Moments and Characteristic Functions Instructor's Notes

Fu Tianwen Yao Chaorui Zhao Feng April 6, 2019

Contents

1	Moments			
	1.1	Definition of Moments		
		Description of Moments		
2	Characteristic Functions			
	2.1	Moment Generating Functions		
	2.2			
		2.2.1 Basic information about complex numbers		
		2.2.2 Definition of Characteristic Functions		
		2.2.3 Basic Properties		
	2.3			
3	Exa	amples and Applications of Characteristic Functions		

1 Moments

1.1 Definition of Moments

Generally, in math, the n-th moment of a real-valued continuous function about center c is: [1]

$$\mu_n = \int_{-\infty}^{\infty} (x - c)^n f(x) dx$$

In particular, for probability density functions f (or cumulative density function F), the moments are given by

$$\mu'_n = E[X^n] = \int_{-\infty}^{\infty} x^n dF(x) = \int_{-\infty}^{\infty} x^n f(x) dx$$

Also we have the definition of the central moment [2]:

$$\mu_n = E[(X - E[X])^n] = \int_{-\infty}^{\infty} (x - \mu)^n f(x) dx$$

Generally central moments are more useful. Not to be confused with mean μ .

1.2 Description of Moments

The first moment is the mean of a random variable, i.e.

$$\mu = E[X]$$

The second moment is related to the variance of a random variable:

$$Var[X] = E[X^2] - E[X]^2$$

In fact the variance is just the second central moment:

$$Var[X] = \mu_2 = E[(X - E[X])^2]$$

As for the third central moment, a related concept is skewness. Below shows two random variables with the same mean variance however different in skewness[3]:

Figure 1: Negative and Positive Skew Diagrams

With all moments up to the order of infinity we can describe the **characteristics** of a probability distribution.

2 Characteristic Functions

2.1 Moment Generating Functions

Definition 2.1. Let X be a random variable with probability density function f(x). If there is a positive number h such that

$$\int_{-\infty}^{\infty} e^{tx} f(x) dx$$

exists and is finite for h < t < h, then the function defined by

$$M(t) = E[e^{tX}]$$

is called the moment-generating function of X (or of the distribution of X). [4]

The r-th moment about the origin can be achieved from the moment generating function by evaluating the r-th derivative[5]:

$$M^{(r)}(0) = E[X^r]$$

Also notice the relation between the Taylor Expansion and the moments.

2.2 Characteristic Function

Notice that e^{tx} is not a "good" function in the sense that it is not bounded and may not converge under some circumstances. Before going to characteristic functions, we first get acquainted with knowledge of complex numbers:

2.2.1 Basic information about complex numbers

Let z=a+bi, where $a,b\in\mathbb{R}$, and $i=\sqrt{-1}$ is the imaginary unit. z is then called a complex number and a,b are called the real and imaginary parts of z, denoted by $a=\mathrm{Re}(z),b=\mathrm{Im}(z)$ respectively. (Consider i as rotation by $\frac{\pi}{2}$ counterclockwise in the complex plane)

The conjugate of a complex number $z=a+bi, a,b\in\mathbb{R}$ is $\hat{z}=a-bi$, we also define the modulus (or length) of z to be $|z|=z\hat{z}$. Notice that |z| is a non-negative real number. Euler's formula:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

The formula comes from Taylor's Series. It also gives rise to the polar representation of a complex number, i.e. $z=re^{i\theta}$, where r is the modulus and θ is the phase. From this we also have that $|e^{i\theta}|=1$ for any θ .

2.2.2 Definition of Characteristic Functions

Definition 2.2. Let X be a random variable and denote by F the cumulative distribution function of X. The characteristic function $\varphi = \varphi_X$ of X (or of F, in which case we also write φ_F) is defined by [6]

$$\varphi_X(t) := E[e^{itX}] = \int_{-\infty}^{\infty} e^{itx} dF(x), t \in \mathbb{R}$$

2.2.3 Basic Properties

Theorem 2.1 (Uniqueness Theorem [7]). Let X be a real random variable with distribution function F and characteristic function φ . Similarly, let Y have distribution function G and characteristic function ψ . If $\varphi(t) = \psi(t)$ for all $t \in \mathbb{R}$ then F(x) = G(x) for all $x \in \mathbb{R}$.

Properties from here on come from Bisgaard and Zoltan's book [6].

Theorem 2.2. If X and Y are independent random variables then the characteristic function of their sum is

$$\varphi_{X+Y}(t) = \varphi_X \cdot \varphi_Y.$$

Corollary 2.2.1. The product of two characteristic functions is a characteristic function.

