Министерство науки и высшего образования Российской Федерации Федеральное государственное образовательное учреждение высшего образования

ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Институт математики и информационных систем Факультет автоматики и вычислительной техники Кафедра систем автоматизации управления

Дисциплина: Математические основы теории систем

Выполнил студент Ердяков Роман Александрович группы ИТб 2302-02-20 Проверил Поздин Владимир Николаевич

СОДЕРЖАНИЕ

1	Задание	3
2	Задание	3
4	Задание	5
5	Задание	6
6	Задание	7
7	Задание	8
8	Задание	10
9	Задание	11
	Задание	

1 Задание

Задача 1

Приняв множество первых 20 натуральных чисел в качестве универсума, запишите следующие его подмножества: A — четных чисел, D — простых чисел

Решение:

Примем универсум как множество первых 20 натуральных чисел:

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}$$

Теперь выделим нужные подмножества:

А — множество чётных чисел:

$$A = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}$$

D — множество простых чисел:

$$D = \{2, 3, 5, 7, 11, 13, 17, 19\}$$

Задача 2

Запишите множество, получаемое в результате операции $A \cap D$ над множествами из задачи 1

Решение:

Общие элементы в этих двух множествах: только число 2, так как это единственное чётное простое число.

$$A \cap D = \{2\}$$

2 Задание

Даны два множества $X = \{x_1, x_2, x_3, x_4, x_5\}$ и $Y = \{y_1, y_2, y_3, y_4\}$ и определено бинарное отношение $A = \{(x_1, y_3), (x_2, y_1), (x_2, y_3), (x_2, y_4), (x_3, y_1), (x_3, y_4), (x_4, y_3), (x_5, y_2), (x_5, y_4)\}$

Записать для данного отношения область определения и область значений. Определить сечения по каждому элементу из X. Записать фактор-множество Y/A.

Репление:

Область определения – множество всех х, которые участвуют в парах. Из отношения видно, что участвуют все элементы X, значит область определения равна:

$$D = \{x_1, x_2, x_3, x_4, x_5\}$$

Область значения – множество всех у, которые участвуют в парах. Из отношения видно, что участвуют все элементы Y, значит область значения равна:

$$R = \{y_1, y_2, y_3, y_4\}$$

Сечения по каждому элементу из X это множество $A(x_i)$ - множество всех y_j с которыми связан x_i :

$$A(x_i) = \{y_3\}$$

$$A(x_2) = \{y_1, y_3, y_4\}$$

$$A(x_3) = \{y_1, y_2, y_4\}$$

$$A(x_4) = \{y_3\}$$

$$A(x_5) = \{y_2, y_4\}$$

 Φ актор множества Y/A — разделение множества Y на группы, где внутри группы — элементы, которые хоть раз встречались вместе у одного x. Анализируя это:

$$y_1, y_3, y_4$$
 — встречаются вместе в $A(x_2)$

$$y_1, y_2, y_4$$
 — встречаются вместе в $A(x_3)$

$$y_2, y_4$$
 — встречаются вместе в $A(x_5)$

Значит Y/A одна группа = $\{\{y_1, y_2, y_3, y_4\}\}$

3 Задание

Найти расстояния между двоичными словами x = (01110101), y = (00110111) и z = (11110010).

Решение:

Расстояние между двоичными словами – количество позиций, в которых соответствующие символы различаются.

Сравним х и у:

X	0	1	1	1	0	1	0	1
У	0	0	1	1	0	1	1	1
различия	0	1	0	0	0	0	1	0

Итого 2 отличия

Сравним х, z:

X	0	1	1	1	0	1	0	1
Z	1	1	1	1	0	0	1	0
различия	1	0	0	0	0	1	1	1

Итого 4 отличия

Сравним у, z:

У	0	0	1	1	0	1	1	1
z	1	1	1	1	0	0	1	0
различия	1	1	0	0	0	1	0	1

Итого 4 отличия

Ответ: Расстояния между двоичными словами (x, y) = 2, (x, z) = 4, (y, z) = 4

4 Задание

Построить граф заданный матрицей смежности. Классифицировать полученный граф, записать матрицу инцидентности.

