Correction - examen écrit du 26 novembre 2015

Règles d'association Majeure Science des données

1^{er} décembre 2015

- 1. Dans le script il manquait la bibliothèque arulesViz.
- 2. Pour des nouvelles données incomplètes ou non étiquetées, si on dispose des règles d'association et type $\alpha \to X$, avec X l'attribut manquant, on peut en déduire la valeur de X ou sa présence/absence avec une probabilité égale à la confiance de la règle.

On fait donc de la prédiction.

3. Il faut prouver que pour d items distincts le nombre de règles d'association est

$$3^d - 2^{d+1} + 1$$

sans sens prendre en compte les règles avec la partie droite ou la partie gauche nulle.

La solution n'est pas unique et votre solution peut être encore différente de celles-ci.

Solution 1 (suggérée par un élève à la sortie de l'examen) : par récurrence.

Pour d=2 on a deux RA possibles. D'autre part $3^2-2^3+1=9-8+1=2$.

Supposons que l'affirmation est vraie pour d et on démontre pour d+1.

Soit \mathcal{R}_d l'ensemble des RA sur d attributs sans parties gauche ou droite nulles; soient \mathcal{GV}_d et \mathcal{DV}_d les ensembles de RA sur d attributs avec la partie gauche, respectivement, droite nulle.

Remarquons que:

- selon l'hypothèse de récurrence $card(\mathcal{R}_d) = 3^d 2^{d+1} + 1$
- les ensembles $card(\mathcal{GV}_d) = card(\mathcal{DV}_d) = 2^d$
- les ensembles avec les RA contenant l'ensemble vide à gauche ou à droite sont disjoints : $\mathcal{GV}_d \cap \mathcal{DV}_d = \Phi$

Soit α l'attribut numéro d+1, l'ensemble \mathcal{R}_{d+1} contient :

- $-\mathcal{R}_{d}$
- des RA extraites de \mathcal{R}_d auxquelles on a rajouté α sur la partie droite
- des RA extraites de \mathcal{R}_d auxquelles on a rajouté α sur la partie gauche
- des RA de forme : $X \to \alpha$ et $\alpha \to X$ avec X ensemble non nul d'attributs à exception de α

Les sous ensembles cités forment une partition de \mathcal{R}_{d+1} .

Alors
$$card(\mathcal{R}_{d+1}) = 3 \times card(\mathcal{R}_d) + 2(2^d - 1) = 3 \times (3^d - 2^{d+1} + 1) + 2^{d+1} - 2 = 3^{d+1} - 3 \times 2^{d+1} + 3 + 2^{d+1} - 2 = 3^{d+1} - 2^{d+2} + 1.$$

Solution 2 (celle que j'avais pensée) - compter les RA ... en base 3.

Soient $\{i_1, i_2, \dots, i_d\}$ les attributs qui apparaissent dans notre base de transactions.

On peut mettre en évidence une bijection entre les RA et les nombres en base 3 écris sur d chiffres : $\overline{c_1c_2\dots c_d}$ (3). La correspondance est faite de la manière suivante :

$$c_k = \begin{cases} 0 & , & i_k \text{ n'apparait pas dans la RA} \\ 1 & , & i_k \text{ apparait dans la partie gauche} \\ 2 & , & i_k \text{ apparait dans la partie droite} \end{cases}$$

Les nombres de ces nombres est de 3^d . Pour compter les RA qui nous intéressent on doit exclure les nombres écrits uniquement avec de 0 et de 1 et, respectivement, uniquement avec de 0 et de 2, aussi le nombre 00...0 écrit avec des 0 uniquement.

Donc on a $3^d - 2 \times (2^d - 1) - 1 = 3^d - 2^{d+1} + 1$.

Solution 3 (suggérée par des élèves forts en algèbre et combinatoire) - basée sur un comptage.

La partie gauche contient entre 1 et d items. Pour un k donné, 0 < k < d, on peut choisir la partie gauche selon C_n^k possibilités 1 , parmi les n - k itemsets restants on peut choisir la partie droite parmi les $2^{d-k} - 1$ possibilités.

