

Andrzej M. Borzyszkowsk

Relacyjne Bazy Danych

Andrzej M. Borzyszkowski PJATK/ Gdańsk

materiały dostępne elektronicznie http://szuflandia.pjwstk.edu.pl/~amb

normalizacja

Projekt bazy danych -

jne Bazy Danyo

_ 2

Dwie metodologie

- Relacyjna baza danych:
 - dane przechowywane w tabelach
 - w tabeli klucz główny plus inne atrybuty
- Diagramy encji i związków
 - encje odpowiadają realnym bytom, które modelujemy
 - naturalny podział na tabele
 - techniczne szczegóły: tabele dla związków wieloznacznych
- Inne podejście: normalizacja
 - zaczynamy od jednej tabeli dla wszystkich danych
 - tzn. integracja danych
 - wydzielamy tabele dla fragmentów danych

Formalne zasady projektowe

- Diagramy związków i encji
 - jedynie intuicyjny podział danych na tabele
 - jasna semantyka atrybutów i łączenia zestawów atrybutów w tabele
- Normalizacja
 - precyzyjna definicja warunków koniecznych/pożądanych
 - identyfikacja anomalii
 - pojęcie determinowania (atrybutów przez inne atrybuty)
 - warunki na możliwość/konieczność podziału danych pomiędzy tabelami

) Andrzej M. Borzyszkowski

acyjne Bazy Danych

3

Relacyjne Bazy Danych

4

Pierwsza postać normalna

- 1 postać normalna: komórki tabeli są atomowymi wartościami
 - atrybut wielowartościowy zostaje zamieniony na powtórzenie krotek
 - atrybut złożony zostaje zamieniony na kilka atrybutów
- Przykład: w relacji (Klient join Zamowienie join Pozycja join Towar) [klient.nr, nazwisko, zamowienie.nr, koszt, towar.nr, opis, ilość]
 - atrybuty towar.nr i opis odpowiadają jednemu towarowi
 - w jednym zamówieniu może być wiele towarów, w tabeli będą powtórzenia wierszy
 - uwaga: jeśli krotność powtórzeń atrybutu wielokrotnego jest ograniczona i niewielka, można zaproponować kilka odrębnych atrybutów (np. pierwsze i drugie imię), dopuszczając wartość NULL

Tabela w 1NF

• Fragment ogólnej tabeli:

K_nr	nazwisko	Z_nr	koszt	T_nr	opis	ilosc
3	Szczęsna	1	2,99	4	Linux CD	1
3	Szczęsna	1	2,99	7	wentylator	5
3	Szczęsna	12	0,99	19	zegarek	1
4	Łukowski	9	6,99	7	wentylator	5
4	Łukowski	10	0,99	7	wentylator	1
8	Kołak	2	0	4	Linux CD	2
8	Kołak	5	0	3	kostka Rubika	4
13	Soroczyński	8	5,99	13	nożyczki	3

• Trzy anomalie przy zmianie zawartości tabeli: wstawianiu, usuwaniu, aktualizacji

6

Anomalia wstawiania

- Chcemy wprowadzić do systemu nowego klienta
 - nie ma tej możliwości bez jednoczesnego zamówienia
 - a jeśli z zamówieniem, to może dojść do wstawienia niedokładnej kopii istniejącego towaru
 - a jeśli dopuszczamy wartości NULL dla danych o zamówieniu i towarze, to konieczność ta zniknie po dalszych wstawieniach
- Teraz wprowadzamy nowy towar
 - znowu wymaga to istnienia klienta i zamówienia
 - a jeśli dopuścimy możliwość NULL dla tych danych, to nie będzie w ogóle klucza głównego
 - będzie możliwość wstawienia całkowicie pustej krotki

Anomalie usuwania i aktualizacji

- Anomalia usuwania
 - usuwamy dane o nożyczkach zniknie informacja o Soroczyńskim
 - usuwamy dane o Kołak zniknie informacja o kostce Rubika
 - rozwiązaniem może być wstawianie NULL przy usuwaniu ostatniej krotki
 - dopuszcza to możliwość krotki całej równej NULL
- Anomalia aktualizacji
 - poprawiamy literówkę w nazwisku "Szczęsna"
 - albo zmieniamy miejsce jej zamieszkania
 - może się okazać, że nie wszystkie wystąpienia zostaną zaktualizowane

© Andrzej M. Borzyszkowski

acyjne Bazy Danyc

© Andrzej M.

