Нисходящие распознаватели КС-языков без возвратов

Содержание

• Метод рекурсивного спуска

2 LL(k) - грамматики

Для улучшения алгоритма с подбором альтернатив для нисходящего разбора в первую очередь необходимо на каждом шаге алгоритма обеспечить однозначный выбор из возможных альтернатив. В таком случае алгоритм не будет требовать возврата на предыдущие шаги и будет обладать линейными характеристиками. Для этих целей в методе рекурсивного спуска предлагается ориентироваться на терминальный символ входной цепочки. Если текущий символ входной цепочки равен a и текущий выбор необходимо делать для нетерминального символа A, то из всех правил вида $A o \gamma$ ищется такое, в котором в цепочке γ на первом месте стоит терминальный символ a. Если такое правило найдено, то считывающая головка передвигается на следующий входной символ, а алгоритм запускается рекурсивно для каждого нетерминального символа в цепочке γ . Если для нетерминального символа A существует только одно правило $A o \gamma$, где γ не начинается с терминального символа, то алгоритм аналогично запускается рекурсивно для каждого нетерминального символа в цепочке γ . В любом другом противном случае входная цепочка не принимается.

Начальный разбор идет с символа S.

Метод рекурсивного спуска

Условия применимости алгоритма рекурсивного спуска можно получить из его описания. Ясно, что для применимости необходимо, чтобы все правила грамматики удовлетворяли двум условиям:

- Если для нетерминального символа A существует правило вида $A \to \gamma$, где γ начинается с нетерминального символа и состоит как из терминальных, так и из нетерминальных символов, то это должно быть единственное правило для A.
- ② Во всех остальных случаях правила для нетерминального символа A должны иметь вид $A \to a \gamma$, где a терминальный символ, γ состоит как из терминальных, так и из нетерминальных символов.

Данные условия являются достаточными, но не необходимыми. Может возникнуть ситуация, когда грамматика не удовлетворяет этим требованиям, но ее можно преобразовать к такому эквивалентному виду, чтобы эти требования выполнялись. Однако, не существует алгоритма, который бы позволил преобразовать произвольную КС-грамматику к указанному выше виду, равно как не существует и алгоритма, который бы позволял проверить, возможны ли такого рода преобразования. Все это ограничивает область применения данного алгоритма.

Пример использования метода рекурсивного спуска

Рассмотрим грамматику:

$$S
ightarrow aA|bB \ A
ightarrow a|bA|cC \ B
ightarrow b|aB|cC \ C
ightarrow AaBb$$

Требуется проверить выводимость цепочки:

 $S \Rightarrow abcbaacaabbb$

Заметим, что все правила удовлетворяют требованиям метода рекурсивного спуска: для символов S, A, B правая часть любого их правила начинается с терминального символа, у нетерминального символа C правая часть не начинается с терминального символа, но оно единственное для символа C.

Пример использования метода рекурсивного спуска

Остаток входной цепочки	Текущая цепочка вывода	Полученная цепочка вывода
abcbaacaabbb	S	aA
bcbaacaabbb	A	bA
cbaacaabbb	A	cC
baacaabbb	С	AaBb
baacaabbb	AaBb	bAaBb
aacaabbb	AaBb	aaBb
caabbb	Bb	cCb
aabbb	Cb	AaBbb
aabbb	AaBbb	aaBbb
bbb	Bbb	bbb
ϵ	ϵ	ϵ

Пример использования метода рекурсивного спуска

На рисунке представлено полученное дерево вывода.

