Maß 2, Übung 11

January 8, 2020

1 Aufgabe 1

Lemma 1. Wenn $\forall n \in \mathbb{N} : f_n : \mathbb{R} \to \mathbb{R}$ stetig ist, $f : \mathbb{R} \to \mathbb{R}$ stetig ist, $\forall n \in \mathbb{N} : P_n$ sowie P Wahrscheinlichkeitsmaße auf $(\mathbb{R}, \mathfrak{B})$ sind und $f_n \to f$ gleichmäßig und $P_n \to P$ schwach, dann gilt

$$\lim_{n \to \infty} \int f_n dP_n = \int f dP.$$

Beweis. Ausständig.

2 Aufgabe 2

Definition 1. Eine Folge von Wahrscheinlichkeitsmaßen P_n auf dem Messraum (Ω, \mathfrak{S}) heißt stark konvergent gegen P, wenn für alle $A \in \mathfrak{S}$

$$\lim_{n \to \infty} P_n(A) = P(A) \tag{1}$$

gilt.

Lemma 2. Wenn $\forall n \in \mathbb{N} : P_n$ sowie P Wahrscheinlichkeitsmaße auf dem Messraum (Ω, \mathfrak{S}) sind und $P_n \to P$ stark, dann gilt für jede beschränkte und messbare Funktion $f: (\Omega, \mathfrak{S}) \to (\mathbb{R}, \mathfrak{B})$

$$\lim_{n \to \infty} \int f dP_n = \int f dP.$$

Beweis. Wir wählen eine beliebige beschränkte und messbare Funktion $f:(\Omega,\mathfrak{S})\to(\mathbb{R},\mathfrak{B})$ und ein beliebiges $\epsilon>0$. Zuerst spalten wir die Funktion in einen Positivteil und einen Negativteil auf.

$$\left| \int f dP_n - \int f dP \right| \le \left| \int f^+ dP_n - \int f^+ dP \right| + \left| \int f^- dP_n - \int f^- dP \right|$$

Gemäß [?, Satz 7.30] gibt es eine monoton steigende Folge von nichtnegativen Treppenfunktionen $(t_k)_{k\in\mathbb{N}}$ so, dass $t_k\to f^+$ gleichmäßig, wobei $t_k=\sum_{i=1}^{l_k}x_i\mathbf{1}_{[t_k=x_i]}$ ist. Jetzt verwenden wir abermals die Dreiecksungleichung und erhalten

$$\left| \int f^{+} dP_{n} - \int f^{+} dP \right|$$

$$\leq \left| \int (f^{+} - t_{k}) dP_{n} \right| + \left| \int (f^{+} - t_{k}) dP \right| + \left| \int t_{k} dP_{n} - \int t_{k} dP \right|$$

Wegen der gleichmäßigen Konvergenz $t_k \to f^+$ können wir ein $K \in \mathbb{N}$ finden so, dass für alle $k \geq K$:

$$\forall n \in \mathbb{N} : \left| \int (f^+ - t_k) dP_n \right| < \frac{\epsilon}{6} \wedge \left| \int (f^+ - t_k) dP \right| < \frac{\epsilon}{6}$$

Jetzt können wir $P_n \to P$ stark nützen, was es uns erlaubt ein $N^+ \in \mathbb{N}$ zu finden so, dass für alle $n \geq N^+$:

$$\left| \int t_k dP_n - \int t_k dP \right| = \left| \sum_{i=1}^{l_k} x_i P_n(t_k = x_i) - \sum_{i=1}^{l_k} x_i P(t_k = x_i) \right|$$
$$= \left| \sum_{i=1}^{l_k} x_i \left(P_n(t_k = x_i) - P(t_k = x_i) \right) \right| < \frac{\epsilon}{6}$$

gilt. Da man das Integral des Negativteils analog abschätzen kann gilt also insgesamt, dass $\exists N \in \mathbb{N}: \forall n \geq N:$

$$\left| \int f \mathrm{d}P_n - \int f \mathrm{d}P \right| < \epsilon$$

und damit ist die Behauptung bewiesen.

3 Aufgabe 3

Lemma 3. Sei $(\mathbb{R}, \mathfrak{B}, \mu)$ ein sigmaendlicher Maßraum und und seien $P_n, n \in \mathbb{N}$ und P bezüglich μ absolutstetige Wahrscheinlichkeitsmaße auf $(\mathbb{R}, \mathfrak{B})$ mit den Dichten f_n und f und gelte weiters $f_n \to f$ punktweise. Dann gelten folgende Aussagen:

- (a) $P_n \to P$ schwach
- (b) $P_n \to P \ stark$

Beweis. Der Satz von Radon Nikodym [?, Satz 11.19] garantiert die Existenz der Dichten und deren Nichtnegativität sowie die Tatsache, dass μ -fast überall $\forall n \in \mathbb{N} : f_n$ und f reellwertig sind.

4 Augabe 4

Lemma 4. Wenn $(X_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsvariablen auf dem Maßraum $(\Omega,\mathfrak{S},\mathbb{P})$ mit $\forall n\in\mathbb{N}:X_n:\Omega\to\mathbb{Z}$ ist dann konvergiert X_n in Verteilung genau dann, wenn für alle $k\in\mathbb{Z}$ der Grenzwert $p_k:=\lim_{n\to\infty}\mathbb{P}(X_n=k)$ existiert und $\sum_{k\in\mathbb{Z}}p_k=1$ gilt.

