

GPCM3 Series

ARM® Cortex®-M0 32-bit Sound Controller

Feb. 06, 2025

Version 1.4

Table of Contents

		<u>PAGE</u>
GP	PCM3 SERIES	4
	ENERAL DESCRIPTION	
FE.	ATURE	4
	OCK DIAGRAM	
	GNAL DESCRIPTION	
5.1	1 GPCM300A PIN DESCRIPTION	
	5.1.1 GPCM300A LQFP64 Package	
	5.1.2 GPCM300A LQFP48 Package	
	2 GPCM300B PIN DESCRIPTION	
	1 CPU	
	2 MEMORY	
0.2	6.2.1 SRAM	
6.2	3 CLOCK MANAGEMENT	
0.5	6.3.1 IOSC 12.288MHz and XTAL 12MHz	
	6.3.2 PLL(Phase Lock Loop)	
	6.3.3 IOSC 32768 Hz and XTAL 32768 Hz	
6.4	6.3.3 TOSC 32768 Hz and XTAL 32768 Hz	
	5 RESET MANAGEMENT	
0.5	6.5.1 Power-On Reset	
	6.5.2 Low Voltage Reset	
	6.5.3 PAD(H/W KEY) Reset	
6.6	6.5.4 Watchdog timeout Reset	
	7 USB Device Function (BY BODY)	
	3 SYSTEM CONTROL	
0.0	6.8.1 DMA	
	6.8.2 MAC	
	6.8.3 Divider	
6.0	6.8.4 Quadrature decoder	
6.9	9 TIMERS	
	6.9.1 General-purpose timers	
	6.9.2 Touch sensing timers	
0.4	6.9.3 CCP timers	
6.1	10 COMMUNICATION PERIPHERALS	
	6.10.1 I2C	
	6.10.2 I2S	
	6.10.3 SPI	
	6.10.4 SPI FC	
	6.10.5 UART	14
	6.10.6 IR TX	
	6.10.7 Sound Processing Unit	14
	11 SAR ADC CONTROLLER	
6.1	12 SDM ADC CONTROLLER	15

	6.13	3 DAC CONTROLLER	15
7		ECTRICAL SPECIFICATION	
	7.1	ABSOLUTE MAXIMUM RATING	16
	7.2	DC Characteristics (V5 = 3.0V, V3= 3.0V, TA = 25° C)	16
	7.3	DC Characteristics (V5 = 4.5V, V3= 3.0V, TA = 25° C)	17
	7.4	REGULATOR CHARACTERISTICS	18
	7.5	16-Bit CODEC ADC Characteristics (V3_ADC = 3.0V, TA = 25°C)	19
	7.6	12-Bit SAR ADC Characteristics	19
	7.7	AUDIO PWM CHARACTERISTICS (PVDD =4.5V, R_L =8 Ω , F =1KHz, TA =25 $^{\circ}C$)	19
	7.8	Voltage DAC Characteristics (PVDD =3.0V, R _L =8Ω, F=1KHz, TA=25°C with GPY0030C)	19
8	APF	PLICATION CIRCUITS	20
	8.1	APPLICATION CIRCUIT WITH INTERNAL 12.288MHz OSCILLATOR AND INTERNAL 32768Hz OSCILLATOR	20
	8.2	APPLICATION CIRCUIT WITH INTERNAL 12.288MHz OSCILLATOR AND EXTERNAL 32768Hz CRYSTAL	21
	8.3	APPLICATION CIRCUIT WITH INTERNAL OSCILLATOR AND VOLTAGE DAC	22
	8.4	APPLICATION CIRCUIT WITH INTERNAL 12.288MHz OSCILLATOR AND INTERNAL 32768Hz OSCILLATOR AND WITHOUT MIC	23
	8.5	CONNECT WITH G+ LINK	24
9		CKAGE/PAD LOCATION	
	9.1	Ordering Information	25
	9.2	PACKAGE INFORMATION	26
		9.2.1 LQFP 64_7x7x1.4 Outline Dimensions	26
		9.2.2 LQFP 48_7x7x1.4 Outline Dimensions	27
10	DIS	CLAIMER	28
11	RE\	VISION HISTORY	29

32-BIT SOUND CONTROLLER

1 GPCM3 SERIES

The following table briefly introduces GPCM3's basic features.

Item	GPCM300A	GPCM300B		
Microprocessor	ARM Cortex-M0	ARM Cortex-M0		
System Clock	Max. 122.88MHz	Max. 122.88MHz		
Operating Voltage	2.0V - 5.5V	2.0V - 5.5V		
Regulator Out (Body Option)	3.0~3.3V, ~30mA	3.0~3.3V, ~30mA		
Internal RAM Size	32KB+ 8KB cache	16KB+ 8KB cache		
GPIO Numbers	37+6* ¹	21+6* ¹		
ADC LINE-IN	8 Channels	8 Channels		
Execute External Program	V	V		
SPU	32-CH			
DAC/PWM	DACx2 or PWM	DACx2 or PWM		
USB1.1 / USB2.0 Full Speed	V			
ICE/ Writer IF	V	V		

Note1: IOB[5:0], total of six IOs can be connected to SPIFC I/F.

2 GENERAL DESCRIPTION

The industrial microcontroller of GPCM3 series equips ARM® Cortex®-M0 processor core and 32-channel sound process unit (SPU), operating at a frequency of up to 122.88MHz. The GPCM3 series is applicable for the applications of digital sound processing and voice recognition, etc.

