Introduction to Al Linear Regression

Rodrigo Cabral, Lionel Fillatre and Michel Riveill

EUR DS4H-LIFE-SPECTRUM

cabral@unice.fr

Outline

- 1. Simple linear regression
- 2. Model adequacy for simple linear regression
- 3. Beyond lines: multiple linear regression
- 4. Model adequacy for multiple linear regression
- 5. Conclusions

- 1. Simple linear regression
- 2. Model adequacy for simple linear regression
- Beyond lines: multiple linear regressior
- 4. Model adequacy for multiple linear regression
- Conclusions

Linear data

When do we use simple linear regression?

- One input feature $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}$, one output feature $\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$ with continuous amplitude.
- Scatter plot look like one of these

What is the prediction model?

In simple linear regression the prediction function $\hat{f}(x_i)$ is specified as

$$\hat{y}_i = \beta_1 x_i + \beta_0$$

where β_0 and β_1 parametrize the prediction model $\hat{f}_{\beta}(x_i)$.

Or in matrix notation (using matrix-vector product) for K predictions

$$\hat{\mathbf{y}} = \begin{bmatrix} \mathbf{1} & \mathbf{x} \end{bmatrix} \boldsymbol{\beta} = \begin{bmatrix} \hat{y}_1 \\ \vdots \\ \hat{y}_K \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_K \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

Note that the vector **1** is an implicit feature vector in this model.

What is the meaning of the parameters β_0 and β_1 ?

Relationship between y and x depending on β_1

How do we learn from data in this case?

• Answer: find values of β such that \hat{f}_{β} gives $\hat{\mathbf{y}}$ close to available \mathbf{y} (training data).

How do we measure closeness between \mathbf{y} and $\hat{\mathbf{y}}$?

Simple linear prediction: least squares criterion

Minimize the sum of the squared residuals $\varepsilon_i = y_i - \hat{y}_i$

$$J(\beta) = \sum_{i=1}^{N} \varepsilon_i^2 = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{N} [y_i - (\beta_0 + \beta_1 x_i)]^2$$

- ▶ J is a function of β , since y_i and x_i are fixed.
- ▶ *J* should be minimized as a function of β *J* is a cost function.
- ► This is called the **least squares** approach.
 - It can be applied to any regression problem.
 - ▶ The difficulty lies in solving the minimization problem.

Simple linear prediction: least squares criterion

х

Simple linear prediction: least squares criterion

What is the shape of the cost function?

- ► The cost function is convex: bowl-shaped function.
- There is only one global minimum, the point β at the bottom, which fits quite well the data.
- Points far from this minimum give quite bad solutions.

How do we find the optimal parameters $\hat{\beta}$?

Do we test many values for β?

Simple linear prediction: least squares solution

How do we find the optimal parameters $\hat{\beta}$?

Hopefully, we have a closed form solution for the optimal parameters $\hat{\beta} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix}$:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{N} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{N} (x_{i} - \bar{x})^{2}}$$
(1)

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \tag{2}$$

where
$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 and $\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$.

This can be shown with simple calculus (see Appendix 1).

- 1. Simple linear regression
- 2. Model adequacy for simple linear regression
- Beyond lines: multiple linear regression
- 4. Model adequacy for multiple linear regression
- Conclusions

How do we test model adequacy?

- Absolute criteria:
 - MSE: evaluate mean squared error (MSE) on the dataset:

MSE =
$$\frac{1}{N-2}J(\hat{\beta}) = \frac{1}{N-2}\sum_{i=1}^{N}(y_i - \hat{y}_i)^2$$
 (3)

where the prediction is given by $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$.

- The higher it is, the worse the model is.
- Note that MSE is measured in square units of y.
- Difficult interpretation from its value.

How do we test model adequacy?

- Absolute criteria:
 - ▶ **RMSE**: evaluate root mean squared error (RMSE) on the dataset:

RMSE =
$$\sqrt{\text{MSE}} = \sqrt{\frac{1}{N-2} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2}$$
 (4)

- The higher it is, the worse the model is.
- Easier interpretation since in the same units of y.

How do we test model adequacy?

