

CAIPO OMPIO

- 1 CERT TO COLUMN TO COLUMN TERMENTAL IN THE COLUMN TO COLUMN TO COLUMN TO COLUMN TERMENTAL IN THE COLUMN TERMENT TERMENT TER

(43) 国際公開日 2003 年7 月31 日 (31.07.2003)

(19) 世界知的所有権機関

国際事務局

PCT

(10) 国際公開番号 WO 03/062286 A1

宮前区土橋 1-7-1-5 0 2 Kanagawa (JP). 岸本 健

史 (KISHIMOTO, Kenji) [JP/JP]; 〒179-0081 東京都 練馬区 北町 1-44-3-60 1 Tokyo (JP). 大野 弘幸

(OHNO, Hiroyuki) [JP/JP]; 〒134-0092 東京都 江戸川

東京都 渋谷区 宇田川町37-10 麻仁ビル6階

区 一之江町3002-314 Tokyo (JP).

(51) 国際特許分類7: C08F 20/30, 2/44, 2/46 // C09K 19/38

(21) 国際出願番号:

PCT/JP03/00555

(22) 国際出願日:

2003年1月22日(22.01.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-13546 2002 年1 月22 日 (22.01.2002) JI

(71) 出願人 (米国を除く全ての指定国について): 科学技術 振興事業団 (JAPAN SCIENCE AND TECHNOLOGY CORPORATION) [JP/JP]; 〒332-0012 埼玉県 川口市 本町4丁目1番8号 Saitama (JP). Tokyo (JP).

(81) 指定国 (国内): JP, KR, US.

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR).

(74) 代理人: 西澤 利夫 (NISHIZAWA, Toshio); 〒150-0042

添付公開書類:

国際調査報告書

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 加藤 隆史 (KATO,Takashi) [JP/JP]; 〒216-0005 神奈川県 川崎市 2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: POLYMERIZABLE ION-CONDUCTIVE LIQUID-CRYSTALLINE COMPOSITE, ANISOTROPICALLY ION-CONDUCTIVE POLYMERIC LIQUID-CRYSTAL COMPOSITE, AND PROCESS FOR PRODUCING THE SAME

(54) 発明の名称: 重合可能なイオン伝導性液晶性複合体と異方的イオン伝導性高分子液晶複合体並びにその製造方法

AセルA (σill)

D イオン伝導度の測定方向 (57) Abstract: A composite of an organic monomer compound having a molecular structure containing a polymerizable part, a part for forming an ion composite, and a mesogenic part imparting liquid crystallinity with an (in)organic salt is polymerized at the polymerizable part of the organic monomer compound. Thus, an anisotropically ion-conductive polymeric liquid-crystal composite is obtained. A new material is thus provided which combines the high ionic conductivity inherent in polyelectrolytes, the anisotropy due to liquid-crystal orientation, and the self-supporting properties possessed by polymeric compounds.

A...CELL A

B...GLASS SUBSTRATE

C...GOLD ELECTRODE

D...DIRECTION OF IONIC-CONDUCTIVITY MEASUREMENT

(57) 要約:

分子構造において重合可能部位とともにイオンの複合化部位並びに液 晶相を発現させるメソゲン部位とを有する有機モノマー化合物と有機も しくは無機の塩との複合体を、有機モノマー化合物の重合可能部位におい て重合させることで、異方的イオン伝導性高分子液晶複合体と、高分子 電解質の持つ高いイオン伝導性と液晶の配向による異方性、並びに高分 子化合物の持つ自立性を兼ね備えた新材料とする。

明細書

重合可能なイオン伝導性液晶性複合体と異方的イオン伝導性高分子液晶 複合体並びにその製造方法

技術分野

この出願の発明は、重合可能なイオン伝導性液晶性複合体と異方的イオン伝導性高分子液晶複合体並びにその製造方法に関するものである。さらに詳しくは、この出願の発明は、新しい電解質材料、電池材料、物質輸送や反応場に係わる新材料、さらには生体模倣材料等として各種の産業分野において有用な、イオン伝導性と液晶性、そして高分子化合物のもつ自立性とを備えた新規な異方的イオン伝導性高分子液晶体とその製造のためモノマー化合物、そして製造方法に関するものである。

技術背景

液晶は、固体と液体のちょうど中間的な物質・状態のことを指しており、 様々な構造秩序を自己組織的に形成する機能材料であることが知られて いる。液晶はその異方性や動的特性により、様々な性質を発現する。これ らの性質を利用して、一般には、光学的特性・外場応答性を利用したディ スプレイ材料や、配向性・流動性を利用した高強度繊維の作製などに応用 されている。また、より多様な機能の発現を目的として他の繊維性複合材 料に液晶性を導入している例も多く見られる。

- 一方、高分子の一部は金属塩や、スルホン酸、リン酸などの(もしくはその官能基などの)ブレンステッド酸と複合化することで高い金属イオン 伝導性、またはプロトン伝導性を示す高分子電解質となることが知られている。このような高分子電解質の特徴は、
 - I) 種々のイオンと複合化する
 - II) 軽量である

III) ガラス転移点以上の温度でも固体もしくは弾性体になるなどの点にある。このため近年、携帯電話、ノートパソコンなどの携帯型電子機器の普及から、それらに搭載する軽量な固体電池材料として実際に応用されている。

