Sipsor 77-79
D. LCD) is regular and infinite.
- Pick w∈L(D), lw1 ≥ lQ1. - Computation of D on ω
PL. (informally).
If Da is the DFA for some infinite regular language
A then sufficiently long strings WE A make logs.
(moreover, we can repeat the last to get more strings in the language.)
Pamping Lemma (Formal).
Let A be a regular language. Then there is some number
p such that all strings SEA, with ISIZP can be divided
iuto 3 parts:
S = xyz before loop the loop Satisfying 1: xuize A For 11 i> 0 // can go around
Satisfying 1. xyiz ∈ A for all i=0 // can go around 2. y >0 // nontrivial loop as weart.
2. 141 >0 // nentrivial large earl as weart.
3. xy < p. // we find a loop before las we touch [Q]+1 states.
Consider a DFA D w/ 1Qs states (LO) finite? trivial/vaccous.) Set p = 1Q1
) Det p = 101

Pick se L with $|s| \ge p = |Q|$, sec path above. Consider our path. Because ISI = IQI, we repeat a state somewhere. Let ge be the first repeated state.

X - part of s before ge y - the loop Celesracters from ge to ge) 2- part of s after loop.

1. $xy^{c}z \in L$ for $c \geq 0$.

2. |y| > 0. 3. |xy|