CONTADOR SINCRONO 0-2-1-3-4-7-6-5-0...

ESTADO	VALOR(q)	SIGUIENTE(Q)	SALIDA
0	000	010	000
1	001	011	001
2	010	001	010
3	011	100	011
4	100	111	100
5	101	000	101
6	110	101	110
7	111	110	111

q2q1 q0	0	1
0 0	010	011
0 1	001	100
11	101	110
10	111	000
		Q2Q1Q0

q2q1	q0	0	1	
0 0		0	0	
0 1		0	1	
11		Χ	X	
10		Χ	Χ	
J2 = q	J2 = q0q1			

q2q1	q0	0	1
0 0		Χ	X
0 1		Χ	Χ
11		0	0
10		0	1
K2 =	q1'·	q0	

Transid salida	iones de		das al table
Q(t)	Q(T+1)	J	K
0	0	0	X
0	0 1		Χ
1	0	Х	1
1	1	Х	0

q2q1 q0	0	1	
0 0	<mark>1</mark>	<mark>1</mark>	
0 1	X	X	
11	X	Χ	
10	1	0	
J1 = q2' + q0'			

q2q1 q0	0	1	
0 0	X	X	
0 1	1	<mark>1</mark>	
11	1	0	
10	X	Χ	
K1 = q2' + q0'			

q2q1	q0	0	1	
0 0		0	X	
01		1	X	
11		1	X	
10		1	X	
J0 = q1 + q2				

Las variables de salida coinciden con las variables de estado del sistema.

CONTADOR <u>SÍNCRONO</u> MODULO 7:

ESTADO	VALOR(q)	SIGUIENTE(Q)	SALIDA
0	000	001	000
1	001	010	001
2	010	011	010
3	011	100	011
4	100	101	100
5	101	110	101
6	110	000	110

q2q1	q0	0	1
00		001	010
01		011	100
11		000	XXX
10		101	110
			Q2Q1Q0

q2q1	q0	0	1
00		0	0
01		0	1
11		Χ	X
10		Χ	X
J2 = q0q1			

q2q1 q0	0	1		
00	Χ	Χ		
01	X	X		
11	1	X		
10	0	0		
K2 = q1				

Transic salida	iones de		das al table
Q(t)	Q(T+1)	J	K
0	0	0	X
0	1	1	Χ
1	0	Х	1
1	1	Х	0

q2q1 q0	0	1
00	0	1
01	Χ	Χ
11	Χ	Χ
10	0	1
J1 = q0		

q2q1 q	0 0	1				
00	Χ	X				
01	0	1				
11	1	Х				
10	X	Х				
K1 = q0 + q2						

q2q1	q0	0	1			
00		1	X			
01		1	X			
11		0	0			
10		1	Х			
J0 = a2' + a1'						

CADENA DE PRODUCCIÓN

Una cadena de producción está controlada por un código de 3 bits. Si el código recibido es 011 la producción continúa. Si se reciben dos códigos de error (códigos 010 ó 100) en dos pulsos consecutivos, el sistema se detiene y sólo se reiniciará al recibir 011. Si se recibe cualquier otro código (entre 001 y 111) el sistema se detiene inmediatamente y sólo se reiniciará al recibir 011.

CADENA DE PRODUCCIÓN

Una cadena de producción está controlada por un código de 3 bits. Si el código recibido es 011 la producción continúa. Si se reciben dos códigos de error (códigos 010 ó 100) en dos pulsos consecutivos, el sistema se detiene y sólo se reiniciará al recibir 011. Si se recibe cualquier otro código (entre 001 y 111) el sistema se detiene inmediatamente y sólo se reiniciará al recibir 011.

