Mathematical Logic

Kerstin Eder

University of Bristol Department of Computer Science

Kerstin.Eder@bristol.ac.uk

• In our last lecture we considered the connectives \land , \lor , \oplus , \neg , \Rightarrow and \Leftrightarrow .

- In our last lecture we considered the connectives \land , \lor , \oplus , \neg , \Rightarrow and \Leftrightarrow .
- We formally defined the Language of Propositional Logic.

- In our last lecture we considered the connectives \land , \lor , \oplus , \neg , \Rightarrow and \Leftrightarrow .
- We formally defined the Language of Propositional Logic.
- Today we look in detail at truth tables for compound propositions.

- In our last lecture we considered the connectives \land , \lor , \oplus , \neg , \Rightarrow and \Leftrightarrow .
- We formally defined the Language of Propositional Logic.
- Today we look in detail at truth tables for compound propositions.
- We explain the notions of validity and satisfiability.

- In our last lecture we considered the connectives \land , \lor , \oplus , \neg , \Rightarrow and \Leftrightarrow .
- We formally defined the Language of Propositional Logic.
- Today we look in detail at truth tables for compound propositions.
- We explain the notions of validity and satisfiability.
- We investigate logic equivalence.

- In our last lecture we considered the connectives \land , \lor , \oplus , \neg , \Rightarrow and \Leftrightarrow .
- We formally defined the Language of Propositional Logic.
- Today we look in detail at truth tables for compound propositions.
- We explain the notions of validity and satisfiability.
- We investigate logic equivalence.
- We learn that there are sets of functionally complete connectives.

- In our last lecture we considered the connectives \land , \lor , \oplus , \neg , \Rightarrow and \Leftrightarrow .
- We formally defined the Language of Propositional Logic.
- Today we look in detail at truth tables for compound propositions.
- We explain the notions of validity and satisfiability.
- We investigate logic equivalence.
- We learn that there are sets of functionally complete connectives.
- (We give the semantics of propositional logic.)

The **alphabet** consist of the following sets:

The **alphabet** consist of the following sets:

• A set of propositional variables $PROP = \{p, q, r, s, ...\}.$

The alphabet consist of the following sets:

- A set of propositional variables $PROP = \{p, q, r, s, ...\}.$
- A set of propositional connectives $\{true, false, \neg, \land, \lor, \oplus, \Rightarrow, \Leftrightarrow\}$.

The **alphabet** consist of the following sets:

- A set of propositional variables $PROP = \{p, q, r, s, ...\}.$
- A set of propositional connectives $\{true, false, \neg, \land, \lor, \oplus, \Rightarrow, \Leftrightarrow\}$.
- A set of punctuation symbols $\{(,)\}$.

The **alphabet** consist of the following sets:

- A set of propositional variables $PROP = \{p, q, r, s, ...\}.$
- A set of propositional connectives $\{true, false, \neg, \land, \lor, \oplus, \Rightarrow, \Leftrightarrow\}$.
- A set of punctuation symbols $\{(,)\}$.

The **alphabet** consist of the following sets:

- A set of propositional variables $PROP = \{p, q, r, s, ...\}.$
- A set of propositional connectives $\{true, false, \neg, \land, \lor, \oplus, \Rightarrow, \Leftrightarrow\}$.
- A set of punctuation symbols $\{(,)\}$.

The **grammar** defines what constitutes a well-formed formula (wff):

• Each of the elements in PROP is a wff.

The **alphabet** consist of the following sets:

- A set of propositional variables $PROP = \{p, q, r, s, ...\}.$
- A set of propositional connectives $\{true, false, \neg, \land, \lor, \oplus, \Rightarrow, \Leftrightarrow\}$.
- A set of punctuation symbols $\{(,)\}$.

- Each of the elements in PROP is a wff.
- Each of **true** and **false** is a wff.

The **alphabet** consist of the following sets:

- A set of propositional variables $PROP = \{p, q, r, s, ...\}.$
- A set of propositional connectives $\{ true, false, \neg, \land, \lor, \oplus, \Rightarrow, \Leftrightarrow \}$.
- A set of punctuation symbols $\{(,)\}$.

- Each of the elements in PROP is a wff.
- Each of true and false is a wff.
- If p is a wff, then $(\neg p)$ is a wff.

The **alphabet** consist of the following sets:

- A set of propositional variables $PROP = \{p, q, r, s, ...\}.$
- A set of propositional connectives $\{true, false, \neg, \land, \lor, \oplus, \Rightarrow, \Leftrightarrow\}$.
- A set of punctuation symbols $\{(,)\}$.

- Each of the elements in PROP is a wff.
- Each of true and false is a wff.
- If p is a wff, then $(\neg p)$ is a wff.
- If p and q are wffs, then so are $(p \land q)$, $(p \lor q)$, $(p \oplus q)$, $(p \Rightarrow q)$, $(p \Leftrightarrow q)$.

The **alphabet** consist of the following sets:

- A set of propositional variables $PROP = \{p, q, r, s, ...\}.$
- A set of propositional connectives $\{ true, false, \neg, \land, \lor, \oplus, \Rightarrow, \Leftrightarrow \}$.
- A set of punctuation symbols $\{(,)\}$.

The **grammar** defines what constitutes a well-formed formula (wff):

- Each of the elements in PROP is a wff.
- Each of true and false is a wff.
- If p is a wff, then $(\neg p)$ is a wff.
- If p and q are wffs, then so are $(p \land q)$, $(p \lor q)$, $(p \oplus q)$, $(p \Rightarrow q)$, $(p \Leftrightarrow q)$.

This is an *inductive* definition.

The **alphabet** consist of the following sets:

- A set of propositional variables $PROP = \{p, q, r, s, ...\}.$
- A set of propositional connectives $\{ true, false, \neg, \land, \lor, \oplus, \Rightarrow, \Leftrightarrow \}$.
- A set of punctuation symbols $\{(,)\}$.

The **grammar** defines what constitutes a well-formed formula (wff):

- Each of the elements in PROP is a wff.
- Each of true and false is a wff.
- If p is a wff, then $(\neg p)$ is a wff.
- If p and q are wffs, then so are $(p \land q)$, $(p \lor q)$, $(p \oplus q)$, $(p \Rightarrow q)$, $(p \Leftrightarrow q)$.

This is an *inductive* definition.

The set of wffs is called the Propositional Language L(PROP).

$$syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg(s \land (\neg r)))")$$

$$syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg(s \land (\neg r)))")$$

$$= syntaxcheck("(p \lor (\neg q)) \lor s")$$

$$syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg(s \land (\neg r)))")$$

$$= syntaxcheck("(p \lor (\neg q)) \lor s") \text{ and}$$

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg(s \land (\neg r)))") \\ = syntaxcheck("(p \lor (\neg q)) \lor s") \text{ and } syntaxcheck("\neg(s \land (\neg r))").
```

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg(s \land (\neg r)))")
= syntaxcheck("(p \lor (\neg q)) \lor s") \text{ and } syntaxcheck("\neg(s \land (\neg r))").
syntaxcheck("(p \lor (\neg q)) \lor s")
```

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg(s \land (\neg r)))")
= syntaxcheck("(p \lor (\neg q)) \lor s") \text{ and } syntaxcheck("\neg(s \land (\neg r))").}
syntaxcheck("(p \lor (\neg q)) \lor s")
= syntaxcheck("p \lor (\neg q)")
```

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg(s \land (\neg r)))") \\ = syntaxcheck("(p \lor (\neg q)) \lor s") \text{ and } syntaxcheck("\neg(s \land (\neg r))").} \\ syntaxcheck("(p \lor (\neg q)) \lor s") \\ = syntaxcheck("p \lor (\neg q)") \text{ and}
```

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg(s \land (\neg r)))")
= syntaxcheck("(p \lor (\neg q)) \lor s") \text{ and } syntaxcheck("\neg(s \land (\neg r))").}
syntaxcheck("(p \lor (\neg q)) \lor s")
= syntaxcheck("p \lor (\neg q)") \text{ and } syntaxcheck("s").}
```

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg(s \land (\neg r)))")
= syntaxcheck("(p \lor (\neg q)) \lor s") \text{ and } syntaxcheck("\neg(s \land (\neg r))").}
syntaxcheck("(p \lor (\neg q)) \lor s")
= syntaxcheck("p \lor (\neg q)") \text{ and } syntaxcheck("s").}
syntaxcheck("p \lor (\neg q)")
```

