Math 307: Problems for section 3.3

1. Show that for $\mathbf{v}, \mathbf{w} \in \mathbb{C}^n$

$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 + 2\operatorname{Re}(\langle \mathbf{v}, \mathbf{w} \rangle)$$

and use this to prove the polarization identity

$$\langle \mathbf{v}, \mathbf{w} \rangle = \frac{1}{4} \Big(\|\mathbf{v} + \mathbf{w}\|^2 - \|\mathbf{v} - \mathbf{w}\|^2 + i\|\mathbf{v} - i\mathbf{w}\|^2 - i\|\mathbf{v} + i\mathbf{w}\|^2 \Big)$$

$$\begin{aligned} \|\mathbf{v} + \mathbf{w}\|^2 &= \langle \mathbf{v} + \mathbf{w}, \mathbf{v} + \mathbf{w} \rangle \\ &= \langle \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle + \langle \mathbf{w}, \mathbf{v} \rangle + \langle \mathbf{w}, \mathbf{w} \rangle \\ &= \|\mathbf{v}\|^2 + \langle \mathbf{v}, \mathbf{w} \rangle + \overline{\langle \mathbf{v}, \mathbf{w} \rangle} + \|\mathbf{w}\|^2 \\ &= \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 + 2\operatorname{Re}(\langle \mathbf{v}, \mathbf{w} \rangle) \end{aligned}$$

Thus

$$\|\mathbf{v} + \mathbf{w}\|^2 - \|\mathbf{v} - \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 + 2\operatorname{Re}(\langle \mathbf{v}, \mathbf{w} \rangle) - (\|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - 2\operatorname{Re}(\langle \mathbf{v}, \mathbf{w} \rangle))$$

$$= 4\operatorname{Re}(\langle \mathbf{v}, \mathbf{w}, \rangle)$$

and using this equality with w replaced by $-i\mathbf{w}$ yields

$$\|\mathbf{v} - i\mathbf{w}\|^2 - \|\mathbf{v} + i\mathbf{w}\|^2 = 4\operatorname{Re}(\langle \mathbf{v}, -i\mathbf{w}\rangle)$$
$$= 4\operatorname{Re}(-i\langle \mathbf{v}, \mathbf{w}\rangle)$$
$$= 4\operatorname{Im}(\langle \mathbf{v}, \mathbf{w}\rangle)$$

The last two equations give the result.

2. Show that if $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n$ form a basis in \mathbb{R}^n , then they also form a basis when regarded as vectors in \mathbb{C}^n . In other words, show that 1.) if the only linear combination $c_1\mathbf{q}_1+\dots+c_n\mathbf{q}_n$ using real numbers c_1,\dots,c_n that equals zero has $c_1=\dots=c_n=0$, then the same is true for complex numbers, and 2.) if every vector in \mathbb{R}^n can be written as $c_1\mathbf{q}_1+\dots+c_n\mathbf{q}_n$ for some real numbers c_1,\dots,c_n then every vector in \mathbb{C}^n can be written as a linear combination using complex numbers. If the basis $\mathbf{q}_1,\mathbf{q}_2,\dots,\mathbf{q}_n$ is orthonormal in \mathbb{R}^n is is also orthonormal in \mathbb{C}^n ?

Suppose a complex linear combination of $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n$ equals zero. Writing the complex scalars as $c_k + id_k$ we have

$$(c_1+id_1)\mathbf{q}_1+\cdots+(c_n+id_n)\mathbf{q}_n=\mathbf{0}$$

Given the complex equation above, we can take the real and imaginary parts and get two equations involving real numbers. Thus

$$\operatorname{Re}\left((c_1+id_1)\mathbf{q}_1+\cdots+(c_n+id_n)\mathbf{q}_n\right)=\operatorname{Re}(\mathbf{0})=\mathbf{0}$$

Since each \mathbf{q}_k is a real vector, the real part of $(c_k + id_k)\mathbf{q}_k$ is $c_k\mathbf{q}_k$. Thus

$$c_1\mathbf{q}_1 + \dots + c_n\mathbf{q}_n = \mathbf{0}.$$

But this implies $c_1 = \cdots = c_n = 0$ since we have assumed that $\mathbf{q}_1, \mathbf{q}_2, \ldots, \mathbf{q}_n$ are linearly independent when using real numbers. Similarly (taking the imaginary part) we find $d_1 = \cdots = d_n = 0$ too. Thus each complex coefficient $c_k + id + k$ is zero. This proves linear independence using complex scalars.

