DM 18. Enoncé

Il s'agit d'un sujet supplémentaire pour votre travail personnel.

Il n'est pas à rendre.

Un corrigé sera fourni dans une semaine.

Problème 1 : Endomorphimes u tels que $u^2 = ku$.

On se place dans un \mathbb{R} -espace vectoriel noté E.

On dit que deux sous-espaces vectoriels F et G de E sont supplémentaires si et seulement si E = F + G et $F \cap G = \{0\}$.

On fixe $k \in \mathbb{R}$ et on note $A_k = \{u \in L(E) / u^2 = ku\}$.

- 1°) On note GL(E) le groupe des éléments inversibles de l'anneau L(E). Déterminer $A_k \cap GL(E)$.
- 2°) Soit $u \in A_k$.
- a) Si $x \in \text{Im}(u)$, calculer u(x).
- b) Lorsque $k \neq 0$, montrer que $\mathrm{Ker}(u)$ et $\mathrm{Im}(u)$ sont supplémentaires.

Que dire de Im(u) et Ker(u) lorsque k=0?

3°) Soient u et v deux endomorphismes de A_k .

Pour toute cette question, on suppose que $k \neq 0$.

- a) Montrer que uv + vu = 0 implique uv = vu = 0.
- b) À quelle condition nécessaire et suffisante u + v appartient-il à A_k ?

Montrer que dans ce cas, $\operatorname{Im}(u+v) = \operatorname{Im}(u) + \operatorname{Im}(v)$ et $\operatorname{Ker}(u+v) = \operatorname{Ker}(u) \cap \operatorname{Ker}(v)$.

c) On suppose que uv = vu. Montrer qu'il existe $k' \in \mathbb{R}$ tel que $uv \in A_{k'}$.

Calculer Im(uv) et Ker(uv) en fonction des noyaux et images de u et de v.

- **4°)** Soit $a, b \in \mathbb{R}$ et f un endomorphisme de E tel que $f^2 af + bId_E = 0$. On suppose que f n'est pas une homothétie.
- a) Donner une condition nécessaire et suffisante portant sur a et b pour qu'il existe $\lambda_1, \lambda_2 \in \mathbb{R}$, avec $\lambda_1 \neq \lambda_2$, et $k, k' \in \mathbb{R}$ tels que $f \lambda_1 Id_E \in A_k$ et $f \lambda_2 Id_E \in A_{k'}$. Dans ce cas, préciser k et k' en fonction de λ_1 et λ_2 .
- b) Montrer que dans ce cas, en posant $u = f \lambda_1 I d_E$ et $v = f \lambda_2 I d_E$, on a uv = vu = 0. Expliquer ce résultat en considérant l'endomorphime u v.
- c) Pour tout $p \in \mathbb{N}$, calculer f^p en fonction de u et v.

- d) À quelle condition nécessaire et suffisante f est-il inversible? Quel est alors son inverse?
- 5°) Soit $g \in L(E)$ tel que Im(g) est une droite vectorielle. Montrer qu'il existe $k \in \mathbb{R}$ tel que $g \in A_k$.
- **6°)** On suppose pour cette question que E est l'espace vectoriel des fonctions continues de [0,1] dans \mathbb{R} . Soit $F \in E \setminus \{0\}$.

Pour tout $G \in E$, pour tout $x \in [0,1]$, on note $u(G)(x) = F(x) \int_0^1 tG(t) dt$.

- a) Montrer que u est un endomorphisme de E.
- b) Déterminer Im(u). Montrer que c'est une droite vectorielle.
- c) Montrer qu'il existe $k \in \mathbb{R}$ tel que $u^2 = ku$ et donner une expression de k au moyen d'une intégrale.
- d) Calculer k lorsque $F(x) = \arcsin(x)$.
- e) Calculer k lorsque $F(x) = e^{\sqrt{x}}$.
- 7°) Notons C l'espace vectoriel des fonctions de classe C^{∞} de \mathbb{R}_+^* dans \mathbb{R} . Pour tout $f \in C$, pour tout x > 0, on pose u(f)(x) = xf'(x).
- a) Montrer que u est un endomorphisme de C.
- b) Soit $k \in \mathbb{R}$. Déterminer un plan vectoriel E de C tel que la restriction de u à E, que l'on notera v, soit un endomorphisme de E satisfaisant la relation $v^2 = kv$.

Problème 2 : Une équation différentielle d'Euler

Notons (E) l'équation différentielle suivante

(E):
$$x^2y'' + 5xy' + 9y = f(x)$$
,

où $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ est une application continue à valeurs réelles. On notera (H) l'équation homogène associée.

- 1°) Montrer que les solutions à valeurs réelles de (E) sont exactement les parties réelles des solutions à valeurs complexes de (E).
- **2°)** Montrer qu'il existe exactement deux fonctions de la forme $x \mapsto x^{\alpha}$, où $\alpha \in \mathbb{C}$, qui sont solutions à valeurs complexes de (H).

Pour la suite de ce problème, on notera α l'unique complexe tel que $x \longmapsto x^{\alpha}$ est solution de (H) et dont la partie imaginaire est positive. On notera φ l'application $x \longmapsto x^{\alpha}$.

3°) Soit $y: \mathbb{R}_+^* \longrightarrow \mathbb{C}$ une application deux fois dérivable. On pose $z = \frac{y}{\varphi}$.

Montrer que y est solution de (E) si et seulement si Z=z' est solution de

$$(E')$$
: $Z' + \frac{2\alpha + 5}{x}Z = x^{-\alpha - 2}f(x)$.

4°) On suppose que f est identiquement nulle. résoudre l'équation (E') en l'inconnue $Z: \mathbb{R}_+^* \longrightarrow \mathbb{C}$.

Pour tout
$$x > 0$$
 et $z \in \mathbb{C}$, on note $G_z(x) = \int_1^x t^z f(t) dt$.

- **5°)** Appliquer la méthode de variation de la constante pour montrer que l'application $Z_0: x \longmapsto x^{-(2\alpha+5)}G_{\alpha+3}(x)$ est une solution particulière de l'équation (E') sur \mathbb{R}_+^* . En déduire les solutions Z à valeurs complexes de (E').
- **6°**) Montrer que, pour tout x > 0, $\int_1^x Z_0(t)dt = \frac{-1}{2\alpha + 4}(x^{-(2\alpha+4)}G_{\alpha+3}(x) G_{-\alpha-1}(x)).$
- 7°) Déterminer l'ensemble des solutions de (E) à valeurs complexes.
- 8°) Montrer que l'application $x \longmapsto x^{\alpha} \int_{1}^{x} Z_{0}(t) dt$ est à valeurs réelles, lorsque x > 0.
- 9°) Déterminer l'ensemble des solutions de (E) qui sont à valeurs réelles. Faire de même pour (H).