

SGM8552 Single-Supply, Dual Rail-to-Rail I/O Precision Operational Amplifier

GENERAL DESCRIPTION

The SGM8552 is a dual, precision operational amplifier which can operate from 2.5V to 5.5V single supply. The device provides rail-to-rail input and output operation.

The SGM8552 offers a low offset voltage less than $20\mu V$ and an ultra-low bias current of 10pA. The combination of characteristics makes the SGM8552 a good choice for temperature measurements, pressure and position sensors, strain gauge amplifiers and medical instrumentation, or any other 2.5V to 5.5V applications requiring precision and long-term stability.

The SGM8552 is available in Green SOIC-8 and MSOP-8 packages and ESD (HBM) reaches 8kV. It is specified over the extended industrial temperature range (-40°C to+125°C).

FEATURES

Low Offset Voltage: 20μV (MAX)

Ultra-Low Input Bias Current: 10pA

• Large-Signal Voltage Gain: 145dB (TYP) at 5V

PSRR: 110dB (TYP)CMRR: 105dB (TYP)

• Overload Recovery Time: 60µs (at V_S = 5V)

• Rail-to-Rail Input and Output

Supply Voltage Range: 2.5V to 5.5V

• Low Supply Current: 930μA (TYP)

• No External Capacitors Required

• -40°C to +125°C Operating Temperature Range

• Available in Green SOIC-8 and MSOP-8 Packages

APPLICATIONS

Pressure Sensors
Temperature Measurements
Precision Current Sensing
Electronic Scales
Strain Gauge Amplifiers
Handheld Test Equipment
Thermocouple Amplifiers
Medical Instrumentation

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM8552	SOIC-8	-40°C to +125°C	-40°C to +125°C SGM8552XS8G/TR		Tape and Reel, 2500
3GINI0332	MSOP-8	-40°C to +125°C	SGM8552XMS8G/TR	SGM8552 XMS8 XXXXX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	6V
Input Voltage Range	V _S to (+V _S) + 0.1V
Differential Input Voltage Range	5V to 5V
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	V0008
MM	400\/

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures

can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

ELECTRICAL CHARACTERISTICS

(At $T_A = +25^{\circ}C$, $V_S = 5V$, $V_{CM} = 2.5V$, $V_{OUT} = 2.5V$, Full = -40°C to +125°C, unless otherwise noted.)

PARAMETER	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Input Characteristics						
		+25°C		4	20	.,
Input Offset Voltage (Vos)					24	μV
Input Bias Current (I _B)		+25°C		10		pА
Input Offset Current (I _{OS})		+25°C		5		pА
Input Voltage Range		+25°C	0		5	V
Common Mada Dainetan Data (1) (OMDD)	V 0V4. 5V	+25°C	90	105		T
Common Mode Rejection Ratio (1) (CMRR)	V _{CM} = 0V to 5V	Full	83			dB
	D 4010 1/ 0.01/1 4.71/	+25°C	100	145		ī.
Large-Signal Voltage Gain (A _{VO})	$R_L = 10k\Omega$, $V_{OUT} = 0.3V$ to 4.7V	Full	97			dB
Input Offset Voltage Drift (ΔV _{OS} /ΔT)		Full		20		nV/°C
Output Characteristics				•	•	
	$R_L = 100k\Omega$ to $-V_S$		4.99	4.998		
0			4.987			
Output Voltage High (V _{OH})	R_L = 10k Ω to -V _S	+25°C	4.985	4.996		- V
		Full	4.98			
		+25°C		2	10	
0.1.17	$R_L = 100k\Omega$ to $+V_S$				13	1 , 1
Output Voltage Low (V _{OL})	- 10101 V	+25°C		6	15	mV
	$R_L = 10k\Omega$ to $+V_S$				20	1
0 0	V_{OUT} = 2.5V, R_L = 10 Ω to GND		40	48		mA
Short-Circuit Limit (I _{SC})			23			
Power Supply						
D (1) (1) (1) (2) (1) (2) (2)	V _S = 2.5V to 5.5V		90	110		i.
Power Supply Rejection Ratio (1) (PSRR)			80			dB
2.1.2.10.10.	V _{OUT} = V _S /2			930	1110	
Quiescent Current (I _Q)					1760	μA
Dynamic Performance					•	
Gain-Bandwidth Product (GBP)	A _V = +100	+25°C		1.53		MHz
Slew Rate (SR)	A_V = +1, R_L = 10k Ω , 2V output step	+25°C		0.90		V/µs
Overload Recovery Time	$A_V = -100, R_L = 10k\Omega, V_{IN} = 200mV (RET to GND)$	+25°C		0.06		ms
Noise Performance		•				
Input Voltage Noise (en P-P)	0.1Hz to 10Hz	+25°C		0.80		μV _{P-P}
Input Voltage Noise Density (en)	f = 1kHz	+25°C		47.5		nV/√Hz

NOTE: 1. PSRR and CMRR are affected by the matching between external gain-setting resistor ratios.

