Computer Architecture: Memory and Storage Technologies

Hossein Asadi (asadi@sharif.edu)

Department of Computer Engineering

Sharif University of Technology

Spring 2024

Copyright Notice

- Some Parts (text & figures) of this Lecture adopted from following:
 - "Computer Architecture", Prof. Onur Mutlu, ETH Zurich, Fall 2022.

Topics Covered in This Lecture

- Flash Technology
- Solid-State Drives
- NAND Flash
- NOR Flash
- Phase Change Memory

NAND Flash Memory Background

Flash Cell Array

Flash Cell

Floating Gate Transistor (Flash Cell)

Threshold Voltage (V_{th})

Normalized V

Flash Read

Flash Pass-Through

Read from Flash Cell Array

Aside: NAND vs. NOR Flash Memory

Threshold Voltage (V_{th})

Normalized V

Threshold Voltage (V_{th}) Distribution

@ Computer Architecture, ETH Zurich, Onur Mutlu, Fall 2022.

Read Reference Voltage (V_{ref})

Multi-Level Cell (MLC)

@ Computer Architecture, ETH Zurich, Onur Mutlu, Fall 2022.

Slide 15

Threshold Voltage Reduces Over Time

After some retention loss:

2000

Fixed Read Reference Voltage Becomes Suboptimal

After some retention loss:

Raw bit errors

@ Computer Architecture, ETH Zurich, Onur Mutlu, Fall 2022.

Optimal Read Reference Voltage (OPT)

Minimal raw bit errors

@ Computer Architecture, ETH Zurich, Onur Mutlu, Fall 2022.

Normalized V

How Current Flash Cells are Programmed

Programming 2-bit MLC NAND flash memory in two steps

Slide 19

Planar vs. 3D NAND Flash Memory

Scaling

Reduce flash cell size, Reduce distance b/w cells

3D NAND Flash Memory

Increase # of layers

Reliability

Scaling hurts reliability

Not well studied!

@ Computer Architecture, ETH Zurich, Onur Mutlu, Fall 2022.

3D NAND Flash Memory Structure

Charge Trap Based 3D Flash Cell

Cross-section of a charge trap transistor

3D NAND Flash Memory Organization

Fig. 43. Organization of flash cells in an *M*-layer 3D charge trap NAND flash memory chip, where each block consists of *M* wordlines and *N* bitlines.

Slide 23

Limits of Charge Memory

- Difficult charge placement and control
 - Flash: floating gate charge
 - DRAM: capacitor charge, transistor leakage
- Reliable sensing becomes difficult as charge storage unit size reduces

Solution: Emerging Memory Technologies

- Some emerging resistive memory technologies seem more scalable than DRAM (and they are non-volatile)
- Example: Phase Change Memory
 - Data stored by changing phase of material
 - Data read by detecting material's resistance
 - Expected to scale to 9nm (2022 [ITRS 2009])
 - Prototyped at 20nm (Raoux+, IBM JRD 2008)
 - Expected to be denser than DRAM: can store multiple bits/cell
- But, emerging technologies have (many) shortcomings
 - Can they be enabled to replace/augment/surpass DRAM

SENSE

Intel Optane Persistent Memory (2019)

- Non-volatile main memory
- Based on 3D-XPoint Technology

PCM as Main Memory: Idea in 2009

Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,
 "Architecting Phase Change Memory as a Scalable DRAM Alternative"
 Proceedings of the 36th International Symposium on Computer
 Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides (pdf)
 One of the 13 computer architecture papers of 2009 selected as Top Picks by IEEE Micro.

Selected as a CACM Research Highlight.

