A Robust Linearization Method for Complementarity Problems

A Detour Through Hyperplane Arrangements

Baptiste Plaquevent-Jourdain, supervised by Jean-Pierre Dussault, Université de Sherbrooke Jean Charles Gilbert, INRIA Paris

July, 16th 2025

Outline

- Motivation
 - Problem presentation
 - One nonsmooth method
- 2 Hyperplane Arrangements
 - Computation of $\partial_B H(x)$
 - Some improvements
 - A new approach by duality
 - Some results
- 3 LM-PNM
 - Presentation of NM and PNM
 - Least-squares over regularity
 - Technical choice of the weights
 - Algorithmical considerations

Outline

- Motivation
 - Problem presentation
 - One nonsmooth method
- - Computation of $\partial_B H(x)$
 - Some improvements
 - A new approach by duality
 - Some results
- - Presentation of NM and PNM
 - Least-squares over regularity
 - Technical choice of the weights
 - Algorithmical considerations

Complementarity Problems (CPs)

General form: Facchinei Pang [FP03], Acary Brogliato [AB08]...

find
$$x \in \mathbb{R}^n$$
 s.t. $F(x) \ge 0$, $G(x) \ge 0$, $F(x)^T G(x) = 0$
 $\iff 0 \le F(x) \perp G(x) \ge 0$, (1)

Mostly, $F, G : \mathbb{R}^n \mapsto \mathbb{R}^n$ smooth. Often

- G is the identity (G(x) = x), $0 \le F(x) \perp x \ge 0$.
- G identity, F affine (LCPs, Cottle Pang Stone [CPS09])

$$0 \leqslant (Mx + q) \perp x \geqslant 0. \tag{2}$$

Complementarity Problems (CPs)

General form: Facchinei Pang [FP03], Acary Brogliato [AB08]...

find
$$x \in \mathbb{R}^n$$
 s.t. $F(x) \ge 0$, $G(x) \ge 0$, $F(x)^T G(x) = 0$
 $\iff 0 \le F(x) \perp G(x) \ge 0$, (1)

Mostly, $F, G : \mathbb{R}^n \mapsto \mathbb{R}^n$ smooth. Often:

- G is the identity (G(x) = x), $0 \le F(x) \perp x \ge 0$.
- G identity, F affine (LCPs, Cottle Pang Stone [CPS09])

$$0 \leqslant (Mx + q) \perp x \geqslant 0. \tag{2}$$

Relevance of CPs

Phenomena in competition, threshold effects [HP90; FP97]

r: reaction, z: height

$$\forall \text{ point } y, \begin{cases} r(y) \geqslant 0, \\ z(y) \geqslant 0, \\ r(y)z(y) = 0. \end{cases}$$

Relevance of CPs

Phenomena in competition, threshold effects [HP90; FP97]

r: reaction, z: height

constrained optimization

min
$$f(x)$$
, $g(x) \leq 0$

KKT
$$\begin{cases} \nabla f(x) + \nabla g(x)\lambda = 0\\ 0 \leqslant \lambda \perp (-g(x)) \geqslant 0 \end{cases}$$

$$\forall \text{ point } y, \begin{cases} r(y) \geqslant 0, \\ z(y) \geqslant 0, \\ r(y)z(y) = 0. \end{cases}$$

Various other problems (Robinson [Rob80], [FP03]...).

An essential difficulty

At a solution x, $F_i(x) = 0$ or $G_i(x) = 0$ for all $i \in [1 : n]$. 2ⁿ possibilities: **combinatorial aspect**.

NP-hard even for LCPs [Chu89], [Koj+91].

Possible reformulation techniques

C-function:

$$\varphi: \mathbb{R}^2 \to \mathbb{R}, \text{ s.t. } \varphi(a,b) = 0 \quad \iff \begin{array}{l} a \geqslant 0, \, b \geqslant 0, \, ab = 0, \\ \iff 0 \leqslant a \perp b \geqslant 0. \end{array}$$

$$0 \leqslant F(x) \perp G(x) \geqslant 0 \Leftrightarrow H_{\varphi}(x) := (\varphi(F_i(x), G_i(x)))_{i \in [1:n]} = 0$$

- $\varphi_{\text{FB}}(a, b) := \sqrt{a^2 + b^2} a b$ (Fischer [Fis92], [DFK00])
- $\varphi_{\min}(a,b) := \min(a,b)$, $H := H_{\min}$ (Pang [Pan90; Pan91], Qi [Qi93])
- many more ([Gal12; KYF97; FJ00; Alc+20])
- smoothing of the problem [Had09; CNQ00; Vu+21]

Possible reformulation techniques

C-function:

$$\varphi: \mathbb{R}^2 \to \mathbb{R}, \text{ s.t. } \varphi(a,b) = 0 \quad \iff \begin{array}{c} a \geqslant 0, \, b \geqslant 0, \, ab = 0, \\ \iff 0 \leqslant a \perp b \geqslant 0. \end{array}$$

$$0 \leqslant F(x) \perp G(x) \geqslant 0 \Leftrightarrow H_{\varphi}(x) := (\varphi(F_i(x), G_i(x)))_{i \in [1:n]} = 0$$

- $\varphi_{\text{FB}}(a, b) := \sqrt{a^2 + b^2} a b$ (Fischer [Fis92], [DFK00])
- $\varphi_{\min}(a, b) := \min(a, b)$, $H := H_{\min}$ (Pang [Pan90; Pan91], Qi [Qi93])
- many more ([Gal12; KYF97; FJ00; Alc+20])
- smoothing of the problem [Had09; CNQ00; Vu+21]

Illustration

Level sets of the C-function φ_{FB} , nondifferentiable only at the origin. Level sets of the C-function φ_{min} , nondifferentiable at the dashed line.

Illustration

Level sets of the C-function $\varphi_{\rm FB}$, nondifferentiable only at the origin. Level sets of the C-function $\varphi_{\rm min}$, nondifferentiable at the dashed line.

Outline

- Motivation
 - Problem presentation
 - One nonsmooth method
- 2 Hyperplane Arrangements
 - Computation of $\partial_B H(x)$
 - Some improvements
 - A new approach by duality
 - Some results
- B LM-PNM
 - Presentation of NM and PNM
 - Least-squares over regularity
 - Technical choice of the weights
 - Algorithmical considerations

Nonlinear (nonsmooth) equations – Newton's method

Smooth case

Iteration

$$x_{k+1} = x_k - H'(x_k)^{-1}H(x_k)$$

 $(= x_k + d_k)$

$$x_0$$
 near x^* , $H \in \mathcal{C}^{1,1}$, $H'(x^*)$ nonsingular \Rightarrow convergence

Nonlinear (nonsmooth) equations – Newton's method

Smooth case

Can cycle if *H* nonsmooth [Kum88]

Iteration

$$x_{k+1} = x_k - H'(x_k)^{-1}H(x_k)$$

(= $x_k + d_k$)

$$x_0$$
 near x^* , $H \in \mathcal{C}^{1,1}$, $H'(x^*)$ nonsingular \Rightarrow convergence

Nonlinear (nonsmooth) equations – Newton's method

Smooth case

Iteration

$$x_{k+1} = x_k - H'(x_k)^{-1}H(x_k)$$

(= $x_k + d_k$)

 x_0 near x^* , $H \in C^{1,1}$, $H'(x^*)$ nonsingular \Rightarrow convergence

Can cycle if H nonsmooth [Kum88]

Semismooth Newton iteration

$$x_{k+1} = x_k - J_k^{-1} H(x_k)$$

any $J_k \in \partial_{B|C} H(x_k)$

 x_0 near x^* , H semismooth, all $J \in \partial_{B|C}H(x^*)$ nonsingular \Rightarrow convergence

Generalizing derivatives

Two main differentials: [Cla90] (Clarke)

$$\partial_{\mathcal{B}}H(x) := \{ J \in \mathbb{R}^{n \times n} : \exists (x_k)_k \to x, x_k \in {}^{\text{domain}}_{\mathcal{D}_H}, H'(x_k) \to J \}, \\ \partial_{\mathcal{C}}H(x) := \text{conv}(\partial_{\mathcal{B}}H(x)).$$

Bouligand, Clarke (= generalizes the convex subdifferential)

1D example where $\partial_B H(x) = \{-1, +1/2\}, \ \partial_C H(x) = [-1, +1/2] \ni 0!$

Why the minimum?

FB vs minimum

$H_{ m FB}$	$H = H_{\min}$
$\partial_{\mathcal{B}} H_{\mathrm{FB}}(x^*)$ is a continuum	$\partial_B H(x^*)$ is a finite set
φ_{FB}^2 is smooth (SC^1)	finite convergence if <i>F</i> , <i>G</i> affine
more studied	less explored

Globalization

In theory, with a good x_0 , any $J \in \partial_B H(x) \checkmark$. In practice? Local $H(x) = 0 \rightarrow \text{global min } \theta := ||H(x)||^2/2$.

Globalization

In theory, with a good x_0 , any $J \in \partial_B H(x) \checkmark$. In practice? Local $H(x) = 0 \rightarrow \text{global min } \theta := ||H(x)||^2/2.$

Left: level sets of θ . Globally, some J decrease θ , some increase it.

Contributions – two main topics

- compute $\partial_B H(x)$ in the affine case:
 - relevant for LCPs and linearizations.
 - link with centered hyperplane arrangements,
 - extension to general arrangements,
 - algorithmic approach;
- globalize H(x) = 0 via the minimization of θ :
 - $J \in \partial_B H(x)$ and directions,
 - algorithmic aspects (ongoing work).

Contributions – two main topics

- compute $\partial_B H(x)$ in the affine case:
 - relevant for LCPs and linearizations.
 - link with centered hyperplane arrangements,
 - extension to general arrangements,
 - algorithmic approach;
- globalize H(x) = 0 via the minimization of θ :
 - $J \in \partial_B H(x)$ and directions,
 - algorithmic aspects (ongoing work).

- Problem presentation
- One nonsmooth method
- 2 Hyperplane Arrangements
 - Computation of $\partial_B H(x)$
 - Some improvements
 - A new approach by duality
 - Some results
- 3 LM-PNM
 - Presentation of NM and PNM
 - Least-squares over regularity
 - Technical choice of the weights
 - Algorithmical considerations

Outline

- Motivation
 - Problem presentation
 - One nonsmooth method
- 2 Hyperplane Arrangements
 - Computation of $\partial_B H(x)$
 - Some improvements
 - A new approach by duality
 - Some results
- 3 LM-PNM
 - Presentation of NM and PNM
 - Least-squares over regularity
 - Technical choice of the weights
 - Algorithmical considerations

Setting

Motivation

Initial question and objective

$$0 \leqslant Ax + a \perp Bx + b \geqslant 0 \iff$$

$$H(x) = \min(Ax + a, Bx + b) = 0.$$

$$\partial_B H(x) = \{ J \in \mathbb{R}^{n \times n} : \exists (x_k)_k \to x, x_k \in \mathcal{D}_H, H'(x_k) \to J \}.$$

Setting

Motivation

Initial question and objective

$$0 \leqslant Ax + a \perp Bx + b \geqslant 0 \iff$$

$$H(x) = \min(Ax + a, Bx + b) = 0.$$

$$\partial_B H(x) = \{ J \in \mathbb{R}^{n \times n} : \exists (x_k)_k \to x, x_k \in \mathcal{D}_H, H'(x_k) \to J \}.$$

Relation between $\partial_B H$ and hyperplane arrangements: first part of [DGP25a], published in Math. Prog. Comp. (Jan. 2025).

Computing the B-differential

- H piecewise affine, "derivative" piecewise constant;
- $H_i(x) \in \{(Ax + a)_i, (By + b)_i\} = \{A_{i,i}x + a_i, B_{i,i}x + b_i\},$
- 2 possibilities for each i: combinatorial nature;
- H_i nondifferentiable at x iff $A_{i,:}x + a_i = B_{i,:}x + b_i$, $A_{i,:} \neq B_{i,:}$

Computing the B-differential

- H piecewise affine, "derivative" piecewise constant;
- $H_i(x) \in \{(Ax + a)_i, (By + b)_i\} = \{A_{i:i}x + a_i, B_{i:i}x + b_i\},$ $J_i \cdot \in \{A_i \cdot, B_i \cdot\} \ \forall \ J$:
- 2 possibilities for each *i*: combinatorial nature;
- H_i nondifferentiable at x iff $A_{i,:}x + a_i = B_{i,:}x + b_i$, $A_{i,:} \neq B_{i,:}$

Computing the B-differential

- H piecewise affine, "derivative" piecewise constant;
- $H_i(x) \in \{(Ax + a)_i, (By + b)_i\} = \{A_{i:i}x + a_i, B_{i:i}x + b_i\},$ $J_i \cdot \in \{A_i \cdot, B_i \cdot\} \ \forall \ J$:
- 2 possibilities for each i: combinatorial nature;
- H_i nondifferentiable at x iff $A_{i,:}x + a_i = B_{i,:}x + b_i$, $A_{i,:} \neq B_{i,:}$

Computing the B-differential

- H piecewise affine, "derivative" piecewise constant;
- $H_i(x) \in \{(Ax + a)_i, (By + b)_i\} = \{A_{i,i}x + a_i, B_{i,i}x + b_i\},$ $J_i \cdot \in \{A_i \cdot, B_i \cdot\} \ \forall \ J$:
- 2 possibilities for each i: combinatorial nature;
- H_i nondifferentiable at x iff $A_{i,i}x + a_i = B_{i,i}x + b_i$, $A_{i,i} \neq B_{i,i}$:= hyperplane containing x.

Computation of BH

B-differential and hyperplanes

 $A_{i,:}\leftrightarrow +$, $B_{i,:}\leftrightarrow -$. In the areas, the J is constant: one needs to

B-differential and hyperplanes

 $A_{i,:}\leftrightarrow+$, $B_{i,:}\leftrightarrow-$. In the areas, the J is constant: one needs to determine the nonempty areas.

B-differential and hyperplanes

 $A_{i,:}\leftrightarrow +$, $B_{i,:}\leftrightarrow -$. In the areas, the J is constant: one needs to determine the nonempty areas.

General case, no intersection

How to determine the chambers?

- Studied for centuries [Ste26; Rob87; Sch50]
- Applications / ... [Zas75; DP22; Sle00; BEK23; Zie07; Oxl11] (Zaslavsky, Ziegler, Oxley...)

