الأعداد المقدية خارین می استانات الباك

2 باك علوم فيزيائية وعلوم الحياة والأرض 2017 / 2016

+3+5i هو R بالدور ان بالتوفيق R هو D حصورة A بالدور ان بالتوفيق

(BC) هي |z-3-5i|=|z-4-4i| بين أنّ مجموعة النقط M(z) بحيث

<u> بكالوريا وطنية 2014 د – ع</u>

$$z^2 - z\sqrt{2} + 2 = 0$$
 خلّ في مجموعة الأعداد العقدية المعادلة: 1

$$arg(u) = \frac{\pi}{3}[2\pi]$$
 نعتبر $u = \frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{2}i$ بین اُن معیار $u = \frac{\sqrt{2}}{2}$

باستعمال كتابة u على الشكل المثلثي، بين أنّ u^6 عدد حقيقي باستعمال كتابة بالمثلث بالمثلث

$$b=8$$
 و $a=4-4i\sqrt{3}$ نعتبر A و B التي ألحاقها

لك الذوران M الذي Z' المحق نقطة M بالدوران M الذي Z

z مرکزه O وزاویته $\frac{\pi}{3}$ ، عبّر بالنوفیق عن z بدلاله

ب) تحقق أن B هي صورة A بالدوران R واستنتج أن OAB متساوي الأضلاع

<u> بكالوريا وطنية 2014 د - س</u>

 $z^2-4z+5=0$ خلّ في مجموعة الأعداد العقدية المعادلة: 3 مجموعة الأعداد العقدية المعادلة:

: لنعتبر النقط
$$A$$
 و B و C و D و C التي ألحاقها على التوالي $\omega=1$ و $d=-i$ و $d=0$ و $d=0$ و $d=0$

 Ω بيّن أنّ $i=rac{a-\omega}{b-\omega}=i$ و استنتج أنّ المثلث ΩAB قائم الزاوية و متساوي الساقين في

رية $\frac{\pi}{3}$ مورة M(z) بالدوران M(z) الذي مركزه M(z') (أ (3

 $z'\!=\!iz\!+\!1\!-\!i$ بين بالتوفيق أن

R(D) = B و R(A) = C ب

ج) بيّن أنّ النقط A و B و C و تنتمي إلى نفس الدائرة محدّداً مركزها.

<u>بكالوريا وطنية 2013 د - ع</u>

c=-2+5i و b=4+8i و a=7+2i التي ألحاقها C و B و B $\frac{c-a}{b-a} = 1+i$ وبين أنّ (1+i)(-3+6i) = -9+3i يَحقَق أنّ (1 (1

 $(\overrightarrow{AB},\overrightarrow{AC})$ وأعط النوايق قياسا للزاوية الموجهة $AC=AB\sqrt{2}$ أن $AC=AB\sqrt{2}$

d=10+11i هو $R(B,\frac{\pi}{2})$ الدوران (2 مسورة A مسورة A سورة (2

ب) أحسب $\frac{d-c}{b-c}$ و استنتج أنّ النقط B و D و D مستقيمية

<u>بكالوريا وطنية 2013 د - س</u>

 $z^2 - 8z + 25 = 0$: لمعادلة: المعادلة الأعداد العقدية المعادلة المعادلة

c=10+3i و B و b=4-3i و a=4+3i التي ألحاقها: a=4+3i و b=4-3i

d=10+9i هو \overrightarrow{BC} التي متجهتها \overrightarrow{BC} هو أ) بين أن لحق D صورة A بالإزاحة بالتوفيق T التي

ب) تحقق أنّ $\frac{b-a}{d-a} = -\frac{1}{2}(1+i)$ ثم أكتب العدد $\frac{b-a}{d-a} = -\frac{1}{2}(1+i)$ على المثلثي

 $(\overrightarrow{\overline{AB}}, \overrightarrow{\overline{AC}}) \equiv \frac{5\pi}{4} [2\pi]$ بین أنّ (7 بین أنّ (7 بین أنّ

