

hysics Wallah

By- Amit Mahajan Sir

Topics to be covered

- Medics Test, Revision of Last Class
- Different Types of Enthalpies Part-03
- Magarmach Practice Questions, Home work from Modules,

Rules to Attend Class

- 1. Always sit in a peaceful environment with headphone and be ready with your copy and pen.
- Never ever attend a class from in between or don't join a live class in the middle of the chapter.
- 3. Make sure to revise the last class before attending the next class & always complete your Magarmach Practice Questions.
- 4. Never ever engage in chat whether live or recorded on the topic which is not being discussed in current class as by doing so u can be blocked by the admin team or your subscription can be cancelled.

Rules to Attend Class

- Try to make maximum notes during the class if something is left then u can use the notes pdf after the class to complete the remaining class.
- Always ask your doubts in doubt section to get answer from faculty. Before asking any doubt please check whether same doubt has been asked by someone or not.

Revision of Last Class

AH A.T. | AH fusion | AH vap | AH sub.

B.F. | AH atomisation

The enthalpy of atomization of $PH_3(g)$ is +954 kJ/mol and that of P_2H_4 is +1.488 MI/mol. The bond energy of the P-P bond is

QUESTION - (AIIMS 2015)

The enthalpy changes for the following processes are listed below:

$$Cl_2(g) \rightarrow 2Cl(g), 242.3 \text{ kJ mol}^{-1}$$

$$I_2(g) \rightarrow 2I(g), 151.0 \text{ kJ mol}^{-1}$$

$$ICl(g) \rightarrow I(g) + Cl(g), 211.3 \text{ kJ mol}^{-1}$$

$$I_2(s) \rightarrow I_2(g)$$
, 62.76 kJ mol⁻¹

Given that the standard states for iodine and chlorine are $I_2(s)$ and $Cl_2(g)$, the standard enthalpy of formation for ICl(g) is:

 $\Delta H = \Delta H_1 + \Delta H_5$ $= \frac{1}{2} \times 62.76 + \left[\frac{1}{2} \times 15\right] + \frac{1}{2} \times 2 \times 2 \times 3 - \left(1 \times 21\right) \cdot 3$ $= \frac{3}{2} \cdot 38 + \left[75.5 + \frac{1}{2} \cdot 15\right] - 211 \cdot 3$ $= \frac{3}{2} \cdot 38 + \left[75.5 + \frac{1}{2} \cdot 15\right] - 211 \cdot 3$

QUESTION - (AIIMS 2012)

AB, A_2 and B_2 are diatomic molecules. If the bond enthalpies of A_2 , AB and B_2 are in the ratio 1:1:0.5 and enthalpy of formation of AB from A_2 and B_2 is -100 kJ mol⁻¹. What is the bond energy of A_2 ?

- A 200 kJ mol⁻¹
- B 100 kJ mol⁻¹
- 300 kJ mol⁻¹
- 400 kJ mol⁻¹

is the bond energy of
$$A_2$$
?

$$\frac{1}{2}A_2(5) + \frac{1}{2}B_2(5) \longrightarrow 1AB(5) \Delta H = -100 \text{ KJ}$$

$$\Delta H = -100 = \frac{1}{2} \times 3^{2} + \frac{1}{2} \times 2^{2} - 1 \times 3^{2}$$

$$= \frac{2}{2} + \frac{3}{2} - 3^{2}$$

$$=$$

The heats of combustion of carbon and carbon monoxide are -393.5 and -283.5 kJ mol⁻¹, respectively. The heat of formation (in kJ) of carbon monoxide per mole

respectively. The heat of formation (in k]) of carbon monoxide per mole

$$\begin{array}{c|c}
\hline
O & C(goraphite) + O(g) & CO_2(g) & \Delta H = -393.5 & K & J
\end{array}$$

$$\begin{array}{c|c}
\hline
O & CO(g) + \frac{1}{3}O_2(g) & \rightarrow CO_2(g) & \Delta H = -283.5 & K & J
\end{array}$$

$$\begin{array}{c|c}
\hline
O & CO(g) + \frac{1}{3}O_2(g) & \rightarrow CO_2(g) & \Delta H = -283.5 & K & J
\end{array}$$

$$\begin{array}{c|c}
\hline
O & CO(g) + \frac{1}{3}O_2(g) & \rightarrow CO_2(g) & \Delta H = -383.5 & K & J
\end{array}$$

$$\begin{array}{c|c}
\hline
O & CO(g) & + \frac{1}{3}O_3(g) & \rightarrow CO(g) & \rightarrow CO_3(g) & \rightarrow$$

