Messdaten und Hinweise zum Versuch Aktivierung mit Neutronen

Der Versuch wurde entsprechend der Anleitung durchgeführt.

1. Bestimmung der Untergrundrate

Für die Bestimmung des Untergrundes wurde die Untergrundrate N_U mehrfach gemessen. Als Messintervall wurde t = 300s gewählt.

 $N_U = \{129, 143, 144, 136, 139, 126, 158\}$

2. Bestimmung der Halbwertszeit von Vanadium

Die aktivierte Vanadiumprobe wurde direkt nach Entnehmen aus der Neutronenquelle auf das Geiger-Müller-Zählrohr gesteckt, dann wurde die Messung gestartet. Als Messintervall wurde $\Delta t = 30s$ gewählt.

t [s]	30	60	90	120	150	180	210	240	270	300	330	360	390	420
N [Imp]	189	197	150	159	155	132	117	107	94	100	79	69	81	46
∡ [_]	150	1.00	F10	F40	570	coo l	620	een	600	1 720	1 750	7 00	010	0.40
										720		780		
N [Imp]	49	61	56	40	45	32	27	43	35	19	28	27	36	25
t [s]	870	900	930	960	990	1020	1050	$0 \mid 10$	80 1	1110	1140	1170	1200	1230
N [Imp]	29	18	17	24	21	25	21	2	4	25	17	20	19	20

Die Messdaten stehen für das Einlesen in weitere Programme in der Datei Vanadium. dat zur Verfügung. Ziehen Sie von den Messdaten den Nulleffekt ab (Achten Sie auf die verschiedenen Messintervalle beim Untergrund und den Zerfallszeiten) und berechnen Sie die Messunsicherheiten. Die Zählraten sind Poisson verteilt, sodass sich die Messunsicherheit durch $\Delta N = \sqrt{N}$ berechnen lässt, das kennen Sie ja mitlerweile. Plotten Sie ein halblogarithmisches Diagramm (Fehlerbalken nicht vergessen), und bestimmen Sie die Zerfallszeit durch Anpassen des Zerfallsgesetzes. Sie werden bemerken, dass die letzten Zählintervalle sehr geringe Zählraten haben, die in den Untergrund übergehen. Dadurch wird die Bestimmung der Zerfallszeit sehr ungenau. Wollen Sie ein genaueres Ergebnis erhalten, dann führen Sie die Ausgleichsrechnung ein zweites Mal durch, indem Sie nur die Messpunkte bis zur doppelten Halbwertszeit verwenden.

Hierdurch werden die Messintervalle vernachlässigt, deren Zählraten sich nicht mehr signifikant vom Untergrund unterscheiden. Vergleichen Sie das Ergebnis mit den Werten aus der Literatur. (Vergessen Sie nicht die Quelle anzugeben.)

3. Bestimmung der Halbwertszeit von Rhodium

Die Messung wurde analog zu der Messung mit Vanadium durchgeführt. Die Messintervalle betrugen bei Rhodium $\Delta t=15s$.

t [s]	15	30	45	60	75	90	105	120	135	150	165	180	195	210
N [Imp]	667	585	474	399	304	253	213	173	152	126	111	92	79	74
t [s]	225	240	255	270	285	300	315	330	345	360	375	390	405	420
N [Imp]	60	52	56	53	41	36	37	32	36	38	34	40	21	35
t [s]	435	450	465	480	495	510	525	540	555	570	585	600	615	630
N [Imp]	33	36	20	24	30	30	26	28	23	20	28	17	26	19

Die Messdaten stehen für das Einlesen in weitere Programme in der Datei Rhodium.dat zur Verfügung. Zeichnen sie die Messdaten in ein halblogarithmisches Diagramm ein. Verfahren sie hierzu analog zum Vanadium (Nullrate abziehen, Messunsicherheit berechnen). Rhodium hat zwei Zerfallskanäle, einen langsamen und einen schnellen Zerfall. Sie sollten die unterschiedlichen Steigungen in der halblogarithmischen Auftragung erkennen. Der Kurzlebige Zerfall ist dabei vom langlebigen Zerfall überlagert, so dass die Auswertung mit der Analyse des langlebigen Zerfalls beginnt. Identifizieren Sie den Bereich, indem nur noch der langlebige Zerfall stattfindet. Bestimmen Sie aus diesen Daten die Zerfallskonstante des langlebigen Zerfalls mittels Regression. Extrapolieren Sie die Regregressionskurve, sodaß der langlebige Zerfall vom kurzlebigen Zerfall abgezogen werden kann. Anschließend können Sie auch die Zerfallskonstante des kurzlebigen Zerfalls bestimmen. Vergleichen Sie die erhaltenen Halbwertszeiten mit der Literatur (Quellenangabe nicht vergessen).