Reticulados e Álgebra Booleana

Lista

1.

 \mathbf{a}

Considerando $x = a \downarrow (b \downarrow c)$, temos, pela definição de ínfimo:

- (1) *xRa*
- (2) $xR(b \downarrow c)$
- (3) $\forall y \in P \ (yRa \land yR(b \downarrow c) \rightarrow yRx)$

Também pela definição de ínfimo, temos $(b \downarrow c)Rb$ e $(b \downarrow c)Rc$. Como temos (2) e R é transitiva, temos xRb e xRc.

Tendo (1) e xRb, pela definição de ínfimo, temos $xR(a \downarrow b)$. Como, além disso, temos xRc, pela definição de ínfimo, temos $xR((a \downarrow b) \downarrow c)$.

Considerando $w = ((a \downarrow b) \downarrow c)$, temos, pela definição de ínfimo:

- (4) $wR(a \downarrow b)$
- (5) *wRc*
- (6) $\forall y \in P (yR(a \downarrow b) \land yRc \rightarrow yRw)$

Também pela definição de ínfimo, temos $(a \downarrow b)Ra$ e $(a \downarrow b)Rb$. Como temos (4) e R é transitiva, temos wRa e wRb.

Tendo (5) e wRb, pela definição de ínfimo, $wR(b \downarrow c)$. Como, além disso, temos wRa, pela definição de ínfimo, temos $wR(a \downarrow (b \downarrow c))$, ou seja, wRx.

Temos, então xRw e wRx, ou seja, $(a \downarrow (b \downarrow c))R((a \downarrow b) \downarrow c)$ e $((a \downarrow b) \downarrow c)R(a \downarrow (b \downarrow c))$, mas R é anti-simétrica, portanto $a \downarrow (b \downarrow c) = (a \downarrow b) \downarrow c$.

b)

Considerando $x = a \uparrow (b \uparrow c)$, temos, pela definição de supremo:

- (1) *aRx*
- (2) $(b \uparrow c)Rx$
- (3) $\forall y \in P \ (aRy \land (b \uparrow c)Ry \rightarrow xRy)$

Também pela definição de supremo, temos $bR(b \uparrow c)$ e $cR(b \uparrow c)$. Como temos (2) e R é transitiva, temos bRx e cRx.

Tendo (1) e bRx, pela definição de supremo, temos $(a \uparrow b)Rx$. Como, além disso, temos cRx, pela definição de supremo, temos $((a \uparrow b) \uparrow c)Rx$.

Considerando $w = (a \uparrow b) \uparrow c$, temos, pela definição de supremo:

- (4) (a ↑ b)Rw
- (5) *cRw*
- (6) $\forall y \in P ((a \uparrow b)Ry \land cRy \rightarrow wRy)$

Também pela definição de supremo, temos $aR(a \uparrow b)$ e $bR(a \uparrow b)$. Como temos (4) e R é transitiva, temos aRw e bRw.

Tendo (5) e bRw, então, pela definição de supremo, temos $(b \uparrow c)Rw$. Como temos também aRw, então, pela definição de supremo, temos $(a \uparrow (b \uparrow c))Rw$, ou seja, xRw.

Temos, então, $xRw \in wRx$, ou seja, $(a \uparrow (b \uparrow c))R((a \uparrow b) \uparrow c) \in ((a \uparrow b) \uparrow c)R(a \uparrow (b \uparrow c))$, mas R é anti-simétrica, portanto, $a \uparrow (b \uparrow c) = (a \uparrow b) \uparrow c$.

$\mathbf{c})$

Considerando $x = a \downarrow b$, temos, pela definição de ínfimo:

- (1) *xRa*
- (2) *xRb*
- (3) $\forall y \in P (yRa \land yRb \rightarrow yRx)$

Considerando $w = b \downarrow a$, temos, pela definição de ínfimo:

- (4) wRb
- (5) wRa
- (6) $\forall y \in P \ (yRb \land yRa \rightarrow yRw)$

Como temos (2) e (1), por (6), conclui-se que xRw.

Como temos (5) e (4), por (3), conclui-se que wRx.

