JUN 0 2 2008 JUN 0

SEQUENCE LISTING

<110>	Denney, Jr., Dan W.		
<120>	Vaccines for Treatment of Lymphoma and Leukemia	à	
<130>	GENITOPE-03849		
	09/370,453 1999-08-09		
<160>	77		
<170>	PatentIn version 3.3		
<210><211><211><212><213>	28		
<220> <223>	Synthetic		
<400> tctaga	1 agcgg ccgcggaggc cgaattcg		28
<210><211><212><213>	36 DNA		
<220> <223>	Synthetic		
<400> gatccg	2 gaatt eggeeteege ggeegeteta gatgea		36
<210><211><212><213>	677 DNA		
<400> ggatcc	. 3 cagac atgataagat acattgatga gtttggacaa accacaacta	a gaatgcagtg	60
aaaaaa	aatgc tttatttgtg aaatttgtga tgctattgct ttatttgtaa	ccattataag	120
ctgcaa	ataaa caagttaaca acaacaattg cattcatttt atgtttcagg	g ttcaggggga	180
ggtgtg	gggag gttttttaaa gcaagtaaaa cctctacaaa tgtggtatgg	g ctgattatga	240
tcatga	aacag actgtgagga ctgaggggcc tgaaatgagc cttgggactg	g tgaatcaatg	300
cctgtt	ttcat gccctgagtc ttccatgttc ttctccccac catcttcate	tttatcagca	360
++++	stage tetetteste stestestes etettetts eegsstets	ataat	420

cccatagcca	cattaaactt	cattttttga	tacactgaca	aactaaactc	tttgtccaat	480
ctctctttcc	actccacaat	tctgctctga	atactttgag	caaactcagc	cacaggtctg	540
taccaaatta	acataagaag	caaagcaatg	ccactttgaa	ttattctctt	ttctaacaaa	600
aactcactgo	gttccaggca	atgctttaaa	taatctttgg	gcctaaaatc	tatttgtttt	660
acaaatctgg	cctgcag					677
<210> 4 <211> 39						
<212> DNA	ificial Sequ	lence				
	iriciai ocq	aciicc				
<220> <223> Syn	thetic					
<400> 4						
ctagaattca	cgcgtaggcc	tccgcggccg	cgcgcatgc			39
<210> 5						
<211> 39						
<212> DNA <213> Art	ificial Sequ	uence				
	TITOIGI SOG					
<220> <223> Syn	thetic					
<400> 5						
aattgcatgo	gcgcggccgc	ggaggcctac	gcgtgaatt			39
<210> 6						
<211> 633						
<212> DNA <213> Art	ificial Sequ	lence				
	illeral beg	·				
<220> <223> Syn	thetic					
<400> 6						
caagcttgct	gtggaatgtg	tgtcagttag	ggtgtggaaa	gtccccaggc	tccccagcag	60
gcagaagtat	gcaaagcatg	catctcaatt	agtcagcaac	caggtgtgga	aagtccccag	120
gctccccago	aggcagaagt	atgcaaagca	tgcatctcaa	ttagtcagca	accatagtcc	180
cgcccctaac	tccgcccatc	ccgcccctaa	ctccgcccag	ttccgcccat	tctccgcccc	240
atggctgact	aattttttt	atttatgcag	aggccgaggc	cgcctcggcc	tctgagctat	300
tccagaagta	gtgaggaggc	ttttttggag	gcctaggctt	ttgcaaaaag	ctcctcgagc	360
tcqcatctct	ccttcacqcq	cccqccqccc	tacctgaggc	cqccatccac	gccggttgag	420

tcgcgttctg	ccgcctcccg	cctgtggtgc	ctcctgaact	gcgtccgccg	tctaggtaag	480
tttagagctc	aggtcgagac	cgggcctttg	tccggcgctc	ccttggagcc	tacctagact	540
cagccggctc	tccacgcttt	gcctgaccct	gcttgctcaa	ctctacgtct	ttgtttcgtt	600
ttctgttctg	cgccgttaca	gatcgcctcg	agg			633
<210> 7 <211> 635 <212> DNA <213> Mole	oney LTR vi	rus				
<400> 7 caagcttgcg	attagtccaa	tttgttaaag	acaggatatc	agtggtccag	gctctagttt	60
tgactcaaca	atatcaccag	ctgaagccta	tagagtacga	gccatagata	aaataaaaga	120
ttttatttag	tctccagaaa	aaggggggaa	tgaaagaccc	cacctgtagg	tttggcaagc	180
tagcttaagt	aacgccattt	tgcaaggcat	ggaaaaatac	ataactgaga	atagagaagt	240
tcagatcaag	gtcaggaaca	gatggaacag	ctgaatatgg	gccaaacagg	atatctgtgg	300
taagcagttc	ctgccccggc	tcagggccaa	gaacagatgg	aacagctgaa	tatgggccaa	360
acaggatatc	tgtggtaagc	agttcctgcc	ccggctcagg	gccaagaaca	gatggtcccc	420
agatgcggtc	cagccctcag	cagtttctag	agaaccatca	gatgtttcca	gggtgcccca	480
aggacctgaa	atgaccctgt	gccttatttg	aactaaccaa	tcagttcgct	tctcgcttct	540
gttcgcgcgc	ttctgctccc	cgagctcaat	aaaagagccc	acaacccctc	actcggggcg	600
ccagtcctcc	gattgactga	gtcgccccct	cgagg			635
<210 > 8 <211 > 483 <212 > DNA <213 > Homo	o sapiens					
<400> 8 aagctttgga	gctaagccag	caatggtaga	gggaagattc	tgcacgtccc	ttccaggcgg	60
cctccccgtc	accaccccc	ccaacccgcc	ccgaccggag	ctgagagtaa	ttcatacaaa	120
aggactcgcc	cctgccttgg	ggaatcccag	ggaccgtcgt	taaactccca	ctaacgtaga	180
acccagagat	cgctgcgttc	ccgccccctc	acccgcccgc	tctcgtcatc	actgaggtgg	240
agaagagcat	gcgtgaggct	ccggtgcccg	tcagtgggca	gagcgcacat	cgcccacagt	300
ccccgagaag	ttggggggag	gggtcggcaa	ttgaaccggt	gcctagagaa	ggtggcgcgg	360

.

