

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

ИНСТИТУТ КИБЕРНЕТИКИ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Лабораторная работа 1

по курсу «Теория вероятностей и математическая статистика, часть 2»

ВАРИАНТ 67

Тема:	Первичная обработка выборки из	
	<u>дискретной генеральной совокупности</u>	

Выполнил: Студент 3-го курса Мусатов Д. Ю.

Группа: КМБО-03-18

Содержание

1	Зад	ание	3
2	Kpa	аткие теоретические сведения	4
	2.1	Биномиальное распределение	4
	2.2	Геометрическое распределение	5
	2.3	Распределение Пуассона	6
3	Рез	ультаты расчётов	7
	3.1	Задание №1	7
	3.2	Задание №2	10
	3.3	Задание №3	13
4	Ана	ализ результатов и выводы	16
5	Спи	исок использованной литературы	18

Содержание 2

1 Задание

Задание 1. Получить выборку, сгенерировав 200 псевдослучайных чисел, распределенных по биномиальному закону с параметрами n и p.

$$n = 7 + V mod 15;$$
 $p = 0, 2 + 0,005V$

Задание 2. Получить выборку, сгенерировав 200 псевдослучайных чисел, распределенных по геометрическому закону с параметром .

$$p = 0, 2 + 0,005V$$

Задание 3. Получить выборку, сгенерировав 200 псевдослучайных чисел, распределенных по закону Пуассона с параметром.

$$\lambda = 1 + 0,02V$$

Следуя Указаниям для всех выборок построить:

- 1) статистический ряд;
- 2) полигон относительных частот;
- 3) график эмпирической функции распределения;

Найти:

- 1) выборочное среднее;
- 2) выборочную дисперсию;
- 3) выборочное среднее квадратическое отклонение;
- 4) выборочную моду;
- 5) выборочную медиану;
- 6) выборочный коэффициент асимметрии;
- 7) выборочный коэффициент эксцесса.

Провести сравнение рассчитанных характеристик с теоретическими значениями.

V - номер варианта. Вычисления проводить с точностью до 0,00001.

1 Задание 3

2 Краткие теоретические сведения

2.1 Биномиальное распределение

Ряд распределения

где
$$p_i = C_n^i \cdot p^i \cdot q^{n-i}, \quad i = 0, 1, ...,$$
 0

Математическое ожидание: M(X) = np

Дисперсия: D(X) = npq

Среднее квадратическое отклонение: $\sigma = \sqrt{D(X)} = \sqrt{npq}$

Медиана: $M_e = Round(np)$

Коэффициент асимметрии: $a_s = \gamma_1 = \frac{q-p}{\sqrt{npq}}$

Коэффициент эксцесса: $\varepsilon_k = \gamma_2 = \frac{1-6pq}{npq}$

2.2 Геометрическое распределение

Ряд распределения

где
$$p_i = p \cdot q^i$$
, $i = 0, 1, ..., 0 , $q = 1 - p$$

Математическое ожидание: $M(X) = \frac{q}{p}$

Дисперсия: $D(X) = \frac{q}{p^2}$

Среднее квадратическое отклонение: $\sigma = \sqrt{D(X)} = \frac{\sqrt{q}}{p}$

Мода: $M_0 = 0$

Медиана: $M_e = \left\{ egin{array}{l} 1) & \left[- \dfrac{\ln 2}{\ln q} \right], \ \mathrm{если} \ \dfrac{\ln 2}{\ln q} \ \text{-- дробное}; \\ \\ 2) & - \dfrac{\ln 2}{\ln q} - \dfrac{1}{2}, \ \mathrm{если} \ \dfrac{\ln 2}{\ln q} \ \text{-- целоe}; \end{array} \right.$

Коэффициент асимметрии: $a_s = \gamma_1 = \frac{2-p}{\sqrt{q}}$

Коэффициент эксцесса: $\varepsilon_k = \gamma_2 = 6 + \frac{p^2}{q}$

2.3 Распределение Пуассона

Ряд распределения

$$\begin{array}{c|cccc} x_i & 0 & 1 & \dots \\ \hline p_i & p_0 & p_1 & \dots \\ \hline \end{array}$$

где
$$p_i = \frac{\lambda^k}{k!} \cdot e^{-\lambda}, \quad \lambda > 0, \quad i = 0, 1, \dots$$

Математическое ожидание: $M(X) = \lambda$

Дисперсия: $D(X) = \lambda$

Среднее квадратическое отклонение: $\sigma = \sqrt{D(X)} = \sqrt{\lambda}$

Мода: $M_0 = [\lambda]$

Медиана: $M_e \approx \left[\lambda + \frac{1}{3} - \frac{0,02}{\lambda}\right]$

Коэффициент асимметрии: $a_s = \gamma_1 = \lambda^{-\frac{1}{2}}$

Коэффициент эксцесса: $\varepsilon_k = \gamma_2 = \lambda^{-1}$

3 Результаты расчётов

В программе расчёта был использован язык программирования Python. Работа осуществлялась в среде Jupyter Notebook.

