# Computació Numèrica

\_\_\_\_\_\_

=

# Autoevaluació

#### **Table of Contents**

| Entrega AA3                                       | Marta Granero I Martí |  |
|---------------------------------------------------|-----------------------|--|
| EXERCICI 1 - Resolució de sistemas d'equacions no |                       |  |
| EXERCICI 2 - Derivació i ajust de corbes          |                       |  |
| EXERCICI 3 - Interpolació                         |                       |  |
| EXERCICI 4 - Integració numèrica                  |                       |  |

### Entrega AA3 I Martí

**Marta Granero** 

### EXERCICI 1 - Resolució de sistemas d'equacions no lineals

El sistema d'equacions no lineals

$$z_1^2 - 10z_1 + z_2^2 + 8 = 0,$$
  

$$z_1 z_2^2 + z_1 - 10z_2 + 8 = 0,$$
(

té dues arrels, una és  $(-1,1)^t$  i l'altre és a prop de  $(2,3)^t$ .

Objectiu: Determinar un valor aproximat de la solució prop de (2,3) amb una exactitud tal que

$$||\mathbf{z}^{(k+1)} - \mathbf{z}^{(k)}|| \le 10^{-6}$$
 i  $||F(\mathbf{z}^{(k+1)})|| < 10^{-6}$  si  $\mathbf{z} = (z_1, z_2)^t$ .

1a) Aproximeu totes les solucions del sistema (A.1) gràficament.

```
%Procedim a la resolució gràfica F1 = @(x,y) \ x^2-10*x + y^2 + 8; \ %z1 = x, \ z2 = y F2 = @(x,y) \ x*y^2 + x - 10*y + 8; fimplicit(F1,[-11 \ 11 \ -11 \ 11],':r','LineWidth',2)
```

Warning: Function behaves unexpectedly on array inputs. To improve performance, properly vectorize your function to return an output with the same size and shape as the input arguments.

```
hold on fimplicit(F2,[-11 11 -11 11],'--g','LineWidth',2)
```

Warning: Function behaves unexpectedly on array inputs. To improve performance, properly vectorize your function to return an output with the same size and shape as the input arguments.

```
grid minor
hold off
```



```
%Solució bona es fa servir en apartats posteriors per calcular el nombre de %xifres signficatives x0=[2;3]; [x, \sim] = fsolve(@myfun,x0);
```

Equation solved.

fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient.

<stopping criteria details>

```
myfun(x);
valorBo = x;
```

1b) Fent ús del mètode de **Newton** i prenent  $x_0 = (2,3)$ . Presenteu les iteracions en una taula.

```
%Mètode de Newton prenent 6 iteracions
%taula
format longG
x0 =[2;3];
F = @(x,y)[x^2-10*x + y^2 + 8; x*y^2 + x - 10*y + 8];
F(x0(1),x0(2));
JF = @(x,y)[2*x-10, 2*y; 1+y^2, 2*x*y-10];

for k=1:200
    y = linsolve(JF(x0(1),x0(2)),(-F(x0(1),x0(2))));
    x0 = x0+y;

    res(k).y = y;
    res(k).x0 = x0;
    res(k).decimalsCorrectes = min(abs(valorBo'-x0'));
end

res %taula on es mostren tambe els decimals correctes
```

 $res = 1 \times 200 \text{ struct}$ 

| Fields | у           | x0       | decimalsCor |
|--------|-------------|----------|-------------|
| 1      | [0.19444    | [2.19444 | 0.001005    |
| 2      | [-0.0009    | [2.19344 | 1.000158856 |
| 3      | [-1.0001588 | [2.19343 | 5.838973831 |
| 4      | [-1.2185463 | [2.19343 | 1.219229162 |
| 5      | [-1.4544086 | [2.19343 | 1.219229162 |
| 6      | [-2.7030303 | [2.19343 | 1.219233602 |
| 7      | [4.15743901 | [2.19343 | 1.219229162 |
| 8      | [-1.4544086 | [2.19343 | 1.219229162 |
| 9      | [-2.7030303 | [2.19343 | 1.219233602 |
| 10     | [4.15743901 | [2.19343 | 1.219229162 |
| 11     | [-1.4544086 | [2.19343 | 1.219229162 |
| 12     | [-2.7030303 | [2.19343 | 1.219233602 |
| 13     | [4.15743901 | [2.19343 | 1.219229162 |
| 14     | [-1.4544086 | [2.19343 | 1.219229162 |

```
tolF = norm(F(x0(1),x0(2)),'inf');
tolX = norm(y,'inf');
```

```
disp(['Solucio' = ',num2str(x0')])
 Solució = 2.1934
                      3.0205
 disp(['tolF = ',num2str(tolF)])
 tolF = 3.5527e-15
 disp(['tolX = ',num2str(tolX)])
 tolX = 4.5297e-16
 disp(['Iteracions = ',num2str(k)])
 Iteracions = 200
 %Obtenim amb 200 iteracions 9 decimals correctes i és un mètode convergent
1c) Fent ús del mètode de Newton modificat i prenent x_0 = (2,3). Presenteu les iteracions en una taula.
 valor = zeros(200,2);
 for k = 1:200
      valor(k,:) = newtonModificat(F,JF,x0,k,tolF,tolX,5); %30 = #iteracions fixes
      if k > 1 && valor(k,1) == valor(k-1,1) && valor(k,2) == valor(k-1,2) %condició par
          break;
      end
 end
 Solució = 2.1934
                      3.0205
 tolF = 5.0243e-15
 tolX = 3.6898e-16
 Iteracions = 1
 Solució = 2.1934
                      3.0205
 tolF = 3.5527e-15
 tolX = 4.6213e-16
 Iteracions = 2
 Solució = 2.1934
                      3.0205
 tolF = 3.5527e-15
 tolX = 4.7574e-16
 Iteracions = 3
 Solució = 2.1934
                      3.0205
 tolF = 5.0243e-15
 tolX = 3.6898e-16
 Iteracions = 4
 Solució = 2.1934
                      3.0205
 tolF = 3.5527e-15
 tolX = 4.6213e-16
 Iteracions = 5
 Solució = 2.1934
                      3.0205
 tolF = 3.5527e-15
 tolX = 4.7574e-16
 Iteracions = 6
 Solució = 2.1934
                      3.0205
 tolF = 5.0243e-15
 tolX = 3.6898e-16
```

| <pre>Iteracions = 7</pre>              |        |
|----------------------------------------|--------|
| Solució = 2.1934<br>tolF = 3.5527e-15  | 3.0205 |
| tolX = 4.6213e-16                      |        |
| Iteracions = 8                         |        |
| Solució = 2.1934                       | 3.0205 |
| tolF = 3.5527e-15                      |        |
| tolX = 4.7574e-16                      |        |
| Iteracions = 9                         | 2 0205 |
| Solució = 2.1934<br>tolF = 5.0243e-15  | 3.0205 |
| tolX = 3.6898e-16                      |        |
| Iteracions = 10                        |        |
| Solució = 2.1934                       | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16 |        |
| tolX = 4.6213e-16                      |        |
| Iteracions = 11                        |        |
| Solució = 2.1934                       | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.7574e-16 |        |
| Iteracions = $12$                      |        |
| Solució = 2.1934                       | 3.0205 |
| tolF = 5.0243e-15                      |        |
| tolX = 3.6898e-16                      |        |
| Iteracions = 13                        |        |
| Solució = 2.1934                       | 3.0205 |
| tolF = 3.5527e-15                      |        |
| tolX = 4.6213e-16                      |        |
| Iteracions = 14                        | 3.0205 |
| Solució = 2.1934<br>tolF = 3.5527e-15  | 3.0203 |
| tolX = 4.7574e-16                      |        |
| Iteracions = 15                        |        |
| Solució = 2.1934                       | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16 |        |
|                                        |        |
| Iteracions = 16<br>Solució = 2.1934    | 3.0205 |
| tolF = 3.5527e-15                      | 3.0203 |
| tolX = 4.6213e-16                      |        |
| Iteracions = 17                        |        |
| Solució = 2.1934                       | 3.0205 |
| tolF = 3.5527e-15                      |        |
| tolX = 4.7574e-16                      |        |
| Iteracions = 18<br>Solució = 2.1934    | 2 0205 |
| tolF = 5.0243e-15                      | 3.0205 |
| tolX = 3.6898e-16                      |        |
| Iteracions = 19                        |        |
| Solució = 2.1934                       | 3.0205 |
| tolF = 3.5527e-15                      |        |
| tolX = 4.6213e-16                      |        |
| Iteracions = 20                        |        |
| Solució = 2.1934                       | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.7574e-16 |        |
| Iteracions = $21$                      |        |
| Solució = 2.1934                       | 3.0205 |
| tolF = 5.0243e-15                      |        |
| tolX = 3.6898e-16                      |        |
| Iteracions = 22                        |        |
| Solució = 2.1934                       | 3.0205 |
| tolF = 3.5527e-15                      |        |
| tolX = 4.6213e-16                      |        |

| Iteracions = 23<br>Solució = 2.1934         | 3.0205 |
|---------------------------------------------|--------|
| tolF = 3.5527e-15<br>tolX = 4.7574e-16      |        |
| Iteracions = 24<br>Solució = 2.1934         | 3.0205 |
| tolF = 5.0243e-15                           | 3.0203 |
| tolX = 3.6898e-16<br>Iteracions = 25        |        |
| Solució = 2.1934                            | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16      |        |
| Iteracions = 26                             |        |
| Solució = 2.1934<br>tolF = 3.5527e-15       | 3.0205 |
| tolX = 4.7574e-16                           |        |
| Iteracions = 27<br>Solució = 2.1934         | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16      | 3.0203 |
| tolX = 3.6898e-16<br>Iteracions = 28        |        |
| Solució = 2.1934                            | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16      |        |
| Iteracions = 29                             |        |
| Solució = 2.1934                            | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.7574e-16      |        |
| <pre>Iteracions = 30 Solució = 2.1934</pre> | 2 0205 |
| tolF = 5.0243e-15                           | 3.0205 |
| tolX = 3.6898e-16                           |        |
| Iteracions = 31<br>Solució = 2.1934         | 3.0205 |
| Solució = 2.1934<br>tolF = 3.5527e-15       |        |
| tolX = 4.6213e-16<br>Iteracions = 32        |        |
| Solució = 2.1934                            | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.7574e-16      |        |
| Iteracions = 33                             | 2 0205 |
| Solució = 2.1934<br>tolF = 5.0243e-15       | 3.0205 |
| tolX = 3.6898e-16                           |        |
| Iteracions = 34<br>Solució = 2.1934         | 3.0205 |
| tolF = 3.5527e-15                           |        |
| tolX = 4.6213e-16<br>Iteracions = 35        |        |
| Solució = 2.1934<br>tolF = 3.5527e-15       | 3.0205 |
| tolX = 4.7574e-16                           |        |
| Iteracions = 36                             | 2 0205 |
| Solució = 2.1934<br>tolF = 5.0243e-15       | 3.0205 |
| tolX = 3.6898e-16                           |        |
| Iteracions = 37<br>Solució = 2.1934         | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16      |        |
| 101X = 4.6213e-16 $1 = 38$                  |        |
| Solució = 2.1934                            | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.7574e-16      |        |
|                                             |        |