ggcaaac	Legg	gaaagcgacg	ccgcgcactg	gettegettt	cccccgagg	grggggaga	420
accgtat	tata	agtgcagtag	tcgccgtgaa	cgttcttttt	cgcaacgggt	ttgccgcctc	480
gag							483
<210><211><211><212><213>	9 24 DNA Art:	ificial Sequ	ıence				
<220> <223>	Synt	thetic					
<400> aagcttt	9 :gga	gctaagccag	caat				24
<210><211><212><213>	10 23 DNA Arti	ificial Sequ	ience				
<220> <223>	Synt	chetic					
<400> ctcgagg	10 gcgg	caaacccgtt	gcg				23
	11 1451 DNA Homo	l o sapiens					
<400> aagcttt	11 gga	gctaagccag	caatggtaga	gggaagattc	tgcacgtccc	ttccaggcgg	60
cctcccc	gtc	accaccccc	ccaacccgcc	ccgaccggag	ctgagagtaa	ttcatacaaa	120
aggacto	gcc	cctgccttgg	ggaatcccag	ggaccgtcgt	taaactccca	ctaacgtaga	180
acccaga	agat	cgctgcgttc	ccgccccctc	acccgcccgc	tctcgtcatc	actgaggtgg	240
agaagag	gcca	tgcgtgaggc	tccggtgccc	gtcagtgggc	agagcgcaca	tcgcccacag	300
tccccga	agaa	gttgggggga	ggggtcggca	attgaaccgg	tgcctagaga	aggtggcgcg	360
gggtaaa	actg	ggaaagtgat	gtcgtgtact	ggctccgcct	ttttcccgag	ggtggggag	420
aacccgt	ata	taagtgcagt	agtcgccgtg	aacgttcttt	ttcgcaacgg	gtttgccgcc	480
agaacac	agg	taagtgccgt	gtgtggttcc	cgcgggcctg	gcctctttac	gggttatggc	540
cattaca	1+~~	cttcaattac	ttccacccc	ctaactacea	tacqtqattq	ttaataccaa	600

gcttcgggtt	ggaagtgggt	gggagagttc	gaggccttgc	gcttaaggag	ccccttcgcc	660
tcgtgcttga	gttgaggcct	ggcctgggcg	ctggggcccc	cgcgtgcgaa	tctggtggca	720
ccttcgcgcc	tgtctcgctg	ctttcgataa	gtctctagcc	atttaaaatt	tttgatgacc	780
tgctgcgacg	cttttttct	ggcaagatag	tcttgtaaat	gcgggccaag	atctgcacac	840
tggtatttcg	gtttttgggg	ccgcgggcgg	cgacggggcc	cgtgcgtccc	agcgcacatg	900
ttcggcgagg	cggggcctgc	gagcgcggcc	accgagaatc	ggacgggggt	agtctcaagc	960
tggccggcct	gctctggtgc	ctggcctcgc	gccgccgtgt	atcgccccgc	cctgggcggc	1020
aaggctggcc	cggtcggcac	cagttgcgtg	agcggaaaga	tggccgcttc	ccggccctgc	1080
tgcagggagc	tcaaaatgga	ggacgcggcg	ctcgggagag	cgggcgggtg	agtcacccac	1140
acaaaggaaa	agggcctttc	cgtcctcagc	cgtcgcttca	tgtgactcca	cggagtaccg	1200
ggcgccgtcc	aggcacctcg	attagttctc	gagcttttgg	agtacgtcgt	ctttaggttg	1260
gggggagggg	ttttatgcga	tggagtttcc	ccacactgag	tgggtggaga	ctgaagttag	1320
gccagcttgg	cacttgatgt	aattctcctt	ggaatttgcc	ctttttgagt	ttggatcttg	1380
gttcattctc	aagcctcaga	cagtggttca	aagtttttt	cttccatttc	aggtgtcgtg	1440
aaaactctag	a					1451

<210> 12 <211> 23 <212> DNA <213> Artificial Sequence

<220>

<223> Synthetic

<400> 12

tctagagttt tcacgacacc tga

```
<210> 13
      1289
<211>
<212> DNA
<213> Mus musculus
<220>
<221>
      CDS
<222>
      (88)..(741)
<400> 13
ttacctcact gctttccgga gcggtagcac ctcctccgcc ggcttcctcc tcagaccgct
                                                                       60
tttttgccgcg agccgaccgg tcccgtc atg ccg acc cgc agt ccc agc gtc gtg
                                                                      114
                              Met Pro Thr Arg Ser Pro Ser Val Val
att agc gat gat gaa cca ggt tat gac cta gat ttg ttt tgt ata cct
                                                                      162
Ile Ser Asp Asp Glu Pro Gly Tyr Asp Leu Asp Leu Phe Cys Ile Pro
aat cat tat gcc gag gat ttg gaa aaa gtg ttt att cct cat gga ctg
                                                                      210
Asn His Tyr Ala Glu Asp Leu Glu Lys Val Phe Ile Pro His Gly Leu
att atg gac agg act gaa aga ctt gct cga gat gtc atg aag gag atg
                                                                      258
Ile Met Asp Arg Thr Glu Arg Leu Ala Arg Asp Val Met Lys Glu Met
                                                                      306
gga ggc cat cac att gtg gcc ctc tgt gtg ctc aag ggg ggc tat aag
Gly Gly His His Ile Val Ala Leu Cys Val Leu Lys Gly Gly Tyr Lys
ttc ttt gct gac ctg ctg gat tac att aaa gca ctg aat aga aat agt
                                                                      354
Phe Phe Ala Asp Leu Leu Asp Tyr Ile Lys Ala Leu Asn Arg Asn Ser
gat aga tcc att cct atg act gta gat ttt atc aga ctg aag agc tac
                                                                      402
Asp Arg Ser Ile Pro Met Thr Val Asp Phe Ile Arg Leu Lys Ser Tyr
                                                                      450
tgt aat gat cag tca acg ggg gac ata aaa gtt att ggt gga gat gat
Cys Asn Asp Gln Ser Thr Gly Asp Ile Lys Val Ile Gly Gly Asp Asp
                110
ctc tca act tta act gga aag aat gtc ttg att gtt gaa gat ata att
                                                                      498
Leu Ser Thr Leu Thr Gly Lys Asn Val Leu Ile Val Glu Asp Ile Ile
                                130
gac act ggt aaa aca atg caa act ttg ctt tcc ctg gtt aag cag tac
                                                                      546
Asp Thr Gly Lys Thr Met Gln Thr Leu Leu Ser Leu Val Lys Gln Tyr
age eec aaa atq gtt aag gtt gea age ttg etg gtg aaa agg ace tet
                                                                      594
Ser Pro Lys Met Val Lys Val Ala Ser Leu Leu Val Lys Arg Thr Ser
                        160
```

