Alimentation des animaux d'élevage

2A – UE Analyses des conduites d'élevage

Cours 1(/6) en Amphi – 3 TD

Eric BERTRAND, eric.bertrand@eleveursdessavoie.fr

Analyse des conduites d'élevage

Analyse des conduites d'élevage

Performances: Croissance, reproduction, production

Analyse des conduites d'élevage

Performances: Croissance, reproduction, production

ΝD

Importance de l'alimentation

Economique

Structure du coût de revient du porc en 2015

_		
Alimentation	Charges totales	
(€/ 100 kg de	(€ / 100 kg de	
carcasse)	carcasse)	
121	180	67%
109	179	61%
111	172	65%
93	170	55%
88	160	55%
90	160	56%
81	157	52%
88	155	57%
88	155	57%
87	146	60%
<i>9</i> 5	146	65%
86	144	60%
97	144	67%
89	140	64%
83	125	66%
88	117	75%
<i>7</i> 3	108	68%
62	94	66%

Source : IFIP, baromètre du porc, décembre 2016

- Exemple en porcs
- Exemple en volaille

Cf TD performance

- Pour réduire le coût de revient d'1kg de viande ou de lait
- Pour augmenter les performances d'un animal ou d'un lot

- Qualité des produits
 - Production laitière / production de viande, d'œufs

 Sécurité alimentaire des produits finis : vigilance en alimentation animale, excréments porteurs de pathogènes

Alim'confiance

- Santé
 - Limiter les risques métaboliques de types acidose, cétose, alcalose

Bonne alimentation
Bon logement

Bonne expression des comportements « normaux »

Bonne santé

MILIEU

Piloter l'alimentation = un des leviers permettant de réduire les impacts environnementaux de l'élevage.

45%: part des émissions GES issus des activités d'élevage liées à l'alimentation animale

• Exemple des émissions de GES

Source : Herrero et al., 2013 – FAO, 2016
Eric BERTRAND

Réponses à l'alimentation

• Réponses à l'alimentation

- Energie dans la ration et...
 - Ingestion
 - Quantité de lait
 - Qualité du lait

Figure I : Loi de réponse aux variations de la teneur en PDIE/UFL de la ration - (Vérité, Delaby, 1998)

Faverdin AFTAA 25/11/04

• Fibres et émissions de CH4

Source: Pinares-Patino et al., 2003

• Réponses à l'alimentation

Notre cheminement...

- 1. Bilan de rations : ruminants et monogastriques
- 2. Bilan d'alimentation
- 3. Impacts environnementaux

- Couvrir les besoins nutritionnels correspondant à un objectif de production...
 - Equilibrer apports/besoins
 - Optimum?
 - Moindre coût ?
 - Maximiser les fourrages ?
- Connaitre et contrôler l'impact de l'alimentation sur :
 - Qualité/sécurité des produits
 - Environnement
 - Bien être, santé

• Prise en compte :

- Pratiques de distribution
- Pratiques d'allotements
- Critères d'évaluation de l'équilibre alimentaire (autre que les valeurs nutritives)
 - Observation des animaux : comportement, NEC, NEF
 - Niveau de performances
 - Rejets

Connaissance des aliments

- Types d'aliment
 - Fourrages
 - Concentrés
 - Simple MP
 - Composés ou formulés (fournisseurs d'aliments)

UF

PDI

UE

- Valeur des aliments
 - Valeurs énergétiques
 - Valeurs azotées
 - Encombrement
 - absorption
- Digestibilité et ingestibilité
 - Composition chimique
 - Techniques de récolte & conservation

EN

EB

2. Bilan d'alimentation

• La valeur des aliments :

- Valeur nutritive
- Valeur économique

Digestibilité, disponibilité, dégradabilité

Tourteau de soja 48

Coproduit d'huilerie obtenu par pression, extraction au solvant et traitement thermique de graines de soja (Glycine max (L.) Merr.) avec réincorporation partielle des coques. « 48 » indique que la teneur garantie en protéines + matières grasses est de 48 % sur brut (N = 10409).

Tourteaux de soja extrudé et de soja tanné pour les ruminants : voir page 281.

