Reinforcement Learning

• Blue slides: Mitchell

• Green slides: Alpaydin

Reinforcement Learning (RL)

- How an autonomous agent that sense and act in the environment can learn to choose optimal actions to achieve its goals.
- Examples: mobile robot, optimization in process control, board games, etc.
- Ingredients: reward/penalty for each action, where the reinforcement signal can be significantly delayed.
- One approach: Q learning

Introduction: Agent

Terminology:

• State: state of the environment, obtained through sensors

• Action: alter the state

 Policy: choosing actions that achieve a particular goal, based on the current state.

Goal: desired configuration (or state).

Desired policy:

 From any initial state, choose actions that maximize the reward accumulated over time by the agent.

Goal: learn to choose actions that maximize discounted,
 cumulative award:

$$r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$$
, where $0 \le \gamma < 1$.

• That is, we want to learn a policy $\pi:S\to A$ that maximizes the above, where S is the set of states, and A that of actions.

[Alpaydin] Introduction

- Game-playing: Sequence of moves to win a game
- Robot in a maze: Sequence of actions to find a goal
- Agent has a state in an environment, takes an action and sometimes receives reward and the state

changes

Credit-assignment

Learn a policy

[Alpaydin] Single State: K-Armed Bandit

□ Among K levers, choose the one that pays best
 Q(a): value of action a
 Reward is r_a
 Set Q(a) = r_a
 Choose a* if
 Q(a*)=max_a Q(a)

□ Rewards stochastic (keep an expected reward):

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta [r_{t+1}(a) - Q_t(a)]$$

Variations of RL Tasks

- Deterministic vs. nondeterministic action outcomes.
- With or without prior knowledge about the effect of action on environmental state.
- Partially or fully known environmental state (e.g., Partially Observable Markov Decision Process [POMDP]).

RL Compared to Other Learning Algorithms

- Planning (in Al)
- Function approximation: $\pi: S \to A$.
- Differences:
 - Delayed reward
 - Exploration vs. exploitation
 - Partially observable states
 - Life-long learning: leveraging on existing knowledge, to make learning of a new complex task easier.

The Learning Task

Markov Decision Process: only immediate state matters.

- State s_t , action a_t at time step t.
- Reward from environment: $r_t = r(s_t, a_t)$
- State transition by environment: $s_{t+1} = \delta(s_t, a_t)$
- $r(\cdot, \cdot)$ and $\delta(\cdot, \cdot)$ may be **unknown** to the agent!
- Task: learn $\pi: S \to A$ to select $a_t = \pi(s_t)$.
- Question: how to specify which π to learn?

[Alpaydin] Elements of RL (Markov Decision Process)

- \square s_t : State of agent at time t
- \square a_t : Action taken at time t
- □ In s_t , action a_t is taken, clock ticks and reward r_{t+1} is received and state changes to s_{t+1}
- □ Next state prob: $P(s_{t+1} \mid s_t, a_t)$
- \square Reward prob: $p(r_{t+1} \mid s_t, a_t)$
- Initial state(s), goal state(s)
- Episode (trial) of actions from initial state to goal
- □ (Sutton and Barto, 1998; Kaelbling et al., 1996)

Discounted Cumulative Reward: $V^{\pi}(s_t)$

• Obvious approach is to find π that maximizes the cumulative reward when π is executed:

$$V^{\pi}(s_t) \equiv r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$$
$$\equiv \sum_{i=0}^{\infty} \gamma^i r_{t+i},$$

where $0 \le \gamma < 1$ is the discount rate.

- π is repeatedly executed: $a_t = \pi(s_t), a_{t+1} = \pi(s_{t+1}), ...$
- ullet When $\gamma=0$, only the current reward is used.
- ullet When $\gamma
 ightarrow 1$, future rewards become more important.

Choosing a Policy

• Optimal policy π^*

$$\pi^* = \operatorname*{argmax}_{\pi} V^{\pi}(s), \forall s$$

- Want a policy that does its best for all states.
- Cumulative reward under optimal policy π^* :

$$V^*(s) \equiv V^{\pi^*}(s),$$

for short.

Example: Grid World

- Immediate reward given only when entering the goal state G.
- ullet Given any initial state, we want to generate an action sequence to maximize V.

