ANALISIS STATISTIK

Sistem Penyaliran Tambang

FIRDAUS - 2021

INGAT

Buat email dengan nama sendiri

Mengirim email dgn cara sbb :

 Kemudian lampirkan file dengan nama file yang sama dalam isi email dan sesuai yang disarankan

HUJAN RENCANA

- Hujan rencana (X_T) adalah hujan dengan periode ulang tertentu (T) yang diperkirakan akan terjadi di suatu daerah pengaliran.
- Periode ulang adalah waktu hipotetik di mana suatu kejadian dengan nilai tertentu akan disamai atau dilampaui 1 kali dalam jangka waktu hipotetik tersebut.
 - Hal ini tidak berarti bahwa hujan rencana akan berulang secara teratur setiap periode ulang tersebut.

Misalnya hujan rencana dengan periode ulang 5 tahun $(X_5) = 10$ mm, tidak berarti hujan sebesar 10 mm akan terjadi secara periodik 1 kali setiap 5 tahun, melainkan setiap tahunnya ada kemungkinan terjadi 1/5 kali terjadi hujan yang besarnya sama atau lebih dari 10 mm. Artinya dalam 5 tahun ada kemungkinan 1 kali terjadi hujan yang besarnya yang sama atau lebih dari 10 mm. Dalam 10 tahun ada kemungkinan 2 kali terjadi hujan yang besarnya sama atau lebih dari 10 mm.

- Peluang terjadinya $X \ge X_T$ setiap tahun : $P(X \ge X_T) = \frac{1}{T} \times 100\%$
- Peluang terjadinya $X < X_T$ setiap tahun : $P(X < X_T) = \left(1 \frac{1}{T}\right) \times 100\%$
- Peluang $X \ge X_T$ paling tidak 1 kali dalam rentang n tahun berurutan adalah:

$$P(X \ge X_T)^n = 1 - \left(1 - \frac{1}{T}\right)^n \times 100\%$$

Keterangan

P:peluang(%);

T: periode ulang (tahun);

X:hujan (mm);

 X_T : hujan rencana dengan periode ulang T (mm).

ANALISA CURAH HUJAN RENCANA

- Hujan Rencana adalah hujan harian maksimum yang akan digunakan untuk menghitung intensitas hujan.
- Hujan Rencana dihitung berdasarkan distribusi atau sebaran curah hujan harian maksimum selama (minimal) 10 tahun berturut – turut
- Analisa Curah Hujan Rencana meliputi:
 - Analisa frekuensi curah hujan
 - Analisa Pengujian Kecocokan Sebaran
 - Analisa Distribusi Curah Hujan Rencana

Analisa Frekuensi Curah Hujan

Menghitung Simpangan Baku (Standar Deviasi)

 Simpangan Baku adalah besar perbedaan dari nilai sampel terhadap nilai rata-rata

$$Sd = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$

Menghitung koefisien Variasi

$$Cv = \frac{Sd}{\overline{X}}$$

Keterangan:

Sd = Standar Deviasi

 $X_i = Nilai varian ke i$

X = Nilai rata-rata varian

n = Jumlah data

ANALISA CURAH HUJAN RENCANA

Analisa Frekuensi Curah Hujan

Menghitung Koefisien Kemencengan/Skewness (CS)

 Kemencengan: Nilai yang menunjukkan derajat ketidaksimestrisan dari suatu bentuk distribusi.

$$Cs = \frac{n \sum_{i=1}^{n} (X_i - \overline{X})^3}{(n-1)(n-2) Sd^3}$$

Keterangan:

Cs = Koefesien Skewness

Sd = Standar Deviasi

 $X_i = Nilai varian ke i,$

X = Nilai rata-rata varian

n = Jumlah data

Menghitung Koefisien Kurtosis (CK)

 Kurtosis : mengukur keruncingan bentuk kurva distribusi, umumnya dibandingkan dengan distribusi normal.

$$Ck = \left[\frac{n (n+1) \sum_{i=1}^{n} (X_i - \overline{X})^4}{(n-1)(n-2)(n-3) \text{ Sd}^4} \right] - \left[\frac{3 (n-1)^2}{(n-2)(n-3)} \right]$$

Keterangan:

Ck = Koefisien Kurtosis

Sd = Standar Deviasi

 $X_i = Nilai varian ke i,$

X = Nilai rata-rata varian

n = Jumlah data

CONTOH-I

Diketahui curah hujan harian maksimum stasiun hujan Kota X dari tahun (2011 – 2020). Hitung Simpangan Baku, Koefisien Kemencengan, Koefisien Kurtosis, dan koefisien Variasi dari data tersebut.

