class8

It is important to consider scaling your data before analysis such as PCA For example:

head(mtcars)

```
mpg cyl disp hp drat
                                           wt qsec vs am gear carb
Mazda RX4
                            160 110 3.90 2.620 16.46
                 21.0
                                                     0
Mazda RX4 Wag
                           160 110 3.90 2.875 17.02
                 21.0
                                                                  4
                                                     0
Datsun 710
                 22.8
                                93 3.85 2.320 18.61
                                                                  1
                 21.4
                           258 110 3.08 3.215 19.44
Hornet 4 Drive
                         6
                                                             3
                                                                  1
                                                                  2
Hornet Sportabout 18.7
                           360 175 3.15 3.440 17.02
                                                             3
                         8
Valiant
                  18.1
                           225 105 2.76 3.460 20.22 1 0
                                                             3
```

colMeans(mtcars)

```
qsec
      mpg
                  cyl
                            disp
                                          hp
                                                   drat
                                                                 wt
            6.187500 230.721875 146.687500
20.090625
                                               3.596563
                                                           3.217250 17.848750
                                        carb
       ٧s
                            gear
                   am
 0.437500
            0.406250
                        3.687500
                                    2.812500
```

apply(mtcars, 2, sd)

```
mpg
                   cyl
                              disp
                                             hp
                                                        drat
                                                                       wt
6.0269481
            1.7859216 123.9386938
                                    68.5628685
                                                  0.5346787
                                                               0.9784574
     qsec
                                                        carb
                    ٧s
                                am
                                           gear
1.7869432
            0.5040161
                         0.4989909
                                      0.7378041
                                                  1.6152000
```

x <- scale(mtcars) head(x)</pre>

```
mpg
                                    cyl
                                               disp
                                                                      drat
Mazda RX4
                   0.1508848 -0.1049878 -0.57061982 -0.5350928 0.5675137
Mazda RX4 Wag
                   0.1508848 -0.1049878 -0.57061982 -0.5350928
                                                                0.5675137
Datsun 710
                   0.4495434 - 1.2248578 - 0.99018209 - 0.7830405 0.4739996
Hornet 4 Drive
                   0.2172534 -0.1049878 0.22009369 -0.5350928 -0.9661175
Hornet Sportabout -0.2307345 1.0148821 1.04308123 0.4129422 -0.8351978
Valiant
                  -0.3302874 -0.1049878 -0.04616698 -0.6080186 -1.5646078
                            wt
                                     qsec
                                                  ٧s
                                                              am
Mazda RX4
                  -0.610399567 -0.7771651 -0.8680278 1.1899014
                                                                 0.4235542
Mazda RX4 Wag
                  -0.349785269 -0.4637808 -0.8680278 1.1899014 0.4235542
Datsun 710
                  -0.917004624   0.4260068   1.1160357   1.1899014   0.4235542
                  -0.002299538  0.8904872  1.1160357  -0.8141431  -0.9318192
Hornet 4 Drive
Hornet Sportabout 0.227654255 -0.4637808 -0.8680278 -0.8141431 -0.9318192
Valiant
                   0.248094592 1.3269868 1.1160357 -0.8141431 -0.9318192
                        carb
Mazda RX4
                   0.7352031
Mazda RX4 Wag
                   0.7352031
Datsun 710
                  -1.1221521
Hornet 4 Drive
                  -1.1221521
Hornet Sportabout -0.5030337
Valiant
                  -1.1221521
```

colMeans(x)

```
mpg cyl disp hp drat
7.112366e-17 -1.474515e-17 -9.085614e-17 1.040834e-17 -2.918672e-16
    wt qsec vs am gear
4.682398e-17 5.299580e-16 6.938894e-18 4.510281e-17 -3.469447e-18
    carb
3.165870e-17
```

round(colMeans(x), 2)

```
cyl disp
                                            am gear carb
               hp drat
                           wt qsec
                                       ٧s
     0
                 0
0
           0
                      0
                            0
                                  0
                                        0
                                             0
                                                   0
                                                         0
```

Key-point: It is usually always a good idea to scale your data prior to PCA...

