeating steps b through fiteratively until no recognition improvement is
4			detected.
1	5.	The m	ethod according to claim 1, further comprising the steps of:
2		a.	testing the decoded signal for recognition improvement; and
3		b.	repeating steps b through f iteratively a preset threshold of the recognition
4			improvement is attained.

The method according to claim 1, further comprising the step of de-interleaving.

- The method according to claim 1, wherein said metric is a log likelihood ratio.
- 1 8. The method according to claim 6, wherein said log likelihood ratio is
- 2 approximated by choosing a maximum term in a summation wherein said summation
- 3 can be one of a summation of exponentials, modified Bessel functions and a product of
- 4 both.
- 1 9. The method according to claim \(\frac{1}{4} \), further comprising the step of calculating chip
- 2 probabilities after the step of calculating symbol probabilities.
- 1 10. The method according to claim 1, wherein said estimating step is accomplished
- 2 using a filter.

5

6

7

- 1 11. The method according to claim 9, wherein said filter is a Weiner filter.
- 1 12. The method according to claim 1, wherein said estimating step is performed in a
- 2 first instance using only a known first chip and following a first instance of said decoding
- 3 step, unknown chips being also used to estimate the fading channel.
- 13. A method for a receiver for detecting and demodulating at least one signal of
- 2 complementary code keying (CCK) symbols comprising the steps of:
- a. receiving complementary coded keying (CCK) modulated symbols over a channel;
 - b. demodulating said complementary code keying modulated symbols;
 - c. decoding said symbols;
 - d. adding an extra known chip at a beginning of every symbol;
- e. calculating probabilities of different symbols for each symbol instance;
- f. calculating expected values of complex conjugates of every chip;
- g. estimating the fading channel at different chip positions within said symbol;
- h. iteratively feeding said decoded symbols, said probabilities and said estimate back into said demodulating step to re-demodulate said symbols.

2

3

		2000-0122			
1	14.	The method according to claim 12, wherein a first instance of said demodulating			
2	step is	performed noncoherently and each succesive instance of said demodulating step			
3	for sai	d signal is performed coherently.			
1	15.	The method according to claim 12, further comprising the steps of:			
2		a. determining an argument of a maximum of said signal and a value of said			
3		maximum signal;			
4		b. further determining a purality of first bits of a code; and			
5		c. independently differentially demodulating remaining bits of said code.			
1	16.	The method according to claim 12, further comprising the steps of:			
2		a. testing the decoded signal for recognition improvement; and			
3		b. repeating steps b through fiteratively until no recognition improvement is			
4		detected.			
1	17.	The method according to claim 12, further comprising the steps of:			
2		a. testing the decoded signal for recognition improvement; and			
3		b. repeating steps b through fiteratively a preset threshold of the recognition			
4		improvement is attained.			
1	18.	The method according to claim 10, wherein said estimating step is accomplished			
2	using	a filter.			
1	19.	The method according to claim 13, wherein said filter is a Weiner filter.			
1	20.	The method according to claim 12, wherein said estimating step is performed in a			

first instance using only a known first chip and following a first instance of said decoding

step, unknown chips being also used to estimate the fading channel.