q1q0	abc	000	001	011	010	110	111	101	100
A=00		Χ	С	Α	В	С	С	С	В
B=01		Χ	С	Α	С	С	С	С	С
C=11		Χ	С	Α	С	С	С	С	С
(D=10)		Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ

q1q0	abc	000	001	011	010	110	111	101	100	
0 0		XX	11	00	01	11	11	11	01	1
01		XX	11	00	11	11	11	11	11	1
11		XX	11	00	11	11	11	11	11	0
(10)		XX	Χ							
									Q1Q0	SAL

	salida		bies	table
	Q(t)	Q(T+1)	J	K
SAL = q1'	0	0	0	Χ
	0	1	1	Χ
	1	0	Х	1

Transiciones de

Entradas al

0

Χ

q1q0 ab,c=0	00	01	11	10		
0 0	Χ	0	1	0		
0 1	X	1	1	1		
11	X	X	X	X		
10	Χ	Χ	X	Χ		
$J1 = q0 \cdot c' + a \cdot b$						

q1q0 ab,c=1	00	01	11	10
0 0	1	0	1	1
0 1	1	0	1	1
11	Χ	Χ	X	Χ
10	Χ	Χ	X	Χ
J1 = b' · c				

q1q0	ab,c=0	00	01	11	10
00		Χ	Χ	Χ	Χ
01		Χ	Χ	Χ	Χ
11		Χ	0	0	0
10		Χ	Χ	Χ	Χ
K1 =					

q1q0	ab,c=1	00	01	11	10
00		Χ	X	Χ	Χ
01		Χ	X	Χ	Χ
11		0	1	0	0
10		Χ	X	Χ	Χ
K1 = a	'·b·c				

$$K1 = a' b c$$

q1q0	ab,c=0	00	01	11	10
00		X	1	1	1
01		X	X	X	X
11		X	X	X	X
10		X	X	X	X
J0 = c'					

q1q0	ab,c=1	00	01	11	10
00		1	0	1	1
01		Χ	Χ	Χ	Χ
11		Χ	Χ	Χ	Χ
10		Χ	Χ	Χ	Χ
J0 = b	ı' + a				

J0	=	c'	+	b'	+	a

q1q0	ab,c=0	00	01	11	10
00		Χ	Χ	Χ	Χ
01		Χ	0	0	0
11		Χ	0	0	0
10		Χ	Χ	Χ	Χ
K0 =					

q1q0	ab,c=1	00	01	11	10
00		Χ	X	Χ	Χ
01		0	1	0	0
11		0	1	0	0
10		Χ	X	Χ	Χ
K0 = a	'·b·c				

$$K0 = a' \cdot b \cdot c$$

CONTADOR SÍNCRONO

Diseñar un circuito secuencial con 1 JK, 1 D y un T, que proporcione:

- a) Si $x = 0 \rightarrow 1-3-5-7-1-...$
- b) Si $x = 1 \rightarrow 0-2-4-6-0-...$

Suponemos que en cualquier estado de la cuenta de los pares, si se recibe x = 0 se inicia la cuenta de los impares. Del mismo modo, en cualquier estado de la cuenta de los impares, si se recibe x = 1 se inicia la cuenta de los pares.

CONTADOR SÍNCRONO

Diseñar un circuito secuencial con 1 JK, 1 D y un T, que proporcione:

- c) Si $x = 0 \rightarrow 1-3-5-7-1-...$
- d) Si $x = 1 \rightarrow 0-2-4-6-0-...$

Suponemos que en cualquier estado de la cuenta de los pares, si se recibe x = 0 se inicia la cuenta de los impares. Del mismo modo, en cualquier estado de la cuenta de los impares, si se recibe x = 1 se inicia la cuenta de los pares.

ESTADO	VALOR	SIGUIENTE, x=0	SIGUIENTE, x=1
0	000	001	010
1	001	011	000
2	010	001	100
3	011	101	000
4	100	001	110
5	101	111	000
6	110	001	000
7	111	001	000

q2q1	q0 x	00	01	11	10
0 0		001	010	000	011
0 1		001	100	000	101
11		001	000	000	001
10		001	110	000	111
Q2Q1Q0					

q2q1	q0 x	00	01	11	10
00		0	0	0	0
01		0	1	0	1
11		Χ	X	Χ	X
10	10		Χ	Χ	Χ
J2 = q1 q0' x + q1 q0 x'					

