OPTICAL WAVEGUIDE DEVICE

Patent Number:

JP2001051139

Publication date:

2001-02-23

Inventor(s):

HATAYAMA HITOSHI; SASAOKA HIDEYORI

Applicant(s):

SUMITOMO ELECTRIC IND LTD

Requested Patent:

☐ JP2001051139

Application Number: JP19990228641 19990812

Priority Number(s):

IPC Classification:

G02B6/12; G02B27/28

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide an optical waveguide device with reduced the polarization dependency of the optical characteristic by the stress added to the core part of the optical guide path, and simplified in its structure and manufacturing process.

SOLUTION: In an array waveguide diffraction grating type optical composer and divider 1 that is one example of the optical circuit by this waveguide device, an array waveguide part 14 is divided into a first array part 14a having each channel waveguide formed with a core width W and a second array pat 14b having each channel waveguide formed with a core width W2 different from W1. The respective core part shapes (core widths W1 and W2) of the two array parts 14a and 14b and the dividing area of each array part are properly set, whereby the polarization dependency by structure in the array waveguide part 14 can be set, particularly so as to compensate or reduce the polarization dependency by stress.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公別番号 特開2001-51139 (P2001-51139A)

(43)公開日 平成13年2月23日(2001.2.23)

(51) Int.Cl.⁷

識別記号

FΙ

テーマコード(参考)

G 0 2 B 6/12 27/28 G 0 2 B 6/12

F 2H047

27/28

Z 2H099

審査請求 未請求 請求項の数7 OL (全 8 頁)

(21)出願番号

特願平11-228641

(71)出願人 000002130

住友電気工業株式会社

(22)出願日

平成11年8月12日(1999.8.12)

大阪府大阪市中央区北浜四丁目5番33号

(72)発明者 畑山 均

神奈川県横浜市栄区田谷町1番地 住友電

気工業株式会社横浜製作所内

(72)発明者 笹岡 英資

神奈川県横浜市栄区田谷町1番地 住友電

気工業株式会社横浜製作所内

(74)代理人 100088155

弁理士 長谷川 芳樹 (外3名)

Fターム(参考) 2H047 KA02 KA04 KA12 KB04 LA18

LA19 TA00

2H099 BA17 CA00 CA17 DA00

(54) 【発明の名称】 光導波路装置

(57)【要約】

【課題】 光導波路のコア部にかかる応力による光学特性の偏波依存性を低減するとともに、その構造及び製造工程が簡単化された光導波路装置を提供する。

【解決手段】 光導波路装置による光回路の一例であるアレイ導波路回折格子型光合分波器1のアレイ導波路部14を、各チャネル導波路がコア幅W1で形成されている第1アレイ部14aと、各チャネル導波路がW1とは異なるコア幅W2で形成されている第2アレイ部14bとに区分する。これら2つのアレイ部14a及び14bでのそれぞれのコア部形状(コア幅W1及びW2)と、各アレイ部の区分領域との設定によって、このアレイ導波路部14での構造による偏波依存性を設定することができ、特に、応力による偏波依存性を補償または低減する設定とすることが可能である。

【特許請求の範囲】

【請求項1】 基板と、前記基板上に所定の導波路パターンで形成された光導波路と、を有する光導波路装置であって、

前記光導波路の一部または全部のコア部は、前記コア部の構造に起因した構造複屈折を生じさせる非対称形状で 形成されるとともに、

前記コア部の前記非対称形状は、前記コア部の応力に起因した応力複屈折によって生じる光学特性の偏波依存性を補償または低減する前記構造複屈折を生じさせる形状に形成されていることを特徴とする光導波路装置。

【請求項2】 前記コア部の前記非対称形状は、そのコア幅がコア厚より大きいかまたは小さい幅となる形状に形成されていることを特徴とする請求項1記載の光導波路装置。

【請求項3】 前記光導波路は、その光導波の方向について分けられた複数の導波路部分を有して構成され、前記複数の導波路部分の前記コア部は、それぞれ異なる形態を表するとした。

形状を有するとともに少なくとも1つは非対称形状に形成されていることを特徴とする請求項1または2記載の 光導波路装置。

【請求項4】 前記光導波路は、アレイ導波路回折格子型光合分波器を構成する前記導波路パターンによって前記基板上に形成され、

前記アレイ導波路回折格子型光合分波器のアレイ導波路 部において、

前記アレイ導波路部を構成する複数のチャネル導波路それぞれは、前記コア部がそれぞれ異なるコア幅で形成された複数の前記導波路部分を有して形成されていることを特徴とする請求項3記載の光導波路装置。

