Seismic Energy Forecast for World

2025 September 07-12-21 - potential earthquake or eruption in World

Version: 0

First Revision: 2025-09-10 00:41:05

Last Revision: Rev. 0 - 2025-09-10 00:41

Index

- 1. Revision History
- 2. Explanation of Terms and Concepts
- 3. Forecasts
- 3.1 M 7.7+ Seismic Energy Forecast (possible earthquake or eruption), res:1 week, UTC (focus: cycle4)
 - 3.2 Validation Quality Check
- 4. Features Used For Magnitude
- 5. Astronomical Features Used
- 6. Summary and Conclusion
- 7. Attribution and Disclaimers

1. Revision History

Vers ion	Date	Aut hor	Description
0	2025-09-10 00:41:05	MF	Seismic Energy Forecast for Potential Earthquake or Eruption in World
	first emission		

2. Explanation of Terms and Concepts

About Features used to produce this forecast

We produced this forecast using the following specific source:

- 1. astronomical solar system data (same day 0 shift)
- 2. seismic sensor GPS data (60 days shift)
- 3. tropospheric data (60 days shift)

The Purpose it to demonstrate the validity of using GPS + TROPO data several week before a seismic event.

Time series sharpness achievable by astronomical data only can be up to 7 days.

This study demonstrate that using augmented data in past geophysical observations can rise the time line sharpness up to 24 hrs and more.

About Graph system

Note: **trend** graph

Forecast graph and tables refer to a <u>base</u> value, against it.

For instance if a value of 37 per latitude is the base line and graph value is 0% it means that the location estimated for that period of time is UNDER 37.

Another example is for magnitude graph, with baseline Mw 7.0, 0% means no risk detected, and 100% means high risk detected

About Time Slot

Note: each date point represent the beginning of the time slot

For instance if a forecast time point is on 2025-01-01 and the graph resolution is 7 days, it's a forecast for 2025-01-01 until 2025-01-06 (UTC)

3. Forecasts

3.1 M 7.7+ Seismic Energy Forecast (possible earthquake or eruption), res:1 week, UTC (focus: cycle4)

△ Higher Risk Detected for Following Dates:

- 1. from 2025-09-21 to 2025-09-28 (UTC) Risk Value: 0.602
- 2. from 2025-10-12 to 2025-10-19 (UTC) Risk Value: 0.534
- 3. from 2025-12-07 to 2025-12-14 (UTC) Risk Value: 0.529

Each date represent the BEGINNING of time slot This seismic energy forecast highlights potential earthquakes or eruptions in World.

3.2 Validation Quality Check

4. Features Used For Magnitude

Generated: 2025-09-10T06:02:19.794304 **Cycles Analyzed:** explore, cycle1, cycle2, cycle3, cycle4, cycle5, cycle6, cycle7

EXPLORE Analysis

Trial Statistics

Metric	Min	Max	Average
Hyperopt Loss (lower is better)	0.56	0.72	0.64
Metric Score (mse,f1,r2) (lower is better)	0.29	0.29	0.29

Validation Analysis

Best trial validation for this cycle contrasted with real values.

Forecast Analysis

Analysis of ALL features present in the source files

	Astro	Tropo	Pos
Count	25	0	0
Percentage	89.3%	0.0%	

Summary Insights

Complete Dataset:

- Astronomical data represents 89.3% of all features (25 features)
- Target variables represent 7.1% of all features (2 features)
- Dominant category in complete dataset: Astro features

CYCLE1 Analysis

Trial Statistics

Metric	Min	Max	Average
Hyperopt Loss (lower is better)	0.58	0.99	0.79
Metric Score (mse,f1,r2) (lower is better)	0.27	0.36	0.32

Validation Analysis

Best trial validation for this cycle contrasted with real values.

