Notes on k-NN DanDoge

1 defination

k-nearest neighbors algorithm is a non-parametric method for classification and regerssion. In k-NN classification, the output is a class membership classified by a majority vote of its neighbors, especially, if k == 1 then the object is simply assigned to the classs of its nearest neighbor. In k-NN regerssion, the output value is the average of the values of its k nearest neighbors.

2 algorithm

Algorithm 1 k-NN algorithm

Input: \vec{x} , training set $T = (x_1, y_1), ..., (x_n, y_n)$, where $\vec{x}_i \in X$ being eigenvectors and $y_i \in Y = \{c_1, c_2, ..., c_k\}$ being classes

Output: class y that \vec{x} belongs to.

- 1: find k nearest neighbors using metric given, using $N_k(x)$ to denote these dots
- 2: use dicision rule, e.g. majority rule, to dicide the class of x

3 metric

usually we use Euclidean distance, $L_2(x_i, x_j) = (\sum_{l=1}^n (x_i^{(l)} - x_j^{(l)})^2)^{1/2}$, more generally, L_p distance is $L_p(x_i, x_j) = (\sum_{l=1}^n (x_i^{(l)} - x_j^{(l)})^p)^{1/p}$, If k == 1, it is called Manhattan distance, and when $k == \inf$, $L_{\inf}(x_i, x_j) = \max_l ||x_i^{(l)} - x_j^{(l)}||$

4 weighted nearest neighbor classifier

the k-nearest neighbor classifier could be viewed as assigning the k nearest neighbors a weight of 1/k and all others 0 weight, we can generalize it to weighted nearest neighbor classifiers with the *i*th nearest neighbor a weight w_{ni} , and $\sum_{i=1}^{n} w_{ni} = 1$

5 CNN for data reduction

condensed nearest neighbor is an algorithm designed to reduce the data set for k-NN classification.

Algorithm 2 CNN for data reduction

Input: training set X

Output: the set of prototypes U

- 1: scan all elements of X, looking for an element whose nearest element in U has a different label than x.
- 2: remove x from X, and add it to U.
- 3: repeat till no more prototypes are added to U.

and use U instead of X for classification.