| Iteracions = 39<br>Solució = 2.1934<br>tolF = 5.0243e-15<br>tolX = 3.6898e-16<br>Iteracions = 40  | 3.0205           |
|---------------------------------------------------------------------------------------------------|------------------|
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.6213e-16<br>Iteracions = 41                     | 3.0205           |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.7574e-16<br>Iteracions = 42                     | 3.0205           |
| Solució = 2.1934<br>tolF = 5.0243e-15<br>tolX = 3.6898e-16<br>Iteracions = 43                     | 3.0205           |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.6213e-16<br>Iteracions = 44                     | 3.0205           |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.7574e-16<br>Iteracions = 45                     | 3.0205           |
| Solució = 2.1934<br>tolF = 5.0243e-15<br>tolX = 3.6898e-16<br>Iteracions = 46                     | 3.0205           |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.6213e-16<br>Iteració = 47                       | 3.0205           |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.7574e-16<br>Iteracions = 48                     | 3.0205           |
| Solució = 2.1934<br>tolF = 5.0243e-15<br>tolX = 3.6898e-16<br>Iteracions = 49                     | 3.0205           |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.6213e-16<br>Iteracions = 50<br>Solució = 2.1934 | 3.0205<br>3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.7574e-16<br>Iteracions = 51<br>Solució = 2.1934                     | 3.0205           |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16<br>Iteracions = 52<br>Solució = 2.1934                     | 3.0205           |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16<br>Iteracions = 53<br>Solució = 2.1934                     | 3.0205           |
| tolF = 3.5527e-15<br>tolX = 4.7574e-16<br>Iteracions = 54<br>Solució = 2.1934                     | 3.0205           |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16                                                            | 3.0203           |

| Iteracions = 55<br>Solució = 2.1934                        | 3.0205 |
|------------------------------------------------------------|--------|
| tolF = 3.5527e-15<br>tolX = 4.6213e-16<br>Iteracions = 56  |        |
| Iteracions = 56<br>Solució = 2.1934<br>tolF = 3.5527e-15   | 3.0205 |
| tolX = 4.7574e-16<br>Iteracions = 57<br>Solució = 2.1934   | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16                     | 3.0203 |
| Iteracions = 58<br>Solució = 2.1934                        | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16<br>Iteracions = 59  |        |
| Solució = 2.1934<br>tolF = 3.5527e-15                      | 3.0205 |
| tolX = 4.7574e-16<br>Iteracions = 60<br>Solució = 2.1934   | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16                     |        |
| Iteracions = 61<br>Solució = 2.1934<br>tolF = 3.5527e-15   | 3.0205 |
| tolX = 4.6213e-16<br>Iteracions = 62                       | 2 0205 |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.7574e-16 | 3.0205 |
| Iteracions = 63<br>Solució = 2.1934                        | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16<br>Iteracions = 64  |        |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.6213e-16 | 3.0205 |
| Iteracions = 65<br>Solució = 2.1934                        | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.7574e-16<br>Iteracions = 66  |        |
| Solució = 2.1934<br>tolF = 5.0243e-15                      | 3.0205 |
| tolX = 3.6898e-16<br>Iteracions = 67<br>Solució = 2.1934   | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16                     | 310203 |
| Iteracions = 68<br>Solució = 2.1934<br>tolF = 3.5527e-15   | 3.0205 |
| tolX = 4.7574e-16<br>Iteracions = 69                       |        |
| Solució = 2.1934<br>tolF = 5.0243e-15<br>tolX = 3.6898e-16 | 3.0205 |
| Iteracions = 70<br>Solució = 2.1934                        | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16                     |        |

| Iteracions = 71<br>Solució = 2.1934                        | 3.0205 |
|------------------------------------------------------------|--------|
| tolF = 3.5527e-15<br>tolX = 4.7574e-16                     |        |
| Iteracions = 72<br>Solució = 2.1934                        | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16<br>Iteracions = 73  |        |
| Solució = 2.1934<br>tolF = 3.5527e-15                      | 3.0205 |
| tolX = 4.6213e-16<br>Iteracions = 74                       |        |
| Solució = 2.1934<br>tolF = 3.5527e-15                      | 3.0205 |
| tolX = 4.7574e-16<br>Iteracions = 75                       |        |
| Solució = 2.1934                                           | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16<br>Iteracions = 76  |        |
| Solució = 2.1934<br>tolF = 3.5527e-15                      | 3.0205 |
| tolX = 4.6213e-16<br>Iteracions = 77                       |        |
| Solució = 2.1934<br>tolF = 3.5527e-15                      | 3.0205 |
| tolX = 4.7574e-16<br>Iteracions = 78<br>Solució = 2.1934   | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16                     | 3.0203 |
| Iteracions = 79                                            | 3.0205 |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.6213e-16 | 313233 |
| Iteracions = 80<br>Solució = 2.1934                        | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.7574e-16                     |        |
| Iteracions = 81<br>Solució = 2.1934                        | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16<br>Iteracions = 82  |        |
| Solució = 2.1934<br>tolF = 3.5527e-15                      | 3.0205 |
| tolX = 4.6213e-16<br>Iteracions = 83                       |        |
| Solució = 2.1934<br>tolF = 3.5527e-15                      | 3.0205 |
| tolX = 4.7574e-16<br>Iteracions = 84                       |        |
| Solució = 2.1934<br>tolF = 5.0243e-15                      | 3.0205 |
| tolX = 3.6898e-16<br>Iteracions = 85                       |        |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.6213e-16 | 3.0205 |
| tolX = 4.6213e-16<br>Iteracions = 86<br>Solució = 2.1934   | ם מסמר |
| tolF = 3.5527e-15<br>tolX = 4.7574e-16                     | 3.0205 |
| 2027 = 11/3/40 10                                          |        |

| Iteracions = 87                             | 2 0205 |
|---------------------------------------------|--------|
| Solució = 2.1934<br>tolF = 5.0243e-15       | 3.0205 |
| tolX = 3.6898e-16                           |        |
| Iteracions = 88                             |        |
| Solució = 2.1934                            | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16      |        |
| Iteracions = $89$                           |        |
| Solució = 2.1934                            | 3.0205 |
| tolF = 3.5527e-15                           |        |
| tolX = 4.7574e-16                           |        |
| <pre>Iteracions = 90 Solució = 2.1934</pre> | 3.0205 |
| tolF = 5.0243e-15                           | 3.0203 |
| tolX = 3.6898e-16                           |        |
| Iteracions = 91                             |        |
| Solució = 2.1934                            | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16      |        |
| 1 = 4.0213e = 10 $1 = 92$                   |        |
| Solució = 2.1934                            | 3.0205 |
| Solució = 2.1934<br>tolF = 3.5527e-15       |        |
| tolX = 4.7574e-16                           |        |
| Iteracions = 93                             | 2 0205 |
| Solució = 2.1934<br>tolf = 5.0243e=15       | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16      |        |
| Iteracions = 94                             |        |
| Solució = 2.1934                            | 3.0205 |
| tolF = 3.5527e-15                           |        |
| tolX = 4.6213e-16<br>Iteracions = 95        |        |
| Solució = 2.1934                            | 3.0205 |
| tolF = 3.5527e-15                           | 3.0203 |
| tolX = 4.7574e-16                           |        |
| Iteracions = 96                             | 2 2225 |
| Solució = 2.1934<br>tolF = 5.0243e-15       | 3.0205 |
| tolX = 3.6898e-16                           |        |
| Iteracions = 97                             |        |
| Solució = 2.1934                            | 3.0205 |
| tolF = 3.5527e-15                           |        |
| tolX = 4.6213e-16<br>Iteracions = 98        |        |
| Solució = 2.1934                            | 3.0205 |
| tolF = 3.5527e-15                           | 3.0203 |
| tolX = 4.7574e-16                           |        |
| Iteracions = 99                             | 2 2225 |
| Solució = 2.1934                            | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16      |        |
| Iteracions = 100                            |        |
| Solució = 2.1934                            | 3.0205 |
| tolF = 3.5527e-15                           |        |
| tolX = 4.6213e-16<br>Iteracions = 101       |        |
| Solució = 2.1934                            | 3.0205 |
| tolF = 3.5527e-15                           | 3.0203 |
| tolX = 4.7574e-16                           |        |
| Iteracions = 102                            | 2 222= |
| Solució = 2.1934<br>tolF = 5.0243e-15       | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16      |        |
| 2007 - 3100300 10                           |        |

| Iteracions = 103<br>Solució = 2.1934<br>tolF = 3.5527e-15                      | 3.0205 |
|--------------------------------------------------------------------------------|--------|
| tolX = 4.6213e-16<br>Iteracions = 104<br>Solució = 2.1934                      | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.7574e-16<br>Iteracions = 105<br>Solució = 2.1934 | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16<br>Iteracions = 106                     | 3.0203 |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.6213e-16                     | 3.0205 |
| Iteracions = 107<br>Solució = 2.1934<br>tolF = 3.5527e-15                      | 3.0205 |
| tolX = 4.7574e-16<br>Iteracions = 108<br>Solució = 2.1934                      | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16<br>Iteracions = 109<br>Solució = 2.1934 | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16<br>Iteracions = 110                     | 3.0203 |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.7574e-16                     | 3.0205 |
| Iteracions = 111<br>Solució = 2.1934<br>tolF = 5.0243e-15<br>tolX = 3.6898e-16 | 3.0205 |
| Iteracions = 112<br>Solució = 2.1934<br>tolF = 3.5527e-15                      | 3.0205 |
| tolX = 4.6213e-16<br>Iteracions = 113<br>Solució = 2.1934                      | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.7574e-16<br>Iteracions = 114<br>Solució = 2.1934 | 2 0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16<br>Iteracions = 115                     | 3.0205 |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.6213e-16                     | 3.0205 |
| Iteracions = 116<br>Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.7574e-16 | 3.0205 |
| Iteracions = 117<br>Solució = 2.1934<br>tolF = 5.0243e-15                      | 3.0205 |
| tolX = 3.6898e-16<br>Iteracions = 118<br>Solució = 2.1934                      | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16                                         |        |

| Iteracions = 119<br>Solució = 2.1934                       | 3.0205 |
|------------------------------------------------------------|--------|
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.7574e-16 |        |
| Iteracions = 120                                           | 3.0205 |
| Solució = 2.1934<br>tolF = 5.0243e-15<br>tolX = 3.6898e-16 | 3.0203 |
| tolX = 3.6898e-16<br>Iteracions = 121                      |        |
| Solució = 2.1934                                           | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16                     |        |
| Iteracions = 122                                           |        |
| Solució = 2.1934<br>tolF = 3.5527e-15                      | 3.0205 |
| tolX = 4.7574e-16                                          |        |
| Iteracions = 123<br>Solució = 2.1934                       | 3.0205 |
| tolF = 5.0243e-15                                          |        |
| tolX = 3.6898e-16<br>Iteracions = 124                      |        |
| Solució = 2.1934                                           | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16                     |        |
| Iteracions = 125                                           | 2 0205 |
| Solució = 2.1934<br>tolF = 3.5527e-15                      | 3.0205 |
| tolX = 4.7574e-16                                          |        |
| Iteracions = 126<br>Solució = 2.1934                       | 3.0205 |
| tolF = 5.0243e-15                                          |        |
| tolX = 3.6898e-16<br>Iteracions = 127                      |        |
| Solució = 2.1934                                           | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16                     |        |
| Iteracions = 128<br>Solució = 2.1934                       | 2 0205 |
| tolF = 3.5527e-15                                          | 3.0205 |
| tolX = 4.7574e-16                                          |        |
| Iteracions = 129<br>Solució = 2.1934                       | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16                     |        |
| Iteracions = 130                                           |        |
| Solució = 2.1934<br>tolF = 3.5527e-15                      | 3.0205 |
| tolX = 4.6213e-16                                          |        |
| Iteracions = 131<br>Solució = 2.1934                       | 3.0205 |
| tolF = 3.5527e-15                                          | 3.0203 |
| tolX = 4.7574e-16<br>Iteracions = 132                      |        |
| Solució = 2.1934                                           | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16                     |        |
| Iteracions = 133                                           |        |
| Solució = 2.1934<br>tolF = 3.5527e-15                      | 3.0205 |
| tolX = 4.6213e-16                                          |        |
| Iteracions = 134<br>Solució = 2.1934                       | 3.0205 |
| tolF = 3.5527e-15                                          | 5.0203 |
| tolX = 4.7574e-16                                          |        |

