

Desarrollo de aplicacion Hospitalaria con \mathbf{MQTT}

Autor:

Gustavo Bastian

Director:

Ericson Joseph Estupiñan Pineda (Surix S.R.L)

${\rm \acute{I}ndice}$

1. Descripción técnica-conceptual del proyecto a realizar	5
2. Identificación y análisis de los interesados	7
3. Propósito del proyecto	8
4. Alcance del proyecto	8
5. Supuestos del proyecto	8
6. Requerimientos	9
7. Historias de usuarios (<i>Product backlog</i>)	9
8. Entregables principales del proyecto	LO
9. Desglose del trabajo en tareas	LO
10. Diagrama de Activity On Node	L 1
11. Diagrama de Gantt	L 1
12. Presupuesto detallado del proyecto	L 4
13. Gestión de riesgos	L 4
14. Gestión de la calidad	15
15. Procesos de cierre	16

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	31 de Octubre de 2021

Acta de constitución del proyecto

Buenos Aires, 31 de Octubre de 2021

Por medio de la presente se acuerda con el Ing. Gustavo Bastian que su Trabajo Final de la Carrera de Especialización en Internet de las Cosas se titulará "Desarrollo de aplicacion Hospitalaria con MQTT", consistirá esencialmente en la implementación de un prototipo de una aplicación móvil para enfermeras, utilizando el protocolo MQTT, y tendrá un presupuesto preliminar estimado de 600 hs de trabajo y \$XXX, con fecha de inicio 31 de Octubre de 2021 y fecha de presentación pública 15 de mayo de 2022.

Se adjunta a esta acta la planificación inicial.

Ariel Lutenberg Director posgrado FIUBA Sergio Starkloff Surix S.R.L

Ericson Joseph Estupiñan Pineda Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

En la actualidad, el avance de la Internet de las Cosas(IOT) y la disminución de costos asociados a la tecnología hacen factible su incorporación a distintos campos de la vida cotidiana. Uno de esos campos, es el de infraestructuras hospitalarias inteligentes.

Por otra parte, dentro de las múltiples opciones para realizar la comunicación entre los dispositivos IOT, el protocolo message que un telemetry transport (en adelante MQTT) se ha probado como un protocolo confiable y ampliamente utilizado.

Dentro del contexto, en este trabajo se desarrollará una aplicación multiplataforma que utilizará el protocolo MQTT para los distintos participantes de la actividad hospitalaria. El proyecto es una necesidad de la empresa Surix S.R.L. y se lleva a cabo como parte de la carrera Especialización de Internet de las Cosas.

Surix S.R.L. es una firma que se dedica al desarrollo, fabricación y comercialización de productos IP y sistemas hospitalarios de calidad. Posee una comprobada trayectoria dentro del mercado local e internacional. Se destaca por su compromiso con la industria nacional, la mejora continua de sus productos y el soporte que brinda a sus clientes. Este proyecto se enmarca dentro del segundo ítem de su misión, porque mejora y extiende capacidades a un sistema existente.

Surix S.R.L fabrica un sistema IP de llamado a enfermera que está basado en el protocolo SIP. Este consiste en un servidor central y terminales que se encuentran en las habitaciones del hospital. La aplicación principal se ejecuta en una pc o bien en una tablet y monitorea el estado de las habitaciones.

El objetivo del proyecto es realizar un sistema con las ventajas que provee el protocolo MQTT: posibilidad de agregar accesorios rápidamente con bajo costo de software, hardware e implementación.

MQTT es un protocolo open source liviano (hecho que permite implementarlo en dispositivos con pocos recursos y baja velocidad de transmisión) ampliamente utilizado en dispositivos IOT. Está basado en la pila TCP/IP, se implementa en la capa de aplicación y sus mensajes se transmiten como colas de publicación/subscripción.