このような高分子電解質に液晶性を付与した場合、その配向秩序に基づく異方的なイオン伝導性をもつ材料ができることが期待される。そこでこの出願の発明者らは、メソゲン部位とポリエチレンオキシド(PEO)の両末端に導入した二量体型の液晶化合物を合成してきた。さらにこのような化合物に対しリチウム塩を添加し、得られた液晶性複合体を均一に配向させた場合、均一な二次元的イオン伝導性を示すことも確認した。しかしながら、これらの複合体は分子量が1000程度、もしくはそれ以下の化合物からなる複合体であるために、流動性を有している。つまり、材料として実際に使用する際にはセル中に封入するなどの対策が必要となるという問題点がある。そのため、このような複合体を自立性の材料として応用するには、例えば高分子化により機械的強度を付与するということが考えられる。

実際、液晶性を示す高分子イオン伝導体はいくつか報告されている。しかしながら、高分子そのものの均一な配向制御は非常に難しく、この出願の発明者らが開発した二量体型液晶のような均一モノドメイン配向は得られないため、これらは実際に伝導度に関しては均一な異方性を示さないものがほとんどである。

これらの公知のイオン伝導性高分子液晶の場合では、まず、高分子液晶を合成したあとで金属塩と複合化し、イオン伝導性を発現させている。そのため、液晶のミクロドメイン構造に由来する特性を示すことはあっても、バルクの材料としては等方的なイオン伝導性のみが観察される。作製した主鎖型高分子液晶を磁場で配向させてその異方的イオン伝導度を測定した例も報告されているが、この方法では実用にかなうほどの伝導度の値は得られていない。

そこで、この出願の発明は、以上のとおりの従来技術の問題点を解消し、

- I) 高分子電解質の持つ高いイオン伝導性
- II) 液晶の配向による異方性
- III) 高分子化合物の持つ自立性

を兼ね備えた新しい材料に係わる新規な技術手段を提供することを課題 としている。

発明の開示

この出願の発明は、上記の課題を解決するものとして、第1には、分子 構造において重合可能部位とともにイオンの複合化部位並びに液晶相を 発現させるメソゲン部位とを有する有機モノマー化合物と、有機もしくは 無機の塩とが複合化されていることを特徴とする重合可能なイオン伝導 性液晶性複合体を提供する。

また、この出願の発明は、第2には、上記の重合可能なイオン伝導性液晶性複合体がこれを構成する有機モノマー化合物の重合可能部位において重合されることを特徴とする異方的イオン伝導性高分子液晶複合体を提供し、第3には、分子構造において高分子構造固定化部位とともにイオンの複合化部位並びに液晶相を発現させるメソゲン部位を有し、有機もしくは無機の塩が複合化されていることを特徴とする異方的イオン伝導性高分子液晶複合体を提供する。

さらにこの出願の発明は、第4には、上記第2または第3の発明の異方的イオン伝導性高分子液晶複合体の製造方法であって、分子構造において重合可能部位とともにイオンの複合化部位並びに液晶相を発現させるメソゲン部位とを有する有機モノマー化合物と有機もしくは無機の塩との複合体を、有機モノマー化合物の重合可能部位において重合させることを特徴とする異方的イオン伝導性高分子液晶複合体の製造方法を提供し、第5には、光照射により、または加熱により重合させることを特徴とする異方的イオン伝導性高分子液晶複合体の製造方法を提供する。

図面の簡単な説明

図1は、イオン伝導度測定用のセルについて示した概略図である。

図2は、図1とは別のセルについて示した概略図である。

図3は、SEM写真図である。

図4は、イオン伝導度の測定結果を例示した図である。

発明を実施するための最良の形態

この出願の発明は、上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。

なによりも、この出願の発明は、前記のとおりの

- I) 高分子電解質の持つ高いイオン伝導性
- II) 液晶の配向による異方性
- III) 高分子化合物の持つ自立性

を兼ね備えた新しい材料として、新規な異方的イオン伝導性高分子液晶複合体を提供するものである。

このような新規な異方的イオン伝導性高分子液晶複合体を実現するための手段の一つが、前駆体としてこの出願の発明によって提供される、新規な、重合可能なイオン伝導性液晶性複合体である。このものは、

<A>分子構造において重合可能部位とともに、イオンの複合化部並び に液晶相を発現させるメソゲン部位を有する有機モノマー化合物と、

有機もしくは無機の塩とが複合化されたものである。<A>有機 モノマー化合物は、その分子構造を概略として例示すると、たとえば次の ようになる。

単量体型

二量体型

単量体型や二量体型として考慮することができる。

なお、後述の実施例では、単量体型(A)のものが使用されている。

ここで、イオンと複合化する部位としては、オリゴオキシアルキレン等として、たとえば次の各種の構造から適宜に選択されたものとすることができる。

また、重合可能部位の一例としての重合基については、たとえば次の各種の構造のものが考慮される。

そして液晶相を発現させるメソゲン部位については、たとえば一般的な 構造としては、

- (1) -環(側方置換基)-環(側鎖末端基)
- (2) -環(側方置換基) -結合基-環(側鎖末端基)

