

SESA6085 – Advanced Aerospace Engineering Management

Lecture 16

2024-2025

Module Recap

- Probability theory
- Capturing uncertainty e.g. PDFs
- The impact of uncertainty e.g. MC, RBD, FTA
- Design in the presence of uncertainty

Component & system level

- To date we've focused on component and/or system-level uncertainties primarily linked to performance or operation
- Of course, uncertainties are present throughout all aspects of a system's development

Nested Uncertainties

Over The Coming Weeks

- Having looked at uncertainties related to performance we will now move up the business hierarchy
 - Project uncertainties
 - Business uncertainties
- We will address:
 - The potential sources of uncertainties at these levels
 - The methods of capturing and modelling their impact
 - Decision-making based on such models
 - Mitigation against uncertainties

Project Uncertainty Management

An Overview

Risk vs. Uncertainty

It's important to recognise the difference between risk and uncertainty

Uncertainty - lack of certainty

Risk - possible unfavourable outcomes

Opportunity - possible favourable outcomes

We must remember the positives as well as the negatives!

Project Uncertainty Management

- What is project uncertainty management?
- Process by which uncertainty is:
 - Captured
 - Understood sources and impact
 - Used to make decisions mitigate risk or exploit opportunity
- This applies to:
 - Project management creating of specific assets
 - Operations management managing for business as usual
 - Corporate management changes to corporate strategy & ensuring appropriate governance
- All of which are interlinked e.g. project management is driven by corporate decisions and strategy

Uncertainty Types

- Uncertainty can generally be divided into four main types
 - Not dissimilar to our definitions of uncertainty types in design
- 1. Ambiguity uncertainty
 - Lack of complete/perfect knowledge e.g. specification, data etc.
 - Can be reduced/resolved over time
- 2. Inherent variability
 - Always happens but the degree is variable e.g. inflation
- 3. Event uncertainty
 - Events that may or may not happen
- 4. Systemic uncertainty
 - Dependencies and complex relationships (feedback or feedforward) e.g. link between material price and labour

Project Uncertainty Management

PUMPs

PUMPs

- PUMPs Performance Uncertainty Management Processes
 - Offers a framework to capture uncertainties, determine their impact, help make decisions and identify opportunities
- This is an evolution of the PERT (Programme Evaluation & Review Technique) framework you would have been introduced to in FEEG2006
 - PUMPs embeds stochastic processes in PERT including Monte Carlo analysis
 - Includes decision branches, sensitivity diagrams, recognises the role of documentation etc.

PUMP Overview

- Iterative process comprising of seven linked phases
- Can be performed at any point in a project's lifecycle
 - Conceptualisation
 - Planning
 - Execution & delivery
 - Ultilisation
- Should ideally start at the project's conceptualisation and be repeated throughout each stage
- The process can be started later in the project
 - But the full benefits will not be realised

Common Tasks

- There are five common tasks to all seven PUMP phases:
 - Document record text, tables, diagrams etc.
 - Verify ensure that all providers of information agree and highlight where this is not possible
 - Assess evaluate the analysis to date and ensure it is fit for purpose
 - Report release documentation and present findings
 - Fit for purpose iteration control ask, "are the current deliverables fit for purpose?"
- Tasks also tend to focus around the seven Ws
 - Who, Why, What, Whichway, Wherewithal, When, Where
 - Whichway how will plans in each stage deliver
 - Wherewithal what resources are needed

1. Project Definition Phase

- This phase provides the basic foundation for everything following
 - If this is flawed then so is all subsequent analysis
 - Don't build your house on sand!
- Comprises two different but coupled tasks
- Consolidation
 - Gathering and integration of existing information about the project & its management in a suitable form
- Elaborate & resolve
 - Filling in the gaps uncovered during the consolidation process and resolving any inconsistencies
- Deliverable for this phase is a clear unambiguous shared understanding of the project and its management