<u>بكالوريا وطنية 2012 د – ع</u>

 $z^2 - 12z + 61 = 0$ خلّ في في مجموعة الأعداد العقدية المعادلة:: مجموعة الأعداد العقدية المعادلة:

c=2+i و b=4-2i و a=6-5i التي ألحاقها C=1

ر استنتج أنّ النقط بالنوفيق A و B و استنتج أنّ النقط بالنوفيق A و أ $\frac{a-c}{b-c}$

1+5i هو \vec{u} حيث لحق \vec{u} دات المتجهة المتاب (ب

d=3+6i هو T بالإزاحة T هو صورة النقطة مين النقطة D هو تحقّق أنّ الحق النقطة D

<u> يكالوريا وطنية 2016 د - ع</u>

لك حلّ في مجموعة الأعداد العقدية المعادلة: 2 = 2 + 29 = 7 بالتوفيق (1

. $\omega=2+5i$ و b=5+8i و a=5+2i التي ألحاقها a=5+2i و a=5+3i

 \overline{u} نضع $u=b-\omega$ تمدد عمدة أن u=3+3i ثم حدّد عمدة أن نضع

 $\arg(rac{b-\omega}{a-\omega})\equivrac{\pi}{2}[2\pi]$ وأنّ: $\Omega A=\Omega B$ ثم استنتج أن $\alpha-\omega=\overline{u}$ وأنّ: $\alpha-\omega=\overline{u}$

R نعتبر الدوران بالتونيق Rالذي مركزه Ω وزاويته $rac{\pi}{2}$ ، حدّد صورة R بالدوران R

<u> بكالوريا وطنية 2016 د – س</u>

 $z^2 - 8z + 41 = 0$ خلّ في مجموعة الأعداد العقدية المعادلة: مجموعة الأعداد العقدية المعادلة:

نعتبر النقط A و B و Ω التي ألحاقها على التوالي (2)

 $\omega = 4 + 7i$ و c = 6 + 7i و b = 3 + 4i و a = 4 + 5i

ر مستقيمية C = B واستنتج أنّ النقط A و B و $\frac{c-b}{a-b}$

ب) z لحق نقطة M و z' لحق النقطة M' صورة M بالدوران z' الذي مركزه $z'=-i\cdot z-3+11i$ وزاویته $-\frac{\pi}{2}$ ، بین بالتونیق أن O

 $\dfrac{a-\omega}{c-\omega}$ عدّد صورة النقطة c بالدوران c ثمّ أعط شكلاً مثلثيا للعدد c

بكالوريا وطنية <u>2015 د – ع</u>

 $z^2+10z+26=0$ حلّ في مجموعة الأعداد العقدية المعادلة: a=-2+2i و a=-5+i و a=-2+2i المتي ألحاقها a=-2+2i

 ΩAB و استنتج طبیعة المثلث $\frac{b-\omega}{a-\omega}=i$ و سيّن بالتوفيق أنّ $\alpha=-3$ و c=-5-i و c=-5-i

6+4i لتكن 0 صورة 0 بالإزاحة 0 ذات المتجهة 0 التي لحقها (3

[BD] بيّن أنّ لحق D هو D=1+3i و أنّ D هي منتصف D بيّن أنّ لحق D

بكالوريا وطنية 2015 د -ع (المُعاد)

 $2\sqrt{2+\sqrt{2}}$ هو $a=2+\sqrt{2}+i\sqrt{2}$ هو (1) (1) بین أنّ معیار

$$a = 2(1 + \cos\frac{\pi}{4}) + 2i\sin\frac{\pi}{4}$$
 بين أنّ $\frac{\pi}{4}$

 $1+\cos 2\theta=2\cos^2 \theta$ بيّن أنّ: $\cos^2 \theta$ بين أن (2

 $(\sin 2\theta = 2\cos \theta \sin \theta)$ بين أن $a = 4\cos^2\frac{\pi}{8} + 4i\cos\frac{\pi}{8}\sin\frac{\pi}{8}$ بين أن $a = 4\cos^2\frac{\pi}{8}$

a بيّن أنّ $4\cos{\pi\over 8}(\cos{\pi\over 8}+i\sin{\pi\over 8})$ هو شكل مثلثي بالتوفيق ل