3 FEATURE

■ CPU

- CPU Core
- ARM[®] Cortex[®]-M0 32-bit CPU (122.88MHz max) with Code Fetch Accelerator
- Nested Vectored Interrupt Controller (NVIC) with 32 interrupt sources
- 24-bit SysTick timer
- Single cycle 32-bit multiplier instruction

■ 32-channel SPU

■ Memory

- Max. 32K-byte SRAM and 8K-byte Cache RAM
- running SPI external code and data in auto mode

■ Clock Management

- Internal 12.288MHz oscillator and XTAL 12M crystal
- Phase Lock Loop with configurable output frequency:
 122.88M Hz (max)

- Internal 32768Hz oscillator and XTAL 32768Hz crystal

■ Power Management

- In Shutdown mode: Core power and all clocks are stopped
- In Deep Sleep mode: CPU clocks off, system entering deep sleep mode, and all clock off
- In Halt mode: CPU clocks off, system entering deep sleep mode, and only 32768Hz clock on.
- In Sleep mode: Only CPU Clock off
- Regulator with configurable output SPI Voltage and Codec voltage
- Battery Voltage Detection

■ Reset Management

- Power On Reset
- Low Voltage Reset
- Watchdog Timeout Reset
- PAD(H/W Key)Reset
- S/W Reset

■ Analog peripherals

- 16-bit Audio PWM
- 16-bit DAC x 2
- 16-bit Sigma Delta Codec ADC(MIC ADC)
- 12-bit SAR ADC and 8 x line-in PADs
- CTS(Capacitor sensing touch) supporting 32 x Touch IO PADs

■ I/O Ports

GPCM3 SERIES

- Max. 43 (include SPIFC) multifunction and bi-direction I/Os
 - I/O ports with pull-up resistor, pull-down resistor, output high, output low or floating input, and configurable source/sink current depending on programmer's settings on the corresponding registers
- IOA can be set External Key for CPU wakeup.

■ System Control

- Five-channel DMA controller
- System Management Unit (SMU) for system configuration and control
- HW 16x16 MAC for accumulator
- HW 32x16 MAC function
- HW 32/32 Divider function
- Two quadrature decoders

■ Timer

- Three general-purpose 16-bit timers/counters
- Two 16-bit touch sensing timers for CTS
- Two 16-bit CCP timers(Capture/Compare/PWM) Units and 16 PWMIOs

All of them can be used as general- purpose timers.

■ Communication peripherals

- One I2C hardware
- One I2S TX and I2S RX.
- One SPIFC (SPI controller for FLASH device access) and two SPI serial interface I/Os
- Two UART hardware
- One IR TX hardware

■ SAR ADC Controller

 12-bit resolution SAR ADC and 10-channel selection (8*LINE-IN, VDD12 and VDD_IO/4)

- Supporting single, regular and regular scan conversion mode
- Data alignment with left-aligned and right-aligned
- External trigger option for injected conversion
- Analog detection watchdog
- DMA request generation during channel conversion

■ PDM

Pulse-density modulation MES MIC

■ SDM ADC Controller(MIC ADC)

- 16-bit resolution Sigma-Delta Modulation ADC (SDM ADC) with Digital Audio gain control(DAGC)
- DMA request generation during ADC conversion

■ DAC Controller

- Supporting two input channel and 4x Up-Sampling
- Supporting scale/truncation mode when data saturation
- DMA request generation during DAC data done
- Output to 16-bit Audio PWM or 16-bit DAC
- Audio PWM support digital gain control and auto mute control

■ USB Device Controller

Supports USB1.1 / USB2.0(full speed) compliant device with built-in transceiver

■ Debug System

- ARM serial wire debug (SWD)
- Supporting up to three hardware breakpoints

■ Operation Temperature

-40°C to 85°C

■ Package

- LQFP64

Version: 1.4

4 BLOCK DIAGRAM

5 SIGNAL DESCRIPTION

5.1 GPCM300A pin description

P = Power Pin, G = Ground Pin, A = Analog Pin

I/O = Bidirectional Pin, I = Input, O= Output

Pin Name Type GROUP			Description
IOA[25]	I/O	IOA	General purpose I/O Port IOA25 or SAR ADC Line In PAD
IOA[26]	I/O	IOA	General purpose I/O Port IOA26 or SAR ADC Line In PAD
IOA[27]	I/O	IOA	General purpose I/O Port IOA27 or SAR ADC Line In PAD
IOA[28]	I/O	IOA	General purpose I/O Port IOA28 or SAR ADC Line In PAD
IOA[29]	I/O	IOA	General purpose I/O Port IOA29 or SAR ADC Line In PAD
IOA[30]	I/O	IOA	General purpose I/O Port IOA30 or SAR ADC Line In PAD
IOA[31]	I/O	IOA	General purpose I/O Port IOA31 or SAR ADC Line In PAD
VSS	G	GND	Ground
IOC[2] / ICE_SDA	I/O	ICE	General purpose I/O Port IOC2 or ICE and Power writer SDA pin
RESETB / ICE_SCK	_	ICE	Reset pin(Low active) or ICE and Power writer SCK pin function
TEST	1	TEST	Test PIN
ADVCM	AO	ADC	Common voltage(1/2*VDD) for amplifier and ADC
MICIN	Al	ADC	Microphone input
VSS_ADC	G	ADC	CODEC ADC Ground
V3_ADC	Р	ADC	V3_ADC can supply 3.0V or 3.3V power output.
_			Connect 2.2uF capacitance to VSS_ADC.
			Power for CODEC ADC.
VDD_REGIN2	Р	VDD_REGIN	VDD5 Power as Internal CODEC ADC regulators power input pin
VDD_REGIN1	Р	VDD_REGIN	VDD5 Power as Internal V3_REG regulators power input pin
IOB[0]	I/O	IOB/SPI FC	General purpose I/O Port IOB0 & SPIFC pin
IOB[1]	I/O	IOB/SPI FC	General purpose I/O Port IOB1 & SPIFC SCK pin
IOB[2]	I/O	IOB/SPI FC	General purpose I/O Port IOB2 & SPIFC pin
V3_REG_OUT	Р	V3_REGO	V3_REG output pin can supply 3.0V or 3.3V and max output current 30mA Power for SAR ADC and IOSC12M
V3_SPIFC_IN	Р	V3_REGO	V3 power in, connect to V3_REG_OUT
vo_0 o		V0_1.1200	Power for SPIFC IO
VSS	G	GND	Ground
IOB[3]	I/O	IOB/SPI FC	General purpose I/O Port IOB3 & SPIFC pin
IOB[4]	I/O	IOB/SPI FC	General purpose I/O Port IOB4 & SPIFC pin
IOB[5]	I/O	IOB/SPI FC	General purpose I/O Port IOB5 & SPIFC pin
VSS_SPI	G	GND	Ground
PVDD	Р	DAC_PWM	DAC_PWM VDD 5V power input pin
AUDN / DACL	AO	DAC_PWM	Audio PWM AUDN or DACL output
AUDP / DACR	AO	DAC_PWM	Audio PWM AUDP or DACR output
PVSS	G	DAC PWM	Audio PWM Ground
PVSS	G	DAC_PWM	Audio PWM Ground
VREF	CAP	DAC_PWM	Connect external cap for DAC
VDD_USB	P	USB	USB power input
DP / IOD[0]	I/O	USB	General purpose I/O Port IOD0 share with USB DP
DUMMY	PAD	DUMMY	DUMMY pad

