

CSE3506 Essentials of Data Analytics (2 0 2 4 4)

B.Tech. Computer Science and Engineering Winter 22-23

Regression Modelling

- We assume that the true relationship between X and Y takes the form $Y = f(X) + \varepsilon$ for some unknown function f, where ε is a mean-zero random error term
- If f is to be approximated by a linear function, then we can write this relationship as

$$Y = \beta_0 + \beta_1 X + \epsilon.$$

- \checkmark β₀ is the intercept, that is the expected value of Y when X = 0
- \checkmark β₁ is the slope—the average increase in Y associated with a one-unit increase in X
- \checkmark ϵ the error term is independent of X

$$Y = \beta_0 + \beta_1 X + \epsilon.$$

- This model defines the population regression line which is the best linear approximation to the true relationship between X and Y
- Population mean = μ which is unknown

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x.$$

$$\hat{\mu} = \bar{y}$$
, where $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ is the sample mean

- This model defines the least squares line estimated from least square coefficients
- In real applications, set of observations is used to compute the least squares line
- Sample mean = $\widehat{\mu}$
- The sample mean and the population mean are different, but in general the sample mean will provide a good estimate of the population mean

- Figure shows a simulated data set
- The red line represents the true relationship, f(X)=2+3X, which is known as the population regression line
- The blue line is the least squares line; it is the least squares estimate for f(X) based on the observed data, shown in black

- Figure shows a simulated data set
- The population regression line is shown in red, and the least squares line in dark blue
- In light blue, ten least squares lines are shown, each computed on the basis of a separate random set of observations from $f(X)=2+3X+\epsilon$
- Each least squares line is different, but on average, the least squares lines are quite close to the population regression line

• In the case of Y being a random variable, how accurate is the sample $mean\ (\hat{\mu})$ of Y as an estimate of its population $mean\ (\mu)$? In general, this question is answered by computing the standard error of $\hat{\mu}$, expressed as $SE(\hat{\mu})$

$$SE(\hat{\mu}) = \sqrt{Var(\hat{\mu})} = \frac{\sigma}{\sqrt{n}}$$

where n is the size of the training set and $\sigma = \sqrt{\text{Var}(\epsilon)}$ is the standard deviation of each of the realizations y_i of Y.

• The standard error tells us the average amount that this estimate $\widehat{\mu}$ differs from the actual value of μ . The standard error equation tells us how this deviation shrinks with n – the more observations we have, the smaller the standard error of $\widehat{\mu}$

• Assuming the errors ϵ_i for each observation are uncorrelated with common variance σ^2 , the standard errors associated with $\hat{\beta}_0$ and $\hat{\beta}_1$ can be expressed as

$$SE(\hat{\beta}_0) = \sigma \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

and

$$\mathsf{SE}(\hat{\beta}_1) = \sigma \sqrt{\frac{1}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}.$$

• In general, $\sigma = \sqrt{\text{Var}(\epsilon)}$ is not known, but can be estimated from the data. This estimate is known as the *residual standard error* (RSE), and is expressed as

$$RSE = \sqrt{\frac{RSS}{n-2}}$$
.

- Standard errors can be used to compute confidence intervals
- A 95% confidence interval is defined as a range of values such that with 95% interval probability, the range will contain the true unknown value of the parameter
- The range is defined in terms of lower and upper limits computed from the sample of data

• For linear regression, the 95% confidence interval for β_0 approximately takes the form

$$\hat{\beta}_0 \pm 2 \operatorname{SE}(\hat{\beta}_0)$$
.

