兰州大学 2021~2022 学年第 一 学期

期末考试试卷(A卷)

课程	名称: _	高等	数学(物理	理类)	任课	教师:			
学院	:		专业:	. <u> </u>	年级:				
姓名	:			校园	卡号:				
	题号	_		三	四	五.	六	总分	
	分数								

- 一、计算题 (共 54 分):
- 1. 计算极限 $\lim_{x\to 0} \frac{(e^{-x^2}-1)\sin x}{x^2 \ln(1-2x)}$
- 2.计算极限 $\lim_{x\to +\infty} (\frac{x+2}{x-2})^x$
- 3.计算极限 $\lim_{x\to 0} \frac{\cos x e^{-\frac{x^2}{2}}}{x^3 \sin x}$
- 4.计算 $f(x) = e^{-\sin^2 \frac{1}{x}}$ 的导数
- 5.求由方程 $e^{xy} + \sin(x^2y) = y^2$ 所确定的隐函数 y 的导数 $\frac{dy}{dx}$
- 6.已知在极坐标下的曲线 $r = a\theta$, 计算一阶导数 $\frac{dy}{dx}$ 与二阶导数 $\frac{d^2y}{dx^2}$

7.计算积分
$$\int \frac{1}{1+\cos 2x} dx$$

$$-$$
 8.计算积分 $\int \frac{\arctan\sqrt{x}}{\sqrt{x}(1+x)} dx$

9.计算积分
$$\int_{0}^{1} \frac{\ln(1+x)}{(2-x)^2} dx$$

二 (8 分) 设 $y = (x^2 - 1)^{\frac{2}{3}}$, 求 y 的极值

三 (10 分) 求曲线
$$\begin{cases} x = \int_{0}^{t^{2}} \sqrt{1+u} du \\ x = \int_{0}^{t^{2}} \sqrt{1-u} du \end{cases}$$
 在 $t \in [1,2]$ 上的弧长

四(12 分)已知摆线 $L: x = a(t - \sin t), y = a(1 - \cos t), t \in [0, 2\pi]$,L = x 轴 围成的图形为 D.(1)计算 D 的面积(2)计算 D 绕 x 轴所得的旋转体体积

五(10分)求幂级数
$$\sum_{n=0}^{\infty} \frac{x^n}{n+1}$$
 的收敛域与和函数

六 $(6 \, \text{分})$ 已知 f(x) 在 [a,b] 上连续且可求二阶导数, f(a) = f(b) = 0 ,证明

存在
$$\xi \in (a,b)$$
,使得 $f''(\xi) = \frac{2f'(\xi)}{b-\xi}$

兰州大学 2020~2021 学年第 一 学期 期末考试试卷 (A 卷)

课程名称:高等			数学(物3	理类)	任课	_ 任课教师:			
学院:			专业:	. <u> </u>		_ 年级:			
姓名	:			校园	卡号: _				
	题号	题号 一 二		三	四	五.	六	总分	
	分数								

- 一、计算题 (共 54 分):
- 1.计算极限 $\lim_{n\to+\infty}\frac{n}{\ln n}(\sqrt[n]{n}-1)$
- 2.计算极限 $\lim_{x\to 0} (\cos x + \sin x)^{1/x}$
- 3.计算极限 $\lim_{x \to +\infty} \frac{\ln(1 + \sqrt[3]{x} + \sqrt[4]{x})}{\ln(1 + \sqrt{x} + \sqrt[3]{x})}$
- 4.计算 $f(x) = (\cos x)^{\sin x}$ 的导数
- 5.设 $\rho = \sin^2 \theta$,计算导数 $\frac{dy}{dx}$
- 6.设 $\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}$, 计算导数 $\frac{dy}{dx}$

7. 计算积分
$$\int \frac{1}{\sqrt{x}} \cos \sqrt{x} dx$$

8.计算积分 $\int x \arctan x dx$

9.计算积分 $\int \sin 4x \sin 3x dx$

二(11 分)求由方程 $x-y+\frac{1}{2}\sin y=0$ 所确定的隐函数 y 的二阶导数 $\frac{d^2y}{dx^2}$

三 $(11 \, \text{分})$ 求圆片 $(x-2)^2 + y^2 \le 1$ 绕y 轴所得的旋转体体积

四(12 分)在底面半径为y cm,高为h cm 的直圆锥形容器中注满了水(尖端朝下),在顶点处有一面积为A cm² 的小孔,水从孔中流出,水深x cm 时,水流出速度是 $\sqrt{2gx}$ cm/s,问需多少时间才能把水流尽?

