

Plano de Ensino para o Ano Letivo de 2021

IDENTIFICAÇÃO								
Disciplina:				Cóc	ligo da Disciplina:			
Programação Orientada a Objetos e Banco de Dados				ECA304				
Course:				l .				
Programação Orientada a Objetos e Banco de Dados								
Materia:								
Programação Orientada a Objetos e Banco de Dados								
Periodicidade: Anual	Carga horária total:	68	Carga horária seman	al: 00	- 00 - 02			
Curso/Habilitação/Ênfase:	•		Série:	Período	:			
Engenharia de Controle e Automação			3	Diurno				
Engenharia de Controle e Automação			4	Noturno				
Engenharia de Controle e Automação			4	Diurno				
Engenharia de Controle e Automação			4	Noturr	10			
Professor Responsável: Titulação - Graduação			Pós-Graduação					
Alexandre Harayashiki Moreira		Engenheiro em Controle e Automação		Mestre				
Professores:		Titulação - Graduação		Pós-Graduação				
Alexandre Harayashiki Moreira		Engenheiro em Controle e Automação		Mestre				
Anderson Harayashiki Moreira		Engenheiro em Controle e Automação		Doutor				
MODALIDADE DE ENSINO								

Presencial: 0%

Mediada por tecnologia: 100%

* Em qualquer modalidade a entrega de atividades e trabalhos deve ser realizada segundo orientações do professor da disciplina.

ATIVIDADES DE EXTENSÃO

A DISCIPLINA NÃO CONTEMPLA ATIVIDADES DE EXTENSÃO.

EMENTA

Conceitos de engenharia de software. Conceitos do paradigma da orientação a objetos: classe, objeto, atributo, método, estado, herança, polimorfismo, métodos virtuais. Conceitos de modelagem orientada a objetos com UML. Modelagem de banco de dados com diagramas de entidade-relacionamento. Bancos de dados: conceitos, normalização, criação e manipulação de bancos de dados com a linguagem SQL. Implementação de sistemas cliente-servidor.

SYLLABUS

Software engineering concepts. Paradigm concepts of object orientation: class, object, attribute, method, state, inheritance, polymorphism, virtual methods. Concepts of object-oriented modeling with UML. Database modeling with entity-relationship diagrams. Databases: concepts, standardization, creation and manipulation of databases with SQL. Implementation of client-server systems.

2021-ECA304 página 1 de 8

TEMARIO

Conceptos de ingeniería de software. Conceptos paradigma de orientación a objetos: clase, objeto, atributo, método, estado, herencia, polimorfismo, métodos virtuales. Conceptos de modelado orientado a objetos con UML. Modelado de bases de datos con los diagramas entidad-relación. Bases de datos: conceptos, de normalización, de creación y manipulación de bases de datos con SQL. Implementación de sistemas cliente-servidor.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Considera-se como requisito básico para o acompanhamento da disciplina o conhecimento do uso de computadores e de uma linguagem de programação de alto nível (Pascal, Delphi, C ou outra), bem como lógica de programação.

COMPETÊNCIAS DESENVOLVIDAS NA DISCIPLINA

COMPETÊNCIA 1:

I - formular e conceber soluções desejáveis de engenharia, analisando e compreendendo os usuários dessas soluções e seu contexto.VIII - aprender de forma autônoma e lidar com situações e contextos complexos, atualizando-se em relação aos avanços da ciência, da tecnologia e aos desafios da inovação.

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

Conhecimentos:

- 1 Conhecer ferramentas e tecnologias para o desenvolvimento de sistemas orientados a objetos e com bancos de dados;
- 2 Conhecer o significado e a necessidade de tratar o software como um produto de Engenharia;
- 3 Adquirir familiaridade com processos de desenvolvimento de sistemas.

Habilidades:

- 1 Trabalhar em equipe;
- 2 Adquirir uma visão geral do processo de desenvolvimento de sistemas orientado a objetos;
- 3- Implementar sistemas de software orientados a objetos e com banco de dados;

Atitudes:

- 1 Ter iniciativa para solução de problemas;
- 2 Iniciativa de pesquisar soluções de problemas existentes em um projeto de software;
- 3 Ter uma postura de trabalho em grupo.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Laboratório - Sim

2021-ECA304 página 2 de 8

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Project Based Learning
- Problem Based Learning

METODOLOGIA DIDÁTICA

As aulas serão ministradas em uma sala de aula com microcomputador para o professor, com recursos audiovisuais acoplados ao mesmo e microcomputadores para o desenvolvimento de projetos pelos alunos.

