534588

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

) (1814 | 1886) | 1886

(43) Internationales Veröffentlichungsdatum 17. Juni 2004 (17.06.2004)

(10) Internationale Veröffentlichungsnummer WO 2004/050871 A1

- (51) Internationale Patentklassifikation7: C12N 15/10, 15/62, C12Q 1/02, G01N 33/68
- (21) Internationales Aktenzeichen: PCT/EP2003/013709
- (22) Internationales Anmeldedatum:

4. Dezember 2003 (04.12.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

102 56 669.0

4. Dezember 2002 (04.12.2002) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): UNIVERSITÄTSKLINIKUM CHARITE BERLIN [DE/DE]; Schumannstr. 20/21, 10117 Berlin (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): PASCHKE, Matthias [DE/DE]; Hohenfriedbergstr. 11, 10829 Berlin (DE).
- (74) Anwälte: ZWICKER, Jörk usw.; Boehmert & Boehmert, Pettenkoferstr. 20 - 22, 80336 München (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR,

[Fortsetzung auf der nächsten Seite]

(57) Abstract: The invention relates to a protein mixture containing at least

unfolded state, and at least one second fusion protein containing a protein or a protein fragment, an interaction domain, and a protein translocation sequence which causes the fusion protein to be translocated by the cytoplasmatic membrane when expressed in bacterium in an essentially folded state.

(54) Title: MIXTURE OF AT LEAST TWO FUSION PROTEINS, THE PRODUCTION THEREOF AND THE USE OF THE SAME

(54) Bezeichnung: GEMISCH MINDESTENS ZWEIER FUSIONSPROTEINE SOWIE IHRE HERSTELLUNG UND VERWEN-**DUNG**

one first fusion protein containing a protein or a protein fragment, an interaction domain, and a protein translocation sequence which causes the fusion protein to be translocated by the cytoplasmatic membrane when expressed in a bacterium in an essentially

> fusion protein. (57) Zusammenfassung: Die vorliegende Erfindung betrifft Proteingemisch, enthaltend mindestens ein erstes Fusionsprotein, enthaltend Protein oder Proteinfragment, Interaktionsdomäne eine Proteintranslokationssequenz, bewirkt, dass das Fusionsprotein bei Expression in ein Bakterium in einem im wesentlichen ungefalteten Zustand durch

> The interaction domain of the first fusion protein can bind to that of the second

die zytoplasmatische Membran

WO 2004/050871 A1

CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF,

CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

transloziert wird, und mindestens ein zweites Fusionsprotein, enthaltend ein Protein oder Proteinfragment, eine Interaktionsdomäne und eine Proteintranslokationssequenz, die bewirkt, daß das Fusionsprotein bei Expression in einem Bakterium in einem im wesentlichen gefalteten Zustand durch die zytoplasmatische Membran transloziert wird, wobei die Interaktionsdomäne des ersten Fusionsproteins an die des zweiten Fusionsproteins binden kann.

WO 2004/050871 1 PCT/EP2003/013709

Gemisch mindestens zweier Fusionsproteine sowie ihre Herstellung und Verwendung

Die vorliegende Erfindung betrifft ein Proteingemisch, enthaltend mindestens ein erstes Fusionsprotein, enthaltend ein Protein oder Proteinfragment, eine Interaktionsdomäne und eine Proteintranslokationssequenz, die bewirkt, daß das Fusionsprotein bei Expression in ein Bakterium in einem im wesentlichen ungefalteten Zustand durch die zytoplasmatische Membran transloziert wird, und mindestens ein zweites Fusionsprotein, enthaltend ein Protein oder Proteinfragment, eine Interaktionsdomäne und eine Proteintranslokationssequenz, die bewirkt, daß das Fusionsprotein bei Expression in einem Bakterium in einem im wesentlichen gefalteten Zustand durch die zytoplasmatische Membran transloziert wird, wobei die Interaktionsdomäne des ersten Fusionsproteins an die des zweiten Fusionsproteins binden kann.

5

10

15

20

25

30

Die Phagendisplay-Technologie wird heutzutage in vielen Bereichen der Biotechnologie zum Auffinden von Proteinen mit gewünschten Bindungseigenschaften und enzymatischen Aktivitäten verwendet (Forrer, P. et al. (1999) Current Opinion in Struct. Biol. 9:514-520 und Gao, C. et al. (2002) Proc. Natl. Acad. Sci. U.S.A. 99:12612-12616). Gleichermaßen wird die Technologie verwendet, um beispielsweise die Bindungseigenschaften, die enzymatischen Eigenschaften und/oder die thermodynamische Stabilität von bereits bekannten oder durch die Phagendispplay-Technologie isolierten Proteine zu verbessern (Forrer, P. et al. (1999) siehe oben). Die Grundlage für die Phagendisplay-Technologie liegt in der Beobachtung, daß bestimmte sogenannte nicht-lytische Bakteriophagen Bakterien lediglich infizieren und die Phagenpartikel nicht etwa durch Lyse des Bakteriums freisetzen, sondern die einzelnen Bestandteile des Bakteriophagens durch das Zytoplasma ins Periplasma und letztendlich auf die Bakterienzelloberfläche transportieren, wo dann der komplette Phage assembliert wird, der sich anschließend von der Bakterienzelle löst. Die Fusion eines interessierenden Proteins mit einem Phagenhüllprotein führt daher zum Export dieses Proteins aus dem bakteriellen Zytoplasma und der Präsentation auf der Oberfläche des Bakteriums. Für die Präsentation geeignete Phagenhüllproteine sind beispielsweise die aus dem M13-Phagemid stammenden pIII, pVI, pVII, pVIII und pIX (Gao, C. et al. (2002) siehe oben).

Der N-Terminus des Phagenhüllproteins ist nach außen gerichtet, so daß das fusionierte Protein N-terminal vom Phagenhüllprotein angeordnet sein muß, damit es auf der Phagenoberflä-

5

10

15

20

25

30

che präsentiert wird. Dies führt zu keinem Problem, wenn einzelne bereits bekannte Proteine mit einem der genannten Phagenhüllproteinen fusioniert werden sollen, da für diese Proteine START- und STOP-Codons bekannt sind. Es führt jedoch dann zu Problemen, wenn eine sogenannte Phagen-Bibliothek hergestellt werden soll, bei der die Phagenhüllproteine mit einer cDNA-Bibliothek fusioniert werden sollen. Das Problem liegt darin, daß die in cDNA-Bibliotheken enthaltenden kodierenden Nukleinsäuren in der Regel translationelle STOP-Codons am 3'-Ende enthalten da durch die Poly(A+)-Selektion der mRNA und durch das sich anschließende Oligo-(dT)-priming die resultierenden cDNAs immer die translationellen STOP-Codons enthalten. So liegt bei Fusion einer Oligo-(dT)-geprimten cDNA 5' vom Phagenhüllprotein immer ein STOP-Codon zwischen der cDNA und dem Phagenhüllprotein, wodurch wiederum die Expression eines Fusionsproteins aus dem cDNA kodierten Protein und dem Phagenhüllprotein verhindert wird. Daher wurde von Crameri, R. und Suter, M. (1993) Gene 137:69-75 ein neuartiges Klonierungs- und Expressionssystem entwickelt, das darauf basiert, daß die Interaktionsdomänen der beiden Oncoproteine cJun und cFos, die über ein Proteinmotiv von gleichmäßig beabstandeten Leuzinresten dem sogenannten "Leuzin-Zipper" eine starke Wechselwirkung zwischen den beiden Proteinen ausbilden (Landschulz et al. (1988) Science 240:1759-64), genutzt werden, um das jeweils separat exprimierte Phagenhüllprotein und das cDNA-kodierte Protein zu einem Heterodimer zu verbinden. Dazu wurde von einem LacZ-Promotor gesteuert, ein Fusionsprotein exprimiert, das am N-Terminus aus cJun und am C-Terminus aus einem Phagenhüllprotein (pIII) bestand und ein zweites Fusionsprotein, das am N-Terminus aus cFos und am C-Terminus aus einer cDNA-Bank bestand, wobei auch dieses Protein durch einen zweiten LacZ-Promotor gesteuert wurde. Durch die Interaktion von cJun und cFos über die jeweiligen Leuzin-Zipper im Periplasma eines Bakteriums wurde dadurch die Präsentation von Protein bzw. Proteinfragmenten, die durch cDNAs kodiert sind auf filamentösen Phagen möglich.

Beim Einsatz der Phagendisplay-Technologie gibt es das weitere Problem, daß die Assemblierung der Phagen und somit auch der Einbau der Fusionsproteine in die Phagenpartikel ausschließlich im Periplasma stattfindet (Russel et al. (1997) Gene 192(1):23-32). Um die jeweiligen Fusionsproteine ins Periplasma der Bakterienzelle zu exportieren, muß demnach gegebenenfalls gentechnisch eine Sec-Signalsequenz an das Fusionsprotein angefügt werden. Diese Signalsequenz bewirkt, daß die Fusionsproteine in einem im wesentlichen ungefalteten Zustand ins Periplasma transportiert werden. Eine beträchtliche Anzahl von Proteinen kann jedoch nicht mittels des Sec-Transportwegs ins Periplasma gelangen, da sogenannte "Stop-

WO 2004/050871 - 3 - PCT/EP2003/013709

Transfer"-Sequenzen oder eine zu schnelle Faltung des Proteins, die bereits ins Zytoplasma erfolgt, einen Transport verhindern. "Stop-Transfer"-Sequenzen bewirken durch eine lokale Häufung positiv-geladener Aminosäuren in der Proteinsequenz, daß das entsprechende Protein bei der Translokation über den Sec-Transportweg in der inneren Membran stecken bleibt. Proteine, die durch ihre schnelle und/oder stabile Faltung nicht mehr in der entfalteten Form von den Proteinen des Sec-Transportweges - insbesondere von SecB - gebunden werden können, werden nicht zum Sec-Tranlokase-Komplex transportiert und verbleiben im Cytoplasma (Yamane et al. (1988) J. Bio. Chem. 263:19690-19696 und Berks, B. C. (1996) Mol. Microbiol. 22:393-404 und Bergs, B. C. et al. (2000) Mol. Microbiol. 35:260-274). Proteine, die auf reduzierende Bedingungen oder die für ihre Funktionsfähigkeit auf zytoplasmatische Co-Faktoren, wie beispielsweise FeS-Zentren oder Molybdopterin angewiesen sind, können ebenfalls nicht über den Sec-Transportweg in funktioneller Form ins Periplasma gelangen. Aufgrund der Inkompatibilität mit dem Sec-Transportweg können demnach viele Polypeptide nicht funktionell gefaltet mit dem Phagendisplay präsentiert und anschließend selektiert werden. Die Translokation der Fusionsproteine über den Sec-Transportweg ins Periplasma stellt daher einen wesentlichen Nachteil der im Stand der Technik bekannten Phagendisplay-Techniken dar.

5

10

15

20

25

Aus den unterschiedlichen Anforderung an das zelluläre Milieu bei Faltung bestimmter Proteine ergibt sich ein weiteres Problem bei der Expression von Fusionsproteinen insbesondere in Bakterien, wenn der eine Teil des Fusionsproteins nur im Periplasma eine korrekte Faltung annimmt, wie das z.B. bei Antikörperproteinen der Fall ist (Gao, C. et al. (2002) siehe oben) und der andere Teil des Fusionsproteins nur im Zytoplasma korrekt gefaltet werden kann, wie das z.B. beim grün-floreszierenden Protein (GFP) der Fall ist, das Sec-inkompatibel ist. So ist z.B. die Expression von Antikörper-GFP-Fusionsprotein, d.h. von Fluoreszenz-markierten Antikörpermolekülen, in Bakterien bisher nicht möglich. Die Beschränkung auf den Sec-Transportweg verhindert somit die Herstellung einer Vielzahl interessanter Proteinkonjugate insbesondere in Bakterien.

Eine Aufgabe der vorliegenden Erfindung besteht daher darin die Einschränkung der im Stand der Technik bekannten Phagendisplay-Technologie auszuräumen und die Herstellung von Fusionsproteinen zu ermöglichen, die bei Herstellung durch die im Stand der Technik bekannten Verfahren nicht zu funktionellen Fusionsproteinen führen.

WO 2004/050871 - 4 - PCT/EP2003/013709

Die vorliegende Erfindung stellt daher in einem Aspekt ein Proteingemisch zur Verfügung, enthaltend: a) mindestens ein erstes Fusionsprotein, enthaltend: i) ein Protein oder Proteinfragment, ii) eine Interaktionsdomäne und iii) eine Proteintranslokationssequenz, die bewirkt, daß das Fusionsprotein bei Expression in einem Bakterium in einem im wesentlichen ungefalteten Zustand durch die zytoplasmatische Membran transloziert wird, und b) mindestens ein zweites Fusionsprotein, enthaltend: i) ein Protein oder Proteinfragment, ii) eine Interaktionsdomäne und iii) eine Proteintranslokationssequenz, die bewirkt, daß das Fusionsprotein bei Expression in einem Bakterium in einem im wesentlichen gefalteten Zustand durch die zytoplasmatische Membran transloziert wird, wobei die Interaktionsdomäne des ersten Fusionsproteins an die des zweiten Fusionsproteins binden kann.

5

10

15

20

25

30

Das Protein oder Proteinfragment des ersten Fusionsproteins umfaßt vorzugsweise Proteine, die im ungefalteten Zustand durch die zytoplasmatische Membran eines Bakteriums, vorzugsweise eines Gram-negativen Bakteriums transloziert werden können und die demnach nicht für ihre korrekte Faltung auf das reduzierende zytoplasmatische Milieu und/oder auf zytoplasmatische Co-Faktoren angewiesen sind und die auch im Periplasma eine im wesentlichen korrekte Faltung erreichen können. Beispiele solcher Proteine umfassen, sind aber nicht limitiert auf schwere Immunoglobulinketten, leichte Immunoglobulinketten, Fragmente dieser Ketten, sogenannte "Single-Chain-Antikörper" (Bird, R. E. (1988)Science 242:423-6), Diabodies (Holliger, P. (1993) Proc. Natl. Acad. Sci. U.S.A 90(14):6444-8, Rezeptoren, vorzugsweise extrazelluläre Domänen von Rezeptoren, wie beispielsweise, EGFR, PDGFR oder VEGFR, oder Rezeptorliganden, wie beispielsweise EGF, PDGF oder VEGF, Integrine, vorzugsweise deren extrazelluläre Domänen, Intimine und deren Domänen, wie beispielsweise EaeA, Kohlenhydrat-bindende Proteine und Domänen davon, wie MBP und CBD, Albuminbindende Proteine und Domänen oder Protein A und dessen Domänen.