q2q1	q0 x	00	01	11	10
00		0	1	0	1
01		0	0	0	0
11		0	0	0	0
10		0	1	0	1
D1 = q1' q0' x + q1' q0 x'					

q2q1 q0 x	00	01	11	10
00	X	Χ	X	Χ
01	X	X	X	X
11	1	1	1	1
10	1	0	1	0
K2 = q1 + q0' x' + q0 x				

q2q1 q0	x 00	01	11	10	
00	1	0	1	0	
01	1	0	1	0	
11	1	0	1	0	
10	1	0	1	0	
T0 = q0' x' + q0 x					

Transic salida	iones de	Entradas al biestable		
Q(t)	Q(T+1)	J	K	
0	0	0	X	
0	1	1	Χ	
1	0	Х	1	
1	1	Х	0	

Las variables de salida coinciden con las variables de estado del sistema.

SECUENCIADOR DE ILUMINACIÓN

Se tienen bombillas de 4 colores (A, B, C, D). Diseñar un circuito que repita la siguiente secuencia:

- a) Todas apagadas.
- b) Encender un solo color en cada ciclo, manteniendo el resto apagados.
- c) Apagar todas.
- d) Encender dos colores manteniendo el resto apagados, con todas las combinaciones posibles.
- e) Encender todas.
- f) Apagar un solo color, manteniendo el resto encendidas.
- g) Encender todas.
- h) Volver a (a)

SECUENCIADOR DE ILUMINACIÓN

Se tienen bombillas de 4 colores (A, B, C, D). Diseñar un circuito que repita la siguiente secuencia:

- a) Todas apagadas.
- b) Encender un solo color en cada ciclo, manteniendo el resto apagados.
- c) Apagar todas.
- d) Encender dos colores manteniendo el resto apagados, con todas las combinaciones posibles.
- e) Encender todas.
- f) Apagar un solo color, manteniendo el resto encendidas.
- g) Encender todas.
- h) Volvera (a)

ESTADO	VALOR	SIGUIENTE	SALIDA (ABCD)
0	00000	00001	0000
1	00001	00010	1000
2	00010	00011	0100
3	00011	00100	0010
4	00100	00101	0001
5	00101	00110	0000
6	00110	00111	1100
7	00111	01000	0110
8	01000	01001	0011
9	01001	01010	1001

ESTADO	VALOR	SIGUIENTE	SALIDA
10	01010	01011	1010
11	01011	01100	0101
12	01100	01101	1111
13	01101	01110	0111
14	01110	01111	1011
15	01111	10000	1101
16	10000	10001	1110
17	10001	00000	1111

Para conseguir las transiciones: contador asíncrono módulo 18 (CLR activa al llegar 10010 = 1xx1x).

Variables de salida:

q4q3	q2q1,q0=0	00	01	11	10
00		0000	0100	1100	0001
01		0011	1010	1011	1111
11		XXXX	XXXX	XXXX	XXXX
10		1110	XXXX	XXXX	XXXX

q4q3	q2q1,q0=1	00	01	11	10
00		1000	0010	0110	0000
01		1001	0101	1101	0111
11		XXXX	XXXX	XXXX	XXXX
10		1111	XXXX	XXXX	XXXX

q4q3	q2q1,q0=0	00	01	11	10
00		0	0	1	0
01		0	1	1	1
11		Χ	Χ	Χ	Χ
10		1	Χ	Χ	Χ
$\Lambda = \alpha A + \alpha 2' + \alpha 1' + \alpha 1'$					

q4q3	q2q1, <mark>q0=1</mark>	00	01	11	10
00		1	0	0	0
01		1	0	1	0
11		Χ	Χ	Х	Х
10		1	Χ	Х	Х
+ q3 q1 q0' + q3 q2 q0'					

q4q3 q2q1, <mark>q0=0</mark>	00	01	11	10		
00	0	1	1	0		
01	0	0	0	1		
11	Χ	Χ	Χ	Χ		
10	1	Χ	Χ	Χ		
B = q4 + ¡q3 q1 q0' + q3 q2 q1' + q2 q1 q0 +						