Tahun	CH Harian Maksimum
2011	69
2012	75
2013	110
2014	97
2015	76
2016	84
2017	87
2018	71
2019	67
2020	62

= 0.4389

Tahun	(X _i)	X _{Rat}	(X _i -X _{rat})	(X _i -X _{rat}) ²	(X _i -X _{rat}) ³	(X _i -X _{rat}) ⁴
2011	69	79,8	-10,8	116,64	-1259,71	13604,89
2012	75	79,8	-4,8	23,04	-110,592	530,8416
2013	110	79,8	30,2	912,04	27543,6	831817
2014	97	79,8	17,2	295,84	5088,45	87521,31
2015	76	79,8	-3,8	14,44	-54,872	208,5136
2016	84	79,8	4,2	17,64	74,088	311,1696
2017	87	79,8	7,2	51,84	373,248	2687,386
2018	71	79,8	-8,8	77,44	-681,472	5996,954
2019	67	79,8	-12,8	163,84	-2097,15	26843,55
2020	62	79,8	-17,8	316,84	-5639,75	100387,6
Jumlah	798			1989,6	23235,8	1069909

$$Sd = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n - 1}} = \sqrt{\frac{1989,6}{9}} = 14.87$$

$$Cv = \frac{Sd}{\overline{X}} = \frac{14,87}{79,8} = 0,1863$$

$$Cs = \frac{n \sum_{i=1}^{n} (X_i - \overline{X})^3}{(n - 1)(n - 2) Sd^3} = \frac{10 \times 23235,8}{9 \times 8 \times (14,87)^3} = 0,9818$$

$$Ck = \left[\frac{n (n + 1) \sum_{i=1}^{n} (X_i - \overline{X})^4}{(n - 1)(n - 2)(n - 3) Sd^4} \right] - \left[\frac{3 (n - 1)^2}{(n - 2)(n - 3)} \right] = \left[\frac{10 \times 11 \times 1069909}{9 \times 9 \times 7 \times (14,97)^4} \right] - \left[\frac{3 \times 9^2}{8 \times 7} \right]$$

PENYELESAIAN (DENGAN EXCEL)

4	Α	В	С	D
1	No.	Tahun	CH Harian Maksimum (X _i)	Rumus
2	I	2011	69	
3	2	2012	75	
4	3	2013	110	
5	4	2014	97	
6	5	2015	76	
7	6 2	2016	84	
8	7	2017	87	
9	8	2018	71	
10	9	2019	67	
11	10	2020	62	
12	Rata-Rata		79,8	=AVERAGE(C2:C11)
13	Standar Deviasi	Standar Deviasi (Sd)		=STDEV.S(C2:C11)
14	Koefisien Variasi (Cv)		0,19	=C13/C12
15	Koefisien Skewness (Cs)		0,9818	=SKEW(C2:C11)
16	Koefisien Kurtosis (Ck)		0,4389	=KURT(C2:CII)

ANALISA CURAH HUJAN RENCANA

Analisa Pengujian Kecocokan Sebaran

Syarat – syarat batas penentuan sebaran

Jenis Distribusi	Syarat
Normal	$C_s = 0$
Log Normal	Cs = 3Cv
Gumbel	$C_S \le 1,1396$, $C_K \le 5,4002$
Log Peason III	Cs < 0

- Pengujian parameter yang sering dipakai adalah
 - **chi-kuadrat**, dan
 - Kolmogorov-Smirnov.

