

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof^a. Karla Lima

Análise I

21 de Julho de 2018

- (1) Mostre que:
 - (a) A soma de dois números pares quaisquer é sempre um número par.
 - (b) A soma de dois números ímpares quaisquer é sempre um número par.
- (2) Usando o princípio de indução, mostre que:

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
.

- (3) Sabemos que se A e B são conjuntos infinitos enumeráveis, então $A \cup B$ é enumerável. Use este resultado para mostrar que se um conjunto infinito não enumerável A é a união de dois outros B e C, então pelo menos um destes não é enumerável.
- (4) Mostre que $\sqrt{3}$ é irracional.
- (5) Encontre a fórmula para o termo geral a_n da sequência abaixo, assumindo que o padrão dos primeiros termos continua.

$$\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \dots\}$$

- (6) Seja $(a_n) = \left(\frac{n}{2n+3}\right)$.
 - (a) Encontre um índice $n_0 \in \mathbb{N}$ tal que $\forall n > n_0$ tem-se $\left| \frac{n}{2n+3} \frac{1}{2} \right| < \frac{1}{4}$;
 - (b) Encontre um índice $n_0 \in \mathbb{N}$ tal que $\forall n > n_0$ tem-se $\left| \frac{n}{2n+3} \frac{1}{2} \right| < \frac{1}{100}$;
 - (c) Mostre, usando a definição de limite de sequência, que $\lim_{n\to\infty} a_n = \frac{1}{2}$.
- (7) (Critério do Confronto) Sejam, (a_n) , (b_n) e (c_n) três sequências tais que $a_n \leq b_n \leq c_n$, (a_n) e (c_n) convergindo para o mesmo limite L. Demonstre que (b_n) também converge para L.