ПЕРЕЧЕНЬ КОНДЕНСАТОРОВ, СВЕДЕНИЯ О НАДЕЖНОСТИ КОТОРЫХ ПРИВЕДЕНЫ В СПРАВОЧНИКЕ

Тип изделия	Тип изделия Номер ТУ		Номер ТУ						
Конденсаторы постоянной емкости									
Керамические на номинальное напряжение менее 1600 B									
КМ-4Б, КМ-5Б К10-17а, б, в К10-26 К10-42	ОЖ0.460.043ТУ ОЖ0.460.107ТУ ОЖ0.460.108ТУ ОЖ0.460.167ТУ	K10-51 K10-54 K10-57 K10-59*	ОЖ0.460.186ТУ ОЖ0.460.199ТУ ОЖ0.460.194ТУ ОЖ0.460.200ТУ						
К10-43а, в К10-47а, в К10-48* К10-50б, в	ОЖ0.460.165ТУ ОЖ0.460.174ТУ ОЖ0.460.173ТУ ОЖ0.460.182ТУ	К10-60*а, в К10-65* К10-71* К10-73	ОЖ0.460.209ТУ АЖЯР.673511.000ТУ АЖЯР.673511.001ТУ ЯАВЦ.673511.010ТУ						
Ke	ерамические на номинальн	ое напряжение 1600 Е	3 и выше						
КВИ-1, 2, 3 К15-5 К15-12а, б К15-13 К15-14а, б, в, г, д К15-15	ОЖ0.460.029ТУ ОЖ0.460.084ТУ ОЖ0.460.136ТУ ОЖ0.460.162ТУ ОЖ0.460.213ТУ ОЖ0.460.170ТУ	К15-17 К15-20, б, в К15-25* К15-29* К15У-1, -2, -3 КВЦ	ОЖ0.460.181ТУ ОЖ0.460.204ТУ АЖЯР.673516.002ТУ АЖЯР.673516.001ТУ ОЖ0.460.085ТУ ОЖ0.460.028ТУ						
	Тонкопленочные с неора	ганическим диэлектр	иком						
K26-4*	ОЖ0.464.240ТУ	Ī							
	Стек	ЛЯННЫЕ	'						
K21-7	ОЖ0.464.095ТУ								
	Слю	дяные							
К31-14 СГМ	ОЖ0.461.153ТУ ОЖ0.461.082ТУ	СГМ3	ОЖ0.461.022ТУ						
	Бумажные и ме	еталлобумажные							
МБГН* МБГЧ-1*	ОЖ0.462.031ТУ ОЖ0.462.049ТУ	ОКБГ-И* ОМБГ*	ОЖ0.462.132ТУ ОЖ0.462.107ТУ						
	Оксидно-электролип	пические алюминиевь	<i>i</i> e						
K50-15 K50-20 K50-24 K50-24-2	ОЖ0.464.103ТУ ОЖ0.464.120ТУ ОЖ0.464.161ТУ ОЖ0.464.161ТУ	K50-37 K50-38 K50-41* K50-46*	ОЖ0.464.224ТУ ОЖ0.464.229ТУ ОЖ0.464.265ТУ ОЖ0.464.257ТУ						
K50-24-2 K50-27	ОЖ0.464.147ТУ	K50-46 K50-47*	ОЖ0.464.258ТУ						

Тип изделия	Номер ТУ	Тип изделия	Номер ТУ
K50-29	ОЖ0.464.156ТУ	K50-48*	АЖЯР.673541.000ТУ
K50-32	ОЖ0.464.198ТУ	K50-50*	АЖЯР.673541.001ТУ
K50-32a	ОЖ0.464.198ТУ	K50-54*	АЖЯР.673541.002ТУ
K50-33	ОЖ0.464.222ТУ	K50-55*	АЖЯР.673541.003ТУ
К50-33а, б	ОЖ0.464.222ТУ	K50-68	АЖЯР.673541.005ТУ
	Оксидно-электролитиче	•	·
K50-21	ОЖ0.464.126ТУ		
100 21	!	। истые танталовые	
1654 0		_	ONG 404 474TV
K51-2	АЖЯР.673542.000ТУ	K52-8	ОЖ0.464.171ТУ
К52-1Б, БМ, М*	ОЖ0.464.039ТУ	K52-9	ОЖ0.464.213ТУ
K52-2*	ОЖ0.464.049ТУ	K52-11	ОЖ0.464.234ТУ
K52-5*	ОЖ0.464.093ТУ	K52-12	ОЖ0.464.251ТУ
K52-7A1	ОЖ0.464.176ТУ		
	Оксидно-по	лупроводниковые	
K53-1A	ОЖ0.464.044ТУ	K53-29	ОЖ0.464.221ТУ
K53-4	ОЖ0.464.149ТУ	K53-30	ОЖ0.464.219ТУ
K53-7	ОЖ0.464.043ТУ	K53-31	ОЖ0.464.233ТУ
K53-15*	ОЖ0.464.121ТУ	K53-36*	ОЖ0.464.249ТУ
K53-16	ОЖ0.464.114ТУ	K53-37	ОЖ0.464.260ТУ
K53-16A	ОЖ0.464.173ТУ	K53-43*	АЖЯР.673547.000ТУ
K53-18	ОЖ0.464.136ТУ	K53-44*	АЖЯР.673547.001ТУ
K53-20	ОЖ0.464.166ТУ	K53-46	АЖЯР.673546.000ТУ
K53-22	ОЖ0.464.158ТУ	K53-52	АЖЯР.673546.003ТУ
K53-25	ОЖ0.464.189ТУ	K53-56*	АЖЯР.673546.001ТУ
K53-28	ОЖ0.464.216ТУ		
	С органическим синп	петическим диэлектр	иком
	Полис	тирольные	
K71-4	ОЖ0.461.086ТУ	K71-7	ЮЖ0.461.100ТУ
K71-5	ОЖ0.461.094ТУ	K71-7A	ОЖ0.461.100ТУ
K7 1-5	ı	•	O/NO.401.10019
		пластовые	1
К72П-6	ОЖ0.461.024ТУ	ΦТ	ОЖ0.461.068ТУ
	Полиэтилентерефт	алатные низковол	ьтные
K73-11*	АЖЯР.673633.002ТУ	K73-26	ОЖ0.461.142ТУ
K73-15	ОЖ0.461.107ТУ	K73-28	ОЖ0.461.157ТУ
K73-16, a	ОЖ0.461.108ТУ	K73-31*	АЖЯР.673633.001ТУ
K73-10, a	ОЖ0.461.147ТУ	К73П-3	ОЖ0.461.029ТУ
K73-22	ОЖ0.461.137ТУ	ПМГПМ	АЖЯР.673633.000ТУ
N/ 3-22	1	•	·
	Полиэтилентерефта	_	
K73-14	ОЖ0.461.109ТУ	K74-7	ОЖ0.461.064ТУ
	Комбинирован	ные низковольтны	е
К75П-4	ОЖ0.464.019ТУ	K75-24	ОЖ0.464.100ТУ
K75-10	ОЖ0.464.078ТУ	K75-37*	ОЖ0.464.254ТУ
Комби	нированные высоково	льтные постоянно	го напряжения
1/7E 1E	ОЖ0.464.092ТУ	К75-47	ОЖ0.464.192ТУ
K75-15		111 5 71	10/10.707.13213

Тип изделия	Номер ТУ	Тип изделия	Номер ТУ						
Комбинированные высоковольтные импульсные									
К75-25 К75-40А, Б К75-44А К75-48	ОЖ0.464.108ТУ ОЖ0.464.154ТУ ОЖ0.464.232ТУ ОЖ0.464.203ТУ Поликарбонатные и	К75-56 К75-57 К75-59 К75-66 полипропиленов	ОЖ0.464.248ТУ ОЖ0.464.247ТУ ОЖ0.464.263ТУ АЖЯР.673641.003ТУ ые						
К77-1 К77-2 К77-4а, б	ОЖ0.461.080ТУ ОЖ0.461.095ТУ ОЖ0.461.096ТУ	K77-8* K77-9* K78-2*	АЖЯР.673634.000ТУ АЖЯР.673634.001ТУ ОЖ0.461.160ТУ						
	Конденсаторы	подстроечные							
	С твердым д	диэлектриком							
KT4-25 KT4-27	ОЖ0.460.135ТУ ОЖ0.460.155ТУ	KT4-30* KT4-33*	ОЖ0.460.193ТУ ОЖ0.460.216ТУ						
	Возду	/шные							
КПВМ КТ2-17 — 21	ИХ0.465.002ТУ ОЖ0.465.000ТУ	KT2-50 KT2-51	ОЖ0.460.196ТУ ОЖ0.460.215ТУ						
	Сборки на основ	ве конденсаторов							
Б18	ОЖ0.206.019ТУ	Б18А	ОЖ0.206.025ТУ						
	Конденсаторы и фильтр	оы помехоподавляк	ощие						
КБП КБПС-Ф КЗ	ОЖ0.462.103ТУ ОЖ0.462.096ТУ ОЖ0.462.026ТУ	Б14 Б23А Б23Б	ОЖ0.206.021ТУ ОЖ0.206.021ТУ ОЖ0.206.021ТУ						

ПОЯСНЕНИЯ К РАЗДЕЛУ

Математические модели для расчета эксплуатационной интенсивности отказов отдельных групп (типов) конденсаторов приведены в табл.1.

Таблица 1

Fav	Вид математи	ческой модели
Группа изделий	(1)	(2)
	Конденсаторы постоянной емк	ости:
Керамические на но- минальное напряжение менее 1600 В Керамические на но- минальное напряжение 1600 В и выше	$\lambda_9 = \lambda'_{6} \cdot K_p \cdot K_C \cdot K_{np} \cdot K_9$	$\lambda_{3} = \lambda'_{6.c.r} \cdot K_{p} \cdot K_{C} \cdot K_{np} \cdot K_{3}$
Тонкопленочные с неор- ганическим диэлектриком	$\lambda_{\mathfrak{S}} = \lambda'_{\mathfrak{S}} \cdot K_{p} \cdot K_{np} \cdot K_{\mathfrak{S}}$	$\lambda_{\mathfrak{g}} = \lambda'_{G.C.r} \cdot K_{p} \cdot K_{np} \cdot K_{g}$
Стеклянные Слюдяные Бумажные и металло- бумажные Оксидно - электроли- тические алюминиевые (кроме импульсных)	$\lambda_{9} = \lambda'_{6} \cdot K_{p} \cdot K_{C} \cdot K_{np} \cdot K_{9}$	$\lambda_9 = \lambda'_{\text{6cr}} \cdot K_p \cdot K_C \cdot K_{np} \cdot K_9$
Оксидно - электроли- тические алюминиевые импульсные	$\lambda_{9} = \lambda'_{6} \cdot K_{t} \cdot K_{C} \cdot K_{np} \cdot K_{9}$	$\lambda_{\mathfrak{g}} = \lambda'_{6.c.r} \cdot K_{t} \cdot K_{C} \cdot K_{np} \cdot K_{g}$
Объемно–пористые танталовые	$\lambda_{9} = \lambda'_{6} \cdot K_{p} \cdot K_{C} \cdot K_{np} \cdot K_{9}$	$\lambda_{9} = \lambda'_{6.c.r} \cdot K_{p} \cdot K_{C} \cdot K_{np} \cdot K_{9}$
Оксидно– полупроводниковые	$\lambda_{9} = \lambda'_{6} \cdot K_{p} \cdot K_{C} \cdot K_{n.c} \cdot K_{np} \cdot K_{9}$	$\lambda_{9} = \lambda'_{6.c.r} \cdot K_{p} \cdot K_{C} \cdot K_{n.c} \cdot K_{np} \cdot K_{9}$
С органическим синтетическим диэлектриком: полистирольные фторопластовые полиэтилентерефталатные низковольтные комбинированные низковольтные комбинированные высоковольтные постоянного напряжения	$\lambda_9 = \lambda'_6 \cdot K_p \cdot K_C \cdot K_{np} \cdot K_9$	$\lambda_{\mathfrak{B}} = \lambda'_{6.c.r} \cdot K_{p} \cdot K_{C} \cdot K_{np} \cdot K_{B}$
комбинированные высоковольтные импульсные	$\lambda_{9} = \lambda'_{6} \cdot K_{t} \cdot K_{C} \cdot K_{np} \cdot K_{9}$	-

Гоуппо иолопий	Вид математической модели						
Группа изделий	(1)	(2)					
поликарбонатные и полипропиленовые	$\lambda_{9} = \lambda'_{6} \cdot \mathbf{K}_{\mathbf{p}} \cdot \mathbf{K}_{\mathbf{C}} \cdot \mathbf{K}_{\mathbf{np}} \cdot \mathbf{K}_{9}$	$\lambda_{9} = \lambda'_{6.c.r} \cdot K_{p} \cdot K_{C} \cdot K_{np} \cdot K_{9}$					
Конденсаторы под- строечные:							
с твердым диэлектриком воздушные	$\lambda_{3} = \lambda'_{6} \cdot \mathbf{K}_{\mathbf{p}} \cdot \mathbf{K}_{\mathbf{np}} \cdot \mathbf{K}_{3}$	$\lambda_{\mathfrak{g}} = \lambda'_{G.C.r} \cdot K_{p} \cdot K_{np} \cdot K_{g}$					
Сборки на основе кон- денсаторов	Значения λ_9 приведены в разделе ционной интенсивности отказов гр ных условиях эксплуатации»	е «Расчетные значения эксплуата- упп изделий в типовых усреднен-					
Конденсаторы и фильтры помехоподав- ляющие	$\lambda_{9} = \lambda'_{6} \cdot \mathbf{K}_{\mathbf{p}} \cdot \mathbf{K}_{\mathbf{np}} \cdot \mathbf{K}_{9}$	$\lambda_{\mathfrak{g}} = \lambda'_{6.c.r} \cdot K_{p} \cdot K_{np} \cdot K_{\mathfrak{g}}$					

Модель (2) используют для расчета интенсивности отказов тех типов конденсаторов, для которых из-за отсутствия или недостаточности информации не приведены значения интенсивности отказов λ_{6} . Кроме этого, модель (2) используют для оценки уровня интенсивности отказов групп в целом. Во всех остальных случаях используют модель (1).