Chi-Kuadrat (Chi-Square)

- Uji Chi-kuadrat dimaksudkan untuk menentukan apakah persamaan distribusi yang akan dipilih dapat mewakili distribusi statistik sampel data yang dianalisis.
- Analisa dapat diterima jika nilai
 Chi Kuadrat terhitung < Chi-Kuadrat Kritis

$$\chi_h^2 = \sum_{i=1}^G \frac{(o_i - E_i)^2}{E_i}$$

 X_h^2 = parameter chi-kuadrat terhitung

G = jumlah sub kelompok

O_i = jumlah nilai pengamatan pada sub kelompok i

E_i = jumlah nilai teoritis pada sub kelompok i

CHI-KUADRAT (CHI-SQUARE)

Chi Kuadrat terhitung < Chi-Kuadrat Kritis

$$\chi_h^2 = \sum_{i=1}^G \frac{(o_i - E_i)^2}{E_i}$$

 X_h^2 = parameter chi-kuadrat terhitung

G = jumlah sub kelompok

O_i = jumlah nilai pengamatan pada sub kelompok i

E_i = jumlah nilai teoritis pada sub kelompok i

Penentuan Jumlah sub kelompok (G)

$$G = 1 + 3{,}322 \log_{10} n$$

Keterangan

n adalah jumlah data

Penentuan Derajat Kebebasan (Dk)

$$Dk = G - (P + 1)$$

Keterangan

P = 2, untuk untuk distribusi normal dan binomial

P = I, untuk distribusi gumbel dan poisson

Menghitung nilai teoritis

$$E_i = \frac{n}{G}$$

Menghitung interval kelas

$$\Delta X = \frac{X_{\text{max}} - X_{\text{min}}}{G - 1}$$

$$X_{awal} = X_{min} - 0.5 \Delta X$$

$$X_{akhir} = X_{max} + 0.5 \Delta X$$

CONTOH-2

Berdasarkan data pada **Contoh-I**. Lakukan uji chi kuadrat untuk data tersebut.

Penyelesaian:

I. Urutkan data pengamatan dari besar ke kecil atau sebaliknya

No.	Tahun	СН		No.	СН
ı	2011	69		I	110
2	2012	75		2	97
3	2013	110		3	87
4	2014	97		4	84
5	2015	76		5	76
6	2016	84	4	6	75
7	2017	87		7	71
8	2018	71		8	69
9	2019	67		9	67
10	2020	62		10	62

2. Penentuan Jumlah sub kelompok

$$G = 1 + 3{,}322 \log_{10} (10) = 4{,}322 \approx 5$$

3. Penentuan Derajat Kebebasan (dk)

$$Dk = G - (P + 1) = 5 - (2 + 1) = 2$$

4. Menghitung nilai teoritis

$$E_i = \frac{n}{G} = \frac{10}{5} = 2$$

5. Nilai batas sub kelompok (interval kelas):

$$\Delta X = \frac{X_{\text{max}} - X_{\text{min}}}{G - 1} = \frac{110 - 62}{5 - 1} = 12$$

$$X_{\text{awal}} = X_{\text{min}} - 0.5 \Delta X = 62 - (0.5 \times 12) = 58$$

$$X_{\text{akhir}} = X_{\text{max}} + 0.5 \Delta X = 110 + (0.5 \times 12) = 116$$

CONTOH-2

_v 2	$-\frac{G}{\nabla}$	$\underline{\left(o_i-E_i\right)^2}$
λh '	_ i=1	Ei

No.	СН
I	110
2	97
3	87
4	84
5	76
6	75
7	71
8	69
9	67
10	62

Penyelesaian:

Hitung Chi Kuadrat Terhitung

No	Sub Kelompok	Oi	E _i	(O _i -E _i)	(O _i -E _i) ²	$(O_i - E_i)^2 / E_i$
ı	56-68	2	2	0	0	0
2	68-80	4	2	2	4	2
3	80-92	2	2	0	0	0
4	92-104	Ī	2	-1	I	0,5
5	104-116	I	2	-1	I	0,5
	3					