Assim, $xRw \in wRx$, ou seja, $(a \downarrow b)R(b \downarrow a) \in (b \downarrow a)R(a \downarrow b)$, mas $R \notin$ anti-simétrica, portanto, $a \downarrow b = b \downarrow a$.

d)

Considerando $x = a \uparrow b$, temos, pela definição de supremo:

- (1) *aRx*
- (2) *bRx*
- (3) $\forall y \in P \ (aRy \land bRy \rightarrow xRy)$

Considerando $w = b \downarrow a$, temos, pela definição de supremo:

- (4) *bRw*
- (5) *aRw*
- (6) $\forall y \in P \ (bRy \land aRy \rightarrow wRy)$

Como temos (2) e (1), por (6), conclui-se que wRx.

Como temos (5) e (4), por (3), conclui-se que xRw.

Assim, wRx e xRw, ou seja, $(b \uparrow a)R(a \uparrow b)$ e $(a \uparrow b)R(b \uparrow a)$, mas R é anti-simétrica, portanto $a \uparrow b = b \uparrow a$.

e)

Considerando $x = a \downarrow (a \uparrow b)$, temos, pela definição de ínfimo:

- (1) *xRa*
- (2) $xR(a \uparrow b)$
- (3) $\forall y \in P (yRa \land yR(a \uparrow b) \rightarrow yRx)$

Pela definição de supremo, temos $aR(a \uparrow b)$. Como R é reflexiva, temos aRa. Tendo, então, $aRa \in aR(a \uparrow b)$, por (3), temos aRx.

Por (1), temos xRa. Então, xRa e aRx, ou seja, $(a \downarrow (a \uparrow b))Ra$ e $aR(a \downarrow (a \uparrow b))$, mas R é anti-simétrica, portanto $a \downarrow (a \uparrow b) = a$.

f)

Considerando $x = a \uparrow (a \downarrow b)$, temos, pela definição de supremo:

- (1) *aRx*
- (2) $(a \downarrow b)Rx$
- (3) $\forall y \in P \ (aRy \land (a \downarrow b)Ry \rightarrow xRy)$

Pela definição de ínfimo, temos $(a \downarrow b)Ra$. Como R é reflexiva, temos aRa. Tendo, então, aRa e $(a \downarrow b)Ra$, por (3), temos xRa.

Por (1), temos aRx. Então, xRa e aRx, ou seja, $(a \uparrow (a \downarrow b))Ra$ e $aR(a \uparrow (a \downarrow b))$, mas R é anti-simétrica, portanto $a \uparrow (a \downarrow b) = a$.

 \mathbf{g}

Pela definição de ínfimo, temos:

- (1) $(a \downarrow a)Ra$
- (2) (a \ a)Ra
- (3) $\forall y \in P (yRa \land yRa \rightarrow yR(a \downarrow a))$

Como R é reflexiva, aRa e aRa, então, por (3), $aR(a \downarrow a)$. Por (1), também temos $(a \downarrow a)Ra$. Mas R é anti-simétrica, portanto $a \downarrow a = a$.

h)

Pela definição de supremo, temos:

- (1) $aR(a \uparrow a)$
- (2) $aR(a \uparrow a)$
- (3) $\forall y \in P \ (aRy \land aRy \rightarrow (a \uparrow a)Ry)$

Como R é reflexiva, aRa e aRa, então, por (3), $(a \uparrow a)Ra$. Por (1), também temos $aR(a \uparrow a)$. Mas R é anti-simétrica, portanto $a \uparrow a = a$.

2.

a)

Pela definição de ínfimo, temos:

- (1) (a \ 1)Ra
- (2) (a \ 1)R1
- (3) $\forall y \in P (yRa \land yR1 \rightarrow yR(a \downarrow 1))$

Como R é reflexiva, aRa. Como 1 é elemento terminal, aR1. Então, por (3), $aR(a \downarrow 1)$. Por (1), também temos $(a \downarrow 1)Ra$. Mas R é anti-simétrica, portanto $a \downarrow 1 = a$.

b)

Pela definição de supremo, temos:

- (1) $aR(a \uparrow 0)$
- (2) $0R(a \uparrow 0)$
- (3) $\forall y \in P \ (aRy \land 0Ry \rightarrow (a \uparrow 0)Ry)$

Como R é relfexiva, aRa. Como 0 é elemento inicial, 0Ra. Então, por (3), $(a \uparrow 0)Ra$. Por (1), também temos $aR(a \uparrow 0)$. Mas R é anti-simétrica, portanto $a \uparrow 0 = a$.