При определении значений λ'_6 и $\lambda'_{6.c.r}$ учитывалась сумма внезапных и постепенных отказов. К внезапным отказам относятся пробой диэлектрика (короткое замыкание) и обрыв (потеря емкости). К постепенным отказам относятся уходы за норму ТУ в течение минимальной наработки относительного изменения емкости $\frac{\Delta C}{C_0}$, тангенса угла диэлектрических потерь $tg\delta$, тока утечки I_{yr} (для конденсаторов с оксидным диэлектриком) и сопротивления изоляции R_{us} (для остальных групп конденсаторов).

При необходимости учета для расчета значений λ_3 только внезапных или только постепенных отказов следует использовать распределение отказов по видам, приведенное в табл. 6.

Расчет эксплуатационной интенсивности отказов конденсаторов в аппаратуре, находящейся в режиме ожидания, проводится по моделям, приведенным в табл.2.

Таблица 2

Группа изделий	Вид математической модели							
т руппа изделии	Для неподвижных объектов	Для подвижных объектов						
Конденсаторы (кроме оксидно-электролитических алюминиевых и объемно-пористых танталовых)	$\lambda_{9.X} = \lambda_{x.c.r} \cdot K_{tx} \cdot K_{ycn} \cdot K_{np}$ или $\lambda_{9.X} = \lambda_{6} \cdot K_{x} \cdot K_{tx} \cdot K_{ycn} \cdot K_{np}$ (3)	$\lambda_{9.X} = \lambda_{X.C.\Gamma} \cdot K_{tX} \cdot K_{9} \cdot K_{np}$ или $\lambda_{9.X} = \lambda_{6} \cdot K_{X} \cdot K_{tX} \cdot K_{9} \cdot K_{np}$ (4)						
Конденсаторы оксидно— электролитические алюми- ниевые и объемно— пористые танталовые	$\lambda_{\text{3.x}} = \lambda_{\text{x.c.r}} \cdot K_{\text{ycn}} \cdot K_{\text{np}}$ или $\lambda_{\text{3.x}} = \lambda_{\text{6}} \cdot K_{\text{x}} \cdot K_{\text{ycn}} \cdot K_{\text{np}}$ (5)	$\lambda_{9.X} = \lambda_{X.C.\Gamma} \cdot K_9 \cdot K_{np}$ или (6) $\lambda_{9.X} = \lambda_6 \cdot K_X \cdot K_9 \cdot K_{np}$						

Примечание. Для оксидно-электролитических алюминиевых и объемно-пористых танталовых конденсаторов повышение температуры сверх 25÷30°C при отсутствии электрической нагрузки может привести к резкому увеличению интенсивности отказов (на порядок и более).

Определение составляющих (коэффициентов) моделей и других характеристик надежности приведено в разделе справочника «Методические указания».

Названия и номера таблиц, в которых помещены числовые значения составляющих (коэффициентов) моделей и другие справочные данные, приведены в табл. 3.

Таблица 3

Условные обозначения	Название таблицы	Номер таблицы
$\lambda'_{6.c.r}$, $\lambda_{x.c.r}$, K_{np} , K_{s} , K_{x} , d , d_{x} , распределение отказов по видам	Характеристика надежности и справочные данные отдельных групп конденсаторов	6
λ'_6 , d, T_{HM} , $T_{p\gamma}$, T_{xp}	Характеристика надежности и справочные данные отдельных типов конденсаторов	7
K _p	Значения коэффициента режима К _р в зависимости от электрической нагрузки и температуры окружающей среды	8
K _t	Значения коэффициента К _t в зависимости от температуры окружающей среды для импульсных конденсаторов	9
К _С	Значения коэффициента К _С в зависимости от величины номинальной емкости и математические модели его расчета для отдельных групп конденсаторов	10
K _{n.c}	Значения коэффициента К _{п.с} в зависимости от величины активного последовательного сопротивления для оксидно-полупроводниковых конденсаторов	11
K _{tx}	Значения коэффициента К _{tx} в зависимости от температуры окружающей среды для отдельных групп конденсаторов	12
K₃	Значения коэффициента К _э жесткости условий эксплуатации для отдельных групп конденсаторов	13

Значения коэффициента режима К_р рассчитываются по математической модели (7).

$$K_{p} = A \cdot \left[\left(\frac{U/U_{H}}{N_{s}} \right)^{H} + 1 \right] \cdot e^{B \cdot \left(\frac{t+273}{N_{t}} \right)^{G}} , \qquad (7)$$

где: A, B, N_t, G, H, N_S – постоянные коэффициенты модели; t – температура окружающей среды, $^{\circ}$ C;

U – рабочее напряжение, В;

U_н - номинальное напряжение, В.

Значения коэффициента К_t рассчитываются по модели (8):

$$K_{t} = A \cdot e^{B \cdot \left(\frac{t + 273}{N_{t}}\right)^{G}}, \tag{8}$$

где: A, B, N_t, G – постоянные коэффициенты модели; t – температура окружающей среды, °С. Значения постоянных коэффициентов моделей (7) и (8) для отдельных групп конденсаторов приведены в табл.4.

Таблица 4

Группа конденсаторов	Диапазон температур, °С	Α	В	N _t	G	N _s	Н
Керамические, тонко- пленочные с неоргани- ческим диэлектриком	25÷155	5,909·10 ⁻⁷	14,3	398	1,0	0,3	3
Стеклянные	25÷150	2,426·10 ⁻⁶	16	473	1,0	0,5	4
Слюдяные	25÷85	9,885·10 ⁻⁸	16	358	1,0	0,4	3
Бумажные и метал- лобумажные	25÷85	5,69·10 ⁻²	2,5	358	18	0,4	3
Оксидно-электроли-	25÷85	3,59·10 ⁻²	4,09	358	5,9	0,55	3
тические алюминиевые (кроме импульсных)	90÷125	24,0.10-2	4,09	398	5,9	0,55	3
Оксидно-электроли- тические алюминиевые импульсные	25÷85	25,17·10 ⁻²	4,09	358	5,9	-	-
Объемно-пористые	25÷85	3,667·10 ⁻²	2,6	358	9,0	0,4	3
танталовые	90÷125	16,7·10 ⁻²	2,6	398	9,0	0,4	3
Оксидно-	25÷125	1,05·10 ⁻²	5,5	398	2,5	0,55	3
полупроводниковые	130÷155	3,15·10 ⁻²	5,5	428	2,5	0,55	3
С органическим синтетическим диэлектри-	25÷85	5,5·10 ⁻²	2,5	358	18	0,4	3
ком (кроме фторопластовых и высоковольтных импульсных)	90÷125	46,2·10 ⁻²	2,5	398	18	0,4	3
Φ=========	25÷80	5,5·10 ⁻²	2,5	398	18	0,4	3
Фторопластовые	85÷200	46,2·10 ⁻²	2,5	473	18	0,4	3
Высоковольтные	25÷85	91,0·10 ⁻²	2,5	358	18	-	-
импульсные	90÷125	765·10 ⁻²	2,5	398	18	-	-
Подстроечные с твердым диэлектриком	25÷125	5,909·10 ⁻⁷	14,3	398	1,0	0,3	3
Подстроечные воздушные	25÷85	4,364·10 ⁻⁶	10,8	358	1,0	0,33	3
Конденсаторы и фильтры помехоподав- ляющие	25÷125	5,909·10 ⁻⁷	14,3	398	1.0	0,3	3

Значения коэффициента K_{tx} в диапазоне $40 \div 60^{\circ} C$ рассчитываются по модели (9).

$$K_{tx} = A \cdot e^{B \cdot \left(\frac{t + 273}{N_t}\right)^G}, \qquad (9)$$

где: A, B, N_t , G – постоянные коэффициенты модели;

t – температура окружающей среды, °С.

Значения постоянных коэффициентов модели (9) для отдельных групп конденсаторов приведены в табл.5.

Таблица 5

Группа конденсаторов	А	В	N _t	G
Постоянной емкости:				
керамические, тонкопленочные с неорганическим диэлектриком, помехоподавляющие фильтры	2,0453·10 ⁻⁵	14,3	398	1,0
стеклянные	4,05·10 ⁻⁵	16	473	1,0
слюдяные	1,683·10 ⁻⁵	16	358	1,0
бумажные и металлобумажные	0,94	2,5	358	18
оксидно-полупроводниковые	0,07	5,5	398	2,5
с органическим синтетическим диэлек- триком	0,94	2,5	358	18
Подстроечные:				
с твердым диэлектриком	2,0453·10 ⁻⁵	14,3	398	1,0
воздушные	1,123·10 ⁻⁴	10,8	358	1,0

ТАБЛИЦЫ ДЛЯ РАСЧЕТА НАДЕЖНОСТИ

Таблица 6

Характеристика надежности отдельных групп конденсаторов

F	d=	λ' _{6 c τ} ·10 ⁶ ,	d=	λ _{x c r} ·10 ⁸ ,	I/	Внеза	пс апные			ные	К	пр		
Группа изделий	d, шт. $\lambda'_{\text{6.c.r}} \cdot 10^6$, 1/ч		1/ч d _x , шт.		K _x	Пробой диэ- лектрика (КЗ)	Обрыв (потеря емкости)	$\frac{\Delta C}{C_0}$	tgδ	R _{из} (τ _c , τ _{ут})	При 5	емка	K₃	
						Прс	O O O O O O O O O O O O O O O O O O O	U			(BΠ)	(OC)		
Керамические на номинальное напряжение менее 1600 В	38	0,019			0,0068	39	2	8	18	33				
Керамические на номинальное напряжение 1600 В и выше	8	0,03	0,0043 85 15						85 15					
Тонкопленочные с неорганическим диэлектриком	-	0,003	11	0,013	0,043	-	-	-	-	-				
Стеклянные	0	0,003			0,043	-	-	-	-	-				
Слюдяные	1	0,01			0,013	6	5		35		1	0,3	1,3	
Бумажные и металлобумажные	0	0,02	0	0,08	0,004	55	-		45					
Оксидно-электролитические алюминиевые	84	0,19			0,0019	48	28	16	6	4				
Оксидно-электролитические алюминиевые импульсные	0	0,8·10 ^{−8} 1/имп	3	0,036	-	-	-	-	_	_				
Объемно-пористые танталовые	12	0,123		ŕ	0,003	35	9	29	18	9				
Оксидно-полупроводниковые	51	0,07			0,005	18	1	17	5	59				

Группа изделий		λ' _{б.с.г} ·10 ⁶ , 1/ч	ל וווד	λ _{х.с.г} ·10 ⁸ ,	К _х	Внеза	пс апные	еление отказ видам, % Постепен Уход за норг		ные	K _{np}		K₃
группа подолин	d, шт.	1/4	, <u> </u>	1/ч	X	Пробой диэ- лектрика (КЗ)	Обрыв (потеря емкости)	$\frac{\Delta C}{2}$	tgδ	R _{из}	Приемка		113
					Проб	Проб лект	Обре	C_0	J	(τ _c , τ _{уτ})	5 (ΒΠ)	9 (OC)	
С органическим синтетическим диэлектриком:													
полистирольные	5	0,055			0,0116								
фторопластовые	4	0,011			0,058								
полиэтилентерефталатные низковольтные	18	0,043			0,015								
полиэтилентерефталатные высоковольтные	13	0,83	9	0,064	0,0008	69	6	5	4	16			
комбинированные низковольтные	10	0,02			0,032								
комбинированные высоковольтные постоянного напряжения	23	0,4			0,0016						1	0,3	1,3
комбинированные высоковольтные импульсные	-	-			1								
поликарбонатные и полипропиленовые	4	0,012			0,053								
Подстроечные с твердым диэлектриком	2	0,012		0.079	0,065								
Подстроечные воздушные	7	0,08	ı	0,078	0,0097								
Конденсаторы и фильтры помехоподав- ляющие	3	0,016	1	0,01	0,0063	_	-	-	-	-			
Сборки на основе конденсаторов*)	-	_	0	0,008	-								

Условные обозначения:

 ΔC – изменение емкости при испытаниях (эксплуатации);

 C_0 – значение емкости до начала испытаний (эксплуатации);

R_{из} – сопротивление изоляции;

 au_c – постоянная времени (для конденсаторов большой емкости);

 $I_{y\tau}$ – ток утечки (для конденсаторов с оксидным диэлектриком).

^{*)} Модель расчета эксплуатационной интенсивности отказов и значения λ_3 конденсаторных и конденсаторно-резисторных сборок приведены в разделе «Расчетные значения λ_3 ».