Das Protein oder Proteinfragment des zweiten Fusionsproteins kann ein beliebiges Protein oder Proteinfragment sein, bevorzugt sind jedoch Proteinfragmente, die ihre Faltung und/oder ihre Funktion nur dann erhalten, wenn sie sich bereits im Zytoplasma eines Bakteriums falten und daher in einen im wesentlichen gefalteten Zustand durch die zytoplasmatische Membran in das Periplasma transloziert werden. Beispiele solcher Proteine sind autofluoreszierende Proteine, wie beispielsweise GFP oder Varianten davon mit veränderten Absorptionsmaxima, Enzyme, wie beispielsweise β -Lactamase, Cofaktor-abhängige Proteine, wie beispielsweise

WO 2004/050871 - 5 - PCT/EP2003/013709

TMAO-Reduktase und Meerrettich-Peroxidase, Proteine, die von einer cDNA kodiert werden, welche aus einer cDNA-Bibliothek stammt, oder synthetische Proteine.

5

10

15

20

25

30

In einer bevorzugten Ausführungsform ist das Protein oder Proteinfragment des ersten Fusionsproteins und die Proteintranslokationssequenz ein Phagenhüllprotein oder ein periplasmatisches Markerenzym, wie PhoA, ein Intimin ein Protein der äußeren Bakterienmembran oder ein periplasmatisches Rezeptorprotein, insbesondere ein Kohlenhydrat-bindendes Protein. Bevorzugte Phagenhüllproteine, die in einem Proteingemisch der vorliegenden Erfindung enthalten sein können, sind ausgewählt aus den M13-Phagemid Hüllproteinen pIII, pVI, pVII, pVIII und pIX. Von diesen Phagenhüllproteinen sind jedoch nur pIII und pVIII mit einer bekannten Sec-abhängigen Proteintranslokationssequenz versehen, wobei die in den restlichen Phagenhüllproteinen enthaltenden Proteintranslokationssequenzen noch nicht identifiziert worden sind. Da diese Phagenhüllprotein dennoch in einem im wesentlichen ungefalteten Zustand in das Periplasma des Bakteriums transportiert werden, werden solche Proteine im Sinnde der Erfindung auch ohne Identifikation der Proteintranslokationssequenz als Proteine angesehen, die aus einem Protein oder Proteinfragment und einer Proteintranslokationssequenzen bestehen.

Die Interaktionsdomänen, die in dem ersten und zweiten Fusionsprotein verwendet werden, führen zur Bindung des ersten Fusionsproteins an das zweite Fusionsprotein. Bevorzugt sind hierbei Interaktionsdomänen, die zu einer relativ festen Interaktion der beiden Proteine führen, wobei eine relativ feste Interaktion eine Interaktion ist, die auch im oxidativen Milieu des Periplasmas, auf der Bakterienzelloberfläche oder bei des Sezernierung des Heterodimers oder Heteromultimers auch außerhalb der Zelle bestehen bleibt. Geeignete Interaktionsdomänen des ersten und zweiten Fusionsproteins, die erfindungsgemäß in den Fusionsproteinen enthalten sein können, sind beispielsweise eine Leuzin-Zipper-Domäne und eine Leuzin-Zipper-Domäne, wie sie zuerst in den zwei Oncoproteinen cJun und cFos beschrieben wurden (Landschulz et al. (1988) siehe oben) Varianten davon aus anderen Hetero- oder Homodimeren sowie artifizielle Leuzin-Zipper-Domänen oder eine Helix-Loop-Helix-Domäne und eine Helix-Loop-Helix-Domäne (Moor et al. (1989) Cell 56:777-783), ein Calmodulin und ein Calmodulin-bindendes Peptid (Montigiani, S. et al. (1996) JMB 258:6-13) oder jeweils ein Peptid eines Peptid-Dimers. Der Begriff Interaktionsdomänen umfaßt auch Domänen die eine Multimerisierung von mehr als zwei Fusionsproteinen erlauben.

5

10

15

20

25

30

Die Proteintranslokationssequenz des ersten Fusionsproteins bewirkt, daß das Fusionsprotein bei Expression in einem Bakterium, vorzugsweise in einem Gram-negativen Bakterium in einem im wesentlichen ungefalteten Zustand durch die zytoplasmatische Membran in das Periplasma transloziert wird. Der Fachmann ist ohne weiteres in der Lage, entsprechende Proteintranslokationssequenzen aufzufinden, wobei er sich des folgenden Experiments bedienen kann. Eine potentielle als Proteintranslokationssequenz geeignete Proteinsequenz, die zur Translokation eines damit fusionierten Proteins in einem im wesentlichen ungefalteten Zustand führt, wird mit einem ein GFP-myc-TAG enthaltenden Protein fusioniert. Wenn die potentielle Proteintranslokationssequenz nicht zur Proteintranslokation ins Periplasma führt, wird das GFP-Protein im Zytoplasma des Bakteriums gebildet, was sich über die zytoplasmatische Fluoreszenz nachweisen läßt, es gelangt dann jedoch nicht an die Oberfläche oder ins Medium, so daß der Myc-TAG durch einen anti-Myc-Antikörper bspw. den monoklonalen Antikörper 9E10 weder im Medium noch auf der Oberfläche nachweisbar ist. Führt die Sequenz jedoch zur Translokation des Fusionsproteins ins Periplasma und schließlich zur Präsentation auf der Oberfläche bzw. zur Sezernierung in die Umgebung des Bakteriums, so läßt sich das präsentierte bzw. sezernierte GFP-myc-TAG-Fusionsprotein durch einen Anti-myc-Antikörper im Medium und/oder auf der Oberfläche des Bakteriums nachweisen. Gleichzeitig sollte im Periplasma in diesem Fall keine Fluoreszenz beobachtet werden können, da bei Translokation des GFPs ins Periplasma in einem im wesentlichen ungefalteten Zustand sich das Protein dort nicht mehr korrekt faltet (sogenannte "Sec-Inkompatibilität"). Die Proteintranslokationssequenzen die bevorzugt im ersten Fusionsprotein verwendet werden sind solche, die in dem Sec-abhängigen Transportweg (Danese, P. N. und Silhavy, T. J. (1998) Annu. Rev. Genet. 32:59-94), die in dem SRP-abhängigen Transportweg (Meyer, D. I. et al. (1982) Nature 297:647-650) oder die in einem YidC-abhängigen Transportweg erkannt werden (Samuelson, J. C. et al. (2000) Nature 406:637-641). Allerdings kann es sich auch um eine Transportweg-unabhängige Sequenz handeln. Besonders geeignete Proteintranslokationssequenzen sind daher beispielsweise Signalsequenzen des PhoA, PelB, OmpA und pIII.

Als weiterer Bestandteil enthält das zweite Fusionsprotein eine Proteintranslokationssequenz, die bewirkt, daß das Fusionsprotein bei Expression in einem Bakterium, vorzugsweise in einem Gram-negativen Bakterium, in einem im wesentlichen gefalteten Zustand durch die zytoplasmatische Membran transloziert wird. Eine Proteintranslokationssequenz mit dieser Eigenschaft liegt dann vor, wenn ein Protein, beispielsweise GFP, das nur im Zytoplasma des Bakteriums seine funktionelle Konformation einnehmen kann, ohne Verlust der Autoflures-

WO 2004/050871 - 7 - PCT/EP2003/013709

zenz ins Periplasma transportiert wird. Diese Eigenschaft der erfindungsgemäßen Proteintranslokationssequenz läßt sich mit dem vorangehend im Hinblick auf die erste Proteintranslokationssequenz beschriebenen Experiment, untersuchen. Mit einem ähnlichen Experiment wurde bereits ein Konsensusmotiv für das Tat-spezifische Führungspeptid des Twin-Argenine-Translokation-(Tat)-Transportwegs von Bakterien und Pflanzenchloroplasten ermittelt. Der im Stand der Technik bekannte Tat-Transportweg erlaubt den Transport von bereits im Zytoplasma gefalteten Proteinen ins Periplasma und kann somit Proteine, die mit dem Sec-Transportweg inkomatibel sind, ins Periplasma transportieren. Genau wie der Transport über den Sec-Transportweg, wird auch der Tat-Transprotweg durch eine spezielle Gruppe von Führungssequenzen vermittelt (DeLisa, M. P. et al. (2002) J. Biol. Chem. 277:29825-29831). Ein weiterer im Stand der Technik bekannter Transportweg, der den Transport von Proteinen in im wesentlichen gefalteten Zustand erlaubt, ist der über Thylakoid-Membranen (Settles, A. M. und Martienssen, R. (1998) Transcell Biol. 8:494-501). Daher enthält das zweite Fusionsprotein in einer bevorzugten Ausführungsform der vorliegenden Erfindung eine Signalsequenz, die von einem Tat-abhängigen Transportweg oder von einem Thylakoid-Δphabhängigen Transportweg erkannt wird und dadurch zur Translokation des Fusionsproteins in im wesentlichen gefalteten Zustand führt. Ein Konsensusmotiv einer Proteintranslokationssequenz, das von einem Tat-abhängigen Transportweg erkannt wird, ist in DeLisa, M. P. et al. ((2002) siehe oben) beschrieben worden. Die Sequenz lautet: S/F/RRXFLK.

20

25

30

5

10

15

In einer bevorzugten Ausführungsform des erfindungsgemäßen Proteingemisches sind mindestens ein erstes und mindestens ein zweites Fusionsprotein aneinander kovalent oder nichtkovalent gebunden. Zur Erreichung einer kovalenten Bindung der zwei getrennt exprimierten Fusionsproteine können beispielsweise in dem Protein zusätzlich nahe der Interaktionsdomäne Cysteinreste oder Homologe davon angeordnet werden, die im oxidativen Milieu des Periplasmas eine kovalente Bindung zwischen den beiden Fusionsproteinen herstellen. Eine kovalente Bindung kann jedoch beispielsweise auch durch die Inkorporation von Aminosäuren mit Foto-aktivierbaren Gruppen in die beiden Fusionsproteine und anschließende UV-Exposition der zunächst lediglich nicht-kovalent aneinander gebundenen Protein erreicht werden. Dem Fachmann sind weitere Verfahren bekannt, um zwei zunächst allein durch nicht-kovalente Bindung verbundene Proteine miteinander zu verbinden. Zu diesem dem Fachmann bekannten Verfahren der kovalenten Verbindung zweier nicht-kovalent-gebundener Fusionsproteine zählt beispielsweise das Psoralen-Crosslinking.

WO 2004/050871 - 8 - PCT/EP2003/013709

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Nukleinsäuregemisch, das für ein erfindungsgemäßes Proteingemisch kodiert. Eine kodierende Nukleinsäure, im Sinne der Erfindung ist ein Nukleinsäuresequenz, die für ein erfindungsgemäßes Polypeptid oder einen Vorläufer davon kodiert. Bevorzugterweise handelt es sich bei dem Nukleinsäuregemisch um DNA oder RNA, vorzugsweise um eine DNA, wobei die DNA einzelsträngig oder doppelsträngig vorliegen kann. Die jeweils für das erste oder zweite Fusionsprotein kodierende Nukleinsäure enthält des weiteren Promotoren, die die Expression des jeweiligen Fusionsproteins in der Wirtszelle ermöglichen. Geeignete Promotoren für die Expression in beispielsweise E. coli sind der trp-Promotor, lacZ-Promotor, tet-Promotor, T7-Promotor oder ara-Promotor. Weitere Elemente, die in den jeweiligen, das Nukleinsäuregemisch ausmachenden Nukleinsäuren vorhanden sein können, sind Replikationsursprünge (Ori), selektive Markergene, die beispielsweise Ampizilin- oder Chloramphenikolresistenz vermitteln. Die Nukleinsäuren können neben dem für das jeweilige Fusionsprotein kodierenden Bereich, die üblicherweise in bakteriellen Expressionsvektoren verwendeten Elemente aufweisen. Dem Fachmann sind eine Vielzahl solcher Elemente sowie Vektoren bekannt, wie beispielsweise pGEM oder pUC.

5

10

15

20

25

30

In einer bevorzugten Ausführungsformen des Nukleinsäuregemisches der vorliegenden Erfindung, sind die zwei Nukleinsäuren, die für das erste und zweite Fusionsprotein kodieren, kovalent miteinander verbunden, vorzugsweise über Phosphordiester-Bindungen. Insbesondere sind die Nukleinsäuremoleküle, die für das erste und zweite Fusionsprotein kodieren und geeignete regulatorische Elemente enthalten, auf einem Plasmid enthalten, so daß die erfindungsgemäßen Proteingemische bereits durch Transfektion nur eines Plasmids bzw. wenn diese Nukleinsäure in einem Phagen enthalten ist, durch Infektion mit nur einem Phagen beispielsweise in einem Bakterium hergestellt werden können. In einer bevorzugten Ausführungsform werden beide Fusionsprotein unter der Kontrolle nur eines Promotors als bicistronische Kassette exprimiert.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Vektor, enthaltend ein erfindungsgemäßes Proteingemisch und/oder enthaltend ein erfindungsgemäßes Nukleinsäuregemisch. Ein Vektor, im Sinne der vorliegenden Erfindung, ist ein Protein-Nukleinsäuregemisch, das in der Lage ist, die in ihm enthaltenen Proteingemische und/oder Nukleinsäuregemisch in eine Zelle einzuführen. Dabei ist es bevorzugt, daß dabei die von den Nukleinsäuregemischen kodierten Fusionsproteine in der Zelle zur Expression kommen und

somit de *novo* synthetisierte Fusionsproteine aus der Zelle gewonnen, bzw. auf der Zelloberfläche präsentiert werden. Geeignete Vektoren sind beispielsweise nicht-lytische Phagen, wie M13-Phage, fd-Phage, F1-Phage und lytische Phagen, wie λ -Phage.

Ein weiterer Gegenstand der vorliegenden Erfindung, ist eine Zelle, enthaltend ein erfindungsgemäßes Proteingemisch, ein erfindungsgemäßes Nukleinsäuregemisch und/oder einen erfindungsgemäßen Vektor. Erfindungsgemäße Zellen können prokaryontische oder eukaryontische Zellen sein. In einer bevorzugten Ausführungsform der vorliegenden Erfindung, handelt es sich bei den erfindungsgemäßen Zellen um prokaryontische Zellen, insbesondere um Bakterien und noch bevorzugter um E. coli (TG1, XL-1, JM83, BL21) oder B. subtilis.