のいずれかのものが代表的構造として例示される。これらの場合の環の構造は、たとえば次式

で表わされるものをはじめ各種のものであってよく、結合基が存在する場合には、これらは、たとえば次式

で表わされるものをはじめとして各種のものでよい。

側方置換基が1以上存在する場合には、これらは、たとえば、F、C 1、B r 等のハロゲン原子、メチル基、エチル基等のアルキル基、メトキシ基、

エトキシ基等のアルコキシ基、水酸基、シアノ基、ニトロ基等の各種のものでよく、側鎖末端基についても、たとえばアルキル基、アルコキシ基、シアノ基、ニトロ基等の各種であってよい。

たとえば以上のとおりのメソゲン部位を構成する要素については任意 の組合わせであってよい。たとえばメソゲン部位の要素組み合わせを例示 すると、次のとおりのものがたとえば例示される。

さらに、以下のような構造も例示される。

WO 03/062286

$$R$$
 R
 R

(X=H, F)

いずれの場合にも、符号Rは、たとえばアルキル基やアルコキシ基、シアノ基、ニトロ基であり、符号Xは、たとえば、水素原子やF等のハロゲン原子である。

以上例示したような $\langle A \rangle$ 有機モノマー化合物に複合化される $\langle B \rangle$ 有機または無機の塩(M X)としては、たとえば次のカチオン種(M^+)とアニオン種(X^-)とによって構成されるものであってよい。

カチオン種 (M⁺) Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Sc³⁺, Na⁺, PF₆⁻, BF₄⁻, PF₆⁻

もちろん、これらに限定されることはない。

たとえば以上の〈A〉有機モノマー化合物と〈B〉有機または無機の塩との複合体は、両成分を混合することによって容易に製造することができる。

この場合の混合は、〈A〉〈B〉両成分を、そのまま溶融することや、溶けにくい場合には加熱すること、あるいは有機溶媒に溶解してその後溶媒を留去する等の方法によって行うことができる。〈A〉〈B〉両成分の混合比は、各々の成分の種類や相互の組合わせによって適宜に定められるが、たとえば〈A〉成分のイオンと複合化する部位のユニット単位、たとえばオリゴオキシアルキレンにおいては、オキシアルキレン単位に対しての〈B〉成分のカチオン種のモル比が1以下で、より好ましくは0.8以下とすることなどが考慮される。

そして、この有機モノマー複合体を用いることによって、この出願の発明の、異方性イオン伝導フィルム等の実現を可能とする、イオン伝導性高分子液晶複合体が提供される。その構造は、

- I) イオンを複合化する部位
- II) 液晶相を発現させるメソゲン部位
- III) 構造を固定化する高分子構造
- IV) 有機、あるいは無機塩を有している。

従来では液晶のもつ異方性、高分子のもつ自立性を相互に失うことなく 併せ持った材料、またはそれ以上の機能発現する材料を作製することは非 常に困難であったが、この出願の発明では、上記の〈A〉〈B〉の複合体 としての低分子モノマー体を「その場重合」することによって作製可能と している。光照射や加熱による重合である。

光重合のような、いわゆる"その場重合"は、重合可能な分子の秩序構造を維持したまま固定化する手段として非常に有用であり、液晶を始めとする多くの機能性モノマーの固定化に適用されているが、この"その場重

合"の手法を利用することが有効である。前記のとおりのイオン伝導性を示し、重合可能な液晶性モノマーと有機塩もしくは無機塩の複合体を、まず配向制御させた後に、「その場重合」を行うことができる。これによって、異方的な構造を維持したまま自立性を与えることが可能になる。このようにして得られた高分子液晶と有機または無機の塩との複合体は、重合前の秩序構造を反映した伝導性を示す。イオン伝導性液晶材料に関しては、その場重合を利用して液晶モノマーの段階で形成される秩序構造を積極的に活用した例はいまだなく、この方法で作製したイオン伝導性高分子液晶にはこれまでにない電気的性質、光学的性質等を発現することになる。もちろん、上記要素の適当な組み合わせの複合体では熱重合により同様の材料を作製することも可能である。

重合のための諸条件、たとえば光の波長、加熱温度等については対象と する前駆体モノマーの分子構造を考慮して適宜に定めることができるこ とは言うまでもない。

たとえば、ラジカルを重合反応のトリガーとして用いる場合には、酸素 嫌気条件で行うのが望ましい。そのため、たとえばアルゴン、窒素等の不 活性雰囲気とすることが考慮される。この場合には、反応温度としては室 温~80℃程度の範囲が望ましい。

一方、光ラジカル重合以外の光重合においては熱に対して安定な重合基が存在する場合がある。

たとえばエポキシ基、アリルエーテル基等の場合である。これらのこと も考慮すると光重合においては反応温度は100℃程度までの範囲とす るのが望ましい。

光重合については、上記のとおりラジカルをトリガーとすることもできる。たとえば上記〈A〉成分がメタクリレート系モノマーの場合である。このような場合には、ラジカルを効率よく発生させるために光ラジカル開始剤(発生剤)を反応系に添加してもよい。

他の重合基についてはカチオン重合するもの(たとえばアリルエーテル

基など) や配位重合するもの (たとえばフェニルアセチレン基) ではそれ ぞれ光カチオン開始剤・金属錯体開始剤を用いることも考慮される。 以上のような開始剤と照射光の波長について次に例示した。

