

Software Lab Computational Engineering Science

Group 12, Pusher Mechanism

Aaron Floerke, Arseniy Kholod, Xinyang Song and Yanliang Zhu

Informatik 12: Software and Tools for Computational Engineering (STCE) RWTH Aachen University

Contents

Preface

Analysis

User Requirements
System Requirements

Design

System Requirements Class Model(s)

Implementation

Development Infrastructure Four-Bar Linkage Model Software Tests GUI

Results

27 movement types
Optimization problem
Project Management
Live Software Demo

Summary and Conclusion

Preface

Four-bar linkage model

Analysis

User Requirements

- Implement 27 motion types of the four-bar linkage with one bar fixed:
 - Classification values:

►
$$T_1 = g + h - b - a$$

►
$$T_2 = b + g - h - a$$

$$T_3 = h + b - g - a$$

- Implement GUI with motion animation and the ability to choose geometrical parameters:
 - Length of the bars
 - Position of the coupler
 - Input angle
 - Angle relative to the horizon
 - Classification values as alternative input

	m	m	m	mm	m m		
No.	$T_{_I}$	T_2	T_3	$T_{_{I}}T_{_{2}}$	$T_{_{I}}T_{_{3}}$	а	ь
1	+	+	+	+	+	crank	rocker
2	0	+	+	0	0	crank	π-rocker
3	-	+	+	-	-	$\pi\text{-rocker}$	πrocker
4	+	0	+	0	+	crank	0-rocker
5	0	0	+	0	0	crank	crank
6	-	0	+	0	-	crank	crank
7	+	-	+	-	+	π-rocker	0-rocker
8	0	-	+	0	0	crank	crank
9	-	-	+	+	-	crank	crank
10	+	+	0	+	0	crank	π-rocker
11	0	+	0	0	0	crank	π-rocker
12	-	+	0	-	0	π-rocker	π-rocker
13	+	0	0	0	0	crank	crank
14	0	0	0	0	0	crank	crank
15	-	0	0	0	0	crank	crank
16	+	-	0	-	0	π-rocker	crank
17	0	-	0	0	0	crank	crank
18	-	-	0	+	0	crank	crank
19	+	+	-	+	-	0-rocker	π-rocker
20	0	+	-	0	0	0-rocker	π-rocker
21	-	+	-	-	+	rocker	rocker
22	+	0	-	0	-	0-rocker	crank
23	0	0	-	0	0	0-rocker	crank
24	-	0	-	0	+	0-rocker	0-rocker
25	+	-	-	-	-	rocker	crank
26	0	-	-	0	0	0-rocker	crank
27	-	-	-	+	+	0-rocker	0-rocker
a-2018-261-266 by Ivana Cvetkovic et al.							

Figure from "Classification, geometrical and kinematic analysis of four-bar linkages" 10.15308/Sinteza-2018-261-266

User Requirements

- ► Solve an optimization problem:
 - Push box with size 80×60 from x = 220 to x = 0
 - ▶ Do not cross the area of the labelling machine (Area with x < 80 and y > 70).
 - ▶ Pass above points (120, 80) and (220, 80)

System Requirements

Functional

Four-bar linkage model:

- System simulates all the motion types of the four-bar linkage.
- System does not crash with any input of geometrical configuration.

► Tests:

- Implement test cases for geometry.
- Implement test cases with bad input to test system stability.

Graphical User Interface:

- ► GUI provides the four-bar linkage visualization and motion animation.
- User can input geometrical data by moving a point on a slide bar.
- GUI is coupled with the four-bar linkage model to use implemented motion cases for animation.
- GUI provides tracing for trajectories of the points.
- GUI classifies of the linkage.

▶ Optimization problem:

- It should be possible to find a solution (manually) for the optimization problem using the four-bar linkage model.
- GUI visualizes the solution.

System Requirements

Non-Functional

Performance:

- The four-bar linkage model is fast enough to provide smooth GUI animations.
- ► GUI animations are not slower than 30 frames per second.

Usability:

- Every essential part of the four-bar linkage model is well documented.
- ▶ GUI is easy to operate and all functionalities are self-explanatory.
- GUI source code is well documented.

Design

Principal Components and Third-Party Software

Design

Class Model(s)

Implementation

Development Infrastructure

Implementation

Four-Bar Linkage Model

Implementation

Software Tests

Implementation

Software and Tools for Computational Engineering

GUI

Results

27 movement types

 $T_{1,2,3} = 0.0, 1.0, 0.0$ $T_{1,2,3} = -1.0, 1.0, 0.0$ $T_{1,2,3} = 1.0, 0.0, 0.0$

 $T_{1,2,3} = 0.0, 0.0, 0.0$

 $T_{1,2,3} = -1.0, 0.0, 0.0$

Results

27 movement types

 $T_{1,2,3} = -1.0, -1.0, 0.0$

 $T_{1,2,3} = 0.0, 1.0, -1.0$

 $T_{1,2,3} = 0.0, 0.0, -1.0$

$$T_{1,2,3} = -1.0, 0.0, -1.0$$

 $T_{1,2,3} = -1.0, 0.0, -1.0$ $T_{1,2,3} = 1.0, -1.0, -1.0$ $T_{1,2,3} = 0.0, -1.0, -1.0$

 $T_{1,2,3} = -1.0, -1.0, -1.0$

Results

Optimization problem

- ▶ 9 degrees of freedom (all lengths in cm):
 - ▶ Length of four bars: a = 124.0, b = 171.2, g = 172.1, h = 122.6.
 - ► Coupler position: $P_{pos} = 20.0\%$, $P_{offset} = 42.0\%$ of h.
 - Position of point A: $A_x = 27.0$, $A_y = 66.0$.
 - ▶ Angle of ground bar relative to horizon: $\theta = -70.0^{\circ}$

Project Management

Live Software Demo

Summary and Conclusion

Literature

Cvetkovic, Ivana and Stojicevic, Misa and Popkonstantinović, Branislav and Cvetković, Dragan. (2018). Classification, geometrical and kinematic analysis of four-bar linkages. 261-266. 10.15308/Sinteza-2018-261-266.