【請求項5】 前記複数のチャネル導波路それぞれは、前記コア部がそれぞれ異なるコア幅で形成された第1の 導波路部分及び第2の導波路部分を有して形成されると ともに、

前記アレイ導波路回折格子型光合分波器の中心波長を入 の、前記中心波長の前記偏波依存性による偏波依存波長 シフトをPD入の、回折次数をmとし、前記第1の導波 路部分及び前記第2の導波路部分について、実効屈折率 をn1及びn2、隣り合うチャネル導波路の光路長さの 差をΔL1及びΔL2、複屈折係数をB1及びB2とし て、次の2つの関係式

 $n \cdot 1 \cdot \Delta L \cdot 1 + n \cdot 2 \cdot \Delta L \cdot 2 = m \cdot \lambda \cdot 0$

 $B1 \cdot \Delta L1 + B2 \cdot \Delta L2 = m \cdot PD\lambda 0$

を連立させて前記偏波依存波長シフトPDAOが補償・低減されるように求められた条件によって、前記アレイ 導波路部が形成されていることを特徴とする請求項4記 載の光導波路装置。

【請求項6】 前記光導波路は、マッハ・ツェンダー干 渉計を構成する前記導波路パターンによって前記基板上 に形成され、 前記マッハ・ツェンダー干渉計の位相調整部において、 前記位相調整部を構成する2本の光導波路それぞれの互 いに対応する前記導波路部分は、前記コア部が互いに異 なるコア福で形成されていることを特徴とする請求項3 記載の光導波路装置。

【請求項7】 前記2本の光導波路は、前記コア部が互いに異なるコア幅で形成された、一方の前記光導波路に含まれる第1の導波路部分と、他方の前記光導波路に含まれ前記第1の導波路部分に対応する第2の導波路部分と、を有して形成されるとともに、

前記マッハ・ツェンダー干渉計のピーク波長を入り、前記ピーク波長の前記偏波依存性による偏波依存波長シフトをPD入り、次数をmとし、前記第1の導波路部分及び前記第2の導波路部分について、実効屈折率をn1及びn2、光路長さをし1及びL2、複屈折係数をB1及びB2として、次の2つの関係式

 $n1 \cdot L1 - n2 \cdot L2 = m \cdot \lambda p$

 $B1 \cdot L1 - B2 \cdot L2 = m \cdot PD\lambda p$

を連立させて前記偏波依存波長シフトPDApが補償・ 低減されるように求められた条件によって、前記位相調 整部が形成されていることを特徴とする請求項6記載の 光導波路装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光導波路が所定パターンに形成された光導波路装置に関するものである。 【0002】

【従来の技術】光通信技術等の進展と利用の拡大に伴い、従来の発光器、光ファイバ、受光器などに加えて、平面型光導波路を用いて光分岐器、光合分波器等の光回路を形成した光導波路装置の開発と利用が進められている。

【0003】このような光回路は、例えば、光ファイバ線路に多波長の信号光(波長の異なる複数の信号光)を伝送させることにより高速・大容量の光通信を行う波長分割多重方式(WDM: Wavelength Division Multiple xing)による波長多重通信システム等において用いられる。

[0004]

【発明が解決しようとする課題】光導波路装置は、コア 部を有する平面型の光導波路を基板上に所定の光回路形状などの導波路パターンで形成することによって作製されるが、このとき、基板に生じる反りなどの変形によって光導波路、特にそのコア部に応力(圧縮応力または引っ張り応力)がかかってしまう。また、台座やホルダー等に光導波路装置を固定・実装して光導波路モジュールを構成するときなどにも、光導波路に応力が発生する場合がある。これらの原因によって光導波路内に応力を生じた場合、応力に起因する光導波路装置の光学特性の変化が問題となる。

【0005】例えば、通常の状態では光学的に等方性を 有する材料で光導波路のコア部を形成した場合において も、基板の反り等の変形で光導波路に応力がかかること によってコア部内に複屈折性を生じ、それによってTE 偏波とTM偏波とに対する実効的な屈折率が異なるもの となって、光学特性の偏波依存性が発生・増大してしま うという問題を生じる。この場合、TE偏波とTM偏波 とでWDM回路の中心波長などの光回路の特性波長のず れである偏波依存波長シフトPDム(Polarization Dep endent 入)を生じてしまう。

【0006】このような問題に対して、特許第2614 365号公報において、光導波路の所定の位置に偏波回 転器を設置することによって光導波路の途中で偏波状態 を回転・変換して、どの偏波状態の入力光に対しても光 路長が等しくなるように構成する導波型光デバイスが開 示されている。しかしながら、上記のように偏波回転器 を新たに設置する構成とした場合には、光導波路装置が 複雑化し、製造コストも高くなってしまうなどの問題が ある。

