Example: Even Integers Form a Subgroup

Example: Even Integers Form a Subgroup

The set of even integers $2\mathbb{Z} = \{..., -4, -2, 0, 2, 4, ...\}$ forms a Subgroup of the Integers under Addition.

Verification

To show that $2\mathbb{Z}$ is a subgroup of $(\mathbb{Z}, +)$, we need to verify:

- 1. Non-empty: $0 \in 2\mathbb{Z}$ since $0 = 2 \cdot 0$.
- 2. Closure: If $a, b \in 2\mathbb{Z}$, then a = 2m and b = 2n for some $m, n \in \mathbb{Z}$. Thus:

$$a+b=2m+2n=2(m+n)\in 2\mathbb{Z}$$

3. Inverses: If $a \in 2\mathbb{Z}$, then a = 2m for some $m \in \mathbb{Z}$. The inverse is:

$$-a = -(2m) = 2(-m) \in 2\mathbb{Z}$$

Therefore, $2\mathbb{Z}$ is a subgroup of \mathbb{Z} under addition.

Properties

- This is a proper subgroup since $1 \in \mathbb{Z}$ but $1 \notin 2\mathbb{Z}$.
- This subgroup has index 2 in \mathbb{Z} , meaning there are exactly 2 cosets.
- The cosets are $2\mathbb{Z}$ (even integers) and $1 + 2\mathbb{Z}$ (odd integers).

Dependency Graph

Local dependency graph