 $a^4=(2\sqrt{2+\sqrt{2}}\,)^4\cdot i$ ثم بین أنّ

 $R(\Omega; \frac{\pi}{2})$ و $\Omega = \sqrt{2}$ و $a = 2 + \sqrt{2} + i\sqrt{2}$ التي لحقاها Ω و A (II

R بيّن أنّ b=2i هو لحق B صورة A بالدوران (1

|z-2i|=2 حدّد مجموعة النقط M ذات اللحق z بحيث: (2

بكالوريا وطنية <u>2015 د – س</u>

 $z^2 - 8z + 32 = 0$ أ) حلّ في \mathbb{C} المعادلة: (1

a=4+4i عدد حقيقي سالب أكتب أa=4+4i عدد على سالب

c=3+4i و b=2+3i و a=4+4i و التي ألحاقها C=3+4i و B=3+4i و C=3+4i

z'=iz+7+i بيّن أنّ $R(C,\frac{\pi}{2})$ بالدوران M(z) ميتر M'(z') بعتبر (أ

-1+i و أنّ $\frac{3\pi}{4}$ و أنّ $\frac{d-c}{b-c}=-1+i$ عمدة للعدد العقدي $\frac{d-c}{b-c}=-1+i$

 $(\overrightarrow{CB},\overrightarrow{CD})$ استنتج قياساً للزاوية الموجهة

بكالوريا وطنية 2012 د س:

c=8+3i و b=6-7i و a=2-i التي ألحاقها C=8+3i و a=2-i

A بيّن أنّ $i=rac{c-a}{b-a}=i$ واستنتج أنّ المثلث aBC متساوي الساقين وقائم الزاوية في a

 $rac{-\pi}{2}$ وزاویته BC منتصف (BC وزاویته M(z) بالدوران R الذي مركزه M(z) منتصف

 $\omega\!=\!7\!-\!2i$ أ) بيّن أنّ بالتوفيق لحق Ω هو

z' = -iz + 9 + 5i بیّن أنّ:

R بيّن أنّ النقطة C هي صورة النقطة A بالدوران

<u> يكالوريا وطنية 2011 د – ع</u>

- $z^2 18z + 82 = 0$ خلّ في مجموعة الأعداد العقدية المعادلة:: 1
- . c=11-i و b=9-i و a=9+i التي ألحاقها C و B و A) نعتبر (2
 - اً) بیّن أنّ $\frac{c-b}{a-b}=-i$ و استنتج أنّ المثلث ABC متساوي الساقین

B و قائم الزاوية في

- 4(1-i) ب) أعط الشكل المثلثي بالتوفيق للعدد
- $AC imes BC = 4\sqrt{2}$ بيّن أنّ (c-a)(c-b) = 4(1-i) ثمّ استنتج أنّ ج
- $\frac{3\pi}{2}$ نعتبر M(z) ه و زاویته M(z) بالدوران M(z) بالدوران M(z) نعتبر (Z') نعتبر

R بيّن أنّ: z'=-iz+10+8i ثمّ تحقّق أنّ لحق C' صورة z'=-iz+10+8i هو z'=-iz+10+8i

بكالوريا وطنية 2011 د س :

- $z^2 6z + 18 = 0$ المعادلة: \mathbb{C} في (1
- . b=3-3i و a=3+3i و اللتين ألحاقهما على التوالي a=3+3i و a=3+3i أ) أكتب على الشكل المثلثي كلّ من العددين العقديين a و a
 - . \overrightarrow{OA} هو لحق B' صورة بالتونيق B بالإزاحة التي متّجهتها \overrightarrow{OA} .
 - B' واستنتج أنّ $\frac{b-b'}{a-b'}=i$ واستنتج أنّ AB'B متساوي الساقين وقائم الزاوية في $\frac{b-b'}{a-b'}=i$
 - CAB'B مربّع. استنتج أنّ الرباعي