_	_	_					_		_			_		cca Pro	_	642
_		-	_			_		-						agg Arg 200		690
														tac Tyr		738
gcc Ala	taag	gatg	agc g	gcaag	gttga	aa to	tgca	ıaata	a cga	aggag	gtcc	tgtt	gat	gtt		791
gcca	igtaa	aaa	ttago	caggt	g tt	ctaç	gtcct	gto	gcca	atct	gcct	agta	aaa 🤉	gcttt	ttgca	851
tgaa	cctt	ct a	atgaa	atgtt	a ct	gttt	tatt	ttt	agaa	aatg	tcaç	gttgo	tg (cgtco	ccaga	911
cttt	tgat	tt q	gcact	atga	ag co	ctata	iggco	ago	ctac	cct	ctgg	gtaga	att 9	gtcgo	cttatc	971
ttgt	aaga	aaa a	aacaa	atct	c tt	aaat	tacc	act	ttta	aaat	aata	atac	etg (agatt	gtatc	1031
tgta	agaa	agg a	attta	aaga	ag aa	agcta	tatt	agt	tttt	taa	ttgg	gtatt	tt a	aattt	ttata	1091
tatt	cago	gag a	agaaa	gato	gt ga	attga	tatt	gtt	aatt	tag	acga	gtct	ga a	agcto	tcgat	1151
ttcc	tato	cag 1	taaca	gcat	c ta	agag	gttt	tgo	ctcag	gtgg	aata	aaca	atg	tttca	agcagt	1211
gttg	gctg	gta 1	tttc	ccac	et tt	cagt	aaat	cgt	tgto	caac	agtt	cctt	tt d	aaato	gcaaat	1271
aaat	aaat	tc 1	caaaa	att												1289

<210> 14 <211> 218

<212> PRT

<213> Mus musculus

<400> 14

Met Pro Thr Arg Ser Pro Ser Val Val Ile Ser Asp Asp Glu Pro Gly 5

Tyr Asp Leu Asp Leu Phe Cys Ile Pro Asn His Tyr Ala Glu Asp Leu 20

Glu Lys Val Phe Ile Pro His Gly Leu Ile Met Asp Arg Thr Glu Arg 35 40

Leu Ala Arg Asp Val Met Lys Glu Met Gly Gly His His Ile Val Ala 50 55

Leu Cys Val Leu Lys Gly Gly Tyr Lys Phe Phe Ala Asp Leu Leu Asp 65 70 75 80

Tyr Ile Lys Ala Leu Asn Arg Asn Ser Asp Arg Ser Ile Pro Met Thr 85 90 95

Val Asp Phe Ile Arg Leu Lys Ser Tyr Cys Asn Asp Gln Ser Thr Gly 100 105 110

Asp Ile Lys Val Ile Gly Gly Asp Asp Leu Ser Thr Leu Thr Gly Lys
115 120 125

Asn Val Leu Ile Val Glu Asp Ile Ile Asp Thr Gly Lys Thr Met Gln
130 140

Thr Leu Leu Ser Leu Val Lys Gln Tyr Ser Pro Lys Met Val Lys Val 145 150 155 160

Ala Ser Leu Leu Val Lys Arg Thr Ser Arg Ser Val Gly Tyr Arg Pro 165 170 175

Asp Phe Val Gly Phe Glu Ile Pro Asp Lys Phe Val Val Gly Tyr Ala 180 185 190

Leu Asp Tyr Asn Glu Tyr Phe Arg Asn Leu Asn His Val Cys Val Ile 195 200 205

Ser Glu Thr Gly Lys Ala Lys Tyr Lys Ala 210 215

<210> 15

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 15

gcatgcgcgc ggccgcggag gctttttttt tttttttt

<210><211><211><212><213>	16 27 DNA Artifici	al Seque:	nce				
<220> <223>	Syntheti	С					
<400> cggcaa	16 cgcg tgcc	atcatg g	ttcgac				27
<210><211><211><212><213>	17 30 DNA Artifici	al Seque:	nce				
<220> <223>	Syntheti	С					
<400> cggcag	17 cggc cgca	tagatc t	aaagccag	С			30
<210><211><211><212><213>	18 671 DNA Mus musc	ulus					
<220> <221> <222>	CDS (13)(5	73)					
<400> acgcgt	18 gcca tc a M 1	tg gtt co et Val A				a Val S	51
	g ggg att t Gly Ile				u Pro T		99
	g ttc aag u Phe Lys						147
	a cag aat s Gln Asn						195
	g aag aat u Lys Asn						243

aga gaa ct Arg Glu Le 80				g Gly								291
ttg gat ga Leu Asp As 95	t gcc tta o Ala Lev	a Arg	ctt at Leu Il 100	t gaa e Glu	caa (Gln)	ccg Pro	gaa Glu 105	ttg Leu	gca Ala	agt Ser	aaa Lys	339
gta gac at Val Asp Me 110					Ser :							387
atg aat ca Met Asn Gl		/ His										435
gaa ttt ga Glu Phe Gl												483
aaa ctt ct Lys Leu Le 16	ı Pro Glu			y Val								531
aaa ggc at Lys Gly Il 175		Lys										573
taacaggaag	atgctttc	aa gt	tctctg	ct cc	cctcci	taa	agct	atgo	at t	ttta	ataaga	633
taacaggaag	_						agct	atgo	at t	ttta	ataaga	633 671
ccatgggact <210> 19 <211> 187	_						agct	atgo	at t	ttta	ataaga	
<pre>ccatgggact <210> 19 <211> 187 <212> PRT</pre>	_	gct tta					agct	atgo	cat t	ttta	ataaga	
<pre>ccatgggact <210> 19 <211> 187 <212> PRT</pre>	tttgctgg	gct tta					agct	atgo	eat t	ttta	ataaga	
<pre><210> 19 <211> 187 <212> PRT <213> Mus</pre>	tttgctgg	gct tta	agatct	at gcg	ggccg	С						
<pre>ccatgggact <210> 19 <211> 187 <212> PRT <213> Mus <400> 19 Met Val Arg</pre>	musculus Pro Leu	gct tta	agatct Cys Il	at gc <u>q</u> e Val	Ala 1	c Val	Ser	Gln	Asn	Met 15	Gly	
<pre>ccatgggact <210> 19 <211> 187 <212> PRT <213> Mus <400> 19 Met Val Arg 1</pre>	musculus Pro Leu S Asn Gly	Asn (agatct Cys Il Leu Pr	e Val O Trp 25	Ala 1	c Val Pro	Ser	Gln Arg	Asn Asn 30	Met 15	Gly Phe	

