CMX32M cpuModules™

User's Manual

BDM-610000075 Revision D

CMX32M cpuModules™ User's Manual

RTD Document Number: BDM-610000075 Revision D

Copyright © 2009-2012 RTD Embedded Technologies, Inc. All rights reserved.

Trademarks

Advanced Analog I/O, Advanced Digital I/O, aAIO, aDIO, a2DIO, Autonomous SmartCal, "Catch the Express", cpuModule, dspFramework, dspModule, expressMate, ExpressPlatform, HiDANplus, "MIL Value for COTS prices", multiPort, PlatformBus, and PC/104EZ are trademarks, and "Accessing the Analog World", dataModule, IDAN, HiDAN, RTD, and the RTD logo are registered trademarks of RTD Embedded Technologies, Inc (formerly Real Time Devices, Inc.). PS/2 is a trademark of International Business Ma¬chines Inc. PCI, PCI Express, and PCIe are trademarks of PCI-SIG. PC/104, PC/104-Plus, PCI-104, PCI/104-Express and 104 are trademarks of the PC/104 Embedded Consortium. All other trademarks appearing in this doc¬ument are the property of their respective owners.

Failure to follow the instructions found in this manual may result in damage to the product described in this manual, or other components of the system. The procedure set forth in this manual shall only be performed by persons qualified to service electronic equipment. Contents and specifications within this manual are given without warranty, and are subject to change without notice. RTD Embedded Technologies, Inc. shall not be liable for errors or omissions in this manual, or for any loss, damage, or injury in connection with the use of this manual.

Revision History

Revision	Date	Reason for Change
А	6/13/11	Initial Release.
В	7/11/11	Corrected Headphone Load Impedance in Table 4 on page 12. Corrected aAIO connector number in Table 26 on page 39. Corrected Audio pinout in Table 29 on page 42.
С	2/17/12	Updated block diagram to clarify x1 links. Clarified the meaning of AD_RESULT register on page 73 Added CN numbers to Figure 11, IDAN-CMX32M Connectors, — page 100
D	9/21/12	Corrected LVDS Connector pin count and mating connector in Table 5, CMX32M Basic Connectors — 17 and Table 6, CMX32M Basic Connectors — 25

CMX32M cpuModules™

Table of Contents

Chapter 1 Introduction

CMX32M cpuM	odules	2
Enhanced Inte	el SpeedStep (Core 2 Duo only)	3
	itor	3
aDIO with Wa	ake-on-aDIO	3
Ordering Inform	nation	5
	del Options	5
Cable Kits and	d Accessories	5
Board Features		6
		7
		9
_	n	10
-		11
•	acteristics	11
	mption	11
	nditionsracteristics	17 12
Contact Informa	ation	14
Chapter 2	Getting Started	
Connector Loca	tions	16
	ack Order for the CMX32M	18
		19
Connecting to tl	he Stack	20
Connecting the	Utility Cable	2
Connecting a Ke	eyboard	21
Booting the CM	X32M cpuModule for the First Time	2
Chapter 3	Connecting the cpuModule	
Proper Groundi	ng Techniques	24
Connector Loca	tions	24
	(CN3)	26
Utility Port Con	nector (CN5)	27
•		27
-		28
		28
System Reset.		28
	itton	28
Battery		29
SVGA Video Coi	nnector (CN18)	30