O_i = jumlah nilai pengamatan pada sub kelompok i

E_i = jumlah nilai teoritis pada sub kelompok i

TABEL CHI-KUADRAT (CHI-SQUARE) KRITIS

dk	Derajat Kepercayaan. α										
uk	0,995	0,990	0,975	0,950	0,050	0,025	0,010	0,005			
	0,000039	0,00016	0,00098	0,0039	3,8415	5,0239	6,6349	7,8794			
2	0,0100	0,0201	0,0506	0,1026	5,9915	7,3778	9,2103	10,597			
3	0,0717	0,1148	0,2158	0,3518	7,8147	9,3484	11,345	12,838			
4	0,2070	0,2971	0,4844	0,7107	9,4877	11,143	13,277	14,860			
5	0,4117	0,5543	0,8312	1,1455	11,070	12,833	15,086	16,750			
6	0,6757	0,8721	1,2373	1,6354	12,592	14,449	16,812	18,548			
7	0,9893	1,2390	1,6899	2,1673	14,067	16,013	18,475	20,278			
8	1,3444	1,6465	2,1797	2,7326	15,507	17,535	20,090	21,955			
9	1,7349	2,0879	2,7004	3,3251	16,919	19,023	21,666	23,589			
10	2,1559	2,5582	3,2470	3,9403	18,307	20,483	23,209	25,188			
11	2,6032	3,0535	3,8157	4,5748	19,675	21,920	24,725	26,757			
12	3,0738	3,5706	4,4038	5,2260	21,026	23,337	26,217	28,300			
13	3,5650	4,1069	5,0088	5,8919	22,362	24,736	27,688	29,819			
14	4,0747	4,6604	5,6287	6,5706	23,685	26,119	29,141	31,319			
15	4,6009	5,2293	6,2621	7,2609	24,996	27,488	30,578	32,801			
16	5,1422	5,8122	6,9077	7,9616	26,296	28,845	32,000	34,267			
17	5,6972	6,4078	7,5642	8,6718	27,587	30,191	33,409	35,718			
18	6,2648	7,0149	8,2307	9,3905	28,869	31,526	34,805	37,156			
19	6,8440	7,6327	8,9065	10,117	30,144	32,852	36,191	38,582			
20	7,4338	8,2604	9,5908	10,851	31,410	34,170	37,566	39,997			

Berdasarkan table chi kuadrat kritis diketahui 5,991 lebih besar dari nilai chi kuadrat terhitung (3) data ini tidak menyebar secara normal

UJI KOLMOGOROV-SMIRNOV

Kolmogorov-Smirnov

- I. Urutkan data (dari kecil ke besar): F_{kum}
- 2. Hitung distribusi data $F_S(X_i) = \frac{F_{kum}}{n}$
- 3. Hitung Rata-Rata data (X_{bar}) dan Standar Deviasi data (Sd), Tentukan Nilai Z

$$Z = \frac{(X_i - \overline{X})}{Sd}$$

- 4. Tentukan peluang z (F_t(X_i), dengan menggunakan **tabel Z distribusi normal**
- 5. Tentukan nilai Mutlak dari $F_s(X_i)$ - $F_t(X_i)$ dan cari nilai Maksimum (D_{max})
- 6. Berdasarkan tabel nilai kritis (Kolmogorov Smirnov-test) tentukan harga D_o

TABEL NILAI KRITIS Do

n		Derajat	Kepercay	⁄aaan, α	
n	0,20	0,10	0,05	0,02	0,01
I	0,900	0,950	0,975	0,990	0,995
2	0,684	0,776	0,842	0,900	0,929
3	0,565	0,636	0,708	0,785	0,829
4	0,493	0,565	0,624	0,689	0,734
5	0,447	0,509	0,563	0,627	0,669
6	0,410	0,468	0,519	0,577	0,617
7	0,381	0,436	0,483	0,538	0,576
8	0,359	0,410	0,454	0,507	0,542
9	0,339	0,387	0,430	0,480	0,513
10	0,323	0,369	0,409	0,457	0,486
- 11	0,308	0,352	0,391	0,437	0,468
12	0,296	0,338	0,375	0,419	0,449
13	0,285	0,325	0,361	0,404	0,432
14	0,275	0,314	0,349	0,390	0,418
15	0,266	0,304	0,338	0,377	0,404
16	0,258	0,295	0,327	0,366	0,392
17	0,250	0,286	0,318	0,355	0,381
18	0,244	0,279	0,309	0,346	0,371
19	0,237	0,271	0,301	0,337	0,361
20	0,232	0,265	0,294	0,329	0,352

