LECTURE 5

12 August 2024

Tragedy of the commons & Invisible Hand

- Invisible hand of the market argues that given free market conditions, even self-interested actions can lead to socially optimal conditions.
- Tragedy of the commons is a social dilemma that leads to social outcomes that are not optimal.
- Tragedy of the commons common pool resources like environment, case of vaccination.
- Free riding outcome of the common pool resource situation.

RESOLVING SOCIAL DILEMMAS

1. Preferences:

- Self-interested preferences
- Social preferences: individual's utility depends not just on their own outcomes but also depends on others' outcomes.
- Social preferences could be altruistic or the situation where you wish harm on others.
- A person can have both self-interested preferences and social preferences depending on the situation.

2. Social institutions:

- Government regulations such as taxation and laws
- Local institutions setup by tradition

Modelling social interactions as games – strategic interactions

		Ва	ıla
		Rice	Cassava
ii	Rice	Both produce rice: there is a glut of rice (low price) There is a shortage of cassava Anil not producing cassava, which he is better able to produce	No market glut High prices for both crops Both farmers producing the crop for which they are less suited
Anil	Cassava	No market glut High prices for both crops Both farmers producing the crop for which they are better suited	Both produce cassava: there is a glut of cassava (low price) There is a shortage of rice Bala not producing rice, which he is better able to produce

		BALA	
		Rice	Cassava
	Rice		
ANIL		1,3	2,2
A	Cassava		
		4,4	3,1

When self-interest works

- Best response: The action that will give the player the highest payoff given the actions of other players.
- Best response function:

$$B_i(a_i) = \{ai \ in \ Ai_i \ u_i(ai, a_i \ge ui(a_i', a_i) \ for \ all \ a_i'in \ Ai\}$$

We can redefine NE using Best Response Functions

The action profile a* is a NE of a strategic game with ordinal preferences if and only if every player's action is a best response to the other players' actions:

 a_i^* is in $B_i(a_{-i}^*)$ for every player i

L C R

Т	1,2	2,1	1,0
M	2,1	0,1	0,0
В	0,1	0,0	1,2

STRICT NE AND NON-STRICT NE

• An action profile a^* is a strict Nash equilibrium if for every player i we have $u_i(a^*) > u_i(a_i, a_{-i})$ for every action $a_i \neq a_i^*$ of player i.

	L	M	R
T	1,1	1,0	0,1
В	1,0	0,1	1,0

DOMINATED ACTIONS

- In a strategic game with ordinal preferences, player i's action a''_i strictly dominates her action a''_i if
- $u_i(a''_i, a_{-i}) > u_i(a'_i, a_{-i})$ for every list a_{-i} of the other players' actions, where u_i is a payoff function that represents player i's preferences.
- A strictly dominated action is not used in NE

	L	R
T	1	0
M	2	1
\boldsymbol{B}	1	3

	L	R
T	1	0
M	2	1
B	3	2

WEAK DOMINATION

• In a strategic game with ordinal preferences, player i's action a_i weakly dominates her action a_i if

 $u_i(a_i^n, a_{-i}) \ge u_i(a_i^n, a_{-i})$ for every list a_{-i} of the other players' actions and

 $u_i(a_i^n, a_{-i}) > u_i(a_i^n, a_{-i})$ for some list a_{-i} of the other players' actions, where u_i is a payoff function that represents player i's preferences.

• In a strict NE no players' equilibrium action is weakly dominated

	L	K
T	1	0
M	2	0
В	2	1

• A two-player game with ordinal preferences is **symmetric** if the players' sets of actions are the same and the players' preferences are represented by the payoff functions u_1 and u_2 for which $u_1(a_1, a_2) = u_2(a_2, a_1)$ for every action pair (a_1, a_2)

	\boldsymbol{A}	\boldsymbol{B}
\boldsymbol{A}	w, w	x, y
В	<i>y</i> , <i>x</i>	z, z

- Dominant Strategy: Strategy that yields the highest payoff for a player, no matter what the other players do.
- Dominant Strategy Equilibrium: A NE in which every player plays their dominant strategy.
- Go back to the rice and cassava growing example

Game Theory for Social Interactions

- Pest Control game
- Is there a dominant strategy equilibrium here?

	Bala	
	IPC	Terminator
PC	3	4
	3	1
Anil	1,	2
Terminator	4	2

Repeated Games

- A game in which the same interaction may occur more than once.
- Consider the Prisoner's Dilemma being repeated multiple times