Analysis of variance: It can be shown that

Total sum of squares
$$=$$
 Sum of squared regression $+$ squared errors

SST $=$ SSR $+$ SSE $=$ $\sum_{i=1}^{N} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$

Good model: most variation on v should be explained by variation on \hat{y} .

> ⇒SSR should be close to SST. $\Longrightarrow \frac{\text{SSR}}{\text{SST}}$ should be close to 1.

How do we test model adequacy?

- Relative criterion:
 - **R**²: evaluate the **coefficient of determination** (R^2) on the dataset:

$$R^{2} = \frac{\text{SSR}}{\text{SST}} = \frac{\sum_{i=1}^{N} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}}$$
(6)

- ▶ $0 \le R^2 \le 1$
- ▶ $R^2 \approx 1$ \Longrightarrow the model is adequate.
- $R^2 \approx 0$ \Longrightarrow the model is inadequate.
- ▶ What is the limit value on R² to decide on adequacy?
 - ⇒It depends strongly on the application.

How do we test model adequacy?

► Different examples and their R²:

How do we test model adequacy?

► Different examples and their R²:

How do we test model adequacy?

- ► Residuals analysis :
- Evaluate Studentized (normalized) residuals:

$$\varepsilon_i = \frac{y_i - \hat{y}_i}{\mathsf{RMSF}\sqrt{1 - h_i}} \tag{7}$$

where $h_i = \frac{1}{N} + \frac{(x_i - \bar{x})^2}{\sum\limits_{i=1}^{N} (x_i - \bar{x})^2}$ are the leverage scores.

How do we test model adequacy?

Residuals analysis :

Studentized residuals should

- present no trends and no bias
 - ⇒ linear model explains all deterministic behavior.
 - ⇒ If not the case, then consider other model

How do we test model adequacy?

Residuals analysis :

Studentized residuals should

- present no trends and no bias
 - linear model explains all deterministic behavior.
 If not the case, then consider other model
- ▶ be inside or not far from the interval [-3, 3]
 - ⇒ the approach we use is optimal in statistical sense when the residuals are assumed to be Gaussian distributed with constant variance.
 - If a small number of points lie far from this interval, these are **outliers** and they should be analyzed carefully (errors in data collection).
 - → If lots of points lie quite far from this interval, then you should look for a different approach than least squares.

How do we test model adequacy?

- Outliers:
- They can be often detected in scatter plots.
- They can be even more easily detected in residual analysis.
- Analysis of these data points is required.
 - → Errors in the dataset?
- If they are errors, you should remove them.
 - \implies They can have great effect on model adequacy indicators (MSE, RMSE and R^2), thus leading to wrong conclusions.

How do we test model adequacy?

Outliers and residual analysis:

How do we test model adequacy?

Outliers and leverage:

- The leverage scores h_i indicate sensitivity of the prediction line to the i-th observation.
- High leverage outliers have great influence on the prediction line.
 They should be analyzed very carefully, to see if they can be removed from the dataset.

- 1. Simple linear regression
- 2. Model adequacy for simple linear regression
- 3. Beyond lines: multiple linear regression
- 4. Model adequacy for multiple linear regression
- Conclusions

Polynomial trend in data

Quadratic prediction model:

$$\hat{y}_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 \tag{8}$$

Polynomial trend in data

Quadratic prediction model:

$$\hat{\mathbf{y}}_i = \beta_0 + \beta_1 \mathbf{x}_i + \beta_2 \mathbf{x}_i^2$$

You can form a new feature vector with the squares

$$\mathbf{x}^{(2)} = \left[\begin{array}{c} x_1^2 \\ \vdots \\ x_N^2 \end{array} \right]$$

then modify the feature matrix to include this new term:

$$\mathbf{X} = \begin{bmatrix} \mathbf{1} & \mathbf{x}^{(1)} & \mathbf{x}^{(2)} \end{bmatrix}$$

where we have redefined $\mathbf{x}^{(1)} = \mathbf{x}$.