【化9】

光ラジカル開始剤

O OCH₃

$$C \longrightarrow C \longrightarrow C$$

$$OCH_3$$

$$(\lambda \text{ max}=330 \text{ nm})$$

 $(\lambda \max=330nm)$

(λ max=365nm)

$$CH_3$$
 CH_3 CH_3

(λ max<320nm)

AIBN ($\lambda \max=365$ nm)

光カチオン開始剤

アリルヨードニウム塩

アリルスルホニウム塩

 $\left(Y=BF_4, PF_6, AsF_6, Sbf_6\right)$

金属錯体開始剤

 $W(CO)_6$, $MO(CO)_6$

また、この重合は、予め定めたセル中で行ってもよく、フィルムやシート等の所定形状への賦形が伴ってもよいことも言うまでもない。

この出願の発明によって提供されるイオン伝導性高分子液晶複合体に ついては、その応用として、

- ・電子デバイスや電池材料
- ・ナノテクノロジー
- ・パターニング材料
- ・特殊な電気的性質を有する被覆材料
- ・イオンチャンネルなどの生体被覆材料

などが考えられる。

そこで以下に実施例を示し、さらに詳しくこの出願の発明について説明 する。もちろん、以下の例によって発明が限定されることはない。

実 施 例

(実施例1)

イオン伝導性液晶性単官能モノマー化合物として、次式の化合物(1) を合成した。

合成のための反応は次の反応式に従って行った。

WO 03/062286

HO-(CH₂CH₂O)₄ -Ts
$$\frac{F}{4}$$
 $\frac{F}{C_5H_{11}}$ $\frac{F}{C_5H_{11}}$ $\frac{F}{C_5H_{11}}$ $\frac{F}{C_5H_{11}}$ $\frac{F}{C_5H_{11}}$ $\frac{F}{C_5H_{2}Cl_2}$ $\frac{F}{S_{\perp}.92\%}$

<A>2-(2-[2-{2-(2, 3-ジフルオロ-4-{4-(4 ートランスーペンチルシクロヘキシル)フェニル}フェノキシ)エトキシ} エトキシ〕エトキシ)エタノール(化合物5)の合成

磁気攪拌子の入った二つ口100mLナスフラスコにテトラエチレン グリコールモノトシラート (Mw=348, 0.809g, 2.89m mo1)、別途合成した液晶メソゲン化合物 4 (Mw=358, 1.01g, 2.81mmol)、炭酸カリウム (Mw=138,1.15g,8. 33mmo1) およびジメチルホルムアミド(10mL) を加え、アルゴ ン雰囲気下、オイルバスで24時間攪拌(0℃)する。反応終了を薄層ク ロマトグラフィー (TLC) で確認後、反応溶液に酢酸エチル (100m L) 及び水(100mL)を加えて有機層を抽出し、水層を酢酸エチル (50mL)で抽出する。併せた有機層を5%塩酸水溶液(100mL) で洗浄し、さらに水 (100mL) で洗浄した後、過飽和塩化ナトリウム 水溶液(100mL)で洗浄する。ついで、硫酸マグネシウムを加え乾燥、 ろ過したのち、溶媒をロータリーエパボレーターを用いて減圧留去する。

残渣を酢酸エチルを展開溶媒として用いたフラッシュシリカカラムクロマトグラフィーによって精製し、白色蝋状の化合物 5 (Mw = 5 3 5, 1.15 g, 2.15 mm o 1: 収率 9 2 %) を得る。 このものは物性値は次のとおりであった。

表 1

¹H NMR (CDC1₃, 400MHz) : δ = 0. 90 (t, J=6. 84Hz, 3H), 1. 02 − 1. 10 (m, 2H), 1. 20−1. 34 (m, 9H), 1. 42−1. 53 (m, 2H), 1. 90 (t, J=13. 2Hz, 4H), 2. 47−2. 53 (m, 1H), 2. 64 (s, 1H), 3. 60−3. 62 (m, 2H), 3. 65−3. 77 (m, 10H), 3. 90 (t, J=4. 8 Hz, 2H), 4. 24 (t, J=4. 88Hz, 2H), 6. 80−6. 84 (m, 1H), 7. 06−7. 11 (m, 1H), 7. 27 (d, J=8. 30Hz, 2H), 7. 42 (d, J=7. 81Hz, 2H)

¹³C NMR (CDC1₃, 100MHz), δ = 14. 07 (S), 22. 66 (S), 26. 59 (S), 32. 15 (S), 33. 51 (S), 34. 22 (S), 37. 23 (S), 37. 32 (S), 44. 27 (S), 61. 64 (S), 69. 39 (S), 69. 47 (S), 70. 25 (S), 70. 50 (S), 70. 58 (S), 70. 87 (S), 72. 43 (S), 109. 93 (d, J=2. 28Hz), 123. 38 (S), 123. 47 (dd, J=4. 13, 4. 13Hz), 126. 98 (S), 128. 53 (d, J=3. 10Hz), 132. 17 (dd, J=1. 45, 2. 28Hz), 141. 81 (dd, J=15. 1, 247. 7Hz), 147. 15 (dd, J=2. 89, 8. 27Hz), 147. 41 (S), 148. 74 (dd, J=11. 1, 248. 6Hz)

