Perturbation in hierarchical system. fired - lazai: Lets remember that we can write the. Hamiltonian including a small perfur him term R (perturbing function) as: $\mathcal{G}_{2} = \frac{13}{243} - \mathcal{R}_{2} = \frac{13}{243} + \frac{13}{2$ When the Delaunay demonts are: for 3-bob postlem we will limit in sets to a hieratchical system: (i)-internal r)-externa The full Hamiltonia is: + Gm3 (MB M) - Melaunung eleman + Gm3 (MB M) - Melaunung eleman Par Maher laher or Water or and the Hamiltonian eys of motion are m=(h, em, emg) f

Say eg. 167 15 30 100 ()+) (Gin = Gi + Ge - 2Gi Go Cosi) man diportion from ey (15) and and Fight ey. (15)

Gi = Gint Go

Fight

Gi = Gint Go

Fight

Gi = Gint Go

Fight

Fight (18) Gi = Gi - Go sof singe He-Geasie So the thirthenjum depens only on a combination of hi-he To see that Lets remember the hamithan.

= 3 63 63 3 03 03

Lets take a lask on the Hamithan (22) V= - GM, ML GM, M3 - CM M3 (remlet fix). 1)
The Hamiltonian is: The Hamiltonian is: (24) $H = \frac{M^2}{2L_1^2} - \frac{M^2}{2L_2^2} + GM_3 \left(\frac{M_1 + M_2}{R_3} - \frac{M_1}{R_3} - \frac{M_2}{r_{23}} \right)$

We can write V as V=- Gm, Mi - Gm, M3 & (mi) (r) p (cosy) - CM M S (M) - (134) = = - Ghimz - Gmims / (-Mi) (h) Po (114) + (1 (m, m) (Rg) P,] - Grims & (-m) (Rg) P, (6,4) 12 - the distutes function Gradrupole -> n=20 - Gmm L Gmg(m, ~m2)
R3 2 (m, M2 M3 (H3) 230 524 -1] The first two terms are the potential of the two foly motion for theirmer an obter broad. With the kilotick energy they give 14 the hamiltonian - M2 - M2 - M2

	So for the has we get that	
	e potrzeniokalnimyprawacjów wa przediotoprzenioka przediotoprzenionała. 2 w maje sport po mini-	
(31)	R= 6 m, m, m, (x,)2 (3 C-524-1)	
1 No. 1	We nead to integrate twice. Oher over the other orbit and once one the inher orbit.	
	appropriate to a confidence and the confidence of the confidence o	
	So we can write R as. R-G-mm-ms JV, JVe JM. JMe a (Morma)	
(48)		
	S. from Replot eg M= E-esine Ve have	· · · · · · · · · · · · · · · · · · ·
(335)	ALM STATE OF SELVE	
(34)	R3 = $\frac{\alpha e(1-e^2)}{1+e_a crs f_a}$	
Character Association of Contraction of the Contrac	We till (after suke more manufaction)	
(35)	Me = (R3)2 14.	
(36)	Ne = (30034-1) (1+cecuste) ae3 (1-e2) 32 dfe	
(3 /)	2 > = 1 de	
The second secon	Vires (< cofe > = 0 < co fe > = = 0	
\$87	es (vito sin 3e) =0 e (sin fe (u) fe) =0	
	U ee ((villo ANTE) =0 ec (SI Me LATE) =0	

(3) \(\lambda\) = \(\frac{1}{2}a_{\beta}^{2}(1-e_{\beta}^{2})^{\beta}_{\beta}\) \[\lambda\) \(\frac{2}{2} \cappa_{\beta}^{2}(1-e_{\beta}^{2})^{\beta}_{\beta}\) \[\lambda\) \(\frac{2}{2} \cappa_{\beta}^{2}(1-e_{\beta}^{2})^{\beta}_{\beta}\] \[\lambda\) where

Ci = cos (wi+fi)

