

Mathematik 3

Reihen

Wintersemester 2013/14

Beispiel Geometrische Reihe

$$s_n = \sum_{k=0}^n \left(\frac{1}{2}\right)^k = \left(\frac{1}{2}\right)^0 + \left(\frac{1}{2}\right)^1 + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^n$$

 $s_n \xrightarrow{n \to \infty} 2$

Konvergenz von Reihen

→ Notwendige Bedingung

$$\sum_{k=0}^{\infty} a_k; \qquad a_k \xrightarrow{k \to \infty} 0$$

→ Quotientenkriterium (hinreichend)

$$\sum_{k=0}^{\infty} a_k; \qquad \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = q \qquad \begin{cases} q < 1 \text{: Konvergenz} \\ q = 1 \text{: Keine Aussage möglich} \\ q > 1 \text{: Divergenz} \end{cases}$$

→ Wurzelkriterium (hinreichend)

$$\sum_{k=0}^{\infty} a_k; \qquad \lim_{k\to\infty} \sqrt[k]{|a_k|} = q \qquad \begin{cases} q<1: \text{ Konvergenz} \\ q=1: \text{ Keine Aussage möglich} \\ q>1: \text{ Divergenz} \end{cases}$$

Potenzreihen

→ Definition

$$P(x) = \sum_{k=0}^{\infty} a_k \cdot (x - x_0)^k$$

→ Konvergenzradius

$$r = \lim_{k \to \infty} \frac{1}{\left| \frac{a_{k+1}}{a_k} \right|} = \lim_{k \to \infty} \frac{1}{\sqrt[k]{|a_k|}}$$

→ Taylorreihe

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k$$

\rightarrow MacLaurinsche Reihe ($x_0 = 0$)

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} \cdot x^k$$

Beispiele für Potenzreihen

Funktion	Potenzreihenentwicklung	Konvergenz
e^x	$1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$	$ x < \infty$
e^{-x}	$1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \cdots$	$ x < \infty$
a^x	$1 + \frac{\ln a}{1!}x + \frac{(\ln a)^2}{2!}x^2 + \frac{(\ln a)^3}{3!}x^3 + \frac{(\ln a)^4}{4!}x^4 + \cdots$	$ x < \infty$
$\ln x$	$(x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \frac{1}{4}(x-1)^4 + \cdots$	$0 < x \le 2$
$\ln x$	$2\left[\left(\frac{x-1}{x+1}\right) + \frac{1}{3}\left(\frac{x-1}{x+1}\right)^3 + \frac{1}{5}\left(\frac{x-1}{x+1}\right)^5 + \cdots\right]$	x > 0
$\ln(1+x)$	$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$	$-1 < x \le 1$
sin x	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \frac{x^{11}}{11!} + \cdots$	$ x < \infty$
cos x	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \frac{x^{10}}{10!} + \cdots$	$ x < \infty$

Taylorreihe der Sinusfunktion

