Applied Regression Analysis

Week 5

- 1. Homework week 4: highlights
- 2. Multiple regression
 - Graphical interpretation / Assumptions I
 - Assumptions II / Least squares estimation
 - Computer output
 - Step by step review
- 3. Hypothesis testing: F-test / partial F-test
- 4. Homework

Stanley Lemeshow, Professor of Biostatistics

College of Public Health, The Ohio State University

WEEK 5: MULTIPLE REGRESSION

Suppose we wish to predict one variable, y, from k independent variables $x_1, x_2, ..., x_k, k > 1$

$$y =$$
 "dependent" variable
 $x_1, x_2, ..., x_k =$ "independent" variables

The general form of the regression model for k independent variables is

Note: in the 2nd order model

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x} + \beta_2 \mathbf{x}^2 + \varepsilon$$

if we let

$$X_1 = X$$
 here we really have 1 independent $X_2 = X^2$ variable. X_2 is a function of that variable.

Then we can write this as

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{X}_1 + \beta_2 \mathbf{X}^2 + \varepsilon$$

In the multiple regression model some of the x_i may be functions of a few basic variables.

It should be noted that, with respect to what has come before

- (1) It is sometimes difficult to determine the best choice of model.
 - There will sometimes be several reasonable candidates to choose from.
- (2) It is difficult (if not impossible) to visualize what the fitted model looks like.
 - not possible to plot the data or the model when k > 3.
- (3) Sometimes the best-fitting model will be difficult to interpret in real-life terms.
- (4) Computations can't be done by hand
 - high-speed computers are necessary
 - reliable packaged computer program is necessary

Example:

$$y = \text{weight}$$
 (WGT)
 $x_1 = \text{height}$ (HGT)
 $x_2 = \text{age}$ (AGE)

There are n = 12 children available, each having a particular kind of nutritional deficiency

The data are:

	y	X 1	X ₂
Child	WGT	HGT	AGE
1	64	57	8
2	71	59	10
3	53	49	6
4	67	62	11
5	55	51	8
6	58	50	7
7	77	55	10
8	57	48	9
9	56	42	10
10	51	42	6
11	76	61	12
12	68	57	9

17

Many models are possible. For example

$$\mathbf{y} = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \mathbf{X}_1 + \boldsymbol{\beta}_2 \mathbf{X}_2 + \boldsymbol{\varepsilon}$$

or

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \varepsilon$$
 where $X_3 = X_1^2$

or

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \varepsilon$$

where $X_3 = X_1^2$, $X_4 = X_2^2$, $X_5 = X_1 X_2$

so, this is equivalent to

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{X}_1 + \beta_2 \mathbf{X}_2 + \beta_3 \mathbf{X}_1^2 + \beta_4 \mathbf{X}_2^2 + \beta_5 \mathbf{X}_1 \mathbf{X}_2 + \varepsilon$$

choice of best model is a topic to be considered later

One reasonable criterion might be to choose the one with the max R^2 .

Graphical Interpretation

If we had a single independent variable our lives would be quite simple (even if we have higher-order polynomial models⁻...

The regression equation is the path described by the mean values of the distribution of y when x is allowed to vary.

When $k \ge 2$ our problems increase significantly

We no longer deal with a line or a curve but, rather, with a <u>hyper surface in (k + 1) - dimensional space</u>.

If k > 2, we can't plot the scatter of points or the regression equation.

For k=2 we seek the surface in 3-dimensional space that best fits the scatter of points $(x_{11}, x_{21}, y_1), (x_{12}, x_{22}, y_2), \dots, (x_{1n}, x_{2n}, y_n)$

In this case, the regression equation is the surface described by the mean values of y at various combinations of x_1, x_2 . i.e., at each distinct pair of values x_1 and x_2 there is a distribution of y values with mean $\mu_{y|x_1,x_2}$ and variance $\sigma^2_{y|x_1,x_2}$.