Ci = sih(wi+fi) So we need how to away (43) N: = (1) 83/ Ci(w, f.) - 9/2(w, +f.) / 2] JM. $\langle \langle R \rangle \rangle = \frac{G m_i m_i m_j q_i^2}{S m_i a_s^3 (1 - e_e^2)^3 a_i^2 2 + 3e_i^2 - 3s_i h^2 i L}$ $L s e_i^2 s_i h^2 w_i + 1 - e_i^2 J_j^4$ (44) Conserved parameters! 1) since we have integrated over for; (loli), (Mon)
the retrespubling camphical momenta Li, Le are and and Columnation of how animals (45) Li = chit, Le= cut -> a= cut a= cut 2) note that fore this approx the Humitarian dues not depend on we (remork no linger three whom we do the expandents

So the state of th (h6) Ge= ch st (h4) Ce= ch st (h4) Ce= ch st So the outer orbit does Not chance in its shape and size. . (3.) Climination of the notes. The way we choose dur fram of reference mean that (48) He + H; = G, (eq. &) and (21))

that mean that only h; he enters

the hamiltonian ise, He + H; enters (49) cosi = Gen - G: - Ge (cy.13)

and He= Gen - G: - Ge H:= Gu-Ge Lets out degrees of tredune Lepler has 6 su for each orbit X2 = 12 xxl ae, le, ve, le, le, Ce; [12] tota from @ au =0, le =0. from @ ve=0 &=0

from (3) N;=-he

clso for by u i:==i

how we will choose 10=0 This mean that we restric out wher oblit Lu be in the invirible plana. This is not allways realistic sinco if chromother orlat Jush't carry most of the angular momentum or even a, let it is not a very good assumption. In the less we will assume singe He + Hi = Gfor (51) H; = rough Gasi, Z Gasi the inher lines is that partect The angular momentum is consorve

We will now describe the Evolution in time of the orbital parameters. From the hambtinain formalisem we sens the evolution of e, o, h the other orlital parameter are (Sh) $a = L^2$ (S5) $e = \sqrt{1 - \frac{G^2}{4}}$ $(SG) \quad Cusi = \frac{H}{G}$ So after some math and rembener that (57) $\int_{\alpha}^{\pi} = \alpha r \quad \sqrt{n\alpha} = a^{2}n \quad \text{we have:}$ (58) $\alpha = \frac{3}{n\alpha} \frac{3R}{3N} \quad \text{Planeter exhautions}$ $\frac{159}{ha^2e} = \frac{1-e^2}{ha^2e} = \frac{1-e^2}{ha^2e} = \frac{1}{ha^2e} = \frac{1}{ha^2}$ (60) (i) = nai Ji-ez sini 30 nai Ji-ez sini sw (6) $\dot{M} = N - \frac{2}{na} \frac{oR}{aa} - \frac{1 - e^2}{na^2 e} \frac{oR}{oR}$ pr, a = Ji-02 of cusi or ski di (63) it = 1 Na SI-e siki SI

for all systems with all the conserved taking (Gh) (i) = $\frac{-15}{6} \frac{e^2}{\sqrt{1-\alpha}} sih zw sinical h$ (65) 0 = 15 e Ji-er sinzw sinz A (66) W= 3 = [2(1-e) +55,40 (e2-114:)] 4 (6) $\hat{N} = -\frac{c_{ij}}{451-e^2} \left[3 + 12e^2 - 15e^2 c_{ij}^2 w \right] \frac{1}{5}$ (6d) A = Gm,m,m3 msae?(1-e2)32 Ceeee Continue Contin he can chang the varible + > 5 50 (69) T = At - Cm, m.m.g. Wher he seemi minor 41) | 15 = 15 er shrwsitilis cluse 172) 15 e J c2 Sih2w sih2i sstem SULSTIN (73) JE = 3 / 2(1-e2) + 55/h 3w(e2-5/hi)] humand (3+2e²-15 e² (3+2e²-15 e² as ²w)

To got some influction we will make an approximation that the eccouncity i's very small, inc. e--1 There for we can write: (75) M. (3) (3) (3) (4) (7) (7) (7) (76) de = 15 esihewsini 177) dw = 3 (2-5 sinwsini) 120 de = -3 cosi Siture we want to solve fibr the evolution of e with time we had to know how ochunges with time $\int \frac{dx}{\sqrt{a(a+b)}} \int \frac{(a+b)banx}{\sqrt{a(a+b)}} \frac{a(a+b)xo}{\sqrt{a(a+b)}} = \int \frac{(a+b)banx}{\sqrt{a(a+b)}} \frac{a(a+b)xo}{\sqrt{a(a+b)}} \frac{1}{\sqrt{a(a+b)}} \frac{1}{$ (79) Sydw = St So we have a critical angle which differs between the two behaviores: 2-ssih2i=0 (82) 91'h21' = 2

