Introduction to Transformers

Michel RIVEILL michel.riveill@univ-cotedazur.fr

General word/sentences representations

- Feature-based approaches (or static approach)
 - Non-neural word representations (BOW)
 - Neural embedding
 - Word embedding:
 - □ Word2Vec, Glove,...
 - ▶ Sentence embedding or Paragraph embedding,...
- Embeddings from Language Models
 - Replace static embeddings (lexicon lookup) with context-dependent embeddings (produced by a deep neural language model)
 - Each token's representation is a function of the entire input sentence, computed by a deep (multi-layer) bidirectional language model
 - Return for each token a (task-dependent) linear combination of its representation across layers.
 - Different layers capture different information

Embeddings from Language Models

- Deep contextualised word representation
 - ▶ ELMo, Embeddings from Language Models, Peters et al., 2018
- Fine-tuning approaches
 - ▶ GPT
 - ▶ Generative Pre-trained Transformer, Radford et al., 2018
 - BERT
 - ▶ Bi-directional Encoder Representations from Transformers, Devlin et al., 2018

Elmo

ELMo: deep contextualised word representation (Peters et al., 2018)

"Instead of using a fixed embedding for each word, ELMo looks at the entire sentence before assigning each word in it an embedding."

ELMo's secret

ELMo was trained in an unsupervised manner, like word2vec:

- predicting the next word in a sequence of words - a task called "language modeling".

This is useful because there is a large amount of unlabeled text data available.

ELMo's secret

- In practice ELMO uses a bi-directional MSTL.
- His linguistic model tries to capture the relationships within a sentence in both directions.

Embedding of "stick" in "Let's stick to" - Step #1

ELMo's secret

ELMo proposes a contextualized embedding by grouping hidden states (and initial integration) in a certain way (concatenation followed by a weighted summation).

Embedding of "stick" in "Let's stick to" - Step #2

ELMO architecture

Input representation

- input token representations are purely character-based: a character CNN, followed by linear projection to reduce dimensionality
- "2048 characters n-gram convolutional filters with two highway layers, followed by a linear projection to 512 dimensions"
- Advantage over using fixed embeddings: no UNK tokens, any word can be represented
- Train a multi-layer bidirectional language model with character convolutions on raw text
 - The forward LM is a deep LSTM that goes over the sequence from start to end to predict token tk based on the prefix t1...tk-1
 - The backward LM is a deep LSTM that goes over the sequence from end to start to predict token tk based on the suffix tk+1...tN
- Each layer of this language model network computes a vector representation for each token
 - Train these LMs jointly, with the same parameters for the token representations and the softmax layer (but not for the LSTMs)
- Freeze the parameters of the language model
- For each task: train task-dependent softmax weights to combine
 - ▶ the layer-wise representations into a single vector for each token
 - jointly with a task- specific model that uses those vectors

How ELMo different from other word embeddings?

- Suppose we have a couple of sentences:
 - I **read** the book yesterday.
 - Can you read the letter now?
- Polysemy: a word have multiple meanings or senses
 - "read" in the first sentence is in the past tense.
 - "read" in the second sentence is in the present tense
- Embedding of word read
 - ▶ With Keras embedding, word2vec, glove:
 - Read have always the same embedding
 - With ELMo:
 - Read have a contextualized embedding

What we can do with ELMo?

- ▶ ELMo allows to build an embedding for a list of sentences
 - It is then possible to couple this embedding with another LogisticRegression model, MLP, etc. for sentiment analysis tasks.
- It is of course possible to couple ELMO with other neural network-based models to perform more complex tasks.
 - Machine Translation
 - Language Modeling
 - Text Summarization
 - Named Entity Recognition
 - Question-Answering Systems
- It is possible to use embedding as or on the contrary, decide to make fine grained tuning

How to embed sentences with ELMo https://allennlp.org/elmo

- See notebook ELMO
 - Need the installation of tensorflow_hub
- elmo = hub.KerasLayer("https://tfhub.dev/google/elmo/2", trainable=False)
- embeddings = elmo(tf.convert_to_tensor(np.asarray(text)))
- embeddings.shape
 TensorShape([3, 1024])
- Reuse the embedding for another task

Transformers

Transformers

Originally

- Sequence transduction model based on attention
 - no convolutions or recurrence
 - easier to parallelize than recurrent nets
 - faster to train than recurrent nets
 - captures more long-range dependencies than CNNs (Convolutional Neural Nework) with fewer parameters

