## 9/28 進捗報告

佐藤孝嗣

#### 目的:

# Verilogを使いベクトル行列積を計算する回路を設計する

- ・"ベクトル行列積の計算の効率化"についてサーベイ
  - ・ 演算回路の段階の効率化については見つからず
- ・ "内積計算の効率化"についてサーベイ
  - ベクトル行列積と同様の理由で断念



加算や乗算の段階での効率化を行う

### 加算器: 主なParallel Prefix加算器

- Sklansky Adder
- Kogge-Stone Adder
- Ladner-Fischer Adder
- Han-Carlson Adder

Parallel Prefix加算器 キャリーをP信号とG信号を用いて Prefix演算で並列に計算 キャリー計算の分割の方法で性能 が変化



### 加算器の比較

|                | 最大通過<br>ボックス数 | 面積          | ファンナウト |
|----------------|---------------|-------------|--------|
| Sklansky       | 4             | <b>/</b>  \ | ×      |
| Kogge-Stone    | 4             | 大           | 0      |
| Ladner-fischer | 5             | /]\         | Δ      |
| Han-Carlson    | 5             | /]\         | 0      |

ビット数が増えるとファンナウトの影響が大きくなるため、 Kogge-StoneやHanCarlsonのほうが動作速度の面で有利

ビット数によって性能が変化するので、ビット数を変えて 性能評価をする場合は方式を変える必要がある??