III B. Tech II Semester Regular Examinations, June-2022 PRINCIPLES OF COMMUNICATION

(Common to EEE, CSE, IT)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit**All Questions Carry Equal Marks

UNIT-I

- 1. a) Prove that a coherent detector can reconstruct the original signal [8M] in the demodulation of double sideband suppressed carrier amplitude modulation (DSBSC -AM) signal.
 - b) A single tone message signal is given as $m(t) = 4\cos(4\pi 10^3 t)$. [7M] Give the expression for single sideband suppressed carrier amplitude modulation for given carrier $c(t) = 10\cos(2\pi 10^6 t)$ and estimate the power required.

(OR)

2. a) An AM signal is represented as

 $s(t) = 5\cos(2\pi 10^6 t) \left[1 + \cos(2\pi 10^3 t)\right]$

Determine the following.

- (i) Message and Carrier signal frequencies
- (ii) Bandwidth Required
- (iii) Total power transmitted
- b) With a neat sketch, explain the generation of DSBSC-AM signal [7M] using Ring modulator.

UNIT-II

3. a) Explain about direct method of FM generation.

[8M]

[8M]

b) Obtain the following:

[7M]

- (i) Carrier Amplitude
- (ii) Message signal Amplitude
- (iii) Carrier Frequency,

for the given FM signal $s(t) = 10cos(4\pi 10^6 t + 0.5sin4000\pi t)$ when the value of frequency sensitivity is 10 kHz/volt.

(OR)

4. a) Differentiate between Narrowband FM and Wideband FM.

[8M]

b) Discuss about linear and non linear model of phase locked loop (PLL).

UNIT-III

5. a) State and prove the properties of autocorrelation.

[8M] [7M]

[7M]

b) A discrete random variable X takes values from 1 to 5 with probabilities P(X) as given below.

 X
 1
 2
 3
 4
 5

 P(X)
 0.1
 0.2
 0.4
 0.2
 0.1

Compute the mean and variance of the random variable X.

SET - 1

(OR)

6.	a)	Discuss the important properties of cross correlation.	[8M]
	b)	Differentiate between white noise, shot noise and thermal noise. UNIT-IV	[7M]
7.	a)	Examine the statement that figure of merit for DSBSC-AM is unity.	[8M]
	b)	Identify the significance and importance of Pre-emphasis in analog communication.	[7M]
		(OR)	
8.	a)	Discuss the Noise in AM receivers and Obtain the expression for signal-to-noise ratio at the input of an AM receiver.	[8M]
	b)	Illustrate the importance of FM threshold effect.	[7M]
	·	UNIT-V	
9.	a)	What do you understand from the word multiplexing? Differentiate between time domain multiplexing and frequency domain multiplexing.	[8M]
	b)	Classify pulse modulation techniques with their input and output waveforms.	[7M]
		(OR)	
10.	a)	Define sampling and quantization. With a neat sketch, explain how analog signal is converted to digital signal.	[8M]
	b)	Obtain the Nyquist rate and Nyquist interval for the given message signal	[7M]
		$m(t) = 5\cos 6000\pi t + 2.5\cos 1000\pi t\cos 4000\pi t$	

III B. Tech II Semester Regular Examinations, June-2022 PRINCIPLES OF COMMUNICATION

(Common to EEE, CSE, IT)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit**All Questions Carry Equal Marks

UNIT-I

- 1. a) Show that phase discrimination method can be used to generate [8M] single sideband suppressed carrier amplitude modulated (SSBSC- AM) signal.
 - b) Obtain the following for the given amplitude modulated (AM) [7M] signal $s(t) = 10 \cos 2\pi 10^6 t (1 + 3\cos 2\pi 10^3 t)$:
 - (i) Total power as well as power of sidebands.
 - (ii) Frequency domain representation.