ELECTRICAL CHARACTERISTICS (continued)

(At T_A = +25°C, V_S = 2.5V, V_{CM} = 1.25V, V_{OUT} = 1.25V, Full = -40°C to +125°C, unless otherwise noted.)

PARAMETER	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Input Characteristics						
1 105 111 11 11		+25°C		3	20	.,
Input Offset Voltage (Vos)		Full			24	μV
Input Bias Current (I _B)		+25°C		10		pА
Input Offset Current (Ios)		+25°C		10		pA
Input Voltage Range		+25°C	0		2.5	V
Common Made Painstine Patin (1) (CMPP)	V = 0V/4- 2.5V	+25°C	90	105		4D
Common Mode Rejection Ratio (1) (CMRR)	V _{CM} = 0V to 2.5V	Full	81			dB
Large Signal Voltage Coin (A.)	D = 40k0 \/ = 0.3\/ to 2.4\/	+25°C	100	135		٩D
Large-Signal Voltage Gain (A _{VO})	$R_L = 10k\Omega$, $V_{OUT} = 0.3V$ to 2.4V	Full	94			- dB
Input Offset Voltage Drift (ΔV _{OS} /ΔT)		Full		20		nV/°C
Output Characteristics						
	D = 400k0 to 1/	+25°C	2.49	2.499		
Outrot Valtaga Himb (V	$R_L = 100k\Omega$ to $-V_S$		2.488			Ī ,,
Output Voltage High (V _{OH})	R_L = 10k Ω to -V _S	+25°C	2.485	2.498		\ \
		Full	2.482			
	$R_L = 100k\Omega$ to $+V_S$	+25°C		1	10	mV
Output Voltage Levy (V)		Full			12	
Output Voltage Low (V _{OL})	$R_L = 10k\Omega$ to +V _S	+25°C		3	15	
		Full			18	
Short Circuit Limit (L.)	V_{OUT} = 1.25V, R_L = 10 Ω to GND		20	28		mA
Short-Circuit Limit (I _{SC})			15			
Power Supply						
Davida Curaly Daio etian Datio (1) (DCDD)	V = 2.5V += 5.5V	+25°C	90	110		٦D
Power Supply Rejection Ratio (1) (PSRR)	$V_{\rm S} = 2.5 \text{V to } 5.5 \text{V}$		80			dB
Ovice and Oversit (I)	V - V /2	+25°C		1000	1110	
Quiescent Current (I _Q)	$V_{OUT} = V_s/2$				2090	μA
Dynamic Performance						
Gain-Bandwidth Product (GBP)	A _V = +100	+25°C		1.51		MHz
Slew Rate (SR)	A_V = +1, R_L = 10k Ω , 2V output step	+25°C		0.90		V/µs
Overload Recovery Time	$A_V = -100, R_L = 10k\Omega, V_{IN} = 200mV (RET to GND)$	+25°C		0.03		ms
Noise Performance						
Input Voltage Noise (en P-P)	0.1Hz to 10Hz	+25°C		0.95		μV _{P-P}
Input Voltage Noise Density (en)	f = 1kHz	+25°C		53		nV/√Hz

NOTE: 1. PSRR and CMRR are affected by the matching between external gain-setting resistor ratios.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

SGM8552

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

JANUARY 2013 – REV.A.3 to REV.A.4	Page
Added Tape and Reel Information section	12, 13
DECEMBER 2011 – REV.A.2 to REV.A.3	Page
Changed Electrical Characteristics section	
Changed Typical Performance Characteristics section	
Changed Package Outline Dimensions section	9, 10
MAY 2011 – REV.A.1 to REV.A.2	Page
Changed packages' name	All
APRIL 2010 – REV.A to REV.A.1	Page
Changed Typical Performance Characteristics section	8
Changes from Original (MARCH 2010) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS SOIC-8

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimensions In Inches		
,	MIN	MIN MAX		MAX	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27 BSC		0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

PACKAGE OUTLINE DIMENSIONS MSOP-8

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimensions In Inches		
	MIN	MIN MAX		MAX	
Α	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
е	0.650 BSC		0.026	BSC	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-8	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
MSOP-8	13"	12.4	5.20	3.30	1.50	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
13"	386	280	370	5