最优化方法

一、实验内容

使用 matlab 编写 3 个算法程序, 分别为

- 1.负梯度方法;
- 2.非线性共轭梯度法;
- 3.DFP 方法:

其中 3 个方法使用的线搜索均将精确线搜索替换为非精确线搜索,并使用这三个程序解决无约束非线性最优化问题。问题和要求如下:

编写以下程序:

- 一个非精确线搜索的程序.
- 负梯度方法和非线性共轭梯度法的程序.
- DFP方法的程序.

对优化问题

$$\min \sum_{i=1}^{m} r_i^2(x), \tag{1}$$

利用编好的程序计算(1), $r_i(x)$ 为Watson函数:

$$r_i(x) = \sum_{j=2}^{n} (j-1)x_j t_i^{j-2} - (\sum_{j=1}^{n} x_j t_i^{j-1})^2 - 1,$$
 (2)

其中
$$t_i = \frac{i}{29}, 1 \le i \le 29, r_{30}(x) = x_1, r_{31} = x_2 - x_1^2 - 1, n \in \{2, 6, 9, 12, 20, 31\}, m = 31.$$
 初始点可选为 $x^{(0)} = (0, \dots, 0)^\top$.

通过计算,输出算法的迭代次数、CPU时间、迭代结束时的目标函数值,比较不同方法的有效性.

二、算法实现

2.1.非精确线搜索(输入行向量)

该部分的算法有两大准则,一个是 Armijo-Goldstein 准则,另一个是 Wolfe-Powell 准则。由于需要使得算法收敛,所以各自有两个规则。

Armijo-Goldstein 准则,其中 $\alpha_k \in (0,1)$, $\rho \in (0,0.5)$:

$$f(x_k + \alpha_k d_k) \le f(x_k) + \alpha_k \rho g_k^T d_k \dots (1)$$

$$codelast.com$$

$$f(x_k + \alpha_k d_k) \ge f(x_k) + \alpha_k (1 - \rho) g_k^T d_k \dots (2)$$

$$codelast.com$$

第一个条件是为了确保得到的 X_{k+1} 的函数值下降(包括 ρ 的限制), 第二个条件是为了确保不能

 α_k 太小。在搜索的时候可能会将极小值区间排除在外,而 Wolfe 准则能解决这个问题,但是在实践的时候 Wolfe 的效率远不如 Armijo,可能调的参数不太理想,所以本实验还是基于 Armijo 准则实现非精确线搜索算法。

由于条件(2)只是限制不能 α_k 太小,条件(1)才是下降的条件,所以将该条件用作判断 x_{k+1} 是否符合。主要思想如下:

先做 20 次迭代,令 α 初值为 0.5, ρ 初值为 1e-6,迭代过程中如果符合条件(1)则直接返回此时的 α ,如果不符合条件则 α 自乘初值(0.5,0.25,0.125···)。迭代过程的 20 次都不符合条件,则直接返回 α =0.5^20。经过该算法得到的 α 用于计算 X_{k+1} , X_{k+1} = X_k + α d $_k$,就能得到新的自变量。

- 2.2.负梯度方法(所有方法 ε 均设为 10⁻, 输入都是行向量)
- (1) 给点初始点 $x^{(1)}$, 允许误差 $\varepsilon > 0$, 置 k = 1;

(2) 若
$$\|\nabla f(x^{(k)})\| < \varepsilon$$
, 则停, $\dot{x} = \dot{x}^{(k)}$,否则,令 $d^{(k)} = -\nabla f(x^{(k)})$,

 $x^{(k+1)}=x^{(k)}+\lambda_k d^{(k)},$ k=k+1,回(2).其中线搜索方法为 2.1 提到的方法。

2.3 非线性共轭梯度法

(1) 给点初始点
$$x^{(1)}$$
, 令 $p_1 = -\nabla f(x^{(1)})$, $k = 1$;

$$(2)$$
 若 $abla f(x^{(k)}) = \mathbf{0}$,则停, $\dot{x} = x^{(k)}$;否则,令 $x^{(k+1)} = x^{(k)} + lpha_k oldsymbol{d}^{(k)}$,其中 $lpha_k$ =Armijo(x_k , d_k);

$$d^{(k+1)} = -\nabla f(x^{(k+1)}) + \frac{\|\nabla f(x^{(k+1)})\|^2}{\|\nabla f(x^{(k)})\|^2}d^{(k)};$$

2.4 DFP 方法

算法 2.1 (DFP 算法)

- 1. 给定初值 x_0 和精度阀值 ϵ , 并令 $D_0 = I$, k := 0.
- 2. 确定搜索方向 $\mathbf{d}_k = -D_k \cdot \mathbf{g}_k$.
- 3. 利用 (1.13) 得到步长 λ_k , 令 $\mathbf{s}_k = \lambda_k \mathbf{d}_k$, $\mathbf{x}_{k+1} := \mathbf{x}_k + \mathbf{s}_k$.
- 4. 若 $\|\mathbf{g}_{k+1}\| < \epsilon$, 则算法结束.
- 5. 计算 $y_k = g_{k+1} g_k$.
- 6. if \mathcal{F} $D_{k+1} = D_k + \frac{\mathbf{s}_k \mathbf{s}_k^T}{\mathbf{s}_k^T \mathbf{y}_k} \frac{D_k \mathbf{y}_k \mathbf{y}_k^T D_k}{\mathbf{y}_k^T D_k \mathbf{y}_k}$.
- 7. 令 k := k + 1, 转至步 2.