Notation

Motivation

$$H_i := \{x \in \mathbb{R}^n : \overbrace{v_i^\mathsf{T} x = \tau_i}^{v_i \in \mathbb{R}^n, \tau_i \in \mathbb{R}}, \quad V = [v_1 \ldots v_p], \quad \tau = [\tau_1; \ldots; \tau_p]$$

Notation

$$H_{i} := \{ x \in \mathbb{R}^{n} : \overrightarrow{v_{i}^{\mathsf{T}} x} = \tau_{i} \}, \quad V = [v_{1} \dots v_{p}], \quad \tau = [\tau_{1}; \dots; \tau_{p}]$$

$$H_{i}^{+} := \{ x \in \mathbb{R}^{n} : \underbrace{v_{i}^{\mathsf{T}} x > \tau_{i}}_{+(v_{i}^{\mathsf{T}} x - \tau_{i}) > 0} \}, \quad H_{i}^{-} := \{ x \in \mathbb{R}^{n} : \underbrace{v_{i}^{\mathsf{T}} x < \tau_{i}}_{-(v_{i}^{\mathsf{T}} x - \tau_{i}) > 0} \}$$

Which intersections $\bigcap_{i=1}^{p} (H_i^+ \text{ or } H_i^-)$ are nonempty?

Notation

$$H_{i} := \{x \in \mathbb{R}^{n} : \overbrace{v_{i}^{\mathsf{T}} x = \tau_{i}}^{\mathbf{v}_{i} \in \mathbb{R}^{n}, \tau_{i} \in \mathbb{R}}, \quad V = [v_{1} \dots v_{p}], \quad \tau = [\tau_{1}; \dots; \tau_{p}] \}$$

$$H_{i}^{+} := \{x \in \mathbb{R}^{n} : \underbrace{v_{i}^{\mathsf{T}} x > \tau_{i}}_{+(v_{i}^{\mathsf{T}} x - \tau_{i}) > 0}, \quad H_{i}^{-} := \{x \in \mathbb{R}^{n} : \underbrace{v_{i}^{\mathsf{T}} x < \tau_{i}}_{-(v_{i}^{\mathsf{T}} x - \tau_{i}) > 0}\}$$

Which intersections $\bigcap_{i=1}^{p} (H_i^+ \text{ or } H_i^-)$ are nonempty?

Geometric to analytic: sign vectors

find
$$S(V, \tau) := \{ s = (s_1, \dots, s_p) \in \{\pm 1\}^p,$$

s.t. $\exists x^s \in \mathbb{R}^n, \quad \forall i \in [1:p], \quad s_i(v_i^\mathsf{T} x^s - \tau_i) > 0 \}$

Formula (bound from 19th century!) give $|S(V,\tau)|$, not $S(V,\tau)$. Naively: 2^p strict affine feasibility systems (LOPs).

Towards algorithms

Use of linear optimization

Additional variable α : the > 0 become ≥ 0

$$\alpha_{s}^{*} = \min_{x \in \mathbb{R}^{n}, \alpha \geqslant -1} \quad \alpha$$
s.t.
$$s_{i}(v_{i}^{\mathsf{T}}x - \tau_{i}) + \alpha \geqslant 0, \quad \forall \ i \in [1:p]$$

$$s \in \mathcal{S}(V, \tau) \iff \alpha_{s}^{*} < 0.$$
(3)

Main algo: Rada & Černý [RČ18]; improvements in [DGP25b].

Illustration of the RČ algorithm

Illustration of the RČ algorithm

Illustration of the RČ algorithm

Summary of the algorithm

- at each $s \in \{\pm 1\}^k$, x^s verifies (s, +) or (s, -);
- one LOP per node for the other, (3) with k+1 signs;
- good theoretical properties (> previous ones [AF92; Sle98], [BN82; EOS86] more general).

Main cost: LOPs - can we solve less?

Outline

Motivation

- - Problem presentation
 - One nonsmooth method
- Myperplane Arrangements
 - Computation of $\partial_B H(x)$
 - Some improvements
 - A new approach by duality
 - Some results
- - Presentation of NM and PNM
 - Least-squares over regularity
 - Technical choice of the weights
 - Algorithmical considerations

Closeness (heuristic "B")

Left: level k. Right: shift of x^s when $x^s \lesssim H_{k+1}$.

Details

For $s \in \{\pm 1\}^k$ with x^s , if $x^s \lesssim H_{k+1} \Leftrightarrow v_{k+1}^T x^s - \tau_{k+1} \simeq 0$, (s, +1) and (s, -1) in level k+1 without LOP.

Sequencing (heuristic "C") – which order to choose?

Changes inner levels – level p is always $S(V, \tau)$.

Outline

- Motivation
 - Problem presentation
 - One nonsmooth method
- 2 Hyperplane Arrangements
 - Computation of $\partial_B H(x)$
 - Some improvements
 - A new approach by duality
 - Some results
- 3 LM-PNM
 - Presentation of NM and PNM
 - Least-squares over regularity
 - Technical choice of the weights
 - Algorithmical considerations

Dual approach: avoid LOPs

• $s \in \{\pm 1\}^p$ is incompatible if $s \notin \mathcal{S}(V,\tau)$ ($s \in \mathcal{S}(V,\tau)^c$):

- With all incompatible s₁: no need for LO in the tree.
- For $s \in \{\pm 1\}^p$ and $I \subseteq [1:p]$, s_I incompatible $\Rightarrow s$ is incompatible (more inequalities).
- For $s \in \{\pm 1\}^p$ incompatible, \exists minimal incompatible s_I .
- Find all the smallest / with s₁ incompatible.

Dual approach: avoid LOPs

• $s \in \{\pm 1\}^p$ is incompatible if $s \notin \mathcal{S}(V, \tau)$ ($s \in \mathcal{S}(V, \tau)^c$):

- With all incompatible s₁: no need for LO in the tree.
- For $s \in \{\pm 1\}^p$ and $I \subseteq [1:p]$, s_I incompatible $\Rightarrow s$ is incompatible (more inequalities).
- For $s \in \{\pm 1\}^p$ incompatible, \exists minimal incompatible s_I .
- Find all the smallest I with s_I incompatible.

Dual approach: avoid LOPs

• $s \in \{\pm 1\}^p$ is incompatible if $s \notin \mathcal{S}(V,\tau)$ ($s \in \mathcal{S}(V,\tau)^c$):

- With all incompatible s₁: no need for LO in the tree.
- For $s \in \{\pm 1\}^p$ and $I \subseteq [1:p]$, s_I incompatible $\Rightarrow s$ is incompatible (more inequalities).
- For $s \in \{\pm 1\}^p$ incompatible, \exists minimal incompatible s_I .
- Find all the smallest I with s_I incompatible.

Dual approach: avoid LOPs

• $s \in \{\pm 1\}^p$ is incompatible if $s \notin \mathcal{S}(V, \tau)$ ($s \in \mathcal{S}(V, \tau)^c$):

- With all incompatible s₁: no need for LO in the tree.
- For $s \in \{\pm 1\}^p$ and $I \subseteq [1:p]$, s_I incompatible $\Rightarrow s$ is incompatible (more inequalities).
- For $s \in \{\pm 1\}^p$ incompatible, \exists minimal incompatible s_l .
- Find all the smallest / with s₁ incompatible.

Dual approach: avoid LOPs

• $s \in \{\pm 1\}^p$ is incompatible if $s \notin \mathcal{S}(V,\tau)$ ($s \in \mathcal{S}(V,\tau)^c$):

- With all incompatible s_I: no need for LO in the tree.
- For $s \in \{\pm 1\}^p$ and $I \subseteq [1:p]$, s_I incompatible $\Rightarrow s$ is incompatible (more inequalities).
- For $s \in \{\pm 1\}^p$ incompatible, \exists minimal incompatible s_l .
- Find all the smallest / with s₁ incompatible.

Circuits and stem vectors – 1

A convex analysis tool: duality via Motzkin's alternative [Mot36]

$$\nexists \ x: \textit{M} x > \textit{m} \quad \Longleftrightarrow \quad \exists \ \alpha \in \mathbb{R}_+^{\textit{p}} \setminus \{0\} : \textit{M}^\mathsf{T} \alpha = 0, \textit{m}^\mathsf{T} \alpha \geqslant 0.$$

$$\begin{array}{l} \textbf{\textit{s}}_{l} \text{ incompatible} \iff \nexists \ \textbf{\textit{x}} \in \mathbb{R}^{n} : \textbf{\textit{s}}_{l} \boldsymbol{\cdot} V_{:,l}^{\mathsf{T}} \textbf{\textit{x}} > \textbf{\textit{s}}_{l} \boldsymbol{\cdot} \tau_{l} \\ \iff \exists \ \alpha \in \mathbb{R}^{l}_{+} \setminus \{0\} : V_{:,l}(\underbrace{\textbf{\textit{s}}_{l} \boldsymbol{\cdot} \alpha}_{=\boldsymbol{\eta} \in \mathbb{R}^{l}}) = 0, \ \tau_{l}^{\mathsf{T}}(\underbrace{\textbf{\textit{s}}_{l} \boldsymbol{\cdot} \alpha}_{=\boldsymbol{\eta} \in \mathbb{R}^{l}}) \geqslant 0. \end{aligned}$$

The η is in $\mathcal{N}(V_{:I}) \setminus \{0\}$, and oriented: $\tau_I^\mathsf{T} \eta \geqslant 0$ (otherwise: $-\eta$).

Circuits and stem vectors – 1

A convex analysis tool: duality via Motzkin's alternative [Mot36]

$$s_{I}$$
 incompatible $\iff \nexists \ x \in \mathbb{R}^{n} : s_{I} \cdot V_{:,I}^{\mathsf{T}} x > s_{I} \cdot \tau_{I}$

$$\iff \exists \ \alpha \in \mathbb{R}^{I}_{+} \setminus \{0\} : V_{:,I}(s_{I} \cdot \alpha) = 0, \ \tau_{I}^{\mathsf{T}}(s_{I} \cdot \alpha) \geqslant 0.$$

 $=n\in\mathbb{R}^I$

 $\nexists x : Mx > m \iff \exists \alpha \in \mathbb{R}^p_+ \setminus \{0\} : M^\mathsf{T}\alpha = 0, m^\mathsf{T}\alpha \geqslant 0.$

Circuits and stem vectors – 1

A convex analysis tool: duality via Motzkin's alternative [Mot36]

$$\exists x : Mx > m \iff \exists \alpha \in \mathbb{R}_{+}^{p} \setminus \{0\} : M^{\mathsf{T}}\alpha = 0, m^{\mathsf{T}}\alpha \geqslant 0.$$

$$\mathsf{s}_{I} \text{ incompatible} \iff \exists x \in \mathbb{R}^{n} : \mathsf{s}_{I} \cdot V_{:,I}^{\mathsf{T}}x > \mathsf{s}_{I} \cdot \tau_{I}$$

$$\iff \exists \alpha \in \mathbb{R}_{+}^{I} \setminus \{0\} : V_{:,I}(\underbrace{\mathsf{s}_{I} \cdot \alpha}) = 0, \ \tau_{I}^{\mathsf{T}}(\underbrace{\mathsf{s}_{I} \cdot \alpha}) \geqslant 0.$$

$$= \eta \in \mathbb{R}^{I}$$

The η is in $\mathcal{N}(V_{:,l}) \setminus \{0\}$, and oriented: $\tau_{l}^{\mathsf{T}} \eta \geq 0$ (otherwise: $-\eta$).

A new approach by duality

Circuits and stem vectors – 2

$$s_I$$
 incompatible $\iff \exists \ \eta \in \mathbb{R}^I \setminus \{0\} : V_{:,I} \underbrace{\eta}_{s_I \bullet \alpha} = 0, \ \tau_I^\mathsf{T} \underbrace{\eta}_{s_I \bullet \alpha} \geqslant 0.$

• Smallest I's, $\eta \in \mathcal{N}(V_{:,I}) \setminus \{0\} \Rightarrow matroid\ circuits\ of\ V\ [OxI11]:$

$$\mathcal{C}(V) := \{ I \subseteq [1:\rho] : \underbrace{\mathsf{null}(V_{:,I})}_{\mathsf{dim}(\mathcal{N}(V_{:,I}))} = 1, \mathsf{null}(V_{:,I_0}) = 0 \ \forall \ I_0 \subsetneq I \}$$

• Stem vectors $\mathfrak{S}(V, \tau) := \{ \sigma \in \{\pm 1\}^I : I \in \mathcal{C}(V) \text{ and}$ $\sigma = \operatorname{sgn}(\eta) \text{ for } \eta \in \mathcal{N}(V_{:,I}) \setminus \{0\} \text{ s.t. } \tau_I^\mathsf{T} \eta \geqslant 0 \}$

Circuits and stem vectors - 2

$$s_I$$
 incompatible $\iff \exists \ \eta \in \mathbb{R}^I \setminus \{0\} : V_{:,I} \underbrace{\eta}_{s_I \bullet \alpha} = 0, \ \tau_I^\mathsf{T} \underbrace{\eta}_{s_I \bullet \alpha} \geqslant 0.$

• Smallest *I*'s, $\eta \in \mathcal{N}(V_{:,I}) \setminus \{0\} \Rightarrow matroid circuits of V [OxI11]:$

$$\mathcal{C}(V) := \{I \subseteq [1:p] : \underbrace{\mathsf{null}(V_{:,I})}_{\mathsf{dim}(\mathcal{N}(V_{:,I}))} = 1, \mathsf{null}(V_{:,I_0}) = 0 \ \forall \ I_0 \subsetneq I\}$$

• Stem vectors $\mathfrak{S}(V,\tau):=\{\sigma\in\{\pm 1\}^I:I\in\mathcal{C}(V)\text{ and}$ $\sigma=\mathrm{sgn}(\pmb{\eta})\text{ for }\pmb{\eta}\in\mathcal{N}(V_{:,I})\setminus\{0\}\text{ s.t. }\tau_I^\mathsf{T}\pmb{\eta}\geqslant 0\}.$

Circuits and stem vectors – 2

$$s_I$$
 incompatible $\iff \exists \ \eta \in \mathbb{R}^I \setminus \{0\} : V_{:,I} \underbrace{\eta}_{s_I = \alpha} = 0, \ \tau_I^\mathsf{T} \underbrace{\eta}_{s_I = \alpha} \geqslant 0.$

• Smallest *I*'s, $\eta \in \mathcal{N}(V_{:,I}) \setminus \{0\} \Rightarrow matroid\ circuits\ of\ V\ [Oxl11]$:

$$\mathcal{C}(V) := \{ I \subseteq [1:p] : \underbrace{\mathsf{null}(V_{:,I})}_{\mathsf{dim}(\mathcal{N}(V_{:,I}))} = 1, \mathsf{null}(V_{:,I_0}) = 0 \ \forall \ I_0 \subsetneq I \}$$

• Stem vectors $\mathfrak{S}(V, \tau) := \{ \sigma \in \{\pm 1\}^I : I \in \mathcal{C}(V) \text{ and }$

$$\sigma = \operatorname{sgn}(\eta) \text{ for } \eta \in \mathcal{N}(V_{:,I}) \setminus \{0\} \text{ s.t. } \tau_I^\mathsf{T} \eta \geqslant 0\}.$$

Circuits and stem vectors – 3

Covering test

$$s \in \mathcal{S}(V, \tau)^c \iff s_I \in \mathfrak{S}(V, \tau) \text{ for some } I \subseteq [1:p].$$

$$(\operatorname{sgn}(\eta) = \operatorname{sgn}(s_I \cdot \alpha) = \operatorname{sgn}(s_I) = s_I)$$

Circuits and stem vectors – 3

Covering test

$$s \in \mathcal{S}(V,\tau)^c \iff s_I \in \mathfrak{S}(V,\tau) \text{ for some } I \subseteq [1:p].$$

$$(\operatorname{sgn}(\eta) = \operatorname{sgn}(s_I \cdot \alpha) = \operatorname{sgn}(s_I) = s_I)$$

- Compute $\mathfrak{S}(V,\tau)$ (via $\mathcal{C}(V)$).
- Test if (s, +1) covers a stem vector.
- If yes, stop; if no, recursion on (s, +1).
- Same for (s, -1).