Polynomial trend in data

Quadratic prediction model:

$$\hat{y}_i = \beta_0 + \beta_1 x_i^{(1)} + \beta_2 x_i^{(2)}$$

▶ Or in matrix notation (using matrix-product) for *K* predictions

$$\hat{\mathbf{y}} = \mathbf{X}\boldsymbol{\beta} = \begin{bmatrix} \mathbf{1} & \mathbf{x}^{(1)} & \mathbf{x}^{(2)} \end{bmatrix} \boldsymbol{\beta} = \begin{bmatrix} \hat{y}_1 \\ \vdots \\ \hat{y}_K \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ \vdots & \vdots & \vdots \\ 1 & x_K & x_K^2 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$

This is an example of **multiple linear regression**.

Multiple linear regression: the prediction is a linear combination of one or more features.

Multiple linear regression

How do we learn from data in this case?

Answer: we use the same least squares approach that we have used in simple linear regression.

 \Longrightarrow Minimization of $J(\beta)$ with respect to β .

$$J(\beta) = \sum_{i=1}^{N} \varepsilon_i^2 = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{N} \left[y_i - \left(\beta_0 + \beta_1 x_i^{(1)} + \beta_2 x_i^{(2)} \right) \right]^2$$

Using vector notation gives a more compact expression

$$J(\beta) = (\mathbf{y} - \mathbf{X}\beta)^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\beta) = \|\mathbf{y} - \mathbf{X}\beta\|_{2}^{2}$$
 (9)

- T is matrix/vector transpose
- ▶ $\|\cdot\|_2$ is the L_2 norm of a vector.

Multiple linear regression

How do we find the optimal parameters $\hat{\beta}$?

- ▶ Closed-form expressions for β_0 , β_1 and β_2 minimizing $J(\beta)$ in the quadratic case are quite cumbersome.
- It can be shown that a closed-form minimizer for the general problem in vector form, with any \mathbf{X} and any size of $\boldsymbol{\beta}$, is a solution $\hat{\boldsymbol{\beta}}$ of

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X})\,\hat{\boldsymbol{\beta}} = \mathbf{X}^{\mathsf{T}}\mathbf{y} \tag{10}$$

This can be shown with simple *calculus* (see Appendix 2).

The equations forming this linear system are called normal equations.

Multiple linear regression

How do we find the optimal parameters $\hat{\beta}$?

- ▶ If none of the columns of **X** can be written as a linear combination of the others, then (10) has only one solution.
- ▶ Furthermore, the matrix inverse $(\mathbf{X}^T\mathbf{X})^{-1}$ exist and we have

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} \tag{11}$$

- Matrix inverse can be calculated with numerical algorithms.
 In practice, it is preferred to numerically solve the normal
 - In practice, it is preferred to numerically solve the normal equations then to use the matrix inverse.
- ▶ Challenge for the curious: obtain the optimal $\hat{\beta}$ previously given for simple linear regression from this expression.

Quadratic model example:

Prediction with optimal parameters given by (12):

Generalization to *p*-th degree polynomials:

Set a
$$p + 1$$
 parameter vector $\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}$

then create a new feature matrix X in a similar way:

$$\mathbf{X} = \begin{bmatrix} \mathbf{1} & \mathbf{x}^{(1)} & \cdots & \mathbf{x}^{(p)} \end{bmatrix} = \begin{bmatrix} 1 & x_1 & \cdots & x_1^p \\ \vdots & & & \\ 1 & x_N & \cdots & x_N^p \end{bmatrix}$$

• $\hat{\beta}$ is given again by (12) (or (10)):

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} \tag{12}$$

Cubic model example:

Prediction with optimal parameters given by (12):

Multiple linear regression: hyperplanes

Multiple features:

▶ What if I really have another measured explanatory variable x⁽²⁾?

e.g. $y x^{(1)} x^{(2)}$

Sales in a market Spending in Spending in TV advertisement radio advertisement

and the data seems to lie approximately in a plane surface

Then mult. linear regression

$$\hat{y}_i = \beta_0 + \beta_1 x_i^{(1)} + \beta_1 x_i^{(2)}$$

is a good prediction model.

→ It is the equation of a plane!

