JP2000284482

Title: RESIST COMPOSITION

Abstract:

PROBLEM TO BE SOLVED: To obtain a resist composition which has high transparency to far UV light and having a high sensitivity to irradiation with soft X-rays by incorporating >=2 kinds of specific polymers which are made alkali soluble by the effect of an acid, one kind of a diazosulfonic compound, >=1 kind selected from the group consisting of specific two kinds of onium salts and a solvent capable of dissolving these into the composition. SOLUTION: This composition contains >=2 kinds of the polymers which are made alkali soluble by the effect of the acid and are expressed by formula, one kind of the diazosulfonic compound, >=1 kind selected from the group consisting of the specific two kinds of the onium salts and the solvent capable of dissolving these. In the formula, R1 and R2 denote hydrogen atoms or methyl groups; R3 and R4 denote hydrogen atoms, 1-6C straight chain, branched or cyclic alkyl groups, etc.; R5 denotes 1-10C straight chain, branched or cyclic alkyl groups, etc.; R22 denotes an esterified carboxyl group or (substituted)aryl group; m and n respectively independently denote natural numbers and j denotes 0 or natural number.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-284482 (P2000-284482A)

(43)公開日 平成12年10月13日(2000.10.13)

(51) Int.Cl. ⁷		識別記号	FΙ	テーマコード(参 考)
G 0 3 F	7/039	601	C 0 3 F 7/03	9 601
	7/004	503	7/00	4 503Λ
H01L	21/027		H 0 1 L 21/30	502R

審査請求 未請求 請求項の数25 〇L (全 96 頁)

(21)出顧番号	特願2000-15401(P2000-15401)	(71)出願人	000252300
			和光純薬工業株式会社
(22)出顧日	平成12年1月25日(2000.1.25)		大阪府大阪市中央区道修町3丁目1番2号
		(71)出顧人	000002093
(31)優先権主張番号	特願平11-20450	, , , , , , ,	住友化学工業株式会社
(32)優先日	平成11年1月28日(1999, 1, 28)		大阪府大阪市中央区北浜4丁目5番33号
(33)優先権主張国	日本(JP)	(72)発明者	浦野 文良
(OO) E JUYEL LIKE	u- (1.)	(1.0.20.31.11	埼玉県川越市大字的場1633 和光純薬工業
			株式会社東京研究所内
		(70) 9 800-14	// - (- · <u> - · - · - · · · · · · · · · · · · </u>
		(72)発明者	藤江 専利
			埼玉県川越市大字的場1633 和光純薬工業
			株式会社東京研究所内
			最終頁に続い

(54) 【発明の名称】 レジスト組成物

(57)【要約】

【課題】紫外線、特に300 nm以下の遠紫外光、KrFエキシマレーザ光等に対し高透明性を有し、これ等光源による露光や電子線、軟X線照射に対して高い感度を有し、耐熱性や基板密着性に優れ、高解像性能を有し、パターン寸法が経時的に変動せずに精度の高いパターンが得られ、貯蔵安定性に優れ、広いDOFや良好なマスクリニアリティを有し、基板依存性がなく、据引きやスカムが生ぜず且つ側壁荒れも少ない矩形のパターン形状が得られる実用的なレジスト組成物の提供。

【解決手段】酸の作用によりアルカリ可溶性となる特定のポリマー2種以上と、ジアゾジスルホン化合物1種と、特定の2種のオニウム塩からなる群から選ばれた1種以上と、これ等を溶解可能な溶剤とを含んで成ることを特徴とする化学増幅型レジスト組成物。

【特許請求の範囲】

【請求項1】 酸の作用によりアルカリ可溶性となる下

記一般式[24]

【化1】

[式中、 R^1 及び R^2 は夫々独立して水素原子又はメチル基を表し、 R^3 及び R^4 は夫々独立して水素原子、炭素数 $1\sim6$ の直鎖状、分枝状又は環状のアルキル基、炭素数 $1\sim6$ の直鎖状、分枝状又は環状のハロアルキル基、又は置換されていても良いフェニル基を表し、両者が結合してメチレン鎖を形成していても良く(但し、 R^3 及び R^4 が共に水素原子の場合は除く。)、 R^5 は炭素数 $1\sim1$ 0の直鎖状、分枝状又は環状のアルキル基、炭素数 $1\sim1$ 0の直鎖状、分枝状又は環状のハロアルキル基又はアラルキル基を表し、 R^{22} はエステル化されたカルボキシル

基、又は置換基を有していてもよいアリール基を表し、m及びnは夫々独立して自然数を表し、jは0又は自然数を表す(但し、 $0.10 \le m + j / m + n + j \le 0.90$ で且つ $0 \le j / m + n + j \le 0.25$ である。)。]で示されるポリマー2種以上と、下記一般式[3]で示される化合物1種以上と、下記一般式[4]で示される化合物及び一般式[6]で示される化合物からなる群から選ばれた1種以上と、これ等を溶解可能な溶剤とを含んで成ることを特徴とする化学増幅型レジスト組成物。

【化2】

$$R^{8} - S - S - S - R^{3}$$

$$O N_{2} O$$

[式中、R®は炭素数3~8の分枝状又は環状のアルキル基を表し、R®は炭素数1~8の直鎖状、分枝状又は

環状のアルキル基、又はアラルキル基を表す。] 【化3】

[式中、 R^{10} 、 R^{11} 及び R^{12} は夫々独立して水素原子、ハロゲン原子、炭素数 $1\sim6$ の直鎖状、分枝状又は環状のアルキル基、炭素数 $1\sim6$ の直鎖状、分枝状又は環状

のアルコキシ基又はフェニルチオ基を表し、R¹⁸は1-ナフチル基、2-ナフチル基、10-カンファー基、ピリジル基、又は下記一般式[5]

(式中、 R^{14} 及び R^{15} は夫々独立して水素原子又はハロゲン原子を表し、 R^{16} は水素原子、ハロゲン原子、炭素数 $1\sim12$ の直鎖状、分枝状又は環状のアルキル基、炭素数 $1\sim4$ の直鎖状又は分枝状のアルコキシ基、又はトリフルオロメチル基を表す。)を表す。] 【化5】

[式中、 R^{17} 及び R^{18} は夫々独立して水素原子、炭素数 $1\sim4$ の直鎖状又は分枝状のアルキル基、又は炭素数 $1\sim4$ の直鎖状又は分枝状のアルコキシ基を表し、 R^{19} は 1-ナフチル基、2-ナフチル基、10-カンファー基、フェニル基、又は炭素数 $1\sim12$ の直鎖状、分枝状又は環状の

アルキル基で置換されたフェニル基を表す。]。 【請求項2】 前記一般式 [24] に示されるポリマーが下記一般式 [1] 【化6】

[式中、R⁶は水素原子、炭素数1~4の直鎖状又は分枝状のアルキル基、炭素数1~8の直鎖状、分枝状又は環状のアルコキシ基、飽和複素環オキシ基、又は下記一

般式[2] 【化7】

$$-O-(CH_2) 1-C-X-R^7$$

(式中、 R^7 は炭素数 $1 \sim 8$ の直鎖状、分枝状又は環状のアルキル基、アリール基、又は飽和複素環基を表し、Xは単結合又は酸素原子を表し、1は0又は自然数を表す。)を表し、kは0又は自然数を表し、 $R^1 \sim R^5$ 、m及びnは前記と同じ(但し、 $0.10 \leq m + k/m + n + k \leq 0.90$ で且 $0 \leq k/m + n + k \leq 0.25$ である。)。]

で示されるポリマーである請求項1に記載の化学増幅型 レジスト組成物。

【請求項3】 前記一般式 [24] に示されるポリマーが一般式 [25]

【化8】

[式中、 R^{23} は炭化水素基を表し、hは0又は自然数を表し、(但し、 $0.10 \le m+h/m+n+h \le 0.90$ で且つ $0 \le h/m+n+h \le 0.25$ である。)、 $R1 \sim R5$ 、m及びnは前記と同じ。]で示されるポリマーである請求項1に記載の化学増幅型レジスト組成物。

【請求項4】 一般式 [1]で示されるポリマー2種を含んで成り、第一のポリマーは R^1 及び R^2 が夫々独立して水素原子又はメチル基であり、 R^3 及び R^4 は何れか一

$$-O-(CH_2)$$

(式中、 R^7 は炭素数 $1 \sim 8$ の直鎖状又は分枝状のアルキル基、アリール基又は飽和複素環オキシ基であり、Xは単結合又は酸素原子であり、1は0又は1である。)で示される基であり、m及びnが夫々独立して自然数であり、kが自然数(但し、 $0.10 \leq m + k / m + n + k \leq 0.90$ で且つ $0 < k / m + n + k \leq 0.25$ である。)であり、第二のポリマーはkが0で、 $R^1 \sim R^5$ 、m及びnは第一のポリマーのそれらと同じものである請求項1に記載のレジスト組成物。

【請求項5】 一般式 [1]で示されるポリマー2種を含んで成り、第一のポリマーは R^1 、 R^2 及び R^3 が水素原子であり、 R^4 が炭素数 $1\sim 6$ の直鎖状、分枝状又は環状のアルキル基であり、 R^5 が炭素数 $1\sim 6$ の直鎖状、分枝状又は環状のアルキル基であり、 R^6 が炭素数 $3\sim 8$ の分枝状又は環状のアルコキシ基、テトラヒドロフラニルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、セet-ブトキシカルボニルメチルオキシ基であり、m及び nが夫々独立して自然数であり、kが自然数(但し、 $0.10 \le m+k/m+n+k \le 0.90$ で且つ $0 < k/m+n+k \le 0.25$ である。)であり、第二のポリマーはkが0で、 $R^1\sim R^5$ 、m及び nは第一のポリマーのそれらと同じものである請求項 1 に記載のレジスト組成物。

【請求項6】 一般式 [1] で示されるポリマー2種を含んで成り、第一のポリマーは R^1 、 R^2 及び R^3 が水素

方が水素原子又は炭素数 1~6の直鎖状、分枝状又は環状のアルキル基であり、他方が炭素数 1~6の直鎖状、分枝状又は環状のアルキル基であり、R⁵が炭素数 1~10の直鎖状、分枝状又は環状のアルキル基又はアラルキル基であり、R⁶が炭素数 1~8の直鎖状、分枝状又は環状のアルコキシ基、飽和複素環オキシ基又は下記一般式[2]

【化9】

$$1 - C - X - R^{7}$$

原子であり、 R^4 が炭素数 $1\sim 6$ の直鎖状又は分枝状のアルキル基であり、 R^5 が炭素数 $1\sim 6$ の直鎖状、分枝状又は環状のアルキル基であり、 R^6 がイソプロボキシ基、tert-ブトキシ基、テトラヒドロピラニルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、tert-ブトキシルボニルオキシ基、tert-ブトキシルボニルオキシ基であり、m及び n が夫々独立して自然数であり、k が自然数(但し、 $0.10 \le m + k / m + n + k \le 0.90$ で且つ $0 < k / m + n + k \le 0.25$ である。)であり、第二のポリマーはk が0 で、 $R^1 \sim R^5$ 、m及び n は第一のポリマーのそれらと同じものである請求項 1 に記載のレジスト組成物。

【請求項7】 一般式 [1]で示されるポリマーと一般式 [25]で示されるポリマーとを含んで成り、一般式 [1]で示されるポリマーは R^1 及び R^2 は夫々独立して 水素原子又はメチル基であり、 R^3 及び R^4 は何れか一方が水素原子又は炭素数 $1\sim6$ の直鎖状、分枝状又は環状のアルキル基であり、他方が炭素数 $1\sim6$ の直鎖状、分枝状又は環状のアルキル基であり、 R^5 が炭素数 $1\sim1$ 0の直鎖状、分枝状又は環状のアルキル基又はアラルキル基であり、 R^6 が炭素数 $1\sim8$ の直鎖状、分枝状又は環状のアルコキシ基、飽和複素環オキシ基又は下記一般式 [2]

【化10】

$-O-(CH_2) 1-C-X-R^7$

(式中、R7は炭素数1~8の直鎖状、分枝状又は環状 のアルキル基、アリール基、又は飽和複素環基を表し、 Xは単結合又は酸素原子を表し、1は0又は自然数を表 す。)を表し、m及びnは夫々独立して自然数を表し、 kは0又は自然数を表す(但し、0.10≤m+k/m+n $+k \le 0.90$ で且つ $0 \le k/m + n + k \le 0.25$ であ る。)。]で示されるポリマーであり、一般式[25] で示されるポリマーはR1及びR2は夫々独立して水素原 子又はメチル基であり、R3及びR4は何れ一方が水素原 子又は炭素数1~6の直鎖状、分枝状又は環状のアルキ ル基であり、他方が炭素数1~6の直鎖状、分枝状又は 環状のアルキル基であり、R5が炭素数1~10の直鎖 状、分枝状又は環状のアルキル基又はアラルキル基であ り、R²³が炭素数1~6の直鎖状、分枝状又は環状のア ルキル基、又は炭素数7~9の有橋脂環式炭化水素基を 表し、m及びnは夫々独立して自然数を表し、hは0又 は自然数を表す(但し、 $0.10 \le m + h / m + n + h \le 0$. 90で且つ0≦h/m+n+h≦0.25である。)]で示さ れるポリマーである請求項1に記載のレジスト組成物。 【請求項8】 一般式「1]で示されるポリマーと一般 式[25]で示されるポリマーとを含んで成り、一般式 [1]で示されるポリマーは R^1 、 R^2 及び R^3 が水素原 子であり、R4が炭素数1~6の直鎖状、分枝状又は環 状のアルキル基であり、R5が炭素数1~6の直鎖状、 分枝状又は環状のアルキル基であり、R6が炭素数3~ 8の分枝状又は環状のアルコキシ基、テトラヒドロピラ ニルオキシ基、テトラヒドロフラニルオキシ基、アセチ ルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ 基、tert-ブトキシカルボニルオキシ基、tert-ブトキシ カルボニルメチルオキシ基であり、m、n及びkは夫々 独立して自然数 (但し、 $0.10 \le m + k / m + n + k \le 0$. 90で且つ $0 < k/m + n + k \le 0.25$ である。)] であ り、一般式 [25]で示されるポリマーはR1、R2及び R³が水素原子であり、R⁴は炭素数1~6の直鎖状、分 枝状又は環状のアルキル基であり、R5が炭素数1~6 の直鎖状、分枝状又は環状のアルキル基であり、R23が 炭素数1~6の直鎖状、分枝状又は環状のアルキル基、 又は炭素数7~9の有橋脂環式炭化水素基を表し、m、 n及びhは夫々独立して自然数(但し、0.10≤m+h/ $m+n+h \le 0.90$ で且つ $0 < h/m+n+h \le 0.25$ であ

【請求項9】 一般式 [1] で示されるポリマーと一般式 [25] で示されるポリマーとを含んで成り、一般式 [1] で示されるポリマーは R^1 、 R^2 及び R^3 が水素原子であり、 R^4 が炭素数 $1\sim6$ の直鎖状、分枝状又は環

る。)] である請求項1に記載のレジスト組成物。

状のアルキル基であり、R5が炭素数1~6の直鎖状、 分枝状又は環状のアルキル基であり、R6がイソプロポ キシ基、tert-ブトキシ基、テトラヒドロピラニルオキ シ基、テトラヒドロフラニルオキシ基、アセチルオキシ 基、ピバロイルオキシ基、ベンゾイルオキシ基、tert-ブトキシカルボニルオキシ基であり、m、n及びkは夫 々独立して自然数(但し、0.10≤m+k/m+n+k≤ 0.90で且つ $0 < k/m + n + k \le 0.25$ である。)] であ り、一般式 [25] で示されるポリマーはR1、R2及び R3が水素原子であり、R4は炭素数1~6の直鎖状、分 枝状又は環状のアルキル基であり、R5が炭素数1~6 の直鎖状、分枝状又は環状のアルキル基であり、R²³が メチル基、tert-ブチル基、シクロヘキシル基、イソボ ルニル基、ノルボルニル基であり、m、n及びhは夫々 独立して自然数(但し、 $0.10 \le m + h / m + n + h \le 0$. 90で且つ0<h/m+n+h≦0.25である。)] である 請求項1に記載のレジスト組成物。

【請求項10】 一般式 [25]で示されるボリマー2種を含んで成り、第一のポリマーは R^1 及び R^2 は夫々独立して水素原子又はメチル基であり、 R^3 及び R^4 は何れか一方が水素原子又は炭素数 $1 \sim 6$ の直鎖状、分枝状又は環状のアルキル基であり、他方が炭素数 $1 \sim 6$ の直鎖状、分枝状又は環状のアルキル基であり、 R^5 が炭素数 $1 \sim 1$ のの直鎖状、分枝状又は環状のアルキル基とはアラルキル基であり、 R^{23} は炭素数 $1 \sim 6$ の直鎖状、分枝状又は環状のアルキル基、又は炭素数 $1 \sim 6$ の直鎖状、分枝が口が大型に関する。)であり、第二のポリマーは上が口で $1 \sim 10$ であり、第二のポリマーは上が口で $1 \sim 10$ であり、第二のポリマーは上が口で $1 \sim 10$ であり、第二のポリマーのそれ等と同じものである請求項 $1 \sim 10$ に記載のレジスト組成

【請求項11】 一般式 [25]で示されるポリマー2種を含んで成り、第一のポリマーは R^1 、 R^2 及び R^3 が水素原子であり、 R^4 は炭素数1~6の直鎖状、分枝状又は環状のアルキル基であり、 R^5 が炭素数1~6の直鎖状、分枝状又は環状のアルキル基であり、 R^{23} は炭素数1~6の直鎖状、分枝状又は環状のアルキル基、又は炭素数7~9の有橋脂環式炭化水素基であり、m、n及びかは夫々独立して自然数(但し、 $0.10 \le m + h / m + n + h \le 0.90$ で且つ0 $< h / m + n + h \le 0.25$ である。)であり、第二のポリマーはhが0で R^1 ~ R^5 、m及びnが第一のポリマーのそれ等と同じものである請求項1に記載のレジスト組成物。

【請求項12】 一般式[25]で示されるポリマー2

種を含んで成り、第一のポリマーは R^1 、 R^2 及び R^3 が水素原子であり、 R^4 は炭素数 $1\sim6$ の直鎖状、分枝状又は環状のアルキル基であり、 R^5 が炭素数 $1\sim6$ の直鎖状、分枝状又は環状のアルキル基であり、 R^2 3はメチル基、 R^2 3はメチル基、 R^2 3はメチル基、 R^2 3はメチル基、 R^2 3はメチル基、 R^2 3はメチル基であり、 R^2 3はメチル基であり、 R^2 3はメチル基であり、 R^2 3はメチルボルニル基であり、 R^2 3により、 R^2 4に記載のレジスト組成物。

【請求項13】 一般式[24]、[1]又は[25]で示されるポリマーの重量平均分子量が3,000 \sim 50,000であり、分散度が1.0 \sim 2.5である請求項1 \sim 12の何れかに記載のレジスト組成物。

【請求項14】 一般式[3]のR®及びR®が夫々独立して炭素数3~8の分枝状又は環状のアルキル基である請求項1~13の何れかに記載のレジスト組成物。

【請求項15】 一般式 [4]の R^{10} 、 R^{11} 及び R^{12} が 夫々独立して水素原子、炭素数 $1\sim6$ の直鎖状、分枝状 又は環状のアルキル基であり、 R^{13} が10-カンファー 基、トリル基、tert-ブチルフェニル基、又はドデシルフェニル基である請求項 $1\sim1$ 4の何れかに記載のレジスト組成物。

【請求項16】 一般式 [6]の R^{17} 及び R^{18} が夫々独立して水素原子又は炭素数 $1\sim4$ の直鎖状又は分枝状のアルキル基であり、 R^{19} が10-カンファー基、トリル基、又はドデシルフェニル基である請求項 $1\sim14$ の何れかに記載のレジスト組成物。

【請求項17】 一般式[3]で示される化合物1種以上と一般式[4]で示される化合物1種以上とを組合せて用いる請求項1~15の何れかに記載のレジスト組成物。

【請求項18】 一般式[3]で示される化合物と一般式[4]で示される化合物の重量比が10:1乃至1:1 である請求項15に記載のレジスト組成物。

【請求項19】 一般式[3]で示される化合物1種以上と一般式[6]で示される化合物1種以上とを組合せて用いる請求項1~14又は16の何れかに記載のレジスト組成物。

【請求項20】 一般式[3]で示される化合物と一般式[6]で示される化合物の重量比が10:1乃至1:1 である請求項19に記載のレジスト組成物。

【請求項21】 一般式[1]で示される第一のポリマーと第二のポリマーの使用割合が $95:5\sim5:95$ である請求項 $4\sim6$ の何れかに記載のレジスト組成物。

【請求項22】 一般式[1]で示されるポリマーと一般式[25]で示されるポリマーの使用割合が95:5~5:95の範囲である請求項7~9の何れかに記載のレジスト組成物。

【請求項23】 一般式[25]で示される第一のポリマーと第二のポリマーの使用割合が95:5~5:95である請求項10~12の何れかに記載のレジスト組成物。

【請求項24】 一般式[24]で示されるポリマー2種以上と、一般式[3]で示される化合物1種以上と、一般式[4]で示される化合物及び一般式[6]で示される化合物からなる群から選ばれた1種以上と、これ等を溶解可能な溶剤とを含む組成物に於て、溶剤がラクトン環化合物を含む混合溶液であることを特徴とする請求項1~23の何れかに記載の化学増幅型レジスト組成物。

【請求項25】 混合溶液に使用されるラクトン環化合物がr-ブチロラクトン又はr-プロピオラクトンである請求項24に記載のレジスト組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は半導体素子等の製造に於て使用されるレジスト組成物に関する。詳しくは露光エネルギー源として紫外線、特に300 nm以下の遠紫外光、例えばKrFエキシマレーザ光等を用いてポジ型のパターンを形成する際に使用されるレジスト組成物に関する。

[0002]

【従来の技術】近年、半導体デバイスの高密度集積化に伴い、微細加工、中でもフォトリソグラフィに用いられる露光装置のエネルギー源は益々、短波長化し、今では遠紫外光(300 nm以下)、KrFエキシマレーザ光(248.4 nm)等の利用が開始されている。しかしながらこれ等波長での量産技術に適した実用性の高いレジスト組成物は未だ適当なものが見出されていない。

【0003】KrFエキシマレーザ光や遠紫外光を光源とするレジスト組成物としては、露光エネルギー量を低減させる方法として提唱[H.Itoら, Polym.Eng.Sci., 23, 1012(1983年)]された化学増幅型レジスト組成物が一般に使用されている。

【0004】化学増幅型レジスト組成物についてはこれ 迄多くの報告がなされているが実用上、多くの課題を抱 えている。

【 O O O 5 】即ち、初期の報告 [例えば、特公平2-2766 0号公報(米国特許第 4491628号);特開昭62-115440号公報(米国特許第4603101号);特開平2-25850号公報;Y. Jianら、Polym. Mater. Sci. & Eng., 66, 41 (1992年)等]では使用されるポリマーが、例えばポリ(p-tertーブトキシカルボニルオキシスチレン)、ポリ(p-tertーブトキシスチレン)、ポリ(p-tertーブトキシスチレン)、ポリ(p-tertーブトキシー α ーメチルスチレン)、ポリ(p-tertーブトキシー α ーメチルスチレン)、ポリ(p-イソプロペニルフェノキシ酢酸 tert-ブチル)、ポリ(p-tertーブトキシカルボニルオキシスチレン/スルホン)、ポリ(p-テ

トラヒドロピラニルオキシスチレン)、ポリ [p-(1-メトキシエトキシ)スチレン]、ポリ [p-(1-フェノキシエトキシ)スチレン]等のフェノールエーテル系ポリマーであるが、何れのポリマーも基板との密着性が不良で現像の際に膜剥がれし易く、また、耐熱性も乏しい。そのため、これらポリマーを含有するレジスト材料は、良好なパターンが得られないという欠点を有している。また、カルボン酸系のポリマー、例えばポリ (p-ビニル安息香酸 tert-ブチル)やポリ (p-ビニル安息香酸テトラヒドロピラニル)等を用いたレジスト材料の場合にはベンゾイル基に起因して248.4 m付近の光透過性が不力な為に解像性が不良であるという問題点があり、ポリ(メタクリル酸 tert-ブチル)をポリマーとして用いたレジスト材料の場合にはポリマーの耐熱性不良、ドライエッチング耐性不良等の問題点がある。

【0006】この他、ケイ素含有ポリマーを用いたレジスト組成物も開示されている [例えば、特公平3-44290号公報等]が、ポリマーとして例えばボリ (p-トリメチルシリルオキシスチレン)やポリ (p-tertーブチルジメチルシリルオキシスチレン)を使用した場合、感度が低い、ケイ素含有の為アッシングで完全には除去出来ない等の問題があり実用化は困難であった。

【0007】開発が進むにつれて上記の欠点を改良した化学増幅型レジスト組成物として、ポリ(p-tert-ブトキシカルボニルオキシスチレン/p-ヒドロキシスチレン)を用いたレジスト組成物[特開平2-209977号公報;特開平3-206458号公報]、ポリ(p-テトラヒドロピラニルオキシスチレン/p-ヒドロキシスチレン)を用いたレジスト組成物[特許第2675138号公報(欧州特許第342498号);特開平2-161436号公報;特開平3-83063号公報]、或はポリ(p-tert-ブトキシスチレン/p-ヒドロキシスチレン)を使用したレジスト組成物[特開平2-62544号公報;特開平4-211258号(米国特許第5350660号、欧州特許第440374号)]等が報告された。

【0008】しかしながら、これ等ポリマーを使用したレジスト組成物は何れも、要求される解像性能を達成出来ず、また、実用化に際して議論されたDelay Timeの問題点 [レジスト塗布から露光迄の間、又は露光から加熱処理(PEB)迄の間の時間経過により寸法が変動したり、パターン形状が劣化する問題] や基板依存性の問題点 [半導体基板としては SiO_2 、 Si_3N_4 、 Ti_3N_4 、BPSG又はポリシリコン等が使用されるがこれ等基板の違いによりパターン形状が不良になる問題] 等を克服出来なかった。

【0009】その後、保護基としてアセタール基やケタール基を導入したポリマー〔例えば、ポリ (p-1-メトキシエトキシスチレン/p-ヒドロキシスチレン)等〕とトリフェニルスルホニウム塩誘導体、ジフェニルヨードニウム塩等の酸発生剤を用いたレジスト組成物 [例えば、特開平2-161436号公報;特開平4-219757号公報(欧州特

許第447868号);特開平5-281745号公報(欧州公開特許 553737号公報);特開平3-282550号公報]等が報告され たが、これ等組成物は何れもスカムの発生(現像時の溶 け残り、エッチングの際に下地基板に転写されるので問 題になる)、基板依存性やDelay Timeの問題を抱えてい る。この他特開平5-249682号公報(欧州公開特許520642 号公報)では、ポリ (p-1-エトキシエトキシスチレン/ p-ヒドロキシスチレン)、ポリ(p-1-メトキシー1-メチ ルエトキシスチレン/p-ヒドロキシスチレン)、ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ ン/メタクリル酸メチル)又はポリ (p-1-エトキシエト キシスチレン/p-ヒドロキシスチレン/フマロニトリ ル)等のポリマーとジアゾジスルホン化合物等を酸発生 剤とするレジスト組成物が、また、特開平8-253528号公 報では、ポリ (p-1-tert - ブトキシエトキシスチレン/ p-ヒドロキシスチレン)とジアゾジスルホン化合物等を 酸発生剤とするレジスト組成物が夫々開示されている。 【〇〇10】これ等のレジスト組成物は解像性能、Dela y Time等多くの点で優れているが、基板依存性不良及び スカムの発生等の問題を抱えている。

【0011】更にこの他、特開平8-15864号公報(欧州 特許第679951号、米国特許第5736296号)、特開平8-262 721号公報、特開平9-127698号公報、特開平9-90639号公 報ではポリ (p-1-エトキシエトキシスチレン/p-ヒドロ キシスチレン)及びポリ(p-tert-ブトキシカルボニル オキシスチレン/p-ヒドロキシスチレン)の2種の混合 ポリマーと1種以上のジアゾジスルホン化合物を酸発生 剤として含んでなるレジスト組成物が、特開平9-160244 号公報ではポリ (p-1-エトキシエトキシスチレン/p-ヒ ドロキシスチレン)及びポリ(p-tert - ブトキシスチレ ン/p-ヒドロキシスチレン)の2種の混合ポリマーと1 種類の酸発生剤とから成る組成物が、また、特開平10-9 7074号公報ではポリ(p-1-エトキシエトキシスチレン/ p-ヒドロキシスチレン)及びポリ(p-テトラヒドロピラ ニルオキシスチレン/p-ヒドロキシスチレン)の2種の ポリマーと1種類の酸発生剤とから成る組成物が夫々開 示されている。これ等組成物については、近年の0.20~ 0.15µmの線幅での各種性能要求に対して、解像性能不 良、焦点裕度(DOF)不足や側壁形状不良等の多くの 問題点を抱えている。

【0012】更に、特開平9-160246号公報ではポリ(p-1-エトキシエトキシスチレン/p-tertーブトキシスチレン/p-ヒドロキシスチレン)と、溶解抑制剤としての、分子量1000~3000の、酸不安定基でフェノール性水酸基の水素原子が部分置換された化合物と、オニウム塩を酸発生剤として含んで成るレジスト組成物が、また、特開平10-48826号公報ではポリマーとしてアセタール基(例えば1-エトキシエトキシ基等)で保護されたp-ヒドロキシスチレンモノマー単位を構成成分として含んで成るp-ヒドロキシスチレン系ポリマーと、このポリマーよりも

重量平均分子量が小さいアルコキシ基(例えばtert-ブトキシ基)等で保護されたp-ヒドロキシスチレンモノマー単位を構成成分として含んで成るp-ヒドロキシスチレン系ポリマーとを併用し、これらと1種又は2種以上の酸発生剤とを組合せてなるレジスト組成物が夫々報告されているが、これ等組成物も近年の0.20~0.15μmの線幅での各種性能要求に対して、DOF不足、側壁形状不良、Delay Time、基板依存性、貯蔵安定性不良等の問題点がある。

【0013】この他、特開平9-274320号公報及び特開平 10-53621号公報では、ポリ(p-1-エトキシエトキシスチ レン/p-ヒドロキシスチレン/p-tert-ブトキシカルボ ニルオキシスチレン)又はポリ(p-1-エトキシエトキシ スチレン/p-ヒドロキシスチレン/p-tert - ブトキシス チレン)とジアゾジスルホン化合物と実質的にカウンタ ーイオンに芳香環や脂肪族多環を含まないオニウム塩を 混合した酸発生剤からなるレジスト組成物が夫々報告さ れている。これら組成物も近年の0.20~0.15μmの線幅 での各種性能要求に対してDOF不足、側壁形状不良、 Delay Time等の問題点がある。この様に化学増幅型レジ スト組成物は、開発初期に見られた、ポリマーの耐熱性 が乏しい、基板との密着性が不良である、248.4 nm付近 の光透過性が不十分である等の課題は改善されてきた が、寸法の微細化に伴う性能向上の要求に対して解像性 能が不十分である、経時的にパターン寸法が変動する、

パターン形状が劣化する、DOFが不足する、或はパターン形状に裾引きやスカムが残る、パターン形状側壁の 荒れが大きい、基板依存性が大きい等の問題点を未だ有し、実用上満足されるものは得られていない。従って、これ等の問題点を改善した実用的なレジスト組成物が渇望されている現状にある。

[0014]

【発明が解決しょうとする課題】上記した如き状況に鑑み本発明が解決しようとする課題は、紫外線、特に300n 以下の遠紫外光、KrFエキシマレーザ光等に対し高透明性を有し、これ等光源による露光や電子線、軟X線照射に対して高い感度を有し、耐熱性や基板密着性に優れ、高解像性能を有し、パターン寸法が経時的に変動せずに精度の高いパターンが得られ、貯蔵安定性に優れ、広いDOFや良好なマスクリニアリティを有し、基板依存性がなく、裾引きやスカムが生ぜず且つ側壁荒れも少ない矩形のパターン形状が得られる実用的なレジスト組成物を提供することである。

[0015]

【課題を解決するための手段】本発明は上記課題を解決する目的でなされたものであり、下記の構成から成る。 『酸の作用によりアルカリ可溶性となる下記一般式[24]

【化11】

$$\begin{array}{c|c}
 & R^1 & R^2 \\
 & C - CH_2 \\
 & R^3 \\
 & O - C - OR^5
\end{array}$$
OH
$$\begin{array}{c|c}
 & R^2 \\
 & C - CH_2 \\
 & R^2
\end{array}$$
OH

[式中、R¹及びR²は夫々独立して水素原子又はメチル基を表し、R³及びR⁴は夫々独立して水素原子、炭素数1~6の直鎖状、分枝状又は環状のアルキル基、炭素数1~6の直鎖状、分枝状又は環状のハロアルキル基、又は置換されていても良いフェニル基を表し、両者が結合してメチレン鎖を形成していても良く(但し、R³及びR⁴が共に水素原子の場合は除く。)、R⁵は炭素数1~10の直鎖状、分枝状又は環状のアルキル基、炭素数1~10の直鎖状、分枝状又は環状のハロアルキル基又はアラルキル基を表し、R²²はエステル化されたカルボキシル

基、又は置換基を有していてもよいアリール基を表し、m及び n は夫々独立して自然数を表し、j は 0 又は自然数を表す(但し、 $0.10 \le m + j / m + n + j \le 0.90$ で且つ $0 \le j / m + n + j \le 0.25$ である。)。]で示されるポリマー2種以上と、下記一般式[3]で示される化合物1種以上と、下記一般式[4]で示される化合物及び一般式[6]で示される化合物からなる群から選ばれた1種以上と、これ等を溶解可能な溶剤とを含んで成ることを特徴とする化学増幅型レジスト組成物。

【化12】

[式中、R®は炭素数3~8の分枝状又は環状のアルキル基を表し、R®は炭素数1~8の直鎖状、分枝状又は

環状のアルキル基、又はアラルキル基を表す。] 【化13】

[式中、 R^{10} 、 R^{11} 及び R^{12} は夫々独立して水素原子、ハロゲン原子、炭素数 $1\sim 6$ の直鎖状、分枝状又は環状のアルキル基、炭素数 $1\sim 6$ の直鎖状、分枝状又は環状のアルコキシ基又はフェニルチオ基を表し、 R^{13} は1-ナフチル基、2-ナフチル基、10-カンファー基、ピリジル基、又は下記一般式 [5]

(式中、 R^{14} 及び R^{15} は夫々独立して水素原子又はハロゲン原子を表し、 R^{16} は水素原子、ハロゲン原子、炭素数 $1\sim12$ の直鎖状、分枝状又は環状のアルキル基、炭素数 $1\sim4$ の直鎖状又は分枝状のアルコキシ基、又はトリフルオロメチル基を表す。)を表す。〕

【化15】

[式中、 R^{17} 及び R^{18} は夫々独立して水素原子、炭素数 $1\sim4$ の直鎖状又は分枝状のアルキル基、又は炭素数 $1\sim4$ の直鎖状又は分枝状のアルコキシ基を表し、 R^{19} は 1-ナフチル基、2-ナフチル基、10-カンファー基、フェニル基、又は炭素数 $1\sim12$ の直鎖状、分枝状又は環状のアルキル基で置換されたフェニル基を表す。]。

【0016】

【発明の実施の形態】上記一般式[24]に於て、R³及びR⁴で示される炭素数1~6の直鎖状、分枝状又は

環状のアルキル基及び炭素数1~6の直鎖状、分枝状又は環状のハロアルキル基のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、イソペンチル基、シクロペンチル基、1-メチルペンチル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、シクロペンチル基等が挙げられ、R5で示される炭素数1~10の直鎖状、分枝状又は環状のアルキル基及び炭素数1~10の直鎖状、分枝状又は環状のアルキル基及び炭素数1~10の

