UK Patent Application (19) GB (11) 2 138 446 A

(43) Application published 24 Oct 1984

- (21) Application No 8407103
- (22) Date of filing 19 Mar 1984
- (30) Priority data (31) 58/045278
- (32) 19 Mar 1983 (33) JP
- (71) Applicant Nippon Steel Corporation (Japan), 2-6-3 Ote-machi, Chiyoda-ku, Tokyo, Japan
- (72) Inventors Takashi Zaizen Yasuo Otoguro Katsumi Suzuki Katukuni Hashimoto Mizuo Sakakibara Masao Onoyama Toshio Fujita
- (74) Agent and/or Address for Service Sanderson & Co, 97 High Street, Colchester, Essex CO1 1TH

- (51) INT CL3 C22C 38/54 19/03
- (52) Domestic classification C7A A249 A250 A253 A25Y A280 A28X A28Y A30Y A311 A313 A316 A31X A33Y A341 A343 A345 A347 A349 A350 A352 A354 A35X A35Y A37Y A381 A383 A385 A387 A409 A439 A459 A509 A51Y A523 A525 A527 A53Y A541 A543 A545 A547 A579 A589 A58Y A591 A593 A595 A59X A601 A603 A605 A607 A609 A60X A60Y A615 A617 A619 A61Y A621 A62X A671 A673 A675 A677 A679 A67X A681 A683 A685 A687 A689 A68X A693 A695 A696 A697 A698 A699 A69X A70X U1S 1977 2077 C7A
- (56) Documents cited None
- (58) Field of search

(54) Austenitic heat-resistant alloys

(57) An austenitic heat-resistant alloy consisting of (by weight): 0.02-0.15% C, 0.3-2.0% Si, 0.3-1.5% Mn, 18-25% Cr, 20.5-50% Ni, 0.5-3.0% Mo, 0.03-0.3% Ti, 0.05-0.6% Nb, 0.003-0.01% B, no more than 0.04% P, and no more than 0.005% S, with the balance being iron and unavoidable impurities, and satisfying the conditions Nb/Ti = 0.5-3 (atomic ratio) and (Nb + Ti)/(C + N) = 0.2-0.85 (atomic ratio).

The alloy is particularly useful as a boiler material, and shows excellent strength and corrosion resistance at elevated temperatures as well as excellent weldability.

SPECIFICATION

Austenitic heat-resistant allove

	Austenitic heat-resistant al	loys	
5	embrittlement and corrosion	to austenitic heat-resistant alloys having excellent resistance to at high temperatures and excellent weldability. 374, the proportion of the fuel cost in the overall costs of electric	5
10	power production has been in oil. As a result, there have be	ncreasing due to the increase in the price of fuels, such as crude een various proposals in the U.S.A. to operate the turbines of fuel- er temperatures and under higher pressures, in order to reduce the	10
4.5	In Japan, which has been a is foreseeable that power plat under much higher pressures	confronted more severely than the U.S.A. with higher fuel prices, it nts will be required to operate at much higher temperatures and . In this connection, it has generally been estimated that the	
15	and pressure and, for example the presently used operating psig (24.13 MPa above atmo-	wer plant will be raised by increasing the operating temperature e, about a 7% increase in efficiency may be obtained by increasing temperature of 538° up to 650°C and vapour pressure of 3500 pspheric pressure) up to 5000 psig (34.47 MPa above atmospheric	15
20	 under such severe temperature development efforts have bee 	these tendencies, heat-resistant alloys suitable for boilers operable re and pressure conditions are needed and in fact various on directed thereto. Operation is at a vapour temperature of about 650°C the boilers are	20
25	subjected to temperatures of including austenitic stainless: 310 (AISI 310), cannot main	about 720°C, at which conventional heat-resistant steel materials steels, such as SUS347 (AISI 347), SUS 316 (AISI 316) and SUS tain the required strength, and better grades of heat resistant steel austenitic stainless steels, for example SUS 347 and SUS 316 in	25
30	particular, were initially develoresistance at ordinary tempera improved so as to produce ne	oped with a predominant consideration given to corrosion atures, and therefore their chemical composition may still be we heat-resistant alloys which can satisfy the requirements of boiler appearance at elevated tempera-	30
00	tures, as well as weldability as Steel compositions developed Japanese Laid-Open Patent A	nd so on. ed for such applications have been proposed, as disclosed in pplication No. Sho 52-149213. The prior art steel composition.	30
35	however, has a relatively low likely to be susceptible to the embrittlement characteristics of	content of Ni, from 6.8 to 20%, so that this steel composition is σ phase formation which produces adverse effects on the of austenitic heat-resistant stainless steels when heated to high of time. Therefore, this prior art steel composition cannot be used	35
40	A principal object of the pre sitions which displays better c the demanding applications re	sent invention is to provide a new heat-resistant alloy compo- haracteristics than the known steel compositions, when used in	40
	consists of (by weight):		
45	0.02		45
	0.3 –1.5% Mn		
	.18 –25% Cr		
50	20.5 –50% Ni 0.5 –3.0% Mo		50
•	0.03 -0.3% Ti		50
	0.05 -0.6% Nb		
	0.003 -0.01% B		
55	no more than 0.04% P no more than 0.005% S, and optionally 0.02-0.3% N		55
60	with the balance being iron an conditions: Nb/Ti = 0.5-3 (atomic ratio	d unavoidable impurities, which alloy composition satisfies the	60
00	(Nb + Ti)/(C + N) = 0.2-0.8	g, and 15 (atomic ratio)	60
	The percentages are by weig This invention will now be de-	tht in the following, unless otherewise specified. escribed in greater detail and certain specific Examples thereof	·
65	Figure 1 shows the correlation	o the accompanying drawings, in which:- on between the alloy Si contents and the weight decrease in a	65

