Câblez le circuit représenté ci-contre.

Ne pas mettre sous tension avant validation.

Les voies 1 et 2 sont les tensions visualisées à l'oscilloscope.

1. Quelle tension est-elle visualisée sur la voie 1?

UE	U _R	
UL	U _L + U _R	

2. Quelle tension est-elle visualisée sur la voie 2?

U_E	U_R	U_L	\cup U _L + U _R
		=	- "

- 3. Expliquez pourquoi connaître la tension U_R permet aussi de connaître l'intensité dans la circuit.
- 4. À l'aide de l'oscilloscope, déterminer la valeur de $U_{E_{\it eff}}$ en détaillant vos calculs.
- 5. À l'aide de l'oscilloscope, déterminer la valeur de $I_{\it eff}$ en détaillant vos calculs.
- 6. En déduire la puissance apparente S délivrée.
- 7. À l'aide d'un **wattmètre** (Sattendre l'explication pour le branchement), mesurez la puissance active *P* délivrée.

$$P = \dots W$$

8. En déduire le facteur de puissance du circuit.