Basketball Performance Analysis Project

Master's Level Data Science Exercise

Project Overview

Objective

This project aims to analyze basketball team and player performance using a comprehensive synthetic dataset. You will apply advanced statistical modeling techniques to understand the factors influencing team success, player performance, and championship potential.

Dataset

A comprehensive synthetic dataset (basketball_performance_dataset.csv) is provided, capturing multidimensional aspects of basketball performance across teams, players, and seasons.

Data Dictionary

Basketball Performance Dataset (basketball_performance_dataset.csv)

Team and Organizational Variables:

- season: Year of the basketball season
- team_id: Unique identifier for each team
- team_name: Name of the basketball team
- team_budget: Annual team budget (USD)
- market_size: Team's market size (Small/Medium/Large)
- conference: League conference (Eastern/Western)
- total_team_wins: Number of wins in the season
- playoff_appearance: Binary indicator of playoff qualification

Player Demographic Variables:

- player_id: Unique identifier for each player
- player_age: Player's age
- position: Player's primary position (Guard/Forward/Center)
- height_cm: Player's height in centimeters
- years_in_league: Number of years playing professionally

Performance Metrics:

- games_played: Number of games played in the season
- points_per_game: Average points scored per game
- assists_per_game: Average assists per game
- rebounds_per_game: Average rebounds per game
- performance_score: Composite performance metric
- player_salary: Annual player salary (USD)

Career and Resilience Indicators:

- career_trajectory: Player's career progression (-1: declining, 0: stable, 1: emerging)
- injury_count: Number of injuries in the season
- injury_impact: Estimated impact of injuries on performance

Qualitative Data:

• performance_narrative: Descriptive text about player's performance characteristics

Prediction Target:

• championship_potential: Binary indicator of potential championship success

Analysis Tasks

Task 1: Exploratory Data Analysis (20%)

- 1. Comprehensive exploratory analysis
 - Descriptive statistics for performance metrics
 - Distribution analysis of team and player variables
 - Correlation matrix between performance indicators
- 2. Visualization Requirements:
 - Performance variations across positions
 - Salary and performance relationships
 - Team performance by conference and market size

Task 2: Regression Modeling (40%)

Objective: Develop regression models to predict player and team performance

- 1. Linear Regression: Predicting Performance Score
 - Dependent Variable: performance_score
 - Independent Variables:
 - player_age
 - years_in_league
 - height_cm
 - Performance metrics (points, assists, rebounds)
 - Team-level features

Requirements:

- Implement multiple linear regression
- Check and address multicollinearity
- Validate model assumptions
- Interpret coefficients and statistical significance
- 2. Regularized Regression
 - Apply Ridge or Lasso regression
 - Compare model performance metrics
 - Discuss feature importance

Task 3: Binary Outcome Prediction (40%)

Objective: Predict championship potential

- Dependent Variable: championship_potential
- Independent Variables:
 - Individual player performance metrics
 - Team-level characteristics
 - Career trajectory
 - Injury-related features

Requirements:

- Implement both Logit and Probit models
- Compare model performance using:
 - Accuracy
 - AUC-ROC

- Confusion matrix
- Interpret marginal effects
- Discuss model selection criteria

Submission Requirements

- 1. Comprehensive analysis report (max 15 pages)
- 2. Fully documented code
- 3. Detailed result interpretations
- 4. Discussion of limitations and potential improvements

Evaluation Criteria

- Technical Complexity (40%)
- Statistical Rigor (30%)
- Visualization Quality (15%)
- Interpretation Depth (15%)

Bonus Challenges

- 1. Provide a theoretical framework for player performance prediction
- 2. Develop advanced feature engineering techniques
- 3. Explore non-linear relationships in performance prediction
- 4. Create predictive models for player career trajectories