LVDS Flat Panel Video Connector (CN19)	31
SATA Disk Chip Socket (U6)	32
Installing and Configuring the SATA Disk Chip	32
Serial Port 1 (CN7) and Serial Port 2 (CN8)	33
Serial Port UART	33
RS-232 Serial Port (Default)	33
RS-422 or RS-485 Serial Port.	34
RS-422 and RS-485 Mode Pinout	35
Dual Serial Port Modes.	36
Advanced Digital I/O (aDIO™) Port (CN6)	38
Advanced Analog I/O (aAIO™) Port (CN10)	39
USB 2.0 Connector (CN17)	40
Ethernet (10/100/1000Base-T and -TX) Connectors (CN20 and CN30)	41
High Definition Audio (CN11)	42
PCIe/104 Type 2 Bus (CN1 - Top)	43
PCIe/104 Type 2 Compatibility	45
PCIe Link Configuration	46
PCle Peer-To-Peer	46
PCIe/104 Type 1 Bus (CN2-Bottom)	47
PCI/104-Express PCIe Bus Signals	49
PCI Express x16 Link	49
PCIe/104 Type 1 Compatibility	50
PCIe Link Configuration	50
Optional RTC Battery Input (CN13)	5
Fan Power, Switched (CN15)	51
Chapter 4 Using the cpuModule	
The RTD Enhanced AMI BIOS	54
Configuring the RTD Enhanced AMI BIOS	54
Entering the BIOS Setup.	54
Field Selection	54
Main Menu Setup Fields	55
Memory Map	56
I/O Address Map	57
Hardware Interrupts	58
Non-Standard Serial Port Modes	59
Advanced Digital I/O Ports (aDIO™)	60
Digital I/O Register Set	60
Port 1 Data register is a read/write byte direction	62
Interrupts	62
Advanced Digital Interrupts	62 62
Match Mode	62
Stroba Mada	63

Features	
•	
•	
Operating Modes	
Simple Operation	
DMA Based Operation	
_	
_	nur
_	ers
, •	
_	
Accessing the RTC Registers	
tchdog Timer Control	
ermal Management	
Thermal Monitor	
Fan Mode	
Further Temperature Reduction	٦
wer Management	
<u>-</u>	Step Technology (Core 2 Duo)
	ower Interface (ACPI)
· ·	
,,, ,	
set Status Register	
atures and Settings That Can	Affect Boot Time
Add-On Cards With BIOS Exter	nsions
VGA Controller	
Hard Drive Type	
Monitor Type	
NVRAM Undates	

Boot Device Order	87
System Recovery	88
Reset Button Recovery	88
Load Default BIOS Settings	88
Serial Power On Self Test POST Code Output	88
BIOS Boot Block Recovery	88
Appendix A Hardware Reference	
Jumper Settings and Locations	90
Onboard PCI/PCIe Devices	92
Physical Dimensions	93
Board Spacing	93
Appendix B Troubleshooting	
Common Problems and Solutions	96
Troubleshooting a PC/104 System	97
How to Obtain Technical Support	98
Appendix C IDAN™ Dimensions and Pinout	
IDAN Dimensions and Connectors	100
External I/O Connections	101
Appendix D Additional Information	
Application Notes	109
Drivers and Example Programs	109
Interrupt Programming	109
Serial Port Programming	109
PC/104Specifications	109

Appendix E Limited Warranty

Chapter 1 Introduction

This manual provides comprehensive hardware and software information for users developing with the CMX32M PCIe/104 cpuModule.

Note Read the specifications beginning on page 11 prior to designing with the cpuModule.

This manual is organized as follows:

Chapter 1 Introduction

introduces main features and specifications

Chapter 2 Getting Started

provides abbreviated instructions to get started quickly

Chapter 3 Connecting the cpuModule

provides information on connecting the cpuModule to peripherals

Chapter 4 Using the cpuModule

provides information to develop applications for the cpuModule, including general cpuModule information, detailed information on storing both applications and system

functions, and using utility programs

Appendix A Hardware Reference

lists jumper locations and settings, physical dimensions, and processor thermal

management

Appendix B Troubleshooting

offers advice on debugging problems with your system

Appendix C IDAN™ Dimensions and Pinout

provides connector pinouts for the cpuModule installed in an RTD Intelligent Data

Acquisition Node (IDAN) frame

Appendix D Additional Information

lists sources and websites to support the cpuModule installation and configuration

Appendix E Limited Warranty

CMX32M cpuModules

RTD's CMX32M cpuModule represents the latest in high-performance, energy-efficient embedded computing solutions. Based on the Intel® "Montevina" platform, it features a 64-bit "Penryn" processor coupled with a GS45 chipset. It includes a source-synchronous Front-Side-Bus (FSB) operating up to 1066 MHz, and up to 6 MB of L2 cache. This cpuModule is available either with a dual-core Core 2 Duo processor, or a single core Celeron-M processor. The Core 2 Duo processor features Enhanced Intel SpeedStep® technology, which enables real-time dynamic switching between multiple voltage and frequency points. This results in optimal performance without compromising low power.

A dual channel DDR2 memory interface operating at up to 800 MHz ensures adequate memory bandwidth to keep up with both processors. All memory chips are soldered directly onto the board.