Grid World: $V^{st}(s)$ Values

 $(a) \ r(s,a) \ {
m values}$

(b) $V^*(s)$ values

- Discount rate: $\gamma = 0.9$.
- $\bullet \ \ \text{Top middle:} \ 100 + \gamma 0 + \gamma^2 0 + \ldots = 100$
- Top left: $0 + \gamma 100 + \gamma^2 0 + ... = 90$
- Bottom left: $0 + \gamma 0 + \gamma^2 100 + ... = 81$
- Note that these values are supposed to be obtained using the optimal policy π^* .

Q Learning

- Policy is hard to learn directly, because training experience does not provide < s, a > pairs.
- ullet Only available info: sequence of immediate rewards $r(s_i,a_i)$ for i=0,1,2,....
- In this case, it is easier to learn an evaluation function and construct a policy based on that.

Optimal Policy using $V^{st}(s)$

(a) r(s, a) values

(b) $V^*(s)$ values

• If reward r(s, a), state transition $\delta(s)$, and evaluation function $V^*(s)$ are known the following gives an optimal policy:

$$\pi^*(s) = \operatorname*{argmax}_{a} \left[r(s, a) + \gamma V^*(\delta(s, a)) \right]$$

• For example, top middle state: move right = $100 + \gamma 0 = 100$, move left = $0 + \gamma 90 = 81$, move down = $0 + \gamma 90 = 81$.

[Alpaydin] Model-Based Learning

- □ Environment, $P(s_{t+1} \mid s_t, a_t)$, $p(r_{t+1} \mid s_t, a_t)$ known
- There is no need for exploration
- Can be solved using dynamic programming
- Solve for

$$V^*(s_t) = \max_{a_t} \left\{ E[r_{t+1}] + \gamma \sum_{s_{t+1}} P(s_{t+1} | s_t, a_t) V^*(s_{t+1}) \right\}$$

Optimal policy

$$\pi * (s_t) = \arg \max_{a_t} \left(E[r_{t+1} | s_t, a_t] + \gamma \sum_{s_{t+1}} P(s_{t+1} | s_t, a_t) V^*(s_{t+1}) \right)$$

Problems with Policy Based on $V^{st}(s)$

- Requires perfect knowledge of r(s,a) and $\delta(s,a)$, to exactly predict the outcome and reward of a particular action.
- In practice, the above is impossible.
- \bullet Thus, even when $V^*(s)$ is known, $\pi^*(s)$ cannot be found. Refer to:

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \left[r(s, a) + \gamma V^*(\delta(s, a)) \right]$$

• Solution: use a surrogate – the Q function.

The Q Function

Can we get by without explicit knowledge of r(s, a) and $\delta(s, a)$?

• Q(s, a): evaluation function whose value is the **maximum** discounted cumulative reward obtainable when action a is taken in state s:

$$Q(s, a) \equiv r(s, a) + \gamma V^*(\delta(s, a))$$

The derived policy is then:

$$\pi^*(s) = \operatorname*{argmax}_a Q(s, a)$$

Note that if Q(s,a) can be learned without any reference to r(s,a) and $\delta(s,a)$, we have solved our problem.

• Further problem: how to **estimate** Q(s, a)?

Learning the Q Function: Getting Rid of $V^*(\delta(s,a))$

• Q(s,a) is defined over all possible actions a from state s. But note that one of these actions is optimal for state s, and thus:

$$V^*(s) = \max_{a'} Q(s, a')$$

With the above,

$$Q(s, a) \equiv r(s, a) + \gamma V^*(\delta(s, a))$$

can be rewritten as:

$$Q(s, a) \equiv r(s, a) + \gamma \max_{a'} Q(\delta(s, a), a'),$$

thus getting rid of $V^*(\delta(s,a))$.

Learning the Q Function: Getting Rid of r and δ

In state s, execute action a, and observe immediate reward r and resulting state s'. Then, simply use those r and s' you got without worrying about r(s,a) or $\delta(s,a)$.

- Initialize the estimate $\hat{Q}(s,a)$ to zero.
- ullet Iteratively update, with estimated function $\hat{Q}(s,a)$:

$$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a').$$

The Q Learning Algorithm

- 1. For each s, a, initialize the table entry $\hat{Q}(s,a)$ to zero.
- 2. Observe the current state s.
- 3. Do forever:
 - Select action *a* and execute.
 - ullet Receive immediate reward r.
 - Observe resulting state s'.
 - Update table entry for $\hat{Q}(s,a)$ as:

$$\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a').$$

 \bullet $s \leftarrow s'$

Q Learning Properties

- For deterministic Markov decision processes
- ullet \hat{Q} converges to Q, when
 - process is deterministic MDP,
 - r is bounded (and non-negative), and
 - actions are chosen so that every state-action pair is visited infinitely often.

