1x3 Router Project Documentation

1. Architecture Overview

The 1x3 Router project consists of several interconnected modules designed to route incoming data packets to one of three output FIFOs. The main components include a Finite State Machine (FSM), a Register module, a Synchronizer, and three First-In, First-Out (FIFO) buffers (FIFO_0, FIFO_1, FIFO_2).

2. Module Descriptions

2.1 Finite State Machine (FSM)

The FSM is the central control unit of the router. It manages the overall flow of data based on the state of the system and incoming packet validity and parity. It generates control signals for other modules, such as write enables for the register and FIFOs, and reset signals for the FIFOs.

Inputs:

- clock : System clock.
- resetn: Asynchronous reset (active low).
- pkt_valid : Indicates a valid incoming packet.
- busy: Indicates if the router is currently busy processing a packet.
- parity_done : Indicates that parity checking is complete.
- data_in (2-bit): Input data, likely for address or control information.
- soft_reset_0, soft_reset_1, soft_reset_2: Soft reset signals for individual FIFOs.
- fifo_full: Indicates if any of the FIFOs are full.

Outputs:

- low_pkt_valid : Low pulse indicating a valid packet.
- fifo_empty_0, fifo_empty_1, fifo_empty_2: Indicate if respective FIFOs are empty.
- detect_add : Signal to detect address.
- Id_state : Load state signal.
- laf state: Look-ahead FIFO state.
- full_state : Indicates a full state.
- write_enb_reg: Write enable for the Register module.

- rst_int_reg : Reset internal register.
- Ifd_state : Load FIFO data state.

2.2 Register

The Register module is responsible for temporarily storing incoming data and performing parity checking. It receives data from the input and provides an 8-bit output (dout).

Inputs:

- clock: System clock.
- resetn: Asynchronous reset (active low).
- pkt_valid : Valid packet signal.
- data_in (8-bit): Incoming data to be registered.
- fifo_full: Indicates if any FIFO is full.
- rst_int_reg: Reset internal register signal from FSM.
- detect_add : Detect address signal from FSM.
- Id_state: Load state signal from FSM.
- laf_state: Look-ahead FIFO state from FSM.
- full_state: Full state signal from FSM.
- Ifd_state: Load FIFO data state from FSM.

Outputs:

- parity_done: Indicates completion of parity check.
- low_pkt_valid : Low pulse indicating a valid packet.
- err: Error signal, likely for parity errors.
- dout (8-bit): Output data from the register.

2.3 Synchronizer

The Synchronizer module appears to manage the flow of data between the main router logic and the FIFOs, handling write and read enables, and providing status signals for the FIFOs.

Inputs:

- clock : System clock.
- resetn: Asynchronous reset (active low).
- detect_add : Detect address signal from FSM.

- write_enb (3-bit): Write enable signals for the three FIFOs.
- data_in (2-bit): Input data, possibly for address or control.
- fifo_full: Indicates if any FIFO is full.
- vld_out_0 , vld_out_1 , vld_out_2 : Valid output signals from the FIFOs.
- read_enb_0, read_enb_1, read_enb_2: Read enable signals for the three FIFOs.

Outputs:

- empty_0, empty_1, empty_2: Indicate if respective FIFOs are empty.
- soft_reset_0, soft_reset_1, soft_reset_2: Soft reset signals for individual FIFOs.
- full_0 , full_1 , full_2 : Indicate if respective FIFOs are full.

2.4 FIFO (FIFO_0, FIFO_1, FIFO_2)

There are three identical FIFO (First-In, First-Out) buffers, each responsible for buffering data packets before they are sent out. Each FIFO has standard FIFO interfaces for writing, reading, and status indication.

Inputs:

- clock: System clock.
- resetn: Asynchronous reset (active low).
- write_enb[X]: Write enable for the specific FIFO (where X is 0, 1, or 2).
- soft_reset_X : Soft reset for the specific FIFO.
- read_enb_X : Read enable for the specific FIFO.
- data_in (8-bit): Data to be written into the FIFO.
- Ifd_state: Load FIFO data state (from FSM/Register).

Outputs:

- empty_X : Indicates if the FIFO is empty.
- dout_out_X (8-bit): Output data from the FIFO.
- full_X: Indicates if the FIFO is full.

3. Interconnections

The modules are interconnected to facilitate the routing of data. Key interconnections include:

• The FSM controls the write_enb_reg for the Register and provides soft_reset_X signals to the FIFOs and Synchronizer.