That is, there is approximately a 95 % chance that the interval

$$[\hat{\beta}_0 - 2 SE(\hat{\beta}_0), \hat{\beta}_0 + 2 SE(\hat{\beta}_0)]$$

will contain the true value of β_0

• Similarly, a confidence interval for β_1 approximately takes the form

$$[\hat{\beta}_1 - 2 SE(\hat{\beta}_1), \hat{\beta}_1 + 2 SE(\hat{\beta}_1)]$$

will contain the true value of β_1

- The word 'approximately' is included mainly because
 - ✓ The errors are assumed to be Gaussian and
 - The factor '2' in front of $SE(\hat{\beta}_1)$ term will vary slightly depending on the number of observations 'n' in the linear regression

- The RSE provides an absolute measure of lack of fit of the model to the data. A small RSE indicates that the model fits the data well whereas a large RSE indicates that the model doesn't fit the data well. But since it is measured in the units of Y, it is not always clear what constitutes a good RSE
- The R² statistic provides an alternative measure of fit. It takes the form of a proportion of variance, expressed as

$$R^2 = 1 - \frac{RSS}{TSS}$$

where TSS = $\sum_{i=1}^{n} (y_i - \bar{y})^2$ is the total sum of squares.

 Note that R² statistic is independent of the scale of Y, and it always takes a value between 0 and 1

- TSS = $\sum_{i=1}^{n} (y_i \bar{y})^2$ measures the total variance in the response variable Y, and can be interpreted as the amount of variability inherent in the response before the regression is performed.
- TSS RSS = $\sum_{i=1}^{n} \{(y_i \bar{y})^2 (y_i \hat{y}_i)^2\}$ measures the amount of variability in the response that is removed by performing the regression, and therefore R^2 measures the proportion of variability in Y that can be explained using X.
- An R² statistic that is close to 1 indicates that a large proportion of the variability in the response has been taken care by the regression.
- The R² statistic is also a measure of the linear relationship between X and Y and it is closely related to correlation between X and Y

Question-3:

Consider the following five training examples

$$X = [2 \ 3 \ 4 \ 5 \ 6]$$

 $Y = [12.8978 \ 17.7586 \ 23.3192 \ 28.3129 \ 32.1351]$

We want to learn a function f(x) of the form f(x) = ax + b which is parameterized by (a, b).

- (a) Find the best linear fit
- (b) Evaluate the standard errors associated with \hat{a} and \hat{b} .
- (c) Determine the 95% confidence interval for a and b
- (d) Compute R² statistic

Simple Linear Regression

Solution:

	X	Υ	(X-X _{mean})	(Y-Y _{mean})	(X-X _{mean})(Y-Y _{mean})	$(X-X_{mean})^2$
	2	12.8978	-2	-9.9869	19.9738	4
	3	17.7586	-1	-5.1261	5.1261	1
	4	23.3192	0	0.4345	0.0000	0
	5	28.3129	1	5.4282	5.4282	1
	6	32.1351	2	9.2504	18.5008	4
Sum	20	114.4236	0	0.0000	49.0289	10
Mean	4	22.88472				

The best linear fit is

Y = 3.2732 + 4.9029X

Substituting in the formula

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}, \quad \hat{\beta}_1 = \textbf{4.9029}$$
 $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}, \quad \hat{\beta}_0 = \textbf{3.2732}$

$$\hat{eta}_1=$$
 4.9029

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

$$\hat{eta}_0=$$
 3.2732

Simple Linear Regression

Solution:

	X	Υ	(X-X _{mean})	(Y-Y _{mean})	(X-X _{mean})(Y-Y _{mean})	$(X-X_{mean})^2$	Ypredicted	(Y-Y _{Predicted}) ²
	2	12.8978	-2	-9.9869	19.9738	4	13.0789	0.0328
	3	17.7586	-1	-5.1261	5.1261	1	17.9818	0.0498
	4	23.3192	0	0.4345	0.0000	0	22.8847	0.1888
	5	28.3129	1	5.4282	5.4282	1	27.7876	0.2759
	6	32.1351	2	9.2504	18.5008	4	32.6905	0.3085
Sum	20	114.4236	0	0.0000	49.0289	10	RSS	0.8558
Mean	4	22.88472						

Y predicted is calculated using the best linear fit

Y = 4.9029 + 3.2732 X

$$RSS_{min} = 0.8558$$

$$\mathsf{RSE} = \sqrt{\frac{\mathsf{RSS}}{n-2}}.$$

Substituting RSS = 0.8558 and n = 5, then RSE = 0.5341.

