Economics 103 – Statistics for Economists

Minsu Chang

University of Pennsylvania

Lecture # 11

Continuous RVs II: The Normal RV

Figure: Standard Normal RV (PDF)

Standard Normal Random Variable: N(0,1)

Figure: Standard Normal PDF (left) and CDF (Right)

- ▶ Notation: $X \sim N(0,1)$
- ▶ Symmetric, Bell-shaped, E[X] = 0, Var[X] = 1
- ▶ Support Set = $(-\infty, \infty)$

https://fditraglia.shinyapps.io/normal_cdf/

Standard Normal Random Variable: N(0,1)

- ▶ There is no closed-form expression for the N(0,1) CDF.
- ▶ For Econ 103, don't need to know formula for N(0,1) PDF.
- You do need to know the R commands...

R Commands for the Standard Normal RV

dnorm - Standard Normal PDF

- Mnemonic: d = density, norm = normal
- ▶ Example: dnorm(0) gives height of N(0,1) PDF at zero.

R Commands for the Standard Normal RV

dnorm - Standard Normal PDF

- Mnemonic: d = density, norm = normal
- **Example:** dnorm(0) gives height of N(0,1) PDF at zero.

pnorm - Standard Normal CDF

- ▶ Mnemonic: p = probability, norm = normal
- ▶ Example: pnorm(1) = $P(X \le 1)$ if $X \sim N(0, 1)$.

R Commands for the Standard Normal RV

dnorm - Standard Normal PDF

- Mnemonic: d = density, norm = normal
- **Example:** dnorm(0) gives height of N(0,1) PDF at zero.

pnorm - Standard Normal CDF

- ► Mnemonic: p = probability, norm = normal
- ▶ Example: pnorm(1) = $P(X \le 1)$ if $X \sim N(0, 1)$.

rnorm - Simulate Standard Normal Draws

- Mnemonic: r = random, norm = normal.
- **Example:** rnorm(10) makes ten iid N(0,1) draws.

$\Phi(x_0)$ Denotes the N(0,1) CDF

You will sometimes encounter the notation $\Phi(x_0)$. It means the same thing as $pnorm(x_0)$ but it's not an R command.

The $N(\mu, \sigma^2)$ Random Variable

Idea

Take a linear function of the N(0,1) RV.

Formal Definition

 $N(\mu, \sigma^2) \equiv \mu + \sigma X$ where $X \sim N(0, 1)$ and μ, σ are constants.

Properties of $N(\mu, \sigma^2)$ RV

- ▶ Parameters: Expected Value = μ , Variance = σ^2
- Symmetric and bell-shaped.
- Support Set = $(-\infty, \infty)$
- ▶ N(0,1) is the special case where $\mu = 0$ and $\sigma^2 = 1$.

Expected Value: μ shifts PDF

all of these have $\sigma=1$

Figure: Blue $\mu = -1$, Black $\mu = 0$, Red $\mu = 1$

Standard Deviation: σ scales PDF

all of these have $\mu=0$

Figure: Blue $\sigma^2 = 4$, Black $\sigma^2 = 1$, Red $\sigma^2 = 1/4$

Linear Function of Normal RV is a Normal RV

Suppose that $X \sim N(\mu, \sigma^2)$. Then if a and b constants,

$$a + bX \sim N(a + b\mu, b^2\sigma^2)$$

Important

- For any RV X, E[a + bX] = a + bE[X] and $Var(a + bX) = b^2 Var(X)$.
- Key point: linear transformation of normal is still normal!
- Linear transformation of Binomial is not Binomial!

Example

Suppose $X \sim N(\mu, \sigma^2)$ and let $Z = (X - \mu)/\sigma$. What is the distribution of Z?

- (a) $N(\mu, \sigma^2)$
- (b) $N(\mu, \sigma)$
- (c) $N(0, \sigma^2)$
- (d) $N(0,\sigma)$
- (e) N(0,1)

Linear Combinations of *Multiple Independent* Normals

Let $X \sim N(\mu_x, \sigma_x^2)$ independent of $Y \sim N(\mu_y, \sigma_y^2)$. Then if a, b, c are constants:

$$aX + bY + c \sim N(a\mu_x + b\mu_y + c, a^2\sigma_x^2 + b^2\sigma_y^2)$$

Important

- Result assumes independence
- Particular to Normal RV
- Extends to more than two Normal RVs

Suppose $X_1, X_2, \sim \text{iid } N(\mu, \sigma^2)$

Let $\bar{X} = (X_1 + X_2)/2$. What is the distribution of \bar{X} ?

- (a) $N(\mu, \sigma^2/2)$
- (b) N(0,1)
- (c) $N(\mu, \sigma^2)$
- (d) $N(\mu, 2\sigma^2)$
- (e) $N(2\mu, 2\sigma^2)$

Where does the Empirical Rule come from?