2. Focus

- This phase is concerned with adapting the generic PUMP process to the specific project of interest
- Within a project the opportunities for uncertainty management are considerable, pervasive and diverse
 - There is potential to be sucked into a black hole of uncertainty management
- The aim in the focus phase is to achieve "clarity efficiency"
 - A cost-effective use of uncertainty management resources
- The focus phase comprises of a number of modes
 - Process scoping
 - Process planning
- Delivers a clear unambiguous plan of the PUMP application

3. Identify Uncertainty Sources

- The PUMP approach aims to identify both sources of uncertainty and the corresponding response options simultaneously
 - Unidentified responses are themselves a potential source of uncertainty
- Responses can be reactive or preventative depending on the consequences of the source of uncertainty
- The identification process is highly iterative in nature
- Depending on the objectives of the PUMP the identification phase is tailored accordingly in the previous focus phase
 - Responses are important to shape contingency plans etc.
 - Unbiased performance estimations require close attention to uncertainties

3. Identify Uncertainty Sources

- Identification phase is a top-down process related to each PUMP objective
- The process begins by defining which objectives are important now
 - Remember the PUMP is applied repeatedly throughout the project lifecycle - priorities may change

4. Structure Uncertainties

- This phase is primarily concerned with completing the qualitative analysis
- The aims are:
 - To improve the understanding of the relative importance of different sources
 - Explore relevant interactions
 - Test any implicit or explicit assumptions made in previous phases
- This can lead to:
 - A refinement of response options and perhaps the development of new responses
 - More effective forms of analysis

5. Ownership

- This phase attempts to ensure that every relevant source/response has an appropriate owner
 - Develops a basic plan for relationship and contracting strategy which aligns with the objectives of the parties involved
 - Distinguishes between sources/responses the project owner wants responsibility and those to sub-contract
 - Allocates responsibility for uncertainty management to a named individual
 - Approval of allocations of responsibility controlled by other parties
 - Tests the robustness of the overall approach

PUMP - Phase 6

- Phase 6 aims to provide probability estimates of uncertainty associated with:
 - Previously identified sources of uncertainty
 - Their associated response options
- These estimates can be associated with e.g.
 - Costs
 - Duration
 - Or other measurable performance criteria identified earlier in the PUMP
- They form the basis of future decision-making and aim to shape the project to be resilient to risk and/or exploit opportunities

- The quantification phase involves two modes of analysis
 - The sizing of sources of uncertainty in probabilistic terms first pass analysis
 - Refining earlier quantification of uncertainty subsequent passes
- Normally multiple passes to quantify uncertainty are required
- To be effective we want this phase to be clarity efficient
 - Achieve clarity in terms of the objectives of the PUMP but in an efficient manner
 - Minimise time on minor uncertainty sources to spend more time on important sources of uncertainty
 - Recall our previous phases ranked sources based on an initial qualitative assessment to enable us to focus better in this phase

- Some approaches to risk management use non-numeric approaches to define the likelihood of an event
- These use labels such as "low", "medium" and "high"
 - i.e. a qualitative assessment
- The classic example of this is the probability-impact grid (PIG)
 - Where have you seen this before?

Probability-Impact Grid (PIG)

Recall the risk assessment template (see FEEG3003)...

ГІКЕГІНООБ	5	5	10	15	20	25
	4	4	8	12	16	20
	3	3	6	9	12	15
	2	2	4	6	8	10
	1	1	2	3	4	5
		1	2	3	4	5
		IMPACT				

Likelihood					
1	Rare e.g. 1 in 100,000 chance or higher				
2	Unlikely e.g. 1 in 10,000 chance or higher				
3	Possible e.g. 1 in 1,000 chance or higher				
4	Likely e.g. 1 in 100 chance or higher				
5	Very Likely e.g. 1 in 10 chance or higher				

Impact		Health & Safety		
1	Trivial - insignificant	Very minor injuries e.g. slight bruising		
2	Minor	Injuries or illness e.g. small cut or abrasion which require basic first aid treatment even in selfadministered.		
3	Moderate	Injuries or illness e.g. strain or sprain requiring first aid or medical support.		
4	Major	Injuries or illness e.g. broken bone requiring medical support >24 hours and time off work >4 weeks.		
5	Severe – extremely significant	Fatality or multiple serious injuries or illness requiring hospital admission or significant time off work.		

