Diabetes-Eye Exam Analysis

Mridula (Mally) Shan - Summer 2024

Introduction & Code Set-Up

```
library(tidyverse)
library(dplyr)
library(infer)
library(readr)
library(broom)
library(gglm)
library(MASS)
library(AICcmodavg)
library(finalfit)
library(knitr)
library(lme4)
library(tinytex)
# (For Reference) Code to Reformat the Data for Analysis
# Collected data from the following link:
#https://www.cdc.gov/nchs/nhis/2022nhis.htm
# surveying 27,651 people throughout the United States
NHIS_Diabetes_Eye <- read_csv("adult22.csv")</pre>
```

Descriptive Statistics

1) Number Respondents from Various Regions of US

REGION	\mathbf{n}	perc_region
South	10171	36.78348
West	6857	24.79838
Midwest	6033	21.81838

REGION	n	perc_region
Northeast	4590	16.59976

Number Respondents from Various Regions of US

2) Number Respondents from Various County Types in US

The 2013 NCHS Urban-Rural Classification scheme defines:

• Large central metro as counties (or county equivalents) in metropolitan statistical areas (MSA) of 1 million or more population that 1) contain the entire population of the largest principal city of the MSA, or 2) are completely contained in the largest principal city of the MSA, or 3) contain at least 250,000 residents of any principal city of the MSA.

- Large fringe metro are counties (or county equivalents) in MSAs of 1 million or more population that do not qualify as large central.
- Medium and small metro are counties (or county equivalents) in MSAs of 250,000 to 999,999 population or in MSAs of less than 250,000 population.
- Nonmetropolitan are counties (or county equivalents) in micropolitan statistical areas and non-core counties.

URBRRL	n	perc_urban
Medium and small metro	8539	30.88134
Large central metro	8321	30.09294
Large fringe metro	6480	23.43496
Nonmetropolitan	4311	15.59076

Number Respondents from Various County Types in US

Regions of US

3) Distribution of Respondents' Sex

```
dist_sex <- NHIS_Diabetes_Eye %>%
  dplyr::mutate(SEX_A = case_when(SEX_A == 1 ~ "Male",
                                  SEX_A == 2 ~ "Female",
                                  SEX_A == 7 ~ "Refused",
                                  SEX_A == 8 ~ "Not Ascertained",
                                  SEX_A == 9 ~ "Don't Know")) %>%
  dplyr::count(SEX_A) %>%
  dplyr::mutate(perc_sex = (n/sum(n)*100)) %>%
  arrange(desc(perc_sex))
kable(dist_sex)
```

SEX_A	n	perc_sex
Female	15050	54.4284113
Male	12598	45.5607392
Don't Know	2	0.0072330
Refused	1	0.0036165

```
dist_sex %>%
  ggplot(aes(x = reorder(SEX_A, -n), y = n)) +
  geom_bar(stat = "identity", fill = "darkcyan") +
  theme(text = element_text(size = 8),
```

Distribution of Respondents' Sex

4) Distribution of Respondents' Race

```
arrange(desc(perc_race))
kable(dist_race)
```

RACEALLP_A	n	perc_race
White only	18242	65.9722976
Hispanic	3943	14.2598821
Black/African American only	3112	11.2545658
Asian only	1663	6.0142490
Other single and multiple races	319	1.1536653
AIAN only	187	0.6762866
AIAN and any other group	185	0.6690536

Distribution of Respondents' Race

5) Number of Respondents that had an Eye Exam

EYEEX12M_A	n	perc_eye_exam
Yes	14812	53.5676829
No	12434	44.9676323
Not Ascertained	370	1.3381071
Don't Know	32	0.1157282
Refused	3	0.0108495

```
num_eye_exam %>%
  ggplot(aes(x = reorder(EYEEX12M_A, -n), y = n)) +
  geom_bar(stat = "identity", fill = "darkcyan") +
```

Number of Respondents that had an Eye Exam

Did you have an eye exam?

