Discussion Section: Quiz 3

1. Find the fundamental period of the function $\cos\left(\frac{n\pi x}{L}\right)$. (Circle only one)

- (a) 2π
- (b) 2L

- = cos (NI (x+ 211 L)).
- = cos (mf (x+24)).

2. Consider $y'' + \lambda y = 0$ with $y(0) = y(\pi) = 0$, where $0 < x < \pi$. We know only when $\lambda > 0$, the equation has nontrivial solutions. Find those eigenvalues for λ . (Circle only one)

- (a) $\lambda = n^2$, for n = 1, 2, 3, ...
 - (b) $\lambda = \frac{(2n-1)^2}{4}$, for $n = 1, 2, 3, \dots$
 - (c) $\lambda = n$, for n = 1, 2, 3, ...
 - (d) $\lambda = \frac{(2n-1)}{2}$, for n = 1, 2, 3, ...
- $\lambda > 0$: $\gamma^2 + \lambda = 0 \Rightarrow \gamma = + \sqrt{\lambda} \hat{i}$ y = c, ws (JAX) + c2 &m (JAX) y(0) = C1 =0. y(1) = (2 sin (JAT) =0.
 - => sin (JAm)=0 => JA=N,
 - 80 N= N2 for N=1,2,...

3. Use the method of separation of variables to reduce the partial differential equation $\frac{\partial u}{\partial t^2} = \frac{\partial u}{\partial x^2}$ into a pair of ordinary differential equations. Here u = u(x,t). (Your answer may involve a constant λ .)

Let
$$u = X(x) T(t)$$
, $t = 0$.
So $X \cdot T'' = X'' \cdot T$.
Then $T'' = X'' = -\lambda$ Some constant.
So $T'' + \lambda T = 0$ and $X'' + \lambda X = 0$.