Circuits and stem vectors – 3

Covering test

$$s \in \mathcal{S}(V, \tau)^c \iff s_I \in \mathfrak{S}(V, \tau) \text{ for some } I \subseteq [1:p].$$

$$(\operatorname{sgn}(\eta) = \operatorname{sgn}(s_I \cdot \alpha) = \operatorname{sgn}(s_I) = s_I)$$

- Compute $\mathfrak{S}(V,\tau)$ (via $\mathcal{C}(V)$).
- Test if (s, +1) covers a stem vector.
- If yes, stop; if no, recursion on (s, +1).
- Same for (s, -1).

Circuits and stem vectors – 3

Covering test

$$s \in \mathcal{S}(V, \tau)^c \iff s_I \in \mathfrak{S}(V, \tau) \text{ for some } I \subseteq [1:p].$$

$$(\operatorname{sgn}(\eta) = \operatorname{sgn}(s_I \cdot \alpha) = \operatorname{sgn}(s_I) = s_I)$$

- Compute $\mathfrak{S}(V,\tau)$ (via $\mathcal{C}(V)$).
- Test if (s, +1) covers a stem vector.
- If yes, stop; if no, recursion on (s, +1).
- Same for (s, -1).

Circuits and stem vectors – 3

Covering test

$$s \in \mathcal{S}(V, \tau)^c \iff s_I \in \mathfrak{S}(V, \tau) \text{ for some } I \subseteq [1:p].$$

$$(\operatorname{sgn}(\eta) = \operatorname{sgn}(s_I \cdot \alpha) = \operatorname{sgn}(s_I) = s_I)$$

- Compute $\mathfrak{S}(V,\tau)$ (via $\mathcal{C}(V)$).
- Test if (s, +1) covers a stem vector.
- If yes, stop; if no, recursion on (s, +1).
- Same for (s, -1).

Comparison

each inner node	Primal	Dual
verification	1 LOP:	1-2 covering test(s):
concretely	low-dimension	array operations

Computing $\mathfrak{S}(V,\tau)$ is a combinatorial problem. If $|\mathfrak{S}(V,\tau)|$ large, long computation and covering tests

Intermediate: Primal-Dual, only some duality

- launch the primal tree;
- (s, \pm) incompatible $\stackrel{\text{Motzkin}}{\Longrightarrow}$ stem vector;
- use the acquired stem vectors (and still LOPs).

Comparison

each inner node	Primal	Dual
verification	1 LOP:	1-2 covering test(s):
concretely	low-dimension	array operations

Computing $\mathfrak{S}(V,\tau)$ is a combinatorial problem. If $|\mathfrak{S}(V,\tau)|$ large, long computation and covering tests.

Intermediate: Primal-Dual, only some duality

- launch the primal tree;
- (s, \pm) incompatible $\stackrel{\text{Motzkin}}{\Longrightarrow}$ stem vector;
- use the acquired stem vectors (and still LOPs).

Comparison

each inner node	Primal	Dual
verification	1 LOP:	1-2 covering test(s):
concretely	low-dimension	array operations

Computing $\mathfrak{S}(V,\tau)$ is a combinatorial problem. If $|\mathfrak{S}(V,\tau)|$ large, long computation and covering tests.

Intermediate: Primal-Dual, only some duality

- launch the primal tree;
- (s, \pm) incompatible $\stackrel{\text{Motzkin}}{\Longrightarrow}$ stem vector;
- use the acquired stem vectors (and still LOPs).

A new approach by duality

General improvement: "compaction"

Definition: $s \in \{\pm 1\}^p$ symmetric if $s, -s \in \mathcal{S}(V, \tau)$. $\mathcal{S}(V, \tau)$ symmetric if $\mathcal{S}(V, \tau) = -\mathcal{S}(V, \tau)$.

General improvement: "compaction"

Definition: $s \in \{\pm 1\}^p$ symmetric if $s, -s \in \mathcal{S}(V, \tau)$. $\mathcal{S}(V, \tau)$ symmetric if $\mathcal{S}(V, \tau) = -\mathcal{S}(V, \tau)$.

Principle

- $S(V, \tau)$ (and tree) asymmetric, we can "symmetrize".
- For all variants (RČ, P, D, PD).

General improvement: "compaction"

Definition: $s \in \{\pm 1\}^p$ symmetric if $s, -s \in \mathcal{S}(V, \tau)$. $\mathcal{S}(V, \tau)$ symmetric if $\mathcal{S}(V, \tau) = -\mathcal{S}(V, \tau)$.

Princi<u>ple</u>

- $S(V, \tau)$ (and tree) asymmetric, we can "symmetrize".
- For all variants (RČ, P, D, PD).

Asymmetric arrangement

$$S(V,\tau) = \{(+++), (-++), (+-+), (--+), (--+), (---), (-+--), (-+--)\}$$

except (--+), rest symmetric

Compaction illustrated

Left: classic tree. Right: compact tree.

Blued nodes: asymmetric nodes, correction in the right tree. At the end, the other nodes are multipled by -1 to recover all nodes.

Outline

- Motivation
 - Problem presentation
 - One nonsmooth method
- 2 Hyperplane Arrangements
 - Computation of $\partial_B H(x)$
 - Some improvements
 - A new approach by duality
 - Some results
- 3 LM-PNM
 - Presentation of NM and PNM
 - Least-squares over regularity
 - Technical choice of the weights
 - Algorithmical considerations

Algorithms and instances

- Basic: [RČ18] "RČ" (Rada Černý).
- With heuristics "P" (Primal).
- Without LOPs, just stem vectors "D" (Dual).
- LOPs and some stem vectors "PD" (Primal-Dual).
- Relevance of compaction (/C).

- Basic: [RČ18] "RČ" (Rada Černý).
- With heuristics "P" (Primal).
- Without LOPs, just stem vectors "D" (Dual).
- LOPs and some stem vectors "PD" (Primal-Dual).
- Relevance of compaction (/C).

Trade-off between randomness and structure in the 50 tested instances.

Pairs (n, p) for some linear and affine instances, grouped by colors. Instances up to 10^6 chambers/circuits (to run on a laptop). Example: n = 7, p = 20, up to 137980 chambers, 125970 stem vectors.

Comparison of the main variants

x-axis: relative efficiency (on time), y-axis: % of problems; above/left means being better. One has: primal-dual (PD) > primal (P) on some instances, both > Rada-Černý (RČ) and dual (D), which are quite close.

Compaction improves Rada-Černý RC, primal P and primal-dual PD (axis up to 2), but not really dual (D): less tests but more stems.

Compaction improves Rada-Černý RC, primal P and primal-dual PD (axis up to 2), but not really dual (D): less tests but more stems.

Compaction improves Rada-Černý RC, primal P and primal-dual PD (axis up to 2), but not really dual (D): less tests but more stems.

Compaction improves Rada-Černý RC, primal P and primal-dual PD (axis up to 2), but not really dual (D): less tests but more stems.

Larger x-axis: average \simeq 4. Especially better on "structured" instances.

Possible future work

Code: data structures, parallelism; specialized techniques [DP22]?

Possible future work

Code: data structures, parallelism; specialized techniques [DP22]?

Taking symmetry into account (see [BEK23] and [Ram23]):

- either to consider only a part of the tree
- or to obtain / use circuits (stem vectors) much more faster.

Possible future work

Code: data structures, parallelism; specialized techniques [DP22]?

Taking symmetry into account (see [BEK23] and [Ram23]):

- either to consider only a part of the tree
- or to obtain / use circuits (stem vectors) much more faster.

Also,
$$\{\pm 1\}^p \rightarrow \{-1,0,+1\}^p$$
: intersections of halfspaces and/or hyperplanes.

Example with three lines.

Outline

- Motivation
 - Problem presentation
 - One nonsmooth method
- 2 Hyperplane Arrangements
 - Computation of $\partial_B H(x)$
 - Some improvements
 - A new approach by duality
 - Some results
- 3 LM-PNM
 - Presentation of NM and PNM
 - Least-squares over regularity
 - Technical choice of the weights
 - Algorithmical considerations

Outline

- Motivation
 - Problem presentation
 - One nonsmooth method
- 2 Hyperplane Arrangements
 - Computation of $\partial_B H(x)$
 - Some improvements
 - A new approach by duality
 - Some results
- 3 LM-PNM
 - Presentation of NM and PNM
 - Least-squares over regularity
 - Technical choice of the weights
 - Algorithmical considerations

Recall of Newton-min (NM)

Problem and Newton-min algorithm ([Pan91; Qi93])

$$H(x) := \min(F(x), G(x)) = 0$$

- take a "good" x_0 ;
- $x_{+} = x + d = x J^{-1}H(x), J \in \partial_{R}^{\times}H(x)$ (or ∂_{C});
- requires all $J \in \partial_R^{\times} H(x^*)$ nonsingular.

$$\partial_{P}^{\times} H(x) := \partial_{P} H_{1}(x) \times \cdots \times \partial_{P} H_{p}(x)$$

Presentation of NM and PNM

Index sets

if
$$F_i(x) < G_i(x)$$
, $H_i(x) = F_i(x)$, $\partial_B H_i(x) = \{F'_i(x)\}$
if $F_i(x) > G_i(x)$, $H_i(x) = G_i(x)$ $\partial_B H_i(x) = \{G'_i(x)\}$
if $F_i(x) = G_i(x)$, $H_i(x) = G_i(x)$ $H_i(x) = \{F'_i(x), G'_i(x)\}$

Presentation of NM and PNM

Index sets

if
$$F_i(x) < G_i(x)$$
, $H_i(x) = F_i(x)$, $\partial_B H_i(x) = \{F'_i(x)\}$
if $F_i(x) > G_i(x)$, $H_i(x) = G_i(x)$ $\partial_B H_i(x) = \{G'_i(x)\}$
if $F_i(x) = G_i(x)$, $H_i(x) = H_i(x)$ $\partial_B H_i(x) = \{F'_i(x), G'_i(x)\}$

Presentation of NM and PNM

Index sets

if
$$F_i(x) < G_i(x)$$
, $H_i(x) = F_i(x)$, $\partial_B H_i(x) = \{F'_i(x)\}$
if $F_i(x) > G_i(x)$, $H_i(x) = G_i(x)$ $\partial_B H_i(x) = \{G'_i(x)\}$
if $F_i(x) = G_i(x)$, $= H_i(x)$ $\partial_B H_i(x) = \{F'_i(x), G'_i(x)\}$

Representation of the index sets.

Newton-min system

NM splits
$$\mathcal{E}(x) = \mathcal{E}_{\mathcal{F}}(x) \cup \mathcal{E}_{\mathcal{G}}(x)$$
:

$$\begin{cases} (F(x) + F'(x)\mathbf{d})_{\mathcal{F}(x)} \cup \varepsilon_{\mathcal{F}}(x) &= 0, \\ (G(x) + G'(x)\mathbf{d})_{\mathcal{G}(x)} \cup \varepsilon_{\mathcal{G}}(x) &= 0, \end{cases}$$

simple, good local convergence.

NM index sets.

Newton-min system

NM splits
$$\mathcal{E}(x) = \mathcal{E}_{\mathcal{F}}(x) \cup \mathcal{E}_{\mathcal{G}}(x)$$
:

$$\begin{cases} (F(x) + F'(x)\mathbf{d})_{\mathcal{F}(x)} \cup \varepsilon_{\mathcal{F}}(x) &= 0, \\ (G(x) + G'(x)\mathbf{d})_{\mathcal{G}(x)} \cup \varepsilon_{\mathcal{G}}(x) &= 0, \end{cases}$$

simple, good local convergence.

NM index sets.

But which partition far from solutions? \rightarrow An augmented system ensuring descent (θ decreases).

Polyhedral Newton-min (PNM) [DFG25]

Let
$$\mathcal{E}^{0+}(x) := \{i : F_i = G_i \ge 0\}$$
 and $\mathcal{E}^{-}(x) := \{i : F_i = G_i < 0\}$, $\mathcal{E}^{0+}_{\mathcal{F}}(x) \cup \mathcal{E}^{0+}_{\mathcal{G}}(x)$ be a partition of $\mathcal{E}^{0+}(x)$:

The "positive" and "negative" kinks.

$$\mathcal{E}^{0+}(x)$$
 violates complementarity, $\mathcal{E}^{-}(x)$ also violates ≥ 0 . (See also [PG93; QS94; HPR92].)

