Exercices de révision de Maths

Nombres complexes & suites numériques

7D

12.2016

<u>Dans les exercices 1 à 4,</u> pour chaque proposition, indiquer si elle est vraie ou fausse et proposer une démonstration pour la réponse indiquée. Dans le cas d'une proposition fausse, la démonstration consistera à fournir un contre exemple.

EXERCICE 1

Soit z un nombre complexe non nul.

1. Si $ z = 1$, alors $z^2 = (\bar{z})^2$.	4. Si $\arg z = \pm \frac{\pi}{2}$, alors z est imaginaire pur.
2. Si $z = -2ie^{i\frac{\pi}{3}}$, alors $\arg z = \pi + \frac{\pi}{3}$.	5. Si $z=5+i(4-3i)$, alors la partie réelle de z est 5
3. Si $z = 3(\sin\theta + i\cos\theta)$, alors $z = 3e^{i\theta}$	6. Si $\mathbf{z}_1 = \mathrm{e}^{\mathrm{i}\frac{\pi}{3}}$; $\mathbf{z}_2 = -5 \mathrm{e}^{\mathrm{i}\frac{\pi}{6}}$; $\mathbf{z}_3 = \sqrt{3} \mathrm{e}^{\mathrm{i}\frac{\pi}{2}}$, alors le produit $\mathbf{z}_1 \mathbf{z}_2 \mathbf{z}_3$ est réel négatif.

EXERCICE 2

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0$, $u_1=1$ et, pour tout $n\in\mathbb{N}$, $u_{n+2}=\frac{1}{3}u_{n+1}+\frac{2}{3}u_n$.

On définit les suites $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ par $v_n = u_{n+1} - u_n$ et $w_n = u_{n+1} + \frac{2}{3}u_n$.

1. La suite $(v_n)_{n\in\mathbb{N}}$ est arithmétique.	3. Pour tout $n \in \mathbb{N}$, on a : $u_n = \frac{3}{5}(w_n - v_n)$.
2. La suite $(w_n)_{n\in\mathbb{N}}$ est constante.	4. La suite $(u_n)_{n\in\mathbb{N}}^*$ n'a pas de limite finie.

EXERCICE 3

Soit (u_n) une suite géométrique de pre mier terme $u_0=1$ et de raison $q\in]0$; $+\infty$ [. On note $S_n=u_0+u_1+...+u_n$.

1. S'il existe $n \in \mathbb{N}$ tel que $u_n > 2000$, alors $q > 1$.	4. Si $\lim_{n \to +\infty} S_n = 2$, alors $q = \frac{1}{2}$.
2. Si $q < 1$, alors il existe $n \in \mathbb{N}$ tel que $0 < u_n < 2$.	5. Si $q = 2$, alors $S_4 = 15$.
3. Si $q > 1$, alors $\lim_{n \to +\infty} S_n = +\infty$.	6. Si $q = 0.5$ alors $\lim_{n \to +\infty} S_n = 0$.

EXERCICE 4

On considère une suite (u_n) , définie sur \mathbb{N} , croissante et de termes strictement positifs.

On définit alors la suite (v_n) sur \mathbb{N} par $v_n = \frac{-1}{u}$.

1. Si $\lim_{n\to+\infty}u_n=+\infty$, alors (v_n) est convergente.	5. Les suites (u_n) et (v_n) sont adjacentes.
2. Si (u_n) est divergente, alors (v_n) est divergente.	6. La suite (v_n) est croissante et négative.
3. Si (u_n) est minorée par 5, alors (v_n) est minorée	7. Si (u_n) est arithmétique, alors (v_n) est
par -1.	arithmétique.
4. Si (u_n) est géométrique, alors (v_n) est	8. La suite (u_n) est minorée.
géométrique.	

1) On considère les équations suivantes dans \mathbb{C} :

$$E_1: z^2-6z+25=0$$

$$E_3: z^2-8z+25=0$$

- a) Résoudre E_1 . On note z_1 et z_2 ses solutions avec $Im(z_1) > 0$.
- b Résoudre E_2 . On note z_3 et z_4 ses solutions avec $Im(z_3) > 0$.
- c) Ecrire sous forme trigonométrique les nombres $z_1 + z_3$ et $z_1 \times z_3$.
- 2) Le plan complexe est rapporté à un repère orthonormé $(O;\vec{u},\vec{v})$.

