MPI for Python

Release 4.0.0.dev0

Lisandro Dalcin

Jul 24, 2023

Contents

1	Introduction												3
	1.1 What is MP	[?				 	 	 	 	 			4
	1.2 What is Pyth	non?				 	 	 	 	 			4
	1.3 Related Proj	ects				 	 	 	 	 			4
2	Overview												5
	2.1 Communica	ting Python Obj	ects and A	Array D	Data .	 	 	 	 	 			5
		tors											6
		nt Communicati											6
		ommunications											7
		GPU-aware MP											8
	* *	ocess Manageme											8
	•	Communications											9
		ıt/Output											9
	1	tal Management											10
3	Tutorial												11
	3.1 Running Pyt	hon scripts with	MPI			 	 	 	 	 			12
		nt Communicati											12
	3.3 Collective C	ommunication				 	 	 	 	 			14
	3.4 Input/Outpu	t (MPI-IO)				 	 	 	 	 			16
	1 1	ocess Managem											17
		MPI + Python C											18
		Communication											18
		ith SWIG											19
		ith F2Py											20
4	mpi4py												20
	4.1 Runtime cor	ifiguration optio	ns			 	 	 	 	 			21
	4.2 Environmen	t variables				 	 	 	 	 			23
	4.3 Miscellaneo	us functions .				 	 	 	 	 			25
5	mpi4py.MPI												26
	5.1 Classes					 	 	 	 	 			26
	5.2 Functions .					 	 	 	 	 			27
	5.2 Attributes												20

6	mpi4py.typing	34
7	mpi4py.futures 7.1 MPIPoolExecutor 7.2 MPICommExecutor 7.3 Command line 7.4 Parallel tasks 7.5 Examples 7.6 Citation	38 38 41 42 43 43 47
8	mpi4py.util8.1 mpi4py.util.dtlib8.2 mpi4py.util.pkl58.3 mpi4py.util.pool	47 47 47 54
9	mpi4py.run 9.1 Exceptions and deadlocks	56 57 57
10	mpi4py.bench	58
11	Reference11.1 mpi4py.MPI	58 58
12	Citation	219
13	13.1 Build backends 13.2 Using pip 13.3 Using conda	
14	Development14.1 Prerequisites14.2 Building14.3 Testing	224
15	Appendix 15.1 MPI-enabled Python interpreter	
16	LICENSE	228
17	17.1 Release 4.0.0 [2023-XX-XX] 17.2 Release 3.1.4 [2022-11-02] 17.3 Release 3.1.3 [2021-11-25] 17.4 Release 3.1.2 [2021-11-04] 17.5 Release 3.1.1 [2021-08-14] 17.6 Release 3.1.0 [2021-08-12] 17.7 Release 3.0.3 [2019-11-04] 17.8 Release 3.0.2 [2019-06-11] 17.9 Release 3.0.1 [2019-02-15]	229 229 230 230 231 231

	17.11Release 2.0.0 [2015-10-18]	232
	17.12Release 1.3.1 [2013-08-07]	233
	17.13Release 1.3 [2012-01-20]	233
	17.14Release 1.2.2 [2010-09-13]	234
	17.15Release 1.2.1 [2010-02-26]	234
	17.16Release 1.2 [2009-12-29]	234
	17.17Release 1.1.0 [2009-06-06]	235
	17.18Release 1.0.0 [2009-03-20]	235
Re	ferences	236
Pyt	thon Module Index	237
Ind	lex	238

Abstract

This document describes the *MPI for Python* package. *MPI for Python* provides Python bindings for the *Message Passing Interface* (MPI) standard, allowing Python applications to exploit multiple processors on workstations, clusters and supercomputers.

This package builds on the MPI specification and provides an object oriented interface resembling the MPI-2 C++ bindings. It supports point-to-point (sends, receives) and collective (broadcasts, scatters, gathers) communication of any *picklable* Python object, as well as efficient communication of Python objects exposing the Python buffer interface (e.g. NumPy arrays and builtin bytes/array/memoryview objects).

1 Introduction

Over the last years, high performance computing has become an affordable resource to many more researchers in the scientific community than ever before. The conjunction of quality open source software and commodity hardware strongly influenced the now widespread popularity of Beowulf class clusters and cluster of workstations.

Among many parallel computational models, message-passing has proven to be an effective one. This paradigm is specially suited for (but not limited to) distributed memory architectures and is used in today's most demanding scientific and engineering application related to modeling, simulation, design, and signal processing. However, portable message-passing parallel programming used to be a nightmare in the past because of the many incompatible options developers were faced to. Fortunately, this situation definitely changed after the MPI Forum released its standard specification.

High performance computing is traditionally associated with software development using compiled languages. However, in typical applications programs, only a small part of the code is time-critical enough to require the efficiency of compiled languages. The rest of the code is generally related to memory management, error handling, input/output, and user interaction, and those are usually the most error prone and time-consuming lines of code to write and debug in the whole development process. Interpreted high-level languages can be really advantageous for this kind of tasks.

For implementing general-purpose numerical computations, MATLAB¹ is the dominant interpreted programming language. In the open source side, Octave and Scilab are well known, freely distributed software packages providing compatibility with the MATLAB language. In this work, we present MPI for Python, a new package enabling applications to exploit multiple processors using standard MPI "look and feel" in Python scripts.

¹ MATLAB is a registered trademark of The MathWorks, Inc.

1.1 What is MPI?

MPI, [mpi-using] [mpi-ref] the *Message Passing Interface*, is a standardized and portable message-passing system designed to function on a wide variety of parallel computers. The standard defines the syntax and semantics of library routines and allows users to write portable programs in the main scientific programming languages (Fortran, C, or C++).

Since its release, the MPI specification [mpi-std1] [mpi-std2] has become the leading standard for message-passing libraries for parallel computers. Implementations are available from vendors of high-performance computers and from well known open source projects like MPICH [mpi-mpich] and Open MPI [mpi-openmpi].

1.2 What is Python?

Python is a modern, easy to learn, powerful programming language. It has efficient high-level data structures and a simple but effective approach to object-oriented programming with dynamic typing and dynamic binding. It supports modules and packages, which encourages program modularity and code reuse. Python's elegant syntax, together with its interpreted nature, make it an ideal language for scripting and rapid application development in many areas on most platforms.

The Python interpreter and the extensive standard library are available in source or binary form without charge for all major platforms, and can be freely distributed. It is easily extended with new functions and data types implemented in C or C++. Python is also suitable as an extension language for customizable applications.

Python is an ideal candidate for writing the higher-level parts of large-scale scientific applications [Hinsen97] and driving simulations in parallel architectures [Beazley97] like clusters of PC's or SMP's. Python codes are quickly developed, easily maintained, and can achieve a high degree of integration with other libraries written in compiled languages.

1.3 Related Projects

As this work started and evolved, some ideas were borrowed from well known MPI and Python related open source projects from the Internet.

• OOMPI

- It has no relation with Python, but is an excellent object oriented approach to MPI.
- It is a C++ class library specification layered on top of the C bindings that encapsulates MPI into a functional class hierarchy.
- It provides a flexible and intuitive interface by adding some abstractions, like *Ports* and *Messages*, which enrich and simplify the syntax.

• Pypar

- Its interface is rather minimal. There is no support for communicators or process topologies.
- It does not require the Python interpreter to be modified or recompiled, but does not permit interactive parallel runs.
- General (*picklable*) Python objects of any type can be communicated. There is good support for numeric arrays, practically full MPI bandwidth can be achieved.

• pyMPI

- It rebuilds the Python interpreter providing a built-in module for message passing. It does permit interactive parallel runs, which are useful for learning and debugging.

- It provides an interface suitable for basic parallel programming. There is not full support for defining new communicators or process topologies.
- General (picklable) Python objects can be messaged between processors. There is not support for numeric arrays.

• Scientific Python

- It provides a collection of Python modules that are useful for scientific computing.
- There is an interface to MPI and BSP (Bulk Synchronous Parallel programming).
- The interface is simple but incomplete and does not resemble the MPI specification. There is support for numeric arrays.

Additionally, we would like to mention some available tools for scientific computing and software development with Python.

- NumPy is a package that provides array manipulation and computational capabilities similar to those found in IDL, MATLAB, or Octave. Using NumPy, it is possible to write many efficient numerical data processing applications directly in Python without using any C, C++ or Fortran code.
- SciPy is an open source library of scientific tools for Python, gathering a variety of high level science and engineering modules together as a single package. It includes modules for graphics and plotting, optimization, integration, special functions, signal and image processing, genetic algorithms, ODE solvers, and others.
- Cython is a language that makes writing C extensions for the Python language as easy as Python itself. The Cython language is very close to the Python language, but Cython additionally supports calling C functions and declaring C types on variables and class attributes. This allows the compiler to generate very efficient C code from Cython code. This makes Cython the ideal language for wrapping for external C libraries, and for fast C modules that speed up the execution of Python code.
- SWIG is a software development tool that connects programs written in C and C++ with a variety of high-level programming languages like Perl, Tcl/Tk, Ruby and Python. Issuing header files to SWIG is the simplest approach to interfacing C/C++ libraries from a Python module.

2 Overview

MPI for Python provides an object oriented approach to message passing which grounds on the standard MPI-2 C++ bindings. The interface was designed with focus in translating MPI syntax and semantics of standard MPI-2 bindings for C++ to Python. Any user of the standard C/C++ MPI bindings should be able to use this module without need of learning a new interface.

2.1 Communicating Python Objects and Array Data

The Python standard library supports different mechanisms for data persistence. Many of them rely on disk storage, but *pickling* and *marshaling* can also work with memory buffers.

The pickle modules provide user-extensible facilities to serialize general Python objects using ASCII or binary formats. The marshal module provides facilities to serialize built-in Python objects using a binary format specific to Python, but independent of machine architecture issues.

MPI for Python can communicate any built-in or user-defined Python object taking advantage of the features provided by the pickle module. These facilities will be routinely used to build binary representations of objects to communicate (at sending processes), and restoring them back (at receiving processes).

Although simple and general, the serialization approach (i.e., *pickling* and *unpickling*) previously discussed imposes important overheads in memory as well as processor usage, especially in the scenario of objects with large memory

footprints being communicated. Pickling general Python objects, ranging from primitive or container built-in types to user-defined classes, necessarily requires computer resources. Processing is also needed for dispatching the appropriate serialization method (that depends on the type of the object) and doing the actual packing. Additional memory is always needed, and if its total amount is not known *a priori*, many reallocations can occur. Indeed, in the case of large numeric arrays, this is certainly unacceptable and precludes communication of objects occupying half or more of the available memory resources.

MPI for Python supports direct communication of any object exporting the single-segment buffer interface. This interface is a standard Python mechanism provided by some types (e.g., strings and numeric arrays), allowing access in the C side to a contiguous memory buffer (i.e., address and length) containing the relevant data. This feature, in conjunction with the capability of constructing user-defined MPI datatypes describing complicated memory layouts, enables the implementation of many algorithms involving multidimensional numeric arrays (e.g., image processing, fast Fourier transforms, finite difference schemes on structured Cartesian grids) directly in Python, with negligible overhead, and almost as fast as compiled Fortran, C, or C++ codes.

2.2 Communicators

In MPI for Python, Comm is the base class of communicators. The Intracomm and Intercomm classes are subclasses of the Comm class. The Comm. Is_inter method (and Comm. Is_intra, provided for convenience but not part of the MPI specification) is defined for communicator objects and can be used to determine the particular communicator class.

The two predefined intracommunicator instances are available: COMM_SELF and COMM_WORLD. From them, new communicators can be created as needed.

The number of processes in a communicator and the calling process rank can be respectively obtained with methods <code>Comm.Get_size</code> and <code>Comm.Get_rank</code>. The associated process group can be retrieved from a communicator by calling the <code>Comm.Get_group</code> method, which returns an instance of the <code>Group</code> class. Set operations with <code>Group</code> objects like like <code>Group.Union</code>, <code>Group.Intersection</code> and <code>Group.Difference</code> are fully supported, as well as the creation of new communicators from these groups using <code>Comm.Create</code> and <code>Intracomm.Create_group</code>.

New communicator instances can be obtained with the *Comm.Clone*, *Comm.Dup* and *Comm.Split* methods, as well methods *Intracomm.Create_intercomm* and *Intercomm.Merge*.

Virtual topologies (Cartcomm, Graphcomm and Distgraphcomm classes, which are specializations of the Intracomm class) are fully supported. New instances can be obtained from intracommunicator instances with factory methods Intracomm. Create_cart and Intracomm. Create_graph.

2.3 Point-to-Point Communications

Point to point communication is a fundamental capability of message passing systems. This mechanism enables the transmission of data between a pair of processes, one side sending, the other receiving.

MPI provides a set of *send* and *receive* functions allowing the communication of *typed* data with an associated *tag*. The type information enables the conversion of data representation from one architecture to another in the case of heterogeneous computing environments; additionally, it allows the representation of non-contiguous data layouts and user-defined datatypes, thus avoiding the overhead of (otherwise unavoidable) packing/unpacking operations. The tag information allows selectivity of messages at the receiving end.

Blocking Communications

MPI provides basic send and receive functions that are *blocking*. These functions block the caller until the data buffers involved in the communication can be safely reused by the application program.

In MPI for Python, the Comm. Send, Comm. Recv and Comm. Sendrecv methods of communicator objects provide support for blocking point-to-point communications within Intracomm and Intercomm instances. These methods can communicate memory buffers. The variants Comm. send, Comm. recv and Comm. sendrecv can communicate general Python objects.

Nonblocking Communications

On many systems, performance can be significantly increased by overlapping communication and computation. This is particularly true on systems where communication can be executed autonomously by an intelligent, dedicated communication controller.

MPI provides *nonblocking* send and receive functions. They allow the possible overlap of communication and computation. Non-blocking communication always come in two parts: posting functions, which begin the requested operation; and test-for-completion functions, which allow to discover whether the requested operation has completed.

In MPI for Python, the Comm. Isend and Comm. Irecv methods initiate send and receive operations, respectively. These methods return a Request instance, uniquely identifying the started operation. Its completion can be managed using the Request. Test, Request. Wait and Request. Cancel methods. The management of Request objects and associated memory buffers involved in communication requires a careful, rather low-level coordination. Users must ensure that objects exposing their memory buffers are not accessed at the Python level while they are involved in nonblocking message-passing operations.

Persistent Communications

Often a communication with the same argument list is repeatedly executed within an inner loop. In such cases, communication can be further optimized by using persistent communication, a particular case of nonblocking communication allowing the reduction of the overhead between processes and communication controllers. Furthermore, this kind of optimization can also alleviate the extra call overheads associated to interpreted, dynamic languages like Python.

In MPI for Python, the Comm.Send_init and Comm.Recv_init methods create persistent requests for a send and receive operation, respectively. These methods return an instance of the Prequest class, a subclass of the Request class. The actual communication can be effectively started using the Prequest.Start method, and its completion can be managed as previously described.

2.4 Collective Communications

Collective communications allow the transmittal of data between multiple processes of a group simultaneously. The syntax and semantics of collective functions is consistent with point-to-point communication. Collective functions communicate *typed* data, but messages are not paired with an associated *tag*; selectivity of messages is implied in the calling order. Additionally, collective functions come in blocking versions only.

The more commonly used collective communication operations are the following.

- Barrier synchronization across all group members.
- Global communication functions
 - Broadcast data from one member to all members of a group.
 - Gather data from all members to one member of a group.
 - Scatter data from one member to all members of a group.

• Global reduction operations such as sum, maximum, minimum, etc.

In MPI for Python, the Comm.Bcast, Comm.Scatter, Comm.Gather, Comm.Allgather, Comm.Alltoall methods provide support for collective communications of memory buffers. The lower-case variants Comm.bcast, Comm. scatter, Comm.gather, Comm.allgather and Comm.alltoall can communicate general Python objects. The vector variants (which can communicate different amounts of data to each process) Comm.Scatterv, Comm.Gatherv, Comm.Alltoallv and Comm.Alltoallw are also supported, they can only communicate objects exposing memory buffers.

Global reduction operations on memory buffers are accessible through the <code>Comm.Reduce</code>, <code>Comm.Reduce_scatter</code>, <code>Comm.Allreduce</code>, <code>Intracomm.Scan</code> and <code>Intracomm.Exscan</code> methods. The lower-case variants <code>Comm.reduce</code>, <code>Comm.allreduce</code>, <code>Intracomm.scan</code> and <code>Intracomm.exscan</code> can communicate general Python objects; however, the actual required reduction computations are performed sequentially at some process. All the predefined (i.e., <code>SUM</code>, <code>PROD</code>, <code>MAX</code>, etc.) reduction operations can be applied.

2.5 Support for GPU-aware MPI

Several MPI implementations, including Open MPI and MVAPICH, support passing GPU pointers to MPI calls to avoid explicit data movement between host and device. On the Python side, support for handling GPU arrays have been implemented in many libraries related GPU computation such as CuPy, Numba, PyTorch, and PyArrow. To maximize interoperability across library boundaries, two kinds of zero-copy data exchange protocols have been defined and agreed upon: DLPack and CUDA Array Interface (CAI).

MPI for Python provides an experimental support for GPU-aware MPI. This feature requires:

- 1. mpi4py is built against a GPU-aware MPI library.
- 2. The Python GPU arrays are compliant with either of the protocols.

See the *Tutorial* section for further information. We note that

- Whether or not a MPI call can work for GPU arrays depends on the underlying MPI implementation, not on mpi4py.
- This support is currently experimental and subject to change in the future.

2.6 Dynamic Process Management

In the context of the MPI-1 specification, a parallel application is static; that is, no processes can be added to or deleted from a running application after it has been started. Fortunately, this limitation was addressed in MPI-2. The new specification added a process management model providing a basic interface between an application and external resources and process managers.

This MPI-2 extension can be really useful, especially for sequential applications built on top of parallel modules, or parallel applications with a client/server model. The MPI-2 process model provides a mechanism to create new processes and establish communication between them and the existing MPI application. It also provides mechanisms to establish communication between two existing MPI applications, even when one did not *start* the other.

In MPI for Python, new independent process groups can be created by calling the Intracomm. Spawn method within an intracommunicator. This call returns a new intercommunicator (i.e., an Intercomm instance) at the parent process group. The child process group can retrieve the matching intercommunicator by calling the Comm. Get_parent class method. At each side, the new intercommunicator can be used to perform point to point and collective communications between the parent and child groups of processes.

Alternatively, disjoint groups of processes can establish communication using a client/server approach. Any server application must first call the <code>Open_port</code> function to open a <code>port</code> and the <code>Publish_name</code> function to publish a provided

service, and next call the Intracomm. Accept method. Any client applications can first find a published service by calling the Lookup_name function, which returns the port where a server can be contacted; and next call the Intracomm. Connect method. Both Intracomm. Accept and Intracomm. Connect methods return an Intercomm instance. When connection between client/server processes is no longer needed, all of them must cooperatively call the Comm. Disconnect method. Additionally, server applications should release resources by calling the Unpublish_name and Close_port functions.

2.7 One-Sided Communications

One-sided communications (also called *Remote Memory Access*, *RMA*) supplements the traditional two-sided, send/receive based MPI communication model with a one-sided, put/get based interface. One-sided communication that can take advantage of the capabilities of highly specialized network hardware. Additionally, this extension lowers latency and software overhead in applications written using a shared-memory-like paradigm.

The MPI specification revolves around the use of objects called *windows*; they intuitively specify regions of a process's memory that have been made available for remote read and write operations. The published memory blocks can be accessed through three functions for put (remote send), get (remote write), and accumulate (remote update or reduction) data items. A much larger number of functions support different synchronization styles; the semantics of these synchronization operations are fairly complex.

In *MPI for Python*, one-sided operations are available by using instances of the *Win* class. New window objects are created by calling the *Win.Create* method at all processes within a communicator and specifying a memory buffer. When a window instance is no longer needed, the *Win.Free* method should be called.

The three one-sided MPI operations for remote write, read and reduction are available through calling the methods <code>Win.Put</code>, <code>Win.Get</code>, and <code>Win.Accumulate</code> respectively within a <code>Win</code> instance. These methods need an integer rank identifying the target process and an integer offset relative the base address of the remote memory block being accessed.

The one-sided operations read, write, and reduction are implicitly nonblocking, and must be synchronized by using two primary modes. Active target synchronization requires the origin process to call the <code>Win.Start</code> and <code>Win.Complete</code> methods at the origin process, and target process cooperates by calling the <code>Win.Post</code> and <code>Win.Wait</code> methods. There is also a collective variant provided by the <code>Win.Fence</code> method. Passive target synchronization is more lenient, only the origin process calls the <code>Win.Lock</code> and <code>Win.Unlock</code> methods. Locks are used to protect remote accesses to the locked remote window and to protect local load/store accesses to a locked local window.

2.8 Parallel Input/Output

The POSIX standard provides a model of a widely portable file system. However, the optimization needed for parallel input/output cannot be achieved with this generic interface. In order to ensure efficiency and scalability, the underlying parallel input/output system must provide a high-level interface supporting partitioning of file data among processes and a collective interface supporting complete transfers of global data structures between process memories and files. Additionally, further efficiencies can be gained via support for asynchronous input/output, strided accesses to data, and control over physical file layout on storage devices. This scenario motivated the inclusion in the MPI-2 standard of a custom interface in order to support more elaborated parallel input/output operations.

The MPI specification for parallel input/output revolves around the use objects called *files*. As defined by MPI, files are not just contiguous byte streams. Instead, they are regarded as ordered collections of *typed* data items. MPI supports sequential or random access to any integral set of these items. Furthermore, files are opened collectively by a group of processes.

The common patterns for accessing a shared file (broadcast, scatter, gather, reduction) is expressed by using user-defined datatypes. Compared to the communication patterns of point-to-point and collective communications, this approach has the advantage of added flexibility and expressiveness. Data access operations (read and write) are defined for different kinds of positioning (using explicit offsets, individual file pointers, and shared file pointers), coordination (non-collective and collective), and synchronism (blocking, nonblocking, and split collective with begin/end phases).

In *MPI for Python*, all MPI input/output operations are performed through instances of the *File* class. File handles are obtained by calling the *File.Open* method at all processes within a communicator and providing a file name and the intended access mode. After use, they must be closed by calling the *File.Close* method. Files even can be deleted by calling method *File.Delete*.

After creation, files are typically associated with a per-process *view*. The view defines the current set of data visible and accessible from an open file as an ordered set of elementary datatypes. This data layout can be set and queried with the *File*. *Set_view* and *File*. *Get_view* methods respectively.

Actual input/output operations are achieved by many methods combining read and write calls with different behavior regarding positioning, coordination, and synchronism. Summing up, *MPI for Python* provides the thirty (30) methods defined in MPI-2 for reading from or writing to files using explicit offsets or file pointers (individual or shared), in blocking or nonblocking and collective or noncollective versions.

2.9 Environmental Management

Initialization and Exit

Module functions *Init* or *Init_thread* and *Finalize* provide MPI initialization and finalization respectively. Module functions *Is_initialized* and *Is_finalized* provide the respective tests for initialization and finalization.

Note: MPI_Init() or MPI_Init_thread() is actually called when you import the MPI module from the mpi4py package, but only if MPI is not already initialized. In such case, calling Init or Init_thread from Python is expected to generate an MPI error, and in turn an exception will be raised.

Note: MPI_Finalize() is registered (by using Python C/API function Py_AtExit()) for being automatically called when Python processes exit, but only if *mpi4py* actually initialized MPI. Therefore, there is no need to call *Finalize* from Python to ensure MPI finalization.

Implementation Information

- The MPI version number can be retrieved from module function *Get_version*. It returns a two-integer tuple (version, subversion).
- The <code>Get_processor_name</code> function can be used to access the processor name.
- The values of predefined attributes attached to the world communicator can be obtained by calling the Comm.
 Get_attr method within the COMM_WORLD instance.

Timers

MPI timer functionalities are available through the *Wtime* and *Wtick* functions.

Error Handling

In order to facilitate handle sharing with other Python modules interfacing MPI-based parallel libraries, the predefined MPI error handlers <code>ERRORS_RETURN</code> and <code>ERRORS_ARE_FATAL</code> can be assigned to and retrieved from communicators using methods <code>Comm.Set_errhandler</code> and <code>Comm.Get_errhandler</code>, and similarly for windows and files. New custom error handlers can be created with <code>Comm.Create_errhandler</code>.

When the predefined error handler *ERRORS_RETURN* is set, errors returned from MPI calls within Python code will raise an instance of the exception class *Exception*, which is a subclass of the standard Python exception RuntimeError.

Note: After import, mpi4py overrides the default MPI rules governing inheritance of error handlers. The *ERRORS_RETURN* error handler is set in the predefined *COMM_SELF* and *COMM_WORLD* communicators, as well as any new *Comm*, *Win*, or *File* instance created through mpi4py. If you ever pass such handles to C/C++/Fortran library code, it is recommended to set the *ERRORS_ARE_FATAL* error handler on them to ensure MPI errors do not pass silently.

Warning: Importing with from mpi4py.MPI import * will cause a name clashing with the standard Python Exception base class.

3 Tutorial

Warning: Under construction. Contributions very welcome!

Tip: Rolf Rabenseifner at HLRS developed a comprehensive MPI-3.1/4.0 course with slides and a large set of exercises including solutions. This material is available online for self-study. The slides and exercises show the C, Fortran, and Python (mpi4py) interfaces. For performance reasons, most Python exercises use NumPy arrays and communication routines involving buffer-like objects.

Tip: Victor Eijkhout at TACC authored the book *Parallel Programming for Science and Engineering*. This book is available online in PDF and HTML formats. The book covers parallel programming with MPI and OpenMP in C/C++ and Fortran, and MPI in Python using mpi4py.

MPI for Python supports convenient, pickle-based communication of generic Python object as well as fast, near C-speed, direct array data communication of buffer-provider objects (e.g., NumPy arrays).

• Communication of generic Python objects

You have to use methods with **all-lowercase** names, like *Comm.send*, *Comm.recv*, *Comm.bcast*, *Comm. scatter*, *Comm.gather*. An object to be sent is passed as a parameter to the communication call, and the received object is simply the return value.

The *Comm.isend* and *Comm.irecv* methods return *Request* instances; completion of these methods can be managed using the *Request.test* and *Request.wait* methods.

The Comm. recv and Comm. irecv methods may be passed a buffer object that can be repeatedly used to receive messages avoiding internal memory allocation. This buffer must be sufficiently large to accommodate the transmitted messages; hence, any buffer passed to Comm. recv or Comm. irecv must be at least as long as the pickled data transmitted to the receiver.

Collective calls like *Comm.scatter*, *Comm.gather*, *Comm.allgather*, *Comm.alltoall* expect a single value or a sequence of *Comm.size* elements at the root or all process. They return a single value, a list of *Comm.size* elements, or None.

Note: *MPI for Python* uses the **highest** protocol version available in the Python runtime (see the HIGHEST_PROTOCOL constant in the pickle module). The default protocol can be changed at import time by setting the *MPI4PY_PICKLE_PROTOCOL* environment variable, or at runtime by assigning a different value to the *PROTOCOL* attribute of the *pickle* object within the *MPI* module.

• Communication of buffer-like objects

You have to use method names starting with an **upper-case** letter, like *Comm. Send*, *Comm. Recv*, *Comm. Bcast*, *Comm. Scatter*, *Comm. Gather*.

In general, buffer arguments to these calls must be explicitly specified by using a 2/3-list/tuple like [data, MPI.DOUBLE], or [data, count, MPI.DOUBLE] (the former one uses the byte-size of data and the extent of the MPI datatype to define count).

For vector collectives communication operations like *Comm. Scatterv* and *Comm. Gatherv*, buffer arguments are specified as [data, count, displ, datatype], where count and displ are sequences of integral values.

Automatic MPI datatype discovery for NumPy/GPU arrays and PEP-3118 buffers is supported, but limited to basic C types (all C/C99-native signed/unsigned integral types and single/double precision real/complex floating types) and availability of matching datatypes in the underlying MPI implementation. In this case, the buffer-provider object can be passed directly as a buffer argument, the count and MPI datatype will be inferred.

If mpi4py is built against a GPU-aware MPI implementation, GPU arrays can be passed to uppercase methods as long as they have either the <code>__dlpack__</code> and <code>__dlpack__device__</code> methods or the <code>__cuda_array_interface__</code> attribute that are compliant with the respective standard specifications. Moreover, only C-contiguous or Fortran-contiguous GPU arrays are supported. It is important to note that GPU buffers must be fully ready before any MPI routines operate on them to avoid race conditions. This can be ensured by using the synchronization API of your array library. mpi4py does not have access to any GPU-specific functionality and thus cannot perform this operation automatically for users.

3.1 Running Python scripts with MPI

Most MPI programs can be run with the command **mpiexec**. In practice, running Python programs looks like:

```
$ mpiexec -n 4 python script.py
```

to run the program with 4 processors.

3.2 Point-to-Point Communication

• Python objects (pickle under the hood):

```
from mpi4py import MPI

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

if rank == 0:
    data = {'a': 7, 'b': 3.14}
```

(continued from previous page)

```
comm.send(data, dest=1, tag=11)
elif rank == 1:
  data = comm.recv(source=0, tag=11)
```

• Python objects with non-blocking communication:

```
from mpi4py import MPI

comm = MPI.COMM_WORLD
    rank = comm.Get_rank()

if rank == 0:
    data = {'a': 7, 'b': 3.14}
    req = comm.isend(data, dest=1, tag=11)
    req.wait()

elif rank == 1:
    req = comm.irecv(source=0, tag=11)
    data = req.wait()
```

• NumPy arrays (the fast way!):

```
from mpi4py import MPI
import numpy
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
# passing MPI datatypes explicitly
if rank == 0:
   data = numpy.arange(1000, dtype='i')
    comm.Send([data, MPI.INT], dest=1, tag=77)
elif rank == 1:
    data = numpy.empty(1000, dtype='i')
    comm.Recv([data, MPI.INT], source=0, tag=77)
# automatic MPI datatype discovery
if rank == 0:
   data = numpy.arange(100, dtype=numpy.float64)
    comm.Send(data, dest=1, tag=13)
elif rank == 1:
    data = numpy.empty(100, dtype=numpy.float64)
    comm.Recv(data, source=0, tag=13)
```

3.3 Collective Communication

• Broadcasting a Python dictionary:

• Scattering Python objects:

```
from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

if rank == 0:
    data = [(i+1)**2 for i in range(size)]
else:
    data = None
data = comm.scatter(data, root=0)
assert data == (rank+1)**2
```

• Gathering Python objects:

```
from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

data = (rank+1)**2
data = comm.gather(data, root=0)
if rank == 0:
    for i in range(size):
        assert data[i] == (i+1)**2
else:
    assert data is None
```

• Broadcasting a NumPy array:

```
from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
```

(continued from previous page)

```
if rank == 0:
    data = np.arange(100, dtype='i')
else:
    data = np.empty(100, dtype='i')
comm.Bcast(data, root=0)
for i in range(100):
    assert data[i] == i
```

• Scattering NumPy arrays:

```
from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

sendbuf = None
if rank == 0:
    sendbuf = np.empty([size, 100], dtype='i')
    sendbuf.T[:,:] = range(size)
recvbuf = np.empty(100, dtype='i')
comm.Scatter(sendbuf, recvbuf, root=0)
assert np.allclose(recvbuf, rank)
```

• Gathering NumPy arrays:

```
from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

sendbuf = np.zeros(100, dtype='i') + rank
recvbuf = None
if rank == 0:
    recvbuf = np.empty([size, 100], dtype='i')
comm.Gather(sendbuf, recvbuf, root=0)
if rank == 0:
    for i in range(size):
        assert np.allclose(recvbuf[i,:], i)
```

• Parallel matrix-vector product:

```
from mpi4py import MPI
import numpy

def matvec(comm, A, x):
    m = A.shape[0] # local rows
    p = comm.Get_size()
    xg = numpy.zeros(m*p, dtype='d')
```

(continued from previous page)

3.4 Input/Output (MPI-IO)

• Collective I/O with NumPy arrays:

```
from mpi4py import MPI
import numpy as np

amode = MPI.MODE_WRONLY|MPI.MODE_CREATE
comm = MPI.COMM_WORLD
fh = MPI.File.Open(comm, "./datafile.contig", amode)

buffer = np.empty(10, dtype=np.int)
buffer[:] = comm.Get_rank()

offset = comm.Get_rank()*buffer.nbytes
fh.Write_at_all(offset, buffer)

fh.Close()
```

• Non-contiguous Collective I/O with NumPy arrays and datatypes:

```
from mpi4py import MPI
import numpy as np
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
amode = MPI.MODE_WRONLY|MPI.MODE_CREATE
fh = MPI.File.Open(comm, "./datafile.noncontig", amode)
item_count = 10
buffer = np.empty(item_count, dtype='i')
buffer[:] = rank
filetype = MPI.INT.Create_vector(item_count, 1, size)
filetype.Commit()
displacement = MPI.INT.Get_size()*rank
fh.Set_view(displacement, filetype=filetype)
fh.Write_all(buffer)
filetype.Free()
fh.Close()
```

3.5 Dynamic Process Management

• Compute Pi - Master (or parent, or client) side:

• Compute Pi - Worker (or child, or server) side:

```
#!/usr/bin/env python
from mpi4py import MPI
import numpy
comm = MPI.Comm.Get_parent()
size = comm.Get_size()
rank = comm.Get_rank()
N = numpy.array(0, dtype='i')
comm.Bcast([N, MPI.INT], root=0)
h = 1.0 / N; s = 0.0
for i in range(rank, N, size):
   x = h * (i + 0.5)
    s += 4.0 / (1.0 + x**2)
PI = numpy.array(s * h, dtype='d')
comm.Reduce([PI, MPI.DOUBLE], None,
            op=MPI.SUM, root=0)
comm.Disconnect()
```

3.6 GPU-aware MPI + Python GPU arrays

• Reduce-to-all CuPy arrays:

```
from mpi4py import MPI
import cupy as cp

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

sendbuf = cp.arange(10, dtype='i')
recvbuf = cp.empty_like(sendbuf)
cp.cuda.get_current_stream().synchronize()
comm.Allreduce(sendbuf, recvbuf)

assert cp.allclose(recvbuf, sendbuf*size)
```

3.7 One-Sided Communication (RMA)

• Read from (write to) the entire RMA window:

```
import numpy as np
from mpi4py import MPI
from mpi4py.util import dtlib
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
datatype = MPI.FLOAT
np_dtype = dtlib.to_numpy_dtype(datatype)
itemsize = datatype.Get_size()
N = 10
win_size = N * itemsize if rank == 0 else 0
win = MPI.Win.Allocate(win_size, comm=comm)
buf = np.empty(N, dtype=np_dtype)
if rank == 0:
   buf.fill(42)
   win.Lock(rank=0)
   win.Put(buf, target_rank=0)
   win.Unlock(rank=0)
    comm.Barrier()
else:
    comm.Barrier()
   win.Lock(rank=0)
   win.Get(buf, target_rank=0)
   win.Unlock(rank=0)
    assert np.all(buf == 42)
```

Accessing a part of the RMA window using the target argument, which is defined as (offset, count, datatype):

```
import numpy as np
from mpi4py import MPI
from mpi4py.util import dtlib
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
datatype = MPI.FLOAT
np_dtype = dtlib.to_numpy_dtype(datatype)
itemsize = datatype.Get_size()
N = comm.Get_size() + 1
win_size = N * itemsize if rank == 0 else 0
win = MPI.Win.Allocate(
    size=win_size,
   disp_unit=itemsize,
   comm=comm,
if rank == 0:
   mem = np.frombuffer(win, dtype=np_dtype)
   mem[:] = np.arange(len(mem), dtype=np_dtype)
comm.Barrier()
buf = np.zeros(3, dtype=np_dtype)
target = (rank, 2, datatype)
win.Lock(rank=0)
win.Get(buf, target_rank=0, target=target)
win.Unlock(rank=0)
assert np.all(buf == [rank, rank+1, 0])
```

3.8 Wrapping with SWIG

• C source:

```
/* file: helloworld.c */
void sayhello(MPI_Comm comm)
{
   int size, rank;
   MPI_Comm_size(comm, &size);
   MPI_Comm_rank(comm, &rank);
   printf("Hello, World! "
        "I am process %d of %d.\n",
        rank, size);
}
```

• SWIG interface file:

```
// file: helloworld.i
%module helloworld
%{
#include <mpi.h>
#include "helloworld.c"

(continues on next page)
```

(continued from previous page)

```
%
%include mpi4py/mpi4py.i
%mpi4py_typemap(Comm, MPI_Comm);
void sayhello(MPI_Comm comm);
```

• Try it in the Python prompt:

```
>>> from mpi4py import MPI
>>> import helloworld
>>> helloworld.sayhello(MPI.COMM_WORLD)
Hello, World! I am process 0 of 1.
```

3.9 Wrapping with F2Py

• Fortran 90 source:

```
! file: helloworld.f90
subroutine sayhello(comm)
use mpi
implicit none
integer :: comm, rank, size, ierr
call MPI_Comm_size(comm, size, ierr)
call MPI_Comm_rank(comm, rank, ierr)
print *, 'Hello, World! I am process ',rank,' of ',size,'.'
end subroutine sayhello
```

• Compiling example using f2py

```
$ f2py -c --f90exec=mpif90 helloworld.f90 -m helloworld
```

• Try it in the Python prompt:

```
>>> from mpi4py import MPI
>>> import helloworld
>>> fcomm = MPI.COMM_WORLD.py2f()
>>> helloworld.sayhello(fcomm)
Hello, World! I am process 0 of 1.
```

4 mpi4py

The MPI for Python package.

The *Message Passing Interface* (MPI) is a standardized and portable message-passing system designed to function on a wide variety of parallel computers. The MPI standard defines the syntax and semantics of library routines and allows users to write portable programs in the main scientific programming languages (Fortran, C, or C++). Since its release, the MPI specification has become the leading standard for message-passing libraries for parallel computers.

MPI for Python provides MPI bindings for the Python programming language, allowing any Python program to exploit multiple processors. This package build on the MPI specification and provides an object oriented interface which closely follows MPI-2 C++ bindings.

4.1 Runtime configuration options

mpi4py.rc

This object has attributes exposing runtime configuration options that become effective at import time of the MPI module.

Attributes Summary

initialize	Automatic MPI initialization at import
threads	Request initialization with thread support
thread_level	Level of thread support to request
finalize	Automatic MPI finalization at exit
fast_reduce	Use tree-based reductions for objects
recv_mprobe	Use matched probes to receive objects
errors	Error handling policy

Attributes Documentation

```
mpi4py.rc.initialize
     Automatic MPI initialization at import.
              bool
          Default
              True
     See also:
     MPI4PY_RC_INITIALIZE
mpi4py.rc.threads
     Request initialization with thread support.
          Type
              bool
          Default
              True
     See also:
     MPI4PY_RC_THREADS
mpi4py.rc.thread_level
     Level of thread support to request.
          Type
              str
          Default
              "multiple"
          Choices
              "multiple", "serialized", "funneled", "single"
```

```
See also:
     MPI4PY_RC_THREAD_LEVEL
mpi4py.rc.finalize
     Automatic MPI finalization at exit.
          Type
              None or bool
          Default
              None
     See also:
     MPI4PY_RC_FINALIZE
mpi4py.rc.fast_reduce
     Use tree-based reductions for objects.
          Type
              bool
          Default
              True
     See also:
     MPI4PY_RC_FAST_REDUCE
mpi4py.rc.recv_mprobe
     Use matched probes to receive objects.
          Type
              bool
          Default
              True
     See also:
     MPI4PY_RC_RECV_MPROBE
mpi4py.rc.errors
     Error handling policy.
          Type
              str
          Default
              "exception"
          Choices
              "exception", "default", "abort", "fatal"
     See also:
```

MPI4PY_RC_ERRORS

Example

MPI for Python features automatic initialization and finalization of the MPI execution environment. By using the mpi4py.rc object, MPI initialization and finalization can be handled programmatically:

4.2 Environment variables

The following environment variables override the corresponding attributes of the *mpi4py.rc* and *MPI.pickle* objects at import time of the *MPI* module.

Note: For variables of boolean type, accepted values are **0** and 1 (interpreted as False and True, respectively), and strings specifying a YAML boolean value (case-insensitive).

MPI4PY_RC_INITIALIZE

```
Type
bool
```

Default

True

Whether to automatically initialize MPI at import time of the mpi4py.MPI module.

See also:

```
mpi4py.rc.initialize
```

New in version 4.0.0.

MPI4PY_RC_FINALIZE

```
Type
None | bool

Default
None
```

Choices

None, True, False

Whether to automatically finalize MPI at exit time of the Python process.

See also:

```
mpi4py.rc.finalize
```

New in version 4.0.0.

```
MPI4PY_RC_THREADS
          Type
              bool
          Default
              True
     Whether to initialize MPI with thread support.
     See also:
     mpi4py.rc.threads
     New in version 3.1.0.
MPI4PY_RC_THREAD_LEVEL
          Default
              "multiple"
          Choices
              "single", "funneled", "serialized", "multiple"
     The level of required thread support.
     See also:
     mpi4py.rc.thread_level
     New in version 3.1.0.
MPI4PY_RC_FAST_REDUCE
          Type
              bool
          Default
     Whether to use tree-based reductions for objects.
     See also:
     mpi4py.rc.fast_reduce
     New in version 3.1.0.
MPI4PY_RC_RECV_MPROBE
          Type
              bool
          Default
              True
     Whether to use matched probes to receive objects.
     See also:
     mpi4py.rc.recv_mprobe
MPI4PY_RC_ERRORS
          Default
              "exception"
```

Choices

```
"exception", "default", "abort", "fatal"
```

Controls default MPI error handling policy.

See also:

```
mpi4py.rc.errors
```

New in version 3.1.0.

MPI4PY_PICKLE_PROTOCOL

Type

int

Default

```
pickle.HIGHEST_PROTOCOL
```

Controls the default pickle protocol to use when communicating Python objects.

See also:

PROTOCOL attribute of the MPI.pickle object within the MPI module.

New in version 3.1.0.

MPI4PY_PICKLE_THRESHOLD

```
Type
```

int

Default

262144

Controls the default buffer size threshold for switching from in-band to out-of-band buffer handling when using pickle protocol version 5 or higher.

See also:

THRESHOLD attribute of the MPI.pickle object within the MPI module.

New in version 3.1.2.

4.3 Miscellaneous functions

```
mpi4py.profile(name, *, path=None)
```

Support for the MPI profiling interface.

Parameters

- name (str) Name of the profiler library to load.
- path (sequence of str, *optional*) Additional paths to search for the profiler.

Return type

None

mpi4py.get_config()

Return a dictionary with information about MPI.

Return type

dict[str, str]

mpi4py.get_include()

Return the directory in the package that contains header files.

Extension modules that need to compile against mpi4py should use this function to locate the appropriate include directory. Using Python distutils (or perhaps NumPy distutils):

```
import mpi4py
Extension('extension_name', ...
    include_dirs=[..., mpi4py.get_include()])
```

Return type

str

5 mpi4py.MPI

5.1 Classes

Ancillary

Datatype	Datatype object
Status	Status object
Request	Request handle
Prequest	Persistent request handle
Grequest	Generalized request handle
0p	Operation object
Group	Group of processes
Info	Info object

Communication

Comm	Communicator
Intracomm	Intracommunicator
Topocomm	Topology intracommunicator
Cartcomm	Cartesian topology intracommunicator
Graphcomm	General graph topology intracommunicator
Distgraphcomm	Distributed graph topology intracommunicator
Intercomm	Intercommunicator
Message	Matched message handle

One-sided operations

Win	Window handle	
-----	---------------	--

Input/Output

File	File handle

Error handling

Errhandler	Error handler
Exception	Exception class

Auxiliary

Pickle	Pickle/unpickle Python objects
memory	Memory buffer

5.2 Functions

Version inquiry

<pre>Get_version()</pre>	Obtain the version number of the MPI standard supported by the implementation as a tuple (version, subversion)
<pre>Get_library_version()</pre>	Obtain the version string of the MPI library

Initialization and finalization

Init()	Initialize the MPI execution environment					
<pre>Init_thread([required])</pre>	Initialize the MPI execution environment					
Finalize()	Terminate the MPI execution environment					
<pre>Is_initialized()</pre>	Indicates whether <i>Init</i> has been called					
<pre>Is_finalized()</pre>	Indicates whether Finalize has completed					
Query_thread()	Return the level of thread support provided by the MPI library					
<pre>Is_thread_main()</pre>	Indicate whether this thread called <i>Init</i> or <i>Init_thread</i>					

Memory allocation

Alloc_mem(size[, info])	Allocate memory for message passing and RMA
Free_mem(mem)	Free memory allocated with Alloc_mem()

Address manipulation

Get_address(location)	Get the address of a location in memory
Aint_add(base, disp)	Return the sum of base address and displacement
Aint_diff(addr1, addr2)	Return the difference between absolute addresses

Timer

Wtick()	Return the resolution of Wtime
Wtime()	Return an elapsed time on the calling processor

Error handling

Get_error_class(errorcode)	Convert an error code into an error class
<pre>Get_error_string(errorcode)</pre>	Return the <i>error string</i> for a given <i>error class</i> or <i>error code</i>
Add_error_class()	Add an error class to the known error classes
Add_error_code(errorclass)	Add an error code to an error class
Add_error_string(errorcode, string)	Associate an <i>error string</i> with an <i>error class</i> or <i>error-code</i>

Dynamic process management

Open_port([info])	Return an address that can be used to establish connections between groups of MPI processes
Close_port(port_name)	Close a port
<pre>Publish_name(service_name, port_name[, info])</pre>	Publish a service name
<pre>Unpublish_name(service_name, port_name[, info])</pre>	Unpublish a service name
Lookup_name(service_name[, info])	Lookup a port name given a service name

Miscellanea

Attach_buffer(buf)	Attach a user-provided buffer for sending in buffered mode
<pre>Detach_buffer()</pre>	Remove an existing attached buffer
<pre>Compute_dims(nnodes, dims)</pre>	Return a balanced distribution of processes per coordinate direction
<pre>Get_processor_name()</pre>	Obtain the name of the calling processor
Register_datarep(datarep, read_fn, write_fn,)	Register user-defined data representations
Pcontrol(level)	Control profiling

Utilities

get_vendor() Information about the underlying MPI implementation
--

5.3 Attributes

UNDEFINED	Constant UNDEFINED of type int
ANY_SOURCE	Constant ANY_SOURCE of type int
ANY_TAG	Constant ANY_TAG of type int
PROC_NULL	Constant PROC_NULL of type int
ROOT	Constant ROOT of type int
BOTTOM	Constant BOTTOM of type BottomType
IN_PLACE	Constant IN_PLACE of type InPlaceType
KEYVAL_INVALID	Constant KEYVAL_INVALID of type int
TAG_UB	Constant TAG_UB of type int
HOST	Constant HOST of type int
IO	Constant IO of type int
WTIME_IS_GLOBAL	Constant WTIME_IS_GLOBAL of type int
UNIVERSE_SIZE	Constant UNIVERSE_SIZE of type int
APPNUM	Constant APPNUM of type int
LASTUSEDCODE	Constant LASTUSEDCODE of type int
WIN_BASE	Constant WIN_BASE of type int
WIN_SIZE	Constant WIN_SIZE of type int
WIN_DISP_UNIT	Constant WIN_DISP_UNIT of type int
WIN_CREATE_FLAVOR	Constant WIN_CREATE_FLAVOR of type int
WIN_FLAVOR	Constant WIN_FLAVOR of type int
WIN_MODEL	Constant WIN_MODEL of type int
SUCCESS	Constant SUCCESS of type int
ERR_LASTCODE	Constant ERR_LASTCODE of type int
ERR_COMM	Constant ERR_COMM of type int
ERR_GROUP	Constant ERR_GROUP of type int
ERR_TYPE	Constant ERR_TYPE of type int
ERR_REQUEST	Constant ERR_REQUEST of type int
ERR_OP	Constant ERR_OP of type int
ERR_BUFFER	Constant ERR_BUFFER of type int
ERR_COUNT	Constant ERR_COUNT of type int
	continues on next nage

Table 1 – continued from previous page

lable 1 – cont	tinued from previous page
ERR_TAG	Constant ERR_TAG of type int
ERR_RANK	Constant ERR_RANK of type int
ERR_ROOT	Constant ERR_ROOT of type int
ERR_TRUNCATE	Constant ERR_TRUNCATE of type int
ERR_IN_STATUS	Constant ERR_IN_STATUS of type int
ERR_PENDING	Constant ERR_PENDING of type int
ERR_TOPOLOGY	Constant ERR_TOPOLOGY of type int
ERR_DIMS	Constant ERR_DIMS of type int
ERR_ARG	Constant ERR_ARG of type int
ERR_OTHER	Constant ERR_OTHER of type int
ERR_UNKNOWN	Constant ERR_UNKNOWN of type int
ERR_INTERN	Constant ERR_INTERN of type int
ERR_INFO	Constant ERR_INFO of type int
ERR_FILE	Constant ERR_FILE of type int
ERR_WIN	Constant ERR_WIN of type int
ERR_KEYVAL	Constant ERR_KEYVAL of type int
ERR_INFO_KEY	Constant ERR_INFO_KEY of type int
ERR_INFO_VALUE	Constant ERR_INFO_VALUE of type int
ERR_INFO_NOKEY	Constant ERR_INFO_NOKEY of type int
ERR_ACCESS	Constant ERR_ACCESS of type int
ERR_AMODE	Constant ERR_AMODE of type int
ERR_BAD_FILE	Constant ERR_BAD_FILE of type int
ERR_FILE_EXISTS	Constant ERR_FILE_EXISTS of type int
ERR_FILE_IN_USE	Constant ERR_FILE_IN_USE of type int
ERR_NO_SPACE	Constant ERR_NO_SPACE of type int
ERR_NO_SUCH_FILE	Constant ERR_NO_SUCH_FILE of type int
ERR_IO	Constant ERR_IO of type int
ERR_READ_ONLY	Constant ERR_READ_ONLY of type int
ERR_CONVERSION	Constant ERR_CONVERSION of type int
ERR_DUP_DATAREP	Constant ERR_DUP_DATAREP of type int
ERR_UNSUPPORTED_DATAREP	Constant ERR_UNSUPPORTED_DATAREP of type int
ERR_UNSUPPORTED_OPERATION	Constant ERR_UNSUPPORTED_OPERATION of type int
ERR_NAME	Constant ERR_NAME of type int
ERR_NO_MEM	Constant ERR_NO_MEM of type int
ERR_NOT_SAME	Constant ERR_NOT_SAME of type int
ERR_PORT	Constant ERR_PORT of type int
ERR_QUOTA	Constant ERR_QUOTA of type int
ERR_SERVICE	Constant ERR_SERVICE of type int
ERR_SPAWN	Constant ERR_SPAWN of type int
ERR_BASE	Constant ERR_BASE of type int
ERR_SIZE	Constant ERR_SIZE of type int
ERR_DISP	Constant ERR_DISP of type int
ERR_ASSERT	Constant ERR_ASSERT of type int
ERR_LOCKTYPE	Constant ERR_LOCKTYPE of type int
ERR_RMA_CONFLICT	Constant ERR_RMA_CONFLICT of type int
ERR_RMA_SYNC	Constant ERR_RMA_SYNC of type int
ERR_RMA_RANGE	Constant ERR_RMA_RANGE of type int
ERR_RMA_ATTACH	Constant ERR_RMA_ATTACH of type int
ERR_RMA_SHARED	Constant ERR_RMA_SHARED of type int
ERR_RMA_FLAVOR	Constant ERR_RMA_FLAVOR of type int
ORDER_C	Constant ORDER_C of type int
ORDER_F	Constant ORDER_F of type int
	continues on next page

Table 1 – continued from previous page

	Table 1 – continued from previous page
ORDER_FORTRAN	Constant ORDER_FORTRAN of type int
TYPECLASS_INTEGER	Constant TYPECLASS_INTEGER of type int
TYPECLASS_REAL	Constant TYPECLASS_REAL of type int
TYPECLASS_COMPLEX	Constant TYPECLASS_COMPLEX of type int
DISTRIBUTE_NONE	Constant DISTRIBUTE_NONE of type int
DISTRIBUTE_BLOCK	Constant DISTRIBUTE_BLOCK of type int
DISTRIBUTE_CYCLIC	Constant DISTRIBUTE_CYCLIC of type int
DISTRIBUTE_DFLT_DARG	Constant DISTRIBUTE_DFLT_DARG of type int
COMBINER_NAMED	Constant COMBINER_NAMED of type int
COMBINER_DUP	Constant COMBINER_DUP of type int
COMBINER_CONTIGUOUS	Constant COMBINER_CONTIGUOUS of type int
COMBINER_VECTOR	Constant COMBINER_VECTOR of type int
COMBINER_HVECTOR	Constant COMBINER_HVECTOR of type int
COMBINER_INDEXED	Constant COMBINER_INDEXED of type int
COMBINER_HINDEXED	Constant COMBINER_HINDEXED of type int
COMBINER_INDEXED_BLOCK	Constant COMBINER_INDEXED_BLOCK of type int
COMBINER_HINDEXED_BLOCK	Constant COMBINER_HINDEXED_BLOCK of type int
COMBINER_STRUCT	Constant COMBINER_STRUCT of type int
COMBINER_SUBARRAY	Constant COMBINER_SUBARRAY of type int
COMBINER_DARRAY	Constant COMBINER_DARRAY of type int
COMBINER_RESIZED	Constant COMBINER_RESIZED of type int
COMBINER_F90_REAL	Constant COMBINER_F90_REAL of type int
COMBINER_F90_COMPLEX	Constant COMBINER_F90_COMPLEX of type int
COMBINER_F90_INTEGER	Constant COMBINER_F90_INTEGER of type int
IDENT	Constant IDENT of type int
CONGRUENT	Constant CONGRUENT of type int
SIMILAR	Constant SIMILAR of type int
UNEQUAL	Constant UNEQUAL of type int
CART	Constant CART of type int
GRAPH	Constant GRAPH of type int
DIST_GRAPH	Constant DIST_GRAPH of type int
UNWEIGHTED	Constant UNWEIGHTED of type int
WEIGHTS_EMPTY	Constant WEIGHTS_EMPTY of type int
COMM_TYPE_SHARED	Constant COMM_TYPE_SHARED of type int
BSEND_OVERHEAD	Constant BSEND_OVERHEAD of type int
WIN_FLAVOR_CREATE	Constant WIN_FLAVOR_CREATE of type int
WIN_FLAVOR_ALLOCATE	Constant WIN_FLAVOR_ALLOCATE of type int
WIN_FLAVOR_DYNAMIC	Constant WIN_FLAVOR_DYNAMIC of type int
WIN_FLAVOR_SHARED	Constant WIN_FLAVOR_SHARED of type int
WIN_SEPARATE	Constant WIN_SEPARATE of type int
WIN_UNIFIED	Constant WIN_UNIFIED of type int
MODE_NOCHECK	Constant MODE_NOCHECK of type int
MODE_NOSTORE	Constant MODE_NOSTORE of type int
MODE_NOPUT	Constant MODE_NOPUT of type int
MODE_NOPRECEDE	Constant MODE_NOPRECEDE of type int
MODE_NOSUCCEED	Constant MODE_NOSUCCEED of type int
LOCK_EXCLUSIVE	Constant LOCK_EXCLUSIVE of type int
LOCK_SHARED	Constant LOCK_SHARED of type int
MODE_RDONLY	Constant MODE_RDONLY of type int
MODE_WRONLY	Constant MODE_WRONLY of type int
MODE_RDWR	Constant MODE_RDWR of type int
MODE_CREATE	Constant MODE_CREATE of type int
	continues on next page

