

Лекция 4 Статистические гипотезы и параметрические критерии

Жигалов Августин

Data Engineer

РСХБ

План лекции

VİTMO

- Статистические гипотезы
- Р-значение
- Ошибки 1 и 2 рода
- Параметрические критерии

Что такое гипотеза

VITMO

Гипотеза – любое утверждение, которое возникло в нашей голове и которое мы собираемся проверить по данным.

- В Питере лягушек любят больше, чем в Москве
- Жрец Лофир может предсказывать среднее выпадение лягушек
- Размер лягушек нормально распределен
- Загрязнение воды влияет на популяцию лягушек

Что значит проверить гипотезу

- Собрать данные и посмотреть, не противоречит ли им наше утверждение
- Любая выборка случайная, просто посчитать описательные статистики недостаточно
- Описательные статистики случайные величины
- При любом объёме выборки можно допустить ошибку

Что значит проверить гипотезу

- Собрали данные о предсказаниях лягушки
- Данные не противоречат тому, что она провидец
- Это не означает, что лягушка правда пророк. Если мы соберём ещё данных, они могут начать этому противоречить

Грязная или чистая вода

- Ученый обучает лягушек, чтобы они могли отличить грязную воду из водоема
- Правда ли лягушка отличает грязную воду от чистой

Грязная или чистая вода

VİTMO

- Мы хотим проверить, действительно ли лягушка способна отличить воду или просто угадывает. Поэтому даем две одинаковые емкости с водой из разных прудов
- Случайная величина X_i = 1 если лягушка отличила мутную воду от чистой

Грязная или чистая вода

- Нулевая гипотеза (H0): Лягушка не различает, то есть вероятность правильного выбора p=0.5
- Альтернативная гипотеза (H1): Лягушка способна отличить загрязненную воду, то есть p>0.5

Нужно формализовать гипотезу **на языке статистики**

Формализация задачи

VİTMO

Выборка состоит из единиц и нулей:

X_i=1, если правильно выбрана вода

X_i=0, если не правильно выбрана

Если лягушка не различает воду и выбирает наугад, вероятность успеха р должна быть равна 0.5

 H_0 : $p = 0.5 \iff Лягушка не различает воду$

 H_a : $p \neq 0.5 \Leftrightarrow$ Лягушка различает воду

Поиск критерия

VİTMO

$$H_0$$
: $p = 0.5$

$$H_a: p \neq 0.5$$

$$X_1, \dots, X_n \sim iid \ Bern(p)$$

$$\hat{p}$$
 – случайная величина

$$\hat{p} - 0.5$$
 – случайная величина

Если расстояние от \hat{p} до 0.5 достаточно маленькое, данные не противоречат нулевой гипотезе

Проверка гипотезы

VİTMO

Мы рассуждаем о распределении в терминах нулевой гипотезы. Близкие к центру значения z-статистики показывают, что H_0 не противоречат данным

Мы не решаем, верна ли гипотеза, а проверяем, противоречат ли ей данные

Проверка гипотезы

VİTMO

Если наблюдаемое значение статистики попало в хвост (левый или правый), гипотеза отвергается, расстояние между \hat{p} и 0.5 оказывается слишком большим

Уровень значимости

VİTMO

- Если мы отвергаем нулевую гипотезу, когда она верна мы ошибаемся
- Выбирая порог для отсечения, мы фиксируем вероятность такой ошибки
- Вероятность такой ошибки α уровень значимости,
 также эту ошибку называют ошибкой первого рода
- Если мы 100 раз попытаемся сесть на поезд на уровне значимости 0.05, в среднем мы будем опаздывать 5 раз
- Обычно α выбирают равным 0.05, 0.01 или 0.001