【0007】本発明は、以上の問題点に鑑みてなされたものであり、光導波路のコア部にかかる応力に起因する光学特性の偏波依存性を低減するとともに、その構造及び製造工程が簡単化された光導波路装置を提供することを目的とする。

[0008]

【課題を解決するための手段】本願発明者は、上記した 目的を達成するために鋭意検討を重ねた結果、光学特性 の偏波依存性は、応力に起因した応力複屈折に加えて、 光導波路のコア部の非対称形状などの構造に起因した構 造複屈折によっても生じることを利用し、この構造複屈 折を好適に設定・制御することによって応力複屈折によ る偏波依存性を補償または低減させることが可能である ことを見出した。

【0009】すなわち、本発明による光導波路装置は、 基板と、基板上に所定の導波路パターンで形成された光 導波路と、を有する光導波路装置であって、光導波路の 一部または全部のコア部は、コア部の構造に起因した構 造複屈折を生じさせる非対称形状で形成されるととも に、コア部の非対称形状は、コア部の応力に起因した応 力複屈折によって生じる光学特性の偏波依存性を補償ま たは低減する構造複屈折を生じさせる形状に形成されて いることを特徴とする。

【0010】コア部における構造複屈折は、コア部の非対称形状、すなわちコア断面形状の非対称性(一般には正方形状からのずれ)や屈折率分布の非対称性、によって発生されるが、この構造複屈折は、コア部の非対称形状の設定等によって符号や値を制御することが可能である。したがって、例えばあらかじめ知られている応力複屈折による偏波依存性に対し、上記のように構造複屈折による偏波依存性が応力複屈折による偏波依存性の一部

または全部を補償して、特性波長の偏波依存波長シフト などの偏波依存性を低減させるようにコア部の非対称形 状を設定して光導波路を形成することが可能である。

【0011】この場合、光回路に偏波回転器などの新たな要素を設置・挿入等する必要がないので、装置構造の複雑化が回避されて、製造工程が簡単化されるとともに低コスト化が実現される。

【0012】上記したコア部形状の設定については、例えば、コア部の非対称形状は、そのコア幅がコア厚より大きいかまたは小さい幅となる形状に形成されていることを特徴とすることが好ましい。

【0013】コア幅とコア厚とを異なる値としてコア断面形状を正方形状からずれた形状とすることにより、例えば、縦長または横長の設定によって構造による偏波依存性の符号を、コア幅及びコア厚の差の大きさによって偏波依存性の大きさを設定することができる。

【0014】また、光導波路は、その光導波の方向について分けられた複数の導波路部分を有して構成され、複数の導波路部分のコア部は、それぞれ異なる形状を有するとともに少なくとも1つは非対称形状に形成されていることを特徴とすることが好ましい。

【0015】光導波路を複数の導波路部分に区分して、それぞれに対して異なる形状を設定する構成とすることによって、それぞれの部分におけるコア部形状の設定と、各部分の区分設定とによって構造による偏波依存性を設定・制御することが可能であり、設定の自由度等をより高くすることができる。

【0016】上記した光導波路装置の光回路への適用の一例としては、光導波路は、アレイ導波路回折格子型光合分波器を構成する導波路パターンによって基板上に形成され、アレイ導波路回折格子型光合分波器のアレイ導波路部において、アレイ導波路部を構成する複数のチャネル導波路それぞれは、コア部がそれぞれ異なるコア幅で形成された複数の導波路部分を有して形成されていることを特徴とするものがある。

【0017】このアレイ導波路回折格子型光合分波器での設定については、より具体的には、複数のチャネル導波路それぞれは、コア部がそれぞれ異なるコア幅で形成された第1の導波路部分及び第2の導波路部分を有して形成されるとともに、アレイ導波路回折格子型光合分波器の中心波長を入り、中心波長の偏波依存性による偏波依存波長シフトをPD入り、回折次数をmとし、第1の導波路部分及び第2の導波路部分について、実効屈折率を11及び12、隣り合うチャネル導波路の光路長さの差を入し1及び入し2、複屈折係数をB1及びB2として、次の2つの関係式