Pin Name	Туре	GROUP	Description		
DM / IOD[1]	I/O	USB	General purpose I/O Port IOD1 share with USB DM		
VSS_USB	G	USB	USB ground		
VDD_TRIM	N/C	EFUSE	Pad for efuse trimming (for internal use only)		
VSS	G	GND	Ground		
X12MI / IOC[0]	AI/IO	X12M	General purpose I/O Port IOC0 share with X12MI		
X12MO / IOC[1]	AO/IO	X12M	General purpose I/O Port IOC0 share with X12MO		
IOA[0]	I/O	IOA	General purpose I/O Port IOA0		
IOA[1]	I/O	IOA	General purpose I/O Port IOA1		
IOA[2]	I/O	IOA	General purpose I/O Port IOA2		
IOA[3]	I/O	IOA	General purpose I/O Port IOA3		
IOA[4]	I/O	IOA	General purpose I/O Port IOA4		
IOA[5]	I/O	IOA	General purpose I/O Port IOA5		
IOA[6]	I/O	IOA	General purpose I/O Port IOA6		
IOA[7]	AI/IO	X32KI	General purpose I/O Port IOA7 or Crystal 32K PAD In		
VSS	G	GND	Ground		
IOA[8]	AO/IO	X32KO	General purpose I/O Port IOA8 or Crystal 32K PAD Out		
IOA[9]	I/O	IOA	General purpose I/O Port IOA9		
IOA[10]	I/O	IOA	General purpose I/O Port IOA10		
IOA[11]	I/O	IOA	General purpose I/O Port IOA11		
IOA[12]	I/O	IOA	General purpose I/O Port IOA12		
IOA[13]	AI/IO	IOA	General purpose I/O Port IOA13		
IOA[14]	AO/IO	IOA	General purpose I/O Port IOA14		
IOA[15]	I/O	IOA	General purpose I/O Port IOA15		
IOA[16]	I/O	IOA	General purpose I/O Port IOA16		
IOA[17]	I/O	IOA	General purpose I/O Port IOA17		
VDD12	Р	VDD12	Core Power		
IOA[18]	I/O	IOA	General purpose I/O Port IOA18		
IOA[19]	I/O	IOA	General purpose I/O Port IOA19		
IOA[20]	I/O	IOA	General purpose I/O Port IOA20		
VSS	G	GND	Ground		
VDD_IO	Р	VDD_IO	VDD5 Power as Core REG_IN & VDDIOA power input pin		
IOA[21]	I/O	IOA	General purpose I/O Port IOA21		
IOA[22]	I/O	IOA	General purpose I/O Port IOA22		
IOA[23]	I/O	IOA	General purpose I/O Port IOA23		
IOA[24]	I/O	IOA	General purpose I/O Port IOA24 or SAR ADC Line In PAD		

Note1: Please DON'T bond DUMMY, TEST and NC pin.