<u> بكالوريا وطنية 2010 د – ع</u>

- $z^2 6z + 10 = 0$ المعادلة: \mathbb{C} في (1)
- . c=7-3i و b=3+i و a=3-i التي ألحاقها C=0 و B=0 و B=0
 - . $\frac{\pi}{2}$ صورة M(z) مسورة M(z) بالدوران M(z')
 - z'=iz+2-4i أي بيّن بالتوفيق أنّ
 - . c'=5+3i هو R بالدوران C هو C'=5+3i
- BC=2BC' بيّن أنّ $\frac{c'-b}{c-b}=rac{1}{2}i$ ثمّ استنتج أنّ ' $\frac{BC}{c}$ قائم الزاوية و أنّ '

<u>بكالوريا وطنية 2010 د س :</u>

- $z^2 8\sqrt{3}z + 64 = 0$ المعادلة: \mathbb{C} حلّ في
- $c=2(4\sqrt{3}+4i)$ و $b=4\sqrt{3}-4i$ و a=8i التي ألحاقها $C=2(4\sqrt{3}+4i)$ و a=8i التي ألحاقها $C=2(4\sqrt{3}+4i)$
 - . $\frac{4\pi}{3}$ صورة O و زاويته M(z) بالدوران M(z) مسورة M(z')
- . R و تحقّق أنّ بالتوفيق B هي صورة A الدوران $z' = (-\frac{1}{2} i\frac{\sqrt{3}}{2}) \cdot z$ أ) بيّن أنّ
 - ب) بيّن أنّ $\frac{\sqrt{3}}{2} + i \frac{\sqrt{3}}{2}$ و استنتج أنّ ABC متساوي الأضلاع.

بكالوريا وطنية 2009 دع:

و B و C التي ألحاقها على التوالي:

$$c = 1 - \sqrt{3} + (1 + \sqrt{3})i$$
 $b = \frac{1}{2}(-\sqrt{3} + i)$ $a = 2 - 2i$

- . b و a أكتب على الشكل المثلثي كلا من العددين العقديين a
- z' = bz : بيّن أنّ: $R(O, \frac{5\pi}{6})$ بين أنّ: M(z) مصورة M(z) بين أنّ
 - \cdot R بالدوران A هي صورة A بالدوران
 - . c يَن أَنّ: $\arg c \equiv \arg a + \arg b[2\pi]$ ثُمّ حدّد عمدة للعدد العقدي (3

<u>بكالوريا وطنية 2009 د س</u>

- $z^2 6z + 25 = 0$ المعادلة: \mathbb{C} في \mathbb{C}
- (2) نعتبر النقط A و B و C التي ألحاقها على التوالي:

d = 5 + 6i c = 2 + 3i b = 3 - 4i a = 3 + 4i

- أ أحسب $rac{d-c}{a-c}$ ثمّ استنتج أنّ النقط A و بالتوفيق C و مستقيمية.
- . h(B;1,5) هو لحق النّقطة P صورة A بالتحاكي p=3+8i بيّن أنّ
- $(\overline{\overrightarrow{PA},\overrightarrow{PD}})$ على الشكل المثلثي ثم استنتج أن $\frac{\pi}{4}$ قياس للزاوية $\frac{d-p}{a-p}$ على الشكل المثلثي ثم استنتج أن $PA=\sqrt{2}PD$. $PA=\sqrt{2}$

بكالوريا وطنية 2008 د - ع

- $z^2 6z + 34 = 0$ المعادلة: \mathbb{C} حلّ في (1
- $.\,\,c=7+3i$ و b=3-5i و a=3+5i التي ألحاقها C=7+3i و b=3-5i
 - . 4-2i التي لحقها \vec{u} التي لحقها T ذات المتّجهة M(z) صورة M'(z')
 - . T ثم تحقّق أنّ C باتويق هي صورة C بالإزاحة z'=z+4-2i بيّن أنّ
- BC=2AC و استنتج أنّ المثلث ABC قائم الزاوية وأنّ $\frac{b-c}{a-c}=2i$ بيّن أنّ بيّن أنّ