Empirical Rule

Approximately 68% of observations within $\mu \pm \sigma$ Approximately 95% of observations within $\mu \pm 2\sigma$

Nearly all observations within $\mu \pm 3\sigma$

$\texttt{pnorm(1)} \approx 0.84$

pnorm(1) - pnorm(-1) $\approx 0.84 - 0.16$

$\texttt{pnorm(1) - pnorm(-1)} \approx 0.68$

Middle 68% of $N(0,1) \Rightarrow \text{approx.} (-1,1)$

Suppose $X \sim N(0,1)$

$$P(-1 \le X \le 1) = pnorm(1) - pnorm(-1)$$
 ≈ 0.683
 $P(-2 \le X \le 2) = pnorm(2) - pnorm(-2)$
 ≈ 0.954
 $P(-3 \le X \le 3) = pnorm(3) - pnorm(-3)$

 ≈ 0.997

$$P(X \leq a) =$$

$$P(X \le a) = P(X - \mu \le a - \mu)$$

$$P(X \le a) = P(X - \mu \le a - \mu)$$

$$= P\left(\frac{X - \mu}{\sigma} \le \frac{a - \mu}{\sigma}\right)$$

$$=$$

$$P(X \le a) = P(X - \mu \le a - \mu)$$

$$= P\left(\frac{X - \mu}{\sigma} \le \frac{a - \mu}{\sigma}\right)$$

$$= P\left(Z \le \frac{a - \mu}{\sigma}\right)$$

Where Z is a standard normal random variable, i.e. N(0,1).

Which of these equals $P(Z \le (a - \mu)/\sigma)$ if $Z \sim N(0, 1)$?

- (a) pnorm(a)
- (b) 1 pnorm(a)
- (c) pnorm(a) $/\sigma \mu$
- (d) pnorm $\left(\frac{\mathsf{a}-\mu}{\sigma}\right)$
- (e) None of the above.

Probability *Above* a Threshold: $X \sim N(\mu, \sigma^2)$

$$P(X \ge b) = 1 - P(X \le b) = 1 - P\left(\frac{X - \mu}{\sigma} \le \frac{b - \mu}{\sigma}\right)$$
$$= 1 - P\left(Z \le \frac{b - \mu}{\sigma}\right)$$
$$= 1 - pnorm((b - \mu)/\sigma)$$

Where Z is a standard normal random variable.

Probability of an Interval: $X \sim N(\mu, \sigma^2)$

$$P(a \le X \le b) = P\left(\frac{a-\mu}{\sigma} \le \frac{X-\mu}{\sigma} \le \frac{b-\mu}{\sigma}\right)$$

$$= P\left(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right)$$

$$= pnorm((b-\mu)/\sigma) - pnorm((a-\mu)/\sigma)$$

Where Z is a standard normal random variable.

Suppose $X \sim N(\mu, \sigma^2)$

What is $P(\mu - \sigma \le X \le \mu + \sigma)$?

Suppose $X \sim N(\mu, \sigma^2)$

What is $P(\mu - \sigma \le X \le \mu + \sigma)$?

$$P(\mu - \sigma \le X \le \mu + \sigma) = P\left(-1 \le \frac{X - \mu}{\sigma} \le 1\right)$$

$$= P(-1 \le Z \le 1)$$

$$= pnorm(1) - pnorm(-1)$$

$$\approx 0.68$$

Percentiles/Quantiles for Continuous RVs

Quantile Function Q(p) is the inverse of CDF $F(x_0)$

Plug in a probability p, get out the value of x_0 such that $F(x_0) = p$

$$Q(p) = F^{-1}(p)$$

In other words:

$$Q(p)$$
 = the value of x_0 such that $\int_{-\infty}^{x_0} f(x) dx = p$

Inverse exists as long as $F(x_0)$ is strictly increasing.

Example: Median

The median of a continuous random variable is Q(0.5), i.e. the value of x_0 such that

$$\int_{-\infty}^{x_0} f(x) \ dx = 1/2$$

What is the median of a standard normal RV?

By symmetry, Q(0.5) = 0. R command: qnorm()

90th Percentile of a Standard Normal

 $qnorm(0.9) \approx 1.28$

Using Quantile Function to find Symmetric Intervals

$qnorm(0.75) \approx 0.67$

$qnorm(0.75) \approx 0.67$

$pnorm(0.67)-pnorm(-0.67)\approx$?

$pnorm(0.67)-pnorm(-0.67)\approx 0.5$

95% Central Interval for Standard Normal

Suppose X is a standard normal random variable. What value of c ensures that $P(-c \le X \le c) \approx 0.95$?

R Commands for Arbitrary Normal RVs

Let $X \sim N(\mu, \sigma^2)$. Then we can use R to evaluate the CDF and Quantile function of X as follows:

```
CDF F(x) pnorm(x, mean = \mu, sd = \sigma)

Quantile Function Q(p) qnorm(p, mean = \mu, sd = \sigma)
```

Notice that this means you don't have to transform X to a standard normal in order to find areas under its pdf using R.

Example from Homework: $X \sim N(0, 16)$

One Way:

$$P(X \ge 10) = 1 - P(X \le 10) = 1 - P(X/4 \le 10/4)$$

= $1 - P(Z \le 2.5) = 1 - \Phi(2.5) = 1 - pnorm(2.5)$
 ≈ 0.006

Example from Homework: $X \sim N(0, 16)$

One Way:

$$P(X \ge 10) = 1 - P(X \le 10) = 1 - P(X/4 \le 10/4)$$

= $1 - P(Z \le 2.5) = 1 - \Phi(2.5) = 1 - pnorm(2.5)$
 ≈ 0.006

An Easier Way:

$$P(X \ge 10) = 1 - P(X \le 10)$$

= 1 - pnorm(10, mean = 0, sd = 4)
 ≈ 0.006