VİTMO

- 1. Фиксируем уровень значимости: $\alpha = 0.05$
- 2. Формулируем нулевую гипотезу и альтернативную

$$H_0$$
: $p = 0.5$ H_a : $p \neq 0.5$

- 3. Выбираем **союзника** (статистический тест) для проверки гипотезы
- 4. Находим наблюдаемое значение статистики:

$$z_{obs} = \frac{0.6 - 0.5}{\sqrt{\frac{0.5 (1 - 0.5)}{10}}} = 0.654$$

5. Находим критическое значение с помощью союзника:

$$z \stackrel{asy}{\sim} N(0,1)$$

VİTMO

6. Сравниваем наблюдаемое значение с критическим

и делаем выводы 0.4 0.65 -1.961.96 0.3 Наблюдаемое значение € 0.2 0.05 0.05 α 0.1 0.0

Критические значения

VİTMO

- Наблюдаемое значение попало в область между критическими ⇒ гипотеза не отвергается
- Голубая площадь под хвостами уровень значимости

Критические значения

VITMO

Гипотеза, что лягушка не различает воду, не отвергается на уровне значимости 5%

Нельзя принять нулевую гипотезу ИТМО

- Если при проверке нулевая гипотеза не отвергается, нельзя считать её доказанной
- Говорят, что данные не противоречат нулевой гипотезе
- Новые данные могут показать, что гипотеза неверна

Альтернативы

VİTMO

- Иногда рассматривают односторонние альтернативы
- Обычно это делается в ситуациях, когда мы уверены в направлении ожидаемых различий
- При таких альтернативах ошибку первого рода полностью переносят на один из двух хвостов

VİTMO

Р-значение

VİTMO

- Наблюдаемое значение попало в область между критическими ⇒ гипотеза не отвергается
- Голубая площадь под хвостами уровень значимости

VİTMO

• Красная площадь под хвостами – **р-значение** (достигаемый уровень значимости)

Р-значение упрощает проверку гипотез

VİTMO

Если красная площадь оказалась больше синей

$$p_value > \alpha$$
,

⇒ наблюдаемое значение попало в область между критическими, гипотеза не отвергается.

 $p_value > \alpha \Rightarrow$ не отвергается

Р-значение упрощает проверку гипотез

VITMO

Если красная площадь оказалась больше синей

$$p_value > \alpha$$
,

⇒ наблюдаемое значение попало в область между критическими, гипотеза не отвергается.

 $p_value < \alpha ⇒$ отвергается

VİTMO

Вопрос: какой уровень значимости надо выбрать, чтобы гипотеза впервые отверглась?

Ответ: равный Р-значению

Из-за этого Р-значение также называют **достигаемым уровнем значимости**

VİTMO

Достигаемый уровень значимости (**Р-значение**) – это вероятность при справедливости нулевой гипотезы получить такое же наблюдаемое значение статистики, $p_value = \mathbb{P}(|z| > z_{\text{набл.}} \mid H_0)$ как в эксперименте либо ещё более экстремальное

VİTMO

Достигаемый уровень значимости (**Р-значение**) – это вероятность при справедливости нулевой гипотезы получить такое же наблюдаемое значение статистики, $p_{-}value = \mathbb{P}(|z| > z_{\text{набл.}} \mid H_0)$ как в эксперименте либо ещё более экстремальное

В нашей ситуации $p_value = 0.518$, то есть вероятность получить наше или ещё более экстремальное значение статистики, при верности H_0 высока, что говорит в пользу гипотезы

Ошибки 1 и 2 рода

Ошибки

VİTMO

Перенесемся в город Фрогус, где обитают лягушки, туда затесался подозрительный субъект, который хочет доказать, что он лягушка.

Послушный гражданин Прыгус что-то заподозрил, поэтому хочет попытаться помочь городу узнать истину.

Ошибки

VİTMO

I/İTMO

Ошибки

	H_0 верна	H_0 неверна
<i>H</i> ₀ принимается	H ₀ верно принята	Ошибка II рода
H_0 отвергается	Ошибка І рода	H ₀ верно отвергнута

Ошибки

$$H_0: p = p_0$$

$$H_a: p = p_a$$

При уменьшении ошибки первого рода всегда возрастает ошибка второго рода

Презумпция нулевой гипотезы итмо

Презумпция невиновности: человек не считается лягушкой, пока его случай не будет доказан

Презумпция нулевой гипотезы: мы верим в нулевую гипотезу, пока данные не опровергнут её