The video interface is provided by an Analog SVGA output and an LVDS flat panel output. The two outputs are independent, and can display separate images and display timings. Maximum resolution is 2048 x 1536.

High-speed peripheral connections include USB 2.0, with up to 480 Mb/sec data throughput. A Serial-ATA (SATA) controller provides a fast 3.0 Gbps connection to the hard drives. Network connectivity is provided by an integrated 10/100/1000 Mbps Ethernet controller. Other features include two RS-232/422/485 COM ports, AC97 audio, Advanced Analog I/O (aAIO), and Advanced Digital I/O (aDIO).

RTD has gone the extra mile to include additional advanced features for maximum flexibility. These include a SATA Disk Chip socket that allows flash drive with a standard SATA interface to be attached to the board, either socketed or soldered. An Advanced Watchdog Timer is provided that can generate an interrupt or reset when the timer expires. SDRAM is soldered directly to the board for high vibration resistance. The CMX32M is also available in a rugged, fanless IDAN enclosure.

Figure 1 CMX32M cpuModule (top view)

Enhanced Intel SpeedStep (Core 2 Duo only)

Enhanced Intel® SpeedStep® Technology has revolutionized thermal and power management by giving operating systems greater control over the processor's operating frequency and input voltage. Systems can easily manage power consumption dynamically. Today's embedded systems are demanding greater performance at equivalent levels of power consumption. Legacy hardware support for backplanes, board sizes and thermal solutions have forced design teams to place greater emphasis on power and thermal budgets. Intel has extended architectural innovation for saving power by implementing new features such as Enhanced Intel SpeedStep Technology. Enhanced Intel SpeedStep Technology allows the processor performance and power consumption levels to be modified while a system is functioning. This is accomplished via operating system or application software, which changes the processor speed and the processor core voltage while the system is operating. A variety of inputs such as system power source, processor thermal state, or operating system policy are used to determine the proper operating state.

The software model behind Enhanced Intel SpeedStep Technology has ultimate control over the frequency and voltage transitions. This software model is a major step forward over previous implementations of Intel SpeedStep technology. Legacy versions of Intel SpeedStep technology required hardware support through the chipset. Enhanced Intel SpeedStep Technology has removed the chipset hardware requirement and only requires the support of the voltage regulator, processor and operating system. Centralization of the control mechanism and software interface to the processor, and reduced hardware overhead has reduced processor core unavailability time to 10 µs from the previous generation unavailability of 250 µs.

Thermal Monitor

The Intel * Thermal Monitor is a feature on the CMX32M that automatically throttles the CPU when the CPU exceeds its thermal limit. This allows the processor to operate for short durations at a higher frequency than the thermal solution or ambient temperature would otherwise allow. The thermal limit and duty cycle of the Thermal Monitor cannot be modified.

A second thermal monitor is used to throttle the memory interface when the memory controller or the memory approaches it's thermal limit. This ensures proper operation even under the harshest conditions. The thermal monitors operate independently of each other.

aDIO with Wake-on-aDIO

RTD's exclusive aDIO™ is 12 digital bits configured as 8 bit-direction programmable and 4-bit port-direction programmable I/O, plus 2 strobe inputs giving you any combination of inputs and outputs. Match, event, and strobe interrupt modes mean no more wasting valuable processor time polling digital inputs. Interrupts are generated when the 8 bit-direction programmable digital inputs match a pattern or on any value change event. Bit masking allows selecting any subgroup of eight bits. The strobe input latches data into the bit-programmable port and generates an interrupt. Any of the interrupt modes can be used to generate a wake event from any standby/powerdown mode.

aAIO

RTD's exclusive aAIO™ provides 8 single-ended or 4 differential analog inputs, providing a single-board, data acquisition solution. Each input can have a range or +/-5V, +/- 10V, 0-5V, or 0-10V. A maximum sample rate of 100kHz is shared between the channels. A minimum sample rate of 9mHz (one sample every 107 seconds) allows unobtrusive background monitoring of signals. The input range and mode (differential vs. single ended) can be individually selected for each channel. Any number of channels can be selected for sampling.

