(22) International Filing Date:

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

B9

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

			-
(51) International Patent Classification 5: A61K 35/14, 39/00, 37/22 C07K 3/00, 13/00, 15/00 C07K 17/00, C12Q 1/68, 1/00 C12Q 15/00, C12N 1/20, 1/00	:	(11) International Publication Num	nber: WO 92/20356
	A1	(43) International Publication Date:	26 November 1992 (26.11.92)
(21) International Application Number:	PCT/11S92/04	354 (74) Agent: HANSON Norman	D · Folfo & Lunch 905 Third

22 May 1992 (22.05.92)

(30) Priority data: 705,702 728,838 764,364	23 May 1991 (23.05.91) 9 July 1991 (09.07.91) 23 September 1991 (23.09.91)	US US US
807,043	12 December 1991 (12.12.91)	ÜS

(71) Applicant (for all designated States except US): LUDWIG IN-STITUTE FOR CANCER RESEARCH [US/US]; 1345 Avenue of the Americas, New York, NY 10105 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): BOON, Thierry [BE/BE];
VAN DER BRUGGEN, Pierre [BE/BE]; VAN DEN EYNDE, Benoit [BE/BE]; VAN PEL, Aline [BE/BE];
DE PLAEN, Etienne [BE/BE]; LURQUIN, Christophe [BE/BE]; CHOMEZ, Patrick [BE/BE]; Avenue Hippocrate 74, UCL 7459, B-1200 Brussels (BE). TRAVERSARI, Catia [IT/IT]; Sesto S. Giovanni, I-20099 Milano (IT).

(74) Agent: HANSON, Norman, D.; Felfe & Lynch, 805 Third Avenue, New York, NY 10022 (US).

(81) Designated States: AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH (European patent), CI (OAPI patent), CM (OAPI patent), CS, DE (European patent), DK (European patent), ES (European patent), FI, FR (European patent), GA (OAPI patent), GB (European patent), GN (OAPI patent), GR (European patent), HU, IT (European patent), JP, KP, KR, LK, LU (European patent), MC (European patent), MR (OAPI patent), MW, NL (European patent), MR (OAPI patent), MW, NL (European patent), NO, PL, RO, RU, SD, SE (European patent), SN (OAPI patent), TG (OAPI patent), US.

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: TUMOR REJECTION ANTIGEN PRECURSORS, TUMOR REJECTION ANTIGENS AND USES THEREOF

(57) Abstract

The invention relates to an isolated DNA sequence which codes for an antigen expressed by tumor cells which is recognized by cytotoxic T cells, leading to lysis of the tumor which expresses it. Also described are cells transfected by the DNA sequence, and various therapeutic and diagnostic uses arising out of the properties of the DNA and the antigen for which it codes.

. .

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	FI	Finland	MI	Muli
AU	Australia	FR	France	MN	Mongolia
BB	Barbados	GA	Gabon	MR	Mauritania
BE	Belgium	GB	United Kingdom	MW	Malawi
8F	Burkina Faso	GN	Guinea	NI.	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	ΙE	Ireland	RO	Romania
CA	Canada	1T	Italy	RU	Russian Federation
CF	Central African Republic	JP	Japan	SD	Sudan
CC	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korea	SN	Senegal
CI	Cite d'Ivoire	KR	Republic of Korea	SU	Soviet Union
CM	Cameroon	LI	Licchtenstein	TD	Chad
CS.	Czechoslovakia	LK	Sri Lanka	TG	Togo
DE	Germany	LU	Luxembourg	US	United States of America
DK	Denmark	MC	Monaco		
ES	Spain	MG	Madagascar		

1

TUMOR REJECTION ANTIGEN PRECURSORS, TUMOR REJECTION ANTIGENS AND USES THEREOF

This application is a continuation-in-part of Serial Number 807,043, filed December 12, 1991, which is a continuation-in-part of Serial Number 764,364, filed September 23, 1991, which is a continuation-in-part of Serial Number 728,838, filed July 9, 1991, which is a continuation-in-part of Serial Number 705,702, filed May 23, 1991, and now abandoned.

10 FIELD OF THE INVENTION

This invention relates in general to the field of immunogenetics as applied to the study of oncology. More specifically, it relates to the study and analysis of mechanisms by which tumors are recognized by the organism's immune system such as through the presentation of so-called tumor rejection antigens, and the expression of what will be referred to herein as "tumor rejection antigen precursors".

BACKGROUND AND PRIOR ART

The study of the recognition or lack of recognition of cancer cells by a host organism has proceeded in many different directions. Understanding of the field presumes some understanding of both basic immunology and oncology.

2

Early research on mouse tumors revealed that these displayed molecules which led to rejection of tumor cells syngeneic animals. when transplanted into molecules are "recognized" by T-cells in the recipient animal, and provoke a cytolytic T-cell response with lysis This evidence was first of the transplanted cells. obtained with tumors induced in vitro by chemical carcinogens, such as methylcholanthrene. The antigens expressed by the tumors and which elicited the T-cell response were found to be different for each tumor. Prehn, et al., J. Natl. Canc. Inst. 18: 769-778 (1957); Klein et al., Cancer Res. 20: 1561-1572 (1960); Gross, Cancer Res. 3: 326-333 (1943), Basombrio, Cancer Res. 30: 2458-2462 (1970) for general teachings on inducing tumors with chemical carcinogens and differences in cell surface antigens. This class of antigens has come to be known as "tumor specific transplantation antigens" or "TSTAs". Following the observation of the presentation of such antigens when induced by chemical carcinogens, similar results were obtained when tumors were induced in vitro via ultraviolet radiation. See Kripke, J. Natl. Canc. Inst. 53: 333-1336 (1974).

10

20

While T-cell mediated immune responses were observed for the types of tumor described <u>supra</u>, spontaneous tumors were thought to be generally non-immunogenic. These were therefore believed not to present antigens which provoked a response to the tumor in the tumor carrying subject. See Hewitt, et al., Brit. J. Cancer 33: 241-259 (1976).

3

The family of tum antigen presenting cell lines are immunogenic variants obtained by mutagenesis of mouse tumor cells or cell lines, as described by Boon et al., J. Exp. Med. 152: 1184-1193 (1980), the disclosure of which is incorporated by reference. To elaborate, tum antigens are obtained by mutating tumor cells which do not generate an immune response in syngeneic mice and will form tumors (i.e., "tum" cells). When these tum cells are mutagenized, they are rejected by syngeneic mice, and fail to form tumors (thus "tum"). See Boon et al., Proc. Natl. Acad. Sci. USA 74: 272 (1977), the disclosure of which is incorporated by reference. Many tumor types have been shown to exhibit this phenomenon. See, e.g., Frost et al., Cancer Res. 43: 125 (1983).

10

20

It appears that tum variants fail to form progressive tumors because they elicit an immune rejection process. The evidence in favor of this hypothesis includes the ability of "tum" variants of tumors, i.e., those which do not normally form tumors, to do so in mice with immune systems suppressed by sublethal irradiation, Van Pel et al., Proc. Natl, Acad. Sci. USA 76: 5282-5285 (1979); and the observation that intraperitoneally injected tum cells of mastocytoma P815 multiply exponentially for 12-15 days, and then are eliminated in only a few days in the midst of an influx of lymphocytes and macrophages (Uyttenhove et al., J. Exp. Med. 152: 1175-1183 (1980)). Further evidence includes the observation that mice acquire an immune memory

4

which permits them to resist subsequent challenge to the same tum variant, even when immunosuppressive amounts of radiation are administered with the following challenge of cells (Boon et al., Proc. Natl, Acad. Sci. USA 74: 272-275 (1977); Van Pel et al., supra; Uyttenhove et al., supra).

Later research found that when spontaneous tumors were subjected to mutagenesis, immunogenic variants were produced which did generate a response. Indeed, these variants were able to elicit an immune protective response against the original tumor. See Van Pel et al., J. Exp. Med. 157: 1992-2001 (1983). Thus, it has been shown that it is possible to elicit presentation of a so-called "tumor rejection antigen" in a tumor which is a target for a syngeneic rejection response. Similar results have been obtained when foreign genes have been transfected into spontaneous tumors. See Fearson et al., Cancer Res. 48: 2975-1980 (1988) in this regard.

10

20

A class of antigens has been recognized which are presented on the surface of tumor cells and are recognized by cytotoxic T cells, leading to lysis. This class of antigens will be referred to as "tumor rejection antigens" or "TRAs" hereafter. TRAs may or may not elicit antibody responses. The extent to which these antigens have been studied, has been via cytolytic T cell characterization studies, in vitro i.e., the study of the identification of the antigen by a particular cytolytic T cell ("CTL" hereafter) subset. The subset proliferates upon recognition of the presented tumor rejection antigen, and

5

the cells presenting the antigen are lysed. Characterization studies have identified CTL clones which specifically lyse cells expressing the antigens. Examples of this work may be found in Levy et al., Adv. Cancer Res. 24: 1-59 (1977); Boon et al., J. Exp. Med. 152: 1184-1193 (1980); Brunner et al., J. Immunol. 124: 1627-1634 (1980); Maryanski et al., Eur. J. Immunol. 124: 1627-1634 (1980); Palladino et al., Canc. Res. 47: 5074-5079 (1987). This type of analysis is required for other types of antigens recognized by CTLs, including minor histocompatibility antigens, the male specific H-Y antigens, and a class of antigens, referred to as "tum-" antigens, and discussed herein.

10

20

A tumor exemplary of the subject matter described supra is known as P815. See DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278 (1988); Szikora et al., EMBO J 9: 1041-1050 (1990), and Sibille et al., J. Exp. Med. 35-45 (1990), the disclosures of which 172: incorporated by reference. The P815 tumor mastocytoma, induced in a DBA/2 mouse with methylcholanthrene and cultured as both an in vitro tumor and a cell line. The P815 line has generated many tum variants following mutagenesis, including variants referred to as P91A (DePlaen, supra), 35B (Szikora, supra), and P198 (Sibille, supra). In contrast to tumor rejection antigens - and this is a key distinction - the tum antigens are

6

only present after the tumor cells are mutagenized. rejection antigens are present on cells of a given tumor Hence, with reference to the without mutagenesis. literature, a cell line can be tum+, such as the line referred to as "P1", and can be provoked to produce tumvariants. Since the tum phenotype differs from that of the parent cell line, one expects a difference in the DNA of tum cell lines as compared to their tum parental lines, and this difference can be exploited to locate the gene of interest in tum cells. As a result, it was found that genes of tum variants such as P91A, 35B and P198 differ from their normal alleles by point mutations in the coding regions of the gene. See Szikora and Sibille, supra, and Lurquin et al., Cell 58: 293-303 (1989). This has proved not to be the case with the TRAs of this invention. These papers also demonstrated that peptides derived from the tumantigen are presented by the $\mathbf{L}^{\mathbf{d}}$ molecule for recognition by CTLs. P91A is presented by L^d, P35 by D^d and P198 by K^d.

10

20

It has now been found that the genes which code for the molecules which are processed to form the presentation tumor rejection antigens (referred to as "tumor rejection antigen precursors", "precursor molecules" or "TRAPs" hereafter), are not expressed in most normal adult tissues but are expressed in tumor cells. Genes which code for the TRAPs have now been isolated and cloned, and represent a portion of the invention disclosed herein.

7

The gene is useful as a source for the isolated and purified tumor rejection antigen precursor and the TRA themselves, either of which can be used as an agent for treating the cancer for which the antigen is a "marker", as well as in various diagnostic and surveillance approaches to oncology, discussed infra. It is known, for example, that tum cells can be used to generate CTLs which lyse cells presenting different tum antigens as well as tum cells. See, e.g., Maryanski et al., Eur. J. Immunol 12: 401 (1982); and Van den Eynde et al., Modern Trends in Leukemia IX (June 1990), the disclosures of which are incorporated by reference. The tumor rejection antigen precursor may be expressed in cells transfected by the gene, and then used to generate an immune response against a tumor of interest.

10

20

In the parallel case of human neoplasms, it has been observed that autologous mixed lymphocyte-tumor cell cultures ("MLTC" hereafter) frequently generate responder lymphocytes which lyse autologous tumor cells and do not lyse natural killer targets, autologous EBV-transformed B cells, or autologous fibroblasts (see Anichini et al., Immunol. Today 8: 385-389 (1987)). This response has been particularly well studied for melanomas, and MLTC have been carried out either with peripheral blood cells or with tumor infiltrating lymphocytes. Examples of the literature in this area including Knuth et al., Proc. Natl. Acad. Sci. USA 86: 2804-2802 (1984); Mukherji et al., J. Exp. Med.

8

158: 240 (1983); Hérin et all, Int. J. Canc. 39: 390-396 (1987); Topalian et al, J. Clin. Oncol 6: 839-853 (1988). Stable cytotoxic T cell clones ("CTLs" hereafter) have been derived from MLTC responder cells, and these clones are specific for the tumor cells. See Mukherji et al., supra, Hérin et all, <u>supra</u>, Knuth et al., <u>supra</u>. The antigens recognized on tumor cells by these autologous CTLs do not appear to represent a cultural artifact, since they are Topalian et al., supra; found on fresh tumor cells. Degiovanni et al., Eur. J. Immunol. 20: 1865-1868 (1990). These observations, coupled with the techniques used herein to isolate the genes for specific murine tumor rejection antigen precursors, have led to the isolation of nucleic acid sequences coding for tumor rejection antigen precursors of TRAs presented on human tumors. It is now possible to isolate the nucleic acid sequences which code for tumor rejection antigen precursors, including, but not being limited to those most characteristic of a particular tumor, with ramifications that are described infra. These isolated nucleic acid sequences for human tumor rejection antigen precursors and applications thereof, as described infra, are also the subject of this invention.

10

20

These and various other aspects of the invention are elaborated upon in the disclosure which follows.

WO 92/20356

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 depicts detection of transfectants expressing antigen P815A.

Figure 2 shows the sensitivity of clones P1.HTR, P0.HTR, genomic transfectant P1A.T2 and cosmid transfectant P1A.TC3.1 to lysis by various CTLs, as determined by chromium release assays.

Figure 3 is a restriction map of cosmid C1A.3.1.

Figure 4 shows Northern Blot analysis of expression of gene
10 P1A.

Figure 5 sets forth the structure of gene P1A with its restriction sites.

Figure 6 shows the results obtained when cells were transfected with the gene from P1A, either isolated from P815 or normal cells and then tested with CTL lysis.

Figure 7 shows lytic studies using mast cell line L138. 8A.

Figure 8 is a map of subfragments of the 2.4 kb antigen E fragment sequence which also express the antigen.

Figure 9 shows homology of sections of exon 3 from genes 20 mage 1, 2 and 3.

Figure 10 shows the result of Northern blots for MAGE genes on various tissues.

Figure 11 presents the data of Figure 13 in table form.

Figure 12 shows Southern Blot experiments using the various human melanoma cell lines employed in this application.

Figure 13 is a generalized schematic of the expression of MAGE 1, 2 and 3 genes by tumor and normal tissues.

BRIEF DESCRIPTION OF SEQUENCES

10

SEQ ID NO: 1 is cDNA for part of gene PlA.

SEQ ID NO: 2 presents coding region of cDNA for gene P1A.

SEQ ID NO: 3 shows non coding DNA for PlA cDNA which is 3' to the coding region of SEQ ID NO: 2.

SEQ ID NO: 4 is the entire sequence of cDNA for P1A.

SEQ ID NO: 5 is the genomic DNA sequence for PlA.

SEQ ID NO: 6 shows the amino acid sequence for the antigenic peptides for P1A TRA. The sequence is for cells which are A^+ B^+ , i.e., express both the A and B antigens.

SEQ ID NO: 7 is a nucleic acid sequence coding for antigen E.

SEQ ID NO: 8 is a nucleic acid sequence coding for MAGE1.

20 SEQ ID NO: 9 is the gene for MAGE-2.

SEO ID NO: 10 is the gene for MAGE-21.

11

SEQ ID NO: 11 is cDNA for MAGE-3.

SEQ ID NO: 12 is the gene for MAGE-31.

SEQ ID NO: 13 is the gene for MAGE-4.

SEQ ID NO: 14 is the gene for MAGE-41.

SEQ ID NO: 15 is cDNA for MAGE-4.

SEQ ID NO: 16 is cDNA for MAGE-5.

SEQ ID NO: 17 is genomic DNA for MAGE-51.

SEQ ID NO: 18 is cDNA for MAGE-6.

SEQ ID NO: 19 is genomic DNA for MAGE-7.

10 SEQ ID NO: 20 is genomic DNA for MAGE-8.

SEQ ID NO: 21 is genomic DNA for MAGE-9.

SEQ ID NO: 22 is genomic DNA for MAGE-10.

SEQ ID NO: 23 is genomic DNA for MAGE-11.

SEQ ID NO: 24 is genomic DNA for smage-I.

SEQ ID NO: 25 is genomic DNA for smage-II.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Many different "MAGE" genes have been identified, as will be seen from the sequences which follow the application. The protocols described in the following

12

examples were used to isolate these genes and cDNA sequences.

"MAGE" as used herein refers to a nucleic acid sequence isolated from human cells. The acronym "smage" is used to describe sequences of murine origin.

When "TRAP" or "TRAS" are discussed herein as being specific to a tumor type, this means that the molecule under consideration is associated with that type of tumor, although not necessarily to the exclusion of other tumor types.

Example 1

10

20

In order to identify and isolate the gene coding for antigen P815A, gene transfection was used. This approach requires both a source of the gene, and a recipient cell line. Highly transfectable cell line P1.HTR was the starting material for the recipient, but it could not be used without further treatment, as it presents "antigen A", one of four recognized P815 tumor antigens. See Van Pel et al., Molecular Genetics 11: 467-475 (1985). Thus, screening experiments were carried out to isolate cell lines which did not express the antigen and which nonetheless possessed P1.HTR's desirable qualities.

To do this, P1.HTR was screened with CTLs which were specific for each of tumor antigens A, B, C and D. Such CTLs are described by Uyttenhove et al., J. Exp. Med. 157: 1040-1052 (1983).

13

To carry out the selection, 10⁶ cells of P1.HTR were mixed with $2-4\times10^6$ cells of the CTL clone in a round bottom tube in 2 ml of medium, and centrifuged for three minutes at 150xg. After four hours at 37°C, the cells were washed and resuspended in 10 ml of medium, following Maryanski et al., Eur. J. Immunol. 12: 406-412 (1982). Additional information on the CTL assay and screening protocol, in general may be found in Boon et al., J. Exp. Med. 152: 1184-1193 (1980), and Maryanski et al., Eur. J. Immunol. 12: 406-412 disclosure of (1982), the which incorporated by reference.

10

20

When these selections were carried out, a cell line variant was found which expressed neither antigen A or B. Additional selections with CTLs specific for antigen C then yielded a variant which also lacked antigen C. Please see figure 2 for a summary of the results of these screenings. The variant PO.HTR is negative for antigens A, B and C, and was therefore chosen for the transfection experiments.

The cell line PO.HTR has been deposited in accordance with the Budapest Treaty at the Institute Pasteur Collection Nationale De Cultures De Microorganismes, 28, Rue de Docteur Roux, 75724 Paris France, and has accession number I-1117.

This methodology is adaptable to secure other cell lines which are variants of a cell type which normally presents at least one of the four recognized P815 tumor antigens, i.e., antigens A, B, C and D, where the variants

present none of antigens A, B and C. P1.HTR is a mastocytoma cell line, so it will be seen that the protocol enables the isolation of biologically pure mastocytoma cell lines which express none of P815 antigens A, B and C, but which are highly transfectable. Other tumor types may also be screened in this fashion to secure desired, biologically pure cell lines. The resulting cell lines should be at least as transfectable with foreign DNA as is P1.HTR, and should be selected so as to not express a specific antigen.

10 Example 2

20

Previous work reported by DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278 (1988) the disclosure of which is incorporated by reference herein had shown the efficacy of using cosmid library transfection to recover genes coding for tum antigens.

Selective plasmid and genomic DNA of P1.HTR were prepared, following Wölfel et al., Immunogenetics $\underline{26}$: 178-187 (1987). The transfection procedure followed Corsaro et al., Somatic Cell Molec. Genet 7: 603-616 (1981), with some modification. Briefly, 60 μ g of cellular DNA and 3 μ g of DNA of plasmid pHMR272, described by Bernard et al., Exp. Cell. Biol. 158: 237-243 (1985) were mixed. This plasmid confers hygromycin resistance upon recipient cells, and therefore provides a convenient way to screen for transfectants. The mixed DNA was combined with 940 ul of 1 mM Tris-HCl (pH 7.5), 0.1 mM EDTA; and 310 ul 1M CaCl₂.

15

The solution was added slowly, and under constant agitation to 1.25 ml of 50 mM Hepes, 280 mM NaCl, 1.5 mM Na2HPO4, adjusted to pH 7.1 with NaOH. Calcium phosphate - DNA precipitates were allowed to form for 30-45 minutes at room temperature. Following this, fifteen groups of PO.HTR cells (5x106) per group were centrifuged for 10 minutes at Supernatants were removed, and pellets were resuspended directly into the medium containing the DNA precipitates. This mixture was incubated for 20 minutes at 37°C, after which it was added to an 80 cm2 tissue culture flask containing 22.5 ml DMEM, supplemented with 10% fetal calf serum. After 24 hours, medium was replaced. Fortyeight hours after transfection, cells were collected and counted. Transfected cells were selected in mass culture using culture medium supplemented with hygromycin B (350 This treatment selected cells for hygromycin ug/ml). resistance.

10

20

For each group, two flasks were prepared, each containing 8×10^6 cells in 40 ml of medium. In order to estimate the number of transfectants, 1×10^6 cells from each group were plated in 5 ml DMEM with 10% fetal calf serum (FCS), 0.4% bactoagar, and 300 ug/ml hygromycin B. The colonies were then counted 12 days later. Two independent determinations were carried out and the average taken. This was multiplied by 5 to estimate the number of transfectants in the corresponding group. Correction had

16

to be made for the cloning efficiency of P815 cells, known to be about 0.3.

Example 3

10

20

Eight days after transfection as described in example 2, supra, antibiotic resistant transfectants were separated from dead cells, using density centrifugation with Ficoll-Paque. These cells were maintained in non-selective medium The cells were plated in 96 well for 1 or 2 days. microplates (round bottom), at 30 cells/microwell in 200 ul of culture medium. Anywhere from 100-400 microwells were prepared, depending on the number of transfectants prepared. Agar colony tests gave estimates of 500-3000. After 5 days, the wells contained about 6x104 cells and replicate plates were prepared by transferring 1/10 of the wells to microplates which were then incubated at 30°C. One day later, master plates were centrifuged, medium removed, and 750 CTLs against P815 antigen A (CTL-P1:5) were added to each well together with 10° irradiated syngeneic feeder spleen cells in CTL culture medium containing 40 U/ml recombinant human IL-2, and HAT medium to kill stimulator cells. Six days later, plates were examined visually to identify wells where CTLs had Where plates showed proliferating proliferated. microcultures, aliquots of 100 ul of the wells were transferred to another plate containing 51Cr labeled P1.HTR target cells $(2x10^3 - 4x10^3 per well)$, and chromium release

17

was measured after 4 hours. Replicate microcultures corresponding to those showing high CTL activity were expanded and cloned by limited dilution in DMEM with 10% FCS. Five days later, about 200 clones were collected and screened with the CTL.P1:5 cell line, described supra, in a visual lysis assay. See figure 1A for these results.

In these experiments, three of the fifteen groups of transfectants yielded a few positive microcultures. These microcultures were tested for lytic activity against P1.HTR, as described supra. Most of the microcultures where proliferation was observed showed lytic activity. This activity was well above background, as shown in figure 1B. This figure summarizes data wherein two groups of cells (groups "5" and "14"), 400 and 300 microwells were seeded with 30 hygromycin resistant transfected cells. Amplification and duplication of the microcultures was followed by addition of anti-A CTL P1:5. Six days later, lytic activity against P1.HTR was tested. In the figure, each point represents lytic activity of a single microculture.

10

20

Duplicate microcultures corresponding to several positive wells were subcloned, and more than 1% of the subclones were found to be lysed by anti-A CTL. Thus, three independent transfectants expressing P815A were obtained from 33,000 hygromycin resistant transfectants. One of these lines, referred to hereafter as P1A.T2 was tested further.

18

The relevant antigen profile of P1A.T2 is shown in figure 2, this being obtained via anti-CTL assays of the type described supra.

Example 4

20

The CTL assays carried out for P1A.T2 demonstrated that it presented antigen A ("P815A"), and therefore had received the gene from P1.HTR. To that end, this cell line was used as a source for the gene for the antigen precursor in the following experiments.

antigens could be recovered directly from transfectants obtained with a cosmid library. See DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278 (1988). This procedure was followed for recovery of the P815 gene.

Total genomic DNA of P1A.T2 was partially digested with restriction endonuclease Sau 3A1, and fractionated by NaCl density gradient ultracentrifugation to enrich for 35-50 kb DNA fragments, following Grosveld et al., Gene 10:6715-6732 (1982). These fragments were ligated to cosmid arms of C2RB, described by Bates et al., Gene 26: 137-146 (1983), the disclosure of which is incorporated by reference. These cosmid arms had been obtained by cleavage with SmaI and treatment with calf intestinal phosphatase, followed by digestion with BamHI. Ligated DNA was packaged into lambda phage components, and titrated on E. coli ED 8767, following Grosveld et al., supra. Approximately 9x105

19

ampicillin resistant colonies were obtained per microgram of DNA insert.

The cosmid groups were amplified by mixing 30,000 independent cosmids with 2 ml of ED 8767 in 10 mM MgCl₂, incubated 20 minutes at 37°C, diluted with 20 ml of Luria Bertani ("LB") medium, followed by incubation for one hour. This suspension was titrated and used to inoculate 1 liter of LB medium in the presence of ampicillin (50 ug/ml). At a bacterial concentration of 2x10⁸ cells/ml (OD₆₀₀=0.8), a 10 ml aliquot was frozen, and 200 ug/ml chloramphenicol was added to the culture for overnight incubation. Total cosmid DNA was isolated by alkaline lysis procedure, and purified on CsCl gradient.

In these experiments, a library of 650,000 cosmids was prepared. The amplification protocol involved the use of 21 groups of approximately 30,000 cosmids.

Example 5

10

20

Using the twenty-one groups of cosmids alluded to supra, (60 ug) and 4 ug of pHMR272, described supra, groups of 5x10⁶ PO.HTR cells were used as transfectant hosts. Transfection was carried out in the same manner as described in the preceding experiments. An average of 3000 transfectants per group were tested for presentation, again using CTL assays as described. group of cosmids repeatedly yielded positive transfectants, at frequency of 1/5,000 drug about resistant

transfectants. The transfectants, as with P1A.T2, also showed expression of both antigen A and B. The pattern of expression of transfectant P1A.TC3.1 is shown in figure 2.

Example 6

10

As indicated in Example 5, <u>supra</u>, three independent cosmid transfected cells presenting P815A antigen were isolated. The DNA of these transfectants was isolated and packaged directly with lambda phage extracts, following DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278 (1988). The resulting product was titrated on <u>E. coli</u> ED 8767 with ampicillin selection, as in Example 5. Similarly, amplification of the cosmids and transfection followed Example 5, again using PO.HTR.

High frequencies of transfection were observed, as described in Table 1, which follows:

Table 1. Transfer of the expression of antigen PE15A by cosmids obtained by direct packaging

Transfectant obtained with the cosmid library	No. of cosmids obtained by direct packaging of 0.5 µg of DNA	No. of transfectants expressing P815A / no. of HmB ^T transfectants	
TC3.1	32	£7/192 ·	
TC3.2	32000	49/384	
TC3.3	44	25/72	

The Cosmids were analyzed with restriction enzymes and it was found that directly packaged transfectant P1A.TC3.1 contained 32 cosmids, 7 of which were different. Each of these 7 cosmids was transfected into PO.HTR, in the manner described supra, and again, following the protocols described above, transfectants were studied for presentation of P815A. Four of the cosmid transfectants showed P815A presentation and, as with all experiments described herein, P815B was co-expressed.

Of the four cosmids showing presentation of the two antigens, cosmid C1A.3.1 was only 16.7 kilobases long, and was selected for further analysis as described <u>infra</u>.

The cosmid C1A.3.1 was subjected to restriction endonuclease analysis, yielding the map shown in Figure 3.

All EcoRI fragments were transfected, again using the above described protocols, and only the 7.4 kilobase fragment produced a transfectant that anti-A CTLs could lyse. Similar experiments were carried out on the PstI fragments, and only a 4.1 kb fragment fully contained within the 7.4 kb EcoRI fragment produced lysable transfectants.

20

This fragment (i.e., the 4.1 kb PstI fragment), was digested with SmaI, giving a 2.3 kb fragment which also yielded host cells presenting antigens A and B after transfection. Finally, a fragment 900 bases long, secured with SmaI/XbaI, also transferred expression of the precursors of these two antigens, i.e., the transfected host cell presented both antigen A and antigen B.

Example 7

10

20

The 900 base fragment described above was used as a probe to detect the expression of the P815A gene in parent cell line P1.HTR. To accomplish this, total cellular RNA was first isolated using the guanidine-isothiocyanate procedure of Davis et al., Basic Methods In Molecular Biology (Elseview Science Publishing Co, New York) (1986). The same reference was the source of the method used to isolate and purify polyA⁺ mRNA using oligodT cellulose column chromatography.

Samples were then subjected to Northern Blot analysis. RNA samples were fractionated on 1% agarose gels containing 0.66 M formaldehyde. The gels were treated with 10xSSC (SSC: 0.15 M NaCl; 0.015 M sodium citrate, pH 7.0) for 30 minutes before overnight blotting on nitrocellulose membranes. These were baked for two hours at 80°C, after which the membranes were prehybridized for 15 minutes at 60°C in a solution containing 10% dextran sulfate, 1% SDS and 1M NaCl. Hybridization was then carried out using denatured probe (the 900 base fragment), together with 100 ug/ml salmon sperm DNA.

When this protocol was carried out using P1.HTR poly A^+ RNA, a band of 1.2 kb and two fainter bands were identified, as shown in Figure 4, lane 1 (6 ug of the RNA).

The same probe was used to screen a cDNA library, prepared from poly-A+ RNA from the cell line. This yielded

23

a clone with a 1kb insert, suggesting a missing 5' end. The Northern blots for the cDNA are not shown.

Hybridization experiments in each case were carried out overnight at 60°C. The blots were washed twice at room temperature with 2xSSC and twice at 60°C with 2xSSC supplemented with 1% SDS.

The foregoing experiments delineated the DNA expressing the P815A antigen precursor sufficiently to allow sequencing, using the well known Sanger dideoxy chain termination method. This was carried out on clones generated using a variety of restriction endonucleases and by specific priming with synthetic oligonucleotide primers. The results for exons of the gene are set forth in sequence id no: 4.

Example 8

10

20

The Northern analysis described <u>supra</u> suggested that the 5' end of the cDNA was missing. To obtain this sequence, cDNA was prepared from P1.HTR RNA using a primer corresponding to positions 320-303. The sequence was then amplified using the polymerase chain reaction using a 3' primer corresponding to positions 286-266 and a 5' primer described by Frohman et al., Proc. Natl. Acad. Sci. USA 85: 8998-9002 (1988). A band of the expected size (270 bases) was found, which hybridized to the 900 bp SmaI/XbaI fragment described <u>supra</u> on a Southern blot. Following cloning into m13tg 130 \(\lambda\) tg 131, the small, 270 bp fragment was sequenced. The sequence is shown in sequence id no: 1.

24

Example 9

10

20

Following the procurement of the sequences described in Examples 7 and 8 and depicted in seq id no: 4, a 5.7 kb region of cosmid C1A.3.1 was sequenced. This fragment was known to contain the 900 base fragment which expressed P815A in transfectants. This experiment permitted delineation of introns and exons, since the cosmid is genomic in origin.

The delineated structure of the gene is shown in figure 5. Together with seq id no: 4, these data show that the gene for the antigen precursor, referred to as "PIA" hereafter, is approximately 5 kilobases long and contains 3 exons. An ORF for a protein of 224 amino acids starts in exon 1, ending in exon 2. The 900 base pair fragment which transfers expression of precursors for antigens A and B only contains exon 1. The promoter region contains a CAAT box, as indicated in seq. id no: 1, and an enhancer sequence. This latter feature has been observed in promoters of most MHC class I genes, as observed by Geraghty et al., J. Exp. Med 171: 1-18 (1990); Kimura et al., Cell 44: 261-272 (1986).

A computer homology search was carried out, using program FASTA with K-triple parameters of 3 and 6, as suggested by Lipman et al., Science 227: 1435-1441 (1985), and using Genbank database release 65 (October 1990). No homology was found except for a stretch of 95 bases corresponding to part of an acid region coded by exon 1 (positions 524-618), which is similar to sequences coding

for acidic regions in mouse nucleolar protein NO38/B23, as described by Bourbon et al., Mol. Biol. 200: 627-638 (1988), and Schmidt-Zachmann et al., Chromosoma 96: 417-426 (1988). Fifty six of 95 bases were identical. In order to test whether these homologies were the reason for cross hybridizing, experiments were carried out using a mouse spleen cDNA library screened with the 900 base fragment. cDNA clones corresponding closely to the sizes of the cross hybridizing bands were obtained. These were partially sequenced, and the 2.6 kb cDNA was found to correspond exactly to reported cDNA sequence of mouse nucleolin, while the 1.5 kb cDNA corresponded to mouse nucleolar protein NO38/B23.

10

20

Analysis of the nucleotide sequence of the gene, referred to as "P1A" hereafter, suggests that its coded product has a molecular mass of 25 kd. Analysis of the sequence id no: 4 shows a potential nuclear targeting signal at residues 5-9 (Dingwall et al., Ann. Rev. Cell Biol. 2: 367-390 (1986)), as well as a large acidic domain at positions 83-118. As indicated supra, this contains the region of homology between P1A and the two nucleolar proteins. A putative phosphorylation site can be found at position 125 (serine). Also, a second acidic domain is found close to the C-terminus as an uninterrupted stretch of 14 glutamate residues. A similar C-terminal structure has been found by Kessel et al. Proc. Natl. Acad. Sci. USA 84: 5306-5310 (1987), in a murine homeodomain protein having nuclear localization.

26

In studies comparing the sequence of gene P1A to the sequences for P91A, 35B and P198, no similarities were found, showing that P1A is indicative of a different class of genes and antigens.

Example 10

10

20

sequence in hand, probe and P1A With the investigations were carried out to determine whether the gene present in normal tissue was identical to that expressed by the tumor. To do this, phage libraries were prepared, using lambda zapII 10 and genomic DNA of DBA2 P1A was used as a probe. murine kidney cells. Hybridization conditions were as described supra, and a hybridizing clone was found. The clone contained exons one and two of the P1A gene, and corresponded to positions -0.7 to 3.8 of figure 5. Following localization of this sequence, PCR amplification was carried out to obtain the sequence corresponding to 3.8 to 4.5 of figure 5.

Sequence analysis was carried out, and no differences were found between the gene from normal kidneys and the PlA gene as obtained from the P815 tumor cells.

In further experiments, the gene as found in DBA/2 kidney cells was transfected into PO.HTR, as described supra. These experiments, presented pictorially in figure 7, showed that antigens A and B were expressed as efficiently by the kidney gene isolated from normal kidney cells as with the PIA gene isolated from normal kidney cells.

27

These experiments lead to the conclusion that the gene coding for the tumor rejection antigen precursor is a gene that does not result from a mutation; rather, it would appear that the gene is the same as one present in normal cells, but is not expressed therein. The ramifications of this finding are important, and are discussed <u>infra</u>.

In studies not elaborated upon herein, it was found that variants of the gene were available. Some cells were "PlAB+", rather than the normal "PlA". The only difference between these is a point mutation in exon 1, with the 18th triplet coding for Ala in the variant instead of Val.

Example 11

Additional experiments were carried out with other cell types. Following the protocols described for Northern blot hybridizations <u>supra</u>, RNA of normal liver and spleen cells was tested to determine if a transcript of the PIA gene could be found. The Northern blot data are presented in figure 4 and, as can be seen, there is no evidence of expression.

20

10

The murine P815 cell line from which P1A was isolated is a mastocytoma. Therefore, mast cell lines were studied to determine if they expressed the gene. Mast cell line MC/9, described by Nabel et al., Cell 23: 19-28 (1981), and short term cultures of bone marrow derived mast cells were tested in the manner described supra (Northern blotting), but no transcript was found. In contrast when a Balb/C derived IL-3 dependent cell line L138.8A (Hültner et al.,

J. Immunol. 142: 3440-3446 (1989)) was tested, a strong signal was found. The mast cell work is shown in figure 4.

It is known that both BALB/C and DBA/2 mice share H-2^d haplotype, and thus it was possible to test sensitivity to lysis using the CTLs described <u>supra</u>. Figure 8 shows these results, which essentially prove that anti-A and anti-B CTLs lysed the cells strongly, whereas anti-C and anti-D lines did not.

Further tests were carried out on other murine tumor cell lines, i.e., teratocarcinoma cell line PCC4 (Boon et al., Proc. Natl. Acad. Sci. USA 74: 272-275 (1977), and leukemias LEC and WEH1-3B. Expression could not be detected in any of these samples.

Example 12

10

20

The actual presentation of the P1A antigen by MHC molecules was of interest. To test this, cosmid C1A.3.1 was transfected into fibroblast cell line DAP, which shows phenotype $H-2^k$. The cell lines were transfected with genes expressing one of the K^d , D^d , and L^d antigen. Following transfection with both the cosmid and the MHC gene, lysis with CTLs was studied, again as described supra. These studies, summarized in Table 2, show that L^d is required for presentation of the P1A antigens A and B.

Table 2. H-2-restriction of antigens PE15A and PE15B

Recipient cell*	No of clones lysed by the CTL/ no. of HmB* clones*		
	CTL anti-A	CTL anti-B	
DAP (H-2k)	0/208	0/194	
DAP+Kd	D/165	0/162	
DAP+Dd	0/157	0/129	
DAP+1d	25/33	15/20	

^{*}Cosmid C1A.3.1 containing the entire P1A gene was transferred in DAP cells previously transferred with H-2d class I genes as indicated.

The observation that one may associate presentation of a tumor rejection antigen with a particular MHC molecule was confirmed in experiments with human cells and HLA molecules, as elaborated upon <u>infra</u>.

Example 13

10

Using the sequence of the P1A gene as well as the amino acid sequence derivable therefrom, antigenic peptides which were A^+ B^+ (i.e., characteristic of cells which express both the A and B antigens), and those which are $A^ B^+$ were identified. The peptide is presented in Figure 10. This peptide when administered to samples of PO.HTR cells

[&]quot;Independent drug-resistant colonies were tested for lysis by anti-A or anti-B CTL in a visual assay.

