Lecture Three

Section 3.1 – Inner Products

Definition

An *inner product* on a real vector space V is a function that associates a real number $\langle u, v \rangle$ with each pair of vectors in V in such a way that the following axioms are satisfies for all vectors u, v, and w in V and all scalars k.

1. $\langle u, v \rangle = \langle v, u \rangle$ Symmetry axiom

2. $\langle u+v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ Additivity axiom

3. $\langle ku, v \rangle = k \langle u, v \rangle$ Homogeneity axiom

4. $\langle \mathbf{v}, \mathbf{v} \rangle \ge 0$ and $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ iff $\mathbf{v} = 0$ **Positivity axiom**

A real vector space with an inner product is called a *real inner product space*.

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \boldsymbol{u} \cdot \boldsymbol{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

This is called the *Euclidean inner product* (or the *standard inner product*)

Definition

If V is a real inner product space, then the norm (or length) of a vector v in V is denoted by ||v|| and is defined by

$$||v|| = \sqrt{\langle v. v \rangle}$$

And the *distance* between two vectors is denoted by d(u, v) and is defined by

$$d(u, v) = ||u - v|| = \sqrt{\langle u - v, u - v \rangle}$$

1

A vector of norm 1 is called a *unit vector*.

Theorem

If u and v are vectors in a real inner product space V, and if k is a scalar, then:

- a) $\|\mathbf{v}\| \ge 0$ with equality iff $\mathbf{v} = 0$
- $b) \quad ||kv|| = |k| ||v||$
- c) d(u, v) = d(v, u)
- d) $d(u, v) \ge 0$ with equality iff u = v

Although the Euclidean inner product is the most important inner product on \mathbb{R}^n , there are various applications in which is desirable to modify it by weighing each term differently. More precisely, if $w_1, w_2, ..., w_n$ are positive real numbers, which we will call weighs, and if $\mathbf{u} = (u_1, u_2, ..., u_n)$ and are vectors in \mathbb{R}^n , then it can be shown that the formula

$$\langle u, v \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \dots + w_n u_n v_n$$

Defines an inner product on R^n that we call the *weighted Euclidean inner product* with weights $w_1, w_2, ..., w_n$

Example

Let $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$ be vectors in \mathbb{R}^2 , verify that the weighted Euclidean inner product $\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 2u_2v_2$ satisfies the four inner product axioms.

Solution

Axiom 1:
$$\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 2u_2v_2 = 3v_1u_1 + 2v_2u_2 = \langle \mathbf{v}, \mathbf{u} \rangle$$

Axiom 2:
$$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = 3(u_1 + v_1)w_1 + 2(u_2 + v_2)w_2$$

$$= 3(u_1w_1 + v_1w_1) + 2(u_2w_2 + v_2w_2)$$

$$= 3u_1w_1 + 3v_1w_1 + 2u_2w_2 + 2v_2w_2$$

$$= (3u_1w_1 + 2u_2w_2) + (3v_1w_1 + 2v_2w_2)$$

$$= \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$$

Axiom 3:
$$\langle k\mathbf{u}, \mathbf{v} \rangle = 3(ku_1)v_1 + 2(ku_2)v_2$$

$$= k(3u_1v_1 + 2u_2v_2)$$

$$= k\langle \mathbf{u}, \mathbf{v} \rangle$$

Axiom 3:
$$\langle \mathbf{v}, \mathbf{v} \rangle = 3v_1v_1 + 2v_2v_2$$

= $3v_1^2 + 2v_2^2 \ge 0$
 $v_1 = v_2 = 0$ iff $\mathbf{v} = \mathbf{0}$

Exercises Section 3.1 – Inner Products

1. Let $\langle u, v \rangle$ be the Euclidean inner product on R^2 , and let u = (1, 1), v = (3, 2), w = (0, -1), and k = 3. Compute the following.

a) $\langle u, v \rangle$

c) $\langle u+v, w \rangle$

e) $d(\mathbf{u}, \mathbf{v})$

b) $\langle k\mathbf{v}, \mathbf{w} \rangle$

d) $\|\mathbf{v}\|$

f) $\|\mathbf{u} - k\mathbf{v}\|$

2. Let $\langle u, v \rangle$ be the Euclidean inner product on R^2 , and let u = (1, 1), v = (3, 2), w = (0, -1) and k = 3. Compute the following for the weighted Euclidean inner product $\langle u, v \rangle = 2u_1v_1 + 3u_2v_2$.

a) $\langle u, v \rangle$

c) $\langle u+v, w \rangle$

e) d(u, v)

b) $\langle kv, w \rangle$

d) ||v||

f) $\|\mathbf{u} - k\mathbf{v}\|$

3. Let $\langle u, v \rangle$ be the Euclidean inner product on R^2 , and let u = (3, -2), v = (4, 5), w = (-1, 6), and k = -4. Verify the following.

a) $\langle u, v \rangle = \langle v, u \rangle$

d) $\langle k\mathbf{u}, \mathbf{v} \rangle = k \langle \mathbf{u}, \mathbf{v} \rangle$

b) $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$

e) $\langle \mathbf{0}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{0} \rangle = 0$

c) $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$

4. Let $\langle u, v \rangle$ be the Euclidean inner product on R^2 , and let u = (3, -2), v = (4, 5), w = (-1, 6), and k = -4. Verify the following for the weighted Euclidean inner product $\langle u, v \rangle = 4u_1v_1 + 5u_2v_2$

a) $\langle u, v \rangle = \langle v, u \rangle$

d) $\langle k\mathbf{u}, \mathbf{v} \rangle = k \langle \mathbf{u}, \mathbf{v} \rangle$

b) $\langle u+v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$

e) $\langle \mathbf{0}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{0} \rangle = 0$

c) $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$

- 5. Let $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$. Show that the following are inner product on \mathbb{R}^3 by verifying that the inner product axioms hold. $\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 5u_2v_2$
- 6. Show that the following identity holds for the vectors in any inner product space $\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$