3.1 Задание №1

$$p = 0.535$$
 $N = 200$ $q = 0.465$ $n = 14$ Полученная выборка

				J		L			
9	7	8	9	9	7	5	7	7	3
11	9	8	7	7	7	9	5	4	7
8	8	6	10	8	6	8	4	10	9
8	8	6	6	8	7	7	7	9	8
9	6	7	10	6	8	5	8	5	9
9	8	7	8	7	7	6	10	8	5
7	6	6	3	10	6	9	7	10	4
9	7	7	9	9	8	6	7	6	8
4	7	9	10	7	4	9	5	7	6
6	6	6	8	4	4	5	7	7	7
7	5	8	11	8	4	7	8	4	5
7	6	6	7	10	9	5	9	4	5
5	7	9	5	9	5	7	4	6	8
6	6	7	10	6	10	7	12	9	9
6	8	8	7	7	11	7	10	7	9
9	8	6	8	10	5	4	8	8	5
9	7	8	5	6	8	9	7	7	9
8	10	10	8	9	9	4	9	10	7
7	9	9	9	7	10	10	6	9	6
10	6	8	7	6	11	7	6	6	10

			Упор	ядочен	ная выб	борка			
3	3	4	4	4	4	4	4	4	4
4	4	4	4	4	5	5	5	5	5
5	5	5	5	5	5	5	5	5	5
5	5	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6
6	6	6	7	7	7	7	7	7	7
7	7	7	7	7	7	7	7	7	7
7	7	7	7	7	7	7	7	7	7
7	7	7	7	7	7	7	7	7	7
7	7	7	7	7	7	7	7	7	8
8	8	8	8	8	8	8	8	8	8
8	8	8	8	8	8	8	8	8	8
8	8	8	8	8	8	8	8	8	8
8	8	9	9	9	9	9	9	9	9
9	9	9	9	9	9	9	9	9	9
9	9	9	9	9	9	9	9	9	9
9	9	9	9	9	9	10	10	10	10
10	10	10	10	10	10	10	10	10	10
10	10	10	10	10	11	11	11	11	12

Статистический ряд

x_i	n_i	w_i	s_i
0	0	0	0
1	0	0	0
2	0	0	0
3	2	0.01	0.01
4	13	0.065	0.075
5	17	0.085	0.16
6	31	0.155	0.315
7	46	0.23	0.545
8	33	0.165	0.71
9	34	0.17	0.88
10	19	0.095	0.975
11	4	0.02	0.995
12	1	0.005	1
13	0	0	1
14	0	0	1
	200	1	-

График полигона относительных частот

Эмпирическая функция распределения

Результаты расчётов требуемых характеристик:

- Выборочное среднее: 7.35;
- Выборочная дисперсия: 3.27277;
- Среднее квадратичное: 1.80908;
- Выборочная мода: 7;
- Выборочная медиана: 7;
- Выборочный коэффициент асимметрии: -0.09488;
- Выборочный коэффициент эксцесса: -0.50712;

3.2 Задание №2

$$p = 0.535$$
 $N = 200$ $q = 0.465$

Полученная выборка

Упорядоченная выборка

Статистический ряд

x_i	n_i	w_i	s_i
0	98	0.49	0.49
1	52	0.26	0.75
2	21	0.105	0.855
3	17	0.085	0.94
4	5	0.025	0.965
5	5	0.025	0.99
6	2	0	1
7	200	0.01	-
		1	

График полигона относительных частот

Полигон относительных частот геометрического распределения

Эмпирическая функция распределения

Результаты расчётов требуемых характеристик:

- Выборочное среднее: 1.02;
- Выборочная дисперсия: 1.9196;
- Среднее квадратичное: 1.3855;
- Выборочная мода: 0;
- Выборочная медиана: 1;
- Выборочный коэффициент асимметрии: 1.73516;
- Выборочный коэффициент эксцесса: 3.23258;

3.3 Задание №3

$$p = 0.535$$
 $N = 200$ $q = 0.465$ $\lambda = 2.34$

Полученная выборка

Упорядоченная выборка

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
1	1	1	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	4	4
4	4	4	4	4	4	4	4	4	4
4	4	4	4	4	5	5	5	5	5
5	5	5	5	6	6	6	6	6	6
6	6	6	6	6	6	6	7	7	8

Статистический ряд

x_i	n_i	w_i	s_i
0	17	0.085	0.085
1	46	0.23	0.315
2	56	0.28	0.595
3	39	0.195	0.79
4	17	0.085	0.875
5	9	0.045	0.92
6	13	0.065	0.985
7	2	0.01	0.995
8	1	0.005	1
	200	1	-

График полигона относительных частот

Эмпирическая функция распределения

Результаты расчётов требуемых характеристик:

- Выборочное среднее: 2.44;
- Выборочная дисперсия: 2.7864;
- Среднее квадратичное: 1.66925;
- Выборочная мода: 2;
- Выборочная медиана: 2;
- Выборочный коэффициент асимметрии: 0.83995;
- Выборочный коэффициент эксцесса: 0.35006;

4 Анализ результатов и выводы

Таблица сравнения относительных частот и теоретических вероятностей

Биномиальное распределение

		1 1 1 1	
j	w`_ j	p_ j	[w`_j-p_j
0	0	0.00002	0.00002
1	0	0.00036	0.00036
2	0	0.00266	0.00266
3	0.01	0.01225	0.00225
4	0.065	0.03876	0.02624
5	0.085	0.08919	0.00419
6	0.155	0.15392	0.00108
7	0.23	0.20239	0.02761
8	0.165	0.20375	0.03875
9	0.17	0.15628	0.01372
10	0.095	0.0899	0.0051
11	0.02	0.03761	0.01761
12	0.005	0.01082	0.00582
13	0	0.00192	0.00192
14	0	0.00016	0.00016
	1	1	0.03875

Геометрическое распределение

j	w`_j	p_ j	w`_j-p_j
0	0.49	0.535	0.045
1	0.26	0.24878	0.01122
2	0.105	0.11568	0.01068
3	0.085	0.05379	0.03121
4	0.025	0.02501	0.00001
5	0.025	0.01163	0.01337
6	0	0.00541	0.00459
7	0.01	0.00251	0.045
	1	1	

Распределение Пуассона

	±		
j	w`_ j	p_ j	w`_j-p_j
0	0.085	0.09633	0.01133
1	0.23	0.22541	0.00459
2	0.28	0.26373	0.01627
3	0.195	0.20571	0.01071
4	0.085	0.12034	0.03534
5	0.045	0.05632	0.01132
6	0.065	0.02196	0.04304
7	0.01	0.00734	0.00266
8	0.005	0.00215	0.00285
	1	1	0.04304

