Algoritmi avanzati A.A. 2012-2013

AVVERTENZA: lucidi da usare come ausilio mnemonico e lista degli argomenti svolti a lezione.

Non sostituiscono in alcun modo il libro di testo che va usato per lo studio approfondito.

An example in politics

 How to minimize advertising money and win the elections

Programmazione lineare

- Minimizzare una funzione lineare
- Soggetta a vincoli lineari (eguaglianza o diseguaglianza)
- Applicazioni rilevanti (e.g., flight crews, oil drilling, politics, diet, multicommodity flow, ...)...Taylor
- Definizioni e Trasformazioni (forma standard, forma slack,...)
- Algoritmo del simplesso
- Dualità

maximize $x_1 + x_2$ subject to

$$4x_1 - x_2 \le 8$$

 $2x_1 + x_2 \le 10$
 $5x_1 - 2x_2 \ge -2$
 $x_1, x_2 \ge 0$

Programmazione lineare

- Funzione obiettivo, soluzione ottimale
- Soluzione fattibile, regione fattibile
- Illimitato se soluzione fattibile ma nessun valore ottimale finito
- Convessità (intersezione di insiemi convessi ,simplesso)
- Minimo locale è minimo globale
- La soluzione ottimale è un vertice del simplesso
- Da problema continuo a problema discreto
- Algoritmo del simplesso
 - Inizia da un punto fattibile su un vertice
 - Ripeti fino a quando minimo locale:
 - Muovi ad un vertice vicino con valore di f inferiore Advanced algorithms

Algoritmi per LP

- Simplex (can require exponential time, fast in most practical cases)
- Ellipsoid algorithm (first poly. time algorithm)
- Interior point methods, poly. time, move in the interior (Karmakar), competitive with simplex for large dimensions
- NOTE: integer linear program is NP-hard

LP forme

standard

maximize
$$c^{T}x$$

subject to
$$Ax \leq b$$

$$x \geq 0$$

Conversione a forma standard

- L equivalent to L' (feasible x, f(x) = z → feasible x', f(x')=z and viceversa, not necessarily one-one)
- Min to max ... negative coefficients
- Non-negativity contraints... x_j = x_j' x_j'', x_j'
 ≥ 0, x_j" ≥ 0
- Equality into inequality f(x)=b... f(x)≥b,
 f(x)≤ b
- Less-than-or-equal contraints ... multiply by -1

Variabili slack

 Turn each inequality constraint (apart from non-negativity) into an equality constraint by adding a slack variable (variabile di scarto)

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i$$

$$s = b_i - \sum_{j=1}^{n} a_{ij} x_j,$$

$$s \ge 0.$$

$$x_{n+i} = b_i - \sum_{j=1}^n a_{ij} x_j ,$$

$$x_{n+i} \ge 0.$$

i=1,...m one slack var. for each contraint

Forma Slack (esempio)

Objective function

Non-negativity contraints omitted

Basic solution → all non-basic variables zero, on a vertex of the simplex

LP forma slack

|N| = n, |B| = m, and $N \cup B = \{1, 2, ..., n + m\}$. slack tuple (N, B, A, b, c, v)

Forma slack: esempio

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$
we have $\beta = \{1, 2, 4\}, N = \{3, 5, 6\}$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_4 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}$$

$$c = (c_3 c_5 c_6)^1 = (-1/6 - 1/6 - 2/3)^T, \text{ and } v = 28.$$

Formulazioni LP di problemi

- Cammini minimi singolo paio s >> t
 - Max d[t]

Bellman-Ford

Subject to:

```
d[v] \le d[u] + w(u,v) for each edge (u,v) in graph d[s] = 0
```

- Massimo flusso (source s, sink t)
 - Max $\Sigma_{v \text{ in } V} f(s,v)$
 - Subject to:
 - $f(u,v) \le c(u,v)$ capacity constraints
 - f(u,v) = -f(v,u) skew symmetry
 - $-\sum_{v \text{ in } V} f(u,v) = 0$ for each u in $V \{s,t\}$ flow conservation

L'algoritmo del simplesso

- Geometric interpretation vs. algebraic view
- A kind of "Gaussian elimination for inequalities"... rewrite the system until solution is simple
- Use slack form (everything becomes an equality)
- Basic solution: put non-basic variables to zero (corr. to one vertex of the simplex)
- Transform slack form so that value of basic feasible solution does not decrease (usually increases)
- When rewriting the role of basic vs non-basic changes

maximize
$$3x_1 + x_2 + 2x_3$$

subject to
$$\begin{array}{rcl}
x_1 + x_2 + 3x_3 & \leq 30 \\
2x_1 + 2x_2 + 5x_3 & \leq 24 \\
4x_1 + x_2 + 2x_3 & \leq 36 \\
x_1, x_2, x_3 & \geq 0
\end{array}$$

Basic solution is feasible (in this case)

Positive!

