Defining causal effects

STSCI / INFO / ILRST 3900: Causal Inference Fall 2024

29 Aug 2024

Learning goals for today

By the end of class, you will be able to

- explain the fundamental problem of causal inference and the need for causal arguments
- ► define potential outcomes
- ► recall mathematical concepts from probability
 - ► random variables
 - expectation
 - conditional expectation

Typesetting

As soon as possible, you should

- ► Install R
- ► Install RStudio
- ► Bookmark the RMarkdown cheat sheet

(statistical software)

(user interface)

(documentation)

Left photo: By Fernando Frazão/Agência Brasil - http://agenciabrasil.ebc.com.br/sites/_agenciabrasil2013/files/fotos/1035034-_mg_0802_04.08.16.jpg, CCBY3.0br, https://commons.wikimedia.org/w/index.php?curid=50548410
Right photo: By Agencia Brasil Fotografias - EUA levam ouro na ginástica artística feminina; Brasil fica em 8 lugar. CC BY 2.0. https://commons.wikimedia.org/w/index.ohp?curid=50584648

- 1. Statistical evidence
 - ► Simone Biles swung on the uneven bars. She won a gold medal.

1. Statistical evidence

- ► Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

- 1. Statistical evidence
 - ► Simone Biles swung on the uneven bars. She won a gold medal.
 - ▶ I did not swing on the uneven bars. I did not win a gold medal.
- 2. Possible causal claim
 - Swinging on the uneven bars causes a person to win a gold medal.

- 1. Statistical evidence
 - Simone Biles swung on the uneven bars. She won a gold medal.
 - ▶ I did not swing on the uneven bars. I did not win a gold medal.
- 2. Possible causal claim
 - Swinging on the uneven bars causes a person to win a gold medal.

What do we mean when we say "cause"?

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	?	?
Sam	?	No (0)	?

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	?	?
Sam	?	No (0)	?

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	?	?
Sam	?	No (0)	?

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	?	?
Sam	?	No (0)	?

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	?
Sam	?	No (0)	?

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
Sam	?	No (0)	?

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	+1
Sam	No (0)	No (0)	?

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	+1
Sam	No (0)	No (0)	0

Holland 1986

Descriptive evidence

Holland 1986

Holland 1986

missing

Holland 1986

Causal inference is a missing data problem

r erson 1	illespail	IIIISSIIIB
Person 2	missing	lifespan
Person 3	lifespan	missing
Person 4	missing	lifespan
Person 5	lifespan	missing
Person 6	lifespan	missing
Person 7	missing	lifespan
Person 8	lifespan	missing
	Outcome	Outcome
	under	under
	Mediterranean	prudent
	diet	diet

lifecton

lifespan	lifespan
lifespan	lifespan
Outcome	Outcome
under	under
Mediterranean	prudent

diet

diet

¹Capital letters and lowercase letters mean different things!

 Y_i Outcome

Whether person *i* survived

¹Capital letters and lowercase letters mean different things!

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet

¹Capital letters and lowercase letters mean different things!

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if assigned to treatment value a

¹Capital letters and lowercase letters mean different things!

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if assigned to treatment value a

Examples:

If assigned prudent diet	If assigned mediterranean diet
Died	Survived

¹Capital letters and lowercase letters mean different things!

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if assigned to treatment value a

Examples:

If assigned prudent diet	If assigned mediterranean diet
Died	Survived

 $Y_{Sam} = survived$ We observe that Sam survived

¹Capital letters and lowercase letters mean different things!

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i ate a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if assigned to treatment value a

Examples:

If assigned prudent diet	If assigned mediterranean diet
Died	Survived

 $Y_{Sam} = survived$ We observe that Sam survived

 $A_{Sam} = MedDiet$ We observed that Sam ate a Mediterranean diet

¹Capital letters and lowercase letters mean different things!

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i at a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if

assigned to treatment value a

Examples:

If assigned prudent diet	If assigned mediterranean diet
Died	Survived

 $Y_{\mathsf{Sam}} = \mathsf{survived}$ We observe that Sam survived

 $A_{\mathsf{Sam}} = \mathsf{MedDiet}$ We observed that Sam ate a Mediterranean diet

 $Y_{\mathsf{Sam}}^{\mathsf{MedDiet}} = \mathtt{survived}$ If Sam had been assigned a Mediterranean diet

he would have survived

¹Capital letters and lowercase letters mean different things!

