DEVOIR À LA MAISON N°10

- ▶ Le devoir devra être rédigé sur des copies *doubles*.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ▶ Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 –

On note classiquement $\mathbb U$ l'ensemble des nombres complexes de module 1 et $\mathcal U$ l'ensemble des nombres complexes de module *inférieur ou égal à* 1.

On dit qu'une partie *non vide* \mathcal{A} de \mathbb{C} est *de type* S si pour tout couple $(z_1, z_2) \in \mathcal{A}^2$, le produit $z_1 z_2$ et la somme $z_1^2 + z_2^2$ sont encore dans \mathcal{A} .

Par ailleurs, on note b(A) le nombre d'éléments de A dont le module est *inférieur ou égal à 1*, c'est-à-dire le cardinal de $A \cap \mathcal{U}$. On note $b(A) = \infty$ si ce nombre est infini.

Enfin, si \mathcal{A} est une partie de \mathbb{C} , on posera $\mathcal{A}^*=\mathcal{A}\setminus\{0\}$ et $\mathsf{R}(\mathcal{A})=\Big\{z\in\mathbb{C},\;z^2\in\mathcal{A}\Big\}.$

Partie I - Quelques exemples simples

- 1. Chacun des ensembles suivants est une partie de $\mathbb C$ de type S, ce que l'on ne demande pas de montrer. Préciser dans chacun des cas la valeur de $\mathfrak b(\mathcal A)$.
 - **a.** $A = \{0\}$;
 - **b.** $\mathcal{A} = \mathbb{C}$;
 - c. $A = \mathbb{N}$;
 - **d.** $A = \mathbb{N}^*$;
- **2. a.** Donner une partie de type \mathcal{A} de \mathbb{C} de type S telle que $b(\mathcal{A}) = 0$.
 - **b.** Donner une partie de type \mathcal{A} de \mathbb{C} de type S telle que $b(\mathcal{A})=3$.
- **3.** Montrer que si \mathcal{A} est un sous-anneau de \mathbb{C} , alors \mathcal{A} est de type S.

Partie II - Des exemples plus sophistiqués

On pose classiquement $j = e^{\frac{2i\pi}{3}}$ et on note

$$\mathbb{Z}[j] = \left\{ a + bj, \; (a,b) \in \mathbb{Z}^2 \right\}$$

- **1.** Montrer que pour tout $z \in \mathbb{Z}[j]$, il existe un unique couple $(a,b) \in \mathbb{Z}^2$ tel que z = a + bj.
- 2. a. Montrer que $\mathbb{Z}[j]$ est un sous-anneau de \mathbb{C} . $\mathbb{Z}[j]$ est donc bien une partie de type S.
 - **b.** Donner la valeur de $b(\mathbb{Z}[j])$.

- 3. a. Soit $(z_1, z_2) \in \mathbb{Z}[j]^2$. Montrer que $z_1^2 + z_2^2 = 0$ si et seulement si $z_1 + iz_2 = 0$ ou $z_1 iz_2 = 0$.
 - **b.** Soit $(x,y) \in \mathbb{Z}^2$ tel que $x + y\sqrt{3} = 0$. Montrer que x = y = 0. On pourra admettre que $\sqrt{3}$ est irrationnel.
 - **c.** En déduire que si $z_1^2 + z_2^2 = 0$, alors $z_1 = z_2 = 0$.
- **4. a.** Montrer que $\mathbb{Z}[j]^*$ est encore de type S.
 - **b.** Déterminer $b(\mathbb{Z}[j]^*)$.
- **5. a.** Montrer que $R(\mathbb{Z}[j])$ est encore de type S.
 - **b.** Déterminer $b(R(\mathbb{Z}[j]))$.
- **6.** Donner une partie A de type S telle que b(A) = 5.
- 7. Donner une partie A de type S telle que b(A) = 9.

Partie III – Sous-groupes de \mathbb{U}_n

On considère dans cette partie une partie H de $\mathbb C$ et un entier naturel non nul n. On souhaite montrer que H est un sous-groupe de $\mathbb U_n$ si et seulement si il existe un diviseur d de n tel que $H = \mathbb U_d$.