15

20

25

30

Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Bibliothek, enthaltend mindestens zwei erfindungsgemäße Proteingemische, mindestens zwei erfindungsgemäße Vektoren und/oder mindestens zwei erfindungsgemäße Zellen, wobei die Proteine oder Proteinfragmente der jeweiligen ersten oder jeweiligen zweiten Fusionsproteine voneinander unterschiedlich sind. Eine solche Bibliothek kann entweder gezielt ausgewählte unterschiedliche bekannte Proteine oder Proteinfragmente enthalten oder die Interaktionsdomäne und die Proteintranslokationssequenz des ersten oder zweiten bevorzugt des zweiten Fusionsproteins können mit einer cDNA-Bibliothek fusioniert werden, wobei bei Expression dieser Nukleinsäuren eine Vielzahl unterschiedlicher erster oder zweiter Fusionsproteine entstehen, die jeweils unterschiedliche Proteine oder Proteinfragmente enthalten. Vorzugsweise wird dabei der cDNA-Anteil am C-Terminus des Fusionsproteins exprimiert, um dadurch das vorangehend geschilderte Problem bei N-terminaler Fusion einer cDNA zu umgehen. In einer bevorzugten Ausführungsform enthält die Bibliothek eine Vielzahl von erfindungsgemäßen Zellen, wobei jede Zelle ein anderes Proteingemisch herstellt, vorzugsweise auf ihrer Oberfläche präsentiert. Im Falle, daß das Protein oder Proteinfragment und die Interaktionsdomäne des ersten Proteins ein Phagenhüllprotein ist, erlaubt die erfindungsgemäße Bibliothek die Präsentation einer Vielzahl von Proteinen oder Proteinfragmenten, die im zweiten Fusionsprotein enthalten sind. Dabei ist die Präsentation nicht wie bei den im Stand der Technik bekannten Phagendisplay-Bibliotheken auf Proteine oder Proteinfragmente beschränkt, die sich im Periplasma der Zelle zu ihrer funktionellen Form falten, sondern umfaßt auch Proteine, die nur im Zytoplasma ihre funktionelle Faltung erlangen können.

WO 2004/050871 - 10 - PCT/EP2003/013709

Die erfindungsgemäßen Proteingemische, die Heterodimere oder Multimere bilden können, wobei die Bestandteile der Heterodimere oder Multimere in mindestens zwei unterschiedlichen zellulären Kompartments ihre dreidimensionale Struktur erhalten haben, lassen sich nunmehr in einer Reihe von Verfahren unter anderem auch im Phagendisplay einsetzen.

5

10

Ein weiterer Gegenstand der Erfindung ist daher ein Verfahren zum Auffinden von Substanzen, die an ein Proteingemisch, einen erfindungsgemäßen Vektor oder an eine erfindungsgemäße Zelle binden, enthaltend die Schritte:

- a) In-Kontaktbringen mindestens einer potentiell-bindenden Substanz mit einem erfindungsgemäßen Proteingemisch, einem erfindungsgemäßen Vektor oder einer erfindungsgemäßen Zelle und
- b) Messen der Bindung der Substanz an das Proteingemisch, den Vektor und/oder die Zelle.
- Das Verfahren dient somit vorzugsweise dem Auffinden einer Substanz oder von Substanzen, die an ein bereits bekanntes Proteintarget binden, beispielsweise um Inhibitoren, Aktivatoren, Kompetitoren oder Modulatoren des bekannten Proteintargets aufzufinden. Die potentiell bindenden Substanzen deren Bindung an ein erfindungsgemäßes Proteingemisch, einen erfindungsgemäßen Vektor und/oder eine erfindungsgemäße Zelle gemessen werden soll, kann jede beliebige chemische Substanz oder jedes beliebige Substanzgemisch sein. Beispielsweise kann es sich hierbei um Substanzen einer Peptid-Bibliothek handeln, um Substanzen aus einer kombinatorischen chemischen Bibliothek, um Zellextrakte, insbesondere Pflanzenzellextrakte, und um Proteine oder Proteinfragmente.
- Unter In-Kontaktbringen der potentiell bindenden Substanz(en) mit einem erfindungsgemäßen Proteingemisch, Vektor oder Zelle wird jede Möglichkeit der Wechselwirkung zwischen den beiden Komponenten verstanden, wobei sich die beiden Komponenten jeweils unabhängig voneinander in flüssiger Phase, beispielsweise in Lösung oder in einer Suspension, befinden können oder auch an eine feste Phase, beispielsweise in Form einer im wesentlichen planaren Oberfläche oder in Form von Partikeln, Perlen oder ähnlichem, gebunden sein können. In einer bevorzugten Ausführungsform ist eine Vielzahl unterschiedlicher potentiell bindender Substanzen an einer festen Oberfläche immobilisiert und wird mit den erfindungsgemäßen Proteingemisch, dem erfindungsgemäßen Vektor oder der erfindungsgemäßen Zelle In-Kontakt gebracht und anschließend wird die Bindung der erfindungsgemäßen Substanzen an

den verschiedenen Positionen, an denen jeweils unterschiedliche potentiell-bindende Substanzen immobilisiert sind, gemessen.

Das Messen der Bindung des erfindungsgemäßen Proteingemisches, des Vektors oder der Zelle, an eine potentiell bindende Substanz kann beispielsweise über die Messung eines mit dem erfindungsgemäßen Proteingemisch, mit dem erfindungsgemäßen Vektor oder der erfindungsgemäßen Zelle verbundenen Markers geschehen, wobei geeignete Marker dem Fachmann bekannt sind und beispielsweise Fluoreszenz- oder radioaktive Marker umfassen. In einer bevorzugten Ausführungsform enthält das Proteingemisch, der Vektor oder die Zelle zusätzlich im zweiten Fusionsprotein neben dem Protein oder Proteinfragment, dessen Wechselwirkung mit den potentiell-bindenden Substanzen untersucht werden soll, ein autofluorezierendes Protein, wie beispielsweise GFP oder Varianten davon. Das Messen der Bindung der Substanz kann jedoch auch über die Änderung von elektrochemischen, insbesondere Redoxeigenschaften beispielsweise der immobilisierten potentiell bindenden Substanzen nach In-Kontaktbringen gemessen werden. Geeignete Verfahren umfassen beispielsweise potentiometrische Methoden. Weitere Verfahren zum Nachweis der Bindung zweier Moleküle oder Molekülgemische, sind dem Fachmann bekannt und können gleichermaßen zum Messen der Bindung der potentiell-bindenden Substanz an das erfindungsgemäße Proteingemisch, den erfindungsgemäßen Vektor oder die erfindungsgemäße Zelle verwendet werden.

20

25

30

5

10

15

Gegebenenfalls können vor, zwischen oder nach den Schritten des erfindungsgemäßen Verfahrens weitere Schritte eingeführt werden, wie beispielsweise das ein- oder mehrmalige Waschen nach dem In-Kontaktbringen, um beispielsweise unspezifische Bindungen zwischen der potentiell bindenden Substanz und dem erfindungsgemäßen Proteingemisch, dem erfindungsgemäßen Vektor oder der erfindungsgemäßen Zelle zu lösen.

Als weitere Schritte nach dem Messen der Bindung der Substanz kann eine bindende Substanz z.B. auf Grund der gemessenen Bindungsstärke ausgewählt werden und dann direkt bspw. zur Inhibition des bekannten Proteintargets verwendet werden. Die bindende Substanz kann jedoch auch durch im Stand der Technik bekannte Verfahren, die auch Verfahren der kombinatorischen Chemie umfassen modifiziert werden. Beispielsweise durch das Anfügen von Halogenseitengruppen, vorzugsweise F oder Cl, durch das Anfügen von nieder Alkylgruppen, wie Methyl-, Ethyl-, n-Propyl-, iso-Propyl-, n-Butyl-, iso-Butyl- oder tert-Butylgruppen oder durch das Anfügen von Amino-, Nitro-, Hydroxyl-, Amido- oder Carbon-

WO 2004/050871 - 12 - PCT/EP2003/013709

säuregruppen. Die so unterschiedlich modifizierten bindenden Substanzen können dann erneut in dem erfindungsgemäßen Verfahren auf ihre Bindung getestet werden und hinsichtlich der gewünschten Bindungsspezifität und dem dadurch erzielten Effekt (beispielsweise Aktivierung, Inhibierung oder Modulation der jeweiligen Aktivität) optimiert werden.

5

15

20

25

30

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zum Auffinden von Proteinen oder Proteinfragmenten, die an eine Testsubstanz binden, enthaltend die Schritte:

- a) In-Kontaktbringen mindestens einer Testsubstanz mit einer erfindungsgemäßen Bibliothek und
- b) Messen der jeweiligen Bindung der Testsubstanz an die unterschiedlichen Proteingemische, Vektoren und/oder Zellen der erfindungsgemäßen Bibliothek.

Bei diesem Verfahren sollen Proteine oder Proteinfragmente ausgewählt werden, die an eine gegebene Testsubstanz binden. Vorzugsweise handelt es sich dabei um die Proteine oder Proteinfragmente des zweiten Fusionsproteins, da diese mit einer größeren Wahrscheinlichkeit korrekt gefaltet sind, als die Proteine oder Proteinfragmente des ersten Fusionsproteins, die nur dann korrekt gefaltet sind, wenn die jeweiligen Proteine auch im oxidativen Mileu des Periplasmas ihre native Konformation annehmen können. Eine Testsubstanz im Sinne der vorliegenden Erfindung kann jede beliebige chemische Substanz oder ein Gemisch davon sein. Vorzugsweise handelt es sich dabei jedoch um ein Protein oder Proteinfragment, insbesondere um einen Rezeptor, einen Rezeptorliganden, einen Transkriptionsfaktor, einen Ionenkanal, ein Molekül der Signaltransduktionskaskade, Struktur- und Speicherprotein, Toxin oder Lichtrezeptor- und Pigmentprotein. Das Messen der jeweiligen Bindung der unterschiedlichen Proteingemische, Vektoren und/oder Zellen der Bibliothek an die Testsubstanz kann wie vorangehend beschrieben, über markierungsabhängige oder markierungsunabhähngige Meßverfahren erfolgen.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens enthält das Verfahren die weiteren Schritte: Auswählen mindestens eines Proteingemisches, eines Vektors oder einer Zelle aufgrund der gemessenen Bindung und Herstellen einer zweiten Bibliothek, wobei die Bibliothek durch Modifikation des im ausgewählten Proteingemisch, im ausgewählten Vektor oder in der ausgewählten Zelle enthaltenen Proteins oder Proteinfragments erzeugt wird. Der Auswahlprozeß von Proteingemischen, Vektoren oder Zellen aus der Bibliothek wird vorzugsweise aufgrund der Stärke der Bindung durchgeführt, wobei die Protein-

WO 2004/050871 - 13 - PCT/EP2003/013709

gemische, Vektoren oder Zellen bevorzugt sind, die die stärkste Bindung an die jeweilige Testsubstanz zeigen. Ausgehend von der Aminosäuresequenz des im ausgewählten Proteingemisch, Vektor oder Zelle enthaltenen Proteins oder Proteinfragments, die durch Standardverfahren bestimmt werden kann, können Modifikation erzeugt werden, die jeweils zu geringen Änderungen der Aminosäuresequenz führen und damit zu einer Vielzahl von Derivaten, die im Vergleich zum Ausgangsprotein bzw. Proteinfragment eine leicht veränderte dreidimensionale Struktur besitzen. Solche Modifikationen lassen sich durch im Stand der Technik bekannte Verfahren beispielsweise durch Zufallsmutagenese oder auch durch gezielte Substitution einzelner Nukleinsäurecodons, der für das Protein oder Proteinfragment kodierenden Nukleinsäure, erhalten. Bevorzugt sind dabei Substitution, die sogenannte "konservative" Substitutionen sind. Eine konservative Substitution liegt dann vor, wenn beispielsweise ein für eine basische Aminosäure kodierendes Nukleinsäurecodon durch ein anderes für eine basische Aminosäure kodierendes Nukleinsäurecodon, ein für eine saure Aminosäure kodierendes Nukleinsäurecodon durch ein anderes für eine saure Aminosäure kodierendes Nukleinsäurecodon bzw. ein für eine polare Aminosäure kodierendes Nukleinsäurecodon durch ein anderes für eine polare Aminosäure kodierendes Nukleinsäurecodon ersetzt wird.

5

10

15

20

25

Die auf Grundlage der ausgewählten Proteingemische, Vektoren oder Zellen neu erzeugten zweiten Bibliotheken können nunmehr in einem weiteren Schritt wiederum mit der Testsubstanz in Kontakt gebracht werden, worauf in einem weiteren Schritt die jeweilige Bindung der Testsubstanz an die modifizierten Proteingemische, Vektoren oder Zellen der zweiten Bibliothek gemessen werden kann. Gegebenenfalls können nunmehr die Schritte des Auswählens mindestens eines Proteingemisches, eines Vektors oder einer Zelle aufgrund der gemessenen Bindung und die sich daran anschließend Herstellung einer dritten bzw. n-ten Bibliothek sowie das Inkontaktbringen und Messen der jeweiligen Bindung der Testsubstanz an die unterschiedlichen Proteingemische, Vektoren oder Zellen der dritten bzw. n-ten Bibliothek, ein bis n-mal wiederholt werden bis ein Proteingemisch, ein Vektor oder eine Zelle ausgewählt worden ist, das, der bzw. die die gewünschte Bindung zeigt.

Das zuvor geschilderte Verfahren wird auch als gerichtete Evolution bezeichnet, da in einer Vielzahl von Schritten die aus Modifikation und Selektion bestehen, Proteine oder Proteinfragmente "evolutionär" hinsichtlich einer bestimmten Eigenschaft, insbesondere ihrer Bindungseigenschaft weiterentwickelt werden.

Die durch das obige Verfahren aufgefundenen oder zusätzlich hinsichtlich einer bestimmten Eigenschaft optimierten Proteine oder Proteinfragmente können, wenn sie beispielsweise auf die Aktivierung oder Repression eines bestimmten zellulären Signalwegs hin optimiert worden sind, als Wirkstoff in einem Medikament eingesetzt werden. Dasselbe gilt für die bindenden Substanzen, die in dem Verfahren zum Auffinden von potentiell bindenden Substanzen identifiziert worden sind. Daher umfassen die erfindungsgemäßen Verfahren in einer bevorzugten Ausführungsform den weiteren Schritt, daß die ausgewählte bindende Substanz oder das in dem ausgewählten Proteingemisch, in dem ausgewählten Vektor oder in der ausgewählten Zelle enthaltene Protein oder Proteinfragment oder eine Variante davon mit einem pharmazeutisch akzeptablem Träger und/oder Hilfsstoff gemischt wird.

Eine "Variante" des Proteins oder Proteinfragments beinhaltet Modifikation des N- oder C-Terminus oder Modifikation von Aminosäureseitenketten, die beispielsweise die Stabilität, Löslichkeit oder Biokompatibilität des Proteins oder Proteinfragments erhöhen. Umfaßt sind jedoch auch Fusionsproteine mit den erfindungsgemäß identifizierten Proteinen oder Proteinfragmenten, die als weitere Komponenten beispielsweise autofluoreszente Marker, wie beispielsweise GFP oder Zytostatika wie beispielsweise Choleratoxin enthalten können.

Pharmazeutisch akzeptable Träger und/oder Hilfsstoffe umfassen Substanzen, die die bindende Substanz bzw. das Protein oder Proteinfragment oder seine Varianten stabilisieren, deren pharmazeutische Verträglichkeit erhöhen oder die für die jeweilige Applikationsform, wie beispielsweise Tablette, Pflaster oder Infusionslösung, erforderlich sind, wie beispielsweise Konservierungsmittel, Puffer, Salz oder Proteaseinhibitoren.

