2.4: Limits

Example. Suppose that the position function of a maglev train (in feet) is given by

$$s(t) = 4t^2, \qquad (0 \le t \le 30)$$

Using the position function, compute the average velocity of the train

on the interval [t, 2]

	\overline{t}	1.5	1.9	1.99	1.999	1.9999
--	----------------	-----	-----	------	-------	--------

on the interval [2, t]

-					
t	2.5	2.1	2.01	2.001	2.0001
-					

What do the tables above suggest about instantaneous velocity of the train at t = 2?

Definition. (Limit of a Function)

The function f has the **limit** L as x approaches a, written

$$\lim_{x \to a} f(x) = L$$

if the value of f(x) can be made as close to the number L as we please by taking x sufficiently close to (but not equal to) a.

Example. Using the graph of f, determine the following values:

$$f(1)$$
 and $\lim_{x\to 1} f(x)$

$$f(2)$$
 and $\lim_{x\to 2} f(x)$

$$f(3)$$
 and $\lim_{x\to 3} f(x)$

Example. Find the limit of the following functions at the value specified: Graphs

$$f(x) = x^3 \quad \text{ at } x = 2$$

$$g(x) = \begin{cases} x+2, & x \neq 1 \\ 1, & x = 1 \end{cases}$$
 at $x = 1$

$$h(x) = \begin{cases} -1, & x < 0 \\ 1, & x \ge 0 \end{cases}$$
 at $x = 0$
$$j(x) = \frac{1}{(x-1)^2}$$
 at $x = 1$

$$j(x) = \frac{1}{(x-1)^2}$$
 at $x = 1$

$$k(x) = 4 \quad \text{at } x = 0$$

Theorem 1: Properties of Limits

Suppose

$$\lim_{x \to a} f(x) = L$$
 and $\lim_{x \to a} g(x) = M$

Then

1.
$$\lim_{x \to a} [f(x)]^r = \left[\lim_{x \to a} f(x) \right]^r$$

where r is a positive constant

$$2. \lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$$

where c is a real number

3.
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = L \pm M$$

4.
$$\lim_{x \to a} [f(x)g(x)] = \left[\lim_{x \to a} f(x)\right] \left[\lim_{x \to a} g(x)\right] = LM$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{M}$$

provided $M \neq 0$

Example. Use the above theorem to evaluate the following limits:

$$\lim_{x \to 1} \left(5x^{3/2} - 2 \right)$$

$$\lim_{x \to 3} \frac{2x^3\sqrt{x^2 + 7}}{x + 1}$$

Suppose that $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

has an **indeterminate form** of $\frac{0}{0}$. To evaluate such a limit, we replace the given function with a function that's equivalent everywhere except at x = a, and then evaluate the limit.

Example. Evaluate the following

$$\lim_{t \to 2} \frac{4t^2 - 16}{t - 2}$$

$$\lim_{h \to 0} \frac{\sqrt{4+h} - 2}{h}$$

Limit of a Function at Infinity

The function f has the limit L as x increases without bound, written

$$\lim_{x \to \infty} f(x) = L$$

if f(x) can be made arbitrarily close to L by taking x large enough.

The function f has the limit M as x decreases without bound, written

$$\lim_{x \to -\infty} f(x) = M$$

if f(x) can be made arbitrarily close to M by taking x to be negative and sufficiently large enough in absolute value.

When the above limits exist, the equations y = L and/or y = M are called **horizontal** asymptotes.

Example. Evaluate the following infinite limits

$$\lim_{x \to \infty} \frac{2x^2 + 3x - 4}{x^2 - 7x + 1}$$

$$\lim_{x \to -\infty} \frac{3x^2 + 4}{2x^3}$$

$$\lim_{x \to \pm \infty} \frac{3x^5 + 2x^3 - 4}{x^4 + 4x^2 - 1}$$

$$\lim_{x \to \infty} \frac{7x^3 - 2}{-x^3 + \sqrt{25x^6 - 4}}$$

$$\lim_{x \to -\infty} \frac{7x^3 - 2}{-x^3 + \sqrt{25x^6 - 4}}$$

Example. The company $Custom\ Office$ makes a line of executive desks. It is estimated that the total cost of making $x\ Senior\ Executive\ Model$ desks is

$$C(x) = 100x + 200,000$$

dollars per year. The average cost of making x desks is given by

$$\overline{C}(x) = \frac{C(x)}{x}$$

Compute $\lim_{x\to\infty} \overline{C}(x)$ and interpret the result.

Theorem 2

For all n > 0,

$$\lim_{x\to\pm\infty}\frac{1}{x^n}=0$$

provided that $\frac{1}{x^n}$ is defined.