Macierz przekształcenia liniowego

http://mini.pw.edu.pl/~sokolj

Niech V i W będą przestrzeniami liniowymi nad \mathbb{K} .

Niech $\mathcal{A}=\{v_1,\ldots,v_n\}$ i $\mathcal{A}'=\{v_1',\ldots,v_n'\}$ będą bazami V, a $\mathcal{B}=\{w_1,\ldots,w_m\}$ i $\mathcal{B}'=\{w_1',\ldots,w_m'\}$ bazami W.

Niech $\varphi:V\to W$ będzie przekształceniem liniowym.

$$v = \alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 + \ldots + \alpha_n \cdot v_n \iff M_{\mathcal{A}}(v) = \begin{pmatrix} \alpha_1 \\ \cdots \\ \alpha_n \end{pmatrix}$$

$$M_{\mathcal{A}}(\mathcal{A}') = M_{\mathcal{A}}^{\mathcal{A}'}(id) = (M_{\mathcal{A}'}(\mathcal{A}))^{-1}$$

Jeżeli \mathcal{A} jest bazą kanoniczną, to wektory z \mathcal{A}' tworzą kolumny macierzy $M_{\mathcal{A}}(\mathcal{A}')$.

$$M_{\mathcal{A}}(\mathcal{A}') \cdot M_{\mathcal{A}'}(v) = M_{\mathcal{A}}(v)$$

$$M_{\mathcal{B}}^{\mathcal{A}}(\varphi) \cdot M_{\mathcal{A}}(v) = M_{\mathcal{B}}(\varphi(v))$$

$$M_{\mathcal{B}}^{\mathcal{A}}(\varphi) = M_{\mathcal{B}}(\mathcal{B}') \cdot M_{\mathcal{B}'}^{\mathcal{A}'}(\varphi) \cdot M_{\mathcal{A}'}(\mathcal{A})$$

PRZYKŁADY

1. Dana jest macierz $M_{\mathcal{B}}^{\mathcal{A}}(\varphi) = \begin{pmatrix} 5 & 3 & -1 \\ -3 & 1 & 2 \end{pmatrix}$ przekształcenia liniowego $\varphi : \mathbb{R}_2[x] \to \mathbb{R}^2$ w bazach $\mathcal{A} = (x^2, x, 1)$ i $\mathcal{B} = ((2, 1), (3, 2))$. Wyznaczyć wzór ogólny $\varphi(ax^2 + bx + c)$.

$$M_{\mathcal{B}}(\varphi(ax^2 + bx + c)) = M_{\mathcal{B}}^{\mathcal{A}}(\varphi) \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 5a + 3b - c \\ -3a + b + 2c \end{pmatrix}$$

Stad $\varphi(ax^2 + bx + c) = (5a + 3b - c) \cdot (2, 1) + (-3a + b + 2c) \cdot (3, 2) = (10a + 6b - 2c - 9a + 3b + 6c, 5a + 3b - c - 6a + 2b + 4c) = (a + 3b + 4c, -a + 5b + 3c).$

INACZEJ: Niech
$$\mathcal{B}' = ((1,0),(0,1))$$
. Wtedy $M_{\mathcal{B}'}(\mathcal{B}) = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$. Zatem

$$M_{\mathcal{B}'}^{\mathcal{A}}(\varphi) = M_{\mathcal{B}'}(\mathcal{B}) \cdot M_{\mathcal{B}}^{\mathcal{A}}(\varphi) = \begin{pmatrix} 1 & 3 & 4 \\ -1 & 5 & 3 \end{pmatrix}$$

Stad

$$M_{\mathcal{B}'}(\varphi(ax^2+bx+c)) = M_{\mathcal{B}'}^{\mathcal{A}}(\varphi) \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a+3b+4c \\ -a+5b+3c \end{pmatrix}$$

Czyli $\varphi(ax^2 + bx + c) = (a + 3b + 4c, -a + 5b + 3c).$

2. Dane jest przekształcenie liniowe: $\varphi: \mathbb{R}^3 \to \mathbb{R}^2$, $(x, y, z) \mapsto (2x + y, -3y + 4z)$. Znajdź macierz przekształcenia φ w bazach $\mathcal{A} = ((1, 1, 0), (2, 1, 0), (0, 1, 1))$ i $\mathcal{B} = ((3, -1), (1, 1))$.