8g/с m^2)を、シリンジを用いてゆっくりと滴下しそのまま氷浴で3時間攪拌する。反応終了をTLCで確認した後、反応溶液にクロロホルム(30mL)及び水(30mL)を加えて有機層を抽出し、水層をクロロホルム(50mL)で抽出する。併せた有機層を過飽和塩化アンモニウム水溶液(100mL)で洗浄し、さらに水(100mL)で洗浄した後、過飽和塩化ナトリウム水溶液(100mL)で洗浄する。ついで、硫酸マグネシウムを加え乾燥、ろ過したのち、溶媒をロータリーエパボレーターを用いて減圧留去する。残渣を塩化メチレンを展開溶媒として用いたフラッシュシリカカラムクロマトグラフィーによって精製し、白色蝋状の化合物1(Mw=603,662 mg,1.10 mmo1: 収率90%)を得る。

このものの物性値は次のとおりであった。

表 2

¹H NMR (CDCl₃, 400MHz) : δ = 0. 90 (t, J=6. 84, 3H), 1. 01–1. 11 (m, 2H), 1. 2 0–1. 34 (m, 9H), 1. 42–1. 53 (m, 2H), 1. 78–1. 97 (m, 7H), 2. 47–2. 54 (m, 1H), 3 . 64–3. 75 (m, 10H), 3. 89 (t, J=4. 64, 2H), 4. 24 (t, J=4. 88, 2H), 4. 30 (t, J=4. 88, 2H), 5. 56 (t, J=1. 47, 1H), 6. 13 (s, 1H), 6. 79–6. 83 (m, 1H), 7. 06–7. 11 (m, 1H), 7. 27 (d, J=8. 31, 2H), 7. 42 (d, J=8. 06, 2H).

¹³C NMR (CDCl₃, 100MHz), δ = 14. 08 (S), 18. 26 (S), 22. 67 (S), 26. 60 (S), 3 2. 16 (S), 33. 51 (S), 34. 22 (S), 37. 23 (S), 37. 32 (S), 44. 28 (S), 63. 83 (S), 69. 07 (S), 69. 40 (S), 69. 49 (S), 70. 9 (S), 70. 60 (S), 70. 62 (S), 70. 92 (S), 109. 92 (S), 123. 36 (S), 123. 46 (dd, J=4. 14, 4. 14Hz), 125. 61 (S), 126. 99 (S), 128. 53 (d, J=2. 69Hz), 132. 18 (S), 136. 08 (S), 141. 81 (dd, J=15. 1, 247. 7Hz), 117. 18 (dd, J=3. 10, 8. 27Hz), 147. 42 (S), 148. 75 (dd, J=10. 9, 248. 1Hz), 167. 29 (S).

(実施例2)

実施例 1 で合成した、オリゴオキシエチレン部位をイオンと複合化することによってイオン伝導部位とした重合可能な液晶性モノマー化合物 (1) は、室温でスメクチック液晶相を実現することが偏光顕微鏡観察、およびDSC測定の結果から確認された(表 3)。そこで、イオン伝導を担う塩としてリチウム塩(2)を複合化したところ、スメクチック液晶の熱的安定性が向上した(10 °C)。これはリチウムイオンとオキシエチレン部位との間に働くイオン- 双極子相互作用によるものであると考えられる。さらに、化合物(3)を化合物(1)に対して0. 5 wt %になるように調製した(1/2/3)がこの添加による液晶相の有意な変化は観察されなかった。

OMe

次いで、この1/2/3を、イオン伝導度の測定用に図1および図2に示した二種類のセル(セルA: 櫛型金電極つきのガラス基板、セルB: I T O ガラス電極)に封入した。1/2/3のコノスコープ画像は十字像を示した。このことから1/2/3は各基板に対して分子の長軸が垂直に立っているホメオトロピック配向することがわかった。

各セルに封入した試料に対し、365nm付近に調整した紫外光(35mW/cm)を30分間照射し、Poly-(1/2/3)を得た。

各セルに封入した試料に対し、365nm付近に調整した紫外光(35mW/cm)を30分間照射し、Poly-(1/2/3)を得た。重合後の試料を偏光顕微鏡により観測したところ、その相転移挙動は大きく変化しており、表3に示したように、透明点は約130℃も上昇し、重合反応の進行により液晶相が大きく安定化していることがわかった。また、IR測定の結果から重合前後において880cm $^{-1}$ (C=CH2 面外伸縮振動)、1170cm $^{-1}$ (C=C-COOR0C $^{-}$ 0間伸縮振動)などのピークが消失し、NMR測定においては二重結合に対応するピーク($\delta=5$.56,6.13)の消失から反応率が約93%であることが確認された。以上のことから重合反応が進行していることが確認できた。また、コノスコープ観察の結果から照射後の試料は均一な垂直配向を維持していることがわかった。

表 3 液晶化合物の相転移挙動(2nd Cooling時)

化合物			相	転	移	温	度('	C)		
1	G	-64				S _B	9	S _A	46	I so
1/2	G	-54				SB	0	S A	54	I so
Poly-(1/2/3)	G	-11	· M ₁	92	2	M ₂	132	S A	182	I so