Standard error for a is

 $\sigma = RSE$

SE(a) =
$$\sigma \sqrt{\frac{1}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$
. = 0.1689

Standard error for b is

SE(b) =
$$\sigma \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$
 = 0.7186

95% confidence interval for standard error for a is

$$[a - 2 SE(a), a + 2 SE(a)] = [4.5651, 5.2407]$$

95% confidence interval for standard error for b is

$$[b - 2 SE(b), b + 2 SE(b)] = [1.8400, 4.7063]$$

	Х	Υ	(Y-Y _{mean}) ²
	2	12.8978	99.73857
	3	17.7586	26.27711
	4	23.3192	0.188773
	5	28.3129	29.46514
	6	32.1351	85.56953
Sum	20	114.4236	241.2391
Mean	4	22.88472	

To find R² value, first find TSS

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2 = 241.2391$$

$$R^2 = 1 - \frac{RSS}{TSS} = 0.9965$$

- A correlation is a relationship between two variables.
- Is there a relationship between the number of employee training hours and the number of jobs produced?
- Is there a relationship between the number of hours a student spends studying for a Mathematics test and the student's score on that test?
- Let x to be the independent variable and y to be the dependent variable. Data is represented by a collection of ordered pairs (x, y)
- Mathematically, the strength and direction of a linear relationship between two variables is represented by the correlation coefficient.

The correlation coefficient r is given by

$$r = \frac{n\sum(xy) - (\sum x)(\sum y)}{\sqrt{n\sum x^2 - (\sum x)^2}\sqrt{n\sum y^2 - (\sum y)^2}}$$

This will always be a number between -1 and 1 (inclusive).

• If r is close to 1, the variables are positively correlated → there is likely a strong linear relationship between the two variables, with a positive slope.

• If r is close to -1, the variables are negatively correlated → there is likely a strong linear relationship between the two variables, with a negative slope.

If r is close to 0, the variables are not correlated
 → that there is likely no linear relationship between the two variables, however, the variables may still be related in some other way.

Question:

The time x in years that an employee spent at a company and the employee's hourly pay, y, for 5 employees are listed in the table below. Calculate and interpret the correlation coefficient r

\boldsymbol{x}	\boldsymbol{y}
5	25
3	20
4	21
10	35
15	38

x	y	x^2	y^2	xy
5	25	25	625	125
3	20	9	400	60
4	21	16	441	84
10	35	100	1225	350
15	38	225	1444	570
$\sum x = 37$	$\sum y = 139$	$\sum x^2 = 375$	$\sum y^2 = 4135$	$\sum xy = 1189$

Hint: Calculate the numerator:

$$n\sum(xy) - \left(\sum x\right)\left(\sum y\right) = 5 \cdot 1189 - 37 \cdot 139 = 802$$

Then calculate the denominator:

$$\sqrt{n\sum x^2 - \left(\sum x\right)^2} \sqrt{n\sum y^2 - \left(\sum y\right)^2} = \sqrt{5 \cdot 375 - \left(37\right)^2} \sqrt{5 \cdot 4135 - \left(139\right)^2}$$
$$= \sqrt{506} \sqrt{1354} \approx 827.72$$

Now, divide to get
$$r \approx \frac{802}{827.72} \approx 0.97$$
.

 Interpret this result: There is a strong positive correlation between the number of years and employee has worked and the employee's salary, since r is very close to 1

ANOVA

Population

Sampling

- IoE inspection to get feedback from students/faculty/parent/Alumni/Industry
- Quality control (Statistical Quality Control)
 - 100% inspection
 - Sample inspection
- Conducting Experiments

Note:

There should not be significant variation between the sample mean and the population mean.

