Given a

specification R of immediate rewards after particular actions calculate the return Q of particular actions over time via

$$Q = \lim_{n\to\infty} Q_n$$

A generalisation

Given a

specification R of immediate rewards after particular actions calculate the return Q of particular actions over time via

$$Q = \lim_{n\to\infty} Q_n$$

$$Q_{n+1}(s,s') := R(s,s') + \frac{1}{2} \max\{Q_n(s',s'') \mid arc_{=}(s',s'')\}$$
 (1)

~~

$$Q_{n+1}(s,a) := \alpha [R(s,a) + \gamma \max\{Q_n(s',a') \mid a' \in A\}] + (1-\alpha)Q_n(s,a)$$
 (2)

A generalisation

Given a

specification R of immediate rewards after particular actions calculate the return Q of particular actions over time via

$$Q = \lim_{n\to\infty} Q_n$$

$$Q_{n+1}(s,s') := R(s,s') + \frac{1}{2} \max\{Q_n(s',s'') \mid arc_{=}(s',s'')\} \quad (1)$$

~→

$$Q_{n+1}(s,a) := \alpha [R(s,a) + \gamma \max\{Q_n(s',a') \mid a' \in A\}] + (1-\alpha)Q_n(s,a)$$
 (2)

- a 5-tuple $\langle S, A, p, r, \gamma \rangle$ consisting of
 - ▶ a finite set S of states s, s', ...
 - ▶ a finite set A of actions a, . . .
 - ▶ a function $p: S \times A \times S \rightarrow [0,1]$

$$p(s,a,s')=\operatorname{prob}(s'|s,a)=\operatorname{how}$$
 likely is s' after doing a at s
$$\sum_{s'}p(s,a,s')=1 \text{ for all } a\in A,\ s\in S$$

- a 5-tuple $\langle S, A, p, r, \gamma \rangle$ consisting of
 - ▶ a finite set S of states s, s', ...
 - ▶ a finite set A of actions a, . . .
 - ▶ a function $p: S \times A \times S \rightarrow [0,1]$

$$p(s,a,s')={\sf prob}(s'|s,a)={\sf how likely is}\; s'\; {\sf after \; doing}\; a\; {\sf at}\; s$$
 $\sum_{s'}p(s,a,s')=1\; {\sf for \; all}\; a\in A,\; s\in S$

▶ a function $r: S \times A \times S \rightarrow \mathbb{R}$

r(s, a, s') = immediate reward at s' after a is done at s

- a 5-tuple $\langle S, A, p, r, \gamma \rangle$ consisting of
 - ▶ a finite set S of states s, s', ...
 - ▶ a finite set A of actions a, . . .
 - ▶ a function $p: S \times A \times S \rightarrow [0,1]$

$$p(s,a,s')={\sf prob}(s'|s,a)={\sf how likely is}\ s'$$
 after doing a at s
$$\sum_{s'}p(s,a,s')=1\ {\sf for\ all}\ a\in A,\ s\in S$$

- ▶ a function $r: S \times A \times S \rightarrow \mathbb{R}$
 - r(s, a, s') = immediate reward at s' after a is done at s
- a discount factor $\gamma \in [0,1]$

- a 5-tuple $\langle S, A, p, r, \gamma \rangle$ consisting of
 - ▶ a finite set S of states s, s', ...
 - ▶ a finite set A of actions a, . . .
 - ▶ a function $p: S \times A \times S \rightarrow [0,1]$

$$p(s,a,s')=\operatorname{prob}(s'|s,a)=\operatorname{how}$$
 likely is s' after doing a at s
$$\sum_{s'}p(s,a,s')=1 \text{ for all } a\in A,\ s\in S$$

▶ a function $r: S \times A \times S \rightarrow \mathbb{R}$

r(s, a, s') = immediate reward at s' after a is done at s

▶ a discount factor $\gamma \in [0,1]$

Missing: policy $\pi: S \to A$ (what to do at s)

