CQF Exam One

Portfolio and Risk Techniques

Kai Zheng

March 22, 2022

Question 1

• To solve for the weight in minimum variance portfolio with a target return m, we formulate

$$\min_{w} \frac{1}{2} w' \Sigma w$$

subject to

$$w'\mu = m$$

$$w'1 = 1$$
(1)

The Lagrangian function is

$$L(w,\lambda,\gamma) = \frac{1}{2}w'\Sigma w + \lambda(m - w'\mu) + \gamma(1 - w'1)$$
(2)

Its partial derivatives are

$$\frac{\partial L}{\partial w}(w,\lambda,\gamma) = \Sigma w - \lambda \mu - \gamma 1 = 0 \tag{3}$$

• From (3), the optimal weight solution has

$$w^* = \Sigma^{-1}(\lambda \mu + \gamma 1) \tag{4}$$

Bring this into (1), we have

$$\begin{cases} \lambda = \frac{Am - B}{AC - B^2} \\ \gamma = \frac{C - Bm}{AC - B^2} \end{cases}$$
 (5)

subject to

$$\begin{cases}
A = 1'\Sigma^{-1}1 \\
B = 1'\Sigma^{-1}\mu \\
C = \mu'\Sigma^{-1}\mu
\end{cases}$$
(6)

Now we obtain w^* :

$$w^* = \frac{1}{AC - B2} \Sigma^{-1} [(A\mu - B1)m + (C1 - B\mu)]$$
 (7)

Finally, calculate the optimal weight for the minimum variance portfolio and the standard deviation (please see the attachment for relevant codes). The summary tables is

The allocation w^* and portfolio risk σ_{π}									
	σ_{π}		w^*						
x1	0.05840091	0.78511066	0.05386419	0.13355472	0.02747042				
x1.25	0.0607102	0.81818944	-0.00940302	0.17896585	0.01224773				
x1.5	0.06109091	0.87617647	-0.14612952	0.32570145	-0.0557484				

• Generate 5,000 random allocations sets and satisfy w'1 = 1

Question 2

• To solve for risk minimization with N risky assets and a risk- free asset, we formulate

$$\min_{w} \frac{1}{2} w' \Sigma w$$

subject to

$$r + w'(\mu - r1) = m \tag{8}$$

The Lagrangian function is

$$L(w,\lambda) = \frac{1}{2}w'\Sigma w + \lambda(m - r - w'(\mu - r1))$$
(9)

Its partial derivatives are

$$\frac{\partial L}{\partial w}(w,\lambda) = \Sigma w - \lambda(\mu - r1) = 0 \tag{10}$$

• From (10), the optimal weight solution has

$$w^* = \Sigma^{-1}(\mu - r1) \tag{11}$$

Substituting the value of w^* into the constraint (8), we solve for λ :

$$\lambda = \frac{m - r}{(\mu - r_1)'\Sigma^{-1}(\mu - r_1)} \tag{12}$$

Finally, we get w^* :

$$w^* = \frac{(m-r)\Sigma^{-1}(\mu - r1)}{(\mu - r1)'\Sigma^{-1}(\mu - r1)}$$
(13)

Because the tangency portfolio is fully invested in risky assets, then its asset allocation must satisfy the budget equation:

$$1'w^* = 1 \tag{14}$$

We get:

$$w = \frac{\lambda \Sigma^{-1}(\mu - r1)}{B - Ar} \tag{15}$$

and

$$m = w'\mu$$

$$\sigma = \sqrt{w'\Sigma w}$$
(16)

subject to

$$\begin{cases} A = 1'\Sigma^{-1}1\\ B = 1'\Sigma^{-1}\mu \end{cases}$$
 (17)

The summary tables is (please see the attachment for relevant codes)

• Plot the true Eficient Frontier by $(0, rf_{100bps})$ $(\sigma_{100bps}, \mu_{100bps}), (0, rf_{175bps})$ $(\sigma_{175bps}, \mu_{175bps})$

Question 3

- a) the percentage of VaR breaches is 2.05%
 - b) the number of consecutive breaches is 14
 - c) provide a plot which clearly identifies breaches

- a) the percentage of VaR breaches is 2.47%
 - b) the number of consecutive breaches is 15
 - c) provide a plot which clearly identifies breaches

^{*}The calculation process and results are shown in the attached excel file.

Question 4

• The summary tables is

	LVaR(million \$)	VaR(million \$)	VaR proportion	Liquidity	
	1.2636	0.9565	0.7569	0.3071	

• The summary tables is

bid-ask spread	-+- 	LVaR(million \$)			,	Liquidity proportion
15 bps		2.8212	2.7912		0.0300	
125 bps		3.0412	2.7912	0.9178	0.2500	0.0822

If the bid-ask spread increases to 125 bps, the VaR remains unchanged, and the Liquidity increases greatly from 0.0300 to 0.2500, which increases the LVaR from 2.8212 to 3.0412.

^{*}The calculation process and results are shown in the attached juypter notebook file.