Introduction to Protein Structure

Second Edition

Carl Branden & John Tooze

Introduction to Protein Structure

Second Edition

An aerial view of the European Synchrotron Radiation Facility at Grenoble, France, an advanced source of synchrotron x-ray radiation for use in the study of protein structure, as well as for use in the physical and material sciences. The synchrotron radiation is produced in the circular building in the lower left of the photograph. (Courtesy of ESRF.)

Introduction to Protein Structure

Second Edition

Carl Branden

Microbiology and Tumor Biology Center Karolinska Institute Stockholm Sweden

John Tooze

Imperial Cancer Research Fund Laboratories Lincolns Inn Fields London UK

Front: The structure of the potassium channel from *Streptomyces lividans*, determined by Roderick MacKinnon at the Rockefeller University, New York. As discussed in Chapter 12, this structure—the first of such an ion channel—shows how the channel allows the passage of potassium ions through cell membranes with high efficiency and selectivity. The view is looking down the protein as it sits in the cell membrane, as seen from outside the cell, with a potassium ion shown in gold. This image was produced using the GRASP program (A. Nicholls and B. Honig, Columbia University) from atomic coordinates kindly provided by Rodney MacKinnon.

Back: A hand-drawn image of the potassium channel, in the same view as on the front cover, with each subunit of the tetrameric protein shown in a different color.

Cover design by Christopher Thorpe and Nigel Orme.

© 1991, 1999 Carl Branden and John Tooze

All rights reserved. No part of this book covered by the copyright hereon may be reproduced or used in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems—without permission of the publisher.

Visit the *Introduction to Protein Structure* Web site: http://www.proteinstructure.com/

For information on other textbooks available from Garland Publishing, visit: http://www.garlandpub.com/

Library of Congress Cataloging-in-Publication Data

Brändén, Carl-Ivar, 1934-

Introduction to protein structure / Carl Branden & John Tooze. -- 2nd ed. p. ; cm.

Includes bibliographical references.

ISBN 978-0-8153-2305-1 (pbk.)

1. Proteins--Structure. I. Tooze, John. II. Title.

[DNLM: 1. Amino Acid Sequence. 2. Macromolecular Substances. 3. Molecular Structure. 4. Protein Conformation. 5. Proteins. QU 60 B819i 1999a]

QP551.B7635 2009 572'.633--dc22

2009017204

Published by Garland Science, Taylor & Francis Group, LLC, an informa business, 711 Third Avenue, 8th floor, New York, NY 10017, USA, and 3 Park Square, Milton Park, Abingdon, OX14 4RN, UK.

Preface

The determination of the atomic structures of proteins has seen an enormous increase in impetus since the first edition of this book was published in 1991. The number of new structures reported is close to doubling each year. Technical advances—for example the increased availability of synchrotron x-ray beams and methods for freezing crystals so as to reduce radiation damage to them, the development of multidimensional NMR and NMR machines with ever more powerful magnetic fields, and the exploitation of gene cloning, sequencing and expression systems have all contributed to the growth of protein structure determination. On the one hand, it is becoming increasingly easy to obtain relatively large amounts of naturally rare proteins, on the other hand the crystallographers can work with ever smaller crystals.

The fundamental tenet of molecular biology, namely that one cannot really understand biological reactions without understanding the structure of the participating molecules, is at last being vindicated. As the database of known protein structures rapidly expands, so does the range of biological pathways about which we can ask meaningful questions at close to atomic levels of resolution. An understanding of the principles of protein structure is becoming of ever widening significance to molecular biology.

The pharmaceutical industry has over the past decade become a major user of the protein structure databases, and a major contributor of newly determined structures. Knowledge of an enzyme's or a receptor's atomic structure is invaluable in the search for specific and strongly binding inhibitors. For example the quest for effective inhibitors of HIV protease, to be used in combination therapy for AIDS, led many pharmaceutical companies to determine the structure of that protease with bound inhibitors. Over 120 of these structure determinations have been done so far and at least two inhibitors of HIV protease are now being regularly used to treat AIDS. It seems certain that the determination of the atomic structure of target molecules will play an increasingly important role in drug design.