Advanced features include a programmable, single-pole IIR filter on each channel. This allows the hardware to remove noise from the input signal. The filter can be individually enabled and the coefficients adjusted for each channel. The cutoff frequency can be adjusted down to 0.12% of the sample rate.

The aAIO also provides interrupts on threshold crossing. A high and low threshold can be set for each channel. After sampling is started, an interrupt can be generated if any of the signals cross the threshold. This removes some of the CPU load for simple monitoring tasks.

A DMA engine with a scatter-gather table allows efficient, robust handling of data. Up to 64 DMA buffers can be assigned to each channel. After filling each buffer, an interrupt can be generated to inform the driver that buffer is full so that the driver can empty it or assign a new buffer. Because many buffers can be assigned, interrupt latency problems are mitigated. Also, since each channel has it's own buffer, software does not have to de-interlace the data. The DMA engine can send the data to anywhere in 4GB memory space.

Ordering Information

The CMX32M cpuModule is available with a selection of processors and memory sizes. The cpuModule can also be purchased as part of an Intelligent Data Acquisition Node (IDAN™) building block, which consists of the cpuModule and a milled aluminum IDAN frame. The IDAN building block can be used in just about any combination with other IDAN building blocks to create a simple but rugged PC/104 stack. Refer to Appendix C, IDAN™ Dimensions and Pinout, for more information. The CMX32M cpuModule can also be purchased as part of a custom-built RTD HiDAN™ or HiDANplus High Reliability Intelligent Data Acquisition Node. Contact RTD for more information on its high reliability PC-104 systems.

CMX32M Model Options

The basic cpuModule model options are shown below. Refer to the RTD website (www.rtd.com) for more detailed ordering information and any new variations that may be available.

Part Number

CMX32MVD1860HR-2048

Core 2 Duo (Dual Core) 1.86 GHz, 2GB DDR2-SDRAM

CMX32MVD1860HR-1024

Core 2 Duo (Dual Core) 1.86 GHz, 1GB DDR2-SDRAM

CMX32MVD1200HR-2048

Core 2 Duo (Dual Core) 1.20 GHz, 2GB DDR2-SDRAM

CMX32MVD1200HR-1024

Core 2 Duo (Dual Core) 1.20 GHz, 1GB DDR2-SDRAM

CMX32MVD1200HR-2048

Celeron (Single Core) 1.20 GHz, 2GB DDR2-SDRAM

CMX32MCS1200HR-1024

Celeron (Single Core) 1.20 GHz, 1GB DDR2-SDRAM

CMX32MCS1200HR-1024

Celeron (Single Core) 1.20 GHz, 1GB DDR2-SDRAM

Table 1 CMX32M cpuModule Model Options

Cable Kits and Accessories

For maximum flexibility, RTD does not provide cables with the cpuModule. You may wish to purchase the CMX32M cpuModule cable kit (P/N XK-CM95), which contains:

- Multi-function utility harness (keyboard socket, battery, reset, speaker)
- Two serial port cables (DIL-10 to DSUB-9)
- VGA monitor cable (DIL-10 to high density 15-pin DSUB)
- aDIO cable (DIL-16 to DSUB-25)
- Two USB cables (5-pin SIL to USB A)
- PCIe/104 Type 2 break-out board (to connect SATA and USB)
- Audio Cable (DIL-16 to five 3.5mm Jacks)
- Two Ethernet cables (DIL-10 to RJ-45)

For additional accessories, refer to the RTD website.

Board Features

Penryn Processor

Part Number	Speed	Cores	L2 Cache	FSB Speed
CMX32MVD1860	1.86GHZ	Two	6 MB	1066 MHz
CMX32MVD1200	1.20 GHz	Two	3 MB	800 MHz
CMX32MCS1200	1.20 GHz	One	1 MB	800 MHz