- 1. On suppose qu'il existe un diviseur d de n tel que $H = \mathbb{U}_d$. Montrer que H est un sous-groupe de \mathbb{U}_n .
- 2. Réciproquement, on suppose que H est un sous-groupe de \mathbb{U}_n et on pose $\omega=e^{\frac{2i\pi}{n}}.$
 - **a.** Justifier l'existence du plus petit entier naturel \mathfrak{m} non nul tel que $\omega^{\mathfrak{m}} \in H$. Justifier également que $\mathfrak{m} \leqslant n$.
 - $\textbf{b.} \ \, \text{Montrer que } H = \Big\{\omega^{\mathfrak{m}k}, \, \, k \in \mathbb{Z}\Big\}.$
 - **c.** Montrer qu'il existe $d \in \mathbb{N}^*$ tel que n = md.
 - **d.** Montrer que $H = \mathbb{U}_d$.

Partie IV – Valeurs possibles de b(A)

Dans cette partie, \mathcal{A} désigne une partie de \mathbb{C} de type S a priori quelconque.

- **1.** On se donne un élément a de A.
 - **a.** Montrer que $a^n \in A$ pour tout $n \in \mathbb{N}^*$.
 - **b.** On suppose que $0 < |\alpha| < 1$. Montrer que $b(A) = \infty$.
 - **c.** Montrer que $a^{2n} + a^{4n} \in A$ pour tout $n \in \mathbb{N}^*$.
- 2. On suppose que \mathcal{A} possède un élément \mathfrak{a} de module 1. On note θ son argument principal, c'est-à-dire son unique argument appartenant à l'intervalle $]-\pi,\pi]$. On suppose que θ n'est ni un multiple de $\frac{\pi}{4}$ ni un multiple de $\frac{\pi}{6}$ et on souhaite montrer qu'il existe $\mathfrak{n}\in\mathbb{N}^*$ tel que $0<\left|\mathfrak{a}^{2\mathfrak{n}}+\mathfrak{a}^{4\mathfrak{n}}\right|<1$.
 - a. Montrer que pour tout $n\in\mathbb{N}, \, \left|\alpha^{2n}+\alpha^{4n}\right|=2|\cos(n\theta)|.$
 - **b.** Justifier le fait que l'on peut supposer que $0 \le \theta \le \frac{\pi}{2}$.
 - **c.** Quel n convient lorsque $\theta \in \left] \frac{\pi}{3}, \frac{\pi}{2} \right[$?
 - **d.** Quel n convient lorsque $\theta \in \left] \frac{\pi}{6}, \frac{\pi}{3} \right[\setminus \left\{ \frac{\pi}{4} \right\} ?$

- $\textbf{e.} \ \ \text{On suppose enfin} \ \theta \in \left]0, \frac{\pi}{6}\right[\text{. Montrer que le plus petit entier } n \in \mathbb{N}^* \ \text{tel que } n\theta > \frac{\pi}{3} \ \text{convient.}$
- **f.** En déduire b(A).
- **3.** Montrer que $A \cap \mathbb{U} \neq \mathbb{U}_3$.
- **4.** On suppose *dans cette question* b(A) fini et $b(A) \ge 2$.
 - **a.** Montrer que \mathcal{A} contient un élément de module 1.
 - **b.** Montrer que $A \cap \mathbb{U} \subset \mathbb{U}_8 \cup \mathbb{U}_{12}$.
 - **c.** Montrer que $A \cap \mathbb{U}$ est un sous-groupe de \mathbb{U} .
 - **d.** En déduire qu'il existe $\mathfrak{m} \in \{1,2,4,6,8,12\}$ tel que $\mathcal{A} \cap \mathbb{U} = \mathbb{U}_\mathfrak{m}.$
 - **e.** Montrer que si $\mathfrak{m} \in \{4, 8, 12\}$, alors $0 \in \mathcal{A}$.
- **5.** Quelles sont les valeurs possibles de b(A)?