Toutes les valeurs sont exprimées par rapport au produit brut sauf indication contraire,

Composition	on élémentair	e	Acides gras	Acides gras				
Matière sèche (%) Protéines brutes (%) Cellulose brute (%) Matières grasses brutes (%) Cendres brutes (%) Cendres insolubles (%) NDF (%) ADF (%) ADL (%) Parois végétales (%) Amidon (%) Sucres totaux (%) Énergie brute (kcal/kg)	Moy 87,8 45,3 6,0 1,9 6,4 0,3 12,2 7,3 0,7 19,1 0,0 8,3 4130	ET 0,6 1,0 0,5 0,4 0,5 0,3 1,7 1,9 0,4 2,3 1,1 130	Acide myristique C14:0 Acide palmitique C16:0 Acide palmitoléique C16:1 Acide stéarique C18:0 Acide oléique C18:1 Acide linoléique C18:2 Acide linoléique C18:3 AG totaux / matières grasses (%)	% AG 0,1 10,5 0,2 3,8 21,7 53,1 7,4	g/kg 0,0 1,5 0,0 0,5 3,0 7,4 1,0			

Min	iéraux		Vitamines	
Calcium (g/kg) Phosphore (g/kg) P phytique / P total (%) Magnésium (g/kg) Potassium (g/kg) Sodium (g/kg) Chlore (g/kg) Soufre (g/kg) Silan cations-anions (mEq/kg) Manganèse (mg/kg) Chro (mg/kg) Cuivre (mg/kg) er (mg/kg) élénium (mg/kg) Cobalt (mg/kg)	Moy 3,4 6,2 60 2,9 21,1 0,3 0,5 4,0 289 539 38 47 18 283 0,20 0,26	0,9 0,5 0,3 1,5 0,5 0,9	Vitamine E (mg/kg) Vitamine B1 - Thiamine (mg/kg) Vitamine B2 - Riboflavine (mg/kg) Vitamine B6 - Pyridoxine (mg/kg) Niacine (mg/kg) Acide pantothénique (mg/kg) Acide folique (mg/kg) Biotine (mg/kg) Choline (mg/kg)	Moy 4 6 3 6 39 16 0,59 0,27 2545
/lolybdène (mg/kg) ode (mg/kg)	4 0,15		Autres	

Activité phytasique (UI/kg)

			THE REAL PROPERTY.
Porcs			
Porcs (Croissance		Iruie
ED (kcal/kg)	3520		3730
EM (kcal/kg)	3210		3370
EN (kcal/kg)	1940		2090
dE (%)	85		90
dMO (%)	86		91
dN (%)	87		90
dNIS (%)		88	
dMG (%)		36	
dP (%)		3.2	
G- 1			
Ruminants		1,06	
UFL (par kg)		1,05	
UFV (par kg)		177	
PDIA (g/kg)		331	
PDIN (g/kg)		229	
PDIE (g/kg)		2840	
EM (kcal/kg)		92	
dE (%)		92	
dMO (%)		80	
dN (%)		95	
dr (%)		66	
dAG (%)		4,4	
P absorbé (g/kg) Dégradation rum	inale Azote	Amidan	MS
	63		67
DT (%)			26
a (%) b (%)			71
c (%/h)			8,0
C (70/11)			

Volailles	Coq	Poulet
EMAn (kcal/kg) Disponibilité P (%)	2280	2230 22
Chevaux		
UFC (par kg) MADC (g/kg)	0,80 407	
Lapins		
ED (kcal/kg)	3300	
EMn (kcal/kg)	2850	
dE (%)	80	
dN (%)	83	
Poissons		
ED (kcal/kg)	3100	
dE (%)	75	
dN (%)	86	
dN extrudé (%)	97	
dP (%)	26	

		Acides amir	nés totau	ıx et d	igestibilité	des acide	es aminés	
		veines anni	Porc			Vola	unes	Kumamanc
Acides aminés	Totaux	DIA	TDIA	DIS	TDIS	DV	TDV	AAD1 % PDIE
	g/kg % MAT	%	g/kg	%	g/kg	%	g/kg 25,3	6,9
LV6C	27,8 6,1	87	24,2	90	24,9	91	15,8	4,7
LYS	17,7 3,9	82	14,5	87	15,3	89	5,8	1,5
THR	6,4 1,4	88	5,7	92	5,9	91	5,7	
MET	6,7 1,5	82	5,5	86	. 5,8	86	11,5	
CYS MET+CYS	13,1 2,9	85	11,1	89	11,6	88	1170	
TRP	5,9 1,3	85	5,0	89	5,2	92	19,2	5,2
ILE	20,9 4,6	87	18,1	90	18,7	91	19,8	5,4
VAL	21,8 4,8	85	18,5	88	19,3	92	30,7	8,2
LEU	33,4 7,4	87	28,9	89	29,8	93	21,2	5,2
PHE	22,8 5,0	88	20,0	91	20,6	93	14,0	
TYR	15,1 3,3	88	13,4	92	13,9	93	35,2	
PHE+TYR	37,9 8,4	88	33,4	91	34,5	93	11,1	2,4
HIS	12,0 2,7	88	10,6	91	10,9	92	31,0	5,6
ARG	33,6 7,4	92	31,0	94	31,6 17,1	89	17,6	
ALA	19,9 4,4	82	16,2	86	46,1	91	47,0	
ASP	51,4 11,3	87	44,8	90	72,8	94	76,1	
GLU	80,8 17,8	88	71,2	90 85	16,0	85	16,1	
GLY	19,0 4,2	79	15,0	89	20,3	92	21,0	
SER	22,8 5,0	86	19,6	90	20,1	93	20,8	
PRO	22,4 4,9	87	19,5	90	201			