Advanced algorithms

ENTER!

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$LEAVE! x_6 = 36 - 4x_1 - x_2 - 2x_3 .$$

Reformulate so that basic solution has greater objective value By how much can I increase x1 ? Third constraint is the most binding! Solve for x1 from third constraint and substitute

Move along the edge of the simplex

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

ENTER!

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

Move along the edge of the simplex

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

ENTER

LEAVE!
$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_4 = \frac{3}{4} - \frac{3x_2}{16} + \frac{x_5}{8} - \frac{x_5}{16} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_3}{8} - \frac{x_6}{16} + \frac{x_5}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{3} + \frac{x_5}{3} + \frac{x_6}{3}$$

Which variable do I pick next? Value of basic solution cannot be increased!

Basic solution is optimal. Values of slack variables say degree of constraint satisfaction

Pivoting

```
PIVOT(N, B, A, b, c, v, l, e)
                                                                I= leaving, e=entering
      \triangleright Compute the coefficients of the equation for new basic variable x_e.
      for each j \in N - \{e\}
               do \widehat{a}_{ej} \leftarrow a_{lj} (a_{le})
                                                              xe on l.h.s.
      \widehat{a}_{el} \leftarrow 1/a_{le}
      Compute the coefficients of the remaining constraints.
        for each i \in B - \{l\}
              \operatorname{do} \widehat{b_i} \leftarrow b_i - a_{ie}\widehat{b_e}
                    for each j \in N - \{e\} substitute xe in r.h.s. of
                           do \widehat{a}_{ij} \leftarrow a_{ij} - a_{ie} \widehat{a}_{ej} other equations
                    \widehat{a}_{il} \leftarrow -a_{ie}\widehat{a}_{el}
       Compute the objective function.
13 \widehat{v} \leftarrow v + c_e b_e
14 for each j \in N - \{e\}
             \operatorname{do}\widehat{c}_{j} \leftarrow c_{j} - c_{e}\widehat{a}_{ej}
16 \ \widehat{c}_l \leftarrow -c_e \widehat{a}_{el}
17 Description Compute new sets of basic and nonbasic variables.
18 \widehat{N} = N - \{e\} \cup \{l\}
19 \widehat{B} = B - \{l\} \cup \{e\}
       return (N, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})
20
```

Effect of pivoting on basic solution

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which $a_{le} \neq 0$. Let the values returned from the call be $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$, and let \widehat{x} denote the basic solution after the call. Then

- 1. $\bar{x}_j = 0$ for each $j \in \widehat{N}$.
- $2.(\tilde{x}_e = b_l/a_{le})$
- 3. $\bar{x}_i = b_i a_{ie}\hat{b}_e$ for each $i \in \hat{B} \{e\}$.

Alg. del simplesso: formalizzazione

- Is the LP feasible?
- If feasible, how do we get a feasible initial basic solution?

Initialize-Simplex

- How do we determine if LP is unbounded?
- How do we choose entering and leaving variables?

```
SIMPLEX(A, b, c)
       (N, B, A, b, c, v) \leftarrow \text{INITIALIZE-SIMPLEX}(A, b, c)
       while some index j \in N has c_j > 0
             do choose an index e \in N for which c_e > 0
                  for each index i \in B
                        \operatorname{doif} a_{ie} > 0
                               then \Delta_i \leftarrow b_i/a_{ie}
                               else \Delta_l \leftarrow \infty
                  choose an index l \in B that minimizes \Delta_l
                                                                       Most binding constraint if any
                  if \Delta_I = \infty
10
                     then return "unbounded"
                    else (N, B, A, b, c, v) \leftarrow \text{PIVOT}(N, B, A, b, c, v, l, e)
      for i \leftarrow 1 to n
            do if i \in B
13
14
                    then \bar{x}_i \leftarrow b_i
15
                    else \tilde{x}_i \leftarrow 0
      return (\tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_n)
```

- If properly started, if it terminates, feasible solution or unbounded
- It terminates!
- Returned solution is optimal (see duality)

Use loop invariant:

At the start of each iteration of the while loop of lines 2-11,

- the slack form is equivalent to the slack form returned by the call of INITIALIZE-SIMPLEX,
- for each i ∈ B, we have b_i ≥ 0, and
- 3. the basic solution associated with the slack form is feasible.

