딥러닝/클라우드

Chapter 3

Machine learning Concept

Sejong Oh
Bio Information Technology Lab.

Contents

- Al scopes
- Machine learning
- Machine learning areas
- Development process of learning model
- Sciket-learn

1. Al scopes

http://www.kdnuggets.com/2014/06/data-science-skills-business-problems.html

1. Al scopes

https://www.linkedin.com/pulse/20140916175039-113015482-how-the-buzz-words-fit-into-the-trading-world-ai-machine-learning-and-data-mining

BIT Lab.

1. Al scopes

Artificial Intelligence

Any technique which enables computers to mimic human behavior.

Machine Learning

Subset of AI techniques which use statistical methods to enable machines to improve with experiences.

Deep Learning

Subset of ML which make the computation of multi-layer neural networks feasible.

What is machine learning?

https://www.lexalytics.com/technology/machine-learning

- 과거의 경험을 미래의 결정(예측)에 활용하는 소프트웨어를 디자인하고 연구하는 분야
 - 과거의 경험 → 데이터에 반영
 - 과거 데이터로 부터 숨겨진 규칙을 찾아내어 일반화. 이를 미래의 예측에 활용.
 - o ex) 주가 예측
- 전통적 SW
 - 규칙을 인간이 알아내어 알고리즘의 형태로 SW 안에 구현함
- 머신러닝
 - **규칙을 알아내는 방법**은 인간이 제시
 - 실제 규칙을 알아내는 과정은 머신(?)이 진행함.
 - 머신이 규칙을 알아내는 과정이 '학습(learning)'
 (인간 입장에서는 머신을 '훈련(training)' 시키는 과정)

- 머신러닝 분야의 예: 주가 예측
 - 전통적 방법
 - 주가 예측 공식을 인간이 개발하여 SW 로 구현
 - 머신러닝 방법
 - 1) 과거 데이터를 수집. 정리

주가에 영향을 미치는 요인들(X) 실제 주가 (Y)

- 2) 학습(훈련) 방법 결정 (regression, decision tree, deep neural network,..)
- 3) 학습(훈련) 진행
- 4) 예측모델 도출 (학습방법에 따라 다양한 형태)
- 5) 주가 예측에 활용

Machine ?

- SW, Program
- 학습의 주체가 사람이 아니라는 의미

• 학습 자료 ?

Data

4	Α	В	С	D	E	F
1	Country -	Salesperson 🔻	Order Date 💌	OrderID 💌	Units 💌	Order Amoun
2	USA	Fuller	1/01/2011	10392	13	1,440.00
3	UK	Gloucester	2/01/2011	10397	17	716.72
4	UK	Bromley	2/01/2011	10771	18	344.00
5	USA	Finchley	3/01/2011	10393	16	2,556.95
6	USA	Finchley	3/01/2011	10394	10	442.00
7	UK	Gillingham	3/01/2011	10395	9	2,122.92
8	USA	Finchley	6/01/2011	10396	7	1,903.80
9	USA	Callahan	8/01/2011	10399	17	1,765.60
10	USA	Fuller	8/01/2011	10404	7	1,591.25
11	USA	Fuller	9/01/2011	10398	11	2,505.60
12	USA	Coghill	9/01/2011	10403	18	855.01
13	USA	Finchley	10/01/2011	10401	7	3,868.60
14	USA	Callahan	10/01/2011	10402	11	2,713.50
15	UK	Rayleigh	13/01/2011	10406	15	1,830.78
16	USA	Callahan	14/01/2011	10408	10	1,622.40
17	USA	Farnham	14/01/2011	10409	19	319.20
18	USA	Farnham	15/01/2011	10410	16	802.00

https://www.myonlinetraininghub.com/exceltabular-data-format

http://blog.ageha-inc.jp/2015/10/sns-data/

- Learning ?
 - 데이터: (*y₁x₁*), *i*=1,2,3,..,*n*
 - 반응변수(response variable)
 - 설명변수(explanatory variable) : $\mathbf{x}_i = (x_{i1}, x_{i2}..., x_{ip})^T$

predictor

○ 반응변수(Y)와 설명변수(X) 간의 관계를 찾는 것 -> 훈련(training)

X:키,몸무게, 허리둘레,..

