1.a

Find the matrix Df of partial derivatives for the following function:

$$f(x,y) = \langle e^x, e^y, e^{\cos x} \rangle$$

1.b

Find the matrix Df of partial derivatives for the following function:

$$f(x,y,z) = \left\langle x^2 e^{x+y}, \cos(x-y) \right\rangle$$

1.c

Find the matrix *Df* of partial derivatives for the following function:

$$f(x,y,z) = \left\langle xy, \frac{x}{1+y^2}, e^{x^y} \right\rangle$$

2.a

Find $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$ for the following function in two ways: first use substitution, then use the chain rule:

$$f(x,y) = \sin(xy)$$
 where $x = s + t$ and $y = s^2 + t^2$

2 h

Find $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$ for the following function in two ways: first use substitution, then use the chain rule:

$$f(x,y) = e^{xy}$$
 where $x = \sin t$ and $y = e^{st}$

2.0

Find $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$ for the following function in two ways: first use substitution, then use the chain rule:

$$f(x,y,z) = \cos(xyz)$$
 where $x = st$, $y = st^2$ and $z = st^3$

3.a

Calculate $D(f \circ g)$ in two ways: first use substitution, then use the chain rule:

$$f(x,y) = x^2 - 7y^2$$
 and $g(s,t) = \langle st^2, se^t \rangle$

3.b

Calculate $D(f \circ g)$ in two ways: first use substitution, then use the chain rule:

$$f(x,y) = \left\langle xy - y^2, \cos x \right\rangle$$
 and $g(s,t) = \left\langle \frac{s}{t}, st \right\rangle$

3 (

Calculate $D(f \circ g)$ in two ways: first use substitution, then use the chain rule:

$$f(x,y,z) = \langle e^x, e^{x+y}, e^{x+y+z} \rangle$$
 and $g(s,t) = \langle e^s, e^t, e^{s-t} \rangle$

4

Suppose an insect flies along a helical curve $x = 2\cos t$, $y = 2\sin t$, z = 3t. If the barometric pressure is varying from point to point as $P(x,y,z) = 6x^2z/y$ atm, then use the chain rule to determine how the pressure is changing at the insects location when $t = \pi/4$ min.

5

Suppose $w = f\left(\frac{x-y}{xy}, \frac{z-x}{xz}\right)$ is a differentiable function of $u = \frac{y-x}{xy}$ and $v = \frac{z-x}{xz}$. Show that

$$x^{2}\frac{\partial w}{\partial x} + y^{2}\frac{\partial w}{\partial y} + z^{2}\frac{\partial w}{\partial z} = 0.$$