Remark. If X and Y are random variables such that $\varphi_{X+Y} = \varphi_X \cdot \varphi_Y$, then in general we do not conclude X and Y are independent. (See page 13 in [6])

Theorem 2.3. For any $a, b \in \mathbb{R}$,

$$\varphi_{aX+b}(t) = e^{ibt}\varphi_X(at).$$

Theorem 2.4. Every characteristic function φ has the following properties:

- (i) $\varphi(0) = 1$,
- (ii) $|\varphi(t)| <= 1$,
- (iii) $\varphi(-t) = \overline{\varphi(t)}$
- (iv) φ is continuous on \mathbb{R}

Theorem 2.5 (Inversion Formula [8]). If $\int_{\mathbb{R}} |\varphi(t)| dt < \infty$ then X has bounded continuous density

$$f(x) = \frac{1}{2\pi} \int e^{-itx} \varphi(t) dt$$

2.3 Common Distributions and Their Characteristic Functions

Table 1: Characteristic Functions for Common Distributions[9]

[6]				
Distribution	PMF/PDF	Characteristic Function		
Constant $X \equiv a$	-	$\varphi_X(t) = e^{iat}.$		
Binomial $X \sim Binomial(m, p)$	$p_X(n) = \binom{n}{m} p^n (1-p)^{m-n}$	$\varphi_X(t) = (pe^{it} + (1-p))^m$		
Poisson $X \sim Poisson(\lambda)$	$p_X(n) = \frac{\lambda^n}{n!} e^{-\lambda}$	$\varphi_X(t) = e^{\lambda(e^{it} - 1)}$		
Exponential $X \sim Exponential(\lambda)$	$p_X(n) = \lambda e^{-\lambda x}$	$\varphi_X(t) = \frac{\lambda}{\lambda - it}$		
Normal $X \sim N(0,1)$	$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$	$\varphi_X(t) = e^{-\frac{t^2}{2}}$		
Normal $Y \sim N(\mu, \sigma^2)$	$f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$	$\varphi_Y(t) = e^{it\mu - \frac{\sigma^2 t^2}{2}}$		

3 Examples and Applications of Characteristic Functions

Example 3.1. Rain falls on your head at λ drops per second on average. What is the distribution of rain drops on your head in two seconds?

Solution. Our intuition tells us that it should be $Poisson(2\lambda)$.

Let X, Y be two independent $Poisson(\lambda)$ random variables. Let Z = X + Y. Notice that characteristic functions for X (and respectively Y) is $\varphi_X(t) = e^{\lambda(e^{it}-1)}$. Therefore we have $\varphi_Z(t) = \varphi_{X+Y}(t) = (\varphi_X(t))^2 = e^{2\lambda(e^{it}-1)}$. By uniqueness of characteristic functions we know that $Z \sim Poisson(2\lambda)$.

Remark. By similar ideas, one can show that the sum of two independent poisson random variables has a possion distribution with an expectation of the sum of both expectations.

Example 3.2. $X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2).$ X_1, X_2 are independent. Distribution of $Y = X_1 + X_2$?

Solution. Similarly to last example

$$\varphi_Y(t) = \varphi_{X_1 + X_2}(t) = e^{it\mu_1 - \frac{\sigma_1^2 t^2}{2}} \cdot e^{it\mu_2 - \frac{\sigma_2^2 t^2}{2}}$$

Therefore we have

$$\varphi_Y(t) = e^{it(\mu_1 + \mu_2) - \frac{(\sigma_1^2 + \sigma_2^2)t^2}{2}}$$

which implies that $Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

Example 3.3 (Central Limit Theorem[10]). If X_i are independent identically distributed random variables with $E[X_i] = \mu, Var[X_i] = \sigma^2$, then $S_n^* = \frac{1}{\sigma\sqrt{n}} \sum_{i=1}^n (X_i - \mu)$ converges weakly to N(0,1).

Warning: The proof is not rigorous and serves only for intuitively demonstrating the usage of Characteristic Functions. See the references[10, 11] for detailed proofs.

Lemma 3.1. For any random variable X with E[X] = 0, Var[X] = 1, we have $\varphi_X(t) = 1 - \frac{1}{2}t^2 + o(t^2)$.