 Y_i Outcome Whether person i survived

 A_i Treatment Whether person i at a Mediterranean diet

 Y_i^a Potential Outcome Outcome person i would realize if assigned to treatment value a

Examples:

If assigned prudent diet	If assigned mediterranean diet
Died	Survived

 $Y_{Sam} = survived$ We observe that Sam survived

 $A_{Sam} = MedDiet$ We observed that Sam ate a Mediterranean diet

 $Y_{\mathsf{Sam}}^{\mathsf{MedDiet}} = \mathtt{survived}$ If Sam had been assigned a Mediterranean diet

he would have survived

 $Y_{Sam}^{PruDiet} = died$ If Sam had been assigned a prudent diet

he would have died

¹Capital letters and lowercase letters mean different things!

Practice

Using the slip of paper you received and the diet you follow, what is

- $\triangleright Y_i$
 - \triangleright A_i
 - ➤ Y^{MedDiet}
 - ► Y^{PruDiet}

The consistency assumption

 Y_i^{MedDiet}

PruDiet

Potential Outcomes

The consistency assumption

 Y_i^{MedDiet}

PruDiet

Potential Outcomes

Y

Factual Outcomes

The consistency assumption

Consistency Assumption

$$Y_i^{A_i} = Y_i$$

 Y_i^{MedDiet}

 Y_i^{PruDiet}

Potential Outcomes

 Y_i

Factual Outcomes

Notation: Expectation operator

A $random\ variable^2\ Y$ is a process which assigns outcomes to different cases by chance

²Dropping the sub-script means we are considering a random variable

Notation: Expectation operator

A $random\ variable^2\ Y$ is a process which assigns outcomes to different cases by chance

The **expectation operator** $E(\cdot)$ denotes the population mean

- ► The average if we had an infinite amount of data
- ▶ If the population of interest has *n* individuals

$$\mathsf{E}(Y^{a}) = \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{a} = (Y_{1}^{a} + Y_{2}^{a} + \dots Y_{n}^{a})/n$$

²Dropping the sub-script means we are considering a random variable

Notation: Expectation operator

A $random\ variable^2\ Y$ is a process which assigns outcomes to different cases by chance

The **expectation operator** $E(\cdot)$ denotes the population mean

- ► The average if we had an infinite amount of data
- ightharpoonup If the population of interest has n individuals

$$\mathsf{E}(Y^{a}) = \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{a} = (Y_{1}^{a} + Y_{2}^{a} + \dots Y_{n}^{a})/n$$

A conditional expectation is denoted with a vertical bar

$$\mathsf{E}(Y\mid A=a)=\frac{1}{n_a}\sum_{i:A,-a}Y_i$$

²Dropping the sub-script means we are considering a random variable

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

 $1. \ \, \mathsf{E}(\mathsf{Earnings} \mid \mathsf{Degree} = \mathsf{TRUE}) > \mathsf{E}(\mathsf{Earnings} \mid \mathsf{Degree} = \mathsf{FALSE})$

 $2. \ \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{TRUE}}) > \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{FALSE}})$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

- 1. $E(Earnings \mid Degree = TRUE) > E(Earnings \mid Degree = FALSE)$
 - ► Average earnings are higher among those with college degrees

 $2. \ \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{TRUE}}) > \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{FALSE}})$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

- 1. $E(Earnings \mid Degree = TRUE) > E(Earnings \mid Degree = FALSE)$
 - ► Average earnings are higher among those with college degrees

- $2. \ \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{TRUE}}) > \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{FALSE}})$
 - ► On average, a degree causes higher earnings

$\overline{}$			
ν	ra	\sim t	ice:
	ıa	·ι	ice.

1. On average, individuals who eat a Mediterranean diet survive more/less than those who eat a prudent diet:

2. On average, eating a Mediterranean diet causes people to survive more/less

Practice:	
 On average, students who do the homework learn more those who don't 	e than

2. On average, doing the homework causes more learning

Practice:

1. On average, students who do the homework learn more than those who don't

$$\mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{TRUE}) > \mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{FALSE})$$

2. On average, doing the homework causes more learning

$$\mathsf{E}(\mathsf{Learning}^{\mathsf{HW}=\mathsf{TRUE}}) > \mathsf{E}(\mathsf{Learning}^{\mathsf{HW}=\mathsf{FALSE}})$$

Learning goals for today

By the end of class, you will be able to

- explain the fundamental problem of causal inference and the need for causal arguments
- ► define potential outcomes
- ► recall mathematical concepts from probability
 - ► random variables
 - expectation
 - conditional expectation

You can now

- ► Read Chapter 1 of Hernán and Robins 2020
- ► Complete survey on canvas