Вывод: "данные противоречат гипотезе" всегда весомее и категоричнее, чем "данные **не** противоречат гипотезе"

Наиболее мощный критерий

- Статистический критерий способ посчитать расстояние между наблюдаемым значением и предполагаемым
- Подобные расстояния можно считать разными способами
- Хочется выбрать такой способ, который при фиксированном размере выборки и фиксированной ошибке первого рода будет давать наименьшую ошибку второго рода
- Такой критерий называется наиболее мощным

Сводка

VITMO

- Ошибки первого и второго рода неравнозначны
- Имеется презумпция нулевой гипотезы
- Обычно нулевую гипотезу формулируют так, что нет значимого эффекта

Параметрические критерии

Какими бывают критерии— Критерии —

VİTMO

Параметрические

Включают в себя расчёт параметров конкретного распределения

Непараметрические

Не завязаны на конкретное распределение

Согласия

Проверяется гипотеза о виде неизвестного закона распределения

Z-критерий для доли

ИІТМО

$H_0: p = p_0$

$$H_a: p \neq p_0$$

ЦПТ:

$$\hat{p} \stackrel{asy}{\underset{H_0}{\mapsto}} N\left(p_0, \frac{p_0(1-p_0)}{n}\right)$$
 Критерий для проверки:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} \sim_{H_0}^{asy} N(0, 1)$$

Условия применения:

- Выполняется ЦПТ для средних (распределения асимптотически нормальны)
- Большой размер выборки
- Подходит для случайных величин с распределением Бернулли

Пример (отбор лягушек):

- В одном заповеднике обитают различные виды лягушек, и ученые проводят исследование для изучения распределения их видов.
- Из 300 лягушек, отобранных для изучения, оказалось, что 90 принадлежат к виду зелёных лягушек, а остальные к желтым
- Экологи обеспокоены тем, что этот вид может быть недооценен при отборе.

Пример (отбор лягушек):

 H_0 : отбор правильный

 H_a : лягушек неверно взяли

$$X_1, ..., X_n \sim iid Bern(p)$$

 $X_i = 1$, если лягушка - зеленая

$$\hat{p} = \frac{90}{300}$$

$$z_{obs} = \frac{0.3 - 0.5}{\sqrt{\frac{0.5 (1 - 0.5)}{300}}}$$

$$z_{0.05} = -1.64$$

Гипотеза о правильном отборе отвергается

Z-критерий для разности независимых долей

ИІТМО

Выборки независимые

$$H_0$$
: $p_x = p_y$ H_a : $p_x \neq p_y$

Критерий для проверки:

$$z = \frac{\hat{p}_{x} - \hat{p}_{y}}{\sqrt{P(1-P) \cdot \left(\frac{1}{n_{x}} + \frac{1}{n_{y}}\right)}} \quad \stackrel{asy}{\sim} \quad N(0,1)$$
$$P = \frac{m_{x} + m_{y}}{n_{x} + n_{y}}$$

Условия применения:

- Выполняется ЦПТ для средних (распределения асимптотически нормальны)
- Большой размер выборки
- Подходит для случайных величин с распределением Бернулли
- Группы (подвыборки) независимы

 m_{χ} - число в выборке

Пример (о любви к лягушкам): итмо

- В Москве и Питере 100 человек спрашивают о том, любят ли они лягушек
- В Питере сказали да 50 человек, в Москве 60 человек
- Правда ли, что в Москве лягушек любят сильнее?
- Проверяем гипотезу на уровне значимости 5%

Пример (о любви к лягушкам):

VİTMO

 H_0 : лягушек любят одинаково H_a : в Москве любят сильнее

$$H_0: p_{\Pi} = p_{M}$$

$$H_a: p_\Pi < p_M$$

$$X_1, \dots, X_{100} \sim iid Bern(p_M)$$

$$Y_1, \dots, Y_{100} \sim iid Bern(p_{\Pi})$$

$$\hat{p}_M = 0.6, \qquad \hat{p}_\Pi = 0.5$$

$$P = \frac{50 + 60}{200} = 0.55$$

$$z_{obs} = \frac{0.5 - 0.6}{\sqrt{0.55 \cdot 0.45 \cdot \frac{2}{100}}}$$

$$z_{0.05} = -1.64$$

Гипотеза об одинаковой любви **не отвергается**

Z-критерий для среднего

ИІТМО

$$X_1, \ldots, X_n \sim iid (\mu, \sigma^2)$$

$$H_0: \mu = \mu_0$$

$$H_a$$
: $\mu \neq \mu_0$

Условия применения:

- Выполняется ЦПТ для средних (распределения асимптотически нормальны)
- Большой размер выборки
- Известно стандартное отклонение генеральной совокупности

ЦПТ:

$$\bar{x} \overset{asy}{\sim} N\left(\mu_0, \frac{\hat{\sigma}^2}{\sqrt{n}}\right)$$

Критерий для проверки:

проверки:
$$z = \frac{\bar{x} - \mu}{\sqrt{\frac{\hat{\sigma}^2}{n}}} \quad \stackrel{asy}{\sim} \quad N(0, 1)$$

t-критерий для среднего

$$X_1, \dots, X_n \sim iid N(\mu, \sigma^2)$$

$$H_0: \mu = \mu_0$$

$$H_a$$
: $\mu \neq \mu_0$ $\sigma^2 -$ **НЕ**известна

Критерий для проверки:

$$z = \frac{\bar{x} - \mu}{\sqrt{\frac{s^2}{n}}} \quad \approx_{H_0} t(n-1)$$

Условия применения:

- Предположение о нормальности выборки
- Может быть малый размер выборки
- Неизвестно стандартное отклонение генеральной совокупности

Пример (обучение прыжкам):

- Каждый год племя лягушек проходит ежегодное испытание по прыжкам через водоемы. В обычной ситуации средняя длина прыжка у лягушек составляет 15 метров.
- Вождь племени Квакис открыл свою школу обучения прыжкам, и его группа из 100 лягушек показала средний результат в 17 метров, а стандартное отклонение составило 4 метра.
- Правда ли, что школа Квакиса помогает лягушкам прыгать дальше? Проверим гипотезу на уровне значимости 5%.

VİTMO

Пример (обучение прыжкам):

Нулевая гипотеза H0: средняя длина прыжка лягушек, прошедших обучение у Квакиса, такая же, как и у всех лягушек племени, µ=15 метров.

Альтернативная гипотеза H1: средняя длина прыжка лягушек, прошедших обучение у Квакиса, больше 15 метров, µ>15 метров (односторонний тест).

критическое значение по степеням свободы 100-1 и уровню значимости 0.05 t≈1.66

$$t = \frac{17 - 15}{\frac{4}{\sqrt{100}}} = \frac{2}{\frac{4}{10}} = \frac{2}{0.4} = 5$$

Так как рассчитанное значение t = 5 значительно больше критического значения 1.66, мы **отвергаем нулевую гипотезу**. Это означает, что школа Квакиса действительно помогает лягушкам прыгать дальше, чем обычно.

t-критерий для разности средних

$$X_1, \dots, X_n \sim iid (\mu, \sigma^2)$$

$$H_0$$
: $\mu_1 = \mu_2$

$$H_a$$
: $\mu_1 \neq \mu_2$

LITT:

$$\bar{X}_1 - \bar{X}_2 \stackrel{asy}{\sim} N\left(0, \frac{S_1^2}{n} + \frac{S_2^2}{m}\right)$$

Критерий для проверки:

$$z = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{S_1^2}{n} + \frac{S_2^2}{m}}} \stackrel{asy}{\sim} N(0, 1)$$

$$\bar{X}_1 - \bar{X}_2 \sim N\left(0, \frac{s_1^2}{n} + \frac{s_2^2}{m}\right)$$

Выборки независимые

Точные критерии для разности

средних

Критерий для проверки:

но равны дисперсии

неизвестны

$t = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{S^2}{n} + \frac{S^2}{m}}} \sim t(n + m - 2)$

$$z = rac{ar{X} - ar{Y}}{\sqrt{rac{\sigma_1^2}{n} + rac{\sigma_2^2}{m}}} \sim N(0,1)$$
 Нормальное распределение $t = rac{ar{X} - ar{Y}}{\sqrt{rac{S^2}{n} + rac{S^2}{m}}} \sim t(n+m-2)$ Распределение Стьюдента

Стьюдента Распределение Уэлча

Как выбрать критерий для средних: **LITMO**

VITMO

Пример результаты прыжков

- До засухи средняя длина прыжка лягушек из пруда составляла 105 сантиметров при стандартном отклонении 40 сантиметров.
- После засухи средняя длина прыжка лягушек составила 90 сантиметров при стандартном отклонении 50 сантиметров.

