Lecture 1

- Form groups
- Odd weeks, no change to wednesday time
- Even weeks, though, only groups 1-3 come 3-4, groups 4-7 come 4-5
- Lecture slides were gone over and in this folder
- This is so fucking painful to sit through
- He is going over the non(?) credit homework and how to do them, really basic math

Lecture 2

• Equation sheet given out:

 $Performance: \frac{1}{ExecutionTime}$

 $ClockCycleTime: \frac{1}{ClockRate}$

 $Execution Time 1: \frac{Number of Clock Cycles}{Clock Rate}$

Execution Time 2: Number of Clock Cycles*Clock Cycle Time

Number of Clock Cycles: Number of Instructions*Average CPI

 $Execution Time 3: \tfrac{Number of Instructions*Average CPI}{Clock Rate}$

Execution Time 4: Number of Instructions* Average CPI* Clock Cycle Time Approximation of the Control of the C

 $AverageCPI: \sum CPI_i * f_i, where ir effects on struction classi$

 $SPECRatio: \frac{ReferenceTime}{ExecutionTime} \\ MIPSRating: \frac{ClockRate}{10^6*AverageCPI}$

 $MFLOPSRating: \frac{ClockRate}{10^6*CPI_{FP}}$

Problem Solving

1.6

Р	Clock	A	В	С	D
P1 P2	$2.5 \mathrm{GHz}$ $3 \mathrm{GHz}$	1 2	2 2	3 2	4 2

- Number of iterations = 10^6
- Frequency:

A	В	\mathbf{C}	D
10	20	50	20
0.1	0.2	0.5	0.2

- Average CPI for P1 = 1 * 0.1 + 2 * 0.2 + 3 * 0.5 + 3 * 0.2 = 2.6
- Average CPI for P2 = 2.0
- Exec time of P1 = $\frac{2.6*10^6}{2.5*10^9}$ = 1.04ms
- Exec time of P2 = $\frac{2.0*10^6}{3*10^9}$ = 0.67ms
- Performance Ratio = $\frac{ExecTimeP1}{ExecTimeP2} = \frac{1.04}{0.67} = 1.532$
- P2 is 55.21 faster

1.7

Compiler	Number of Instructions	Exec Time
A	$1.0*10^9$	1.1 s
В	$1.2 * 10^9$	$1.5 \mathrm{\ s}$

- Clock Cycle Time = 1ns
- Use E2
- Use Execution Time 2 Formula
- $1.1 = 10^9 * CPI_A * 10^{-9}$

- 1.1 = $10^{\circ} * CPI_A * 10^{\circ}$ $CPI_A = 1.1$ $1.5 = 1.2*10^{9} * CPI_B * 10^{-9}$ $CPI_B = \frac{1.5}{1.2} = 1.25$ $Use \ E1$ $\frac{1.0*10^{9}*1.1}{ClockRate(P1)} = \frac{1.2*10^{9}*1.25}{ClockRate(P2)}$ $\frac{ClockRate(P1)}{ClockRate(P2)} = 0.733$
- Clock Rate of P1 should be 26.7% slower

SPEC Ratio

• System Performance Evaluation C?

1.11

- SPEC CPU2006 Ref = 9650 s
- Exec time = 750 s
- Insreuction Count = $2.389 * 10^{12}$

- $750 = 2.389 * 10^{12} * \text{CPI} * 0.333*10^{-9}$ $\text{SpecRation} = \frac{9650}{750*whatevervalueisfromaboveIthink}$

1.116

- New 2
- Number of instructions = $2.389 * 10^{12} * 0.85$
- Execution Time = 700 s

- New Rate = 13.2• $\frac{9650}{700} = 13.2$ $700 = \frac{2.389*10^{12}*0.85*CPI}{4*10^{9}}$