Φροντιστήριο 2 ΦΥΣ112

2/10/2024

25.19) Στο κάτωθι σχήμα η μπαταρία έχει διαφορά δυναμικού $V=9.0\,V$, δύο εκ των πυκνωτών έχουν χωρητικότητα $C_2=3.0\,\mu F$ και $C_4=4.0\,\mu F$, και όλοι οι πυκνωτές είναι αρχικά αφόρτιστοι. Όταν ο διακόπτης S κλείσει, συνολικό φορτίο $12\,\mu C$ περνά από το σημείο a και συνολικό φορτίο $8.0\,\mu C$ περνά από το b. Πόση είναι η χωρητικότητα (a) C_1 και (b) C_3 ;

25.35) Υποθέστε ένα στάσιμο ηλεκτρόνιο αποτελεί ένα σημειακό φορτίο. Ποια είναι η πυκνότητα ενέργειας u του ηλεκτρικού του πεδίου στις ακτινικές αποστάσεις (a) $r=1.00\,mm$, (b) $r=1.00\,\mu m$, (c) $r=1.00\,nm$ και (d) $r=1.00\,pm$; (e) Πόσο είναι το u στο όριο $r\to 0$;

25.46) Στο σχήμα που ακολουθεί, πόσο συνολικό φορτίο φυλάσσεται στους πυκνωτές με παράλληλες πλάκες που είναι συνδεδεμένοι με μπαταρία $12.0\,V$; Ο ένας περιέχει μόνο αέρα, ενώ ο άλλος διηλεκτρικό με $\kappa=3.00$. Και οι δύο πυκνωτές έχουν επιφάνεια πλάκας $5.00\times10^{-3}\,m^2$ και διαχωριστική απόσταση $2.00\,mm$.

Άσκηση 4) (α) Συγκρίνετε την χωρητικότητα ενός πυκνωτή αποτελούμενος από 2 ομόκεντρες σφαίρες ακτίνας $R_1=6cm$ και $R_2=9cm$ με αυτή ενός κυλινδρικού πυκνωτή που αποτελείται από δύο ομοαξονικούς κυλίνδρους ίδιας ακτίνας όπως και ο σφαιρικός πυκνωτής και έχουν μήκος 15cm. Γιατί οι χωρητικότητες είναι σχεδόν παρόμοιες:

(β) Δείξτε ότι όταν R_1 και R_2 είναι σχεδόν ίσες $(R_2=R_1+\delta,\,\delta\ll R_1)$ οι εξισώσεις που δίνουν τη χωρητικότητα για έναν σφαιρικό και έναν κυλινδρικό πυκνωτή μπορούν να προσεγγιστούν με την εξίσωση που δίνει την χωρητικότητα ενός επίπεδου πυκνωτή $C=\frac{\epsilon_0 A}{d}$. Υπόδειξη: Μπορείτε να κάνετε το ανάπτυγμα Taylor για την ποσότητα $\frac{\delta}{R_1}$.

Άσκηση 5) Να βρεθεί το ηλεκτρικό δυναμικό V(x) σε ένα τυχαίο σημείο στο άξονα στον οποίο βρίσκονται δύο ίσα και αντίθετα σημειακά φορτία που έχουν απόσταση 2 μεταξύ τους όπως φαίνεται στο σχήμα. Να σχεδιάσετε επίσης τη συνάρτηση $\frac{V(x)}{V_0}$ όπου $V_0=\frac{q}{4\pi\epsilon_0}$.

Άσκηση 6) Θεωρήστε το ηλεκτρικό δίπολο του διπλανού σχήματος το οποίο είναι προσανατολισμένο κατά μήκος του y-άξονα. Βρείτε το ηλεκτρικό δυναμικό V σε ένα σημείο P το οποίο βρίσκεται στο επίπεδο x-y και χρησιμοποιήστε το δυναμικό V για να υπολογίσετε το ηλεκτρικό πεδίο \vec{E} στο σημείο αυτό. Υπόδειξη: Θα πρέπει να θεωρήσετε το όριο r>>a για να καταλήξετε σε μια σχέση και κατόπιν να γράψετε τον τελεστή $\vec{\nabla}$ σε σφαιρικές συντεταγμένες.

