0.1 Safe lambda calculus without homogeneous types

We use a set of sequents of the form $\Gamma \vdash^{-k} M : A$ where the meaning is "variables in Γ have orders at least $\operatorname{ord}(A) - k$ ". The sequents \vdash^0 and \vdash^{-1} are also noted \vdash^+ and \vdash^- respectively.

$$\begin{split} (\mathbf{seq_{i,k}}) \quad & \frac{\Gamma \vdash^{-i} M : A}{\Gamma \vdash^{-(i+k)} M : A} \quad k > 0 \\ \\ (\mathbf{var}) \quad & \frac{x : A \vdash^{0} x : A}{x : A \vdash^{0} x : A} \\ \\ (\mathbf{wk^{-i}}) \quad & \frac{\Gamma \vdash^{-i} M : A}{\Gamma, x : B \vdash^{-i} M : A} \quad \operatorname{ord}(B) \geq \operatorname{ord}(A) - i \\ \\ (\mathbf{app^{-i}}) \quad & \frac{\Gamma \vdash^{-i} M : A \to B}{\Gamma \vdash^{-i} M : B} \quad \Gamma \vdash^{0} N : A, \\ & \Gamma \vdash^{-i+\delta} MN : B \end{split} \qquad \delta = \max\left(0, 1 + \operatorname{ord}(A) - \operatorname{ord}(B)\right) \\ \\ (\mathbf{abs^{-i}}) \quad & \frac{\Gamma, \overline{x} : \overline{A} \vdash^{i} M : B}{\Gamma \vdash^{0} \lambda \overline{x} : \overline{A} . M : \overline{A}, B} \qquad \forall y \in \Gamma : \operatorname{ord}(y) \geq \operatorname{ord}(\overline{A}, B) \end{split}$$

Note that:

- \overline{A} , B denotes the type $(A_1, A_2, \dots, A_n, B)$;
- all the types appearing in the rule are not required to be homogeneous. For instance in the rule ($\mathbf{app^{-i}}$), the type $A \to B$ is not necessarily homogeneous;
- the environment Γ, \overline{x} is not stratified. In particular, variables in \overline{x} do not necessarily have the same order. Also there may be variable in Γ of order smaller than $\operatorname{ord}(x_i)$ for some i.

Claim: Provided that substitution is done simultaneously (even for variable of different order), there is not variable capture when performing substitution on a safe (non homogeneous) term.

$$Proof.$$
 TO DO!