WORD OPERATION DEFINABLE IN THE TYPED λ-CALCULUS

Marek ZAIONC*

Department of Computer and Information Sciences, University of Alabama at Birmingham, University Station, Birmingham, AL 35294, U.S.A.

Communicated by G. Mirkowska Received March 1985 Revised February 1987

Abstract. A λ -language over a simple type structure is considered. Type $B = (O \rightarrow O) \rightarrow ((O \rightarrow O) \rightarrow (O \rightarrow O))$ is called a binary word type because of the isomorphism between words over a binary alphabet and closed terms of this type. Therefore, any term of type $B \rightarrow (B \rightarrow \cdots \rightarrow (B \rightarrow B) \cdots)$ represents an *n*-ary word function. The problem is: what class of word functions are represented by the closed terms of the examined type. It is proved that there exists a finite base of word functions such that any λ -definable word function is some composition of functions from the base. The algorithm which, for every closed term, returns the function in the form of a composition of basic operations is given. The main result is proved for a binary alphabet only, but can be easily extended to any finite alphabet. This result is a natural extension of the Schwichtenberg theorem (see Schwichtenberg (1975) and Statman (1979)) which solves the same problem for the natural number type $N = (O \rightarrow O) \rightarrow (O \rightarrow O)$.

Notations

We denote by \mathbb{N} the set of nonnegative integers. The interval $\{1, 2, ..., n\}$ is denoted by [n] and the interval $\{0, 1, ..., n\}$ by $\overline{[n]}$. Σ is a binary alphabet $\{a, b\}$. By Σ^* we mean the set of all words over Σ . The empty word is denoted by Λ . We will use the following notation: if $n \in \mathbb{N}$, then by (n) we mean the word a ... a with n occurrences of the letter a (with $(0) = \Lambda$). By c(n, w) we denote the n-ary function $(\Sigma^*)^n \to \Sigma^*$ which maps onto the word w constantly. If w is a word, then [w] is the number of letters in w (with $[\Lambda] = 0$). We have [(n)] = n for any number $n \in \mathbb{N}$.

1. Typed λ -calculus

Our language is based on the Church's [13] simple theory of types. The set of types is introduced as follows; O is a type and if τ and μ are types, then $\tau \rightarrow \mu$ is a type. We will use the following notation; if τ_1, \ldots, τ_n , τ are types, then by

^{*} The research described in this paper was done while author was at Jagiellonian University, Krakow (Poland).

2 M. Zaione

 $\tau_1, \ldots, \tau_n \to \tau$ we understand the type $\tau_1 \to (\tau_2 \to \cdots \to (\tau_n \to \tau) \cdots)$. By $\tau^n \to \mu$ we mean the type $\tau, \ldots, \tau \rightarrow \mu$ with n occurrences of τ (with $\tau^0 \rightarrow \mu = \mu$). Therefore, every type τ has a form $\tau_1, \ldots, \tau_n \to O$. The type τ_i is called the component of τ and is denoted by $\tau[i]$. By $\tau[i_1, \ldots, i_k]$ we mean $\tau[i_1] \ldots [i_k]$. For any type τ we define numbers $arg(\tau)$ and $rank(\tau)$ as follows: arg(O) = rank(O) = 0 and if $\tau =$ $\tau[1], \ldots, \tau[n] \rightarrow O$, then $\arg(\tau) = n$ and $\operatorname{rank}(\tau) = \max_{i=1,\ldots,n} (\operatorname{rank}(\tau[i])) + 1$. For any type τ a denumerable set of variables $V(\tau)$ is given. A set of terms is a minimal set containing variables and which is closed for application and abstraction rules; i.e., if T is a term of type $\tau \to \mu$ and S is a term of type τ , then TS is a term of type μ ; and if x is variable of type τ and T is a term of type μ , then λx . T is a term of type $\tau \rightarrow \mu$. If T is a term of type τ , we write $T \in \tau$. We shall use the notation $\lambda x_1 x_2 \dots x_n \cdot T$ for term $\lambda x_1 \cdot (\lambda x_2 \dots (\lambda x_n \cdot T) \dots)$ and $TS_1S_2\ldots S_n$ $(\ldots((TS_1)S_2)\ldots S_n)$. If T is a term and x is a variable of the same type as a term S, then T[x/S] denotes the term obtained by substitution of the term S for each free occurrence of x in T.

The axioms of equality between terms have the form of α , β , and η conversions (see [1,3]) and the convertible terms will be written as $T =_{\beta\eta} S$. All terms are considered modulo α , β , and η conversions. By $Cl(\tau)$ we mean the set of all closed (without free variables) terms of type τ . If Y is a set of variables, then $Cl(\tau, Y)$ is the set of all terms of type τ with only free variables from Y. Obviously, $Cl(\tau, \emptyset) = Cl(\tau)$ and $Cl(\tau, \emptyset) \subseteq Cl(\tau, Y)$. Term T is in long normal form iff $T = \lambda x_1 \dots x_n y_1 \dots T_k$, where y is an x_i for $i \in [n]$ or y is a free variable, and T_j , for each $j \in [k]$, is in long normal form and $y_1 \dots T_k$ is a term of type O. It is easy to prove that long normal forms exist and are unique for $\beta\eta$ conversions (compare [10] or Φ -normal form in [2]). Let us introduce a complexity measure π for closed terms. If T is a closed term written in normal form and $T = \lambda x_1 \dots x_n x_i$, then $\pi(T) = 0$. If $T = \lambda x_1 \dots x_n x_i T_1 \dots T_k$, then $\pi(T) = \max_{j=1,\dots,k} (\pi(\lambda x_1 \dots x_n T_j)) + 1$. For a closed term S, $\pi(S)$ is defined as $\pi(T)$ for T in long normal form such that $S = \beta\eta$ T.

2. Term grammars

Let NT be a finite or denumerable set of variables (the elements of NT correspond to nonterminal elements in the classical grammars). A production is a pair (y, T) also denoted by $y \Rightarrow T$, where variable $y \in NT$, y and T have the common type τ , and $T \in Cl(\tau, NT)$. A grammar is a finite or denumerable set of productions. The relation of the indirect production \rightarrow in the grammar G is defined by induction as follows:

if
$$y \Rightarrow T \in G$$
, then $y \rightarrow T$ holds; if $y \rightarrow T$ and $z \rightarrow S$ hold, then $y \rightarrow R$,

where R is any term obtained from T by substitution of at most one free occurrence of z by S. By L(G, y) we mean the set of all closed terms which are generated from

y by grammar G; i.e., if $y \in \tau$, then $L(G, y) = \{T \in Cl(\tau) | y \to T\}$. It is easy to notice that if $v \to T$ and $z \to S$ hold, then $y \to T[z/S]$ holds. Let us assume that $y \Longrightarrow T$ is a production and y_1, \ldots, v_n are all free occurrences of nonterminal variables in the term T. Let $y \in \tau$, $y_1 \in \tau_1, \ldots, y_n \in \tau_n$. We say that this production determines a function $\alpha : Cl(\tau_1) \times Cl(\tau_2) \times \cdots \times Cl(\tau_n) \to Cl(\tau)$ defined by

$$\alpha(T_1,\ldots,T_n)=T[y_1/T_1,\ldots,y_n/T_n] \quad \text{for every closed term } T_1 \in \text{Cl}(\tau_1), \ldots, T_n \in \text{Cl}(\tau_n).$$

If there are no nonterminal variables in the term T, then the production $y \Rightarrow T$ determines a 0-ary function (constant) T which belongs to $Cl(\tau)$.