Architecting Phase Change Memory as a Scalable DRAM Alternative

Benjamin C. Lee† Engin Ipek† Onur Mutlu‡ Doug Burger†

†Computer Architecture Group Microsoft Research Redmond, WA {blee, ipek, dburger}@microsoft.com ‡Computer Architecture Laboratory Carnegie Mellon University Pittsburgh, PA onur@cmu.edu

Charge vs. Resistive Memories

- Charge Memory (e.g., DRAM, Flash)
 - Write data by capturing charge Q
 - Read data by detecting voltage V

- Resistive Memory (e.g., PCM, STT-MRAM, memristors)
 - Write data by pulsing current dQ/dt
 - Read data by detecting resistance R

Promising Resistive Memory Technologies

PCM

- Inject current to change material phase
- Resistance determined by phase

STT-MRAM

- Inject current to change magnet polarity
- Resistance determined by polarity

Memristors/RRAM/ReRAM

- Inject current to change atomic structure
- Resistance determined by atom distance

What is Phase Change Memory?

- Phase change material (chalcogenide glass) exists in two states:
 - Amorphous: Low optical reflexivity and high electrical resistivity
 - Crystalline: High optical reflexivity and low electrical resistivity

PCM is resistive memory: High resistance (0), Low resistance (1) PCM cell can be switched between states reliably and quickly

How Does PCM Work?

- Write: change phase via current injection
 - SET: sustained current to heat cell above Tcryst
 - RESET: cell heated above Tmelt and quenched
- Read: detect phase via material resistance
 - amorphous/crystalline

Opportunity: PCM Advantages

Scales better than DRAM, Flash

- Requires current pulses, which scale linearly with feature size
- Expected to scale to 9nm (2022 [ITRS])
- Prototyped at 20nm (Raoux+, IBM JRD 2008)

Can be denser than DRAM

- Can store multiple bits per cell due to large resistance range
- Prototypes with 2 bits/cell in ISSCC' 08, 4 bits/cell by 2012

Non-volatile

- Retain data for >10 years at 85C
- No refresh needed, low idle power

PCM Resistance → Value

Multi-Level Cell PCM

- Multi-level cell: more than 1 bit per cell
 - Further increases density by 2 to 4x [Lee+,ISCA'09]

- But MLC-PCM also has drawbacks
 - Higher latency and energy than single-level cell PCM

MLC-PCM Resistance → Value

MLC-PCM Resistance → Value

Less margin between values

- → need more precise sensing/modification of cell contents
 - → higher latency/energy (~2x for reads and 4x for writes)

Cell resistance

Phase Change Memory Properties

- Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI, ISSCC)
- Derived PCM parameters for F=90nm
- Lee, Ipek, Mutlu, Burger, "Architecting Phase Change Memory as a Scalable DRAM Alternative," ISCA 2009.
- Lee et al., "Phase Change Technology and the Future of Main Memory," IEEE Micro Top Picks 2010.

Table 1. Technology survey.

Published prototype

Parameter*	Tubilities prototype									
	Horri ⁶	Ahn ¹²	Bedeschi ¹³	Oh ¹⁴	Pellizer ¹⁵	Chen ⁵	Kang ¹⁶	Bedeschi ⁹	Lee ¹⁰	Lee ²
Year	2003	2004	2004	2005	2006	2006	2006	2008	2008	**
Process, F(nm)	**	120	180	120	90	**	100	90	90	90
Array size (Mbytes)	**	64	8	64	**	**	256	256	512	**
Material	GST, N-d	GST, N-d	GST	GST	GST	GS, N-d	GST	GST	GST	GST, N-d
Cell size (µm²)	**	0.290	0.290	**	0.097	60 nm ²	0.166	0.097	0.047	0.065 to 0.097
Cell size, F ²	**	20.1	9.0	**	12.0	**	16.6	12.0	5.8	9.0 to 12.0
Access device	**	**	вл	FET	BJT	**	FET	BJT	Diode	BJT
Read time (ns)	**	70	48	68	**	**	62	**	55	48
Read current (µA)	**	**	40	**	**	**	**	**	**	40
Read voltage (V)	**	3.0	1.0	1.8	1.6	**	1.8	**	1.8	1.0
Read power (µW)	**	**	40	**	**	**	**	**	**	40
Read energy (pJ)	**	**	2.0	**	**	**	**	**	**	2.0
Set time (ns)	100	150	150	180	**	80	300	**	400	150
Set current (µA)	200	**	300	200	**	55	**	**	**	150
Set voltage (V)	**	**	2.0	**	**	1.25	**	**	**	1.2
Set power (µW)	**	**	300	**	**	34.4	**	**	**	90
Set energy (pJ)	**	**	45	**	**	2.8	**	**	**	13.5
Reset time (ns)	50	10	40	10	**	60	50	**	50	40
Reset current (µA)	600	600	600	600	400	90	600	300	600	300
Reset voltage (V)	**	**	2.7	**	1.8	1.6	**	1.6	**	1.6
Reset power (µW)	**	**	1620	**	**	80.4	**	**	**	480
Reset energy (pJ)	**	**	64.8	**	**	4.8	**	**	**	19.2
Write endurance (MLC)	10 ⁷	109	10 ⁶	**	108	104	**	10 ⁵	105	108

