Rigid Analytic Geometry

David Wiedemann

Table des matières

List of Theorems

1	Theorem	2
-		
1	Definition	2
2	Definition	2
4	Proposition	2
3	Definition	3
4	Definition	3
7	Corollary	4
5	Definition	4
6	Definition	4
9	Proposition	4
7	Definition (Vander Put point)	4
10	Corollary	5
8	Definition	6
9	Definition	6
14	Proposition	6
17	Proposition	7

Lecture 1: Covering sieves

Wed 05 Apr

Theorem 1

Every sieve τ containing a covering sieve τ' of X is itself covering. The intersection of two covering sieves is covering.

Proof

```
If (v: V \to X) is a morphism in \tau' then v^*\tau = v\tau'^*.

Let \tau, \tau' be covering sieves of X and v: V \to X \in \tau, then v^*(\tau \cap \tau') = v^*\tau'.

This covers V by GTTrans, by GTLoc, \tau \cap \tau' covers X.
```

Remark

We are mostly interested in the case where the category C is the poset of open subsets of a topological space.

Then a sieve in V is just a set of open subsets of V such that $V \in \tau$, $W \subset V$, W open implies $W \in \tau$.

The pullback along the (unique if it exists) morphism $V \to U$ are just the open subsets of V.

We write $\tau/=V$ if τ is a sieve overvev which covers V.

If several grothendieck topologies must be distinguished, I will write $\tau/=\pi V$

Definition 1

We will write $[V_i|i\in I]$ for the sieve generated by the family V_i of open subsets of V. We have $[V_i]=\{V\in O_X|\exists i\in I \text{ st }V\subset V_i\}=\bigcap_{\tau\text{ sieve in }X\text{ containing }V_i}\tau$.

A sieve is finitely generated if it can be written as $[V_i]$ for finitely many V_i

Remark

More generally, we consider Grothendieck topologies on B, a topology base for X, considered as posets.

Definition 2

Let $[\Omega_i]_B$ be the B-sieve generated by the Ω_i , ie.

$$\{\theta \in B | \theta \subset \Omega_i \text{ for at least one } i \in I\}$$

The subscript B will always be used when $B \subsetneq O_X$.

Proposition 4

Let X be a topological space and B a topology base for X.

Then we have a bijection between

— Grothendieck topologices T_B on B

— Grothendieck topologies T on O_X st. $[B_V]$ covers V. If T_B is given, T is defined by $\tau/=_T V, \tau \cap B_\Omega/=_{T_B} \Omega$ for all $\Omega \in B_V$. When T is given, T_B is defined by

$$\tau/=_{T_B}\Omega$$
 iff $[\tau]/=_T\Omega$

Lecture 2: idk

Wed 12 Apr

Definition 3

Let B be a topology base on X. By a G_+ -topology on B, we understand a Grothendieck topology on B with the following additional assumptions.

- If $S/=\Omega$ then $\Omega=\bigcup_{\theta\in\mathcal{S}}\theta$
- $-\emptyset/=\emptyset$
- The topology generated by B is T_0 .

If $B = \mathbb{O}_X$ for a topological space X then we speak of a G_+ -topology on X.

Remark

Under a coarser pretopology, we call an open covering \mathcal{U} of V admissible for the G_+ -topology under consideration if $[\mathcal{U}]/=V$

Example

- Ordinary Topologies : S/=V iff $\bigcup_{v\in S} v=V$
- If V is an open neighbourhood of a G_+ -toopological space X, then it carries an induced G_+ -topology
- Let B have the additional property that $\Omega, \theta \in B \implies \Omega \cap \theta \in B$. Let S be a covering sieve for Ω iff there is an $n \in \mathbb{N}$ and $\theta_1, \ldots, \theta_n$ such that $\Omega = \bigcup_i \theta_i$.

To verify the three axioms, note thaat GTtriv is trivial.

We check transitivity, let $S/=\Omega$ and θ_i as above, $\Theta \in B_{\Omega}$, then $\Theta = \bigcup_i (\theta_i \cap \Theta)$.

To see locality, let S cover Ω , θ_i as above and T another serve st $T//\theta$ then $\theta_i \bigcup \theta_{ij}$ with $\theta_{ij} \in T$, hence $\Omega = \bigcup_i \bigcup_j \theta_{ij}$, hence $T/=\Omega$

Definition 4

Let X be a G_+ topological space, a G_+ -topology base for X is an ordinary topology base for the underlying ordinary topology satisfying the additional assumption that $[B_V]/=V$ for all $V \in \mathbb{O}_X$.