6) Number of Respondents that have Diabetes

DIBEV_A	n	perc_diabetes
No	24673	89.2300459
Yes	2946	10.6542259
Refused	23	0.0831796
Don't Know	9	0.0325486

Number of Respondents that have Diabetes

Did you ever have diabetes?

Exploratory Analysis

1) Number of Respondents with Diabetes who got an Eye Exam

```
has diabetes tbl <- NHIS Diabetes Eye %>%
  dplyr::mutate(EYEEX12M_A = case_when(EYEEX12M_A == 1 ~ "Yes",
                                        EYEEX12M_A == 2 \sim "No",
                                        EYEEX12M_A == 7 \sim "Refused",
                                        EYEEX12M_A == 8 ~ "Not Ascertained",
                                        EYEEX12M_A == 9 ~ "Don't Know")) %>%
  dplyr::mutate(DIBEV_A = case_when(DIBEV_A == 1 ~ "Yes",
                                        DIBEV_A == 2 \sim "No",
                                        DIBEV_A == 7 ~ "Refused",
                                        DIBEV_A == 8 ~ "Not Ascertained",
                                        DIBEV_A == 9 ~ "Don't Know")) %>%
  filter(EYEEX12M_A %in% c("Yes", "No"), DIBEV_A %in% c("Yes", "No")) %>%
  dplyr::group_by(DIBEV_A) %>%
  dplyr::count(EYEEX12M_A) %>%
  dplyr::mutate(perc_eye_exam = (n/sum(n)*100)) %>%
  rename(Eye_Exam = EYEEX12M_A,
         Has_Diabetes = DIBEV_A)
kable(has_diabetes_tbl)
```

Has_Diabetes	Eye_Exam	n	perc_eye_exam
No	No	11584	47.64529
No	Yes	12729	52.35471
Yes	No	838	28.86669
Yes	Yes	2065	71.13331

```
NHIS_Diabetes_Eye %>%
  dplyr::mutate(EYEEX12M_A = case_when(EYEEX12M_A == 1 ~ "Yes",
                                       EYEEX12M_A == 2 \sim "No",
                                        EYEEX12M_A == 7 \sim "Refused",
                                        EYEEX12M A == 8 ~ "Not Ascertained",
                                        EYEEX12M A == 9 \sim "Don't Know")) %>%
  dplyr::mutate(DIBEV_A = case_when(DIBEV_A == 1 ~ "Yes",
                                       DIBEV_A == 2 ~ "No",
                                        DIBEV_A == 7 ~ "Refused",
                                       DIBEV_A == 8 ~ "Not Ascertained",
                                       DIBEV_A == 9 ~ "Don't Know")) %>%
  filter(EYEEX12M_A %in% c("Yes", "No"), DIBEV_A %in% c("Yes")) %>%
  ggplot() +
  geom_bar(mapping = aes(x = EYEEX12M_A),
           fill = "darkcyan") +
  theme(text = element_text(size = 8),
               axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  theme(text = element_text(size = 8),
                axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  theme_light() +
  theme(text = element text(size = 10),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
```

```
labs(title="Number of Respondents with Diabetes who got an Eye Exam",
    x = "Eye Exam Response",
    y = "Count")
```

Number of Respondents with Diabetes who got an Eye Exam

2) Number of Respondents with Gestational Diabetes who got an Eye Exam

```
#Gestational diabetes
gestational_type_tbl <- NHIS_Diabetes_Eye %>%
  dplyr::mutate(EYEEX12M_A = case_when(EYEEX12M_A == 1 ~ "Yes",
                                       EYEEX12M_A == 2 \sim "No",
                                        EYEEX12M_A == 7 ~ "Refused",
                                       EYEEX12M_A == 8 ~ "Not Ascertained",
                                        EYEEX12M_A == 9 ~ "Don't Know")) %>%
  dplyr::mutate(GESDIB_A = case_when(GESDIB_A == 1 ~ "Yes",
                                     GESDIB_A == 2 \sim "No",
                                     GESDIB_A == 7 ~ "Refused",
                                     GESDIB A == 8 ~ "Not Ascertained",
                                     GESDIB_A == 9 ~ "Don't Know")) %>%
  filter(EYEEX12M_A %in% c("Yes", "No"), GESDIB_A %in% c("Yes")) %>%
  dplyr::group_by(GESDIB_A) %>%
  dplyr::count(EYEEX12M_A) %>%
  dplyr::mutate(perc_eye_exam = (n/sum(n)*100)) %>%
  rename(Eye_Exam = EYEEX12M_A,
         Gestational_Diabetes = GESDIB_A)
```