Forecast Analysis

Analysis of ALL features present in the source files

	Astro	Tropo	Pos
Count	20	0	0
Percentage	87.0%	0.0%	0.0%

Summary Insights

Complete Dataset:

- Astronomical data represents 87.0% of all features (20 features)
- Target variables represent 8.7% of all features (2 features)
- Dominant category in complete dataset: Astro features

CYCLE2 Analysis

Trial Statistics

Metric	Min	Max	Average
Hyperopt Loss (lower is better)	0.44	0.68	0.56
Metric Score (mse,f1,r2) (lower is better)	0.33	0.36	0.34

Validation Analysis

Best trial validation for this cycle contrasted with real values.

Forecast Analysis

Analysis of ALL features present in the source files

	Astro	Tropo	Pos
Count	35	0	0
Percentage	92.1%	0.0%	0.0%

Summary Insights

Complete Dataset:

- Astronomical data represents 92.1% of all features (35 features)
- Target variables represent 5.3% of all features (2 features)
- Dominant category in complete dataset: Astro features

CYCLE3 Analysis

Trial Statistics

Metric	Min	Max	Average
Hyperopt Loss (lower is better)	0.63	0.64	0.63
Metric Score (mse,f1,r2) (lower is better)	0.35	0.35	0.35

Validation Analysis

Best trial validation for this cycle contrasted with real values.

Forecast Analysis

Analysis of ALL features present in the source files

	Astro	Tropo	Pos
Count	28	0	0
Percentage	90.3%	0.0%	0.0%

Summary Insights

Complete Dataset:

- Astronomical data represents 90.3% of all features (28 features)
- Target variables represent 6.5% of all features (2 features)
- Dominant category in complete dataset: Astro features

CYCLE4 Analysis

Trial Statistics

Metric	Min	Max	Average
Hyperopt Loss (lower is better)	0.44	0.60	0.52
Metric Score (mse,f1,r2) (lower is better)	0.30	0.31	0.30

Validation Analysis

Best trial validation for this cycle contrasted with real values.

Forecast Analysis

Analysis of ALL features present in the source files

	Astro	Tropo	Pos
Count	29	0	0
Percentage	ntage 90.6%		0.0%

Summary Insights

Complete Dataset:

- Astronomical data represents 90.6% of all features (29 features)
- Target variables represent 6.2% of all features (2 features)
- Dominant category in complete dataset: Astro features

CYCLE5 Analysis

Trial Statistics

Metric	Min	Max	Average
Hyperopt Loss (lower is better)	0.71	0.76	0.74
Metric Score (mse,f1,r2) (lower is better)	0.20	0.30	0.25

Validation Analysis

Best trial validation for this cycle contrasted with real values.

Forecast Analysis

Analysis of ALL features present in the source files

	Astro	Tropo	Pos
Count	19	0	0
Percentage	86.4%	0.0%	0.0%

Summary Insights

Complete Dataset:

- Astronomical data represents 86.4% of all features (19 features)
- Target variables represent 9.1% of all features (2 features)
- Dominant category in complete dataset: Astro features

CYCLE6 Analysis

Trial Statistics

Metric	Min	Max	Average
Hyperopt Loss (lower is better)	0.61	0.91	0.76
Metric Score (mse,f1,r2) (lower is better)	0.39	0.43	0.41

Validation Analysis

Best trial validation for this cycle contrasted with real values.

Forecast Analysis

Analysis of ALL features present in the source files

	Astro	Tropo	Pos
Count	14	0	0
Percentage	82.4%	0.0%	0.0%

Summary Insights

Complete Dataset:

- Astronomical data represents 82.4% of all features (14 features)
- Target variables represent 11.8% of all features (2 features)
- Dominant category in complete dataset: Astro features

CYCLE7 Analysis

Trial Statistics

Metric	Min	Max	Average
Hyperopt Loss (lower is better)	0.50	0.65	0.58
Metric Score (mse,f1,r2) (lower is better)	0.38	0.40	0.39

Validation Analysis

Best trial validation for this cycle contrasted with real values.