The commercial exploitation of our increased understanding of protein structure will not, of course, be restricted to the pharmaceutical industry. The industrial use of enzymes in the chemical industry, the development of new and more specific pesticides and herbicides, the modification of enzymes in order to change the composition of plant oils and plant carbohydrates are all examples of other commercial developments that depend, in part, on understanding the structure of particular proteins at high resolution.

As the complete genomes of more and more species are sequenced, the determination of the function of previously unidentified open reading frames is becoming an increasing and challenging problem. The possibility of

setting up centers for automated high through-put structure determinations is being seriously discussed. In the absence of any recognizable sequence homology to proteins of known function, this approach, surprising though it may seem, could become an effective way of determining function via structural homology.

The growth in the interest in high-resolution protein structure over the past decade and the reception of the first edition have encouraged us to prepare a new edition of this book. Universities are devoting more time to courses specifically on protein structure, or increasing the amount of time given to protein structure in more generally based biology and biochemistry courses. We hope that this new edition of *Introduction to Protein Structure* will prove useful both to teachers and students.

In 1988 when we began writing the first edition, about 250 protein structures had been determined to medium to high resolution and in those days a professional protein crystallographer was familiar with most of them. We were not therefore faced with a severe problem of what to leave out as we wrote. Today, the coordinates of over 6500 proteins have been deposited in the Protein Data Bank at Brookhaven, New York. Both the number of structures and the variety of biological systems to which they relate are so high that the field of protein structure is becoming more fragmented and specialized. It is becoming increasingly difficult to keep sight of the wood amongst so many trees. The question of what to include and what to omit is, for today's authors, crucially important. We have tried to resist the temptation to describe more and more proteins, adding detail but not increasing understanding of the basic concepts. This edition is inescapably a little larger than its predecessor, but to contain the increase in size we have deleted two chapters while adding four. We run the risk of disappointing not a few structural biologists whose favourite proteins are not mentioned. To them we apologize and ask for their understanding.

Acknowledgements

In preparing the second edition of this book we have again relied heavily on and benefited greatly from the advice and constructive criticism of numerous colleagues. We are particularly grateful to Ken Holmes (Max-Planck Institute, Heidelberg), Lawrence Stern (MIT), Michelle Arkin (Sunesis Pharmaceuticals), and Watson Fuller (Keele University, UK) for their contributions to, respectively, Chapters 14 and 18, Chapter 15, Chapter 17 and Chapter 18. Stephen Harrison (Harvard University) and Paul Sigler (Yale University) provided extensive help and advice on Chapters 8–10, 13 and 16, and Chapters 8–10 and 13, respectively, for which we are especially grateful.

The following, in alphabetical order, have reviewed one or more chapters, correcting our errors of fact or interpretation and helping to ensure they have the appropriate balance and emphasis: Tom Alber (University of California, Berkeley), Tom Blundell (Cambridge University, UK), Stephen Burley (Rockefeller University), Charles Craik (University of California, San Francisco), Ken Dill (University of California, San Francisco), Chris Dobson (Oxford University, UK), Anthony Fink (University of California, Santa Cruz), Robert Fletterick (University of California, San Francisco), Richard Henderson (LMB, Cambridge, UK), Werner Kühlbrandt (MPI, Frankfurt), David Parry (Massey University, New Zealand), Greg Petsko (Brandeis University), and David Trentham (NIMR, London, UK).

The book depends for its accessibility upon its illustrations and we are hugely indebted to Nigel Orme, who, as with the first edition, has converted sketches into lucid figures. Keith Roberts has again advised us on how best graphically to represent chemical and structural phenomena. Jane Richardson (Duke University) has generously produced the Kinemage supplement to this edition and the book relies upon Richardson-type diagrams throughout to render the structures discussed comprehensible. We thank our publishers Garland Publishing, now part of the Taylor and Francis Group, for their support, and in particular Matthew Day for his enthusiastic editing of the complete manuscript. Miranda Robertson, in her inimitable style, has again managed the entire project.

