Homework 1

1. The objects of **Rel** are sets, and an arrow $f:A\to B$ is a relation from A to B, that is, a subset $f\subseteq A\times B$. The equality relation $\{\langle a,a\rangle\in A\times A|\ a\in A\}$ is the identity arrow on a set A. Composition in **Rel** is to be given by

$$g \circ f = \{ \langle a, c \rangle \in A \times C \mid \exists b \, (\langle a, b \rangle \in f \, \& \, \langle b, c \rangle \in g) \}$$

for $f \subseteq A \times B$ and $g \subseteq B \times C$.

Show that **Rel** is a category. Show also that there is a functor G: **Sets** \to **Rel** taking objects to themselves and each function $f: A \to B$ to its graph,

$$G(f) = \{\langle a, f(a) \rangle \in A \times B \mid a \in A\}.$$

- 2. Consider the following isomorphisms of categories and determine which hold.
 - (a) $\mathbf{Rel} \cong \mathbf{Rel}^{\mathrm{op}}$
 - (b) $\mathbf{Sets} \cong \mathbf{Sets}^{\mathrm{op}}$
 - (c) For a fixed set X with powerset P(X), as poset categories $P(X) \cong P(X)^{\text{op}}$ (the arrows in P(X) are subset inclusions $A \subseteq B$ for all $A, B \subseteq X$).
- 3. (a) Show that in **Sets**, the isomorphisms are exactly the bijections.
 - (b) Show that in **Monoids**, the isomorphisms are exactly the bijective homomorphisms.
 - (c) Show that in **Posets**, the isomorphisms are *not* the same as the bijective homomorphisms.
- 4. Construct the "coslice category" C/\mathbf{C} of a category \mathbf{C} under an object C from the "slice category" operation \mathbf{C}/C and the "dual category" operation \mathbf{C}^{op} .
- 5. How many free categories on graphs are there which have exactly six arrows? Draw the graphs that generate these categories.
- 6. * Show that the free monoid functor

$$M:\mathbf{Sets} \to \mathbf{Mon}$$

exists, in two different ways:

(a) Assume the particular choice $M(X) = X^*$ and define its effect

$$M(f): M(A) \to M(B)$$

on a function $f:A\to B$ to be

$$M(f)(a_1 \dots a_k) = f(a_1) \dots f(a_k), \quad a_1, \dots a_k \in A.$$

(b) Assume only the UMP of the free monoid and use it to determine ${\cal M}$ on functions, showing the result to be a functor.