Epreuve écrite

Examen de fin d'études secondaires 2003

Section: B C

Branche: PHYSIQUE

Nom et prénom du candidat	;
juin 200 3	

page 1/2

I. Mouvement d'un projectile dans le champ de pesanteur uniforme

Au cours d'un match de tennis, un joueur fait le service de façon suivante : Il lance la balle verticalement vers le haut avec une vitesse v_{vert} = 4,64 m/s, la balle se trouvant à une hauteur h_0 = 1,20 m au-dessus du sol lorsqu'elle quitte la main du joueur.

1) A quelle hauteur maximale H, par rapport au sol, va-t-elle monter?

Lorsque la balle est au sommet de sa trajectoire, le joueur la frappe avec sa ra \not equette. Elle part alors avec une vitesse $\overrightarrow{v_o}$ faisant un angle α avec l'horizontale.

- 2) Etablir les équations paramétriques du mouvement de la balle.
- 3) En déduire l'équation cartésienne de sa trajectoire.
- 4) La longeur du court de tennis étant de 2L = 23,77m, quelle doit être la vitesse minimale $v_{o min}$ de la balle pour qu'elle passe tout juste par-dessus le filet placé au milieu du court et ayant une hauteur h = 0,915 m? (On donne : H = 2,30 m et $\alpha = 5^{\circ}$).

En réalité, la balle part avec une vitesse v_0 ' = 25 m/s.

- 5) A quelle distance du fond du court adverse va-t-elle toucher terre?
- 6) Quel aura été son temps de vol?

20 points (3; 6; 2; 4; 3; 2)

II. Oscillateur harmonique horizontal

Un solide (S) de masse m glisse sans frottement sur une tige horizontale. Il est fixé à l'extrémité d'un ressort de raideur k. Quand le solide est au repos, son centre d'inertie G se trouve en O, origine de l'axe défini par la tige. On écarte ce solide de sa position d'équilibre, puis on l'abandonne à lui-même.

- 1) Faire l'inventaire des forces s'exerçant sur le solide et les représenter sur un schéma.
- 2) Etablir l'équation différentielle du mouvement du solide.
- 3) Montrer que $x = a \cos(\omega t + \phi)$ est une solution de l'équation différentielle et en déduire l'expression de la période propre T de l'oscillateur.
- 4) Application numérique :

Examen	đe	fin	ď	'études	secondaires	2003
LIAGINGII	uv	T X X X	•	CLUCUS	2000Meren on	

Section: B C

Branche: PHYSIQUE

Nom et prénom du candidat					
····					

page 2/2

- b) A l'instant t = 0, la position du mobile est $x_0 = 0$ et sa vitesse $v_0 = 12,5$ cm/s. Déterminer l'équation horaire du mouvement.
- c) Déterminer l'accélération du solide (S) quand son élongation vaut 2 cm.

17 points (2; 4; 2; 2; 5; 2)

III. Ondes stationnaires

Une corde de longueur I est tendue entre deux points A et B tels que AB = I. Son extrémité A est animée par un vibreur sinusoïdal transversal. Pour certaines valeurs discrètes de la fréquence f du vibreur, de la longueur I de la corde et de sa tension F_T , la corde donne lieu à un phénomène d'onde stationnaire.

- 1) Définir et décrire ce que l'on entend par O.ST. en expliquant notamment le terme < fuseau>.
- 2) Etablir la relation existant entre le nombre de fuseaux n, l, f et F_T.
- 3) Vrai ou faux ? (Motiver chaque fois votre réponse et redresser le cas échéant).
 - a) Le nombre n de fuseaux est proportionnel à la longueur l.
 - b) Le nombre n de fuseaux est inversement proportionnel à la fréquence.
 - c) Le nombre n de fuseaux est inversement proportionnel à F_T.
- 4) Application:

Une corde de piano de longueur I = 0,653 m a pour masse m = 0,75 g. Quelle doit être sa tension pour qu'elle émette comme son fondamental le la₃ de fréquence f = 440 Hz?

14 points (5; 3; 3; <u>3</u>)

- IV. Divers : Vrai ou faux ? (Motiver chaque fois votre réponse et redresser le cas échéant).
 - 1) Un satellite évolue à une altitude z_1 . Il change d'orbite et passe à une altitude z_2 = 2 z_1
 - a) Sa vitesse à l'altitude z₂ est le double de celle à l'altitude z₁.
 - b) La force gravitationnelle qu'il subit de la part de la Terre est alors divisée par 4.
 - 2) Des particules de même masse, de charges q_1 et $q_2 = q_1/2$, émises sans vitesse initiale, sont accélérées sous une même tension U. Elles pénètrent avec des vitesses v_1 et v_2