Contents

aı	t I Basic Structural Principles	1		Domains are built from structural motifs	30
1.	The Building Blocks	3		Simple motifs combine to form complex motifs	30
	Proteins are polypeptide chains	4		Protein structures can be divided into	
	The genetic code specifies 20 different amino			three main classes	31
	acid side chains	4		Conclusion	32
	Cysteines can form disulfide bridges	5		Selected readings	33
	Peptide units are building blocks of protein				
	structures	8	3.		35
	Glycine residues can adopt many different			Coiled-coil α helices contain a repetitive	
	conformations	9		heptad amino acid sequence pattern	35
	Certain side-chain conformations are			The four-helix bundle is a common domain	
	energetically favorable	10		structure in α proteins	37
	Many proteins contain intrinsic metal atoms	11		Alpha-helical domains are sometimes large	
	Conclusion	12		and complex	39
	Selected readings	12		The globin fold is present in myoglobin and	
	G.	12		hemoglobin	40
2.	Motifs of Protein Structure	13		Geometric considerations determine	
	The interior of proteins is hydrophobic	14		α-helix packing	40
	The alpha (α) helix is an important			Ridges of one α helix fit into grooves of an	
	element of secondary structure	14		adjacent helix	40
	The α helix has a dipole moment	16		The globin fold has been preserved during	
	Some amino acids are preferred in			evolution	41
	α helices	16		The hydrophobic interior is preserved	42
	Beta (β) sheets usually have their β strands			Helix movements accommodate interior	
	either parallel or antiparallel	19		side-chain mutations	43
	Loop regions are at the surface of			Sickle-cell hemoglobin confers resistance	
	protein molecules	21		to malaria	43
	Schematic pictures of proteins highlight			Conclusion	45
	secondary structure	22		Selected readings	45
	Topology diagrams are useful for classification				
	of protein structures	23	4.	Alpha/Beta Structures	47
	Secondary structure elements are connected			Parallel β strands are arranged in barrels	
	to form simple motifs	24		or sheets	47
	The hairpin β motif occurs frequently in			Alpha/beta barrels occur in many different	
	protein structures	26		enzymes	48
	The Greek key motif is found in antiparallel			Branched hydrophobic side chains dominate	
	β sheets	27		the core of α/β barrels	49
	The β-α-β motif contains two parallel			Pyruvate kinase contains several domains,	
	β strands	27		one of which is an α/β barrel	51
	Protein molecules are organized in a structural			Double barrels have occurred by gene	
	hierarchy	28		fusion	52
	Large polypeptide chains fold into several			The active site is formed by loops at one	
	domains	29		end of the α/β barrel	53