Loop invariant bi ≥ 0

First, we observe that $\widehat{b}_{e} \geq 0$ because $b_{l} \geq 0$ by the loop invariant, $a_{le} > 0$ by line 5 of SIMPLEX, and $\widehat{b}_{e} = b_{l}/a_{le}$ by line 2 of PIVOT.

For the remaining indices $i \in B - l$, we have that

$$\widehat{b}_i = b_i - a_{ie}\widehat{b}_e$$
 (by line 8 of PIVOT)
 $= b_i - a_{ie}(b_i/a_{ie})$ (by line 2 of PIVOT) . (29.79)

We have two cases to consider, depending on whether $a_{ie} > 0$ or $a_{ie} \le 0$. If $a_{ie} > 0$, then since we chose l such that

$$b_l/a_{le} \le b_i/a_{le}$$
 for all $i \in B$, (29.80)

we have

Most binding constraint picked!

$$\widehat{b}_i = b_i - a_{ie}(b_i/a_{le}) \text{ (by equation (29.79))}$$

$$\geq b_i - a_{ie}(b_i/a_{ie}) \text{ (by inequality (29.80))}$$

$$= b_i - b_i$$

$$= 0,$$

and thus $\widehat{b}_i \geq 0$. If $a_{le} \leq 0$, then because a_{le} , b_i , and b_l are all nonnegative, equation (29.79) implies that \widehat{b}_i must be nonnegative, too.

 Slack form uniquely determined by the sets of basic variables

$$z = v + \sum_{j \in N} c_j x_j \qquad (29.82)$$

$$x_i = b_i - \sum_{j \in N} a_{ij} x_j \text{ for } i \in B \ , \qquad (29.83)$$
and the second as
$$z = v' + \sum_{j \in N} c_j' x_j \qquad (29.84)$$

$$x_i = b_i' - \sum_{j \in N} a_{ij}' x_j \text{ for } i \in B \ , \qquad (29.85)$$
Consider the system of equations formed by subtracting each equation in tem is
$$0 = (b_i - b_i') - \sum_{j \in N} (a_{ij} - a_{ij}') x_j \text{ for } i \in B$$
or, equivalently,
$$\sum_{j \in N} a_{ij} x_j = (b_i - b_i') + \sum_{j \in N} a_{ij}' x_j \text{ for } i \in B \ .$$

Simplesso: terminazione

- If each iteration increases objective value of basic solution we are done
- Only case is degeneracy: objective value unchanged → possible (endless) cycles
- If SIMPLEX fails to terminate in at most (**)
 iterations it cycles
- Cycling is extremely rare, can be avoided by breaking ties by choosing variable wih smallest index

Dualità

- Under suitable assumptions, SIMPLEX terminates
- Does it find the optimal solution?
- Demonstration uses duality (a related minimization problem s.t. they have the same optimal objective value)

LP Primale

LP Duale

Dualità debole

Value feasible sol. primal ≤ value feasible sol. dual

$$\sum_{j=1}^{n} c_j \bar{x}_j \leq \sum_{i=1}^{m} b_i \bar{y}_i$$

$$\sum_{j=1}^{n} c_j \bar{x}_j \leq \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} \bar{y}_i \right) \bar{x}_j$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \bar{x}_j \right) \bar{y}_i$$

$$\leq \sum_{i=1}^{m} b_i \bar{y}_i$$

Dualità debole: corollario

• If value fasible sol. primal = Value fasible sol dual... $\sum_{j=1}^{n} c_j \bar{x}_j = \sum_{i=1}^{m} b_i \bar{y}_i$

They are both optimal solutions of their problems

Dalla soluzione del primale alla soluzione del duale

Assume last slack form of the primal:

$$z = v' + \sum_{j \in N} e'_j x_j$$

$$x_i = b'_i - \sum_{j \in N} a'_{ij} x_j \text{ for } i \in B.$$

Optimal dual sølution is:

$$\bar{y}_i = \begin{cases} -c_{n+i} & \text{if } (n+i) \in N \\ 0 & \text{otherwise} \end{cases}.$$

 Suppose SIMPLEX returns X, and Y defined as before, then they are both optimal solutions of their problems

$$\sum_{j=1}^n c_j \bar{x}_j = \sum_{i=1}^m b_i \bar{y}_i.$$

Consider final slack form:

$$z = v' + \sum_{j \in N} c'_j x_j$$

$$c'_j \le 0$$
 for all $j \in N$ $c'_j = 0$ for all $j \in B$

by definition

• One can rewrite
$$z = v' + \sum_{j \in N} c'_j x_j$$
$$= v' + \sum_{j \in N} c'_j x_j + \sum_{j \in B} c'_j x_j$$
$$= v' + \sum_{j=1}^{n+m} c'_j x_j$$