Pour tout nombre complexe z tel que $z \ne 3+4i$ on pose : $f(z) = \frac{z-4-3i}{z-3-4i}$.

On considère les points A, B et C d'affixes respectives $z_A = 3 + 4i$, $z_B = 4 + 3i$ et $z_C = 4 + 4i$.

- a) Placer les points A, B et C dans le repère.
- b) Calculer et mettre sous forme algébrique le nombre complexe f(4+4i). Interpréter graphique ment.
- c) Déterminer et représenter, dans le repère $(O; \vec{u}, \vec{v})$, les ensembles de points M du plan d'affixe z dans chacun des cas suivants :
- Γ_1 tel que |f(z)| = 1.
- Γ_2 tel que f(z) soit imaginaire pur.

EXERCICE 6

- 1. Pour tout nombre complexe z on pose : $P(z) = z^3 z^2 4z 6$.
- a) Calculer P(3).
 - b) Déterminer les réels a et b tels que pour tout z on a: $P(z) = (z-3)(z^2 + az + b)$.
 - c) Résoudre, dans l'ensemble des nombres complexe, l'équation P(z) = 0.
- 2. On considère, dans le plan complexe muni d'un repère orthonormé (O; u, v), les points A, B, C et D d'affixes respectives $z_A = 3 + 2i$, $z_B = -1 + i$, $z_C = -1 i$ et $z_D = 3$.
 - a) Placer les points A, B, C et D dans le repère $(0; \vec{u}, \vec{v})$.
 - b) Comparer l'affixe du milieu de [AC] à celle du milieu de [BD].
 - c) En déduire la nature du quadrilatère ABCD.
 - d) Déterminer et construire l'ensemble des points M d'affixe z telle que |z-3| = |z+1-i|.

EXERCICE 7

- 1) Pour tout nombre complexe z on pose: $P(z) = z^3 10z^2 + 33z 34$.
- a) Calculer P(2).
- b) Déterminer les réels a et b tels que pour tout z on a: $P(z) = (z-2)(z^2+az+b)$.
- c) Résoudre, dans l'ensemble des nombres complexe, l'équation P(z) = 0. On note z_0 ; z_1 et z_2 les solutions de (E) telles que $Im(z_2) < Im(z_0) < Im(z_1)$.
- 2) Le plan complexe est rapporté à un repère orthonormé direct $(0; \vec{u}, \vec{v})$.

Soient les points A, B et C d'affixes respectives : $z_A = z_1 + 3i$, $z_B = z_2 + i$ et $z_C = 6 + 2i$.

- a) Vérifier que $z_A = 4+4i$ et $z_B = 4$.
- b) Ecrire les nombres z_A et z_B sous forme trigonométrique.
- c) Placer les points A, B et C dans le repère.
- 3) Pour tout nombre $z \neq 4+4i$ on pose : $f(z) = \frac{z-4}{z-4-4i}$
- a) Vérifier que $f(z_c) = i$ et interpréter graphiquement.

- b) Déterminer et construire Γ_1 l'ensemble des points M du plan d'affixe z tel que |f(z)| = 1.
- c) Déterminer et construire Γ_2 l'ensemble des points M d'affixe z tel que f(z) soit imaginaire pur.
- 4) Pour tout entier naturel n, on pose $z_n = (z_A)^n$ et soit M_n le point d'affixe z_n .
- a) Déterminer l'ensemble des entiers n pour les quels le point \mathbf{M}_n appartient à l'axe des abscisses.
- b) Déterminer l'ensemble des entiers n pour lesquels on a $OM_n > 2015$.

Dans l'ensemble \mathbb{C} on pose : $P(z) = \frac{z-1+6i}{z+4-i}$

1) Calculer puis écrire sous forme algébrique chacun des nombres suivants:

P(-1); P(3+6i); P(-4+3i).