5.1.1 GPCM300A LQFP64 Package

5.1.2 GPCM300A LQFP48 Package

5.2 GPCM300B pin description

P = Power Pin, G = Ground Pin, A = Analog Pin

I/O = Bidirectional Pin, I = Input, O= Output

Pin Name Type GROUP			Description
IOA[25]	I/O	IOA	General purpose I/O Port IOA25 or SAR ADC Line In PAD
IOA[27]	I/O	IOA	General purpose I/O Port IOA27 or SAR ADC Line In PAD
IOA[30]	I/O	IOA	General purpose I/O Port IOA30 or SAR ADC Line In PAD
IOA[31]	I/O	IOA	General purpose I/O Port IOA31 or SAR ADC Line In PAD
VSS	G	GND	Ground
IOC[2] / ICE_SDA	I/O	ICE	General purpose I/O Port IOC2 or ICE and Power writer SDA pin
RESETB /	I	ICE	Reset pin(Low active) or ICE and Power writer SCK pin function
ICE_SCK			
TEST	I	TEST	Test PIN
ADVCM	AO	ADC	Common voltage(1/2*VDD) for amplifier and ADC
MICIN	Al	ADC	Microphone input
VSS_ADC	G	ADC	CODEC ADC Ground
V3_ADC	Р	ADC	V3_ADC can supply 3.0V or 3.3V power output.
			Connect 2.2uF capacitance to VSS_ADC.
			Power for CODEC ADC.
VDD_REGIN2	Р	VDD_REGIN	VDD5 Power as Internal CODEC ADC regulators power input pin
VDD_REGIN1	Р	VDD_REGIN	VDD5 Power as Internal V3_REG regulators power input pin
IOB[0]	I/O	IOB/SPI FC	General purpose I/O Port IOB0 & SPIFC pin
IOB[1]	I/O	IOB/SPI FC	General purpose I/O Port IOB1 & SPIFC SCK pin
IOB[2]	I/O	IOB/SPI FC	General purpose I/O Port IOB2 & SPIFC pin
V3_REG_OUT	Р	V3_REGO	V3_REG output pin can supply 3.0V or 3.3V and max output current 30mA
			Power for SAR ADC and IOSC12M
V3_SPIFC_IN	Р	V3_REGO	V3 power in, connect to V3_REG_OUT
			Power for SPIFC IO
VSS	G	GND	Ground
IOB[3]	I/O	IOB/SPI FC	General purpose I/O Port IOB3 & SPIFC pin
IOB[4]	I/O	IOB/SPI FC	General purpose I/O Port IOB4 & SPIFC pin
IOB[5]	I/O	IOB/SPI FC	General purpose I/O Port IOB5 & SPIFC pin
VSS_SPI	G	GND	Ground
PVDD	Р	DAC_PWM	DAC_PWM VDD 5V power input pin
AUDN / DACL	AO	DAC_PWM	Audio PWM AUDN or DACL output
AUDP / DACR	AO	DAC_PWM	Audio PWM AUDP or DACR output
PVSS	G	DAC_PWM	Audio PWM Ground
PVSS	G	DAC_PWM	Audio PWM Ground
VSS	G	GND	Ground
DUMMY	PAD	DUMMY	DUMMY pad
VSS	G	GND	Ground
X12MI / IOC[0]	AI/IO	X12M	General purpose I/O Port IOC0 share with X12MI
X12MO / IOC[1]	AO/IO	X12M	General purpose I/O Port IOC0 share with X12MO
IOA[0]	I/O	IOA	General purpose I/O Port IOA0
IOA[3]	I/O	IOA	General purpose I/O Port IOA3
IOA[4]	I/O	IOA	General purpose I/O Port IOA4

GPCM3 SERIES

Pin Name	Туре	GROUP	Description			
IOA[5]	I/O	IOA	General purpose I/O Port IOA5			
IOA[6]	I/O	IOA	General purpose I/O Port IOA6			
IOA[7]	I/O	IOA	General purpose I/O Port IOA7			
VSS	G	GND	Ground			
IOA[8]	I/O	IOA	General purpose I/O Port IOA8			
IOA[10]	I/O	IOA	General purpose I/O Port IOA10			
IOA[13]	AI/IO	X32KI	General purpose I/O Port IOA13 or Crystal 32K PAD In			
VDD12	Р	VDD12	Core Power			
IOA[20]	I/O	IOA	General purpose I/O Port IOA20			
VSS	G	GND	Ground			
VDD_IO	Р	VDD_IO	VDD5 Power as Core REG_IN & VDDIOA power input pin			
IOA[21]	I/O	IOA	General purpose I/O Port IOA21			
IOA[22]	I/O	IOA	General purpose I/O Port IOA22			
IOA[23]	I/O	IOA	General purpose I/O Port IOA23			
IOA[24]	I/O	IOA	General purpose I/O Port IOA24 or SAR ADC Line In PAD			

Note1: Please DON'T bond DUMMY, TEST and NC pins.

6 FUNCTION DESCRIPTION

6.1 CPU

GPCM3 is equipped with a Cortex[®]-M0 processor, which is an entry-level 32-bit ARM Cortex processor designed for a broad range of embedded applications. It offers significant benefits to developers, including:

- · Simple, easy-to-use program model
- · Highly efficient ultra-low power operation
- Excellent code density
- Deterministic, high-performance interrupt handling
- Upward compatibility with the rest of the Cortex-M processor family.

The processor also supports a 24-bit system timer and Single cycle 32bit multiplier instruction. The interrupt include 32 IRQs (Interrupt Request) and NMI (Non-Maskable Interrupt).

6.2 Memory

6.2.1 SRAM

There is a maximum of 32K-byte working SRAM available, ranged from 0x2000_0000 through 0x2000_7FFF, and an 8K-byte dedicated cache RAM.

6.3 Clock Management

6.3.1 IOSC 12.288MHz and XTAL 12MHz

When GPCM3 powers up, Internal Oscillator(IOSC) 12.288M is the system clock. That is also used as PLL input frequency. The IOSC 12.288MHz is enabled in default. C12M clock switch to XTAL12M after boot code loaded if XTAL12M is selected as C12M clock source.

6.3.2 PLL (Phase Lock Loop)

The purpose of PLL is to pump the frequency from 12.288MHz to 122.88MHz for system clock. PLL has eight types of clock outputs available. The PLL's default frequency is 98.304MHz.

6.3.3 IOSC 32768 Hz and XTAL 32768 Hz

GPCM3 can choose one of IOSC 32768(default enable) or XTAL 32768Hz (by body) as System 32K Clock source (default IOSC32768). System 32K Clock in normal mode is the clock source for CTS, timer, and watchdog. In halt mode, only system 32K is working for power saving purpose.

6.4 Power management

GPCM3 supports three low power modes: Sleep mode, Deep Sleep mode, Halt mode, Shutdown mode. The detail description is as follows:

Mode	Entry	Wakeup	Clocks	Regulat or voltage	I/O state
Sleep	WFI	Any interrupt Any event	CPU clock off	Output voltage in normal	
Deep Sleep	WFI+SLEEP DEEP=1 WFE+SLEEP DEEP=1	External input + interrupt External input + event	All clocks off All macro	Output voltage to	Keep in the
Halt	WFI+SLEEP DEEP=1	External input + interrupt + RTC	Only 32K	deep sleep mode	before entering
	WFE+SLEEP DEEP=1	External input + interrupt + RTC	All macro sleep	voltage	power modes
Shut down	SLEEPDEEP =1	Key Reset IOA[31:24]+IO A[7:0] I 16K TimeOut	All clocks	Core power regulator shut off	

6.5 Reset Management

6.5.1 Power-On Reset

When IC powered ON, power on reset (PORB) will be triggered, and reset all registers.

