《 Digital Circuits and Logic Design》 期末试题(A卷)

参考答案

1.	Multiple choice questions (2 points for each question, 20 points total).						
	(1) If the period of a clock signal is 500 ps, the frequency is <u>c</u> a. 20 MHz						
	b. 200 MHz						
	c. 2 GHz						
	d. 20 GHz						
	(2) The time measurement between the 90% point on the trailing edge of a pulse to						
	the 10% point on the trailing edge of the pulse is called the <u>b</u>						
	a. rise time						
	b. fall time						
	c. period						
	d. pulse width						
	(3) When two positive signed numbers are added, the result may be larger than the						
	size of the original numbers, creating overflow. This condition is indicated by <u>a</u>						
	a. a change in the sign bit						
	b. a carry out of the sign position						
	c. a zero result						
	d. smoke						
	(4) Assume that a floating point number is represented in binary. If the sign bit is 1,						
	the <u>a</u>						
	a. number is negative						
	b. number is positive						
	c. exponent is negative						
	d. exponent is positive						
	(5) A Boolean expression that is in standard SOP form is \underline{c}						
	a. the minimum logic expression						
	b. contains only one product term						
	c. has every variable in the domain in every term						
	d. none of the above						
	(6) The time interval illustrated is called <u>b</u>						
	a. t_{PHL}						
	b. $t_{\rm PLH}$						
	c. set-up time						
	d. hold time						

- (7) The application illustrated is a <u>d</u>
 - a. astable multivibrator
- b. data storage device
- c. frequency multiplier
- d. frequency divider

- - a. an AND gate
- b. an OR gate
- c. a NAND gate
- d. a NOR gate

- (9) If the data select lines of the MUX are $S_1S_0 = 11$, the output will be <u>d</u>
 - a. LOW
 - b. HIGH
 - c. equal to D_0
 - d. equal to D_3

(10) Assume Q_0 is LOW. The next clock pulse will cause $\underline{}$

- a. FF1 and FF2 to both toggle
- b. FF1 and FF2 to both latch
- c. FF1 to latch; FF2 to toggle
- d. FF1 to toggle; FF2 to latch

© 2008 Pearson Education

- 2. Please solve the following number conversion problems (total 15 points)
 - (1) Convert binary number 10111000.10101 to decimal (2 points)
 - (2) Convert decimal number 100.625 to binary (2 points)
 - (3) Express decimal number -85 as 8-bit number in 1's complement form (2 points)
 - (4) Express decimal number -85 as 8-bit number in 2's complement form (2 points)
 - (5) Convert decimal number 126 to (3 points)
 - (a) Hexadecimal number
 - (b) Octal number
 - (c) 8421 BCD number
 - (6) Convert the decimal number 3.248×10^4 to a single-precision floating point binary number. Please show your procedure (4 points)

- (1) 184.65625
- (2) 110 0100.101
- (3) 1010 1010
- (4) 1010 1011
- (5) (a) H7E (b) O176 (c) 0001 0010 0110

3. We need to design a circuit with 4 inputs(marked as A, B,C,D) and 2 outputs X, Y. Based on system analysis, we should have true table as shown in the following (total 20 points):

A	В	C	D	X	Y
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	0	1	1
0	0	1	1	1	0
0	1	0	0	0	1
0	1	0	1	1	0
0	1	1	0	1	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	0	1	1	0
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1
1	1	0	1	1	1
1	1	1	0	0	1
1	1	1	1	1	1

- (1) Express the above circuit's outputs in minimum Sum-of-Product (SOP) form (4 points)
- (2) Show the implementation of the circuit in SOP form by using only AND, OR, or NOT gates (3 points)
- (3) Show the implementation of the circuit in SOP form by using only NAND gates (3 points)
- (4) Express the above circuit's outputs in minimum Product-of-Sum (POS) form (4 points)
- (5) Show the implementation of the circuit in POS form by using only AND, OR, or NOT gates (3 points)
- (6) Show the implementation of the circuit in POS form by using only NOR gates (3 points)

(1)
$$X = \overline{ACD} + \overline{BCD} + ABC\overline{D}$$

$$Y = \overline{AD} + \overline{BCD}$$
(2)
$$X = \overline{ACD} + \overline{BCD} + ABC\overline{D}$$
The diagram is omitted.
$$Y = \overline{AD} + \overline{BCD}$$
(3)
$$X = \overline{\overline{ACD} \bullet \overline{BCD} \bullet \overline{ABCD}}$$

$$Y = \overline{AD} \bullet \overline{BCD}$$
The diagram is omitted.
$$Y = \overline{AD} \bullet \overline{BCD}$$
(4)

$$X = (A+C+D)(B+C+D)(\overline{A}+\overline{B}+\overline{C}+D)$$
$$Y = (A+\overline{D})(B+C+\overline{D})$$

(5)

$$X = (A+C+D)(B+C+D)(\overline{A}+\overline{B}+\overline{C}+D)$$

$$Y = (A+\overline{D})(B+C+\overline{D})$$
The diagram is omitted.