- 25 Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kit zur Herstellung eines Nukleinsäuregemisches nach Anspruch 10 enthaltend:
 - a) mindestens eine erste Nukleinsäure enthaltend mindestens eine Restriktionsschnittstelle
 5' und/oder 3' von einer Nukleinsäure kodierend für ein erstes Fusionsprotein enthaltend:
 - i) eine Interaktionsdomäne und

5

10

15

20

30

ii) eine Proteintranslokationssequenz, die bewirkt, daß das erste Fusionsprotein bei Expression in einem Bakterium in einem im wesentlichen gefalteten Zustand durch die zytoplasmatische Membran transloziert wird.

Dieses Kit erlaubt die Insertion einer ausgewählten Nukleinsäuresequenz 5' oder 3' von der Nukleinsäure, die für eine Interaktionsdomäne und eine Proteintranslokationssequenz kodiert, so daß im Ergebnis von der resultierenden Nukleinsäure ein Fusionsprotein kodiert wird, das am C-Terminus und/oder am N-Terminus ein durch die jeweils eingeführte Nukleinsäuresequenz kodiertes Protein oder Proteinfragment enthält. Vorzugsweise handelt es sich bei der eingeführten DNA um eine cDNA-Bibliothek, wobei diese besonders bevorzugt unter Verwendung der 3'-Restriktionsschnittstelle in die Nukleinsäure eingeführt wird. In einer bevorzugten Ausführungsform enthält das Kit den Leuzin-Zipper aus dem cFos-Protein und in einer weiteren Bevorzugten Ausführungsform die Tat-abhängige Proteintranslokationssequenz TorA.

In einer weiteren Ausführungsform des erfindungsgemäßen Kits enthält das Kit des weiteren mindestens eine zweite Nukleinsäure enthaltend mindestens eine Restriktionsschnittstelle 5' und/oder 3' von einer Nukleinsäure kodierend für ein zweites Fusionsprotein enthaltend:

i) eine Interaktionsdomäne und

5

10

20

25

30

ii) eine Proteintranslokationssequenz, die bewirkt, daß das zweite Fusionsprotein bei Expression in einem Bakterium in einem im wesentlichen ungefalteten Zustand durch die zytoplasmatische Membran transloziert wird, wobei die Interaktionsdomäne des ersten Fusionsproteins an die des zweiten Fusionsproteins binden kann.

Diese Nukleinsäure erlaubt die Insertion 5' oder 3' von der für eine Interaktionsdomäne und eine Proteintranslokationssequenz kodierenden Nukleinsäure, so daß im Ergebnis von der resultierenden Nukleinsäure ein Fusionsprotein kodiert wird, das am N- oder C-Terminus ein von der insertierten Nukleinsäure kodiertes Protein oder Proteinfragment umfaßt. Beispielsweise können Nukleinsäuren, die für Phagenhüllproteine kodieren in die Nukleinsäure inser-

tiert werden, wobei diese vorzugsweise in die 3'-Restriktionsschnittstelle eingeführt werden.

Es hat sich gezeigt, daß wenn in die zweite Nukleinsäure Nukleinsäuren eingeführt werden, die für Phagenhüllproteine kodieren, daß die resultierenden Fusionsproteine bei starker Expression von beispielsweise dem gIIIp-Fusionsprotein zu eine hohen Toxizität für *E. coli-*Zellen führen. Aus diesem Grund wird bei klassischen Phagendisplaysystemen ein Amber-Codon 5' von dem gIII-Protein eingefügt. In Supressorstämmen (z.B. XL-1 Blue) wird dadurch die Expression des gIIIp-Fusionsproteins um ca. 90% reduziert. Darüber hinaus ermöglicht das Amber-Codon (das in Nicht-Suppressorstämmen als STOP-Codon gelesen wird)

sehr einfach die lösliche Expression des zuvor mit dem Phagenprotein fusionierten und auf dem Phagen präsentierten Proteins, indem das Phagemid in einen Nicht-Suppressorstamm (z.B. BL21) eingebracht und dort die Expression durchgeführt wird. Daher enthält die erste und/oder die zweite Nukleinsäure in einer bevorzugten Ausführungsform entweder 5 oder 3° ein Amber-Codon. Vorzugsweise ist das Amber-Codon in der ersten Nukleinsäure 5° angeordnet und in der zweiten Nukleinsäure 3° angeordnet. Dadurch läßt sich in einem geeigneten bakteriellen Wirt erreichen, daß ausschließlich das in der ersten Nukleinsäure 5° eingefügte Protein oder Proteinfragment exprimiert wird und gleichzeitig der toxische Effekt des in der zweiten Nukleinsäure 3° eingefügten gIIIp verhindert wird.

10

15

20

25

30

5

In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Kits ist die Interaktionsdomäne des zweiten Fusionsproteins die Leuzin-Zipperdomäne des cJun-Proteins. In einer weiteren bevorzugten Ausführungsform enthält die Nukleinsäure eine Nukleinsäure, die für eine Sec-abhängige Proteintranslokationssequenz insbesondere das PelB-Führungspeptid kodiert.

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung einer Zelle zur Herstellung eines erfindungsgemäßen Proteingemisches sowie die Verwendung eines erfindungsgemäßen Proteingemisches, eines erfindungsgemäßen Vektors oder einer erfindungsgemäßen Zelle zur Herstellung einer erfindungsgemäßen Bibliothek.

Ein bevorzugtes Anwendungsgebiete der erfindungsgemäßen Proteingemische, erfindungsgemäßen Phagen, der erfindungsgemäßen Zellen, insbesondere der erfindungsgemäßen Bibliotheken, enthaltend vorgenannte Proteingemische, Phagen und Zellen sowie der erfindungsgemäßen Kits, ist die Präsentation von Proteinen auf filamentösen Phagen. Ein besonderer Schwerpunkt liegt dabei auf Proteinen, die aufgrund ihrer Inkompatibilität mit dem Sectransportweg nicht mit Hilfe der klassischen Phagendisplay-Technologie präsentiert werden können. Als besonders bevorzugte Anwendungsbereiche ergeben sich daher die Präsentation und Selektion von cDNA-Expressionsbibliotheken und die Präsentation und Selektion von DNA-Bibliotheken zur gerichteten Evolution von Proteinen, auch "protein engineering" genannt.

Eine weitere bevorzugte Verwendung liegt in der Herstellung von Proteinkonjugaten. Dabei ist die Verwendung dann besonders bevorzugt, wenn das Protein oder Proteinfragment des

WO 2004/050871 - 17 - PCT/EP2003/013709

ersten Fusionsproteins und das Protein oder Proteinfragment des zweiten Fusionsproteins jeweils unterschiedliche Anforderungen hinsichtlich der zur korrekten Faltung erforderlichen zellulären Umgebung haben. So erlaubt es die vorliegende Erfindung Antikörper direkt mit Markerproteinen gentechnisch zu fusionieren, die bei Produktion in Bakterien und Transport über den Sec-abhängigen Transportweg nicht korrekt gefaltet würden und daher bei Anwendung von Standardverfahren nicht als Markerprotein zur Markierung des Antikörper verwendet werden können. Markerproteine-Antikörperfusion, deren funktionelle Expression erst durch die vorliegende Erfindung möglich geworden ist, umfassen beispielsweise Fusionen aus autofloreszierenden Proteine, wie GFP und schweren Immunoglobulinketten, leichten Immunoglobulinketten oder "single-chain-antibodies".

5

10

15

25

Die folgenden Abbildungen und Beispiele dienen lediglich der Illustration der Erfindung und sind nicht als Beschränkung derselben auf die konkret in den Beispielen angegebenen Ausführungsformen zu verstehen. Alle im Text enthaltenen Zitate werden hierdurch in ihrem gesamten Umfang durch Verweis aufgenommen.

Abbildungen

- Abb. 1 Konsensussequenzen Tat-abhängiger, Sec-abhängiger, SRP-abhängiger oder YidC-abhängiger Signalsequenzen, wobei X eine beliebige Aminosäure und # eine hydrophobe Aminosäure präsentieren.
 - Abb. 2 Tat-abhängiges TorA-Signalpeptid, wobei X eine beliebige Aminosäure und # eine hydrophobe Aminosäure präsentieren
 - Abb. 3 Prinzip des TLF-Systems, wobei CT die Domäne des pIII, pelB die Sec-Signalsequenz, TSS die Tat-Signalsequenz und POI das präsentierte Protein bedeuten.
- 30 Abb. 4 Restriktionskarte des Plasmids pCD4/GFP24, dessen Nukleinsäuresequenz als SEQ ID NR: 1 im Anhang wiedergegeben ist.
 - Abb. 5 Restriktionskarte des Plasmids pCA1/GFP24, dessen Nukleinsäuresequenz in SEQ ID NR: 2 wiedergegeben ist.

WO 2004/050871 - 18 - PCT/EP2003/013709

Abb. 6 Restriktionskarte des Plasmids pCN1/GFP24, dessen Nukleinsäuresequenz in SEQ ID NR: 3 wiedergegeben ist.

5 Abb. 7 Kompetitiver Phagen-ELISA, wobei weiße Balken die Ergebnisse mit GFP24präsentierende Phagen zeigen. GFP24-Phagen wurden mit Hilfe von XL-1
Blue Zelle hergestellt, die das Plasmid pCD4/GFP24 tragen. Graue Balken präsentieren die Ergebnisse, die mit β-Lactamase-tragenden Phagen erzielt wurden. β-Lactamase-präsentierende Phagen wurden in XL-1 Blue Zelle hergestellt, die das Plasmid pCD4/BLA trugen.

Enzymatischer Assay, der Präsentation von β-Lactamase auf Bakteriophage, wobei weißen Kreise die Ergebnisse mit GFP24-tragende Phagen zeigen. GFP24-Phagen wurden mit Hilfe von XL-1 Blue Zelle hergestellt wurden, die das Plasmid pCD4/GFP24 tragen. Schwarze Vierecke präsentieren die Ergebnisse die mit β-Lactamase-tragenden Phagen erzielt wurden. β-Lactamase-präsentierende Phagen wurden in XL-1 Blue Zelle hergestellt, die das Plasmid pCD4/BLA trugen. Gezeigt wird die Absorption bei 486 nm in Abhängigkeit von der Zeit.

20

15

Abb. 8

Beispiele

Beispiel 1: Verwendete Vektoren

25

30

pCD4/GFP24 ist ein Cysteindisplay-Phagemid, das auf dem pGP-Vektor (Paschke M., et al.: (2001) Biotechniques 30: 720-725) beruht.

pCA1/GFP24 ist ein Cysteindisplay-Phagemid, das auf pGP-F100 basiert. Es kann für die tet^{o-p}-kontrollierte Expression von Protein als Fusion von cFos-Leuzin-Zipper verwendet werden. Die Translokation des cFos-Fusionsproteins im periplasmatischen Raum wird durch die TorA-Führungspeptidsequenz (Tat-abhängige Translokationsweg) vermittelt. Das tet^{o-p}-kontrollierte Transkript enthält ein zweites Cistron, von dem das c-jun::G3Ps-Fusionsprotein exprimiert wird. Das c-Jun::G3Ps wird über den Sec-abhängigen Translokationsweg in dem

WO 2004/050871 - 19 - PCT/EP2003/013709

periplasmatischen Raum gesteuert. Kovalente Komplexe zwischen dem cFos-Fusionsprotein und dem cJun::G3PS-Fusionsprotein werden im periplasmatischen Raum aufgrund der Dimerisierung von cJun und cFos und anschließender Ausbildung von Cysteinbindungen zwischen den Proteinen hergestellt. Das Phagemid enthält eine GFP24-Kassette, flankiert von Sfil-Restriktionsstellen an den Positionen 148 und 910 und ist zwischen dem TorA-Führungspeptid und cFos angeordnet. Diese Kassette muß durch das zu präsentierende Protein ersetzt werden.

pCA1/GFP24 ist ein von pCD4 abgeleitetes Cysteindisplay-Phagemid, das auf dem pGP-Vektor basiert. pCD4/GFP24 ist ein Cysteindisplay-Phagnid, das auf dem pGP-Vektor (Paschke M., et al.: (2001) Biotechniques 30: 720-725) beruht. Es kann für die teto-pkontrollierte Expression von Proteinen als Fusion mit dem cFos-Leucinzipper verwendet werden. Die Translokation des cFos-Fusionsproteins in den periplasmatischen Raum wird durch das TorA-Führungspeptid (Tat-Transportweg) vermittelt. Das tet^{o-p}-kontrollierte Transkript enthält ein zweites Cistron, von dem das c-jun::G3Pss Fusionsprotein exprimiert wird (G3Pss umfaßt Aminosäuren 252 bis 406 des reifen gIII-Proteins des fd-Phagen). Das c-jun:G3Pss wird durch einen Sec-abhängigen Transportweg (pelB-Führungspeptid) in dem periplasmatischen Raum gelenkt. Kovalente Komplexe von cFos-Fusionsprotein und c-jun::G3Pss werden aufgrund der Dimerisierung zwischen cJun und cFos im periplasmatischen Raum und die anschließende Ausbildung von Cysteinbindung zwischen den Proteinen gebildet (Crameri, R. und Suter M. (1993), siehe oben). Der Phagendisplay der Proteine, die mit cFos fusioniert sind, kann durch sogenannten Helferphargenrescue erreicht werden. Im Gegensatz zu pGP überträgt das Phagemid pCD4-GFP24 Chloramphenicolresistenz. Das Resistenzgen (CAT) und der tet-Repressor (TetR) werden unter Kontrolle des β-Lactamasepromotors von einer bicistronischen Kassette kontrolliert. Das Transkript wird in einem λ-Phagenterminator terminiert. Die Tat-TetR-Kassette ist in umgekehrter Orientierung zu der cFos- und cJun-Fusionskassette. Eine GFP24-Kassette, flankiert an der Position 148 und 910 von SfiI-Restriktionsstellen ist zwischen dem TorA-Führungspeptid und cFos angeordnet. Diese Kassette wird durch das zu präsentierenden Protein ersetzt.

30

25

5

10

15

20

pCD4/Bla ist ein von pCD4/GFP24 abgeleitetes Cysteindisplay-Phagemid, bei dem mittels Restriktion mit SfiI das GFP24 Fragment durch die Sequenz der reifen TEM1 β -Lactamase ersetzt wurde. Die eingefügte Lactamaseklonierungskasette mit 5' und 3'-terminalen SfiI-Restriktionsstellen ist in SEQ ID NR: 4 wiedergegeben.