- 2) Résoudre dans \mathbb{C} l'équation : P(z) = 1 i ; écrire la solution sous forme algébrique .
- 3) On pose Z = P(3+6i). On muni le plan complexe d'un repère orthonormal direct (O,\vec{u},\vec{v}) . Soit M_1 ; M_n les points d'affixes respectives Z et Z^n ; $n \in IN^*$.
- a) Montrer que $Z = \sqrt{2}(\cos{\frac{\pi}{4}} + i\sin{\frac{\pi}{4}})$.
- b) Ecrire Zⁿ sous forme trigonométrique.
- c) Déterminer et représenter dans le plan les points M_1 ; M_2 ; M_3 .
- 4) Montrer que le triangle OM_1M_2 est rectangle isocèle en M_1 .
- 5.a) Pour quelles valeurs de n ; le point M_n est situé sur l'axe Ox?
- b) Montrer que les points O; M_4 ; M_{2008} sont alignés.
- 6) On pose $U_n = |z_{n+1} z_n|$. Montrer que (U_n) est une suite géométrique. Déterminer sa raison et son premier terme.
- 7) On pose $S_n = M_1 M_2 + M_2 M_3 + ... + M_n M_{n+1}$. Calculer S_n en fonction de n puis calculer $\lim_{n \to +\infty} S_n$.
- 7) Déterminer et représenter l'ensemble des points M d'affixe z dans les cas suivants :
- a) Γ_1 |P(z)| = 1.
- b) Γ_2
- Le nombre P(z) est réel.

EXERCICE 9

On considère la suite numérique (U_n) définie pour tout entier $n \ge 1$ par : $U_n = \frac{n^2 + n + 1}{n(n+1)}$.

- 1.a) Calculer U_1 , U_2 et U_3 .
 - b) Justifier que la suite (U_n) :
 - 1)N'est pas arithmétique ;
- 2) N'est pas géométrique ;
- 3)Est convergente.

- 2. Pour tout entier $n \ge 1$, on pose: $V_n = \frac{n^2 1}{n}$.
 - a) Montrer que : $U_n = V_{n+1} V_n$
 - b) En déduire l'expression de la somme $S_n = U_1 + U_2 + \cdots + U_n$ en fonction de n .

EXERCICE 10

On considère les suites numériques (U_n) et (V_n) définies pour tout n de IN^* par:

$$\begin{cases} U_1=1\\ U_{n+1}=\frac{n+1}{5n}U_n \end{cases} \qquad et \qquad \qquad V_n=\frac{1}{n}U_n \; . \label{eq:Vn}$$

- 1.a) Calculer U_2 , U_3 , V_1 , V_2
- b) Montrer que (U_n) est positive.

- c) Montrer que (U_n) est décroissante et bornée. Que peut-on déduire ?
- 2.a) Montrer que (V_n) est une suite géométrique convergente.
- b) Exprimer V_n puis U_n en fonction de n. Recalculer alors U_2 et U_3 .
- 3.a) Calculer en fonction de n la somme : $S_n = \frac{U_1}{1} + \frac{U_2}{2} + \frac{U_3}{3} + \dots + \frac{U_n}{n}$.
- b) Soit $P_n = V_1 \times V_2 \times V_3 \times ... \times V_n$. Montrer que $P_n = \left(\frac{1}{5}\right)^{\frac{n(n-1)}{2}}$
- c) Soit $Q_n = U_1 \times U_2 \times U_3 \times ... \times U_n$. Calculer Q_n en fonction de n.

On considère la suite numérique (U_n) définie par tout n de IN^* par: $\begin{cases} U_0 = 0 \\ U_{n+1} = \sqrt{2 + U_n} \end{cases}$

- 1.a) Calculer U_1, U_2 .
- b) Démontrer, à l'aide d'un raisonnement par récurrence, que, pour tout n, $0 \le U_n < 2$
- 2) On considère la suite (V_n) définie pour tout n par $V_n = 2 U_n$
- a) Montrer que, pour tout entier n, $0 < \frac{V_{n+1}}{V_n} \le \frac{1}{2}$. En déduire le sens de variation de (V_n) puis celui de (V_n) (\mathbf{U}_{n}) .
- b) A l'aide d'un raisonnement par récurrence montrer que $0 < V_n \le \left(\frac{1}{2}\right)^{n-1}$.
- c) En déduire la limite de la suite (V_n) puis celle de la suite (U_n) .

EXERCICE 12

On considère la suite numérique (U_n) définie par: $\begin{cases} U_1 = 1 \\ U_{n+1} = 3 - \frac{2n}{3(n+1)} (3 - U_n), \ \forall n \in IN^* \end{cases}$

- 1) Vérifier que $U_2 = \frac{7}{3}$ puis calculer U_3 ; U_4
- 2) On admet que la suite (Un) est majorée par 3 (a démontrer facilement par récurrence).
- a) Montrer que pour tout n de IN^* on a : $U_{n+1} U_n = \frac{n+3}{3(n+1)}(3-U_n)$.
- b) Déduire le sens de variation de la suite (U_n). Puis que la suite (U_n) est convergente.
- 3) On pose pour tout n de IN*: $V_n = n(3 - U_n)$.
- a) Calculer V₁; V₂ et montrer que (V_n) est une suite géométrique. Déterminer sa raison.
- b) Exprimer V_n puis U_n en fonction de n.
- c) Montrer que la suite (V_n) est convergente et calculer sa limite. En déduire la limite de (U_n).
- d) Calculer par une deuxième méthode la limite de (U,).
- 4) Calculer en fonction de n la somme : $S_n = U_1 + 2U_2 + 3U_3 + \cdots + nU_n$.