The combustion of benzene (*I*) gives $CO_2(g)$ and $H_2O(I)$. Given that heat of combustion of benzene at constant volume is -3263.9 kJ mol⁻¹ at 25°C; heat of combustion (in kJ mol⁻¹) of benzene at constant pressure will be (R = 8.314 JK⁻¹

mol-1)

$$Q_V = \Delta U = -3263.9 \text{ KJ/md}$$
 $T = 2981K$

$$Q_V = \Delta H = 7$$

$$1C_6H_6(1) + 150g(9) \rightarrow 6Cog(9) + 3H_80(1)$$

$$\Delta H = \Delta U + \Delta H_9RT$$

$$\Delta H = -3263900 - 3\times8.314\times298$$

$$\Delta H = -3263900 - 3\times8.314\times298$$

The heat evolved in the combustion of glucose $C_6H_{12}O_6$ is -680 kcal/mol. The mass of CO_2 produced, when 170 kcal of heat is evolved in the combustion of

glucose is

$$\Delta H_{comb} = -680 \text{ K Cal/mol}$$
 $C_{6}H_{100}O_{6}(8) + 602(9) \rightarrow 602(9) + 6420(1)$
 $C_{6}H_{100}O_{6}(8) + 602(9) \rightarrow 600(9) + 6420(1)$
 $C_{6}H_{100}O_{6}(8) + 602(9) \rightarrow 600(9)$
 $C_{6}H_{100}O_{6}(8) + 602(9)$
 C_{6

Calorific Value of Fuel

- 1 heat evolved by Combustion of 19 of fuel:
- 2 High Calonific Value
 - : Betten fuel

Enthalpies of combustion of CH_4 , C_2H_4 and C_2H_6 are -890, -1411 and -1560 k]/mole, respectively. Which has the highest fuel value (heat produced per gram Calonific Value highest Calconific Value highest Calconific Value of the fuel)

All are same

For a specific work, on an average a person requires $5615 \, \text{kJ}$ of energy. How many kilograms of glucose must be consumed if all the required energy has to be derived from glucose only? ΔH for combustion of glucose is $-2808 \, \text{kJ}$ mol⁻¹

1.0 kg

U.8KM

The enthalpy change involved in the oxidation of glucose is -2880 kJ mol. Twenty five per cent of this energy is available for muscular work. If 100 kJ of muscular work is needed to walk 1 km, what is the maximum distance that a person will be

able to walk after eating 120 g of glucose?

19.2 km | AH comb = -2880 KJ/mol. | mol => 2880

9.6 km energy available for work = 25 x2880

1809 glutok = 720 KJ/mdi 02 = 480 KJ 1909 ~ = 730 × 120 02 = 480 KJ

The enthalpy of combustion at 25°C of $H_2(g)$, cyclohexane(l) and cyclohexene(l) are -241, -3920 and -3800 kJ mol, respectively. The enthalpy of hydrogenation of

cyclohexene(l) is

Enthalpies of solution of $BaCl_2(s)$ and $BaCl_2 \cdot 2H_2O(s)$ are -20.6 kJ/mol and 8.8 kJ/mol, respectively. ΔH hydration of $BaCl_2(s)$ to $BaCl_2 \cdot 2H_2O(s)$ is

Study the following thermochemical data. 142+ 5+202 -> 142504

$$S + O_2 \rightarrow SO_2$$
; \bigcirc $\Delta H = -298.2 \text{ kJ}$

$$SO_2 + H_2O \rightarrow H_2SO_4 \Delta H = -130.2 \text{ kJ}$$

$$H_2 + 10_2 \rightarrow H_2 0 \text{ (u)}$$
 $\Delta H = -287.3 \text{ kJ}$

The enthalpy of formation of H₂SO₄ at 298 K will be:

Stock + Sp3 + Hab + Ha
$$=$$
 | 3/2 + Habou + Hab | S + 3/2 + 10/2 | S + 2/2 + 11/4 $=$ | Habou | Habou | S + 2/2 + 11/4 $=$ | Habou | Habou | S + 2/2 + 11/4 $=$ | Habou | Habou

Resonance Energy

(A.E.) 0=C=0

(1) I mole non R.S. -> I mole R.S. BH = R.E.

1 COQ(8) -> 1 COQ(9) AH=R.E.

Non R.S.

R-S.

- (3) R. E is in (-) ve as energy is released
- 3) In Cham. eq -> R.S. is written.
- (4) B. F. formula > non R.S.
- (5) R.E. = AH AH jo aaza tai Chahize

Bro, benzene toh Mumbai ka serial renter hai -alag alag ghar mein shift hota rehta, sab jagah thoda thoda!