Таблица сравнения рассчитанных характеристик с теоретическими значениями

Биномиальное распределение

Название показателя	Экспериментальное значение	Теоретическое значение	Абсолютное отклонение	Относительное отклонение
Выборочное среднее	7.335	7.49	0.155	0.02069
Выборочная дисперсия	3.27277	3.48285	0.21008	0.06032
Выборочное среднее квадратичное отклонение	1.80908	1.86624	0.05716	0.03063
Выборочная мода	7	8	1	0.125
Выборочная медиана	7	7	0	0
Выборочный коэффициент асимметрии	-0.09488	-0.03751	0.05737	1.52946
Выборочный коэффициент эксцесса	-0.50712	-0.14145	0.36567	2.58515

Геометрическое распределение

Название показателя	Экспериментальное значение	Теоретическое значение	Абсолютное отклонение	Относительное отклонение
Выборочное среднее	1.02	0.86916	0.15084	0.17355
Выборочная дисперсия	1.9196	1.6246	0.295	0.18158
Выборочное среднее квадратичное отклонение	1.3855	1.2746	0.1109	0.08701
Выборочная мода	0	0	0	-
Выборочная медиана	1	0	1	-
Выборочный коэффициент асимметрии	1.73516	2.14838	0.41323	0.19234
Выборочный коэффициент эксцесса	3.23258	6.61554	3.38296	0.51137

Распределение Пуассона

Название показателя	Экспериментальное значение	Теоретическое значение	Абсолютное отклонение	Относительное отклонение		
Выборочное среднее	2.44	2.34	0.1	0.04274		
Выборочная дисперсия	2.7864	2.34	0.4464	0.19077		
Выборочное среднее квадратичное отклонение	1.66925	1.52971	0.13955	0.09123		
Выборочная мода	2	2	0	0		
Выборочная медиана	2	2	0	0		
Выборочный коэффициент асимметрии	0.83995	0.65372	0.18623	0.28488		
Выборочный коэффициент эксцесса	0.35006	0.42735	0.07729	0.18086		

