Resolução: 21 Fev 2022

91 de Exame de Recurso

pag. 1/2

1.a) $f(x) := \arccos(\ell^{2x} - 2\ell^{x} + 1) = \arccos((\ell^{x} - 1)^{2})$

Como Darcos = [-1,1] tem-se

 $\mathfrak{D}_{+} = \frac{1}{2} \approx \mathbb{R} : -1 \leq \frac{(2^{2}-1)^{2}}{\frac{1}{2}} \leq 1 = \frac{1}{2} \times \mathbb{R} : (2^{2}-1)^{2} \leq 1$

 $(\ell^{2}-1)^{2} \leq 1 \Leftrightarrow \ell^{2}-2\ell^{2}+1 \leq 1 \Leftrightarrow \ell^{2}-2\ell^{2} \leq 0 \Leftrightarrow \ell^{2}-2\ell^{2} \Leftrightarrow \ell^{2}-2\ell^{2} \leq 0 \Leftrightarrow \ell^{2}-2\ell^{2} \leq 0 \Leftrightarrow \ell^{2}-2\ell^{2} \Leftrightarrow \ell^{2}-2\ell^{2} \leq 0 \Leftrightarrow \ell^{2}-2\ell^{2} \Leftrightarrow \ell^{2}-2\ell^{2}$

 $D_{q}=]-\infty, ln 2].$

1.b) $f'(x) = \frac{-\left[(e^{x}-1)^{2}\right]'}{\sqrt{1-(e^{x}-1)^{2}}} = \frac{-2(e^{x}-1)e^{x}}{\sqrt{1-(e^{x}-1)^{2}}}$

 $f'(*) = \frac{-2 e^{*}(e^{*}-1)}{\sqrt{1-(e^{*}-1)^{2}}}, & \in]-\infty, \ln 2 [.$

Como f é diferencia vel em J-00, luz [0 Téorema de Fermat permite conduir que se houver extrementes locais em 267-00. luz [entre f (2) = 0.

extrementes locais em $\# \in J_{-\infty}$, $\lim_{z \to \infty} \left[eutoro f'(\#) = 0 \right]$. $f'(\#) = 0 \iff -2 \ \ell^{\#}(\ell^{\#}-1) = 0 \iff \ell^{\#} = 1 \iff \# = 0$ Concluindo-x que # = 0 e' candidato a extremente.

 $f(b) = \arccos(1-2+1) = \arccos(0) = \sqrt{2}$ $f(\ln 2) = \arccos(e^{\ln 2}-1)^2) = \arccos(1) = 0$

• • • /• • •

lim $f(x) = \arccos(1) = 0$. Para $x \in J-\infty, ln z [: x \rightarrow -\infty]$ $f'(x) < 0 \iff -2 \cdot 2^{x} (e^{x}-1) < 0 \iff x^{x}-1 > 0 \iff x > 0$ $f'(x) > 0 \iff x < 0$

_ 0	>	, ,	10 1	
		0	lu Z	_
	M	V ₂ .	 0	_
f'	+	0	N.D.	

Conclusão: m=0 e'o minimo local e global de f atingido em Zm=ln2.

M=\overline{\infty} e'o máximo local e slobal de f atingido em Zm=0.

Não existem outros extremos de f.