METODY NUMERYCZNE – LABORATORIUM

Zadanie 4 – całkowanie numeryczne

Opis rozwiązania

Celem zadania czwartego jest stworzenie programu implementującego dwie metody całkowania numerycznego: złożoną kwadraturę Newtona-Cotesa opartą na trzech węzłach (wzór Simpsona) oraz całkowanie na przedziale $[0, +\infty)$ z wagą $e^{(-x)}$ (wielomiany Laguerre'a) całek postaci $\int_0^{inf} e^{(-x)}(f(x)) dx$.

Metoda Simpsona

- 1. Wybierz przedział całkowania [a, b] oraz liczbę podprzedziałów n (musi to być liczba parzysta). W programie przedział jest dynamicznie zwiększany aż do momentu, kiedy wartość całki na ostatnim przedziale jest mniejsza niż określona dokładność.
- 2. Oblicz h = (b a) / n.
- 3. Oblicz wartości f(a), f(b) oraz f(x_i) dla wszystkich punktów x_i na przedziale [a, b]. Wartości te są wykorzystywane w następnym kroku.
- 4. Oblicz przybliżenie całki według wzoru metody Simpsona: $\int (a-b) f(x) dx \approx h/3 * [f(a) + 4\Sigma f(x_2i-1) + 2\Sigma f(x_2i) + f(b)]$
- 5. Jeżeli wartość bezwzględna różnicy między poprzednim wynikiem a obecnym jest większa niż określona dokładność, powtórz kroki od 2 do 4, zwiększając liczbę podprzedziałów n.

Kwadratura Gaussa-Laguerre'a

- 1. Wybierz liczbę węzłów n. W tym skrypcie n przyjmuje wartości od 2 do 5.
- 2. Dla każdego węzła i, oblicz wartości xi i wi, które są odpowiednio i-tym zerem i wagą wielomianu Laguerre'a.
- 3. Oblicz wartości funkcji f(xi) dla każdego i.
- 4. Oblicz przybliżenie całki według wzoru kwadratury Gaussa-Laguerre'a: $\int (0-\infty) f(x) * e^-x dx \approx \Sigma [wi * f(xi)]$
- 5. Powtarzaj kroki 2-4 dla różnych liczby wezłów n, aby porównać wyniki.

Wyniki:

Dla funkcji: sin(x)+1

Metoda Newtona-Cotesa		Metoda Laguerre'a			
Dokładność	Wynik	2 węzły	3 węzły	4 węzły	5 węzły
0.01	1.5002289902761765	1.4324594546798444	1.4960298274805632	1.5048792794601988	1.4989033209560638
0.001	1.4999506249059102	1	-	-	-
0.0001	1.4999931690541912	-	-	-	-

Dla funkcji: $3x^3 + 2x^2 + 5x + 7$

Metoda Newtona-Cotesa		Metoda Laguerre'a			
Dokładność	Wynik	2 węzły	3 węzły	4 węzły	5 węzły
0.01	34.00417563329043	34.0	34.0	34.000000000000001	33.9999999999999
0.001	34.000110491342696	-	-	-	-
0.0001	34.00000048049447	-	-	-	_

Dla funkcji: 2x + 3

Metoda Newtona-Cotesa		Metoda Laguerre'a			
Dokładność	Wynik	2 węzły	3 węzły	4 węzły	5 węzły
0.01	5.000515772225972	5.0	5.0	5.0	5.0
0.001	5.000049582252291	-	-	-	-
0.0001	5.000018459701772	-	-	-	-

Dla funkcji: $\sin (2 + x)$

Metoda Newtona-Cotesa		Metoda Laguerre'a				
Dokładność	Wynik	2 węzły	3 węzły	4 węzły	5 węzły	
0.01	0.2635632089306357	0.33852273063676924	0.22687792889205088	0.24681231838592763	0.2475213178768930 2	
0.001	0.2633629921048024	-	-	-	-	
0.0001	0.2633835401027766	-	-	-	-	
	5					

Wnioski

- 1. Zwiększanie dokładności dla metody Simpsona prowadzi do poprawy precyzji obliczeń, co jest zgodne z oczekiwaniami. Wynik staje się coraz bliższy prawdziwej wartości całki.
- 2. Dla kwadratury Gaussa-Laguerre'a, zwiększanie liczby węzłów niekoniecznie prowadzi do lepszych wyników. W niektórych przypadkach, wyniki stają się gorsze przy zwiększeniu liczby węzłów. To sugeruje, że doboru liczby węzłów nie można dokonać w sposób dowolny, a optymalna liczba węzłów zależy od konkretnego problemu.
- 3. Dla pewnych funkcji, takich jak funkcja 2 i 3, wyniki obu metod są bardzo bliskie, co sugeruje, że obie metody są równie skuteczne dla tych konkretnych przypadków.