MAT136H1F – Quiz 3

TUT0101 - M3 (TA: I. Angelopoulos)

Fall, 2014

FAMILY	NAME:	
--------	-------	--

GIVEN NAME:

STUDENT ID:

Mark your lecture and tutorial sections:

You have 15 minutes to solve the problems. Each problem is worth 2 points. Good luck!

Question 1. Consider the curve $y = \ln(1 - x^2)$ for $0 \le x \le 1/2$. Write the arc length L as an integral.

$$y'(x) = \frac{1}{1-x^2} \left(-2x\right) = \frac{-2x}{1-x^2} \qquad y'(x)^2 = \left(\frac{-2x}{1-x^3}\right)^2 = \frac{4x^3}{(1-x^3)^3}$$

$$= \int_0^{\sqrt{2}} \sqrt{1+y'(x)^2} \, dx = \int_0^{\sqrt{2}} \sqrt{1+\frac{4x^3}{(1-x^3)^3}} \, dx$$
Question 2. Express the improper integral $\int_1^3 \frac{1}{2-x} dx$ in terms of limits and definite integrals according

to its definition.

$$\int_{1}^{3} \frac{dx}{2-x} \stackrel{\text{def}}{=} \lim_{b \to 2^{-}} \int_{1}^{b} \frac{dx}{2-x} + \lim_{b \to 2^{+}} \int_{b}^{3} \frac{dx}{2-x}$$

Question 3. Determine if $\int_1^3 \frac{1}{2-x} dx$ is convergent or divergent and evaluate if possible.

Let's look at the part
$$\lim_{b \to 2^{-}} \int_{1}^{b} \frac{dx}{2-x} = \lim_{b \to 2^{-}} \left[-\ln(2-x) \right]_{1}^{b}$$

$$= \lim_{b \to 2^{-}} \left[-\ln(2-b) + \ln(2-1) \right] = -\lim_{b \to 2^{-}} \ln(2-b) = \infty$$

Just from the divergence of one of the parts, We can conclude that $\int_{-2-x}^{3} \frac{dx}{2-x}$ diverges.

MAT136H1F - Quiz 3

TUT0201 – R4 (TA: B. Navarro Lameda)

Fall, 2014

FAMILY NAME:	
GIVEN NAME:	
STUDENT ID:	
Mark your lecture and tutorial sections:	
L0101 (morning) L5101 (evening) T0101 (M3) T0102 (R4) T5101 (T5) T	75201 (R5)

You have 15 minutes to solve the problems. Each problem is worth 2 points. Good luck!

Question 1. Consider the curve $y=2x^{3/2}$ for $0 \le x \le 1$. Write the arc length L as an integral.

$$y'(x) = 3x^{1/2}$$
 $y'(x)^{2} = 9x$

$$L = \int_{0}^{1} \sqrt{1 + y'(x)^{2}} dx = \int_{0}^{1} \sqrt{1 + 9x} dx$$

Question 2. Calculate the arc length L from Question 1.

$$\int \sqrt{1+9x} \, dx = \int u \left(\frac{2}{9} u \, du \right) = \frac{2}{9} \int u^2 du$$

$$= \frac{2}{9} \left(\frac{1}{3} u^3 \right) + C = \frac{2}{97} \left(\sqrt{1+9x} \right)^3 + C$$

$$= \frac{2}{97} \left(\sqrt{1+9x} \right)^3 = \frac{2}{97} \left(\sqrt{1+9} \right)^3 - \sqrt{1+9(0)}$$

$$= \frac{2}{97} \left(\sqrt{1+9x} \right)^3 = \frac{2}{97} \left(\sqrt{1+9} \right)^3 - \sqrt{1+9(0)}$$

$$= \frac{2}{97} \left(\sqrt{1+9x} \right)^3 = \frac{2}{97} \left(\sqrt{1+9} \right)^3 - \sqrt{1+9(0)}$$

$$= \frac{2}{97} \left(\sqrt{1+9x} \right)^3 = \frac{2}{97} \left(\sqrt{1+9} \right)^3 - \sqrt{1+9(0)}$$

Question 3. Express the improper integral $\int_0^1 \frac{1}{x \ln(x)} dx$ in terms of limits and definite integrals according to its definition. (You do not have to evaluate the integral.)

 $\frac{1}{x \ln(x)}$ has an asymptote at x=0 and x=1. Let $x=\frac{1}{2}$ be a point in between.

$$\int_{0}^{1} \frac{dx}{x \ln(x)} \stackrel{\text{def}}{=} \lim_{b \to 0^{+}} \int_{b}^{1/2} \frac{dx}{x \ln(x)} + \lim_{b \to 1^{-}} \int_{1/2}^{b} \frac{dx}{x \ln(x)}$$

MAT136H1F – Quiz 3

TUT5101 – T5 (TA: A. Stewart) Fall, 2014

FAMILY NAME:	
GIVEN NAME:	

STUDENT ID:

Mark your lecture and tutorial sections:

You have 15 minutes to solve the problems. Each problem is worth 2 points. Good luck!

