

Shapley Effects for Use as Sensitivity Measure

Elmar Plischke

Institut für Ressourcenökologie Helmholtz-Zentrum Dresden-Rossendorf

SAMO Summer School, Parma, June 2024

Contents

1 Motivation

- 2 Game Theory and Shapley Values
- 3 Shapley Effects for Sensitivity Analysis
- 4 Example

2 Game Theory and Shapley Value

3 Shapley Effects for Sensitivity Analysi

4 Example

For independent variables

$$\mathbb{V}[X_1 + X_2] = \mathbb{V}[X_1] + \mathbb{V}[X_2]$$

but generally

$$V[X_1 + X_2] = \mathbb{E}[(X_1 + X_2)^2] - (\mathbb{E}[X_1 + X_2])^2 = \mathbb{E}[X_1^2] - \mathbb{E}[X_1]^2 + \mathbb{E}[X_2^2] - \mathbb{E}[X_2]^2 + 2(\mathbb{E}[X_1X_2] - \mathbb{E}[X_1]\mathbb{E}[X_2]) = V[X_1] + V[X_2] + 2\operatorname{Cov}(X_1, X_2)$$

For independent variables

$$\mathbb{V}[X_1 + X_2] = \mathbb{V}[X_1] + \mathbb{V}[X_2]$$

but generally

$$V[X_1 + X_2] = \mathbb{E}[(X_1 + X_2)^2] - (\mathbb{E}[X_1 + X_2])^2 = \mathbb{E}[X_1^2] - \mathbb{E}[X_1]^2 + \mathbb{E}[X_2^2] - \mathbb{E}[X_2]^2 + 2(\mathbb{E}[X_1X_2] - \mathbb{E}[X_1] \mathbb{E}[X_2]) = V[X_1] + V[X_2] + 2\operatorname{Cov}(X_1, X_2)$$

Consequences for functional ANOVA under dependence

- Covariance terms need to be considered
- Orthogonality (strong annihilation) is lost: Hierarchical orthogonality can be used
- But this introduces dependence on the order of the factors in the model

First and last term in any ordering of the factors may receive special attention

Wanted

A concept to define main and total effects and related sensitivity indices without recurring to functional ANOVA decomposition

Back to the basics:

■ Main effect S_i : Variance explained by a functional dependence on X_i

Wanted

A concept to define main and total effects and related sensitivity indices without recurring to functional ANOVA decomposition

Back to the basics:

- Main effect S_i : Variance explained by a functional dependence on X_i
- Total effect T_i : Residual variance un-explained by a functional dependence on X_{-i}

Wanted

A concept to define main and total effects and related sensitivity indices without recurring to functional ANOVA decomposition

Back to the basics:

- Main effect S_i : Variance explained by a functional dependence on X_i
- lacktriangle Total effect T_i : Residual variance un-explained by a functional dependence on X_{-i}

We study a game theoretic approach:

The goal is to attribute a fair share of the variance to each input factor

2 Game Theory and Shapley Values

- 3 Shapley Effects for Sensitivity Analysi
- 4 Example

Game Theory: Definitions

For *d* players,

- Coalition-worth value function val : $2^d \to \mathbb{R}_{\geq 0}$, 2^d : set of subsets of $[d] := \{1, \ldots, d\}$
- Coalition $\alpha \subset [d]$ lists the active players, anti-coalition $\sim \alpha = [d] \setminus \alpha$
- Marginal contribution of player i joining coalition α : mar $(\alpha, i) = val(\alpha \cup \{i\}) val(\alpha)$

The value function assigns a payoff to a group of players

The value function is a game if it is grounded: $val(\emptyset) = 0$.

Grand total: val([d])

Axioms for the Shapley Value

Attribute a fair (egalitarian) share of the grand total to each player:

Theorem

The Shapley value $\Phi_i(val)$ of player i for the payoffs val is uniquely characterized by the following four axioms,

- Pareto-efficiency: $\sum_{i=1}^{d} \Phi_i(\text{val}) = \text{val}([d])$
- Symmetry: If $val(\alpha \cup \{i\}) = val(\alpha \cup \{j\})$ for all subsets α containing neither i nor j then $\Phi_i(val) = \Phi_j(val)$
- Linearity: $\Phi_i(\mathsf{val}_1 + \mathsf{val}_2) = \Phi_i(\mathsf{val}_1) + \Phi_i(\mathsf{val}_2)$
- Null-player: If for all α , $val(\alpha \cup \{i\}) = val(\alpha)$ holds then $\Phi_i(val) = 0$.

