

Développement Avancé d'Applications Web

- Chapitre 1 -

Rappels sur les Bases de Données

Dr Bouanaka Chafia

NTIC

chafia.bouanaka@univ-constantine2.dz

Etudiants concernés

Faculté/Institut	Département	Niveau	Spécialité
NTIC	TLSI	Licence 3	Génie Logiciel (GL)

Université Constantine 2 2022/2023. Semestre 1

Résumé

Prérequis

- Bases de données (S4)
- Le langage SQL

Objectif du cours

 Rappeler les concepts de bases liés à la création et la manipulation d'une BD relationnelle

Plan du Cours

- Définitions
- Conception d'une base de données
- Algèbre relationnelle
- Organisation physique des données

Section 1: Définitions

Définitions : Base de données

 Une base de données est un ensemble de données structurées modélisant un univers précis et accessible à plusieurs utilisateurs en même temps.

permettant le stockage permanent (sur disque) de grande quantités

d'informations

et faciliter l'exploitation :

- ajout
- mise à jour
- recherche des données
- Objectifs d'une BD
 - Elimination de la redondance des données;
 - Indépendance entre les programmes et les données : on peut isoler le niveau utilisation(application) de l'organisation physique de données ;

BASE

DE

DONNÉES

Intégration des données de l'entreprise dans un même espace de stockage.

Définitions : SGBD (Système de Gestion d'une BD)

Définition (Modèle logique de données)

- Logiciel assurant la structuration, le stockage, la maintenance, la mise à jour et la consultation des données d'une BD
- Il permet ainsi de gérer une BD et la partager entre plusieurs utilisateurs simultanément.

Objectifs d'un SGBD

- Stocker et centraliser des données dans une BD et les mettre à disposition des utilisateurs;
- Manipuler les données de manière transparente pour l'utilisateur.

Définitions : SGBD (Système de Gestion d'une BD)

Le SGBD assure les fonctionnalités suivantes :

- Gestion du stockage: tailles énormes de données, éviter les redondances
 - Définition des données via un LDD(Langage de Définition des Données)
 - Manipulation des données via un LMD(Langage de Manipulation des Données)
- Persistance: sauvegarde correcte des données
 - Assurer l'intégrité des données
 - Gérer les accès concurrents
- Fiabilité: Mécanismes de reprise sur pannes
- Sécurité-Confidentialité:
 - Assurer la confidentialité des données
 - Assurer la sécurité de fonctionnement
 - Contrôler les utilisateurs et leurs droits d'accès aux données

Définitions : SGBD (Système de Gestion d'une BD)

Exemples de SGBD:

- **SGBD de bureautique :**Access, Base, Filemaker, Paradox
- SGBD serveurs: Oracle, DB2, SQL Server, PostgreSQL, MySQL

Section 2 : Conception d'une base de données

Niveaux de Description

On peut distinguer trois niveaux de description des données :

- Niveau externe (vue): correspond aux différentes vues des utilisateurs
 - La vue est propre à chaque application de la base de données
 - Elle est décrite en terme d'objets, propriétés et relations pour une utilisation particulière des informations du domaine.
 - Ce niveau est décrit par un ou plusieurs schéma externes.
- Niveau conceptuel : décrit la structure de la BD indépendamment de son implémentation physique (modélisation des entités du monde réel)
 - Exprimé dans un formalisme Entité-Association (E-A)
- Niveau interne ou physique:
 - Définit la réalisation de la structure de données (type, taille,...) selon le SGBD choisi (relationnel par exemple) et d'objectifs d'optimisation
 - Exprimé sous forme de fichiers internes du SGBD choisi

Etapes de conception d'une BD

Etapes de Conception d'une BD

Modèles de représentation des données

On peut distinguer trois modèles :

Modèle Conceptuel de données :

Modèle Logique de données :

Modèle Physique de données : Représentation interne des données

Modèle Conceptuel de données

Modèle Conceptuel de données : correspond à une modélisation assez naturelle du monde réel.

Le modèle se compose de trois concepts élémentaires.

- Entité: objet du monde réel que l'on peut identifier et qui possède un ensemble de propriétés.
 - Une entité doit être dotée d'un identifiant
 - Sa valeur doit être différente pour chaque occurrence de l'entité.
- Association: lien logique entre plusieurs entités.
- Attribut: propriété d'une association ou d'une entité.

Une propriété est caractérisée par un nom et un type élémentaire (entier, chaine de

caractères, réél ...).

