Elementary Row operation (Elementary operations) The following now operation are called elementary flow aperation are called how operation (-elementary operation):

(1) Interchange of two rows (equation &) Ri & Rj.

Notation - Ri \rightarrow Rj.

(1i) Multi-1

(1i) Multiply a now (negration) by a non zero constant C"

Notation R:

C Ri

(iii) Add a multiple of a Row (equation) & to another now (early). now (equation) Ri. Notation: R° → R° + C Rj.

Equivalent linear system: Two linear systems are said to be equivalent if one can be obtained from the others by a finite no, of elementary operation.

Two equivalent systems have the same set of solutions.

Del" (Row Equivalent Matrices) Two matrices are said to be sow equivalent if one can be obtained from the other by a finite no. of elementary now operations.

Example: The three matrices given below are now equivalent-

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 3 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_1} \begin{bmatrix} 2 & 1 & 2 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 3 \end{bmatrix}$$

where as the marix

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$
 is not row equivalent to
$$\begin{bmatrix} 2 & 1 & 3 & 4 \\ 1 & 2 & 2 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \\ 1 & 1 & 2 & 0 \\ 1 & 1 & 0 & 4 \end{bmatrix} \quad Ving \begin{cases} 0 & 1 & 2 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

Row Echelon Matrix:

A matrix A is called a now echelon matrix

if the following two conditions hold. (i) All zero nows, if any, are at the bottom (ii) Each "leading" nonzero entry in a now is
to the right of the leading nonzero entry in the preceding now. (A leading non zero element of a now of his the first non zero element in the now) Example: The following matrices are in now echelon form. $\begin{bmatrix} 1 & 1 & 2 \\ 0 & -1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 2 & 4 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$ The following are ~ Not in Row Echelon form: $\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 & -1 & 5 \\ 1 & 0 & 5 & 10 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ Remark : 1) If a matrix A is in row echelon form then in each column of "A" containing a leading entry, the entries below that leading entry are zero.

- Dring the elementary now operation, every matein can be reduce in now echelon form.
 - 3 Row echelon form of a matrix is not unique.

Ex: Transform the following matein to sow echelon form:

1)
$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 1 & 0 & 2 & 1 \end{bmatrix}$$
 $A = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}$
 $R_3 \rightarrow R_1$

Tous Elimination Method:

Depⁿ: Gauss Elimination Method is a method of solving a linear system Ax = b (consisting of m equations in n unknown) by beinging the augmented matrix $[A:b] = \begin{bmatrix} a_{11} & a_{12} & --- & a_{1n} & b_{1} \\ a_{21} & a_{22} & --- & a_{2n} & b_{2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m_1} & a_{m_2} & --- & a_{m_n} & b_{m_n} \end{bmatrix}$

to an upper treångular form

$$\begin{bmatrix} C_{11} & C_{12} & - & - & C_{1n} \\ O & C_{22} & - & - & C_{2n} \\ \vdots & \vdots & & \vdots \\ O & O & - & - & c_{nm} \end{bmatrix} d_{m}$$

This elimination process is also called the forward elimination procedure.

Remark: To solve a linear system, $A \times = b$, one need to apply only the "Elementary Row Operation" to the dugmented Matrix [A|b]

Gauss Elimination Method :

STEPS TO SOLVE A SYSTEM OF EQUATIONS AX=b, with n variables and m equations.

- 1) Write the augmented Maliex [A|b]
- 2 Use elementary new operation to reduce [A|b] to new echelon form.
 - 3 By back subtilition methods solve (find) the value of unknown variable.

Note that " The variable corresponding to leading elements in the first "n" column of "leading variables".

Row echelon form of matrix we called

- 2) The variables which are not horresponding to leading are called "free variable."
- 3) The system Ax=b can either have a unique solution, infinitely many solutions or no solution.
 - 9) If the system AX = b has some solution then it is called a "consistent system"
 Otherwise, it is called an "Inconsistent system"

Here 21, 22 are leading variable & x, x4 are free variable.

Here, hank $(A) = \text{Rank}(A \mid b) = 2$.