5 Список использованной литературы

- 1. Математическая статистика [Электронный ресурс]: метод. указания по выполнению лаб. работ / А.А. Лобузов М.: МИРЭА, 2017.
- 2. Боровков А. А. Математическая статистика. СПб.: Лань, 2010.-704 с.
- 3. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Юрайт, 2013. 479 с.
- 4. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М.: Юрайт, 2013.-404 с.
- 5. Емельянов Г.В.Скитович В.П. Задачник по теории вероятностей и математической статистике. СПб.: Лань, 2007. 336 с.
- 6. Ивченко Г. И., Медведев Ю. И. Введение в математическую статистику. М.: Изд-во ЛКИ, 2010. 599 с.
- 7. Кибзун А.И., Горяинова Е.Р., Наумов А.В. Теория вероятностей и математическая статистика. Базовый курс с примерами и задачам. Учебное пособие М.:ФИЗМАТЛИТ, 2005. 232 с.
- 8. Кобзарь А.И. Прикладная математическая статистика: Для инженеров и научных работников М.: ФИЗМАТЛИТ, 2006. 816 с.
- 9. Монсик В.Б., Скрынников А. А. Вероятность и статистика.— М. : БИНОМ, 2015 384 с.
- 10. Сборник задач по теории вероятностей, математической статистике и теории случайных функций: Учеб. пособие для вузов / Под ред. А. А. Свешникова. СПб.: Лань, 2012. 472 с.
- 11. Письменный Д.Т. Конспект лекций по теории вероятностей, математической статистике и случайным процессам: учеб. пособие для вузов. М.: Айрис-пресс, 2013. 288 с.
- 12. Ramachandran Kandethody M., Tsokos Chris P. Mathematical Statistics with Applications in R. N-Y.: Academic Press, 2009. 826 p.
- 13. Ивановский Р.И. Теория вероятностей и математическая статистика: Основы, прикладные аспекты с примерами и задачами в среде Mathcad:Учеб. пособие для вузов СПб.: БХВ-Петербург, 2008. 528 с.

```
import matplotlib.pyplot as plt
import numpy as np
import math
import plotly.graph_objects as go
import copy
p=0.535
N=200
L=2.34
q = 0.465
n=14
#Binomial=np.random.binomial(n, p, N)
#Geometric=np.random.geometric(p, N)
#Poisson=np.random.poisson(L, N)
#np.savetxt('binomial.txt', Binomial,'%d')
#np.savetxt('geometric.txt', Geometric,'%d')
#np.savetxt('poisson.txt', Poisson,'%d')
my_file = open("binomial.txt", "r")
Binomial=[]
for num in my file:
  Binomial.append(int(num))
my_file.close()
Binomial unsort = []
Binomial_unsort = copy.deepcopy(Binomial)
my_file1 = open("geometric.txt", "r")
Geometric=[]
for num in my file1:
  Geometric.append(int(num))
my file1.close()
my file2 = open("poisson.txt", "r")
Geometric_unsort = []
Geometric_unsort = copy.deepcopy(Geometric)
Poisson=[]
for num in my_file2:
  Poisson.append(int(num))
my file2.close()
Poisson_unsort = []
Poisson_unsort = copy.deepcopy(Poisson)
Binomial.sort()
Geometric.sort()
Poisson.sort()
dct_binom={}
for i in Binomial:
  if i in dct binom:
    dct binom[i] += 1
  else:
    dct_binom[i] = 1
dct_geometric={}
for i in Geometric:
  if i in dct_geometric:
    dct_geometric[i] += 1
  else:
    dct_geometric[i] = 1
dct poisson={}
for i in Poisson:
```

```
if i in dct poisson:
    dct_poisson[i] += 1
  else:
    dct poisson[i] = 1
matrix b=[[0] * 4 for i in range(len(dct binom))]
a=0
items=0
for item in dct_binom:
  print("'%d':%d" % (item, dct_binom[item]))
  matrix b[items][0] = int(item)
  matrix_b[items][1] = int(dct_binom[item])
  matrix_b[items][2] = dct_binom[item]/200
  for i in range (items+1):
    a+=matrix_b[i][1]
  matrix_b[items][3] = a/200
  items+=1
  a=0
matrix g=[[0] * 4 for i in range(len(dct geometric))]
items=0
for item in dct_geometric:
  print("'%d':%d" % (item-1, dct geometric[item]))
  matrix_g[items][0] = item-1
  matrix_g[items][1] = dct_geometric[item]
  matrix_g[items][2] = dct_geometric[item]/200
  for i in range (items+1):
    b+=matrix_g[i][1]
  matrix_g[items][3] = b/200
  items+=1
  b=0
matrix p=[[0] * 4 for i in range(len(dct poisson))]
c=0
items=0
for item in dct_poisson:
  print("'%d':%d" % (item, dct_poisson[item]))
  matrix_p[items][0] = item
  matrix_p[items][1] = dct_poisson[item]
  matrix_p[items][2] = dct_poisson[item]/200
  for i in range (items+1):
    c+=matrix_p[i][1]
  matrix_p[items][3] = c/200
  c=0
  items+=1
for i in range(len(matrix b)):
  print(matrix_b[i][0], matrix_b[i][1], matrix_b[i][2], matrix_b[i][3], sep='\t')
for i in range(len(matrix_g)):
  print(matrix_g[i][0], matrix_g[i][1], matrix_g[i][2], matrix_g[i][3], sep='\t')
for i in range(len(matrix p)):
  print(matrix_p[i][0], matrix_p[i][1], matrix_p[i][2], matrix_p[i][3], sep='\t')
w_b_1 = []
x_b_1 = []
for i in range(len(matrix_b)):
  w b 1.append(matrix b[i][2])
for i in range(len(matrix_b)):
```

```
x_b_1.append(matrix_b[i][0])
fig = plt.figure()
plt.title('Полигон относительных частот')
plt.vlabel('w - frequency')
plt.xlabel('x - value')
plt.plot(x b 1, w b 1, r', linewidth=1)
### Вычисление вероятностей по стандартным формулам
P b=[]
for i in range(n+1):