Now

 Transformers use stacked self-attention and pointwise, fullyconnected layers for the encoder and decoder

Seq2Seq architecture and Attention mechanism

Brings many advances in NLP tasks

Seq2seq architecture

- Seq2Seq is a two-part deep learning architecture to map sequence inputs into sequence outputs
 - was initially proposed for the machine translation task
 - but can be applied for other sequence-to-sequence mapping
- Built using two Recurrent Neural Networks (RNNs), namely the encoder and the decoder
 - The encoder reads a sequence input with variable lengths, e.g., English words,
 - ▶ and the decoder produces a sequence output, e.g., corresponding French words, considering the hidden state from the encoder. The hidden state
- Main problem: sends source information from the encoder to the decoder, linking the two. Both the encoder and decoder consist of RNN cells or its variants such as LSTM and GRU.
 - difficult to parallelize, very long learning time

Replace Sequence by Self-attention

with RNNs

CNNs (CNN can parallel)

Replace Sequence by Self-attention

 b^1, b^2, b^3, b^4 can be parallelly computed.

Difficult to parallelize with RNNs

Idea: Replace RNN with CNNs (CNN can parallel)

Replace Sequence by Self-attention

bⁱ is obtained based on the whole input sequence.

 b^1, b^2, b^3, b^4 can be parallelly computed.

You can try to replace any thing that has been done by RNN with self-attention.

LSTM Encoder-decoder machine

Seq2Seq architecture cannot capture all information by a single fixed length vector (i.e. the hidden state of the encoder)

Problems when processing long sequences (vanishing gradient Problem)

Attention

- Attention proposes to use a context vector to represent the contributions of the source and the target (s_t)
- Context vector preserves the information of all hidden states of the encoder cells and aligns them with the current target output $(\sum_i \alpha_{t,i} \cdot hi)$
- Model to "take care" of a certain part of the source inputs
 - $\alpha_{t,i} \approx 1$, important
 - $\alpha_{t_i} \approx 0$, not important

Attention

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)Word Ssample \mathbf{u}_i Recurrent State Attention Mechanism Attention $\sum a_i = 1$ a_i weight Annotation Vectors \mathbf{h}_{j} e = (Economic, growth, has, slowed, down, in, recent, years, .)

Transformers

Models that use

- ▶ Extend Seq2seq architecture with self attention
- Use adapted self-attention to LSTM network

Two main blocks

- Encoder
- Decoder

Transformer: Going beyond LSTMs

Transformer The encoder

Transformer The encoder

Transformers, GPT-2, and BERT

- A transformer uses an encoder stack to model the input, and a decoder stack to model the output.
- But if we don't have an input and we just want to model the "next word"
 - We can suppress the encoder side of a transformer and output the "next word" one by one
 - It gives us the GPT
- If we are only interested in forming a language model for input for other tasks
 - We don't need the transformer decoder,
 - It gives us BERT.

GPT 2 and BERT

GPT2

The embedding size varies according to the model (between 768 and 1600)

117 M345 M762 M1,542 Mparametersparametersparametersparameters

GPT2 in action

- Input: The GPT-2 can process 1024 tokens.
 - Each token flows through all the decoder blocks along its own path.
- Output: GPT2 produces one token at a time
 - This token is added to the input sequence to produce the following token

How to use GPT2

- The easiest way to use the transformers is through the API implemented by hugginface
 - ▶ To be preferred if you don't need to re-train the network.
 - huggingface.co
 - https://github.com/huggingface/transformers
 - Use
 - ▶ Text generation
 - ▶ Text Summarization
- You can also install from scratch
 - Use if you need to specialize the network (fine tunning)
 - https://medium.com/analytics-vidhya/gpt2-for-sentiment-analysis-38cd9832d5e9

GPT2Tokenizer

- >>> from transformers import GPT2Tokenizer
- >>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
- >>> tokenizer("Hello world")['input_ids'] [15496, 995]
- >>> tokenizer(" Hello world")['input_ids'] [18435, 995]
- ▶ Remark: The tokenizer treats spaces as parts of a token.
 - A word will not be encoded identically depending on whether it is at the beginning of the sentence (without space) or not.

Text generation with GPT2...