Asn Arg Pro Leu Lys Asp Arg Ile Asn Ile Val Leu Ser Arg Glu Leu 70 Lys Glu Pro Pro Arg Gly Ala His Phe Leu Ala Lys Ser Leu Asp Asp Ala Leu Arg Leu Ile Glu Gln Pro Glu Leu Ala Ser Lys Val Asp Met 100 105 Val Trp Ile Val Gly Gly Ser Ser Val Tyr Gln Glu Ala Met Asn Gln 120 Pro Gly His Leu Arg Leu Phe Val Thr Arg Ile Met Gln Glu Phe Glu Ser Asp Thr Phe Phe Pro Glu Ile Asp Leu Gly Lys Tyr Lys Leu Leu Pro Glu Tyr Pro Gly Val Leu Ser Glu Val Gln Glu Glu Lys Gly Ile Lys Tyr Lys Phe Glu Val Tyr Glu Lys Lys Asp 180 <210> 20 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 20 34 atatatctag accaccatgc ctggctcagc actg <210> 21 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 21

attattgcgg ccgcttagct tttcattttg atcat

<210><211><212><213>	22 134 DNA Arti	ificial Sequ	ıence				
<220> <223>	Synt	chetic					
<400> ggtctag	22 gagc	caaataaagg	aagtggaacc	acttcaggta	ctacccgtct	tctatctggg	60
cacacgt	gtt	tcacgttgac	aggtttgctt	gggacgctag	taaccatggg	cttgctgact	120
taggcat	cga	attc					134
	23 134 DNA Arti	ificial Sequ	ience				
<220> <223>	Synt	thetic					
<400> gaattcg	23 Jatg	cctaagtcag	caagcccatg	gttactagcg	tcccaagcaa	acctgtcaac	60
gtgaaac	acg	tgtgcccaga	tagaagacgg	gtagtacctg	aagtggttcc	acttccttta	120
tttggct	cta	gacc					134
	24 300 DNA Arti	lficial Sequ	ıence				
<220> <223>	Synt	thetic					
<400> taatacg	24 jact	cactataggg	cgaattggag	ctccaccgcg	gtggcggccg	ctctagaact	60
agtggat	ccc	ccgggctgca	ggaattcgat	ggtctagagc	caaataaagg	aagtggaacc	120
acttcag	gta	ctacccgtct	tctatctggg	cacacgtgtt	tcacgttgac	aggtttgctt	180
gggacgc	tag	taaccatggg	cttgctgact	taggcatcga	attcatcaag	cttatcgata	240
ccqtcqa	icct	cqaqqqqqq	cccggtaccc	agcttttgtt	ccctttagtg	agggttaatt	300

```
<210>
       25
<211>
       28
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223>
     Synthetic
<400> 25
ccacttcctt tatttgggag agggcttg
                                                                       28
<210>
       26
<211>
       747
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223> Synthetic
<220>
<221>
      CDS
<222>
      (1)..(744)
<400> 26
atg gcc ata agt gga gtc cct gtg cta gga ttt ttc atc ata gct gtg
                                                                       48
Met Ala Ile Ser Gly Val Pro Val Leu Gly Phe Phe Ile Ile Ala Val
ctg atg agc gct cag gaa tca tgg gct atc aaa gaa gaa cat gtg atc
                                                                       96
Leu Met Ser Ala Gln Glu Ser Trp Ala Ile Lys Glu Glu His Val Ile
            20
                                                                      144
atc cag gcc gag ttc tat ctg aat cct gac caa tca ggc gag ttt atg
Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met
        35
                                                                      192
ttt gac ttt gat ggt gat gag att ttc cat gtg gat atg gca aag aag
Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys
    50
                        55
gaq acq gtc tgg cgg ctt gaa gaa ttt gga cga ttt gcc agc ttt gag
                                                                      240
Glu Thr Val Trp Arq Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu
65
                                                                      288
gct caa ggt gca ttg gcc aac ata gct gtg gac aaa gcc aac ttg gaa
Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu
                85
atc atg aca aag cgc tcc aac tat act ccg atc acc aat gta cct cca
                                                                      336
Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn Val Pro Pro
            100
                                                                      384
gag gta act gtg ctc acg aac agc cct gtg gaa ctg aga gag ccc aac
Glu Val Thr Val Leu Thr Asn Ser Pro Val Glu Leu Arg Glu Pro Asn
        115
                            120
```

gtc ctc atc (Val Leu Ile (130						32
acg tgg ctt o Thr Trp Leu 1 145						80
gtc ttc ctg o Val Phe Leu l						28
ccc ttc ctg (Pro Phe Leu l		Glu Asp Va				76
tgg ggc ttg g Trp Gly Leu i 195						24
agc cct ctc of Ser Pro Leu 1 210						72
ctt cta tct o Leu Leu Ser (225					J J J	20
cta gta acc a Leu Val Thr N			ag		74	47
<210> 27 <211> 248 <212> PRT <213> Artif:	icial Seque	nce				
<220> <223> Synthe	etic Constru	uct				
<400> 27						
Met Ala Ile S 1	Ser Gly Val 5	Pro Val Le	eu Gly Phe 10	Phe Ile Ile	Ala Val 15	
Leu Met Ser A	Ala Gln Glu 20	Ser Trp Al	_	Glu Glu His 30	Val Ile	
Ile Ġln Ala G 35	Glu Phe Tyr	Leu Asn Pr 40	ro Asp Gln	Ser Gly Glu 45	Phe Met	
Phe Asp Phe A	Asp Gly Asp	Glu Ile Ph	ne His Val	Asp Met Ala 60	Lys Lys	

Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu 65 70 75 80

•

Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu 85 90 95

Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn Val Pro Pro 100 105 110

Glu Val Thr Val Leu Thr Asn Ser Pro Val Glu Leu Arg Glu Pro Asn \$115\$ \$120\$ \$125\$

