```
In [1]:
```

8/8/2021

#Your objective is to identify the 5 strongest pairs for every year in the dataset (eg. 5strongest pairs for 2014, 2015 and so on)

In []:

```
import pandas as pd
import datetime as dt
import seaborn as sns
from matplotlib import pyplot as plt
plt.style.use('ggplot')
%matplotlib inline
```

In [2]:

```
cd C:\Users\harsha.teja\Desktop\myg\congitensor
```

C:\Users\harsha.teja\Desktop\myg\congitensor

In [3]:

```
df=pd.read_csv("cs-1.csv")
```

In [4]:

```
df['date'] = pd.to_datetime(df['date'])
df['year'] =df['date'].dt.year
```

In [50]:

```
df.isnull().sum()
```

Out[50]:

date 0 open 11 high 8 8 low close 0 0 volume Name 0 year dtype: int64

In [52]:

```
df = df.dropna()
```

In [53]:

#To compare two stocks, both should follow the same date range of data. I found that so me stocks had a smaller date range:

In [54]:

8/8/2021

```
df.Name.value_counts()
```

Out[54]:

PCLN 1259 AES 1259 **PBCT** 1259 CINF 1259 FRT 1259 DXC 215 **BHGE** 152 **BHF** 142 **DWDP** 109 **APTV** 44

Name: Name, Length: 505, dtype: int64

In [55]:

#Let's remove these sets of stocks to continue with further processing:

In [56]:

```
count_df=pd.DataFrame(df.Name.value_counts()[:470], columns=["Name", "Count"]).reset_in
dex()
list_valid_shares=list(count_df["index"])
final_df=df[df.Name.isin(list_valid_shares)]
```

In [57]:

```
final_df.head()
```

Out[57]:

	date	open	high	low	close	volume	Name	year
0	2013-02-08	15.07	15.12	14.63	14.75	8407500	AAL	2013
1	2013-02-11	14.89	15.01	14.26	14.46	8882000	AAL	2013
2	2013-02-12	14.45	14.51	14.10	14.27	8126000	AAL	2013
3	2013-02-13	14.30	14.94	14.25	14.66	10259500	AAL	2013
4	2013-02-14	14.94	14.96	13.16	13.99	31879900	AAL	2013

In [58]:

#We have the data from 2013-2019. Our goal is to find the most similar stock for any sp ecific year. We will take the data for the year 2018:

In [59]:

```
data_by_year=final_df.groupby("year")
```

In [60]:

```
data_2018=data_by_year.get_group(2018)
#Let's make the date column the index and make our data pivot for comparing different s
tocks:
pivot_df=data_2018.pivot(index="date",columns="Name", values="close")
#Finding Similarities
#To find the similarities, we will use pandas's corr method:
corr_mat=pivot_df.corr(method ='pearson').apply(lambda x : x.abs())
#select the top ten pairs to give us the top five relationships between stocks for pair
trading:
sorted_corr = corr_mat.unstack().sort_values(kind="quicksort", ascending=False)
sc=pd.DataFrame(sorted_corr, columns=["Value"])[470:475]
print("5 strongest pairs for every year 2018")
sc
```

5 strongest pairs for every year 2018

Out[60]:

Value

Name	Name	
DISCA	DISCK	0.998295
DISCK	DISCA	0.998295
FRT	REG	0.993388
REG	FRT	0.993388
UPS	PH	0.989953

In []:

In [61]:

```
data_2013=data_by_year.get_group(2013)
#Let's make the date column the index and make our data pivot for comparing different s
tocks:
pivot_df=data_2013.pivot(index="date",columns="Name", values="close")
#Finding Similarities
#To find the similarities, we will use pandas's corr method:
corr_mat=pivot_df.corr(method ='pearson').apply(lambda x : x.abs())
#select the top ten pairs to give us the top five relationships between stocks for pair
trading:
sorted_corr = corr_mat.unstack().sort_values(kind="quicksort", ascending=False)
sc=pd.DataFrame(sorted_corr, columns=["Value"])[470:475]
print("5 strongest pairs for every year 2013")
sc
```

5 strongest pairs for every year 2013

Out[61]:

Name	Name	
LMT	RTN	0.993692
RTN	LMT	0.993692
LMT	NOC	0.992921
NOC	LMT	0.992921
RTN	NOC	0.991203

In [67]:

corr_mat

Out[67]:

Name	Α	AAL	AAP	AAPL	ABBV	ABC	ABT	ACN	Α
Name									
Α	1.000000	0.161697	0.372094	0.443275	0.873121	0.412925	0.354650	0.780226	0.82
AAL	0.161697	1.000000	0.291644	0.576478	0.278931	0.125100	0.074914	0.022125	0.14
AAP	0.372094	0.291644	1.000000	0.226897	0.416673	0.045663	0.245645	0.412514	0.20
AAPL	0.443275	0.576478	0.226897	1.000000	0.298168	0.120886	0.339397	0.474318	0.71
ABBV	0.873121	0.278931	0.416673	0.298168	1.000000	0.164412	0.521742	0.628278	0.65
	•••			•••					
XYL	0.894588	0.111022	0.370479	0.636623	0.736402	0.501213	0.215704	0.794941	0.87
YUM	0.407226	0.639214	0.029528	0.001899	0.542437	0.128417	0.580547	0.160886	0.19
ZBH	0.740056	0.566519	0.089219	0.185397	0.802021	0.107214	0.569263	0.468874	0.54
ZION	0.605753	0.556991	0.464868	0.684607	0.404937	0.465808	0.094535	0.695618	0.74
ZTS	0.885419	0.067568	0.369966	0.617237	0.815330	0.287857	0.394482	0.743293	0.87