Probability-Impact Grid (PIG)

- What's the issue with such an approach?
 - Requires a very simple characterisation of risk falls short of our desire for a minimum level of clarity
 - The definitions of the terms used may not be clear risk in qualitative terms means different things to different people perhaps linked to how risk-averse their personality is
 - It's simple and therefore attractive which might discourage putting more effort into a more meaningful/useful quantification of risk
- The risk assessment is something of a halfway house not completely qualitative or quantitative
 - Note the probabilities associated with the likelihood definitions

Qualitative Approach Illustration

- You are a project manager on an aircraft assembly line.
 You've been asked to assess the likelihood that an aircraft will be delivered late to the customer.
- How would you assess this likelihood?
 - An unfair question given the lack of context but let's roll with it...
 - 1. Rare
 - 2. Unlikely
 - 3. Possible
 - 4. Likely
 - 5. Very likely
- N.B. I've used the definitions from the risk assessment template but I've deliberately removed the probabilities

Qualitative Approach Illustration

- This is a rather contrived example but it illustrates
 - Not everyone has the same definition of these qualitative terms
 - Not all risks are considered (lack of structure)
 - Context is lost when defining likelihoods
 - Unknown what factors played into the definition of risk and likelihood
- Consider a follow-up question to the same problem
 - What is the likely financial penalty the company will have to pay to the customer for the late delivery?
 - Can a qualitative approach help us answer this?

- Uncertainty quantification in the PUMP framework aims to produce a probabilistic definition of uncertainty
 - Thereby avoiding the ambiguity associated with a qualitative approach
 - Producing a more meaningful and useful assessment
- The use of data is central to this philosophy
 - Something we should all be familiar with having considered reliability modelling!

- The key steps in this phase include:
 - 1. Ordering of uncertainty sources in terms of importance
 - 2. Clarifying associated conditions for these uncertainties e.g. this will only happen if...
 - 3. Data or elicitation is used to size the uncertainty e.g. produce a PDF
 - 4. Refine sizing e.g., alternative PDF definitions, management of elicitation, clarification of relationships between objective data and subjective probabilities
 - 5. Repeat steps 2-4 for each uncertainty in the list updating priorities if necessary are more information comes to light

Elicitation

Sizing Sources

- As noted, source sizing can be with data or without data
- A data-based approach should be familiar territory
 - Gather the data together
 - Fit an appropriate PDF to this data e.g. rectangular, triangular, normal, Beta etc.
 - Use the resulting PDF and associated parameters within our model
- What about without data?
- How can we create/define an appropriate PDF without data?
 - Elicitation!

A Simple Scenario Approach

 What follows is a simple approach to elicitation based on a set of defined scenarios

1. Pessimistic outcome scenario

- Locate the pessimistic end of the range of possible outcomes
- Effectively defining our point at which 10% or 90% will exceed depending on the case e.g. point at which 10% of costs will exceed

2. Optimistic outcome scenario

- Estimate a complementary optimistic outcome
- Perceived chance of being exceeded by 90% or 10% e.g. point at which 90% of costs will exceed

A Simple Scenario Approach

- 3. Intermediate outcome scenarios
 - Is one interval sufficient or are more required?
 - If more are required, define values for intermediate scenarios
 - Ensure distances between each pairs of adjacent scenario values are equal
 - Assign probabilities to each interval
- Beginning with extremes and working in is an effective way of limiting bias - people tend to underestimate uncertainty
- Keep the scenarios simple where possible
- Assigning fixed probabilities to each interval results in a rectangular histogram approach
 - Can be quite effective at determining expected values

A Simple Scenario Approach

A simple example...

• Remember this is a PDF so all the usual PDF requirements should apply e.g. $\int f(x) dx = 1$

Other PDFs

- The simple scenario-based approach results in a set of rectangular distribution functions defining the overall PDF
- There is, of course, no reason why the values resulting from the elicitation cannot be used to fit other PDFs
- However...
 - Care should be taken to ensure the PDF is appropriate e.g. the tails of a normal distribution
 - The assumption that a more complex PDF equals more precision is not necessarily true e.g. due to inappropriate assumptions
 - Distribution parameters should not be directly elicited e.g. "what do you think the local standard deviation in rainfall is?