  P_b.append((p**i)*(q**(n-i))*(math.factorial(n)/(math.factorial(i)*(math.factorial(n-i)))))
P_p=[]
for i in range(len(matrix p)):
  P_p.append((L**i*math.exp(-L))/math.factorial(i))
P_g=[]
for i in range(matrix_g[len(matrix_g)-1][0]+1):
  P g.append(p*(q**i))
matrix_v_b_s=[[0] * 20 for i in range(10)]
matrix_v_b_uns=[[0] * 20 for i in range(10)]
matrix v g s=[0] * 20 for i in range(10)]
matrix_v_g_uns=[[0] * 20 for i in range(10)]
matrix_v_p_s=[[0] * 20 for i in range(10)]
matrix_v_p_uns=[[0] * 20 for i in range(10)]
for i in range(10):
  for j in range(20):
    matrix_v_b_s[i][j]=Binomial[i+j*10]
    matrix v b uns[i][j]=Binomial unsort[i+j*10]
    matrix_v_g_s[i][j]=(Geometric[i+j*10]-1)
    matrix v g uns[i][j]=(Geometric unsort[i+j*10]-1)
    matrix_v_p_s[i][j]=Poisson[i+j*10]
    matrix_v_p_uns[i][j]=Poisson_unsort[i+j*10]
### Биномиальное распределение и всё, что с ним связано
fig = go.Figure(data=[go.Table(cells=dict(values=[matrix v b uns[0], matrix v b uns[1],
matrix v b uns[2], matrix v b uns[3], matrix v b uns[4], matrix v b uns[5], matrix v b uns[6],
matrix_v_b_uns[7], matrix_v_b_uns[8], matrix_v_b_uns[9]]))])
fig.show()
fig = go.Figure(data=[go.Table(cells=dict(values=[matrix v b s[0], matrix v b s[1], matrix v b s[2],
matrix_v_b_s[3], matrix_v_b_s[4], matrix_v_b_s[5], matrix_v_b_s[6], matrix_v_b_s[7], matrix_v_b_s[8],
matrix_v_b_s[9]]))
])
fig.show()
fig = go.Figure(data=[go.Table(header=dict(values=['x i', 'w i']),
cells=dict(values=[x_b_1, w_b_1]))
])
fig.show()
fig = go.Figure(data=[go.Table(header=dict(values=['x i', 'w i']),
cells=dict(values=[x_b_1, w_b_1]))
])
fig.show()
wb = []
nb = []
k = 0
```

```
x b = [i for i in range(0,n+1)]
for i in range(n+1):
  if(k<len(matrix_b) and matrix_b[k][0]==i):
    w b.append(matrix b[k][2])
    n b.append(matrix b[k][1])
    k+=1
  else:
    w_b.append(0)
    n b.append(0)
plt.title('Полигон относительных частот')
plt.ylabel('w - frequency')
plt.xlabel('x - value')
plt.plot(x_b, w_b, 'r', linewidth=1)
### График значений Биномиального расределения вычисленных с помощью стандартной
функции и по формулам
plt.title('Полигон относительных частот')
plt.ylabel('w - frequency')
plt.xlabel('x - value')
plt.xticks(np.arange(0.0, n+1, step=1))
plt.plot(x b, w b, x b, P b, 'r', linewidth=1)
plt.savefig('binomial_polygon.jpg')
fig = plt.figure()
s_b = [0]
k = 0
for i in range(15):
  if(k<len(matrix b) and matrix b[k][0]==i):
    s_b.append(matrix_b[k][3])
    k+=1
  else:
    s_b.append(s_b[i])
s b.pop(0)
for i in range(x_b_1[0],x_b_1[len(x_b_1)-1]):
  plt.arrow(x_b[i],s_b[i],x_b[i+1]-x_b[i], s_b[i]-s_b[i], width = 0.01, length_includes_head = True,
head_length = 0.4
plt.arrow(0,0,x b 1[0], 0, width = 0.01, length includes head = True, head length = 0.4)
plt.arrow(x b 1[len(x b 1)-1],1,n-x b 1[len(x b 1)-1],0, width = 0.01, length includes head = True,
head length = 0.4)
plt.title('Эмпирическая функция биномиального распределения')
plt.ylabel('s - sum(w(x)) ')
plt.yticks(np.arange(0.0, 1.1, step=0.1))
plt.xticks(np.arange(0.0, n+1, step=1))
plt.xlabel('x - value')
plt.savefig('binomial_emp.jpg')
plt.show()
x_b_average = 0
for i in range(len(matrix_b)):
  x_b_average += (matrix_b[i][0]*matrix_b[i][2])
print(x b average)
D b average = 0
for i in range(len(matrix_b)):
  D_b_average += ((matrix_b[i][0]-x_b_average)**2)*matrix_b[i][2]
print(round(D b average,5))
sqrt D b average = math.sqrt(D b average)
print(sqrt_D_b_average)
```

```
c m b 3=0
for i in range(len(matrix_b)):
  c_m_b_3 += ((matrix_b[i][0]-x_b_average)**3)*matrix_b[i][2]
print(c m b 3)
c m b 4=0
for i in range(len(matrix b)):
  c_m_b_4 += ((matrix_b[i][0]-x_b_average)**4)*matrix_b[i][2]
print(c_m_b_4)
c_b_as = c_m_b_3/(sqrt_D_b_average**3) #coefficiet asymmetry
print(c b as)
c_b_ex = c_m_b_4/(sqrt_D_b_average**4) #coefficiet excess
c_b_ex -= 3
print(c_b_ex)
n_b_1=[]
for i in range(len(matrix_b)):
  n_b_1.append(matrix_b[i][1])
Moda_b = -1
max_n_b = max(n_b_1)
counter = 0
first max = -1;
k = -1
for i in range(len(n b 1)):
  if(max_n_b == n_b_1[i]):
    counter+=1
    k = i
if(counter==1):
  Moda_b = matrix_b[k][0]
else:
  for i in range(k+1):
    if(max_n_b == n_b_1[i]):
      first max = i
      break
  for i in range(first_max,k+1):
    counter-=1
  if(counter>=0):
    Moda_b = 0.5*(matrix_b[first_max][0]+matrix_b[k][0])
print(Moda b)
number = 0
Med b = 0
for i in range(len(matrix b)):
  if(matrix_b[i][3]==0.5):
    Med_b = 0.5*(matrix_b[i][0]+matrix_b[i+1][0])
    break
  if(matrix b[i][3]>0.5):
    Med_b = matrix_b[i][0]
    break
print(Med_b)
D b t=n*p*q
print(D_b_t)
sqrt_D_b_average_t=math.sqrt(n*p*q)
print(sqrt_D_b_average_t)
Moda b t=0
if(((n+1)*p).is integer()):
  Moda_b_t=(n+1)^*p-0.5
```

```
else:
  Moda_b_t=int((n+1)*p)
print(Moda_b_t)
