Алгоритмы и модели вычислений. Домашнее задание № 3

Задача 1. Постройте полиномиальную сводимость языка 3-ВЫПОЛНИМОСТЬ (3-SAT) (выполнимые КНФ, в каждом дизъюнкте не более 3 литералов) к языку РОВНО-3-ВЫПОЛНИМОСТЬ (выполнимые КНФ, в каждом дизъюнкте в точности 3 литерала).

Решение. Необходимо построить сводимость по Карпу 3-SAT \leqslant_p Exactly-3-SAT.

Пусть A — формула, представленная в виде КНФ, в каждом конъюнкте которой не более 3 литералов (если мы на вход получили что-то другого вида, тогда, очевидно, вход не будет лежать ни в 3-SAT, ни в Exactly-3-SAT и наша функция f будет работать как тождественная). Если же на вход действительно поступила формула A, то преобразуем каждый её дизъюнкт так, чтобы получить в нём в точности 3 литерала: просто продублируем первый литерал столько раз, чтобы «добить» данный дизъюнкт до 3 литералов. Например, дизъюнкт $(a \lor \overline{b})$ преобразуется в $(a \lor \overline{b} \lor a)$, а дизъюнкт (\overline{c}) — в $(\overline{c} \lor \overline{c} \lor \overline{c})$. Очевидно, что $(x) \Leftrightarrow (x \lor x)$, поэтому на выполнимость формулы данное преобразование никак не влияет. Формула A преобразуется к f(A) за полиномиальное от |A| время, так как мы просто добавляем к входу $\leqslant 4 \cdot |A|$ символов (максимально по 2 литерала и 2 знака дизъюнкции для каждого дизъюнкта D (тут, в свою очередь, использовано, что $|D| \leqslant |A|$)), поэтому описанная функция f полиномиально сводит язык 3-SAT к языку Exactly-3-SAT.

 $\it 3adaчa$ 2. Постройте сводимость языка ВЫПОЛНИМОСТЬ (SAT) к языку ПРОТЫКАЮ-ЩЕЕ МНОЖЕСТВО.

Решение. Описание конструкции см. в приложенном листке. Осталось доказать, что исходная КНФ $\varphi(x_1, x_2, \dots, x_n)$ выполнима тогда и только тогда, когда A_{φ} имеет протыкающее множество мощности n.

• \Rightarrow : КНФ $\varphi(\cdot)$ выполнима \Rightarrow существует набор значений переменных, на котором функция обращается в 1. Тогда, если в этом наборе $x_i=1$, то добавим в множество A литерал x_i , если же $x_i=0$, то добавляем в A литерал $\overline{x_i}$ (по этому правилу будем далее отождествлять набор значений переменных и набор значений литералов). Делая так для всех переменных, получаем множество A мощности n такое, что если все литералы, лежащие в этом множестве, обращаются в 1, то и функция φ на этом наборе обращается в 1.

Покажем, что это множество A и будет являться протыкающим. Действительно, каждое из подмножеств A_{φ} вида $A_i = \{x_i, \overline{x_i}\} \ \forall i \in \overline{1,n}$ будет пересекаться с A по построению, а каждое подмножество вида A_C , состоящее из всех входящих в дизъюнкт C литералов, будет пересекаться с A в силу того, что на наборе литералов из A КНФ φ выполнима, а следовательно каждый из её дизъюнктов обращается в 1, так что в каждом подмножестве вида A_C есть по крайней мере один литерал, принимающий на этом наборе значение, равное 1, а по построению множество A как раз и содержит все такие литералы, то есть этот литерал и будет лежать в пересечении A_C с A.

• \Leftarrow : A_{φ} имеет протыкающее множество A мощности n. A пересекает все подмножества вида $A_i = \{x_i, \overline{x_i}\}\ \forall i \in \overline{1,n}$, поэтому состоит из литералов всех n переменных. A пересекает все подмножества вида A_C , состоящие из всех входящих в дизъюнкт C литералов, так что если рассмотреть набор переменных, на котором все литералы из A обращаются 1 (имеем право, так как A содержит ровно n литералов от n различных переменных), то на этом наборе сама $\mathsf{KH\Phi}\ \varphi(\cdot)$ обратится в 1, потому что каждый из дизъюнктов обратится в 1 в силу того, что на этом наборе переменных он будет содержать по крайней мере один литерал (так как пересечение A_C с A непусто для любого дизъюнкта C), обращающийся в 1.

 $\it 3adaчa$ 3. Постройте сводимость языка 3-ВЫПОЛНИМОСТЬ к языку ВЕРШИННОЕ ПО-КРЫТИЕ (VERTEX-COVER).

Pewerue. Ранее было доказано, что 3-SAT \leq_p Exactly-3-SAT, в этом номере покажем, что Exactly-3-SAT \leq_p VERTEX-COVER и тогда получим 3-SAT \leq_p VERTEX-COVER по транзитивности.

Описание конструкции см. в приложенном листке. Осталось доказать, что исходная КНФ $\varphi(x_1, x_2, \ldots, x_n)$ выполнима тогда и только тогда, когда G_{φ} имеет вершинное покрытие V мощности n+2m, где m — количество дизъюнктов.

• \Rightarrow : сначала определимся с выбором n литеральных вершин. КНФ $\varphi(\cdot)$ выполнима \Rightarrow существует набор значений переменных, на котором функция обращается в 1. Тогда, если в этом наборе $x_i = 1$, то добавим в множество вершин V литеральную вершину x_i , если же $x_i = 0$, то добавляем в V литеральную вершину $\overline{x_i}$. Таким образом мы гарантируем, что в каждой паре литеральных вершин будет одна вершина, лежащая в V, а следовательно, рёбра между литеральными вершинами будут захвачены нашим вершинным покрытием V.

