Trabajo Práctico Nº 3: Estructuras Algebraicas

Dada la siguiente definición:

Un grupo (G,+) es un conjunto cualquiera G con una operación (+) definida en él que verifica:

- 1) Ley de composición interna cerrada: $\forall x, y \in G : x + y \in G$
- 2) Propiedad asociativa: $\forall x, y, z \in G : (x + y) + z = x + (y + z)$
- 3) Existencia de neutro: $\exists e \in G / \forall x \in G : x + e = e + x = x$
- 4) Existencia de inverso: $\forall x \in G, \exists x' \in G / x + x' = x' + x = e$
- a) ¿Qué significa el par (G, +)? ¿Es la notación que se utiliza para denotar un grupo?
- b) El conjunto G debe ser ¿de números? ¿de letras? ¿de funciones? ¿de figuras geométricas?
- c) ¿qué es una operación? ¿qué significa operación binaria? ¿Es cerrada?
- d) ¿qué significa la propiedad asociativa?
- e) ¿Qué significa $\exists e \in G / \forall x \in G : x + e = e + x = x$? ¿Por qué cree que el elemento "e" recibe el nombre de neutro? ¿satisfice éste elemento, la propiedad mencionada con todos los elementos de G? ó ¿para cada elemento de G, hay un neutro?
- f) ¿Qué significa $\forall x \in G, \exists x' \in G / x + x' = x' + x = e$? ¿Por qué cree que el elemento " x' " recibe el nombre de inverso de g? ¿satisfice éste elemento la propiedad mencionada con todos los elementos de G? ó ¿para cada elemento de G, hay un inverso?
- 2) Dados los pares formados por un conjunto numérico y una operación ordinaria, determinar la estructura algebraica de cada par, justificando las respuestas.
 - a) (N,+)
- b) (N, \cdot)
- c) (N,-)
- d) (Z,+)
- e) (Z,\cdot)
- f) (Z, \div)
- **3)** Dado el siguiente conjunto A, determinar la estructura algebraica del par (A, +) y (A, \cdot) siendo "+" la adición y " · " el producto ordinario.
 - a) $A = \left\{ x/x = \frac{1}{2}k; k \in \mathbb{Z} \right\}$ b) $A = \left\{ x/x = 3^k; k \in \mathbb{N}_0 \right\}$ c) $A = \left\{ x/x = 2k+1; k \in \mathbb{Z} \right\}$
- 4) Determinar en cada caso si el par (G, +) es grupo abeliano, donde:
 - a) $G_1 = \{ x / x = 3 k, k \in N \}$; + es la adición.
 - b) $G_2 = \{ x / x = 2^k, k \in Z \}$; + es el producto ordinario.
 - c) $G_3 = \{1; -1\};$ + es la adición.
 - + es el producto ordinario. d) $G_4 = \{ 1; -1 \};$
- Sea Z es el conjunto de los números enteros, determinar si (Z, +) es grupo abeliano:
- a) Para la operación + definida mediante: a + b = 2ab
- b) Para la operación + definida mediante: a + b = a + b + 3.
- 6) En los ejercicios anteriores, cuando sea posible, determinar al menos un subgrupo.

7) El grupo de los cuatro elementos de Klein consiste en un conjunto $A = \{a, b, c, d\}$ con la ley de composición + definida por la tabla:

+	а	b	С	d
а	а	b	C	d
a b	b	а	d	С
С	С	d	а	b
d	d	С	b	а

Asumiendo que (A, +) es asociativo:

- Verificar que (A,+) es grupo. i)
- Si $H = \{a, b\}$. ¿Es (H, +) es subgrupo de (A, +)? Justificar.
- Si $B = \{a, b, c\}$. ¿Es (B, +) es subgrupo de (A, +)? Justificar. iii)
- 8) Dados los siguientes conjuntos:

- a) $G_1 = \{0,1\}$ b) $G_2 = \{1,-1\}$ c) $G_3 = \{0,1,2,3\}$ d) $G_4 = \{0,1,-1\}$

Definir si es posible una operación "+" en cada uno de ellos, de modo que el par (G, +) tenga estructura de grupo.

- Dado el conjunto B = {1; 3; 5; 15}. Determinar la estructura algebraica de (B,+) donde se define + mediante:
 - a) $a+b=mcm(a,b) \quad \forall a,b \in B$
 - b) $a+b = mcd(a,b) \quad \forall a,b \in B$
- Dado el conjunto $A = \{1,2,3\}$ y P(A) el conjunto de partes de A.
 - a) Determinar la estructura algebraica del par $(P(A), \cup)$
 - b) Determinar la estructura algebraica del par $(P(A), \cap)$
- **11)** Verificar que $(Z, +, \cdot)$ es un anillo conmutativo con unidad.
- **12)** Probar que $(K^{nxn}, +, \cdot)$ es un anillo con unidad.
- 13) Sea K = { 0, 1 } y las operaciones + y definidos en K, según las siguientes tablas:

+	0	1
0	0	1
1	1	0

•	0	1
0	0	0
1	0	1

Probar que estas operaciones definen sobre K una estructura de cuerpo.

- Analice la estructura algebraica de los pares: (R, +) y (R, •) donde: + es la adición y es el producto.
- → Analice la estructura algebraica (R, +, •) donde: + es la adición y es el producto.