Assignment #3

1. Use the Matrix Inversion Lemma (Woodbury's identity) to derive a recursion for the inverse of the estimated input autocorrelation matrix $[\widehat{\mathbf{R}}(k)]^{-1}$ based on the sample-average recursion

$$\widehat{\mathbf{R}}(k) = \frac{(k-1)\widehat{\mathbf{R}}(k-1) + \mathbf{r}_k \mathbf{r}_k^H}{k}$$

where \mathbf{r}_k , k = 1, 2, ..., are the array input vectors.

- 2. Show that $\alpha_1 = \frac{\alpha'_1}{\text{SINR}^{\text{opt}}(1-\alpha'_1)+1}$ where SINR by the antenna array and α_1 , α'_1 are as defined in the lectures.
- 3. Design a simulation to estimate $E\{\alpha_1\}$, $E\{\alpha_2\}$, and $E\{\alpha_3\}$ (α_1 , α_2 , α_3 as defined in the lectures). Consider BPSK transmissions of one user of interest and three interferers. Assume M=10 and arbitrary in $(-90^{\circ}, 90^{\circ})$ but fixed angles of arrival.
 - (a) For some fixed SNR values for the user signals, plot your estimated means of α_1 , α_2 , and α_3 as a function of N from N = 10 to 200.
 - (b) Keep the SNRs of the interferences as in Part (a) and plot the estimated means of α_1 , α_2 , and α_3 as a function of the SNR of the user of interest for N = 10, 50, 100, 200.

Comment on your findings.