变分自编码器

> 训练步骤:

- 对每个输入 X_i ,建立两个Encoder网络分别得到 X_i 对应的隐变量Z的均值 u_i 和方差 Σ_i ,使 $Z|X_i$ 的分布接近标准正态分布。
- 通过重参数化技巧,从服从标准正态分布的 ε 中采样一个 ε_i ,并得到 $Z|X_i$ 的一个采样 Z_i 。将 Z_i 输入Decoder(生成器),希望它尽可能重构得 X_i 。

≻ 损失函数:

 $\mathcal{L} = \mathbb{E}_{x \sim ilde{p}(x)}[-\ln q(x \mid z) + KL(p(z \mid x) \| q(z))], \quad z \sim p(z \mid x)$

VAE优缺点及作用

> 优:

• VAE中间层隐变量 Z近似服从标准正态分布, Z可为**连续且高维**, 对噪声具有一定的**鲁棒性**, 即 Z在一个范围内变化时, Decoder结果(输出图片类别)保持不变。**普通的**AE隐变量层是特定的数,且不为连续高维,表征能力有限,鲁棒性差。

> 缺:

• 生成的图片偏模糊,生成能力弱,一般来作**图像恢复(即重构)**

≻ 作用:

• VAE中间层隐变量Z近似服从标准正态分布,Z可为连续且高维,对噪声具有一定的鲁棒性,即Z在一个范围内变化时,Decoder结果保持不变。普通的AE隐变量层是特定的数,且不为连续高维,表征能力有限,鲁棒性差。