Relatively Prime

Definition

 $\forall a, b \in \mathbb{Z}$, to say that a and b are relatively prime means (a, b) = 1.

Corollary: To Bézout

$$\forall a, b \in \mathbb{Z}, (a, b) = 1 \iff \exists m, n \in \mathbb{Z}, ma + nb = 1$$

Proof

Assume $a,b\in\mathbb{Z}$ $(a,b)=1\iff 1=\min\{ma+nb\in\mathbb{Z}^+\mid m,n\in\mathbb{Z}\}\iff \exists\,m,n\in\mathbb{Z},ma+nb=1$

Theorem

Let $a, b, c \in \mathbb{Z}$ and $a \neq 0$:

$$a \mid bc \text{ and } (a, b) = 1 \implies a \mid c$$

Proof

Assume $a \mid bc$ and (a,b) = 1 $\exists m, n \in \mathbb{Z}, ma + nb = 1$ (cm)a + n(bc) = cBut $a \mid a$ and $a \mid bc$ So $a \mid (cm)a + n(bc)$ $\therefore a \mid c$

Theorem

Let p be a prime number:

$$\forall a \in \mathbb{Z}, (p, a) = 1 \iff p \nmid a$$

Proof

Assume $a \in \mathbb{Z}$

$$\implies \text{Assume } p \mid a$$

$$p \mid p$$

$$p \in D_p \cap D_a$$

$$p > 1$$

$$\iff$$
 Assume $p \nmid a$

$$D_p = \{\pm 1, \pm p\}$$

$$D_p \cap D_a = \{\pm 1\}$$

$$\therefore (p, a) = 1$$

 $\therefore (p,a) \ge p > 1$

Corollary

Let p be a prime number:

$$\forall a, b \in \mathbb{Z}, p \mid ab \implies p \mid a \text{ or } p \mid b$$

Proof

Assume $a, b \in \mathbb{Z}$

Assume $p \mid ab$

Case 1: $p \mid a$

Done.

Case 2: $p \nmid a$

$$(p,a)=1$$

$$\therefore p \mid b$$

Corollary

Let $a,b\in\mathbb{Z}$ such that $a\neq 0$ or $b\neq 0$ and d=(a,b):

$$(\frac{a}{d}, \frac{b}{d}) = 1$$

Proof

$$\left(\frac{a}{d}, \frac{b}{d}\right) = \frac{d}{d} = 1$$

Corollary

Let $\frac{a}{b} \in \mathbb{Q}$:

$$\exists\, \frac{p}{q}\in\mathbb{Q}, \frac{a}{b}=\frac{p}{q} \text{ and } (p,q)=1$$

Proof

Let
$$d = (a, b)$$

$$\begin{array}{l} \text{Let } d=(a,b) \\ \text{Let } p=\frac{a}{d} \text{ and } q=\frac{b}{d} \\ (p,q)=1 \\ \frac{p}{q}=\frac{\frac{a}{\overline{d}}}{\frac{b}{d}}=\frac{a}{b} \end{array}$$

$$(p,q) = 1$$

$$\frac{p}{q} = \frac{\frac{a}{d}}{\frac{b}{d}} = \frac{a}{b}$$