- The simplest curve in two-dimensional space is the straight line.
- The simplest surface in three-dimensional space is a plane that has the statistical model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$

In the three dimensional case, the least squares solution giving the best fitting plane is determined by minimizing the sum of squares of distances between the observed y_i and the predicted values $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i}$ based on the fitted plane.

i.e., minimize SSE =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{1i} - \hat{\beta}_2 x_{2i})^2$$

Assumptions of Multiple Regression

- (1) For each specific combination of $x_1, x_2, ..., x_k$, y is a (univariable) random variable with a certain probability distribution.
- (2) The y observations are statistically independent.
- (3) The mean value of y at $x_1, x_2, ..., x_k$ is a linear function of

$$\begin{aligned} \mathbf{X}_{1}, & \dots, \mathbf{X}_{k}. \\ \text{i.e.,} & \ \mu_{y \mid X_{1}, X_{2}, \dots, X_{k}} = \beta_{0} + \beta_{1} \mathbf{X}_{1} + \beta_{2} \mathbf{X}_{2} + \dots + \beta_{k} \mathbf{X}_{k} \\ \text{or } \mathbf{y} &= \beta_{0} + \beta_{1} \mathbf{X}_{1} + \beta_{2} \mathbf{X}_{2} + \dots + \beta_{k} \mathbf{X}_{k} + \varepsilon \end{aligned}$$

Note:

- (a) The surface $\mu_{y|x_1,x_2,...,x_k} = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k$ is called the regression equation or response surface or regression surface.
- (b) If some of the independent variables are higher-order functions of a few basic independent variables (e.g., $X_3 = X_1^2$, $X_5 = X_1 X_2$) then $\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k$ is really nonlinear in the basic variables. Hence we use the term "surface" rather than "plane".

We can use the multiple regression techniques so long as the model is <u>inherently linear</u> in the regression coefficients.

e.g.,
$$\mu_{y|x} = \beta_0 e^{\beta_1 x}$$
 is inherently linear since $\ln(\mu_{y|x}) = \ln(\beta_0) + \beta_1 x_1$
$$\mu_{y|x}^* = \beta_0^* + \beta_1 x_1$$

For this we need nonlinear regression procedures

However, $\mu_{y|x_1,x_2} = e^{\beta_1 x_1} + e^{\beta_2 x_2}$

cannot be transformed directly into a form that is linear in β_1 and β_2

(c) ε is the error component in the model. It is the amount by which any individual's observed response deviates from the response surface.

Assumptions (cont'd)

$$\begin{pmatrix} 4 \end{pmatrix} \quad \sigma_{y|x_1,x_2,...,x_k}^2 = \text{var}\left(y \mid x_1, x_2,...,x_k\right) \equiv \sigma^2$$

i.e., homoskedasticity

In general, mild departures from this assumption will not adversely affect the results.

(5) For any fixed $x_1, x_2, ..., x_k$ y is normally distributed

i.e.,
$$Y \sim N\left(\mu_{y|x_1,...,x_k},\sigma^2\right)$$

These assumptions are not necessary for obtaining least squares estimates but are necessary for hypothesis testing and other inferential techniques.

Fortunately, usual parametric techniques used in regression analysis are "robust" in the sense that only extreme departures from the assumptions may yield spurious results.

Least Squares Estimates of Parameters

Let
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2 + \dots + \hat{\beta}_k X_k$$

denote the fitted least squares regression model

The values $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k$ are chosen so that

SSE =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{1i} - \dots - \hat{\beta}_k x_{ki})^2$$

is smaller than would be the case with any other value of $\hat{eta}_{_i}$

This minimum sum of squares is generally called the

"residual sum of squares"

"error sum of squares"

"sum of squares about regression"

The $\hat{\beta}_i$ determined with the method of least squares are also the minimum variance unbiased estimates of β_i .

The least-squares regression equation

$$\hat{\mathbf{y}} = \hat{\beta}_0 + \hat{\beta}_1 \mathbf{X}_1 + \dots + \hat{\beta}_k \mathbf{X}_k$$

is that unique linear combination of the independent variables $x_1, x_2, ..., x_k$ that has maximum possible correlation with the dependent variable.

i.e.,

 $r_{y,\hat{y}}$ is greater than $r_{y,\hat{y}'}$ where \hat{y}' is any other linear combination of the x's

Also note:

- each $\hat{\beta}_i$ is a linear function of the y values
- since y is assumed to be normally distributed, each of the estimators $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k$ will be normally distributed
- computer programs will provide us with these as well as their estimated variances. t – tests and confidence intervals would be carried out in the usual manner.