Table 1 – continued from previous page

Table 1 – con	tinued from previous page
MODE_EXCL	Constant MODE_EXCL of type int
MODE_DELETE_ON_CLOSE	Constant MODE_DELETE_ON_CLOSE of type int
MODE_UNIQUE_OPEN	Constant MODE_UNIQUE_OPEN of type int
MODE_SEQUENTIAL	Constant MODE_SEQUENTIAL of type int
MODE_APPEND	Constant MODE_APPEND of type int
SEEK_SET	Constant SEEK_SET of type int
SEEK_CUR	Constant SEEK_CUR of type int
SEEK_END	Constant SEEK_END of type int
DISPLACEMENT_CURRENT	Constant DISPLACEMENT_CURRENT of type int
DISP_CUR	Constant DISP_CUR of type int
THREAD_SINGLE	Constant THREAD_SINGLE of type int
THREAD_FUNNELED	Constant THREAD_FUNNELED of type int
THREAD_SERIALIZED	Constant THREAD_SERIALIZED of type int
THREAD_MULTIPLE	Constant THREAD_MULTIPLE of type int
VERSION	Constant VERSION of type int
SUBVERSION	Constant SUBVERSION of type int
MAX_PROCESSOR_NAME	Constant MAX_PROCESSOR_NAME of type int
MAX_ERROR_STRING	Constant MAX_ERROR_STRING of type int
MAX_PORT_NAME	Constant MAX_PORT_NAME of type int
MAX_INFO_KEY	Constant MAX_INFO_KEY of type int
MAX_INFO_VAL	Constant MAX_INFO_VAL of type int
MAX_OBJECT_NAME	Constant MAX_OBJECT_NAME of type int
MAX_DATAREP_STRING	Constant MAX_DATAREP_STRING of type int
MAX_LIBRARY_VERSION_STRING	Constant MAX_LIBRARY_VERSION_STRING of type int
DATATYPE_NULL	Object DATATYPE_NULL of type Datatype
PACKED	Object PACKED of type Datatype
BYTE	Object BYTE of type Datatype
AINT	Object AINT of type Datatype
OFFSET	Object OFFSET of type Datatype
COUNT	Object COUNT of type Datatype
CHAR	Object CHAR of type Datatype
WCHAR	Object WCHAR of type Datatype
SIGNED_CHAR	Object SIGNED_CHAR of type Datatype
SHORT	Object SHORT of type Datatype
INT	Object INT of type Datatype
LONG	Object LONG of type Datatype
LONG_LONG	Object LONG_LONG of type Datatype
UNSIGNED_CHAR	Object UNSIGNED_CHAR of type Datatype
UNSIGNED_SHORT	Object UNSIGNED_SHORT of type Datatype
UNSIGNED	Object UNSIGNED of type Datatype
UNSIGNED_LONG	Object UNSIGNED_LONG of type Datatype
UNSIGNED_LONG_LONG	Object UNSIGNED_LONG_LONG of type Datatype
FLOAT	Object FLOAT of type Datatype
DOUBLE	Object DOUBLE of type Datatype
LONG_DOUBLE	Object LONG_DOUBLE of type Datatype
C_BOOL	Object C_BOOL of type Datatype
INT8_T	Object INT8_T of type Datatype
INT16_T	Object INT16_T of type Datatype
INT32_T	Object INT32_T of type Datatype
INT64_T	Object INT64_T of type Datatype
UINT8_T	Object UINT8_T of type Datatype
UINT16_T	Object UINT16_T of type Datatype
	continues on next page

Table 1 – continued from previous page

	d from previous page
UINT32_T	Object UINT32_T of type Datatype
UINT64_T	Object UINT64_T of type Datatype
C_COMPLEX	Object C_COMPLEX of type Datatype
C_FLOAT_COMPLEX	Object C_FLOAT_COMPLEX of type Datatype
C_DOUBLE_COMPLEX	Object C_DOUBLE_COMPLEX of type Datatype
C_LONG_DOUBLE_COMPLEX	Object C_LONG_DOUBLE_COMPLEX of type Datatype
CXX_BOOL	Object CXX_BOOL of type Datatype
CXX_FLOAT_COMPLEX	Object CXX_FLOAT_COMPLEX of type Datatype
CXX_DOUBLE_COMPLEX	Object CXX_DOUBLE_COMPLEX of type Datatype
CXX_LONG_DOUBLE_COMPLEX	Object CXX_LONG_DOUBLE_COMPLEX of type Datatype
SHORT_INT	Object SHORT_INT of type Datatype
INT_INT	Object INT_INT of type Datatype
TWOINT	Object TWOINT of type Datatype
LONG_INT	Object LONG_INT of type Datatype
FLOAT_INT	Object FLOAT_INT of type Datatype
DOUBLE_INT	Object DOUBLE_INT of type Datatype
LONG_DOUBLE_INT	Object LONG_DOUBLE_INT of type Datatype
CHARACTER	Object CHARACTER of type Datatype
LOGICAL	Object LOGICAL of type Datatype
INTEGER	Object INTEGER of type Datatype
REAL	Object REAL of type Datatype
DOUBLE_PRECISION	Object DOUBLE_PRECISION of type Datatype
COMPLEX	Object COMPLEX of type Datatype
DOUBLE_COMPLEX	Object DOUBLE_COMPLEX of type Datatype
LOGICAL1	Object LOGICAL1 of type Datatype
LOGICAL2	Object LOGICAL2 of type Datatype
LOGICAL4	Object LOGICAL4 of type Datatype
LOGICAL8	Object LOGICAL8 of type Datatype
INTEGER1	Object INTEGER1 of type Datatype
INTEGER2	Object INTEGER2 of type Datatype
INTEGER4	Object INTEGER4 of type Datatype
INTEGER8	Object INTEGER8 of type Datatype
INTEGER16	Object INTEGER16 of type Datatype
REAL 2	Object REAL2 of type Datatype
REAL4	Object REAL4 of type Datatype
REAL 16	Object REAL8 of type Datatype
REAL16	Object REAL16 of type Datatype
COMPLEX4	Object COMPLEX4 of type Datatype
COMPLEXS	Object COMPLEX8 of type Datatype
COMPLEX 2	Object COMPLEX16 of type Datatype
COMPLEX32	Object COMPLEX32 of type Datatype Object UNSIGNED_INT of type Datatype
UNSIGNED_INT	V 1
SIGNED_SHORT	Object SIGNED_SHORT of type Datatype
SIGNED_INT SIGNED_IONG	Object SIGNED_INT of type Datatype Object SIGNED_LONG of type Datatype
SIGNED LONG LONG	Object SIGNED_LONG of type Datatype Object SIGNED_LONG_LONG of type Datatype
SIGNED_LONG_LONG BOOL	Object BOOL of type Datatype
SINT8_T	Object SINT8_T of type Datatype
	· · · · · · · · · · · · · · · · · · ·
SINT16_T	Object SINT16_T of type Datatype
SINT32_T	Object SINT32_T of type Datatype Object SINT64_T of type Datatype
SINT64_T F_BOOL	Object SIN164_1 of type Datatype Object F_BOOL of type Datatype
1_DOOL	continues on next page

Table 1 – continued from previous page

	ble 1 – continued from previous page
F_INT	Object F_INT of type Datatype
F_FLOAT	Object F_FLOAT of type Datatype
F_DOUBLE	Object F_DOUBLE of type Datatype
F_COMPLEX	Object F_COMPLEX of type Datatype
F_FLOAT_COMPLEX	Object F_FLOAT_COMPLEX of type Datatype
F_DOUBLE_COMPLEX	Object F_DOUBLE_COMPLEX of type Datatype
REQUEST_NULL	Object REQUEST_NULL of type Request
MESSAGE_NULL	Object MESSAGE_NULL of type Message
MESSAGE_NO_PROC	Object MESSAGE_NO_PROC of type Message
OP_NULL	Object OP_NULL of type Op
MAX	Object MAX of type Op
MIN	Object MIN of type Op
SUM	Object SUM of type Op
PROD	Object PROD of type Op
LAND	Object LAND of type Op
BAND	Object BAND of type Op
LOR	Object LOR of type <i>Op</i>
BOR	Object BOR of type <i>Op</i>
LXOR	Object LXOR of type <i>Op</i>
BXOR	Object BXOR of type Op
MAXLOC	Object MAXLOC of type Op
MINLOC	Object MINLOC of type Op
REPLACE	Object REPLACE of type Op
NO_OP	Object NO_OP of type Op
GROUP_NULL	Object GROUP_NULL of type Group
GROUP_EMPTY	Object GROUP_EMPTY of type Group
INFO_NULL	Object INFO_NULL of type Info
INFO_ENV	Object INFO_ENV of type Info
ERRHANDLER_NULL	Object ERRHANDLER_NULL of type Errhandler
ERRORS_RETURN	Object ERRORS_RETURN of type Errhandler
ERRORS_ARE_FATAL	Object ERRORS_ARE_FATAL of type Errhandler
COMM_NULL	Object COMM_NULL of type Comm
COMM_SELF	Object COMM_SELF of type Intracomm
COMM_WORLD	Object COMM_WORLD of type Intracomm
WIN_NULL	Object WIN_NULL of type Win
FILE_NULL	Object FILE_NULL of type File
pickle	Object pickle of type Pickle

6 mpi4py.typing

New in version 4.0.0.

This module provides type aliases used to add type hints to the various functions and methods within the MPI module.

See also:

Module typing

Documentation of the typing standard module.

Types Summary

SupportsBuffer	Python buffer protocol.
SupportsDLPack	DLPack data interchange protocol.
SupportsCAI	CUDA Array Interface (CAI) protocol.
Buffer	Buffer-like object.
Bottom	Start of the address range.
InPlace	In-place buffer argument.
Aint	Address-sized integral type.
Count	Integral type for counts.
Displ	Integral type for displacements.
Offset	Integral type for offsets.
TypeSpec	Datatype specification.
BufSpec	Buffer specification.
BufSpecB	Buffer specification (block).
BufSpecV	Buffer specification (vector).
BufSpecW	Buffer specification (generalized).
TargetSpec	Target specification.

Types Documentation

```
mpi4py.typing.SupportsBuffer = <class 'mpi4py.typing.SupportsBuffer'>
     Python buffer protocol.
     See also:
     Buffer Protocol
     alias of mpi4py.typing.SupportsBuffer
mpi4py.typing.SupportsDLPack = <class 'mpi4py.typing.SupportsDLPack'>
     DLPack data interchange protocol.
     See also:
     Python Specification for DLPack
     alias of mpi4py.typing.SupportsDLPack
mpi4py.typing.SupportsCAI = <class 'mpi4py.typing.SupportsCAI'>
     CUDA Array Interface (CAI) protocol.
     See also:
     CUDA Array Interface (Version 3)
     alias of mpi4py.typing.SupportsCAI
mpi4py.typing.Buffer
     Buffer-like object.
     alias of Union[SupportsBuffer, SupportsDLPack, SupportsCAI]
mpi4py.typing.Bottom
     Start of the address range.
     alias of Optional[BottomType]
```

mpi4py.typing.InPlace

In-place buffer argument.

alias of Optional[InPlaceType]

mpi4py.typing.Aint = <class 'numbers.Integral'>

Address-sized integral type.

alias of numbers. Integral

mpi4py.typing.Count = <class 'numbers.Integral'>

Integral type for counts.

alias of numbers. Integral

mpi4py.typing.Displ = <class 'numbers.Integral'>

Integral type for displacements.

alias of numbers. Integral

mpi4py.typing.Offset = <class 'numbers.Integral'>

Integral type for offsets.

alias of numbers. Integral

mpi4py.typing.TypeSpec

Datatype specification.

alias of Union[Datatype, str]

mpi4py.typing.BufSpec

Buffer specification.

- Buffer
- Tuple[Buffer, Count]
- Tuple[Buffer, TypeSpec]
- Tuple[Buffer, Count, TypeSpec]
- Tuple[Bottom, Count, Datatype]

alias of Union[SupportsBuffer, SupportsDLPack, SupportsCAI, Tuple[Union[SupportsBuffer, SupportsDLPack, SupportsDLPack, SupportsDLPack, SupportsCAI], Integral], Tuple[Union[SupportsBuffer, SupportsDLPack, SupportsCAI], Union[Datatype, str]], Tuple[Union[SupportsBuffer, SupportsDLPack, SupportsCAI], Integral, Union[Datatype, str]], Tuple[Optional[BottomType], Integral, Datatype], List]

mpi4py.typing.BufSpecB

Buffer specification (block).

- Buffer
- Tuple[Buffer, Count]
- Tuple[Buffer, TypeSpec]
- Tuple[Buffer, Count, TypeSpec]

alias of Union[SupportsBuffer, SupportsDLPack, SupportsCAI, Tuple[Union[SupportsBuffer, SupportsDLPack, SupportsDLPack, SupportsCAI], Integral], Tuple[Union[SupportsBuffer, SupportsDLPack, SupportsCAI], Union[Datatype, str]], Tuple[Union[SupportsBuffer, SupportsDLPack, SupportsCAI], Integral, Union[Datatype, str]], List]

mpi4py.typing.BufSpecV

Buffer specification (vector).

- Buffer
- Tuple[Buffer, Sequence[Count]]
- Tuple[Buffer, Tuple[Sequence[Count], Sequence[Disp1]]]
- Tuple[Buffer, TypeSpec]
- Tuple[Buffer, Sequence[Count], TypeSpec]
- Tuple[Buffer, Tuple[Sequence[Count], Sequence[Disp1]], TypeSpec]
- Tuple[Buffer, Sequence[Count], Sequence[Disp1], TypeSpec]
- Tuple[Bottom, Tuple[Sequence[Count], Sequence[Displ]], Datatype]
- Tuple[Bottom, Sequence[Count], Sequence[Disp1], Datatype]

alias of Union[SupportsBuffer, SupportsDLPack, SupportsCAI, Tuple[Union[SupportsBuffer, SupportsDLPack, SupportsCAI], Sequence[Integral]], Tuple[Union[SupportsBuffer, Sequence[Integral]]], SupportsDLPack, SupportsCAI], Tuple[Sequence[Integral], Tuple[Union[SupportsBuffer, SupportsDLPack, SupportsCAI], Union Datatype, Tuple[Union[SupportsBuffer, SupportsDLPack, SupportsCAI], Sequence[Integral], Union Datatype, str]], Tuple[Union[SupportsBuffer, SupportsDLPack, SupportsCAIl. Tuple[Sequence[Integral], Sequence[Integral]], Union Datatype, SupportsDLPack, SupportsCAI], Tuple[Union[SupportsBuffer, Sequence[Integral], Sequence[Integral], Union Datatype, Tuple[Optional[BottomType], str]], Tuple[Sequence[Integral], Sequence[Integral]], Datatype], Tuple[Optional[BottomType], Sequence[Integral], Sequence[Integral], Datatype], List]

mpi4py.typing.BufSpecW

Buffer specification (generalized).

- Tuple[Buffer, Sequence[Datatype]]
- Tuple[Buffer, Tuple[Sequence[Count], Sequence[Disp1]], Sequence[Datatype]]
- Tuple[Buffer, Sequence[Count], Sequence[Displ], Sequence[Datatype]]
- Tuple[Bottom, Tuple[Sequence[Count], Sequence[Disp1]], Sequence[Datatype]]
- Tuple[Bottom, Sequence[Count], Sequence[Disp1], Sequence[Datatype]]

alias of Union[Tuple[Union[SupportsBuffer, SupportsDLPack, SupportsCAI], Sequence[Datatype]], Tuple[Union[SupportsBuffer, SupportsDLPack, SupportsCAI], Tuple[Sequence[Integral], Sequence[Integral]], Tuple[Union[SupportsBuffer, SupportsDLPack, SupportsCAI], Sequence[Integral], Sequence[Integral], Sequence[Datatype]], Tuple[Optional[BottomType], Tuple[Sequence[Integral], Sequence[Integral]], Sequence[Datatype]], Tuple[Optional[BottomType], Sequence[Integral], Sequence[Integral], Sequence[Datatype]], List]

mpi4py.typing.TargetSpec

Target specification.

- Displ
- Tuple[()]
- Tuple[Disp1]
- Tuple[Displ, Count]

• Tuple[Displ, Count, Datatype]

alias of Union[Integral, Tuple, Tuple[Integral], Tuple[Integral, Integral], Tuple[Integral,
Integral, Union[Datatype, str]], List]

7 mpi4py.futures

New in version 3.0.0.

This package provides a high-level interface for asynchronously executing callables on a pool of worker processes using MPI for inter-process communication.

The mpi4py.futures package is based on concurrent.futures from the Python standard library. More precisely, mpi4py.futures provides the MPIPoolExecutor class as a concrete implementation of the abstract class Executor. The submit() interface schedules a callable to be executed asynchronously and returns a Future object representing the execution of the callable. Future instances can be queried for the call result or exception. Sets of Future instances can be passed to the wait() and as_completed() functions.

See also:

Module concurrent . futures

Documentation of the concurrent, futures standard module.

7.1 MPIPoolExecutor

The MPIPoolExecutor class uses a pool of MPI processes to execute calls asynchronously. By performing computations in separate processes, it allows to side-step the global interpreter lock but also means that only picklable objects can be executed and returned. The __main__ module must be importable by worker processes, thus MPIPoolExecutor instances may not work in the interactive interpreter.

MPIPoolExecutor takes advantage of the dynamic process management features introduced in the MPI-2 standard. In particular, the MPI.Intracomm.Spawn method of MPI.COMM_SELF is used in the master (or parent) process to spawn new worker (or child) processes running a Python interpreter. The master process uses a separate thread (one for each MPIPoolExecutor instance) to communicate back and forth with the workers. The worker processes serve the execution of tasks in the main (and only) thread until they are signaled for completion.

Note: The worker processes must import the main script in order to *unpickle* any callable defined in the __main__ module and submitted from the master process. Furthermore, the callables may need access to other global variables. At the worker processes, *mpi4py.futures* executes the main script code (using the runpy module) under the __worker__ namespace to define the __main__ module. The __main__ and __worker__ modules are added to sys.modules (both at the master and worker processes) to ensure proper *pickling* and *unpickling*.

Warning: During the initial import phase at the workers, the main script cannot create and use new *MPIPoolExecutor* instances. Otherwise, each worker would attempt to spawn a new pool of workers, leading to infinite recursion. *mpi4py.futures* detects such recursive attempts to spawn new workers and aborts the MPI execution environment. As the main script code is run under the __worker__ namespace, the easiest way to avoid spawn recursion is using the idiom if __name__ == '__main__': ... in the main script.

class mpi4py.futures.MPIPoolExecutor(max_workers=None, initializer=None, initializer=None, initializer=None, initializer=None, initializer=None

An Executor subclass that executes calls asynchronously using a pool of at most max_workers processes. If

max_workers is None or not given, its value is determined from the MPI4PY_FUTURES_MAX_WORKERS environment variable if set, or the MPI universe size if set, otherwise a single worker process is spawned. If max_workers is lower than or equal to 0, then a ValueError will be raised.

initializer is an optional callable that is called at the start of each worker process before executing any tasks; *initargs* is a tuple of arguments passed to the initializer. If *initializer* raises an exception, all pending tasks and any attempt to submit new tasks to the pool will raise a BrokenExecutor exception.

Other parameters:

- python_exe: Path to the Python interpreter executable used to spawn worker processes, otherwise sys. executable is used.
- python_args: list or iterable with additional command line flags to pass to the Python executable. Command line flags determined from inspection of sys.flags, sys.warnoptions and sys._xoptions in are passed unconditionally.
- mpi_info: dict or iterable yielding (key, value) pairs. These (key, value) pairs are passed (through an MPI.Info object) to the MPI.Intracomm. Spawn call used to spawn worker processes. This mechanism allows telling the MPI runtime system where and how to start the processes. Check the documentation of the backend MPI implementation about the set of keys it interprets and the corresponding format for values.
- globals: dict or iterable yielding (name, value) pairs to initialize the main module namespace in worker processes.
- *main*: If set to False, do not import the __main__ module in worker processes. Setting *main* to False prevents worker processes from accessing definitions in the parent __main__ namespace.
- path: list or iterable with paths to append to sys.path in worker processes to extend the module search path.
- *wdir*: Path to set the current working directory in worker processes using os.chdir(). The initial working directory is set by the MPI implementation. Quality MPI implementations should honor a wdir info key passed through *mpi_info*, although such feature is not mandatory.
- *env*: dict or iterable yielding (name, value) pairs with environment variables to update os.environ in worker processes. The initial environment is set by the MPI implementation. MPI implementations may allow setting the initial environment through *mpi_info*, however such feature is not required nor recommended by the MPI standard.
- use_pkl5: If set to True, use pickle5 with out-of-band buffers for interprocess communication. If use_pkl5 is set to None or not given, its value is determined from the MPI4PY_FUTURES_USE_PKL5 environment variable. Using pickle5 with out-of-band buffers may benefit applications dealing with large buffer-like objects like NumPy arrays. See mpi4py.util.pkl5 for additional information.
- backoff: float value specifying the maximum number of seconds a worker thread or process suspends execution with time.sleep() while idle-waiting. If not set, its value is determined from the MPI4PY_FUTURES_BACKOFF environment variable if set, otherwise the default value of 0.001 seconds is used. Lower values will reduce latency and increase execution throughput for very short-lived tasks, albeit at the expense of spinning CPU cores and increased energy consumption.

```
submit(func, *args, **kwargs)
```

Schedule the callable, func , to be executed as func(*args, **kwargs) and returns a Future object representing the execution of the callable.

```
executor = MPIPoolExecutor(max_workers=1)
future = executor.submit(pow, 321, 1234)
print(future.result())
```

```
map(func, *iterables, timeout=None, chunksize=1, **kwargs)
```

Equivalent to map(func, *iterables) except func is executed asynchronously and several calls to func may be made concurrently, out-of-order, in separate processes. The returned iterator raises a TimeoutError if __next__() is called and the result isn't available after timeout seconds from the original call to map(). timeout can be an int or a float. If timeout is not specified or None, there is no limit to the wait time. If a call raises an exception, then that exception will be raised when its value is retrieved from the iterator. This method chops iterables into a number of chunks which it submits to the pool as separate tasks. The (approximate) size of these chunks can be specified by setting chunksize to a positive integer. For very long iterables, using a large value for chunksize can significantly improve performance compared to the default size of one. By default, the returned iterator yields results in-order, waiting for successive tasks to complete. This behavior can be changed by passing the keyword argument unordered as True, then the result iterator will yield a result as soon as any of the tasks complete.

```
executor = MPIPoolExecutor(max_workers=3)
for result in executor.map(pow, [2]*32, range(32)):
    print(result)
```

starmap(func, iterable, timeout=None, chunksize=1, **kwargs)

Equivalent to itertools.starmap(func, iterable). Used instead of map() when argument parameters are already grouped in tuples from a single iterable (the data has been "pre-zipped"). map(func, *iterable) is equivalent to starmap(func, zip(*iterable)).

```
executor = MPIPoolExecutor(max_workers=3)
iterable = ((2, n) for n in range(32))
for result in executor.starmap(pow, iterable):
    print(result)
```

shutdown(*wait=True*, *cancel* futures=False)

Signal the executor that it should free any resources that it is using when the currently pending futures are done executing. Calls to *submit()* and *map()* made after *shutdown()* will raise RuntimeError.

If wait is True then this method will not return until all the pending futures are done executing and the resources associated with the executor have been freed. If wait is False then this method will return immediately and the resources associated with the executor will be freed when all pending futures are done executing. Regardless of the value of wait, the entire Python program will not exit until all pending futures are done executing.

If *cancel_futures* is True, this method will cancel all pending futures that the executor has not started running. Any futures that are completed or running won't be cancelled, regardless of the value of *cancel_futures*.

You can avoid having to call this method explicitly if you use the with statement, which will shutdown the executor instance (waiting as if *shutdown()* were called with *wait* set to True).

```
import time
with MPIPoolExecutor(max_workers=1) as executor:
    future = executor.submit(time.sleep, 2)
assert future.done()
```

bootup(wait=True)

Signal the executor that it should allocate eagerly any required resources (in particular, MPI worker processes). If *wait* is True, then *bootup()* will not return until the executor resources are ready to process submissions. Resources are automatically allocated in the first call to *submit()*, thus calling *bootup()* explicitly is seldom needed.

num_workers

Number or worker processes in the pool.

MPI4PY_FUTURES_MAX_WORKERS

If the *max_workers* parameter to *MPIPoolExecutor* is None or not given, the *MPI4PY_FUTURES_MAX_WORKERS* environment variable provides a fallback value for the maximum number of MPI worker processes to spawn.

New in version 3.1.0.

MPI4PY_FUTURES_USE_PKL5

If the *use_pkl5* keyword argument to *MPIPoolExecutor* is None or not given, the *MPI4PY_FUTURES_USE_PKL5* environment variable provides a fallback value for whether the executor should use pickle5 with out-of-band buffers for interprocess communication. Accepted values are 0 and 1 (interpreted as False and True, respectively), and strings specifying a YAML boolean value (case-insensitive). Using pickle5 with out-of-band buffers may benefit applications dealing with large buffer-like objects like NumPy arrays. See *mpi4py.util.pkl5* for additional information.

New in version 4.0.0.

MPI4PY_FUTURES_BACKOFF

If the *backoff* keyword argument to *MPIPoolExecutor* is not given, the *MPI4PY_FUTURES_BACKOFF* environment variable can be set to a float value specifying the maximum number of seconds a worker thread or process suspends execution with time.sleep() while idle-waiting. If not set, the default backoff value is 0.001 seconds. Lower values will reduce latency and increase execution throughput for very short-lived tasks, albeit at the expense of spinning CPU cores and increased energy consumption.

New in version 4.0.0.

Note: As the master process uses a separate thread to perform MPI communication with the workers, the backend MPI implementation should provide support for MPI.THREAD_MULTIPLE. However, some popular MPI implementations do not support yet concurrent MPI calls from multiple threads. Additionally, users may decide to initialize MPI with a lower level of thread support. If the level of thread support in the backend MPI is less than MPI. THREAD_MULTIPLE, mpi4py.futures will use a global lock to serialize MPI calls. If the level of thread support is less than MPI.THREAD_SERIALIZED, mpi4py.futures will emit a RuntimeWarning.

Warning: If the level of thread support in the backend MPI is less than MPI. THREAD_SERIALIZED (i.e, it is either MPI. THREAD_SINGLE or MPI. THREAD_FUNNELED), in theory mpi4py. futures cannot be used. Rather than raising an exception, mpi4py. futures emits a warning and takes a "cross-fingers" attitude to continue execution in the hope that serializing MPI calls with a global lock will actually work.

7.2 MPICommExecutor

Legacy MPI-1 implementations (as well as some vendor MPI-2 implementations) do not support the dynamic process management features introduced in the MPI-2 standard. Additionally, job schedulers and batch systems in supercomputing facilities may pose additional complications to applications using the MPI_Comm_spawn() routine.

With these issues in mind, <code>mpi4py.futures</code> supports an additional, more traditional, SPMD-like usage pattern requiring MPI-1 calls only. Python applications are started the usual way, e.g., using the <code>mpiexec</code> command. Python code should make a collective call to the <code>MPICommExecutor</code> context manager to partition the set of MPI processes within a MPI communicator in one master processes and many workers processes. The master process gets access to an <code>MPIPoolExecutor</code> instance to submit tasks. Meanwhile, the worker process follow a different execution path and team-up to execute the tasks submitted from the master.

Besides alleviating the lack of dynamic process management features in legacy MPI-1 or partial MPI-2 implementations, the MPICommExecutor context manager may be useful in classic MPI-based Python applications willing to take advantage of the simple, task-based, master/worker approach available in the mpi4py. futures package.

```
class mpi4py.futures.MPICommExecutor(comm=None, root=0)
```

Context manager for MPIPoolExecutor. This context manager splits a MPI (intra)communicator comm (defaults to MPI. COMM_WORLD if not provided or None) in two disjoint sets: a single master process (with rank root in comm) and the remaining worker processes. These sets are then connected through an intercommunicator. The target of the with statement is assigned either an MPIPoolExecutor instance (at the master) or None (at the workers).

```
from mpi4py import MPI
from mpi4py.futures import MPICommExecutor

with MPICommExecutor(MPI.COMM_WORLD, root=0) as executor:
    if executor is not None:
        future = executor.submit(abs, -42)
        assert future.result() == 42
        answer = set(executor.map(abs, [-42, 42]))
        assert answer == {42}
```

Warning: If *MPICommExecutor* is passed a communicator of size one (e.g., *MPI.COMM_SELF*), then the executor instance assigned to the target of the with statement will execute all submitted tasks in a single worker thread, thus ensuring that task execution still progress asynchronously. However, the GIL will prevent the main and worker threads from running concurrently in multicore processors. Moreover, the thread context switching may harm noticeably the performance of CPU-bound tasks. In case of I/O-bound tasks, the GIL is not usually an issue, however, as a single worker thread is used, it progress one task at a time. We advice against using *MPICommExecutor* with communicators of size one and suggest refactoring your code to use instead a ThreadPoolExecutor.

7.3 Command line

Recalling the issues related to the lack of support for dynamic process management features in MPI implementations, <code>mpi4py.futures</code> supports an alternative usage pattern where Python code (either from scripts, modules, or zip files) is run under command line control of the <code>mpi4py.futures</code> package by passing <code>-m mpi4py.futures</code> to the <code>python</code> executable. The <code>mpi4py.futures</code> invocation should be passed a <code>pyfile</code> path to a script (or a zipfile/directory containing a <code>__main__.py</code> file). Additionally, <code>mpi4py.futures</code> accepts <code>-m mod</code> to execute a module named <code>mod</code>, <code>-c cmd</code> to execute a command string <code>cmd</code>, or even <code>-</code> to read commands from standard input (<code>sys.stdin</code>). Summarizing, <code>mpi4py.futures</code> can be invoked in the following ways:

```
$ mpiexec -n numprocs python -m mpi4py.futures pyfile [arg] ...
$ mpiexec -n numprocs python -m mpi4py.futures -m mod [arg] ...
$ mpiexec -n numprocs python -m mpi4py.futures -c cmd [arg] ...
$ mpiexec -n numprocs python -m mpi4py.futures - [arg] ...
```

Before starting the main script execution, <code>mpi4py.futures</code> splits <code>MPI.COMM_WORLD</code> in one master (the process with rank 0 in <code>MPI.COMM_WORLD</code>) and <code>numprocs - 1</code> workers and connects them through an MPI intercommunicator. Afterwards, the master process proceeds with the execution of the user script code, which eventually creates <code>MPIPoolExecutor</code> instances to submit tasks. Meanwhile, the worker processes follow a different execution path to serve the master. Upon successful termination of the main script at the master, the entire MPI execution environment exists gracefully. In case of any unhandled exception in the main script, the master process calls <code>MPI.COMM_WORLD</code>. Abort(1) to prevent deadlocks and force termination of entire MPI execution environment.

Warning: Running scripts under command line control of *mpi4py.futures* is quite similar to executing a single-process application that spawn additional workers as required. However, there is a very important difference users should be aware of. All *MPIPoolExecutor* instances created at the master will share the pool of workers. Tasks submitted at the master from many different executors will be scheduled for execution in random order as soon as a worker is idle. Any executor can easily starve all the workers (e.g., by calling *MPIPoolExecutor.map()* with long iterables). If that ever happens, submissions from other executors will not be serviced until free workers are available.

See also:

Command line

Documentation on Python command line interface.

7.4 Parallel tasks

The *mpi4py.futures* package favors an embarrassingly parallel execution model involving a series of sequential tasks independent of each other and executed asynchronously. Albeit unnatural, *MPIPoolExecutor* can still be used for handling workloads involving parallel tasks, where worker processes communicate and coordinate each other via MPI.

```
mpi4py.futures.get_comm_workers()
```

Access an intracommunicator grouping MPI worker processes.

Executing parallel tasks with mpi4py. futures requires following some rules, cf. highlighted lines in example cpi.py.

- Use MPIPoolExecutor.num_workers to determine the number of worker processes in the executor and submit exactly one callable per worker process using the MPIPoolExecutor.submit() method.
- The submitted callable must use get_comm_workers() to access an intracommunicator grouping MPI worker processes. Afterwards, it is highly recommended calling the Barrier() method on the communicator. The barrier synchronization ensures that every worker process is executing the submitted callable exactly once. Afterwards, the parallel task can safely perform any kind of point-to-point or collective operation using the returned communicator.
- The Future instances returned by <code>MPIPoolExecutor.submit()</code> should be collected in a sequence. Use <code>wait()</code> with the sequence of Future instances to ensure logical completion of the parallel task.

7.5 Examples

Computing the Julia set

The following <code>julia.py</code> script computes the Julia set and dumps an image to disk in binary PGM format. The code starts by importing <code>MPIPoolExecutor</code> from the <code>mpi4py.futures</code> package. Next, some global constants and functions implement the computation of the Julia set. The computations are protected with the standard <code>if __name__ == '__main__': ...</code> idiom. The image is computed by whole scanlines submitting all these tasks at once using the <code>map</code> method. The result iterator yields scanlines in-order as the tasks complete. Finally, each scanline is dumped to disk.

```
Listing 1: julia.py
```

from mpi4py.futures import MPIPoolExecutor

(continues on next page)

(continued from previous page)

```
x0, x1, w = -2.0, +2.0, 640*2
   y0, y1, h = -1.5, +1.5, 480*2
   dx = (x1 - x0) / w
   dy = (y1 - y0) / h
   c = complex(0, 0.65)
8
   def julia(x, y):
10
       z = complex(x, y)
11
       n = 255
12
       while abs(z) < 3 and n > 1:
13
            z = z^{**}2 + c
14
           n -= 1
15
       return n
16
   def julia_line(k):
18
       line = bytearray(w)
19
       y = y1 - k * dy
20
       for j in range(w):
21
            x = x0 + j * dx
22
            line[j] = julia(x, y)
       return line
24
25
   if name == ' main ':
26
27
       with MPIPoolExecutor() as executor:
28
            image = executor.map(julia_line, range(h))
29
            with open('julia.pgm', 'wb') as f:
30
                f.write(b'P5 %d %d %d\n' % (w, h, 255))
31
                for line in image:
32
                     f.write(line)
33
```

The recommended way to execute the script is by using the **mpiexec** command specifying one MPI process (master) and (optional but recommended) the desired MPI universe size, which determines the number of additional dynamically spawned processes (workers). The MPI universe size is provided either by a batch system or set by the user via command-line arguments to **mpiexec** or environment variables. Below we provide examples for MPICH and Open MPI implementations¹. In all of these examples, the **mpiexec** command launches a single master process running the Python interpreter and executing the main script. When required, **mpi4py.futures** spawns the pool of 16 worker processes. The master submits tasks to the workers and waits for the results. The workers receive incoming tasks, execute them, and send back the results to the master.

When using MPICH implementation or its derivatives based on the Hydra process manager, users can set the MPI universe size via the -usize argument to **mpiexec**:

```
$ mpiexec -n 1 -usize 17 python julia.py
```

or, alternatively, by setting the MPIEXEC_UNIVERSE_SIZE environment variable:

```
$ env MPIEXEC_UNIVERSE_SIZE=17 mpiexec -n 1 python julia.py
```

In the Open MPI implementation, the MPI universe size can be set via the -host argument to **mpiexec**:

¹ When using an MPI implementation other than MPICH or Open MPI, please check the documentation of the implementation and/or batch system for the ways to specify the desired MPI universe size.

```
$ mpiexec -n 1 -host localhost:17 python julia.py
```

Another way to specify the number of workers is to use the *mpi4py.futures*-specific environment variable *MPI4PY_FUTURES_MAX_WORKERS*:

```
$ env MPI4PY_FUTURES_MAX_WORKERS=16 mpiexec -n 1 python julia.py
```

Note that in this case, the MPI universe size is ignored.

Alternatively, users may decide to execute the script in a more traditional way, that is, all the MPI processes are started at once. The user script is run under command-line control of *mpi4py.futures* passing the -m flag to the **python** executable:

```
$ mpiexec -n 17 python -m mpi4py.futures julia.py
```

As explained previously, the 17 processes are partitioned in one master and 16 workers. The master process executes the main script while the workers execute the tasks submitted by the master.

Computing Pi (parallel task)

The number π can be approximated via numerical integration with the simple midpoint rule, that is:

$$\pi = \int_0^1 \frac{4}{1+x^2} \, dx \approx \frac{1}{n} \sum_{i=1}^n \frac{4}{1+\left[\frac{1}{n}\left(i-\frac{1}{2}\right)\right]^2}.$$

The following *cpi.py* script computes such approximations using *mpi4py*. *futures* with a parallel task involving a collective reduction operation. Highlighted lines correspond to the rules discussed in *Parallel tasks*.

Listing 2: cpi.py

```
import math
   import sys
   from mpi4py.futures import MPIPoolExecutor, wait
   from mpi4py.futures import get_comm_workers
   def compute_pi(n):
       # Access intracommunicator and synchronize
       comm = get_comm_workers()
       comm.Barrier()
10
11
       rank = comm.Get_rank()
12
       size = comm.Get_size()
13
       # Local computation
15
       h = 1.0 / n
17
       for i in range(rank + 1, n + 1, size):
           x = h * (i - 0.5)
19
           s += 4.0 / (1.0 + x**2)
       pi_partial = s * h
21
22
       # Parallel reduce-to-all
```

(continues on next page)

(continued from previous page)

```
pi = comm.allreduce(pi_partial)
24
25
       # All workers return the same value
26
       return pi
28
29
   if __name__ == '__main__':
30
       n = int(sys.argv[1]) if len(sys.argv) > 1 else 256
31
32
       with MPIPoolExecutor() as executor:
33
           # Submit exactly one callable per worker
34
           P = executor.num_workers
35
           fs = [executor.submit(compute_pi, n) for _ in range(P)]
37
           # Wait for all workers to finish
           wait(fs)
           # Get result from the first future object.
41
           # In this particular example, due to using reduce-to-all,
           # all the other future objects hold the same result value.
43
           pi = fs[0].result()
           print(
45
                f"pi: {pi:.16f}, error: {abs(pi - math.pi):.3e}",
                f"({n:d} intervals, {P:d} workers)",
47
           )
```

To run in modern MPI-2 mode:

```
$ env MPI4PY_FUTURES_MAX_WORKERS=4 mpiexec -n 1 python cpi.py 128
pi: 3.1415977398528137, error: 5.086e-06 (128 intervals, 4 workers)
$ env MPI4PY_FUTURES_MAX_WORKERS=8 mpiexec -n 1 python cpi.py 512
pi: 3.1415929714812316, error: 3.179e-07 (512 intervals, 8 workers)
```

To run in legacy MPI-1 mode:

```
$ mpiexec -n 5 python -m mpi4py.futures cpi.py 128
pi: 3.1415977398528137, error: 5.086e-06 (128 intervals, 4 workers)

$ mpiexec -n 9 python -m mpi4py.futures cpi.py 512
pi: 3.1415929714812316, error: 3.179e-07 (512 intervals, 8 workers)
```

7.6 Citation

If *mpi4py.futures* been significant to a project that leads to an academic publication, please acknowledge our work by citing the following article [mpi4py-futures]:

8 mpi4py.util

New in version 3.1.0.

The mpi4py.util package collects miscellaneous utilities within the intersection of Python and MPI.

8.1 mpi4py.util.dtlib

```
New in version 3.1.0.
```

The mpi4py.util.dtlib module provides converter routines between NumPy and MPI datatypes.

```
mpi4py.util.dtlib.from_numpy_dtype(dtype)
```

Convert NumPy datatype to MPI datatype.

Parameters

dtype (*DTypeLike*) – NumPy dtype-like object.

Return type

Datatype

mpi4py.util.dtlib.to_numpy_dtype(datatype)

Convert MPI datatype to NumPy datatype.

Parameters

datatype (Datatype) – MPI datatype.

Return type

dtype[Any]

8.2 mpi4py.util.pkl5

New in version 3.1.0.

pickle protocol 5 (see PEP 574) introduced support for out-of-band buffers, allowing for more efficient handling of certain object types with large memory footprints.

MPI for Python uses the traditional in-band handling of buffers. This approach is appropriate for communicating non-buffer Python objects, or buffer-like objects with small memory footprints. For point-to-point communication, in-band buffer handling allows for the communication of a pickled stream with a single MPI message, at the expense of additional CPU and memory overhead in the pickling and unpickling steps.

The mpi4py.util.pkl5 module provides communicator wrapper classes reimplementing pickle-based point-to-point and collective communication methods using pickle protocol 5. Handling out-of-band buffers necessarily involves multiple MPI messages, thus increasing latency and hurting performance in case of small size data. However, in case of large size data, the zero-copy savings of out-of-band buffer handling more than offset the extra latency costs. Additionally, these wrapper methods overcome the infamous 2 GiB message count limit (MPI-1 to MPI-3).

Note: Support for pickle protocol 5 is available in the pickle module within the Python standard library since Python 3.8. Previous Python 3 releases can use the pickle5 backport, which is available on PyPI and can be installed with:

```
python -m pip install pickle5
```

```
class mpi4py.util.pkl5.Request
     Request.
     Custom request class for nonblocking communications.
     Note: Request is not a subclass of mpi4py.MPI.Request
     Free()
          Free a communication request.
              Return type
                  None
     cancel()
          Cancel a communication request.
              Return type
                  None
     get_status(status=None)
          Non-destructive test for the completion of a request.
              Parameters
                  status (Status / None) -
              Return type
                  bool
     test(status=None)
          Test for the completion of a request.
              Parameters
                  status (Status | None) -
              Return type
                  tuple[bool, Any | None]
     wait(status=None)
          Wait for a request to complete.
              Parameters
                  status (Status / None) -
              Return type
                  Any
     classmethod testall(requests, statuses=None)
          Test for the completion of all requests.
              Classmethod
     classmethod waitall(requests, statuses=None)
          Wait for all requests to complete.
```

Classmethod

48

```
Message.
     Custom message class for matching probes.
     Note: Message is not a subclass of mpi4py.MPI.Message
     recv(status=None)
          Blocking receive of matched message.
              Parameters
                  status (Status | None) -
              Return type
                  Any
     irecv()
          Nonblocking receive of matched message.
              Return type
                  Request
     classmethod probe(comm, source=ANY_SOURCE, tag=ANY_TAG, status=None)
          Blocking test for a matched message.
              Classmethod
     classmethod iprobe(comm, source=ANY_SOURCE, tag=ANY_TAG, status=None)
          Nonblocking test for a matched message.
              Classmethod
class mpi4py.util.pkl5.Comm
     Communicator.
     Base communicator wrapper class.
     send(obj, dest, tag=0)
          Blocking send in standard mode.
              Parameters
                  • obj (Any) -
                  • dest (int) -
                  • tag (int) -
              Return type
                  None
     bsend(obj, dest, tag=0)
          Blocking send in buffered mode.
              Parameters
                  • obj (Any) –
                  • dest(int)-
                  • tag (int) -
```

class mpi4py.util.pkl5.Message

Return type

None

ssend(obj, dest, tag=0)

Blocking send in synchronous mode.

Parameters

- **obj** (Any) -
- dest (int) -
- tag(int)-

Return type

None

isend(obj, dest, tag=0)

Nonblocking send in standard mode.

Parameters

- **obj** (*Any*) –
- dest (int) -
- tag (int) -

Return type

Request

ibsend(obj, dest, tag=0)

Nonblocking send in buffered mode.

Parameters

- **obj** (*Any*) –
- dest(int)-
- tag(int)-

Return type

Request

issend(obj, dest, tag=0)

Nonblocking send in synchronous mode.

Parameters

- **obj** (*Any*) –
- dest (int) -
- tag (int) -

Return type

Request

recv(buf=None, source=ANY_SOURCE, tag=ANY_TAG, status=None) Blocking receive.

Parameters

- buf (Buffer / None) -
- source (int) -

```
• tag (int) -
```

• status (Status / None) -

Return type

Any

irecv(buf=None, source=ANY_SOURCE, tag=ANY_TAG)

Nonblocking receive.

Warning: This method cannot be supported reliably and raises RuntimeError.

Parameters

- buf (Buffer / None) -
- source (int) -
- tag (int) -

Return type

Request

Send and receive.

Parameters

- sendobj (Any) -
- dest (int) -
- sendtag(int) –
- recvbuf (Buffer / None) -
- source (int) -
- recvtag (int) -
- status (Status | None) -

Return type

Any

 ${\bf mprobe} ({\it source=ANY_SOURCE}, {\it tag=ANY_TAG}, {\it status=None})$

Blocking test for a matched message.

Parameters

- source (int) -
- tag (int) -
- status (Status / None) -

Return type

Message

```
improbe(source=ANY_SOURCE, tag=ANY_TAG, status=None)
     Nonblocking test for a matched message.
         Parameters
             • source (int) -
             • tag (int) -
             • status (Status / None) -
         Return type
             Message | None
bcast(obj, root=0)
     Broadcast.
     New in version 3.1.0.
         Parameters
             • obj (Any) -
             • root (int) -
         Return type
             Any
gather(sendobj, root=0)
     Gather.
     New in version 4.0.0.
         Parameters
             • sendobj (Any) -
             • root (int) -
         Return type
             list[Any] | None
scatter(sendobj, root=0)
     Scatter.
     New in version 4.0.0.
         Parameters
             • sendobj (Sequence[Any] | None) -
             • root (int) -
         Return type
            Any
allgather(sendobj)
     Gather to All.
     New in version 4.0.0.
         Parameters
             sendobj (Any) -
         Return type
             list[Any]
```

```
alltoall(sendobj)

All to All Scatter/Gather.

New in version 4.0.0.

Parameters
sendobj (Sequence[Any]) –

Return type
list[Any]

class mpi4py.util.pkl5.Intracomm
Intracommunicator.

Intracommunicator wrapper class.
```

class mpi4py.util.pkl5.Intercomm

Intercommunicator.

Intercommunicator wrapper class.

Examples

Listing 3: test-pkl5-1.py

```
import numpy as np
   from mpi4py import MPI
   from mpi4py.util import pkl5
   comm = pkl5.Intracomm(MPI.COMM_WORLD) # comm wrapper
   size = comm.Get_size()
   rank = comm.Get rank()
   dst = (rank + 1) \% size
   src = (rank - 1) \% size
   sobj = np.full(1024**3, rank, dtype='i4') # > 4 GiB
11
   sreq = comm.isend(sobj, dst, tag=42)
12
   robj = comm.recv (None, src, tag=42)
13
   sreq.Free()
14
15
   assert np.min(robj) == src
16
   assert np.max(robj) == src
```

Listing 4: test-pkl5-2.py

```
import numpy as np
from mpi4py import MPI
from mpi4py.util import pkl5

comm = pkl5.Intracomm(MPI.COMM_WORLD) # comm wrapper
size = comm.Get_size()
rank = comm.Get_rank()
dst = (rank + 1) % size
src = (rank - 1) % size
```

(continues on next page)

(continued from previous page)

```
sobj = np.full(1024**3, rank, dtype='i4') # > 4 GiB
11
   sreq = comm.isend(sobj, dst, tag=42)
12
13
   status = MPI.Status()
   rmsg = comm.mprobe(status=status)
15
   assert status.Get_source() == src
16
   assert status.Get_tag() == 42
   rreq = rmsg.irecv()
   robj = rreq.wait()
19
20
   sreq.Free()
21
   assert np.max(robj) == src
22
   assert np.min(robj) == src
```

8.3 mpi4py.util.pool

New in version 4.0.0.

See also:

This module intends to be a drop-in replacement for the multiprocessing.pool interface from the Python standard library. The *Pool* class exposed here is implemented as a thin wrapper around *MPIPoolExecutor*.

Note: The *mpi4py.futures* package offers a higher level interface for asynchronously pushing tasks to MPI worker process, allowing for a clear separation between submitting tasks and waiting for the results.

```
class mpi4py.util.pool.Pool
```

Pool using MPI processes as workers.

__init__(processes=None, initializer=None, initargs=(), **kwargs)

Initialize a new Pool instance.

Parameters

- **processes** Number of worker processes.
- initializer An callable used to initialize workers processes.
- **initargs** A tuple of arguments to pass to the initializer.

Note: Additional keyword arguments are passed down to the MPIPoolExecutor constructor.

Warning: The *maxtasksperchild* and *context* arguments of multiprocessing.pool.Pool are not supported. Specifying *maxtasksperchild* or *context* with a value other than None will issue a warning of category UserWarning.

```
apply(func, args=(), kwds={})
```

Call func with arguments args and keyword arguments kwds.

Equivalent to func(*args, **kwds).

```
apply_async(func, args=(), kwds={}, callback=None, error_callback=None)
           Asynchronous version of apply() returning ApplyResult.
     map(func, iterable, chunksize=None)
           Apply func to each element in iterable.
           Equivalent to list(map(func, iterable)).
           Block until all results are ready and return them in a list.
           The iterable is choped into a number of chunks which are submitted as separate tasks. The (approximate)
           size of these chunks can be specified by setting chunksize to a positive integer.
           Consider using imap() or imap_unordered() with explicit chunksize for better efficiency.
     map_async(func, iterable, chunksize=None, callback=None, error_callback=None)
           Asynchronous version of map() returning MapResult.
     imap(func, iterable, chunksize=1)
           Like map() but return an iterator.
           Equivalent to map(func, iterable).
     imap_unordered(func, iterable, chunksize=1)
           Like imap() but ordering of results is arbitrary.
     starmap(func, iterable, chunksize=None)
           Apply func to each argument tuple in iterable.
           Equivalent to list(itertools.starmap(func, iterable)).
           Block until all results are ready and return them in a list.
           The iterable is choped into a number of chunks which are submitted as separate tasks. The (approximate)
           size of these chunks can be specified by setting chunksize to a positive integer.
           Consider using istarmap() or istarmap_unordered() with explicit chunksize for better efficiency.
     starmap_async(func, iterable, chunksize=None, callback=None, error_callback=None)
           Asynchronous version of starmap() returning MapResult.
     istarmap(func, iterable, chunksize=1)
           Like starmap() but return an iterator.
           Equivalent to itertools.starmap(func, iterable).
     istarmap_unordered(func, iterable, chunksize=1)
           Like istarmap() but ordering of results is arbitrary.
     close()
           Prevent any more tasks from being submitted to the pool.
     terminate()
           Stop the worker processes without completing pending tasks.
     join()
           Wait for the worker processes to exit.
class mpi4py.util.pool.ThreadPool
     Bases: Pool
```

Pool using threads as workers.

```
class mpi4py.util.pool.AsyncResult
     Asynchronous result.
     get(timeout=None)
           Return the result when it arrives.
           If timeout is not None and the result does not arrive within timeout seconds then raise TimeoutError.
           If the remote call raised an exception then that exception will be reraised.
     wait(timeout=None)
           Wait until the result is available or timeout seconds pass.
     ready()
           Return whether the call has completed.
     successful()
           Return whether the call completed without raising an exception.
           If the result is not ready then raise ValueError.
class mpi4py.util.pool.ApplyResult
     Bases: AsyncResult
     Result type of apply_async().
class mpi4py.util.pool.MapResult
     Bases: AsyncResult
     Result type of map_async() and starmap_async().
```

9 mpi4py.run

New in version 3.0.0.

At import time, <code>mpi4py</code> initializes the MPI execution environment calling <code>MPI_Init_thread()</code> and installs an exit hook to automatically call <code>MPI_Finalize()</code> just before the Python process terminates. Additionally, <code>mpi4py</code> overrides the default <code>ERRORS_ARE_FATAL</code> error handler in favor of <code>ERRORS_RETURN</code>, which allows translating MPI errors in Python exceptions. These departures from standard MPI behavior may be controversial, but are quite convenient within the highly dynamic Python programming environment. Third-party code using <code>mpi4py</code> can just <code>from mpi4py</code> import <code>MPI</code> and perform MPI calls without the tedious initialization/finalization handling. MPI errors, once translated automatically to Python exceptions, can be dealt with the common <code>try...except...finally</code> clauses; unhandled MPI exceptions will print a traceback which helps in locating problems in source code.

Unfortunately, the interplay of automatic MPI finalization and unhandled exceptions may lead to deadlocks. In unattended runs, these deadlocks will drain the battery of your laptop, or burn precious allocation hours in your supercomputing facility.

9.1 Exceptions and deadlocks

Consider the following snippet of Python code. Assume this code is stored in a standard Python script file and run with **mpiexec** in two or more processes.

Listing 5: deadlock.py

```
from mpi4py import MPI
assert MPI.COMM_WORLD.Get_size() > 1
rank = MPI.COMM_WORLD.Get_rank()
if rank == 0:
    1/0
    MPI.COMM_WORLD.send(None, dest=1, tag=42)
elif rank == 1:
    MPI.COMM_WORLD.recv(source=0, tag=42)
```

Process 0 raises ZeroDivisionError exception before performing a send call to process 1. As the exception is not handled, the Python interpreter running in process 0 will proceed to exit with non-zero status. However, as *mpi4py* installed a finalizer hook to call MPI_Finalize() before exit, process 0 will block waiting for other processes to also enter the MPI_Finalize() call. Meanwhile, process 1 will block waiting for a message to arrive from process 0, thus never reaching to MPI_Finalize(). The whole MPI execution environment is irremediably in a deadlock state.