Breast Cancer Biopsy Analysis

```
# Save your input data file into your Project directory
fna.data <- "https://bioboot.github.io/bimm143_S20/class-material/WisconsinCancer.csv"</pre>
```

Complete the following code to input the data and store as wisc.df
wisc.df <- read.csv(fna.data, row.names=1)</pre>

head(wisc.df)

	diagnosis radi	us_mean	texture_mean]	perimeter_mean	area_mean	
842302	М	17.99	10.38	122.80	1001.0	
842517	M	20.57	17.77	132.90	1326.0	
84300903	M	19.69	21.25	130.00	1203.0	
84348301	M	11.42	20.38	77.58	386.1	
84358402	M	20.29	14.34	135.10	1297.0	
843786	M	12.45	15.70	82.57	477.1	
	smoothness_mea	n compa	ctness_mean co	ncavity_mean co	oncave.poi	nts_mean
842302	0.1184	0	0.27760	0.3001		0.14710
842517	0.0847	4	0.07864	0.0869		0.07017
84300903	0.1096	0	0.15990	0.1974		0.12790
84348301	0.1425	0	0.28390	0.2414		0.10520
84358402	0.1003	0	0.13280	0.1980		0.10430
843786	0.1278	0	0.17000	0.1578		0.08089
	symmetry_mean	fractal	_dimension_mean	n radius_se tex	kture_se pe	erimeter_se
842302	0.2419		0.0787	1 1.0950	0.9053	8.589
842517	0.1812		0.0566	7 0.5435	0.7339	3.398
84300903	0.2069		0.05999	9 0.7456	0.7869	4.585
84348301	0.2597		0.0974	4 0.4956	1.1560	3.445
84358402	0.1809		0.0588	3 0.7572	0.7813	5.438
843786	0.2087		0.0761	3 0.3345	0.8902	2.217
	area_se smooth	ness_se	compactness_s	e concavity_se	concave.po	oints_se
842302	153.40	.006399	0.0490	4 0.05373		0.01587
842517		.005225	0.0130			0.01340
84300903		.006150	0.0400			0.02058
84348301	27.23	.009110	0.0745	0.05661		0.01867
84358402		.011490				0.01885
843786		.007510	0.0334			0.01137
symmetry_se fractal_dimension_se radius_worst texture_worst						
842302	0.03003		0.006193	25.38	17.33	
842517	0.01389		0.003532	24.99	23.41	

84300903	0.02250	0.0	004571	23.5	57	25.53
84348301	0.05963	0.0	009208	14.9	91	26.50
84358402	0.01756	0.0	005115	22.5	54	16.67
843786	0.02165	0.0	005082	15.4	17	23.75
	perimeter_worst	area_worst	smoothness	s_worst	compactne	ss_worst
842302	184.60	2019.0		0.1622		0.6656
842517	158.80	1956.0		0.1238		0.1866
84300903	152.50	1709.0		0.1444		0.4245
84348301	98.87	567.7		0.2098		0.8663
84358402	152.20	1575.0		0.1374		0.2050
843786	103.40	741.6		0.1791		0.5249
	concavity_worst	concave.poi	ints_worst	symmeti	ry_worst	
842302	0.7119		0.2654		0.4601	
842517	0.2416		0.1860		0.2750	
84300903	0.4504		0.2430		0.3613	
84348301	0.6869		0.2575		0.6638	
84358402	0.4000		0.1625		0.2364	
843786	0.5355		0.1741		0.3985	
	fractal_dimension	on_worst				
842302		0.11890				
842517		0.08902				
84300903		0.08758				
84348301		0.17300				
84358402		0.07678				
843786		0.12440				