To show that $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n$ span \mathbb{C}^n when we use complex scalars, suppose that $\mathbf{w} \in \mathbb{C}^n$. We can write $\mathbf{w} = \mathbf{x} + i\mathbf{y}$ where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Then since the vectors in the basis span \mathbb{R}^n ,

$$\mathbf{x} = c_1 \mathbf{q}_1 + \dots + c_n \mathbf{q}_n, \quad \mathbf{y} = d_1 \mathbf{q}_1 + \dots + d_n \mathbf{q}_n$$

for some choices of real numbers c_1, \ldots, c_n and d_1, \ldots, d_n . This implies

$$\mathbf{w} = (c_1 + id_1)\mathbf{q}_1 + \dots + (c_n + id_n)\mathbf{q}_n$$

Thus any $\mathbf{w} \in \mathbb{C}^n$ is a complex linear combination of the basis vectors.

Finally, since the vectors \mathbf{q}_k are real the complex inner product and the real dot product agree. This implies that these vectors form an orthonormal set in \mathbb{C}^n if they are orthonormal in \mathbb{R}^n .

3. Show that any 2×2 orthogonal matrix is either a rotation matrix or a reflection matrix.

To obtain all possible 2×2 orthogonal matrices, we need to find all possible orthonormal bases to use as their columns. The first vector in an orthonormal basis is a vector of length one that can be written $\begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$ for some $\theta \in [0, 2\pi)$. The next vector is one of the two vectors of unit length orthogonal to

this one, either $\begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$ or $\begin{bmatrix} \sin(\theta) \\ -\cos(\theta) \end{bmatrix}$. This implies that every orthogonal matrix is either of the form $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$ (a rotation matrix) or $\begin{bmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{bmatrix}$ (a relection matrix).

4. Let $Q = \begin{bmatrix} \mathbf{q}_1 | \mathbf{q}_2 | \cdots | \mathbf{q}_k \end{bmatrix}$ where $\mathbf{q}_1, \mathbf{q}_2, \dots \mathbf{q}_k \in \mathbb{R}^n$ form an orthonormal set. (That is, they satisfy $\|\mathbf{q}_i\| = 1$ for $i = 1, \dots, k$ and $\mathbf{q}_i \cdot \mathbf{q}_j = 0$ if $i \neq j$, but there might not be enough vectors to form a basis, i.e., possibly k < n). Identify the matrices Q^TQ and QQ^T . Show that the projection \mathbf{p} of a vector \mathbf{v} onto the subspace spanned by $\mathbf{q}_1, \mathbf{q}_2, \dots \mathbf{q}_k$ can be written $\mathbf{p} = \sum_{i=1}^k \mathbf{q}_i \mathbf{q}_i^T \mathbf{v} = \sum_{i=1}^k (\mathbf{q}_i \cdot \mathbf{v}) \mathbf{q}_i$.

 $Q^TQ = I_k$ (the $k \times k$ identity matrix) and $QQ^T = Q(Q^TQ)^{-1}Q^T$ is the projection onto the range of Q, that is, onto the subspace spanned by $\mathbf{q}_1, \mathbf{q}_2, \dots \mathbf{q}_k$. The formula $\mathbf{p} = QQ^T\mathbf{v}$ is equivalent to $\mathbf{p} = \sum_{i=1}^k \mathbf{q}_i \mathbf{q}_i^T \mathbf{v} = \sum_{i=1}^k (\mathbf{q}_i \cdot \mathbf{v}) \mathbf{q}_i$.