其中第三步是使用的是精确线搜索,按照要求将其替换为 2.1 的非精确线搜索。其中 gk 就是函数在 xk 的梯度。

2.5 fun 和 gfun(均处理行向量)

fun 就是最优化问题对应的函数,gfun 就是 fun 的梯度(程序中命名为 gradfunc),而且这些函数的传入参数都有 x 的维度 dimen。为了求导方便,又写了一个 mix 函数,该函数对应 rix 的平方项里面的求和项,也就是

mx(i) =
$$\mathbf{t}_{i}^{j-1} * \mathsf{X}_{j}$$
, j 从 1 到 dimen 求和 $mx(i) = \sum_{j=1}^{dimen} \mathsf{xj} * \mathbf{t}_{i}^{j-1}$,

$$\mathsf{rx}(i) = \sum_{j=2}^{dimen} (\mathsf{j} - 1) * \mathsf{x}_{j} * t i^{j-2} - mx(i)^{2} - 1,$$

$$\mathsf{fun} = \sum_{i=1}^{29} rx(i)^{2} + x_{1}^{2} + (\mathsf{x2} - x_{1}^{2} - 1)^{2};$$

$$\mathsf{y} \; \mathsf{gfun}, \; \mathsf{\ddot{\pi}} \; \mathsf{j} \in [\mathsf{3}, \mathsf{dimen}], \; \mathsf{ti} = \mathsf{i}/29:$$

$$\mathsf{gfun}(\mathsf{j}) = \sum_{i=1}^{29} 2\mathsf{rx}(\mathsf{i})((\mathsf{j} - 1)\mathsf{t}_{i}^{j-2} - 2 * \mathsf{mx}(\mathsf{i}) * t_{i}^{j-1})$$

$$\mathsf{\ddot{\pi}} \; \mathsf{j} = \mathsf{1}, \; \mathsf{gfun}(\mathsf{1}) = \sum_{i=1}^{29} 2\mathsf{rx}(\mathsf{i}) * (-2\mathsf{mx}(\mathsf{i})) + 2x_{1}^{2} + 4(x_{1}^{3} + x_{1} - x_{1}x_{2})$$

$$\mathsf{\ddot{\pi}} \; \mathsf{j} = \mathsf{2}, \; \mathsf{gfun}(\mathsf{2}) = \sum_{i=1}^{29} 2\mathsf{rx}(\mathsf{i}) (1 - 2 * \mathsf{mx}(\mathsf{i}) * t_{i}) + 2(x_{2} - x_{1}^{2} - 1)$$

通过上述过程就能实现 fun 和 gfun(gradfunc)。

三、实验结果

各项参数设置: Armijo 的参数: 迭代次数最大值 mk=20,算法中的 σ 对应条件中的 ρ ,值为 10^{-6} , $\alpha=\rho^m$,其中 ρ 等于 0.5。三个算法的 ϵ 都是 10^{-5} 。下面就是三种方法对不同维度的 α 运行程序得到的迭代次数、CPU 时间以及目标函数值的结果:

负梯度方法(20 和 31 时间太久不纳入表格):

n 性能	2	6	9	12	20	31
迭代次数	40	271176	3285453	981314	-	-
CPU 时间/s	0.0191	122.3113	3880.8	1568.7	-	-
目标函数值	0.5466	0.0023	7.7383e-6	2.2080e-7	-	-

非线性共轭梯度法:

n 性能	2	6	9	12	20	31
迭代次数	35	3395	9520	5657	5908	17187
CPU 时间/s	0.0029	2.9079	16.1352	15.0735	32.0273	124.8396
目标函数值	0.5466	0.0023	1.4227e-6	9.3595e-8	8.3607e-9	1.2690e-8

DFP 方法:

n 性能	2	6	9	12	20	31
迭代次数	9	502	162832	1782	20470	3952121
CPU 时间/s	0.0246	0.1031	43.9075	0.8462	16.2989	4402.3
目标函数值	0.5466	0.0023	1.3998e-6	1.5723e-7	6.5963e-9	1.6763e-11

四、实验结论和体会

可以从上述三个表格看到,共轭梯度法和 DFP 方法都是比负梯度方法要好得多,而且根据 n 等于 2、6、12、20 这几个结果看来 DFP 性能优于共轭梯度法。但这都只是片面的,因为非精确线搜索的搜索时间还是比较看运气的,主要是看设置的参数值为多少,因为参数的设置会影响每一次迭代的

步长,进而影响后续的搜索方向和步长。实验过程中还尝试了线搜索的σ的值设置为 1e-4、0.1、0.2,也尝试更改ρ的值为 0.8、0.7,第三部分已经给出同一参数下较好的结果了。但是如果乱调参数可能会导致结果不收敛,因为 Armijo 有着确保步长不能过小的条件,一旦过小会导致条件(1)不成立,就会出现无穷大的情况。但是实验过程中使用 Wolfe 准则,内部用二分法实现,当 n 为 9 时 DFP 和共轭梯度法使用该线搜索算法收敛速度很慢,更不用说 n=31 了,所以舍弃了该方法。