Mutual Implication of Theorems in the Real Number System

Noflowerzzk

1 Supremum Axiom & Monotone Convergence Theorem

1.1 Supremum Axiom⇒Monotone Convergence Theorem

Proof. Take an in increasing sequence $\{x_n\}$ s.t. $\forall n \in \mathbb{N}, x_n < M$ By Supremum Axiom, we know that $\{x_n\}$ has a supremum $L = \sup\{x_n\}$ For $\forall \varepsilon > 0, \exists n_0 \text{ s.t.}$

$$x_{n_0} + \varepsilon > L$$

Because $\{x_n\}$ is monotonically increasing, for all $n > n_0$, we have

$$L - x_n < \varepsilon$$

i.e.

$$|L - x_n| < \varepsilon$$

That means

$$\lim_{n \to \infty} x_n = L = \sup \{x_n\}$$

1.2 Monotone Convergence Theorem⇒Supremum Axiom

Proof. Referring to The Nested Closed Interval Theorem

2 Monotone Convergence Theorem & The Nested Closed Interval Theorem

2.1 Monotone Convergence Theorem \Rightarrow The Nested Closed Interval Theorem

Theorem 1. For a sequence of losed intervals $[a_n, b_n]$ with the following properties:

(1)
$$[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$$

$$(2) \lim_{n \to \infty} a_n - b_n = 0$$

Then there exist a unique ξ

$$\bigcap_{i=1}^{\infty} [a_n, b_n] = \{\xi\}$$

Proof. For nested closed intervals $\{[a_n, b_n]\}$, obviously

$$\bigcap_{i=1}^{\infty} [a_n, b_n]$$

is not empty. Noting that

$$a_1 \leqslant a_2 \leqslant \dots \leqslant a_n \leqslant \dots \leqslant b_n \leqslant \dots \leqslant b_2 \leqslant b_1$$

So we have

$$\lim_{n \to \infty} a_n = A, \lim_{n \to \infty} b_n = B$$

If there exist

$$\xi, \xi' \in \bigcap_{i=1}^{\infty} [a_n, b_n]$$

Because $\lim_{n\to\infty}(a_n-b_n)=0$, we have A=B. And $A\leqslant \xi,\xi'\leqslant B$, So $\xi=\xi'$.

2.2 The Nested Closed Interval Theorem⇒Monotone Convergence Theorem

$\mathbf{3}$ Supremum Axiom & The Nested Closed Interval Theorem

The Nested Closed Interval Theorem \Rightarrow Supremum Axiom

Proof. Assume a number set A. When A is finit, obviously its supremum is $\max A$.

If A is infinit, without loss of generality, let A has upper bounds. Let B be the set of upper bounds of

We choose $a_1 \in A$, and let $C = \{x | x > a_1, x \notin B\}$.

Then choose $c_1 \in C$, $b_1 \in B$, we have $c_1 < b_1$. If $\frac{c_1 + b_1}{2} \in C$, let $c_2 = \frac{c_1 + b_1}{2}$, $b_2 = b_1$. Otherwise let $c_2 = c_1$, $b_2 = \frac{c_1 + b_1}{2}$. By analogy, we have construct a sequence of closed intervals

$$\{[c_n,b_n]\}$$

which satisfies all the condition of The Nested Closed Interval Theorem.

So we have

$$\bigcap_{i=1}^{\infty} [c_n, b_n] = \{\xi\}, \lim_{n \to \infty} c_n = \lim_{n \to \infty} b_n = \xi$$

We will now prove that $\xi = \sup A$.

According to the definition of limit, $\forall \varepsilon > 0, \exists N, \forall n > N, \xi - c_n < \varepsilon$.

Noting that c_n is not the upper bound of A,

so $\exists \varphi \in A, \varphi > \xi - \varepsilon$. That means ξ is the supremum of A.

Supremum Axiom \Rightarrow The Nested Closed Interval Theorem

Proof. Referring to Monotone Convergence Theorem

Cauchy's convergence test & Supremum Axiom 4

Cauchy's convergence test \Rightarrow Supremum Axiom

Proof. Assume that S is a set with upper bounds.

According to Archimedean property, for any a > 0, there exist $k, ka = \lambda_a$ is the upper bound of S while $\lambda_a - a = (k-1)a$ is not.

Now let $a_n = \frac{1}{n}$, then we have a sequence of λ_n .

Noting that exist $a' > \lambda_n - \frac{1}{n}$.

Also, $\lambda_m \geqslant a'$, so we have

$$\lambda_n - \lambda_m < \frac{1}{n}$$

Simiarly,

$$\lambda_m - \lambda_n < \frac{1}{m}$$

So

$$|\lambda_m - \lambda_n| < \max\left\{\frac{1}{n}, \frac{1}{m}\right\}$$

So according to Cauchy's convergence test, λ_n have a limit.

Now we will prove that the limit is the supremum of S.

Let $\lambda = \lim_{n \to \infty} \lambda_n$. Obviously λ is the upper bound of S. Also $\exists a' > \lambda - \delta$.

So λ is the supremum of S.