Modèle Conceptuel de données

Exemple

Modèle Logique de données

Définition (Modèle logique de données)

C'est un Intermédiaire entre le modèle entité-association et le modèle physique des données

- Il est constitué de tables relationnelles
- Chaque relation est constituée de :
 - une clé primaire : identifie de manière unique chaque occurrence de la table
 - des attributs
 - éventuellement une ou plusieurs clés étrangères, clés primaires dans d'autres tables
 - Les clés étrangères créent des liens entre les tables

Passage du Modèle Conceptuel au Modèle Logique

Passage du Modèle Conceptuel au Modèle Logique

Exemple 1 : Association 1 à plusieurs

Modèle Conceptuel de données

Passage du Modèle Conceptuel au Modèle Logique

Exemple 2 : Association plusieurs à plusieurs

Modèle Conceptuel de données

Modèle Logique de données

Passage vers le Modèle Physique

Exemple

Modèle Logique de données

Modèle Physique de données

Section 3 : Algèbre Relationnelle

Définition (Algèbre relationnelle)

Définition (Algèbre Relationnelle)

- L'algèbre relation est un langage de requête pour le modèle relationnel ayant des fondements mathématiques solides.
- L'algèbre relationnelle n'est pas visible au niveau de l'interface utilisateur de tout SGBDR,
- Mais, la plupart des SGBDR utilisent l'algèbre relationnelle pour la représentation interne des requêtes (pour l'optimisation et l'exécution des requêtes)

Définition (Algèbre relationnelle)

Définition (Algèbre Relationnelle)

C'est ensemble d'opérateurs qui s'appliquent aux relations et permet d'exprimer des requêtes, posées à une représentation relationnelle, sous forme d'expressions algébriques.

Requête dans l'Algèbre relationnelle

- Puisque le résultat de n'importe quelle opération de l'algèbre relationnelle est aussi une relation R, R peut être le paramètre d'entrée d'une autre opération
- Les opérateurs de l'algèbre relationnelle peuvent être imbriqués, le résultat final est toujours une relation.
- Une requête est un terme ou une expression dans l'algèbre relationnelle
- Une expression algébrique est représentée graphiquement par un arbre d'opérateurs

Exemple de Requête

Requête dans l'Algèbre relationnelle

Remarques Importantes(Algèbre Relationnelle/SQL)

Certaines différences existent entre les deux langages de requête l'algèbre relationnelle et SQL:

- Les valeurs NULL sont exclues dans la définition de l'algèbre relationnelle
- L'algèbre relationnelle considère les relations comme des ensembles,
- Donc, la duplication des tuples n'apparait jamais dans les relations d'entrée et de sortie d'un opérateur
- Dans SQL, les relations sont des multi-ensembles et peuvent contenir des doublons
- L'élimination des doublons est explicite dans SQL(SELECT DISTINCT)

Opérateurs de l'algèbre relationnelle

Projection

- La projection est une opération unaire (portant sur une seule relation) notée π
- La projection de R1 sur une partie de ses attributs {A1, A2, ...} produit :
 - une relation R2 dont le schéma est restreint aux attributs mentionnés en opérande,
 - comportant les mêmes tuples que R1, et dont les doublons sont éliminés.

Syntaxe & Notation Graphique

$$R2 = \pi_{A1,A2,...}(R1)$$

Opérateurs de l'algèbre relationnelle

Exemple : Projection

$$\pi_{A,C}(R) =
\begin{cases}
A & C \\
1 & 7 \\
2 & 8 \\
3 & 9
\end{cases}$$

Opérateurs de l'algèbre relationnelle

Important

• $\pi_{A_1,...,A_K}(R)$ correspond à la requête SQL suivante:

```
\begin{array}{ccc} \mathsf{SELECT} \; \mathbf{DISTINCT} \; A_1, \dots, A_K \\ \mathsf{FROM} & \mathsf{R} \end{array}
```

Opérateurs de l'algèbre relationnelle

Remarque

- La projection élimine les doublons
- En général, les cardinalités des relations d'entrée et de sortie ne sont pas égales

Exemple

Soit R =
$$\begin{bmatrix} A & B \\ 1 & 4 \\ 2 & 5 \\ 3 & 4 \end{bmatrix}$$

$$\pi_B(R) = \begin{bmatrix} \mathbf{B} \\ \mathbf{4} \\ \mathbf{5} \end{bmatrix}$$

Opérateurs de l'algèbre relationnelle

Restriction

- La restriction est une opération unaire (c'est à dire portant sur une seule relation).
- Etant donnée une condition C, la restriction de R1 produit :
 - une relation R2 de même schéma que R1 et dont les tuples sont les tuples de R1 vérifiant la condition C
 - comportant les mêmes tuples que R1, et dont les doublons sont éliminés.