Y:고혈압여부

- 과거의 주식 변동 데이터를 학습하여 일주일 후의 주가를 예측
- 건강검진 데이터를 학습하여 간암 발생률 추이를 예측
- 과거의 대출 및 회수 데이터를 학습하여 대출 신청자가 대출금을 갚을지, 못갚을지를 예측
- 키, 몸무게 등 정보로 부터 고혈압 여부를 예측
- 과거 월드컵 경기 데이터를 학습하여 올해의 우승팀을 예측
- 특정 기업의 10년후 생존 가능성 예측
- 다양한 사진 정보를 학습하여 특정 사진속에서 사람이 몇 명 있는지 검사
- 필기체 글씨 판독
- 이미지 안에서 사람의 성별 구분
- 음성 인식 (Seri, 빅스비, google)
- 번역

- Learning 방법
 - 다양한 학습 알고리즘들이 존재함
 - KNN, SVM, regression, random forest, deep neural network, ...

전통적 문제해결

인간 분석자가 데이터를 연구하여 어떤 원리나 이론을 도출 Machine learning

데이터와 학습 방법을 제시하고 프로그램 스스로 원리나 이론을 도출하도록 함

- Learning 의 결과는
 - (learning) model
 - 어떤 방법으로 학습을 시켰는가에 따라 model 의 형태는 다양함

- 정리: Machine learning 은
 - 과거의 축적된 데이터를 학습하여 미래를 예측하는 기술
 - 주가 예측, 질병진단, 스팸 필터링, 이미지 분류, 번역, ...
 - 얼마나 정확한 모델을 만드느냐가 관건
 - 학습 데이터가 많을 수록 유리

- 정리: Machine learning 의 목표
 - 주어진 자료를 가장 잘 설명하는 모형을 찾는 것이 최종 목표가 아님
 - 새로운 설명변수의 값이 주어졌 때, 정확한 예측값을 주는 모형을 찾는 것이 목적 (과거 현상을 잘 설명하기 보다는 <u>미래의 자료를 잘 예측할 수 있어야 함</u>)

Machine learning 분류

지도학습 (supervised learning)

설명변수(X), 반응변수(Y) 존재

• 회귀(regression)

Y 가 수치형 (주가, 기온,..)

분류(classification) 등

Y 가 범주형 (정상인/환자, 남/녀, ..)

○ 비지도학습(unsupervised learning)

설명변수(X)만 존재

• 군집화(clustering)

○ 강화학습(Reinforcement learning)

* Deep learning 은 지도학습 방법에 해당

classification

질병진단 문자인식 이미지분류

clustering

고객 세분화 비정상거래 탐지

regression

주가예측 오존농도에 따른 기온예측

- Reinforcement learning
 - 행동심리학에서 영감을 받았으며, 어떤 환경 안에서 정의된 에이전트가 현재의 상태를 인식하여, 선택 가능한 행동들 중 보상을 최대화하는 행동 혹은 행동 순서를 선택하는 방법 (장기, 바둑,..)
 - https://www.youtube.com/watch?v=SH3bADiB7uQ

Harvard Business Review

ANALYTICS

Machine Learning Is No Longer Just for Experts

by Josh Schwartz

OCTOBER 26, 2016

https://hbr.org/2016/10/machine-learning-is-no-longer-just-for-experts

4. 학습모델 개발 과정

Classification, regression

4. 학습모델 개발 과정

- Training data
 - 과거 데이터의 역할
- Validation data
 - 학습(훈련)과정에서 만들어지는 모델을 평가하는데 사용
 - 더 나은 모델을 만드는데 기여
 - 학습방법에 따라 필요치 않은 경우도 있음
- Test data
 - 미래 데이터의 역할
 - 미래 데이터는 없으므로 학습에 사용하지 않은 일부 데이터를 미래의 데이터로 간주
 - 미래 예측시 모델이 어느정도의 성능을 보일지를 판단하는 자료