Beweis. Wir zeigen zuerst die Hinrichtung, also \Rightarrow .

5 Aufgabe 6

Lemma 5. Es gelten folgende Aussagen:

(a) Seien (X_n) und (Y_n) Folgen von Zufallsvariablen sowie X eine Zufallsvariable auf dem Maßraum $(\Omega, \mathfrak{S}, P)$. Es gelte $X_n \to X$ in Verteilung und $Y_n \to 0$ in Wahrscheinlichkeit. Dann gilt $X_n + Y_n \to X$ in Verteilung.

- (b) Konvergiert eine Folge X_n auf dem Maßraum $(\Omega, \mathfrak{S}, P)$ in Wahrscheinlichkeit gegen X, so gilt auch $X_n \to X$ in Verteilung.
- (c) Eine Folge X_n auf dem Maßraum $(\Omega, \mathfrak{S}, P)$ konvergiert in Verteilung gegen 0 genau dann, wenn X_n in Verteilung konvergiert.

Aufgabe 7 6

Lemma 6. Die Levy-Prokhorov-Metrik ist eine Metrik auf der Menge M:= $\{F: \mathbb{R} \to \mathbb{R} \mid F \text{ ist eine Verteilungsfunktion}\}.$

$$d(F,G) := \inf\{\epsilon > 0 \mid \forall x \in \mathbb{R} : F(x-\epsilon) - \epsilon \le G(x) \le F(x+\epsilon) + \epsilon\}.$$

Beweis. Es sind drei Eigenschaften nachzuweisen.

(M1)
$$d(F,G) = 0 \Leftrightarrow F = G$$
.

Aus d(F,G) = 0 folgt definitionsgemäß $F(x-\epsilon) - \epsilon \le G(x) \le F(x+\epsilon) + \epsilon$ für beliebig kleine $\epsilon > 0$. Da F monoton nichtfallend ist, existieren der links- und rechtsseitige Grenzwert bei x und mit $\epsilon \to 0$ erhält man $F(x-) \leq G(x) \leq F(x+)$. F und G stimmen also an allen Stetigkeitspunkten von F überein. F und G haben als Verteilungsfunktionen nur abzählbar viele Unstetigkeitsstellen. Für jedes $x \in \mathbb{R}$ gibt es eine Folge $x_k \searrow x$, die nur aus Stetigkeitsstellen von F und G besteht. Daher gilt $F(x) = \lim_{k} F(x_k) = \lim_{k} G(x_k) = G(x).$ Die andere Richtung ist klar.

(M2)
$$d(F,G) = d(G,F)$$
.

$$\begin{split} E_{FG} &:= \{\epsilon > 0 \mid \forall x \in \mathbb{R} : F(x - \epsilon) - \epsilon \leq G(x) \leq F(x + \epsilon) + \epsilon\}, \\ E_{GF} &:= \{\epsilon > 0 \mid \forall x \in \mathbb{R} : G(x - \epsilon) - \epsilon \leq F(x) \leq G(x + \epsilon) + \epsilon\}. \end{split}$$

Für alle $x \in \mathbb{R}$ gilt $G(x - \epsilon) - \epsilon \leq F(x) \Leftrightarrow G(x) \leq F(x + \epsilon) + \epsilon$; das erhält man sofort durch beidseitige Addition resp. Subtraktion von ϵ , der Rechtsstetigkeit von G und der Monotonie von F: $G(x) = G(x - \epsilon) \le$ $F(x) + \epsilon \le F(x + \epsilon) + \epsilon.$

Analog zeigt man $F(x-\epsilon) - \epsilon \leq G(x) \Leftrightarrow F(x) \leq G(x+\epsilon) + \epsilon$. Daher gilt $E_{FG} = E_{GF}$ und folglich

$$d(F, G) = \inf(E_{FG}) = \inf(E_{GF}) = d(G, F).$$

(M3)
$$d(F, H) + d(H, G) \ge d(F, G)$$
.

Sei $d(F, H) \le \epsilon_1, d(H, G) \le \epsilon_2$. Dann gilt

$$F(x - \epsilon_1 - \epsilon_2) - \epsilon_1 - \epsilon_2 \le H(x - \epsilon_2) + \epsilon_2 \le G(x) \le H(x + \epsilon_2) + \epsilon_2 \le F(x + \epsilon_1 + \epsilon_2) + \epsilon_1 + \epsilon_2$$
, also $\epsilon_1 + \epsilon_2 \in E_{FG}$ und somit $\epsilon_1 + \epsilon_2 \ge d(F, G)$.

Nun gilt $d(F,H) + d(H,G) = \inf_{\epsilon_1 \in E_{FH}} \epsilon_1 + \inf_{\epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_1 + \inf_{\epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_1 + \inf_{\epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_1 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH}, \ \epsilon_2 \in E_{HF}} \epsilon_2 = \inf_{\epsilon_1 \in E_{FH$ ϵ_2 . Infima erhalten Ungleichungen und wir die gewünschte Aussage.

References