	Alpha/beta barrels provide examples of			Both single and multiple folding pathways	
	evolution of new enzyme activities	54		have been observed	93
	Leucine-rich motifs form an α/β-horseshoe	55		Enzymes assist formation of proper disulfide	
	fold			bonds during folding	96
	Alpha/beta twisted open-sheet structures			Isomerization of proline residues can be	
	contain α helices on both sides of the			a rate-limiting step in protein folding	98
	β sheet	56		Proteins can fold or unfold inside chaperonins	99
	Open β-sheet structures have a variety	50		GroEL is a cylindrical structure with a	,
	of topologies	57		central channel in which newly synthesized	
	1 0	37			100
	The positions of active sites can be predicted	<i>-</i> 7		polypeptides bind	100
	in α/β structures	57		GroES closes off one end of the GroEL cylinder	102
	Tyrosyl-tRNA synthetase has two different			The GroEL–GroES complex binds and	
	domains $(\alpha/\beta + \alpha)$	59		releases newly synthesized polypeptides	
	Carboxypeptidase is an α/β protein with a			in an ATP-dependent cycle	102
	mixed β sheet	60		The folded state has a flexible structure	104
	Arabinose-binding protein has two similar			Conformational changes in a protein kinase	
	α/β domains	62		are important for cell cycle regulation	105
	Conclusion	63		Peptide binding to calmodulin induces a	
	Selected readings	64		large interdomain movement	109
	Ü			Serpins inhibit serine proteinases with	
5.	Beta Structures	67		a spring-loaded safety catch mechanism	110
•	Up-and-down barrels have a simple topology	68		Effector molecules switch allosteric proteins	
	1 1 07	00		between R and T states	113
	The retinol-binding protein binds retinol	60		X-ray structures explain the allosteric	110
	inside an up-and-down β barrel	68		, 1	11/
	Amino acid sequence reflects β structure	69		properties of phosphofructokinase	114
	The retinol-binding protein belongs to a			Conclusion	117
	superfamily of protein structures	70		Selected readings	119
	Neuraminidase folds into up-and-down β sheets	70	_	P274 64	
	Folding motifs form a propeller-like structure		7.	DNA Structures	12
	in neuraminidase	71		The DNA double helix is different in A- and	
	The active site is in the middle of one side of			B-DNA	121
	the propeller	72		The DNA helix has major and minor grooves	122
	Greek key motifs occur frequently in			Z-DNA forms a zigzag pattern	123
	antiparallel β structures	72		B-DNA is the preferred conformation <i>in vivo</i>	124
	The γ-crystallin molecule has two domains	74		Specific base sequences can be recognized	
	The domain structure has a simple topology	74		in B-DNA	124
	Two Greek key motifs form the domain	74		Conclusion	125
	The two domains have identical topology	75		Selected readings	126
	The two domains have identical topology The two domains have similar structures	76		beleeted readings	120
		70	Dar	rt 2 Structure, Function, and Engineering	127
	The Greek key motifs in γ crystallin are	7.0			12/
	evolutionarily related	76	8.	DNA Recognition in Procaryotes by	100
	The Greek key motifs can form jelly roll barrels	77		Helix-Turn-Helix Motifs	129
	The jelly roll motif is wrapped around a barrel	77		A molecular mechanism for gene control	129
	The jelly roll barrel is usually divided into			Repressor and Cro proteins operate a procaryotic	
	two sheets	78		genetic switch region	130
	The functional hemagglutinin subunit has two			The x-ray structure of the complete lambda	
	polypeptide chains	79		Cro protein is known	131
	The subunit structure is divided into a stem			The x-ray structure of the DNA-binding	
	and a tip	79		domain of the lambda repressor is known	132
	The receptor binding site is formed by the			Both lambda Cro and repressor proteins	
	jelly roll domain	80		have a specific DNA-binding motif	133
	Hemagglutinin acts as a membrane fusogen	80			134
	The structure of hemagglutinin is affected	00		Model building predicts Cro–DNA interactions	135
		81		Genetic studies agree with the structural model	133
	by pH changes			The x-ray structure of DNA complexes with	
	Parallel β-helix domains have a novel fold	84		434 Cro and repressor revealed novel	120
	Conclusion	85		features of protein–DNA interactions	136
	Selected readings	87		The structures of 434 Cro and the 434	
				repressor DNA-binding domain are very	
5.	Folding and Flexibility	89		similar	137
	Globular proteins are only marginally stable	90		The proteins impose precise distortions on	
	Kinetic factors are important for folding	91		the B-DNA in the complexes	138
	Molten globules are intermediates in folding	92		Sequence-specific protein–DNA interactions	
	Burying hydrophobic side chains is a key event	93		recognize operator regions	138
	, 3,				