| Iteracions = 135<br>Solució = 2.1934                       | 3.0205 |
|------------------------------------------------------------|--------|
| tolF = 5.0243e-15<br>tolX = 3.6898e-16<br>Iteracions = 136 |        |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.6213e-16 | 3.0205 |
| Iteracions = 137<br>Solució = 2.1934<br>tolF = 3.5527e-15  | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.7574e-16<br>Iteracions = 138 |        |
| Solució = 2.1934<br>tolF = 5.0243e-15<br>tolX = 3.6898e-16 | 3.0205 |
| Iteracions = 139<br>Solució = 2.1934                       | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16<br>Iteracions = 140 |        |
| Solució = 2.1934<br>tolF = 3.5527e-15                      | 3.0205 |
| tolX = 4.7574e-16<br>Iteracions = 141<br>Solució = 2.1934  | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16<br>Iteracions = 142 |        |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.6213e-16 | 3.0205 |
| Iteracions = 143<br>Solució = 2.1934                       | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.7574e-16<br>Iteracions = 144 |        |
| Solució = 2.1934<br>tolF = 5.0243e-15                      | 3.0205 |
| tolX = 3.6898e-16<br>Iteracions = 145<br>Solució = 2.1934  | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16<br>Iteracions = 146 |        |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.7574e-16 | 3.0205 |
| Iteracions = 147<br>Solució = 2.1934                       | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16<br>Iteracions = 148 |        |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.6213e-16 | 3.0205 |
| Iteracions = 149<br>Solució = 2.1934                       | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.7574e-16<br>Iteracions = 150 |        |
| Solució = 2.1934<br>tolF = 5.0243e-15<br>tolX = 3.6898e-16 | 3.0205 |
|                                                            |        |

| Iteracions = 151<br>Solució = 2.1934<br>tolF = 3.5527e-15                      | 3.0205 |
|--------------------------------------------------------------------------------|--------|
| tolX = 4.6213e-16<br>Iteracions = 152<br>Solució = 2.1934                      | 2 0205 |
| tolF = 3.5527e-15<br>tolX = 4.7574e-16                                         | 3.0205 |
| Iteracions = 153<br>Solució = 2.1934<br>tolF = 5.0243e-15                      | 3.0205 |
| tolX = 3.6898e-16<br>Iteracions = 154<br>Solució = 2.1934                      | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16<br>Iteracions = 155                     |        |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.7574e-16                     | 3.0205 |
| Iteracions = 156<br>Solució = 2.1934<br>tolF = 5.0243e-15                      | 3.0205 |
| tolX = 3.6898e-16<br>Iteracions = 157<br>Solució = 2.1934                      | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16<br>Iteracions = 158                     |        |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.7574e-16                     | 3.0205 |
| Iteracions = 159<br>Solució = 2.1934                                           | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16<br>Iteracions = 160<br>Solució = 2.1934 | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16<br>Iteracions = 161                     |        |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.7574e-16                     | 3.0205 |
| Iteracions = 162<br>Solució = 2.1934<br>tolF = 5.0243e-15                      | 3.0205 |
| tolX = 3.6898e-16<br>Iteracions = 163<br>Solució = 2.1934                      | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16<br>Iteracions = 164                     |        |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.7574e-16                     | 3.0205 |
| Iteracions = 165<br>Solució = 2.1934<br>tolF = 5.0243e-15                      | 3.0205 |
| tolX = 3.6898e-16<br>Iteracions = 166<br>Solució = 2.1934                      | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16                                         |        |

| Iteracions = 167<br>Solució = 2.1934     | 3.0205 |
|------------------------------------------|--------|
| tolF = 3.5527e-15                        | 3.0203 |
| tolX = 4.7574e-16<br>Iteracions = 168    |        |
| Solució = 2.1934                         | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16   |        |
| Iteracions = 169                         |        |
| Solució = 2.1934<br>tolF = 3.5527e-15    | 3.0205 |
| tolX = 4.6213e-16                        |        |
| Iteracions = $170$<br>Solució = $2.1934$ | 3.0205 |
| Solució = 2.1934<br>tolF = 3.5527e-15    | 3.0203 |
| tolX = 4.7574e-16<br>Iteracions = 171    |        |
| Solució = 2.1934                         | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16   |        |
| Iteracions = 172                         |        |
| Solució = 2.1934<br>tolF = 3.5527e-15    | 3.0205 |
| tolX = 4.6213e-16                        |        |
| Iteracions = 173<br>Solució = 2.1934     | 3.0205 |
| tolF = 3.5527e-15                        | 3.0203 |
| tolX = 4.7574e-16<br>Iteracions = 174    |        |
| Solució = 2.1934                         | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16   |        |
| Iteracions = 175                         |        |
| Solució = 2.1934<br>tolF = 3.5527e-15    | 3.0205 |
| tolX = 4.6213e-16                        |        |
| Iteracions = 176<br>Solució = 2.1934     | 3.0205 |
| tolF = 3.5527e-15                        | 3.0203 |
| tolX = 4.7574e-16<br>Iteracions = 177    |        |
| Solució = 2.1934                         | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16   |        |
| Iteracions = 178                         |        |
| Solució = 2.1934                         | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16   |        |
| Iteracions = 179<br>Solució = 2.1934     | 3.0205 |
| tolF = 3.5527e-15                        | 3.0203 |
| tolX = 4.7574e-16                        |        |
| Iteracions = 180<br>Solució = 2.1934     | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16   |        |
| Iteracions = 181                         |        |
| Solució = 2.1934                         | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16   |        |
| Iteracions = 182                         | 2 0205 |
| Solució = 2.1934<br>tolF = 3.5527e-15    | 3.0205 |
| tolX = 4.7574e-16                        |        |

| Iteracions = 183<br>Solució = 2.1934<br>tolF = 5.0243e-15                        | 3.0205 |
|----------------------------------------------------------------------------------|--------|
| tolX = 3.6898e-16<br>Iteracions = 184<br>Solució = 2.1934                        | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16<br>Iteracions = 185<br>Solució = 2.1934   | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.7574e-16<br>Iteracions = 186                       | 310203 |
| Solució = 2.1934<br>tolF = 5.0243e-15<br>tolX = 3.6898e-16                       | 3.0205 |
| <pre>Iteracions = 187 Solució = 2.1934 tolF = 3.5527e-15 tolX = 4.6213e-16</pre> | 3.0205 |
| Iteracions = 188<br>Solució = 2.1934<br>tolF = 3.5527e-15                        | 3.0205 |
| tolX = 4.7574e-16<br>Iteracions = 189<br>Solució = 2.1934<br>tolF = 5.0243e-15   | 3.0205 |
| tolX = 3.6898e-16<br>Iteracions = 190<br>Solució = 2.1934                        | 3.0205 |
| tolF = 3.5527e-15<br>tolX = 4.6213e-16<br>Iteracions = 191                       |        |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.7574e-16                       | 3.0205 |
| Iteracions = 192<br>Solució = 2.1934<br>tolF = 5.0243e-15<br>tolX = 3.6898e-16   | 3.0205 |
| Iteracions = 193<br>Solució = 2.1934<br>tolF = 3.5527e-15                        | 3.0205 |
| tolX = 4.6213e-16<br>Iteracions = 194<br>Solució = 2.1934<br>tolF = 3.5527e-15   | 3.0205 |
| tolX = 4.7574e-16<br>Iteracions = 195<br>Solució = 2.1934                        | 3.0205 |
| tolF = 5.0243e-15<br>tolX = 3.6898e-16<br>Iteracions = 196                       | 2 0205 |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.6213e-16<br>Iteracions = 197   | 3.0205 |
| Solució = 2.1934<br>tolF = 3.5527e-15<br>tolX = 4.7574e-16                       | 3.0205 |
| Iteracions = 198<br>Solució = 2.1934<br>tolF = 5.0243e-15<br>tolX = 3.6898e-16   | 3.0205 |
| 3100300 10                                                                       |        |

```
array2table(valor(1:k,:), "VariableNames", {'x', 'y'})
```

ans =  $200 \times 2$  table

| ans | - 200×2 table |             |
|-----|---------------|-------------|
|     | Х             | У           |
| 1   | 2.193439415   | 3.020466468 |
| 2   | 2.193439415   | 3.020466468 |
| 3   | 2.193439415   | 3.020466468 |
| 4   | 2.193439415   | 3.020466468 |
| 5   | 2.193439415   | 3.020466468 |
| 6   | 2.193439415   | 3.020466468 |
| 7   | 2.193439415   | 3.020466468 |
| 8   | 2.193439415   | 3.020466468 |
| 9   | 2.193439415   | 3.020466468 |
| 10  | 2.193439415   | 3.020466468 |
| 11  | 2.193439415   | 3.020466468 |
| 12  | 2.193439415   | 3.020466468 |
| 13  | 2.193439415   | 3.020466468 |
| 14  | 2.193439415   | 3.020466468 |

```
decimalsCorrectes = min(abs(valorBo' - valor(k,:)))
```

```
decimalsCorrectes =
     1.21922916207495e-10
```