(OR)

- 2. a) Illustrate the significance and importance of Frequency [8M] translation in Analog communication.
 - b) Show how to generate DSBSC-AM signal using Ring Modulator. [7M]

UNIT-II

- 3. a) Summarize the process involved in the generation of narrow [8M] band frequency modulation (NBFM) with necessary block diagram.
 - b) Explain the balanced slope detector method for FM [7M] demodulation.

(OR)

- 4. a) Obtain the expression for an FM signal with a carrier [8M] $c(t) = 4cos(2\pi 10^6 t)$ and message signal $m(t) = 8cos(2\pi 10^3 t)$. Determine the power of the FM signal when the frequency sensitivity is 1 kHz/Volt.
 - b) Elaborate on the working of Foster Seeley discriminator for FM [7M] demodulation.

UNIT-III

- 5. a) With necessary equations list the properties of cross correlation. [8M]
 - b) A random variable X has $\overline{X} = -3$, $\overline{X^2} = 11$ and $\sigma_X^2 = 2$. For a new [7M] random variable Y = 2X 3, find (i) \overline{Y} , (ii) $\overline{Y^2}$ and (iii) σ_Y^2 .

(OR)

- 6. a) List all the properties of probability distribution function. [8M]
 - b) Define the terms white noise and Noise figure. Draw the [7M] spectrum of white noise with $\sigma_N^2 = 10$.

R19

SET - 2

UN	[T -	·IV
O 111		

7.	a)	Explain the receiver model for analysis of noise in analog	[8M]				
	b)	communication. Derive the figure of merit for noise in AM receiver.	[7M]				
	(OR)						
8.	a)	Analyze the effect of noise in FM receiver and obtain input and output SNRs.	[8M]				
	b)	Illustrate the importance of threshold effect in noise analysis.	[7M]				
UNIT-V							
9.	a)	Define Nyquist rate. Explain why Nyquist rate is important in sampling of an analog signal.	[8M]				
	b)	With a neat sketch, explain the working of PCM transmitter and receiver.	[7M]				
		(OR)					
10.	a)	Elaborate on the steps involved in demodulation of PPM with required waveforms.	[8M]				
	b)	Distinguish between ideal, natural and flat top sampling.	[7M]				

R19

SET - 3

III B. Tech II Semester Regular Examinations, June-2022 PRINCIPLES OF COMMUNICATION

(Common to EEE, CSE, IT)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

UNIT-I

1. a) Define Amplitude modulation and explain the time-domain [8M] and frequency-domain representation of AM signal.

b) Discuss about the generation of vestigial sideband suppressed [7M] carrier amplitude modulated (VSBSC-AM) signal.

(OR)

2. a) Discriminate between single sideband suppressed carrier [8M] amplitude modulation (SSBSC-AM) and vestigial side band suppressed carrier amplitude modulation (VSBSC-AM).

b) Estimate the power in the sidebands as well as the [7M] transmission efficiency of an amplitude modulated wave given by

 $s(t) = 5\cos 2\pi 10^6 t (1 + \cos 2\pi 10^3 t)$

UNIT-II

3. a) Illustrate the importance of phase locked loop (PLL). [8M]

b) Obtain the (i) Bandwidth (ii) Power required, for the given FM [7M] signal $s(t) = 10cos(4\pi 10^6 t + 5sin4000\pi t)$.

(OR)

4. a) With a neat block diagram, elaborate on the generation of [8M] frequency modulation (FM) using indirect method.

b) Estimate the total power as well as bandwidth of an FM signal $s(t) = 5 \cos(4\pi 10^6 t + 4 \sin 2500\pi t)$. Also obtain the message and carrier frequencies.

UNIT-III

5. a) Two statistically independent random variables X and Y with $\overline{X} = 2$, $\overline{X^2} = 8$, $\overline{Y} = 4$, $\overline{Y^2} = 25$. For another random variable given as W = 3X - Y, calculate the variance.

b) List and prove the properties of probability density function. [7M]

(OR)

6. a) With relevant expressions explain the calculation of mean, [8M] correlation and covariance.

b) Differentiate between shot noise and thermal noise. [7M]

R19

Code No: R193204J

modulation signal.