The topology base is called G_{++} if, in addition, membership in B is local in the following sense

- If $\Omega, \theta \in B$, then $\Omega \cap \theta \in B$
- If $\Omega \in B$ and $V \in \mathcal{O}_{\Omega}$ such that $\{\theta \in B_{\Omega} | \theta \cap V \in B\} / = \Omega$

Corollary 7

- If B is a topology base on the topological space X, then there is a bijection between the G_+ topologies on B and the G_+ topologies on X for which B is a G_+ topology base.
- If in addition B is closed under intersections, then there is a unique G_+ topology on X with the property that a covering of an element of B is admissible iff it has a finite subcovering

Definition 5

This G_+ -topology is called the G_+ topology obtained by forcing the elements of B to be quasicompact.

Definition 6

Let B be a topology base closed under arbitrary finite intersections. A serive S is called a prime sieve if $N \in \mathbb{N}$, $(\Omega_i) \in B$ and $\bigcap_i \Omega_i \in B$ implies there is $i \in [1, n]$ s.t. $\Omega_i \in S$.

Remark

Obviously, S is a prime sieve iff

- $-\Omega, \theta \in B \text{ and } \Omega \cap \theta \in \mathcal{S} \iff \Omega \in \mathcal{S} \text{ or } \theta \in \mathcal{S}$
- $-X \notin S$

Proposition 9

Let B be a G_+ topology base for a G_+ -topological space X which is closed under taking intersections.

Ten the following conditions on a subset $\xi \subset B$ are equivalent

- If $U \in \xi$ and $U \subset V$, then $U \subset V$, then $V \in \xi$
 - A finite intersection in X of elements of ξ is $\in \xi$
 - If $\Omega \in \xi$ and $S/=\Omega$ then $S \cap \xi \neq \emptyset$
- $S = B \setminus \xi$ is a prime sieve containing every element Ω of B with $S//\Omega$

Definition 7 (Vander Put point)

Let B be a G_+ topology base such that $\Omega, \Theta \in B \implies \Omega \cap \Theta \in B$.

A Van der Put-point for B is a subset $\xi \subset B$ such that

- $-\Omega \in \xi, \Theta \in B, \Omega \subset \Theta \implies \Theta \in \xi$
- If Ω, Θ then $\Omega \cap \Theta \in \xi$
- $-\xi \neq \emptyset$
- If $\Omega \in \xi$ and $S/=\Omega$ then $S \cap \xi \neq \emptyset$

j

Corollary 10

If X is an ordinary topological space, then $X \to X^*$ iff X is sober.

Example

Let F be an ordered field. Equip $\mathbb{A}_F^1 = F$ with it's order topology and the G_+ -topology forcing the elements of $B = \emptyset \cup \{(a,b)_F | -\infty \le a < b \le \infty\}$ to be quasicompact.

To describe the $\mathbb{A}_F^{1,*}$ of van der Put points, let a generalized Dedekind cut of F be a decomposition $F = A \cup B$ such that

1.
$$a \in A, \alpha \in (-\infty, a]_F \implies \alpha \in A$$

$$2. b \in B, \beta \in [b, \infty) \implies \beta \in B$$

3.
$$|A \cap B| \le 1$$

There is a bijection $\mathbb{A}_F^{1,*} \leftrightarrow \{$ generalized Dedekind cuts $\}$ given by sending a Van der Put point ξ to the cut $F = A \cup B$ with $A = \{a \in F | (-\infty, a) \notin \xi\}$ and $B = \{b \in F | (b, \infty) \notin \xi\}$.

THe inverse sends a cut $F = A \cup B \mapsto \xi = \{(a,b) | a \notin B, b \notin A\}.$

Indeed, if $f \in F \setminus (A \cup B)$ (with ξ given), then $(-\infty, f)$ and (f, ∞) are both $\in \xi$ hence there intersection is empty and still contained in ξ , contradicting the fact that ξ is a Van der Put point.

If a < b are elements of F then $\mathbb{A}^1_F = (-\infty, b) \cup (a, \infty)$ is an admissible covering, but $\mathbb{A}^1_F \in \xi$ and hence $(-\infty, b) \in \xi$ or (a, ∞) hence $b \notin A$ or $a \notin B$, hence $\{a, b\} \not\subset A \cap B$ showing that a Van der Put point gives a cut.

We leave out the proof of the remaining properties.