Os trabalhos práticos serão avaliados de acordo com pequenos projetos de software e exercícios baseados em estudos de caso que se estenderão durante o ano.

INSTRUMENTOS DE AVALIAÇÃO

NENHUM INSTRUMENTO DE AVALIACAO FOI ADICIONADA.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014) e CRITÉRIOS DE APROVAÇÃO

Disciplina anual, com trabalhos.

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0 \quad k_3: 2,0$

INFORMAÇÕES SOBRE INSTRUMENTOS DE AVALIAÇÃO

CONTRIBUIÇÃO DA DISCIPLINA

O Engenheiro de Controle e Automação trabalha com a aplicação direta de conceitos tanto de hardware quanto de software. Em termos de software, existem dois conhecimentos que são imprescindíveis para a criação de sistemas de porte arbitrário deste tipo: programação orientada a objetos e bancos de dados. A disciplina Programação Orientada a Objetos e Banco de Dados contribui neste sentido ao oferecer os conhecimentos fundamentais para a programação orientada a objetos com a linguagem de programação Python e de bancos de dados relacionais com o sistema gerenciador de bancos de dados MySQL. Além disso, procura-se transmitir a importância de que projetos de softwares devam ser tratados como legítimos projetos de engenharia, ou seja, como produtos resultantes de um processo bem definido e controlado de desenvolvimento.

BIBLIOGRAFIA

Bibliografia Básica:

BARRY, Paul. Use a cabeça! Python. Rio de Janeiro: Alta Books, 2012. 458 p. ISBN 9788576087434.

MENEZES, Nilo Ney Coutinho. Introdução à programação com Python: algoritmos e lógica de programação para iniciantes. São Paulo: Novatec, 2010. 222 p. ISBN 9788575222508.

2021-ECA304 página 3 de 8

SUMMERFIELD, Mark. Programação em Python 3: uma introdução completa à linguagem Phython. Rio de Janeiro: Alta Books, 2012. 506 p. ISBN 9788576083849.

Bibliografia Complementar:

DATE, C. J. Introdução a sistemas de bancos de dados. SOUZA, Vanderberg D. de (Trad.). 7. ed. Rio de Janeiro: Campus, c2000. 803 p. ISBN 85352-05608.

MONK, Simon. Programando com o Raspberry Pi: primeiros passos com Python. São Paulo: Novatec, 2013. 190 p. ISBN 9788575223574.

McGUGAN, Will. Beginning game development with Python and Pygame: from novice to professional. Berkeley: Apress, 2007. 316 p. ISBN 139781590598726.

RICHARDSON, Matt; WALLACE, Shawn. Primeiros passos com Raspberry Pi. São Paulo: Novatec, 2013. 192 p. ISBN 9788575223451.

UPTON, Eben; HALFACREE, Gareth. Raspberry Pi: manual do usuário. São Paulo: Novatec, 2013. 269 p. ISBN 9788575223512.

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

Anaconda

Instalar os seguintes módulos adicionais ao Python:

- PIP
- Pygame
- Kivy
- PyQT 5
- TensorFlow

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

A avaliação de trabalhos consta de:

- 1. Exercícios de programação desenvolvidos em laboratório;
- 2. Projetos de programação / estudos de caso;
- 3. Participação no ambiente de ensino a distância (Moodle);
- 4. Testes realizados no ambiente de ensino a distância (Moodle);
- 5. Projeto integrador (Terceiro e Quarto Bimestre)

A média final da disciplina é definida da seguinte maneira:

MF = (T1 + T2 + 3*T3)/4

2021-ECA304 página 4 de 8

OUTRAS INFORMAÇÕES

A avaliação de trabalhos consistirá em:

- 1. Projetos desenvolvidos no laboratório de informática;
- 2. Exercícios de programação desenvolvidos em laboratório ;
- 3. Arguições realizadas em aula;
- 4. Participação no ambiente EaD.

Os trabalhos serão desenvolvidos em sala de aula por até dois alunos por computador.

Sobre diversidade:

O desenvolvimento das atividades desta disciplina compõe um processo de aprendizagem onde você será tratado com respeito. São bem-vindos indivíduos de todas as idades, origens, crenças, etnias, gêneros, identidades de gênero, expressões de gênero, origens nacionais, afiliações religiosas, orientações sexuais e outras diferenças visíveis e não visíveis. Espera-se que todos os matriculados nesta disciplina contribuam para um ambiente respeitoso, acolhedor e inclusivo para todos.