- Go to GPT2 notebook
- Need the installation of transformers library
- from transformers import GPT2Tokenizer, GPT2LMHeadModel
- tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
- indexed_tokens = tokenizer.encode(text)
- model = GPT2LMHeadModel.from_pretrained('gpt2')
- outputs = model(tokens_tensor)
- predicted_index = torch.argmax(predictions[0, -1,:]).item()
- predicted_text = tokenizer.decode([predicted_index])

Bidirectional Encoder Representation from Transformers (BERT)

Model input and output

Input: 512 tokens

Output: 768 or 1024 regardings the model

Main BERT usage with/without fine training

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

How to use BERT

- Like GPT2, the easiest way to use the transformers is through the API implemented by hugginface
 - To be preferred if you don't need to re-train the network.
 - huggingface.co
 - https://github.com/huggingface/transformers
 - Use
 - ▶ Text classification
 - ▶ NER task

BertTokenizer

- >>> from transformers import BertTokenizer
 >>> tokenizer = BertTokenizer.from_pretrained(" bert-base-uncased ")

 >>> tokenizer.tokenize("I take aspirin.")
 ['i', 'take', 'as', '##pi', '##rin', '.']

 >>> tokenizer.tokenize("I like chocolate")
 ['i', 'like', 'chocolate']
- ▶ Remark: The tokenizer split OOV in sub-piece
 - the same token always has the same id
 - but the embedding changes

Feature extraction with BERT

The output of each encoder layer along each token's path can be used as a feature representing that token.

But which one should we use?

Bert embedding (feature extraction)

Use all encoder level

- from transformers import BertTokenizer, TFBertModel
- tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
- model = TFBertModel.from_pretrained('bert-base-uncased')
- tokenized_text = tokenizer.encode(review)
- input_ids = tf.constant(tokenized_text[:MAX_BERT_SIZE-2])
- outputs = model(input_ids[None,:])
- Prediction_scores, classification_scores = outputs[:2]

Prediction_scores : embedding of each word

Shape: nb_sentences, nb_tokens, 768

Classification_scores : last token (sentence embedding)

Shape: nb_sentences, 768

Feature Extraction, which embedding to use?

What is the best contextualized embedding for "Help" in that context?

For named-entity recognition task CoNLL-2003 NER

Help

		2011 30010
First Layer Embe	edding	91.0
Last Hidden Layer	12	94.9
Sum All 12 Layers	12 + 1 = -	95.5
Second-to-Last Hidden Layer	11	95.6
Sum Last Four Hidden	12	95.9
Concat Last Four Hidden	9 10	11 12 96.1

Dev F1 Score

Sentiment analysis with Bert

- Go to Bert notebook
- Need the installation of transformers library
- from transformers import BertTokenizer
- BertTokenizer.from_pretrained("bert-base-uncased")
- marked_text = "[CLS] " + "I take aspirin. I like chocolate" + " [SEP]"
- tokenized_text = tokenizer.tokenize(marked_text)
 ['[CLS]', 'i', 'take', 'as', '##pi', '##rin', '.', 'i', 'like', 'chocolate', '[SEP]']
- encoded_text = tokenizer.encode(tokenized_text)

Sentiment analysis with Bert

- outputs = model(tf.constant(encoded_text))[None,:])
- prediction_scores, classification_scores = outputs[:2]
- prediction_scores.shape(1, 10, 768)
- classification_scores.shape(1,768)

Summary

Summary

- Transformer
 - Modelling language
 - Use the entire sentence before producing an output
 - ▶ The output could depend of the task
- LSTM is difficult to parallelize
- Self-Attention is a proposal to resolve the problems
- Transformer is sequence-to-sequence architecture
 - A set of encoders construct a latent representation of the input
 - A set of decoders could be use pour project the latent representation in. a new space
- Specific lecture next year

Summary

- Transformer use very large model
 - Not so easy to use
 - Need computational resources
- 2 easy way to use transformer model
 - ▶ Tensorflow_hub library: https://www.tensorflow.org/hub/installation
 - Transformers library: https://huggingface.co/transformers/
- ELMO use character embedding and a bi-LSTM in order to produce an embedding based on word prediction
- Bert uses mainly the encoder part and could be used for
 - Word / Sentence embedding
 - Text classification or Sentiment Analysis
 - NER
 - Q&A or Text translation
- GPT uses mainly the decoder part and could be used for
 - Text summarization
 - Text generation