# MAT 5030 Chapter 3: Probability and Distributions

Kazuhiko Shinki

Wayne State University

## Random sampling

To randomly choose numbers from a finite set, use the "sample" function. This function is useful for *resampling methods*. Resampling methods evaluate variability of statistics, such as mean and standard deviation, by simulation.

```
> sample(1:10, 5) # 5 random numbers from 1 to 10 without replacement
Γ17 6 5 9 2 8
> sample(1:10) # a permutation of {1,2,...,10}
 [1] 2 6 7 8 4 3 5 9 10 1
> sample(1:10,replace=T)
> # 10 random numbers from 1 to 10 with replacement
 [1] 10 4 10 2 6 2 8 4 5 3
> sample(1:10, 11)
> # choose 11 numbers from 1 to 10 without replacement (impossible)
Error in sample(1:10, 11) :
 cannot take a sample larger than the population when 'replace = FALSE'
> sample(1:10, 11, replace=T)
   # choose 11 numbers from 1 to 10 with replacement
```

[1] 10 10 5 3 8 7 3 6 2 6 7

#### Question:

We have data with 5 observations: 5.1, 4.8, 3.9, 5.3, 4.1.

- O Calculate mean and S.D. of the data.
- Estimate the standard error of the mean theoretically.
- Stimate the standard error of hte mean by a resampling method.

Recall that, when  $X_1, \dots, X_n$  are given, the standard error (or standard deviation) of the mean  $\bar{X}$  is given by:

$$SE_{\bar{X}} = \frac{S.D. \text{ of } X}{\sqrt{n}} \tag{1}$$

It implies that when n is large, the variability of the mean  $\bar{X}$  becomes arbitrarily small. This coincides with accepted fact that the mean of many observations is stable.

# Sample Code:

```
# (1)
> X < -c(5.1, 4.8, 3.9, 5.3, 4.1)
> c(mean(X), sd(X))
[1] 4.640000 0.614817
# (2)
> sd(X)/sqrt(5) # (standard deviation)/(sqrt of sample size)
Γ17 0.2749545
# (3)
> M <- numeric(100) # 100-dim vector
> for (i in 1:100){
+ M[i] <- mean(sample(X, replace=T)) # We simulate a sample mean 100 times
+ }
> sd(M) # standard deviation of the mean
[1] 0.2549166
```

The method (3) is called *bootstrapping*. The estimate (0.2549166) tends to be slightly smaller than the answer in (2), but still a good estimate. The bias becomes negligible when the sample size becomes large.

#### Exercise 1:

Calculate the expected value for the standard deviation of  $\bf M$  in the previous slide. (Hint: Try all  $\bf 5^5 = 3125$  permutations.)

#### Random variables

A *random variable* is a map from a probability space to a set of numbers (range).

## Example: Flip a coin twice

- Probability Space  $\Omega := \{(H, H), (H, T), (T, H), (T, T)\}$
- Let **X** be the total number of heads, then **X** is a random variable.

$$X:(H,H)\mapsto 2$$

$$X:(H,T)\mapsto 1$$

$$X:(T,H)\mapsto 1$$

$$X:(T,T)\mapsto 0$$

#### Discrete random variables

A random variable is called *discrete*, when the range is discrete (roughly speaking, the number of possible values are countable).

# Probability mass function (discrete)

For a discrete random variable X, the probability of X = k is written as P(X = k) (or p(k), f(k)) (k runs all possible values of X), and is called a **probability mass (or point) function**.

Chapter 3

10 / 34

#### Continuous random variables

A random variable is called *continuous*, when the range is continuous.

# **Density function (continuous)**

f(x) is called a **density function** of X if

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx \tag{2}$$

We can assume  $f(x) \ge 0$  and  $\int_{-\infty}^{\infty} f(x) dx = 1$ .

**4□ ト 4回 ト 4 三 ト 4 三 ト ・ 三 ・ か** へ ()

## **Cumulative distribution function (CDF)**

 $F(x) = P(X \le x)$  is called a *cumulative distribution function (CDF*). Note that if F(x) is differentiable for the whole range of X,

$$F'(x) = f(x) \tag{3}$$

Shinki (Wayne State U)

#### R Function for random variables

- d+'name': mass or density function (f)
- p+'name' : cumulative distribution function (CDF:F)
- q+'name' : quantile function (inverse of CDF:  $F^{-1}$ )
- r+'name' : random number (X)

## R Function for random variables



#### Normal distribution:

Recall that the *normal density function* is given by:

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

where  $\mu$  is the expectation and  $\sigma > \mathbf{0}$  is the standard deviation of the random variable.

We write  $X \sim N(\mu, \sigma^2)$  when X has the above distribution.

**4□ ト 4回 ト 4 三 ト 4 三 ト ・ 三 ・ か** へ ()

> dnorm(0) # f(0)

```
[1] 0.3989423
> dnorm(-2:2) # dnorm of -2, -1, 0, 1, 2
[1] 0.05399097 0.24197072 0.39894228 0.24197072 0.05399097

I <- 0.01*(-400:400) # -4, -3.99, ..., 3.99, 4
plot(I, dnorm(I),type="1")
# x: I, y:dnorm(I)
# type = line</pre>
```



```
> pnorm(0) # F(0)
[1] 0.5
> pnorm(1.96) # F(1.96)
[1] 0.9750021
> qnorm(0) # find x such that F(x) = 0
[1] -Inf
> qnorm(0.5) # find x such that F(x) = 0.5
[1] 0
> qnorm(0.975) # find x such that F(x) = 0.975
[1] 1.959964
```

```
> rnorm(10) # 10 standard normal random numbers
```

- [1] -0.67800199 -0.53466892 -0.64056387 -0.41621956 0.18128060
- [6] -0.59565417 0.09202977 -1.48117833 0.53581163 -1.80316248

# Example: normal $N(0, 2^2)$

```
> dnorm(0, mean = 0, sd = 2) # dnorm(0) for N(0,4)
[1] 0.1994711
> pnorm(2*1.96, mean = 0, sd = 2) # pnorm(3.92) for N(0,4)
[1] 0.9750021
> qnorm(0.975, mean = 0, sd = 2) # qnorm(0.975) for N(0,4)
[1] 3.919928
```

See 'help(rnorm)' for more details.