El desafío de este proyecto consiste en la programación de un sistema que contenga un servidor o broker MQTT, una base de datos donde alojar información de reportes de habitaciones/enfermeras y datos relevantes al paciente(incluyendo temporizadores para suministro de ciertos medicamentos y/o control), una página web para configuración y una aplicación multiplataforma donde se realice la gestión de datos e interacción con los clientes. La aplicación será capaz de identificar la cama correspondiente(mediante lectura de símbolos QR) y de transmitir mensajes de voz en caso de ser necesario.

La motivación que origina la realización del sistema es generar las bases para poder incorporar otros dispositivos inteligentes al sistema principal a bajo costo(por ejemplo, en un futuro se puede monitorear la temperatura de la habitación y saber si sufre un desperfecto el aire acondicionado, escuchar sonidos dentro de la sala en caso de que el paciente no pueda acceder al llamador, etc).

El proyecto completo consta de :

Broker

- Pantalla web de configuración
- Cliente médico
- Cliente enfermera
- Cliente sistema

En la figura 1, se presenta un diagrama de interconexión entre los dispositivos.

Figura 1. Diagrama en bloques del sistema

El broker recibe mensajes(llamados "eventos") de distintos publicadores y los reenviará a los subscriptores que correspondan según una política asignada previamente.

El cliente sistema poseera una base de datos con información relevante para los pacientes. La aplicación del cliente sistema puede monitorear el estado de las habitaciones.

El cliente enfermera solo recibe asignaciones o respuestas de un médico, y publica finalización o consulta(por medio de una aplicación).

El cliente médico solo recibe consulta y publica respuestas(por medio de una aplicación).

Con la aplicacion web se puede cargar la base de datos con informacion de enfermeras, pacientes y médicos.

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Cliente	Sergio Starkloff	Surix S.R.L	Propietario
Responsable	Gustavo Bastian	FIUBA	Alumno
Colaboradores	_	_	_
Orientador	Ericson Joseph Estu-	Surix S.R.L	Director Trabajo final
	piñan Pineda		
Usuario final	Hospitales, personal de	_	_
	salud, administradores		
	de sistemas		

- Orientador: Ericson va a poder ayudar mucho con la definición de los requerimientos.
- Usuario final: Todos los usuarios del sistema como ser, administradores de redes hospitalarias, médicos y enfermeras, que deseen observar y/o controlar el proceso.

3. Propósito del proyecto

El propósito de este proyecto es desarrollar un sistema para gestión de enfermeras basado en el protocolo MQTT compuesto por un broker, una web de configuración y una o varias aplicaciones, que agilice el desarrollo de funcionalidades futuras.

4. Alcance del proyecto

El presente proyecto incluye:

- Confección de plan de trabajo.
- Investigación y estudio de protocolo MQTT, bases de datos SQL y NoSQL, programación de aplicaciones web y programación de aplicaciones multiplataforma.
- Desarrollo local del broker que registre en un log, horario y actividades realizadas.
- Desarrollo local de página web de configuración.
- Desarrollo local de aplicacion cliente médico con envío/recepción de mensajes de audio/texto/alarmas.
- Desarrollo local de aplicacion cliente enfermera con envío/recepción de mensajes de audio/texto/alarmas y escaneo de QR para identificar paciente.
- Desarrollo local de aplicacion cliente sistema

Documentación de las aplicaciones desarrolladas.

El presente proyecto no incluye:

- Manuales de las distintas aplicaciones desarrolladas.
- Traducciones a idiomas extranjeros de las aplicaciones y/o de la página web.
- Sistema llamador del paciente.
- Análisis en profundidad de tráfico en la red.
- Análisis en profundidad de Seguridad.

5. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- Existe un llamador paciente.
- Las aplicaciones moviles usaran iOS, Android y Windows Phone como sistema operativo.
- La base de datos de los pacientes sólo puede ser afectada por medio de la aplicación sistema(el cliente médico sólo puede hacer consultas/modificaciones puntuales a una situación).