30

in the presence of CTL cell lines specific to cells presenting it, led to lysis of the PO.HTR cells, lending support to the view that peptides based on the product expressed by the gene can be used as vaccines.

Example 14

10

20

The human melanoma cell line referred to hereafter as MZ2-MEL is not a clonal cell line. It expresses four stable antigens recognized by autologous CTLs, known as antigens "D, E, F, and A". In addition, two other antigens "B" and "C" are expressed by some sublines of the tumor. CTL clones specific for these six antigens are described by Van den Eynde et al., Int. J. Canc. 44: 634-640 (1989). Among the recognized subclones of MZ2-MEL are MEL.43, MEL3.0 and MEL3.1. (Van den Eynde et al., supra). Cell line MEL3.1 expresses antigen E, as determined by CTL studies as described for P815 variants, supra, so it was chosen as a source for the nucleic acid sequence expressing the antigen precursor.

In isolating the pertinent nucleic acid sequence for a tumor rejection antigen precursor, the techniques developed <u>supra</u>, showed that a recipient cell is needed which fulfills two criteria: (i) the recipient cell must not express the TRAP of interest under normal conditions, and (ii) it must express the relevant class I HLA molecule. Also, the recipient cell must have a high transfection frequency, i.e., it must be a "good" recipient.

In order to secure such a cell line, the clonal subline ME3.1 was subjected to repeated selection with anti-E CTL 82/30 as described by Van den Eynde, <u>supra</u>. The repeated cycles of selection led to isolation of subclone MZ2-MEL-2.2 isc E⁻. This subclone is also HPRT⁻, (i.e., sensitive to HAT medium: 10⁻⁴ M hypoxanthine, 3.8 x 10⁻⁷ aminopterine, 1.6 x 10⁻⁵ M 2-deoxythymidine). The subclone is referred to as "MEL-2.2" for simplicity hereafter.

Example 15

10 The

20

(

The genomic DNA of MEL3.0 was prepared following Wölfel et al., Immunogenetics 26: 178-187 (1987), the disclosure of which is incorporated by reference. The plasmid pSVtkneoß, as described by Nicolas et al., Cold Spring Harb., Conf. Cell Prolif. 10: 469-485 (1983) confers geneticin resistance, so it can be used as a marker for cotransfection, as it was in this experiment.

Following a procedure similar but not identical to that of Corsao et al., Somatic Cell Molec. Genet 7: 603-616 (1981), total genomic DNA and the plasmid were cotransfected. The genomic DNA (60 μ g) and plasmid DNA (6 μ g) were mixed in 940 μ l of 1 mM Tris·HCl (pH 7.5), 0.1 mM EDTA, after which 310 μ l of 1M CaCl₂ was added. This solution was slowly added, under constant agitation, to 1.25 ml of 2xHBS (50 mM HEPES, 280 mM NaCl 1.5 mM Na₂HPO₄, adjusted to pH 7.1 with NaOH). The calcium phosphate DNA precipitates were allowed to form for 30-45 minutes at room

32

temperature, after which they were applied to 80 cm² tissue culture flasks which had been seeded 24 hours previously with 3x10⁶ MEL2.2 cells, in 22.5 ml of melanoma culture medium (Dulbecco's Modified Eagle's Medium) supplemented with 10% fetal calf serum. After 24 hours, the medium was replaced. Forty eight hours after transfection, the cells were harvested and seeded at 4x10⁶ cells per 80 cm² flask in melanoma culture medium supplemented with 2 mg/ml of geneticin. The geneticin serves as a selection marker.

10 Example 16

Thirteen days after transfection, geneticin-resistant colonies were counted, harvested, and cultured in nonselective medium for 2 or 3 days. Transfected cells were then plated in 96-well microplates at 200 cells/well in 200 ul of culture medium with 20% fetal calf serum (FCS) in order to obtain approximately 30 growing colonies per well. The number of microcultures was aimed at achieving redundancy, i.e., such that every independent transfectant should be represented at least four times.

20

After 10 days, wells contained approximately 6×10^4 cells. These cells were detached, and 1/3 of each microculture was transferred to a duplicate plate. After 6 hours, i.e., after readherence, medium was removed and 1500 anti-E CTL (CTL 82/30), were added to each well in 100 μ l of CTL culture medium with 35 U/ml of IL-2. One day later, the supernatant (50 μ l) was harvested and examined

33

for TNF concentration, for reasons set forth in the following example.

Example 17

10

20

The size of the mammalian genome is $6x10^6$ kb. As the average amount of DNA integrated in each drug-resistant transfectant was expected to be about 200 kb, a minimum of 30,000 transfectants would need to be examined to ascertain whether antigen E had been transfected. Prior work with murine cells had shown that when a CTL stimulation assay was used, groups containing only 3% of cells expressing the antigen of interested could be identified. This should reduce the number of assays by a factor of 30. While an anti-E CTL assay, as described supra, in mixed E⁺/E⁻ cells was helpful, it was not sufficient in that consistent results could not be obtained.

As a result, an alternative test was devised. Stimulation of CTLs was studied by release of tumor necrosis factor ("TNF") using well known methodologies which need not be repeated here. As described in Example 15, 1500 CTL 82/30 cells had been added per well of transfectants. These CTLs were collected 6 days after stimulation. As indicated supra, after 1/3 of the cells in each well had been removed and the remaining 2/3 (4×10^4) had readhered, the CTLs and IL-2 were added thereto. The 50 μ l of supernatant was removed 24 hours later and transferred to a microplate containing 3×10^4 W13 (WEHI-164 clone 13;

34

Espevik et al., J. Immunol. Meth. 95: 99-105 (1986)) cells in 50 μ l of W13 culture medium (RPMI-1640, supplemented with L-arginine (116 mg/l), L-asparagine (36 mg/l), L-glutamine (216 mg/l), and 10% FCS supplemented with 2 μ g of actinomycin D at 37% in an 8% CO₂ atmosphere. The cell line W13 is a mouse fibrosarcoma cell line sensitive to TNF. Dilutions of recombinant TNF-B in RPMI 1640 were added to target cell controls.

The W13 cultures were evaluated after 20 hours of incubation, and dead cell percentage was measured using an adaptation of the colorimetric assay of Hansen et al., J. Immunol. Meth. 119: 203-210 (1989). This involved adding (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 50 ml of tetrazolium bromide at 2.5 mg/ml in PBS, followed by two hours of incubation at 37°C. Dark blue formazan crystals were dissolved by adding 100 μ l of lysis solution (1 volume N,N dimethyl formamide mixed at 37°C with two volumes of water containing 30% (w/v) sodium dodecyl sulphate, at pH 4.7 from 1.6% acetic acid and 2.5% 1N HCl). Plates were incubated at 37°C overnight, and ODs were taken at 570 nm using 650 nm as control. Dead cell percentage was determined via the formula:

10

20

35

following Espevik et al., J. Immunol. Meth. 95: 99-105 (1986). The results showed that even when the ratio of E^+/E^- cells was as low as 1/45, significant production of TNF was observed, thus showing active CTLs. This led to the decision to test the drug resistant transfectants in groups of 30.

Example 18

10

20

Cells were tested for TNF production as discussed in Example 17, supra. A total of 100 groups of E cells (4x106 cells/group) were tested following transfection, and 7x104 independent geneticin resistant transfectants obtained, for an average of 700 per group. Only one group of transfected cells led to a microculture which caused anti-E antigen CTL clone 82/30 to produce TNF. clones tested, 8 were positive. These clones were then tested for lysis by anti-E CTL, using the standard 51Cr release assay, and were found to be lysed as efficiently as the original E⁺ cell line. The transfectant E.T1, discussed herein, had the same lysis pattern as did MEL2.2 for CTLs against antigens B,C,D and F.

The fact that only one transfectant presented the antigen out of 70,000 geneticin resistance transfectants may at first seem very low, but it is not. The work described <u>supra</u> for P815 showed an average frequency of 1/13,000. Human DNA recipient MEL2.2 appears to integrate 5 times less DNA than P1.HTR.

36

Example 19

Once transfectant E.T1 was found, analysis had to address several questions including whether an E⁺ contaminant of the cell population was the cause. The analysis of antigen presentation, described <u>supra</u>, shows that E.T1 is B⁻ and C⁻, just like the recipient cell MEL2.2. It was also found to be HPRT⁻, using standard selection procedures. All E⁺ cells used in the work described herein, however, were HPRT⁺.

10

20

It was also possible that an E+ revertant of MEL2.2 was To test this, the observation by the source for E.T1. Perucho et al., Cell 22: 309-317 (1980), that cotransfected sequences usually integrate together at a single location If antigen E in a of recipient genome was employed. transfectant results from cotransfec-tion with pSVtkneoß, then sequences should be linked and deletion of the antigen might also delete the neighboring pSVtkneoß sequences. Wölfel et al., supra, has shown this to be true. normally E cell is transfected with pSVtkneoß, then sequences should be linked and deletion of the antigen might also delete the neighboring pSVtkneoß sequences. If a normally E+ cell transfected with pSVtkneoß is E.T1, however, "co-deletion" should not take place. was subjected to transfectant E.T1 this, the immunoselection with 82/30, as described supra. antigen loss variants were obtained, which resisted lysis Neither of these had lost geneticin by this CTL.

37

resistance; however, Southern blot analysis showed loss of several neo^r sequences in the variants, showing close linkage between the E gene and neo^r gene in E.T1, leading to the conclusion that E.T1 was a transfectant.

Example 20

10

20

The E⁺ subclone MZ2-MEL 4B was used as a source of DNA for preparation of a cosmid library. This library of nearly 700,000 cosmids was transfected into MZ2-MEL 2.2 cells, following the cosmid transfection protocols described supra.

By packaging the DNA of cosmid transfectants directly into lambda phase components, it is sometimes possible to retrieve cosmids that contain the sequences of interest. This procedure was unsuccessful here, so we rescued the transfected sequence by ligating DNA of the transfectant to appropriate restriction fragments of cosmid vector pTL6. This was tried with two transfectants and was successful with one of them. One cosmid, referred to as B3, was recovered from this experiment, and subjected restriction endonuclease digestion via XmaI, or by BamHI digestion of a large, 12 kb XmaI transfected fragment. The fragments were cloned into vector pTZ 18R, and then transfected into MEL2.2. Again, TNF production was the measure by which successful transfection was determined. The experiments led to the determination of a gene sequence capable of transfecting antigen E on the 12 kb XmaI

38

fragment, and then on the 2.4 kb fragment of BamHI digestion of the 12 kb segment.

The 2.4 kb fragment hybridizes with a 2.4 kb fragment from MZ2-MEL and with a T cell clone of patient MZ-2, as determined by Southern Blots (BamHI/SmaI digested DNA). The band is absent from E antigen loss variants of MZ2-MEL, as seen in Figure 12.

The sequence for the E antigen precursor gene has been determined, and is presented herein:

```
50 ' '1
                                  30-,
                                           1 40
    2 SCATCHAGO: SCTSCHAGA ANNATABAG: SCCCTSCCT GAGAACAGAG GGGGTCATCC 60
   61 ACTICATION ACTIONSTATE TEACAGNOTE EAGCOCACCE TECTOSTAGE ACTIGASAAGE 120
  121 EAGGSCIGIG ETTGCGGTCT OCACCETGAG GGCCCGTGGA TICCTCTICC TGGAGTICCA 180
  181 GENNOCAGOS AGTGAGGOST TGGTSTGAGA ENGINTESTS AGGTSAGAG GCAGAGGATG 240
  241 CACAGGITET GCCAGCAGTG AATGTTTGCC CTGAATGCAC ACCAAGGGCC CCACCTGCCA 300
  301 CAGGACACAT AGGACTOCAC AGAGTOTGGC - CTCACCTCCC TACTGTCAGT CCTGIAGAAT 360
  351 CGACCTCTGC TGGCCGGCTG EACCCTGAGT ACCCTCTCAC TTCCTCCTTC AGGTTTTCAG 420
  421 GGGATAGGGC AACCCAGAGG ATAGGATTCC TTGGAGGCTA TAGAGGAGTA CCAAGGAGAA 480
  481 GATOTGTANG TAGGOCTTTG TINGNGTOTC CANGGTTCNG TYCTCAGCTG AGGOCTCTCA 540
  541 ENCHOTOCCI ETCTCCCCAG GCCTGTGGGT · CTTENTTGCC EAGCTCCTGC GCALACTCC1 600
  601 GOOTGOTGOO CTGACGAGAG TOATCATGTO TOTTGAGGAG AGGAGTOTGO ACTGCAAGGO E60
  661 TEAGGRASCE ETTGREGGEC ARCHAGAGGS ECTGGGCTGG TGTGTGTGCA GGCTGCCACC 720
  721 TECTECTECT CTCCTCTGGT CCTGGGCACC CTGGAGGAGG TGCCCACTGC TGGGTCAACA 760
  781 GATESTOCCE AGAGTESTEA GOGAGESTES GESTTESSEA STACKATEAA STTCASTEGA 840
  $41 CAGAGGGAAC CCAGTGAGGG TTCCAGCAGG CGTGAAGAGG AGGGGGCCAAG CAGGTGTTGT $60
  901 ATCCTGGAGT CCTTGTTCCG AGCASTAATC ACTAGAAGG TGGCTGATTT GGTTGGTTTT 960
 961 CTGCTCCTCA AATATCGAGC CAGGGAGCCA GTCACAAAGG CAGAAATGCT GGAGAGTGTC 1020
 1021 ATCANANTT ACANGENETS TITTECTGAG ATCTTEGGEN ANGESTETGN GICCTTGCAG 1080
 1081 ETGGTCTTTG GCATTGACGT GAAGAAGCA GACCCCACCG GCCACTCCTA TGTCCTTGTC 1140
2141 ACCTGGGTAG GTGTGTGGTA TGATGGGCGG GTGGGTGATA ATGAGATGAT GCGGAAGAGA 1200
1201 GEOTICOTGA TARTIGICOT GUTCATGATI GCAATGGAGG GCGGCCATGC TOCTGAGGAG 1260
1261 GAAATETGGG AGGAGCTGAG TGTGATGGAG GTGTATGATG GGAGGGAGCA CAGTGCCTAT 1320
1321 GGGGAGCCCA GGAAGCTGCT CACCCAAGAT TIGGTGCAGG AAAAGTACCT GGAGTACGGC 1360
1381 AGGTGCGGGA CARTGATOCC GCACGCTATG AGTTCCTGTG GGGTGCAAGG GCCCTGGCTG 1440
1441 ALACCAGCIA IGIGALAGIC CIIGAGIAIG IGAICAAGGI CAGIGCAAGA GIICGCIIII 1500
1501 TETTCECATE CETGGTGLA GEAGETTTGA GAGGGAGGA AGAGGGAGTE TGAGCATGAG 1560
1561 TIPCAGELA GOCCASTOUS ASSOCIATES GOCCASTOCA DETTECAGOS DESCRITCAS 1620
1621 EASCTTEECE TOCCTOSTGT GACATGAGGC ECATTOTTCA ETCTGAAGAG AGCGGTCAGT 1660
2681 GITCTCAGTA SIAGGITTCT STICTAITGS STGACTIGGA GATTTATCTT TGTTCTCTTT 1740
2741 TOCKNITOIT CANNIGITTI TIITINAGG ATGUTTGAG GANCTICAGC ATCCAGUTTI 1800
1801 ATCANTCACA GCAGTCACAC ACTTCTGTGT ATATAGTTTA AGGGTAAGAG TCTTGTGTTT 1860
1861 TATTCAGATT OGGALARCCA TTCTAFTTTG FGALTTGGGA TATTACAGC AGTGGALTAL 1920
1921 GTACTTAGAA ATGTGAAAAA TGAGCAGTAA AATAGATGAG ATAAAGAACT AAAGAAATTA 1960
1981 AGAGATAGTO AATTOTTGCC TTATACCTCA GTOTATTCTG TAAAATTTTT AAAGATATAT 2040
2041 GCATACOTGS ATTICCTTGG CTICTTTGAG AATGIAAGAG AAATGIAATC TGAATALAGA 2100
2101 Afterteers treactsset efficient scatscasts ascattsset tittsgaass 2160
2161 COTTGGGTIA STAGTOGAGA TGCIAAGGTA AGCCAGACTC ATACCCACCC ATAGGGTCGT 2220
2221 AGASTETAGS AGCTGCAGTC ACGTANTCGA GGTGGCAAGA TSTCCTCTAA AGATGTAGGG 2210
2211 AAAGTGAGA GAGGGTGAG GGTGTGGGGC TCCGGTTGAG ACTGTGGAG TGTCAATGCC 2340
2341 ETGAGETGGG GCATTITGGG ETTTGGGAAA ETGCAGTTCC TTCTGGGGGA GCTGATTGTA 2400
2401 ATGATETTGG GTGGATCC
                                                                       2418
                                                                1 60
                   1 20
                               1 30
                                        1 40
                                                     50
            10
```

Example 21

After the 2.4 kb genomic segment had been identified, studies were carried out to determine if an "E+" subline expressed any homologous DNA. Cell line MZ2-MEL 3.0 was used as a source, and a cDNA library was prepared from its mRNA, using art known techniques. The 2.4 kb segment was used as a probe, and mRNA of about 1.8 kb was identified as homologous, using Northern blot analysis. When cDNA was screened, clones were obtained showing almost complete identity to parts of the 2.4 kb fragment. Two exons were thus identified. An additional exon was located upstream of these, via sequencing segments of cosmid B3 located in front of the 2.4 kb BamHI fragment. The gene extends over about 4.5 kb, as shown in Figure 8. The starting point of the transcribed region was confirmed using PCR for the 5' end of the cDNA. The three exons comprise 65, 73, and 1551 base pairs. An ATG is located at position 66 of exon 3, followed by an 828 base pair reading frame.

Example 22

20

10

To determine if smaller segments of the 2.4 kb fragment could transfer the expression of antigen E, smaller pieces corresponding to the larger gene were prepared, using art recognized techniques, and transferred into E cells. Figure 8 shows the boundaries of the three segments.

41

Transfer of antigen expression in this manner indicates that the gene codes for the antigen precursor, rather than coding for a protein which activates the antigen.

Example 23

10

20

The probing of cDNA described supra revealed, surprisingly, two different but closely related cDNAs. These cDNAs, when tested, did not transfer expression of antigen E, but they do show substantial homology to the first cDNA segment. The three segments, appear to indicate a newly recognized family of genes, referred to as "MAGE" for "melanoma antigen". In Figure 9, "mage -1" directs expression of the antigen from MZ2 cells. Portions of the third exon of each gene are presented in Figure 9. second and third sequences are more closely related to each other than the first (18.1 and 18.9% difference compared to the first; 12% with each other). Out of 9 cDNA clones obtained, three of each type were obtained, suggesting equal expression. "MAGE" as used hereafter refers to a family of molecules, and the nucleic acids coding for them. These nucleic acids share a certain degree of homology and are expressed in tumor cells including several types of human tumor cells as well as in human tumors. The family is referred to as "MAGE" because the first members were identified in human melanoma cells. As the experiments which follow indicate, however, the members of the MAGE family are not at all restricted to melanoma tumors;

42

rather, MAGE refers to a family of tumor rejection antigen precursors and the nucleic acid sequences coding therefore.

The antigens resulting therefrom are referred to herein as "MAGE TRAS" or "melanoma antigen tumor rejection antigens"

Example 24

10

20

Experiments with mouse tumors have demonstrated that new antigens recognized by T cells can result from point mutations that modify active genes in a region that codes for the new antigenic peptide. New antigens can also arise from the activation of genes that are not expressed in most normal cells. To clarify this issue for antigen MZ2-E, the mage-1 gene present in the melanoma cells was compared to that present in normal cells of patient MZ2.

Amplification by polymerase chain reaction (PCR) of DNA of lymphocytes using phytohemagglutinin-activated blood primers surrounding a 1300 bp stretch covering the first half of the 2.4 kb fragment was carried out. As expected, a PCR product was obtained whereas none was obtained with the DNA of the E variant. The sequence of this PCR product proved identical to the corresponding sequence of the gene carried by the E⁺ melanoma cells. Moreover, it was found that antigen MZ2-E was expressed by cells transfected with This result suggests that the the cloned PCR product. activation of a gene normally silent is responsible for the appearance of tumor rejection antigen MZ2-E.

43

Example 25

10

20

In order to evaluate the expression of gene mage-1 by various normal and tumor cells, Northern blots were hybridized with a probe covering most of the third exon. In contrast with the result observed with human tumor cell line MZ2-MEL 3.0, no band was observed with RNA isolated from a CTL clone of patient MZ2 and phytohemagglutininactivated blood lymphocytes of the same patient. negative were several normal tissues of other individuals (Figure 10 and Figure 11). Fourteen melanoma cell lines of other patients were tested. Eleven were positive with bands of varying intensities. In addition to these culture cell lines, four samples of melanoma tumor tissue were analyzed. Two samples, including a metastasis of patient MZ2 proved positive, excluding the possibility that expression of the gene represented a tissue culture A few tumors of other histological types, artefact. including lung tumors were tested. Most of these tumors were positive (Figures 10 and 11). These results indicated that the MAGE gene family is expressed by many melanomas and also by other tumors. However, they provided no clear indication as to which of genes mage-1, 2 or 3 were expressed by these cells, because the DNA probes corresponding to the three genes cross-hybridized to a To render this analysis more considerable extent. specific, PCR amplification and hybridization with highly specific oligo- nucleotide probes were used. cDNAs were obtained and amplified by PCR using oligonucleotide primers

44

corresponding to sequences of exon 3 that were identical for the three MAGE genes discussed herein. The PCR products were then tested for their ability to hybridize to oligonucleotides that showed specificity for one of the three genes (Figure 9). Control experiments carried out by diluting RNA of melanoma MZ2-MEL 3.0 in RNA from negative cells indicated that under the conditions used herein the intensity of the signal decreased proportionally to the dilution and that positive signals could still be detected at a dilution of 1/300. The normal cells (lymphocytes) that were tested by PCR were confirmed to be negative for the expression of the three MAGE genes, suggesting therefore a level of expression of less than 1/300 th that of the MZ2 melanoma cell line (Figure For the panel of melanoma cell lines, the results clearly showed that some melanomas expressed MAGE genes mage 1, 2 and 3 whereas other expressed only mage-2 and 3 Some of the other tumors also (Figures 11 and 10). expressed all three genes whereas others expressed only mage-2 and 3 or only mage-3. It is impossible to exclude formally that some positive PCR results do not reflect the expression of one of the three characterized MAGE genes but that of yet another closely related gene that would share the sequence of the priming and hybridizing oligonucleotides. It can be concluded that the MAGE gene family is expressed by a large array of different tumors and that these genes are silent in the normal cells tested to this point.

10

20

10

20

Exammple 26

The availability of a sequence that transfects at high efficiency and efficiently expresses a TRAP made it possible to search for the associated major histocompatibility complex (MHC) class I molecule. The class I specificities of patient MZ2 are HLA-A1, A29, B37, B44 and C6. Four other melanomas of patients that had A1 in common with MZ2 were cotransfected with the 2.4 kb fragment and pSVtkneoß. Three of them yielded neor transfectants that stimulated TNF release by anti-E CTL clone 82/30, which is CD8+ (Figure 10). No E- transfectant was obtained with four other melanomas, some of which shared A29, B44 or C6 with MZ2. This suggests that the presenting molecule for antigen MZ2-E is HLA-A1. In confirmation, it was found that, out of 6 melanoma cell lines derived from tumors of HLA-A1 patients, two stimulated TNF release by anti-E CTL clone 82/30 of patient MZ2. One of these tumor cell lines, MI13443-MEL also showed high sensitivity to lysis by these anti-E CTL. These two melanomas were those that expressed mage-1 gene (Figure 13). Eight melanomas of patients with HLA haplotypes that did not include Al were examined for their sensitivity to lysis and for their ability to stimulate TNF release by the CTL. None was found to be positive. The ability of some human anti-tumor CTL to lyse allogeneic tumors sharing an appropriate HLA specificity with the original tumor has been reported previously (Darrow, et al., J. Immunol. 142: 3329 (1989)). guite possible that antigenic peptides encoded by genes

46

mage 2 and 3 can also be presented to autologous CTL by HLA-Al or other class I molecules, especially in view of the similar results found with murine tumors, as elaborated upon supra.

Example 27

10

20

As indicated <u>supra</u>, melanoma MZ2 expressed antigens F, D and A', in addition to antigen E. Following the isolation of the nucleic acid sequence coding for antigen E, similar experiments were carried out to isolate the nucleic acid sequence coding for antigen F.

To do this, cultures of cell line MZ2-MEL2.2, an E-cell line described <u>supra</u>, were treated with anti-F CTL clone 76/6, in the same manner described for treatment with anti-E CTL clones. This resulted in the isolation of an F antigen loss variant, which was then subjected to several rounds of selection. The resulting cell line, "MZ2-MEL2.2.5" was completely resistant to lysis by anti-F CTLs, yet proved to be lysed by anti-D CTLs.

Again, following the protocols set forth for isolation of antigen -E precursor DNA, the F variant was transfected with genomic DNA from F cell line MZ2-MEL3.0. The experiments yielded 90,000 drug resistant transfectants. These were tested for MZ2-F expression by using pools of 30 cells in the TNF detection assay elaborated upon supra. One pool stimulated TNF release by anti-F CTLs, and was cloned. Five of 145 clones were found to stimulate anti-

47

F CTLs. Lysis assays, also following protocols described supra, confirmed (i) expression of the gene coding for antigen F, and (ii) presentation of antigen F itself.

Example 28

10

20

Following identification of F cell lines, the DNA therefrom was used to transfect cells. To do this, a cosmid library of F+ cell line MZ2-MEL.43 was prepared, again using the protocols described supra. The library was divided into 14 groups of about 50,000 cosmids, and DNA from each group was transfected into MZ2-MEL2.2.5. Transfectants were then tested for their ability to stimulate TNF release from anti-F CTL clone 76/6. Of 14 groups of cosmids, one produced two independent transfectants expressing antigen F; a yield of two positives out of 17,500 geniticin resistant transfectants.

Example 29

The existence of a gene family was suggested by the pattern observed on the Southern blot (Figure 12). To do this, the 2.4 kb BamHI fragment, which transferred the expression of antigen M22-E, was labelled with 32p and used as a probe on a Southern Blot of BamHI digested DNA of E + cloned subclone M22-MEL2.2. Hybridization conditions included 50 μ l/cm² of 3.5xSSC, 1xDenhardt's solution; 25 mM sodium phosphate buffer (pH 7.0), 0.5% SDS, 2mM EDTA, where the 2.4 kb probes had been labelled with [α^{32} p]dCTP (2-3000)

48

Ci/mole), at 3x10⁶ cpm/ml. Hybridization was carried out for 18 hours at 65°C. After this, the membranes were washed at 65°C four times for one hour each in 2xSSC, 0.1% SDS, and finally for 30 minutes in 0.1xSSC, 0.1% SDS. To identify hybridization, membranes were autoradiographed using Kodak X-AR film and Kodak X-Omatic fine intensifying screens.

In the following examples, whenever "hybridization" is referred to, the stringency conditions used were similar to those described <u>supra</u>. "Stringent conditions" as used herein thus refers to the foregoing conditions; subject to routine, art recognized modification.

Example 30

10

20

The cDNA coding for mage 4 was identified from a sample of the human sarcoma cell line LB23-SAR. This cell line was found to not express mage 1, 2 or 3, but the mRNA of the cell line did hybridize to the 2.4 kb sequence for mage 1. To study this further, a cDNA library was prepared from total LB23-SAR mRNA, and was then hybridized to the 2.4 kb fragment. A cDNA sequence was identified as hybridizing to this probe, and is identified hereafter as mage 4.

Example 31

Experiments were carried out using PHA-activated lymphocytes from patient "MZ2", the source of the "MZ" cells discussed supra. An oligonucleotide probe which

49

showed homology to mage 1 but not mage 2 or 3 was hybridized with a cosmid library derived from the PHA activated cells. The size of the hybridizing BamHI cosmid fragment, however, was 4.5 kb, thus indicating that the material was not mage 1; however, on the basis of homology to mage 1-4, the fragment can be referred to as "mage 5". The sequence of MAGE 5 is presented in SEQ ID NO: 16.

Example 32

10

20

Melanoma cell line LB-33-MEL was tested. Total mRNA from the cell line was used to prepare cDNA, which was then amplified with oligos CHO9: (ACTCAGCTCCTCCCAGATTT), and CHO10: (GAAGAGGGGGCCCAAG). These oligos correspond to regions of exon 3 that are common to previously described mage 1, 2 and 3.

To do this, 1 μ g of RNA was diluted to a total volume of 20 μ l, using 2 μ l of 10x PCR buffer, 2 μ l of each of 10 mM dNTP, 1.2 μ l of 25 mM MgCl₂, 1 μ l of an 80 mM solution of CHO9, described supra, 20 units of RNAsin, and 200 units of M-MLV reverse transcriptase. This was followed by incubation for 40 minutes at 42°C. PCR amplification followed, using 8 μ l of 10x PCR buffer, 4.8 μ l of 25 mM MgCl₂, 1 μ l of CHO10, 2.5 units of Thermus acquaticus ("Taq") polymerase, and water to a total volume of 100 μ l. Amplification was then carried out for 30 cycles (1 minute 94°C; 2 minutes at 52°C, 3 minutes at 72°C). Ten μ l of each reaction were then size fractionated on agarose gel,

followed by nitrocellulose blotting. The product was found oligonucleotide CHO18 probe hybridize with (TCTTGTATCCTGGAGTCC). This probe identified mage 1 but not mage 2 or 3. However, the product did not hybridize to probe SEQ 4 (TTGCCAAGATCTCAGGAA). This probe also binds This indicated that the PCR mage 1 but not 2 and 3. product contained a sequence that differed from mage 1, 2 Sequencing of this fragment also indicated and 3. differences with respect to mage 4 and 5. These results indicate a sequence differing from previously identified mage 1, 2, 3, 4 and 5, and is named mage 6.

Example 33

10

20

In additional experiments using cosmid libraries from PHA-activated lymphocytes of MZ2, the 2.4 kb mage 1 fragment was used as a probe and isolated a complementary fragment. This clone, however, did not bind to oligonucleotides specific for mage 1, 2, 3 or 4. The sequence obtained shows some homology to exon 3 of mage 1, and differs from mages 1-6. It is referred to as mage 7 hereafter. Additional screenings yielded mage 8-11.

Example 34

The usefulness of the TRAPs, as well as TRAs derived therefrom, was exemplified by the following.

Exon 3 of mage 1 was shown to transfer expression of antigen E. As a result, it was decided to test whether

51

synthetic peptides derived from this exon 3 could be used to confer sensitivity to anti-E CTL.

To do this, and using standard protocols, cells normally insensitive to anti-E/CTLs were incubated with the synthetic peptides derived from Exon 3.1. Using the CTL lytic assays described <u>supra</u> on P815A, and a peptide concentration of 3 mM, the peptide Glu-Ala-Asp-Pro-Thr-Gly-His-Ser-Tyr was shown to be best. The assay showed lysis of 30%, indicating conferring of sensitivity to the anti-E CTL.

Example 35

10

20

Nucleic acid sequences referred to as "smage" were isolated from murine cells. Using the protocols described supra, a cosmid library was prepared from the DNA of normal DBA/2 kidney cells, using cosmid vector C2RB. As a probe, the 2.4 kb BamHI fragment of MAGE-1 was used. The DNA was blotted to nylon filters, and these were washed in 2xSSC at 65°C to identify the smage material.

Example 36

Further tissue samples were tested for the presence of MAGE genes, using the protocols discussed <u>supra</u>. Some of these results follow.

There was no expression of the MAGE genes in brain or kidney tumor tissue. Colon tumor tissue showed expression of MAGE 1, 2, 3 and 4, although not all tumors tested showed expression of all MAGE genes. This is also true for

52

pancreatic tumor (MAGE 1); non-small cell lung (MAGE 1, 2, 3 and 4), prostate (MAGE 1), sarcomas (MAGE 1, 2, 3 and 4), breast (MAGE 1, 2 and 3), and larynx (MAGE 1 and 4).

The foregoing disclosure, including the examples, places many tools of extreme value in the hands of the skilled artisan. To begin, the examples identify and provide a methodology for isolating nucleic acid molecules which code for tumor rejection antigen precursors as well as the nucleic acid molecules complementary thereto. It is known that DNA exists in double stranded form, and that each of the two strands is complementary to the other. Nucleic acid hybridization technology has developed to the point where, given a strand of DNA, the skilled artisan can isolate its complement, or synthesize it.

"Nucleic acid molecule" as used herein refers to all species of DNA and RNA which possess the properties discussed <u>supra</u>. Genomic and complementary DNA, or "cDNA" both code for particular proteins, and as the examples directed to isolation of MAGE coding sequences show, this disclosure teaches the artisan how to secure both of these.

Similarly, RNA molecules, such as mRNA can be secured. Again, with reference to the skilled artisan, once one has a coding sequence in hand, mRNA can be isolated or synthesized.

Complementary sequences which do not code for TRAP, such as "antisense DNA" or mRNA are useful, e.g., in

10

20

53

probing for the coding sequence as well as in methodologies for blocking its expression.

It will also be clear that the examples show the manufacture of biologically pure cultures of cell lines which have been transfected with nucleic acid sequences which code for or express the TRAP molecules. Such cultures can be used as a source for tumor rejection antigens, e.g., or as therapeutics. This aspect of the invention is discussed infra.

10

Cells transfected with the TRAP coding sequences may also be transfected with other coding sequences. Examples of other coding sequences include cytokine genes, such as interleukins (e.g., IL-2 or IL-4), or major histocompatibility complex (MHC) or human leukocyte antigen (HLA) molecules. Cytokine gene transfection is of value because expression of these is expected to enhance the therapeutic efficacy of the biologically pure culture of the cells <u>in vivo</u>. The art is well aware of therapies where interleukin transfectants have been administered to subjects for treating cancerous conditions. In a particularly preferred embodiment, cells are transfected with sequences coding for each of (i) a TRAP molecule, (ii) an HLA/MHC molecule, and (iii) a cytokine.

20

Transfection with an MHC/HLA coding sequence is desirable because certain of the TRAs may be preferentially or specifically presented only by particular MHC/HLA molecules. Thus, where a recipient cell already expresses the MHC/HLA molecule associated with presentation of a TRA,

54

additional transfection may not be necessary although further transformation could be used to cause over-expression of the antigen. On the other hand, it may be desirable to transfect with a second sequence when the recipient cell does not normally express the relevant MHC/HLA molecule. It is to be understood, of course, that transfection with one additional sequence does not preclude further transfection with other sequences.

The term "biologically pure" as used in connection with the cell line described herein simply means that these are essentially free of other cells. Strictly speaking, a "cell line" by definition is "biologically pure", but the recitation will establish this fully.

10

20

Transfection of cells requires that an appropriate vector be used. Thus, the invention encompasses expression vectors where a coding sequence for the TRAP of interest is operably linked to a promoter. The promoter may be a strong promoter, such as those well known to the art, or a differential promoter, i.e., one which is operative only in specific cell types. The expression vectors may also contain all or a part of a viral or bacterial genome, such as vaccinia virus or BCG. Such vectors are especially useful in preparing vaccines.

The expression vectors may incorporate several coding sequences, as long as the TRAP sequence is contained therein. The cytokine and/or MHC/HLA genes discussed supramay be included in a single vector with the TRAP sequence. Where this is not desired, then an expression system may be

55

provided, where two or more separate vectors are used where each coding sequence is operably linked to a promoter. Again, the promoter may be a strong or differential promoter. Co-transfection is a well known technique, and the artisan in this field is expected to have this technology available for utilization. The vectors may be constructed so that they code for the TRA molecule directly, rather than the TRAP molecule. This eliminates the need for post-translational processing.

10

20

As the foregoing discussion makes clear, the sequences code for "tumor rejection antigen precursors" ("TRAPs") which, in turn, are processed into tumor rejection antigens ("TRAs"). Isolated forms of both of these categories are described herein, including specific examples of each. Perhaps their most noteworthy aspect is as vaccines for treating various cancerous conditions. The evidence points to presentation of TRAs on tumor cells, followed by the development of an immune response and deletion of the cells. The examples show that when various TRAs are administered to cells, a CTL response is mounted and presenting cells are deleted. This is behavior characteristic of vaccines, and hence TRAPs, which are processed into TRAs, and the TRAs themselves may be used, pharmaceutically either alone or in appropriate compositions, as vaccines. Similarly, presenting cells may be used in the same manner, either alone or as combined with ingredients to yield pharmaceutical compositions. Additional materials which may be used as vaccines include

56

isolated cells which present the TRA molecule on their surface, as well as TRAP fragments, mutated viruses, especially etiolated forms, and transfected bacteria. "Fragments" as used herein refers to peptides which are smaller than the TRA, but which possess the properties required of a vaccine, as discussed <u>supra</u>. Another vaccine comprises or consists of complexes of TRA and HLA molecule. Vaccines of the type described herein may be used preventively, i.e., via administration to a subject in an amount sufficient to prevent onset of a cancerous condition.

10

20

The generation of an immune response, be it T-cell or B-cell related, is characteristic of the effect of the presented tumor rejection antigen. With respect to the Bcell response, this involves, inter alia, the generation of antibodies to the TRA, i.e., which specifically bind thereto. In addition, the TRAP molecules are of sufficient size to render them immunogenic, and antibodies which specifically bind thereto are a part of this invention. These antibodies may be polyclonal or monoclonal, the latter being prepared by any of the well recognized methodologies for their preparation which need not be repeated here. For example, mAbs may be prepared using an animal model, e.g., a Balb/C mouse or in a test tube, using, e.g., EBV transformants. In addition, antiserum may be isolated from a subject afflicted with a cancerous condition where certain cells present a TRA. Such

57

antibodies may also be generated to epitopes defined by the interaction of TRA and HLA/MHC molecules.

Review of the foregoing disclosure will show that there are a number of facets to the system which may be referred to as "tumor rejection antigen presentation and recognition". Recognition of these phenomena has diagnostic consequences. For example, the existence of specific CTL clones, or antibodies to the TRA makes it possible to diagnose or monitor cancerous conditions (explained infra), by monitoring the CTLs in a sample from a subject, binding of antibodies to TRAs, or the activity of anti-TRA CTLs in connection with subject samples. Similarly, the expression of nucleic acid molecules for TRAPs can be monitored via amplification (e.g., "polymerase chain reaction"), anti-sense hybridization, technologies, and so forth. Various subject samples, including body fluids (blood, serum, and other exudates, e.g.), tissues and tumors may be so assayed.

10

20

A particular manner of diagnosis is to use an adaptation of the standard "tuberculin test" currently used for diagnosis of tuberculosis. This standard skin test administers a stable form of "purified protein derivative" or "PPD" as a diagnostic aid. In a parallel fashion, TRAS in accordance with this invention may be used in such a skin test as a diagnostic aid or monitoring method.