直鎖状、分枝状又は環状のハロアルキル基のアルキル基 としては、例えばメチル基、エチル基、n-プロピル基、 イソプロピル基、シクロプロピル基、n-ブチル基、イソ ブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル 基、イソペンチル基、tert-ペンチル基、1-メチルペン チル基、シクロペンチル基、n-ヘキシル基、イソヘキシ ル基、シクロヘキシル基、ヘプチル基、オクチル基、ノ ニル基、デシル基等が挙げられる。

【0017】また、R3及びR4で示される炭素数1~6 の直鎖状、分枝状又は環状のハロアルキル基のハロゲ ン、R5で示される炭素数1~10の直鎖状、分枝状又は 環状のハロアルキル基のハロゲンとしては、例えば塩

$$-O-(CH_2) 1-C-X-R$$

般式「2〕

【化18】

(式中、R7は炭素数1~8の直鎖状、分枝状又は環状 のアルキル基、アリール基、又は飽和複素環基を表し、 Xは単結合又は酸素原子を表し、1は0又は自然数を表 す。)を表す。]で示される基等が挙げられ、更に具体 的には例えば下記一般式[29]

【化17】

(式中、R7は炭素数1~8の直鎖状、分枝状又は環状 のアルキル基、アリール基、又は飽和複素環基を表し、 Xは単結合又は酸素原子を表し、1は0又は自然数を表 す。)を表す。]で示される基が挙げられる。一般式 [29]に於て、R6で示される炭素数1~4の直鎖状 又は分枝状のアルキル基としては、例えばメチル基、エ チル基、n-プロピル基、イソプロピル基、n-ブチル基、 イソブチル基、tert-ブチル基、sec-ブチル基等が挙げ られる。R6で示される炭素数1~8の直鎖状、分枝状 又は環状のアルコキシ基としては、例えばメトキシ基、 エトキシ基、n-プロポキシ基、イソプロポキシ基、シ クロプロポキシ基、n-ブトキシ基、イソブトキシ基、t ert-ブトキシ基、sec-ブトキシ基、n ペンチルオキシ 基、イソペンチルオキシ基、シクロペンチルオキシ基、

素、臭素、ヨウ素、フッ素等が挙げられる。

【0018】一般式[24]に於て、R5で示されるア ラルキル基としては、例えばベンジル基、フェネチル 基、フェニルプロピル基、メチルベンジル基、メチルフ ェネチル基、エチルベンジル基等が挙げられる。

【0019】一般式「24]に於て、R²²で示される置 換基を有していてもよいアリール基のアリール基として は、例えばフェニル基、ナフチル基等が挙げられ、その 置換基としては炭素数1~4の直鎖状又は分枝状のアル キル基、炭素数1~8の直鎖状、分枝状又は環状のアル コキシ基、飽和複素環オキシ基、又は下記一般式[2] 【化16】

[式中、R6は水素原子、炭素数1~4の直鎖状又は分

枝状のアルキル基、炭素数1~8の直鎖状、分枝状又は 環状のアルコキシ基、飽和複素環オキシ基、又は下記一

n-ヘキシルオキシ基、イソヘキシルオキシ基、シクロ ヘキシルオキシ基、1-メチルシクロペンチルオキシ基、 1-メチルシクロヘキシルオキシ基、n ペプチルオキシ 基、イソペプチルオキシ基、n-オクチルオキシ基、ter t-オクチルオキシ基等が挙げられ、飽和複素環オキシ基 としては、テトラヒドロピラニルオキシ基、テトラヒド ロフラニルオキシ基等が挙げられる。

【0020】一般式「2]に於て、R7で示される炭素 数1~8の直鎖状、分枝状又は環状のアルキル基として は、例えばメチル基、エチル基、n-プロピル基、イソプ ロピル基、n-ブチル基、イソブチル基、tert-ブチル 基、sec-ブチル基、n-ペンチル基、イソペンチル基、te rt-ペンチル基、1-メチルペンチル基、シクロペンチル 基、1-メチルシクロペンチル基、n-ヘキシル基、イソヘ キシル基、シクロヘキシル基、1-メチルシクロヘキシル基、ヘプチル基、オクチル基等が挙げられ、飽和複素環基としては、例えばテトラヒドロピラニル基、テトラヒドロフラニル基等が挙げられる。また、R⁷で示されるアリール基としては、フェニル基、4-メチルフェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。

【0021】一般式「2]で示される官能基の具体例と しては、例えばメトキシカルボニルオキシ基、エトキシ カルボニルオキシ基、イソプロポキシカルボニルオキシ 基、イソブトキシカルボニルオキシ基、sec-ブトキシカ ルボニルオキシ基、tert-ブトキシカルボニルオキシ 基、イソペンチルオキシカルボニルオキシ基、tert-ペ ンチルオキシカルボニルオキシ基、1-メチルシクロヘキ シルオキシカルボニルメチルオキシ基、1-メチルシクロ ペンチルオキシカルボニルメチルオキシ基、テトラヒド ロピラニルオキシカルボニルメチルオキシ基、テトラヒ ドロフラニルオキシカルボニルメチルオキシ基、tert-ブトキシカルボニルメチルオキシ基、アセチルオキシ 基、イソブタノイルオキシ基、ピバロイルオキシ基、イ ソバレロイルオキシ基、シクロヘキシルカルボニルオキ シ基、ベンゾイルオキシ基、4-メチルベンゾイルオキシ 基、1-ナフトイルオキシ基、2-ナフトイルオキシ基等が 挙げられる。

【0022】一般式[24]に於て、R³及びR⁴で示される置換基を有していてもよいアリール基の置換基としては、塩素、臭素、ヨウ素、フッ素等のハロゲン原子、直鎖状又は分枝状のアルキル基(好ましくは炭素数が1

~4である、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert -ブチル基、sec-ブチル基等)や直鎖状又は分枝状のアルコキシ基(好ましくは炭素数が1~4である、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基、sec-ブトキシ基等)が挙げられる。

【0023】また、R3とR4とで形成されるメチレン鎖 としては炭素数2~5であるものが挙げられる。上記一 般式[24]に於て、R22で示されるエステル化された カルボキシル基の具体例としては、例えば-COOR²³ [式中、R²³は炭化水素残基を表す]が挙げられる。R 23で示される炭化水素残基としては、例えば、炭素数1 ~6の直鎖状、分枝状又は環状のアルキル基、又は炭素 数7~9の有橋脂環式炭化水素基等が挙げられ、ここで いう炭素数1~6の直鎖状、分枝状又は環状のアルキル 基としては、例えばメチル基、エチル基、n-プロピル 基、イソプロピル基、シクロプロピル基、n-ブチル基、 イソブチル基、tert-ブチル基、sec-ブチル基、n-ペン チル基、イソペンチル基、tert-ペンチル基、1-メチル ペンチル基、シクロペンチル基、n-ヘキシル基、イソヘ キシル基、シクロヘキシル基等が挙げられ、また、炭素 数7~9の有橋脂環式炭化水素基としては、例えばイソ ボルニル基、ノルボルニル基等が挙げられる。

【0024】一般式 [24] に示されるポリマーの好ま しい具体例としては、例えば下記一般式 [1] 【化19】

$$\begin{array}{c|c}
 & R^1 \\
 & C \\
 & C$$

[式中、kは0又は自然数を表し、 $R^1 \sim R^6$ 、m及Un は前記と同じ(但し、 $0.10 \le m + k / m + n + k \le 0.90$ で且つ $0 \le k / m + n + k \le 0.25$ である。)。]で示さ

れるポリマー、又は一般式 [25] 【化20】

[式中、 $R^1 \sim R^5$ 、 R^{23} 、m及びnは前記と同じであり、hは0又は自然数を表す(但し、 $0.10 \le m+h/m+n+h \le 0.90$ で且つ $0 \le h/m+n+h \le 0.25$ である。)]で示されるポリマー等が挙げられる。尚、上記

一般式[24]、[1]及び[25]に於て、一般式 [8] 【化21】

$$\begin{array}{c|c}
R^{1} \\
-C-CH_{2}-\\
R^{3} \\
\hline
C-C-OR^{5} \\
R^{4}
\end{array}$$

(式中、 $R^1 \sim R^3$ 、 R^4 及び R^5 は前記と同じ。) で示されるモノマー単位の割合は、好ましくは全モノマー単位中の10%以上であり、更に好ましくは10% \sim 60%、更により好ましくは10% \sim 50%である。本発明のレジスト組

成物は、酸の作用により極めて容易に保護基が脱離して 水酸基となる、下記一般式[7]

[0025]

【化22】

$$-O-\overset{R}{\overset{3}{\underset{R}{\downarrow}}}-O-R^{5}$$

【0026】(式中、R³、R⁴及びR⁵は前記と同じ。)で示される官能基、即ち、アルコキシアルコキシ基、ハロアルコキシアルコキシ基、アラルキルオキシアルコキシ基、アルコキシー1-フェニルアルコキシ基、ハロアルコキシー1-フェニルアルコキシ基又はアラルキル

オキシー1-(4-メチルフェニル)アルコキシ基を有するモノマー単位、即ち、下記一般式[8] 【0027】

【化23】

【0028】(式中、R¹、R³、R⁴及びR⁵は前記と同じ。)で示されるモノマー単位と、基板密着性及び耐熱性を良好にする、下記一般式[9]

【0029】 【化24】

(式中、R¹は前記と同じ。)で示されるモノマー単位と、露光部の現像速度を抑制して側壁形状を良好にしたり、近接効果の影響を抑制したり、マスクリニアリティを良好にしたりする目的で必要に応じて使用されるモノマー単位、即ち、下記一般式[26]

【0030】 【化25】

【0031】(式中、 R^2 及び R^{22} は前記と同じ。)で 示されるモノマー単位とから構成される、下記一般式 [24]

[0032]

【化26】

【0033】(式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、m、n及び」は前記と同じ。)で示されるポリマーを2種以上使用する点に一つの特徴を有する。また、一般式 [26]で示されるモノマー単位の好ましい具体例としては、例えば一般式 [10]、

【化27】

(式中、 R^2 及び R^6 は前記と同じ。)一般式 [28] 【化28】

(式中、 R^2 と R^{22} は前記と同じ。)等が挙げられる。 【0034】本発明に於て、2種以上のポリマーの組合せとしては、例えば $^{\circ}$ 一般式[11]

[0035]

【化29】

【0036】[式中、R¹、R²、R³、R⁴、R⁵及びR⁶

は前記と同じであり、p、q及びrは自然数を表す(但

し、 $0.10 \le p + r / p + q + r \le 0.90$ で且つ $0.05 \le r / p + q + r \le 0.25$ である。)。]で示される、重量平均分子量やモノマー単位の構成比率等が異なったポリマー2種以上の組合せ、2上記一般式「11]で示されるポ

リマー1種以上と下記一般式 [12] 【0037】 【化30】

$$\begin{array}{c|c}
R^1 & R^1 \\
\hline
- (C - CH_2) & m - (C - CH_2) & m - \\
\hline
R^3 & O - C - OR^5 & OH \\
R^4 & & & & & & & & & & \\
\end{array}$$

【0038】 [式中、 R^1 、 R^3 、 R^4 及び R^5 は前記と同じであり、m及びnは自然数を表す(但し、 $0.10 \le m/m+n \le 0.90$ である。)。] で示されるポリマー1種以上との組合せ、 $^{\circ}$ 上記一般式 [12] で示される、重量

平均分子量やモノマー単位の構成比率等が異なったポリマー2種以上の組合せ、♥ 下記一般式 [27] 【化31】

「式中、R¹、R²、R³、R⁴、R⁵及びR²³は前記と同 じであり、p、q及びgは自然数を表す(但し、0.10≦ $p+q/p+q+g \le 0.90$ で且つ $0.05 \le g/p+q+g$ ≦0.25である。)。]で示される、重量平均分子量やモ ノマー単位の構成比率等が異なったポリマー2種以上の 組合せ、⑤上記一般式[11]で示されるポリマー1種 以上と、上記一般式[27]で示されるポリマー1種以 上との組合せ、♥上記一般式[12]で示されるポリマ -1種以上と、上記一般式「27]で示されるポリマー 1種以上との組合せ、又はΦ上記一般式一般式[11] で示されるポリマー1種以上と、上記一般式「12]で 示されるポリマー1種以上と、上記一般式[27]で示 されるポリマー1種以上との組合せ等が挙げられる。上 記に於て、一般式「11〕で示されるポリマーは、一般 式[1]で示されるポリマーのうちkが自然数であるも のに相当し、一般式「12]で示されるポリマーは、一 般式[1]で示されるポリマーのうちkが0であるもの 並びに一般式「25]で示されるポリマーのうちhが0 であるものに相当し、一般式[27]で示されるポリマ ーは、一般式[25]で示されるポリマーのうちhが自 然数であるものに夫々相当する。尚、上記一般式「1 1]、[12]及び[27]に於て、一般式[8]で示 されるモノマー単位の割合は、好ましくは全モノマー単 位中の10%以上、更に好ましくは10%~60%、更により 好ましくは10%~50%である。本発明のレジスト組成物 はポリマーとして、高解像性能、DOF、耐熱性、パタ ーン形状、マスクリニアリティ、エッチング耐性、近接 効果の影響抑制等のレジスト性能を兼ね備えるために夫 々の特徴を有する一般式「24]で示されるポリマー2 種以上を併用することが特徴である。より好ましい具体 例としては前記一般式「11]で示される異なったポリ マー (例えば、重量平均分子量や各モノマー単位の構成 比の異なったポリマー、異なった各モノマー単位から構 成されるポリマー等が挙げられる。) 2種以上の併用、 一般式[11]で示されるポリマー1種以上と、一般式 「12]で示されるポリマー1種以上の混合、前記一般 式[27]で示される異なったポリマー(例えば、重量 平均分子量や各モノマー単位の構成比の異なったポリマ 一、異なった各モノマー単位から構成されるポリマー等 が挙げられる。) 2種以上の併用、一般式[27]で示

されるポリマー1種以上と、一般式[11]で示されるポリマー1種以上の混合、又は一般式[27]で示されるポリマー1種以上と、一般式[12]で示されるポリマー1種以上の混合等が挙げられ、中でも一般式[11]で示されるポリマー1種以上と、一般式[12]で示されるポリマー1種以上を併用及び一般式[27]で示されるポリマー1種以上と、一般式[11]で示されるポリマー1種以上と、一般式[11]で示されるポリマー1種以上を併用するのが特に好ましい。

【0039】一般式「11〕で示されるポリマーと、一 般式[12]で示されるポリマーとの使用割合として は、通常、95:5~5:95であるが、ラインアンドスペ ース用として用いる場合は、光強度差の点から、通常9 5:5~50:50が好ましいが、耐熱性、パターン側壁形 状の点を考慮すると90:10~50:50がより好ましい。ま た、コンタクトホール用として用いる場合は通常50:50 ~5:95であるが、解像性、DOFの点で有利な50:50 ~10:90がより好ましい。更に、一般式[11]、[1 2] 又は[27]で示されるポリマーを夫々2種組合せ て用いる場合の使用割合としては、通常、95:5~5: 95である。また、一般式[11]で示されるポリマーと 一般式[27]で示されるポリマー、又は一般式[1 2]で示されるポリマーと一般式[27]で示されるポ リマーとの使用割合としては、通常、95:5~5:95で あり、50:50~5:95がより好ましい。また、一般式 「11]で示されるポリマーと一般式「12]で示され るポリマーと一般式「27]で示されるポリマーとの使 用割合としては、通常、90:5:5~5:5190、90: 5:5~5:90:5又は5:90:5~5:5:90であ

【0040】本発明のレジスト組成物に使用される上記一般式[1]、一般式[11]、一般式[12]、一般式[24]、一般式[25]又は一般式[27]で示される常能基が既存れるポリマーは、一般式[7]で示される官能基が既存のtert-ブトキシカルボニルオキシ基、テトラヒドロピラニルオキシ基、tert-ブトキシ基、tert-ブトキシカルボニルメチルオキシ基、カルボン酸 tert-ブチルエステル基等の官能基と比較して酸の作用により極めて容易に保護基が脱離して水酸基となることに起因して、解像性能の向上、経時的なパターン寸法の維持(Delay Time)及びウェハー面内での寸法均一性等の点で極めて有利である。

【0041】また、ポリマー中に一般式[26]で示されるモノマー単位、より具体的には一般式[10]、一般式[28]等で示されるモノマー単位を適宜含有させることにより、現像時に現像速度を調整することができるので、アセタール基を官能基とするポリマーに共通して見られる側壁荒れを改善し、近接効果の影響を抑制し、マスクリニアリティも向上させることができる。また、このモノマー単位を含有させることにより、ポリマー中の一般式[8]で示されるモノマー単位の含量を低

減出来ることに起因してポリマー全体の耐熱性向上にも 大きく寄与する。

【0042】一般式[8]で示されるモノマー単位とし ては、例えばp-又はm-ヒドロキシスチレン誘導体、p-又 はm-ヒドロキシーαーメチルスチレン誘導体等のモノマ ー由来のモノマー単位が挙げられ、それ等のモノマーの 具体例としては、例えばp-又はm-1-メトキシー1-メチル エトキシスチレン、p-又はm-1-ベンジルオキシ-1-メチ ルエトキシスチレン、p-又はm-1-ベンジルオキシエトキ シスチレン、p-又はm-1-エトキシエトキシスチレン、p-又はm-1-メトキシエトキシスチレン、p-又はm-1-n-ブト キシエトキシスチレン、p-又はm-1-イソブトキシエトキ シスチレン、p-又はm-1-(1,1-ジメチルエトキシ)-1-メチルエトキシスチレン、p-又はm-1-(1,1-ジメチルエ トキシ) エトキシスチレン、p-又はm-1-(2-クロルエト キシ) エトキシスチレン、p-又はm-1-(2-エチルヘキシ ルオキシ)エトキシスチレン、p-又はm-1-エトキシ-1-メチルエトキシスチレン、p-又はm-1-n-プロポキシエト キシスチレン、p-又はm-1-メチルー1-n-プロポキシエト キシスチレン、p-又はm-1-メトキシプロポキシスチレ ン、p-又はm-1-エトキシプロポキシスチレン、p-又はm-1-メトキシブトキシスチレン、m-又はp-1-メトキシシク ロヘキシルオキシスチレン、m-又はp-1-エトキシー1-シ クロヘキシルメトキシスチレン、p-又はm-1-シクロヘキ シルオキシエトキシスチレン、p-又はm-(α-エトキシ ベンジル)オキシスチレン、p-又はm-〔α-エトキシー (4-メチルベンジル)]オキシスチレン、p-又はm-〔α -エトキシー(4-メトキシベンジル)]オキシスチレ ン、 $p-又はm-〔 \alpha-エトキシー(4-ブロムベンジル)〕$ オキシスチレン、p-又はm-1-エトキシー2-メチルプロポ キシスチレン及びこれ等p-又はm-ヒドロキシスチレン誘 導体と同様の置換基を有するp-又はm-ヒドロキシーα-メチルスチレン誘導体が挙げられる。

【0043】また、一般式[9]で示されるモノマー単位の具体例としては、例えばp-又はm-ビニルフェノール、p-又はm-ヒドロキシーαーメチルスチレン等に由来するモノマー単位等が挙げられる。

【0044】一般式 [10]で示されるモノマー単位としては、具体的には例えばスチレン、p-又はm-メチルスチレン、p-又はm-メトキシスチレン、p-又はm-メトキシスチレン、p-又はm-イソプロポキシスチレン、p-又はm-tertーブトキシスチレン、p-又はm-シクロペキシルオキシスチレン、p-又はm-1-メチルシクロペキシルオキシスチレン、p-又はm-テトラヒドロピラニルオキシスチレン、p-又はm-テトラヒドロピラニルオキシスチレン、p-又はm-テトラヒドロフラニルオキシスチレン、p-又はm-アセチルオキシスチレン、p-又はm-イソブタノイルオキシスチレン、p-又はm-シクロペキシルカルボニルオキシスチレン、p-又はm-ベンゾイルオキシス

チレン、p-又はm-(4-メチルベンゾイル)オキシスチレ ン、p-又はm-1-ナフトイルオキシスチレン、p-又はm-2-ナフトイルオキシスチレン、p-又はm-メトキシカルボニ ルオキシスチレン、p-又はm-エトキシカルボニルオキシ スチレン、p-又はm-イソプロポキシカルボニルオキシス チレン、p-又はm-イソブトキシカルボニルオキシスチレ ン、p-又はm-sec-ブトキシカルボニルオキシスチレン、 p-又はm-tert-ブトキシカルボニルオキシスチレン、p-又はm-イソペンチルオキシカルボニルオキシスチレン、 p-又はm-tert-ペンチルオキシカルボニルオキシスチレ ン、p-又はm-ビニルフェノキシ酢酸 1-メチルシクロペ ンチル、p-又はm-ビニルフェノキシ酢酸 1-メチルシク ロヘキシル、p-又はm-ビニルフェノキシ酢酸 テトラヒ ドロピラニル、p-又はm-ビニルフェノキシ酢酸 tert-ブ チル等のモノマー単位及びこれ等スチレン誘導体と同様 な置換基を有するαーメチルスチレン誘導体等のモノマ ー由来のモノマー単位が挙げられる。一般式 [28]で 示されるモノマー単位としては、具体的には例えばアク リル酸メチル、アクリル酸エチル、アクリル酸 n-プロ ピル、アクリル酸 tert-ブチル、アクリル酸シクロヘキ シル、アクリル酸イソボルニル、アクリル酸ノルボルニ ル、メタクリル酸メチル、メタクリル酸エチル、メタク リル酸 n-プロピル、メタクリル酸 tert-ブチル、メタ クリル酸シクロヘキシル、メタクリル酸イソボルニル、 メタクリル酸ノルボルニル等のモノマー由来のモノマー 単位が挙げられる。

【0045】一般式[24]、一般式[1]又は一般式[25]で示されるポリマーに於て、上記一般式[8]で示されるモノマー単位及び一般式[26]で示されるモノマー単位の一般式[24]で示されるポリマー中に占める構成比率、上記一般式[8]で示されるモノマー単位及び一般式[10]で示されるモノマー単位の一般式[1]で示されるボリマー中に占める構成比率、又は、一般式[8]で示されるモノマー単位及び一般式[25]で示されるポリマー中に占める構成比率は、夫々のポリマーに於て両者の合計が通常10~90モル%であり、何れの場合も本発明のレジスト組成物として使用可能であるが解像性能、ポリマーの耐熱性、基板との密着性及びマスクリニアリティを極めて良好にするという観点からは20~50モル%が好ましい。

【0046】また、一般式[26]、一般式[10]又 は一般式[28]で示されるモノマー単位が、一般式 [24]、一般式[1]又は一般式[25]で示される ポリマー中に占める構成比率は夫々のポリマーに於て通 常0~25モル%であるが、解像性能の低下を抑制しなが ら、側壁荒れやマスクリニアリティを良好に出来、近接 効果の影響を軽減出来るという点で0~20モル%が好ま しい。また、本願発明に係る一般式[11]で示される ポリマーと一般式[12]で示されるポリマーとを組合 せて用いる場合の上記一般式[8]で示されるモノマー 単位及び一般式[10]で示されるモノマー単位の一般 式[11]で示されるポリマー中に占める構成比率は、 両者の合計が通常10~90モル%であり、何れの場合も本 発明のレジスト組成物として使用可能であるが解像性 能、ポリマーの耐熱性、基板との密着性及びマスクリニ アリティを極めて良好にするという観点から20~50モル %が特に好ましい。

【0047】また、一般式[10]又は一般式[28]で示されるモノマー単位が一般式[11]又は一般式[27]で示されるポリマー中に占める構成比率は、夫々のポリマーに於て通常5~25モル%であるが、特に解像性能の低下を抑制しながら、側壁荒れやマスクリニアリティを良好に出来、近接効果の影響を軽減出来るという点で10~20モル%が好ましい。

【0048】一般式[12]で示されるポリマーに於て、上記一般式[8]で示されるモノマー単位が一般式[12]で示されるポリマー中に占める構成比率は通常10~90モル%であるが、解像性能、Delay Timeの影響抑制効果、基板との密着性の改善等の点から20~50モル%が特に好ましい。一般式[1]で示されるポリマー2種の組合せの好ましい例としては、第一のポリマーはR¹及びR²が夫々独立して水素原子又はメチル基であり、R³及びR⁴は何れか一方が水素原子又は炭素数1~6の直鎖状、分枝状又は環状のアルキル基であり、他方が炭素数1~6の直鎖状、分枝状又は環状のアルキル基であり、R⁵が炭素数1~10の直鎖状、分枝状又は環状のアルキル基又はアラルキル基であり、R⁶が炭素数1~8の直鎖状、分枝状又は環状のアルコキシ基、飽和複素環オキシ基又は下記一般式[2]

【化32】

$-O-(CH_2) 1-C-X-R^7$

(式中、 R^7 は炭素数 $1\sim 8$ の直鎖状又は分枝状のアルキル基、フェニル基又は飽和複素環オキシ基であり、Xは単結合又は酸素原子であり、1は0又は1である。)で示される基であり、m及びnが夫々独立して自然数で

あり、kが自然数(但し、 $0.10 \le m + k / m + n + k \le 0.90$ で且つ $0 < k / m + n + k \le 0.25$ である。)であり、第二のポリマーはkが0で、 $R^1 \sim R^5$ 、m及びnは第一のポリマーのそれらと同じものであるものが挙げら

れる。更に好ましい例としては、一般式[1]で示され るポリマー2種を含んで成り、第一のポリマーはR¹、 R²及びR³が水素原子であり、R⁴が炭素数1~6の直 鎖状、分枝状又は環状のアルキル基であり、R⁵が炭素 数1~6の直鎖状、分枝状又は環状のアルキル基であ り、R⁶が炭素数3~8の分枝状又は環状のアルコキシ 基、テトラヒドロピラニルオキシ基、テトラヒドロフラ ニルオキシ基、アセチルオキシ基、ピバロイルオキシ 基、ベンゾイルオキシ基、tert-ブトキシカルボニルオ キシ基、tert-ブトキシカルボニルメチルオキシ基であ り、m及びnが夫々独立して自然数であり、kが自然数 (但し、 $0.10 \le m + k / m + n + k \le 0.90$ で且つ0 < k/m+n+k≤0.25である。) であり、第二のポリマー はkがOで、R1~R5、m及びnは第一のポリマーのそ れらと同じものが挙げられる。更にまたより好ましい例 としては、一般式[1]で示されるポリマー2種を含ん で成り、第一のポリマーは R^1 、 R^2 及び R^3 が水素原子 であり、R⁴が炭素数1~6の直鎖状又は分枝状のアル キル基であり、R5が炭素数1~6の直鎖状、分枝状又 は環状のアルキル基であり、R⁶がイソプロポキシ基、t ert-ブトキシ基、テトラヒドロピラニルオキシ基、テト

-O-(CH₂)

【0050】(式中、R7は炭素数1~8の直鎖状、分 枝状又は環状のアルキル基、アリール基、又は飽和複素 環基を表し、Xは単結合又は酸素原子を表し、1は0又 は自然数を表す。)を表し、m及びnは夫々独立して自 然数を表し、kは0又は自然数(但し、0.10≤m+k/ $m+n+k \le 0.90$ で且つ $0 \le k/m+n+k \le 0.25$ であ る。)で示されるポリマーであり、一般式[25]で示 されるポリマーはR1及びR2は夫々独立して水素原子又 はメチル基であり、R3及びR4は何れか一方が水素原子 又は炭素数1~6の直鎖状、分枝状又は環状のアルキル 基であり、他方が炭素数1~6の直鎖状、分枝状又は環 状のアルキル基であり、R5が炭素数1~10の直鎖 状、分枝状又は環状のアルキル基又はアラルキル基であ り、R²³が炭素数1~6の直鎖状、分枝状又は環状のア ルキル基、又は炭素数7~9の有橋脂環式炭化水素基を 表し、m及びnは夫々独立して自然数を表し、hは0又 は自然数(但し、 $0.10 \le m + h / m + n + h \le 0.90$ で且 つ $0 \le h/m + n + h \le 0.25$ である。)で示されるポリ マーが挙げられる。

【0051】更に好ましい例としては、一般式 [1]で示されるポリマーと一般式 [25]で示されるポリマーとを含んで成り、一般式 [1]で示されるポリマーはR 1 、 R^2 及び R^3 が水素原子であり、 R^4 が炭素数 $1\sim 6$ の直鎖状、分枝状又は環状のアルキル基であり、 R^5 が炭

ラヒドロフラニルオキシ基、アセチルオキシ基、ピバロ イルオキシ基、ベンゾイルオキシ基、tert-ブトキシカ ルボニルオキシ基、tert-ブトキカルボニルメチルオキ シ基であり、m及びnが夫々独立して自然数であり、k が自然数(但し、 $0.10 \le m + k / m + n + k \le 0.90$ で且 つ $0 < k/m + n + k \le 0.25$ である。)であり、第二の ポリマーはkが0で、 $R^1 \sim R^5$ 、m及Unは第一のポリ マーのそれらと同じものであるものが挙げられる。一般 式「1]で示されるポリマー1種以上と一般式「25] で示されるポリマー1種以上との組合せの好ましい例と しては、一般式「1]で示されるポリマーはR¹及びR² は夫々独立して水素原子又はメチル基であり、R3及び R4は何れか一方が水素原子又は炭素数1~6の直鎖 状、分枝状又は環状のアルキル基であり、他方が炭素数 1~6の直鎖状、分枝状又は環状のアルキル基であり、 R5が炭素数1~10の直鎖状、分枝状又は環状のアル キル基又はアラルキル基であり、R6が炭素数1~8の 直鎖状、分枝状又は環状のアルコキシ基、飽和複素環オ キシ基又は下記一般式[2]

【0049】 【化33】

 $1 - C - X - R^{7}$

素数1~6の直鎖状、分枝状又は環状のアルキル基であ り、R⁶が炭素数3~8の分枝状又は環状のアルコキシ 基、テトラヒドロピラニルオキシ基、テトラヒドロフラ ニルオキシ基、アセチルオキシ基、ピバロイルオキシ、 ベンゾイルオキシ基、tert-ブトキシカルボニルオキシ 基、tert-ブトキシカルボニルメチルオキシ基であり、 m、n及びkは夫々独立して自然数(但し、0.10≤m+ $k/m+n+k \le 0.90$ で且つ $0 < k/m+n+k \le 0.25$ である。)であり、一般式[25]で示されるポリマー はR1、R2及びR3が水素原子であり、R4は炭素数1~ 6の直鎖状、分枝状又は環状のアルキル基であり、R5 が炭素数1~6の直鎖状、分枝状又は環状のアルキル基 であり、R²³が炭素数1~6の直鎖状、分枝状又は環状 のアルキル基、又は炭素数7~9の有橋脂環式炭化水素 基を表し、m、n及びhは夫々独立して自然数(但し、 $0.10 \le m + h/m + n + h \le 0.90$ で且つ0 < h/m + n+h≤0.25である。) であるものが挙げられる。

【0052】更に特に好ましい例としては、一般式 [1]で示されるポリマーと一般式 [25]で示されるポリマーとを含んで成り、一般式 [1]で示されるポリマーは R^1 、 R^2 及び R^3 が水素原子であり、 R^4 が炭素数 $1\sim6$ の直鎖状、分枝状又は環状のアルキル基であり、 R^5 が炭素数 $1\sim6$ の直鎖状、分枝状又は環状のアルキル基であり、 R^6 がイソプロポキシ基、tert-ブトキシ

【0053】一般式 [25]で示されるポリマー2種の組合せの好ましい例としては、第一のポリマーは R^1 及び R^2 は夫々独立して水素原子又はメチル基であり、 R^3 及び R^4 は何れか一方が水素原子又は炭素数 $1\sim 6$ の直鎖状、分枝状又は環状のアルキル基であり、他方が炭素数 $1\sim 6$ の直鎖状、分枝状又は環状のアルキル基であり、 R^5 が炭素数 $1\sim 1$ 0の直鎖状、分枝状又は環状のアルキル基であり、 R^2 3は炭素数 $1\sim 1$ 0の直鎖状、分枝状又は環状のアルキル基又はアラルキル基であり、 R^2 3は炭素数 $1\sim 1$ 0の直鎖状、分枝状又は環状のアルキル基、又は炭素数 $1\sim 1$ 0の直鎖状、分枝状又は環状のアルキル基であり、 $1\sim 1$ 0の直鎖状、分枝状又は環状のアルキル基、又は炭素数 $1\sim 1$ 0の可能に対しているのでは、 $1\sim 1$ 0の可能に対しているのでは、 $1\sim 1$ 0のでは、 $1\sim 1$

【0054】更に好ましい例としては、一般式 [25] で示されるポリマー2種を含んで成り、第一のポリマーは R^1 、 R^2 及び R^3 が水素原子であり、 R^4 は炭素数 $1\sim$ 6の直鎖状、分枝状又は環状のアルキル基であり、 R^5 が炭素数 $1\sim$ 6の直鎖状、分枝状又は環状のアルキル基であり、 R^{23} は炭素数 $1\sim$ 6の直鎖状、分枝状又は環状のアルキル基であり、 R^{23} は炭素数 $1\sim$ 6の直鎖状、分枝状又は環状のアルキル基であり、 R^{23} は炭素数 $1\sim$ 6の直鎖状、分枝状又は環状のアルキル基、又は炭素数 $1\sim$ 6の直鎖状、分枝状又は環状のアルキル基、又は炭素数 $1\sim$ 6の直鎖状、分枝状又は環状のアルキル基、又は炭素数 $1\sim$ 6の直鎖状、分枝状又は環状のアルキル基、又は炭素数 $1\sim$ 6の直鎖状、分枝状又は環状のアルキル基、及は炭素数 $1\sim$ 6の直鎖状、分枝状又は環状のアルキル基、及は炭素数 $1\sim$ 6の直鎖状、分枝状又は環状のアルキル基、及び炭素数 $1\sim$ 6の直鎖状、分枝状又は環状のアルキル基であり、 $1\sim$ 6の直鎖状、分枝が又は環状のアルキル基であり、 $1\sim$ 6の可能などのでは、 $1\sim$ 6の可能などのでは、

【0055】更に特に好ましい例としては、一般式 [25]で示されるポリマー2種を含んで成り、第一のポリマーは R^1 、 R^2 及び R^3 が水素原子であり、 R^4 は炭素数 $1\sim6$ の直鎖状、分枝状又は環状のアルキル基であり、 R^5 が炭素数 $1\sim6$ の直鎖状、分枝状又は環状のアルキル基であり、 R^{23} はメチル基、tert-ブチル基、シクロへキシル基、イソボルニル基又はノルボルニル基であり、m、n及びnは夫々独立して自然数(但し、 $0.10 \le m+h/m+n+h \le 0.90$ で且つ $0 < h/m+n+h \le$

【0056】一般式[1]で示される第一のポリマーと 第二のポリマーの好ましい使用割合としては95:5~ 5:95の範囲が挙げられる。

【0057】一般式[1]で示されるポリマーと一般式 [25]で示されるポリマーの好ましい使用割合として は95:5~5:95の範囲が挙げられる。

【0058】一般式 [25]で示される第一のポリマーと第二のポリマーの好ましい使用割合としては95:5~5:95の範囲が挙げられる。

【0059】一般式 [24]、一般式 [1]及び一般式 [25]で示されるポリマーの平均分子量としてはレジスト組成物として利用可能なものであれば特に限定することなく挙げられるが、好ましい範囲としてはポリスチレンを標準とするGPC測定法により求めた重量平均分子量 (Mw)が通常、 $3,000\sim50,000$ 程度、好ましくは $5,000\sim25,000$ 程度であり、また、一般式 [24]、一般式 [1]又は一般式 [25]で示されるポリマーの重量平均分子量と数平均分子量との比率(分散度:Mw/Mn)は $1.0\sim2.5$ の範囲が好ましいが、特に一般式

[1]で示されるポリマーの分散度は現像時に露光部位の現像液に対する溶出速度が均等となり、その結果、パターン側壁を良好にし、且つ耐熱性も高くなる1.0~1.5の範囲がより好ましい。