We will use the lower case Greek letters α , β , γ , δ for the names of such functions. Let us define a grammar $G(\tau)$ for a given type τ . The construction of this grammar is analogous with the construction of the Huet matching-tree for the unification problem (see [4, Chapter 3.4, p. 37] with simplification for the $\beta\eta$ λ -calculus in Chapter 4.5, p. 51). Let y be a nonterminal variable of type τ . For the type O, grammar G(O) is $y \Rightarrow y$. If $\tau = \tau[1], \ldots, \tau[n] \rightarrow 0$, then the grammar contains all productions which are of the form:

(i)
$$y \Rightarrow \lambda x_1 \dots x_n x_i$$
 if $arg(\tau[i]) = 0$

(ii)
$$y \Rightarrow \lambda x_1 \dots x_n x_i T_1 \dots T_k$$
 if $arg(\tau[i]) = k > 0$,

where $T_j \in \tau[i, j]$ for $j \le k$ are as follows:

(ii1)
$$T_j = yx_1 \dots x_n$$
 iff $arg(\tau[i, j]) = 0$,

(ii2)
$$T_j = \lambda z_1 \dots z_p y' x_1 \dots x_n z_1 \dots z_p \text{ iff } \arg(\tau[i, j]) = p > 0,$$

where y' is a new nonterminal variable of type $\tau[1], \ldots, \tau[n] \rightarrow \tau[i, j]$ and $z_s \in \tau[i, j, s]$ for $s \leq p$.

This construction is repeated for all new nonterminal variables introduced in this step.

Example 2.1. Let τ be a following type $((O, O \rightarrow O) \rightarrow O) \rightarrow (O \rightarrow O)$. Let, as considered, the following grammar be over NT = $\{y\}$. Types of auxiliary variables are the following $p \in (O, O \rightarrow O) \rightarrow O$ and $x, v, z \in O$:

(1):
$$y \Rightarrow \lambda px.x$$
, (2): $y \Rightarrow \lambda px.p(\lambda vz.ypx)$,

(3):
$$y \Rightarrow \lambda px.p(\lambda vz.ypv)$$
, (4): $y \Rightarrow \lambda px.p(\lambda vz.ypz)$.

Let α , β , γ , δ be the functions determined by these productions respectively. The closed term of type τ

$$\lambda px_1.p(\lambda x_2x_3.p(\lambda x_4x_5.p(\lambda x_6x_7.x_4)))$$

can be obtained by means of productions (2), (3), (2), (1). This closed term can be presented as $\beta \circ \gamma \circ \beta \circ \alpha$. It is easy to prove that this grammar generates all closed terms of type τ (cf. [12]).

Theorem 2.2. For every type τ the grammar $G(\tau)$ generates all closed terms of type τ .

Proof. By induction on the complexity measure: Let T be a closed term of type τ . If T is a projection written in normal form, then T can be obtained by means of production (i). Let $T = \lambda x_1 \dots x_n x_i T_1 \dots T_k$ where $\arg(\tau[i]) = k$ and $T_j \in \text{Cl}(\tau[i,j], \{x_1,\ldots,x_n\})$ for $j \leq k$. Let S_j be the term $\lambda x_1 \dots x_n T_j$ for $j \leq k$. Every term S_j belongs to $\text{Cl}(\tau[1],\ldots,\tau[n] \to \tau[i,j])$ for $j \leq k$. The complexity measure $\pi(S_j)$ is less than $\pi(T)$ for every $j \leq k$. So, from the inductive assumption, every term S_j can be obtained by this grammar from the following nonterminal variables:

if
$$\tau[i, j] = 0$$
, then $y \to S_j$ (case (ii1)),
if $\tau[i, j] = \tau[i, j, 1], \dots, \tau[i, j, p] \to \mu$, then $y' \to S_i$ (case (ii2)).

Let α be the function determined by production (ii). Therefore, the term T can be obtained by means of production (ii) from the terms S_1, \ldots, S_k and the condition $\alpha(S_1, \ldots, S_k) = T$ holds. \square

Lemma 2.3. For every type τ such that $rank(\tau) \le 2$ there is a finite grammar which generates all closed terms of type τ .

Proof. Let $\tau = \tau[1], \tau[2], \ldots, \tau[n] \rightarrow 0$. We will prove that the grammar $G(\tau)$ is finite and according to Theorem 2.2 produces all closed term of type τ . The grammar contains all productions which are of the form:

$$y \Rightarrow \lambda x_1 \dots x_n \cdot x_n$$
 if $arg(\tau[i]) = 0$,
 $y \Rightarrow \lambda x_1 \dots x_n \cdot x_i T_1 \dots T_k$ if $arg(\tau[i]) = k > 0$, where
 $T_j = y x_1 \dots x_n$ for $j \leq k$.

Grammars described here can produce any free structure. \Box

Theore in 2.4 (Zaionc [12]). For every type τ such that $rank(\tau) \le 3$ and $arg(\tau[i]) \le 1$ for every $i \le arg(\tau)$, there is a finite grammar which generates all closed terms of this type (compare the notion of regular grammar introduced in [12]).

An illustration of this case is presented in Example 2.1.

3. Finitely generated sets

For a given type τ the set FUN(τ) is defined as $\bigcup_{i=1}^{\infty} Cl(\tau^i \to \tau)$. Two terms R and T from the set $Cl(\tau^i \to \tau)$ are strongly equivalent, $R \equiv T$, if, for every closed term $S_1, \ldots, S_i \in Cl(\tau)$, $RS_1 \ldots S_i = \beta_{\eta} TS_1 \ldots S_i$. If F is a subset of FUN(τ), then by App(F) we denote the set of all compositions of members of F, i.e., App(F) is

a minimal subset of FUN(τ) containing F, all projections $\lambda x_1 \ldots x_n x_i$ such that $x_j \in \tau$ for $j \in [n]$, and containing all constant functions from FUN(τ) of the form $\lambda x_1 \ldots x_n T$ where $x_i \in \tau$ and $T \in Cl(\tau)$ and closed for compositions. That is, if $T \in App(F)$ such that $T \in Cl(\tau^n \to \tau)$ and if $S_1, \ldots, S_n \in App(F)$ such that $S_i \in Cl(\tau^{k_i} \to \tau)$ for $i \in [n]$ and $k_i \in \mathbb{N}$, then term $\lambda x_1 \ldots x_n T(S_1 x_{j_{1,1}} \ldots x_{j_{1,k_1}}) \ldots (S_n x_{j_{n,1}} \ldots x_{j_{n,k_n}})$ belongs to App(F) for every $j_{p,q} \in [n]$ such that $p \in [n]$ and $q \in [k_p]$.

