MAST90125: Bayesian Statistical learning

Lecture 19: Hamiltonian Monte Carlo

Feng Liu and Guoqi Qian

What do we know about MCMC so far

- We introduced MCMC methods (Metropolis-Hastings and Gibbs). Remember these methods were used to make draws from the posterior distribution, $p(\theta|\mathbf{y})$ when we cannot determine $p(\theta|\mathbf{y})$ analytically.
- ▶ In the process, we noted
 - that MCMC methods produce dependent samples, which reduces the effective sample size.
 - ▶ that MCMC methods can take a long time to converge to the posterior distribution.

Hamiltonian Monte Carlo

- ► For the remainder of this lecture, we will discuss Hamiltonian (or hybrid) Monte Carlo.
 - ► This is a technique designed to reduce correlation between successive iterations. Consequently, HMC should move more rapidly towards the target distribution.
 - ▶ In fact, we have already used Hamiltonian Monte Carlo. The software Stan uses Hamiltonian Monte Carlo to fit models in a Bayesian framework. We have already used Stan in Lecture 18 Rscript. Despite this we will develop an R program for HMC.

► Concept of conservation of energy of a particle system:

$$H(t) = U(\mathbf{q}(t)) + K(\mathbf{p}(t)),$$

where H(t) is the Hamiltonian, $U(\mathbf{q}(t))$ is the potential energy and $K(\mathbf{p}(t))$ is the kinetic energy at time t, position $\mathbf{q}(t)$ and momentum $\mathbf{p}(t)$.

▶ As energy is conserved, we know that dH(t)/dt = 0, which implies that

$$0 = \frac{dH(t)}{dt} = \frac{\partial H}{\partial \mathbf{q}'} \frac{d\mathbf{q}(t)}{dt} + \frac{\partial H}{\partial \mathbf{p}'} \frac{d\mathbf{p}(t)}{dt}$$

which has solutions

$$\frac{d\mathbf{q}(t)}{dt} = +\frac{\partial H}{\partial \mathbf{p}}, \quad \frac{d\mathbf{p}(t)}{dt} = -\frac{\partial H}{\partial \mathbf{q}}.$$

- The negative log-posterior $-\log(p(\theta|\mathbf{y}))$ is deemed a potential energy evaluated at random position θ . But then, what is the momentum?
- For the momentum, create an auxiliary variable ϕ drawn from distribution $p(\phi|\theta)$. Then the negative log density, $-\log(p(\phi|\theta))$ is the kinetic energy, so the Hamiltonian becomes.

$$H(t) = -\log(p(\boldsymbol{\theta}^{(t)}|\mathbf{y})) - \log(p(\boldsymbol{\phi}^{(t)}|\boldsymbol{\theta}^{(t)})).$$

Then the question becomes, what distribution should we use for ϕ ? While the choice is flexible, the formula of kinetic energy will be indicative,

$$\frac{m\mathbf{v}'\mathbf{v}}{2} = \frac{m\mathbf{v}'m\mathbf{v}}{2m} = \mathbf{p}'\frac{1}{2m}\mathbf{p}$$
, as the momentum $\mathbf{p} = m\mathbf{v}$.

If we let our defined kinetic energy equal $\mathbf{p}'\frac{1}{2m}\mathbf{p}$, then we can find that

$$-\log(
ho(\phi^{(t)}|\theta^{(t)})) = \mathbf{p}'\frac{1}{2m}\mathbf{p}$$

Then the question becomes, what distribution should we use for ϕ ? While the choice is flexible, the formula of kinetic energy will be indicative,

$$\frac{m\mathbf{v}'\mathbf{v}}{2} = \frac{m\mathbf{v}'m\mathbf{v}}{2m} = \mathbf{p}'\frac{1}{2m}\mathbf{p}$$
, as the momentum $\mathbf{p} = m\mathbf{v}$.

If we let our defined kinetic energy equal $\mathbf{p}' \frac{1}{2m} \mathbf{p}$, then we can find that

$$-\log(p(\phi^{(t)}|\boldsymbol{\theta}^{(t)})) = \mathbf{p}'\frac{1}{2m}\mathbf{p} \to p(\phi^{(t)}|\boldsymbol{\theta}^{(t)}) = e^{-(\mathbf{p}-\mathbf{0})'(2m)^{-1}(\mathbf{p}-\mathbf{0})},$$

strongly suggesting choose $p(\phi) = \mathcal{N}(\mathbf{0}, \mathbf{M})$, where \mathbf{M} is the 'mass' matrix.