WO 2004/050871 - 20 - PCT/EP2003/013709

Beispiel 2: Herstellung von Bakteriophagen

Mit dem entsprechenden Phagemid transformierte XLI-Blue-Zellen wurden in 2 TY-Selektionsmedium bei 30°C bis zu einem OD600nm von 0,5 kultiviert und dann mit dem Helferphagen VCSM13 mit einem Moi = 10-20 gemischt. Die infizierte Kultur wurde für 30 Minuten bei 37°C kultiviert und anschließend mit Kanamizin in einer Endkonzentration von 60 μg/ml versetzt. Die Kultur wurde für 10 Minuten bei 25°C kultiviert. Durch Zentrifugation (4000 x g, 4°C, 5 Minuten) wurden die Zellen geerntet und anschließend in 2 TY-Selektionsmedium enthaltend 60 µg/l Kanamizin und 0,5 µg/ml Tetracyclin resuspendiert. Diese Kultur wurde für 5 h bei 25°C kultiviert. Anschließend folgte die Phagenpräparation aus dem Zellkulturüberstand wie folgt: Jeweils 40-50 ml Zellen und Zelltrümmer wurden durch Zentrifugation (4°C, 10.000 rpm in einem A8-24-Rotor für 15 Minuten) vom phagenhaltigen Zellkulturüberstand getrennt. Der Überstand wurde durch einen $0,45~\mu m$ Filter filtriert und mit ¼ Volumen PEG-NaCl-Lösung (20% w/v PEG 8000, 50% w/v NaCl) gemischt und über Nacht oder für mindestens eine Stunde auf Eis inkubiert. Die Mischung wurde dann bei 4°C für 15 min bei 15.000 rpm in einem A8.24-Rotor zentrifugiert. Der Niederschlag wurde in 2,5 ml eiskaltem PBS resuspendiert und auf 2 ml Plastikröhrchen verteilt. Dann wurde der Überstand mit 1/4 Volumen PEG-NaCl-Lösung gemischt und für mindestens eine weitere Stunde auf Eis inkubiert. Anschließend wurde der Überstand bei 4°C und 14.000 rpm für 15 Minuten zentrifugiert. Der Phagenniederschlag wurde in 0,5-1 ml PBS gelöst. Gegebenenfalls wurde die Phagenlösung durch einen 0,45 µm-Filter filtriert und anschließend bei 4°C gelagert. Bei längerer Lagerung wurde die Phagenlösung mit 1 Volumen Glycerol versetzt und bei -70°C gelagert.

25

20

5

10

15

Der Phagentiter wurde durch Standardverfahren unter Verwendung einer Verdünnungsreihe bestimmt. Der Titer lag üblicherweise zwischen 10¹² und 10¹³ cfu/ml.

Beispiel 3: Präsentation von funktionellem GFP24 auf Phagen

30

GFP24 ist eine zirkulärpermutierte Variante des grün fluoreszierenden Proteins, die zusätzlich ein Epitop des P24-Proteins aus HIV enthält (Höhne, W.E. et al. (1993) Mol Immunol 30:1213-21). GFP24 wird durch den anti-P24-Antikörper CB4-1 (Dr. Scholz, Institut für Biochemie, (Universitätsklinikum Charite)) mit hoher Affinität gebunden. GFP24 kann wie auch

WO 2004/050871 - 21 - PCT/EP2003/013709

GFP selbst nicht über den Sec-Transportweg exportiert werden. Ein funktionelles GFP24 Protein sollte daher bei Expression des oben geschriebenen pCD4/GFP24-Plasmids nur dann zur Präsentation eines funktionsfähigen GFP24 führen, wenn dieser Teil des Proteins nicht durch einen Sec-abhängigen Transportweg, sondern durch einen Tat-abhängigen Transportweg in das Periplasma transportiert worden ist. Um GFP24 auf filamentösen Phagen nachzuweisen, wurde ein Phagen-ELISA wie folgt durchgeführt. Mikrotiterplatten wurden mit 10 µm/ml anit-P24Antikörper-C4-1 beschichtet, dreimal mit PBS/Tween 0,1% gewaschen und mit 200 μl pro Vertiefung Genosys-Blockierungsreagenz (Sigma-Genosys Ltd, Cambridge, UK)) für ein bis zwei Stunden bei Raumtemperatur unter Schütteln inkubiert. Anschließend wurde die Mikrotiterplatte dreimal mit PBS/Tween 20 0,1% gewaschen. Anschließend wurden 50 µl pro Vertiefung GFP24 präsentierende Phagen mit und ohne P24-Peptid in die Mikrotiterplatte gegeben und anschließend die Gegenwart des Phagen in der Mikrotiterplatte mit einem Meerrettichperoxidase gekoppelten anti-Phagen-Antikörper (Seramun Diagnostica GmbH, Dolgenbrodt, Germany)) nachgewiesen. Die Signalstärke entsprach dabei dem an CB4-1 gebundenen Phagen. pCD4/GFP24 Phagen wurden dabei vollständig von CB4-1 durch das P24-Peptid verdrängt, während β- Lactamase präsentierende Phagen (pCD4/BLA), die als Kontrolle verwendet wurden, nicht an CB4-1 gebunden wurden. Darüber hinaus konnte keine unspezifische Bindung an anderer Antikörper oder das Blockierungsreagenz beobachtet werden (s. Abb. 7).

20

25

30

5

10

15

Beispiel 4: Präsentation von TEM-1-β- Lactamase auf filamentösen Phagen

TEM-1-β-Lactamase ist ein periplasmatischen Protein, das durch die Hydrolyse des Lactamrings des Antibiotikums Ampicillin Resistenz gegen Ampicillin vermitteln kann. TEM-β-Lactamase wird normalerweise mittels des Sec-abhängigen Transportsystems ins Periplasma exportiert. Zum Nachweis, daß TEM-1-β- Lactamase auch durch den Tat-abhängigen Transportweg exportiert werden kann, wurde die Sec-Signalsquenze entfernt und durch die TorA-Sequenz ersetzt. Die erfolgreiche Präsentation von TEM-1-β- Lactamase wurde mit dem nachfolgend beschriebenen Enzymessay nachgewiesen, dessen Ergebnis in Abb. 8 dargestellt ist. 800 μl PBS pH 7,4 wurden mit 100 μl Nitrocefin-Stammlösung (500 μg/ml) gemischt und auf 25°C temperiert. 100 μl Phagenlösung wurden hinzugegeben. Die Extinktsionsänderung bei 486 nm wurde photometrisch über 10 min. beobachtet. Die Absorptionsänderung bei 486 nm entspricht dabei der β-Lactamaseaktivität der Phagen. Während pCD4/GFP24-Phagen

keine β -Lactamaseaktivität zeigten, war bei pCD4/BLA eine starke β -Lactamaseaktivität zu beobachten.

Die Nitrocefinstammlösung wurde folgendermaßen hergestellt: 1 mg Nitrocefin wurd in 100 μl DMSO gelöst. Diese Lösung wurde dann mit 1,9 ml PBS pH 7,4 gemischt. Die Lösung wurde für maximal zwei Wochen bei -20°C gelagert.

Anprüche

- 1. Proteingemisch enthaltend:
- 5 a) mindestens ein erstes Fusionsprotein enthaltend:
 - i) ein Protein oder Proteinfragment,
 - ii) eine Interaktionsdomäne und
 - iii) eine Proteintranslokationssequenz, die bewirkt, daß das Fusionsprotein bei Expression in einem Bakterium in einem im wesentlichen ungefalteten Zustand durch die zytoplasmatische Membran transloziert wird,

und

10

20

25

30

- b) mindestens ein zweites Fusionsprotein enthaltend:
 - i) ein Protein oder Proteinfragment,
 - ii) eine Interaktionsdomäne und
 - iii) eine Proteintranslokationssequenz, die bewirkt, daß das Fusionsprotein bei Expression in einem Bakterium in einem im wesentlichen gefalteten Zustand durch die zytoplasmatische Membran transloziert wird,

wobei die Interaktionsdomäne des ersten Fusionsproteins an die des zweiten Fusionsproteins binden kann.

2. Proteingemisch nach Anspruch 1, wobei das Protein oder Proteinfragment des ersten Fusionsproteins eine schwere Immunoglobulinkette, eine leichte Immunoglobulinkette, ein single-chain Antikörper, ein Diabody, ein Rezeptor, ein Rezeptorligand, ein Integrin, ein Intimin, ein Kohlenhydrat-bindendes Protein, ein Albumin-bindendes Protein oder Protein A ist.

3. Proteingemisch nach Anspruch 1 oder 2, wobei das Protein oder Proteinfragment des zweiten Fusionsproteins ein autofluoreszierendes Protein, insbesondere GFP oder eine Variante davon, ein Enzym, ein Cofaktor-abhängiges Protein, ein Protein, das von einer aus einer cDNA-Bibliothek stammenden cDNA kodiert wird, oder ein synthetisches Protein ist.

5

10

- 4. Proteingemisch nach Anspruch 1, wobei das Protein oder Proteinfragment des ersten Fusionsproteins und die Proteintranslokationssequenz ein Phagenhüllprotein, ein periplasmatisches Markerenzym, ein Intimin, ein Protein der äußeren Bakterienmembran oder ein periplasmatisches Rezeptorprotein ist.
- 5. Proteingemisch nach Anspruch 4, wobei das Phagenhüllprotein ausgewählt ist aus den M13-Phagenhüllproteinen pIII, pVI, pVII, pVIII und pIX.
- Proteingemisch nach einem der Ansprüche 1 bis 5, wobei die Interaktionsdomänen des ersten und zweiten Fusionsproteins jeweils eine Leuzin-Zipper-Domäne und eine Leuzin-Zipper-Domäne, eine Helix-Loop-Helix-Domäne und eine Helix-Loop-Helix-Domäne, ein Calmodulin und ein Calmodulin-bindendes Peptid oder ein Peptid-Dimer-Paar natürlichen oder synthetischen Ursprungs sind.
 - 7. Proteingemisch nach einem der Ansprüche 1 bis 6, wobei die Proteintranslokationssequenz des ersten Fusionsproteins eine Sec-abhängige, SRP-abhängige, YidCabhängige Sequenz oder eine Transportweg-unabhängige Sequenz, die in die Membran
 integriert wird, ist.
 - 8. Proteingemisch nach einem der Ansprüche 1 bis 7, wobei die Proteintranslokationssequenz des zweiten Fusionsproteins eine Tat-abhängige oder Thylakoid-ΔpH-abhängige Sequenz ist.
- Proteingemisch nach einem der Ansprüche 1 bis 8, wobei das erste Fusionsprotein an das zweite Fusionsprotein kovalent oder nicht-kovalent gebunden ist.
 - 10. Nukleinsäuregemisch kodierend für ein Proteingemisch nach einem der Ansprüche 1 bis8.

- 11. Nukleinsäuregemisch nach Anspruch 10, wobei mindestens zwei Nukleinsäuren, die für unterschiedliche Fusionsproteine kodieren, kovalent miteinander verbunden sind.
- 5 12. Vektor enthaltend ein Proteingemisch nach einem der Ansprüche 1 bis 9 und/oder ein Nukleinsäuregemisch nach einem der Ansprüche 10 oder 11.
 - 13. Zelle enthaltend ein Proteingemisch nach einem der Ansprüche 1 bis 9, ein Nukleinsäuregemisch nach einem der Ansprüche 10 oder 11 und/oder einen Vektor nach Anspruch 12.

10

15

20

- 14. Bibliothek enthaltend mindestens zwei Proteingemische nach einem der Ansprüche 1 bis 9, mindestens zwei Vektoren nach Anspruch 12 und/oder mindestens zwei Zellen nach Anspruch 13, wobei die Proteine oder Proteinfragmente der jeweiligen ersten oder jeweiligen zweiten Fusionsproteine voneinander unterschiedlich sind.
- 15. Verfahren zum Auffinden von Substanzen, die an ein Proteingemisch nach einem der Ansprüche 1 bis 9, an einen Vektor nach Anspruch 12 oder an eine Zelle nach Anspruch 13 binden, enthaltend die Schritte:
 - a) In-Kontaktbringen mindestens einer potentiell bindenden Substanz mit einem Proteingemisch nach einem der Ansprüche 1 bis 9, einem Vektor nach Anspruch 12 und/oder einer Zelle nach Anspruch 13 und
- b) Messen der Bindung der potentiell bindenden Substanz an das Proteingemisch, den Vektor und/oder die Zelle.
 - 16. Verfahren zum Auffinden von Proteinen oder Proteinfragmenten, die an eine Testsubstanz binden, enthaltend die Schritte:
 - a) In-Kontaktbringen mindestens einer Testsubstanz mit einer Bibliothek nach Anspruch 14 und

b) Messen der jeweiligen Bindung der Testsubstanz an die unterschiedlichen Proteingemische, Vektoren und/oder Zellen der Bibliothek.

17. Verfahren nach Anspruch 16 enthaltend die weiteren Schritte:

5

20

25

- a) Auswählen mindestens eines Proteingemisches, eines Vektors oder einer Zelle auf Grund der gemessenen Bindung und
- b) Herstellen einer zweiten Bibliothek, wobei die Bibliothek durch Modifikation des im ausgewählten Proteingemisch, im ausgewählten Vektor oder in der ausgewählten Zelle enthaltenden Proteins oder Proteinfragments erzeugt wird.
 - 18. Verfahren nach Anspruch 16 enthaltend die weiteren Schritte:
- 15 a) Auswählen mindestens eines Proteingemisches, eines Vektors oder einer Zelle auf Grund der gemessenen Bindung,
 - b) Herstellen einer zweiten Bibliothek, wobei die Bibliothek durch Modifikation des im ausgewählten Proteingemisch, im ausgewählten Vektor oder in der ausgewählten Zelle enthaltenden Proteins oder Proteinfragments erzeugt wird,
 - c) In-Kontaktbringen mindestens einer Testsubstanz mit der zweiten Bibliothek,
 - d) Messen der jeweiligen Bindung der Testsubstanz an die unterschiedlichen Proteingemische, Vektoren oder Zellen der zweiten Bibliothek und
 - e) gegebenenfalls Wiederholen der Schritte a) bis d) bis ein Proteingemisch, ein Vektor oder eine Zelle ausgewählt wird, das, der bzw. die die gewünschte Bindung zeigt.
 - 19. Verfahren nach einem der Ansprüche 15 bis 18, wobei in einem weiteren Schritt die bindende Substanz oder das in dem ausgewählten Proteingemisch, in dem ausgewählten Vektor oder in der ausgewählten Zelle enthaltende Protein oder Proteinfragment oder

WO 2004/050871 5 PCT/EP2003/013709

eine Variante davon mit einem pharmazeutisch akzeptablen Träger und/oder Hilfsstoff gemischt wird.

- 20. Kit zur Herstellung eines Nukleinsäuregemisches nach Anspruch 10 enthaltend:
 - a) mindestens eine erste Nukleinsäure enthaltend mindestens eine Restriktionsschnittstelle 5' und/oder 3' von einer Nukleinsäure kodierend für ein erstes Fusionsprotein enthaltend:

i) eine Interaktionsdomäne und

5

20

25

- ii) eine Proteintranslokationssequenz, die bewirkt, daß das erste Fusionsprotein bei Expression in einem Bakterium in einem im wesentlichen gefalteten Zustand durch die zytoplasmatische Membran transloziert wird.
- 15 21. Kit nach Anspruch 20, desweiteren enthaltend:
 - a) mindestens eine zweite Nukleinsäure enthaltend mindestens eine Restriktionsschnittstelle 5' und/oder 3' von einer Nukleinsäure kodierend für ein zweites Fusionsprotein enthaltend:

i) eine Interaktionsdomäne und

ii) eine Proteintranslokationssequenz, die bewirkt, daß das zweite Fusionsprotein bei Expression in einem Bakterium in einem im wesentlichen ungefalteten Zustand durch die zytoplasmatische Membran transloziert wird,

wobei die Interaktionsdomäne des ersten Fusionsproteins an die des zweiten Fusionsproteins binden kann.