- Intel 64 architecture for 64-bit processing.
- Enhanced Intel SpeedStep Technology and dynamic FSB frequency switching (Core 2 Duo only).
- Enhanced Intel Dynamic Acceleration Technology and Enhanced Multi-Threaded Thermal Management (Core 2 Duo only)
- Supports enhanced Intel Virtualization Technology (Core 2 Duo only)
- 45 nm process
- 1 GB or 2GBytes BGA DDR2 SDRAM
 - Dual-channel memory interface
 - Up to 800MHz Data Rate per channel
 - Surface Mounted for maximum reliability
- Stackable 156-pin PCle/104 Type 2 bus on top
 - Four PCI Express x1 Lanes
 - Two SATA 2.0
 - Two USB 2.0
 - SMBus
- Stackable 156-pin PCle/104 Type 1 bus on bottom
 - Four PCI Express x1 Lanes
 - One PCI Express x16 Lane
 - Two USB 2.0
 - SMBus
- Advanced Thermal Management
 - Thermal Monitor throttles processor and memory to prevent thermal runaway
 - Auto Fan Control only runs fan when needed
 - SMBus Temperature Monitor for CPU and board temperature
 - Mini Fan Heatsink with Auto Fan control
 - Passive Structural Heatsink & Heatpipes in IDAN and HiDAN System Configurations
- Advanced Programmable Interrupt Controller (APIC)
 - 24 interrupt channels with APIC enabled (15 in legacy PIC mode)
 - High Precision Event Timer
- Advanced Configuration and Power Interface (ACPI)
 - ACPI 3.0 Compliant
 - Supported power down modes: S1 (Power On Suspend), S3 (Suspend to RAM), S4 (Hibernate), and S5 (Soft-Off)
 - CPU Clock Throttling and Clock Stop for C0 to C6 Support

- Wake events include:
 - aDIO Interrupt
 - Wake-on-LAN
 - Real Time Clock
 - COM port Ring
 - Power Switch
 - etc.
- Network Boot supported by Intel PXE
- Y2K compliant Real-Time Clock (external battery required)
- Nonvolatile storage of CMOS settings without battery
- Advanced Watchdog timer
- Complete PC-compatible Single Board Computer

I/O

- SVGA controller Onboard with 3D Acceleration
 - Intel Graphics Media Accelerator 4500MHD
 - Generation 5.0 graphics engine with 10 cores
 - Dynamic Video Memory (up to 256MB)
 - DirectX 10 Support
 - Supports Windows Vista Aero "Glass" Effects
 - Analog SVGA Output
 - LVDS Flat Panel output
- Two Gigabit Ethernet
 - Intel 82567LM PHY + ICH9M Controller (PRO1000 Series)
 - Intel 82574IT Controller (PRO1000 Series)
 - 10/100/1000 Auto-negotiation
 - Jumbo Frame Support (9kB)
 - PXE network Boot
 - Smart Speed operation for automatic speed reduction on faulty cable plants
 - Automatic MDI/MDI-X crossover capable
- Software-configurable RS-232/422/485 serial ports
 - 16550 compatible UARTs for high-speed
 - 120 Ohm Termination resistors for RS-422/485 through BIOS Configuration
 - Each serial port connector can be configured as two limited serial ports, for a total of four serial ports
 - Fully jumperless configuration
- Advanced Digital I/O (aDIO)
 - One 8-bit bit-programmable I/O with Advanced Digital Interrupt Modes
 - One 4-bit port programmable as input or output
 - Event Mode Interrupt generates an interrupt when any input bit changes
 - Match Mode Interrupt generates an interrupt when input bits match a preset value

- External Strobe Mode latches 8 data inputs and generates and interrupt
- Two Strobes can be configured as readable inputs
- Advanced Analog I/O (aAIO)
 - Eight single-ended or four differential analog inputs
 - Up to 100kHz sample rate
 - 16-bit resolution
 - 0 to +5V, +/-5V, 0 to +10V, and +/-10V input ranges
 - Per-channel digital filtering
 - Per-channel threshold detection generates an interrupt when signal crosses high or low threshold.
 - Advanced DMA
 - Each channel has its own DMA buffer
 - Buffer chaining prevents interrupt latency problems
 - DMA to anywhere in 4GB address space
- Two USB 2.0 (Universal Serial Bus) Ports
 - Supports 480 Mb/s (high-speed), 12Mb/s (full-speed), and 1.5Mbs (low speed) peripherals
 - 500 mA @ 5 Vdc provided per port
 - USB Boot capability
- Serial ATA (SATA) with RAID support
 - Transfer rate up to 3Gb/sec
 - Integrated AHCI controller
 - RAID 0 and 1 supported through Intel Matrix Storage Technology
 - Compatability mode supports legacy operating systems.
- SATA Disk Chip Socket
 - Miniature SATA Flash Disk Chip
 - Capacities up to 32GB¹
 - Natively supported by all major operating systems
- High Definition Audio Support
 - 5.1 Surround Line Output
 - Headphone Output
 - Line level input
 - Microphone input
- Utility port
 - PC/AT compatible keyboard port
 - PS/2 Mouse Port
 - Speaker port (0.1W output)
 - Hardware Reset input
 - Soft Power Button input
 - Battery input for Real Time Clock
- Power I/O
 - ATX Power signals