Exercise (Poole & Mackworth, chap 9)

Sam is either fit or unfit

$$S = \{ fit, unfit \}$$

and has to decide whether to exercise or relax

$$A = \{\text{exercise, relax}\}.$$

Exercise (Poole & Mackworth, chap 9)

Sam is either fit or unfit

$$S = \{ fit, unfit \}$$

and has to decide whether to exercise or relax

$$A = \{\text{exercise, relax}\}.$$

p(s, a, s') and r(s, a, s') are a-table entries for row s, col s'

exercise	fit	unfit
fit	.99, 8	
unfit	.2, 0	

relax	fit	unfit
fit	.7, 10	
unfit	0, 5	

immediate rewards do not

depend on the resulting state

Exercise (Poole & Mackworth, chap 9)

Sam is either fit or unfit

$$S = \{ fit, unfit \}$$

and has to decide whether to exercise or relax

$$A = \{\text{exercise, relax}\}.$$

p(s, a, s') and r(s, a, s') are a-table entries for row s, col s'

exercise	fit	unfit
fit	.99, 8	.01, 8
unfit	.2, 0	.8, 0

relax	fit	unfit
fit	.7, 10	.3, 10
unfit	0, 5	1, 5

Entries in red follow from assuming immediate rewards do not depend on the resulting state, and

$$\sum_{s'} p(s, a, s') = 1$$

Grid World

Poole & Mackworth, 9.5

states: 100 positions actions: up, down, left, right punish -1 when banging into wall & 4 reward/punish states prob: 0.7 as directed (if possible) ...

Policy from an MDP

Given state s, pick action a that maximizes return

different outcomes s' discounted future

$$Q(s,a) := \sum_{s'} p(s,a,s') \left(\underbrace{r(s,a,s')} + \gamma V(s') \right)$$

immediate

for V tied back to Q via policy $\pi: S \to A$

$$V_{\pi}(s) := Q(s,\pi(s))$$

Policy from an MDP

Given state s, pick action a that maximizes return

different outcomes s' discounted future

$$Q(s,a) := \sum_{s'} p(s,a,s') \left(\underline{r(s,a,s')} + \gamma V(s') \right)$$

immediate

for V tied back to Q via policy $\pi: S \to A$

$$V_{\pi}(s) := Q(s,\pi(s))$$

e.g., the greedy Q-policy above

$$\pi(s) := \arg \max_{a} Q(s, a)$$

for

$$Q(s,a) = \sum_{s'} p(s,a,s') \big(r(s,a,s') + \gamma \max_{a'} Q(s',a') \big)$$

Value iteration

Mutual recursion between Q/V and π value of an action/state $\,$ vs $\,$ what to do at a state

Value iteration

Mutual recursion between Q/V and π value of an action/state $\,$ vs $\,$ what to do at a state

Focus on Q, approached in the limit

$$\lim_{n\to\infty}q_n$$

from iterates

$$q_0(s,a) := \sum_{s'} p(s,a,s') r(s,a,s')$$
 $q_{n+1}(s,a) := \sum_{s'} p(s,a,s') \left(r(s,a,s') + \gamma \max_{a'} q_n(s',a') \right)$

Value iteration

Mutual recursion between Q/V and π value of an action/state $\,$ vs $\,$ what to do at a state

Focus on Q, approached in the limit

$$\lim_{n\to\infty}q_n$$

from iterates

$$q_0(s,a) := \sum_{s'} p(s,a,s') r(s,a,s')$$
 $q_{n+1}(s,a) := \sum_{s'} p(s,a,s') \left(r(s,a,s') + \gamma \max_{a'} q_n(s',a') \right)$

In case p(s, a, s') = 1 for some s' (necessarily unique), the iterates simplify to

$$q_0(s,a) := r(s,a,s')$$

 $q_{n+1}(s,a) := r(s,a,s') + \gamma \max_{a'} q_n(s',a')$

Fix an MDP with min reward m.