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg (s \land (\neg r)))") \\ = syntaxcheck("(p \lor (\neg q)) \lor s") \text{ and } syntaxcheck("\neg (s \land (\neg r))").} \\ syntaxcheck("(p \lor (\neg q)) \lor s") \\ = syntaxcheck("p \lor (\neg q)") \text{ and } syntaxcheck("s").} \\ syntaxcheck("p \lor (\neg q)") \\ = syntaxcheck("p")
```

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg (s \land (\neg r)))") \\ = syntaxcheck("(p \lor (\neg q)) \lor s") \text{ and } syntaxcheck("\neg (s \land (\neg r))").} \\ syntaxcheck("(p \lor (\neg q)) \lor s") \\ = syntaxcheck("p \lor (\neg q)") \text{ and } syntaxcheck("s").} \\ syntaxcheck("p \lor (\neg q)") \\ = syntaxcheck("p") \text{ and}
```

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg (s \land (\neg r)))") \\ = syntaxcheck("(p \lor (\neg q)) \lor s") \text{ and } syntaxcheck("\neg (s \land (\neg r))").} \\ syntaxcheck("(p \lor (\neg q)) \lor s") \\ = syntaxcheck("p \lor (\neg q)") \text{ and } syntaxcheck("s").} \\ syntaxcheck("p \lor (\neg q)") \\ = syntaxcheck("p") \text{ and } syntaxcheck("\neg q").} \end{aligned}
```

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg (s \land (\neg r)))") \\ = syntaxcheck("(p \lor (\neg q)) \lor s") \text{ and } syntaxcheck("\neg (s \land (\neg r))"). \\ syntaxcheck("(p \lor (\neg q)) \lor s") \\ = syntaxcheck("p \lor (\neg q)") \text{ and } syntaxcheck("s"). \\ syntaxcheck("p \lor (\neg q)") \\ = syntaxcheck("p") \text{ and } syntaxcheck("\neg q"). \\ syntaxcheck("p") = \text{true}, because } p \in PROP.
```

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg (s \land (\neg r)))") \\ = syntaxcheck("(p \lor (\neg q)) \lor s") \text{ and } syntaxcheck("\neg (s \land (\neg r))").} \\ syntaxcheck("(p \lor (\neg q)) \lor s") \\ = syntaxcheck("p \lor (\neg q)") \text{ and } syntaxcheck("s").} \\ syntaxcheck("p \lor (\neg q)") \\ = syntaxcheck("p") \text{ and } syntaxcheck("\neg q").} \\ syntaxcheck("p") = \text{true}, because } p \in PROP. \\ syntaxcheck("\neg q") = syntaxcheck("q").} \end{aligned}
```

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg (s \land (\neg r)))") \\ = syntaxcheck("(p \lor (\neg q)) \lor s") \text{ and } syntaxcheck("\neg (s \land (\neg r))").} \\ syntaxcheck("(p \lor (\neg q)) \lor s") \\ = syntaxcheck("p \lor (\neg q)") \text{ and } syntaxcheck("s").} \\ syntaxcheck("p \lor (\neg q)") \\ = syntaxcheck("p") \text{ and } syntaxcheck("\neg q").} \\ syntaxcheck("p") = \text{true}, because } p \in PROP. \\ syntaxcheck("\neg q") = syntaxcheck("q").} \\ syntaxcheck("q") = \text{true}, because } q \in PROP.
```

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg (s \land (\neg r)))") \\ = syntaxcheck("(p \lor (\neg q)) \lor s") \text{ and } syntaxcheck("\neg (s \land (\neg r))").} \\ syntaxcheck("(p \lor (\neg q)) \lor s") \\ = syntaxcheck("p \lor (\neg q)") \text{ and } syntaxcheck("s").} \\ syntaxcheck("p \lor (\neg q)") \\ = syntaxcheck("p") \text{ and } syntaxcheck("\neg q").} \\ syntaxcheck("p") = \text{true}, because } p \in PROP. \\ syntaxcheck("p") = syntaxcheck("q").} \\ syntaxcheck("q") = \text{true}, because } q \in PROP. \\ syntaxcheck("\neg q") = \text{true}.} \end{aligned}
```

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg (s \land (\neg r)))") \\ = syntaxcheck("(p \lor (\neg q)) \lor s") \text{ and } syntaxcheck("\neg (s \land (\neg r))").} \\ syntaxcheck("(p \lor (\neg q)) \lor s") \\ = syntaxcheck("p \lor (\neg q)") \text{ and } syntaxcheck("s").} \\ syntaxcheck("p \lor (\neg q)") \\ = syntaxcheck("p") \text{ and } syntaxcheck("\neg q").} \\ syntaxcheck("p") \text{ and } syntaxcheck("\neg q").} \\ syntaxcheck("p") = \text{true}, because } p \in PROP. \\ syntaxcheck("q") = syntaxcheck("q").} \\ syntaxcheck("q") = \text{true}, because } q \in PROP. \\ syntaxcheck("\neg q") = \text{true}.} \\ syntaxcheck("p \lor (\neg q)") = \text{true} \text{ and } \text{true} = \text{true}.}
```

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg (s \land (\neg r)))")
= syntaxcheck("(p \lor (\neg q)) \lor s") \text{ and } syntaxcheck("\neg (s \land (\neg r))").
syntaxcheck("(p \lor (\neg q)) \lor s")
= syntaxcheck("(p \lor (\neg q))") \text{ and } syntaxcheck("s").
syntaxcheck("(p \lor (\neg q))")
= syntaxcheck("(p")) \text{ and } syntaxcheck("\neg q").
syntaxcheck("(p")) \text{ = true}, because p \in PROP.
syntaxcheck("(\neg q")) \text{ = syntaxcheck}("q").
syntaxcheck("(\neg q")) \text{ = true}, because q \in PROP.
syntaxcheck("(\neg q")) \text{ = true}.
syntaxcheck("(\neg q")) \text{ = true} \text{ and } \text{ true} \text{ = true}.
syntaxcheck("(p \lor (\neg q))) \lor s") \text{ = true} \text{ and } syntaxcheck("s") \text{ = syntaxcheck}("s").
```

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg(s \land (\neg r)))")
= syntaxcheck("(p \lor (\neg q)) \lor s") and syntaxcheck("\neg (s \land (\neg r))").
  syntaxcheck("(p \lor (\neg q)) \lor s")
  = syntaxcheck("p \lor (\neg q)") and syntaxcheck("s").
     syntaxcheck("p \lor (\neg q)")
     = syntaxcheck("p") and syntaxcheck("\neg q").
        syntaxcheck("p") = true, because p \in PROP.
        syntaxcheck("\neg q") = syntaxcheck("q").
          syntaxcheck("q") = true, because q \in PROP.
        syntaxcheck(" \neg q") = true.
     syntaxcheck("p \lor (\neg q)") = true and true = true.
  syntaxcheck("(p \lor (\neg q)) \lor s") = true and <math>syntaxcheck("s") = syntaxcheck("s").
     syntaxcheck("s") = true, because s \in PROP.
```

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg(s \land (\neg r)))")
= syntaxcheck("(p \lor (\neg q)) \lor s") and syntaxcheck("\neg (s \land (\neg r))").
  syntaxcheck("(p \lor (\neg q)) \lor s")
  = syntaxcheck("p \lor (\neg q)") and syntaxcheck("s").
     svntaxcheck("p \lor (\neg q)")
     = syntaxcheck("p") and syntaxcheck("\neg q").
        syntaxcheck("p") = true, because p \in PROP.
        syntaxcheck("\neg q") = syntaxcheck("q").
          syntaxcheck("q") = true, because q \in PROP.
        syntaxcheck(" \neg q") = true.
     syntaxcheck("p \lor (\neg q)") = true and true = true.
  syntaxcheck("(p \lor (\neg q)) \lor s") = true and <math>syntaxcheck("s") = syntaxcheck("s").
     syntaxcheck("s") = true, because s \in PROP.
  syntaxcheck("(p \lor (\neg q)) \lor s") = true and true = true.
```

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg(s \land (\neg r)))")
= syntaxcheck("(p \lor (\neg q)) \lor s") and syntaxcheck("\neg (s \land (\neg r))").
  syntaxcheck("(p \lor (\neg q)) \lor s")
  = syntaxcheck("p \lor (\neg q)") and syntaxcheck("s").
     svntaxcheck("p \lor (\neg q)")
     = syntaxcheck("p") and syntaxcheck("\neg q").
        syntaxcheck("p") = true, because p \in PROP.
        syntaxcheck("\neg q") = syntaxcheck("q").
          syntaxcheck("q") = true, because q \in PROP.
        syntaxcheck(" \neg q") = true.
     syntaxcheck("p \lor (\neg q)") = true and true = true.
  syntaxcheck("(p \lor (\neg q)) \lor s") = true and <math>syntaxcheck("s") = syntaxcheck("s").
     syntaxcheck("s") = true, because s \in PROP.
  syntaxcheck("(p \lor (\neg q)) \lor s") = true and true = true.
= true and syntaxcheck("\neg(s \land (\negr))").
```