This is to be proved statistically.

Why ANOVA?

Helps us to understand how different sample groups respond.

ANOVA

- ANOVA ANalysis of Variance
- Variance:
- The variance measures the average degree to which each data point is different from the mean.
- The variance is greater when there is a wider range of numbers in the group.
- The calculation of variance uses squares because it weighs outliers more heavily than data point closer to the mean.
- This prevents differences above the mean from canceling out those below, which would result in a variance of zero.
- Thus variance is the average of the squared differences from the mean.
- ANOVA is a hypothesis testing procedure that is used to evaluate differences between 2 or more samples

Standard Deviation:

- Standard Deviation tells how far the data points are from the mean.
- It is the square root of variance
- These two statistical concepts are closely related
- For Data analysts, these two mathematical concepts are of paramount importance as they are used to measure <u>volatility</u> of data distribution.
- In stock trading, if the standard deviation is less, it indicates the investment is less risky.

ANOVA

Shows how far the mean it is away from the mean of the larger sort of combined population

Oddball distribution, sort of the one that doesn't belong in the same population as the other two

ANOVA

Step1:

Setting the hypothesis (Null hypothesis or alternate hypothesis)

- Null Hypothesis (H0: μ1=μ2=μ3)
- Alternate Hypothesis (Ha: Alteast one difference among the means)
 And
- Fixing the confidence interval (90%, 95%) α =0.1 or 0.05

Step2: Find the df

- df between the groups/columns
- df within the groups/columns
- df_total

Step3:Calculating the Means

- Means for each group and
- Grand mean

Step4: All variability across the columns/groups

- SST
- SSC (Sum of Squares between/Columns)
- SSE(Sum of Squares within/Errors)

Step5: To calculate the variance between and within

• Mean Squares_between =
$$\frac{SS_between}{df_between}$$

• Mean Squares_within =
$$\frac{SS_within}{df_within}$$

Step 6: To perform F test (To calculate F_ratio)

- F_statistic = Mean Square_between / Mean Square_within
- F_critical from F distribution table (Corr to df_numerator and df_denominator)

of the F Distribution

Table 1 $\alpha = 0.05$

Degrees of Freedom for Numerator

		1	2	3	4	5_	6	7	8	9	10	15	20	25	30	40	50
	1	161.4	199.5	215.8	224.8	230.0	233.8	236.5	238.6	240.1	242.1	245.2	248.4	248.9	250.5	250.8	252.6
	2	18.51	19.00	19.16	19,25	19.30	19.33	19.35	19.37	19.38	19.40	19.43	19,44	19.46	19.47	19.48	19.48
	3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.70	8.00	8.63	8.02	8.59	8.58
	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.86	5.80	5.77	5.75	5.72	5.70
	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.62	4.56	4.52	4.50	4.46	4.44
	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	3,94	3.87	3.83	3.81	3.77	3.75
	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.51	3.44	3.40	3.38	3.34	3.32
	8	5.32	4.46	4.07	3.84	3.69	3,58	3.50	3.44	3.39	3.35	3.22	3.15	3.11	3.08	3.04	3.02
	9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.01	2.94	2,89	2.86	2,83	2.80
	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.85	2.77	2.73	2.70	2.66	2.64
Degrees of Freedom for Denominator	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.72	2.65	2.60	2.57	2.53	2.51
Ĕ.	12	4.75	3.89	3,49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.62	2.54	2.50	2.47	2.43	2.40
ē	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2,77	2,71	2,67	2,53	2,46	2.41	2.38	2.34	2.31
ē	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.46	2.39	2.34	2.31	2.27	2,24
7	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.40	2.33	2.28	2.25	2.20	2.18
ž	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.35	2.28	2.23	2.19	2.15	2.12
ğ	17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.31	2.23	2.18	2.15	2.10	2.08
ě	18	4.41	3.55	3.16	2.93	2.77	2,66	2.58	2.51	2.46	2.41	2.27	2.19	2.14	2.11	2.06	2.04
Ē	19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.23	2.16	2.11	2.07	2.03	2.00
*	20 22	4.35	3.49	3.10	2.87 2.82	2.71 2.66	2.60	2.51	2.45	2.39	2.35	2.20	2.12	2.07	2.04	1.99	1.97
ë	24	4.30 4.26	3.44 3.40	3.05 3.01	2.78	2.62	2,55 2.51	2,46 2.42	2,40	2,34	2.30 2.25	2.15	2.07 2.03	2.02 1.97	1.98 1.94	1.94 1.89	1,9 <u>1</u> 1.86
흁	26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.36 2.32	2.30 2.27	2.22	2.07	1.99	1.94	1.90	1.85	1.82
۵	28	4.20	3.34	2.96	2.74	2.56	2.45	2.39	2.32	2.24	2.19	2.07	1.99	1.94	1.90	1.82	1.79
	30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2,27	2,24	2.19	2.01	1.93	1.88	1.84	1.79	1.76
	40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	1.92	1.84	1.78	1.74	1.69	1.66
	50	4.02	2.10	2.70	2.66	2.40	2.20	2.20	2.10	2.07	2.00	1.72	1.07	1.70	1.74	1.62	1.60