Question 1. Find a curve y = f(x) such that the integral $\int_4^5 \sqrt{2 - 2x + x^2} dx$ is the arc length of the curve over some interval.

need:
$$2-2x+x^2=1+f'(x)^2=1+(1-2x+x^2)=1+(1-x)^2$$

equate:
$$f(x) = 1-x$$
 therefore $f(x) = x - \frac{x^2}{2}$ (take C=0).

the curve is
$$y = x - \frac{x^2}{2}$$
 the interval is [4,5].

Question 2. Express the improper integral $\int_0^\infty \frac{r}{e^r} dr$ in terms of limits and definite integrals according to its definition.

$$\int_{0}^{\infty} \frac{r}{e^{r}} dr \stackrel{\text{def}}{=} \lim_{b \to \infty} \int_{0}^{b} \frac{r}{e^{r}} dr$$

Question 3. Determine if $\int_0^\infty \frac{r}{e^r} dr$ is convergent or divergent and evaluate if possible.

$$\int \frac{r}{e^r} dr = \int \frac{e^r}{u} dr = -\frac{e^r}{v} - \int (-\frac{e^r}{u}) dr = -re^r - e^r + C$$

Therefore
$$\int_0^\infty \frac{r}{e^r} dr \stackrel{\text{def}}{=} \lim_{b \to \infty} \int_0^b \frac{r}{e^r} dr = \lim_{b \to \infty} \left[-re^r - e^{-r} \right]_0^b = \lim_{b \to \infty} \left[-be^{-b} - e^{-b} - \frac{1}{(6)e^{-b}} \right]_0^b$$

=
$$\lim_{b \to \infty} \left[\frac{-b}{e^b} - \frac{1}{e^b} + 1 \right] = 1$$
. $\int_0^\infty \frac{r}{e^r} dr$ is convergent and equal to 1.

MAT136H1F - Quiz 3

TUT5201 - R5 (TA: B. Navarro Lameda)

Fall, 2014

FAMILY NAME:
GIVEN NAME:
STUDENT ID:
Mark your lecture and tutorial sections:
L0101 (morning) L5101 (evening) T0101 (M3) T0102 (R4) T5101 (T5) T5201 (R5)
You have 15 minutes to solve the problems. Each problem is worth 2 points. Good luck!
Question 1. Find a curve $y = f(x)$ such that the integral $\int_0^2 \sqrt{1 + \frac{x^2}{x^4 + 2x^2 + 1}} dx$ is the arc length of the curve over some interval.
need: $1 + \frac{x^2}{x^4 + 2x^2 + 1} = 1 + f(x)^2 = 1 + \left(\frac{x}{x^2 + 1}\right)^2$ Equate: $f(x) = \frac{x}{x^2 + 1}$ therefore $f(x) = \int \frac{x}{x^2 + 1} dx = \frac{1}{2} \ln(x^2 + 1)$ (take $\ell = 0$)
equate: $f'(x) = \frac{x}{x^2+1}$ therefore $f(x) = \int \frac{x}{x^2+1} dx = \frac{1}{2} \ln(x^2+1)$ (take (=0)
the curve is $y = \frac{1}{2} \ln(x^2 + 1)$ the interval is $[0, 2]$
Question 2. Express the improper integral $\int_0^{\pi} \tan(s)ds$ in terms of limits and definite integrals according to its definition.
$\int_{0}^{\pi} \tan(s) ds = \lim_{b \to \frac{\pi}{2}^{-}} \int_{0}^{b} \tan(s) ds + \lim_{b \to \frac{\pi}{2}^{+}} \int_{b}^{\pi} \tan(s) ds$
Question 3. Determine if $\int_0^{\pi} \tan(s)ds$ is convergent or divergent and evaluate if possible.
look at first part: $\lim_{b \to \pi^-} \int_0^b \tan(s) ds = \lim_{b \to \pi^-} \left[\ln(\sec(s)) \right]_0^b$

 $=\lim_{b\to \frac{\pi}{2}^{-}}\left[\ln\left(\frac{1}{\cos b}\right)-\ln\left(\frac{1}{\cos (o)}\right)\right]=\lim_{b\to \frac{\pi}{2}^{-}}\left[\ln\left(\frac{1}{\cos b}\right)\right]=0$

Just from the divergence of one of the parts, we can conclude that $\int_0^{\pi} \tan(s) ds$ diverges.