Example

For the WGT, HGT and AGE data

WGT =
$$\beta_0 + \beta_1$$
HGT + β_2 AGE + β_3 AGE² + ε

The least squares estimates are

$$\hat{\beta}_0 = 3.438$$
 $\hat{\beta}_1 = 0.724$ $\hat{\beta}_2 = 2.777$ $\hat{\beta}_3 = -0.042$

SO

$$\widehat{\text{WGT}} = 3.438 + .724 (\text{HGT}) + 2.77 (\text{AGE}) - .042 (\text{AGE})^2$$

The ANOVA table for this model is:

ANOVA

Source	df	SS	MS	F
Regression	3	SSY - SSE = 693.06	231.02	9.47
Residual	8	SSE =195.19	24.40	
Total	11	SSY = 888.25		

 $R^2 = 0.7802$

To get the ANOVA table we use the familiar partitioning

Total SS = total variability in y before accounting for

the joint effect of using the independent variables

HGT, AGE, AGE²

Residual SS = SS due error

= amount of y variation left unexplained after the independent variables have been used in the regression equation to predict y.

Regression SS = reduction in variation (or variation explained) due to the independent variables in the regression equation.

now, to test H_0 : all k independent variables considered together do not explain a significant amount of the variation in y,

or
$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

vs.
$$H_{\alpha}$$
: some $\beta_i \neq 0$

we use

$$F = \frac{\text{MS regression}}{\text{MS residual}}$$

and
$$F \sim F(k, n-1-k)$$

The hypothesis
$$H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0$$

vs. $H_a:$ not all $\beta_i = 0$

can also be tested by an equivalent expression

$$F = \frac{R^2}{1 - R^2} \frac{\left(n - 1 - k\right)}{k}$$

which is also compared to F(k, n-1-k)

note:
$$R^2 = \frac{SSY - SSE}{SSY}$$

Example

In the HGT, WGT, AGE example, from the ANOVA table

$$F = \frac{\text{MS regression}}{\text{MS residual}} = \frac{231.02}{24.40} = 9.47$$

$$\text{and } F_{.99}(3,8) = 7.59 \therefore p < .01$$

$$\text{also}$$

$$F = \frac{R^2}{1 - R^2} \frac{(n - 1 - k)}{k} = \frac{.7802}{1 - .7802} \frac{(12 - 1 - 3)}{3} = 9.47$$

note:

MS residual =
$$\frac{1}{n-1-k} SSE = \frac{1}{n-1-k} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \text{ is an unbiased}$$

estimate of σ^2 under the assumed model.

MS regression is an independent estimate of σ^2 only if H₀ is true. Otherwise it overestimates σ^2 .

Hence we always reject if F gets too large.

. gen agesq=age*age

. regress wgt hgt age agesq

Source	l ss	df	MS		Number of obs	= 12
	+				F(3,8)	= 9.47
Model	693.060463	3 231.	.020154		Prob > F	= 0.0052
Residual	195.189537	8 24.3	3986921		R-squared	= 0.7803
	+				Adj R-squared	= 0.6978
Total	888.25	11	80.75		Root MSE	= 4.9395
 wgt		Std. Err.		P> t	[95% Conf.	Interval]
hgt		.2769632	2.613	0.031	.085012	1.362368
age	2.776875	7.427279	0.374	0.718	-14.35046	19.90421
agesq	0417067	.4224071	-0.099	0.924	-1.015779	.9323659
_cons	3.438426	33.61082	0.102	0.921	-74.06826	80.94512

. vif

Variable	VIF	1/VIF		
agesq age hgt	89.97 89.68 1.61	0.011115 0.011150 0.620927		
Mean VIF	60.42			

. regress wgt hgt age

Source	1	SS	df	MS			Number of obs	=	12
	+						F(2, 9)	=	15.95
Model	1	692.822607	2	346.4113	03		Prob > F	=	0.0011
Residual	1	195.427393	9	21.71415	48		R-squared	=	0.7800
	+						Adj R-squared	=	0.7311
Total	1	888.25	11	80.	75		Root MSE	=	4.6598
wgt	1	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
	+								
hgt	1	.722038	.2608	051	2.768	0.022	.1320559		1.31202
age	1	2.050126	. 9372	256	2.187	0.056	0700253	4	.170278
_cons	1	6.553048	10.94	483	0.599	0.564	-18.20587	3	1.31197