An action a is s-deterministic if p(s, a, s') = 1 for some s'.

Fix an MDP with min reward m.

An action a is s-deterministic if p(s, a, s') = 1 for some s'.

A state s is absorbing if p(s, a, s) = 1 for every action a, whence

$$Q(s, a) = r(s, a, s) + \gamma V(s)$$

$$V(s) = \frac{r_s}{1 - \gamma} \text{ where } r_s = \max_a r(s, a, s)$$

A state s is a sink if it is absorbing and r(s, a, s) = m for all a.

Fix an MDP with min reward m.

An action a is s-deterministic if p(s, a, s') = 1 for some s'.

A state s is absorbing if p(s, a, s) = 1 for every action a, whence

$$Q(s, a) = r(s, a, s) + \gamma V(s)$$

$$V(s) = \frac{r_s}{1 - \gamma} \text{ where } r_s = \max_a r(s, a, s)$$

A state s is a sink if it is absorbing and r(s, a, s) = m for all a. An action a is an s-drain if for some sink s',

$$p(s, a, s') = 1$$
 and $r(s, a, s') = m$

Fix an MDP with min reward m.

An action a is s-deterministic if p(s, a, s') = 1 for some s'.

A state s is absorbing if p(s, a, s) = 1 for every action a, whence

$$Q(s, a) = r(s, a, s) + \gamma V(s)$$

$$V(s) = \frac{r_s}{1 - \gamma} \text{ where } r_s = \max_a r(s, a, s)$$

A state s is a sink if it is absorbing and r(s, a, s) = m for all a. An action a is an s-drain if for some sink s',

$$p(s, a, s') = 1 \text{ and } r(s, a, s') = m$$

Let

$$A(s) := \{a \in A \mid a \text{ is not an } s\text{-drai} n\}$$

so if $A(s) \neq \emptyset$,

$$V(s) = \max\{Q(s, a) \mid a \in A\} = \max\{Q(s, a) \mid a \in A(s)\}$$

Arcs & goals as a deterministic MDP $(p \in \{0,1\})$

Given arc and goal set G, let

$$A = \{s \mid (\exists s') \ arc_{=}(s', s)\}$$

where for each $a \in A$,

$$p(s, a, s') = \begin{cases} 1 & \text{if } a = s' \text{ and } arc_{=}(s, s') \\ 0 & \text{otherwise} \end{cases}$$

$$r(s, a, s') = \begin{cases} R(s, s') & \text{if } a = s' \text{ and } arc_{=}(s, s') \\ \text{anything} & \text{otherwise} \end{cases}$$

Arcs & goals as a deterministic MDP $(p \in \{0,1\})$

Given arc and goal set G, let

$$A = \{s \mid (\exists s') \ arc_{=}(s', s)\}$$

where for each $a \in A$,

$$p(s, a, s') = \begin{cases} 1 & \text{if } a = s' \text{ and } arc_{=}(s, s') \\ 0 & \text{otherwise} \end{cases}$$

$$r(s, a, s') = \begin{cases} R(s, s') & \text{if } a = s' \text{ and } arc_{=}(s, s') \\ \text{anything otherwise} \end{cases}$$

Satisfy prob constraint $\sum_{s'} p(s, a, s') = 1$ via sink state $\bot \notin A \cup dom(arc)$, requiring of every $a \in A$ and $s \in S$,

$$p(s,a,\perp) = \left\{ egin{array}{ll} 1 & ext{if not } arc_{=}(s,a) \\ 0 & ext{otherwise} \end{array}
ight. \ p(\perp,a,s) = \left\{ egin{array}{ll} 1 & ext{if } s=\perp \\ 0 & ext{otherwise} \end{array}
ight. \ r(s,a,\perp) = ext{min reward} \end{array}
ight.$$