Матрица смежности
$$S = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Решение

Построим граф на рисунке 1

Рисунок 1. Граф

Классификация графа: неориентированный, так как его матрица смежности симметрична, имеет петлю S[3][3], не связный так как нет пути от любой вершины к любой.

Матрица инцидентности:

Вершины/ребра	e1	e2	e3	e4	e5
v1	1	0	0	0	0
v2	0	1	1	0	0
v3	1	1	0	2	1
v4	0	0	0	0	0
v5	0	0	1	0	1

5 Задание

Постройте таблицы истинности для функции:

$$f(x) = \bar{x}_4 x_3 x_2 \bar{x}_1 + \bar{x}_4 x_3 \bar{x}_2 x_1 + \bar{x}_4 \bar{x}_3 x_2 \bar{x}_1 + \bar{x}_4 \bar{x}_3 x_2 x_1 + \bar{x}_4 x_3 x_2 x_1 + x_4 \bar{x}_3 x_2 \bar{x}_1$$

Решение:

X 4	Х 3	Х 2	<i>X</i> ₁	\overline{x}_4	\bar{x}_3	\bar{x}_2	\bar{x}_1	f(x)
0	0	0	0	1	1	1	1	0
0	0	0	1	1	1	1	0	0
0	0	1	0	1	1	0	1	1
0	0	1	1	1	1	0	0	1
0	1	0	0	1	0	1	1	0
0	1	0	1	1	0	1	0	1
0	1	1	0	1	0	0	1	1
0	1	1	1	1	0	0	0	0
1	0	0	0	0	1	1	1	0
1	0	0	1	0	1	1	0	0
1	0	1	0	0	1	0	1	0
1	0	1	1	0	1	0	0	0
1	1	0	0	0	0	1	1	0
1	1	0	1	0	0	1	0	0
1	1	1	0	0	0	0	1	0
1	1	1	1	0	0	0	0	0

6 Задание

Синтезируйте структурную схему конечного автомата Мили и таблицу истинности его комбинационной схемы, если автомат задан таблицей переходов $s(\nu+1) = \delta(x(\nu), s(\nu))$ и таблицей выходов $y(\nu) = \lambda(x(\nu), s(\nu))$.

$s(\nu+1) = \delta(x(\nu), s(\nu))$)

x_i	0	1	2	3	4	5
0	4	2	3	1	4	1
1	3	2	1	3	1	4
2	3	2	1	3	4	5
3	3	2	2	3	5	1
4	3	0	0	1	0	2

<i>y</i> (<i>r j y v</i> (<i>v</i> (<i>r j</i> , <i>s</i> (<i>r j j</i>)	y(v)	$=\lambda(x(1$	(v), s(v))
---	------	----------------	------------

X_i S_i	0	1	2	3	4	5
0	2	0	0	0	0	3
1	3	1	2	0	1	0
2	1	1	3	1	1	0
3	1	0	0	1	1	0
4	3	3	0	1	2	0
5	0	3	0	2	1	0

Решение:

Схема:

Таблицу истинности его комбинационной схемы:

Xi	Si	$\sigma(x_i, s_i)$	$\lambda(x_i, s_i)$
0	0	4	2
0	1	2	0
0	2	3	0
0	3	1	0
0	4	4	0
0	5	1	3

1	0	3	3
1	1	2	1
1	2	1	2
1	3	3	0
1	4	1	1
1	5	4	0
2	0	3	1
2	1	2	1
2	2	1	3
2	3	3	1
2	4	4	1
2	5	5	0
3	0	3	1
3	1	2	0
3	2	2	0
3	3	3	1
3	4	5	1
3	5	1	0
4	0	3	3
4	1	0	3
4	2	0	0
4	3	1	1
4	4	0	2
4	5	2	0
5	0	1	0
5	1	3	3
5	2	3	0
5	3	4	2
5	4	5	1
5	5	0	0