Polyhedral Newton-min (PNM) [DFG25]

Let $\mathcal{E}^{0+}(x) := \{i : F_i = G_i \geqslant 0\}$ and $\mathcal{E}^-(x) := \{i : F_i = G_i < 0\}$, $\mathcal{E}^{0+}_{\mathcal{F}}(x) \cup \mathcal{E}^{0+}_{\mathcal{G}}(x)$ be a partition of $\mathcal{E}^{0+}(x)$:

The "positive" and "negative" kinks.

Right: type of PNM partitioning.

$$\mathcal{E}^{0+}(x)$$
 violates complementarity, $\mathcal{E}^{-}(x)$ also violates ≥ 0 . (See also [PG93; QS94; HPR92].)

PNM method (simplified)

For $\mathcal{E}_{\mathcal{F}}^{0+}(x)$ and $\mathcal{E}_{\mathcal{G}}^{0+}(x)$, one equality, for $\mathcal{E}^{-}(x)$, 2 inequalities.

$$\text{polyhedron in } \boldsymbol{d} : \left\{ \begin{array}{ll} F_i + F_i' \boldsymbol{d} = 0 & i \in \mathcal{F}(x) \cup \mathcal{E}_{\mathcal{F}}^{0+}(x), \\ G_i + G_i' \boldsymbol{d} = 0 & i \in \mathcal{G}(x) \cup \mathcal{E}_{\mathcal{G}}^{0+}(x), \\ F_i + F_i' \boldsymbol{d} \geqslant 0 & i \in \mathcal{E}^-(x), \\ G_i + G_i' \boldsymbol{d} \geqslant 0 & i \in \mathcal{E}^-(x). \end{array} \right.$$

Such $\mathbf{d} \Rightarrow \theta'(\mathbf{x}; \mathbf{d}) \leqslant 0$ (1st-order info), θ decreases.

$$\theta'(x; \mathbf{d}) = \underbrace{-2\theta(x)}_{\text{smooth}} + \sum_{i \in \mathcal{E}(x)} \underbrace{H_i(\min(F_i + F_i'\mathbf{d}, G_i + G_i'\mathbf{d}))}_{\text{due to nonsmooth}} \leqslant -2\theta(x).$$

PNM method (simplified)

For $\mathcal{E}_{\mathcal{F}}^{0+}(x)$ and $\mathcal{E}_{\mathcal{G}}^{0+}(x)$, one equality, for $\mathcal{E}^{-}(x)$, 2 inequalities.

$$\text{polyhedron in } \boldsymbol{d}: \left\{ \begin{array}{ll} F_i + F_i' \boldsymbol{d} = 0 & i \in \mathcal{F}(x) \cup \mathcal{E}_{\mathcal{F}}^{0+}(x), \\ G_i + G_i' \boldsymbol{d} = 0 & i \in \mathcal{G}(x) \cup \mathcal{E}_{\mathcal{G}}^{0+}(x), \\ F_i + F_i' \boldsymbol{d} \geqslant 0 & i \in \mathcal{E}^-(x), \\ G_i + G_i' \boldsymbol{d} \geqslant 0 & i \in \mathcal{E}^-(x). \end{array} \right.$$

Such $d \Rightarrow \theta'(x; d) \leqslant 0$ (1st-order info), θ decreases.

$$\theta'(x; \mathbf{d}) = \underbrace{-2\theta(x)}_{\text{smooth}} + \underbrace{\sum_{i \in \mathcal{E}(x)} \underbrace{H_i(\min(F_i + F_i'\mathbf{d}, G_i + G_i'\mathbf{d}))}_{\text{due to nonsmooth}} \leqslant -2\theta(x).$$

PNM method (simplified)

For $\mathcal{E}_{\mathcal{F}}^{0+}(x)$ and $\mathcal{E}_{\mathcal{G}}^{0+}(x)$, one equality, for $\mathcal{E}^{-}(x)$, 2 inequalities.

polyhedron in
$$\mathbf{d}$$
:
$$\begin{cases} F_i + F_i' \mathbf{d} = 0 & i \in \mathcal{F}(x) \cup \mathcal{E}_{\mathcal{F}}^{0+}(x), \\ G_i + G_i' \mathbf{d} = 0 & i \in \mathcal{G}(x) \cup \mathcal{E}_{\mathcal{G}}^{0+}(x), \\ F_i + F_i' \mathbf{d} \geqslant 0 & i \in \mathcal{E}^-(x), \\ G_i + G_i' \mathbf{d} \geqslant 0 & i \in \mathcal{E}^-(x). \end{cases}$$

Such $d \Rightarrow \theta'(x; d) \leq 0$ (1st-order info), θ decreases.

$$\theta'(x; \mathbf{d}) = \underbrace{-2\theta(x)}_{\text{smooth}} + \sum_{i \in \mathcal{E}(x)} \underbrace{H_i(\min(F_i + F_i'\mathbf{d}, G_i + G_i'\mathbf{d}))}_{\text{due to nonsmooth}} \leqslant -2\theta(x).$$

PNM regularity

The polyhedron has $n + |\mathcal{E}^{-}(x)|$ equations, n variables. PNM stuck when it is empty.

PNM regularity condition to have a d

At a solution \bar{x} , for all x near \bar{x} and all partitions of $\mathcal{E}^{0+}(x)$, a Mangasarian-Fromovitz condition holds at x with each partition.

Hybrid version: if NM works √, otherwise PNM (seldom). Excellent performance on random data / applications.

Now, we try to remove the regularity.

PNM regularity

The polyhedron has $n + |\mathcal{E}^{-}(x)|$ equations, n variables. PNM stuck when it is empty.

PNM regularity condition to have a d

At a solution \bar{x} , for all x near \bar{x} and all partitions of $\mathcal{E}^{0+}(x)$, a Mangasarian-Fromovitz condition holds at x with each partition.

Hybrid version: if NM works \checkmark , otherwise PNM (seldom). Excellent performance on random data / applications.

Now, we try to remove the regularity.

Outline

- Motivation
 - Problem presentation
 - One nonsmooth method
- 2 Hyperplane Arrangements
 - Computation of $\partial_B H(x)$
 - Some improvements
 - A new approach by duality
 - Some results
- 3 LM-PNM
 - Presentation of NM and PNM
 - Least-squares over regularity
 - Technical choice of the weights
 - Algorithmical considerations

What if the polyhedron is empty?

Least-squares to find "a best possible d", min $||(4)||^2/2$:

$$\begin{cases}
F_{i} + F'_{i} d = 0 & i \in \mathcal{F}(x) \\
G_{i} + G'_{i} d = 0 & i \in \mathcal{G}(x) \\
F_{i} + F'_{i} d = 0 & i \in \mathcal{E}^{0+}_{\mathcal{F}}(x) & \gamma_{i} = 1, \overline{\gamma}_{i} = 0 \\
G_{i} + G'_{i} d = 0 & i \in \mathcal{E}^{0+}_{\mathcal{G}}(x) & \gamma_{i} = 0, \overline{\gamma}_{i} = 1 \\
F_{i} + F'_{i} d \geqslant 0 & i \in \mathcal{E}^{-}(x) & \times \gamma_{i} \\
G_{i} + G'_{i} d \geqslant 0 & i \in \mathcal{E}^{-}(x) & \times \overline{\gamma}_{i}
\end{cases}$$

$$(4)$$

Indices of $\mathcal{E}^-(x)$ appear twice: **convex weights to balance**, $\gamma_- = (\gamma_i)_i \in [0, 1]^{\mathcal{E}^-(x)}$ and $\overline{\gamma}_i := 1 - \gamma_i$.

Same for
$$\mathcal{E}^{0+}(x)$$
, $\gamma_+ = (\gamma_i)_i \in \{0,1\}^{\mathcal{E}^{0+}(x)}$, $\overline{\gamma}_i := 1 - \gamma_i$ (or $[0,1]$) $\{0,1\}$: partitionning $(F_i \text{ or } G_i)$

What if the polyhedron is empty?

Least-squares to find "a best possible d", min $||(4)||^2/2$:

$$\begin{cases}
F_{i} + F'_{i} d = 0 & i \in \mathcal{F}(x) \\
G_{i} + G'_{i} d = 0 & i \in \mathcal{G}(x) \\
F_{i} + F'_{i} d = 0 & i \in \mathcal{E}^{0+}_{\mathcal{F}}(x) & \gamma_{i} = 1, \overline{\gamma}_{i} = 0 \\
G_{i} + G'_{i} d = 0 & i \in \mathcal{E}^{0+}_{\mathcal{G}}(x) & \gamma_{i} = 0, \overline{\gamma}_{i} = 1 \\
F_{i} + F'_{i} d \geqslant 0 & i \in \mathcal{E}^{-}(x) & \times \gamma_{i} \\
G_{i} + G'_{i} d \geqslant 0 & i \in \mathcal{E}^{-}(x) & \times \overline{\gamma}_{i}
\end{cases} \tag{4}$$

Indices of $\mathcal{E}^-(x)$ appear twice: **convex weights to balance**, $\gamma_- = (\gamma_i)_i \in [0, 1]^{\mathcal{E}^-(x)}$ and $\overline{\gamma}_i := 1 - \gamma_i$.

Same for $\mathcal{E}^{0+}(x)$, $\gamma_+ = (\gamma_i)_i \in \{0,1\}^{\mathcal{E}^{0+}(x)}$, $\overline{\gamma}_i := 1 - \gamma_i$ (or [0,1]) $\{0,1\}$: partitionning $(F_i \text{ or } G_i)$

What if the polyhedron is empty?

Least-squares to find "a best possible d", min $||(4)||^2/2$:

$$\begin{cases}
F_{i} + F'_{i} d = 0 & i \in \mathcal{F}(x) \\
G_{i} + G'_{i} d = 0 & i \in \mathcal{G}(x) \\
F_{i} + F'_{i} d = 0 & i \in \mathcal{E}^{0+}_{\mathcal{F}}(x) \quad \gamma_{i} = 1, \overline{\gamma}_{i} = 0 \\
G_{i} + G'_{i} d = 0 & i \in \mathcal{E}^{0+}_{\mathcal{G}}(x) \quad \gamma_{i} = 0, \overline{\gamma}_{i} = 1 \\
F_{i} + F'_{i} d \geqslant 0 \quad i \in \mathcal{E}^{-}(x) \quad \times \gamma_{i} \\
G_{i} + G'_{i} d \geqslant 0 \quad i \in \mathcal{E}^{-}(x) \quad \times \overline{\gamma}_{i}
\end{cases} \tag{4}$$

Indices of $\mathcal{E}^-(x)$ appear twice: **convex weights to balance**, $\gamma_- = (\gamma_i)_i \in [0, 1]^{\mathcal{E}^-(x)}$ and $\overline{\gamma}_i := 1 - \gamma_i$.

Same for
$$\mathcal{E}^{0+}(x)$$
, $\gamma_+ = (\gamma_i)_i \in \{0,1\}^{\mathcal{E}^{0+}(x)}$, $\overline{\gamma}_i := 1 - \gamma_i$ (or $[0,1]$) $\{0,1\}$: partitionning $(F_i \text{ or } G_i)$

Least-squares over regularity

Motivation

Brief comment on Levenberg-Marquardt (LM)

LM:
$$\min_{d} \frac{1}{2} q_x(d) + \frac{\lambda}{2} d^{\mathsf{T}} S d$$
, curve $\lambda \mapsto d(\lambda)$.

Brief comment on Levenberg-Marquardt (LM)

LM:
$$\min_{d} \frac{1}{2} q_{x}(d) + \frac{\lambda}{2} d^{\mathsf{T}} S d$$
, curve $\lambda \mapsto d(\lambda)$.

Illustration in the smooth case. When $\lambda \searrow 0$, $d(\lambda) \to N$ ewton direction, when $\lambda \to +\infty$: $d(\lambda) \to -S^{-1}\nabla \theta$ the tangent of the curve.

$$q_{x}(\mathbf{d})/2 := ||(\mathbf{4})||^{2}/2 \text{ with } \gamma_{+}, \gamma_{-} + \text{Levenberg-Marquardt}$$

$$\min_{\mathbf{d} \in \mathbb{R}^{n}} \psi_{x}(\mathbf{d}) := \frac{1}{2} [q_{x}(\mathbf{d}) + \lambda \mathbf{d}^{\mathsf{T}} S \mathbf{d}], \quad \lambda \geqslant 0, S \succ 0$$
(5)

- ψ_{x} piecewise quadratic model of θ at x
- ψ_{x} always has a minimizer d even with empty polyhedron
- $g(\gamma_+, \gamma_-) := \nabla \psi_x(d=0)$ has a descent property for θ ? $g(\gamma_+, \gamma_-) = g_0(x) + M_+\gamma_+ + M_-\gamma_-$

Least-squares over regularity

$$q_{x}(\mathbf{d})/2 := ||(4)||^{2}/2 \text{ with } \gamma_{+}, \gamma_{-} + \text{Levenberg-Marquardt}$$

$$\min_{\mathbf{d} \in \mathbb{R}^{n}} \psi_{x}(\mathbf{d}) := \frac{1}{2} [q_{x}(\mathbf{d}) + \lambda \mathbf{d}^{\mathsf{T}} S \mathbf{d}], \quad \lambda \geqslant 0, S \succ 0$$
(5)

- ψ_{x} piecewise quadratic model of θ at x
- ψ_{x} always has a minimizer d even with empty polyhedron
- $g(\gamma_+, \gamma_-) := \nabla \psi_{\mathsf{x}}(\mathsf{d} = \mathsf{0})$ has a descent property for θ ?

$$q_{x}(\mathbf{d})/2 := ||(4)||^{2}/2 \text{ with } \gamma_{+}, \gamma_{-} + \text{Levenberg-Marquardt}$$

$$\min_{\mathbf{d} \in \mathbb{R}^{n}} \psi_{x}(\mathbf{d}) := \frac{1}{2} [q_{x}(\mathbf{d}) + \lambda \mathbf{d}^{\mathsf{T}} S \mathbf{d}], \quad \lambda \geqslant 0, S \succ 0$$
(5)