	Protein–DNA backbone interactions determine		The finger region of the classic zinc finger	
	DNA conformation	139	motif interacts with DNA	178
	Conformational changes of DNA are		Two zinc-containing motifs in the	
	important for differential binding of repressor		glucocorticoid receptor form one	
	and Cro to different operator sites	140	DNA-binding domain	181
	The essence of phage repressor and Cro	141	A dimer of the glucocorticoid receptor binds	
	DNA binding is regulated by allosteric control	142	to DNA	183
	The <i>trp</i> repressor forms a helix-turn-helix motif	142	An α helix in the first zinc motif provides	
	A conformational change operates a		the specific protein–DNA interactions	184
	functional switch	142	Three residues in the recognition helix provide	
	Lac repressor binds to both the major and minor		the sequence-specific interactions with DNA	184
	grooves inducing a sharp bend in the DNA	143	The retinoid X receptor forms heterodimers	
	CAP-induced DNA bending could activate		that recognize tandem repeats with	
	transcription	146	variable spacings	185
	Conclusion	147	Yeast transcription factor GAL4 contains	
	Selected readings	148	a binuclear zinc cluster in its DNA-binding	
			domain	187
9.	DNA Recognition by Eucaryotic		The zinc cluster regions of GAL4 bind at the	
	Transcription Factors	151	two ends of the enhancer element	188
	Transcription is activated by protein–protein		The linker region also contributes to DNA	
	interactions	152	binding	189
	The TATA box-binding protein is ubiquitous	153	DNA-binding site specificity among the C_6 -zinc	
	The three-dimensional structures of		cluster family of transcription factors is	
	TBP-TATA box complexes are known	154	achieved by the linker regions	190
	A β sheet in TBP forms the DNA-binding site	154	Families of zinc-containing transcription	
	TBP binds in the minor groove and induces		factors bind to DNA in several different ways	191
	large structural changes in DNA	155	Leucine zippers provide dimerization	
	The interaction area between TBP and the		interactions for some eucaryotic	
	TATA box is mainly hydrophobic	157	transcription factors	191
	Functional implications of the distortion of		The GCN4 basic region leucine zipper binds	
	DNA by TBP	158	DNA as a dimer of two uninterrupted	100
	TFIIA and TFIIB bind to both TBP and DNA	159	α helices	193
	Homeodomain proteins are involved in the		GCN4 binds to DNA with both specific and	101
	development of many eucaryotic organisms	159	nonspecific contacts	194
	Monomers of homeodomain proteins bind		The HLH motif is involved in homodimer	100
	to DNA through a helix-turn-helix motif	160	and heterodimer associations	196
	In vivo specificity of homeodomain		The α -helical basic region of the b/HLH	100
	transcription factors depends on interactions		motif binds in the major groove of DNA	198
	with other proteins	162	The b/HLH/zip family of transcription factors	
	POU regions bind to DNA by two tandemly		have both HLH and leucine zipper	100
	oriented helix-turn-helix motifs	164	dimerization motifs	199
	Much remains to be learnt about the function of		Max and MyoD recognize the DNA HLH	
	homeodomains in vivo	166	consensus sequence by different specific	201
	Understanding tumorigenic mutations	166	protein–DNA interactions	201 201
	The monomeric p53 polypeptide chain is		Conclusion	201
	divided in three domains	167	Selected readings	203
	The oligomerization domain forms tetramers	167	11 An Evenuele of Engrane Catalysis	
	The DNA-binding domain of p53 is an		11. An Example of Enzyme Catalysis: Serine Proteinases	205
	antiparallel β barrel	168	Proteinases form four functional families	205
	Two loop regions and one α helix of p53 bind	100		205
	to DNA	169	The catalytic properties of enzymes are	206
		10)	reflected in K _m and k _{cat} values	206
	Tumorigenic mutations occur mainly in three	170	Enzymes decrease the activation energy of	200
	regions involved in DNA binding Conclusions	172	chemical reactions	206
	Selected readings	172	Serine proteinases cleave peptide bonds by	200
	Sciected readings	1/2	forming tetrahedral transition states	208
10	Specific Transcription Factors Belong	175	Four important structural features are required	200
10	to a Few Families	1/3	for the catalytic action of serine proteinases	209
	Several different groups of zinc-containing	176	Convergent evolution has produced two	
	motifs have been observed	170	different serine proteinases with similar	210
	The classic zinc fingers bind to DNA in tandem	177	catalytic mechanisms The chymotrypsin structure has two antiparallel	210
	along the major groove	±.,	The chymotrypsin structure has two antiparallel β-barrel domains	210
			p-barrer domains	210