The set $FUN(\tau)$ is finitely generated iff there is a finite set $F \subset FUN(\tau)$ such that, for every $T \in FUN(\tau)$, there is an $S \in App(F)$ such that $T \equiv S$.

Theorem 3.1 (Schwichtenberg [8] and Statman [9]). Set FUN(N) is finitely generated where $N = (O \rightarrow O) \rightarrow (O \rightarrow O)$. The set of closed terms of type N (Church's numerals) can be naturally interpreted as numbers; the set of generators consists of terms which represents addition, multiplication, sq and \overline{sq} (see [5, p. 223]). Therefore, the set FUN(N) represents the extended polynomials.

Theorem 3.2 (cf. Statman [11, p. 24]). Set FUN(τ_n), where τ_n is the type $O^n \to O$, is finitely generated for every $n \in \mathbb{N}$.

Proof. From the functional completeness of *n*-valued propositional logic (cf., for example, [6] or [7]) and from the fact that there are exactly *n* closed terms of type τ_n , the above theorem easily follows; Let the number $i \in [n]$ be represented by the *i*th projection in the following way: $\underline{i} = \lambda x_1 \dots x_k x_i$. The term $T \in Cl(\tau_n^k \to \tau)$ represents the function $f:[n]^k \to [n]$ if, for all $n_1, \dots, n_i \in [n]$, $\underline{Tn_i \dots n_i} = \beta_n \underline{f(n_1, \dots, n_i)}$. By induction on *k* we will prove that every function $f:[n]^k \to [n]$ is represented.

For k=1, the term $\lambda cx_1 \dots x_n \cdot cx_{f(1)} \dots x_{f(n)}$ represents the function $f:[n] \to [n]$. Now, suppose any k-ary function is represented. Let f be a (k+1)-ary function. By $f_1, \dots f_n$ we denote the k-ary functions which are defined by

$$f_j(x_1,...,x_k) = f(x_1,...,x_k,j)$$
 for $j \in [n]$.

So there exist terms $T_1, \ldots, T_n \in Cl(\tau_n^k \to \tau)$ which represent f_1, \ldots, f_n respectively. Therefore, function f is represented by the term $\lambda c_1 \ldots c_{k+1} x_1 \ldots x_n \cdot c_{k+1} (T_1 c_1 \ldots c_k x_1 \ldots x_n) \ldots (T_n c_1 \ldots c_k x_1 \ldots x_n)$.

For every $n \ge 2$, n-valued propositional logic is functionally complete, i.e., there is a finite number of functions which generate any function. The set of representatives of those functions form the base for $FUN(\tau_n)$. For n = 1, the possible set of generators for $FUN(\tau_1)$ is $\lambda ux.x \in Cl(\tau_1 \to \tau_1)$. For $FUN(\tau_0)$, the set of generators is empty. \square

Example 3.3. FUN $(O, O \rightarrow O)$ is finitely generated. A possible set of generators is $\lambda pqxy.q(pyx)(pyy)$ and $\lambda pxy.pyx$ $(p, q \in (O, O \rightarrow O))$ and $x, y \in O$ if term $\lambda xy.x$ represent falsity and $\lambda .xy.y$ truth. The first term represents implication and the second negation in classical 2-valued propositional calculus.

4. Word functions

In this section the set of word functions $(\Sigma^*)^n \to \Sigma^*$ for $n \ge 1$ is investigated. Let us distinguish the following functions recursively definable in Manna manner [14]. The function app: $(\Sigma^*)^2 \to \Sigma$ is the usual concatenation inductively defined by

$$app(\Lambda, y) = y$$
. $app(a x, y) = a app(x, y)$, $app(b x, y) = b app(x, y)$.

The function sub: $(\Sigma^*)^3 \to \Sigma$ is called 'substitution'. The word sub(x, y, z) is obtained from x by substituting for all occurrences of the letter a the word y and for all occurrences of the letter b the word z. The definition is as follows:

$$\operatorname{sub}(\Lambda, y, z) = \Lambda,$$
 $\operatorname{sub}(ax, y, z) = \operatorname{app}(y, \operatorname{sub}(x, y, z)),$
 $\operatorname{sub}(bx, y, z) = \operatorname{app}(z, \operatorname{sub}(x, y, z)).$

The functions cut_a and cut_b extract maximal prefixes of the form $a \dots a$ and $b \dots b$ respectively and are defined by

$$\operatorname{cut}_a(\Lambda) = \Lambda$$
, $\operatorname{cut}_a(a x) = \operatorname{app}(a, \operatorname{cut}_a(x))$, $\operatorname{cut}_a(b x) = \Lambda$, $\operatorname{cut}_b(\Lambda) = \Lambda$, $\operatorname{cut}_b(a x) = \Lambda$, $\operatorname{cut}_b(b x) = \operatorname{app}(b, \operatorname{cut}_b(x))$.

The functions sq, $\overline{sq}: \Sigma^* \to \Sigma^*$ are emptiness and nonemptiness tests:

$$sq(\Lambda) = (0), \quad sq(ax) = (1), \quad sq(bx) = (1),$$
$$\overline{sq}(\Lambda) = (1), \quad \overline{sq}(ax) = (0), \quad \overline{sq}(bx) = (0).$$

The functions occ_a , $occ_b: \Sigma^* \to \Sigma$ check if the letter a or b respectively occur in a given word x and are defined by

$$\operatorname{occ}_a(\Lambda) = (0), \qquad \operatorname{occ}_a(a \, x) = (1), \qquad \operatorname{occ}_a(b \, x) = \operatorname{occ}_a(x),$$

 $\operatorname{occ}_b(\Lambda) = (0), \qquad \operatorname{occ}_b(a \, x) = \operatorname{occ}_b(x), \qquad \operatorname{occ}_b(b \, x) = (1).$

The functions beg_a , $beg_b: \Sigma^* \to \Sigma^*$ which check if a given word begins with a or b respectively can be defined as

$$beg_a = sq \circ cut_a$$
, $beg_b = sq \circ cut_b$.

Let us now define the set λ def as a minimal set of word functions containing app, sub, cut_a , cut_b , sq , sq , occ_a , occ_b , all projections, and all constant functions which are closed for compositions. By λ def(n) we denote a subset of λ def which consists of all n-ary functions from λ def. The set TEST is a subset of λ def(1) containing sq , sq , beg_a , $\operatorname{sq} \circ \operatorname{beg}_b$, $\operatorname{sq} \circ \operatorname{beg}_b$, occ_a , occ_a , occ_b , $\operatorname{sq} \circ \operatorname{occ}_b$.