Relacyjne Bazy Danych

Zależności atrybutów

- Pojęcie funkcyjnej zależności (determinowania)
 - X funkcyjnie determinuje Y (oznaczenie X→Y): wszystkie krotki o pewnych wartościach atrybutów X mają te same wartości atrybutów Y
 - w szczególności: klucz funkcyjnie determinuje wszystkie pozostałe atrybuty
 - np. numer indeksu studenta identyfikuje studenta
 - imię i nazwisko nie identyfikuje studenta
 - ale samo imie determinuje płeć
 - a kod pocztowy determinuje województwo/powiat/gminę?
- Redundancja
 - gdy w relacji R występuje zależność funkcyjna X→Y oraz X nie jest kluczem kandydującym

10

Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Andrzej M. Borzyszkowski

Zależności funkcyjne wynikowe

- Pewne zależności funkcyjne powodują zachodzenie innych zależności
 - można formalnie wywnioskować te zależności pochodne
- Reguły wnioskowania dla zależności funkcyjnych (Armstrong)
 - zwrotność: X→X
 - uzupełnienie: X→Y pociąga XZ→Y
 - rzut: X→YZ pociąga X→Y
 - suma: X→Y oraz X→Z pociąga X→YZ
 - przechodniość: X→Y oraz Y→Z pociąga X→Z
- Zależności trywialne i nietrywialne
 - zawsze X ⊇Y pociąga X → Y
 - inne zależności trzeba postulować

Redundancja, przykład

Relacja (Klient join Zamowienie join Pozycja join Towar)
 [klient.nr, nazwisko, zamowienie.nr, koszt, towar.nr, opis, ilość] spełnia zależności:

- niektóre ze strzałek wychodzą z podzbioru klucza
- inne wychodzą z innych (zbiorów) atrybutów
- Redundancja
 - niepotrzebnie powtarzamy nazwisko klienta dla różnych towarów z tego samego zamówienie
 - nie można zapisać nazwiska klienta, który nie zamówił żadnego towaru

Rozkład odwracalny (bezstratny)

- Relacje R1,...,Rn nazywamy rozkładem odwracalnym relacji R wtedy i tylko wtedy, gdy złączenie naturalne relacji R1,...,Rn jest równe wyjściowej relacji R
 - uwaga: oczywiście relacje R1,...,Rn są wówczas rzutami relacji R
 - oraz w sumie obejmują wszystkie atrybuty relacji R
 - prawo zachowania atrybutów
- Założenie: R1 i R2 są rzutami pewnej relacji R oraz obejmują wszystkie atrybuty R
 - oczywiście złączenie naturalne R1 i R2 będzie zawierać R
 - dlaczego?
 - pytanie: jakie warunki gwarantują, że złączenie naturalne R1 i R2 będzie równe dokładnie wyjściowej relacji R?

11

© Andrzej M. Borzyszk

Relacyjne Bazy Danych

Rozkłady, przykład

 Fragment tabeli klient [nr, nazwisko, miasto]

nr	nazwisko	miasto
3	Szczęsna	Gdynia
4	Łukowski	Gdynia

 rozkład nieodwracalny (z utrata informacji)

nazwisko	miasto
Szczęsna	Gdynia
Łukowski	Gdynia

miasto Gdynia Gdvnia rozkłady odwracalne (bez utraty informacji)

nr	nazwisko	nazwisko	miasto
3	Szczęsna	Szczęsna	Gdynia
4	Łukowski	Łukowski	Gdynia

