Deep Open Intent Classification with Adaptive Decision Boundary

Hanlei Zhang, Hua Xu, Ting-En Lin

전북대학교 IT정보공학과 202018392 박나현

Open world classification

- 기존 심층 신경망에서는 학습한 class에 대한 확률만 출력가능
- Open set recognition
 - 모델을 학습할 때 처음 보는 class에 대한 데이터가 나타났을 때 학습 class 중 하나가 아닌 'unknown'으로 분류를 할 수 있는 기능을 수행하는 방법

Open intent classification

- Goal
 - To classify the **n-class** known intents into their corresponding classes correctly while identifying the $(n + 1)^{th}$ class open intent

User utterances	Intent Label		
Book a flight from LA to Madrid.	Book flight		
Can you get me a table at Steve's?	Restaurant reservation		
Book Delta ticket Madison to Atlanta.	Book flight		
Schedule me a table at Red Lobster.	Restaurant reservation		
Can you tell me the name of this song?	Open		
Look up the calories in an apple.	Open		

n개의 class로 분류

├ n+1번째 새로운 class = open intent

기존 문제를 해결

기존문제

- need to design specific classifiers for identifying the open class and perform poorly with the common classifier.
- It is a complicated and time-consuming process to manually select the optimal decision condition.

제안한 모델에서 해결

- model architecture 변경 불필요
- 자동적으로 decision boundary 학습

Model architecture

- Use known intents as prior knowledge
- Propose a novel post-processing method to learn the adaptive decision boundary (ADB) for open intent classification

Intent Representation

Hidden layer size

- Use BERT model to extract deep intent features
- Mean pooling
 - to synthesize the high-level semantic features in one sentence
 - Get the averaged representation $x_i \in \mathbb{R}^H$

$$\boldsymbol{x}_i = \text{mean-pooling}([CLS, T_1, \cdots, T_N])$$

 $[CLS, T_1, \cdots, T_N] \in \mathbb{R}^{(N+1) \times H^-}$

- Dense layer
 - To further strengthen feature extraction capability
 - Get the intent representation $z_i \in \mathbb{R}^{D \longrightarrow \text{Dimension of the intent}}$ representation

$$m{z}_i = h(m{x}_i) = \sigma(W_hm{x}_i + b_h)$$
 ReLU $W_h \in \mathbb{R}^{H imes D}$ and $b_h \in \mathbb{R}^D$

Pre-training

- Due to lack of open intent samples, we use known intents as prior
 - knowledge to pre-train the model.
- Use Simple softmax loss to learn the intent feature \boldsymbol{z}_i

$$\mathcal{L}_s = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp(\phi(\boldsymbol{z}_i)^{y_i})}{\sum_{j=1}^{K} \exp(\phi(\boldsymbol{z}_i)^j)}$$

 $\phi(\cdot)$: linear classifier

 $\phi(\cdot)^j$: j번째 output logits

• Decision Boundary Formulation

• Known intent label with their corresponding labels

$$S = \{(\boldsymbol{z}_i, y_i), \dots, (\boldsymbol{z}_N, y_N)\}\$$

• The centroid is the mean vector of embedded samples in S_k

• S_k : set of examples labeled with class k centroid $oldsymbol{c}_k \in \mathbb{R}^D$

$$\boldsymbol{c}_k = \frac{1}{|S_k|} \sum_{(\boldsymbol{z}_i, y_i) \in S_k} \boldsymbol{z}_i,$$

• For each known intent z_i , we aim to satisfy the following constraints

$$\forall \boldsymbol{z}_i \in S_k, \|\boldsymbol{z}_i - \boldsymbol{c}_k\|_2 \leq \Delta_k,$$

- we hope examples belonging to class k are constrained in the ball area with centroid and radius.

 Euclidean distance
- We use Softplus activation function as mapping between radius and the

learnable parameter.

$$\Delta_k = \log\left(1 + e^{\widehat{\Delta_k}}\right)$$

- SoftPlus
 - Sigmoid 적분값, relu함수 부드럽게
 - Learned radius 항상 0이상

- The suitable decision boundaries should satisfy two conditions
 - They should be broad enough to surround known intent samples as much as possible
 - They need to be tight enough to prevent the open intent samples from being identified as known intents

Boundary learning

- The decision boundaries should be adaptive to the intent feature space to balance both empirical and open space risk
 - Open space risk: the classifier should not cover too much empty space

$$\begin{split} \textbf{Boundary Loss} \\ \mathcal{L}_b &= \frac{1}{N} \sum_{i=1}^{N} \left[\underline{\delta_i} \left(\| \boldsymbol{z}_i - \boldsymbol{c}_{y_i} \|_2 - \Delta_{y_i} \right) \right. \\ &+ \left. \left(1 - \underline{\delta_i} \right) \left(\Delta_{y_i} - \| \boldsymbol{z}_i - \boldsymbol{c}_{y_i} \|_2 \right) \right] \\ \delta_i &:= \left\{ \begin{array}{l} 1, \text{ if } & \| \boldsymbol{z}_i - \boldsymbol{c}_{y_i} \|_2 > \Delta_{y_i}, \\ 0, \text{ if } & \| \boldsymbol{z}_i - \boldsymbol{c}_{y_i} \|_2 \leq \Delta_{y_i}. \end{array} \right. \end{split}$$