1/2; [Li]/[CH₂CH₂0] = 0.05, Poly-(1/2/3); 重合後の1/2/3 (1:3=20 0:1 (重量比))

G; ガラス状態、 M_1 , M_2 ; 高次のスメクチック相、 S_A ; スメクチック A相、

S_B;スメクチックB相、Iso;等方相のそれぞれ記号

超高分解能SEMを用いて得られたフィルム状の固体を観察したところ (図3)、非常に均一な層状の構造を有することがわかった。ネマチッ

ク液晶相を示すモノマーや、コレステリック液晶相を示すモノマーを光重合して秩序構造を固定化した例について、液晶相の構造が反映された組織体のSEM画像がいくつか報告されているが、本例のようなスメクチック液晶の層構造を反映した組織が観察された例は非常に珍しい。以上のようにこの組織体はナノレベルでの分子の秩序構造をマイクロメーターオーダー、巨視的なオーダーまで反映していることがわかった。このような構造秩序を持つことからも、このフィルム状の固体は重複的に異方的なイオン伝導性を示すことが考えられる。

次に、各セル中で作製したPoly-(1/2/3)に対し、交流インピーダンス法を用いてそのイオン伝導度を測定した。セルAではスメクチックレイヤー構造に対して水平方向(△)、セルBではスメクチックレイヤー方向に対して垂直方向(○)でイオン伝導度を測定した結果を図4に示した。この結果から、レイヤーに水平な方向のイオン伝導度は垂直な方向の伝導度に比べて最大で約1000倍高い値であることがわかった。また、表3に示した相転移温度を境に伝導度の挙動は大きく変化し、これは液晶相の変化に対応していることがわかった。

以上のように、本例で作製されたフィルム状の固体については、重合前の液晶性複合体の構造秩序をそのまま固定化することで均一な異方的イオン伝導性を示す高分子液晶材料を得たものであることが確認された。

(実施例3)

イオン伝導性モノマーとして、次式の化合物(6)を合成した。このものは前記の単量体型Cに相当するものである。

6

合成のための反応は次式に従うものとした。

<化合物8の合成>

磁気攪拌子の入った 2 つ口 1 0 0 m L ナスフラスコに α - メチルー α - トシルテトラエチレングリコール (Mw=3 6 2 , 2 2 0 m g , 0 . 1 0 7 m m o 1)、別途合成した液晶メソゲン化合物 (7) (Mw=3 8 0 , 2 6 0 m g , 0 . 6 8 4 m m o 1)、炭酸カリウム (Mw=1 3 8 , 2 8 0 m g , 2 . 0 3 m m o 1) およびジメチルホルムアミド (5 m L) を

加え、アルゴン雰囲気下、オイルバス(80℃)で24時間攪拌する。反応終了を薄層クロマトグラフィー(TLC)で確認後、反応溶液に酢酸エチル(100mL)および水(100mL)を加えて有機層を抽出し、水層を酢酸エチル(50mL)で抽出する。あわせた有機層を5%塩酸水溶液(100mL)で洗浄し、さらに水(100mL)で洗浄した後、過飽和塩化ナトリウム水溶液(100mL)で洗浄する。ついで硫酸マグネシウムを加え乾燥、ろ過したのち、溶媒をロータリーエバポレーターを用いて減圧留去する。残渣を、酢酸エチルを展開溶媒として用いたフラッシュシリカカラムクロマトグラフィーによって精製し、白色蝋状の化合物(8)(Mw=571,332mg,0.581mmo1:収率94%)を得る。

表 4

³H NMR (CDC1₃, 400MHz) : $\delta = 1.56 - 167$ (m, 2H), 1. 80 - 1. 88 (m, 2H), 2. 12 - 2. 18 (m, 2H), 3. 38 (s, 3H), 3. 53 - 3. 77 (m, 12H), 3. 91 (t, J=4.88, 2H), 4. 0 2 (t, J=6.35, 2H), 4. 26 (t, J=4.88, 2H), 4. 97-5. 08 (m, 2H), 5. 80-5. 90 (m, 1 H), 6. 83-6. 87 (m, 1H), 6. 83-6. 87 (m, 1H), 6. 99 (d, J=8.88, 2H), 7. 12-7. 16 (m, 1H), 7. 55-7. 64 (m, 6H).

<化合物 9 の合成>

磁気攪拌子の入った二つ口50mLナスフラスコに上記化合物(8)(Mw=571, 326mg, 0.571mmo1)の乾燥テトラヒドロフラン(THF)(2mL)溶液を入れ氷浴につける。ついで、その溶液に対し、9-ボラビシクロ[3.3.1]ノナンの0.5M THF溶液(2.3mL)をシリンジでゆっくり滴下する。滴下後溶液をゆっくり室温まで戻し、そのまま 24 時間攪拌する。TLCで9-ボラビシクロ[3.3.1]ノナンの付加を確認後、少量の水を加える。さらに、3N N

 aOH_{aq} (0.57mL)を加え室温で6時間攪拌する。反応終了をTLCで確認後、反応溶液に酢酸エチル(100mL)および水(100mL)を加えて有機層を抽出し、水層を酢酸エチル(50mL)で抽出する。あわせた有機層を5%塩酸水溶液(100mL)で洗浄し、さらに水(100mL)で洗浄した後、過飽和塩化ナトリウム水溶液(100mL)で洗浄する。ついで硫酸マグネシウムを加え乾燥、ろ過したのち、溶媒をロータリーエバポレーターを用いて減圧留去する。残渣を、ヘキサンと酢酸エチルの混合溶媒(ヘキサン:酢酸エチル=1:10)を展開溶媒として用いたフラッシュシリカカラムクロマトグラフィーによって精製し、白色蝋状の化合物(9)(110mm0、110mm0 110mm0 110mm0