Таблица 7

Характеристика надежности и справочные данные отдельных типов конденсаторов

Тип изделия	d, шт.	λ' _б ⋅10 ⁶ , 1/ч	Т _{н.м} , тыс.ч	T _{рү} , тыс.ч (ү = 95%)	T _{xp.}					
		ŀ	Сонденсаторы постоянной ег	мкости						
Керамические на номинальное напряжение менее 1600В										
KM-46, KM-56		0,03	25 (во всех режимах по ТУ)	50 (во всех режимах по ТУ)	20 (H30, H90) 25 (ост.гр. TKE)					
К10-17а, б, в	21	0,03	25 (во всех режимах по ТУ); 30 (t \leq 70°C, U / U _H \leq 1); 150 (t \leq 85°C, U / U _H \leq 0,6)	50 (во всех режимах по ТУ)	20 (H50, H90) 25 (ост.гр. ТКЕ)					
K10-26	0	0,003	50 (во всех режимах по ТУ); 175 (t ≤ 60°C, U / U _н ≤ 1)	100 (во всех режимах по ТУ)	26					
K10-42	2	0,03	30 (во всех режимах по ТУ); 30 (t \leq 70°C, U / U _H \leq 1); 50 (t \leq 70°C, U / U _H \leq 0,6); 150 (t \leq 60°C, U / U _H \leq 0,6)	60 (во всех режимах по ТУ)	25					
К10-43а, в	3	0,028	30 (во всех режимах по ТУ); 150 (t ≤ 60°C, U / U _н ≤ 0,6)	60 (во всех режимах по ТУ)	25					
К10-47а, в	1	0,03	30 (во всех режимах по ТУ); 80 (t ≤ 60°C, U / U_H ≤ 0,6) гр. ТКЕ Н30, Н90, кроме емкостей 10 мкФ, 15 мкФ; 100 (t ≤ 55°C, U / U_H ≤ 0,6) гр. ТКЕ Н30, Н90, кроме емкостей 10 мкФ, 15 мкФ; 150 (t ≤ 85°C, U / U_H ≤ 0,7) гр. ТКЕ МПО; 150 (t ≤ 55°C, U / U_H ≤ 0,7) гр. ТКЕ Н30, Н90 емкости 10 мкФ, 15 мкФ	60 (во всех режимах по ТУ)	20 (H30, H90) 25 (ост.гр. TKE)					
K10-48*	-	0,019	30 (во всех режимах по ТУ, гр. ТКЕ М47, М75, М750, М1500), 15 (во всех режимах по ТУ, гр. ТКЕ Н30); 30 (t ≤ 70°C гр. ТКЕ Н30); 30 (t ≤ 85°C, U / U_H ≤ 0,6 гр. ТКЕ Н30); 150 (t ≤ 60°C, U / U_H ≤ 0,6)	50 (во всех режимах по ТУ)	20 (H30), 25 (ост.гр. ТКЕ)					

Тип изделия	d, шт.	λ' _б ⋅10 ⁶ , 1/ч	Т _{н.м} , тыс.ч	Т _{рγ} , тыс.ч (γ = 95%)	T _{xp.}
К10-50б, в	3	0,04	25 (во всех режимах по ТУ); 150 (t ≤ 60°C, U / U _н ≤ 0,6)	30 (во всех режимах по ТУ)	20 (H50, H90) 25 (rp. TKE MПO)
K10-51	0	0,015	10 (УХЛ и В, $t \le 125^{\circ}$ C) гр. TKE П100, M47, M75, M750, M1500, H30; 10 (УХЛ и В, $t \le 85^{\circ}$ C) гр. TKE H70, H90; 1 (B, $t \le 155^{\circ}$ C) гр. TKE П100, M47, M75, M750, M1500, H30; 1 (B, $t \le 125^{\circ}$ C) гр. TKE H70, H90; 60 (УХЛ и В, 50 В, $t \le 125^{\circ}$ C) гр. TKE П100, M47, M75, M750, M1500, H30; 60 (УХЛ и В, 50 В, $t \le 85^{\circ}$ C) гр. TKE H70, H90	20 (УХЛ μ B, $t \le 125^{\circ}$ C)	15
K10-54	6	0,024	15 (во всех режимах по ТУ) гр. ТКЕ H50, H90; 50 (во всех режимах по ТУ) гр. ТКЕ МПО; 100 ($t \le 60^{\circ}$ C, U / U _H ≤ 0.7) гр. ТКЕ H50, H90; 100 ($t \le 60^{\circ}$ C, U / U _H ≤ 0.8) гр. ТКЕ МПО; 150 ($t \le 60^{\circ}$ C, U / U _H ≤ 0.6)	30 (во всех режимах по ТУ) гр. ТКЕ Н50, Н90; 100 (во всех режимах по ТУ) гр. ТКЕ МПО	15
K10-57	2	0,009	25 (во всех режимах по ТУ); 150 (t ≤ 85°C, U / U _H ≤ 0,5)	50 (во всех режимах по ТУ)	20
K10-59*	-	0,019	15 (во всех режимах по ТУ)	30 (во всех режимах по ТУ)	15
К10-60*а, в	-	0,019	30 (во всех режимах по ТУ); 150 (t ≤ 55°C, U / U _н ≤ 0,6)	60 (во всех режимах по ТУ)	20
K10-65*	-	0,019	30 (во всех режимах по ТУ)	60 (во всех режимах по ТУ)	20
K10-71*	-	0,019	30 (во всех режимах по ТУ)	60 (во всех режимах по ТУ)	20
K10-73	0	0,019	25 (во всех режимах по ТУ); 30 ($t \le 70^{\circ}$ C, U / U _H ≤ 1 ; $t \le 85^{\circ}$ C, U / U _H $\le 0,6$)	50 (во всех режимах по ТУ)	25
	К	ерамичес	кие на номинальное напряжен	ие 1600В и выше	
КВИ-1, 2, 3	6	0,04	25 (во всех режимах по ТУ) при U / $U_{\text{доп}} \le 0,45$ (напряжение постоянного тока), U / $U_{\text{доп}} \le 1$ (импульсное напряжение)	-	12
K15-5	1	0,03	15 (во всех режимах по ТУ)	-	15

	1	I			1
Тип изделия	d, шт.	λ' _σ ·10 ⁶ , 1/ч	Т _{н.м} , тыс.ч	$T_{p\gamma}$, тыс.ч (γ = 95%)	T _{xp.}
К15-12а, б	0	0,013	15 (УХЛ, во всех режимах по ТУ); 20 (всеклиматическое исполнение, во всех режимах по ТУ); 25 ($t \le 70^{\circ}$ С, $U / U_H \le 1$); 40 (УХЛ, -50° С $\le t \le 70^{\circ}$ С, $U / U_H \le 0,7$); 80 (всеклиматическое исполнение, -50° С $\le t \le 70^{\circ}$ С, $U / U_H \le 0,7$)	30 (УХЛ, во всех режимах по ТУ); 40 (всеклиматическое исполнение, во всех режимах по ТУ)	15
K15-13	0	0,013	15 (УХЛ, во всех режимах по ТУ); 20 (всеклиматическое исполнение, во всех режимах по ТУ); 40 (УХЛ, -50° С \leq t \leq 70 $^{\circ}$ C, U / U _H \leq 0,7); 80 (всеклиматическое исполнение, -50° C \leq t \leq 70 $^{\circ}$ C, U / U _H \leq 0,7)	30 (УХЛ, во всех режимах по ТУ); 40 (всеклиматическое исполнение, во всех режимах по ТУ)	15
K15-14a	0	0,013	5 (во всех режимах по ТУ)	10 (во всех режимах по ТУ)	15
К15-14б	0	0,02	10 (во всех режимах по ТУ); 40 (-50° C \leq t \leq 50°C, U / U _H \leq 0,7)	20 (во всех режимах по ТУ)	25
К15-14в – д	0	0,02	7,5 (во всех режимах по ТУ); 40 (-50° C \leq t \leq 50 $^{\circ}$ C, U / U _H \leq 0,7)	15 (во всех режимах по ТУ)	25
K15-15*	-	0,03	2 (во всех режимах по ТУ)	5 (во всех режимах по ТУ)	12
K15-17*	-	0,03	для емкости 2×220 пФ – 2 (во всех режимах по ТУ); для емкости 12×56 пФ – 2 (при U = 6,3 кВ), из них: 0,5 (t \leq 50°C), 1,5 (t \leq 40°C); 2 (при U = 3,8 кВ, t \leq 70°C)	для емкости 2×220 пФ – 3 (во всех режимах по ТУ); для емкости 12×56 пФ – 4 (при U = 6,3 кВ), из них: 1 (t \leq 50°C), 3 (t \leq 40°C); 3 (при U = 3,8 кВ, t \leq 70°C)	15
К15-20, б, в	1	0,044	2 (во всех режимах по ТУ); 5 (t ≤115°C, U / U_H ≤ 0,8, U_H = 5 кВ; 6,3 кВ) — гр. ТКЕ МПО; 5 (t ≤70°C, U / U_H ≤ 0,8, U_H = 5 кВ; 6,3 кВ) — гр. ТКЕ Н50; 5 (U / U_H ≤ 0,8) — ост. конд.	5 (во всех режимах по ТУ)	20
K15-25*	-	0,03	10 (во всех режимах по ТУ); 100 (t ≤70°C, U / U _н ≤ 0,5)	20 (во всех режимах по ТУ)	25
K15-29*	-	0,03	40 (во всех режимах по ТУ)	80 (во всех режимах по ТУ)	25
		Тонкоп	леночные с неорганическим д	иэлектриком	
K26-4*	-	0,003	25 (во всех режимах по ТУ); 150 (t ≤ 85°C, U / U _н ≤ 0,8)	50 (во всех режимах по ТУ)	15
			Стеклянные		
K21-7	0	0,003	25 (во всех режимах по ТУ); 150 (t ≤ 85°C, U / U _н ≤ 0,8)	50 (во всех режимах по ТУ)	15

Тип изделия	d, шт.	λ' _б ⋅10 ⁶ , 1/ч	Т _{н.м} , тыс.ч	T _{рү} , тыс.ч (ү = 95%)	T _{xp.}				
Слюдяные									
K31-14		0.04	10 (во всех режимах по ТУ); 60 (t ≤ 40°C, U / U _н ≤ 0,6)	20 (во всех режимах по ТУ)	15				
СГМ	1	0,01	5 (во всех режимах по ТУ)	-	12				
СГМ3			1 (во всех режимах по ТУ)	-	15				
			Бумажные и металлобумаж	тые					
МБГН*			10 (во всех режимах по ТУ)	20 (во всех режимах по ТУ)	20				
МБГЧ-1*	0	0,02	5 (во всех режимах по ТУ)	10 (во всех режимах по ТУ)	20				
ОКБГ-И*		0,02	30 (во всех режимах по ТУ)	60 (во всех режимах по ТУ)	25				
ОМБГ*			15 (во всех режимах по ТУ)	30 (во всех режимах по ТУ)	25				
		Окс	идно-электролитические алю	миниевые					
K50-15	23	0,18	10 (\oslash 9 мм, 12 мм; L>35 мм, t ≤ 70°C, U / U _H ≤ 1); 7,5 (\oslash 9 мм, 12 мм; L>35 мм, t ≤ 85°C, U / U _H ≤ 1); 1 (\oslash 9 мм, 12 мм; L>35 мм, t ≤ 125°C, U / U _H ≤ 1); 10 (\oslash 9 мм, L ≤ 35 мм, t ≤ 70°C, U / U _H ≤ 1); 5 (\oslash 9 мм, L ≤ 35 мм, t ≤ 85°C, U / U _H ≤ 1); 1 (\oslash 9 мм, L ≤ 35 мм, t ≤ 85°C, U / U _H ≤ 1); 1 (\oslash 9 мм, L ≤ 35 мм, t ≤ 125°C, U / U _H ≤ 1); 7,5 (неполярные; t ≤ 70°C, U / U _H ≤ 1); 3 (неполярные; t ≤ 85°C, U / U _H ≤ 1); 0,5 (неполярные; t ≤ 125°C, U / U _H ≤ 1); 15 (U _H ≤ 100 B, t ≤ 70°C, U / U _H = 0,2 ÷ 0,7, U ≥ 0,8 B); 15 (U _H > 100 B, t ≤ 70°C, U / U _H = 0,2 ÷ 0,5, U ≥ 0,8 B); 60 (t ≤ 60°C, U / U _H = 0,2 ÷ 0,5, U ≥ 0,8 B); 100 (t ≤ 60°C, U / U _H = 0,2 ÷ 0,5, U ≥ 0,8 B); 10 (неполярные; t ≤ 60°C, U / U _H ≤ 1)	$20 \ (\varnothing 9 \ \text{мм}, 12 \ \text{мм}; L>35 \ \text{мм}, \ t \leq 70^{\circ}\text{C}, \ U \ / \ U_{\text{H}} \leq 1); \ 10 \ (\varnothing 9 \ \text{мм}, 12 \ \text{мм}; \ L>35 \ \text{мм}, \ t \leq 85^{\circ}\text{C}, \ U \ / \ U_{\text{H}} \leq 1); \ 2 \ (\varnothing 9 \ \text{мм}, 12 \ \text{мм}; \ L>35 \ \text{мм}, \ t \leq 125^{\circ}\text{C}, \ U \ / \ U_{\text{H}} \leq 1); \ 20 \ (\varnothing 9 \ \text{мм}, \ L \leq 35 \ \text{мм}, \ t \leq 70^{\circ}\text{C}, \ U \ / \ U_{\text{H}} \leq 1); \ 10 \ (\varnothing 9 \ \text{мм}, \ L \leq 35 \ \text{мм}, \ t \leq 85^{\circ}\text{C}, \ U \ / \ U_{\text{H}} \leq 1); \ 2 \ (\varnothing 9 \ \text{мм}, \ L \leq 35 \ \text{мм}, \ t \leq 125^{\circ}\text{C}, \ U \ / \ U_{\text{H}} \leq 1); \ 8.5 \ (\text{неполярные}; \ t \leq 70^{\circ}\text{C}, \ U \ / \ U_{\text{H}} \leq 1); \ 4 \ (\text{неполярныe}; \ t \leq 85^{\circ}\text{C}, \ U \ / \ U_{\text{H}} \leq 1); \ 1 \ (\text{неполярныe}; \ t \leq 125^{\circ}\text{C}, \ U \ / \ U_{\text{H}} \leq 1)$	15				
K50-20	0	0,18	5 (во всех режимах по ТУ); 10 (–40°C ≤ t ≤ 60°C)	10 (во всех режимах по ТУ), 13 (–40°С ≤ t ≤ 60°С)	15				
K50-24	4	0,19	10 (во всех режимах по ТУ); 15 (t ≤70°C, U / U_H =0,2÷0,45); 40 (t ≤ 55°C, U / U_H =0,2÷0,6); 10 (t ≤ 70°C, U / U_H ≤ 1); 5 (t ≤ 85°C, U / U_H ≤ 1)	20 (во всех режимах по ТУ); $20 \; (t \leq 70^{\circ}\text{C}, \text{U} / \text{U}_{\text{H}} \leq 1); \\ 10 \; (t \leq 85^{\circ}\text{C}, \text{U} / \text{U}_{\text{H}} \leq 1)$	12				
K50-24-2	0	0,18	10 (во всех режимах по ТУ); 15 (t ≤70°C, U / U_H =0,2÷0,45); 40 (t ≤ 55°C, U / U_H =0,2÷0,6)	20 (во всех режимах по ТУ)	12				