- Verwendung einer Zelle nach Anspruch 13 zur Herstellung eines Proteingemisches
 nach einem der Ansprüche 1-9.
 - 23. Verwendung eines Proteingemisches nach einem der Ansprüche 1 bis 9, eines Vektors nach Anspruch 12 und/oder einer Zelle nach Anspruch 13 zur Herstellung einer Bibliothek nach Anspruch 14.

Abb. 1

Tat-abhängige Signalsed	quenz	
	ca. 26-58	→
R R X # #		AXA
⊕geladener-terminus mit RRX# K onsensusmotiv	zentrale hyrdophobe	Erkennungssequen
Sec-, YidC- und SRP-abh	ängige Signalsequenz	
с	a. 18-26	
⊕ geladener-terminus	zentrale hyrdophobe n	A X A

Abb. 2

MNN	N D L	F Q A R		IA QLO	GLI
ATGAACA	ATAACGATCT	CTTTCAGGCA	TCACGTCGGCT	GGC ACAACTC	GGC
TACTTGT	TATTGCTAGA	GAAAGTCCGT	AGTGCAGTATEA	CCG TGTTGAG	CCG
		R	R X # #		
⊕ge	ladenerNtermin	us RRX##Corl	Kensusotiv	zentrale hyr	donhohe
_					aopilobo
V A G	M L G	P S L	L TR R A	T A	
GTŒCŒG	GAT GCTGGGG	CCCATTGTTA	CGCCGCGACG		
CACCGCC	CTA CGACCCO	CGGC AGTAACA	ATECGCTGC		
~			- A	XA	
	zentale h	yrdophobe	Eübe	unganantidaaa	
		.,	Erker	ungspeptidase Inungsseguen	
			E::10:	""A" AOSCARCIT	

Abb. 3

Abb. 4

Abb. 5

Abb. 6

Abb. 7

Abb. 8

SEQUENZPROTOKOLL

```
<110> Universitätsklinikum Charité
 <120> Gemisch mindestens zweier Fusionsproteine sowie ihre Herstellung und
        Verwendung
 <130> U30038
 <150> DE 10256669.0
 <151> 2002-12-04
 <160> 4
 <170> Word 98, Windows
 <210>
 <211>
       4765
 <212> DNA
 <213> künstliche Sequenz
 <220>
 <221> pCD4/GFP24 Klonierungs- und Expressionsvektor
 <400> 1
 ctagataaga aggaagaaaa ataatgaaca ataacgatct ctttcaggca tcacgtcggc
 gttttctggc acaactcggc ggcttaaccg tcgccgggat gctggggccg tcattgttaa 120
                                                                   60
cgccgcgacg tgcgactgcg gcccagccgg ccatggcggg atccgttcaa ctagcagacc 180
attatcaaca aaatactcca attggcgatg gccctgtcct tttaccagac aaccattacc 240
tgtcgacaca atctgccctt tcgaaagatc ccaacgaaaa gcgtgaccac atggtccttc 300
ttgagtttgt aactgctgct gggatttccg gtggtggtgg tgctaccccg caggacctga
acaccatgct gggtggtggt ggtagtaaag gagaagaact tttcactgga gttgtccaa
                                                                  360
ttcttgttga attagatggt gatgttaatg ggcacaaatt ttctgtcagt ggagagggtg
                                                                 420
aaggtgatgc aacatacgga aaacttaccc ttaaatttat ttgcactact ggaaaactac
                                                                 480
ctgttccatg gccaacactt gtcactactt tctcttatgg tgttcaatgc ttttcccgtt 600
atccggatca tatgaaacgg catgactttt tcaagagtgc catgcccgaa ggttatgtac 660
aggaacgcac tatatctttc aaagatgacg ggaactacaa gacgcgtgct gaagtcaagt 720
ttgaaggtga taccettgtt aategtateg agttaaaagg tattgatttt aaagaagatg 780
gaaacattet eggacacaaa etegagtaca actataaete acacaatgta tacatcaegg 840
cagacaaaca aaagaatgga atcaaagcta acttcaaaat tcgccacaac attgaagatt
cggcctcggg ggccgcagaa caaaaactca tctcagaaga gaatctgtat ttccagggcg 960
                                                                900
atgcttgcgg tggcaccgac accctgcaag ctgaaaccga ccagctggaa gacgagaaat 1020
ccgctctgca gactgaaatc gctaacctgc tgaaagagaa agagaaactg gaattcattc 1080
gaaataccta ttgcctacgg cagccgctgg attgttatta ctcgcggcac agccggccat 1200
ggcaagcate tgeggtggee gtategeteg tetggaagaa aaagttaaaa eeetgaaage 1260
tcagaactcc gaactggctt ccaccgctaa catgctgcgt gaacaggttg ctcagctgaa 1320
gcagaaagtt atgaaccacg gcggttgtgg tggcggttcc ctagcgggct ccggttccgg 1380
tgattttgat tatgaaaaaa tggcaaacgc taataagggg gctatgaccg aaaatgccga 1440
tgaaaacgcg ctacagtctg acgctaaagg caaacttgat tctgtcgcta ctgattacgg 1500
tgctgctatc gatggtttca ttggtgacgt ttccggcctt gctaatggta atggtgctac 1560
tggtgatttt gctggctcta attcccaaat ggctcaagtc ggtgacggtg ataattcacc 1620
tttaatgaat aatttccgtc aatatttacc ttctttgcct cagtcggttg aatgtcgccc 1680
ttatgtettt ggegetggta aaccatatga attttetatt gattgtgaca aaataaactt 1740
attocgtggt gtctttgcgt ttcttttata tgttgccacc tttatgtatg tattttcgac 1800
gtttgctaac atactgcgta ataaggagtc ttaataagct tgacctgtga agtgaaaaat 1860
ggcgcacatt gtgcgacatt tttttgtct gccgtttacc gctactgcgt cacggatctc 1920
cacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg cagcgtgacc 1980
getacacttg ceagegeet agegeeget cetttegett tettecette etttetegee 2040
acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg gttccgattt 2100
agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc acgtagtggg 2160
ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt ctttaatagt 2220
```

```
ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc ttttgattta 2280
 taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta acaaaaattt 2340
 aacgcgcatg ctaacaaaat attaaaaaac gcccggcggc aaccgagcgt taatagtgaa 2400
 gttaccatca cggaaaaagg ttatgctgct tttaagaccc actttcacat ttaagttgtt 2460
 tttctaatcc gcatatgatc aattcaaggc cgaataagaa ggctggctct gcaccttggt 2520
 gatcaaataa ttcgatagct tgtcgtaata atggcggcat actatcagta gtaggtgttt 2580
 ccctttcttc tttagcgact tgatgctctt gatcttccaa tacgcaacct aaagtaaaat 2640
 gccccactgc gctgagtgca tataatgcat tctctagtga aaaaccttgt tggcataaaa 2700
 aggetaattg attitegaga gttteatact gtttttetgt aggeegtgta cetaaatgta 2760
 cttttgctcc atcgcgatga cttagtaaag cacatctaaa acttttagcg ttattacgta 2820
 aaaaatcttg ccagctttcc ccttctaaag ggcaaaagtg agtatggtgc ctatctaaca 2880
 teteaatgge taaggegteg ageaaageee gettattiti taeatgeeaa tacaatgtag 2940
 getgetetac acctagette tgggegagtt taegggttgt taaacetteg attecgaeet 3000
cattaagcag ctctaatgcg ctgttaatca ctttactttt atctaaacga gacatcatta 3060
attectatta egeceegeee tgecacteat egeagtactg ttgtaattea ttaageatte 3120
tgccgacatg gaagccatca caaacggcat gatgaacctg aatcgccagc ggcatcagca 3180
ccttgtcgcc ttgcgtataa tatttgccca tagtgaaaac gggggcgaag aagttgtcca 3240
tattggccac gtttaaatca aaactggtga aactcaccca gggattggct gagacgaaaa 3300
acatattete aataaaceet ttagggaaat aggeeaggtt tteacegtaa caegeeacat 3360
cttgcgaata tatgtgtaga aactgccgga aatcgtcgtg gtattcactc cagagcgatg 3420
aaaacgtttc agtttgctca tggaaaacgg tgtaacaagg gtgaacacta tcccatatca 3480
ccagctcacc gtctttcatt gccatacgga attccggatg agcattcatc aggcgggcaa 3540
gaatgtgaat aaaggccgga taaaacttgt gcttatttt ctttacggtc tttaaaaagg 3600
ccgtaatatc cagctgaacg gtctggttat aggtacattg agcaactgac tgaaatgcct 3660
caaaatgttc tttacgatgc cattgggata tatcaacggt ggtatatcca gtgattttt 3720
tetecatact ettectttt caatattatt gaageattta teagggttat tgteteatga 3780
gcggatacat atttgaatgt atttagaaaa ataaacaaat aggggttccg cgcacatttc 3840
cccgaaaagt gccacctgaa attgtaagcg ttactagttt aaaaggatct aggtgaagat 3900
cctttttgat aatctcatga ccaaaatccc ttaacgtgag ttttcgttcc actgagcgtc 3960
agaccccgta gaaaagatca aaggatcttc ttgagatcct ttttttctgc gcgtaatctg 4020
ctgcttgcaa acaaaaaac caccgctacc agcggtggtt tgtttgccgg atcaagagct 4080
accaactett ttteegaagg taactggett eageagageg eagataceaa atactgteet 4140
tctagtgtag ccgtagttag gccaccactt caagaactct gtagcaccgc ctacatacct 4200
cgctctgcta atcctgttac cagtggctgc tgccagtggc gataagtcgt gtcttaccgg 4260
gttggactca agacgatagt taccggataa ggcgcagcgg tcgggctgaa cggggggttc 4320
gtgcacacag cccagcttgg agcgaacgac ctacaccgaa ctgagatacc tacagcgtga 4380
gctatgagaa agcgccacgc ttcccgaagg gagaaaggcg gacaggtatc cggtaagcgg 4440
cagggtcgga acaggagagc gcacgaggga gcttccaggg ggaaacgcct ggtatcttta 4500
tagtectgte gggtttegee acctetgaet tgagegtega tttttgtgat getegteagg 4560
ggggcggagc ctatggaaaa acgccagcaa cgcggccttt ttacggttcc tggccttttg 4620
ctggcctttt gctcacatga cccgacacca tcgaatggcc agatgattaa ttcctaattt 4680
ttgttgacac tctatcattg atagagttat tttaccactc cctatcagtg atagagaaaa 4740
gtgaaatgaa tagttcgaca aaaat
                                                                  4765
<210>
<211>
       4971
<212>
       DNA
<213>
      künstliche Sequenz
<220>
      pCA1/GFP24 Klonierungs- und Expressionsvektor
<221>
<400>
                                                                     60
                                                                    120
```

ctagataaga aggaagaaaa ataatgaaca ataacgatct ctttcaggca tcacgtcggc gttttctggc acaactcggc ggcttaaccg tcgccgggat gctggggccg tcattgttaa cgccgcgacg tgcgactgcg gcccagccgg ccatggcggg atccgttcaa ctagcagacc attatcaaca aaatactcca attggcgatg gccctgtcct tttaccagac aaccattacc 180 tgtcgacaca atctgccctt tcgaaagatc ccaacgaaaa gcgtgaccac atggtccttc 240 ttgagtttgt aactgctgct gggatttccg gtggtggtgg tgctaccccg caggacctga 300 acaccatgct gggtggtggt ggtagtaaag gagaagaact tttcactgga gttgtcccaa 360 ttcttgttga attagatggt gatgttaatg ggcacaaatt ttctgtcagt ggagagggtg 420 aaggtgatgc aacatacgga aaacttaccc ttaaatttat ttgcactact ggaaaactac 480 540