 $\mathbf{c})$

Pela definição de ínfimo, temos:

- (1) $(a \downarrow 0)Ra$
- (2) $(a \downarrow 0)R0$
- (3) $\forall y \in P (yRa \land yR0 \rightarrow yR(a \downarrow 0))$

Como 0 é o elemento inicial, 0Ra. Como R é reflexiva, 0R0. Então, por (3), $0R(a \downarrow 0)$. Por (2), também temos $(a \downarrow 0)R0$. Mas R é anti-simétrica, portanto $a \downarrow 0 = 0$.

d)

Pela definição de supremo, temos:

- (1) $aR(a \uparrow 1)$
- (2) $1R(a \uparrow 1)$
- (3) $\forall y \in P \ (aRy \land 1Ry \rightarrow (a \uparrow 1)Ry)$

Como 1 é o elemento terminal, aR1. Como R é reflexiva, 1R1. Então, por (3), $(a \uparrow 1)R1$. Por (2) também temos $1R(a \uparrow 1)$. Mas R é anti-simétrica, portanto $a \uparrow 1 = 1$.

 $\mathbf{e})$

Pela definição de complemento, a relação de a com seu complemento é: $a \downarrow \overline{a} = 0$ e $a \uparrow \overline{a} = 1$.

Da mesma forma, a relação de \overline{a} com seu complemento é: $\overline{a} \downarrow \overline{a} = 0$ e $\overline{a} \uparrow \overline{a} = 1$.

Como, em uma álgebra booleana, o complemento é único, \overline{a} não pode ter tal relação com dois elementos distintos. Então $a=\overline{\overline{a}}$.

Provar que \overline{a} \downarrow \overline{b} = \overline{a} \uparrow \overline{b} é provar que \overline{a} \uparrow \overline{b} é complementar a a \downarrow b. Para isso, é preciso mostrar que:

- (1) $(a \downarrow b) \downarrow (\overline{a} \uparrow \overline{b}) = 0$
- (2) $(a \downarrow b) \uparrow (\overline{a} \uparrow \overline{b}) = 1$

Prova de (1):

Pelo conceito de complementar, temos $a \downarrow \overline{a} = 0$ e $b \downarrow \overline{b} = 0$. Então $(a \downarrow \overline{a}) \uparrow (b \downarrow \overline{b}) = 0 \uparrow 0 = 0$.

$$(a \downarrow \overline{a}) \uparrow (b \downarrow \overline{b}) = 0$$

Como álgebras booleanas são distributivas, podemos escrever a equação acima como:

$$((a \downarrow \overline{a}) \uparrow b) \downarrow ((a \downarrow \overline{a}) \uparrow \overline{b}) = 0$$

Novamente, por distributividade:

$$(a \uparrow b) \downarrow (\overline{a} \uparrow b) \downarrow (a \uparrow \overline{b}) \downarrow (\overline{a} \uparrow \overline{b}) = 0$$

Por idempotência, $(a \uparrow b) = (a \uparrow b) \downarrow (a \uparrow b)$:

$$(a \uparrow b) \downarrow (a \uparrow b) \downarrow (\overline{a} \uparrow b) \downarrow (a \uparrow \overline{b}) \downarrow (\overline{a} \uparrow \overline{b}) = 0$$

Por comutatividade, podemos trocar a ordem dos termos:

$$(a \uparrow b) \downarrow (a \uparrow \overline{b}) \downarrow (a \uparrow b) \downarrow (\overline{a} \uparrow b) \downarrow (\overline{a} \uparrow \overline{b}) = 0$$

Por distributividade:

$$(a \uparrow (b \downarrow \overline{b})) \downarrow (b \uparrow (a \downarrow \overline{a})) \downarrow (\overline{a} \uparrow \overline{b}) = 0$$