470 rows × 470 columns

In [66]:

sorted_corr

Out[66]:

Name	Name	
ZTS	ZTS	1.000000
NEM	NEM	1.000000
NUE	NUE	1.000000
NTRS	NTRS	1.000000
NTAP	NTAP	1.000000
		• • •
HD	JNPR	0.000033
CAT	CNC	0.000014
CNC	CAT	0.000014
GIS	HUM	0.000013
HUM	GIS	0.000013
Length	n: 22090	00, dtype: float64

In [70]:

```
data_2014=data_by_year.get_group(2014)
#Let's make the date column the index and make our data pivot for comparing different s
tocks:
pivot_df=data_2014.pivot(index="date",columns="Name", values="close")
#Finding Similarities
#To find the similarities, we will use pandas's corr method:
corr_mat=pivot_df.corr(method = 'pearson').apply(lambda x : x.abs())
#select the top ten pairs to give us the top five relationships between stocks for pair
trading:
sorted_corr = corr_mat.unstack().sort_values(kind="quicksort", ascending=False)
sc=pd.DataFrame(sorted_corr, columns=["Value"])[470:480]
print("5 strongest pairs for every year 2013")
sc
```

5 strongest pairs for every year 2013

Out[70]:

Name	Name	
DISCK	DISCA	0.996228
DISCA	DISCK	0.996228
XEL	CMS	0.989159
CMS	XEL	0.989159
UDR	ESS	0.987893
ESS	UDR	0.987893
EQR	AVB	0.986714
AVB	EQR	0.986714
ESS	EQR	0.985961
EQR	ESS	0.985961

In [69]:

```
data_2015=data_by_year.get_group(2015)
#Let's make the date column the index and make our data pivot for comparing different s
tocks:
pivot_df=data_2015.pivot(index="date",columns="Name", values="close")
#Finding Similarities
#To find the similarities, we will use pandas's corr method:
corr_mat=pivot_df.corr(method ='pearson').apply(lambda x : x.abs())
#select the top ten pairs to give us the top five relationships between stocks for pair
trading:
sorted_corr = corr_mat.unstack().sort_values(kind="quicksort", ascending=False)
sc=pd.DataFrame(sorted_corr, columns=["Value"])[470:475]
print("5 strongest pairs for every year 2015")
sc
```

5 strongest pairs for every year 2015

Out[69]:

Name	Name	
DVN	MRO	0.984758
MRO	DVN	0.984758
AMZN	TSS	0.981945
TSS	AMZN	0.981945
NRG	CMI	0.979897

In [64]:

```
data_2016=data_by_year.get_group(2016)
#Let's make the date column the index and make our data pivot for comparing different s
tocks:
pivot_df=data_2016.pivot(index="date",columns="Name", values="close")
#Finding Similarities
#To find the similarities, we will use pandas's corr method:
corr_mat=pivot_df.corr(method ='pearson').apply(lambda x : x.abs())
#select the top ten pairs to give us the top five relationships between stocks for pair
trading:
sorted_corr = corr_mat.unstack().sort_values(kind="quicksort", ascending=False)
sc=pd.DataFrame(sorted_corr, columns=["Value"])[470:475]
print("5 strongest pairs for every year 2016")
sc
```

5 strongest pairs for every year 2016

Out[64]:

Name	Name	
CMA	ZION	0.991495
ZION	CMA	0.991495
	JPM	0.990534
JPM	ZION	0.990534
RF	JPM	0.989969

In [65]:

```
data_2017=data_by_year.get_group(2016)
#Let's make the date column the index and make our data pivot for comparing different s
tocks:
pivot_df=data_2017.pivot(index="date",columns="Name", values="close")
#Finding Similarities
#To find the similarities, we will use pandas's corr method:
corr_mat=pivot_df.corr(method ='pearson').apply(lambda x : x.abs())
#select the top ten pairs to give us the top five relationships between stocks for pair
trading:
sorted_corr = corr_mat.unstack().sort_values(kind="quicksort", ascending=False)
sc=pd.DataFrame(sorted_corr, columns=["Value"])[470:475]
print("5 strongest pairs for every year 2017")
sc
```

5 strongest pairs for every year 2017

Out[65]:

Value

Name	Name	
CMA	ZION	0.991495
ZION	CMA	0.991495
	JPM	0.990534
JPM	ZION	0.990534
RF	JPM	0.989969

In []:

BY Harsha