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg(s \land (\neg r)))")
= syntaxcheck("(p \lor (\neg q)) \lor s") and syntaxcheck("\neg (s \land (\neg r))").
  syntaxcheck("(p \lor (\neg q)) \lor s")
  = syntaxcheck("p \lor (\neg q)") and syntaxcheck("s").
     svntaxcheck("p \lor (\neg q)")
     = syntaxcheck("p") and syntaxcheck("\neg q").
        syntaxcheck("p") = true, because p \in PROP.
        syntaxcheck("\neg q") = syntaxcheck("q").
          syntaxcheck("q") = true, because q \in PROP.
        syntaxcheck(" \neg q") = true.
     syntaxcheck("p \lor (\neg q)") = true and true = true.
  syntaxcheck("(p \lor (\neg q)) \lor s") = true and <math>syntaxcheck("s") = syntaxcheck("s").
     syntaxcheck("s") = true, because s \in PROP.
  syntaxcheck("(p \lor (\neg q)) \lor s") = true and true = true.
= true and syntaxcheck("\neg(s \land (\negr))").
= syntaxcheck("\neg(s \land (\neg r))").
                                                                                (Left as SSE.)
```

syntaxcheck is a function that takes an expression and returns true if the expression is syntactically correct, and false otherwise.

```
syntaxcheck("((p \lor (\neg q)) \lor s) \Leftrightarrow (\neg(s \land (\neg r)))")
= syntaxcheck("(p \lor (\neg q)) \lor s") and syntaxcheck("\neg (s \land (\neg r))").
  syntaxcheck("(p \lor (\neg q)) \lor s")
  = syntaxcheck("p \lor (\neg q)") and syntaxcheck("s").
     syntaxcheck("p \lor (\neg q)")
     = syntaxcheck("p") and syntaxcheck("\neg q").
        syntaxcheck("p") = true, because p \in PROP.
        syntaxcheck("\neg q") = syntaxcheck("q").
          syntaxcheck("q") = true, because q \in PROP.
        syntaxcheck(" \neg q") = true.
     syntaxcheck("p \lor (\neg q)") = true and true = true.
  syntaxcheck("(p \lor (\neg q)) \lor s") = true and <math>syntaxcheck("s") = syntaxcheck("s").
     syntaxcheck("s") = true, because s \in PROP.
  syntaxcheck("(p \lor (\neg q)) \lor s") = true and true = true.
= true and syntaxcheck("\neg(s \land (\negr))").
= syntaxcheck("\neg(s \land (\neg r))").
                                                                                (Left as SSE.)
```

Challenge: Write a program that implements the above to determine the syntactic correctness of arbitrary expressions. (Include a check for operator validity!)

- p (my breakfast is) toast.
- q (my breakfast is) cereal.
- r (my breakfast is) juice.

The statement "my breakfast is either toast or cereal, and juice" may be written in symbolic form as

- p (my breakfast is) toast.
- q (my breakfast is) cereal.
- r (my breakfast is) juice.

The statement "my breakfast is either toast or cereal, and juice" may be written in symbolic form as $(p \lor q) \land r$.

- p (my breakfast is) toast.
- q (my breakfast is) cereal.
- r (my breakfast is) juice.

The statement "my breakfast is either toast or cereal, and juice" may be written in symbolic form as $(p \lor q) \land r$.

р	q	r	$p \lor q$	$(p \lor q) \land r$
T	T	T		
T	T	F		
T	F	T		
T	F	F		
F	T	T		
F	T	F		
F	F	T		
F	F	F		

- p (my breakfast is) toast.
- q (my breakfast is) cereal.
- r (my breakfast is) juice.

The statement "my breakfast is either toast or cereal, and juice" may be written in symbolic form as $(p \lor q) \land r$.

р	q	r	$p \lor q$	$(p \lor q) \land r$
T	T	T		
T	T	F		
T	F	T		
T	F	F		
F	T	T		
F	T	F		
F	F	T		
F	F	F		

The compound proposition is true if

- I eat toast, cereal, and juice; or
- I eat toast and juice; or
- I eat cereal and juice.

- p (my breakfast is) toast.
- q (my breakfast is) cereal.
- r (my breakfast is) juice.

The statement "my breakfast is either toast or cereal, and juice" may be written in symbolic form as $(p \lor q) \land r$.

p	q	r	$p \lor q$	$(p \lor q) \land r$
T	T	T		
T	T	F		
T	F	T		
T	F	F		
F	T	T		
F	T	F		
F	F	Т		
F	F	F		

The compound proposition is true if

- I eat toast, cereal, and juice; or
- I eat toast and juice; or
- I eat cereal and juice.

The truth table gives results for all possible value assignments of p, q and r.

• Truth tables may be used to show value assignments (also called **interpretations**) of compound propositions.

- Truth tables may be used to show value assignments (also called interpretations) of compound propositions.
- To draw up a truth table, construct a column for each proposition involved.

- Truth tables may be used to show value assignments (also called interpretations) of compound propositions.
- To draw up a truth table, construct a column for each proposition involved.
- You need 2ⁿ rows for n propositions for all possible ways of setting the propositions to T and F.

- Truth tables may be used to show value assignments (also called interpretations) of compound propositions.
- To draw up a truth table, construct a column for each proposition involved.
- You need 2ⁿ rows for n propositions for all possible ways of setting the propositions to T and F.
- If we have 3 propositions, p, q, r, then we need $2^3 = 8$ rows.

- Truth tables may be used to show value assignments (also called interpretations) of compound propositions.
- To draw up a truth table, construct a column for each proposition involved.
- You need 2ⁿ rows for n propositions for all possible ways of setting the propositions to T and F.
- If we have 3 propositions, p, q, r, then we need $2^3 = 8$ rows.
- Next, construct a column for each connective, the most deeply nested first.

- Truth tables may be used to show value assignments (also called interpretations) of compound propositions.
- To draw up a truth table, construct a column for each proposition involved.
- You need 2ⁿ rows for n propositions for all possible ways of setting the propositions to T and F.
- If we have 3 propositions, p, q, r, then we need $2^3 = 8$ rows.
- Next, construct a column for each connective, the most deeply nested first.
- Evaluate each column based on the semantics of the connectives using values for propositions or previous columns.

Given a particular formula, can you tell if it is true or not?

 You need to know the truth values of the component propositions in order to be able to tell whether a formula is true.

- You need to know the truth values of the component propositions in order to be able to tell whether a formula is true.
- Let $I_f: PROP \rightarrow \{T, F\}$ be an interpretation which assigns a truth value to each atomic proposition.

- You need to know the truth values of the component propositions in order to be able to tell whether a formula is true.
- Let $I_f: PROP \rightarrow \{T, F\}$ be an interpretation which assigns a truth value to each atomic proposition.
- Suppose we have an interpretation function I_f such that: $I_f(p) = F$, $I_f(q) = T$, $I_f(r) = F$

- You need to know the truth values of the component propositions in order to be able to tell whether a formula is true.
- Let $I_f: PROP \rightarrow \{T, F\}$ be an interpretation which assigns a truth value to each atomic proposition.
- Suppose we have an interpretation function I_f such that: $I_f(p) = F$, $I_f(q) = T$, $I_f(r) = F$
- Then the truth value of $(p \lor q) \Rightarrow r$ is evaluated by

$$(I_f(p) \lor I_f(q)) \Rightarrow I_f(r) | I_f$$

$$= (F \lor T) \Rightarrow F | \lor$$

$$= T \Rightarrow F | \Rightarrow$$

$$= F$$

Given a particular formula, can you tell if it is true or not?

- You need to know the truth values of the component propositions in order to be able to tell whether a formula is true.
- Let $I_f: PROP \rightarrow \{T, F\}$ be an interpretation which assigns a truth value to each atomic proposition.
