

FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION – 2025

FOR RECRUITMENT TO POSTS IN BS-17

UNDER THE FEDERAL GOVERNMENT

PURE MATHEMATICS

Roll Number

PART-I(MCQS): MAXIMUM 30 = 20 PART-II	1 30	MAXIMUM 30	= 20 PART-II	MAXIMUM MARKS
MINUTES = 80			= 80	

NOTE:

- (i) Attempt FIVE questions in all by selecting from TWO questions each from SELECTION A&B and ONE question from SELECTION-C. ALL questions carry EQUAL marks.
- (iii) All the parts (if any) of each Question must be attempted at one place instead of at different places.
- (iv) Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.
- (v) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.
- (vi) Extra attempt of any question or any part of the question will not be considered.
- (vii) Use of calculator is allowed.

SECTION-A

Q. No.1.(a)	Let Q+ be the set of positive rational numbers and define by $a * b = ab/2$ then	(10)
a >	prove that (Q+, *) is a group.	(10)
(b)	Find all the cyclic subgroups of Z_{18} .	(10)
Q. No.2. (a)	A homomorphism $\varphi: \mathbb{Z}_6 \to \mathbb{Z}_6$ is a one to one mapping then calculate $\operatorname{Ker}(\varphi)$.	(10)
(b)	Check whether the vectors $\mathbf{a} = (1,2,3)$, $\mathbf{b} = (2,5,7)$ and $\mathbf{c} = (1,3,5)$ are linearly	(10)
` '	dependent or independent.	, ,
Q. No.3. (a)	Let V be a vector space of all 2x 2 matrices. W be a subspace of V which consists	(10)
, ,	of all symmetric matrices then find two different basis of W.	` ,
(b)	Consider the transformation T: $R < \sup 3 < \sup \rightarrow R < \sup 2 < \sup $ given by	
()	T(x, y, z) = (x, y+z). Check whether T is linear or not.	(10)
	SECTION R	

SECTION-B

- Find all the real numbers $x \in R$ such that $x^2 + x > 2$. Q. No.4. (a) (10)Use the definition of limit to establish that $\lim x \rightarrow 2$ (10)**(b)** $X^{2+}1$
- Q. No.5. (a) Use Mean Value Theorem to show that $e \times 1 + x \forall x \in \mathbb{R}$. (10) Find the absolute extrema of the function f(x,y) = xy - 2x on the region R given **(b)** (10)by vertices (0, 4), (4, 0) and (0, 0).

Q. No.6. (a)	Change the order of integration in double integral $0^{\int_{0}^{x} f(x,y) dy dx}$.	(10)
(b)	Draw the graph of the conic $r = 2\cos\theta$.	(10)

SECTION-C

Q. No.7. (a)	Check that the Cauchy-Riemann Equations are satisfied in polar coordinates for	(10)
	f(z) = 1/z.	

(b) Evaluate the contour integral $c \int f(Z) dZ$ where $f(Z) = y - x - 3ix^2$ and C is simple closed contour OABO with O = 0+0i, A = 0+i and B = 1+i.

Q. No.8. (a) Use Cauchy Residue Theorem to evaluate the integral $_c$ (z2-1)/[z(z-3)] dz where C is the circle |Z| = 2.

(b) Find the Maclaurin series for the function $f(Z) = Z^2 e 3^Z$. (10)