nr	nazwisko	nr	miasto
3	Szczęsna	3	Gdynia
4	Łukowski	4	Gdynia

Rozkład odwracalny, tw. Heatha

- Tw. Heatha: Niech R będzie relacją, zaś A, B i C zbiorami atrybutów. Jeżeli R spełnia zależność funkcyjna A→B, wówczas relacja R jest równa złączeniu naturalnemu swoich rzutów na { A,B } i { A,C }
- Twierdzenie jest prawdziwe gdy A→C
 - wówczas A zawiera klucz relacji R
 - rozkład jest niepotrzebny, prowadzi do związku 1-1, relacje mogły być scalone
- oraz gdy A++C, wówczas w R występowała redundancja
 - rozkład jest uzasadniony
- { NR }→{ MIASTO } oraz { NR }→{ NAZWISKO }
 - rozkład niepotrzebny, NR jest kluczem w relacji scalonej
- { MIASTO }→{ NR } oraz { MIASTO }→{ NAZWISKO }
 - rozkład nieodwracalny

© Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Druga postać normalna

• Relacja R jest w drugiej postaci normalnej wtedy i tylko wtedy, gdy jest w 1NF i wszystkie atrybuty nienależące do klucza zależą od całego klucza, a nie od jego części

Druga postać normalna, c.d.

- Anomalia aktualizacji
 - dane o towarach występują tylko jeden raz
 - nie ma problemu z nieprawidłową aktualizacją
 - dane klienta z wieloma zamówieniami nadal są powtarzane
- Anomalia usuwania
 - dane o kliencie związane są z jakimś zamówieniem
 - anomalia usuwania nadal jest obecna
- Anomalia wstawiania
 - analogicznie do anomalii usuwania obecna

© Andrzej M. Borzyszkowski

Andrzej M. Borzyszkowski

- innymi słowy: krotka składa się z klucza głównego i pewnej liczby atrybutów niezależnych; atrybuty te można aktualizować niezależnie od siebie

© Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Postaci normalne, druga i trzecia

- Każdy projekt można doprowadzić do 3 postaci normalnej
 - i powinno się doprowadzić
- W zaawansowanych zastosowaniach są powody by robić inaczej
 - kopiowane danych, by ułatwić dostęp
 - utrzymywanie danych zbiorczych (też pewien sposób kopiowania)
 - są narzędzia by uniknąć anomalii (procedury wyzwalane, reguly Postgresa)

Trzecia postać normalna, c.d.

- Anomalia aktualizacji
 - dane o klientach występują tylko jeden raz
 - nie ma problemu z nieprawidłową aktualizacją
- Anomalia usuwania
 - dane o kliencie są niezależne od zamówień, można usunąć zamówienia pozostawiając dane klienta
- Anomalia wstawiania
 - również nie ma przeszkód w niezależnym wstawianiu danych o klientach czy towarach

Trzecia postać normalna – 3NF, przykład

• [Z.nr,K.nr,nazwisko] nie jest w 3NF, ma rozkład ma dwie relacje

z nr k nr nazwisko Szczesna 4 Łukowski

z nr k nr 12

k nr nazwisko Szczesna Łukowski

© Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Relacyjne Bazy Danych

© Andrzej M. Borzyszkowski

Trzecia postać normalna – kontrprzykład

• [Z.nr,K.nr,nazwisko] ma też inny rozkład na dwie relacje w 3NF:

K_nr Z_nr

z_nr k nr

Z_nr Nazwisko z nr nazwisko 12 Szczęsna 9 Łukowski

każda relacja [Z.nr,K.nr,nazwisko] jest złożeniem swoich rzutów

Trzecia postać normalna – kontrprzykład

- Nie jest to pożyteczny rozkład
 - nie każde złożenie relacji [Z.nr,K.nr] oraz [Z.nr,nazwisko] spełnia zależność funkcyina K.nr → nazwisko
- Każdy projekt można doprowadzić do 3 postaci normalnej bez utraty zależności

z_nr	k_nr
10	4
9	4

z_nr nazwisko 10 Szczęsna Łukowski

k_nr nazwisko z nr 10 Szczęsna Łukowski

Relacyjne Bazy Danych

© Andrzej M. Borzyszkowski

Andrzej M. Borzyszkowski

Bazy Danych

Relacyjne

Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Normalizacja

 Rozkład do 2NF R(A, B, C, D) PRIMARY KEY (A, B)