- Suppose we have an interpretation function I_f such that: $I_f(p) = F$, $I_f(q) = T$, $I_f(r) = F$
- Then the truth value of $(p \lor q) \Rightarrow r$ is evaluated by

$$(I_f(p) \lor I_f(q)) \Rightarrow I_f(r) \qquad | I_f$$

$$= (F \lor T) \Rightarrow F \qquad | \lor$$

$$= T \Rightarrow F \qquad | \Rightarrow$$

$$= F$$

• Which line in the truth table for $(p \lor q) \Rightarrow r$ corresponds to this particular valuation?

• A formula is said to be *valid* (or a *tautology*) iff it is true under *every* value assignment.

р	$\neg p$	$p \lor \neg p$
T	F	
F	T	

• A formula is said to be *valid* (or a *tautology*) iff it is true under *every* value assignment.

р	$\neg p$	$p \lor \neg p$
T	F	T
F	T	T

This is also called the "law of excluded middle", i.e. for any proposition, either that proposition is true, or its negation is true.

• A formula is said to be *satisfiable* (or *consistent*) iff it is true under *at least one* value assignment.

р	q	$p \lor q$
T	T	
T	F	
F	T	
F	F	

• A formula is said to be *satisfiable* (or *consistent*) iff it is true under *at least one* value assignment.

р	q	$p \lor q$
T	T	T
T	F	T
F	T	T
F	F	F

• A formula is said to be *valid* (or a *tautology*) iff it is true under *every* value assignment.

- A formula is said to be *valid* (or a *tautology*) iff it is true under *every* value assignment.
- A formula is said to be *satisfiable* (or *consistent*) iff it is true under *at least one* value assignment.

- A formula is said to be valid (or a tautology) iff it is true under every value assignment.
- A formula is said to be *satisfiable* (or *consistent*) iff it is true under *at least one* value assignment.
- A formula is said to be unsatisfiable (or contradictory) iff it is not made true under any value assignment.

р	$\neg p$	$p \wedge \neg p$
T	F	
F	T	

- A formula is said to be *valid* (or a *tautology*) iff it is true under *every* value assignment.
- A formula is said to be *satisfiable* (or *consistent*) iff it is true under *at least one* value assignment.
- A formula is said to be unsatisfiable (or contradictory) iff it is not made true under any value assignment.

р	$\neg p$	$p \wedge \neg p$
T	F	F
F	T	F

- A formula is said to be *valid* (or a *tautology*) iff it is true under *every* value assignment.
- A formula is said to be *satisfiable* (or *consistent*) iff it is true under *at least one* value assignment.
- A formula is said to be unsatisfiable (or contradictory) iff it is not made true under any value assignment.

р	$\neg p$	$p \land \neg p$
T	F	F
F	Т	F

• Note, a formula φ is a contradiction if and only if $\neg \varphi$ is a tautology.

- A formula is said to be *valid* (or a *tautology*) iff it is true under *every* value assignment.
- A formula is said to be *satisfiable* (or *consistent*) iff it is true under *at least one* value assignment.
- A formula is said to be unsatisfiable (or contradictory) iff it is not made true under any value assignment.

р	$\neg p$	$p \land \neg p$
T	F	F
F	Т	F

- Note, a formula φ is a contradiction if and only if $\neg \varphi$ is a tautology.
- A formula that is neither a tautology nor a contradiction is called a contingency.

Truth Tables and Tautology

Using a truth table determine whether $(p \Rightarrow q) \lor (q \Rightarrow p)$ is a tautology, a contradiction or satisfiable (i.e. a contingency).

р	q	$(p \Rightarrow q)$	$(q \Rightarrow p)$	$\boxed{(p \Rightarrow q) \lor (q \Rightarrow p)}$
T	T			
T	F			
F	T			
F	F			

Determine the truth table for $\neg((p \Rightarrow q) \lor (q \Rightarrow p))$:

Using a truth table determine whether $((p \land q) \Rightarrow r)$ is a tautology, a contradiction or satisfiable (i.e. a contingency).

Logical Equivalence

When two compound propositions have the same truth values for all value assignments then they are *logically equivalent*.

Logical Equivalence

When two compound propositions have the same truth values for all value assignments then they are *logically equivalent*.

Definition

The propositions p and q are called *logically equivalent* iff $p \Leftrightarrow q$ is a tautology. Logical equivalence of p and q is denoted by $p \equiv q$.

When two compound propositions have the same truth values for all value assignments then they are *logically equivalent*.

Definition

The propositions p and q are called *logically equivalent* iff $p \Leftrightarrow q$ is a tautology. Logical equivalence of p and q is denoted by $p \equiv q$.

To determine whether two propositions are logically equivalent we can compare their truth tables.

When two compound propositions have the same truth values for all value assignments then they are *logically equivalent*.

Definition

The propositions p and q are called *logically equivalent* iff $p \Leftrightarrow q$ is a tautology. Logical equivalence of p and q is denoted by $p \equiv q$.

To determine whether two propositions are logically equivalent we can compare their truth tables. For p and q to be equivalent, the colums that contain their truth values must match.

When two compound propositions have the same truth values for all value assignments then they are *logically equivalent*.

Definition

The propositions p and q are called *logically equivalent* iff $p \Leftrightarrow q$ is a tautology. Logical equivalence of p and q is denoted by $p \equiv q$.

To determine whether two propositions are logically equivalent we can compare their truth tables. For p and q to be equivalent, the column that contain their truth values must match.

Determine whether $\neg(p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.

р	q	$p \lor q$	$\neg(p\lor q)$	$\neg p$	$\neg q$	$\neg p \wedge \neg q$
T	T					
T	F					
F	T					
F	F					

Equivalend	ce Name
	4 D > 4 A > 4 B > 4 B

	1
Equivalence	Name
$p \wedge \mathbb{T} \equiv p$	Identity Laws
, , , , , , , , , , , , , , , , , , , ,	
	4 0 5 4 0 5 6 5 6 5

Equivalence	Name
$ ho \wedge \mathbb{T} \equiv ho$	Identity Laws
$pee \mathbb{F}\equiv p$	
	40.40.45.45

Equivalence	Name
$ ho \wedge \mathbb{T} \equiv ho$	Identity Laws
$ hoee\mathbb{F}\equiv ho$	
$ hoee\mathbb{T}\equiv\mathbb{T}$	Domination Laws
	7 E C 7 E C 7 E C 7 E

Equivalence	Name
$ ho \wedge \mathbb{T} \equiv ho$	Identity Laws
$ hoee\mathbb{F}\equiv ho$	
$ hoee\mathbb{T}\equiv\mathbb{T}$	Domination Laws
$ ho \wedge \mathbb{F} \equiv \mathbb{F}$	
	40.40.45.45

Equivalence	Name
$ ho \wedge \mathbb{T} \equiv ho$	Identity Laws
$ hoee\mathbb{F}\equiv ho$	
$ hoee\mathbb{T}\equiv\mathbb{T}$	Domination Laws
$ ho \wedge \mathbb{F} \equiv \mathbb{F}$	
$ hoee p\equiv p$	Idempotent Laws
	7 B S 7 B S 7 B S 7 B

Equivalence	Name
$ ho \wedge \mathbb{T} \equiv ho$	Identity Laws
$ hoee\mathbb{F}\equiv ho$	
$ hoee\mathbb{T}\equiv\mathbb{T}$	Domination Laws
$ ho \wedge \mathbb{F} \equiv \mathbb{F}$	
$pee p\equiv p$	Idempotent Laws
$p \wedge p \equiv p$	
	7 B S 7 B S 7 B S 7 B

Equivalence	Name
$ ho \wedge \mathbb{T} \equiv ho$	Identity Laws
$pee \mathbb{F}\equiv p$	
$ hoee\mathbb{T}\equiv\mathbb{T}$	Domination Laws
$ ho \wedge \mathbb{F} \equiv \mathbb{F}$	
$p \lor p \equiv p$	Idempotent Laws
$p \wedge p \equiv p$	
$ eg(eg p) \equiv p$	Double Negation Law

Equivalence	Name
$ ho \wedge \mathbb{T} \equiv ho$	Identity Laws
$ hoee\mathbb{F}\equiv ho$	
$ hoee\mathbb{T}\equiv\mathbb{T}$	Domination Laws
$ ho \wedge \mathbb{F} \equiv \mathbb{F}$	
$ hoee p\equiv p$	Idempotent Laws
$p \wedge p \equiv p$	
$ eg(eg p) \equiv p$	Double Negation Law
$p \lor q \equiv q \lor p$	Commutative Laws

