NUMERICAL PROGRAMMING 1 CSE	
Post Oliver Jules	
Prof. Oliver Juge	
Dr. Daviel Karrasch	
DI. IDIMEI KERIASIM	
Center for Mathematics - M3	
TUM	

1. Basics 1.1 Flooting point anthustic 97 = 3.141592... (base 10) For each real number, we are only storing finitely many dignits: $\frac{1}{10} = 0.00011001100...[2]$ $= 1.0 \cdot 10^{-1} = 1.1001100... \cdot 2^{-4}$ floating point numbers $x = \pm d_1 \cdot d_2 d_3 \cdots d_P \cdot b$ exponent sign mantissa & base with digits de = {0,1,..,b-1} normalization: "float" the decimal point such that d, \$\neq 0\$ (and adjust the exponent appropriately) Since we can only store a bounded range of integers, we need Cuin & e & Emax For numbers with e>emax we get an overflow error / luf e < emin we get an underflow error IEEE 754 floating point humbers double (precision): 64 bits = 8 bytes s: 1 e: 11 f: 52 $(-1)^{5}$ 1. d_{2} ·· d_{p} · e^{-1023} if $e \in 1:2046$ $(-1)^{5} \circ d_{2} - d_{p} \cdot e^{-1023}$ if e = 0if e=2047 and f=0 if e=2047 out f #0 NaN "not a number"

Madrine epsilon

is the smallest number & such that (in floating point an thingtic)

double precision: $\varepsilon \approx 2 \cdot 10^{16}$

Rouding

a satisfies $|a-a| \leq \frac{\varepsilon}{2} a$

$$\frac{|a-\hat{a}|}{|a|} \in \frac{\varepsilon}{2} \quad \text{relative error of } \hat{a}$$

IEEE 754 anthwatc satisfies the following:
for any anthwest operation oe 2+,-,-,/3 and any floating point humbers a,b; $a \circ b - \alpha \circ b$ £ £ 2 $\overline{|a \circ b|}$ where aôb = aob

1.2. Couditioning of problems

problem (in a mathematical sense): \$: X -> Y

example: find the zeros of some goodratic polynomial

$$x^2-2px-q$$

input: $(p,q) \in \mathbb{R}^2 = X$

output: $(x_{11}x_{2}) \in \mathbb{R}^{2} = Y$ s.t. $x_{12}^{2} - 2px_{12} - q = 0$

now use that $\frac{|x-\hat{x}|}{|x|} = \frac{|8x|}{|x|} \neq \epsilon$ lie. $|5x| \neq \epsilon |x|$ likewise Isy = E 4 ie we obtain $\frac{|\delta x| + |\delta y|}{|x+y|} \le \frac{\epsilon |x| + \epsilon |y|}{|x+y|}$ $= \frac{|x| + |y|}{|x + y|} \varepsilon = |x| [x - x]$ = Kf Case 1: \times and y have the same sign: |x|+|y|=|x+y| \Rightarrow $\kappa_{\ell} = 1$ Case 2: \times and y have opposite sign: |x+y| = |x|-|y|So for $|x| \approx |y|$, $|x+y| \approx 0$ and $|x| \approx |x| = |x| + |y|$

Ranark: In the output, one typically looses log, ke decinal places of accuracy, i.e. $K_{f} = 10^{10}$ — we loose 10 digit of accuracy loss of accuracy in addition: $x + y = 0.00011 \cdot 10^{\circ}$ $= 1.12222 \cdot 10^{-4}$ / caucellation of leading digits other anthunetic operation: P 1 12 Hore generally: $f: \mathbb{R}^n \to \mathbb{R}$ differentiable, $x = (x_1, x_n)^T \mapsto$ $K_{\ell} = \frac{\langle |\nabla f(x)|, |x| \rangle}{|f(x)|} = \frac{\sum_{i=1}^{N} |\partial_i f(x)| |x_i|}{|f(x)|}$ (derive by linearization: $f(x+\delta x) - f(x) = \langle xf(x), \delta x \rangle$

13 Stability of agonthus problem: $\times \mapsto y = f(x)$ expected error in $y: [y-\hat{y}] \leq |2\hat{y}[x-\hat{x}]$ algorithm: from of 20 fr $, \xi_1, \xi_2, \dots \in \{+, -, \circ, /, \pi\}$ goal: = 1 Hus sequence of elementary an Humetic operations for evaluating f is not unique! implementation: $\hat{f} = \hat{f}_{n} \circ \cdots \circ \hat{f}_{2} \circ \hat{f}_{1} = f \circ f_{n} \cdots \circ f \circ f_{2} \circ f \circ f_{1}$ Simple case: $f = f_2 \circ f_1$ | Trouding from \times to \hat{x} $\hat{\xi} = \xi_2 \circ \mathcal{R} \circ \xi_1$

if f2 has a large condition number, then
the error in the output will be large

stable algorithm: $[f(x) - \hat{f}(x)] = O(\kappa_f \cdot \epsilon)$ = CKgE C constant not too large vustable digorithm: $[f(x) - \hat{f}(x)] \gg k \epsilon$ example: problem: compute the zeros of a quadratic polynomial $x^2-2px-q$ input: (p,q) e R2 output: $(X_1, X_2) \in \mathbb{R}^2$ problem is well conditioned school agonitum! $X_1 = p - \sqrt{p^2 + q^2}$ $X_2 = p + \sqrt{p^2 + q^2}$

doservation:
$$(p_1q)$$
 $\xrightarrow{f_1}$ $(r = \sqrt{p^2+q})$ $\xrightarrow{f_2}$ $p - r = x_1$ \times $p + r = x_2$ \times $y + r = x_2$ \times $x + r =$