2		
	GB 2 138 446A	2
	corrosion test;	
	Figure 2 shows the correlation between the allege C	
5	and Figure 4 shows the creep rupture time;	
	Figure 4 shows the correlation betwen the atomic ratio $(Nb + Ti)/(C + N)$ and the creep rupture time.	5
	Initially, the reasons for the specific limited and the	5
	Initially, the reasons for the specific limitations of the component elements of the alloy composition of this invention will be explained.	
10	Carbon has a great influence on the creep rupture strength or the rupture elongation, depending on the shape and distribution of carbidos. There's	
	least in a minimum amount required to the carbides. Therefore, carbon should be present at	10
	favourable for the creep properties. On the other hand the carbon content should be maintained as low as possible in order to prevent micro-cracking at high according to high)
	as low as possible in order to prevent micro-cracking at high temperatures during welding. For these reasons, the carbon content should be in a range of from 0.00%.	d
15	these reasons, the carbon content should be in a range of from 0.02%, but preferably from 0.05% to 0.15%:	
	The silicon content is anality to a	15
	The silicon content is specified to be in a range of from 0.3 to 2.0% on the basis of the results of the following experiments.	13
	Referring to Fig. 1, this shows the secults of the	
	Referring to Fig. 1, this shows the results of high temperature corrosion tests conducted in synthetic ash at 650°C for 200 hours, using alloy compositions containing 0.08% C, 1.0% Mn different Cr contents of 16% (marked by(2)), 19% (marked by 2) and 230°C for 200°C	
20	different Cr contents of 16% (morted to Continue Containing 0.08% C. 1.0% Mn	١,
	35% Ni, 1.5% Mo, 0.2% Ti, 0.2% Nb, 0.005% B, 0.02% P, 0.002% S, with various silicon contents. These tests reveal that an increased silicon content made all.	20
1	contents. These tests reveal that an increased silicon content markedly reduces the corrosion rate at high temperatures. On the other hand, the same all the same	
	rate at high temperatures. On the other hand, the same alloy compositions with similarly various	,
5	silicon contents were subjected to creep rupture tests at 700°C and the results, as shown in Fig. 2, show that the high temperature creep strength decreases as the results, as shown in Fig.	
i	rrespective of the chromium content	25
	Based on the discoveries shown in Fig. 4	
ř	high-temperature corrosion resistance, and for maintaining the corrosion resistance at the same evel as that of SUS 347 type stainless steel at least 0.3% Si had not be same.	
n .	evel as that of SUS 347 type stainless steel, at least 0.3% Si, but preferably at least 0.4%, hould be present. However, an excessive silicon content will be supported by the same of the	
J 3	hould be present. However, an excessive silicon content will decrease the creep rupture	30
ti	hat expected for SUS 347 type agriculture creep rupture strength at the same level as	30
2	%. For these reasons, the silicon content is limit silicon content should be no greater than	
D	resent invention. Preferably the allies are to the range of from 0.3 to 2.0% in the	
o b	ecause a silicon content exceeding 1.5% will produce no substantial improvement in the high-	
τε	emperature corrosion resistance.	35
sc	Manganese addition is required for satisfactory deoxidation of the alloy and for obtaining bund alloy ingots, and is also effective to fix the sulphus assessment alloy and for obtaining	
DI	ound alloy ingots, and is also effective to fix the sulphur present as impurities in the alloy so reventing hot embrittlement and improving the weldability and the limit in the alloy so	
) re	asons, at least 0.3% Mn, but professible as the weldability and the not workability. For these	
m	anganese contents will deteriorate the guidal 0.0%, is required. However, excessive	40
th	e manganese content is limited to 1.5%, and preferably 1.3% max.	
UX	sistance, and thus is an essential element for heat-resistant alloys. For a high-temperature idation resistance equal to or better than that of SUS 247	
Ho	idation resistance equal to or better than that of SUS 347, at least 18% Cr is required.	45
lor	ng term heating. Therefore, the upper limits of embrittement in the alloy when subjected to a	70
pre	esent invention in order to maintain a home of the chromatin content is set at 25% in the	
aus	stentic stainless steels (SUS 310).	
	NICKEL, When contained in amounts of the state of the sta	
allo	by from a body-centered cubic structure to a face-centred cubic structure, and for this reason kel is an essential element for providing high temperature structure, and for this reason	50
hia	kel is an essential element for providing high temperature strength. Boiler tubes made of	
tem	operatures for long periods and and a continue ment when exposed to elevated	
be:	added to prevent a embritionant Oath 20.5% Ni, and preferably 24% or more, should	
the	austenite and lead to conversely hards in other hand, too great a nickel content will stabilize	55
an o	excessive Ni content will inevitably roles the next deteriorate the not workability. Also,	
ıımı	it of the nickel content is set at 50% in the present invention.	
rea: (60
	anver one precedently of loom 1 Aug. Ma L	