 $n1 \cdot \Delta L1 + n2 \cdot \Delta L2 = m \cdot \lambda 0$

 $B1 \cdot \Delta L1 + B2 \cdot \Delta L2 = m \cdot PD\lambda 0$

を連立させて偏波依存波長シフトPDAOが補償・低減 されるように求められた条件によって、アレイ導波路部 が形成されていることを特徴とすることが好ましい。 【0018】アレイ導波路部のチャネル導波路それぞれを、コア幅W1の導波路部分とコア幅W2(ただしW2 #W1、W1、W2の少なくとも一方はコア厚と異なる)の導波路部分とに区分して、その形状及び光路長さ等の条件を上記した2つの関係式によって求める方法などによって設定して、偏波依存性を低減するように構成することが可能である。ただし、アレイ導波路回折格子型光合分波器においても、上記以外の様々な光導波路構成及び条件設定方法が適用可能である。

【0019】また、光導波路装置の光回路への適用の他の例としては、光導波路は、マッハ・ツェンダー干渉計を構成する導波路パターンによって基板上に形成され、マッハ・ツェンダー干渉計の位相調整部において、位相調整部を構成する2本の光導波路それぞれの互いに対応する導波路部分は、コア部が互いに異なるコア幅で形成されていることを特徴とするものがある。

【0020】このマッハ・ツェンダー干渉計での設定については、より具体的には、2本の光導波路は、コア部が互いに異なるコア幅で形成された、一方の光導波路に含まれる第1の導波路部分と、他方の光導波路に含まれ第1の導波路部分に対応する第2の導波路部分と、を有して形成されるとともに、マッハ・ツェンダー干渉計のピーク波長を入p、ピーク波長の偏波依存性による偏波依存波長シフトをPD入p、次数をmとし、第1の導波路部分及び第2の導波路部分について、実効屈折率をn1及びn2、光路長さをL1及びL2、複屈折係数をB1及びB2として、次の2つの関係式

 $n1 \cdot L1 - n2 \cdot L2 = m \cdot \lambda p$

 $B1 \cdot L1 - B2 \cdot L2 = m \cdot PD\lambda p$

を連立させて偏波依存波長シフトPD入pが補償・低減 されるように求められた条件によって、位相調整部が形 成されていることを特徴とすることが好ましい。

【0021】位相調整部の2本の光導波路それぞれを、コア幅W1及びコア幅W2(ただしW2≠W1、W1、W2の少なくとも一方はコア厚と異なる)で形成して、その形状及び光路長さ等の条件を上記した2つの関係式によって求める方法などによって設定して、偏波依存性を低減するように構成することが可能である。ただし、マッハ・ツェンダー干渉計においても、上記以外の様々な光導波路構成及び条件設定方法が適用可能である。

【0022】さらに、上記したアレイ導波路回折格子型 光合分波器及びマッハ・ツェンダー干渉計以外の光回路 等の光導波路装置に対しても、それぞれの構成に対して 偏波依存性を低減させるコア部の非対称形状等の設定・ 構成が可能である。

[0023]

【発明の実施の形態】以下、図面と共に本発明による光 導波路装置の好適な実施形態について詳細に説明する。 なお、図面の説明においては同一要素には同一符号を付 し、重複する説明を省略する。また、図面の寸法比率 は、説明のものと必ずしも一致していない。

【0024】まず、平面型光導波路のコア部において生 じる複屈折、及びそれに起因する偏波依存性について説 明する。

【0025】平面型光導波路のコア部における複屈折性・光学的な異方性は、その光学特性の偏波依存性の原因となる。すなわち、コア部が複屈折性を持つことによって、TE偏波(水平偏波)及びTM偏波(垂直偏波)に対する実効的な屈折率が異なる状態となり、透過波長帯域の中心波長などの光学特性に偏波依存性を生じる。このとき、TE偏波及びTM偏波に対して、WDM回路の中心波長などの光導波路装置の特性波長入こがそれぞれ異なる値入こ(TE)及び入こ(TM)となって、その差による偏波依存波長シフトPD入=入こ(TE)ー入こ(TM)を生じてしまう。

【0026】光導波路のコア部における複屈折発生の原因としては、(1)コア部に加わる応力に起因する応力 複屈折、及び(2)コア断面形状や屈折率分布などの構造の非対称性に起因する構造複屈折がある。これらに起因するPD入成分をそれぞれ、応力複屈折による偏波依存波長シフトをPD λ_1 、構造複屈折による偏波依存波長シフトをPD λ_2 とすると、最終的に光導波路に生じるPD λ_1 +PD λ_2 となる。

【0027】従来、このような光導波路装置において、基板の変形・反り等によってコア部にかかる応力に起因して複屈折が発生し、中心波長等に偏波依存性を生じることが問題となっている。このような問題について、光導波路に偏波回転器を挿入・設置することが提案されている(特許第2614365号公報参照)。しかしながら、この場合には光回路中に溝を掘って波長板を挿入する必要があるなど、装置構造が複雑化するとともに、コスト高となってしまう。

