Department of Civil Engineering

Instructor: C.-S. CHEN

Homework 3 Essay and Programming, Due 21:00, Wednesday, November 17, 2021

Late submission within 24 hours: score*0.9;

Late submission before post of solution: score*0.8 (the solution will usually be posted within a week); no late submission after the post of solution)

Total 90% + 30% (Bonus)

1. (30%) Name your file using student id, homework number and problem number scheme. For example, b08501047 hw3 p1.pdf. Consider a data set with three data points in \mathbb{R}^2 :

$$X = \begin{bmatrix} 0 & 0 \\ 0 & -1 \\ -2 & 0 \end{bmatrix} \quad y = \begin{bmatrix} -1 \\ -1 \\ +1 \end{bmatrix}$$

Manually solve the support vector machine problem to obtain the optimal hyperplane (b^*, \mathbf{w}^*) and its margin.

2. (60%) Name your file using student id, homework number and problem number scheme. For example, b08501047 hw3 p2.pdf. Consider a dataset given in the following:

Ī	X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
	У	1	1	1	-1	-1	-1	-1	1	1	1

Similar to Bagging, we can pick different training examples to obtain a new training set in AdaBoost. Supposed we have three rounds of boosting and each round has the following training record respectively:

Boosting Round 1

 	,									
X	0.1	0.4	0.5	0.6	0.6	0.7	0.7	0.7	0.8	1
У	1	-1	-1	-1	-1	-1	-1	-1	1	1

Boosting Round 2

X	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3
у	1	1	1	1	1	1	1	1	1	1

Boosting Round 3

-	Boosting Round 5										
	X	0.2	0.2	0.4	0.4	0.4	0.4	0.5	0.6	0.6	0.7
	y	1	1	-1	-1	-1	-1	-1	-1	-1	-1

We can use decision stump to classify the problem. The best split point for each round is:

Round	Split Point	Left Class	Right Class
1	0.75	-1	1
2	0.05	1	1
3	0.3	1	-1

Use AdaBoost and follow what we have covered in the toy example to compute ε_i , α_i and the updated weights. Finally find the combined classifier H.

3. (Bonus 30%) Name your file using student id, homework number and problem number scheme. For example, b08501047_hw3_p3.pdf. Consider the following classification data and module imports:

```
from sklearn.datasets import make_blobs
from sklearn.metrics import zero_one_loss
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import GradientBoostingClassifier

X_train, y_train = make_blobs(n_samples=5000, n_features=10, centers=3, random_state=10, cluster_std=5)
```

Using the gradient boosting algorithm <code>GradientBoostingClassifier</code> with B=100 rounds, plot the training loss vs. boosting rounds for $\gamma=0.1,\,0.3,\,0.5,\,0.7,\,0.9$. Report your conclusions regarding the relation between B and γ and other findings you have learned from this exercise. (hint: the attribute <code>train_score_</code> of <code>GradientBoostingClassifier</code> allows you to access training loss of each round of boosting.)

• Submission Format: Please compress these pdf files into yourStudentId_hw3.zip, then upload it to NTU COOL.