LINEAR FILTERS

· Definition of a linear filter

- A linear filter f is characterized by a sequence $(f_k)_k$ of real numbers
- the f_k 's are called the *filter* taps, or filter coefficients, and we write $f=(f_k)_k$
- Filtering an input signal $x=(x_n)_n$ through filter f gives an output signal $y=(y_n)_n$:

$$y_n = \sum_k f_k x_{n-k} = \sum_k f_{n-k} x_k$$
 for all n

Mathematical notation: $y = f \otimes x$

- That is called the $\operatorname{\operatorname{{\it convolution}}}$ of f and x

- Indices k can range from anywhere to anywhere · Notes about indexing notation:

If $x=[x_0,x_1,x_2,...,x_{100}]$. Any term where its index is "out of range" is by default = 0. Then $x_{101}=0,x_{-1}=0,...$

The range of k is important, and is sometimes left implicit

 $y = f \otimes x$

EXAMPLES OF FILTERS (1)

- Take filter $f = [f_0, f_1] = [1, -1]$
- This means that $f_k=0$ for any $k\neq 0,1$
- Take input signal $x = [x_0, x_1, x_2, ..., x_{100}]$
- $y_n = \sum_k f_k x_{n-k} = f_0 x_n + f_1 x_{n-1} = x_n x_{n-1}$ for all n• Then, the output y of the filtering is:
- Thus, $y_0 = x_0 x_{-1} = x_0$, $y_1 = x_1 x_0$, $y_2 = x_2 x_1$, $y_3 = x_3 x_2$,..., $y_{102}=0, y_{103}=0,$ $y_{100} = x_{100} - x_{99}, y_{101} = x_{101} - x_{100} = -x_{100},$
- Concretely, if $x = [x_0, x_1, x_2, ..., x_{100}] = [1, 2, 3, ..., 100]$
- Then $y = [y_0, y_1, y_2, ..., y_{100}, y_{101}] = [1,1,1,...,1,-100]$
- You could stipulate where the indexing of \boldsymbol{y} ends, like at 100.

EXAMPLES OF FILTERS (2)

- Take filter $f = [f_{-1}, f_0, f_1] = [-\frac{1}{2}, 1, -\frac{1}{2}]$
 - This means that $f_k=0$ for any $k\neq -1,0,1$
- Take input signal $x = [x_0, x_1, x_2, ..., x_{100}]$
- Then, the output \boldsymbol{y} of the filtering is:
- $\bullet \ y_n = \sum_k f_k x_{n-k} = f_{-1} x_{n+1} + f_0 x_n + f_1 x_{n-1} = -\frac{1}{2} x_{n+1} + x_n \frac{1}{2} x_{n-1} = x_n \frac{x_{n-1} + x_{n+1}}{2}$ Thus, $y_{-1} = -\frac{1}{2}x_0$, $y_0 = x_0 - \frac{1}{2}x_1$, $y_1 = x_1 - \frac{x_0 + x_2}{2}$, $y_2 = x_2 - \frac{x_1 + x_3}{2}$,...
- Concretely, if $x = [x_0, x_1, x_2, ..., x_{100}] = [1, 2, 3, ..., 100]$
- Then $y = [y_{-1}, y_0, y_1, y_2, ..., y_{100}, y_{101}] = [-\frac{1}{2}, 0, 0, 0, ..., 0, 50.5, -50]$

EXAMPLES OF FILTERS (3)

- Take filter $f = [f_0, f_1, f_2] = [-\frac{1}{2}, 1, -\frac{1}{2}]$
 - This means that $f_k=0$ for any $k\neq 0,1,2$

But different in inde

- Take input signal $x = [x_0, x_1, x_2, ..., x_{100}]$
- Then, the output \boldsymbol{y} of the filtering is:
- $y_n = \sum_k f_k x_{n-k} = f_0 x_n + f_1 x_{n-1} + f_2 x_{n-2} = -\frac{1}{2} x_n + x_{n-1} \frac{1}{2} x_{n-2}$
- Then $y = [y_0, y_1, y_2, ..., y_{100}, y_{101}, y_{102}] = [-\frac{1}{2}, 0, 0, 0, ..., 0, 50.5, -50]$ • Concretely, if $x = [x_0, x_1, x_2, ..., x_{100}] = [1, 2, 3, ..., 100]$
 - Compare that with the output of the previous filter:
- $\mathcal{Y} = \left[\mathcal{Y}_{-1}, \mathcal{Y}_{0}, \mathcal{Y}_{1}, \mathcal{Y}_{2}, \ldots, \mathcal{Y}_{100}, \mathcal{Y}_{101} \right] = \left[-\frac{1}{2}, 0, 0, 0, \ldots, 0, 50.5, -50 \right]$

EXAMPLES OF FILTERS (4)

- What should the filter f be so that $y_n = x_n$
- Answer:
- $y_n = x_n \frac{x_{n-1} + x_{n-2}}{2} = 1$. $x_n + \left(-\frac{1}{2}\right) x_{n-1} + \left(-\frac{1}{2}\right) x_{n-2}$
 - $f_2 x_{n-2}$ $= f_0 x_{n-0} + f_1 x_{n-1} +$
- Therefore, the filter $f=[f_0,f_1,f_2]=[1,-\frac{1}{2},-\frac{1}{2}]$