and deteriorating the corrosion resistance at elevated temperatures when exposed to a long term heating. For these reasons, the upper limit of the molybdenum content is set at 3.0%, 65 preferably 2.5%. Both of titanium and niobium, which are carbide and nitride formers, are

required, and preferably at least 1.4% Mo should be present. Meanwhile, molybdenum tends to

promote the formation of σ phase, thus rendering the alloy more susceptible to embrittlement

60 hardening and precipitation hardening effects, and for this purpose at least 0.5% Mo is

65

generally accepted to be effective at improving the creep rupture property.

The present inventors have conducted extensive studies with various proportions of Ti and Nb and have found results quite different from the conventional thinking. Fig. 3 shows the results of creep rupture tests with 12 kgf/mm² at 750°C, using two alloy systems containing different silicon contents 0.5% Si (marked by 0) and 2.0% Si (marked by 0). 0.1% C, 1.0% Mn, 20% Cr, 25% Ni, 1.4% Mo, 0.005% B, 0.02% P and 0.003% S, with various atomic ratios of Nb/Ti. The creep rupture strength increases as the proportion of nb is increased until the atomic ratio of Nb/Ti reaches about 3. This is quite contrary to the conventional thinking, as taught by Japanese Patent Publication No. Sho 50–3967, that the creep rupture strength becomes 10 highest at the atomic ratio 1:1 of Nb/Ti.

It has been concluded from the results shown in Fig. 3 that decreased proportions of nb in the atomic ratio of Nb/Ti cause a decrease in creep rupture strength, and the Nb content should be at least 1/2 or more of the Ti content, in atomic ratio. Preferably, the Nb content should be equal to or more than the Ti content. Also as understood from Fig. 3, with Nb contents

15 exceeding the atomic ratio 3 of Nb/Ti, no substantial increase in the creep rupture strength can be expected. Therefore, the Nb content should be maintained at no more than three times the Ti content, in atomic ratio.