Formulas for the Shapley Value

$$\Phi_i(\mathsf{val}\,) = rac{1}{d} \sum_{\alpha: i
otin lpha} egin{pmatrix} d-1 \ |lpha| \end{pmatrix}^{-1} \mathsf{mar}(lpha, i)$$
 $\Phi_i(\mathsf{val}\,) = rac{1}{d} \sum_{\alpha: i
otin lpha} egin{pmatrix} d-1 \ |lpha| - 1 \end{pmatrix}^{-1} (\mathsf{val}(lpha) - \mathsf{val}(\sim lpha))$
 $\Phi_i(\mathsf{val}\,) = \sum_{\alpha: i
otin lpha} rac{\mathsf{mob}(lpha)}{|lpha|}$

All three formulas satisfy the axioms which uniquely describe the Shapley value, hence define the same object.

Möbius inverses

Unique decomposition $\operatorname{val}(\alpha) = \sum_{\beta} \operatorname{mob}(\beta) u_{\beta}(\alpha)$ $u_{\beta}(\alpha) = \mathbf{1}(\beta \subset \alpha)$ (Unanimity game) codes subset inclusion Weights: Möbius inverses / Harsanyi dividends. Implicitly defined by

$$\mathsf{val}(\alpha) = \sum_{\beta \subset \alpha} \mathsf{mob}(\beta).$$

This system of 2^d-1 linear equations can be solved by an inclusion-exclusion rule

$$\mathsf{mob}(\alpha) = \sum_{\beta \subset \alpha} (-1)^{|\alpha| + |\beta|} \mathsf{val}(\beta).$$

This approach is technical equivalent to the formation of higher order effects [Plischke et al., 2021]

Main and total effects for games

Let us therefore introduce (unnormalized) main and total effects based on the coalition-worth value function,

- $\blacksquare \ \mathsf{Main} \ \mathsf{effects} \ S_i = \mathsf{val}(\{i\}) = \mathsf{mar}(\emptyset, i) = \mathsf{mob}(\{i\})$
- Total effects $T_i = \sum_{\alpha: i \in \alpha} \mathsf{mob}(\alpha)$

Note that always

$$T_i = \sum_{\alpha: i \in \alpha} \mathsf{mob}(\alpha) = \sum_{\alpha} \mathsf{mob}(\alpha) - \sum_{\alpha: i \notin \alpha} \mathsf{mob}(\alpha)$$

= $\mathsf{val}([d]) - \sum_{\alpha \subseteq \sim i} \mathsf{mob}(\alpha) = \mathsf{val}([d]) - \mathsf{val}(\sim i)$

- 2 Game Theory and Shapley Values
- 3 Shapley Effects for Sensitivity Analysis
- 4 Example

Shapley Effects

Grand total: Output variance

Players: Input factors

Consider the value function $val(\alpha) = \mathbb{V}[\mathbb{E}[Y|X_{\alpha}]]$:

If $\alpha = \emptyset$ then we compute the variance of a constant value, i.e. val is a game If $\alpha = [d]$ and $y = f(x_1, \dots, x_d)$ is a square integrable deterministic function then $val([d]) = \mathbb{V}[\mathbb{E}[Y|X_{[d]}]] = \mathbb{V}[Y]$, i.e. the grand total is the output variance

How to compute the Shapley effects

Sobol' method, pick-and-freeze with conditionally independent sampling

```
for i=1:d; w0=1; for j=1:i-1; w0=w0*(d-i+j)/j; end; w(i)=w0; end % weights
[ua,ub]=createsample(d,n,randomsource); za=norminv(ua); zb=norminv(ub);
C=chol(S); na=za*C; nb=zb*C; xa=trafo(normcdf(na)); xb=trafo(normcdf(nb));
ya=model(xa); yb=model(xb); Vy=(yb-ya)'*(yb-ya)/n/2; Shap=ones(1,d)*Vy;
for i=1:2^{(d-1)-1} % loop only over half of the indices
 q = logical(bitqet(i, 1:d)); sz = sum(q); D = chol([S(q,q),S(q,\neg q);S(\neg q,q),S(\neg q,\neg q)]);
 D11=D(sz+1:end.sz+1:end): D22=D(1:sz.1:sz):D21=D(1:sz.sz+1:end):
 ni=na; ni(:,\neg q)=zb(:,\neg q)*D11+na(:,q)*(D22\D21); xi=trafo(normcdf(ni));
 yi=model(xi); sz=k-sz; E=chol([S(\neg q, \neg q), S(\neg q, q); S(q, \neg q), S(q, q)]);
 E11=E(sz+1:end,sz+1:end); E22=E(1:sz,1:sz); E21=E(1:sz,sz+1:end); nj=na;
 nj(:,q) = zb(:,q) *E11+na(:,\neg q) *(E22 \setminus E21); xj = trafo(normcdf(nj));
 y_i = model(x_i); sz = k - sz; bal = (y_i - y_i)' * (y_i + y_i - 2 * y_a) / (2 * n); % bal = val(g) - val(g)
 Shap(g)=Shap(g)+bal/w(sz); Shap(\neg g)=Shap(\neg g)-bal/w(d-sz);
end. Shap=Shap/d:
```


