ER 190C: Statistical Learning for Energy and Environment

Duncan Callaway dcal@berkeley.edu

Fall, 2018

Units: 4.0

Lecture: 102 Wheeler T/Th 9:30-11:00, Lecture Hours per week: 3.0 Lab: 110 Barrows M 10-12 Lab Hours per week: 2.0

r

Course Description

This course will teach students to build, estimate and interpret models that describe phenomena in the broad area of energy and environmental decision-making. The effort will be divided between (i) learning a suite of data-driven modeling approaches, (ii) building the programming and computing tools to use those models and (iii) developing the expertise to formulate questions that are appropriate for available data and models. My goal is that students will leave the course as both critical *consumers* and responsible *producers* of data driven analysis.

We will work in Python in this course, and students must have taken Data 8 before enrolling. The course is designed to fit into Berkeley's emerging "data science" curriculum by providing students with a skill set similar to those developed in Data 100. However, in contrast to Data 100, here we will place a stronger emphasis on how to use prediction methods as decision-making tools in energy and environment contexts and less emphasis on web technologies, working with text, databases and statistical inference.

Materials

- You will need your own computer, but virtually any operating system will do (OSX, Windows, Linux, Chromebook).
- We will draw some material from Berkeley's Data 100 course book, freely available here: https://www.textbook.ds100.org
- Finally, we will draw material from the excellent text book, Introduction to Statistical Learning, available in both print and pdf form.

Prerequisites

Prerequisites:

- (required) Foundations of Data Science (CS/ INFO/ STAT C8)
- (recommended) Computing: An introductory programming course (CS61A or CS88).
- Math:
 - (required) High school or college calculus.
 - (recommended) Linear Algebra (Math 54, EE 16a, or Stat89a).

Course Structure

Class Structure

This is a four unit course, with three hours of lecture and two hours of lab section each week. Lectures will focus on theoretical and conceptual material but also introduce the programming structures required to use the material. Labs will be computer working sessions with a GSI and lab helpers available to work through weekly lab exercises.

Assessment

The course will have weekly homework assignments, a mid term and a final exam. Grading will be as follows:

- Homework: 20% (There will be ten, due most Fridays. We drop the lowest grade.)
- Lab assignments: 20% (There will be ten, due most Fridays. We drop the lowest grade.)
- Mid-term: 25% (October 18, in class)
- Final Exam: 25% (December 11, 3-6pm)
- Participation: 10% (Participation will be measured by answering questions in lecture with an online form.)

Schedule and weekly learning goals

Lecture	Day	Topic	Homework
Lecture 1	2018-08-23	Introduction, also draw on some early 290 lect	
Lab 1	2018-08-27	Getting started	
Lecture 2	2018-08-28	Data design – draw on first lecture in 290?	HW1 - getting started
Lecture 3	2018-08-30	Pandas, variable types (dict, tuple, etc), fil	
Lab 2	2018-09-03	Answer HW1 questions; Pandas	
Lecture 4	2018-09-04	Pandas, ctd, and energy and development.	HW2 - pandas
Lecture 5	2018-09-06	Data cleaning and EDA	
Lab 3	2018-09-10	Answer HW questions; EDA	
Lecture 6	2018-09-11	EDA and visualization	HW3 - EDA
Lecture 7	2018-09-13	Visualization and data transformations	

Lecture	Day	Topic	Homework
Lab 4	2018-09-17	Answer HW questions, visualization	
Lecture 8	2018-09-18	Visualization and data transformations	HW4 - visualization
Lecture 9	2018-09-20	Modeling and estimation	
Lab 5	2018-09-24	Basic modeling, KNN	
Lecture 10	2018-09-25	Linear Regression Part 1	HW5: Basic modeling and linear regression
Lecture 11	2018-09-27	Multiple Linear Regression	
Lab 6	2018-10-01	Answer HW questions, regularization	
Lecture 12	2018-10-02	Extensions of the basic linear regression model.	HW 6: Multiple linear regression, basic model
Lecture 13	2018-10-04	Gradient Descent	
Lab 7	2018-10-08	Ans HW questions; gradient descent	

Lecture	Day	Topic	Homework
Lecture 14	2018-10-09	Classification	HW 7: Gradient descent; a "theory" homework.
Lecture 15	2018-10-11	Resampling	
Lab 8	2018-10-15	Exam Review, through HW7 / Lecture 13.	
Lecture 16	2018-10-16	Exam Review, through HW7 / Lecture 13.	
Lecture 17	2018-10-18	Exam, through HW7 / Lecture 13.	
Lab 9	2018-10-22	Review classification and resampling	
Lecture 18	2018-10-23	Model Selection	HW 8 - Resampling; A "theory" homework
Lecture 19	2018-10-25	Regularization and Shrinkage methods	
Lab 10	2018-10-29		
Lecture 20	2018-10-30	Classification and regression trees	HW9 - Model selection with LUR data set

Lecture	Day	Topic	Homework
Lecture 21	2018-11-01	Bagging, Random Forests, Boosting	
Lab 11	2018-11-05		
Lecture 22	2018-11-06	Wrap up tree methods	HW10 - Classification and regression trees wit
Lecture 23	2018-11-08	Support vector machines	
Lab 12	2018-11-12		
Lecture 24	2018-11-13	Support vector machines, ctd	HW11 – Support vector machines with CES data
Lecture 25	2018-11-15	Wrap up support vector machines	
Lab 13	2018-11-19		
Lecture 26	2018-11-20	Neural networks	
OFF1	2018-11-22	Thanksgiving	
Lab 14	2018-11-26		
Lecture 27	2018-11-27	Wrap up neural networks	

Lecture	Day	Topic	Homework
OFF2	2018-11-29	Duncan travelling	