五(12 分)求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n}$ 的收敛区域与和函数

兰州大学 2016~2017 学年第 一 学期 期末考试试卷 (A 卷)

课程	名称: _	高等	数学(物3	理类)	任课	教师:			
学院:				. <u> </u>					
姓名	:			校园	卡号:				
	题号	_		三	四	五.	六	总分	
	分数								

- 一、计算题 (共 54 分):
- 1.计算极限 $\lim_{x\to 0} \frac{e^x 1}{\sin x}$
- 2.计算极限 $\lim_{n\to+\infty} \frac{n}{\ln n} (\sqrt[n]{n} 1)$
- 3.计算极限 $\lim_{x\to 0} [x x^2 \ln(1 + \frac{1}{x})]$
- 4.计算 $f(x) = x^x$ 的导数
- 5.设 $\rho = \sin \theta + \cos \theta$, 计算导数 $\frac{dy}{dx}$

$$6.设 \begin{cases} x = \cos t^2 \\ y = t \cos t^2 - \int_1^{t^2} \frac{\cos u}{2\sqrt{u}} du \end{cases}, \text{ 计算导数} \frac{d^2 y}{dx^2}$$

7. 计算积分
$$\int \frac{1}{\sqrt{x}} \cos \sqrt{x} dx$$

8.计算积分 $\int x^2 \cos x dx$

9.计算积分 $\int \tan^3 x \sec x dx$

二(10 分)求偶函数 $f(x) = \int_{1}^{x^2} (x^2 - t)e^{-t^2} dt$ 的单调区间与极值

 $=(10\, f)$ 一个球被平面截下的一部分叫球缺,截面叫球缺的底面,垂直于截面的直径被截下的线段叫球缺的高。证明半径为 R 且高为 h 的球缺的体积为

$$V = \pi h^2 (R - \frac{h}{3})$$

四 (11 分) 设
$$f(x) = x \ln \frac{1+x}{1-x} + \cos x - 1 - \frac{x^2}{2}$$
, $-1 < x < 1$ 。证明:

(1) f(x) 是偶函数,且0 < x < 1时严格增;

(2)
$$x \ln \frac{1+x}{1-x} + \cos x \ge 1 + \frac{x^2}{2}$$
.

五(11 分)求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n}$ 的收敛域与和函数

六(4分) 求函数 $f(x) = x^2$ 在[0, π] 上的余弦级数展开

兰州大学 2015~2016 学年第 一 学期

期末考试试卷 (A 卷)

课程	! 名称:	高等	数学(物3	浬类)	任课	_ 任课教师:			
学院	i:		专业:	年级:					
姓名	:			校园	卡号:				
	题号	_		=	四	五.	六	总分	
	分数								

- 一、计算题 (共 54 分):
- 1.计算极限 $\lim_{x\to 0} \frac{\ln(1+x)}{\sin x}$
- 2.计算极限 $\lim_{x\to 0} (1+\sin^2 x)^{1/(1-\cos x)}$
- 3.计算极限 $\lim_{x\to 0} \frac{1}{x^3} [(\frac{1+\cos x}{2})^x 1]$
- 4.计算 $f(x) = \cos x^{\sin x}$ 的导数
- 5.设 $\rho = \sin^2 \theta$,计算导数 $\frac{dy}{dx}$
- 6.设 $\begin{cases} x = t \sin t \\ y = 1 \cos t \end{cases}$, 计算导数 $\frac{d^2 y}{dx^2}$

- 7. 计算积分 $\int \frac{e^{\arcsin x}}{\sqrt{1-x^2}} dx$
- 8.计算积分 $\int x \ln x dx$
- 9.计算积分 $\int_{0}^{1} \arccos x dx$
- 二(11 分)求由方程 $\int_{0}^{y} e^{-t^2} dt + \int_{0}^{x} \frac{\sin t}{t} = 1$ 所确定的二阶导数 $\frac{d^2 y}{dx^2}$
- 三 $(10 \, \text{分})$ 求圆片 $(x-2)^2 + y^2 \leq 1$ 绕 y 轴所得的旋转体体积
- 四 $(10 \, \beta)$ 展开 $\ln \cos x$ 到 x^4 的项
- 五(11 分)求幂级数 $\sum_{n=0}^{\infty} (n+1)x^{2n}$ 的和