7 Задание

Для периодической импульсной последовательности, изображенной на рисунке и имеющей параметры $U_{\scriptscriptstyle m}=10~B$, $t_{\scriptscriptstyle u}=10~{\rm mkc}$, $T=30~{\rm mkc}$ запишите ряд Фурье и постройте спектр

Решение:

Ряд Фурье для периодической импульсной последовательности

$$u(t) = U_0 + \sum_{n=1}^{\infty} (a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)),$$

где:

- $\omega_0 = (2\pi)/T$ круговая частота повторения,
- U_0 постоянная составляющая,
- a_n , b_n коэффициенты ряда Фурье

Постоянная составляющая (U_0):

$$U_0 = \frac{1}{T} \int_{-T/2}^{T/2} u(t)dt = \frac{U_m t_u}{T} = \frac{10 * 10 * 10^{-6}}{30 * 10^{-6}} = \frac{10}{3} B$$

Коэффициенты a_n вычисляются по формуле:

$$a_n = \frac{2}{T} \int_{-\frac{t_u}{2}}^{\frac{t_u}{2}} U_m \cos(n\omega_0 t) dt$$

После интегрирования получаем:

$$a_n = \frac{2U_m}{T} * \frac{\sin\left(\frac{n\omega_0 t_u}{2}\right)}{\frac{n\omega_0}{2}} = \frac{2U_m t_u}{T} * \frac{\sin\left(\frac{n\pi t_u}{T}\right)}{\frac{n\pi t_u}{T}}$$

Подставляя числовые значения $\frac{t_u}{T} = \frac{10}{30} = \frac{1}{3}$

$$a_n = \frac{2 * 10 * 10 * 10^{-6}}{30 * 10^{-6}} * \frac{\sin\left(\frac{n\pi}{3}\right)}{\frac{n\pi}{3}} = \frac{20}{3} * sinc\left(\frac{n\pi}{3}\right),$$

где $sinc(x) = \frac{\sin(x)}{x}$

Окончательный ряд Фурье:

$$u(t) = \frac{10}{3} + \frac{20}{3} \sum_{n=1}^{\infty} \operatorname{sinc}\left(\frac{n\pi}{3}\right) \cos\left(n\omega_{0t}\right)$$

Значения первых гармоник:

n	Частота $n*f_0$ (к Γ ц)	$C_n(B)$
0	0	3.33
1	33.33	2.76
2	66.67	1.38
3	100	0
4	133.33	-0.69
5	166.67	-0.55
6	200	0

8 Задание

Задана матрица
$$A = \begin{bmatrix} 1+j2 & 4 & 2-j3 \\ -j & 2 & 4+j2 \\ 5-j3 & 1 & -j5 \end{bmatrix}$$
. Найдите транспонированную матрицу A^T .

Решение:

Транспонирование – операция над матрицей, при которой ее строки и столбцы меняются местами:

Ответ:

$$A = \begin{bmatrix} 1+j2 & -j & 5-j3 \\ 4 & 2 & 1 \\ 2-j3 & 1 & -j5 \end{bmatrix}$$

9 Задание

Задана матрица $A = \begin{bmatrix} 2 & 1 & 0 \\ 3 & 0 & 5 \\ 7 & 6 & 4 \end{bmatrix}$. Найдите обратную матрицу A^{-1} методом исклю-

чения.

