

Your tutor

- Winn Chow (Senior Tutor)
- winn.chow1@unimelb.edu.au
- Office: Doug McDonell 9.23
- Here, you can find my workshop slides:
- https://github.com/winnchow/COMP90042-Workshops

Q1

- 1. What is **text classification**? Give some examples.
 - (a) Why is text classification generally a difficult problem? What are some hurdles that need to be overcome?
 - (b) Consider some (supervised) text classification problem, and discuss whether the following (supervised) machine learning models would be suitable:
 - i. k-Nearest Neighbour using Euclidean distance
 - ii. k-Nearest Neighbour using Cosine similarity
 - iii. Decision Trees using Information Gain
 - iv. Naive Bayes
 - v. Logistic Regression
 - vi. Support Vector Machines

Q1 Give some examples

- Topic classification
- Sentiment analysis
- Authorship attribution
- Native-language identification
- Automatic fact-checking

Building a Text classifier

- 1. Identify a task of interest
- 2. Collect an appropriate corpus
- 3. Carry out annotation

Multi-word features (e.g. bigrams, tri-grams) suffer from a sparse data problem

- 4. Select features
- 5. Choose a machine learning algorithm
- 6. Tune hyperparameters using held-out development data
- 7. Repeat earlier steps as needed
- 8. Train final model
- 9. Evaluate model on held-out test data

K-Nearest Neighbour

 Classify based on majority class of k-nearest training examples in feature space

- Definition of nearest can vary
 - Euclidean distance
 - Cosine distance
- Pros: Simple, effective; no training required; inherently multiclass; optimal with infinite data
- Cons: Have to select k; issues with unbalanced classes; often slow (need to find those k-neighbours); features must be selected carefully

 Based on the number of words => document length

- Based on distribution of word types => better
- Not work well in highdimensions

Decision tree

Humidity

Normal

Outlook

Overcast

Rain

Wind

 Construct a tree where nodes correspond to tests on individual features

- Based on greedy maximization
 of mutual information
- Pros: in theory, very interpretable; fast to build and test; feature representation/scaling irrelevant; good for small feature sets, handles non-linearly-separable problems
- Cons: In practice, often not that interpretable; highly redundant sub-trees; not competitive for large feature sets

 But Information Gain (reduction of uncertainty) tends to prefer rare features

Naïve Bayes

- Pros: Fast to "train" and classify; robust, lowvariance; good for low data situations; optimal classifier if independence assumption is correct; extremely simple to implement.
- Cons: Independence assumption rarely holds; low accuracy compared to similar methods in most situations; smoothing required for unseen class/feature combinations

Logistic Regression

- A classifier, despite its name
- A linear model, but uses softmax "squashing" to get valid probability

$$p(c_n|f_1 \dots f_m) = \frac{1}{Z} \cdot \exp(\sum_{i=0}^m w_i f_i)$$

 Training maximizes probability of training data subject to regularization which encourages low or sparse weights

Support vector machines

- Finds hyperplane which separates the training data with maximum margin
 - * Allows for some misclassification
- Weight vector is a sum of support vectors (examples on the margin)

- Pros: fast and accurate linear classifier; can do non-linearity with kernel trick; works well with huge feature sets
- Cons: Multiclass classification awkward; feature scaling can be tricky; deals poorly with class imbalances; uninterpretable

Q2

- 2. For the following "corpus" of two documents:
 - 1. how much wood would a wood chuck chuck if a wood chuck would chuck wood
 - 2. a wood chuck would chuck the wood he could chuck if a wood chuck would chuck wood
 - (a) Which of the following sentences: a wood could chuck; wood would a chuck; is more probable, according to:
 - i. An unsmoothed uni-gram language model?
 - ii. A uni-gram language model, with Laplacian ("add-one") smoothing?
 - iii. An unsmoothed bi-gram language model?
 - iv. A bi-gram language model, with Laplacian smoothing?
 - v. An unsmoothed tri-gram language model?
 - vi. A tri-gram language model, with Laplacian smoothing?