Equivalence	Name
$ ho \wedge \mathbb{T} \equiv ho$	Identity Laws
$pee \mathbb{F}\equiv p$	
$ hoee\mathbb{T}\equiv\mathbb{T}$	Domination Laws
$ ho \wedge \mathbb{F} \equiv \mathbb{F}$	
$p \lor p \equiv p$	Idempotent Laws
$p \wedge p \equiv p$	
$ eg(eg p) \equiv p$	Double Negation Law
$p \lor q \equiv q \lor p$	Commutative Laws
$p \wedge q \equiv q \wedge p$	

Equivalence	Name
$ ho \wedge \mathbb{T} \equiv ho$	Identity Laws
$ hoee\mathbb{F}\equiv ho$	
$ hoee\mathbb{T}\equiv\mathbb{T}$	Domination Laws
$ ho \wedge \mathbb{F} \equiv \mathbb{F}$	
$ hoee p\equiv ho$	Idempotent Laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double Negation Law
$p \lor q \equiv q \lor p$	Commutative Laws
$p \wedge q \equiv q \wedge p$	
$p \lor (q \lor r) \equiv (p \lor q) \lor r$	Associative Laws

Equivalence	Name
$ ho \wedge \mathbb{T} \equiv ho$	Identity Laws
$ hoee\mathbb{F}\equiv ho$	
$ hoee\mathbb{T}\equiv\mathbb{T}$	Domination Laws
$ ho \wedge \mathbb{F} \equiv \mathbb{F}$	
$ hoee p\equiv p$	Idempotent Laws
$p \wedge p \equiv p$	
$ eg(eg p) \equiv p$	Double Negation Law
$p \lor q \equiv q \lor p$	Commutative Laws
$p \wedge q \equiv q \wedge p$	
$p \lor (q \lor r) \equiv (p \lor q) \lor r$	Associative Laws
$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$	

Equivalence	Name
$ ho \wedge \mathbb{T} \equiv ho$	Identity Laws
$ hoee\mathbb{F}\equiv ho$	
$ hoee\mathbb{T}\equiv\mathbb{T}$	Domination Laws
$ ho \wedge \mathbb{F} \equiv \mathbb{F}$	
$pee p\equiv p$	Idempotent Laws
$p \wedge p \equiv p$	
$ eg(eg p) \equiv p$	Double Negation Law
$p ee q \equiv q ee p$	Commutative Laws
$p \wedge q \equiv q \wedge p$	
$p \lor (q \lor r) \equiv (p \lor q) \lor r$	Associative Laws
$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive Laws
	48.48.48.48

Equivalence	Name
$ ho \wedge \mathbb{T} \equiv ho$	Identity Laws
$ hoee\mathbb{F}\equiv ho$	
$ hoee\mathbb{T}\equiv\mathbb{T}$	Domination Laws
$ ho \wedge \mathbb{F} \equiv \mathbb{F}$	
$ hoee p\equiv ho$	Idempotent Laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double Negation Law
$p \lor q \equiv q \lor p$	Commutative Laws
$p \wedge q \equiv q \wedge p$	
$p \lor (q \lor r) \equiv (p \lor q) \lor r$	Associative Laws
$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive Laws
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	

Equivalence	Name
$ ho \wedge \mathbb{T} \equiv ho$	Identity Laws
$ hoee\mathbb{F}\equiv ho$	
$ hoee\mathbb{T}\equiv\mathbb{T}$	Domination Laws
$ ho \wedge \mathbb{F} \equiv \mathbb{F}$	
$pee p\equiv p$	Idempotent Laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double Negation Law
$p \lor q \equiv q \lor p$	Commutative Laws
$p \wedge q \equiv q \wedge p$	
$p \lor (q \lor r) \equiv (p \lor q) \lor r$	Associative Laws
$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive Laws
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	
$ eg(p \wedge q) \equiv eg p ee eg q$	De Morgan's Laws

Equivalence	Name
$ ho \wedge \mathbb{T} \equiv ho$	Identity Laws
$ hoee\mathbb{F}\equiv ho$	
$ hoee\mathbb{T}\equiv\mathbb{T}$	Domination Laws
$ ho \wedge \mathbb{F} \equiv \mathbb{F}$	
$ hoee ho\equiv ho$	Idempotent Laws
$p \wedge p \equiv p$	
$ eg(eg p) \equiv p$	Double Negation Law
$p \lor q \equiv q \lor p$	Commutative Laws
$p \wedge q \equiv q \wedge p$	
$p \lor (q \lor r) \equiv (p \lor q) \lor r$	Associative Laws
$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive Laws
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	
$ eg(p \wedge q) \equiv eg p ee eg q$	De Morgan's Laws
$ eg(p \lor q) \equiv eg p \land eg q$	40.44.43.43

Practical Use of Truth Tables

We could use a truth table to determine whether two propositions are logically equivalent.

number of variables	number of rows of truth table	
1	2	$= 2^{1}$
2	4	$= 2^2$
3	8	$= 2^3$
4	16	$= 2^4$
5	32	$= 2^5$
6	64	$= 2^{6}$
10	1024	$=2^{10}$
20	1048576	$=2^{20}$
100	1267650600228229401496703205376	$=2^{100}$

For propositions with large numbers of variables this can't be done by a computer in reasonbable time!

• Instead of using truth tables to determine the equivalence of propositions, we can use the logical equivalences.

- Instead of using truth tables to determine the equivalence of propositions, we can use the logical equivalences.
- A proposition in a compound proposition can be replaced by an equivalent proposition without changing the truth value of the compount proposition.

- Instead of using truth tables to determine the equivalence of propositions, we can use the logical equivalences.
- A proposition in a compound proposition can be replaced by an equivalent proposition without changing the truth value of the compount proposition.
- Determine whether $\neg(p \lor (\neg p \land q))$ is logically equivalent to $\neg p \land \neg q$.

$$\neg(p \lor (\neg p \land q)) \equiv$$

- Instead of using truth tables to determine the equivalence of propositions, we can use the logical equivalences.
- A proposition in a compound proposition can be replaced by an equivalent proposition without changing the truth value of the compount proposition.
- Determine whether $\neg(p \lor (\neg p \land q))$ is logically equivalent to $\neg p \land \neg q$.

$$\neg(p \lor (\neg p \land q)) \equiv \neg p \land \neg(\neg p \land q)$$
 |Second De Morgan's

- Instead of using truth tables to determine the equivalence of propositions, we can use the logical equivalences.
- A proposition in a compound proposition can be replaced by an equivalent proposition without changing the truth value of the compount proposition.
- Determine whether $\neg(p \lor (\neg p \land q))$ is logically equivalent to $\neg p \land \neg q$.

$$\neg (p \lor (\neg p \land q)) \quad \equiv \quad \neg p \land \neg (\neg p \land q) \qquad | Second \ De \ Morgan's \\ \equiv \quad \neg p \land (\neg \neg p \lor \neg q) \qquad | First \ De \ Morgan's$$

- Instead of using truth tables to determine the equivalence of propositions, we can use the logical equivalences.
- A proposition in a compound proposition can be replaced by an equivalent proposition without changing the truth value of the compount proposition.
- Determine whether $\neg(p \lor (\neg p \land q))$ is logically equivalent to $\neg p \land \neg q$.

$$\neg(p \lor (\neg p \land q)) \quad \equiv \quad \neg p \land \neg(\neg p \land q) \qquad | Second \ De \ Morgan's \\ \equiv \quad \neg p \land (\neg \neg p \lor \neg q) \qquad | First \ De \ Morgan's \\ \equiv \quad \neg p \land (p \lor \neg q) \qquad | Double \ Negation$$

- Instead of using truth tables to determine the equivalence of propositions, we can use the logical equivalences.
- A proposition in a compound proposition can be replaced by an equivalent proposition without changing the truth value of the compount proposition.
- Determine whether $\neg(p \lor (\neg p \land q))$ is logically equivalent to $\neg p \land \neg q$.

$$\neg (p \lor (\neg p \land q)) \quad \equiv \quad \neg p \land \neg (\neg p \land q) \qquad | Second \ De \ Morgan's \\ \equiv \quad \neg p \land (\neg \neg p \lor \neg q) \qquad | First \ De \ Morgan's \\ \equiv \quad \neg p \land (p \lor \neg q) \qquad | Double \ Negation \\ \equiv \quad (\neg p \land p) \lor (\neg p \land \neg q) \quad | Distributive \ Law$$

- Instead of using truth tables to determine the equivalence of propositions, we can use the logical equivalences.
- A proposition in a compound proposition can be replaced by an equivalent proposition without changing the truth value of the compount proposition.
