CHAPTER TWELVE

GRAPHS:

Some basic graphs:

Before a graph can be plotted, we must first construct a table with reference to the equation of the given graph.

- A few values of x are selected and for each, the corresponding y value is computed.
- These two corresponding values i.e. the x and the y values are then plotted on a graph paper.
- There are certain basic graphs which students must be familiar with and be capable of plotting.
- The way or manner of plotting some of these graphs will be illustrated in the following questions:
- Q1). Using values of x from -2 to 2, plot the following graphs:

1)
$$y = 2x$$
.

2).
$$y + 4x = 0$$
.

3).
$$y = \frac{1x}{2}$$
.

4)
$$y = -x/2$$
.

5)
$$y = 2x + 1$$
.

6)
$$y + 4x + 2 = 0$$
.

Soln.

(1)

$$y = 2x$$

X	- 2	- 1	0	1	2
Y	- 4	- 2	0	2	4

(a) If
$$x = -2$$

 $y = 2x$
 $= > y = 2(-2) = -4$
 $= > y = -4$

(b) If
$$x = -1$$

 $y = 2x$
 $\Rightarrow y = 2 (-1)$
 $\Rightarrow y = -2$

© If
$$x = 0$$

 $y = 2x$
=> $y = 2(0) = 0$
=> $y = 0$

(d) If
$$x = 1$$

 $y = 2x$
 $\Rightarrow y = 2(1) = 2$
 $\Rightarrow y = 2$

(e) If
$$x = 2$$

 $y = 2x$
=> $y = 2(2)$
=> $y = 4$

N/B: Before plotting any graph you, must first make sure y is the subject of the given equation. If not, then make y the subject.

(2) From
$$y + 4x = 0$$
, $\Rightarrow y = 0.4x \Rightarrow y = -4x$

$$y = -4x$$

X	-2	-1	0	1	2
Y	8	4	0	s- 4	-8

(a) If
$$x = -2$$

 $y = -4x$
 $\Rightarrow y = -4 (-2)$
 $\Rightarrow y = 8$

(b) If
$$x = -1$$

=> $y = -4(-1)$
=> $y = 4$

(c) If
$$x = 0$$

 $y = -4x$
 $\Rightarrow y = -4(0)$
 $\Rightarrow y = 0$

(d) If
$$x = 1$$

 $y = -4x$
 $\Rightarrow y = -4(1) = -4$
 $\Rightarrow y = -4$

(e) If
$$x = 2$$

 $y = -4x$
 $\Rightarrow y = -4(2) = -8$
 $\Rightarrow y = -8$

1.
$$y = \frac{1x}{2} \{ \text{ or } y = x/2 \}$$

3)	,y =	$=\frac{x}{2}$ or $y=\frac{1x}{2}$			
X	-2	-1	0	1	2
Y	-1	-0.5	0	0.5	1

(a) If
$$x = -2$$

 $y = \frac{1x}{2} = \frac{1}{2}(-2)$
(b) If $x = -1$
 $y = \frac{1x}{2} = \frac{1}{2}(-1)$
 $\Rightarrow y = -2/2$
 $\Rightarrow y = -1/2 = -0.5$
 $\Rightarrow y = -0.5$

(c) If
$$x = 0$$

 $y = \frac{1x}{2} = \frac{1}{2}(0)$
 $y = \frac{1x}{2} = \frac{1}{2}(1)$
 $y = \frac{1}{2} = \frac{1}{2}(1)$

X	-2	-1	0	1	2
Y	1	0.5	0	- 0.5	-1

N/B: In the plotting of a graph, the interval used on one particular axis (i.e. the difference between one number and the next) must be the same.

- For a particular graph, the interval used on the x-axis must be the same.
- But the scale used on the x-axis can be different from that used on the y-axis.

4)
$$y = -x/2$$
. or $y = \frac{-x}{2}$

1) If
$$x = -2$$

$$y = -x/2 = -(-2)/2$$

→
$$y = 2/2 = 1$$

2) If
$$x = -1$$

$$y = -x/2 = -(-1)/2$$

$$=> y = \frac{1}{2} = 0.5$$

3) If
$$x = 0$$

4) If
$$x = 1$$

$$y = -x/2 = -(0)/2 = 0$$

$$y = -x/2 = -(1)/2$$

$$=> y = 0.$$

$$=> y = -1/2 = -0.5$$

5) If
$$x = 2$$

$$y = -x/2 = -(2)/2$$

$$=> y = -1$$

5)

$$y = 2x + 1$$

X	-2	-1	0	1	2
Y	-3	-1	1	3	5

1) If
$$x = -2$$

2) If
$$x = -1$$

$$y = 2x + 1$$

$$y = 2x + 1$$

$$=> y = 2(-2) + 1$$

$$=> y = 2(-1) + 1 = -2 + 1$$

$$\Rightarrow$$
 y = -4 + 1 = -3.

$$=> y = -1.$$

3) If
$$x = 0$$

$$y = 2x + 1$$

$$=> y = 2(0) + 1$$

$$=> y = 0+1=1.$$

4) If
$$x = 1$$

$$y = 2x + 1$$

$$\Rightarrow$$
 y = 2(1) + 1 = 2 + 1 = 3

$$=> y = 3.$$

5) If
$$x = 2$$

$$y = 2x + 1$$

$$=> y = 2(2) + 1$$

$$=> y = 5.$$

6) From
$$y + 4x + 2 = 0$$

$$=> y + 2 = 0 - 4x$$

$$=> y + 2 = -4x$$

$$=> y = -4x - 2$$

$$y = -4x - 2$$

X	-2	-1	0	1	2
Y	6	2	-2	- 6	-10

a) If
$$x = -2$$

b) If
$$x = -1$$

$$y = -4x-2$$

$$y = -4x - 2$$

$$=> y = -4(-2)-2$$

$$=> y = -4(-1) -2$$

$$=> y = 8 - 2$$

$$=> y = 4 - 2$$

$$=> y = 6$$

$$=> y = 2$$

c) If
$$x = 0$$

d) If
$$x = 1$$

If
$$x = 2$$

$$y = -4x - 2$$

$$y = -4x - 2$$

$$y = -4x - 2$$

$$=> v = -4(0) -2$$

$$=> y = -4(1) - 2$$

$$=> y = -4(0) -2$$
 $=> y = -4(1) -2$ $=> y = -4(2) -2 = .$

$$==> y = 0 - 2 = -2.$$
 $=> y = -4 - 2 = -6.$ $-8 - 2 = -10.$

$$=> y = -4 - 2 = -6$$

$$-8-2=-10.$$

Q2) Using values of x from -3 to 3, plot the graphs of the relations: a) $y = x^2$.

b)
$$y = -x^2$$

c)
$$y = 2x^2$$

$$d) y + 2x^2 = 0$$

e)
$$y = \frac{1}{2}x^2$$

Soln

a)
$$y = x^2$$

$$y = x^2$$

X	-3	-2	-1	0	1	2	3
Y	9	4	1	0	1	4	9

(1) If
$$x = -3$$

2) If
$$x = -2$$

$$y = x^2$$

$$y = x^2$$

$$=> y = (-3)^2 = 9.$$

$$=> y = (-2)^2 = 4.$$

$$=> y = 9.$$

$$=>y=4.$$