Example

(a) Initial state, in s_1

(b) Next state, in s_2

Arrows represent the \hat{Q} values.

• Move right ($a=a_{right}$) and get immediate reward r=0, with discount rate $\gamma=0.9$:

$$\hat{Q}(s_1, a_{right}) \leftarrow r + \gamma \max_{a'} \hat{Q}(s_2, a')
\leftarrow 0 + 0.9 \max\{66, 81, 100\}
\leftarrow 90$$

• Note that in (b), the $\hat{Q}(s_1, a_{right})$ value is updated from 73 to 90.

Exercise, from scratch

- (a) Initial state Q(s, a) = 0
- (b) After one iteration
- Robot moved from $s_4 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3$.
- How do the various Q(s,a) values get updated?
 - For the first iteration?
 - For the next iteration of $s_4 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3$?

Final learned \hat{Q}

ullet For this domain, following actions that have max Q(s,a) will lead you to the goal through an optimal path.

Convergence of \hat{Q} to Q

Properties (for non-negative rewards):

$$\forall s, a, n : \hat{Q}_{n+1}(s, a) \ge \hat{Q}_n(s, a)$$

$$\forall s, a, n : 0 \le \hat{Q}_n(s, a) \le Q_n(s, a)$$

- In general, convergence is guaranteed under three conditions:
 - 1. The system is a deterministic MDP.
 - 2. The reward is bounded $(\forall s,a) \ |r(s,a)| < c$ for a fixed constant c.
 - 3. All (s, a) pairs are visited infinitely often.

Proof of Convergence: Sketch

- The table entry $\hat{Q}(s,a)$ with the largest error must have its error reduced by a factor of γ whenever it is updated.
- The updated $\hat{Q}(s,a)$ will be based on the error-prone $\hat{Q}(s,a)$ only partially. The accurate immediate reward r used in the Q update rule will help reduce the error.
- *Proof*: Define a full interval to be an interval during which each table entry $\langle s, a \rangle$ is visited. During each full interval the largest error in \hat{Q} table is reduced by factor of γ .

Convergence of Q

Let \hat{Q}_n be table after n updates, and Δ_n be the maximum error in \hat{Q}_n ; that is

$$\Delta_n = \max_{s,a} |\hat{Q}_n(s,a) - Q(s,a)|$$

For any table entry $\hat{Q}_n(s,a)$ updated on iteration n+1, the error in the revised estimate $\hat{Q}_{n+1}(s,a)$ is

$$|\hat{Q}_{n+1}(s,a) - Q(s,a)| = |(r + \gamma \max_{a'} \hat{Q}_n(s',a'))| - (r + \gamma \max_{a'} \hat{Q}_n(s',a'))|$$

$$= \gamma |\max_{a'} \hat{Q}_n(s',a') - \max_{a'} Q(s',a')|$$

$$\leq \gamma \max_{a'} |\hat{Q}_n(s',a') - Q(s',a')|$$

$$\leq \gamma \max_{a'} |\hat{Q}_n(s'',a') - Q(s'',a')|$$

$$|\hat{Q}_{n+1}(s,a) - Q(s,a)| \leq \gamma \Delta_n$$

Convergence in Q

Main result:

$$|\hat{Q}_{n+1}(s,a) - Q(s,a)| \le \gamma \Delta_n$$

- That is, error in the updated $\hat{Q}(s,a)$ is less than γ times the max error in the table before the update.
- Note that $\gamma < 1.0$.
- Given initial Δ_0 , after k visits to $\langle s,a \rangle$, the error will be at most $\gamma^k \Delta_0$, and as $k \to \infty$, $\Delta_k \to 0$.

Constructing the Policy from the Learned Q

- 1. Greedy: given state s, pick $\operatorname{argmax}_a Q(s, a)$.
 - May cause the agent to exploit early successes and ignore interesting possibilities.
 - This would prevent the agent from visiting all (s,a) pairs infinitely often.
- 2. Probabilistic: pick action a_i with probability:

$$P(a_i|s) = \frac{k^{\hat{Q}(s,a_i)}}{\sum_{j} k^{\hat{Q}(s,a_j)}}$$

where k>0 controls **exploration** (low k) vs. **exploitation** (high k, greedy).