	Z	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
-3	,5	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002	0,0002
-3	,4	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0002
-3	3,3	0,0005	0,0005	0,0005	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,0003
-3	3,2	0,0007	0,0007	0,0006	0,0006	0,0006	0,0006	0,0006	0,0005	0,0005	0,0005
-3	3 , I	0,001	0,0009	0,0009	0,0009	0,0008	0,0008	0,0008	0,0008	0,0007	0,0007
-	3	0,0013	0,0013	0,0013	0,0012	0,0012	0,0011	0,0011	0,0011	0,001	0,001
-2	<u>,</u> ,9	0,0019	0,0018	0,0018	0,0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,0014
-2	2,8	0,0026	0,0025	0,0024	0,0023	0,0023	0,0022	0,0021	0,0021	0,002	0,0019
-2	2,7	0,0035	0,0034	0,0033	0,0032	0,0031	0,003	0,0029	0,0028	0,0027	0,0026
-2	2,6	0,0047	0,0045	0,0044	0,0043	0,0041	0,004	0,0039	0,0038	0,0037	0,0036
-2	2,5	0,0062	0,006	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0048
-2	2,4	0,0082	0,008	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064
	2,3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084
-2	2,2	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,011
-2	2 , I	0,0179	0,0174	0,017	0,0166	0,0162	0,0158	0,0154	0,015	0,0146	0,0143
	2	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,0183
-1	,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,025	0,0244	0,0239	0,0233
-1	,8	0,0359	0,0351	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
-1	,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367
	,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,0455
	,5	0,0668	0,0655	0,0643	0,063	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
	,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0721	0,0708	0,0694	0,0681
	,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,0823
	,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,102	0,1003	0,0985
	,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,123	0,121	0,119	0,117
	I	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
),9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,166	0,1635	0,1611
	,8	0,2119	0,209	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
),7	0,242	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,2148
),6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
),5	0,3085	0,305	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,281	0,2776
),4	0,3446	0,3409	0,3372	0,3336	0,33	0,3264	0,3228	0,3192	0,3156	0,3121
),3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,352	0,3483
),2	0,4207	0,4168	0,4129	0,409	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
), [0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247
-0	0.0	0,5	0,496	0,492	0,488	0,484	0, 4 801	0, 4 761	0,4721	0, 4 681	0,4641

Z	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0,5	0,504	0,508	0,512	0,516	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,591	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,648	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,67	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,695	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,719	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,758	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,791	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,834	0,8365	0,8389
I	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,877	0,879	0,881	0,883
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,898	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,937	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,975	0,9756	0,9761	0,9767
2	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,983	0,9834	0,9838	0,9842	0,9846	0,985	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,989
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,992	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,994	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,996	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,997	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,998	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,999	0,999
3,1	0,999	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998
3,5	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998

CONTOH-3

Berdasarkan data pada Contoh-I. Lakukan uji Kolmogorov - Smirnov untuk data tersebut

No.	(X i)	F _{kum}	F _s (X _i)=F _{kum} /n	(X _i -X _{bar})/Sd	F _t (X _i) (Tabel Z)	$F_s(X_i)-F_t(X_i)$	Abs (Fs(Xi)-Ft(Xi))
I	62	ı	0,1	-1,20	0,1151	-0,0151	0,0151
2	67	2	0,2	-0,86	0,1949	0,0051	0,0051
3	69	3	0,3	-0,73	0,2327	0,0673	0,0673
4	71	4	0,4	-0,59	0,2776	0,1224	0,1224
5	75	5	0,5	-0,32	0,3745	0,1255	0,1255
6	76	6	0,6	-0,26	0,3974	0,2026	0,2026
7	84	7	0,7	0,28	0,6103	0,0897	0,0897
8	87	8	0,8	0,48	0,6844	0,1156	0,1156
9	97	9	0,9	1,16	0,8770	0,023	0,0230
10	110	10	I	2,03	0,9788	0,0212	0,0212
Rerata	79,8						
Sd	14,868						
	0,2026						

Tabel Nilai Kritis D_o

CONTOH-3

Dengan Level of Significant (α) = 5% dan jumlah data 10 k (nilai kritis) = 0,409

D_{maksimum} = **0,202600**

 $D_{\text{maksimum}} < k$

Menunjukan bahwa pada taraf signifikan 5%, data ini tidak menyebar secara normal

n -	Derajat Kepercayaaan, $lpha$							
11	0,20	0,10	0,05	0,02	0,01			
1	0,900	0,950	0,975	0,990	0,995			
2	0,684	0,776	0,842	0,900	0,929			
3	0,565	0,636	0,708	0,785	0,829			
4	0,493	0,565	0,624	0,689	0,734			
5	0,447	0,509	0,563	0,627	0,669			
6	0,410	0,468	0,519	0,577	0,617			
7	0,381	0,436	0,483	0,538	0,576			
8	0,359	0,410	0,454	0,507	0,542			
9	0,339	0,387	0,430	0,480	0,513			
10	0,323	0,369	0,409	0,457	0,486			
II	0,308	0,352	0,391	0,437	0,468			
12	0,296	0,338	0,375	0,419	0,449			
13	0,285	0,325	0,361	0,404	0,432			
14	0,275	0,314	0,349	0,390	0,418			
15	0,266	0,304	0,338	0,377	0,404			
16	0,258	0,295	0,327	0,366	0,392			
17	0,250	0,286	0,318	0,355	0,381			
18	0,244	0,279	0,309	0,346	0,371			
19	0,237	0,271	0,301	0,337	0,361			
20	0,232	0,265	0,294	0,329	0,352			