5. For an $m \times n$ matrix A with linearly independent columns there is a factorization (called the QR factorization) A = QR where Q is an $m \times n$ matrix whose columns form an orthonormal set, and R is an upper triangular matrix. For every $k = 1, 2, \ldots n$ the first k columns of Q spans the same subspace as the first k columns of A. In MATLAB/Octave the matrices Q and R in the QR decomposition of A are computed using [Q R] = qr(A,0). (Without the second argument 0 a related but different decomposition is computed.)(For those of you who have learned about Gram-Schmidt: The columns of Q are the vectors obtained by applying the Gram-Schmidt procedure to the columns of A.

Using MATLAB/Octave, compute and orthonormal basis q_1,q_2 for the plane in \mathbb{R}^4 spanned

by
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $\mathbf{a}_2 = \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ Compute the projection \mathbf{p} of the vector $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix}$ onto the

plane. What are the coefficients of p when expanded in the basis q_1, q_2 ?

```
a1=[1;1;1;1];
a2=[-1;1;1;1];
A=[a1 \ a2];
[Q R] = qr(A,0)
Q =
 -0.50000
             0.86603
 -0.50000 -0.28868
 -0.50000 -0.28868
 -0.50000 -0.28868
R =
 -2.00000 -1.00000
   0.00000 -1.73205
q1=Q(:,1)
q1 =
 -0.50000
 -0.50000
 -0.50000
 -0.50000
q2=Q(:,2)
q2 =
  0.86603
 -0.28868
 -0.28868
 -0.28868
v=[1;1;1;-1];
p=Q*Q*v
   1.00000
   0.33333
   0.33333
   0.33333
```

The coefficients for the expansion of \mathbf{p} in the basis \mathbf{q}_1 , \mathbf{q}_2 are contained in the vector $Q^T \mathbf{v}$

```
Q'*v ans =
-1.00000
0.57735
```

Check that the expansion with these coefficients gives **p**.

```
(-1.00000)*q1 + (0.57735)*q2
ans =
1.00000
0.33333
0.33333
0.33333
```

6. Using MATLAB/Octave and the discussion in the previous problem, find an orthonormal

set of vectors \mathbf{q}_1 , \mathbf{q}_2 and \mathbf{q}_3 with the same span as $\begin{bmatrix} 1\\1\\0\\0\\1\\0\end{bmatrix}$ and $\begin{bmatrix} 0\\0\\1\\1\\0\end{bmatrix}$. Provide the commands

that you used.

```
a1=[1 1 2 0 0 0];
a2=[1 0 1 0 1 0]';
a3=[0 0 1 1 1 0];
A=[a1 \ a2 \ a3];
[Q R] = qr(A,0)
Q =
 -0.40825
             0.40825
                       0.51640
  -0.40825
            -0.40825
                      -0.00000
 -0.81650
             0.00000
                      -0.25820
  -0.00000
             0.00000
                       -0.77460
  -0.00000
             0.81650
                       -0.25820
  -0.00000
             0.00000
                       0.00000
R =
 -2.44949
            -1.22474
                      -0.81650
   0.00000
             1.22474
                        0.81650
   0.00000
             0.00000 -1.29099
```

The three orthonormal vectors are the columns of Q.

7. Do the following computational experiment. First start with a random symmetric 10×10 matrix A (for example B=rand(10,10); A=B'*B; will produce such a matrix) and compute its QR factorization. Call the factors Q_1 and R_1 . Now multiply Q_1 and R_1 in the "wrong" order to obtain $A_2 = R_1Q_1$ and compute the QR factorization of the resulting matrix A_2 .

Repeat this step to obtain a sequence of matrices Q_k , R_k and A_k . Do these sequences converge? If so can you identify the limit? (Hint: eig(C) computes the eigenvalues of C).