- Determine whether $\neg(p \lor (\neg p \land q))$ is logically equivalent to $\neg p \land \neg q$.

$$\neg (p \lor (\neg p \land q)) \quad \equiv \quad \neg p \land \neg (\neg p \land q) \qquad | Second \ De \ Morgan's \\ \equiv \quad \neg p \land (\neg \neg p \lor \neg q) \qquad | First \ De \ Morgan's \\ \equiv \quad \neg p \land (p \lor \neg q) \qquad | Double \ Negation \\ \equiv \quad (\neg p \land p) \lor (\neg p \land \neg q) \qquad | Distributive \ Law \\ \equiv \quad F \lor (\neg p \land \neg q) \qquad | Contradiction \ p \land \neg p$$

- Instead of using truth tables to determine the equivalence of propositions, we can use the logical equivalences.
- A proposition in a compound proposition can be replaced by an equivalent proposition without changing the truth value of the compount proposition.
- Determine whether $\neg(p \lor (\neg p \land q))$ is logically equivalent to $\neg p \land \neg q$.

$$\neg (p \lor (\neg p \land q)) \quad \equiv \quad \neg p \land \neg (\neg p \land q) \qquad | Second \ De \ Morgan's \\ \equiv \quad \neg p \land (\neg \neg p \lor \neg q) \qquad | First \ De \ Morgan's \\ \equiv \quad \neg p \land (p \lor \neg q) \qquad | Double \ Negation \\ \equiv \quad (\neg p \land p) \lor (\neg p \land \neg q) \qquad | Distributive \ Law \\ \equiv \quad F \lor (\neg p \land \neg q) \qquad | Contradiction \ p \land \neg p \\ \equiv \quad (\neg p \land \neg q) \lor F \qquad | Commutativity$$

- Instead of using truth tables to determine the equivalence of propositions, we can use the logical equivalences.
- A proposition in a compound proposition can be replaced by an equivalent proposition without changing the truth value of the compount proposition.
- Determine whether $\neg(p \lor (\neg p \land q))$ is logically equivalent to $\neg p \land \neg q$.

$$\neg(p \lor (\neg p \land q)) \quad \equiv \quad \neg p \land \neg(\neg p \land q) \qquad | Second \ De \ Morgan's \\ \equiv \quad \neg p \land (\neg \neg p \lor \neg q) \qquad | First \ De \ Morgan's \\ \equiv \quad \neg p \land (p \lor \neg q) \qquad | Double \ Negation \\ \equiv \quad (\neg p \land p) \lor (\neg p \land \neg q) \qquad | Distributive \ Law \\ \equiv \quad F \lor (\neg p \land \neg q) \qquad | Contradiction \ p \land \neg p \\ \equiv \quad (\neg p \land \neg q) \lor F \qquad | Commutativity \\ \equiv \quad \neg p \land \neg q \qquad | Identity \ Law$$

- Instead of using truth tables to determine the equivalence of propositions, we can use the logical equivalences.
- A proposition in a compound proposition can be replaced by an equivalent proposition without changing the truth value of the compount proposition.
- Determine whether $\neg(p \lor (\neg p \land q))$ is logically equivalent to $\neg p \land \neg q$.

$$\neg (p \lor (\neg p \land q)) \quad \equiv \quad \neg p \land \neg (\neg p \land q) \qquad | Second \ De \ Morgan's \\ \equiv \quad \neg p \land (\neg \neg p \lor \neg q) \qquad | First \ De \ Morgan's \\ \equiv \quad \neg p \land (p \lor \neg q) \qquad | Double \ Negation \\ \equiv \quad (\neg p \land p) \lor (\neg p \land \neg q) \qquad | Distributive \ Law \\ \equiv \quad F \lor (\neg p \land \neg q) \qquad | Contradiction \ p \land \neg p \\ \equiv \quad (\neg p \land \neg q) \lor F \qquad | Commutativity \\ \equiv \quad \neg p \land \neg q \qquad | Identity \ Law$$

Therefore, $\neg(p \lor (\neg p \land q))$ is logically equivalent to $\neg p \land \neg q$.

				q∧	$p \lor (q \land$	$\neg (p \lor (q \land $
p	q	r	$\neg p \Rightarrow \neg r$	$(\neg p \Rightarrow \neg r)$	$(\neg p \Rightarrow \neg r))$	$(\neg p \Rightarrow \neg r)))$
F	F	F	T	F	F	T
F	F	T	F	F	F	T
F	Т	F	T	T	T	F
F	Т	T	F	F	F	T
T	F	F	Т	F	T	F
T	F	T	T	F	T	F
T	T	F	T	T	T	F
T	T	T	T	Т	T	F

				$q \wedge$	$p \lor (q \land$	$\neg (p \lor (q \land \)$
p	q	r	$\neg p \Rightarrow \neg r$	$(\neg p \Rightarrow \neg r)$	$(\neg p \Rightarrow \neg r))$	$(\neg p \Rightarrow \neg r)))$
F	F	F	T	F	F	T
F	F	T	F	F	F	T
F	Τ	F	T	T	T	F
F	T	T	F	F	F	T
T	F	F	T	F	T	F
T	F	T	T	F	T	F
T	T	F	T	T	T	F
T	T	T	T	Т	T	F

				q∧	$p \lor (q \land$	$\neg (p \lor (q \land$
р	q	r	$\neg p \Rightarrow \neg r$	$(\neg p \Rightarrow \neg r)$	$(\neg p \Rightarrow \neg r))$	$(\neg p \Rightarrow \neg r)))$
F	F	F	T	F	F	T
F	F	T	F	F	F	T
F	Т	F	T	T	T	F
F	Т	T	F	F	F	T
T	F	F	T	F	T	F
T	F	T	T	F	T	F
T	T	F	T	T	T	F
T	T	T	T	Т	T	F

$$(\neg p \land \neg q \land \neg r)$$

				$q \wedge$	$p \lor (q \land$	$\neg (p \lor (q \land \mid$
p	q	r	$\neg p \Rightarrow \neg r$	$(\neg p \Rightarrow \neg r)$	$(\neg p \Rightarrow \neg r))$	$(\neg p \Rightarrow \neg r)))$
F	F	F	T	F	F	T
F	F	T	F	F	F	T
F	Т	F	T	T	T	F
F	Т	T	F	F	F	T
T	F	F	T	F	T	F
T	F	T	T	F	T	F
T	T	F	T	T	T	F
T	T	T	T	Т	T	F

$$(\neg p \land \neg q \land \neg r)$$

				$q \wedge$	$p \lor (q \land$	$\neg (p \lor (q \land$
p	q	r	$\neg p \Rightarrow \neg r$	$(\neg p \Rightarrow \neg r)$	$(\neg p \Rightarrow \neg r))$	$(\neg p \Rightarrow \neg r)))$
F	F	F	T	F	F	T
F	F	T	F	F	F	T
F	T	F	T	T	T	F
F	T	T	F	F	F	T
T	F	F	T	F	T	F
T	F	T	T	F	T	F
T	T	F	T	T	T	F
T	T	T	T	Т	T	F

$$(\neg p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r)$$

				q∧	$p \lor (q \land$	$\neg (p \lor (q \land$
р	q	r	$\neg p \Rightarrow \neg r$	$(\neg p \Rightarrow \neg r)$	$(\neg p \Rightarrow \neg r))$	$(\neg p \Rightarrow \neg r)))$
F	F	F	T	F	F	T
F	F	T	F	F	F	T
F	T	F	T	T	T	F
F	Т	T	F	F	F	T
T	F	F	T	F	T	F
T	F	T	T	F	T	F
T	T	F	T	T	T	F
T	T	T	T	Т	Т	F

$$(\neg p \wedge \neg q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge r)$$

				g∧	$p \lor (q \land$	$\neg (p \lor (q \land$
				·		. `` `
p	q	r	$\neg p \Rightarrow \neg r$	$(\neg p \Rightarrow \neg r)$	$(\neg p \Rightarrow \neg r))$	$(\neg p \Rightarrow \neg r)))$
F	F	F	T	F	F	T
F	F	T	F	F	F	T
F	T	F	T	T	T	F
F	Т	T	F	F	F	T
T	F	F	T	F	T	F
T	F	T	T	F	T	F
T	T	F	T	T	T	F
T	T	T	T	Т	T	F

$$(\neg p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land q \land r)$$

Write $\neg(p \lor (q \land (\neg p \Rightarrow \neg r)))$ in *Disjunctive Normal Form (DNF)*.

				g∧	$p \lor (q \land$	$\neg (p \lor (q \land$
p	q	r	$\neg p \Rightarrow \neg r$	$(\neg p \Rightarrow \neg r)$	$(\neg p \Rightarrow \neg r))$	$(\neg p \Rightarrow \neg r)))$
F	F	F	T	F	F	T
F	F	T	F	F	F	T
F	T	F	T	T	T	F
F	Τ	T	F	F	F	T
T	F	F	T	F	T	F
T	F	T	T	F	T	F
T	Τ	F	T	T	T	F
T	T	T	T	Т	Т	F

$$(\neg p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land q \land r)$$

• Every wff can be expressed in DNF.

П				A	\ / / ^	(\ / (\
				$q \wedge$	$p \lor (q \land$	$\neg (p \lor (q \land \mid$
p	q	r	$\neg p \Rightarrow \neg r$	$(\neg p \Rightarrow \neg r)$	$(\neg p \Rightarrow \neg r))$	$(\neg p \Rightarrow \neg r)))$
F	F	F	T	F	F	T
F	F	T	F	F	F	T
F	T	F	Т	T	T	F
F	Т	T	F	F	F	T
T	F	F	T	F	T	F
T	F	T	T	F	T	F
T	T	F	T	T	T	F
T	T	T	T	Т	T	F

$$(\neg p \wedge \neg q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge r)$$

- Every wff can be expressed in DNF.
- DNF only uses the connectives conjuction, disjunction and negation.

Write $\neg(p \lor (q \land (\neg p \Rightarrow \neg r)))$ in *Disjunctive Normal Form (DNF)*.

$\overline{}$,	, ,
				$q \wedge$	$p \lor (q \land$	$\neg (p \lor (q \land \mid$
p	q	r	$\neg p \Rightarrow \neg r$	$(\neg p \Rightarrow \neg r)$	$(\neg p \Rightarrow \neg r))$	$(\neg p \Rightarrow \neg r)))$
F	F	F	T	F	F	T
F	F	T	F	F	F	T
F	Τ	F	Т	T	T	F
F	Τ	T	F	F	F	T
T	F	F	T	F	T	F
T	F	T	T	F	T	F
T	T	F	T	T	T	F
T	T	T	T	Т	T	F

$$(\neg p \wedge \neg q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge r)$$

- Every wff can be expressed in DNF.
- DNF only uses the connectives conjuction, disjunction and negation.

• The set $\{\land,\lor,\lnot\}$ is said to be functionally complete.

