DeepLabCut:: cheat sheet

Introduction

DeepLabCut is an open source automated animal pose estimation software using deep learning.

Many excellent rescources exist for learning how to install and use DeepLabCut - this is only intended as a quick overview. For more, see https://mouselab.org/deeplabcut and

https://github.com/DeepLabCut/DeepLabCut

1. Use a **layout** that flows and makes it easy to zero in on specific topics.

2. Use **visualizations** to explain concepts quickly and concisely.

3. Use visual elements to make the sheet **scannable**.

Command overview

Operations	Command
Open IPython and import DeepLabCut (Step 1)	ipython import deeplabcut
Create a new project (Step 2)	<pre>deeplabcut.create_new_project('project_name','experimenter', ['path of video 1','path of video2',])</pre>
Set a config_path variable for ease of use (Step 3)	<pre>config_path = '/yourdirectory/project_name/config.yaml'</pre>
Extract frames (Step 4)	<pre>deeplabcut.extract_frames(config_path, mode='automatic', algo='kmeans', crop=True/False)</pre>
Label frames (Steps 5 and 6)	deeplabcut.label_frames(config_path)
Check labels (optional)(Step 7)	<pre>deeplabcut.check_labels(config_path)</pre>
Create training dataset (Step 8)	deeplabcut.create_training_dataset(config_path)
Train the network (Step 9)	<pre>deeplabcut.train_network(config_path)</pre>
Evaluate the trained network (Step 10)	deeplabcut.evaluate_network(config_path)
Video analysis and plotting results (Step 11)	deeplabcut.analyze_videos(config_path,['path of video 1 or folder','path of video2',])
Video analysis and plotting results (Step 12)	<pre>deeplabcut.plot_trajectories(config_path,['path of video 1', 'path of video2',])</pre>
Video analysis and plotting results (Step 13)	<pre>deeplabcut.create_labeled_video(config_path,['path of video 1', 'path of video2',])</pre>
Refinement: extract outlier frames (Step 14)	deeplabcut.extract_outlier_frames(config_path,['path of video 1', 'path of video 2'])
Refine labels (Step 15)	<pre>deeplabcut.refine_labels(config_path)</pre>
Combine datasets (Step 16)	deeplabcut.merge_datasets(config_path)

maDeepLabCut:: cheat sheet

Introduction

DeepLabCut is an open source automated animal pose estimation software using deep learning.

Many excellent rescources exist for learning how to install and use DeepLabCut - this is only intended as a quick overview. For more, see https://mouselab.org/deeplabcut and https://github.com/DeepLabCut/De

epLabCut

1. Use a **layout** that flows and makes it easy to zero in on specific topics.

- 2. Use **visualizations** to explain concepts quickly and concisely.
- 3. Use visual elements to make the sheet **scannable**.

Command overview

Operations	Command
Open IPython and import DeepLabCut (Step 1)	ipython import deeplabcut
Create a new project (Step 2)	<pre>deeplabcut.create_new_project('project_name','experimenter', ['path of video 1','path of video2',])</pre>
Set a config_path variable for ease of use (Step 3)	<pre>config_path = '/yourdirectory/project_name/config.yaml'</pre>
Extract frames (Step 4)	<pre>deeplabcut.extract_frames(config_path, mode='automatic', algo='kmeans', crop=True/False)</pre>
Label frames (Steps 5 and 6)	deeplabcut.label_frames(config_path)
Check labels (optional)(Step 7)	<pre>deeplabcut.check_labels(config_path, visualizeindividuals=True/False)</pre>
Build skeleton (Step 8)	deeplabcut.SkeletonBuilder(config_path)
	deeplabcut.cropimagesandlabels(config_path)
Create training dataset (Step 8)	deeplabcut.create_multianimaltraining_dataset(config_path, allow_growth=True)
Train the network (Step 9)	deeplabcut.train_network(config_path)
Evaluate the trained network (Step 10)	deeplabcut.evaluate_network(config_path)
Video analysis and plotting results (Step 11)	deeplabcut.analyze_videos(config_path,['path of video 1 or folder','path of video2',])
Video analysis and plotting results (Step 12)	deeplabcut.plot_trajectories(config_path,['path of video 1', 'path of video2',])
Video analysis and plotting results (Step 13)	deeplabcut.create_labeled_video(config_path,['path of video 1', 'path of video2',])
Refinement: extract outlier frames (Step 14)	deeplabcut.extract_outlier_frames(config_path,['path of video 1', 'path of video 2'])
Refine labels (Step 15)	deeplabcut.refine_labels(config_path)
Combine datasets (Step 16)	deeplabcut.merge_datasets(config_path)

Three Column Layout:: cheat sheet

Basics

Thank you for making a new cheatsheet for R! These cheatsheets have an important job:

Cheatsheets make it easy for R users to look up useful information.

Remember that the best cheatsheets are **visual**—not written—documents. Whenever possible use visual elements to make it easier for readers to find the information they need.

1. Use a **layout** that flows and makes it easy to zero in on specific topics.

2. Use **visualizations** to explain concepts quickly and concisely.

summary function

3. Use visual elements to make the sheet **scannable**.

4. Use visual **emphasis** (like color, size, and font weight) to make important information easy to find.

dplyr::lag() - Offset elements by 1
dplyr::lead() - Offset elements by -1

COPYRIGHT

Each cheatsheet should be licensed under the creative commons license.

To license the sheet as creative commons, put CC'd by <your name> in the small print at the bottom of each page and link it to http://creativecommons.org/licenses/by/4.0/

Layout Suggestions

Use headers, colors, and/or backgrounds to separate or group together sections.

Section 1

Section 2

Section 3

Manipulate Variables

Create a visual hierarchy. Help users navigate the page with titles, subtitles, and subsubtitles

Quickly identify content with a package hexsticker (if available)

Title

SUBTITLE

SUBSUBTITLE

Fit sections to content. Try several different layouts.

Use numbers or arrows to link sections if the order/**flow** is confusing.

Logistics

FONTS

This template uses several fonts: **Helvetica Neue, Menlo**, **Source Sans pro**, which you can acquire for free here, www.fontsquirrel.com/fonts/source-sans-pro, and **Font Awesome**, which you can acquire here, fortawesome.github.io/Font-Awesome/get-started/

To use a **font awesome** icon, copy and paste one from here <u>fortawesome.github.io/Font-Awesome/cheatsheet/</u>. Then set the text font to font awesome.

KEYNOTE

I make my cheatsheets in **Apple Keynote**, and not latex or R Markdown, because presentation software makes it much easier to tweak the visual appearance of a document

KEYNOTE TIPS

- Select multiple elements by holding down shift and then selecting each. Click on a selected element before letting go of shift to unselect it.
- To group elements together. Select them all, then click Arrange > Group
- To evenly space multiple objects, select them all then Right Click > Align objects or Right Click > Distribute objects
- Click on a table, then visit Format > Table > Row and Column Size to make even width rows/columns.

Useful Elements

CODE

Where possible, use **code that works** when run.

ggplot(mpg, aes(hwy, cty)) +
geom_point(aes(color = cyl)) +
geom_smooth(method ="lm")

help explain code

ICONS

MOCK TABLES

