Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

6 Graph Theory Basics

- Homework assignment published on Monday, 2018-04-02.
- Submit first solutions and questions by Sunday, 2018-04-08, 12:00, by email to dominik.scheder@gmail.com and to the TAs.
- You will receive feedback by Wednesday, 2018-04-11.
- Submit final solution by Sunday, 2018-04-15 to me and the TAs.

Let G = (V, E) and H = (V', E') be two graphs. A graph isomorphism from G to H is a bijective function $f: V \to V'$ such that for all $u, v \in V$ it holds that $\{u, v\} \in E$ if and only if $\{f(u), f(v)\} \in E'$. If such a function exists, we write $G \cong H$ and say that G and H are isomorphic. In other words, G and H being isomorphic means that they are identical up to the names of its vertices.

Obviously, every graph G is isomorphic to itself, because the identity function f(u) = u is an isomorphism. However, there might be several isomorphisms f from G to G itself. We call such an isomorphism from G to itself an automorphism of G.

Exercise 6.1. For each of the graphs below, compute the number of automorphisms it has.

Justify your answer!

Solution.

- 1. The number of automorphisms is 2. We denote the vertices v_1, v_2, v_3, v_4 from the left side to the right side, which itself is an automorphisms. The other automorphism is to denote the vertices from the right to the left.
- 2. The number of automorphisms is $2 \times 6 = 12$. For each vertex, we denote it v_1 and number the remaining vertex clockwise or anticlockwise in order, all of which are automorphisms.
- 3. The number of automorphisms is $8 \times 6 = 48$. For each vertex, we denote it v_0 , and its adjacent three vertices v_1, v_2, v_3 , which has 3! = 6 choices. Each selection can form an automorphism, thus the total number is 48.

Consider the *n*-dimensional Hamming cube H_n . This is the graph with vertex set $\{0,1\}^n$, and two vertices $x,y \in \{0,1\}^n$ are connected by an edge if they differ in exactly one edge. For example, the right-most graph in the figure above is H_3 .

Exercise 6.2. Show that H_n has exactly $2^n \cdot n!$ automorphisms. Be careful: it is easy to construct $2^n \cdot n!$ different automorphisms. It is more difficult to show that there are no automorphisms other than those.

Proof.

• There are at least $2^n \cdot n!$ automorphisms. For each vertex we denote it v_0 , and denote its adjacent vertices v_1, v_2, \ldots, v_n , which has n! choice. All $2^n \cdot n!$ will at least form one automorphism.

• There are no more than $2^n \cdot n!$ automorphisms. If there are more than $2^n \cdot n!$ automorphisms, then after we choose $v_0, v_1, v_2, \ldots, v_n$, we can still find more than one automorphism when numbering $v_{n+1}, v_{n+2}, \ldots, v_{2^n-1}$. Consider the n-dimensional Hamming cube as a n-dimensional linear space with each vertex having the coordinates (x_1, x_2, \ldots, x_n) $(x_i = 1 \text{ or } 0)$ However, after choosing v_0, v_1, \ldots, v_n , equivalently, we have defined the origin and basis of the space, all vertices' coordinates are fixed, there is no alternative automorphism.

A graph G is called *asymmetric* if the identity function f(u) = u is the only automorphism of G. That is, if G has exactly one automorphism.

Exercise 6.3. Give an example of an asymmetric graph on six vertices.

Solution.

Exercise 6.4. Find an asymmetric tree.

Solution. The is no asymmetric tree on six vertices.

Proof. A tree containing only 2 leaves is a path, which has 2 automorphisms. Thus the tree must containing at least 3 leaves v_1, v_2, v_3 and the leaves have different adjacent vertices v'_1, v'_2, v'_3 . Otherwise switching the number of 2 leaves connecting the same adjacent vertex will form a new automorphism.

There already exist 6 vertices. But if there are only 6 vertice to form a tree, v'_1, v'_2, v'_3 must be connected. But this will form automorphisms by switch the name of vertices groups $(v_1, v'_1), (v_2, v'_2), (v_3, v'_3)$.

Therefore, an asymmetric tree cannot be found on less than 7 vertices.

For a graph G=(V,E), let $\bar{G}:=\left(V,\binom{V}{2}\setminus E\right)$ denote its *complement graph*.

A graph H on six vertices

Its complement \bar{H} .

We call a graph self-complementary if $G \cong \bar{G}$. The above graph is not self-complementary. Here is an example of a self-complementary graph:

The pentagon G.

 \bar{G} , the pentagram.

Exercise 6.5. Show that there is no self-complementary graph on 999 vertices.

Proof. A complete graph on 999 vertices has $999 \times 998/2 = 498501$ edges, which cannot be divide by 2, that is, the edges cannot be divide into two parts with the same number of edges.

Exercise 6.6. Characterize the natural numbers n for which there is a self-complementary graph G on n vertices. That is, state and prove a theorem of the form "There is a self-complementary graph on n vertices if and only if n <put some simple criterion here>."

Theorem. There is a self-complementary graph on n vertices if and only if $n \mod 4 = 0$ or $n \mod 4 = 1$.

Proof.

• If $n \mod 4 \neq 0$ and $n \mod 4 \neq 1$, the number of edges of the complete graph n(n-1)/2/2 is not an integer, namely the edges of the complete graph cannot be divide into two parts with the same number of edges. Hence there isn't any self-complementary graph on n vertices.

• If $n \mod 4 = 0$, that is n = 4k, where k is a positive integer. we denote an graph G_k containing k vertices whose complement is G_k^C . Now we form the following graph G on n vertices

The graph G contains four induced subgraphs G_k, G_k, G_k^C, G_k^C . Between some subgraphs there are edges between each vertex of two subgraphs, whose total number is k^2 .

The complementary graph G^C is as follows. Obviously, G^C and G are isomorphic.

• If $n \mod 4 = 1$, that is n = 4k + 1, where k is a positive integer. Based on the graph we formed when $n \mod 4 = 1$, we add one vertex to form a new graph G' on 4k + 1 vertices and its complement $G^{C'}$. Similarly, G' and $G^{C'}$ are isomorphic.

