

BASIC CIRCUIT ANALYSIS METHOD

Gyro A. Madrona

Electronics Engineer

........

TOPIC OUTLINE

Thevenin's Theorem

Arbitrary Network

Thevenin's theorem states that it is possible to simplify any <u>linear circuit</u>, irrespective of how complex it is, to an equivalent circuit with a single voltage source (v_{TH}) and a series resistance (R_{TH}).

Thevenin's Equivalent Circuit

Arbitrary Network

1. Identify the load.

- 1. Identify the load.
- 2. Remove the load.

- 1. Identify the load.
- 2. Remove the load.
- 3. Determine the Thevenin voltage (v_{th}): Calculate the <u>open-circuit voltage</u> across the terminals where the load was connected.

$$V_{H} = q \frac{270}{120 + 270}$$

- 1. Identify the load.
- 2. Remove the load.
- 3. Determine the Thevenin voltage (v_{th}): Calculate the <u>open-circuit voltage</u> across the terminals where the load was connected.
- 4. Determine the Thevenin Resistance (R_{TH}):
 Set all independent <u>sources to zero</u> and calculate the equivalent resistance looking into the terminals where the load was connected.

$$\frac{1}{1294} = \frac{1}{121} + \frac{1}{122} \qquad \frac{1}{124} = \frac{17}{1210}$$

$$\frac{1}{1294} = \frac{1}{120} + \frac{1}{120} \qquad \frac{1}{120} = \frac{17}{120}$$

Thevenin Equivalent Circuit

- 1. Identify the load.
- 2. Remove the load.
- 3. Determine the Thevenin voltage (v_{th}): Calculate the <u>open-circuit voltage</u> across the terminals where the load was connected.
- 4. Determine the Thevenin Resistance (R_{TH}): Set all independent <u>sources to zero</u> and calculate the equivalent resistance looking into the terminals where the load was connected.
- 5. Replace the original circuit with <u>Thevenin</u> <u>equivalent</u> and reconnect the load.

Thevenin Equivalent Circuit

$$\frac{ky \text{ VDT}}{23} = \frac{1}{12} + \frac{1}{12} = \frac{1}{12} =$$

Use the 2nd approximation diode to calculate the load voltage and load current of the given network.

Solution

Thevenin Voltage

$$V_{TH} = V_0 \frac{k_2}{k_1 + k_2}$$

$$VH = 10 \frac{3k}{0k + 3k}$$

Use the 2nd approximation diode to calculate the load voltage and load current of the given network.

Solution

Thevenin Resistance

$$\frac{1}{124} = \frac{1}{Cex} + \frac{1}{3k}$$

$$\frac{1}{124} = \frac{1}{2k}$$

Use the 2nd approximation diode to calculate the load voltage and load current of the given network.

Solution

KVLOLI

$$iL = \frac{3.33 - 0.7}{2k + 3k}$$

Use the 2nd approximation diode to calculate the load voltage and load current of the given network.

Solution

LABORATORY