%Obtenim amb 200 iteracions 9 decimals correctes i és un mètode convergent

1d) Fent ús del mètode **de Jacobi** i prenent  $x_0 = (2,3)$ . Presenteu les iteracions en una taula.

```
 \begin{array}{l} valor = zeros(200,2); \\ for \ k = 1:200 \\ valor(k,:) = newtonJacobi(F,JF,x0,k,tolF,tolX); \\ if \ k > 1 \ \&\& \ valor(k,1) == valor(k-1,1) \ \&\& \ valor(k,2) == valor(k-1,2) \ %condició \ parbeak; \\ end \\ end \\ \end{array}
```

| Solució = 2.1934                       | 3.0205 |
|----------------------------------------|--------|
| tolF = 5.3291e-15<br>tolZ = 1.093e-15  |        |
| Iteracions = 1<br>Solució = 2.1934     | 3.0205 |
| tolF = 1.0805e-14                      | 310203 |
| tolZ = 9.494e-16<br>Iteracions = 2     |        |
| Solució = 2.1934<br>tolF = 1.986e-14   | 3.0205 |
| tolZ = 3.2942e-15                      |        |
| Iteracions = 3<br>Solució = 2.1934     | 3.0205 |
| tolF = 3.6231e-14<br>tolZ = 3.6487e-15 |        |
| <pre>Iteracions = 4</pre>              | 3.0205 |
| Solució = 2.1934<br>tolF = 6.5509e-14  | 3.0203 |
| tolZ = 1.1003e-14<br>Iteracions = 5    |        |
| Solució = 2.1934                       | 3.0205 |
| tolF = 1.1638e-13<br>tolZ = 1.2203e-14 |        |
| Iteracions = 6<br>Solució = 2.1934     | 3.0205 |
| tolF = 2.1913e-13<br>tolZ = 3.5256e-14 |        |
| Iteracions = 7                         |        |
| Solució = 2.1934<br>tolF = 3.9577e-13  | 3.0205 |
| tolZ = 4.0476e-14<br>Iteracions = 8    |        |
| Solució = 2.1934                       | 3.0205 |
| tolF = 7.3402e-13<br>tolZ = 1.2002e-13 |        |
| Iteracions = 9<br>Solució = 2.1934     | 3.0205 |
| tolF = 1.3277e-12                      | 3.0203 |
| tolZ = 1.3578e-13<br>Iteracions = 10   |        |
| Solució = 2.1934<br>tolF = 2.47e-12    | 3.0205 |
| tolZ = 4.0288e-13                      |        |
| Iteracions = 11<br>Solució = 2.1934    | 3.0205 |
| tolF = 4.4672e-12<br>tolZ = 4.5618e-13 |        |
| <pre>Iteracions = 12</pre>             | 2 0205 |
| Solució = 2.1934<br>tolF = 8.2934e-12  | 3.0205 |
| tolZ = 1.356e-12<br>Iteracions = 13    |        |
| Solució = 2.1934                       | 3.0205 |
| tolF = 1.4975e-11<br>tolZ = 1.5316e-12 |        |
| Iteracions = 14<br>Solució = 2.1934    | 3.0205 |
| tolF = 2.7797e-11                      | 310203 |
| tolZ = 4.5454e-12<br>Iteracions = 15   |        |
| Solució = 2.1934<br>tolF = 5.0187e-11  | 3.0205 |
| tolF = 5.0187e-11<br>tolZ = 5.1336e-12 |        |
| Iteracions = 16                        |        |

| Solució = 2.1934                       | 3.0205 |
|----------------------------------------|--------|
| tolF = 9.3163e-11<br>tolZ = 1.5234e-11 |        |
| Iteracions = 17                        | 2 2225 |
| Solució = 2.1934<br>tolF = 1.6821e-10  | 3.0205 |
| tolF = 1.6821e-10<br>tolZ = 1.7205e-11 |        |
| Iteracions = 18<br>Solució = 2.1934    | 3.0205 |
| tolF = 3.1227e-10                      |        |
| tolZ = 5.1062e-11<br>Iteracions = 19   |        |
| Solució = 2.1934                       | 3.0205 |
| tolF = 5.6383e-10<br>tolZ = 5.7669e-11 |        |
| Iteracions = 20                        | 2 0205 |
| Solució = 2.1934<br>tolF = 1.0467e-09  | 3.0205 |
| tolZ = 1.7115e-10                      |        |
| Iteracions = 21<br>Solució = 2.1934    | 3.0205 |
| tolF = 1.8898e-09<br>tolZ = 1.9329e-10 |        |
| 1012 = 1.93296-10 Iteracions = 22      |        |
| Solució = 2.1934                       | 3.0205 |
| tolF = 3.5082e-09<br>tolZ = 5.7365e-10 |        |
| Iteracions = 23                        | 2 0205 |
| Solució = 2.1934<br>tolF = 6.3343e-09  | 3.0205 |
| tolZ = 6.4788e-10                      |        |
| Iteracions = 24<br>Solució = 2.1934    | 3.0205 |
| tolF = 1.1759e-08                      |        |
| tolZ = 1.9228e-09<br>Iteracions = 25   |        |
| Solució = 2.1934<br>tolF = 2.1231e-08  | 3.0205 |
| tolF = 2.1231e-08<br>tolZ = 2.1716e-09 |        |
| Iteracions = 26                        | 2 0205 |
| Solució = 2.1934<br>tolF = 3.9413e-08  | 3.0205 |
| tolZ = 6.4448e-09<br>Iteracions = 27   |        |
| Solució = 2.1934                       | 3.0205 |
| tolF = 7.1163e-08<br>tolZ = 7.2787e-09 |        |
| Iteracions = 28                        |        |
| Solució = 2.1934<br>tolF = 1.321e-07   | 3.0205 |
| tolZ = 2.1602e-08                      |        |
| Iteracions = 29<br>Solució = 2.1934    | 3.0205 |
| tolF = 2.3853e-07                      | 310203 |
| tolZ = 2.4397e-08<br>Iteracions = 30   |        |
| Solució = 2 <b>.</b> 1934              | 3.0205 |
| tolF = 4.4279e-07<br>tolZ = 7.2404e-08 |        |
| <pre>Iteracions = 31</pre>             |        |
| Solució = 2.1934<br>tolF = 7.9949e-07  | 3.0205 |
| tolF = 7.9949e-07<br>tolZ = 8.1773e-08 |        |
| Iteracions = 32                        |        |

| Solució = 2.1934                                          | 3.0205 |
|-----------------------------------------------------------|--------|
| tolF = 1.4841e-06<br>tolZ = 2.4268e-07<br>Iteracions = 33 |        |
| Solució = 2.1934                                          | 3.0205 |
| tolF = 2.6797e-06<br>tolZ = 2.7409e-07<br>Iteracions = 34 |        |
| Solució = 2.1934                                          | 3.0205 |
| tolF = 4.9745e-06<br>tolZ = 8.1343e-07                    |        |
| Iteracions = 35<br>Solució = 2.1934                       | 3.0205 |
| tolF = 8.982e-06<br>tolZ = 9.1869e-07                     |        |
| Iteracions = 36<br>Solució = 2.1934                       | 3.0205 |
| tolF = 1.6674e-05<br>tolZ = 2.7265e-06                    |        |
| Iteracions = 37<br>Solució = 2.1934                       | 3.0205 |
| tolF = 3.0106e-05<br>tolZ = 3.0793e-06                    |        |
| Iteracions = 38<br>Solució = 2.1934                       | 3.0205 |
| tolF = 5.5887e-05<br>tolZ = 9.1386e-06                    |        |
| Iteracions = 39<br>Solució = 2.1934                       | 3.0205 |
| tolF = 0.00010091<br>tolZ = 1.0321e-05                    |        |
| Iteracions = 40<br>Solució = 2.1934                       | 3.0204 |
| tolF = 0.00018732<br>tolZ = 3.063e-05                     |        |
| Iteracions = 41<br>Solució = 2.1934                       | 3.0205 |
| tolF = 0.00033822<br>tolZ = 3.4594e-05                    |        |
| Iteracions = 42<br>Solució = 2.1934                       | 3.0206 |
| tolF = 0.0006279<br>tolZ = 0.00010267                     | 310200 |
| Iteracions = 43<br>Solució = 2.1935                       | 3.0205 |
| tolF = 0.0011338<br>tolZ = 0.00011596                     | 3.0203 |
| Iteracions = 44<br>Solució = 2.1935                       | 3.0202 |
| tolF = 0.002104<br>tolZ = 0.00034407                      | 3.0202 |
| Iteracions = 45<br>Solució = 2.1931                       | 3.0203 |
| tolF = 0.0037987<br>tolZ = 0.00038857                     | 3.0203 |
| Iteracions = 46<br>Solució = 2.1933                       | 2 6214 |
| tolF = 0.0070589                                          | 3.0214 |
| tolZ = 0.001154<br>Iteracions = 47                        | 2 024  |
| Solució = 2.1945<br>tolf = 0.012749                       | 3.021  |
| tolZ = 0.0013036<br>Iteracions = 48                       |        |
|                                                           |        |

| Solució = 2.194<br>tolF = 0.023586<br>tolZ = 0.0038595                                      | 3.0172          |
|---------------------------------------------------------------------------------------------|-----------------|
| tolF = 0.042553<br>tolZ = 0.0043566                                                         | 3.0186          |
| Iteracions = 50<br>Solució = 2.1914<br>tolF = 0.079895<br>tolZ = 0.013033                   | 3.0315          |
| Iteracions = 51<br>Solució = 2.2054<br>tolF = 0.14464<br>tolZ = 0.014746<br>Iteracions = 52 | 3.0267          |
| Solució = 2.2002<br>tolF = 0.25863<br>tolZ = 0.04262<br>Iteracions = 53                     | 2.9844          |
| Solució = 2.1548<br>tolF = 0.46277<br>tolZ = 0.047849<br>Iteracions = 54                    | 2.9995          |
| Solució = 2.171<br>tolF = 0.98098<br>tolZ = 0.15579<br>Iteracions = 55                      | 3.1545          |
| Solució = 2.3396<br>tolF = 1.8247<br>tolZ = 0.17963<br>Iteracions = 56                      | 3.0924          |
| Solució = 2.2721<br>tolF = 2.3178<br>tolZ = 0.40588<br>Iteracions = 57                      | 2.6922          |
| Solució = 1.8486<br>tolF = 3.7194<br>tolZ = 0.43127<br>Iteracions = 58                      | 2.7736          |
| Solució = 1.94766<br>tolF = 503.0574<br>tolZ = 14.4046<br>Iteracions = 59                   | 17.1778         |
| Solució = 49.0255<br>tolF = 5194.1496<br>tolZ = 47.6335<br>Iteracions = 60                  | 9.92326         |
| Solució = 26.0875<br>tolF = 771.2636<br>tolZ = 23.4701<br>Iteracions = 61                   | 4.95394         |
| Solució = 15.3649<br>tolF = 132.1477<br>tolZ = 11.0134<br>Iteracions = 62                   | 2.43947         |
| Solució = 10.7155<br>tolF = 26.0985<br>tolZ = 4.8533<br>Iteracions = 63                     | 1.04783         |
| Solució = 9.2489<br>tolF = 25.7448<br>tolZ = 2.1748<br>Iteracions = 64                      | -0 <b>.</b> 558 |

| Solució = 9.0883<br>tolF = 14.5629<br>tolZ = 1.2752                    | 0.70708   |
|------------------------------------------------------------------------|-----------|
| Iteracions = 65<br>Solució = 9.0621<br>tolF = 237.0615<br>tolZ = 5.105 | -4.3978   |
| Iteracions = 66<br>Solució = 6.7429<br>tolF = 54.4439<br>tolZ = 3.5097 | -1.7636   |
| Iteracions = 67<br>Solució = 9.8561<br>tolF = 21.0993<br>tolZ = 3.4909 | -0.1844   |
| Iteracions = 68<br>Solució = 9.1749<br>tolF = 19.5859<br>tolZ = 1.6196 | 1.285     |
| Iteracions = 69<br>Solució = 8.9257<br>tolF = 18.6809<br>tolZ = 1.4556 | -0.1491   |
| Iteracions = 70<br>Solució = 9.1252<br>tolF = 19.9187<br>tolZ = 1.4837 | 1.3211    |
| Iteracions $= 71$                                                      | -0.084967 |
| Iteracions = 72<br>Solució = 9.1279<br>tolF = 22.145<br>tolZ = 1.5632  | 1.4631    |
| Iteracions = 73<br>Solució = 8.8638<br>tolF = 15.7387<br>tolZ = 1.3449 | 0.1444    |
| Iteracions = 74<br>Solució = 9.1291<br>tolF = 40.9062<br>tolZ = 2.1141 | 2.2418    |
| Iteracions = 75<br>Solució = 8.5146<br>tolF = 15.0589<br>tolZ = 1.4491 | 0.92948   |
| Iteracions = 76<br>Solució = 9.0529<br>tolF = 55.1532<br>tolZ = 2.5582 | -1.5714   |
| Iteracions = 77<br>Solució = 8.8191<br>tolF = 18.5209<br>tolZ = 1.4525 | -0.13786  |
| Iteracions = 78<br>Solució = 9.1327<br>tolF = 20.2103<br>tolZ = 1.5102 | 1.3394    |
| Iteracions = 79<br>Solució = 8.9061<br>tolF = 17.5333<br>tolZ = 1.4095 | -0.05169  |
| Iteracions = 80                                                        |           |