Метод рекурсивного спуска

Можно рекомендовать ряд преобразований, которые способствуют приведению грамматики к виду, требуемому для применения алгоритма рекурсивного спуска. Эти преобразования заключаются в следующем:

- \bullet исключение ϵ -правил;
- исключение левой рекурсии;
- левая факторизация, которая позволяет исключить для каждого нетерминального символа правила, начинающиеся с одних и тех же терминальных символов: если правило имеет вид $A \to a\alpha_1|a\alpha_2|\dots|a\alpha_n|b_1\beta_1|b_2\beta_2|\dots|b_m\beta_m$ и ни одна цепочка β_i не начинается с символа a, то вводим новый нетерминальный символ A' и два правила:

$$A o a A' |b_1 eta_1| b_2 eta_2| \dots |b_m eta_m, A' o lpha_1 |lpha_2| \dots |lpha_n|$$

замена нетерминальных символов в правилах на цепочки их выводов.
 Например, если имеются правила:

$$egin{aligned} A &
ightarrow B_1 |B_2| \ldots |B_n| b_1 eta_1 |b_2 eta_2| \ldots |b_m eta_m, \ &B_1 &
ightarrow lpha_{11} |lpha_{12}| \ldots |lpha_{1k} \ & \ldots \ &B_n &
ightarrow lpha_{n1} |lpha_{n2}| \ldots |lpha_{np} \end{aligned}$$

то заменяем их на одно правило:

$$|A
ightarrow lpha_{11} |lpha_{12}| \ldots |lpha_{1k}| \ldots |lpha_{n1} |lpha_{n2}| \ldots |lpha_{np} |b_1 eta_1 |b_2 eta_2| \ldots |b_m eta_m,$$

В грамматике, заданной правилами:

$$S
ightarrow aABb|bBAa|cCc$$
 $A
ightarrow aA|bB|cC$ $B
ightarrow b|aAC$ $C
ightarrow aA|bA|cC$

Выполните вывод цепочки aabbabbcabbb методом рекурсивного спуска

Реализуйте алгоритм рекурсивного спуска на языке программирования Python.

LL(k) - грамматики

Логическим продолжением идеи, положенной в основу метода рекурсивного спуска, является предложение использовать для выбора одной из множества альтернатив не один, а несколько символов входной цепочки. Однако напрямую переложить алгоритм выбора альтернативы, как для одного символа, не удастся, поскольку два соседних символа в цепочке на самом деле могут быть выведены с использованием различных правил грамматики, поэтому неверным будет напрямую искать их в одном правиле.

Тем не менее существует класс грамматик, в котором осуществляется выбор одной альтернативы из множества возможных именно на основе нескольких начальных символов из входной цепочке. Этот класс грамматик имеет название LL(k)-грамматики. Первая буква L обозначает, что входная цепочка читается слева направо, вторая буква L обозначает обстоятельство, что осуществляется левосторонний вывод, k обозначает количество символов, просматриваемых во входной строке. Обычно ведут речь о грамматиках с конкретным значением k, так существуют LL(1) - грамматики, LL(2) - грамматики и т.д.

$\mathrm{LL}(\mathtt{k})$ - грамматики

Грамматика обладает свойством LL(k), k>0, если на каждом шаге вывода для однозначного выбора очередной альтернативы достаточно знать символ на верхушке стека и рассмотреть первые k символов от текущего положения считывающей головки во входной строке.

Для LL(k) грамматик существует алгориитм, позволяющий проверить, является ли заданная грамматика LL(k)-грамматикой для строго определенного числа k.

Кроме того, известно, что все грамматики, допускающие разбор по методу рекурсивного спуска, являются подклассом LL(1)-грамматик.

Есть, однако, неразрешимые проблемы для LL(k)-грамматик:

- не существует алгоритма, который бы мог проверить, является ли заданная КС-грамматика LL(k)-грамматикой для некоторого произвольного k;
- не существует алгоритма, который бы мог преобразовать произвольную КС-грамматику к виду LL(k)-грамматики для некоторого k (или доказать, что преобразование невозможно).

Для LL(k)-грамматики при k>1 совсем не обязательно, чтобы все правые части правил грамматики для каждого нетерминального символа начинались с k различных терминальных символов. Принципы распознавания предложений входного языка такой грамматики накладывают менее жесткие ограничения на правила грамматики, поскольку k соседних символов, по которым однозначно выбирается очередная альтернатива, могут встречаться в нескольких правилах грамматики. Поскольку все LL(k)-грамматики используют левосторонний нисходящий распознаватель, основанный на алгоритме с подбором альтернатив, очевидно, что они не могут допускать левую рекурсию.