Code Discussion

- d input dimension, n basic sample block size, model vectorized simulator, trafo marginal transformation from $[0,1]^d$, createsample create two basic sample blocks (not shown)
- Implemented are Gaussian Copula dependence structures
- Via Cholesky decompositions of reordered covariance matrices
- Using the second Shapley formula with a balanced value function
- Computationally costly: Visits half of all subsets, pick-and-freeze design for each of them, symmetric design

Shapley effects, Goda's method

Code Discussion

- lacktriangle d input dimension, n basic sample block size, func vectorized simulator, trafo marginal transformation from $[0,1]^d$
- Only input independence (1D innovation injection)
- Reference point is the f(x) output, but may also consider differences to f(y)
- Original version offers error estimate
- Computationally cheap: $(d+1) \cdot n$ vs. $(2^d-1) \cdot n$

2 Game Theory and Shapley Values

- 3 Shapley Effects for Sensitivity Analysis
- 4 Example

Analytical Example: Gauss Linear

Input: Multivariate normal distribution with covariance Σ

Simulation model: $Y = \beta^0 + \beta^T X$, $X \in \mathbb{R}^d$

All conditional distributions are Gaussian, all conditional expectations are linear

Analytical Example: Gauss Linear

Input: Multivariate normal distribution with covariance Σ

Simulation model: $Y = \beta^0 + \beta^T X$, $X \in \mathbb{R}^d$

All conditional distributions are Gaussian, all conditional expectations are linear

Theorem

Under Gauss linear, unnormalized main, total and Shapley effects are given by

$$\begin{split} S_j &= \beta^T \left(\frac{\Sigma_{[d],j} \Sigma_{j,[d]}}{\Sigma_{j,j}} \right) \beta = \beta^T \left(\frac{\Sigma_{[d],j} \Sigma_{[d],j}^T}{\Sigma_{j,j}} \right) \beta \\ T_j &= \beta_j^2 \frac{\det(\Sigma)}{\det(\Sigma_{-j,-j})} \\ \Phi_j &= \frac{1}{d} \sum_{i \in u} \binom{d-1}{|u|-1}^{-1} \beta^T \left(\Sigma_{[d],u} \Sigma_{u,u}^{-1} \Sigma_{u,[d]} - \Sigma_{[d],-u} \Sigma_{-u,-u}^{-1} \Sigma_{-u,[d]} \right) \beta \end{split}$$

Output variance is $\mathbb{V}[Y] = \beta^T \Sigma \beta$.

Feed the Code

Input:
$$X \sim \mathcal{N}(0, \Sigma)$$
 with $\Sigma = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \varrho \sigma \\ 0 & \varrho \sigma & \sigma^2 \end{pmatrix}$, $\sigma = 2$, ϱ is varied within $[-1, 1]$ Model $Y = f(X_1, X_2, X_3) = X_1 + X_2 + X_3$

Computing Shapley values, II

Using
$$\mathsf{Sh}_i = \sum_{\alpha:i \in \alpha} \frac{\mathsf{mob}(\alpha)}{|\alpha|}$$
 [Grabisch, 2006, Owen, 2014]: fast Möbius inverse needed

Computing Shapley values, II

Using $\operatorname{Sh}_i = \sum_{\alpha:i \in \alpha} \frac{\operatorname{mob}(\alpha)}{|\alpha|}$ [Grabisch, 2006, Owen, 2014]: fast Möbius inverse needed Fast multiplication algorithms [Yates, 1937, Good, 1958]: iterated Kronecker products $A \otimes^d A = (A \otimes^{d-1} A) \otimes (A \otimes^{d-1} A)$ with $A \otimes^0 A = A$.

Theorem

Let $v = (val(\emptyset), val(\{1\}), val(\{2\}), val(\{1,2\}), val(\{3\}), \dots, val(\{1,\dots,d\}))^T$ be a 2^d vector in natural order (binary coded). Möbius inverse is obtained by left-multiplication with the iterated Kronecker product of $A = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$.

$$A^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
 codes inclusion in 2^1 : $\emptyset \subset \emptyset$, $\emptyset \subset \alpha$, $\alpha \subset \alpha$.