The term "cancerous condition" is used herein to embrace all physiological events that commence with the initiation of the cancer and result in final clinical

58

Tumors do not spring up "ab initio" as manifestation. visible tumors; rather there are various events associated with the transformation of a normal cell to malignancy, followed by development of a growth of biomass, such as a tumor, metastasis, etc. In addition, remission may be conceived of as part of "a cancerous condition" as tumors seldom spontaneously disappear. The diagnostic aspects of all invention include events involved this carcinogenesis, from the first transformation to malignancy of a single cell, through tumor development and metastasis, as well as remission. All are embraced herein.

Where "subject" is used, the term embraces any species which can be afflicted with a cancerous condition. This includes humans and non-humans, such as domesticated animals, breeding stock, and so forth.

10

20

There are therapeutic aspects of this invention as well. The efficacy of administration of effective amounts of TRAPs and TRAs as vaccines has already been discussed supra. Similarly, one may develop the specific CTLs in vitro and then administer these to the subject. Antibodies may be administered, either polyclonal or monoclonal, which specifically bind to cells presenting the TRA of interest. These antibodies may be coupled to specific antitumor agents, including, but not being limited to, methotrexate radio-iodinated compounds, toxins such as ricin, other cytostatic or cytolytic drugs, and so forth. Thus, "targeted" antibody therapy is included herein, as is the

59

application of deletion of the cancerous cells by the use of CTLs.

The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, it being recognized that various modifications are possible within the scope of the invention.

(1) GENERAL INFORMATION:

- (i) APPLICANTS: Boon, Thierry, Van den Eynde, Benoît
- (ii) TITLE OF INVENTION: Isolated And Purified DNA Sequence Coding Antigen Expressed By Tumor Cells And Recognized By Cytotoxic T Cells, And Uses Thereof
- (iii) NUMBER OF SEQUENCES: 26
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Felfe & Lynch
 - (B) STREET: 805 Third Avenue
 - (C) CITY: New York City
 - (D) STATE: New York
 - (F) ZIP: 10022
- (V) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 5.25 inch, 360 kb storage
 - (B) COMPUTER: IBM
 - (C) OPERATING SYSTEM: PC-DOS
 - (D) SOFTWARE: Wordperfect
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/807,043
 - (B) FILING DATE: 12-DECEMBER-1991
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/764,364
 - (B) FILING DATE: 23-SEPTEMBER-1991
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/728,838
 - (b) FILING DATE: 9-JULY-1991
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/705,702
 - (B) FILING DATE: 23-May-1991
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Hanson, Norman D.
 - (B) REGISTRATION NUMBER: 30,946
 - (C) REFERENCE/DOCKET NUMBER: LUD 253.4
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (212) 688-9200
 - (B) TELEFAX: (212) 838-3884

- (2) INFORMATION FOR SEQUENCE ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 462 base pairs
 - (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

ACCACAGGAG	AATGAAAAGA	ACCCGGGACT	CCCAAAGACG	CTAGATGTGT	50
GAAGATCCTG	ATCACTCATT	GGGTGTCTGA	GTTCTGCGAT	ATTCATCCCT	100
CAGCCAATGA	GCTTACTGTT	CTCGTGGGGG	GTTTGTGAGC	CTTGGGTAGG	150
AAGTTTTGCA	AGTTCCGCCT	ACAGCTCTAG	CTTGTGAATT	TGTACCCTTT	200
CACGTAAAAA	AGTAGTCCAG	AGTTTACTAC	ACCCTCCCTC	CCCCCTCCCA	250
CCTCGTGCTG	TGCTGAGTTT	AGAAGTCTTC	CTTATAGAAG	TCTTCCGTAT	300
AGAACTCTTC	CGGAGGAAGG	AGGGAGGACC	CCCCCCTTT	GCTCTCCCAG	350
CATGCATTGT	GTCAACGCCA	TTGCACTGAG	CTGGTCGAAG	AAGTAAGCCG	400
CTAGCTTGCG	ACTCTACTCT	TATCTTAACT	TAGCTCGGCT	TCCTGCTGGT	450
ACCCTTTGTG	CC				462

(2) INFORMATION FOR SEQUENCE ID NO: 2:

	į)	L) SE	QUEN													
				LENG		675 ucle	bae		LIEB							
				TYPE			inea.									
	/ :		OLEC				jenon		NA						-	
										NO:	2:					
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:															
ATG	TCT	GAT	AAC	AAG	AAA	CCA	GAC	AAA	GCC	CAC	AGT	GGC	TCA	GGT	GGT	48
Met	Ser	Asp	Asn	Lys	Lys	Pro	Asp	Lys	Ala	His	Ser	Gly	Ser	Gly	Gly	
				5					10					15		
												m> a	maa	CTC	CAA	96
GAC	GGT	GAT	GGG	AAT	AGG	TGC	AAT	TTA	TTG	CAC	CGG	TAC	TCC Ser	LOU	Glu	90
Asp	Gly	Asp		Asn	Arg	Cys	ABn	25	ren	HIB	Arg	TÄT	30	Ter	GIU	
			20					23					•			
GAA	ATT	CTG	CCT	TAT	CTA	GGG	TGG	CTG	GTC	TTC	GCT	GTT	GTC	ACA	ACA	144
Glu	Ile	Leu	Pro	Tyr	Leu	Gly	Trp	Leu	Val	Phe	Ala	Val	Val	Thr	Thr	
		35		-		-	40					45				
AGT	TTT	CTG	GCG	CTC	CAG	ATG	TTC	ATA	GAC	GCC	CTT	TAT	GAG	GAG	CAG	192
Ser	Phe	Leu	Ala	Leu	Gln		Phe	Ile	Asp	Ala	Leu	Tyr	Glu	Glu	Gln	
	50					55					60					
	~~~		~~ m	omo.		mcc	202	ccc	NCC.	C22	AGC	AAG	ccc	ATG	TCC	240
											Ser					
65	GIU	Arg	мвр	Val	70	ΙΙĐ	116	nze	y	75		_,_			80	
05					, ,											
TCT	GTC	GAT	GAG	GAT	GAA	GAC	GAT	GAG	GAT	GAT	GAG	GAT	GAC	TAC	TAC	288
											Glu					
				85					90					95		
																226
											GAT					336
Asp	Asp	Glu		Asp	Asp	Asp	Asp		Pne	Tyr	Asp	Авр	110	мвр	мвр	
			100					105					110			
CAG	CNA	CAA	CAA	ጥጥር	GAG	AAC	CTG	ATG	GAT	GAT	GAA	TCA	GAA	GAT	GAG	384
											Glu					
		115					120		•	•		125		-	. •	
											GGA					432
Ala	Glu	Glu	Glu	Met	Ser	Val	Glu	Met	Gly	Ala	Gly	Ala	Glu	Glu	Met	
	130					135					140					
		000	~~~	224	m/cm	000	⊕ G	COM	CCT	ccc	CAT	ርውጥ	ጥጥል	AGG	226	480
											His					700
61Y 145	WIG	GTÅ	nia	UBII	150	VIE	-y =	447	210	155	~~0			9	160	
743																
AAT	GAA	GTG	AAG	TGT	AGG	ATG	ATT	TAT	TTC	TTC	CAC	GAC	CCT	AAT	TTC	528
Asn	Glu	Val	Lys	Сув	Arg	Met	Ile	Tyr	Phe	Phe	His	Asp	Pro	Asn	Phe	
			-	165					170					175		

CTG	GTG	TCT	ATA	CCA	GTG	AAC	CCT	AAG	GAA	CAA	ATG	GAG	TGT	AGG	TGT	576
Leu	Val	Ser	Ile 180	Pro	Val	Asn	Pro	Lys 185	Glu	Gln	Met	Glu	Сув 190	Arg	Сув	
GAA	AAT	GCT	GAT	GAA	GAG	GTT	GCA	ATG	GAA	GAG	GAA	GAA	GAA	GAA	GAG	624
Glu	Asn	Ala	Asp	Glu	Glu	Val	Ala	Met	Glu	Glu	Glu	Glu	Glu	Glu	Glu	
		195					200				210					
GAG	GAG	GAG	GAG	GAA	GAG	GAA	ATG	GGA	AAC	CCG	GAT	GGC	TTC	TCA	CCT	672
Glu	Glu	Glu	Glu	Glu	Glu	Glu	Met	Gly	Asn	Pro	Asp	Gly	Phe	Ser	Pro	
220					225					230					235	
TAG																675

(2)	INFORMATION FOR SEQUENCE ID NO: 3:
-	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 228 base pairs
	(B) TYPE: nucleic acid
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: genomic DNA
	(with SPOURNCE DESCRIPTION: SEO ID NO: 3:

GCATGCAGTT	GCAAAGCCCA	GAAGAAAGAA	ATGGACAGCG	GAAGAAGTGG	TTGTTTTTT	60
					GTTCTAAAGT	120
					CATATGATAC	180
			AAAGTTTGAC			228

- (2) INFORMATION FOR SEQUENCE ID NO: 4: (1) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1365 base pairs
  - (B) TYPE: nucleic acid
  - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: genomic DNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

ACCACAGGAG AATGAAAAGA ACCCGGGACT CCCAAAGACG CTAGA	ATGTGT 50
GAAGATCCTG ATCACTCATT GGGTGTCTGA GTTCTGCGAT ATTC	
CAGCCAATGA GCTTACTGTT CTCGTGGGGG GTTTGTGAGC CTTGG	
	CCTTT 200
CACGTAAAAA AGTAGTCCAG AGTTTACTAC ACCCTCCCTC CCCC	
	CCGTAT 300
AGAACTCTTC CGGAGGAAGG AGGGAGGACC CCCCCCTTT GCTCT	
CATGCATTGT GTCAACGCCA TTGCACTGAG CTGGTCGAAG AAGTA	
CTAGCTTGCG ACTCTACTCT TATCTTAACT TAGCTCGGCT TCCTG	
ACCOTTGTG CC	
ATG TCT GAT AAC AAG AAA CCA GAC AAA GCC CAC AGT G	462
GGT GGT GAC GGT GAT GGG AAT AGG TGC AAT TTA TTG C	
TAC TCC CTG GAA GAA ATT CTG CCT TAT CTA GGG TGG C	
	ATG TTC 630
	STG GCC 672
The same and the same and the second the second sec	<del>-</del> -
	FAC GAC 756
	SAT GAT 798
	CA GAA 840
	CC GGA 882
	TT CCT 924
GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG A	TG ATT 966
TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT ATA C	CA GTG 1008
	CT GAT 1050
	AG GAG 1092
GAG GAG GAA GAG GAA ATG GGA AAC CCG GAT GGC TTC T	CA CCT 1134
TAG	1137
GCATGCAGTT GCAAAGCCCA GAAGAAAGAA ATGGACAGCG GAAGA	AGTGG 1187
TTGTTTTTTT TTCCCCTTCA TTAATTTTCT AGTTTTTAGT AATCC	AGAAA 1237
ATTTGATTTT GTTCTAAAGT TCATTATGCA AAGATGTCAC CAACA	GACTT 1287
CTGACTGCAT GGTGAACTTT CATATGATAC ATAGGATTAC ACTTG	TACCT 1337
GTTAAAAATA AAAGTTTGAC TTGCATAC	1365

- (2) INFORMATION FOR SEQUENCE ID NO: 5:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 4698 base pairs
    - (B) TYPE: nucleic acid
  - (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: genomic DNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

	50
ACCACAGGAG AATGAAAAGA ACCCGGGACT CCCAAAGACG CTAGATGTGT	100
GAAGATCCTG ATCACTCATT GGGTGTCTGA GTTCTGCGAT ATTCATCCCT	150
CAGCCAATGA GCTTACTGTT CTCGTGGGGG GTTTGTGAGC CTTGGGTAGG	
AAGTTTTGCA AGTTCCGCCT ACAGCTCTAG CTTGTGAATT TGTACCCTTT	200
CACGTAAAAA AGTAGTCCAG AGTTTACTAC ACCCTCCCTC CCCCCCCCCA	250
CCTCGTGCTG TGCTGAGTTT AGAAGTCTTC CTTATAGAAG TCTTCCGTAT	300
AGAACTCTTC CGGAGGAAGG AGGGAGGACC CCCCCCTTT GCTCTCCCAG	350
CATGCATTGT GTCAACGCCA TTGCACTGAG CTGGTCGAAG AAGTAAGCCG	400
CTAGCTTGCG ACTCTACTCT TATCTTAACT TAGCTCGGCT TCCTGCTGGT	450
ACCCTTTGTG CC	462
ATG TOT GAT AAC AAG AAA CCA GAC AAA GCC CAC AGT GGC TCA	504
GGT GGT GAC GGT GAT GGG AAT AGG TGC AAT TTA TTG CAC CGG	546
TAC TCC CTG GAA GAA ATT CTG CCT TAT CTA GGG TGG CTG GTC	588
TTC GCT GTT GTC ACA ACA AGT TTT CTG GCG CTC CAG ATG TTC	630
ATA GAC GCC CTT TAT GAG GAG CAG TAT GAA AGG GAT GTG GCC	672
TGG ATA GCC AGG CAA AGC AAG CGC ATG TCC TCT GTC GAT GAG	714
GAT GAA GAC GAT GAG GAT GAG GAT GAC TAC TAC GAC GAC	756
GAG GAC GAC GAC GAT GCC TTC TAT GAT GAT GAG GAT GAT	798
GAG GAA GAA GAA TTG GAG AAC CTG ATG GAT GAT GAA TCA GAA	840
GAT GAG GCC GAA GAA GAG ATG AGC GTG GAA ATG GGT GCC GGA	882
GCT GAG GAA ATG GGT GCT GGC GCT AAC TGT GCC T	916
GTGAGTAACC CGTGGTCTTT ACTCTAGATT CAGGTGGGGT GCATTCTTTA	966
CTCTTGCCCA CATCTGTAGT AAAGACCACA TTTTGGTTGG GGGTCATTGC	1016
TEGAGCCATT CCTEGCTCTC CTETCCACGC CTATCCCCGC TCCTCCCATC	1066
CCCCACTCCT TGCTCCGCTC TCTTTCCTTT TCCCACCTTG CCTCTGGAGC	1116
TTCAGTCCAT CCTGCTCTGC TCCCTTTCCC CTTGCTCTC CTTGCTCCCC	1166
TCCCCCTCGG CTCAACTTTT CGTGCCTTCT GCTCTCTGAT CCCCACCCTC	1216
TCCCCCTCGG CTCAACTTTT CGTGCCTTCT GCTCTCTGAT CCCCACCTCTCC	1266
TTCAGGCTTC CCCATTTGCT CCTCTCCCGA AACCCTCCCC TTCCTGTTCC	1316
CCTTTTCGCG CCTTTTCTTT CCTGCTCCCC TCCCCCTCCC TATTTACCTT	1366
TCACCAGCTT TGCTCTCCCT GCTCCCCTCC CCCTTTTGCA CCTTTTCTTT	1416
TCCTGCTCCC CTCCCCTCC CCTCCCTGTT TACCCTTCAC CGCTTTTCCT	1416
CTACCTGCTT CCCTCCCCT TGCTGCTCCC TCCCTATTTG CATTTTCGGG	1516
TGCTCCTCCC TCCCCCTCCC CCTCCCTCCC TATTTGCATT TTCGGGTGCT	1566
CCTCCCTCCC CCTCCCCAGG CCTTTTTTTT TTTTTTTTTT	
TTGGTTTTTC GAGACAGGGT TTCTCTTTGT ATCCCTGGCT GTCCTGGCAC	1616
TCACTCTGTA GACCAGGCTG GCCTCAAACT CAGAAATCTG CCTGCCTCTG	1666
CCTCCCAAAT GCTGGGATTA AAGGCTTGCA CCAGGACTGC CCCAGTGCAG	1716
GCCTTTCTTT TTTCTCCTCT CTGGTCTCCC TAATCCCTTT TCTGCATGTT	1766
AACTCCCCTT TTGGCACCTT TCCTTTACAG GACCCCCTCC CCCTCCCTGT	1816
TTCCCTTCCG GCACCCTTCC TAGCCCTGCT CTGTTCCCTC TCCCTGCTCC	1866
CCTCCCCCTC TTTGCTCGAC TTTTAGCAGC CTTACCTCTC CCTGCTTTCT	1916
GCCCCGTTCC CCTTTTTGT GCCTTTCCTC CTGGCTCCCC TCCACCTTCC	1966
AGCTCACCTT TITGTTTGTT TGGTTGTTTG GTTGTTTGGT TTGCTTTTTT	2016
TTTTTTTTTT GCACCTTGTT TTCCAAGATC CCCCTCCCCC TCCGGCTTCC	2066
CCTCTGTGTG CCTTTCCTGT TCCCTCCCCC TCGCTGGCTC CCCCTCCCT	2116

	TCTGCCTTTC	CTGTCCCTGC	TCCCTTCTCT	GCTAACCTTT	TAATGCCTTT	2166
		CTCCCCCCTC				2216
		CTCCCCTTCC				2266
		GCCTGTCACC				2316
		TTTACCCCTT				2366
		CCAGCCGCCC				2416
		ATCACTTCCC				2466
		CTTCCTATCT				2516
		TCTCCTCCCT				
		TACCCTGCCT				2566
						2616
		CTCTCAATTC				2666
		TTCTCCCTTA				2716
		TTCTCCCTCC				2766
		TCTCTCCTCT				2816
		AGACCCTACA				2866
		AGGAGGCAAG				2916
		GAAAATAAGG				2966
		TATAACCCTA				3016
		GCTGCTTCTT				3066
		TCCATGCTTG				3116
		ACTAGGGGCC				3166
		TCCCCCTAAA				3216
	TCCTTCTACA	GGTGAGAAGT	GGAAAAATTG	TCACTATGAA	GTTCTTTTTA	3266
		ACTTGGAACC			CIGCTITCIT	3316
	TTGCTAAAAT	ATTCTTTCTC	ACATATTCAT	ATTCTCCAG		3355
	GT GTT CCT	GGC CAT CA	T TTA AGG A	AG AAT GAA	GTG AAG TGT	3396
					CTG GTG TCT	3438
					AGG TGT GAA	3480
					GAA GAA GAA	3522
					CCG GAT GGC	3564
	TTC TCA CCT					3576
	GCATGCAGGT	ACTGGCTTCA	CTAACCAACC	ATTCCTAACA	ТАТСССТСТА	3626
		TCTTTTTAAA				3676
		TTAATAAGTA				3726
		AACAGAAGTC				3776
		TACTTACTAC				-
		AGATCATGCA				3826
		ACCTTTGAGA				3876
		ATCACACGCC				3926
	TTCTGATTTT	TTTCATTTCT	AGACCTGTGG	1000001101	AMCARARMOM	3976
	CTTAAAATTT	CCTTCATCTT	127010C1G1GG	TITIONOGO	MIGMANATUT	4026
		TTCAAATTCT				4076
		AAAAAAAATG				4126
		GGCTTAGGGA				4176
		CTGAGAAGCA				4226
						4276
		GTGAGGTTGA				4326
		TAACAGCTAA				4376
		CTCCTTGAGA .				4426
		GTATTCTAAT				4476
		CCCAGAAGAA				4526
		TTCATTAATT				4576
		AAGTTCATTA				4626
(	gcatggtgaa (	CTTTCATATG	atacatagga '	TTACACTTGT :	acctgttaaa	4676
2	AATAAAAGTT '	TGACTTGCAT .	AC			4698

- (2) INFORMATION FOR SEQUENCE ID NO: 6:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 9 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Leu Pro Tyr Leu Gly Trp Leu Val Phe

- (2) INFORMATION FOR SEQUENCE ID NO: 7: (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2418 base pairs
    - (B) TYPE: nucleic acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: genomic DNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

GGATCCAGGC	CCTGCCAGGA	AAAATATAAG	GGCCCTGCGT	GAGAACAGAG	50
GGGGTCATCC	ACTGCATGAG	AGTGGGGATG	TCACAGAGTC	CAGCCCACCC	100
TCCTGGTAGC	ACTGAGAAGC	CAGGGCTGTG	CTTGCGGTCT	GCACCCTGAG	150
GGCCCGTGGA	TTCCTCTTCC	TGGAGCTCCA	GGAACCAGGC	AGTGAGGCCT	200
TGGTCTGAGA	CAGTATCCTC	AGGTCACAGA	GCAGAGGATG	CACAGGGTGT	250
GCCAGCAGTG	AATGTTTGCC	CTGAATGCAC	ACCAAGGGCC	CCACCTGCCA	300
CAGGACACAT	AGGACTCCAC	AGAGTCTGGC	CTCACCTCCC	TACTGTCAGT	350
CCTGTAGAAT	CGACCTCTGC	TGGCCGGCTG	TACCCTGAGT	ACCCTCTCAC	400
TTCCTCCTTC	AGGTTTTCAG	GGGACAGGCC	AACCCAGAGG	ACAGGATTCC	450
CTGGAGGCCA	CAGAGGAGCA	CCAAGGAGAA	GATCTGTAAG	TAGGCCTTTG	500
TTAGAGTCTC	CAAGGTTCAG	TTCTCAGCTG	AGGCCTCTCA	CACACTCCCT	550
CTCTCCCCAG	GCCTGTGGGT	CTTCATTGCC	CAGCTCCTGC	CCACACTCCT	600
GCCTGCTGCC	CTGACGAGAG	TCATCATGTC	TCTTGAGCAG	AGGAGTCTGC	650
ACTGCAAGCC	TGAGGAAGCC	CTTGAGGCCC	AACAAGAGGC	CCTGGGCCTG	700
GTGTGTGTGC	AGGCTGCCAC	CTCCTCCTCC	TCTCCTCTGG	TCCTGGGCAC	750
			AGATCCTCCC		800
AGGGAGCCTC	CGCCTTTCCC	ACTACCATCA	ACTTCACTCG	ACAGAGGCAA	850
			GAGGGGCCAA		900
TATCCTGGAG	TCCTTGTTCC	GAGCAGTAAT	CACTAAGAAG	GTGGCTGATT	950
TGGTTGGTTT	TCTGCTCCTC	AAATATCGAG	CCAGGGAGCC	AGTCACAAAG	1000
GCAGAAATGC	TGGAGAGTGT	CATCAAAAAT	TACAAGCACT	GTTTTCCTGA	1050
			GCTGGTCTTT		1100
TGAAGGAAGC	AGACCCCACC	GGCCACTCCT	ATGTCCTTGT	CACCTGCCTA	1150
			AATCAGATCA		1200
			TGCAATGGAG		1250
CTCCTGAGGA	GGAAATCTGG	GAGGAGCTGA	GTGTGATGGA	GGTGTATGAT	1300
			AGGAAGCTGC		1350
			CAGGTGCCGG		1400
			GGCCCTCGCT		1450
ATGTGAAAGT	CCTTGAGTAT	GTGATCAAGG	TCAGTGCAAG	AGTTCGCTTT	1500
			AGAGAGGAGG		1550
•			GAGGGGGACT		1600
			CTGCCTCGTG		1650
			TGTTCTCAGT		1700
			TTGTTCTCTT		1750
			TGAACTTCAG		1800
			TATATAGTTT		1850
			ATTCTATTTT		1900
			AATGTGAAAA		1950
			AAGAGATAGT		2000
			TAAAGATATA		2050
			GAAATTAAAT		2100
			TCCATGCACT		2150
TTTTTGGAAG	GCCCTGGGTT	AGTAGTGGAG	ATGCTAAGGT	AAGCCAGACT	2200

CATACCCACC C	ЭЭТЭЭЭАТА	TAGAGTCTAG	GAGCTGCAGT	CACGTAATCG	2250
AGGTGGCAAG A	ハカニサン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	AAGATGTAGG	GAAAAGTGAG	AGAGGGGTGA	2300
GGGTGTGGGG	AUGUCCUUCY	CACTCCTCCA	CTCTCAATGC	CCTGAGCTGG	2350
GGCATTTTGG G	CTCCGGGTGA	A CARCOS CALLO	CTTCTCCCCC	ACCTGATTGT	2400
GGCATTITGG G		ACTGCAGTIC	CIICIGGGG		2418

- (2) INFORMATION FOR SEQUENCE ID NO: 8: (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 5724 base pairs
  - (B) TYPE: nucleic acid
  - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: genomic DNA
  - (ix) FEATURE:
    - (A) NAME/KEY: MAGE-1 gene
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

CCCGGGGCAC         CATTGGARAT         CCTCCCCCTA         CACCCCCAGC         CAGGCAGCC         100           AGAATCCGGT         TCCACACCC         CTCTCAACCC         AGGCAGGC         150           AGAATCCGGT         TCCACCCCCC         CTCTCAACCC         AGGGAAGCCC         AGGTGCCCAG         150           ATGTGACCC         ACTGACTTCA         GCATTAGTGG         CTAGAGGAGA         AGCGACTCTC         250           CGGTCTGAGG         ACGGTGACATA         CCCCTTCATG         CACCCCCGG         CACTCACCC         300           AGATAGAGGA         CCCCAAATAA         TCCCTTCTAG         CCCCCTTGG         ACCATCTGG         350           GGTGGACTC         TCAGGCTGG         CCCCAGCCCC         CCCCCTTAGG         ACCACTCTGG         400           CTGGGGACTC         CTCCAGCCCC         CTCCAGCACC         CTCAACCCCAC         CCCCACTCCC         450           AGGGCTGAGG         GTCCCTAAAC         ACCCCCTCT         CATTCTCACCC         CCCACCCCCA         CCCCACTCCC         550           ATGCTCACCC         CCCGTGACCCC         CCCACCCCCAC         CCCCACCCCCA         CCCCCCCCCC         660           ATTCCACCCC         CCACCCCCCCC         CCCCCACCCCCC         CCCCCACCCCC         CCCCCACCCCC         650           AGGGACGGC         TAGACTCACC						
AGAATCCGGT TCCACCCCTG CTCTCAACCC AGGGAAGCCC AGGTGCCCAG ATCTGACGCC ACTGACTTGA GCATTAGTGG TTAGAGAGAA GCGAGGTTTT COCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCGGGGCAC	CACTGGCATC	CCTCCCCCTA	CCACCCCAA	TCCCTCCCTT	50
ATGTGACGCC         ACTGACTTGA         GCATTAGTGG         TTAGAGAGAA         GCGAGGTTTT         200           CGGTGTTGAGG         GGGAGCTTGA         GGGAGGGGG         CCCAGCTCTG         250           TAAGGAGGA         AGGTGACATG         CTGAGGGAGC         CACTTACCCC         300           AGATAGAGGA         CCCCAAATAA         TCCCTTCATG         CCATTCTGG         350           GGTGGACTC         CTAGGCTGG         CCACCCCCAG         CCCCTTCTATGG         450           AGAGGCAGC         GTCCAGGCTC         CCCCACTCCA         ATTCTCAGG         450           AGGGCTGAGG         GTCCCTAAGA         CCCCACTCCA         CCCCACTCCA         550           ATGCTCACTC         CCCACCCCAC         CCCACCCCAC         CCCCACCCCA         550           ATTCCACCCT         CCCACCCCAC         CCCACCCCAC         CCCACCCCAC         660           CCCCACACCC         CCCACCCCCA         CCCCACCCCA         CCCCACCCCA         700           CAGGCAGATC         CCCACCCCCA         CCCCACCCCA         700         CACCCACCCA         700           CAGGCAGGAT         CCCACCCACC         CCCACCCCAC         CCGACCCCAC         700         CACCCACCCA         700           CAGGAGAGGG         TAGAGTTCGG         CCGGACCACCA         CCCACCCACCAC	TACGCCACCC	ATCCAAACAT	CTTCACGCTC	ACCCCCAGCC	CAAGCCAGGC	100
CGGTCTGAGG         GGGGGCTTGA         GATCGGTGGA         GGGAAGCGGG         CCCAGCTCTG         250           TAAGGAGGCA         AGGTGACATG         CTGAGGGAGG         ACTTACCCC         300           AGATAGAGGA         CCCCAAATAA         TCCCTTCATG         CCACTCTCG         ACCATCTCGT         350           GGTGGACTC         CTAGGCTGG         CCCCCCCCCC         CCCCTTCCT         GCTTAACCA         400           CTGGGGACTC         GAAGTCAGGG         CTCCGGTGTGA         CCCCCTTAAGG         CTCGGGACCA         ATTCTCAAGG         550           AGGGCTGAGG         GTCCCCATAGA         CCCCACTCCC         GGGCCACACC         CCCCACCCCA         CCCCCACCCCA         600           CCCCACATCC         CCCACCCCCA         CCCACCCCCA         CCCCACCCCCA         CCCCCACCCC         650           ATTCCACCCT         CCCACCCCAC         CCCACCCCAC         CCCCACCCCCA         CCCCCACCCC         650           ATTCCACCCT         CCCACCCCAC         CCCACCCCAC         CCCCACCCCCA         CCCCCACCCC         700           CAGGCACGAT         CCGCGCATTG         CCACCCACCC         CCGCATCCAC         CCCACCCACC         750           AGGCAAGGAT CACCAGCTACC         CCCACCACCCA         CCCACCCACCC         CCTCACACCC         CCTCACACCC         CCTCACACCC         CCTCACACCCC<	AGAATCCGGT	TCCACCCCTG	CTCTCAACCC	AGGGAAGCCC	AGGTGCCCAG	150
TAAGGAGGCA         AGGTGACATC         CTGAGGGAGG         ACTTAGCCC         300           AGATAGAGGA         CCCCAAATAA         TCCCTTCATG         CCAGTCCTGG         ACCATCTGGT         350           GGTGGACTTC         TCAGGCTGGG         CCCCCCCAG         CCCCCTTGCT         GCTTAAACA         400           CTGGGGACTC         GAAGTCAGAG         CTCCGTGTGA         TCAGGGAGG         GCTCCTAAGG         550           AGGGCTGAGG         GTCCCTAAGA         CCCCACTCC         GTGACCCAA         CCCCACTCCA         550           ATGCTCACCC         CCGCACCCCA         ACCCCCCAC         CATTCTCATT         CCAACCCCAC         600           CCCCACACCC         CCCACCCCAC         CCCACCCCAC         CACCCCCCCC         CACCCCCCCC         650           ATTCCACCT         CACCCCCAC         CCCACCCCCA         CCCCACCCC         CACCCCACC         CACCCCCCCC         650           ATTCCACCT         CACCCCACC         CCCACCCCCA         CCCCACCCCC         CACCCCACC         CACCCCACC         750           CAGGCACCAT         TCCTCAACC         CCCAGCCACC         CAGGACACC         CTGACCCCAC         ACTTCTAACA         750           CACTGAGAG         CTGACCCACC         ACACTCCCAC         CCACTCCCAC         CCACTCCACC         CCACTCCACC         CCACTCCACC	ATGTGACGCC	ACTGACTTGA	GCATTAGTGG	TTAGAGAGAA	GCGAGGTTTT	200
AGATAGAGGA         CCCCAAATAA         TCCCTTCATG         CCAGTCCTGG         ACCATCTGGT         350           GGTGGACTTC         TCAGGCTGGG         CCACCCCCAG         CCCCCTTGCT         GCTTAAACCA         400           CTGGGGACTC         GAAGTCAGAG         CTCCGTGTGAT         TCAGGGAAG         GCTCCTTAAGG         450           AGGGCTAGGG         GTCCAGGCTC         TCCCAGCCC         CTGCCCACCC         550           AGGGCTAGCC         CCCCCCCCCC         CCCCCCCCCC         CCCCCCCCCC         CCCCCCCCCC         600           CCCCACACTC         CCCCCCACC         CCCCACCCCA         CCCCCACCCC         650           ATTCCACCCT         CCCACCCCAC         CCCACCCCAC         CCCACCCCAC         700           CAGGCAGGAT         CCGCCACTCC         CACCCCACC         700           CAGGCAGGAT         TGCCACTGAC         CCCACCCCAC         700           CAGGGACGGC         TAGACTTCAG         CCCACCCCCC         CCCACCCCAC         700           GAGGACGGG         TAGACTTCAG         CCCAGCCCCC         CCTCGTCAGG         CTTCGTCAGG         850           AGGCAAGGTG         TAGGACTCAC         CCCAGCACCC         CCTGCCCACC         CCTGCCCACC         CCTGCCCCCCC         CCTGCCCCCCC         CCCAGCACCC         CCCAGCACCCC         CCCAACCCCCC <td>CGGTCTGAGG</td> <td>GGCGGCTTGA</td> <td>GATCGGTGGA</td> <td>GGGAAGCGGG</td> <td>CCCAGCTCTG</td> <td>250</td>	CGGTCTGAGG	GGCGGCTTGA	GATCGGTGGA	GGGAAGCGGG	CCCAGCTCTG	250
GGTGGACTTC         TCAGGCTGGG         CCACCCCCAG         CCCCTTGCT         GCTTAAACCA         400           CTGGGGACTC         GAAGTCAGAG         CTCCGTGTGA         TCAGGGAAGG         GCTGCTTAGG         450           AGAGGCAGC         GTCCAGGCTC         TGCCAGACAT         CATGCTCAGG         ATTCTCAAGG         500           AGGGTGAGG         GTCCCTAAGA         CCCCACTCC         CGTGACCCAA         CCCCACTCCA         550           ATGCTCACTC         CCGTGACCCA         ACCCCCCCCC         CCACCCCCAC         CCACCCCCAC         600           CCCCACACTC         CCCACCCCAC         CCCACCCCAC         CCACCCCAC         CCACCCCACC         700           CAGGCAGGAT         CACCCCCACC         CCCAGCCCAC         CCACCCCACC         700           CAGGACGGAT         TGCGATTGT         GGGGAGACA         TCCGGGTGC         CGGGATGGAC         750           GCCACTGGAT         TGCGATGAC         CTGACCCACC         CATGCCAAGC         TTCCATTCTG         800           AGAGGCCCA         AATATTCCAC         CCCGGCCCTT         CTTGGCCACC         CTTGGCCACC         ACTCCAAAAC         1000           GCATGAAGA         CACGACTGT         TTGGAGACCC         GCTCTGACAC         CCAGACCACC         CCCAAGACTGC         CCAAGACTGC         CCAAGACTGC         CCAAGACTG	TAAGGAGGCA	AGGTGACATG	CTGAGGGAGG	ACTGAGGACC	CACTTACCCC	300
CTGGGGACTC         GAAGTCAGAG         CTCCGTGTGA         TCAGGGAAGG         GCTCCTTAGG         450           AGAGGGCAGC         GTCCAGGCTC         TGCCAGACAT         CATGCTCAGG         ATTCTCAAGG         500           AGGGCTGAGG         GTCCCTAAGA         CCCCACTCCC         GTGACCCAAC         CCCCACTCCA         550           ATGCTCACCC         CCCTCAACCC         ACCCCCCCCA         CCCCCACTCC         CATGTCCAT         CCGCCCACCC         600           CCCCACACCC         CCCCACCCCCA         CCCCCACCCC         CAGCCCCACC         700         650           ATTCCACCCT         TGCGCATTCC         CCCAGCCCCCA         CGCCCACCCC         700         750           GCCACTGACT         TGCGCATTCT         GGGGCAGAGA         AAGCCAGGCC         750         750           AGGCAAGGT         AGAGGCTCAG         GGAGGACTGA         GGACCCCGC         ACTCCAAATA         900           AGGCAAGGT         AGAGGCTCAG         CGCAGCCCCT         GCTGGCCCACC         ACTGCCACCC         950           CCCTTGAGACA         CATCTCACCC         TGGGCTGCCC         CCCAGCCCCCA         ACTCCAAAAC         1000           CCCTTGACACC         TCAGCCACCA         GCCATTCCCAA         CCCATCCCAC         CCCATCCCCCA         TCCTACTCC         TACTCCCACC         CCAACCACCC	AGATAGAGGA	CCCCAAATAA	TCCCTTCATG	CCAGTCCTGG	ACCATCTGGT	350
AGAGGGCAGC         GTCCAGGCTC         TGCCAGACAT         CATGCTCAGG         ATTCTCAAGG         500           AGGGCTGAGG         GTCCCTAAGA         CCCCACTCCC         GTGACCCAAC         CCCCACTCCA         550           ATGCTCACTC         CCGTGACCCA         ACCCCCTCT         CATTGTCATT         CCAACCCCCA         600           CCCCACACCC         CACCCCCACC         CCCCACCCCA         CGGCCCAGCC         650           ATTCCACCCT         CACCCCCAC         CCCAACCCCA         CGCCCACTCC         CAGGCACGCC           CAGGCAGGAT         CGGGTTCCCG         CCCAGCCCAA         CGCCACTGCC         CGAGGTGAC         750           GGCCACTGACT         TGGGCACTGAC         CGCAGAGGAC         CTGGGCACGG         TTCCATTCTC         800           AGGGAAGGCCCA         AATATTCCAG         CCCCGCCCTT         GCTGCCACC         ACTCCAAATA         900           GGGAGACCA         CATTCTCACCC         CCCAGGCTCC         CCTGACCCCC         ACTCCAAAAA         1000           CCTTGAGCAG         CACCAGGTTC         TTTCCCCAA         GCCTGCCCCA         GCTGTGACC         CCAAGGCCCA         GCTGTGACC         CCAATCCCCA         CCCATCCCAC         CCCATCCACC         CCAACCACCC         TCCCTACTCC         CCCACCCACC         TTCCCCATCC         CCCACCCACC         TTCTGCCACC         TCCCTG	GGTGGACTTC	TCAGGCTGGG	CCACCCCCAG	CCCCCTTGCT	GCTTAAACCA	400
AGGGCTGAGG         GTCCCTAAGA         CCCCACTCCC         GTGACCCAAC         CCCCACTCCA         550           ATGCTCACTC         CCGTGACCCA         ACCCCTCTT         CATTGTCATT         CCAACCCCCA         600           CCCCACACTC         CCCCACCCCAT         CCCTCAACCC         TGATGCCCAT         CCGCCCAGCC         650           ATTCCACCCT         CACCCCCAC         CCCAGCACCAC         CGCCCAGCCC         700           CAGGCAGGAC         CCGGCAGACA         TCCGGCTGCC         CGGCATTGAC         750           AGGCAAGGTC         TGGGCATTCTG         GGGGAGGAC         CTGACCCAGC         CTCTGTCAGG         850           AGGCAAGGTC         AGAGGCTGAG         GGAGGCCCCC         CTGGCCCACC         ACTCCAAATA         900           GGAGACCCCA         AATATTCCAG         CCCCGCCCTT         GCTGCCACCC         ACTCCAAAAG         1000           CCTTGACAGC         ACGCAGGTTC         TTTCCCCCAA         GCTCTCAAAAG         1000           CCTTGACAGG         CCACTCCCCAA         AGAGGGAGG         CTGTGGCCC         CCAGACCCA         1150           ACTCCAATCAC         TCAGCACCAA         AGAGGGAGG         CTGTGGGCC         CCAACCACCA         1200           CCCATCCAC         CCCATCCCAC         CCCATCCCCA         TCCCTACCCC         TCCTCACCCC <td>CTGGGGACTC</td> <td>GAAGTCAGAG</td> <td>CTCCGTGTGA</td> <td>TCAGGGAAGG</td> <td>GCTGCTTAGG</td> <td>450</td>	CTGGGGACTC	GAAGTCAGAG	CTCCGTGTGA	TCAGGGAAGG	GCTGCTTAGG	450
ATGCTCACTC CCGTGACCCA ACCCCCTCTT CATTGTCATT CCAACCCCCA 600 CCCCACATCC CCCACCCCAT CCCTCAACCC TGATGCCCAT CCGCCCAGCC 650 ATTCCACCCT CACCCCCACC CCCACCCCCA CGCCCACTCC CACCCCCACC 700 CAGGCAGGAT CCGGTTCCCG CCAGGCAGAA TCCGGGTGCC CGGATGTGAC 750 GCCACTGACT TGCGCATTGT GGGGCAGAGA CAAGCCAGGT TTCCATTCTG 800 AGGCAAGGTC AGAGGCTGAG GGAGGAACC CTGACCCAGG TTCCATTCTG 850 AGGCAAGGTC AGAGGCTGAG GGAGGACTCA GGACCCCAGC CTTGTGAGG 850 GCAGAGCCCCA AATATTCCAG CCCCACCCCTT GCTGCCAGCC CTGGCCCACC 950 CGCGGGAAGA CGTCTCAGCC TGGGCTCCC CCAGACCCC CTGGCCCACC 950 CCCTTGAGAGA CACCAGGTTC TTCTCCCCAA GCTCCAAAAA 900 CCTTGAGAGA CACCAGGTTC TTCTCCCCAA GCTCTGAAAA 1000 CCTTGAGCACA GCACCACCA AGAGGGAGG CCCGCCCT GCTCCAAAAA 1000 CCCTTGAGAGA CACCAGGTTC TTCTCCCCAA GCTCTGAAAA 1000 GGCATCAAGA TCAGCACCCA AGAGGGAGG CTGTGGGCCC CCAAGACTGC 1150 ACTCCAATCC CCACTCCCAC CCCATTCGCA TTCCCATTCC CCAAGACTGC 1150 ACTCCAATCC CACCTCCAC CCCATTCGCA TTCCCATTCC CAAGACTGC 1200 CCCATTCACC CACCTCACC CCCACCCCCA TCCCTACTCC TACTCCGTCA 1250 CCCATCGCCT CACCTACACC CCCACCCCCA TCCCTACTCC TACTCCGCACC 1300 CCCATCGCCT CCCCCATCTC GGCAGAATCC GCCCCAACCC TCTCTCCAAC 1250 CCCATCGCCT CCCCCATCTC GGCAGAATCC GCTCTCAACC TTCTCCCACC 1300 CCCATGGGAG GAAGCCAGGT TCATTTAATG GTTCTCTCAT TGAACCTCAC 1450 AGATCTGAG GAAGCCAGGT TCATTTAATG GTTCTGAGG GCGCCTTGAG 1500 ATCCACTGAG GAAGCCAGGT TCATTTAATG GTTCTGAGG GCGCCTTGAG 1500 ATCCACTGAG GAAGCCCCC CGTCCCGCC CAGCCCCC CAGGACGAT 1650 ATCCACTGAG GAAGCCACC CGACCCCC CGCCCCCACC CAGGACGAT 1650 ATCCACTGAG GAAGCCAGG CACACCCC CAGCCCCC CAGGACGAT 1650 ATCCAGTACC ACCCCTCCC CCCCCCCCC CGCCCCCCCC CAGCCCCCACC CACCCCCACC CAGGACAACC CACCCCCACC CACCCCCACC CAGGACACC CACCCCCACC CAGGACAACC CACCCCCACC CACCC	AGAGGGCAGC	GTCCAGGCTC	TGCCAGACAT	CATGCTCAGG	ATTCTCAAGG	500
CCCCACATCC CCCACCCCAT CCCTCAACCC TGATGCCCAT CCGCCAGCC 650 ATTCCACCCT CACCCCCAC CCCACCCCCA CGCCCACTC CACCCCCACC 700 CAGGCAGGAT CCGGTTCCCG CCAGGCAGAACA TCCGGGTGCC CGGATGTAC 750 GCCACTGACT TGCGCATTGT GGGGCAGAGA GAAGCCAGGT TTCCATTCTG 800 AGGGAAGGCC TAGAGTTCGG CCGAAGGAAC CTGACCCAGG TTCGATCTAG 850 AGGGAAGGT AGAGCTCAG GGAGGATCA GGACCCCGC ACTCCAAATA 900 GCGAGGCCCCA AATATTCCAG CCCCCCCTT GCTGCCAAGC CTGGCCCACC 950 CGCGGGAAGA CGTCTCAGCC TGGGCTCCC CCAGACCCCT GCTCCAAAAG 1000 CCTTGAGAGA CACCAGGTTC TTCTCCCCAA GCTCTGGAAT CAGAGGTTGC 1050 CCCTTGAGAGA CACCAGGTTC TTCTCCCCAA GCTCTGGAAT CAGAGGTTGC 1050 CGCATCAAGA TCAGCACCA AGAGGGAGGG CTGTGGGCCAC GCCCTCAAAAG 1000 GCCATCAAGA TCAGCACCCA AGAGGGAGG CTGTGGGCCCC CCAAGACTGC 1150 ACTCCAATCC CCACTCCCAC CCCATTCGCA TCCCTACTCC TACTCCCTA 1250 CCCATCTCCT CAGCTACACC TCCACCCCCA TCCCTACTCC TACTCCCTCA 1250 CCCATCTCCT CAGCTACACC CCCAGCACCA TCCCTTCATCC TACTCCCTCA 1250 CCCATCGCCT CCCCCATCCT GGCAGAATCC GCTCTCAACC 1200 CCCATCGCCT CCCCCATCTC GGCAGAATCC GCTCTCAACC 1200 CCCAGGGAAGC CCTGGTAGGC CCCAGCCCTCA TCTCTCTCAT TCTGCCACC 1350 CCCATCGCCT CCCCCATCTC GGCAGAATCC GCTCTCATCC TCTCTCAAC 1450 AGATCTGAGA GAAGCCAGGT TCATTTAATG GTTCTCTCAT TGAACCTCAC 1450 AGATCTGAGA GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGGCTTGAG 1500 ATCCACTGAG GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGGCTTGAG 1500 ATCCACTGAC ACCCTCCCC CCAGCCCCC AGGTAGATGG CCCCAAAATG 1600 ATCCACTGAG GAAGCCAGGT TAAGGCTCC CAGCCCCCACC TGAGCAGAT 1650 ATCCACTGAC ACCCCTCCC CCAGCCCCC AGGTAGATGG CCCCAAAATG 1600 ATCCACTGAG GAAGCAGGG CACACCCC CGCCCCACC TAACCCACAG 1700 GCCATCTGAGA GAACCCCC CGTCCCGCC CAGGCATCA TAACCACACG 1700 GCCATCGGGA GGAATGAGG GTCCAGCACC CACCCCCACC TAACCACACG 1700 ACCCTGGGAG GGAACTAGG GTCCAGCACC CACCCCCACC TAACCACACG 1700 ACCCTGGGAG GGAACTAGG GTCCAGCACC CACCCCCACC TAACCACACG 1700 ACCCTGGGAG GGAACTAGG GTCCAGCACC CACCCCCACC CACCCCACC TAACCACACG 1700 ACCCTGGGAG GGAACTAGG GTCCAGCACC CACCCCCACC CACCCCACC TAACCACACG 1700 ACCCTGGGAG GGAACTAGG GTCCAGCACC CACCCCCACC CACCCCACC CACCCCCACC TAACCCTCC CACCCCACC CACCCCCACC CACCCCCACC CACCCCCACC CACCCCCACC CACCCCCACC CACCCCCACC CACCCCC	AGGGCTGAGG	GTCCCTAAGA	CCCCACTCCC	GTGACCCAAC	CCCCACTCCA	550
ATTCCACCCT CACCCCACC CCCACCCCA CGCCCACTCC CACCCCACC 700 CAGGCAGGAT CCGGTTCCCG CCAGGAAACA TCCGGGTGCC CGGATGTGAC 750 GCCACTGACT TGCGCATTGT GGGGCAGAGA GAAGCGAGGT TTCCATTCTG 800 AGGGACGGCG TAGAGTTCGG CCGAAGGAAC CTGACCCAGG CTCTGTGAGG 850 AGGCAAGGTG AGAGCCTGAG GGAGGACTGA GGACCCCGC ACTCCAAATA 900 GAGACCCCA AATATTCCAG CCCCGCCCTT GCTGCCAGCC CTGGCCCACC 950 CCGCGGGAAGA CGTCTCAGCC TGGGCTGCCC CCAGACCCCT GCTCCAAAAG 1000 CCTTGAGAGG CACCAGGTTC TTCTCCCCAA GCTCTGGAAC GCCCCAAAAG 1000 GCGATCAAGA CACCAGGTTC TTCTCCCCAA GCTCTGGAAT CAGAGGTTGC 1050 AGGCAATCAGA TCAGCACCCA AGAGGGAGGG CTGTGGACC CCAAGACTGC 1150 ACTCCAATCC CCACTCCCAC CCCATTCGCA TCCCTATCC CCACCCAACC 1200 CCCATCTCCT CAGCTACACC TCCACCCCCA TCCCTACCC TACTCCGTCA 1250 CCCATCCCCC CCCACCCCCAC CCCACCCCCA TCCCTACCC TTCTGCCACC 1300 CCCATCGCCT CCCCCATCT GGCAGACCC TCCCCACCC TTCTGCCACC 1300 CCCATCGCCT CCCCCATCT GGCAGACCC TCCCTCACC TTCTCCCACC 1300 CCCATCGCCT CCCCCATCT GGCAGAATCC GGTTTGCCCC TGCTCTAAC 1450 AGATCTGAGA GAAGCCAGGT TCATTTAATG GTTCTGCACC TGCCCCACC 1450 AGATCTGAG GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGCCTTGAG 1500 ATCCACTGAG GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGCCTTGAG 1500 ATCCACTGAG GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGCCTTGAG 1500 ATCCACTGAG GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGCCTTGAG 1500 ATCCAGGAAG ACCCCTCCTG CCACCCCCC AGCACCACC CCCCAAACCC CGGCCAGACC TCACCCCCC AGCACCAC CCCCACCCCC AGCACCAC CCCCACCCCC AGCACCAC CCCCACCCCC AGCACCAC CCCCACCCCC AGCACCAC CCCCACCCCC AGCACCAC CCCCACCCCC AGCACCAC CCCCCACCCC AGCACCAC CCCCACCCCC AGCACCACC CACCCCCCC CACCCCCCC AGCACCAC CCCCCACCCC CACCCCCCC AGCACCCC CGGCCATC TAACCCACAG 1700 ACCCTGAGGA GGAACTAAG GTCCACCCC CACCCCCCC CACCCCCCC CACCCCCCC CACCCCCC	ATGCTCACTC	CCGTGACCCA	ACCCCCTCTT	CATTGTCATT	CCAACCCCCA	600
CAGGCAGGAT         CCGGTTCCCG         CCAGGAAACA         TCCGGGTGCC         CGGATGTGAC         750           GCCACTGACT         TGCGCATTGT         GGGGCAGGAG         GAAGCGAGGT         TTCCATTCTG         800           AGGGACGGCG         TAGAGTTCGG         CCGAAGGAC         CTGACCCAGG         CTCTGTGAGG         850           AGGGCAGGTG         AGAGGCTGAG         GGAGCCCCCC         ACTCCAAATA         900           GAGAGCCCCA         AATATTCCAG         CCCCGCCCTT         GCTGCCAGCC         CTGGCCCACC         950           CGCGGGAAGA         CCTCTCAGCC         TGGGCTGCC         CCAGACCCCT         GCTCCCAAAG         1000           CCTTGACCAGG         CACCAGGTTC         TTCTCCCCAA         GCTCTGGCAC         GCTCTGCCA         1100           GCCATCAACA         TCAGCACCCA         AGAGGAGGC         CCAAGAGTTC         CCAAGCACCA         1150           ACTCCAATCC         CCACTCCCAC         CCCATTCCCA         TCCCTACTCC         CCAACCACCC         1200           CCCTACCACC         ACCCTCCACC         CCCAACCACC         TTCTTCTCAT         1250           CCCAACCACC         ACCCCCCAAC         TCCTCACCCC         TTCTTCTCAT         1350           CCCAACCACCC         ACCCCCACCAC         TCCACCACCC         TGCTCTCAC         1450	CCCCACATCC	CCCACCCCAT	CCCTCAACCC	TGATGCCCAT	CCGCCCAGCC	650
GCCACTGACT         TGCGCATTGT         GGGGCAGGAG         GAAGCGAGGT         TTCCATTCTG         800           AGGGACGGCG         TAGAGTTCGG         CCGAAGGAAC         CTGACCCAGG         CTCTGTGAGG         850           AGGCAAGGTG         AGAGGCTGAG         GGAGGACTGA         GGACCCCGCC         ACTCCAAATA         900           GAGAGCCCCA         AATATTCCAG         CCCCGCCCTT         GCTGCCAGCC         CTGGCCACC         950           CGCGGGAAGA         CGTCTCAGCC         TGGGCTGCCC         CCAGACCCCT         GCTCTGAAAG         1000           CCTTGACAGA         CACCAGGTTC         TTCTCCCCAA         GCTCTGGAAT         CAGAGGCTGC         1150           GGCATCAAGA         TCAGCACCCA         AGAGGGAGGG         CTGTGGGCCC         CCAAGACTGC         1150           ACTCCAATCC         CCACCTCCAC         CCCATTCGCA         TTCCCATTCC         CCACCCAACC         1200           CCTGACCACC         CCCACCTCAC         CCCCACCCCA         TCCCTACCCC         TTCTGCCCAC         1250           CCCAGCCTCAC         CCCCACCCCCA         TCCCTACCCC         TTCTGCCCAC         1300           CCCAGCCTCAC         CCCCACCCCA         TCCCTACCCC         TTCTCTCACC         1450           CCAGGGAACC         CCCGATTTAAGC         TTATTTAATG         GTTC	ATTCCACCCT	CACCCCCACC	CCCACCCCCA	CGCCCACTCC	CACCCCCACC	700
AGGGACGECG         TAGAGTTCGG         CCGAAGGAAC         CTGACCCAGG         CTCTGTGAGG         850           AGGCAAGGTG         AGAGGCTGAG         GGAGGACTGA         GGACCCCGCC         ACTCCAAATA         900           GAGAGCCCCA         AATATTCCAG         CCCCGCCTT         GCTGCCAGCC         CTGGCCCACC         950           CGCGGGAAGA         CGTCTCAGCC         TGGGCTGCCC         CCAGACCCCT         GCTCTGCAAAAG         1000           CCTTGAGAGA         CACCAGGTTC         TTCTCCCCAA         GCTCTGGAT         CAGAGGTTGC         1050           TGTGACCAGG         GCAGGACCCA         AGAGGGAGG         GCTGTGGCCC         CCAAGACTGC         1100           GCCATCAACA         TCAGCACCCA         AGAGGGAGG         CTGTGGGCCC         CCAAGACTGC         1200           CCCATCCCAC         CCCATTCCCA         TCCCATCCCC         TCCACCCCAA         1250           CCCATCCACC         ACCACCCCA         TCCCCAACCC         TTCTCCATCC         1300           CCCATCCCCC         ACCACCCCCA         CCCCAACCC         TTCTCTCACC         1350           CCCATCCCCC         TCCCCAACC         TCCACCCCCA         TCACCCCACC         TCACCCCACC         TCACCCCACC         TCACCCCACC         TCACCCCACC         TCACCCCACC         TCACCCCACC         TCACCCCACC         <	CAGGCAGGAT	CCGGTTCCCG	CCAGGAAACA	TCCGGGTGCC	CGGATGTGAC	750
AGGCAAGGTG AGAGGCTGAG GGAGGACTGA GGACCCCGCC ACTCCAAATA 900 GAGAGCCCCA AATATTCCAG CCCCGCCCTT GCTGCCAGCC CTGGCCCACC 950 CGCGGGAAGA CGTCTCAGCC TGGGCTGCCC CCAGACCCCT GCTCCAAAAG 1000 CCTTGAGAGA CACCAGGTTC TTCTCCCCAA GCTCTGGAAT CAGAGGTTGC 1050 TGTGACCAGG GCAGGACTGG TTAGGAGAGG GCAGGGCACA GGCTCTGCCA 1100 GGCATCAAGA TCAGCACCCA AGAGGGAGGG CTGTGGGCCC CCAAGACTGC 1150 ACTCCAATCC CCACTCCCAC CCCATTCGCA TCCCCATCC CCACCCAACC 1200 CCCATCTCCT CAGCTACACC TCCACCCCCA TCCCTACTCC TACTCCGTCA 1250 CCCTGACCACC ACCCTCCAGC CCCAGCACCA GCCCCAACCC TTCTGCCACC 1300 CCCATCGCCT CCCCCAACC CCCACCCCCA TCCTCTCAT GTGCCCCACT 1350 CCCATCGCCT CCCCCAACC CCCACCCTCA TCTCTCTCAT GTGCCCCACT 1350 CCCATGGGAAGC CCCGCATCT GGCAGAATCC GGTTTGCCCC TGCTCTCAAC 1450 AGATCTGAGA GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGGCTTGAG 1500 ATCCACTGAG GGGAGTGGTT TTAGGCTCTG TGAGGAGGCA AGGTGAGATG 1550 ATCCACTGAG GGGAGTGGTT TTAGGCTCTG TGAGGAGGCA AGGTGAGATG 1550 ATCCACTGAC ACCCCTGCTG CCACCACCC AGGTAGATGG CCCCAAAATG 1600 ATCCAGTACC ACCCCTGCTG CCACCCCC AGGTAGATGG CCCCAAAATG 1650 ATCCAGTACC ACCCCTGCTG CCACCCCC AGGTAGATGG CCCCAAAATG 1650 ATCCAGGTACC ACCCCTGCTG CCACCCCCC AGGTAGATGG CCCCAAAATG 1650 ACCCTGGCACCCC CGTCCCGTCC CACCCCGCC CAGGACAGAT 1650 ACCCTGGGAG GACCACCCC CGTCCCGTCC CACCCCGCC CAGGACAGAT 1650 ACCCTGGGAG GGACTCAAG GTCCAGCCC CACCCCGC CAGGACAGAT 1650 ACCCTGGGAG GGAACTGAGG GTCCCACCC CACCCTGCC TCCCCACCT TAACCCACAG 1700 ACCCTGGGAG GGAACTGAGG GTCCCACCC CACCCTGCC TCCCCACCT TAACCCACAG 1700 ACCCTGGGAG GGAACTGAGG GTCCCACCC CACCCTGCC CCCAAACTCC 1850 ACCCTGGGAA ATCCCTGCTG TCCACCCC CACCCTGCC CCCAACCTCC 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCCC GAAGCCACGG GAATGGCGC 1950 CAGGCACTCC GATCTTGACG TCCCCATCC GAAGCCACGG GAATGGCGGC 1950	GCCACTGACT	TGCGCATTGT	GGGGCAGAGA	GAAGCGAGGT	TTCCATTCTG	800
GAGAGCCCCA AATATTCCAG CCCCGCCCTT GCTGCCAGCC CTGGCCCACC 950 CGCGGGAAGA CGTCTCAGCC TGGGCTGCCC CCAGACCCCT GCTCCAAAAG 1000 CCTTGAGAGA CACCAGGTTC TTCTCCCCAA GCTCTGGAAT CAGAGGTTGC 1050 TGTGACCAGG GCAGGACTGG TTAGGAGAGG GCAGGCCACA GGCTCTGCCA 1100 GGCATCAAGA TCAGCACCCA AGAGGGAGGG CTGTGGGCCC CCAAGACTGC 1150 ACTCCAATCC CCACTCCCAC CCCATTCGCA TTCCCATTCC CCACCCAACC 1200 CCCATCTCCT CAGCTACACC TCCACCCCCA TCCCTACTCC TACTCCGTCA 1250 CCTGACCACC ACCCTCCAGC CCCAGCCCA GCCCCAACCC TTCTGCCACC 1300 TCACCCTCAC TGCCCCCAAC CCCACCCCCA TCCTCTCTCA TTCTGCCACC 1350 CCCATCGCCT CCCCCATTCT GGCAGAATCC GGTTTGCCCC TGCTCTCAAC 1400 CCCAGGGAAGC CCTGGTAGGC CCGATGTGAA ACCACTGACT TGAACCTCAC 1450 AGATCTGAGA GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGGCTTGAG 1500 ATCCACTGAG GGGAGGGGT TCATTTAATG GTTCTGAGGG GCGGCTTGAG 1500 ATCCACTGAC ACCCCTGCTG CCACCCCCC AGGACACC CCCAACACC AGGTAGATG 1550 CTGAGGGAGG ACTGAGGAGG CACACACCC AGGTAGATG CCCCAAAATG 1600 ATCCAGTACC ACCCCTGCTG CCAGCCCTGG ACCACCCGC CAGGACAGAT 1650 GTCTCAGCTG GACCACCCC CGTCCCGTC CACTCCACT TAACCCACAG 1700 GGCAATCTGT AGTCATAGCT TATGTGACCG GGGCAGGGTT TAACCCACAG 1750 GGCAGGCCC AGGCATCAAG GTCCACCACC CACCCCGCC TCCCACCACC 1850 ACCCTGGGAG GAACTGAGG GTTCCCCACC CACACCTGC CCCCAACCTCA 1850 CACCGCCACC CCACTCACAT TCCCATACCT ACCCCCTACC CCCAACCTCA 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG GAATGGCGGC 1950 CAGGCACTCC GATCTTGACG GACCCCCC GAACCCTCA GAGGGAAAGGG 1950	AGGGACGGCG	TAGAGTTCGG	CCGAAGGAAC	CTGACCCAGG	CTCTGTGAGG	850
CGCGGGAAGA CGTCTCAGCC TGGGCTGCCC CCAGACCCCT GCTCCAAAAG 1000 CCTTGAGAGA CACCAGGTTC TTCTCCCCAA GCTCTGGAAT CAGAGGTTGC 1050 TGTGACCAGG GCAGGACTGG TTAGGAGAGG GCAGGCCACA GGCTCTGCCA 1100 GGCATCAAGA TCAGCACCCA AGAGGGAGGG CTGTGGGCCC CCAAGACTGC 1150 ACTCCAATCC CCACTCCCAC CCCATTCGCA TTCCCATTCC CCACCCAACC 1200 CCCATCTCCT CAGCTACACC TCCACCCCA TCCCTACTCC TACTCCGTCA 1250 CCTGACCACC ACCCTCCAGC CCCAGCACCA GCCCCAACCC TTCTGCCACC 1300 CCCATCGCCT CCCCCAACC CCCACCCCCA TCCTTCTCAT GTGCCCCACC 1350 CCCATCGCCT CCCCCATTCT GGCAGAATCC GGTTTGCCCC TGCTCTAAC 1400 CCAGGGAAGC CCTGGTAGGC CCGAGCTGAA ACCACTGACT TGAACCTCAC 1450 AGATCTGAGA GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGGCTTGAG 1500 ATCCACTGAG GGGAGTGGTT TTAGGCTCTG TGAGGAGGCA AGGTGAGATG 1550 ATCCACTGAG GCGAGTGGTT TTAGGCTCTG TGAGGAGGCA AGGTGAGATG 1550 ATCCAGTACC ACCCCTGCTG CCAGCCCCC AGGTAGATG CCCCAAAATG 1600 ATCCAGTACC ACCCCTGCTG CCAGCCCCC AGGTAGATG CCCCAAAATG 1650 GTCTCAGCTG GACCACCCC CGTCCCGTC CACCCCGC CAGGACAGAT 1650 GCCAATCTGT AGTCATAGCT TATGTGACCG CGCCAGCGTT TAACCCACAG 1700 GGCAATCTGT AGTCATAGCT TATGTGACCG CGCCAGCGTT TAACCCACAG 1750 GGCAGGCCC AGGCATCAAG GTCCAGCATC CGCCCGGCAT TAGGGTCAGG 1800 ACCCTGGGAG GGAACTGAGG GTTCCCCACC CACACCTGC CCCAAACTC 1850 CACCGCCACC CCACTCACAT TCCCATACCT ACCCCCTACC CCCAACCTCA 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG GAATGGCGGC 1950 CAGGCACTCG GATCTTGACG TCCACCTCA GGGTCTGATG GAGGGAAGGG 2000	AGGCAAGGTG	AGAGGCTGAG	GGAGGACTGA	GGACCCCGCC	ACTCCAAATA	900
CCTTGAGAGA CACCAGGTTC TTCTCCCCAA GCTCTGGAAT CAGAGGTTGC 1050 TGTGACCAGG GCAGGACTGG TTAGGAGAGG GCAGGGCACA GGCTCTGCCA 1100 GGCATCAAGA TCAGCACCCA AGAGGGAGGG CTGTGGGCCC CCAAGACTGC 1150 ACTCCAATCC CCACTCCCAC CCCATTCGCA TTCCCATTCC CCACCCAACC 1200 CCCATCTCCT CAGCTACACC TCCACCCCA TCCCTACTCC TACTCCGTCA 1250 CCTGACCACC ACCCTCCAGC CCCAGCACCA GCCCCAACCC TTCTGCCACC 1300 CCCATCGCCT CCCCCAACC CCCACCCCTCA TCTCTCTCAT GTGCCCCACT 1350 CCCATCGCCT CCCCCATTCT GGCAGCACCA TCCTTCTCAT GTGCCCCACT 1400 CCCAGGGAAGC CCTGGTAGGC CCGAGCTCA ACCACTGACT TGAACCTCAC 1450 AGATCTGAGA GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGGCTTGAG 1500 ATCCACTGAG GGGAGTGGTT TTAGGCTCTG TGAGGAGGGA AGGTGAGATG 1550 CTGAGGGAGG ACTGAGGAGG CACACACCCC AGGTAGATGG CCCCAAAATG 1600 ATCCAGTACC ACCCTGCTG CCAGCCCTGG ACCACCCGGC CAGGACAGAT 1650 ATCCAGTACC ACCCTGCTG CCAGCCCTGG ACCACCCGGC CAGGACAGAT 1650 GTCTCAGCTG GACCACCCC CGTCCCGTCC CACTGCCACT TAACCCACAG 1700 GGCAATCTGT AGTCATAGCT TATGTGACCG GGGCAGGGTT GGTCAGGAGA 1750 GGCAATCTGT AGTCATAGCT TATGTGACCG CGCCCGGCTT TAGCGCACGG 1800 ACCCTGGGAG GGAACTGAGG GTTCCCCACC CACACCTGC TCCTCATCTC 1850 CACCGCCACC CCACTCACAT TCCCATACCT ACCCCCTACC CCCAAACTCC 1900 TCTTGTCAGA ATCCTTGACG TCAACCCACG GAAGCCACGG GAATGGCGGC 1950 CAGGCACTCG GATCTTGACG TCCCCATCCA GAGGGAAGGG 2000	GAGAGCCCCA	AATATTCCAG	CCCCCCCTT	GCTGCCAGCC	CTGGCCCACC	950
TGTGACCAGG GCAGGACTGG TTAGGAGAGG GCAGGGCACA GGCTCTGCCA 1100 GGCATCAAGA TCAGCACCCA AGAGGGAGGG CTGTGGGCCC CCAAGACTGC 1150 ACTCCAATCC CCACTCCCAC CCCATTCGCA TTCCCTATTCC CCACCCAACC 1200 CCCATCTCCT CAGCTACACC TCCACCCCCA TCCCTACTCC TACTCCGTCA 1250 CCTGACCACC ACCCTCCAGC CCCAGCACCA GCCCCAACCC TTCTGCCACC 1300 TCACCCTCAC TGCCCCCAAC CCCACCCTCA TCTCTCTCAT GTGCCCCACT 1350 CCCATGGCT CCCCCATTCT GGCAGAATCC GGTTTGCCCC TGCTCTCAAC 1400 CCAGGGAAGC CCTGGTAGGC CCGATGTGAA ACCACTGACT TGAACCTCAC 1450 AGATCTGAGA GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGGCTTGAG 1500 ATCCACTGAG GGGAGTGGTT TTAGGCTCTG TGAGGAGGCA AGGTGAGATG 1550 CTGAGGGAGG ACTGAGGAGG CACACACCCC AGGTAGATG CCCCAAAATG 1600 ATCCAGTACC ACCCCTGCTG CCAGCCCTGG ACCACCCCGC CAGGACAGAT 1650 GTCTCAGCTG GACCACCCC CGTCCCGTC CACTGCCACT TAACCCACAG 1700 GGCAATCTGT AGTCATAGCT TATGTGACCG GGGCAGGGTT GGTCAGGAGA 1750 GGCAGGCCC AGGCATCAAG GTCCAGCACC CACACCCCC TCCCCACAC 1850 ACCCTGGGAG GGAACTGAGG GTTCCCCACC CACACCTGC TCCCCATCC 1850 CACCGCCACC CCCACTCACAT TCCCATACCT ACCCCCTGC CACACCTCA 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG CAATGGCGGC 1950 CAGGCACTCC GATCTTGACG TCCCCATCCA GGATCTGATG GAGGGAAGGG 2000	CGCGGGAAGA	CGTCTCAGCC	TGGGCTGCCC	CCAGACCCCT	GCTCCAAAAG	1000
GGCATCAAGA TCAGCACCCA AGAGGGAGGG CTGTGGGCCC CCAAGACTGC 1150 ACTCCAATCC CCACTCCCAC CCCATTCGCA TTCCCATTCC CCACCCAACC 1200 CCCATCTCCT CAGCTACACC TCCACCCCCA TCCCTACTCC TACTCCGTCA 1250 CCTGACCACC ACCCTCCAGC CCCAGCACCA GCCCCAACCC TTCTGCCACC 1300 TCACCCTCAC TGCCCCCAAC CCCACCCTCA TCTCTCTCAT GTGCCCCACT 1350 CCCATCGCCT CCCCCATTCT GGCAGAATCC GGTTTGCCCC TGCTCTCAAC 1400 CCAGGGAAGC CCTGGTAGGC CCGATGTGAA ACCACTGACT TGAACCTCAC 1450 AGATCTGAGA GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGGCTTGAG 1500 ATCCACTGAG GGGAGTGGTT TTAGGCTCTG TGAGGAGGCA AGGTGAGATG 1550 CTGAGGGAGG ACTGAGGAGG CACACACCCC AGGTAGATGG CCCCAAAATG 1600 ATCCAGTACC ACCCCTGCTG CCAGCCCTCG ACCACCCCGC CAGGACAGAT 1650 GTCTCAGCTG GACCACCCCC CGTCCCGTCC CACTGCCACT TAACCCACAG 1700 GGCAATCTGT AGTCATAGCT TATGTGACCG GGGCAGGGTT GGTCAGGAGA 1750 GGCAGGCCC AGGCATCAAG GTCCAGCACC CACCCCGCC TCCCACACCTC 1850 CACCGCCACC CCACTCACAT TCCCATACCT ACCCCCTGCC CCCAACCTCC 1850 CACCGCCACC CCACTCCACT TCCCATCCC CACACCTCCA 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG GAATGGCGCC 1950 CAGGCACTCC GATCTTGACG TCCCCATCCA GGGTCTGATG GAGGGAAGGG 2000	CCTTGAGAGA	CACCAGGTTC	TTCTCCCCAA	GCTCTGGAAT	CAGAGGTTGC	1050
ACTCCAATCC CCACTCCCAC CCCATTCGCA TTCCCATTCC CCACCCAACC 1200 CCCATCTCCT CAGCTACACC TCCACCCCCA TCCCTACTCC TACTCCGTCA 1250 CCTGACCAC ACCCTCCAGC CCCAGCACCA GCCCCAACCC TTCTGCCACC 1300 TCACCCTCAC TGCCCCCAAC CCCACCCTCA TCTCTCTCAT GTGCCCCACT 1350 CCCATCGCCT CCCCCATTCT GGCAGAATCC GGTTTGCCCC TGCTCTCAAC 1400 CCAGGGAAGC CCTGGTAGGC CCGATGTGAA ACCACTGACT TGAACCTCAC 1450 AGATCTGAGA GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGGCTTGAG 1500 ATCCACTGAG GGGAGTGGTT TTAGGCTCTG TGAGGGAGGC AGGTGAGATG 1550 CTGAGGGAGG ACTGAGGAGG CACACACCCC AGGTAGATGG CCCCAAAATG 1600 ATCCAGTACC ACCCCTGCTG CCAGCCCTGG ACCACCCGGC CAGGACAGAT 1650 GTCTCAGCTG GACCACCCC CGTCCCGTC CACTGCCACT TAACCCACAG 1700 GGCAATCTGT AGTCATAGCT TATGTGACCG GGGCAGGGTT GGTCAGGAGA 1750 GGCAGGGCCC AGGCATCAAG GTCCCAGCACC CACACCTGC TCCCACACG 1800 ACCCTGGGAG GGAACTGAGG GTTCCCCACC CACACCTGC CCCAAACCTC 1850 CACCGCCACC CCACTCACAT TCCCATACCT ACCCCCTACC CCCAACCTCA 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG CAATGGCGGC 1950 CAGGCACTCC GATCTTGACG TCCCCATCCA GGGTCTGATG GAGGGAAGGG 2000	TGTGACCAGG	GCAGGACTGG	TTAGGAGAGG	GCAGGGCACA	GGCTCTGCCA	1100
CCCATCTCCT CAGCTACACC TCCACCCCCA TCCCTACTCC TACTCCGTCA 1250 CCTGACCACC ACCCTCCAGC CCCAGCACCA GCCCCAACCC TTCTGCCACC 1300 TCACCCTCAC TGCCCCCAAC CCCACCCTCA TCTCTCTCAT GTGCCCCACT 1350 CCCATCGCCT CCCCCATTCT GGCAGAATCC GGTTTGCCCC TGCTCTCAAC 1400 CCAGGGAAGC CCTGGTAGGC CCGATGTGAA ACCACTGACT TGAACCTCAC 1450 AGATCTGAGA GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGGCTTGAG 1500 ATCCACTGAG GGGAGTGGTT TTAGGCTCTG TGAGGAGGCA AGGTGAGATG 1550 CTGAGGGAGG ACTGAGGAGG CACACACCCC AGGTAGATGG CCCCAAAATG 1600 ATCCAGTAC ACCCCTGCTG CCAGCCCTGG ACCACCCGGC CAGGACAGAT 1650 GTCTCAGCTG GACCACCCC CGTCCCGTCC CACTGCCACT TAACCCACAG 1700 GGCAATCTGT AGTCATAGCT TATGTGACCG GGGCAGGGTT GGTCAGGAGA 1750 GGCAGGGCCC AGGCATCAAG GTCCAGCACC CGCCCGGCAT TAGGGTCAGG 1800 ACCCTGGGAG GGAACTGAGG GTTCCCCACC CACACCTGC CCCAAACTC 1850 CACCGCCACC CCACTCACAT TCCCATACCT ACCCCCTACC CCCAACCTCA 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG GAATGGCGGC 1950 CAGGCACTCC GATCTTGACG TCCCCATCCA GGGTCTGATG GAGGGAAGGG 2000	GGCATCAAGA	TCAGCACCCA	AGAGGGAGGG	CTGTGGGCCC	CCAAGACTGC	1150
CCTGACCACC ACCCTCCAGC CCCAGCACCA GCCCCAACCC TTCTGCCACC 1300 TCACCCTCAC TGCCCCCAAC CCCACCCTCA TCTCTCTCAT GTGCCCCACT 1350 CCCATCGCCT CCCCCATTCT GGCAGAATCC GGTTTGCCCC TGCTCTCAAC 1400 CCAGGGAAGC CCTGGTAGGC CCGATGTGAA ACCACTGACT TGAACCTCAC 1450 AGATCTGAGA GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGGCTTGAG 1500 ATCCACTGAG GGGAGTGGTT TTAGGCTCTG TGAGGAGGCA AGGTGAGATG 1550 CTGAGGGAGG ACTGAGGAGG CACACACCCC AGGTAGATGG CCCCAAAATG 1600 ATCCAGTAC ACCCCTGCTG CCAGCCCTGG ACCACCCGGC CAGGACAGAT 1650 GTCTCAGCTG GACCACCCC CGTCCCGTCC CACTGCCACT TAACCCACAG 1700 GGCAATCTGT AGTCATAGCT TATGTGACCG GGGCAGGGTT GGTCAGGAGA 1750 GGCAGGGCCC AGGCATCAAG GTCCAGCATC CGCCCGGCAT TAGGGTCAGG 1800 ACCCTGGGAG GGAACTGAGG GTTCCCCACC CACACCTGC CCCCAACCTC 1850 CACCGCCACC CCACTCACAT TCCCATACCT ACCCCCTACC CCCAACCTCA 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG GAATGGCGGC 1950 CAGGCACTCC GATCTTGACG TCCCCATCCA GGGTCTGATG GAGGGAAGGG 2000	ACTCCAATCC	CCACTCCCAC	CCCATTCGCA	TTCCCATTCC	CCACCCAACC	1200
TCACCCTCAC TGCCCCCAAC CCCACCCTCA TCTCTCTCAT GTGCCCCACT 1350 CCCATCGCCT CCCCCATTCT GGCAGAATCC GGTTTGCCCC TGCTCTCAAC 1400 CCAGGGAAGC CCTGGTAGGC CCGATGTGAA ACCACTGACT TGAACCTCAC 1450 AGATCTGAGA GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGGCTTGAG 1500 ATCCACTGAG GGGAGTGGTT TTAGGCTCTG TGAGGAGGCA AGGTGAGATG 1550 CTGAGGGAGG ACTGAGGAGG CACACACCCC AGGTAGATGG CCCCAAAATG 1600 ATCCAGTAC ACCCCTGCTG CCAGCCCTGG ACCACCCGGC CAGGACAGAT 1650 GTCTCAGCTG GACCACCCC CGTCCCGTCC CACTGCCACT TAACCCACAG 1700 GGCAATCTGT AGTCATAGCT TATGTGACCG CGGCAGGGTT GGTCAGGAGA 1750 GGCAGGGCCC AGGCATCAAG GTCCAGCATC CGCCCGGCAT TAGGGTCAGG 1800 ACCCTGGGAG GGAACTGAGG GTTCCCCACC CACACCTGC CCCAACCTCC 1850 CACCGCCACC CCACTCACAT TCCCCATCC CACACCTGC CACACCTCA 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG CAGGGAAGGG 2000	CCCATCTCCT	CAGCTACACC	TCCACCCCCA	TCCCTACTCC	TACTCCGTCA	1250
CCCATCGCCT CCCCCATTCT GGCAGAATCC GGTTTGCCCC TGCTCTCAAC 1400 CCAGGGAAGC CCTGGTAGGC CCGATGTGAA ACCACTGACT TGAACCTCAC 1450 AGATCTGAGA GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGGCTTGAG 1500 ATCCACTGAG GGGAGTGGTT TTAGGCTCTG TGAGGAGGCA AGGTGAGATG 1550 CTGAGGGAGG ACTGAGGAGG CACACACCCC AGGTAGATGG CCCCAAAATG 1600 ATCCAGTACC ACCCTGCTG CCAGCCCTGG ACCACCCGGC CAGGACAGAT 1650 GTCTCAGCTG GACCACCCC CGTCCCGTCC CACTGCCACT TAACCCACAG 1700 GGCAATCTGT AGTCATAGCT TATGTGACCG GGGCAGGGTT GGTCAGGAGA 1750 GGCAGGGCCC AGGCATCAAG GTCCAGCATC CGCCCGGCAT TAGGGTCAGG 1800 ACCCTGGGAG GGAACTGAGG GTTCCCCACC CACACCTGTC TCCTCATCTC 1850 CACCGCCACC CCACTCACAT TCCCATACCT ACCCCTCACC CCCAACCTCA 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG GAATGGCGGC 1950 CAGGCACTCG GATCTTGACG TCCCCATCCA GGGTCTGATG GAGGGAAGGG 2000	CCTGACCACC	ACCCTCCAGC	CCCAGCACCA	GCCCCAACCC	TTCTGCCACC	1300
CCAGGGAAGC CCTGGTAGGC CCGATGTGAA ACCACTGACT TGAACCTCAC 1450 AGATCTGAGA GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGGCTTGAG 1500 ATCCACTGAG GGGAGTGGTT TTAGGCTCTG TGAGGAGGCA AGGTGAGATG 1550 CTGAGGGAGG ACTGAGGAGG CACACACCCC AGGTAGATGG CCCCAAAATG 1600 ATCCAGTAC ACCCCTGCTG CCAGCCCTGG ACCACCCGGC CAGGACAGAT 1650 GTCTCAGCTG GACCACCCC CGTCCCGTCC CACTGCCACT TAACCCACAG 1700 GGCAATCTGT AGTCATAGCT TATGTGACCG GGGCAGGGTT GGTCAGGAGA 1750 GGCAGGGCCC AGGCATCAAG GTCCAGCATC CGCCCGGCAT TAGGGTCAGG 1800 ACCCTGGGAG GGAACTGAGG GTTCCCCACC CACACCTGTC TCCTCATCTC 1850 CACCGCCACC CCACTCACAT TCCCATACCT ACCCCCTCAC CCCAACCTCA 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACG GAATGGCGGC 1950 CAGGCACTCG GATCTTGACG TCCCCATCCA GGGTCTGATG GAGGGAAGGG 2000	TCACCCTCAC	TGCCCCCAAC	CCCACCCTCA	TCTCTCTCAT	GTGCCCCACT	1350
AGATCTGAGA GAAGCCAGGT TCATTTAATG GTTCTGAGGG GCGGCTTGAG ATCCACTGAG GGGAGTGGTT TTAGGCTCTG TGAGGAGGCA AGGTGAGATG 1550 CTGAGGGAGG ACTGAGGAGG CACACACCCC AGGTAGATGG CCCCAAAATG 1600 ATCCAGTACC ACCCTGCTG CCAGCCCTGG ACCACCCGGC CAGGACAGAT 1650 GTCTCAGCTG GACCACCCCC CGTCCCGTCC CACTGCCACT TAACCCACAG 1700 GGCAATCTGT AGTCATAGCT TATGTGACCG GGGCAGGGTT GGTCAGGAGA 1750 GGCAGGGCCC AGGCATCAAG GTCCAGCATC CGCCCGGCAT TAGGGTCAGG 1800 ACCCTGGGAG GGAACTGAGG GTTCCCCACC CACACCTGTC TCCTCATCTC 1850 CACCGCCACC CCACTCACAT TCCCATACCT ACCCCCTCAC CCCAACCCTCA 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG GAATGGCGGC 1950 CAGGCACTCG GATCTTGACG TCCCCATCCA GGGTCTGATG GAGGGAAGGG 2000	CCCATCGCCT	CCCCCATTCT	GGCAGAATCC	GGTTTGCCCC	TGCTCTCAAC	1400
ATCCACTGAG GGGAGTGGTT TTAGGCTCTG TGAGGAGGCA AGGTGAGATG 1550 CTGAGGGAGG ACTGAGGAGG CACACACCCC AGGTAGATGG CCCCAAAATG 1600 ATCCAGTACC ACCCCTGCTG CCAGCCCTGG ACCACCCGGC CAGGACAGAT 1650 GTCTCAGCTG GACCACCCCC CGTCCCGTCC CACTGCCACT TAACCCACAG 1700 GGCAATCTGT AGTCATAGCT TATGTGACCG GGGCAGGGTT GGTCAGGAGA 1750 GGCAGGGCCC AGGCATCAAG GTCCAGCATC CGCCCGGCAT TAGGGTCAGG 1800 ACCCTGGGAG GGAACTGAGG GTTCCCCACC CACACCTGTC TCCTCATCTC 1850 CACCGCCACC CCACTCACAT TCCCATACCT ACCCCCTACC CCCAACCTCA 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG GAATGGCGGC 1950 CAGGCACTCG GATCTTGACG TCCCCATCCA GGGTCTGATG GAGGGAAGGG 2000	CCAGGGAAGC	CCTGGTAGGC	CCGATGTGAA	ACCACTGACT	TGAACCTCAC	1450
CTGAGGGAGG ACTGAGGAGG CACACACCCC AGGTAGATGG CCCCAAAATG 1600 ATCCAGTACC ACCCTGCTG CCAGCCCTGG ACCACCCGC CAGGACAGAT 1650 GTCTCAGCTG GACCACCCCC CGTCCCGTCC CACTGCCACT TAACCCACAG 1700 GGCAATCTGT AGTCATAGCT TATGTGACCG GGGCAGGGTT GGTCAGGAGA 1750 GGCAGGGCCC AGGCATCAAG GTCCAGCATC CGCCCGGCAT TAGGGTCAGG 1800 ACCCTGGGAG GGAACTGAGG GTTCCCCACC CACACCTGTC TCCTCATCTC 1850 CACCGCCACC CCACTCACAT TCCCATACCT ACCCCCTACC CCCAACCTCA 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG GAATGGCGGC 1950 CAGGCACTCG GATCTTGACG TCCCCATCCA GGGTCTGATG GAGGGAAGGG 2000	AGATCTGAGA	GAAGCCAGGT	TCATTTAATG	GTTCTGAGGG	GCGGCTTGAG	1500
ATCCAGTACC ACCCCTGCTG CCAGCCCTGG ACCACCCGGC CAGGACAGAT 1650 GTCTCAGCTG GACCACCCCC CGTCCCGTCC CACTGCCACT TAACCCACAG 1700 GGCAATCTGT AGTCATAGCT TATGTGACCG GGGCAGGGTT GGTCAGGAGA 1750 GGCAGGGCCC AGGCATCAAG GTCCAGCATC CGCCCGGCAT TAGGGTCAGG 1800 ACCCTGGGAG GGAACTGAGG GTTCCCCACC CACACCTGTC TCCTCATCTC 1850 CACCGCCACC CCACTCACAT TCCCATACCT ACCCCCTACC CCCAACCTCA 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG GAATGGCGGC 1950 CAGGCACTCG GATCTTGACG TCCCCATCCA GGGTCTGATG GAGGGAAGGG 2000	ATCCACTGAG	GGGAGTGGTT	TTAGGCTCTG	TGAGGAGGCA	AGGTGAGATG	1550
GTCTCAGCTG GACCACCCC CGTCCCGTCC CACTGCCACT TAACCCACAG 1700 GGCAATCTGT AGTCATAGCT TATGTGACCG GGGCAGGGTT GGTCAGGAGA 1750 GGCAGGGCCC AGGCATCAAG GTCCAGCATC CGCCCGGCAT TAGGGTCAGG 1800 ACCCTGGGAG GGAACTGAGG GTTCCCCACC CACACCTGTC TCCTCATCTC 1850 CACCGCCACC CCACTCACAT TCCCATACCT ACCCCCTACC CCCAACCTCA 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG GAATGGCGGC 1950 CAGGCACTCG GATCTTGACG TCCCCATCCA GGGTCTGATG GAGGGAAGGG 2000	CTGAGGGAGG	ACTGAGGAGG	CACACACCCC	AGGTAGATGG	CCCCAAAATG	1600
GGCAATCTGT AGTCATAGCT TATGTGACCG GGGCAGGGTT GGTCAGGAGA 1750 GGCAGGGCCC AGGCATCAAG GTCCAGCATC CGCCCGGCAT TAGGGTCAGG 1800 ACCCTGGGAG GGAACTGAGG GTTCCCCACCC CACACCTGTC TCCTCATCTC 1850 CACCGCCACC CCACTCACAT TCCCATACCT ACCCCCTACC CCCAACCTCA 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG GAATGGCGGC 1950 CAGGCACTCG GATCTTGACG TCCCCATCCA GGGTCTGATG GAGGGAAGGG 2000	ATCCAGTACC	ACCCCTGCTG	CCAGCCCTGG	ACCACCCGGC	CAGGACAGAT	1650
GGCAGGGCCC AGGCATCAAG GTCCAGCATC CGCCCGGCAT TAGGGTCAGG 1800 ACCCTGGGAG GGAACTGAGG GTTCCCCACC CACACCTGTC TCCTCATCTC 1850 CACCGCCACC CCACTCACAT TCCCATACCT ACCCCCTACC CCCAACCTCA 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG GAATGGCGGC 1950 CAGGCACTCG GATCTTGACG TCCCCATCCA GGGTCTGATG GAGGGAAGGG 2000	GTCTCAGCTG	GACCACCCC	CGTCCCGTCC	CACTGCCACT	TAACCCACAG	1700
ACCCTGGGAG GGAACTGAGG GTTCCCCACC CACACCTGTC TCCTCATCTC 1850 CACCGCCACC CCACTCACAT TCCCATACCT ACCCCCTACC CCCAACCTCA 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG GAATGGCGGC 1950 CAGGCACTCG GATCTTGACG TCCCCATCCA GGGTCTGATG GAGGGAAGGG 2000	GGCAATCTGT	AGTCATAGCT	TATGTGACCG	GGGCAGGGTT	GGTCAGGAGA	1750
CACCGCCACC CCACTCACAT TCCCATACCT ACCCCCTACC CCCAACCTCA 1900 TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG GAATGGCGGC 1950 CAGGCACTCG GATCTTGACG TCCCCATCCA GGGTCTGATG GAGGGAAGGG 2000	GGCAGGGCCC	AGGCATCAAG	GTCCAGCATC	CGCCCGGCAT	TAGGGTCAGG	1800
TCTTGTCAGA ATCCCTGCTG TCAACCCACG GAAGCCACGG GAATGGCGGC 1950 CAGGCACTCG GATCTTGACG TCCCCATCCA GGGTCTGATG GAGGGAAGGG 2000	ACCCTGGGAG	GGAACTGAGG	GTTCCCCACC	CACACCTGTC	TCCTCATCTC	1850
CAGGCACTCG GATCTTGACG TCCCCATCCA GGGTCTGATG GAGGGAAGGG 2000	CACCGCCACC	CCACTCACAT	TCCCATACCT	ACCCCCTACC	CCCAACCTCA	1900
	TCTTGTCAGA	ATCCCTGCTG	TCAACCCACG	GAAGCCACGG	GAATGGCGGC	1950
GETTGAACAG GEGCTCAGEG GAGCAGAGEG AGGGCCCCTAC TGCGAGATGA	CAGGCACTCG	GATCTTGACG	TCCCCATCCA	GGGTCTGATG	GAGGGAAGGG	2000
AND TAKEN AND THE PROPERTY OF THE PROPERTY AND THE PROPER	GCTTGAACAG	GGCCTCAGGG	GAGCAGAGGG	AGGGCCCTAC	TGCGAGATGA	2050
GGGAGGCCTC AGAGGACCCA GCACCCTAGG ACACCGCACC CCTGTCTGAG 2100	GGGAGGCCTC	AGAGGACCCA	GCACCCTAGG	ACACCGCACC	CCTGTCTGAG	
ACTGAGGCTG CCACTTCTGG CCTCAAGAAT CAGAACGATG GGGACTCAGA 2150	ACTGAGGCTG	CCACTTCTGG	CCTCAAGAAT	CAGAACGATG	GGGACTCAGA	2150

TTGCATGGGG GTGGGACCCA GGCCTGCAAG GCTTACGCGG AGGAAGAGGA	2200
CCCACCACTC AGGGGACCTT GGAATCCAGA TCAGTGTGGA CCTCGGCCCT	2250
CACACCTCCA GGGCACGGTG GCCACATATG GCCCATATTT CCTGCATCTT	2300
TCACCTGACA GGACAGAGCT GTGGTCTGAG AAGTGGGGCC TCAGGTCAAC	2350
AGACGAGGA GTTCCAGGAT CCATATGGCC CAAGATGTGC CCCCTTCATG	2400
AGGACTGGGG ATATCCCCGG CTCAGAAAGA AGGGACTCCA CACAGTCTGG	2450
CTGTCCCCTT TTAGTAGCTC TAGGGGGACC AGATCAGGGA TGGCGGTATG	2500
TTCCATTCTC ACTTGTACCA CAGGCAGGAA GTTGGGGGGC CCTCAGGGAG	2550
ATGGGGTCTT GGGGTAAAGG GGGGATGTCT ACTCATGTCA GGGAATTGGG	2600
COTTCACCAA GCACAGGCGC TGGCAGGAAT AAAGATGAGT GAGACAGACA	2650
AGGCTATTGG AATCCACACC CCAGAACCAA AGGGGTCAGC CCTGGACACC	2700
TCACCCAGGA TGTGGCTTCT TTTTCACTCC TGTTTCCAGA TCTGGGGCAG	2750
GTGAGGACCT CATTCTCAGA GGGTGACTCA GGTCAACGTA GGGACCCCCA	2800
TCTGGTCTAA AGACAGAGCG GTCCCAGGAT CTGCCATGCG TTCGGGTGAG	2850
GAACATGAGG GAGGACTGAG GGTACCCCAG GACCAGAACA CTGAGGGAGA	2900
CTGCACAGAA ATCAGCCCTG CCCCTGCTGT CACCCCAGAG AGCATGGGCT	2950
GGGCCGTCTG CCGAGGTCCT TCCGTTATCC TGGGATCATT GATGTCAGGG	3000
ACGGGGAGGC CTTGGTCTGA GAAGGCTGCG CTCAGGTCAG TAGAGGGAGC	3050
GTCCCAGGCC CTGCCAGGAG TCAAGGTGAG GACCAAGCGG GCACCTCACC	3150
CAGGACACAT TAATTCCAAT GAATTTTGAT ATCTCTTGCT GCCCTTCCCC	3200
AAGGACCTAG GCACGTGTGG CCAGATGTTT GTCCCCTCCT GTCCTTCCAT	3250
TCCTTATCAT GGATGTGAAC TCTTGATTTG GATTTCTCAG ACCAGCAAAA	3300
GGGCAGGATC CAGGCCCTGC CAGGAAAAAT ATAAGGGCCC TGCGTGAGAA	3350
CAGAGGGGGT CATCCACTGC ATGAGAGTGG GGATGTCACA GAGTCCAGCC	3400
CACCCTCCTG GTAGCACTGA GAAGCCAGGG CTGTGCTTGC GGTCTGCACC	3450
CTGAGGGCCC GTGGATTCCT CTTCCTGGAG CTCCAGGAAC CAGGCAGTGA	3500
GGCCTTGGTC TGAGACAGTA TCCTCAGGTC ACAGAGCAGA GGATGCACAG	3550
GGTGTGCCAG CAGTGAATGT TTGCCCTGAA TGCACACCAA GGGCCCCACC	3600
GG1G1GCCNG CNG1G1Z1Z1Z ZZCCCZ	2650
TOCCACAGA CACATAGGAC TOCACAGAGT CTGGCCTCAC CTCCCTACTG	3650
TGCCACAGGA CACATAGGAC TCCACAGAGT CTGGCCTCAC CTCCCTACTG	3700
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT	
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG	3700
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGAG GAGCACCAAG GAGAAGATCT GTAAGTAGGC	3700 3750
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGAG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC	3700 3750 3800
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGAG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC TCCCTCTCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA	3700 3750 3800 3850
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGAG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC TCCCTGCTGC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA CTCCTGCCTG	3700 3750 3800 3850 3900
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGAG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC TCCCTGCTCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA CTCCTGCCTG CTGCCCTGAC GAGAGTCATC ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA	3700 3750 3800 3850 3900 3930
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGAG GAGACACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC TCCCTCTCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA CTCCTGCCTG CTGCCCTGAC GAGAGTCATC ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT GTG	3700 3750 3800 3850 3900 3930 3972
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGAG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC TCCCTCTCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA CTCCTGCCTG CTGCCCTGAC GAGAGTCATC ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT GTG CAG GCT GCC ACC TCC TCC TCC TCT CTT CTT CTG GTC CTG GGC ACC	3700 3750 3800 3850 3900 3930 3972 4014
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGAG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC TCCCTCTCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGGCT CCTGCCCACA CTCCTGCCTG CTGCCCTGAC GAGAGTCATC ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT CAG GCT GCC ACC TCC TCC TCT CTT CTT CTG GTC CTG GGC ACC CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT CCT CCC CAG	3700 3750 3800 3850 3900 3930 3972 4014 4056
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGAG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC TCCCTCTCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA CTCCTGCCTG CTGCCCTGAC GAGAGTCATC  ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT GTG CAG GCT GCC ACC TCC TCC TCT CCT CTG GTC CTG GGC ACC CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT CCT CCG CAG AGT CCT CAG GGA GCC TCC GCC TTT CCC ACT ACC ATC AAC TTC	3700 3750 3800 3850 3900 3930 3972 4014 4056 4098
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGAG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC TCCCTCTCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA CTCCTGCCTG CTGCCCTGAC GAGAGTCATC  ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT GTG CAG GCT GCC ACC TCC TCC TCT CCT CTG GTC CTG GGC ACC CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC GCC TTT CCC ACT ACC ATC AAC TTC ACT CGA CAG AGG CAA CCC AGT GAG GGT TCC AGC AGC CGT GAA	3700 3750 3800 3850 3900 3930 3972 4014 4056 4098 4140
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGAG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC TCCCTGCTCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA  CTCCTGCCTG CTGCCCTGAC GAGAGTCATC  ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT GTG CAG GCT GCC ACC TCC TCC TCT CCT CTG GTC CTG GGC ACC CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC GCC TTT CCC ACT ACC ATC AAC TTC ACT CGA CAG AGG CAA CCC AGT GAG GGT TCC AGC AGC CGT GAA GAG GAG GGG CCA AGC ACC TCT TGT ATC CTG GAG TCC TTG TTC	3700 3750 3800 3850 3900 3930 3972 4014 4056 4098 4140 4182
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGAG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC TCCCTGTCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA  CTCCTGCCTG CTGCCCTGAC GAGAGTCATC  ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT GTG CAG GCT GCC ACC TCC TCC TCT CCT CTG GTC CTG GGC ACC CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC GCC TTT CCC ACT ACC ATC AAC TTC ACT CGA CAG AGG CAA CCC AGT GAG GGT TCC AGC AGC CGT GAA GAG GAG GGG CCA AGC ACC TCT TGT ATC CTG GAG TCC TTG TTC CGA GCA GTA ATC ACT AAG AAG GTG GCT GAT TTG GTT GGT TTT	3700 3750 3800 3850 3900 3930 3972 4014 4056 4098 4140 4182 4224
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGA GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC TCCCTCTCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA  CTCCTGCCTG CTGCCCTGAC GAGAGTCATC  ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT GTG CAG GCT GCC ACC TCC TCC TCT CCT CTG GTC CTG GGC ACC CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC GCC TTT CCC ACT ACC ATC AAC TTC ACT CGA CAG AGG CAA CCC AGT GAG GGT TCC AGC AGC CGT GAA GAG GAG GGG CCA AGC ACC TCT TGT ATC CTG GAG TCC TTG TTC CGA GCA GTA ATC ACT AAG AAG GTG GCT GAT TTG GTT GGT TTT CTG CTC CTC CAC AAA TAT CGA GCC AGG GAG CCA GTC ACA AAG GCA	3700 3750 3800 3850 3900 3930 3972 4014 4056 4098 4140 4182 4224 4266
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC CTCCTGCTCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA  CTCCTGCCTG CTGCCCTGAC GAGAGTCATC  ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT GTG CAG GCT GCC ACC TCC TCC TCT CCT CTG GTC CTG GGC ACC CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC GCC TTT CCC ACT ACC ATC AAC TTC ACT CGA CAG AGG CAA CCC AGT GAG GGT TCC AGC AGC CGT GAA GAG GAG GGG CCA AGC ACC TCT TGT ATC CTG GAG TCC TTG CGA GCA GTA ATC ACT AAG AAG GTG GCT GAT TTG GTT GGT TTT CTG CTC CTC CAAA TAT CGA GCC AGG GAG CCA GTC ACA AAG GCA GAA ATG CTG GAG AGT GTC ATC AAA AAT TAC AAG CAC TGT TTT	3700 3750 3800 3850 3900 3930 3972 4014 4056 4098 4140 4182 4224 4266 4308
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC CTCCTGCCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA  CTCCTGCCTG CTGCCCTGAC GAGAGTCATC  ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT GTG CAG GCT GCC ACC TCC TCC TCT CCT CTG GTC CTG GGC ACC CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC GCC TTT CCC ACT ACC ATC AAC TTC ACT CGA CAG AGG CAA CCC AGT GAG GGT TCC AGC AGC CGT GAA GAG GAG GGG CCA AGC ACC TCT TGT ATC CTG GAG TCC TTG TTC CGA GCA GTA ATC ACT AAG AAG GTG GCT GAT TTG GTT GGT CTG CTC CTC AAA TAT CGA GCC AGG GAG CCA GTC ACA AAG GCA GAA ATG CTG GAG AGT GTC ATC AAA AAT TAC AAG CAC TGT TTT CCT GAG ATC TTC GGC AAA GCC TCT GAG TCC TTG CTG	3700 3750 3800 3850 3900 3930 3972 4014 4056 4098 4140 4182 4224 4266 4308 4350
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC CTCCTGCCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA  CTCCTGCCTG CTGCCCTGAC GAGAGTCATC  ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT GTG CAG GCT GCC ACC TCC TCC TCT CCT CTG GTC CTG GGC ACC CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC GCC TTT CCC ACT ACC ATC AAC TTC ACT CGA CAG AGG CAA CCC AGT GAG GGT TCC AGC AGC CGT GAA GAG GAG GGG CCA AGC ACC TCT TGT ATC CTG GAG TCC TTG TTC CGA GCA GTA ATC ACT AAG AAG GTG GCT GAT TTG GTT GGT CTG CTC CTC AAA TAT CGA GCC AGG GAG CCA GTC ACA AAG GCA CCT GAG ATC TTC GGC AAA GCC TCT GAG TCC TTG CTT CCT GAG ATC TTC GGC AAA GCC TCT GAG TCC TTG CTC CTT GAG ATC TTC GGC AAA GCC TCT GAG TCC TTG CTC CTT GAG ATC TTC GGC AAA GCC TCT GAG TCC TTG CAG CTG GTC CTT GAG ATC TTC GGC AAA GCC TCT GAG TCC TTG CAG CTG GTC CTT GAG ATC TTC GGC AAA GCC TCT GAG TCC TTG CAG CTG GTC CTT GAG ATC TTC GGC AAA GCC TCT GAG CCC ACC GGC CAC TCC CTT GAG ATC TTC GGC AAA GCC TCT GAG CCC ACC GGC CAC TCC	3700 3750 3800 3850 3900 3930 3972 4014 4056 4098 4140 4182 4224 4266 4308 4350 4392
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC CTCCTGCCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA  CTCCTGCCTG CTGCCCTGAC GAGAGTCATC  ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT GTG CAG GCT GCC ACC TCC TCC TCC TCT CTC CTC GTC CTG GGC ACC CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC GCC TTT CCC ACT ACC ATC AAC TTC ACT CGA CAG AGG CAA CCC AGT GAG GGT TCC AGC AGC CGT GAA GAG GAG GGG CCA AGC ACC TCT TGT ATC CTG GAG TCC TTG TTC CGA GCA GTA ATC ACT AAG AAG GTG GCT GAT TTG GTT GGT CTG CTC CTC AAA TAT CGA GCC AGG GAG CCA GTC ACA AAG GCA GAA ATG CTG GAG AGT GTC ATC AAA AAT TAC AAG CAC TGT TTT GGC ATT GAC GTG AAG GAA GCA GAC CCC ACC GGC CAC TTT GGC ATT GAC GTG AAG GAA GCA GAC CCC ACC GGC CAC TCC TTT GGC ATT GAC GTG AAG GAA GCA GAC CCC ACC GGC CAC TCC TTT GGC ATT GAC GTG AAG GAA GCA GAC CCC ACC GGC CAC TCC TTT GGC ATT GAC GTG AAG GAA GCA GAC CCC ACC GGC CAC TCC	3700 3750 3800 3850 3900 3930 3972 4014 4056 4098 4140 4182 4224 4266 4308 4350 4392 4434
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC TCCCTCTCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA  CTCCTGCCTG CTGCCCTGAC GAGAGTCATC  ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT GTG CAG GCT GCC ACC TCC TCC TCC TCT CCT CTG GTC CTG GGC ACC CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC GCC TTT CCC ACT ACC ATC AAC TTC ACT CGA CAG AGG CAA CCC AGT GAG GGT TCC AGC AGC CGT GAA GAG GAG GGG CCA AGC ACC TCT TGT ATC CTG GAG TCC TTG TTC CGA GCA GTA ATC ACT AAG AAG GTG GCT GAT TTG GTT GTT CTG CTC CTC AAA TAT CGA GCC AGG GAG CCA GTC ACA AAG GCA GAA ATG CTG GAG AGT GTC ATC AAA AAT TAC AAG CAC TGT TTT CCT GAG ATC TTC GGC AAA GCC TCT GAG TCC TTG CTC TTT GGC ATT GAC GTG AAG GAA GCA GAC CCC ACC GGC CAC TTT GGC ATT GAC GTG AAG GAA GCA GAC CCC ACC GGC CAC TCT GGC ATT GAC GTG AAG GAA GCA GAC CCC ACC GGC CAC TCT GGG GGT GAT AAT CAG ATC ATG CCC AAG ACA GGC TTC CTG TTT GGC ATT GAC GTG AAG GAA GCA GAC CCC ACC GGC CAC TCT GGG GGT GAT AAT CAG ATC ATG CCC AAG ACA GGC TTC CTG ATA	3700 3750 3800 3850 3900 3930 3972 4014 4056 4098 4140 4182 4224 4224 4266 4308 4350 4392 4434 4476
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGAG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC TCCCTCTCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA  CTCCTGCCTG CTGCCCTGAC GAGAGTCATC  ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT GTG CAG GCT GCC ACC TCC TCC TCC TCT CCT CTG GTC CTG GGC ACC CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC GCC TTT CCC ACT ACC ATC AAC TTC ACT CGA CAG AGG CAA CCC AGT GAG GGT TCC AGC AGC CGT GAA GAG GAG GGG CCA AGC ACC TCT TGT ATC CTG GAG TCC TTG TTC CGA GCA GTA ATC ACT AAG AAG GTG GCT GAT TTG GTT TTT CTG CTC CTC AAA TAT CGA GCC AGG GAG CCA GTC ACA AAG GCA GAA ATG CTG GAG AGT GTC ATC AAA AAT TAC AAG CAC TGT TTT CCT GAG ATC TTC GGC AAA GCC TCT GAG TCC TTG CTC TTT GGC ATT GAC GTG AAG GAA GCA GAC CCC ACC GGC CAC TTT GGC ATT GAC GTG AAG GAA GCA GAC CCC ACC GGC CAC TTT GGC ATT GAC GTG AAG GAA GCA GAC CCC ACC GGC CAC TCC CTG GGT GAT AAT CAG ATC ATG CCC AAG ACA GGC TTC CTG ATA ATT GTC CTT GTC ACC TGC CTA GGT CTC TCC TAT GAT GGC CTG CTG GGT GAT AAT CAG ATC ATG CCC AAG ACA GGC TTC CTG ATA ATT GTC CTG GTC ATG ATT GCA ATG GGC GGC CAT GCT CCT	3700 3750 3800 3850 3900 3930 3972 4014 4056 4098 4140 4182 4224 4224 4266 4308 4350 4392 4434 4476 4518
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGA GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC TCCCTGCTCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA  CTCCTGCCTG CTT GAG CAG AGG AGT CTC ATG TCT CTT GAG CAG AGG AGT CTC CTG GAC CTG GAG GAA GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT CAG GCT GCC ACC TCC TCC TCC TCT CCT CTG GTC CTG GGC ACC CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC GCC TTT CCC ACT ACC ATC AAC TTC ACT CGA CAG AGG CAA CCC AGT GAG GGT TCC AGC AGC CGT GAA GAG GAG GGG CCA AGC ACC TCT TGT ATC CTG GAG TCC TTG TTC CGA GCA GTA ATC ACT AAG AAG GTG GCT GAT TTG GTT GTT CTG CTC CTC AAA TAT CGA GCC AGG GAG CCA GTC ACA AAG GCA GAA ATG CTG GAG AGT GTC ATC AAA AAT TAC AAG CAC TGT TTT CCT GAG ATC TTC GGC AAA GCC TCT GAG GCC CCC ACC GGC TATT GGC ATT GAC GTG AAG GAA GCA GAC CCC ACC GGC CAC TTT GGC ATT GAC GTG AAG GAA GCA GAC CCC ACC GGC CAC TCC TAT GTC CTT GTC ACC TGC CTA GGT CTC TCC TAT GAT GGC CTG CTG GGT GAT AAT CAG ATC ATG CCC AAG ACA GGC TTC CTG ATT GTC CTG GTC ATG ATT GCA ATG GAG GGC GGC CAT GCT CTG GGT GAT AAT CAG ATC ATG CCC AAG ACA GGC TTC CTG ATT GTC CTG GTC ATG ATT GCA ATG GAG GGC GGC CAT GCT CTG GGT GAT AAT CAG ATC ATG CCC AAG ACA GGC TTC CTG ATT GTC CTG GTC ATG ATT GCA ATG GAG GGC GGC CAT GCT CTG GGT GAT AAT CAG ATC ATG CCC AAG ACA GGC TTC CTG CTG GGT GAT AAT CAG ATC ATG CCC AAG GGC CAT GCT CCT CTG GGG GAA ATC TGG GAG GAG CTG ATG GTG CTT	3700 3750 3800 3850 3900 3930 3972 4014 4056 4098 4140 4182 4224 4224 4266 4308 4350 4392 4434 4476 4518 4560
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGAG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC CTCCTGCCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA  CTCCTGCCTG CTGCCCTGAC GAGAGTCATC  ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT GTG CAG GCT GCC ACC TCC TCC TCC TCT CCT CTG GTC CTG GGC ACC CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC GCC TTT CCC ACT ACC ATC AAC TTC ACT CGA CAG AGG CAA CCC AGT GAG GGT TCC AGC AGC CGT GAA GAG GAG GGG CCA ACC TCT TGT ATC CTG GAG TCC TTG TTC CGA GAG GTA ATC ACT AAG AAG GTG GCT GAT TTG GTT TT CTG CTC CTC AAA TAT CGA GCC AGG GAG CCA GTC ACA AAG GCA GAA ATG CTG GAG AGT GTC ATC AAA AAT TAC AAG CAC TGT TTT CCT GAG ATC TTC GGC AAA GCC TCT TGT GAG TCC TTG GTC TTT GGC ATT GAC GTG AAG GAA GCA GCC ACC GCC CAC TTT GGC ATT GAC GTG AAG GAA GCA GCC TCT CTC TTG TATC CTG GGT GAT AAT CAG ATC ATG GAG GAC CCC ACC GGC CAC TCC TAT GTC CTT GTC ACC TGC CTA GGT CTC TTG CAG CTG TTT GGC ATT GAC GTG AAG GAA GCA GCC ACC GGC CAC TCC CTG GGT GAT AAT CAG ATC ATG GAG GGC GGC CAT GCT CTG GGT GAT AAT CAG ATC ATG GAG GGC GGC CAT GCT CTG GGT GAT AAT CAG ATC ATG GAG GGC GGC CAT GCT CTG GGT GAT AAT CAG ATC ATG GAG GGC GGC CAT GCT CTG GGT GAT AAT CAG ATC ATG GAG GGC GGC CAT GCT CTG GGG GAG GAA ATC TGG GAG GAG CTG ATG GGG GGC CAT GCT CTG GGT GAT AAT CAG ATC ATG GAG GGC GGC CAT GCT CTG GGG GAG GAA ATC TGG GAG GAG CTG ATG GGG GGC CAT GCT CTG GGG GAG GAA ATC TGG GAG GAG CTG ATG GGG GAG CCC CTG GGG GAG GAG CTG ATG GGG GAG CCC CTG GGG GAG CAC AGG GAG CTG ATG GGG GAG CCC CTG GGG GAG GAG CTG ATG GGG GAG CCC CTG GGG GAG GAG CTG ATG GGG GAG CCC CTG GGG GAG GAG CTG ATG GGG GAG CCC CTG GGG GAG GAG CTG ATG GGG GAG CCC CTG GGG GAG GAG CTG ATG GGG GAG CCC CTG GGG GAG GAG CTG ATG GGG GAG CCC CTG GGG GAG CCC CTG GGG GAG CCC CTG GGG GAG GAG CTG ATG GGG GAG CCC CTG GGG GAG CCC CTG GGG GAG CCC CTG GGG GAG CCC CTG GAG GAG	3700 3750 3800 3850 3900 3930 3972 4014 4056 4098 4140 4182 4224 4266 4308 4350 4392 4434 4476 4518 4560 4602
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGAG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC CTCCTGCTG CCCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA  CTCCTGCCTG CTGCCCTGAC GAGAGTCATC  ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT GTG CAG GCT GCC ACC TCC TCC TCT CCT CTG GTC CTG GGC ACC CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC GCC TTT CCC ACT ACC ATC AAC TTC ACT CGA CAG AGG CAA CCC AGT GAG GGT TCC AGC AGC CGT GAA GAG GAG GGG CCA AGC ACC TCT TGT ATC CTG GAG TCC TTG TTC CGA GAG GGG CCA AGC ACC TCT TGT ATC CTG GAG TCC TTG TTC CTG CTC CTC AAA TAT CGA GCC AGG GAG CCA GTC ACA AAG GCA CCT GAG ATC TCT GGC AAA AAT TAC AAG AAC CAC TGT TTT CCT GAG ATC TTC GGC AAA GCC TCT GAG TCC TTG CAC CTT GAG ATC TCC GCC TAC AAA AAT TAC AAG CAC TGT TTT CCT GAG ATC TTC GGC AAA GCC TCT GAG TCC TTG GTC CTT GAG ATC TCC GCC TAA AAC AAC GAC CCC TCC CTT GAG ATC TCC GCC AAA GCC TCT TGT ATC AAA AAT TAC AAG CAC TGT TTT CCT GAG ATC TCC GCC AAA GCC TCT GAG TCC TTG CAG CTG GTC CTT GAG ATC TCC GCC AAA GCC TCT TGAG TCC TTG CAG CTG TCC CTG GAG ATC TCC GCC AAA GCC TCT GAG TCC TTG CAG CTG CTC CTG GGT GAT AAT CAC ATC AAA AAT TAC AAG CAC TCC CTG GGT GAT AAT CAC ATC ATG GAA GCA GCC ACC GCC CAC CTG GGT GAT AAT CAG ATC ATG CCC AAG ACA GGC TTC CTG ATT GTC CTT GTC ACC TGC CTA GGT CTC TCC TAT GAT GGC CTG CTG GGT GAT AAT CAG ATC ATG CCC AAG ACA GGC TTC CCT GAG GAG GAA ATC TGG GAG GAG CTG AGT GTG TAT GAC GAG GAG GAA ATC TGG GAG GAG CCC AGG GAG CTC CTG GGT GAT AAT CAG ATC ATG CCC AAG ACA GGC TTC CCT GAG GAG GAA ATC TGG GAG GAG CTG AGT GTG TAT GAC GAG GAG GAA ATC TGG GAG GAG CCC AGG GAG CCC AGG GAG GAA ATC TGG GAG GAG CTG AGT GTG TAT GAC GAG GAG GAA ATC TGG GAG GAG CTC AGG GAG CCC AGG GAG GAG CAC AGT GCC TAT GGG GAG CCC AGG GAG CTC CTC GAG AAG CTC CAA GGT TAT	3700 3750 3800 3850 3900 3930 3972 4014 4056 4098 4140 4182 4224 4266 4308 4350 4392 4434 4476 4518 4560 4602 4644
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC TGAGTACCCT CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC AGAGGACAGG ATTCCCTGGA GGCCACAGAG GAGCACCAAG GAGAAGATCT GTAAGTAGGC CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC TCTCACACAC CTCCTGCCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT CCTGCCCACA  CTCCTGCCTG CTGCCCTGAC GAGAGTCATC  ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG CCT GAG GAA GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG GTG TGT GTG CAG GCT GCC ACC TCC TCC TCC TCT CCT CTG GTC CTG GGC ACC CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC GCC TTT CCC ACT ACC ATC AAC TTC ACT CGA CAG AGG CAA CCC AGT GAG GGT TCC AGC AGC CGT GAA GAG GAG GGG CCA ACC TCT TGT ATC CTG GAG TCC TTG TTC CGA GAG GTA ATC ACT AAG AAG GTG GCT GAT TTG GTT TT CTG CTC CTC AAA TAT CGA GCC AGG GAG CCA GTC ACA AAG GCA GAA ATG CTG GAG AGT GTC ATC AAA AAT TAC AAG CAC TGT TTT CCT GAG ATC TTC GGC AAA GCC TCT TGT GAG TCC TTG GTC TTT GGC ATT GAC GTG AAG GAA GCA GCC ACC GCC CAC TTT GGC ATT GAC GTG AAG GAA GCA GCC TCT CTC TTG TATC CTG GGT GAT AAT CAG ATC ATG GAG GAC CCC ACC GGC CAC TCC TAT GTC CTT GTC ACC TGC CTA GGT CTC TTG CAG CTG TTT GGC ATT GAC GTG AAG GAA GCA GCC ACC GGC CAC TCC CTG GGT GAT AAT CAG ATC ATG GAG GGC GGC CAT GCT CTG GGT GAT AAT CAG ATC ATG GAG GGC GGC CAT GCT CTG GGT GAT AAT CAG ATC ATG GAG GGC GGC CAT GCT CTG GGT GAT AAT CAG ATC ATG GAG GGC GGC CAT GCT CTG GGT GAT AAT CAG ATC ATG GAG GGC GGC CAT GCT CTG GGG GAG GAA ATC TGG GAG GAG CTG ATG GGG GGC CAT GCT CTG GGT GAT AAT CAG ATC ATG GAG GGC GGC CAT GCT CTG GGG GAG GAA ATC TGG GAG GAG CTG ATG GGG GGC CAT GCT CTG GGG GAG GAA ATC TGG GAG GAG CTG ATG GGG GAG CCC CTG GGG GAG GAG CTG ATG GGG GAG CCC CTG GGG GAG CAC AGG GAG CTG ATG GGG GAG CCC CTG GGG GAG GAG CTG ATG GGG GAG CCC CTG GGG GAG GAG CTG ATG GGG GAG CCC CTG GGG GAG GAG CTG ATG GGG GAG CCC CTG GGG GAG GAG CTG ATG GGG GAG CCC CTG GGG GAG GAG CTG ATG GGG GAG CCC CTG GGG GAG GAG CTG ATG GGG GAG CCC CTG GGG GAG CCC CTG GGG GAG CCC CTG GGG GAG GAG CTG ATG GGG GAG CCC CTG GGG GAG CCC CTG GGG GAG CCC CTG GGG GAG CCC CTG GAG GAG	3700 3750 3800 3850 3900 3930 3972 4014 4056 4098 4140 4182 4224 4266 4308 4350 4392 4434 4476 4518 4560 4602 4644 4686

AAGTCCTTGA	GTATGTGATC	AAGGTCAGTG	CAAGAGTTC		4800
GCTTTTTCTT	CCCATCCCTG	CGTGAAGCAG	CTTTGAGAGA	GGAGGAAGAG	4850
GGAGTCTGAG	CATGAGTTGC	AGCCAAGGCC	AGTGGGAGGG	GGACTGGGCC	4900
AGTGCACCTT	CCAGGGCCGC	GTCCAGCAGC	TTCCCCTGCC	TCGTGTGACA	4950
TGAGGCCCAT	TCTTCACTCT	GAAGAGAGCG	GTCAGTGTTC	TCAGTAGTAG	5000
GTTTCTGTTC	TATTGGGTGA	CTTGGAGATT	TATCTTTGTT	CTCTTTTGGA	5050
ATTGTTCAAA	TGTTTTTTT	TAAGGGATGG	TTGAATGAAC	TTCAGCATCC	5100
<b>AAGTTTATGA</b>	ATGACAGCAG	TCACACAGTT	CTGTGTATAT	AGTTTAAGGG	5150
TAAGAGTCTT	GTGTTTTATT	CAGATTGGGA	AATCCATTCT	ATTTTGTGAA	5200
TTGGGATAAT	AACAGCAGTG	GAATAAGTAC	TTAGAAATGT	GAAAAATGAG	5250
CAGTAAAATA	GATGAGATAA	AGAACTAAAG	AAATTAAGAG	ATAGTCAATT	5300
CTTGCCTTAT	ACCTCAGTCT	ATTCTGTAAA	ATTTTTAAAG	ATATATGCAT	5350
ACCTGGATTT	CCTTGGCTTC	TTTGAGAATG	TAAGAGAAAT	TAAATCTGAA	5400
TAAAGAATTC	TTCCTGTTCA	CTGGCTCTTT	TCTTCTCCAT	GCACTGAGCA	5450
TCTGCTTTTT	GGAAGGCCCT	GGGTTAGTAG	TGGAGATGCT	AAGGTAAGCC	5500
AGACTCATAC	CCACCCATAG	GGTCGTAGAG	TCTAGGAGCT	GCAGTCACGT	5550
AATCGAGGTG	GCAAGATGTC	CTCTAAAGAT	GTAGGGAAAA	GTGAGAGAGG	5600
GGTGAGGGTG	TGGGGCTCCG	GGTGAGAGTG	GTGGAGTGTC	AATGCCCTGA	5650
GCTGGGGCAT	TTTGGGCTTT	GGGAAACTGC	AGTTCCTTCT	GGGGGAGCTG	5700
ATTGTAATGA	TCTTGGGTGG	ATCC			5724

