语法分析

魏恒峰

hfwei@nju.edu.cn

2020年11月29日

输入: 词法单元流 & 语言的语法规则

输出: 语法分析树 (Parse Tree)

语法分析举例

3/33

语法分析阶段的主题之一: 上下文无关文法

```
\langle \text{Stmt} \rangle \rightarrow \langle \text{Id} \rangle = \langle \text{Expr} \rangle;
            \langle Stmt \rangle \rightarrow \{ \langle StmtList \rangle \}
           \langle Stmt \rangle \rightarrow if (\langle Expr \rangle) \langle Stmt \rangle
\langle StmtList \rangle \rightarrow \langle Stmt \rangle
\langle StmtList \rangle \rightarrow \langle StmtList \rangle \langle Stmt \rangle
           \langle \text{Expr} \rangle \rightarrow \langle \text{Id} \rangle
           \langle \text{Expr} \rangle \rightarrow \langle \text{Num} \rangle
           \langle \text{Expr} \rangle \rightarrow \langle \text{Expr} \rangle \langle \text{Optr} \rangle \langle \text{Expr} \rangle
                    \langle \mathrm{Id} \rangle \to \mathbf{x}
                    \langle \mathrm{Id} \rangle \to \mathbf{v}
            \langle \text{Num} \rangle \rightarrow 0
            \langle \text{Num} \rangle \rightarrow 1
            \langle \text{Num} \rangle \rightarrow 9
            \langle \text{Optr} \rangle \rightarrow >
            \langle \text{Optr} \rangle \rightarrow +
```

4/33

语法分析阶段的主题之二: 构建语法分析树

						(5	$\operatorname{Stmt} angle$						
if ((Expr))					(St	$\mathrm{mt}\rangle$			
if ((Expr)	(Optr)	(Expr))					(St	mt			
if ($\langle \mathrm{Id} \rangle$	(Optr)	(Expr)						(St	$\operatorname{mt}\rangle$			
if (x	(Optr)	(Expr)						(St	$\mathrm{mt} \rangle$			
if (x	>	$\langle \text{Expr} \rangle$						(St	$\operatorname{mt} \rangle$			
if (x	>	(Num))						$\operatorname{mt} \rangle$			
if (x	>	9)					St	$mt\rangle$			
if (x	>	9) -	{			(tList			}
if (>	9		{	Stn	ntList	,			Stmt>		-;
if (>	9		}	·	tmt)				Stmt)		
if (>	9		\ <u>\ld</u>		(Expr)	;			stmt		
if (x	>	9		x		(Expr)			(S	ftmt		
if (x	>	9		{ x	=	(Num)				ftmt		
if (>	9			=	0				$\operatorname{stmt} \rangle$		
if (x	>	9		{ x			; \(\lambda \) Id) =		(Expr)		; }
if (>	9		{ x			;y			(Expr)		1
if (>	9			-		; y	=	(Expr)	(Optr)	(Expr)	: }
if (x	>	9		{ x	=		, y	=	$\langle \mathrm{Id} \rangle$	(Optr)	(Expr)	
if (>	9		{ x			; y	=	У	$\langle \mathrm{Optr} \rangle$	(Expr)	: }
if (>	9					, J	-	у	+	$\langle \text{Expr} \rangle$: }
if (>	9			-		, y	=		+	(Num)	
if (x	>	9)	{ x	=	0	; v	=	y	+	1	; }
(-				-	, ,				_ 3 → 4 3	. ,

5/33

语法分析阶段的主题之三: 错误恢复

报错、恢复、继续分析

只考虑无二义性的文法

这意味着,每个句子对应唯一的一棵语法分析树

今日份主题: LR(1) (LR(0)) 语法分析器

自顶向下的、

不断规约的、

基于句柄查找自动机的、

适用于LR(1) (LR(0)) 文法的、

LR(1) (LR(0)) 语法分析器

自底向上构建语法分析树

根节点是文法的起始符号 S

叶节点是词法单元流 w\$

仅包含终结符号与特殊的文件结束符 \$

自底向上构建语法分析树

根节点是文法的起始符号 S

每个中间非终结符节点表示使用它的某条产生式进行归约

 \mathbf{H} 节点是词法单元流 w\$

仅包含终结符号与特殊的文件结束符 \$

"推导"与"归约"

从产生式的角度看,是"推导"

$$A \to \alpha$$

从输入的角度看,是"归约"

$$A \leftarrow \alpha$$

$$S \triangleq \gamma_0 \implies \dots \gamma_{i-1} \implies \gamma_i \implies \gamma_{r+1} \implies \dots \implies r_n = w$$