Updating Sequence

No specific order of (s, a) visit is necessary for convergence. However, this can be inefficient.

- 1. Perform update in reverse order, once the goal has been reached.
- 2. Store past state-action transitions.

Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V, Q by taking expected values

$$V^{\pi}(s) \equiv E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots]$$
$$\equiv E\left[\sum_{i=0}^{\infty} \gamma^i r_{t+i}\right]$$

$$Q(s, a) \equiv E[r(s, a) + \gamma V^*(\delta(s, a))]$$

Nondeterministic Case

Q(s,a) can be redefined as follows:

$$Q(s, a) \equiv E[r(s, a) + \gamma V^*(\delta(s, a))]$$

$$= E[r(s, a)] + \gamma E[V^*(\delta(s, a))]$$

$$= E[r(s, a)] + \gamma \sum_{s'} P(s'|s, a)V^*(s')$$

Finally, rewriting it recursively, we get:

$$Q(s, a) = E[r(s, a)] + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q(s', a')$$

Nondeterministic Case: Learning

Using the original learning rule can result in oscillation in $\hat{Q}(s,a)$, and thus no convergence. Taking a decaying weighted average can solve the problem:

$$\hat{Q}_n(s, a) \leftarrow (1 - \alpha_n) \hat{Q}_{n-1}(s, a) + \alpha_n \left[r + \gamma \max_{a'} \hat{Q}_{n-1}(s', a') \right]$$

where

$$\alpha_n = \frac{1}{1 + visits_s(s, a)}$$

and α determines how much the old and new \hat{Q} values will be used. The α_n formula above is known to allow convergence (there can be other formulas).

Temporal Difference Learning

Q learning reduces the difference between \hat{Q} of a state and its immediate successor (one-step look ahead). This can be generalized to include more distant successors.

Q learning reduces the difference between \hat{Q} of a state

- $\hat{Q}(s_t, a_t)$ is estimated based $\hat{Q}(s_{t+1}, \cdot)$, where $s_{t+1} = \delta(s_t, a_t)$.
- One-step look ahead:

$$Q^{(1)}(s_t, a_t) \equiv r_t + \gamma \max_{a} \hat{Q}(s_{t+1}, a)$$

Two-step look ahead:

$$Q^{(2)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \gamma^2 \max_{a} \hat{Q}(s_{t+2}, a)$$

• *n*-step look ahead:

$$Q^{(n)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \dots + \gamma^{(n-1)} r_{t+n-1} + \gamma^n \max_{a} \hat{Q}(s_{t+n}, a)$$

Learning in TD

 $\mathsf{TD}(\lambda)$ for learning Q using various lookaheads ($0 \le \lambda \le 1$):

$$Q^{\lambda}(s_t, a_t) \equiv (1 - \lambda) \left[Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \lambda^2 Q^{(3)}(s_t, a_t) + \dots \right]$$

which can be rewritten recursively:

$$Q^{\lambda}(s_{t}, a_{t})$$

$$= (1 - \lambda) \left[Q^{(1)}(s_{t}, a_{t}) + \lambda Q^{(2)}(s_{t}, a_{t}) + \lambda^{2} Q^{(3)}(s_{t}, a_{t}) + \dots \right]$$

$$= \dots$$

$$= r_{t} + \gamma(1 - \lambda) \max_{a} \hat{Q}(s_{t+1}, a) + \gamma \lambda \left[r_{t+1} + \gamma(1 - \lambda) \max_{a} \hat{Q}(s_{t+2}, a) + \dots \right]$$

$$= r_{t} + \gamma \left[(1 - \lambda) \max_{a} \hat{Q}(s_{t+1}, a) + \lambda Q^{\lambda}(s_{t+1}, a_{t+1}) \right]$$

Note: there's a typo in Mitchell's book.

$$r_t + \gamma \left[(1 - \lambda) \max_a \hat{Q}(\underbrace{s_t}, a) + \lambda Q^{\lambda}(s_{t+1}, a_{t+1}) \right]$$

$TD(\lambda)$ Properties

$$Q^{\lambda}(s_t, a_t) = r_t + \gamma \left[(1 - \lambda) \max_{a} \hat{Q}(s_{t+1}, a_t) + \lambda Q^{\lambda}(s_{t+1}, a_{t+1}) \right]$$

- TD(0): same as $Q^{(1)}$.
- TD(1): only observed r_{t+i} values are considered.
- When $Q = \hat{Q}$, Q^{λ} values are the same for any $0 \le \lambda \le 1$.