^{*} BJT: bipolar junction transistor; FET: field-effect transistor; GST: Ge₂Sb₂Te₅; MLC: multilevel cells; N-d: nitrogen doped. ** This information is not available in the publication cited.

Where Can PCM Fit in the System?

Phase Change Memory Properties: Latency

Latency comparable to, but slower than DRAM

Typical Access Latency (in terms of processor cycles for a 4 GHz processor)

- Read Latency
 - 50ns: 4x DRAM, 10⁻³x NAND Flash
- Write Latency
 - 150ns: 12x DRAM
- Write Bandwidth
 - 5-10 MB/s: 0.1x DRAM, 1x NAND Flash

Phase Change Memory Properties

Dynamic Energy

- 40 uA Rd, 150 uA Wr
- 2-43x DRAM, 1x NAND Flash

Endurance

- Writes induce phase change at 650C
- Contacts degrade from thermal expansion/contraction
- 10⁸ writes per cell
- 10⁻⁸x DRAM, 10³x NAND Flash

Cell Size

- 9-12F² using BJT, single-level cells
- 1.5x DRAM, 2-3x NAND (will scale with feature size, MLC)

Phase Change Memory: Pros and Cons

Pros over DRAM

- Better technology scaling (capacity and cost)
- Non volatile → Persistent
- Low idle power (no refresh)

Cons

- Higher latencies: ~4-15x DRAM (especially write)
- − Higher active energy: ~2-50x DRAM (especially write)
- Lower endurance (a cell dies after ~10⁸ writes)
- Reliability issues (resistance drift)
- Challenges in enabling PCM as DRAM replacement/helper:
 - Mitigate PCM shortcomings
 - Find the right way to place PCM in the system

PCM-based Main Memory (I)

How should PCM-based (main) memory be

- Hybrid PCM+DRAM [Qureshi+ ISCA'09, Dhiman+ DAC'09]:
 - How to partition/migrate data between PCM and DRAM

M. Tarihi, H. Asadi, A. Haghdoost, M. Arjomand, and H. Sarbazi-Azad, "A Hybrid Non-Volatile Cache Design for Solid-State Drives Using Comprehensive I/O Characterization," IEEE Transactions on Computers (TC), Vol. 65, Issue 6, 2016

PCM-based Main Memory (II)

How should PCM-based (main) memory be

- Pure PCM main memory [Lee et al., ISCA'09, Top Picks'10]:
 - How to redesign entire hierarchy (and cores) to overcome PCM shortcomings

An Initial Study: Replace DRAM with PCM

- Lee, Ipek, Mutlu, Burger, "Architecting Phase Change Memory as a Scalable DRAM Alternative," ISCA 2009.
 - Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
 - Derived "average" PCM parameters for F=90nm