Val Leu Ile Cys Phe Ile Asp Lys Phe Thr Pro Pro Val Val Asn Val 130 135 140

Thr Trp Leu Arg Asn Gly Lys Pro Val Thr Thr Gly Val Ser Glu Thr 145 150 155 160

Val Phe Leu Pro Arg Glu Asp His Leu Phe Arg Lys Phe His Tyr Leu 165 170 175

Pro Phe Leu Pro Ser Thr Glu Asp Val Tyr Asp Cys Arg Val Glu His
180 185 190

Trp Gly Leu Asp Glu Pro Leu Leu Lys His Trp Glu Phe Asp Ala Pro 195 200 205

Ser Pro Leu Pro Asn Lys Gly Ser Gly Thr Thr Ser Gly Thr Thr Arg 210 215 220

Leu Leu Ser Gly His Thr Cys Phe Thr Leu Thr Gly Leu Leu Gly Thr 225 230 235 240

Leu Val Thr Met Gly Leu Leu Thr 245

<210> 28

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic

<400> 28

ccacttcctt tatttggtgc agattcag

```
29
<210>
<211>
      786
<212>
      DNA
      Artificial Sequence
<213>
<220>
     Synthetic
<223>
<220>
<221>
       CDS
       (1)..(783)
<222>
<400> 29
atg gtg tgt ctg aag ctc cct gga ggc tcc tgc atg aca gcg ctg aca
                                                                       48
Met Val Cys Leu Lys Leu Pro Gly Gly Ser Cys Met Thr Ala Leu Thr
gtg aca ctg atg gtg ctg agc tcc cga ctg gct ttg gct ggg gac acc
                                                                       96
Val Thr Leu Met Val Leu Ser Ser Arg Leu Ala Leu Ala Gly Asp Thr
cga cca cgt ttc ttg tgg cag ctt aag ttt gaa tgt cat ttc ttc aat
                                                                      144
Arg Pro Arg Phe Leu Trp Gln Leu Lys Phe Glu Cys His Phe Phe Asn
ggg acg gag cgg gtg cgg ttg ctg gaa aga tgc atc tat aac caa gag
                                                                      192
Gly Thr Glu Arg Val Arg Leu Leu Glu Arg Cys Ile Tyr Asn Gln Glu
    50
                                                                      240
gag tee gtg ege tte gae age gae gtg ggg gag tae egg geg gtt gag
Glu Ser Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Glu
65
gag ctg ggg cgg cct gat gcc gag tac tgg aac agc cag aag gac ctc
                                                                      288
Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu
                85
                                                                      336
ctg gag cag aag cgg ggc cag gtg gac aat tac tgc aga cac aac tac
Leu Glu Gln Lys Arg Gly Gln Val Asp Asn Tyr Cys Arg His Asn Tyr
            100
                                                                      384
ggg gtt ggt gag agc ttc aca gtg cag cgg ggt gag cct aag gtg
Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Val Glu Pro Lys Val
        115
                            120
                                                                      432
act gtg tat cct tca aag acc cag ccc ctg cag cac cac aac ctc ctg
Thr Val Tyr Pro Ser Lys Thr Gln Pro Leu Gln His His Asn Leu Leu
    130
gtc tgc tct gtg agt ggt ttc tat cca ggc agc att gaa gtc agg tgg
                                                                      480
Val Cys Ser Val Ser Gly Phe Tyr Pro Gly Ser Ile Glu Val Arg Trp
145
                    150
ttc cgg aac ggc cag gaa gag aag gct ggg gtg gtg tcc acg ggc ctg
                                                                      528
Phe Arg Asn Gly Gln Glu Glu Lys Ala Gly Val Val Ser Thr Gly Leu
```

Ile Gln Asn		tgg acc										576
gtt cct cgg Val Pro Arg 195												624
gtg acg agc Val Thr Ser 210			Glu									672
cca aat aaa Pro Asn Lys 225												720
ggg cac acg Gly His Thr												768
atg ggc ttg Met Gly Leu		tag										786
<210> 30 <211> 261 <212> PRT <213> Artif	Eicial Se	aguence										
(ZIJ) ALCII	TCIAI DO	equence										
<220>												
<220>	netic Cor											
<220> <223> Synth	netic Cor	nstruct	gly	Gly	Ser 10	Cys	Met	Thr	Ala	Leu 15	Thr	
<220> <223> Synth <400> 30 Met Val Cys	netic Cor Leu Lys 5	nstruct Leu Pro		_	10	-				15		
<220> <223> Synth <400> 30 Met Val Cys 1	Leu Lys 5 Met Val 20	istruct Leu Pro	Ser	Arg 25	10 Leu	Ala	Leu	Ala	Gly 30	15 Asp	Thr	
<220> <223> Synth <400> 30 Met Val Cys 1 Val Thr Leu Arg Pro Arg	Leu Lys 5 Met Val 20	Leu Pro	Ser Leu 40	Arg 25 Lys	10 Leu Phe	Ala Glu	Leu Cys	Ala His 45	Gly 30	15 Asp Phe	Thr	
<220> <223> Synth <400> 30 Met Val Cys 1 Val Thr Leu Arg Pro Arg 35 Gly Thr Glu	Leu Lys 5 Met Val 20 Phe Leu Arg Val	Leu Pro Leu Ser Trp Glr Arg Leu	Ser Leu 40	Arg 25 Lys Glu	10 Leu Phe Arg	Ala Glu Cys	Leu Cys Ile 60	Ala His 45 Tyr	Gly 30 Phe Asn	15 Asp Phe Gln	Thr Asn Glu	

Leu Glu Gln Lys Arg Gly Gln Val Asp Asn Tyr Cys Arg His Asn Tyr 100 105 Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Val Glu Pro Lys Val 120 115 Thr Val Tyr Pro Ser Lys Thr Gln Pro Leu Gln His His Asn Leu Leu 130 135 140 Val Cys Ser Val Ser Gly Phe Tyr Pro Gly Ser Ile Glu Val Arg Trp 155 Phe Arg Asn Gly Gln Glu Glu Lys Ala Gly Val Val Ser Thr Gly Leu 170 Ile Gln Asn Gly Asp Trp Thr Phe Gln Thr Leu Val Met Leu Glu Ile Val Pro Arg Ser Gly Glu Val Tyr Thr Cys Gln Val Glu His Pro Ser 195 Val Thr Ser Pro Leu Thr Val Glu Trp Arg Ala Arg Ser Glu Ser Ala 210 215 Pro Asn Lys Gly Ser Gly Thr Thr Ser Gly Thr Thr Arg Leu Leu Ser 225 230 Gly His Thr Cys Phe Thr Leu Thr Gly Leu Leu Gly Thr Leu Val Thr 245 Met Gly Leu Leu Thr