Syntaxe & Notation Graphique

$$R2 = \sigma_C(R1)$$

Opérateurs de l'algèbre relationnelle

Important

• $\sigma_{\varphi}(R)$ correspond à la requête SQL suivante:

```
SELECT * FROM R WHERE \varphi
```

Opérateurs de l'algèbre relationnelle

Exemple : Restriction

$\sigma_{SID=101}$ =	SID	CAT	ENO	POINTS
	101	Н	1	10
	101	Н	2	8
	101	M	1	12

Opérateurs de l'algèbre relationnelle

Opérateurs de l'algèbre relationnelle

Produit cartésien

- Le produit cartésien est une opération binaire (c'est à dire portant sur deux relations).
- Le produit de R1 par R2 produit
 - une relation R3 ayant pour schéma la juxtaposition de ceux des relations R1 et R2
 - et pour tuples l'ensemble des combinaisons possibles entre les tuples de R1 et ceux de R2.

Syntaxe & Notation Graphique

$$R3 = R1 \times R2$$

Opérateurs de l'algèbre relationnelle

Exemple: produit Cartésien

	Α	В
Soit R =	1	2
	3	4

Soit R'=
$$\begin{bmatrix} A & B \\ 1 & 2 \\ 3 & 4 \end{bmatrix}$$

	Α	В	С	D
$R \times R' =$	1	2	6	7
	1	2	8	9
	3	4	6	7
	3	4	8	9

Opérateurs de l'algèbre relationnelle

Jointure

- La jointure est une opération binaire notée ⋈
- La jointure de R1 et R2, étant
- Etant donné une condition C portant sur des attributs de R1 et de R2, la jointure produit
 - une relation R3 ayant pour schéma la juxtaposition de ceux des relations R1 et R2
 - et pour tuples l'ensemble des tuples obtenus par concaténation des tuples de R1 et de R2, et qui vérifient la condition C.

Syntaxe & Notation Graphique

$$R3 = R1 \bowtie R2$$

Algèbre Relationnelle : Opérateurs ensembliste

Remarque Importante

Les opérateurs ensemblistes sont des relations binaires portant sur des relations de même schéma (ayant les même attributs)

Opérateurs ensemblistes

Union

- L'union de deux relations R1 et R2 de même schéma produit
 - une relation R3 de même schéma
 - constituée de l'ensemble des tuples appartenant à R1 et/ou à R2.

Syntaxe & Notation Graphique

$$R3 = R1 \cup R2$$

Opérateurs ensemblistes

Intersection

- L'intersection de deux relations R1 et R2 de même schéma produit
 - une relation R3 de même schéma
 - constituée de l'ensemble des tuples appartenant à R1 et à R2.

Syntaxe & Notation Graphique

$$R3 = R1 \cap R2$$

Opérateurs ensemblistes

Différence

- La différence entre deux relations R1 et R2 de même schéma produit
 - une relation R3 de même schéma
 - constituée de l'ensemble des tuples de R1 n'appartenant pas à R2.

Syntaxe & Notation Graphique

$$R3 = R1 - R2$$

Le renommage

Renommage

- Le renommage est une opération qui permet de redéfinir ou renommer les noms des attributs d'une relation R.
 - Le renommage est noté $\rho_{A_1,A_2,...}(R)$

Exemple: renommage

Soit R =
$$\begin{bmatrix} A & B \\ 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$\rho_{Qte,Prix}(R) = \begin{array}{c|c} Qte & Prix \\ 1 & 2 \\ 3 & 4 \end{array}$$

Complexité des opérateurs

Selection : $\sigma_{[condition]}R$

- Au plus : balayer la relation + tester la condition pour chaque tuple
- Complexité = card(R)
- Taille du résultat : [0 : card(R)]

Projection : $\pi_{[A_1,A_2,...,A_k,]}R$

- balayer la relation + élimination des doublons
- Complexité = card(R).
- Taille du résultat : [1 : card(R)]

Jointure(naturelle ou thêta) entre R et S

- Balayer R et pour chaque tuple de R faire :
 - Balayer S et comparer chaque tuple de S avec celui de R
- Complexité = card(R) x card(S)
- Taille du résultat : [0 : card(R) x card(S]