МЛТА. Лекція 15.03.2021

Машина Тьюрінга

Англійський інженер і математик Алан Матісон Тьюрінг (1912–1954) увів поняття математичної машини (1936 р.), яка моделює розумову діяльність людини і уточнює інтуїтивне уявлення про алгоритми. Ця модель була не декларативною, а «машиноподібною», хоча справжні електронні та електромеханічні машини з'явилися лише кілька років по тому (і сам Тьюрінг займався їх розробкою під час другої світової війни). Зараз відомо багато різних варіантів машин Тьюринга і їх узагальнень (багатострічкові, мультистекові та ін.).

Під *машиною Тьюрінга* (скорочено МТ) будемо розуміти впорядковану п'ятірку

$$\langle Q, T, \delta, q_1, q_0 \rangle$$
,

де:

- Q скінченна множина внутрішніх станів;
- T скінченний алфавіт символів стрічки, причому T містить спеціальний символ порожньої клітки Λ (або λ);
- $-\delta: Q \times T \rightarrow Q \times T \times \{R, L, S\}$ − однозначна функція переходів;
- $-q_1$ ∈ Q − початковий стан;
- $q_0 \in Q$ заключний (фінальний) стан.

Неформально машина Тьюрінга – це абстрактний пристрій, складений зі стрічки, пристрою (голівки) читання-запису і керівного пристрою (рис. 1).

Стрічка розділена на комірки (клітки) і допускається потенційнонеобмеженою в обидва боки. У кожній комірці у кожний дискретний момент часу знаходиться рівно один символ із зовнішнього алфавіту. У будь-який момент часу стрічка містить скінченну кількість комірок, відмінних від символу $\Lambda(\lambda)$. Алфавіт $T = \{a_1, a_2, ..., a_n\}$, $n \ge 2$ містить порожній символ. Найпростіший алфавіт $T = \{0,1\}$, де 0 — порожній символ. Комірки не нумеруються та не іменуються.

Керівний пристрій у кожний дискретний момент часу перебуває в певному стані q_j , що належить множині $Q = \{q_0, q_1, ..., q_m\}, m \ge 1$ — множині

внутрішніх станів. Число елементів в Q характеризує об'єм внутрішньої пам'яті машини Тьюрінга. У множині внутрішніх станів виділені два спеціальні стани: q_1 – початковий, а q_0 – заключний стан. МТ починає роботу в стані q_1 , потрапивши в стан q_0 машина завжди зупиняється.

Пристрій (голівка) читання-запису переміщується вздовж стрічки так, що в кожен момент часу вона «бачить» рівно одну комірку стрічки. Голівка читання-запису може зчитувати вміст цієї комірки і записувати в неї замість цього символу деякий інший символ із зовнішнього алфавіту T (чи той же самий).

У процесі роботи керівний пристрій залежно від стану, в якому він знаходиться і символу, який він «бачить», змінює свій (внутрішній) стан (може залишитися в попередньому стані), видає голівці читання-запису наказ надрукувати в комірці, в якій спостерігаємо певний символ із зовнішнього алфавіту, і «наказує» голівці читання-запису або залишатися на місці, або зсунутись на одну комірку вліво чи на одну комірку вправо.

Роботу керівного пристрою машина Тьюрінга виконує відповідно до програми.

Програма машини Тьюрінга складається зі скінченої кількості команд. Кожна *команда* має вигляд п'ятірки :

$$q_i a_j q_k a_m d$$
 and $q_i a_j \rightarrow q_k a_m d$,

де $d = \{S, L, R\}$ — функція руху голівки читання-запису:

- S означає відсутність руху голівки читання-запису (стоп),
- L зсування на одну комірку вліво,
- R зсування на одну комірку вправо.

Виконання цієї команди має таке значення: якщо голівка читання-запису в стані q_i розглядає комірку, в якій записано символ a_j , то відповідно до цієї команди замінюємо символ a_j на a_m ; стан голівки читання-запису q_i на q_k і голівка читання-запису або зсувається вліво (L), або вправо (R), або ж залишається на місці (S).

Наприклад, команда $q_2a_3\ q_4a_4L$. Її виконання продемонстровано на рис. 2.

		_		q_2							
•••	Λ	a_1	a_2	a_3	a_4	Λ					
$-\!$											
	Λ	a_1	a_2	a_4	a_4	Λ					

Рис. 2

Формальні моделі алгоритмів та алгоритмічно обчислювальних функцій

Будемо вимагати, щоб для будь-якої пари $q_i a_j$ була в програмі точно одна команда, що починається з цього запису. Якщо стан змінюється на q_0 , то можна стверджувати, що машина зупиняється і жодної команди, яка починається з q_0 немає.

Будемо вважати, що:

- МТ починає роботу зі стану q_1 ,
- на стрічці на кожному такті тільки скінченна кількість непорожніх символів і серед них можна виділити крайній правий та крайній лівий символ,
- машина в стані q_1 починає рух на крайньому лівому непорожньому символі.