Por propriedade de complemento, $b \downarrow \overline{b} = 0$ e $a \downarrow \overline{a} = 0$:

$$(a \uparrow 0) \downarrow (b \uparrow 0) \downarrow (\overline{a} \uparrow \overline{b}) = 0$$

$$a \uparrow 0 = a e b \uparrow 0 = b$$
:

$$(a \downarrow b) \downarrow (\overline{a} \uparrow \overline{b}) = 0$$

Prova de (2):

Pelo conceito de complementar, $a \uparrow \overline{a} = 1$ e $b \uparrow \overline{b} = 1$. Então $(a \uparrow \overline{a}) \downarrow (b \uparrow \overline{b}) = 1 \downarrow 1 = 1$.

$$(a \uparrow \overline{a}) \downarrow (b \uparrow \overline{b}) = 1$$

Por distributividade:

$$((a \uparrow \overline{a}) \downarrow b) \uparrow ((a \uparrow \overline{a}) \downarrow \overline{b}) = 1$$

Novamente por distributividade:

$$(a \downarrow b) \uparrow (\overline{a} \downarrow b) \uparrow (a \downarrow \overline{b}) \uparrow (\overline{a} \downarrow \overline{b}) = 1$$

Por idempotência, $(\overline{a} \downarrow \overline{b}) = (\overline{a} \downarrow \overline{b}) \uparrow (\overline{a} \downarrow \overline{b})$:

$$(a \downarrow b) \uparrow (\overline{a} \downarrow b) \uparrow (a \downarrow \overline{b}) \uparrow (\overline{a} \downarrow \overline{b}) \uparrow (\overline{a} \downarrow \overline{b}) \uparrow (\overline{a} \downarrow \overline{b}) = 1$$

Por comutatividade, podemos trocar a ordem dos termos:

$$(a \downarrow b) \uparrow (\overline{a} \downarrow b) \uparrow (\overline{a} \downarrow \overline{b}) \uparrow (a \downarrow \overline{b}) \uparrow (\overline{a} \downarrow \overline{b}) = 1$$

Por distributividade:

$$(a \downarrow b) \uparrow (\overline{a} \downarrow (b \uparrow \overline{b})) \uparrow (\overline{b} \downarrow (a \uparrow \overline{a})) = 1$$

Por propriedade de complemento, $b \uparrow \overline{b} = 1$ e $a \uparrow \overline{a} = 1$:

$$(a \downarrow b) \uparrow (\overline{a} \downarrow 1) \uparrow (\overline{b} \downarrow 1) = 1$$

$$\overline{a} \downarrow 1 = \overline{a} \in \overline{b} \downarrow 1 = \overline{b}$$
:
$$(a \downarrow b) \uparrow (\overline{a} \uparrow \overline{b}) = 1$$

Temos, então, que $(a \downarrow b) \downarrow (\overline{a} \uparrow \overline{b}) = 0$ e $(a \downarrow b) \uparrow (\overline{a} \uparrow \overline{b}) = 1$, ou seja, $\overline{a \downarrow b} = \overline{a} \uparrow \overline{b}$.

Provar que $\overline{a\uparrow b} = \overline{a} \downarrow \overline{b}$ é provar que $\overline{a} \downarrow \overline{b}$ é complementar a $a\uparrow b$. Para isso, é preciso mostrar que:

- (1) $(a \uparrow b) \downarrow (\overline{a} \downarrow \overline{b}) = 0$
- (2) $(a \uparrow b) \uparrow (\overline{a} \downarrow \overline{b}) = 1$

Prova de (1):

Pelo conceito de complementar, temos $a \downarrow \overline{a} = 0$ e $b \downarrow \overline{b} = 0$. Então $(a \downarrow \overline{a}) \uparrow (b \downarrow \overline{b}) = 0 \uparrow 0 = 0$.

$$(a \downarrow \overline{a}) \uparrow (b \downarrow \overline{b}) = 0$$

Como álgebras booleanas são distributivas, podemos escrever a equação acima como:

$$((a \downarrow \overline{a}) \uparrow b) \downarrow ((a \downarrow \overline{a}) \uparrow \overline{b}) = 0$$