	Empirical risk	Open space risk	결과
원 밖에 known intent		1	Boundary 늘리기
원 안에 Known intent			Open intent 포함

• Update the boundary parameters

• Boundary loss로 boundary를 intent feature space에 적용하고 적절한 decision boundary를 학습 가능

Open Classification with Decision Boundary

• After training, we use the centroids and the learned decision boundaries

of each known class

Adaption

- Known intent samples are constrained in the closed ball area produced by their corresponding centroids and decision boundaries.
- The open intent samples are outside any of the bounded spherical areas

$$\hat{y} = \left\{ \begin{array}{l} \text{open, if } d(\boldsymbol{z}_i, \boldsymbol{c}_k) > \Delta_k, \forall k \in \mathcal{Y}; \\ \arg\min_{k \in \mathcal{Y}} d(\boldsymbol{z}_i, \boldsymbol{c}_k), \text{ otherwise,} \end{array} \right.$$

Experiments

• Dataset

Dataset	Classes	#Training	#Validation	#Test	Vocabulary Size	Length (max / mean)
BANKING OOS	77 150	9,003 15,000	1,000 3,000	3,080 5,700	5,028 8,376	79 / 11.91 28 / 8.31
StackOverflow	20	12,000	2,000	6,000	17,182	41 / 9.18

• BANKING

Table 1: Statistics of BANKING, OOS and StackOverflow datasets. # indicates the total number of sentences.

• A fine-grained dataset in the banking domain

• OOS

• A dataset for intent classification and out-of-scope prediction

• StackOverflow

• Processed dataset, which has 20 different classes and 1000 samples for each class

Results

- Experimental setting
 - The number of known classes are varied with the proportions of 25%, 50%, and 75% in the training set.

		BANKING		oos		StackOverflow	
	Methods	Accuracy	F1-score	Accuracy	F1-score	Accuracy	F1-score
	MSP	43.67	50.09	47.02	47.62	28.67	37.85
	DOC	56.99	58.03	74.97	66.37	42.74	47.73
25%	OpenMax	49.94	54.14	68.50	61.99	40.28	45.98
	DeepUnk	64.21	61.36	81.43	71.16	47.84	52.05
	ADB	78.85	71.62	87.59	77.19	86.72	80.83
	MSP	59.73	71.18	62.96	70.41	52.42	63.01
	DOC	64.81	73.12	77.16	78.26	52.53	62.84
50%	OpenMax	65.31	74.24	80.11	80.56	60.35	68.18
	DeepUnk	72.73	77.53	83.35	82.16	58 98	68.01
	ADB	78.86	80.90	86.54	85.05	86.40	85.83
	MSP	75.89	83.60	74.07	82.38	72.17	77.95
	DOC	76.77	83.34	78.73	83.59	68.91	75.06
75%	OpenMax	77.45	84.07	76.80	73.16	74.42	79.78
	DeepUnk	78.52	84.31	83.71	86.23	72.33	78.28
	ADB	81.08	85.96	86.32	88.53	82.78	85.99

Results

Macro F1-score

	Methods	BANKING		OOS		StackOverflow	
		Open	Known	Open	Known	Open	Known
	MSP	41.43	50.55	50.88	47.53	13.03	42.82
	DOC	61.42	57.85	81.98	65.96	41.25	49.02
25%	OpenMax	51.32	54.28	75.76	61.62	36.41	47.89
	DeepUnk	70.44	60.88	87.33	70.73	49.29	52.60
	ADB	84.56	70.94	91.84	76.80	90.88	78.82
	MSP	41.19	71.97	57.62	70.58	23.99	66.91
	DOC	55.14	73.59	79.00	78.25	25.44	66.58
50%	OpenMax	54.33	74.76	81.89	80.54	45.00	70.49
	DeepUnk	69.53	77.74	85.85	82.11	43.01	70.51
	ADB	78.44	80.96	88.65	85.00	87.34	85.68
75%	MSP	39.23	84.36	59.08	82.59	33.96	80.88
	DOC	50.60	83.91	72.87	83.69	16.76	78.95
	OpenMax	50.85	84.64	76.35	73.13	44.87	82.11
	DeepUnk	58.54	84.75	81.15	86.27	37.59	81.00
	ADB	66.47	86.29	83.92	88.58	73.86	86.80

Discussion

Boundary Learning Process

Figure 3: The boundary learning process.

Balance between empirical risk and open space risk

Effect of Decision Boundary

Figure 4: Influence of the learned decision boundary.

Performance of open classification is sensitive to the size of the decision boundaries

Thank you