Тип изделия	d, шт.	λ' _б ⋅10 ⁶ , 1/ч	Т _{н.м} , тыс.ч	Т _{рү} , тыс.ч (ү = 95%)	T _{xp.}
K50-27	12	0,54	10 (во всех режимах по ТУ); 15 (-40° C \leq t \leq 70 $^{\circ}$ C, U / U _H = 0,2÷0,7) — однона- правленные; 15 (-40° C \leq t \leq 55 $^{\circ}$ C, U / U _H = 0,2÷0,7) — остальные	20 (во всех режимах по ТУ)	12
K50-29	10	0,36	$ \begin{array}{l} 2 \ (t \leq 85^{\circ}C, \ U \ / \ U_{H} \leq 1); \\ 5 \ (t \leq 70^{\circ}C, \ U \ / \ U_{H} \leq 1); \\ 15 \ (U_{H} \leq 100 \ B, \ t \leq 70^{\circ}C, \\ U \ / \ U_{H} = 0,2 \div 0,7, \ U \geq 0,8 \ B); \\ 15 \ (U_{H} > 100 \ B, \ t \leq 70^{\circ}C, \\ U \ / \ U_{H} = 0,2 \div 0,5, \ U \geq 0,8 \ B); \\ 60 \ (t \leq 60^{\circ}C, \ U \ / \ U_{H} = 0,2 \div 0,6, \\ U \geq 0,8 \ B); \\ 100 \ (t \leq 60^{\circ}C, \ U \ / \ U_{H} = 0,2 \div 0,5, \\ U \geq 0,8 \ B); \end{array} $	5 (t ≤ 85°C, U / U _H ≤ 1); 10 (t ≤ 70°C, U / U _H ≤ 1)	15
K50-32	6	0,5	2 (во всех режимах по ТУ)	3 (во всех режимах по ТУ)	15
K50-32a		0,5	10 (во всех режимах по ТУ)	20 (во всех режимах по ТУ)	10
K50-33			2 (t ≤ 85°C); 5 (t ≤ 70°C)	5 (t ≤ 85°C); 10 (t ≤ 70°C)	
K50-33a	9	0,6	0,5 (t ≤ 100°C); 1 (t ≤ 100°C, U _H ≤ 25 B,); 2 (t ≤ 85°C); 5 (t ≤ 70°C)	1 (t ≤ 100°C); 2 (t ≤ 100°C, U _H ≤ 25 B,); 5 (t ≤ 85°C); 10 (t ≤ 70°C)	15
К50-33б			0,5 (t ≤ 100°C); 2 (t ≤ 85°C); 5 (t ≤ 70°C) 60 (t ≤ 50°C, U / U _H ≤ 0,4)	1 (t ≤ 100°C); 4 (t ≤ 85°C); 10 (t ≤ 70°C)	
K50-37	3	0,23	10 (во всех режимах по ТУ)	20 (во всех режимах по ТУ)	15
K50-38	14	0,18	$7.5 \ (\varnothing 10 - 21 \ \text{mm}; \ t \le 70^{\circ}\text{C}, \ U \ / \ U_{\text{H}} \le 1); \ 5 \ (\varnothing 6 \ \text{mm}, \ 7.6 \ \text{mm}; \ t \le 70^{\circ}\text{C}, \ U \ / \ U_{\text{H}} \le 1); \ 3 \ (\varnothing 10 - 21 \ \text{mm}; \ t \le 85^{\circ}\text{C}, \ U \ / \ U_{\text{H}} \le 1); \ 2 \ (\varnothing 6 \ \text{mm}, \ 7.6 \ \text{mm}; \ t \le 85^{\circ}\text{C}, \ U \ / \ U_{\text{H}} \le 1); \ 10 \ (\varnothing 6 \ \text{mm}, \ 7.6 \ \text{mm}; \ t \le 50^{\circ}\text{C}); \ 25 \ (\varnothing 10 - 21 \ \text{mm}; \ t \le 50^{\circ}\text{C})$	$\begin{array}{l} 10 \; (\varnothing 10-21 \; \text{mm}; \; t \leq 70^{\circ}\text{C}, \\ \text{U} \; / \; \text{U}_{\text{H}} \leq 1); \\ 7.5 \; (\varnothing 6 \; \text{mm}, \; 7.6 \; \text{mm}; \; t \leq 70^{\circ}\text{C}, \\ \text{U} \; / \; \text{U}_{\text{H}} \leq 1); \\ 5 \; (\varnothing 10-21 \; \text{mm}; \; t \leq 85^{\circ}\text{C}, \\ \text{U} \; / \; \text{U}_{\text{H}} \leq 1); \\ 3 \; (\varnothing 6 \; \text{mm}, \; 7.6 \; \text{mm}; \; t \leq 85^{\circ}\text{C}, \\ \text{U} \; / \; \text{U}_{\text{H}} \leq 1) \end{array}$	15
K50-41*			1 (t ≤ 85°C); 5 (t ≤ 70°C); 10 (t ≤ 60°C); 30 (t ≤ 50°C, U / U _H ≤ 0,5)	3 (t ≤ 85°C); 10 (t ≤ 70°C); 20 (t ≤ 60°C)	15
K50-46*	-	0,12	3 (t ≤ 85°C); 10 (t ≤ 70°C); 100 (t ≤ 40°C, U / U _н ≤ 0,8)	5 (t ≤ 85°C); 20 (t ≤ 70°C)	20
K50-47*			10 (t ≤ 85°C); 20 (t ≤ 70°C); 100 (t ≤ 40°C, U / U _H ≤ 0,8)	20 (t ≤ 85°C); 30 (t ≤ 70°C)	20

Тип изделия	d, шт.	λ' _б ⋅10 ⁶ , 1/ч	Т _{н.м} , тыс.ч	Т _{рγ} , тыс.ч (γ = 95%)	T _{xp.}
K50-48*			$0.5 (t \le 155^{\circ}C, U / U_{H} \le 1);$ $2 (t \le 125^{\circ}C, U / U_{H} \le 1);$ $10 (t \le 85^{\circ}C, U / U_{H} \le 1);$ $30 (t \le 70^{\circ}C, U / U_{H} \le 1);$ $100 (t \le 50^{\circ}C, U / U_{H} \le 0.6)$	1 (t ≤ 155°C, U / U _H ≤ 1); 4 (t ≤ 125°C, U / U _H ≤ 1); 20 (t ≤ 85°C, U / U _H ≤ 1); 60 (t ≤ 70°C, U / U _H ≤ 1)	20
K50-50*	_	0,12	1 (t \leq 125°C, U / U _H \leq 1); 3 (t \leq 85°C, U / U _H \leq 1); 10 (, U / U _H \leq 0,7); 50 (t \leq 50°C, U / U _H \leq 0,5)	1,5 (t ≤ 125°C, U / U _H ≤ 1); 4,5 (t ≤ 85°C, U / U _H ≤ 1)	20
K50-54*			3 (t ≤ 85°C); 10 (t ≤ 70°C); 40 (t ≤ 40°C, U / U _H ≤ 0,5)	5 (t ≤ 85°C); 20 (t ≤ 70°C)	20
K50-55*			3 (t ≤ 85°C); 7,5 (t ≤ 70°C); 40 (t ≤ 50°C, U / U _H = 0,2÷0,5)	5 (t ≤ 85°C); 15 (t ≤ 70°C)	20
K50-68	3	0,3	1 (во всех режимах по ТУ); 7,5 (-40° C \leq t \leq 70 $^{\circ}$ C, U / U _H \leq 1); 10 (-40° C \leq t \leq 55 $^{\circ}$ C, U / U _H \leq 1); 15 (-40° C \leq t \leq 55 $^{\circ}$ C, U / U _H \leq 0,8)	2 (-40° C \leq t \leq 85°C); 15 (-40° C \leq t \leq 70°C); 20 (-40° C \leq t \leq 55°C)	15
	C	Оксидно-э.	пектролитические алюминие	вые импульсные	
K50-21	0	0,8·10 ⁻⁸ 1/имп.	10 ⁵ имп. для 1000 мкФ; 10 ⁴ имп. + 100 ч.(суммарное время ожидания) для 5000 и 15000 мкФ	2·10 ⁵ имп. для 1000 мкФ; 2·10 ⁴ имп. + 200 ч. (суммарное время ожидания) для 5000 и 15000 мкФ	20
			Объемно-пористые тантал	овые	
K51-2*			10 (во всех режимах по ТУ)	20 (во всех режимах по ТУ)	20
К52-1Б*, К52-1БМ*, К52-1М*			5 (t ≤ 85°C); 20 (t ≤ 70°C); 25 (t ≤ 70°C, U / U _H ≤ 0,8, U ≥ 3 B)	10 (t ≤ 85°C); 40 (t ≤ 70°C)	20
K52-2*	-	0,12	10 (t ≤ 70°C, из них 2 при t ≤ 85°C)	15 (t ≤ 70°C, из них 2 при t ≤ 85°C); 3 (85°C ≤ t ≤ 100°C)	15
K52-5*			5 (t ≤ 85°C); 10 (t ≤ 70°C)	0,1 (t ≤ 200°C); 1 (t ≤ 155°C); 4 (t ≤ 100°C); 10 (t ≤ 85°C); 20 (t ≤ 70°C)	15
K52-7A1	1	0,12	2 (t ≤ 85°C)	1 (t ≤ 155°C); 4 (t ≤ 85°C); 10 (t ≤ 55°C); 20 (t ≤ 40°C)	12
K52-8	5	0,17	$\begin{array}{c} 0.75 \; (t \leq 125^{\circ}\text{C}, \text{U} / \text{U}_{\text{H}} \leq 1); \\ 5 \; (t \leq 85^{\circ}\text{C}, \text{U} / \text{U}_{\text{H}} \leq 1); \\ 10 \; (t \leq 70^{\circ}\text{C}, \text{U} / \text{U}_{\text{H}} \leq 1); \\ 25 \; (t \leq 70^{\circ}\text{C}, \text{U} / \text{U}_{\text{H}} = 0.2 \; \div 0.7, \\ \text{U} \geq 3 \; \text{B}) \end{array}$	1,5 (t ≤ 125°C, U / U _H ≤ 1); 10 (t ≤ 85°C, U / U _H ≤ 1); 20 (t ≤ 70°C, U / U _H ≤ 1);	15

Тип изделия	d, шт.	λ' _σ ⋅10 ⁶ , 1/ч	Т _{н.м} , тыс.ч	Т _{рγ} , тыс.ч (γ = 95%)	T _{xp.}
K52-9	2	0,026	1 (\oslash 9 мм, U_H = 6,3 ÷32 B, 50 ÷100 B, t ≤ 125°C); 30 (\oslash 9 мм, U_H = 6,3 ÷32 B, t ≤ 85°C); 5 (\oslash 9 мм, U_H = 50 ÷100 B, t ≤ 85°C); 30 (\oslash 9 мм, U_H = 50 ÷100 B, t ≤ 70°C); 1 (t ≤ 125°C) — ост. конд.; 5 (t ≤ 85°C) — ост. конд.; 10 (t ≤ 70°C) — ост. конд.; 50 (\oslash 9 мм, t ≤ 70°C, U / U_H ≤ 0,7); 100 (\oslash 9 мм, t ≤ 70°C, U / U_H ≤ 0,6); 150 (\oslash 9 мм, t ≤ 55°C, U / U_H ≤ 0,6); 30 (t ≤ 70°C, U / U_H ≤ 0,6); 30 (t ≤ 70°C, U / U_H ≤ 0,6) — ост. конд.; 60 (t ≤ 55°C, U / U_H ≤ 0,6) — ост. конд.; 100 (t ≤ 55°C, U / U_H ≤ 0,6) — ост. конд.; 100 (t ≤ 55°C, U / U_H ≤ 0,6) — ост. конд.;	$2 \ (extstyle 9 \ \text{мм}, \ U_{\text{H}} = 6,3 \div 32 \ \text{B}, \ 50 \div 100 \ \text{B}, \ t \leq 125^{\circ}\text{C}); \ 60 \ (extstyle 9 \ \text{мм}, \ U_{\text{H}} = 6,3 \div 32 \ \text{B}, \ t \leq 85^{\circ}\text{C}); \ 10 \ (extstyle 9 \ \text{мм}, \ U_{\text{H}} = 50 \div 100 \ \text{B}, \ t \leq 85^{\circ}\text{C}); \ 60 \ (extstyle 9 \ \text{мм}, \ U_{\text{H}} = 50 \div 100 \ \text{B}, \ t \leq 70^{\circ}\text{C}); \ 2 \ (t \leq 125^{\circ}\text{C}) - \text{ост. конд.}; \ 10 \ (t \leq 85^{\circ}\text{C}) - \text{ост. конд.}; \ 20 \ (t \leq 70^{\circ}\text{C}) - \text{ост. конд.}$	20
K52-11	0	0,125	5 (t \leq 85°C, U / U _H \leq 1); 10 (t \leq 70°C, U / U _H \leq 1); 20 (t \leq 70°C, U / U _H \leq 0,7); 60 (t \leq 85°C, U / U _H \leq 0,6); 70 (t \leq 55°C, U / U _H \leq 0,6)	10 (t ≤ 85°C, U / U _H ≤ 1); 20 (t ≤ 70°C, U / U _H ≤ 1)	-
K52-12	4	0,38	5 (t ≤ 85°C); 15 (t ≤ 70°C); 25 (t ≤ 70°C, U / U _H ≤ 0,8); 60 (t ≤ 55°C, U / U _H ≤ 0,6)	10 (t ≤ 85°C); 30 (t ≤ 70°C)	15
			Оксидно-полупроводников	ые	
K53-1A	0	0,16	50 (t ≤ 70°C, U / U _H ≤ 1); 120 (t ≤ 70°C, U/U _H =0,2÷0,7); 150 (t ≤60°C, U / U _H =0,2÷0,6)	60 (во всех режимах по ТУ)	25
K53-4	13	0,3	10 (во всех режимах по ТУ); 60 ($t \le 60^{\circ}$ C, U / U _H =0,2 ÷0,7, U ≥ 0.8 B); 150 ($t \le 60^{\circ}$ C, U / U _H =0,2÷0,6, U ≥ 0.8 B)	20 (во всех режимах по ТУ)	15
K53-7	0	0,02	30 (во всех режимах по ТУ); 100 (t ≤60°C, U / U_H =0,2÷0,6, U ≥ 0,8 B)	60 (во всех режимах по ТУ)	20
K53-15*	-	0,07	15 (t ≤ 70°C, U / U _H ≤ 1); 30 (t ≤ 70°C, U / U _H =0,8)	30 (во всех режимах по ТУ)	20

