

使用手册

CW32L031CxTx StartKit

版本号: Rev 1.0

前言

CW32L031CxTx StartKit 评估板为用户提供一种经济且灵活的方式使用 CW32L031CxTx 芯片构建系统原型。可进行性能、功耗、功能等各方面快速验证。

CW32L031CxTx StartKit 评估板需要搭配 CW-DAPLINK 调试器一起使用。

CW32L031CxTx StartKit 评估板带有 CW32L031 StartKit 软件包例程。

目录

前目	Ī		1			
1	评估	板特性	3			
2		订购信息				
3		环境				
		系统要求				
	3.2	集成开发环境	5			
	3.3	演示软件	5			
4	特别约定					
5	快速	开始	7			
	5.1	入门指南	7			
6	硬件布局					
	6.1	PCB 布局和机械尺寸	8			
	6.2	调试器使用				
	6.3 电源及电源选择					
	6.4	评估板功能	12			
7	版本	信息	20			

1 评估板特性

- CW32L031CxTx 微控制器(ARM® Cortex®-M0+ 最高主频 48MHz),LQFP48 封装,64K 字节 FLASH,8K 字节 RAM
- 3颗 LED:
 - 电源指示灯(LED3),用户指示灯(LED1,LED2)
- 三个轻触开关:
 - 复位轻触开关(S3),用户轻触开关(S1,S2)
- USB 转串口芯片 (CH340N)
- FLASH 芯片(W25Q64JVSSIQ 或者 CW25Q64AS)
- EEPROM 芯片 (CW24C02AD)
- 板载接口:
 - Mini USB接口(串口通信, USB供电)
 - 下载器调试接口
 - 所有 GPIO 口通过排针引出
- 多种方式供电: USB VBUS 供电,3.3V 供电(LD1117AS33TR 或者 AMS1117-3.3),外接 1.65V-5.5V 供电
- CW32L031-StdPeriph-Lib 软件包提供全面免费的固件库和例程
- 支持多种集成开发环境,IAR™,Keil®

2 订购信息

需订购 CW32L031CxTx StartKit 评估板,请参考下表。更多的信息可以参阅 CW32 系列 MCU 的数据手册和用户手册。

表 2-1 订购信息

评估板代码	微处理器型号
CW32L031CxTx StartKit	CW32L031CxTx

3 开发环境

3.1 系统要求

Windows® OS (7,8,10)

备注: Windows® OS 7 和 Windows® OS 8 需要安装 CW-DAPLINK 驱动

3.2 集成开发环境

- EWARM v7.70 或更高版本
 - 30 天评估版
 - 32-Kb 上限快速入门版本(Cortex M0 限 16-Kb)
- MDK-ARM v5.17 或更高版本
 - MDK-Lite (32-Kb 代码大小限制)

备注: 仅支持 Windows®

3.3 演示软件

演示软件包含在与板载微控制器对应的 CW32L031 StartKit 软件包中,并且预装在 CW32 闪存中,以便在独立模式下演示设备外设。演示软件源代码及相关文档可以从官网(www.whxy.com)上下载。

4 特别约定

本文档中 ON 和 OFF 设置的约定如下表所示:

表 4-1 ON/OFF 约定

约定	定义
跳线 Jx ON	跳线帽连接
跳线 Jx OFF	跳线帽未连接
跳线 Jx [1-2]	跳线帽连接 Pin1 和 Pin2
电阻 JPx ON	焊接 0Ω 电阻
电阻 JPx OFF	未焊接 0Ω 电阻

5 快速开始

CW32L031CxTx StartKit 评估板是一款用于快速评估 LQFP48 封装的 CW32L0 系列微控制器性能和功能的低成本开发套件。在安装和使用产品之前,请从官网接受评估产品的许可协议。

5.1 入门指南

按照下列步骤配置 CW32L031CxTx StartKit 评估板:

- 1. 确认评估板上跳线帽的位置(参见表 5-1 跳线配置);
- 2. 连接 CW-DAPLINK 调试器,确认主机端驱动程序已经正确安装,并将调试接口线正确连接至评估板;
- 3. 给评估板供电,使用 USB 电缆(Type-A 转 Mini USB)连接至评估板 USB 连接器 CN1;
- 4. 红色 LED3 点亮(电源指示灯),绿色 LED1,LED2 交替闪烁;
- 5. 按下 S1 按钮,可观察 LED1 闪烁, LED2 熄灭;
- 6. 按下 S2 按钮, 可观察 LED2 闪烁, LED1 熄灭;
- 7. 可在官网下载 CW32L031 StartKit 演示软件,有助于快速了解 CW32L031CxTx StartKit 评估板特征;
- 8. 根据提供的例程开发用户自己的程序。