LL(k) - грамматики

Класс LL(k)-грамматик широк, но все же он недостаточен для того, чтобы покрыть все возможные синтаксические конструкции в языках программирования. Известно, что существуют детерминированные КС-языки, которые не могут быть заданы LL(k)-грамматикой ни для каких k. Однако LL(k)-грамматики удобны для использования, поскольку позволяют построить линейные распознаватели. Для построения распознавателей языков, заданных LL(k)-грамматиками, используются два множества, определяемые следующим образом:

- $FIRST(k, \alpha)$ множество терминальных цепочек, укороченных до k символов выводимых из α строки из терминальных и нетерминальных символов;
- ullet FOLLOW(k,A) множество укороченных до k символов терминальных цепочек, которые могут следовать непосредственно за нетерминальным символом A в цепочках вывода.

В дальнейшем мы будем рассматривать только LL(1)-грамматики. Очевидно, для каждого нетерминального символа LL(1)-грамматики не может быть двух правил, начинающихся с одного и того же терминального символа. Однако это менее жесткое условие, чем то, которое накладывает распознаватель по методу рекурсивного спуска, поскольку, в принципе, LL(1)-грамматика допускает в правой части правил цепочки, начинающиеся с нетерминальных символов, а также ϵ -правила. LL(1)-грамматики позволяют построить достаточно простой и эффективный распознаватель.

LL(1) - грамматики

Для LL(1)-грамматик алгоритм работы распознавателя на шаге выбора альтернативы заключается в проверке двух условий (предполагается, что a - очередной символ, обозреваемый считывающей головкой, A - нетерминал на верхушке стека:

- $oldsymbol{0}$ необходимо выбрать в качестве альтернативы правило A olpha, если $a\in FIRST(1,lpha)$
- $m{2}$ необходимо выбрать в качестве альтернативы правило $A
 ightarrow \epsilon$, если $a \in FOLLOW(1,A)$

Если ни одно из этих условий не выполняется, то цепочка не принадлежит заданному языку, и алгоритм должен сигнализировать об ошибке.

Чтобы проверить, что заданная грамматика является LL(1)-грамматикой, необходимо и достаточно проверить для каждого нетерминального символа A, для которого существует более одного правила вида $A \to \alpha_1 |\alpha_2| \dots |\alpha_n$, выполнение требования:

$$FIRST(1, \alpha_i FOLLOW(1, A)) \cap FIRST(1, \alpha_j FOLLOW(1, A)) = \varnothing, \forall i \neq j$$

Иными словами, если для нетерминального символа A отсутствует правило $A \to \epsilon$, то все множества $FIRST(1,\alpha_1), FIRST(1,\alpha_2), \ldots, FIRST(1,\alpha_n)$ должны попарно не пересекаться, если же присутствует правило $A \to \epsilon$, то они не должны также пересекаться с множеством FOLLOW(1,A).

Алгоритм построения FIRST(1, A)

Для $FIRST(1,\alpha)$, если цепочка α начинается с терминального символа b, то $FIRST(1,\alpha)=\{b\}$, если же она начинается с нетерминального символа B, то $FIRST(1,\alpha)=FIRST(1,B)$. Рассмотрим более детальный алгоритм, который строит множества $FIRST(1,\alpha)$ сразу для всех нетерминальных символов грамматики. Алгоритм работает для грамматик, не содержащих ϵ -правил (в противном случае ее нужно преобразовать к такому виду).

