FTHB MODEL SLIDE DECK

Berger, Cui, Turner, and Zwick (DRAFT)

December 11, 2016

Model setup

Defined parameters

Note: The entire model is standardized to median household income in the 1998-2004 SCF (About \$67,000 in 2013 dollars)

- $1-\alpha=0.859$: Cobb-Douglas parameter, share of expenditure in perishable consumption (i.e. α share in durables)
- $ightharpoonup \gamma = 2$: Intertemporal elasticity of substitution
- r = 2.4%: rate of return on the safe asset
- ▶ $r_{borrow} = r + 0.8\%$ interest rate on borrowing (if $q \le (1 \theta) * h * p$)
- $\delta = 2.2\%$: Depreciation rate of hdurable
- F = 6%: total fixed cost on adjusting durable stock
- $\underline{s} = 0.8$: share of the fixed cost borne by the seller (i.e. she pays $\underline{s}F$)
- $\theta = 20\%$: Required down payment on durable
- $\rho_z = 0.91$: Persistence of AR(1) income process
- $\sigma_z = 0.20$: S.d. of shocks to income process
- ightharpoonup $\epsilon=2.5$: Price elasticity of supply for the representative housing firm

Calibrated parameters

Note: Unlikely that all the parameters below will be calibrated.

- $\beta = 0.915$: Discount rate.
- $\phi=0.26\%$: Rental housing markup (added onto user cost of housing yields the rental price as a fraction of housing)
- $\phi_{ret} = 0.065\%$: Rental housing markup in retirement.
- ▶ $h_{min} = 0.78$: Minimum size for an owned house (no limits exist on renting)
- $ightharpoonup \Xi = 2.00$: A lump sum transfer at retirement equal to a proportion of labour income before retirement
- $\Psi = 3.60$: Multiplicative factor on bequest utility (seems large, but maybe bequests are also defined differently?)
- $ightharpoonup \omega$: Disutility of rental housing (= 1 for owned housing)
- ightharpoonup : Reference value for bequests: affects marginal utility of a unit increase in bequests.

ALGORITHMIC DETAILS

- ► Search space over 120 uneven grid points for voluntary equity, $q = a + (1 \theta) * h * p$, 90 grid points for h
- ▶ 9 grid points for income process (Tauchen '86 discretization), with a range of ± 2.5 the unconditional s.d of the AR(1)
- 38 working periods, 25 retirement periods. Correspond to ages 22-84 on data
- A steady-state general equilibrium is found by minimizing the deviation between the **average** excess demand for housing (see Kaplan, Mitman, Violante, eq. 6) and the average new construction supply. The minimizing price is found using Brent's method, with a liberal convergence threshold. However, the minimum deviation still usually reaches less than 1E-2.

Model in steady-state

HOMEOWNERSHIP OVER THE LIFECYCLE: MODEL V. DATA

ASSETS OVER THE LIFECYCLE: MODEL V. DATA

OWNED HOUSE VALUE OVER THE LIFECYCLE: MODEL V. DATA

DISTRIBUTION OF ASSETS FOR RENTERS, MODEL

Time series of assets/savings for renters, model

The horizontal lines indicate

- ▶ The equivalent of \$8,000 in the model;
- ▶ The average down payment on a house (20% \times 3 household income units)

DISTRIBUTION OF HOUSING/NET WORTH FOR OWNERS, MODEL

LORENZ CURVES FOR VARIABLES IN THE MODEL

Inequality in housing: model v. data

DISTRIBUTION OF FIRST-TIME HOMEBUYERS: MODEL V. DATA

UPSCALING OF HOUSING FOR FTHBS, MODEL

Policy effects, exogenous prices

POLICY SPECIFICATIONS

- ► Every policy assumes the price is unchanged from the steady-state equilibium price (so effects are exaggerated in magnitude)
- ▶ Policy 1 (first five slides) is a policy where, if the credit is claimed, the equivalent of \$8,000 is inapplicable toward the down payment, but received the period after the purchase (this is trying to emulate the FTHB credit)
- Policy 2 is a policy where the \$8,000 is rebated on the down payment of the house, and nothing else (this is counterfactual)
- ▶ Policy 3 is a policy like Policy 1, except the subsidy is much smaller (more like \$6.50). It verifies effects aren't large in the first two policies due to bugs.

Time series of variables during transition period (1)

POLICY-INDUCED SHIFTS IN FTHB AGE DISTRIBUTION (1)

POLICY-INDUCED SHIFTS IN HOUSE SIZE (1)

HEATMAP OF FTHB HOUSING WEALTH-CONSUMPTION RATIO (1)

HEATMAP OF FTHB FINANCIAL ASSETS BEFORE PURCHASE (1)

Time series of variables during transition period (2)

POLICY-INDUCED SHIFTS IN FTHB AGE DISTRIBUTION (2)

POLICY-INDUCED SHIFTS IN HOUSE SIZE (2)

Time series of variables during transition period (3)

POLICY-INDUCED SHIFTS IN FTHB AGE DISTRIBUTION (3)

Policy-induced shifts in house size (3)

Heatmap of FTHB housing wealth-consumption ratio (3)

HEATMAP OF FTHB FINANCIAL ASSETS BEFORE PURCHASE (3)

0.30

0.25

0.20

0.15

0.10

COUNTERFACTUAL BINSCATTERS FOR INDUCED FTHBS