Illustrating Fast Möbius/Yates Transformation

$(first,last)\cdots\mapsto(allfirst,alllast\text{-}first)$									
Ø	1	2	1,2	3	1,3	2,3	1,2,3	α	
0	31	44	75	0	56	44	100	vallpha	
								Step 1	
								Step 2	
								mob(lpha)	
								$\left lpha ight ^{-1}mob(lpha)$	
\sum								Sh ₁	
\sum								Sh_2	
\sum_{\sum}								Sh_3	

Illustrating Fast Möbius/Yates Transformation

$(first,last)\cdots\mapsto(allfirst,alllast\text{-}first)$									
Ø	1	2	1,2	3	1,3	2,3	1,2,3	α	
(0	31)	(44	75)	(0	56)	(44	100)	vallpha	
								Step 1	
								Step 2	
								mob(lpha)	
								$\left lpha ight ^{-1}mob(lpha)$	
\sum								Sh ₁	
\sum								Sh_2	
\sum_{\sum}								Sh_3	

Illustrating Fast Möbius/Yates Transformation

$(first,last)\cdots\mapsto(allfirst,alllast\text{-}first)$									
)									
nob(lpha)									

	$(first,last)\cdots\mapsto (allfirst,alllast\text{-}first)$												
Ø	1	2	1,2	3	1,3	2,3	1,2,3	α					
(0	31)	(44	75)	(0	56)	(44	100)	vallpha					
(0	44	0	44)	(31	31	56	56)	Step 1					
								Step 2					
								mob(lpha)					
								$\left lpha ight ^{-1}mob(lpha)$					
\sum								Sh ₁					
\sum								Sh_2					
\sum_{\sum}								Sh_3					

	$(first,last)\cdots\mapsto (allfirst,alllast-first)$												
	Ø	1	2	1,2	3	1,3	2,3	1,2,3	α				
_	(0	31)	(44	75)	(0	56)	(44	100)	vallpha				
	(0	44)	(0	44)	(31	31)	(56	56)	Step 1				
									Step 2				
									mob(lpha)				
									$\left lpha ight ^{-1}mob(lpha)$				
	\sum								Sh ₁				
	\sum								Sh_2				
	\sum								Sh_3				

	$(first,last)\cdots\mapsto (allfirst,alllast\text{-}first)$											
Ø	1	2	1,2	3	1,3	2,3	1,2,3	α				
(0	31)	(44	75)	(0	56)	(44	100)	vallpha				
(0	44)	(0	44)	(31	31)	(56	56)	Step 1				
(0	0	31	56)					Step 2				
								mob(lpha)				
								$\left lpha ight ^{-1}mob(lpha)$				
\sum								Sh ₁				
\sum								Sh_2				
\sum_{\sum}								Sh_3				

$(first,last)\cdots\mapsto(allfirst,alllast\text{-}first)$												
Ø	1	2	1,2	3	1,3	2,3	1,2,3	α				
(0	31)	(44	75)	(0	56)	(44	100)	vallpha				
(0	44)	(0	44)	(31	31)	(56	56)	Step 1				
(0	0	31	56)	(44	44	0	0)	Step 2				
								mob(lpha)				
								$\left lpha ight ^{-1}mob(lpha)$				
\sum								Sh ₁				
\sum								Sh_2				
\sum_{\sum}								Sh_3				

	$(first,last)\cdots\mapsto(allfirst,alllast-first)$												
	Ø	1	2	1,2	3	1,3	2,3	1,2,3	α				
_	(0	31)	(44	75)	(0	56)	(44	100)	vallpha				
	(0	44)	(0	44)	(31	31)	(56	56)	Step 1				
	(0	0)	(31	56)	(44	44)	(0	0)	Step 2				
									mob(lpha)				
									$\left lpha ight ^{-1}mob(lpha)$				
	\sum								Sh ₁				
	\sum								Sh_2				
	\sum								Sh_3				

	$(first,last)\cdots\mapsto \big(allfirst,alllast-first\big)$												
Ø	1	2	1,2	3	1,3	2,3	1,2,3	α					
(0	31)	(44	75)	(0	56)	(44	100)	vallpha					
(0	44)	(0	44)	(31	31)	(56	56)	Step 1					
(0	0)	(31	56)	(44	44)	(0	0)	Step 2					
(0	31	44	0)					mob(lpha)					
								$ lpha ^{-1} \operatorname{mob}(lpha)$					
\sum								Sh ₁					
\sum								Sh_2					
\sum_{\sum}								Sh_3					