(03) j=3023° // 1nc.77 (8m) $\omega = \begin{cases} arctg / \frac{2}{A} & e^{\frac{3}{2}\sqrt{2A}} & \frac{2}{3\sqrt{2A}} & \frac{2}{3\sqrt{2A}} \\ arctg / \frac{2}{A} & ean (\frac{2}{4}\sqrt{2A}) \end{cases}$ Sihii 20.4 12350; (85) $W \rightarrow \int V(\overline{z}=c) = \overline{T}, \quad w(\overline{c} \rightarrow oz) = Conit \quad i > 39.23$ $W \rightarrow \int w(\overline{c}=c) - C \quad w(\overline{c}\rightarrow oz) \rightarrow fluctoute. \quad izg$ $Periodic \quad izg$ (36) du =0 Thus ey 77 for the evolution of w thou (67) $|S_{sih}^{2}\omega_{sih}^{2}| = 2$ $|S_{sih}^{2}\omega_{sih}^{2}| = 2$ $|S_{sih}^{2}\omega_{sih}^{2}| = 2$ (or sinter=2 sin wesa = 2 sin w $\int 1-sin^2 \omega^2$. So inserting that to ex 26 we get 10 = 15 e 2514 WJI-814W 51/2 = 15 e.2 5 5/41 (90) | de = 15 e | \$\frac{2}{5}(\sine; -\frac{2}{5}) | \frac{15}{5}(\sine; -\frac{2}{5}) | \frac{1}{5}(\sine; -\frac{2}{5}) |

Where we talk the possetive value of The solution of eg. go is (91) C-0.42 h(e) \ \ 8112; - \frac{2}{5} where E(===)= e0 Demember that this hussens only it the assimptotic regime of w. But we can still have a general explanation using the angular hundren (3d) Ji-ez Cusi = Chrt In the regime of ; 739, i.e. Sinding => Cas? < = Southis is the minimum value for i cf which (i- gran, e decreases and visaversa) JI-e2 Cusiv = JI-emas J5 (93) (9h) [max = 11 - 3(1-e2) (05 ? io 2) 1- 3(53 io) if we will insport that Into (91) to get an estimate for the time it takes

to got to emay T= 0.421 em J sih213-3 (95) we set i= in since in and in this express (eg 75) setting the value for £ (04.69) we have (96) 6 = C cm, m, be J G mo L emay Since this is an aciletory metron emax is an e fold of en the Length of and using p=27 Jas the janer orbit period we can writ (97) $6 = C_0 \frac{m_B}{m_B} \cdot \frac{be^3}{a^3 i\pi}$ where we define south topicolime to the (99) 6= 6 mg (Be) 177 P This actually gives a lux Estimation in general 6 km 2 (cre 3 mg p)

The functions that describe the evolution of Idorai are actuals elliptical integal, thus the period is set by the extraham palaes @ Lets Fill in waheral imax, enix inin, emex for agiler in es wood in any and which first note that after some mathematical maniphlation. multaly ey (72) lig 2 e [ssih2ar-2] si42i ey (71) by [sern'w +2(1-el)] 2514icni ey (73) by serving singeryge adding all regot: (N) 150° sin 1 2 (1-e2) Jasihirai at - 50° sin i 25'hw. and - 2 essinte -2] sinti de =0 and that after arrange we get (102) [sersin +2(1-er)] sihii =01, x how we are lowlying for extramam 50: (Ws) Te=0, thus form og. (65) it happen (10h) if male 27

Su if we define (105) X= [Seosih2wo +2(1-eo2)] 5142; (106) Y= (1-P3) Eosio we also know that ix, y are christian (102) Y= (1-8min) (15 1 max hus) $X = (1 - e_{ma}) (-8^{2})$ index $V = (1 - e_{ma}) (-8^{2})$ $V = (1 - e_{ma})$ (110) X = [5 gm 2 + 2 (1- gma)] Sihijni (3em +2) (1-a) Y = (1-eman) Cu8 1 min Su eman and inig 15 the solution of this eys. 1-3eman + (1-3y+x) eman + 2-2y -x = 0