SABANCI UNIVERSITY Faculty of Engineering and Natural Sciences CS 302 Automata Theory

Answers to Final Examination

Answer 1 (25 points)

(a) (8 pts) State the full definition of a nondeterministic finite automaton (NFA),

 $A = (Q, \Sigma, \delta, s, F)$ including the extended transition function δE and the condition for a string $u \in \Sigma^*$ to be accepted by A (in your definition the domain and range of the transition functions δ and δE should be explicitly and clearly specified).

SEE THE RELEVANT SLIDES.

(b) (5pts) Construct an NFA A with at most 3 states that accepts the regular expression E = (1+0)*.1.(1+0) interpreted as a language.

(c) (6 pts) Construct a DFA B that accepts the language E in part (b).

q	σ	q'
X=1	0	1
1	1	1,2
Y=1,2	0	1,3
2	1	1,2,3
Z=1,3	0	1
1,3	1	1,2
W=1,2,3	0	1,3
1,2,3	1	1,2,3

(d) (6 pts) Construct a minimal state DFA C that accepts the language E in part (b).

The table below shows that \mathbf{B} is a minimal state machine, hence $\mathbf{C}=\mathbf{B}$ is a solution.

	Χ	Y	Z	W
V		2	1	1
X			1	1
Y				2
Z				
W				

Answer 2 (25 points)

(a) (9 pts) Specify, clearly and with all the details, a context-free grammar (CFG),

G = (V, T, R, S) that generates the set of all regular expressions over some finite set Σ .

SEE THE RELEVANT SLIDE

(b) (8 pts) Write down a regular expression E over the set $\{0,1\}$ corresponding to the language L where for each string u in L, 010 OR 101 is substring of u.

$$E = (1+\theta)*.((1.0.1)+(0.1.0)).(1+\theta)*$$

(c) (8 pts) Sketch an NFA that accepts the language L in part (b) above.

Answer 3 (25 points)

(a) (7 pts) State clearly the definition of a PDA P accepting a language L by final state; and by empty stack.

SEE THE RELEVANT SLIDES

(b) (10 pts) (Compute a PDA **P** that accepts the language $L = (\omega \in (0+1)^* / \#1 = \#0 = in \omega)$ by final state.

P transitions (f is the only final state):

$$(q_{\theta}, \theta, Z_{\theta}) \rightarrow (q_{\theta}, \theta Z_{\theta})$$

$$(q_{\theta}, 1, Z_{\theta}) \rightarrow (q_{\theta}, 1Z_{\theta})$$

$$(q_{\theta}, 1, 1) \rightarrow (q_{\theta}, 11)$$

$$(q_{\theta}, 0, 0) \rightarrow (q_{\theta}, \theta 0)$$

$$(q_{\theta}, 1, 0) \rightarrow (q_{\theta}, e)$$

$$(q_{\theta}, 0, 1) \rightarrow (q_{\theta}, e)$$

$$(q_{\theta}, 0, 1) \rightarrow (q_{\theta}, e)$$

$$(q_{\theta}, e, Z_{\theta}) \rightarrow (f, Z_{\theta})$$

(c) (8 pts) Is your **PDA** a deterministic **PDA** (**DPDA**)? If not try to modify it so that it is a **DPDA**.

Because of transitions $(q_{\theta}, 0, Z_{\theta}) \rightarrow (q_{\theta}, 0Z_{\theta})$ (or $(q_{\theta}, 1, Z_{\theta}) \rightarrow (q_{\theta}, 1Z_{\theta})$) and $(q_{\theta}, e, Z_{\theta}) \rightarrow (f, e)$ the above is not a *DPDA*.

To make it so, we modify by replacing the first 2 transitions by the following 2 transitions:

$$(f, 0, Z_{\theta}) \rightarrow (q_{\theta}, \theta Z_{\theta})$$

 $(f, 1, Z_{\theta}) \rightarrow (q_{\theta}, 1Z_{\theta})$

So that computation necessarily starts with the last transition $(q_{\theta}, e, Z_{\theta}) \rightarrow (f, Z_{\theta})$ and proceeds after that if input list is not empty.

Answer 4 (25 points)

Consider the language $L = (\omega \in \{a,b,c\}^* / \omega = a^{k+1}b^kc^{k-1}; k > 0)$

(a) (15 pts) Choosing a appropriate $\omega \in L$ (if you do not show explicitly your choice of ω you get NO credit!) and using the pumping lemma show that L is NOT a context-free language.

By PL for CFLs given the integer n choose $\omega = a^{n+1}b^n c^{n-1} \in L$ then $|\omega| > n$ hence by PL:

- (1) $\omega = xuvwz = a^{n+1}b^n c^{n-1}$
- $(2) /uvw / \leq n ; /uw / > 0$
- (3) $xu^jvw^jz \in L$, $\forall j \ge 0$

Hence the following 2 possibilities exist for uvw:

- (i) $uvw = a^r b^t$, r+t>0 and so $xvz = a^{n+1-q} b^{n-q} c^{n-1}$ where q+q>0
- (ii) $uvw = b^r c^t$, r+t > 0 and so $xvz = a^{n+1}b^{n-q}c^{n-1-q}$ where q+q > 0

For all these possibilities $xu^jvw^jz \notin L$ for j=0 a contradiction to PL! Hence L is not a CFL!

(b) (10 pts) Compute a 2-tape NDTM TM M that decides $L = (\omega \in \Sigma / \omega = uvu, u, v \in \Sigma^*, u \neq e)$

Initially *M* has the configuration $(s, \# \omega, \#)$ and $d \notin \Sigma$

$M > A = R^I$	<i>σ</i> ^I = #	h_{NO}
	o ¹ ≠ #	В
В	o ^I ≠ #	$R^{I}B$
	o ^l ≠ #	С
	σ ^I = #	h_{NO}
$C = R^I$	o ¹ ≠#	$d^{I} C$
	o ^I ≠#	D
	<i>σ</i> ^{<i>I</i>} = #	h_{NO}
D	$\sigma^{I} := X \neq \#$	$d^{1} R^{2} X^{2} D$
	<i>σ</i> ^I = #	$L_{\sharp}^{1}L_{\sharp}^{2}E$
$E = R^I R^2$	$\sigma^I = \sigma^2$	E
	$\sigma^{I} = d \wedge \sigma^{2} = \#$	h _{YES}
	else	h_{NO}