FILTERING AS A WEIGHTED "AVERAGE" -- THE FILTER TAPS ARE THE WEIGHTS (1) --

• Take filter $f = [f_{-2} \, f_{-1} \, f_0 \, f_1 \, f_2 \,]$, and a signal x

• $y_n = \sum_k f_k x_{n-k} = f_{-2} x_{n+2} + f_{-1} x_{n+1} + f_0 x_n + f_1 x_{n-1} + f_2 x_{n-2}$

Reverse f and place it as a window above x_n

Filter $f = [f_{-2} f_{-1} f_0 f_1 f_2]$ Input signal xMultiply the filter taps by the parallel window in x pointwise

Filtered signal yAdd the products y_0 y_1 y_2 ... y_{n-2} y_{n-1} (y_n) (y_{n+1}) (y_{n+2})

FILTERING AS A WEIGHTED "AVERAGE" -- THE FILTER TAPS ARE THE WEIGHTS (2) --

APPLICATIONS OF FILTERING NOISE REDUCTION (1/3)

- Consider an original signal S, which got corrupted with noise r into NS
 - t=0:.03:2*pi; S=sin(t)+0.5*sin(2*t);
- % random noise r=rand(1,length(S))/5;
- % signal plus noise
- Consider two filters f and g which will be used to reduce the noise
- f=[0.0267 -0.0169 -0.0782 0.2669 0.6029 0.2669 -0.0782 -0.0169 0.0267];
- g=[11111]/5;
- FNSf be the signal NS after denoising with filter \boldsymbol{f}
- · FNSg be the signal NS after denoising with filter g

APPLICATIONS OF FILTERING NOISE REDUCTION

This is the code that was used for the previous slide

=0:.03:2*pi; =sin(t)+0.5*sin(2*t); =rand(1,length(5))/5;

length(S))/5; % random noise % signal plus noise -0.0169 -0.0782 0.2669 0.6029 0.2669 -0.0782 -0.0169 0.0267]; 11/5; % another filter

iler(cf. f., f.).

(2,2,1); plot(S); title(original signal)
(2,2,2); plot(NS); title(noisy signal)
(2,2,3); plot(FNS); title(filtered noisy signal with f)
(2,2,3); plot(FNS); title(filtered noisy signal with f)
(2,2,4); plot(FNSg); title(filtered noisy signal with g)

EFFECT OF FILTERS ON SIGNALS

APPLICATIONS OF FILTERING -- NOISE REDUCTION 2/3 --

THE CONVOLUTION THEOREM

· The convolution theorem:

- Let $x=(x_n)_n$ be a digital signal and $f=(f_k)_k$ be a filter, and let $y = (y_n)_n \stackrel{\text{\tiny def}}{=} f \otimes x$ be the output of filtering x with f.
- Let X,Y and F denote the Fourier Transforms of x,y and f , respectively.
 - Then, Y = F.X (pointwise multiplication).

THE CONVOLUTION THEOREM

The convolution theorem:

THE Z-TRANSFORM

- Let $a=(a_k)_k$ be a sequence (like a discrete signal or a filter)
- The z-transform transforms a sequence $a=(a_k)_k$ into a complex function A(z):

$$A(z) = \sum_k a_k z^k$$
 // a polynomial :

- We use the notation that the input sequence is denoted with a lower case letter, and its z-transform is denoted by the upper-case of the same letter:
- $a = (a_k)_k \rightarrow A(z) = \sum_k a_k z^k$
- $x = (x_k)_k \rightarrow X(z) = \sum_k x_k z^k$
- $y = (y_k)_k \rightarrow Y(z) = \sum_k y_k z^k$
 - $f = (f_k)_k \rightarrow F(z) = \sum_k f_k z^k$

MULTIPLICATION OF POLYNOMIALS

- Take $X(z) = \sum_k x_k z^k$ and $F(z) = \sum_k f_k z^k$
- Multiply $F(z).X(z) = \left(\sum_k f_k z^k\right) \left(\sum_k x_k z^k\right) = \sum_n a_n z^n$
- Let's do an example first:
- $(f_0z^0 + f_1z^1 + f_2z^2 + f_3z^3 + f_4z^4)$, $(x_0z^0 + x_1z^1 + x_2z^2 + x_3z^3 + x_4z^4) =$
- $\cdot \ f_0x_0z^0 + (f_0x_1 + f_1x_0)z^1 + (f_0x_2 + f_1x_1 + f_2x_0)z^2 + (f_0x_3 + f_1x_2 + f_2x_1 + f_3x_0)z^3 + \\$
- How did we get each coefficient of z^n ? For example, the coefficient of z^3 ?
 - Multiply $f_k z^k$ by $x_j z^j$ for all k and j where k+j=3, and adding those products
 - Each product is $f_k x_j z^{k+j} = f_k x_{3-k} z^3$,
- Their sum is $(\sum_k f_k x_{3-k})z^3 = (f_0 x_3 + f_1 x_2 + f_2 x_1 + f_3 x_0)z^3$
 - In general for z^n , it is $(\sum_k f_k x_{n-k}) z^n$
- Thus, $a_n = \sum_k f_k x_{n-k}$, and so $y_n = a_n$, where $y = f \otimes$