Also Ti and Nb improve the creep rupture property through the formation of precipitates with carbon or with carbon and nitrogen. Hence the proper additions of Nb and Ti are dependent on 20 the relation between the carbon and nitrogen contents: (Nb + Ti)/(C + N).

The creep rupture strength level varies when the carbon content or the carbon and nitrogen (C + N) content alone is changed. Therefore, an investigation of the correlation of the creep rupture strength with the ratio (Nb + Ti)/(C + N) by changing the Nb + Ti content and the C content or (C + N) content will fail accurately to determine the effect of the (Nb + Ti)/(C + N) on

25 the creep rupture strength, because the effect of the atomic ratio Nb/Ti and the effect of the carbon content or the carbon and nitrogen (C + N) content overlap each other. In view of this consideration, the present inventors have tried to clarify the effects on the creep rupture property by maintaining the carbon content or the carbon and nitrogen (C + N) content at a constant level and changing the niobium and titanium (Nb + Ti) content, hence changing the 30 ratio (Nb + Ti)/(C + N).

Thus, referring to Fig. 4, the creep rupture tests with 12 kgf/mm² at 750°C were peformed on two alloy systems having different nitrogen contents: 0.05% N (marked by o) and 0.005% N (marked by) and both containing 0.1% C, 0.5% Si, 1.0% Mn, 20% Cr, 25% Ni, 1.0% Mo, 0.005% B, 0.02% P and 0.003% S with various atomic ratios of (Nb + Ti)/(C + N), to 35 determine the creep rupture time of the two alloy systems. It has been concluded from the

results of the tests that in the above alloy systems, the atomic ratio of (Nb + Ti)/(C + N) should be maintained in a range of from 0.2 to 0.85. If the ratio is higher than 0.85, the precipitates containing Nb and Ti are very likely to grow coarse, thus partially decreasing the effect of improving the creep rupture property, and on the other hand, if the ratio is lower than 0.2, no substantial effect of Nb and Ti will be obtained. Therefore, in the present invention, the amount of (Nb + Ti) should be in a range corresponding to the atomic ratio (Nb + Ti)/(C + N) ranging from 0.2 to 0.85, and the atomic ratio of (Nb/Ti) should be in the range of from 0.5 to 3, preferably 1 to 3, when the carbon and nitrogen contents are maintained constant, as explained hereinbefore.

In view of the above discoveries, the upper limit of the niobium content in the alloy according to the present invention is set at 0.6%, but preferably at 0.5%, and the upper limit of the titanium content is set at 0.3%, but preferably at 0.25%. Further in order to assure the favourable effects of Ti and Nb on the creep property, the titanium content should not be less than 0.03%, but preferably not less than 0.05%, and the niobium content should not be less than 0.05%, but preferably not less than 0.06%.

Boron should be present in amounts of not less than 0.003% in order to increase the creep rupture strength, but excessive boron contents will decrease the weldability and the ductility. Therefore, in the present invention, the upper limit of the boron content is set at 0.010%, but preferably 0.007%.

5 Phosphorus, when contained in excessive amounts, will promote precipitates, thus promoting embrittlement during creep. Therefore, in the present invention, the upper limit of the phosphorus content is set at 0.04%.

Sulphur, when present in excessive amounts, will segregate at the grain-boundaries and promote grain-boundary embrittlement during creep. Therefore, the upper limit of the sulphur 60 content is set at 0.005%.

Nitrogen is an element conventionally known to be effective at increasing the high temperature creep rupture strength of high-Cr, high-Ni austenitic alloys, through the formation of nitrides. In order to increase the creep rupture strength through nitride formation, the nitrogen content should be no less than 0.02%, and preferably no less than 0.05%. On the other hand, increased nitrogen contents will decrease the creep rupture elongation, and nitrogen contents in