 $A \rightarrow D$

rozkładamy następująco:

R1 (A, D)

PRIMARY KEY (A)

R2 (A, B, C)

PRIMARY KEY (A, B)

FOREIGN KEY (A)

REFERENCES R1

Rozkład do 3NF

R (A, B, C, D)

PRIMARY KEY (A)

 $C \rightarrow D$

rozkładamy następująco:

R1 (C, D)

PRIMARY KEY (C)

R2 (A, B, C)

PRIMARY KEY (A)

FOREIGN KEY (C)

REFERENCES R1

Normalizacja – przykład konkretny

Rozkład do 2NF

R (t_nr, z_nr, ilość, opis)

PRIMARY KEY (t_nr, z_nr)

t nr → opis

rozkładamy następująco:

towar (t_nr, opis)

PRIMARY KEY (t_nr)

pozycja (t_nr, z_nr, ilość)

PRIMARY KEY (t_nr, z_nr)

FOREIGN KEY (t_nr)

REFERENCES towar

Rozkład do 3NF

R (z_nr, data, k_nr, nazwisko)

PRIMARY KEY (z_nr)

k_nr → nazwisko

damy następująco:

It (k_nr, nazwisko)

PRIMARY KEY (k_nr)

rozkładamy następująco:

klient (k_nr, nazwisko)

PRIMARY KEY (k_nr)

zamowienie (z_nr, data, k_nr)

PRIMARY KEY (z_nr)

FOREIGN KEY (k_nr)

REFERENCES klient

Relacyjne Bazy Danych

Postać normalna Boyce'a-Codda – BCNF

- Relacja R jest w postaci normalnej Boyce'a/Codda (BCNF) gdy elementem determinującym każdej nietrywialnej zależności funkcyjnej jest klucz kandydujący
 - tzn. relacja R jest w BCNF gdy na diagramie zależności funkcyjnych jedynymi strzałkami wychodzącymi są strzałki wychodzące z kluczy kandydujących
 - dla 3NF nakłada się warunek jedynie dla atrybutów niebędących częścią klucza
- Okazuje się, że nie każdą relację można rozłożyć na relacje w postaci Boyce'a-Codda nie tracąc zależności funkcyjnych
 - ale można zdefiniować procedurę wyzwalaną zapewniającą zachowanie brakującej zależności funkcyjnej

BCNF, (kontr)przykład

Załóżmy, że relacja SZKOŁA ma definicję

SZKOŁA (STUDENT, JĘZYK, LEKTOR) UNIQUE (STUDENT, JEZYK) UNIQUE (STUDENT, LEKTOR)

- załóżmy dodatkowo, że każdy lektor prowadzi tylko jeden język
- tzn. diagram zależności funkcyjnych wygląda następująco:
- SZKOŁA nie jest w BCNF

BCNF, próba rozkładu

 Istnieje rozkład odwracalny relacji SZKOŁA na Lektor (LEKTOR, JĘZYK) PRIMARY KEY (LEKTOR) **Zapis (STUDENT, LEKTOR)**

- iedyna zależność funkcyjna to { LEKTOR }→{ JĘZYK }
- brakuje zależności { STUDENT, JĘZYK }→{ LEKTOR }
- nie można aktualizować obu relacji i zagwarantować zachowania brakującej zależności funkcyjnej
- Wniosek: nie zawsze jest możliwy rozkład odwracalny na relacje spełniające BCNF z zachowanie zależności funkcyjnych
 - ale można zdefiniować procedurę wyzwalaną zapewniającą zachowanie brakującej zależności funkcyjnej