kable(gestational_type_tbl)

Gestational_Diabetes	Eye_Exam	n	perc_eye_exam
Yes	No	328	39.14081
Yes	Yes	510	60.85919

```
NHIS_Diabetes_Eye %>%
  dplyr::mutate(EYEEX12M_A = case_when(EYEEX12M_A == 1 ~ "Yes",
                                       EYEEX12M_A == 2 \sim "No",
                                       EYEEX12M_A == 7 ~ "Refused",
                                       EYEEX12M_A == 8 ~ "Not Ascertained",
                                       EYEEX12M_A == 9 ~ "Don't Know")) %>%
  dplyr::mutate(GESDIB_A = case_when(GESDIB_A == 1 ~ "Yes",
                                     GESDIB_A == 2 ~ "No",
                                     GESDIB_A == 7 ~ "Refused",
                                     GESDIB A == 8 ~ "Not Ascertained",
                                     GESDIB_A == 9 ~ "Don't Know")) %>%
  filter(EYEEX12M_A %in% c("Yes", "No"), GESDIB_A %in% c("Yes")) %>%
  ggplot(mapping = aes(x = EYEEX12M_A)) +
  geom_bar(fill = "darkcyan") +
  theme(text = element_text(size = 8),
               axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  theme(text = element_text(size = 8),
               axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  theme_light() +
  theme(text = element_text(size = 10),
       axis.text.x = element text(angle = 45, vjust = 1, hjust = 1)) +
  labs(title = "Number of Respondents with Gestational Diabetes who got an Eye Exam",
       x = "Eye Exam Response",
       y = "Count")
```

Number of Respondents with Gestational Diabetes who got an Eye Exam

3) Proportion of respondents who got an Eye Exam based on Diabetes type

```
diabetes type tbl <- NHIS Diabetes Eye %>%
  dplyr::mutate(EYEEX12M_A = case_when(EYEEX12M_A == 1 ~ "Yes",
                                       EYEEX12M_A == 2 \sim "No",
                                       EYEEX12M_A == 7 ~ "Refused",
                                       EYEEX12M_A == 8 ~ "Not Ascertained",
                                       EYEEX12M_A == 9 ~ "Don't Know")) %>%
  dplyr::mutate(DIBTYPE_A = case_when(DIBTYPE_A == 1 ~ "Type 1",
                                      DIBTYPE_A == 2 ~ "Type 2",
                                      DIBTYPE_A == 3 ~ "Other type of diabetes",
                                      DIBTYPE_A == 7 ~ "Refused",
                                      DIBTYPE_A == 8 ~ "Not Ascertained",
                                      DIBTYPE_A == 9 ~ "Don't Know")) %>%
  filter(EYEEX12M_A %in% c("Yes", "No"),
         DIBTYPE_A %in% c("Type 1", "Type 2", "Other type of diabetes")) %>%
  dplyr::group_by(DIBTYPE_A) %>%
  dplyr::count(EYEEX12M_A) %>%
  dplyr::mutate(perc_eye_exam = (n/sum(n)*100)) %>%
  rename(Diabetes_Type = DIBTYPE_A,
         Eye\_Exam = EYEEX12M\_A)
kable(diabetes_type_tbl)
```