【0028】これに対して本願発明者は、上記のように応力による $PD\lambda_1$ と構造による $PD\lambda_2$ とを加えたものが全体としての光導波路の $PD\lambda$ となることを利用し、応力による $PD\lambda_1$ に対して、好適な値の構造による $PD\lambda_2$ を付与するように光導波路のコア部を設計・形成することによって、最終的に得られる導波路の $PD\lambda$ を補償または低減させることが可能であることを見出したものである。

【0029】図1は、本発明による光導波路装置の一実施形態であるアレイ導波路回折格子型光合分波器1(以下、単に光合分波器ともいう)を示す構成図である。 【0030】光合分波器1は、その端部を入出力ポート11とする1本の入出力用チャネル導波路12と、この入出力用チャネル導波路12と、この入出力用チャネル導波路13に接続された第1スラブ導波路13と、この第1スラブ導波路13に接続され各々の光路長が互いに異なる複数のチャネル導波路141~ 14_{N} からなるアレイ導波路部14と、このアレイ導波路部14に接続された第2スラブ導波路15と、この第2スラブ導波路15に接続され、その端部をそれぞれ入出力ポート $17_{\text{I}} \sim 17_{\text{N}}$ とする複数の入出力用チャネル導波路 $16_{\text{I}} \sim 16_{\text{N}}$ とが、基板10上に形成されたものである。上記したそれぞれの光導波路は、いずれも光の伝送部となるコア部を有して形成されている。

【0032】また、このアレイ導波路回折格子型光合分波器1は、入出力ボート $17_1 \sim 17_N$ それぞれに各波長の光を入力すると、第2スラブ導波路15、アレイ導波路部14、第1スラブ導波路13を順次に経て導波される間に光が合波され、その合波された光が入出力用チャネル導波路12を介して入出力ボート11から出力される。すなわち、アレイ導波路回折格子型光合分波器1は、波長多重通信システムにおいて多波長の波長多重信号光を分波する光分波器または合波する光合波器として用いられる。

【0033】このようなアレイ導波路回折格子型光合分波器1の特性は、

 $\mathbf{n} \cdot \Delta \mathbf{L} = \mathbf{m} \cdot \lambda \mathbf{0} \qquad \cdots \mathbf{(1)}$

 $B \cdot \Delta L = m \cdot PD\lambda 0 \cdots (2)$

なる式で表される。ここで、nはアレイ導波路部14を構成するM本の各チャネル導波路 14_1 ~ 14_2 の実効屈折率、 Δ Lは各チャネル導波路 14_1 ~ 14_2 のうち隣り合う2本の光路長さの差、mは回折次数、BはTE偏波に対する実効屈折率n(TE)及びTM偏波に対する実効屈折率n(TM)の差である複屈折係数B=n(TE)-n(TM)である。

【0034】また、 $\lambda0$ 及び $PD\lambda0$ は、この光合分波器1で合放または分波される光の波長領域の中心波長、及び中心波長の偏波依存性を示す偏波依存波長シフト $PD\lambda0=\lambda0$ は上述したように、 $PD\lambda0$ (全体)= $PD\lambda0$ ((応力)+ $PD\lambda0$ 2(構造)の2成分の和によって与えられる。なお、以下においては、光合分波器1の各光導波路のうち、上記した式(1)、(2)に関係するアレイ導波路部14のチャネル導波路14 $_1$ ~14 $_1$ 0コア部での複屈折と $PD\lambda$ について述べる。

【0035】応力に起因した応力複屈折による $PD\lambda0$: を補償して、上記した光合分波器1における中心波長の全体としての偏波依存波長シフト $PD\lambda0$ を低減させるための、構造に起因した構造複屈折による $PD\lambda0_2$ の付与及びその設定等について説明する。構造複屈折は、チャネル導波路14:~14mのコア部を非対称形状に形成すること、すなわち、コア部の断面形状またはコア内部での屈折率分布に非対称性を持たせることによって与えられる。

【0036】図1に示した光合分波器1のアレイ導波路部14において構造複屈折によるPDλ0₂を付与するための一実施例として、導波路のコア断面形状を通常の正方形状(コア厚=コア幅)とするのではなく、コア厚とコア幅とが異なる(コア厚≠コア幅)ようにコア部を形成する構成がある。