- The Register provides parity_done, low_pkt_valid, err, and dout to other modules, including the FIFOs.
- The Synchronizer receives detect_add from the FSM and generates soft_reset_X and full_X signals for the FSM.
- The FIFOs receive data_in (8-bit) from the Register and provide dout_out_X, empty_X, and full_X status to the Synchronizer and FSM.

Further details on the exact data paths and control logic will be derived from the provided code.

2.5 FIFO Module (router_fifo.v)

This module implements a 16-entry deep FIFO buffer with an 8-bit data width. It includes read and write pointers, and logic for managing full and empty conditions.

Inputs:

- clock : System clock.
- resetn: Asynchronous active-low reset.
- write_enb: Write enable signal. Data is written when high and FIFO is not full.
- soft_reset: Synchronous soft reset. Resets write and read pointers and clears FIFO contents.
- read_enb: Read enable signal. Data is read when high and FIFO is not empty.
- Ifd_state: Load FIFO data state. This 1-bit signal is stored along with the 8-bit data_in into the FIFO, making each entry 9 bits wide internally.
- data_in [7:0]: 8-bit input data to be written into the FIFO.

Outputs:

- data_out [7:0]: 8-bit output data read from the FIFO.
- empty: Indicates if the FIFO is empty (high when empty).
- full: Indicates if the FIFO is full (high when full).

Internal Logic:

- fifo[15:0]: A 16-entry register array, each entry storing 9 bits ({temp_lfd, data_in}).
- r_ptr , w_ptr : 4-bit read and write pointers, respectively, used to index the fifo array.
- count: An 8-bit register used for an internal counter, potentially related to packet length or burst transfers, as it's updated based on fifo[r_ptr[3:0]][8] (the lfd_state bit) and fifo[r_ptr[3:0]][7:2].
- temp_lfd: A register that stores the lfd_state input synchronously.

Functionality:

- **Reset:** On reseth low, w_ptr and r_ptr are reset to 0, and all FIFO entries are cleared. On soft_reset high, w_ptr and r_ptr are reset to 0, and FIFO entries are cleared.
- **Write Operation:** When write_enb is high and the FIFO is not full, the concatenation of temp_lfd and data_in is written to the location pointed by w_ptr, and w_ptr increments.
- **Read Operation:** When read_enb is high and the FIFO is not empty, data_out is assigned the 8-bit data from the location pointed by r_ptr, and r_ptr increments.
- **Full Condition:** full is asserted when w_ptr is 15 and r_ptr is 0, indicating a wraparound full condition.
- **Empty Condition:** empty is asserted when w_ptr equals r_ptr.
- **Count Logic:** The count register's behavior suggests it might be tracking the number of valid data words or the length of a packet. If the <code>lfd_state</code> bit (MSB of the stored FIFO entry) is 1, count is loaded with <code>fifo[r_ptr[3:0]][7:2]</code> plus 1. Otherwise, if count is not zero, it decrements. This implies <code>lfd_state</code> might signal the start of a new packet, and the subsequent bits (7:2) might indicate the packet length.

2.6 FSM Module (router_fsm.v)

This module implements the Finite State Machine (FSM) that controls the overall operation of the 1x3 router. It manages the data flow based on packet validity, FIFO status, and parity checking.

Inputs:

- clock : System clock.
- resetn: Asynchronous active-low reset.
- pkt_valid : Indicates a valid incoming packet.
- parity_done: Indicates that parity checking is complete by the Register module.
- soft_reset_0, soft_reset_1, soft_reset_2: Soft reset signals for individual FIFOs, which also reset the FSM to DECODE_ADDRESS state.
- fifo_full: Indicates if any of the target FIFOs are full.
- low_pkt_valid: A low pulse indicating a valid packet (likely from the Register module).
- fifo_empty_0, fifo_empty_1, fifo_empty_2: Indicate if respective FIFOs are empty.
- data_in [1:0]: 2-bit input, likely representing the destination address for the packet (00, 01, or 10 for FIFO_0, FIFO_1, FIFO_2 respectively).

Outputs:

- detect_add: Asserted in DECODE_ADDRESS state to signal address detection.
- Id_state: Asserted in LOAD_DATA state to indicate data loading.
- laf_state : Asserted in LOAD_AFTER_FULL state.
- full_state : Asserted in FIFO_FULL_STATE .
- write_enb_reg: Write enable signal for the Register module.
- rst_int_reg: Reset internal register signal, asserted in CHECK_PARITY_ERROR state.
- Ifd_state: Load first data state, asserted in LOAD_FIRST_DATA state.
- busy: Indicates if the FSM is in a busy state (not DECODE_ADDRESS).

