POTENZE

$$a \in \mathbb{R}^+$$
, use $a > 0$

$$R = \left\{ \times \in \mathbb{R} \mid \times > 0 \right\}$$
INS. NUMERI REALI STRETTAMENTE
POSITIVI
$$R_0^+ = \left\{ \times \in \mathbb{R} \mid \times \ge 0 \right\}$$

· ESPONENTE NATURALE

$$\alpha' = \alpha$$
 $\alpha'' = 1$

DEFINIZIONE PIÙ RIGOROSA

$$Q^{m} = \begin{cases} 1 & \text{SF } m = 0 \\ 0 & \text{A } \text{SF } m \ge 1 \end{cases}$$

PROPRIETA DELLE POTENZE

$$a^{m} \cdot a^{m} = a^{n+m}$$

$$a^m: a^m = a^{m-m}$$

$$(\alpha^m)^m = \alpha^{m \cdot m}$$

$$(a \cdot l)^m = a^m \cdot l^m$$

$$(a:b)^m = a^m:b^m$$

> DIMOSTRAZIONE

$$a^{m} \cdot a^{m} = a \cdot \dots \cdot a \cdot a \cdot \dots \cdot a =$$

$$m FATTORI \qquad m FATTORI$$

$$= a^{m+m}$$

PERCHÉ SI CONVIENE CHE à=1? Perché si voude che le proprieto delle fotense valgano sempre!!

$$2^3$$
: $2^3 = 2^{3-3} = 2^{\circ}$

Nessure delle 2, perché l'esperieurs ai dice che nessure delle due scelte é con indispensabile...

· ESPONENTE IMERO

$$a^{-m} = \frac{1}{a^m}$$
 $m \in \mathbb{N}$

perché? Sempre per for volere le propriété delle fotense!!

$$a^{m} \cdot a^{-m} = a^{m+(-m)} = a^{o} = 1$$

quindi $\underline{\alpha^{m} \cdot a^{-m}} = 1 \implies a^{-m} = \frac{1}{a^{m}}$

$$a^{\frac{m}{m}} = \sqrt{a^n}$$

$$4^{2} \cdot (3^{\frac{1}{2}})^{2} = 3^{\frac{1}{2} \cdot 2} = 3$$

qual è il numers che elevats al quadrets mi do 3? RISBSM: V3

$$=>$$
 $3^{\frac{1}{2}} = \sqrt{3}$

ESEMP10

$$3^{-\frac{1}{4}} = \frac{1}{3^{\frac{1}{4}}} = \frac{1}{\sqrt{3}}$$

POTENZE A ESPONENTE IRRAZIONALE

ESEMPIO. Come done un significats a

TT = 3,141592654...

$$3 < \pi < 4$$
 $2^{3} < 2^{\pi} < 2^{4}$
 $3,1 < \pi < 3,2$
 $2^{3,1} < 2^{\pi} < 2^{3,2}$
 $2^{3,1} < 2^{\pi} < 2^{3,2}$
 $2^{3,1} < 2^{\pi} < 2^{3,2}$
 $2^{3,1} < 2^{3,2}$
 $2^{3,1} < 2^{3,2}$
 $2^{3,1} < 2^{3,2}$
 $2^{3,1} < 2^{3,1} < 2^{3,1}$
 $2^{3,1} < 2^{3,1} < 2^{3,1}$
 $2^{3,1} < 2^{3,1} < 2^{3,1}$
 $2^{3,1} < 2^{3,1} < 2^{3,1}$
 $2^{3,1} < 2^{3,1} < 2^{3,1}$
 $2^{3,1} < 2^{3,1} < 2^{3,1}$
 $2^{3,1} < 2^{3,1} < 2^{3,1}$
 $2^{3,1} < 2^{3,1} < 2^{3,1}$
 $2^{3,1} < 2^{3,1} < 2^{3,1}$
 $2^{3,1} < 2^{3,1} < 2^{3,1}$
 $2^{3,1} < 2^{3,1} < 2^{3,1}$
 $2^{3,1} < 2^{3,1} < 2^{3,1}$
 $2^{3,1} < 2^{3,1} < 2^{3,1}$
 $2^{3,1} < 2^{3,1} < 2^{3,1}$
 $2^{3,1} < 2^{3,1} < 2^{3,1}$
 $2^{3,1} < 2^{3,1} < 2^{3,1}$
 $2^{3,1} < 2^{3,1} < 2^{3,1}$
 $2^{3,1} < 2^{3,1} < 2^{3,1}$

$$2^{\pi} = 8,82...$$

DA CAL COLOMBICE

 $2^{\pi} = 8,82497...$

Si pur dimestrare che quets procediments (idealmente portets avanti all'infinits) determine un UNICO NUMERO BEN DETERMINATO!

Ouesto numes lo definisco 2^{TT} Si dimostre anche che questo definisione mantiene valide TUTTE le proprieto delle potense. $2^{TT} \cdot 2^{V\overline{Z}} = 2^{TT+V\overline{Z}}$ e.c...

FUNZIONE ESPONENZALE

La funcione esponentiale di base a (σ in lase a), dove $a \in \mathbb{R}^+$, $\bar{\epsilon}$ la funcione

definita de

$$exp_a(x) = a^x$$

X E DOMINIO	$ a^{x} $	$ \underbrace{ESEMPIO}_{Q=2} \underbrace{pxp_2(x)=2}_{Q=2}$
2	a ²	$2 \mapsto 2^2$
3	a ³	3 m 23
:	;	$4 \mapsto 2^{+}$

Cosa nuclede se consider $y = \left(\frac{1}{z}\right)^{x}$

$$\left(\frac{1}{z}\right)^{x} = \left(2^{-1}\right)^{x} = 2^{-x}$$

Core nuccede nel passegis de 2 ° a 2 -× ?

 $y = \left(\frac{1}{2}\right)^{x}$ $y = \left(\frac{1}{2}\right)^{x}$ $y = \left(\frac{1}{2}\right)^{x}$ $A = \left(\frac{1}{2}\right)^{x}$ $A = \left(\frac{1}{2}\right)^{x}$