Алгоритм состоит из следующих шагов:

- ① Для всех нетерминальных символов A формируем $FIRST_0(1,A) = \{X|A \to X\alpha\}$ включает все символы X, стоящие в начале правых частей правил для символа A.
- ② Для всех нетерминальных символов A формируем $FIRST_{i+1}(1,A) = FISRT_i(1,A) \cup FIRST_i(1,B)$, где B все нетерминальные символы множества $FISRT_i(1,A)$
- \odot Если существует нетерминальный символ A, для которого $FIRST_{i+1}(1,A) \neq FIRST_i(1,A)$ возвратиться к шагу 2, иначе перейти на шаг 4
- $oldsymbol{4}$ Исключаем из полученных множеств $FIRST_i(1,A)$ все нетерминальные символы.

Алгоритм построения FIRST(1, A)

Пример

Применим алгоритм построения FIRST(1, A) для грамматики:

$$S
ightarrow T|TR$$
 $R
ightarrow +T|-T|+TR|-TR$ $T
ightarrow E|EF$ $F
ightarrow *E|/E|*EF|/EF$ $E
ightarrow (S)|a|b$

Шаг 1:

$$FIRST_0(1,S) = \{T\}, FIRST_0(1,R) = \{+,-\}, FIRST_0(1,T) = \{E\}$$
 $FIRST_0(1,F) = \{*,/\}, FIRST_0(E) = \{(,a,b\}$

Шаг 2:

$$FIRST_1(1,S) = \{T,E\}, FIRST_1(1,R) = \{+,-\}, FIRST_1(1,T) = \{E,(,a,b\}\}$$
 $FIRST_1(1,F) = \{*,/\}, FIRST_1(1,E) = \{(,a,b\}\}$

Шаг 3: возвращаемся к шагу 2.

Пример

Шаг 2:

$$FIRST_2(1,S) = \{T,E,(,a,b\},FIRST_2(1,R) = \{+,-\},FIRST_2(1,T) = \{E,(,a,b\}\}\}$$
 $FIRST(1,F) = \{*,/\},FIRST_2(1,E) = \{(,a,b\}\}$

Шаг 3: возвращаемся к шагу 2.

Шаг 2:

$$FIRST_2(1,S) = \{T,E,(,a,b\},FIRST_2(1,R) = \{+,-\},FIRST_2(1,T) = \{E,(,a,b\}\}\}$$
 $FIRST_2(1,F) = \{*,/\},FIRST_2(1,E) = \{(,a,b\}\}$

Шаг 3: переходим к шагу 4.

Шаг 4:

$$FIRST(1,S) = \{(,a,b\}, FIRST(1,R) = \{+,-\}, FIRST(1,T) = \{(,a,b\}\}$$
 $FIRST(1,F) = \{*,/\}, FIRST(1,E) = \{(,a,b\}\}$

Построение закончено.

Алгоритм построения FOLLOW(1, A)

Пример

Алгоритм состоит из следующих шагов:

- ① Для всех нетерминальных символов A формируем $FOLLOW_0(1,A) = \{X | \exists B \to \alpha A X \beta \}$ вносим все символы, которые в правой части всех правил непосредственно следуют за A.
- $FOLLOW_0(1,S) = FOLLOW_0(1,S) \cup \{\epsilon\}$ вносим пустую цепочку в множество последующих символов для целевого символа S это означает, что в конце разбора за целевым символом цепочка кончается.
- $oldsymbol{0}$ Для всех нетерминальных символов A определяем $FOLLOW_i'(1,A) = FOLLOW_i(1,A) \cup FIRST(1,B)$ для всех нетерминальных символов B, входящих в $FOLLOW_i(1,A)$.
- Ф для всех нетерминальных символов A определяем $FOLLOW_i''(1,A) = FOLLOW_i'(1,A) \cup FOLLOW_i'(1,B)$ для всех нетерминальных символов B, входящих в $FOLLOW_i'(1,A)$, если существует правило $B \to \epsilon$.
- $oldsymbol{ol}}}}}}}}}}}}}}}}}}}}}}}}}$
- $igotimes_{i}$ Если $FOLLOW_{i+1}(1,A) = FOLLOW_{i}(1,A),$ то перейти к шагу 7, иначе к шагу 3.
- $m{O}$ Из всех построенных $FOLLOW_i(1,A)$ исключаем все нетерминальные символы.