

Linear Classification and Computation Graphs

Linear Classification

Linear Classification

- Input: $x \in \mathbb{R}^d$
- Output: $y \in \{1, 2, ..., k\}$
- Parameters: $W \in \mathbb{R}^{k \times d}$, $b \in \mathbb{R}^{k}$

Logits
$$s = W x + b$$

$$\hat{y} = \operatorname{argmax}_{i} s_{i}$$
 $P(y) = \operatorname{softmax}(s)_{y}$

Linear Classification

Softmax

Turn scores into a distribution

$$P(y) = \text{softmax}(s)_y = \frac{e^{s_y}}{\sum_i e^{s_i}}$$

Loss:
$$-\log P(y)$$

Computation Graphs

Arrange the operations of a network as a graph

Computation Graphs - Abstraction

Group tensors and operations into repeatable layers

