

Today:

Introduce the Rubin Causal Model;

Discuss the fundamental problem of causal inference;

Use descriptive statistics to get around the fundamental problem of causal inference.

What is causality?!

- ▶ In this class we want to use political numbers appropriately often this will look like does variable *X* cause a change in variable *y*:
 - Does education level change the gender wage gap?
 - Does incumbency confer an advantage?
 - Do nuclear weapons decrease the chance of conflict?
 - Do social safety nets decrease labor?

- Many, many definitions here are two to think about:
 - Counterfactual causality:
 - ► The difference between worlds we'll talk about this;
 - In the version of this we will discuss today causality is deterministic;
 - Probabilistic causation:
 - A change in a variable will on average cause a change in another variable;
 - ► This is probabilistic note the 'on average' part.

...the <u>causal effect</u> of one treatment, T, over another, C, for a particular unit is the difference between what would have happened if the unit had been exposed to T and what would have happened if the unit had been exposed to C...

- ► Example: a political campaign is seeking money for its 'war chest' and wants to know if going door to door to visit party members will increase contributions;
- ▶ Let's think about a party member the campaign wants to know:
 - ▶ The donation this person will make if they get a visit from the campaign;
 - ► The donation this person will make if they don't get a visit from the campaign;
- ▶ Some useful terms in the Rubin Causal Model:
 - The party member is a unit;
 - The visit is a treatment;
 - ► The group that gets no visit is the **control**;
 - The two possible donations are potential outcomes.

Unit	$Y_i(visit)$	$Y_i(none)$	
1	\$675	\$150	

Unit	$Y_i(visit)$	$Y_i(none)$	
1	\$675	\$150	
2	\$3600	\$2500	
3	\$1900	\$3300	
4	\$2300	\$1000	
5	\$2600	\$2000	
6	\$3000	\$0	
7	\$1950	\$2500	

Unit	$Y_i(visit)$	$Y_i(none)$	$Y_i(visit) - Y_i(none)$
1	\$675	\$150	\$525
2	\$3600	\$2500	\$1100
3	\$1900	\$3300	-\$1400
4	\$2300	\$1000	\$1300
5	\$2600	\$2000	\$600
6	\$3000	\$0	\$3000
7	\$1950	\$2500	-\$550

Unit	$Y_i(visit)$	$Y_i(none)$	$Y_i(visit) - Y_i(none)$
1	\$675	?	\$525
2	\$3600	?	\$1100
3	?	\$3300	-\$1400
4	\$2300	?	\$1300
5	?	\$2000	\$600
6	?	\$0	\$3000
7	\$1950	?	-\$550

Unit	$Y_i(visit)$	$Y_i(none)$	$Y_i(visit) - Y_i(none)$
1	\$675	?	?
2	\$3600	?	?
3	?	\$3300	?
4	\$2300	?	?
5	?	\$2000	?
6	?	\$0	?
7	\$1950	?	?

The **fundamental problem of causal inference**: one of the potential outcomes is ALWAYS missing.

Estimating Effects: Graphically via Density Plots

Can't observe unit level casual effects directly;

Estimating Effects: Average Causal Effect

Can't observe unit level casual effects directly;

▶ Can compute an average causal effect – for n_T units in the treatment group and n_C units in the control group:

$$\frac{1}{n_T}\sum_i Y_i(\mathsf{T}) - \frac{1}{n_C}\sum_i Y_i(\mathsf{C});$$

For our example:

$$\frac{\$675 + \$3600 + \$2300 + \$1950}{4} - \frac{\$3300 + \$2000 + \$0}{3} \approx \$365.$$

Estimating Effects: Average Causal Effect

Can't observe unit level casual effects directly;

▶ Can compute an average causal effect – for n_T party members in the visit group and n_C party members in the no visit group:

$$\frac{1}{n_T} \sum_i Y_i(\text{visit}) - \frac{1}{n_C} \sum_i Y_i(\text{none});$$

For our example:

$$\frac{\$675 + \$3600 + \$2300 + \$1950}{4} - \frac{\$3300 + \$2000 + \$0}{3} \approx \$365.$$

- Can't observe unit level casual effects directly;
- ➤ So what can we do? We can **infer** unit level effects by making an assumption consider **a unit in the treatment group**:

$$\underbrace{Y_i(\mathsf{T})}_{\mathsf{Observed}!} - Y_i(\mathsf{C}) = Y_i^*$$

- Can't observe unit level casual effects directly;
- ➤ So what can we do? We can infer unit level effects by making an assumption consider a unit in the treatment group:

$$\underbrace{Y_{i}(\mathsf{T})}_{\mathsf{Observed!}} - Y_{i}(\mathsf{C}) = Y_{i}^{*}$$

$$\underbrace{Y_{i}(\mathsf{T})}_{\mathsf{Observed!}} - Y_{i}(\mathsf{C}) = \underbrace{\frac{1}{n_{T}} \sum_{i} Y_{i}(\mathsf{T}) - \frac{1}{n_{C}} \sum_{i} Y_{i}(\mathsf{C})}_{\mathsf{Observed!}}$$

$$\mathsf{Observed!}$$

$$\mathsf{Observed!}$$

$$\mathsf{Observed!}$$

$$\mathsf{Observed!}$$

► This is called the **assumption of constant effect**.

