ANALISI MATEMATICA III A.A. 2006-2007

Tracce delle lezioni del 22 e 28 febbraio 2007

February 22, 2007

1 Le distribuzioni

1.1 Definizione

Indichiamo con L^1_{loc} lo spazio vettoriale

 $L^1_{loc} = \left\{ f: \mathbb{R} \to \mathbb{C}, \text{ as$ $solutamente integrabili in ogni compatto di } \mathbb{R} \right\};$

vogliamo costruire un'estensione di tale spazio.

Ricordiamo che una funzione $\varphi: \mathbb{R} \to \mathbb{R}$ si dice a supporto compatto se esiste un intervallo compatto (i.e. limitato e chiuso) [a,b] dell'asse reale tale che $\varphi(t)=0$ se $t\notin [a,b]$. L'intervallo [a,b], all'esterno del quale φ è nulla, si chiama supporto di φ . E' evidente che la funzione φ è univocamente individuata non appena siano noti i valori assunti da φ sul supporto.

Si consideri poi lo spazio vettoriale D formato da tutte le funzioni reali (di variabile reale) infinitamente derivabili e a supporto compatto, ossia

$$D = \{ \varphi \in C^{\infty}(\mathbb{R}) \text{ a supporto compatto} \}.$$

Tale spazio si chiama *spazio delle funzioni test* ed è possibile definire in tale spazio una nozione di convergenza (vedi Appendice).

Si osservi poi che il supporto dipende dalla funzione φ considerata. Ad esempio la funzione α data da

$$\alpha(t) = \begin{cases} e^{-1/(1-t^2)} & \text{se } |t| < 1\\ 0 & \text{altrimenti.} \end{cases}$$

appartiene a Ded il suo supporto è [-1,1]. Analogamente la funzione β data da

$$\beta(t) = \begin{cases} e^{-1/(4-t^2)} & \text{se } |t| < 2\\ 0 & \text{altrimenti} \end{cases}$$

appartiene a D ed il suo supporto è [-2, 2].

Ciò premesso si chiama spazio delle distribuzioni l'insieme formato da tutti i funzionali (vedi Appendice) lineari e continui definiti su D. Tale spazio si indica con il simbolo $\mathfrak D$ ossia

$$\mathfrak{D} = \{T : D \to \mathbb{R}, \text{ lineare e continuo}\}\$$

Pertanto $T \in \mathfrak{D}$ se :

- 1) T è un funzionale, i.e. $T:D\to\mathbb{R}$
- 2) T è lineare, ossia

$$T(c_1\varphi_1 + c_2\varphi_2) = c_1T(\varphi_1) + c_2T(\varphi_2), \quad \forall c_1, c_2 \in \mathbb{R}, \forall \varphi_1, \varphi_2 \in D.$$

3) T è continuo, ossia se $\{\varphi_n\} \xrightarrow{D} \varphi$, allora $\{T(\varphi_n)\} \xrightarrow{\mathbb{R}} T(\varphi)$.

1.2 Esempi

Sono elementi di \mathfrak{D} (e quindi distribuzioni) i seguenti funzionali (dove φ indica una generica funzione di D):

- 1. $T_{\sin t}(\varphi) = \int_{\mathbb{R}} \varphi(t) \sin t \ dt$
- 2. $T_{t^3}(\varphi) = \int_{\mathbb{R}} \varphi(t) \ t^3 \ dt$
- 3. $T_{e^t}(\varphi) = \int_{\mathbb{R}} \varphi(t) e^t dt$.

In generale, fissata una funzione $f \in L^1_{loc}$, sono elementi di \mathfrak{D} i funzionali del tipo

- 4. $T_f(\varphi) = \int_{\mathbb{R}} f(t) \ \varphi(t) \ dt$, dove φ indica, come prima, una generica funzione di D.

 Altre distribuzioni (i.e. elementi di \mathfrak{D}) sono poi i funzionali
- 5. $\Delta_0(\varphi) = \varphi(0)$
- 6. $\Delta_a(\varphi) = \varphi(a)$

dove a è un generico numero reale e φ è una generica funzione di D.

Usualmente i funzionali Δ_0 , Δ_a vengono indicati con i simboli $\delta(t)$, $\delta(t-a)$. In riferimento all'Esempio 1., il valore $T_{\sin t}(\varphi)$, assunto dal funzionale T, viene indicato con

$$T_{\sin t}(\varphi) = \langle \sin t, \varphi(t) \rangle$$
.