Proof. Directly from the definition and Taylor Series we have

$$\varphi_X(t) = E[e^{itX}] = E[1 + itX + \frac{1}{2}i^2t^2X^2 + o((tX)^2)]$$

By linearity of expectation,

$$\varphi_X(t) = E[1] + itE[X] - \frac{1}{2}t^2E[X^2] + o(t^2)$$

Also

$$E[X^2] = Var[X] - (E[X])^2 = 1$$

Therefore

$$\varphi_X(t) = 1 - \frac{1}{2}t^2 + o(t^2)$$

Now with Lemma 3.1 we denote the characteristic function of $\frac{X_i - \mu}{\sigma}$ by $\varphi(t)$, then $\varphi(t) = 1 - \frac{1}{2}t^2 + o(t^2)$. Therefore the characteristic function of S_n^* is

$$\varphi^n(t/\sqrt{n}) = [1 - \frac{t^2}{2n} + o(t^2/n)]^n$$

Take $n \to \infty$ and we get the characteristic function of $\lim_{n \to \infty} S_n^*$

$$\Phi(t) = \lim_{n \to \infty} \varphi^n(t/\sqrt{n}) = \lim_{n \to \infty} [1 - \frac{t^2}{2n}]^n = e^{-\frac{t^2}{2}}$$

Therefore $\lim_{n\to\infty} S_n^*$ converges to N(0,1).

Example 3.4. Show that $Poisson(\lambda)$ is the same as $\lim_{n\to\infty} Binomial(n,\frac{\lambda}{n})$.

Solution. Take the limit of the characteristic function of the binomial distribution.

$$\lim_{n \to \infty} \varphi_B(t) = \lim_{n \to \infty} \left(\frac{\lambda}{n} e^{it} + (1 - \frac{\lambda}{n})\right)^n$$
$$= \lim_{n \to \infty} (1 + (e^{it} - 1)\frac{\lambda}{n})^n$$
$$= e^{\lambda(e^{it} - 1)}$$

Remark. This is not a standard way of defining Poisson distribution; however, this gives us a nice intuition of Poisson distribution and can be seen as a proof for the formula of the characteristic function of it.

Lemma 3.2 (Parseval identity[9]). F(A) and G(A) are probability measures on a real line; $\phi(t) = \int_{-\infty}^{\infty} e^{itx} F(dx)$ and $\psi(t) = \int_{-\infty}^{\infty} e^{itx} G(dx)$ are their characteristic functions. Then the Parseval Identity is as follows:

$$\int_{-\infty}^{\infty} e^{-ity} \phi(t) G(dt) = \int_{-\infty}^{\infty} \psi(x - y) F(dx).$$

Proof. By the definition of characteristic functions, we have:

$$e^{-ity}\phi(t) = \int_{-\infty}^{\infty} e^{it(x-y)} F(dx)$$

Integrating it w.r.t. G(A), we get:

$$\int_{-\infty}^{\infty} e^{-ity} \phi(t) G(dt) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{it(x-y)} F(dx) G(dt)$$

Using Fubini's Theorem, we get:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{it(x-y)} F(dx) G(dt) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{it(x-y)} G(dt) F(dx) = \int_{-\infty}^{\infty} \psi(x-y) F(dx)$$

References

- [1] Wikipedia contributors, "Moment (mathematics) Wikipedia, the free encyclopedia." https://en.wikipedia.org/w/index.php?title=Moment_(mathematics) &oldid=886051824, 2019. [Online; accessed 8-March-2019].
- [2] Wikipedia contributors, "Central moment Wikipedia, the free encyclopedia." https://en.wikipedia.org/w/index.php?title=Central_moment&oldid=866322488, 2018. [Online; accessed 8-March-2019].
- [3] Wikipedia contributors, "Skewness Wikipedia, the free encyclopedia." https://en.wikipedia.org/w/index.php?title=Skewness&oldid=886052950, 2019. [Online; accessed 8-March-2019].
- [4] R. V. Hogg, Probability and statistical inference. 9th ed., 2015.
- [5] Penn State University, "Stat 414 / 415 probability theory and mathematical statistics finding moments." https://newonlinecourses.science.psu.edu/stat414/node/73/.
- [6] T. M. Bisgaard and S. Zoltán, Characteristic functions and moment sequences: positive definiteness in probability. Huntington, N.Y.: Nova Science Publishers, 2000.
- [7] M. J. Wichura, "Characteristic functions." https://galton.uchicago.edu/~wichura/Stat304/Handouts/L12.cf2.pdf. [Online; accessed 4-April-2019].
- [8] R. Durrett, "Probability: Theory and examples." https://services.math.duke.edu/~rtd/PTE/PTE5_011119.pdf, 2019. [Online; accessed 5-April-2019].
- [9] Aktuella kurssidor vid Matematiska institutionen Stockholms universitet, "Lecture 10: Characteristic Functions." https://kurser.math.su.se/pluginfile.php/5149/mod_resource/content/1/lecture-10b.pdf. [Online; accessed 4-April-2019].
- [10] D. L. McLeish, "Characteristic functions and the central limit theorem." http://sas.uwaterloo.ca/~dlmcleis/s901/chapt6.pdf. [Online; accessed 5-April-2019].
- [11] R. Su, "Lecture 7." http://www.math.nus.edu.sg/~matsr/ProbI/Lecture7.pdf. [Online; accessed 5-April-2019].