Given equivalence of slack forms

$$\sum_{j=1}^{n} c_j \bar{x}_j = v' + \sum_{j=1}^{n+m} c'_j \bar{x}_j$$

$$= v' + \sum_{j \in N} c'_j \bar{x}_j + \sum_{j \in B} c'_j \bar{x}_j$$

$$= v' + \sum_{j \in N} (c'_j \cdot 0) + \sum_{j \in B} (0 \cdot \bar{x}_j)$$

$$= v'.$$
Advanced algorithms

$$\sum_{j=1}^{n} c_{j}x_{j}$$

$$= v' + \sum_{j=1}^{n+m} c'_{j}x_{j}$$

$$= v' + \sum_{j=1}^{n} c'_{j}x_{j} + \sum_{j=n+1}^{n+m} c'_{j}x_{j}$$

$$= v' + \sum_{j=1}^{n} c'_{j}x_{j} + \sum_{i=1}^{m} c'_{n+i}x_{n+i}$$

$$= v' + \sum_{j=1}^{n} c'_{j}x_{j} + \sum_{i=1}^{m} (-\bar{y}_{i})x_{n+i}$$

$$= v' + \sum_{j=1}^{n} c'_{j}x_{j} + \sum_{i=1}^{m} (-\bar{y}_{i})x_{n+i}$$

$$= v' + \sum_{j=1}^{n} c'_{j} x_{j} + \sum_{i=1}^{m} (-\tilde{y}_{i}) \left(b_{i} - \sum_{j=1}^{n} a_{ij} x_{j}\right)$$

$$= v' + \sum_{j=1}^{n} c'_{j} x_{j} - \sum_{i=1}^{m} b_{i} \tilde{y}_{i} + \sum_{i=1}^{m} \sum_{j=1}^{n} (a_{ij} x_{j}) \tilde{y}_{i}$$

$$= v' + \sum_{j=1}^{n} c'_{j} x_{j} - \sum_{i=1}^{m} b_{i} \bar{y}_{i} + \sum_{j=1}^{n} \sum_{i=1}^{m} (a_{ij} \bar{y}_{i}) x_{j}$$

$$=\left(v'-\sum_{i=1}^{m}b_{i}\tilde{y}_{i}\right)+\sum_{j=1}^{n}\left(c'_{j}+\sum_{i=1}^{m}a_{ij}\tilde{y}_{i}\right)x_{j}$$
,

$$c'_j - \sum_{i=1}^m b_i \, \bar{y}_i = 0 \,,$$

$$c'_j + \sum_{i=1}^m a_{ij} \, \tilde{y}_i = c_j \quad \text{for } j=1,2,\dots,n \,.$$
 negative

Soluzione iniziale fattibile

The initial slack form may not have an initial feasible solution

 Define an auxiliary Laux to know if feasible solution exists and to initialize

Soluzione iniziale fattibile

 L is feasible iff Laux has optimal objective value = 0

Initialize-Simplex

```
INITIALIZE-SIMPLEX (A, b, c)
      let l be the index of the minimum b_l
                                                  "Most dangerous" contraint
     if b_i \ge 0
                              Is the initial basic solution feasible?
        then return (\{1, 2, ..., n\}, \{n+1, n+2, ..., n+m\}, A, b, c, 0)
      form L_{xx} by adding -x_0 to the left-hand side of each equation
              and setting the objective function to -x_0
     let (N, B, A, b, c, v) be the resulting slack form for L_{\text{aux}}
     \triangleright L_{\text{sux}} has n+1 nonbasic variables and m basic variables.
     (N, B, A, b, c, v) \leftarrow \text{PIVOT}(N, B, A, b, c, v, l, 0)
     > The basic solution is now leasible for L inx.
     iterate the while loop of lines 2-11 of SIMPLEX until an optimal solution
              to Laux is found
10
     if the basic solution sets \bar{x}_0 = 0
        then return the final slack form with x_0 removed and
                              the original objective function restored
        else return "infeasible"
```

Teorema fondamentale di LP

- Anly LP given in standard form, either
 - 1. Has optimal solution with finite obj. value
 - 2. Is infeasible
 - 3. Is unbounded

The SIMPLEX algorithm completely solves the problem