Uni-gram language model

When n = 1, a unigram model

$$P(w_1, w_2, ... w_m) = \prod_{i=1}^m P(w_i)$$

$$P(w_i) = \frac{C(w_i)}{M}$$

- M is the total number of tokens
- 1. how much wood would a wood chuck chuck if a wood chuck would chuck wood </s>
- 2. a wood chuck would chuck the wood he could chuck if a wood chuck would chuck wood </s>

Uni-gram language model

W	а	chuck	could	he	how	if	much	the	wood	would		Total (M)
Count(W)												
P(W)												

|V| = # of word types = ?

$$P(A) = P(a)P(wood)P(could)P(chuck)P()$$

$$P(B) = P(wood)P(would)P(a)P(chuck)P()$$

Uni-gram language model

W	а	chuck	could	he	how	if	much	the	wood	would		Total (M)
Count(W)	4	9	1	1	1	2	1	1	8	4	2	34
P(W)	4/34	9/34	1/34	1/34	1/34	2/34	1/34	1/34	8/34	4/34	2/34	

|V| = # of word types = 11

$$\begin{array}{ll} P(A) &=& P({\rm a})P({\rm wood})P({\rm could})P({\rm chuck})P() \\ &=& \frac{4}{34} \times \frac{8}{34} \times \frac{1}{34} \times \frac{9}{34} \times \frac{2}{34} \approx 1.27 \times 10^{-5} \\ P(B) &=& P({\rm wood})P({\rm would})P({\rm a})P({\rm chuck})P() \\ &=& \frac{8}{34} \times \frac{4}{34} \times \frac{4}{34} \times \frac{9}{34} \times \frac{2}{34} \approx 5.07 \times 10^{-5} \end{array}$$

Uni-gram language model + Laplacian ("add-one") smoothing

For unigram models (V= the vocabulary),

$$P_{add1}(w_i) = \frac{C(w_i) + 1}{M + |V|}$$

|V| = # of word types = 11

W	а	chuck	could	he	how	if	much	the	wood	would		Total (M)
Count(W)	4	9	1	1	1	2	1	1	8	4	2	34
P(W)												

Uni-gram language model + Laplacian ("add-one") smoothing

|V| = # of word types = 11

$$\begin{split} P_{\rm L}(A) &= P_{\rm L}({\rm a}) P_{\rm L}({\rm wood}) P_{\rm L}({\rm could}) P_{\rm L}({\rm chuck}) P_{\rm L}() \\ &= \frac{5}{45} \times \frac{9}{45} \times \frac{2}{45} \times \frac{10}{45} \times \frac{3}{45} \approx 1.46 \times 10^{-5} \\ P_{\rm L}(B) &= P_{\rm L}({\rm wood}) P_{\rm L}({\rm would}) P_{\rm L}({\rm a}) P_{\rm L}({\rm chuck}) P_{\rm L}() \\ &= \frac{9}{45} \times \frac{5}{45} \times \frac{5}{45} \times \frac{10}{45} \times \frac{3}{45} \approx 3.66 \times 10^{-5} \end{split}$$

W	а	chuck	could	he	how	if	much	the	wood	would		Total (M)
Count(W)	4	9	1	1	1	2	1	1	8	4	2	34
P(W)	5/45	10/45	2/45	2/45	2/45	3/45	2/45	2/45	9/45	5/45	3/45	

Bi-gram language model

When n = 2, a bigram model

$$P(w_1, w_2, ... w_m) = \prod_{i=1}^m P(w_i | w_{i-1})$$

$$P(w_i|w_{i-1}) = \frac{C(w_{i-1}w_i)}{C(w_{i-1})}$$

- 1. <s> how much wood would a wood chuck chuck if a wood chuck would chuck wood </s>
- 2. <s> a wood chuck would chuck the wood he could chuck if a wood chuck would chuck wood </s>

Bi-gram language model

W ₁ W ₂	<s> a</s>	a wood	wood could	could chuck	chuck 	<s> wood</s>	wood would	would a	a chuck	chuck
Count (W ₁ W ₂)										
Count (W ₁)										
P(W ₂ W ₁)										

P(A) = P(a|<s>)P(wood|a)P(could|wood)P(chuck|could)P(</s>|chuck)

P(B) = P(wood|<s>)P(would|wood)P(a|would)P(chuck|a)P(</s>|chuck)