• The set $\{\land,\lor,\lnot\}$ is said to be functionally complete.

- The set $\{\land, \lor, \neg\}$ is said to be *functionally complete*.
- Is this the smallest set of functionally complete connectives?

- The set $\{\land, \lor, \neg\}$ is said to be *functionally complete*.
- Is this the smallest set of functionally complete connectives?
- Can one of the three connectives be expressed in terms of the other two?

- The set $\{\land, \lor, \neg\}$ is said to be *functionally complete*.
- Is this the smallest set of functionally complete connectives?
- Can one of the three connectives be expressed in terms of the other two?
- De Morgan's Laws:

$$\neg(p \land q) \equiv \neg p \lor \neg q
\neg(p \lor q) \equiv \neg p \land \neg q$$

- The set $\{\land, \lor, \neg\}$ is said to be *functionally complete*.
- Is this the smallest set of functionally complete connectives?
- Can one of the three connectives be expressed in terms of the other two?
- De Morgan's Laws:

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

 $\bullet \ \ p \lor q = \neg(\neg(p \lor q)) = \neg(\neg p \land \neg q)$

- The set $\{\land, \lor, \neg\}$ is said to be *functionally complete*.
- Is this the smallest set of functionally complete connectives?
- Can one of the three connectives be expressed in terms of the other two?
- De Morgan's Laws:

$$\neg(p \land q) \equiv \neg p \lor \neg q
\neg(p \lor q) \equiv \neg p \land \neg q$$

- $\bullet \ \ p \lor q = \neg(\neg(p \lor q)) = \neg(\neg p \land \neg q)$
- Therefore, $\{\land, \neg\}$ is a set of functionally complete connectives.

- The set $\{\land, \lor, \neg\}$ is said to be *functionally complete*.
- Is this the smallest set of functionally complete connectives?
- Can one of the three connectives be expressed in terms of the other two?
- De Morgan's Laws:

$$\neg(p \land q) \equiv \neg p \lor \neg q
\neg(p \lor q) \equiv \neg p \land \neg q$$

- $\bullet \ p \lor q = \neg(\neg(p \lor q)) = \neg(\neg p \land \neg q)$
- Therefore, $\{\land, \neg\}$ is a set of functionally complete connectives.
- $\bullet \ p \wedge q = \neg(\neg(p \wedge q)) = \neg(\neg p \vee \neg q))$

- The set $\{\land, \lor, \neg\}$ is said to be *functionally complete*.
- Is this the smallest set of functionally complete connectives?
- Can one of the three connectives be expressed in terms of the other two?
- De Morgan's Laws:

$$\neg(p \land q) \equiv \neg p \lor \neg q
\neg(p \lor q) \equiv \neg p \land \neg q$$

- $\bullet \ \ p \lor q = \neg(\neg(p \lor q)) = \neg(\neg p \land \neg q)$
- Therefore, $\{\land, \neg\}$ is a set of functionally complete connectives.
- $\bullet \ \ p \wedge q = \neg (\neg (p \wedge q)) = \neg (\neg p \vee \neg q))$
- The set $\{\lor, \neg\}$ is also functionally complete.

Is there an even smaller set, a set containing just a single connective, that is functionally complete?

- Is there an even smaller set, a set containing just a single connective, that is functionally complete?
- *NAND*, denoted ↑, is a connective with the following truth table:

р	q	$\neg (p \land q)$	<i>p</i> ↑ <i>q</i>
T	T	F	F
Т	F	T	T
F	T	T	T
F	F	T	T

- Is there an even smaller set, a set containing just a single connective, that is functionally complete?
- *NAND*, denoted ↑, is a connective with the following truth table:

р	q	$\neg (p \land q)$	p ↑ q
T	Τ	F	F
T	F	Т	T
F	T	T	T
F	F	T	T

• {\pmath} is functionally complete.

- Is there an even smaller set, a set containing just a single connective, that is functionally complete?
- *NAND*, denoted ↑, is a connective with the following truth table:

р	q	$\neg (p \land q)$	<i>p</i> ↑ <i>q</i>
T	T	F	F
Т	F	T	T
F	T	T	T
F	F	T	T

- {\u03c4} is functionally complete.
- We already know that $\{\land, \neg\}$ is functionally complete.

- Is there an even smaller set, a set containing just a single connective, that is functionally complete?
- *NAND*, denoted ↑, is a connective with the following truth table:

р	q	$\neg (p \land q)$	<i>p</i> ↑ <i>q</i>
T	T	F	F
T	F	T	T
F	T	T	T
F	F	T	T

- {\u03c4} is functionally complete.
- We already know that $\{\land, \neg\}$ is functionally complete.
- We only need to demonstrate that both \land and \neg can be expressed using just \uparrow .

- Is there an even smaller set, a set containing just a single connective, that is functionally complete?
- *NAND*, denoted ↑, is a connective with the following truth table:

р	q	$\neg (p \land q)$	<i>p</i> ↑ <i>q</i>
T	T	F	F
T	F	T	T
F	T	T	T
F	F	T	T

- {\u03c4} is functionally complete.
- We already know that $\{\land, \neg\}$ is functionally complete.
- We only need to demonstrate that both \land and \neg can be expressed using just \uparrow .

• The connective *NOR*, denoted \downarrow , has the following truth table:

р	q	$\neg (p \lor q)$	$p \downarrow q$
T	T	F	F
T	F	F	F
F	Т	F	F
F	F	T	T

• The connective *NOR*, denoted \downarrow , has the following truth table:

р	q	$\neg (p \lor q)$	$p \downarrow q$
T	Т	F	F
T	F	F	F
F	T	F	F
F	F	T	T

ullet $\{\downarrow\}$ is also functionally complete.

• The connective *NOR*, denoted \downarrow , has the following truth table:

р	q	$\neg (p \lor q)$	$p \downarrow q$
T	T	F	F
T	F	F	F
F	T	F	F
F	F	T	T

- $\{\downarrow\}$ is also functionally complete.
- \bullet SSE: Demonstrate that $\{\downarrow\}$ is functionally complete.

• Evaluation of compound propositions

- Evaluation of compound propositions
- Notions of validity and satisfiability

- Evaluation of compound propositions
- Notions of validity and satisfiability
- Logic equivalence

- Evaluation of compound propositions
- Notions of validity and satisfiability
- Logic equivalence
- Symbolic manipuation using logical equivalences

- Evaluation of compound propositions
- Notions of validity and satisfiability
- Logic equivalence
- Symbolic manipuation using logical equivalences
- Sets of functionally complete connectives, special role of NAND and NOR

- Evaluation of compound propositions
- Notions of validity and satisfiability
- Logic equivalence
- Symbolic manipuation using logical equivalences
- Sets of functionally complete connectives, special role of NAND and NOR
- (Semantics of propositional logic)

• More formally, an **interpretation** is an assignment of either T or F to each statement of the language.

- More formally, an **interpretation** is an assignment of either T or F to each statement of the language.
- Associated with each interpretation is a valuation function $I_f: PROP \rightarrow \{T, F\}$ which assigns a truth value to each atomic proposition.

- More formally, an **interpretation** is an assignment of either T or F to each statement of the language.
- Associated with each interpretation is a valuation function
 I_f: PROP → {T, F} which assigns a truth value to each atomic proposition.
- Given an interpretation *I*, we can say for any formula whether it is true or false.

- More formally, an **interpretation** is an assignment of either T or F to each statement of the language.
- Associated with each interpretation is a valuation function
 I_f: PROP → {T, F} which assigns a truth value to each atomic proposition.
- Given an interpretation I, we can say for any formula whether it is true or false.

I models **true**

- More formally, an **interpretation** is an assignment of either T or F to each statement of the language.
- Associated with each interpretation is a valuation function
 I_f: PROP → {T, F} which assigns a truth value to each atomic proposition.
- Given an interpretation I, we can say for any formula whether it is true or false.

