Try to fill the crossword with the words by hand:

Words:

at, eta, be, hat, he, her, it, him, on, one, desk, dance, usage, easy, dove, first, else, loses, fuels, help, haste, given, kind, sense, soon, sound, this, think

CHILIT				
	1	2		
	3			
4			5	
	6			

Try to fill the crossword with the words using AC-3:

Words:

ant, big, bus, car, has, book, buys, hold, lane, year, beast, ginger, search, symbol, syntax

- Variables: let W_{ix} be the word at position ix where $i \in \{1,2,\ldots\}$ and $x \in \{a,d\}$. Thus, for the small example above, the list of variables is $\{W_{1a},W_{2d},W_{1d},W_{3a},W_{4a}\}$. Let $|W_{ix}|$ be the length of the word ix. Also, let W_{ix_j} be the j^{th} letter of word W_{ix} , e.g. W_{1a_2} is the second letter of word 1-across. We could also use a predicate $letter(W_{ix},j)$ that returns the j^{th} letter of word W_{ix} .
- **Domains**: Dictionary of words $\{w_1, w_2, w_3, \dots, w_{15}\}$ in the order above (e.g. $w_1 = ant, w_2 = big, \dots$). Let $|w_j|$ be the length of the word w_j .

· Constraints:

- **domain:** $W_{ix} \neq w_j \quad \forall \ j \quad \text{s.t.} \ |w_j| \neq |W_{ix}|$ (eliminate all words that are not the correct length). For the example above, the domain of W_{1a} is therefore only the 3-letter words $\{ant, big, bus, car, has\}$
- binary: $W_{ia_j} = W_{kd_l} \quad \forall i, k$ that intersect at j, l. For the example above, $W_{1a_1} = W_{1d_1}$ and $W_{1a_3} = W_{2d_1}$. Using the predicate this would be $letter(W_{ix}, j) = letter(W_{kd}, l)$.