【0060】一般式 [11] で示される3元ポリマーの 具体例としては、例えばポリ(p-1-メトキシ-1-メチル エトキシスチレン/p-ヒドロキシスチレン/スチレ ン)、ポリ(p-1-メトキシ-1-メチルエトキシスチレン /p-ヒドロキシスチレン/p-メチルスチレン)、ポリ (p-1-メトキシ-1-メチルエトキシスチレン/p-ヒドロ キシスチレン/p-メトキシスチレン)、ポリ(p-1-メト キシ-1-メチルエトキシスチレン/p-ヒドロキシスチレ ン/p-tertーブトキシスチレン)、ポリ(p-1-メトキシ -1-メチルエトキシスチレン/p-ヒドロキシスチレン/ p-1-メチルシクロヘキシルオキシスチレン)、ポリ(p-1-メトキシ-1-メチルエトキシスチレン/p-ヒドロキシ スチレン/p-tertーブトキシカルボニルオキシスチレ ン)、ポリ(p-1-メトキシー1-メチルエトキシスチレン /p-ヒドロキシスチレン/p-ビニルフェノキシ酢酸 ter t-ブチル)、ポリ(p-1-メトキシー1-メチルエトキシス チレン/p-ヒドロキシスチレン/p-エトキシカルボニル オキシスチレン)、ポリ(p-1-メトキシー1-メチルエト キシスチレン/p-ヒドロキシスチレン/p-ビニルフェノ キシ酢酸 1-メチルシクロヘキシル)、ポリ(p-1-メト キシー1-メチルエトキシスチレン/p-ヒドロキシスチレ ン/p-テトラヒドロピラニルオキシスチレン)、ポリ (m-1-メトキシ-1-メチルエトキシスチレン/m-ヒドロ キシスチレン/m-tert-ブトキシスチレン)、ポリ(p1-メトキシ-2-メチルプロポキシスチレン/p-ヒドロキ シスチレン/p-tert-ブトキシスチレン)、ポリ(p-1-メトキシー1-n-プロポキシエトキシスチレン/p-ヒドロ キシスチレン/p-tertーブトキシスチレン)、ポリ(p-1-ベンジルオキシ-1-メチルエトキシスチレン/p-ヒド ロキシスチレン/スチレン)、ポリ(p-1-ベンジルオキ シー1-メチルエトキシスチレン/p-ヒドロキシスチレン /p-メチルスチレン)、ポリ(p-1-ベンジルオキシー1-メチルエトキシスチレン/p-ヒドロキシスチレン/p-イ ソプロポキシスチレン)、ポリ (p-1-ベンジルオキシー 1-メチルエトキシスチレン/p-ヒドロキシスチレン/ptert-ブトキシスチレン)、ポリ(p-1-ベンジルオキシ エトキシスチレン/p-ヒドロキシスチレン/p-イソプロ ポキシスチレン)、ポリ (p-1-ベンジルオキシエトキシ スチレン/p-ヒドロキシスチレン/p-tert - ブトキシス チレン)、ポリ(p-1-ベンジルオキシエトキシスチレン /p-ヒドロキシスチレン/p-tert – ブトキシカルボニル オキシスチレン)、ポリ(p-1-エトキシエトキシスチレ ン/p-ヒドロキシスチレン/スチレン)、ポリ(p-1-エ トキシエトキシスチレン/p-ヒドロキシスチレン/p-メ チルスチレン)、ポリ(p-1-エトキシエトキシスチレン /p-ヒドロキシスチレン/p-イソプロピルスチレン)、 ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシス チレン/p-メトキシスチレン)、ポリ(p-1-エトキシエ トキシスチレン/p-ヒドロキシスチレン/p-エトキシス チレン)、ポリ(p-1-エトキシエトキシスチレン/p-ヒ ドロキシスチレン/p-イソプロポキシスチレン)、ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ ン/p-tert-ブトキシスチレン)、ポリ(p-1-エトキシ エトキシスチレン/p-ヒドロキシスチレン/p-1-メチル シクロペンチルオキシスチレン)、ポリ(p-1-エトキシ エトキシスチレン/p-ヒドロキシスチレン/p-シクロへ キシルオキシスチレン)、ポリ(p-1-エトキシエトキシ スチレン/p-ヒドロキシスチレン/p-1-メチルシクロへ キシルオキシスチレン)、ポリ(p-1-エトキシエトキシ スチレン/p-ヒドロキシスチレン/p-メトキシカルボニ ルオキシスチレン)、ポリ(p-1-エトキシエトキシスチ レン/p-ヒドロキシスチレン/p-エトキシカルボニルオ キシスチレン)、ポリ (p-1-エトキシエトキシスチレン /p-ヒドロキシスチレン/p-イソプロポキシカルボニル オキシスチレン)、ポリ(p-1-エトキシエトキシスチレ ン/p-ヒドロキシスチレン/p-tert-ブトキシカルボニ ルオキシスチレン)、ポリ(p-1-エトキシエトキシスチ レン/p-ヒドロキシスチレン/p-イソブトキシカルボニ ルオキシスチレン)、ポリ(p-1-エトキシエトキシスチ レン/p-ヒドロキシストレン/p-イソペンチルオキシカ ルボニルオキシスチレン)、ポリ(p-1-エトキシエトキ シスチレン/p-ヒドロキシスチレン/p-アセチルオキシ スチレン)、ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-ピバロイルオキシスチレン)、

ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシス チレン/p-シクロヘキシルカルボニルオキシスチレ ン)、ポリ(p-1-エトキシエトキシスチレン/p-ヒドロ キシスチレン/p-ベンゾイルオキシスチレン)、ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ ン/p-テトラヒドロフラニルオキシスチレン)、ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ ン/p-1-ナフトイルオキシスチレン)、ポリ(p-1-エト キシエトキシスチレン/p-ヒドロキシスチレン/p-テト ラヒドロピラニルオキシスチレン)、ポリ(p-1-エトキ シエトキシスチレン/p-ヒドロキシスチレン/p-ビニル フェノキシ酢酸 1-メチルシクロヘキシル)、ポリ(p-1 -エトキシエトキシスチレン/p-ヒドロキシスチレン/p -ビニルフェノキシ酢酸 tert-ブチル)、ポリ(p-1-エ トキシエトキシスチレン/p-ヒドロキシスチレン/p-ビ ニルフェノキシ酢酸 テトラヒドロピラニル)、ポリ(m -1-エトキシエトキシスチレン/m-ヒドロキシスチレン /m-tert-ブトキシカルボニルオキシスチレン)、ポリ (m-1-エトキシエトキシスチレン/m-ヒドロキシスチレ ン/m-tertーブトキシスチレン)、ポリ(p-1-メトキシ エトキシスチレン/p-ヒドロキシスチレン/スチレ ン)、ポリ(p-1-メトキシエトキシスチレン/p-ヒドロ キシスチレン/pーメチルスチレン)、ポリ(p-1-メトキ シエトキシスチレン/p-ヒドロキシスチレン/m-メチル スチレン)、ポリ(p-1-メトキシエトキシスチレン/p-ヒドロキシスチレン/p-2-ナフトイルオキシスチレ ン)、ポリ(p-1-メトキシエトキシスチレン/p-ヒドロ キシスチレン/p-tert-ブチルスチレン)、ポリ(p-1-メトキシエトキシスチレン/p-ヒドロキシスチレン/p-メトキシスチレン)、ポリ(p-1-メトキシエトキシスチ レン/p-ヒドロキシスチレン/p-エトキシスチレン)、 ポリ (p-1-メトキシエトキシスチレン/p-ヒドロキシス チレン/p-イソプロポキシスチレン)、ポリ(p-1-メト キシエトキシスチレン/p-ヒドロキシスチレン/p-tert ーブトキシスチレン)、ポリ(p-1-メトキシエトキシス チレン/p-ヒドロキシスチレン/p-1-メチルシクロヘキ シルオキシスチレン)、ポリ(p-1-メトキシエトキシス チレン/p-ヒドロキシスチレン/p-ビニルフェノキシ酢 酸 テトラヒドロピラニル)、ポリ (p-1-メトキシエト キシスチレン/p-ヒドロキシスチレン/p-テトラヒドロ ピラニルオキシスチレン)、ポリ(p-1-メトキシエトキ シスチレン/p-ヒドロキシスチレン/p-エトキシカルボ ニルオキシスチレン)、ポリ(p-1-メトキシエトキシス チレン/p-ヒドロキシスチレン/p-tert – ブトキシカル ボニルオキシスチレン)、ポリ (p-1-メトキシエトキシ スチレン/p-ヒドロキシスチレン/p-イソブチルオキシ カルボニルオキシスチレン)、ポリ(p-1-メトキシエト キシスチレン/p-ヒドロキシスチレン/p-ビニルフェノ キシ酢酸 tert-ブチル)、ポリ(p-1-メトキシエトキシ スチレン/p-ヒドロキシスチレン/p-ビニルフェノキシ

酢酸 1-メチルシクロヘキシル)、ポリ(m-1-メトキシ エトキシスチレン/m-ヒドロキシスチレン/m-tert - ブ トキシスチレン)、ポリ(p-1-イソブトキシエトキシス チレン/m-ヒドロキシスチレン/p-メトキシスチレ ン)、ポリ(p-1,1-ジメチルエトキシエトキシスチレン /m-ヒドロキシスチレン/m-メトキシスチレン)、ポリ (p-1,1-ジメチルエトキシエトキシスチレン/p-ヒドロ キシスチレン/p-tert - ブトキシスチレン)、ポリ(p-1-n-プロポキシエトキシスチレン/p-ヒドロキシスチレ ン/p-tert-ブトキシスチレン)、ポリ(p-1-エトキシ -n-プロポキシスチレン/p-ヒドロキシスチレン/p-イ ソプロポキシスチレン)、ポリ(p-1-エトキシーn-プロ ポキシスチレン/p-ヒドロキシスチレン/p-tert-ブト キシスチレン)、ポリ(p-1-メトキシーn-プロポキシス チレン/p-ヒドロキシスチレン/p-tert-ブトキシスチ レン)、ポリ(p-1-エトキシーn-プロポキシスチレン/ p-ヒドロキシスチレン/p-ピバロイルオキシスチレ ン)、ポリ(p-1-エトキシーn-プロポキシスチレン/p-ヒドロキシスチレン/p-テトラヒドロピラニルオキシス チレン)、ポリ(p-1-エトキシーn-プロポキシスチレン /p-ヒドロキシスチレン/p-tert-ブトキシカルボニル オキシスチレン)、ポリ (p-1-エトキシ-n-プロポキシ スチレン/p-ヒドロキシスチレン/p-メチルベンゾイル オキシスチレン)、ポリ(p-1-メトキシーn-プロポキシ スチレン/p-ヒドロキシスチレン/p-tert - ブトキシカ ルボニルオキシスチレン)、ポリ(p-1-エトキシーn-ブ トキシスチレン/p-ヒドロキシスチレン/p-tert-ブト キシスチレン)、ポリ(p-1-シクロヘキシルオキシエト キシスチレン/p-ヒドロキシスチレン/スチレン)、ポ リ(p-1-シクロヘキシルオキシエトキシスチレン/p-ヒ ドロキシスチレン/p-tert-ブトキシカルボニルオキシ スチレン)、ポリ(p-1-シクロヘキシルオキシエトキシ スチレン/p-ヒドロキシスチレン/p-tert-ブトキシス チレン)、ポリ(p-1-シクロヘキシルオキシエトキシス チレン/p-ヒドロキシスチレン/p-テトラヒドロピラニ ルオキシスチレン)、ポリ(p-1-シクロヘキシルオキシ エトキシスチレン/p-ヒドロキシスチレン/p-ピバロイ ルオキシスチレン)、ポリ(p-1-シクロヘキシルオキシ エトキシスチレン/p-ヒドロキシスチレン/p-イソプロ ポキシスチレン)、ポリ(p-1-メトキシシクロヘキシル オキシスチレン/p-ヒドロキシスチレン/p-tert-ブト キシスチレン)、ポリ (p-1-エトキシシクロヘキシルメ トキシスチレン/p-ヒドロキシスチレン/p-tertーブト キシスチレン)、ポリ「p-〔α-エトキシー(p-メチル ベンジル)] オキシスチレン/p-ヒドロキシスチレン/ p-tert- \mathcal{I} I I -(p-ブロムベンジル)〕 オキシスチレン/p-ヒドロキ シスチレン/p-tert-ブトキシスチレン] 等が挙げられ る。

【0061】一般式[12]で示される2元ポリマーの

具体例としては、例えばポリ(p-1-メトキシー1-メチル) エトキシスチレン/p-ヒドロキシスチレン)、ポリ(p-1-ベンジルオキシ-1-メチルエトキシスチレン/p-ヒド ロキシスチレン)、ポリ(p-1-エトキシエトキシスチレ ン/p-ヒドロキシスチレン)、ポリ(p-1-メトキシエト キシスチレン/p-ヒドロキシスチレン)、ポリ(p-1-n-ブトキシエトキシスチレン/p-ヒドロキシスチレン)、 ポリ(p-1-イソブトキシエトキシスチレン/p-ヒドロキ シスチレン)、ポリ(p-1,1-ジメチルエトキシー1-メチ ルエトキシスチレン/p-ヒドロキシスチレン)、ポリ (p-1-メトキシーn-プロポキシスチレン/p-ヒドロキシ スチレン)、ポリ(p-1-エトキシーn-プロポキシスチレ ン/p-ヒドロキシスチレン)、ポリ(p-1-シクロヘキシ ルオキシエトキシスチレン/p-ヒドロキシスチレン)、 ポリ (p-1,1-ジメチルエトキシエトキシスチレン/p-ヒ ドロキシスチレン)、ポリ(p-1-エトキシシクロヘキシ ルメトキシスチレン/p-ヒドロキシスチレン)、ポリ $[p-(\alpha-x)+2\sqrt{y}]$ ロキシスチレン〕、ポリ [p-〔α-エトキシー (p-メチ ルベンジル)] オキシスチレン/p-ヒドロキシスチレ ン〕等が挙げられる。

【0062】また、一般式[27]で示される3元ポリ マーの具体例としては、例えばポリ(p-1-エトキシプロ ポキシスチレン/p-ヒドロキシスチレン/メタクリル酸 メチル)、ポリ(p-1-エトキシプロポキシスチレン/p-ヒドロキシスチレン/メタクリル酸エチル)、ポリ(p-1-エトキシプロポキシスチレン/p-ヒドロキシスチレン /メタクリル酸 tert-ブチル)、ポリ(p-1-エトキシプ ロポキシスチレン/p-ヒドロキシスチレン/メタクリル 酸シクロヘキシル)、ポリ(p-1-エトキシプロポキシス チレン/p-ヒドロキシスチレン/メタクリル酸イソボル ニル)、ポリ(p-1-エトキシプロポキシスチレン/p-ヒ ドロキシスチレン/メタクリル酸ノルボルニル)、ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ ン/アクリル酸メチル)、ポリ (p-1-エトキシエトキシ スチレン/p-ヒドロキシスチレン/アクリル酸 tert-ブ チル)、ポリ(p-1-エトキシエトキシスチレン/p-ヒド ロキシスチレン/アクリル酸シクロヘキシル)、ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ ン/アクリル酸イソボルニル)、ポリ (p-1-エトキシエ トキシスチレン/p-ヒドロキシスチレン/メタクリル酸 メチル)、ポリ(p-1-エトキシエトキシスチレン/p-ヒ ドロキシスチレン/メタクリル酸 tert-ブチル)、ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ ン/メタクリル酸イソボルニル)、ポリ(p-1-エトキシ プロポキシスチレン/p-ヒドロキシスチレン/アクリル 酸メチル)、ポリ(p-1-エトキシプロポキシスチレン/ p-ヒドロキシスチレン/アクリル酸 tert-ブチル)、ポ リ (p-1-エトキシプロポキシスチレン/p-ヒドロキシス チレン/アクリル酸シクロヘキシル)、ポリ(p-1-エト

キシプロポキシスチレン/p-ヒドロキシスチレン/アク リル酸イソボルニル)、ポリ(p-1-エトキシプロポキシ スチレン/p-ヒドロキシスチレン/アクリル酸ノルボル ニル)、ポリ(p-1-イソブトキシエトキシスチレン/p-ヒドロキシスチレン/アクリル酸メチル)、ポリ (p-1-イソブトキシエトキシスチレン/p-ヒドロキシスチレン /アクリル酸 tert-ブチル)、ポリ (p-1-イソブトキシ エトキシスチレン/p-ヒドロキシスチレン/アクリル酸 シクロヘキシル)、ポリ(p-1-イソブトキシエトキシス チレン/p-ヒドロキシスチレン/アクリル酸イソボルニ ル)、ポリ(p-1-イソブトキシエトキシスチレン/p-ヒ ドロキシスチレン/メタクリル酸メチル)、ポリ(p-1-イソブトキシエトキシスチレン/p-ヒドロキシスチレン /メタクリル酸シクロヘキシル)、ポリ (p-1-シクロヘ キシルオキシエトキシスチレン/p-ヒドロキシスチレン /アクリル酸メチル)、ポリ(p-1-シクロヘキシルオキ シエトキシスチレン/p-ヒドロキシスチレン/アクリル 酸 tert-ブチル)、ポリ(p-1-シクロヘキシルオキシエ トキシスチレン/p-ヒドロキシスチレン/アクリル酸シ

クロヘキシル)、ポリ(p-1-シクロヘキシルオキシエトキシスチレン/p-ヒドロキシスチレン/アクリル酸イソボルニル)、ポリ(p-1-シクロヘキシルオキシエトキシスチレン/p-ヒドロキシスチレン/メタクリル酸 tert-ブチル)、ポリ(p-1-シクロヘキシルオキシエトキシスチレン/p-ヒドロキシスチレン/メタクリル酸シクロヘキシル)、ポリ(p-1-シクロヘキシルオキシエトキシスチレン/p-ヒドロキシスチレン/メタクリル酸イソボルニル)等が挙げられる。

【0063】一般式 [24]で示されるポリマーの中、例えば一般式 [1]で示されるポリマーは、例えば下記 a)~d)等に示す方法により容易に得る事が出来る。 a)方法-1(一般式 [1]に於て $k \neq 0$ で R^6 が水素原子、アルキル基、直鎖状のアルコキシ基であるポリマーの製造法)

下記一般式[13] 【0064】 【化34】

【0065】(式中、R¹は前記と同じ。)で示される モノマーと、任意の量の下記一般式[14] 【0066】 【化35】

【0067】(式中、R²及びR⁶は前記と同じ。)で示されるモノマーとを、ポリマー製造法の常法に従い、例えばラジカル重合開始剤 [例えば、2,2'ーアゾビスイソブチロニトリル、2,2'ーアゾビス(2-メチルブレロニトリル)、2,2'ーアゾビス(2-メチルプロピオン酸メチル)、2,2'ーアゾビス(2-メチルプロピオン酸エチル)、2,2'ーアゾビス(2-メチルプロピオン酸エチル)、2,2'ーアゾビス(2-メチル酪酸メチル)等のアゾ系重合開始剤やベンゾイルパーオキシド、ラウロイルパーオキシド、ビス(4-tertーブチルシクロヘキシル)パーオキシジカーボネート、ジtert-ブチルパーオキシ

ド、tert-ブチルパーオキシ 2-エチルへキサノエート、tert-ブチルパーオキシベンゾエート、1,1-ビス(tert-ブチルパーオキシ) -3,3,5-トリメチルシクロへキサン等の過酸化物系重合開始剤等が挙げられる。]の存在下、トルエン、1,4-ジオキサン、1,2-ジメトキシエタン、テトラヒドロフラン、イソプロパノール、2-メトキシプロパノール、1,3-ジオキソラン、酢酸エチル、メチルエチルケトン等の有機溶剤中、窒素又はアルゴン気流下、50~120°Cで1~10時間重合反応させる。尚、重合開始剤としては、溶解性が高いため低分子量のポリマーが得られ易く、且つ安全性や毒性の点で有利な非ニトリル系の2,2'-アゾビス(2-メチルプロピオン酸メチル)、2,2'-アゾビス(2-メチルプロピオン酸エチル)、2,2'-アゾビス(2-メチルアロピオン酸エチル)、2,2'-アゾビス(2-メチルアロピオン酸エチル)、2,2'-アゾビス(2-メチルアロピオン的より好ましい。

【0068】また、この他、分散度の小さいポリマーを得る目的ではn-ブチルリチウム、sec-ブチルリチウム、ナフタレンナトリウム、tert-ブチルリチウム、クミルカリウム、ナフタレンカリウム等の触媒下、エチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、メチルエチルケトン、1,3-ジオキソラン、酢酸エチル、トルエン等の脱水された有機溶剤中で窒素又はアルゴン気流中、-78℃~25℃で1~10時間反応させるアニオンリビング重合が好ましい。反応後は高分子取得法の常法に従って後処理を行って、下記一般式[15]

【0069】 【化36】

【0070】[式中、 R^1 、 R^2 、 R^6 及びkは前記と同じであり、eは自然数を表す(但し、 $0.75 \le e$ / $(k+e) \le 0.99$ である。)。]で示されるコポリマーを単離する。

【0071】次いでこのコポリマーをテトラヒドロフラン、アセトン、メタノール、エタノール、イソプロパノール、n-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール、1,4-ジオキサン、1,3-ジオキソラン等の有機溶剤中、適当な酸「例えば、硫酸、リン

酸、塩酸、臭化水素酸等の無機酸及びその他のルイス酸、p-トルエンスルホン酸、10-カンファースルホン酸、マロン酸、シュウ酸等の有機酸が好ましい。]と30~110℃で1~20時間反応させて、官能基であるtert-ブチル基を完全に脱離させる。反応後は高分子取得法の常法に従って後処理を行って、下記一般式[16]

【0072】 【化37】

$$- \begin{array}{c} R^{1} \\ (C - CH_{2}) \\ OH \end{array} \qquad \begin{array}{c} R^{2} \\ (C - CH_{2}) \\ R^{6} \end{array}$$

【0073】(式中、R¹、R²、R⁶、e及びkは前記と同じ。)で示されるヒドロキシスチレンコポリマーを 単離する。更にこのコポリマーと任意の量の下記一般式 [17] 【0074】 【化38】

$$R^{5} - O - C = C$$
 R^{20}
 R^{3}

【0075】(式中、R4及びR5は前記と同じであり、 R²⁰は水素原子、炭素数1~5の直鎖状又は分枝状のア ルキル基、炭素数1~5の直鎖状又は分枝状のハロアル キル基、又は置換されていても良いフェニル基を表し、 R^{21} は水素原子又は炭素数1~3のアルキル基を表し、 また、R²⁰とR²¹とでメチレン鎖を形成していても良 い。)で示されるエテニルエーテル化合物とを、テトラ ヒドロフラン、アセトン、メチルエチルケトン、1,4-ジ オキサン、1,3-ジオキソラン、塩化メチレン、1,2-ジメ トキシエタン、エチルエーテル、酢酸エチル等の有機溶 剤中、適当な触媒[例えば、硫酸、塩酸、オキシ塩化 燐、p-トルエンスルホン酸、10-カンファースルホン 酸、クロルスルホン酸・ピリジン塩、硫酸・ピリジン 塩、p-トルエンスルホン酸・ピリジン塩等]の存在下、 10~100℃で1~30時間反応させ、前記一般式[7]で 示される官能基を任意の割合で化学的に導入させる。ま た、この他、一般式[16]で示されるコポリマーと任 意の量の下記一般式[18]

【0076】 【化39】

【0077】(式中、R⁸、R⁴及びR⁵は前記と同じであり、Yはハロゲン原子を表す。)で示される化合物とを、テトラヒドロフラン、アセトン、メチルエチルケトン、1,4-ジオキサン、1,3-ジオキソラン、塩化メチレン、1,2-ジメトキシエタン、エチルエーテル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、酢酸エチル等の有機溶剤中、適当な脱ハロゲン化水素剤 [例えば、アンモニア、ジメチルアミン、トリメチルアミン、ピリジン、ピペリジエチルアミン、トリエチルアミン、ピリジン、ピペリジン、モルホリン、ピコリン等]の存在下、-10~100℃で1~30時間反応させ、前記一般式 [7]で示される官能基を任意の割合で化学的に導入させても良い。反応後は高分子取得法の常法に従って後処理を行い、前記一般式 [1]で示されるポリマーを単離する。

【0078】b)方法-2(一般式 [1] に於 $\tau k \neq 0$ で R^6 = tert-ブトキシ基のポリマーの製造)

上記一般式 [13] で示されるモノマーを方法-1と同様の操作法により重合させた後、高分子取得法の常法に従って後処理を行い、下記一般式 [19]

【0079】 【化40】

$$\begin{array}{c|c}
R^{1} \\
- (C - C H_{2}) d - \\
C H_{3} \\
C H_{3}
\end{array}$$

【0080】(式中、R¹は前記と同じ、dは自然数を表す。)で示されるホモポリマーを単離する。次いでこのホモポリマーをテトラヒドロフラン、アセトン、1,4ジオキサン、1,3-ジオキソラン、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール等の有機溶剤中、適当な酸[例えば、硫酸、リン酸、塩酸、臭化水素酸等の無機酸及びその他のルイス酸、p-トルエンスルホ

ン酸、10-カンファースルホン酸、マロン酸、シュウ酸等の有機酸が好ましい。]と30~100℃で1~10時間反応させて官能基であるtert-ブチル基を任意の割合で脱離させる。反応後は高分子取得法の常法に従って後処理を行い、下記一般式[20]

【0081】 【化41】

$$- (C-CH2) c - (C-CH2) k - CH3$$

$$O - C-CH3$$

$$CH3$$

【0082】(式中、R¹、R²及びkは前記と同じであり、c=m+nである。)で示されるヒドロキシスチレンコポリマーを単離する。次いでこのポリマーに方法ー1と同様の操作法により上記一般式[7]で示される官能基を導入させた後、高分子取得法の常法に従って後処理を行い、前記一般式[1]で示されるポリマーを単離

する。

【0083】c)方法-3(一般式[1]に於てk=0のポリマーの製造)

上記一般式[13]又は下記一般式[21]

[0084]

【化42】

$$\begin{array}{c}
R^{1} \\
C = C H_{2}
\end{array}$$

$$\begin{array}{c}
C - C - C H_{3}
\end{array}$$

【0085】(式中、R¹は前記と同じ。)で示される モノマーを方法-1と同様な操作法で夫々、重合反応さ せた後、高分子取得法の常法に従って後処理を行い、上 記一般式[19]又は下記一般式[22] 【0086】 【化43】

【0087】(式中、R¹及びdは前記と同じ。)で示されるホモポリマーを単離する。次いでこのホモポリマーをテトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、酢酸エチル、メタノール、エタノール、n-プロパール、イソプロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール、水等の溶剤中、要すれば窒素気流中、適当な塩基[例えば、水酸化ナトリウム、水酸化カリウム、アンモニア水、ヒドロキシルアミン、各種テトラアルキルアンモニウムヒドロキシド水溶液、各種トリアルキルアミン類、各種トリアルキルアミン類、各種トリアラルキルアミン類等

が好ましい。]、又は適当な酸[例えば、硫酸、塩酸、リン酸、臭化水素酸等の無機酸及びその他のルイス酸、トトルエンスルホン酸、10-カンファースルホン酸、マロン酸、シュウ酸等が好ましい。]の存在下で10~70℃で30分~10時間反応させて官能基であるtert-ブチル基又はアセチル基を完全に脱離させる。反応後は高分子取得法の常法に従って行い、下記一般式[23]

【0088】 【化44】

【0089】(式中、R¹及びdは前記と同じ。)で示されるヒドロキシスチレンポリマーを単離する。更にこのホモポリマーに方法-1と同様の操作法により上記一般式[7]で示される官能基を導入させた後、高分子取得法の常法に従って後処理を行い、上記一般式[1]で示されるポリマーを単離する。

【0090】d)方法-4(一般式 [1] に於て $k \neq 0$ で、 R^6 が分枝状又は環状のアルコキシ基、飽和複素環オキシ基又は一般式 [2] で示される基であるポリマーの製造)

上記、方法-3で得られた一般式「23〕で示されるホ モポリマーをテトラヒドロフラン、1,4-ジオキサン、酢 酸エチル、メチルエチルケトン、アセトン、塩化メチレ ン、1,3-ジオキソラン、メタノール、エタノール、n-プ ロパノール、イソプロパノール、n-ブタノール、sec-ブ タノール、 tert-ブタノール、塩化メチレン等の有機溶 剤中、適当な塩基(例えば、水酸化カリウム、水酸化ナ トリウム、炭酸ナトリウム、炭酸カリウム、トリエチル アミン、N-メチル-2-ピロリドン、ピペリジン、各種テ トラアルキルアンモニウムヒドロキシド水溶液、各種ト リアルキルアミン類、各種トリアラルキルアミン類等が 好ましい。)の存在下、任意の量の水酸基の保護剤、例 えば二炭酸ジ tert-ブチル等の二炭酸ジアルキル、クロ ル炭酸メチル等のクロル炭酸アルキル、2,3-ジヒドロフ ラン、3,4-ジヒドロ-2H-ピラン、モノクロル酢酸 tert-ブチル、モノクロル酢酸 1-メチルシクロヘキシル、イ ソブテン、ジアルキル硫酸、ヨウ化アルキル、塩化 1-メチルシクロヘキシル等と10~ 100℃で30分~30時間反 応させ、反応後は高分子取得法の常法に従って後処理を 行い、前記一般式「16]で示されるコポリマーとす る。

【0091】更にこのコポリマーに方法-1と同様な操

作法により上記一般式 [7]で示される官能基を導入させた後、高分子取得法の常法に従って後処理を行い、前記一般式 [1]で示されるポリマーを単離する。

【0092】一般式[25]で示されるポリマーについても、一般式[14]で示されるモノマーの代りに、例えば一般式[30]

【化45】

$$R^{2}$$

$$C = CH_{2}$$

$$C = CR^{2}$$

(式中、R²²は前記と同じ。)を用いる以外は上記した 一般式[1]を得る方法に準じて合成すれば同様に得る ことができる。

【0093】本発明のレジスト組成物は、本発明に係るポリマー以外に感放射線照射により酸を発生する感光性化合物(以下、「酸発生剤」と略記する。)として、下記一般式[3]で示される化合物1種以上と、下記一般式[4]で示される化合物及び一般式[6]で示される化合物からなる群から選ばれた1種以上とが他の構成成分として含まれる。これ等の構成成分は溶剤に溶解された状態で使用に供されるのが一般的である。

【0094】 【化46】

$$R^{8} - S - S - S - R^{9}$$

$$O = N^{2} O$$

【0095】[式中、R⁸及びR⁹は前記と同じ。] 【0096】 【化47】

【0097】[式中、R¹⁰、R¹¹、R¹²及びR¹³は前記 と同じ。] 【0098】 【化48】

【0099】[式中、R¹⁷・R¹⁸及びR¹⁹は前記と同 じ。]

一般式[3]に於てR®で示される炭素数3~8の分枝 状又は環状のアルキル基としては、例えばイソプロピル 基、シクロプロピル基、イソブチル基、sec-ブチル基、 tert-ブチル基、イソペンチル基、tert-ペンチル基、シ クロペンチル基、1-メチルシクロペンチル基、イソヘキ シル基、シクロヘキシル基、1-メチルシクロヘキシル 基、イソヘプチル基、tert-オクチル基等が挙げられ る。

【0100】一般式[3]に於てR⁹で示される炭素数 1~8の直鎖状、分枝状又は環状のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、1-メチルペンチル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、シクロペキシル基、1-メチルシクロヘキシル基、n-ヘプチル基、イソペプチル基、オクチル基、tert-オクチル基等が挙げられる。

【0101】一般式[3]に於てR9で示されるアラル

キル基としては、例えばベンジル基、フェネチル基、フェニルプロピル基、メチルベンジル基、メチルフェネチル基、エチルベンジル基等が挙げられる。

【0102】一般式 [4]に於てR¹⁰、R¹¹及びR¹²で示される炭素数1~6の直鎖状、分枝状又は環状のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、1-メチルペンチル基、シクロペンチル基、1-メチルシクロペンチル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基等が挙げられる。

【 0 1 0 3 】また、R¹⁰、R¹¹及びR¹²で示される炭素数1~6の直鎖状、分枝状又は環状のアルコキシ基としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、シクロプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基、sec-ブトキシ基、n-ペンチルオキシ基、シクロペンチルオキシ基、1-メチルシクロペンチルオキシ基、1-メチルシクロペンチルオキシ基、イソペキシルオキシ基、イソペキシルオキシ基、シクロペキシルオキシ基等が挙

げられる。

【0104】一般式[5]に於てR16で示される炭素数 1~12の直鎖状、分枝状又は環状のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-プチル基、イソブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、イソペンチル基、シクロペンチル基、1-メチルペンチル基、イソペンチル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、シクロペキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等が挙げられ、炭素数1~4の直鎖状又は分枝状のアルコキシ基としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、イソプロポキシ基、sec-ブトキシ基等が挙げられる。

【0105】また、一般式 [4] に於て $R^{10} \sim R^{12}$ で示されるハロゲン原子及び一般式 [5] に於て $R^{14} \sim R^{16}$ で示されるハロゲン原子としては塩素、臭素、ヨウ素、フッ素等が挙げられる。

【0106】一般式 [6]に於てR¹⁷及びR¹⁸で示される炭素数1~4の直鎖状又は分枝状のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、 tert-ブチル基、sec-ブチル基等が挙げられ、炭素数1~4の直鎖状又は分枝状のアルコキシ基としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基、sec-ブトキシ基等が挙げられる。

【0107】また、一般式[6]に於てR¹⁹で示される 炭素数 1~12の直鎖状、分枝状又は環状のアルキル基で 置換されたフェニル基のアルキル基としては、例えばメ チル基、エチル基、n-プロピル基、イソプロピル基、シ クロプロピル基、n-ブチル基、イソブチル基、tert-ブ チル基、sec-ブチル基、n-ペンチル基、イソペンチル 基、シクロペンチル基、1-メチルペンチル基、1-メチル シクロペンチル基、n-ヘキシル基、イソヘキシル基、シ クロヘキシル基、ヘプチル基、オクチル基、ノニル基、 デシル基、ヘンデシル基、ドデシル基等が挙げられる。 【0108】本発明に於て用いられる好ましい酸発生剤 の具体例を挙げると、一般式[3]で示される酸発生剤 としては、例えば1-シクロヘキシルスルホニル-1-(1, 1-ジメチルエチルスルホニル)ジアゾメタン、ビス(1, 1-ジメチルエチルスルホニル)ジアゾメタン、ビス(1-メチルエチルスルホニル)ジアゾメタン、ビス(シクロ ヘキシルスルホニル)ジアゾメタン、ビス(1,1-ジメチ ルプロピルスルホニル)ジアゾメタン、1-n-ブチルスル ホニルー1-(1,1-ジメチルエチルスルホニル)ジアゾメ タン、1-(1-メチルエチルスルホニル)-1-ベンジルス ルホニルジアゾメタン、ビス(tertーオクチルスルホニ ル)ジアゾメタン等が挙げられる。