To alleviate this issue, *mpi4py* offers a simple, alternative command line execution mechanism based on using the -m flag and implemented with the runpy module. To use this features, Python code should be run passing -m mpi4py in the command line invoking the Python interpreter. In case of unhandled exceptions, the finalizer hook will call MPI_Abort() on the MPI_COMM_WORLD communicator, thus effectively aborting the MPI execution environment.

Warning: When a process is forced to abort, resources (e.g. open files) are not cleaned-up and any registered finalizers (either with the atexit module, the Python C/API function Py_AtExit(), or even the C standard library function atexit()) will not be executed. Thus, aborting execution is an extremely impolite way of ensuring process termination. However, MPI provides no other mechanism to recover from a deadlock state.

9.2 Command line

The use of -m mpi4py to execute Python code on the command line resembles that of the Python interpreter.

```
mpiexec -n numprocs python -m mpi4py pyfile [arg] ...
mpiexec -n numprocs python -m mpi4py -m mod [arg] ...
mpiexec -n numprocs python -m mpi4py -c cmd [arg] ...
mpiexec -n numprocs python -m mpi4py - [arg] ...
```

<pyfile>

Execute the Python code contained in *pyfile*, which must be a filesystem path referring to either a Python file, a directory containing a __main__.py file, or a zipfile containing a __main__.py file.

-m <mod>

Search sys.path for the named module *mod* and execute its contents.

-**c** <cmd>

Execute the Python code in the *cmd* string command.

Read commands from standard input (sys.stdin).

See also:

Command line

Documentation on Python command line interface.

10 mpi4py.bench

New in version 3.0.0.

11 Reference

11.1 mpi4py.MPI

Message Passing Interface.

Classes

BottomType	Type of BOTTOM
Cartcomm	Cartesian topology intracommunicator
Comm	Communicator
Datatype	Datatype object
Distgraphcomm	Distributed graph topology intracommunicator
Errhandler	Error handler
File	File handle
Graphcomm	General graph topology intracommunicator
Grequest	Generalized request handle
Group	Group of processes
InPlaceType	Type of IN_PLACE
Info	Info object
Intercomm	Intercommunicator
Intracomm	Intracommunicator
Message	Matched message handle
0p	Operation object
Pickle	Pickle/unpickle Python objects
Prequest	Persistent request handle
Request	Request handle
Session	Session
Status	Status object
Topocomm	Topology intracommunicator
Win	Window handle
memory	Memory buffer

mpi4py.MPI.BottomType

 ${\bf class}\ {\tt mpi4py.MPI.BottomType}$

Bases: int

Type of **BOTTOM**

static __new__(cls)

Return type

BottomType

mpi4py.MPI.Cartcomm

class mpi4py.MPI.Cartcomm

Bases: Topocomm

Cartesian topology intracommunicator

static __new__(cls, comm=None)

Parameters

comm (Cartcomm | None) -

Return type

Cartcomm

Methods Summary

<pre>Get_cart_rank(coords)</pre>	Translate logical coordinates to ranks
<pre>Get_coords(rank)</pre>	Translate ranks to logical coordinates
<pre>Get_dim()</pre>	Return number of dimensions
<pre>Get_topo()</pre>	Return information on the cartesian topology
Shift(direction, disp)	Return a tuple (source, dest) of process ranks for data shifting with Comm.Sendrecv()
Sub(remain_dims)	Return cartesian communicators that form lower-dimensional subgrids

Attributes Summary

coords	coordinates
dim	number of dimensions
dims	dimensions
ndim	number of dimensions
periods	periodicity
topo	topology information

Methods Documentation

```
Get_cart_rank(coords)
     Translate logical coordinates to ranks
         Parameters
             coords (Sequence[int]) -
         Return type
             int
Get_coords(rank)
     Translate ranks to logical coordinates
         Parameters
             rank (int) -
         Return type
             list[int]
Get_dim()
     Return number of dimensions
         Return type
             int
Get_topo()
     Return information on the cartesian topology
         Return type
             tuple[list[int], list[int], list[int]]
Shift(direction, disp)
     Return a tuple (source, dest) of process ranks for data shifting with Comm.Sendrecv()
         Parameters
              • direction (int) -
             • disp (int) -
         Return type
             tuple[int, int]
Sub(remain_dims)
     Return cartesian communicators that form lower-dimensional subgrids
         Parameters
             remain_dims (Sequence[bool]) -
         Return type
             Cartcomm
```

Attributes Documentation

```
coords
```

coordinates

dim

number of dimensions

dims

dimensions

ndim

number of dimensions

periods

periodicity

topo

topology information

mpi4py.MPI.Comm

```
class mpi4py.MPI.Comm
```

Bases: object

Communicator

static __new__(cls, comm=None)

Parameters

comm (Comm / None) -

Return type

Comm

Methods Summary

Abort([errorcode])	Terminate MPI execution environment
Ack_failed([num_to_ack])	Acknowledge failures on a communicator
Agree(flag)	Blocking agreement
Allgather(sendbuf, recvbuf)	Gather to All, gather data from all processes and dis- tribute it to all other processes in a group
<pre>Allgather_init(sendbuf, recvbuf[, info])</pre>	Persistent Gather to All
Allgatherv(sendbuf, recvbuf)	Gather to All Vector, gather data from all processes and distribute it to all other processes in a group pro- viding different amount of data and displacements
<pre>Allgatherv_init(sendbuf, recvbuf[, info])</pre>	Persistent Gather to All Vector
Allreduce(sendbuf, recvbuf[, op])	Reduce to All
<pre>Allreduce_init(sendbuf, recvbuf[, op, info])</pre>	Persistent All Reduce
Alltoall(sendbuf, recvbuf)	All to All Scatter/Gather, send data from all to all processes in a group
<pre>Alltoall_init(sendbuf, recvbuf[, info])</pre>	Persistent All to All Scatter/Gather

continues on next page

Table 2 – continued from previous page

Table 2 – continued from previous page	
Alltoallv(sendbuf, recvbuf)	All to All Scatter/Gather Vector, send data from all to
	all processes in a group providing different amount of
	data and displacements
Alltoallv_init(sendbuf, recvbuf[, info])	Persistent All to All Scatter/Gather Vector
Alltoallw(sendbuf, recvbuf)	Generalized All-to-All communication allowing dif-
	ferent counts, displacements and datatypes for each
	partner
<pre>Alltoallw_init(sendbuf, recvbuf[, info])</pre>	Persistent Generalized All-to-All
Barrier()	Barrier synchronization
<pre>Barrier_init([info])</pre>	Persistent Barrier
Bcast(buf[, root])	Broadcast a message from one process to all other
	processes in a group
<pre>Bcast_init(buf[, root, info])</pre>	Persistent Broadcast
Bsend(buf, dest[, tag])	Blocking send in buffered mode
Bsend_init(buf, dest[, tag])	Persistent request for a send in buffered mode
Call_errhandler(errorcode)	Call the error handler installed on a communicator
Clone()	Clone an existing communicator
Compare(comm)	Compare two communicators
Create(group)	Create communicator from group
Create_errhandler(errhandler_fn)	Create a new error handler for communicators
<pre>Create_keyval([copy_fn, delete_fn, nopython])</pre>	Create a new attribute key for communicators
Delete_attr(keyval)	Delete attribute value associated with a key
Disconnect()	Disconnect from a communicator
Dup([info])	Duplicate an existing communicator
Dup_with_info(info)	Duplicate an existing communicator
Free()	Free a communicator
Free_keyval(keyval)	Free an attribute key for communicators
<pre>Gather(sendbuf, recvbuf[, root])</pre>	Gather together values from a group of processes
<pre>Gather_init(sendbuf, recvbuf[, root, info])</pre>	Persistent Gather
<pre>Gatherv(sendbuf, recvbuf[, root])</pre>	Gather Vector, gather data to one process from all
	other processes in a group providing different amount
	of data and displacements at the receiving sides
<pre>Gatherv_init(sendbuf, recvbuf[, root, info])</pre>	Persistent Gather Vector
<pre>Get_attr(keyval)</pre>	Retrieve attribute value by key
<pre>Get_errhandler()</pre>	Get the error handler for a communicator
<pre>Get_failed()</pre>	Extract the group of failed processes
<pre>Get_group()</pre>	Access the group associated with a communicator
<pre>Get_info()</pre>	Return the hints for a communicator that are currently
	in use
<pre>Get_name()</pre>	Get the print name for this communicator
<pre>Get_parent()</pre>	Return the parent intercommunicator for this process
Get_rank()	Return the rank of this process in a communicator
Get_size()	Return the number of processes in a communicator
<pre>Get_topology()</pre>	Determine the type of topology (if any) associated
	with a communicator
Iagree(flag)	Non blocking agreement
Iallgather(sendbuf, recvbuf)	Nonblocking Gather to All
Iallgatherv(sendbuf, recvbuf)	Nonblocking Gather to All Vector
<pre>Iallreduce(sendbuf, recvbuf[, op])</pre>	Nonblocking Reduce to All
Ialltoall(sendbuf, recvbuf)	Nonblocking All to All Scatter/Gather
Ialltoallv(sendbuf, recvbuf)	Nonblocking All to All Scatter/Gather Vector
<pre>Ialltoallw(sendbuf, recvbuf)</pre>	Nonblocking Generalized All-to-All
	continues on next ness

continues on next page

Table 2 – continued from previous page

Table 2 – continued from previous page	
Ibarrier()	Nonblocking Barrier
<pre>Ibcast(buf[, root])</pre>	Nonblocking Broadcast
<pre>Ibsend(buf, dest[, tag])</pre>	Nonblocking send in buffered mode
Idup([info])	Nonblocking duplicate an existing communicator
<pre>Idup_with_info(info)</pre>	Duplicate an existing communicator
<pre>Igather(sendbuf, recvbuf[, root])</pre>	Nonblocking Gather
<pre>Igatherv(sendbuf, recvbuf[, root])</pre>	Nonblocking Gather Vector
<pre>Improbe([source, tag, status])</pre>	Nonblocking test for a matched message
<pre>Iprobe([source, tag, status])</pre>	Nonblocking test for a message
<pre>Irecv(buf[, source, tag])</pre>	Nonblocking receive
<pre>Ireduce(sendbuf, recvbuf[, op, root])</pre>	Nonblocking Reduce to Root
<pre>Ireduce_scatter(sendbuf, recvbuf[,])</pre>	Nonblocking Reduce-Scatter (vector version)
<pre>Ireduce_scatter_block(sendbuf, recvbuf[, op])</pre>	Nonblocking Reduce-Scatter Block (regular, non-
	vector version)
Irsend(buf, dest[, tag])	Nonblocking send in ready mode
Is_inter()	Test to see if a comm is an intercommunicator
Is_intra()	Test to see if a comm is an intracommunicator
Is_revoked()	Indicate whether the communicator has been revoked
<pre>Iscatter(sendbuf, recvbuf[, root])</pre>	Nonblocking Scatter
<pre>Iscatterv(sendbuf, recvbuf[, root])</pre>	Nonblocking Scatter Vector
<pre>Isend(buf, dest[, tag])</pre>	Nonblocking send
Isendrecv(sendbuf, dest[, sendtag, recvbuf,])	Nonblocking send and receive
<pre>Isendrecv_replace(buf, dest[, sendtag,])</pre>	Send and receive a message
Ishrink()	Nonblocking shrink a communicator to remove all
v	failed processes
Issend(buf, dest[, tag])	Nonblocking send in synchronous mode
Join(fd)	Create a intercommunicator by joining two processes
	connected by a socket
<pre>Mprobe([source, tag, status])</pre>	Blocking test for a matched message
<pre>Precv_init(buf, partitions[, source, tag, info])</pre>	Create request for a partitioned recv operation
<pre>Probe([source, tag, status])</pre>	Blocking test for a message
<pre>Psend_init(buf, partitions, dest[, tag, info])</pre>	Create request for a partitioned send operation
<pre>Recv(buf[, source, tag, status])</pre>	Blocking receive
<pre>Recv_init(buf[, source, tag])</pre>	Create a persistent request for a receive
<pre>Reduce(sendbuf, recvbuf[, op, root])</pre>	Reduce to Root
<pre>Reduce_init(sendbuf, recvbuf[, op, root, info])</pre>	Persistent Reduce
<pre>Reduce_scatter(sendbuf, recvbuf[,])</pre>	Reduce-Scatter (vector version)
<pre>Reduce_scatter_block(sendbuf, recvbuf[, op])</pre>	Reduce-Scatter Block (regular, non-vector version)
Reduce_scatter_block_init(sendbuf, recvbuf)	Persistent Reduce-Scatter Block (regular, non-vector version)
Reduce_scatter_init(sendbuf, recvbuf[,])	Persistent Reduce-Scatter (vector version)
Revoke()	Revoke a communicator
Rsend(buf, dest[, tag])	Blocking send in ready mode
Rsend_init(buf, dest[, tag])	Persistent request for a send in ready mode
Scatter(sendbuf, recvbuf[, root])	Scatter data from one process to all other processes
Scatter (sendour, recyburg, root)	in a group
<pre>Scatter_init(sendbuf, recvbuf[, root, info])</pre>	Persistent Scatter
Scatterv(sendbuf, recvbuf[, root])	Scatter Vector, scatter data from one process to all
	other processes in a group providing different amount
	of data and displacements at the sending side
Scatterv_init(sendbuf, recvbuf[, root, info])	Persistent Scatter Vector
Send(buf, dest[, tag])	Blocking send

continues on next page

Table 2 – continued from previous page

	moni providuo pago
<pre>Send_init(buf, dest[, tag])</pre>	Create a persistent request for a standard send
Sendrecv(sendbuf, dest[, sendtag, recvbuf,])	Send and receive a message
Sendrecv_replace(buf, dest[, sendtag,])	Send and receive a message
Set_attr(keyval, attrval)	Store attribute value associated with a key
Set_errhandler(errhandler)	Set the error handler for a communicator
Set_info(info)	Set new values for the hints associated with a communicator
Set_name(name)	Set the print name for this communicator
Shrink()	Shrink a communicator to remove all failed processes
Split([color, key])	Split communicator by color and key
<pre>Split_type(split_type[, key, info])</pre>	Split communicator by split type
Ssend(buf, dest[, tag])	Blocking send in synchronous mode
Ssend_init(buf, dest[, tag])	Persistent request for a send in synchronous mode
allgather(sendobj)	Gather to All
allreduce(sendobj[, op])	Reduce to All
alltoall(sendobj)	All to All Scatter/Gather
barrier()	Barrier synchronization
<pre>bcast(obj[, root])</pre>	Broadcast
bsend(obj, dest[, tag])	Send in buffered mode
f2py(arg)	
<pre>gather(sendobj[, root])</pre>	Gather
ibsend(obj, dest[, tag])	Nonblocking send in buffered mode
improbe([source, tag, status])	Nonblocking test for a matched message
iprobe([source, tag, status])	Nonblocking test for a materied message
irecv([buf, source, tag])	Nonblocking receive
isend(obj, dest[, tag])	Nonblocking send
issend(obj, dest[, tag])	Nonblocking send in synchronous mode
mprobe([source, tag, status])	Blocking test for a matched message
probe([source, tag, status])	Blocking test for a message
py2f()	Diocking test for a message
pyzi()	
recv([buf, source, tag, status])	Receive
<pre>reduce(sendobj[, op, root])</pre>	Reduce to Root
<pre>scatter(sendobj[, root])</pre>	Scatter
send(obj, dest[, tag])	Send
<pre>sendrecv(sendobj, dest[, sendtag, recvbuf,])</pre>	Send and Receive
ssend(obj, dest[, tag])	Send in synchronous mode
<u></u>	

Attributes Summary

group	communicator group
info	communicator info
is_inter	is intercommunicator
is_intra	is intracommunicator
is_topo	is a topology communicator
name	communicator name
rank	rank of this process in communicator
size	number of processes in communicator
topology	communicator topology type

Methods Documentation

```
Abort(errorcode=0)
```

Terminate MPI execution environment

Warning: This is a direct call, use it with care!!!.

```
Parameters
            errorcode (int) -
         Return type
            NoReturn
Ack_failed(num_to_ack=None)
     Acknowledge failures on a communicator
         Parameters
            num_to_ack(int | None) -
         Return type
            int
Agree(flag)
     Blocking agreement
         Parameters
             flag(int)-
         Return type
             int
Allgather(sendbuf, recvbuf)
     Gather to All, gather data from all processes and distribute it to all other processes in a group
         Parameters
             • sendbuf (BufSpec / InPlace) -
             • recvbuf (BufSpecB) -
         Return type
            None
Allgather_init(sendbuf, recvbuf, info=INFO_NULL)
     Persistent Gather to All
         Parameters
             • sendbuf (BufSpec / InPlace) -
             • recvbuf (BufSpecB) -
             • info (Info) -
         Return type
             Prequest
```

Allgatherv(*sendbuf*, *recvbuf*)

Gather to All Vector, gather data from all processes and distribute it to all other processes in a group providing different amount of data and displacements

Parameters

- sendbuf (BufSpec / InPlace) -
- recvbuf (BufSpecV) -

Return type

None

Allgatherv_init(sendbuf, recvbuf, info=INFO_NULL)

Persistent Gather to All Vector

Parameters

- sendbuf (BufSpec / InPlace) -
- recvbuf (BufSpecV) -
- info (Info) -

Return type

Prequest

Allreduce(*sendbuf*, *recvbuf*, *op=SUM*)

Reduce to All

Parameters

- sendbuf (BufSpec / InPlace) -
- recvbuf (BufSpec) -
- **op** (0p) –

Return type

None

Allreduce_init(sendbuf, recvbuf, op=SUM, info=INFO_NULL)

Persistent All Reduce

Parameters

- **sendbuf** (BufSpec / InPlace) -
- recvbuf (BufSpec) -
- op (0p) -
- info (Info) -

Return type

Prequest

Alltoall(*sendbuf*, *recvbuf*)

All to All Scatter/Gather, send data from all to all processes in a group

Parameters

- sendbuf (BufSpecB / InPlace) -
- recvbuf (BufSpecB) -

Return type

None

Alltoall_init(sendbuf, recvbuf, info=INFO_NULL)

Persistent All to All Scatter/Gather

Parameters

- sendbuf (BufSpecB / InPlace) -
- recvbuf (BufSpecB) -
- info (Info) -

Return type

Prequest

Alltoallv(*sendbuf*, *recvbuf*)

All to All Scatter/Gather Vector, send data from all to all processes in a group providing different amount of data and displacements

Parameters

- sendbuf (BufSpecV / InPlace) -
- recvbuf (BufSpecV) -

Return type

None

Alltoallv_init(sendbuf, recvbuf, info=INFO NULL)

Persistent All to All Scatter/Gather Vector

Parameters

- sendbuf (BufSpecV / InPlace) -
- recvbuf (BufSpecV) -
- info (Info) -

Return type

Prequest

Alltoallw(sendbuf, recvbuf)

Generalized All-to-All communication allowing different counts, displacements and datatypes for each partner

Parameters

- sendbuf (BufSpecW / InPlace) -
- recvbuf (BufSpecW) -

Return type

None

Alltoallw_init(sendbuf, recvbuf, info=INFO_NULL)

Persistent Generalized All-to-All

Parameters

- sendbuf (BufSpecW / InPlace) -
- recvbuf (BufSpecW) -

```
• info (Info) -
         Return type
             Prequest
Barrier()
     Barrier synchronization
         Return type
             None
Barrier_init(info=INFO_NULL)
     Persistent Barrier
         Parameters
             info (Info) -
         Return type
             Prequest
Bcast(buf, root=0)
     Broadcast a message from one process to all other processes in a group
         Parameters
             • buf (BufSpec) –
             • root (int) -
         Return type
             None
Bcast_init(buf, root=0, info=INFO_NULL)
     Persistent Broadcast
         Parameters
             • buf (BufSpec) -
             • root (int) -
             • info (Info) -
         Return type
             Prequest
Bsend(buf, dest, tag=0)
     Blocking send in buffered mode
         Parameters
             • buf (BufSpec) -
             • dest (int) -
             • tag (int) -
         Return type
             None
Bsend_init(buf, dest, tag=0)
```

Parameters

Persistent request for a send in buffered mode

```
• dest (int) -
            • tag (int) -
        Return type
            Request
Call_errhandler(errorcode)
    Call the error handler installed on a communicator
        Parameters
            errorcode (int) -
        Return type
            None
Clone()
    Clone an existing communicator
        Return type
            Self
Compare(comm)
    Compare two communicators
        Parameters
            comm (Comm) -
        Return type
            int
Create(group)
    Create communicator from group
        Parameters
            group (Group) -
        Return type
            Comm
classmethod Create_errhandler(errhandler_fn)
    Create a new error handler for communicators
        Parameters
            errhandler_fn (Callable[[Comm, int], None]) -
        Return type
            Errhandler
classmethod Create_keyval(copy_fn=None, delete_fn=None, nopython=False)
    Create a new attribute key for communicators
        Parameters
            • copy_fn (Callable[[Comm, int, Any], Any] | None) -
            • delete_fn(Callable[[Comm, int, Any], None] | None) -
            • nopython (bool) -
        Return type
            int
```

```
Delete_attr(keyval)
     Delete attribute value associated with a key
         Parameters
            keyval (int) -
         Return type
            None
Disconnect()
     Disconnect from a communicator
         Return type
            None
Dup(info=None)
     Duplicate an existing communicator
         Parameters
             info (Info | None) -
         Return type
            Self
Dup_with_info(info)
     Duplicate an existing communicator
         Parameters
            info (Info) -
         Return type
            Self
Free()
     Free a communicator
         Return type
             None
classmethod Free_keyval(keyval)
     Free an attribute key for communicators
         Parameters
            keyval (int) -
         Return type
            int
Gather(sendbuf, recvbuf, root=0)
     Gather together values from a group of processes
         Parameters
             • sendbuf (BufSpec / InPlace) -
             • recvbuf (BufSpecB / None) -
             • root (int) -
         Return type
            None
```

```
Gather_init(sendbuf, recvbuf, root=0, info=INFO_NULL)
Persistent Gather
```

Parameters

- sendbuf (BufSpec / InPlace) –recvbuf (BufSpecB / None) –
- root (int) -
- info (Info) -

Return type

Prequest

Gatherv(sendbuf, recvbuf, root=0)

Gather Vector, gather data to one process from all other processes in a group providing different amount of data and displacements at the receiving sides

Parameters

- sendbuf (BufSpec / InPlace) -
- recvbuf (BufSpecV / None) -
- root (int) -

Return type

None

Gatherv_init(sendbuf, recvbuf, root=0, info=INFO_NULL)

Persistent Gather Vector

Parameters

- **sendbuf** (BufSpec / InPlace) -
- recvbuf (BufSpecV / None) -
- root (int) -
- info (Info) -

Return type

Prequest

Get_attr(keyval)

Retrieve attribute value by key

Parameters

keyval (int) -

Return type

int | Any | None

Get_errhandler()

Get the error handler for a communicator

Return type

Errhandler

```
Get_failed()
     Extract the group of failed processes
         Return type
             Group
Get_group()
     Access the group associated with a communicator
         Return type
             Group
Get_info()
     Return the hints for a communicator that are currently in use
         Return type
             Info
Get_name()
     Get the print name for this communicator
         Return type
classmethod Get_parent()
     Return the parent intercommunicator for this process
         Return type
             Intercomm
Get_rank()
     Return the rank of this process in a communicator
         Return type
             int
Get_size()
     Return the number of processes in a communicator
         Return type
             int
Get_topology()
     Determine the type of topology (if any) associated with a communicator
         Return type
             int
Iagree(flag)
     Non blocking agreement
         Parameters
             flag (Buffer) -
         Return type
             Request
Iallgather(sendbuf, recvbuf)
     Nonblocking Gather to All
```

Parameters

- sendbuf (BufSpec / InPlace) -
- recvbuf (BufSpecB) -

Return type

Request

Iallgatherv(sendbuf, recvbuf)

Nonblocking Gather to All Vector

Parameters

- sendbuf (BufSpec / InPlace) -
- recvbuf (BufSpecV) -

Return type

Request

Iallreduce(sendbuf, recvbuf, op=SUM)

Nonblocking Reduce to All

Parameters

- sendbuf (BufSpec / InPlace) -
- recvbuf (BufSpec) -
- op (0p) -

Return type

Request

Ialltoall(sendbuf, recvbuf)

Nonblocking All to All Scatter/Gather

Parameters

- sendbuf (BufSpecB / InPlace) -
- recvbuf (BufSpecB) -

Return type

Request

Ialltoallv(sendbuf, recvbuf)

Nonblocking All to All Scatter/Gather Vector

Parameters

- sendbuf (BufSpecV / InPlace) -
- recvbuf (BufSpecV) -

Return type

Request

Ialltoallw(sendbuf, recvbuf)

Nonblocking Generalized All-to-All

- sendbuf (BufSpecW / InPlace) -
- recvbuf (BufSpecW) -

```
Return type
```

Request

Ibarrier()

Nonblocking Barrier

Return type

Request

Ibcast(buf, root=0)

Nonblocking Broadcast

Parameters

- buf (BufSpec) -
- root (int) -

Return type

Request

Ibsend(buf, dest, tag=0)

Nonblocking send in buffered mode

Parameters

- buf (BufSpec) -
- dest (int) -
- tag (int) -

Return type

Request

Idup(info=None)

Nonblocking duplicate an existing communicator

Parameters

info (Info | None) -

Return type

tuple[Self, Request]

Idup_with_info(info)

Duplicate an existing communicator

Parameters

info (Info) -

Return type

tuple[Self, Request]

Igather(sendbuf, recvbuf, root=0)

Nonblocking Gather

- sendbuf (BufSpec / InPlace) -
- recvbuf (BufSpecB / None) -
- **root** (*int*) -

Return type

Request

Igatherv(sendbuf, recvbuf, root=0)

Nonblocking Gather Vector

Parameters

- sendbuf (BufSpec / InPlace) -
- recvbuf (BufSpecV / None) -
- root (int) -

Return type

Request

Improbe(source=ANY_SOURCE, tag=ANY_TAG, status=None)

Nonblocking test for a matched message

Parameters

- source (int) -
- tag (int) -
- status (Status / None) -

Return type

Message | None

 $\textbf{Iprobe}(\textit{source=ANY_SOURCE}, \textit{tag=ANY_TAG}, \textit{status=None})$

Nonblocking test for a message

Parameters

- source (int) -
- tag (int) -
- status (Status | None) -

Return type

bool

Irecv(buf, source=ANY_SOURCE, tag=ANY_TAG)

Nonblocking receive

Parameters

- buf (BufSpec) -
- source (int) -
- tag (int) -

Return type

Request

Ireduce(sendbuf, recvbuf, op=SUM, root=0)

Nonblocking Reduce to Root

- sendbuf (BufSpec / InPlace) -
- recvbuf (BufSpec / None) -

```
• op (0p) -
```

• root (int) -

Return type

Request

Ireduce_scatter(sendbuf, recvbuf, recvcounts=None, op=SUM)

Nonblocking Reduce-Scatter (vector version)

Parameters

- sendbuf (BufSpec / InPlace) -
- recvbuf (BufSpec) -
- recvcounts (Sequence[int] | None) -
- **op** (0p) –

Return type

Request

Ireduce_scatter_block(sendbuf, recvbuf, op=SUM)

Nonblocking Reduce-Scatter Block (regular, non-vector version)

Parameters

- sendbuf (BufSpecB / InPlace) -
- recvbuf (BufSpec / BufSpecB) -
- **op** (0p) –

Return type

Request

Irsend(buf, dest, tag=0)

Nonblocking send in ready mode

Parameters

- buf (BufSpec) -
- dest (int) -
- tag (int) -

Return type

Request

Is_inter()

Test to see if a comm is an intercommunicator

Return type

bool

Is_intra()

Test to see if a comm is an intracommunicator

Return type

bool

Is_revoked()

Indicate whether the communicator has been revoked

Return type

bool

Iscatter(sendbuf, recvbuf, root=0)

Nonblocking Scatter

Parameters

- sendbuf (BufSpecB / None) -
- recvbuf (BufSpec / InPlace) -
- root (int) -

Return type

Request

Iscatterv(sendbuf, recvbuf, root=0)

Nonblocking Scatter Vector

Parameters

- sendbuf (BufSpecV / None) -
- recvbuf (BufSpec / InPlace) -
- root (int) -

Return type

Request

Isend(buf, dest, tag=0)

Nonblocking send

Parameters

- **buf** (BufSpec) -
- **dest** (*int*) -
- tag (int) -

Return type

Request

Isendrecv(*sendbuf*, *dest*, *sendtag*=0, *recvbuf*=None, *source*=ANY_SOURCE, *recvtag*=ANY_TAG)

Nonblocking send and receive

Parameters

- sendbuf (BufSpec) -
- **dest** (int) -
- sendtag (int) -
- recvbuf (BufSpec / None) -
- source (int) -
- recvtag (int) -

Return type

Request

```
Isendrecv_replace(buf, dest, sendtag=0, source=ANY_SOURCE, recvtag=ANY_TAG)
```

Send and receive a message

Note: This function is guaranteed not to deadlock in situations where pairs of blocking sends and receives may deadlock.

Caution: A common mistake when using this function is to mismatch the tags with the source and destination ranks, which can result in deadlock.

Parameters

- buf (BufSpec) -
- dest (int) -
- sendtag (int) -
- source (int) -
- recvtag (int) -

Return type

Request

Ishrink()

Nonblocking shrink a communicator to remove all failed processes

Return type

tuple[Comm, Request]

Issend(buf, dest, tag=0)

Nonblocking send in synchronous mode

Parameters

- buf (BufSpec) -
- dest (int) -
- tag (int) -

Return type

Request

classmethod Join(fd)

Create a intercommunicator by joining two processes connected by a socket

```
Parameters
```

fd(int)-

Return type

Intercomm

Mprobe(source=ANY_SOURCE, tag=ANY_TAG, status=None)

Blocking test for a matched message

Parameters

• source (int) -

```
• tag (int) -
```

• status (Status / None) -

Return type

Message

Precv_init(buf, partitions, source=ANY_SOURCE, tag=ANY_TAG, info=INFO_NULL)

Create request for a partitioned recv operation

Parameters

- buf (BufSpec) -
- partitions (int) -
- source (int) -
- tag(int)-
- info (Info) -

Return type

Prequest

Probe(*source=ANY_SOURCE*, *tag=ANY_TAG*, *status=None*)

Blocking test for a message

Note: This function blocks until the message arrives.

Parameters

- source (int) -
- tag (int) -
- status (Status / None) -

Return type

Literal[True]

Psend_init(buf, partitions, dest, tag=0, info=INFO_NULL)

Create request for a partitioned send operation

Parameters

- buf (BufSpec) -
- partitions (int) -
- dest (int) -
- **tag** (*int*) -
- info (Info) -

Return type

Note: This function blocks until the message is received

```
Parameters
```

- buf (BufSpec) -
- source (int) -
- tag (int) -
- status (Status / None) -

Return type

None

Recv_init(buf, source=ANY_SOURCE, tag=ANY_TAG)

Create a persistent request for a receive

Parameters

- buf (BufSpec) -
- source (int) -
- tag (int) -

Return type

Prequest

Reduce(sendbuf, recvbuf, op=SUM, root=0)

Reduce to Root

Parameters

- sendbuf (BufSpec / InPlace) -
- recvbuf (BufSpec / None) -
- op (0p) -
- root (int) -

Return type

None

Reduce_init(sendbuf, recvbuf, op=SUM, root=0, info=INFO_NULL)

Persistent Reduce

- sendbuf (BufSpec / InPlace) -
- recvbuf (BufSpec / None) -
- **op** (0p) –
- root (int) -
- info (Info) -

```
Return type
```

Prequest

```
Reduce_scatter(sendbuf, recvbuf, recvcounts=None, op=SUM)
```

Reduce-Scatter (vector version)

Parameters

- sendbuf (BufSpec / InPlace) -
- recvbuf (BufSpec) -
- recvcounts (Sequence[int] | None) -
- op (0p) -

Return type

None

Reduce_scatter_block(sendbuf, recvbuf, op=SUM)

Reduce-Scatter Block (regular, non-vector version)

Parameters

- sendbuf (BufSpecB / InPlace) -
- recvbuf (BufSpec / BufSpecB) -
- op (0p) -

Return type

None

Reduce_scatter_block_init(sendbuf, recvbuf, op=SUM, info=INFO_NULL)

Persistent Reduce-Scatter Block (regular, non-vector version)

Parameters

- sendbuf (BufSpecB / InPlace) -
- recvbuf (BufSpec | BufSpecB) -
- op (0p) -
- info (Info) -

Return type

Prequest

Reduce_scatter_init(sendbuf, recvbuf, recvcounts=None, op=SUM, info=INFO_NULL)

Persistent Reduce-Scatter (vector version)

Parameters

- sendbuf (BufSpec / InPlace) -
- recvbuf (BufSpec) -
- recvcounts (Sequence[int] | None) -
- op (0p) -
- info (Info) -

Return type

```
Revoke()
```

Revoke a communicator

Return type

None

Rsend(buf, dest, tag=0)

Blocking send in ready mode

Parameters

- buf (BufSpec) -
- dest (int) -
- **tag** (*int*) -

Return type

None

Rsend_init(buf, dest, tag=0)

Persistent request for a send in ready mode

Parameters

- buf (BufSpec) -
- dest (int) -
- tag (int) -

Return type

Request

Scatter(sendbuf, recvbuf, root=0)

Scatter data from one process to all other processes in a group

Parameters

- sendbuf (BufSpecB / None) -
- recvbuf (BufSpec / InPlace) -
- root (int) -

Return type

None

Scatter_init(sendbuf, recvbuf, root=0, info=INFO_NULL)

Persistent Scatter

Parameters

- sendbuf (BufSpecB / None) -
- recvbuf (BufSpec / InPlace) -
- root (int) -
- info (Info) -

Return type

Scatterv(*sendbuf*, *recvbuf*, *root=0*)

Scatter Vector, scatter data from one process to all other processes in a group providing different amount of data and displacements at the sending side

Parameters

- sendbuf (BufSpecV / None) –
 recvbuf (BufSpec / InPlace) –
 root (int) –
- Return type

None

Scatterv_init(sendbuf, recvbuf, root=0, info=INFO_NULL)

Persistent Scatter Vector

Parameters

- sendbuf (BufSpecV / None) –
 recvbuf (BufSpec / InPlace) –
 root (int) –
- info (Info) –

Return type

Prequest

Send(buf, dest, tag=0)

Blocking send

Note: This function may block until the message is received. Whether or not *Send* blocks depends on several factors and is implementation dependent

Parameters

- buf (BufSpec) -
- **dest** (int) -
- tag (int) -

Return type

None

Send_init(buf, dest, tag=0)

Create a persistent request for a standard send

Parameters

- buf (BufSpec) -
- **dest** (*int*) -
- tag (int) -

Return type

Sendrecv(sendbuf, dest, sendtag=0, recvbuf=None, source=ANY_SOURCE, recvtag=ANY_TAG, status=None)

Send and receive a message

Note: This function is guaranteed not to deadlock in situations where pairs of blocking sends and receives may deadlock.

Caution: A common mistake when using this function is to mismatch the tags with the source and destination ranks, which can result in deadlock.

Parameters

- sendbuf (BufSpec) -
- dest (int) -
- sendtag (int) -
- recvbuf (BufSpec / None) -
- source (int) -
- recvtag (int) -
- status (Status | None) -

Return type

None

Sendrecv_replace(buf, dest, sendtag=0, source=ANY_SOURCE, recvtag=ANY_TAG, status=None)
Send and receive a message

Note: This function is guaranteed not to deadlock in situations where pairs of blocking sends and receives may deadlock.

Caution: A common mistake when using this function is to mismatch the tags with the source and destination ranks, which can result in deadlock.

Parameters

- buf (BufSpec) -
- dest (int) -
- sendtag (int) -
- source (int) -
- recvtag (int) -
- status (Status | None) -

Return type

None

```
Set_attr(keyval, attrval)
    Store attribute value associated with a key
         Parameters
             • keyval (int) -
             • attrval (Any) -
         Return type
            None
Set_errhandler(errhandler)
    Set the error handler for a communicator
         Parameters
             errhandler (Errhandler) -
         Return type
            None
Set_info(info)
     Set new values for the hints associated with a communicator
         Parameters
             info (Info) -
         Return type
            None
Set_name(name)
     Set the print name for this communicator
         Parameters
            name (str) -
         Return type
            None
Shrink()
     Shrink a communicator to remove all failed processes
         Return type
            Comm
Split(color=0, key=0)
     Split communicator by color and key
         Parameters
             • color (int) -
             • key (int) -
         Return type
            Comm
Split_type(split_type, key=0, info=INFO_NULL)
     Split communicator by split type
         Parameters
```

• split_type (int) -

```
• key (int) -
```

• info (Info) -

Return type

Comm

Ssend(buf, dest, tag=0)

Blocking send in synchronous mode

Parameters

- **buf** (BufSpec) -
- dest (int) -
- tag (int) -

Return type

None

Ssend_init(buf, dest, tag=0)

Persistent request for a send in synchronous mode

Parameters

- buf (BufSpec) -
- dest (int) -
- tag (int) -

Return type

Request

allgather(sendobj)

Gather to All

Parameters

sendobj (Any) -

Return type

list[Any]

allreduce(sendobj, op=SUM)

Reduce to All

Parameters

- sendobj (Any) -
- op (Op | Callable[[Any, Any], Any]) -

Return type

Any

alltoall(sendobj)

All to All Scatter/Gather

Parameters

sendobj (Sequence[Any]) -

Return type

list[Any]

barrier()

Barrier synchronization

Note: This method is equivalent to *Comm.Barrier()*

Return type

None

bcast(obj, root=0)

Broadcast

Parameters

- **obj** (*Any*) –
- root (int) -

Return type

Any

bsend(obj, dest, tag=0)

Send in buffered mode

Parameters

- **obj** (*Any*) –
- **dest** (*int*) -
- tag (int) -

Return type

None

classmethod f2py(arg)

Parameters

arg(int)-

Return type

Comm

gather(sendobj, root=0)

Gather

Parameters

- sendobj (Any) -
- **root** (*int*) -

Return type

list[Any] | None

ibsend(obj, dest, tag=0)

Nonblocking send in buffered mode

- **obj** (*Any*) –
- **dest** (*int*) -

```
• tag (int) -
```

Return type

Request

improbe(source=ANY_SOURCE, tag=ANY_TAG, status=None)

Nonblocking test for a matched message

Parameters

- source (int) -
- tag (int) -
- status (Status / None) -

Return type

Message | None

iprobe(source=ANY_SOURCE, tag=ANY_TAG, status=None)

Nonblocking test for a message

Parameters

- source (int) -
- tag (int) -
- status (Status / None) -

Return type

bool

irecv(buf=None, source=ANY_SOURCE, tag=ANY_TAG)

Nonblocking receive

Parameters

- buf (Buffer / None) -
- source (int) -
- tag (int) -

Return type

Request

isend(obj, dest, tag=0)

Nonblocking send

Parameters

- **obj** (*Any*) –
- dest (int) -
- tag (int) -

Return type

Request

issend(obj, dest, tag=0)

Nonblocking send in synchronous mode

Parameters

• **obj** (*Any*) -

```
• dest (int) –
```

• tag (int) -

Return type

Request

mprobe(source=ANY_SOURCE, tag=ANY_TAG, status=None)

Blocking test for a matched message

Parameters

- source (int) -
- tag (int) -
- status (Status / None) -

Return type

Message

probe(source=ANY_SOURCE, tag=ANY_TAG, status=None)

Blocking test for a message

Parameters

- source (int) -
- tag (int) -
- status (Status / None) -

Return type

Literal[True]

py2f()

Return type

int

recv(buf=None, source=ANY_SOURCE, tag=ANY_TAG, status=None)

Receive

Parameters

- buf (Buffer / None) -
- source (int) -
- tag(int)-
- status (Status / None) -

Return type

Any

reduce(sendobj, op=SUM, root=0)

Reduce to Root

- sendobj (Any) -
- op (Op | Callable[[Any, Any], Any]) -
- **root** (*int*) -

```
Return type
            Any | None
scatter(sendobj, root=0)
    Scatter
        Parameters
            • sendobj (Sequence[Any] | None) -
            • root (int) -
        Return type
            Any
send(obj, dest, tag=0)
    Send
        Parameters
            • obj (Any) –
            • dest (int) -
            • tag (int) -
        Return type
            None
sendrecv(sendobj, dest, sendtag=0, recvbuf=None, source=ANY_SOURCE, recvtag=ANY_TAG,
          status=None)
    Send and Receive
        Parameters
            • sendobj (Any) -
            • dest (int) -
            • sendtag (int) -
            • recvbuf (Buffer / None) -
            • source (int) -
            • recvtag (int) -
             • status (Status / None) -
        Return type
            Any
ssend(obj, dest, tag=0)
    Send in synchronous mode
        Parameters
            • obj (Any) –
            • dest (int) -
            • tag (int) -
```

Return type None

Attributes Documentation

```
group
```

communicator group

info

communicator info

is_inter

is intercommunicator

is_intra

is intracommunicator

is_topo

is a topology communicator

name

communicator name

rank

rank of this process in communicator

size

number of processes in communicator

topology

communicator topology type

mpi4py.MPI.Datatype

```
class mpi4py.MPI.Datatype
```

Bases: object

Datatype object

static __new__(cls, datatype=None)

Parameters

datatype (Datatype / None) -

Return type

Datatype

Methods Summary

Commit()	Commit the datatype
Create_contiguous(count)	Create a contiguous datatype
Create_darray(size, rank, gsizes, distribs,)	Create a datatype representing an HPF-like distributed array on Cartesian process grids
<pre>Create_f90_complex(p, r)</pre>	Return a bounded complex datatype
Create_f90_integer(r)	Return a bounded integer datatype
Create_f90_real(p,r)	Return a bounded real datatype

continues on next page

Table 3 – continued from previous page

Table 3 – continued	from previous page
<pre>Create_hindexed(blocklengths, displacements)</pre>	Create an indexed datatype with displacements in bytes
<pre>Create_hindexed_block(blocklength, displace- ments)</pre>	Create an indexed datatype with constant-sized blocks and displacements in bytes
<pre>Create_hvector(count, blocklength, stride)</pre>	Create a vector (strided) datatype
<pre>Create_indexed(blocklengths, displacements)</pre>	Create an indexed datatype
<pre>Create_indexed_block(blocklength, displace- ments)</pre>	Create an indexed datatype with constant-sized blocks
<pre>Create_keyval([copy_fn, delete_fn, nopython])</pre>	Create a new attribute key for datatypes
Create_resized(lb, extent)	Create a datatype with a new lower bound and extent
Create_struct(blocklengths, displacements,)	Create an datatype from a general set of block sizes, displacements and datatypes
<pre>Create_subarray(sizes, subsizes, starts[, order])</pre>	Create a datatype for a subarray of a regular, multidimensional array
<pre>Create_vector(count, blocklength, stride)</pre>	Create a vector (strided) datatype
Delete_attr(keyval)	Delete attribute value associated with a key
Dup()	Duplicate a datatype
Free()	Free the datatype
Free_keyval(keyval)	Free an attribute key for datatypes
<pre>Get_attr(keyval)</pre>	Retrieve attribute value by key
<pre>Get_contents()</pre>	Retrieve the actual arguments used in the call that created a datatype
<pre>Get_envelope()</pre>	Return information on the number and type of input arguments used in the call that created a datatype
<pre>Get_extent()</pre>	Return lower bound and extent of datatype
<pre>Get_name()</pre>	Get the print name for this datatype
<pre>Get_size()</pre>	Return the number of bytes occupied by entries in the datatype
<pre>Get_true_extent()</pre>	Return the true lower bound and extent of a datatype
<pre>Match_size(typeclass, size)</pre>	Find a datatype matching a specified size in bytes
<pre>Pack(inbuf, outbuf, position, comm)</pre>	Pack into contiguous memory according to datatype.
<pre>Pack_external(datarep, inbuf, outbuf, position)</pre>	Pack into contiguous memory according to datatype, using a portable data representation (external32).
Pack_external_size(datarep, count)	Return the upper bound on the amount of space (in bytes) needed to pack a message according to datatype, using a portable data representation (external32).
<pre>Pack_size(count, comm)</pre>	Return the upper bound on the amount of space (in bytes) needed to pack a message according to datatype.
Set_attr(keyval, attrval)	Store attribute value associated with a key
Set_name(name)	Set the print name for this datatype
<pre>Unpack(inbuf, position, outbuf, comm)</pre>	Unpack from contiguous memory according to datatype.
<pre>Unpack_external(datarep, inbuf, position, outbuf)</pre>	Unpack from contiguous memory according to datatype, using a portable data representation (external32).
decode()	Convenience method for decoding a datatype
f2py(arg)	
fromcode(code)	Get predefined MPI datatype from character code or type string
	continues on next page

continues on next page

Table 3 – continued from previous page

py2f()	
tocode()	Get character code or type string from predefined MPI datatype

Attributes Summary

combiner	datatype combiner
contents	datatype contents
envelope	datatype envelope
extent	
is_named	is a named datatype
is_predefined	is a predefined datatype
1b	lower bound
name	datatype name
size	
true_extent	true extent
true_lb	true lower bound
true_ub	true upper bound
typechar	character code
typestr	type string
ub	upper bound

Methods Documentation

Commit()

Commit the datatype

Return type

Self

Create_contiguous(count)

Create a contiguous datatype

Parameters

count (int) -

Return type

Self

Create_darray(size, rank, gsizes, distribs, dargs, psizes, order=ORDER_C)

Create a datatype representing an HPF-like distributed array on Cartesian process grids

- **size** (int) -
- rank (int) -
- gsizes (Sequence[int]) -
- **distribs** (Sequence[int]) -

```
• dargs (Sequence[int]) -
```

- psizes (Sequence[int]) -
- order (int) -

Return type

Self

classmethod Create_f90_complex(p, r)

Return a bounded complex datatype

Parameters

- **p**(int)-
- **r**(int)-

Return type

Self

classmethod Create_f90_integer(r)

Return a bounded integer datatype

Parameters

r (int) -

Return type

Self

classmethod Create_f90_real(p, r)

Return a bounded real datatype

Parameters

- **p**(int)-
- **r** (int) -

Return type

Self

Create_hindexed(blocklengths, displacements)

Create an indexed datatype with displacements in bytes

Parameters

- blocklengths (Sequence[int]) -
- displacements (Sequence[int]) -

Return type

Self

${\bf Create_hindexed_block} (blocklength, \textit{displacements})$

Create an indexed datatype with constant-sized blocks and displacements in bytes

Parameters

- blocklength (int) -
- displacements (Sequence[int]) -

Return type

Self

```
Create_hvector(count, blocklength, stride)
     Create a vector (strided) datatype
         Parameters
             • count (int) -
             • blocklength (int) -
             • stride (int) -
         Return type
            Self
Create_indexed(blocklengths, displacements)
     Create an indexed datatype
         Parameters
             • blocklengths (Sequence[int]) -
             • displacements (Sequence[int]) -
         Return type
            Self
Create_indexed_block(blocklength, displacements)
     Create an indexed datatype with constant-sized blocks
         Parameters
             • blocklength (int) -
             • displacements (Sequence[int]) -
         Return type
            Self
classmethod Create_keyval(copy_fn=None, delete_fn=None, nopython=False)
     Create a new attribute key for datatypes
         Parameters
             • copy_fn (Callable[[Datatype, int, Any], Any] | None) -
             • delete_fn(Callable[[Datatype, int, Any], None] | None) -
             • nopython (bool) -
         Return type
            int
Create_resized(lb, extent)
     Create a datatype with a new lower bound and extent
         Parameters
             • lb (int) -
             • extent (int) -
```

Return type Self

```
classmethod Create_struct(blocklengths, displacements, datatypes)
     Create an datatype from a general set of block sizes, displacements and datatypes
         Parameters
             • blocklengths (Sequence[int]) -
             • displacements (Sequence[int]) -
             • datatypes (Sequence[Datatype]) -
         Return type
             Self
Create_subarray(sizes, subsizes, starts, order=ORDER_C)
     Create a datatype for a subarray of a regular, multidimensional array
         Parameters
             • sizes (Sequence[int]) -
             • subsizes (Sequence[int]) -
             • starts (Sequence[int]) -
             • order (int) -
         Return type
             Self
Create_vector(count, blocklength, stride)
     Create a vector (strided) datatype
         Parameters
             • count (int) -
             • blocklength (int) -
             • stride (int) -
         Return type
             Self
Delete_attr(keyval)
     Delete attribute value associated with a key
         Parameters
             keyval (int) -
         Return type
             None
Dup()
     Duplicate a datatype
         Return type
```

Self

Return type None

Free the datatype

Free()

```
classmethod Free_keyval(keyval)
     Free an attribute key for datatypes
         Parameters
             keyval (int) -
         Return type
             int
Get_attr(keyval)
     Retrieve attribute value by key
         Parameters
             keyval (int) -
         Return type
             int | Any | None
Get_contents()
     Retrieve the actual arguments used in the call that created a datatype
         Return type
             tuple[list[int], list[int], list[int], list[Datatype]]
Get_envelope()
     Return information on the number and type of input arguments used in the call that created a datatype
         Return type
             tuple[int, int, int, int, int]
Get_extent()
     Return lower bound and extent of datatype
         Return type
             tuple[int, int]
Get_name()
     Get the print name for this datatype
         Return type
             str
Get_size()
     Return the number of bytes occupied by entries in the datatype
         Return type
             int
Get_true_extent()
     Return the true lower bound and extent of a datatype
         Return type
             tuple[int, int]
classmethod Match_size(typeclass, size)
     Find a datatype matching a specified size in bytes
         Parameters
              • typeclass (int) -
              • size (int) -
```

```
Return type
```

```
Self
```

Pack(inbuf, outbuf, position, comm)

Pack into contiguous memory according to datatype.

Parameters

- inbuf (BufSpec) -
- outbuf (BufSpec) -
- position (int) -
- comm (Comm) -

Return type

int

Pack_external(datarep, inbuf, outbuf, position)

Pack into contiguous memory according to datatype, using a portable data representation (external32).

Parameters

- datarep (str) -
- inbuf (BufSpec) -
- outbuf (BufSpec) -
- position (int) -

Return type

int

Pack_external_size(datarep, count)

Return the upper bound on the amount of space (in bytes) needed to pack a message according to datatype, using a portable data representation (**external32**).

Parameters

- datarep (str) -
- count (int) -

Return type

int

Pack_size(count, comm)

Return the upper bound on the amount of space (in bytes) needed to pack a message according to datatype.