Curious Properties of $TD(\lambda)$

Why is $TD(\lambda)$ not 0 when $\lambda=1$? Note that $TD(0)=Q^{(1)}$.

$$Q^{\lambda}(s_t, a_t) = (1 - \lambda) \left[Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \lambda^2 Q^{(3)}(s_t, a_t) + \dots \right]$$

It's because of the infinite sum that involve λ :

$$Q^{\lambda} = (1 - \lambda)Q^{(1)} + (1 - \lambda)\lambda Q^{(2)} + (1 - \lambda)\lambda^{2}Q^{(3)} + \dots$$

$$= (1 - \lambda)(r_{t} + \dots) + (1 - \lambda)\lambda(r_{t} + \gamma r_{t+1}\dots) + (1 - \lambda)\lambda^{2}(r_{t} + \gamma r_{t+1})$$

$$= (1 - \lambda)r_{t} + (1 - \lambda)\lambda r_{t} + (1 - \lambda)\lambda^{2}r_{t} + \dots$$

$$= (1 - \lambda)\sum_{n=0}^{\infty} \lambda^{n}r_{t} + \dots$$

$$= (1 - \lambda)\frac{1}{1 - \lambda}r_{t} + \dots$$

$$= r_{t} + \dots$$

$TD(\lambda)$ Properties

- ullet Sometimes converges faster than Q learning
- Converges for learning V^* for any $0 \le \lambda \le 1$ (Dayan, 1992)
- Tesauro's TD-Gammon uses this algorithm

[Alpaydin] Q-Learning

```
Initialize all Q(s,a) arbitrarily For all episodes Initalize s Repeat Choose a using policy derived from Q, e.g., \epsilon-greedy Take action a, observe r and s' Update Q(s,a): Q(s,a) \leftarrow Q(s,a) + \eta(r + \gamma \max_{a'} Q(s',a') - Q(s,a)) s \leftarrow s' Until s is terminal state
```

[Alpaydin] SARSA

```
Initialize all Q(s,a) arbitrarily

For all episodes

Initalize s
Choose a using policy derived from Q, e.g., \epsilon-greedy

Repeat

Take action a, observe r and s'
Choose a' using policy derived from Q, e.g., \epsilon-greedy

Update Q(s,a):
Q(s,a) \leftarrow Q(s,a) + \eta(r + \gamma Q(s',a') - Q(s,a))
s \leftarrow s', \ a \leftarrow a'
Until s is terminal state
```

[Alpaydin] Eligibility Trace

Keep a record of previously visited states (actions)

$$e_t(s,a) = \begin{cases} 1 & \text{if } s = s_t \text{ and } a = a_t \\ \gamma \lambda e_{t-1}(s,a) & \text{otherwise} \end{cases}$$

$$\delta_{t} = r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_{t}, a_{t})$$

$$Q(s_{t}, a_{t}) \leftarrow Q(s_{t}, a_{t}) + \eta \delta_{t} e_{t}(s, a), \forall s, a$$

[Alpaydin] SARSA(λ)

```
Initialize all Q(s, a) arbitrarily, e(s, a) \leftarrow 0, \forall s, a
For all episodes
   Initalize s
   Choose a using policy derived from Q, e.g., \epsilon-greedy
   Repeat
       Take action a, observe r and s'
       Choose a' using policy derived from Q, e.g., \epsilon-greedy
       \delta \leftarrow r + \gamma Q(s', a') - Q(s, a)
       e(s, a) \leftarrow 1
       For all s, a:
          Q(s, a) \leftarrow Q(s, a) + \eta \delta e(s, a)
          e(s, a) \leftarrow \gamma \lambda e(s, a)
       s \leftarrow s', \ a \leftarrow a'
   Until s is terminal state
```

[Alpaydin] Partially Observable States

□ The agent does not know its state but receives an observation $p(o_{t+1} | s_t, a_t)$ which can be used to infer a belief about states

□ Partially observableMDP

Subtleties and Ongoing Research

- Replace \hat{Q} table with neural net or other generalizer.
- Handle case where state is only partially observable (partially observable MDP, or POMDP).
- Design optimal exploration strategies.
- Extend to continuous action, state.
- Learn and use $\hat{\delta}: S \times A \to S$.
- Relationship to dynamic programming.