Haan, isliye benzene ko todna muskkil hai. High resonance energy = chillest molecule on earth!

(C(graphite) + O2C3) -> CO2(3) 14, = Attsublimention 1C(g) + 102(9) AH2 > Cog(9)
non R.S.

DH = DH, + DHa + DH3

= AH sublimation + [IXO + IXB:E - 2xB:Ec=0] + R:E: of Cog (y)

of Chypht)

Complete - 2xB:Ec=0] + R:E: of Cog (y)

 $P = 1 \text{ CH}_{4}(g) + 202(g) - 102(g) + 2420(1)$ R: S: 1 102(g) + 2420(g) - 102(g) + 2420(g) R: S: 100 R: S:

R.E. =
$$-3x - (-3)$$

= $(3 - 3x) \times 7$

Calculate the magnitude of resonance energy of CO_2 from the following data (in kJ/mol).

Bond energies: C = 0 = 539.0, 0 = 0 = 498.0Heat of sublimation of C(s) = 718.0Heat of combustion of C(s) = -393.0

®

$$\Delta H = -393 = \Delta H_1 + \Delta H_2 + \Delta H_3$$
 $-393 = 718 + \sum 1 \times 498 - 2 \times 539 \end{bmatrix} + R.E.$
 $-R.E = 718 - 580 + 393$
 $= 1111 - 580$
 $= 531$

QUESTION - (AIPMT 2006)

The enthalpy of hydrogenation of cyclohexene is -119.5 kJ mol⁻¹. If resonance energy of benzene is -150.4 kJ mol⁻¹, its enthalpy of hydrogenation would be:

- 208.1 kJ mol⁻¹
- B 269.9 kJ mol⁻¹
- 358.5 kJ mol⁻¹
- 508.9 kJ mol⁻¹

$$\Box + H_{2} \Rightarrow \Box \qquad \Delta H = -119.5 \text{ KJ/mol}$$

$$\Box + 3H_{2} \Rightarrow \Box \qquad \Delta H = -3\times119.5 = -358.5 \times J$$

$$\Box + 3H_{2} \Rightarrow \Box \qquad \Delta H_{3} + 3H_{2} \Rightarrow = -358.5 \times J$$

$$\Box + 3H_{2} \Rightarrow \Box \qquad \Delta H_{3} + 3H_{2} \Rightarrow = -358.5 \times J$$

$$\Box + 3H_{2} \Rightarrow \Box \qquad \Delta H_{3} + 3H_{2} \Rightarrow = -358.5 \times J$$

$$\Box + 3H_{2} \Rightarrow \Box \qquad \Delta H_{3} + 3H_{2} \Rightarrow = -358.5 \times J$$

$$\Box + 3H_{2} \Rightarrow \Box \qquad \Delta H_{3} + 3H_{2} \Rightarrow = -358.5 \times J$$

$$\Box + 3H_{2} \Rightarrow \Box \qquad \Delta H_{3} + 3H_{2} \Rightarrow = -358.5 \times J$$

$$\Box + 3H_{2} \Rightarrow \Box \qquad \Delta H_{3} + 3H_{2} \Rightarrow = -358.5 \times J$$

$$\Box + 3H_{2} \Rightarrow \Box \qquad \Delta H_{3} + 3H_{2} \Rightarrow = -358.5 \times J$$

$$\Box + 3H_{2} \Rightarrow \Box \qquad \Delta H_{3} + 3H_{2} \Rightarrow = -358.5 \times J$$

$$\Box + 3H_{2} \Rightarrow \Box \qquad \Delta H_{3} + 3H_{2} \Rightarrow = -358.5 \times J$$

$$\Box + 3H_{2} \Rightarrow \Box \qquad \Delta H_{3} + 3H_{3} \Rightarrow \Box \qquad \Delta H_{3} \Rightarrow \Box \qquad \Delta$$

9 EU + 3 42 -> 1) AH = -49.8 KB/mol.
Bersene

[] + H2 -> []

とり+3はつり

Att = Att jo agna Chahing = 32

R.E. Benzene = -3 6 KCal = (Thysel. jo aana Chahiye) - Att go aanya hau

-36 = OHHyd - (-49.8) -99.8-36 = ΔH Hyd. = 3 x
-85.8 Z ΔH Hyd. = 3 x
ΔH = -85.8 ET + 3 to -> [] AH = -51 K Cal/mol.

