## PIAS: Estructura y Actualización de Datos

Documentos preparado por Cristian Hernández cris@crishernandez.co Septiembre del 2017

#### Resumen

En este reporte se plantea lo que se considera la forma más eficiente de servir de datos a la visualización enconmendada por el Programa Estratégico Nacional Transforma Alimentos, en los objetivos específicos OE1 (investigadores y laboratorios) y OE2 (centros de desarrollo, prueba y pilotaje)

#### A. Requerimiento

De acuerdo a las conversaciones surgidas en las reuniones de avance del proyecto, el cliente busca un método que no requiera la contratación de nuevas asesorías y/o servicios dedicados como nuevos servidores, para el mantenimiento y la actualización de los datos con los cuales se construirán las visualizaciones. En lo posible, y tal como se mencionó por el cliente, utilizar herramientas de uso generalizado, similares a un entorno *Microsoft Office*.

### B. Solución propuesta

Teniendo en mente el requerimiento se exploraron diversas soluciones. Lo que se escoge finalmente como espacio que aloje los datos es **Google Drive**, en específico **Google Spreadsheets**, que provee un espacio en la nube de edición colaborativa, y similar a un formato de hojas de un libro excel.

Para llamar los datos y que estos sean servidos para las visualizaciones se utilizará la herramienta **Tabletop**, la cual está desarrollada en el lenguaje de programación *JavaScript*. Este módulo permite llamar cada hoja (*sheet*) del documento en Drive, en un formato de objetos, sobre los cuales se construirán las visualizaciones.

#### C. Estructura de datos

La estructura de datos propuesta es la siguiente:

En esta estructura de datos, manteniendo un formato pre-establecido de libro de hojas alojado en Drive, hecho en Google Spreadsheets, se alimenta a la visualización de datos a través de la utilización de Tabletop.



Figure 1: Estructura de Datos

De esta manera se elimina la preocupación de configurar servidores especiales para la visualización de datos, y se hace dinámica en el sentido de actualizarse al mismo momento que se actualizan los datos. Solo basta refrescar la página donde se alojala visualización en el explorador.

## D. Ejemplo del flujo de datos

Para que los datos puedan ser utilizados directamente desde Google Spreadsheets, se necesita realizar los siguientes pasos:

• Subir o crear un documento en Google Spreadsheets. En este caso se ha alojado la tabla enviada por el cliente en Google Drive:



Figure 2: Ejemplo tabla alojada en Google Drive

• Para que Tabletop pueda leer un libro alojado en Drive, el documento debe hacerse público en la web, de la siguiente forma: File > Publish to the web. Luego copiar el link que Drive entrega:



Figure 3: Ejemplo publicación de tabla

• Insertar el link que nos entrega Drive en la función JavaScript de Tabletop para leer los datos, o solamente identificador o **key** del documento, de la siguiente forma:

• Una vez que se puede acceder a los datos en el documento, podemos hacer un test. En este caso haremos una impresión en la consola del explorador con todos los nombres de los Grupos de Investigación:

```
function drawChart(data) {
    // GRUPOS DE INVESTIGACIÓN
    var grupos_investigacion = data.grupo_investigacion.elements;
```

```
for (var i = 0; i < grupos_investigacion.length; i++) {
   console.log(grupos_investigacion[i].grupo_investigacion);
}</pre>
```

Esto produce el siguiente render en el explorador:

# **PIAS**



Figure 4:

## E. Siguientes pasos

Si el cliente está conforme con la forma propuesta para el ingreso y actualización de los datos, ya se puede comenzar a programar las visualizaciones de los datos provistos. Un ejemplo de lo que se propone para la visualización, se presentará en un documento adjunto.