. vif

Variable	VIF	1/VIF
age hgt	1.60 1.60	0.623202 0.623202
Mean VIF	1.60	

. regress wgt hgt

Source	1	SS	df	ľ	MS		Number of obs	=	12
	-+-						F(1, 10)	=	19.67
Model	1	588.922523	1	588.92	22523		Prob > F	=	0.0013
Residual	1	299.327477	10	29.932	27477		R-squared	=	0.6630
	-+-						Adj R-squared	=	0.6293
Total	1	888.25	11	8	80.75		Root MSE	=	5.4711
wgt	•	Coef.	Std.		t	P> t	[95% Conf.	In	terval]
hgt	•	1.07223	.241		4.436	0.001	.5336202	1	.610841
_cons	I	6.189849	12.84	875	0.482	0.640	-22.43894	3	4.81864

. vif

Variable	VIF	1/VIF
hgt		1.000000
Mean VIF	1.00	

The previous ANOVA Table may be presented as follows.

Source	df	SS	MS	F
	1	588.92	588.92	19.67
Regression $ x_2 x_1 $	1	103.90	103.90	4.78
$X_3 X_1, X_2$	1	0.24	0.24	0.01 *
Residual Company Com	8	195.19	24.40	NS
Total	11	888.25		

*** p<.01 * .05<p<.10

Here

$$SS(x_1) = SS$$
 explained just using $x_1 = HGT$ alone $SS(x_2|x_1) = extra SS$ explained by using $x_2 = AGE$ in addition to x_1 in predicting y $SS(x_3|x_1,x_2) = extra SS$ explained by using $x_3 = AGE^2$ in addition to x_1 and x_2 in predicting y

Questions:

- 1. Does x_1 = HGT alone significantly aid in predicting y?
- 2. Does the addition of x_2 = AGE significantly contribute to the prediction of y after controlling for the contribution of x_1 ?
- 3. Does the addition of x_3 = AGE² significantly contribute to the prediction of y after controlling for the contribution of x_1 and x_2 ?

Let us consider these one at a time

Question 1: Does x_1 = HGT alone significantly aid in predicting y?

Fit the straight line model $y = \beta_0 + \beta_1 \times HGT$

 $SS(x_1) = 588.92 = regression SS for this straight line model$

SSE = SS
$$(x_2|x_1)$$
 + SS $(x_3|x_1,x_2)$ + SS resid
= 103.90 + 0.24 + 195.19 = 299.33
df = df $(x_2|x_1)$ + df $(x_3|x_1,x_2)$ + df resid
= 1 + 1 + 8 = 10

:. MS resid =
$$\frac{299.33}{10}$$
 = 29.933

and

$$F = \frac{\text{MS regression}}{\text{MS resid}} = \frac{588.92}{29.933} = \boxed{19.67} \text{ as in the table}$$
$$F \sim F(1,10) \text{ here } p < .01$$

i.e., x_1 contributes significantly to the linear prediction of y

Question 2: Does the addition of x_2 = AGE significantly contribute to the prediction of y after controlling for the contribution of x_1 ?

To answer this we use a "partial F-test". This test allows for the elimination of variables that are of no help in predicting y and thus enables one to reduce the set of possible independent variables to an economical set of "important" predictors.