6.5.2 Low Voltage Reset

When operation voltage drops below Low Voltage Reset (LVR) level, it will generate LVR signal to reset system. GPCM3 has 1.9V LVR level available. LVR is able to keep IC operating in normal at low voltage.

6.5.3 PAD (H/W KEY) Reset

Pad RESETn has a denounce function so that it must be kept low at least more than 200us in order to trigger Pad RESETn and reset system.

6.5.4 Watchdog timeout Reset

If watchdog function is enabled, a reset signal is generated to reset system when watchdog counter is overflow.

6.6 I/O port

GPCM3 provides 43x max IOs (32xIO in Port IOA, 6xIO in Port IOB, 3xIO in Port IOC and 2xIO in Port IOD). All I/Os support pull-up resistor, pull-down resistor, output high, output low or floating input, and with configurable source/sink current

IOA and IOC: 8mA/16mA

IOB and IOD: 2mA/4mA/6mA/8mA/10mA/12mA/14mA/16mA determined by settings in the corresponding registers. IOA can be programed external KEY for wakeup function. IOA and IOB can be programed for bit operation. In addition to regular I/O function, all ports also provide some special functions in certain pins. The following diagram is an I/O schematic.

Driving Select DRV2/1/0 -Output Enable OE Output Data DATA Pull_UP Enable PE & DATA Input Enable TF. Input Data Input SMT Enable Pull Down Enable PE & ~DATA 7797 ANA_IN ANA IN

6.7 USB Device Function (by body)

GPCM3 series (by body) provides device function compatible with USB1.1 / USB2.0(full speed) standard. An USB transceiver is also built-in.

6.8 System Control

6.8.1 DMA

Direct memory access (DMA) is used in order to provide high-speed data transfer between peripherals and memory as well as memory to memory. Data can be quickly moved by DMA without any CPU action. The DMA controllers have five channels, each dedicated to managing memory access requests from one or more peripherals. It has an arbiter for handling the priority between DMA requests.

6.8.2 MAC

The MAC controller is designed for accelerate the audio MAC process of 16-bit system. It supports max 16x16 MAC function, 40-bit accumulator, 8/16/32-bit saturation detection, and output auto shift function. It also supports two sets of 32x16 MAC function.

6.8.3 Divider

The divider with 32/32 is equipped to assist user get more flexible calculation.

6.8.4 Quadrature decoder

The purpose of quadrature decoder (QD) is to detect the phase

differences between two square waves, normally used for rotating devices to detect the rotation velocity and position, etc. There are two sets of quadrature decoders, each comprising of two data inputs, control bits, counter and a clear port to reset the counter. User only needs to input two square waves into quadrature decoder through two input pins and starts running function.

6.9 Timers

GPCM3 is designed with seven 16-bit timers to satisfy various application needs.

6.9.1 General-purpose timers

GPCM3 provides three timers with counter mode and capture mode function. It supports as ADC/DAC trigger source, external clock source from GPIO, and capture mode with debounce filter.

6.9.2 Touch sensing timers

GPCM3 provides two timers with pre-loaded function. It can be dedicated for CTS or general timer.

6.9.3 CCP timers

GPCM3 provides two timers with Compare, Counter, Capture and PWM Function (CCP). It supports eight-channel PWM output and ADC triager source.

6.10 Communication Peripherals

6.10.1 I2C

The I2C is used for attaching lower-speed peripheral ICs to processors and microcontrollers in short-distance. It supports 7-bit or 10-bit (depending on the device used) address space. Only two wires (SCK and SDA) are needed to implement the protocol. I2C controller supports four transfer modes. Four transfer modes is master transmit, master receive, slave transmit, and slave receiver. The format of I2C Frame as follows:

It also supports multi-master capability, option clock, and DMA capability.

6.10.2 I2S

The I2S bus is a 3-line serial bus is used, consisting of a line for two time-multiplexed data channels (SD), a word selection line(WS) and a clock line(SCK). Since the transmitter and receiver have the same clock signal for data transmission, the transmitter, as a master, has to generate the bit clock, word-select signal and data. The typical format of I2S as follows:

It also supports configurable settings of each TX/RX channel for different frame sizes, word length, frame synchronization mode, data alignment, MSB/LSB first send mode, rising/falling sending edge mode, frame polarity, and the polarity of first transmitted frame.

6.10.3 SPI

GPCM3 incorporates two Serial Peripheral Interfaces (SPI). The SPI is a synchronous serial communication interface specification used for short distance communication. It allows half/ full-duplex serial communication with external devices and only 1-bit parallel data. The format of SPI as follows:

It also supports master or slave operation, multi-master mode, programmable clock polarity and phase, and 1 byte transmission and reception with DMA.

6.10.4 SPI FC

GPCM3 provides an enhanced SPI controller for FLASH device access(SPIFC). The interface includes a clock (SCLK), chip select (CS), and at most 4-bit parallel data pin. SPIFC support 1-bit, 2-bit and 4-bit data bus, configurable received data timing, and configurable variable package type. It provides with 32-bit width and 8-depth of FIFO for speeding up SPI signal processing. The format of SPIFC is depicted as follows:

6.10.5 UART

The universal asynchronous receiver transmitter (UART) supports half-duplex, asynchronous communications, and wide range of baud rates by baud rate generator. User can programmable data word length (8 or 9 bits), configurable stop bits (1 or 2 stop bits), and control parity. The format of UART Frame as follows:

6.10.6 IR TX

GPCM3 supports IR TX Function. It supports 7 trigger sources as IR clock, configurable mask, polarity and duty control.