Berzene

Benzene

Benzene

$$\Delta H = -58 \text{ K Cal/mol}$$
 $\Delta H = -39 \text{ K Gal/mol}$
 $\Delta H = -39 \text{ K Gal/mol}$
 $\Delta H = -39 \text{ K Gal/mol}$
 $\Delta H = -36 \text{ Joan Polymol}$
 $\Delta H = -36 \text{ Joan Polymol}$

Enthalpy of Neutralisation

I Page blank.

If CH₃COOH (1 mole) is completely neutralized by NaOH and heat evolved is 55 kJ/mol. Find enthalpy of ionisation of CH₃COOH?

- A -29.4 kJ
- **B** −11.8 kJ
- 29.6 kJ
- 11.8 kJ

If 1 gram eq. of H₂SO₄ is completely neutralized by aq. KOH (excess). Find Enthalpy change for process?

The enthalpy change for the reaction, NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H₂O(l) is -57 kJ. Predict the value of the enthalpy change in the following reaction. Ba(OH)₂(aq) + H₂SO₄(aq) \rightarrow BaSO₄(s) + 2H₂O(l)

- _57 kJ
- B -76 kJ
- **C** −114 kJ
- -200 kJ

Bomb Calorimeter

1 Page blank

ignition coll~

steel bomb

sample

- CITCIPIO

Stearic acid $[C_3(CH_2)_{16}CO_2H]$ is a fatty acid, the part of fat that stores most of the energy. 1 g of stearic acid was burned in a bomb calorimeter. The bomb has a heat capacity of 652 J/C. If the temp of 500 g water (c = 4.18 J/g C) rose from 25.0 to 39.3°C, how much heat was released when stearic acid was burned ? {given: $C_p(H_2O) = 4.18 \text{ J/g °C}}$

Home work from modules

Bronambh = 51,52,53,56,57,58,59,60,61,63,64 65,66,67,68,64

Magarmach Practice Questions (MPQ)

QUESTION - (AIPMT 2011)

Enthalpy change for the reaction $4H(g) \rightarrow 2H_2(g)$ is -869 kJ. The dissociation energy of H-H bond is:

- A 434.8 kJ
- B 869.6 kJ
- + 434.8 kJ
- + 217.4 kJ

QUESTION - (AIPMT 2009)

From the following bond energies: H - H bond energy: 431.37 kJ mol⁻¹ C - C bond energy: 336.49 kJ mol⁻¹ Enthalpy for the reaction, will be:

- A 243.6 kJ mol⁻¹
- B –120.0 kJ mol⁻¹
- 553.0 kJ mol⁻¹
- D 1523.6 kJ mol⁻¹

C = C bond energy: 606.10 kJ mol⁻¹

C - H bond energy: 410.50 kJ mol⁻¹

$$C_2H_4 + H_2 \longrightarrow C_2H_6$$

Find $\Delta H_{Hydrogenation}$ of ethene if:

$$B.E_{C=C} = x kJ/mol$$
; $B.E_{C-C} = y kJ/mol$; $B.E_{H-H} = z kJ/mol$; $B.E_{C-H} = w kJ/mol$

The ΔH_f° for $CO_2(g)$, CO(g) and $H_2O(g)$ are – 393.5, –110.5 and –241.8 kJ mol⁻¹ respectively. The standard enthalpy change (in kJ mol⁻¹) for the reaction $CO_2(g) + H_2(g) \rightarrow CO(g) + H_2O(g)$ is:

- A + 524.1
- B + 41.2
- 262.5
- **D** 41.2

Given,
$$C_{(graphite)} + O_2(g) \rightarrow CO_2(g)$$
; $\Delta_r H^\circ = -393.5 \text{ kJ mol}^{-1}$ $H_2(g) = \frac{1}{2} O_2(g) \rightarrow H_2O(I)$; $\Delta_r H^\circ = -285.8 \text{ kJ mol}^{-1}$ $CO_2(g) + 2H_2O(I) \rightarrow CH_4(g) + 2O_2(g)$; $\Delta_r H^\circ = +890.3 \text{ kJ mol}^{-1}$ Based on the above thermochemical equations, the value of $\Delta_r H^\circ$ at 298 K for the reaction $C_{(graphite)} + 2H_2(g) \rightarrow CH_4(g)$ will be:

- + 78.8 kJ mol⁻¹
- B + 144.0 kJ mol⁻¹
- 74.8 kJ mol⁻¹
- 144.0 kJ mol⁻¹

The enthalpy of hydrogenation of benzene is -51.0 kcal/mol. If enthalpy of hydrogenation of cyclohexene is -29 kcal/mol, respectively, then what is the resonance energy of benzene?

- A 29 kcal/mol
- B 36 kcal/mol
- 58 kcal/mol
- 7 kcal/mol

#