Shinki (Wayne State U)

# **Example: other random variables**

| Distribution |              | Parameter(s) | R functions (*1) |
|--------------|--------------|--------------|------------------|
| binomial     | (discrete)   | size, prob   | binom            |
| uniform      | (continuous) | min, max     | unif             |
| normal       | (continuous) | mean, sd     | norm             |
| $\chi^{2}$   | (continuous) | df           | chisq            |
| t            | (continuous) | df           | t                |
| F            | (continuous) | df1, df2     | f                |
| exponential  | (continuous) | rate         | exp              |
| gamma        | (continuous) | shape, scale | gamma            |

(\*1) Add 'd", "p", "q" or "r" before the name of a distribution.

Shinki (Wayne State U) Math 5030 Chapter 3 21 / 34

## **Examples:**

```
> rbinom(8, size = 100, prob=0.7)
   # Play 100 chess games each day.
   # Your probability to win each game is 70%.
   # What are the numbers of wins a day for 8 days?
[1] 60 72 79 75 68 77 71 66
> pbinom(65, size = 100, prob=0.7)
     # What's the probability that you win 65 times or less?
Γ17 0.1628583
> pt(2, df=4)
   # what is the probability that a t_4 r.v. <= 2 ?</pre>
[1] 0.941941
```

# $\chi^2$ random variable:

The **chi-square random variable**  $\chi_n^2$  with **n** degrees of freedom is generated by:

$$\chi_n^2 = X_1^2 + X_2^2 + \dots + X_n^2$$

where  $X_1, X_2, \dots, X_n$  are independent standard normal random variables.

Shinki (Wayne State U)

Math 5030

# Example: $\chi^2$ random variable

Generate  $1000 \chi_3^2$  random variables in two ways:

- "rchisq" function, and
- "rnorm" function,

and compare the means and standard deviations.

Shinki (Wayne State U)

```
> C1 <- rchisq(1000, df=3)
>
> X1 <- rnorm(1000)
> X2 <- rnorm(1000)
> X3 <- rnorm(1000)
> C2 <- X1^2 + X2^2 + X3^2
>
> rbind( c(mean(C1), sd(C1)), c(mean(C2),sd(C2)) )
         [.1] [.2]
[1,] 2.947082 2.488845
[2,] 2.833078 2.348588
par(mfrow = c(1,2)) # align 2 graphs in one window
hist(C1)
hist(C2)
```



# Histogram of C2





#### t random variable:

The **t-random variable**  $T_n$  with n degrees of freedom is generated by:

$$T_n = \frac{Z}{\sqrt{(X_1^2 + X_2^2 + \cdots + X_n^2)/n}}$$

where  $Z, X_1, X_2, \cdots, X_n$  are independent standard normal random variables. Note that  $(X_1^2 + X_2^2 + \cdots + X_n^2)$  is the same as  $\chi_n^2$ .

Shinki (Wayne State U)

The t distribution is symmetric and has heavier tails when n is smaller. When  $n \to \infty$ , t-distribution gets closer and closer to the standard normal distribution, since  $(X_1^2 + X_2^2 + \cdots + X_n^2)/n$  in the denominator has an arbitrarily small variability when n gets large.



#### **Exercise 2:**

Generate 10,000 t-random variables with 4 degrees of freedom in two ways:

- by using the "rt" function, and
- by using the "rnorm" function,

and compare the means and standard deviations.

#### F random variable:

An **F-random variable** F with the numbers of degrees of freedom  $df_1 = m$  and  $df_2 = n$  is generated by:

$$F = \frac{\chi_m^2/m}{\chi_n^2/n}$$

$$= \frac{(X_1^2 + X_2^2 + \dots + X_m^2)/m}{(Y_1^2 + X_2^2 + \dots + Y_n^2)/n}$$

where  $\chi_m^2$  and  $\chi_n^2$  are independent chi-square random variables with degrees of freedom m and n respectively, and  $x_1, \dots, x_m, y_1, \dots, y_n$  are independent standard normal random variables.

31 / 34

#### **Exercise 3:**

Calculate the 90th percentile of the F(3,5) distribution in two ways:

- by "qf" function,
- by "rchisq" function and simulation.

# Other relationships among random variables

A couple of insightful diagrams:

- Casella and Berger, "Statistical Inference," Duxbury Press; 2 edition, pp.627.
- L.M. Leemis and J.T. Mcquestion, "Univariate Distribution Relationships," the American Statistician, pp.45-53, 62(1), 2008.

## **Exercise 4:**

- (a) Generate 10,000 random numbers of  $t_5$ , standardize the numbers by its sample standard deviation, and calculate the proportion of observations which exceed 2.
- (b) Repeat (a) for  $t_3$  and  $t_{10}$
- (c) Calculate the theoretical probability that a t<sub>5</sub>-random variable divided by its (theoretical) standard deviation exceeds 2, by using the quantile function qt.
  - $Var[T_n] = \frac{n}{n-2}$  where n is the number of degrees of freedom.

Shinki (Wayne State U)