260

·

```
<210> 31
       189
<211>
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223> Synthetic
<220>
<221>
      CDS
      (1)..(186)
<222>
<400> 31
ttg gat cca cga tcg ttt cta ttg cgc aat cca aat gat aag tac gaa
Leu Asp Pro Arg Ser Phe Leu Leu Arg Asn Pro Asn Asp Lys Tyr Glu
                                                                       96
cca ttt tgg gaa gat act aca gag aac gtg gtg tgt gcc ctg ggc ctg
Pro Phe Trp Glu Asp Thr Thr Glu Asn Val Val Cys Ala Leu Gly Leu
act gtg ggt ctg gtg ggc atc att att ggg acc atc ttc atc atc aag
                                                                      144
Thr Val Gly Leu Val Gly Ile Ile Ile Gly Thr Ile Phe Ile Ile Lys
        35
gga gtg cgc aaa agc aat gca gca gaa cgc agg ggg cct ctg taa
                                                                     189
Gly Val Arg Lys Ser Asn Ala Ala Glu Arg Arg Gly Pro Leu
<210> 32
<211> 62
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Construct
<400> 32
Leu Asp Pro Arg Ser Phe Leu Leu Arg Asn Pro Asn Asp Lys Tyr Glu
                5
                                                        15
Pro Phe Trp Glu Asp Thr Thr Glu Asn Val Val Cys Ala Leu Gly Leu
                                                    30
            20
Thr Val Gly Leu Val Gly Ile Ile Ile Gly Thr Ile Phe Ile Ile Lys
        35
Gly Val Arq Lys Ser Asn Ala Ala Glu Arg Arg Gly Pro Leu
                                            60
```

```
<210> 33
<211> 192
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> CDS
<222> (1)..(189)
<400> 33
ttg gat cca cga tcg ttt cta ttg cgc aat cca aat gat aag tac gaa
                                                                      48
Leu Asp Pro Arg Ser Phe Leu Leu Arg Asn Pro Asn Asp Lys Tyr Glu
                                                                      96
cca ttt tgg gaa gat cag agc aag atg ctg agt gga gtc ggg ggc ttc
Pro Phe Trp Glu Asp Gln Ser Lys Met Leu Ser Gly Val Gly Gly Phe
gtg ctg ggc ctg ctc ttc ctt ggg gcc ggg ctg ttc atc tac ttc agg
                                                                     144
Val Leu Gly Leu Leu Phe Leu Gly Ala Gly Leu Phe Ile Tyr Phe Arg
                            40
aat cag aaa gga cac tot gga ott cag oca aca gga tto otg ago tga
                                                                     192
Asn Gln Lys Gly His Ser Gly Leu Gln Pro Thr Gly Phe Leu Ser
                        55
<210> 34
<211> 63
<212> PRT
<213> Artificial Sequence
<220>
<223>
     Synthetic Construct
<400> 34
Leu Asp Pro Arg Ser Phe Leu Leu Arg Asn Pro Asn Asp Lys Tyr Glu
Pro Phe Trp Glu Asp Gln Ser Lys Met Leu Ser Gly Val Gly Gly Phe
Val Leu Gly Leu Phe Leu Gly Ala Gly Leu Phe Ile Tyr Phe Arg
Asn Gln Lys Gly His Ser Gly Leu Gln Pro Thr Gly Phe Leu Ser
                        55
```

<211><211><212><212><213>	39 DNA Artificial Sequence	
<220> <223>	Synthetic	
<400> cgatcg	35 tgga tccaagttta ggttcgtatc tgtttcaaa	39
	36 34 DNA Artificial Sequence	
<220> <223>	Synthetic	
<400> cgatcg	36 agga tccaagatgg tggcagacag gacc	34
<210><211><212><213>	37 32 DNA Artificial Sequence	
<220> <223>	Synthetic	
<400> acgcgt	37 ccac catggccata agtggagtcc ct	32
<210><211><212><213>	38 28 DNA Artificial Sequence	
<220> <223>	Synthetic	
<400>	38 aact ctgtagtete tgggagag	28

<210> 39 <211> 32 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic	
<400> 39 acgcgtccac catggtgtgt ctgaagctcc tg	32
<210> 40 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic	
<400> 40 ggatccaact tgctctgtgc agattcaga	29
<210> 41 <211> 292 <212> DNA <213> Homo sapiens	
<400> 41 gaattettt ttgegtgtgg eagttttaag ttattagttt ttaaaateag taetttttaa	60
tggaaacaac ttgaccaaaa atttgtcaca gaattttgag acccattaaa aaagttaaat	120
gagaaacctg tgtgttcctt tggtcaacac cgagacattt aggtgaaaga catctaattc	180
tggttttacg aatctggaaa cttcttgaaa atgtaattct tgagttaaca cttctgggtg	240
gagaataggg ttgttttccc cccacataat tggaagggga aggaatatcg at	292
<210> 42 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic	
<400> 42 tcgatggcgc gccttaatta	20

```
<210>
      43
<211>
       20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 43
agcttaatta aggcgcgcca
                                                                      20
<210> 44
<211>
       1147
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<400> 44
geggeeget egaceaaggg ecceagegtg tteeceetgg ecceetgete eegeageace
                                                                      60
ageggeggea eegeegeett gggetgeetg gtgaaggaet aetteeeega geeegtgaee
                                                                     120
gtgagetgga acageggege cetgaceage ggegteeaca cetteeeege egtgetgeag
                                                                     180
tecageggee tgtacteect gageagegtg gtgacegtge ceageageag cetgggeace
                                                                     240
                                                                     300
cagacctaca cotgoaacgt gaaccacaag cocagoaaca coaaggtgga caagogogtg
                                                                     360
gagetgaaga ceceetggg egacaceace cacacetgee ceegetgeee egageecaag
agetgegaca eccetecece etgececege tgeceegage ceaagagetg egacacecet
                                                                     420
                                                                     480
ecceetgee eccgetgeee egageeeaag agetgegaea ecceteeeee etgeeeeege
                                                                     540
tgccccgccc ccgagctgct gggcggcccc agcgtgttcc tgttcccccc caagcccaag
                                                                     600
gacaccetga tgateteeeg cacceeegag gtgacetgeg tggtggttgga egtgageeae
                                                                     660
gaggaccccg aggtgcagtt caagtggtac gtggacggcg tggaggtgca taacgccaag
                                                                     720
accaagecee gegaggagea gtacaacage acetteegeg tggtgagegt getgacegtg
ctgcaccagg actggctgaa cggcaaggag tacaagtgca aggtgagcaa caaggccctg
                                                                     780
cccgcccca tcgagaagac catctccaag accaagggcc agccccgcga gccccaggtg
                                                                     840
                                                                     900
tacaccetge ecceageeg egaggagatg accaagaace aggtgageet gacetgeetg
gtgaagggct tctaccccag cgacatcgcc gtggagtggg agagcagcgg ccagcccgag
                                                                     960
aacaactaca acaccaccc ccccatgctg gacagcgacg gcagcttett cetgtacage
                                                                    1020
aagctgaccg tggacaagag ccgctggcag cagggcaaca tcttctcctg cagcgtgatg
                                                                    1080
```