To perform a partial F-test concerning a variable x^* , say, given that $x_1, x_2, ..., x_n$ are already in the model we:

- (1) Compute the "extra SS from adding x^* , given $x_1, x_2, ..., x_p$ "
 - This is placed into the ANOVA table under the source heading "Regression $x^* | x_1, x_2, ..., x_p$ "

Extra SS from adding
$$x^*$$
 given =
$$x_1, x_2, ..., x_p$$
 and x^* are all and not x^* are all and not x^* are all

regression SS and x^* are all in the model

regression SS and not x^* are all in the model

or

$$SS(x^*|x_1, x_2, ..., x_p) = \text{ regression } SS(x_1, x_2, ..., x_p, x^*)$$

$$- \text{ regression } SS(x_1, x_2, ..., x_p)$$

In our example

$$SS(x_2|x_1) = \text{regression } SS(x_1, x_2) - \text{regression } SS(x_1)$$

= 692.82 - 588.92
= 103.90

$$SS(x_3|x_1,x_2) = \text{regression } SS(x_1,x_2,x_3) - \text{regression } SS(x_1,x_2)$$

= 693.06 - 692.82
= 0.24

To test

 H_0 : The addition of x^* to a model already containing $x_1, x_2, ..., x_p$ does not significantly improve the prediction of y

we compute

$$F\left(x^* \middle| x_1, x_2, \dots, x_p\right) = \frac{SS\left(x^* \middle| x_1, x_2, \dots, x_p\right)}{MS \text{ residual}\left(x_1, x_2, \dots, x_p, x^*\right)}$$

and

$$F(x^*|x_1,x_2,...,x_p) \sim F(1,n-p-2)$$

In our example

$$F(x_2|x_1) = \frac{SS(x_2|x_1)}{MS \text{ residual}(x_1, x_2)} = \frac{103.90}{\left(\frac{.24 + 195.19}{1 + 8}\right)} = 4.78$$

$$F_{.90}(1,9) = 3.36; F_{.95}(1,9) = 5.12$$

and
$$F(x_3|x_1,x_2) = \frac{SS(x_3|x_1,x_2)}{MS \text{ residual}(x_1,x_2,x_3)} = \frac{0.24}{24.40} = 0.01$$

Hence, the addition of x_2 after accounting for x_1 significantly adds to the prediction of y at the $\alpha = 0.10$ level.

Had we used $\alpha = 0.05$ we would not add x_2 .

Once x_1 = HGT and x_2 = AGE are in the model, the addition of x_3 = AGE² is superfluous.

There is an alternative (but equivalent) way to perform the partial *F*-test. That involves a test of

$$H_0: \beta^* = 0$$

where β^* is the coefficient of x^* in

$$\mathbf{y} = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \mathbf{X}_1 + \dots + \boldsymbol{\beta}_p \mathbf{X}_p + \boldsymbol{\beta}^* \mathbf{X}^* + \boldsymbol{\varepsilon}$$

Here

$$t = \frac{\hat{\beta}^*}{s_{\hat{\beta}^*}}$$
 — estimated coefficient
 $\in \frac{\hat{\beta}^*}{s_{\hat{\beta}^*}}$ — estimated standard error of $\hat{\beta}^*$ printed by computer programs

reject
$$H_0$$
 if $t > t_{1-\alpha/2} (n-p-2)$ 2- sided test of H_0 or if $t < t_{\alpha/2} (n-p-2)$ $H_a: \beta^* \neq 0$

similarly, one sided tests can be constructed

e.g., for
$$H_a: \beta^* > 0$$
 (reject if $t > t_{1-\alpha}(n-p-2)$)

In our example

$$H_0: \beta_2 = 0$$

$$H_{g}: \beta_{2} \neq 0$$

in the model $y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$

Then

$$t = \frac{\hat{\beta}_2}{s_{\hat{\beta}_2}} = \frac{2.050}{0.937} = 2.188$$

and
$$t_{.95}(9) = 1.833$$
, $t_{.975}(9) = 2.2622$

Hence .05 since 2-sided

Note
$$t^2 = 2.188^2 = 4.79 = partial F(x_2|x_1)$$

in ANOVA table

and

$$t_{1-\alpha/2}^{2}(9) = F_{1-\alpha}(1,9)$$

Similarly, when testing

$$H_0: \beta_3 = 0$$
vs $H_a: \beta_3 \neq 0$
in the model $y = \beta_0 + \beta_1 X_1 + \beta_3 X_2 + \beta_3 X_3 + \varepsilon$

we compute

$$t = \frac{\hat{\beta}_3}{s_{\hat{\beta}_3}} = \frac{-.042}{.422} = -.0995$$

and

$$t^2 = (-.0995)^2 = .01 = Partial F(x_3 | x_1, x_2)$$

in ANOVA table