Bi-gram language model

W ₁ W ₂	<s> a</s>	a wood	wood could	could chuck	chuck 	<s> wood</s>	wood would	would a	a chuck	chuck
Count (W ₁ W ₂)	1	4	0	1	0	0	1	1	0	0
Count (W ₁)	2	4	8	1	9	2	8	4	4	9
P(W ₂ W ₁)	1/2	4/4	0/8	1/1	0/9	0/2	1/8	1/4	0/4	0/9

$$\begin{split} P(A) &= P(\mathbf{a}|<\mathbf{s}>)P(\mathbf{wood}|\mathbf{a})P(\mathbf{could}|\mathbf{wood})P(\mathbf{chuck}|\mathbf{could})P(|\mathbf{chuck}) \\ &= \frac{1}{2} \times \frac{4}{4} \times \frac{0}{8} \times \frac{1}{1} \times \frac{0}{9} = 0 \\ P(B) &= P(\mathbf{wood}|<\mathbf{s}>)P(\mathbf{would}|\mathbf{wood})P(\mathbf{a}|\mathbf{would})P(\mathbf{chuck}|\mathbf{a})P(|\mathbf{chuck}) \\ &= \frac{0}{2} \times \frac{1}{8} \times \frac{1}{4} \times \frac{0}{4} \times \frac{0}{9} = 0 \end{split}$$

Bi-gram language model + Laplacian ("add-one") smoothing

For bigram models,

|V| = # of word types = ? Note that <s> is not included in V as it is never generated.

$$P_{add1}(w_i|w_{i-1}) = \frac{C(w_{i-1}w_i) + 1}{C(w_{i-1}) + |\mathbf{V}|}$$

W ₁ W ₂	<s> a</s>	a wood	wood could	could chuck	chuck 	<s> wood</s>	wood would	would a	a chuck	chuck
Count (W ₁ W ₂)	1	4	0	1	0	0	1	1	0	0
Count (W ₁)	2	4	8	1	9	2	8	4	4	9
P(W ₂ W ₁)										

Bi-gram language model + Laplacian ("add-one") smoothing

|V| = # of word types = 11 Note that <s> is not included in V as it is never generated.
$$\begin{split} P_{\rm L}(A) &= P_{\rm L}({\rm a}|{\rm <}{\rm s>})P_{\rm L}({\rm wood}|{\rm a})P_{\rm L}({\rm could}|{\rm wood})P_{\rm L}({\rm chuck}|{\rm could})P_{\rm L}({\rm <}/{\rm s>}|{\rm chuck}|{\rm could})P_{\rm L}({\rm <}/{\rm s>}|{\rm chuck}|{\rm could})P_{\rm L}({\rm <}/{\rm s>}|{\rm chuck}|{\rm could})P_{\rm L}({\rm chuck}|{\rm could})P_{\rm L}({\rm chuck}|{\rm chuck}|{\rm$$

$W_1 W_2$	<s> a</s>	a wood	wood could	could chuck	chuck 	<s> wood</s>	wood would	would a	a chuck	chuck
Count (W ₁ W ₂)	1	4	0	1	0	0	1	1	0	0
Count (W ₁)	2	4	8	1	9	2	8	4	4	9
P(W ₂ W ₁)	2/13	5/15	1/19	2/12	1/20	1/13	2/19	2/15	1/15	1/20

Tri-gram language model

When n = 3, a trigram model

$$P(w_1, w_2, ... w_m) = \prod_{i=1}^m P(w_i | w_{i-2} w_{i-1})$$

$$P(w_i|w_{i-2}w_{i-1}) = \frac{C(w_{i-2}w_{i-1}w_i)}{C(w_{i-2}w_{i-1})}$$

- 1. <s><s> how much wood would a wood chuck chuck if a wood chuck would chuck wood </s>
- 2. <s><s> a wood chuck would chuck the wood he could chuck if a wood chuck would chuck wood </s>

Tri-gram language model

W ₁ W ₂ W ₃	<s> <s> a</s></s>	<s> a wood</s>	a wood could	wood could chuck	could chuck 	<s><s> wood</s></s>	<s> wood would</s>	wood would a	would a chuck	a chuck
Count (W ₁ W ₂ W ₃)										
Count (W ₁ W ₂)										
P(W ₃ W ₁ W ₂)										