2021-ECA304 página 5 de 8

APROVAÇÕES

2021-ECA304 página 6 de 8

INSTITUTO MAUÁ DE TECNOLOGIA

	PROGRAMA DA DISCIPLINA			
N° da	Conteúdo	EAA		—
semana				
1 L	Semana de recepção dos calouros.	0		
2 L	Apresentação da disciplina: Introdução à Linguagem Python e ao	0		
	ambiente de desenvolvimento.			
3 L	Tipos e operações em Python: Tipos básicos de dados em Python.	41%	a 6	 0%
4 L	Tipos e operações em Python: Funções e Módulos I.	41%	a 6	 0%
5 L	Tipos e operações em Python: Funções e Módulos II.	41%	a 6	0%
6 L	Tipos e operações em Python: String.	41%	a 6	0%
7 L	Tipos e operações em Python: Listas e Dicionários.	41%	a 6	0%
8 L	Avaliação Bimestral.	91%	a	
		100%		
9 L	Semana de Provas - P1.	0		
10 L	Introdução à Classes e Programação Orientada a Objetos em Python:	41%	a 6	0%
	Aula I - Conceitos Básicos e Diagrama UML.			
11 L	Introdução à Classes e Programação Orientada a Objetos em Python:	41%	a 6	0%
	Aula II - Sobrecarga de Métodos e Herança Simples.			
12 L	Introdução à Classes e Programação Orientada a Objetos em Python:	41%	a 6	 0 %
	Aula III - Interfaceamento entre classes.			
13 L	Introdução à Classes e Programação Orientada a Objetos em Python:	41%	a 6	0%
	Aula IV - Métodos e atributos públicos, protegidos e privados.			
14 L	Introdução à Classes e Programação Orientada a Objetos em Python:	41%	a 6	 0왕
	Aula IV - Métodos e atributos públicos, protegidos e privados.			
15 L	Desenvolvimento de interfaces gráficas em Python: Aula I.	41%	a 6	 0왕
16 L	Desenvolvimento de interfaces gráficas em Python: Aula II.	41%	a 6	 0왕
17 L	Desenvolvimento de interfaces gráficas em Python: Aula III.	41%	a 6	 0왕
18 L	Semana de Provas - P2.	0		
19 L	Semana de Provas - P2.	0		
20 L	Avaliação Bimestral.	91%	a	
		100%		
21 L	Semana de Provas - PS1.	0		
22 L	Semana de Provas - PS1.	0		
23 L	Apresentação dos requisitos do Projeto Semestral da Disciplina.	0		
24 L	Acompanhamento do Projeto Semestral da Disciplina.	91%	a	
		100%		
25 L	Acompanhamento do Projeto Semestral da Disciplina.	91%	a	
		100%		
26 L	Acompanhamento do Projeto Semestral da Disciplina.	91%	a	
	-	100%		
27 L	Acompanhamento do Projeto Semestral da Disciplina.	91%	a	
		100%		
28 L	Acompanhamento do Projeto Semestral da Disciplina.	91%	a	
	-	100%		
29 L	Semana de Provas - P3.	0		
30 L	Acompanhamento do Projeto Semestral da Disciplina.	91%	a	
1		100%		

2021-ECA304 página 7 de 8

INSTITUTO MAUÁ DE TECNOLOGIA

31 L	Acompanhamento do Projeto Semestral da Disciplina.	91% a			
		100%			
32 L	Acompanhamento do Projeto Semestral da Disciplina.	91% a			
		100%			
33 L	Apresentações do Projeto Semestral da Disciplina.	0			
34 L	Apresentações do Projeto Semestral da Disciplina.	0			
35 L	Apresentações do Projeto Semestral da Disciplina.	0			
36 L	Apresentações do Projeto Semestral da Disciplina.	0			
37 L	Semana de Provas - P4.	0			
38 L	Semana de Provas - P4.	0			
39 L	Trabalho Substitutivo.	91% a			
		100%			
40 L	Semana de Provas - PS2.	0			
41 L	Semana de Provas - PS2.	0			
Legenda: T = Teoria, E = Exercício, L = Laboratório					

2021-ECA304 página 8 de 8