FIZZ: Factual Inconsistency Detection by Zoom-in Summary and Zoom-out Document

Joonho Yang¹, Seunghyun Yoon², Byeongjeong Kim¹, Hwanhee Lee^{1*}
¹Department of Artificial Intelligence, Chung-Ang University, ²Adobe Research USA

Factual Inconsistency in Summary

- Abstractive summarization systems based on pretrained language models aim to generate human-like summaries.
- However, these models may generate **factually inconsistent summaries** that **do not align with the source document**, often due to hallucinations.

Motivation

• Current evaluation systems for verifying the factual consistency of summaries have significant limitations in both accuracy and interpretability.

Atomic Fact Level Evaluation

- (A) Atomic facts level evaluation for the summary
- We propose a novel summarization inconsistency detection system, which significantly enhances both accuracy and interpretability by breaking down summaries into atomic facts and expanding the granularity of document analysis.

Coreference Resolution & Granularity

(C) The effect of granularity expansion and coreference resolution

Experimental Results

	AGGREFACT- CNN-FTSOTA	AGGREFACT- XSUM-FTSOTA	AVG		AGGRE FTSOTA			AGGREF FTSOTA			1
DAE QuestEval	65.4 ± 4.4 70.2 ± 3.2	70.2 ±2.3 59.5±2.7	67.8 64.9	Baseline	50.0	50.0	50.0	50.0	50.0	50.0	50.0
SummaC-ZS SummaC-Conv QAFactEval AlignScore	64.0 ± 3.8 61.0 ± 3.9 67.8 ± 4.1 62.5 ± 3.3	56.4 ± 1.2 65.0 ± 2.2 63.9 ± 2.4 69.6 ± 1.7	60.2 63.0 65.9 66.1	DAE* QuestEval SummaC-ZS SummaC-Cv	59.4 63.7 63.3 70.3	67.9 64.3 76.5 69.8	69.7 65.2 76.3 78.9	73.1 61.6 56.1 67.0	60.1 51.4 64.6	59.7 53.3 67.5	67.5 62.4 62.8 69.7
ChatGPT-ZS ChatGPT-COT ChatGPT-DA	56.3±2.9 52.5±3.3 53.7±3.5	$62.7{\pm}1.7$ $55.9{\pm}2.1$ $54.9{\pm}1.9$	59.5 54.2 54.3	QAFactEval AlignScore	61.6 53.4	69.1 73.1	80.3 80.2	65.9 70.2	59.6 80.1	60.5 63.7	66.2 70.1
ChatGPT-Star FactScore FacTool	56.3±3.1 60.8±3.2 49.3±3.5	57.8±0.2 68.0±2.0 59.0±2.0	57.1 64.4 54.2	ChatGPT-ZS ChatGPT-CoT ChatGPT-DA ChatGPT-Star	66.2 49.7 48.0 55.8	64.5 60.4 63.6 65.8	74.3 66.7 71.0 71.2	62.6 56.0 53.6 57.7	69.2 60.9 65.6 70.6	60.1 50.1 61.5 53.8	66.2 57.3 60.6 62.5
FIZZ (Ours) $w/o \ GE$ $w/o \ Filtering$ $w/o \ AF$	72.6 ±3.0 <u>72.2</u> ±2.8 64.7±3.3 63.6±2.9	69.3 ± 1.9 66.3 ± 1.9 70.0 ± 1.8 65.8 ± 2.0	71.0 69.3 67.4 64.7	FactScore FacTool FIZZ (Ours)	69.9 72.7 73.2	71.6 66.1 67.3	73.9 60.8 76.0	68.0	63.5 64.0 72.4	66.8 62.2	69.0 65.6 71.2

- We present the performance of various methods on the **AggreFact** benchmark dataset. (Tang et al., 2023)
- Experimental results show that our proposed system FIZZ achieves state-of-the-art performance.
- FIZZ exhibits **high interpretability** by **utilizing atomic facts.**

Overall Pipeline

- 1) The pipeline begins by applying coreference resolution to both the summary and the document.
- 2) The summary is decomposed into atomic facts using an LLM.
- 3) The **atomic facts** are filtered and scored against the document.
- 4) The scores are refined through granularity expansion of the document.
- 5) The **minimum** score is defined as the final score.

(B) Overall pipeline of *FIZZ*