6.10.7 Sound Processing Unit

The SPU (Sound Process Unit) inside the GPCM3 series is designed to emulate various types of musical instruments via programming its tone ROM and controlling the envelope slope for each channel. Each channel can further be defined as a speech channel to produce PCM-format sound effects, e.g. percussion, animal sounds, gun, explosions accompanied with main music rhythm.

6.11 SAR ADC Controller

GPCM3 supports 12-bit SAR ADC. ADC has up to 10 multiplexed channels allowing it measure signals from 8 external and 2 internal sources (VDD12 or VDD_IO/4). The functionally of A/D conversion can be performed in single, regular, regular scan, and injected conversation mode. The result of the conversion data is stored in a data register and can trigger DMA function. The regular scan function is as follows:

the inject function as follows:

GPCM3 SERIES

User also can set data alignment with left-aligned or right- aligned. SAR ADC controller supports analog watchdog function. It allows the application to detect input-voltage. It is used to detect whether the input voltage is out of user-defined range. If out of range is detected, it will generate an interrupt to CPU.

6.12 SDM ADC Controller

A 16-bit resolution SDM ADC (Sigma-Delta Modulation ADC) with DAGC (Digital Audio Gain Control) is embedded in GPCM3. When peak or RMS of record sound is larger than the threshold value, the digital AGC will start to activate then lower down the PGA gain. The block diagram as follows:

The SDM ADC supports auto-mute. When the ADC conversation finish, it will store in data register and can trigger DMA function.

6.13 DAC Controller

GPCM3 audio can be exported to 2-channel 16-bit DAC or 16-bit AUDPWM. DAC Controller supports two input channels data port, new 4x up-sampling function, and DMA data in. User is allowed to send the various data into different channels and thus, IC will perform the mix operation before DAC conversion. Audio PWM can support digital gain control and auto mute function.

15

7 ELECTRICAL SPECIFICATION

7.1 Absolute Maximum Rating

Characteristics	Symbol	Ratings
DC Supply Voltage	V ₊	< 5.5V
PortA/C Pad Supply Voltage	V _{IO}	< 5.5V
PortB/D Pad Supply Voltage	V _{IO}	< 3.6V
Input Voltage Range	V _{IN}	-0.5V to V ₊ + 0.5V
Operating Temperature	T _A	-40°C to +85°C
Storage Temperature	T _{sto}	-50°C to +150°C

7.2 DC Characteristics (V5 = 3.0V, V3= 3.0V, TA = 25°)

91		Limit				T 10 111
Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Operating Voltage	VDD_REGIN/ VDD_IO	2.0	-	5.5	٧	-
Operating Current	I _{OP}	-	27	35	mA	F _{OSC} = 122.88MHz, AD and DAC are disabled, without loading.
Halt Current	I _{halt}	-	1	2	mA	In halt mode, 32KHz is enabled and PLL (F _{OSC}) is disabled.
Shutdown Current	I _{SD}	-	3	6	μΑ	Shutdown mode current with V3 and V12 off
Input High Level	V _{IH}	0.7VDD	-	-	V	SMT Enabled for IOA, IOC, IOB, IOD
Input Low Level	V_{IL}	=	=	0.3VDD	V	SMT Enabled for IOA, IOC, IOB, IOD
		PAD	IOA and IOC	GROUP		
	І _{ОН}	4	8	12	mA	V _{OH} =0.7VDD_IO for IOA and IOC with DRV=0
Output High Current		8	16	24	mA	V _{OH} =0.7VDD_IO for IOA and IOC with DRV=1
	I _{OL}	4	8	12	mA	V _{OL} =0.3VDD_IO for IOA and IOC with DRV=0
Output Low Current		8	16	24	mA	V _{OL} =0.3VDD_IO for IOA and IOC with DRV=1
Input Pull-Low Register	R _{PL}	30	50	70	ΚΩ	V _{IN} =VDD_IO
Input Pull-High Register	R _{PH}	30	50	70	ΚΩ	V _{IN} =VSS
		PAD	IOB and IOD	GROUP		
		1	2	3	mA	V _{OH} =0.7VDD_IO for IOB and IOD with DRV=000
		2	4	6	mA	V _{OH} =0.7VDD_IO for IOB and IOD with DRV=001
Output High Current	Іон	3	6	9	mA	V _{OH} =0.7VDD_IO for IOB and IOD with DRV=010
		4	8	12	mA	V _{OH} =0.7VDD_IO for IOB and IOD with DRV=011
		5	10	15	mA	V _{OH} =0.7VDD_IO for IOB and IOD with DRV=100

91			Limit			T 10 III
Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition
		6	12	18	mA	V _{OH} =0.7VDD_IO for IOB and IOD with DRV=101
		7	14	21	mA	V _{OH} =0.7VDD_IO for IOB and IOD with DRV=110
		8	16	24	mA	V _{OH} =0.7VDD_IO for IOB and IOD with DRV=111
		1	2	3	mA	V_{OL} =0.3VDD_IO for IOB and IOD with DRV=000
	loL	1.5	3	4.5	mA	V_{OL} =0.3VDD_IO for IOB and IOD with DRV=001
		3	6	9	mA	V_{OL} =0.3VDD_IO for IOB and IOD with DRV=010
		4	8	12	mA	V_{OL} =0.3VDD_IO for IOB and IOD with DRV=011
Output Low Current		5	10	15	mA	V _{OL} =0.3VDD_IO for IOB and IOD with DRV=100
		6	12	18	mA	V _{OL} =0.3VDD_IO for IOB and IOD with DRV=101
		8.5	17	25.5	mA	V_{OL} =0.3VDD_IO for IOB and IOD with DRV=110
		9.5	19	28.5	mA	V_{OL} =0.3VDD_IO for IOB and IOD with DRV=111
Input Pull-Low Register	R_{PL}	30	50	70	ΚΩ	V _{IN} =V3
Input Pull-High Register	R_{PH}	30	50	70	ΚΩ	V _{IN} =VSS
Internal ROSC frequency deviation	⊿F/F	-2%	12.288M	+2%	HZ	-