【0037】図2は、コア幅を固定して、コア厚を変化させたときの構造複屈折による $PD\lambdaO_2$ の変化を示すグラフである。ここで、このコア部を有するチャネル導波路14などの各光導波路が形成されている基板10は SiO_2 基板であるとし、コア部のコア幅= 6μ mとして、上記の式(2)を用いて $PD\lambdaO_2$ の値を求めている。また、光路長さの差を $\Delta L=63\mu$ m、回折次数をm=59として設定している。

【0038】このグラフにおいて、コア厚が 6μ mであるときにはコア厚=コア幅であるので複屈折係数はB=0であり、したがってPD λ O $_2$ =0nmである。また、コア厚を 6μ mよりも小さくするとPD λ O $_2$ は正の値となり、一方、コア厚を大きくするとPD λ O $_2$ は負の値となっている。

【0039】例えば、コア幅=6 μ m、コア厚=10 μ mの非対称断面形状の場合、図2の例ではPD λ 0 $_2$ = -0.014nmの構造複屈折によるPD λ 0を生じている。このとき、応力複屈折によるPD λ 0 $_1$ が正の値であれば、この負の値のPD λ 0 $_2$ によってPD λ 0 $_1$ の一部または全部が補償されて、全体としてのPD λ 0 $_0$ の値が低減される。すなわち、コア部のコア幅及びコア厚を、応力複屈折によるPD λ 0 $_1$ を補償する符号または大きさのPD λ 0 $_2$ を生成するような非対称形状(上記の例ではコア厚 \neq コア幅)の構造に形成することによって、中心波長の偏波依存性によって生じるPD λ 0を補償・低減させることができる。

【0040】構造複屈折による $PD\lambda 0_2$ を付与するための他の実施例として、光合分波器1のアレイ導波路部14において、チャネル導波路 14_1 ~ 14_1 のそれぞれを、そのコア部がそれぞれ異なるコア幅で形成された複数の導波路部分に区分して形成する構成がある。

【0041】図1の光合分波器1において、アレイ導波路部14を破線で示した区分線Dによって内側の第1アレイ部14aと、外側の第2アレイ部14bとに区分する。ただし、第2アレイ部14bはスラブ導波路13側及びスラブ導波路15側の2つの部分に分割されて、第1アレイ部14aを挟むように形成されている。この第1アレイ部14aに含まれる各チャネル導波路141~

 $14_{\rm M}$ の導波路部分と、第2アレイ部14 bに含まれる各チャネル導波路 $14_{\rm L}\sim 14_{\rm M}$ の導波路部分とを、それぞれ異なるコア幅(ただし、コア厚は一定)のコア部によって形成する。ただし、それぞれのアレイ部14a、14 b内の各導波路については、コア幅は等しく形成する

【0042】図3は、図1に示した光合分波器1のアレイ導波路部14のうち、斜線を付した領域Rについて拡大して示す構成図である。この図3中に示されている第m番目のチャネル導波路14 $_{\rm m}$ を例にとると、区分線Dを境界として、第1アレイ部14 $_{\rm m}$ に含まれる部分をコア幅W1の導波路部分14 $_{\rm m}$ とし、第2アレイ部14 $_{\rm m}$ とに含まれる部分をコア幅W2の導波路部分14 $_{\rm m}$ として形成されている。他の各チャネル導波路14 $_{\rm m}$ についても、各アレイ部14 $_{\rm m}$ なび14 $_{\rm m}$ についても、各アレイ部14 $_{\rm m}$ なび14 $_{\rm m}$ についても、各アレイ部14 $_{\rm m}$ なび14 $_{\rm m}$ についても、各アレイ部16 $_{\rm m}$ についても、

【0043】これらのコア幅W1及びW2は異なる値に設定されており、この各コア幅の設定と、アレイ部14 a及び14 bの区分設定とによって、アレイ導波路部14 での構造複屈折及びそれによる $PD\lambda_2$ が設定・制御される。なお、区分線D上に位置する導波路部分14 a a及び導波路部分14 b aの接合箇所は、テーパ形状の接合部分14 c a として形成されている(他の導波路も同様)。

【0044】このとき、アレイ導波路回折格子型光合分波器1の特性についての式(1)、(2)は、以下の2つの関係式、

 $n1 \cdot \Delta L1 + n2 \cdot \Delta L2 = m \cdot \lambda 0$ … (3) $B1 \cdot \Delta L1 + B2 \cdot \Delta L2 = m \cdot PD\lambda 0$ … (4) となる。ここで、n1及びn2はアレイ部14a及び14bでの実効屈折率、 $\Delta L1$ 及び $\Delta L2$ はアレイ部14a及び14bでの隣り合うチャネル導波路の光路長さの差、B1及びB2はアレイ部14a及び14bでの複屈折係数である。すなわち、この式(3)及び(4)は、式(1)及び(2)の左辺をそれぞれ、コア幅W1のアレイ部14aとコア幅W2のアレイ部14bとの和としたものである。