6. Requerimientos

Los requerimientos deben numerarse y de ser posible estar agruparlos por afinidad, por ejemplo:

- 1. Requerimientos funcionales
 - 1.1. El sistema debe...
 - 1.2. Tal componente debe...
 - 1.3. El usuario debe poder...
- 2. Requerimientos de documentación
 - 2.1. Requerimiento 1
 - 2.2. Requerimiento 2 (prioridad menor)
- 3. Requerimiento de testing...
- 4. Requerimientos de la interfaz...
- 5. Requerimientos interoperabilidad...
- 6. etc...

Leyendo los requerimientos se debe poder interpretar cómo será el proyecto y su funcionalidad.

Indicar claramente cuál es la prioridad entre los distintos requerimientos y si hay requerimientos opcionales.

No olvidarse de que los requerimientos incluyen a las regulaciones y normas vigentes!!!

Y al escribirlos seguir las siguientes reglas:

- Ser breve y conciso (nadie lee cosas largas).
- Ser específico: no dejar lugar a confusiones.
- Expresar los requerimientos en términos que sean cuantificables y medibles.

7. Historias de usuarios (*Product backlog*)

Descripción: En esta sección se deben incluir las historias de usuarios y su ponderación (history points). Recordar que las historias de usuarios son descripciones cortas y simples de una característica contada desde la perspectiva de la persona que desea la nueva capacidad, generalmente un usuario o cliente del sistema. La ponderación es un número entero que representa el tamaño de la historia comparada con otras historias de similar tipo.

El formato propuesto es: como [rol] quiero [tal cosa] para [tal otra cosa]."

Se debe indicar explícitamente el criterio para calcular los story points de cada historia

8. Entregables principales del proyecto

Los entregables del proyecto son (ejemplo):

- Manual de uso
- Diagrama de circuitos esquemáticos
- Código fuente del firmware
- Diagrama de instalación
- Informe final
- etc...

9. Desglose del trabajo en tareas

El WBS debe tener relación directa o indirecta con los requerimientos. Son todas las actividades que se harán en el proyecto para dar cumplimiento a los requerimientos. Se recomienda mostrar el WBS mediante una lista indexada:

- 1. Grupo de tareas 1
 - 1.1. Tarea 1 (tantas hs)
 - 1.2. Tarea 2 (tantas hs)
 - 1.3. Tarea 3 (tantas hs)
- 2. Grupo de tareas 2
 - 2.1. Tarea 1 (tantas hs)
 - 2.2. Tarea 2 (tantas hs)
 - 2.3. Tarea 3 (tantas hs)
- 3. Grupo de tareas 3
 - 3.1. Tarea 1 (tantas hs)
 - 3.2. Tarea 2 (tantas hs)
 - 3.3. Tarea 3 (tantas hs)
 - 3.4. Tarea 4 (tantas hs)
 - 3.5. Tarea 5 (tantas hs)

Cantidad total de horas: (tantas hs)

Se recomienda que no haya ninguna tarea que lleve más de 40 hs.

10. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semicríticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color, como se muestra en el siguiente ejemplo:

Figura 2. Diagrama en $Activity\ on\ Node$

11. Diagrama de Gantt

Existen muchos programas y recursos *online* para hacer diagramas de gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + plugins. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa.
 https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete pgfgantt
 http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS). Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 3, se muestra un ejemplo de diagrama de gantt realizado con el paquete de *pgfgantt*. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Figura 3. Diagrama de gantt de ejemplo

Figura 4. Ejemplo de diagrama de Gantt rotado

12. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

COSTOS DIRECTOS							
Descripción	Cantidad Valor unitario						
SUBTOTAL							
COSTOS INDIRECTOS							
Descripción	Cantidad	Valor unitario	Valor total				
SUBTOTAL							
TOTAL							

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).

Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

- Severidad (S):
- Ocurrencia (O):

Riesgo 3:

• Severidad (S):

- Ocurrencia (O):
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación: - Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S). - Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Para cada uno de los requerimientos del proyecto indique:

- Req #1: copiar acá el requerimiento.
 - Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar
 - Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc. Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno. En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, y los problemas que surgieron y cómo se solucionaron: Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores: - Indicar esto y quién financiará los gastos correspondientes.