ctgttccatg gccaacactt gtcactactt tctcttatgg tgttcaatgc ttttcccgtt atccggatca tatgaaacgg catgactttt tcaagagtgc catgcccgaa ggttatgtac 600 aggaacgcac tatatctttc aaagatgacg ggaactacaa gacgcgtgct gaagtcaagt 660 ttgaaggtga taccettgtt aatcgtatcg agttaaaagg tattgatttt aaagaagatg 720 gaaacattct cggacacaaa ctcgagtaca actataactc acacaatgta tacatcacgg 780 cagacaaaca aaagaatgga atcaaagcta acttcaaaat tcgccacaac attgaagatt 840 cggcctcggg ggccgcagaa caaaaactca tctcagaaga gaatctgtat ttccagggcg 900 ggcccaaacc ttccaccccg cctggttctt caggcgcctg cggtggcctg accgacaccc 960 tgcaagctga aaccgaccag ctggaagacg agaaatccgc tctgcagact gaaatcgcta 1020 acctgctgaa agagaaagag aaactggaat tcattctggc tgctcacggc ggttgttaat 1080 aacttaagcc aaggaggaaa ataaaatgaa atacctattg cctacggcag ccgctggatt 1140 gttattactc gctgcccaac cagcgatggc cgcacaggtt aaactgctcg agagcgcttg 1200 cggtggccgt atcgctcgtc tggaagaaaa agttaaaacc ctgaaagctc agaactccga 1260 actggcttcc accgctaaca tgctgcgtga acaggttgct cagctgaagc agaaagttat 1320 gaaccacggc ggttgtgcta gcggtggcgg ctccggttcc ggtgattttg attatgaaaa 1380 aatggcaaac gctaataagg gggctatgac cgaaaatgcc gatgaaaacg cgctacagtc tgacgctaaa ggcaaacttg attctgtcgc tactgattac ggtgctgcta tcgatggttt 1500 cattggtgac gtttccggcc ttgctaatgg taatggtgct actggtgatt ttgctggctc taattcccaa atggctcaag tcggtgacgg tgataattca cctttaatga ataattccg tcaatattta ccttctttgc ctcagtcggt tgaatgtcgc ccttatgtct ttggcgctgg taaaccatat gaattttcta ttgattgtga caaaataaac ttattccgtg gtgtctttgc 1740 gtttctttta tatgttgcca cctttatgta tgtattttcg acgtttgcta acatactgcg taataaggag tottaataag ottgacotgt gaagtgaaaa atggogoaca ttgtgogaca ttttttttgt ctgccgttta ccgctactgc gtcacggatc tccacgcgcc ctgtagcggc gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga ccgctacact tgccagcgcc 1980 ctagegeeeg eteettege tttetteeet teetteteg ceaegttege eggettteee cgtcaagctc taaatcgggg gctcccttta gggttccgat ttagtgcttt acggcacctc 2100 gaccccaaaa aacttgatta gggtgatggt tcacgtagtg ggccatcgcc ctgatagacg gtttttcgcc ctttgacgtt ggagtccacg ttctttaata gtggactctt gttccaaact ggaacaacac tcaaccctat ctcggtctat tcttttgatt tataagggat tttgccgatt teggeetatt ggttaaaaaa tgagetgatt taacaaaaat ttaaegegaa ttttaacaaa 2340 atattaacgc ttacaatttc aggtggcact tttcggggaa atgtgcgcgg aacccctatt 2400 tgtttatttt tctaaataca ttcaaatatg tatccgctca tgagacaata accctgataa 2520 atgcttcaat aatattgaaa aaggaagagt atgagtattc aacatttccg tgtcgccctt attccctttt ttgcggcatt ttgccttcct gtttttgctc acccagaaac gctggtgaaa 2580 gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt acatcgaact ggatctcaac 2640 agcggtaaga teettgagag ttttegeece gaagaacgtt tteeaatgat gagcaetttt 2700 aaagttetge tatgtggege ggtattatee egtattgaeg eegggeaaga geaacteggt 2760 cgccgcatac actattctca gaatgacttg gttgagtact caccagtcac agaaaagcat 2820 cttacggatg gcatgacagt aagagaatta tgcagtgctg ccataaccat gagtgataac 2880 actgcggcca acttacttct gacaacgatc ggaggaccga aggagctaac cgcttttttg 2940 cacaacatgg gggatcatgt aactcgcctt gatcgttggg aaccggagct gaatgaagcc 3000 ataccaaacg acgagcgtga caccacgatg cctgtagcaa tggcaacaac gttgcgcaaa 3060 ctattaactg gcgaactact tactctagct tcccggcaac aattgataga ctggatggag 3120 geggataaag ttgeaggace acttetgege teggeeette eggetggetg gtttattget 3180 gataaatctg gagccggtga gcgtggctct cgcggtatca ttgcagcact ggggccagat 3240 ggtaagccct cccgtatcgt agttatctac acgacgggga gtcaggcaac tatggatgaa 3300 cgaaatagac agatcgctga gataggtgcc tcactgatta agcattggta ggaattaatg 3360 atgtctcgtt tagataaaag taaagtgatt aacagcgcat tagagctgct taatgaggtc 3420 ggaatcgaag gtttaacaac ccgtaaactc gcccagaagc taggtgtaga gcagcctaca 3480 ttgtattggc atgtaaaaaa taagcgggct ttgctcgacg ccttagccat tgagatgtta 3540 gataggcacc atactcactt ttgcccttta gaaggggaaa gctggcaaga ttttttacgt 3600 aataacgcta aaagttttag atgtgcttta ctaagtcatc gcgatggagc aaaagtacat 3660 ttaggtacac ggcctacaga aaaacagtat gaaactctcg aaaatcaatt agccttttta 3720 tgccaacaag gtttttcact agagaatgca ttatatgcac tcagcgcagt ggggcatttt 3780 actttaggtt gcgtattgga agatcaagag catcaagtcg ctaaagaaga aagggaaaca 3840 cctactactg atagtatgcc gccattatta cgacaagcta tcgaattatt tgatcaccaa 3900 ggtgcagagc cagcettett atteggeett gaattgatea tatgeggatt agaaaaacaa 3960 cttaaatgtg aaagtgggte ttaaaagcag cataacettt tteegtgatg gtaactteac 4020 tagtttaaaa ggatctaggt gaagatcctt tttgataatc tcatgaccaa aatcccttaa 4080 cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga 4140 gatcettttt ttetgegegt aatetgetge ttgcaaacaa aaaaaccace getaccageg 4200 gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc 4320

```
agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag
  aactetgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc
  agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg
  cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac
  accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga
                                                                    4560
  aaggeggaca ggtateeggt aageggeagg gteggaacag gagagegeae gagggagett
                                                                    4620
  ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag
                                                                    4680
  cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg
                                                                    4740
  gcctttttac ggttcctggc cttttgctgg ccttttgctc acatgacccg acaccatcga
                                                                    4800
  atggccagat gattaattcc taattittgt tgacactcta tcattgatag agttatttta 4920
  ccactcccta tcagtgatag agaaaagtga aatgaatagt tcgacaaaaa t
                                                                    4971
  <210>
        3
  <211>
        4765
  <212>
        DNA
 <213> künstliche Sequenz
 <220>
 <221> pCN1/GFP24 Klonierungs- und Expressionsvektor
 <400> 3
 ctagataaga aggaagaaaa ataatgaaca ataacgatct ctttcaggca tcacgtcggc
 gttttctggc acaactcggc ggcttaaccg tcgccgggat gctggggccg tcattgttaa
                                                                    60
 cgccgcgacg tgcgactgcg gcccagccgg ccatggcggg atccgttcaa ctagcagacc
                                                                   120
 attatcaaca aaatactcca attggcgatg gccctgtcct tttaccagac aaccattacc
                                                                   180
 tgtcgacaca atctgccctt tcgaaagatc ccaacgaaaa gcgtgaccac atggtccttc
 ttgagtttgt aactgctgct gggatttccg gtggtggtgg tgctaccccg caggacctga
 acaccatgct gggtggtggt ggtagtaaag gagaagaact tttcactgga gttgtcccaa
 ttcttgttga attagatggt gatgttaatg ggcacaaatt ttctgtcagt ggagagggtg
 aaggtgatgc aacatacgga aaacttaccc ttaaatttat ttgcactact ggaaaactac
 ctgttccatg gccaacactt gtcactactt tctcttatgg tgttcaatgc ttttcccgtt
                                                                  540
atccggatca tatgaaacgg catgactttt tcaagagtgc catgcccgaa ggttatgtac
aggaacgcac tatatctttc aaagatgacg ggaactacaa gacgcgtgct gaagtcaagt
ttgaaggtga tacccttgtt aatcgtatcg agttaaaagg tattgatttt aaagaagatg
gaaacattct cggacacaaa ctcgagtaca actataactc acacaatgta tacatcacgg
cagacaaaca aaagaatgga atcaaagcta acttcaaaat tcgccacaac attgaagatt
cggcctcggg ggccgcagaa caaaaactca tctcagaaga gaatctgtat ttccagggcg
atgettgegg tggcaccgac accetgeaag etgaaaccga ceagetggaa gacgagaaat 1020
cegetetgea gaetgaaate getaacetge tgaaagagaa agagaaactg gaatteatte 1080
gaaataccta ttgcctacgg cagccgctgg attgttatta ctcgcggcac agccggccat 1200
ggcaagcatc tgcggtggcc gtatcgctcg tctggaagaa aaagttaaaa ccctgaaagc 1260
tcagaactcc gaactggctt ccaccgctaa catgctgcgt gaacaggttg ctcagctgaa 1320
gcagaaagtt atgaaccacg gcggttgtgg tggcggttcc ctagcgggct ccggttccgg 1380
tgattttgat tatgaaaaaa tggcaaacgc taataagggg gctatgaccg aaaatgccga 1440
tgaaaacgcg ctacagtctg acgctaaagg caaacttgat tctgtcgcta ctgattacgg 1500
tgctgctatc gatggtttca ttggtgacgt ttccggcctt gctaatggta atggtgctac 1560
tggtgatttt gctggctcta attcccaaat ggctcaagtc ggtgacggtg ataattcacc 1620
tttaatgaat aatttccgtc aatatttacc ttctttgcct cagtcggttg aatgtcgccc 1680
ttatgtcttt ggcgctggta aaccatatga attttctatt gattgtgaca aaataaactt 1740
attccgtggt gtctttgcgt ttcttttata tgttgccacc tttatgtatg tattttcgac 1800
gtttgctaac atactgcgta ataaggagtc ttaataagct tgacctgtga agtgaaaaat 1860
ggcgcacatt gtgcgacatt tttttgtct gccgtttacc gctactgcgt cacggatctc 1920
cacgegeeet gtageggege attaagegeg gegggtgtgg tggttaegeg eagegtgaee 1980
getacactty ccagegeeet agegeeeget cetttegett tettecette etttetegee 2040
acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg gttccgattt 2100
agtgetttae ggeacetega ecceaaaaaa ettgattagg gtgatggtte aegtagtggg 2160
ccategeect gatagaeggt ttttegeect ttgaegttgg agteeaegtt etttaatagt 2220
ggactettgt tecaaactgg aacaacacte aaccetatet eggtetatte ttttgattta 2280
taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta acaaaaattt 2340
```

aacgcgcatg caacgcttac aatttcaggt ggcacttttc ggggaaatgt gcgcggaacc 2400

```
cctatttgtt tatttttcta aatacattca aatatgtatc cgctcatgag acaataaccc 2460
 tgataaatgc ttcaataata ttgaaaaagg aagagtatgg agaaaaaaat cactggatat 2520
 accaccgttg atatatccca atggcatcgt aaagaacatt ttgaggcatt tcagtcagtt 2580
 getcaatgta cetataacea gacegtteag etggatatta eggeettttt aaagaeegta 2640
 aagaaaaata agcacaagtt ttatccggcc tttattcaca ttcttgcccg cctgatgaat 2700
 getcatcegg aatteegtat ggcaatgaaa gacggtgage tggtgatatg ggatagtgtt 2760
 caccettgtt acacegtttt ccatgagcaa actgaaacgt tttcatcgct ctggagtgaa 2820
 taccacgacg atttccggca gtttctacac atatattcgc aagatgtggc gtgttacggt 2880
 gaaaacctgg cctatttccc taaagggttt attgagaata tgtttttcgt ctcagccaat 2940
 ccctgggtga gtttcaccag ttttgattta aacgtggcca atatggacaa cttcttcgcc 3000
cccgttttca ctatgggcaa atattatacg caaggcgaca aggtgctgat gccgctggcg 3060
 attcaggttc atcatgccgt ttgtgatggc ttccatgtcg gcagaatgct taatgaatta 3120
caacagtact gcgatgagtg gcagggcggg gcgtaatagg aattaatgat gtctcgttta 3180
gataaaagta aagtgattaa cagcgcatta gagctgctta atgaggtcgg aatcgaaggt 3240
ttaacaaccc gtaaactcgc ccagaagcta ggtgtagagc agcctacatt gtattggcat 3300
gtaaaaaata agcgggctit gctcgacgcc ttagccattg agatgttaga taggcaccat 3360
actcactttt gccctttaga aggggaaagc tggcaagatt tittacgtaa taacgctaaa 3420
agttttagat gtgctttact aagtcatcgc gatggagcaa aagtacattt aggtacacgg 3480
cctacagaaa aacagtatga aactetegaa aateaattag cctttttatg ccaacaaggt 3540
ttttcactag agaatgcatt atatgcactc agcgcagtgg ggcattttac tttaggttgc 3600
gtattggaag atcaagagca tcaagtcgct aaagaagaaa gggaaacacc tactactgat 3660
agtatgccgc cattattacg acaagctatc gaattatttg atcaccaagg tgcagagcca 3720
geettettat teggeettga attgateata tgeggattag aaaaacaact taaatgtgaa 3780
agtgggtctt aaaagcagca taaccttttt ccgtgatggt aacttcacta ttaacgctcg 3840
gttgccgccg ggcgtttttt aatattttgt taactagttt aaaaggatct aggtgaagat 3900
cetttttgat aateteatga ccaaaateee ttaacgtgag ttttegttee actgagegte 3960
agaccccgta gaaaagatca aaggatcttc ttgagatcct ttttttctgc gcgtaatctg 4020
ctgcttgcaa acaaaaaac caccgctacc agcggtggtt tgtttgccgg atcaagagct 4080
accaactett ttteegaagg taactggett eageagageg eagataceaa atactgteet 4140
tetagtgtag ccgtagttag gccaccactt caagaactet gtagcaccgc ctacatacct 4200
cgctctgcta atcctgttac cagtggctgc tgccagtggc gataagtcgt gtcttaccgg 4260
gttggactca agacgatagt taccggataa ggcgcagcgg tcgggctgaa cggggggttc 4320
gtgcacacag cccagcttgg agcgaacgac ctacaccgaa ctgagatacc tacagcgtga 4380
getatgagaa agegeeacge tteeegaagg gagaaaggeg gacaggtate eggtaagegg 4440
cagggtegga acaggagage geaegaggga gettecaggg ggaaaegeet ggtatettta 4500
tagteetgte gggtttegee acctetgaet tgagegtega titttgtgat getegteagg 4560
ggggcggagc ctatggaaaa acgccagcaa cgcggccttt ttacggttcc tggccttttg 4620
ctggcctttt gctcacatga cccgacacca tcgaatggcc agatgattaa ttcctaattt 4680
ttgttgacac tctatcattg atagagttat tttaccactc cctatcagtg atagagaaaa 4740
gtgaaatgaa tagttcgaca aaaat
<210>
      4
```

```
<211> 823
<212> DNA
<213> künstliche Sequenz
<220>
<221> reife TEM-1 β-Lactamase Klonierungskassette
<400> 4
```

ggcccagccg gccatggctc acccagaaac gctggtgaaa gtaaaagatg ctgaagatca 60 ttttcgcccc gaagaacgtt ttccaatgat gagcactttt aaagttctgc tatgtgggc 280 cggatatatcc cgtattgacg ccgggcaaga gcaactcggt cgccgcatac actattctca 240 aagagaatta tgcagtgctg ccataaccat gagtgataac actgcggcaa acttacttct 360 gacaacgatc gatcgttgg aaccggagct acccaggact cgcgtttttg cacaacatgg gggatcatgt 420 aactcgctt gatcgttgg aaccggagct gaatgaagcc actattaaccg gggatcatgt 420 aactcgctt tcccggcaac acttgatgg accgaacac gttgcgaacac gttgcgcaac acttataactg gcgaactact 540 tactctagct tcccggcaac acttgatgga gcggataaag ttgcaggacc 600

WO 2004/050871 PCT/EP2003/013709 6/6

acttctgcgc	tcggcccttc	cggctggctg	gtttattgct	gataaatctg	gagccggtga	660
gcgtggctct	cgcggtatca	ttgcagcact	qqqqccaqat	ggtaagccct	cccgtatcgt	720
agttatctac	acgacgggga	gtcaggcaac	tatqqatqaa	Cgaaatagac	agatcgctga	720
gataggtgcc	tcactgatta	agcattggtc	gacctcagaa	acc	agaccgccga	823
	=		22 2222	5-0		023

Intermional Application No
PCT/EP 03/13709

A. CLASS	SIFICATION OF SUBJECT MATTER		
IPC 7	C12N15/10 C12N15/62 C12O	1/02 G01N33/68	i
According	to International Patent Classification (IPC) or to both national cla	assification and IPC	;
B. FIELDS	S SEARCHED		
Minimum o	documentation searched (classification system followed by class	sification symbols)	
IPC 7	C12N C12Q G01N	,	•
Documente	ation searched other than minimum documentation to the extent	that such documents are included in the fields	searched
Stantana)			j
Electronic o	data base consulted during the international search (name of da	ata base and, where practical, search terms use	ed)
WPI Da	ata, PAJ, CAB Data, SEQUENCE SEARC	CH, BIOSIS, EPO-Internal,	MEDLINE
С. ДОСИМ	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the	ne relevant passages	8-1
			Relevant to claim No.
Α	WO 92/18619 A (SCRIPPS RESEARC	H INST)	1,
	29 October 1992 (1992-10-29) the whole document		
A			
^	CRAMERI R ET AL: "DISPLAY OF ACTIVE PROTEINS ON THE SURFACE	ΩF	
	FILAMENTOUS PHAGES: A CDNA CLO	NING SYSTEM	
	FOR SELECTION OF FUNCTIONAL GE LINKED TO THE GENETIC INFORMAT	NE PRODUCTS	
	RESPONSIBLE FOR THEIR PRODUCTION	ON"	
1	GENE, ELSEVIER BIOMEDICAL PRESS AMSTERDAM, NL,	S.	
	vol. 137, 1993, pages 69-75, xi	P000982171	
	122M: 03/8-111A	000302171	
	the whole document		
ļ		-/	
X Furth	er documents are listed in the continuation of box C.	X Patent family members are listed in	n annex.
	egorles of cited documents :	"T" later document published after the intel	modional filtrandati
COLISION	nt defining the general state of the art which is not ered to be of particular relevance	cited to understand the principle or the	
ming ca		"X" document of particular releases the al	
	it which may throw doubts on priority claim(s) or s cited to establish the publication date of another or other special reason (as specified)	involve an inventive step when the doc	De considered to cument is taken alone
O" documer	nt referring to an oral disclosure, use, exhibition or	"Y" document of particular relevance; the cl cannot be considered to involve an inv document is combined with one or more	entive step when the
"P" documen	t published prior to the international filing date but in the priority date claimed	in the art.	s to a person skilled
	ctual completion of the international search	"&" document member of the same patent for Date of mailing of the international search	-
7	April 2004	23/04/2004	
Name and ma	alling address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nt,		
	Fax: (+31-70) 340-3016	Hornig, H	į.