Тип изделия	d, шт.	λ' _б ⋅10 ⁶ , 1/ч	Т _{н.м} , тыс.ч	Т _{рγ} , тыс.ч (γ = 95%)	$T_{xp.}$
K53-16			30 (во всех режимах по ТУ); 60 (t ≤ 70°C, U / U_H =0,2 ÷0,7, U ≥ 0,8 B); 150 (t ≤60°C, U / U_H =0,2÷0,6, U ≥ 0,8 B)	60 (во всех режимах по ТУ); 80 [■] (t = 85°C, U / U _н = 1)	20
K53-16A	9	0,06	15 (во всех режимах по ТУ); 100 (t ≤50°C, U / U _н =0,2÷0,6, U ≥ 0,8 B)	30 (во всех режимах по ТУ)	15
K53-30			15 (во всех режимах по ТУ); 25 ($t \le 85^{\circ}$ C, U / U _H ≤ 0.9); 30 ($t \le 70^{\circ}$ C, U / U _H ≤ 1); 100 ($t \le 50^{\circ}$ C, U / U _H $= 0.2 \div 0.6$)	30 (во всех режимах по ТУ)	15
K53-18	20	0,16	15 (t \leq 85°C, U / U _H \leq 1); 10 (t \leq 125°C, U/U _H \leq 1, \varnothing 9 MM); 40 (t \leq 70°C, U / U _H \leq 1); 120 (t \leq 70°C, U / U _H =0,2 \div 0,7)	30 (t \leq 85°C, U / U _H \leq 1); 20 (t \leq 125°C, U/U _H \leq 1, \varnothing 9 мм); 90 (t = 85°C, U / U _H = 1)	25
K53-20	0	0,07	15 (во всех режимах по ТУ)	30 (во всех режимах по ТУ)	20
K53-22	4	0,06	25 (во всех режимах по ТУ); 100 (t \leq 60°C, U / U _H =0,2 \div 0,7, U \geq 0,8 B); 150 (t \leq 60°C, U / U _H =0,2 \div 0,6, U \geq 0,8 B)	50 (во всех режимах по ТУ)	25
K53-25			25 (во всех режимах по ТУ); 150 (t \leq 60°C, U / U _H =0,2 \div 0,6, U \geq 0,8 B)	40 (во всех режимах по ТУ)	15
K53-28	0	0,01	15 ($t \le 85^{\circ}$ C, U/U _H ≤ 1 , Yept.2 TY); 20 ($t \le 85^{\circ}$ C, U/U _H ≤ 1 , Yept.1 TY); 20 ($t \le 125^{\circ}$ C, U/U _H ≤ 0.9 , Yept.2 TY); 60 ($t \le 55^{\circ}$ C, U/U _H $= 0.2 \div 0.7$, Yept.1 TY); 100 ($t \le 55^{\circ}$ C, U/U _H $= 0.2 \div 0.7$, Yept.1 TY)		15
K53-29	0	0,02	25 (во всех режимах по ТУ); 100 (t ≤55°C, U / U _н =0,2÷0,7)	40 (во всех режимах по ТУ)	20
K53-31	0	0,07	15 (во всех режимах по ТУ); 40 (t ≤ 55°C, U / U_H =0,2 ÷0,7, U ≥ 0,8 B)	30 (во всех режимах по ТУ)	15
K53-36*	-	0,06	15 (во всех режимах по ТУ); 30 (t ≤ 70°C, U / U _н ≤ 0,8)	30 (во всех режимах по ТУ)	20
К53-37	0	0,06	50 (во всех режимах по ТУ); 100 (t ≤55°C, U / U _н =0,2÷0,6, U ≥ 0,8 B)	100(во всех режимах по ТУ)	25
K53-43*		0.00	15 (во всех режимах по ТУ); 50 (t ≤60°C, U / U _н =0,2÷0,6, U ≥ 0,8 B)	30 (во всех режимах по ТУ)	25
K53-44*	_	0,06	20 (во всех режимах по ТУ); 50 (t ≤60°C, U / U _н =0,2÷0,7, U ≥ 0,8 B)	40 (во всех режимах по ТУ)	20
K53-46	0	0,06	30 (во всех режимах по ТУ); 100 (t ≤70°C, U / U _н =0,8)	60(во всех режимах по ТУ)	25
K53-52	5	0,1	30 (во всех режимах по ТУ); 50 ($t \le 70^{\circ}$ C, U / U _H ≤ 1); 100 ($t \le 60^{\circ}$ C, U / U _H = 0,7)	60(во всех режимах по ТУ)	25

Тип изделия	d, шт.	λ' _σ ·10 ⁶ , 1/ч	Т _{н.м} , тыс.ч	Т _{рү} , тыс.ч (ү = 95%)	T _{xp.}
K53-56*	-	0,06	50 (во всех режимах по ТУ); 100 (t ≤70°C, U / U _н =0,8)	100(во всех режимах по ТУ)	25
		С орга	аническим синтетическим ди	электриком	
			Полистирольные		
K71-4	0		20 (во всех режимах по ТУ); 150 (t ≤ 60°C, U / U _н ≤ 0,7)	40(во всех режимах по ТУ)	25
K71-5	0		30 (t \leq 85°C, U / U _H \leq 1); 100 (t \leq 60°C, U / U _H =0,6)	60 (во всех режимах по ТУ)	20
K71-7	5	0,055	50 (во всех режимах по ТУ); 150 (t ≤ 60°C, U / U _н ≤ 0,6)	80^{-} (t = 85° C, U / U _H = 1)	12
K71-7A	0		60 (t ≤ 85°C, U / U _H ≤ 1); 150 (t ≤ 60°C, U / U _H =0,6)	80 (во всех режимах по ТУ)	25
			Фторопластовые		
К72П-6	1	0,003	2 (во всех режимах по ТУ); 5 ($t \le 155^{\circ}$ C, U / U _H ≤ 1); 7,5 ($t \le 100^{\circ}$ C, U / U _H ≤ 1); 87,6 ($t \le 40^{\circ}$ C, U / U _H ≤ 0 ,7)	3 (t ≤ 200°C, U / U _H ≤ 1)	25
ΦТ	3	0,011	0,5 (во всех режимах по ТУ)	-	12
		Полиэт	илентерефталатные низ	ковольтные	
K73-11*	_	0,043	10 (t ≤ 125°C, U / U _H ≤ 1)	20 (во всех режимах по ТУ)	20
K73-15	5	0,03	15 (во всех режимах по ТУ, кроме U_H = 100 В, 160 В); 10 (во всех режимах по ТУ для U_H = 100 В, 160 В); 2 ($t \le 100^{\circ}$ С, $U / U_H \le 1$, кроме U_H = 100 В, 160 В); 10 ($t \le 125^{\circ}$ С, $U / U_H \le 0.5$, кроме U_H = 100 В, 160 В); 100 ($t \le 60^{\circ}$ С, $U / U_H \le 0.7$, кроме U_H = 100 В, 160 В)	30 (во всех режимах по ТУ, кроме U_H = 100 B, 160 B); 20 (во всех режимах по ТУ для U_H = 100 B, 160 B)	20
K73-16	2	0,013	10 (t \leq 125°C, U / U _H \leq 1); 20 (t \leq 85°C, U / U _H \leq 1); 10 (t \leq 70°C, для изделий, применяемых в режиме п.2.3.4.3 ТУ); 150 (t \leq 60°C, U / U _{доп (85°C)} \leq 1)	20 (t \leq 125°C, U / U _H \leq 1); 30 (t \leq 85°C, U / U _H \leq 1); 80 (t = 85°C, U / U _H = 1)	25
K73-16a			10 (t ≤ 125°C, U / U _H ≤ 1); 20 (t ≤ 85°C, U / U _H ≤ 1); 150 (t ≤ 60°C, U / U _H ≤ 0,6)	20 (t ≤ 125°C, U / U _H ≤ 1); 30 (t ≤ 85°C, U / U _H ≤ 1)	25
K73-21*	-	0,043	10 (во всех режимах по ТУ)	20 (во всех режимах по ТУ)	15
K73-22	5	0,1	15 (во всех режимах по ТУ); 50 (t ≤ 55°C, U / U _н ≤ 0,6)	30 (во всех режимах по ТУ)	25
K73-26	4	0,2	10 (t ≤ 85°C, U / U _H ≤ 1); 5 (t ≤ 125°C, U / U _H ≤ 1); 100 (t ≤ 60°C, U / U _H ≤ 0,6)	20 (t ≤ 85°C, U / U _H ≤ 1); 10 (t ≤ 125°C, U / U _H ≤ 1)	15
K73-28	0	0,05	15 (во всех режимах по ТУ); 100 (t ≤ 55°C, U / U _н ≤ 0,5)	30 (во всех режимах по ТУ)	20

	1				
Тип изделия	d, шт.	λ' _σ ·10 ⁶ , 1/ч	Т _{н.м} , тыс.ч	Т _{рү} , тыс.ч (ү = 95%)	$T_{xp.}$
K73-31*	-	0,043	10 (t=85÷100°C, U / U_H =1÷0,75); 30 (t ≤ 85°C, U / U_H = 1); 50 (t ≤ 70°C, U / U_H = 0,7); 80 (t ≤ 60°C, U / U_H = 0,7)	60 (во всех режимах по ТУ)	25
К73П-3	0	0,043	20 (t ≤ 125°C, U / U _H ≤ 1); 100 (t ≤ 60°C, U / U _H ≤ 0,7)	50 (во всех режимах по ТУ)	25
ПМГПМ	2	0,06	15 (во всех режимах по ТУ)	-	25
		Полиэт	илентерефталатные высо	оковольтные	
K73-14	4	1,5	5 (во всех режимах по ТУ); 10 (t \leq 70°C, U / U _H \leq 0,5); 80 (t \leq 55°C, U / U _H \leq 0,5)	15 (во всех режимах по ТУ)	20
K74-7	9	0,7	5 (во всех режимах по ТУ)	8 (во всех режимах по ТУ)	20
		Кс	мбинированные низково	льтные	
К75П-4	2	0,04	20 (во всех режимах по ТУ); 100 (t ≤ 60°C, U / U _н ≤ 0,6)	40 (во всех режимах по ТУ)	20
K75-10	8	0,27	10 (во всех режимах по ТУ); 100 (t ≤ 60°C, U / U _н ≤ 0,5)	20 (во всех режимах по ТУ)	20
K75-24	0	0,01	15 (t \leq 85°C, U / U _H \leq 1); 2 (t \leq 100°C, U / U _H \leq 1); 0,5 (t \leq 125°C, U / U _H \leq 1); 100 (t \leq 50°C, U / U _H \leq 0,5)	30 (t \leq 85°C, U / U _H \leq 1); 4 (t \leq 100°C, U / U _H \leq 1); 1 (t \leq 125°C, U / U _H \leq 1)	20
K75-37*	-	0,02	15 (во всех режимах по ТУ); 20 (t ≤ 70°C); 30 (t ≤ 50°C)	30 (во всех режимах по ТУ)	20
Кол	ибини	рованн	ые высоковольтные пост	оянного напряжения	
K75-15	12	0,5	2 (t \leq 100°C, U / U _H \leq 1); 5 (t \leq 70°C, U / U _H \leq 1); 3 (t \leq 85°C, U / U _H \leq 1); 50 (t \leq 60°C, U / U _H \leq 0,6); 100 (t \leq 55°C, U / U _H \leq 0,6)	4 (t ≤100°C, U / U _H ≤1), γ=90%; 10 (t ≤ 70°C, U / U _H ≤ 1); 6 (t ≤ 85°C, U / U _H ≤ 1)	20
K75-29	11	0,42	5 (t ≤ 30°C, U / U _H ≤ 1); 1 (t ≤ 85°C, U / U _H ≤ 1)	10 (t \leq 30°C, U / U _H \leq 1); 2 (t \leq 85°C, U / U _H \leq 1)	15
K75-47	0	0,12	3 (t ≤ 70°C, U / U _H ≤ 1); 2 (t ≤ 85°C, U / U _H ≤ 1)	6 (t ≤ 70°C, U / U _H ≤ 1); 4 (t ≤ 85°C, U / U _H ≤ 1)	15
K75-54	0	0,12	5 (t ≤ 70°C, U / U _H ≤ 1); 2 (t ≤ 85°C, U / U _H ≤ 1)	10 (t ≤ 70°C, U / U _H ≤ 1); 4 (t ≤ 85°C, U / U _H ≤ 1)	15
	Кс	омбинир	ованные высоковольтны	е импульсные	
K75-25	0	0,4	1 (во всех режимах по ТУ); 2,5 ($t \le 85^{\circ}$ C, U / U _H ≤ 1); 5 ($t \le 70^{\circ}$ C, U / U _H ≤ 1); 5 ($t \le 110^{\circ}$ C, U / U _H $\le 0,6$)	2 (во всех режимах по ТУ), γ =90%	20
К75-40А, Б	4	5·10 ^{−8} 1/имп.	10 ⁵ имп. (t ≤ 70°C, частота следования импульсов 0,1÷10 Гц, U / U _{доп} ≤ 1); 10 ⁵ имп. (t ≤ 85°C, U – черт.10 ТУ)	$2 \cdot 10^5$ имп. (t $\leq 70^{\circ}$ С, частота следования импульсов $0.1 \div 10$ Гц, U / U _{доп} ≤ 1); $2 \cdot 10^5$ имп. (t $\leq 85^{\circ}$ С, U – черт.10 ТУ)	25
K75-44A			5·10 ⁴ имп. (t ≤ 40°C, частота следования импульсов 0,1÷10 Гц)	10 ⁵ имп. (t ≤ 40°С, частота следования импульсов 0,1÷10 Гц)	15