(6)

$$X = \overline{(\overline{A+C+D}) + (\overline{B+C+D}) + (\overline{\overline{A}+\overline{B}+\overline{C}+D})}$$
 The diagram is omitted.
$$Y = \overline{(\overline{A+\overline{D}}) + (\overline{B+C+\overline{D}})}$$

.....

4. Design a 2-bit look-ahead-carry full adder using only basic logic gates (AND, OR, NOT, NAND, NOR, XOR, XNOR). (total 15 points)

Denote
$$C_{out1} = A_1B_1 + (A_1 + B_1)C_{in}$$

 $\Sigma_1 = A_1 \oplus B_1 \oplus C_{in}$

$$\Sigma_2 = A_2 \oplus B_2 \oplus C_{in1}$$

$$C_{out} = A_2 B_2 + (A_2 + B_2) C_{in1}$$

- 5. Design a Moore FSM to detect a bit sequence 11001. If such sequence is found, output will be set to 1, otherwise, output will be set to 0. Overlap sequence, if exists, should be detected. Please use J-K flip flop for the system. (total 30 points).
 - (1) Derive state diagram (4 points)
 - (2) Encode states (state assignment) (2 points)
 - (3) Create state-assigned state table (4 points)
 - (4) Express J-K Flip-Flop excite table to use (3 points)
 - (5) Determine minimum Flip-Flop input equations and FSM output equation(s) (8 points)
 - (6) Verify that there is no state that will stay outside the FSM for ever (2 points)
 - (7) Draw circuit diagram (7 points)

Keypoints.

-- 'SO' indicates no '1's has been input yet. So the output at this state is '0'.

S1: only one '1' has been input; output '0'.

S2: input '11'; output '0'.

S3: input '110'; output '0'.

S4: input '1100'; output '0'.

S5: input '11001'; output '1'.

-- Denote X as the input and Y the output. The state diagram is shown as follow.

- -- Three JK Flip-flops are used in this design. The outputs of JK Flip-flops will indicate the states shown in the above diagram.
- -- '000' 'S0'; '001'—'S1'; '010'—'S2'; '011' -'S3'; '100' 'S4'; '101' -' S5'. Others are inactive states. Incorporating this state-assignment, the state diagram above can be translated into the Next-State Karnaugh Map.

Q ₀ X	00	01	11	10
Q2Q1				
00	000/0	001/0	010/0	000/0
01	010/0	011/0	001/0	100/0
11	000/0	101/1	000/0	010/0
10	XXX/X	XXX/X	XXX/X	XXX/X

--

$$\begin{split} Q_{2}^{n+1} &= Q_{2}^{n} \overline{Q_{0}^{n}} X + \overline{Q_{2}^{n}} Q_{1}^{n} Q_{0}^{n} \overline{X} \\ Q_{1}^{n+1} &= \overline{Q_{2}^{n}} Q_{1}^{n} \overline{Q_{0}^{n}} + \overline{Q_{1}^{n}} Q_{0}^{n} X + Q_{2}^{n} Q_{0}^{n} \overline{X} \\ Q_{0}^{n+1} &= \overline{Q_{0}^{n}} X + \overline{Q_{2}^{n}} Q_{1}^{n} X \\ Y &= Q_{2}^{n} \overline{Q_{0}^{n}} X \end{split}$$

--

$$J_{2} = Q_{1}^{n} Q_{0}^{n} \overline{X}$$

$$J_{1} = Q_{0}^{n} X + Q_{2}^{n} Q_{0}^{n} \overline{X}$$

$$K_{1} = \overline{Q_{2}^{n} Q_{0}^{n} + Q_{2}^{n} Q_{0}^{n} \overline{X}}$$

$$K_{0} = \overline{Q_{2}^{n} Q_{1}^{n} X}$$

- -- The circuit design is capable of booting itself.
- -- The logic diagram is omitted.