If $n, m \in \mathbb{N}$, then by $(n) \oplus (m)$ and $(n) \otimes (m)$ we understand the words app(n), (m) and sub(n), (m), (m) respectively. Let us assume that $x_i \in \Sigma^*$ for $i \in \mathbb{N}$. The word $\Theta_{i=1}^k x_i$ is defined by induction as

$$\bigoplus_{i=1}^{1} x_i = x_1, \qquad \bigoplus_{i=1}^{k+1} x_i = \operatorname{app}\left(x_{k+1}, \bigoplus_{i=1}^{k} x_i\right).$$

For all $n, m, n_1, \ldots, n_k \in \mathbb{N}$ the following equalities hold:

$$(n) \oplus (m) = (n+m), \qquad (n) \otimes (m) = (nm), \qquad \bigoplus_{i=1}^k (n_i) = \left(\sum_{i=1}^k n_i\right).$$

The class P(n, k) for $n, k \ge 1$ of n-ary functions $(\Sigma^*)^n \to \{(0), (1), \ldots, (k-1)\}$ is defined as a minimal class which contains all constant functions c(n, (j)) for $j \in [k-1]$ and is closed for the conditional choice rule; i.e., if $p, q \in P(n, k)$, $i \in [n]$ and $f \in TEST$, then the function s defined below belongs to P(n, k).

$$s(x_1,\ldots,x_n) = \begin{cases} p(x_1,\ldots,x_n) & \text{iff } f(x_i) = (1), \\ q(x_1,\ldots,x_n) & \text{iff } \overline{sq}(f(x_i)) = (1). \end{cases}$$

A function obtained by the conditional choice rule can also be defined as

$$s(x_1,\ldots x_n)=f(x_i)\otimes p(x_1,\ldots ,x_n)\oplus \overline{sq}(f(x_i))\otimes q(x_1,\ldots ,x_n).$$

Lemma 4.1. $P(n, k) \subset \lambda \operatorname{def}(n)$.

Proof. Inductively for the construction of $p \in P(n, k)$. For a constant function p it is obvious. If s is obtained from p, q by the conditional choice rule, then

$$s(x_1,\ldots x_n)=f(x_i)\otimes p(x_1,\ldots,x_n)\oplus \overline{sq}(f(x_i))\otimes q(x_1,\ldots,x_n).$$

Therefore, s is a composition of basic functions and $s \in \lambda \operatorname{def}(n)$. \square

Lemma 4.2. If $p, q, r \in P(n, k)$, then the function s defined below belongs to P(n, k).

$$s(x_1,\ldots,x_n) = \begin{cases} p(x_1,\ldots,x_n) & \text{iff } sq(r(x_1,\ldots,x_n)) = (1), \\ q(x_1,\ldots,x_n) & \text{iff } \overline{sq}(r(x_1,\ldots,x_n)) = (1). \end{cases}$$

Proof. By induction on the construction of the function r. If r is a constant function, then s = p or s = q. Let us assume that the function r is constructed by means of r_1 , r_2 from P(n, k) and f from TEST. Therefore, r has a form

$$r(x_1,\ldots,x_n)=f(x_i)\otimes r_1(x_1,\ldots,x_n)\oplus \overline{\operatorname{sq}}(f(x_i))\otimes r_2(x_1,\ldots,x_n).$$

Because of the inductive assumption we know that the functions s_1 , s_2 defined by

$$s_1(x_1,\ldots,x_n) = \begin{cases} p(x_1,\ldots,x_n) & \text{iff } sq(r_1(x_1,\ldots,x_n)) = (1), \\ q(x_1,\ldots,x_n) & \text{iff } \overline{sq}(r_1(x_1,\ldots,x_n)) = (1); \end{cases}$$

$$s_2(x_1,\ldots,x_n) = \begin{cases} p(x_1,\ldots,x_n) & \text{iff } sq(r_2(x_1,\ldots,x_n)) = (1), \\ q(x_1,\ldots,x_n) & \text{iff } \overline{sq}(r_2(x_1,\ldots,x_n)) = (1) \end{cases}$$

belong to P(n, k). It is straightforward to verify that

$$s(x_1,\ldots,x_n)=f(x_i)\otimes s_1(x_1,\ldots,x_n)\oplus \overline{sq}(f(x_i))\otimes s_2(x_1,\ldots,x_n).$$

Then s belongs to P(n, k). \square

Lemma 4.3. Let $s \in P(n, k)$. The function s' defined by $s'(x_1, \ldots, x_n) = (i - 1)$ iff $s(x_1, \ldots, x_n) = (i)$ (where i - 1 = i - 1 for i > 0 and 0 for i = 0) belongs to P(n, k - 1).

Proof. Inductively for the construction of s. It is easy to notice this fact in the case when s is constant. Let

$$s(x_1, \ldots, x_n) = f(x_i) \otimes p(x_1, \ldots, x_n) \oplus \overline{sq}(f(x_i)) \otimes q(x_1, \ldots, x_n).$$
Therefore,
$$s'(x_1, \ldots, x_n) = f(x_i) \otimes p'(x_1, \ldots, x_n) \oplus \overline{sq}(f(x_i)) \otimes q'(x_1, \ldots, x_n) \quad \Box$$

5. Representability

Type $B = (O \rightarrow O) \rightarrow ((O \rightarrow O) \rightarrow (O \rightarrow O))$ is called a binary word type because of the isomorphism between Cl(B) and Σ^* . We define that a closed term of type B represents a word $w \in \Sigma^*$ by induction in the following way; Λ is represented by the term $\lambda uvx.x$. If $w \in \Sigma^*$ is represented by the term $W \in Cl(B)$, then words aw and bw are represented by terms $\lambda uvx.u(Wuvx)$ and $\lambda uvx.v(Wuvx)$ respectively. This constitutes a 1-1 correspondence between Cl(B) and Σ^* . The term which represents the word w is denoted by w. If H is a closed term of type $B^n \rightarrow B$, then we call H a λ -word theoretic function. The function $h:(\Sigma^*)^n \rightarrow \Sigma^*$ is represented by the term $H \in Cl(B^n \rightarrow B)$ iff, for all $x_1, \ldots, x_n \in \Sigma^*$, $Hx_1 \ldots x_n = h(x_1, \ldots, x_n)$. The term which represents the function h is denoted by h.

Let vs define the following terms with $c, d, e \in B, u, v \in (O \rightarrow O), x, y \in O$:

$$\begin{split} & \text{APP} = \lambda c duvx.cuv(duvx), & \text{SUB} = \lambda c deuvx.c(\lambda y.duvy)(\lambda y.euvy)x, \\ & \text{CUT}_a = \lambda cuvx.cu(\lambda y.x)x, & \text{CUT}_b = \lambda cuvx.c(\lambda y.x)vx, \\ & \text{SQ} = \lambda cuvx.c(\lambda y.ux)(\lambda y.ux)x, & \overline{\text{SQ}} = \lambda cuvx.(\lambda y.x)(\lambda y.x)(ux), \\ & \text{BEG}_a = \lambda cuvx.c(\lambda y.ux)(\lambda y.x)x, & \text{BEG}_b = \lambda cuvx.c(\lambda y.x)(\lambda y.ux)x, \\ & \text{OCC}_a = \lambda cuvx.c(\lambda y.ux)(\lambda y.y)x, & \text{OCC}_b = \lambda cuvx.c(\lambda y.y)(\lambda y.ux)x. \end{split}$$

It is easy to verify that these terms represent the functions app, sub, cut_a , cut_b , sq, sq, beg_a , beg_b , occ_a and occ_b respectively.

