Name: _____

Mark = _____ / 42

Part One: Multiple Choice Section

10 marks

Answer by placing a cross through, or a circle around, the letter of the most correct answer.

1. The structure below represents a polymer commonly used to make gutters and records.

The monomer from which this polymer is made could be:

- A. $CH_3CH_2C\ell$
- B. $C\ell CH = CH_2$
- C. $C\ell CH = CHC\ell$
- D. $C\ell$ CH=CHCH=CHC ℓ
- 2. The formula of 2,2-dimethylpropane may be written as:
 - A. (CH₃)₂CHCH₂CH₃
 - B. $CH_3CH(CH_3)_2$
 - C. $C(CH_3)_4$
 - D. $(CH_3)_2CHCH_2CH(CH_3)_2$
- 3. One mole of an alkane requires 8 moles of oxygen for complete combustion. The molecular formula of the alkane is, therefore:
 - A. C_3H_8
 - B. C₄H₁₀
 - C. C_5H_{12}
 - D. C_6H_{14}

B. CH₃CH₂COCH₃ C. CH₃CH₂CH₂CH₂CH₃ D. CH₃CH₂CH₂CH₂OH 5. Which of the following could be used as a soap? propan-1,2,3-triol Α. B. C. CH₃COO[−]Na⁺ D. 6. Which of the following molecules will exhibit hydrogen bonding? I. propanone Ш propanal Ш propan-2-ol IV 1-propyl propanoate V propanamine all of them A. В. II, III and V only C. III and V only D. II and III 7. Much of the household cleaning that was once performed using soap is now performed using synthetic detergents. A major advantage of synthetic detergents over soap is that they: A. have a lower resistance to bacterial decomposition. В. are non-polar and dissolve more readily in grease. C. form soluble compounds with common metal ions such as Ca²⁺. are more readily synthesized from common fats and oils. D. 8. An acidified solution of potassium dichromate would be least likely to react with: Α. CH₃(CH₂)₄CH₂OH B. CH₃(CH₂)₃CH(OH)CH₃ C. $CH_3C(C_2H_5)_2OH$ D. CH₃CH₂CH(C₂H₅)CH₂OH

Which one of the following compounds would you expect to have the highest boiling point?

4.

Α.

CH₃CH₂CH₂CHO

- 9. Which of the following pairs of compounds are most likely to react to form a polyester?
 - A. CH₃CHOHCHOHCH₃ and CH₃CHO
 - B. CH₃COCH₃ and HOOCCH₂COOH
 - C. HOOCCH₂CH₂COOH and HOCH₂CH₂OH
 - D. CH₃CH₂OH and CH₃COOH
- 10. Which of the following can exhibit cis-trans isomerism?
 - I. $CH_2C\ell CH_2C\ell$
 - II. CHI=CHBr
 - III. $CH_2=CC\ell_2$
 - IV. CH₃CH=CHCH₃
 - A. I, II, and III
 - B. II, III, and IV
 - C. II and IV
 - D. I, II, and IV

End of Part One

11. Name and draw full structural formula to represent the following substances:

	Description	Full structural formula
(a)	a cyclic compound with molecular formula C₄H ₆	Name:
(b)	a compound with molecular formula C₄H₅O that can be oxidised to form butanoic acid	Name:
(c)	a molecule that reacts rapidly with bromine to form 1,2,3,4-tetrabromobutane	Name not required.
(d)	a cyclic tertiary alcohol with 4 carbon atoms	Name:
(e)	the product of oxidising cyclopentanol with acidified potassium permanganate solution	Name:
(f)	an organic product that can be formed when propene undergoes a reaction with bromine	Name:

(11 marks)

	Name:	
В		
	Name:	
С	Name:	
		(6.1
	1	1 6)
	r the two alcohols, propan-1-ol and octan-1-ol. Two common sane. Predict and account for the relative solubilities of each of solvents.	solvents are wa
and hexa the two s	ane. Predict and account for the relative solubilities of each of	solvents are wa
and hexa the two s	ane. Predict and account for the relative solubilities of each of solvents.	solvents are wa
and hexa the two s	ane. Predict and account for the relative solubilities of each of solvents. Solubility in water is more soluble than	solvents are wa
and hexa the two s	ane. Predict and account for the relative solubilities of each of solvents. Solubility in water	solvents are wa
and hexa the two s	ane. Predict and account for the relative solubilities of each of solvents. Solubility in water is more soluble than	solvents are wa
and hexa the two s	ane. Predict and account for the relative solubilities of each of solvents. Solubility in water is more soluble than	solvents are wa
and hexa the two s (a) S Explanat	ane. Predict and account for the relative solubilities of each of solvents. Solubility in water is more soluble than tion:	solvents are wa
and hexa the two s (a) S Explanat	ane. Predict and account for the relative solubilities of each of solvents. Solubility in water is more soluble than tion:	solvents are wa f these alcohols
and hexa the two s (a) S Explanat	ane. Predict and account for the relative solubilities of each of solvents. Solubility in water is more soluble than tion:	solvents are wa

1 1	T		: _ ! _		_	1 1	
14.	1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	amina	arıne	arΔ	chowh	naı	$\cap M$
14.	1 000	anno	acius	alc	shown	NCI	υvv

(a) Assuming that leucine and cysteine are able to form a polymer with alternating monomer units (i.e. leu-cys-leu-cys), carefully draw ONE repeating unit of the polymer chain.

(b) During digestion, proteins are broken down into amino acids. Different parts of the digestive system have different pH's. For example, the human stomach has a pH of about 3 whilst the intestine has a pH of about 9. Draw the structure of cysteine that you would expect in the stomach and the intestine.

stomach	intestine
	(2 marks)

(c) Using leucine as an example, draw a zwitterion.

(1 mark)

L5.	A con	nmon polymer is 'PTFE', a section of which is shown below.				
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	(a)	Draw the monomer from which it is made.				
	4. \	(1 ma	ark)			
	(b)	What type of polymersiation is this?(1 mag	ark)			
	In the	e box beneath, draw its full structural formula.				
		(1 ma	ark)			
	5-hyd	Iroxypentanoic acid has a molar mass of approximately 118 g mol^{-1} .				
	forme	nen a few drops of concentrated sulfuric acid is added to it, a new compound can be med, which has a molar mass of approximately 218 g mol ⁻¹ . Draw a possible structure his compound.				

End of Test

(2 marks)