بكالوريا وطنية 2008 د س

- $z^2 8z + 17 = 0$ المعادلة: \mathbb{C} حلّ في (1
- . b=8+3i و a=4+i و اللتين ألحاقهما على التوالي a=4+i و A
 - $\omega = 1 + 2i$ مصورة Ω ، $R(\Omega, \frac{3\pi}{2})$ بالدوران M(z) مصورة M'(z')
 - $\cdot z' = -iz 1 + 3i$ أي بين أنّ بالتوفيق
 - c=-i هو R بالدّوران R هو C صورة A بالدّوران
 - . بيّن أنّ b-c=2(a-c) ثمّ استنتج أنّ النّقط A و B و b مستقيمية b

من بكالوريا وطنية <u>2006/ 2007 د س</u>

- $(\sqrt{2}+2i)^2$ أنشر (1
- $\cdot z_1 = 1 i$ حدّد الشكل المثلثي للعدد (2
- . $z_1\cdot z_2=\sqrt{2}\cdot\overline{z_2}$ اليكن $z_2=1+\sqrt{2}+i$ ليكن (3
 - . ${\rm arg}(z_{_{\! 1}}) + 2\,{\rm arg}(z_{_{\! 2}}) \equiv 0[2\pi]$ استنتج أنّ (4
 - \cdot z_2 حدّد عمدة للعدد (5

من بكالوريا وطنية <u>2005 / 2006 دع</u>

- . $z_2=\sqrt{3}-1+i(\sqrt{3}+1)$ و $z_1=\sqrt{3}+1+i(\sqrt{3}-1)$ ليكن (1 $z_2=i$ و $z_1=\sqrt{3}+1+i(\sqrt{3}-1)$ بين أَن: $z_2=i$ و $z_1=2$
 - . $4(\sqrt{3}+i)$ أكتب على الشّكل المثلّثي العدد العقدي: (أ (2
 - z_2 و استنتج الشّكل المثلّثي لكلّ من بالتوفيق العددين و و استنتج
- نعتبر OAB و $B(z_2)$ أحسب $B(z_2)$ ثمّ استنتج أنّ $A(z_1)$ متساوي الأضلاع (3

<u>من بكالوريا وطنية 2005 / 2006 د س</u>

نعتبر النّقط A و B و M_1 و M_2 التي ألحاقها على التوالي:

$$.\ z_2 = \frac{-2 + \sqrt{2} - i\sqrt{2}}{2}\ \ \ \ \ z_1 = \frac{-2 - \sqrt{2} + i\sqrt{2}}{2}\ \ \ \ \ \ \ \ -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\ \ \ \ \ \ \ -1$$

ا أكتب
$$i + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}$$
 على الشّكل المثلّثي.

.
$$[M_1M_2]$$
 و أنّ بالتونيق A منتصف و $\overline{AM_1}=\overline{OB}$ و أنّ بالتونيق A انشئ النّقط A و B و M_1 و M_2

$$M_2$$
 انشئ النقط A و B و M_1 و M_2

.
$${
m arg}(z_1) \equiv \frac{7\pi}{8}[2\pi]$$
 معيّن ثمّ أنّ $AOBM_1$ أستنتج أنّ AOBM معيّن ثمّ أن

من بكالويا وطنية 2004 / 2005 دع

$$(rac{\sqrt{3}+i}{2})^{12}=1$$
 بيّن بالتوفيق أنّ $=1$

<u>من بكالويا وطنية 04 / 05 د س</u>

$$Z = \frac{1+i\sqrt{3}}{1-i}$$
 الشّكل بالتوفيق المثلّثي العدد:

من بكالوريا 2004/2003 دع

$$z_2 = -\sqrt{2} + i(2 - \sqrt{2})$$
 و $z_1 = \sqrt{2} + i(2 + \sqrt{2})$ لتكن

$$z_{2}=a-b$$
 و $z_{1}=a+b$ بيّن أنّ $b=\sqrt{2}(1+i)$ و $a=2i$ نضع أن (1) أنضع

$$OA = OB$$
 و $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB}$ و تحقّق أنّ $C(z_1)$ و $B(b)$ و $A(a)$ أَمثُلُ (أي $A(a)$) مثّل (أي $A(a)$) مثرل (أي A

.
$$\arg(z_1) \equiv \frac{3\pi}{8}[2\pi]$$
 معیّن ثمّ أنّ: $OBCA$ معیّن ثمّ أنّ:

$$s=i$$
 و $b=rac{i-1}{2}$ و $a=rac{1+i}{2}$ حيث: $S(s)$ و $B(b)$ و $A(a)$ لتكن (1

أ) أكتب
$$a$$
 و b على الشّكل بالنوفيق المثلّثي.

$$2z^2-2iz-1=0$$
 ب) تحقق أنّ a و b حلين للمعادلة

.
$$\frac{a-s}{b-s}$$
 : الشّكل المثلّثي العدد العقدي (أ

S متساوي السّاقين و قائم الزّاوية في S متساوي السّاقين و قائم الزّاوية في و بيّن أنّ الرباعي OASB مربّع.

من بكالوريا وطنية 2002 / 2003 دع

 $z'' = \frac{1-i}{m}$ يكن $z' = \frac{1+i}{m}$ نضع $z' = \frac{1+i}{m}$ نضع عدداً عقدياً معلوماً معياره $\sqrt{2}$ و عمدته

ا أكتب كل من
$$z'$$
 و z' و z' بالتوفيق على الشّكل المثلثي.

مربع C و B و B و C ألحاقها هي: z' و z' و z'' و z'' بيّن أنّ الرباعي C مربع

من بكالوريا وطنية 2002 / 2003 دس

- $(4+i)^2$: أكتب على الشّكل الجبري العدد العقدي (1
- 2) نعتبر النّقط A و B و B التي ألحاقها على التّوالي هي:
 - . c=6i و بالتوفيق b=-3+i و a=1+2i
- $\frac{c-a}{b-a}$: الشّكل المثلثي العدد العقدي الشّكل المثلثي العدد العقدي ب) استنتج أنّ المثلّث ABC متساوي الساقين و قائم الزاوية.

من بكالوريا 2002/2001

.
$$z_2 = \frac{1}{2}(-\sqrt{3}-i)$$
 و نعتبر: $z_1 = \frac{1}{2}(\sqrt{3}-i)$ و نعتبر: $g(z) = \frac{z}{z^2-1}$

بيّن أنّ النقط $M_1(z_1)$ و $M_2(z_2)$ و $M_1(z_1)$ مستقيمية (1

. $(z_1)^{60} + (z_2)^{60}$ غلى الشَّكل بالتوفيق المثلَّثي z_2 و z_1 و المثلَّثي المثلَّثي (2

ب) حدّد مجموعة النقط M(z) بحيث يكون بكون عدد تخيّلي صرف.

من بكالوريا 2001/2000

. $\forall \alpha \in \mathbb{R} : 1 + \cos \alpha + i \sin \alpha = 2(\cos \frac{\alpha}{2} + i \sin \frac{\alpha}{2})\cos \frac{\alpha}{2}$ يَن أَنَ: (1

. g(z)=iz+i و $\alpha\in]\pi,2\pi[$, $z=\cos\alpha+i\sin\alpha$ ليكن (2

.
$$\arg(g(z)) \equiv \frac{\alpha - \pi}{2} [2\pi]$$
 و $|g(z)| = -2\cos(\frac{\alpha}{2})$ بيّن أنّ:

.
$$z_{\rm l}=rac{1-i\sqrt{3}}{2}$$
 : ليكن $z_{\rm l}=g(z_{\rm 0})^{10}$ و بالتوفيق $z_{\rm 0}=rac{-1-i\sqrt{3}}{2}$: ليكن لُنّ

