March 29, 2022

- 1. (3 pts for each) Answer True or False for the following statements. Give short explanations for your answers.
 - (a) $S = \{x \in \mathbb{R}^2 | x_1 x_2 = 0\}$ is a subspace of \mathbb{R}^2 .

(b) Vectors $\{(1,0,0)^T, (2,-2,0)^T, (1,2,-1)^T\}$ form a basis for \mathbb{R}^3 .

(c) The angle between vectors $(1,2,-3)^T$ and $(2,-1,1)^T$ is 90^o .

(d) Rank of a $\begin{pmatrix} 1 & 2 \\ 2 & 3 \\ 2 & 4 \end{pmatrix}$ is 2.

(e) Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be $L(x) = (x_1 - x_2, x_1 - 2x_2 + x_3)^T$. Then (1, 1, 1) is an element of $\ker(L)$.

2. (a) (7.5 pts) Determine whether the set $S = \{f \in C[-1,1] | f(-1) + f(1) = 2\}$ is a subspace of C[-1,1]. If yes, find its dimension.

(b) Determine whether the set of all symmetric 2×2 matrices is a subspace of $\mathbb{R}^{2 \times 2}$. If yes, find its dimension.

3. (15 pts) Find all possible choice of a that make the following matrix singular:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & a & 1 \\ 2 & 3 & 3 & a \\ 3 & 2 & 3 & 1 \end{pmatrix}$$

- 4. (a) (5 pts) State the Rank-Nullity Theorem.
 - (b) (10 pts) Given an 5×7 matrix A with rank(A) = 5 and let b be any vector in \mathbb{R}^5 . Explain why the system Ax = b must have infinitely many solutions.

5. (7.5 pts for each) (a) Whether $\{(1,1,-2)^T,(2,2,-1)^T,(3,-1,2)^T\}$ forms a basis for \mathbb{R}^3 . Show all your work.

(b) Whether $\{2x^2 - x + 1, x^2 + 1, x + 1\}$ forms a basis of P_3 . Show all your work.

- 6. (5 pts for each) Given $A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 3 \\ 3 & 4 & 7 & 10 \end{pmatrix}$.
 - (a) Find a basis for the null space N(A).

(b) Find a basis for the row space.

(c) Find a basis for the column space.

(d) Find nullity (A) and rank (A).

- 7. Define $L: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ by $L(A) = A A^T$ for any $A \in \mathbb{R}^{2\times 2}$.
 - (a) (10 pts) Verify that L is a linear transformation.

(b) (5 pts) Determine $\operatorname{Ker} L$ and its dimension.

(c) (5 pts) Determine the range of L and its dimension.

8. (a) (5 pts) State the triangle inequality for the Euclidean norm $\|\cdot\|$ in \mathbb{R}^n .

(b) (5 pts) Use the triangle inequality to prove that

$$||x - y|| \ge \max\{||x|| - ||y||, ||y|| - ||x||\}$$
 for all $x, y \in \mathbb{R}^n$