Lista 7: variedades diferenciáveis

17 de junho de 2025

- 1. Seja $U \subset \mathbb{R}^n$ um aberto. Mostre que, se $G: U \to \mathbb{R}^m$ é uma submersão em todo ponto do conjunto $M = \{p \in U: G(p) = 0\}$, então M é uma variedade de dimensão n m.
- 2. Em aula, definimos apenas a noção de "variedade de dimensão d". Mais geralmente, dizemos que um subconjunto $M \subset \mathbb{R}^n$ é uma variedade de classe C^k (com $k \geq 1$) se, para todo ponto $p \in M$, existe uma vizinhança $U \subset \mathbb{R}^n$ de p e um número natural d_p tal que $U \cap M$ é C^k -difeomorfo a um aberto de \mathbb{R}^{d_p} . O natural d_p é dito dimensão de M em p. Assim, uma variedade de dimensão d é uma variedade tal que $d_p = d$ para todo p.
 - (a) Certifique-se que d_p está bem definido.
 - (b) Mostre que a função $M \to \mathbb{N}$, $p \mapsto d_p$, é localmente constante.
- 3. Mostre que, se $M \subset \mathbb{R}^n$ e $N \subset \mathbb{R}^m$ são variedades de classe C^k , com $k \geq 1$, então o produto $M \times N \subset \mathbb{R}^{m+n}$ é uma variedade de classe C^k e dimensão dim $M + \dim N$.
- 4. Mostre que um subconjunto $M \subset \mathbb{R}^n$ é uma variedade de dimensão 0 se, e somente se, M é discreto.
- 5. Seja $k \geq 1$, M uma variedade de classe C^k e $f: M \to \mathbb{R}$ uma função de classe C^k . Mostre que df(p) = 0 para todo $p \in M$ se, e somente se, f é localmente constante.
- 6. (Qualificação 2021) Dado R > 0, considere a esfera de raio R centrada na origem $S_R = \{x \in \mathbb{R}^n : \|x\| = R\}$. Seja $f : \mathbb{R}^n \to \mathbb{R}$ uma função de classe C^1 . Mostre que f restrita a S_R é constante para todo R > 0 se, e somente se, existe uma função contínua $g : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ tal que $\nabla f(x) = g(x)x$.
- 7. Determine uma parametrização do toro em \mathbb{R}^3 obtido pela revolução em torno do eixo z de um círculo, no plano yz, de raio r e centro a uma distância R da origem. Mostre que esta variedade é uma hipersuperfície em \mathbb{R}^3 definida por uma equação explícita. Calcule os seus espaços tangentes.
- 8. Sejam M e N variedades de classe C^k , com $k \geq 1$. Mostre que uma aplicação $F: M \to N$ é de classe C^k (de acordo com a definição da aula) se, e somente se, $F \circ \psi : V \to N \subset \mathbb{R}^m$ é de classe C^k para toda parametrização local $\psi : V \to M \cap U$ de M.
- 9. Seja $F: M \to N$ uma aplicação de classe C^k entre variedades de classe C^k . Mostre que $v \in T_pM$ é um vetor da forma v = c'(0) para algum caminho $c: (-\varepsilon, \varepsilon) \to M$, com c(0) = p, então

$$DF(p)c'(0) = (F \circ c)'(0).$$

- 10. (Qualificação 2019) Seja $a \in \mathbb{R}^n$ e $M \subset \mathbb{R}^n$ uma variedade de classe C^k , com $k \ge 1$, que não contém a. Mostre que, se $p \in M$ é o ponto mais próximo de a, então o vetor a p é normal a M em p.
- 11. Sejam $M \subset \mathbb{R}^n$ e $N \subset \mathbb{R}^m$ variedades de classe C^k , com $k \geq 1$. Demonstre o teorema da função inversa para variedades, isto é, se $F: M \to N$ é uma aplicação de classe C^k e $p \in M$ é tal que $DF(p): T_pM \to T_{F(p)}N$ é um isomorfismo de espaços vetoriais, então existe uma vizinhança $U \subset \mathbb{R}^n$ de p e uma vizinhança $U' \subset \mathbb{R}^m$ de F(p) tais que F é um difeomorfismo C^k de $U \cap M$ sobre $U' \cap N$.

¹Isto é, $\langle a-p,v\rangle=0$ para todo $v\in T_pM$.

