# Lab1 Linear Programming Solver

# **Team Members**

| 22010966 | عمر طاهر حسين زيدان             |
|----------|---------------------------------|
| 22011369 | يوسف احمد عبد الغني حسب الله    |
| 22010869 | عبدالرحمن السيد سعد سليمان نوار |

# **Linear Programming Solver**

## **Class Constructor**

## init Method

The constructor initializes the solver with:

- objective: The coefficients of the objective function.
- constraints: The coefficients of constraint equations.
- rhs: The right-hand side values of constraints.
- constraint\_types: The types of constraints (<=, >=, =).
- var\_restrictions: Restrictions on variables.
- method: The solving method (simplex,big-m, two-phase, etc.).
- type: The optimization type (max or min).

The objective function is negated if the problem type is minimization.

# **Solving Methods**

#### solve Method

This method determines which solving algorithm to apply based on the method attribute.

### **Simplex Solver**

The Simplex Solver is designed to solve linear programming problems using the Simplex Method. The key components of this implementation are:

#### 1.Initialization

The solver takes as input:

- A matrix of constraint coefficients.
- A vector of constraint right-hand side (RHS) values.
- A vector of objective function coefficients.
- A binary vector indicating unrestricted variables.
- A boolean flag indicating whether the problem is a maximization or minimization problem.

These inputs are converted into a structured format suitable for the Simplex algorithm.

## 2. Handling Slack and Unrestricted Variables

- Slack variables are added to convert inequalities into equalities.
- Unrestricted variables are split into the difference of two non-negative variables.

## 3. Simplex Algorithm Execution

- Identify the entering variable based on the most negative coefficient in the objective function.
- Compute the minimum ratio test to determine the leaving variable.
- Perform row operations to update the tableau.
- Repeat the process until an optimal solution is reached or an unbounded solution is detected.

# big\_m\_method

The Big M Method incorporates artificial variables into the objective function with a large penalty coefficient (M):

- Artificial variables are added for equality (=) and  $\geq$  constraints.
- The objective function is modified by penalizing artificial variables with a large negative or positive M.
- The Simplex algorithm proceeds normally, ensuring artificial variables leave the basis as soon as possible.

If artificial variables remain in the final solution, the problem is infeasible.

## two phase method

The Two-Phase Method avoids the use of a large M by solving the problem in two steps:

# **Phase 1: Feasibility Check**

- A temporary objective function is defined as the sum of all artificial variables.
- The Simplex algorithm is applied to minimize this function.
- If the optimal value is nonzero, the original problem is infeasible.

# **Phase 2: Standard Simplex Execution**

- The original objective function is restored, and artificial variables are removed.
- The Simplex method continues to find the optimal solution.

# **Preemptive Goal Programming**

Preemptive Goal Programming is an extension of linear programming that prioritizes multiple goals by minimizing deviations from their target values in a hierarchical manner.

#### 1.Initialization

The solver initializes with:

- A matrix of goal coefficients and RHS values.
- Constraint coefficients and values.
- A binary vector for unrestricted variables.
- Goal directions (>=, <=, or ==).

# 2. Constructing the Initial Tableau

- Deviation variables (positive and negative) are introduced to account for goal violations.
- Structural constraints are added as part of the standard linear programming model.

# 3. Handling Unrestricted Variables

Similar to the Simplex Solver, unrestricted variables are represented as the difference between two non-negative variables.

# 4. Objective Function Setup

Each priority level has a separate objective function that minimizes deviations from its corresponding goal. The objectives are processed sequentially, ensuring higher-priority goals are optimized first.

#### **5.Solution Process**

- The tableau is updated iteratively.
- Basic variables are adjusted based on pivoting operations.
- The final solution provides the optimized values for the decision variables and deviation measures.

# ScreenShots from application







# Big m steps



# **Two-phase steps**





# **Goal programming**