Parameters

- count (int) -
- **comm** (Comm) -

Return type

int

Set_attr(keyval, attrval)

Store attribute value associated with a key

Parameters

• keyval (int) -

```
• attrval (Any) -
         Return type
             None
Set_name(name)
     Set the print name for this datatype
         Parameters
            name (str) -
         Return type
             None
Unpack(inbuf, position, outbuf, comm)
     Unpack from contiguous memory according to datatype.
         Parameters
             • inbuf (BufSpec) -
             • position (int) -
             • outbuf (BufSpec) -
             • comm (Comm) -
         Return type
Unpack_external(datarep, inbuf, position, outbuf)
     Unpack from contiguous memory according to datatype, using a portable data representation (external32).
         Parameters
             • datarep (str) -
             • inbuf (BufSpec) -
             • position (int) -
             • outbuf (BufSpec) -
         Return type
             int
decode()
    Convenience method for decoding a datatype
         Return type
             tuple[Datatype, str, dict[str, Any]]
classmethod f2py(arg)
         Parameters
             arg(int)-
         Return type
             Datatype
classmethod fromcode(code)
     Get predefined MPI datatype from character code or type string
         Parameters
             code (str) -
```

```
Return type
```

Datatype

py2f()

Return type

int

tocode()

Get character code or type string from predefined MPI datatype

Return type

str

Attributes Documentation

combiner

datatype combiner

contents

datatype contents

envelope

datatype envelope

extent

is_named

is a named datatype

is_predefined

is a predefined datatype

1b

lower bound

name

datatype name

size

true_extent

true extent

true_lb

true lower bound

true_ub

true upper bound

typechar

character code

typestr

type string

ub

upper bound

mpi4py.MPI.Distgraphcomm

class mpi4py.MPI.Distgraphcomm

Bases: Topocomm

Distributed graph topology intracommunicator

static __new__(cls, comm=None)

Parameters

comm (Distgraphcomm / None) -

Return type

Distgraphcomm

Methods Summary

<pre>Get_dist_neighbors()</pre>	Return adjacency information for a distributed graph topology
<pre>Get_dist_neighbors_count()</pre>	Return adjacency information for a distributed graph topology

Methods Documentation

Get_dist_neighbors()

Return adjacency information for a distributed graph topology

Return type

tuple[list[int], list[int], tuple[list[int], list[int]] | None]

Get_dist_neighbors_count()

Return adjacency information for a distributed graph topology

Return type

int

mpi4py.MPI.Errhandler

class mpi4py.MPI.Errhandler

Bases: object

Error handler

static __new__(cls, errhandler=None)

Parameters

errhandler (Errhandler / None) -

Return type

Errhandler

Methods Summary

Free()	Free an error handler
f2py(arg)	
py2f()	
F) ()	

Methods Documentation

```
Free ()
Free an error handler

Return type
None

Classmethod f2py(arg)

Parameters
arg (int) -

Return type
Errhandler

py2f()

Return type
int
```

mpi4py.MPI.File

```
class mpi4py.MPI.File
    Bases: object
    File handle
    static __new__(cls, file=None)
        Parameters
        file (File | None) -
        Return type
        File
```

Methods Summary

Call_errhandler(errorcode)	Call the error handler installed on a file
Close()	Close a file
<pre>Create_errhandler(errhandler_fn)</pre>	Create a new error handler for files
<pre>Delete(filename[, info])</pre>	Delete a file
<pre>Get_amode()</pre>	Return the file access mode
<pre>Get_atomicity()</pre>	Return the atomicity mode

continues on next page

Table 4 – continued from previous page

lable 4 – continued	d from previous page
<pre>Get_byte_offset(offset)</pre>	Return the absolute byte position in the file corre-
	sponding to 'offset' etypes relative to the current view
<pre>Get_errhandler()</pre>	Get the error handler for a file
<pre>Get_group()</pre>	Return the group of processes that opened the file
<pre>Get_info()</pre>	Return the hints for a file that that are currently in use
<pre>Get_position()</pre>	Return the current position of the individual file
	pointer in etype units relative to the current view
<pre>Get_position_shared()</pre>	Return the current position of the shared file pointer
	in etype units relative to the current view
<pre>Get_size()</pre>	Return the file size
<pre>Get_type_extent(datatype)</pre>	Return the extent of datatype in the file
<pre>Get_view()</pre>	Return the file view
Iread(buf)	Nonblocking read using individual file pointer
Iread_all(buf)	Nonblocking collective read using individual file
	pointer
<pre>Iread_at(offset, buf)</pre>	Nonblocking read using explicit offset
<pre>Iread_at_all(offset, buf)</pre>	Nonblocking collective read using explicit offset
Iread_shared(buf)	Nonblocking read using shared file pointer
Iwrite(buf)	Nonblocking write using individual file pointer
<pre>Iwrite_all(buf)</pre>	Nonblocking collective write using individual file
	pointer
<pre>Iwrite_at(offset, buf)</pre>	Nonblocking write using explicit offset
<pre>Iwrite_at_all(offset, buf)</pre>	Nonblocking collective write using explicit offset
<pre>Iwrite_shared(buf)</pre>	Nonblocking write using shared file pointer
Open(comm, filename[, amode, info])	Open a file
Preallocate(size)	Preallocate storage space for a file
Read(buf[, status])	Read using individual file pointer
Read_all(buf[, status])	Collective read using individual file pointer
Read_all_begin(buf)	Start a split collective read using individual file
	pointer
Read_all_end(buf[, status])	Complete a split collective read using individual file
	pointer
<pre>Read_at(offset, buf[, status])</pre>	Read using explicit offset
<pre>Read_at_all(offset, buf[, status])</pre>	Collective read using explicit offset
<pre>Read_at_all_begin(offset, buf)</pre>	Start a split collective read using explicit offset
<pre>Read_at_all_end(buf[, status])</pre>	Complete a split collective read using explicit offset
Read_ordered(buf[, status])	Collective read using shared file pointer
Read_ordered_begin(buf)	Start a split collective read using shared file pointer
Read_ordered_end(buf[, status])	Complete a split collective read using shared file
	pointer
Read_shared(buf[, status])	Read using shared file pointer
Seek(offset[, whence])	Update the individual file pointer
Seek_shared(offset[, whence])	Update the shared file pointer
Set_atomicity(flag)	Set the atomicity mode
Set_errhandler(errhandler)	Set the error handler for a file
Set_info(info)	Set new values for the hints associated with a file
Set_size(size)	Set the file size
<pre>Set_view([disp, etype, filetype, datarep, info])</pre>	Set the file view
Sync()	Causes all previous writes to be transferred to the stor-
	age device
<pre>Write(buf[, status])</pre>	Write using individual file pointer
<pre>Write_all(buf[, status])</pre>	Collective write using individual file pointer
	continues on next page

continues on next page

Table 4 – continued from previous page

	1 1 0
Write_all_begin(buf)	Start a split collective write using individual file pointer
<pre>Write_all_end(buf[, status])</pre>	Complete a split collective write using individual file pointer
<pre>Write_at(offset, buf[, status])</pre>	Write using explicit offset
<pre>Write_at_all(offset, buf[, status])</pre>	Collective write using explicit offset
<pre>Write_at_all_begin(offset, buf)</pre>	Start a split collective write using explicit offset
<pre>Write_at_all_end(buf[, status])</pre>	Complete a split collective write using explicit offset
<pre>Write_ordered(buf[, status])</pre>	Collective write using shared file pointer
Write_ordered_begin(buf)	Start a split collective write using shared file pointer
<pre>Write_ordered_end(buf[, status])</pre>	Complete a split collective write using shared file pointer
<pre>Write_shared(buf[, status])</pre>	Write using shared file pointer
f2py(arg)	
py2f()	

Attributes Summary

amode	file access mode
atomicity	
group	file group
info	file info
size	file size

Methods Documentation

```
Call_errhandler(errorcode)
```

Call the error handler installed on a file

Parameters

errorcode (int) -

Return type

None

Close()

Close a file

Return type

None

classmethod Create_errhandler(errhandler_fn)

Create a new error handler for files

Parameters

errhandler_fn (Callable[[File, int], None]) -

Return type

Errhandler

```
classmethod Delete(filename, info=INFO_NULL)
     Delete a file
         Parameters
              • filename (PathLike | str | bytes) -
              • info (Info) -
         Return type
             None
Get_amode()
     Return the file access mode
         Return type
             int
Get_atomicity()
     Return the atomicity mode
         Return type
             bool
Get_byte_offset(offset)
     Return the absolute byte position in the file corresponding to 'offset' etypes relative to the current view
         Parameters
             offset (int) -
         Return type
Get_errhandler()
     Get the error handler for a file
         Return type
             Errhandler
Get_group()
     Return the group of processes that opened the file
         Return type
             Group
Get_info()
     Return the hints for a file that that are currently in use
         Return type
             Info
Get_position()
     Return the current position of the individual file pointer in etype units relative to the current view
         Return type
             int
Get_position_shared()
     Return the current position of the shared file pointer in etype units relative to the current view
         Return type
```

int

```
Get_size()
     Return the file size
         Return type
             int
Get_type_extent(datatype)
     Return the extent of datatype in the file
         Parameters
             datatype (Datatype) -
         Return type
             int
Get_view()
     Return the file view
         Return type
             tuple[int, Datatype, Datatype, str]
Iread(buf)
     Nonblocking read using individual file pointer
         Parameters
             buf (BufSpec) -
         Return type
             Request
Iread_all(buf)
     Nonblocking collective read using individual file pointer
         Parameters
             buf (BufSpec) -
         Return type
             Request
Iread_at(offset, buf)
     Nonblocking read using explicit offset
         Parameters
              • offset (int) -
              • buf (BufSpec) -
         Return type
             Request
Iread_at_all(offset, buf)
     Nonblocking collective read using explicit offset
         Parameters
              • offset (int) -
             • buf (BufSpec) -
         Return type
```

Request

```
Iread_shared(buf)
    Nonblocking read using shared file pointer
         Parameters
            buf (BufSpec) -
         Return type
             Request
Iwrite(buf)
    Nonblocking write using individual file pointer
         Parameters
            buf (BufSpec) -
         Return type
             Request
Iwrite_all(buf)
    Nonblocking collective write using individual file pointer
         Parameters
            buf (BufSpec) -
         Return type
             Request
Iwrite_at(offset, buf)
     Nonblocking write using explicit offset
         Parameters
             • offset (int) -
             • buf (BufSpec) -
         Return type
             Request
Iwrite_at_all(offset, buf)
     Nonblocking collective write using explicit offset
         Parameters
             • offset (int) -
             • buf (BufSpec) -
         Return type
             Request
Iwrite_shared(buf)
    Nonblocking write using shared file pointer
         Parameters
            buf (BufSpec) -
         Return type
             Request
classmethod Open(comm, filename, amode=MODE_RDONLY, info=INFO_NULL)
    Open a file
```

```
• comm (Intracomm) -
             • filename (PathLike | str | bytes) -
             • amode (int) -
             • info (Info) -
         Return type
             Self
Preallocate(size)
     Preallocate storage space for a file
         Parameters
             size(int)-
         Return type
             None
Read(buf, status=None)
     Read using individual file pointer
         Parameters
             • buf (BufSpec) -
             • status (Status / None) -
         Return type
             None
Read_all(buf, status=None)
     Collective read using individual file pointer
         Parameters
             • buf (BufSpec) -
             • status (Status | None) -
         Return type
             None
Read_all_begin(buf)
     Start a split collective read using individual file pointer
         Parameters
             buf (BufSpec) -
         Return type
             None
Read_all_end(buf, status=None)
     Complete a split collective read using individual file pointer
         Parameters
             • buf (BufSpec) -
             • status (Status | None) -
```

Return type None

```
Read_at(offset, buf, status=None)
```

Read using explicit offset

Parameters

- offset (int) -
- buf (BufSpec) -
- status (Status / None) -

Return type

None

Read_at_all(offset, buf, status=None)

Collective read using explicit offset

Parameters

- offset (int) -
- buf (BufSpec) -
- status (Status / None) -

Return type

None

Read_at_all_begin(offset, buf)

Start a split collective read using explicit offset

Parameters

- offset (int) -
- buf (BufSpec) -

Return type

None

Read_at_all_end(buf, status=None)

Complete a split collective read using explicit offset

Parameters

- buf (BufSpec) -
- status (Status / None) -

Return type

None

Read_ordered(buf, status=None)

Collective read using shared file pointer

Parameters

- buf (BufSpec) -
- status (Status | None) -

Return type

None

```
Read_ordered_begin(buf)
```

Start a split collective read using shared file pointer

Parameters

buf (BufSpec) -

Return type

None

Read_ordered_end(buf, status=None)

Complete a split collective read using shared file pointer

Parameters

- buf (BufSpec) -
- status (Status | None) -

Return type

None

Read_shared(buf, status=None)

Read using shared file pointer

Parameters

- buf (BufSpec) -
- status (Status | None) -

Return type

None

Seek(offset, whence=SEEK_SET)

Update the individual file pointer

Parameters

- offset (int) -
- whence (int) -

Return type

None

Seek_shared(offset, whence=SEEK_SET)

Update the shared file pointer

Parameters

- offset (int) -
- whence (int) -

Return type

None

Set_atomicity(flag)

Set the atomicity mode

Parameters

flag (bool) -

Return type

None

```
Set_errhandler(errhandler)
     Set the error handler for a file
         Parameters
             errhandler (Errhandler) -
         Return type
             None
Set_info(info)
     Set new values for the hints associated with a file
         Parameters
             info (Info) -
         Return type
             None
Set_size(size)
     Set the file size
         Parameters
             size (int) -
         Return type
             None
Set_view(disp=0, etype=BYTE, filetype=None, datarep='native', info=INFO_NULL)
     Set the file view
         Parameters
             • disp (int) -
             • etype (Datatype) -
             • filetype (Datatype / None) -
             • datarep (str) -
             • info (Info) -
         Return type
             None
Sync()
     Causes all previous writes to be transferred to the storage device
         Return type
             None
Write(buf, status=None)
     Write using individual file pointer
         Parameters
             • buf (BufSpec) -
             • status (Status / None) -
         Return type
             None
```

```
Write_all(buf, status=None)
     Collective write using individual file pointer
         Parameters
             • buf (BufSpec) -
             • status (Status / None) -
         Return type
             None
Write_all_begin(buf)
     Start a split collective write using individual file pointer
         Parameters
            buf (BufSpec) -
         Return type
             None
Write_all_end(buf, status=None)
     Complete a split collective write using individual file pointer
         Parameters
             • buf (BufSpec) -
             • status (Status / None) -
         Return type
             None
Write_at(offset, buf, status=None)
     Write using explicit offset
         Parameters
             • offset (int) -
             • buf (BufSpec) -
             • status (Status | None) -
         Return type
             None
Write_at_all(offset, buf, status=None)
```

Collective write using explicit offset

Parameters

- offset (int) -
- buf (BufSpec) -
- status (Status / None) -

Return type

None

Write_at_all_begin(offset, buf)

Start a split collective write using explicit offset

Parameters

```
• offset (int) -
```

• buf (BufSpec) -

Return type

None

Write_at_all_end(buf, status=None)

Complete a split collective write using explicit offset

Parameters

- buf (BufSpec) -
- status (Status | None) -

Return type

None

Write_ordered(buf, status=None)

Collective write using shared file pointer

Parameters

- **buf** (BufSpec) -
- status (Status / None) -

Return type

None

Write_ordered_begin(buf)

Start a split collective write using shared file pointer

Parameters

buf (BufSpec) -

Return type

None

Write_ordered_end(buf, status=None)

Complete a split collective write using shared file pointer

Parameters

- **buf** (BufSpec) –
- status (Status / None) -

Return type

None

Write_shared(buf, status=None)

Write using shared file pointer

Parameters

- buf (BufSpec) -
- status (Status / None) -

Return type

None

```
classmethod f2py(arg)
             Parameters
                 arg(int)-
             Return type
                 File
     py2f()
             Return type
                 int
     Attributes Documentation
     amode
         file access mode
     atomicity
     group
         file group
     info
         file info
     size
         file size
mpi4py.MPI.Graphcomm
class mpi4py.MPI.Graphcomm
     Bases: Topocomm
     General graph topology intracommunicator
     static __new__(cls, comm=None)
             Parameters
                 comm (Graphcomm / None) -
             Return type
                 Graphcomm
```

Methods Summary

<pre>Get_dims()</pre>	Return the number of nodes and edges
<pre>Get_neighbors(rank)</pre>	Return list of neighbors of a process
<pre>Get_neighbors_count(rank)</pre>	Return number of neighbors of a process
<pre>Get_topo()</pre>	Return index and edges

Attributes Summary

dims	number of nodes and edges
edges	
index	
nedges	number of edges
neighbors	
nneighbors	number of neighbors
nnodes	number of nodes
topo	topology information

Methods Documentation

```
Get_dims()
     Return the number of nodes and edges
         Return type
             tuple[int, int]
Get_neighbors(rank)
     Return list of neighbors of a process
         Parameters
             rank (int)-
         Return type
             list[int]
Get_neighbors_count(rank)
     Return number of neighbors of a process
         Parameters
             rank (int) -
         Return type
             int
Get_topo()
     Return index and edges
         Return type
             tuple[list[int], list[int]]
```

Attributes Documentation

dims

number of nodes and edges

edges

index

nedges

number of edges

neighbors

nneighbors

number of neighbors

nnodes

number of nodes

topo

topology information

mpi4py.MPI.Grequest

class mpi4py.MPI.Grequest

Bases: Request

Generalized request handle

static __new__(cls, request=None)

Parameters

request (Grequest | None) -

Return type

Grequest

Methods Summary

Complete()	Notify that a user-defined request is complete
<pre>Start(query_fn, free_fn, cancel_fn[, args,])</pre>	Create and return a user-defined request

Methods Documentation

Complete()

Notify that a user-defined request is complete

Return type

None

```
\textbf{classmethod Start}(\textit{query\_fn}, \textit{free\_fn}, \textit{cancel\_fn}, \textit{args=None}, \textit{kwargs=None})
```

Create and return a user-defined request

Parameters

- query_fn (Callable[[...], None]) -
- free_fn(Callable[[...], None]) -
- cancel_fn(Callable[[...], None])-
- args(tuple[Any] | None)-
- kwargs (dict[str, Any] | None) -

Return type

Grequest

mpi4py.MPI.Group

Methods Summary

Compare(group)	Compare two groups
<pre>Create_from_session_pset(session, pset_name)</pre>	Create a new group from session and process set
Difference(group1, group2)	Create a new group from the difference of two existing groups
Dup()	Duplicate a group
Exc1(ranks)	Create a new group by excluding listed members
Free()	Free a group
<pre>Get_rank()</pre>	Return the rank of this process in a group
<pre>Get_size()</pre>	Return the size of a group
Incl(ranks)	Create a new group by including listed members
<pre>Intersection(group1, group2)</pre>	Create a new group from the intersection of two existing groups
Range_excl(ranks)	Create a new group by excluding ranges of members
Range_incl(ranks)	Create a new group by including ranges of members
<pre>Translate_ranks([ranks, group])</pre>	Translate ranks of processes in one group to those in another group
Union(group1, group2)	Create a new group from the union of two existing groups
f2py(arg)	
py2f()	

Attributes Summary

rank	rank of this process in group
size	number of processes in group

Methods Documentation

```
Compare(group)
     Compare two groups
         Parameters
            group (Group) -
         Return type
            int
classmethod Create_from_session_pset(session, pset_name)
     Create a new group from session and process set
         Parameters
             • session (Session) -
             • pset_name (str) -
         Return type
            Self
classmethod Difference(group1, group2)
     Create a new group from the difference of two existing groups
         Parameters
             • group1 (Group) -
             • group2 (Group) -
         Return type
            Self
Dup()
     Duplicate a group
         Return type
            Self
Excl(ranks)
     Create a new group by excluding listed members
         Parameters
            ranks (Sequence[int]) -
         Return type
            Self
Free()
     Free a group
         Return type
            None
```

```
Get_rank()
     Return the rank of this process in a group
         Return type
             int
Get_size()
     Return the size of a group
         Return type
             int
Incl(ranks)
     Create a new group by including listed members
         Parameters
             ranks (Sequence[int]) -
         Return type
             Self
classmethod Intersection(group1, group2)
     Create a new group from the intersection of two existing groups
         Parameters
             • group1 (Group) -
             • group2 (Group) -
         Return type
             Self
Range_excl(ranks)
     Create a new group by excluding ranges of members
         Parameters
             ranks (Sequence[tuple[int, int, int]]) -
         Return type
             Self
Range_incl(ranks)
     Create a new group by including ranges of members
         Parameters
             ranks (Sequence[tuple[int, int, int]]) -
         Return type
             Self
Translate_ranks(ranks=None, group=None)
     Translate ranks of processes in one group to those in another group
         Parameters
             • ranks (Sequence[int] | None) -
             • group (Group / None) -
         Return type
             list[int]
```

```
classmethod Union(group1, group2)
          Create a new group from the union of two existing groups
              Parameters
                  • group1 (Group) -
                  • group2 (Group) -
              Return type
                 Self
     classmethod f2py(arg)
              Parameters
                 arg(int)-
              Return type
                 Group
     py2f()
              Return type
                  int
     Attributes Documentation
     rank
          rank of this process in group
     size
          number of processes in group
mpi4py.MPI.InPlaceType
class mpi4py.MPI.InPlaceType
     Bases: int
     Type of IN_PLACE
     static __new__(cls)
              Return type
                 InPlaceType
mpi4py.MPI.Info
class mpi4py.MPI.Info
     Bases: object
     Info object
     static __new__(cls, info=None)
              Parameters
                 info (Info | None) -
              Return type
                 Info
```

Methods Summary

Create([items])	Create a new info object
Create_env([args])	Create a new environment info object
Delete(key)	Remove a (key, value) pair from info
Dup()	Duplicate an existing info object, creating a new object, with the same (key, value) pairs and the same ordering of keys
Free()	Free an info object
Get(key)	Retrieve the value associated with a key
<pre>Get_nkeys()</pre>	Return the number of currently defined keys in info
<pre>Get_nthkey(n)</pre>	Return the nth defined key in info.
Set(key, value)	Add the (key, value) pair to info, and overrides the value if a value for the same key was previously set
clear()	info clear
copy()	info copy
f2py(arg)	
<pre>get(key[, default])</pre>	info get
items()	info items
keys()	info keys
pop(key, *default)	info pop
<pre>popitem()</pre>	info popitem
py2f()	
update([items])	info update
values()	info values

Methods Documentation

```
classmethod Create(items=None)
    Create a new info object
        Parameters
            items(Info | Mapping[str, str] | Iterable[tuple[str, str]] | None) -
        Return type
            Self
classmethod Create_env(args=None)
    Create a new environment info object
        Parameters
            args (Sequence[str] | None) -
        Return type
            Self
Delete(key)
    Remove a (key, value) pair from info
        Parameters
            key (str) -
```

```
Return type
             None
Dup()
     Duplicate an existing info object, creating a new object, with the same (key, value) pairs and the same
     ordering of keys
         Return type
             Self
Free()
     Free an info object
         Return type
             None
Get(key)
     Retrieve the value associated with a key
         Parameters
             key (str) -
         Return type
             str | None
Get_nkeys()
     Return the number of currently defined keys in info
         Return type
             int
Get_nthkey(n)
     Return the nth defined key in info. Keys are numbered in the range [0, N) where N is the value returned by
     Info.Get_nkeys()
         Parameters
             n(int)-
         Return type
             str
Set(key, value)
     Add the (key, value) pair to info, and overrides the value if a value for the same key was previously set
         Parameters
              • key (str) -
              • value (str) -
         Return type
             None
clear()
     info clear
         Return type
             None
copy()
```

info copy

```
Return type
            Self
classmethod f2py(arg)
         Parameters
             arg(int)-
         Return type
            Info
get(key, default=None)
     info get
         Parameters
             • key (str) –
             • default (str | None) -
         Return type
            str | None
items()
     info items
         Return type
            list[tuple[str, str]]
keys()
     info keys
         Return type
            list[str]
pop(key, *default)
     info pop
         Parameters
             • key (str) –
             • default (str) -
         Return type
            str
popitem()
     info popitem
         Return type
            tuple[str, str]
py2f()
         Return type
update(items=(), **kwds)
     info update
         Parameters
             • items (Info | Mapping[str, str] | Iterable[tuple[str, str]]) -
```

• **kwds** (*str*) –

Return type

None

values()

info values

Return type

list[str]

mpi4py.MPI.Intercomm

class mpi4py.MPI.Intercomm

Bases: Comm

Intercommunicator

static __new__(cls, comm=None)

Parameters

comm (Intercomm / None) -

Return type

Intercomm

Methods Summary

<pre>Create_from_groups(local_group,[,])</pre>	Create communicator from group
<pre>Get_remote_group()</pre>	Access the remote group associated with the inter- communicator
<pre>Get_remote_size()</pre>	Intercommunicator remote size
Merge([high])	Merge intercommunicator

Attributes Summary

remote_group	remote group
remote_size	number of remote processes

Methods Documentation

 $\begin{tabular}{ll} {\bf classmethod \ Create_from_groups} (local_group, local_leader, remote_group, remote_leader, \\ stringtag='org.mpi4py', info=INFO_NULL, errhandler=None) \end{tabular}$

Create communicator from group

Parameters

- local_group (Group) -
- local_leader(int)-
- remote_group (Group) -

```
• remote_leader (int) -
                  • stringtag (str) -
                  • info (Info) -
                  • errhandler (Errhandler / None) -
              Return type
                 Intracomm
     Get_remote_group()
          Access the remote group associated with the inter-communicator
              Return type
                 Group
     Get_remote_size()
          Intercommunicator remote size
              Return type
     Merge(high=False)
          Merge intercommunicator
              Parameters
                 high (bool) -
             Return type
                 Intracomm
     Attributes Documentation
     remote_group
          remote group
     remote_size
          number of remote processes
mpi4py.MPI.Intracomm
class mpi4py.MPI.Intracomm
     Bases: Comm
     Intracommunicator
     static __new__(cls, comm=None)
              Parameters
                 comm (Intracomm / None) -
             Return type
                 Intracomm
```

Methods Summary

<pre>Accept(port_name[, info, root])</pre>	Accept a request to form a new intercommunicator
<pre>Cart_map(dims[, periods])</pre>	Return an optimal placement for the calling process on the physical machine
<pre>Connect(port_name[, info, root])</pre>	Make a request to form a new intercommunicator
<pre>Create_cart(dims[, periods, reorder])</pre>	Create cartesian communicator
Create_dist_graph(sources, degrees, destina-	Create distributed graph communicator
tions)	
Create_dist_graph_adjacent(sources, destina-	Create distributed graph communicator
tions)	
<pre>Create_from_group(group[, stringtag, info,])</pre>	Create communicator from group
<pre>Create_graph(index, edges[, reorder])</pre>	Create graph communicator
<pre>Create_group(group[, tag])</pre>	Create communicator from group
<pre>Create_intercomm(local_leader, peer_comm,)</pre>	Create intercommunicator
Exscan(sendbuf, recvbuf[, op])	Exclusive Scan
<pre>Exscan_init(sendbuf, recvbuf[, op, info])</pre>	Inclusive Scan
<pre>Graph_map(index, edges)</pre>	Return an optimal placement for the calling process on the physical machine
<pre>Iexscan(sendbuf, recvbuf[, op])</pre>	Inclusive Scan
<pre>Iscan(sendbuf, recvbuf[, op])</pre>	Inclusive Scan
Scan(sendbuf, recvbuf[, op])	Inclusive Scan
<pre>Scan_init(sendbuf, recvbuf[, op, info])</pre>	Inclusive Scan
Spawn(command[, args, maxprocs, info, root,])	Spawn instances of a single MPI application
<pre>Spawn_multiple(command[, args, maxprocs,])</pre>	Spawn instances of multiple MPI applications
exscan(sendobj[, op])	Exclusive Scan
scan(sendobj[, op])	Inclusive Scan

Methods Documentation

Accept(port_name, info=INFO_NULL, root=0)

Accept a request to form a new intercommunicator

Parameters

- $port_name(str)$ –
- info (Info) -
- root (int) -

Return type

Intercomm

Cart_map(dims, periods=None)

Return an optimal placement for the calling process on the physical machine

Parameters

- dims (Sequence[int]) -
- periods (Sequence[bool] | None) -

Return type

int

```
Connect(port_name, info=INFO_NULL, root=0)
```

Make a request to form a new intercommunicator

Parameters

- port_name (str) -
- info (Info) -
- root (int) -

Return type

Intercomm

Create_cart(dims, periods=None, reorder=False)

Create cartesian communicator

Parameters

- dims (Sequence[int]) -
- periods (Sequence[bool] | None) -
- reorder (bool) -

Return type

Cartcomm

Create_dist_graph(sources, degrees, destinations, weights=None, info=INFO_NULL, reorder=False)

Create distributed graph communicator

Parameters

- sources (Sequence[int]) -
- degrees (Sequence[int]) -
- destinations (Sequence[int]) -
- weights (Sequence[int] | None) -
- info (Info) -
- reorder (bool) -

Return type

Distgraphcomm

Create distributed graph communicator

Parameters

- sources (Sequence[int]) -
- destinations (Sequence[int]) -
- sourceweights (Sequence[int] | None) -
- destweights (Sequence[int] | None) -
- info (Info) -
- reorder (bool) -

```
Return type
```

Distgraphcomm

 $\textbf{classmethod Create_from_group}(\textit{group}, \textit{stringtag} = 'org.mpi4py', \textit{info} = INFO_NULL, \textit{errhandler} = None)$

Create communicator from group

Parameters

- group (Group) -
- stringtag (str) -
- info (Info) -
- errhandler (Errhandler | None) -

Return type

Intracomm

Create_graph(index, edges, reorder=False)

Create graph communicator

Parameters

- index (Sequence[int]) -
- edges (Sequence[int]) -
- reorder (bool) -

Return type

Graphcomm

Create_group(group, tag=0)

Create communicator from group

Parameters

- group (Group) -
- tag(int)-

Return type

Intracomm

Create_intercomm(local_leader, peer_comm, remote_leader, tag=0)

Create intercommunicator

Parameters

- local_leader(int)-
- peer_comm (Intracomm) -
- remote_leader (int) -
- tag (int) -

Return type

Intercomm

Exscan(sendbuf, recvbuf, op=SUM)

Exclusive Scan

Parameters

• sendbuf (BufSpec / InPlace) -

```
• recvbuf (BufSpec) -
```

• op (0p) -

Return type

None

Exscan_init(sendbuf, recvbuf, op=SUM, info=INFO_NULL)

Inclusive Scan

Parameters

- sendbuf (BufSpec / InPlace) -
- recvbuf (BufSpec) -
- op (0p) -
- info (Info) -

Return type

Prequest

Graph_map(index, edges)

Return an optimal placement for the calling process on the physical machine

Parameters

- index (Sequence[int]) -
- edges (Sequence[int]) -

Return type

int

lexscan(sendbuf, recvbuf, op=SUM)

Inclusive Scan

Parameters

- sendbuf (BufSpec / InPlace) -
- recvbuf (BufSpec) -
- op (0p) -

Return type

Request

Iscan(sendbuf, recvbuf, op=SUM)

Inclusive Scan

Parameters

- sendbuf (BufSpec / InPlace) -
- recvbuf (BufSpec) -
- **op** (0p) –

Return type

Request

```
Scan(sendbuf, recvbuf, op=SUM)
    Inclusive Scan
        Parameters
            • sendbuf (BufSpec / InPlace) -
            • recvbuf (BufSpec) -
            • op (0p) -
        Return type
            None
Scan_init(sendbuf, recvbuf, op=SUM, info=INFO_NULL)
    Inclusive Scan
        Parameters
            • sendbuf (BufSpec / InPlace) -
            • recvbuf (BufSpec) -
            • op (0p) -
            • info (Info) -
        Return type
            Prequest
Spawn(command, args=None, maxprocs=1, info=INFO_NULL, root=0, errcodes=None)
    Spawn instances of a single MPI application
        Parameters
            • command (str) -
            • args (Sequence[str] | None) -
            • maxprocs (int) -
            • info (Info) -
            • root (int) -
            • errcodes (list[int] | None) -
        Return type
            Intercomm
Spawn_multiple(command, args=None, maxprocs=None, info=INFO_NULL, root=0, errcodes=None)
    Spawn instances of multiple MPI applications
        Parameters
            • command (Sequence[str]) -
            • args (Sequence [Sequence [str]] | None) -
            • maxprocs (Sequence[int] | None) -
            • info (Sequence[Info] / Info) -
            • root (int) -
            • errcodes (list[list[int]] | None) -
```

```
Return type
```

Intercomm

exscan(sendobj, op=SUM)

Exclusive Scan

Parameters

- sendobj (Any) -
- op (Op / Callable[[Any, Any], Any]) -

Return type

Any

scan(sendobj, op=SUM)

Inclusive Scan

Parameters

- sendobj (Any) -
- op(Op / Callable[[Any, Any], Any]) -

Return type

Any

mpi4py.MPI.Message

class mpi4py.MPI.Message

Bases: object

Matched message handle

static __new__(cls, message=None)

Parameters

message (Message / None) -

Return type

Message

Methods Summary

Iprobe(comm[, source, tag, status])	Nonblocking test for a matched message
Irecv(buf)	Nonblocking receive of matched message
<pre>Probe(comm[, source, tag, status])</pre>	Blocking test for a matched message
Recv(buf[, status])	Blocking receive of matched message
f2py(arg)	
<pre>iprobe(comm[, source, tag, status])</pre>	Nonblocking test for a matched message
irecv()	Nonblocking receive of matched message
<pre>probe(comm[, source, tag, status])</pre>	Blocking test for a matched message
py2f()	
recv([status])	Blocking receive of matched message

Methods Documentation

```
classmethod Iprobe(comm, source=ANY_SOURCE, tag=ANY_TAG, status=None)
    Nonblocking test for a matched message
        Parameters
             • comm (Comm) –
            • source (int) -
             • tag(int)-
            • status (Status / None) -
        Return type
            Self | None
Irecv(buf)
    Nonblocking receive of matched message
        Parameters
            buf (BufSpec) -
        Return type
            Request
classmethod Probe(comm, source=ANY_SOURCE, tag=ANY_TAG, status=None)
     Blocking test for a matched message
        Parameters
            • comm (Comm) -
            • source (int) -
            • tag (int) -
             • status (Status / None) -
        Return type
            Self
Recv(buf, status=None)
     Blocking receive of matched message
        Parameters
             • buf (BufSpec) -
             • status (Status | None) -
        Return type
            None
classmethod f2py(arg)
        Parameters
            arg(int)-
        Return type
            Message
```

```
classmethod iprobe(comm, source=ANY_SOURCE, tag=ANY_TAG, status=None)
          Nonblocking test for a matched message
              Parameters
                  • comm (Comm) -
                  • source (int) -
                  • tag (int) -
                  • status (Status / None) -
              Return type
                 Self | None
     irecv()
          Nonblocking receive of matched message
              Return type
                  Request
     classmethod probe(comm, source=ANY_SOURCE, tag=ANY_TAG, status=None)
          Blocking test for a matched message
              Parameters
                  • comm (Comm) -
                  • source (int) -
                  • tag (int) -
                  • status (Status | None) -
              Return type
                 Self
     py2f()
              Return type
                  int
     recv(status=None)
          Blocking receive of matched message
              Parameters
                  status (Status / None) -
              Return type
                 Any
mpi4py.MPI.Op
class mpi4py.MPI.Op
     Bases: object
     Operation object
     static __new__(cls, op=None)
              Parameters
                 op (Op | None) -
```

Return type

Op

Methods Summary

<pre>Create(function[, commute])</pre>	Create a user-defined operation
Free()	Free the operation
<pre>Is_commutative()</pre>	Query reduction operations for their commutativity
<pre>Reduce_local(inbuf, inoutbuf)</pre>	Apply a reduction operator to local data
f2py(arg)	
py2f()	

Attributes Summary

is_commutative	is commutative
is_predefined	is a predefined operation

Methods Documentation

```
classmethod Create(function, commute=False)
```

Create a user-defined operation

Parameters

- function (Callable[[Buffer, Buffer, Datatype], None]) -
- commute (bool) -

Return type

Self

Free()

Free the operation

Return type

None

Is_commutative()

Query reduction operations for their commutativity

Return type

bool

Reduce_local(inbuf, inoutbuf)

Apply a reduction operator to local data

Parameters

- inbuf (BufSpec) -
- inoutbuf (BufSpec) -

```
Return type
None

classmethod f2py(arg)

Parameters
arg(int) -

Return type
Op

py2f()

Return type
int
```

Attributes Documentation

is_commutative

is commutative

is_predefined

is a predefined operation

mpi4py.MPI.Pickle

Methods Summary

dumps(obj)	Serialize object to pickle data stream.
dumps_oob(obj)	Serialize object to pickle data stream and out-of-band
	buffers.
loads(data)	Deserialize object from pickle data stream.
loads_oob(data, buffers)	Deserialize object from pickle data stream and out- of-band buffers.

Attributes Summary

PROTOCOL	protocol version
THRESHOLD	out-of-band threshold

Methods Documentation

```
dumps(obj)
     Serialize object to pickle data stream.
         Parameters
             obj (Any) -
         Return type
             bytes
dumps_oob(obj)
     Serialize object to pickle data stream and out-of-band buffers.
         Parameters
             obj (Any) -
         Return type
             tuple[bytes, list[memory]]
loads(data)
     Deserialize object from pickle data stream.
         Parameters
             data (Buffer) -
         Return type
             Any
loads_oob(data, buffers)
     Deserialize object from pickle data stream and out-of-band buffers.
         Parameters
             • data (Buffer) -
             • buffers (Iterable[Buffer]) -
         Return type
             Any
```

Attributes Documentation

PROTOCOL

protocol version

THRESHOLD

out-of-band threshold

mpi4py.MPI.Prequest

```
class mpi4py.MPI.Prequest

Bases: Request

Persistent request handle

static __new__(cls, request=None)

Parameters
    request (Prequest | None) -

Return type

Prequest
```

Methods Summary

Parrived(partition)	Test partial completion of a partitioned receive operation
Pready(partition)	Mark a given partition as ready
<pre>Pready_list(partitions)</pre>	Mark a sequence of partitions as ready
<pre>Pready_range(partition_low, partition_high)</pre>	Mark a range of partitions as ready
Start()	Initiate a communication with a persistent request
Startall(requests)	Start a collection of persistent requests

Methods Documentation

```
Parrived(partition)
```

Test partial completion of a partitioned receive operation

```
Parameters
    partition (int) -

Return type
    bool
```

Pready(partition)

Mark a given partition as ready

```
Parameters
partition (int) -

Return type
None
```

Pready_list(partitions)

Mark a sequence of partitions as ready

```
Parameters
partitions (Sequence[int]) -

Return type
None
```

```
Pready_range(partition_low, partition_high)
          Mark a range of partitions as ready
              Parameters
                  • partition_low (int) -
                  • partition_high (int) -
              Return type
                  None
     Start()
          Initiate a communication with a persistent request
              Return type
                  None
     classmethod Startall(requests)
          Start a collection of persistent requests
              Parameters
                  requests (list[Prequest]) -
              Return type
                  None
mpi4py.MPI.Request
class mpi4py.MPI.Request
     Bases: object
     Request handle
     static __new__(cls, request=None)
              Parameters
                  request (Request | None) -
              Return type
                  Request
```

Methods Summary

Cancel()	Cancel a communication request
Free()	Free a communication request
Get_status([status])	Non-destructive test for the completion of a request
Test([status])	Test for the completion of a send or receive
Testall(requests[, statuses])	Test for completion of all previously initiated requests
Testany(requests[, status])	Test for completion of any previously initiated request
Testsome(requests[, statuses])	Test for completion of some previously initiated requests
Wait([status])	Wait for a send or receive to complete
Waitall(requests[, statuses])	Wait for all previously initiated requests to complete
Waitany(requests[, status])	Wait for any previously initiated request to complete
<pre>Waitsome(requests[, statuses])</pre>	Wait for some previously initiated requests to complete
cancel()	Cancel a communication request
f2py(arg)	
<pre>get_status([status])</pre>	Non-destructive test for the completion of a request
py2f()	
test([status])	Test for the completion of a send or receive
testall(requests[, statuses])	Test for completion of all previously initiated requests
testany(requests[, status])	Test for completion of any previously initiated request
testsome(requests[, statuses])	Test for completion of some previously initiated requests
wait([status])	Wait for a send or receive to complete
<pre>waitall(requests[, statuses])</pre>	Wait for all previously initiated requests to complete
<pre>waitany(requests[, status])</pre>	Wait for any previously initiated request to complete
waitsome(requests[, statuses])	Wait for some previously initiated requests to complete

Methods Documentation

Cancel()

Cancel a communication request

Return type

None

Free()

Free a communication request

Return type

None

Get_status(status=None)

Non-destructive test for the completion of a request

Parameters

status (Status / None) -

Return type

bool

```
Test(status=None)
```

Test for the completion of a send or receive

Parameters

status (Status | None) -

Return type

bool

classmethod Testall(requests, statuses=None)

Test for completion of all previously initiated requests

Parameters

- requests (Sequence [Request]) -
- statuses (list[Status] | None) -

Return type

bool

classmethod Testany(requests, status=None)

Test for completion of any previously initiated request

Parameters

- requests (Sequence [Request]) -
- status (Status | None) -

Return type

tuple[int, bool]

classmethod Testsome(requests, statuses=None)

Test for completion of some previously initiated requests

Parameters

- requests (Sequence [Request]) -
- statuses (list[Status] | None) -

Return type

list[int] | None

Wait(status=None)

Wait for a send or receive to complete

Parameters

```
status (Status | None) -
```

Return type

Literal[True]

classmethod Waitall(requests, statuses=None)

Wait for all previously initiated requests to complete

Parameters

- requests (Sequence [Request]) -
- statuses (list[Status] | None) -

Return type

Literal[True]

```
classmethod Waitany(requests, status=None)
     Wait for any previously initiated request to complete
         Parameters
             • requests (Sequence [Request]) -
             • status (Status / None) -
         Return type
             int
classmethod Waitsome(requests, statuses=None)
     Wait for some previously initiated requests to complete
         Parameters
             • requests (Sequence[Request]) -
             • statuses (list[Status] | None) -
         Return type
             list[int] | None
cancel()
     Cancel a communication request
         Return type
             None
classmethod f2py(arg)
         Parameters
             arg(int)-
         Return type
             Request
get_status(status=None)
     Non-destructive test for the completion of a request
         Parameters
             status (Status | None) -
         Return type
             bool
py2f()
         Return type
test(status=None)
     Test for the completion of a send or receive
         Parameters
             status (Status / None) -
         Return type
             tuple[bool, Any | None]
```

```
classmethod testall(requests, statuses=None)
```

Test for completion of all previously initiated requests

Parameters

- requests (Sequence [Request]) -
- statuses (list[Status] | None) -

Return type

tuple[bool, list[Any] | None]

classmethod testany(requests, status=None)

Test for completion of any previously initiated request

Parameters

- requests (Sequence[Request]) -
- status (Status | None) -

Return type

tuple[int, bool, Any | None]

classmethod testsome(requests, statuses=None)

Test for completion of some previously initiated requests

Parameters

- requests (Sequence[Request]) -
- statuses (list[Status] | None) -

Return type

tuple[list[int] | None, list[Any] | None]

wait(status=None)

Wait for a send or receive to complete

Parameters

status (Status / None) -

Return type

Any

classmethod waitall(requests, statuses=None)

Wait for all previously initiated requests to complete

Parameters

- requests (Sequence [Request]) -
- statuses (list[Status] | None) -

Return type

list[Any]

classmethod waitany(requests, status=None)

Wait for any previously initiated request to complete

Parameters

- requests (Sequence[Request]) -
- status (Status | None) -

Return type

tuple[int, Any]

classmethod waitsome(requests, statuses=None)

Wait for some previously initiated requests to complete

Parameters

- requests (Sequence[Request]) -
- statuses (list[Status] | None) -

Return type

tuple[list[int] | None, list[Any] | None]

mpi4py.MPI.Session

```
class mpi4py.MPI.Session
```

Bases: object

Session

static __new__(cls, session=None)

Parameters

session (Session | None) -

Return type

Session

Methods Summary

Call_errhandler(errorcode)	Call the error handler installed on a session
<pre>Create_errhandler(errhandler_fn)</pre>	Create a new error handler for sessions
<pre>Create_group(pset_name)</pre>	Create a new group from session and process set
Finalize()	Finalize a session
<pre>Get_errhandler()</pre>	Get the error handler for a session
<pre>Get_info()</pre>	Return the hints for a session
<pre>Get_nth_pset(n[, info])</pre>	Name of the nth process set
<pre>Get_num_psets([info])</pre>	Number of available process sets
<pre>Get_pset_info(pset_name)</pre>	Return the hints for a session and process set
<pre>Init([info, errhandler])</pre>	Create a new session
Set_errhandler(errhandler)	Set the error handler for a session
f2py(arg)	
py2f()	

Methods Documentation

```
Call_errhandler(errorcode)
     Call the error handler installed on a session
         Parameters
             errorcode (int) -
         Return type
            None
classmethod Create_errhandler(errhandler_fn)
     Create a new error handler for sessions
         Parameters
             errhandler_fn (Callable[[Session, int], None]) -
         Return type
            Errhandler
Create_group(pset_name)
     Create a new group from session and process set
         Parameters
            pset_name(str) -
         Return type
             Group
Finalize()
     Finalize a session
         Return type
            None
Get_errhandler()
     Get the error handler for a session
         Return type
            Errhandler
Get_info()
     Return the hints for a session
         Return type
             Info
Get_nth_pset(n, info=INFO_NULL)
     Name of the nth process set
         Parameters
             • n (int) -
             • info (Info) -
         Return type
Get_num_psets(info=INFO_NULL)
     Number of available process sets
```

```
Parameters
                  info (Info) -
              Return type
                  int
     Get_pset_info(pset_name)
          Return the hints for a session and process set
              Parameters
                 pset_name (str) -
              Return type
                  Info
     classmethod Init(info=INFO_NULL, errhandler=None)
          Create a new session
              Parameters
                  • info (Info) -
                  • errhandler (Errhandler | None) -
              Return type
                  Self
     Set_errhandler(errhandler)
          Set the error handler for a session
              Parameters
                  errhandler (Errhandler) -
              Return type
                  None
     classmethod f2py(arg)
              Parameters
                  arg(int)-
              Return type
                  Session
     py2f()
              Return type
                  int
mpi4py.MPI.Status
class mpi4py.MPI.Status
     Bases: object
     Status object
     static __new__(cls, status=None)
              Parameters
                  status (Status | None) -
              Return type
                  Status
```

Methods Summary

<pre>Get_count([datatype])</pre>	Get the number of <i>top level</i> elements
<pre>Get_elements(datatype)</pre>	Get the number of basic elements in a datatype
<pre>Get_error()</pre>	Get message error
<pre>Get_source()</pre>	Get message source
<pre>Get_tag()</pre>	Get message tag
<pre>Is_cancelled()</pre>	Test to see if a request was cancelled
Set_cancelled(flag)	Set the cancelled state associated with a status
<pre>Set_elements(datatype, count)</pre>	Set the number of elements in a status
Set_error(error)	Set message error
Set_source(source)	Set message source
Set_tag(tag)	Set message tag
f2py(arg)	
py2f()	

Attributes Summary

cancelled	cancelled state
count	byte count
error	
source	
tag	

Methods Documentation

Return type int Get_source() Get message source **Return type** int Get_tag() Get message tag Return type int Is_cancelled() Test to see if a request was cancelled Return type bool Set_cancelled(flag) Set the cancelled state associated with a status

Note: This should be used only when implementing query callback functions for generalized requests

```
Parameters
flag (bool) –
Return type
None
```

Set_elements(datatype, count)

Parameters

Set the number of elements in a status

Note: This should be only used when implementing query callback functions for generalized requests

```
• datatype (Datatype) –
• count (int) –

Return type

None
```

```
Set_error(error)
```

Set message error

Parameters error (int) – Return type None

```
Set_source(source)
         Set message source
             Parameters
                 source (int) -
             Return type
                 None
     Set_tag(tag)
         Set message tag
             Parameters
                 tag(int)-
             Return type
                 None
     classmethod f2py(arg)
             Parameters
                 arg (list[int]) -
             Return type
                 Self
     py2f()
             Return type
                 list[int]
     Attributes Documentation
     cancelled
         cancelled state
     count
         byte count
     error
     source
     tag
mpi4py.MPI.Topocomm
class mpi4py.MPI.Topocomm
     Bases: Intracomm
     Topology intracommunicator
     static __new__(cls, comm=None)
             Parameters
                 comm (Topocomm / None) -
             Return type
                 Topocomm
```

Methods Summary

<pre>Ineighbor_allgather(sendbuf, recvbuf)</pre>	Nonblocking Neighbor Gather to All
<pre>Ineighbor_allgatherv(sendbuf, recvbuf)</pre>	Nonblocking Neighbor Gather to All Vector
<pre>Ineighbor_alltoall(sendbuf, recvbuf)</pre>	Nonblocking Neighbor All-to-All
<pre>Ineighbor_alltoallv(sendbuf, recvbuf)</pre>	Nonblocking Neighbor All-to-All Vector
<pre>Ineighbor_alltoallw(sendbuf, recvbuf)</pre>	Nonblocking Neighbor All-to-All Generalized
<pre>Neighbor_allgather(sendbuf, recvbuf)</pre>	Neighbor Gather to All
<pre>Neighbor_allgather_init(sendbuf, recvbuf[,</pre>	Persistent Neighbor Gather to All
info])	
<pre>Neighbor_allgatherv(sendbuf, recvbuf)</pre>	Neighbor Gather to All Vector
<pre>Neighbor_allgatherv_init(sendbuf, recvbuf[,</pre>	Persistent Neighbor Gather to All Vector
])	
<pre>Neighbor_alltoall(sendbuf, recvbuf)</pre>	Neighbor All-to-All
<pre>Neighbor_alltoall_init(sendbuf, recvbuf[,</pre>	Persistent Neighbor All-to-All
info])	
<pre>Neighbor_alltoallv(sendbuf, recvbuf)</pre>	Neighbor All-to-All Vector
<pre>Neighbor_alltoallv_init(sendbuf, recvbuf[,</pre>	Persistent Neighbor All-to-All Vector
info])	
<pre>Neighbor_alltoallw(sendbuf, recvbuf)</pre>	Neighbor All-to-All Generalized
<pre>Neighbor_alltoallw_init(sendbuf, recvbuf[,</pre>	Persistent Neighbor All-to-All Generalized
info])	
neighbor_allgather(sendobj)	Neighbor Gather to All
<pre>neighbor_alltoall(sendobj)</pre>	Neighbor All to All Scatter/Gather

Attributes Summary

degrees	number of incoming and outgoing neighbors
indegree	number of incoming neighbors
inedges	incoming neighbors
inoutedges	incoming and outgoing neighbors
outdegree	number of outgoing neighbors
outedges	outgoing neighbors

Methods Documentation

Ineighbor_allgather(sendbuf, recvbuf)

Nonblocking Neighbor Gather to All

Parameters

- sendbuf (BufSpec) -
- recvbuf (BufSpecB) -

Return type

Request

Ineighbor_allgatherv(sendbuf, recvbuf)

Nonblocking Neighbor Gather to All Vector

Parameters

```
• sendbuf (BufSpec) -
```

• recvbuf (BufSpecV) -

Return type

Request

Ineighbor_alltoall(sendbuf, recvbuf)

Nonblocking Neighbor All-to-All

Parameters

- sendbuf (BufSpecB) -
- recvbuf (BufSpecB) -

Return type

Request

Ineighbor_alltoallv(sendbuf, recvbuf)

Nonblocking Neighbor All-to-All Vector

Parameters

- sendbuf (BufSpecV) -
- recvbuf (BufSpecV) -

Return type

Request

Ineighbor_alltoallw(sendbuf, recvbuf)

Nonblocking Neighbor All-to-All Generalized

Parameters

- sendbuf (BufSpecW) -
- recvbuf (BufSpecW) -

Return type

Request

Neighbor_allgather(sendbuf, recvbuf)

Neighbor Gather to All

Parameters

- sendbuf (BufSpec) -
- recvbuf (BufSpecB) -

Return type

None

Neighbor_allgather_init(sendbuf, recvbuf, info=INFO_NULL)

Persistent Neighbor Gather to All

Parameters

- sendbuf (BufSpec) -
- recvbuf (BufSpecB) -
- info (Info) -

```
Return type
```

Prequest

Neighbor_allgatherv(sendbuf, recvbuf)

Neighbor Gather to All Vector

Parameters

- sendbuf (BufSpec) -
- recvbuf (BufSpecV) -

Return type

None

Neighbor_allgatherv_init(sendbuf, recvbuf, info=INFO_NULL)

Persistent Neighbor Gather to All Vector

Parameters

- sendbuf (BufSpec) -
- recvbuf (BufSpecV) -
- info (Info) -

Return type

Prequest

Neighbor_alltoall(sendbuf, recvbuf)

Neighbor All-to-All

Parameters

- sendbuf (BufSpecB) -
- recvbuf (BufSpecB) -

Return type

None

Neighbor_alltoall_init(sendbuf, recvbuf, info=INFO_NULL)

Persistent Neighbor All-to-All

Parameters

- sendbuf (BufSpecB) -
- recvbuf (BufSpecB) -
- info (Info) -

Return type

Prequest

Neighbor_alltoallv(sendbuf, recvbuf)

Neighbor All-to-All Vector

Parameters

- sendbuf (BufSpecV) -
- recvbuf (BufSpecV) -

Return type

```
Neighbor_alltoallv_init(sendbuf, recvbuf, info=INFO_NULL)
    Persistent Neighbor All-to-All Vector
         Parameters
             • sendbuf (BufSpecV) -
             • recvbuf (BufSpecV) -
             • info (Info) -
         Return type
            Prequest
Neighbor_alltoallw(sendbuf, recvbuf)
    Neighbor All-to-All Generalized
         Parameters
             • sendbuf (BufSpecW) -
             • recvbuf (BufSpecW) -
         Return type
            None
Neighbor_alltoallw_init(sendbuf, recvbuf, info=INFO_NULL)
    Persistent Neighbor All-to-All Generalized
         Parameters
             • sendbuf (BufSpecW) -
             • recvbuf (BufSpecW) -
             • info (Info) -
         Return type
            Prequest
neighbor_allgather(sendobj)
    Neighbor Gather to All
         Parameters
            sendobj (Any) -
         Return type
            list[Any]
neighbor_alltoall(sendobj)
    Neighbor All to All Scatter/Gather
         Parameters
            sendobj (list[Any]) -
         Return type
            list[Any]
```

Attributes Documentation

degrees

number of incoming and outgoing neighbors

indegree

number of incoming neighbors

inedges

incoming neighbors

inoutedges

incoming and outgoing neighbors

outdegree

number of outgoing neighbors

outedges

outgoing neighbors

mpi4py.MPI.Win

```
class mpi4py.MPI.Win
```

Bases: object

Window handle

static __new__(cls, win=None)

Parameters

win (Win / None) -

Return type

Win

Methods Summary

<pre>Accumulate(origin, target_rank[, target, op])</pre>	Accumulate data into the target process
<pre>Allocate(size[, disp_unit, info, comm])</pre>	Create an window object for one-sided communica-
	tion
<pre>Allocate_shared(size[, disp_unit, info, comm])</pre>	Create an window object for one-sided communica-
	tion
Attach(memory)	Attach a local memory region
Call_errhandler(errorcode)	Call the error handler installed on a window
<pre>Compare_and_swap(origin, compare, result,)</pre>	Perform one-sided atomic compare-and-swap
Complete()	Completes an RMA operations begun after an Win.
	Start()
<pre>Create(memory[, disp_unit, info, comm])</pre>	Create an window object for one-sided communica-
	tion
<pre>Create_dynamic([info, comm])</pre>	Create an window object for one-sided communica-
	tion
<pre>Create_errhandler(errhandler_fn)</pre>	Create a new error handler for windows
<pre>Create_keyval([copy_fn, delete_fn, nopython])</pre>	Create a new attribute key for windows