The map $F = \mathbb{A}_F^1 \to \mathbb{A}_F^{1,*}$ sends $f \in F$ to $F = A \cup B$ to the cut with center f. There are also the related "Neighbouring" cuts $f_-: (-\infty, f) \cup [f, \infty)$ and f_+ defined similarly.

In addition to this, one has a point of \mathbb{A}_F^{1*} for each Dedekind cut not belonging to an element of F, including the improper cuts $F = \emptyset \cup F$ (giving the point $-\infty$) and similarly $F = F \cup \infty$.

One can order \mathbb{A}_F^{1*} by $(A, B) \leq (\tilde{A}, \tilde{B})$ iff $A \subset \tilde{A}$ and $\tilde{B} \subset B$.

Then a topology base on \mathbb{A}_F^{1*} is given by $\{(a,b)|\infty \leq a < b \leq \infty\}$.

Remark

 $Recall (U \cap V)^* = (U^*) \cap (V^*).$

We may however have $U^* \cup V^* \subsetneq (U \cup V)^*$, for instance $F = \mathbb{Q}$ in example 3 and the dedekind cut determined by π .

This is related to the fact that the covering $\mathbb{Q} = U \cup V$ is not admissible.

Notice that if $U^* = \bigcup_{V \in \mathcal{S}} V^*$ when $\mathcal{S}/=U$.

Definition 8

A G_+ -topological space X has sufficiently many $Van\ der\ Put\ points$ if the converse to the above fact holds, ie. :

$$(P)S/=U\iff U^*=\bigcup_{V\in\mathcal{S}}(V^*)$$

Example

- 1. Every ordinary T₀ space has sufficiently many van der Put points
- 2. Let X = [0,1] with the discrete topology, then the following G_+ -topology:

 $\mathcal{S}/=U\iff there\ are\ (X_i)\in\mathcal{S}\ such\ that\ U\setminus\bigcup V_i\ has\ Lebesgue\ measure\ 0.$

Then one can show that $X \to X^*$ is bijective, but $X = \bigcup_{x \in X} \{x\}$ is obviously not admissible.

One can show that there is a bijection $X^* = \{ \text{ Topos points of the topos of sheaves of sets on } X \}$. This is related to Delignes example in SGA4 (IV.7.4).

Definition 9

An open subset U is called G_+ -quasi compact iff every covering sieve of U contains a finitely generated covering sieve.

Proposition 14

Let X be a topological space with sufficiently many Van der Put points. Then $U \in \mathcal{O}_X$ is G_+ -qc iff $U^* \in \mathcal{O}_{X^*}$ is t-qc (ie. quasi-compact in the usual sense, t stands for topological).

Proof

Assume U^* is t-qc and let S/=U, then $U^*=\bigcup_{V\in S}V^*$ by (P), which has a finite subcover $U^*=\bigcup_{i=1}^N V_i^*$, thus $\tilde{S}^*/=U$ (by (P)) where $[V_1,\ldots,V_N]\subset S$ is finitely generated.

Let U be G_+ -qc and $U^* = \bigcup_{i \in I} W_i$.

Without loss of generality, $W_i = U_i^*$ (as elements of \mathcal{O}_{X^*} of this form form a topology base).

Then S/=U (by (P)) where $S=[U_i]$.

As U is G_+ -qc there is $\tilde{S} \subset S$ s.t. $\tilde{S} = [V_1, \dots, V_n]$ is finitely generated, $V_i \subset U_{j_i}$.

Then (by P) $U^* = \bigcup_{V \in \tilde{S}} V^* = \bigcup_{i=1}^N V_i^* \subset \bigcup_{i=1}^N U_{j_i}^*$ showing the existence of a finite subcovering.

Remark

If $\Omega \in B$ for some basis B with a Grothendieck topology \mathbb{T} , then Ω is \mathbb{T} -qc iff every sieve $S \in B$ with $S / =_{\mathbb{T}_B} \Omega$ has a finitely generated subsieve $\tilde{S} \subset S$ such

that
$$\tilde{\mathcal{S}}/=_{\mathbb{T}_B}\Omega$$

Remark

As a consequence, if \mathbb{T} is obtained by enforcing the qc-ness of elements of B, then the elements of B are G_+ -qc in the sense of definition 13 such that the following proposition can be applied.

Proposition 17

Let X be a G_+ -topological space which has a G_+ -topology base B whose elements are G_+ -qc, then X has sufficiently many Van der Put points.

Remark

In addition, if $\Omega \in B$ and S does not cover Ω , then there is $\omega \in \Omega \setminus_{V \in S} V^*$. If in addition B is closed under finite intersections in X, then X^* is a spectral space.