- 12. Mostre que um toro de revolução em \mathbb{R}^3 é difeomorfo a $S^1 \times S^1 \subset \mathbb{R}^4$.
- 13. Demonstre o teorema das "fibras de posto constante": se M e N são variedades de classe C^k , com $k \geq 1$, e $F: M \to N$ é uma aplicação de classe C^k de posto constante em uma vizinhança de uma fibra $F^{-1}(q)$, com $q \in N$, então $F^{-1}(q)$ é uma variedade de dimensão dim M-r.
- 14. Verifique que o conjunto de matrizes ortogonais $O(n) = \{A \in M_{n \times n}(\mathbb{R}) : AA^t = A^tA = I\}$ é uma variedade compacta de classe C^{∞} e dimensão n(n-1)/2. Calcule o espaço tangente na matriz identidade $T_IO(n)$.
- 15. Mostre o teorema das "fibras de posto constante": se M e N são variedades de classe C^k , com $k \ge 1$, e $F: M \to N$ é uma aplicação de classe C^k com posto constante igual a r em uma vizinhança de uma fibra $F^{-1}(q)$, com $q \in N$, então $F^{-1}(q)$ é uma variedade de dimensão dimM-r.
- 16. (Qualificação 2007) Considere a aplicação $F: \mathbb{R}^3 \to \mathbb{R}^4$ definida por $F(x,y,z) = (x^2 y^2, xy, xz, yz)$. Dada uma curva regular $\Gamma \subset F(S^2)$, mostre que para cada $p \in \Gamma$ existe uma vizinhança aberta $W \subset \mathbb{R}^4$ de p tal que $\Gamma \cap W$ é imagem de uma curva regular em S^2 .
- 17. (Qualificação 2021) Seja $F:U\to U$ uma aplicação de classe C^k , com $k\geq 1$, onde $U\subset\mathbb{R}^n$ é um aberto conexo. Mostre que, se $F\circ F=F$, então F tem posto constante numa vizinhança de M=F(U). Conclua que M é uma variedade de classe C^k .
- 18. Demonstre a seguinte versão mais geral do teorema dos multiplicadores de Lagrange. Seja $U \subset \mathbb{R}^n$ um aberto, $f: U \to \mathbb{R}$ uma função de classe C^1 e $G = (G_1, \ldots, G_m): U \to \mathbb{R}^m$ uma aplicação de classe C^1 . Seja $q \in \mathbb{R}^m$ um valor regular de G e $M = G^{-1}(q)$. Mostre que um ponto $p \in M$ é um ponto crítico da restrição $f|_M$ se, e somente se, existem $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ tais que

$$df(p) = \lambda_1 dG_1(p) + \dots + \lambda_m dG_m(p).$$

19. Sejam M e N variedades de mesma dimensão de classe C^k , com $k \ge 1$, e suponha que M seja compacta. Mostre que, se $F: M \to N$ é uma aplicação de classe C^k e $q \in N$ é um valor regular de F, então $F^{-1}(q)$ é finito. Mostre ainda que, se $R \subset N$ denota o conjunto dos valores regulares, então R é aberto e a função

$$R \to \mathbb{N}, \qquad q \mapsto \operatorname{card} F^{-1}(q)$$

é localmente constante.

- 20. O objetivo deste exercício é demonstrar o teorema fundamental da álgebra, que afirma que todo polinômio não-nulo $p(z) = a_0 + a_1 z + \cdots + a_n z^n$, com coeficientes complexos $a_i \in \mathbb{C}$, tem pelo menos uma raiz em \mathbb{C} .
 - (a) Identifique o plano complexo \mathbb{C} com \mathbb{R}^2 e o polinômio p com uma aplicação $p:\mathbb{R}^2\to\mathbb{R}^2$. Seja $\pi_N:S^2\setminus\{N\}\to\mathbb{R}^2$ a projeção estereográfica a partir do polo norte. Mostre que a aplicação $\pi_N^{-1}\circ p\circ\pi_N$ se estende, de maneira única, a uma aplicação contínua $F:S^2\to S^2$.
 - (b) Considere a projeção estereográfica a partir do polo sul $\pi_S: S^2 \setminus \{S\} \to \mathbb{R}^2$ e mostre a aplicação de "transição de cartas" $\pi_N \circ \pi_S^{-1}: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2 \setminus \{0\}$ corresponde à função complexa $z \mapsto 1/\overline{z}$.
 - (c) Mostre que a aplicação $\pi_S \circ F \circ \pi_S^{-1}$, definida em $\mathbb{R}^2 \setminus \{0\}$, corresponde à função racional com coeficientes complexos

$$q(z) = \frac{z^n}{\overline{a}_0 z^n + \overline{a}_1 z^{n-1} + \dots + \overline{a}_n}$$

e conclua que a aplicação $F: S^2 \to S^2$ do item (a) é diferenciável de classe C^{∞} .

(d) Mostre que F tem apenas um número finito de pontos críticos, que correspondem às raízes da derivada p'(z).

 $^{^2\}mathrm{Aqui},$ curva regular significa uma variedade de dimensão 1.

- (e) Mostre que o conjunto $R \subset S^2$ dos valores regulares de F é um aberto conexo e que, portanto, o número de elementos nas fibras de todo ponto em R é constante.
- (f) Conclua que F é sobrejetiva (logo, existe um elemento na fibra de 0, isto é, uma raiz de p).
- (g) Por que um argumento análogo, usando polinômios reais no lugar de polinômios complexos e S^1 no lugar de S^2 , não funciona para mostrar que todo polinômio com coeficientes reais tem uma raiz real?