Table 5 – continued from previous page

Detach local memory region Perform an MPI fence synchronization on a window Perform one-sided read-modify-write Complete all outstanding RMA operations at the given target Flush_all() Complete locally all outstanding RMA operations at all targets Complete locally all outstanding RMA operations at the given target Flush_local_all() Complete locally all outstanding RMA operations at the given target Flush_local_all() Complete locally all outstanding RMA operations at the given target Free Aurithous Free Complete locally all outstanding RMA operations at the given target Free Aurithous Free Free Aurithous Free Free Aurithous Free Free Aurithous Free Free Free Aurithous Free		
Ferce(assertion) Fetch_and_op(origin, result, target_rank[,]) Flush(rank) Flush_all() Flush_all() Flush_all() Flush_local(rank) Flush_local(rank) Flush_local(rank) Free (aspertion) Free (bearly all outstanding RMA operations at the given target Flush_local_all() Free (aspertion) Free (bearly all outstanding RMA operations at the given target Free() Free (bearly all outstanding RMA operations at the given target Free() Free (aspertion) Free (bearly all outstanding RMA operations at the given target Free() Free a window Free a stribute key for windows Get(origin, target_rank], target]) Get data from a memory window on a remote process. Get_accumulate(origin, result, target_rank) Get_artr(keyval) Get_group() Get_group() Get_group() Get_group() Get_ind() Get_name() Get_na	<pre>Delete_attr(keyval)</pre>	Delete attribute value associated with a key
Perform one-sided read-modify-write Complete all outstanding RMA operations at the given target Complete all outstanding RMA operations at the given target Complete locally all outstanding RMA operations at all targets Flush_local_(rank) Complete locally all outstanding RMA operations at the given target Complete locally all outstanding RMA operations at the given target Flush_local_all() Complete locally all outstanding RMA operations at the given target Free an attribute key for windows Free an attribute key for windows Free an attribute key for windows Get_origin, result, target_rank Get_atr(keyval) Get_atar from a memory window on a remote process Get_accumulate(data into the target process Get_arcumulate data into the target process Get_proup() Get the error handler for a window Return a duplicate of the group of the communicator used to create the window Get_name() Get_name() Get the print name associated with the window Lock_(rank, lock_type, assertion) Begin an RMA access epoch at the target process Get_name() Get the print name associated with the window Begin an RMA access epoch at the target process Get_data from a memory window on a remote process. Start an RMA exposure epoch Put data into a memory window on a remote process. Get_data from a memory window on a remote process. Get_data from a memory window on a remote process. Get_data from a memory window on a remote process. Set_atr(keyval, attrval) Set_arm(keyval, attrval) Set_arm(keyval, attrval) Set_arm(keyval, attrval) Set_name(name) Set the error handler for a window Set_name(name) Set the error handler for a window Set_name(name) Set the error handler for a window Set the print name associated with a window Set_name(name) Set the print name associated with a window Set_name(name) Set the error handler for a window Set the print name associated with a window Set_name(name) Set the error handler for a window Set the print name associated wi	Detach(memory)	Detach a local memory region
Flush_all() Complete all outstanding RMA operations at the given target Complete all outstanding RMA operations at all targets Flush_local(rank) Complete locally all outstanding RMA operations at the given target Complete locally all outstanding RMA operations at the given target Complete locally all outstanding RMA operations at the given target Free() Free () Free a window Free keyval(keyval) Free a window Free a window Get(origin, target_rank[, target]) Get_accumulate(origin, result, target_rank) Get_accumulate(origin, result, target_rank) Get_arrhandler() Get_group() Get_group() Get_name() Get_name() Get_name() Get_name() Get_name() Get_name() Get_proup() Get_name() Get	Fence([assertion])	Perform an MPI fence synchronization on a window
given target Complete all outstanding RMA operations at all targets	<pre>Fetch_and_op(origin, result, target_rank[,])</pre>	Perform one-sided read-modify-write
Sets Complete locally all outstanding RMA operations at the given target	Flush(rank)	
the given target Complete locally all outstanding RMA opera-tions at all targets Free() Free Aeyval(keyval) Get(origin, target_rank[, target]) Get_accumulate(origin, result, target_rank) Get_attr(keyval) Get_actr(keyval) Get_errhandler() Get_errhandler() Get_errhandler() Get_anme() Get_anme() Get_all([assertion]) Post(group[, assertion]) Start an RMA access epoch at all process Reput(origin, target_rank[, target]) Reput(origin, t	Flush_all()	
## at all targets Free a window	Flush_local(rank)	• • •
Free keyval(keyval) Get (origin, target_rank[, target]) Get (ata from a memory window on a remote process. Get_actrr(keyval) Get_errhandler() Get_proup() Get_proup() Get_name() Get_name() Get_name() Get_name() Lock(rank[, lock_type, assertion]) Put(origin, target_rank[, target]) Reget(origin, target_rank[, target]) Reget(origin, target_rank[, target]) Regurn a duplicate of the group of the communicator used to create the window Get_name() Get_name() Get the print name associated with the window with the window with the window begin an RMA access epoch at the target process begin an RMA access epoch at all processes post (group[, assertion]) Put(origin, target_rank[, target]) Reget(origin, target_rank[, target]) Reput(origin, target_rank[, target]) Set_attr(keyval, attrval) Set_attr(keyval, attrval) Set_errhandler(errhandler) Set_attr(keyval, attrval) Set_name(name) Set_name(name	Flush_local_all()	
Get (origin, target_rank[, target]) Get data from a memory window on a remote process Get_accumulate(origin, result, target_rank) Get_accumulate(origin, result, target_rank) Get_errhandler() Get the error handler for a window Get_group() Return a duplicate of the group of the communicator used to create the window Get_info() Get_name() Lock(rank[, lock_type, assertion]) Lock(rank[, lock_type, assertion]) Post(group[, assertion]) Post(group[, assertion]) Recumulate(origin, target_rank[, target]) Raccumulate(origin, target_rank[, target, op]) Rget(origin, target_rank[, target]) Rget(origin, target_rank[, target]) Rget(origin, target_rank[, target]) Rput(origin, target_rank[, target]) Rput(origin, target_rank[, target]) Rput(origin, target_rank[, target]) Rput(origin, target_rank[, target]) Set_accumulate(origin, result, target]) Set_actumulate(origin, result, target]) Set_actumulate(origin, target_rank]) Set_accumulate(origin, target_rank] Set_accumulate(origin, target_rank] Set_accumulate(origin, target_rank] Set_accumulate(origin, target_rank] Set_accumulate data into the target process using remote memory access. Put data into a memory window on a remote process. Set_attr(keyval, attrval) Store attribute value associated with a key Set_ernhandler(origin) Set me values for the hints sasociated with a window Set_name(name) Set the error handler for a window Set the print name associated with a window on the process-local address for remote memory segments created with win. Allocate_shared() Start an RMA access epoch at the target process on the process of the print name associated with win allocate_shared() Start an RMA access epoch at the target process on the process of th	Free()	Free a window
Get (origin, target_rank[, target]) Get data from a memory window on a remote process Get_accumulate(origin, result, target_rank) Get_accumulate(origin, result, target_rank) Get_errhandler() Get the error handler for a window Return a duplicate of the group of the communicator used to create the window Get_info() Return a duplicate of the group of the communicator used to create the window set undows that are currently in use Get_name() Lock(rank[, lock_type, assertion]) Lock(rank[, lock_type, assertion]) Post(group[, assertion]) Post(group[, assertion]) Recturn a duplicate of the group of the communicator used to create the window Begin an RMA access epoch at the target process Begin an RMA access epoch at all processes Start an RMA exposure epoch Put (origin, target_rank[, target]) Recturnulate(origin, target_rank[, target, op]) Recturnulate(origin, target_rank[, target, op]) Reget_accumulate(origin, result, target]) Reth-and-accumulate data into the target process Rect_info() Get the error handler on a memory window on a remote process. Rect_andler(origin, target_rank[, target]) Get data from a memory window on a remote process. Rect_actumulate(origin, result, target_rank) Retirevallate (origin, target_rank], target]) Put data into a memory window on a remote process. Retirevallate (origin, target_rank], target]) Set_actif(origin, target_rank[, target]) Set_errhandler(origin, target_rank], target]) Set_errhandler(origin, target_rank] Set new values for the hints sasociated with a window Set new values for the hints associated with a window Set new values for the hints associated with a window on a remote process. Set_art(group[, assertion]) Start an RMA access epoch at got address for remote memory segments created with Win. Allocate_shared() Start an RMA access epoch at all processes Unlock (rank) Complete an RMA access epoch at all processes Unlock (rank) Complete an RMA exposure epoch begun with Win. Post() Fetwhere at ranker and private copies of the given wind	Free_keyval(keyval)	Free an attribute key for windows
Get_artr(keyval) Get_errhandler() Get the error handler for a window Get_group() Return a duplicate of the group of the communicator used to create the window Get_info() Return the hints for a windows that are currently in use Get_name() Get the print name associated with the window Begin an RMA access epoch at the target process Lock_all([assertion]) Begin an RMA access epoch at all processes Start an RMA exposure epoch Put (origin, target_rank[, target]) Rget(origin, target_rank[, target]) Rget_accumulate(origin, result, target] Rput(origin, target_rank[, target]) Rput(origin, target_rank[, target]) Rput(origin, target_rank[, target]) Set_errhandler(errhandler) Set_info(info) Set_name(name) Shared_query(rank) Start an RMA access epoch at all processes Start an RMA exposure epoch Put data into a memory window on a remote process. Rput(origin, target_rank[, target]) Start an Rma exposicated with the window Set_info(info) Set_name(name) Set_errhandler(errhandler) Start(group[, assertion]) Start an RMA access epoch at window Test() Test whether an RMA exposure epoch Put data into a memory window on a remote process. Start an RMA access epoch at the target process of the given window Test() Test whether an RMA exposure epoch has completed Unlock(rank) Complete an RMA access epoch at all processes Unlock_all() Complete an RMA exposure epoch begun with ₩in. Post() F2py(arg)	<pre>Get(origin, target_rank[, target])</pre>	
Get_group() Get_group() Return a duplicate of the group of the communicator used to create the window Get_info() Return the hints for a windows that are currently in use Get_name() Lock_all([assertion]) Post(group[, assertion]) Post(group[, assertion]) Regin an RMA access epoch at all processes Rget(origin, target_rank[, target]) Rget(origin, target_rank[, target]) Rput(origin, target_rank[, target]) Rput(origin, target_rank[, target]) Ret_accumulate(origin, result, target]) Ret_accumulate(origin, result, target]) Ret_accumulate(origin, result, target]) Ret_accumulate(origin, result, target) Rget_accumulate(origin, result, target) Rput(origin, target_rank[, target]) Set_attr(keyval, attrval) Set_attr(keyval, attrval) Set_errhandler(errhandler) Set_name(name) Set_name(name) Shared_query(rank) Set_new alues for the hints associated with a window Set_name(name) Start an RMA access epoch at all process. Rput(origin, target_rank[, target]) Set new values for the hints associated with a window Set_name(name) Set new ralues for the hints associated with a window Set new ralues for the hints associated with the window Set new ralues for the hints associated with the window Set new ralues for the hints associated with a window Set new ralues for the hints associated with a window Set new ralues for the hints associated with a window Set new ralues for the hints associated with a window Set new ralues for the hints associated with a window Set new ralues for the hints associated with a window Set new ralues for the hints associated with a window Set new ralues for the hints associated with a window Set new ralues for the hints associated with a window Set new ralues for the hints associated with a window Set new ralues for the hints associated with a window Set new ralues for the hints associated with a window Set new ralues for the hints associated with a window Set new ralues for the hints associated with a window Set new ralues for the hints associated with a window on	<pre>Get_accumulate(origin, result, target_rank)</pre>	Fetch-and-accumulate data into the target process
Get_group() Return a duplicate of the group of the communicator used to create the window Get_info() Return the hints for a windows that are currently in use Get_name() Get the print name associated with the window Lock(rank[, lock_type, assertion]) Begin an RMA access epoch at the target process Lock_all([assertion]) Start an RMA exposure epoch Put(origin, target_rank[, target]) Put data into a memory window on a remote process. Raccumulate(origin, target_rank[, target, op]) Fetch-and-accumulate data into the target process Rget_origin, target_rank[, target]) Get data from a memory window on a remote process. Rget_accumulate(origin, result, target_rank) Put data into a memory window on a remote process. Rput(origin, target_rank[, target]) Put data into a memory window on a remote process. Set_attr(keyval, attrval) Store attribute value associated with a key Set_erhandler(errhandler) Set the error handler for a window Set_name(name) Set the print name associated with a window Shared_query(rank) Set mew values for the hints associated with a window Shared_query(rank) Set an RMA access epoch for MPI Sync() Synchronize public and private copies of the given window Test whether an RMA exposure epoch begun with Win.<	Get_attr(keyval)	Retrieve attribute value by key
used to create the window	Get_errhandler()	
use Get_name() Get the print name associated with the window Lock_(rank[, lock_type, assertion]) Begin an RMA access epoch at the target process Lock_all([assertion]) Begin an RMA access epoch at all processes Post(group[, assertion]) Start an RMA exposure epoch Put(origin, target_rank[, target]) Put data into a memory window on a remote process. Raccumulate(origin, target_rank[, target]) Fetch-and-accumulate data into the target process Rget(origin, target_rank[, target]) Get data from a memory window on a remote process. Rget_accumulate(origin, result, target_rank) Accumulate data into the target process using remote memory access. Rput(origin, target_rank[, target]) Put data into a memory window on a remote process. Set_attr(keyval, attrval) Store attribute value associated with a key Set_errhandler(errhandler) Set the error handler for a window Set_name(name) Set new values for the hints associated with a window Set_name(name) Set the print name associated with the window Shared_query(rank) Query the process-local address for remote memory segments created with \(Win. Allocate_shared() \) Start an RMA access epoch for MPI Sync() Synchronize public and private copies of the given window Test() Test whether an RMA exposure epoch has completed Unlock(rank) Complete an RMA access epoch at all processes Unlock_all() Complete an RMA access epoch begun with \(Win. Post()	<pre>Get_group()</pre>	
Lock(rank[, lock_type, assertion])Begin an RMA access epoch at the target processLock_all([assertion])Begin an RMA access epoch at all processesPost(group[, assertion])Start an RMA exposure epochPut data into a memory window on a remote process.Raccumulate(origin, target_rank[, target])Fetch-and-accumulate data into the target processRget(origin, target_rank[, target])Get data from a memory window on a remote process.Rget_accumulate(origin, result, target_rank)Put data into a memory window on a remote process.Rput(origin, target_rank[, target])Put data into a memory window on a remote process.Set_attr(keyval, attrval)Store attribute value associated with a keySet_errhandler(errhandler)Set the error handler for a windowSet_info(info)Set new values for the hints associated with a windowSet_name(name)Set the print name associated with the windowShared_query(rank)Query the process-local address for remote memory segments created with Win.Allocate_shared()Start(group[, assertion])Start an RMA access epoch for MPISync()Synchronize public and private copies of the given windowTest ()Test whether an RMA exposure epoch has completedUnlock(rank)Complete an RMA access epoch at the target processUnlock_all()Complete an RMA exposure epoch begun with Win. Post()f2py(arg)Post()	<pre>Get_info()</pre>	
Lock(rank[, lock_type, assertion])Begin an RMA access epoch at the target processLock_all([assertion])Begin an RMA access epoch at all processesPost(group[, assertion])Start an RMA exposure epochPut data into a memory window on a remote process.Raccumulate(origin, target_rank[, target])Fetch-and-accumulate data into the target processRget(origin, target_rank[, target])Get data from a memory window on a remote process.Rget_accumulate(origin, result, target_rank)Put data into a memory window on a remote process.Rput(origin, target_rank[, target])Put data into a memory window on a remote process.Set_attr(keyval, attrval)Store attribute value associated with a keySet_errhandler(errhandler)Set the error handler for a windowSet_info(info)Set new values for the hints associated with a windowSet_name(name)Set the print name associated with the windowShared_query(rank)Query the process-local address for remote memory segments created with Win.Allocate_shared()Start(group[, assertion])Start an RMA access epoch for MPISync()Synchronize public and private copies of the given windowTest ()Test whether an RMA exposure epoch has completedUnlock(rank)Complete an RMA access epoch at the target processUnlock_all()Complete an RMA exposure epoch begun with Win. Post()f2py(arg)Post()	<pre>Get_name()</pre>	Get the print name associated with the window
Begin an RMA access epoch at all processes	· ·	
Post(group[, assertion]) Put(origin, target_rank[, target]) Raccumulate(origin, target_rank[, target, op]) Reget(origin, target_rank[, target]) Reget(origin, target_rank[, target]) Reget(origin, target_rank[, target]) Reget_accumulate(origin, result, target_rank) Rememory access. Reget_accumulate(origin, target_rank[, target]) Put data into a memory window on a remote process. Reget_accumulate(origin, result, target_rank) Put data into a memory window on a remote process. Set_actrr(keyval, attrval) Store attribute value associated with a key Set_errhandler(errhandler) Set the error handler for a window Set_new values for the hints associated with a window Set_new values for the hints associated with the window Set the print name associated with the window Query the process-local address for remote memory segments created with Win.Allocate_shared() Start(group[, assertion]) Start an RMA access epoch for MPI Sync() Synchronize public and private copies of the given window Test() Test whether an RMA exposure epoch has completed Unlock(rank) Complete an RMA access epoch at all processes Unlock_all() Complete an RMA exposure epoch begun with Win. Post() f2py(arg) py2f()		
Put (origin, target_rank[, target]) Raccumulate(origin, target_rank[, target, op]) Rget(origin, target_rank[, target]) Rget(origin, target_rank[, target]) Rget_accumulate(origin, result, target_rank) Rput(origin, target_rank[, target]) Rput data into a memory window on a remote process. Accumulate data into the target process using remote memory access. Put data into a memory window on a remote process. Set_attr(keyval, attrval) Store attribute value associated with a key Set_errhandler(errhandler) Set new values for the hints associated with a window Set new values for the hints associated with the window Set the print name associated with the window Query the process-local address for remote memory segments created with Win.Allocate_shared() Start an RMA access epoch for MPI Sync() Synchronize public and private copies of the given window Test() Test whether an RMA exposure epoch has completed Unlock(rank) Unlock_all() Complete an RMA access epoch at all processes Unlock_all() Complete an RMA exposure epoch begun with Win. Post() f2py(arg) py2f()		• •
Raccumulate(origin, target_rank[, target, op]) Fetch-and-accumulate data into the target process Rget(origin, target_rank[, target]) Get data from a memory window on a remote process. Rget_accumulate(origin, result, target_rank) Accumulate data into the target process using remote memory access. Rput(origin, target_rank[, target]) Put data into a memory window on a remote process. Set_attr(keyval, attrval) Store attribute value associated with a key Set_errhandler(errhandler) Set the error handler for a window Set_info(info) Set new values for the hints associated with a window Set_name(name) Set the print name associated with the window Shared_query(rank) Query the process-local address for remote memory segments created with Win. Allocate_shared() Start(group[, assertion]) Start an RMA access epoch for MPI Sync() Synchronize public and private copies of the given window Test() Test whether an RMA exposure epoch has completed Unlock(rank) Unlock_all() Complete an RMA access epoch at all processes Unlock_all() Complete an RMA exposure epoch begun with Win. Post() f2py(arg)		
Rget(origin, target_rank , target)Get data from a memory window on a remote process.Rget_accumulate(origin, result, target_rank)Accumulate data into the target process using remote memory access.Rput(origin, target_rank[, target])Put data into a memory window on a remote process.Set_attr(keyval, attrval)Store attribute value associated with a keySet_errhandler(errhandler)Set the error handler for a windowSet_info(info)Set new values for the hints associated with a windowSet_name(name)Set the print name associated with the windowShared_query(rank)Query the process-local address for remote memory segments created with Win.Allocate_shared()Start(group[, assertion])Start an RMA access epoch for MPISync()Synchronize public and private copies of the given windowTestTest whether an RMA exposure epoch has completedUnlock(rank)Complete an RMA access epoch at all processesUnlock_all()Complete an RMA exposure epoch begun with Win. Post()f2py(arg)f2py(arg)		
Rget_accumulate(origin, result, target_rank) Accumulate data into the target process using remote memory access. Rput(origin, target_rank[, target]) Put data into a memory window on a remote process. Set_attr(keyval, attrval) Store attribute value associated with a key Set_errhandler(errhandler) Set the error handler for a window Set_info(info) Set new values for the hints associated with a window Set_name(name) Set the print name associated with the window Shared_query(rank) Query the process-local address for remote memory segments created with Win. Allocate_shared() Start(group[, assertion]) Start an RMA access epoch for MPI Sync() Synchronize public and private copies of the given window Test() Test whether an RMA exposure epoch has completed Unlock(rank) Complete an RMA access epoch at the target process Unlock_all() Wait() Complete an RMA access epoch at all processes Complete an RMA exposure epoch begun with Win. Post() f2py(arg)		
Set_attr(keyval, attrval)Store attribute value associated with a keySet_errhandler(errhandler)Set the error handler for a windowSet_info(info)Set new values for the hints associated with a windowSet_name(name)Set the print name associated with the windowShared_query(rank)Query the process-local address for remote memory segments created with Win.Allocate_shared()Start(group[, assertion])Start an RMA access epoch for MPISync()Synchronize public and private copies of the given windowTest()Test whether an RMA exposure epoch has completedUnlock(rank)Complete an RMA access epoch at the target processUnlock_all()Complete an RMA exposure epoch begun with Win.Post()Post()f2py(arg)post()		Accumulate data into the target process using remote
Set_errhandler(errhandler) Set the error handler for a window Set_info(info) Set new values for the hints associated with a window Set_name(name) Set the print name associated with the window Shared_query(rank) Query the process-local address for remote memory segments created with Win. Allocate_shared() Start(group[, assertion]) Start an RMA access epoch for MPI Sync() Synchronize public and private copies of the given window Test() Test whether an RMA exposure epoch has completed Unlock(rank) Complete an RMA access epoch at the target process Unlock_all() Complete an RMA exposure epoch begun with Win. Post() f2py(arg)	<pre>Rput(origin, target_rank[, target])</pre>	Put data into a memory window on a remote process.
Set_info(info)Set new values for the hints associated with a windowSet_name(name)Set the print name associated with the windowShared_query(rank)Query the process-local address for remote memory segments created with Win.Allocate_shared()Start(group[, assertion])Start an RMA access epoch for MPISync()Synchronize public and private copies of the given windowTest()Test whether an RMA exposure epoch has completedUnlock(rank)Complete an RMA access epoch at the target processUnlock_all()Complete an RMA exposure epoch begun with Win. Post()f2py(arg)f2py(arg)	Set_attr(keyval, attrval)	Store attribute value associated with a key
Set_name(name)Set the print name associated with the windowShared_query(rank)Query the process-local address for remote memory segments created with Win. Allocate_shared()Start(group[, assertion])Start an RMA access epoch for MPISync()Synchronize public and private copies of the given windowTest()Test whether an RMA exposure epoch has completed Unlock(rank)Unlock_all()Complete an RMA access epoch at the target processWait()Complete an RMA exposure epoch begun with Win. Post()f2py(arg)f2py(arg)	Set_errhandler(errhandler)	Set the error handler for a window
Shared_query(rank) Query the process-local address for remote memory segments created with Win.Allocate_shared() Start(group[, assertion]) Start an RMA access epoch for MPI Sync() Synchronize public and private copies of the given window Test() Test whether an RMA exposure epoch has completed Unlock(rank) Complete an RMA access epoch at the target process Unlock_all() Complete an RMA exposure epoch begun with Win. Post() f2py(arg) py2f()	Set_info(info)	Set new values for the hints associated with a window
segments created with Win.Allocate_shared() Start (group[, assertion]) Start an RMA access epoch for MPI Sync() Synchronize public and private copies of the given window Test() Test whether an RMA exposure epoch has completed Unlock(rank) Complete an RMA access epoch at the target process Unlock_all() Complete an RMA access epoch at all processes Wait() Complete an RMA exposure epoch begun with Win. Post() f2py(arg) py2f()	Set_name(name)	Set the print name associated with the window
Start (group[, assertion]) Start an RMA access epoch for MPI Sync() Synchronize public and private copies of the given window Test() Test whether an RMA exposure epoch has completed Unlock(rank) Complete an RMA access epoch at the target process Unlock_all() Complete an RMA access epoch at all processes Wait() Complete an RMA exposure epoch begun with Win. Post() Post()	Shared_query(rank)	Query the process-local address for remote memory
Sync() Synchronize public and private copies of the given window Test() Test whether an RMA exposure epoch has completed Unlock(rank) Complete an RMA access epoch at the target process Unlock_all() Complete an RMA access epoch at all processes Wait() Complete an RMA exposure epoch begun with Win. Post() f2py(arg) py2f()		segments created with Win.Allocate_shared()
window Test() Test whether an RMA exposure epoch has completed Unlock(rank) Complete an RMA access epoch at the target process Unlock_all() Complete an RMA access epoch at all processes Wait() Complete an RMA exposure epoch begun with Win. Post() f2py(arg) py2f()	Start(group[, assertion])	Start an RMA access epoch for MPI
Unlock(rank) Unlock_all() Complete an RMA access epoch at the target process Unlock_all() Complete an RMA access epoch at all processes Wait() Complete an RMA exposure epoch begun with Win. Post() f2py(arg) py2f()	Sync()	• • • • • • • • • • • • • • • • • • • •
Unlock(rank) Unlock_all() Complete an RMA access epoch at the target process Unlock_all() Complete an RMA access epoch at all processes Wait() Complete an RMA exposure epoch begun with Win. Post() f2py(arg) py2f()	Test()	Test whether an RMA exposure epoch has completed
Unlock_all() Complete an RMA access epoch at all processes Wait() Complete an RMA exposure epoch begun with Win. Post() py2f()	V	<u> </u>
Wait() Complete an RMA exposure epoch begun with Win. Post() py2f()		
py2f()		Complete an RMA exposure epoch begun with Win.
	f2py(arg)	
tomemory() Return window memory buffer	py2f()	
	tomemory()	Return window memory buffer

Attributes Summary

attrs	window attributes
flavor	window create flavor
group	window group
info	window info
model	window memory model
name	window name

Methods Documentation

Accumulate(origin, target_rank, target=None, op=SUM)

Accumulate data into the target process

Parameters

- origin (BufSpec) -
- target_rank (int) -
- target (TargetSpec / None) -
- op (0p) -

Return type

None

classmethod Allocate(size, disp_unit=1, info=INFO_NULL, comm=COMM_SELF)

Create an window object for one-sided communication

Parameters

- **size** (int) -
- disp_unit (int) -
- info (Info) -
- comm (Intracomm) -

Return type

Self

classmethod Allocate_shared(size, disp_unit=1, info=INFO_NULL, comm=COMM_SELF)

Create an window object for one-sided communication

Parameters

- **size** (*int*) -
- disp_unit (int) -
- info (Info) -
- comm (Intracomm) -

Return type

Self

```
Attach(memory)
    Attach a local memory region
        Parameters
            memory (Buffer) -
        Return type
            None
Call_errhandler(errorcode)
    Call the error handler installed on a window
        Parameters
            errorcode (int) -
        Return type
            None
Compare_and_swap(origin, compare, result, target_rank, target_disp=0)
    Perform one-sided atomic compare-and-swap
        Parameters
            • origin (BufSpec) -
            • compare (BufSpec) -
            • result (BufSpec) -
            • target_rank (int) -
            • target_disp(int)-
        Return type
            None
Complete()
    Completes an RMA operations begun after an Win. Start()
        Return type
            None
classmethod Create(memory, disp_unit=1, info=INFO_NULL, comm=COMM_SELF)
    Create an window object for one-sided communication
        Parameters
            • memory (Buffer / Bottom) -
            • disp_unit (int) -
            • info (Info) -
            • comm (Intracomm) -
        Return type
            Self
classmethod Create_dynamic(info=INFO_NULL, comm=COMM_SELF)
    Create an window object for one-sided communication
        Parameters
            • info (Info) -
            • comm (Intracomm) -
```

```
Return type
            Self
classmethod Create_errhandler(errhandler_fn)
    Create a new error handler for windows
        Parameters
            errhandler_fn (Callable[[Win, int], None]) -
        Return type
            Errhandler
classmethod Create_keyval(copy_fn=None, delete_fn=None, nopython=False)
    Create a new attribute key for windows
        Parameters
             • copy_fn(Callable[[Win, int, Any], Any] | None) -
             • delete_fn(Callable[[Win, int, Any], None] | None) -
             • nopython (bool) -
        Return type
            int
Delete_attr(keyval)
    Delete attribute value associated with a key
        Parameters
            keyval (int) -
        Return type
            None
Detach(memory)
    Detach a local memory region
        Parameters
            memory (Buffer) -
        Return type
            None
Fence(assertion=0)
    Perform an MPI fence synchronization on a window
        Parameters
            assertion (int) -
        Return type
            None
Fetch_and_op(origin, result, target_rank, target_disp=0, op=SUM)
    Perform one-sided read-modify-write
        Parameters
             • origin (BufSpec) -
             • result (BufSpec) -
             • target_rank (int) -
```

• target_disp(int)-

```
• op (0p) -
         Return type
             None
Flush(rank)
     Complete all outstanding RMA operations at the given target
         Parameters
             rank (int)-
         Return type
             None
Flush_all()
     Complete all outstanding RMA operations at all targets
         Return type
             None
Flush_local(rank)
     Complete locally all outstanding RMA operations at the given target
         Parameters
             rank (int) -
         Return type
             None
Flush_local_all()
     Complete locally all outstanding RMA opera- tions at all targets
         Return type
             None
Free()
     Free a window
         Return type
             None
classmethod Free_keyval(keyval)
     Free an attribute key for windows
         Parameters
             keyval (int) -
         Return type
             int
Get(origin, target_rank, target=None)
     Get data from a memory window on a remote process.
         Parameters
             • origin (BufSpec) -
             • target_rank (int) -
             • target (TargetSpec / None) -
         Return type
```

```
Get_accumulate(origin, result, target_rank, target=None, op=SUM)
     Fetch-and-accumulate data into the target process
         Parameters
             • origin (BufSpec) -
             • result (BufSpec) -
             • target_rank (int) -
             • target (TargetSpec / None) -
             • op (0p) -
         Return type
             None
Get_attr(keyval)
     Retrieve attribute value by key
         Parameters
             keyval (int) -
         Return type
             int | Any | None
Get_errhandler()
     Get the error handler for a window
         Return type
             Errhandler
Get_group()
     Return a duplicate of the group of the communicator used to create the window
         Return type
             Group
Get_info()
     Return the hints for a windows that are currently in use
         Return type
             Info
Get_name()
     Get the print name associated with the window
         Return type
Lock(rank, lock_type=LOCK_EXCLUSIVE, assertion=0)
     Begin an RMA access epoch at the target process
         Parameters
             • rank (int) -
             • lock_type (int) -
             • assertion (int) -
         Return type
```

```
Lock_all(assertion=0)
```

Begin an RMA access epoch at all processes

Parameters

assertion (int) -

Return type

None

Post(group, assertion=0)

Start an RMA exposure epoch

Parameters

- group (Group) -
- assertion (int) -

Return type

None

Put(origin, target_rank, target=None)

Put data into a memory window on a remote process.

Parameters

- origin (BufSpec) -
- target_rank (int) -
- target (TargetSpec / None) -

Return type

None

Raccumulate(origin, target_rank, target=None, op=SUM)

Fetch-and-accumulate data into the target process

Parameters

- origin (BufSpec) -
- target_rank (int) -
- target (TargetSpec / None) -
- op (0p) -

Return type

Request

Rget(origin, target_rank, target=None)

Get data from a memory window on a remote process.

Parameters

- origin (BufSpec) -
- target_rank (int) -
- target (TargetSpec | None) -

Return type

Request

```
Rget_accumulate(origin, result, target_rank, target=None, op=SUM)
```

Accumulate data into the target process using remote memory access.

Parameters

- origin (BufSpec) -
- result (BufSpec) -
- target_rank (int) -
- target (TargetSpec / None) -
- **op** (0p) –

Return type

Request

Rput(origin, target_rank, target=None)

Put data into a memory window on a remote process.

Parameters

- origin (BufSpec) -
- target_rank (int) -
- target (TargetSpec / None) -

Return type

Request

Set_attr(keyval, attrval)

Store attribute value associated with a key

Parameters

- keyval (int) -
- attrval (Any) -

Return type

None

Set_errhandler(errhandler)

Set the error handler for a window

Parameters

errhandler (Errhandler) -

Return type

None

Set_info(info)

Set new values for the hints associated with a window

Parameters

info (Info) -

Return type

```
Set_name(name)
     Set the print name associated with the window
         Parameters
            name (str) -
         Return type
             None
Shared_query(rank)
     Query the process-local address for remote memory segments created with Win.Allocate_shared()
         Parameters
             rank (int) -
         Return type
             tuple[memory, int]
Start(group, assertion=0)
     Start an RMA access epoch for MPI
         Parameters
             • group (Group) -
             • assertion (int) -
         Return type
             None
Sync()
     Synchronize public and private copies of the given window
         Return type
             None
Test()
     Test whether an RMA exposure epoch has completed
         Return type
             bool
Unlock(rank)
     Complete an RMA access epoch at the target process
         Parameters
             rank (int) -
         Return type
             None
Unlock_all()
     Complete an RMA access epoch at all processes
         Return type
             None
Wait()
     Complete an RMA exposure epoch begun with Win.Post()
         Return type
             Literal[True]
```

```
classmethod f2py(arg)
             Parameters
                 arg(int)-
             Return type
                 Win
     py2f()
             Return type
                 int
     tomemory()
         Return window memory buffer
             Return type
                 memory
     Attributes Documentation
     attrs
         window attributes
     flavor
         window create flavor
     group
         window group
     info
         window info
     model
         window memory model
     name
         window name
mpi4py.MPI.memory
class mpi4py.MPI.memory
     Bases: object
     Memory buffer
     static __new__(cls, buf)
             Parameters
                 buf (Buffer) -
             Return type
```

memory

Methods Summary

allocate(nbytes[, clear])	Memory allocation
<pre>fromaddress(address, nbytes[, readonly])</pre>	Memory from address and size in bytes
<pre>frombuffer(obj[, readonly])</pre>	Memory from buffer-like object
release()	Release the underlying buffer exposed by the memory object
tobytes([order])	Return the data in the buffer as a byte string
toreadonly()	Return a readonly version of the memory object

Attributes Summary

address	Memory address
format	A string with the format of each element
itemsize	The size in bytes of each element
nbytes	Memory size (in bytes)
obj	The underlying object of the memory
readonly	Boolean indicating whether the memory is read-only

Methods Documentation

static allocate(nbytes, clear=False)

Memory allocation

Parameters

- nbytes (int) -
- clear (bool) -

Return type

memory

 $\verb|static fromaddress|(address, nbytes, readonly = False)|$

Memory from address and size in bytes

Parameters

- address (int) -
- nbytes (int) -
- readonly (bool) -

Return type

memory

static frombuffer(obj, readonly=False)

Memory from buffer-like object

Parameters

- obj (Buffer) -
- readonly (bool) -

Return type

memory

release()

Release the underlying buffer exposed by the memory object

Return type

None

tobytes(order=None)

Return the data in the buffer as a byte string

Parameters

order(str | None) -

Return type

bytes

toreadonly()

Return a readonly version of the memory object

Return type

memory

Attributes Documentation

address

Memory address

format

A string with the format of each element

itemsize

The size in bytes of each element

nbytes

Memory size (in bytes)

obj

The underlying object of the memory

readonly

Boolean indicating whether the memory is read-only

Exceptions

Exception Exception class

mpi4py.MPI.Exception

exception mpi4py.MPI.Exception

Bases: RuntimeError

Exception class

static __new__(cls, ierr=SUCCESS)

Parameters

ierr(int)-

Return type

Exception

Methods Summary

<pre>Get_error_class()</pre>	Error class
<pre>Get_error_code()</pre>	Error code
<pre>Get_error_string()</pre>	Error string

Attributes Summary

error_class	error class
error_code	error code
error_string	error string

Methods Documentation

Get_error_class()

Error class

Return type

int

Get_error_code()

Error code

Return type

int

Get_error_string()

Error string

Return type

str

Attributes Documentation

error_class

error class

error_code

error code

error_string

error string

Functions

Add_error_class()	Add an error class to the known error classes
Add_error_code(errorclass)	Add an error code to an error class
Add_error_string(errorcode, string)	Associate an <i>error string</i> with an <i>error class</i> or <i>error-code</i>
Aint_add(base, disp)	Return the sum of base address and displacement
Aint_diff(addr1, addr2)	Return the difference between absolute addresses
Alloc_mem(size[, info])	Allocate memory for message passing and RMA
Attach_buffer(buf)	Attach a user-provided buffer for sending in buffered mode
Close_port(port_name)	Close a port
Compute_dims(nnodes, dims)	Return a balanced distribution of processes per coordi-
	nate direction
<pre>Detach_buffer()</pre>	Remove an existing attached buffer
Finalize()	Terminate the MPI execution environment
Free_mem(mem)	Free memory allocated with Alloc_mem()
<pre>Get_address(location)</pre>	Get the address of a location in memory
<pre>Get_error_class(errorcode)</pre>	Convert an error code into an error class
<pre>Get_error_string(errorcode)</pre>	Return the <i>error string</i> for a given <i>error class</i> or <i>error code</i>
<pre>Get_library_version()</pre>	Obtain the version string of the MPI library
<pre>Get_processor_name()</pre>	Obtain the name of the calling processor
<pre>Get_version()</pre>	Obtain the version number of the MPI standard supported by the implementation as a tuple (version, subversion)
<pre>Init()</pre>	Initialize the MPI execution environment
<pre>Init_thread([required])</pre>	Initialize the MPI execution environment
<pre>Is_finalized()</pre>	Indicates whether Finalize has completed
<pre>Is_initialized()</pre>	Indicates whether <i>Init</i> has been called
<pre>Is_thread_main()</pre>	Indicate whether this thread called <i>Init</i> or <i>Init_thread</i>
Lookup_name(service_name[, info])	Lookup a port name given a service name
<pre>Open_port([info])</pre>	Return an address that can be used to establish connections between groups of MPI processes
Pcontrol(level)	Control profiling
Publish_name(service_name, port_name[, info])	Publish a service name
Query_thread()	Return the level of thread support provided by the MPI
7 0	library
Register_datarep(datarep, read_fn, write_fn,)	Register user-defined data representations

Table 6 – continued from previous page

<pre>Unpublish_name(service_name, port_name[, info])</pre>	Unpublish a service name
Wtick()	Return the resolution of Wtime
Wtime()	Return an elapsed time on the calling processor
<pre>get_vendor()</pre>	Information about the underlying MPI implementation

mpi4py.MPI.Add_error_class

```
mpi4py.MPI.Add_error_class()
```

Add an error class to the known error classes

Return type

int

mpi4py.MPI.Add_error_code

```
mpi4py.MPI.Add_error_code(errorclass)
```

Add an error code to an error class

Parameters

errorclass (int) -

Return type

int

mpi4py.MPI.Add_error_string

mpi4py.MPI.Add_error_string(errorcode, string)

Associate an error string with an error class or errorcode

Parameters

- errorcode (int) -
- string (str) -

Return type

None

mpi4py.MPI.Aint_add

mpi4py.MPI.Aint_add(base, disp)

Return the sum of base address and displacement

Parameters

- base (int) -
- disp(int)-

Return type

int

```
mpi4py.MPI.Aint_diff
\verb"mpi4py.MPI.Aint_diff" (addr1, addr2)
```

Return the difference between absolute addresses

Parameters

- addr1 (int) -
- addr2 (int) -

Return type

int

mpi4py.MPI.Alloc_mem

mpi4py.MPI.Alloc_mem(size, info=INFO_NULL)

Allocate memory for message passing and RMA

Parameters

- size (int) -
- info (Info) -

Return type

memory

mpi4py.MPI.Attach_buffer

```
mpi4py.MPI.Attach_buffer(buf)
```

Attach a user-provided buffer for sending in buffered mode

Parameters

buf (Buffer) -

Return type

None

mpi4py.MPI.Close_port

```
mpi4py.MPI.Close_port(port_name)
```

Close a port

Parameters

port_name (str) -

Return type

```
mpi4py.MPI.Compute dims
mpi4py.MPI.Compute_dims(nnodes, dims)
     Return a balanced distribution of processes per coordinate direction
          Parameters
                • nnodes (int) -
                • dims (int | Sequence[int]) -
          Return type
              list[int]
mpi4py.MPI.Detach_buffer
mpi4py.MPI.Detach_buffer()
     Remove an existing attached buffer
          Return type
              Buffer
mpi4py.MPI.Finalize
mpi4py.MPI.Finalize()
     Terminate the MPI execution environment
          Return type
              None
mpi4py.MPI.Free_mem
mpi4py.MPI.Free_mem(mem)
     Free memory allocated with Alloc_mem()
          Parameters
              mem (memory) -
          Return type
              None
mpi4py.MPI.Get_address
mpi4py.MPI.Get_address(location)
     Get the address of a location in memory
          Parameters
              location (Buffer / Bottom) -
          Return type
              int
```

```
mpi4py.MPI.Get error class
mpi4py.MPI.Get_error_class(errorcode)
     Convert an error code into an error class
          Parameters
              errorcode (int) -
          Return type
              int
mpi4py.MPI.Get_error_string
mpi4py.MPI.Get_error_string(errorcode)
     Return the error string for a given error class or error code
          Parameters
              errorcode (int) -
          Return type
              str
mpi4py.MPI.Get_library_version
mpi4py.MPI.Get_library_version()
     Obtain the version string of the MPI library
          Return type
              str
mpi4py.MPI.Get processor name
mpi4py.MPI.Get_processor_name()
     Obtain the name of the calling processor
          Return type
              str
mpi4py.MPI.Get_version
mpi4py.MPI.Get_version()
     Obtain the version number of the MPI standard supported by the implementation as a tuple (version,
     subversion)
          Return type
              tuple[int, int]
```

```
mpi4py.MPI.Init
mpi4py.MPI.Init()
     Initialize the MPI execution environment
          Return type
              None
mpi4py.MPI.Init_thread
mpi4py.MPI.Init_thread(required=THREAD_MULTIPLE)
     Initialize the MPI execution environment
          Parameters
              required (int) -
          Return type
              int
mpi4py.MPI.Is finalized
mpi4py.MPI.Is_finalized()
     Indicates whether Finalize has completed
          Return type
              bool
mpi4py.MPI.Is_initialized
mpi4py.MPI.Is_initialized()
     Indicates whether Init has been called
          Return type
              bool
mpi4py.MPI.Is_thread_main
mpi4py.MPI.Is_thread_main()
     Indicate whether this thread called Init or Init_thread
          Return type
              bool
mpi4py.MPI.Lookup_name
mpi4py.MPI.Lookup_name(service_name, info=INFO_NULL)
     Lookup a port name given a service name
          Parameters
               • service_name(str)-
               • info (Info) -
```

```
Return type
              str
mpi4py.MPI.Open_port
mpi4py.MPI.Open_port(info=INFO_NULL)
     Return an address that can be used to establish connections between groups of MPI processes
          Parameters
              info (Info) -
          Return type
              str
mpi4py.MPI.Pcontrol
mpi4py.MPI.Pcontrol(level)
     Control profiling
          Parameters
              level (int) -
          Return type
              None
mpi4py.MPI.Publish_name
mpi4py.MPI.Publish_name(service_name, port_name, info=INFO_NULL)
     Publish a service name
          Parameters
                • service_name (str) -
                • port_name (str) -
                • info (Info) -
          Return type
              None
mpi4py.MPI.Query_thread
```

```
mpi4py.MPI.Query_thread()
```

Return the level of thread support provided by the MPI library

Return type

int

```
mpi4py.MPI.Register datarep
```

```
{\tt mpi4py.MPI.Register\_datarep}({\it datarep}, {\it read\_fn}, {\it write\_fn}, {\it extent\_fn})
     Register user-defined data representations
          Parameters
                • datarep (str) -
                • read_fn(Callable[[Buffer, Datatype, int, Buffer, int], None]) -
                • write_fn(Callable[[Buffer, Datatype, int, Buffer, int], None]) -
                • extent_fn (Callable[[Datatype], int]) -
          Return type
              None
mpi4py.MPI.Unpublish_name
mpi4py.MPI.Unpublish_name(service_name, port_name, info=INFO_NULL)
     Unpublish a service name
          Parameters
                • service_name (str) -
                • port_name (str) -
                • info (Info) -
          Return type
              None
mpi4py.MPI.Wtick
mpi4py.MPI.Wtick()
     Return the resolution of Wtime
          Return type
              float
mpi4py.MPI.Wtime
mpi4py.MPI.Wtime()
     Return an elapsed time on the calling processor
          Return type
              float
```

mpi4py.MPI.get_vendor

mpi4py.MPI.get_vendor()

Information about the underlying MPI implementation

Returns

- a string with the name of the MPI implementation
- an integer 3-tuple version (major, minor, micro)

Return type

tuple[str, tuple[int, int, int]]

Attributes

UNDEFINED ANY_SOURCE Constant ANY_SOURCE of type int ANY_TAG Constant ANY_TAG of type int PROC_NULL Constant PROC_NULL of type int ROOT Constant BOTTOM of type BottomType IN_PLACE KEYVAL_INVALID Constant KEYVAL_INVALID of type int Constant TAG_UB of type int HOST Constant HOST of type int Constant HOST of type int UNIVERSE_SIZE Constant WIIME_IS_GLOBAL of type int UNIVERSE_SIZE Constant UNIVERSE_SIZE of type int LASTUSEDCODE WIN_BASE Constant WIN_BASE of type int WIN_DISP_UNIT Constant WIN_DISP_UNIT of type int
ANY_TAG Constant ANY_TAG of type int PROC_NULL Constant PROC_NULL of type int Constant ROOT of type int BOTTOM Constant BOTTOM of type BottomType IN_PLACE Constant IN_PLACE of type InPlaceType KEYVAL_INVALID Constant KEYVAL_INVALID of type int TAG_UB Constant TAG_UB of type int HOST Constant HOST of type int UNIVERSE_SIZE Constant UNIVERSE_SIZE of type int UNIVERSE_SIZE Constant UNIVERSE_SIZE of type int LASTUSEDCODE Constant WIN_BASE of type int WIN_BASE Constant WIN_BASE of type int WIN_SIZE Constant WIN_SIZE of type int
PROC_NULL ROOT Constant PROC_NULL of type int Constant ROOT of type int Constant ROOT of type int Constant BOTTOM of type BottomType IN_PLACE Constant IN_PLACE of type InPlaceType KEYVAL_INVALID Constant KEYVAL_INVALID of type int TAG_UB Constant TAG_UB of type int Constant HOST Constant HOST of type int UNIVERSE_SIZE Constant WTIME_IS_GLOBAL of type int UNIVERSE_SIZE Constant UNIVERSE_SIZE of type int LASTUSEDCODE Constant LASTUSEDCODE of type int WIN_BASE Constant WIN_BASE of type int WIN_SIZE Constant WIN_SIZE of type int
ROOT BOTTOM Constant ROOT of type int Constant BOTTOM of type BottomType IN_PLACE Constant IN_PLACE of type InPlaceType KEYVAL_INVALID Constant KEYVAL_INVALID of type int TAG_UB Constant TAG_UB of type int Constant HOST of type int Constant IO of type int WTIME_IS_GLOBAL Constant WTIME_IS_GLOBAL of type int UNIVERSE_SIZE Constant UNIVERSE_SIZE of type int LASTUSEDCODE Constant LASTUSEDCODE of type int WIN_BASE Constant WIN_BASE of type int WIN_SIZE Constant WIN_SIZE of type int
BOTTOM Constant BOTTOM of type BottomType IN_PLACE Constant IN_PLACE of type InPlaceType KEYVAL_INVALID Constant KEYVAL_INVALID of type int TAG_UB Constant TAG_UB of type int HOST Constant HOST of type int IO Constant IO of type int WTIME_IS_GLOBAL Constant WTIME_IS_GLOBAL of type int UNIVERSE_SIZE COnstant UNIVERSE_SIZE of type int APPNUM Constant APPNUM of type int LASTUSEDCODE Constant UNIVERSE of type int WIN_BASE CONSTANT WIN_BASE of type int WIN_SIZE CONSTANT WIN_SIZE of type int
IN_PLACE Constant IN_PLACE of type InPlaceType KEYVAL_INVALID Constant KEYVAL_INVALID of type int TAG_UB Constant TAG_UB of type int HOST Constant HOST of type int IO Constant IO of type int WTIME_IS_GLOBAL Constant WTIME_IS_GLOBAL of type int UNIVERSE_SIZE Constant UNIVERSE_SIZE of type int APPNUM Constant APPNUM of type int LASTUSEDCODE Constant LASTUSEDCODE of type int WIN_BASE Constant WIN_BASE of type int WIN_SIZE Constant WIN_SIZE of type int
KEYVAL_INVALID Constant KEYVAL_INVALID of type int TAG_UB Constant TAG_UB of type int HOST Constant HOST of type int IO Constant IO of type int WTIME_IS_GLOBAL Constant WTIME_IS_GLOBAL of type int UNIVERSE_SIZE Constant UNIVERSE_SIZE of type int APPNUM Constant APPNUM of type int LASTUSEDCODE Constant LASTUSEDCODE of type int WIN_BASE Constant WIN_BASE of type int WIN_SIZE Constant WIN_SIZE of type int
TAG_UB Constant TAG_UB of type int HOST Constant HOST of type int IO Constant IO of type int WTIME_IS_GLOBAL CONSTANT UNIVERSE_SIZE of type int UNIVERSE_SIZE CONSTANT UNIVERSE_SIZE of type int APPNUM CONSTANT APPNUM of type int LASTUSEDCODE CONSTANT LASTUSEDCODE of type int WIN_BASE CONSTANT WIN_BASE of type int WIN_SIZE CONSTANT WIN_SIZE of type int
HOST Constant HOST of type int Constant IO of type int WTIME_IS_GLOBAL Constant WTIME_IS_GLOBAL of type int UNIVERSE_SIZE Constant UNIVERSE_SIZE of type int APPNUM Constant APPNUM of type int LASTUSEDCODE Constant LASTUSEDCODE of type int WIN_BASE Constant WIN_BASE of type int WIN_SIZE Constant WIN_SIZE of type int
TO Constant IO of type int WTIME_IS_GLOBAL Constant WTIME_IS_GLOBAL of type int UNIVERSE_SIZE CONSTANT UNIVERSE_SIZE of type int APPNUM CONSTANT APPNUM of type int LASTUSEDCODE CONSTANT LASTUSEDCODE of type int WIN_BASE CONSTANT WIN_BASE of type int WIN_SIZE CONSTANT WIN_SIZE of type int
WTIME_IS_GLOBAL UNIVERSE_SIZE Constant UNIVERSE_SIZE of type int APPNUM Constant APPNUM of type int LASTUSEDCODE Constant LASTUSEDCODE of type int WIN_BASE Constant WIN_BASE of type int WIN_SIZE Constant WIN_SIZE of type int
UNIVERSE_SIZE APPNUM Constant APPNUM of type int LASTUSEDCODE Constant LASTUSEDCODE of type int WIN_BASE Constant WIN_BASE of type int WIN_SIZE Constant WIN_SIZE of type int
APPNUM Constant APPNUM of type int LASTUSEDCODE Constant LASTUSEDCODE of type int WIN_BASE Constant WIN_BASE of type int WIN_SIZE Constant WIN_SIZE of type int
LASTUSEDCODE Constant LASTUSEDCODE of type int WIN_BASE Constant WIN_BASE of type int WIN_SIZE Constant WIN_SIZE of type int
WIN_BASE Constant WIN_BASE of type int WIN_SIZE Constant WIN_SIZE of type int
WIN_SIZE Constant WIN_SIZE of type int
*1
WIN DISP UNIT Constant WIN DISP UNIT of type int
Constant with_Dist_continue
WIN_CREATE_FLAVOR Constant WIN_CREATE_FLAVOR of type int
WIN_FLAVOR Constant WIN_FLAVOR of type int
WIN_MODEL Constant WIN_MODEL of type int
SUCCESS Constant SUCCESS of type int
ERR_LASTCODE Constant ERR_LASTCODE of type int
ERR_TYPE Constant ERR_TYPE of type int
ERR_REQUEST Constant ERR_REQUEST of type int
ERR_OP Constant ERR_OP of type int
ERR_GROUP Constant ERR_GROUP of type int
ERR_INFO Constant ERR_INFO of type int
ERR_ERRHANDLER of type int
ERR_SESSION Constant ERR_SESSION of type int
ERR_COMM Constant ERR_COMM of type int
ERR_WIN Constant ERR_WIN of type int
ERR_FILE Constant ERR_FILE of type int
ERR_BUFFER of type int
ERR_COUNT of type int
ERR_TAG Constant ERR_TAG of type int
ERR_RANK Constant ERR_RANK of type int

Table 7 – continued from previous page

Table / - con	itinued from previous page
ERR_ROOT	Constant ERR_ROOT of type int
ERR_TRUNCATE	Constant ERR_TRUNCATE of type int
ERR_IN_STATUS	Constant ERR_IN_STATUS of type int
ERR_PENDING	Constant ERR_PENDING of type int
ERR_TOPOLOGY	Constant ERR_TOPOLOGY of type int
ERR_DIMS	Constant ERR_DIMS of type int
ERR_ARG	Constant ERR_ARG of type int
ERR_OTHER	Constant ERR_OTHER of type int
ERR_UNKNOWN	Constant ERR_UNKNOWN of type int
ERR_INTERN	Constant ERR_INTERN of type int
ERR_KEYVAL	Constant ERR_KEYVAL of type int
ERR_NO_MEM	Constant ERR_NO_MEM of type int
ERR_INFO_KEY	Constant ERR_INFO_KEY of type int
ERR_INFO_VALUE	Constant ERR_INFO_VALUE of type int
ERR_INFO_NOKEY	Constant ERR_INFO_NOKEY of type int
ERR_SPAWN	Constant ERR_SPAWN of type int
ERR_PORT	Constant ERR_PORT of type int
ERR_SERVICE	Constant ERR_SERVICE of type int
ERR_NAME	Constant ERR_NAME of type int
ERR_PROC_ABORTED	Constant ERR_PROC_ABORTED of type int
ERR_BASE	Constant ERR_BASE of type int
ERR_SIZE	Constant ERR_SIZE of type int
ERR_DISP	Constant ERR_DISP of type int
ERR_ASSERT	Constant ERR_ASSERT of type int
ERR_LOCKTYPE	Constant ERR_LOCKTYPE of type int
ERR_RMA_CONFLICT	Constant ERR_RMA_CONFLICT of type int
ERR_RMA_SYNC	Constant ERR_RMA_SYNC of type int
ERR_RMA_RANGE	Constant ERR_RMA_RANGE of type int
ERR_RMA_ATTACH	Constant ERR_RMA_ATTACH of type int
ERR_RMA_SHARED	Constant ERR_RMA_SHARED of type int
ERR_RMA_FLAVOR	Constant ERR_RMA_FLAVOR of type int
ERR_BAD_FILE	Constant ERR_BAD_FILE of type int
ERR_NO_SUCH_FILE	Constant ERR_NO_SUCH_FILE of type int
ERR_FILE_EXISTS	Constant ERR_FILE_EXISTS of type int
ERR_FILE_IN_USE	Constant ERR_FILE_IN_USE of type int
ERR_AMODE	Constant ERR_AMODE of type int
ERR_ACCESS	Constant ERR_ACCESS of type int
ERR_READ_ONLY	Constant ERR_READ_ONLY of type int
ERR_NO_SPACE	Constant ERR_NO_SPACE of type int
ERR_QUOTA	Constant ERR_QUOTA of type int
ERR_NOT_SAME	Constant ERR_NOT_SAME of type int
ERR_IO	Constant ERR_IO of type int
ERR_UNSUPPORTED_OPERATION	Constant ERR_UNSUPPORTED_OPERATION of type int
ERR_UNSUPPORTED_DATAREP	Constant ERR_UNSUPPORTED_DATAREP of type int
ERR_CONVERSION	Constant ERR_CONVERSION of type int
ERR_DUP_DATAREP	Constant ERR_DUP_DATAREP of type int
ERR_VALUE_TOO_LARGE	Constant ERR_VALUE_TOO_LARGE of type int
ERR_REVOKED	Constant ERR_REVOKED of type int
ERR_PROC_FAILED	Constant ERR_PROC_FAILED of type int
ERR_PROC_FAILED_PENDING	Constant ERR_PROC_FAILED_PENDING of type int
ORDER_C	Constant ORDER_C of type int
ORDER_FORTRAN	Constant ORDER_FORTRAN of type int
	continues on next name