 $S \triangleq \gamma_0 \iff \dots \gamma_{i-1} \iff \gamma_i \iff \gamma_{r+1} \iff \dots \iff r_n = w$

自底向上语法分析器为输入构造反向推导

LR(*) **语法分析器**

L: **从左向右** (left-to-right) 扫描输入

R: 构建反向 (reverse) 最右 (leftmost) 推导

在最右推导中,最左叶节点最后才被处理

在反向最右推导中, 最左叶节点最先被处理 (与从左到右扫描一致)

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to (E)$$

$$F \to \mathbf{id}$$

$$w = id * id$$

板书演示"栈"上操作:移入与规约

部分构建的语法分析树的上边缘与剩余的输入构成当前句型

LR 语法分析器使用栈存储语法分析树的上边缘

Definition (句柄 (Handle))

在输入串的 (唯一) 反向最右推导中, **如果**下一步是逆用产生式 $A \to \alpha$ 将 α 规约为 A, 则称 α 是当前句型的**句柄**。

最右句型	句柄	归约用的产生式
$id_1 * id_2$ $F * id_2$	$\operatorname{id}_1 F$	$F o \mathrm{id}$ $T o F$
$T * \mathbf{id}_2$ $T * F$	$\operatorname{id}_2 \\ T * F$	$F o \mathbf{id}$ $T o T * F$
	T^{*F}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

LR 语法分析器的关键就是高效寻找每个归约步骤所使用的句柄。

句柄可能在哪里?

Theorem

存在一种 LR 语法分析方法, 保证句柄总是出现在栈顶。

句柄可能在哪里?

Theorem

存在一种 LR 语法分析方法, 保证句柄总是出现在栈顶。

图 4-29 一个最右推导中两个连续步骤的两种情况

 $S \xrightarrow[\mathrm{rm}]{*} \alpha Az \xrightarrow[\mathrm{rm}]{*} \alpha \beta Byz \xrightarrow[\mathrm{rm}]{*} \alpha \beta \gamma yz \quad S \xrightarrow[\mathrm{rm}]{*} \alpha BxAz \xrightarrow[\mathrm{rm}]{*} \alpha Bxyz \xrightarrow[\mathrm{rm}]{*} \alpha \gamma xy.$

Theorem

存在一种 LR 语法分析方法, 保证句柄总是出现在栈顶。

LR 语法分析器在进行一次归约后,接着移入零个或多个符号,继续寻找下一个句柄

为什么第一个 F 被直接归约为 T, 而第二个 F 则与 T*F 一起被归约为 T?

为什么第一个 F 被直接归约为 T, 而第二个 F 则与 T*F 一起被归约为 T?

栈刻画了语法分析器目前所知的所有信息,

隐含了语法分析器的当前状态

,	状态				GOTO						
1			id	+	*	()	\$	E	T	F
	0		s5			s4	-		1	2	3
	1			s6				acc			
Ì	2			r2	s7		$\mathbf{r}2$	r2	ĺ		
	3			r4	r4		r4	r4			
ĺ	4		s5			s4	_		8	2	3
1	5			r 6	r6		r6	r6			
	6		s5	v		s4			l	9	3
	7		s5			54					10
1	8			s6			s11)		
	9			r1	s7		r1	r1]		
	10		}	r3	r3		r3	r3	1		
	11			r5	r5		r5	r5 _			

LR(0) 分析表指导 LR(0) 语法分析器

在当前状态 (编号)下,面对当前文法符号时,该采取什么动作

状态	# *			GOTO						
1人心		id	+	*	()	\$	E	T_{\perp}	F
0]	s5			s 4			1	2	3
1		[s6				acc			
2			r2	s7		r2	r2	ĺ		
3			r4	r4		r4	r4			
4		s5			s4			8	2	3
5			r 6	r6		r6	r6			
6	Ι,	s5	v		s4			l	9	3
7	'	s5			54					10
8			s6			s11		1		
9			r1	s7		r1	r1]		
10		}	r3	r3		r3	r3	1		
11			r5	r5		r5	r5			

sn	移入, 并进入状态 n
rk	使用 k 号产生式进行归约
gn	转换到状态 n
a	成功接受, 结束
空白	错误

Definition (LR(0) 文法)