| Solució = 9.1288<br>tolF = 23.6118<br>tolZ = 1.613                             | 1.5459    |
|--------------------------------------------------------------------------------|-----------|
| Iteracions = 81                                                                | 0.25719   |
| Iteracions = 82<br>Solució = 9.1254<br>tolF = 68.8582<br>tolZ = 2.7366         | 2.9782    |
| Iteracions = 83<br>Solució = 8.0481<br>tolF = 19.168<br>tolZ = 1.879           | 1.4387    |
| Iteracions = 84<br>Solució = 8.9731<br>tolF = 16.5727<br>tolZ = 1.6716         | 0.046411  |
| Iteracions = 85<br>Solució = 9.1257<br>tolF = 30.0422<br>tolZ = 1.8094         | 1.8494    |
| Iteracions = 86<br>Solució = 8.7086<br>tolF = 14.1404<br>tolZ = 1.3238         | 0.59304   |
| Iteracions = 87<br>Solució = 9.09885<br>tolF = 16165.5773<br>tolZ = 42.0574    | -41.4625  |
| Iteracions = 88<br>Solució = -200.5866<br>tolF = 94012.7923<br>tolZ = 210.7369 | -20.43772 |
| Iteracions = 89<br>Solució = -96.8188<br>tolF = 14519.009<br>tolZ = 104.2709   | -10.2078  |
| Iteracions = 90<br>Solució = -45.4812<br>tolF = 2809.0427<br>tolZ = 51.5926    | -5.0847   |
| Iteracions = 91<br>Solució = -20.1529<br>tolF = 632.4546<br>tolZ = 25.4582     | -2.5157   |
| Iteracions = 92                                                                | -1.2625   |
| Iteracions = 93<br>Solució = -1.9966<br>tolF = 37.1229<br>tolZ = 5.7921        | -1.3062   |
| Iteracions = 94<br>Solució = 0.40874<br>tolF = 12.5242<br>tolZ = 4.0619        | 1.9669    |
| Iteracions = 95<br>Solució = 1.2743<br>tolF = 3.1573<br>tolZ = 1.442           | 0.81356   |
| Iteracions = 96                                                                |           |

| Solució = 0.94452<br>tolF = 0.85014<br>tolZ = 0.41389                                          | 1.0636  |
|------------------------------------------------------------------------------------------------|---------|
| Iteracions = 97<br>Solució = 1.0158<br>tolF = 0.21295<br>tolZ = 0.10566                        | 0.98564 |
| Iteracions = 98<br>Solució = 0.99639<br>tolF = 0.053348<br>tolZ = 0.026678                     | 1.0039  |
| Iteracions = 99<br>Solució = 1.001<br>tolF = 0.013338<br>tolZ = 0.0066659                      | 0.9991  |
| Iteracions = 100<br>Solució = 0.99977<br>tolF = 0.0033348<br>tolZ = 0.0016674                  | 1.0002  |
| Iteracions = 101<br>Solució = 1.0001<br>tolF = 0.0008337<br>tolZ = 0.00041684                  | 0.99994 |
| Iteracions = 102<br>Solució = 0.99999<br>tolF = 0.00020843<br>tolZ = 0.00010421                | 1       |
| <pre>Iteracions = 103 Solució = 1 tolF = 5.2107e-05</pre>                                      | 1       |
| tolZ = 2.6053e-05<br>Iteracions = 104<br>Solució = 1<br>tolF = 1.3027e-05                      | 1       |
| tolZ = 6.5133e-06<br>Iteracions = 105<br>Solució = 1<br>tolF = 3.2567e-06                      | 1       |
| tolF = 3.2567e-06<br>tolZ = 1.6283e-06<br>Iteracions = 106<br>Solució = 1<br>tolF = 8.1417e-07 | 1       |
| tolZ = 4.0708e-07<br>Iteracions = 107<br>Solució = 1                                           | 1       |
| tolF = 2.0354e-07<br>tolZ = 1.0177e-07<br>Iteracions = 108<br>Solució = 1                      | 1       |
| tolF = 5.0885e-08<br>tolZ = 2.5443e-08<br>Iteracions = 109<br>Solució = 1                      | 1       |
| tolF = 1.2721e-08<br>tolZ = 6.3607e-09<br>Iteracions = 110<br>Solució = 1                      | 1       |
| tolF = 3.1803e-09<br>tolZ = 1.5902e-09<br>Iteracions = 111<br>Solució = 1                      | 1       |
| tolF = 7.9508e-10<br>tolZ = 3.9754e-10<br>Iteracions = 112                                     | 1       |

```
Solució = 1
                      1
tolF = 1.9877e-10
tolZ = 9.9385e-11
Iteracions = 113
Solució = 1
                      1
tolF = 4.9692e-11
tolZ = 2.4846e-11
Iteracions = 114
Solució = 1
                      1
tolF = 1.2422e-11
tolZ = 6.2114e-12
Iteracions = 115
Solució = 1
                      1
tolF = 3.1034e-12
tolZ = 1.5527e-12
Iteracions = 116
Solució = 1
                      1
tolF = 7.7523e-13
tolZ = 3.8793e-13
Iteracions = 117
Solució = 1
                      1
tolF = 1.935e-13
tolZ = 9.6903e-14
Iteracions = 118
Solució = 1
                      1
tolF = 4.9003e-14
tolZ = 2.4188e-14
Iteracions = 119
Solució = 1
                      1
tolF = 1.2561e-14
tolZ = 6.1254e-15
Iteracions = 120
Solució = 1
                      1
tolF = 2.5121e-15
tolZ = 1.5701e-15
Iteracions = 121
Solució = 1 1
tolF = 0
tolZ = 3.1402e-16
Iteracions = 122
Solució = 1 1
tolF = 0
tolZ = 3.1402e-16
Iteracions = 122
```

# array2table(valor(1:k,:), "VariableNames", {'x', 'y'})

ans =  $123 \times 2$  table

|   | X           | У           |
|---|-------------|-------------|
| 1 | 2.193439415 | 3.020466468 |
| 2 | 2.193439415 | 3.020466468 |
| 3 | 2.193439415 | 3.020466468 |
| 4 | 2.193439415 | 3.020466468 |
| 5 | 2.193439415 | 3.020466468 |
| 6 | 2.193439415 | 3.020466468 |
|   |             |             |

|    | Х           | у           |
|----|-------------|-------------|
| 7  | 2.193439415 | 3.020466468 |
| 8  | 2.193439415 | 3.020466468 |
| 9  | 2.193439415 | 3.020466468 |
| 10 | 2.193439415 | 3.020466468 |
| 11 | 2.193439415 | 3.020466468 |
| 12 | 2.193439415 | 3.020466468 |
| 13 | 2.193439415 | 3.020466468 |
| 14 | 2.193439415 | 3.020466468 |
|    | •           |             |

decimalsCorrectes = min(abs(valorBo' - valor(k,:)))

%Amb 123 iteracions no obtenim cap decimal correcte i veiem que %ens troba la segona solució al sistema que es troba al punt [1,1]. Veiem %que és un mètode convergent cap a la solució [1,1] a partir del valor inicial [2,3]

1e) Fent ús del mètode de **Gauss-Seidel** i prenent  $x_0 = (2,3)$ . Presenteu les iteracions en una taula.

```
 \begin{array}{l} valor = zeros(200,2); \\ for \ k = 1:200 \\ valor(k,:) = newtonGaussSeidel(F,JF,x0,k,tolF,tolX); \\ if \ k > 1 \&\& \ valor(k,1) == valor(k-1,1) \&\& \ valor(k,2) == valor(k-1,2) \\ break; \\ end \\ end \\ \end{array}
```

Solució = 2.19343.0205 tolF = 3.5527e-15tolZ = 4.5297e-16Iteracions = 1Solució = 2.19343.0205 tolF = 3.5527e-15tolZ = 4.5297e-16Iteracions = 2Solució = 2.19343.0205 tolF = 3.5527e-15tolZ = 4.5297e-16Iteracions = 3Solució = 2.1934 3.0205 tolF = 3.5527e-15tolZ = 4.5297e-16Iteracions = 4Solució = 2.19343.0205 tolF = 3.5527e-15tolZ = 4.5297e-16

| Iteracions = 5                             |         |
|--------------------------------------------|---------|
| Solució = 2.1934                           | 3.0205  |
| tolF = 3.5527e-15<br>tolZ = 4.5297e-16     |         |
| Iteracions = $6$                           |         |
| Solució = 2.1934                           | 3.0205  |
| tolF = 3.5527e-15                          |         |
| tolZ = 4.5297e-16                          |         |
| <pre>Iteracions = 7 Solució = 2.1934</pre> | 3.0205  |
| tolF = 3.5527e-15                          | 310203  |
| tolZ = 4.5297e-16                          |         |
| Iteracions = 8                             | 2 0205  |
| Solució = 2.1934<br>tolF = 3.5527e-15      | 3.0205  |
| tolZ = 4.5297e-16                          |         |
| Iteracions = 9                             |         |
| Solució = 2.1934                           | 3.0205  |
| tolF = 3.5527e-15<br>tolZ = 4.5297e-16     |         |
| Iteracions = $10$                          |         |
| Solució = 2.1934                           | 3.0205  |
| tolF = 3.5527e-15                          |         |
| tolZ = 4.5297e-16<br>Iteracions = 11       |         |
| Solució = 2.1934                           | 3.0205  |
| tolF = 3.5527e-15                          | 310203  |
| tolZ = 4.5297e-16                          |         |
| Iteracions = 12<br>Solució = 2.1934        | 2 0205  |
| tolF = 3.5527e-15                          | 3.0205  |
| tolZ = 4.5297e-16                          |         |
| Iteracions = 13                            |         |
| Solució = 2.1934<br>tolF = 3.5527e-15      | 3.0205  |
| tolF = 3.552/e-15<br>tolZ = 4.5297e-16     |         |
| Iteracions = $14$                          |         |
| Solució = 2.1934                           | 3.0205  |
| tolF = 3.5527e-15<br>tolZ = 4.5297e-16     |         |
| tolZ = 4.5297e-16<br>Iteracions = 15       |         |
| Solució = 2.1934                           | 3.0205  |
| tolF = 3.5527e-15                          | 310203  |
| tolZ = 4.5297e-16                          |         |
| Iteracions = 16<br>Solució = 2.1934        | 2 0205  |
| tolF = 3.5527e-15                          | 3.0205  |
| tolZ = 4.5297e-16                          |         |
| Iteracions = 17                            |         |
| Solució = 2.1934                           | 3.0205  |
| tolF = 3.5527e-15<br>tolZ = 4.5297e-16     |         |
| Iteracions = $18$                          |         |
| Solució = 2.1934<br>tolF = 3.5527e-15      | 3.0205  |
| tolF = 3.5527e-15                          |         |
| tolZ = 4.5297e-16<br>Iteracions = 19       |         |
| Solució = 2.1934                           | 3.0205  |
| tolF = 3.5527e-15<br>tolZ = 4.5297e-16     |         |
| tolZ = 4.5297e-16                          |         |
| Iteracions = 20<br>Solució = 2.1934        | 3.0204  |
| tolF = 3.5527e-15                          | J. U∠U4 |
| tolZ = 4.5297e-16                          |         |
|                                            |         |