Forecast Analysis

Analysis of ALL features present in the source files

	Astro	Tropo	Pos
Count	13	0	0
Percentage	81.2%	0.0%	0.0%

Summary Insights

Complete Dataset:

- Astronomical data represents 81.2% of all features (13 features)
- Target variables represent 12.5% of all features (2 features)
- Dominant category in complete dataset: Astro features

Features Analysis • CYCLE7 Analysis

Cross-Cycle Summary

Cycle	Best Trial	GPS Features	Tropo Features	Astro Features	Hyperopt Loss	Metric Score (mse,f1,r2)	Hybrid Score
explore	18	N/A	N/A	25	0.56	0.29	0.42
cycle1	6	N/A	N/A	20	0.58	0.27	0.42
cycle2	18	N/A	N/A	35	0.44	0.36	0.40
cycle3	69	N/A	N/A	28	0.63	0.35	0.49
cycle4	49	N/A	N/A	29	0.44	0.31	0.37
cycle5	42	N/A	N/A	19	0.71	0.20	0.45
cycle6	29	N/A	N/A	14	0.61	0.43	0.52
cycle7	60	N/A	N/A	13	0.50	0.40	0.45

5. Astronomical Features Used

Astronomical Features Used per Cycle - trialset20250909-215931

Focus cycle: cycle4

Cycle	Loss	Hybrid	Bodies	Observers	Ephemerides	Operations
explore	0.56	0.42	136199, 199, 301, 699	geo_27.9881;86.925;0, geo_35.6895;139.6917;0	dec_rate, el, suntargetpa	max, min
cycle1	0.58	0.42	101955, 499, 599, 699	geo_27.9881;86.925;0, geo_35.6895;139.6917;0	delta, el, lunar_presence, solar_presence	max
cycle2	0.44	0.40	10, 199, 499, 599	geo_27.9881;86.925;0, geo_35.6895;139.6917;0	dec_rate, delta, el, lunar_presence, suntargetpa	max
cycle3	0.63	0.49	101955, 136199, 502	geo_19.4326;-99.1332;0, geo_35.6895;139.6917;0	az, delta_rate, el, lunar_presence, velocitypa	min
cycle4	0.44	0.37	136199, 199, 301, 699	geo_35.6895;139.6917;0, geo_38.2975;-122.2869;0	el, lunar_presence, ra_rate, solar_presence, velocitypa	min
cycle5	0.71	0.45	101955, 301, 499	geo_19.4326;-99.1332;0, geo_35.6895;139.6917;0	dec_rate, lunar_presence, solar_presence, velocitypa	max, min
cycle6	0.61	0.52	2012vp113, 299, 301, 699	geo_19.4326;-99.1332;0	dec_rate, lunar_presence, suntargetpa, velocitypa	min
cycle7	0.50	0.45	136199, 2012vp113, 299, 699	geo_38.2975;-122.2869;0	az, ra_rate, suntargetpa	max, min

Bodies are represented by their NAIF ID (unique identifiers for celestial bodies from NASA/JPL); observers use geo_lat;lon;height schema. Ephemerides are Horizons fields; operations are aggregations like min/max.

6. Summary and Conclusion

Summary of Findings

Elevated seismic energy suggests potential earthquakes or eruptions in World. Peak dates: 2025-09-21, 2025-10-12, 2025-12-07 (UTC).

Conclusions

Increased seismic energy indicates potential earthquakes or eruptions for 2025-09-21, 2025-10-12, 2025-12-07 in World.

Even if the risk appears slight or moderate, preparation is necessary because the epicenter could be near your location. A separate report is required to estimate its position. Al-generated reports may create false alarms or underestimate the risks. Do not use this report to make important decisions. This work is for research purposes only.

7. Attribution and Disclaimers

Data Sources

- Seismic data utilized in this report is sourced from the USGS Earthquake Catalog and the Japan Meteorological Agency (JMA).
- Planetary ephemeris data provided by NASA/JPL Horizons System.
- All tropo + gps positional data provided by NASA/JPL

Disclaimer of Liability

This report is generated for research and informational purposes only. The forecasts presented are based on statistical models and historical data; they are not deterministic predictions. The authors and distributors of this report assume no liability for any actions taken or decisions made based on the information contained herein.

Responsibility Statement

The analysis and conclusions represent the best judgment of our research team based on the available data. This is not an official warning or alert. For official information, please consult your local government and geological survey authorities.