Connaissance des aliments...

- Important de bien connaitre la composition des aliments et la nature des MP
 - Valeurs nutritives & environnementales
 - Alimentation => 65% des impacts environnementaux en élevage

• 6 critères :

- Conso P
- Conso Energie
- Acidification sols
- Eutrophisation
- Occupation des sols

CONTRIBUTION DE CHAQUE SECTEUR AUX ÉMISSIONS DE GES*

Estimer les besoins

Ruminants (estomac compartimenté) Herbivores • Bovins Ovins Caprins

Monogastriques (qui ne ruminent pas)

Herbivores

- Lapins
- Équins

Omnivores

• Porcins

Granivores

volailles

Eric BERTRAND

Estimer les besoins

Ruminants (bovin)

Monogastriques (porcs)

Source: FAO, R Wolter (alimentation des vaches laitières)

BERTRAND

Estimation des besoins

Age

poids

Mâles reproducteurs, castrés, femelles Type génétique (race, croisement)

Capacité d'ingestion

Estimation des besoins

- Croissance (sevrage, fonctions sexuelles, insémination)
- Reproduction (début de gestation vs fin de gestation)
- Production (phase ascendante, descendante)
- Engraissement (obj de poids, rendement, composition de carcasse)

Métabolisme de base (= besoins d'entretien)

Formulation/rationnement

FORMULATION

 Aliments types à partir de matières premières

RATIONNEMENT

Méthode de calcul:

- Manuelle
- A l'aide de logiciel types INRAtion (ruminants), INRAporcs ou PROFAL (IFIP, porcs)

Permet de tester plusieurs combinaisons d'aliments possibles >> optimum

Composition moyenne de la ration des

En moyenne*, par an, une

chèvre ingère :

troupeaux caprins

Composition moyenne de la ration des

troupeaux caprins

Assemblage de plusieurs MP (fabricant ou fermier)

Obtenus après extraction d'huile (soja, colza, tournesol...)

LES CHIFFRES DES CONCENTRÉS

43 % de céréales 40 % d'aliments composés

8 %
de tourteaux
et concentrés
azotés

7% de coproduits

2 % de minéraux

LES CHIFFRES DE L'AUTONOMIE ALIMENTAIRE

79 % d'autonomie fourragère

22% d'autonomie en concentrés 61% d'autonomie de la ration

56 % d'autonomie énergétique

44 % d'autonomie protéique

Définition de la ration adéquate ? Besoins...

Définition de la ration adéquate ? Besoins...

Besoins alimentaires - femelles

Définition de la ration adéquate ? Besoins...

Tableau 7.6. Besoins alimentaires des boucs.

Poids vif (kg)	État	Énergie (UFL/j)	Protéines (g/j)	Calcium abs. (g/j)	Phosphore abs. (g/j)	Capacité d'ingestion (UEL/j)
60	Entretien	0,87	50	1,2	1,8	1,29
60	Lutte	0,99	53	1,4	2,1	1,46
70	Entretien	0,98	56	1,4	2,1	1,46
70	Lutte	1,11	59	1,6	2,4	1,66
80	Entretien	1,09	62	1,6	2,4	1,64
80	Lutte	1,24	6-6	1,8	2,8	1,86
90	Entretien	1,20	69	1,8	2,7	1,82
90	Lutte	1,36	72	2,1	3,1	2,06
100	Entretien	1,31	75	2,0	3,0	1,99
100	Lutte	1,34	7.9	2,3	3,5	2,26
110	Entretien	1,42	81	2,2	3,3	2,17
110	Lutte	1,61	85	2,5	3,8	2,46
120	Entretien	1,53	87	2,4	3,6	2,34
100			0.0			

Définition de la ration adéquate ?