- Can't observe unit level casual effects directly;
- ➤ So what can we do? We can **infer** unit level effects by making an assumption consider **a unit in the control group**:

$$Y_{i}(T) - \underbrace{Y_{i}(C)}_{Observed!} = Y_{i}^{*}$$

$$Y_{i}(T) - \underbrace{Y_{i}(C)}_{Observed!} = \underbrace{\frac{1}{n_{T}} \sum_{i} Y_{i}(T) - \frac{1}{n_{C}} \sum_{i} Y_{i}(C)}_{Observed!}$$

$$Y_{i}(T) = \underbrace{Y_{i}(C)}_{Observed!} + \underbrace{\left(\frac{1}{n_{T}} \sum_{i} Y_{i}(T) - \frac{1}{n_{C}} \sum_{i} Y_{i}(C)\right)}_{Observed!}$$
Observed!

► This is called the **assumption of constant effect**.

Unit	$Y_i(visit)$	$Y_i(none)$	$Y_i(visit) - Y_i(none)$
1	\$675	?	?
2	\$3600	?	?
3	?	\$3300	?
4	\$2300	?	?
5	?	\$2000	?
6	?	\$0	?
7	\$1950	?	?

Unit	$Y_i(visit)$	$Y_i(none)$	$Y_i(visit) - Y_i(none)$
1	\$675	?	\$365
2	\$3600	?	\$365
3	?	\$3300	\$365
4	\$2300	?	\$365
5	?	\$2000	\$365
6	?	\$0	\$365
7	\$1950	?	\$365

Unit	$Y_i(visit)$	$Y_i(none)$	$Y_i(visit) - Y_i(none)$
1	\$675	\$310	\$365
2	\$3600	\$3235	\$365
3	\$3665	\$3300	\$365
4	\$2300	\$1935	\$365
5	\$2365	\$2000	\$365
6	\$365	\$0	\$365
7	\$1950	\$1585	\$365

► Fair warning 1: the assignment of units to the treatment and the control groups is very consequential;

Question: how many ways are there to assign our 7 party members?

Question: how many ways would there be to assign 1000 party members?

► Fair warning 1: the assignment of units to the treatment and the control groups is very consequential;

Question: how many ways are there to assign our 7 party members?

Answer:
$$2^7 - 2 = 126$$
;

Question: how many ways would there be to assign 1000 party members?

Answer:
$$2^{1000} - 2 \approx 10^{301}$$
.

Unit	$Y_i(visit)$	$Y_i(none)$	
1	\$675	\$150	
2	\$3600	\$2500	
3	\$1900	\$3300	Average CE was:
4	\$2300	\$1000	\$365
5	\$2600	\$2000	
6	\$3000	\$0	
7	\$1950	\$2500	

Unit	$Y_i(visit)$	$Y_i(none)$	
1	\$675	\$150	
2	\$3600	\$2500	
3	\$1900	\$3300	Average CE is:
4	\$2300	\$1000	-\$1208
5	\$2600	\$2000	
6	\$3000	\$0	
7	\$1950	\$2500	

Assignment Effects: a perfect campaign manager

Unit	$Y_i(visit)$	$Y_i(none)$	
1	\$675	\$150	
2	\$3600	\$2500	
3	\$1900	\$3300	Average CE is:
4	\$2300	\$1000	-\$465
5	\$2600	\$2000	
6	\$3000	\$0	
7	\$1950	\$2500	

Assignment Effects: a perfect visit advocate

Unit	$Y_i(visit)$	Y_i (none)	
1	\$675	\$150	
2	\$3600	\$2500	
3	\$1900	\$3300	Average CE is:
4	\$2300	\$1000	\$2129
5	\$2600	\$2000	
6	\$3000	\$0	
7	\$1950	\$2500	

Causal Effect in political contribution example depends on treatment assignment

Treatment Assignment

Why should we care?

Causal inference is currently one of the most popular research methods in political science and is a simple way to gauge the effect of a binary variable.