	The active site is formed by two loop regions from each domain Did the chymotrypsin molecule evolve by	211	Transmembrane α helices can be predicted from amino acid sequences Hydrophobicity scales measure the degree	244
	gene duplication? Different side chains in the substrate	212	of hydrophobicity of different amino acid side chains	245
	specificity pocket confer preferential cleavage	212	Hydropathy plots identify transmembrane helices	245
	Engineered mutations in the substrate specificity pocket change the rate of catalysis	213	Reaction center hydropathy plots agree with crystal structural data	246
	The Asp 189-Lys mutation in trypsin causes		Membrane lipids have no specific interaction	
	unexpected changes in substrate specificity The structure of the serine proteinase subtilisin	215	with protein transmembrane α helices Conclusion	246 247
	is of the α/β type The active sites of subtilisin and chymotrypsin	215	Selected readings	248
	are similar	216	13. Signal Transduction	251
	A structural anomaly in subtilisin has functional consequences	217	G proteins are molecular amplifiers Ras proteins and the catalytic domain	252
	Transition-state stabilization in subtilisin is	217	of G_{α} have similar three-dimensional	254
	dissected by protein engineering	217	structures	
	Catalysis occurs without a catalytic triad	217	G_{α} is activated by conformational changes of	255
	Substrate molecules provide catalytic groups	218	three switch regions	257
	in substrate-assisted catalysis Conclusion	219	GTPases hydrolyze GTP through nucleophilic	259
	Selected readings	220	attack by a water molecule The G_B subunit has a seven-blade propeller fold,	239
	0		built up from seven WD repeat units	261
12.	Membrane Proteins	223	The GTPase domain of G_{α} binds to G_{β} in the	
	Membrane proteins are difficult to crystallize	224	heterotrimeric $G_{\alpha\beta\gamma}$ complex	263
	Novel crystallization methods are being	224	Phosducin regulates light adaptation in	
	developed Two-dimensional crystals of membrane	224	retinal rods	265
	proteins can be studied by electron		Phosducin binding to $G_{\beta\gamma}$ blocks binding of G_{α}	265
	microscopy	225	The human growth hormone induces dimerization of its cognate receptor	267
	Bacteriorhodopsin contains seven	226	Dimerization of the growth hormone receptor	207
	transmembrane α helices	226	is a sequential process	268
	Bacteriorhodopsin is a light-driven proton pump	227	The growth hormone also binds to the	
	Porins form transmembrane channels by	22,	prolactin receptor	269
	β strands	228	Tyrosine kinase receptors are important enzyme-linked receptors	270
	Porin channels are made by up and down		Small protein modules form adaptors for a	270
	β barrels	229	signaling network	272
	Each porin molecule has three channels	230	SH2 domains bind to phosphotyrosine-	
	Ion channels combine ion selectivity with high levels of ion conductance	232	containing regions of target molecules	273
	The K ⁺ channel is a tetrameric molecule with		SH3 domains bind to proline-rich regions of	274
	one ion pore in the interface between the		target molecules Src tyrosine kinases comprise SH2 and SH3	274
	four subunits	232	domains in addition to a tyrosine kinase	275
	The ion pore has a narrow ion selectivity filter	233	The two domains of the kinase in the	
	The bacterial photosynthetic reaction center is built up from four different polypeptide		inactive state are held in a closed	
	chains and many pigments	234	conformation by assembly of the	077
	The L, M, and H subunits have transmembrane		regulatory domains Conclusion	277 278
	α helices	236	Selected readings	280
	The photosynthetic pigments are bound to the	227	0	
	L and M subunits	237	14. Fibrous Proteins	283
	Reaction centers convert light energy into electrical energy by electron flow through		Collagen is a superhelix formed by three	20.4
	the membrane	239	parallel, very extended left-handed helices	284
	Antenna pigment proteins assemble into		Coiled coils are frequently used to form oligomers of fibrous and globular proteins	286
	multimeric light-harvesting particles	240	Amyloid fibrils are suggested to be built up	200
	Chlorophyll molecules form circular rings	241	from continuous β sheet helices	288
	in the light-harvesting complex LH2 The reaction center is surrounded by a ring of 16	2-11	Spider silk is nature's high-performance fiber	289
	antenna proteins of the light-harvesting		Muscle fibers contain myosin and actin which	
	complex LH1	242	slide against each other during muscle contraction	290
			contraction	