Z-TRANSFORM AND FILTERING

- Convolution Theorem in terms of the z-transform:
- Let $x=(x_n)_n$ be a digital signal and $\ f=(f_k)_k$ be a filter, and let $y = (y_n)_n \stackrel{\text{\tiny def}}{=} f \otimes x$ be the output of filtering x with f.
 - Let X(z),Y(z) and F(z) denote the z-transforms of x,y and f,respectively.
- Then, Y(z) = F(z). X(z) (polynomial multiplication)
- · Proof: the derivation we did in the previous slide.
- Exercise: find a connection between DFT and z-transform

THE CONVOLUTION THEOREM

-- IMPLICATIONS (1,

- $Y_0 = F_1$ $Y_1 = F_1$ $Y_n = F_n$
- That means if you want to keep certain frequencies of input x, and throw out certain other frequencies, do:
- Create a filter f whose DFT F
- has $F_k = 1$ for the frequencies to be kept
- has ${\cal F}_k=0$ for the frequencies to be thrown away

THE CONVOLUTION THEOREM -- IMPLICATIONS

PFT · Recall:

- ullet Also, if you want to enhance certain frequencies of input x, and $\begin{array}{c} Y_0 \\ Y_1 \\ \vdots \\ Y_n \end{array} = \begin{array}{c} F_0 \\ \vdots \\ F_n \end{array}$ reduce certain other frequencies, do:
- Create a filter f whose DFT F
- has $|F_k| > 1$ for the frequencies to be enhanced
 - has $|{\cal F}_k|<1$ for the frequencies to be reduced

THE CONVOLUTION THEOREM IMPLICATIONS (3/3)-

- Therefore, a filter is a spectrum-shaping device
- That is, to change the frequencies of an input signal x, simply design the right filter, and filter x with it
- The design of filters that meet certain spectrum-shaping requirements is a wellestablished field
- In the case of subband coding, we will be designing quartets of filters (filter banks) that must meet certain conditions in a coordinated way

SPECIAL KINDS OF FILTERS

- · We just saw that filters are spectrum-shaping devices
- We will define next two broad kinds of filters:
- Low-pass filters
- High-pass filters
- More generally, one can define what is called band-pass
- But for our compression purposes, we only need low-pass and highpass filters
- But to understand such filters, we need the notion of frequency

FREQUENCY RESPONSE OF A FILTER (1)

- To understand the behavior/effect of a filter, better look at the filter in the
- That is, look at filter f by looking at its Fourier transform
- Or, equivalently, look at its z-transform F(z) for $z = e^{-i\omega}$, where
- $F(z) = \sum_{k} f_k z^k$
- That is, $F\left(e^{-i\omega}\right)=\sum_{k}f_{k}.\left(e^{-i\omega}\right)^{k}=\sum_{k}f_{k}e^{-ik\omega}$
- **Definition**: the function $F(\omega) = \sum_k f_k e^{-ik\omega}$ is called the *frequency*
- It is a complex function, periodic of period 2π

response of the filter f

FREQUENCY RESPONSE OF A FILTER (2)

- The frequency response function $F(\omega) = \sum_k f_k e^{-ik\omega}$ is a complex function, periodic of period 2π
- ω is called the *frequency*, and in the form $F(\omega) = \sum_k f_k e^{-ik\omega}$ above, ω is a continuous frequency

To do discrete frequencies, take $\omega = \frac{2\pi}{N}$ for $l=0,1,\dots,N-1$ if the filter f

- If $f = [f_0, f_1, ..., f_{N-1}]$, and its DFT is $[F_0, F_1, ..., F_{N-1}]$, then: has N taps, that is
- (Exercise: prove it) • $F_l = F\left(\frac{2\pi}{N}l\right) = \sum_k f_k e^{-l\frac{2\pi}{N}kl}$
- Graphing $F(\omega)$ is not possible because it is a complex function
- Instead, we plot its magnitude $|F(\omega)|$

FREQUENCY RESPONSE OF A FILTER (3)

- Instead, we plot its magnitude $|F(\omega)| = |\sum_k f_k e^{-ik\omega}\,|$
- Ex: f=[0.0267, -0.0169, -0.0782, 0.2669, 0.6029, 0.2669, -0.0782, -0.0169, 0.0267]

FREQUENCY RESPONSE OF A FILTER (4)

- Because it is periodic, plot $|F(\omega)| = |\sum_k f_k e^{-ik\omega}|$ in only one period $[-\pi \ \pi]$
- Ex: f=[0.0267, -0.0169, -0.0782, 0.2669, 0.6029, 0.2669, -0.0782, -0.0169, 0.0267]