We can automate the iterative procedure. Here I'll do it ten times, check the value of R and compare to the eigenvalues of A

```
A=rand(10,10);
A=A'*A;
[Q R] = qr(A);
for k=[1:10]
  [Q R] = qr(R*Q,0);
end
R
R =
 Columns 1 through 7:
  -28.26041
              -0.00000
                          -0.00000
                                       0.00000
                                                  -0.00000
                                                             -0.00000
                                                                         -0.00000
              -2.20459
    0.00000
                          -0.48470
                                      -0.00121
                                                  0.00004
                                                             -0.00000
                                                                          0.00000
    0.00000
               0.00000
                          -2.23187
                                       0.00364
                                                  -0.00022
                                                              0.00000
                                                                         -0.00000
    0.00000
               0.00000
                           0.00000
                                      -1.15933
                                                  0.05953
                                                             -0.00037
                                                                          0.00003
    0.00000
               0.00000
                           0.00000
                                       0.00000
                                                  -0.76320
                                                             -0.00532
                                                                          0.00035
    0.00000
               0.00000
                           0.00000
                                       0.00000
                                                  0.00000
                                                             -0.45709
                                                                          0.01440
    0.00000
               0.00000
                           0.00000
                                       0.00000
                                                  0.00000
                                                              0.00000
                                                                         -0.29274
    0.00000
               0.00000
                           0.00000
                                       0.00000
                                                  0.00000
                                                              0.00000
                                                                          0.00000
                           0.00000
    0.00000
               0.00000
                                       0.00000
                                                  0.00000
                                                              0.00000
                                                                          0.00000
    0.00000
                0.00000
                           0.00000
                                       0.00000
                                                  0.00000
                                                              0.00000
                                                                          0.00000
 Columns 8 through 10:
   -0.00000
              -0.00000
                          -0.00000
   -0.00000
               0.00000
                          -0.00000
                           0.00000
    0.00000
              -0.00000
   -0.00000
              -0.00000
                           0.00000
   -0.00000
               0.00000
                          -0.00000
    0.00000
              -0.00000
                           0.00000
              -0.00000
    0.00001
                           0.00000
               0.00000
                          -0.00000
   -0.11023
    0.00000
              -0.04297
                           0.00005
               0.00000
    0.00000
                           0.01267
eig(A)
ans =
    0.012671
    0.042971
    0.110228
    0.292491
    0.457455
    0.761467
```

```
1.162016
    1.988698
    2.474165
   28.260409
Okay, lets do it 100 more times.
for k=[1:100]
  [Q R] = qr(R*Q);
end
R
R =
 Columns 1 through 7:
  -28.26041
               -0.00000
                           -0.00000
                                       -0.00000
                                                   0.00000
                                                              -0.00000
                                                                          -0.00000
    0.00000
               -2.47417
                          -0.00000
                                       0.00000
                                                  -0.0000
                                                               0.00000
                                                                          -0.00000
    0.00000
                0.00000
                           -1.98870
                                      -0.00000
                                                   0.00000
                                                              -0.00000
                                                                          -0.00000
    0.00000
                0.00000
                            0.00000
                                      -1.16202
                                                   0.00000
                                                              -0.00000
                                                                          -0.00000
    0.00000
                0.00000
                            0.00000
                                       0.00000
                                                  -0.76147
                                                               0.00000
                                                                          -0.00000
    0.00000
                0.00000
                            0.00000
                                       0.00000
                                                   0.00000
                                                              -0.45745
                                                                           0.00000
    0.00000
                0.00000
                            0.00000
                                       0.00000
                                                   0.00000
                                                               0.00000
                                                                          -0.29249
    0.00000
                0.00000
                            0.00000
                                       0.00000
                                                   0.00000
                                                               0.00000
                                                                           0.00000
    0.00000
                0.00000
                            0.00000
                                       0.00000
                                                   0.00000
                                                               0.00000
                                                                           0.00000
    0.00000
                0.00000
                            0.00000
                                       0.00000
                                                   0.00000
                                                               0.00000
                                                                           0.00000
 Columns 8 through 10:
   -0.00000
               -0.00000
                          -0.00000
    0.00000
                0.00000
                           -0.00000
   -0.00000
               -0.00000
                            0.00000
    0.00000
               -0.00000
                            0.00000
   -0.00000
               -0.00000
                           -0.00000
    0.00000
                0.00000
                            0.00000
    0.00000
               -0.00000
                            0.00000
   -0.11023
               -0.00000
                            0.00000
```