Med b t=round(n*p)
print(Med b t)
x b average t=n*p
print(x_b_average_t)
c_b_as_t = (q-p)/(math.sqrt(n*p*q))
print(c_b_as_t)
c_b_ex_t = (1-6*p*q)/(n*p*q)
print(c_b_ex_t)
abs_b_w_p = []
for i in range(len(P_b)):
  abs_b_w_p.append(abs(w_b[i]-P_b[i]))
max_b_delt = max(abs_b_w_p)
x_b_h = []
w_b_h = []
P b h = []
abs_b_w_p_h = []
for i in range(len(x b)):
  x_b_h.append(round(x_b[i], 5))
x b h.append('')
for i in range(len(w_b)):
  w_b_h.append(round(w_b[i], 5))
w_b_h.append(sum(w_b))
for i in range(len(P b)):
  P b_h.append(round(P_b[i], 5))
P_b_h.append(round(sum(P_b)))
for i in range(len(abs b w p)):
  abs_b_w_p_h.append(round(abs_b_w_p[i], 5))
abs b w p h.append(round(max b delt,5))
fig = go.Figure(data=[go.Table(header=dict(values=['j', 'w`_j', 'p_j', '|w`_j - p_j|']),
cells=dict(values=[x_b_h, w_b_h, P_b_h, abs_b_w_p_h]))
fig.show()
n_b_h = []
s_b_h = []
for i in range(len(n_b)):
  n b h.append(round(n b[i], 5))
n_b_h.append(sum(n_b))
for i in range(len(s_b)):
  s_b_h.append(round(s_b[i], 5))
s_b_h.append(' - ')
fig = go.Figure(data=[go.Table(header=dict(values=['x i', 'n i', 'w i', 's i']),
cells=dict(values=[x_b_h, n_b_h, w_b_h,s_b_h]))
])
fig.show()
n b h = []
s b h = []
for i in range(len(n_b)):
  n_b_h.append(round(n_b[i], 5))
n_b_h.append(sum(n_b))
for i in range(len(s b)):
  s_b_h.append(round(s_b[i], 5))
```

```
s b h.append('-')
fig = go.Figure(data=[go.Table(header=dict(values=['x_i', 'n_i', 'w_i', 's_i']),
cells=dict(values=[x_b_h, n_b_h, w_b_h,s_b_h]))
])
fig.show()
names = ['Выборочное среднее', 'Выборочная дисперсия', 'Выборочное среднее квадратичное
отклонение', 'Выборочная мода', 'Выборочная медиана', 'Выборочный коэффициент асимметрии',
'Выборочный коэффициент эксцесса']
experimental b = [round(x b average, 5), round(D b average, 5), round(sqrt D b average, 5),
round(Moda b, 5), round(Med b, 5), round(c b as, 5), round(c b ex, 5)]
theoretical_b = [round(x_b_average_t, 5), round(D_b_t, 5), round(sqrt_D_b_average_t, 5),
round(Moda_b_t, 5), round(Med_b_t, 5), round(c_b_as_t, 5), round(c_b_ex_t, 5)]
absolute_deviation_b = [round(abs(x b average-x b average t), 5), round(abs(D b average - D b t),
5), round(abs(sqrt_D_b_average-sqrt_D_b_average_t), 5), round(abs(Moda_b-Moda_b_t), 5),
round(abs(Med_b-Med_b_t), 5), round(abs(c_b_as-c_b_as-t), 5), round(abs(c_b_ex-c_b_ex_t), 5)]
relative deviation b = []
for i in range(len(absolute_deviation_b)):
  if(theoretical b[i] == 0):
    relative deviation b.append(' - ')
  else:
    relative_deviation_b.append(round(abs(absolute_deviation_b[i]/theoretical_b[i]), 5))
fig = go.Figure(data=[go.Table(header=dict(values=['Название показателя', 'Экспериментальное
значение', 'Теоретическое значение', 'Абсолютное отклонение', 'Относительное отклонение']),
cells=dict(values=[names, experimental_b, theoretical_b, absolute_deviation_b, relative_deviation_b]))
])
fig.show()
### Геометрическое распределение и всё, что с ним связано
fig = go.Figure(data=[go.Table(cells=dict(values=[matrix v g uns[0], matrix v g uns[1],
matrix v g uns[2], matrix v g uns[3], matrix v g uns[4], matrix v g uns[5], matrix v g uns[6],
matrix_v_g_uns[7], matrix_v_g_uns[8], matrix_v_g_uns[9]]))
])
fig.show()
fig = go.Figure(data=[go.Table(cells=dict(values=[matrix_v_g_s[0], matrix_v_g_s[1], matrix_v_g_s[2],
matrix v g s[3], matrix v g s[4], matrix v g s[5], matrix v g s[6], matrix v g s[7], matrix v g s[8],
matrix_v_g_s[9]]))
])
fig.show()
w_g = []
x g = []
sg = []
n_g = []
k=0
for i in range(len(matrix g)+1):
  if(k<len(matrix g) and matrix g[k][0]==i):
    x_g.append(matrix_g[k][0])
    w_g.append(matrix_g[k][2])
    n_g.append(matrix_g[k][1])
    s g.append(matrix g[k][3])
    k+=1
  else:
    x_g.append(i)
    w_g.append(0)
    n g.append(0)
    s_g.append(s_g[i-1])
```

```
fig = plt.figure()
plt.title('Полигон относительных частот геометрического распределения')
plt.ylabel('w - frequency')
plt.xlabel('x - value')
plt.plot(x g,w g,'r',linewidth=1)
fig = go.Figure(data=[go.Table(header=dict(values=['x i', 'w i']),
cells=dict(values=[x_g, w_g]))])
fig.show()
### График значений Геометрического распределения вычисленных с помощью стандартной
функции и по формулам
fig = plt.figure()
plt.title('Полигон относительных частот геометрического распределения')
plt.ylabel('w - frequency')
plt.xlabel('x - value')
plt.plot(x_g,w_g,x_g,P_g,'r')
plt.savefig('geometrical_polygon.jpg')
fig = plt.figure()
for i in range(len(s g)-1):
  plt.arrow(x\_g[i],s\_g[i],x\_g[i+1]-x\_g[i],\ s\_g[i]-s\_g[i]\ ,\ width=0.01,\ length\_includes\_head=True,
head length = 0.4)
plt.arrow(-0.5,0,0.5, 0, width = 0.01, length_includes_head = True, head_length = 0.4)
plt.arrow(x g[i+1],s g[i+1],1,0, width = 0.01, length includes head = True, head length = 0.4)