- ψ_{x} piecewise quadratic model of θ at x
- ullet ψ_{X} always has a minimizer d even with empty polyhedron
- $g(\gamma_+, \gamma_-) := \nabla \psi_{\mathsf{x}}(\mathbf{d} = 0)$ has a descent property for θ ? $g(\gamma_+, \gamma_-) = g_0(\mathsf{x}) + M_+ \gamma_+ + M_- \gamma_-$

$$q_{x}(\mathbf{d})/2 := ||(4)||^{2}/2 \text{ with } \gamma_{+}, \gamma_{-} + \text{Levenberg-Marquardt}$$

$$\min_{\mathbf{d} \in \mathbb{R}^{n}} \psi_{x}(\mathbf{d}) := \frac{1}{2} [q_{x}(\mathbf{d}) + \lambda \mathbf{d}^{\mathsf{T}} S \mathbf{d}], \quad \lambda \geqslant 0, S \succ 0$$
(5)

- ψ_{x} piecewise quadratic model of θ at x
- ullet ψ_{x} always has a minimizer d even with empty polyhedron
- $g(\gamma_+, \gamma_-) := \nabla \psi_{\mathsf{x}}(\mathbf{d} = 0)$ has a descent property for θ ? $g(\gamma_+, \gamma_-) = g_0(\mathsf{x}) + M_+ \gamma_+ + M_- \gamma_-$

Outline

- Motivation
 - Problem presentation
 - One nonsmooth method
- 2 Hyperplane Arrangements
 - Computation of $\partial_B H(x)$
 - Some improvements
 - A new approach by duality
 - Some results
- 3 LM-PNM
 - Presentation of NM and PNM
 - Least-squares over regularity
 - Technical choice of the weights
 - Algorithmical considerations

Computations

Goal: decrease the nonsmooth merit function

Can we choose γ_+, γ_- to have $\theta'(x; -g(\gamma_+, \gamma_-)) \leq 0$?

$$\begin{array}{ll} \theta'(x; -g(\gamma_{+}, \gamma_{-})) = & -||g(\gamma_{+}, \gamma_{-})||^{2} & \} \leqslant 0 \\ & + \rho_{\mathcal{E}^{0+}(x)}(x, \gamma_{+}, g(\gamma_{+}, \gamma_{-})) & \} \leqslant 0 \\ & + \rho_{\mathcal{E}^{-}(x)}(x, \gamma_{-}, g(\gamma_{+}, \gamma_{-})) & \} \geqslant 0 \end{array}$$

 $\rho_{\mathcal{E}^{0+}(x)}$, $\rho_{\mathcal{E}^{-}(x)}$ nonsmooth, quadratic in γ_+ , γ_- respectively.

Motivation

Choosing correct weights

Lemma: existence of appropriate weights

Let
$$\gamma_+$$
, $\exists \gamma_-(\gamma_+)$ s.t. $\rho_{\mathcal{E}^-(x)}(x, \gamma_-(\gamma_+), g(\gamma_+, \gamma_-(\gamma_+))) = 0$:

$$\theta'(x; -g(\gamma_+, \gamma_-(\gamma_+))) = -||g(\gamma_+, \gamma_-(\gamma_+))||^2 + \rho_{\mathcal{E}^{0+}(x)}(x, \gamma_+, g(\gamma_+, \gamma_-(\gamma_+))) + 0 \leqslant 0.$$

- way to choose a good piece,
- possibly multiple $\gamma_-(\gamma_+)$, $\gamma_+ \mapsto g(\gamma_+, \gamma_-(\gamma_+))$ unique;
- if $g(\gamma_+, \gamma_-(\gamma_+)) = 0$, γ_+ irrelevant;
- wrong γ_- can make $\theta'(x; -g(\gamma_+, \gamma_-)) \ge 0$.

Choosing correct weights

Lemma: existence of appropriate weights

Let
$$\gamma_+$$
, $\exists \gamma_-(\gamma_+)$ s.t. $\rho_{\mathcal{E}^-(x)}(x, \gamma_-(\gamma_+), g(\gamma_+, \gamma_-(\gamma_+))) = 0$:

$$\theta'(x; -g(\gamma_+, \gamma_-(\gamma_+))) = -||g(\gamma_+, \gamma_-(\gamma_+))||^2 + \rho_{\mathcal{E}^{0+}(x)}(x, \gamma_+, g(\gamma_+, \gamma_-(\gamma_+))) + 0 \leqslant 0.$$

- way to choose a good piece,
- possibly multiple $\gamma_-(\gamma_+)$, $\gamma_+ \mapsto g(\gamma_+, \gamma_-(\gamma_+))$ unique;
- if $g(\gamma_+, \gamma_-(\gamma_+)) = 0$, γ_+ irrelevant;
- wrong γ_- can make $\theta'(x; -g(\gamma_+, \gamma_-)) \ge 0$.

Illustration of the lemma

All partitions ($\{0,1\}^2$) increase θ . Correct weights yield descent.

Summary

- Robustification of the polyhedral system;
- "control" role for $\mathcal{E}^{0+}(x)$;
- convex weights for $\mathcal{E}^{-}(x)$.

Remaining questions:

- finding γ_+ such that $g(\gamma_+, \gamma_-(\gamma_+)) \neq 0$;
- convergence and algorithmic aspect.

Summary

- Robustification of the polyhedral system;
- "control" role for $\mathcal{E}^{0+}(x)$;
- convex weights for $\mathcal{E}^{-}(x)$.

Remaining questions:

- finding γ_+ such that $g(\gamma_+, \gamma_-(\gamma_+)) \neq 0$;
- convergence and algorithmic aspect.

Algorithmical considerations

Outline

- - Problem presentation
 - One nonsmooth method
- - Computation of $\partial_B H(x)$
 - Some improvements
 - A new approach by duality
 - Some results
- 3 LM-PNM
 - Presentation of NM and PNM
 - Least-squares over regularity
 - Technical choice of the weights
 - Algorithmical considerations

Stationarity detection with the weights

Characterizing stationarity with the γ 's:

The following properties are equivalent:

- 1) x is θ -stationary (i.e., $\forall d \in \mathbb{R}^n, \theta'(x; d) \ge 0$); 2) for all $\gamma_+ \in [0, 1]^{\mathcal{E}^{0+}(x)}$, $g(\gamma_+, \gamma_-(\gamma_+)) = 0$.

Zonotope :=
$$Z(M) = M[-1, +1]^q$$
, $M \in \mathbb{R}^{n \times q}$.

Stationarity detection with the weights

Characterizing stationarity with the γ 's:

The following properties are equivalent:

- 1) x is θ -stationary (i.e., $\forall d \in \mathbb{R}^n, \theta'(x; d) \geqslant 0$);
- 2) for all $\gamma_{+} \in [0,1]^{\mathcal{E}^{0+}(x)}$, $g(\gamma_{+}, \gamma_{-}(\gamma_{+})) = 0$.

Zonotope :=
$$Z(M) = M[-1, +1]^q$$
, $M \in \mathbb{R}^{n \times q}$.

Stationarity detection reformulated

2) is equivalent to verifying an inclusion between two zonotopes, which is co-NP-complete (in general) [KA21].

Motivation

Some observations

- any γ_+ with $g(\gamma_+, \gamma_-(\gamma_+)) \neq 0$ \checkmark (disproves inclusion);
- combinatorial aspect in $|\mathcal{E}^{0+}(x)|$ and $|\mathcal{E}^{-}(x)|$, maybe small;
- some conditions \Rightarrow polynomial time ([ST19], App. C).
- $\gamma_{-}(\gamma_{+})$ is a projection on a zonotope.

An iteration of the algorithm

Algorithm Compute γ then usual LM

- 1: Obtain a suitable pair $\gamma_+, \gamma_-(\gamma_+)$ (or x^k stationary)
- 2: Get $d(\lambda^k) = \arg\min_d \psi_{x^k}(d)$ using $\lambda^k, \gamma_+, \gamma_-, S_k$
- 3: **while** $d(\lambda^k)$ not suitable **do**
- 4: increase λ^k and recompute $d(\lambda^k)$
- 5: end while
- 6: Update $x^{k+1} = x^k + d(\lambda^k)$ then λ^{k+1} and S_{k+1}

No assumption on (F, G), very costly intermediate computation.

Properties

With LM assumptions, $(\theta(x_k))_k$ decreases, $g(x_k) \to 0$.

Motivation

An iteration of the algorithm

Algorithm Compute γ then usual LM

- 1: Obtain a suitable pair $\gamma_+, \gamma_-(\gamma_+)$ (or x^k stationary)
- 2: Get $d(\lambda^k) = \arg\min_d \psi_{\vee k}(d)$ using $\lambda^k, \gamma_+, \gamma_-, S_k$
- 3: **while** $d(\lambda^k)$ not suitable **do**
- increase λ^k and recompute $d(\lambda^k)$
- 5: end while
- 6: Update $x^{k+1} = x^k + d(\lambda^k)$ then λ^{k+1} and S_{k+1}

No assumption on (F, G), very costly intermediate computation.

Properties

With LM assumptions, $(\theta(x_k))_k$ decreases, $g(x_k) \to 0$.

Into perspective

- good $\gamma_+ \Rightarrow g(\gamma_+, \gamma_-(\gamma_+)) \neq 0$ (for algo),
- optimal $\gamma_+ \Rightarrow g(\gamma_+, \gamma_-(\gamma_+)) \in \partial_C \theta(x) \setminus \{0\}$,
- by ∂_C , if $x_k \to x^*$, $0 \in \partial_C \theta(x^*)$ (weak stationarity),
- very high cost in practice (γ_+ , γ_- and LM steps).

Paradigm (see [BH20; Car+20; Car+21; JLZ22])

Detecting a stationarity point is co-NP-complete, obtaining one is much more difficult.

Into perspective

- good $\gamma_+ \Rightarrow g(\gamma_+, \gamma_-(\gamma_+)) \neq 0$ (for algo),
- optimal $\gamma_+ \Rightarrow g(\gamma_+, \gamma_-(\gamma_+)) \in \partial_C \theta(x) \setminus \{0\}$,
- by ∂_C , if $x_k \to x^*$, $0 \in \partial_C \theta(x^*)$ (weak stationarity),
- very high cost in practice (γ_+ , γ_- and LM steps).

Paradigm (see [BH20; Car+20; Car+21; JLZ22])

Detecting a stationarity point is co-NP-complete, obtaining one is much more difficult.

Motivation

Into perspective

- good $\gamma_+ \Rightarrow g(\gamma_+, \gamma_-(\gamma_+)) \neq 0$ (for algo),
- optimal $\gamma_+ \Rightarrow g(\gamma_+, \gamma_-(\gamma_+)) \in \partial_C \theta(x) \setminus \{0\},$
- by ∂_C , if $x_k \to x^*$, $0 \in \partial_C \theta(x^*)$ (weak stationarity),
- very high cost in practice (γ_+, γ_-) and LM steps).

Into perspective

- good $\gamma_+ \Rightarrow g(\gamma_+, \gamma_-(\gamma_+)) \neq 0$ (for algo),
- optimal $\gamma_+ \Rightarrow g(\gamma_+, \gamma_-(\gamma_+)) \in \partial_C \theta(x) \setminus \{0\}$,
- by ∂_C , if $x_k \to x^*$, $0 \in \partial_C \theta(x^*)$ (weak stationarity),
- very high cost in practice (γ_+, γ_-) and LM steps).

Paradigm (see [BH20; Car+20; Car+21; JLZ22])

Detecting a stationarity point is co-NP-complete, obtaining one is much more difficult.

Main take-aways

- H induces an arrangement structure
- duality and heuristics speed-up the computation of chambers
- CPs: γ_+, γ_- clarified by dualized arrangements (zonotopes)

Possible extensions

- tailoring RČ for specific arrangements;
- for all the arrangement $(\{-1,0,+1\}^p)$;
- better LM convergence theorem;
- refined algorithm.

Thank you for your attention! Any question?

Conclusion of the thesis

Main take-aways

- *H* induces an arrangement structure
- duality and heuristics speed-up the computation of chambers
- CPs: γ_+, γ_- clarified by dualized arrangements (zonotopes)

Possible extensions:

- tailoring RČ for specific arrangements;
- for all the arrangement $(\{-1,0,+1\}^p)$;
- better LM convergence theorem;
- refined algorithm.

Thank you for your attention! Any question?

Conclusion of the thesis

Main take-aways

- *H* induces an arrangement structure
- duality and heuristics speed-up the computation of chambers
- CPs: γ_+, γ_- clarified by dualized arrangements (zonotopes)

Possible extensions:

- tailoring RČ for specific arrangements;
- for all the arrangement $(\{-1,0,+1\}^p)$;
- better LM convergence theorem;
- refined algorithm.

Thank you for your attention! Any question?

Bibliographic elements I

- [AB08] Vincent Acary and Bernard Brogliato. Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics Ser v.v. 35. Berlin, Heidelberg: Springer Berlin / Heidelberg, 2008. ISBN: 978-3-540-75391-9 978-3-540-75392-6.
- [AF92] David Avis and Komei Fukuda. "A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of Arrangements and Polyhedra". In: Discrete Computational Geometry 8 (1992), pp. 295–31. ISSN: 0179-5376.1432-0444. DOI: 10.1007/BF02293050.
- [Alc+20] Jan Harold Alcantara et al. "On Construction of New NCP Functions". In: Operations Research Letters 48.2 (Mar. 2020), pp. 115–121. ISSN: 01676377. DOI: 10.1016/j.or1.2020.01.002.
- [BEK23] Taylor Brysiewicz, Holger Eble, and Lukas Kühne. "Computing Characteristic Polynomials of Hyperplane Arrangements with Symmetries". In: Discrete & Computational Geometry 70.4 (Dec. 2023), pp. 1356–1377. ISSN: 0179-5376, 1432-0444. DOI: 10.1007/s00454-023-00557-2.
- [BH20] Amir Beck and Nadav Hallak. "On the Convergence to Stationary Points of Deterministic and Randomized Feasible Descent Directions Methods". In: SIAM Journal on Optimization 30.1 (Jan. 2020), pp. 56–79. ISSN: 1052-6234, 1095-7189. DOI: 10.1137/18M1217760.
- [BN82] Hanspeter Bieri and Walter Nef. "A Recursive Sweep-Plane Algorithm, Determining All Cells of a Finite Division of R^od". In: Computing 28 (1982), pp. 189–198.
- [Car+20] Yair Carmon et al. "Lower Bounds for Finding Stationary Points I". In: Mathematical Programming 184.1-2 (Nov. 2020), pp. 71–120. ISSN: 0025-5610, 1436-4646. DOI: 10.1007/s10107-019-01406-y.

