

广工资源在线

更多试卷、资料尽在公众号

广东工业大学试卷用纸,共4页,第1页

		课程名称:概率论与数理统计 C				试
始 ::		考试	时间: 2013 ^左	F6月25日	(第 18)	周星
棋		题号	_	二	三	
		评卷得分				+
	裁	评卷签名				
		复核得分				
		复核签名				
李 •		一、单项选择 1、设 <i>A</i> , <i>B</i> 为随机	•	ŕ)=1,则必	有
		()				
	_	(A) P (A	(A) $P(A \cup B) = P(B)$			$A \cup E$
	Ú	(C) P (.	$A \cup B) > P(B)$		(D) P ($A \cup E$
		2、设随机变量 λ	〈 的概率密度函	数为 $f(x) = \begin{cases} 2 \end{cases}$	$e^{-2x}, x > 0$ $0, x \le 0$,则
_ ∰	採	() (A) 1/2	(B) 1/4	(C)	1/8	(D
#17		3、设随机变量 $X \sim N(1,1)$, $f(x), F(x)$ 分别为其密度函数与允				
		确的是 () (A) P {X≤	$0\} = P\{X \ge 0\}$	= 0.5	(B) f(x) :	= f(·
		(C) P {X ≤	$1\} = P\{X \ge 1\}$	= 0.5		
· 。 。		F(x) = 1 - F(-1)	$-x), x \in (-\infty, +\infty)$	o)		
俳		4、 随	直机变量ξ与η的]方差分别为 16	和 25,相关	系数
	!				<u></u>	

广东工业大学考试试卷(B)

港满分_100_分

星期 二)

题 号	_	=	Ξ	总分
评卷得分				
评卷签名				
复核得分				
复核签名				

(B)
$$P(A \cup B) = P(A)$$

(D)
$$P(A \cup B) > P(A)$$

2、设随机变量
$$X$$
 的概率密度函数为 $f(x) = \begin{cases} 2e^{-2x}, & x > 0 \\ 0, & x \le 0 \end{cases}$,则 $E(e^{-2X}) =$

D) 以上全不对

分布函数,则下列正

(B)
$$f(x) = f(-x), x \in (-\infty, +\infty)$$

(D)

为 0.5,则 $\mathbf{D}(\xi - \eta)$ 为

5、	己知随机变量を	服从参数为2的	为泊松分布,则随机图	受量 $\eta = 3\xi^2 - 2$ 的	数学期望为
) (A) 16	(B) 10	(C) 12	(D) 18	

二、填空题(每小题 4 分, 共 20 分)

- 1. 在一次考试中,某班学生数学和外语的及格率都是 0.7,且这两门课是否及格相互独立,现从该班种任选一名学生,则该学生的数学和外语中只有一门课及格的概率为 .
- 2. 设随机变量 $\xi \sim B$ (4, $\frac{1}{3}$),则 $P\{\xi \ge 1\} = _____.$
- 3. 已知随机变量 ξ 的概率密度为 $f(x) = \frac{1}{2} e^{-|x|}, -\infty < x < +\infty, 则 <math>P\{0 < \xi < 1\} =$ ______.
- 4. 设 $\xi \sim U(0,2)$, 则随机变量 $\eta = \xi^2$ 在(0,4)内的概率密度函数为
- 5. 随机变量 x 在区间[2,6]上服从均匀分布,现对 x 进行三次独立的测量,则至少有两次观察值大于 3 的概率为_____.

三、计算题(共60分)

- 1. (本题 10 分) 在一个肿瘤治疗中心,有大量可能患肺癌的可疑病人,这些病人中吸烟的占 45%。据以往记录,吸烟的可疑病人中有 90%确患有肺癌,在不吸烟的可疑病人中仅有 5%确患 有肺癌
 - (1) 在可疑病人中任选一人, 求他患有肺癌的概率
 - (2) 在可疑病人中选一人,已知他患有肺癌,求他是吸烟者的概率.
- 2. (本题 10 分)设顾客在某银行的窗口等待的时间 ξ (分钟)服从参数为 $\frac{1}{5}$ 指数分布某顾客在窗口等待服务,若超过 10 分钟,他就离开.他一个月要到银行 5 次,以 η 表示一个月内他未等到服务而离开窗口的次数,试求: (1) η 的分布律; (2) $P\{\eta \ge 1\}$.
- 3. (本题 12 分)设有随机变量U 和V,它们都仅取1,-1两个值。已知

$$P(U=1) = \frac{1}{3}, P(V=1 \mid U=1) = \frac{1}{4}, P(V=-1 \mid U=-1) = \frac{1}{2}$$

(1) 求(U,V)的联合分布律; (2) 求x的方程 $x^2 + Ux + V = 0$ 至少有一实根的概率.

4. (本题 12 分) 设随机变量 ξ 的概率密度为

$$f(x) = \begin{cases} \frac{1}{8}(3x+1), & 0 < x < 2\\ 0, & \text{其它} \end{cases}$$

- (1) 求 ξ 的分布函数;
- (2) 求 $\eta = 2\xi$ 的概率密度函数.
- 5. (本题 16 分)设随机变量 ξ 与 η 相互独立,且 ξ 服从[0,1]上的均匀分布,随机变量 η 服从

参数 $\lambda=5$ 的指数分布,即概率密度函数为 $f(y)=\begin{cases} 5e^{-5y}, & y>0\\ 0, & y\leq 0 \end{cases}$ 求 $Z=\xi+\eta$ 的概率密度函数.