10

5

20

15

25

30

35

40

45

50

55

. - -

- -

60

excess of 0.3% will produce no substantial increase in the long term creep rupture strength. For these reasons, the upper limit of the nitrogen content in the present invention is set at 0.3%. Examples of the present invention will now be set out. Table 1 shows chemical compositions of alloys of this invention and various comparative alloys. All these alloys were subjected to creep rupture tests with 12 kgf/mm² at 750°C, and Table 2 shows the results of these tests as the creep rupture time and the creep rupture 5 elongation, as well as the atomic ratios of (Mb + Ti)/(C + N) and Nb/Ti of the alloys. Alloys, E, K, L, W, X, and B' shown in Table 1 correspond to a basic alloy composition according to the present invention, and alloys F, O, P, Q, R, T, U and A' correspond to 10 modifications of the present invention. Alloy A corresponds to SUS 347 and alloy B to SUS 304. Alloy C has a basic composition of 10 25Ni-20Cr without any addition of Ti, Nb, B and N, and alloy D has the same basic composition with no addition of B and N. Alloy E has the basic alloy composition containing Ti, Nb and B but containing no N, with the atomic ratio of (Nb + Ti)/(\acute{C} + N) maintained at 0.5 and 15 the atomic ratio of Nb/Ti maintained at 1.0. This alloy shows a higher creep rupture strength than alloys A, B, C and D due to the addition of Nb, Ti and B. Alloy F has the same alloy 15 composition as alloy E except for the addition of N and shows a higher creep rupture strength than alloy E due to the addition of 0.06% N. Alloy G contains C in an amount exceeding the upper limit of the carbon content according to the present invention, and shows a lower creep 20 rupture strength and a lower creep rupture elongation as compared with alloy F. Alloy H contains Si in an amount exceeding the upper limit for the silicon content according 20 to the present invention and shows a marked decrease in creep rupture strength due to the excessive silicon content. Alloy I contains an excessive amount of Cr. Therefore, despite the relatively high nickel content of 29.6%, it shows a lower creep rupture stength than alloy F 25 which is within the scope of the present invention. When the chromium content exceeds 25%, as in the case of alloy I, the creep rupture property is deteriorated by carbides and intermetallic 25 In alloys J, K, L and M, the atomic ratio of Nb/Ti is maintained at 0.25, 0,5, 3.0 and 4.0 respectively and the atomic ratio of (Nb + Ti)/(C + N) is maintained within the range of from 30 0.23 to 0.58 without addition of nitrogen. As shown, when the atomic ratio of Nb/Ti exceed the upper limit of 3 as defined in the present invention, for example, 4.0 in alloy M, not only 30 the creep rupture strength but also the creep rupture elongation are deteriorated. On the other hand, as with alloy J, when the ratio is lower than the lower limit of 0.5 as defined in the present invention, the creep rupture strength is low. In allows N, O and P the atomic ratio of (Nb + Ti)/(C + N) is maintained within the range of from 0.33 to 0.38 with the addition of nitrogen and the atomic ratio of Nb/Ti is maintained at 0.25, 0.5 and 3.0 respectively. Alloy N, 35 having the atomic ratio of Nb/Ti of 0.25, shows a lower creep strength as compared with alloys O and P having the ratios of 0.5 and 3.0 respectively, within the scope of the present invention. In alloys Q, R, S and W, X, Y, the atomic ratio of Nb/Ti is maintained in the range of from 0.8 40 to 1.1 and the atomic ratio of (Nb + Ti)/(C + N) is varied in the range of from 0.20 to 0.91, with the addition of nitrogen in alloys Q, R and S, but without the addition of nitrogen in alloys 40 W, X and Y. Both alloys \tilde{S} and Y, having atomic ratios of (Nb + Ti)/(C + N) as 0.91 and 0.90 respectively, show lower creep rupture strength and creep rupture elongation than alloys Q, R, W and X having the atomic ratio within the range of from 0.2 to 0.85 as defined by the present 45 invention. 45

