

宿題

House Prices Advanced Regression Techniques

2017/09/02

Masayuki Mizuno

Agenda

- 1.目的
- 2. アプローチ
- 3. <Step 1> 予測モデルの作成
 - □ a.学習データの準備
 - □ b.説明変数の準備
 - □ c.ロジスティック回帰分析による予測モデルの作成
- 4. <Step 2> ターゲットとすべきユーザー像を設定
 - □ a.予測モデルの解釈
 - □ b.期待される収益
 - □ c.今後のアクション
- Appendix 1. 予測モデル作成プロセス

1. どのプロジェクトに取り組んだのか?

- kaggle
 - House Prices: Advanced Regression Techniques
 - https://www.kaggle.com/c/house-prices-advanced-regressiontechniques/leaderboard

2. 最終順位

■ 順位のスクリーンショット

1272	▼ 22	Tang Yiming		0.15845	2	2mo
1273	▼ 22	kitivan		0.15848	1	24d
1274	▼ 22	Евгений Борисов	Z.A.	0.15849	2	2mo
1275	▼ 22	mocogin		0.15916	4	24d
1276	▼ 22	chen 4		0.15922	2	2mo
	00	MasayukiMizuno		0.15923	20	7m
	▼ 22 est Entry •		•	0.10020	20	
Your Be	est Entry •		• !	0.15936	6	1mo
Your Be	est Entry •	scored 0.16680, which is not an improvement of your best score. Keep trying	•			
Your Be Your su 1278	est Entry ∕ bmission ▼22	scored 0.16680, which is not an improvement of your best score. Keep trying keisukeuema	· ·	0.15936	6	1mo
Your Be Your su 1278 1279	est Entry ∕ ibmission • 22 • 22	scored 0.16680, which is not an improvement of your best score. Keep trying keisukeuema Giulia Rinaldi	n!	0.15936 0.15945	6	1mo 2d

3. どのような仮説でアプローチしたのか?

- 前提:ランダムフォレストを利用
 - □ ランダムフォレストの学習のため
- 仮説:特徴量の数を増減すると RMSLE の最小値が見つかる。以下のイメージ。

4. うまく行ったこと

- 特徴量を減らして RMSLE の変化を確認
 - □ モデルベース特徴量選択(SelectFromModel)

5. うまく行かなかったこと

- 変数増加法
 - □ ブートキャンプ 5 回目のテキストの方法
 - □ 11 個選択され、スコア結果は 0.16370

м

6. 今後の改善の可能性について

- ビジネスドメインの考察
 - □ 例)住宅ローン金利の追加など
- 各種テクニックの利用
 - □ 特徴量選択
 - 単変量統計(SelectKBeset/SelectPercentile)
 - 反復選択(RFE)
 - □ 評価
 - 交差検証
 - n_estimators/max_depth 以外のグリッドサーチ
 - □(以下は、今回活用済み)
 - カテゴリ変数の整数化
 - 割り算で特徴量の作成
- 複数のモデルでの試行
 - □ 重回帰分析など