Тип изделия	d, шт.	λ' _ō ⋅10 ⁶ , 1/ч	Т _{н.м} , тыс.ч	Т _{рγ} , тыс.ч (γ = 95%)	T _{xp.}
K75-48	0	1·10 ⁻⁸ 1/имп.	10 ⁵ имп.	2·10 ⁵ имп.	15
K75-56	0	0,03·10 ⁻⁸ 1/имп.	10 ⁸ имп.	2·10 ⁸ имп., γ = 90%	15
K75-57	0	0,1·10 ⁻⁸ 1/имп.	3·10 ⁶ имп.(режимы импульсного напряжения, размах импульсного напряжения 1000 В); 3·10 ⁶ имп.÷10 ⁹ имп. (черт.5 ТУ)	6·10 ⁶ имп., (γ =90%, режимы импульсного напряжения, размах импульсного напряжения 1000 В)	15
K75-59	0	2·10 ⁻⁸ 1/имп.	10 ⁵ имп. (t ≤70°C, U ≤1000 B, частота следования им- пульсов 0,56÷10 Гц); 10 ⁶ имп. (t ≤ 50°C, U ≤750 B, частота следования им- пульсов 5 Гц)	2·10 ⁵ имп. (t ≤70°C, U≤1000 В, частота следования им- пульсов 0,56÷10 Гц)	20
K75-66	-	0,04	10 ⁶ имп. (во всех режимах по ТУ); 5·10 ⁶ имп. (t ≤ 50°C, U ≤1200 В, частота следо- вания импульсов 10 Гц);	2·10 ⁶ имп. (во всех режимах по ТУ)	20
			Поликарбонатные		
K77-1	2	0,11	10 (во всех режимах по ТУ); 2 ($t \le 125$ °C, U / U _H ≤ 0.5); 100 ($t \le 60$ °C, U / U _H $= 0.2 \div 0.7$)	20 (во всех режимах по ТУ)	15
K77-2	1	0,01	15 (во всех режимах по ТУ); 100 ($t \le 60^{\circ}$ С, U/U _H = 0,2÷0,7); 150 ($t \le 60^{\circ}$ С, U/U _H = 0,2÷0,6)	30 (во всех режимах по ТУ)	15
K77-4	1	0,02	30 (во всех режимах по ТУ); 100 (t ≤ 70°C, U _н = 100 B, U ≤ 10 B)	60 (во всех режимах по ТУ); 200 ($t \le 70^{\circ}$ C, $U_{H} = 100$ B, $U \le 10$ B)	20
K77-8*	-	0,012	30 (t ≤ 85°C, U / U _H ≤ 1); 2 (t ≤ 125°C, U / U _H ≤ 0,5); 80 (t ≤ 60°C, U / U _H ≤ 0,5)	60 (t ≤ 85°C, U / U _H ≤ 1); 4 (t ≤ 125°C, U / U _H ≤ 0,5)	20
K77-9*	-	0,012	30 (t ≤ 85°C); 100 (t ≤ 60°C, U / U _H ≤ 0,7)	50 (во всех режимах по ТУ)	20
			Полипропиленовые		
K78-2*	-	0,012	15 (во всех режимах по ТУ); 100 (t ≤ 70°C, U / U _н ≤ 0,8)	30 (во всех режимах по ТУ)	20 для U=630В и 1600В, 25 для U=315В

		1						
Тип изделия	d, шт.	λ' _б ⋅10 ⁶ , 1/ч	Т _{н.м} , тыс.ч	Т _{рү} , тыс.ч (ү = 95%)	T _{xp.}			
Конденсаторы подстроечные								
			С твердым диэлектрико	М				
KT4-25	1	0,019	20 (U_H = 100 B, 250 B rp. TKE M1000); 10 (кроме U_H = 100 B, 250 B rp. TKE M1000); 60 (t \leq 55°C, U / U_H \leq 0,7); 1000 (t \leq 55°C, U / U_H \leq 0,6)	30 (U_H = 100 B, 250 B гр. ТКЕ M1000); 20 (кроме U_H = 100 B, 250 B гр. ТКЕ M1000)	15			
KT4-27	1	0,01	15 (U _H = 25 B, 50 B); 20 (U _H = 16 B); 100 (t ≤ 55°C, U / U _H ≤ 0,7)	30 (U _H = 25 B, 50 B); 40 (U _H = 16 B)	20			
KT4-30*	-	0,012	25 (во всех режимах по ТУ); 50 (t ≤ 55°C, U / U _н ≤ 0,7)	30 (во всех режимах по ТУ)	15			
KT4-33*	-	0,012	20 (во всех режимах по ТУ); 80 (t ≤ 55°C, U / U _H ≤ 0,7)	40 (во всех режимах по ТУ)	20			
			Воздушные					
кпвм	6	0,08	20 (1КПВМ, 2КПВМ); 15 (ЗКПВМ)	30 (1КПВМ, 2КПВМ); 20 (ЗКПВМ)	12			
KT2-17 ÷ 21			7,5 (во всех режимах по ТУ)	15 (во всех режимах по ТУ)	15			
KT2-50	1	0,01	15 (во всех режимах по ТУ); 40 (U / U _н ≤ 0,6)	25 (во всех режимах по ТУ)	15			
KT2-51			15 (во всех режимах по ТУ); 40 (U / U _н ≤ 0,6)	50 (во всех режимах по ТУ)	15			
			Сборки на основе конденса-	горов				
Б18	-	-	25 (во всех режимах по ТУ); 150 (t ≤60°C, U / U _н =0,2÷0,6, U≥0,8 B) для Б18-1, 10, 18÷23; 150 (U / U _н ≤ 0,6) для ос- тальных блоков	50 (во всех режимах по ТУ)	20 для Б18-1 ÷518-5, 7,8,10, 18,19 25 для Б18-9, Б18-11 ÷17, Б18-20 ÷39			
Б18А1-1—А1-3, Б18А2-1—А2-3, Б18А3-1—А3-4, Б18А4-1—А4-4, Б18А5-1—А5-4	-	-	25 (во всех режимах по ТУ); 150 (t ≤60°C, U / U_H =0,2÷0,6, U ≥ 0,8 B) для Б18А3, Б18А4, Б18А5; 150 (t ≤ 60°C, U / U_H ≤ 0,6) для остальных блоков	50 (во всех режимах по ТУ)	20			
	•	Конден	саторы и фильтры помехоп	одавляющие				
кз			10 (во всех режимах по ТУ)	-	12			
КБП	0	0,016	25 (t ≤ 85°C, U / U _H ≤ 1); 150 (t ≤ 60°C, U / U _H =0,7)	40 (во всех режимах по ТУ)	25			
КБПС-Ф			5 (во всех режимах по ТУ)	-	12			

Тип изделия	d, шт.	λ' _б ⋅10 ⁶ , 1/ч	Т _{н.м} , тыс.ч	Т _{рү} , тыс.ч (ү = 95%)	T _{xp.}
Б14	1	0,025	20 (t ≤ 85°C, U / U _H ≤ 1); 100 (t ≤ 60°C, U / U _H =0,7)	40 (во всех режимах по ТУ)	20
Б23A	0	0.004	20 (во всех режимах по ТУ); 100 (t \leq 85°C, U / U _H \leq 0,7)	50 (во всех режимах по ТУ); 70 [■] (t = 125°C, U / U _н = 1)	15
Б23Б	2	0,004	15 (во всех режимах по ТУ); 100 (t ≤ 55°C, U / U _н ≤ 0,6)	30 (во всех режимах по ТУ); 70^{\blacksquare} (t = 125°C, U / U _H = 1)	15

Примечание. Знаком [■] отмечена продолжительность испытаний на ресурс в режиме, указанном в скобках.

Таблица 8 Значение коэффициента режима ${\sf K}_{\sf p}$ в зависимости от электрической нагрузки и температуры окружающей среды

t, °C					К _р при	U / U _н				
., 0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
Конде	нсаторь	і керами	іческие,	тонкопл	теночны	е с неор	ганичес	ким диэ	лектрик	ОМ
25	0,027	0,034	0,053	0,089	0,149	0,238	0,362	0,527	0,739	1,004
30	0,033	0,041	0,063	0,106	0,178	0,284	0,433	0,631	0,885	1,202
35	0,039	0,049	0,076	0,127	0,213	0,34	0,518	0,755	1,059	1,438
40	0,047	0,059	0,09	0,152	0,255	0,407	0,62	0,903	1,267	1,721
45	0,056	0,07	0,108	0,183	0,305	0,487	0,742	1,081	1,516	2,06
50	0,067	0,084	0,13	0,218	0,365	0,583	0,888	1,294	1,815	2,465
55	0,08	0,101	0,155	0,261	0,437	0,698	1,063	1,548	2,172	2,95
60	0,096	0,12	0,186	0,313	0,523	0,835	1,272	1,853	2,599	3,531
65	0,115	0,144	0,222	0,374	0,625	1,0	1,522	2,218	3,111	4,226
70	0,138	0,172	0,266	0,448	0,748	1,197	1,822	2,654	3,723	5,057
75	0,165	0,206	0,318	0,536	0,896	1,432	2,181	3,176	4,455	6,052
80	0,197	0,247	0,381	0,642	1,072	1,714	2,61	3,802	5,332	7,244
85	0,236	0,295	0,456	0,768	1,283	2,051	3,123	4,55	6,381	8,669
90	0,283	0,354	0,546	0,919	1,536	2,455	3,738	5,445	7,637	10,375
95	0,339	0,423	0,653	1,1	1,838	2,938	4,473	6,517	9,14	12,417
100	0,405	0,506	0,781	1,317	2,199	3,516	5,354	7,799	10,939	14,86
105	0,485	0,606	0,935	1,576	2,632	4,208	6,407	9,334	13,092	17,785
110	0,58	0,725	1,119	1,886	3,15	5,036	7,668	11,171	15,668	21,285
115	0,695	0,868	1,339	2,257	3,77	6,027	9,177	13,369	18,752	25,474
120	0,831	1,039	1,603	2,701	4,512	7,214	10,984	16,0	22,442	30,487
125	0,995	1,243	1,918	3,233	5,4	8,633	13,145	19,149	26,859	36,486
130	1,191	1,488	2,296	3,869	6,463	10,332	15,732	22,918	32,144	43,667
135	1,425	1,781	2,748	4,631	7,735	12,365	18,828	27,428	38,47	52,26
140	1,705	2,132	3,289	5,542	9,257	14,799	22,533	32,825	46,041	62,545
145	2,041	2,551	3,936	6,633	11,079	17,711	26,968	39,285	55,102	74,854
150	2,442	3,053	4,71	7,938	13,259	21,197	32,275	47,017	65,945	89,585
155	2,923	3,654	5,637	9,5	15,868	25,368	38,626	56,269	78,923	107,21

t, °C					К _р при	U / U _н				
ι, σ	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
			Ко	нденсат	оры слн	одяные				
25	0,061	0,068	0,085	0,12	0,178	0,263	0,382	0,541	0,745	1,0
30	0,076	0,085	0,107	0,15	0,222	0,329	0,478	0,677	0,932	1,25
35	0,095	0,106	0,134	0,188	0,278	0,411	0,598	0,846	1,165	1,563
40	0,119	0,132	0,167	0,235	0,347	0,514	0,748	1,058	1,457	1,954
45	0,149	0,165	0,209	0,294	0,434	0,643	0,935	1,323	1,821	2,444
50	0,187	0,207	0,261	0,368	0,543	0,804	1,169	1,654	2,277	3,056
55	0,233	0,259	0,327	0,46	0,679	1,005	1,462	2,068	2,848	3,821
60	0,292	0,323	0,409	0,575	0,849	1,257	1,828	2,586	3,561	4,778
65	0,365	0,404	0,511	0,719	1,061	1,572	2,285	3,234	4,452	5,974
70	0,456	0,505	0,639	0,899	1,327	1,966	2,857	4,044	5,567	7,47
75	0,571	0,632	0,799	1,124	1,659	2,458	3,573	5,056	6,961	9,34
80	0,713	0,79	0,999	1,405	2,075	3,073	4,467	6,322	8,704	11,679
85	0,892	0,988	1,249	1,757	2,594	3,843	5,586	7,906	10,884	14,603
Конденсаторы стеклянные										
25	0,058	0,059	0,065	0,082	0,116	0,178	0,28	0,437	0,666	0,984
30	0,069	0,07	0,077	0,097	0,137	0,211	0,332	0,518	0,788	1,166
35	0,081	0,083	0,092	0,114	0,162	0,25	0,393	0,613	0,934	1,381
40	0,096	0,099	0,109	0,136	0,192	0,296	0,466	0,727	1,106	1,635
45	0,114	0,117	0,129	0,161	0,228	0,35	0,551	0,86	1,31	1,936
50	0,135	0,138	0,152	0,19	0,27	0,415	0,653	1,019	1,551	2,293
55	0,16	0,164	0,18	0,225	0,32	0,491	0,773	1,207	1,837	2,716
60	0,189	0,194	0,214	0,267	0,378	0,581	0,916	1,429	2,175	3,216
65	0,224	0,23	0,253	0,316	0,448	0,689	1,085	1,692	2,576	3,809
70	0,266	0,272	0,3	0,374	0,531	0,816	1,285	2,004	3,051	4,511
75	0,315	0,322	0,355	0,443	0,628	0,966	1,521	2,374	3,613	5,342
80	0,373	0,382	0,42	0,525	0,744	1,144	1,802	2,811	4,279	6,327
85	0,441	0,452	0,498	0,621	0,881	1,355	2,134	3,329	5,067	7,492
90	0,523	0,535	0,59	0,736	1,044	1,604	2,527	3,943	6,001	8,873
95	0,619	0,634	0,698	0,871	1,236	1,9	2,993	4,669	7,107	10,508
100	0,733	0,751	0,827	1,032	1,464	2,25	3,544	5,529	8,417	12,445
105	0,868	0,889	0,979	1,222	1,734	2,665	4,197	6,548	9,968	14,738
110	1,028	1,053	1,16	1,447	2,053	3,156	4,971	7,755	11,804	17,454
115	1,218	1,247	1,373	1,714	2,432	3,737	5,887	9,184	13,98	20,67
120	1,442	1,477	1,627	2,03	2,88	4,426	6,972	10,877	16,556	24,479
125	1,708	1,749	1,926	2,404	3,411	5,241	8,256	12,881	19,607	28,99
130	2,023	2,071	2,281	2,847	4,039	6,207	9,778	15,255	23,22	34,332
135	2,396	2,453	2,702	3,371	4,783 5,665	7,351	11,58	18,066	27,499	40,659
140	2,837	2,905	3,2	3,993	5,665	8,706	13,713	21,395	32,566	48,151
145 150	3,36	3,44	3,789	4,728 5.6	6,709	10,31	16,241	25,338	38,567	57,025
150	3,979	4,074	4,487	5,6	7,945	12,21	19,233	30,007	45,674	67,533