~	-
Ц	1
_	J
α	3
⊴	L
⊢	•

	T C	3 6	40	94	03	03	02	100	33	200	20	3.0	3 6	3 6			100	20	180	23	200	20	100	3.0	3 6		2.0	75 04
S	0	5 6	5.0	٠ ک	Ö.	0.0	0.0	C	Ö	Ö	Ö	òò	<u> </u>		òò	Ö	Ö	ò	č	ò	ò	0.00	òò	ò	600		<i>i</i> c	000
<u>م</u>	0.014		0.00	0.018	0.016	0.017	0.019	0.015	0.017	0.015	0.00	0.018	910	0.00	0.00	0.020	0.014	0000	0.016	0.018	0.021	0.024	0000	0.02	20.0	0.03	0.020	0.018
z	800 0	200.0	50.0	0.003	0.005	0.0048	090.0	0.0611	0.0476	0.0624	0.0050	0.0048	0.0051	0.0053	0.0501	0.0582	0.0520	0.0580	0.0566	0.0413	0.107	0.17	0.389	0.006	0.005	0.004	0.0631	0.0185
æ	1	ı	l	ı		0.0043	0.0044	0.0041	0.0039	0.0034	0.0048	0.0031	0.0049	0.0052	0.0050	0.0040	0.0045	0.0046	0.0074	0.0130	0.0051	0.0051				0.0048		0.004
NP	0.98	1	l		0.21	0.22	0.20	0.20	0.21	0.21	0.04	0.080	0.30	0.38	0.069	0.130	0.30	0.11	0.39	0.44	0.20	0.19	. 0.24	0.059	0.190	0.190	0.27	0.51
۱	1	ı		100	0.080	0.094	0.096	0.095	0.110	0.100	0.072	0.080	0.053	0.048	0.153	0.130	0.051	0.062	0.250	0.250	0.098	0.091	0.12	0.03	0.095	0.000	0.071	0.12
Mo	F	ı	1 43		- (1.43	1.48	1.50	1.46	1.46	1.41	1.50	1.48	1.51	1.45	1.46	1.48	1.47	1.46	1.43	1.45	1.50	1.48	1.50	1.49	1.50	1.50	2.36
Ë	11.3	6	-	2 2 2		25.3	25.6	25.1	26.1	29.6	26.1	25.4	24.5	24.8	25.7	25.6	25.4	25.6	26.0	25.1	25.6	25.4	25.4	25.2	25.1	25.3	35.0	48.2
ر ر %)	18.3	18.2	20.4	101		0.0	20.9	20.1	20.8	26.0	21.2	20.3	21.1	22.3	20.8	21.0	20.7	21.5	20.9	20.7	20.7	20.6	20.3	20.5	20.3	20.1	25.0	24.8
/ weight Mn	1.36	0.97	1.03	000	5 5	5 6	40.	1.03	1.02	1.03	1.03	1.05	1.05	1.08	1.07	1.02	1.08	1.03	1.02	1.03	1.02	0.97	1.0 1.0	1.10	1.05	1.03	1.01	0.86
ositions (b) Si	0.49	0.65	0.51	0.51	- 6	0 0	0.50	0.49	2.40	0.52	0.54	0.49	0.53	0.54	0.51	0.52	0.51	0.53	0.52	0.53	0.51	0.53	0.52	0.49	0.50	0.51	0.51	1.35
Chemical Compositions (by weight %) C Si Mn	0.050	0.050	0.092	0.094	0000	0.00	0.097	0.155	0.091	0.101	0.095	0.089	0.090	0.100	0.096	0.099	0.092	0.100	0.097	0.095	0.051	0.052	0.054	0.060	0.054	0.049	0.050	0.120
Chen	٠,	ထ	ပ့	٥.	ц	ם נ	∟ 9	ָפ	Į.	<u>.</u>	٦ ٔ	¥	_	.≥	z	0	۵.	a	œ	က	 -	>	>	3	×	:	¥	œ

Note: "" indicates a comparative alloy.