Note: $V5 \rightarrow VDD_IO, VDD_REGIN, PVDD$

 $V3 \rightarrow V3_REG_OUT$, $V3_SPIFC_IN$, $V3_ADC$, VDD_USB

7.3 DC Characteristics (V5 = 4.5V, V3= 3.0V, TA = 25° C)

		Limit				
Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Operating Voltage	VDD_REGIN/ VDD_IO	2.0	-	5.5	V	-
Operating Current	I _{OP}	1	27	35	mA	F _{OSC} = 122.88MHz, AD and DAC are disabled, without loading.
Halt Current	I _{halt}	-	1	2	mA	In halt mode, 32KHz is enabled and PLL (F _{OSC}) is disabled.
Shutdown Current	I _{SD}	-	5	7	μА	Shutdown mode current with V3 and V12 off
Input High Level	V _{IH}	0.7VDD	-	-	V	SMT Enabled for IOA, IOC, IOB, IOD
Input Low Level	V _{IL}	-	-	0.3VDD	V	SMT Enabled for IOA, IOC, IOB, IOD

		Limit					
Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition	
		PAD	IOA and IOC	GROUP			
		7	14	21	mA	V _{OH} =0.7VDD_IO for IOA and IOC with DRV=0	
Output High Current	I _{ОН}	13	26	39	mA	V _{OH} =0.7VDD_IO for IOA and IOC with DRV=1	
		7	14	21	mA	V _{OL} =0.3VDD_IO for IOA and IOC with DRV=0	
Output Low Current	l _{OL}	13	26	39	mA	V _{OL} =0.3VDD_IO for IOA and IOC with DRV=1	
Input Pull-Low Register	R_{PL}	30	50	70	ΚΩ	V _{IN} =VDD_IO	
Input Pull-High Register	R_{PH}	30	50	70	ΚΩ	V _{IN} =VSS	
Internal ROSC frequency deviation	⊿F/F	-2%	12.288M	+2%	HZ	-	

Note: $V5 \rightarrow VDD_IO, VDD_REGIN, PVDD$

 $V3 \rightarrow V3_REG_OUT, V3_SPIFC_IN, V3_ADC, VDD_USB$

7.4 Regulator Characteristics

LDO12

01			Limit			
Characteristics	Symbol	Min.	Тур.	Max.	Unit	
Input Voltage	VDD_IO	2.0	-	5.5	V	
Maximum Current Output	lvdd12	-	-	20	mA	
Output Voltage	VDD12	1.0	1.2	1.4	V	

LDO30

Characteristics	Symbol	Min.	Тур.	Max.	Unit
Input Voltage	VDD_REGIN	2.0	-	5.5	V
		V3_	ADC		
Maximum Current Output for V3_ADC	lv3_adc	-	-	10	mA
Output Voltage @ VIN=4.5V, lout=5mA	V3_ADC	2.85	3.0	3.15	V
Output Voltage @ VIN=2.0V, lout=5mA	V3_ADC	1.8	1.92	2.0	V
		V3_RE	G_OUT		
Maximum Current Output for V3_REG_OUT	lv3_reg_out	-	-	30	mA
Output Voltage @ VIN=4.5V, lout=5mA	V3_REG_OUT	2.85	3.0	3.15	V
Output Voltage @ VIN=2.0V, lout=5mA	V3_REG_OUT	1.8	1.93	2.0	V

7.5 16-Bit CODEC ADC Characteristics (V3_ADC = 3.0V, TA = 25° C)

Characteristics	Symbol	Min.	Тур.	Max.	Unit
ADC Microphone Input Voltage Range	VINMIC	VSS	-	V3_ADC	V
Resolution of ADC	RESO	=	ı.	16	bits

7.6 12-Bit SAR ADC Characteristics

a.			11		
Characteristics	Symbol	Min.	Тур.	Max.	Unit
SAR ADC Input Voltage Range from IOA[31 :24]	VINIOAx	0	=	VDD_IO	V
Resolution of ADC	RESO	-	-	12	bits
Integral Non-Linearity of ADC	INL	-6	-	+3	LSB
Differential Non-Linearity of ADC	DNL	-1	-	+6	LSB
ENOB	ENOB	8.4	8.6	-	bits
No Missing Code		9	10	-	Bits
AD Conversion Rate=ADCCLK/16	F _{CONV}	-	-	200K	Hz

7.7 Audio PWM Characteristics (PVDD =4.5V, R_L=8Ω, f=1KHz, TA=25°C)

Characteristics	Symbol	Min.	Min. Typ.		Unit
Resolution	RESO	-	-	16	bit
THD+n(4.5V@0.4W)	THD+n	-	1	-	%
Noise at No Signal (SNR)	SNR	-	-100	-	dBr A
Dynamic Range (-60dB)	DR	-	-80	-	dBr A

7.8 Voltage DAC Characteristics (PVDD =3.0V, R_L =8 Ω , f=1KHz, TA=25 $^{\circ}$ C with GPY0030C)

Characteristics	Symbol	Min.	Тур.	Max.	Unit
Resolution	RESO	-	-	16	bit
THD+n(4.5V@0.4W)	THD+n	-	1	-	%
Noise at No Signal (SNR)	SNR	-	-90	-	dBr A
Dynamic Range (-60dB)	DR	-	-70	-	dBr A

8 APPLICATION CIRCUITS

8.1 Application Circuit with Internal 12.288MHz Oscillator and Internal 32768Hz Oscillator

Note*1: Bead3/4 are optional for EMI sensitive application.=Bead3/4 should be located as close as possible to AUDP/AUDN/PVSS.