. $(\overrightarrow{AB},\overrightarrow{AC})$ و $B(z_0)$ و $B(z_0)$ و $A(-\sqrt{3}\,i)$ نأخذ: (4

من امتحانات الأكاديميات 2000 - 2001

$$c = -1 - i\sqrt{3}$$
 و $b = -1 + i\sqrt{3}$ لتكن (1

.
$$b^{2001} + c^{2001} = 2^{2002}$$
 آكتب b و يتن أن المثلثي و بين أن المثلثي و المثلث المثلث

$$a>0$$
 و $B(b)$ و $A(a)$ لتكن (2

حدّد قيمة a لكي يكون المثلث ABC متساوي الأضلاع.

$$P(z)=z+rac{4}{z}$$
. بالتوفيق \mathbb{C}^* من \mathbb{C} من (3)

. $\forall z \in \mathbb{C}^* : (P(z) = \overline{P(z)} \iff (z - \overline{z})(z\,\overline{z} - 4) = 0)$ بين أَنَ: (أُل بين أَنَ

ب) استنتج (Γ) مجموعة النّقط M(z) التي من أجلها يكون P(z) حقيقياً.

$$u_2 = \frac{z_2}{z_0}$$
 و $u_1 = \frac{z_1}{z_0}$ و $z_2 = [1; \frac{13\pi}{12}]$ و $z_1 = [1; \frac{5\pi}{12}]$ و $z_0 = [1; \frac{-\pi}{4}]$

$$u_1^9 + u_2^9$$
 بيّن أنّ: $u_2 = \frac{-1 - i\sqrt{3}}{2}$ و بالتوفيق $u_1 = \frac{-1 + i\sqrt{3}}{2}$ نثمّ أحسب: (1)

B لتكن (BA_1A_2 و ($A_2(u_2)$ و ($A_1(u_1)$ و ($A_1(u_1)$ و (B(-1) لتكن ($A_1(u_1)$) لتكن (B(-1) لتكن ($A_1(u_1)$

من بكالوريا 1996/1995

$$z \in \mathbb{C} \setminus \{-1,1\}$$
 حيث $g(z) = \frac{z}{1-z^2}$ نعتبر:

$$g(z) = \frac{z(1-\overline{z}^2)}{|1-z^2|^2}$$
 : نحقّق أنّ (1

.
$$z(1-\overline{z}^2) = (x-x^3-xy^2) + i(y+y^3+x^2y)$$
 نیکن $z = x+iy$ نیکن رو (2

. حدّد طبيعة مجموعة النّقط
$$M(z)$$
 بحيث يكون $g(z)$ عدد عقدي تخيّلي صرف

. $\theta \in]0,\pi[\;,z=[1; heta]$ ليكن: (4

$$z \cdot g(z) = [rac{1}{2\sin heta} \; ; \; heta + rac{\pi}{2}]$$
 بين أنّ: $g(z) = rac{i}{2\sin heta}$ بين أنّ: بالتوفيق

$$(z_0 \cdot g(z_0))^6$$
 ليكن: $z_0 = \frac{\sqrt{3} + i}{2}$ ليكن: (5) ليكن

من بكالوريا <u>1994/1993</u>

$$f(z)=rac{iz^2}{z+1}$$
 نضع: بالتوفيق $\mathbb{C}\setminus\{-1\}$ من $f(z)=[rac{1}{2\cos(rac{ heta}{2})}$, $rac{3 heta+\pi}{2}$ يَضَع $\theta\in]0,\pi[$, $z=[1; heta]$ نضع (1

$$(\cos\frac{\pi}{8} = \frac{\sqrt{2+\sqrt{2}}}{2})$$
 . $(f(z_0))^4 = \frac{-i}{(2+\sqrt{2})^2}$: يَنْ أَنْ $z_0 = [1, \frac{\pi}{4}]$ نَاخَذُ (2