| Iteracions = 21<br>Solució = 2.1934<br>tolF = 3.5527e-15<br>tolZ = 4.5297e-16                      | 3.0205            |
|----------------------------------------------------------------------------------------------------|-------------------|
| Iteracions = 22<br>Solució = 2.1935<br>tolF = 3.5527e-15<br>tolZ = 4.5297e-16<br>Iteracions = 23   | 3.0202            |
| Solució = 2.1932<br>tolF = 3.5527e-15<br>tolZ = 4.5297e-16<br>Iteracions = 24                      | 3.0213            |
| Solució = 2.1943<br>tolF = 3.5527e-15<br>tolZ = 4.5297e-16<br>Iteracions = 25                      | 3.0177            |
| Solució = 2.1904<br>tolF = 3.5527e-15<br>tolZ = 4.5297e-16<br>Iteracions = 26                      | 3.0298            |
| Solució = 2.2035<br>tolF = 3.5527e-15<br>tolZ = 4.5297e-16<br>Iteracions = 27                      | 2.9892            |
| Solució = 2.1598<br>tolF = 3.5527e-15<br>tolZ = 4.5297e-16<br>Iteracions = 28                      | 3.1259            |
| Solució = 2.3073<br>tolF = 3.5527e-15<br>tolZ = 4.5297e-16<br>Iteracions = 29                      | 2.671             |
| Solució = 1.8217<br>tolF = 3.5527e-15<br>tolZ = 4.5297e-16<br>Iteracions = 30<br>Solució = 3.7057  | 4.3444<br>-2.2097 |
| tolF = 3.5527e-15<br>tolZ = 4.5297e-16<br>Iteracions = 31<br>Solució = -0.32802                    | -1.1419           |
| tolF = 3.5527e-15<br>tolZ = 4.5297e-16<br>Iteracions = 32<br>Solució = 0.86301                     | 1.1722            |
| tolF = 3.5527e-15<br>tolZ = 4.5297e-16<br>Iteracions = 33<br>Solució = 1.0429                      | 1.016             |
| tolF = 3.5527e-15<br>tolZ = 4.5297e-16<br>Iteracions = 34<br>Solució = 1.0038                      | 1.0008            |
| tolF = 3.5527e-15<br>tolZ = 4.5297e-16<br>Iteracions = 35<br>Solució = 1.0002<br>tolF = 3.5527e-15 | 1                 |
| tol7 = 3.5327e-13<br>tolZ = 4.5297e-16<br>Iteracions = 36<br>Solució = 1<br>tolF = 3.5527e-15      | 1                 |
| tolZ = 4.5297e-16                                                                                  |                   |

```
Iteracions = 37
Solució = 1
                      1
tolF = 3.5527e-15
tolZ = 4.5297e-16
Iteracions = 38
Solució = 1
                      1
tolF = 3.5527e-15
tolZ = 4.5297e-16
Iteracions = 39
Solució = 1
                      1
tolF = 3.5527e-15
tolZ = 4.5297e-16
Iteracions = 40
Solució = 1
                      1
tolF = 3.5527e-15
tolZ = 4.5297e-16
Iteracions = 41
Solució = 1
                      1
tolF = 3.5527e-15
tolZ = 4.5297e-16
Iteracions = 42
Solució = 1
                      1
tolF = 3.5527e-15
tolZ = 4.5297e-16
Iteracions = 43
Solució = 1
                      1
tolF = 3.5527e-15
tolZ = 4.5297e-16
Iteracions = 44
Solució = 1
                      1
tolF = 3.5527e-15
tolZ = 4.5297e-16
Iteracions = 45
Solució = 1
                      1
tolF = 3.5527e-15
tolZ = 4.5297e-16
Iteracions = 46
Solució = 1 1
tolF = 3.5527e-15
tolZ = 4.5297e-16
Iteracions = 47
Solució = 1 1
tolF = 3.5527e-15
tolZ = 4.5297e-16
Iteracions = 47
```

# array2table(valor(1:k,:), "VariableNames", {'x', 'y'})

### ans = $48 \times 2$ table

| 4115 | 10.7        |             |
|------|-------------|-------------|
|      | х           | у           |
| 1    | 2.193439415 | 3.020466468 |
| 2    | 2.193439415 | 3.020466468 |
| 3    | 2.193439415 | 3.020466468 |
| 4    | 2.193439415 | 3.020466468 |
| 5    | 2.193439415 | 3.020466468 |
| 6    | 2.193439415 | 3.020466468 |

|    | х           | у           |
|----|-------------|-------------|
| 7  | 2.193439415 | 3.020466468 |
| 8  | 2.193439415 | 3.020466468 |
| 9  | 2.193439415 | 3.020466468 |
| 10 | 2.193439415 | 3.020466468 |
| 11 | 2.193439415 | 3.020466467 |
| 12 | 2.193439415 | 3.020466468 |
| 13 | 2.193439415 | 3.020466466 |
| 14 | 2.193439413 | 3.020466472 |
|    |             |             |

decimalsCorrectes = min(abs(valorBo' - valor(k,:)))

%Amb 48 iteracions no obtenim cap decimal correcte tot i així veiem que %ens troba la segona solució al sistema que es troba al punt [1,1]. % És un mètode convergent cap a la solució [1,1] a partir del valor inicial [2,3]

1f) Fent ús de **Fsolve** prenent  $x_0 = (2, 3)$ . Presenteu les iteracions en una taula.

```
%Sense opcions x0=[2;3]; [x, ~] = fsolve(@myfun,x0);
```

Equation solved.

fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient.

Options used by current Algorithm ('trust-region-dogleg'):

(Other available algorithms: 'levenberg-marquardt', 'trust-region')

```
<stopping criteria details>

myfun(x);

valorBo = x;

%Mètode amb iteracions i opcions configurables
clear vars
options = optimoptions('fsolve', 'Display', 'iter', 'StepTolerance', 5e-15, 'OptimalityTole

options =
fsolve options:
```

#### Set properties:

```
Display: 'iter'
OptimalityTolerance: 5e-15
StepTolerance: 5e-15
```

### Default properties:

```
Algorithm: 'trust-region-dogleg'
CheckGradients: 0
FiniteDifferenceStepSize: 'sqrt(eps)'
FiniteDifferenceType: 'forward'
FunctionTolerance: 1e-06
MaxFunctionEvaluations: '100*numberOfVariables'
MaxIterations: 400
OutputFcn: []
PlotFcn: []
SpecifyObjectiveGradient: 0
TypicalX: 'ones(numberOfVariables,1)'
UseParallel: 0
```

Show options not used by current **Algorithm** ('trust-region-dogleg')

```
x0 = [2,3];
[\sim, fval] = fsolve(@myfun,x0,options)
```

|           |            |             | Norm of     | First–order | Trust-region |
|-----------|------------|-------------|-------------|-------------|--------------|
| Iteration | Func-count | f(x)        | step        | optimality  | radius       |
| 0         | 3          | 5           |             | 26          | 1            |
| 1         | 6          | 0.00265129  | 0.196419    | 0.346       | 1            |
| 2         | 9          | 2.87311e-08 | 0.00736061  | 0.00132     | 1            |
| 3         | 12         | 3.55929e-18 | 2.08213e-05 | 1.62e-08    | 1            |
| 4         | 15         | 1.26218e-29 | 2.21674e-10 | 3.6e-14     | 1            |

Equation solved, inaccuracy possible.

The vector of function values is near zero, as measured by the value of the function tolerance. However, the last step was ineffective.

1g) Fent ús del **mètode de la iteració simple** prenent una funció d'iteració G adient. Verifiqueu la convergència a priori del vostre mètode abans de calcular les iteracions. Preneu  $x_0 = (2,3)$  si és possible, altrement raoneu la el·lecció de  $x_0$ . Presenteu les iteracions en una taula.

```
format longG; G1 = @(x,y)(x^2)/10 + (y^2)/10 + 0.8;  %z1^2/10 + z2^2/10 + 8/10
G2 = @(x,y)    sqrt((-x+10*y-8)/x);   %(x*y^2)/10 + x/10 + 0.8;  %    converg
x0 = [2;3];
for k=1:40
resI(k).x0(1) = G1(x0(1),x0(2));
resI(k).x0(2) = G2(x0(1),x0(2));
%disp([k,x0']);
resI(k).decimalsCorrectes = min(abs(valorBo'-x0'));
end
```

```
tolF = 10^(-6);
resI
```

 $resT = 1 \times 40$  struct

| resi   | = 1×40 Strt | IC L        |
|--------|-------------|-------------|
| Fields | x0          | decimalsCor |
| 1      | [2.1,3.1    | 0.020466    |
| 2      | [2.1,3.1    | 0.020466    |
| 3      | [2.1,3.1    | 0.020466    |
| 4      | [2.1,3.1    | 0.020466    |
| 5      | [2.1,3.1    | 0.020466    |
| 6      | [2.1,3.1    | 0.020466    |
| 7      | [2.1,3.1    | 0.020466    |
| 8      | [2.1,3.1    | 0.020466    |
| 9      | [2.1,3.1    | 0.020466    |
| 10     | [2.1,3.1    | 0.020466    |
| 11     | [2.1,3.1    | 0.020466    |
| 12     | [2.1,3.1    | 0.020466    |
| 13     | [2.1,3.1    | 0.020466    |
| 14     | [2.1,3.1    | 0.020466    |
|        | :           |             |

```
disp(['Solució = ',num2str(x0')])
```

Solució = 2 3

```
disp(['tolF = ',num2str(tolF)])
```

tolF = 1e-06

```
disp(['Iteracions = ',num2str(k)])
```

Iteracions = 40

```
%Si aïllem G1 i de G2 de la forma que veiem a continuació:
% G1 = @(x,y)(x^2)/10 + (y^2)/10 + 0.8;
% G2 = @(x,y) (x*y^2)/10 + x/10 + 0.8;
% el mètode és convergent a partir del punt[2,3] a la solució [1,1].
%
% Per trobar la descomposició adient per G i que el mètode sigui convergent a la soluc
% hem de seguir provant possibles combinacions per aïllar G1 i G2 correctament.
%
% Finalment les aïllacions correctes són:
```

```
%G1 = @(x,y)(x^2)/10 + (y^2)/10 + 0.8;
%G2 = @(x,y)sqrt((-x+10*y-8)/x)
%Un cop hem trobat la combinació correcta, obtenim 6 xifres decimals
%correctes i efectivament és un mètode convergent.
```

1h) Conclusions: comenta les diferències trobades. Quants decimals correctes obteniu?