00		U	1	1	U
01		0	0	0	1
11		Χ	Χ	Χ	Χ
10		1	Χ	Χ	Χ
q4q3	q2q1, <mark>q0=1</mark>	00	01	11	10
00		0	0	0	0
		4			

Χ

Χ

Χ

Χ

Χ

X

q4q3 q2q1, <mark>q0=0</mark>	00	01	11	10		
00	0	0	0	0		
01	1	1	1	1		
11	Χ	Χ	Χ	Χ		
10	1	Χ	Χ	Χ		
C = q3 q0' + q4 + ¡q4 ¡q3 q1 q0 + q3 q2 q1'						

Χ

D = q4 q0 + q3 q0 + q2 q1' q0 + q3 q2 + ...

Χ

Χ

Χ

Χ

... + q3 q2' q1'

q4q3 | **q2q1,q0=0** | **00** | **0**

11

q4q3 q2q1,q0=1	00	01	11	10
00	0	1	1	0
01	0	0	0	1
11	Х	Х	Х	Χ
10	1	Х	Х	Х

10	T	Χ	Χ	X				
+ q3 q1 q0								
q4q3 q2q1,q0=1	00	01	11	10				
00	0	1	1	0				
01	Λ	Λ	0	1				

q4q3 q2q1,q0=1	00	01	11	10
00	0	0	1	0
01	0	1	1	1
11	Χ	Χ	Х	Х
10	1	Χ	Х	Х
+ q3 q1 q0				

DEPÓSITO DE AGUA

Un depósito tiene 2 bombas de llenado (b1 y b2) y dos sensores (S, I).

Si S=I=0, ambas bombas deben estar cerradas.

Si S=I=1, ambas bombas deben estar abiertas.

Si S=0, I=1, debe permanecer abierta la última bomba que estuviera cerrada.

DEPÓSITO DE AGUA

Un depósito tiene 2 bombas de llenado (b1 y b2) y dos sensores (S, I).

Si S=I=0, ambas bombas deben estar cerradas.

Si S=I=1, ambas bombas deben estar abiertas.

Si S=0, I=1, debe permanecer abierta la última bomba que estuviera cerrada.

ESTADO	CODIFICACION	SALIDA (b2 b1)
SIGB1	000	00
B1 sin B2	001	01
SIGB2	010	00
B2 sin B1	011	10
B1 + B2	100	11
B2 + B1	101	11

q2q1q0	SI	00	01	10	11	b2b1
000		000	001	XXX	101	00
001		010	001	XXX	100	01
010		010	011	XXX	100	00
011		000	011	XXX	101	10
100		010	011	XXX	100	11
101		000	001	XXX	101	11

q2q1 q0	0	1
00	0	0
01	0	1
11	X	X
10	1	1
b2 = q2 + q	1 q0	

q2q1 q0	0	1	
00	0	1	
01	0	0	
11	X	X	
10	1	1	
b1 = q2 + q1' q0			

Ecuaciones de salida (b2=apertura bomba 2, b1=apertura bomba 1)

QUEDA COMO EJERCICIO RESOLVER LAS ECUACIONES DE ENTRADA DE LOS BIESTABLES

Nota: El enunciado del problema puede resultar algo confuso ya que, por la primera condición ("S=0, I=0 implica bombas cerradas") se entiende que el un sensor devuelve 0 cuando se detecta agua en el nivel indicado; sin embargo, la última condicion ("S=0, I=1 implica abrir una bomba") supone que el 1 en el sensor I debería indica presencia de agua y el 0 en el sensor S supondría ausencia de agua. Por tanto, la tercera condición supone una inconsistencia con las dos anteriores.

Se ha resuelto el ejercicio con el enunciado original, pero podría resolverse modificando la tercera condición por "Si S=1, I=0, debe permanecer abierta la última bomba que estuviera cerrada" para que el enunciado del problema no presentase incongruencias.