表 5-1 跳线配置

跳线	定义	位置	功能
J24[1-2]	VDDLDO	ON	使用 VDDLDO 降压后的电源给系统供电
J23	系统电源	ON	短接不进行系统电流测量
J10	模拟电源	ON	短接不进行模拟部分电流测量
J6	数字电源	ON	短接不进行数字部分电流测量

6 硬件布局

CW32L031CxTx StartKit 评估板是围绕 LQFP48 封装的 CW32 微控制器设计的。图 6-1 顶层器件布局显示了 CW32 微控制器芯片与其外围设备(按钮、LED、FLASH、EEPROM、USB 转串口、调试器接口)之间的位置。图 6-2 CW32L031CxTx StartKit 机械尺寸显示了评估板的机械尺寸。

6.1 PCB 布局和机械尺寸

图 6-1 顶层器件布局

100.0mm 90.0mm C19

DVSS DVSS

PCRX PA08

PCTX PA09

VDDU VDDU J1 SWDIO DVSS J3 NRST **₩**₩₩ 000T0 WCLK VDDLDO ● ■21 VDDUSB ● ●43 DCIN ● ●65 J23
J10
J6 B3 CN1 DVSS DCIN CW32L031CxTx **)** 13 DVS
 DVS
 DVC
 DVC R17 CN5 CN3 StartKit REV01 00 100.0mm CN24 90.0mm C8 (1) U5 • • • • • JP12 C10
JP11 C12 J2 52 E C17 () R66 () R65 () ● EVDDVDDIN
● WP PB05
● SCL PB06 ■ B1 **₽**? 00 ■ SDA PB07 ■ R67 U1 PB08 LED2 R19 **I I II** 22.8mm KEY2 ■ R2 R18 PB09 LED1 KEY1 ■ R1 31.5mm 42.5mm 89.0mm

图 6-2 CW32L031CxTx StartKit 机械尺寸

6.2 调试器使用

芯源半导体提供 CW-DAPLINK 调试器供用户使用,使用 USB 电缆连接主机与调试器(Type-A 转 Type-C),同时评估板也支持使用 ST-LINK 和 J-LINK 调试器。连接方式如下图所示:

图 6-3 典型的连接方式

CW-DAPLINK 驱动

若使用的是 Windows®10 系统,CW-DAPLINK 是免安装驱动的,对于部分 Windows®7 或 Windows®8 系统,会存在 CW-DAPLINK 虚拟串口不可用的情况,这时需要手动添加驱动。

驱动可在官网上下载。驱动程序安装步骤详情参阅 CW-DAPLINK 使用手册。

6.3 电源及电源选择

电源可通过 USB 提供,也可由外部电源提供:CN24 排针 DCIN 引脚(1.8V 至 5.5V)。微控制器工作电压可通过 J24 进行选择,J24 的配置情况如下表所示:

表 6-1 J24 配置情况

跳线连接	控制器工作电压
J24[1-2]	3.3V(LDO 转换电压)
J24[3-4]	5V(USB 输入电压)
J24[5-6]	DCIN 输入电压

6.4 评估板功能

LED

- 电源指示灯 LED3 红色 LED3 亮表示评估板已通电,若 J23、J6、J10 连接,此时微控制器已通电。
- 用户 LED1、LED2 绿色 LED1 和 LED2 连接至 CW32L031C8T6 I/O:
 - PB09 连接至 LED1 阳极
 - PB08 连接至 LED2 阳极

轻触开关

- S3 复位开关 该开关连接至 NRST,用于复位 CW32L0 微控制器。
- S1、S2用户开关
 PA01连接至S2,外接上拉电阻
 PA02连接至S1,外接上拉电阻

USB 转串口

CW32L031CxTx StartKit 评估板已焊接 CH340N USB 转串口芯片,用户可使用 J3 排针配置 CH340N 工作电压(VDDU),串口发送引脚连接 I/O(PCTX),串口接收引脚连接 I/O(PCRX)。用户可通过短接跳线帽的方式实现 CH340N 端口和 MCU 端口对接,下表介绍 J3 的配置情况:

 跳线连接
 连接关系

 J3[3-4]
 PA08 和 PCRX 连接

 J3[5-6]
 PA09 和 PCTX 连接

 J3[7-8]
 VDDIN 和 VDDU 连接

表 6-2 J3 连接说明

CH340N 为 3.3V 或 5V 工作电压时(J3 VDDU 连接不同的电源),J1 的连接方式如下表:

表 6-3 J1 连接说明

CH340N 工作电压	J1 连接
3.3V	J1[2-3]
5V	J1[1-2]

FLASH 芯片

CW32L031CxTx StartKit 评估板已焊接 W25Q64JVSSIQ 或 CW25Q64AS 型号的 FLASH 芯片,用户可使用 J2 双排排针配置 FLASH 芯片的工作电压(FVDD),SPI_NCS 引脚 (NCS),SPI_MISO 引脚 (MISO),SPI_MOSI 引脚 (MOSI),SPI_SCK 引脚 (SCK)。