Novamente, por distributividade:

$$(a \uparrow b) \downarrow (\overline{a} \uparrow b) \downarrow (a \uparrow \overline{b}) \downarrow (\overline{a} \uparrow \overline{b}) = 0$$

Por idempotência, $(\overline{a} \uparrow \overline{b}) = (\overline{a} \uparrow \overline{b}) \downarrow (\overline{a} \uparrow \overline{b})$:

$$(a \uparrow b) \downarrow (\overline{a} \uparrow b) \downarrow (a \uparrow \overline{b}) \downarrow (\overline{a} \uparrow \overline{b}) \downarrow (\overline{a} \uparrow \overline{b}) \downarrow (\overline{a} \uparrow \overline{b}) = 0$$

Por comutatividade, podemos trocar a ordem dos termos:

$$(a \uparrow b) \downarrow (\overline{a} \uparrow b) \downarrow (\overline{a} \uparrow \overline{b}) \downarrow (a \uparrow \overline{b}) \downarrow (\overline{a} \uparrow \overline{b}) = 0$$

Por distributividade:

$$(a \uparrow b) \downarrow (\overline{a} \uparrow (b \downarrow \overline{b})) \downarrow (\overline{b} \uparrow (a \downarrow \overline{a})) = 0$$

Por propriedade de complemento, $b \downarrow \overline{b} = 0$ e $a \downarrow \overline{a} = 0$:

$$(a \uparrow b) \downarrow (\overline{a} \uparrow 0) \downarrow (\overline{b} \uparrow 0) = 0$$

$$\overline{a} \uparrow 0 = \overline{a} e \overline{b} \uparrow 0 = \overline{b}$$
:

$$(a \uparrow b) \downarrow (\overline{a} \downarrow \overline{b}) = 0$$

Prova de (2):

Pelo conceito de complementar, $a \uparrow \overline{a} = 1$ e $b \uparrow \overline{b} = 1$. Então $(a \uparrow \overline{a}) \downarrow (b \uparrow \overline{b}) = 1 \downarrow 1 = 1$.

$$(a \uparrow \overline{a}) \downarrow (b \uparrow \overline{b}) = 1$$

Por distributividade:

$$((a \uparrow \overline{a}) \downarrow b) \uparrow ((a \uparrow \overline{a}) \downarrow \overline{b} = 1$$

Novamente por distributividade:

$$(a \downarrow b) \uparrow (\overline{a} \downarrow b) \uparrow (a \downarrow \overline{b}) \uparrow (\overline{a} \downarrow \overline{b}) = 1$$

Por idempotência, $(a \downarrow b) = (a \downarrow b) \uparrow (a \downarrow b)$:

$$(a \downarrow b) \uparrow (a \downarrow b) \uparrow (\overline{a} \downarrow b) \uparrow (a \downarrow \overline{b}) \uparrow (\overline{a} \downarrow \overline{b}) = 1$$

Por comutatividade, podemos trocar a ordem dos termos:

$$(a \downarrow b) \uparrow (a \downarrow \overline{b}) \uparrow (a \downarrow b) \uparrow (\overline{a} \downarrow b) \uparrow (\overline{a} \downarrow \overline{b}) = 1$$

Por distributividade:

$$(a \downarrow (b \uparrow \overline{b})) \uparrow (b \downarrow (a \uparrow \overline{a})) \uparrow (\overline{a} \downarrow \overline{b}) = 1$$

Por propriedade de complemento, $b \uparrow \overline{b} = 1$ e $a \uparrow \overline{a} = 1$:

$$(a \downarrow 1) \uparrow (b \downarrow 1) \uparrow (\overline{a} \downarrow \overline{b}) = 1$$

$$a \downarrow 1 = a e b \downarrow 1 = b$$
:

$$(a \uparrow b) \uparrow (\overline{a} \downarrow \overline{b}) = 1$$

Temos, então, que $(a \uparrow b) \downarrow (\overline{a} \downarrow \overline{b}) = 0$ e $(a \uparrow b) \uparrow (\overline{a} \downarrow \overline{b}) = 1$, ou seja, $\overline{a \uparrow b} = \overline{a} \downarrow \overline{b}$.