PENYELESAIAN DENGAN EXCEL

No.	(X _i)	F_kum	F _s (X _i)=F _{kum} /n	$F_t(X_i)$	$F_s(X_i)-F_t(X_i)$	Abs (Fs(Xi)-Ft(Xi))
I	62	I	0,1	0,1156	-0,0156	0,0156
2	67	2	0,2	0,1946	0,0054	0,0054
3	69	3	0,3	0,2338	0,0662	0,0662
4	71	4	0,4	0,2770	0,1230	0,1230
5	75	5	0,5	0,3734	0,1266	0,1266
6	76	6	0,6	0,3991	0,2009	0,2009
7	84	7	0,7	0,6112	0,0888	0,0888
8	87	8	0,8	0,6859	0,1141	0,1141
9	97	9	0,9	0,8763	0,0237	0,0237
10	110	10	I	0,9789	0,0211	0,0211
Rerata	79,8					
Sd	14,868					
D Maks						0,2009

 $F_t(X_i) = NORM.DIST(X_i; rata-rata; Sd; TRUE)$

TUGAS-I

- Tentukan Koefisien Variasi (CV), Koefisien Skewness (CS), dan Koefisien Kurtosis (CK) serta analisis distribusi data dengan metode Chi-Square serta metode Kolmogorov- Smirnov untuk data ketiga data CH STA-A, STA-B dan STA-C (yang telah dikirim sebelumnya)
- Tahapannya sebagai berikut :
 - a) Data yang sudah lengkap ketiga stasiun, Tentukan nilai maks untuk setiap bulan setiap tahun. Gunakan perintah =MAX(CH STA-A, -Bulan-I Tahun-I; CH STA-B, -Bulan-I Tahun-I; CHL STA-C, -Bulan-I Tahun-I) dan seterusnya.
 - b) Dari kumpulan data CH maksimum (point a), Tentukan Rata-ratanya untuk setiap tahun
 - c) Dari data point b, tentukan CV, CS, dan CK, tentukan jenis distribusnya
 - d) Dari data point b, analisis distribusi data dengan metode Chi-Square dan Kolmogorov- Smirnov

Catatan:

- Kirim jawabannya (file excel) melalui email ke firdaus.fitk@gmail.com (batas pengiriman sampai jam 13.00 WITA.
- Tugas dikirim dengan menggunakan email sendiri dengan melampirkan nama file excel : Tugas2_NIM
- Tolong saudara kerja sendiri-sendari agar memahaminya *jangan hanya tahu minta file temannya lalu kirim*. Intinya Tugas ini agar anda memahami materi ini dan memahami menggunakan excel.

CATATAN - I UNTUK **TUGAS BESAR**

- Tugas ini menjadi syarat untuk Ujian Final Matakuliah Ini, dan akan dikumpul saat ujian Final berlangsung
- Setiap Peserta Akan membuat satu Tugas Besar Yang berisi tentang "Rancangan Sistem Penyaliran Blok Tambang di PT. Nama Anda Kabupaten xxx"
- Data-Data yang perlu dipersiapkan :
 - 1. Tentukan lokasi anda dengan menggunakan peta Google Earth di daerah **Sulawesi Tenggara**. Buatkan Peta di ArcGis dengan ukuran A4.
 - 2. Dari lokasi tersebut cari stasiun CH terdekat. Kumpulkan Data Curah Hujan minimal 10 tahun terakhir. Data tentang ini, anda bisa dapatkan dari skripsi terbaru teman anda, BPS setiap daerah, atau anda cari di Balai Wilayah Sungai di Kendari (Harus ada Surat dari Kejur Teknik Pertambangan).
 - 3. Kirim peta yang anda buat dan Data yang telah dikumpulkan ke <u>firdaus.fitk@gmail.com</u> Paling Lambat 29 April 2021.