表 5

¹H NMR (CDC1₃, 400MHz): $\delta = 1.46-1.64$ (m, 6H), 1.80-1.88 (m, 2H), 3.38 (s, 3H), 3.54-3.77 (m, 14H), 3.91 (t, J=4.88, 2H), 4.02 (t, J=6.35, 2H), 4.2 (t, J=4.88, 2H), 6.83-6.86 (m, 1H), 6.98 (d, J=8.78, 2H), 7.12-7.17 (m, 1H), 7.55-7.64 (m, 6H).

<化合物 6 の合成>

磁気攪拌子の入った二つ口 $50\,\mathrm{mL}$ ナスフラスコに化合物(9)(Mw=589, $161\,\mathrm{mg}$, $0.273\,\mathrm{mm}\,\mathrm{o}$ 1)、トリエチルアミン($0.2\,\mathrm{mL}$)、2, 6-ジ- t e r t - T \mathit

(30ml)を加えて有機層を抽出し、水層をクロロホルム(50mL)で抽出する。併せた有機層を過飽和塩化アンモニウム水溶液(100mL)で洗浄し、さらに水(100mL)で洗浄した後、過飽和塩化ナトリウム水溶液(100mL)で洗浄する。ついで、硫酸マグネシウムを加え乾燥、ろ過したのち、溶媒をロータリーエバポレーターを用いて減圧留去する。残渣を酢酸エチルを展開溶媒として用いたフラッシュシリカカラムクロマトグラフィーによって精製し、白色蝋状の化合物(6)(Mw=657,78.3mg,0.119mmol:収率44%)を得る。

表 6

¹H NMR (CDC1₃, 400MHz): $\delta = 1.48-1.95$ (m, 11H), 3. 38 (s, 3H), 3. 54-3. 78 (m, 12H), 3. 92 (t, J=4.64, 2H), 4. 02 (t, J=6.35, 2H), 4. 17 (t, J=6.59, 2H), 4. 26 (t, J=4.88, 2H), 5. 56 (s, 1H), 6. 11 (s, 1H), 6. 83-6.87 (m, 1H), 6. 98 (d, J=8.79, 2H), 7. 12-7. 17 (m, 1H), 7. 27-7.58 (m, 4H), 7. 63 (d, J=8.79, 2H).

<化合物(6)の液晶性とリチウム塩との複合化>

化合物(6)は重合部位がオリゴオキシエチレン部位の反対の末端に結合した重合可能な液晶性モノマー化合物である。化合物(6)は室温から64℃までスメクチック C 相を発現した(昇温過程)。これにリチウム塩(化合物2)を添加したところ($\{L_1\}/\{CH_2CH_2O\}=0.05$)、室温から46℃までスメクチック C 相を示し、続く71℃までスメクチック C 和を示した(昇温過程)。

二枚のガラス基板に複合体を挟みこんだところスメクチックA相において均一に垂直配向状態をとることが偏光顕微鏡観察結果からわかった。この均一に配向した複合体に化合物3を添加し(0.5 w t %)(実施例2)と同様の手法で光重合により固定化したものは、透明なポリマーフィルム(Poly-(6/2/3))となった。

産業上の利用可能性

以上詳しく説明したとおり、この出願の発明によって、高分子電解質の持つ高いイオン伝導性と液晶の配向による異方性、そして高分子化合物の持つ自立性を兼ね備えた新しい異方的イオン伝導性高分子液晶複合体が提供されることになる。

請求の範囲

- 1. 分子構造において重合可能部位とともにイオンの複合化部位並びに 液晶相を発現させるメソゲン部位とを有する有機モノマー化合物と、有機 もしくは無機の塩とが複合化されていることを特徴とする重合可能なイ オン伝導性液晶性複合体。
- 2. 請求項1の重合可能なイオン伝導性液晶性複合体がこれを構成する有機モノマー化合物の重合可能部位において重合されることを特徴とする異方的イオン伝導性高分子液晶複合体。
- 3. 分子構造において高分子構造固定化部位とともにイオンの複合化部位並びに液晶相を発現させるメソゲン部位を有し、有機もしくは無機の塩が複合化されていることを特徴とする異方的イオン伝導性高分子液晶複合体。
- 4. 請求項2または3の異方的イオン伝導性高分子液晶複合体の製造方法であって、分子構造において重合可能部位とともにイオンの複合化部位並びに液晶相を発現させるメソゲン部位とを有する有機モノマー化合物と有機もしくは無機の塩との複合体を、有機モノマー化合物の重合可能部位において重合させることを特徴とする異方的イオン伝導性高分子液晶複合体の製造方法。
- 5. 光照射により、または加熱により重合させることを特徴とする請求 項4の異方的イオン伝導性高分子液晶複合体の製造方法。

