Introduction to Set Theory

Basics of Set Theory

Sets

A set is a collection of objects, considered as an object in its own right.

Notation.

- x ∈ A: x is one of the objects in the set A.
 "x is an element of A", "x belong to A", "x is a member of A", or "x is in A."
- $x \notin A$: $x \in A$:

Ways to Denote Sets

We denote a set by

• listing its elements between braces, e.g.,

$$\{2,3,5,7,11\}$$

• using the set-builder notation, e.g.,

 $\{x: x \text{ is prime and } x \leqslant 11\}$

More on Set-Builder Notation

In set-builder notation, we describe a set in terms of membership criteria.

• $\{x: P(x)\}$: "the set of all x such that P(x)"

 $\{x: x \text{ is a natural number and } x \text{ is even}\}$

• $\{x \in A : P(x)\} = \{x : x \in A \text{ and } P(x)\}$: "the set of all x in A such that P(x)"

$$\{x \in \mathbb{N} : x \text{ is even}\}$$

• $\{f(x): P(x)\} = \{y: y = f(x) \text{ for some } x \text{ such that } P(x)\}$: "the set of all f(x) such that P(x)"

$$\{2x:x\in\mathbb{N}\}$$

Notes

① Sets having the same elements are equal, i.e., If for each $x, x \in A$ iff $x \in B$, then A = B.

Consequently,

- The order in which the elements of a set are listed is unimportant.
- Repetitions in the description of a set do not count.
- **2** Equal sets have the same elements, *i.e.*, For all sets A and B, if A = B, then for each $x, x \in A$ iff $x \in B$.
- **3** Equal objects are elements of the same sets, *i.e.*, For all x and y, if x=y, then for each set A, $x\in A$ iff $y\in A$.

Example

S10E01

Which of the sets A, B, C, D, and E below are the same?

$$A = \{3\}, \quad B = \{2, 4\}, \quad C = \{x : x \text{ is prime, } x \text{ is odd, and } x < 5\},$$

$$D = \{x - 1 : x \text{ is prime, } x \text{ is odd, and } x \leqslant 5\}, \quad E = \{x^2 + 2 : x \in \{-1, 1\}\}.$$

How many different sets are named here?

The Number of Elements

Question

How many elements does $\{a,b\}$ have?

The Number of Elements (cont')

S10E02

How many elements does $\{a,b,c\}$ have?

Sets as Elements of other Sets

Since sets are objects as well, they can be elements of other sets.

Example. Study the elements of each of the following sets.

• {1, 2, {3, 4}}

• $\{\{1,2,3,\ldots\}\}$

- $\{\{1\}, \{2\}, \{3\}, \ldots\}$
- $\{\{1, 2, 3, \ldots\}, \{2, 4, 6, \ldots\}, \{3, 6, 9, \ldots\}, \ldots\}$

The Empty Set

The *empty set* is the set that has no elements, usually denoted by \emptyset .

• $\{x: P(x)\} = \emptyset$ if there are no values of x for which P(x) is true. For example,

```
\{x: x \text{ is even and } x \text{ is odd}\} = \emptyset.
```

• The empty set is unique.

```
Proof. Suppose \varnothing' is another set with no elements. Then for each x, x \in \varnothing and x \in \varnothing' are both false, so x \in \varnothing \Leftrightarrow x \in \varnothing'. Hence \varnothing = \varnothing'.
```

• Tip: To prove that a set A is the empty set, show that for each $x, x \notin A$.