plt.title(' Эмпирическая функция геометрического распределения')
plt.ylabel('s - sum(w(x)) ')
plt.yticks(np.arange(0.0, 1.1, step=0.1))
plt.xticks(np.arange(0.0, x_g[len(x_g)-1]+1, step=1))
plt.xlabel('x - value')
plt.savefig('geometrical_emp.jpg')
plt.show()
sqrt_D_g_average = math.sqrt(D_g_average)
print(sqrt D g average)
c m g 3=0
for i in range(len(matrix_g)):
  c_m_g_3 += ((matrix_g[i][0]-x_g_average)**3)*matrix_g[i][2]
print(c_m_g_3)
c_m_g_4=0
for i in range(len(matrix_g)):
  c_m_g_4 += ((matrix_g[i][0]-x_g_average)**4)*matrix_g[i][2]
print(c m g 4)
c_g_as = c_m_g_3/(sqrt_D_g_average**3) #coefficiet asymmetry
print(c_g_as)
c_g_ex = c_m_g_4/(sqrt_D_g_average**4)#coefficiet excess
c_g_ex -=3
print(c g ex)
Moda_g = -1
max_n_g = max(n_g)
counter = 0
first max = -1;
k = -1
for i in range(len(n_g)):
  if(max_n_g == n_g[i]):
    counter+=1
    k = i
if(counter==1):
```

```
Moda_g = matrix_g[k][0]
else:
  for i in range(k+1):
    if(max_n_g == n_g[i]):
      first max = i
      break
  for i in range(first_max,k+1):
    counter-=1
  if(counter>=0):
    Moda_g = 0.5*(matrix_g[first_max][0]+matrix_g[k][0])
print(Moda_g)
number = 0
Med_g = 0
for i in range(len(matrix_g)):
  if(matrix_g[i][3]==0.5):
    Med_g = 0.5*(matrix_g[i][0]+matrix_g[i+1][0])
    break
  if(matrix_g[i][3]>0.5):
    Med_g = matrix_g[i][0]
    break
print(Med_g)
D_g_t = q/(p^{**2})
print(D_g_t)
x_g_average_t = q/p
print(x_g_average_t)
sqrt_D_g_average_t = math.sqrt(q)/p
print(sqrt_D_g_average_t)
Moda_g_t = 0
Med g t=0
if((math.log1p(1)/math.log1p(q-1)).is_integer()):
  Med_g_t=-0.5-(math.log1p(1)/math.log1p(q-1))
else:
  Med_g_t=int(-(math.log1p(1)/math.log1p(q-1)))
print(Med_g_t)
c_g as t = (2-p)/math.sqrt(q)
print(c_g_as_t)
c_g_ex_t = 6+(p^**2/q)
print(c_g_ex_t)
abs_g_w_p = []
for i in range(len(P_g)):
  abs_g_w_p.append(abs(w_g[i]-P_g[i]))
max_g_delt = max(abs_g_w_p)
x_g_h = []
wgh=[]
P_g_h = []
abs_g_w_p_h = []
for i in range(len(x_g)):
  x_g_h.append(round(x_g[i], 5))
x_g_h.append(' ')
for i in range(len(w_g)):
  w_g_h.append(round(w_g[i], 5))
w_g_h.append(sum(w_g))
for i in range(len(P_g)):
  P_g_h.append(round(P_g[i], 5))
```

```
P g h.append(round(sum(P g)))
for i in range(len(abs_g_w_p)):
  abs_g_w_p_h.append(round(abs_g_w_p[i], 5))
abs g w p h.append(round(max g delt,5))
fig = go.Figure(data=[go.Table(header=dict(values=['j', 'w^{\prime}_j', 'p_j', '|w^{\prime}_j-p_j|']),
cells=dict(values=[x_g_h, w_g_h, P_g_h, abs_g_w_p_h]))])
fig.show()
n_g_h = []
sgh=[]
for i in range(len(n g)):
  n_g_h.append(round(n_g[i], 5))
n_g_h.append(sum(n_g))
for i in range(len(s_g)):
  s_g_h.append(round(s_g[i], 5))
s g h.append(' - ')
fig = go.Figure(data=[go.Table(header=dict(values=['x_i', 'n_i', 'w_i', 's_i']),
cells=dict(values=[x_g_h, n_g_h, w_g_h,s_g_h]))
])
fig.show()
experimental_g = [round(x_g_average, 5), round(D_g_average, 5), round(sqrt_D_g_average, 5),
round(Moda_g, 5), round(Med_g, 5), round(c_g_as, 5), round(c_g_ex, 5)]
theoretical g = [round(x g average t, 5), round(D g t, 5), round(sqrt D g average t, 5),
round(Moda_g_t, 5), round(Med_g_t, 5), round(c_g_as_t, 5), round(c_g_ex_t, 5)]
absolute_deviation_g = [round(abs(x g average-x g average t), 5), round(abs(D g average - D g t),
5), round(abs(sqrt_D_g_average-sqrt_D_g_average_t), 5), round(abs(Moda_g-Moda_g_t), 5),
round(abs(Med_g-Med_g_t), 5), round(abs(c_g_as-c_g_as_t), 5), round(abs(c_g_ex-c_g_ex_t), 5)]
relative deviation g = []
for i in range(len(absolute deviation g)):
  if(theoretical g[i] == 0):
    relative_deviation_g.append(' - ')
  else:
    relative_deviation_g.append(round(abs(absolute_deviation_g[i]/theoretical_g[i]), 5))
fig = go.Figure(data=[go.Table(header=dict(values=['Название показателя', 'Экспериментальное
значение', 'Теоретическое значение', 'Абсолютное отклонение', 'Относительное отклонение']),
cells=dict(values=[names, experimental_g, theoretical_g, absolute_deviation_g, relative_deviation_g]))
])
fig.show()
### Распределение Пуассона и всё, что с ним связано
fig = go.Figure(data=[go.Table(cells=dict(values=[matrix v p s[0], matrix v p s[1], matrix v p s[2],
matrix_v_p_s[3], matrix_v_p_s[4], matrix_v_p_s[5], matrix_v_p_s[6], matrix_v_p_s[7], matrix_v_p_s[8],
matrix_v_p_s[9]]))])
fig.show()
fig = go.Figure(data=[go.Table(cells=dict(values=[matrix_v_p_uns[0], matrix_v_p_uns[1],
matrix v p s[2], matrix v p uns[3], matrix v p uns[4], matrix v p uns[5], matrix v p uns[6],
matrix_v_p_uns[7], matrix_v_p_uns[8], matrix_v_p_uns[9]]))])
fig.show()
w_p = []
x p = []
s_p = []
for i in range(len(matrix_p)):
  w_p.append(matrix_p[i][2])
for i in range(len(matrix_p)):
  x p.append(matrix p[i][0])
for i in range(len(matrix_p)):
```

```
s_p.append(matrix_p[i][3])
fig = plt.figure()
plt.title('Полигон относительных частот распределения Пуассона')