【0109】一般式 [4]で示される酸発生剤として は、例えばトリフェニルスルホニウム・ドデシルベンゼ ンスルホネート、トリフェニルスルホニウム・p-トルエ ンスルホネート、トリフェニルスルホニウム・10-カン ファースルホネート、トリフェニルスルホニウム・2,4, 5-トリクロルベンゼンスルホネート、トリフェニルスル ホニウム・3-トリフルオロメチルベンゼンスルホネー ト、トリフェニルスルホニウム・ピリジンー3-スルホネ ート、ジフェニルーp-トリルスルホニウム・ドデシルベ ンゼンスルホネート、ジフェニルーp-トリルスルホニウ ム・p-トルエンスルホネート、ジフェニルーp-トリルス ルホニウム・10-カンファースルホネート、ジフェニル -p-トリルスルホニウム・ベンゼンスルホネート、ジフ ェニルーp-トリルスルホニウム・2,4,5-トリクロルベン ゼンスルホネート、ジフェニルーp-トリルスルホニウム ・2,5-ジクロルベンゼンスルホネート、ジフェニル-p-トリルスルホニウム・4-n-オクチルベンゼンスルホネー ト、ジフェニルーp-トリルスルホニウム・4-メトキシベ ンゼンスルホネート、ジフェニルーp-トリルスルホニウ ム・4-tertーブチルベンゼンスルホネート、ジフェニル -p-トリルスルホニウム・4-フルオロベンゼンスルホネ ート、ジフェニルーp-トリルスルホニウム・4-クロルベ ンゼンスルホネート、ジフェニルーp-トリルスルホニウ ム・3-トリフルオロメチルベンゼンスルホネート、ジフ ェニルーp-トリルスルホニウム・ピリジンー3-スルホネ ート、ジフェニルーp-トリルスルホニウム・4-エチルベ ンゼンスルホネート、ジフェニル-p-トリルスルホニウ ム・2.4-ジメチルベンゼンスルホネート、ジフェニルー p-トリルスルホニウム・2,5-ジメチルベンゼンスルホ ネート、ジフェニル-o-トリルスルホニウム・p-トル エンスルホネート、ジフェニル-o-トリルスルホニウム ・トリフルオロメタンスルホネート、ジフェニル-o-ト リルスルホニウム・10-カンファースルホネート、ジフ ェニル-o-トリルスルホニウム・2,4-ジメチルベンゼン スルホネート、ジフェニル-o-トリルスルホニウム・2, 5-ジメチルベンゼンスルホネート、ジフェニル-o-トリ ルスルホニウム・ベンゼンスルホネート、ジフェニルー o-トリルスルホニウム・4-tert-ブチルベンゼンスルホ ネート、ジフェニル-o-トリルスルホニウム・3-トリフ ルオロメチルベンゼンスルホネート、p-tert – ブチルフ ェニルジフェニルスルホニウム・p-トルエンスルホネー ト、p-tert – ブチルフェニルジフェニルスルホニウム・ 10-カンファースルホネート、p-tert - ブチルフェニル ジフェニルスルホニウム・4-メトキシベンゼンスルホネ ート、p-tertーブトキシフェニルジフェニルスルホニウ ム・4-クロルベンゼンスルホネート、p-シクロヘキシル フェニルジフェニルスルホニウム・p-トルエンスルホネ ート、p-シクロヘキシルフェニルジフェニルスルホニウ ム・10-カンファースルホネート、p-メトキシフェニル ジフェニルスルホニウム・p-トルエンスルホネート、pメトキシフェニルジフェニルスルホニウム・10-カンフ ァースルホネート、p-tert – ブトキシフェニルジフェニ ルスルホニウム・p-トルエンスルホネート、p-tertーブ トキシフェニルジフェニルスルホニウム・10ーカンファ ースルホネート、p-tert-ブトキシフェニルジフェニル スルホニウム・p-クロルベンゼンスルホネート、トリフ ェニルスルホニウム・1-ナフタレンスルホネート、トリ フェニルスルホニウム・2-ナフタレンスルホネート、ジ フェニル p-トリルスルホニウム・1-ナフタレンスルホ ネート、ジフェニルp-トリルスルホニウム・2-ナフタレ ンスルホネート、p-tert-ブチルフェニルスルホニウム ・1-ナフタレンスルホネート、p-tert - ブチルジフェニ ルスルホニウム・1-ナフタレンスルホネート、ジフェニ ルーp-フェニルチオフェニルスルホニウム・p-トルエン スルホネート、ジフェニルーp-フェニルチオフェニルス ルホニウム・10-カンファースルホネート等が挙げられ

【0110】一般式[6]で示される酸発生剤として は、例えばジフェニルヨードニウム・p-トルエンスルホ ネート、ジフェニルヨードニウム・10-カンファースル ホネート、p-メトキシフェニルフェニルヨードニウム・ p-トルエンスルホネート、p-メトキシフェニルフェニル ヨードニウム・10-カンファースルホネート、ビス (p-メチルフェニル) ヨードニウム・p-トルエンスルホネー ト、ビス (p-メチルフェニル) ヨードニウム・ベンゼン スルホネート、ビス (p-tert-ブチルフェニル) ヨード ニウム・p-トルエンスルホネート、ビス(p-tertーブチ ルフェニル) ヨードニウム・ベンゼンスルホネート、ビ ス (p-tert-ブトキシフェニル) ヨードニウム・p-トル エンスルホネート、ビス (p-tert – ブトキシフェニル) ヨードニウム・10-カンファースルホネート、ビス(ptert-ブトキシフェニル) ヨードニウム・ベンゼンスル ホネート、ジフェニルヨードニウム・1-ナフタレンスル ホネート、ジフェニルヨードニウム・2-ナフタレンスル ホネート、ビス (p-tert-ブチルフェニル) ヨードニウ ム・1-ナフタレンスルホネート、ビス(p-tert-ブチル フェニル) ヨードニウム・2-ナフタレンスルホネート等 が挙げられる。

【 O 1 1 1 】本発明の上記酸発生剤に於て、上記一般式 [3]で示される酸発生剤は、例えば日本国特許第2500 533号等に従って容易に合成出来る。一般式 [4]で示される酸発生剤は、例えば橋本等、日本化学雑誌、87(10)巻、63頁(1966年)及びY.Endo等、Chem. Pharm. Bul 1., 29(12)巻、3753頁(1981年)等により容易に合成出来る。また、一般式 [6]で示される酸発生剤は、例えばF.M.Beringer等、J.Am. Chem. Soc.,81巻、342頁(1959年)及びF.M.Beringer等、J.Am. Chem. Soc.,75巻、2705頁(1953年)等により容易に合成出来る。

【0112】本発明のレジスト組成物は、一般式[1]で示されるポリマー2種以上と、248.4 nm付近の光透過

性が良好でレジスト組成物の高透明性が維持出来、露光後の加熱処理(PEB)温度依存性が少なく、且つ露光により弱酸を発生する一般式[3]で示される酸発生剤と、一定の露光量に対して酸発生効率が高く、強酸を発生する一般式[4]、又は一般式[6]で示される酸発生剤とを組合せてなることにより、0.20μm以下、より具体的には0.18μm以下の超微細デザインルールでも解像性、DOF、ウェハー面内の寸法均一性等を保持したままで側壁荒れが改善され、パターン裾部分の形状改善(裾引き形状の改善)及びスカム除去される点に最大の特徴を有する。酸発生剤の組合せとしては一般式[3]で示される酸発生剤と一般式[4]で示される酸発生剤がパターン裾部分の形状改善及びスカム除去の点からより好ましい。

【0113】一般式[4]又は一般式[6]で示される酸発生剤は、一般にオニウム塩と呼ばれているものであるが、本発明に於てはこれらオニウム塩のカウンターアニオンがベンゼンスルホネート、p-トルエンスルホネート等の芳香環を有するもの、或は10ーカンファースルホネート等の脂肪族環(多環)を有するものとなっている点に大きな特徴を有し、であるがために従来から使用されているトリフルオロメタンスルホネート等をカウンターアニオンとして有するものに比してDelay Timeの影響を全く受けず寸法変動しない、矩形のパターン形状が得られる等の優れた効果が得られる。

【O114】尚、一般式 [4]又は一般式 [6]で示される酸発生剤に於ける、カウンターアニオンを露光により超強酸を発生する既存の $CF_8SO_3^-$ 、 PF_6^- 、 AsF_6^- 及び BF_4^- 等としたものは、Delay Timeの影響に起因する寸法制御性不良、パターン形状不良、貯蔵安定性不良等の点から本発明に於ては全く使用出来ない。

【0115】本発明で使用される2種以上の酸発生剤の使用割合は、本発明の目的を達し得る比率であれば特に限定されないが、例えば一般式[3]で示される1種以上の酸発生剤100重量部に対して一般式[4]又は/及び一般式[6]で示される酸発生剤は10~100重量部、好ましくは10~50重量部である。

【 O 1 1 6 】本発明のレジスト組成物で用いられる溶剤としては、ポリマーと、酸発生剤及び必要に応じて使用される塩基性化合物、遠紫外線吸収剤、酸性化合物や界面活性剤等の添加物等とを溶解可能なものであれば何れにても良いが、通常は成膜性が良好で、且つ220~400 nm付近に吸収を有しないものが好ましく、例えば、Φェーテル基含有アルキレングリコールエステル、Φカルボン酸エステル、Φアミド化合物、Φケトン化合物、Φフトン化合物、Φアルキレングリコールエーテル化合物、ΦN-アルキルピロリドン等が挙げられ、これらは単独で用いてもよいし二種以上併用してもよい。これら溶媒のなかで、微粒子の発生が抑制されること及び保存安定性が優れていること等の観点から、ラクトン化合物或

はラクトン化合物とエーテル基含有アルキレングリコールエステルとの併用が好ましい。上記のの具体例としては、例えばメチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノエチルエーテルアセテート等が、のの具体例としては、例えば乳酸メチル、乳酸エチル、酢酸2ーエトキシエチル、ピルビン酸メチル、3ーメトキシプロピオン酸メチル、3ーメトキシプロピオン酸メチル、3ーメトキシプロピオン酸メチル、3ーメトキシプロピオン酸エチル等が、の具体例としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が、の具体例としては、例えばシクロヘキサノン、メチルエチルケトン、2ーヘプタノン等が、のの具体例としては、例えば一般式[31]

(式中、Rは炭素数2~4の直鎖状又は分枝状アルキレ ン基を示す)で表される化合物等IRとしては、例えばエ チレン基、プロピレン基、ブチレン基、メチルエチレン 基、メチルプロピレン基、エチルエチレン基等が挙げら れ、具体的化合物としては、例えばβ-プロピオラクト ン、β-ブチロラクトン、γ-ブチロラクトン、γ-バレ ロラクトン、δ-バレロラクトン等が挙げられる]が、® の具体例としては、例えば1,4-ジオキサン、ジエチレン グリコールモノメチルエーテル、ジエチレングリコール ジメチルエーテル、エチレングリコールモノイソプロピ ルエーテル等が、そしてΦの例としては、例えば、N-メ チル-2-ピロリドン等が、それぞれ挙げられる。又、ラ クトン化合物とエーテル基含有アルキレングリコールエ ステルとの併用の具体例としては、例えばプロピレング リコールモノメチルアセテートと β-プロピオラクトン 又は γ -ブチロラクトンとの併用等が挙げられる。

【 0 1 1 7 】本発明に係るポリマーと酸発生剤とのレジスト組成物に於ける混合比は、全ポリマー100重量部に対して通常全酸発生剤は1~30重量部、好ましくは1~20重量部である。また、本発明のレジスト組成物中の溶剤の量としては、本発明に係るポリマーと酸発生剤及び必要に応じて添加されるその他の添加物とを溶解した結果得られるポジ型レジスト材料を基板上に塗布する際に支障をきたさない量であれば特に限定されることはない

が、通常ポリマー1重量部に対して $1\sim20$ 重量部、好ましくは $1.5\sim10$ 重量部である。

【0118】本発明のレジスト組成物は、通常前記の3 成分(本発明に係るポリマー、酸発生剤及び溶剤)を主 たる構成成分とするが、この他に塩基性化合物、側壁形 状を良好にしたり、基板との界面のスカムや裾引きを改 善する目的で必要に応じて遠紫外線吸収剤や酸性化合物 を添加してもよい。また、成膜性の向上、ストリエーシ ョンや濡れ性の改善を目的として界面活性剤を添加して も良い。本発明のレジスト組成物に於て必要に応じて使 用される塩基性化合物としては、例えばピリジン、ピペ リジン、ピコリン、トリエチルアミン、プロピルアミ ン、トリn-ブチルアミン、トリn-オクチルアミン、ジオ クチルメチルアミン、トリn-ベンジルアミン、ジシクロ ヘキシルアミン、ジシクロヘキシルメチルアミン、N-メ チルピロリジン、N-メチルピペリジン、トリエタノール アミン、トリイソプロパノールアミン、トリn-プロパノ ールアミン、ジメチルドデシルアミン、ジメチルヘキサ ドデシルアミン、トリス[2-(2-メトキシエトキシ)エ チル] アミン、テトラメチルアンモニウムヒドロキシ ド、テトラエチルアンモニムヒドロキシド、テトラn-プ ロピルアンモニウムヒドロキシド、テトラn-ブチルアン モニウムヒドロキシド、ポリビニルピリジン、ポリ(ビ ニルピリジン/メチルメタクリレート)等が挙げられ る。これらは、単独で用いても、適宜2種以上組合せて 用いてもよい。

【0119】本発明のレジスト組成物に於て必要に応じ て使用される遠紫外線吸収剤としては、例えば9-ジアゾ フルオレン及びその誘導体、1-ジアゾー2-テトラロン、 2-ジアゾー1-テトラロン、9-ジアゾ-10-フェナントロ ン、2,2',4,4'-テトラキス(o-ナフトキノンジアジドー 4-スルホニルオキシ)ベンゾフェノン、2,2',4,4'-テト ラヒドロキシベンゾフェノン、1,2,3-トリス(o-ナフト キノンジアジドー4-スルホニルオキシ)プロパン、アン トラセン誘導体[例えば9-(2-メトキシエトキシ)メチ ルアントラセン、9-(2-エトキシエトキシ)メチルアン トラセン、9-ピバロイルオキシメチルアントラセン、9-ブタノイルオキシメチルアントラセン、9-(4-メトキシ ブトキシ)メチルアントラセン等]、酢酸 9-アントラ センメチル、ジヒドロキシフラバノン、ジフェニルスル ホン、クエルセチン、トリヒドロキシフラバノン、テト ラヒドロキシフラバノン、4',6-ジヒドロキシー2-ナフ トベンゾフェノン、4,4'-ジヒドロキシベンゾフェノ ン、2,2',4,4'-テトラヒドロキシベンゾフェノン、9-ジ アゾ-10-フェナントロン等が使用可能である。中でも24 8.4 nm付近に強い吸収を持つ2-ジアゾ-10-フェナントロ ン、アントラセン誘導体が特に好ましい。

【0120】また、本発明のレジスト組成物に於て必要に応じて使用される酸性化合物としては、例えばフタル酸、コハク酸、マロン酸、安息香酸、サリチル酸、m-ヒ

ドロキシ安息香酸、p-ヒドロキシ安息香酸、o-アセチル安息香酸、o-アセチルオキシ安息香酸、o-ニトロ安息香酸、チオサリチル酸、チオニコチン酸、ジフェノール酸等の有機酸の他、サリチルアルデヒド、コハク酸イミド、フタル酸イミド、サッカリン、アスコルビン酸等が挙げられる。

【0121】更に、本発明のレジスト組成物に於て必要 に応じて使用される界面活性剤としては、例えばポリエ チレングリコールジステアレート、ポリエチレングリコ ールジラウレート、ポリエチレングリコール、ポリプロ ピレングリコール、ポリオキシエチレンステアリルエー テル、ポリオキシエチレンラウリルエーテル、ポリオキ シエチレンセチルエーテル、ポリオキシエチレンノニル エーテル、ポリオキシエチレンオクチルフェニルエーテ ル等のノニオン系界面活性剤、これら以外に市販の各種 ノニオン系界面活性剤、フッ素含有ノニオン系界面活性 剤、フッ素含有カチオン系界面活性剤、フッ素含有アニ オン系界面活性剤、カチオン系界面活性剤、アニオン系 界面活性剤が挙げられる。本発明に於ては、前記の界面 活性剤の中、レジスト膜の成膜性が良好な、例えばフロ ラード(住友スリーエム(株)商品名)、サーフロン(旭 硝子(株)商品名)、ユニダイン (ダイキン工業(株)商品 名)、メガファック(大日本インキ(株)商品名)、エフ トップ(トーケムプロダクツ(株)商品名)等のフッ素含 有ノニオン系界面活性剤、ポリエチレングリコール、ポ リプロピレングリコール、ポリオキシエチレンセチルエ ーテル等がより好ましい。

【 0 1 2 2 】更にまた、この分野で使用される可塑剤として、例えばフタル酸ジエチル、フタル酸ジブチル、フタル酸ジプロピル等が挙げられる。

【 0 1 2 3 】本発明のレジスト組成物は通常の半導体基板上でも感放射線吸収性被膜(反射防止膜)を形成させた半導体基板上のどちらでも使用可能であるが、特に感放射線吸収性被膜を形成させた半導体基板上での使用がより効果的である。

【0124】半導体基板としては、アルミニウム、ポリシリコン、アルミニウムーシリコン、タングステンシリサイド等が挙げられる。また、これ等の半導体基板上に感放射線吸収性被膜を形成させるには、半導体基板上に例えば Si_3N_4 、 Ti_3N_4 、無機系反射防止膜(SiON、アモルファスカーボン等)等の感放射線吸収性被膜材料を用いて化学蒸着(CVD)又はスパッタリング等により形成してもよいし、半導体基板上に有機系反射防止膜材料を回転塗布し、加熱処理により形成しても良い。

【 0 1 2 5 】 本発明のレジスト組成物を用いてパターン 形成を行うには、例えば以下の如く行えば良い。

【0126】本発明に係るレジスト組成物を、例えばシリコンウェハー等の半導体基板上又は感放射線吸収性被膜を形成させた半導体基板上に厚みが0.3~2.0μm程度となるように塗布(3層の上層として用いる場合には

 $0.1\sim0.5\mu$ m程度)し、これを例えばオーブン中で70~ 140° C、 $10\sim30$ 分間、若しくはホットプレート上で70~ 140° C、 $1\sim2$ 分間プリベークする。次いで目的のパターンを形成するためのマスクを上記のレジスト膜上にかざし、例えば300 nm以下の遠紫外光を露光量 $1\sim100$ mJ を 程度となるように照射した後、ホットプレート上で70~ 150° C、 $1\sim2$ 分間ベークする。更に、 $0.1\sim5$ %テトラメチルアンモニウムヒドロキシド(TMAH)水溶液等の現像液を用い、 $0.5\sim3$ 分程度、浸漬(dip)法、パドル(puddle)法、スプレー(spray)法等の常法により現像すれば、基板上に目的のパターンが形成される。

【0127】上記した如き各種パターン形成法に於て用いられる現像液としては、レジスト材料の溶解性に応じて、露光部と未露光部との溶解度差を大きくさせられる様な適当な濃度のアルカリ水溶液を選択すれば良く、通常0.01~20%の範囲から選択される。また、使用されるアルカリ水溶液としては、例えばTMAH、コリン、トリエタノールアミン等の有機アミン類、例えばNaOH、KOH等の無機アルカリ類を含む水溶液が挙げられる。

【0128】本発明のレジスト組成物は、一般式[2 4]で示されるポリマー2種以上と、一般式[3]及び 一般式[4]で示される特定の酸発生剤の組合せ、又は 一般式 [24]で示されるポリマー2種以上と一般式 [3] 及び一般式 [6] で示される特定の酸発生剤を組 合せて成ることを特徴とする。即ち、従来から使用され てきた一般式[3]で示される酸発生剤から発生する酸 は弱酸で、移動範囲が小さく、また、高透明性なために 極めて有効であったが、酸発生効率が低いことに起因し て、これを単独で用いると、露光されたレジスト膜内で 酸濃度がバラつくため、デザインルールの微細化が進む につれ、解像性能や形状不良などの問題が生じてきた。 そこで、露光による酸発生効率が高く、また従来の同種 のオニウム塩から発生される酸に比して移動範囲が小さ い強酸を発生する一般式[4]又は一般式[6]で示さ れる酸発生剤を組み合わせて用いることにより、一般式 [3]で示される酸発生剤の弱点であった露光部の酸濃 度の均等化が計られると共に、一般式[4]又は一般式 [6]で示される酸発生剤を単独で使用した場合に見ら れる露光後の放置時間経過 (Delay Time) による寸法変 動も抑制出来るので0.20μm以下のデザインルール、特 に0.18µm以下のルールが要求される超微細加工転写技 術に於て要求される高解像性能及びDOFを達成出来、 露光から加熱処理迄の時間経過 (Delay Time) に対して 安定したパターン寸法を維持し、且つそれ等性能を維持 しながら基板依存性や側壁荒れの改善を可能にした。更 に特定の酸発生剤を組合せたことにより、従来、感放射 線吸収性被膜(無機系反射防止膜又は有機系反射防止 膜)の使用により発生したレジストパターンの裾部のテ ールやスカムの解消も可能となった。

【0129】一般式[24]で示されるポリマーは2種

以上混合使用することにより、一般式[7]で示される官能基を有する一般式[8]で示されるモノマー単位を共通の構成成分とすることに起因して、露光により発生した酸の作用により短時間にアルカリ可溶性になるため、Delay Timeの影響を受け難く、ウェハー面内での寸法均一化が可能となる。この点が既存の2種ポリマー混合系のレジスト材料との大きな違いである。

【0130】また、一般式[9]で示されるヒドロキシスチレン単位を構成成分として更に含んでなることに起因して、耐熱性及びドライエッチング耐性を有し、且つ基板との密着性にも優れている。

【0131】更に、一般式[26]で示されるモノマー単位、より具体的には一般式[10]又は一般式[28]で示されるモノマー単位を構成成分として含ませることにより、一般式[8]で示されるモノマー単位のポリマー中の構成比率を低減出来、このためポリマー全体の耐熱性を向上させ、ドライエッチング耐性も向上出来、近接効果の影響を抑制出来、且つ現像時の現像速度も低下出来るので側壁荒れの改善効果もある。

【0132】尚、一般式 [10]で示されるモノマー単位に於て、R⁶が炭素数3~8の分枝状又は環状のアルコキシ基、飽和複素環オキシ基又は一般式 [2]で示される基であるものは、酸の存在下で官能基を脱離してアルカリ現像液に可溶なヒドロキシスチレン単位に変化するものであるが、本発明に係るポリマーに於ては一般式 [7]で示される官能基を有する一般式 [8]で示され

るモノマー単位の方がはるかに速く、容易に酸の作用を 受けて保護基を脱離してヒドロキシスチレン単位になる 為、化学増幅作用には直接的にはさほど関与しない。

【 0 1 3 3 】しかしながら、現像液に対する溶解速度や解像性能等の面では明らかに寄与しており、R⁶が水素原子、アルキル基、直鎖状のアルコキシ基である、例えばスチレン、アルキル置換スチレン、直鎖状のアルコキシスチレン等に由来する酸の作用で全く(或は殆ど)化学変化を受けないモノマー単位を有するポリマーを用いた場合と比べると、現像時、現像液に対する溶解速度が速く、また、解像性能、DOF及びパターン形状が優れているのでより好ましい。

【0134】本発明のレジスト組成物は遠紫外光、KrFエキシマレーザ光はもとより、i線露光、電子線や軟X線照射でも酸が発生し、化学増幅作用される事が確認されている。従って、本発明のレジスト組成物は化学増幅作用を利用して低露光量の遠紫外光、KrFエキシマレーザ光、i線光や電子線或いは軟X線照射法によりパターン形成可能なレジスト組成物である。

【0135】本発明の作用について具体例で説明すると、先ず、KrFエキシマレーザ光、遠紫外光等で露光された部位は例えば下記式1~式3で示される光反応に従って酸が発生する。

【0136】 【式1】

$$\begin{array}{c|c} & O & O \\ & \parallel & \parallel \\ & \parallel & \parallel \\ O & N_2 & O \end{array} \begin{array}{c} & \text{i.v.} \\ & \downarrow \\ &$$

[0137]
$$(\pm 2)$$

$$- s \cdot cH, - so, \circ \xrightarrow{h\nu} cH, - so, ii$$

$$(CH_3)_3C - \longrightarrow CH_3 - C(CH_3)_3 \cdot CH_3 - \bigcirc SO_3G$$

$$h \nu \longrightarrow CH_3 - \bigcirc SO_3H$$

【 0 1 3 9 】露光工程に続いて加熱処理すると下記式4 の反応に従って本発明に係るポリマーの特定の官能基 (式4では、1-エトキシエトキシ基として例示。)が酸により化学変化を受けて水酸基となり、アルカリ可溶性

【 O 1 4 1 】他方、未露光部は酸が発生しない為、加熱処理しても化学変化は起こらず、かえって基板との密着性強化の目的で用いたポリマーの親水性基部位を酸発生剤がアルカリ現像液の浸潤から保護する様な作用が発現する。このように本発明のレジスト材料を用いてパターン形成を行った場合には露光部と未露光部との間でアルカリ現像液に対して大きな溶解度差を生じ、しかも未露光部のポリマーが基板に対して強い密着性を有している為、現像時に膜剥がれを引き起こさず、その結果、良好なコントラストを有したポジ型のパターンが形成される。また、前記式4で示されるように露光で発生した酸は触媒的に作用する為、露光は必要な酸を発生させるだけで良く、露光エネルギー量の低減が可能となる。

【 0 1 4 2 】以下に実施例、製造例、参考例及び比較例を挙げて本発明を更に詳細に説明するが、本発明はこれ等により何等制約を受けるものではない。

【 O 1 4 3 】尚、実施例及び比較例で使用される一部のポリマー(製造例に記載のないもの)、酸発生剤、紫外線吸収剤等については、例えば日本国特許第2500533号(米国特許第5216135号;欧州特許第440374号);特開平4-211258号公報(米国特許第5350660号;欧州特許第440374号);特開平5-249682号公報(欧州公開特許第520642号);特開平4-251259号公報;特開平10-48826号公報;特開平10-53621号公報;Y.Endo等、Chem.Pharm. Bu 11.,29(12)巻,3753頁(1981年);橋本等、日本化学雑誌、87(10)巻、63頁(1966年);F.M.Beringer等、J.Am.Chem.Soc.,81巻,342頁(1959年);M.Desbois等、Bu 11.Chim.Soc.France,1974巻,1956頁又はC.D.Beard等、J.Org.Chem.,38巻,3673頁(1973年)等に記載の方法で合成した。

[0144]

【実施例】製造例 1 ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-tert - ブトキシスチレン)の合成

(1)p-tert-ブトキシスチレン 35.2gに触媒量の2,2'-アゾビス (2-メチルプロピオン酸メチル)を添加して

イソプロパノール中、窒素気流下、80℃で6時間重合反応させた。反応液を冷却後、メタノール水溶液 1500ml中に注入して、晶析させた。析出晶を沪取、メタノール洗浄、減圧乾燥してポリ(p-tertーブトキシスチレン)33.4gを白色粉末晶として得た。Mw 約 20000、Mw/Mn 1.90(GPC法:ポリスチレン標準)。

(2)上記(1)で得たポリ (p-tert - ブトキシスチレン) 30.0gをイソプロパノールに懸濁し濃塩酸 30mlを加えて70~80℃で4時間攪拌反応させた。冷却後、反応液を水 1500ml 中に注入、晶析させた。析出晶を沪取、水洗、減圧乾燥してポリ (p-ヒドロキシスチレン/p-tert - ブトキシスチレン) 18.8gを白色粉末晶として得た。得られたポリマーのp-ヒドロキシスチレン単位とp-tert - ブトキシスチレン単位の構成比率は¹ HNMR測定から約94:6であった。Mw 約 15000、Mw/Mn1.90(GPC法:ポリスチレン標準)。

(3)上記(2)で得たポリ (p-ヒドロキシスチレン/p-te rtーブトキシスチレン) 15.7g及びエチルビニルエーテル 3.2gを1,4-ジオキサン 140ml に溶解し、これに触媒量のp-トルエンスルホン酸ピリジニウム塩を添加し、室温で24時間攪拌反応させた。反応後、水 3000ml中に注入、晶析させた。析出晶を沪取、水洗、減圧乾燥してポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-tertーブトキシスチレン) 15.5gを白色粉末晶として得た。得られたポリマーのp-1-エトキシエトキシスチレン単位とp-ヒドロキシスチレン単位及びp-tertーブトキシスチレン単位の構成比率は「HNMR測定から約30:64:6であった。Mw 約 18000、Mw/Mn 1.90 (GPC法:ポリスチレン標準)。

【0145】製造例2 ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-メチルスチレン) の合成

(1)p-tert-ブトキシスチレン 100g (0.567モル)とp-メチルスチレン 3.54g (0.03モル) に2,2'-アゾビス (2-メチルプロピオン酸メチル)を添加して1,4-ジオキサン中、窒素気流下、80℃で6時間重合反応させた。反

応液を冷却後、メタノール水溶液 5000ml中に注入して、晶析させた。析出晶を沪取、メタノール洗浄、減圧乾燥してポリ(p-tertーブトキシスチレン/p-メチルスチレン) 92.3gを白色粉末晶として得た。得られたポリマーのp-tertーブトキシスチレン単位とp-メチルスチレン単位の構成比率は「HNMR測定から約95:5であった。また、ポリスチレンを標準としたGPC測定の結果、Mwは約 20000、Mw/Mn 1.90であった。

(2)上記(1)で得たポリ (p-tert - ブトキシスチレン/ p-メチルスチレン) 70gを1,4-ジオキサンに溶解し濃塩酸 100mlを加えて70~80℃で4時間攪拌反応させた。冷却後、反応液を水 5000ml 中に注入、晶析させた。析出晶を沪取、水洗、減圧乾燥してポリ (p-ヒドロキシスチレン/p-メチルスチレン) 47.6gを白色粉末晶として得た。得られたポリマーのp-ヒドロキシスチレン単位とp-メチルスチレン単位の構成比率は¹ HNMR測定から約95:5であった。Mw 約 14500、Mw/Mn 1.89 (GPC法:ポリスチレン標準)。

(3)上記(2)で得たポリ (p-ヒドロキシスチレン/p-メチルスチレン) 15.0gとエチルビニルエーテル 3.5gを1,4-ジオキサン 150mlに溶解し、これに触媒量のp-トルエンスルホン酸ピリジニウム塩を添加し、室温で24時間撹拌反応させた。反応後、水 5000ml 中に注入、晶析させた。析出晶を沪取、水洗、減圧乾燥してポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-メチルスチレン) 11.5gを白色粉末晶として得た。得られたポリマーのp-1-エトキシエトキシスチレン単位とp-ヒドロキシスチレン単位およびp-メチルスチレン単位の構成比率は1HNMR測定から約35:60:5であった。また、GPC測定(ポリスチレン標準)からMwは約 18000、Mw/Mnは1.86であった。

【 0 1 4 6 】製造例3 ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/スチレン)の合成 (1)p-tert-ブトキシスチレン 81.1g (0.46モル)とスチレン 4.6g (0.04モル)を用いて製造例2の(1)と同様に重合反応及び後処理を行い、ポリ (p-tert-ブトキシスチレン/スチレン) 77.1gを白色粉末晶として得た。得られたポリマーのp-tert-ブトキシスチレン単位とスチレン単位の構成比率は「HNMR測定から約92:8であった。Mw 約 20000、分子量分布 1.90 (GPC法:ポリスチレン標準)。

(2)上記(1)で得たポリ(p-tert-ブトキシスチレン/スチレン)70gを用いて製造例1の(2)と同様に反応及び後処理を行い、ポリ(p-ヒドロキシスチレン/スチレン)44.0gを白色粉末晶として得た。得られたポリマーのp-ヒドロキシスチレン単位とスチレン単位の構成比率は1HNMRから約92:8であった。Mw約15000、Mw/Mn1.89(GPC法:ポリスチレン標準)。(3)上記(2)で得たポリ(p-ヒドロキシスチレン/スチレン)15.0gとビニルエチルエーテル3.2gを用いて

製造例2の(3)と同様に反応及び後処理を行い、ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/スチレン) 14.1gを白色粉末晶として得た。得られたポリマーのp-1-エトキシエトキシスチレン単位とp-ヒドロキシスチレン単位及びスチレン単位の構成比率は 1 HNMR測定から約32:60:8であった。Mw 約 180 00、Mw/Mn 1.85 (GPC法:ポリスチレン標準)。

【 O 1 4 7 】製造例4 ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-tert-ブトキシスチレン) の合成

(1)p-tert-ブトキシスチレン 52.9gを乾燥テトラヒドロフラン 150ml に溶解させ、窒素気流下、一78℃でn-ブチルリチウム (1.6mol, n-ヘキサン溶液) 5.5mlを注入し、一78~一72℃で2時間攪拌反応させた。赤色の反応液に−70℃でメタノール 10mlを注入して重合反応を停止させた。次いで重合反応液をメタノール1500ml中に注入し、上層をデカンテーションにより除いて得られた粘稠油状物を減圧乾燥してポリ(p-tert-ブトキシスチレン) 51.5gを白色粉末晶として得た。Mw 約 22000、Mw/Mn 1.12(GPC:ポリスチレン標準)。

(2)上記(1)で得たポリ (p-tert - ブトキシスチレン) 30.0gをイソプロパノールに懸濁し濃塩酸 30mlを加えて70~80℃で4時間攪拌反応させた。冷却後、反応液を水 1500ml中に注入、晶析させた。析出晶を沪取、水洗、減圧乾燥してポリ (p-ヒドロキシスチレン/p-tert - ブトキシスチレン) 19.2gを白色粉末晶として得た。得られたポリマーのp-ヒドロキシスチレン単位とp-tert - ブトキシスチレン単位の構成比率は1HNMR測定から約90:10であった。Mw 約 15500、Mw/Mn 1.12 (GPC法:ポリスチレン標準)。

(3)上記(2)で得たポリ (p-ヒドロキシスチレン/p-te rtーブトキシスチレン) 15.7gをエチルビニルエーテル 3.2gを酢酸エチル 150ml に溶解させ、これに触媒量のp-トルエンスルホン酸を添加し、室温で6時間攪拌反応させた。反応後、トリエチルアミンで中和し、濃縮した後、残渣の粘稠油状物をアセトン 100ml に溶解させ、水 3000ml 中に注入、晶析させた。析出晶を沪取、水洗、減圧乾燥してポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-tertーブトキシスチレン) 15.5gを白色粉末晶として得た。得られたポリマーのp-1-エトキシエトキシスチレン単位とp-ヒドロキシスチレン単位及びp-tertーブトキシスチレン単位の構成比率は1HNMR測定から約30:60:10であった。また、GPC測定(ポリスチレンを標準)からMw 約 18200、Mw/Mnは1.11であった。

【 0 1 4 8 】製造例5 ポリ (p-1-メトキシー1-メチル エトキシスチレン/p-ヒドロキシスチレン/ p-tert-ブ トキシスチレン) の合成

製造例4の(1)及び(2)と同様にして得たポリ (p-ヒド

ロキシスチレン/ p-tert-ブトキシスチレン) 15.7g と2-メトキシー1-プロペン 3.2gをテトラヒドロフラン 120m1 に溶解し、これに触媒量のオキシ塩化燐を添加し、室温で16時間攪拌反応させた。反応後、水 5000m1 中に注入、晶析させた。析出晶を沪取、水洗、減圧乾燥してポリ (p-1-メトキシー1-メチルエトキシスチレン/ p-ヒドロキシスチレン/p-tert-ブトキシスチレン) 1 4.3gを白色粉末晶として得た。得られたポリマーのp-1-メトキシー1-メチルエトキシスチレン単位とp-ヒドロキシスチレン単位及び p-tert-ブトキシスチレン単位の構成比率は1 HNMR測定から約34:56:10であった。 Mw 約 18000、Mw/Mn 1.12 (GPC法:ポリスチレン標準)。

【0149】製造例6 ポリ (p-1-エトキシーn-プロポキシスチレン/p-ヒドロキシスチレン/p-tertーブトキシスチレン) の合成

製造例4の(1)及び(2)と同様にして得たポリ(p-ヒドロキシスチレン/p-tert-ブトキシスチレン) 15.7g と1-エトキシー1-プロペン 1.8gとを用いて製造例4の(3)と同様に反応及び後処理を行い、ポリ(p-1-エトキシーn-プロポキシスチレン/p-ヒドロキシスチレン/p-tert-ブトキシスチレン) 16.2gを白色粉末晶として得た。得られたポリマーのp-1-エトキシーn-プロポキシスチレン単位とp-ヒドロキシスチレン単位及びp-tert-ブトキシスチレン単位の構成比率は「HNMR測定から約23:67:10であった。Mw 約 18200、Mw/Mn 1.11(GPC法:ポリスチレン標準)。

