By def (1.18 we know: if x non-empty, conv(X,Y):= Convx + pos Y is convex.

first we show that for any convex set C, if $X \subset C$, set of recession directions of C contains Y, then convX tpos $Y \subset C$

if $z \in conuX$ t posY, (=) z = x + y where $x \in conuX$, $y \in posY$. and C is convex. $x \in C$.

 \times GC and $y \in Past \Rightarrow y = \Sigma_1^n diyi di \ge 0$ since set of recession direction of C contains t,
for $\forall x \in X \subset \mathcal{L}$ we have $x + d_1 y \in C \Rightarrow x + d_1 y + d_2 y$,
by induction $x + \Sigma_1^n diyi \in C$.

> X+ ∑n x; y; 6 C >> ≥6C so Conu X + Pos Y ⊆ C

and then we show: $X \subset Conv X + Pas Y$, and the recession direction of Conv X + Pas Y contains Y. first statement is trivial. Second statement we have: $Y = 2 \in Conv X + Pas Y$, $z = x + \sum_{i=1}^{n} x_i y_i$

for some $x \in ConuX$, somen, $x \in ConuX$, somen, $x \in ConuX$, somen, $x \in ConuX$, $x \in ConuX$,

So conuX + Pos Y is the smallest convex set C that contains X and recession direction of C contains X because every such C contains Conv X + Pos Y., and Conv X + Pos Y., and Conv X + Pos Y is one of such C. so it's the smallest