					GB 2 138 44	6A 6
TA	BLE 2	•				
Ato 5	mic Ratios	S	Creep Ru (750°C 1	pture Property 2kgf/mm²)		
	Nb + C + N	- Nb/Ti	Rupture time(h)	Rupture elongation(%)		5
10 —— *A			90			10
°B °C °D	- 0.51	1.0	60 150 206	61.2 68.3 50.1 50.5		
15 E F °G °H	0.50 0.33 0.24 0.41	1.0 1.0 1.0 1.0	318 325 265 50	45.1 46.8 40.1		15
°1 20 J K	0.33 0.23 0.32	1.0 0.25 0.5	86 205 285	73.5 56.8 58.3		20
L °M °N	0.55 0.58 0.34	3.0 4.0 0.25	291 275 227	65.3 63.1 59.3 62.3		
25 O P Q R	0.33 0.38 0.20 0.78	0.5 3.0 1.1 0.8	312 280 278	67.5 65.2 59.0		25
30- T U	0.91 0.35 0.24	0.8 0.9 1.0 1.0	300 250 521 702	82.0 52.3 96.6 80.2		30
°V W X 35 °Y	0.16 0.23 0.83 0.90	1.0 1.0 1.0 1.0	712 251 285 225	60.3 60.2 78.5 55.2		
A' B' Note:	0.50 0.71	1.9 2.2	285 512	55.9 78.8		35
40	indicat	es a compa	arative alloy.			40
CLAIN 1.		nitic heat-re	esistant alloy	composition consi	sting of (by weight):	, ,5
45 0.02 0.3	-0.1! -2.09	5% C		,	oung of the weight.	45
0.3 18 20.5 50 0.5	-1.5% -25% -50%	% Mn 6 Cr 6 Ni				
0.03 0.05 0.003	-3.09 -0.39 -0.69 -0.01	% Ti % Nb 1% B				50
55 no mor	e than 0.0 e than 0.0	04% P 005% S				55
Nb/Ti=	= 0.5-3 (a	atomic ratio	and		hich alloy composition satisfies the	
which for 3.	A modifica urther con An alloy co	tion of the tains 0.02 imposition	35 (atomic rate austenitic head austenitic hea	at-resistant alloy o	composition according to claim 1, 2, wherein the C content is from	60
0.05% 65 4. A	to 0.15% In alloy co	mposition a	according to	any of the preced	ing claims, wherein the Si content is	65
					•	

5

10

30

from 0.4% to 1.5%.

- 5. An alloy composition according to any of the preceding claims, wherein the Mn content is from 0.8% to 1.3%.
- 6. An alloy composition according to any of the preceding claims, wherein the Ni content is $\frac{1}{2}$ from 24% to 50%.
 - 7. An alloy composition according to any of the preceding claims, wherein the Mo content is from 1.4% to 2.5%.
 - 8. An alloy composition according to any of the preceding claims, wherein the Ti content is from 0.05% to 0.25%.
- 10 9. An alloy composition according to any of the preceding claims, wherein the Nb content is from 0.06% to 0.5%.
 - 10. An alloy composition according to any of the preceding claims, wherein the B content is from 0.003% to 0.01%.
 - 11. An austenitic heat-resistant alloy composition consisting of (by weight):

	· ·		gq	15
0.05	-0.15%	.C		
0.4	-1.5%	Si		
0.8	-1.3%	Mn		
18	-25%	Cr		
24.0	-50%	Ni		20
1.4	-2.5%	Mo		
0.05	-0.25%	Ti	,	
0.06	~0.5%	Nb		
0.003	-0.007%	В		
			·	25
no more t	han 0.005%	S and	*	
0.05-0.3	% N			
	0.4 0.8 18 24.0 1.4 0.05 0.06 0.003 no more ti	0.4 -1.5% 0.8 -1.3% 18 -25% 24.0 -50% 1.4 -2.5% 0.05 -0.25% 0.06 -0.5% 0.003 -0.007% no more than 0.04% P	0.4 -1.5% Si 0.8 -1.3% Mn 18 -25% Cr 24.0 -50% Ni 1.4 -2.5% Mo 0.05 -0.25% Ti 0.06 -0.5% Nb 0.003 -0.007% B no more than 0.04% P no more than 0.005% S and	0.4 -1.5% Si 0.8 -1.3% Mn 18 -25% Cr 24.0 -50% Ni 1.4 -2.5% Mo 0.05 -0.25% Ti 0.06 -0.5% Nb 0.003 -0.007% B no more than 0.04% P no more than 0.005% S and

with the balance being iron and unavoidable impurities, and satisfying the conditions:

30 Nb/Ti = 1-3 (atomic ratio), and

(Nb + Ti)/(C + N) = 0.2-0.85 (atomic ratio).

12. An alloy composition according to any of claims 1 to 10 or according to claim 11 and substantially as hereinbefore described in the Examples.

Printed in the United Kingdom for Her Majesty's Stationery Office, Dd 8818935, 1984, 4235.
Published at The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

THIS PAGE BLANK (USPTO)