```
(2) INFORMATION FOR SEQUENCE ID NO: 9:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 4157 base pairs
(B) TYPE: nucleic acid
(D) TOPOLOGY: linear
```

(ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

(A) NAME/KEY: MAGE-2 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

CCCATCCAGA	TCCCCATCCG	GGCAGAATCC	GGTTCCACCC	TTGCCGTGAA	50
CCCAGGGAAG	TCACGGGCCC	GGATGTGACG	CCACTGACTT	GCACATTGGA	100
GGTCAGAGGA	CAGCGAGATT	CTCGCCCTGA	GCAACGGCCT	GACGTCGGCG	150
GAGGGAAGCA	GGCGCAGGCT	CCGTGAGGAG	GCAAGGTAAG	ACGCCGAGGG	200
AGGACTGAGG	CGGGCCTCAC	CCCAGACAGA	GGGCCCCCAA	TTAATCCAGC	250
GCTGCCTCTG	CTGCCGGGCC	TGGACCACCC	TGCAGGGGAA	GACTTCTCAG	300
GCTCAGTCGC	CACCACCTCA	CCCCGCCACC	CCCCCCCCT	TTAACCGCAG	, 350
	CGTAAGAGCT				400
	CCAGACTCAG				450
	AACCCACCCC				500
ACCAACCCCA	CCCCCATCCC	TCAAACACCA	ACCCCACCCC	CAAACCCCAT	550
	TCCCCCACCA				600
	ACGGAAGCTC				650
	GTACGGCTAA				700
	ATGCAGAGGA				750
	ACCCAGCATG				800
	CCACCTTTTC				850
CCCACTTCAG	GGGGTTGGGG	CCCAGCCTGC	GAGGAGTCAA	GGGGAGGAAG	900
	ACTGAGGGGA				950
	CCTGGGCACA				1000
	ACAGAGAGTT				1050
	GGGAGGAATC				1100
	ACTCCCCATA				1150
	TAAATTGTTC				1200
	CAATCTCATT				1250
	AGGTGTTGGT				1300
	TGAGAAAGGG				1350
	CCATCATAAC				1400
	CGTGGGGTAA				1450
	GGAGTTGATG				1500
	CTCTGGTCGA				1550
	AGAGCCTGAG				1600
	GGCCCCATAG				1650
	CAGGGCTGTC				1700
	GAAGGGGAGG				1750
	GGTCTCAGGC				1800
	CCAGGACACC				1850
	GAGGACCTGG				1900
	TACCATATCA				1950
	AAAGGGTGGG				2000
	CACAGAGGGG				2050
	CCAACCCTGC				2100
GCAGTCTGCA	CACTGAAGGC	CCGTGCATTC	CTCTCCCAGG	AATCAGGAGC	2150

TCCAGGAACC AGGCAGTGAG GCCTTGGTCT GAGTCAGTGC CT		2200
AGAGCAGAGG GGACGCAGAC AGTGCCAACA CTGAAGGTTT GG		2250
CACACCAAGG GCCCCACCCG CCCAGAACAA ATGGGACTCC AC		2300
GCCTCACCCT CCCTATTCTC AGTCCTGCAG CCTGAGCATG TO	CTGGCCGG	2350
CTGTACCCTG AGGTGCCCTC CCACTTCCTC CTTCAGGTTC TO		2400
AGGCTGACAA GTAGGACCCG AGGCACTGGA GGAGCATTGA AC	ggagaagat	2450
CTGTAAGTAA GCCTTTGTCA GAGCCTCCAA GGTTCAGTTC AC		2500
TAAGGCCTCA CACACGCTCC TTCTCTCCCC AGGCCTGTGG GT	<b>ICTTCATTG</b>	2550
CCCAGCTCCT GCCCGCACTC CTGCCTGCTG CCCTGACCAG AC	STCATC	2597
ATG CCT CTT GAG CAG AGG AGT CAG CAC TGC AAG CO		2639
GGC CTT GAG GCC CGA GGA GAG GCC CTG GGC CTG GT	rg ggt gcg	2681
CAG GCT CCT GCT ACT GAG GAG CAG CAG ACC GCT TO	CT TCC TCT	2723
TCT ACT CTA GTG GAA GTT ACC CTG GGG GAG GTG CC	CT GCT GCC	2765
GAC TCA CCG AGT CCT CCC CAC AGT CCT CAG GGA GG	CC TCC AGC	2807
TTC TCG ACT ACC ATC AAC TAC ACT CTT TGG AGA CA	AA TCC GAT	2849
GAG GGC TCC AGC AAC CAA GAA GAG GAG GGG CCA AG	GA ATG TTT	2891
CCC GAC CTG GAG TCC GAG TTC CAA GCA GCA ATC AC	ST AGG AAG	2933
ATG GTT GAG TTG GTT CAT TTT CTG CTC CTC AAG TA	AT CGA GCC	2975
AGG GAG CCG GTC ACA AAG GCA GAA ATG CTG GAG AG	ST GTC CTC	3017
AGA AAT TGC CAG GAC TTC TTT CCC GTG ATC TTC AG	C AAA GCC	3059
TCC GAG TAC TTG CAG CTG GTC TTT GGC ATC GAG GT	ig gig gaa	3101
GTG GTC CCC ATC AGC CAC TTG TAC ATC CTT GTC AC	CC TGC CTG	3143
GGC CTC TCC TAC GAT GGC CTG CTG GGC GAC AAT CA		3185
CCC AAG ACA GGC CTC CTG ATA ATC GTC CTG GCC AT		3227
ATA GAG GGC GAC TGT GCC CCT GAG GAG AAA ATC TG		3269
CTG AGT ATG TTG GAG GTG TTT GAG GGG AGG GAG GA		3311
TTC GCA CAT CCC AGG AAG CTG CTC ATG CAA GAT CT		3353
GAA AAC TAC CTG GAG TAC CGG CAG GTG CCC GGC AG		3395
GCA TGC TAC GAG TTC CTG TGG GGT CCA AGG GCC CT		3437
ACC AGC TAT GTG AAA GTC CTG CAC CAT ACA CTA AF		3479
GGA GAA CCT CAC ATT TCC TAC CCA CCC CTG CAT GA		3521
TTG AGA GAG GGA GAA GAG TGA		3542
GTCTCAGCAC ATGTTGCAGC CAGGGCCAGT GGGAGGGGGT CT	rgggccagt	3592
GCACCTTCCA GGGCCCCATC CATTAGCTTC CACTGCCTCG TO	TGATATGA	3642
GGCCCATTCC TGCCTCTTTG AAGAGAGCAG TCAGCATTCT TA	AGCAGTGAG	3692
TTTCTGTTCT GTTGGATGAC TTTGAGATTT ATCTTTCTTT CO		3742
TTGTTCAAAT GTTCCTTTTA ACAAATGGTT GGATGAACTT CA		3792
GTTTATGAAT GACAGTAGTC ACACATAGTG CTGTTTATAT AG	TTTAGGGG	3842
TAAGAGTCCT GTTTTTTATT CAGATTGGGA AATCCATTCC AT		3892
TTGTCACATA ATAACAGCAG TGGAATATGT ATTTGCCTAT AT		3942
AATTAGCAGT AAAATACATG ATACAAGGAA CTCAAAAGAT AG		3992
TGCCTTATAC CTCAGTCTAT TATGTAAAAT TAAAAATATG TG		4042
TGCTTCTTTG AGAATGCAAA AGAAATTAAA TCTGAATAAA TT		4092
TCACTGGCTC ATTTCTTTAC CATTCACTCA GCATCTGCTC TO		4142
CCTGGTAGTA GTGGG		4157

(2)	INFORMATION FOR SEQUENCE ID NO: 10:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 662 base pairs
	(B) TYPE: nucleic acid
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: genomic DNA
	(ix) FEATURE:
	(A) NAME/KEY: MAGE-21 gene
	(wi) SPOURNCE DESCRIPTION: SEO ID NO: 10

GGATCCCCAT	GGATCCAGGA	AGAATCCAGT	TCCACCCCTG	CTGTGAACCC	50
	CGGGGCCGGA				100
	CGAGATTCTC				150
	GCAGGCTCCG				200
	GCCTCACCCC				250
	CAGGCCTGGA				300
	ACCTCACCCC				350
	AGAGCTTTGT				400
	ACTCAGCCAG				450
	CCCCGCACC				500
	ATCCCCCAAC				550
	CAAACCCCGA				600
	CCTGCAATCA				650
GCACGCGGAT		ACCOMOGUM	00100000.2.		662
GUNUSUSTAL					

- (2) INFORMATION FOR SEQUENCE ID NO: 11: (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1640 base pairs
  - (B) TYPE: nucleic acid

  - (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA to mRNA
  - (ix) FEATURE:
    - (A) NAME/KEY: cDNA MAGE-3
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

GCCGCGAGGG AAGCCGGCCC AGGCTCGGTG AGGAGGCAAG	GTTCTGAGGG	50
GACAGGCTGA CCTGGAGGAC CAGAGGCCCC CGGAGGAGCA		100
AGATCTGCCA GTGGGTCTCC ATTGCCCAGC TCCTGCCCAC	ACTCCCGCCT	150
GTTGCCCTGA CCAGAGTCAT C		171
ATG CCT CTT GAG CAG AGG AGT CAG CAC TGC AAG	CCT GAA GAA	213
GGC CTT GAG GCC CGA GGA GAG GCC CTG GGC CTG	GTG GGT GCG	255
CAG GCT CCT GCT ACT GAG GAG CAG GAG GCT GCC	TCC TCC TCT	297
TCT ACT CTA GTT GAA GTC ACC CTG GGG GAG GTG	CCT GCT GCC	339
GAG TCA CCA GAT CCT CCC CAG AGT CCT CAG GGA	GCC TCC AGC	381
CTC CCC ACT ACC ATG AAC TAC CCT CTC TGG AGC		423
GAG GAC TCC AGC AAC CAA GAA GAG GAG GGG CCA		465
CCT GAC CTG GAG TCC GAG TTC CAA GCA GCA CTC	AGT AGG AAG	507
GTG GCC GAG TTG GTT CAT TTT CTG CTC CTC AAG	TAT CGA GCC	549
AGG GAG CCG GTC ACA AAG GCA GAA ATG CTG GGG	AGT GTC GTC	591
GGA AAT TGG CAG TAT TTC TTT CCT GTG ATC TTC	AGC AAA GCT	633
TCC AGT TCC TTG CAG CTG GTC TTT GGC ATC GAG	CTG ATG GAA	675
GTG GAC CCC ATC GGC CAC TTG TAC ATC TTT GCC	ACC TGC CTG	717
GGC CTC TCC TAC GAT GGC CTG CTG GGT GAC AAT	CAG ATC ATG	759
CCC AAG GCA GGC CTC CTG ATA ATC GTC CTG GCC	ATA ATC GCA	801
AGA GAG GGC GAC TGT GCC CCT GAG GAG AAA ATC	TGG GAG GAG	843
CTG AGT GTG TTA GAG GTG TTT GAG GGG AGG GAA	GAC AGT ATG	885
TTG GGG GAT CCC AAG AAG CTG CTC ACC CAA CAT	TTC GTG CAG	927
GAA AAC TAC CTG GAG TAC CGG CAG GTC CCC GGC		969
GCA TGT TAT GAA TTC CTG TGG GGT CCA AGG GCC	CTC GTT GAA	1011
ACC AGC TAT GTG AAA GTC CTG CAC CAT ATG GTA	AAG ATC AGT	1053
GGA GGA CCT CAC ATT TCC TAC CCA CCC CTG CAT	GAG TGG GTT	1095
TTG AGA GAG GGG GAA GAG TGA		1116
GTCTGAGCAC GAGTTGCAGC CAGGGCCAGT GGGAGGGGGT		1166
GCACCTTCCG GGGCCGCATC CCTTAGTTTC CACTGCCTCC		1216
GGCCCATTCT TCACTCTTTG AAGCGAGCAG TCAGCATTCT	TAGTAGTGGG	1266
TTTCTGTTCT GTTGGATGAC TTTGAGATTA TTCTTTGTTT	CCTGTTGGAG	1316
TTGTTCAAAT GTTCCTTTTA ACGGATGGTT GAATGAGCGT	CAGCATCCAG	1366
GTTTATGAAT GACAGTAGTC ACACATAGTG CTGTTTATAT	AGTTTAGGAG	1416
TAAGAGTCTT GEETTTTACT CAAATTGGGA AATCCATTCC	ATTTTGTGAA	1466
TTGTGACATA ATAATAGCAG TGGTAAAAGT ATTTGCTTAA	AATTGTGAGC	1516
GAATTAGCAA TAACATACAT GAGATAACTC AAGAAATCAA	AAGATAGTTG	1566
ATTCTTGCCT TGTACCTCAA TCTATTCTGT AAAATTAAAC	AAATATGCAA	1616
ACCAGGATTT CCTTGACTTC TTTG		1640