Niech $\mathcal{B}' = ((1,0),(0,1))$ (baza \mathbb{R}^2). Chcemy znaleźć $M_{\mathcal{B}}^{\mathcal{A}}(\varphi)$. Zastosujemy wzór:

$$M_{\mathcal{B}}^{\mathcal{A}}(\varphi) = M_{\mathcal{B}}(\mathcal{B}') \cdot M_{\mathcal{B}'}^{\mathcal{A}}(\varphi)$$

Aby znaleźć macierz przekształcenia $M_{\mathcal{B}'}^{\mathcal{A}}(\varphi)$ liczymy $\varphi(v)$ dla wektorów z \mathcal{A} i otrzymane wektory zapisujemy jako kolumny (bo \mathcal{B}' jest bazą kanoniczną):

$$M_{\mathcal{B}'}^{\mathcal{A}}(\varphi) = \begin{pmatrix} 3 & 5 & 1 \\ -3 & -3 & 1 \end{pmatrix}$$

Musimy jeszcze znaleźć $M_{\mathcal{B}}(\mathcal{B}') = M_{\mathcal{B}'}(\mathcal{B})^{-1}$. \mathcal{B}' jest bazą kanoniczną, więc aby znaleźć $M_{\mathcal{B}'}(\mathcal{B})$ wystarczy zapisać wektory z bazy \mathcal{B} jako kolumny:

$$M_{\mathcal{B}'}(\mathcal{B}) = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}$$

Teraz szukamy macierzy odwrotnej:

$$(M_{\mathcal{B}'}(\mathcal{B})|I) = \begin{pmatrix} 3 & 1 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{pmatrix} \xrightarrow{w_1 - w_2} \begin{pmatrix} 4 & 0 & 1 & -1 \\ -1 & 1 & 0 & 1 \end{pmatrix} \xrightarrow{w_1/4} \begin{pmatrix} 1 & 0 & \frac{1}{4} & -\frac{1}{4} \\ -1 & 1 & 0 & 1 \end{pmatrix} \xrightarrow{w_2 + w_1}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & \frac{1}{4} & -\frac{1}{4} \\ 0 & 1 & \frac{1}{4} & \frac{3}{4} \end{pmatrix} = (I|M_{\mathcal{B}}(\mathcal{B}'))$$

Ostatecznie:

$$M_{\mathcal{B}}^{\mathcal{A}}(\varphi) = M_{\mathcal{B}}(\mathcal{B}') \cdot M_{\mathcal{B}'}^{\mathcal{A}}(\varphi) = \begin{pmatrix} \frac{3}{2} & 2 & 0 \\ -\frac{3}{2} & -1 & 1 \end{pmatrix}$$

3. Wykazać, że istnieje dokładnie jedno przekształcenie liniowe $\varphi : \mathbb{R}^3 \to \mathbb{R}_1[x]$, takie że $\varphi((1,1,0)) = x + 3, \varphi((2,1,-1)) = 2x, \varphi((1,3,3)) = -x - 1$. Wyznaczyć macierz $M_{\mathcal{B}}^{\mathcal{A}}(\varphi)$, gdzie $\mathcal{A} = ((1,1,0),(2,1,-1),(1,3,3)), \mathcal{B} = (x,1)$.

Zauważmy, że \mathcal{A} jest bazą \mathbb{R}^3 :

$$\det \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 3 \\ 0 & -1 & 3 \end{pmatrix} \stackrel{w_1 - w_2}{=} \det \begin{pmatrix} 0 & 1 & -2 \\ 1 & 1 & 3 \\ 0 & -1 & 3 \end{pmatrix} = 1 \cdot (-1)^{2+1} \cdot \det \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix} = -(3-2) = -1 \neq 0$$

Rząd powyższej macierzy jest równy liczbie kolumn, zatem tworzą one układ liniowo niezależny. Dowolny układ trzech wektorów z \mathbb{R}^3 tworzy bazę tej przestrzeni.

Wiemy, że zawsze istnieje dokładnie jedno przekształcenie liniowe o zadanych wartościach na wektorach z bazy.

Aby wyznaczyć macierz $M_{\mathcal{B}}^{\mathcal{A}}(\varphi)$ należy obliczyć wartości przekształcenia na wektorach z bazy \mathcal{A} i przedstawić je jako kombinacje liniowe wektorów z bazy \mathcal{B} . W tym przypadku mamy już podane te wartości i łatwo odczytać współczynniki z przedstawienia ich w bazie $\mathcal{B}=(x,1)$. Dla każdego wektora z \mathcal{A} zapisujemy kolumnę w macierzy:

$$M_{\mathcal{B}}^{\mathcal{A}}(\varphi) = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 0 & -1 \end{pmatrix}$$

4. Znajdź jądro i obraz przekształcenia $\varphi: \mathbb{R}^3 \to \mathbb{R}^2$ danego macierzą:

$$M_{\mathcal{B}}^{\mathcal{A}}(\varphi) = \left(\begin{array}{ccc} 3 & 0 & -1 \\ 1 & 2 & -1 \end{array} \right),$$

gdzie $\mathcal{B} = (1, x)$ i $\mathcal{A} = ((1, 1, 0), (0, 1, -1), (1, -3, 3)).$

 $Ker\varphi$:

 $v \in \mathbb{R}^3$ należy do jądra przekształcenia witw $M_{\mathcal{B}}^{\mathcal{A}}(\varphi) \cdot M_{\mathcal{A}}(v) = M_{\mathcal{B}}(\mathbf{0}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