Intentional Application No
PCT/EP 03/13709

C(Continu	police) DOCUMENTS CONSIDERED TO	PCT/EP 03/13709
Category °	etion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with Indication, where appropriate, of the relevant passages	10.:
	TP Sprinter, of the followalit passages	Relevant to claim No.
Α	WO 97/32017 A (GE LIMING ;ILAG VIC (DE); MORPHOSYS PROTEINOPTIMIERUNG (DE)) 4 September 1997 (1997-09-04) the whole document	
A	WO 00/71694 A (SCRIPPS RESEARCH INST) 30 November 2000 (2000-11-30) the whole document	
A	WO 02/22667 A (MUELLER JOERG PAUL ;BRON SIERD (NL); DIJL JAN MAARTEN VAN (NL); JO) 21 March 2002 (2002-03-21) the whole document	
A	DELISA M P ET AL: "Genetic analysis of the twin arginine translocator secretion pathway in bacteria" JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, US, vol. 277, no. 33, 16 August 2002 (2002-08-16), pages 29825-29831, XP002971647 ISSN: 0021-9258 cited in the application the whole document	
	PASCHKE MATTHIAS ET AL: "New series of vectors for phage display and prokaryotic expression of proteins" BIOTECHNIQUES, vol. 30, no. 4, April 2001 (2001-04), pages 720-726, XP002276383 ISSN: 0736-6205 cited in the application the whole document	
	DALBEY R E ET AL: "Protein translocation into and across the bacterial plasma membrane and the plant thylakoid membrane" TIBS TRENDS IN BIOCHEMICAL SCIENCES, ELSEVIER PUBLICATION, CAMBRIDGE, EN, vol. 24, no. 1, January 1999 (1999-01), pages 17-22, XP004155514 ISSN: 0968-0004 the whole document	
	-/	

Internal Application No
PCT/EP 03/13709

		PCT/EP 0	3/13709
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		1
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
A	SETTLES A M ET AL: "Old and new pathways of protein export in chloroplasts and bacteria." TRENDS IN CELL BIOLOGY. ENGLAND DEC 1998, vol. 8, no. 12, December 1998 (1998–12), pages 494–501, XP002276384 ISSN: 0962–8924 cited in the application the whole document		
4	SAMUELSON J C ET AL: "YidC mediates membrane protein insertion in bacteria." NATURE. ENGLAND 10 AUG 2000, vol. 406, no. 6796, 10 August 2000 (2000-08-10), pages 637-641, XP002276385 ISSN: 0028-0836 cited in the application		
ļ	the whole document		
Ī			
Î		•	
Ī			
]	
			•

Intended Application No PCT/EP 03/13709

D-4A-d	—т				9 03/13709
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9218619	Α	29-10-1992	AU	662148 B2	24-08-1995
			AU	1785692 A	17-11-1992
			CA	2108147 A1	11-10-1992
			EP	0580737 A1	02-02-1994
			FI	934422 A	08-12-1993
			ΙE	921169 A1	21-10-1992
			JP	6506836 T	04-08-1994
•			JP	2003204797 A	22-07-2003
			NO	933610 A	10-12-1993
			PT	100379 A .B	31-08-1993
			WO	9218619 A1	29-10-1992
			US	5658727 A	19-08-1997
			US	2004002057 A1	01-01-2004
			US	5759817 A	02-06-1998
			US	5955341 A	21-09-1999
			US	6468738 B1	22-10-2002
	•		US	6235469 B1	22-05-2001
			US	5667988 A	16-09-1997
			US	6096551 A	01-08-2000
WO 9732017	Α	04-09-1997	CA	2244838 A1	04-09-1997
		•	WO	9732017 A1	04-09-1997
			ĒΡ	0883686 Al	16-12-1998
			JP	2000505306 T	09-05-2000
WO 0071694	Α	30-11-2000	US	6472147 B1	29-10-2002
			ΑU	5290000 A	12-12-2000
			CA	2374505 A1	30-11-2000
			EP	1185636 A1	13-03-2002
			WO	0071694 A1	30-11-2000
			US	2003186322 A1	02-10-2003
WO 0222667	Α	21-03-2002	AU	9274901 A	26-03-2002
			EP	1356060 A2	29-10-2003
			WO	0222667 A2	21-03-2002
			US	2002110860 A1	15-08-2002

In tionales Aktenzeichen
PCT/EP 03/13709

A. KLAS	SIFIZIERUNG DES ANMELDUNGSGEGENSTANDES		05/15/03
IPK 7	C12N15/10 C12N15/62 C12Q	1/02 G01N33/68	
Nach der	Internationalen Patentklassifikation (IPK) oder nach der nationale	10 1m - 1	!
B. RECH	ERCHIERTE GEBIETE	n Klassilikation und der IPK	
Recherchi	erter Mindestprüfstoff (Klassifikationssystem und Klassifikations	symbole)	i
IPK 7	C12N C12Q G01N	, made ,	;
Recherchie	erte aber nicht zum Mindestprüfstoff gehörende Veröffentlichung	en, soweit diese unter die recherchierten Geb	into follon
			•
Während d	ler internationalen Recherche konsultierte elektronische Datenba	ink (Name der Datenbank und evtl. verwende	te Suchheadtfe)
WPI Da	ata, PAJ, CAB Data, SEQUENCE SEARC	H, BIOSIS, EPO-Internal,	MEDLINE
C. ALS W	ESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Ar	ngabe der in Betrecht kommenden Teile	
		The state of the s	Betr. Anspruch Nr.
A	WO 92/18619 A (SCRIPPS RESEARC) 29. Oktober 1992 (1992-10-29) das ganze Dokument	H INST).	i,
A	CRAMERI R ET AL: "DISPLAY OF R ACTIVE PROTEINS ON THE SURFACE FILAMENTOUS PHAGES: A CDNA CLONFOR SELECTION OF FUNCTIONAL GEN LINKED TO THE GENETIC INFORMATI RESPONSIBLE FOR THEIR PRODUCTION GENE, ELSEVIER BIOMEDICAL PRESS AMSTERDAM, NL, Bd. 137, 1993, Seiten 69-75, XP ISSN: 0378-1119 das ganze Dokument	OF NING SYSTEM NE PRODUCTS ON ON"	
		X Siehe Anhang Patentfamille	·
aber nice aber nice alteres D Anmeldi Veröffenti scheiner anderen ausgefü Veröffent eine Ber Veröffent	Kategorien von angegebenen Veröffentlichungen : dichung, die den allgemeinen Stand der Technik definiert, hit als besonders bedeutsam anzusehen ist okument, das jedoch erst am oder nach dem internationalen edatum veröffentlicht worden ist lichung, die geelgnet ist, einen Prioritätsanspruch zweifelhaft er- n zu lassen, oder durch die das Veröffentlichungsdatum einer n zu lassen, oder durch die das Veröffentlichungsdatum einer n zu lassen, oder der den veröffentlichungsdatum einer n zu lassen, oder den sen veröffentlichung belegt werde r die aus einem anderen besonderen Grund angegeben ist (wie hrt) lichung, die sich auf eine mündliche Offenbarung, utzung, eine Ausstellung oder andere Maßnahmen bezieht lichung, die vor dem internationalen Anmeldedatum, aber nach	erfinderischer Tätigkeit beruhend betra "Y" Veröffentlichung von besonderer Bedeu kann nicht als auf erfinderischer Tätigk werden, wenn die Veröffentlichung mit Veröffentlichungen dieser Kategorie in diese Verbindung für einen Fachmann	t worden ist und mit der r zum Verständnis des der oder der Ihr zugrundellegenden ultung; die beanspruchte Erfindung chung nicht als neu oder auf uchtet werden utung; die beanspruchte Erfindung eit beruhend betrachtet elner oder mehreren anderen Verbindung gebracht wird und nahellenend ist
	nspruchten Prioritätsdatum veröffentlicht worden ist schlusses der internationalen Recherche	d verbreituichung, die Mitglied derselben	Patentfamilie ist
7.	April 2004	Absendedatum des Internationalen Red 23/04/2004	cnerchenberichts
me und Pos	stanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter	
	Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Hornia, H	

C./Fortsets	PCT/EP 03/13709 , etzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN					
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile					
	elle i Beiracht kommenden Teile	Betr. Anspruch Nr.				
A	WO 97/32017 A (GE LIMING ;ILAG VIC (DE); MORPHOSYS PROTEINOPTIMIERUNG (DE)) 4. September 1997 (1997-09-04) das ganze Dokument	·				
A	WO 00/71694 A (SCRIPPS RESEARCH INST) 30. November 2000 (2000-11-30) das ganze Dokument					
A	WO 02/22667 A (MUELLER JOERG PAUL ;BRON SIERD (NL); DIJL JAN MAARTEN VAN (NL); JO) 21. März 2002 (2002-03-21) das ganze Dokument					
A	DELISA M P ET AL: "Genetic analysis of the twin arginine translocator secretion pathway in bacteria" JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, US, Bd. 277, Nr. 33, 16. August 2002 (2002-08-16), Seiten 29825-29831, XP002971647 ISSN: 0021-9258 in der Anmeldung erwähnt das ganze Dokument					
Α	PASCHKE MATTHIAS ET AL: "New series of vectors for phage display and prokaryotic expression of proteins" BIOTECHNIQUES, Bd. 30, Nr. 4, April 2001 (2001-04), Seiten 720-726, XP002276383 ISSN: 0736-6205 in der Anmeldung erwähnt das ganze Dokument					
	DALBEY R E ET AL: "Protein translocation into and across the bacterial plasma membrane and the plant thylakoid membrane" TIBS TRENDS IN BIOCHEMICAL SCIENCES, ELSEVIER PUBLICATION, CAMBRIDGE, EN, Bd. 24, Nr. 1, Januar 1999 (1999-01), Seiten 17-22, XP004155514 ISSN: 0968-0004 das ganze Dokument					
	-/					

In ationales Aktenzeichen
PCT/EP 03/13709

C.(Fortest-	P(CT/EP (03/13709		
Kategorie°	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit enforderlich unter Angabe der in Betracht kommende:		i		
	Sower enoughlich unter Angabe der in Betracht kommende	Teile .	Betr. Anspruch Nr.		
A	SETTLES A M ET AL: "Old and new pathways of protein export in chloroplasts and bacteria." TRENDS IN CELL BIOLOGY. ENGLAND DEC 1998, Bd. 8, Nr. 12, Dezember 1998 (1998-12), Seiten 494-501, XP002276384 ISSN: 0962-8924 in der Anmeldung erwähnt das ganze Dokument				
	SAMUELSON J C ET AL: "YidC mediates membrane protein insertion in bacteria." NATURE. ENGLAND 10 AUG 2000, Bd. 406, Nr. 6796, 10. August 2000 (2000-08-10), Seiten 637-641, XP002276385 ISSN: 0028-0836 in der Anmeldung erwähnt das ganze Dokument		1		
			<u> </u> -		
			<u> </u>		
j			•		
				.	
	•	1			
		- 1	1		
		1	•		
	•				
	0 (Fortsatzurg von Blatt 2) (Innua 2004)				

Internationales Aktenzeichen
PCT/EP 03/13709

Im Recherchenbericht		Datum der	Т		03/13709
ngeführtes Patentdokun	nent	Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9218619	Α	29-10-1992	AU	662148 B2	24-08-1995
			AU	1785692 A	17-11-1992
•			CA	2108147 A1	11-10-1992
			ΕP	0580737 A1	02-02-1994
			FI	934422 A	08-12-1993
			ΙE	921169 A1	21-10-1992
			JP	6506836 T	04-08-1994
			JP	2003204797 A	22-07-2003
			NO	933610 A	10-12-1993
			PT	100379 A ,B	31-08-1993
			WO	9218619 A1	29-10-1992
			US	5658727 A	19-08-1997
			US	2004002057 A1	01-01-2004
		,	US	5759817 A	02-06-1998
			US	5955341 A	21-09-1999
			US	6468738 B1	22-10-2002
		_	US	6235469 B1	22-05-2001
			US	5667988 A	16-09-1997
		· · · · · · · · · · · · · · · · ·	US	6096551 A	01-08-2000
WO 9732017	Α	04-09-1997	CA	2244838 A1	04-09-1997
			WO	9732017 A1	04-09-1997
			EP	0883686 A1	16-12-1998
		·	JP	2000505306 T	09-05-2000
WO 0071694	Α	30-11-2000	US	6472147 B1	29-10-2002
			ΑU	5290000 A	12-12-2002
			CA	2374505 A1	30-11-2000
			EP	1185636 A1	13-03-2002
			WO	0071694 A1	30-11-2000
			US	2003186322 A1	02-10-2003
WO 0222667	Α	21-03-2002	AU	9274901 A	26_02_2002
			EP	1356060 A2	26-03-2002
			WO	0222667 A2	29-10-2003
			WU	UZZZDD/ 42	21-03-2002