DeepSnake: A Deep Convolutional-Snake Model Combination for Breast Ultrasound Image Segmentation

Existing Methods

- Conventional Method Active Contour Model
 - > Geodesic contour model, Snake Model, Active contour without edge(ACWE)
- Cons
 - Limitations related to initialization
 - Poor convergences

AC model contour evolution

Existing Methods

CNN-based Model

- FCN, UNet, SegNet, GSCNN, DeepLab V1-3
- Cons
 - Shaky at preserving shape information, spatial resolution
 - Rigid shaped mask generated

BUS image

Ground Truth

Predicted output

DeepSnake: A Deep Convolutional-Snake Model Combination

Morphological Snake Model

- Combination of CNN-based model and Morphological Snake model
- Pretrained UNet and DeepLabV3 are ensembled for localization of segmentation
- Morphological Snake model is added for better spatial resolution

DeepSnake: A Deep Convolutional-Snake Model Combination

DeepLabV3

- Tag Point
 - 1. Atrous Convolution

2. Atrous Spatial Pyramid Pooling

UNet

- Tag Point

1. Encoder

- 3x3 Convolution Layer
- 2x2 Maxpool Layer

2. Decoder

- Deconvolution layer with stride 2
- Concatenation with the corresponding cropped feature map from the contracting path

DeepSnake: A Deep Convolutional-Snake Model Combination

Morphological Snake Model¹

- Tag Point
- 1. Morphological Operator erosion and dilation
- 2. Uses Binary Image Operation

Solved Problems

- Better spatial resolution then CNN-based model
- Initialization of active contour model
- Convergence of active contour model

Marquez-Neila et al. 2013

DeepSnake: Visualization

DeepSnake: Model Evaluation

- Dataset Used BUSIS (Thailand) and BUSI (Egypt)
 - Trained on BUSI train set(600 images)
 - Tested on both BUSI and BUSIS test set
 - Mean IoU(%) and mean Dice coefficient(%) are the evaluation metrics

Comparison of CNN-based models on BUSI test set

Model Name	mDice
SegNet	56.6
DeepLabV3	60.1
FCN	46.2
UNet	62.7
GSCNN	59.1

Comparison of performance on both BUSI and BUSIS test set

Model Name	BUSI test set			BUSIS test set				
	mDice	mIoU	pixel	bf	mDice	mIoU	pixel	bf
SegNet[Badrinarayanan et al.]	56.6	10.2	68.3	22.1	66.9	13.1	66.7	8.7
UNet[Ronneberger et al.]	62.7	11.1	67.1	30.2	66.8	12.1	65.1	9.1
DeepLabV3[Chen et al.]	60.1	9.8	72.4	26.9	64.3	12.4	68.3	5.4
Ensembled model	61.7	46.6	67.1	28.6	68.0	51.8	70.3	7.5
Ensembled model with MSM	63.5	53.1	68.1	22.3	72.7	63.3	75.3	9.2

DeepSnake: Limitations

- BUS image with high shadow got our proposed method confused sometimes. GAN can be used to automatic detect shadow from US image
- Morphological Snake Model's hyper-parameter can be made learnable.

DeepSnake Model-Contour

Ensembled Model-Mask

DeepSnake Model-Mask

DeepSnake: A Deep Convolutional-Snake Model Combination for Breast Ultrasound Image Segmentation

Questions?