Il simbolo $\langle \cdot, \cdot \rangle$ si chiama *crochet*; e la scrittura $\langle \sin t, \varphi(t) \rangle$ si legge *crochet* tra sin $t \in \varphi$.

Pertanto le distribuzioni sopra definite negli Esempi 1., 2., 3., 4. si indicano anche con i simboli

- 1. $T_{\sin t}(\varphi) = \langle \sin t, \varphi(t) \rangle =_{def} \int_{\mathbb{R}} \varphi(t) \sin t \ dt$
- 2. $T_{t^3}(\varphi) = \langle t^3, \varphi(t) \rangle =_{def} \int_{\mathbb{R}} \varphi(t) \ t^3 \ dt$
- 3. $T_{e^t}(\varphi) = \langle e^t, \varphi(t) \rangle =_{def} \int_{\mathbb{R}} \varphi(t) e^t dt$.
- 4. Per ogni $f \in L^1_{loc}$ fissata

5.

$$T_f(\varphi) = \langle f(t), \varphi(t) \rangle =_{def} \int_{\mathbb{R}} f(t)\varphi(t)dt.$$
 (1)

Analogamente per le distribuzioni $\delta(t)$ e $\delta(t-a)$ si ha

 $/\delta(t)$

 $\langle \delta(t), \varphi(t) \rangle =_{def} \varphi(0)$

6. $\langle \delta(t-a), \varphi(t) \rangle =_{def} \varphi(a).$

1.3 Le distribuzioni come estensione dello spazio L^1_{loc}

Mostriamo che lo spazio $\mathfrak D$ è una estensione dello spazio

 $L^1_{loc} = \left\{ f: \mathbb{R} \to \mathbb{C}, \text{ as$ $solutamente integrabili in ogni compatto di } \mathbb{R} \right\}.$

Ricordiamo che in tale spazio due funzioni f, g, coincidono se

$$f(t) = q(t)$$
, eccetto un insieme di misura nulla.

Ciò premesso si ha il seguente:

Teorema - Siano $f, g \in L^1_{loc}$. Se

$$\int_{\mathbb{R}} f(t) \varphi(t) dt = \int_{\mathbb{R}} g(t) \varphi(t) dt \qquad \forall \varphi \in D$$
 (2)

(ossia, usando le notazione con il crochet, se

$$\langle f(t), \varphi(t) \rangle = \langle g(t), \varphi(t) \rangle \qquad \forall \varphi \in D$$
 (3)

allora f e g coincidono in L^1_{loc} . Vale poi, ovviamente, il viceversa, ossia se f e g coincidono in L^1_{loc} , allora (2) [i.e.(3)] è soddisfatta.

Da questo risultato ne segue che le distribuzioni $T \in \mathfrak{D}$, definite tramite funzioni di L^1_{loc} , ossia le distribuzioni $T \in \mathfrak{D}$ il cui crochet è dato da (1) sono "tante quanti gli elementi di L^1_{loc} ".

In altre parole se indichiamo con \mathfrak{D}^* il sottoinsieme di \mathfrak{D} formato da tutte le distribuzioni il cui crochet è dato da (1), ossia

$$\mathfrak{D}^* = \left\{ T \in \mathfrak{D} : \exists f \in L^1_{loc} : T(\varphi) = \langle f(t), \varphi(t) \rangle = \int_{\mathbb{R}} f(t) \varphi(t) dt \qquad \forall \varphi \in D \right\},$$

per il Teorema precedente il sottospazio \mathfrak{D}^* è in corrispondenza biunivoca con L^1_{loc} , ossia

$$\mathfrak{D}^* \sim L^1_{loc}$$

Quindi lo spazio delle distribuzioni \mathfrak{D} può essere interpretato come una estensione di L^1_{loc} .

In altre parole, ogni $f \in L^1_{loc}$ può essere pensata come distribuzione (precisamente quella il cui crochet è definito da (1). Non è difficile poi provare che si tratta di una **effettiva** estensione, in quanto esistono anche distribuzioni,

ad esempio $\delta(t)$, $\delta(t-a)$, che **non** possono essere definite tramite funzioni di L^1_{loc} , e quindi che non appartengono a \mathfrak{D}^* .

Pertanto si ha

$$L^1_{loc} \sim \mathfrak{D}^* \subset \mathfrak{D}$$

i.e. \mathfrak{D}^* è strettamente contenuto in \mathfrak{D} , in quanto, come si è appena affermato, le distribuzioni $\delta(t)$, $\delta(t-a)$, prima considerate, non sono elementi di \mathfrak{D}^* .