Other PDFs

- The triangular distribution can be popular in these circumstances
 - Covers a finite range
 - Middle is more likely
 - Can have some skewness
 - Is relatively transparent compared to other distributions
- Max and min bounds can be elicited, or perhaps more appropriate 10% & 90% values

Other Methods of Elicitation

- Fractile methods
 - Expert is elicited to define a CDF
 - 0%, 50%, 100% values defined initially
 - Divide the two intervals in two i.e. 25% and 75% values
 - Keep sub-dividing as required and fit a smooth curve to the resulting CDF

PUMP - Phase 7

Evaluation

Evaluation

- This phase is at the core of being able to understand the implications of uncertainty
- The PDFs that have been sized in the quantification phase are now combined
- This is then used to inform decision making
- This phase, therefore, includes the presentation & interpretation of results
- All of this is bearing in mind the objectives, assumptions, conditions etc. identified as part of earlier phases of the PUMP

Evaluation

- The main stages include...
 - Defining an appropriate starting point based on source dependencies
 - 2. Specifying dependence between sources
 - 3. Combining sources using mathematical operators
 - 4. Presenting the results of the model
 - 5. Diagnosing the implications of these results

Specifying Dependence & Combining Subsets

- Together these are the two key tasks
- This can be a simple set of mathematical operations e.g. consider the combined costs of two items A & B

Cost (£k), C_A or C_B	Probability
8	0.2
10	0.5
12	0.3

Cost (£k), $C_A + C_B$	Computation	Probability
16	0.2×0.2	0.04
18	$0.2 \times 0.5 + 0.5 \times 0.2$	0.20
20	$0.2 \times 0.3 + 0.5 \times 0.5 + 0.3 \times 0.2$	0.37
22	$0.5 \times 0.3 + 0.3 \times 0.5$	0.30
24	0.3×0.3	0.09

Specifying Dependence & Combining Subsets

- However, things are rarely so simple
 - Multiple uncertainty sources combining
 - Multiple different PDF definitions
- This leads us to computational approaches
- How might we solve such problems?
 - Monte Carlo methods!!
- The uncertainty models we've just described are very similar in form to our fault trees
 - An objective decomposed into constituent parts described by a PDF
 - The same modelling processes can therefore be applied here

Independence Assumptions

- We've assumed up to this point that the PDFs are independent
- However, as we saw with our reliability modelling this may not always be the case
- E.g. If the costs of items A and B in the previous example are perfectly correlated then the resulting total cost probability is very different

Cost (£k), C_A or C_B	Probability
16	0.2
20	0.5
24	0.3

Independence Assumptions

- It's therefore important that any assumptions of independence are identified and challenged
- Within Monte Carlo simulations a coefficient of correlation (or percentage dependence) can be defined
 - 0-1 vs. 0% to 100%
 - Define a linear association between two variables
- Multi-variate distributions may also be appropriate
 - But perhaps introduce elicitation problems
- Breaking down a source further may lead to common initial sources which drive the fundamental correlation
 - E.g. the cost of item A and B could be decomposed into material cost and other costs, where the material cost may be a common PDF

Portraying Effects

- A key output of a PUMP is the presentation or portrayal of the effects of uncertainty
 - This is key in the eventual decision-making process
- This includes tables etc. but figures/diagrams are very important
- Sensitivity diagrams are a useful way of illustrating the cumulative effect of issues/uncertainties
 - Permit different scenarios to be tested
 - Help with decision making

Sensitivity Diagrams

Conclusions

- The PUMP framework offers a way in which uncertainty can be captured, quantified, evaluated and its implications determined
- The mathematical foundations of the analysis are very similar to those used in reliability modelling
 - In some respects they are a lot simpler
- However, now we are dealing with situations where data is perhaps not ubiquitous
 - Techniques like elicitation are key
 - Don't forget elicitation can also be effective in reliability modelling!
- We will look at some examples of this type of analysis in future sessions