Wektor $M_{\mathcal{A}}(v)$ traktujemy jak wektor zmiennych i rozwiązujemy jednorodny układ równań.

$$\begin{pmatrix}
3 & 0 & -1 & 0 \\
1 & 2 & -1 & 0
\end{pmatrix}
\xrightarrow{w_2-w_1}
\begin{pmatrix}
3 & 0 & -1 & 0 \\
-2 & 2 & 0 & 0
\end{pmatrix}
\xrightarrow{w_1\cdot(-1)}
\begin{pmatrix}
-3 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 & 0
\end{pmatrix}
\xrightarrow{w_1\leftrightarrow w_2}
\begin{pmatrix}
-1 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0
\end{pmatrix}$$

Otrzymaliśmy układ równań:

$$\begin{cases} x_1 = \alpha \in \mathbb{R} \\ x_2 = x_1 \\ x_3 = 3x_1 \end{cases}$$

Zatem $v \in Ker(\varphi)$ witw $M_{\mathcal{A}}(v) = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} \cdot \alpha$, gdzie $\alpha \in \mathbb{R}$.

Niech $\mathcal{A}' = ((1,0,0),(0,1,0),(0,0,1))$. Wtedy zapisując wektory z \mathcal{A} jako kolumny otrzymujemy:

$$M_{\mathcal{A}'}(\mathcal{A}) = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & -3 \\ 0 & -1 & 3 \end{pmatrix}.$$

Aby przestawić wektory z jądra w bazie kanonicznej \mathcal{A}' mnożymy macierz zmiany bazy przez wektor $M_{\mathcal{A}}(v)$:

$$M_{\mathcal{A}'}(v) = M_{\mathcal{A}'}(\mathcal{A}) \cdot M_{\mathcal{A}}(v) = \begin{pmatrix} 4 \\ -7 \\ 8 \end{pmatrix} \cdot \alpha$$

Ostatecznie $v \in Ker(\varphi)$ witw $v = (4, -7, 8) \cdot \alpha$ dla $\alpha \in \mathbb{R}$. ((4, -7, 8)) jest bazą jądra.

$Im\varphi$:

Każdy wektor z obrazu jest kombinacją liniową wektorów $\varphi(v_1), \varphi(v_2), \varphi(v_3)$, gdzie (v_1, v_2, v_3) tworzy bazę przestrzeni \mathbb{R}^3 . Wybierzmy bazę \mathcal{A} - współczynniki wektorów $\varphi(v_1), \varphi(v_2), \varphi(v_3)$ w bazie \mathcal{B} mamy zapisane jako kolumny macierzy $M_{\mathcal{B}}^{\mathcal{A}}(\varphi)$.

Zatem $\underline{Im\varphi = Lin\{\varphi(v_1), \varphi(v_2), \varphi(v_3)\}} = Lin\{3 + x, 2x, -1 - x\}$ i jeśli polecenie nie wymaga od nas znalezienia bazy lub wymiaru $Im(\varphi)$ możemy na tym poprzestać.

Szukamy bazy przestrzeni $Im\varphi$. Wiemy, że $Im\varphi \subset \mathbb{R}_1[x]$ i dim $\mathbb{R}_1[x] = 2$, zatem co najwyżej dwa wektory z $Im\varphi$ są niezależne liniowo. Zauważmy że $\mathcal{C} = (3 + x, 2x)$ jest układem niezależnym liniowo i $|\mathcal{C}| = 2$, więc jest on bazą $Im\varphi = \mathbb{R}_1[x]$.

W ogólnym przypadku, bazę możemy znaleźć wykonując elementarne operacje na kolumnach macierzy $M_{\mathcal{B}}^{\mathcal{A}}(\varphi).$

$$M_{\mathcal{B}}^{\mathcal{A}}(\varphi) = \begin{pmatrix} 3 & 0 & -1 \\ 1 & 2 & -1 \end{pmatrix} \xrightarrow{k_2/2} \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix} \xrightarrow{k_1/2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Każda kolumna w otrzymanej macierzy odpowiada kombinacji liniowej wektorów $\varphi(v_1), \varphi(v_2), \varphi(v_3)$. Spośród kolumn wybieramy największy układ liniowo niezależny i zapisujemy odpowiadające im wektory.

W naszym przypadku dwie pierwsze kolumny tworzą największy układ liniowo niezależny. Sprawdźmy jakim wektorom z przestrzeni $\mathbb{R}_1[x]$ odpowiadają te kolumny (pamiętając, że $\mathcal{B}=(1,x)$): pierwsza kolumna odpowiada wektorowi: $1 \cdot 1 + 0 \cdot x = 1$

druga kolumna odpowiada wektorowi: $0 \cdot 1 + 1 \cdot x = x$.

Czyli układ (1,x) jest bazą przestrzeni $Im\varphi$. Stąd $Im\varphi = \mathbb{R}_1[x]$.