Experiment No.: 7

Applications of OP-AMP

ADITYA RAJ U20CS100

Aim: To study various applications of operational amplifiers.

SOFTWARE TOOLS / OTHER REQUIREMENTS:

Multisim Simulator/Circuit Simulator

Theory:

OP-AMP Applications as Adder or Summing Amplifier:

Op-amp can be used to sum the input voltage of two or more sources into a single output voltage. Below is a circuit diagram depicting the application of an op-amp as an adder or summing amplifier. The input voltages are applied to the inverting terminal of the op-amp. The inverting terminal is grounded. The output voltage is proportional to the sum of the input voltages.

OP-AMP Application as a Differentiator:

Op-amp can be used as a differentiator where the output is the first derivative of the input signal. The following equation gives the relation between the input signal and the output signal.

$$V_{OUT} = -R_F C \frac{dV_{IN}}{dt}$$

OP-AMP Application as an Integrator:

Op-amp is used as an integrator also. The integrator op-amp produces an output that is proportional to the amplitude of the input signal as well as the duration of the input signal. Instead of a resistor in the feedback loop, we have a capacitor. It is able to perform the mathematical operation of integration as the output varies with the input and duration of the signal.

OP-AMP Application as a Comparator:

Operational amplifier compares the voltage applied at one input to the voltage applied at the other input. Any difference between the voltages ever if it is small drives the op-amp into saturation. When the voltages supplied to both the inputs are of the same magnitude and the same polarity, then the op-amp output is 0Volts.

A comparator produces limited output voltages which can easily interface with digital logic, even though compatibility needs to be verified.

CIRCUIT DIAGRAM (FROM MULTISIM)

ADDER

1>	e largest sois Evans persons es
	MAN SOME HALL THE SAME
	→ T = 5 + 12
	WINV MVX 7 x 4 x 6 2 - 31-19 x worl 8
	= IImA
	.001
	Vout = 11 × 10-3 × 1×103
	= -11.V/VZ = 98
	2 Hm1 = 7

SUBTRACTOR

2>	Subtractor mutas = 32
	5-6 _ 6- Vout
	MIKNOL X /XAX IKN
	Balling
	Vout = 7V

SUMMING AMPLIFIER

3)	Summing Amplifier. Motorunger
	Take inverting terminal & non inverting ground wout, KI (R3 + V1 + V3)
	R3 R4 R5
	$= -1 \left(\frac{5}{1} + \frac{4}{7} + \frac{3}{1} \right)$ $= -12 \sqrt{\frac{5}{1} + \frac{4}{7} + \frac{3}{1}}$
-	Taxe non-inverting terminal & inverting ground
	remail to = out 10 Hours touth a sounds
	the cont through R, Ra & Rs = 9mA
	Itotal = 18x4 = 112mA
	1000/2 - 001/2 - 4 2000/2 - 001/4 - 10/2 - 4
	Vout 2 = 160
	= (16-12.000000)
	= 4V

COMPARATOR

OP-AMP INTEGRATOR

GRAPH

OP-AMP DIFFERENTIATOR

GRAPH

FREQUENCY RESPONSE OF INTEGRATOR

FREQUENCY RESPONSE OF DIFFERENTIATOR

Conclusion

THROUGH THIS EXPERIMENT, WE OBSERVED AND VERIFIED VARIOUS APPLICATIONS OF OPERATIONAL AMPLIFIERS.

IT CAN BE USED AS ADDER, SUBTRACTOR, SUMMING AMPLIFIER, COMPARATOR, INTEGRATOR, DIFFERENTIATOR AND MANY MORE APPLICATIONS.