LABORATÓRIO DE CIRCUITOS DIGITAIS I: LabCDGI-CP

Lab-7: PRIMEIRA AVALIAÇÃO - CIRCUITOS COMBINACIONAIS

1. IMPORTANTE:

- 1.1- A nota consiste na Preparação e Simulação (35%) mais Montagem e Demonstração (65%).
- 1.2- O desenvolvimento das questões deve ser em **manuscrito**.
- 1.3- Os circuitos resultantes das **simulações**, com a **NUMERAÇÃO** dos pinos das portas lógicas devem ser apesentados na forma **Impressa**.
- 1.4- A impressão pode ser frente e verso.

2. Instruções gerais

A **PREPARAÇÃO teórica** (tabelas, simplificações algébricas ou gráficas etc.) deve ser elaborada individualmente, na forma **manuscrita**, com **organização**, **lógica** e **legibilidade**.

O desenho da versão final de cada circuito, resultante da simulação, com a devida numeração dos pinos das portas lógicas, será usado como **guia de montagem e testes** durante a realização dos experimentos. A versão final do circuito simulado, que será montada, **deve usar apenas os circuitos integrados disponibilizados neste roteiro.**

A PREPARAÇÃO, completa e previamente simulada, desta Avaliação, deve ser apresentada no início da Aula de Laboratório de Montagem e entregue no final da mesma.

3. Tarefas

- 3.1 Um circuito combinacional tem quatro entradas X_1X_0 e Y_1Y_0 . A notação X_1X_0 representa um número binário que pode ter qualquer valor (00, 01, 10 ou 11); por exemplo, quando X_1 =1 e X_0 = 0, o número binário é 10, e assim por diante. De forma similar, a notação Y_1Y_0 representa um outro número binário de dois bits. Usando as entradas X_1 , X_0 , Y_1 e Y_0 , desenvolver todas as etapas de projeto de um circuito digital cuja saída será nível ALTO apenas quando X_1X_0 igual ou maior que Y_1Y_0 .
- **3.2** Elaborar a **TABELA VERDADE** da função lógica representada graficamente na figura a baixo e elaborar o respectivo circuito digital, simplificado, usando o mínimo de portas lógicas.

		_		
$\begin{array}{c} zw \\ xy \end{array}$	00	01	11	10
00	1	1	0	1
01	0	0	0	1
11	0	1	0	1
10	1	1	0	1

- 3.3 Um Codificador de Prioridade tem 4 entradas (E_4 , E_3 , E_2 , E_1) e três saídas (S_2 , S_1 , S_0). Quando nenhuma entrada estiver ativada, com nível lógico '1', a saída deve mostrar o código binário "000". A entrada E_4 é a de menor prioridade e a E_1 a de maior prioridade. O código binário de cada chave é: E_4 =100, E_3 =001, E_2 =101, E_1 =111 . Desenvolver todas as etapas de projeto deste circuito digital com o mínimo de portas lógicas.
- 3.4 Desenvolver todas as etapas de projeto, com o mínimo de portas lógicas, de um circuito digital para converter o código Binário (B₂, B₁, B₀), de três bits no código equivalente (C₂, C₁, C₀) apresentado na tabela abaixo.

B ₂	B	ıB₀	C ₂ C ₁ C ₀		
0	0	0	0	1	0
0	0	1	1	1	0
0	1	0	1	0	0
0	1	1	0	1	1
1	0	0	1	1	1
1	0	1	0	0	1
1	1	0	0	0	0
1	1	1	1	0	1

4 - CIRCUITOS INTEGRADOS DISPONÍVEIS:

1 x 7400 1 x 7404 1 x 7408 1 x 7432 1 x 7486

Para obter as especificações dos circuitos integrados escreva no seu navegador: 74xxx datasheet pdf