 $P(A) = P(a|<s> <s>)P(wood|<s> a) \cdots P(</s>|could chuck)$

 $P(B) = P(wood|<s> <s>)P(would|<s> wood) \cdots P(</s>|a chuck)$

Tri-gram language model

W ₁ W ₂ W ₃	<s> a</s>	<s> a wood</s>	a wood could	wood could chuck	could chuck 	<s> <s> wood</s></s>	<s> wood would</s>	wood would a	would a chuck	a chuck
Count (W ₁ W ₂ W ₃)	1	1	0	0	0	0	0	1	0	0
Count (W ₁ W ₂)	2	1	4	0	1	2	0	1	1	0
P(W ₃ W ₁ W ₂)	1/2	1/1	0/4	0/0	0/1	0/2	0/0	1/1	0/1	0/0

$$\begin{split} P(A) &= P(\mathsf{a}|<\mathsf{s}><\mathsf{s}>)P(\mathsf{wood}|<\mathsf{s}> \; \mathsf{a})\cdots P(|\mathsf{could chuck}) \\ &= \frac{1}{2}\times\frac{1}{1}\times\frac{0}{4}\times\frac{0}{0}\times\frac{0}{1} = ? \\ P(B) &= P(\mathsf{wood}|<\mathsf{s}><\mathsf{s}>)P(\mathsf{would}|<\mathsf{s}>\;\mathsf{wood})\cdots P(|\mathsf{a}\;\;\mathsf{chuck}) \\ &= \frac{0}{2}\times\frac{0}{0}\times\frac{1}{1}\times\frac{0}{1}\times\frac{0}{0} = ? \end{split}$$

Tri-gram language model + Laplacian ("add-one") smoothing

|V| = # of word types = ? Note that <s> is not included in V as it is never generated.

$$P_{add1}(w_i|w_{i-2}w_{i-1}) = \frac{C(w_{i-2}w_{i-1}w_i) + 1}{C(w_{i-2}w_{i-1}) + |V|}$$

W ₁ W ₂ V	V ₃	<s> a wood</s>	a wood could	wood could chuck	could chuck 	<s> <s> wood</s></s>	<s> wood would</s>	wood would a	would a chuck	a chuck
Count (W ₁ W ₂ W	₃) 1	1	0	0	0	0	0	1	0	0
Count (W ₁ W ₂)	2	1	4	0	1	2	0	1	1	0
P(W ₃ W ₁ '	N ₂)									

Tri-gram language model + Laplacian ("add-one") smoothing

|V| = # of word types = 11 Note that <s> is not included in V as it is never generated.

$$\begin{array}{lll} P_{\rm L}(A) &=& P_{\rm L}({\rm a}|{\rm < s>} \; {\rm < s>}) P_{\rm L}({\rm wood}|{\rm < s>} \; {\rm a}) \cdots P_{\rm L}({\rm < / s>}|{\rm could} \; {\rm chuck}) \\ &=& \frac{2}{13} \times \frac{2}{12} \times \frac{1}{15} \times \frac{1}{11} \times \frac{1}{12} \approx 1.30 \times 10^{-5} \\ P_{\rm L}(B) &=& P_{\rm L}({\rm wood}|{\rm < s>} \; {\rm < s>}) P_{\rm L}({\rm would}|{\rm < s>} \; {\rm wood}) \cdots P_{\rm L}({\rm < / s>}|{\rm a} \; {\rm chuck}) \\ &=& \frac{1}{13} \times \frac{1}{11} \times \frac{2}{12} \times \frac{1}{12} \times \frac{1}{11} \approx 8.83 \times 10^{-6} \end{array}$$

W ₁ W ₂ W ₃	<s> a</s>	<s> a wood</s>	a wood could	wood could chuck	could chuck 	<s> <s> wood</s></s>	<s> wood would</s>		would a chuck	a chuck
Count (W ₁ W ₂ W ₃)	1	1	0	0	0	0	0	1	0	0
Count (W ₁ W ₂)	2	1	4	0	1	2	0	1	1	0
P(W ₃ W ₁ W ₂)	2/13	2/12	1/15	1/11	1/12	1/13	1/11	2/12	1/12	1/11

Back-off and Interpolation

- Back-off is a smoothing strategy, where we incorporate lowerorder n-gram models (in particular, for unseen contexts).
- Interpolation is a similar idea, but instead of only "falling back" to lower—order n-gram models for unseen events, we can instead consider every probability as a linear combination of all of the relevant n-gram models, where the weights are once more chosen to ensure that the probabilities of all events, given some context, sum to 1.