SET - 3

UNIT-IV

7.	a)	Recall the importance of de-emphasis in analog	[8M]		
		communication.			
	b)	Analyze the effect of noise in FM receivers and also obtain the	[7M]		
		equations for output signal to noise ratio and figure of merit. (OR)			
8.	a)	Illustrate the importance of capture effect.	[8M]		
	b)	Derive the figure of merit for DSB-SC receivers.	[7M]		
<u>UNIT-V</u>					
9.	a)	List out the advantages of converting analog signal to digital	[8M]		
		signal.			
	b)	With neat sketch explain the generation of pulse coded	[7M]		

(OR)

Explain the importance of multiplexing. Discuss different types 10. a) [8M] of multiplexing used in analog communication.

Differentiate the terms sampling, quantization and encoding. b) [7M]

SET - 4

III B. Tech II Semester Regular Examinations, June-2022 PRINCIPLES OF COMMUNICATION

(Common to EEE, CSE, IT)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit**All Questions Carry Equal Marks

UNIT-I

- 1. a) Outline the process of demodulating the double side band [8M] suppressed carrier amplitude modulation (DSBSC-AM) using coherent detection.
 - b) Evaluate the total power of an AM transmitter that radiates 9 [7M] kW of power when unmodulated and later modulated by two sine waves with modulation indices 0.5 and 0.6 respectively.

(OR)

- 2. a) Compare SSB, DSB and VSB modulation techniques from the [8M] view point of generation, bandwidth requirement, power distribution and area of application.
 - b) With a neat block diagram, summarize filter method of [7M] generating single sideband suppressed carrier amplitude modulated (SSBSC-AM) signal.

UNIT-II

- 3. a) Discuss about Armstrong method for generation of frequency [8M] modulated (FM) signal generation.
 - b) Obtain the

[7M]

[8M]

- (i) Carrier Amplitude
- (ii) Message signal Amplitude
- (iii) Carrier Frequency
- (iv) Message signal frequency

for the given FM signal $s(t) = 5cos(2\pi 10^6 t + 0.5sin6000\pi t)$. Assume frequency sensitivity as 10 kHz/V.

(OR)

- 4. a) Explain the important elements of superheterodyne receiver.
 - b) A high frequency carrier signal $c(t) = 2 \cos(2\pi 10^6 t)$ is frequency modulated by a message signal [7M]

 $m(t) = 4\cos(8\pi 10^3 t) + 8\cos(6\pi 10^3 t)$

Obtain the time-domain representation of FM signal. Also calculate the individual modulation indices and maximum frequency deviation.

UNIT-III

- 5. a) With an example, explain about conditional probability. [8M]
 - b) List and prove the properties of probability distribution function. [7M]

R19

SET - 4

[8M]

[7M]

(OR)

A random variable has a probability density 6.

 $f_X(x) = \begin{cases} \frac{5}{4} (1 - x^4), & 0 < x \le 1 \\ 0. & 0 < x \le 1 \end{cases}$

Calculate (i) E[X] (ii) E[4X + 2] (iii) $E[X^2]$.

Discuss about noise equivalent bandwidth and noise figure. b)

[7M]**UNIT-IV**

Illustrate the importance of capture effect. 7. a)

[8M] Discuss the noise in AM receivers and obtain the expression for [7M] signal to noise ratio at the input of an AM receiver.

(OR)

8. Identify the significance and importance of pre-emphasis in a) [8M]analog communication.

Derive the figure of merit for DSB-SC receivers. b)

UNIT-V

9. Mention the role of a holding circuit in the demodulation of [8M]pulse amplitude modulated (PAM) signal with neat block diagram.

b) Differentiate between PAM, PWM and PPM. [7M]

(OR)

10. a) Illustrate the importance of sampling theorem and Nyquist rate. [8M]

Justify the statement that a pulse position modulated (PPM) [7M] signal can be generated from a pulse width modulated (PWM) signal.