Multiple features:

- ▶ What if I really have another measured explanatory variable $\mathbf{x}^{(2)}$?
- ► In this case, set $\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$ and simply concatenate **1** vector

$$X = [1 \quad x^{(1)} \quad x^{(2)}]$$

Prediction results:

Multiple features:

Generalization to p explanatory variables

In this case, set
$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}$$
 and concatenate **1** with other feature vectors:

$$\mathbf{X} = \begin{bmatrix} \mathbf{1} & \mathbf{x}^{(1)} & \cdots & \mathbf{x}^{(p)} \end{bmatrix}$$

- Prediction model is geometrically an hyper plan.
- β_0 is the *y*-intercept when all features are zero.
- β_i is the change in \hat{y} for a unitary change in $x^{(i)}$ when all other variables are kept fixed.

Multiple features:

• β_i is the change in \hat{y} for a unitary change in $x^{(i)}$ when all other variables are kept fixed.

Interaction models:

- Can we model interactions between variables?
- Prediction model with interaction:

$$\hat{y}_i = \beta_0 + \beta_1 x_i^{(1)} + \beta_2 x_i^{(2)} + \beta_{1,2} x_i^{(1)} x_i^{(2)}$$

You can form a new feature vector with the products

$$\mathbf{x}^{(1,2)} = \begin{bmatrix} x_1^{(1)} x_1^{(2)} \\ \vdots \\ x_N^{(1)} x_N^{(2)} \end{bmatrix}$$

then modify the feature matrix and the parameter vector accordingly

$$\mathbf{X} = \begin{bmatrix} \mathbf{1} & \mathbf{x}^{(1)} & \mathbf{x}^{(2)} & \mathbf{x}^{(1,2)} \end{bmatrix} \qquad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_{1,2} \end{bmatrix}$$

Interaction models:

Twisted planes

Interaction models:

The slope for one variable changes as we change the value of the other:

- 1. Simple linear regression
- 2. Model adequacy for simple linear regression
- Beyond lines: multiple linear regression
- 4. Model adequacy for multiple linear regression
- Conclusions

How do we test model adequacy?

- Absolute criteria for p features:
 - MSE:

MSE =
$$\frac{1}{N - (p+1)}J(\hat{\beta}) = \frac{1}{N - (p+1)}\sum_{i=1}^{N}(y_i - \hat{y}_i)^2$$
 (13)

RMSE:

RMSE =
$$\sqrt{\text{MSE}} = \sqrt{\frac{1}{N - (p+1)} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2}$$
 (14)

- We do not count the 1 vector in the features.
- There is no change in interpretation with respect to what is presented in simple linear regression.

How do we test model adequacy?

- Relative criterion:
 - ▶ R²: it is the same as for linear regression

$$R^{2} = \frac{SSR}{SST} = \frac{\sum_{i=1}^{N} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}}$$

► Same interpretation on R² values as for simple linear regression.

How do we test model adequacy?

- ► Residuals analysis :
- Studentized (normalized) residuals are evaluated in a slightly different way than before:

$$\varepsilon_i = \frac{y_i - \hat{y}_i}{\mathsf{RMSE}\sqrt{1 - h_i}} \tag{15}$$

where $h_i = \{\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\}_{i,j}$ are the leverage scores for multiple linear regression (*i*-th element of the diagonal).

How do we test model adequacy?

- ► Residuals/leverage analysis :
- In higher dimensions p > 3, residuals analysis is done with observation index on x axis.

→ More difficult to detect a trend.

 Visualization of outliers and outliers with high leverage cannot be done directly.

⇒ Use residuals vs. leverage scatter plots:

- Collinearity:
- If some features can be written as linear combination of the others, we say that the data suffers from collinearity.

- ► Collinearity:
- If some features can be written as linear combination of the others, we say that the data suffers from collinearity.
- Effects of collinearity:
 - 1. Estimated parameters $\hat{\beta}$ have large variations with addition or removal of a few observations.
 - \Longrightarrow Interpretation of $\hat{\beta}_i$ as specific rates of change have no meaning.
 - 2. Predictions can be quite bad for points outside the collinear pattern.
 - → The model generalization power can be quite poor.