Lemma 5.1. Every function $h \in \lambda \operatorname{def}(n)$ is represented by some λ -word theoretic function $H \in \operatorname{Cl}(B^n \to B)$ and, for $x_1, \ldots x_n \in \Sigma^*$, the following condition holds: $\underline{h}\underline{x_1} \ldots \underline{x_n} = \underline{h}(x_1, \ldots, x_n)$.

Proof. Basical functions are represented. If a function $g:(\Sigma^*)^n \to \Sigma^*$ is represented by a term $G \in Cl(B^n \to B)$ and functions $f_1, \ldots, f_n:(\Sigma^*)^p \to \Sigma$ are represented by terms F_1, \ldots, F_n respectively, then the composition, i.e. the function $(x_1, \ldots, x_p) \to g(f_1(x_1, \ldots, x_p), \ldots, f_n(x_1, \ldots, x_p))$ is represented by the term $\lambda c_1 \ldots c_p . G(F_1 c_1 \ldots c_p) \ldots (F_n c_1 \ldots c_p)$. Therefore, all functions from λ def are represented. \square

Let us define a type $\tau(n, k)$ where $n, k \ge 1$ by B^n , $(O \to O)$, $(O \to O)$, $O^k \to O$. Let f be a function $(\Sigma^*)^n \to \Sigma^*$ and let p be a function $(\Sigma^*)^n \to \{(0), \ldots, (k-1)\}$. We say that the pair (f, p) is represented by a term $T \in Cl(\tau(n, k))$ if, for all w_1, \ldots, w_n , $w \in \Sigma^*$ and for every $i \in [k-1]$, the following condition holds:

$$f(w_1, \ldots, w_n) = w$$
 and $p(w_1, \ldots, w_n) = (i)$
iff $Tw_1 \ldots w_n = \beta_n \lambda uvx_{k-1} \ldots x_0 \cdot \underline{w}uvx_i$.

This condition can also be written as

$$\underline{Tw_1} \ldots \underline{w_n} =_{\beta\eta} \lambda uvx_{k-1} \ldots x_0 \cdot (\underline{f(w_1, \ldots, w_n))} uvx_{[p(w_1, \ldots, w_n)]}.$$

For k = 1, the type $\tau(n, k)$ is equal to $B^n \to B$. Therefore, this definition of representability is a generalization of the previous one in the type $B^n \to B$.

Lemma 5.2. For every function $p \in P(n, k)$ there is a term $T \in Cl(\tau(n, k))$ which represents the pair $(c(n, \Lambda), p)$.

Proof. Inductively for the construction of p. If p is a constant function such that $p(w_1, \ldots, w_n) = (i)$ for every $w_1, \ldots, w_n \in \Sigma^*$ and $i \in \overline{[k-1]}$, then the pair $(c(n, \Lambda), p)$ is represented by the term $\lambda w_1 \ldots w_n u v x_{k-1} \ldots x_0 . x_i$. Let us assume that pairs $(c(n, \Lambda), p)$ and $(c(n, \Lambda), q)$ are represented by terms $P, Q \in Cl(\tau(n, k))$ respectively. Let $i \in [n]$ and $f \in TEST$. The function f is represented by $F \in Cl(B \to B)$ (see Lemma 5.1). Then the pair $(c(n, \Lambda), s)$, where s is defined by the conditional choice rule

$$s(x_1,\ldots,x_n)=f(x_i)\otimes p(x_1,\ldots,x_n)\oplus \overline{sq}(f(x_i))\otimes q(x_1,\ldots,x_n)$$

is represented by the term

$$\lambda w_1 \dots w_n u v x_{k-1} \dots x_0 \cdot F w_i (\lambda y \cdot P w_1 \dots w_n u v x_{k-1} \dots x_0)$$

$$(\lambda y \cdot P w_1 \dots w_n u v x_{k-1} \dots x_0) (Q w_1 \dots w_n u v x_{k-1} \dots x_0). \qquad \Box$$

Lemma 5.3. For every $p \in P(n, k)$ there is a term $P \in Cl(\tau(n, 1))$ such that the pair $(p, c(1, \Lambda))$ is represented by term P.

Proof. Since function p belongs to $\lambda \operatorname{def}(n)$ (see Lemma 4.1), p has a representation (see Lemma 5.1). \square

Theorem 5.4 (scandness). For every pair (w, p) such that $w \in \lambda \operatorname{def}(n)$ and $p \in P(n, k)$ there is a term $T \in \operatorname{Cl}(\tau(n, k))$ which represents (w, p).

Proof. Let \bar{p} be a representative of the pair $(c(n, \Lambda), p)$ (see Lemma 5.2) and \underline{w} be a representative of the function w in type $B^n \to B$ (see Lemma 5.1). The pair (w, p)

10 M. Zaione

is represented by the term

$$\lambda c_1 \ldots c_n uvx_{k-1} \ldots x_0 \underline{w} c_1 \ldots c_n uv(\bar{p}c_1 \ldots c_n uvx_{k-1} \ldots x_0).$$

Theorem 5.5 (completeness). Every closed term $T \in Cl(\tau(n, k))$ represents some pair (w, p) where $w \in \lambda$ def(n) and $p \in P(n, k)$.

Proof. First we will construct the grammar $G(\tau(n, k))$ which generates all closed terms of type $\tau(n, k)$ (see Theorem 2.2) and then we will prove, by induction on the grammar construction of the term T, that T represents some pair. Let n be fixed. By y^k we understand the variable of type $\tau(n, k)$. Let $NT = \{y^k | k \ge 1\}$. We build up the productions in accordance with Theorem 2.2. Such a grammar consists of a denumerable set of productions which can be assembled in the four production schemas. We will prove by induction that if T represents some pair, then a new term obtained from T by some production also represents another pair. The grammar for type $\tau(n, k)$ is as follows:

$$\alpha_{i}^{k} \qquad y^{k} \Rightarrow \lambda c_{1} \dots c_{n} u v x_{k-1} \dots x_{0} \dots x_{i},$$

$$\beta^{k} \qquad y^{k} \Rightarrow \lambda c_{1} \dots c_{n} u v x_{k-1} \dots x_{0} \dots u (y^{k} c_{1} \dots c_{n} u v x_{k-1} \dots x_{0}),$$

$$\gamma^{k} \qquad y^{k} \Rightarrow \lambda c_{1} \dots c_{n} u v x_{k-1} \dots x_{0} \dots v (y^{k} c_{1} \dots c_{n} u v x_{k-1} \dots x_{0}),$$

$$\delta_{j}^{k} \qquad y^{k} \Rightarrow \lambda c_{1} \dots c_{n} u v x_{k-1} \dots x_{0} \dots c_{j} (\lambda z \dots y^{k+1} c_{1} \dots c_{n} u v x_{k-1} \dots x_{0}z)$$

$$(\lambda z \dots y^{k+1} c_{1} \dots c_{n} u v x_{k-1} \dots x_{0}z) (y^{k} c_{1} \dots c_{n} u v x_{k-1} \dots x_{0}).$$

 α_i^k is an element of $Cl(\tau(n,k))$. β^k is a function from $Cl(\tau(n,k))$ to $Cl(\tau(n,k))$, γ^k is a function from $Cl(\tau(n,k))$ to $Cl(\tau(n,k))$, and δ_j^k is a function from $Cl(\tau(n,k+1)) \times Cl(\tau(n,k))$ to $Cl(\tau(n,k))$. Now we will show that every term from $Cl(\tau(n,k))$ represents some pair (w,p). Element α_i^k represents a pair $(c(n,\lambda),c(n,(i)))$. If the term $T \in Cl(\tau(n,k))$ represents a pair (w,p), then $\beta^k(T)$ and $\gamma^k(T)$ represent pairs (app(a,w),p) and (app(b,w),p) respectively.