【0045】上記した2つの関係式(3)、(4)を連立させることによって、中心波長などについての必要な諸条件を満たすとともに、 $PD\lambda$ 0が補償・低減されるコア幅または光路長さ等の条件が求められる。求められた条件によって各チャネル導波路 $14_1 \sim 14_M$ の構成を設定してアレイ導波路部14を形成することによって、中心波長 λ 0の偏波依存性による $PD\lambda$ 0が低減された光合分波器1が実現される。

【0046】具体的な設定の一例として、コア部の比屈 折率差を Δ n=0.75%に設定し、コア厚= 6μ m (一定)に対して第1アレイ部14aでのコア幅をW1= 4μ m、第2アレイ部14bでのコア幅をW2= 6μ mとした場合について説明する。このとき、各アレイ部

14a及び14bでの実効屈折率はそれぞれn1=1. 4483、n2=1.4500となる。また、TE偏波 及びTM偏波に対する実効屈折率の差である複屈折係数 は、アレイ部14aに対してはB1=-1.697×1 〇-5となり、一方、アレイ部14bに対してはコア厚= コア幅=6μmと対称形状であるのでB2=0である。 ただし、上記のB1、B2はいずれも構造複屈折のみに よる数値であって、応力複屈折の影響を含んでいない。 【0047】これらの数値を式(3)、(4)に代入し て、得られる構造複屈折によるPDA2の値が、応力複 屈折によるPDAO。を補償または低減する符号または 大きさとなる設定を求める。例えば、中心波長入0=1 550nm、回折次数m=59(回折次数の一例の数値 であり、特にこの次数には限定されない)とし、また、 応力複屈折による $PD\lambda O_1 = 0.1 nm$ であったとす る。このとき、構造複屈折によるPD λ O₂ = - O. 1 nmとなるようにアレイ導波路部14を構成することに よって、偏波依存性を補償して全体としてのPDAOを はぼ0とすることができる。

【0049】このとき、アレイ導波路部14のチャネル 導波路の本数M=100本とすると、アレイ導波路部1 4の全長はおよそ410、33μm×100=41mm となるので、回路サイズとしても例えば4インチ基板に 充分に収まる構造となる。このように、各チャネル導波 路14:~14mをそれぞれ2つの導波路部分に区分し、 それぞれについてコア部の非対称形状及び光路長さを関 係式(3)、(4)の連立に基づいて設定することによって、光学特性の偏波依存性が補償・低減されたアレイ 導波路回折格子型光合分波器1を得ることができる。

【0050】特に、このように2つの導波路部分に区分することによって、非対称形状の選択に加えて光路長さとの組み合わせによって条件を設定できるので、非対称形状のみによる場合に比べてさらに設計・設定の自由度が高くなり、光導波路の全体を同じ非対称形状とした場合に比べて補償可能な偏波依存性の範囲も広くなる。なお、式(3)、(4)の連立による条件設定については、上記した例ではW1、W2を与えてΔL1、ΔL2を求めたが、逆にΔL1、ΔL2を先に与えて好適なW1、W2を求めて設定するなど、他の条件設定方法を用いても良い。

【0051】図4は、本発明による光導波路装置の他の 実施形態であるマッハ・ツェンダー干渉計2(以下、単 に干渉計ともいう)を示す構成図である。

【0052】干渉計2は、第1入力導波路21及び第2 入力導波路22と、第1方向性結合器23と、それぞれ 異なる光路長さを有する第1光導波路25及び第2光導 波路26からなる位相調整部24と、第2方向性結合器 27と、第1出力導波路28及び第2出力導波路29と が、基板20上に形成されたものである。

【0053】図5は、図4に示した干渉計2の位相調整部24について拡大して示す構成図である。この干渉計2においては、位相調整部24の第1光導波路25及び第2光導波路26が互いに異なるコア幅W1及びW2によって形成されている。このとき、マッハ・ツェンダー干渉計2の周期状の透過スペクトルの透過率がピークとなるピーク波長入pと、TE 偏波に対するピーク波長入p(TE)及びTM偏波に対するピーク波長入p(TM)の差である偏波依存波長シフトPD入p=入p(TE)-入p(TM)とは、以下の2つの関係式、

 $n1 \cdot L1 - n2 \cdot L2 = m \cdot \lambda p$... (5)