Note*2: The typical value of C3/4 is 1.5nF, and could be modified in different loading. C4/5 should be located as close as possible to AUDP/AUDN/PVSS.

20

Note*3: Stand-alone PCB ground line from battery to VSS_ADC is suggested for better quality on ADC MIC.

8.2 Application Circuit with Internal 12.288MHz Oscillator and External 32768Hz Crystal

Note*1: Bead3/4 are optional for EMI sensitive application. Bead3/4 should be located as close as possible to AUDP/AUDN/PVSS.

Note*2: The typical value of C3/4 is 1.5nF, and could be modified in different loadings. C4/5 should be located as close as possible to AUDP/AUDN/PVSS.

Note*3: To obtain a clearer sound quality for MIC ADC, the power source VSS (e.g. battery) is recommended being an independent path connecting with AVSS (VSS_ADC). This PCB layout approach is capable of reducing MIC's background noise significantly.

8.3 Application Circuit with Internal Oscillator and Voltage DAC

Note*1: To obtain a clearer sound quality for MIC ADC, the power source VSS (e.g. battery) is recommended being an independent path connecting with AVSS (VSS_ADC). This PCB layout approach is capable of reducing MIC's background noise significantly.

22

8.4 Application Circuit with Internal 12.288MHz Oscillator and Internal 32768Hz Oscillator and without MIC

Note*1: Bead3/4 are optional for EMI sensitive application.=Bead3/4 should be located as close as possible to AUDP/AUDN/PVSS.

Note*2: The typical value of C3/4 is 1.5nF, and could be modified in different loading. C4/5 should be located as close as possible to AUDP/AUDN/PVSS.

8.5 Connect with G+ Link

Note: Connection above is applied for VREF=VCC. Check application notice for more detail information

9 PACKAGE/PAD LOCATION

9.1 Ordering Information

Body	Product Number	Package Type
GPCM300A	GPCM300A-NnnV-C	Chip form
	GPCM300A-NnnV-QL24x	Green Package – LQFP64_7x7x1.4
	GPCM300A-NnnV-QL23x	Green Package – LQFP48_7x7x1.4
GPCM300B	GPCM300B-NnnV-C	Chip form

Note1: Code number is assigned for customer.

Note2: Code number (N = A - Z or 0 - 9, nn = 00 - 99); version (V = A - Z).

Note3: Package form number (x = 1 - 9, serial number).

9.2 Package Information

9.2.1 LQFP 64_7x7x1.4 Outline Dimensions

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

, , , , , , , , , , , , , , , , , , , ,						
SYMBOLS	MIN.	NOM.	MAX.			
А			1.60			
A1	0.05		0.15			
A2	1.35	1.40	1.45			
b	0.13	0.18	0.23			
С	0.09		0.20			
D	9.00 BSC					
D1	7.00 BSC					
е	0	0.40 BSC				
Е	9	.00 BSC				
E1	7	.00 BSC				
L	0.45	0.60	0.75			
L1	1.00 REF					
θ	0°	3.5°	7°			

NOTES:

- 1.JEDEC OUTLINE: MS-026 BBD
- 2.DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25mm PER SIDE. D1 AND E1 ARE MAXIMUM. PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.
- 3.DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.ALLOWABLE DAMBER PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO . EXCEED THE MAXIMUM b DIMENSION BY MORE THAN 0.08mm.

9.2.2 LQFP 48_7x7x1.4 Outline Dimensions

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

	·		,			
SYMBOLS	MIN.	NOM.	MAX.			
А			1.60			
A1	0.05		0.15			
A2	1.35	1.40	1.45			
b	0.17	0.22	0.27			
С	0.09		0.20			
D		9.00 BSC				
D1		7.00 BSC				
Е		9.00 BSC				
E1		7.00 BSC				
е		0.50 BSC	,			
L	0.45	0.60	0.75			
L1	1	1.00 REF				
θ	0,	3.5°	7°			

NOTES:

- 1.JEDEC OUTLINE : MS-026 BBC
- 2.DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- 3.DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- 4.DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.

10 DISCLAIMER

The information appearing in this publication is believed to be accurate.

Integrated circuits sold by Generalplus Technology are covered by the warranty and patent indemnification provisions stipulated in the terms of sale only. GENERALPLUS makes no warranty, express, statutory implied or by description regarding the information in this publication or regarding the freedom of the described chip(s) from patent infringement. FURTHERMORE, GENERALPLUS MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. GENERALPLUS reserves the right to halt production or alter the specifications and prices at any time without notice. Accordingly, the reader is cautioned to verify that the data sheets and other information in this publication are current before placing orders. Products described herein are intended for use in normal commercial applications. Applications involving unusual environmental or reliability requirements, e.g. military equipment or medical life support equipment, are specifically not recommended without additional processing by GENERALPLUS for such applications. Please note that application circuits illustrated in this document are for reference purposes only.

11 REVISION HISTORY

Date	Revision #	Description	Page
Feb. 06, 2025	1.4	1. typo revise	9, 16, 17, 20, 21, 22
		2. LDO30 min. voltage spec modify to 2.0V	18
Aug. 28, 2024	1.3	Power pin name and description modify	7,9~10,16~18 ,20~22
		2. Add application circuits without MIC	23
Oct. 17, 2023	1.2	Remove Idsp and correct Isd max. to 7uA	16,17
		2. Typo revise	22
		3. Correct lop max. to 35mA	16,17
		4. Add LQFP48 information	9,25,27
Jun. 06, 2023	1.1	1. Typo revise	4~7,10
		2. LQFP64 pin23~25 revise	9
		3. Remove LQFP64_10x10 information	
Feb. 03, 2023	1.0	1. Wake source modify	12
		2. Add new body GPCM300B description	4
		3. Modify Max. frequency to 122.88MHz	4
		4. Typo revise	7,14
Nov. 25, 2022	0.1	Preliminary version	29