#We can use -1 here to remove the first column wisc.data <- wisc.df[,-1]

diagnosis <- wisc.df[,1]</pre>

head(wisc.data)

	radius_mean tex	ture_mean	perimeter_mean	area_mean s	smoothness_mean
842302	17.99	10.38	122.80	1001.0	0.11840
842517	20.57	17.77	132.90	1326.0	0.08474
84300903	19.69	21.25	130.00	1203.0	0.10960
84348301	11.42	20.38	77.58	386.1	0.14250
84358402	20.29	14.34	135.10	1297.0	0.10030
843786	12.45	15.70	82.57	477.1	0.12780
	compactness_mea	n concavit	y_mean concave.	points_mear	n symmetry_mean

842302	0.27760	0.3001		0.14710	0.2419
842517	0.07864	0.0869		0.07017	0.1812
84300903	0.15990	0.1974		0.12790	0.2069
84348301	0.28390	0.2414		0.10520	0.2597
84358402	0.13280	0.1980		0.10430	0.1809
843786	0.17000	0.1578		0.08089	0.2087
	fractal_dimension			=	
842302		07871 1.0950		8.589	153.40
842517	0.0	0.5435		3.398	74.08
84300903	0.0	05999 0.7456	0.7869	4.585	94.03
84348301	0.0	0.4956	1.1560	3.445	27.23
84358402	0.0	0.7572	0.7813	5.438	94.44
843786	0.0	0.3345	0.8902	2.217	27.19
	smoothness_se comp	pactness_se con	cavity_se co	ncave.points_	se
842302	0.006399	0.04904	0.05373	0.015	87
842517	0.005225	0.01308	0.01860	0.013	340
84300903	0.006150	0.04006	0.03832	0.020	58
84348301	0.009110	0.07458	0.05661	0.018	867
84358402	0.011490	0.02461	0.05688	0.018	885
843786	0.007510	0.03345	0.03672	0.011	.37
	symmetry_se fracta	al_dimension_se	radius_wors	t texture_wor	st
842302	0.03003	0.006193	25.3	8 17.	33
842517	0.01389	0.003532	24.9	9 23.	41
84300903	0.02250	0.004571	23.5	7 25.	53
84348301	0.05963	0.009208	14.9	1 26.	50
84358402	0.01756	0.005115	22.5	4 16.	67
843786	0.02165	0.005082	15.4	7 23.	75
	perimeter_worst and	rea_worst smoot	hness_worst	compactness_w	orst
842302	184.60	2019.0	0.1622	_	6656
842517	158.80	1956.0	0.1238	0.	1866
84300903	152.50	1709.0	0.1444	0.	4245
84348301	98.87	567.7	0.2098	0.	8663
84358402	152.20	1575.0	0.1374	0.	2050
843786	103.40	741.6	0.1791	0.	5249
	concavity_worst co	oncave.points_w	orst symmetr	y_worst	
842302	0.7119	-	2654	0.4601	
842517	0.2416	0.	1860	0.2750	
84300903	0.4504		2430	0.3613	
84348301	0.6869		2575	0.6638	
84358402	0.4000		1625	0.2364	
843786	0.5355		1741	0.3985	
	fractal_dimension				
842302	-	- .11890			

842517	0.08902
84300903	0.08758
84348301	0.17300
84358402	0.07678
843786	0.12440

head(diagnosis)

```
[1] "M" "M" "M" "M" "M"
```

table(diagnosis)

diagnosis

B M

357 212

Remove this first diagnosis column from the dataset as I don't want to pass this to PCA etc. It is essentially the expert "answer" that we will compare our analysis results to.

