Popis sestavy PC

Základní sestavu počítače tvoří: počítačová skříň, monitor, klávesnice, myš

V počítačové skříni najdeme:

- Základní deska (mainboard, motherboard) obsahuje procesor (řídí činnost PC)
- HDD slouží k trvalému ukládání souborů (na rozdíl od operační paměti RAM)
- Grafická karta, zvuková karta, síťová karta
- Optické mechaniky (CD, DVD)
- <u>Počítačový zdroj</u> převádí střídavý proud (AC) na stejnosměrný proud (DC)

Hardware

HW jsou fyzické části počítače.

<u>Procesor (CPU)</u> – zpracovává data <u>Paměť RAM</u> – ukládá data současně

<u>Základní deska</u> – propojuje vše <u>Grafická karta (GPU)</u> – Zajišťuje obraz

<u>Úložiště (HDD/SSD)</u> – uchovává data <u>Zdroj (PSU)</u> – napájí systém

Dále zahrnuje periferie (klávesnice, myš, monitor)

Každá součást má svou roli a ovlivňuje výkon počítače – například herní PC potřebuje silnou grafickou kartu, zatímco kancelářské počítače spíš stabilitu.

BIOS

- Po zapnutí nebo resetu počítače je hardware nastaven dle konfigurace BIOS
- Jako první se načte instrukce BIOS a spustí se základní test (funkčnost a přítomnost hardwaru
- BIOS se pokusí nalézt a načíst operační systém

<u>Architektury počítačů – vlastnost, výhody, nevýhody</u>

Von Neumannova

- Obsahuje jednu paměť pro program a data
- Typická pro moderní PC, protože je praktičtější
- Výhody jednodušší konstrukce, vyšší flexibilita, univerzálnost
- Nevýhody nižší výkon, méně efektivní úlohy, zranitelnost vůči chybám

Harvardská

- Obsahuje (2) paměti => 1: program (Flash, RWM) a 2: data (RWM, Flash)
- Typická pro mikrokontroléry

- Výhody vyšší výkon, větší bezpečnost
- Nevýhody složitější konstrukce, vyšší nároky na paměť, méně rozšířená v PC

Mainboardy / Motherboardy

Základní deska, nejdůležitější část každého typu počítače. Propojuje všechny klíčové komponenty systému (procesor, operační paměti, grafické karty, úložiště a periferní zařízení). Zajišťuje komunikaci mezi těmito součástmi prostřednictvím čipsetu a sběrnic, a jeho konstrukce určuje kompatibilitu, výkon a možnosti rozšíření počítače. Součástí je také BIOS nebo UEFI, které umožňuje základní nastavení systému a jeho spuštění.

Chipsety

Sada integrovaných obvodů (čipů), které vzájemně spolupracují. Hraje klíčovou roli v určení výkonu, kompatibility a rozšiřitelnosti systému.

Multimastering

Více masterů na sběrnici může zahájit komunikaci. Např. DMA (Direct Memory Access) přenáší data mezi periferiemi a pamětí bez procesoru, čímž šetří jeho práci.

Procesor může komunikovat s periferiemi třemi způsoby:

- 1. Pomocí sběrnice
- 2. Pomocí hardwarových přerušení (IRQ)
- 3. DMA

Sloty, sběrnice – rychlost, propustnost, šířka sběrnice

Sloty a sběrnice zajišťují propojení komponent v počítači. Sloty jako PCIe slouží k připojení zařízení k základní desce. Sběrnice přenášejí data mezi procesorem, pamětí a periferiemi. Klíčové parametry jsou:

- <u>Šířka sběrnice</u>: počet bitů přenášených najednou (64 bitů u moderních RAM)
- Rychlost: frekvence přenosu (PCIe 4.0 má 16 GT/s (Gigatransfer za sekundu))
- Propustnost: Celkové množství dat za sekundu, závisí na šířce a rychlosti

Vyšší šířka, rychlost a propustnost zlepšují celkový výkon počítačů, zejména u náročných úloh, jako jsou hry, střih videa nebo práce s velkými databázemi.

Typy sběrnic

- AB (Address Bus adresová sběrnice) => přenáší adresu místa v paměti
- DB (Data Bus datová sběrnice) => přenáší data mezi procesorem a pamětí
- **CB** (Control **B**us řídící sběrnice) => řídí časování a operace (čtení/zápis, sync.)

I/O zařízení

Vstupní/výstupní zařízení slouží k interakci mezi uživatelem a počítačem.

Vstupní zařízení (klávesnice, myš, mikrofon) zadávají data do systému.

Výstupní zařízení (monitor, reproduktory, tiskárna) zobrazují výsledky zpracování.

Některá zařízení, jako dotykové obrazovky nebo Flash disky, kombinují obě funkce. Komunikují s počítačem přes porty (USB, HDMI) a ovladače, které zajišťují správnou funkci. Jsou klíčová pro ovládání PC a přenos informací.

<u>Přerušení</u>

Přerušení je okamžitý vstup do programu a spuštění obslužného podprogramu. Po jeho dokončení se provádí návrat na stejné místo původního programu. Hardwarové přerušení znamená, že přerušení vyvolá vnější zařízení.

DMA

Technologie, která umožňuje periferním zařízením (grafickým kartám, síťovým kartám nebo pevným diskům) přímý přístup k paměti RAM bez zátěže procesoru. DMA přebírá správu přenosu dat mezi pamětí a zařízením.

Funguje tak, že zařízení pošle požadavek DMA řadiči, který poté přes sběrnice (adresovou, datovou a řídící) zajistí přenos dat, zatímco procesor může vykonávat jiné úlohy. klíčové pro rychlé operace, jako je přenos velkých souborů, streamování nebo zpracování zvuku/videa.

Popsat jak pro PC, tak pro PIC

<u>PC</u> – Osobní počítač je univerzální zařízení pro široké použití – hry, kancelářské práce, multimédia. Má složitou architekturu (Von Neumannova), mnoho komponent (CPU, RAM, GPU, základní deska) a operační systém (Windows, Linux)

<u>PIC</u> – Mikrokontrolér je určen pro jednoduché řízení například senzorů, motorů, LED. Má integrovanou architekturu (Harvardská), vše je na jednom čipu (procesor, paměť, vstupy a výstupy) a nepotřebuje operační systém, pouze program.

Rozhraní I/O

Zahrnují porty, jako USB, HDMI, DisplayPort nebo 3,5mm audio jack, které připojují zařízení (klávesnici, monitor, sluchátka). Dále sem patří bezdrátová rozhraní, například Bluetooth a Wi-Fi, pro spojení s perifériemi (myš, tiskárna).

Rozhraní přenášejí data a signály pomocí ovladačů a protokolů, které zajišťují kompatibilitu a rychlost.

Ondrášek EPO 5. Počítače typu PC, architektura počítačů, jednotlivé typy

Moderní PC podporují rychlá rozhraní, jako USB-C nebo Thunderbolt, pro efektivní přenos dat.

Změň vlastnictví složky