tagatct															
<210 <211 <211 <211	l > 2 >	45 377 PRT Homo	sapi	iens											
<400)>	45													
Ala 1	Ser	Thr	Lys	Gly 5	Pro	Ser	Val	Phe	Pro 10	Leu	Ala	Pro	Cys	Ser 15	Arg
Ser	Thr	Ser	Gly 20	Gly	Thr	Ala	Ala	Leu 25	Gly	Cys	Leu	Val	Lys 30	Asp	Tyr
Phe	Pro	Glu 35	Pro	Val	Thr	Val	Ser 40	Trp	Asn	Ser	Gly	Ala 45	Leu	Thr	Ser
Gly	Val 50	His	Thr	Phe	Pro	Ala 55	Val	Leu	Gln	Ser	Ser 60	Gly	Leu	Tyr	Ser
Leu 65	Ser	Ser	Val	Val	Thr 70	Val	Pro	Ser	Ser	Ser 75	Leu	Gly	Thr	Gln	Thr 80
Tyr	Thr	Cys	Asn	Val 85	Asn	His	Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Asp 95	Lys
Arg	Val	Glu	Leu 100	Lys	Thr	Pro	Leu	Gly 105	Asp	Thr	Thr	His	Thr 110	Cys	Pro
Arg	Cys	Pro 115	Glu	Pro	Lys	Ser	Cys 120	Asp	Thr	Pro	Pro	Pro 125	Cys	Pro	Arg
Cys	Pro 130	Glu	Pro	Lys	Ser	Cys 135	Asp	Thr	Pro	Pro	Pro 140	Cys	Pro	Arg	Cys
Pro 145	Glu	Pro	Lys	Ser	Cys 150	Asp	Thr	Pro	Pro	Pro 155	Cys	Pro	Arg	Cys	Pro 160
Ala	Pro	Glu	Leu	Leu 165	Gly	Gly ·	Pro	Ser	Val 170	Phe	Leu	Phe	Pro	Pro 175	Lys
Pro	Lys	Asp	Thr 180	Leu	Met	Ile	Ser	Arg 185	Thr	Pro	Glu	Val	Thr 190	Cys	Val

catgaggccc tgcacaaccg cttcacccag aagagcctga gcctgagccc cggcaagtga

1140

Val Val Asp Val Ser His Glu Asp Pro Glu Val Gln Phe Lys Trp Tyr 195 Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Leu His 230 235 Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 245 Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Ser Gly Gln Pro Glu Asn Asn 310 Tyr Asn Thr Thr Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu 325 Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Ile 345 Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn Arg Phe Thr Gln 355 360 365 Lys Ser Leu Ser Leu Ser Pro Gly Lys

375

```
46
<210>
       999
<211>
       DNA
<212>
       Artificial Sequence
<213>
<220>
<223>
     Synthetic
<400> 46
geggeegege gtegaceaag ggeeceageg tgtteeeeet ggeeeeetge ageegeagea
                                                                       60
ccagcgagag caccgccgcc ctgggctgcc tggtgaagga ctacttcccc gagcccgtga
                                                                      120
ccgtgagctg gaacagcggc gccctgacca gcggcgtgca caccttcccc gccgtgctgc
                                                                      180
agagcagcgg cctgtactcc ctgagcagcg tggtgaccgt gcccagcagc agcctgggca
                                                                      240
ccaagaccta cacctgcaac gtggaccaca agcccagcaa caccaaggtg gacaagcgcg
                                                                      300
                                                                      360
tggagagcaa gtacggcccc ccctgcccca gctgccccgc ccccgagttc ctgggcggcc
ccagcgtgtt cctgttcccc cccaagccca aggacaccct gatgatcagc cgcacccccg
                                                                      420
                                                                      480
aggtgacctg cgtggtggtg gacgtgagcc aggaggaccc cgaggtgcag ttcaactggt
acgtggacgg cgtggaggtg cataacgcca agaccaagcc ccgcgaggag cagttcaaca
                                                                      540
gcacctaccg cgtggtgagc gtgctgaccg tgctgcacca ggactggctg aacggcaagg
                                                                      600
                                                                      660
agtacaagtg caaggtgtcc aacaagggcc tgcccagcag catcgagaag accatcagca
                                                                      720
aggecaaggg ceageceege gageceeagg tgtacaceet geceeecage caggaggaga
                                                                      780
tgaccaagaa ccaggtgagc ctgacctgcc tggtgaaggg cttctacccc agcgacatcg
ccgtggagtg ggagagcaac ggccagcccg agaacaacta caagaccacc cccccgtgc
                                                                      840
tggacagega eggeagette tteetgtaca geegeetgae egtggacaag ageegetgge
                                                                      900
aggagggcaa cgtgttctcc tgctccgtga tgcatgaggc cctgcacaac cactacaccc
                                                                      960
                                                                      999
agaagagcct gagcctgagc ctgggcaagt gatagatct
<210>
       47
<211>
       327
      PRT
<213>
      Homo sapiens
<400>
       47
Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg
```

Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp 155 Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe 170 Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp 185 Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu 200 Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg 210 215 Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys 225 230 235