The main part of this theorem will be the proof of the following fact: If E, $F \in Cl(\tau(n, k+1))$ and $G \in Cl(\tau(n, k))$ represent some pairs, then the term $\delta_j^k(E, F, G)$ is also representative of a certain pair. The next part of this proof will be a construction of a pair for $\delta_j^k(E, F, G)$ by means of word functions which are represented by E, F and G. Suppose we have three pairs of functions represented respectively by E, F and G. E represents pair (w_e, e) , F represents pair (w_f, f) and G represents (w_g, g) . Functions w_e , w_f , and w_g are elements of the space $\lambda \operatorname{def}(n)$ and functions e, $f \in P(n, k+1)$ and $g \in P(n, k)$. Let us define a pair (w, p) as follows:

$$w(c_1,\ldots,c_n) = \bigoplus_{i=1}^8 \operatorname{sub}(A_i(c_1,\ldots,c_n), w_i(c_1,\ldots,c_n), \Lambda),$$

$$p_i(c_1,\ldots,c_n) = \bigoplus_{i=1}^8 [A_i(c_1,\ldots,c_n) \otimes p_i(c_1,\ldots,c_n)],$$

where
$$p_1 = g$$
, $p_2 = g$, $p_3 = g$, $p_4 = f'$, $p_5 = g$, $p_6 = e'$, $p_7 = e'$, and $p_8 = f'$. Further,
$$w_1(c_1, \ldots, c_n) = w_g(c_1, \ldots, c_n),$$

$$w_2(c_1, \ldots, c_n) = \operatorname{app}(\operatorname{sub}(c_j, w_c(c_1, \ldots, c_n), w_f(c_1, \ldots, c_n)),$$

$$w_g(c_1, \ldots, c_n)),$$

$$w_3(c_1, \ldots, c_n) = \operatorname{app}(\operatorname{sub}(c_j, w_e(c_1, \ldots, c_n), \Lambda), w_g(c_1, \ldots, c_n)),$$

$$w_4(c_1, \ldots, c_n) = \operatorname{app}(\operatorname{sub}(\operatorname{cut}_a(c_j), w_e(c_1, \ldots, c_n), \Lambda), w_f(c_1, \ldots, c_n)),$$

$$w_5(c_1, \ldots, c_n) = \operatorname{app}(\operatorname{sub}(\operatorname{cut}_a(c_j), \Lambda, w_f(c_1, \ldots, c_n)), w_g(c_1, \ldots, c_n)),$$

$$w_6(c_1, \ldots, c_n) = \operatorname{app}(\operatorname{sub}(\operatorname{cut}_b(c_j), \Lambda, w_f(c_1, \ldots, c_n)), w_e(c_1, \ldots, c_n)),$$

$$w_7(c_1, \ldots, c_n) = w_e(c_1, \ldots, c_n), w_8(c_1, \ldots, c_n) = w_f(c_1, \ldots, c_n).$$

The A_i 's are defined as follows:

$$A_{1}(c_{1}, \ldots, c_{n}) = \overline{\operatorname{sq}}(c_{j}),$$

$$A_{2}(c_{1}, \ldots, c_{n}) = \operatorname{sq}(c_{j}) \otimes \overline{\operatorname{sq}}(e(c_{1}, \ldots, c_{n})) \otimes \overline{\operatorname{sq}}(f(c_{1}, \ldots, c_{n})),$$

$$A_{3}(c_{1}, \ldots, c_{n}) = \operatorname{sq}(c_{j}) \otimes \overline{\operatorname{sq}}(e(c_{1}, \ldots, c_{n})) \otimes \operatorname{sq}(f(c_{1}, \ldots, c_{n}))$$

$$\otimes \overline{\operatorname{sq}}(\operatorname{occ}_{b}(c_{j})),$$

$$A_{4}(c_{1}, \ldots, c_{n}) = \operatorname{sq}(c_{j}) \otimes \overline{\operatorname{sq}}(e(c_{1}, \ldots, c_{n})) \otimes \operatorname{sq}(f(c_{1}, \ldots, c_{n})) \otimes \operatorname{occ}_{b}(c_{j}),$$

$$A_{5}(c_{1}, \ldots, c_{n}) = \operatorname{sq}(c_{j}) \otimes \operatorname{sq}(e(c_{1}, \ldots, c_{n})) \otimes \overline{\operatorname{sq}}(f(c_{1}, \ldots, c_{n}))$$

$$\otimes \overline{\operatorname{sq}}(\operatorname{occ}_{a}(c_{j})),$$

$$A_{6}(c_{1}, \ldots, c_{n}) = \operatorname{sq}(c_{j}) \otimes \operatorname{sq}(e(c_{1}, \ldots, c_{n})) \otimes \overline{\operatorname{sq}}(f(c_{1}, \ldots, c_{n})) \otimes \operatorname{occ}_{a}(c_{j}),$$

$$A_{7}(c_{1}, \ldots, c_{n}) = \operatorname{sq}(c_{j}) \otimes \operatorname{sq}(e(c_{1}, \ldots, c_{n})) \otimes \operatorname{sq}(f(c_{1}, \ldots, c_{n})) \otimes \operatorname{beg}_{a}(c_{j}),$$

$$A_{8}(c_{1}, \ldots, c_{n}) = \operatorname{sq}(c_{j}) \otimes \operatorname{sq}(e(c_{1}, \ldots, c_{n})) \otimes \operatorname{sq}(f(c_{1}, \ldots, c_{n})) \otimes \operatorname{beg}_{b}(c_{j}).$$

The functions A_i for $i \in [8]$ describe complete and consistent set of conditions. It means that, for every c_1, \ldots, c_n , there is exactly one i such that $A_i(c_1, \ldots, c_n) = (1)$ and, for $j \neq i$, $A_j(c_1, \ldots, c_n) = (0)$. For example, $A_6(c_1, \ldots, c_n) = (1)$ means that c_j is not empty, word $e(c_1, \ldots, c_n)$ is also not empty, word $f(c_1, \ldots, c_n)$ is empty, and a occurs in c_j . Functions p_1, \ldots, p_8 belong to P(n, k) (see Lemma 4.3). Function p_1 is obtained from functions in P(n, k) by multiple application of Lemma 4.2; therefore, $p \in P(n, k)$. It is easy to notice that $w \in \lambda \operatorname{def}(n)$ (see Lemma 5.1).