Exploratory data analysis

Q1. How many observations are in this dataset

dim(wisc.data)

[1] 569 30

569 observations

Q2. How many of the observations have a malignant diagnosis?

table(diagnosis)

diagnosis

B M

357 212

212 diagnoses

Q3. How many variables/features in the data are suffixed with _mean?

```
length(grep("_mean", colnames(wisc.data)))
```

[1] 10

 $10 _{\mathrm{means}}$

Principal Component Analysis

```
wisc.pr <- prcomp(wisc.data, scale=T)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                                 PC11
                                                         PC12
                                         PC10
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 \ 0.6457 \ 0.59219 \ 0.5421 \ 0.51104 \ 0.49128 \ 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                   PC18
                                                           PC19
                                                                   PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                  PC25
                                                          PC26
                                                                  PC27
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Main "PC score plot", "PC1 vs PC2 plot"

```
head(wisc.pr$x)
```

```
PC1
                         PC2
                                    PC3
                                             PC4
                                                        PC5
                                                                    PC6
842302
       -9.184755 -1.946870 -1.1221788 3.6305364 1.1940595 1.41018364
842517
        -2.385703
                   3.764859 -0.5288274 1.1172808 -0.6212284 0.02863116
84300903 -5.728855
                   1.074229 -0.5512625 0.9112808 0.1769302 0.54097615
84348301 -7.116691 -10.266556 -3.2299475 0.1524129 2.9582754 3.05073750
84358402 -3.931842
                    1.946359 1.3885450 2.9380542 -0.5462667 -1.22541641
843786
        -2.378155 -3.946456 -2.9322967 0.9402096 1.0551135 -0.45064213
                PC7
                            PC8
                                        PC9
                                                 PC10
                                                            PC11
                                                                       PC12
         2.15747152 0.39805698 -0.15698023 -0.8766305 -0.2627243 -0.8582593
842302
842517
         0.01334635 -0.24077660 -0.71127897 1.1060218 -0.8124048 0.1577838
84300903 -0.66757908 -0.09728813 0.02404449 0.4538760 0.6050715 0.1242777
84348301 1.42865363 -1.05863376 -1.40420412 -1.1159933 1.1505012 1.0104267
84358402 -0.93538950 -0.63581661 -0.26357355 0.3773724 -0.6507870 -0.1104183
843786
         0.49001396  0.16529843  -0.13335576  -0.5299649  -0.1096698  0.0813699
               PC13
                            PC14
                                        PC15
                                                    PC16
                                                                PC17
842302
         0.10329677 - 0.690196797 0.601264078 0.74446075 - 0.26523740
842517
        -0.94269981 -0.652900844 -0.008966977 -0.64823831 -0.01719707
84300903 -0.41026561 0.016665095 -0.482994760 0.32482472 0.19075064
84348301 -0.93245070 -0.486988399 0.168699395 0.05132509 0.48220960
84358402 0.38760691 -0.538706543 -0.310046684 -0.15247165 0.13302526
843786
        -0.02625135 0.003133944 -0.178447576 -0.01270566 0.19671335
               PC18
                          PC19
                                     PC20
                                                  PC21
                                                              PC22
842302
        -0.54907956 0.1336499 0.34526111 0.096430045 -0.06878939
         0.31801756 -0.2473470 -0.11403274 -0.077259494 0.09449530
842517
84300903 -0.08789759 -0.3922812 -0.20435242 0.310793246 0.06025601
84348301 -0.03584323 -0.0267241 -0.46432511 0.433811661 0.20308706
84358402 -0.01869779 0.4610302 0.06543782 -0.116442469
                                                        0.01763433
843786
       -0.29727706 -0.1297265 -0.07117453 -0.002400178 0.10108043
                                        PC25
                                                     PC26
               PC23
                            PC24
                                                                 PC27
842302
         0.08444429 0.175102213 0.150887294 -0.201326305 -0.25236294
        -0.21752666 -0.011280193 0.170360355 -0.041092627 0.18111081
842517
84300903 -0.07422581 -0.102671419 -0.171007656 0.004731249 0.04952586
84348301 -0.12399554 -0.153294780 -0.077427574 -0.274982822 0.18330078
84358402 0.13933105 0.005327110 -0.003059371 0.039219780 0.03213957
843786
         0.03344819 - 0.002837749 - 0.122282765 - 0.030272333 - 0.08438081
                 PC28
                              PC29
                                           PC30
842302
        842517
         0.0325955021 -0.005682424 0.0018662342
84300903 0.0469844833 0.003143131 -0.0007498749
84348301 0.0424469831 -0.069233868 0.0199198881
84358402 -0.0347556386 0.005033481 -0.0211951203
         0.0007296587 -0.019703996 -0.0034564331
843786
```