3.

Uma relação de ordem é transitiva, logo, se temos bRc e cRa, então também temos bRa. Mas, segundo o diagrama, temos aRb. Como uma relação de ordem é anti-simétrica, a configuração mostrada é impossível com $a \neq b$.

4.

a)

Não existe elemento inicial e terminal, pois $\{a, b, c\}$ só se relaciona consigo mesmo e nenhum outro elemento se relaciona com ele.

b)

- (i) $\{a\} \downarrow \{b\} = \emptyset \in \{a\} \uparrow \{b\} = \{a, b\}$
- (ii) $\{a,b\}$ \downarrow $\{a,c\}$ = $\{a\}$ e $\{a,b\}$ \uparrow $\{a,c\}$ não existe
- (iii) $\varnothing \downarrow \{a, b, c\}$ não existe e $\varnothing \uparrow \{a, b, c\}$ não existe

5.

Se o reticulado for distributivo, teremos $a \uparrow (b \downarrow c) = (a \uparrow b) \downarrow (a \uparrow c)$.

$$a \uparrow (b \downarrow c) = a \uparrow 0 = a$$

$$(a \uparrow b) \downarrow (a \uparrow c) = 1 \downarrow 1 = 1$$

Como $a \neq 1$, o reticulado não é distributivo.

6.

a)

Pela propriedade da absorção:

$$b \downarrow (a \uparrow b) = b$$

Como $a \uparrow b = a \uparrow c$:

$$b \downarrow (a \uparrow c) = b$$

Por distributividade:

$$(b \downarrow a) \uparrow (b \downarrow c) = b$$

Como $b \downarrow a = c \downarrow a$:

$$(c \downarrow a) \uparrow (b \downarrow c) = b$$

Por distributividade:

$$c \downarrow (a \uparrow b) = b$$

Como $a \uparrow b = a \uparrow c$:

$$c \downarrow (a \uparrow c) = b$$

Por absorção:

$$c = b$$

b)

(1) Provar que $(a \downarrow b) = a \Rightarrow aRb$:

Pela definição de ínfimo, temos que $(a \downarrow b)Rb$. Mas $(a \downarrow b) = a$. Então aRb.

Ou seja, se $(a \downarrow b) = a$, temos aRb.

(2) Provar que $aRb \Rightarrow (a \downarrow b) = a$:

Pela definição de ínfimo, temos $(a \downarrow b)Ra \in \forall c \in P (cRa \land cRb \rightarrow cR(a \downarrow b)).$

Por reflexividade, temos aRa. Então, tendo aRa e aRb, temos $aR(a \downarrow b)$. Mas já temos $(a \downarrow b)Ra$ e R é anti-simétrica, portanto, $a = (a \downarrow b)$.

Ou seja, se aRb, temos $(a \downarrow b) = a$.

 $\mathbf{c})$

(1) Provar que $(a \uparrow b) = b \Rightarrow aRb$:

Pela definição de supremo, temos que $aR(a \uparrow b)$. Mas $(a \uparrow b) = b$. Então aRb.

Ou seja, se $(a \uparrow b) = b$, temos aRb.

(2) Provar que $aRb \Rightarrow (a \uparrow b) = b$:

Pela definição de supremo, temos $bR(a \uparrow b)$ e $\forall c \in P (aRc \land bRc \rightarrow (a \uparrow b)Rc)$.

Por reflexividade, temos bRb. Então, tendo aRb e bRb, temos $(a \uparrow b)Rb$. Mas já temos $bR(a \uparrow b)$ e R é anti-simétrica, portanto, $b = (a \uparrow b)$.

Ou seja, se aRb, temos $(a \uparrow b) = b$.

d)

Já foi provado nos itens b e c que, se aRb, então $(a \uparrow b) = b$ e $(a \downarrow b) = a$.

Nesse caso, $(a \uparrow b) \downarrow (a \downarrow b) = b \downarrow a = a$.

Ou seja, se aRb, temos $(a \uparrow b) \downarrow (a \downarrow b) = a$