El nombre de decimals correctes obtinguts es troba a cada apartat respecivament.

## EXERCICI 2 - Derivació i ajust de corbes

L'any 2009 (a Berlín) Usain Bolt va situar el record dels 100m en 9.58s. Les dades de la carrera són les següents

| r    | 0 | 10   | 20   | 30   | 40   | 50   | 60   | 70   | 80   | 90   | 100  |
|------|---|------|------|------|------|------|------|------|------|------|------|
| t(r) | 0 | 1.85 | 2.89 | 3.78 | 4.64 | 5.49 | 6.31 | 7.11 | 7.92 | 8.74 | 9.58 |

on la primera fila és la distància recorreguda en metres i la segona el temps emprat en segons

(font: NBC, http://www.universalsports.com/news/article/newsid=385633.html).

Calculeu una aproximació de la velocitat i l'acceleració en la carrera a partir de les dades de la taula.

```
%dades

r = [0:10:100];

tr = [0 1.85 2.89 3.78 4.64 5.49 6.31 7.11 7.92 8.74 9.58];

%disp([r;tr]')

dades = array2table([r;tr]', 'VariableNames', {'Distància (m)', 'Temps (s)'})
```

 $dades = 11 \times 2 table$ 

|    | Distància (m) | Temps (s) |
|----|---------------|-----------|
| 1  | 0             | 0         |
| 2  | 10            | 1.85      |
| 3  | 20            | 2.89      |
| 4  | 30            | 3.78      |
| 5  | 40            | 4.64      |
| 6  | 50            | 5.49      |
| 7  | 60            | 6.31      |
| 8  | 70            | 7.11      |
| 9  | 80            | 7.92      |
| 10 | 90            | 8.74      |
| 11 | 100           | 9.58      |

```
%càlcul aproximació [v,a] on fem servir per cadascun la fórmula enrere
v = [];
a = [];
for i=2:11
    v(i)=(r(i)-r(i-1))/(tr(i)-tr(i-1));
    a(i)=(v(i)-v(i-1))/(tr(i)-tr(i-1));
end
resultat = array2table([r;tr;v;a]', 'VariableNames',{'Distància (m)', 'Temps (s)',
```

 $resultat = 11 \times 4 table$ 

|    | Distància (m) | Temps (s) | Velocitat (m/s)  | Acceleració (m/s^2) |
|----|---------------|-----------|------------------|---------------------|
| 1  | 0             | 0         | 0                | 0                   |
| 2  | 10            | 1.85      | 5.40540540540541 | 2.9218407596786     |
| 3  | 20            | 2.89      | 9.61538461538461 | 4.04805693267232    |
| 4  | 30            | 3.78      | 11.2359550561798 | 1.82086566381479    |
| 5  | 40            | 4.64      | 11.6279069767442 | 0.455758047167916   |
| 6  | 50            | 5.49      | 11.7647058823529 | 0.160939888951466   |
| 7  | 60            | 6.31      | 12.1951219512195 | 0.524897644959254   |
| 8  | 70            | 7.11      | 12.5             | 0.381097560975585   |
| 9  | 80            | 7.92      | 12.3456790123457 | -0.190519737844821  |
| 10 | 90            | 8.74      | 12.1951219512195 | -0.183606172105092  |
| 11 | 100           | 9.58      | 11.9047619047619 | -0.345666721973336  |

Feu una representació gràfica dels valors obtinguts.

```
%representació de la distància
novaX = 0:1:100;
S = spline(r,tr,novaX);
plot(r,tr,'r*',novaX,S)

xlabel('[m]')
ylabel('Temps (s)');
title('Distància recorreguda en (m)')
hold off
```



```
%representació de la velocitat
Sv = spline(r,v,novaX);
plot(r,v,'g*',novaX,Sv)

xlabel('[m]')
ylabel('v(t)');
title('Velocitat (m/s)')
hold off
```



```
%representació de l'acceleració
Sa = spline(r,a,novaX);
plot(r,a,'b*',novaX,Sa)

xlabel('[m]')
ylabel('a(t)');
title('Acceleració (m/s^2)')
hold off
```

# **EXERCICI 3 - Interpolació**

Obteniu una corba que ajusti les dades de la taula següent per als diferents mètodes explicats en les classes: polinomica, spline lineal, spline cúbic.

```
    x
    0.9
    1.3
    1.9
    2.1
    2.6
    3.0
    3.9
    4.4
    4.7
    5.0
    6.0
    7.0
    8.0
    9.2
    10.5
    11.3
    11.6
    12.0
    12.6
    13.0
    13.3

    f(x)
    1.3
    1.5
    1.85
    2.1
    2.6
    2.7
    2.4
    2.15
    2.05
    2.1
    2.25
    2.3
    2.25
    1.95
    1.4
    0.9
    0.7
    0.6
    0.5
    0.4
    0.25
```

```
x = [0.9,1.3,1.9,2.1,2.6,3.0,3.9,4.4,4.7,5.0,6.0,7.0,8.0,9.2,10.5,11.3,11.6,12.0,12.6,
y = [1.3, 1.5, 1.85, 2.1, 2.6, 2.7, 2.4, 2.15 2.05, 2.1, 2.25, 2.3, 2.25, 1.95, 1.4, 0
%scatter(x, y)
%disp([x,y]);
%plot(x,y);
```

```
%interpolació polinomica fent servir polyinterp
z = [0:20];
pi = polyinterp(x,y,z);
plot(z,pi,x,y,'*r','LineWidth',2)
grid on
ylabel('Valors a la y')
xlabel('Valors a la x')
title('Polinomi interpolador a partir de polyinterp')
xlim([0 14])
ylim([0 3])
hold off
%spline lineal
z = [0:20];
pz = interp1(x,y,z);
plot(z,pz,x,y,'*r','LineWidth',2)
grid on
ylabel('Valors a la y')
xlabel('Valors a la x')
title('Spline lineal (interpolació lineal a trossos)')
hold off
%spline cúbica
x = [0.9, 1.3, 1.9, 2.1, 2.6, 3.0, 3.9, 4.4, 4.7, 5.0, 6.0, 7.0, 8.0, 9.2, 10.5, 11.3, 11.6, 12.0, 12.6,
y = [1.3, 1.5, 1.85, 2.1, 2.6, 2.7, 2.4, 2.15, 2.05, 2.1, 2.25, 2.3, 2.25, 1.95, 1.4, 0]
z = [0:20];
pc = interp1(x,y,z, 'pchip');
plot(z,pc,x,y,'*r','LineWidth',2)
grid on
ylabel('Valors a la x')
xlabel('Valors a la y')
title('Cúbica a trossos - Spline preserving')
xlim([0 14])
ylim([0 3])
hold off
%fent servir polyfit
%disp([x; y]);
grau = length(x)-1;
p = polyfit(x,y,grau);
```

Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the polynomial, or try centering and scaling as described in HELP POLYFIT.

```
u = linspace(x(1),x(end),500);
v = polyval(p,u);
plot(x,y,'ro',u,v,'b-')
grid on
```

```
ylabel('Valors a la x')
xlabel('Valors a la y')
title('Polinomi interpolador obtingut amb el polyfit')
legend('nodes','polinomi','Location','best')
hold off
```



# Les dades són del llibre Numerical Analysis, Burden&Faires, per la imatge



# EXERCICI 4 - Integració numèrica

Doneu una aproximació de l'area de la regió delimitada per la vostra ma. Referència: https://es.mathworks.com/moler/chapters.html

# Apartat 1.

1. Obteniu una imatge de la vostra ma. Seguiu les indicacions de l'exercici 3.4 de la pàgina 20 del capítol 3, "Interpolation" de Cleve Moler.



Figura 1:

```
figure('position', get(0,'ScreenSize'));
axes('position', [0 0 1 1]);
legend('location','westoutside');
legend('hide');
```



```
%[x,y] = ginput;
```

```
puntsX = x;
puntsY = y;

puntsNousX = unnamed(:,1); %és una variable que es troba al fitxer maPunts.mat
puntsNousY = unnamed(:,2);

n = length(puntsNousX);
s = (1:n)';
t = (1:.05:n)';
u = splinetx(s,puntsNousX,t);
v = splinetx(s,puntsNousY,t);
clf reset
plot(puntsNousX,puntsNousY,'b.',u,v,'g-');
```



```
u2 = pchiptx(s,puntsNousX,t);
v2 = pchiptx(s,puntsNousY,t);
clf reset
plot(puntsNousX,puntsNousY,'b.',u2,v2,'g-');
```



### Apartat 2.

2. Obteniu per interpolació 2D la corba que delimita la imatge de la vostra ma seguint els indicacions de l'exercici 3.4 i l'exercici 3.5 de les pàgines 20-21-22. Responeu les preguntes que us formulen en els dos exercicis.

```
%punt vermell al mig del palmell
x0 = 0.45;
y0 = 0.0;

n = length(puntsNousX);
s = (1:n)';
t = (1:.05:n)';
u = splinetx(s,puntsNousX,t);
v = splinetx(s,puntsNousY,t);

puntsNousX = puntsNousY - x0;
puntsNousY = puntsNousY - y0;
theta = atan2(puntsNousY,puntsNousX);
r = sqrt(puntsNousX.^2+puntsNousY.^2);
plot(theta,r)
```



```
t = (theta(1):1/length(theta):theta(end))';
p = pchiptx(theta,r,t);
s = splinetx(theta,r,t);
plot(theta,r,'o',t,[p s],'-')
```



plot(puntsNousX,puntsNousY,'o',p.\*cos(t),p.\*sin(t),'-', s.\*cos(t),s.\*sin(t),'-')



### 3.4 Pchip vs Spline?

Prefereixo en aquest cas l'spline ja que tal i com es pot veure obtenim una imatge molt més definida i més suau de la mà. És a dir, la derivada segona de l'spline és continua i podem veure que si les dades consisteixen en valors d'una funció contínua l'spline produeix un resultat més precís. Conclusió extreta de: https://es.mathworks.com/content/dam/mathworks/mathworks-dot-com/moler/interp.pdf (apartat 3.7)

La figura que es mostra està feta amb l'spline.

3.5 Quina aproximació és millor? Aquesta o la del darrer exercici?

L'aproximació més bona és que es realiza a l'apartat anterior.

# Apartat 3.

3. Què tan gran és la teva mà? Calcula l'àrea que ocupa la teva mà. Segueix les indicacions i respon les preguntes de l'exercici 6.23 de les pàgines 19-20 del capítol 6 "Quadrature" de Cleve Moler.



Figure 6.5. The area of a hand.

