CrowDPLoS

Prénom	Nom	Abrév.	Institution	Responsable WP	
Alexandre	Cotting	ACG	HEVs	WP1 WP6	
Jean-Christophe	Loubier	JCL	HEVs	WP2 WP5	
Maria	Sokhn	MSN	HEVs		
Olivier	Ertz	OEZ	HEIG-VD	WP3	
Jens	Ingensand	JID	HEIG-VD	WP4	

Prénom	Nom	Abrév.	Institution	Team
Diego	Rojas	DRS	HEVs	WP2 (JCL)
Romain	Sandoz	RSZ	HEIG-VD	WP3 (OEZ)
Nicolas	Blanc	NBC	HEIG-VD	WP4 (JID)

Legal issues (privacy)

Judgment of the Federal Supreme Court on Google Street View: Decisions on the processing of personal data

- Right to one's own image (BGE 138 II 346 E. 8)
- Data processing subject to the Federal Act on Data Protection (BGE 138 II 346 E. 3)
- Personal connection for photographs (BGE 138 II 346 E. 6)
- Use of information in the public domain (BGE 138 II 346 E. 8.2)
- Transparency in data processing and making the purpose known
- (BGE 138 II 346 E. 9.1 and E. 11)
- Overriding interests only reluctantly upheld (BGE 138 II 346 E. 10)
- Enclosed spaces, gardens and balconies as private areas (BGE 138 II 346 E. 10.7)
- Complete anonymisation where there is an increased interest in the

total protection of privacy (BGE 138 II 346 E. 10.6.4)

Associations of disabled people Local government

Urban planners

→ could create valuable (g.t.) inputs ! <

Potential partnerships

vector paths →features (re)def

eval

crowds.

Key words:

image segmentation

semantic recognition

object segmentation

instance segmentation

scene recognition scence labelling

object recognition

object detection

DPLoS

Vector data

analyse workers perf Assign difficult tasks to the best workers

Georef

WP2: DPLoS model

(D)PLoS

indicator

5 features:

- curb ramps - slope
- width
- coating
- crosswalks
- attractivity

WP5: Routing

Pedestrian network graph

- determine vertices and edges
- should be undirected

■ WP4: Computer vision CV abilities 📜

DPLoS model

DPLoS features def.

Route /w DPLoS

ground truth

Format should

be comparable

to output of CV

Literature review:

job done in the field? which algos?

Proposal of a methodology Evaluate algos:

which benchmarks?

Other sensing tech'?

- lidar
- radar
- sonar

Video based tech?

Image orientation?

- terrestrial / vehicle:
- from sidewalks? from middle street?
- aerial (UAV): nadir / oblique
- coupled

Raster data sources:

- aerial (SI) -> \$
- satellite (30cm!) -> \$
- GSV -> permissions?

- Crowdsourced -> :)

Vector data sources:

- TLM -> \$

test + crowd

Îmages

- Cadastral -> \$
- OSM

WP3: Crowdsourcing

3 research axis:

crowdsourcing, social sciences and user experience declined in:

- → SotA regarding crowdsourcing tools and plateforms
- → Which are the data to collect and how to simplify their gathering for the workers?
- → What is the level of acceptance for data acquisition: annotation quality, image quality, ...
- → How to reach this level?

from DPLoS def

- 1. Capture & upload positive images "train" (g.t.) → may be georef (GPS chip)
- 2. Acquisition on images < binary \otimes img digitize features
- 3. Evaluation of CV results