Chapter 3 cont

Where we left off

4 variable maps.

5 Variable Maps

NOT in your Book

Basically use 2 4-variable maps AND label each with the 5th variable.

$$F = z + z'(v'w + xy)$$

Get the Sum of Products

F = z + v'wz' + xyz' distribution

Two ways to attack this

create the truth table then the K-Map or just fill in the K-Map

F = z + v'wz' + xyz'

V	w	x	у	Z	F	v	w	x	у	Z	F
0	0	0	0	0		1	0	0	0	0	
0	0	0	0	1		1	0	0	0	1	
0	0	0	1	0		1	0	0	1	0	
0	0	0	1	1		1	0	0	1	1	
0	0	1	0	0		1	0	1	0	0	
0	0	1	0	1		1	0	1	0	1	
0	0	1	1	0		1	0	1	1	0	
0	0	1	1	1		1	0	1	1	1	
0	1	0	0	0		1	1	0	0	0	
0	1	0	0	1		1	1	0	0	1	
0	1	0	1	0		1	1	0	1	0	
0	1	0	1	1		1	1	0	1	1	
0	1	1	0	0		1	1	1	0	0	
0	1	1	0	1		1	1	1	0	1	
0	1	1	1	0		1	1	1	1	0	
0	1	1	1	1		1	1	1	1	1	

F = z + v'wz' + xyz'

V	w	х	у	Z	F	v	w	х	у	Z	F
0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	1	1
0	0	0	1	0	0	1	0	0	1	0	0
0	0	0	1	1	1	1	0	0	1	1	1
0	0	1	0	0	0	1	0	1	0	0	0
0	0	1	0	1	1	1	0	1	0	1	1
0	0	1	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	0	1	1	1	1
0	1	0	0	0	1	1	1	0	0	0	0
0	1	0	0	1	1	1	1	0	0	1	1
0	1	0	1	0	1	1	1	0	1	0	0
0	1	0	1	1	1	1	1	0	1	1	1
0	1	1	0	0	1	1	1	1	0	0	0
0	1	1	0	1	1	1	1	1	0	1	1
0	1	1	1	0	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1	1

$$F = z + z'(v'w + xy)$$

Product of Sums

 $F(A, B, C, D) = \sum (0, 1, 2, 5, 8, 9, 10)$

$F(A, B, C, D) = \sum (0, 1, 2, 5, 8, 9, 10)$

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Don't Cares

- Incompletely specified functions
 - A function which has an output which is unspecified for a given set of inputs.

- Don't care conditions
 - The unspecified minterms of a function.

$$F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$$

 $d(w, x, y, z) = \Sigma(0, 2, 5)$

• $F(x,y,z) = \Sigma(0, 2, 4, 5)$

$$F(x, y, z) = x'y' + yz + x'yz'$$

 $F(A, B, C, D) = \Sigma(3, 7, 11, 13, 14, 15)$

• $F(A, B, C, D) = \Pi(1, 3, 5, 7, 13, 15)$

NAND and NOR implementations

- Digital circuits are generally built using NAND and NOR.
- Why? Because they're easier to make.
- The basic gates used in all IC digital logic circuits

The 3 basic functions (NOR, AND, and OR) from a NAND.

$$x_1 \longrightarrow x_2 \longrightarrow x_1 \longrightarrow x_2 \longrightarrow x_2$$

$$x_1 \longrightarrow x_2 \longrightarrow x_2$$

(b) $x_1 + x_2 = x_1 x_2$