We see that the matrix R is a diagonal matrix with ± 1 times the eigenvalues on the diagonal. If the MATLAB/Octave qr function returned the factorization we carried out in class (where the diagonal entries of R are always positive), this calculation would return the eigenvalues on the diagonal. In this situation, Q has ± 1 on the diagonal (as you can check), and the sign will indicate whether we need to flip the entry in R to get the eigenvalue. A more coherent way of saying this is that QR will be diagonal with the eigenvalues on the diagonal. Let's check

Q*R

ans =

0.00000

0.00000

-0.04297

0.00000

0.00000

0.01267

Columns 1 through 7:

28.26041	0.00000	0.00000	0.00000	-0.00000	0.00000	0.00000
0.00000	2.47417	0.00000	-0.00000	0.00000	-0.00000	0.00000
0.00000	0.00000	1.98870	0.0000	-0.00000	0.0000	0.00000
-0.00000	0.00000	-0.00000	1.16202	-0.00000	0.0000	0.00000
0.00000	-0.00000	0.00000	-0.00000	0.76147	-0.00000	0.00000
-0.00000	0.00000	-0.00000	0.0000	0.00000	0.45745	-0.00000
0.00000	-0.00000	0.00000	-0.00000	-0.00000	-0.00000	0.29249
0.00000	0.00000	-0.00000	0.00000	0.00000	-0.00000	-0.00000
-0.00000	-0.00000	0.00000	0.00000	-0.00000	0.00000	0.00000
0.00000	0.00000	-0.00000	-0.00000	0.00000	-0.00000	-0.00000

Columns 8 through 10:

0.00000	0.00000	0.00000
-0.00000	-0.00000	0.00000
0.00000	0.00000	-0.00000
-0.00000	0.00000	-0.00000
0.00000	0.00000	0.00000
-0.00000	-0.00000	-0.00000
-0.00000	0.00000	-0.00000
0.11023	0.00000	-0.00000
-0.00000	0.04297	-0.00000
0.00000	-0.00000	0.01267

8. If U_1 and U_2 are unitary matrices, is U_1U_2 a unitary matrix too?

Yes. We only need to verify that U_1U_2 preserves the lengths of vectors. But $||U_1U_2\mathbf{w}|| = ||U_2\mathbf{w}||$ for every \mathbf{w} (because U_1 is unitary) and $||U_2\mathbf{w}|| = ||\mathbf{w}||$ for every \mathbf{w} (because U_2 is unitary). Thus $||U_1U_2\mathbf{w}|| = ||\mathbf{w}||$ for every \mathbf{w} .

9. If $\mathbf{q}_1, \dots, \mathbf{q}_n$ is an orthonormal basis for \mathbb{C}^n do the complex conjugated vectors $\overline{\mathbf{q}}_1, \dots, \overline{\mathbf{q}}_n$ form an orthonormal basis as well? Give a reason. Yes. We have

$$\langle \overline{\mathbf{q}}_i, \overline{\mathbf{q}}_j \rangle = \mathbf{q}_i^T \overline{\mathbf{q}}_j = \overline{\overline{\mathbf{q}}_i^T \mathbf{q}_j} = \overline{\langle \mathbf{q}_i, \mathbf{q}_j \rangle}$$

Thus, if $\mathbf{q}_1, \dots, \mathbf{q}_n$ is an orthonormal basis then

$$\langle \overline{\mathbf{q}}_i, \overline{\mathbf{q}}_j \rangle = \begin{cases} \overline{1} = 1 & i = j \\ \overline{0} = 0 & i \neq j \end{cases}$$

This shows that the vectors $\overline{\mathbf{q}}_1, \dots, \overline{\mathbf{q}}_n$ form an orthonormal basis too.