Now, let us check that the term $\delta_j^k(E, F, G)$ represents the pair (w, p). Let c_1, \ldots, c_n be fixed words of Σ^* . We count out the application of the term $\delta_j^k(E, F, G)$ to the arguments c_1, \ldots, c_n :

$$\delta_{j}^{k}(E, F, G)\underline{c_{1}} \dots \underline{c_{n}}$$

$$= {}_{\beta\eta} \lambda uvx_{k-1} \dots x_{0} \underline{c_{j}} (\lambda z.E\underline{c_{1}} \dots \underline{c_{n}} uvx_{k-1} \dots x_{0}z)$$

$$(\lambda z.F\underline{c_{1}} \dots \underline{c_{n}} uvx_{k-1} \dots x_{0}z)(G\underline{c_{1}} \dots \underline{c_{n}} uvx_{k-1} \dots x_{0})$$

now we make an α -conversion which changes x_i to x_{i+1} for $i \in [k-1]$ and variable z to x_0 , and we obtain

$$=_{\beta\eta}\lambda uvx_k \dots x_1 \underline{c_j}(\lambda x_0 \underline{Ec_1} \dots \underline{c_n} uvx_k \dots x_1 x_0)(\lambda x_0 \underline{Fc_1} \dots \underline{c_n} uvx_k \dots x_1 x_0) (\underline{Gc_1} \dots \underline{c_n} uvx_k \dots x_1 x_0)$$

from the inductive assumption that E, F, G represents pairs (w_e, e) , (w_f, f) , and (w_g, g) respectively we obtain

$$=_{\beta\eta}\lambda uvx_k \dots x_1 \underline{c_j}(\lambda x_0 \underline{w_e(c_1, \dots, c_n)} uvx_{\lfloor e(c_1, \dots, c_n) \rfloor})$$

$$(\lambda x_0 \underline{w_f(c_1, \dots, c_n)} uvx_{\lfloor f(c_1, \dots, c_n) \rfloor}) (\underline{w_g(c_1, \dots, c_n)} uvx_{\lfloor g(c_1, \dots, c_n) \rfloor + 1})$$

then, according to the conditions described by the A_i functions, we have

$$= {}_{\beta\eta} \begin{cases} \lambda uvx_k \dots x_1 . \underline{w_1(c_1, \dots, c_n)} uvx_{\lfloor g(c_1, \dots, c_n) \rfloor + 1} & \text{iff} \quad A_1(c_1, \dots, c_n) = (1), \\ \lambda uvx_k \dots x_1 . \underline{w_2(c_1, \dots, c_n)} uvx_{\lfloor g(c_1, \dots, c_n) \rfloor + 1} & \text{iff} \quad A_2(c_1, \dots, c_n) = (1), \\ \lambda uvx_k \dots x_1 . \underline{w_3(c_1, \dots, c_n)} uvx_{\lfloor g(c_1, \dots, c_n) \rfloor + 1} & \text{iff} \quad A_3(c_1, \dots, c_n) = (1), \\ \lambda uvx_k \dots x_1 . \underline{w_4(c_1, \dots, c_n)} uvx_{\lfloor f(c_1, \dots, c_n) \rfloor} & \text{iff} \quad A_4(c_1, \dots, c_n) = (1), \\ \lambda uvx_k \dots x_1 . \underline{w_5(c_1, \dots, c_n)} uvx_{\lfloor g(c_1, \dots, c_n) \rfloor + 1} & \text{iff} \quad A_5(c_1, \dots, c_n) = (1), \\ \lambda uvx_k \dots x_1 . \underline{w_6(c_1, \dots, c_n)} uvx_{\lfloor e(c_1, \dots, c_n) \rfloor} & \text{iff} \quad A_6(c_1, \dots, c_n) = (1), \\ \lambda uvx_k \dots x_1 . \underline{w_7(c_1, \dots, c_n)} uvx_{\lfloor e(c_1, \dots, c_n) \rfloor} & \text{iff} \quad A_7(c_1, \dots, c_n) = (1), \\ \lambda uvx_k \dots x_1 . \underline{w_8(c_1, \dots, c_n)} uvx_{\lfloor f(c_1, \dots, c_n) \rfloor} & \text{iff} \quad A_8(c_1, \dots, c_n) = (1), \end{cases}$$

after parallel α -conversion which changes x_{i+1} to x_i for $i \in [k]$, we obtain functions w_i , p_i and A_i such as defined above

$$= \beta_{\eta} \begin{cases} \lambda uvx_{k-1} \dots x_0 . \underline{w_1(c_1, \dots, c_n)} uvx_{\lfloor g(c_1, \dots, c_n) \rfloor} & \text{iff } A_1(c_1, \dots, c_n) = (1), \\ \lambda uvx_{k-1} \dots x_0 . \underline{w_2(c_1, \dots, c_n)} uvx_{\lfloor g(c_1, \dots, c_n) \rfloor} & \text{iff } A_2(c_1, \dots, c_n) = (1), \\ \lambda uvx_{k-1} \dots x_0 . \underline{w_3(c_1, \dots, c_n)} uvx_{\lfloor g(c_1, \dots, c_n) \rfloor} & \text{iff } A_3(c_1, \dots, c_n) = (1), \\ \lambda uvx_{k-1} \dots x_0 . \underline{w_4(c_1, \dots, c_n)} uvx_{\lfloor f'(c_1, \dots, c_n) \rfloor} & \text{iff } A_4(c_1, \dots, c_n) = (1), \\ \lambda uvx_{k-1} \dots x_0 . \underline{w_5(c_1, \dots, c_n)} uvx_{\lfloor g(c_1, \dots, c_n) \rfloor} & \text{iff } A_5(c_1, \dots, c_n) = (1), \\ \lambda uvx_{k-1} \dots x_0 . \underline{w_6(c_1, \dots, c_n)} uvx_{\lfloor e'(c_1, \dots, c_n) \rfloor} & \text{iff } A_7(c_1, \dots, c_n) = (1), \\ \lambda uvx_{k-1} \dots x_0 . \underline{w_7(c_1, \dots, c_n)} uvx_{\lfloor e'(c_1, \dots, c_n) \rfloor} & \text{iff } A_7(c_1, \dots, c_n) = (1), \\ \lambda uvx_{k-1} \dots x_0 . \underline{w_8(c_1, \dots, c_n)} uvx_{\lfloor f'(c_1, \dots, c_n) \rfloor} & \text{iff } A_8(c_1, \dots, c_n) = (1). \end{cases}$$

finally, according t^{-} the definitions of w and p, we get

$$=_{\beta\eta}\lambda uvx_{k-1}\ldots x_1.\underline{w(c_1,\ldots,c_n)}uvx_{\lfloor p(c_1,\ldots,c_n)\rfloor}.$$

Theorem 5.6. Every term $T \in Cl(B^n \to B)$ represents some function from the set λdef .

Proof. This theorem is only a special case of Theorem 5.5. Type $B^n \to B$ is equal to $\tau(n, 1)$ so that term T represents some pair (w, p), where $w \in \lambda \operatorname{def}(n)$ and $p \in P(n, 1)$ (see Theorem 5.5). The set P(n, 1) consists of one function only, namely $c(n, \Lambda)$. Therefore, T represents a pair $(w, c(n, \Lambda))$ in type $\tau(n, 1)$, but this is equivalent with T representing w in $B^n \to B$. \square

Theorem 5.7. FUN(B) is finitely generated.