Note that generating $\theta^{(t)}$'s from the posterior $p(\theta|\mathbf{y})$ now becomes generating $(\theta^{(t)}, \phi^{(t)})$'s to stabilize H(t). This can be achieved by a Monte Carlo method.

Implementing Hamiltonian Monte Carlo

► Having determined the 'potential' and 'kinetic' energies, we need the derivatives to implement the Monte Carlo method. These are

$$\frac{\partial H(t)}{\partial \phi} = \frac{\partial \{-\log(p(\theta^{(t)}|\mathbf{y})) - \log(p(\phi^{(t)}|\theta^{(t)}))\}}{\partial \phi} = -\frac{\partial \log(p(\phi^{(t)}|\theta^{(t)}))}{\partial \phi}
\frac{\partial H(t)}{\partial \theta} = \frac{\partial \{-\log(p(\theta^{(t)}|\mathbf{y})) - \log(p(\phi^{(t)}|\theta^{(t)}))\}}{\partial \theta} = -\frac{\partial \log(p(\theta^{(t)}|\mathbf{y}))}{\partial \theta} - \frac{\partial \log(p(\phi^{(t)}|\theta^{(t)}))}{\partial \theta}.$$

▶ However if we use the standard assumption that $p(\phi) = \mathcal{N}(\mathbf{0}, \mathbf{M}) = (2\pi)^{-k/2} \det(\mathbf{M})^{-1/2} e^{-\phi' \mathbf{M}^{-1} \phi/2}$, the term $\frac{\partial \log(p(\phi^{(t)}|\theta^{(t)}))}{\partial \theta}$ disappears and $\log(p(\phi))$ becomes,

$$-0.5k \log(2\pi) - 0.5 \log(\det(\mathbf{M})) - 0.5\phi' \mathbf{M}^{-1}\phi$$

Implementing Hamiltonian Monte Carlo

▶ Having made these decisions, the derivatives of interest are

$$\begin{array}{l} \blacktriangleright \ \, \frac{\partial H}{\partial \phi} = \mathbf{M}^{-1} \phi \\ \blacktriangleright \ \, \frac{\partial H}{\partial \theta} = -\frac{d \log(p(\theta|\mathbf{y}))}{d \theta} = -\frac{d \{\log(p(\theta,\mathbf{y})) - \log(p(\mathbf{y}))\}}{d \theta} = -\frac{d \log(p(\theta,\mathbf{y}))}{d \theta} \end{array}$$

Now the question is how to generate ϕ , θ that satisfy the Hamiltonian equations. Since we are working with chains, we will have already drawn $\theta^{(t)}$, $\phi^{(t)}$. So just draw $\theta^{(t+\epsilon)}$, $\phi^{(t+\epsilon)}$ such that.

$$\frac{d\theta}{dt} = \frac{\theta^{(t+\epsilon)} - \theta^{(t)}}{\epsilon} = \frac{\partial H}{\partial \phi} = \mathbf{M}^{-1} \phi$$

$$\frac{d\phi}{dt} = \frac{\phi^{(t+\epsilon)} - \phi^{(t)}}{\epsilon} = -\frac{\partial H}{\partial \theta} = \frac{d \log(p(\theta, y))}{d\theta}$$

Steps of Hamiltonian Monte Carlo

- ightharpoonup The following 'leapfrog' algorithm is for updating θ (and ϕ).
 - Assume we are in state t-1. In conjunction to $\theta^{(t-1)}$, sample $\phi^{(t-1)}$ from $p(\phi)$.