Теперь, так как КНФ φ выполнима (а следовательно каждый из её дизъюнктов обращается в 1), в каждой из троек дизъюнктных вершин есть по крайней мере один литерал, принимающий на этом наборе значение, равное 1 — он по построению соединён с уже лежащей в V соответствующей литеральной вершиной, так что добавим в V не эту дизъюнктную вершину, а другие две дизъюнктные, смежные ей. Таким образом мы гарантируем, что во-первых, из каждой тройки дизъюнктных вершин две будут лежать в V, а следовательно, покрытие захватит все рёбра каждой из дизъюнктных троек; а вовторых, что две другие вершины, литералы которых могут быть не равными 1, будут соединены с соответствующими им литеральными вершинами (иначе могли бы остаться непокрытые рёбра). Получаем, что наше вершинное покрытие V захватит последние оставшиеся рёбра между невзятыми ранее литеральными вершинами и соответствующими им дизъюнктивными.

• \Leftarrow : V — вершинное покрытие \Rightarrow оно содержит как минимум одну литеральную вершину в каждой паре соответствующих (иначе ребро между ними не было бы покрыто). Таким

образом оно содержит $\geqslant n$ литеральных вершин. Заметим теперь, что V содержит как минимум две дизъюнктных вершины в каждой тройке соответствующих (иначе в этом треугольнике нашлось бы непокрытое ребро). Таким образом оно содержит $\geqslant 2m$ дизъюнктных вершин. По условию же |V|=n+2m, следовательно в вершинном покрытии находятся ровно n литеральных и ровно 2m дизъюнктных вершин.

Возьмём набор литералов, соответствующий набору литеральных вершин V. На этом наборе наша функция φ и будет обращаться в 1 (если в V лежит литеральная вершина x_i , то в нашем наборе переменных берём $x_i=1$, если же в V лежит $\overline{x_i}$ — берём $x_i=0$). Докажем это от противного: допустим, что на этом наборе существует дизъюнкт, обращающийся в 0, то есть существует тройка дизъюнктных вершин, все 3 литерала которой обращаются в 0. Такого быть не может, так как в V лежат ровно 2 дизъюнктные вершины из каждой тройки. То есть в этой тройке существует вершина, литерал которой обращается в 0 и которая не лежит в V сама по себе — это противоречие к тому, что V является вершинным покрытием, потому что ребро между этой вершиной и соответствующей ей литеральной (не лежит в V, так как все литералы, соответствующие литеральным вершинам из V, обращаются в 1 на этом наборе) не будет покрыто.

Задача 4. Постройте сводимость языка РОВНО-3-ВЫПОЛНИМОСТЬ к языку КЛИКА (CLIQUE).

Решение. Описание конструкции см. в приложенном листке. Осталось доказать, что исходная КНФ $\varphi(x_1, x_2, ..., x_n)$ выполнима тогда и только тогда, когда G_{φ} имеет клику размера m, где m — количество дизъюнктов.

- \Rightarrow : КНФ $\varphi(\cdot)$ выполнима \Rightarrow существует набор значений переменных, на котором функция обращается в 1, то есть на этом наборе в каждом дизъюнкте присутствует литерал, обращающийся в 1. Таким образом мы можем в каждом из дизъюнктов взять такой литерал и соединить их все вместе (такие рёбра есть, так как, очевидно, отвечающие этим литералам переменные, никак не могут быть отрицанием друг друга). Получим искомую клику размера m.
- \Leftarrow : в нашем графе есть клика размера m. Так как вершины одного дизъюнкта не смежны между собой, то каждый дизъюнкт в клике представляет не более одной вершины. Всего дизъюнктов $m \Rightarrow$ на самом деле каждый дизъюнкт представлен в клике ровно одной вершиной. Теперь возьмём следующий набор переменных: если в клике есть вершина, отвечающая литералу x_i , то в нашем наборе переменных берём $x_i = 1$, если же в клике лежит $\overline{x_i}$ берём $x_i = 0$. Если же в клике вообще нет вершины, отвечающей переменной x_i положим для определённости $x_i = 1$ (хотя это ни на что не влияет, так как на самом деле x_i фиктивная переменная). Таким образом построенный набор переменных задаётся непротиворечиво, так как по условию наличия рёбер между вершинами, не может быть такого, что и литерал x_i , и литерал $\overline{x_i}$ присутствуют в клике. На этом наборе КНФ $\varphi(\cdot)$ обращается в 1, так как в каждом дизъюнкте присутствует литерал, обращающийся в 1.

Задача 7. Покажите, что построенная на семинаре при сводимости 3-CNF к CIRCUIT-SAT формула равновыполнима с исходной.

Решение. Докажем, что формула выполнима ⇔ выполнима схема:

- \Rightarrow : формула выполнима \Rightarrow существует набор переменных, на котором все дизъюнкты обращаются в $1 \Rightarrow$ все эквивалентности верны, а также $y_m = 1$. Но таким образом мы можем «развернуть» выражение для y_m через переменные x_1, x_2, \ldots, x_n (мы имеем право так сделать, эти преобразования корректны как раз из-за того, что все эквивалентности выполняются). Таким образом y_m представляется, как формула от $y_m = f(x_1, x_2, \ldots, x_n)$, равновыполнимая с исходной схемой. Таким образом, так как на данном наборе переменных $f(x_1, x_2, \ldots, x_n) = y_m = 1$, то исходная схема также выполнима.
- \Leftarrow : схема выполнима \Rightarrow существует набор переменных, на котором $y_m = 1$. Таким образом получаем, что в нашей формуле все эквивалентности обращаются в 1 по построению, а в силу того, что и $y_m = 1$, все дизъюнкты обращаются в $1 \Rightarrow$ сама формула также обращается в 1.