Parameters (States):

- DECODE_ADDRESS (3'b000): Initial state, waiting for a valid packet and decoding its destination address.
- LOAD_FIRST_DATA (3'b001): Loads the first data word of a packet into the FIFO.
- LOAD_DATA (3'b010): Continuously loads data words into the FIFO.
- FIFO_FULL_STATE (3'b011): State entered when the target FIFO is full.
- LOAD_AFTER_FULL (3'b100): Continues loading data after the FIFO is no longer full.
- LOAD_PARITY (3'b101): Loads the parity byte of the packet.
- CHECK_PARITY_ERROR (3'b110): Checks for parity errors and resets internal registers if needed.
- WAIT_TILL_EMPTY (3'b111): Waits for the target FIFO to become empty before processing a new packet for that FIFO.

State Transitions:

• Reset: On resetn low or any soft_reset_X high, the FSM transitions to DECODE_ADDRESS.

• DECODE_ADDRESS:

- If pkt_valid is high and the destination FIFO (determined by data_in) is empty, transitions to LOAD FIRST DATA.
- If pkt_valid is high and the destination FIFO is not empty, transitions to WAIT_TILL_EMPTY.
- Otherwise, remains in DECODE_ADDRESS.
- LOAD_FIRST_DATA: Always transitions to LOAD_DATA.
- LOAD DATA:
 - If fifo_full is high, transitions to FIFO_FULL_STATE.

- If fifo_full is low and pkt_valid is low (end of packet data), transitions to LOAD_PARITY.
- Otherwise, remains in LOAD_DATA.

FIFO_FULL_STATE:

- If fifo_full becomes low, transitions to LOAD_AFTER_FULL.
- Otherwise, remains in FIFO_FULL_STATE.

LOAD_AFTER_FULL:

- If parity_done is low and low_pkt_valid is high, transitions to LOAD_PARITY.
- If parity_done is low and low_pkt_valid is low, transitions to LOAD_DATA.
- If parity_done is high, transitions to DECODE_ADDRESS.
- Otherwise, remains in LOAD_AFTER_FULL.
- LOAD_PARITY: Always transitions to CHECK_PARITY_ERROR.

• CHECK_PARITY_ERROR:

- If fifo_full is high, transitions to FIFO_FULL_STATE.
- Otherwise, transitions to DECODE_ADDRESS.

WAIT_TILL_EMPTY:

- If the selected FIFO becomes empty, transitions to LOAD_FIRST_DATA.
- Otherwise, remains in WAIT_TILL_EMPTY.

Output Logic:

Outputs are assigned based on the current state, indicating control signals and status flags for other modules. For example, detect_add is active only in DECODE_ADDRESS, Ifd_state in LOAD_FIRST_DATA, and write_enb_reg is active during data and parity loading states.

2.7 Register Module (router_reg.v)

This module acts as a data buffer and performs parity checking for incoming packets. It stores various packet-related information and generates control signals for parity status and errors.

Inputs:

- clock : System clock.
- resetn: Asynchronous active-low reset.
- pkt_valid: Indicates a valid incoming packet (from external source).
- fifo_full: Indicates if the target FIFO is full (from FSM/Synchronizer).

- rst_int_reg: Reset internal register signal (from FSM).
- detect_add : Signal to detect address (from FSM).
- Id_state : Load state signal (from FSM).
- laf_state : Look-ahead FIFO state (from FSM).
- full_state: Indicates a full state (from FSM).
- Ifd_state: Load first data state (from FSM).
- data_in [7:0]: 8-bit input data.

Outputs:

- parity_done : Indicates that parity calculation is complete.
- low_pkt_valid: A low pulse indicating a valid packet, used for timing or control.
- err: Indicates a parity error.
- dout [7:0]: 8-bit output data, which can be header, data, or full state byte.

Internal Registers:

- full_state_byte [7:0]: Stores the data_in when full_state is asserted.
- header [7:0]: Stores the initial data_in when detect_add and pkt_valid are asserted and data_in[1:0] is not 3 (likely indicating a valid address).
- packet_parity [7:0]: Stores the parity byte received as part of the packet.
- internal_parity [7:0]: Calculates the XOR sum of all data bytes (including header) received for a packet, used for comparison with packet_parity.