【 0 1 5 0 】製造例7 ボリ (p-1-シクロヘキシルオキシエトキシスチレン/p-ヒドロキシスチレン/p-tertーブトキシスチレン) の合成

製造例4の(1)及び(2)と同様にして得たポリ(p-ヒドロキシスチレン/p-tert-ブトキシスチレン) 15.7gとシクロヘキシルビニルエーテル 3.2gとを用いて製造例4の(3)と同様にして反応及び後処理を行い、ポリ(p-1-シクロヘキシルオキシエトキシスチレン/p-ヒドロキシスチレン/p-tert-ブトキシスチレン) 17.0gを白色粉末晶として得た。得られたポリマーのp-1-シクロヘキシルオキシエトキシスチレン単位とp-ヒドロキシスチレン単位及びp-tert-ブトキシスチレン単位の構成比率は1HNMR測定から約22:68:10であった。Mw約18200、Mw/Mn1.12(GPC法:ポリスチレン標準)。

【 0 1 5 1 】製造例8 ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-テトラヒドロピラニルオキシスチレン)の合成

(1)p-アセチルオキシスチレン 32.4gを用いて製造例 4の(1)と同様にリビングアニオン重合反応及び後処理を行い、ポリ (p-アセチルオキシ) スチレン 31.5gを 白色粉末晶として得た。Mw 約 18000、Mw/Mn 1.20 (GPC法:ポリスチレン標準)。

(2)上記(1)で得たポリ(p-アセチルオキシスチレン) 16.2gを1,4-ジオキサンに溶解し、濃塩酸 25mlを注入して4時間攪拌還流行った。反応液を冷却後、水 1000ml中に注入、晶析させた。析出晶を沪取、水洗、減圧乾燥してポリ(p-ヒドロキシスチレン) 11.4gを白色粉末晶として得た。Mw 約 14000、Mw/Mn 1.18(GPC法:ポリスチレン標準)。

(3)上記(2)で得たポリ(p-ヒドロキシスチレン) 10.8gを1,4-ジオキサン 72mlに溶解し、3,4-ジヒドロ-2Hピラン 2.5g及びp-トルエンスルホン酸・ピリジン塩0.05gを添加し、25~30℃で15時間攪拌反応させた。反応液を水 1000ml中に注入し、晶析させ、析出晶を沪取、水洗、減圧乾燥してポリ(p-ヒドロキシスチレン/p-テトラヒドロピラニルオキシスチレン) 10.0gを白色粉末晶として得た。得られたポリマーのp-ヒドロキシスチレン単位とp-テトラヒドロピラニルオキシスチレン単位の構成比率は1HNMR測定から約90:10であった。Mw約15500、Mw/Mn1.18(GPC法:ポリスチレン標準)。

(4)上記(3)で得たポリ (p-ヒドロキシスチレン/p-テトラヒドロピラニルオキシスチレン) 9.5gとエチルビニルエーテル 2.5gを用いて製造例4の(3)と同様にして反応及び後処理を行った。得られた析出晶を沪取、水洗、減圧乾燥してポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-テトラヒドロピラニルオキシスチレン) 9.9gを白色粉末晶として得た。得られたポリマーのp-1-エトキシエトキシスチレン単位とp-ヒドロキシスチレン単位及びp-テトラヒドロピラニルオキシスチレン単位の構成比率は「HNMR測定から約30:60:10であった。Mw約 18500、Mw/Mn 1.18 (GP C法:ポリスチレン標準)。

【 0 1 5 2 】製造例9 ポリ (p-1-エトキシエトキシス チレン/p-ヒドロキシスチレン/p-tert-ブトキシカル ボニルオキシスチレン)の合成

(1)製造例4の(1)と同様にして得たポリ (p-tert-ブ トキシスチレン) 35.3gをイソプロパノールに懸濁 し、濃塩酸50mlを注入して4時間攪拌還流を行った。反 応液を冷却後、水 3000m1中に注入、晶析させた。析出 晶を沪取、水洗、減圧乾燥してポリ(p-ヒドロキシスチ レン) 22.1gを白色粉末晶として得た。Mw約 1500 0、Mw/Mn 1.12 (GPC法:ポリスチレン標準)。 (2)上記(1)で得たポリ (p-ヒドロキシスチレン) 16. 2gを酢酸エチル 60mlに溶解し、二炭酸ジ tert-ブチル 5.6g及びトリエチルアミン 5.5gを添加し、室温で4 時間攪拌反応させた。反応後、酢酸エチルを減圧留去 し、残渣をアセトン80mlに溶解させ、水 1000ml中に注 入、晶析させた。析出晶を沪取、水洗、減圧乾燥してポ リ (p-ヒドロキシスチレン/ p-tert-ブトキシカルボニ ルオキシスチレン) 12.2gを白色粉末晶として得た。 得られたp-ヒドロキシスチレン単位とp-tert-ブトキシ

カルボニルオキシスチレン単位の構成比率は HNMR 測定から約90:10であった。Mw 約 16700、Mw/M n 1.12(GPC法:ポリスチレン標準)。

(3)上記(2)で得たポリ(p-t)ドロキシスチレン/p-tert-ブトキシカルボニルオキシスチレン) 11.4gとエチ ルビニルエーテル 2.5gとを用いて製造例4の(3)と同 様にして反応及び後処理を行い、ポリ(p-1-エトキシエ トキシスチレン/p-ヒドロキシスチレン/p- tert-ブト キシカルボニルオキシスチレン) 6.7gを白色粉末晶と して得た。得られたポリマーのp-1-エトキシエトキシス チレン単位とp-ヒドロキシスチレン単位及びp-tert-ブ トキシカルボニルオキシスチレン単位の構成比率は¹ H NMR測定から約30:60:10であった。Mw 約 2000 0、Mw/Mn 1.12 (GPC法:ポリスチレン標準)。 【0153】製造例10 ポリ(p-1-シクロヘキシルオ キシエトキシスチレン/p-ヒドロキシスチレン/p-tert -ブトキシカルボニルオキシスチレン)の合成 製造例9の(1)及び(2)と同様にして得られたポリ (p-ヒドロキシスチレン/p-tert - ブトキシカルボニルオキ シスチレン) 11.4gとシクロヘキシルビニルエーテル 2.7gとを用いて製造例4の(3)と同様にして反応及び 後処理を行い、ポリ (p-1-シクロヘキシルオキシエトキ シスチレン/p-ヒドロキシスチレン/p-tertーブトキシ カルボニルオキシスチレン) 13.2gを白色粉末晶とし て得た。得られたポリマーのp-1-シクロヘキシルオキシ エトキシスチレン単位とp-ヒドロキシスチレン単位及び p-tert - ブトキシカルボニルオキシスチレン単位の構成 比率は¹ H N M R 測定から約22:68:10であった。M w 約 20000、Mw/Mn 1.12 (GPC法:ポリスチレン

【 O 1 5 4 】製造例 1 1 ポリ (p-1-メトキシエトキシスチレン/p-ヒドロキシスチレン/p-ビニルフェノキシ酢酸 tert-ブチル) の合成

標準)。

(1)製造例9の(1)と同様にして得られたポリ(p-ヒドロキシスチレン) 16.2gとモノクロル酢酸 tert- ブチル 2.7g及び無水炭酸カリウム 2.5gをアセトン 200ml に懸濁させ、2時間攪拌還流させた。冷却後、不溶物を沪別し、沪液を水 3000ml 中に注入、晶析させた。析出晶を沪取、水洗、減圧乾燥してポリ(p-ヒドロキシスチレン/p-ビニルフェノキシ酢酸 tert-ブチル) 15.8gを白色粉末晶として得た。得られたポリマーのp-ヒドロキシスチレン単位とp-ビニルフェノキシ酢酸 tert-ブチル単位の構成比率は「HNMR測定から約93:7であった。Mw 約 16500、Mw/Mn 1.12(GPC法:ポリスチレン標準)。

(2)上記(1)で得られたボリ (p-ヒドロキシスチレン/p-ビニルフェノキシ酢酸tert-ブチル) 13.2gとメチルビニルエーテル 2.0gとを用いて製造例4の(3)と同様にして反応及び後処理を行い、ポリ (p-1-メトキシエトキシスチレン/p-ビニルフェノ

キシ酢酸 tert-ブチル) 11.0gを白色粉末晶として得た。得られたポリマーのp-1-メトキシエトキシスチレン単位とp-ヒドロキシスチレン単位及びp-ビニルフェノキシ酢酸 tert-ブチル単位の構成比率は¹ HNMR測定から約33:60:7であった。Mw 約 20000、Mw/Mn 1.12(GPC法:ポリスチレン標準)。

【0155】製造例12 ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-イソプロポキシスチレン) の合成

(1)製造例9の(1)と同様にして得られたポリ (p-ヒドロキシスチレン) 16.2gと塩化イソプロピル 1.3gをアセトン 100mlに溶解させ、これにトリエチルアミン 1.8gを加えて50~55℃で5時間攪拌反応させた。反応液を水 1000ml中に注入し、上層をデカンテーションにより除いて得られた粘稠な樹脂をアセトン 75mlに溶解させ、水 500ml中に注入し、析出したガム状樹脂を減圧乾燥してポリ (p-ヒドロキシスチレン/p-イソプロポキシスチレン) 15.4gを白色粉末晶として得た。得られたポリマーのp-ヒドロキシスチレン単位及びp-イソプロポキシスチレン単位の構成比率は「HNMR測定から約90:10であった。Mw 約 15500、Mw/Mn 1.12(GPC法:ポリスチレン標準)。

(2)上記(1)で得られたポリ(p-ヒドロキシスチレン/p-イソプロポキシスチレン) 15.0gとエチルビニルエーテル 3.0gとを用いて製造例4の(3)と同様にして反応及び後処理を行い、ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-イソプロポキシスチレン) 16.2gを白色粉末晶として得た。得られたポリマーのp-1-エトキシエトキシスチレン単位とp-ヒドロキシスチレン単位及びp-イソプロポキシスチレン単位の構成比率は1HNMR測定から約30:60:10であった。Mw約 18000、Mw/Mn 1.12 (GPC法:ポリスチレン標準)

【0156】製造例13 ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-ベンゾイルオキシスチレン) の合成

(1)製造例9の(1)と同様にして得たポリ(p-ヒドロキシスチレン) 16.2gと塩化ベンゾイル 2.3g及びトリエチルアミン 1.8gとを用いて製造例1 2の(1)と同様にして反応及び後処理を行い、ポリ(p-ヒドロキシスチレン/p-ベンゾイルオキシスチレン) 16.2gを白色粉末晶として得た。得られたポリマーのp-ヒドロキシスチレン単位とp-ベンゾイルオキシスチレン単位の構成比率は「HNMR測定から約90:10であった。Mw 約 16000、Mw/Mn 1.12(GPC法:ポリスチレン標準)。(2)上記(1)で得られたボリ(p-ヒドロキシスチレン/p-ベンゾイルオキシスチレン) 15.7gとエチルビニルエーテル 3.0gとを用いて製造例4の(3)と同様にして反応及び後処理を行い、ボリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-ベンゾイルオキシス

チレン) 16.5gを白色粉末晶として得た。得られたポリマーのp-1-エトキシエトキシスチレン単位とp-ヒドロキシスチレン単位及びp-ベンゾイルオキシスチレン単位の構成比率は¹ HNMR測定から約30:60:10であった。Mw 約 18800、Mw/Mn 1.12 (GPC法:ポリスチレン標準)。

【0157】製造例14 ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-ピバロイルオキシスチレン) の合成

(1)製造例9の(1)と同様にして得られたポリ (p-ヒドロキシスチレン) 16.2gと塩化ビバロイル 2.0g及びトリエチルアミン 1.8gとを用いて製造例1 2の(1)と同様にして反応及び後処理を行い、ポリ (p-ヒドロキシスチレン/p-ピバロイルオキシスチレン) 16.0gを白色粉末晶として得た。得られたポリマーのp-ヒドロキシスチレン単位及びp-ピバロイルオキシスチレン単位の構成比率は HNMR測定から約90:10であった。Mw 約16000、Mw/Mn 1.12 (GPC法:ポリスチレン標準)。

(2)上記(1)で得られたボリ (p-ヒドロキシスチレン/p-ピバロイルオキシスチレン) 15.5gとエチルビニルエーテル 3.0gとを用いて製造例4の(3)と同様にして反応及び後処理を行い、ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-ピバロイルオキシスチレン) 16.7gを白色粉末晶として得た。得られたポリマーのp-1-エトキシエトキシスチレン単位とp-ヒドロキシスチレン単位及びp-ピバロイルオキシスチレン単位の構成比率は「HNMR測定から約30:60:10であった。Mw 約 18500、Mw/Mn 1.12 (GPC法:ポリスチレン標準)。

【 0 1 5 8 】 製造例 1 5 ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン) の合成

(1)ポリ (p-tert-ブトキシスチレン) [Mw 約 2000 0、Mw/Mn 1.20 (GPC法:ポリスチレン標準); 日本曹達(株)製] 105.9gを用いて製造例9の(1)と同様にして反応及び後処理を行い、ポリ (p-ヒドロキシスチレン) 66.3gを白色粉末晶として得た。Mw 約 140 00、Mw/Mn 1.20 (GPC法:ポリスチレン標準)。

(2)上記(1)で得られたポリ (p-ヒドロキシスチレン) 16.2gとエチルビニルエーテル 4.7gとを用いて製造 例4の(3)と同様にして反応及び後処理を行い、ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン) 18.2gを白色粉末晶として得た。得られたポリマーのp-1-エトキシエトキシスチレン単位とp-ヒドロキシスチレン単位の構成比率は「HNMR測定から約40:60であった。Mw 約 17500、Mw/Mn 1.18 (GPC法:ポリスチレン標準)。

【 0 1 5 9 】製造例 1 6 ポリ (p-1-イソブトキシエトキシスチレン/p-ヒドロキシスチレン) の合成

製造例15の(1)で得られたポリ (p-ヒドロキシスチレン) 16.2gとイソブチルビニルエーテル 6.5gとを用いて製造例4の(3)と同様にして反応及び後処理を行い、ポリ (p-1-イソブトキシエトキシスチレン/p-ヒドロキシスチレン) 19.8gを白色粉末晶として得た。得られたポリマーのp-1-イソブトキシエトキシスチレン単位とp-ヒドロキシスチレン単位の構成比率は1HNMR測定から約40:60であった。Mw 約 18500、Mw/Mn 1.18 (GPC法:ポリスチレン標準)。

【0160】製造例17 ポリ (p-1-エトキシーn-プロポキシスチレン/p-ヒドロキシスチレン)の合成製造例15の(1)で得られたポリ (p-ヒドロキシスチレン)16.2gと1-エチルー1-プロペニルエーテル [和光純薬工業(株)製]5.6gとを用いて製造例4の(3)と同様にして反応及び後処理を行い、ポリ (p-1-エトキシーn-プロポキシスチレン/p-ヒドロキシスチレン)19.0gを白色粉末晶として得た。得られたポリマーのp-1-エトキシーn-プロポキシスチレン単位及びp-ヒドロキシスチレン単位の構成比率は「HNMR測定から約40:60であった。Mw約18000、Mw/Mn1.18 (GPC法:ポリスチレン標準)。

【0161】製造例18 ポリ (p-tert-ブトキシカルボニルオキシスチレン/p-ヒドロキシスチレン)の合成製造例15の(1)で得られたポリ (p-ヒドロキシスチレン)18.0g及び二炭酸ジ tert-ブチル11.0gとを用いて製造例9の(2)と同様にして反応及び後処理を行い、ポリ (p-tert-ブトキシカルボニルオキシスチレン/p-ヒドロキシスチレン)18.2gを白色粉末晶として得た。得られたポリマーのp-tert-ブトキシカルボニルオキシスチレン単位とp-ヒドロキシスチレン単位の構成比率は1HNMR測定から約30:70であった。Mw約17500、Mw/Mn1.20 (GPC法:ポリスチレン標準)。

【0162】製造例19 ポリ(p-テトラヒドロピラニ ルオキシスチレン/p-ヒドロキシスチレン)の合成 ポリ (p-ヒドロキシスチレン) [Mw 約 15000、Mw /Mn 1.14 (GPC法:ポリスチレン標準);日本曹 達(株)製] 16.2gを1,2-ジメトキシエタン 180mlに溶 解し、これに3,4-ジヒドロ-2H-ピラン 4.1g及び硫酸 0.7m1を加えて30~40℃で15時間攪拌反応させた。反応 後、減圧濃縮し、残渣を炭酸ナトリウムで中和し、水 2 000m1中に注入、晶析させた。析出晶を沪取し、水洗、 減圧乾燥してポリ (p-テトラヒドロピラニルオキシスチ レン/p-ヒドロキシスチレン) 18.0gを白色粉末晶と して得た。得られたポリマーのp-テトラヒドロピラニル オキシスチレン単位及びpーヒドロキシスチレン単位の構 成比率は¹ HNMR測定から約30:70であった。Mw 約 18000、Mw/Mn 1.14 (GPC法:ポリスチレン標 準) 、

【0163】製造例20 ポリ (p-tert-ブトキシスチ

レン/p-ヒドロキシスチレン)の合成

(1)p-アセチルオキシスチレン 45.4g (0.28モル)とp-tertーブトキシスチレン 21.2g (0.12モル)及び触媒量の2,2'-アゾビス(2-メチルプロピオン酸メチル)を用いて製造例2の(1)と同様にして反応及び後処理を行い、ポリ(p-tertーブトキシスチレン/p-アセチルオキシスチレン) 59.7gを白色粉末晶として得た。得られたポリマーのp-アセチルオキシスチレン単位とp-tertーブトキシスチレン単位の構成比率は「HNMR測定より約70:30であった。Mw 約 15000、Mw/Mn1.75(GPC法:ポリスチレン標準)。

(2)上記(1)で得たポリ(p-アセチルオキシスチレン/p-tertーブトキシスチレン) 46.3g及び28%アンモニア水 100mlを用いてイソプロパノール 300ml中、4時間 攪拌還流した。反応液を酢酸で中和した後、減圧濃縮し、残渣をアセトン150mlに溶解し、水 5000ml中に注入、晶析させた。析出晶を沪取、水洗、減圧乾燥してポリ(p-ヒドロキシスチレン/p-tertーブトキシスチレン) 34.0gを白色粉末晶として得た。得られたポリマーのp-tertーブトキシスチレン単位とp-ヒドロキシスチレン単位の構成比率は「HNMR測定より約30:70であった。Mw 約 12000、Mw/Mn 1.70 (GPC法:ポリスチレン標準)。

【0164】製造例21 ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-tert-ブトキシスチレン) の合成

(1)p-アセチルオキシスチレン 48.6g(0.30モル)とp-tert-ブトキシスチレン 17.6g(0.10モル)及び触媒量の2,2'-アゾビス(2,4-ジメチルバレロニトリル)を用いて製造例2の(1)と同様に反応及び後処理を行った。次いで得られた粘稠な樹脂をアセトン 200mlに溶解させ、50%メタノール水溶液 1000ml中に注入、析出した樹脂をデカントして得た後、減圧乾燥してポリ(p-アセチルオキシスチレン/p-tert-ブトキシスチレン)59.7gを白色粉末晶として得た。得られたポリマーのp-アセチルオキシスチレン単位及びp-tert-ブトキシスチレン単位の構成比率は「HNMR測定から約3:1であった。Mw 約 10500、Mw/Mn 1.32(GPC法:ポリスチレン標準)。

(2)上記(1)で得たポリ(p-アセチルオキシスチレン/p-tert-ブトキシスチレン) 46.3gを用いて製造例2 0の(2)と同様にして反応及び後処理を行い、ポリ(p-tert-ブトキシスチレン/p-ヒドロキシスチレン) 33.8gを白色粉末晶として得た。得られたポリマーのp-tert-ブトキシスチレン単位及びp-ヒドロキシスチレン単位の構成比率は「HNMR測定から約1:3であった。Mw 約8540、Mw/Mn 1.30(GPC法:ポリスチレン標準)。

(3)上記(2)で得たポリ (p-tert - ブトキシスチレン/ p-ヒドロキシスチレン) 26.8g及びエチルビニルエーテ ル 1.5gとを用いて製造例4の(3)と同様にして反応及び後処理を行い、ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-tertーブトキシスチレン) 25.0gを白色粉末晶として得た。得られたポリマーのp-1-エトキシエトキトスチレン単位とp-ヒドロキシスチレン単位及びp-tertーブトキシスチレン単位の構成比率は1HNMR測定から約10:65:25であった。Mw 約92 00、Mw/Mn 1.30 (GPC法:ポリスチレン標準)。

【0165】製造例22 ポリ (p-1-エトキシーn-プロポキシスチレン/p-ヒドロキシスチレン/p-イソプロポキシスチレン)の合成

製造例12の(1)と同様にして得られたポリ (p-ヒドロキシスチレン/p-イソプロポキシスチレン) 15.0g、プロピオンアルデヒドとエタノール及び塩化水素とを反応させ、蒸留して得た1-エトキシーn-プロピルクロライド3.1gをピリジン150ml中、20~30℃で6時間反応させた後、反応液を水中に注入、析出した粘稠油状物を製造例4の(3)と同様にして反応及び後処理を行い、ポリ(p-1 エトキシーn-プロポキシスチレン/p-ヒドロキシスチレン/p-イソプロポキシスチレン) 16.5gを微黄色粉末晶として得た。得られたポリマーのp-1-エトキシーn-プロポキシスチレン単位とp-ヒドロキシスチレン単位及びp-イソプロボキシスチレン単位の構成比率は1HNMR測定から約26:64:10であった。Mw約18200、Mw/Mn1.12(GPC法:ポリスチレン標準)。

【 0 1 6 6 】製造例 2 3 ポリ (p-1-エトキシー n-プロポキシスチレン/p-ヒドロキシスチレン/p-ピバロイルオキシスチレン)の合成

製造例14の(1)と同様にして得られたポリ(p-ヒドロキシスチレン/p-ピバロイルオキシスチレン) 15.5gと1-エトキシ-n-プロピルクロライド 3.0gとを用いて製造例22と同様にして反応及び後処理を行い、ポリ(p-1-エトキシ-n-プロポキシスチレン/p-ヒドロキシスチレン/p-ピバロイルオキシスチレン) 16.5gを微黄色粉末晶として得た。得られたポリマーのp-1-エトキシ-n-プロポキシスチレン単位とp-ヒドロキシスチレン単位及びp-ピバロイルオキシスチレン単位の構成比率は1HNMR測定から約23:67:10であった。Mw 約18800、Mw/Mn 1.12(GPC法:ポリスチレン標準)。

製造例24 ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/スチレン) の合成

(1)p-tert-ブトキシスチレン 81.1g (0.46モル) 及 びスチレン 4.6g (0.04モル) とを用いた製造例4の

(1)と同様に重合反応及び後処理を行い、ポリ (p-tert ーブトキシスチレン/スチレン) 80.5gを白色粉末晶として得た。次いでこのポリマー 70.0gを製造例 9の

(1)と同様に反応及び後処理してポリ (p-ヒドロキシス

チレン/スチレン) 44.0gを白色粉末晶として得た。 得られたポリマーのp-ヒドロキシスチレン単位とスチレン単位の構成比率は¹ H N M R 測定から約92:8であった。Mw 約 15500、Mw/Mn 1.08(GPC法:ポリスチレン標準)。

(2)上記(1)で得たポリ (p-ヒドロキシスチレン/スチレン) 15.0gとビニルエチルエーテル 3.2gを用いて 製造例4の(3)と同様に反応及び後処理してポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/スチレン) 15.0gを白色粉末晶として得た。得られたポリマーのp-1-エトキシエトキシスチレン単位とp-ヒドロキシスチレン単位及びスチレン単位の構成比率は¹ HNMR測定から約32:60:8であった。Mw約18300、Mw/Mn1.06 (GPC法:ポリスチレン標準)。

【0167】製造例25 ポリ (p-1-メトキシエトキシスチレン/p-ヒドロキシスチレン/p-tert-ブチルスチレン) の合成

(1)p-tert-ブトキシスチレン 100g(0.567モル)及びp-tert-ブチルスチレン 5.3g(0.03モル)を用いて製造例2の(1)と同様に重合反応及び後処理を行った。次いで得られた粘稠な樹脂をアセトン 300gに溶解させ、50%メタノール水溶液 2000m1中に注入、析出した樹脂をデカンとした。この操作を更に2回行った後、減圧乾燥してポリ(p-tert-ブトキシスチレン/p-tert-ブチルスチレン) 94.5gを白色粉末晶として得た。次いでこのポリマー 70gを製造例9の(1)と同様に反応及び後処理してポリ(p-tert-ブチルスチレン/p-tert-ブチルスチレン) 48.5gを白色粉末晶として得た。得られたポリマーのp-tドロキシスチレン単位とp-tert-ブチルスチレン単位の構成比率は「HNMR測定から約94:6であった。Mw約16000、Mw/Mn1.29(GPC法:ポリスチレン標準)。

(2)上記(1)で得たポリ (p-ヒドロキシスチレン/p-te rtーブチルスチレン) 15.0g、アセトアルデヒドとメタノール及び塩化水素とを反応させ、蒸留して得た1-メトキシエチルクロライド 2.8gとを用いて製造例22と同様に反応及び後処理してポリ (p-1-メトキシエトキシスチレン/p-ヒドロキシスチレン/p-ヒドロキシスチレン/ 15.8gを白色粉末晶として得た。得られたポリマーのp-1-メトキシエトキシスチレン単位とp-ヒドロキシスチレン単位及びp-tertーブチルスチレン単位の構成比率は1HNMR測定から約30:64:6であった。Mw約19000、Mw/Mn1.25 (GPC法:ポリスチレン標準)。

【0168】製造例26 ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/アクリル酸シクロヘキシル) の合成

(1)p-tert-ブトキシスチレン176.3g(1.0モル)及びアクリル酸シクロヘキシル16.2g(0.105モル)をイソプロパノール250mlに溶解し、窒素気流下、2,2'-アゾビス

イソブチロニトリルを添加して75℃で6時間重合反応させた。反応液を冷却後、メタノール水溶液5000ml中に注入して晶析させた。析出晶を沪取、メタノール洗浄、減圧乾燥してポリ(p-tert-ブトキシスチレン/アクリル酸シクロヘキシル)172.5gを白色粉末晶として得た。得られたポリマーのp-tert-ブトキシスチレン単位とアクリル酸シクロヘキシル単位の構成比率は「HNMR及び13 CNMR測定から約90:10であった。又、ポリスチレンを標準としたGPC測定の結果、Muは約 20,600、Mu/M n 1.55であった。

(2)上記(1)で得られたポリ (p-tert-ブトキシスチレン/アクリル酸シクロヘキシル) 130.5gを用いて製造例 1の(2)と同様に反応、後処理を行い、ポリ (p-ヒドロキシスチレン/アクリル酸シクロヘキシル) 85.5gを白色粉末晶として得た。得られたポリマーのp-ヒドロキシスチレン単位とアクリル酸シクロヘキシル単位の構成比率は1HNMR測定から約90:10であった。又、ポリスチレンを標準としたGPC測定の結果、Mwは約 14,800、Mw/Mn 1.50であった。

(3)上記(2)で得られたポリ (p-ヒドロキシスチレン/アクリル酸シクロヘキシル) 24.7g及びエチルビニルエーテル4.6gを酢酸エチルに溶解させ、p-トルエンスルホン酸ピリジニウム塩を添加し、室温で6時間撹拌反応させた。反応液を製造例1の(3)と同様に処理し、ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/アクリル酸シクロヘキシル) 26.1gを白色粉末晶として得た。得られたポリマーのp-1-エトキシエトキシスチレン単位とp-ヒドロキシスチレン単位及びアクリル酸シクロヘキシル単位の構成比率は HNMR及び CNMR測定から約30:60:10であった。又、ポリスチレンを標準としたGPC測定の結果、Mwは約 17,500、Mw/Mn 1.50であった。

【0169】製造例27 ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/アクリル酸イソボルニル) の合成

(1) p-tert-ブトキシスチレン176.3g(1.0モル)及びアクリル酸イソボルニル21.9g(0.105モル)をイソプロパノール250mlに溶解し、窒素気流下、2,2'-アゾビス(2-メチルプロピオン酸メチル)を添加して75℃で6時間重合反応させた。反応液を製造例26の(1)と同様に処理し、ポリ(p-tert-ブトキシスチレン/アクリル酸イソボルニル)177.4gを白色粉末晶として得た。得られたポリマーのp-tert-ブトキシスチレン単位とアクリル酸イソボルニル単位の構成比率は1HNMR及び13 C NMR測定から約90:10であった。Mw約23,600、Mw/Mn1.60(GPC法:ポリスチレン標準)。

(2)上記(1)で得られたポリ(p-tert-ブトキシスチレン/アクリル酸イソボルニル)125.6gを用いて製造例1の(2)と同様に反応、後処理を行い、ポリ(p-ヒドロキシスチレン/アクリル酸イソボルニル)81.2gを白色粉

末晶として得た。得られたポリマーのp-ヒドロキシスチレン単位とアクリル酸イソボルニル単位の構成比率は¹H NMR測定から約90:10であった。Mw 約 17,000、Mw/Mn 1.55(GPC法:ポリスチレン標準)。

(3)上記(2)で得られたポリ(p-ヒドロキシスチレン/アクリル酸イソボルニル) 25.8g及びエチルビニルエーテル4.6gを用いて製造例26の(3)と同様に反応及び後処理し、ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/アクリル酸イソボルニル) 25.9gを白色粉末晶として得た。得られたポリマーのp-1-エトキシエトキシスチレン単位とp-ヒドロキシスチレン単位及びアクリル酸イソボルニル単位の構成比率は1HNMR及び13CNMR制定から約30:60:10であった。Mw 約 20,000、Mw/Mn 1.55 (GPC法:ポリスチレン標準)。

【 0 1 7 0 】製造例 2 8 ポリ (p-1-エトキシ-n-プロポキシスチレン/p-ヒドロキシスチレン/メタクリル酸tert-ブチル) の合成

(1) p-アセトキシスチレン73.1g(0.5モル)及びメタクリル酸 tert-ブチル7.1g(0.05モル)をイソプロパノール125mlに溶解し、窒素気流下、2,2'-アゾビス(2,4-ジメチルバレロニトリル)を添加して70℃で7時間重合反応させた後、反応液を製造例26の(1)と同様に処理し、ポリ(p-アセトキシスチレン/メタクリル酸 tert-ブチル)72.5gを白色粉末晶として得た。得られたポリマーのp-アセトキシスチレン単位とメタクリル酸 tert-ブチル単位の構成比率は1HNMR及び13CNMR測定から約92:8であった。Mw 約15,800、Mw/Mn1.70(GPC法:ポリスチレン標準)。

(2)上記(1)で得られたポリ (p-アセトキシスチレン/メタクリル酸 tert-ブチル) 73.0gをアセトン1000ml に溶解させ、25%アンモニア水125gを加えて室温下で20時間撹拌反応した。反応液を減圧濃縮した後、酢酸エチル500ml及び水5000mlを注入、撹拌、静置し、有機層を分取、希塩酸水溶液洗浄次いで水洗した。有機層を減圧濃縮後、アセトン150mlに溶解させ、水20001中に注入、晶析させた。析出晶を沪取し、減圧乾燥してポリ (p-ヒドロキシスチレン/メタクリル酸tert-ブチル) 54.8gを白色粉末晶として得た。得られたポリマーのp-ヒドロキシスチレン単位とメタクリル酸 tert-ブチル単位の構成比率は1HNMR測定から約92:8であった。Mw 約 13,200、Mw/Mn 1.60 (GPC法:ポリスチレン標準)。

(3)上記(2)で得られたポリ(p-ヒドロキシスチレン/メタクリル酸 tert-ブチル)29.5g及び1-エトキシ-1-プロペン5.5gを用いて製造例1の(3)と同様に反応、後処

理を行い、ポリ(p-1-エトキシ-n-プロポキシスチレン/p-ヒドロキシスチレン/メタクリル酸 tert-ブチル)31.5gを白色粉末晶として得た。得られたポリマーのp-1-エトキシ-n-プロポキシスチレン単位とp-ヒドロキシスチレン単位及びメタクリル酸 tert-ブチル単位の構成比率は1HNMR及び13 C N M R 測定から約30:62:8であった。Mw 約 16,000、Mw/Mn 1.60 (GPC法:ポリスチレン標準)。

【 0 1 7 1 】製造例 2 9 ポリ (p-1-シクロヘキシルオキシエトキシスチレン/p-ヒドロキシスチレン/メタクリル酸メチル) の合成

(1) p-tert-ブトキシスチレン88.1g (0.5モル)及びメタクリル酸メチル5.0g (0.05モル)をイソプロパノール120m1に溶解し、窒素気流下、2,2'-アゾビス (2,4-ジメチルバレロニトリル)を添加して70℃で6時間重合反応させた後、反応液を製造例26の(1)と同様に処理し、ポリ (p-tert-ブトキシスチレン/メタクリル酸メチル)83.8gを白色粉末晶として得た。得られたポリマーのp-tert-ブトキシスチレン単位とメタクリル酸メチル単位の構成比率は1HNMR及び13CNMR測定から約90:10であった。Mw 約 17,600、Mw/Mn 1.75(GPC法:ポリスチレン標準)。

(2)上記(1)で得られたポリ (p-tert-ブトキシスチレン /メタクリル酸メチル) 67.5gを用いて製造例1の(2) と同様に反応、後処理を行い、ポリ (p-ヒドロキシスチレン/メタクリル酸メチル) 40.5gを白色粉末晶として得た。得られたポリマーのp-ヒドロキシスチレン単位とメタクリル酸メチル単位の構成比率は1HNMR測定から約90:10であった。Mw 約12,300、Mw/Mn1.70 (GPC法:ポリスチレン標準)。

(3)上記(2)で得られたポリ (p-ヒドロキシスチレン/メタクリル酸メチル) 23.6g及びシクロヘキシルビニルエーテル7.0gを用いて製造例 1 の(3)と同様に反応、後処理を行い、ポリ (p-1-シクロヘキシルオキシエトキシスチレン/p-ヒドロキシスチレン/メタクリル酸メチル) 26.0gを白色粉末晶として得た。得られたポリマーのp-1-シクロヘキシルオキシエトキシスチレン単位とp-ヒドロキシスチレン単位及びメタクリル酸メチル単位の構成比率は1 HNMR及び13 C N M R 測定から約25:65:10であった。Mw 約 15,500、Mw/Mn 1.70 (GPC法:ポリスチレン標準)。

【0172】実施例1 下記組成から成るフォトレジスト組成物を調製した。

ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/ p-tertーブトキシカルボニルオキシスチレン)

「Mw 20000; Mw/Mn=1.12:製造例9のポリマー]

4.5 g

ポリ (p-1-シクロヘキシルオキシエトキシスチレン/p-ヒドロキシスチレン/p-tertーブトキシスチレン)

[Mw 18200; Mw/Mn=1.12:製造例7のポリマー] 1.5 g

ビス (シクロヘキシルスルホニル) ジアゾメタン 0.3 g トリフェニルスルホニウム・p-トルエンスルホネート 0.05gトリエタノールアミン 0.1 gプロピレングリコールモノメチルエーテルアセテート 28.7 g

図1を用いて上記レジスト組成物を使用したパターン形 成方法を説明する。シリコン基板1に反射防止膜剤(D UV-32; Brewer Sciense社製、弱塩基性)を回転塗 布し、200℃で60秒間ホットプレートで加熱処理するこ とにより0.52μmの膜厚に形成された反射防止膜2上に 上記レジスト組成物3を回転塗布し、100℃、90秒間ホ ットプレート上でプリベーク後、0.7μmの膜厚のレジ スト組成物膜を得た(図1a)。次にKrFエキシマレ ーザステッパー(NA 0.55)を使用して波長、248.4 nm のレーザ光4をマスク5を介して選択的に露光した(図 1b)。そして 110℃、90秒間ホットプレートでポスト ベーク後、アルカリ現像液(2.38%テトラメチルアンモ ニウムヒドロキシド水溶液)で60秒間現像することによ り、レジスト膜の露光部のみを溶解除去し、ポジ型パタ ーン3 aを得た(図1 c)。得られたポジ型パターンは 矩形な形状の0.15 μmライン アンド スペース (以下、 L&Sと略記する。)の解像性能を有しており、この時 の露光量は30mJ/cm²であった。尚、デフォーカスで露 光した場合、 $0.18\mu m L \& S に対し、<math>\pm 0.7\mu m$ 返形状 の劣化がなく、十分なDOFが得られた。また、パター ン側壁も滑らかであり、スカムも観察されなかった。 【0173】本発明に係るレジスト組成物の耐熱性を測