- [Chu89] Sung Jin Chung. "NP-Completeness of the Linear Complementarity Problem". In: Journal of Optimization Theory and Applications 60.3 (Mar. 1989), pp. 393–399. ISSN: 0022-3239, 1573-2878. DOI: 10.1007/BF00940344.
- [Cla90] Frank H. Clarke. Optimization and Nonsmooth Analysis. second. Vol. 1. Classics in Applied Mathematics. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics (SIAM), 1990. ISBN: 0-89871-256-4.
- [CNQ00] Xiaojun Chen, Zuhair Nashed, and Liqun Qi. "Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations". In: SIAM Journal on Numerical Analysis 38.4 (Jan. 2000), pp. 1200–1216. ISSN: 0036-1429, 1095-7170. Doi: 10.1137/S0036142999356719.
- [CPS09] Richard Warren Cottle, Jong-Shi Pang, and Richard E. Stone. The Linear Complementarity Problem. SIAM. Classics in Applied Mathematics 60. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics (SIAM), 2009. ISBN: 978-0-89871-686-3.
- [DFG25] Jean-Pierre Dussault, Mathieu Frappier, and Jean Charles Gilbert. "Polyhedral Newton-min Algorithms for Complementarity Problems". In: Mathematical Programming (2025).
- [DFK00] Tecla De Luca, Francisco Facchinei, and Christian Kanzow. "A Theoretical and Numerical Comparison of Some Semismooth Algorithms for Complementarity Problems". In: Computational Optimization and Applications 16 (Jan. 2000), pp. 173–205. DOI: 10.1023/A:1008705425484.
- [DGP25a] Jean-Pierre Dussault, Jean Charles Gilbert, and Baptiste Plaquevent-Jourdain. "On the B-differential of the Componentwise Minimum of Two Affine Vector Functions". In: Mathematical Programming Computation (2025).
- [DGP25b] Jean-Pierre Dussault, Jean Charles Gilbert, and Baptiste Plaquevent-Jourdain. "Primal and Dual Approaches for the Chamber Enumeration of Real Hyperplane Arrangements". In: (submitted) (2025).

- [DP22] Antoine Deza and Lionel Pournin. "A Linear Optimization Oracle for Zonotope Computation". In: Computational Geometry 100 (Jan. 2022), p. 101809. ISSN: 09257721. DOI: 10.1016/j.comgeo.2021.101809.
- [DSL06] György Dósa, István Szalkai, and Claude Laflamme. "The Maximum and Minimum Number of Circuits and Bases of Matroids.". In: Pure Mathematics and Applications. Mathematics of Optimization 15.4 (Sept. 2006), pp. 383–392.
- [EOS86] Herbert Edelsbrunner, Joseph O'ROURKE, and Raimund Seidel. "CONSTRUCTING ARRANGEMENTS OF LINES AND HYPERPLANES WITH APPLICATIONS". In: SIAM Journal on Computation 15.2 (1986), pp. 341–363.
- [Fis92] Andreas Fischer. "A Special Newton-type Optimization Method". In: Optimization 24 (Jan. 1992), pp. 269–284. DOI: 10.1080/02331939208843795.
- [FJ00] Andreas Fischer and Houyuan Jiang. "Merit Functions for Complementarity and Related Problems: A Survey". In: Computational Optimization and Applications 17 (Dec. 2000), pp. 159–182. DOI: 10.1023/A:1026598214921.
- [FP03] Francisco Facchinei and Jong-Shi Pang, eds. Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research and Financial Engineering. New York, NY: Springer-Verlag New York, Inc, 2003. ISBN: 978-0-387-95580-3 978-0-387-21814-4. DOI: 10.1007/b97543.
- [FP97] Michael C. Ferris and Jong-Shi Pang. "Engineering and Economic Applications of Complementarity Problems". In: SIAM Review 39.4 (Jan. 1997), pp. 669–713. ISSN: 0036-1445, 1095-7200. DOI: 10.1137/S0036144595285963.

- [Gal12] Aurél Galántai. "Properties and Construction of NCP Functions". In: Computational Optimization and Applications 52.3 (July 2012), pp. 805–824. ISSN: 0926-6003, 1573-2894. DOI: 10.1007/810589-011-9428-9.
- [Had09] Mounir Haddou. "A New Class of Smoothing Methods for Mathematical Programs with Equilibrium Constraints". In: Pacific Journal of Optimization 5 (2009), pp. 87–95.
- [HP90] Patrick T. Harker and Jong-Shi Pang. "Finite-Dimensional Variational Inequality and Nonlinear Complementarity Problems: A Survey of Theory, Algorithms and Applications". In: Mathematical Programming 48.1-3 (Mar. 1990), pp. 161–220. ISSN: 0025-5610, 1436-4646. DOI: 10.1007/BF01582255.
- [HPR92] Shih-Ping Han, Jong-Shi Pang, and Narayan Rangaraj. "Globally Convergent Newton Methods for Nonsmooth Equations". In: Mathematics of Operations Research 17.3 (Aug. 1992), pp. 586–607. ISSN: 0364-765X, 1526-5471. DOI: 10.1287/moor.17.3.586.
- [IS14] Alexey F. Izmailov and Mikhail V. Solodov. Newton-Type Methods for Optimization and Variational Problems. Springer Series in Operations Research and Financial Engineering. Cham: Springer International Publishing, 2014. ISBN: 978-3-319-04246-6 978-3-319-04247-3. DOI: 10.1007/978-3-319-04247-3.
- [JLZ22] Michael I. Jordan, Tianyi Lin, and Manolis Zampetakis. On the Complexity of Deterministic Nonsmooth and Nonconvex Optimization. Nov. 2022. DOI: 10.48550/arXiv.2209.12463. arXiv: 2209.12463 [math].
- [KA21] Adrian Kulmburg and Matthias Althoff. "On the Co-NP-completeness of the Zonotope Containment Problem". In: European Journal of Control 62 (Nov. 2021), pp. 84–91. ISSN: 09473580. DOI: 10.1016/j.ejcon.2021.06.028.

Bibliographic elements V

- [Koj+91] Masakazu Kojima et al. A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems. Lecture Notes in Computer Science 538. Berlin: Springer, Jan. 1991. ISBN: 978-3-540-54509-5.
- [Kum88] Bernd Kummer. "NEWTON's METHOD FOR NON-DIFFERENTIABLE FUNCTIONS". In: Advances in Mathematical Optimization. Ed. by J. Guddat Et Al. De Gruyter, Dec. 1988, pp. 114–125. ISBN: 978-3-11-247992-6. DOI: 10.1515/9783112479926-011.
- [KYF97] Christian Kanzow, Nobuo Yamashita, and Masao Fukushima. "New NCP-Functions and Their Properties". In: Journal of Optimization Theory and Applications 94.1 (July 1997), pp. 115–135. ISSN: 0022-3239. DOI: 10.1023/A:1022659603268.
- [MM24] Arturo Merino and Torsten Mütze, "Traversing Combinatorial 0/1-Polytopes via Optimization". In: SIAM Journal on Computing 53.5 (Oct. 2024), pp. 1257–1292. ISSN: 0097-5397, 1095-7111. DOI: 10.1137/23M1612019.
- [Mot36] Theodore S. Motzkin. Beiträge zur Theorie der linearen Ungleichungen. Tech. rep. Jerusalem, Israel: University Basel, 1936.
- [Oxl11] James G. Oxley. *Matroid Theory*. Second edition. Oxford Graduate Texts in Mathematics 21. Oxford New York, NY: Oxford University Press, 2011. ISBN: 978-0-19-856694-6 978-0-19-960339-8.
- [Pan90] Jong-Shi Pang. "Newton's Method for B-Differentiable Equations". In: Mathematics of Operations Research 15.2 (May 1990), pp. 311–341. ISSN: 0364-765X, 1526-5471. DOI: 10.1287/moor.15.2.311.
- [Pan91] Jong-Shi Pang. "A B-differentiable Equation-Based, Globally and Locally Quadratically Convergent Algorithm for Nonlinear Programs, Complementarity and Variational Inequality Problems". In: Mathematical Programming 51.1-3 (July 1991), pp. 101–131. ISSN: 0025-5610, 1436-4646. DOI: 10.1007/BF01586928.

- [PG93] Jong-Shi Pang and Steven A. Gabriel. "NE/SQP: A Robust Algorithm for the Nonlinear Complementarity Problem". In: Mathematical Programming 60.1-3 (June 1993), pp. 295–337. ISSN: 0025-5610. 1436-4646. DOI: 10.1007/BF01580617.
- [Qi93] Liqun Qi. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations". In: Mathematics of Operations Research 18.1 (1993), pp. 227–244.
- [QS94] Liqun Qi and Jie Sun, "A Trust Region Algorithm for Minimization of Locally Lipschitzian Functions". In: Mathematical Programming 66.1-3 (Aug. 1994), pp. 25–43. ISSN: 0025-5610, 1436-4646. DOI: 10.1007/BF01581136.
- [Ram23] Jörg Rambau. "Symmetric Lexicographic Subset Reverse Search for the Enumeration of Circuits, Cocircuits. and Triangulations up to Symmetry", In: (2023), pp. 1–41.
- [RČ18] Miroslav Rada and Michal Černý. "A New Algorithm for Enumeration of Cells of Hyperplane Arrangements and a Comparison with Avis and Fukuda's Reverse Search". In: SIAM Journal on Discrete Mathematics 32.1 (Jan. 2018), pp. 455–473. ISSN: 0895-4801, 1095-7146. DOI: 10.1137/15M1027930.
- [Rob80] Stephen M. Robinson. "Strongly Regular Generalized Equations". In: Mathematics of Operations Research 5.1 (Feb. 1980), pp. 43–62. ISSN: 0364-765X, 1526-5471. DOI: 10.1287/moor.5.1.43.
- [Rob87] Samuel Roberts. "On the Figures Formed by the Intercepts of a System of Straight Lines in a, Plane, and on Analogous Relations in Space of Three Dimensions". In: Proceedings of the London Mathematical Society s1-19.1 (Nov. 1887), pp. 405–422. ISSN: 00246115. DOI: 10.1112/plms/s1-19.1.405.
- [Sch50] Ludwig Schläfli. Gesammelte mathematische Abhandlugen. Springer, Basel: Birkhäuser, 1950.

- [Sle00] Nora Helena Sleumer. "Hyperplane Arrangements: Construction, Visualization and Applications". PhD thesis. Zurich, Switzerland: Swiss Federal Institute of Technology, 2000.
- [Sle98] Nora Sleumer. "Output-Sensitive Cell Enumeration in Hyperplane Arrangements". In: Algorithm Theory — SWAT'98. Ed. by Gerhard Goos et al. Vol. 1432. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 300–309. ISBN: 978-3-540-64682-2 978-3-540-69106-8. DOI: 10.1007/BFb0054377.
- [ST19] Sadra Sadraddini and Russ Tedrake. Linear Encodings for Polytope Containment Problems. Mar. 2019. arXiv: 1903.05214 [math].
- [Ste26] Jakob Steiner. "Einige Gesetze über die Theilung der Ebene und des Raumes.". In: J. Reine Angew. Math (1826), pp. 349–364.
- [Vu+21] Duc Thach Son Vu et al. "A New Approach for Solving Nonlinear Algebraic Systems with Complementarity Conditions. Application to Compositional Multiphase Equilibrium Problems". In: Mathematics and Computers in Simulation 190 (Dec. 2021), pp. 1243–1274. ISSN: 03784754. DOI: 10.1016/j.matcom.2021.07.015.
- [Win66] Robert Owen Winder. "Partitions of N-Space by Hyperplanes". In: SIAM Journal on Applied Mathematics 14.4 (July 1966), pp. 811–818. ISSN: 0036-1399, 1095-712X. DOI: 10.1137/0114068.
- [XC11] Shuhuang Xiang and Xiaojun Chen. "Computation of Generalized Differentials in Nonlinear Complementarity Problems". In: Computational Optimization and Applications 50.2 (Oct. 2011), pp. 403–423. ISSN: 0926-6003, 1573-2894. DOI: 10.1007/s10589-010-9349-z.
- [Zas75] Thomas Zaslavsky. "Facing up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes". In: Memoirs of the American Mathematical Society 1.154 (1975), 1–109 (?)

- [Zie07] Günter M. Ziegler. Lectures on Polytopes. 7th. Vol. 152. Graduate Texts in Mathematics. New York, NY: Springer New York, 2007. ISBN: 978-0-387-94365-7 978-1-4613-8431-1. DOI: 10.1007/978-1-4613-8431-1.
- Günter M. Ziegler. Lectures on 0/1-Polytopes. Sept. 1999. arXiv: math/9909177. [Zie99]

Number of elements in the differentials

$$F(x) = x$$
, $G(x) = (ax_1 + bx_2, cx_1 + dx_2)$ with $a, b, c, d \in \mathbb{R}$. At $x^* = 0$, $|\partial_B H(x^*)| \in \{2, 4\}$. What about $\partial_B H_{\mathrm{FB}}(x^*)$?

For $x \neq 0$ (see also Izmailov Solodov [IS14, p.151]):

$$H'_{\mathrm{FB}}(x) = \begin{bmatrix} \frac{x_1 + a(ax_1 + bx_2)}{||(x_1, ax_1 + bx_2)||} - 1 - a & \frac{b(ax_1 + bx_2)}{||(x_1, ax_1 + bx_2)||} - b \\ \frac{c(cx_1 + dx_2)}{||(x_2, cx_1 + dx_2)||} - c & \frac{x_2 + d(cx_1 + dx_2)}{||(x_2, cx_1 + dx_2)||} - 1 - d \end{bmatrix}$$

 $\partial_B H_{FB}(x^*)$ is a continuum; lines interact (like with H).

Number of elements in the differentials

$$F(x) = x$$
, $G(x) = (ax_1 + bx_2, cx_1 + dx_2)$ with $a, b, c, d \in \mathbb{R}$. At $x^* = 0$, $|\partial_B H(x^*)| \in \{2, 4\}$. What about $\partial_B H_{\mathrm{FB}}(x^*)$?

