Optimization and Decision Support Methodologies

Date: 02/10/2022 Exam – 1st Call Duration: 2 hours

Note: Present all the calculations you make, and conveniently justify your answers.

1. (*Predicted quotation: 7.0 values*)

Consider the following **single-objective linear programming** problem:

Maximize
$$z = -x_1 + x_2 - 3x_3$$

subject to

$$2x_1 + x_2 + x_3 \ge 3$$

(1)

$$x_1 + 2x_2 - x_3 \le 1$$

(2)

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

Considering x_4 and x_5 respectively the **surplus** and **artificial** variables of the functional constraint (1), and x_6 the **slack** variable of the functional constraint (2), the optimal simplex tableau is:

	Ci	-1	1	-3	0	-M	0	
Хв	C _B \ X _i	X 1	X ₂	X 3	X 4	X 5	X 6	b
X ₃	-3	0	-1	1	-1/3	1/3	-2/3	1/3
X 1	-1	1	1	0	-1/3	1/3	1/3	4/3
zj-cj		0	1	0	4/3	M-4/3	5/3	-7/3

- a) For each of the following changes in the initial problem, determine, by carrying out a post-optimization study, what are the **implications for the optimal solution presented** (in the value of x*, in the value of z* and in the optimal basis), arising from:
 - I. Changing the vector of **the independent terms** of the constraints from $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ to $\begin{bmatrix} 3 \\ 3 \end{bmatrix}$;
 - II. Changing the vector of the coefficients of variable x_2 in the constraints from $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ to $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$.
- b) Determine, by carrying out a sensitivity analysis study, for which interval of c_2 (coefficient of c_2 in the objective function) the optimal solution presented above will remain optimal.

2. (Predicted quotation: 5.0 values)

Consider the following goal programming problem:

$$\begin{aligned} \textit{Minimizar} \, Z &= \left\{ d_1^-, d_2^- + d_2^+ \right. , d_3^+ \right\} \\ \textit{sujeito a} \\ &\qquad \qquad x_1 - x_2 + d_1^- - d_1^+ = 1 \\ &\qquad \qquad x_1 + d_2^- - d_2^+ = 2 \\ &\qquad \qquad x_2 + d_3^- - d_3^+ = 3 \\ &\qquad \qquad 5x_1 + 3x_2 + d_4^- = 15 \\ &\qquad \qquad x_1 \geq 0, \,\, x_2 \geq 0, \,\, d_i^- \geq 0, \,\, d_i^+ \geq 0 \,\,\, (i = 1, 2, 3, 4) \end{aligned}$$

a) Solve this problem by the graphical method;

Departamento de Engenharia Informática e de Sistemas

b) If there was a need for a new functional constraint that specified that $x_1 + 2x_2$ should be greater than, or equal to 3, indicate what change you would introduce to the model.

3. (*Predicted quotation: 5.0 values*)

Consider the following linear programming problem with two objective functions:

Min
$$z_1 = 2x_1 + x_2$$

Max $z_2 = x_1$
subject to $\underline{x} = (x_1, x_2)^T \in X$
 $E=(12, 17)$
 $G=(2, 10)$
 $E=(13, 10)$
 $G=(16, 13)$
 $G=(16, 13)$
 $G=(16, 13)$
 $G=(16, 13)$
 $G=(16, 13)$

a) Identify the **efficient region** of this problem by marking it on the graph on the proof sheet. Justify your answer;

x₁ = 15

b) Obtain the **pay-off table** corresponding to this problem, and identify the **ideal solution** and the **anti-ideal solution**.

Name: ______ No.