用户可通过短接跳线帽的方式实现 FLASH 端口和 MCU 端口对接,J2 的配置情况如下表:

表 6-4 J2 连接说明

跳线连接	连接关系
J2[1-2]	PA15 和 NCS 连接
J2[3-4]	PA11 和 MISO 连接
J2[5-6]	PA12 和 MOSI 连接
J2[7-8]	PA10 和 SCK 连接
J2[9-10]	VDDIN 和 FVDD 连接

EEPROM 芯片

CW32L031CxTx StartKit 评估板已焊接 CW24C02AD EEPROM 芯片,用户可使用 J11 双排排针配置 CW24C02AD 工作电压(EVDD),SDA引脚(SDA),SCL引脚(SCL),WP引脚(WP)。

用户可通过短接跳线帽的方式实现 EEPROM 端口和 MCU 端口对接,J11 的配置情况如下表:

表 6-5 J11 连接说明

跳线连接	连接关系
J11[1-2]	SDA 和 PB07 连接
J11[3-4]	SCL 和 PB06 连接
J11[5-6]	WP 和 PB05 连接
J11[7-8]	EVDD 和 VDDIN 连接

晶振

CW32L031CxTx StartKit 评估板已焊接 16MHz 高速晶振和 32.768KHz 低速晶振,默认连接至 PF00/PF01 和 PC14/PC15 端口上,下表介绍了使用不同的电阻焊接方式进行晶振接口与普通 GPIO 的切换。

表 6-6 晶振与普通 GPIO 配置

电阻 JPx 焊接方式	功能
电阻 JP6 JP7 ON,JP5 JP8 OFF	PF00 PF01 连接高速晶振
电阻 JP6 JP7 OFF,JP5 JP8 ON	PF00 PF01 作为普通 GPIO
电阻 JP2 JP3 ON,JP1 JP4 OFF	PC14 PC15 连接低速晶振
电阻 JP2 JP3 OFF,JP1 JP4 ON	PC14 PC15 作为普通 GPIO

编程器接口

CW32L031CxTx StartKit 评估板将编程器接口引出,用户可将编程器连接至 CN7 编程器接口,进行离线编程。

扩展接口

CW32L031CxTx StartKit 评估板将微控制 GPIO 引出至排针,其布局如下图所示,引脚功能如下表所示:

■ 6-4 扩展接口布局

| SSSS | SSSS

表 6-7 引脚功能

连接器	引脚编号	CW32F0 引脚	功能
	1-4	DVSS	地
	5,6	DVCC	数字电源
	7,8	PC13	UART1_TXD, RTC_1Hz, UART1_CTS, RTC_OUT, BTIM_ETR, RTC_TAMP
	9,10	PC14	AWT_ETR, UART2_TXD, UART1_RTS, BTIM2_TOGN, UART2_RXD
	11,12	PC15	HSE_OUT, UART2_RXD, MCO_OUT, BTIM2_TOGP, UART2_TXD, UART1_RXD
	13,14	PF00	AWT_ETR, UART3_TXD, I2C_SDA, BTIM1_TOGN, UART3_RXD, GTIM2_TOGP
CN2	15,16	PF01	LSE_OUT, UART3_RXD, I2C_SCL, BTIM1_TOGP, UART3_TXD, GTIM2_TOGN
	17,18	NRST	芯片复位输入
	19,20	VSSA	模拟地
	21,22	VDDA	模拟电源
	23,24	PA00	UART3_CTS, UART2_CTS, RTC_TAMP, VC1_OUT, GTIM2_CH1, GTIM2_ETR
	25,26	PA01	UART3_RTS, UART2_RTS, LVD_OUT, GTIM2_CH2, RTC_TAMP
	27,28	PA02	UART3_TXD, UART2_TXD, VC2_OUT, GTIM2_CH3, AWT_ETR
	29-32	DVSS	地