$$ightharpoonup$$
 For $i = 1, \dots, L$

Set
$$\phi^{(t-1+(i-1/2)\epsilon)} = \phi^{(t-1+(i-1)\epsilon)} + \frac{\epsilon}{2} \frac{d \log(p(\theta,\mathbf{y}))}{d\theta} \Big|_{\theta=\theta^{(t-1+(i-1)\epsilon)}}$$
Set $\theta^{(t-1+i\epsilon)} = \theta^{(t-1+(i-1)\epsilon)} + \epsilon \mathbf{M}^{-1} \phi^{(t-1+(i-1/2)\epsilon)}$
Set $\phi^{(t-1+i\epsilon)} = \phi^{(t-1+(i-1/2)\epsilon)} + \frac{\epsilon}{2} \frac{d \log(p(\theta,\mathbf{y}))}{d\theta} \Big|_{\theta=\theta^{(t-1+i\epsilon)}}$

Set
$$\theta^{(t-1+i\epsilon)} = \theta^{(t-1+(i-1)\epsilon)} + \epsilon \mathbf{M}^{-1} \phi^{(t-1+(i-1)2)\epsilon}$$

Set
$$\phi^{(t-1+i\epsilon)} = \phi^{(t-1+(i-1/2)\epsilon)} + \frac{\epsilon}{2} \frac{d \log(p(\theta, \mathbf{y}))}{d\theta} \Big|_{\theta=\theta^{(t-1)}}$$

▶ Label $\phi^{(t)} = \phi^{(t-1+L\epsilon)}$, $\theta^{(t)} = \theta^{(t-1+L\epsilon)}$ and calculate

$$r = \frac{p(\boldsymbol{\theta}^{(t)}|\mathbf{y})p(\boldsymbol{\phi}^{(t)})}{p(\boldsymbol{\theta}^{(t-1)}|\mathbf{y})p(\boldsymbol{\phi}^{(t-1)})} = \frac{\frac{p(\boldsymbol{\theta}^{(t)},\mathbf{y})}{p(\mathbf{y})}p(\boldsymbol{\phi}^{(t)})}{\frac{p(\boldsymbol{\theta}^{(t-1)},\mathbf{y})}{p(\mathbf{y})}p(\boldsymbol{\phi}^{(t-1)})} = \frac{p(\boldsymbol{\theta}^{(t)},\mathbf{y})p(\boldsymbol{\phi}^{(t)})}{p(\boldsymbol{\theta}^{(t-1)},\mathbf{y})p(\boldsymbol{\phi}^{(t-1)})}$$

Set
$$extbf{ heta}^{(t)} = egin{cases} extbf{ heta}^{(t)} & ext{with probability min}(r,1) \ extbf{ heta}^{(t-1)} & ext{otherwise} \end{cases}$$

Comments on Hamiltonian Monte Carlo algorithm

- \triangleright By splitting the updating of ϕ into half-steps, we ensure the symmetry of the algorithm. To undo the leapfrog steps, just replace ϕ with $-\phi$ as shown below.
- ightharpoonup For $i = L, \ldots, 1$

Set
$$(-\phi)^{(t-1+(i-1/2)\epsilon)} = (-\phi)^{(t-1+i\epsilon)} + \frac{\epsilon}{2} \frac{d \log(p(\theta,y))}{d\theta} \Big|_{\theta = \theta^{(t-1+i\epsilon)}}$$

Set $\theta^{(t-1+(i-1)\epsilon)} = \theta^{(t-1+i\epsilon)} + \epsilon \mathbf{M}^{-1} (-\phi)^{(t-1+(i-1/2)\epsilon)}$

Set
$$heta^{(t-1+(i-1)\epsilon)} = heta^{(t-1+i\epsilon)} + \epsilon extsf{M}^{-1} (-\phi)^{(t-1+(i-1/2)\epsilon)}$$

$$> \text{Set } (-\phi)^{(t-1+(i-1)\epsilon)} = (-\phi)^{(t-1+(i-1/2)\epsilon)} + \frac{\epsilon}{2} \frac{d \log(p(\theta,y))}{d\theta} \bigg|_{\theta = \theta^{(t-1+(i-1)\epsilon)}}$$