Proof. Let us show that the set of representatives of the distinguished word functions (see Section 4) is a base for FUN(B). Suppose $T \in FUN(B)$. Term T represents some $w \in \lambda$ def (Theorem 5.6). If function w is a composition of functions from the base, then \underline{w} is a combination of terms from the base. It is easy to check by induction on the construction of w that $T \equiv w$. \square

Example 5.8. This example is designed to show the algorithm introduced in Theorem 5.5 which, for a given term of type $\tau(n, k)$, returns the pair of word functions represented by this term. The special case of type $\tau(n, k)$ is the type $B^n \to B$ when k = 1. Let $T \in B \to B$ be the term $\lambda cuvx.c(\lambda z.ux)(\lambda z.z)(vx)$ where $c \in B$, $u, v \in (O \to O)$ and $x, z \in O$. The problem is to find the function $\Sigma^* \to \Sigma^*$ represented by this term. We can decompose the term using the grammar technique and obtain $T = \delta_1^1(\beta^2(\alpha_1^2), \alpha_0^2, \gamma^1(\alpha_0^1))$. Term α_1^2 is $\lambda cuvx_1x_0.x_1$ which represents pair $(c(1, \Lambda), c(1, (1)))$. Term $\alpha_0^2 = \lambda cuvx_1x_0.x_0$ represents pair $(c(1, \Lambda), c(1, (0)))$. Using Theorem 5.5 we can easily find the representation for $\beta^2(\alpha_1^2)$. This term represents pair (c(1, a), c(1, (1))). Term $\gamma^1(\alpha_0^1)$ represents pair (c(1, b), c(1, (0))).

The main part is the construction of a representative for $\delta_1^1(\beta^2(\alpha_1^2), \alpha_0^2, \gamma^1(\alpha_0^1))$ by means of representatives of previous terms. We have three pairs $w_f = c(1, \Lambda)$, f = c(1, (0)); $w_e = c(1, \alpha)$, e = c(1, (1)); $w_g = c(1, b)$, g = c(1, (0)) such that (w_e, e) is represented by $\beta^2(\alpha_1^2)$, (w_f, f) is represented by α_0^2 , and (w_g, g) is represented by $\gamma^1(\alpha_0^1)$. According to the construction in Theorem 5.5, the pair (w, p) is defined as

$$w(c) = \mathop{\Theta}_{i=1}^{8} \operatorname{sub}(A_{i}(c), w_{i}(c), \Lambda), \qquad p(c) = \mathop{\Theta}_{i=1}^{8} [A_{i}(c) \otimes p_{i}(c)],$$

where the functions

$$A_1(c) = \overline{\operatorname{sq}}(c), \qquad A_2(c) = A_3(c) = A_4(c) = A_7(c) = A_8(c) = (0),$$

$$A_5(c) = \operatorname{sq}(c) \otimes \overline{\operatorname{sq}}(\operatorname{occ}_a(c)) \quad \text{and} \quad A_6(c) = \operatorname{sq}(c) \otimes \operatorname{occ}_a(c).$$

It is sufficient to find p_i and w_i only for this i which has $A_i(c) \neq (0)$. Therefore,

$$\begin{aligned} w_1(c) &= w_g(c) = b, \\ w_5(c) &= \operatorname{app}(\operatorname{sub}(c, \Lambda, w_f(c)), w_g(c)) = \operatorname{app}(\operatorname{sub}(c, \Lambda, \Lambda), b) = b, \\ w_6(c) &= \operatorname{app}(\operatorname{sub}(\operatorname{cut}_b(c), \Lambda, w_f(c)), w_e(c)) = \operatorname{app}(\operatorname{sub}(\operatorname{cut}_b(c), \Lambda, \Lambda), a) = a. \end{aligned}$$

Functions p_i are

$$p_1(c) = g(c) = \Lambda$$
, $p_5(c) = g(c) = (0)$, $p_6(c) = e'(c) = (0)$

so that the function w is as follows;

$$w(c) = \operatorname{app}(\operatorname{sub}(\overline{\operatorname{sq}}(c), b, \Lambda), \operatorname{app}(\operatorname{sub}(\operatorname{sq}(c) \otimes \overline{\operatorname{sq}}(\operatorname{occ}_a(c)), b, \Lambda), \operatorname{sub}(\operatorname{sq}(c) \otimes \operatorname{occ}_a(c), a, \Lambda))).$$

Roughly speaking, the function w can be described as:

$$w(c) = \begin{cases} b & \text{iff } c = \Lambda, \\ a & \text{iff } c \neq \Lambda \text{ and } c \text{ includes the letter } a, \\ b & \text{iff } c \neq \Lambda \text{ and } c \text{ does not include the letter } a. \end{cases}$$

Acknowledgment

I would like to thank the anonymous referee for many helpful suggestions and valuable comments.

References

- [1] H.P. Barendregt, *The Lambda Calculus*, Studies in Logic and the Foundations of Mathematics (North-Holland, Amsterdam, 1981).
- [2] H.B. Curry and R. Feys, Combinatory Logic Vol 1 (North-Holland Amsterdam 1968).
- [3] H. Friedman, Equality between Functionals, in: Lecture Notes in Mathematics 453 (Springer, Berlin, 1975) 22-37.
- [4] G. Huet, A unification algorithm for typed λ-calculus, Theoret. Comput. Sci. 1 (1975) 27-58.
- [5] S.L. Kleene, Introduction to Mathematics (Van Nostrand, New York, 1952).
- [6] I. Rosenberg, The ramification of Slupecki criterion in many-valued logic, Proc. 24th Conf. on the History of Logic, Cracow, April 1978.
- [7] J.B. Rosser and A.R. Turquette, Many-valued Logics (North-Holland, Amsterdam, 1958).
- [8] H. Schwichtenberg, Definierbare Funktionen in λ-Kalkuli mit Typen, Arch. Math. Logik Grundlagenforsch. 17 (1975/76) 113-114.
- [9] R. Statman, The typed λ-calculus is not elementary recursive, Theoret. Comput. Sci. 9 (1979) 73-81.
- [10] R. Statman, On the existence of closed terms in the typed λ-calculus I, in: R. Hindley and J. Seldin, eds, Combinatory Logic, Lambda Calculus, and Formalism (Academic Press, New York, 1980).
- [11] R. Statman, λ -Definable functionals and $\beta\eta$ conversion, Arch. Math. Logik Grundlagenforsch. 23 (1983) 21-26.
- [12] M. Zaionc, The set of unifiers in typed λ-calculus as regular expression, in: Lecture Notes in Computer Science 202 (Springer, Berlin, 1985) 430-440.
- [13] A. Church, The Calculi of Lambda-Conversion (Princeton University Press, Princeton, NY, 1941).
- [14] Z. Manna, Mathematical Theory of Computation (McGraw-Hill, New York, 1974).