F_statistic < F_critical

Variability
AMONG / BETWEEN
the means.

 $ar{x_1}$ "distance from overall mean"

Variability
AROUND / WITHIN the distributions.

 $= \frac{Variance\ Between}{Variance\ Within}$

 $Variance\ Between + Variance\ Within = Total\ Variance$

"Partitioning" - separating total variance into its component parts

This is One way ANOVA/ Single Factor ANOVA

If the variability BETWEEN the means (distance from overall mean) in the numerator is relatively large compared to the variance WITHIN the samples (internal spread) in the denominator, the ratio will be much larger than 1. The samples then most likely do NOT come from a common population; REJECT NULL HYPOTHESIS that means are equal.

$$\frac{LARGE}{small} = Reject \ H_0$$

At least one mean is an outlier and each distribution is narrow; distinct from each other

Variance Between
Variance Within

$$\frac{similar}{similar} = Fail to Reject H_0$$

Means are fairly close to overall mean and/ or distributions overlap a bit; hard to distinguish

$$\frac{small}{LARGE} = Fail to Reject H_0$$

The means are very close to overall mean and/ or distribution "melt" together

 $Variance\ Between + Variance\ Within = Total\ Variance$

Question-4:

18 students (six each from first year to third year) were selected for an informal study about their understanding skill level. The evaluation was done for a score of 100. Using One-way ANOVA technique, find out whether or not a difference exists somewhere between the three different

year levels

Scores							
First Year	First Year Second Year						
82	62	64					
93	85	73					
61	94	87					
74	78	91					
69	71	56					
53	66	78					

Groups/ Columns

Random Sample within each group

Scores							
First Year	Second Year	Third Year					
82	62	64					
93	85	73					
61	94	87					
74	78	91					
69	71	56					
53	66	78					

Calculate the mean of each column

Calculate Grand Mean/ Overall Mean $\overline{\overline{x}}$

The mean of all 18 scores is

$$\overline{x} = 74.28$$

Sum of Squares (SS)

Sum of squares of the difference of the dependent variable and its mean

$$SS = \sum (x - \bar{x})^2$$

Partitioning Sum of Squares

	Scores							
	First Year Second Year Third Yea							
	82	62	64					
	93	85	73					
	61	94	87					
	74	78	91					
	69	71	56					
	53	66	78					
Mean \bar{x}	72	76	74.83					