Comments on Hamiltonian Monte Carlo algorithm

This means the proposed conditional distributions are $J(\theta^{(t)}, \phi^{(t)}|\theta^{(t-1)}, \phi^{(t-1)}) = p(\phi^{(t-1)})$ and $J(\theta^{(t-1)}, \phi^{(t-1)}|\theta^{(t)}, \phi^{(t)}) = p(-\phi^{(t-1)})$. Moreover as $\phi \sim \mathcal{N}(\mathbf{0}, \mathbf{M})$, we know

$$p(\phi) = \frac{e^{-\phi' \mathsf{M}^{-1} \phi/2}}{(2\pi)^{k/2} \det(\mathsf{M})^{1/2}} = \frac{e^{-(-\phi)' \mathsf{M}^{-1} (-\phi)/2}}{(2\pi)^{k/2} \det(\mathsf{M})^{1/2}} = p(-\phi).$$

Hence Hamiltonian Monte Carlo is a special case of a Metropolis-hasting algorithm (with a symmetry conditional distribution).

- ▶ Typically ϵ , L are chosen such that $\epsilon \times L = 1$ and L is an integer.
- According to theory, the optimal acceptance rate of a HMC algorithm should be ≈ 65 %, compared to ≈ 23 % for a Metropolis algorithm in a multi-dimensional problem.

Comments on Hamiltonian Monte Carlo algorithm

- **Very important**: We are not interested in updating ϕ , only θ . Hence at each state t, before starting the leapfrog steps, we sample $\phi^{(t)}$ from the prior, and not conditional on $\phi^{(t-1)}$.
- This means that while we assume the Hamiltonian is constant in sub-states $t-1+i\epsilon; 1,\ldots,L$, we allow the Hamiltonian to change between states t-2, $t-1,t,\ldots$ If we did not allow the Hamiltonian to move between states, we would implicitly enforce bounds on $\log(p(\theta,y))$ that would prevent full exploration of the posterior density.

Example of the Hamiltonian Monte Carlo algorithm

► To demonstrate HMC, we will look at the logistic regression example. As a reminder, this was

$$\Pr(y_i|p_i) = \mathsf{Bin}(n_i,p_i) \quad \log(p_i/(1-p_i)) = \mathbf{x}_i'\boldsymbol{\beta} \quad p(\boldsymbol{\beta}) \propto 1.$$

As this is an example of a generalised linear model, the likelihood (and joint distribution, since $p(\beta) \propto 1$) we will work with is,

$$\mathsf{Pr}(\mathbf{y}|oldsymbol{eta}) = \prod_{i=1}^N inom{n_i}{y_i} e^{(\mathbf{x}_i'oldsymbol{eta})y_i} (1 + e^{(\mathbf{x}_i'oldsymbol{eta})})^{-n_i}$$

Example of the Hamiltonian Monte Carlo algorithm

▶ In order to implement Hamiltonian Monte Carlo, we need the derivative of the log joint distribution. The steps required to find this are,

$$\begin{split} \log(p(\boldsymbol{\beta},\mathbf{y})) &= \log(\Pr(y|\boldsymbol{\beta})) + \log(p(\boldsymbol{\beta})) = \log(\Pr(y|\boldsymbol{\beta})) \quad \text{as } p(\boldsymbol{\beta}) \propto 1 \\ &= \sum_{i=1}^{N} \log\left(\binom{n_i}{y_i}\right) + \sum_{i=1}^{N} y_i(\mathbf{x}_i'\boldsymbol{\beta}) - \sum_{i=1}^{N} n_i \log(1 + e^{(\mathbf{x}_i'\boldsymbol{\beta})}) \\ \frac{d\log(p(\boldsymbol{\beta},\mathbf{y}))}{d\beta_j} &= \sum_{i=1}^{N} y_i\mathbf{x}_{ij} - \sum_{i=1}^{N} n_i \frac{\mathbf{x}_{ij}e^{(\mathbf{x}_i'\boldsymbol{\beta})}}{1 + e^{(\mathbf{x}_i'\boldsymbol{\beta})}} \\ \frac{d\log(p(\boldsymbol{\beta},\mathbf{y}))}{d\boldsymbol{\beta}} &= \mathbf{X}'(\mathbf{y} - \mathbf{np}) \end{split}$$

where
$$\mathbf{y} = (y_1, \dots y_N)$$
, $\mathbf{n} = (n_1, \dots n_N)$, and $\mathbf{p} = (p_1, \dots p_N)$.

Now we can move to R, implement HMC for this problem and compare it to the Metropolis-Hasting algorithm.