Diabetes_Type	Eye_Exam	n	perc_eye_exam
Other type of diabetes	No	29	50.87719
Other type of diabetes	Yes	28	49.12281
Type 1	No	68	28.57143
Type 1	Yes	170	71.42857
Type 2	No	686	27.89752
Type 2	Yes	1773	72.10248

```
NHIS_Diabetes_Eye %>%
  dplyr::mutate(EYEEX12M_A = case_when(EYEEX12M_A == 1 ~ "Yes",
                                       EYEEX12M_A == 2 \sim "No",
                                       EYEEX12M_A == 7 ~ "Refused",
                                       EYEEX12M_A == 8 ~ "Not Ascertained",
                                       EYEEX12M_A == 9 ~ "Don't Know")) %>%
  dplyr::mutate(DIBTYPE_A = case_when(DIBTYPE_A == 1 ~ "Type 1",
                                      DIBTYPE_A == 2 \sim \text{"Type 2"},
                                      DIBTYPE A == 3 ~ "Other type of diabetes",
                                      DIBTYPE_A == 7 ~ "Refused",
                                      DIBTYPE_A == 8 ~ "Not Ascertained",
                                      DIBTYPE_A == 9 ~ "Don't Know")) %>%
  filter(EYEEX12M_A %in% c("Yes", "No"),
         DIBTYPE_A %in% c("Type 1", "Type 2", "Other type of diabetes")) %>%
  ggplot(mapping = aes(x = DIBTYPE_A, fill = EYEEX12M_A)) +
  geom_bar(position = "fill") +
  theme(text = element_text(size = 8),
                axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  theme(text = element_text(size = 8),
                axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
 theme light() +
  scale_fill_manual(values = c("darkseagreen3",
                               "darkcyan")) +
  theme(text = element_text(size = 10),
        axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
  labs(title="Proportion of respondents who got an Eye Exam based on Diabetes Type",
       x = "Eye Exam Response",
       y = "Count")
```


Latest Findings

- 1) Looking at differences in responses based on respondents' sex
- a) Number of respondents that have diabetes across the sexes

```
diabetes_sex_tbl <- NHIS_Diabetes_Eye %>%
  dplyr::mutate(SEX A = case when(SEX A == 1 ~ "Male",
                                       SEX A == 2 ~ "Female",
                                       SEX_A == 7 ~ "Refused",
                                       SEX_A == 8 ~ "Not Ascertained",
                                       SEX A == 9 ~ "Don't Know")) %>%
  dplyr::mutate(DIBEV_A = case_when(DIBEV_A == 1 ~ "Yes",
                                      DIBEV_A == 2 ~ "No",
                                      DIBEV_A == 7 ~ "Refused",
                                      DIBTYPE A == 8 ~ "Not Ascertained",
                                      DIBTYPE_A == 9 ~ "Don't Know")) %>%
  filter(DIBEV_A %in% c("Yes", "No"),
         SEX_A %in% c("Male", "Female")) %>%
  dplyr::group_by(DIBEV_A) %>%
  dplyr::count(SEX_A) %>%
  dplyr::mutate(perc_diabetes = (n/sum(n)*100)) %>%
  rename(Respondent_Sex = SEX_A,
         Respondent_Diabetes = DIBEV_A)
kable(diabetes_sex_tbl)
```

Respondent_Diabetes	Respondent_Sex	n	perc_diabetes
No	Female	13500	54.72233
No	Male	11170	45.27767
Yes	Female	1536	52.13849
Yes	Male	1410	47.86151

Number of respondents that have diabetes across the sexes

Does the respondent have diabetes?