Table 7 – continued from previous page

	Table / - continued from previous page
ORDER_F	Constant ORDER_F of type int
TYPECLASS_INTEGER	Constant TYPECLASS_INTEGER of type int
TYPECLASS_REAL	Constant TYPECLASS_REAL of type int
TYPECLASS_COMPLEX	Constant TYPECLASS_COMPLEX of type int
DISTRIBUTE_NONE	Constant DISTRIBUTE_NONE of type int
DISTRIBUTE_BLOCK	Constant DISTRIBUTE_BLOCK of type int
DISTRIBUTE_CYCLIC	Constant DISTRIBUTE_CYCLIC of type int
DISTRIBUTE_DFLT_DARG	Constant DISTRIBUTE_DFLT_DARG of type int
COMBINER_NAMED	Constant COMBINER_NAMED of type int
COMBINER_DUP	Constant COMBINER_DUP of type int
COMBINER_CONTIGUOUS	Constant COMBINER_CONTIGUOUS of type int
COMBINER_VECTOR	Constant COMBINER_VECTOR of type int
COMBINER_HVECTOR	Constant COMBINER_HVECTOR of type int
COMBINER_INDEXED	Constant COMBINER_INDEXED of type int
COMBINER_HINDEXED	Constant COMBINER_HINDEXED of type int
COMBINER_INDEXED_BLOCK	Constant COMBINER_INDEXED_BLOCK of type int
COMBINER_HINDEXED_BLOCK	Constant COMBINER_HINDEXED_BLOCK of type int
COMBINER_STRUCT	Constant COMBINER_STRUCT of type int
COMBINER_SUBARRAY	Constant COMBINER_SUBARRAY of type int
COMBINER_DARRAY	Constant COMBINER_DARRAY of type int
COMBINER_RESIZED	Constant COMBINER_RESIZED of type int
COMBINER_F90_INTEGER	Constant COMBINER_F90_INTEGER of type int
COMBINER_F90_REAL	Constant COMBINER_F90_REAL of type int
COMBINER_F90_COMPLEX	Constant COMBINER_F90_COMPLEX of type int
F_SOURCE	Constant F_SOURCE of type int
F_TAG	Constant F_TAG of type int
F_ERROR	Constant F_ERROR of type int
F_STATUS_SIZE	Constant F_STATUS_SIZE of type int
IDENT	Constant IDENT of type int
CONGRUENT	Constant CONGRUENT of type int
SIMILAR	Constant SIMILAR of type int
UNEQUAL	Constant UNEQUAL of type int
CART	Constant CART of type int
GRAPH	Constant GRAPH of type int
DIST_GRAPH	Constant DIST_GRAPH of type int
UNWEIGHTED	Constant UNWEIGHTED of type int
WEIGHTS_EMPTY	Constant WEIGHTS_EMPTY of type int
COMM_TYPE_SHARED	Constant COMM_TYPE_SHARED of type int
COMM_TYPE_HW_GUIDED	Constant COMM_TYPE_HW_GUIDED of type int
COMM_TYPE_HW_UNGUIDED	Constant COMM_TYPE_HW_UNGUIDED of type int
BSEND_OVERHEAD	Constant BSEND_OVERHEAD of type int
WIN_FLAVOR_CREATE	Constant WIN_FLAVOR_CREATE of type int
WIN_FLAVOR_ALLOCATE	Constant WIN_FLAVOR_ALLOCATE of type int
WIN_FLAVOR_DYNAMIC	Constant WIN_FLAVOR_DYNAMIC of type int
WIN_FLAVOR_SHARED	Constant WIN_FLAVOR_SHARED of type int
WIN_SEPARATE	Constant WIN_SEPARATE of type int
WIN_UNIFIED	Constant WIN_UNIFIED of type int
MODE_NOCHECK	Constant MODE_NOCHECK of type int
MODE_NOSTORE	Constant MODE_NOSTORE of type int
MODE_NOPUT	Constant MODE_NOPUT of type int
MODE_NOPRECEDE	Constant MODE_NOPRECEDE of type int
MODE_NOSUCCEED	Constant MODE_NOSUCCEED of type int
	continues on next nage

Table 7 – continued from previous page

	continued from previous page
LOCK_EXCLUSIVE	Constant LOCK_EXCLUSIVE of type int
LOCK_SHARED	Constant LOCK_SHARED of type int
MODE_RDONLY	Constant MODE_RDONLY of type int
MODE_WRONLY	Constant MODE_WRONLY of type int
MODE_RDWR	Constant MODE_RDWR of type int
MODE_CREATE	Constant MODE_CREATE of type int
MODE_EXCL	Constant MODE_EXCL of type int
MODE_DELETE_ON_CLOSE	Constant MODE_DELETE_ON_CLOSE of type int
MODE_UNIQUE_OPEN	Constant MODE_UNIQUE_OPEN of type int
MODE_SEQUENTIAL	Constant MODE_SEQUENTIAL of type int
MODE_APPEND	Constant MODE_APPEND of type int
SEEK_SET	Constant SEEK_SET of type int
SEEK_CUR	Constant SEEK_CUR of type int
SEEK_END	Constant SEEK_END of type int
DISPLACEMENT_CURRENT	Constant DISPLACEMENT_CURRENT of type int
DISP_CUR	Constant DISP_CUR of type int
THREAD_SINGLE	Constant THREAD_SINGLE of type int
THREAD_FUNNELED	Constant THREAD_FUNNELED of type int
THREAD_SERIALIZED	Constant THREAD_SERIALIZED of type int
THREAD_MULTIPLE	Constant THREAD_MULTIPLE of type int
VERSION	Constant VERSION of type int
SUBVERSION	Constant SUBVERSION of type int
MAX_PROCESSOR_NAME	Constant MAX_PROCESSOR_NAME of type int
MAX_ERROR_STRING	Constant MAX_ERROR_STRING of type int
MAX_PORT_NAME	Constant MAX_PORT_NAME of type int
MAX_INFO_KEY	Constant MAX_INFO_KEY of type int
MAX_INFO_VAL	Constant MAX_INFO_VAL of type int
MAX_OBJECT_NAME	Constant MAX_OBJECT_NAME of type int
MAX_DATAREP_STRING	Constant MAX_DATAREP_STRING of type int
MAX_LIBRARY_VERSION_STRING	Constant MAX_LIBRARY_VERSION_STRING of type int
MAX_PSET_NAME_LEN	Constant MAX_PSET_NAME_LEN of type int
MAX_STRINGTAG_LEN	Constant MAX_STRINGTAG_LEN of type int
DATATYPE_NULL	Object DATATYPE_NULL of type Datatype
PACKED	Object PACKED of type Datatype
BYTE	Object BYTE of type Datatype
AINT	Object AINT of type Datatype
OFFSET	Object OFFSET of type Datatype
COUNT	Object COUNT of type Datatype
CHAR	Object CHAR of type Datatype
WCHAR	Object WCHAR of type Datatype
SIGNED_CHAR	Object SIGNED_CHAR of type Datatype
SHORT	Object SHORT of type Datatype
INT	Object INT of type Datatype
LONG	Object LONG of type Datatype
LONG_LONG	Object LONG_LONG of type Datatype
UNSIGNED_CHAR	Object UNSIGNED_CHAR of type Datatype
UNSIGNED_SHORT	Object UNSIGNED_SHORT of type Datatype
UNSIGNED	Object UNSIGNED of type Datatype
UNSIGNED_LONG	Object UNSIGNED_LONG of type Datatype
UNSIGNED_LONG_LONG	Object UNSIGNED_LONG_LONG of type Datatype
FLOAT	Object FLOAT of type Datatype
DOUBLE	Object DOUBLE of type Datatype
	continues on next page

Table 7 – continued from previous page

Table 7 –	continued from previous page
LONG_DOUBLE	Object LONG_DOUBLE of type Datatype
C_BOOL	Object C_BOOL of type Datatype
INT8_T	Object INT8_T of type Datatype
INT16_T	Object INT16_T of type Datatype
INT32_T	Object INT32_T of type Datatype
INT64_T	Object INT64_T of type Datatype
UINT8_T	Object UINT8_T of type Datatype
UINT16_T	Object UINT16_T of type Datatype
UINT32_T	Object UINT32_T of type Datatype
UINT64_T	Object UINT64_T of type Datatype
C_COMPLEX	Object C_COMPLEX of type Datatype
C_FLOAT_COMPLEX	Object C_FLOAT_COMPLEX of type Datatype
C_DOUBLE_COMPLEX	Object C_DOUBLE_COMPLEX of type Datatype
C_LONG_DOUBLE_COMPLEX	Object C_LONG_DOUBLE_COMPLEX of type Datatype
CXX_BOOL	Object CXX_B00L of type Datatype
CXX_FLOAT_COMPLEX	Object CXX_FLOAT_COMPLEX of type Datatype
CXX_DOUBLE_COMPLEX	Object CXX_DOUBLE_COMPLEX of type Datatype
CXX_LONG_DOUBLE_COMPLEX	Object CXX_LONG_DOUBLE_COMPLEX of type Datatype
SHORT_INT	Object SHORT_INT of type Datatype
INT_INT	Object INT_INT of type Datatype Object INT_INT of type Datatype
TWOINT	Object TWOINT of type Datatype
LONG_INT	Object LONG_INT of type Datatype Object LONG_INT of type Datatype
FLOAT_INT	Object FLOAT_INT of type Datatype Object FLOAT_INT of type Datatype
DOUBLE_INT	Object PlokI_INT of type Datatype Object DOUBLE_INT of type Datatype
	Object LONG_DOUBLE_INT of type Datatype Object LONG_DOUBLE_INT of type Datatype
LONG_DOUBLE_INT	• • • • • • • • • • • • • • • • • • • •
CHARACTER	Object CHARACTER of type Datatype
LOGICAL	Object LOGICAL of type Datatype
INTEGER	Object INTEGER of type Datatype
REAL POUR F PRECISION	Object REAL of type Datatype
DOUBLE_PRECISION	Object DOUBLE_PRECISION of type Datatype
COMPLEX DOUBLE COMPLEY	Object COMPLEX of type Datatype
DOUBLE_COMPLEX	Object DOUBLE_COMPLEX of type Datatype
LOGICAL1	Object LOGICAL1 of type Datatype
LOGICAL2	Object LOGICAL2 of type Datatype
LOGICAL4	Object LOGICAL4 of type Datatype
LOGICAL8	Object LOGICAL8 of type Datatype
INTEGER1	Object INTEGER1 of type Datatype
INTEGER2	Object INTEGER2 of type Datatype
INTEGER4	Object INTEGER4 of type Datatype
INTEGER8	Object INTEGER8 of type Datatype
INTEGER16	Object INTEGER16 of type Datatype
REAL2	Object REAL2 of type Datatype
REAL4	Object REAL4 of type Datatype
REAL8	Object REAL8 of type Datatype
REAL16	Object REAL16 of type Datatype
COMPLEX4	Object COMPLEX4 of type Datatype
COMPLEX8	Object COMPLEX8 of type Datatype
COMPLEX16	Object COMPLEX16 of type Datatype
COMPLEX32	Object COMPLEX32 of type Datatype
UNSIGNED_INT	Object UNSIGNED_INT of type Datatype
SIGNED_SHORT	Object SIGNED_SHORT of type Datatype
SIGNED_INT	Object SIGNED_INT of type Datatype
	continues on next page

Table 7 – continued from previous page

	Table 7 – continued from previous page
SIGNED_LONG	Object SIGNED_LONG of type Datatype
SIGNED_LONG_LONG	Object SIGNED_LONG_LONG of type Datatype
BOOL	Object BOOL of type Datatype
SINT8_T	Object SINT8_T of type Datatype
SINT16_T	Object SINT16_T of type Datatype
SINT32_T	Object SINT32_T of type Datatype
SINT64_T	Object SINT64_T of type Datatype
F_BOOL	Object F_BOOL of type Datatype
F_INT	Object F_INT of type Datatype
F_FLOAT	Object F_FLOAT of type Datatype
F_DOUBLE	Object F_DOUBLE of type Datatype
F_COMPLEX	Object F_COMPLEX of type Datatype
F_FLOAT_COMPLEX	Object F_FLOAT_COMPLEX of type Datatype
F_DOUBLE_COMPLEX	Object F_DOUBLE_COMPLEX of type Datatype
REQUEST_NULL	Object REQUEST_NULL of type Request
MESSAGE_NULL	Object MESSAGE_NULL of type Message
MESSAGE_NO_PROC	Object MESSAGE_NO_PROC of type Message
OP_NULL	Object OP_NULL of type <i>Op</i>
MAX	Object MAX of type Op
MIN	Object MIN of type Op
SUM	Object SUM of type Op
PROD	Object PROD of type <i>Op</i>
LAND	Object LAND of type <i>Op</i>
BAND	Object BAND of type <i>Op</i>
LOR	Object LOR of type <i>Op</i>
BOR	Object BOR of type Op
LXOR	Object LXOR of type <i>Op</i>
BXOR	Object BXOR of type <i>Op</i>
MAXLOC	Object MAXLOC of type <i>Op</i>
MINLOC	Object MINLOC of type <i>Op</i>
REPLACE	Object REPLACE of type <i>Op</i>
NO_OP	Object NO_OP of type Op
GROUP_NULL	Object GROUP_NULL of type Group
GROUP_EMPTY	Object GROUP_EMPTY of type Group
INFO_NULL	Object INFO_NULL of type Info
INFO_ENV	Object INFO_ENV of type Info
ERRHANDLER_NULL	Object ERRHANDLER_NULL of type Errhandler
ERRORS_RETURN	Object ERRORS_RETURN of type Errhandler
ERRORS_ABORT	Object ERRORS_ABORT of type Errhandler
ERRORS_ARE_FATAL	Object ERRORS_ARE_FATAL of type Errhandler
SESSION_NULL	Object SESSION_NULL of type Session
COMM_NULL	Object COMM_NULL of type Comm
COMM_SELF	Object COMM_SELF of type Intracomm
COMM_WORLD	Object COMM_WORLD of type Intracomm
WIN_NULL	Object WIN_NULL of type Win
FILE_NULL	Object FILE_NULL of type File
pickle	Object pickle of type <i>Pickle</i>
-	J - VI

mpi4py.MPI.UNDEFINED

mpi4py.MPI.UNDEFINED: int = UNDEFINED
Constant UNDEFINED of type int

mpi4py.MPI.ANY_SOURCE

mpi4py.MPI.ANY_SOURCE: int = ANY_SOURCE
Constant ANY_SOURCE of type int

mpi4py.MPI.ANY_TAG

mpi4py.MPI.ANY_TAG: int = ANY_TAG
Constant ANY_TAG of type int

mpi4py.MPI.PROC_NULL

mpi4py.MPI.PROC_NULL: int = PROC_NULL
Constant PROC_NULL of type int

mpi4py.MPI.ROOT

mpi4py.MPI.ROOT: int = ROOT
 Constant ROOT of type int

mpi4py.MPI.BOTTOM

mpi4py.MPI.BOTTOM: BottomType = BOTTOM
 Constant BOTTOM of type BottomType

mpi4py.MPI.IN_PLACE

mpi4py.MPI.IN_PLACE: InPlaceType = IN_PLACE
Constant IN_PLACE of type InPlaceType

mpi4py.MPI.KEYVAL_INVALID

mpi4py.MPI.KEYVAL_INVALID: int = KEYVAL_INVALID
Constant KEYVAL_INVALID of type int

mpi4py.MPI.TAG_UB

mpi4py.MPI.HOST

mpi4py.MPI.IO

mpi4py.MPI.WTIME_IS_GLOBAL

mpi4py.MPI.WTIME_IS_GLOBAL: int = WTIME_IS_GLOBAL
Constant WTIME_IS_GLOBAL of type int

mpi4py.MPI.UNIVERSE_SIZE

mpi4py.MPI.UNIVERSE_SIZE: int = UNIVERSE_SIZE
Constant UNIVERSE_SIZE of type int

mpi4py.MPI.APPNUM

mpi4py.MPI.APPNUM: int = APPNUM
Constant APPNUM of type int

mpi4py.MPI.LASTUSEDCODE

mpi4py.MPI.LASTUSEDCODE: int = LASTUSEDCODE
Constant LASTUSEDCODE of type int

mpi4py.MPI.WIN_BASE

mpi4py.MPI.WIN_BASE: int = WIN_BASE
Constant WIN_BASE of type int

mpi4py.MPI.WIN SIZE

mpi4py.MPI.WIN_SIZE: int = WIN_SIZE
Constant WIN_SIZE of type int

mpi4py.MPI.WIN_DISP_UNIT

mpi4py.MPI.WIN_DISP_UNIT: int = WIN_DISP_UNIT
 Constant WIN_DISP_UNIT of type int

mpi4py.MPI.WIN_CREATE_FLAVOR

mpi4py.MPI.WIN_FLAVOR

mpi4py.MPI.WIN_MODEL

mpi4py.MPI.WIN_MODEL: int = WIN_MODEL
Constant WIN_MODEL of type int

mpi4py.MPI.SUCCESS

mpi4py.MPI.SUCCESS: int = SUCCESS
Constant SUCCESS of type int

mpi4py.MPI.ERR_LASTCODE

mpi4py.MPI.ERR_LASTCODE: int = ERR_LASTCODE
Constant ERR_LASTCODE of type int

mpi4py.MPI.ERR_TYPE

mpi4py.MPI.ERR_TYPE: int = ERR_TYPE
Constant ERR_TYPE of type int

mpi4py.MPI.ERR REQUEST

mpi4py.MPI.ERR_REQUEST: int = ERR_REQUEST
 Constant ERR_REQUEST of type int

mpi4py.MPI.ERR_OP

mpi4py.MPI.ERR_OP: int = ERR_OP
 Constant ERR_OP of type int

mpi4py.MPI.ERR_GROUP

mpi4py.MPI.ERR_GROUP: int = ERR_GROUP
 Constant ERR_GROUP of type int

mpi4py.MPI.ERR_INFO

mpi4py.MPI.ERR_INFO: int = ERR_INFO
Constant ERR_INFO of type int

mpi4py.MPI.ERR_ERRHANDLER

mpi4py.MPI.ERR_ERRHANDLER: int = ERR_ERRHANDLER
Constant ERR_ERRHANDLER of type int

mpi4py.MPI.ERR_SESSION

mpi4py.MPI.ERR_SESSION: int = ERR_SESSION
 Constant ERR_SESSION of type int

mpi4py.MPI.ERR_COMM

mpi4py.MPI.ERR_COMM: int = ERR_COMM
Constant ERR_COMM of type int

mpi4py.MPI.ERR_WIN

mpi4py.MPI.ERR_WIN: int = ERR_WIN
Constant ERR_WIN of type int

mpi4py.MPI.ERR FILE

mpi4py.MPI.ERR_FILE: int = ERR_FILE
Constant ERR_FILE of type int

mpi4py.MPI.ERR_BUFFER

mpi4py.MPI.ERR_BUFFER: int = ERR_BUFFER
Constant ERR_BUFFER of type int

mpi4py.MPI.ERR_COUNT

mpi4py.MPI.ERR_COUNT: int = ERR_COUNT
Constant ERR_COUNT of type int

mpi4py.MPI.ERR_TAG

mpi4py.MPI.ERR_TAG: int = ERR_TAG
Constant ERR_TAG of type int

mpi4py.MPI.ERR_RANK

mpi4py.MPI.ERR_RANK: int = ERR_RANK
Constant ERR_RANK of type int

mpi4py.MPI.ERR_ROOT

mpi4py.MPI.ERR_ROOT: int = ERR_ROOT
Constant ERR_ROOT of type int

mpi4py.MPI.ERR_TRUNCATE

mpi4py.MPI.ERR_TRUNCATE: int = ERR_TRUNCATE
Constant ERR_TRUNCATE of type int

mpi4py.MPI.ERR_IN_STATUS

mpi4py.MPI.ERR_IN_STATUS: int = ERR_IN_STATUS
Constant ERR_IN_STATUS of type int

mpi4py.MPI.ERR PENDING

mpi4py.MPI.ERR_PENDING: int = ERR_PENDING
 Constant ERR_PENDING of type int

mpi4py.MPI.ERR_TOPOLOGY

mpi4py.MPI.ERR_TOPOLOGY: int = ERR_TOPOLOGY
 Constant ERR_TOPOLOGY of type int

mpi4py.MPI.ERR_DIMS

mpi4py.MPI.ERR_ARG

mpi4py.MPI.ERR_ARG: int = ERR_ARG
Constant ERR_ARG of type int

mpi4py.MPI.ERR_OTHER

mpi4py.MPI.ERR_OTHER: int = ERR_OTHER
Constant ERR_OTHER of type int

mpi4py.MPI.ERR_UNKNOWN

mpi4py.MPI.ERR_UNKNOWN: int = ERR_UNKNOWN
 Constant ERR_UNKNOWN of type int

mpi4py.MPI.ERR_INTERN

mpi4py.MPI.ERR_INTERN: int = ERR_INTERN
Constant ERR_INTERN of type int

mpi4py.MPI.ERR_KEYVAL

mpi4py.MPI.ERR_KEYVAL: int = ERR_KEYVAL
Constant ERR_KEYVAL of type int

mpi4py.MPI.ERR NO MEM

mpi4py.MPI.ERR_NO_MEM: int = ERR_NO_MEM
Constant ERR_NO_MEM of type int

mpi4py.MPI.ERR_INFO_KEY

mpi4py.MPI.ERR_INFO_KEY: int = ERR_INFO_KEY
Constant ERR_INFO_KEY of type int

mpi4py.MPI.ERR_INFO_VALUE

mpi4py.MPI.ERR_INFO_VALUE: int = ERR_INFO_VALUE
Constant ERR_INFO_VALUE of type int

mpi4py.MPI.ERR_INFO_NOKEY

mpi4py.MPI.ERR_INFO_NOKEY: int = ERR_INFO_NOKEY
Constant ERR_INFO_NOKEY of type int

mpi4py.MPI.ERR_SPAWN

mpi4py.MPI.ERR_SPAWN: int = ERR_SPAWN
 Constant ERR_SPAWN of type int

mpi4py.MPI.ERR_PORT

mpi4py.MPI.ERR_PORT: int = ERR_PORT
 Constant ERR_PORT of type int

mpi4py.MPI.ERR_SERVICE

mpi4py.MPI.ERR_SERVICE: int = ERR_SERVICE
Constant ERR_SERVICE of type int

mpi4py.MPI.ERR_NAME

mpi4py.MPI.ERR_NAME: int = ERR_NAME
Constant ERR_NAME of type int

mpi4py.MPI.ERR_PROC_ABORTED

mpi4py.MPI.ERR_PROC_ABORTED: int = ERR_PROC_ABORTED
Constant ERR_PROC_ABORTED of type int

mpi4py.MPI.ERR_BASE

mpi4py.MPI.ERR_BASE: int = ERR_BASE
Constant ERR_BASE of type int

mpi4py.MPI.ERR_SIZE

mpi4py.MPI.ERR_SIZE: int = ERR_SIZE
Constant ERR_SIZE of type int

mpi4py.MPI.ERR_DISP

mpi4py.MPI.ERR_DISP: int = ERR_DISP
 Constant ERR_DISP of type int

mpi4py.MPI.ERR_ASSERT

mpi4py.MPI.ERR_ASSERT: int = ERR_ASSERT
Constant ERR_ASSERT of type int

mpi4py.MPI.ERR_LOCKTYPE

mpi4py.MPI.ERR_LOCKTYPE: int = ERR_LOCKTYPE
Constant ERR_LOCKTYPE of type int

mpi4py.MPI.ERR_RMA_CONFLICT

mpi4py.MPI.ERR_RMA_SYNC

mpi4py.MPI.ERR_RMA_RANGE

mpi4py.MPI.ERR_RMA_RANGE: int = ERR_RMA_RANGE
Constant ERR_RMA_RANGE of type int

mpi4py.MPI.ERR RMA ATTACH

mpi4py.MPI.ERR_RMA_ATTACH: int = ERR_RMA_ATTACH
 Constant ERR_RMA_ATTACH of type int

mpi4py.MPI.ERR_RMA_SHARED

mpi4py.MPI.ERR_RMA_SHARED: int = ERR_RMA_SHARED
Constant ERR_RMA_SHARED of type int

mpi4py.MPI.ERR_RMA_FLAVOR

mpi4py.MPI.ERR_RMA_FLAVOR: int = ERR_RMA_FLAVOR
 Constant ERR_RMA_FLAVOR of type int

mpi4py.MPI.ERR_BAD_FILE

mpi4py.MPI.ERR_BAD_FILE: int = ERR_BAD_FILE
Constant ERR_BAD_FILE of type int

mpi4py.MPI.ERR_NO_SUCH_FILE

mpi4py.MPI.ERR_FILE_EXISTS

mpi4py.MPI.ERR_FILE_EXISTS: int = ERR_FILE_EXISTS
Constant ERR_FILE_EXISTS of type int

mpi4py.MPI.ERR_FILE_IN_USE

mpi4py.MPI.ERR_FILE_IN_USE: int = ERR_FILE_IN_USE
Constant ERR_FILE_IN_USE of type int

mpi4py.MPI.ERR AMODE

mpi4py.MPI.ERR_AMODE: int = ERR_AMODE
Constant ERR_AMODE of type int

mpi4py.MPI.ERR_ACCESS

mpi4py.MPI.ERR_ACCESS: int = ERR_ACCESS
Constant ERR_ACCESS of type int

mpi4py.MPI.ERR_READ_ONLY

mpi4py.MPI.ERR_READ_ONLY: int = ERR_READ_ONLY
Constant ERR_READ_ONLY of type int

mpi4py.MPI.ERR_NO_SPACE

mpi4py.MPI.ERR_NO_SPACE: int = ERR_NO_SPACE
Constant ERR_NO_SPACE of type int

mpi4py.MPI.ERR_QUOTA

mpi4py.MPI.ERR_QUOTA: int = ERR_QUOTA

Constant ERR_QUOTA of type int

mpi4py.MPI.ERR_NOT_SAME

mpi4py.MPI.ERR_NOT_SAME: int = ERR_NOT_SAME
Constant ERR_NOT_SAME of type int

mpi4py.MPI.ERR_IO

mpi4py.MPI.ERR_IO: int = ERR_IO
Constant ERR_IO of type int

mpi4py.MPI.ERR_UNSUPPORTED_OPERATION

mpi4py.MPI.ERR UNSUPPORTED DATAREP

mpi4py.MPI.ERR_UNSUPPORTED_DATAREP: int = ERR_UNSUPPORTED_DATAREP
Constant ERR_UNSUPPORTED_DATAREP of type int

mpi4py.MPI.ERR CONVERSION

mpi4py.MPI.ERR_CONVERSION: int = ERR_CONVERSION
 Constant ERR_CONVERSION of type int

mpi4py.MPI.ERR DUP DATAREP

mpi4py.MPI.ERR_DUP_DATAREP: int = ERR_DUP_DATAREP
Constant ERR_DUP_DATAREP of type int

mpi4py.MPI.ERR_VALUE_TOO_LARGE

mpi4py.MPI.ERR_VALUE_TOO_LARGE: int = ERR_VALUE_TOO_LARGE
Constant ERR_VALUE_TOO_LARGE of type int

mpi4py.MPI.ERR_REVOKED

mpi4py.MPI.ERR_REVOKED: int = ERR_REVOKED
Constant ERR_REVOKED of type int

mpi4py.MPI.ERR_PROC_FAILED

mpi4py.MPI.ERR_PROC_FAILED: int = ERR_PROC_FAILED
Constant ERR_PROC_FAILED of type int

mpi4py.MPI.ERR_PROC_FAILED_PENDING

mpi4py.MPI.ERR_PROC_FAILED_PENDING: int = ERR_PROC_FAILED_PENDING
Constant ERR_PROC_FAILED_PENDING of type int

mpi4py.MPI.ORDER_C

mpi4py.MPI.ORDER_C: int = ORDER_C
Constant ORDER_C of type int

mpi4py.MPI.ORDER FORTRAN

mpi4py.MPI.ORDER_FORTRAN: int = ORDER_FORTRAN
Constant ORDER_FORTRAN of type int

mpi4py.MPI.ORDER_F

mpi4py.MPI.ORDER_F: int = ORDER_F
Constant ORDER_F of type int

mpi4py.MPI.TYPECLASS_INTEGER

mpi4py.MPI.TYPECLASS_INTEGER: int = TYPECLASS_INTEGER
Constant TYPECLASS_INTEGER of type int

mpi4py.MPI.TYPECLASS_REAL

mpi4py.MPI.TYPECLASS_REAL: int = TYPECLASS_REAL
Constant TYPECLASS_REAL of type int

mpi4py.MPI.TYPECLASS_COMPLEX

mpi4py.MPI.TYPECLASS_COMPLEX: int = TYPECLASS_COMPLEX
Constant TYPECLASS_COMPLEX of type int

mpi4py.MPI.DISTRIBUTE_NONE

mpi4py.MPI.DISTRIBUTE_NONE: int = DISTRIBUTE_NONE
Constant DISTRIBUTE_NONE of type int

mpi4py.MPI.DISTRIBUTE_BLOCK

mpi4py.MPI.DISTRIBUTE_CYCLIC

mpi4py.MPI.DISTRIBUTE_CYCLIC: int = DISTRIBUTE_CYCLIC
Constant DISTRIBUTE_CYCLIC of type int

mpi4py.MPI.DISTRIBUTE_DFLT_DARG

mpi4py.MPI.DISTRIBUTE_DFLT_DARG: int = DISTRIBUTE_DFLT_DARG
Constant DISTRIBUTE_DFLT_DARG of type int

mpi4py.MPI.COMBINER NAMED

mpi4py.MPI.COMBINER_NAMED: int = COMBINER_NAMED
Constant COMBINER_NAMED of type int

mpi4py.MPI.COMBINER DUP

mpi4py.MPI.COMBINER_DUP: int = COMBINER_DUP
Constant COMBINER_DUP of type int

mpi4py.MPI.COMBINER_CONTIGUOUS

mpi4py.MPI.COMBINER_CONTIGUOUS: int = COMBINER_CONTIGUOUS
Constant COMBINER_CONTIGUOUS of type int

mpi4py.MPI.COMBINER_VECTOR

mpi4py.MPI.COMBINER_VECTOR: int = COMBINER_VECTOR
 Constant COMBINER_VECTOR of type int

mpi4py.MPI.COMBINER_HVECTOR

mpi4py.MPI.COMBINER_INDEXED

mpi4py.MPI.COMBINER_INDEXED: int = COMBINER_INDEXED
Constant COMBINER_INDEXED of type int

mpi4py.MPI.COMBINER_HINDEXED

mpi4py.MPI.COMBINER_HINDEXED: int = COMBINER_HINDEXED
Constant COMBINER_HINDEXED of type int

mpi4py.MPI.COMBINER INDEXED BLOCK

mpi4py.MPI.COMBINER_INDEXED_BLOCK: int = COMBINER_INDEXED_BLOCK
 Constant COMBINER_INDEXED_BLOCK of type int

mpi4py.MPI.COMBINER_HINDEXED_BLOCK

mpi4py.MPI.COMBINER_HINDEXED_BLOCK: int = COMBINER_HINDEXED_BLOCK
 Constant COMBINER_HINDEXED_BLOCK of type int

mpi4py.MPI.COMBINER STRUCT

mpi4py.MPI.COMBINER_STRUCT: int = COMBINER_STRUCT
 Constant COMBINER_STRUCT of type int

mpi4py.MPI.COMBINER_SUBARRAY

mpi4py.MPI.COMBINER_SUBARRAY: int = COMBINER_SUBARRAY
 Constant COMBINER_SUBARRAY of type int

mpi4py.MPI.COMBINER_DARRAY

mpi4py.MPI.COMBINER_DARRAY: int = COMBINER_DARRAY
Constant COMBINER_DARRAY of type int

mpi4py.MPI.COMBINER_RESIZED

mpi4py.MPI.COMBINER_RESIZED: int = COMBINER_RESIZED
Constant COMBINER_RESIZED of type int

mpi4py.MPI.COMBINER_F90_INTEGER

mpi4py.MPI.COMBINER_F90_INTEGER: int = COMBINER_F90_INTEGER
Constant COMBINER_F90_INTEGER of type int

mpi4py.MPI.COMBINER_F90_REAL

mpi4py.MPI.COMBINER_F90_REAL: int = COMBINER_F90_REAL
Constant COMBINER_F90_REAL of type int

mpi4py.MPI.COMBINER_F90_COMPLEX

mpi4py.MPI.COMBINER_F90_COMPLEX: int = COMBINER_F90_COMPLEX
 Constant COMBINER_F90_COMPLEX of type int

mpi4py.MPI.F_SOURCE

mpi4py.MPI.F_SOURCE: int = F_SOURCE
Constant F_SOURCE of type int

mpi4py.MPI.F_TAG

mpi4py.MPI.F_ERROR

mpi4py.MPI.F_ERROR: int = F_ERROR
 Constant F_ERROR of type int

mpi4py.MPI.F_STATUS_SIZE

mpi4py.MPI.F_STATUS_SIZE: int = F_STATUS_SIZE
Constant F_STATUS_SIZE of type int

mpi4py.MPI.IDENT

mpi4py.MPI.IDENT: int = IDENT
 Constant IDENT of type int

mpi4py.MPI.CONGRUENT

mpi4py.MPI.CONGRUENT: int = CONGRUENT
 Constant CONGRUENT of type int

mpi4py.MPI.SIMILAR

mpi4py.MPI.SIMILAR: int = SIMILAR
 Constant SIMILAR of type int

mpi4py.MPI.UNEQUAL

mpi4py.MPI.UNEQUAL: int = UNEQUAL
Constant UNEQUAL of type int

mpi4py.MPI.CART

mpi4py.MPI.CART: int = CART
Constant CART of type int

mpi4py.MPI.GRAPH

mpi4py.MPI.GRAPH: int = GRAPH
 Constant GRAPH of type int

mpi4py.MPI.DIST_GRAPH

mpi4py.MPI.DIST_GRAPH: int = DIST_GRAPH
 Constant DIST_GRAPH of type int

mpi4py.MPI.UNWEIGHTED

mpi4py.MPI.UNWEIGHTED: int = UNWEIGHTED
Constant UNWEIGHTED of type int

mpi4py.MPI.WEIGHTS_EMPTY

mpi4py.MPI.WEIGHTS_EMPTY: int = WEIGHTS_EMPTY
 Constant WEIGHTS_EMPTY of type int

mpi4py.MPI.COMM_TYPE_SHARED

mpi4py.MPI.COMM_TYPE_SHARED: int = COMM_TYPE_SHARED
Constant COMM_TYPE_SHARED of type int

mpi4py.MPI.COMM_TYPE_HW_GUIDED

mpi4py.MPI.COMM_TYPE_HW_GUIDED: int = COMM_TYPE_HW_GUIDED
Constant COMM_TYPE_HW_GUIDED of type int

mpi4py.MPI.COMM_TYPE_HW_UNGUIDED

mpi4py.MPI.COMM_TYPE_HW_UNGUIDED: int = COMM_TYPE_HW_UNGUIDED
Constant COMM_TYPE_HW_UNGUIDED of type int

mpi4py.MPI.BSEND OVERHEAD

mpi4py.MPI.BSEND_OVERHEAD: int = BSEND_OVERHEAD
Constant BSEND_OVERHEAD of type int

mpi4py.MPI.WIN_FLAVOR_CREATE

mpi4py.MPI.WIN_FLAVOR_CREATE: int = WIN_FLAVOR_CREATE
Constant WIN_FLAVOR_CREATE of type int

mpi4py.MPI.WIN_FLAVOR_ALLOCATE

mpi4py.MPI.WIN_FLAVOR_ALLOCATE: int = WIN_FLAVOR_ALLOCATE
Constant WIN_FLAVOR_ALLOCATE of type int

mpi4py.MPI.WIN_FLAVOR_DYNAMIC

mpi4py.MPI.WIN_FLAVOR_SHARED

mpi4py.MPI.WIN_FLAVOR_SHARED: int = WIN_FLAVOR_SHARED
Constant WIN_FLAVOR_SHARED of type int

mpi4py.MPI.WIN_SEPARATE

mpi4py.MPI.WIN_SEPARATE: int = WIN_SEPARATE
Constant WIN_SEPARATE of type int

mpi4py.MPI.WIN_UNIFIED

mpi4py.MPI.WIN_UNIFIED: int = WIN_UNIFIED
Constant WIN_UNIFIED of type int

mpi4py.MPI.MODE_NOCHECK

mpi4py.MPI.MODE_NOCHECK: int = MODE_NOCHECK
Constant MODE_NOCHECK of type int

mpi4py.MPI.MODE_NOSTORE

mpi4py.MPI.MODE_NOSTORE: int = MODE_NOSTORE
Constant MODE_NOSTORE of type int

mpi4py.MPI.MODE_NOPUT

mpi4py.MPI.MODE_NOPUT: int = MODE_NOPUT
Constant MODE_NOPUT of type int

mpi4py.MPI.MODE_NOPRECEDE

mpi4py.MPI.MODE_NOPRECEDE: int = MODE_NOPRECEDE
Constant MODE_NOPRECEDE of type int

mpi4py.MPI.MODE_NOSUCCEED

mpi4py.MPI.MODE_NOSUCCEED: int = MODE_NOSUCCEED
Constant MODE_NOSUCCEED of type int

mpi4py.MPI.LOCK_EXCLUSIVE

mpi4py.MPI.LOCK_EXCLUSIVE: int = LOCK_EXCLUSIVE
Constant LOCK_EXCLUSIVE of type int

mpi4py.MPI.LOCK_SHARED

mpi4py.MPI.LOCK_SHARED: int = LOCK_SHARED
Constant LOCK_SHARED of type int

mpi4py.MPI.MODE_RDONLY

mpi4py.MPI.MODE_RDONLY: int = MODE_RDONLY
Constant MODE_RDONLY of type int

mpi4py.MPI.MODE WRONLY

mpi4py.MPI.MODE_WRONLY: int = MODE_WRONLY
Constant MODE_WRONLY of type int

mpi4py.MPI.MODE_RDWR

mpi4py.MPI.MODE_RDWR: int = MODE_RDWR
Constant MODE_RDWR of type int

mpi4py.MPI.MODE_CREATE

mpi4py.MPI.MODE_CREATE: int = MODE_CREATE
Constant MODE_CREATE of type int

mpi4py.MPI.MODE_EXCL

mpi4py.MPI.MODE_EXCL: int = MODE_EXCL
Constant MODE_EXCL of type int

mpi4py.MPI.MODE_DELETE_ON_CLOSE

mpi4py.MPI.MODE_DELETE_ON_CLOSE: int = MODE_DELETE_ON_CLOSE
 Constant MODE_DELETE_ON_CLOSE of type int

mpi4py.MPI.MODE_UNIQUE_OPEN

mpi4py.MPI.MODE_SEQUENTIAL

mpi4py.MPI.MODE_SEQUENTIAL: int = MODE_SEQUENTIAL
Constant MODE_SEQUENTIAL of type int

mpi4py.MPI.MODE_APPEND

mpi4py.MPI.MODE_APPEND: int = MODE_APPEND
Constant MODE_APPEND of type int

mpi4py.MPI.SEEK_SET

mpi4py.MPI.SEEK_SET: int = SEEK_SET
Constant SEEK_SET of type int

mpi4py.MPI.SEEK_CUR

mpi4py.MPI.SEEK_CUR: int = SEEK_CUR
Constant SEEK_CUR of type int

mpi4py.MPI.SEEK_END

mpi4py.MPI.SEEK_END: int = SEEK_END
Constant SEEK_END of type int

mpi4py.MPI.DISPLACEMENT_CURRENT

mpi4py.MPI.DISPLACEMENT_CURRENT: int = DISPLACEMENT_CURRENT
Constant DISPLACEMENT_CURRENT of type int

mpi4py.MPI.DISP_CUR

mpi4py.MPI.DISP_CUR: int = DISP_CUR
Constant DISP_CUR of type int

mpi4py.MPI.THREAD_SINGLE

mpi4py.MPI.THREAD_SINGLE: int = THREAD_SINGLE
Constant THREAD_SINGLE of type int

mpi4py.MPI.THREAD_FUNNELED

mpi4py.MPI.THREAD_FUNNELED: int = THREAD_FUNNELED
Constant THREAD_FUNNELED of type int

mpi4py.MPI.THREAD_SERIALIZED

mpi4py.MPI.THREAD_SERIALIZED: int = THREAD_SERIALIZED
Constant THREAD_SERIALIZED of type int

mpi4py.MPI.THREAD_MULTIPLE

mpi4py.MPI.THREAD_MULTIPLE: int = THREAD_MULTIPLE
Constant THREAD_MULTIPLE of type int

mpi4py.MPI.VERSION

mpi4py.MPI.VERSION: int = VERSION
 Constant VERSION of type int

mpi4py.MPI.SUBVERSION

mpi4py.MPI.SUBVERSION: int = SUBVERSION
 Constant SUBVERSION of type int

mpi4py.MPI.MAX_PROCESSOR_NAME

mpi4py.MPI.MAX_PROCESSOR_NAME: int = MAX_PROCESSOR_NAME
 Constant MAX_PROCESSOR_NAME of type int

mpi4py.MPI.MAX_ERROR_STRING

mpi4py.MPI.MAX_PORT_NAME

mpi4py.MPI.MAX_PORT_NAME: int = MAX_PORT_NAME
Constant MAX_PORT_NAME of type int

mpi4py.MPI.MAX_INFO_KEY

mpi4py.MPI.MAX_INFO_KEY: int = MAX_INFO_KEY
Constant MAX_INFO_KEY of type int

mpi4py.MPI.MAX_INFO_VAL

mpi4py.MPI.MAX_INFO_VAL: int = MAX_INFO_VAL
Constant MAX_INFO_VAL of type int

mpi4py.MPI.MAX_OBJECT_NAME

mpi4py.MPI.MAX_OBJECT_NAME: int = MAX_OBJECT_NAME
Constant MAX_OBJECT_NAME of type int

mpi4py.MPI.MAX DATAREP STRING

mpi4py.MPI.MAX_DATAREP_STRING: int = MAX_DATAREP_STRING
 Constant MAX_DATAREP_STRING of type int

mpi4py.MPI.MAX LIBRARY VERSION STRING

mpi4py.MPI.MAX_LIBRARY_VERSION_STRING: int = MAX_LIBRARY_VERSION_STRING
 Constant MAX_LIBRARY_VERSION_STRING of type int

mpi4py.MPI.MAX_PSET_NAME_LEN

mpi4py.MPI.MAX_PSET_NAME_LEN: int = MAX_PSET_NAME_LEN
Constant MAX_PSET_NAME_LEN of type int

mpi4py.MPI.MAX_STRINGTAG_LEN

mpi4py.MPI.MAX_STRINGTAG_LEN: int = MAX_STRINGTAG_LEN
Constant MAX_STRINGTAG_LEN of type int

mpi4py.MPI.DATATYPE_NULL

mpi4py.MPI.DATATYPE_NULL: Datatype = DATATYPE_NULL
Object DATATYPE_NULL of type Datatype

mpi4py.MPI.PACKED

mpi4py.MPI.PACKED: Datatype = PACKED
 Object PACKED of type Datatype

mpi4py.MPI.BYTE

mpi4py.MPI.BYTE: Datatype = BYTE
 Object BYTE of type Datatype

mpi4py.MPI.AINT

mpi4py.MPI.AINT: Datatype = AINT
 Object AINT of type Datatype

mpi4py.MPI.OFFSET

mpi4py.MPI.OFFSET: Datatype = OFFSET
 Object OFFSET of type Datatype

mpi4py.MPI.COUNT

mpi4py.MPI.COUNT: Datatype = COUNT
 Object COUNT of type Datatype

mpi4py.MPI.CHAR

mpi4py.MPI.CHAR: Datatype = CHAR
 Object CHAR of type Datatype

mpi4py.MPI.WCHAR

mpi4py.MPI.WCHAR: Datatype = WCHAR
 Object WCHAR of type Datatype

mpi4py.MPI.SIGNED_CHAR

mpi4py.MPI.SIGNED_CHAR: Datatype = SIGNED_CHAR
 Object SIGNED_CHAR of type Datatype

mpi4py.MPI.SHORT

mpi4py.MPI.SHORT: Datatype = SHORT
 Object SHORT of type Datatype

mpi4py.MPI.INT

mpi4py.MPI.INT: Datatype = INT
 Object INT of type Datatype

mpi4py.MPI.LONG

mpi4py.MPI.LONG: Datatype = LONG
 Object LONG of type Datatype

mpi4py.MPI.LONG LONG

mpi4py.MPI.LONG_LONG: Datatype = LONG_LONG
 Object LONG_LONG of type Datatype

mpi4py.MPI.UNSIGNED_CHAR

mpi4py.MPI.UNSIGNED_CHAR: Datatype = UNSIGNED_CHAR
 Object UNSIGNED_CHAR of type Datatype

mpi4py.MPI.UNSIGNED_SHORT

mpi4py.MPI.UNSIGNED_SHORT: Datatype = UNSIGNED_SHORT
 Object UNSIGNED_SHORT of type Datatype

mpi4py.MPI.UNSIGNED

mpi4py.MPI.UNSIGNED: Datatype = UNSIGNED
 Object UNSIGNED of type Datatype

mpi4py.MPI.UNSIGNED_LONG

mpi4py.MPI.UNSIGNED_LONG: Datatype = UNSIGNED_LONG
 Object UNSIGNED_LONG of type Datatype

mpi4py.MPI.UNSIGNED_LONG_LONG

mpi4py.MPI.UNSIGNED_LONG_LONG: Datatype = UNSIGNED_LONG_LONG
Object UNSIGNED_LONG_LONG of type Datatype

mpi4py.MPI.FLOAT

mpi4py.MPI.FLOAT: Datatype = FLOAT
 Object FLOAT of type Datatype

mpi4py.MPI.DOUBLE

mpi4py.MPI.DOUBLE: Datatype = DOUBLE
 Object DOUBLE of type Datatype

mpi4py.MPI.LONG_DOUBLE

mpi4py.MPI.LONG_DOUBLE: Datatype = LONG_DOUBLE
 Object LONG_DOUBLE of type Datatype

mpi4py.MPI.C_BOOL

mpi4py.MPI.C_BOOL: Datatype = C_BOOL
 Object C_BOOL of type Datatype

mpi4py.MPI.INT8_T

mpi4py.MPI.INT8_T: Datatype = INT8_T
 Object INT8_T of type Datatype

mpi4py.MPI.INT16_T

mpi4py.MPI.INT16_T: Datatype = INT16_T
 Object INT16_T of type Datatype

mpi4py.MPI.INT32_T

mpi4py.MPI.INT32_T: Datatype = INT32_T
 Object INT32_T of type Datatype

mpi4py.MPI.INT64_T

mpi4py.MPI.INT64_T: Datatype = INT64_T
 Object INT64_T of type Datatype

mpi4py.MPI.UINT8_T

mpi4py.MPI.UINT8_T: Datatype = UINT8_T
 Object UINT8_T of type Datatype

mpi4py.MPI.UINT16 T

mpi4py.MPI.UINT16_T: Datatype = UINT16_T
 Object UINT16_T of type Datatype

mpi4py.MPI.UINT32_T

mpi4py.MPI.UINT32_T: Datatype = UINT32_T
 Object UINT32_T of type Datatype

mpi4py.MPI.UINT64_T

mpi4py.MPI.UINT64_T: Datatype = UINT64_T
 Object UINT64_T of type Datatype

mpi4py.MPI.C_COMPLEX

mpi4py.MPI.C_COMPLEX: Datatype = C_COMPLEX
Object C_COMPLEX of type Datatype

mpi4py.MPI.C_FLOAT_COMPLEX

mpi4py.MPI.C_FLOAT_COMPLEX: Datatype = C_FLOAT_COMPLEX
 Object C_FLOAT_COMPLEX of type Datatype

mpi4py.MPI.C_DOUBLE_COMPLEX

mpi4py.MPI.C_DOUBLE_COMPLEX: Datatype = C_DOUBLE_COMPLEX
 Object C_DOUBLE_COMPLEX of type Datatype

mpi4py.MPI.C_LONG_DOUBLE_COMPLEX

mpi4py.MPI.C_LONG_DOUBLE_COMPLEX: Datatype = C_LONG_DOUBLE_COMPLEX
 Object C_LONG_DOUBLE_COMPLEX of type Datatype

mpi4py.MPI.CXX_BOOL

mpi4py.MPI.CXX_BOOL: Datatype = CXX_BOOL
 Object CXX_BOOL of type Datatype

mpi4py.MPI.CXX FLOAT COMPLEX

mpi4py.MPI.CXX_FLOAT_COMPLEX: Datatype = CXX_FLOAT_COMPLEX
 Object CXX_FLOAT_COMPLEX of type Datatype

mpi4py.MPI.CXX DOUBLE COMPLEX

mpi4py.MPI.CXX_DOUBLE_COMPLEX: Datatype = CXX_DOUBLE_COMPLEX
 Object CXX_DOUBLE_COMPLEX of type Datatype

mpi4py.MPI.CXX_LONG_DOUBLE_COMPLEX

mpi4py.MPI.CXX_LONG_DOUBLE_COMPLEX: Datatype = CXX_LONG_DOUBLE_COMPLEX
 Object CXX_LONG_DOUBLE_COMPLEX of type Datatype

mpi4py.MPI.SHORT_INT

mpi4py.MPI.SHORT_INT: Datatype = SHORT_INT
 Object SHORT_INT of type Datatype

mpi4py.MPI.INT_INT

mpi4py.MPI.INT_INT: Datatype = INT_INT
 Object INT_INT of type Datatype

mpi4py.MPI.TWOINT

mpi4py.MPI.TWOINT: Datatype = TWOINT
 Object TWOINT of type Datatype

mpi4py.MPI.LONG_INT

mpi4py.MPI.LONG_INT: Datatype = LONG_INT
 Object LONG_INT of type Datatype

mpi4py.MPI.FLOAT_INT

mpi4py.MPI.FLOAT_INT: Datatype = FLOAT_INT
 Object FLOAT_INT of type Datatype

mpi4py.MPI.DOUBLE INT

mpi4py.MPI.DOUBLE_INT: Datatype = DOUBLE_INT
 Object DOUBLE_INT of type Datatype

mpi4py.MPI.LONG_DOUBLE_INT

mpi4py.MPI.LONG_DOUBLE_INT: Datatype = LONG_DOUBLE_INT
 Object LONG_DOUBLE_INT of type Datatype

mpi4py.MPI.CHARACTER

mpi4py.MPI.CHARACTER: Datatype = CHARACTER
Object CHARACTER of type Datatype

mpi4py.MPI.LOGICAL

mpi4py.MPI.LOGICAL: Datatype = LOGICAL
 Object LOGICAL of type Datatype

mpi4py.MPI.INTEGER

mpi4py.MPI.INTEGER: Datatype = INTEGER
 Object INTEGER of type Datatype

mpi4py.MPI.REAL

mpi4py.MPI.REAL: Datatype = REAL
 Object REAL of type Datatype

mpi4py.MPI.DOUBLE_PRECISION

mpi4py.MPI.DOUBLE_PRECISION: Datatype = DOUBLE_PRECISION
 Object DOUBLE_PRECISION of type Datatype

mpi4py.MPI.COMPLEX

mpi4py.MPI.COMPLEX: Datatype = COMPLEX
 Object COMPLEX of type Datatype

mpi4py.MPI.DOUBLE_COMPLEX

mpi4py.MPI.DOUBLE_COMPLEX: Datatype = DOUBLE_COMPLEX
 Object DOUBLE_COMPLEX of type Datatype

mpi4py.MPI.LOGICAL1

mpi4py.MPI.LOGICAL1: Datatype = LOGICAL1
Object LOGICAL1 of type Datatype

mpi4py.MPI.LOGICAL2

mpi4py.MPI.LOGICAL2: Datatype = LOGICAL2
Object LOGICAL2 of type Datatype

mpi4py.MPI.LOGICAL4

mpi4py.MPI.LOGICAL4: Datatype = LOGICAL4
Object LOGICAL4 of type Datatype

mpi4py.MPI.LOGICAL8

mpi4py.MPI.LOGICAL8: Datatype = LOGICAL8
Object LOGICAL8 of type Datatype

mpi4py.MPI.INTEGER1

mpi4py.MPI.INTEGER1: Datatype = INTEGER1
Object INTEGER1 of type Datatype

mpi4py.MPI.INTEGER2

mpi4py.MPI.INTEGER2: Datatype = INTEGER2
Object INTEGER2 of type Datatype

mpi4py.MPI.INTEGER4

mpi4py.MPI.INTEGER4: Datatype = INTEGER4
Object INTEGER4 of type Datatype

mpi4py.MPI.INTEGER8

mpi4py.MPI.INTEGER8: Datatype = INTEGER8
Object INTEGER8 of type Datatype

mpi4py.MPI.INTEGER16

mpi4py.MPI.INTEGER16: Datatype = INTEGER16
Object INTEGER16 of type Datatype

mpi4py.MPI.REAL2

mpi4py.MPI.REAL2: Datatype = REAL2
Object REAL2 of type Datatype

mpi4py.MPI.REAL4

mpi4py.MPI.REAL4: Datatype = REAL4
Object REAL4 of type Datatype

mpi4py.MPI.REAL8

mpi4py.MPI.REAL8: Datatype = REAL8

Object REAL8 of type Datatype

mpi4py.MPI.REAL16

mpi4py.MPI.REAL16: Datatype = REAL16
Object REAL16 of type Datatype

mpi4py.MPI.COMPLEX4

mpi4py.MPI.COMPLEX4: Datatype = COMPLEX4
Object COMPLEX4 of type Datatype

mpi4py.MPI.COMPLEX8

mpi4py.MPI.COMPLEX8: Datatype = COMPLEX8
Object COMPLEX8 of type Datatype

mpi4py.MPI.COMPLEX16

mpi4py.MPI.COMPLEX16: Datatype = COMPLEX16
Object COMPLEX16 of type Datatype

mpi4py.MPI.COMPLEX32

mpi4py.MPI.COMPLEX32: Datatype = COMPLEX32
Object COMPLEX32 of type Datatype

mpi4py.MPI.UNSIGNED_INT

mpi4py.MPI.UNSIGNED_INT: Datatype = UNSIGNED_INT
 Object UNSIGNED_INT of type Datatype

mpi4py.MPI.SIGNED_SHORT

mpi4py.MPI.SIGNED_SHORT: Datatype = SIGNED_SHORT
 Object SIGNED_SHORT of type Datatype

mpi4py.MPI.SIGNED_INT

mpi4py.MPI.SIGNED_INT: Datatype = SIGNED_INT
 Object SIGNED_INT of type Datatype

mpi4py.MPI.SIGNED_LONG

mpi4py.MPI.SIGNED_LONG: Datatype = SIGNED_LONG
 Object SIGNED_LONG of type Datatype

mpi4py.MPI.SIGNED_LONG_LONG

mpi4py.MPI.SIGNED_LONG_LONG: Datatype = SIGNED_LONG_LONG
Object SIGNED_LONG_LONG of type Datatype

mpi4py.MPI.BOOL

mpi4py.MPI.BOOL: Datatype = BOOL
 Object BOOL of type Datatype

mpi4py.MPI.SINT8_T

mpi4py.MPI.SINT8_T: Datatype = SINT8_T
 Object SINT8_T of type Datatype

mpi4py.MPI.SINT16_T

mpi4py.MPI.SINT16_T: Datatype = SINT16_T
 Object SINT16_T of type Datatype

mpi4py.MPI.SINT32_T

mpi4py.MPI.SINT32_T: Datatype = SINT32_T
 Object SINT32_T of type Datatype

mpi4py.MPI.SINT64_T

mpi4py.MPI.SINT64_T: Datatype = SINT64_T
 Object SINT64_T of type Datatype

mpi4py.MPI.F_BOOL

mpi4py.MPI.F_BOOL: Datatype = F_BOOL
Object F_BOOL of type Datatype

mpi4py.MPI.F_INT

mpi4py.MPI.F_INT: Datatype = F_INT
 Object F_INT of type Datatype

mpi4py.MPI.F_FLOAT

mpi4py.MPI.F_FLOAT: Datatype = F_FLOAT
 Object F_FLOAT of type Datatype

mpi4py.MPI.F_DOUBLE

mpi4py.MPI.F_DOUBLE: Datatype = F_DOUBLE
Object F_DOUBLE of type Datatype

mpi4py.MPI.F COMPLEX

mpi4py.MPI.F_COMPLEX: Datatype = F_COMPLEX
Object F_COMPLEX of type Datatype

mpi4py.MPI.F FLOAT COMPLEX

mpi4py.MPI.F_FLOAT_COMPLEX: Datatype = F_FLOAT_COMPLEX
 Object F_FLOAT_COMPLEX of type Datatype

mpi4py.MPI.F_DOUBLE_COMPLEX

mpi4py.MPI.F_DOUBLE_COMPLEX: Datatype = F_DOUBLE_COMPLEX
 Object F_DOUBLE_COMPLEX of type Datatype

mpi4py.MPI.REQUEST_NULL

mpi4py.MPI.REQUEST_NULL: Request = REQUEST_NULL
Object REQUEST_NULL of type Request

mpi4py.MPI.MESSAGE_NULL

mpi4py.MPI.MESSAGE_NULL: Message = MESSAGE_NULL
Object MESSAGE_NULL of type Message

mpi4py.MPI.MESSAGE_NO_PROC

mpi4py.MPI.MESSAGE_NO_PROC: Message = MESSAGE_NO_PROC
 Object MESSAGE_NO_PROC of type Message

mpi4py.MPI.OP_NULL

mpi4py.MPI.OP_NULL: Op = OP_NULL
Object OP_NULL of type Op

Parameters

- x (Any) -
- **y** (Any) -

Return type

mpi4py.MPI.MAX

mpi4py.MPI.MAX: Op = MAXObject MAX of type Op

Parameters

- **x** (Any) -
- **y** (Any) –

Return type

Any

mpi4py.MPI.MIN

mpi4py.MPI.MIN: Op = MINObject MIN of type Op

Parameters

- **x** (Any) -
- **y** (Any) –

Return type

Any

mpi4py.MPI.SUM

mpi4py.MPI.SUM: Op = SUMObject SUM of type Op

Parameters

- **x** (Any) -
- **y** (Any) –

Return type

Any

mpi4py.MPI.PROD

mpi4py.MPI.PROD: Op = PRODObject PROD of type Op

Parameters

- **x** (Any) -
- **y** (Any) –

Return type

mpi4py.MPI.LAND

mpi4py.MPI.LAND: Op = LANDObject LAND of type Op

Parameters

- **x** (Any) -
- **y** (Any) –

Return type

Any

mpi4py.MPI.BAND

mpi4py.MPI.BAND: Op = BANDObject BAND of type Op

Parameters

- **x** (Any) -
- **y** (Any) –

Return type

Any

mpi4py.MPI.LOR

mpi4py.MPI.LOR: Op = LORObject LOR of type Op

Parameters

- **x** (Any) –
- **y** (Any) –

Return type

Any

mpi4py.MPI.BOR

mpi4py.MPI.BOR: Op = BORObject BOR of type Op

Parameters

- **x** (Any) -
- **y** (Any) –

Return type

mpi4py.MPI.LXOR

```
mpi4py.MPI.LXOR: Op = LXOR
Object LXOR of type Op
```

Parameters

- **x** (Any) -
- **y** (Any) –

Return type

Any

mpi4py.MPI.BXOR

mpi4py.MPI.BXOR: Op = BXORObject BXOR of type Op

Parameters

- **x** (Any) -
- **y** (Any) –

Return type

Any

mpi4py.MPI.MAXLOC

mpi4py.MPI.MAXLOC: Op = MAXLOCObject MAXLOC of type Op

Parameters

- **x** (Any) –
- **y** (Any) –

Return type

Any

mpi4py.MPI.MINLOC

mpi4py.MPI.MINLOC: Op = MINLOCObject MINLOC of type Op

Parameters

- **x** (Any) -
- **y** (Any) –

Return type

mpi4py.MPI.REPLACE

```
mpi4py.MPI.REPLACE: Op = REPLACE
Object REPLACE of type Op
```