定するため、上記パターン形成後、130℃で4分間ホッ

トプレート上でベークし、 0.40μ m及び 0.18μ mのL& S形状を走査型電子顕微鏡(SEM)でパターン断面を 観察した。その結果、加熱処理後も矩形形状が変化して おらずレジスト膜の耐熱性が認められた。

【0174】上記レジスト組成物を用いて露光から加熱 処理迄の時間経過(PED)に対するパターン寸法変化 を測定したが4時間経過しても0.18μmL&Sの寸法変 動はなく、安定であった。

【0175】また、上記レジスト組成物をTi₃N₄基板上 で前記と同様にしてパターン形成を行った結果、24mJ/ cm²の露光量で0.15μm L&Sを矩形の形状で解像し た。尚、デフォーカスで露光した場合、 $0.18\mu m L \& S$ に対し、±0.7μm迄形状の劣化はなく、十分なDOF が得られた。

【0176】更に上記レジスト組成物は調製して23℃で 1ヶ月間及び3ヶ月間保管した後、上記同様にして反射 防止膜上でパターン形成した結果、同露光量で0.15μm L&Sのポジ型パターンを解像し、0.18µmL&Sでの DOFも $\pm 0.7 \mu$ mあり、貯蔵安定性は良好であった。

【0177】実施例2~25

下記表1~表12の各組成から成るフォトレジスト組成 物を夫々調製した。表 1

実	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチ	・レン/p-tert
施	ープトキシスチレン)	
例	[Mw 18000; Mw/Mn=1.90:製造例 1 のポリマー]	4.5 g
2	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチ	・レン/
	スチレン) [Mw 18000; Mw/Mn=1.85:製造例 3 のな	ポリマ−] 1.5 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
	トリフェニルスルホニウム・p-トルエンスルホネート	0.05 g
	トリーn·オクチルアミン	0.1 g
	フツ素含有ノニオン系界面活性剤[市販品]	0.1 g
	プロピレングリコールモノメチルエーテルアセテート	28.5 g
実	ポリ(p-1-メトキシー1-メチルエトキシスチレン/p-ヒド	「ロキシ
施	スチレン/p-tertープトキシスチレン)	
例	[Mw 18000; Mw/Mn :1.12 : 製造例 5 のポリマー]	4.0 g
3	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチ	・レン/
	p-テトラヒドロピラニルオキシスチレン	
	[Mw 18500; Mw/Mn=1.18:製造例8のポリマー]	2.0 g
	ピス(1,1-ジメチルエチルスルホニル)ジアゾメタン	0.3 g
	p-tertープチルフェニルジフェニルスルホニウム・	
+	p-トルエンスルホネート	0.05 g
	トリーn・プチルアミン	0.1 g
	プロピレングリコールモノメチルエーテルアセテート	28.5 g
-	J	

【0178】表 2

. —		
実	ポリ(p·l·エトキシエトキシスチレン/p-ヒドロキシスチ	・レン/
施	p-tertープトキシカルボニルオキシスチレン)	
例	[Mw 20000; Mw/Mn=1.12]	3.5 g
4	ポリ (p-1-エトキシーn-プロポキシスチレン/p-ヒドロキ	・シスチレン/
	p-tertーブトキシスチレン)	
	[Mw 18200; Mw/Mn =1.11 : 製造例 6 のポリマー]	2.5 g
	ビス(1,1・ジメチルエチルスルホニル)ジアゾメタン	0.2 g
	p-tertーブチルフェニルジフェニルスルホニウム・	
	p-トルエンスルホネート	0.1 g
	ジフェノール酸	0.1 g
	フッ素含有ノニオン系界面活性剤[市販品]	0.1 g
	乳酸エチル	6.0 g
	プロピレングリコールモノメチルエーテルアセテート	22.0 g
実	ポリ(p-1-エトキシエチキシスチレン/p-ヒドロキシスチ	・レン/
施	p-tertープトキシスチレン)	
例	[Mw 18000; Mw/Mn =1.90]	4.5 g
5	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスラ	・レン/p-メチ
	ルスチレン)[Mw 18000; Mw/Mn=1.86:製造例2のな	ポリマー] 1.5 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
	p-シクロヘキシルフェニルジフェニルメルホニウム・p- l	トルエン
	スルホネート	$0.05\mathrm{g}$
	サリチル酸	0.1 g
	フッ素含有ノニオン系界面活性剤[市販品]	0.1 g
	乳酸エチル	6.5 g
	プロピレングリコールモノメチルエーテルアセテート	22.0 g
' —		

【0179】表 3

実	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチ 1	レン/p-イソ
施	プロポキシスチレン)	
例	[Mw 18000; Mw/Mn :1.12 : 製造例 1 2のポリマー]	5.0 g
6	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチ1	レン/p-ベン
	ゾイルオキシスチレン)	
	[Mw 18800; Mw/Mn :1.12 : 製造例13のポリマー]	1.0 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
	トリフェニルスルホニウム・p-トルエンスルホネート	0.05 g
	プロピレングリコールモノメチルエーテルアセテート	28.6 g
実	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチ1	レン/
施	p-tertープトキシスチレン)	
例	[Mw 18200; Mw/Mn :1.11:製造例4のポリマー]	4.5 g
7	ポリ (p-1-シクロヘキシルオキシエトキシスチレン/p-ヒ	ドロキシ
	スチレン/p-tertープトキシカルボニルオキシスチレン)	
	[Mw 20000; Mw/Mn :1.12 : 製造例10のポリマー]	1.5 g
	ビス (1-メチルエチルスルホニル) ジアゾメタン	0.3 g
	p-トリルジフェニルスルホニウム・10 -カンファースルホ	ネート 0.05 g
	γープチロラクトン	1.5 g
	プロピレングリコールモノメチルエーデルアセデート	27.0 g

【0180】表 4

実	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチ	レン)
施	[Mw 17500; Mw/Mn :1.18:製造例 1 5のポリマー]	2.5 g
例	ポリ (p-1-エトキシーn-プロポキシスチレン/p-ヒドロキ	シスチレン)
8	[Mw 18000; Mw/Mn :1.18:製造例17のポリマー]	2.5 g
	ポリ (p·1·イソブトキシエトキシスチレン/p·ヒドロキシ	スチレン)
	[Mw 18500; Mw/Mn :1.18 : 製造例16のポリマー]	1.0 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
	p-tertープチルフェニルジフェニルスルホニウム・p-トルコ	エン
	スルホネート	0.05 g
	コハク酸イミド	0.1 g
	プロピレングリコール	0.1 g
	プロピレングリコールモノメチルエーテルアセテート	28.5 g
実	ポリ(p-1-メトキシエトキシスチレン/p-ヒドロキシスチ	レン/
施	p-ビニルフェノキシ酢酸 tert-プチル)	
例	[Mw 20000; Mw/Mn :1.12:製造例11のポリマー]	3.5 g
9	ポリ (p・1・エトキシーn・プロポキシスチレン/p・ヒドロキ	シスチレン)
	[Mw 18000; Mw/Mn :1.18]	2.5 g
	ビス (1,1-ジメチルエチルスルホニル) ジアゾメタン	0.3 g
	p-シクロヘキシルフェニルジフェニルメルホニウム・	
	p-トルエンスルホネート	0.05 g
	γープチロラクトン	5.0 g
	プロピレングリコールモノメチルエーテルアセテート	23.5 g
	J	

【0181】表 5

実	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	/
施	p-ピパロイルオキシスチレン)	
例	[Mw 18500; Mw/Mn :1.12 : 製造例14のポリマー]	5.0 g
10	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン))
	[Mw 17500; Mw/Mn -1.18]	1.0 g
	ビス (シクロヘキシルスルホニル) ジアブメタン	0.3 g
	ジフェニル-p-トリルスルホニウム・p-トルエンスルホネート	0.05 g
	ジシクロヘキシルメチルアミン	0.1 g
	γ ープチロラクトン	1.0 g
	プロピレングリコールモノメチルエーテルアセテート	28.5 g
実	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	/p-イソ
施	プロポキシスチレン)[Mw 18000; Mw/Mn=1.12]	5.0 g
例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン))
11	[Mw 17500; Mw/Mn :1.18]	1.0 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.8 g
	ジフェニル-p-トリルスルホニウム・p-トルエンスルホネート	0.05 g
	フッ素含有ノニオン系界面活性剤	0.1 g
	γープチロラクトン	1.0 g
	プロピレングリコールモノメチルエーデルアセテート	28.5 g

【0182】表 6

. —		
実	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	/
施	p-tertープトキシスチレン [Mw 18200; Mw/Mn :1.11]	4.0 g
例	ポリ (p-シクロヘキシルオキシエトキシスチレン/p-1-ヒドロ	キシスチ
12	レン/p-tertーブトキシスチレン) [Mw 18200; Mw/Mn=1.1	경] 2.0 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
	p-tertープチルフェニルジフェニルスルホニウム・10ーカンフ	· 7
	スルホネート	0.1 g
	ポリオキシエチレンセチルエーテル	0.1 g
	9-ジアゾ-10-フェナントロン	0.1 g
	フッ素含有ノニオン系界面活性剤	0.1 g
	プロピレングリコールモノメチルエーテルアセテート	22.6 g
実	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)
施	[Mw 17500; Mw/Mn :1.18]	4.0 g
例	ポリ(p-1-イソブトキシエトキシスチレン/p-ヒドロキシスチ	・レン)
13	[Mw 18500; Mw/Mn :1.18]	2.0 g
	ビス (1,1.ジメチルエチルスルホニル) ジアゾメタン	0.3 g
	p-トリルジフェニルスルホニウム・p-トルエンスルホネート	0.05 g
	コハク酸イミド	0.1 g
A	プロピレングリコール	0.1 g
	γープチロラクトン	1.0 g
	プロピレングリコールモノメチルエーテルアセテート	22.6 g
-		

【0183】表 7

4.5 g
,
1.5 g
0.3 g
0.05 g
1.0 g
28.6 g
,
8.5 g
レン/
2.5 g
0.2 g
0.1 g
0.1 g
0.1 g
0.1 g

【0184】表 8

実	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	/
施	p-tertープトキシスチレン) [Mw 18200; Mw/Mn=1.11]	4.0 g
例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	/
16	p-tertープトキシカルボニルオキシスチレン)	
	[Mw 20000; Mw/Mn=1.12]	2.0 g
	ビス (シクロヘキシルスルホニル) ジアブメタン	0.3 g
	ビス (p-tertーブチルフェニル) ヨードニウム・p-トルエン	
	スルホネート	0.05 g
	プロピレングリコールモノメチルエーデルアセデート	28.7 g
実	ポリ(p·1·エトキシーn·プロポキシスチレン/p·ヒドロキシス	チレン
施	/p-ピバロイルオキシスチレン)	
例	[Mw 18800; Mw/Mn :1.12:製造例 2 3のポリマー]	4.5 g
17	ポリ (p·1·エトキシーn・プロポキシスチレン/p·ヒドロキシス	・チレン
	[Mw 18000; Mw/Mn=1.18]	1.5 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
	ジフェニル・p・トリルスルホニウム・p・トルエンスルホネート	0.05 g
	ジシクロヘキシルアミン	0.1 g
	フッ素含有ノニオン系界面活性剤	0.1 g
	ν ープチロラクトン	0.05 g
	プロピレングリコールモノメチルエーテルアセテート	28.5 g

【0185】表 9

実	ポリ (p-1-エトキシー n -プロポキシステレン/p-ヒドロキシス	メチレン
施	/p-イソプロボキシステレン)	
例	[Mw 18200; Mw/Mn :1.12 : 製造例 2 2のポリマー]	5.0 g
18	ポリ (p-1-エトキシー n -プロポキシスチレン/	
	p・ヒドロキシスチレン) [Mw 18000; Mw/Mn=1.18]	1.0 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
	ジフェニル・p-トリルスルホニウム・p-トルエンスルホネート	0.05 g
	ジシクロヘキシルアミン	0.1 g
	フッ素含有ノニオン系界面活性剤	0.1 g
	γ ープチロラクトン	0.05 g
	プロピレングリコールモノメチルエーテルアセテート	28.5 g
実	ポリ (p-1-エトキシ- n -プロポキシスチレン/p-ヒドロキシス	ペチレン
施	/p·イソプロポキシスチレン)	
例	[Mw 18200; Mw/Mn :1.12]	5.0 g
19	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	•)
	[Mw 17500; Mw/Mn :1.18]	1.0 g
	ピス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
	ジフェニル-p-トリルスルホニウム・p-トルエンスルホネート	0.05 g
	ジシク11ヘキシルアミン	0.1 g
	フッ素含有ノニオン系界面活性剤	0.1 g
	γ ープチロラクトン	1.0 g
	乳酸エチル	3.5 g
	プロピレングリコールモノメチルエーテルアセテート	25.0 g

【0186】表 10

実	ポリ (p-1-エトキシー n -プロポキシスチレン/p-ヒドロキシス	パチレン
施	/p.ピパロイルオキシステレン)	
例	[Mw 18800; Mw/Mn :1.12]	4.5 g
20	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)
	[Mw 17500; Mw/Mn :1.18]	1.5 g
	ビス (1,1-ジメチルエチルスルホニル) ジアゾメタン	0.8 g
	p-tert-ブチルフェニルジフェニルスルホニウム・p-トルエン	
	スルホネート	0.05 g
	トリエタノールアミン	0.1 g
	フッ素含有ノニオン系界面活性剤	0.05 g
	y ープチロラクトン	3.5 g
	プロピレングリコールモノメチルエーテルアセテート	26.0 g
実	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	/
施	p-ビバロイルオキシスチレン) [Mw 18500; Mw/Mn=1.12]	5.0 g
例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)
21	[Mw 17500; Mw/Mn :1.18]	1.0 g
	ビス (シクロヘキシルスルホニル) ジアブメタン	0.3 g
	ジフェニル-p-トリルスルホニウム・p-トルエンスルホネート	0.05 g
	ジシクロヘキシルアミン	0.1 g
	γ ープチロラクトン	1.0 g
	乳酸エチル	3.5 g
	プロピレングリコールモノメチルエーテルアセテート	25.0 g

【0187】表 11

実	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン,	/
施	p-インプロポキシスチレン) [Mw 18000; Mw/Mn=1.12]	5.0 g
例	ポリ (p-1-エトキシー n -プロポキシスチレン/	
22	p-ヒドロキシスチレン) [Mw 18000; Mw/Mn=1.18]	1.0 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
	ジフェニル-p-トリルスルホニウム・p-トルエンスルホネート	0,05 g
	ジシクロヘキシルアミン	0.1 g
	フッ素含有ノニオン系界面活性剤	0.1 д
	γープチロラクトン	1.0 g
	乳酸エチル	3.5 g
	プロピレングリコールモノメチルエーテルアセテート	25.5 g
実	ポリ (p-1-エトキシエトキシステレン/p-ヒドロキシスチレン)	/
施	p-tertープトキシスチレン) [Mw 18200; Mw/Mn=1.11]	5.0 g
例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン,	/
23	スチレン) [Mw 18300; Mw/Mn=1.06; 製造例 24 のポリマー	-] 2.0 g
	ピス (シクロヘキシルスルホニル) ジアブメタン	0.3 g
	ジフェニル-p-トリルスルホニウム・p-トルエンスルホネート	0.1 g
	ジシクロヘキシルメチルアミン	0.1 g
	フッ素含有ノニオン系界面話性剤	0.1 g
	γープチロラクトン	0.1 g
	プロピレングリコールモノメチルエーテルアセテート	25.5 g
1	J	

【0188】表 12

実	ポリ (p-1-メトキシエトキシスチレン/p-ヒドロキシスチレン	
施	p-tertープチルステレン)	
例	[Mw 19000; Mw/Mn=1.95: 製造例 25のポリマー]	4.0 g
24	ポリ (p-1-エトキシ-n-プロポキシスチレン/p-ヒドロキシスチ	-レン)
	[Mw 18000; Mw/Mn=1.18]	2.0 g
	ビス (1,1・ジメチルエチルスルホニル) ジアゾメタン	0.3 g
	p-tert-ブゲルフェニルジフェニルスルホニウム・p-トルエン	
	スルホネート	0.1 g
	ジシク12ヘキシルメチルアミン	0.1 g
	ピリジン	0.2 g
	γープチロラクトン	0.1 g
	プロピレングリコールモノメチルエーテルアセテート	25.5 g
実	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	/p-tert
施	ープトキシスチレン) [Mw 18200; Mw/Mn :1.11]	4.0 g
例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)
25	[Mw 17500; Mw/Mn=1.18]	2.0 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
	ジフェニル-p-トリルスルホニウム・p-トルエンスルホネート	0.05 g
	y ープチロラクトン	0.1 g
	プロピレングリコールモノメチルエーテルアセテート	27.5 g
'	J	

々、実施例1と同様にしてパターン形成を行った。反射 防止膜上の評価結果を表13~表18に、また、Ti3

【0189】上で調製した各レジスト組成物を用いて夫 N_4 基板上の評価結果等を表19及び表20に示す。表 13

実	露光量	解像性能	露光か	ら加熱処理	!迄の	DOF
施例			時間と	線幅変化(点	μ m L&S)	(0.18 μ m)
	mJ/cm²	μ m L&S	0分	30 分後	4 時間後	(μm)
2	2.6	0.16	0.18	0.18	0.18	± 0.6
3	26	0.15	0.18	0.18	0.18	± 0.7
4	3 0	0.15	0.18	0.18	0.18	± 0.7
5	2.6	0.16	0.18	0.18	0.18	± 0.6
6	3 2	0.15	0.18	0.18	0.18	± 0.7
7	3 0	0.15	0.18	0.18	0.18	± 0.7
8	2.4	0.15	0.18	0.18	0.18	± 0.7
9	2 6	0.15	0.18	0.18	0.18	± 0.7
10	26	0.15	0.18	0.18	0.18	± 0.7
11	2.8	0.15	0.18	0.18	0.18	± 0.7
12	3 0	0.15	0.18	0.18	0.18	± 0.7
13	2.4	0.15	0.18	0.18	0.18	± 0.7
14	3 0	0.15	0.18	0.18	0.18	± 0.7
15	2.8	0.15	0.18	0.18	0.18	± 0.7

【0190】表 14

実	露光量	解像性能	露光か	ら加熱処理	!迄の	DOF
施例			時間と	線幅変化(д	t m L&S)	(0.18 μ m)
	mJ/cm²	μm L&S	0分	30 分後	4 時間後	(μm)
16	2.3	0.15	0.18	0.18	0.18	± 0.7
17	2.8	0.14	0.18	0.18	0.18	± 0.7
18	2.6	0.14	0.18	0.18	0.18	± 0.7
19	26	0.14	0.18	0.18	0.18	± 0.7
20	2.8	0.14	0.18	0.18	0.18	± 0.7
21	26	0.14	0.18	0.18	0.18	± 0.7
22	2.8	0.14	0.18	0.18	0.18	± 0.7
23	2.8	0.15	0.18	0.18	0.18	± 0.7
24	2.8	0.15	0.18	0.18	0.18	± 0.7
25	2 4	0.15	0.18	0.18	0.18	± 0.7

【0191】表 15

実	形状	側壁	スカム
施		荒れ	
例			
2	矩形	良好	なし
3	矩形	良好	なし
4	矩形	良好	なし
5	矩形	良好	なし
6	矩形	良好	なし
7	矩形	良好	なし
8	矩形	良好	なし
9	矩形	良好	なし
10	矩形	良好	なし
11	矩形	良好	なし
12	矩形	良好	なし
13	矩形	良好	なし
14	矩形	良好	なし
15	矩形	良好	なし

【0192】表 16

実	形状	側壁	スカム
施		荒れ	
例			
16	矩形	良好	なし
17	矩形	良好	なし
18	矩形	良好	なし
19	矩形	良好	なし
20	矩形	良好	なし
21	矩形	良好	なし
22	矩形	良好	なし
23	矩形	良好	なし
24	矩形	良好	なし
25	矩形	良好	なし

【0193】表 17

実	耐熱性	貯蔵	貯蔵時間と線幅変化			貯蔵時間とDOF変化		
施例		(μm L&S)			0.18 µ m L	&S (μm)		
		即川	1ヶ月後	3ヶ月後	1ヶ月後	3ヶ月後		
2	良好	0.18	0.18	0.18	± 0.6	± 0.6		
3	良好	0.18	0.18	0.18	± 0.7	± 0.7		
4	良好	0.18	0.18	0.18	± 0.7	± 0.7		
5	良好	0.18	0.18	0.18	± 0.6	± 0.6		
6	良好	0.18	0.18	0.18	± 0.7	± 0.7		
7	良好	0.18	0.18	0.18	± 0.7	± 0.7		
8	良好	0.18	0.18	0.18	± 0.7	± 0.7		
9	良好	0.18	0.18	0.18	± 0.7	± 0.7		
10	良好	0.18	0.18	0.18	± 0.7	± 0.7		
11	良好	0.18	0.18	0.18	± 0.7	± 0.7		
12	良好	0.18	0.18	0.18	± 0.7	± 0.7		
13	良好	0.18	0.18	0.18	± 0.7	± 0.7		
14	良好	0.18	0.18	0.18	± 0.7	± 0.7		
15	良好	0.18	0.18	0.18	± 0.7	± 0.7		

【0194】表 18

実	耐熱性	貯蔵	貯蔵時間と線幅変化			貯蔵時間とDOF変化		
施例		(μm L&S)			0.18 μ m L	&S (μm)		
		即:1	1ヶ月後	3ヶ月後	1ヶ月後	3ヶ月後		
16	良好	0.18	0.18	0.18	± 0.7	± 0.7		
17	良好	0.18	0.18	0.18	± 0.7	± 0.7		
18	良好	0.18	0.18	0.18	± 0.7	± 0.7		
19	良好	0.18	0.18	0.18	± 0.7	± 0.7		
20	良好	0.18	0.18	0.18	± 0.7	± 0.7		
21	良好	0.18	0.18	0.18	± 0.7	± 0.7		
22	良好	0.18	0.18	0.18	± 0.7	± 0.7		
23	良好	0.18	0.18	0.18	± 0.7	± 0.7		
24	良好	0.18	0.18	0.18	± 0.7	± 0.7		
25	良好	0.18	0.18	0.18	± 0.7	± 0.7		
		1		1	1	I		

【0195】表 19

実	露光量	解像性能	DOF	側壁荒れ	形	状
施	mJ/cm²	(Ti,N _a :0.7 μ m	(0.18 μm L&S)			
例		膜厚)				
2	2, 2	0.16 μ m L&S	± 0.6 μ m	良好	良	好
3	2.2	0.15 μ m L&S	± 0.7 μ m	良 好	良	好
4	24	0.15 μ m L&S	± 0.7 μ m	良 好	良	好
5	22	0.16 μ m L&S	± 0.6 μ m	良 好	良	好
6	28	0.15 μ m L&S	± 0.7 μ m	良好	良	好
7	2.5	0.15 μ m L&S	± 0.7 μ m	良 好	良	好
8	2.1	0.15 μ m L&S	± 0.7 μ m	良 好	良	好
8	2.2	0.15 μ m L&S	± 0.7 μ m	良好	良	好
10	2.2	0.15 μ m L&S	± 0.7 μ m	良好	良	好
11	2.5	0.15 μ m L&S	± 0.7 μ m	良 好	良	好
12	2,5	0.15 μ m L&S	± 0.7 μ m	良 好	良	好
13	2 1	0.15 μ m L&S	± 0.7 μ m	良好	良	好
14	2, 5	0.15 μ m L&S	± 0.7 μ m	良 好	良	好
15	2.4	0.15μm L&S	± 0.7 μ m	良 好	良	好

【0196】表 20

実	露光量	解像性能	DOF	側壁荒れ	形	状
施	mJ/cm [°]	(Ti,N,:0.7 μ m	(0.18 µ m L&S)			
例		膜厚)				
16	20	0.15 μ m L&S	± 0.7 μ m	良好	良	好
17	24	0.15 µ m L&S	± 0.7 μ m	良 好	良	好
18	2.2	0.15 μ m L&S	± 0.7 μ m	良好	良	好
19	2.2	0.15 μ m L&S	\pm 0.7 μ m	良 好	良	好
20	2.4	0.15 μ m L&S	\pm 0.7 μ m	良 好	良	好
21	2.2	0.15μm L&S	± 0.7 μ m	良 好	良	好
22	24	0.15 μ m L&S	\pm 0.7 μ m	良 好	良	好
23	24	0.15 μ m L&S	\pm 0.7 μ m	良 好	良	好
24	2.4	0.15 µ m L&S	± 0.7 μ m	良好	良	好
25	2.1	0.15 µ m L&S	± 0.7 μ m	良 好	良	好

【0197】表13~表20から明らかな如く実施例2~25の何れのレジスト組成物も実施例1のそれと同様、良好なポジ型パターンを形成し、反射防止膜上で0.15~0.16 μ m L&Sを解像した。また、0.18 μ m L&Sに対し、 ± 0.6 μ m以上のDOFが得られた。更に、4時間経過でも0.18 μ m L&Sが全く問題なく解像され、寸法変動もないことから、実施例1と同様にPEDの影響も認められなかった。この他、実施例2~25の

何れのレジスト材料もTi₃N₄等の他の基板を用いた場合でも良好な性能を示し、基板依存性の問題もないことが判った。更に実施例2~25のレジスト材料は何れも貯蔵安定性も問題なかった。

比較例1 下記組成から成るレジスト組成物を調製した。

[0198]

ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)

[Mw 17500; Mw/Mn=1.18:製造例15のポリマー] 4.0 g

ポリ (p-tert – ブトキシカルボニルオキシスチレン/p-ヒドロキシスチレン)

[Mw 17500; Mw/Mn=1.20:製造例18のポリマー] 2.0 g

ビス (シクロヘキシルスルホニル) ジアゾメタン 0.2 g

ビス (2,4-ジメチルフェニルスルホニル) ジアゾメタン 0.1 g

サリチル酸 0.1 g

N, N-ジメチルアセトアミド 0.2 g

プロピレングリコールモノメチルエーテルアセテート 28.5 g

上記組成から成るレジスト組成物を用いて実施例 1 と同様にしてパターン形成を行った。その結果、露光量、30 mJ/cm² で 0.16μ m L & S のポジ型パターンを解像したがテーパー形状となり形状不良であった。また、 0.18μ m L & S でのD O F は $\pm 0.3\mu$ m であった。更に、23 で 1 ヶ月の保管した後に、パターン形成を行わせたとこ

ろ、±10%以上の寸法変動が認められ、このレジスト組成物は性能不良及び貯蔵安定性不良であった。

比較例2 下記組成から成るレジスト組成物を調製した

【0199】

ポリ (p-テトラヒドロピラニルオキシスチレン/p-ヒドロキシスチレン)

[Mw 18000; Mw/Mn=1.14:製造例19のポリマー] 6.0 g

ビス (1-メチルエチルスルホニル) ジアゾメタン 0.3 g

トリフェニルスルホニウム・p-トルエンスルホネート 0.05g

プロピレングリコールモノメチルエーテルアセテート

上記組成から成るレジスト組成物を用いて実施例1と同様にパターン形成を行った。その結果、露光量、32mJ/cm²で0.18μmL&Sのポジ型パターンを解像したがテーパー形状となり形状不良であり、0.18μmL&Sでの

DOFは±0であり、このレジスト組成物は性能不良であった。

28.5 g

比較例3 下記組成から成るレジスト組成物を調製した。

[0200]

ポリ (p-tert – ブトキシスチレン/p-ヒドロキシスチレン)

[Mw 12000; Mw/Mn=1.70:製造例20のポリマー] 6.0 g ビス (1,1-ジメチルエチルスルホニル) ジアゾメタン 0.3 g

トリフェニルスルホニウム・p-トルエンスルホネート 0.05g

プロピレングリコールモノメチルエーテルアセテート 28.5 g

上記組成から成るレジスト組成物を用いて実施例 1 と同様にパターン形成を行った。その結果、露光量、 $30 \,\mathrm{mJ}/\mathrm{cm}^2$ で $0.18 \,\mu$ m $1.8 \,\mathrm{mL}$ & Sを解像したがテーパー形状となり形状不良であり、 $0.16 \,\mu$ m $1.8 \,\mathrm{mL}$ & S は解像出来なかった。また、 $0.18 \,\mu$ m $1.8 \,\mathrm{mL}$ & S での $1.8 \,\mu$ m $1.8 \,\mathrm{mL}$ & S での $1.8 \,\mu$ m $1.8 \,\mathrm{mL}$ & S での $1.8 \,\mu$ m $1.8 \,\mathrm{mL}$ & S で $1.8 \,\mathrm{mL}$ & S で $1.8 \,\mathrm{mL}$ を $1.8 \,\mathrm{mL}$ を $1.8 \,\mathrm{mL}$ & S で $1.8 \,\mathrm{mL}$ & S で

レジスト組成物は性能不良であった。 比較例4 下記組成から成るレジスト組成物を調製した。

[0201]

ポリ (p-tert – ブトキシカルボニルオキシスチレン/p-ヒドロキシスチレン)

[Mw 17500; Mw/Mn=1.20] 6.0 g

ビス (シクロヘキシルスルホニル) ジアゾメタン 0.3 g

トリフェニルスルホニウム・トリフルオロメタンスルホネート 0.05g

プロピレングリコールモノメチルエーテルアセテート 28.5 g

上記組成から成るレジスト組成物を用いて実施例 1 と同様にパターン形成を行った。その結果、露光量 33 mJ/cm 2 で0.20 μ m L & S を解像した(裾引き形状)が、0.18 μ m L & S は解像されず、このレジスト組成物は性能不良であった。

【0202】比較例5~26

比較の為、表21~表28の各組成から成るレジスト組成物を夫々調製し、夫々実施例1と同様にしてパターン形成を行った。評価結果を表29及び表30に示す。表21

g
g
g
g

【0203】表 2	2_	
	比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/
	較	p-tertーブトキシスチレン)
	例	[Mw 18000; Mw/Mn :1.90: 製造例 1 のポリマー] 6.0 g
	9	トリフェニルスルホニウム トリフルオロメタンスルホネート 0.3 g
		プロピレングリコールモノメチルエーテルアセテート 28.7 g
	比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/
	較	p-tertープトキシスチレン)
	例	[Mw 18200; Mw/Mn =1.11:製造例4のポリマー] 4.0 g
	10	ポリ (p・1・エトキシエトキシスチレン/p・ヒドロキシスチレン)
		[Mw 17500; Mw/Mn :1.18] 2.0 g
		トリス (トリクロロメチル) -s-トリアジン 1.1 g
		トリエタノールアミン 0.1 g
		プロピレングリコールモノメチルエーテルアセテート 27.5 g
	比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/
	較	p-tertープトキシスチレン) [Mw 18000; Mw/Mn=1.90] 4.5 g
	例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/
	11	p-tertープトキシスチレン)
		[Mw 9200; Mw/Mn=1.80: 製造例 2.1のポリマー] 1.5 g
		ジフェニル-p-トリルスルホニウム・p-トルエンスルホネート 0.3 g
		プロピレングリコールモノメチルエーテルアセテート 28.7 g

【0204】表 23

. —		
比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	/
較	p-tertープトキシスチレン) [Mw 18000; Mw/Mn=1.90]	4.5 g
例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	
12	p-tertーブトキシスチレン) [Mw 9200; Mw/Mn=1.30]	1.5 g
	ビス(1,1-ジメチルエチルスルホニル)ジアゾメタン	0.2 g
	ビス (p-トルエンスルホニル) ジアゾメタン	0.1 g
	プロピレングリコールモノメチルエーテルアセテート	28.5 g
比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	/
較	p-テトラヒドロピラニルオキシスチレン)	
例	[Mw 18500; Mw/Mn =1.18:製造例 8 のポリマー]	6.0 g
13	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.2 g
	1,2,3-トリス (メタンスルホニルオキシ) ベンゼン	0.1 g
	プロピレングリコールモノメチルエーテルアセテート	28.7 g
比	ポリ (p·1·エトキシエトキシスチレン/p-ヒドロキシスチレン)
較	[Mw 17500; Mw/Mn =1.18]	3.5 g
例	ポリ (p.1-エトキシーn-プロポキシスチレン/p.ヒドロキシス	チレン)
14	[Mw 18000; Mw/Mn =1.18:製造例17のポリマー]	2.5 g
	トリフェニルスルホニウム・トリフルオロメタンスルホネート	0.2 g
	プロピレングリコールモノメチルエーテルアセテート	28.5 g
1	1-	

【0205】表 24

比	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ	シノ
較	p-tertープトキシスチレン)	
例	[Mw 9200; Mw/Mn=1.30:製造例21のポリマー]	2.5 g
15	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ	・ン/
	p•tert•ブトキシカルボニルオキシスチレン)	
	[Mw 20000; Mw/Mn :1.12]	2.0 g
	ポリ(p-1-イソブトキシエトキシスチレン/p-ヒドロキシス	チレン)
	[Mw 18500; Mw/Mn :1.18 : 製造例16のポリマー]	1.5 g
	ビス (シクロヘキシルスルホニル) ジアブメタン	0.3 g
	ジフェニル-p-トリルスルホニウム・パーフルオロオクタン	
	スルホネート	0.15 g
	プロピレングリコールモノメチルエーテルアセテート	28.0 g
比	ポリ(p.1-エトキシエトキシスチレン/p.ヒドロキシスチレ	シノ
較	p-tertープトキシスチレン) [Mw 18200; Mw/Mn=1.11]	2.5 g
例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ	シノ
16	p-tertープトキシカルボニルオキシスチレン)	
	[Mw 20000; Mw/Mn -1.12]	2.0 g
	ポリ(p-1-エトキシーn-プロポキシステレン/p-ヒドロキシ	スチレン)
	[Mw 18000; Mw/Mn=1.18]	1.5 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
	ジフェニル-p-トリルスルホニウム・パーフルオロブタン	
	スルホネート	0.06 g
	プロピレングリコールモノメチルエーテルアセテート	28.6 g

【0206】表 25

比	ポリ(p·1·エトキシエトキシスチレン/p-ヒドロキシスチレ	×/
較	p-tertープトキシスチレン)[Mw 18000; Mw/Mn=1.90]	4.5 g
例	ポリ (p.1.エトキシエトキシスチレン/p.ヒドロキシスチレ	ν/
17	p-tertーブトキシスチレン) [Mw 9200; Mw/Mn=1.30]	1.5 g
	ビス (シクロヘキシルスルホニル) ジアブメタン	0.3 g
	ジフェニル-p-トリルスルホニウム・トリフルオロメタン	
	スルホネート	0.1 g
	プロピレングリコールモノメチルエーデルアセテート	28.6 g
比	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ	ン/p-tert
較	ープトキシスチレン) [Mw 18200; Mw/Mn :1.11]	4.0 g
例	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ	ン)
18	[Mw 17500; Mw/Mn=1.18]	2.0 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
	ジフェニル-p-トリルスルホニウム・トリフルオロメタンス/	・ホネート
		0.05 g
	γ ープチロラクトン	0.1 g
	プロピレングリコールモノメチルエーテルアセテート	27.5 g

【0207】表 26

比	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-tert
較	ープトキシスチレン) [Mw 18200; Mw/Mn :1.11] 4.0 g
例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)
19	[Mw 17500; Mw/Mn=1.18] 2.0 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン 0.2 g
	ビス (p-トルエンスルホニル) ジアゾメタン 0.1 g
	γ-ブチロラクトン 0.1 g
	プロピレングリコールモノメチルエーテルアセテート 27.5 g
比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)
較	[Mw 17500; Mw/Mn=1.18] 4.0 g
例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)
20	[Mw 10200; Mw/Mn=1.05] 2.0 g
	トリフェニルスルホニウム・トリフルオロメタンスルホネート 0.3 g
	プロビレングリコールモノメチルエーテルアセテート 28.6 g
比	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-tert
較	プトキシスチレン) [Mw 18200; Mw/Mn=1.11] 6.0 g
例	トリフェニルスルホニウム・p-トルエンスルホネート 0.3 g
21	トリエチルアミン 0.1 g
	プロピレングリコールモノメチルエーテルアセテート 28.6 g

【0208】表 27

比	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-tert
較	プトキシカルボニルオキシスチレン)
例	[Mw 20000; Mw/Mn=1.12] 6.0 g
22	ピス (シクロヘキシルスルホニル) ジアゾメタン 0.3 g
	トリフェニルスルホニウム・トリフルオロメタンスルホネート 0.05g
	プロピレングリコールモノメチルエーテルアセテート 28.6 g
比	ポリ (p·1·エトキシエトキシスチレン/p·ヒドロキシスチレン)
較	[Mw 17500; Mw/Mn=1.18] 4.5 g
例	ポリ (p-tertーブトキシカルボニルオキシスチレン/p-ヒドロキシ
23	スチレン) [Mw 17500; Mw/Mn=1.20] 1.5 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン 0.3 g
	プロビレングリコールモノメチルエーテルアセテート 28.7 g
比	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-tert
較	プトキシスチレン) [Mw 18200; Mw/Mn=1.11] 6.0 g
例	ビス (シクロヘキシルスルホニル) ジアゾメタン 0.3 g
24	トリフェニルスルホニウム・トリフルオロメタンスルホネート 0.05 g
	プロピレングリコールモノメチルエーテルアセテート 28.6 g

【0209】表 28

比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチ)	 -ン)	
較	[Mw 17500; Mw/Mn=1.18]	4.5 g	
例	ポリ (p-tertーブトキシカルボニルオキシスチレン/p-ヒ.)	ドロキシ	
25	スチレン) [Mw 17500; Mw/Mn=1.20]	1.5 g	
	ビス (p-tertーブチルフェニル) ヨードニウム・トリフルス	 ロメタン	
	スルホネート	0.3 g	
	プロピレングリコールモノメチルエーテルアセテート	28.6 g	
比	ポリ (p·1·エトキシエトキシスチレン/p·ヒドロキシスチ1	/ン)	
較	[Mw 17500; Mw/Mn=1.18]	6.0 g	
例	p-トリフェニルジスルホン	0.3 g	
26	フッ素含有ノニオン系界面活性剤 [市販品]	0.1 g	
	プロピレングリコールモノメチルエーデルアセテート	28.0 g	
	I.		