Number of respondents that have diabetes across the sexes

- b) Number of respondents with diabetes that took an eye exam across the sexes
- 2) Looking at differences in responses based on respondents' race
- a) Number of respondents that have diabetes across races

```
diabetes race tbl <- NHIS Diabetes Eye %>%
  dplyr::mutate(HISPALLP_A = case_when(HISPALLP_A == 1 ~ "Hispanic",
                                       HISPALLP_A == 2 ~ "White only",
                                       HISPALLP_A == 3 ~ "Black/African American only",
                                       HISPALLP_A == 4 ~ "Asian only",
                                       HISPALLP_A == 5 ~ "AIAN only",
                                       HISPALLP_A == 6 ~ "AIAN and any other group",
                                       HISPALLP_A == 7 ~ "Other single and multiple races",
                                       HISPALLP_A == 97 ~ "Refused",
                                       HISPALLP_A == 98 ~ "Not Ascertained",
                                       HISPALLP_A == 99 ~ "Don't Know")) %>%
  dplyr::mutate(DIBEV_A = case_when(DIBEV_A == 1 ~ "Yes",
                                      DIBEV_A == 2 ~ "No",
                                      DIBEV_A == 7 ~ "Refused",
                                      DIBTYPE A == 8 ~ "Not Ascertained",
                                      DIBTYPE_A == 9 ~ "Don't Know")) %>%
  filter(DIBEV_A %in% c("Yes", "No"),
         HISPALLP A %in% c("Hispanic", "White only", "Black/African American only",
                      "Asian only", "AIAN only", "AIAN and any other group",
                      "Other single and multiple races")) %>%
```

Respondent_Diabetes	Respondent_Race	n	perc_diabetes
No	AIAN and any other group	166	0.6728002
No	AIAN only	154	0.6241641
No	Asian only	1503	6.0916792
No	Black/African American only	2628	10.6513193
No	Hispanic	3541	14.3517205
No	Other single and multiple races	303	1.2280631
No	White only	16378	66.3802537
Yes	AIAN and any other group	19	0.6449423
Yes	AIAN only	32	1.0862186
Yes	Asian only	157	5.3292600
Yes	Black/African American only	480	16.2932790
Yes	Hispanic	399	13.5437882
Yes	Other single and multiple races	16	0.5431093
Yes	White only	1843	62.5594026

Number of respondents that have diabetes across the races

Does the respondent have diabetes?

Number of respondents that have diabetes across the races

- Does the respondent have diabetes?
- b) Number of respondents with diabetes that took an eye exam across races
- 3) Looking at differences in responses based on respondents' county
- a) Number of respondents that have diabetes across county types

```
diabetes county tbl<- NHIS Diabetes Eye %>%
  dplyr::mutate(URBRRL = case_when(URBRRL == 1 ~ "Large central metro",
                                       URBRRL == 2 ~ "Large fringe metro",
                                       URBRRL == 3 ~ "Medium and small metro",
                                       URBRRL == 4 ~ "Nonmetropolitan")) %>%
  dplyr::mutate(DIBEV_A = case_when(DIBEV_A == 1 ~ "Yes",
                                      DIBEV A == 2 ~ "No",
                                      DIBEV_A == 7 ~ "Refused",
                                      DIBTYPE_A == 8 ~ "Not Ascertained",
                                      DIBTYPE_A == 9 ~ "Don't Know")) %>%
  filter(DIBEV_A %in% c("Yes", "No")) %>%
  dplyr::group_by(DIBEV_A) %>%
  dplyr::count(URBRRL) %>%
  dplyr::mutate(perc_diabetes = (n/sum(n)*100)) %>%
  rename(Respondent County = URBRRL,
         Respondent_Diabetes = DIBEV_A)
kable(diabetes county tbl)
```

Respondent_Diabetes	Respondent_County	n	perc_diabetes
No	Large central metro	7528	30.51109
No	Large fringe metro	5846	23.69392
No	Medium and small metro	7553	30.61241
No	Nonmetropolitan	3746	15.18259
Yes	Large central metro	783	26.57841
Yes	Large fringe metro	623	21.14732
Yes	Medium and small metro	977	33.16361
Yes	Nonmetropolitan	563	19.11066

Number of respondents that have diabetes across the counties

Does the respondent have diabetes?

Number of respondents that have diabetes across the counties

b) Number of respondents with diabetes that took an eye exam across county types