- ► Collinearity:
- If some features can be written as linear combination of the others, we say that the data suffers from collinearity.
- Effects of collinearity:
 - 1. Estimated parameters $\hat{\beta}$ have large variations with addition or removal of a few observations.
 - \Longrightarrow Interpretation of $\hat{\beta}_i$ as specific rates of change have no meaning.
 - 2. Predictions can be quite bad for points outside the collinear pattern.
 - → The model generalization power can be quite poor.
- How do we deal with collinearity?
 - → Remove features such that the data becomes not collinear.

- ► Collinearity:
- An example of fluctuation on $\hat{\beta}$: addition of 2 observations to a collinear dataset with 30 observations.

$$\hat{\beta} = \left[\begin{array}{c} 4.356 \\ 5.505 \\ -6.409 \end{array} \right]$$

$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} -1.989 \\ -0.886 \end{bmatrix}$$

$$\hat{\beta} = \begin{bmatrix} 3.879 \\ 5.000 \\ -5.906 \end{bmatrix}$$

$$\hat{\beta} = \begin{bmatrix} -2.046 \\ \end{bmatrix}$$

$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} -2.046 \\ -0.863 \end{bmatrix}$$

- Collinearity:
- How do we measure the level of collinearity of a feature with respect to the other features?
 - Do linear regression on the dataset (X_{-i}, x_i)
 i.e. remove x_i from X and consider it as the output for regression.
 - 2. Evaluate the corresponding coefficient of determination R_i^2 .
 - 3. Evaluate the **variance inflation factor** VIF_i:

$$VIF_i = \frac{1}{1 - R_i^2} \tag{16}$$

- Collinearity:
- How do we measure the level of collinearity of a feature with respect to the other features?
 - Do linear regression on the dataset (X_{-i}, x_i)
 i.e. remove x_i from X and consider it as the output for regression.
 - 2. Evaluate the corresponding coefficient of determination R_i^2 .
 - 3. Evaluate the variance inflation factor VIF_i:

$$VIF_i = \frac{1}{1 - R_i^2} \tag{16}$$

- ▶ If $VIF_i > 10$, feature \mathbf{x}_i is substantially collinear to the others.
- ▶ If for some features VIF_i > 10, remove one of them and re-evaluate collinearity, if you still have some VIF_i > 10, repeat the procedure, otherwise stop removing features.

- 1. Simple linear regression
- 2. Model adequacy for simple linear regression
- 3. Beyond lines: multiple linear regression
- 4. Model adequacy for multiple linear regression
- 5. Conclusions

Conclusions

Linear regression is one of the simplest parametric regression models in machine learning. It assumes that the response is linear with respect to the features.

⇒ Data is assumed to live in an hyperplan. Lines and 2D planes are special cases.

Conclusions

- Linear regression is one of the simplest parametric regression models in machine learning. It assumes that the response is linear with respect to the features.
 - ⇒ Data is assumed to live in an hyperplan. Lines and 2D planes are special cases.
- Proper transformation of variables can be used to model some non linear trends in data: polynomials, twisted surfaces, etc.
 - \implies Model may have nonlinear dependency on independent variables but has to be linear on the unknown parameters (β) .

Conclusions

- Linear regression is one of the simplest parametric regression models in machine learning. It assumes that the response is linear with respect to the features.
 - ⇒ Data is assumed to live in an hyperplan. Lines and 2D planes are special cases.
- Proper transformation of variables can be used to model some non linear trends in data: polynomials, twisted surfaces, etc.
 - \implies Model may have nonlinear dependency on independent variables but has to be linear on the unknown parameters (β) .
- ▶ Different tools exist to assess model adequacy to data: MSE, RMSE, R² and residual/leverage analysis.
 - ⇒ Interpretation of results is application-dependent and should be done with care.