t, °C					К _р при	U / U _H				
i, o	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
		Конд	енсатор	ы бумаж	кные и м	еталло(бумажн ь	ые		
25	0.063	0.070	0.089	0.125	0.184	0.273	0.397	0.561	0.773	1.037
30	0.065	0.072	0.092	0.129	0.190	0.282	0.410	0.580	0.798	1.071
35	0.068	0.076	0.096	0.134	0.199	0.294	0.427	0.605	0.833	1.118
40	0.072	0.080	0.101	0.142	0.210	0.311	0.452	0.640	0.881	1.182
45	0.078	0.086	0.109	0.153	0.226	0.335	0.487	0.689	0.948	1.272
50	0.086	0.095	0.120	0.168	0.249	0.369	0.536	0.758	1.044	1.400
55	0.097	0.107	0.136	0.191	0.282	0.418	0.607	0.859	1.183	1.587
60	0.114	0.126	0.160	0.224	0.331	0.491	0.714	1.010	1.391	1.866
65	0.140	0.156	0.197	0.277	0.408	0.605	0.880	1.245	1.714	2.300
70	0.184	0.204	0.257	0.362	0.534	0.792	1.151	1.629	2.242	3.009
75	0.259	0.287	0.363	0.511	0.754	1.117	1.624	2.298	3.164	4.245
80	0.402	0.446	0.563	0.793	1.170	1.734	2.520	3.567	4.910	6.588
85	0.704	0.780	0.986	1.386	2.047	3.033	4.408	6.239	8.589	11.524
	Конденсаторы оксидно–электролитические алюминиевые									
			-	(кроме и	-					
25	0,144	0,15	0,167	0,199	0,251	0,33	0,439	0,585	0,772	1,006
30	0,167	0,174	0,192	0,229	0,29	0,381	0,507	0,675	0,891	1,161
35	0,194	0,203	0,225	0,268	0,339	0,444	0,592	0,788	1,04	1,355
40	0,23	0,24	0,266	0,317	0,4	0,526	0,7	0,932	1,231	1,603
45	0,276	0,287	0,319	0,38	0,48	0,63	0,839	1,118	1,475	1,922
50	0,336	0,35	0,388	0,462	0,584	0,767	1,021	1,36	1,795	2,338
55	0,415	0,432	0,479	0,571	0,722	0,947	1,262	1,68	2,218	2,889
60	0,521	0,542	0,601	0,717	0,906	1,189	1,584	2,11	2,785	3,628
65	0,665	0,693	0,769	0,916	1,158	1,52	2,025	2,697	3,559	4,636
70	0,866	0,902	1,001	1,192	1,508	1,979	2,636	3,51	4,633	6,035
75	1,15	1,198	1,328	1,582	2,001	2,626	3,499	4,659	6,15	8,011
80	1,558	1,623	1,8	2,144	2,712	3,559	4,741	6,314	8,333	10,856
85	2,158	2,248	2,493	2,97	3,756	4,929	6,566	8,745	11,542	15,035
90	2,599	2,707	3,002	3,577	4,524	5,937	7,908	10,532	13,901	
95	3,173	3,306	3,666	4,367	5,524	7,249	9,657	12,86	16,974	
100	3,928	4,092	4,538	5,407	6,838	8,974	11,955	15,921	21,014	
105	4,934	5,14	5,7	6,791	8,589	11,272	15,016	19,998	26,395	
110	6,293	6,556	7,27	8,661	10,955	14,376	19,151	25,504	33,663	
115	8,156	8,497	9,422	11,225	14,198	18,632	24,82	33,055		
120	10,75	11,2	12,42	14,796	18,714	24,559	32,716	43,57		
125	14,424	15,027	16,664	19,853	25,11	32,952	43,896	58,46		

t, °C					К _р при	ı U / U _н				
i, o	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
	1	Конде	нсаторы	ы объем	іно–пор	истые та	нталов	-I e		
25	0,061	0,068	0,086	0,121	0,178	0,264	0,384	0,544	0,748	1,004
30	0,066	0,074	0,093	0,131	0,193	0,286	0,416	0,589	0,811	1,088
35	0,073	0,081	0,102	0,144	0,212	0,314	0,456	0,646	0,889	1,193
40	0,081	0,09	0,113	0,159	0,235	0,349	0,507	0,717	0,987	1,325
45	0,091	0,101	0,128	0,18	0,265	0,393	0,571	0,808	1,112	1,492
50	0,104	0,116	0,146	0,205	0,303	0,449	0,653	0,924	1,273	1,708
55	0,122	0,135	0,17	0,239	0,353	0,524	0,761	1,077	1,483	1,989
60	0,144	0,16	0,202	0,284	0,42	0,622	0,904	1,28	1,762	2,364
65	0,175	0,194	0,246	0,345	0,51	0,756	1,098	1,555	2,14	2,872
70	0,218	0,242	0,306	0,43	0,635	0,941	1,367	1,935	2,664	3,575
75	0,279	0,309	0,391	0,55	0,812	1,203	1,749	2,475	3,407	4,572
80	0,368	0,408	0,515	0,725	1,07	1,586	2,305	3,262	4,491	6,025
85	0,501	0,555	0,702	0,987	1,458	2,16	3,14	4,443	6,117	8,208
90	0,556	0,616	0,779	1,096	1,618	2,397	3,484	4,931	6,788	
95	0,646	0,715	0,904	1,271	1,877	2,781	4,043	5,721	7,877	
100	0,762	0,844	1,067	1,501	2,216	3,283	4,772	6,754	9,298	
105	0,917	1,015	1,283	1,805	2,665	3,949	5,74	8,123		
110	1,125	1,247	1,576	2,216	3,273	4,848	7,047	9,974		
115	1,413	1,566	1,979	2,783	4,11	6,089	8,85	12,525		
120	1,82	2,016	2,547	3,583	5,291	7,838	11,393			
125	2,407	2,666	3,369	4,739	6,998	10,367	15,069			
		Конд	ценсатор	ы оксид	цно – пол	упровод	цниковы	е		
25	0,152	0,159	0,176	0,21	0,265	0,348	0,463	0,617	0,814	1,061
30	0,171	0,178	0,197	0,235	0,297	0,39	0,519	0,691	0,912	1,188
35	0,192	0,2	0,221	0,264	0,333	0,438	0,583	0,776	1,024	1,335
40	0,216	0,225	0,249	0,297	0,376	0,493	0,656	0,874	1,154	1,503
45	0,244	0,254	0,282	0,335	0,424	0,557	0,742	0,988	1,304	1,698
50	0,276	0,288	0,319	0,38	0,481	0,631	0,84	1,119	1,477	1,924
55	0,314	0,327	0,362	0,432	0,546	0,717	0,955	1,271	1,678	2,186
60	0,358	0,372	0,413	0,492	0,622	0,817	1,088	1,449	1,913	2,491
65	0,409	0,426	0,472	0,562	0,711	0,934	1,244	1,656	2,186	2,848
70	0,469	0,488	0,541	0,645	0,816	1,07	1,426	1,899	2,506	3,265
75	0,539	0,561	0,622	0,742	0,938	1,231	1,64	2,184	2,882	3,754
80	0,621	0,647	0,718	0,855	1,082	1,42	1,891	2,519	3,324	4,331
85	0,719	0,749	0,831	0,99	1,252	1,643	2,188	2,914	3,846	5,01
90	0,834	0,869	0,964	1,149	1,453	1,906	2,539	3,382	4,464	5,815
95	0,971	1,012	1,122	1,337	1,691	2,219	2,956	3,937	5,197	6,77
100	1,134	1,182	1,311	1,562	1,975	2,592	3,453	4,598	6,069	7,906
105	1,329	1,385	1,536	1,829	2,314	3,036	4,045	5,387	7,11	9,262
110	1,562	1,627	1,805	2,15	2,719	3,568	4,754	6,331	8,356	10,885
115	1,842	1,919	2,128	2,535	3,206	4,207	5,604	7,464	9,852	12,833
120	2,178	2,269	2,517	2,998	3,792	4,976	6,629	8,828	11,652	15,179

t, °C					К _р при	U / U _н				
,, 5	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
125	2,585	2,693	2,986	3,558	4,5	5,905	7,866	10,476	13,827	18,012
130	3,596	3,747	4,155	4,95	6,261	8,216	10,945	14,576	19,239	25,061
135	4,171	4,345	4,818	5,74	7,26	9,528	12,692	16,903	22,31	29,063
140	4,85	5,053	5,603	6,675	8,443	11,079	14,759	19,656	25,944	33,796
145	5,655	5,892	6,534	7,784	9,845	12,919	17,21	22,921	30,252	39,409
150	6,613	6,889	7,64	9,102	11,512	15,107	20,125	26,802	35,375	46,082
155	7,754	8,078	8,959	10,673	13,499	17,715	23,598	31,428	41,481	54,036
Конденсаторы с органическим синтетическим диэлектриком (кроме фторопластовых и высоковольтных импульсных)										
	Ì			l	İ	İ	İ	I	I	l
25	0,061	0,068	0,086	0,121	0,178	0,264	0,383	0,543	0,747	1,003
30	0,063	0,07	0,089	0,125	0,184	0,272	0,396	0,56	0,772	1,035
35	0,066	0,073	0,092	0,13	0,192	0,284	0,413	0,585	0,805	1,08
40	0,07	0,077	0,098	0,137	0,203	0,301	0,437	0,619	0,852	1,143
45	0,075	0,083	0,105	0,148	0,218	0,324	0,47	0,666	0,917	1,23
50	0,083	0,092	0,116	0,163	0,24	0,356	0,518	0,733	1,009	1,354
55	0,094	0,104	0,131	0,185	0,272	0,404	0,587	0,83	1,143	1,534
60	0,11	0,122	0,154	0,217	0,32	0,475	0,69	0,976	1,344	1,804
65 70	0,136	0,15	0,19	0,267	0,395	0,585	0,85	1,203	1,657	2,223
70 75	0,178	0,197	0,249	0,35	0,517	0,765	1,112	1,574	2,167	2,908
75 80	0,251	0,278	0,351	0,494	0,729	1,08	1,57	2,221	3,058	4,103
80 95	0,389	0,431	0,545	0,766	1,131	1,676	2,436	3,447	4,746	6,368
85 90	0,681 0,756	0,754 0,837	0,953 1,058	1,34 1,489	1,979 2,198	2,931 3,256	4,261 4,733	6,03 6,698	8,302 9,222	11,139 12,373
95 95	0,750	0,857	1,209	1,701	2,190	3,72	5,407	7,652	10,535	14,135
100	1,021	1,131	1,43	2,011	2,969	4,399	6,394	9,05	12,459	16,717
105	1,261	1,396	1,765	2,483	3,666	5,431	7,894	11,171	15,38	20,636
110	1,641	1,818	2,298	3,232	4,772	7,069	10,276	14,543	20,021	26,864
115	2,281	2,527	3,193	4,492	6,632	9,826	14,283	20,213	27,828	37,338
120	3,437	3,807	4,811	6,768	9,993	14,804	21,519	30,454	41,927	
125	5,716	6,332	8,003	11,257	16,621	24,624			69,738	
	,	,		, нсаторь	•	•	•	,	,	,
25	0,057	0,063	0,079	0,112	0,165	0,244	0,355	0,502	0,691	0,927
30	0,057	0,063	0,079	0,112	0,165	0,244	0,356	0,502	0,694	0,927
35	0,057	0,063	0,08	0,112	0,166	0,247	0,359	0,507	0,699	0,937
40	0,058	0,064	0,081	0,114	0,168	0,249	0,362	0,512	0,704	0,945
45	0,058	0,065	0,082	0,115	0,17	0,251	0,366	0,517	0,712	0,956
50	0,059	0,066	0,083	0,117	0,172	0,255	0,371	0,525	0,722	0,969
55	0,06	0,067	0,084	0,119	0,175	0,26	0,378	0,535	0,736	0,987
60	0,062	0,068	0,087	0,122	0,18	0,266	0,387	0,548	0,754	1,011
65	0,064	0,071	0,089	0,126	0,185	0,275	0,399	0,565	0,778	1,043
70	0,066	0,073	0,093	0,131	0,193	0,286	0,415	0,588	0,809	1,086
75	0,07	0,077	0,098	0,137	0,203	0,301	0,437	0,619	0,852	1,143
80	0,075	0,083	0,104	0,147	0,217	0,321	0,467	0,66	0,909	1,22