```
#plot(wisc.pr$x)
attributes(wisc.pr)
```

\$names
[1] "sdev" "rotation" "center" "scale" "x"
\$class
[1] "prcomp"

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

summary(wisc.pr)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7

```
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                        PC12
                                                                PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
                                                                  PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                         PC26
                                                                 PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
Cumulative Proportion
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

.4427

Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

3

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

7

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

biplot(wisc.pr)

It is difficult to understand, this is because it includes all variables within the excel that are recorded, some of which do not have correlation, and due to the shear amount, cause a saturation in the plot and makes it hard to read.

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?


```
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

wisc.pr\$rotation[,1]

perimeter_mean	texture_mean	radius_mean
-0.22753729	-0.10372458	-0.21890244
compactness_mean	${\tt smoothness_mean}$	area_mean
-0.23928535	-0.14258969	-0.22099499
symmetry_mean	concave.points_mean	concavity_mean
-0.13816696	-0.26085376	-0.25840048
texture_se	radius_se	fractal_dimension_mean
-0.01742803	-0.20597878	-0.06436335
smoothness_se	area_se	perimeter_se
-0.01453145	-0.20286964	-0.21132592
concave.points_se	concavity_se	compactness_se
-0.18341740	-0.15358979	-0.17039345
radius_worst	fractal_dimension_se	symmetry_se
-0.22799663	-0.10256832	-0.04249842
area_worst	perimeter_worst	texture_worst
-0.22487053	-0.23663968	-0.10446933
${\tt concavity_worst}$	${\tt compactness_worst}$	smoothness_worst

-0.12795256 -0.21009588 -0.22876753 concave.points_worst symmetry_worst fractal_dimension_worst -0.25088597 -0.12290456 -0.13178394

-0.26085376

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

summary(wisc.pr)

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                         PC5
                                                                 PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                        PC12
                                                                PC13
                                                                        PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
                                                                  PC20
                                                                         PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                         PC26
                                                                 PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
                       0.02736 0.01153
Standard deviation
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

5 PCs

data.scaled <- scale(wisc.data)</pre>

data.dist <- dist(data.scaled)</pre>

```
wisc.hclust <- hclust(data.dist, method = "complete")</pre>
```

plot(wisc.hclust)

Cluster Dendrogram

data.dist hclust (*, "complete")

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h=19, col="red", lty=2)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

Height is 19

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

```
wisc.hclust.clusters <- cutree(wisc.hclust, k = 10)
table(wisc.hclust.clusters, diagnosis)</pre>
```

	diag	diagnosis		
wisc.hclust.clusters	s B	M		
1	12	86		
2	0	59		
3	0	3		
4	331	39		
5	0	20		
6	2	0		
7	12	0		
8	0	2		
9	0	2		
10	0 C	1		

2 is the best cluster vs diagnosis match for malignant cells, as it has the highest count of malignant cells per cluster

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

```
wisc.hclust1 <- hclust(data.dist, method = "complete")
plot(wisc.hclust1)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "complete")

```
wisc.hclust2 <- hclust(data.dist, method = "single")
plot(wisc.hclust2)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "single")

wisc.hclust3 <- hclust(data.dist, method = "average")
plot(wisc.hclust3)</pre>

Cluster Dendrogram

data.dist hclust (*, "average")

```
wisc.hclust4 <- hclust(data.dist, method = "ward.D2")
plot(wisc.hclust4)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "ward.D2")

I like ward.D2 since the organization pattern is the easiest to read and the most central