Роботу програми машини Тьюрінга будемо ілюструвати за допомогою конфігурацій. Слово

$$a_{i_1} \dots a_{i_{l-1}} q_i a_{i_l} \dots a_{i_s}$$

називають *конфігурацією машини Тьюрінга* (у даний момент часу t).

Стандартна початкова конфігурація має вигляд $K_1=q_1\alpha$, а стандартна заключна (фінальна) конфігурація має вигляд $K_0=q_0\beta$

За умови t=1 конфігурація має вигляд $q_1 a_{j_1} \dots a_{j_s}$. Якщо в момент часу t стрічка порожня, то конфігурацією машини буде слово $q_i \Lambda \Lambda \Lambda \Lambda \dots$ Якщо на першому такті t була конфігурація K_1 , а на наступному — K_2 , то слід записувати $K_1 \models K_2$.

Якщо K_1 – початкова конфігурація, а K_0 – заключна, то послідовність $K_1 \models K_2 \models \dots \models K_0$ називають тьюрінговими розрахунками і означає вона, що конфігурація K_0 виводиться із K_1 .

Якщо $p_1 = a_{j_1} \dots a_{j_s}$ – вхідне слово, то МТ, почавши роботу на слові p_1 або зупиниться через певну кількість кроків, або ніколи не зупиниться.

У першому випадку стверджують, що МТ застосовна до слова p_1 і результатом є слово p, що відповідає заключній конфігурації і $p = T(p_1)$.

У другому випадку – МТ не застосовна до слова p_1 .

Часто будуть використані позначення типу P^m для слів такого вигляду $\underbrace{PP\dots P}_{m\ proje}$.

Розглянемо найпростіший алфавіт $T = \{0,1\}$, де 0 – порожній символ і $(x_1,x_2,...x_n)$ – довільний набір цілих невід'ємних чисел.

Слово

$$1^{x_1+1}01^{x_2+1}0...01^{x_n+1}$$

називають **основним машинним кодом** і позначають $K(x_1,x_2,...x_n)=K(x_1)0K(x_2)0...0K(x_n)$ для будь-якого $n\in N$. Зокрема як $K(x)=1^{x+1}$ будемо кодувати блок з (n+1)-ї одиниці. $T=\{\lambda,\!/\!\}$

Формальні моделі алгоритмів та алгоритмічно обчислювальних функцій

Далі будемо розглядати часткові числові функції $f(x_1,...,x_n), x_i \in N_0$.

Машині Тьюрінга відповідає часткова словарна функція з областю визначення та областю значень, що ϵ скінченними словами в алфавіті T, яка кожному такому слову ставить в відповідність результат застосування машини до цього слова.

Визначимо обчислення функцій на МТ. Будемо розглядати словарні часткові функції $f \colon T^* \to T^*$, де T^* – множина усіх слів скінченної довжини в алфавіті T.

Машина Тьюрінга *правильно обчислює* часткову функцію f , якщо для будь-якого $a \in T^*$ виконується:

- 1) якщо f(a) визначена і f(a) = b, тоді машина Тьюрінга застосовна до початкової конфігурації $q_1 a$ та заключною конфігурацією є $q_0 b$,
- 2) якщо f(a) невизначена, то МТ незастосовна до початкової конфігурації $q_1 a$.

Функція f називається **правильно обчислюваною за Тьюрінгом**, якщо існує МТ, яка її правильно обчислює.

Аналогічні визначення можна зробити і для функцій кількох змінних. Для цього достатньо множину слів, які ϵ аргументами, записати у вигляді одного слова, ввівши знак-розділювач.

У подальшому будемо вважати, що в початковий момент часу голівка читання-запису машини «бачить» крайню ліву одиницю слова $K(x_1, x_2, ... x_n)$.

Приклад 1. Побудувати машину Тьюрінга, яка застосовна до слів 1^{3n} $(n \ge 1)$ та незастосовна до слів вигляду $1^{3n+\alpha}$, де $\alpha = 1, 2$. Алфавіт $T = \{0, 1\}$.

Програму машини Тьюрінга зручно записувати у вигляді таблиці:

 $q_1 1 q_2 1 R$

 $q_{2}1q_{3}1R$

 $q_{3}1q_{1}1R$

 $q_1 0 q_4 0 L$

 $q_4 1 q_4 1 L$

 $q_4 0 q_0 0 R$

 $q_2 0 q_2 0 S$

 $q_3 0 q_3 0 S$

	$q_{_1}$	$q_{_2}$	q_3	$q_{\scriptscriptstyle 4}$
0	q_40L	$q_2 0S$	$q_3 0S$	$q_0 0R$
1	$q_2 1R$	$q_3 1R$	$q_1 1R$	q_4 1 L