```
/ models true
/ does not model false
```

- More formally, an **interpretation** is an assignment of either T or F to each statement of the language.
- Associated with each interpretation is a valuation function
 I_f: PROP → {T, F} which assigns a truth value to each atomic proposition.
- Given an interpretation *I*, we can say for any formula whether it is true or false.

```
I models true
I does not model false
I models p if, and only if I_f(p) = T
```

- More formally, an **interpretation** is an assignment of either T or F to each statement of the language.
- Associated with each interpretation is a valuation function
 I_f: PROP → {T, F} which assigns a truth value to each atomic proposition.
- Given an interpretation I, we can say for any formula whether it is true or false.

```
I models true
I does not model false
I models p if, and only if I_f(p) = T
I models \neg A if, and only if I does not model A
```

- More formally, an **interpretation** is an assignment of either T or F to each statement of the language.
- Associated with each interpretation is a valuation function $I_f: PROP \rightarrow \{T, F\}$ which assigns a truth value to each atomic proposition.
- Given an interpretation I, we can say for any formula whether it is true or false.

```
I models true
I does not model false
I models p if, and only if I_f(p) = T
I models \neg A if, and only if I does not model A
I models A \land B if, and only if I models A and I models B
```

- More formally, an **interpretation** is an assignment of either T or F to each statement of the language.
- Associated with each interpretation is a valuation function $I_f: PROP \rightarrow \{T, F\}$ which assigns a truth value to each atomic proposition.
- Given an interpretation I, we can say for any formula whether it is true or false.

```
I models true
I does not model false
I models p if, and only if I_f(p) = T
I models \neg A if, and only if I does not model A
I models A \land B if, and only if I models A and I models B
I models A \lor B if, and only if I models A or I models B
```

- More formally, an **interpretation** is an assignment of either T or F to each statement of the language.
- Associated with each interpretation is a valuation function $I_f: PROP \rightarrow \{T, F\}$ which assigns a truth value to each atomic proposition.
- Given an interpretation I, we can say for any formula whether it is true or false.

```
I models true
I does not model false
I models p if, and only if I_f(p) = T
I models \neg A if, and only if I does not model A
I models A \land B if, and only if I models A and I models B
I models A \lor B if, and only if I models A or I models B
I models A \oplus B if, and only if I... (SSE)
```

- More formally, an **interpretation** is an assignment of either T or F to each statement of the language.
- Associated with each interpretation is a valuation function $I_f: PROP \rightarrow \{T, F\}$ which assigns a truth value to each atomic proposition.
- Given an interpretation I, we can say for any formula whether it is true or false.

```
I models true
I \text{ does not model } \textbf{false}
I \text{ models } p \text{ if, and only if } I_f(p) = T
I \text{ models } \neg A \text{ if, and only if } I \text{ does not model } A
I \text{ models } A \land B \text{ if, and only if } I \text{ models } A \text{ and } I \text{ models } B
I \text{ models } A \lor B \text{ if, and only if } I \text{ models } A \text{ or } I \text{ models } B
I \text{ models } A \oplus B \text{ if, and only if } \dots
I \text{ models } A \Rightarrow B \text{ if, and only if } I \text{ models } A \text{ then } I \text{ models } B
```

- More formally, an **interpretation** is an assignment of either T or F to each statement of the language.
- Associated with each interpretation is a valuation function $I_f: PROP \rightarrow \{T, F\}$ which assigns a truth value to each atomic proposition.
- Given an interpretation *I*, we can say for any formula whether it is true or false.

```
I models true
I does not model false
I models p if, and only if I_f(p) = T
I models \neg A if, and only if I does not model A
I models A \land B if, and only if I models A and I models B
I models A \lor B if, and only if I models A or I models B
I models A \oplus B if, and only if ...

(SSE)
I models A \Leftrightarrow B if, and only if ...
(SSE)
```

- More formally, an interpretation is an assignment of either T or F to each statement of the language.
- Associated with each interpretation is a valuation function $I_f: PROP \rightarrow \{T, F\}$ which assigns a truth value to each atomic proposition.
- Given an interpretation I, we can say for any formula whether it is true or false.

```
I models true
I does not model false
I models p if, and only if I_f(p) = T
I models \neg A if, and only if I does not model A
I models A \wedge B if, and only if I models A and I models B
I models A \vee B if, and only if I models A or I models B
I models A \oplus B if, and only if . . .
                                                                        (SSE)
I models A \Rightarrow B if, and only if if I models A then I models B
I models A \Leftrightarrow B if, and only if . . .
                                                                        (SSE)
```

- More formally, an **interpretation** is an assignment of either T or F to each statement of the language.
- Associated with each interpretation is a valuation function $I_f: PROP \rightarrow \{T, F\}$ which assigns a truth value to each atomic proposition.
- Given an interpretation *I*, we can say for any formula whether it is true or false.

```
I \models \textbf{true}
I \not\models \textbf{false}
I \models p \text{ if, and only if } I_f(p) = T
I \models \neg A \text{ if, and only if } I \not\models A
I \models A \land B \text{ if, and only if } I \models A \text{ and } I \models B
I \models A \lor B \text{ if, and only if } I \models A \text{ or } I \models B
I \models A \oplus B \text{ if, and only if } I \models A \text{ then } I \models B
I \models A \Leftrightarrow B \text{ if, and only if } I \vdash A \text{ then } I \models B
I \models A \Leftrightarrow B \text{ if, and only if } I \mapsto A \text{ then } I \models B
I \models A \Leftrightarrow B \text{ if, and only if } I \mapsto A \text{ then } I \models B
I \models A \Leftrightarrow B \text{ if, and only if } I \mapsto A \text{ then } I \models B
I \models A \Leftrightarrow B \text{ if, and only if } I \mapsto A \text{ then } I \models B
I \models A \Leftrightarrow B \text{ if, and only if } I \mapsto A \text{ then } I \mapsto B
I \models A \Leftrightarrow B \text{ if, and only if } I \mapsto A \text{ then } I \mapsto B
I \models A \Leftrightarrow B \text{ if, and only if } I \mapsto A \text{ then } I \mapsto B
I \models A \Leftrightarrow B \text{ if, and only if } I \mapsto A \text{ then } I \mapsto B
I \models A \Leftrightarrow B \text{ if, and only if } I \mapsto A \text{ then } I \mapsto B
I \models A \Leftrightarrow B \text{ if, and only if } I \mapsto A \text{ then } I \mapsto B
I \models A \Leftrightarrow B \text{ if, and only if } I \mapsto A \text{ then } I \mapsto B
```

- More formally, an **interpretation** is an assignment of either T or F to each statement of the language.
- Associated with each interpretation is a valuation function $I_f: PROP \rightarrow \{T, F\}$ which assigns a truth value to each atomic proposition.
- Given an interpretation *I*, we can say for any formula whether it is true or false.

```
I \models \text{true}

I \not\models \text{false}

I \models p \text{ if, and only if } I_f(p) = T

I \models \neg A \text{ if, and only if } I \not\models A

I \models A \land B \text{ if, and only if } I \models A \text{ and } I \models B

I \models A \lor B \text{ if, and only if } I \models A \text{ or } I \models B

I \models A \oplus B \text{ if, and only if } I \models A \text{ then } I \models B

I \models A \Leftrightarrow B \text{ if, and only if } I \models A \text{ then } I \models B

I \models A \Leftrightarrow B \text{ if, and only if } I \models A \text{ then } I \models B

(SSE)
```

• $I \models A$ can be read as I satisfies A or I models A.