ECO 82800

Panel Econometrics

Midterm Exam

26 March 2015, 9:30am-11:30pm

This exam is a closed-book, closed-notes exam. Calculators without matrix functions are allowed. The exam consists of seven questions, most of them with parts. Points per question are as indicated; parts are weighted equally. The total is 100 points. Budget your time. You may answer the questions in any order, but *label them clearly and keep parts of a question together*.

Several questions refer to Stata output that is attached at the end of this exam. The data used to generate this output refer to 18 OECD countries over the period 1960-1978 (19 years). The variables are Igaspcar (log of gasoline demand per car), Incomep (log of real income per capita), Irpmg (log of real gasoline price), and Icarpcap (log of the stock of cars per capita). In the Stata output, irrelevant output is omitted.

1. (21 points)

A one-factor model is often written as $y_{it} = \alpha + X'_{it}\beta + u_{it}$ where $u_{it} = \mu_i + \nu_{it}$ for i = 1, ..., N and t = 1, ..., T. X'_{it} is a $1 \times K$ row vector of explanatory variables. ν_{it} is distributed IID $(0, \sigma_{\nu}^2)$.

- a. Anticipating that this model will be estimated as a fixed effects model (i.e., with $\alpha = 0$), set up this model in a matrix notation.
- b. In matrix form, derive the FE estimator of β .
- c. A variation of a one-factor model is $y_{it} = d_t'\alpha_i + X_{it}'\beta + \nu_{it}$, where d_t' is a $1 \times m$ vector of individual-invariant variables (possibly including one element equal to 1 for all t) and where ν_{it} is distributed IID(0, σ_{ν}^2). In matrix form, derive the FE estimator of β for this model. $y_{it} = p_{\alpha_i} + x_i \beta + v_i \quad \Rightarrow \quad y_i = (I_{M} \triangleright p)_{\alpha_i} + x_i \beta + v_i$

2. (16 points)

Examine the attached Stata output, and answer the following questions.

- a. Comment on the sign and significance of the OLS regression results: are they plausible?
- b. Comment on the sign and significance of the fixed effects (FE) regression results: are they plausible?
- c. The magnitude of the OLS estimates differs substantially from that of the FE estimates. Zeris and a substantially from that of the FE estimates.
- d. How would you test whether the fixed effects are a necessary part of the regression model?

3. (16 points)

Examine the attached Stata output, and answer the following questions.

- a. The random effects (RE) model is computed with the "sa" option, referring to Swamy-Arora. What does that mean?
- b. The Stata command xttest0 implements the Breusch-Pagan LM test for random effects. What does the test here tell us?
- c. In general, why is the LM test flawed? How can the flaw be fixed?
- d. However, the flaw does not impact the outcome of the LM test here. Therefore, given the outcome of the LM test, what can you say about the OLS results that you discussed in Q2a?

4. (20 points)

With the help of the attached Stata output, answer the following questions.

- a. In general, what hypothesis does the Hausman test examine?
 - b. What is the result of the Hausman test in this particular application? How E [w] = 0
 - c. Arellano (1993) offered an alternative approach to the Hausman test. For your information, relevant formulas are given below. Given the output, what does Arellano's test imply in this particular application?

$$\begin{pmatrix} y_i^+ \\ \overline{y}_i \end{pmatrix} = \begin{pmatrix} X_i^+ & 0 \\ \overline{X}_i & \overline{X}_i \end{pmatrix} \begin{pmatrix} \beta \\ \gamma \end{pmatrix} + \begin{pmatrix} u_i^+ \\ \overline{u}_i \end{pmatrix}$$
 where $y_i^+ = \begin{pmatrix} y_{i1}^+ \dots & y_{i,T-1}^+ \end{pmatrix}'$ and $y_{it}^+ = \begin{pmatrix} \frac{T-t}{T-t+1} \end{pmatrix}^{1/2} \left(y_{it} - \frac{1}{T-t} \sum_{s=t+1}^T y_{is} \right)$.

- d. In what way does the Stata output make use of the advantage that is inherent in Arellano's approach? Precisely, what is this advantage?
 - 5. (12 points)

Examine the attached Stata output, and answer the following questions.

