Complexité en état opérationnel de langage rationnel

Master 1 - ITA: Application Informatique **Encadré par Pascal Caron**

Edouard HADDAG Université de Rouen Normandie

6 iuin 2025

- Introduction
- 2 Le trognon d'un langage
- 3 Langage permuté
- 4 Conclusion

Définition 1 (Automate)

$$M = (\Sigma, Q, I, F, \delta)$$
 avec $Q = \{q_1, q_2, q_3\}$, $I = \{q_1\}$ et $F = \{q_3\}$.

Définition 2 (L'acceptation d'un mot)

Définition 3 (Automate déterministe)

Définition 4 (Automate minimal)

L'automate M_1 est un automate « minimal » du langage $L = \Sigma^* \cdot \Sigma$:

Lien entre les langages et les automates

Définition 5 (Langage rationnel)

Les langages « rationnels » sont les langages reconnaissables par au moins un automate.

Définition 6

La « complexité en états » est une mesure d'un **langage**, elle est définie comme le nombre d'états d'un automate minimal du langage.

Exemple 7 (Définition d'une famille)

$$A_n = \Sigma^* \cdot a \cdot \Sigma^n$$

Exemple 7 (
$$\mathcal{C}(A_2) = 2 + 2$$
)
$$A_n = \Sigma^* \cdot a \cdot \Sigma^n$$

Définition 8 (Complexité en états opérationniel)

La fonction f à une complexité g(n) si :

Exemple 9 (L'union de deux langages)

Exemple 9 (L'union de deux langages)

La complexité de l'union est donc n+m.

Le trognon d'un langage

Le trognon d'un mot

Le trognon d'un mot

abcdcba

Le trognon d'un mot

Le trognon d'un mot

 $ab \cdot cdc \cdot ba$

Le trognon d'un mot

Le trognon d'un mot

 $abc \cdot d \cdot cba$

Le trognon d'un mot

Le trognon d'un mot

 $\varepsilon \cdot abcdcba \cdot \varepsilon$

Définition 10 (Le trognon d'un mot)

Le trognon d'un langage sera alors l'union des trognons des mots qu'il le compose.

Définition 14

L'automate ${\tt nibbling}(M)$ sera donc l'union des automates grignotés distincts.

Définition 14

L'automate ${\tt nibbling}(M)$ sera donc l'union des automates grignotés distincts.

Compléxité en état de notre algorithme

Le nombre d'états de l'union de deux automates est égal à la somme des nombres d'états des automates.

Algorithme de grignotage

Définition 14

L'automate ${\tt nibbling}(M)$ sera donc l'union des automates grignotés distincts.

Compléxité en état de notre algorithme

Le nombre d'états de l'union de deux automates est égal à la somme des nombres d'états des automates.

Les automates grignotés ont comme forme $(\Sigma, Q, I, F, \delta)$ avec Q et δ les mêmes et comme changement I et F qui sont deux ensembles non vides.

Algorithme de grignotage

Définition 14

L'automate ${\tt nibbling}(M)$ sera donc l'union des automates grignotés distincts.

Compléxité en état de notre algorithme

Le nombre d'états de l'union de deux automates est égal à la somme des nombres d'états des automates.

Les automates grignotés ont comme forme (Σ,Q,I,F,δ) avec Q et δ les mêmes et comme changement I et F qui sont deux ensembles non vides.

Ce qui nous donne comme complexité finale : $n(2^n-1)^2$ états.

Langage permuté

Définition

Définition

Définition

Exemple 15

Exemple 16

$$L = \{\varepsilon, a, ab, abcd\}$$

$$Twist(L) = \{\varepsilon, a, ba, badc\}$$

Automate quelconque

Si on ajoute les cycles, on devra alors supposer que tout état intermédiaire se trouve dans le cas de l'état 2, on devra donc le dupliquer.

Compléxité en états de notre algorithme

Dans le pire cas, notre algorithme dupliquera tous les états de l'automate.

Compléxité en états de notre algorithme

Dans le pire cas, notre algorithme dupliquera tous les états de l'automate.

Sachant que chaque état peut être dupliqué étant de voir qu'il y a de symbole de l'alphabet plus un.

Compléxité en états de notre algorithme

Dans le pire cas, notre algorithme dupliquera tous les états de l'automate.

Sachant que chaque état peut être dupliqué étant de voir qu'il y a de symbole de l'alphabet plus un.

Alors, la complexité dans le pire cas de notre algorithme est $n(|\Sigma|+1)$.

Conclusion

Conclusion

Conclusion

On vient donc de faire deux algorithmes qui permettent de calculer les automates reconnaissant le trognon et le langage permuté.

Conclusion

Conclusion

On vient donc de faire deux algorithmes qui permettent de calculer les automates reconnaissant le trognon et le langage permuté.

Pour autant ça ne veut pas dire que ces opérations sur les langages ont les mêmes complexités que nos algorithmes, ce n'est qu'une borne supérieure.