plt.ylabel('w - frequency')
plt.xlabel('x - value')
plt.plot(x p, w p, 'r')
fig = go.Figure(data=[go.Table(header=dict(values=['x_i', 'w_i']),
cells=dict(values=[x_p, w_p]))
])
fig.show()
### График значений распределения Пуассона вычисленных с помощью стандартной функции и
по формулам
fig = plt.figure()
plt.title('Полигон относительных частот распределения Пуассона')
plt.ylabel('w - frequency')
plt.xlabel('x - value')
plt.plot( x_p, w_p, x_p, P_p, 'r')
plt.savefig('poisson_polygon.jpg')
fig = plt.figure()
for i in range(len(matrix p)-1):
  plt.arrow(matrix_p[i][0],matrix_p[i][3],matrix_p[i+1][0]-matrix_p[i][0], matrix_p[i][3]-matrix_p[i][3],
width = 0.005, length includes head = True, head length = 0.4)
plt.title('Эмпирическая функция распределения Пуассона')
plt.yticks(np.arange(0.0, 1.1, step=0.1))
plt.ylabel('s - sum(w(x)) ')
plt.xlabel('x - value')
plt.savefig('poisson_emp.jpg')
plt.show()
x_p_average = 0
for i in range(len(matrix_p)):
  x_p_average += (matrix_p[i][0]*matrix_p[i][2])
print(x_p_average)
D_p_average = 0
for i in range(len(matrix_p)):
  D_p_average += ((matrix_p[i][0]-x_p_average)**2)*matrix_p[i][2]
print(D_p_average)
sqrt_D_p_average = math.sqrt(D_p_average)
print(sqrt_D_p_average)
c m p 3=0
for i in range(len(matrix p)):
  c_m_p_3 += ((matrix_p[i][0]-x_p_average)**3)*matrix_p[i][2]
print(c_m_p_3)
c_m_p_4=0
for i in range(len(matrix p)):
  c_m_p_4 += ((matrix_p[i][0]-x_p_average)**4)*matrix_p[i][2]
print(c_m_p_4)
c_p_as = c_m_p_3/(sqrt_D_p_average**3) #coefficiet asymmetry
print(c_p_as)
c_p_ex = c_m_p_4/(sqrt_D_p_average**4) #coefficiet excess
c_p_ex -= 3
print(c_p_ex)
n_p=[]
for i in range(len(matrix p)):
  n_p.append(matrix_p[i][1])
```

```
Moda p = -1
max_n_p = max(n_p)
counter = 0
first max = -1;
k = -1
for i in range(len(n p)):
  if(max_n_p == n_p[i]):
    counter+=1
    k = i
if(counter==1):
  Moda_p = matrix_p[k][0]
else:
  for i in range(k+1):
    if(max_n_p == n_p[i]):
      first max = i
      break
  for i in range(first_max,k+1):
    counter-=1
  if(counter>=0):
    Moda_p = 0.5*(matrix_p[first_max][0]+matrix_p[k][0])
print(Moda_p)
number = 0
Med_p = 0
for i in range(len(matrix_p)):
  if(matrix_p[i][3]==0.5):
    Med_p = 0.5*(matrix_p[i][0]+matrix_p[i+1][0])
    break
  if(matrix_p[i][3]>0.5):
    Med_p = matrix_p[i][0]
    break
print(Med p)
D_p_t=L
print(D_p_t)
x_p_average_t = L
print(x_p_average_t)
sqrt_D_p_average_t = math.sqrt(L)
print(sqrt_D_p_average_t)
Moda_p_t=int(L)
print(Moda p t)
Med_p_t=int(L+1/3-0.02/L)
print(Med_p_t)
c_p_as_t = L^{**}(-0.5)
print(c_p_as_t)
c p ex t = L^{**}(-1)
print(c_p_ex_t)
abs_p_w_p = []
for i in range(len(P_p)):
  abs_p_w_p.append(abs(w_p[i]-P_p[i]))
max_p_delt = max(abs_p_w_p)
x_p_h = []
w_p_h = []
P_ph = []
abs_p_w_p_h = []
for i in range(len(x_p)):
```

```
x p h.append(round(x p[i], 5))
x_p_h.append(' ')
for i in range(len(w_p)):
  w p h.append(round(w p[i], 5))
w p h.append(sum(w p))
for i in range(len(P p)):
  P_p_h.append(round(P_p[i], 5))
P_p_h.append(round(sum(P_p)))
for i in range(len(abs p w p)):
  abs p w p h.append(round(abs p w p[i], 5))
abs_p_w_p_h.append(round(max_p_delt,5))
fig = go.Figure(data=[go.Table(header=dict(values=['j', 'w`_j', 'p_j', '|w`_j - p_j|']),\\
cells=dict(values=[x_p_h, w_p_h, P_p_h, abs_p_w_p_h]))])
fig.show()
n_p_h = []
s_p_h = []
for i in range(len(n_p)):
  n p h.append(round(n p[i], 5))
n p h.append(sum(n p))
for i in range(len(s p)):
  s_p_h.append(round(s_p[i], 5))
s p h.append(' - ')
fig = go.Figure(data=[go.Table(header=dict(values=['x_i', 'n_i', 'w_i', 's_i']),
cells=dict(values=[x_p_h, n_p_h, w_p_h, s_p_h]))
])
fig.show()
experimental_p = [round(x_p_average, 5), round(D_p_average, 5), round(sqrt_D_p_average, 5),
round(Moda_p, 5), round(Med_p, 5), round(c_p_as, 5), round(c_p_ex, 5)]
theoretical_p = [round(x_p_average_t, 5), round(D_p_t, 5), round(sqrt_D_p_average_t, 5),
round(Moda_p_t, 5), round(Med_p_t, 5), round(c_p_as_t, 5), round(c_p_ex_t, 5)]
absolute_deviation_p = [round(abs(x_p_average-x_p_average_t), 5), round(abs(D_p_average - D_p_t),
5), round(abs(sqrt D p average-sqrt D p average t), 5), round(abs(Moda p-Moda p t), 5),
round(abs(Med_p-Med_p_t), 5), round(abs(c_p_as-c_p_as_t), 5), round(abs(c_p_ex-c_p_ex_t), 5)]
relative_deviation_p = []
for i in range(len(absolute deviation p)):
  if(theoretical_p[i] == 0):
    relative deviation p.append(' - ')
    relative deviation p.append(round(abs(absolute deviation p[i]/theoretical p[i]), 5))
fig = go.Figure(data=[go.Table(header=dict(values=['Название показателя', 'Экспериментальное
значение', 'Теоретическое значение', 'Абсолютное отклонение', 'Относительное отклонение']),
cells=dict(values=[names, experimental p, theoretical p, absolute deviation p, relative deviation p]))
])
fig.show()
```