Отчет по вычислительному практикуму

Шилов Максим

Дано уравнение в виде:

$$-a\frac{\partial^2 u}{\partial x^2} - b\frac{\partial^2 u}{\partial y^2} = f(x,y) \quad (x,y) \in D$$
$$u(x,y) = \mu(x,y), \quad (x,y) \in \partial D$$

5-точечная схема:

$$-a\frac{U_{i-1,j}-2U_{i,j}+U_{i+1,j}}{h^2}-b\frac{U_{i,j-1}-2U_{i,j}+U_{i,j+1}}{h^2}=f_{i,j}$$

$$a=1, \quad b=1.2$$

Область D

Поиск максимального и минимального собственного значения А

Максимальное собственное значение

 $Y_{i,j}^0 = 1$, внутри области D $Y_{i,j}^0 = 0$, вне области и на границе D

$$Y_{i,j}^{n+1} = AY_{i,j}^{n} = -a\frac{Y_{i-1,j}^{n} - 2Y_{i,j}^{n} + Y_{i+1,j}^{n}}{h^{2}} - b\frac{Y_{i,j-1}^{n} - 2Y_{i,j}^{n} + Y_{i,j+1}^{n}}{h^{2}}$$

$$\lambda_{max}(A) = \lim_{n \to \infty} \lambda_{max}^n(A)$$

$$\lambda_{max}^{n}(A) = \frac{\langle AY^{n}, Y^{n} \rangle}{\langle Y^{n}, Y^{n} \rangle} = \frac{\langle AY^{n}, Y^{n} \rangle}{\|\vec{y}^{n}\|_{2}^{2}} = \langle A \frac{Y^{n}}{\|\vec{y}^{n}\|_{2}}, \frac{Y^{n}}{\|\vec{y}^{n}\|_{2}} \rangle,$$

где \vec{y}^n - вектор, состоящий из элементов матрицы Y^n ('выпремленная' матрица)

Скалярное произведение двух матриц:

$$\langle A, B \rangle = \sum_{i=1, j=1}^{n, n} a_{ij} \cdot b_{ij}$$

Остановка:

$$\frac{|\lambda_{max}^{n+1}(A) - \lambda_{max}^{n}(A)|}{\lambda_{max}^{n}(A)} < \delta$$

Минимальное собственное значение

$$\lambda_{min}(A) = \lambda_{max}(A) - \lambda_{max}(B)$$

$$B = \lambda_{max}(A)E - A$$

 $\lambda_{max}(B)$ - находится аналогично $\lambda_{max}(A)$

Таблицы значений

Таблица для $\lambda_{max}(A)$:

$\delta \backslash h$	$\frac{1}{10}$	iter	$\frac{1}{20}$	iter	$\frac{1}{40}$	iter
10^{-3}	842.1867	28	3440.873	18	13834.024	18
10^{-7}	858.4637	170	3498.311	462	14057.981	1254
10^{-8}	858.4647	203	3498.329	593	14058.266	1774
10^{-10}	858.4648	271	3498.331	860	14058.297	2831

Таблица для $\lambda_{min}(A)$:

$\delta \backslash h$	$\frac{1}{10}$	iter	$\frac{1}{20}$	iter	$\frac{1}{40}$	iter
10^{-3}	29.3240	10	50.1463	7	103.5237	5
10^{-7}	21.5362	135	21.6885	367	22.02572	792
10^{-8}	21.5352	168	21.6705	501	21.73465	1326
10^{-10}	21.5351	235	21.6685	771	21.70230	2405

Код программы (Python 3.8)

Преамбула

```
In [0]: import numpy as np
        import matplotlib.pyplot as plt
  Реализация
In [0]: def Euclid_norm(x):
            norm = 0
            for i in x:
                norm += i**2
            return np.sqrt(norm)
        def scalar(x, y):
            sc = 0
            for i in range(len(x)):
                sc += x[i]*y[i]
            return sc
        if __name__ == "__main__":
            a = 1
            b = 1.2
            n = 10
            h = 1/n
            delta = 0.000001
            Y = np.zeros((n+1, n+1))
            Y_n = np.zeros((n+1, n+1))
            # ҮО - область
            for i in range(int(n/2)+1, n):
                for j in range(1,n):
                    Y[j][i] = 1
            for i in range(int(n/2), 0, -1):
                for j in range(i-1):
                    Y[int(n/2)+j+1][i] = 1
            Psi = Y.copy()
```

```
# Ү1 - нач
for j in range(1, n):
    for i in range(1, n):
        Y_n[j][i] = -1*(a/h**2)*(Y[j][i-1] - 2*Y[j][i] + Y[j][i+1]) -
        (b/h**2)*(Y[j-1][i] - 2*Y[j][i] + Y[j+1][i])
lambda_max_n = scalar(Y_n.reshape(-1)/\
Euclid_norm(Y.reshape(-1)), Y.reshape(-1)/Euclid_norm(Y.reshape(-1)))
# вычисление максимального собственного значения А
while True:
    lambda_max_0 = lambda_max_n
    Y = Y_n.copy()/Euclid_norm(Y.reshape(-1))
    for j in range(1, n):
        for i in range(1, n):
            Y_n[j][i] = -1*(a/h**2)*(Y[j][i-1] - 2*Y[j][i] + Y[j][i+1]) -
            (b/h**2)*(Y[j-1][i] - 2*Y[j][i] + Y[j+1][i])
    lambda_max_n = scalar(Y_n.reshape(-1)/\
    Euclid_norm(Y.reshape(-1)), Y.reshape(-1)/Euclid_norm(Y.reshape(-1)))
    if np.abs(lambda_max_n - lambda_max_0)/lambda_max_0 < delta:</pre>
        break
# максимальное собственное значение А
print(lambda_max_n)
Psi_n = Psi.copy()
# Psi - нач
for j in range(1, n):
    for i in range(1, n):
        Psi_n[j][i] = lambda_max_n*Psi[j][i] + \
        (a/h**2)*(Psi[j][i-1] - 2*Psi[j][i] + Psi[j][i+1]) + 
        (b/h**2)*(Psi[j-1][i] - 2*Psi[j][i] + Psi[j+1][i])
lambda_max_B_n = scalar(Psi_n.reshape(-1)/Euclid_norm(Psi.reshape(-1)), \
                        Psi.reshape(-1)/Euclid_norm(Psi.reshape(-1)))
```