六 (4 分) 设函数 f(x) 在 [0,1] 上连续,(0,1) 上可导,且满足

$$f(1) = 2 \int_{0}^{1/2} e^{1-x^2} f(x) dx$$

证明存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 2\xi f(\xi)$

兰州大学 2013~2014 学年第 一 学期

期末考试试卷 (A卷)

课程名称	尔:	高等数:	学(物理	(类)	任课	任课教师:					
学院:			专业:			年级:					
姓名: _				校园	卡号:						
题号			三	四	五.	六	七	八	总分		
分数											

- 一、计算题 (共 45 分):
- 1.计算极限 $\lim_{x\to 0} (1+3\tan^2 x)^{\cot^2 x}$
- 2.计算极限 $\lim_{x\to 0} [x x^2 \ln(1 + \frac{1}{x})]$
- 3.计算极限 $\lim_{n\to+\infty} n \ln(\sqrt[n]{3}-1)$
- 4.计算 $f(x) = x^{x^x}$ 的导数
- 5.设 $\rho = \sin \theta + \cos \theta$,计算导数 $\frac{dy}{dx}$

6.设
$$\begin{cases} x = \sin t \\ y = t - \int_{0}^{\sin t} e^{-x^{2}} dx \end{cases}$$
, 计算导数 $\frac{dy}{dx}$

7. 计算积分 $\int \cos^3 x dx$

8.计算积分 $\int \sin 7x \cos 3x dx$

9.计算积分 $\int \frac{x-1}{x^2+2x+3} dx$

二(10 分)求由方程 $\int_{0}^{y} e^{t^2} dt + \int_{0}^{x^2} \frac{\sin t}{\sqrt{t}} = 1$ 所确定的二阶导数 $\frac{d^2 y}{dx^2}$

三(8 分)计算由摆线 $x = a(t - \sin t)$, $y = a(1 - \cos t)$ 一拱的下方图绕 y 轴所得的旋转体体积

四(8分)由抛物线 $y = x^2$ 与 $y = 4x^2$ 绕 y 轴旋转一周得一容器,其高为 H,如果容器内装满水,问把水全部抽出,至少要做多少功?

五(10 分)求幂级数 $\sum_{n=0}^{\infty} \frac{x^{2n}}{n+1}$ 的和

六(8分)设x > 1且 $x \neq 0$,证明 $\frac{x}{1+x} < \ln(1+x) < x$

七(6 分)设函数 f(x) 在 [a,b] 上连续, f''(x) 在 (a,b) 内存在,若 f(a)=f(b)=0 且存在 $c\in(a,b)$,使 f(c)>0 证明存在 $\xi\in(0,1)$,使得 $f''(\xi)<0$

八 (5 分) 若函数 f(x) 在 x_0 点取极小值,且右导数 $f'_+(x_0)$ 在 x_0 点连续,证明 $f'_+(x_0) = 0$

兰州大学 2012~2013 学年第 一 学期

期末考试试卷 (A 卷)

课程	名称	:	高等数学	(物理类))	_ 任课教师:					
学院	:			专业:		年级:					
姓名	姓名: 校园卡号:										
题	号	_	=	三	四	五.	六	七	总分		
分	数										

- 一、计算题 (共 50 分):
- 1.计算极限 $\lim_{x\to 0} (1+2\sin x)^{3/x}$
- 2.计算极限 $\lim_{x\to 0} \frac{\tan x \sin x}{x \sin x}$
- 3.计算极限 $\lim_{x\to 0} \frac{\sqrt{1+x} + \sqrt{1-x} 2}{x^2}$
- 4.计算 $f(x) = \cos x^{\sin x}$ 的导数
- 5.设 $\rho = \sin 3\theta$,计算导数 $\frac{dy}{dx}$

6.设
$$\begin{cases} x = \sin t \\ y = \int_{0}^{\sin t} e^{\cos x} dx \end{cases}$$
, 计算导数 $\frac{dy}{dx}$

7. 计算积分
$$\int \frac{\sin\sqrt{x}}{\sqrt{x}} dx$$

8.计算积分 $\int \tan^3 x \sec x dx$

9.计算积分 ∫ sin ln xdx

二(10 分)求由方程 $x-y+\frac{1}{2}\sin y=0$ 所确定的隐函数 y 的二阶导数 $\frac{d^2y}{dx^2}$

 Ξ (10 分) 求圆片 $(x-a)^2 + y^2 \le R^2$ 绕y轴所得的旋转体体积

四(10 分)一圆柱形水桶高为H,底半径为r 米,桶内装满水。如果问把桶内水全部吸出,问至少要做多少功?