```
(2) INFORMATION FOR SEQUENCE ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 943 base pairs

(B) TYPE: nucleic acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

(A) NAME/KEY: MAGE-31 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:
```

•	
GGATCCTCCA CCCCAGTAGA GTGGGGACCT CACAGAGTCT GGCCAACCCT	50
CCTGACAGTT CTGGGAATCC GTGGCTGCGT TTGCTGTCTG CACATTGGGG	100
GCCCGTGGAT TCCTCTCCCA GGAATCAGGA GCTCCAGGAA CAAGGCAGTG	150
AGGACTIGGT CTGAGGCAGT GTCCTCAGGT CACAGAGTAG AGGGGGCTCA	200
GATAGTGCCA ACGGTGAAGG TTTGCCTTGG ATTCAAACCA AGGGCCCCAC	250
CTGCCCCAGA ACACATGGAC TCCAGAGCGC CTGGCCTCAC CCTCAATACT	300
TTCAGTCCTG CAGCCTCAGC ATGCGCTGGC CGGATGTACC CTGAGGTGCC	350
CTCTCACTTC CTCCTTCAGG TTCTGAGGGG ACAGGCTGAC CTGGAGGACC	400
AGAGGCCCCC GGAGGAGCAC TGAAGGAGAA GATCTGTAAG TAAGCCTTTG	450
TTAGAGCCTC CAAGGTTCCA TTCAGTACTC AGCTGAGGTC TCTCACATGC	500
TTAGAGCCTC CAAGGTTCCA TTCAGTACTC AGCTGAGGTC CCTGCCCACA	550
TCCCTCTCTC CCCAGGCCAG TGGGTCTCCA TTGCCCAGCT CCTGCCCACA	580
CTCCCGCCTG TTGCCCTGAC CAGAGTCATC	622
ATG CCT CTT GAG CAG AGG AGT CAG CAC TGC AAG CCT GAA GAA	664
GGC CTT GAG GCC CGA GGA GAG GCC CTG GGC CTG GTG GGT GCG	706
CAG GCT CCT GCT ACT GAG GAG CAG GAG GCT GCC TCC TCT	748
TCT AGT GTA GTT GAA GTC ACC CTG GGG GAG GTG CCT GCT GCC	790
GAG TCA CCA GAT CCT CCC CAG AGT CCT CAG GGA GCC TCC AGC	832
CTC CCC ACT ACC ATG AAC TAC CCT CTC TGG AGC CAA TCC TAT	
GAG GAC TCC AGC AAC CAA GAA GAG GAG GGG CCA AGC ACC TTC	874
CCT GAC CTG GAG TCT GAG TTC CAA GCA GCA CTC AGT AGG AAG	916
GTG GCC AAG TTG GTT CAT TTT CTG CTC	943

- (2) INFORMATION FOR SEQUENCE ID NO: 13:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2531 base pairs
    - (B) TYPE: nucleic acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: genomic DNA
  - (ix) FEATURE:
    - (A) NAME/KEY: MAGE-4 gene
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

GGATCCAGGC CCTGCCTGGA GAAATGTGAG GGCCCTGAGT GAACACAGTG	50
GGGATCATCC ACTCCATGAG AGTGGGGACC TCACAGAGTC CAGCCTACCC	100
TCTTGATGGC ACTGAGGGAC CGGGGCTGTG CTTACAGTCT GCACCCTAAG	150
GGCCCATGGA TTCCTCTCT AGGAGCTCCA GGAACAAGGC AGTGAGGCCT	200
TGGTCTGAGA CAGTGTCCTC AGGTTACAGA GCAGAGGATG CACAGGCTGT	250
GCCAGCAGTG AATGTTTGCC CTGAATGCAC ACCAAGGGCC CCACCTGCCA	300
CAAGACACAT AGGACTCCAA AGAGTCTGGC CTCACCTCCC TACCATCAAT	350
CCTGCAGAAT CGACCTCTGC TGGCCGGCTA TACCCTGAGG TGCTCTCTCA	400
CTTCCTCCTT CAGGTTCTGA GCAGACAGGC CAACCGGAGA CAGGATTCCC	450
TGGAGGCCAC AGAGGAGCAC CAAGGAGAAG ATCTGTAAGT AAGCCTTTGT	500
TAGAGCCTCT AAGATTTGGT TCTCAGCTGA GGTCTCTCAC ATGCTCCCTC	550
TCTCCGTAGG CCTGTGGGTC CCCATTGCCC AGCTTTTGCC TGCACTCTTG	600
CCTGCTGCCC TGACCAGAGT CATC	624
ATG TCT TCT GAG CAG AAG AGT CAG CAC TGC AAG CCT GAG GAA	666
GGC GTT GAG GCC CAA GAA GAG GCC CTG GGC CTG GTG GGT GCA	708
CAG GCT CCT ACT GAG GAG CAG GAG GCT GCT GTC TCC	750
TCC TCT CCT CTG GTC CCT GGC ACC CTG GAG GAA GTG CCT GCT	792
GCT GAG TCA GCA GGT CCT CCC CAG AGT CCT CAG GGA GCC TCT	834
GCC TTA CCC ACT ACC ATC AGC TTC ACT TGC TGG AGG CAA CCC	876
AAT GAG GGT TCC AGC AGC CAA GAA GAG GAG GGG CCA AGC ACC	918
TCG CCT GAC GCA GAG TCC TTG TTC CGA GAA GCA CTC AGT AAC	960
AAG GTG GAT GAG TTG GCT CAT TTT CTG CTC CGC AAG TAT CGA	1002
GCC AAG GAG CTG GTC ACA AAG GCA GAA ATG CTG GAG AGA GTC	1002
ATC AAA AAT TAC AAG CGC TGC TTT CCT GTG ATC TTC GGC AAA	
GCC TCC GAG TCC CTG AAG ATG ATC TTT GGC ATT GAC GTG AAG	1086
	1128
GAA GTG GAC CCC GCC AGC AAC ACC TAC ACC CTT GTC ACC TGC	1170
CTG GGC CTT TCC TAT GAT GGC CTG CTG GGT AAT AAT CAG ATC	1212
TTT CCC AAG ACA GGC CTT CTG ATA ATC GTC CTG GGC ACA ATT	1254
GCA ATG GAG GGC GAC AGC GCC TCT GAG GAG GAA ATC TGG GAG	1296
GAG CTG GGT GTG ATG GGG GTG TAT GAT GGG AGG GAG CAC ACT	1338
GTC TAT GGG GAG CCC AGG AAA CTG CTC ACC CAA GAT TGG GTG	1380
CAG GAA AAC TAC CTG GAG TAC CGG CAG GTA CCC GGC AGT AAT	1422
CCT GCG CGC TAT GAG TTC CTG TGG GGT CCA AGG GCT CTG GCT	1464
GAA ACC AGC TAT GTG AAA GTC CTG GAG CAT GTG GTC AGG GTC	1506
AAT GCA AGA GTT CGC ATT GCC TAC CCA TCC CTG CGT GAA GCA	1548
GCT TTG TTA GAG GAG GAA GAG GGA GTC TGA	1578
GCATGAGTTG CAGCCAGGGC TGTGGGGAAG GGGCAGGGCT GGGCCAGTGC	1628
ATCTAACAGC CCTGTGCAGC AGCTTCCCTT GCCTCGTGTA ACATGAGGCC	1678
CATTCTTCAC TCTGTTTGAA GAAAATAGTC AGTGTTCTTA GTAGTGGGTT	1728
TCTATTTTGT TGGATGACTT GGAGATTTAT CTCTGTTTCC TTTTACAATT	1778
GTTGAAATGT TCCTTTTAAT GGATGGTTGA ATTAACTTCA GCATCCAAGT	1828
TTATGAATCG TAGTTAACGT ATATTGCTGT TAATATAGTT TAGGAGTAAG	1878
AGTCTTGTTT TTTATTCAGA TTGGGAAATC CGTTCTATTT TGTGAATTTG	1928

GGACATAATA	ACAGCAGTGG	AGTAAGTATT	TAGAAGTGTG	AATTCACCGT	1978
			AATTCCCGCC		2028
			GCATACCTGG		2078
			ATAAATAATT		2128
			ATCTGCTCTG		2178
			CAGACACACA		2228
			TAATTAAGGT		2278
			GTGGGTATGG		2328
			GGCCTTTTG		2378
			TAATGAAGCT		2428
			GCCCAGATTG		2478
			ACAGAGAGGA		2528
	ICCITIGION	CUNTAGUTAU	110110110111		2531
GGG					

- INFORMATION FOR SEQUENCE ID NO: 14: (2) (i) SEQUENCE CHARACTERISTICS:
  - - (A) LENGTH: 2531 base pairs
    - (B) TYPE: nucleic acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: genomic DNA
  - (ix) FEATURE:
    - (A) NAME/KEY: MAGE-41 gene
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

GGATCCAGGC CCTGCCTGGA GAAATGTGAG GGCCCTGAGT GAACACAGTG	50
GGGATCATCC ACTCCATGAG AGTGGGGACC TCACAGAGTC CAGCCTACCC	100
TCTTGATGGC ACTGAGGGAC CGGGGCTGTG CTTACAGTCT GCACCCTAAG	150
GGCCCATGGA TTCCTCTCT AGGAGCTCCA GGAACAAGGC AGTGAGGCCT	200
TGGTCTGAGA CAGTGTCCTC AGGTTACAGA GCAGAGGATG CACAGGCTGT	250
GCCAGCAGTG AATGTTTGCC CTGAATGCAC ACCAAGGGCC CCACCTGCCA	300
CAAGACACAT AGGACTCCAA AGAGTCTGGC CTCACCTCCC TACCATCAAT	350
CCTGCAGAAT CGACCTCTGC TGGCCGGCTA TACCCTGAGG TGCTCTCTCA	400
CTTCCTCCTT CAGGTTCTGA GCAGACAGGC CAACCGGAGA CAGGATTCCC	450
TGGAGGCCAC AGAGGAGCAC CAAGGAGAAG ATCTGTAAGT AAGCCTTTGT	500
TAGAGCCTCT AAGATTTGGT TCTCAGCTGA GGTCTCTCAC ATGCTCCCTC	550
TCTCCGTAGG CCTGTGGGTC CCCATTGCCC AGCTTTTGCC TGCACTCTTG	600
CCTGCTGCCC TGAGCAGAGT CATC	624
ATG TCT TCT GAG CAG AAG AGT CAG CAC TGC AAG CCT GAG-GAA	666
GGC GTT GAG GCC CAA GAA GAG GCC CTG GGC CTG GTG GGT GCG	708
CAG GCT CCT ACT ACT GAG GAG GAG GCT GCT GTC TCC TCC	750
TCC TCT CCT CTG GTC CCT GGC ACC CTG GAG GAA GTG CCT GCT	792
GCT GAG TCA GCA GGT CCT CCC CAG AGT CCT CAG GGA GCC TCT	834
GCC TTA CCC ACT ACC ATC AGC TTC ACT TGC TGG AGG CAA CCC	876
AAT GAG GGT TCC AGC AGC CAA GAA GAG GAG GGG CCA AGC ACC	918
TCG CCT GAC GCA GAG TCC TTG TTC CGA GAA GCA CTC AGT AAC	960
AAG GTG GAT GAG TTG GCT CAT TTT CTG CTC CGC AAG TAT CGA	1002
GCC AAG GAG CTG GTC ACA AAG GCA GAA ATG CTG GAG AGA GTC	1044
ATC AAA AAT TAC AAG CGC TGC TTT CCT GTG ATC TTC GGC AAA	1086
GCC TCC GAG TCC CTG AAG ATG ATC TTT GGC ATT GAC GTG AAG	1128
GAA GTG GAC CCC ACC AGC AAC ACC TAC ACC CTT GTC ACC TGC	1170
CTG GGC CTT TCC TAT GAT GGC CTG CTG GGT AAT AAT CAG ATC	1212
TTT CCC AAG ACA GGC CTT CTG ATA ATC GTC CTG GGC ACA ATT	1254
GCA ATG GAG GGC GAC AGC GCC TCT GAG GAG GAA ATC TGG GAG	1296
GAG CTG GGT GTG ATG GGG GTG TAT GAT GGG AGG GAG CAC ACT	1338
GTC TAT GGG GAG CCC AGG AAA CTG CTC ACC CAA GAT TGG GTG	1380
CAG GAA AAC TAC CTG GAG TAC CGG CAG GTA CCC GGC AGT AAT	1422
CCT GCG CGC TAT GAG TTC CTG TGG GGT CCA AGG GCT CTG GCT	1464
GAA ACC AGC TAT GTG AAA GTC CTG GAG CAT GTG GTC AGG GTC	1506
AAT GCA AGA GTT CGC ATT GCC TAC CCA TCC CTG CGT GAA GCA	1548
GCT TTG TTA GAG GAG GAA GAG GGA GTC TGA	1578
GCATGAGTTG CAGCCAGGGC TGTGGGGAAG GGGCAGGGCT GGGCCAGTGC	1628
ATCTAACAGC CCTGTGCAGC AGCTTCCCTT GCCTCGTGTA ACATGAGGCC	1678
CATTCTTCAC TCTGTTTGAA GAAAATAGTC AGTGTTCTTA GTAGTGGGTT	1728
TCTATTTTGT TGGATGACTT GGAGATTTAT CTCTGTTTCC TTTTACAATT	1778
GTTGAAATGT TCCTTTTAAT GGATGGTTGA ATTAACTTCA GCATCCAAGT	1828
TTATGAATCG TAGTTAACGT ATATTGCTGT TAATATAGTT TAGGAGTAAG	1878
AGTCTTGTTT TTTATTCAGA TTGGGAAATC CGTTCTATTT TGTGAATTTG	1928
GGACATAATA ACAGCAGTGG AGTAAGTATT TAGAAGTGTG AATTCACCGT	1978
	22,0

CA A B MACCIFIC	AGATAAATTA	AAAGATACTT	AATTCCCGCC	TTATGCCTCA	2028
GWWWINGGIG	MANTANATIN	11110111101	CCATACCTCC	» առաւինականն	2078
GTCTATTCTG	TAAAATTTAA	AAATATATAT	GCMINCCIGG	WILL COLLEC	
CTTCGTGAAT	GTAAGAGAAA	TTAAATCTGA	ATAAATAATT	CTTTCTGTTA	2128
ACTGGCTCAT	TTCTTCTCTA	TGCACTGAGC	ATCTGCTCTG	TGGAAGGCCC	2178
ACCATTAGTA	GTGGAGATAC	TAGGGTAAGC	CAGACACACA	CCTACCGATA	2228
COCHE DIDE S.C.	AGTCTAGGAG	CCCCCTCATA	TAATTAAGGT	GACAAGATGT	2278
GGGIATIAAG	AGICIAGGAG	3000010000	CTCCCTATCC	GGCTCCAGGT	2328
	GTAGGGGAAA		GIGGGIAIGG	99010011001	
GAGAGTGGTC	GGGTGTAAAT	70001111	GGGCCTTTTG		2378
AACTCCATTT		GATCTGATTC	TAATGAAGCT	TGGTGGGTCC	2428
700000000000000	TCTCAGAGGG	AGAGGGAAAA	GCCCAGATTG	GAAAAGTTGC	2478
Meegichent	TCTCVQVQQQ	MONOCOLLES.	3030303003	COCHORACON	2528
TCTGAGCGGT	TCCTTTGTGA	CAATGGATGA	ACHUAUAUGA	GCCTCTACCT	
CCC					2531

- (2) INFORMATION FOR SEQUENCE ID NO: 15:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1068 base pairs
    - (B) TYPE: nucleic acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA to mRNA
  - (ix) FEATURE:
    - (A) NAME/KEY: cDNA MAGE-4
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

G	GGG	CCA	AGC	ACC	TCG	CCT	GAC	GCA	GAG	TCC	TTG	TTC	CGA	40
GAA	GCA	CTC	AGT	AAC	AAG	GTG	GAT	GAG	TTG	GCT	CAT	TTT	CTG	82
CTC	CGC	AAG	TAT	CGA	GCC	AAG	GAG	CTG	GTC	ACA	AAG	GCA	GAA	124
ATG	CTG	GAG	AGA	GTC	ATC	AAA	AAT	TAC	AAG	CGC	TGC	TTT	CCT	166
GTG	ATC	TTC	GGC	AAA	GCC	TCC	GAG	TCC	CTG	AAG	ATG	ATC	TTT	208
GGC	ATT	GAC	GTG	AAG	GAA	GTG	GAC	CCC	GCC	AGC	AAC	ACC	TAC	250
ACC	CTT	GTC	ACC	TGC	CTG	GGC	CTT	TCC	TAT	GAT	GGC	CTG	CTG	292
GGT	AAT	AAT	CAG	ATC	TTT	CCC	AAG	ACA	GGC	CTT	CTG	ATA	ATC	334
GTC	CTG	GGC	ACA	ATT	GCA	ATG	GAG	GGC	GAC	AGC	GCC	TCT	GAG	376
GAG	GAA	ATC	TGG	GAG	GAG	CTG	GGT	GTG	ATG	GGG	GTG	TAT	GAT	418
GGG	AGG	GAG	CAC	ACT	GTC	TAT	GGG	GAG	CCC	AGG	AAA	CTG	CTC	460
ACC	CAA	GAT	TGG	GTG	CAG	GAA	AAC	TAC	CTG	GAG	TAC	CGG	CAG	502
GTA	CCC	GGC	AGT	AAT	CCT	GCG	CGC	TAT	GAG	TTC	CTG	TGG	GGT	544
CCA	AGG	GCT	CTG	GCT	GAA	ACC	AGC	TAT	GTG	AAA	GTC	CTG	GAG	586
CAT	GTG	GTC	AGG	GTC	AAT	GCA	AGA	GTT	CGC	ATT	GCC	TAC	CCA	628
TCC	CTG	CGT	GAA	GCA	GCT	TTG	TTA	GAG	GAG	GAA	GAG	GGA	GTC	670
TGAC	CATO	GAG :	PTGC2	AGCCZ	AG GC	CTG:	rgggg	AAG	GGGG	CAGG	GCT	GGCC	CAG	720
TGC	atct?	AAC 1	AGCC	CTGT	C A	CAG	CTTCC	CTI	rgcc1	CGT	GTA	ACATO	AG	770
GCCC	TTA	CTT (	CACT	CTGT:	rt G?	AAGAI	AATA	GTO	AGTO	TTC	TTAC	TAG	rgg	820
GTTI	CTAI	CTT :	rgtt(	GAT	A C	ľTGG <i>I</i>	AGATT	TAT	CTCI	TTD	TCC:	TTT?	ACA	870
ATTO	TTG	AAA :	rgtt(	CCTT	T A	ATGG!	ATGG1	TG?	ATT	AACT	TCAC	CATO	CA	920
AGT1	TAT	AA :	rcgt1	AGTT!	AA CO	STAT	<b>ATTG</b>	TG1	TAAT	ATA	GTT:	[AGG	AGT	970
AAG	GTCI	rtg :	rttt:	TAT:	C A	SATTO	GGAZ	ATO	CGT	CTA	TTT:	rgtg?	TA	1020
TTG	GAC	ATA 2	ATAA	CAGC	AG TO	GAG	[AAG]	TA T	TAG	AGT	GTG!	ATTO	2	1068

1558

1608

1658

1708

1758

1808

1858

1908

1958

2008

2058

(2)

94

INFORMATION FOR SEQUENCE ID NO: 16:

```
(i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 2226 base pairs
            (B) TYPE: nucleic acid
            (D) TOPOLOGY: linear
      (ii) MOLECULE TYPE: genomic DNA
      (ix) FEATURE:
            (A) NAME/KEY: MAGE-5 gene
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:
                                                              50
GGATCCAGGC CTTGCCAGGA GAAAGGTGAG GGCCCTGTGT GAGCACAGAG
GGGACCATTC ACCCCAAGAG GGTGGAGACC TCACAGATTC CAGCCTACCC
                                                             100
TCCTGTTAGC ACTGGGGGCC TGAGGCTGTG CTTGCAGTCT GCACCCTGAG
                                                             150
                                                             200
GGCCCATGCA TTCCTCTTCC AGGAGCTCCA GGAAACAGAC ACTGAGGCCT
                                                             250
TGGTCTGAGG CCGTGCCCTC AGGTCACAGA GCAGAGGAGA TGCAGACGTC
                                                             300
TAGTGCCAGC AGTGAACGTT TGCCTTGAAT GCACACTAAT GGCCCCCATC
                                                             350
GCCCCAGAAC ATATGGGACT CCAGAGCACC TGGCCTCACC CTCTCTACTG
TCAGTCCTGC AGAATCAGCC TCTGCTTGCT TGTGTACCCT GAGGTGCCCT
                                                             400
CTCACTTTTT CCTTCAGGTT CTCAGGGGAC AGGCTGACCA GGATCACCAG
                                                             450
GAAGCTCCAG AGGATCCCCA GGAGGCCCTA GAGGAGCACC AAAGGAGAAG
                                                             500
ATCTGTAAGT AAGCCTTTGT TAGAGCCTCC AAGGTTCAGT TTTTAGCTGA
GGCTTCTCAC ATGCTCCCTC TCTCTCCAGG CCAGTGGGTC TCCATTGCCC
                                                             600
AGCTCCTGCC CACACTCCTG CCTGTTGCGG TGACCAGAGT CGTC
                                                             644
ATG TCT CTT GAG CAG AAG AGT CAG CAC TGC AAG CCT GAG GAA
                                                             684
CTC CTC TGG TCC CAG GCA CCC TGG GGG AGG TGC CTG CTG
                                                             728
                                                             770
GGT CAC CAG GTC CTC TCA AGA GTC CTC AGG GAG CCT CCG CCA
TCC CCA CTG CCA TCG ATT TCA CTC TAT GGA GGC AAT CCA TTA
                                                             812
AGG GCT CCA GCA ACC AAG AAG AGG AGG GGC CAA GCA CCT CCC
                                                             854
CTG ACC CAG AGT CTG TGT TCC GAG CAG CAC TCA GTA AGA AGG
                                                             896
                                                             908
TGG CTG ACT TGA
TTCATTTTCT GCTCCTCAAG TATTAAGTCA AGGAGCTGGT CACAAAGGCA
                                                             958
GAAATGCTGG AGAGCGTCAT CAAAAATTAC AAGCGCTGCT TTCCTGAGAT
                                                            1008
CTTCGGCAAA GCCTCCGAGT CCTTGCAGCT GGTCTTTGGC ATTGACGTGA
                                                            1058
AGGAAGCGGA CCCCACCAGC AACACCTACA CCCTTGTCAC CTGCCTGGGA
                                                            1108
CTCCTATGAT GGCCTGCTGG TTGATAATAA TCAGATCATG CCCAAGACGG
                                                            1158
                                                            1208
GCCTCCTGAT AATCGTCTTG GGCATGATTG CAATGGAGGG CAAATGCGTC
CCTGAGGAGA AAATCTGGGA GGAGCTGAGT GTGATGAAGG TGTATGTTGG
                                                            1258
GAGGGAGCAC AGTGTCTGTG GGGAGCCCAG GAAGCTGCTC ACCCAAGATT
                                                            1308
TGGTGCAGGA AAACTACCTG GAGTACCGGC AGGTGCCCAG CAGTGATCCC
                                                            1358
ATATGCTATG AGTTACTGTG GGGTCCAAGG GCACTCGCTG CTTGAAAGTA
                                                            1408
CTGGAGCACG TGGTCAGGGT CAATGCAAGA GTTCTCATTT CCTACCCATC
                                                            1458
```

CCTGCGTGAA GCAGCTTTGA GAGAGGAGGA AGAGGGAGTC TGAGCATGAG

CTGCAGCCAG GGCCACTGCG AGGGGGGCTG GGCCAGTGCA CCTTCCAGGG

CTCCGTCCAG TAGTTTCCCC TGCCTTAATG TGACATGAGG CCCATTCTTC

TCTCTTTGAA GAGAGCAGTC AACATTCTTA GTAGTGGGTT TCTGTTCTAT

TGGATGACTT TGAGATTTGT CTTTGTTTCC TTTTGGAATT GTTCAAATGT

TTCTTTTAAT GGGTGGTTGA ATGAACTTCA GCATTCAAAT TTATGAATGA

CAGTAGTCAC ACATAGTGCT GTTTATATAG TTTAGGAGTA AGAGTCTTGT

TTTTTATTCA GATTGGGAAA TCCATTCCAT TTTGTGAATT GGGACATAGT

TACAGCAGTG GAATAAGTAT TCATTTAGAA ATGTGAATGA GCAGTAAAAC

TGATGACATA AAGAAATTAA AAGATATTTA ATTCTTGCTT ATACTCAGTC

TATTCGGTAA AATTTTTTTT AAAAAATGTG CATACCTGGA TTTCCTTGGC

TTCTTTGAGA ATGTAAGACA AATTAAATCT GAATAAATCA TTCTCCCTGT

TCACTGGCTC	ATTTATTCTC	TATGCACTGA	GCATTTGCTC	TGTGGAAGGC	2108
CCTGGGTTAA	TAGTGGAGAT	GCTAAGGTAA	GCCAGACTCA	CCCCTACCCA	2158
CAGGGTAGTA	AAGTCTAGGA	GCAGCAGTCA	TATAATTAAG	GTGGAGAGAT	2208
GCCCTCTAAG	ATGTAGAG				2226

```
(2) INFORMATION FOR SEQUENCE ID NO: 17:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2305 base pairs

(B) TYPE: nucleic acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

(A) NAME/KEY: MAGE-51 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:
```

GGATCCAGGC CTTGCCAGGA GAAAGGTGAG GGCCCTGTGT	GAGCACAGAG	50
GGGACCATTC ACCCCAAGAG GGTGGAGACC TCACAGATTC	CAGCCTACCC	100
TCCTGTTAGC ACTGGGGGCC TGAGGCTGTG CTTGCAGTCT	GCACCCTGAG	150
GGCCCATGCA TTCCTCTTCC AGGAGCTCCA GGAAACAGAC	ACTGAGGCCT	200
TGGTCTGAGG CCGTGCCCTC AGGTCACAGA GCAGAGGAGA		250
TAGTGCCAGC AGTGAACGTT TGCCTTGAAT GCACACTAAT	GGCCCCCATC	300
GCCCCAGAAC ATATGGGACT CCAGAGCACC TGGCCTCACC	CTCTCTACTG	350
TCAGTCCTGC AGAATCAGCC TCTGCTTGCT TGTGTACCCT		400
CTCACTTTTT CCTTCAGGTT CTCAGGGGAC AGGCTGACCA		450
GAAGCTCCAG AGGATCCCCA GGAGGCCCTA GAGGAGCACC	AAAGGAGAAG	500
ATCTGTAAGT AAGCCTTTGT TAGAGCCTCC AAGGTTCAGT	TITTAGCTGA	550
GGCTTCTCAC ATGCTCCCTC TCTCTCCAGG CCAGTGGGTC	TCCATTGCCC	600
AGCTCCTGCC CACACTCCTG CCTGTTGCGG TGACCAGAGT	CGTC	644
ATG TCT CTT GAG CAG AAG AGT CAG CAC TGC AAG	CCT GAG GAA	686
GGC CTT GAC ACC CAA GAA GAG CCC TGG GCC TGG	TGG GTG TGC	728
AGG CTG CCA CTA CTG AGG AGC AGG AGG CTG TGT	CCT CCT CCT	770
CTC CTC TGG TCC CAG GCA CCC TGG GGG AGG TGC	CTG CTG CTG	812
GGT CAC CAG GTC CTC TCA AGA GTC CTC AGG GAG	CCT CCG CCA	854
TCC CCA CTG CCA TCG ATT TCA CTC TAT GGA GGC	AAT CCA TTA	896
AGG GCT CCA GCA ACC AAG AAG AGG AGG GGC CAA	GCA CCT CCC	938
CTG ACC CAG AGT CTG TGT TCC GAG CAG CAC TCA	GTA AGA AGG	980
TGG CTG ACT TGA		992
TTCATTTTCT GCTCCTCAAG TATTAAGTCA AGGAGCCGGT		1042
GAAATGCTGG AGAGCGTCAT CAAAAATTAC AAGCGCTGCT	TTCCTGAGAT	1092
CTTCGGCAAA GCCTCCGAGT CCTTGCAGCT GGTCTTTGGC	ATTGACGTGA	1142
AGGAAGCGGA CCCCACCAGC AACACCTACA CCCTTGTCAC	CTGCCTGGGA	1192
CTCCTATGAT GGCCTGGTGG TTTAATCAGA TCATGCCCAA		1242
CTGATAATCG TCTTGGGCAT GATTGCAATG GAGGGCAAAT	GCGTCCCTGA	1292
GGAGAAAATC TGGGAGGAGC TGGGTGTGAT GAAGGTGTAT	GTTGGGAGGG	1342
AGCACAGTGT CTGTGGGGAG CCCAGGAAGC TGCTCACCCA		1392
CAGGAAAACT ACCTGGAGTA CCGCAGGTGC CCAGCAGTGA		1442
TATGAGTTAC TGTGGGGTCC AAGGGCACTC GCTGCTTGAA	AGTACTGGAG	1492
CACGTGGTCA GGGTCAATGC AAGAGTTCTC ATTTCCTACC	CATCCCTGCA	1542
TGAAGCAGCT TTGAGAGAGG AGGAAGAGGG AGTCTGAGCA	TGAGCTGCAG	1592
CCAGGGCCAC TGCGAGGGGG GCTGGGCCAG TGCACCTTCC	AGGGCTCCGT	1642
CCAGTAGTTT CCCCTGCCTT AATGTGACAT GAGGCCCATT	CTTCTCTCTT	1692
TGAAGAGAGC AGTCAACATT CTTAGTAGTG GGTTTCTGTT	CTATTGGATG	1742
ACTITGAGAT TIGICITIGI TICCITITGG AATIGITCAA	ATGTTCCTTT	1792
TAATGGGTGG TTGAATGAAC TTCAGCATTC AAATTTATGA	ATGACAGTAG	1842
TCACACATAG TGCTGTTTAT ATAGTTTAGG AGTAAGAGTC	TTGTTTTTTA	1892
TTCAGATTGG GAAATCCATT CCATTTTGTG AATTGGGACA	TAGTTACAGC	1942
AGTGGAATAA GTATTCATTT AGAAATGTGA ATGAGCAGTA	AAACTGATGA	1992
GATAAGAAA TTAAAAGATA TTTAATTCTT GCCTTATACT	CAGTCTATTC	2042
V. C.		

GGTAAAATTT	AAAATTTTTT	ATGTGCATAC	CTGGATTTCC	TTGGCTTCTT	2092
TGAGAATGTA	AGACAAATTA	AATCTGAATA	AATCATTCTC	CCTGTTCACT	2142
GGCTCATTTA	TTCTCTATGC	ACTGAGCATT	TGCTCTGTGG	AAGGCCCTGG	2192
GTTAATAGTG	GAGATGCTAA	GGTAAGCCAG	ACTCACCCCT	ACCCACAGGG	2242
TAGTAAAGTC	TAGGAGCAGC	AGTCATATAA	TTAAGGTGGA	GAGATGCCCT	2292
CTAAGATGTA	GAG				2305

TTC CTG ATA ATC ATC CTG GCC ATA ATC GCA AGA GAG GGC GAC

TGT GCC CCT GAG GAG

(2) INFORMATION FOR SEQUENCE ID NO: 18:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 225 base pairs  (B) TYPE: nucleic acid  (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA  (ix) FEATURE:  (A) NAME/KEY: MAGE-6 gene  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:		
TAT TTC TTT CCT GTG ATC TTC AGC AAA GCT TCC GAT TCC TTG	42	
CAG CTG GTC TTT GGC ATC GAG CTG ATG GAA GTG GAC CCC ATC	84	
GGC CAC GTG TAC ATC TTT GCC ACC TGC CTG GGC CTC TCC TAC	126	
GAT GGC CTG CTG GGT GAC AAT CAG ATC ATG CCC AGG ACA GGC	168	
GAT GGC CIG GIG GAT GAO THIS SAID THE		

- (2) INFORMATION FOR SEQUENCE ID NO: 19: (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1947 base pairs
  - (B) TYPE: nucleic acid
  - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: genomic DNA
  - (ix) FEATURE:
    - (A) NAME/KEY: MAGE-7 gene
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

TGAATGGACA ACAAGGGCCC CACACTCCCC AGAACACAAG GGACTCCAGA	50
GAGCCCAGCC TCACCTTCCC TACTGTCAGT CCTGCAGCCT CAGCCTCTGC	100
TGGCCGGCTG TACCCTGAGG TGCCCTCTCA CTTCCTCCTT CAGGTTCTCA	150
GCGGACAGGC CGGCCAGGAG GTCAGAAGCC CCAGGAGGAGC	200
ACCGAAGGAG AAGATCTGTA AGTAGGCCTT TGTTAGGGCC TCCAGGGCGT	250
GGTTCACAAA TGAGGCCCCT CACAAGCTCC TTCTCTCCCC AGATCTGTGG	300
GTTCCTCCCC ATCGCCCAGC TGCTGCCCGC ACTCCAGCCT GCTGCCCTGA	350
CCAGAGTCAT CATGTCTTCT GAGCAGAGGA GTCAGCACTG CAAGCCTGAG	400
GATGCCTTGA GGCCCAAGGA CAGGAGGCTC TGGGCCTGGT GGGTGCGCAG	450
GCTCCCGCCA CCGAGGAGCA CGAGGCTGCC TCCTCCTTCA CTCTGATTGA	500
AGGCACCCTG GAGGAGGTGC CTGCTGCTGG GTCCCCCAGT CCTCCCCTGA	550
GTCTCAGGGT TCCTCCTTTT CCCTGACCAT CAGCAACAAC ACTCTATGGA	600
GCCAATCCAG TGAGGGCACC AGCAGCCGGG AAGAGGAGGG GCCAACCACC	650
TAGACACAC CCGCTCACCT GGCGTCCTTG TTCCA	685
ATG GGA AGG TGG CTG AGT TGG TTC GCT TCC TGC TGC ACA AGT	727
ATC GAG TCA AGG AGC TGG TCA CAA AGG CAG AAA TGC TGG ACA	769
GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT	811
GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGC ATT GAC	853
ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA	895
CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC	937
AGA GCA TGC CCG AGA CCG GCC TTC TGA	964
TTATGGTCTT GACCATGATC TTAATGGAGG GCCACTGTGC CCCTGAGGAG	1014
GCAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT	1064
TCTTTGGGCA GCTGAGGAAG CTGCTCACCC AAGATTGGGT GCAGGAAAAC	1114
TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCCGT GCTACCAGTT	1164
CCTGTGGGGT CCAAGGGCCC TCATTGAAAC CAGCTATGTG AAAGTCCTGG	1214
AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG	1264
CATGAAGAGG CTTTGGGAGA GGAGGAAGAG GGAGTCTGAG CAGAAGTTGC	1314
AGCCAGGGCC AGTGGGGCAG ATTGGGGGAG GGCCTGGGCA GTGCACGTTC	1364
CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT	1414
CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGCGGGG AGTGTGTTGG	1464
GTGTGAGGGA ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGGC	1514
GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT	1564
TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG	1614
GCAGACTTAC TGTTTTTAT ATAGTTAAAA GTAAGTGCAT TGTTTTTAT	1664
TTATGTAAGA AAATCTATGT TATTTCTTGA ATTGGGACAA CATAACATAG	1714
CAGAGGATTA AGTACCTTTT ATAATGTGAA AGAACAAAGC GGTAAAATGG	1764
GTGAGATAAA GAAATAAAGA AATTAAATTG GCTGGGCACG GTGGCTCACG	1814
CCTGTAATCC CAGCACTTTA GGAGGCAGAG GCACGGGGAT CACGAGGTCA	1864
GGAGATCGAG ACCATTCTGG CTAACACAGT GAAACACCAT CTCTATTAAA	1914
AATACAAAAC TTAGCCGGGC GTGGTGGCGG GTG	1947

```
(2) INFORMATION FOR SEQUENCE ID NO: 20:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1810 base pairs

(B) TYPE: nucleic acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

(A) NAME/KEY: MAGE-8 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:
```

GAGCTCCAGG AACCAGGCTG TGAGGTCTTG GTCTGAGGCA GTATCTT	CAA 50
TCACAGAGCA TAAGAGGCCC AGGCAGTAGT AGCAGTCAAG CTGAGGT	rGGT 100
GTTTCCCCTG TATGTATACC AGAGGCCCCT CTGGCATCAG AACAGCA	AGGA 150
ACCCACAGT TCCTGGCCCT ACCAGCCCTT TTGTCAGTCC TGGAGCC	TTG 200
GCCTTTGCCA GGAGGCTGCA CCCTGAGATG CCCTCTCAAT TTCTCCT	TCA 250
GCCTTTGCCA GGAGGCTGCA CCCTGAGATG CAGGAGGCCC CAGAGAI	AGCA 300
CTGAAGAAGA CCTGTAAGTA GACCTTTGTT AGGGCATCCA GGGTGTA	AGTA 350
CCCAGCTGAG GCCTCTCACA CGCTTCCTCT CTCCCCAGGC CTGTGGC	TCT 400
CAATTGCCCA GCTCCGGCCC ACACTCTCCT GCTGCCCTGA CCTGAG	CAT 450
	451
C ATG CTT CTT GGG CAG AAG AGT CAG CGC TAC AAG GCT GAG	GAA 493
GGC CTT CAG GCC CAA GGA GAG GCA CCA GGG CTT ATG GAY	GTG 535
CAG ATT CCC ACA GCT GAG GAG CAG AAG GCT GCA TCC TCC	TCC 577
TOT ACT CTG ATC ATG GGA ACC CTT GAG GAG GTG ACT GAN	TCT 619
GGG TCA CCA AGT CCT CCC CAG AGT CCT GAG GGT GCC TCC	TCT 661
TCC CTG ACT GTC ACC GAC AGC ACT CTG TGG AGC CAA TCC	GAT 703
GAG GGT TCC AGC AGC AAT GAA GAG GAG GGG CCA AGC ACC	TCC 745
CCG GAC CCA GCT CAC CTG GAG TCC CTG TTC CGG GAA GCI	A CTT 787
GAT GAG AAA GTG GCT GAG TTA GTT CGT TTC CTG CTC CGC	2 AAA 829
TAT CAR ATT AAG GAG CCG GTC ACA AAG GCA GAA ATG CT	r GAG 871
AGT GTC ATC AAA AAT TAC AAG AAC CAC TTT CCT GAT ATC	C TTC 913
AGC AAA GCC TCT GAG TGC ATG CAG GTG ATC TTT GGC ATT	GAT 955
GTG AAG GAA GTG GAC CCT GCC GGC CAC TCC TAC ATC CT	GTC 997
ACC TGC CTG GGC CTC TCC TAT GAT GGC CTG CTG GGT GA	GAT 1039
CAG AGT ACG CCC AAG ACC GGC CTC CTG ATA ATC GTC CTC	G GGC 1081
ATG ATC TTA ATG GAG GGC AGC CGC GCC CCG GAG GAG GCC	A ATC 1123
TGG GAA GCA TTG AGT GTG ATG GGG GCT GTA TGA	1156
TGGGAGGGAG CACAGTGTCT ATTGGAAGCT CAGGAAGCTG CTCACCO	CAAG 1206
AGTGGGTGCA GGAGAACTAC CTGGAGTACC GCCAGGCGCC CGGCAG	TGAT 1256
CCTGTGCGCT ACGAGTTCCT GTGGGGTCCA AGGGCCCTTG CTGAAA	CCAG 1306
CTATGTGAAA GTCCTGGAGC ATGTGGTCAG GGTCAATGCA AGAGTT	CGCA 1356
TTTCCTACCC ATCCCTGCAT GAAGAGGCTT TGGGAGAGGA GAAAGG	AGTT 1406
TGAGCAGGAG TTGCAGCTAG GGCCAGTGGG GCAGGTTGTG GGAGGG	CCTG 1456
GGCCAGTGCA CGTTCCAGGG CCACATCCAC CACTTTCCCT GCTCTG	TTAC 1506
ATGAGGCCCA TTCTTCACTC TGTGTTTGAA GAGAGCAGTC ACAGTT	CTCA 1556
GTAGTGGGGA GCATGTTGGG TGTGAGGGAA CACAGTGTGG ACCATC	TCTC 1606
AGTTCCTGTT CTATTGGGCG ATTTGGAGGT TTATCTTTGT TTCCTT	TTGG 1656
AATTGTTCCA ATGTTCCTTC TAATGGATGG TGTAATGAAC TTCAAC	ATTC 1706
ATTTTATGTA TGACAGTAGA CAGACTTACT GCTTTTTATA TAGTTT	AGGA 1756
GTAAGAGTCT TGCTTTTCAT TTATACTGGG AAACCCATGT TATTTC	TTGA 1806
ATTC	1810
	•

- (2) INFORMATION FOR SEQUENCE ID NO: 21: (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1412 base pairs
  - (B) TYPE: nucleic acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: genomic DNA
  - (ix) FEATURE:
    - (A) NAME/KEY: MAGE-9 gene
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

TCTGAGACAG TGTCCTCAGG TCGCAGA	gca gaggagaccc a	AGGCAGTGTC 50
AGCAGTGAAG GTGAAGTGTT CACCCTG	aat Gtgcaccaag G	GCCCCACCT 100
GCCCCAGCAC ACATGGGACC CCATAGC	ACC TGGCCCCATT C	CCCCTACTG 150
TCACTCATAG AGCCTTGATC TCTGCAG	GCT AGCTGCACGC T	GAGTAGCCC 200
TCTCACTTCC TCCCTCAGGT TCTCGGG	aca ggctaaccag g	AGGACAGGA 250
GCCCCAAGAG GCCCCAGAGC AGCACTG	ACG AAGACCTGTA A	AGTCAGCCTT 300
TGTTAGAACC TCCAAGGTTC GGTTCTC	agc tgaagtctct c	ACACACTCC 350
CTCTCTCCCC AGGCCTGTGG GTCTCCA	TCG CCCAGCTCCT G	CCCACGCTC 400
CTGACTGCTG CCCTGACCAG AGTCATC		427
ATG TCT CTC GAG CAG AGG AGT C	CG CAC TGC AAG C	CT GAT GAA 469
GAC CTT GAA GCC CAA GGA GAG G	AC TTG GGC CTG A	ATG GGT GCA 511
CAG GAA CCC ACA GGC GAG GAG G	ag gag act acc t	CC TCC TCT 553
GAC AGC AAG GAG GAG GTG T		
CCT CCC CAG AGT CCT CAG GGA G	GC GCT TCC TCC T	CC ATT TCC 637
GTC TAC TAC ACT TTA TGG AGC C	aa ttc gat gag g	GC TCC AGC 679
AGT CAA GAA GAG GAA GAG CCA A	GC TCC TCG GTC G	FAC CCA GCT 721
CAG CTG GAG TTC ATG TTC CAA G	aa gca ctg aaa t	TTG AAG GTG 763
GCT GAG TTG GTT CAT TTC CTG C	TC CAC AAA TAT C	GA GTC AAG 805
GAG CCG GTC ACA AAG GCA GAA A	TG CTG GAG AGC G	STC ATC AAA 847
AAT TAC AAG CGC TAC TTT CCT G	TG ATC TTC GGC A	AA GCC TCC 889
GAG TTC ATG CAG GTG ATC TTT G	GC ACT GAT GTG A	AG GAG GTG 931
GAC CCC GCC GGC CAC TCC TAC A		
CTC TCG TGC GAT AGC ATG CTG G		
AAG GCC GCC CTC CTG ATC ATT G	TC CTG GGT GTG A	ATC CTA ACC 1057
AAA GAC AAC TGC GCC CCT GAA G	AG GTT ATC TGG G	AA GCG TTG 1099
AGT GTG ATG GGG GTG TAT GTT G	gg aag gag cac a	TG TTC TAC 1141
GGG GAG CCC AGG AAG CTG CTC A	CC CAA GAT TGG G	FTG CAG GAA 1183
AAC TAC CTG GAG TAC CGG CAG G	TG CCC GGC AGT G	AT CCT GCG 1225
CAC TAC GAG TTC CTG TGG GGT T	CC AAG GCC CAC G	CT GAA ACC 1267
AGC TAT GAG AAG GTC ATA AAT T	AT TTG GTC ATG C	TC AAT GCA 1309
AGA GAG CCC ATC TGC TAC CCA T	CC CTT TAT GAA G	AG GTT TTG 1351
GGA GAG GAG CAA GAG GGA GTC T	ga	1375
GCACCAGCCG CAGCCGGGGC CAAAGTT	TGT GGGGTCA	1412

- (2) INFORMATION FOR SEQUENCE ID NO: 22:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 920 base pairs
    - (B) TYPE: nucleic acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: genomic DNA
  - (ix) FEATURE:
    - (A) NAME/KEY: MAGE-10 gene
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

ACCTGCTCCA GGACAAAGTG GACCCCACTG CATCAGCTCC ACCTACCCTA	50
CTGTCAGTCC TGGAGCCTTG GCCTCTGCCG GCTGCATCCT GAGGAGCCAT	100
CTCTCACTTC CTTCTTCAGG TTCTCAGGGG ACAGGGAGAG CAAGAGGTCA	150
AGAGCTGTGG GACACCACAG AGCAGCACTG AAGGAGAAGA CCTGTAAGTT	200
AGAGCTGTGG GACACCACAG AGCAGCACTG AAGGACCTGTC GCCACTTACA	250
GGCCTTTGTT AGAACCTCCA GGGTGTGGTT CTCAGCTGTG GCCACTTACA	300
CCCTCCCTCT CTCCCCAGGC CTGTGGGTCC CCATCGCCCA AGTCCTGCCC	333
ACACTCCCAC CTGCTACCCT GATCAGAGTC ATC	
ATG CCT CGA GCT CCA AAG CGT CAG CGC TGC ATG CCT GAA GAA	375
GAT CTT CAA TCC CAA AGT GAG ACA CAG GGC CTC GAG GGT GCA	417
CAG GCT CCC CTG GCT GTG GAG GAG GAT GCT TCA TCA TCC ACT	459
TCC ACC AGC TCC TCT TTT CCA TCC TCT TTT CCC TCC TC	501
TOT TOE TOE TOE TOE TOE TAT COT CTA ATA COA AGE ACE	543
CCA GAG GAG GTT TCT GCT GAT GAT GAG ACA CCA AAT CCT CCC	585
CAG AGT GCT CAG ATA GCC TGC TCC CCC TCG GTC GTT GCT	627
CAG AGT GCT CAG ATA GCC TGC TCC TCC TCC AGC AGC AGC CAA	669
TCC CTT CCA TTA GAT CAA TCT GAT GAG GGC TCC AGC AGC CAA	711
AAG GAG GAG AGT CCA AGC ACC CTA CAG GTC CTG CCA GAC AGT	753
GAG TCT TTA CCC AGA AGT GAG ATA GAT GAA AAG GTG ACT GAT	
TTG GTG CAG TTT CTG CTC TTC AAG TAT CAA ATG AAG GAG CCG	795
ATC ACA AAG GCA GAA ATA CTG GAG AGT GTC ATA AAA AAT TAT	837
GAA GAC CAC TTC CCT TTG TTG TTT AGT GAA GCC TCC GAG TGC	879
ATG CTG CTG GTC TTT GGC ATT GAT GTA AAG GAA GTG GAT CC	920
6364 464 474 474 474	

- (2) INFORMATION FOR SEQUENCE ID NO: 23:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1107 base pairs
    - (B) TYPE: nucleic acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: genomic DNA
  - (ix) FEATURE:
    - (A) NAME/KEY: MAGE-11 gene
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

AGAGAACAGG CCAACCTGGA GGACAGGAGT CCCAGGAGAA CCC	AGAGGAT 50
CACTGGAGGA GAACAAGTGT AAGTAGGCCT TTGTTAGATT CTC	CATGGTT 100
CATATCTCAT CTGAGTCTGT TCTCACGCTC CCTCTCTCCC CAG	GCTGTGG 150
GGCCCCATCA CCCAGATATT TCCCACAGTT CGGCCTGCTG ACC	TAACCAG 200
AGTCATCATG CCTCTTGAGC AAAGAAGTCA GCACTGCAAG CCTC	GAGGAAG 250
CCTTCAGGCC CAAGAAGAAG ACCTGGGCCT GGTGGGTGCA CAG	GCTCTCC 300
AAGCTGAGGA GCAGGAGGCT GCCTTCTTCT CCTCTACTCT GAA	IGTGGGC 350
ACTCTAGAGG AGTTGCCTGC TGCTGAGTCA CCAAGTCCTC CCC	AGAGTCC 400
TCAGGAAGAG TCCTTCTCTC CCACTGCCAT GGATGCCATC TTTC	GGGAGCC 450
TATCTGATGA GGGCTCTGGC AGCCAAGAAA AGGAGGGGCC AAG	FACCTCG 500
CCTGACCTGA TAGACCCTGA GTCCTTTTCC CAAGATATAC TAC	ATGACAA 550
GATAATTGAT TTGGTTCATT TATTCTCCGC AAGTATCGAG TCA	AGGGGCT 600
GATCACAAAG GCAGAA	616
ATG CTG GGG AGT GTC ATC AAA AAT TAT GAG GAC TAC	TTT CCT 658
GAG ATA TTT AGG GAA GCC TCT GTA TGC ATG CAA CTG	CTC TTT 700
GGC ATT GAT GTG AAG GAA GTG GAC CCC ACT AGC CAC	TCC TAT 742
GTC CTT GTC ACC TCC CTC AAC CTC TCT TAT GAT GGC	ATA CAG 784
TGT AAT GAG CAG AGC ATG CCC AAG TCT GGC CTC CTG	ATA ATA 826
GTC CTG GGT GTA ATC TTC ATG GAG GGG AAC TGC ATC	CCT GAA 868
GAG GTT ATG TGG GAA GTC CTG AGC ATT ATG GGG GTG	TAT GCT 910
GGA AGG GAG CAC TTC CTC TTT GGG GAG CCC AAG AGG	CTC CTT 952
ACC CAA AAT TGG GTG CAG GAA AAG TAC CTG GTG TAC	CGG CAG 994
GTG CCC GGC ACT GAT CCT GCA TGC TAT GAG TTC CTG	TGG GGT 1036
CCA AGG GCC CAC GCT GAG ACC AGC AAG ATG AAA GTT	CTT GAG 1078
TAC ATA GCC AAT GCC AAT GGG AGG GAT CC	1107

- (2) INFORMATION FOR SEQUENCE ID NO: 24:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2150 base pairs
    - (B) TYPE: nucleic acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: genomic DNA
  - (ix) FEATURE:
    - (A) NAME/KEY: smage-I
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

TCTGTCTGCA TATGCCTCCA CTTGTGTGTA GCAGTCTCAA		50
CTCTACAGAC CTCTGTCTGT GTCTGGCACC CTAAGTGGCT	TTGCATGGGC	100
ACAGGTTTCT GCCCCTGCAT GGAGCTTAAA TAGATCTTTC	TCCACAGGCC	150
TATACCCCTG CATTGTAAGT TTAAGTGGCT TTATGTGGAT	ACAGGTCTCT	200
GCCCTTGTAT GCAGGCCTAA GTTTTTCTGT CTGCTTAACC	CCTCCAAGTG	250
AAGCTAGTGA AAGATCTAAC CCACTTTTGG AAGTCTGAAA		300
ATGCAGTGGC CTAACAAGTT TTAATTTCTT CCACAGGGTT		350
AGCTTGATCC ACGAGTTCAG AAGTCCTGGT ATGTTCCTAG		394
ATG TTC TCC TGG AAA GCT TCA AAA GCC AGG TCT		436
CCA AGG TAT TCT CTA CCT GGT AGT ACA GAG GTA		478
TGT CAT TCT TAT CCT TCC AGA TTC CTG TCT GCC		520
ACT TCA GCC CTG AGC ACA GTC AAC ATG CCT AGG		565
AGT AAG ACC CGC TCC CGT GCA AAA CGA CAG CAG		604
GAG GTT CCA GTA GTT CAG CCC ACT GCA GAG GAA		646
TCT CCT GTT GAC CAG AGT GCT GGG TCC AGC TTC		688
TCT GCT CCT CAG GGT GTG AAA ACC CCT GGA TCT		730
GGT GTA TCC TGC ACA GGC TCT GGT ATA GGT GGT		772
GCT GTC CTG CCT GAT ACA AAA AGT TCA GAT GGC		814
GGG ACT TCC ATT CAG CAC ACA CTG AAA GAT CCT		856
AAG GCT AGT GTG CTG ATA GAA TTC CTG CTA GAT		898
ATG AAA GAA GCA GTT ACA AGG AGT GAA ATG CTG		940
AAC AAG AAG TAT AAG GAG CAA TTC CCT GAG ATC		982
ACT TCT GCA CGC CTA GAA TTA GTC TTT GGT CTT		1024
GAA ATT GAT CCC AGC ACT CAT TCC TAT TTG CTG		1066
CTG GGT CTT TCC ACT GAG GGA AGT TTG AGT AGT		1108
TTG CCT AGG ACA GGT CTC CTA ATG TCT GTC CTA		1150
TTC ATG AAG GGT AAC CGT GCC ACT GAG CAA GAG		1192
TTT CTG CAT GGA GTG GGG GTA TAT GCT GGG AAG		1234
ATC TTT GGC GAG CCT GAG GAG TTT ATA AGA GAT		1276
GAA AAT TAC CTG GAG TAC CGC CAG GTA CCT GGC	AGT GAT CCC	1314
CCA AGC TAT GAG TTC CTG TGG GGA CCC AGA GCC		1360
ACA ACC AAG ATG AAA GTC CTG GAA GTT TTA GCT		1402
GGC ACA GTC CCT AGT GCC TTC CCT AAT CTC TAC		1444
CTT AGA GAT CAG GCA GGA GGG GTG CCA AGA AGG		1486
GGC AAG GGT GTT CAT TCC AAG GCC CCA TCC CAA	AAG TCC TCT	1528
AAC ATG TAG		1537
TTGAGTCTGT TCTGTTGTGT TTGAAAAACA GTCAGGCTCC		1587
AGAGTTCATA GCCTACCAGA ACCAACATGC ATCCATTCTT	GGCCTGTTAT	1637
ACATTAGTAG AATGGAGGCT ATTTTTGTTA CTTTTCAAAT		1687
CTAAACAGTG CTTTTTGCCA TGCTTCTTGT TAACTGCATA		1737
TGTCACTTGT CAGATTAGGA CTTGTTTTGT TATTTGCAAC		1787

ACATTATTTT	GTTTTTACTA	AAACATTGTG	TAACATTGCA	TTGGAGAAGG	1837
GATTGTCATG	GCAATGTGAT	ATCATACAGT	GGTGAAACAA	CAGTGAAGTG	1887
GGAAAGTTTA	TATTGTTAAT	TTTGAAAATT	TTATGAGTGT	GATTGCTGTA	1937
TACTTTTTTC	TTTTTTGTAT	AATGCTAAGT	GAAATAAAGT	TGGATTTGAT	1987
GACTTTACTC	AAATTCATTA	GAAAGTAAAT	CGTAAAACTC	TATTACTTTA	2037
TTATTTTCTT	CAATTATGAA	TTAAGCATTG	GTTATCTGGA	AGTTTCTCCA	2087
GTAGCACAGG	ATCTAGTATG	AAATGTATCT	<b>AGTATAGGCA</b>	CTGACAGTGA	2137
GTTATCAGAG	TCT				2150

- (2) INFORMATION FOR SEQUENCE ID NO: 25:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2099 base pairs
    - (B) TYPE: nucleic acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: genomic DNA
  - (ix) FEATURE:
    - (A) NAME/KEY: smage-II
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

					50
	GTCTGTCTGC				- 100
	TCTCTACAGA				150
	CACAGGTTTC				200
	CTATACCCCT				
	TGCCCTTGTA				250
	GAAGCTAGTG				300
	TATGCAGTGG				350
	GAGCTTGATC				400
	CTCCTGGAAA				450
	TACCTGGTAG				500
	TTCCTGTCTG				550
	TAGGGGTCAA				600
	GCAGGGAGGT				650
	CCTGTTGACC				700
	GGGTGTGAAA				750
	CTGGTATAGG				800
AAAAAGTTCA	GATGGCACCC	AGGCAGGGAC	TTCCATTCAG	CACACACTGA	850
AAGATCCTAT	CATGAGGAAG	GCTAGTGTGC	TGATAGAATT	CCTGCTAGAT	900
AAGTTTAAGA	TGAAAGAAGC	AGTTACAAGG	AGTGAAATGC	TGGCAGTAGT	950
TAACAAGAAG	TATAAGGAGC	AATTCCCTGA	GATCCTCAGG	AGAACTTCTG	1000
CACGCCTAGA	ATTAGTCTTT	GGTCTTGAGT	TGAAGGAAAT	TGATCCCAGC	1050
ACTCATTCCT	ATTTGCTGGT	AGGCAAACTG	GGTCTTTCCA	CTGAGGGAAG	1100
TTTGAGTAGT	AACTGGGGGT	TGCCTAGGAC	AGGTCTCCTA	ATGTCTGTCC	1150
TAGGTGTGAT	CTTCATGAAG	GGTAACCGTG	CCACTGAGCA	AGAGGTCTGG	1200
CAATTTCTGC	ATGGAGTGGG	GGTATATGCT	GGGAAGAAGC	ACTTGATCTT	1250
TGGCGAGCCT	GAGGAGTTTA	TAAGAGATGT	AGTGCGGGAA	AATTACCTGG	1300
AGTACCGCCA	GGTACCTGGC	AGTGATCCCC	CAAGCTATGA	GTTCCTGTGG	1350
	CCCATGCTGA				1400
AGCTAAAGTC	AATGGCACAG	TCCCTAGTGC	CTTCCCTAAT	CTCTACCAGT	1450
	AGATCAGGCA				1500
	ATTCCAAGGC				1550
	TGTTGTGTTT				1600
	CTACCAGAAC				1650
	TGGAGGCTAT				1700
	TTTTGCCATG				1750
	GATTAGGACT				1800
	TTTTACTAAA				1850
<b>ምምርምሮ</b> ጀምርርር	AATGTGATAT	CATACAGTGG	TGAAACAACA	GTGAAGTGGG	1900
ልስልርጥጥጥልጥል	TTGTTAGTTT	TGAAAATTTT	ATGAGTGTGA	TTGCTGTATA	1950
	TTTTGTATAA				2000
	ATTCATTAGA				2050
	ATTATTAATT				2099
WITTICITOR	UTTUTTURE!				

- (2) INFORMATION FOR SEQUENCE ID NO: 26:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 9 amino acids
    - (B) TYPE: amino acids
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

Glu Ala Asp Pro Thr Gly His Ser Tyr

## Claims:

- Isolated nucleic acid molecule which codes for a tumor rejection antigen precursor or is complementary to a nucleic acid molecule which codes for a tumor rejection antigen precursor.
- The isolated nucleic acid molecule of claim 1, wherein said molecule codes for a tumor rejection antigen precursor.
- 3. Isolated nucleic acid molecule of claim 1, wherein said molecule codes for a human tumor rejection antigen precursor.
- 4. The isolated nucleic acid molecule of claim 1, wherein said molecule is complementary to a nucleic acid molecule which codes for tumor rejection antigen precursor.
- 5. The isolated nucleic acid molecule of claim 1, wherein said molecule is DNA.
- 6. The isolated nucleic acid molecule of claim 1, wherein said molecule is RNA.
- 7. The isolated nucleic acid molecule of claim 1, wherein said molecule is a gene.

Ξ

- 8. The isolated nucleic acid molecule of claim 5, wherein said DNA is genomic DNA.
- 9. The isolated nucleic acid molecule of claim 5, wherein said DNA is cDNA.
- 10. The isolated nucleic acid molecule of claim 6, wherein said RNA is mRNA.
- 11. The isolated nucleic acid molecule of claim 4, wherein said molecule hybridizes to isolated nucleic acid which codes for tumor rejection antigen precursor under stringent conditions.
- 12. The isolated nucleic acid molecule of claim 1, wherein said molecule codes for a MAGE antigen precursor or is complementary to a molecule which codes for a MAGE antigen precursor.
- 13. The isolated nucleic acid molecule of claim 12, wherein said MAGE antigen precursor is selected from the group consisting of mage 1, mage 2, mage 3, mage 4, mage 5, mage 6, mage 7, mage 8, mage 9, mage 10, mage 11, smage I and smage II.
- 14. The isolated nucleic acid molecule of claim 12, wherein said molecule codes for a MAGE antigen precursor.

- 15. The isolated nucleic acid molecule of claim 12, wherein said molecule is complementary to a molecule which codes for a MAGE antigen precursor.
- 16. The isolated nucleic acid molecule of claim 12, wherein said molecule is DNA.
- 17. The isolated nucleic acid molecule of claim 12, wherein said molecule is RNA.
- 18. The isolated nucleic acid molecule of claim 12, wherein said molecule is a gene.
- 19. The isolated nucleic acid molecule of claim 16, wherein said DNA is genomic DNA.
- 20. The isolated nucleic acid molecule of claim 16, wherein said DNA is cDNA.
- 21. The isolated nucleic acid molecule of claim 17, wherein said RNA is mRNA.
- 22. The isolated nucleic acid molecule of claim 12, comprising a nucleotide sequence set forth in figure 9.

- 23. The isolated nucleic acid molecule of claim 15, wherein said molecule hybridizes to a molecule which codes for a MAGE antigen precursor under stringent conditions.
- 24. Isolated nucleic acid molecule of claim 1, coding for a tumor rejection antigen precursor for mastocytoma.
- 25. Isolated nucleic acid molecule of claim 1, coding for tumor rejection antigen precursor P1A.
- 26. Isolated nucleic acid molecule of claim 1, having the nucleotide sequence of figure 5.
- 27. Biologically pure culture of a cell line transfected with the nucleic acid sequence of claim 2.
- 28. Biologically pure culture of a cell line transfected with the nucleic acid sequence of claim 12.
- 29. Biologically pure culture of a cell line transfected with the nucleic acid sequence of claim 22.
- 30. Biologically pure culture of a cell line of claim 27, selected from the group consisting of P1A.T2 and P1A.TC3.1.

- 31. Biologically pure culture of a highly transfectable cell line derived from a parent cell line which expresses at least one P815 tumor antigen, wherein said highly transfectable cell line does not express any of P815 tumor antigens A, B and C.
- 32. Biologically pure cell line of claim 31, comprising cell line PO.HTR.
- 33. Biologically pure culture of a cell line of claim 27, wherein said tumor rejection antigen precursor is a human tumor antigen precursor.
- 34. Biologically pure culture of a cell line of claim 33, wherein said human tumor antigen precursor is found in melanoma cells.

35. Biologically pure cell line of claim 34, said tumor rejection antigen precursor is mage-1 and said isolated DNA has nucleic acid sequence:

```
| 10 | 20 | 30-, | 40 | 50 ' | 60 | 2 GGGTGAGGA ANNIANNE GGGGTGAGGG GAGNACAGAG GGGGTGATCC 60
   61 ACTOCATORO ACTOGGGATG TORCAGAGTO CAGCOCACCO TECTOCTROC ACTGAGARGO 120
 121 CAGGOCTOTO CTTGCGGTCT GCACCCTGAG GGGCCGTGGA TTCCTCTTCC TGGAGCTCCA 180
 181 GOANDEAGGE ASTGAGGEST TOSTSTGAGA ENSTATOSTS AGGTENEAGA GENGAGGATS 240
 241 CACAGGGTGT GCCAGCAGTG AATGTTTGCC GTGAATGCAC ACCAAGGGCC GCACCTGCCA 300
 301 EAGGACACHT AGGACTOCAC AGAGTCTGGC CTCACCTCCC TACTGTCAGT CCTGTAGAAT 360
 361 DEADOTOTOS TECCOEGOTE TADOCTEAST ADDOTOTOS TROPICOTOS AGGITITAS 420
 421 GGGACAGGGC AACCCAGAGG ACAGGATTCC CTGGAGGCCA CAGAGGAGGA CCAAGGAGAA 480
 481 BATCTGTANG TAGGCCTTTG TTAGAGTCTC CAAGGTTCAG TTCTCAGCTG AGGCCTCTCA 540
 541 CACACTOCCT ETCTCCCCAG GCCTGTGGGT - ETTCATTGCC CAGCTCCTGC CCACACTCCT 600
 601 SCCTGCTGCC CTGACGAGAG TCATCATGTC TCTTGAGCAG AGGAGTCTGC ACTGCAAGCC 660
 661 TEAGGRAGES STIGAGGESS ANCARGAGES SETTGGGSTGG TGTGTGTGCA GGCTGCCACC 720
 721 TOCTOCTECT ETCETCTGGT ECTGGGCACC ETGGAGGAGG TGCCCACTGC TGGGTCAACA 760
 781 GATOCTOCCO AGAGTECTOA GOGAGCETEC GCCTTTCCCA CTACCATCAA CTTCACTCGA 840
 $41 CAGAGGGAAC CCAGTGAGGG TTCCAGGAGC CGTGAAGAGG AGGGGGCCAAG CACCTETTGT 900
 901 APCCEGGAGE COTTGETECG AGCASTAATC ACTAAGAAGG TGGCEGATET GGTTGGTTET 960
 961 ETGETECTEA AATATEGAGE CAGGGASCEA GTEACHAGE CAGANATOCT GGAGAGTGTC 1020
1021 ATCHARATT ACRAGERETS TITTECTGAS ATCHTEGGER ARGEOTETER STEETIGERS 1080
1011 ETGGTCTTTG GCATTGACGT GAAGGAAGTA GACCCCACCG GCCACTCCTA TGTCCTTGTC 1140
114) ACCTGCCTAG GTCTCTCCTA TGATGGCCTG CTGGGTGATA ATCAGATCAT GCCCAAGACA 1200
1201 GOTTTCTTGA TAATTGTCCT GOTCATGATT GCAATGGAGG GCGGCCLTGC TCCTGAGGAG 1260
1261 GAAATCTOOG AGGAGCTGAG TGTGATGGAG GTGTATGATG GGAGGGAGCA CAGTGCCTAT 1320
1321 GGGGAGCCCA GGAAGCTGCT EACCCAAGAT TIGGIGCAGG ALLAGIACCI GGAGIACGGC 1360
1381 AGGTGCCGGA EASTGATCCC GCACGCTATG AGTTCCTGTG GGGTCCAAGG GCCCTCGCTG 1440
1441 ANACCAGCIA TETENNASTO ETTENSTATE TENTOLNEST ENSTECNASA ETTECCTTTT 1500
1501 TOTTOCCATO COTGOGTGAN GONGOTTTGN GNGNGGNGGN AGNGGGNGTO TGNGCATGNG 1560
1561 TTGCASCCAA GGCCAGTGGG AGGGGGACTG GGCCAGTGCA CCTTCCAGGG CCGCGTGCAG 1620
1621 CASCITECCE TOCCTESTST GACATGAGGC CEATTETTCA CTCTGAAGAG AGCGGTCAGT 1680
1681 STICTEASTA STAGGTERET STICTATIGG STGACTIGGA GATTIATETT TGTTCTCTTT 1740
2741 TODALTIGIT CHANTOTTII TITTIAGGG ATGUTTGAAT GAACTICAGG ATGCAAGTII 2800
1801 ATCARTGACA GCAGTEACAC ACTTCTGTGT ATATACTTTA AGGGTAAGAG TCTTGTGTTT 1860
1861 TATTCAGATT OGGALASCIA TICTATTITG TGALTTGGGA TALTALCAGO AGTGGALTAA 1920
1921 GTACTTAGNA ATGTGNAMA TGAGCAGTAN ANTAGNTGAG ATANGANCT ANAGANATTA 1980
1981 AGAGATAGTO AATTOTTGCC TTATACCTCA GTOTATTCTG TAAAATTTTT AAAGATATAT 2040
2041 SCATACCTSG ATTICCTTSG CTTCTTTGAS AATGIAAGAG AAATIAAATC TGAAIAAAGA 2100
2101 ATTOTTOTTG TTCACTGGCT CTTTTCTTCT CCATGCACTG AGCATCTGCT TTTTGGAAGG 2160
2161 CCCTGGGTIA GTAGTGGAGA TGCTAAGGTA AGCCAGACTC ATAGCGTCGT 2220
2221 AGASTOTAGG AGCTGCASTC ACGTAATCGA GGTGGCAAGA TGTCCTCTAA AGATGTAGGG 2210
2281 ANADTENIA GAGGGTGAG GGTGTGGGGC TCCGGGTGAG ADTGGTGGAG TGTCAATGCC 2340
23(1 ETGACCIGGG GENTITIGGG ETTTGGGNA ETGENTICE TIETGGGGGA OCTGATIGTA 2400
2401 ATGATETTGG BIGGATCC
                   1 20 1 30 1 40 1 50
         1 10
```

- 36. The biologically pure culture of claim 27, wherein said cell line is transfected by a nucleic acid sequence coding for a cytokine.
- 37. The biologically pure culture of claim 36, wherein said cell line is further transfected by a nucleic acid sequence coding for an HLA molecule.
- 38. The biologically pure culture of claim 36, wherein said cytokine is an interleukin.
- 39. The biologically pure culture of claim 38, wherein said interleukin is IL-2.
- 40. The biologically pure culture of claim 38, wherein said interleukin is IL-4.
- 41. The biologically pure culture of claim 27, wherein said cell line is transfected by a nucleic acid sequence which codes for an MHC molecule or an HLA molecule.
- 42. The biologically pure culture of claim 27, wherein said cell line expresses an MHC or HLA molecule which presents a tumor rejection antigen derived from a tumor rejection antigen precursor (TRAP), wherein said TRAP is coded for by a nucleic acid sequence transfected into said cell line.

- 43. The biologically pure culture of claim 27, wherein said culture is non-proliferative.
- 44. The biologically pure culture of claim 27, wherein said cell line is a fibroblast cell line.
- 45. Transfected bacteria containing the nucleic acid sequence of claim 2.
- 46. Mutated virus containing the nucleic acid sequence of claim 2.
- 47. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim2 operably linked to a promoter.
- 48. Expression vector useful in transfecting a cell comprising a nucleic acid sequence coding for a tumor rejection antigen operably linked to a promoter.
- 49. Expression vector of claim 47, wherein said promoter is a strong promoter.
- 50. Expression vector of claim 47, wherein said promoter is a differential promoter.

- 51. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 7 operably linked to a promoter.
- 52. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 13 operably linked to a promoter.
- 53. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 14 operably linked to a promoter.
- 54. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 18 operably linked to a promoter.
- 55. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 22 operably linked to a promoter.
- 56. The expression vector of claim 47, further comprising a nucleic acid molecule which codes for an MHC or HLA.
- 57. The expression vector of claim 47, further comprising a nucleic acid molecule which codes for a cytokine.
- 58. The expression vector of claim 57, wherein said cytokine is an interleukin.

- 59. The expression vector of claim 58, wherein said interleukin is IL-2.
- 60. The expression vector of claim 58, wherein said interleukin is IL-4.
- 61. The expression vector of claim 47, further comprising a bacterial or viral genome or portion thereof.
- 62. The expression vector of claim 61, wherein said viral genome vaccinia virus DNA and said bacterial genome or portion thereof in BCG DNA.
- 63. Expression system useful in transfecting a cell, comprising (i) a first vector containing a nucleic acid molecule which codes for a tumor rejection antigen precursor, and (ii) a second vector selected from the group consisting of (a) a vector containing a nucleic acid molecule which codes for an MHC or HLA molecule which presents a tumor rejection antigen derived from said tumor rejection antigen precursor, and (b) a vector containing a nucleic acid sequence which codes for an interleukin.
- 64. Isolated tumor rejection antigen precursor.
- 65. Isolated human tumor rejection antigen precursor.

- 66. Isolated tumor rejection antigen precursor of claim 65, wherein said precursor is mage-1.
- 67. Isolated tumor rejection antigen precursor of claim65, wherein said precursor is a precursor for antigenF.
- 68. Isolated tumor rejection antigen precursor coded for by the nucleic acid molecule of claim 2.
- 69. Isolated tumor rejection antigen precursor coded for by the nucleic acid molecule of claim 12.
- 70. Isolated tumor rejection antigen precursor coded for by the nucleic acid molecule of claim 13.
- 71. Isolated tumor rejection antigen precursor coded for by the nucleic acid molecule of claim 22.
- 72. Isolated tumor rejection antigen.
- 73. Isolated human tumor rejection antigen.
- 74. Isolated tumor rejection antigen of claim 72 having amino acid sequence of SEQ ID NO: 4.
- 75. Isolated tumor rejection antigen of claim 72, wherein said tumor rejection antigen is antigen E.

- 109
- 76. Isolated tumor rejection antigen of claim 72, wherein said tumor rejection antigen is antigen F.
- 77. Vaccine useful in treating a subject afflicted with a cancerous condition comprising a tumor rejection antigen precursor which provokes an immune response when administered to a subject.
- 78. Vaccine useful in treating a subject afflicted with a cancerous condition comprising a peptide fragment derived from a tumor rejection antigen precursor, wherein said fragment is larger than the tumor rejection antigen derived from said tumor rejection antigen precursor and smaller than said tumor rejection antigen precursor and which provokes an immune response when administered to a subject.
- 79. Vaccine of claim 77, wherein said TRAP is a human TRAP.
- 80. Vaccine of claim 77 wherein said precursor is mage1.
- 81. Vaccine of claim 79, wherein said precursor is antigen
  F precursor.

- 82. Vaccine useful in treating a patient with a cancer comprising a tumor rejection antigen of claim 72 which provokes an immune response when administered to a subject.
- 83. Vaccine of claim 82, wherein said tumor rejection antigen has amino acid sequence of SEQ ID NO: 4.
- 84. The vaccine of claim 81, wherein said tumor rejection antigen is antigen E.
- 85. The vaccine of claim 81, wherein said tumor rejection antigen is antigen F.
- 86. The vaccine of claim 77, wherein said tumor rejection antigen precursor is the expression product of an expression vector containing a viral genome or portion thereof.
- 87. Vaccine useful in treating a patient with a cancer comprising the transfected bacterial of claim 45 and a pharmaceutically acceptable adjuvant.
- 88. Vaccine useful in treating a cancerous condition comprising the mutated virus of claim 46, and a pharmacologically acceptable adjuvant.

- 89. Vaccine useful in treating a subject afflicted with a cancerous condition comprising a complex of a tumor rejection antigen and an HLA molecule.
- 90. Isolated peptide useful in treating a subject afflicted with a cancerous condition, said peptide having the amino acid of SEQ ID NO: 26.
- 91. Vaccine useful in treating a subject afflicted with a cancerous condition comprising the isolated cell line of claim 27 and a pharmacologically acceptable adjuvant.
- 92. Vaccine useful in treating a subject afflicted with a cancerous condition comprising the isolated cell line of claim 37 and a pharmacologically acceptable adjuvant.
- 93. Composition of matter useful in treating a cancerous condition comprising a non proliferative cell line having expressed on its surface a tumor rejection antigen precursor specific for a tumor characteristic of said cancerous condition, and a pharmaceutically acceptable carrier.
- 94. Composition of matter of claim 93, wherein said cell line is a human cell line.

- 95. Composition of matter of claim 93, wherein said pharmaceutically acceptable carrier is a liposome.
- 96. Composition of matter useful in treating a cancerous condition comprising a non proliferative cell line having expressed on its surface a tumor rejection antigen specific for a tumor characteristic of said cancerous condition, and a pharma- ceutically acceptable carrier.
- 97. Composition of matter of claim 96, wherein said cell line is a human cell line.
- 98. Composition of matter of claim 96, wherein said pharma ceutically acceptable carrier is a liposome.
- 99. Composition of matter useful in treating a cancerous condition, comprising (i) a tumor rejection antigen or tumor rejection antigen precursor, (ii) an MHC or HLA molecule, and (iii) a pharmaceutically acceptable carrier.
- 100. Composition of matter of claim 99, wherein said pharmaceutically acceptable carrier is a liposome.
- 101. Antibody which specifically binds to a tumor rejection antigen precursor.

- 102. Antibody of claim 101, wherein said antibody is a monoclonal antibody.
- 103. Antibody of claim 101, wherein said tumor rejection antigen precursor is mage-1.
- 104. Antibody of claim 103, wherein said antibody is a monoclonal antibody.
- 105. Antibody of claim 101, wherein said tumor rejection antigen precursor is antigen F precursor.
- 106. Antibody of claim 105, wherein said antibody is a monoclonal antibody.
- 107. Antibody of claim 101, wherein said tumor rejection antigen precursor is a MAGE precursor.
- 108. Antibody of claim 107, wherein said antibody is a monoclonal antibody.
- 109. Antibody of claim 107, wherein said MAGE precursor is mage 1, mage 2, mage 3, mage 4, mage 5, mage 6, mage 7, mage 8, mage 9, mage 10, mage 11, smage I and smage II.
- 110. Antibody of claim 109, wherein said antibody is a monoclonal antibody.

Ŧ

- 111. Antibody which specifically binds to a tumor rejection antigen.
- 112. Antibody of claim 111, wherein said antibody is a monoclonal antibody.
- 113. Antibody of claim 111, wherein said tumor rejection antigen is that set forth in SEQ ID NO: 4.
- 114. Antibody of claim 113, wherein said antibody is a monoclonal antibody.
- 115. Antibody of claim 111, wherein said tumor rejection antigen is antigen E.
- 116. Antibody of claim 115, wherein said antibody is a monoclonal antibody.
- 117. Antibody of claim 111, wherein said tumor rejection antigen is antigen F.
- 118. Antibody of claim 117, wherein said antibody is a monoclonal antibody.
- 119. Antibody which specifically binds to a complex of (i) tumor rejection antigen and (ii) HLA molecule, but does not bind to (i) or (ii) alone.

WO 92/20356 PCT/US92/04354

- 120. The antibody of claim 119, wherein said antibody is a monoclonal antibody.
- 121. Method for diagnosing a cancerous condition in a subject, comprising contacting a lymphocyte containing sample of said subject to a cell line transfected with a DNA sequence coding for a tumor rejection antigen precursor expressed by cells associated with said cancerous condition, and determining lysis of said transfected cell line by a cytotoxic T cell line specific for a tumor rejection antigen derived from said tumor rejection antigen precursor, said lysis being indicative of said cancerous condition.
- 122. Method of claim 121, wherein said tumor rejection antigen precursor is a MAGE antigen.
- 123. Method for determining regression, progression or onset of a cancerous condition comprising monitoring a sample from a patient with said cancerous condition for a parameter selected from the group consisting of (i) tumor rejection antigen precursor, (ii) tumor rejection antigen and (iii) cytolytic T cells specific for a tumor rejection antigen associated with said cancerous condition, wherein amount of said parameter is indicative of progression or regression or onset of said cancerous condition.

- 124. Method of claim 123, wherein said sample is a body fluid.
- 125. Method of claim 123, wherein said sample is a tissue.
- 126. Method of claim 123, comprising contacting said sample with an antibody which specifically binds with said tumor rejection antigen or tumor rejection antigen precursor.
- 127. Method of claim 126, wherein said antibody is labelled with a radioactive label or an enzyme.
- 128. Method of claim 126, wherein said antibody is a monoclonal antibody.
- 129. Method of claim 123, comprising amplifying RNA which codes for said tumor rejection antigen precursor.
- 130. Method of claim 129, wherein said amplifying comprises carrying out polymerase chain reaction.
- 131. Method of claim 123, comprising contacting said sample with a nucleic acid molecule which specifically hybridizes to a nucleic acid molecule which codes for or expresses said tumor rejection antigen precursor.
- 132. Method of claim 123, comprising assaying said sample for shed tumor rejection antigen.

- assaying a sample taken from a subject for a cytolytic T cell specific for a tumor rejection antigen, presence of said cytolytic T cell being indicative of said cancerous condition.
- 134. Method for treating a subject afflicted with a cancerous condition, comprising:
  - (i) removing a lymphocyte containing sample from said subject,
  - (ii) contacting the lymphocyte containing sample to a cell line transfected with a gene coding for and expressing a gene for a tumor rejection antigen precursor expressed by cancer cells associated with said conditions, under conditions favoring production of cytotoxic T cells against a tumor rejection antigen derived from said tumor rejection antigen precursor, and
  - (iii) introducing said cytotoxic T cells to said subject in an amount sufficient to lyse said cells.
- 135. Method for treating a subject afflicted with a cancerous condition, comprising:
  - (i) identifying a MAGE gene expressed by cancer cells associated with said condition;
  - (ii) identifying an HLA molecule which presents a portion of an expression product of said MAGE gene;

- (iii) transfecting a host cell having the same HLA molecule as identified in (ii) with said MAGE gene;
- (iv) culturing said transfected cells to express said MAGE-gene, and;
- (v) introducing an amount of said cells to said subject sufficient to provoke an immune response against said tumor.
- 136. Method of claim 135, wherein said immune response comprises a B-cell response.
- 137. Method of claim 135, wherein said immune response is a T-cell response.
- 138. Method of claim 136, wherein said B cell response comprises production of antibodies specific to said tumor rejection antigen or tumor rejection antigen precursor.
- 139. Method of claim 137, wherein said T-cell response comprises generation of cytolytic T-cells specific for cells presenting said tumor rejection antigen.
- 140. Method of claim 139, further comprising treating said cells to render them non-proliferative.

- 141. Method for treating a subject with a cancerous condition, comprising:
  - (i) identifying a MAGE gene expressed by said tumor;
  - (ii) transfecting a host cell having the same HLA type as said patient with said MAGE gene;
  - (iii) culturing said transfected cells to express
    said MAGE gene, and;
  - (iv) introducing an amount of said cells to said subject sufficient to provoke an immune response against said tumor.
- 142. Method of claim 141, further comprising treating said cells to render them non proliferative.
- 143. Method for treating a subject with a cancerous condition, comprising administering to said subject an amount of a cell transfected with (i) a nucleic acid sequence which codes for a tumor rejection antigen precursor (TRAP) and (ii) a nucleic acid sequence which codes for an MHC or HLA molecule which presents a tumor rejection antigen derived from said TRAP, wherein said tumor rejection antigen is presented by cells associated with said cancerous condition, sufficient to alleviate said cancerous condition.
- 144. Method of claim 143, further comprising treating said cell to render it non-proliferative.

- 145. Method for preparing a biological material useful in treating a subject afflicted with a cancerous condition, comprising:
  - (i) transfecting a host cell with a nucleic acidmolecule which codes for or expresses a tumorrejection antigen precursor;

Ţ

- (ii) transfecting said host cell with a nucleic acid molecule which codes for an HLA molecule which presents a tumor rejection antigen derived from said tumor rejection antigen precursor on a cell surface, and;
- (iii) treating said host cells under conditions favoring expression of said nucleic acid molecules, and presentation of said tumor rejection antigen by said human leukocyte antigen.
- 146. Method of claim 145, further comprising treating said host cells to render them non proliferative following presentation of said tumor rejection antigen.
- 147. Method of claim 146, further comprising transfecting said host cell with a nucleic acid molecule which codes for or expresses a cytokine.
- 148. Method of claim 146, wherein said cytokine is an interleukin.

- 149. Method of claim 146, wherein said human leukocyte antigen is HLA-A1.
- 150. Method of claim 148, wherein said interleukin is IL-2.
- 151. Method of claim 146, wherein said interleukin is IL-
- 152. Method for treating a subject afflicted with a cancerous condition comprising administering to said subject an amount of a reagent consisting essentially of non-proliferative cell having expressed on its surface a tumor rejection antigen characteristic of cancerous cells in an amount sufficient to elicit an immune response thereto.
- 153. Method for treating a subject afflicted with a cancerous condition comprising administering to said subject an antibody which specifically binds to a tumor rejection antigen expressed on a cancer cell associated with said condition, said antibody being coupled to an anticancer agent, in an amount sufficient to treat said cancerous condition.

ţ.

154. Method for treating a subject afflicted with a cancerous condition comprising administering to said subject an antibody which specifically binds to a

tumor rejection antigen precursor expressed by a cancer cell associated with said condition, said antibody being coupled to anticancer agent, in an amount sufficient to treat said cancerous condition.

- 155. Method for treating a subject afflicted with a cancerous condition comprising administering to said subject a biological sample prepared in accordance with claim 142 in an amount sufficient to alleviate said cancerous condition.
- 156. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 77 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 157. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 78 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 158. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 82 in an amount sufficient to prevent onset of said cancerous condition in said subject.

- 159. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 86 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 160. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 87 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 161. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 88 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 162. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 89 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 163. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 89 in an amount sufficient to prevent onset of said cancerous condition in said subject.

- 164. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 90 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 165. Method for treating a subject afflicted with a cancerous condition, comprising:
  - (i) identifying cells from said subject which express a tumor rejection antigen precursor and present a tumor rejection antigen derived from said precursor on their surface;
    - (ii) isolating a sample of said cells;
    - (iii) cultivating said cell, and;
  - (iv) introducing said cells to said subject in an amount sufficient to provoke an immune response against said cells.
- 166. Method of claim 165, further comprising rendering said cells non proliferative, prior to introducing them to said subject.
- 167. Method for identifying a cytotoxic T cell useful in treating a subject afflicted with a cancerous condition, comprising:
  - (i) identifying a tumor rejection antigen presented by cells associated with said cancerous condition derived from a tumor rejection antigen

precursor expressed by said cells, prior to introducing them to said subject;

- (ii) contacting a cell presenting said antigen to
  a cytotoxic T cell, and;
- (iii) measuring a parameter selected from the group consisting of (i) proliferation of said cytotoxic T cell and (ii) release of a cytotoxic T cell produced factor, wherein increase in said parameter is indicative of said cancerous condition.
- 168. Method of claim 167, wherein said factor is tumor necrosis factor.
- 169. Method for following progress of a therapeutic regime designed to alleviate a cancerous condition, comprising:
  - (a) assaying a sample from a subject to determine level of a parameter selected from the group consisting of (i) tumor rejection antigen, (ii) a cytolytic T cell specific for cells presenting said tumor rejection antigen, and (iii) an antibody which specifically binds to said tumor rejection antigen at a first time period;
  - (b) assaying level of the parameter selected in (a) at a second period of time and comparing it to the level determined in (a) as a determination of effect of said therapeutic regime.

- 170. Method for diagnosing a cancerous condition comprising assaying a sample taken from a subject for expression of a TRAP molecule, and comparing levels of expression to a normal level, wherein variance there between is indicative of a cancerous condition.
- 171. Method of claim 164, comprising measuring expression via polymerase chain reaction.
- 172. Method of claim 123, comprising intradermally administering an amount of a tumor rejection antigen sufficient to generate a delayed type response in a subject.

FIG. 1A



2/13



FIG. 2



FIG. 3



5/13 **FIG. 4** 

		9 1	<b>G. T</b>			
1.	2	3	4 .	5	6	7
P1.HTR	PI.H	POLITIE	L138.8A	P1.HTR	Liver DBA/2	Spleen DBA/2
P1A probe <i>a</i>		Managa wa	P1/	A probe <i>b</i>	)	



B-actin probe











FIG. 6



8/13

**FIG. 7** 





# FIG. 9

CCTCCCCAcAGTCCTCAGGGAGCCTCCagCTTctCgACTACCATCAACTaCACTCtttgGAGaCAAtCCgaTGAGGGCTCCAGCAaCCaaGAAGAGGAGG GGCCAAGCACCTtcccTgaCC-TGGAGTCCgaGTTCCaAGCAGCACTCAGTAGGAAGGTGGCcGAGTTGGTTcaTTTTCTGCTCCTCAAgTATCGAGCCA MAGE-2 // MAGE-1 /

gggagccagtcacaaaaaggcagaaaatgctggagagtgtcatcaaaaaattacaagcactgttttcctgagatcttcggcaaagcctctgagtccttgcagct 425 GGGAGCCGGTCACAAAGGCAGAAATGCTGGGGAGTGTCGTCGGAAATTGGCAGLALTLCTTTCCTGLGATCTTCaGCAAAGCLTCcagtTCCTTGCAGCT GGGAGCCGGTCACAAAGGCAGAAATGCTGGAGAGTGTCCTCAGAAATTGCCAGGACTtCTTTCCCGtGATCTTCagcaaAGCCTCcGAGTaCTTGCAGCT

GGCCAAGCACCTCTTGTATCC-TGGAGTCCTTGTTCCGAGCAGTAATCACTAAGAAGGTGGCTGATTTGGTTTGGTTTTCTGCTCCTCAAATATCGAGCCA 325

GGCCAAGaAtgTtTcccgaCCtTGGAGTCCGAGTTCCaAGCAGCAATCAgTAgGAAGaTGGtTGAgTTGGTTcaTTTTCTGCTCCTCAAgTATCGAGCCA

=

9/13

GGTCTTIGGCATIGACGTGAAGGAAGCAGACCCGACCGGCCACTCCTATGTCCTTGTCACCTGCCTAGGTCTCTCTATGATGGCCTGCTGGGTGATAAT. 525 GGTCTTTGGCATcGAgcTGAtGGAAGtgGACCCCAtCGGCCACTtgTAcaTCtTTGcCACCTGCCTGGGcCTCTCCTAcGATGGCCTGGCTGGGTGAcAAT GGTCTTIGGCATcGAgGIGgt GGAAGt gGtCCCCAtCaGCCACTt gTAcaTCCTTGTCACCTGCCTgGGcCTCTCCTAcGATGGCCTGGTGGGCGAcAAT

CAGATCATGCCCAAGGCAGGCCTCCTGATAATCGTCCTGGcCATAATCGCAAGAGGGGGGGGCGACtgTGCCCCTGAGGAGAAATCTGGGAGGAGCTGAGTG , CAGATCATGCCCAAGACAGGCTTCCTGATAATTGTCCTGGTCATGATTGCAATGGAGGGCGGCCATGCTCCTGAGGAGAAATCTGGGAGGAGGAGCTGAGTG 625 CAGGTCATGCCCAAGACAGGCcTCCTGATAATcGTC-TGGcCATaATcGCAATaGAGGGCGaCtgTGCcCCTGAGGAGAAATCTGGGAGGAGCTGAGTa ≅

β-action	MAGE	PROBES	
		MZ2-MEL.3.0 MZ2-MEL 1982 MZ2-MEL.2.2 E- MZ2-PBL-PHA	FIG. 10
		Lung Kidney	
		MZ2-MEL 3.0 MZ2-CTL 82/30	
		LB34-MEL	
	*	LB17-MEL	
		MI665/2-MEL	
		LB41-MEL	
		MI10221-MEL	
		MI13443-MEL	Other
		SK23-MEL . SK33-MEL	melanomas
		LB4-MEL MI4024-MEL MZ3-MEL	
		MZ5-MEL	
		SK29-MEL	
		LB31-COL	
		LS411-COL	
		H209-SCLC H345-SCLC	Other tumors
	1.	H510-SCLC	
		π	

### FIG. 11

Expression of antigen MZ2-E after transaction**

		·	EXP	PRSSION OF MAGE GENE FAMILY			RECOGNITIN BY ANI-E CTL		
		Northe probed	d with		CR produ nucleotide	ct probed specific for	teste :	dby:	
		Cross-re MAGE-1		MAGE-1	MAGE-2	MAGE-31	TNF release‡	Lysis§	
Cells of patient MZ2	melanoma cell line MZ2-MEL.3.0		+	++++	++++	+++++	+	+	<del></del>
•	tumor sample MZ2 (1982)		+	+++	+++	+++			
	antigen-loss variant MZ2-MEL 2.2	!	+	-	+++	+++	-	-	
	CTL done MZ2-CTL.82/30	•	-	-	_	-			
	PHA-activated blood lymphocytes		-	-		-			
Normal tissues	Liver		-	-	-	-			
	Muscle		-	-	-	-			
	Skin		-	-		-			
	Lung		-		-	-			
	Brain		-	-		-			
	Kidney		-	-	-	-			
Melanoma cell lines of	LB34-MEL		+	++	++++	++++	+	+	
HLA-A1 patients	MI665/2-MEL		_		-	-	_	_	+
	MI10221-MEL		+	_	++	+++	-	_	+
	MI13443-MEL		+	+++	++++	++++	+	+	
	SK33-MEL		+	-	++++	++++	-	_	_
	SK23-MEL		+	-	++++	++++	-	-	+
Melanorna cell lines of	LB17-MEL		÷	+	++++	++++	_	_	· _
other patients	LB33-MEL		+	_	+++	+++	-	_	_
	LB4-MEL		_	_	-	-	_	_	
	LB41-MEL		_	_	_	_	-	_	
	MI4024-MEL		+	+++	++++	++++	-	_	
	SK29-MEL		_	_	_	_	-	_	
	MZ3-MEL .		+	+	++++	++++	_	_	
	MZ5-MEL		+		++++	++++	_	-	
Melanoma tumor sample	BB5-MEL		+	+++	++	+++			
Other turnor cell lines	small cell lung cancer H209		+	-	++++	++++			
	small cell lung cancer H345		+	-	++++	++++			
	small cell lung cancer H510		+	-	++++	++++			
	small cell lung cancer LB11		+	+	++++	++++			
	bronchial squamous cell cardinom	a LB37	+	-	-	+++			
	thyroid medullary carcinoma TT			++++		++++			
	colon carcinoma LB31		+	-	+++	++++	-		
	colon carcinoma LS411		-	-	-	-			
Other turnor samples	chronic myeloid leukernia LLC5		_	_	-	-			
Ten win outpoo	acute myeloid leukemia TA		-	-	-	-			

<sup>Data obtained in the conditions of figure 5.
Data obtained as described in figure 6.
TNF release by CTL 82/30 after stimulation with the turnor cells as described in (11).
Lysis of 51 Cr labelled target by CTL 82/30 in the conditions of figure 1.
** Cells transfected with the 2.4 kb fragment of gene MAGE-1 were tested for their ability fo stimulate TNF release by CTL 82/30</sup> 

## ^{12/13} **FIG. 12**

MZ2-CTL 82/30

-12 kb

D

FIG. 13



#### INTERNATIONAL SEARCH REPORT

International application No. PCT/US92/04354

IPC(5) US CL	SSIFICATION OF SUBJECT MATTER :Please See Extra Sheet. :Please See Extra Sheet. to International Patent Classification (IPC) or to both	national classification and IPC	
B. FIEI	LDS SEARCHED	-	
Minimum d	ocumentation searched (classification system followe	d by classification symbols)	
U.S. :	536/25; 530/350, 387; 424/88, 450; 435/320.1, 7.2,	7.1, 243, 252.32	
Documentat	tion searched other than minimum documentation to th	e extent that such documents are incl	ided in the fields searched
Electronic d	lata base consulted during the international search (na	ame of data base and, where practic	able, search terms used)
C. DOC	UMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where a	opropriate, of the relevant passages	Relevant to claim No.
X Y	Journal of Experimental medicine, Volume 172, is: of the Gene of tum- Transplantation Antigen P198 Antigenic Peptide", pages 35-45, see entire docum	B: A Point Mutation Generates a N	
Y	International Journal of Cancer, Volume 30, issued Specific Oncofetal Antigen Defined By A Mouse I see entire article.		
x	Journal of the National Cancer Institute, Volume 73 al., "Studies of a Melanoma Tumor-Associated A Meidum of a Human Melanoma Cell Line by Allo Characterization", pages 75-82, see entire article.	Antigen Detected in the Spent Culti	ire
х	Journal of Experimental Medicine, Volume 152, "Immunogenic Variants Obtained by Mutagenesis Lymphocyte Meidated Cytolysis", pages 1184-1193	s of Mouse Mastocytoma P815 II.	
رين	er documents are listed in the continuation of Box C		
*A* doc	ecial categories of cited documents: cument defining the general state of the art which is not considered be part of particular relevance		e international filing date or priority pplication but cited to understand the e invention
•Е• евг	tier document published on or after the international filing date		e; the claimed invention cannot be usidered to involve an inventive step e
cite	ed to establish the publication date of another citation or other scial reason (as specified)	considered to involve an inve	e; the claimed invention cannot be ative step when the document is such documents, such combination
*P* doc	current published prior to the international filing date but later than	being obvious to a person skilled  "&" document member of the same p	in the art
	priority date claimed actual completion of the international search	Date of mailing of the international	•
08 SEPTE	MBER 1992	15 SEP 1992	,
	nailing address of the ISA/ ner of Patents and Trademarks	Authorized officer  LYNETTE F. SMITH	9,25

Telephone No. (703) 308-0196

Facsimile No. NOT APPLICABLE

### INTERNATIONAL SEARCH REPORT

International application No.
PCT/US92/04354

į

Onto	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Category*	Cell, Volume 58, issued 28 July 1989, Lurquin et al, "Structure of the Gene of Tum- Transplantation antigen P91A: The Mutated Exon Encodes a Peptide Recognized with L ^d by Cytolytic T Cells", pages 293-303, see entire article.	1-63, 165-172
,E	US, A, 5,141,742 (Brown et al) 25 August 1992 columns 5-9.	77-100, 135-144, 156- 164
Y	Journal of Virology, Volume 49, No. 3, issued March 1984, Mackett, et al., "General Method for Production and Selection of Infectious Vaccinia Virus Recombinants Expressing Foreign Genes", pages 857-864, see entire document.	47-63
Y .	Cancer Research, Volume 48, issued 01 June 1988, Fearon, et al, "Induction in a Murine Tumor of Immunogenic Tumor Variants by Transfection with a Foreign Gene", pages 2975-2980, see entire article.	77-100
r	Cancer Research, Volume 39, issued May 1979, Gupta et al, "Isolation and Immunochemical Characterization of Antibodies from the Sera of Cancer Patients Which are Reactive against Human Melanoma Cell Membranes by Affinity Chromatography", pages 1683-1695, see pages 1686-1689.	101-120
r	Cancer Research, Volume 43, issued July 1983, Morgan et al, "Monoclonal Antibodies to Human Melanoma-associated Antigens: An Amplified Enzyme-linked Immunosorbent Assay for the Detection of Antigen, antibody and Immune Complexes", pages 3155-3159, see entire article.	101-120
ľ	Journal of Surgical Research, Volume 48, issued 1990, Wong et al, "Immunochemical Characterization of a Tumor-Associated Antigen Defined by a Monoclonal Antibody", pages 539-546, see entire article.	101-120
	· .	
	·	
·		

### INTERNATIONAL SEARCH REPORT

International application No. PCT/US92/04354

A. CLASSIFICATION OF SUBJECT MATTER: US CL: 536/25; 530/350, 387; 424/88, 450; 435/320.1, 7.2, 7.1, 243, 252.32	35/14, 39/00, 37/22; CO7K 3/00, 13	3/00, 15/00, 17/00; C1	2Q 1/68, 1/00, 15/0	0; C12N 1/20, 1/00	
		TTER:			
	s; 530/350, 387; 424/88, 450; 435/32	20.1, 7.2, 7.1, 243, 25	2.32		
	•				
	•				
	•				
		·			
			•		

Form PCT/ISA/210 (extra sheet)(July 1992)*