For $x \neq 0$ (see also Izmailov Solodov [IS14, p.151]):

$$H'_{\mathrm{FB}}(x) = \begin{bmatrix} \frac{x_1 + a(ax_1 + bx_2)}{||(x_1, ax_1 + bx_2)||} - 1 - a & \frac{b(ax_1 + bx_2)}{||(x_1, ax_1 + bx_2)||} - b \\ \frac{c(cx_1 + dx_2)}{||(x_2, cx_1 + dx_2)||} - c & \frac{x_2 + d(cx_1 + dx_2)}{||(x_2, cx_1 + dx_2)||} - 1 - d \end{bmatrix}$$

 $\partial_B H_{FB}(x^*)$ is a continuum; lines interact (like with H).

Left: values for the first line of the Jacobians. Right: values for the second line of the Jacobians. In orange, there are $2 \times 2 = 4$ elements for $\partial_B H(x^*)$ whereas those in $\partial_B H_{\rm FB}(x^*)$ form a continuum (each dot of one black curve corresponds to one dot on the other).

Summary of some basic methods

		$\partial_{?}$	reg(ularity) at x*	$ \partial_{?} $	differentiable?
	NM	$\partial_B^{\times} H$	b-reg,	2 ^p J	piecewise
SNM	$arphi_{ ext{FB}}$	$\partial_{C}^{(\times)}H_{\mathrm{FB}}$	CD(FB)-reg,	© ("ball")	SC ¹
		$\partial_{B}^{(\times)}H_{\mathrm{FB}}$	BD(FB)-reg,	© ("sphere")	30
	min	$\partial_{\mathcal{C}}^{\times} H$	CD(min)-reg,	© ("cube")	piecewise
		$\partial_B H$	smaller b-reg,	$\leq 2^p J$	piecewise

Table: Properties of some nonsmooth methods. SNM: Semismooth Newton Method; NM: Newton-Min; © : continuum

$$(\partial_C^{\times} H(x) := \prod_{i=1}^n \partial_C H_i(x))$$

Computing the B-differential - multiple indices

$$\frac{H}{\text{non - diff in }} x_{k} \Leftrightarrow \exists i : (Ax_{k} + a)_{i} \stackrel{\text{C1}}{=} (Bx_{k} + b)_{i}, A_{i,:} \neq B_{i,:} \\
I(x) := \{i \in [1 : n] : A_{i,:}x + a_{i} = B_{i,:}x + b_{i}, A_{i,:} \neq B_{i,:}\}; |I(x)| = p \\
(Ax_{k} + a)_{i} \stackrel{\text{C1}}{=} (Bx_{k} + b)_{i} \stackrel{x_{k} = x + d_{k}}{\Leftrightarrow} (Ax + a)_{i} + A_{i,:}d_{k} \\
= (Bx + b)_{i} + B_{i,:}d_{k} \\
\Leftrightarrow A_{i,:}d_{k} = B_{i,:}d_{k} \Leftrightarrow d_{k} \in V_{i}^{\perp}$$

$$H_{i} := (B_{i,:} - A_{i,:})^{\perp} := V_{i}^{\perp}, V_{i} \neq 0 (C2); \text{ for } \partial_{B}, \mathbb{R}^{n} \setminus (x + \bigcup_{i=1}^{p} H_{i})$$

$$H_{i} := (B_{i,:} - A_{i,:})^{\perp} := v_{i}^{\perp}, \ v_{i} \neq 0 \ (C2) \ ; \text{ for } \partial_{B}, \ \mathbb{R}^{n} \setminus (x + \bigcup_{i=1}^{p} H_{i})$$

$$\mathbb{R}^{n} = H_{i}^{-} \cup H_{i} \cup H_{i}^{+}, \quad \left\{ \begin{array}{l} H_{i}^{-} = \{x \in \mathbb{R}^{n} : v_{i}^{\top} x < 0\} \\ H_{i}^{+} = \{x \in \mathbb{R}^{n} : v_{i}^{\top} x > 0\} \end{array} \right.$$

$$H_{i}^{-} \Leftrightarrow B_{i} \cdot d - A_{i} \cdot d < 0 \Leftrightarrow \min(\dots) = (B \dots)_{i} \Leftrightarrow J_{i} \cdot = B_{i} \cdot \dots$$

Computing the B-differential - multiple indices

$$H \text{ non } - \text{ diff in } x_{k} \Leftrightarrow \exists \ i : (Ax_{k} + a)_{i} \stackrel{C1}{=} (Bx_{k} + b)_{i}, A_{i,:} \neq B_{i,:}$$

$$I(x) := \{ i \in [1:n] : A_{i,:}x + a_{i} = B_{i,:}x + b_{i}, A_{i,:} \neq B_{i,:} \}; |I(x)| = p$$

$$(Ax_{k} + a)_{i} \stackrel{C1}{=} (Bx_{k} + b)_{i} \stackrel{x_{k} = x + d_{k}}{\Leftrightarrow} (Ax + a)_{i} + A_{i,:} d_{k}$$

$$= (Bx + b)_{i} + B_{i,:} d_{k}$$

$$\Leftrightarrow A_{i,:} d_{k} = B_{i,:} d_{k} \Leftrightarrow d_{k} \in v_{i}^{\perp}$$

$$H_{i} := (B_{i,:} - A_{i,:})^{\perp} := v_{i}^{\perp}, \ v_{i} \neq 0 \ (C2); \ \text{for } \partial_{B}, \ \mathbb{R}^{n} \setminus (x + \bigcup_{i=1}^{p} H_{i})$$

$$\mathbb{R}^{n} = H_{i}^{-} \cup H_{i} \cup H_{i}^{+}, \qquad \begin{cases} H_{i}^{-} = \{x \in \mathbb{R}^{n} : v_{i}^{T}x < 0\} \\ H_{i}^{+} = \{x \in \mathbb{R}^{n} : v_{i}^{T}x > 0\} \end{cases}$$

 $H_i^- \Leftrightarrow B_{i,:}d - A_{i,:}d < 0 \Leftrightarrow \min(\dots) = (B \dots)_i \Leftrightarrow J_{i,:} = B_{i,:}$ $H_i^+ \Leftrightarrow B_{i,:}d - A_{i,:}d > 0 \Leftrightarrow \min(\dots) = (A \dots)_i \Leftrightarrow J_{i,:} = A_{i,:}$

If functions are not affine

- Sets $\{y \text{ near } x : F_i(y) = G_i(y)\}$ are not hyperplanes.
- First order $F_i(y) = F_i(x) + F'_i(x)(y x)$ (and G): \rightarrow affine case with hyperplanes and yields a subset of the real $\partial_B H(x)$.
- Much harder due to "higher order"...

Here, linearizations yield the same hyperplane: two chambers, but there is a third from points between the two curves.

Cardinality properties

We want S, though some properties on |S| are well-known.

Some formulas

• Bound (rank(V) = n) to simplify) Schläfli [Sch50]:

$$|\mathcal{S}(V,\tau)| \leqslant \sum_{i=0}^{n} {p \choose i} \quad (\leqslant 2^{p});$$

attained in general position (\simeq random V, τ).

• For |S|: Winder, Zaslavsky [Win66; Zas75] (but not S):

$$|\mathcal{S}(V, au)| = \sum_{I\subseteq [1:p], au_I\in\mathcal{R}(V_{\cdot,I}^{\mathsf{T}})} (-1)^{\mathrm{null}(V_{\cdot,I})} = (-1)^n\chi(-1).$$

Illustration of duality

$$M = s \cdot V^{\mathsf{T}}, \ m = s \cdot \tau \colon s \cdot (V^{\mathsf{T}} x - \tau) > 0 \Leftrightarrow s \cdot V^{\mathsf{T}} x > s \cdot \tau$$

$$- - \left| + - \right| + +$$

With
$$V = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
 and $\tau = [-1; 1]$, $\{x : x_1 = -1\}$ and $\{x : x_1 = +1\}$.

No -+ since (geometrically) -: left to the red hyperplane and + right to the black hyperplane. Algebraically, - means $x_1 < -1$ and $+ x_1 > 1$.

$$\alpha = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ (V \cdot [-+])\alpha = \begin{bmatrix} - & + \\ 0 & 0 \end{bmatrix} \alpha = 0, \ ([-+] \cdot \tau)\alpha = 2 \geqslant 0$$

About circuits/stem vectors

$$\mathcal{C}(V) := \{I \subseteq [1:p] : \mathsf{null}(V_{:,I}) = 1, \mathsf{null}(V_{:,I_0}) = 0 \ \forall \ I_0 \subsetneq I\}$$

No "good" algo (Rambau [Ram23]); adaptable for symmetries. Upper bound $\binom{p}{r+1}$ [DSL06], = under general position. "Double punishment" for fully dual method.

For degenerate arrangements, short circuits so less susbets explored, but maybe lots of circuits (*p* large). Ex: parallel hyperplanes – circuits of size 2 (so no larger subsets).

$$C(V) := \{ I \subseteq [1:p] : \text{null}(V_{:,I}) = 1, \text{null}(V_{:,I_0}) = 0 \ \forall \ I_0 \subsetneq I \}$$

No "good" algo (Rambau [Ram23]); adaptable for symmetries. Upper bound $\binom{p}{r+1}$ [DSL06], = under general position. "Double punishment" for fully dual method.

For degenerate arrangements, short circuits so less susbets explored, but maybe lots of circuits (*p* large).

Ex: parallel hyperplanes - circuits of size 2 (so no larger subsets).

Affine or linear?

coning/homogeneization/embedding/lifting/...

$$\mathcal{S}\left(egin{bmatrix} V & 0 \ au & -1 \end{bmatrix}, 0
ight) = \left[\mathcal{S}(V, au) imes \{+1\}
ight] \cup \left[-\mathcal{S}(V, au) imes \{-1\}
ight],$$

i.e., "an affine arrangement in dimension n is the upper [or lower] half of a centered arrangement in dimension n + 1".

Natural way so swap between affine and linear arrangements $S(V,\tau) := affine(n,p) \simeq linear(n+1,p+1)$ (half of); $S(V,0) := linear(n,p) \simeq affine(n-1,p-1)$ (two opposite).

Details on compaction

$$\begin{cases} S(V,0) & := \{ s \in \{\pm 1\}^p : \exists \ x^s \in \mathbb{R}^n : s \cdot V^T x^s > 0 \} \\ S(V,\tau) & := \{ s \in \{\pm 1\}^p : \exists \ x^s \in \mathbb{R}^n : s \cdot (V^T x^s - \tau) > 0 \} \\ S([V;\tau^T],0) & := \{ s \in \{\pm 1\}^p : \exists \ d^s \in \mathbb{R}^{n+1} : s \cdot [V^T \ \tau] d^s > 0 \} \end{cases}$$

 $\mathcal{S}(V, au)$ has a *symmetric part* (not perfectly geometrically).

 $\mathcal{S}(V,\tau)$ exactly between $\mathcal{S}(V,0)$ and $\mathcal{S}([V;\tau^{\mathsf{T}}],0)$ (symmetric)

Possible to quantify the difference in # of LOPs

Compute less than $S(V, \tau)$ chambers.

```
\begin{cases} S(V,0) & := \{ s \in \{\pm 1\}^p : \exists \ x^s \in \mathbb{R}^n : s \cdot V^T x^s > 0 \} \\ S(V,\tau) & := \{ s \in \{\pm 1\}^p : \exists \ x^s \in \mathbb{R}^n : s \cdot (V^T x^s - \tau) > 0 \} \\ S([V;\tau^T],0) & := \{ s \in \{\pm 1\}^p : \exists \ d^s \in \mathbb{R}^{n+1} : s \cdot [V^T \ \tau] d^s > 0 \} \end{cases}
```

 $S(V, \tau)$ has a symmetric part (not perfectly geometrically).

 $S(V, \tau)$ exactly between S(V, 0) and $S([V; \tau^T], 0)$ (symmetric).

Possible to quantify the difference in # of LOPs.

Compute less than $S(V, \tau)$ chambers.

The unifying method, Merino Mütze [MM24]?

 $\{\pm 1\} \rightarrow \{0,1\}$, connected vertices X of the hypercube.

A priori: the path may not be connected in \mathbb{R}^n ;

To next chamber: binary variable, not LO

$$\min_{y,z} w^{\mathsf{T}}(y-x), \quad y_{P_0} = 0, \quad y_{P_1} = 1, \quad (2y-1) \cdot (V^{\mathsf{T}}z - \tau) > 0?$$

For vertices of $P = \{z : Az \leq b\}$ assumes it is a conv(X) from A and b. (Not obvious according to Ziegler [Zie99]?)

For circuits? $x(C)_i := \mathbb{1}(i \in C), x(C) \in \{0,1\}^n, C(x) = \bigcup_{x_j=1} \{j\}$. No "swaps" (flips) for circuits. The exchange axiom: 3 circuits. . .

$$\min_{y} w^{\mathsf{T}}(y-x), \ y_{P_0} = 0, \ y_{P_1} = 1, \ \begin{cases} \ \operatorname{null}(V_{:,C(y)}) = 1, \\ \ \operatorname{null}(V_{:,C'}) = 0, C' \subsetneq C(y)? \end{cases}$$

The unifying method, Merino Mütze [MM24]?

 $\{\pm 1\} \rightarrow \{0,1\}$, connected vertices X of the hypercube.

A priori: the path may not be connected in \mathbb{R}^n ;

To next chamber: binary variable, not LO

$$\min_{y,z} w^{\mathsf{T}}(y-x), \quad y_{P_0} = 0, \quad y_{P_1} = 1, \quad (2y-1) \cdot (V^{\mathsf{T}}z - \tau) > 0?$$

For vertices of $P = \{z : Az \leq b\}$ assumes it is a conv(X) from A and b. (Not obvious according to Ziegler [Zie99]?)

For circuits? $x(C)_i := \mathbb{1}(i \in C)$, $x(C) \in \{0,1\}^n$, $C(x) = \bigcup_{x_j=1}\{j\}$ No "swaps" (flips) for circuits. The exchange axiom: 3 circuits...

$$\min_{y} w^{\mathsf{T}}(y-x), \ y_{P_0} = 0, \ y_{P_1} = 1, \ \begin{cases} \ \operatorname{null}(V_{:,C(y)}) = 1, \\ \ \operatorname{null}(V_{:,C'}) = 0, C' \subsetneq C(y)? \end{cases}$$

The unifying method, Merino Mütze [MM24]?