【0210】表 29

比	露光量	解像性能	DOF	パターン形状	側壁
較	mJ/cm²		(0.18 μ m L&S)		荒れ
例					
5	50	0.24 μ m L&S		裾引き形状	良 好
6	4 5	0.18 μ m L&S	$\pm 0.1 \mu \mathrm{m}$	裾引き形状	不 良
7	30	0.18 μ m L&S	$\pm 0.1 \mu \mathrm{m}$	形状不良	不 良
8	22	0.20 μ m L&S		形状不良	不 良
9	26	0.18 μ m L&S	± 0 μ m	形状不良	不 良
10	26	0.20 μ m L&S		形状不良	不 良
11	2 2	0.18 μ m L&S	$\pm~0.2\mu\mathrm{m}$	形状不良	不 良
12	3 2	0.18 μ m L&S	$\pm 0.2 \mu\mathrm{m}$	テーパー形状	不 良
13	24	0.18 μ m L&S	± 0 μ m	テーパー形状	不良
14	1 8	0.18 μ m L&S	$\pm~0.2\mu\mathrm{m}$	形状不良	不 良
15	3 0	0.16 μ m L&S	$\pm~0.3\mu\mathrm{m}$	形状不良	不 良
16	3 0	0.16 μ m L&S	$\pm~0.3\mu\mathrm{m}$	形状不良	不 良
17	2.7	0.16 μ m L&S	$\pm~0.3\mu\mathrm{m}$	形状不良	不 良
18	2 2	0.18 μ m L&S	$\pm~0.2\mu\mathrm{m}$	形状不良	不良
19	26	0.18 μ m L&S	$\pm~0.2\mu\mathrm{m}$	テーパー形状	不 良
20	1 8	0.18 μ m L&S	$\pm 0.2 \mu\mathrm{m}$	形状不良	不 良
21	22	0.16 μ m L&S	$\pm~0.2\mu\mathrm{m}$	テーパー形状	良 好
22	30	0.18 μ m L&S	\pm 0.2 μ m	テーパー形状	良 好
23	3 6	0.18 μ m L&S	$\pm~0.2\mu\mathrm{m}$	裾引き形状	不 良
24	25	0.16 μ m L&S	$\pm~0.3\mu\mathrm{m}$	裾引き形状	不 良
25	26	0.18 μ m L&S	$\pm 0.1 \mu \mathrm{m}$	形状不良	不 良
26	1 4	0.18 μ m L&S	$\pm 0.1 \mu \mathrm{m}$	形状不良	不 良

【0211】表 30

比	露光量	露光太	露光から加熱処理迄の		
較 例		時間と線幅変化(μ m L&S)			
	mJ/cm²	0分	30 分後	4 時間後	
15	3 0	0.18	0.16	0.15	
16	3 0	0.18	0.16	0.15	
17	2.7	0.18	0.16	0.15	
18	2, 2	0.18	0.16	0.15	
19	2.6	0.18	0.18	0.18	
20	1 8	0.18	0.16	0.15	
21	2.2	0.18	0.18	0.16	

【0212】また、比較例1~3、比較例12~13、比較例19及び比較例21~22のテーパー形状を図2に、比較例4~6及び比較例23~24の裾引き形状を図3に、比較例7、比較例9、比較例11及び比較例14の形状不良を図4に、比較例8、比較例10、比較例15~18、比較例20及び比較例25~26の形状不良を図5に夫々示す。

【0213】表29及び図2~図5から明らかな如くこれ等比較例に於ては、本発明のレジスト組成物に比較して何れも解像性能が劣り、パターン形状も不良であり、且つ総じて0.18μmL&Sに対するDOFも小さい。

【0214】また、比較例26の組成から成るレジスト 組成物を調製し48時間後に比較例1と同様にしてパタ ーン形成を行わせた処、未露光部も現像液に溶解し、パ ターン形成できなかった。即ち、比較例26の組成から 成るレジスト組成物は溶液安定性不良であった。

【0215】更に、比較例15~18及び比較例20~21は露光から加熱処理迄の時間経過と共に寸法変動しており、Delay Timeの影響を受けていることが明らかである。

【0216】また、実施例25と比較例18及び比較例20とを比較した場合、酸発生剤の組合せの違いにより、解像性能、DOF、パターン形状及びDelay Timeの影響の受け易さの点で大きな相違が認められ、本発明に係る組成物の優位性が明らかである。

【0217】実施例26 下記組成から成るレジスト組成物を調製した。

ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)

[Mw 17500; Mw/Mn=1.18]	5.0 g
ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/	
p-テトラヒドロピラニルオキシスチレン) [Mw 18500; Mw/Mn=1.18]	1.0 g
ビス(1,1-ジメチルエチルスルホニル)ジアゾメタン	0.3 g
p-tertーブチルフェニルジフェニルスルホニウム・	
p-トルエンスルホネート	0.05g
プロピレングリコール	0.1 g
γ - ブチロラクトン	0.5 g
プロピレングリコールモノメチルエーテルアセテート	28.5 g

上記組成から成るレジスト組成物を用い、マスクをコンタクトホールパターン形成用とした以外は実施例 1 と同様にしてコンタクトホール(以下、C & H と略記する。)パターン形成を行った。その結果、露光量48mJ/cm² \overline{c} 0.18 μ m C & H を解像した。形状も矩形であっ

た。また、0.22μmC&HでのDOFは±0.5μmであった

【0218】実施例27 下記組成から成るレジスト組成物を調製した。

ポリ(p-1-エトキシエトキシスチレン/p-ヒドロ	ロキシスチレン))
---------------------------	----------	---

[Mw 17500; Mw/Mn=1.18]	5.0 g
ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/	
p-イソプロポキシスチレン) [Мw 18000; Мw/Mn=1.12]	1.0 g
ビス(シクロヘキシルスルホニル)ジアゾメタン	0.3 g
ジフェニル-p-トリルスルホニウム・p-トルエンスルホネート	0.05g
フッ素含有ノニオン系界面活性剤	0.1 g
アーブチロラクトン	1.0 g
プロピレングリコールモノメチルエーテルアセテート	28.5 g

上記組成から成るレジスト組成物を用いて実施例26と同様にしてコンタクトホールパターン形成を行った。その結果、露光量 50mJ/cm^2 で 0.18μ m C & H を解像した。形状も矩形であった。また、 0.22μ m C & H でのD O F は $\pm 0.5 \mu$ m であった。

【0219】比較例27

比較例 7 の組成から成るレジスト組成物を用いて実施例 2 6 と同様にしてコンタクトホールパターン形成を行った。その結果、露光量 65mJ/cm^2 で 0.20μ m C & H を解像したが、レジスト膜表層が丸い及びテーパー形状であった。また、 0.22μ m C & H でのDOF は $\pm 0.1 \mu$ m と不良であった。

【0220】比較例28

比較例1の組成から成るレジスト組成物を用いて実施例26と同様にしてコンタクトホールパターン形成を行った。その結果、露光量75mJ/cm²で0.20μmC&Hを解像したが、レジスト膜表層が丸い及びテーパー形状であった。また、0.22μmC&HでのDOFは±0.1μmと不良であった。

【0221】実施例26、実施例27と比較例27、比較例28の結果からコンタクトホールパターンを形成する場合、アセタール基を含む2種以上のポリマーと特定の構造を有する酸発生剤の2種以上とを混合して用いた方が解像性能、DOF及び形状の点から優位であること

が判る。

【0222】実施例26、実施例27で得られた矩形形状のコンタクトホールパターン断面図を図6に示す。また、比較例27及び比較例28で得られたレジスト膜表

層が丸いテーパー形状の不良なコンタクトホールパターンの断面図を図7に示す。

【0223】実施例28 下記組成から成るフォトレジスト組成物を調製した。

ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/

p-tert - ブトキシカルボニルオキシスチレン)

[Mw=20000; Mw/Mn=1.12:製造例9のポリマー] 4.5 g

ポリ (p-1-シクロヘキシルオキシエトキシスチレン/p-ヒドロキシ

スチレン/p-tert-ブトキシスチレン)

[Mw=18200; Mw/Mn=1.12: 製造例7のポリマー] 1.5 g ビス (シクロヘキシルスルホニル) ジアゾメタン 0.3 g トリフェニルスルホニウム・p-トルエンスルホネート 0.05g トリエタノールアミン 0.1 g アーブチロラクトン 0.03 g プロピレングリコールモノメチルエーテルアセテート 28.7 g

得られたポジ型パターンは矩形な形状の 0.15μ mラインアンドスペースの解像性能を有しており、この時の露光量は30mJ/cm²であった。尚、デフォーカスで露光した場合、 0.18μ mL&Sに対し、 $\pm 0.7\mu$ m迄形状の劣化がなく、十分なDOFが得られた。また、パターン側壁も滑らかであり、スカムも観察されなかった。

【0224】本発明に係るレジスト組成物の耐熱性を測定するため、上記パターン形成後、130℃で4分間ホットプレート上でベークし、0.40μm及び0.18μmのL&S形状を走査型電子顕微鏡(SEM)でパターン断面を観察した。その結果、加熱処理後も矩形形状が変化しておらずレジスト膜の耐熱性が認められた。

【0225】上記レジスト組成物を用いて露光から加熱処理迄の時間経過(PED)に対するパターン寸法変化を測定したが4時間経過しても0.18μmL&Sの寸法変動はなく、安定であった。

【0226】また、上記レジスト組成物を Ti_3N_4 基板上で前記と同様にしてパターン形成を行った結果、 $24mJ/cm^2$ の露光量で $0.15\mu mL\&S$ を矩形の形状で解像した。尚、デフォーカスで露光した場合、 $0.18\mu mL\&S$ に対し、 $\pm 0.7\mu$ m迄形状の劣化はなく、十分なDOFが得られた。

【0227】更に上記レジスト組成物は調製して23℃で 1 ヶ月間及び3 ヶ月間保管した後、上記同様にして反射 防止膜上でパターン形成した結果、同露光量で 0.15μ m L&Sのポジ型パターンを解像し、 0.18μ m L&Sでの DOFも $\pm 0.7\mu$ m あり、貯蔵安定性は良好であった。

【0228】実施例29~54

下記表31~表45の各組成から成るフォトレジスト組成物を夫々調製した。

表 31

実	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチ	レン/p-tert
施	ープトキシスチレン)	
例	[Mw 18000; Mw/Mn=1.90:製造例 1 のポリマー]	4.5 g
29	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチ	レン/
	スチレン) [Mw 18000; Mw/Mn=1.85: 製造例 3 のポ	[기∀─] 1.5 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
	トリフェニルスルホニウム・p-トルエンスルホネート	0.05 g
	トリーn-オクチルアミン	0.1 g
	フッ素含有ノニオン系界面活性剤 [市販品]	0.1 g
	γ ープチロラクトン	0.05 g
	プロピレングリコールモノメチルエーテルアセテート	28.5 g
実	ポリ (p-1-メトキシー1-メゲルエトキシスチレン/p-ヒド	ロキシ
施	スチレン/p-tertープトキシスチレン)	
例	[Mw 18000; Mw/Mn :1.12:製造例 5 のポリマー]	4.0 g
30	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチ	レン/
	p-テトラヒドロピラニルオキシスチレン	
	[Mw 18500; Mw/Mn=1.13:製造例 8 のポリマー]	2.0 g
	ビス (1,1-ジメチルエチルスルホニル) ジアゾメタン	0.3 g
	p-tertーブチルフェニルジフェニルスルホニウム・	
	p•トルエンスルホネート	0.05 g
	トリーn-ブチルアミン	0.1 g
	y ープチロラクトン	0.05 g
	プロピレングリコールモノメチルエーテルアセテート	28.5 g
1	J	

【0229】表 32

. —		
実	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチ	レン/p-tert-
施	プトキシカルボニルオキシスチレン) [Mw 20000; Mw/M	n:1.12] 3.5 g
例	ポリ (p·1·エトキシーn-プロポキシスチレン/p·ヒドロキ	シスチレン/
31	p-tertープトキシスチレン)	
	[Mw 18200; Mw/Mn =1.11:製造例 6 のポリマー]	2.5 g
	ビス (1,1-ジメチルエチルスルホニル) ジアプメタン	O.2 g
	p-tertーブチルフェニルジフェニルスルホニウム・	
	p-トルエンスルホネート	0.1 g
	ジフェノール酸	0.1 g
	フッ素含有ノニオン系界面活性剤 [市販品]	0.1 g
	ジシクロヘキシルアミン	0.1 g
	乳酸エチル	2.0 g
	プロピレングリコールモノメチルエーテルアセテート	26.0 g
実	ポリ (p-1-エトキシエチキシスチレン/p-ヒドロキシスチ	レン/
施	p-tertープトキシスチレン) [Mw 18000; Mw/Mn=1.9	90] 4.5 g
例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチ	レン/p-メザ
32	ルスチレン) [Mw 18000; Mw/Mn=1.86:製造例 2 のポ	₹リマー] 1.5 g
	ビス (シクロヘキシルスルホニル) ジアプメタン	0.3 g
	p-tert-プトキシフェニルジフェニルスルホニウム・p-トル	エン
	スルポネート	0.05 g
	サリチル酸	0.1 g
	フッ素含有ノニオン系界面活性剤 [市販品]	0.1 g
	ジシクロヘキシルメゲルアミン	0.1 g
	乳酸エチル	2.5 g
	プロピレングリコールモノメチルエーテルアセテート	26.0 g
· ——	J	

【0230】表 33

実	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ	·ン/p-イソ	
施	プロポキシスチレン)		
例	[Mw 18000; Mw/Mn =1.12:製造例 1 2のポリマー]	5.0	g
33	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ	·ン/p-ベン	
	ソイルオキシスチレン)		
	[Mw 18800; Mw/Mn =1.12 : 製造例13のポリマー]	1.0	g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 д	
	トリフェニルスルホニウム・p-トルエンスルホネート	0.05 g	
	ジシクロヘキシルアミン	0.1 g	
	プロピレングリコールモノメチルエーテルアセテート	28.6 g	
実	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ	12/	
施	p-tertープトキシステレン)		
例	[Mw 18200; Mw/Mn =1.11:製造例4のポリマー]	4.5	g
34	ポリ (p-1-シクロヘキシルオキシエトキシスチレン/p-ヒト	ベロキシ	
	スチレン/p-tertーブトキシカルボニルオキシスチレン)		
	[Mw 20000; Mw/Mn =1.12:製造例10のポリマー]	1.5	g
	ビス (1,1・ジメチルエチルスルホニル) ジアゾメタン	0.3 g	
	ジフェニル-p-トリルスルホニウム・10 -カンファー		
	スルホネート	0.05 g	
	トリエタノールアミン	0.1 g	
	ジシクロヘキシルメチルアミン	0.05 g	
	γ ープチロラクトン	1.5 g	
	プロピレングリコールモノメチルエーテルアセテート	27.0 g	

【0231】表 34

実	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ	·ン)
施	[Mw 17500; Mw/Mn :1.18 : 製造例 1 5のポリマー]	2.5 g
例	ポリ (p-1-エトキシーn-プロポキシステレン/p-ヒドロキシ	/スチレン)
35	[Mw 18000; Mw/Mn :1.18 : 製造例17のポリマー]	2.5 g
	ポリ (p·1·イソプトキシエトキシスチレン/p·ヒドロキシス	スチレン)
	[Mw 18500; Mw/Mn =1.18 ; 製造例16のポリマー]	1.0 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
	p-tertーブチルフェニルジフェニルスルホニウム・p-トルコ	¥ν
	スルホネート	0.05 g
	トリ・n -オクチルアミン	0.1 g
	コハク酸イミド	0.1 g
	プロピレングリコール	0.1 g
	プロピレングリコールモノメチルエーテルアセテート	28.5 g
実	ポリ (p-1-メトキシエトキシスチレン/p-ヒドロキシスチレ	·v/
施	p-ビニルフェノキシ酢酸 tert-ブチル)	
例	[Mw 20000; Mw/Mn =1.12:製造例11のポリマー]	3.5 g
36	ポリ (p-1-エトキシーn-プロポキシスチレン/p-ヒドロキシ	ィスチレン)
	[Mw 18000; Mw/Mn :1.18]	2.5 g
	ビス (1,1-ジメチルエチルスルホニル) ジアゾメタン	0.3 g
	p-メトキシフェニルジフェニルスルホニウム・	
	p-トルエンスルホネート	0.05 g
	トリ・n -ブチルアミン	0.1 g
	y ープチロラクトン	5.0 g
	プロピレングリコールモノメチルエーテルアセテート	23.5 g
1	J	

【0232】表 35

実 ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/ 施 p-ピパロイルオキシスチレン) 例 [Mw 18500; Mw/Mn:1.12: 製造例 1 4のポリマー] 5.0 g 87 ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン) [Mw 17500; Mw/Mn:1.18] 1.0 g ビス (シクロヘキシルスルホニル) ジアゾメタン 0.3 g ジフェニル-p-トリルスルホニム・p-トルエンスルホネート 0.05 g ジシクロヘキシルメチルアミン 0.1 g ッープチロラクトン 1.0 g プロピレングリコールモノメチルエーテルアセテート 28.5 g 素 ポリ (p-1・エトキシエトキシスチレン/p-ヒドロキシスチレン/p-イソ
例 [Mw 18500; Mw/Mn:1.12:製造例14のポリマー] 5.0 g 87 ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン) [Mw 17500; Mw/Mn:1.18] 1.0 g ビス (シクロヘキシルスルホニル) ジアゾメタン 0.3 g ジフェニル-p-トリルスルホニム・p-トルエンスルホネート 0.05 g ジシクロヘキシルメチルアミン 0.1 g yープチロラクトン 1.0 g プロピレングリコールモノメチルエーテルアセテート 28.5 g
87 ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン) [Mw 17500; Mw/Mn :1.18] 1.0 g ビス (シクロヘキシルスルホニル) ジアゾメタン 0.3 g ジフェニル-p-トリルスルホニム・p-トルエンスルホネート 0.05 g ジシクロヘキシルメチルアミン 0.1 g γープチロラクトン 1.0 g プロピレングリコールモノメチルエーテルアセテート 28.5 g
[Mw 17500; Mw/Mn:1.18] 1.0 g ビス(シクロヘキシルスルホニル)ジアゾメタン 0.3 g ジフェニル・p・トリルスルホニム・p・トルエンスルホネート 0.05 g ジシクロヘキシルメチルアミン 0.1 g y ープチロラクトン 1.0 g プロピレングリコールモノメチルエーテルアセテート 28.5 g
ビス (シクロヘキシルスルホニル) ジアゾメタン 0.3 g ジフェニル-p-トリルスルホニム・p-トルエンスルホネート 0.05 g ジシクロヘキシルメチルアミン 0.1 g ッープチロラクトン 1.0 g プロピレングリコールモノメチルエーテルアセテート 28.5 g
ジフェニル・p-トリルスルホニム・p-トルエンスルホネート 0.05 g ジシクロヘキシルメチルアミン 0.1 g γ ープチロラクトン 1.0 g プロピレングリコールモノメチルエーテルアセテート 28.5 g
ジシクロへキシルメチルアミン 0.1 g
γ ープチロラクトン 1.0 g プロピレングリコールモノメチルエーテルアセテート 28.5 g
プロピレングリコールモノメチルエーテルアセテート 28.5 g
実 ポリ (p・1・エトキシエトキシスチレン/p・ヒドロキシスチレン/p・イソ
施 プロポキシスチレン) [Mw 18000; Mw/Mn=1.12] 5.0 g
例 ポリ (p・1・エトキシエトキシスチレン/p・ヒドロキシスチレン)
38 [Mw 17500; Mw/Mn :1.18] 1.0 g
ビス (シクロヘキシルスルホニル) ジアゾメタン 0.3 g
ジフェニル・p・トリルスルホニウム・p-トルエンスルホネート 0.05 g
ジシクロヘキシルメチルアミン 0.1 g
フッ素含有ノニオン系界面活性剤 0.1 g
y ープチロラクトン 1.0 g
プロピレングリコールモノメチルエーテルアセテート 28.5 g

【0233】表 36

実	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)	1
施	[Mw 17500; Mw/Mn :1.18]	4.0 g
例	ポリ(p-1-イソブトキシエトキシスチレン/p-ヒドロキシスチ	レン)
39	[Mw 18500; Mw/Mn :1.18]	2.0 g
	ビス (1,1-ジメチルエチルスルホニル) ジアブメタン	0.3 g
	ジフェニル-p-トリルスルホニウム・p-トルエンスルホネート	0.05 g
	トリプロパノールアミン	0.1 g
	コハク酸イミド	0.1 g
	プロピレングリコール	0.1 g
	γ ープチロラクトン	1.0 g
	プロピレングリコールモノメチルエーテルアセテート	22.6 g

【0234】表 37

実 施 例	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン, p-tertープトキシスチレン)[Mw 18200; Mw/Mn=1.11]	
例	p-tertープトキシスチレン) [Mw 18200; Mw/Mn=1.11]	45 ~
"		T.D 8
	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	/
40	p-tertープトキシスチレン) [Mw 9200; Mw/Mn=1.30]	1.5 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
	ジフェニル-p-トリルスルホニウム・p-トルエンスルホネート	0.05 g
	トリ·n·ブチルアミン	0.1 g
	γ ープチロラクトン	1.0 g
	プロピレングリコールモノメチルエーテルアセテート	28.6 g
実	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン,	/
施	p-tertープトキシスチレン) [Mw 18200; Mw/Mn=1.11]	3.5 g
例	ポリ (p-1-エトキシーn-プロポキシスチレン/p-ヒドロキシス5	チレン/
41	p-tertープトキシスチレン [Mw 18200; Mw/Mn=1.11]	2.5 g
	ビス (1-メチルエチルスルホニル) ジアゾメタン	0.2 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.1 g
	ジフェニル- p - トリルスルホニウム・p- トルエンスルホネート	0.1 g
	ジシクロヘキシルメチルアミン	0.1 g
	フッ素含有ノニオン系界面活性剤	0.1 g
	2-ヘプタノン	28.5 g

【0235】表 38

	実	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/	/
	施	p-tertープトキシスチレン)[Mw 18200; Mw/Mn=1.11]	4.0 g
	例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/	/
	42	p-tertープトキシカルボニルオキシスチレン)	
		[Mw 20000; Mw/Mn=1.12]	2.0 g
		ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
		ビス (p-tertープチルフェニル) ヨードニウム・p-トルエン	
		スルホネート	0.05 g
		アトラブチルアンモニウムヒドロキシド	0.1 g
		プロピレングリコールモノメチルエーテルアセテート	28.7 g
	実	ポリ (p-1-エトキシーn-プロポキシスチレン/p-ヒドロキシス	チレン
	施	/p-ピパロイルオキシスチレン)	
	例	[Mw 18800; Mw/Mn :1.12 : 製造例 2 3のポリマー]	4.5 g
	43	ポリ (p-1-エトキシーn-プロポキシステレン/p-ヒドロキシス	チレン
		[Mw 18000; Mw/Mn=1.18]	1.5 g
		ビス (シクロヘキシルスルホニル) ジアブメタン	0.3 g
		ジフェニル- p - トリルスルホニウム・p-トルエンスルホネート	0.05 g
		ジシクロヘキシルアミン	0.1 g
		フッ素含有ノニオン系界面活性剤	0.1 g
		γ ーブチロラクトン	0.05 g
		プロピレングリコールモノメチルエーテルアセテート	28.5 g
-14	-		

【0236】表 39

実	ポリ (p-1-エトキシー n -プロポキシステレン/p-ヒドロキシ	スチレン	
施	/p-イソプロポキシステレン)		
例	[Mw 18200; Mw/Mn :1.12:製造例 2 2のポリマー]	5.0	g
44	ポリ (p-1-エトキシー n -プロポキシスチレン/		
	p・ヒドロキシスチレン) [Mw 18000; Mw/Mn=1.18]	1.0	R
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g	
	ジフェニル・o・トリルスルホニウム・p-トルエンスルホネー	⊳ 0.05 g	
	ジシクロヘキシルアミン	0.1 g	
	フッ素含有ノニオン系界面活性剤	0.1 g	
	γープチロラクトン	0.05 g	
	プロピレングリコールモノメチルエーテルアセテート	28.5 g	
実	ポリ (p-1-エトキシー n -プロポキシスチレン/p-ヒドロキシ	スチレン	
施	/p·イソプロポキシスチレン)		
例	[Mw 18200; Mw/Mn :1.12]	5.0	g
45	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	/)	
	[Mw 17500; Mw/Mn :1.18]	1.0	g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 д	
	ジフェニル·p-トリルスルホニウム・p-トルエンメルホネー]	⊳ 0.05 g	
	ジシク11ヘキシルアミン	0.1 g	
	フッ素含有ノニオン系界面活性剤	0.1 g	
	γ ープチロラクトン	1.0 д	
	乳酸エチル	2.5 g	
	プロピレングリコールモノメチルエーテルアセテート	26.5 g	
	-		

【0237】表 40

実	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/	/	
施	p-ピパロイルオキシスチレン〉[Mw 18500; Mw/Mn=1.12]	5.	0 g
例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)		
46	[Mw 17500; Mw/Mn :1.18]	:	1.0 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.8	g
	ジフェニル- p -トリルスルホニウム・p-トルエンスルホネート	0.05	g
	ジシクロヘキシルアミン	0.1	g
	γ ープチロラクトン	1.0	g
	乳酸エチル	1.5	g
	プロピレングリコールモノメチルエーテルアセテート	27.0	g

【0238】表 41

実	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/	/
施	p-イソプロポキシスチレン) [Mw 18000; Mw/Mn=1.12]	5,0 g
例	ポリ (p-1-エトキシー n -プロポキシスチレン/	
47	p-ヒドロキシスチレン) [Mw 18000; Mw/Mn=1.18]	1.0 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.8 g
	ジフェニル- p - トリルスルホニウム・p- トルエンスルホネート	0.05 g
	ジシクロヘキシルアミン	0.1 g
	フッ素含有ノニオン系界面活性剤	0.1 g
	γープチロラクトン	1.0 g
	乳酸メチル	3.5 g
	プロピレングリコールモノメチルエーテルアセテート	25.5 g
実	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/	/
施	p-tertープトキシスチレン) [Mw 18200; Mw/Mn=1.11]	5.0 g
例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/	/
48	スチレン)[Mw 18300; Mw/Mn=1.06;製造例 24 のポリマー	-] 2.0 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
	ジフェニル- p - トリルスルホニウム・p-トルエンスルホネート	0.1 g
	ジシクロヘキシルメチルアミン	0.1 g
	フッ素含有ノニオン系界面活性剤	0.1 g
	γープチロラクトン	0.1 g
	プロピレングリコールモノメチルエーテルアセテート	25.5 g

【0239】表 42

実	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン,	/p-tert
施	ープトキシスチレン) [Mw 18200; Mw/Mn :1.11]	4.0 g
例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)	1
49	[Mw 17500; Mw/Mn=1.18]	2.0 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
	ジフェニル-p-トリルスルホニウム・p-トルエンスルホネート	0.05 g
	トリス [2-(2-メトキシエトキシ)エチルアミン]	0.05 g
	ジシクロヘキシルメチルアミン	0.05 g
	γ ープチロラクトン	0.1 g
	プロピレングリコールモノメチルエーデルアセデート	27.5 g

表 43

. —				
実	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/	/		
施	アクリル酸シクロヘキシル)			
例	[Mw 17500 ; Mw/Mn=1.50 : 製造例26のポリマ	·─] 4.5 g		
50	ポリ (p-1-シクロヘキシルオキシエトキシスチレン/p-ヒドロコ	テシ		
	スチレン/p-tert-ブトキシカルボニルオキシスチレン)			
	[Mw 20000 ; Mw/Mn=1.12 ; 製造例 1 0のポリマー]	1.5 g		
	ビス (1,1・ジメチルエチルスルホニル) ジアゾメタン	0.3 g		
	ジフェニル-p-トリルスルホニウム・p-トルエンスルホネート	0.05 g		
	ジフェニル-o-トリルスルホニウム・p-トルエンスルホネート	0.02 g		
	ジシクロヘキシルメチルアミン	0.1 g		
	フッ素含有ノニオン系界面活性剤	0.1 g γ ープチロ		
	ラクトン 0.05 g			
	プロピレングリコールモノメチルエーテルアセテート	27.5 g		
実施	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/	/		
例	アクリル酸イソボルニル)			
51	[Mw 20000 ; Mw/Mn=1.55 : 製造例 2 7のポリマー	─] 4.5 gポリ(p-l-		
	エトキシエトキシスチレン/p-ヒドロキシスチレン)			
	[Mw 17500 ; Mw/Mn=1.18]	1.5 g		
	ビス (シクロヘキシル人ルホニル) ジアプメタン	0.3 g		
	ジフェニル-p-トリルスルホニウム・p-トルエンスルホネート	0.05 g		
	ジフェニル-o-トリルスルホニウム・p-トルエンスルホネート	0.02 g		
	ジシクロヘキシルメチルアミン	0.1 g		
	フッ素含有ノニオン系界面活性剤	0.1 g		
	νープチロラクトン	0.1 g		
	プロピレングリコールモノメチルエーテルアセデート	27.0 g		

表 44

1		
実施	ポリ(p-1-エトキシ-n-プロポキシステレン/p-ヒドロキシステレ	///
例	メタクリル酸 tert-ブチル)	
52	[Mw 16000 ; Mw/Mn=1.60 : 製造例 2 8 のポリマー]	Б.О g
	ポリ (p-1-エトキシ-n-プロポキシスチレン/p-ヒドロキシスチレ	~ン)
	[Mw 18000 ; Mw/Mn=1.18]	1.0 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
	ジフェニル-2,4,6-トリメチルフェニルスルホニウム・p-トルエン	
	スルホネート	0.05 g
	ジシクロヘキシルメチルアミン	0.1 g
	フッ素含有ノニオン系界面活性剤	0.1 g
	γ ープチロラク トン	0.2 g
	プロピレングリロールモノメチルエーテルアセテート	26.5 g
実施	ポリ (p-1-シクロヘキシルオキシエトキシスチレン/p-ヒドロキ	シ
例	スチレン/メタクリル酸メチル)	
53	[Mw 15500 ; Mw/Mn :1.70 : 製造例29のポリマー]	4.5 g
	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)	
	[Mw 17500 ; Mw/Mn=1.18]	1.5 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
	ジフェニル-2,4-ジメチルフェニルスルホニウム・p-トルエン	
	スルホネート	0.05 g
	ジシクロヘキシルメチルアミン	0.07 g
	テトラメチルアンモニウムヒドロキシド	0.03gフッ素含有
	ノニオン系界面活性剤 0.1 g	
	γ ープチロラクトン	0.2 g
	プロピレングリコールモノメチルエーテルアセテート	26.0 g
' —		

表 45

実施	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/	,		
例	アクリル酸シクロヘキシル)			
54	[Mw 17500 ; Mw/Mn=1.50]		4.5	g
	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)			
	[Mw 17500 ; Mw/Mn=1.18]		1.5	g
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3	g	
	ジフェニル-p-トリルスルホニウム・p-トルエンスルホネート	0.05	g	
	ジシクロヘキシルメチルアミン	0.1	g	
	フッ素含有ノニオン系界面活性剤	0.1	g	
	γ ープチロラクトン	0.1	g	
	プロピレングリコールモノメチルエーテルアセテート	27.0	g	

【0240】上で調製した各レジスト組成物を用いて夫々、実施例28と同様にしてパターン形成を行った。反射防止膜上の評価結果を表46~表51に、また、Ti

 $_3\,\mathrm{N}_4$ 基板上の評価結果等を表5 $\,2\,\mathrm{B}$ び表5 $\,3\,\mathrm{C}$ に示す。 表 $\,4\,6\,$

実	露光量	解像性能	露光か	ら加熱処理	DOF	
施			時間と	線幅変化(点	ı m L&S)	(0.18 μ m)
例	mJ/em²	μm L&S	0分	30 分後	4 時間後	(μm)
29	2.6	0.16	0.18	0.18	0.18	± 0.6
30	26	0.15	0.18	0.18	0.18	± 0.7
31	3 1	0.15	0.18	0.18	0.18	± 0.7
32	2.7	0.16	0.18	0.18	0.18	± 0.6
33	3 3	0.15	0.18	0.18	0.18	± 0.7
34	3 2	0.15	0.18	0.18	0.18	± 0.7
35	26	0.15	0.18	0.18	0.18	± 0.7
36	2.8	0.15	0.18	0.18	0.18	± 0.7
37	2.6	0.15	0.18	0.18	0.18	± 0.7
38	30	0.15	0.18	0.18	0.18	± 0.7
39	2.6	0.15	0.18	0.18	0.18	± 0.7
40	3 2	0.15	0.18	0.18	0.18	± 0.7
41	2.8	0.15	0.18	0.18	0.18	± 0.7

【0241】表 47

実施	露光星	解像性能	露光から加熱処理迄の 時間と線幅変化(μ m L&S)			DO F (0.18 μ m)
例	mJ/cm ²	μm L&S	0分	30 分後	4 時間後	(μm)
42	2.6	0.15	0.18	0.18	0.18	± 0.7
43	2.8	0.14	0.18	0.18	0.18	± 0.7
44	2 6	0.14	0.18	0.18	0.18	± 0.7
45	2 6	0.14	0.18	0.18	0.18	± 0.7
46	2 6	0.14	0.18	0.18	0.18	± 0.7
47	2.8	0.14	0.18	0.18	0.18	± 0.7
48	2.8	0.15	0.18	0.18	0.18	± 0.7
49	2.7	0.15	0.18	0.18	0.18	± 0.7
50	2.8	0.14	0.18	0.18	0.18	± 0.7
51	2.8	0.14	0.18	0.18	0.18	± 0.7
52	2.7	0.14	0.18	0.18	0.18	± 0.7
53	3 2	0.14	0.18	0.18	0.18	± 0.7
54	2.7	0.14	0.18	0.18	0.18	± 0.7