	Complex spherical viruses have more than one	
291	polypeptide chain in the asymmetric unit	329
	Structural versatility gives quasi-equivalent	
292	packing in $T = 3$ plant viruses	331
	The protein subunits recognize specific parts	
293	of the RNA inside the shell	332
	The protein capsid of picornaviruses contains	
295	four polypeptide chains	333
	picornaviruses	334
296	The arrangement of subunits in the shell of	
297	picornaviruses is similar to that of $T = 3$	
298	plant viruses	334
	The coat proteins of many different spherical	
	plant and animal viruses have similar	
299	jelly roll barrel structures, indicating an	
	evolutionary relationship	335
300	Drugs against the common cold may be	
		337
302		
		339
303	~	
		339
304	, ,,	340
305	1 1 0 0,	
		341
	Conclusion	343
206		24
306	Selected readings	344
	Selected readings	344
1	Selected readings 17. Prediction, Engineering, and Design of	
	Selected readings 17. Prediction, Engineering, and Design of Protein Structures	344 342
1	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure	342
308	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function	
1	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural	34 2
308 311	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions	342
308	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary	34 2 348 349
308 311	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure	34 2
308 311 312	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure	34 2 348 349
308 311	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of	348 348 349 350
308 311 312 312	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins	34 2 348 349
308 311 312	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give	348 348 349 350
308 311 312 312 313	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures	348 349 350
308 311 312 312	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence	342 348 349 350 351 352
308 311 312 312 313 314	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem	348 348 349 350
308 311 312 312 313	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid	348 348 349 350 351 352
308 311 312 312 313 314	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds	348 349 350 351 352
308 311 312 312 313 314 315	17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by	348 349 350 351 352 352 353
308 311 312 312 313 314	17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering	348 349 350 351 352 353 354
308 311 312 312 313 314 315	17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability	348 349 350 351 352 352 353
308 311 312 312 313 314 315	17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability Glycine and proline have opposite effects on	342 348 349 350 351 352 352 353 354 355
308 311 312 312 313 314 315 316 318	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability Glycine and proline have opposite effects on stability	348 349 350 351 352 353 354
308 311 312 312 313 314 315 316 318 318	17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability Glycine and proline have opposite effects on stability Stabilizing the dipoles of α helices increases	342 348 349 350 351 352 352 353 354 355 356
308 311 312 312 313 314 315 316 318	 Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability Glycine and proline have opposite effects on stability Stabilizing the dipoles of α helices increases stability 	342 348 349 350 351 352 352 353 354 355
308 311 312 312 313 314 315 316 318 318 320	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability Glycine and proline have opposite effects on stability Stabilizing the dipoles of α helices increases stability Mutants that fill cavities in hydrophobic cores	342 348 349 350 351 352 352 353 354 355 356 357
308 311 312 312 313 314 315 316 318 318 320	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability Glycine and proline have opposite effects on stability Stabilizing the dipoles of α helices increases stability Mutants that fill cavities in hydrophobic cores do not stabilize T4 lysozyme	342 348 349 350 351 352 352 353 354 355 356
308 311 312 312 313 314 315 316 318 318 320 321	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability Glycine and proline have opposite effects on stability Stabilizing the dipoles of α helices increases stability Mutants that fill cavities in hydrophobic cores	342 348 349 350 351 352 352 353 354 355 356 357 358
308 311 312 312 313 314 315 316 318 318 320 321	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability Glycine and proline have opposite effects on stability Stabilizing the dipoles of α helices increases stability Mutants that fill cavities in hydrophobic cores do not stabilize T4 lysozyme Proteins can be engineered by combinatorial methods	342 348 349 350 351 352 352 353 354 355 356 357
308 311 312 312 313 314 315 316 318 318 320 321 325	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability Glycine and proline have opposite effects on stability Stabilizing the dipoles of α helices increases stability Mutants that fill cavities in hydrophobic cores do not stabilize T4 lysozyme Proteins can be engineered by combinatorial	342 348 349 350 351 352 352 353 354 355 356 357 358
308 311 312 312 313 314 315 316 318 318 320 321 325 327	Selected readings 17. Prediction, Engineering, and Design of Protein Structures Homologous proteins have similar structure and function Homologous proteins have conserved structural cores and variable loop regions Knowledge of secondary structure is necessary for prediction of tertiary structure Prediction methods for secondary structure benefit from multiple alignment of homologous proteins Many different amino acid sequences give similar three-dimensional structures Prediction of protein structure from sequence is an unsolved problem Threading methods can assign amino acid sequences to known three-dimensional folds Proteins can be made more stable by engineering Disulfide bridges increase protein stability Glycine and proline have opposite effects on stability Stabilizing the dipoles of α helices increases stability Mutants that fill cavities in hydrophobic cores do not stabilize T4 lysozyme Proteins can be engineered by combinatorial methods Phage display links the protein library	348 348 349 350 351 352 352 353 354 355 356 357 358
	292 293 295 296 297 298 299 300 302	291 polypeptide chain in the asymmetric unit Structural versatility gives quasi-equivalent 292 packing in T = 3 plant viruses The protein subunits recognize specific parts 293 of the RNA inside the shell The protein capsid of picornaviruses contains 295 four polypeptide chains There are four different structural proteins in 296 picornaviruses 297 picornaviruses is similar to that of T = 3 298 plant viruses The coat proteins of many different spherical 299 plant and animal viruses have similar 299 jelly roll barrel structures, indicating an 299 evolutionary relationship 300 Drugs against the common cold may be 301 designed from the structure of rhinovirus 302 Bacteriophage MS2 has a different subunit 303 structure 304 A dimer of MS2 subunits recognizes an RNA 305 packaging signal 306 The core protein of alphavirus has a 307 chymotrypsin-like fold 308 SV40 and polyomavirus shells are constructed 309 from pentamers of the major coat protein 309 with nonequivalent packing but largely 309 equivalent interactions