t, °C					К _р при	U / U _н				
ι, τ	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
85	0,44	0,487	0,616	0,866	1,279	1,895	2,754	3,898	5,367	7,201
90	0,442	0,49	0,619	0,87	1,285	1,904	2,767	3,917	5,392	7,235
95	0,445	0,492	0,622	0,876	1,293	1,915	2,784	3,94	5,424	7,278
100	0,448	0,496	0,627	0,882	1,303	1,93	2,805	3,97	5,465	7,333
105	0,452	0,501	0,633	0,89	1,315	1,948	2,831	4,007	5,517	7,402
110	0,458	0,507	0,641	0,901	1,33	1,971	2,865	4,055	5,582	7,49
115	0,464	0,514	0,65	0,914	1,35	2,0	2,908	4,115	5,665	7,601
120	0,473	0,524	0,662	0,931	1,375	2,037	2,961	4,191	5,77	7,742
125	0,484	0,536	0,677	0,953	1,407	2,084	3,029	4,287	5,903	7,92
130	0,498	0,551	0,697	0,98	1,447	2,144	3,116	4,41	6,071	8,146
135	0,515	0,571	0,721	1,015	1,498	2,22	3,226	4,566	6,286	8,434
140	0,538	0,596	0,753	1,059	1,564	2,317	3,367	4,766	6,561	8,803
145	0,567	0,628	0,794	1,116	1,648	2,442	3,549	5,023	6,916	9,279
150	0,605	0,67	0,846	1,191	1,758	2,604	3,786	5,358	7,376	9,897
155	0,654	0,725	0,916	1,288	1,902	2,818	4,096	5,797	7,981	10,709
160	0,72	0,798	1,008	1,418	2,094	3,102	4,51	6,382	8,786	11,789
165	0,81	0,897	1,133	1,594	2,354	3,487	5,069	7,174	9,877	13,252
170	0,933	1,034	1,306	1,838	2,713	4,02	5,843	8,269	11,384	15,275
175	1,108	1,228	1,552	2,183	3,223	4,774	6,94	9,822	13,522	18,143
180	1,365	1,512	1,91	2,687	3,968	5,878	8,545	12,093	16,649	22,338
185	1,754	1,943	2,455	3,454	5,1	7,555	10,982	15,542	21,397	28,71
190 195	2,373 3,411	2,628 3,778	3,322 4,775	4,672 6,717	6,899 9,917	10,22 14,692	14,856 21,356	21,024 30,224	28,945 41,611	38,836
200	5,271	5,838	7,379	10,379	15,326	22,705		46,708	64,304	55,831 86,279
200	J,27 1	•	•	•	•	•	, оо,ооч (авляю ц	•	04,504	100,270
25	0,027	0,034	0,053	0,089	0,149	0,238	0,362	0,527	0,739	1 004
25 30	0,027	0,034	0,053	0,009	0,149	0,236	0,302	0,631	0,739	1,004 1,202
35	0,033	0,041	0,003	0,100	0,178	0,204	0,433	0,051	1,059	1,438
40	0,047	0,059	0,070	0,152	0,215	0,407	0,62	0,903	1,267	1,721
45	0,056	0,07	0,108	0,183	0,305	0,487	0,742	1,081	1,516	2,06
50	0,067	0,084	0,13	0,218	0,365	0,583	0,888	1,294	1,815	2,465
55	0,08	0,101	0,155	0,261	0,437	0,698	1,063	1,548	2,172	2,95
60	0,096	0,12	0,186	0,313	0,523	0,835	1,272	1,853	2,599	3,531
65	0,115	0,144	0,222	0,374	0,625	1,0	1,522	2,218	3,111	4,226
70	0,138	0,172	0,266	0,448	0,748	1,197	1,822	2,654	3,723	5,057
75	0,165	0,206	0,318	0,536	0,896	1,432	2,181	3,176	4,455	6,052
80	0,197	0,247	0,381	0,642	1,072	1,714	2,61	3,802	5,332	7,244
85	0,236	0,295	0,456	0,768	1,283	2,051	3,123	4,55	6,381	8,669
90	0,283	0,354	0,546	0,919	1,536	2,455	3,738	5,445	7,637	10,375
95	0,339	0,423	0,653	1,1	1,838	2,938	4,473	6,517	9,14	12,417
100	0,405	0,506	0,781	1,317	2,199	3,516	5,354	7,799	10,939	14,86
105	0,485	0,606	0,935	1,576	2,632	4,208	6,407	9,334	13,092	17,785
110	0,58	0,725	1,119	1,886	3,15	5,036	7,668	11,171	15,668	21,285

t, °C					К _р при	U / U _H				
1, 0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
115	0,695	0,868	1,339	2,257	3,77	6,027	9,177	13,369	18,752	25,474
120	0,831	1,039	1,603	2,701	4,512	7,214	10,984	16,0	22,442	30,487
125	0,995	1,243	1,918	3,233	5,4	8,633	13,145	19,149	26,859	36,486
	К	онденса	торы по	дстроеч	ные с те	вердым	диэлект	риком		
25	0,027	0,034	0,053	0,089	0,149	0,238	0,362	0,527	0,739	1,004
30	0,033	0,041	0,063	0,106	0,178	0,284	0,433	0,631	0,885	1,202
35	0,039	0,049	0,076	0,127	0,213	0,34	0,518	0,755	1,059	1,438
40	0,047	0,059	0,09	0,152	0,255	0,407	0,62	0,903	1,267	1,721
45	0,056	0,07	0,108	0,183	0,305	0,487	0,742	1,081	1,516	2,06
50	0,067	0,084	0,13	0,218	0,365	0,583	0,888	1,294	1,815	2,465
55	0,08	0,101	0,155	0,261	0,437	0,698	1,063	1,548	2,172	2,95
60	0,096	0,12	0,186	0,313	0,523	0,835	1,272	1,853	2,599	3,531
65	0,115	0,144	0,222	0,374	0,625	1,0	1,522	2,218	3,111	4,226
70	0,138	0,172	0,266	0,448	0,748	1,197	1,822	2,654	3,723	5,057
75	0,165	0,206	0,318	0,536	0,896	1,432	2,181	3,176	4,455	6,052
80	0,197	0,247	0,381	0,642	1,072	1,714	2,61	3,802	5,332	7,244
85	0,236	0,295	0,456	0,768	1,283	2,051	3,123	4,55	6,381	8,669
90	0,283	0,354	0,546	0,919	1,536	2,455	3,738	5,445	7,637	10,375
95	0,339	0,423	0,653	1,1	1,838	2,938	4,473	6,517	9,14	12,417
100	0,405	0,506	0,781	1,317	2,199	3,516	5,354	7,799	10,939	14,86
105	0,485	0,606	0,935	1,576	2,632	4,208	6,407	9,334	13,092	17,785
110	0,58	0,725	1,119	1,886	3,15	5,036	7,668	11,171	15,668	21,285
115	0,695	0,868	1,339	2,257	3,77	6,027	9,177	13,369	18,752	25,474
120	0,831	1,039	1,603	2,701	4,512	7,214	10,984	16,0	22,442	30,487
125	0,995	1,243	1,918	3,233	5,4	8,633	13,145	19,149	26,859	36,486
	Кон	іденсато	ры под	строечн	ые с воз	здушны	м диэлеі	ктриком		
25	0,036	0,043	0,061	0,097	0,157	0,245	0,369	0,534	0,745	1,009
30	0,042	0,05	0,071	0,113	0,182	0,285	0,429	0,621	0,866	1,173
35	0,049	0,058	0,083	0,132	0,212	0,332	0,499	0,722	1,008	1,365
40	0,057	0,067	0,096	0,153	0,246	0,386	0,58	0,839	1,172	1,587
45	0,066	0,078	0,112	0,178	0,287	0,449	0,675	0,976	1,362	1,845
50	0,076	0,091	0,13	0,207	0,333	0,522	0,785	1,135	1,584	2,145
55	0,089	0,106	0,152	0,241	0,388	0,607	0,913	1,319	1,842	2,495
60	0,103	0,123	0,176	0,28	0,451	0,705	1,061	1,534	2,142	2,901
65	0,12	0,143	0,205	0,325	0,524	0,82	1,234	1,784	2,491	3,373
70	0,14	0,166	0,238	0,378	0,609	0,954	1,435	2,075	2,896	3,922
75	0,163	0,193	0,277	0,44	0,709	1,109	1,668	2,412	3,368	4,561
80	0,189	0,225	0,322	0,512	0,824	1,29	1,94	2,805	3,916	5,303
85	0,22	0,262	0,375	0,595	0,958	1,5	2,256	3,262	4,554	6,167

Таблица 9
Значение коэффициента К₁ в зависимости от температуры окружающей среды для импульсных конденсаторов

	K _t			K _t	
t, °C	оксидно- электролитические алюминиевые	комбинированные высоковольтные	t, °C	оксидно– электролитические алюминиевые	комбинированные высоковольтные
25	1,01	1	80	10,86	6,34
30	1,16	1,03	85	15,04	11,09
35	1,36	1,08	90	-	12,32
40	1,6	1,14	95	-	14,08
45	1,92	1,22	100	-	16,65
50	2,34	1,35	105	-	20,55
55	2,89	1,53	110	-	26,76
60	3,63	1,79	115	-	37,19
65	4,64	2,21	120	-	56,03
70	6,04	2,89	125	-	93,2
75	8,01	4,08			

Таблица 10

Значения коэффициента К_С в зависимости от номинальной емкости и математические модели его расчета для отдельных групп конденсаторов

Емкость	K _C	Емкость	Κ _C							
	Керами	ческие								
$K_C = 0, 4 \cdot C^{0,12} \ (C - \text{емкость}, \ \Pi \Phi)$										
1 0,40 10 ⁴ 1,21										
10	0,53	10 ⁵	1,59							
100	0,70	10 ⁶	2,10							
10 ³	0,92	6,8·10 ⁶	2,64							
	Стекл	янные								
	$K_C = 0.4 \cdot C^{0.12}$ (C	– емкость, пФ)								
2,2	0,44	2·10 ³	1,00							
20	0,57	2·10 ⁴	1,31							
200	0,76									

Емкость	Кc	Емкость	Кc
	Слюд	цяные	
	$K_C = 0.4 \cdot C^{0.14}$ (C	– емкость, пФ)	
50	0,69	2·10 ⁴	1,60
200	0,84	2·10 ⁵	2,21
2·10 ³	1,16	10 ⁶	2,77
	Бумажные и ме	таллобумажные	
	$K_C=C^{0,05}$ (C – ϵ	емкость, мкФ)	
0,001	0,71	10	1,12
0,01	0,79	100	1,26
0,1	0,89	200	1,3
1	1		
	Оксидно-электролити	ческие алюминиевые	
$\leq 10^3$ мкФ	1	> 22·10 ³	2,5
$> 10^3 \le 22 \cdot 10^3$	2		
	Оксидно–полуг	троводниковые	
	Kc	=1	
	С органическим синтет	ическим диэлектриком	Л
	$K_C = C^{0,05} (C - \epsilon)$	емкость, мкФ)	
10 ⁻⁵	0,56	1	1,00
10 ⁻⁴	0,63	10	1,12
10 ⁻³	0,71	100	1,26
0,01	0,79	150	1,28
0,1	0,89		
	Объемно-порис	тые танталовые	
	$K_{\rm C} = 0.45 \cdot {\rm C}^{0.14}$ (C	– емкость, мкФ)	
1,5	0,48	1000	1,18
10	0,62	2200	1,32
100	0,86		

Таблица 11

Значения коэффициента К_{п.с} в зависимости от величины активного последовательного сопротивления для оксидно-полупроводниковых конденсаторов

Номинальное	Рабочая	П/П.		К _{п.с} п	ри R / U, d	ом / В			
напряжение, В	температура, °С	0 / O _H	< 0,1	≥0,1<1	≥1<2	≥ 2 <3	≥ 3		
	≤ 85	≤ 1	1						
	> 95 / 100	≤0,7			1				
≤ 6,3	> 00 ≥ 100	> 0,7	3,5	1,6	1,35	1,2	1		
	>100 < 125	≤ 0,5			1				
	температура, °C 0 7 0 _H ≤ 85 ≤ 1 > 85 ≤ 100 ≤0,7 > 100 ≤ 125 ≤ 0,5 ≤ 50 ≤ 1 > 50 ≤ 85 ≤ 0,7 > 85 ≤ 100 ≤ 0,7 > 100 ≤ 125 ≤ 0,7 ≤ 50 ≤ 0,5 > 0,5 ≤ 0,7 ≥ 0,5 > 0,7 ≤ 0,5 > 0,5 ≤ 0,7 > 0,7 ≤ 0,4 > 0,4 ≤ 0,7 ≤ 0,3	> 0,5 ≤ 0,7	2	1,4	1,2	1,1	1		
	≤ 50	≤ 1			1				
	> 50 < 85	≤ 0,7			1				
	> 50 ≤ 65	> 0,7	2,5	1,5	1,25	1,125	1		
> 6,3 ≤ 16	> 85 < 100	≤ 0,7			1				
	> 03 ≤ 100	> 0,7	4	1,8	1,4	1,2	1		
	>100 < 125	≤ 0,5			1				
	> 100 ≤ 125	> 0,5 ≤ 0,7	4	1,8	1,4	1,2	1		
	< 50	≤ 0,7			1				
	≥ 50	> 0,7	2	1,4	1,2	1,1	1		
		≤ 0,5			1				
	> 50 ≤ 85	> 0,5 ≤ 0,7	2	1,4	1,2	1,1	1		
		> 0,7	4	1,8	1,4	1,2	1		
> 16		≤ 0,4			1				
	> 85 ≤ 100	> 0,4 ≤ 0,7	4	1,8	1,4	1,2	1		
		> 0,7	5	2	1,5	1,25	1		
		≤ 0,3			1				
	>100 ≤ 125	> 0,3 ≤ 0,7	4	1,8	1,4	1,2	1		
			5	2	1,5	1,25	1		

Таблица 12

Значения K_{tx} в зависимости от температуры окружающей среды для различных групп конденсаторов

Группа изделий	К _{tх} при температуре окружающей среды, °С								
	25	30	35	40	45	50	55	60	
Керамические, тонкопленочные с неорганическим диэлектриком, помехоподавляющие фильтры	1	1	1	1,57	1,87	2,24	2,68	3,21	
Стеклянные				1,61	1,90	2,25	2,67	3,16	
Слюдяные				2,00	2,5	3,13	3,91	4,89	
Бумажные и металлобумажные				1,17	1,26	1,39	1,58	1,85	
Оксидно-полупроводниковые	1	1	1	1,43	1,61	1,83	2,08	2,37	
С органическим синтетическим диэлектриком	'	1	ı	1,17	1,26	1,39	1,58	1,85	
Подстроечные с твердым диэлектриком				1,57	1,87	2,24	2,68	3,21	
Подстроечные воздушные				1,42	1,65	1,92	2,23	2,59	

Таблица 13 Значения коэффициента жесткости условий эксплуатации К₃ для различных групп конденсаторов

		Значения К₃ по группам аппаратуры ГОСТ В 20.39.304-98													
Группа изделий	1.1	1.2	1.3 ÷ 1.10	2.1.1, 2.1.2, 2.3.1, 2.3.2	2.1.3, 2.3.3	2.1.5, 2.3.5	2.2, 2.4, 2.1.4, 2.3.4	3.1	3.2	3.3, 3.4		4.93 условиясвобод- ного полета	4.6 ях брею- щего полета	5.1, 5.2	
Керамические	1	1,5	5	3	5	6	5	8	4	8	12	5	7	1	
Тонкопленочные с неорганическим диэлектриком															
Стеклянные															
Слюдяные															
Бумажные и металлобумажные	1	1,5	5	4	5	6	5	8	4	8	9	5	6	1	
Оксидно— электролитические алюминиевые	1	2	5	4	6	7	6	11	5	11	14	6	8	1	
Объемно - порис- тые танталовые	1	2	5	4	6	7	6	10	5	11	13	5	7	1	
Оксидно— полупроводниковые	1	1,5	5	4	5	6	5	8	4	8	9	5	6	1	
С органическим синтетическим диэлектриком															
Подстроечные с твердым диэлек-триком	1	2	6	5	6	7	6	10	5	10	13	5	7	1	
Подстроечные воздушные	1	2,5	6	5	6	7	6	11	5	11	14	6	8	1	
Конденсаторы и фильтры помехо- подавляющие	1	1,5	5	3	5	6	5	8	4	8	12	5	7	1	