 $B1 \cdot L1 - B2 \cdot L2 = m \cdot PD\lambda p \cdots (6)$

を満たす。ここで、n1及びn2は第1光導波路25及び第2光導波路26での実効屈折率、L1及びL2は第1光導波路25及び第2光導波路26の光路長さ、B1及びB2は第1光導波路25及び第2光導波路26での複屈折係数、mは次数(整数)である。

【0054】ピーク波長 λ pの偏波依存性によるPD λ pは、図1に示した光合分波器1での中心波長のPD λ 0と同様に、PD λ p(全体)=PD λ p₁(応力)+PD λ p₂(構造)の2成分からなる。したがって、第1光導波路25及び第2光導波路26のコア部を互いに異なる形状(少なくとも一方は非対称形状)で形成するとともに、それらの形状及び光路長さ等の条件を式

(5)、(6)を連立させて求めることによって、応力 複屈折による $PD\lambda p_1$ を構造複屈折による $PD\lambda p_2$ で 補償して、全体としての $PD\lambda p$ が低減されたマッタ・ ツェンダー干渉計2とすることが可能である。なお、こ のようにコア幅を異なる値に設定する部分については、 第1光導波路25及び第2光導波路26の全体ではな く、それぞれ対応する一部分としても良い。

【0055】本発明による光導波路装置は、上記したアレイ導波路回折格子型光合分波器及びマッハ・ツェンダー干渉計に限られるものではなく、様々な光回路形状等の導波路パターンに光導波路が形成された光導波路装置に対して適用することができる。

【0056】また、その光導波路のコア部に対して設定される非対称形状については、基板上に形成されたすべての光導波路に対して同様の非対称形状を用いても良いし、、上記した例のようにその一部を非対称形状としても良い。また、それぞれ異なる非対称形状を有する複数

の導波路部分を形成しても良い。

【0057】このような偏波依存性を補償・低減させるための非対称形状等の設定については、それらの非対称形状や、非対称形状とされた薄波路部分の光路長さ等の条件を、各光回路でのPD入を求める関係式を用いた算出方法やコンピュータ・シミュレーションなどの様々な決定方法によって、応力によるPD入」に対して好適な構造によるPD入2が得られるように設定することができる。

[0058]

【発明の効果】本発明による光導波路装置は、以上詳細に説明したように、次のような効果を得る。すなわち、アレイ導波路回折格子型光合分波器のアレイ導波路部を構成する各チャネル導波路の区分とそれぞれの部分でのコア部形状の設定や、マッハ・ツェンダー干渉計の位相調整部を構成する各光導波路のコア部形状の設定など、光導波路の所定の一部または全部を非対称形状に形成することによって、構造による構造複屈折・光学特性の偏波依存性が付与される。この構造による偏波依存性を、上記した非対称形状の形成条件などの設定によって、あらかじめ知られている(あるいはあらかじめ予測される)応力による偏波依存性に対応するように付与することによって、従来問題となっている光導波路装置での応力による偏波依存性を補償または低減する構成とすることができる。

【0059】この場合、光回路に偏波回転器などの新たな要素を設置・挿入等する必要がないので、装置構造の複雑化が回避されて、製造工程が簡単化されるとともに低コスト化が実現される。

【図面の簡単な説明】

【図1】光導波路装置の一例であるアレイ導波路回折格 子型光合分波器の一実施形態を示す構成図である。

【図2】コア幅を固定してコア厚を変化させたときの構造複屈折によるPD入02の変化を示すグラフである。

【図3】図1に示したアレイ導波路回折格子型光合分波器を一部拡大して示す構成図である。

【図4】光導波路装置の他の例であるマッハ・ツェンダ 一十渉計の一実施形態を示す構成図である。

【図う】図4に示したマッハ・ツェンダー干渉計を一部 拡大して示す構成図である。

【符号の説明】

1…アレイ導波路回折格子型光合分波器、10…基板、11…入出力ポート、12…入出力用チャネル導波路、13…第1スラブ導波路、14…アレイ導波路部、14 a…第1アレイ部、14b…第2アレイ部、14₁~14₈…チャネル導波路、15…第2スラブ導波路、16₁~16_N…入出力用チャネル導波路、17₁~17_N…入出力ポート、2…マッハ・ツェンダー干渉計、20…基板、21…第1入力導波路、22…第2入力導波路、23…第1方向性結合器、24…位相調整部、25…第1

光導波路、26…第2光導波路、27…第2方向性結合

器、28…第1出力導波路、29…第2出力導波路。

[図1]

【図2】

【図3】

【図4】

【図5】