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser

Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp

245

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser 280 275 Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser 295 Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser 315 Leu Ser Leu Ser Leu Gly Lys <210> 48 <211> 337 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 48 geggeegeac tgtggetgea ceatetgtet teatetteee gecatetgat gageagetta 60 agtccggaac cgccagcgtg gtgtgcctgc tgaacaactt ctacccccgc gaggccaagg 120 tgcagtggaa ggtggacaac gccctccaga gcggcaactc ccaggagagc gtgaccgagc 180 aggacagcaa ggacagcacc tacagcctga gcagcaccct gaccctgagc aaggccgact 240 acgagaagca caaggtgtac gcctgcgagg tgacccatca gggcctgagc agccccgtga 300 ccaagagett caaceggge gagtgetagt gagatet 337 <210> 49 <211> 106 <212> PRT <213> Homo sapiens <400> 49 Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln 5 15 Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr

Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys

260

20

Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser 40 Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr 55 Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys 70 75 His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys <210> 50 <211> 346 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> geggeegeae egteetaggt cageecaagg eggegeecag egtgaceetg tteeceecea 60 gcagcgagga gctgcaggcc aacaaggcca ccctggtgtg cctgatcagc gacttctacc 120 ccggggccgt gaccgtggcc tggaaggccg acagcagccc cgtgaaggcc ggcgtggaga 180 ccaccaccc cagcaagcag agcaacaaca agtacgccgc cagcagctac ctgagcctga 240 cccccgagca gtggaagagc caccgcagct acagctgcca ggtcacccac gagggcagca 300 ccgtggagaa gaccgtggcc cccaccgagt gcagctagtg agatct 346 <210> 51 <211> 109 <212> PRT <213> Homo sapiens <400> 51 Thr Val Leu Gly Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu

Ile Ser Asp Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp 35 Ser Ser Pro Val Lys Ala Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu 70 Gln Trp Lys Ser His Arg Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val Ala Pro Thr Glu Cys Ser <210> 52 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 52 · tctagaattc acgcgtccac catggactgg acctggag 38 <210> 53 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 53 tctagaattc acgcgtccac catggacaca ctttgctaca c 41 <210> 54 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <400> 54

·

42

tctagaattc acgcgtccac catggagttt gggctgagct gg

<210><211><212><213>	44	
<220> <223>	Synthetic	
<400> tctagaa	55 attc acgcgtccac catgaaacac ctgtggttct tcct	44
<210><211><212><213>	41 DNA	
<220> <223>	Synthetic	
<400> tctagaa	56 attc acgcgtccac catggggtca accgccatcc t	41
<210><211><212><212><213>	44	
<220> <223>	Synthetic	
<400> tctagaa	57 attc acgcgtccac catgtctgtc tecttcctca tett	44
<210><211><211><212><213>	24	
<220> <223>	Synthetic	
<400> gcctgag	58 gttc cacgacaccg tcac	24

<210><211><212><213>	59 24 DNA Artificial Sequence	
<220> <223>	Synthetic	
<400> ggggaaa	59 aagg gttggggcgg atgc	24
<210><211><211><212><213>	60 39 DNA Artificial Sequence	
<220> <223>	Synthetic	
<400> gagggg	60 ccct tggtcgacgc tgaggagacg gtgaccagg	39
	61 40 DNA Artificial Sequence	
<220> <223>	Synthetic	
<400> gagggg	61 ccct tggtcgacgc tgaagagacg gtgaccattg	40
<210><211><211><212><213>	62 39 DNA Artificial Sequence	
<220> <223>	Synthetic	
<400> gagggg	62 ccct tggtcgacgc tgaggagacg gtgaccgtg	3 9

· · · . · .

<210><211><211><212><213>	63 45 DNA Artificial Sequence	
<220> <223>	Synthetic	
<400> tctaga	63 attc acgcgtccac catggacatg agggtccccg ctcag	45
<210><211><212><213>		
<220> <223>	Synthetic	
<400> tctaga	64 attc acgcgtccac catgaggetc cetgetcage	40
<210><211><211><212><213>		
<220> <223>	Synthetic	
<400> tctaga	65 attc acgcgtccac catggaagcc ccagcgcagc tt	42
<210><211><211><212><213>	41	
<220> <223>	Synthetic	
<400>	66 attc acgcgtccac catggtgttg cagacccagg t	41

<210><211><212><213>		
<220> <223>	Synthetic	
<400> tctagaa	67 attc acgegtecae catggggtec caggtteace t	41
<210><211><211><212><213>		
<220> <223>	Synthetic	
<400> tctagaa	68 attc acgcgtccac catgttgcca tcacaactca ttg	43
<210><211><211><212><213>	41	
<220> <223>	Synthetic	
<400> tctagaa	69 attc acgcgtccac catggtgtcc ccgttgcaat t	41
	70 34 DNA Artificial Sequence	
<220> <223>	Synthetic	
<400>	70 ggac ttaagctgct catcagatgg cggg	34

(210)	71	
<211>	44	
<212>	DNA	
	Artificial Sequence	
<220>		
<223>	Synthetic	
400		
<400>	71 atte aegegteeae catggeetge teteetetee teet	44
cccaya	acto acycytocae catygootyc totoctoto toto	44
<210>	72	
<211>	44	
<212>		
	Artificial Sequence	
	•	
<220>		
<223>	Synthetic	
<400>	72	
tctagaa	atto acgogtocao catggootgg gototgotgo toot	44
<210>	73	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic	
10007		
<400>	73	
tctagaa	attc acgcgtccac catggcctgg atccttctcc tcctc	45
<210>	74	
<211>		
<212>		
<213>	Artificial Sequence	
-220-		
<220>	Synthetic	
<4437	Synchecic	
<400>	74	
	atto acqcqtccac catqqcctqq acccctctct qqctc	45

<210>	75	
<211>	41	
<212>	DNA	
<213>	Artificial Sequence	
12137		
<220>		
	Synthetic	
(223)	Synthetic	
<400>	75	
	atto acgogtocao catggootgg gooccactao t	41
cccaga	acte acgegeceae catggeotyg geoceaetae t	7 1
<210>	76	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Combhatia	
<223>	Synthetic	
<400>	76	
		44
tetaga	attc acgcgtccac catggcctgg atgatgcttc tcct	44
<210>	77	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Synthetic	
\4437	Dynencere	
<400>	77	
	acct taggetgace taggaeggt	29