Le nombre total des choix est donc

$$\sum_{k=1}^{d-1} C_d^k \times (2^{d-k} - 1) = \sum_{k=1}^{d-1} C_d^k \times 2^{d-k} - \sum_{k=1}^{d-1} C_d^k$$

$$= (\sum_{k=0}^d C_d^k \times 2^{d-k} - 1 - 2^d) - \sum_{k=0}^d C_d^k + 2$$

$$= (1+2)^d - 1 - 2^d - 2^d + 2$$

$$= 3^d - 2^{d+1} + 1$$

4. Les RA pour un itemset dédié

Avec un seul parcours de la base de transactions on pré-calcule le support de l'itemset $\{i_1, i_2, \ldots, i_k\}$ et on détecte et on garde aussi les items $\{j_1, j_2, \ldots, j_r\}$ qui sont différents des items d'entrée et qui apparaissent dans les mêmes transactions que au moins un item $i_l, 1 \leq l \leq k$. Si le support de l'itemset $\{i_1, i_2, \ldots, i_k\}$ est plus petit que le $min_support$, on ne fait rien.

Sinon, on travaillera sur un l'ensemble $I' = \{i_1, i_2, \dots, i_k\} \cap \{j_1, j_2, \dots j_r\}$ qui est un ensemble réduit de I ($I' \subset I$) et sur des transaction $\mathcal{D}' \subset \mathcal{D}$, $\mathcal{D}' = \{d \in \mathcal{D} | d \text{ contient au moins un item parmi } i_1, i_2, \dots, i_k\}$.

Ensuite on applique soit:

— l'algorithme A priori, mais lors de la constitution des candidats C_2 on génère uniquement les paires dont au moins un item soit parmi $\{i_1, i_2, \ldots, i_k\}$

^{1.} la notation C_n^k est équivalente à $\binom{n}{k}$ et indique le coefficient binomial

- ECLAT: le parcours en profondeur se fait en explorant uniquement les noeuds $\{i_l\}$, $1 \le l \le k$ dans cet ordre.
- 5. Extraction des RA depuis une base de type "panier d'achat". Les données sont :

Id	Transaction
T100	C, A, F, E
T200	C, A, F, E, I, N
T300	C, I, E, L
T400	L, I, A, N, E
T500	L, A, I, T
T600	C, A, T, E

Selon les données $min_support = 49\%$ signifie $min_count_support = 3$.

En déroulant l'algorithme A priori on obtient successivement les candidats et itemsets fréquents suivants :

Les itemsets fréquents sont ; C, A, E, I, L, CA, CE, AE, AI, EI, IL, CAE.

éliminé, car A, L pas fréquent

A, E, I

A, I, L

2, éliminé

Seulement l'itemset C,A,E peut engendrer des RA de type $X,Y \to Z$. Les RA générées sont :

Règle d'association	Confiance	LIFT	Décision
$C,A \to E$	1	6/5	
$C,E \to A$	3/4	9/10	éliminé
$O,N \to Y$	3/4	9/8	éliminé

On garde donc uniquement la règle d'association $C, A \to E$ en raison de la $min_confiance = 80\%$.

Grille de correction :

- 2pt d'office
- arulesViz pas noté
- 2pt pour la notion de prédiction depuis des RA
- 4pt démonstration correcte de $3^d 2^{d+1} + 1$
- 4pt pour les RA sur une restriction d'items
- 8pt pour le panier d'achat
 - $-min_count_support = 3 \ \theta.5pt$
 - $-C_1, L_1 1,5pt$
 - $-C_2, L_2 1,5pt$
 - $-C_3, L_3 1,5pt$
 - affichage explicit des itemsets fréquents 1pt
 - les 3 RA avec confiance, LIFT, décision 1.5pt
 - justification du choix $C, A \rightarrow E \ 0.5pt$