- a. After the OLS output, some Stata commands compute the LM1 statistic. What hypothesis does this statistic examine? Two hypothesis and the constant with the statistic examine?
 - b. The value of LM1 equals 1484. How would you evaluate this value, and what does the outcome of the test imply?
 - c. Given the result of this test, what else would you want to test for?
 - 6. (5 points)
- Comment briefly on the following statement: "The only way to estimate a two-way random effects model is by GLS."
 - 7. (10 points)
- Hashem Pesaran designed an estimator for the following model:

$$y_{ij} = \alpha'_i d_t + \beta'_i x_{it} + e_{it}$$

$$e_{it} = \gamma'_i f_t + \epsilon_{it}$$

$$x_{it} = A'_i d_t + \Gamma'_i f_t + \nu_{it}$$

where d_t is a vector of observable individual-invariant factors, f_t is a vector of unobservable individual-invariant factors that may be correlated with d_t , and ϵ_{it} and ν_{it} are independent of each other and of f_t and d_t . β_i varies across i: $\beta_i \sim iid(\beta, \sigma_\beta^2)$. The objective is to estimate β . Pesaran offers two estimators, a CCEMG and a CCEP estimator. Explain the key insight that both estimators rely on.

. su lgaspcar lincomep lrpmg lcarpcap;

Variable	Obs	Mean	Std. Dev.	Min	Мах
lgaspcar	342	4.296242	.5489071	3.380209	6.156644
lincomep	342	-6.139425	.6345925	-8.072523	-5.221232
lrpmg	342	5231032	.6782225	-2.896497	1.125311
lcarpcap	342	-9.041805	1.218896	-13.47518	-7.536176

. xtreg lgaspcar lincomep lrpmg lcarpcap,fe

Fixed-effects (within) regression	Number of obs	=	342
Group variable: ctry	Number of groups		18
R-sq: within = 0.8396	Obs per group: mir	=	19
between = 0.5755	avg		19.0
overall = 0.6150	max		19
corr(u_i, Xb) = -0.2468	F(3,321)	==	560.09
	Prob > F	==	0.0000

lgaspcar	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lincomep lrpmg lcarpcap _cons	.6622498 3217025 6404829 2.40267	.073386 .0440992 .0296788 .2253094	9.02 -7.29 -21.58 10.66	0.000 0.000 0.000 0.000	.5178715 4084626 6988726 1.959401	.8066282 2349424 5820933 2.84594
sigma_u sigma_e rho	.34841289 .09233034 .93438173	(fraction	of varia	nce due t	o u_i)	

. estimates store fixed;

. xtreg lgaspcar lincomep lrpmg lcarpcap,sa

Random-effects GLS regression Group variable: ctry	Number of obs = Number of groups =	
R-sq: within = 0.8363 between = 0.7099 overall = 0.7309	Obs per group: min = avg = max =	= 19.0
corr(u_i, X) = 0 (assumed)	wald chi2(3) = Prob > chi2 =	= 1642.20 = 0.0000

lgaspcar	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
lincomep lrpmg lcarpcap _cons	.5549858 4203893 6068402 1.996699	.0591282 .0399781 .025515 .184326	9.39 -10.52 -23.78 10.83	0.000 0.000 0.000 0.000	.4390967 498745 6568487 1.635427	.6708749 3420336 5568316 2.357971
sigma_u sigma_e rho	.19554468 .09233034 .81769856	(fraction	of varia	nce due 1	to u_i)	

[.] estimates store random;

Breusch and Pagan Lagrangian multiplier test for random effects

lgaspcar[cid,t] = Xb + u[cid] + e[cid,t]

Estimated results:	Var	sd = sqrt(Var)
lgaspcar	.301299	.5489071
e i	.0382377	.1955447

. hausman fixed random;

	Coeffi (b) fixed	cients (B) random	(b-B) Difference	sqrt(diag(V_b-V_B)) S.E.
lincomep	.6622498	.5549858	.107264	.0434669
lrpmg	3217025	4203893	.0986868	.0186143
lcarpcap	6404829	6068402	0336428	.0151597

 $b=\mbox{consistent}$ under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg

[.] xttest0;

```
chi2(3) = (b-B)'[(V_b-V_B)^{(-1)}](b-B)
= 302.80
                       Prob>chi2 =
                                               0.0000
                       (V_b-V_B is not positive definite)
. reg lgaspcar lincomep lrpmg lcarpcap;
                                                                              Number of obs =
        Source |
                              SS
                                                                              F( 3, 338) =
Prob > F =
                                                                                                     664 00
                                         3 29.2795341
338 .044095734
                                                                                                 = 0.0000
= 0.8549
                       87.8386024
          Model
                       14.9043581
                                                                              R-squared
     Residual
                                                                              Adj R-squared = 0.8536
          Total | 102.742961
                                         341 .301299005
                                                                              Root MSE
                                                                                                      .20999
     lgaspcar |
                          Coef.
                                       Std. Err.
                                                          t
                                                                    P>|t|
                                                                                  [95% Conf. Interval]
                                                                                                                                  income +
                        .8899616
                                        .0358058
                                                        24.86
                                                                    0.000
                                                                                  .8195313
                                                                                                   .9603919
                                                                                                                     7 OLS
      lincomep
                                                                                                                                  price -
                                                       -29.42
                                                                                 -.9514272
-.7999754
          lrpmg
                       -.8917979
                                        .0303147
                                                                    0.000
                                                                                                  -.8321685
                       -.7633727
                                                       -41.02
      lcarpcap
                                        .0186083
                                                                    0.000
                                                                                                  -.7267701
                                                                                                                                  iar shah -
                        2.391326
                                        .1169343
                                                         20.45
                                                                    0.000
                                                                                   2.161315
                                                                                                    2.621336
         _cons
                                                                                                                            gasolm
. predict u,resid;
  g uu = u^2;
  quietly su uu;
. quietly su du;
. scalar den = r(sum);
. egen uc = total(u),by(cid);
. quietly g ucuc = uc^2 if year == tmin;
. scalar numA = r(sum);
. g uul = u*u[_n-1] if year ~= tmin;
(18 missing values generated)
                                                                                                                    And large elasticity
(18 missing values generated)
. quietly su uul;
. scalar numB = r(sum);
. scalar A = (numA/den) - 1;
. scalar B = numB/den;
. scalar LM1 = (N*T*T)/(2*(T-1)*(T-2)) * (A*A - 4*A*B + 2*T*B*B);
. display "LM1 = " LM1 ";
LM1 = 1484.571
*** Variables with a last letter of "d" denote forward orthogonal differences.
*** Variables with a last letter of "d" denote individual-specific means.
*** x0=1 for all (i,t)
. reg lgaspcard lincomepd lrpmgd lcarpcapd lincomepm lrpmgm lcarpcapm x0m,noconst vce(hc2);
                                                                              Number of obs = 342
F( 7, 335) = 2426.94
Prob > F = 0.0000
Linear regression
                                                                               R-squared
                                                                                                  = 0.9907
                                                                               Root MSE
                                                                                                      .09892
                                      Robust HC2
    lgaspcard
                            Coef.
                                       Std. Err.
                                                             t
                                                                    P> | t |
                                                                                   [95% Conf. Interval]
                            .66225
                                          .078864
                                                          8.40
                                                                     0.000
                                                                                     .507119
                                                                                                      .817381
    lincomepd
                        -.3217025
                                                        -6.71
-14.59
1.26
                                        .0479153
                                                                     0.000
                                                                                   -.4159553
                                                                                                    .2274497
        lrpmqd
                         -.640483
                                        .0439033
                                                                     0.000
                                                                                 ~.7268438
                                                                                                  -.5541222
    lcarpcapd
                        .3053265
                                         .242636
                                                                     0.209
                                                                                                   .7826087
    lincomepm
         1 rpmam
                       -.6418482
                                        .1813578
                                                          -3.54
                                                                     0.000
                                                                                 -.9985919
                                                                                                   -.2851046
                                        .0988906
                                                         -1.57
                                                                     0.118
                                                                                                    .0397086
                       -.1548162
                                                                                    -.349341
    lcarpcapm
            хÖm
                          2.54163
                                        .6091093
                                                          4.17
                                                                     0.000
                                                                                   1.343469
                                                                                                    3.739791
              matrix b=e(b)';
              matrix V=e(V);
              matrix wald = b[4..6,1]'*invsym(V[4..6,4..6])*b[4..6,1];
              matrix list Wald;
symmetric Wald[1,1]
yl 15.446815
```

Test: Ho: difference in coefficients not systematic