• Besoins alimentaires – caprins en croissance

Définition de la ration adéquate ?

Besoins alimentaires – monogastriques

Porcelet
Porc en
croissance
Porc en finition
Truie gestante
Verrat
Truie allaitante

AA digestibles
MAT
Calcium et
Phosphore

Définition de la ration adéquate ? Le disponible

Quels sont les aliments disponibles ?

Quels sont leur composition?

UFL
PDIN
PDIE
Ca abs
P abs
UEL

Définition de la ration adéquate ? Le disponible

Tableau 7.1. Besoins alimentaires des chèvres laitières adultes^a.

Poids vif (kg)	Production laitière 35 g TB (kg/j)	Énergie ^b UFL/j	Protéines PDI (g/j)		Phosphore abs. (g/j)	Capacité d'ingestion CI (UEL/j)	MS ingérées (kg/j)
50	0	0,69	44	1,2	1,4	1,14	1,25
50	1	1,14	89	2,7	2,7	1,38	1,57
50	2	1,59	134	4,2	4,0	1,62	1,90
50	3	2,04	179	5,7	5,2	1,86	2,22
50	4	2,49	224	7,2	6,5	2,10	2,54
50	5	2,94	269	8,7	7,7	2,34	2,86
50	6	3,39	314	10,2	9,0	2,58	3,18
50	7	3,84	359	11,6	10,3	2,82	3,50
60	0	0,79	50	1,5	1,7	1,30	1,41
60	1	1,23	95	3,0	2,9	1,54	1,74
60	2	1,67	140	4,5	4,2	1,78	2,06
60	3	2,12	185	5,9	5,4	2,02	2,38
60	4	2,56	230	7,4	6,7	2,26	2,70
60	5	3,00	275	8,9	7,9	2,50	3,02
60	6	3,44	320	10,3	9,1	2,74	3,34
60	7	3,88	365	11,8	10,4	2,98	3,66
70	0	0,89	56	1,9	2,0	1,46	1,58
70	1	1,33	101	3,3	3,2	1,70	1,90
70	2	1,76	146	4,8	4,4	1,94	2,22
70	3	2,20	191	6,2	5,7	2,18	2,54
70	4	2,63	236	7,6	6,9	2,42	2,86
70	5	3,07	281	9,1	8,1	2,66	3,18
70	6	3,50	326	10,5	9,3	2,90	3,50
70	7	3,94	371	12,0	10,5	3,14	3,82

a Pour les premières semaines de lactation, les ingestions doivent être corrigées et une partie de la dépense d'énergie est couverte par la mobilisation des réserves.
 b En tenant compte des interactions digestives.
 c Valeurs indicatives.

Tableau 7.2. Besoins alimentaires des chèvres en gestation.

Poids vif (kg)	Stade (mois)	Énergie (UFL/j)	Protéines PDI (g/j)	Calcium abs. (g/j)	Phosphore abs. (g/j)	Capacité d'ingestion (UEL/j)	MS ingérée (kg/j)
40	1 à 3	0,59	38	1,1	1,4	0.98	1,09
40	4	0,68	60	2,0	1,9	0,98	1,09
40	5	0,77	83	2,2	2,0	0,98	1,00
50	1 à 3	0,69	44	1,3	1,5	1,14	1,25
50	4	0,79	70	2,3	2,0	1.14	1,25
50	5	0,90	96	2,4	2,2	1,14	1,16
60	fà3	0,79	50	1,5	1,7	1,30	1,41
60	4	0,91	80	2,4	2,2	1,30	1,41
60	5	1,03	110	2,6	2,3	1,30	1,32
70	1 à 3	0,89	56	1,8	1,9	1,46	1,58
70	4	1,02	90	2,6	2,3	1,46	1,58
70	5	1,16	124	2,8	2,5	1,46	1,49
80	1 à 3	0,99	62	2,0	2,0	1,62	1,74
80	4	1,14	100	2,8	2,4	1,62	1,74
90	e e	1.20	127	0.0	-, -	-,	- , , , ,

Tableau 7.3. Valeurs d'encombrement des aliments concentrés (en UEL/kg MS).