【0242】表 48

実	形状	側壁	スカム
施		荒れ	
例			
29	矩形	良好	なし
30	矩形	良好	なし
31	矩形	良好	なし
32	矩形	良好	なし
33	矩形	良好	なし
34	矩形	良好	なし
35	矩形	良好	なし
36	矩形	良好	なし
37	矩形	良好	なし
38	矩形	良好	なし
39	矩形	良好	なし
40	矩形	良好	なし
41	矩形	良好	なし

実	形状	側壁	スカム
施		荒れ	
例			
42	矩形	良好	なし
43	矩形	良好	なし
44	矩形	良好	なし
45	矩形	良好	なし
46	矩形	良好	なし
47	矩形	良好	なし
48	矩形	良好	なし
49	矩形	良好	なし
50	矩形	良好	なし
51	矩形	良好	なし
52	矩形	良好	なし
53	矩形	良好	なし
54	矩形	良好	なし

【0243】表 49

【0244】表 50

	1					
実	耐熱性	貯蔵時間と線幅変化			貯蔵時間とロ)OF変化
施		(μ	m L&S)		0.18 μ m L	&S (μm)
例						
		FL i l	1 か月後	3ヶ月後	1ヶ月後	3ヶ月後
29	良好	0.18	0.18	0.18	± 0.6	± 0.6
30	良好	0.18	0.18	0.18	± 0.7	± 0.7
31	良好	0.18	0.18	0.18	± 0.7	± 0.7
32	良好	0.18	0.18	0.18	± 0.6	± 0.6
33	良好	0.18	0.18	0.18	± 0.7	± 0.7
34	良好	0.18	0.18	0.18	± 0.7	± 0.7
35	良好	0.18	0.18	0.18	± 0.7	± 0.7
36	良好	0.18	0.18	0.18	± 0.7	± 0.7
37	良好	0.18	0.18	0.18	± 0.7	± 0.7
38	良好	0.18	0.18	0.18	± 0.7	± 0.7
39	良好	0.18	0.18	0.18	± 0.7	± 0.7
40	良好	0.18	0.18	0.18	± 0.7	± 0.7
41	良好	0.18	0.18	0.18	± 0.7	± 0.7

【0245】表 51

実	耐熱性	貯蔵時間と線幅変化			貯蔵時間とI	OOF変化
施例		(μm L&S)			0.18 μ m L	&S (μm)
		ED i t	1ヶ月後	3ヶ月後	1ヶ月後	3ヶ月後
42	良好	0.18	0.18	0.18	± 0.7	± 0.7
43	良好	0.18	0.18	0.18	± 0.7	± 0.7
44	良好	0.18	0.18	0.18	± 0.7	± 0.7
45	良好	0.18	0.18	0.18	± 0.7	± 0.7
46	良好	0.18	0.18	0.18	± 0.7	± 0.7
47	良好	0.18	0.18	0.18	± 0.7	± 0.7
48	良好	0.18	0.18	0.18	± 0.7	± 0.7
49	良好	0.18	0.18	0.18	± 0.7	± 0.7
50	良好	0.18	0.18	0.18	± 0.7	± 0.7
51	良好	0.18	0.18	0.18	± 0.7	± 0.7
52	良好	0.18	0.18	0.18	± 0.7	± 0.7
53	良好	0.18	0.18	0.18	± 0.7	± 0.7
54	良好	0.18	0.18	0.18	± 0.7	± 0.7

【0246】表 52

実	露光量	解像性能	DOF	側壁荒れ	形	状
施	MJ/cm²	(Ti,N,:0.7 μ m	(0.18 µ m L&S)			
例		膜厚)				
29	2.2	0.16 μ m L&S	± 0.6 μ m	良 好	良	好
30	2.2	0.15 μ m L&S	± 0.7 μ m	良 好	良	好
31	2.4	0.15 μ m L&S	± 0.7 μ m	良 好	良	好
32	2.2	0.16 μ m L&S	± 0.6 μ m	良好	良	好
33	26	0.15 μ m L&S	± 0.7 μ m	良 好	良	好
34	2, 5	0.15 μ m L&S	± 0.7 μ m	良 好	良	好
35	2, 2	0.15μm L&S	± 0.7 μ m	良 好	良	好
36	2, 2	0.15 μ m L&S	± 0.7 μ m	良 好	良	好
87	2, 2	0.15μm L&S	± 0.7 μ m	良 好	良	好
88	2.5	0.15 μ m L&S	± 0.7 μ m	良 好	良	好
39	2.2	0.15μm L&S	± 0.7 μ m	良 好	良	好
40	2 5	0.15 µ m L&S	± 0.7 μ m	良 好	良	好
41	2 4	0.15μm L&S	± 0.7 μ m	良 好	良	好

【0247】表 53

実	露光量	解像性能	DOF	側壁荒れ	形	状
施	MJ/cm [*]	(Ti,N _c :0.7 μ m	(0.18 μm L&S)			
例		膜厚)				
42	2,2	0.15μm L&S	$\pm 0.7 \mu \text{ m}$	良好	良	好
43	2.4	0.15μm L&S	\pm 0.7 μ m	良好	良	好
44	2.2	0.15μm L&S	\pm 0.7 μ m	良 好	良	好
45	2, 2	0.15μm L&S	\pm 0.7 μ m	良好	良	好
46	2.2	0.15μm L&S	\pm 0.7 μ m	良 好	良	好
47	24	0.15μm L&S	\pm 0.7 μ m	良好	良	好
48	2.4	0.15μm L&S	\pm 0.7 μ m	良好	良	好
49	22	0.15μm L&S	\pm 0.7 μ m	良 好	良	好良
50	26	0.15μm L&S	\pm 0.7 μ m	良 好	好	复好
51	26	0.15μm L&S	\pm 0.7 μ m	良 好	良	好良
52	26	0.15 μ m L&S	\pm 0.7 μ m	良 好	好日	9 好
53	30	0.15μm L&S	\pm 0.7 μ m	良 好		
54	2.7	0.15μm L&S	\pm 0.7 μ m	良好]	

【0248】表46~表53から明らかな如く実施例2 9~54の何れのレジスト組成物も実施例1のそれと同様、良好なポジ型パターンを形成し、反射防止膜上で0.15~0.16 μ m L&Sを解像した。また、0.18 μ m L&Sに対し、 ± 0.6 μ m以上のDOFが得られた。更に、4時間経過でも0.18 μ m L&Sが全く問題なく解像され、寸法変動もないことから、実施例1と同様にPEDの影響も認められなかった。この他、実施例29~54

の何れのレジスト組成物もTi₃N₄等の他の基板を用いた場合でも良好な性能を示し、基板依存性の問題もないことが判った。更に実施例29~54のレジスト組成物は何れも貯蔵安定性も問題なかった。

【0249】比較例29 下記組成から成るレジスト組成物を調製した。

[0250]

ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)

[Mw 17500; Mw/Mn=1.18:製造例15のポリマー] 4.0 g

ポリ (p-tert – ブトキシカルボニルオキシスチレン/p-ヒドロキシスチレン)

[Mw 17500; Mw/Mn=1.20:製造例18のポリマー] 2.0 g

ビス (シクロヘキシルスルホニル) ジアゾメタン 0.2 g

ビス (2,4-ジメチルフェニルスルホニル) ジアゾメタン 0.1 g

サリチル酸 0.1 g

トリ-n-ブチルアミン 0.1 g N,N-ジメチルアセトアミド 0.2 g

プロピレングリコールモノメチルエーテルアセテート 28.5 g

上記組成から成るレジスト組成物を用いて実施例1と同様にしてパターン形成を行った。その結果、露光量、32 mJ/cm²で0.16μmL&Sのポジ型パターンを解像したがテーパー形状となり形状不良であった。また、0.18μmL&SでのDOFは±0.3μmであった。更に、23℃

で1ヶ月の保管した後に、パターン形成を行わせたところ、 $\pm 10\%$ 以上の寸法変動が認められ、このレジスト組成物は性能不良及び貯蔵安定性不良であった。

【0251】比較例30 下記組成から成るレジスト組成物を調製した。

ポリ (p-テトラヒドロピラニルオキシスチレン/p-ヒドロキシスチレン)

[Mw 18000; Mw/Mn=1.14:製造例19のポリマー] 6.0 g

ビス (1-メチルエチルスルホニル) ジアゾメタン 0.3 g

トリフェニルスルホニウム・p-トルエンスルホネート 0.05g

トリエタノールアミン 0.1 g

プロピレングリコールモノメチルエーテルアセテート

28.5 g

上記組成から成るレジスト組成物を用いて実施例1と同様にパターン形成を行った。その結果、露光量、33mJ/cm²で0.18μmL&Sのポジ型パターンを解像したがテーパー形状となり形状不良であり、0.18μmL&Sでの

DOFは±0であり、このレジスト組成物は性能不良であった。

【0252】比較例31 下記組成から成るレジスト組成物を調製した。

ポリ (p-tert – ブトキシスチレン/p-ヒドロキシスチレン)

[Mw 12000; Mw/Mn=1.70:製造例20のポリマー]	6.0 g
ビス(1,1-ジメチルエチルスルホニル)ジアゾメタン	0.3 g
トリフェニルスルホニウム・p-トルエンスルホネート	0.05g
トリエタノールアミン	0.1 g
プロピレングリコールエ ノメチルエーテルアセテート	28 5 g

上記組成から成るレジスト組成物を用いて実施例1と同様にパターン形成を行った。その結果、露光量、32mJ/レジスト組成物はcm²で0.18μmL&Sを解像したがテーパー形状となり 【0253】比較形状不良であり、0.16μmL&Sは解像出来なかった。 成物を調製した。

また、0.18μmL&SでのDOFは±0.1であり、この レジスト組成物は性能不良であった。

【0253】比較例32 下記組成から成るレジスト組成物を調製した。

ポリ (p-tert – ブトキシカルボニルオキシスチレン/p-ヒドロキシスチレン)

[Mw 17500; Mw/Mn=1.20]	6.0 g
ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g
トリフェニルスルホニウム・トリフルオロメタンスルホネート	0.05g
トリエタノールアミン	0.1 g
プロピレングリコールモノメチルエーテルアセテート	28.5 g

上記組成から成るレジスト組成物を用いて実施例1と同様にパターン形成を行った。その結果、露光量34mJ/cm 2 で0.20 μ mL&Sを解像した(裾引き形状)が、0.18 μ mL&Sは解像されず、このレジスト組成物は性能不良であった。

【0254】比較例33~57

比較の為、表54~表64の各組成から成るレジスト組成物を夫々調製し、夫々実施例29と同様にしてパターン形成を行った。評価結果を表65~表67に示す。表54

比	ポリ (p-tertーブトキシスチレン/p-ヒドロキシスチレン)	
較	[Mw 12000; Mw/Mn =1.70]	6.0 g
例	ビス (1,1-ジメチルエチルスルホニル) ジアゾメタン	0.2 g
33	ビス (p・トルエンスルホニル) ジアブメタン	0.1 g
	トリエタノールアミン	0.1 g
	プロピレングリコールモノメチルエーテルアセテート	28.5 g
比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ	v/
較	p-tertープトキシカルボニルオキシスチレン)	
例	[Mw 20000; Mw/Mn :1.12:製造例 9 のポリマー]	6.0 g
34	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.2 g
	ビス (2,4-ジメチルフェニルスルホニル) ジアゾメタン	0.1 g
	トリエタノールアミン	0.1 g
	プロピレングリコールモノメチルエーデルアセデート	28.5 g
比	ポリ (p·1·エトキシエトキシスチレン/p-ヒドロキシスチレ	·/)
較	[Mw 17500; Mw/Mn -1.18]	6.0 g
例	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.2 g
35	トリフェニルスルホニウム・p-トルエンスルホネート	0.1 gジシクロヘキ
	シルメチルアミン 0.1 g	
	プロピレングリコールモノメチルエーテルアセテート	28.7 g
	·	

【0255】表 55

比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチ	レン/
較	スチレン)[Mw 18000; Mw/Mn=1.85:製造例 3 のポリ	マー] 6.0 g
例	ジフェニルョードニウムヘキサフルオロホスフェート [市	j販品] 0.2 g ジシクロヘキ
36	シルメチルアミン 0.1 g	
	ジエチレングリコールジメチルエーテル	14.7 gプロピレン
	グリコールモノメチルエーテルアセテート 14.0	g
比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチ	レン/
較	p-tert- ブトキシスチレン)	
例	[Mw 18000; Mw/Mn=1.90:製造例 1 のポリマー]	6.0 g
37	トリフェニルスルホニム・トリフルオロメタンスルホネー	- ト 0.3 g
	ジシクロヘキシルメチルアミン	0.1 g
	プロピレングリコールモノメチルエーテルアセテート	0.1 g
比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチ	レン/
較	p-tertープトキシステレン)	
例	[Mw 18200; Mw/Mn :1.11 : 製造例4のポリマー]	4.O g
38	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチ	レン)
	[Mw 17500; Mw/Mn :1.18]	2.0 g
	トリス (トリクロロメチル) -s-トリアジン	1.1 g
	アセトアミド	0.5 g
	トリエタノールアミン	0.1 g
	プロピレングリコールモノメチルエーテルアセテート	27.5 g

【0256】表 56

. —		
比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	/
較	p-tertーブトキシスチレン) [Mw 18000; Mw/Mn=1.90]	4.5 gポリ (p-1-
例	エトキシエトキシスチレン/p・ヒドロキシスチレン/	
39	p-tertープトキシスチレン)	
	[Mw 9200; Mw/Mn=1.30: 製造例21のポリマー]	1.5 g
	ジフェニル・p・トリルスルホニウム・p・トルエンスルホネート	0.3 g
	ピリジン	0.2 g
_	プロピレングリコールモノメチルエーテルアセテート	28.5 g
比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	/
較	p-tertーブトキシスチレン)[Mw 18000; Mw/Mn=1.90]	4.5 g
例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	/
40	p-tertープトキシステレン) [Mw 9200; Mw/Mn=1.30]	1.5 g
	ビス (1,1-ジメチルエチルスルホニル) ジアゾメタン	0.2 g
	ビス (p・トルエンスルホニル) ジアゾメタン	0.1 g
	トリ·n·ブチルアミン	0.1 g
	プロピレングリコールモノメチルエーテルアセテート	28.5 g
比比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	/
較	p-テトラヒドロピラニルオキシスチレン)	
例	[Mw 18500; Mw/Mn =1.18:製造例 8 のポリマー]	6.0 g
41	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.2 g
	1,2,3-トリス (メタンスルホニルオキシ) ベンゼン	0.1 gトリ·n·ブチル
	アミン 0.1 g	
	プロピレングリコールモノメチルエーテルアセテート	28.7 g
1	*	

【0257】表 57

. —					
比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチ)	レン)			
較	[Mw 17500; Mw/Mn =1.18]	3.5 g			
例	ポリ (p-1・エトキシーn-プロポキシスチレン/p-ヒドロキ	ンスチレン)			
42	[Mw 18000; Mw/Mn =1.18 : 製造例 1 7 のポリマー]	2.5 g			
	トリフェニルスルホニウム・トリフルオロメタンスルホネ	— Ի 0.2 g			
	ジシクロヘキシルメチルアミン	0.1 g			
	プロピレングリコールモノメチルエーテルアセテート	28.5 g			
比	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチ)	レン/			
較	p-tertープトキシスチレン)				
例	[Mw 9200; Mw/Mn=1.30: 製造例21のポリマー]	2.5 g			
43	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/				
	p-tert-プトキシカルボニルオキシスチレン)				
	[Mw 20000; Mw/Mn =1.12]	2.0 g			
	ポリ (p-1-イソプトキシエトキシスチレン/p-ヒドロキシン	スチレン)			
	[Mw 18500; Mw/Mn =1.18:製造例16のポリマー]	1.5 g			
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g			
	ジフェニル-p-トリルスルホニウム・パーフルオロオクタ:	v			
	スルホネート	0.15 g			
	ジシクロヘキシルメザルアミン	0.1 g			
	プロピレングリコールモノメチルエーテルアセテート	28.0 g			

【0258】表58

比	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ	·v/			
較	p-tertープトキシスチレン) [Mw 18200; Mw/Mn=1.11]	2.5 g			
例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/				
44	p-tertープトキシカルボニルオキシスチレン)				
	[Mw 20000; Mw/Mn =1.12]	2.0 g			
	ポリ (p-1-エトキシーn-プロポキシステレン/p-ヒドロキシスチレン)				
	[Mw 18000; Mw/Mn=1.18]	1.5 g			
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g			
	ジフェニル-p-トリルスルホニウム・パーフルオロオクタン				
	スルホネート	0.06 g			
	ジシクロヘキシルメゲルアミン	0.1 g			
	プロピレングリコールモノメチルエーテルアセテート	28.6 g			

【0259】表 59

比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	//			
較	p-tertープトキシステレン) [Mw 18000; Mw/Mn=1.90]	4.5 g			
例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/				
45	p-tertーブトキシスチレン) [Mw 9200; Mw/Mn=1.30]	1.5 g			
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g			
	ジフェニル-p-トリルスルホニウム・トリフルオロメタン				
	スルホネート	0.1 g			
	トリ·n-オクチルアミン	0.1 g			
	プロピレングリコールモノメチルエーテルアセテート	28.6 g			
比	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-tert				
較	ープトキシスチレン) [Mw 18200; Mw/Mn :1.11]	4.0 g			
例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	/)			
46	[Mw 17500; Mw/Mn=1.18]	2.0 g			
	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g			
	ジフェニル-p-トリルスルホニウム・トリフルオロメタン				
	スルホネート	0.05 g			
	ジシクロヘキシルメチルアミン	0.1 g			
	プロピレングリコールモノメチルエーテルアセテート	27.5 g			
L	J				

【0260】表 60

比	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-tert
較	ープトキシスチレン) [Mw 18200; Mw/Mn :1.11] 4.0 g
例	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)
47	[Mw 17500; Mw/Mn=1.18] 2.0 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン 0.3 g
	ビス (p・トルエンスルホニル) ジアゾメタン 0.1 g
	トリ·n-オクチルアミン 0.1 g
	プロピレングリコールモノメチルエーテルアセテート 27.5 g
比	ポリ(p-1-エトキシエトキシスチレン/μ-ヒドロキシスチレン/p-tert- ブトキシス
較	チレン) [Mw 18900; Mw/Mn=1.11] 4.0 gポリ (p-1-エトキシエト
例	キシスチレン/p-ヒ ドロキシスチレン)
48	[Mw 17500; Mw/Mn=1.18] 2.0 g
	ビス (シクロヘキシルスルホニル) ジアゾメタン 0.3 g
	トリフェニルスルホニウム・トリフルオロメタンスルホネート 0.1 g
	ジシクロヘキシルメチルアミン 0.1 g
	プロピレングリコールモノメチルエーテルアセテート 28.6 g

【0261】表 61

比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシステレ	ン/p-tert	
較	プトキシカルボニルオキシスチレン)		
例	[Mw 20000; Mw/Mn=1.12:製造例 9 のポリマー]	6.0	g
49	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.2 g	
	トリフェニルスルホニウム・トリフルオロメタンスルホネー	ト 0.05 g	
	トリエチルアミン	0.1 g	
	プロピレングリコールモノメチルエーテルアセテート	28.6 д	
比	ポリ (p·1·エトキシエトキシスチレン/p·ヒドロキシスチレ	ン)	
較	[Mw 17500; Mw/Mn=1.18]	4.5	g
例	ポリ (p・tertープトキシカルボニルオキシスチレン/p・ヒド)	コキシ	
50	スチレン) [Mw 17500; Mw/Mn=1.20]	1.5	g
	ビス (シクロヘキシルスルホニル) ジアブメタン	0.3 g	
	トリ-n-ブチルアミン	0.1 g	
	プロピレングリコールモノメチルエーテルアセテート	$28.7~\mathrm{g}$	
比	ポリ (p·1·エトキシエトキシスチレン/p·ヒドロキシスチレ	ン/p-tert-	
較	プトキシスチレン) [Mw 18200; Mw/Mn=1.11]	6.0	g
例	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3 g	
51	ビス (1,1-ジメチルエチルスルホニル) ジアゾメタン	0.2 д	
	テトラメチルアンモニウムヒドロキシド	0.1 g	
	プロピレングリコールモノメチルエーテルアセテート	28.6 g	

【0262】表 62

. —			
比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ	·ン)	
較	[Mw 17500; Mw/Mn=1.18]	4.5	g
例	ポリ (p-tertーブトキシカルボニルオキシスチレン/p-トド	ロキシ	
52	スチレン) [Mw 17500; Mw/Mn=1.20]	1.5	g
	ビス (p-tertーブチルフェニル) ヨードニウム・トリフルオ	ロメタン	
	スルホネート	0.3 g	
	ジシクロヘキシルメチルアミン	0.1 g	
	プロピレングリコールモノメチルエーデルアセデート	28.6 g	
比	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレ	·ン)	
較	[Mw 17500; Mw/Mn=1.18]	6.0	g
例	p-トリフェニルジスルホン	0.3 g	
53	トリ·n·ブチルアミン	0.1 g	
	フッ素含有ノニオン系界面活性剤 [市販品]	0.1 g	
	プロピレングリコールモノメチルエーテルアセテート	28.6 g	
	J		

【0263】表63

比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/			
	アクリル酸シクロヘキシル)			
較	[Mw 17500; Mw/Mn :1.50 : 製造例 26 のポリマー]		6.0 g	
例	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.3	g	
54	ジシクロヘキシルメチルアミン	0.1	g	
	フッ素含有ノニオン系界面活性剤 [市販品]	0.1	g	
	プロピレングリコールモノメチルエーテルアセテート	28.6	g	
比	ポリ(p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/	/		
	アクリル酸シクロヘキシル)			
較	[Mw 17500; Mw/Mn=1.50]	4	4.0 g	
	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)			
	[Mw 17500; Mw/Mn=1.18]	5	2.0 g	
例	ビス (1,1-ジメチルエチルスルホニル) ジアゾメタン	0.3	g	
55	ジシクロヘキシルメチルアミン	0.1	g	
	フッ素含有ノニオン系界面活性剤 [市販品]	0.1	g	
	プロピレングリコールモノメチルエーテルアセテート	28.6	g	

表64

. —			
比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン	/	
	アクリル酸シクロヘキシル)		
較	[Mw 17500; Mw/Mn :1.50]	4.0	g
	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン))	
	[Mw 17500; Mw/Mn :1.18]	2.0	g
例	トリフェニルスルホニウム・トリフルオロメタンスルホネート	0.3 д	
56	ジシクロヘキシルメチルアミン	0.1 д	
	フッ素含有ノニオン系界面活性剤 [市販品]	0.1 g	
	プロピレングリコールモノメチルエーテルアセテート	28.6 g	
比	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン,	/	
	アクリル酸シクロヘキシル)		
較	[Mw 17500; Mw/Mn=1.50]	4.0	g
	ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン))	
	[Mw 17500; Mw/Mn=1.18]	2.0	g
例	ビス (シクロヘキシルスルホニル) ジアゾメタン	0.2 g	
57	トリフェニルスルホニム・トリフルオロメタンスルホネート	0.1 g	
	ジシク11ヘキシルメチルアミン	0.1 g	
	フッ素含有ノニオン系界面活性剤 [市販品]	0.1 g	
	プロピレングリコールモノメチルエーテルアセテート	28.6 g	
-			

表 65

比	露光量	解像性能	DOF	パターン形状	側壁
較	mJ/cm [*]		(0.18 µ m L&S)		荒れ
例					
33	5 3	0.24 μ m L&S		裾引き形状	良 好
34	4 8	0.18 µ m L&S	$\pm~0.1\mu~\mathrm{m}$	裾引き形状	不 良
35	3 3	0.18μm L&S	± 0.1 μ m	形状不良	不 良
36	2.5	0.20μm L&S		形状不良	不 良
37	2.8	0.18 µ m L&S	± Ομm	形状不良	不 良
38	2.6	0.20μm L&S		形状不良	不 良
39	2.2	0.18μm L&S	$\pm~0.2\mu~\mathrm{m}$	形状不良	不 良
40	3 3	0.18 µ m L&S	$\pm~0.2\mu~\mathrm{m}$	テーパー形状	不 良
41	2.5	0.18μm L&S	± Ο μ m	テーパー形状	不 良
42	2 1	0.18μm L&S	$\pm~0.2\mu~\mathrm{m}$	形状不良	不 良
43	3 1	0.16 μ m L&S	± 0.3 μ m	形状不良	不良
44	3 2	0.16μm L&S	$\pm~0.3\mu~\mathrm{m}$	形状不良	不 良
45	2.8	0.16 µ m L&S	\pm 0.3 μ m	形状不良	不 良
46	2 4	0.18μm L&S	± 0.2 μ m	形状不良	不 良
47	2.8	0.18μm L&S	$\pm~0.2\mu~\mathrm{m}$	テーパー形状	不 良
48	2.1	0.18 µ m L&S	± 0.2 μ m	形状不良	不 良

【0264】表 66

比	露光量	解像性能	DOF	パターン形状	側壁	₹
較	mJ/cm²		(0.18 μ m L&S)		青	ŧれ
例						
49	3 2	0.18μm L&S	± 0.2 μ m	テーパー形状	良	好
50	3 8	0.18 μ m L&S	± 0.2 μ m	裾引き形状	不	良
51	2 7	0.16μm L&S	± 0.3μ m	裾引き形状	不	良
52	28	0.18μm L&S	± 0.1 µ m	形状不良	不	良
58	1 4	0.18μm L&S	± 0.1 μ m	形状不良	不	良良
54	3 2	0.16μm L&S	± 0.1 µ m	裾引き形状	好	
55	2 9	0.16μm L&S	± 0.8μ m	据引き形状	不	良
56	2 5	0.16μm L&S	± 0.2 μ m	テーパー形状テ	不	良
57	2 7	0.16μ m L&S	± 0.3 μ m	ーパー形状	不	良

表 67

比較例	露光量	露光から加熱処理迄の時間と線幅変化(μ m L&S)0分 30分後 4時間後				
	mJ/cm [*]					
43	3 1	0.18	0.16	0.15		
44	3 2	0.18	0.16	0.15		
45	2.8	0.18	0.16	0.15		
46	2.4	0.18	0.16	0.15		
47	2.8	0.18	0.18	0.18		
48	2.1	0.18	0.16	0.15		
54	3 2	0.18	0.16	0.15		
56	2.5	0.18	0.16	0.15		

【0265】また、比較例29~31、比較例40~4 1、比較例47、比較例49及び比較例56~57のテーパー形状を図2に、比較例32~34、比較例50~ 51及び比較例54~55の裾引き形状を図3に、比較例35、比較例37、比較例39及び比較例42の形状不良を図4に、比較例36、比較例38、比較例43~ 46、比較例48及び比較例52~53の形状不良を図5に夫々示す。

【0266】表 $65\sim66$ 及び図 $2\sim$ 図5から明らかな如くこれ等比較例に於ては、本発明のレジスト組成物に比較して何れも解像性能が劣り、パターン形状も不良であり、且つ総じて 0.18μ mL&Sに対するDOFも小さい。

【0267】また、比較例53の組成から成るレジスト組成物を調製し48時間後に比較例29と同様にしてパターン形成を行わせた処、未露光部も現像液に溶解し、パターン形成できなかった。即ち、比較例53の組成から成るレジスト組成物は溶液安定性不良であった。

【0268】更に、比較例43~46及び比較例48は露光から加熱処理迄の時間経過と共に寸法変動しており、Delay Timeの影響を受けていることが明らかである。

【0269】また、実施例49と比較例46及び比較例48とを比較した場合、酸発生剤の組合せの違いにより、解像性能、DOF、パターン形状及びDelay Timeの影響の受け易さの点で大きな相違が認められ、本発明に係る組成物の優位性が明らかである。

【0270】実施例55 下記組成から成るレジスト組成物を調製した。

ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)

[Mw 17500; Mw/Mn=1.18]	5.0 g
ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/	
p-テトラヒドロピラニルオキシスチレン) [Mw 18500; Mw/Mn=1.	.18] 1.0 g
ビス (1,1-ジメチルエチルスルホニル) ジアゾメタン	0.3 g
p-tert – ブチルフェニルジフェニルスルホニウム・	
p-トルエンスルホネート	0.05g
プロピレングリコール	0.1 g
ジシクロヘキシルメチルアミン	0.1 g
γ −ブチロラクトン	0.5 g
プロピレングリコールモノメチルエーテルアセテート	28.5 g

上記組成から成るレジスト組成物を用い、マスクをコンタクトホールパターン形成用とした以外は実施例1と同様にしてコンタクトホールパターン形成を行った。その結果、露光量50mJ/cm²で0.18μmC&Hを解像した。

形状も矩形であった。また、 $0.22\mu m C \& H でのDOF$ は $\pm 0.5\mu m$ であった。

【0271】実施例56 下記組成から成るレジスト組成物を調製した。

ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)

[Mw 17500; Mw/Mn=1.18]	5.0 g
ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/	
p-イソプロポキシスチレン) [Mw 18000; Mw/Mn=1.12]	1.0 g
ビス(シクロヘキシルスルホニル)ジアゾメタン	0.3 g
ジフェニル-p-トリルスルホニウム・p-トルエンスルホネート	0.05g
フッ素含有ノニオン系界面活性剤	0.1 g
ジシクロヘキシルメチルアミン	0.1 g
γ − ブチロラクトン	1.0 g
プロピレングリコールモノメチルエーテルアセテート	28.5 g

上記組成から成るレジスト組成物を用いて実施例55と 同様にしてコンタクトホールパターン形成を行った。そ の結果、露光量52mJ/cm²で0.18μmC&Hを解像した。形状も矩形であった。また、0.22μmC&HでのD

OFは±0.5µmであった。

組成物を調製した。

【0272】比較例58 下記の組成から成るレジスト

ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン)

[Mw 17500; Mw/Mn=1.18]	5.0 g
ポリ (p-1-エトキシエトキシスチレン/p-ヒドロキシスチレン/p-	テトラ
ヒドロピラニルオキシスチレン) [Mw 18500; Mw/Mn=1.18]	1.0 g
ビス(1,1-ジメチルエチルスルホニル)ジアゾメタン	0.2 g
ビス(2,4-ジメチルベンゼンスルホニル)ジアゾメタン	0.1g
フッ素含有ノニオン系界面活性剤	0.1 g
ジシクロヘキシルメチルアミン	0.1 g
γ − ブチロラクトン	0.5 g
プロピレングリコールモノメチルエーテルアセテート	28.5 g

上記組成から成るレジスト組成物を用いて実施例55と同様にしてコンタクトホールパターン形成を行った。その結果、露光量66mJ/cm²で0.20μmC&Hを解像したが、レジスト層表層が丸いテーパー形状であった。ま

た、 0.22μ mC&HでのDOFは $\pm 0.1\mu$ mと不良であった。

【0273】比較例59 下記の組成から成るレジスト組成物を調製した。

ポリ (p-テトラヒドロピラニルオキシスチレン/p-ヒドロキシスチレン)

[Mw 18000; Mw/Mn=1.14]	6.0 g
ビス (1,1-ジメチルエチルスルホニル) ジアゾメタン	0.3 g
ビス (2,4-ジメチルベンゼンスルホニル) ジアゾメタン	0.1g
トリフェニルスルホニウム・p-トルエンスルホネート	0.05g
フッ素含有ノニオン系界面活性剤	0.1 g
ジシクロヘキシルメチルアミン	0.1 g
γ − ブチロラクトン	0.5 g
プロピレングリコールモノメチルエーテルアセテート	28.5 g

上記組成から成るレジスト組成物を用いて実施例55と同様にしてコンタクトホールパターン形成を行った。その結果、露光量 78mJ/cm^2 で 0.20μ m C & H を解像したが、レジスト層表層が丸いテーパー形状であった。また、 0.22μ m C & H でのD O F は $\pm 0.1 \mu$ m と不良であった。

【0274】実施例55、実施例56と比較例58、比較例59の結果からコンタクトホールパターンを形成する場合、アセタール基を含む2種以上のポリマーと特定構造を有する酸発生剤の2種以上を混合して用いた方が解像性能、DOF及び形状の点から優位であることが判る。

【0275】実施例55、実施例56で得られた矩形形状のコンタクトホールパターン断面図を図6に、比較例58及び59で得られたレジスト膜表層が丸いテーパー形状の形状不良なコンタクトホールパターン断面図を図7に夫々示す。

実施例57

実施例11の組成から成るレジスト組成物と実施例11の組成から γ -ブチロラクトンを除いたレジスト組成物を23℃の条件下で保管し、時間経過と共に 0.2μ m以上の微粒子数測定を行った。結果を表68に示す。表 6

	微粒子数 (個/立方フィート)				
	即日	1ヶ月後	2ヶ月後	3ヶ月後	6ヶ月後
実施例11の組成から	2	2	3	3	5
成るレジスト組成物					
実施例11の組成から	3	1 0	2 0	4 5	480
γ -ブチロラクトンを 除いたレジスト組成物					

【0276】本発明のレジスト組成物にアーブチロラクトンを添加使用することが保管期間中の微粒子数増加を抑制することに有効であることが判る。

[0277]

【発明の効果】以上述べた事から明らかな如く、ジアゾ ジスルホン化合物と芳香族若しくは脂肪族多環状のスル ホン酸イオンをカウンターアニオンとするオニウム塩と を酸発生剤として併用し、これにアセタール系ポリマー 2種以上を組合せた本発明のレジスト組成物を近年の0. 20~0.13μmの線幅が要求される超微細加工への利用を 目的として反射防止膜上やTi₃N₄などの基板上で300 nm 以下の光源、例えば遠紫外光 (Deep UV)、KrFエキ シマレーザ光 (248.4 nm) 等の露光用レジスト組成物と して用いた場合、従来のレジスト組成物に比して極めて 高い解像性能を有し、ラフネスが良好な矩形の形状を示 し、露光から加熱処理(ポストベーク)迄の時間経過に 対して安定したパターン寸法が維持可能で、且つ形状の 良い微細パターンが大きいDOFで容易に得られる。ま た、本発明のレジスト組成物は、他の基板に使用した場 合も優れた性能が確認されており、従来のレジスト組成 物で課題となっている基板依存性も克服出来た。従っ て、本発明は半導体産業等に於ける超微細パターンの形 成にとって大きな価値を有するものである。

【0278】尚、本発明に係るレジスト組成物は遠紫外光、KrFエキシマレーザ光を利用したパターン形成に特に効果を発揮するが、電子線、軟X線等を利用したパターン形成に於いても使用が可能である。

[0279]

【図面の簡単な説明】

【図1】 図1は、本発明のレジスト組成物を用いたポジ型パターン形成方法の工程断面図である。

【図2】 図2は、比較例1~3、比較例12~13、比較例19、比較例21~22、比較例29~31、比較例40~41、比較例47、比較例49及び比較例56~57で観察されたテーパー形状の断面図である。

【図3】 図3は、比較例4~6、比較例23~24、 比較例32~34、比較例50~51及び比較例54~ 55で観察された裾引き形状の断面図である。

【図4】 図4は、比較例7、比較例9、比較例11、 比較例14、比較例35、比較例37、比較例39及び 比較例42で観察されたパターン形状不良の断面図である。

【図5】 図5は、比較例8、比較例10、比較例15~18、比較例20、比較例25~26、比較例36、比較例38、比較例43~46、比較例48及び比較例52~53で観察されたパターン形状不良の断面図である。

【図6】 図6は、実施例26、実施例27、実施例5 5及び実施例56で得られた矩形形状のコンタクトホールパターンの断面図である。

【図7】 図7は、比較例27、比較例28比較例58 及び比較例59で得られたレジスト膜表層が丸いテーパー形状の形状不良なコンタクトホールパターンの断面図である。

【符号の説明】

1 シリコン基板、2 反射防止膜、3 レジスト 組成物膜、4 KrFエキシマレーザ光、5 マスク、3a レジストパターン。

【図2】

フロントページの続き

(72) 発明者 竹山 尚幹 大阪府大阪市此花区春日出中3丁目1番98 号 住友化学工業株式会社内 (72) 発明者 市川 幸司 大阪府大阪市此花区春日出中 3 丁目 1 番98 号 住友化学工業株式会社内