Решение:

Запишем расширенную матрицу:

$$\begin{pmatrix} 2 & 1 & 0 \\ 3 & 0 & 5 \\ 7 & 6 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Разделим первую строку 2

$$\begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 3 & 0 & 5 \\ 7 & 6 & 4 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Вычитаем из второй строки первую строку умноженную на 3

$$\begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 0 & -\frac{3}{2} & 5 \\ 7 & 6 & 4 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ \frac{3}{2} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Вычитаем из третьей строки первую строку умноженную на 7

$$\begin{pmatrix}
1 & \frac{1}{2} & 0 \\
3 & 0 & 5 \\
0 & 6 - \frac{7}{2} & 4
\end{pmatrix}
\begin{pmatrix}
\frac{1}{2} & 0 & 0 \\
0 & 1 & 0 \\
-\frac{7}{2} & 0 & 1
\end{pmatrix}$$

Делим вторую строку на $-\frac{3}{2}$

$$\begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 1 & -\frac{10}{3} \\ 0 & \frac{5}{2} & 4 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 1 & -\frac{2}{3} & 0 \\ -\frac{7}{2} & 0 & 1 \end{pmatrix}$$

Вычитаем из третьей строки вторую умноженную на $\frac{5}{2}$

$$\begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 1 & -\frac{10}{3} \\ 0 & 0 & (4 + \frac{5*10}{3*2}) \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 1 & -\frac{2}{3} & 0 \\ -\frac{12}{6} & \frac{10}{6} & 1 \end{pmatrix}$$

Делим третью строку на $\frac{37}{3}$

$$\begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 1 & -\frac{10}{3} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 1 & -\frac{2}{3} & 0 \\ -\frac{18}{37} & \frac{15}{3 * 37} & \frac{3}{37} \end{pmatrix}$$

Вычитаем из второй строки третью умноженную на $-\frac{10}{3}$

$$\begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ (1 - \frac{10 * 18}{37 * 3}) & (-\frac{2}{3} + \frac{50}{37 * 3}) & (\frac{30}{37 * 3}) \\ -\frac{18}{37} & \frac{5}{37} & \frac{3}{37} \end{pmatrix}$$

Вычитаем из первой строки вторую умноженную на $\frac{1}{2}$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} (\frac{1}{2} + 23/74) & \frac{8}{37 * 2} & -\frac{10}{74} \\ -\frac{23}{37} & -\frac{8}{37} & \frac{10}{37} \\ -\frac{18}{37} & \frac{5}{37} & \frac{3}{37} \end{pmatrix}$$

Извлекаем обратную матрицу

$$\begin{pmatrix}
\frac{30}{37} & \frac{4}{37} & -\frac{5}{37} \\
-\frac{23}{37} & -\frac{8}{37} & \frac{10}{37} \\
-\frac{18}{37} & \frac{5}{37} & \frac{3}{37}
\end{pmatrix}$$

10 Задание

Система описывается в пространстве переменных состояния уравнениями

$$\frac{dx_1}{dt} = \frac{7}{3}x_1 + \frac{1}{3}x_2 + \frac{4}{3}x_3 + 2u;$$

$$\frac{dx_2}{dt} = -\frac{2}{3}x_1 - \frac{8}{3}x_2;$$

$$\frac{dx_3}{dt} = x_1 - 6x_2 - 2x_3 - u;$$

$$y = \frac{2}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3.$$

Запишите уравнения системы в матричной форме

Решение:

Представим систему уравнений как:

$$x = Ax + Bu$$

 $y = Cx + Du$

Где

$$x_1$$
 $x = \{x_2\}$ — вектор переменных состояний x_3

А – матрица коэффициентов переменных состояния

В – вектор коэффициентов входного воздействия и

С – матрица для выхода

D – коэффициент прямого влияния и на у

Уравнение для x в матричной форме:

$$\vec{x} = \begin{pmatrix} \frac{7}{2} & \frac{1}{3} & \frac{4}{3} \\ \frac{2}{-\frac{3}{3}} & -\frac{8}{3} & 0 \\ 1 & -6 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} u$$

Уравнение для у в матричной форме:

$$y = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + (0)u$$