Appendix 1

Appendix 2

Optimal parameters for simple linear regression

The solution of simple linear regression in the least squares approach are the β_0 and β_1 minimizing (1)

$$J(\beta) = \sum_{i=1}^{N} \varepsilon_i^2 = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{N} [y_i - (\beta_0 + \beta_1 x_i)]^2$$

- ▶ The minima are the critical points, *i.e.* β_0 and β_1 such that $\frac{\partial J}{\partial \beta_0} = 0$ and $\frac{\partial J}{\partial \beta_1} = 0$, with least $J(\beta)$.
- ▶ For β_0 we have

$$\frac{\partial J}{\partial \beta_0} = \frac{\partial \left\{ \sum_{i=1}^{N} \left[y_i - \left(\beta_0 + \beta_1 x_i \right) \right]^2 \right\}}{\partial \beta_0} = -2N(\bar{y} - \beta_0 - \beta_1 \bar{x}) = 0$$

Therefore,

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

Optimal parameters for simple linear regression

▶ For β_1 we have

$$\frac{\partial J}{\partial \beta_1} = \frac{\partial \left\{ \sum_{i=1}^{N} \left[y_i - (\beta_0 + \beta_1 x_i) \right]^2 \right\}}{\partial \beta_1} = -2 \sum_{i=1}^{N} x_i \left(y_i - \beta_0 - \beta_1 x_i \right) = 0$$

• Using $\hat{\beta}_0$ previously obtained,

$$\frac{\partial J}{\partial \beta_1} = -2\sum_{i=1}^N x_i \left(y_i - \bar{y} - \beta_1 \bar{x} - \beta_1 x_i \right) = 0$$

If all x_i are equal, then any β₁ is a solution to the equation above.
 Otherwise, we have the following,

$$\beta_1 \sum_{i=1}^{N} x_i (x_i - \bar{x}) = \sum_{i=1}^{N} x_i (y_i - \bar{y})$$

Optimal parameters for simple linear regression

Since $\beta_1 \bar{x} \sum_{i=1}^{N} (x_i - \bar{x}) = 0$ and $\bar{x} \sum_{i=1}^{N} (x_i - \bar{x}) = 0$ we can subtract them from the left and right side respectively, leading to

$$\beta_1 \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x}) = \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$

and finally

$$\hat{\beta}_1 = \left[\sum_{i=1}^N (x_i - \bar{x})(y_i - \bar{y})\right] / \left[\sum_{i=1}^N (x_i - \bar{x})^2\right].$$

It can be shown that $J(\beta)$ is a convex function, as a consequence $\hat{\beta}_0$ and $\hat{\beta}_1$ correspond to a minimum and they are the optimal solution to the least squares approach.

Appendix 1

Appendix 2

Optimal parameters for multiple linear regression

 The solution of multiple linear regression in the least squares approach is the vector β minimizing (9)

$$J(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2}$$

- The minima are the critical points which give the least value of $J(\beta)$. The critical points are the vectors β which gives a zero gradient vector $\nabla_{\beta}J = \mathbf{0}$.
- ▶ Developing J(β)

$$J(\beta) = (\mathbf{y} - \mathbf{X}\beta)^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\beta) = \mathbf{y}^{\mathsf{T}} \mathbf{y} - \mathbf{y}^{\mathsf{T}} \mathbf{X}\beta - \beta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \beta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X}\beta$$

Applying the gradient and using the linearity property we have

$$\nabla_{\beta} J = \nabla_{\beta} \left(\mathbf{y}^{\mathsf{T}} \mathbf{y} \right) - \nabla_{\beta} \left(\mathbf{y}^{\mathsf{T}} \mathbf{X} \beta \right) - \nabla_{\beta} \left(\beta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} \right) + \nabla_{\beta} \left(\beta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \beta \right) = \mathbf{0}$$

$$= \mathbf{0} - \mathbf{X}^{\mathsf{T}} \mathbf{y} - \mathbf{X}^{\mathsf{T}} \mathbf{y} + 2 \mathbf{X}^{\mathsf{T}} \mathbf{X} \beta = \mathbf{0}$$

► The optimal solution is then given by (10)

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X})\,\hat{\boldsymbol{\beta}} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Optimal parameters for multiple linear regression

Convexity of $J(\beta)$ can be easily shown, it is required only to show that the Hessian operator (matrix with second partial derivatives with respect to β_i) is positive semi-definite, which is the case for any \mathbf{X} and \mathbf{y} . Therefore the solutions of the normal equations are the minimizers of $J(\beta)$, thus representing the optimal solutions of the least squares approach.