1.4 Convergenza nello spazio delle distribuzioni

Per analizzare le proprietà delle distribuzioni è utile introdurre in \mathfrak{D} una nozione di convergenza. Precisamente diremo che una successione di distribuzioni $\{T_n\}$ converge in \mathfrak{D} ad una distribuzione T se la successione numerica $\{T_n(\varphi)\}$ converge a $T(\varphi)$ per ogni $\varphi \in D$; ossia

$$\{T_n\} \stackrel{\mathfrak{D}}{\to} T$$
 se $\{T_n(\varphi)\} \stackrel{\mathbb{R}}{\to} T(\varphi)$ $\forall \varphi \in D$

o, equivalentemente,

$$\lim_{n} T_{n} \stackrel{\mathfrak{D}}{=} T \qquad \text{se} \qquad \lim_{n} T_{n}(\varphi) \stackrel{\mathbb{R}}{=} T(\varphi) \qquad \forall \varphi \in D.$$

Utilizzando tale nozione, si può provare il seguente Teorema (di rappresentazione):

Teorema - Ogni distribuzione è limite (in \mathfrak{D}) di una successione di elementi di L^1_{loc} , ossia

$$\overline{L^1_{loc}} = \mathfrak{D}.$$

In altre parole il Teorema precedente afferma che per ogni $T \in \mathfrak{D}$ esiste una successione $\{f_n(t)\}$, contenuta in L^1_{loc} , che converge in \mathfrak{D} (nel senso sopra specificato) alla distribuzione T.

Ad esempio è facile provare che la distribuzione $\delta(t)$ sopra definita è il limite (in \mathfrak{D}) della successione $\{k_n(t)\}$, dove

$$k_n(t) = \begin{cases} n & \text{se } t \in [0, 1/n] \\ 0 & \text{altrimenti.} \end{cases}$$

In altre parole la distribuzione $\delta(t)$ gode della **importante** proprietà:

$$\delta(t) \stackrel{\mathfrak{D}}{=} \lim_{n} k_n(t)$$

2 **Appendice**

2.1 Convergenza nello spazio delle funzioni test

La nozione di convergenza nello spazio D delle funzioni test si definisce nel seguente modo: diremo che una successione $\{\varphi_n\}$ converge a φ se:

- 1) $\varphi_n, \varphi \in D$;
- 2) esiste un intervallo compatto I tale che $\varphi_n(t) = \varphi(t) = 0$ se $t \notin I$;
- 3) la successione $\left\{\varphi_n^{(i)}\right\}$ converge uniformente a $\varphi^{(i)}$ in \mathbb{R} per i=0,1,2,3...ossia $\forall \varepsilon > 0 \ \exists n(\varepsilon)$: per ogni $n > n(\varepsilon)$ si ha $|\varphi_n^{(i)}(t) - \varphi_n^{(i)}(t)| < \varepsilon \ \forall t \in I$ - la successione $\{\varphi_n\}$ converge uniformente a φ in \mathbb{R} , i.e.

 $\forall \varepsilon > 0 \ \exists n(\varepsilon) : \text{per ogni} \ n > n(\varepsilon) \text{ si ha} \ |\varphi_n(t) - \varphi_n(t)| < \varepsilon \ \forall t \in I$

- la successione $\{\varphi_n'\}$ converge uniformemte a φ' in \mathbb{R} , $\forall \varepsilon > 0 \ \exists \nu(\varepsilon)$: per ogni $n > \nu(\varepsilon)$ si ha $|\varphi_n'(t) - \varphi_n'(t)| < \varepsilon \ \forall t \in I$

- la successione $\{\varphi''_n\}$ converge uniformemte a φ'' in \mathbb{R} ,

-

2.2**Funzionale**

Sia V uno spazio vettoriale; si chiama funzionale in V ogni funzione Fdefinita in V e a valori in \mathbb{R} , i.e.

$$F: V \to \mathbb{R}$$
.

Ad esempio se V è lo spazio delle funzioni continue in [0,1], sono funzionali in V i seguenti (dove x = x(t) indica una generica funzione continua in [0, 1]):

$$F_1(x) = \int_0^1 x(s)ds$$

$$F_2(x) = \max_{t \in [0,1]} |x(t)|$$

$$F_3(x) = 437x(0) + 567x(1)$$