Setting $x_3 = x$, $x_4 = t$ with $s, t \in \mathbb{7}5$;

all sol^W are given by $x_2 = 4 - 3x_3 - 3x_4 = 4 + 2s + 2t$ $x_1 = 4 - 2x_2 - x_3 - 3x_4$ $= 4 + 3x_2 + 4x_3 + 2x_4$ = 4 + 3(4 + 2s + 2t) + 4s + 2t = 4 + 12 + 6s + 6t + 4s + 2t = 16 + 10s + 8t = 1 + 3t

Suice 715 is de finite set.

The has a finite no. of sol?

i.
$$x_1 = 1 + 3t$$
 $x_2 = 4 + 2x + 2t$
 $x_3 = x$
 $x_4 = t$

Def : (Rank of a matrix)

The rank of a matrix A is the number of non-zero nows in its row echelon form.

Let is denoted by "rank(A)" or "P(A)."

Remark: The total number of "free variables" in the consistent system Ax=b of n variables is equal to "n-rank A;

Result: Let Ax=b be a system of equations with n variables. Then

- = I' If rank (A) = rank ([A|b]). Then the system AX=b

 A a = b is in consistent. i'e "The system AX=b

 has no solution".
- 2) If $\operatorname{rank}(A) = \operatorname{rank}([A|b]) = n$. Then the system Ax = b has a unique sol^n . i.e System is consisted
- 3) If rank(A) = rank([A|b]) / n. Then the system $A \times = b$ is consistent. ie The system $A \times = b$ has infinitely many solution.

Result : Let Ax = 0 be a Homogeneous eyetem of equations with n variables.

If (1) thank (A) = n. Then the system has only zero solution. (2) thank (A) $\leq n$. Then the system has infinitely many solution.

(a) Find those values of 'a" for which the system has a unique so (b) Find 11

(b) Find those pairs of value (a, b) for which the system has more than one solution.

Sol": Consider the Augmonented Matrix, and reduce it in Row echelon-form.

$$[A;b] = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & a & 5 & 10 \\ 2 & 7 & a & b \end{bmatrix}$$

 $R_3 \rightarrow R_3 - 2R_1$

$$\begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & a & 5 & 10 \\ 0 & 3 & a-2 & b-6 \end{bmatrix}$$

 $R_3 \rightarrow aR_3 - 3R_2$.

$$\begin{bmatrix} 1 & 2 & 1 & 1 & 3 \\ 0 & a & 5 & | & 10 \\ 0 & 0 & a^{2}-2a^{-15}| & ab-6a-30 \end{bmatrix}$$

Thus,

$$(a^2 - 2a - 15) \chi = ab - 6a - 30$$

(a) The system has a unique sol of P(A) = P(A|b) = 3 $a^2 - 2a - 15 \neq 0$. $\Rightarrow [a \neq 5 \text{ oud } a \neq -3]$ 4 belR.

(b) The system has more than one solution if and only of P(A) = P(A|b) < 3 (i.e., both sides are zero. (to); both sides are zero. i.e $a^2 - 2a - 15 = 0$, ab - 6a - 30 = 0 — (2) i e either a=-3 or a=5 Thus if a=3, we obtain from 2. -3b=6a+30 -3b=42 γ a= 5, then $5b=60 \Rightarrow b=12$ Thus (3,74) & (5,12) are the pairs for which the system has more than one solution. (h) of a=0, b=1R. Then $\begin{bmatrix} A \mid b \end{bmatrix} \approx \begin{bmatrix} 1 & 2 & 1 & 1 & 3 \\ 0 & 0 & 5 & 1 & 10 \\ 0 & 0 & -15 & 1 & -30 \end{bmatrix}$ $R_3 \rightarrow 3 R_2 + R_3 \sim \begin{bmatrix} 1 & 2 & 1 & 1 & 3 \\ 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ Thus on $S(0,b):b\in\mathbb{R}^3$, system has more than two solution.

Thus on $S(0,b):b\in\mathbb{R}^3$, system has more than two solution.

Thus on $S(0,b):b\in\mathbb{R}^3$, system has more than two solution.

x= x-2y = 2(1-k).

Scanned by CamScanner