Functionality:

- dout Logic:
 - On reset, dout is 0.
 - If detect_add and pkt_valid are asserted and data_in[1:0] is not 3, dout retains its current value (likely waiting for lfd_state).
 - If Ifd_state is asserted, dout outputs the stored header .
 - If Id_state is asserted and FIFO is not full, dout outputs data_in.
 - If Id_state is asserted and FIFO is full, dout retains its current value.
 - If laf_state is asserted, dout outputs full_state_byte.
- header Register: Captures the first 8-bit data (data_in) of a new packet when an address is detected and valid.
- internal_parity Calculation: This register accumulates the XOR sum of the header (when Ifd_state is high) and subsequent data_in (when pkt_valid and ld_state are high

and not in full_state). This is a running XOR sum for parity checking.

- packet_parity Storage: Stores the data_in when ld_state is high and pkt_valid is low, indicating the end of data and the arrival of the parity byte.
- parity_done Signal: Asserted when Id_state is high, FIFO is not full, and pkt_valid is low (end of packet data), or when Iaf_state is high, low_pkt_valid is high, and parity_done is not yet asserted.
- **low_pkt_valid Signal:** This signal is primarily controlled by the FSM. It is reset on rst_int_reg or when ld_state is high and pkt_valid is low.
- **err Signal:** Asserted if packet_parity is non-zero and internal_parity is zero, indicating a mismatch and thus a parity error.
- full_state_byte Register: Stores the data_in when the FSM enters the full_state, likely to be output later when the FIFO is no longer full.

2.8 Synchronizer Module (router_sync.v)

This module acts as an interface between the FSM/Register and the FIFOs, primarily responsible for generating the correct write enable signals for the FIFOs based on the decoded address, and managing soft resets for the FIFOs after a certain number of cycles or when they become empty.

Inputs:

- clock : System clock.
- resetn: Asynchronous active-low reset.
- detect_add: Signal from FSM indicating address detection.
- write_enb_reg: Write enable signal from FSM for the Register module.
- read_enb_0, read_enb_1, read_enb_2: Read enable signals for the respective FIFOs.
- full_0, full_1, full_2: Full status signals from the respective FIFOs.
- empty_0, empty_1, empty_2: Empty status signals from the respective FIFOs.
- data_in [1:0]: 2-bit input, representing the destination address (00, 01, or 10).

Outputs:

- fifo_full: A combined signal indicating if the currently selected FIFO is full.
- soft_reset_0, soft_reset_1, soft_reset_2: Soft reset signals for the respective FIFOs.
- vld_out_0 , vld_out_1 , vld_out_2 : Valid output signals for the respective FIFOs (active low, i.e., ~empty_X).
- write_enb [2:0]: 3-bit one-hot encoded write enable signal for the three FIFOs.

Internal Registers:

- temp [1:0]: Stores the data_in (address) when detect_add is asserted.
- count_0, count_1, count_2 [5:0]: Counters for each FIFO, used to generate soft reset signals.

Functionality:

- Address Storage: The temp register captures the 2-bit data_in (address) when detect_add is high. This stored address is then used to direct the write enable and full status signals.
- write_enb Generation: This is a combinational logic block. If write_enb_reg is asserted, it generates a one-hot write_enb signal based on the temp (address) value:
 - 2'b00 (FIFO_0): write_enb = 3'b001
 - 2'b01 (FIFO_1): write_enb = 3'b010
 - 2'b10 (FIFO_2): write_enb = 3'b100
 - 2'b11 (Invalid/Default): write_enb = 3'b000

 If write_enb_reg is not asserted, write_enb is 3'b000.
- **fifo_full Aggregation:** This is also a combinational logic block. It selects the full status of the FIFO corresponding to the temp (address) value and assigns it to fifo_full.
- **vld_out Generation:** These are simple assignments: vld_out_X is the inverse of empty_X.
- soft_reset Generation and Counters: Each FIFO has its own counter (count_0 , count_1 , count_2) and soft_reset logic. These counters increment on each clock cycle if the corresponding FIFO is not being read (read_enb_X is low) and is not empty (vld_out_X is high). If a counter reaches 5'd30 (decimal 30), the corresponding soft_reset_X signal is asserted for one cycle, and the counter is reset to 5'b1 . This mechanism seems to implement a timeout or periodic reset for the FIFOs if they remain in a non-empty, non-reading state for 30 cycles. If a FIFO becomes empty (!vld_out_X) or is being read (read_enb_X), its counter is reset to 5'b1 and soft_reset_X is deasserted. On resetn low, all counters are reset to 5'b1 and soft_reset_X are deasserted.