	$(first,last)\cdots\mapsto \big(allfirst,alllast\text{-}first\big)$												
	Ø	1	2	1,2	3	1,3	2,3	1,2,3	α				
((0	31)	(44	75)	(0	56)	(44	100)	$\operatorname{val} \alpha$				
(0	44)	(0	44)	(31	31)	(56	56)	Step 1				
((0	0)	(31	56)	(44	44)	(0	0)	Step 2				
((0	31	44	0)	(0	25	0	0)	mob(lpha)				
									$ lpha ^{-1} \operatorname{mob}(lpha)$				
	\sum								Sh ₁				
2	\sum_{i}								Sh_2				
2									Sh_3				

	$(first,last)\cdots\mapsto(allfirst,alllast\text{-}first)$												
Ø	1	2	1,2	3	1,3	2,3	1,2,3	α					
(0	31)	(44	75)	(0	56)	(44	100)	vallpha					
(0	44)	(0	44)	(31	31)	(56	56)	Step 1					
(0	0)	(31	56)	(44	44)	(0	0)	Step 2					
0	31	44	0	0	25	0	0	mob(lpha)					
	31	44	0	0	12.5	0	0	$\left lpha ight ^{-1}mob(lpha)$					
\sum								Sh ₁					
\sum_{\sum}								Sh_2					
\sum								Sh_3					

	$(first,last)\cdots\mapsto(allfirst,alllast-first)$												
Ø	1	2	1,2	3	1,3	2,3	1,2,3	α					
(0	31)	(44	75)	(0	56)	(44	100)	val lpha					
(0	44)	(0	44)	(31	31)	(56	56)	Step 1					
(0	0)	(31	56)	(44	44)	(0	0)	Step 2					
0	31	44	0	0	25	0	0	mob(lpha)					
	31	44	0	0	12.5	0	0	$\left lpha ight ^{-1}mob(lpha)$					
\sum	31		0		12.5		0	Sh ₁					
\sum_{\sum}								Sh_2					
\sum								Sh_3					

$(first,last)\cdots\mapsto(allfirst,alllast\text{-}first)$												
Ø	1	2	1,2	3	1,3	2,3	1,2,3	α				
(0	31)	(44	75)	(0	56)	(44	100)	vallpha				
(0	44)	(0	44)	(31	31)	(56	56)	Step 1				
(0	0)	(31	56)	(44	44)	(0	0)	Step 2				
0	31	44	0	0	25	0	0	mob(lpha)				
	31	44	0	0	12.5	0	0	$ lpha ^{-1} \operatorname{mob}(lpha)$				
\sum	31		0		12.5		0	Sh ₁				
\sum_{\sum}		44	0			0	0	Sh_2				
\sum								Sh_3				

	$(first,last)\cdots\mapsto\big(allfirst,alllast-first\big)$												
Ø	1	2	1,2	3	1,3	2,3	1,2,3	α					
(0	31)	(44	75)	(0	56)	(44	100)	vallpha					
(0	44)	(0	44)	(31	31)	(56	56)	Step 1					
(0	0)	(31	56)	(44	44)	(0	0)	Step 2					
0	31	44	0	0	25	0	0	mob(lpha)					
	31	44	0	0	12.5	0	0	$\left lpha ight ^{-1}mob(lpha)$					
\sum	31		0		12.5		0	Sh ₁					
\sum		44	0			0	0	Sh_2					
\sum_{\sum}				0	12.5	0	0	Sh_3					

Thank You!

```
Questions, Comments
```

mailto:e.plischke@hzdr.de

Preprints, Scripts, Stuff

https://artefakte.rz-housing.tu-clausthal.de/epl/

GitLab Repository

 $\verb|https://gitlab.gwdg.de/elmar.plischke/global-sensitivity-analysis-collection| \\$

References (I)

Goda, T. (2021).

A simple algorithm for global sensitivity analysis with Shapley effects. Reliability Engineering&System Safety, 213:107702.

Good, I. J. (1958).

The interaction algorithms and practical Fourier analysis. Journal of the Royal Statistical Society, Series B, 20:361–372. Addendum: 22:372-375, 1960.

Grabisch, M. (2006).

Capacities and games on lattices: A survey of results.

International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 14(4):371–392.

Owen, A. B. (2014).

Sobol' indices and Shapley values. SIAM/ASA Journal on Uncertainty Quantification, 2(1):245–251.

Plischke, E., Rabitti, G., and Borgonovo, E. (2021).

Computing Shapley effects for sensitivity analysis. SIAM/ASA Journal on Uncertainty Quantification, 9(4):1411–1437.

Yates, F. (1937).

The design and analysis of factorial experiments.

Technical Communication 35, Imperial Bureau of Soil Science, Harpenden.