Density

- \triangleright 9 12 F^2 using BJT
- ▷ 1.5× DRAM

Latency

Endurance

- → 1E-08× DRAM

Energy

- \triangleright 40 μ A Rd, 150 μ A Wr
- \triangleright 2×, 43× DRAM

Architecting PCM to Mitigate Shortcomings

- Idea 1: Use multiple narrow row buffers in each PCM chip
 - → Reduces array reads/writes → better endurance, latency, energy
- Idea 2: Write into array at cache block or word granularity
 - → Reduces unnecessary wear

STT-RAM as Main Memory

STT-MRAM as Main Memory

- Magnetic Tunnel Junction (MTJ) device
 - Reference layer: Fixed magnetic orientation
 - Free layer: Parallel or anti-parallel
- Magnetic orientation of the free layer determines logical state of device
 - High vs. low resistance
- Write: Push large current through MTJ to change orientation of free layer
- Read: Sense current flow
- Kultursay et al., "Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative," ISPASS 2013.

STT-MRAM: Pros and Cons

Pros over DRAM

- Better technology scaling (capacity and cost)
- Non volatile → Persistent
- Low idle power (no refresh)

Cons

- Higher write latency
- Higher write energy
- Poor density (currently)
- Reliability?
- Another level of freedom
 - Can trade off non-volatility for lower write latency/energy (by reducing the size of the MTJ)

A More Viable Approach: Hybrid Memory Systems

Hardware/software manage data allocation and movement to achieve the best of multiple technologies

Meza+, "Enabling Efficient and Scalable Hybrid Memories," IEEE Comp. Arch. Letters, 2012. Yoon+, "Row Buffer Locality Aware Caching Policies for Hybrid Memories," ICCD 2012 Best Paper Award.

Slide 50

Challenge and Opportunity

Providing the Best of

Multiple Metrics

with

Multiple Memory Technologies

Challenge and Opportunity

Heterogeneous,
Configurable,
Programmable
Memory Systems

Hybrid Memory Systems: Issues

Cache vs. Main Memory

Granularity of Data Move/Manage-ment: Fine or Coarse

Hardware vs. Software vs. HW/SW Cooperative

When to migrate data?

 How to design a scalable and efficient large cache?

One Option: DRAM as a Cache for PCM

- PCM is main memory; DRAM caches memory rows/blocks
 - Benefits: Reduced latency on DRAM cache hit; write filtering
- Memory controller hardware manages the DRAM cache
 - Benefit: Eliminates system software overhead
- Three issues:
 - What data should be placed in DRAM versus kept in PCM?
 - What is the granularity of data movement?
 - How to design a low-cost hardware-managed DRAM cache?

DRAM as a Cache for PCM

- Goal: Achieve the best of both DRAM and PCM/NVM
 - Minimize amount of DRAM w/o sacrificing performance, endurance
 - DRAM as cache to tolerate PCM latency and write bandwidth
 - PCM as main memory to provide large capacity at good cost and power

Qureshi+, "Scalable high performance main memory system using phase-change memory technology," ISCA: 2009.

Write Filtering Techniques

- Lazy Write: Pages from disk installed only in DRAM, not PCM
- Partial Writes: Only dirty lines from DRAM page written back
- Page Bypass: Discard pages with poor reuse on DRAM eviction

• Qureshi et al., "Scalable high performance main memory systems

Data Placement in Hybrid Memory

Which memory do we place each page in, to maximize system performance?

- Memory A is fast, but small
- Load should be balanced on both channels?
- Page migrations have performance and energy overhead

Key Observation & Idea

- Row buffers exist in both DRAM and PCM
 - Row hit latency similar in DRAM & PCM [Lee+ ISCA'09]
 - Row miss latency small in DRAM, large in PCM
- Place data in DRAM which
 - is likely to miss in the row buffer (low row buffer locality)
 miss penalty is smaller in DRAM
 AND
 - is reused many times → cache only the data worth the movement cost and DRAM space