Parameters

- **x** (Any) -
- **y** (Any) –

Return type

Any

mpi4py.MPI.NO_OP

mpi4py.MPI.NO_OP: Op = NO_OP
 Object NO_OP of type Op

Parameters

- **x** (Any) -
- **y** (Any) -

Return type

Any

mpi4py.MPI.GROUP_NULL

mpi4py.MPI.GROUP_NULL: Group = GROUP_NULL
Object GROUP_NULL of type Group

mpi4py.MPI.GROUP_EMPTY

mpi4py.MPI.GROUP_EMPTY: Group = GROUP_EMPTY
 Object GROUP_EMPTY of type Group

mpi4py.MPI.INFO_NULL

mpi4py.MPI.INFO_NULL: Info = INFO_NULL
Object INFO_NULL of type Info

mpi4py.MPI.INFO_ENV

mpi4py.MPI.INFO_ENV: Info = INFO_ENV
 Object INFO_ENV of type Info

mpi4py.MPI.ERRHANDLER_NULL

mpi4py.MPI.ERRHANDLER_NULL: Errhandler = ERRHANDLER_NULL
Object ERRHANDLER_NULL of type Errhandler

mpi4py.MPI.ERRORS RETURN

mpi4py.MPI.ERRORS_RETURN: Errhandler = ERRORS_RETURN
Object ERRORS_RETURN of type Errhandler

mpi4py.MPI.ERRORS_ABORT

mpi4py.MPI.ERRORS_ABORT: Errhandler = ERRORS_ABORT
 Object ERRORS_ABORT of type Errhandler

mpi4py.MPI.ERRORS_ARE_FATAL

mpi4py.MPI.ERRORS_ARE_FATAL: Errhandler = ERRORS_ARE_FATAL
Object ERRORS_ARE_FATAL of type Errhandler

mpi4py.MPI.SESSION_NULL

mpi4py.MPI.SESSION_NULL: Session = SESSION_NULL
Object SESSION_NULL of type Session

mpi4py.MPI.COMM_NULL

mpi4py.MPI.COMM_NULL: Comm = COMM_NULL
Object COMM_NULL of type Comm

mpi4py.MPI.COMM_SELF

mpi4py.MPI.COMM_SELF: Intracomm = COMM_SELF
 Object COMM_SELF of type Intracomm

mpi4py.MPI.COMM_WORLD

mpi4py.MPI.COMM_WORLD: Intracomm = COMM_WORLD
Object COMM_WORLD of type Intracomm

```
mpi4py.MPI.WIN_NULL
```

```
mpi4py.MPI.WIN_NULL: Win = WIN_NULL
        Object WIN_NULL of type Win

mpi4py.MPI.FILE_NULL

mpi4py.MPI.FILE_NULL: File = FILE_NULL
        Object FILE_NULL of type File

mpi4py.MPI.pickle

mpi4py.MPI.pickle: Pickle = <mpi4py.MPI.Pickle object>
        Object pickle of type Pickle
```

12 Citation

If MPI for Python been significant to a project that leads to an academic publication, please acknowledge that fact by citing the project.

- M. Rogowski, S. Aseeri, D. Keyes, and L. Dalcin, mpi4py.futures: MPI-Based Asynchronous Task Execution for Python, IEEE Transactions on Parallel and Distributed Systems, 34(2):611-622, 2023. https://doi.org/10.1109/ TPDS.2022.3225481
- L. Dalcin and Y.-L. L. Fang, *mpi4py: Status Update After 12 Years of Development*, Computing in Science & Engineering, 23(4):47-54, 2021. https://doi.org/10.1109/MCSE.2021.3083216
- L. Dalcin, P. Kler, R. Paz, and A. Cosimo, *Parallel Distributed Computing using Python*, Advances in Water Resources, 34(9):1124-1139, 2011. https://doi.org/10.1016/j.advwatres.2011.04.013
- L. Dalcin, R. Paz, M. Storti, and J. D'Elia, MPI for Python: performance improvements and MPI-2 extensions, Journal of Parallel and Distributed Computing, 68(5):655-662, 2008. https://doi.org/10.1016/j.jpdc.2007.09.005
- L. Dalcin, R. Paz, and M. Storti, MPI for Python, Journal of Parallel and Distributed Computing, 65(9):1108-1115, 2005. https://doi.org/10.1016/j.jpdc.2005.03.010

13 Installation

13.1 Build backends

mpi4py supports two different build backends: setuptools (default), scikit-build-core (CMake-based), and meson-python (Meson-based). The build backend can be selected by setting the MPI4PY_BUILD_BACKEND environment variable.

MPI4PY_BUILD_BACKEND

```
Choices
    "setuptools", "scikit-build-core", "meson-python"

Default
    "setuptools"
```

Request a build backend for building mpi4py from sources.

Using setuptools

Tip: Set the MPI4PY_BUILD_BACKEND environment variable to "setuptools" to use the setuptools build backend.

When using the default setuptools build backend, mpi4py relies on the legacy Python distutils framework to build C extension modules. The following environment variables affect the build configuration.

MPI4PY_BUILD_MPICC

The **mpicc** compiler wrapper command is searched for in the executable search path (PATH environment variable) and used to compile the *mpi4py.MPI* C extension module. Alternatively, use the *MPI4PY_BUILD_MPICC* environment variable to the full path or command corresponding to the MPI-aware C compiler.

MPI4PY_BUILD_MPILD

The **mpicc** compiler wrapper command is also used for linking the *mpi4py.MPI* C extension module. Alternatively, use the *MPI4PY_BUILD_MPILD* environment variable to specify the full path or command corresponding to the MPI-aware C linker.

MPI4PY BUILD MPICFG

If the MPI implementation does not provide a compiler wrapper, or it is not installed in a default system location, all relevant build information like include/library locations and library lists can be provided in an ini-style configuration file under a [mpi] section. mpi4py can then be asked to use the custom build information by setting the MPI4PY_BUILD_MPICFG environment variable to the full path of the configuration file. As an example, see the mpi.cfg file located in the top level mpi4py source directory.

MPI4PY_BUILD_CONFIGURE

Some vendor MPI implementations may not provide complete coverage of the MPI standard, or may provide partial features of newer MPI standard versions while advertising support for an older version. Setting the MPI4PY_BUILD_CONFIGURE environment variable to a non-empty string will trigger the run of exhaustive checks for the availability of all MPI constants, predefined handles, and routines.

The following environment variables are aliases for the ones described above. Having shorter names, they are convenient for occasional use in the command line. Its usage is not recommended in automation scenarios like packaging recipes, deployment scripts, and container image creation.

MPICC

Convenience alias for MPI4PY_BUILD_MPICC.

MPILD

Convenience alias for MPI4PY_BUILD_MPILD.

MPICFG

Convenience alias for MPI4PY_BUILD_MPICFG.

Using scikit-build-core

Tip: Set the MPI4PY_BUILD_BACKEND environment variable to "scikit-build-core" to use the scikit-build-core build backend.

When using the scikit-build-core build backend, mpi4py delegates all of MPI build configuration to CMake's FindMPI module. Besides the obvious advantage of cross-platform support, this delegation to CMake may be convenient in build environments exposing vendor software stacks via intricate module systems. Note however that mpi4py will not be able to look for MPI routines available beyond the MPI standard version the MPI implementation advertises

to support (via the MPI_VERSION and MPI_SUBVERSION macro constants in the mpi.h header file), any missing MPI constant or symbol will prevent a successful build.

Using meson-python

Tip: Set the MPI4PY_BUILD_BACKEND environment variable to "meson-python" to use the meson-python build backend.

When using the meson-python build backend, mpi4py delegates build tasks to the Meson build system.

Warning: mpi4py support for the meson-python build backend is experimental. For the time being, users must set the CC environment variable to the command or path corresponding to the **mpicc** C compiler wrapper.

13.2 Using pip

You can install mpi4py from its source distribution using pip:

```
$ python -m pip install mpi4py
```

You can also install the in-development version with:

```
$ python -m pip install git+https://github.com/mpi4py/mpi4py
```

or:

```
$ python -m pip install https://github.com/mpi4py/mpi4py/tarball/master
```

Note: Installing mpi4py from sources requires a C compiler and an MPI implementation with development headers and libraries.

Warning: pip keeps previously built wheel files on its cache for future reuse. If you want to reinstall the mpi4py package using a different or updated MPI implementation, you have to either first remove the cached wheel file with:

```
$ python -m pip cache remove mpi4py
```

or ask pip to disable the cache:

```
$ python -m pip install --no-cache-dir mpi4py
```

13.3 Using conda

The conda-forge community provides ready-to-use binary packages from an ever growing collection of software libraries built around the multi-platform *conda* package manager. Three MPI implementations are available on condaforge: Open MPI (Linux and macOS), MPICH (Linux and macOS), and Microsoft MPI (Windows). You can install mpi4py and your preferred MPI implementation using the conda package manager:

• to use MPICH do:

```
$ conda install -c conda-forge mpi4py mpich
```

• to use Open MPI do:

```
$ conda install -c conda-forge mpi4py openmpi
```

• to use Microsoft MPI do:

```
$ conda install -c conda-forge mpi4py msmpi
```

MPICH and many of its derivatives are ABI-compatible. You can provide the package specification mpich=X.Y. *=external_* (where X and Y are the major and minor version numbers) to request the conda package manager to use system-provided MPICH (or derivative) libraries. Similarly, you can provide the package specification openmpi=X.Y.*=external_* to use system-provided Open MPI libraries.

The openmpi package on conda-forge has built-in CUDA support, but it is disabled by default. To enable it, follow the instruction outlined during conda install. Additionally, UCX support is also available once the ucx package is installed.

Warning: Binary conda-forge packages are built with a focus on compatibility. The MPICH and Open MPI packages are build in a constrained environment with relatively dated OS images. Therefore, they may lack support for high-performance features like cross-memory attach (XPMEM/CMA). In production scenarios, it is recommended to use external (either custom-built or system-provided) MPI installations. See the relevant conda-forge documentation about using external MPI libraries .

13.4 Linux

On **Fedora Linux** systems (as well as **RHEL** and their derivatives using the EPEL software repository), you can install binary packages with the system package manager:

• using dnf and the mpich package:

```
$ sudo dnf install python3-mpi4py-mpich
```

• using dnf and the openmpi package:

```
$ sudo dnf install python3-mpi4py-openmpi
```

Please remember to load the correct MPI module for your chosen MPI implementation:

• for the mpich package do:

```
$ module load mpi/mpich-$(arch)
$ python -c "from mpi4py import MPI"
```

• for the openmpi package do:

```
$ module load mpi/openmpi-$(arch)
$ python -c "from mpi4py import MPI"
```

On **Ubuntu Linux** and **Debian Linux** systems, binary packages are available for installation using the system package manager:

```
$ sudo apt install python3-mpi4py
```

Note that on Ubuntu/Debian systems, the mpi4py package uses Open MPI. To use MPICH, install the libmpich-dev and python3-dev packages (and any other required development tools). Afterwards, install mpi4py from sources using pip.

13.5 macOS

macOS users can install mpi4py using the Homebrew package manager:

```
$ brew install mpi4py
```

Note that the Homebrew mpi4py package uses Open MPI. Alternatively, install the mpich package and next install mpi4py from sources using pip.

13.6 Windows

Windows users can install mpi4py from binary wheels hosted on the Python Package Index (PyPI) using pip:

```
$ python -m pip install mpi4py
```

Windows wheels require a separate, system-wide installation of the Microsoft MPI runtime package.

14 Development

14.1 Prerequisites

You need to have the following software properly installed in order to build MPI for Python:

- Python 3.6 or above.
- The Cython compiler.
- A working MPI implementation like MPICH or Open MPI, preferably supporting MPI-4 and built with shared/dynamic libraries.

Note: If you want to build some MPI implementation from sources, check the instructions at *Building MPI from sources* in the appendix.

Note: Some MPI-1 implementations **do require** the actual command line arguments to be passed in MPI_Init(). In this case, you will need to use a rebuilt, MPI-enabled, Python interpreter executable. *MPI for Python* has some support for alleviating you from this task. Check the instructions at *MPI-enabled Python interpreter* in the appendix.

Optionally, consider installing the following packages:

- NumPy for enabling comprehensive testing of MPI communication.
- CuPy for enabling comprehensive testing with a GPU-aware MPI.
- Sphinx to build documentation.

14.2 Building

MPI for Python uses **setuptools**-based build system that relies on the **setup.py** file. Some setuptools commands (e.g., *build*) accept additional options:

--mpi=

Lets you pass a section with MPI configuration within a special configuration file. Alternatively, you can use the MPICFG environment variable.

--mpicc=

Specify the path or name of the **mpicc** C compiler wrapper. Alternatively, use the MPICC environment variable.

--mpild=

Specify the full path or name for the MPI-aware C linker. Alternatively, use the MPILD environment variable. If not set, the mpicc C compiler wrapper is used for linking.

--configure

Runs exhaustive tests for checking about missing MPI types, constants, and functions. This option should be passed in order to build *MPI for Python* against old MPI-1, MPI-2, or MPI-3 implementations, possibly providing a subset of MPI-4.

If you use a MPI implementation providing a **mpicc** C compiler wrapper (e.g., MPICH or Open MPI), it will be used for compilation and linking. This is the preferred and easiest way to build *MPI for Python*.

If **mpicc** is found in the executable search path (PATH environment variable), simply run the *build* command:

```
$ python setup.py build
```

If **mpicc** is not in your search path or the compiler wrapper has a different name, you can run the *build* command specifying its location, either via the *--mpicc* command option or using the *MPICC* environment variable:

```
$ python setup.py build --mpicc=/path/to/mpicc
$ MPICC=/path/to/mpicc python setup.py build
```

Alternatively, you can provide all the relevant information about your MPI implementation by editing the mpi.cfg file located in the top level source directory. You can use the default section [mpi] or add a new custom section, for example [other_mpi] (see the examples provided in the mpi.cfg file as a starting point to write your own section):

(continues on next page)

(continued from previous page)

```
runtime_library_dirs = /opt/mpi/lib ...
```

and then run the *build* command specifying you custom configuration section:

```
$ python setup.py build --mpi=other_mpi
$ MPICFG=other_mpi python setup.py build
```

After building, the package is ready for installation in development mode:

```
$ python setup.py develop --user
```

Alternatively, you can generate a binary wheel file in the dist/directory with:

```
$ python setup.py bdist_wheel
```

14.3 Testing

To quickly test the installation:

```
$ mpiexec -n 5 python -m mpi4py.bench helloworld
Hello, World! I am process 0 of 5 on localhost.
Hello, World! I am process 1 of 5 on localhost.
Hello, World! I am process 2 of 5 on localhost.
Hello, World! I am process 3 of 5 on localhost.
Hello, World! I am process 4 of 5 on localhost.

$ mpiexec -n 5 python -m mpi4py.bench ringtest -l 10 -n 1048576
time for 10 loops = 0.00361614 seconds (5 processes, 1048576 bytes)
```

If you installed from a git clone or the source distribution, issuing at the command line:

```
$ mpiexec -n 5 python demo/helloworld.py
```

will launch a five-process run of the Python interpreter and run the test script demo/helloworld.py from the source distribution.

You can also run all the *unittest* scripts:

```
$ mpiexec -n 5 python test/runtests.py
```

or, if you have nose unit testing framework installed:

```
$ mpiexec -n 5 nosetests
```

or, if you have py.test unit testing framework installed:

```
$ mpiexec -n 5 py.test
```

15 Appendix

15.1 MPI-enabled Python interpreter

Warning: These days it is no longer required to use the MPI-enabled Python interpreter in most cases, and, therefore, it is not built by default anymore because it is too difficult to reliably build a Python interpreter across different distributions. If you know that you still **really** need it, see below on how to use the build_exe and install_exe commands.

Some MPI-1 implementations (notably, MPICH 1) **do require** the actual command line arguments to be passed at the time MPI_Init() is called. In this case, you will need to use a re-built, MPI-enabled, Python interpreter binary executable. A basic implementation (targeting Python 3.9) of what is required is shown below:

```
#include <Python.h>
#include <mpi.h>

int main(int argc, char *argv[])
{
   int status, flag;
   MPI_Init(&argc, &argv);
   status = Py_BytesMain(argc, argv);
   MPI_Finalized(&flag);
   if (!flag) MPI_Finalize();
   return status;
}
```

The source code above is straightforward; compiling it should also be. However, the linking step is more tricky: special flags have to be passed to the linker depending on your platform. In order to alleviate you for such low-level details, *MPI for Python* provides some pure-distutils based support to build and install an MPI-enabled Python interpreter executable:

```
$ cd mpi4py-X.X.X
$ python setup.py build_exe [--mpi=<name>|--mpicc=/path/to/mpicc]
$ [sudo] python setup.py install_exe [--install-dir=$HOME/bin]
```

After the above steps you should have the MPI-enabled interpreter installed as prefix/bin/pythonX.X-mpi (or \$HOME/bin/pythonX.X-mpi). Assuming that prefix/bin (or \$HOME/bin) is listed on your PATH, you should be able to enter your MPI-enabled Python interactively, for example:

```
$ python3.9-mpi
Python 3.9.6 (default, Jul 16 2021, 00:00:00)
[GCC 11.1.1 20210531 (Red Hat 11.1.1-3)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys.executable
'/usr/local/bin/python3.9-mpi'
>>>
```

15.2 Building MPI from sources

In the list below you have some executive instructions for building some of the open-source MPI implementations out there with support for shared/dynamic libraries on POSIX environments.

• MPICH

```
$ tar -zxf mpich-X.X.X.tar.gz
$ cd mpich-X.X.X
$ ./configure --enable-shared --prefix=/usr/local/mpich
$ make
$ make install
```

· Open MPI

```
$ tar -zxf openmpi-X.X.X tar.gz
$ cd openmpi-X.X.X
$ ./configure --prefix=/usr/local/openmpi
$ make all
$ make install
```

• MPICH 1

```
$ tar -zxf mpich-X.X.X.tar.gz
$ cd mpich-X.X.X
$ ./configure --enable-sharedlib --prefix=/usr/local/mpich1
$ make
$ make install
```

Perhaps you will need to set the LD_LIBRARY_PATH environment variable (using **export**, **setenv** or what applies to your system) pointing to the directory containing the MPI libraries. In case of getting runtime linking errors when running MPI programs, the following lines can be added to the user login shell script (.profile, .bashrc, etc.).

• MPICH

```
MPI_DIR=/usr/local/mpich
export LD_LIBRARY_PATH=$MPI_DIR/lib:$LD_LIBRARY_PATH
```

· Open MPI

```
MPI_DIR=/usr/local/openmpi
export LD_LIBRARY_PATH=$MPI_DIR/lib:$LD_LIBRARY_PATH
```

• MPICH 1

```
MPI_DIR=/usr/local/mpich1
export LD_LIBRARY_PATH=$MPI_DIR/lib/shared:$LD_LIBRARY_PATH:
export MPICH_USE_SHLIB=yes
```

Warning: MPICH 1 support for dynamic libraries is not completely transparent. Users should set the environment variable MPICH_USE_SHLIB to yes in order to avoid link problems when using the **mpicc** compiler wrapper.

16 LICENSE

Copyright (c) 2023, Lisandro Dalcin.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

17 CHANGES

17.1 Release 4.0.0 [2023-XX-XX]

- · New features:
 - Add support for the MPI-4.0 standard.
 - * Use large count MPI-4 routines.
 - * Add persistent collective communication.
 - * Add partitioned point-to-point communication.
 - * Add new communicator constructors.
 - * Add the Session class and its methods.
 - Add prelimiary support for the upcoming MPI-5.0 standard.
 - * User-level failure mitigation (ULFM).
 - mpi4py.util.pool: New drop-in replacement for multiprocessing.pool.
 - Add runtime check for mismatch between mpiexec and MPI library.
 - Support scikit-build-core as an alternative build backend.
 - Support meson-python as an alternative build backend.
- Enhancements:
 - mpi4py.futures: Report exception tracebacks in workers.
 - mpi4py.util.pkl5: Add support for collective communication.
 - Add methods Datatype.fromcode(), Datatype.tocode() and attributes Datatype.typestr,
 Datatype.typechar to simplify NumPy interoperability for simple cases.

- Add methods Comm.Create_errhandler(), Win.Create_errhandler(), and File.
 Create_errhandler() to create custom error handlers.
- Add support for pickle serialization of instances of MPI types. All instances of Datatype, Info, and Status can be serialized. Instances of Op can be serialized only if created through mpi4py by calling Op.Create(). Instances of other MPI types can be serialized only if they reference predefined handles.
- Backward-incompatible changes:
 - Python 2 is no longer supported, Python 3.6+ is required, but typing stubs are supported for Python 3.8+.
 - The Intracomm.Create_group() method is no longer defined in the base Comm class.
 - Group.Compare() and Comm.Compare() are no longer class methods but instance methods. Existing codes using the former class methods are expected to continue working.
 - Group.Translate_ranks() is no longer a class method but a instance method. Existing codes using the former class method are expected to continue working.
 - The LB and UB datatypes are no longer available, use Datatype.Create_resized() instead.
 - The mpi4py.dl module is no longer available.

17.2 Release 3.1.4 [2022-11-02]

Warning: This is the last release supporting Python 2.

- Rebuild C sources with Cython 0.29.32 to support Python 3.11.
- Fix contiguity check for DLPack and CAI buffers.
- Workaround build failures with setuptools v60.

17.3 Release 3.1.3 [2021-11-25]

Warning: This is the last release supporting Python 2.

• Add missing support for MPI.BOTTOM to generalized all-to-all collectives.

17.4 Release 3.1.2 [2021-11-04]

Warning: This is the last release supporting Python 2.

- mpi4py.futures: Add _max_workers property to MPIPoolExecutor.
- mpi4py.util.dtlib: Fix computation of alignment for predefined datatypes.
- mpi4py.util.pkl5: Fix deadlock when using ssend() + mprobe().
- mpi4py.util.pkl5: Add environment variable MPI4PY_PICKLE_THRESHOLD.
- mpi4py.rc: Interpret "y" and "n" strings as boolean values.

- Fix/add typemap/typestr for MPI.WCHAR/MPI.COUNT datatypes.
- · Minor fixes and additions to documentation.
- Minor fixes to typing support.
- Support for local version identifier (PEP-440).

17.5 Release 3.1.1 [2021-08-14]

Warning: This is the last release supporting Python 2.

- Fix typo in Requires-Python package metadata.
- Regenerate C sources with Cython 0.29.24.

17.6 Release 3.1.0 [2021-08-12]

Warning: This is the last release supporting Python 2.

- · New features:
 - mpi4py.util: New package collecting miscellaneous utilities.
- Enhancements:
 - Add pickle-based Request.waitsome() and Request.testsome().
 - Add lowercase methods Request.get_status() and Request.cancel().
 - Support for passing Python GPU arrays compliant with the DLPack data interchange mechanism (link) and the __cuda_array_interface__ (CAI) standard (link) to uppercase methods. This support requires that mpi4py is built against CUDA-aware MPI implementations. This feature is currently experimental and subject to future changes.
 - mpi4py.futures: Add support for initializers and canceling futures at shutdown. Environment variables names now follow the pattern MPI4PY_FUTURES_*, the previous MPI4PY_* names are deprecated.
 - Add type annotations to Cython code. The first line of the docstring of functions and methods displays a signature including type annotations.
 - Add companion stub files to support type checkers.
 - Support for weak references.
- Miscellaneous:
 - Add a new mpi4py publication (link) to the citation listing.

17.7 Release 3.0.3 [2019-11-04]

• Regenerate Cython wrappers to support Python 3.8.

17.8 Release 3.0.2 [2019-06-11]

- Bug fixes:
 - Fix handling of readonly buffers in support for Python 2 legacy buffer interface. The issue triggers only when using a buffer-like object that is readonly and does not export the new Python 3 buffer interface.
 - Fix build issues with Open MPI 4.0.x series related to removal of many MPI-1 symbols deprecated in MPI-2 and removed in MPI-3.
 - Minor documentation fixes.

17.9 Release 3.0.1 [2019-02-15]

- Bug fixes:
 - Fix Comm.scatter() and other collectives corrupting input send list. Add safety measures to prevent related issues in global reduction operations.
 - Fix error-checking code for counts in Op.Reduce_local().
- Enhancements:
 - Map size-specific Python/NumPy typecodes to MPI datatypes.
 - Allow partial specification of target list/tuple arguments in the various Win RMA methods.
 - Workaround for removal of MPI_{LB|UB} in Open MPI 4.0.
 - Support for Microsoft MPI v10.0.

17.10 Release 3.0.0 [2017-11-08]

- · New features:
 - mpi4py.futures: Execute computations asynchronously using a pool of MPI processes. This package is based on concurrent.futures from the Python standard library.
 - mpi4py.run: Run Python code and abort execution in case of unhandled exceptions to prevent deadlocks.
 - mpi4py.bench: Run basic MPI benchmarks and tests.
- Enhancements:
 - Lowercase, pickle-based collective communication calls are now thread-safe through the use of fine-grained locking.
 - The MPI module now exposes a memory type which is a lightweight variant of the builtin memoryview type, but exposes both the legacy Python 2 and the modern Python 3 buffer interface under a Python 2 runtime.
 - The MPI.Comm.Alltoallw() method now uses count=1 and displ=0 as defaults, assuming that messages are specified through user-defined datatypes.
 - The Request.Wait[all]() methods now return True to match the interface of Request.Test[all]().
 - The Win class now implements the Python buffer interface.

- Backward-incompatible changes:
 - The buf argument of the MPI.Comm.recv() method is deprecated, passing anything but None emits a warning.
 - The MPI.Win.memory property was removed, use the MPI.Win.tomemory() method instead.
 - Executing python -m mpi4py in the command line is now equivalent to python -m mpi4py.run. For the former behavior, use python -m mpi4py.bench.
 - Python 2.6 and 3.2 are no longer supported. The mpi4py.MPI module may still build and partially work, but other pure-Python modules under the mpi4py namespace will not.
 - Windows: Remove support for legacy MPICH2, Open MPI, and DeinoMPI.

17.11 Release 2.0.0 [2015-10-18]

- Support for MPI-3 features.
 - Matched probes and receives.
 - Nonblocking collectives.
 - Neighborhood collectives.
 - New communicator constructors.
 - Request-based RMA operations.
 - New RMA communication and synchronisation calls.
 - New window constructors.
 - New datatype constructor.
 - New C++ boolean and floating complex datatypes.
- Support for MPI-2 features not included in previous releases.
 - Generalized All-to-All collective (Comm.Alltoallw())
 - User-defined data representations (Register_datarep())
- New scalable implementation of reduction operations for Python objects. This code is based on binomial tree algorithms using point-to-point communication and duplicated communicator contexts. To disable this feature, use mpi4py.rc.fast_reduce = False.
- Backward-incompatible changes:
 - Python 2.4, 2.5, 3.0 and 3.1 are no longer supported.
 - Default MPI error handling policies are overridden. After import, mpi4py sets the ERRORS_RETURN error handler in COMM_SELF and COMM_WORLD, as well as any new Comm, Win, or File instance created through mpi4py, thus effectively ignoring the MPI rules about error handler inheritance. This way, MPI errors translate to Python exceptions. To disable this behavior and use the standard MPI error handling rules, use mpi4py.rc.errors = 'default'.
 - Change signature of all send methods, dest is a required argument.
 - Change signature of all receive and probe methods, source defaults to ANY_SOURCE, tag defaults to ANY_TAG.
 - Change signature of send lowercase-spelling methods, obj arguments are not mandatory.
 - Change signature of recv lowercase-spelling methods, renamed 'obj' arguments to 'buf'.

- Change Request. Waitsome() and Request. Testsome() to return None or list.
- Change signature of all lowercase-spelling collectives, sendobj arguments are now mandatory, recvobj arguments were removed.
- Reduction operations MAXLOC and MINLOC are no longer special-cased in lowercase-spelling methods Comm.[all]reduce() and Comm.[ex]scan(), the input object must be specified as a tuple (obj, location).
- Change signature of name publishing functions. The new signatures are Publish_name(service_name, port_name, info=INFO_NULL) and Unpublish_name(service_name, port_name, info=INFO_NULL)`.
- Win instances now cache Python objects exposing memory by keeping references instead of using MPI attribute caching.
- Change signature of Win.Lock(). The new signature is Win.Lock(rank, lock_type=LOCK_EXCLUSIVE, assertion=0).
- Move Cartcomm.Map() to Intracomm.Cart_map().
- Move Graphcomm.Map() to Intracomm.Graph_map().
- Remove the mpi4py.MPE module.
- Rename the Cython definition file for use with cimport statement from mpi_c.pxd to libmpi.pxd.

17.12 Release 1.3.1 [2013-08-07]

- Regenerate C wrappers with Cython 0.19.1 to support Python 3.3.
- Install *.pxd files in <site-packages>/mpi4py to ease the support for Cython's cimport statement in code requiring to access mpi4py internals.
- As a side-effect of using Cython 0.19.1, ancient Python 2.3 is no longer supported. If you really need it, you can install an older Cython and run python setup.py build_src --force.

17.13 Release 1.3 [2012-01-20]

- Now Comm.recv() accept a buffer to receive the message.
- Add Comm.irecv() and Request.{wait|test}[any|all]().
- Add Intracomm.Spawn_multiple().
- Better buffer handling for PEP 3118 and legacy buffer interfaces.
- Add support for attribute attribute caching on communicators, datatypes and windows.
- Install MPI-enabled Python interpreter as <path>/mpi4py/bin/python-mpi.
- Windows: Support for building with Open MPI.

17.14 Release 1.2.2 [2010-09-13]

- Add mpi4py.get_config() to retrieve information (compiler wrappers, includes, libraries, etc) about the MPI implementation employed to build mpi4py.
- · Workaround Python libraries with missing GILState-related API calls in case of non-threaded Python builds.
- Windows: look for MPICH2, DeinoMPI, Microsoft HPC Pack at their default install locations under %Program-Files.
- MPE: fix hacks related to old API's, these hacks are broken when MPE is built with a MPI implementations
 other than MPICH2.
- HP-MPI: fix for missing Fortran datatypes, use dlopen() to load the MPI shared library before MPI_Init()
- Many distutils-related fixes, cleanup, and enhancements, better logics to find MPI compiler wrappers.
- Support for pip install mpi4py.

17.15 Release 1.2.1 [2010-02-26]

- Fix declaration in Cython include file. This declaration, while valid for Cython, broke the simple-minded parsing used in conf/mpidistutils.py to implement configure-tests for availability of MPI symbols.
- Update SWIG support and make it compatible with Python 3. Also generate an warning for SWIG < 1.3.28.
- Fix distutils-related issues in Mac OS X. Now ARCHFLAGS environment variable is honored of all Python's config/Makefile variables.
- Fix issues with Open MPI < 1.4.2 related to error checking and MPI_XXX_NULL handles.

17.16 Release 1.2 [2009-12-29]

- Automatic MPI datatype discovery for NumPy arrays and PEP-3118 buffers. Now buffer-like objects can be messaged directly, it is no longer required to explicitly pass a 2/3-list/tuple like [data, MPI.DOUBLE], or [data, count, MPI.DOUBLE]. Only basic types are supported, i.e., all C/C99-native signed/unsigned integral types and single/double precision real/complex floating types. Many thanks to Eilif Muller for the initial feedback.
- Nonblocking send of pickled Python objects. Many thanks to Andreas Kloeckner for the initial patch and enlightening discussion about this enhancement.
- Request instances now hold a reference to the Python object exposing the buffer involved in point-to-point communication or parallel I/O. Many thanks to Andreas Kloeckner for the initial feedback.
- Support for logging of user-defined states and events using MPE. Runtime (i.e., without requiring a recompile!) activation of logging of all MPI calls is supported in POSIX platforms implementing dlopen().
- Support for all the new features in MPI-2.2 (new C99 and F90 datatypes, distributed graph topology, local reduction operation, and other minor enhancements).
- Fix the annoying issues related to Open MPI and Python dynamic loading of extension modules in platforms supporting dlopen().
- Fix SLURM dynamic loading issues on SiCortex. Many thanks to Ian Langmore for providing me shell access.

17.17 Release 1.1.0 [2009-06-06]

- Fix bug in Comm. Iprobe() that caused segfaults as Python C-API calls were issued with the GIL released (issue #2).
- Add Comm.bsend() and Comm.ssend() for buffered and synchronous send semantics when communicating general Python objects.
- Now the call Info.Get(key) return a *single* value (i.e, instead of a 2-tuple); this value is None if key is not in the Info object, or a string otherwise. Previously, the call redundantly returned (None, False) for missing key-value pairs; None is enough to signal a missing entry.
- Add support for parametrized Fortran datatypes.
- Add support for decoding user-defined datatypes.
- Add support for user-defined reduction operations on memory buffers. However, at most 16 user-defined reduction operations can be created. Ask the author for more room if you need it.

17.18 Release 1.0.0 [2009-03-20]

This is the fist release of the all-new, Cython-based, implementation of *MPI for Python*. Unfortunately, this implementation is not backward-compatible with the previous one. The list below summarizes the more important changes that can impact user codes.

- Some communication calls had *overloaded* functionality. Now there is a clear distinction between communication of general Python object with *pickle*, and (fast, near C-speed) communication of buffer-like objects (e.g., NumPy arrays).
 - for communicating general Python objects, you have to use all-lowercase methods, like send(), recv(), bcast(), etc.
 - for communicating array data, you have to use Send(), Recv(), Bcast(), etc. methods. Buffer arguments to these calls must be explicitly specified by using a 2/3-list/tuple like [data, MPI.DOUBLE], or [data, count, MPI.DOUBLE] (the former one uses the byte-size of data and the extent of the MPI datatype to define the count).
- Indexing a communicator with an integer returned a special object associating the communication with a target rank, alleviating you from specifying source/destination/root arguments in point-to-point and collective communications. This functionality is no longer available, expressions like:

```
MPI.COMM_WORLD[0].Send(...)
MPI.COMM_WORLD[0].Recv(...)
MPI.COMM_WORLD[0].Bcast(...)
```

have to be replaced by:

```
MPI.COMM_WORLD.Send(..., dest=0)
MPI.COMM_WORLD.Recv(..., source=0)
MPI.COMM_WORLD.Bcast(..., root=0)
```

- Automatic MPI initialization (i.e., at import time) requests the maximum level of MPI thread support (i.e., it is done by calling MPI_Init_thread() and passing MPI_THREAD_MULTIPLE). In case you need to change this behavior, you can tweak the contents of the mpi4py.rc module.
- In order to obtain the values of predefined attributes attached to the world communicator, now you have to use the Get_attr() method on the MPI.COMM_WORLD instance:

- tag_ub = MPI.COMM_WORLD.Get_attr(MPI.TAG_UB)
- In the previous implementation, MPI.COMM_WORLD and MPI.COMM_SELF were associated to **duplicates** of the (Clevel) MPI_COMM_WORLD and MPI_COMM_SELF predefined communicator handles. Now this is no longer the case, MPI.COMM_WORLD and MPI.COMM_SELF proxies the **actual** MPI_COMM_WORLD and MPI_COMM_SELF handles.
- Convenience aliases MPI.WORLD and MPI.SELF were removed. Use instead MPI.COMM_WORLD and MPI. COMM_SELF.
- Convenience constants MPI.WORLD_SIZE and MPI.WORLD_RANK were removed. Use instead MPI. COMM_WORLD.Get_size() and MPI.COMM_WORLD.Get_rank().

References

- [mpi-std1] MPI Forum. MPI: A Message Passing Interface Standard. International Journal of Supercomputer Applications, volume 8, number 3-4, pages 159-416, 1994.
- [mpi-std2] MPI Forum. MPI: A Message Passing Interface Standard. High Performance Computing Applications, volume 12, number 1-2, pages 1-299, 1998.
- [mpi-using] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: portable parallel programming with the message-passing interface. MIT Press, 1994.
- [mpi-ref] Mark Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra. MPI The Complete Reference, volume 1, The MPI Core. MIT Press, 2nd. edition, 1998.
- [mpi-mpich] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation of the MPI message passing interface standard. Parallel Computing, 22(6):789-828, September 1996.
- [mpi-openmpi] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S. Woodall. Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation. In Proceedings, 11th European PVM/MPI Users' Group Meeting, Budapest, Hungary, September 2004.
- [Hinsen97] Konrad Hinsen. The Molecular Modelling Toolkit: a case study of a large scientific application in Python. In Proceedings of the 6th International Python Conference, pages 29-35, San Jose, Ca., October 1997.
- [Beazley97] David M. Beazley and Peter S. Lomdahl. Feeding a large-scale physics application to Python. In Proceedings of the 6th International Python Conference, pages 21-29, San Jose, Ca., October 1997.
- [mpi4py-futures] M. Rogowski, S. Aseeri, D. Keyes, and L. Dalcin, *mpi4py.futures: MPI-Based Asynchronous Task Execution for Python*, IEEE Transactions on Parallel and Distributed Systems, 34(2):611-622, 2023. https://doi.org/10.1109/TPDS.2022.3225481

Python Module Index

m

```
mpi4py, 20

mpi4py.bench, 58

mpi4py.futures, 38

mpi4py.MPI, 58

mpi4py.run, 56

mpi4py.typing, 34

mpi4py.util, 47

mpi4py.util.dtlib, 47

mpi4py.util.pkl5, 47

mpi4py.util.pool, 54
```

Index

Symbolsinit() (mpi4py.util.pool.Pool method), 54new() (mpi4py.MPI.BottomType static method), 59new() (mpi4py.MPI.Cartcomm static method), 59new() (mpi4py.MPI.Comm static method), 61new() (mpi4py.MPI.Datatype static method), 91new() (mpi4py.MPI.Distgraphcomm static method),	Add_error_string() (in module mpi4py.MPI), 168 address (mpi4py.MPI.memory attribute), 165 Agree() (mpi4py.MPI.Comm method), 65 AINT (in module mpi4py.MPI), 203 Aint (in module mpi4py.typing), 36 Aint_add() (in module mpi4py.MPI), 168 Aint_diff() (in module mpi4py.MPI), 169 Allgather() (mpi4py.MPI.Comm method), 65 allgather() (mpi4py.MPI.Comm method), 86 allgather_init() (mpi4py.MPI.Comm method), 65 Allgather_init() (mpi4py.MPI.Comm method), 65 Allgatherv_init() (mpi4py.MPI.Comm method), 66 Alloc_mem() (in module mpi4py.MPI), 169 allocate() (mpi4py.MPI.memory static method), 164 Allocate() (mpi4py.MPI.Win class method) 155 Allreduce() (mpi4py.MPI.Comm method), 66 allreduce() (mpi4py.MPI.Comm method), 86 Allreduce_init() (mpi4py.MPI.Comm method), 66 allroall() (mpi4py.MPI.Comm method), 66 alltoall() (mpi4py.MPI.Comm method), 66 alltoall() (mpi4py.MPI.Comm method), 86
new() (mpi4py.MPI.Group static method), 117	allocate() (mpi4py.MPI.memory static method), 164 Allocate() (mpi4py.MPI.Win class method), 155
120	Allocate_shared() (mpi4py.MPI.Win class method) 155
new() (mpi4py.MPI.Intercomm static method), 124 new() (mpi4py.MPI.Intracomm static method), 125 new() (mpi4py.MPI.Message static method), 131	allreduce() (mpi4py.MPI.Comm method), 86 Allreduce_init() (mpi4py.MPI.Comm method), 66 Alltoall() (mpi4py.MPI.Comm method), 66
command line option, 57	В
Abort() (mpi4py.MPI.Comm method), 65 Accept() (mpi4py.MPI.Intracomm method), 126 Accumulate() (mpi4py.MPI.Win method), 155 Ack_failed() (mpi4py.MPI.Comm method), 65 Add_error_class() (in module mpi4py.MPI), 168 Add_error_code() (in module mpi4py.MPI), 168	BAND (in module mpi4py.MPI), 215 Barrier() (mpi4py.MPI.Comm method), 68 barrier() (mpi4py.MPI.Comm method), 86 Barrier_init() (mpi4py.MPI.Comm method), 68 Bcast() (mpi4py.MPI.Comm method), 68 bcast() (mpi4py.MPI.Comm method), 87 bcast() (mpi4py.util.pkl5.Comm method), 52

Bcast_init() (mpi4py.MPI.Comm method), 68 BOOL (in module mpi4py.MPI), 211	COMBINER_HINDEXED_BLOCK (in module mpi4py.MPI), 194
bootup() (mpi4py.futures.MPIPoolExecutor method), 40	COMBINER_HVECTOR (in module mpi4py.MPI), 193
BOR (in module mpi4py.MPI), 215	COMBINER_INDEXED (in module mpi4py.MPI), 193
BOTTOM (in module mpi4py.MPI), 181	COMBINER_INDEXED_BLOCK (in module mpi4py.MPI),
Bottom (in module mpi4py.typing), 35	194
BottomType (class in mpi4py.MPI), 59	COMBINER_NAMED (in module mpi4py.MPI), 193
Bsend() (mpi4py.MPI.Comm method), 68	COMBINER_RESIZED (in module mpi4py.MPI), 194
bsend() (mpi4py.MPI.Comm method), 87	COMBINER_STRUCT (in module mpi4py.MPI), 194
bsend() (mpi4py.util.pkl5.Comm method), 49	COMBINER_SUBARRAY (in module mpi4py.MPI), 194
Bsend_init() (mpi4py.MPI.Comm method), 68	COMBINER_VECTOR (in module mpi4py.MPI), 193
BSEND_OVERHEAD (in module mpi4py.MPI), 197	Comm (class in mpi4py.MPI), 61
Buffer (in module mpi4py.typing), 35	Comm (class in mpi4py.util.pkl5), 49
BufSpec (in module mpi4py.typing), 36	COMM_NULL (in module mpi4py.MPI), 218
BufSpecB (in module mpi4py.typing), 36	COMM_SELF (in module mpi4py.MPI), 218
BufSpecV (in module mpi4py.typing), 36	COMM_TYPE_HW_GUIDED (in module mpi4py.MPI), 196
BufSpecW (in module mpi4py.typing), 37	COMM_TYPE_HW_UNGUIDED (in module mpi4py.MPI), 190
	COMM_TYPE_SHARED (in module mpi4py.MPI), 196
BXOR (in module mpi4py.MPI), 216 BYTE (in module mpi4py.MPI), 202	
BYTE (in module mpi4py.MPI), 202	COMM_WORLD (in module mpi4py.MPI), 218
C	command line option
	configure, 224
C_BOOL (in module mpi4py.MPI), 205	mpi, 224
C_COMPLEX (in module mpi4py.MPI), 206	mpicc, 224
C_DOUBLE_COMPLEX (in module mpi4py.MPI), 206	mpild, 224
C_FLOAT_COMPLEX (in module mpi4py.MPI), 206	-c, 57
C_LONG_DOUBLE_COMPLEX (in module mpi4py.MPI), 206	-m, 57
Call_errhandler() (mpi4py.MPI.Comm method), 69	Commit() (mpi4py.MPI.Datatype method), 93
Call_errhandler() (mpi4py.MPI.File method), 104	Compare() (mpi4py.MPI.Comm method), 69
Call_errhandler() (mpi4py.MPI.Session method),	Compare() (mpi4py.MPI.Group method), 118
144	Compare_and_swap() (mpi4py.MPI.Win method), 156
Call_errhandler() (mpi4py.MPI.Win method), 156	Complete() (mpi4py.MPI.Grequest method), 116
Cancel() (mpi4py.MPI.Request method), 139	Complete() (mpi4py.MPI.Win method), 156
cancel() (mpi4py.MPI.Request method), 141	COMPLEX (in module mpi4py.MPI), 208
cancel() (mpi4py.util.pkl5.Request method), 48	COMPLEX16 (in module mpi4py.MPI), 211
cancelled (mpi4py.MPI.Status attribute), 148	COMPLEX32 (in module mpi4py.MPI), 211
CART (in module mpi4py.MPI), 196	COMPLEX4 (in module mpi4py.MPI), 210
Cart_map() (mpi4py.MPI.Intracomm method), 126	COMPLEX8 (in module mpi4py.MPI), 210
Cartcomm (class in mpi4py.MPI), 59	Compute_dims() (in module mpi4py.MPI), 170
CC, 221	CONGRUENT (in module mpi4py.MPI), 195
CHAR (in module mpi4py.MPI), 203	Connect() (mpi4py.MPI.Intracomm method), 126
CHARACTER (in module mpi4py.MPI), 208	contents (mpi4py.MPI.Datatype attribute), 100
clear() (mpi4py.MPI.Info method), 122	coords (mpi4py.MPI.Cartcomm attribute), 61
Clone() (mpi4py.MPI.Comm method), 69	copy() (mpi4py.MPI.Info method), 122
Close() (mpi4py.MPI.File method), 104	COUNT (in module mpi4py.MPI), 203
close() (mpi4py.util.pool.Pool method), 55	Count (in module mpi4py.typing), 36
Close_port() (in module mpi4py.MPI), 169	count (mpi4py.MPI.Status attribute), 148
combiner (mpi4py.MPI.Datatype attribute), 100	Create() (mpi4py.MPI.Comm method), 69
COMBINER_CONTIGUOUS (in module mpi4py.MPI), 193	Create() (mpi4py.MPI.Info class method), 121
COMBINER_DARRAY (in module mpi4py.MPI), 194	Create() (mpi4py.MPI.Op class method), 134
COMBINER_DUP (in module mpi4py.MPI), 193	Create() (mpi4py.MPI.Win class method), 156
COMBINER_F90_COMPLEX (in module mpi4py.MPI), 195	Create_cart() (mpi4py.MPI.Intracomm method), 127
COMBINER_F90_INTEGER (in module mpi4py.MPI), 194	Create_contiguous() (mpi4py.MPI.Datatype
COMBINER_F90_REAL (in module mpi4py.MPI), 194	method), 93
COMBINER_HINDEXED (in module mpi4py.MPI), 193	Create_darray() (mpi4py.MPI.Datatype method), 93