Concentré	Valeur UEL/kg MS du fourrage						
(kg MS/j)	0,9	1	1,1	1,2	1,3		
0.25	80,0	0,09	0,10	0,11	0,12		
0.5	0,17	0,19	0,21	0,23	0,24		
0,75	0,25	0,28	0,31	0,34	0,37		
1	0.34	0,38	0,41	0,45	0,49		
1,25	0,42	0.47	0,52	0,56	0,61		
1,5	0,51	0,56	0,62	0,68	0,73		

Tableau 7.4. Réponses moyennes des chèvres aux variations d'apport des aliments concentrés*.

			kg MSL o	oncentré		kg MSI concentré								
	0,25	0,5	0,75	1	1,25	1,5								
MS fourrages (kg/j)	-0.02	-0,09	- 0,21	- 0,38	-0,59	-0.85								
Lait brut (kg/j)	0,25	0,48	0,69	0,87	1,02	1,16								
TB (g/kg)	-0.06	-0.24	-0.55	-0.98	- 1,53	- 2,20								
Bilan UFL/j	0,07	0,14	0,21	0,28	0,35	0,42								
			% MS de	concentré										
	10	20	30	40	50	60								
MS ingérée (kg/j)	0,10	0,21	0,31	0,42	0,52	0,62								
Lait brut (kg/i)	0,28	0,52	0,73	0,90	1,04	1,14								
TB (g/kg)	-0.07	-0,27	- 0,60	- 1,08	-1,68	-2,42								
Bilan UFL/j	0,07	0,14	0,21	0,28	0,35	0,42								

^{*} La valeur 0 de la réponse correspond à la ration sans concentré.

Tableau 7.5. Besoins alimentaires des caprins en croissance.

Animal	Åge (mois)	Poids vif (kg)	Gain de poids (g/j)	Énergie (UFL/j)	Protéines PDI (g/j)	Calcium abs. (g/j)	Phosphore abs. (g/j)	MSI* (kg/j)
Chevreaux	1	6,0	200	0,47	75	3,0	1,7	
Cilevicaux	1	7,0	250	0,53	85	3,6	2,1	
Chevrettes	1	6,5	165	0,42	62	2,3	1,4	
CHEVICIO	2	11,5	165	0,48	65	2,3	1,4	
	3	16,3	155	0,55	64	2,3	2,4	0,90
	4	20,7	140	0,62	62	2,2	2,5	1,05
	5	24,5	115	0,66	59	2,0	2,4	1,10
	6	27,6	90	0,68	55	1,8	2,4	1,15
	7	30,0	70	0,69	50	1,7	2,3	1,19

^{*} Ordre de grandeur.

Définition de la ration adéquate ? L'Energie

• Est-ce que les apports peuvent couvrir les besoins en énergie ?


```
Besoins en UFL
          (QI<sub>fourrage</sub> x UFL<sub>fourrage</sub>)
       (QI<sub>concentrés</sub> x UFL<sub>concentrés</sub>)
SACHANT que ces apports doivent
 couvrir la capacité d'ingestion des
                     chèvres
      CI = (QI<sub>fourrage</sub> x VE<sub>fourrage</sub>)
+
        (QI<sub>concentrés</sub> x VE<sub>concentrés</sub>)
```

Définition de la ration adéquate ? La protéine

• Est-ce que les apports peuvent couvrir les besoins en protéines ?


```
Besoins en PDI
           ⇒ Besoin en PDIN
                 Equation 1
      (QI<sub>concentré1</sub> x PDIN<sub>concentré1</sub>)
      (QI<sub>concentré2</sub> x PDIN<sub>concentré2</sub>)
On connait QI total (concentré1+2)
                 Equation 2:
QI<sub>concentré1</sub> + QI<sub>concentré2</sub> = QI<sub>concentrés</sub>
```

Définition de la ration adéquate ? CMV

• Est-ce que les apports peuvent couvrir les besoins en minéraux, vitamines et oligos ?

Apports en Besoins en V&M V&M Fourrages Concentrés 1 Concentrés 2

Déficit ou excédent en Phosphore? Déficit ou excédent en Calcium?

Complémentation minérale

Principes de rationnement

- 1. Estimation des besoins = apports alimentaires recommandés (AAR)
- 2. Estimation des apports, à partir des valeurs nutritives des aliments (ex : caractéristiques des fourrages et concentrés)
- 3. Adéquation/Cl
- 4. Estimation du besoin en vit et minéraux, en complément.

Principes de rationnement

- 1. Hypothèses de départ/animal
- 2. Définitions des obj/conditions (ex : optimum « au moindre coût »)
- 3. Unités
- 4. Précision/pertinence des valeurs nutritives
- 5. Interactions entre aliments
- 6. Limites: physio, réglementaires, CDC

Un grand nombre d'équations!

Illustration: outil OPTIM'AL (IDELE)

outil de calcul de ration pour les BL/BC, dont l'optimum tient compte des prix des aliments et recommandations nutritionnelles de l'INRA.