Czwarta postać normalna

- Pojęcie determinowania wielowartościowego
 - 1NF wymusza powtórzenia wierszy, gdy wartością atrybutu ma być zbiór wartości atomowych
 - X determinuje Y wielowartościowo: dla każdych dwóch krotek t1 i t2 takich, że t1[X]=t2[X] istnieja krotki t3 i t4 takie, że
 - t3[X]=t4[X]=t1[X]
 - t3[Y]=t1[Y], t4[Y]=t2[Y]
 - dla pozostałych atrybutów Z zachodzi
 - t3[Z]=t2[Z], t4[Z]=t1[Z]
 - oznaczenie: X≯Y
 - ponieważ Z gra tę samą rolę, można pisać X►Y Z
 - fakt: jeśli X→Y, to X→Y (dlaczego?)

© Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

© Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

27

Borzyszkowski

Czwarta postać normalna, przykład

- Chcemy zapisywać dane o studentach, zapisach na lektoraty i zapisach na fakultety
 - lektoraty i fakultety sa niezależne
 - typowa tabelka

	nazwisko	lektorat	fakultet
t1	Szczęsna	angielski	logika
t2	Szczęsna	niemiecki	kryptografia
	Szczęsna	francuski	logika
t3	Szczęsna	angielski	kryptografia
t4	Szczęsna	niemiecki	logika
	Szczęsna	francuski	kryptografia

każda wartość lektoratu musi być skombinowana z każda wartościa fakultetu

Piąta postać normalna

- Tabela jest w 5NF, jeśli nie jest złączeniem innych tabel
 - praktyczne znaczenie 5NF jest bliskie zera
 - jeśli wiemy z góry, że tabela jest złączeniem, to otrzymujemy radę, by ją potraktować jako złączenie

Czwarta postać normalna,c.d.

Anomalie

Ξ̈́

Bazy Danych

Relacyjne

Borzyszkowski

Andrzej M.

Relacyjne Bazy Danych

- wstawianie, usuwanie, aktualizacja:
- można naruszyć warunek, że każda wartość jest do pary z każdą, można niejednolicie aktualizować wartości
- w tym przykładzie 3NF i wcześniejsze nie są naruszone
- bo nie ma w ogóle zależności funkcyjnych
- Rozwiązanie
 - jeśli X→Y|Z, gdzie X,Y i Z są rozłącznymi zbiorami atrybutów, to relację R(X,Y,Z) należy podzielić na R1(X,Y) oraz R2(X,Z)
- Innymi słowy: zależność wielowartościowa (nietrywialna) oznacza, że relacja musi być złączeniem naturalnym dwóch relacji
 - 4NF: nie ma potrzeby podziału na złączenie dwóch relacji

Przykłady, gdy normalizacja nie wystarcza

- Dane zagregowane:
 - jest to pewien rodzaj kopiowania danych
 - zaleca się (w zasadzie) nie zapisywać atrybutów wynikowych
 - teoria normalizacji nie wypowiada się na ten temat
- Determinowanie bezwarunkowe
 - np. pesel determinuje datę urodzenia
 - a wiec nie warto w ogóle zapisywać daty urodzenia, gdy zapisuje się pesel
 - teoria normalizacji mówi jedynie o determinowaniu atrybutów zapisanych w tabeli

Przykłady, c.d.

- Tabele słownikowe
 - czasami problem z powtarzalnością ma charakter pragmatyczny
 - np. zapisujemy dane studentów razem z nazwą wydziału, nazwa może być długa, wielokrotne powtarzanie nazwy umożliwia błędy zapisu
 - jeśli zaplanujemy kolumny: album, nazwa, skrót
 - gdzie nazwa i skrót nazwy determinują się wzajemnie,
 - to teoria normalizacji wskaże rozkład z odrębną tabelą [nazwa, skrót_nazwy]
 - ale nie wymusi by kluczem obcym był właśnie skrót nazwy

Relacyjne Bazy Danych

© Andrzej M. Borzyszkowski