Products

2016-02-04 9:00 -0500

Theorem (Base of the product topology)

Let X and Y be topological spaces. Let $\mathcal B$ be the collection of all subsets of $X \times Y$ of the form $U \times V$, where U is open in X and V is open in Y. Then $\mathcal B$ is a base for a topology on $X \times Y$.

Theorem (Base of the product topology)

Let X and Y be topological spaces. Let $\mathcal B$ be the collection of all subsets of $X \times Y$ of the form $U \times V$, where U is open in X and V is open in Y. Then $\mathcal B$ is a base for a topology on $X \times Y$.

Theorem (Base of the product topology)

Let X and Y be topological spaces. Let $\mathcal B$ be the collection of all subsets of $X \times Y$ of the form $U \times V$, where U is open in X and V is open in Y. Then $\mathcal B$ is a base for a topology on $X \times Y$.

Proof

• For any $(x, y) \in X \times Y$, considering that $X \times Y \in \mathcal{B}$, we have that (B1) is satisfied.

Theorem (Base of the product topology)

Let X and Y be topological spaces. Let $\mathcal B$ be the collection of all subsets of $X \times Y$ of the form $U \times V$, where U is open in X and V is open in Y. Then $\mathcal B$ is a base for a topology on $X \times Y$.

- For any $(x, y) \in X \times Y$, considering that $X \times Y \in \mathcal{B}$, we have that (B1) is satisfied.
- Property (B2) follows from the fact that in general:

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D).$$

Product topology

Definition (Product topology)

The topology $\tau_{\mathcal{B}}$ is called the product topology on the Cartesian product $X \times Y$.

Theorem (Product topology given by a base)

Let X be space with base \mathcal{B} , and Y be a space with base \mathcal{C} . Then

$$\mathcal{D} = \{B \times C \mid B \in \mathcal{B}, C \in \mathcal{C}\}$$

is a base for the product topology on $X \times Y$.

Theorem (Product topology given by a base)

Let X be space with base \mathcal{B} , and Y be a space with base \mathcal{C} . Then

$$\mathcal{D} = \{B \times C \mid B \in \mathcal{B}, C \in \mathcal{C}\}\$$

is a base for the product topology on $X \times Y$.

Theorem (Product topology given by a base)

Let X be space with base \mathcal{B} , and Y be a space with base \mathcal{C} . Then

$$\mathcal{D} = \{B \times C \mid B \in \mathcal{B}, C \in \mathcal{C}\}\$$

is a base for the product topology on $X \times Y$.

Proof

• Let W be an open set in the product topology, and $(x, y) \in W$.

Theorem (Product topology given by a base)

Let X be space with base \mathcal{B} , and Y be a space with base \mathcal{C} . Then

$$\mathcal{D} = \{B \times C \mid B \in \mathcal{B}, C \in \mathcal{C}\}\$$

is a base for the product topology on $X \times Y$.

- Let W be an open set in the product topology, and $(x, y) \in W$.
- By definition of base of the product topology, there are open sets U in X and V in Y with $(x, y) \in U \times V \subseteq W$.

Theorem (Product topology given by a base)

Let X be space with base \mathcal{B} , and Y be a space with base \mathcal{C} . Then

$$\mathcal{D} = \{B \times C \mid B \in \mathcal{B}, C \in \mathcal{C}\}$$

is a base for the product topology on $X \times Y$.

- Let W be an open set in the product topology, and $(x, y) \in W$.
- By definition of base of the product topology, there are open sets U in X and V in Y with $(x, y) \in U \times V \subseteq W$.
- Again by definition of base, there are $B \in \mathcal{B}$, $C \in \mathcal{C}$ with $x \in B \subseteq U$, $y \in C \subseteq V$. We have then $B \times C \in \mathcal{D}$, and

$$(x, y) \in B \times C \subseteq W$$
.

Examples

Example (Product topology on \mathbb{R}^2)

A base for the product of two standard topologies on \mathbb{R} is the collection of all rectangles of the form $(a, b) \times (c, d)$. It follows that the product topology is the same as the metric topology on \mathbb{R} .

Examples

Example (Product topology on \mathbb{R}^2)

A base for the product of two standard topologies on \mathbb{R} is the collection of all rectangles of the form $(a,b)\times(c,d)$. It follows that the product topology is the same as the metric topology on \mathbb{R} .

Example (Product of Sierpiński spaces)

Describe the points and the open sets on the product $X \times X$, when X is a Sierpiński space.

Definition (Projections)

The maps $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ are called projections of $X \times Y$.

Definition (Projections)

The maps $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ are called projections of $X \times Y$.

Inverse images of projections

If *U* is open in *X*, then
$$\pi_1^{-1}(U) =$$

Definition (Projections)

The maps $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ are called projections of $X \times Y$.

Inverse images of projections

If *U* is open in *X*, then
$$\pi_1^{-1}(U) =$$

Definition (Projections)

The maps $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ are called projections of $X \times Y$.

Inverse images of projections

If U is open in X, then $\pi_1^{-1}(U) = U \times Y$, which is open in $X \times Y$. Similarly, if V is open in Y, the set $\pi_2^{-1}(V) = X \times V$, is open in $X \times Y$.

Definition (Projections)

The maps $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ are called projections of $X \times Y$.

Inverse images of projections

If U is open in X, then $\pi_1^{-1}(U) = U \times Y$, which is open in $X \times Y$. Similarly, if V is open in Y, the set $\pi_2^{-1}(V) = X \times V$, is open in $X \times Y$.

We have

$$\pi_1^{-1}(U) \cap \pi_2^{-1}(V) = U \times V$$

Subbase of the product

Theorem (Subbase)

The collection $S = {\pi_1^{-1}(U)}_{U \in \tau_X} \cup {\pi_2^{-1}(V)}_{V \in \tau_Y}$ is a subbase for the product topology on $X \times Y$.

Subspace and products

Theorem (Subspace and product topology)

Let A, B be subspaces of X, Y respectively. Then the product topology on $A \times B$ is the same as the topology on $A \times B$ as subspace of the product space $X \times Y$.

Subspace and products

Theorem (Subspace and product topology)

Let A, B be subspaces of X, Y respectively. Then the product topology on $A \times B$ is the same as the topology on $A \times B$ as subspace of the product space $X \times Y$.

Proof.

Exercise

Exercises

1. A map $f: X \to Y$ between topological space is said to be open if f(U) is open for every $U \subseteq X$ which is an open set. Prove that the projection $\pi_X: X \times Y \to X$ is an open set.

Exercises

- 1. A map $f: X \to Y$ between topological space is said to be open if f(U) is open for every $U \subseteq X$ which is an open set. Prove that the projection $\pi_X: X \times Y \to X$ is an open set.
- 2. Let I denote the closed interval $[0,1] \subseteq \mathbb{R}$ as a subspace of the usual topology on \mathbb{R} . Compare the product topology on $I \times I$, the dictionary order topology on $I \times I$, and the product $I_d \times I$, where I_d denotes discrete topology.

Links

• Product topology - Wikipedia, the free encyclopedia