五(10分)求幂级数 $\sum_{n=1}^{\infty} nx^{2n}$ 的和

六 (5 分) 证明当 $0 < x < \frac{\pi}{2}$ 时, $\tan x + 2\sin x > 3x$

七 (5 分) 证明极坐标曲线 $r = r(\theta)$ 的曲率公式为 $K = \frac{|r^2 + 2r'^3 - rr''|}{(r^2 + r'^2)^{3/2}}$ 。据此

说明双纽线 $r^2 = \cos 2\theta$ 的曲率半径与 r 呈反比

兰州大学 2011~2012 学年第 一 学期

期末考试试卷 (A 卷)

课程	名称: _	高等	数学(物3	理类)	任课	教师:			
学院	:		专业:						
姓名	:			校园	卡号:				
	题号	_		三	四	五.	六	总分	
	分数								

- 一、计算题 (共 50 分):
- 1.计算极限 $\lim_{x\to 0} x[\frac{1}{x}]$
- 2.计算极限 $\lim_{x\to 0+} x^x$

3.计算极限
$$\lim_{x \to +\infty} \frac{(\int_{1}^{x} e^{2t^2} dt)^2}{\int_{1}^{x} e^{2t^2} dt}$$

- 4.计算 $f(x) = \sin x^{\cos x}$ 的导数
- 5.设 $e^x = xy$, 计算导数 $\frac{dy}{dx}$

6.设
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$$
, 计算导数
$$\frac{d^2 y}{dx^2}$$

$$\frac{1}{2}$$
 7. 计算积分 $\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$

8.计算积分 $\int \sqrt{x} \sin \sqrt{x} dx$

9.计算积分 $\int e^x \sin x dx$

二 (10 分) 试证变量代换 $x = \cos t(0 < t < \pi)$ 可将微分方程

$$(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + y = 0$$

化简为
$$\frac{d^2y}{dx^2} + y = 0$$

 Ξ (10分) 求心脏线 $r = a(1 + \cos \theta)(a > 0)$ 所围图形的面积

四(10分)求曲线 $\rho\theta = 1$ 相应于 $\theta = \frac{3}{4}$ 到 $\theta = \frac{4}{3}$ 的一段弧长

五(12 分)求幂级数 $\sum_{n=1}^{\infty} \frac{n^2}{n!} x^n$ 的和

六 (8分)设函数 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 f(a) = f(b) = 0。

证明存在 $\xi \in (a,b)$, 使得 $f'(\xi) = f(\xi)$

答案:

2021-2022:

1.
$$\frac{1}{2}$$
 2. e^4 3. $-\frac{1}{12}$ 4. $e^{-\sin^2\frac{1}{x}} \cdot \sin\frac{2}{x} \cdot \frac{1}{x^2}$

5.
$$\frac{ye^{xy} + 2xy\cos(x^2y)}{2y - xe^{xy} - x^2\cos(x^2y)}$$

6.
$$\frac{dy}{dx} = \frac{\sin\theta + \theta\cos\theta}{\cos\theta - \theta\sin\theta} \quad \frac{d^2y}{dx^2} = \frac{2 + \theta^2}{a(\cos\theta - \theta\sin\theta)^3}$$

7.
$$\frac{1}{2} \tan x + C$$
 8. $(\arctan \sqrt{x})^2 + C$ 9. $\frac{\ln 2}{3}$

$$\exists$$
, $f(0) = 1, f(1) = f(-1) = 0$

$$\equiv$$
 $\sqrt{2}$

四、(1)
$$3\pi a^2$$
 (2) $5\pi^2 a^3$

$$\pm$$
, $[-1,1)$ $S(x) = -\frac{\ln(1-x)}{x}$

六、提示: 构造 $g(x) = f'(x)(b-x)^2$, 再利用罗尔定理