	Structural scaffolds can be reduced in size		Building a model involves subjective	
	while function is retained	363	interpretation of the data	381
	Phage display of random peptide libraries		Errors in the initial model are removed	
	identified agonists of erythropoetin receptor	364	by refinement	383
	DNA shuffling allows accelerated evolution		Recent technological advances have greatly	
	of genes	365	influenced protein crystallography	383
	Protein structures can be designed from first		X-ray diffraction can be used to study the	
	principles	367	structure of fibers as well as crystals	384
	A β structure has been converted to an α structure		The structure of biopolymers can be studied	
	by changing only half of the sequence	368	using fiber diffraction	386
	Conclusion	370	NMR methods use the magnetic properties of	
	Selected readings	371	atomic nuclei	387
			Two-dimensional NMR spectra of proteins are	
18	Determination of Protein Structures	373	interpreted by the method of sequential	
	Several different techniques are used to study		assignment	389
	the structure of protein molecules	373	Distance constraints are used to derive possible	
	Protein crystals are difficult to grow	374	structures of a protein molecule	390
	X-ray sources are either monochromatic or		Biochemical studies and molecular	
	polychromatic	376	structure give complementary functional	
	X-ray data are recorded either on image plates		information	391
	or by electronic detectors	377	Conclusion	391
	The rules for diffraction are given by Bragg's law	378	Selected readings	392
	Phase determination is the major			
	crystallographic problem	379	Protein Structure on the World Wide Web	393
	Phase information can also be obtained by			
	Multiwavelength Anomalous Diffraction			
	experiments	381		