EXERCICE 13

On considère les suites (u_n) et (v_n) définies par $u_0 = 0$; $v_0 = 12$; $u_{n+1} = \frac{u_n + v_n}{2}$ et $v_{n+1} = \frac{u_n + 2v_n}{3}$.

- 1. Démontrer que la suite (w_n) définie par $w_n = v_n u_n$ est une suite géométrique convergente et que tous ses termes sont positifs.
- 2. Montre r que la suite (u_n) est croissante puis que la suite (v_n) est décroissante.
- 3. Déduire des deux questions précédentes que les suites (u_n) et (v_n) sont adjacentes.

- 4. On considère la suite (t_n) définie par $t_n = 2u_n + 3v_n$. Montrer qu'elle est constante.
- 5. En déduire les expressions de u_n et v_n en fonction de n.

On définit la suite numérique de terme général: $U_n = \frac{n}{e^{n-1}}$; pour tout entier naturel $n \ge 1$

- 1. Calculer U_1 et U_2 .
- 2. Démontrer que la suite (U_n) est décroissante et positive puis calculer $\lim_{n\to+\infty}U_n$.
- 3. Démontrer que: $\forall n \in \mathbb{N}^*$; $U_{n+1} = \frac{1}{e}U_n + \frac{1}{e^n}$ (*).
- 4. Pour tout entier naturel $n \ge 1$ on pose: $S_n = U_1 + U_2 + ... + U_n$.
- a) En utilisant l'égalité (*) démontrer que: $S_n = \frac{-1}{e-1}U_n + \frac{e^2}{(e-1)^2}(1 \frac{1}{e^n})$.
- b) Déduire de ce qui précède que: $\lim_{n\to +\infty} S_n = \frac{e^2}{(e-1)^2}$.

EXERCICE 15

- 1) On pose pour tout nombre complexe $z \neq -6$, $f(z) = \frac{8z+3}{z+6}$.
- a) Donner la forme algébrique des nombres : $z_1 = f(2i)$, $z_2 = f(3-2i)$, $z_3 = f(\frac{1}{2})$
- b) Résoudre l'équation f(z) = z
- 2) On donne la suite (u_n) définie par : $u_0 = \frac{1}{2}$ et $u_{n+1} = \frac{8u_n + 3}{u_n + 6}$.
- a) Calculer les valeurs exactes des termes u_1,u_2 et u_3 .
- b) Montrer par récurrence que pour tout entier n non nul , $1 < u_n < 3$.
- c) Montrer que (u_n) est croissante. En déduire qu'elle est convergente.
- 3) On définit pour tout $n \in \mathbb{N}$ la suite (v_n) par : $v_n = \frac{u_n 3}{u_n + 1}$.
- a) Montrer que $\left(v_{n}\right)$ est une suite géométrique dont précisera la raison et le premier terme v_{0} .
- b) Exprime r v_n en fonction de n .
- c) Exprimer \mathbf{u}_n en fonction de \mathbf{v}_n puis en fonction de \mathbf{n} .
- d) Déterminer la limite de la suite $\left(u_{n}\right)$.

EXERCICE 16

On considère la suite complexe $(z_n)_{n\in\mathbb{N}}$ définie par $z_0=i$ et, pour tout entier n, $z_{n+1}=\frac{1-i}{2}z_n$.

Pour *n* entier naturel, on appelle M_n le point d'affixe z_n .

- 1) Calculer z_1, z_2, z_3, z_4 .
- 2) Montrer que pour tout *n* entier naturel, $z_n = \frac{ie^{-i\frac{n\pi}{4}}}{(\sqrt{2})^n}$.
- 3) En déduire que la suite $V_n = \left|z_n\right|$ est une suite géométrique . Donner son terme général et sa limite.
- 4) Montrer que quel que soit n entier naturel, les triangles OM_nM_{n+1} sont rectangles.