Create_dist_graph() (mpi4py.MPI.Intracomm	CXX_LONG_DOUBLE_COMPLEX (in module mpi4py.MPI)
<pre>method), 127 Create_dist_graph_adjacent()</pre>	207
(mpi4py.MPI.Intracomm method), 127	D
Create_dynamic() (mpi4py.MPI.Win class method),	Datatype (class in mpi4py.MPI), 91
156	DATATYPE_NULL (in module mpi4py.MPI), 202
Create_env() (mpi4py.MPI.Info class method), 121	decode() (mpi4py.MPI.Datatype method), 99
Create_errhandler() (mpi4py.MPI.Comm class	degrees (mpi4py.MPI.Topocomm attribute), 153
method), 69	Delete() (mpi4py.MPI.File class method), 104
Create_errhandler() (mpi4py.MPI.File class	Delete() (mpi4py.MPI.Info method), 121
method), 104	Delete_attr() (mpi4py.MPI.Comm method), 69
Create_errhandler() (mpi4py.MPI.Session class	<pre>Delete_attr() (mpi4py.MPI.Datatype method), 96</pre>
method), 144	Delete_attr() (mpi4py.MPI.Win method), 157
Create_errhandler() (mpi4py.MPI.Win class	Detach() (mpi4py.MPI.Win method), 157
method), 157	Detach_buffer() (in module mpi4py.MPI), 170
<pre>Create_f90_complex() (mpi4py.MPI.Datatype class</pre>	Difference() (mpi4py.MPI.Group class method), 118
method), 94	dim (mpi4py.MPI.Cartcomm attribute), 61
<pre>Create_f90_integer() (mpi4py.MPI.Datatype class</pre>	dims (mpi4py.MPI.Cartcomm attribute), 61
method), 94	dims (mpi4py.MPI.Graphcomm attribute), 116
Create_f90_real() (mpi4py.MPI.Datatype class	Disconnect() (mpi4py.MPI.Comm method), 70
method), 94	DISP_CUR (in module mpi4py.MPI), 200
<pre>Create_from_group() (mpi4py.MPI.Intracomm class</pre>	Displ (in module mpi4py.typing), 36
method), 128	DISPLACEMENT_CURRENT (in module mpi4py.MPI), 200
<pre>Create_from_groups() (mpi4py.MPI.Intercomm class</pre>	DIST_GRAPH (in module mpi4py.MPI), 196
method), 124	Distgraphcomm (class in mpi4py.MPI), 101
Create_from_session_pset() (mpi4py.MPI.Group	DISTRIBUTE_BLOCK (in module mpi4py.MPI), 192
class method), 118	DISTRIBUTE_CYCLIC (in module mpi4py.MPI), 192
Create_graph() (mpi4py.MPI.Intracomm method), 128	DISTRIBUTE_DFLT_DARG (in module mpi4py.MPI), 193
Create_group() (mpi4py.MPI.Intracomm method), 128	DISTRIBUTE_NONE (in module mpi4py.MPI), 192
Create_group() (mpi4py.MPI.Session method), 144	DOUBLE (in module mpi4py.MPI), 205
Create_hindexed() (mpi4py.MPI.Datatype method),	DOUBLE_COMPLEX (in module mpi4py.MPI), 209
94	DOUBLE_INT (in module mpi4py.MPI), 208
Create_hindexed_block() (mpi4py.MPI.Datatype	DOUBLE_PRECISION (in module mpi4py.MPI), 208
method), 94	dumps() (mpi4py.MPI.Pickle method), 136
Create_hvector() (mpi4py.MPI.Datatype method), 94	dumps_oob() (mpi4py.MPI.Pickle method), 136
Create_indexed() (mpi4py.MPI.Datatype method), 95	Dup() (mpi4py.MPI.Comm method), 70
Create_indexed_block() (mpi4py.MPI.Datatype	Dup() (mpi4py.MPI.Datatype method), 96
method), 95	Dup() (mpi4py.MPI.Group method), 118
Create_intercomm() (mpi4py.MPI.Intracomm	Dup() (mpi4py.MPI.Info method), 122
method), 128	<pre>Dup_with_info() (mpi4py.MPI.Comm method), 70</pre>
Create_keyval() (mpi4py.MPI.Comm class method),	_
69	E
Create_keyval() (mpi4py.MPI.Datatype class	edges (mpi4py.MPI.Graphcomm attribute), 116
method), 95	envelope (mpi4py.MPI.Datatype attribute), 100
Create_keyval() (mpi4py.MPI.Win class method), 157	environment variable
Create_resized() (mpi4py.MPI.Datatype method), 95	CC, 221
Create_struct() (mpi4py.MPI.Datatype class	LD_LIBRARY_PATH, 227
method), 95	MPI4PY_BUILD_BACKEND, 219-221
Create_subarray() (mpi4py.MPI.Datatype method),	MPI4PY_BUILD_CONFIGURE, 220
96	MPI4PY_BUILD_MPICC, 220
Create_vector() (mpi4py.MPI.Datatype method), 96	MPI4PY_BUILD_MPICFG, 220
CXX_BOOL (in module mpi4py.MPI), 206	MPI4PY_BUILD_MPILD, 220
CXX_DOUBLE_COMPLEX (in module mpi4py.MPI), 207	MPI4PY_FUTURES_BACKOFF, 39, 41
CXX_FLOAT_COMPLEX (in module mpi4py.MPI), 207	MPT4PY FIITURES MAX WORKERS 30 41 45

MPI4PY_FUTURES_USE_PKL5, 39, 41	ERR_PROC_FAILED (in module mpi4py.MPI), 191
MPI4PY_PICKLE_PROTOCOL, 12, 25	ERR_PROC_FAILED_PENDING (in module mpi4py.MPI)
MPI4PY_PICKLE_THRESHOLD, 25	191
MPI4PY_RC_ERRORS, 22, 24	ERR_QUOTA (in module mpi4py.MPI), 190
MPI4PY_RC_FAST_REDUCE, 22, 24	ERR_RANK (in module mpi4py.MPI), 185
MPI4PY_RC_FINALIZE, 22, 23	ERR_READ_ONLY (in module mpi4py.MPI), 190
MPI4PY_RC_INITIALIZE, 21, 23	ERR_REQUEST (in module mpi4py.MPI), 184
MPI4PY_RC_RECV_MPROBE, 22, 24	ERR_REVOKED (in module mpi4py.MPI), 191
MPI4PY_RC_THREAD_LEVEL, 22, 24	ERR_RMA_ATTACH (in module mpi4py.MPI), 189
MPI4PY_RC_THREADS, 21, 23	ERR_RMA_CONFLICT (in module mpi4py.MPI), 188
MPICC, 220, 224	ERR_RMA_FLAVOR (in module mpi4py.MPI), 189
MPICFG, 220, 224	ERR_RMA_RANGE (in module mpi4py.MPI), 189
MPICH_USE_SHLIB, 227	ERR_RMA_SHARED (in module mpi4py.MPI), 189
MPIEXEC_UNIVERSE_SIZE, 44	ERR_RMA_SYNC (in module mpi4py.MPI), 188
MPILD, 220, 224	ERR_ROOT (in module mpi4py.MPI), 185
PATH, 220, 224, 226	ERR_SERVICE (in module mpi4py.MPI), 187
ERR_ACCESS (in module mpi4py.MPI), 190	ERR_SESSION (in module mpi4py.MPI), 184
ERR_AMODE (in module mpi4py.MPI), 190	ERR_SIZE (in module mpi4py.MPI), 188
ERR_ARG (in module mpi4py.MPI), 186	ERR_SPAWN (in module mpi4py.MPI), 187
ERR_ASSERT (in module mpi4py.MPI), 188	ERR_TAG (in module mpi4py.MPI), 185
ERR_BAD_FILE (in module mpi4py.MPI), 189	ERR_TOPOLOGY (in module mpi4py.MPI), 186
ERR_BASE (in module mpi4py.MPI), 188	ERR_TRUNCATE (in module mpi4py.MPI), 185
ERR_BUFFER (in module mpi4py.MPI), 185	ERR_TYPE (in module mpi4py.MPI), 183
ERR_COMM (in module mpi4py.MPI), 184	ERR_UNKNOWN (in module mpi4py.MPI), 186
ERR_CONVERSION (in module mpi4py.MPI), 191	ERR_UNSUPPORTED_DATAREP (in module mpi4py.MPI).
ERR_COUNT (in module mpi4py.MPI), 185	191
ERR_DIMS (in module mpi4py.MPI), 186	ERR_UNSUPPORTED_OPERATION (in module
ERR_DISP (in module mpi4py.MPI), 188	mpi4py.MPI), 190
ERR_DUP_DATAREP (in module mpi4py.MPI), 191	ERR_VALUE_TOO_LARGE (in module mpi4py.MPI), 191
ERR_ERRHANDLER (in module mpi4py.MPI), 184	ERR_WIN (in module mpi4py.MPI), 184
ERR_FILE (in module mpi4py.MPI), 185	Errhandler (class in mpi4py.MPI), 101
ERR_FILE_EXISTS (in module mpi4py.MPI), 189	ERRHANDLER_NULL (in module mpi4py.MPI), 218
ERR_FILE_IN_USE (in module mpi4py.MPI), 189	error (mpi4py.MPI.Status attribute), 148
ERR_GROUP (in module mpi4py.MPI), 184	error_class (mpi4py.MPI.Exception attribute), 167
ERR_IN_STATUS (in module mpi4py.MPI), 185	error_code (mpi4py.MPI.Exception attribute), 167
ERR_INFO (in module mpi4py.MPI), 184	error_string (mpi4py.MPI.Exception attribute), 167
ERR_INFO_KEY (in module mpi4py.MPI), 187	errors (mpi4py.mpi4py.rc attribute), 22
ERR_INFO_NOKEY (in module mpi4py.MPI), 187	ERRORS_ABORT (in module mpi4py.MPI), 218
ERR_INFO_VALUE (in module mpi4py.MPI), 187	ERRORS_ARE_FATAL (in module mpi4py.MPI), 218
ERR_INTERN (in module mpi4py.MPI), 186	ERRORS_RETURN (in module mpi4py.MPI), 218
ERR_IO (in module mpi4py.MPI), 190	Exception, 166
ERR_KEYVAL (in module mpi4py.MPI), 186	Excl() (mpi4py.MPI.Group method), 118
ERR_LASTCODE (in module mpi4py.MPI), 183	Exscan() (mpi4py.MPI.Intracomm method), 128
ERR_LOCKTYPE (in module mpi4py.MPI), 188	exscan() (mpi4py.MPI.Intracomm method), 131
ERR_NAME (in module mpi4py.MPI), 187	<pre>Exscan_init() (mpi4py.MPI.Intracomm method), 129</pre>
ERR_NO_MEM (in module mpi4py.MPI), 187	extent (mpi4py.MPI.Datatype attribute), 100
ERR_NO_SPACE (in module mpi4py.MPI), 190	_
ERR_NO_SUCH_FILE (in module mpi4py.MPI), 189	F
ERR_NOT_SAME (in module mpi4py.MPI), 190	f2py() (mpi4py.MPI.Comm class method), 87
ERR_OP (in module mpi4py.MPI), 184	f2py() (mpi4py.MPI.Datatype class method), 99
ERR_OTHER (in module mpi4py.MPI), 186	f2py() (mpi4py.MPI.Errhandler class method), 102
ERR_PENDING (in module mpi4py.MPI), 186	f2py() (mpi4py.MPI.File class method), 113
ERR_PORT (in module mpi4py.MPI), 187	f2py() (mpi4py.MPI.Group class method), 120
ERR_PROC_ABORTED (in module mpi4py.MPI), 188	f2py() (mpi4py.MPI.Info class method), 123
1 1 2 //	$\pm \omega \rho_J \left(J \left(m \rho i \tau \rho_J \right) m 1 1 1 1 1 1 1 0 \right) $

f2py() (mpi4py.MPI.Message class method), 132	G
f2py() (mpi4py.MPI.Op class method), 135	Gather() (mpi4py.MPI.Comm method), 70
f2py() (mpi4py.MPI.Request class method), 141	gather() (mpi4py.MPI.Comm method), 87
f2py() (mpi4py.MPI.Session class method), 145	gather() (mpi4py.util.pkl5.Comm method), 52
f2py() (mpi4py.MPI.Status class method), 148	Gather_init() (mpi4py.MPI.Comm method), 70
f2py() (mpi4py.MPI.Win class method), 162	Gatherv() (mpi4py.MPI.Comm method), 71
F_BOOL (in module mpi4py.MPI), 212	Gatherv_init() (mpi4py.MPI.Comm method), 71
F_COMPLEX (in module mpi4py.MPI), 213	Get() (mpi4py.MPI.Info method), 122
F_DOUBLE (in module mpi4py.MPI), 212	get() (mpi4py.MPI.Info method), 123
F_DOUBLE_COMPLEX (in module mpi4py.MPI), 213	Get() (mpi4py.MPI.Win method), 158
F_ERROR (in module mpi4py.MPI), 195	get() (mpi4py.util.pool.AsyncResult method), 56
F_FLOAT (in module mpi4py.MPI), 212	Get_accumulate() (mpi4py.MPI.Win method), 158
F_FLOAT_COMPLEX (in module mpi4py.MPI), 213	Get_address() (in module mpi4py.MPI), 170
F_INT (in module mpi4py.MPI), 212	Get_amode() (mpi4py.MPI.File method), 105
F_SOURCE (in module mpi4py.MPI), 195	Get_atomicity() (mpi4py.MPI.File method), 105
F_STATUS_SIZE (in module mpi4py.MPI), 195	Get_attr() (mpi4py.MPI.Comm method), 71
F_TAG (in module mpi4py.MPI), 195	Get_attr() (mpi4py.MPI.Datatype method), 97
<pre>fast_reduce (mpi4py.mpi4py.rc attribute), 22</pre>	Get_attr() (mpi4py.MPI.Win method), 159
Fence() (mpi4py.MPI.Win method), 157	Get_byte_offset() (mpi4py.MPI.File method), 105
Fetch_and_op() (mpi4py.MPI.Win method), 157	Get_cart_rank() (mpi4py.MPI.Cartcomm method), 60
File (class in mpi4py.MPI), 102	get_comm_workers() (in module mpi4py.futures), 43
FILE_NULL (in module mpi4py.MPI), 219	get_config() (in module mpi4py), 25
finalize (mpi4py.mpi4py.rc attribute), 22	Get_contents() (mpi4py.MPI.Datatype method), 97
Finalize() (in module mpi4py.MPI), 170	Get_coords() (mpi4py.MPI.Cartcomm method), 60
Finalize() (mpi4py.MPI.Session method), 144	Get_count() (mpi4py.MPI.Status method), 146
flavor (mpi4py.MPI.Win attribute), 163	Get_dim() (mpi4py.MPI.Cartcomm method), 60
FLOAT (in module mpi4py.MPI), 204	Get_dims() (mpi4py.MPI.Graphcomm method), 115
FLOAT_INT (in module mpi4py.MPI), 207	Get_dist_neighbors() (mpi4py.MPI.Distgraphcomm
Flush() (mpi4py.MPI.Win method), 158	method), 101
Flush_all() (mpi4py.MPI.Win method), 158	Get_dist_neighbors_count()
Flush_local() (mpi4py.MPI.Win method), 158	(mpi4py.MPI.Distgraphcomm method), 101
Flush_local_all() (mpi4py.MPI.Win method), 158	Get_elements() (mpi4py.MPI.Status method), 146
format (mpi4py.MPI.memory attribute), 165	Get_envelope() (mpi4py.MPI.Datatype method), 97
Free() (mpi4py.MPI.Comm method), 70	Get_errhandler() (mpi4py.MPI.Comm method), 71
Free() (mpi4py.MPI.Datatype method), 96	Get_errhandler() (mpi4py.MPI.File method), 105
Free() (mpi4py.MPI.Errhandler method), 102	Get_errhandler() (mpi4py.MPI.Session method), 144
Free() (mpi4py.MPI.Group method), 118	Get_errhandler() (mpi4py.MPI.Win method), 159
Free() (mpi4py.MPI.Info method), 122	Get_error() (mpi4py.MPI.Status method), 146
Free() (mpi4py.MPI.Op method), 134	Get_error_class() (in module mpi4py.MPI), 171
Free() (mpi4py.MPI.Request method), 139	Get_error_class() (mpi4py.MPI.Exception method),
Free() (mpi4py.MPI.Win method), 158	166
Free() (mpi4py.util.pkl5.Request method), 48	<pre>Get_error_code() (mpi4py.MPI.Exception method),</pre>
Free_keyval() (mpi4py.MPI.Comm class method), 70	166
<pre>Free_keyval() (mpi4py.MPI.Datatype class method),</pre>	Get_error_string() (in module mpi4py.MPI), 171
96	Get_error_string() (mpi4py.MPI.Exception method),
Free_keyval() (mpi4py.MPI.Win class method), 158	166
Free_mem() (in module mpi4py.MPI), 170	Get_extent() (mpi4py.MPI.Datatype method), 97
<pre>from_numpy_dtype() (in module mpi4py.util.dtlib), 47</pre>	Get_failed() (mpi4py.MPI.Comm method), 71
<pre>fromaddress() (mpi4py.MPI.memory static method),</pre>	Get_group() (mpi4py.MPI.Comm method), 72
164	Get_group() (mpi4py.MPI.File method), 105
<pre>frombuffer() (mpi4py.MPI.memory static method), 164</pre>	Get_group() (mpi4py.MPI.Win method), 159
fromcode() (mpi4py.MPI.Datatype class method), 99	get_include() (in module mpi4py), 25
	Get_info() (mpi4py.MPI.Comm method), 72
	Get_info() (mpi4py.MPI.File method), 105
	= · · · · · · · · · · · · · · · · · · ·

<pre>Get_info() (mpi4py.MPI.Session method), 144</pre>	Н	
<pre>Get_info() (mpi4py.MPI.Win method), 159</pre>	HOST (in module mpi4py.MPI), 1	182
<pre>Get_library_version() (in module mpi4py.MPI), 171</pre>	11051 (in mounte inpripy.iii 1),	102
<pre>Get_name() (mpi4py.MPI.Comm method), 72</pre>		
<pre>Get_name() (mpi4py.MPI.Datatype method), 97</pre>	<pre>Iagree() (mpi4py.MPI.Comm i</pre>	method) 72
<pre>Get_name() (mpi4py.MPI.Win method), 159</pre>	Iallgather() (mpi4py.MPI.Co	
<pre>Get_neighbors() (mpi4py.MPI.Graphcomm method),</pre>	Iallgatherv() (mpi4py.MPI.C	
115	Iallreduce() (mpi4py.MPI.Co	
<pre>Get_neighbors_count() (mpi4py.MPI.Graphcomm</pre>	Ialltoall() (mpi4py.MPI.Con	
method), 115	Ialltoallv() (mpi4py.MPI.Co	
<pre>Get_nkeys() (mpi4py.MPI.Info method), 122</pre>	Ialltoallw() (mpi4py.MPI.Co	
<pre>Get_nth_pset() (mpi4py.MPI.Session method), 144</pre>	Ibarrier() (mpi4py.MPI.Com	
<pre>Get_nthkey() (mpi4py.MPI.Info method), 122</pre>	Ibcast() (mpi4py.MPI.Comm	
<pre>Get_num_psets() (mpi4py.MPI.Session method), 144</pre>	Ibsend() (mpi4py.MPI.Comm i	
<pre>Get_parent() (mpi4py.MPI.Comm class method), 72</pre>	ibsend() (mpi4py.MPI.Comm i	
<pre>Get_position() (mpi4py.MPI.File method), 105</pre>	ibsend() (mpi4py.util.pkl5.Com	
<pre>Get_position_shared() (mpi4py.MPI.File method),</pre>	IDENT (in module mpi4py.MPI),	
105	Idup() (mpi4py.MPI.Comm me	
<pre>Get_processor_name() (in module mpi4py.MPI), 171</pre>	Idup_with_info() (mpi4py.M	
<pre>Get_pset_info() (mpi4py.MPI.Session method), 145</pre>	<pre>Iexscan() (mpi4py.MPI.Intract</pre>	
<pre>Get_rank() (mpi4py.MPI.Comm method), 72</pre>	Igather() (mpi4py.MPI.Comm	
<pre>Get_rank() (mpi4py.MPI.Group method), 118</pre>	Igatherv() (mpi4py.MPI.Com	
Get_remote_group() (mpi4py.MPI.Intercomm	imap() (mpi4py.util.pool.Pool n	
method), 125	imap_unordered() (mpi4py.ut	
<pre>Get_remote_size() (mpi4py.MPI.Intercomm method),</pre>	Improbe() (mpi4py.MPI.Comm	
125	improbe() (mpi4py.MPI.Comm	
<pre>Get_size() (mpi4py.MPI.Comm method), 72</pre>	improbe() (mpi4py.util.pkl5.Co	
<pre>Get_size() (mpi4py.MPI.Datatype method), 97</pre>	IN_PLACE (in module mpi4py.M	
Get_size() (mpi4py.MPI.File method), 105	Incl() (mpi4py.MPI.Group me.	
Get_size() (mpi4py.MPI.Group method), 119	indegree (mpi4py.MPI.Topoco	
Get_source() (mpi4py.MPI.Status method), 147	index (mpi4py.MPI.Graphcomm	
Get_status() (mpi4py.MPI.Request method), 139	inedges (mpi4py.MPI.Topocom	
get_status() (mpi4py.MPI.Request method), 141		(mpi4py.MPI.Topocomm
get_status() (mpi4py.util.pkl5.Request method), 48	method), 149	
Get_tag() (mpi4py.MPI.Status method), 147	<pre>Ineighbor_allgatherv()</pre>	(mpi4py.MPI.Topocomm
Get_topo() (mpi4py.MPI.Cartcomm method), 60	method), 149	
Get_topo() (mpi4py.MPI.Graphcomm method), 115	<pre>Ineighbor_alltoall()</pre>	(mpi4py.MPI.Topocomm
Get_topology() (mpi4py.MPI.Comm method), 72	method), 150	
<pre>Get_true_extent() (mpi4py.MPI.Datatype method),</pre>	<pre>Ineighbor_alltoallv()</pre>	(mpi4py.MPI.Topocomm
97	method), 150	
Get_type_extent() (mpi4py.MPI.File method), 106	<pre>Ineighbor_alltoallw()</pre>	(mpi4py.MPI.Topocomm
get_vendor() (in module mpi4py.MPI), 175	method), 150	
Get_version() (in module mpi4py.MPI), 171	Info (class in mpi4py.MPI), 120	0
Get_view() (mpi4py.MPI.File method), 106	info (mpi4py.MPI.Comm attrib	ute), 91
GRAPH (in module mpi4py.MPI), 196	info (mpi4py.MPI.File attribute	
Graph_map() (mpi4py.MPI.Intracomm method), 129	info (mpi4py.MPI.Win attribute	e), 163
Graphcomm (class in mpi4py.MPI), 114	INFO_ENV (in module mpi4py.M	(PI), 217
Grequest (class in mpi4py.MPI), 116	INFO_NULL (in module mpi4py.)	MPI), 217
Group (class in mpi4py.MPI), 117	<pre>Init() (in module mpi4py.MPI</pre>	
group (mpi4py.MPI.Comm attribute), 91	<pre>Init() (mpi4py.MPI.Session cla</pre>	
group (mpi4py.MPI.File attribute), 114	<pre>Init_thread() (in module mps</pre>	= :
group (mpi4py.MPI.Win attribute), 163 CROUD EMPTY (in module mpi4py MPI) 217	<pre>initialize (mpi4py.mpi4py.rc</pre>	
GROUP_EMPTY (in module mpi4py.MPI), 217	inoutedges (mpi4py.MPI.Topo	comm attribute), 153
GROUP_NULL (in module mpi4py.MPI), 217	InPlace (in module mpi4py.type	ing), 35

InPlaceType (class in mpi4py.MPI), 120	<pre>Is_thread_main() (in module mpi4py.MPI), 172</pre>
INT (in module mpi4py.MPI), 203	is_topo (mpi4py.MPI.Comm attribute), 91
INT16_T (in module mpi4py.MPI), 205	<pre>Iscan() (mpi4py.MPI.Intracomm method), 129</pre>
INT32_T (in module mpi4py.MPI), 205	<pre>Iscatter() (mpi4py.MPI.Comm method), 77</pre>
INT64_T (in module mpi4py.MPI), 205	<pre>Iscatterv() (mpi4py.MPI.Comm method), 77</pre>
INT8_T (in module mpi4py.MPI), 205	<pre>Isend() (mpi4py.MPI.Comm method), 77</pre>
INT_INT (in module mpi4py.MPI), 207	isend() (mpi4py.MPI.Comm method), 88
INTEGER (in module mpi4py.MPI), 208	isend() (mpi4py.util.pkl5.Comm method), 50
INTEGER1 (in module mpi4py.MPI), 209	<pre>Isendrecv() (mpi4py.MPI.Comm method), 77</pre>
INTEGER16 (in module mpi4py.MPI), 210	<pre>Isendrecv_replace() (mpi4py.MPI.Comm method),</pre>
INTEGER2 (in module mpi4py.MPI), 209	77
INTEGER4 (in module mpi4py.MPI), 209	<pre>Ishrink() (mpi4py.MPI.Comm method), 78</pre>
INTEGER8 (in module mpi4py.MPI), 210	<pre>Issend() (mpi4py.MPI.Comm method), 78</pre>
Intercomm (class in mpi4py.MPI), 124	issend() (mpi4py.MPI.Comm method), 88
Intercomm (class in mpi4py.util.pkl5), 53	issend() (mpi4py.util.pkl5.Comm method), 50
<pre>Intersection() (mpi4py.MPI.Group class method),</pre>	<pre>istarmap() (mpi4py.util.pool.Pool method), 55</pre>
119	istarmap_unordered() (mpi4py.util.pool.Pool
Intracomm (class in mpi4py.MPI), 125	method), 55
Intracomm (class in mpi4py.util.pkl5), 53	<pre>items() (mpi4py.MPI.Info method), 123</pre>
I0 (in module mpi4py.MPI), 182	itemsize (<i>mpi4py.MPI.memory attribute</i>), 165
<pre>Iprobe() (mpi4py.MPI.Comm method), 75</pre>	<pre>Iwrite() (mpi4py.MPI.File method), 107</pre>
iprobe() (mpi4py.MPI.Comm method), 88	<pre>Iwrite_all() (mpi4py.MPI.File method), 107</pre>
Iprobe() (mpi4py.MPI.Message class method), 132	<pre>Iwrite_at() (mpi4py.MPI.File method), 107</pre>
iprobe() (mpi4py.MPI.Message class method), 132	<pre>Iwrite_at_all() (mpi4py.MPI.File method), 107</pre>
<pre>iprobe() (mpi4py.util.pkl5.Message class method), 49</pre>	<pre>Iwrite_shared() (mpi4py.MPI.File method), 107</pre>
<pre>Iread() (mpi4py.MPI.File method), 106</pre>	
<pre>Iread_all() (mpi4py.MPI.File method), 106</pre>	J
<pre>Iread_at() (mpi4py.MPI.File method), 106</pre>	Join() (mpi4py.MPI.Comm class method), 78
<pre>Iread_at_all() (mpi4py.MPI.File method), 106</pre>	join() (mpi4py.util.pool.Pool method), 55
<pre>Iread_shared() (mpi4py.MPI.File method), 106</pre>	
<pre>Irecv() (mpi4py.MPI.Comm method), 75</pre>	K
<pre>irecv() (mpi4py.MPI.Comm method), 88</pre>	keys() (mpi4py.MPI.Info method), 123
<pre>Irecv() (mpi4py.MPI.Message method), 132</pre>	KEYVAL_INVALID (in module mpi4py.MPI), 181
<pre>irecv() (mpi4py.MPI.Message method), 133</pre>	NETTINE_INVINEED (at module impropyimi 1), 101
<pre>irecv() (mpi4py.util.pkl5.Comm method), 51</pre>	L
<pre>irecv() (mpi4py.util.pkl5.Message method), 49</pre>	I AND (in modulo maidan MBI) 215
<pre>Ireduce() (mpi4py.MPI.Comm method), 75</pre>	LAND (in module mpi4py.MPI), 215
<pre>Ireduce_scatter() (mpi4py.MPI.Comm method), 76</pre>	LASTUSEDCODE (in module mpi4py.MPI), 182
<pre>Ireduce_scatter_block()</pre>	lb (<i>mpi4py.MPI.Datatype attribute</i>), 100 LD_LIBRARY_PATH, 227
method), 76	loads() (mpi4py.MPI.Pickle method), 136
Irsend() (mpi4py.MPI.Comm method), 76	loads_oob() (mpi4py.MPI.Pickle method), 136
Is_cancelled() (mpi4py.MPI.Status method), 147	Lock() (mpi4py.MPI.Win method), 159
is_commutative (mpi4py.MPI.Op attribute), 135	Lock_() (mpi4py.MPI.Win method), 159
<pre>Is_commutative() (mpi4py.MPI.Op method), 134</pre>	LOCK_EXCLUSIVE (in module mpi4py.MPI), 198
<pre>Is_finalized() (in module mpi4py.MPI), 172</pre>	LOCK_SHARED (in module mpi4py.MPI), 198
<pre>Is_initialized() (in module mpi4py.MPI), 172</pre>	LOGICAL (in module mpi4py.MPI), 208
is_inter (mpi4py.MPI.Comm attribute), 91	LOGICAL (in module mpi+py.mi 1), 200
<pre>Is_inter() (mpi4py.MPI.Comm method), 76</pre>	
is_intra (mpi4py.MPI.Comm attribute), 91	LOGICAL1 (in module mpi4py.MPI), 209
Is_intra() (mpi4py.MPI.Comm method), 76	LOGICAL1 (in module mpi4py.MPI), 209 LOGICAL2 (in module mpi4py.MPI), 209
is_named (mpi4py.MPI.Datatype attribute), 100	LOGICAL1 (in module mpi4py.MPI), 209 LOGICAL2 (in module mpi4py.MPI), 209 LOGICAL4 (in module mpi4py.MPI), 209
	LOGICAL1 (in module mpi4py.MPI), 209 LOGICAL2 (in module mpi4py.MPI), 209 LOGICAL4 (in module mpi4py.MPI), 209 LOGICAL8 (in module mpi4py.MPI), 209
is_predefined (mpi4py.MPI.Datatype attribute), 100	LOGICAL1 (in module mpi4py.MPI), 209 LOGICAL2 (in module mpi4py.MPI), 209 LOGICAL4 (in module mpi4py.MPI), 209 LOGICAL8 (in module mpi4py.MPI), 209 LONG (in module mpi4py.MPI), 204
is_predefined (mpi4py.MPI.Datatype attribute), 100 is_predefined (mpi4py.MPI.Op attribute), 135 Is_revoked() (mpi4py.MPI.Comm method), 76	LOGICAL1 (in module mpi4py.MPI), 209 LOGICAL2 (in module mpi4py.MPI), 209 LOGICAL4 (in module mpi4py.MPI), 209 LOGICAL8 (in module mpi4py.MPI), 209

LONG_INT (in module mpi4py.MPI), 207 LONG_LONG (in module mpi4py.MPI), 204 Lookup_name() (in module mpi4py.MPI), 172 LOR (in module mpi4py.MPI), 215 LXOR (in module mpi4py.MPI), 216	<pre>mpi4py.typing, 34 mpi4py.util, 47 mpi4py.util.dtlib, 47 mpi4py.util.pkl5, 47 mpi4py.util.pool, 54</pre>
M	mpi4py module, 20
LXOR (in module mpi4py.MPI), 216 M map() (mpi4py.futures.MPIPoolExecutor method), 39 map() (mpi4py.util.pool.Pool method), 55 map_async() (mpi4py.util.pool.Pool method), 55 MapResult (class in mpi4py.util.pool), 56 Match_size() (mpi4py.MPI.Datatype class method), 97 MAX (in module mpi4py.MPI), 214 MAX_DATAREP_STRING (in module mpi4py.MPI), 202 MAX_ERROR_STRING (in module mpi4py.MPI), 201 MAX_INFO_KEY (in module mpi4py.MPI), 201 MAX_INFO_VAL (in module mpi4py.MPI), 201 MAX_LIBRARY_VERSION_STRING (in module mpi4py.MPI), 202 MAX_OBJECT_NAME (in module mpi4py.MPI), 202 MAX_PORT_NAME (in module mpi4py.MPI), 201 MAX_PSET_NAME_LEN (in module mpi4py.MPI), 201 MAX_PSET_NAME_LEN (in module mpi4py.MPI), 202 MAX_STRINGTAG_LEN (in module mpi4py.MPI), 202 MAXLOC (in module mpi4py.MPI), 216 memory (class in mpi4py.MPI), 163 Merge() (mpi4py.MPI.Intercomm method), 125 Message (class in mpi4py.MPI), 131	<pre>mpi4py.util.pool,54 mpi4py</pre>
Message (class in mpi4py.util.pkl5), 48 MESSAGE_NO_PROC (in module mpi4py.MPI), 213 MESSAGE_NULL (in module mpi4py.MPI), 213 MIN (in module mpi4py.MPI), 214 MINLOC (in module mpi4py.MPI), 216 MODE_APPEND (in module mpi4py.MPI), 199 MODE_CREATE (in module mpi4py.MPI), 199 MODE_DELETE_ON_CLOSE (in module mpi4py.MPI), 199 MODE_NOCHECK (in module mpi4py.MPI), 198 MODE_NOPRECEDE (in module mpi4py.MPI), 198 MODE_NOPUT (in module mpi4py.MPI), 198 MODE_NOSTORE (in module mpi4py.MPI), 198 MODE_NOSUCCEED (in module mpi4py.MPI), 198 MODE_RDONLY (in module mpi4py.MPI), 198 MODE_RDONLY (in module mpi4py.MPI), 199 MODE_SEQUENTIAL (in module mpi4py.MPI), 199 MODE_UNIQUE_OPEN (in module mpi4py.MPI), 199 MODE_WRONLY (in module mpi4py.MPI), 199 MODE_WRONLY (in module mpi4py.MPI), 199 model (mpi4py.MPI.Win attribute), 163 module mpi4py, 20 mpi4py bench, 58 mpi4py .MPI, 58 mpi4py .Tun, 56	MPI4PY_BUILD_MPICFG, 220 MPI4PY_BUILD_MPILD, 220 MPI4PY_FUTURES_BACKOFF, 39, 41 MPI4PY_FUTURES_MAX_WORKERS, 39, 41, 45 MPI4PY_FUTURES_USE_PKL5, 39, 41 MPI4PY_PICKLE_PROTOCOL, 12 MPI4PY_RC_ERRORS, 22 MPI4PY_RC_FAST_REDUCE, 22 MPI4PY_RC_FINALIZE, 22 MPI4PY_RC_INITIALIZE, 21 MPI4PY_RC_THREAD_LEVEL, 22 MPI4PY_RC_THREAD_LEVEL, 22 MPI4PY_RC_THREADS, 21 MPICC, 224 MPICFG, 224 MPICH_USE_SHLIB, 227 MPICOmmExecutor (class in mpi4py.futures), 42 MPILD, 224 MPIPOolExecutor (class in mpi4py.futures), 38 Mprobe() (mpi4py.MPI.Comm method), 78 mprobe() (mpi4py.MPI.Comm method), 89 mprobe() (mpi4py.util.pkl5.Comm method), 51

N	Pack_external() (mpi4py.MPI.Datatype method), 98
name (mpi4py.MPI.Comm attribute), 91	Pack_external_size() (mpi4py.MPI.Datatype
name (mpi4py.MPI.Datatype attribute), 100	method), 98
name (mpi4py.MPI.Win attribute), 163	Pack_size() (mpi4py.MPI.Datatype method), 98
nbytes (mpi4py.MPI.memory attribute), 165	PACKED (in module mpi4py.MPI), 202
ndim (mpi4py.MPI.Cartcomm attribute), 61	Parrived() (mpi4py.MPI.Prequest method), 137
nedges (mpi4py.MPI.Graphcomm attribute), 116	PATH, 220, 224, 226
Neighbor_allgather() (mpi4py.MPI.Topocom	Pcontrol() (in module mpi4py.MPI), 173
method), 150	periods (mpi4py.MPI.Cartcomm attribute), 61
<pre>neighbor_allgather()</pre>	Pickle (class in mpi4py.MPI), 135
method), 152	pickle (in module mpi4py.MPI), 219
<pre>Neighbor_allgather_init()</pre>	Pool (class in mpi4py.util.pool), 54
(mpi4py.MPI.Topocomm method), 150	pop() (mpi4py.MPI.Info method), 123
Neighbor_allgatherv() (mpi4py.MPI.Topocom	popitem() (mpi4py.MPI.Info method), 123 Post() (mpi4py.MPI.Win method), 160
method), 151	Pready() (mpi4py.MPI.Prequest method), 137
Neighbor_allgatherv_init()	Pready_list() (mpi4py.MI.1.1 request method), 137
(mpi4py.MPI.Topocomm method), 151	December 1997
Neighbor_alltoall() (mpi4py.MPI.Topocom	Preallocate() (mpi4py.MFI.File method), 108
method), 151	Program desired () () id MPLC () d D 70
neighbor_alltoall() (mpi4py.MPI.Topocom	Prequest (class in mpi4py.MPI), 137
method), 152	Production (C) (C) (A) MPLC (L) 70
Neighbor_alltoall_init() (mpi4py.MPI.Topocom	probe() (mpi4py.MPI.Comm method), 89
method), 151	Developed A. M.
Neighbor_alltoallv() (mpi4py.MPI.Topocom method), 151	probe() (mpi4py.MPI.Message class method), 133
Meighbor_alltoallv_init()	probe() (mpi4py.util.pkl5.Message class method), 49
(mpi4py.MPI.Topocomm method), 151	PROC_NULL (in module mpi4py.MPI), 181
Neighbor_alltoallw() (mpi4py.MPI.Topocom	DDOD (in market market MDI) 214
method), 152	profile() (in module mpi4py), 25
Neighbor_alltoallw_init()	PROTOCOL (mpi4py.MPI.Pickle attribute), 136
(mpi4py.MPI.Topocomm method), 152	<pre>Psend_init() (mpi4py.MPI.Comm method), 79</pre>
neighbors (<i>mpi4py.MPI.Graphcomm attribute</i>), 116	Publish_name() (in module mpi4py.MPI), 173
nneighbors (mpi4py.MPI.Graphcomm attribute), 116	Put() (mpi4py.MPI.Win method), 160
nnodes (mpi4py.MPI.Graphcomm attribute), 116	py2f() (mpi4py.MPI.Comm method), 89
NO_OP (in module mpi4py.MPI), 217	py2f() (mpi4py.MPI.Datatype method), 100
	at- py2f() (mpi4py.MPI.Errhandler method), 102
tribute), 40	py2f() (mpi4py.MPI.File method), 114
	py2f() (mpi4py.MPI.Group method), 120
O	py2f() (mpi4py.MPI.Info method), 123
obj (mpi4py.MPI.memory attribute), 165	py2f() (mpi4py.MPI.Message method), 133
OFFSET (in module mpi4py.MPI), 203	py2f() (mpi4py.MPI.Op method), 135
Offset (in module mpi4py.typing), 36	py2f() (mpi4py.MPI.Request method), 141
Op (class in mpi4py.MPI), 133	py2f() (mpi4py.MPI.Session method), 145
OP_NULL (in module mpi4py.MPI), 213	py2f() (mpi4py.MPI.Status method), 148
Open() (mpi4py.MPI.File class method), 107	py2f() (mpi4py.MPI.Win method), 163
Open_port() (in module mpi4py.MPI), 173	Python Enhancement Proposals
ORDER_C (in module mpi4py.MPI), 191	PEP 574, 47
ORDER_F (in module mpi4py.MPI), 192	Q
ORDER_FORTRAN (in module mpi4py.MPI), 192	·
outdegree (mpi4py.MPI.Topocomm attribute), 153	Query_thread() (in module mpi4py.MPI), 173
outedges (mpi4py.MPI.Topocomm attribute), 153	R
Р	
	Raccumulate() (mpi4py.MPI.Win method), 160
Pack() (mpi4py.MPI.Datatype method), 98	Range_excl() $(mpi4py.MPI.Group\ method)$, 119

Range_incl() (mpi4py.MPI.Group method), 119	Rput() (mpi4py.MPI.Win method), 161
rank (mpi4py.MPI.Comm attribute), 91	Rsend() (mpi4py.MPI.Comm method), 82
rank (mpi4py.MPI.Group attribute), 120	Rsend_init() (mpi4py.MPI.Comm method), 82
Read() (mpi4py.MPI.File method), 108	C
Read_all() (mpi4py.MPI.File method), 108	S
Read_all_begin() (mpi4py.MPI.File method), 108	Scan() (mpi4py.MPI.Intracomm method), 129
Read_all_end() (mpi4py.MPI.File method), 108	scan() (mpi4py.MPI.Intracomm method), 131
Read_at() (mpi4py.MPI.File method), 108	<pre>Scan_init() (mpi4py.MPI.Intracomm method), 130</pre>
Read_at_all() (mpi4py.MPI.File method), 109	Scatter() (mpi4py.MPI.Comm method), 82
Read_at_all_begin() (mpi4py.MPI.File method), 109	scatter() (mpi4py.MPI.Comm method), 90
Read_at_all_end() (mpi4py.MPI.File method), 109	scatter() (mpi4py.util.pkl5.Comm method), 52
Read_ordered() (mpi4py.MPI.File method), 109	Scatter_init() (mpi4py.MPI.Comm method), 82
Read_ordered_begin() (mpi4py.MPI.File method).	Scatterv() (mpi4py.MPI.Comm method), 82
109	Scatterv_init() (mpi4py.MPI.Comm method), 83
Read_ordered_end() (mpi4py.MPI.File method), 110	Seek() (mpi4py.MPI.File method), 110
Read_shared() (mpi4py.MPI.File method), 110	SEEK_CUR (in module mpi4py.MPI), 200
readonly (mpi4py.MPI.memory attribute), 165	SEEK_END (in module mpi4py.MPI), 200
ready() (mpi4py.util.pool.AsyncResult method), 56	SEEK_SET (in module mpi4py.MPI), 200
REAL (in module mpi4py.MPI), 208	Seek_shared() (mpi4py.MPI.File method), 110
REAL16 (in module mpi4py.MPI), 210	Send() (mpi4py.MPI.Comm method), 83
REAL2 (in module mpi4py.MPI), 210	send() (mpi4py.MPI.Comm method), 90
REAL4 (in module mpi4py.MPI), 210	send() (mpi4py.util.pkl5.Comm method), 49
REAL8 (in module mpi4py.MPI), 210	Send_init() (mpi4py.MPI.Comm method), 83
Recv() (mpi4py.MPI.Comm method), 79	Sendrecv() (mpi4py.MPI.Comm method), 83
recv() (mpi4py.MPI.Comm method), 89	sendrecv() (mpi4py.MPI.Comm method), 90
Recv() (mpi4py.MPI.Message method), 132	sendrecv() (mpi4py.util.pkl5.Comm method), 51
recv() (mpi4py.MPI.Message method), 133	Sendrecv_replace() (mpi4py.MPI.Comm method), 84
recv() (mpi4py.util.pkl5.Comm method), 50	Session (class in mpi4py.MPI), 143
recv() (mpi4py.util.pkl5.Message method), 49	SESSION_NULL (in module mpi4py.MPI), 218
<pre>Recv_init() (mpi4py.MPI.Comm method), 80</pre>	Set() (mpi4py.MPI.Info method), 122
recv_mprobe (mpi4py.mpi4py.rc attribute), 22	Set_atomicity() (mpi4py.MPI.File method), 110
Reduce() (mpi4py.MPI.Comm method), 80	Set_attr() (mpi4py.MPI.Comm method), 84
reduce() (mpi4py.MPI.Comm method), 89	Set_attr() (mpi4py.MPI.Datatype method), 98
Reduce_init() (mpi4py.MPI.Comm method), 80	Set_attr() (mpi4py.MPI.Win method), 161
Reduce_local() (mpi4py.MPI.Op method), 134	Set_cancelled() (mpi4py.MPI.Status method), 147
Reduce_scatter() (mpi4py.MPI.Comm method), 81	Set_elements() (mpi4py.MPI.Status method), 147
Reduce_scatter_block() (mpi4py.MPI.Comm	Set_errhandler() (mpi4py.MPI.Comm method), 85
method), 81	Set_errhandler() (mpi4py.MPI.File method), 110
<pre>Reduce_scatter_block_init() (mpi4py.MPI.Comm</pre>	Set_errhandler() (mpi4py.MPI.Session method), 145
method), 81	Set_errhandler() (mpi4py.MPI.Win method), 161
Reduce_scatter_init() (mpi4py.MPI.Comm	Set_error() (mpi4py.MPI.Status method), 147
method), 81	Set_info() (mpi4py.MPI.Comm method), 85
Register_datarep() (in module mpi4py.MPI), 174	Set_info() (mpi4py.MPI.File method), 111
release() (mpi4py.MPI.memory method), 165	Set_info() (mpi4py.MPI.Win method), 161
remote_group (mpi4py.MPI.Intercomm attribute), 125	Set_name() (mpi4py.MPI.Comm method), 85
remote_size (mpi4py.MPI.Intercomm attribute), 125	Set_name() (mpi4py.MPI.Datatype method), 99
REPLACE (in module mpi4py.MPI), 217	Set_name() (mpi4py.MPI.Win method), 161
Request (class in mpi4py.MPI), 138	Set_size() (mpi4py.MPI.File method), 111
Request (class in mpi4py.util.pkl5), 48	Set_source() (mpi4py.MPI.Status method), 147
REQUEST_NULL (in module mpi4py.MPI), 213	Set_tag() (mpi4py.MPI.Status method), 148
Revoke() (mpi4py.MPI.Comm method), 81	Set_view() (mpi4py.MPI.File method), 111
Rget() (mpi4py.MPI.Win method), 160	Shared_query() (mpi4py.MPI.Win method), 162
Rget_accumulate() (mpi4py.MPI.Win method), 160	Shift() (mpi4py.MPI.Cartcomm method), 60
ROOT (in module mpi4py.MPI), 181	SHORT (in module mpi4py.MPI), 203

SHORT_INT (in module mpi4py.MPI), 207	terminate() (mpi4py.util.pool.Pool method), 55
Shrink() (mpi4py.MPI.Comm method), 85	Test() (mpi4py.MPI.Request method), 139
shutdown() (mpi4py.futures.MPIPoolExecutor method),	test() (mpi4py.MPI.Request method), 141
40	Test() (mpi4py.MPI.Win method), 162
SIGNED_CHAR (in module mpi4py.MPI), 203	test() (mpi4py.util.pkl5.Request method), 48
SIGNED_INT (in module mpi4py.MPI), 211	Testall() (mpi4py.MPI.Request class method), 140
SIGNED_LONG (in module mpi4py.MPI), 211	testall() (mpi4py.MPI.Request class method), 141
SIGNED_LONG_LONG (in module mpi4py.MPI), 211	testall() (mpi4py.util.pkl5.Request class method), 48
SIGNED_SHORT (in module mpi4py.MPI), 211	Testany() (mpi4py.MPI.Request class method), 140
SIMILAR (in module mpi4py.MPI), 195	testany() (mpi4py.MPI.Request class method), 142
SINT16_T (in module mpi4py.MPI), 212	Testsome() (mpi4py.MPI.Request class method), 140
SINT32_T (in module mpi4py.MPI), 212	testsome() (mpi4py.MPI.Request class method), 142
SINT64_T (in module mpi4py.MPI), 212	THREAD_FUNNELED (in module mpi4py.MPI), 200
SINT8_T (in module mpi4py.MPI), 212	thread_level (mpi4py.mpi4py.rc attribute), 21
size (mpi4py.MPI.Comm attribute), 91	THREAD_MULTIPLE (in module mpi4py.MPI), 201
size (mpi4py.MPI.Datatype attribute), 100	THREAD_SERIALIZED (in module mpi4py.MPI), 200
size (mpi4py.MPI.File attribute), 114	THREAD_SINGLE (in module mpi4py.MPI), 200
size (mpi4py.MPI.Group attribute), 120	ThreadPool (class in mpi4py.util.pool), 55
source (mpi4py.MPI.Status attribute), 148	threads (mpi4py.mpi4py.rc attribute), 21
Spawn() (mpi4py.MPI.Intracomm method), 130	THRESHOLD (mpi4py.MPI.Pickle attribute), 136
Spawn_multiple() (mpi4py.MPI.Intracomm method),	to_numpy_dtype() (in module mpi4py.util.dtlib), 47
130	tobytes() (mpi4py.MPI.memory method), 165
Split() (mpi4py.MPI.Comm method), 85	tocode() (mpi4py.MPI.Datatype method), 100
<pre>Split_type() (mpi4py.MPI.Comm method), 85</pre>	tomemory() (mpi4py.MPI.Win method), 163
Ssend() (mpi4py.MPI.Comm method), 86	topo (mpi4py.MPI.Cartcomm attribute), 61
ssend() (mpi4py.MPI.Comm method), 90	topo (mpi4py.MPI.Graphcomm attribute), 116
ssend() (mpi4py.util.pkl5.Comm method), 50	Topocomm (class in mpi4py.MPI), 148
<pre>Ssend_init() (mpi4py.MPI.Comm method), 86</pre>	topology (mpi4py.MPI.Comm attribute), 91
<pre>starmap() (mpi4py.futures.MPIPoolExecutor method),</pre>	toreadonly() (mpi4py.MPI.memory method), 165
40	Translate_ranks() (mpi4py.MPI.Group method), 119
<pre>starmap() (mpi4py.util.pool.Pool method), 55</pre>	true_extent (mpi4py.MPI.Datatype attribute), 100
<pre>starmap_async() (mpi4py.util.pool.Pool method), 55</pre>	true_lb (mpi4py.MPI.Datatype attribute), 100
Start() (mpi4py.MPI.Grequest class method), 116	true_ub (mpi4py.MPI.Datatype attribute), 100
Start() (mpi4py.MPI.Prequest method), 138	TWOINT (in module mpi4py.MPI), 207
Start() (mpi4py.MPI.Win method), 162	typechar (mpi4py.MPI.Datatype attribute), 100
Startall() (mpi4py.MPI.Prequest class method), 138	TYPECLASS_COMPLEX (in module mpi4py.MPI), 192
Status (class in mpi4py.MPI), 145	TYPECLASS_INTEGER (in module mpi4py.MPI), 192
Sub() (mpi4py.MPI.Cartcomm method), 60	TYPECLASS_REAL (in module mpi4py.MPI), 192
<pre>submit() (mpi4py.futures.MPIPoolExecutor method), 39</pre>	TypeSpec (in module mpi4py.typing), 36
SUBVERSION (in module mpi4py.MPI), 201	typestr (mpi4py.MPI.Datatype attribute), 100
SUCCESS (in module mpi4py.MPI), 183	
<pre>successful() (mpi4py.util.pool.AsyncResult method),</pre>	U
56	ub (mpi4py.MPI.Datatype attribute), 100
SUM (in module mpi4py.MPI), 214	UINT16_T (in module mpi4py.MPI), 206
SupportsBuffer (in module mpi4py.typing), 35	UINT32_T (in module mpi4py.MPI), 206
SupportsCAI (in module mpi4py.typing), 35	UINT64_T (in module mpi4py.MPI), 206
SupportsDLPack (in module mpi4py.typing), 35	UINT8_T (in module mpi4py.MPI), 205
Sync() (mpi4py.MPI.File method), 111	UNDEFINED (in module mpi4py.MPI), 181
Sync() (mpi4py.MPI.Win method), 162	UNEQUAL (in module mpi4py.MPI), 196
- · · · · · · · · · · · · · · · · · · ·	Union() (mpi4py.MPI.Group class method), 119
T	UNIVERSE_SIZE (in module mpi4py.MPI), 182
tag (mpi4py.MPI.Status attribute), 148	Unlock() (mpi4py.MPI.Win method), 162
TAG_UB (in module mpi4py.MPI), 182	Unlock_all() (mpi4py.MPI.Win method), 162
TargetSpec (in module mpi4py.typing), 37	Unpack() (mpi4py.MPI.Datatype method), 99
goode (in income inpripying), or	orbacies (mpripymin in analype memou),

```
Unpack_external() (mpi4py.MPI.Datatype method),
                                                    Write_ordered() (mpi4pv.MPI.File method), 113
                                                    Write_ordered_begin() (mpi4py.MPI.File method),
Unpublish_name() (in module mpi4py.MPI), 174
UNSIGNED (in module mpi4py.MPI), 204
                                                    Write_ordered_end() (mpi4py.MPI.File method), 113
UNSIGNED_CHAR (in module mpi4py.MPI), 204
                                                    Write_shared() (mpi4py.MPI.File method), 113
UNSIGNED_INT (in module mpi4py.MPI), 211
                                                    Wtick() (in module mpi4py.MPI), 174
UNSIGNED LONG (in module mpi4pv.MPI), 204
                                                    Wtime() (in module mpi4pv.MPI), 174
UNSIGNED_LONG_LONG (in module mpi4py.MPI), 204
                                                    WTIME_IS_GLOBAL (in module mpi4py.MPI), 182
UNSIGNED_SHORT (in module mpi4py.MPI), 204
UNWEIGHTED (in module mpi4py.MPI), 196
update() (mpi4py.MPI.Info method), 123
V
values() (mpi4py.MPI.Info method), 124
VERSION (in module mpi4py.MPI), 201
Wait() (mpi4py.MPI.Request method), 140
wait() (mpi4py.MPI.Request method), 142
Wait() (mpi4py.MPI.Win method), 162
wait() (mpi4py.util.pkl5.Request method), 48
wait() (mpi4py.util.pool.AsyncResult method), 56
Waitall() (mpi4py.MPI.Request class method), 140
waitall() (mpi4py.MPI.Request class method), 142
waitall() (mpi4py.util.pkl5.Request class method), 48
Waitany() (mpi4py.MPI.Request class method), 140
waitany() (mpi4py.MPI.Request class method), 142
Waitsome() (mpi4py.MPI.Request class method), 141
waitsome() (mpi4py.MPI.Request class method), 143
WCHAR (in module mpi4py.MPI), 203
WEIGHTS_EMPTY (in module mpi4py.MPI), 196
Win (class in mpi4py.MPI), 153
WIN_BASE (in module mpi4py.MPI), 182
WIN_CREATE_FLAVOR (in module mpi4py.MPI), 183
WIN_DISP_UNIT (in module mpi4py.MPI), 183
WIN_FLAVOR (in module mpi4py.MPI), 183
WIN_FLAVOR_ALLOCATE (in module mpi4py.MPI), 197
WIN_FLAVOR_CREATE (in module mpi4py.MPI), 197
WIN_FLAVOR_DYNAMIC (in module mpi4py.MPI), 197
WIN_FLAVOR_SHARED (in module mpi4py.MPI), 197
WIN_MODEL (in module mpi4py.MPI), 183
WIN_NULL (in module mpi4py.MPI), 219
WIN_SEPARATE (in module mpi4py.MPI), 197
WIN_SIZE (in module mpi4py.MPI), 183
WIN_UNIFIED (in module mpi4py.MPI), 197
Write() (mpi4py.MPI.File method), 111
Write_all() (mpi4py.MPI.File method), 111
Write_all_begin() (mpi4py.MPI.File method), 112
Write_all_end() (mpi4py.MPI.File method), 112
Write_at() (mpi4py.MPI.File method), 112
Write_at_all() (mpi4py.MPI.File method), 112
Write_at_all_begin() (mpi4py.MPI.File method),
Write_at_all_end() (mpi4py.MPI.File method), 113
```