Пример результаты прыжков

Нулевая гипотеза H₀: Средняя длина прыжков лягушек не изменилась или не сократилась

Альтернативная гипотеза H₁: Средняя длина прыжков лягушек уменьшилась

Уровень значимости α=0.05.

Поскольку у нас есть две независимые группы (прыжки до и после засухи) и различающиеся дисперсии, используем **двухвыборочный t-тест для независимых выборок с разными дисперсиями**.

Для одностороннего t-теста при уровне значимости α и приблизительных степенях свободы около 40, критическое значение для левого хвоста равно **-1.684**.

Значение t = -1.17 **больше** критического значения -1.684. Это означает, что мы **не отвергаем нулевую гипотезу**. У нас **недостаточно доказательств**, чтобы утверждать, что длина прыжков лягушек сократилась после засухи.

$$t = rac{90 - 105}{\sqrt{rac{40^2}{20} + rac{50^2}{30}}} ~ pprox -1.17$$

Разность средних (зависимые выборки) итмо

Выборки зависят друг от друга:

$$X_1, ..., X_n \sim iid \ N(\mu_1, \sigma_1^2)$$
 $Y_1, ..., Y_n \sim iid \ N(\mu_2, \sigma_2^2)$

- Измерения делаются на одних и тех же объектах
- Можем посмотреть разницу на отдельных объектах

$$d_i = X_i - Y_i \qquad \qquad \bar{x} - \bar{y} = \overline{x - y}$$

• Используем распределение Стьюдента, дисперсию считаем по формуле: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (d_i - \bar{d})^2$

Пример различие двух трав

В племени лягушек шаманы проводят испытания двух разных трав для лечения дыхательных проблем. Каждая лягушка сначала дышит через листья первой травы и прыгает, после чего измеряют, сколько времени она может прыгать, пока не устанет. Затем лягушка пробует вторую траву, и процедура повторяется.

Проверим гипотезу о том, что две травы **не отличаются** по своей эффективности. Предполагается, что выборки независимы и распределены нормально.

Пример различие двух трав

Нулевая гипотеза: Среднее время прыжков после использования двух трав одинаково, **µ1=µ2**.

Альтернативная гипотеза H1: Среднее время прыжков после использования двух трав различается, Уровень значимости α=0.05

Поскольку мы сравниваем зависимые выборки (одни и те же лягушки испытывают обе травы), применяем **парный t-тест**. Основное отличие — мы будем работать с разностями между значениями для каждой лягушки, а не с абсолютными значениями времени прыжков.

Лягушка	Трава 1 (время, сек)	Трава 2 (время, сек)	Разность $d=$ Трава $1-$ Трава 2
1	120	130	-10
2	135	140	-5
3	150	155	-5
4	160	165	-5
5	145	150	-5

Пример различие двух трав

Найдём среднюю разность

$$\bar{d} = \frac{-10 + (-5) + (-5) + (-5) + (-5)}{5} = \frac{-30}{5} = -6$$

Найдём стандартное отклонение разностей

$$s_d = \sqrt{rac{16+1+1+1+1}{4}} = \sqrt{rac{20}{4}} = \sqrt{5} pprox 2.24$$

Теперь подставим значения в формулу для t-статистики

$$t = \frac{-6}{2.24/\sqrt{5}} = \frac{-6}{1.00} = -6$$

критическое значение будет равно ±2.776. Значение t = -6 **меньше** критического значения -2.776. Это означает, что мы **отвергаем** нулевую гипотезу. Есть статистически значимая разница между двумя травами.

Сколько было лягушек на слайдах?