Business requirements

MACHINE LEARNING FOR BUSINESS

Karolis Urbonas

Head of Machine Learning & Science, Amazon

Scoping business needs

- 1. What is the business **situation**?
 - The company plans to expand to new markets
- 2. What is the business **opportunity** and how big is it?
 - Identify the right markets with the biggest demand
- 3. What are the business **actions** we will take?
 - Prioritize and invest more in the markets with higher predicted demand

Business scope - fraud example

- 1. Situation The fraud rate has started increasing
- 2. **Opportunity** Reduce fraud rate by X %, resulting in Y USD savings
- 3. **Action** Work on improving fraud detection system, reduce fraud drivers, and manually review transactions at risk

Business scope - churn example

- 1. **Situation** The customers started to churn more
- 2. **Opportunity** Reduce churn rate by X %, resulting in Y USD revenue saved
- 3. **Action** Work on identifying and improving churn drivers (website errors, too much/little advertising, customer service issues etc.); identify customers at risk and introduce retention campaigns

Business situation - asking the right question

Always start with inference questions

Why has churn started increasing?

Which information indicates a potential transaction fraud?

How are our most valuable customers different from others?

Build on inference question to define prediction questions

Can we identify customers at risk of churning?

Can we flag potentially risky transactions?

Can we predict early on which customers are likely to become highly valuable?

Business opportunity

Would you spend 1 million USD to earn extra 5000 USD each year? (~200 year return on investment)

- Size up the opportunity
- Once you know the drivers of the outcome, how much will it **cost** changing them, and what will be the value of doing that?
- Finally, how do you know if you can **affect** the predicted outcome? (**hint** experiments, experiments, and more experiments)

Actionable machine learning

Finally, how do you know if you can **affect** the predicted outcome? (hint - experiments, experiments, and more experiments)

- First, look at historical levels (churn, fraud, # of high value customers)
- Run experiments e.g. target customers at risk with a discount, manually review top 10% riskiest transactions. Repeat experiments multiple times, see if you get a repeated pattern of desired results
- If yes, use that to calculate opportunity and make decision if it's a worthwhile investment
- If no 1) collect more data, 2) qualitative research, 3) narrow down business question

Let's practice!

MACHINE LEARNING FOR BUSINESS

Model training

MACHINE LEARNING FOR BUSINESS

Karolis Urbonas

Head of Machine Learning & Science, Amazon

Modeling dataset

Input A	Input B	Input X	Target Y

Full dataset

Input A	Input B	Input X	Target Y		
				_	Full dataset

Splitting data for training

Test

Overfitting and underfitting

Advertising budget

Underfitting

Overfitting 1

Overfitting 2

Right model fit 1

Right model fit 2

Model training

Asses model performance on test

Try a few models

Let's practice!

MACHINE LEARNING FOR BUSINESS

Model performance measurement

MACHINE LEARNING FOR BUSINESS

Karolis Urbonas

Head of Machine Learning & Science, Amazon

Performance measurement types

Two key supervised learning metrics:

- 1. Accuracy --> classification
- 2. **Error** --> regression

Classification performance

- Accuracy
- Recall
- Precision

Churn example

Number of customer complaints

Churn example

Churn prediction

Number of customer complaints

Mis-classified items

Another churn prediction

Accuracy

Churned

Not churned

Number of customer complaints

Precision

Churned

Not churned

Number of customer complaints

Recall

Churned

Not churned

Number of customer complaints

Regression performance

Error

Regression example

Predicting revenue with a line

Regression error

Testing non-linear models

Error improvements

Actionable models - A/B testing

Good models are not always actionable:

Churn prediction, purchase prediction, machine failure prediction

Test if using models helps improve outcomes:

Target customers predicted to churn with incentives (discounts, coupons, promotions)

Send reminder emails and product details to customers likely to purchase

Did this result in decreased churn, increased purchase rate and reduced machine failures? If **yes**, build into automated process. If **no**, collect more data, improve models, and test again.

Let's practice!

MACHINE LEARNING FOR BUSINESS

Machine learning risks

MACHINE LEARNING FOR BUSINESS

Karolis Urbonas

Head of Machine Learning & Science, Amazon

Poor performance

Some models perform poorly (make sure you review test performance, not training):

- Low precision
- Low recall
- Large error

Low precision

Low precision - a lot of misclassified items in the class of interest = a lot of false positives

Example - only 10% of customers identified as likely to purchase actually purchased the product

Low recall

Low recall - only a small fraction of all observations in the class have been correctly captured (recalled) by the model

Example - only 25% of all fraudulent transactions identified by the model

Large error

Large error - large differences between predicted and actual values

Example - the average error for the customer satisfaction rating prediction is 3.5 units or 70% in percentage points

Non-actionable model use cases

Q: How to test the models correctly?

A: Run tests / experiments to validate their performance e.g. churn prevention emails, product promotions, manual machine maintenance, manual transaction review

A/B testing

What if tests don't work?

- Get more data business has to be involved
- Build causal models to understand drivers
- Run qualitative research (surveys etc.)
- Change the scope of the problem
 - Narrow
 - Widen
 - Different question

Let's practice!

MACHINE LEARNING FOR BUSINESS