Figura 2: Moler - chpater 6 - exercici 6.23

```
%Podem calcular l'àrea de 3 formes possibles:
%àrea del polígon
area = (puntsNousX'*puntsNousY([2:n 1]) - puntsNousX([2:n 1])'*puntsNousY)/2;

%simple quadratura
[u,v] = meshgrid(min(puntsNousX):0.1:max(puntsNousX),min(puntsNousY):0.1:max(puntsNousY);
k = inpolygon(u,v,puntsNousX,puntsNousY);
area2 = 0.1^2*nnz(k);

%R^2 quadratura adaptativa
area3 = dblquad(@(u,v)chi(u,v,puntsNousX,puntsNousY),min(puntsNousX),max(puntsNousX),m
%si posem epsilon peta i tarda molt
```

%mostrem els valors de l'àrea en una taula array2table([area,area2,area3], 'VariableName',{'Àrea del polígon', 'Simple Quadratura

```
        Ans = 1×3 table
        Àrea del polígon
        Simple Quadratura
        R^2 Quadratura Adaptativa

        1
        0.25482822
        0.2
        0.254580717019077
```

```
function F = myfun(x)

F(1) = x(1)^2-10*x(1) + x(2)^2 + 8; %x(1) = x, x(2) = y

F(2) = x(1)*x(2)^2 + x(1) - 10*x(2) + 8;

end
```

```
% Mètode de Newton per a funcions de dues variables
function valor = newtonModificat(F, DF, Z, n, tolF, tolZ, iteracions)
           = F(Z(1),Z(2));
    jacobianafz = DF(Z(1),Z(2));
    valorf = Z(1);
    valorz = Z(2);
    k = 0;
   while (k < n && (valorf > tolF || valorz > tolZ)) %si convergeix, concloem
        Y = \text{jacobianafz} \setminus (-fz); %soluciona per y, o també fent la Jacobiana de F(x)
        vz = Z;
        Z = vz + Y; %actualitzem estimació arrel
        k = k+1;
        if mod(k , iteracions) == 0 jacobianafz = DF(Z(1),Z(2)); end
              = F(Z(1),Z(2));
        fz
        valorz = norm(Y);
        valorf = norm(fz);
    end
    valor = Z;
    disp(['Solució = ',num2str(Z')])
    disp(['tolF = ',num2str(valorf)])
    disp(['tolX = ',num2str(valorz)])
    disp(['Iteracions = ',num2str(k)])
end
% Mètode de Jacobi per a funcions de dues variables
function valor = newtonJacobi(F, DF, Z, iteracions, tolF, tolZ)
    fz = F(Z(1), Z(2));
    jacobianafz = diag(diag(DF(Z(1),Z(2))));
   vf = Z(1);
    vz = Z(2);
    k = 0;
   while (k < iteracions && (vf > tolF || vz > tolZ))
       Y = jacobianafz \ (-fz); %soluciona per y, o també fent la Jacobiana de F(x)
        pz = Z;
        Z = pz + Y; %actualitzem estimació arrel
        jacobianafz = diag(diag(DF(Z(1),Z(2))));
             = F(Z(1),Z(2));
        fz
```

```
vz = norm(Y);
        vf = norm(fz);
        k = k + 1;
    end
    valor = Z;
    disp(['Solució = ',num2str(Z')]);
    disp(['tolF = ',num2str(vf)]);
    disp(['tolZ = ',num2str(vz)]);
    disp(['Iteracions = ',num2str(k)]);
end
% Mètode de Gauss Seidel per a funcions de dues variables
function valor = newtonGaussSeidel(F, DF, Z, iteracions, tolF, tolZ)
         = F(Z(1),Z(2));
    jacobianafz = tril(DF(Z(1),Z(2)));
    valorf = Z(1);
    valorz = Z(2);
    k = 0;
   while (k < iteracions && (valorf > tolF || valorz > tolZ))
        y = jacobianafz \setminus (-fz);
        pz = Z;
        Z = pz + y;
        jacobianafz = tril(DF(Z(1),Z(2)));
                 = F(Z(1),Z(2));
        fz
        valorz = norm(v);
        valorf = norm(fz);
        k = k + 1;
    end
    valor = Z;
    disp(['Solució = ',num2str(Z')]);
    disp(['tolF = ',num2str(tolF)]);
    disp(['tolZ = ',num2str(tolZ)]);
    disp(['Iteracions = ',num2str(k)]);
end
function valor = iteracioSimple(G, F, Z, iteracions, tolerancia)
    FZ = F(Z(1), Z(2));
```

```
tolF = 10^{-6};
    tolZ = 10^{(-6)};
    k = 0;
    while (k < iteracions && (tolf > tolerancia || tolZ > tolerancia))
        pz = Z;
        Z = G(Z(1), Z(2));
        tolF = norm(F(Z(1),Z(2)));
        tolZ = norm(Z-pz);
        k = k + 1;
    end
    valor = Z;
    disp(['Solució = ',num2str(Z')]);
    disp(['tolF = ',num2str(tolF)]);
    disp(['tolZ = ',num2str(tolZ)]);
    disp(['Iteracions = ',num2str(k)]);
end
function v = polyinterp(x,y,u)
%POLYINTERP Polynomial interpolation.
    v = POLYINTERP(x,y,u) computes v(j) = P(u(j)) where P is the
    polynomial of degree d = length(x)-1 with P(x(i)) = y(i).
%
   Copyright 2014 Cleve Moler
%
   Copyright 2014 The MathWorks, Inc.
% Use Lagrangian representation.
% Evaluate at all elements of u simultaneously.
n = length(x);
v = zeros(size(u));
for k = 1:n
   w = ones(size(u));
   for j = [1:k-1 k+1:n]
      w = (u-x(j))./(x(k)-x(j)).*w;
   end
   v = v + w * y(k);
end
end
%la mà
function v = splinetx(x,y,u)
%SPLINETX Textbook spline function.
% v = splinetx(x,y,u) finds the piecewise cubic interpolatory
% spline S(x), with S(x(j)) = y(j), and returns v(k) = S(u(k)).
```

```
%
%
  See SPLINE, PCHIPTX.
%
    Copyright 2014 Cleve Moler
%
    Copyright 2014 The MathWorks, Inc.
  First derivatives
   h = diff(x);
   delta = diff(y)./h;
   d = splineslopes(h,delta);
  Piecewise polynomial coefficients
   n = length(x);
   c = (3*delta - 2*d(1:n-1) - d(2:n))./h;
   b = (d(1:n-1) - 2*delta + d(2:n))./h.^2;
  Find subinterval indices k so that x(k) \le u < x(k+1)
   k = ones(size(u));
   for j = 2:n-1
      k(x(i) \le u) = i;
   end
% Evaluate spline
   s = u - x(k);
   v = y(k) + s.*(d(k) + s.*(c(k) + s.*b(k)));
end
function d = splineslopes(h,delta)
  SPLINESLOPES Slopes for cubic spline interpolation.
% splineslopes(h,delta) computes d(k) = S'(x(k)).
 Uses not-a-knot end conditions.
  Diagonals of tridiagonal system
  n = length(h)+1;
   a = zeros(size(h)); b = a; c = a; r = a;
   a(1:n-2) = h(2:n-1);
   a(n-1) = h(n-2)+h(n-1);
   b(1) = h(2);
   b(2:n-1) = 2*(h(2:n-1)+h(1:n-2));
   b(n) = h(n-2);
   c(1) = h(1)+h(2);
   c(2:n-1) = h(1:n-2);
% Right-hand side
   r(1) = ((h(1)+2*c(1))*h(2)*delta(1)+ ...
```

```
h(1)^2*delta(2))/c(1);
   r(2:n-1) = 3*(h(2:n-1).*delta(1:n-2)+...
              h(1:n-2).*delta(2:n-1));
   r(n) = (h(n-1)^2*delta(n-2)+ ...
          (2*a(n-1)+h(n-1))*h(n-2)*delta(n-1))/a(n-1);
  Solve tridiagonal linear system
   d = tridisolve(a,b,c,r);
end
function x = tridisolve(a,b,c,d)
    TRIDISOLVE Solve tridiagonal system of equations.
      x = TRIDISOLVE(a,b,c,d) solves the system of linear equations
%
%
      b(1)*x(1) + c(1)*x(2) = d(1),
%
      a(j-1)*x(j-1) + b(j)*x(j) + c(j)*x(j+1) = d(j), j = 2:n-1,
      a(n-1)*x(n-1) + b(n)*x(n) = d(n).
%
%
    The algorithm does not use pivoting, so the results might
%
%
    be inaccurate if abs(b) is much smaller than abs(a)+abs(c).
    More robust, but slower, alternatives with pivoting are:
%
      x = T \setminus d where T = diag(a, -1) + diag(b, 0) + diag(c, 1)
%
      x = S d \text{ where } S = spdiags([[a; 0] b [0; c]], [-1 0 1], n, n)
%
    Copyright 2014 Cleve Moler
%
    Copyright 2014 The MathWorks, Inc.
%
x = d;
n = length(x);
for j = 1:n-1
  mu = a(i)/b(i);
   b(j+1) = b(j+1) - mu*c(j);
  x(j+1) = x(j+1) - mu*x(j);
end
x(n) = x(n)/b(n);
for j = n-1:-1:1
  x(j) = (x(j)-c(j)*x(j+1))/b(j);
end
end
function v = pchiptx(x,y,u)
%PCHIPTX Textbook piecewise cubic Hermite interpolation.
v = pchiptx(x,y,u) finds the shape-preserving piecewise cubic
  interpolant P(x), with P(x(j)) = y(j), and returns v(k) = P(u(k)).
%
  See PCHIP, SPLINETX.
%
  First derivatives
```

```
h = diff(x);
   delta = diff(y)./h;
   d = pchipslopes(h,delta);
  Piecewise polynomial coefficients
   n = length(x);
   c = (3*delta - 2*d(1:n-1) - d(2:n))./h;
   b = (d(1:n-1) - 2*delta + d(2:n))./h.^2;
  Find subinterval indices k so that x(k) \le u < x(k+1)
   k = ones(size(u)):
   for j = 2:n-1
      k(x(j) \le u) = j;
   end
 Evaluate interpolant
  s = u - x(k);
   v = y(k) + s.*(d(k) + s.*(c(k) + s.*b(k)));
end
% ---
function d = pchipslopes(h,delta)
% PCHIPSLOPES Slopes for shape-preserving Hermite cubic
  interpolation. pchipslopes(h,delta) computes d(k) = P'(x(k)).
% Slopes at interior points
% delta = diff(y)./diff(x).
% d(k) = 0 if delta(k-1) and delta(k) have opposites signs
        or either is zero.
%
%
 d(k) = weighted harmonic mean of delta(k-1) and delta(k)
%
          if they have the same sign.
  n = length(h)+1;
   d = zeros(size(h));
   k = find(sign(delta(1:n-2)).*sign(delta(2:n-1)) > 0) + 1;
  w1 = 2*h(k)+h(k-1);
  w2 = h(k)+2*h(k-1);
   d(k) = (w1+w2)./(w1./delta(k-1) + w2./delta(k));
% Slopes at endpoints
   d(1) = pchipendpoint(h(1),h(2),delta(1),delta(2));
   d(n) = pchipendpoint(h(n-1),h(n-2),delta(n-1),delta(n-2));
end
%
```

```
function d = pchipendpoint(h1,h2,del1,del2)
% Noncentered, shape-preserving, three-point formula.
   d = ((2*h1+h2)*del1 - h1*del2)/(h1+h2);
   if sign(d) ~= sign(del1)
      d = 0;
   elseif (sign(del1) ~= sign(del2)) & (abs(d) > abs(3*del1))
      d = 3*del1;
   end
end
%quadratura
function k = chi(u, v, x, y)
if all(size(u) == 1), u = u(ones(size(v)));
end
if all(size(v) == 1), v = v(ones(size(u)));
k = inpolygon(u,v,x,y);
end
```