** Train: 50~75%. Test: 10~30%, validation: 나머지

4. 학습모델 개발 과정

Training accuracy vs Test accuracy

- Training accuracy : 모델이 과거의 데이터를 얼마나 잘 설명할 수 있는지를 보여줌.
- Test accuracy : 모델이 미래의 데이터를 얼마나 잘 예측할 수 있는지 를 보여줌
- 일반적으로 Training accuracy > Test accuracy

5. sciket-learn

- Machine learning library in python
- https://scikit-learn.org/stable/
- Open source
- Published in 2007
- 분류, 회귀, 차원축소등 머신러닝 관련 알고리즘들을 구현
- 데이터 전처리, hyper-parameter tuning, 모델 평가 기능도 제공
- Install sciket-learn
 - o Anaconda prompt 에서 conda install sciket-learn

- Pandas is an open source library that is used to analyze data in Python.
- It takes in data, like a CSV or SQL database, and creates an object with rows and columns called a data frame.
- Pandas is typically imported with the alias pd
- Install pandas
 - Anaconda prompt 에서 conda install pandas
- Numpy 의 배열은 주로 숫자를 저장
- Pandas 의 data frame 은 문자,숫자 컬럼을 함께 저장 가능

Example dataset : iris.csv

실습에 사용되는
데이터셋은 자료실에
게시되어 있음

	Α	В	С	D	E
1	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
2	5.1	3.5	1.4	0.2	setosa
3	4.9	3	1.4	0.2	setosa
4	4.7	3.2	1.3	0.2	setosa
5	4.6	3.1	1.5	0.2	setosa
6	5	3.6	1.4	0.2	setosa
7	5.4	3.9	1.7	0.4	setosa
8	4.6	3.4	1.4	0.3	setosa
9	5	3.4	1.5	0.2	setosa
10	4.4	2.9	1.4	0.2	setosa
11	4.9	3.1	1.5	0.1	setosa
			Υ		
	꽃	받침	꽃	잎	품종
			У		

```
03.pandas_test.py
# Pandas test
import pandas as pd
# read dataset
iris = pd.read_csv('d:/data/iris.csv')
iris
                                       # view data
with pd.option_context('display.max_rows', None, 'display.max_columns',
None):
    print(iris)
                                       # view all data
                                       # view head of data frame
iris.head()
iris.head(10)
                                       # view head of data frame
iris.tail()
                                       # view tail of data frame
iris.tail(15)
                                       # view tail of data frame
iris.shape
                                       # dimension
type(iris)
                                       # type
iris.columns
                                       # column names
iris.columns[:4]
                                       # column names
```

```
iris['Species']
                                      # get column by name
iris[['Sepal.Width','Sepal.Length']] # get column by name
iris.iloc[90,4]
                                       # indexing cell
                                       # indexing cell
iris.iloc[50,0]
iris.iloc[10:50,0:4]
                                      # slice row/col
iris.iloc[10:50,:]
                                      # slice row/col
# slicing rows by condition
setosa = iris['Species']=='setosa'
big = iris['Sepal.Length'] > 5
iris[setosa]
iris[big & setosa]
```

Note.

Check installed modules (library)

conda list

```
Anaconda Prompt (Miniconda3)
                                                                               \times
(base) C:\Users\mango>conda list
 packages in environment at C: #Miniconda3:
 Name
                            Version
                                                                Channe I
                                                        Build
_py-xgboost-mutex
                            2.0
                                                        cpu 0
                                                                  anaconda
_tflow_select
                            2.2.0
                                                        eigen
                            0.9.0
                                                       py37_0
absl-py
astor
                            0.8.0
                                                       py37_0
                            1.6.3
astunparse
                                                       pypi_0
                                                                  рурі
backcall
                            0.1.0
                                                       py37_0
blas
                                                          mk l
blinker
                                                       py37_0
ca-certificates
                            2020.6.24
                                                                  anaconda
cachetools
                            4.1.0
                                                       pypi 0
                                                                  i gyg
                            2020.6.20
                                                                  anaconda
certifi
                                                       py37 0
cffi
                                              py37h7a1dbc1_0
                            1.14.0
chardet
                            3.0.4
                                                    py37 1003
click
                                                         py 0
cloudpickle
                                                         ру 0
colorama
```