 $\{\pm 1\} \rightarrow \{0,1\}$, *connected* vertices X of the hypercube.

A priori: the path may not be connected in \mathbb{R}^n ;

To next chamber: binary variable, not LO

$$\min_{y,z} w^{\mathsf{T}}(y-x), \quad y_{P_0} = 0, \quad y_{P_1} = 1, \quad (2y-1) \cdot (V^{\mathsf{T}}z - \tau) > 0?$$

For vertices of $P = \{z : Az \leq b\}$ assumes it is a conv(X) from A and b. (Not obvious according to Ziegler [Zie99]?)

For circuits? $x(C)_i := \mathbb{1}(i \in C), x(C) \in \{0,1\}^n, C(x) = \bigcup_{x_j=1} \{j\}.$ No "swaps" (flips) for circuits. The exchange axiom: 3 circuits. . .

$$\min_{y} w^{\mathsf{T}}(y-x), \ y_{P_0} = 0, \ y_{P_1} = 1, \ \begin{cases} \ \mathrm{null}(V_{:,C(y)}) = 1, \\ \ \mathrm{null}(V_{:,C'}) = 0, \ C' \subsetneq C(y)? \end{cases}$$

Full arrangements: not only halfspaces

With $\{-1,0,+1\}^p$, what changes? $2^p \to 3^p$, known bounds (general position), RC algorithm with ternary tree.

Some things need to be adapted: especially compaction (relations). Main issue: equalities ($s_i = 0$) are not maintained if $\tau \neq 0$.

For σ 's, no changes? "chamber infeasible has no boundary": so stem vectors $\sigma \in \{\pm 1\}^I$ mean every " $s^I \in [0, \sigma]$ " infeasible too.

Algorithmically? Tree has 1/3 descendants (two \Rightarrow third). Compute chambers, join neighbors for n-1 subchambers, n-2... Compute intersections of H_i 's and binary trees on them, project in the subspaces...

Full arrangements: not only halfspaces

```
With \{-1,0,+1\}^p, what changes? 2^p \to 3^p, known bounds (general position), RC algorithm with ternary tree.
```

Some things need to be adapted: especially compaction (relations). Main issue: equalities ($s_i = 0$) are not maintained if $\tau \neq 0$.

```
For \sigma's, no changes? "chamber infeasible has no boundary": so stem vectors \sigma \in \{\pm 1\}^I mean every "s^I \in [0, \sigma]" infeasible too.
```

Algorithmically? Tree has 1/3 descendants (two \Rightarrow third). Compute chambers, join neighbors for n-1 subchambers, n-2... Compute intersections of H_i 's and binary trees on them, project in the subspaces...

Full arrangements: not only halfspaces

```
With \{-1,0,+1\}^p, what changes? 2^p \to 3^p, known bounds (general position), RC algorithm with ternary tree.
```

Some things need to be adapted: especially compaction (relations). Main issue: equalities ($s_i = 0$) are not maintained if $\tau \neq 0$.

For σ 's, no changes? "chamber infeasible has no boundary": so stem vectors $\sigma \in \{\pm 1\}^I$ mean every " $s^I \in [0, \sigma]$ " infeasible too.

Algorithmically? Tree has 1/3 descendants (two \Rightarrow third). Compute chambers, join neighbors for n-1 subchambers, n-2... Compute intersections of H_i 's and binary trees on them, project in the subspaces...

```
With \{-1,0,+1\}^p, what changes? 2^p \to 3^p, known bounds (general position), RC algorithm with ternary tree.
```

Some things need to be adapted: especially compaction (relations). Main issue: equalities ($s_i = 0$) are not maintained if $\tau \neq 0$.

```
For \sigma's, no changes? "chamber infeasible has no boundary": so stem vectors \sigma \in \{\pm 1\}^I mean every "s^I \in [0, \sigma]" infeasible too.
```

```
Algorithmically? Tree has 1/3 descendants (two \Rightarrow third). Compute chambers, join neighbors for n-1 subchambers, n-2... Compute intersections of H_i's and binary trees on them, project in the subspaces...
```

Details on PNM

$$\mathcal{E}^-(x)$$
 becomes, for $\tau > 0$ small $F_i(x) < 0$, $G_i(x) < 0$ and $|F_i(x) - G_i(x)| < \tau$.

PNM regularity condition to have a d

At a solution \bar{x} , for all partitions of $\mathcal{E}^{0+}(x)$ of all x near \bar{x} , a Mangasarian-Fromovitz condition holds at x and all partitions.

Hybrid NM: most often, d(NM) works \checkmark ; PNM if iterate difficult; spectacular on random data / applications.

Explicit computations

One wants
$$\theta'(\mathbf{x}; -\mathbf{g}(\gamma_+, \gamma_-)) \leq 0$$
.
Let $\Gamma_+ = \mathrm{Diag}(\gamma_+)$, $\Gamma_- = \mathrm{Diag}(\gamma_-)$ g
$$\theta'(\mathbf{x}; -\mathbf{g}(\gamma_+, \gamma_-)) = -||\mathbf{g}(\gamma_+, \gamma_-)||^2$$

$$0 \geq + H_{\mathcal{E}^{0+}(\mathbf{x})}^{\mathsf{T}}[\min(-F_{\mathcal{E}^{0+}(\mathbf{x})}'g(\gamma_+, \gamma_-), -G_{\mathcal{E}^{0+}(\mathbf{x})}'g(\gamma_+, \gamma_-)) + \Gamma_+ F_{\mathcal{E}^{0+}(\mathbf{x})}'g(\gamma_+, \gamma_-) + \Gamma_+ G_{\mathcal{E}^{0+}(\mathbf{x})}'g(\gamma_+, \gamma_-)$$

$$0 \leq + H_{\mathcal{E}^{-}(\mathbf{x})}^{\mathsf{T}}[\min(-F_{\mathcal{E}^{-}(\mathbf{x})}'g(\gamma_+, \gamma_-), -G_{\mathcal{E}^{-}(\mathbf{x})}'g(\gamma_+, \gamma_-)) + \Gamma_- F_{\mathcal{E}^{-}(\mathbf{x})}'g(\gamma_+, \gamma_-) + \Gamma_- G_{\mathcal{E}^{-}(\mathbf{x})}'g(\gamma_+, \gamma_-)]$$

$$\min(-a, -b) + \gamma a + \overline{\gamma} b = \begin{cases} \overline{\gamma}(b - a) \leq 0 & \text{if } a \geq b \\ \gamma(a - b) \leq 0 & \text{if } a \leq b \end{cases}$$

Explicit computations

One wants
$$\theta'(x; -g(\gamma_+, \gamma_-)) \leq 0$$
.
Let $\Gamma_+ = \operatorname{Diag}(\gamma_+)$, $\Gamma_- = \operatorname{Diag}(\gamma_-)$ g
$$\theta'(x; -g(\gamma_+, \gamma_-)) = -||g(\gamma_+, \gamma_-)||^2$$

$$0 \geq + H_{\mathcal{E}^{0+}(x)}^{\mathsf{T}}[\min(-F_{\mathcal{E}^{0+}(x)}'g(\gamma_+, \gamma_-), -G_{\mathcal{E}^{0+}(x)}'g(\gamma_+, \gamma_-))$$

$$+\Gamma_+ F_{\mathcal{E}^{0+}(x)}'g(\gamma_+, \gamma_-) + \overline{\Gamma}_+ G_{\mathcal{E}^{0+}(x)}'g(\gamma_+, \gamma_-)]$$

$$0 \leq + H_{\mathcal{E}^{-}(x)}^{\mathsf{T}}[\min(-F_{\mathcal{E}^{-}(x)}'g(\gamma_+, \gamma_-), -G_{\mathcal{E}^{-}(x)}'g(\gamma_+, \gamma_-))$$

$$+\Gamma_- F_{\mathcal{E}^{-}(x)}'g(\gamma_+, \gamma_-) + \overline{\Gamma}_- G_{\mathcal{E}^{-}(x)}'g(\gamma_+, \gamma_-)]$$

$$\leq 0$$

$$\min(-a, -b) + \gamma a + \overline{\gamma} b = \begin{cases} \overline{\gamma}(b-a) \leq 0 & \text{if } a \geq b \\ \gamma(a-b) \leq 0 & \text{if } a \leq b \end{cases}$$

Explicit computations

One wants
$$\theta'(x; -g(\gamma_+, \gamma_-)) \leq 0$$
.
Let $\Gamma_+ = \operatorname{Diag}(\gamma_+)$, $\Gamma_- = \operatorname{Diag}(\gamma_-)$ g
$$\theta'(x; -g(\gamma_+, \gamma_-)) = -||g(\gamma_+, \gamma_-)||^2$$

$$0 \geq + H_{\mathcal{E}^{0+}(x)}^{\mathsf{T}}[\min(-F_{\mathcal{E}^{0+}(x)}'g(\gamma_+, \gamma_-), -G_{\mathcal{E}^{0+}(x)}'g(\gamma_+, \gamma_-))$$

$$+\Gamma_+ F_{\mathcal{E}^{0+}(x)}'g(\gamma_+, \gamma_-) + \overline{\Gamma}_+ G_{\mathcal{E}^{0+}(x)}'g(\gamma_+, \gamma_-)]$$

$$\leq 0$$

$$0 \leq + H_{\mathcal{E}^{-}(x)}^{\mathsf{T}}[\min(-F_{\mathcal{E}^{-}(x)}'g(\gamma_+, \gamma_-), -G_{\mathcal{E}^{-}(x)}'g(\gamma_+, \gamma_-))$$

$$+\overline{\Gamma}_- F_{\mathcal{E}^{-}(x)}'g(\gamma_+, \gamma_-) + \overline{\Gamma}_- G_{\mathcal{E}^{-}(x)}'g(\gamma_+, \gamma_-)]$$

$$\leq 0$$

$$\min(-a, -b) + \gamma a + \overline{\gamma} b = \begin{cases} \overline{\gamma}(b - a) \leq 0 & \text{if } a \geq b \\ \gamma(a - b) \leq 0 & \text{if } a \leq b \end{cases}$$

Example of weights computation -1

$$M = \begin{pmatrix} 1/2 & 1/2 \\ -5 & 1 \end{pmatrix}, \quad q = \begin{pmatrix} 0 \\ -1/10 \end{pmatrix}, \quad x = \begin{pmatrix} -1/50 \\ -1/50 \end{pmatrix}$$

Here, $\mathcal{F}(x) = \emptyset = \mathcal{G}(x)$, $\mathcal{E}(x) = \{1, 2\}$. After computations...

Example of weights computation – 2

[up to factor 1/200] The point to project is $(7; -5)(= g_1(x))$. The zonotope to project on is $\begin{bmatrix} 1 & 10 \\ -1 & 0 \end{bmatrix} \times [-1, +1]^2$

The projection is $(7; -1) = 4/5 \times (11; -1) + 1/5 \times (-9; -1)$, and also g(1, 4/5) = 4/5g(1, 1) + 1/5g(1, 0)

Computation of the weights

Goal

Finding the best γ_+ such that $g(\gamma_+, \gamma_-(\gamma_+)) \neq 0$ (or stationarity).

$$\max_{\gamma_{+} \in [0,1]^{\mathcal{E}^{0+}(x)} \mathbf{\gamma}_{-} \in [0,1]^{\mathcal{E}^{-}(x)}} ||g(\gamma_{+}, \mathbf{\gamma}_{-})||^{2}/2$$

where
$$g(\gamma_{+}, \gamma_{-}) = g_0 + M_{+}\gamma_{+} + M_{-}\gamma_{-}$$
.

The outer max is a convex function (distance) on a hypercube: maximized on a vertex, combinatorial nature $\sim \{0,1\}^{\mathcal{E}^{0+}(x)}$, partitions of $\mathcal{E}^{0+}(x)$, inclusion by vertices (strict local maxima also work).

Computation of the weights

Goal

Finding the best γ_+ such that $g(\gamma_+, \gamma_-(\gamma_+)) \neq 0$ (or stationarity).

$$\max_{\gamma_{+} \in [0,1]^{\mathcal{E}^{0+}(x)} \mathbf{\gamma}_{-} \in [0,1]^{\mathcal{E}^{-}(x)}} ||g(\gamma_{+}, \mathbf{\gamma}_{-})||^{2}/2$$

where
$$g(\gamma_{+}, \gamma_{-}) = g_0 + M_{+}\gamma_{+} + M_{-}\gamma_{-}$$
.

The outer max is a convex function (distance) on a hypercube: maximized on a vertex, combinatorial nature $\rightarrow \{0,1\}^{\mathcal{E}^{0+}(x)}$, partitions of $\mathcal{E}^{0+}(x)$, inclusion by vertices (strict local maxima also work).

Sufficient decrease

- 1) $d_k(\lambda)/||d_k(\lambda)|| \underset{\lambda \to +\infty}{\rightarrow} -S_k^{-1}g_k/||S_k^{-1}g_k||$
- 2) for λ large enough, a descent formula holds

Convergence

Let (x_k, λ_k, S_k) be a sequence generated by algorithm 1.

- 1) The sequence $(\theta(x_k))_k$ decreases thus converges.
- 2) If $(F'(x_k), G'(x_k), \lambda_k S_k)_{k \in \mathcal{K}}$ for a subsequence \mathcal{K} is bounded, then $g_k \to 0$.

In particular, "good behavior" of algorithm is assumed: $\lambda_k \rightarrow +\infty$.

"Concave kinks" - difficult (bad) limit points.

Consider a simple example with

$$n = 1$$
, $F(x) = x$,
 $G(x) = 1 + (x - 1)^2$, $x_0 = 3/2$.

For
$$x \in (1, 2), F(x) \neq G(x)$$
.

Counter-example

"Concave kinks" - difficult (bad) limit points.

Consider a simple example with

$$n = 1$$
, $F(x) = x$,
 $G(x) = 1 + (x - 1)^2$, $x_0 = 3/2$.

For $x \in (1, 2), F(x) \neq G(x)$.

First iterates, convergence to x=1. The black curves are the quadratic models ψ_x .

Counter-example