连接器	引脚编号	CW32F0 引脚	功能
	1-4	DVSS	地
	5,6	PA03	UART3_RXD, UART2_RXD, GTIM2_CH2, PCLK_OUT, UART3_TXD, GTIM2_CH4, ATIM_CH3A
	7,8	PA04	MCO_OUT, UART2_CTS, HCLK_OUT, SPI_CS, GTIM2_ETR, ATIM_CH2A
	9,10	PA05	GTIM2_ETR, UART2_RTS, BTIM2_TOGN, SPI_SCK, GTIM2_CH1, ATIM_CH1A
	11,12	PA06	UART2_RXD, UART2_TXD, VC1_OUT, BTIM2_TOGP, SPI_MISO, GTIM1_CH1, ATIM_BK
	13,14	PA07	UART2_TXD,UART2_RXD, VC2_OUT, BTIM1_TOGN, SPI_MOSI, GTIM1_CH2, ATIM_CH1B
CN3	15,16	PB00	UART2_RXD, UART1_CTS, UART2_TXD, BTIM1_TOGP, HSIOSC_OUT, GTIM1_CH3, ATIM_CH2B
	17,18	PB01	UART2_TXD, UART1_RTS, UART2_RXD, BTIM3_TOGN, GTIM1_CH4, ATIM_CH3B
	19,20	PB02	UART2_CTS, UART1_TXD, HSE_OUT, UART1_RXD, BTIM3_TOGP, GTIM1_ETR, ATIM_CH1A
	21,22	PB10	UART2_RTS, UART1_RXD, I2C_SCL, UART1_TXD, GTIM2_CH3, ATIM_CH2A
	23,24	PB11	LSI_OUT, I2C_SDA, BTIM_ETR, GTIM2_CH4, ATIM_CH3A
	25-28	DVCC	数字电源
	29-32	DVSS	地

连接器	引脚编号	CW32F0 引脚	功能
	1-4	DVSS	地
	5,6	PB12	GTIM2_TOGP, LSE_OUT, SPI_CS, GTIM1_TOGP, ATIM_BK
	7,8	PB13	GTIM2_TOGN, SPI_SCK, GTIM1_TOGN, ATIM_CH1B
	9,10	PB14	GTIM2_CH1, SPI_MISO, RTC_OUT, ATIM_CH2B
	11,12	PB15	GTIM2_CH2, BTIM2_TOGN, SPI_MOSI, RTC_1Hz, ATIM_CH3B
	13,14	PA08	UART1_TXD, BTIM2_TOGP, MCO_OUT, LVD_OUT, ATIM_CH1A
CN4	15,16	PA09	UART3_TXD, UART1_RXD, I2C_SCL, BTIM1_TOGN, SPI_CS, UART3_RXD, ATIM_CH2A
	17,18	PA10	UART3_RXD, UART1_CTS, I2C_SDA, BTIM1_TOGP, SPI_SCK, UART3_TXD, ATIM_CH3A
	19,20	PA11	UART3_CTS, UART1_RTS, VC1_OUT, SPI_MISO, ATIM_GATE
	21,22	PA12	UART3_RTS, BTIM_ETR, VC2_OUT, SPI_MOSI, ATIM_ETR
	23,24	PA13	I2C_SDA, UART1_RXD, UART2_TXD, IR_OUT
	25,26	PF06	UART3_CTS, I2C_SCL, UART2_CTS, BTIM3_TOGN
	27,28	PF07	UART3_RTS, I2C_SDA, UART2_RTS, BTIM3_TOGP
	29-32	DVSS	地

连接器	引脚编号	CW32F0 引脚	功能
CN5	1-4	DVSS	地
	5,6	PA14	UART3_TXD, I2C_SCL, UART1_TXD, UART2_RXD
	7,8	PA15	UART3_RXD, GTIM2_CH1, UART1_RXD, UART2_RXD, SPI_CS, GTIM2_ETR, ATIM_CH1B
	9,10	PB03	UART3_RTS, GTIM2_CH2, UART1_CTS, UART2_TXD, SPI_SCK, GTIM1_ETR, ATIM_CH2B
	11,12	PB04	UART3_CTS,UART1_RTS, UART2_CTS, SPI_MISO, GTIM1_CH1, ATIM_CH3B
	13,14	PB05	AWT_ETR, UART2_RTS, SPI_MOSI, GTIM1_CH2, ATIM_CH1A
	15,16	PB06	UART3_TXD,UART3_RXD, I2C_SCL, GTIM1_TOGP, ATIM_CH2A
	17,18	PB07	UART3_RXD,UART3_TXD, I2C_SDA, GTIM1_TOGN, ATIM_CH3A
	19,20	ВООТ	
	21,22	PB08	I2C_SCL, UART1_RXD, UART1_TXD, GTIM1_CH3, ATIM_ETR
	23,24	PB09	I2C_SDA, UART1_TXD, UART1_RXD, IR_OUT, GTIM1_CH4, ATIM_BK
	25-28	DVCC	数字电源
	29-32	DVSS	地

补充说明:

- 1. JP9、JP11、JP12、JP13 电阻位说明 在进行 ADC 采样时,可将 JP9、JP11、JP12、JP13 电阻位焊接 0Ω 电阻,可对采样信号进行滤波。在使用 GPIO 其他功能时,需断开 JP9、JP11、JP12、JP13 连接的 0Ω 电阻。
- 2. J25 BOOT 引脚说明 默认 BOOT 引脚为低电平,若用户需要设置 BOOT 引脚为高电平,可将 J25 短接。

7 版本信息

表 7-1 文档修订信息

日期	版本	变更信息
2022-08-12	Rev 1.0	初始发布