2.9 Top-Level Module (router_top.v)

The router_top module instantiates and connects all the sub-modules (FSM, Synchronizer, Register, and three FIFOs) to form the complete 1x3 router system. It defines the top-level inputs and outputs of the router.

Inputs:

• clock : System clock.

- resetn: Asynchronous active-low reset.
- read_enb_0, read_enb_1, read_enb_2: Read enable signals for the respective output FIFOs.
- pkt_valid : Indicates a valid incoming packet.
- data_in [7:0]: 8-bit input data stream.

Outputs:

- vld_out_0 , vld_out_1 , vld_out_2 : Valid output signals from the respective FIFOs.
- error: Indicates a parity error from the Register module.
- busy: Indicates if the FSM is in a busy state.
- data_out_0 , data_out_1 , data_out_2 [7:0]: 8-bit output data streams from the respective FIFOs.

Internal Wires:

- write_enb [2:0]: 3-bit one-hot encoded write enable for FIFOs (from Synchronizer).
- parity_done: Parity calculation complete signal (from Register).
- soft_reset_0, soft_reset_1, soft_reset_2: Soft reset signals for FIFOs (from Synchronizer).
- fifo_full: Combined FIFO full status (from Synchronizer).
- low_pkt_valid : Low pulse valid packet signal (from Register).
- fifo_empty_0 , fifo_empty_1 , fifo_empty_2 : Empty status signals from FIFOs.
- detect_add , ld_state , laf_state , full_state , write_enb_reg , rst_int_reg , lfd_state : Control signals from FSM.
- empty_0, empty_1, empty_2: Empty status signals from FIFOs (used internally).
- full_0 , full_1 , full_2 : Full status signals from FIFOs (used internally).
- dout [7:0]: Data output from the Register module, fed into the FIFOs.

Module Instantiations and Connections:

- router_fsm (FSM):
 - Inputs: clock, resetn, pkt_valid, parity_done, soft_reset_0/1/2, fifo_full, low_pkt_valid, fifo_empty_0/1/2, data_in[1:0] (for address).
 - Outputs: detect_add , ld_state , laf_state , full_state , write_enb_reg , rst_int_reg , lfd_state , busy .
- router_sync (SYNC):
 - Inputs: clock , resetn , detect_add , write_enb_reg , read_enb_0/1/2 , full_0/1/2 , empty_0/1/2 (connected to fifo_empty_0/1/2 from FIFOs), data_in[1:0] .

- Outputs: fifo_full, soft_reset_0/1/2, vld_out_0/1/2, write_enb.
- router_reg (REG):
 - Inputs: clock, resetn, pkt_valid, fifo_full, rst_int_reg, detect_add, ld_state, laf_state, full_state, lfd_state, data_in.
 - Outputs: parity_done, low_pkt_valid, err (connected to top-level error), dout.
- router_fifo (FIFO1, FIFO2, FIFO3): Three instances of the router_fifo module.
 - Inputs: clock, resetn, write_enb[X] (from SYNC), soft_reset_X (from SYNC), read_enb_X (from top-level), Ifd_state (from FSM), data_in (connected to dout from REG).
 - Outputs: data_out_X (connected to top-level data_out_X), empty_X (connected to fifo_empty_X for FSM and SYNC), full_X (connected to full_X for SYNC).

This top-level module effectively orchestrates the data flow: incoming data_in is processed by the Register, controlled by the FSM, and then routed to the appropriate FIFO via the Synchronizer. Data is read out from the FIFOs based on external read_enb signals.

3. Conclusion

This document provides a comprehensive overview of the 1x3 Router project, detailing the functionality and interconnections of its core modules: the Finite State Machine (FSM), Register, Synchronizer, and three FIFO buffers. The design effectively manages incoming data packets, routes them to the appropriate output queues, and includes mechanisms for parity checking and handling FIFO full/empty conditions. The modular approach allows for clear separation of concerns and facilitates potential future enhancements or modifications to individual components.

Further analysis of the simulation results and synthesis reports would provide deeper insights into the performance, timing, and resource utilization of this router design.