SST (total / overall) sum of squares

- Find difference between each data point and the overall mean.
- Square the difference.
- 3. Add them up

$$\overline{x} = 74.28$$

		Scores				
	First Year	Second Year	Third Year	(X _A -X _{mean})^2	(X _B -X _{mean})^2	(X _c -X _{mean})^2
	82	62	64	59.633	150.744	105.633
	93	85	73	350.522	114.966	1.633
	61	94	87	176.299	388.966	161.855
	74	78	91	0.077	13.855	279.633
	69	71	56	27.855	10.744	334.077
	53	66	78	452.744	68.522	13.855
Sum	432	456	449	1067.130	747.796	896.685
Mean	72	76	74.83			

SST = 1067.130 + 747.796 + 896.685 = 2711.611

SST (total / overall) sum of squares

- Find difference between each data point and the overall mean.
- Square the difference.
- Add them up

$$\overline{x} = 74.28$$

	Scores						
	First Year Second Year Third Y						
	82	62	64				
	93	85	73				
	61	94	87				
	74	78	91				
	69	71	56				
	53	66	78				
Mean \bar{x}	72	76	74.83				

Sum of Squares_between

- Find difference between each group mean and the overall mean
- 2. Square the deviations
- 3. Multiply with no. of values of each column
- 4. Add them up

	Scores							
	First Year Second Year Third Year							
	82	62	64					
	93	85	73					
	61	94	87					
	74	78	91					
	69	71	56					
	53	66	78					
Mean \bar{x}	72	76	74.83					

Sum of Squares_between

- Find difference between each group mean and the overall mean
- 2. Square the deviations
- 3. Multiply with no. of values of each column
- 4. Add them up

$$\overline{x} = 74.28$$

 $SSC = 6(72 - 74.28)^2 + 6(76 - 74.28)^2 + 6(74.83 - 74.28)^2 = 50.778$

	Scores						
	First Year Second Year Third Year						
	82	62	64				
	93	85	73				
	61	94	87				
	74	78	91				
	69	71	56				
	53	66	78				
Mean \bar{x}	72	76	74.83				

Sum of Squares_between

- Find difference between each data point and its column mean.
- Square each deviation.
- Add them up the squared deviations.

I I				1	,	
	First Year	Second Year	Third Year	(X _A -x _{a mean})^2	(X _B -x _{b mean})^2	(X _C -x _{c mean})^2
	82	62	64	100	196	$11\overline{7}.361$
	93	85	73	441	81	3.361
	61	94	87	121	324	148.028
	74	78	91	4	4	261.361
	69	71	56	9	25	354.694
	53	66	78	361	100	10.028
Sum	432	456	449	1036	730	894.833
Mean	72	76	74.83			

SSE = 1036 + 730 + 894.833 = 2660.833

Sum of Squares_within

- Find difference between each data point and its column mean.
- Square each deviation.
- Add them up the squared deviations.

Formulas for One-Way ANOVA

SSC Sum of squares (columns/treatments)

SST Sum of squares (total)

(within/error)

df = Degrees of Freedom

1. DoF b/w the columns $df_{columns} = C - 1$

Mean Squares_between
$$= \frac{SS_between}{df_between}$$

2. DoF within the columns

$$df_{error} = N - C$$

Mean Squares_within =
$$\frac{SS_within}{df_within}$$

$$df_{total} = N - 1$$

ANOVA F - statistic
$$F = \frac{\text{Mean Squares_between}}{\text{Mean Squares_within}}$$

$$N =$$
total observations

$$C =$$
columns/treatments

Substituting the values

Mean Squares_between
$$=$$
 $\frac{50.778}{3-1} = 25.389$

Mean Squares_within
$$=$$
 $\frac{2660.833}{18-3} = 177.389$

$$F = \frac{MSC}{MSE} = \frac{25.389}{177.389} = 0.1431$$

Formula to calculate Critical Value in Excel:

F.INV.RT(ALPHA, NUMERATOR DOF, DENOMINATOR DOF)

- F-statistic value is less than
 F_{critical}
- Null hypothesis is accepted.
- It means there is no significant difference in mean values

Critical value of F: $F_{\alpha, dfc, dfe} = F_{0.05, 2, 15} = 3.68$