如果文法 G 的LR(0) 分析表是无冲突的,则 G 是 LR(0) 文法。

无冲突: ACTION 表中每个单元格最多只有一种动作

再次板书演示"栈"上操作:移入与规约

$E \to E + T$
E o T
$T \to T * F$
T o F
$F \to (E)$
$F o \mathbf{id}$

	状态				GOTO						
*			id	+	*	()	\$	E	\overline{T}	\overline{F}
	0		s5			s 4			1	2	3
	1			s6				acc]		
Ì	2			r2	s7		r2	r2	ĺ		
	3			r4	r4		r4	r4	1		
ĺ	4		s5			s4			8	2	3
1	5			r 6	r6		r6	r6	}		
	6	١.	s5	4.		s4				9	3
	7		s5			54					10
1	8			s6			s11		1		
	9			r1	s7		r1	r1)		
	10		}	r3	r3		r3	r3	1		
	11			r5	r5		r5	r5			

$$w = (x, x, x)$$

栈中明确包含了语法分析器的状态

```
1: procedure LR()
       PUSH(S,\$) PUSH(S,s_0)
 2:
       t \leftarrow \text{NEXT-TOKEN}()
 3:
      while 1 do
 4:
           s \leftarrow \text{Top}(S) \triangleright s 一定是某个状态编号, 而不是文法符号
 5:
           if ACTION[s, t] = s_i then
                                                                     ▷移入
 6.
              PUSH(S, t) PUSH(S, i)
 7:
              t \leftarrow \text{NEXT-TOKEN}()
 8:
           else if ACTION[s,t] = r_i then
                                                         \triangleright 规约; i:A\to\alpha
 9:
               |\alpha| 次 Pop(S)
10:
              s \leftarrow \text{Top}(S) \quad \triangleright s 一定是某个状态编号, 而不是文法符号
11:
              PUSH(S, A) PUSH(S, GOTO[s, A])
                                                       > 转换状态
12:
           else if ACTION[s, t] = a then
                                                                     ▷接受
13:
14:
              break
           else
15:
              ERROR(...)
16:
```

行号	栈	符号	输入	动作
(1)	0	\$	id * id \$	移入到 5
(2)	0.5	\$ id	* id \$	按照 $F \rightarrow id$ 归约
(3)	0.3	\$ F	* id \$	f 按照 $T \to F$ 归约
(4)	0 2	\$ T	* id \$	移入到 7
(5)	027	\$ T *	id \$	移入到 5
(6)	0275	T * id	\$	接照 $F \rightarrow id$ 归约
(7)	02710	T * F	\$	按照 $T \rightarrow T * F$ 归约
(8)	0 2	\$ T	\$	按照 $E \to T$ 归约
(9)	01	\$ E	\$	接受

w = id * id\$ 的分析过程

如何构造 LR(0) 分析表?

,	状态				GOTO						
_ 1/			id	+	*	()	\$	E	T	F
	0		s5			s4			1	2	3
	1			s6				acc			
Ì	2			r2	s7		r2	r2	ĺ		
	3			r4	r4		r4	r4			
ĺ	4		s5			s4			8	2	3
١ ١	5			r 6	r6		r6	r6	}		
	6		s5	v		s4			l	9	3
	7		s5			54					10
1	8			s6			s11		Ì		
	9			r1	s7		r1	r1	ļ		
	10		}	r3	r3		r3	r3	1		
	11			r5	r5		_ r5	r5			

LR(0) 分析表指导 LR(0) 语法分析器

在当前状态 (编号)下,面对当前文法符号时,该采取什么动作

LR(0) 句柄寻找自动机

Definition (LR(0) 项 (Item))

一个文法 G 的一个 LR(0) 项是 G 的一个产生式再加上一个位于体部某处的点。

$$A \to XYZ$$

$$A \to \cdot XYZ$$

$$A \to X \cdot YZ$$

$$A \to XY \cdot Z$$

$$A \to XYZ$$

产生式 $A\epsilon$ 只有一个项 $A \rightarrow \cdot$

$$A \to \cdot XYZ$$
$$A \to X \cdot YZ$$

$$A \to XY \cdot Z$$

$$A \to XYZ \cdot$$

项指明了语法分析器已经看到了一个产生式的哪些部分

Definition (项集)

Definition (项集)

Definition (项集族)

Definition (增广文法 (Augmented Grammar))

文法 G 的增广文法是在 G 中加入产生式 $S' \to S$ 得到的文法。

板书演示 LR(0) 句柄寻找自动机

 $\operatorname{CLOSURE}(I)$

GOTO(I, X)

Thank You!

Office 926 hfwei@nju.edu.cn