1IADT - Hackaton - Fase 5

Detecção de Materiais Cortantes

A FIAP VisionGuard, empresa de monitoramento de câmeras de segurança, está analisando a viabilidade de uma nova funcionalidade para otimizar o seu software.

O objetivo da empresa é usar de novas tecnologias para identificar situações atípicas e que possam colocar em risco a segurança de estabelecimentos e comércios que utilizam suas câmeras.

Um dos principais desafios da empresa é utilizar Inteligência Artificial para identificar objetos cortantes (facas, tesouras e similares) e emitir alertas para a central de segurança.

A empresa tem o objetivo de validar a viabilidade dessa feature, e para isso será necessário fazer um MVP para detecção supervisionada desses objetos.

Objetivos

- Construir ou buscar um dataset contendo imagens de facas, tesouras e outros objetos cortantes em diferentes condições de ângulo e iluminação.
- Anotar o dataset para treinar o modelo supervisionado, incluindo imagens negativas (sem objetos perigosos) para reduzir falsos positivos.
- Treinar o modelo.
- Desenvolver um sistema de alertas (pode ser e-mail).

Documentação do MVP

Visão Geral

Este documento apresenta o fluxo utilizado para a criação de um MVP de um sistema de detecção de objetos cortantes utilizando o Ultralytics YOLO. O processo é dividido em cinco etapas principais: coleta de dados, ajuste de parâmetros, treinamento do modelo, testes/implementação e desenvolvimento de uma interface web. Cada fase é detalhada a seguir.

1. Coleta e Preparação dos Dados

A primeira etapa do fluxo envolve a obtenção e organização de um conjunto de imagens relevante para o treinamento do modelo, tanto de imagens com objetos cortantes quanto imagens neutras. Foi realizado os seguintes pontos nesta etapa:

1.1 Fontes de Dados

Para garantir um conjunto de imagens diversificado foi utilizado diferentes fontes:

- Hugging Face
- Kaggle
- Pixabay
- Roboflow

1.2 Marcação de imagens

Para o ajuste e marcação das imagens foi utilizado o LabelStudio, com isso foi possível criar um dataset bem variado.

1.3 Organização e Limpeza dos Dados

Foi realizado uma limpeza em alguns datasets prontos e realizado uma organização das imagens para um balanceamento entre objetos cortantes (facas, tesouras, canivetes, etc..) e imagens neutras. Depois de toda a organização e limpeza as imagens foram distribuídas de forma aleatório entre treino, teste e validação ficando da seguinte forma:

- 70% das imagens para treino.
- 20% das imagens para teste.
- 10% das imagens para validação.

2. Ajuste de Parâmetros

Na segunda etapa do fluxo foi realizado um tuning no modelo Ultralytics YOLO, utilizando o dataset já preparado, para encontrar os parâmetros que iriam trazer os melhores resultados no treinamento final.

Para o tuning foi utilizado a própria função do Ultralyutics YOLO "tune()" onde foram testados os principais parâmetros que poderiam trazer resultados expressivos.

3. Treinamento do Modelo YOLO

Na terceira etapa do fluxo, já com meu dataset totalmente organizado e os parâmetros do tuning encontrados, foi realizado um treinamento completo com 500 épocas e, ao final, feito uma validação dos gráficos e resultados.

4. Testes e Implementação

Na quarta etapa do fluxo, já possuindo o modelo treinado, foi realizado alguns testes e validações dos resultados utilizando os vídeos passados para o MVP e em algumas imagens que foram separadas apenas para a validação do modelo. As etapas 1, 2, 3 e 4 foram realizadas algumas vezes até encontrar os melhores resultados para o fluxo final.

5. Desenvolvimento da Interface Web

Na quinta etapa do fluxo, para facilitar o uso do MVP, foi desenvolvido um sistema web que permite o upload de vídeos ou o uso da câmera para detecção de objetos cortantes.

Neste sistema Web vai ser feito uma análise do vídeo por completo ou dos frames da Webcam e retornado um resultado da análise com a quantidade de objetos cortantes e a foto destes objetos.

O sistema consiste nas seguintes telas:

- Tela inicial com a parte de Upload de Video ou Abertura da Webcam
- Tela com a listagem das detecções.
- Tela com a abertura da Webcam e as detecções que ocorrem em tempo real.
- Tela com os detalhes das detecções.

6. Conclusão

Este fluxo permitiu a criação de um MVP funcional para a detecção de objetos cortantes. Desde a coleta e preparação dos dados até a implementação final, cada etapa foi

cuidadosamente planejada para garantir um sistema eficiente, acessível e com um bom resultado.