図 1

セルA (σjll)

ガラス基板

イオン伝導度の測定方向

図 2

セルB (ojll)

3/4

図 4

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C08F20/30, C08F2/44, C08F2/46//C09K19/38				
According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS	SEARCHED			
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C08F12/00-12/36, 16/00-38/04, 112/00-112/36, 116/00- 138/04, 212/00-212/36, 216/00-238/04, C08F2/44-2/50, C09K19/38			/50,	
	ion searched other than minimum documentation to the			
	ata base consulted during the international search (name L, CAS ONLINE	of data base and, where practicable, sear	ch terms used)	
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.	
E,X	JP 2003-64259 A (Fuji Photo 05 March, 2003 (05.03.03), Claims; Par. Nos. [0042] to [(Family: none)		1-5	
E,X	<pre>JP 2003-20479 A (Canon Inc.) 24 January, 2003 (24.01.03), Full text (Family: none)</pre>	,	1-5	
P,X	JP 2002-170426 A (Fuji Photo 14 June, 2002 (14.06.02), Full text & US 2002/55046 A1	Film Co., Ltd.),	1-5	
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.		
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 14 April, 2003 (14.04.03) "T" later document published after the international filing priority date and not in conflict with the application understand the principle or theory underlying the in document of particular relevance; the claimed inverse considered to involve an inventive step when the document of particular relevance; the claimed inverse considered to involve an inventive step when the document of particular relevance; the claimed inverse considered to involve an inventive step when the document of particular relevance; the claimed inverse considered to involve an inventive step when the document of particular relevance; the claimed inverse considered to involve an inventive step when the document of particular relevance; the claimed inverse considered to involve an inventive step when the document of particular relevance; the claimed inverse considered to involve an inventive step when the document of particular relevance; the claimed inverse considered to involve an inventive step when the document of particular relevance; the claimed inverse considered to involve an inventive step when the document of particular relevance; the claimed inverse considered to involve an inventive step when the document of particular relevance; the claimed inverse considered to involve an inventive step when the document of particular relevance; the claimed inverse considered to involve an inv			he application but cited to lerlying the invention cannot be cred to involve an inventive e claimed invention cannot be claimed invention cannot be p when the document is n documents, such in skilled in the art family	
	nailing address of the ISA/ anese Patent Office	Authorized officer		
Facsimile N	io ·	Telephone No.		

P,X JP 2002-105033 A (Canon Inc.), 10 April, 2002 (10.04.02), Full text 4 EP 1176184 A2 & US 2002/47104 A1 X JP 2001-202995 A (Fuji Photo Film Co., Ltd.), 27 July, 2001 (27.07.01), Full text 5 EP 116769 A2 & US 2002/34690 A1 X JP 11-86629 A (Mitsubishi Electric Corp.), 30 March, 1999 (30.03.99), Claims; examples (Family: none)	Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
27 July, 2001 (27.07.01), Full text & EP 1116769 A2 & US 2002/34690 A1 X JP 11-86629 A (Mitsubishi Electric Corp.), 30 March, 1999 (30.03.99), Claims; examples		JP 2002-105033 A (Canon Inc.), 10 April, 2002 (10.04.02), Full text	1-5
30 March, 1999 (30.03.99), Claims; examples	х	27 July, 2001 (27.07.01), Full text	1-5
		JP 11-86629 A (Mitsubishi Electric Corp.), 30 March, 1999 (30.03.99), Claims; examples	3

Α.	発明の属する分野の分類	(国際特許分類	(IPC)
л.	767147787 7 67 73 24 47 73 334		\ - - \ / /

Int. Cl. 7 C08F20/30, C08F2/44, C08F2/46//C09K19/38

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1. C08F12/00-12/36, 16/00-38/04, 112/00-112/36, 116/00-138/04, 212/00-212/36, 216/00-238/04, C08F2/44-2/50, C09K19/38

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

WPI/L. CAS ONLINE

C. 関連すると認められる文	献
----------------	---

	りてものうかんの人は人	
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
EX	JP 2003-64259 A (富士写真フイルム株式会社)	1 - 5
	2003.03.05,特許請求の範囲,【0042】-【008	
1		
	3】 (ファミリーなし)	
EX	JP 2003-20479 A (キヤノン株式会社) 2003.	1 - 5
	01.24,全文(ファミリーなし)	
77.77	ID 0000 170496 A (宮土写真フノル) 株式会社)	1-5
PX	JP 2002-170426 A (富士写真フイルム株式会社)	1 3
	2002.06.14,全文	
	& US 2002/55046 A1	
I	1	ŀ

| X | C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

	四次则五代口		
	関連すると認められる文献		,
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは	は、その関連する箇所の表示	関連する 請求の範囲の番号
PX	JP 2002-105033 A (キャ 2002.04.10,全文 & EP & US 2002/47104 A1		1-5
X	JP 2001-202995 A (富士 2001.07.27,全文 & EP & US 2002/34690 A1		1 — 5
x	JP 11-86629 A (三菱電機株 3.30,特許請求の範囲,実施例(ファ	式会社)1999.0 ミリーなし)	3
	•		