^{1.} During the time of this manual's publication, 32GB was the largest available SATA Disk Chip capacity

BIOS

- RTD Enhanced AMI BIOS
- User-configurable using built-in Setup program
- Nonvolatile storage of CMOS settings without battery
- Boot Devices
 - Standard Devices (floppy disk, hard disk, etc.)
 - SATA Disk Chip
 - USB Device
 - Network
 - Fail Safe Boot ROM
 - Surface-mount Flash chip that holds ROM-DOS™
- Quick Boot mode

Block Diagram

The next figure shows a simplified block diagram of the CMX32M cpuModule.

Figure 2 CMX32M cpuModule Simplified Block Diagram

You can easily customize the cpuModule by stacking PCI/104-Express or PCIe/104 modules such as video controllers, Digital Signal Processors, drive carriers, LAN controllers, or analog and digital data acquisition modules. Stacking modules onto the cpuModule avoids expensive installations of backplanes and card cages, and preserves the module's compactness.

The cpuModule uses the RTD Enhanced AMI BIOS. Drivers in the BIOS allow booting from hard disk, Disk Chip, or boot block flash, thus enabling the system to be used with traditional disk drives or nonmechanical drives. Boot from USB devices and network are also supported.

The cpuModule and BIOS are also compatible with any real-time operating systems for PC compatible computers, although these may require creation of custom drivers to use the aDIO, aAIO, and watchdog timer.

Specifications

Physical Characteristics

- Dimensions: 116mm L x 99mm W x 24mm H (4.6"L x 3.9"W x 0.95"H)
- Weight: Approximately 0.20 Kg (0.44 lb.) with Heatsink

Power Consumption

Exact power consumption depends on the actual application. Table 2 lists power consumption for typical configurations and clock speeds.

Table 2 cpuModule Power Consumption

Module	Speed	RAM	Power, Typ.	Heavy CPU Load	Heavy CPU & Gfx Load
CMX32MVD1860	1.86 GHz	1024 MB	21.0 W	31.5 W	33.0 W
CMX32MVD1200	1.20 GHz	1024 MB	15.8 W	21.0 W	23.0 W
CMX32MCS1200	1.20 GHz	1024 MB	13.3 W	16.0 W	19.5 W

Operating Conditions

Table 3 Operating Conditions

Symbol	Parameter	Test Condition	Min.	Max.
V _{CC5}	5V Supply Voltage		4.75V	5.25V
V_{CC3}	3.3V Supply Voltage		n/a ¹	n/a
V_{CC12}	12V Supply Voltage		n/a¹	n/a
V_{CCSTBY}	5V Standby Voltage ²		4.75V	5.25V
I _{CCSTBY}	5V Standby Current ²		-	500mA
Та	Ambient Operating Temperature ³	MVD1860	-40	+70C
Та	Ambient Operating Temperature ³	MVD1200 MCS1200	-40	+85C
Ts	Storage Temperature		-25	+85C
Rh	Humidity	Non-Condensing	0	90%
MTBF	Mean Time Before Failure	23 C	275,000 hours	

^{1.} The 12Vand external +3.3V rails are not used by the cpuModule. Any requirements on these signals are driven by other components in the system, such as an LVDS Flat Panel or a PCI device.

^{2. 5}V Standby is used to power the board when the main supply is turned off (power down modes S3-S5). It is not required for board operation.

With supplied heat sink solution. Depending on the CPU usage, performance may degrade as the ambient temperature approaches the maximum. Contact RTD Tech Support for more information.

Electrical Characteristics

The table below lists the Electrical Characteristics of the CMX32M. Operating outside of these parameters may cause permanent damage to the cpuModule.

Table 4 Electrical Characteristics

Symbol	Parameter	Test Condition	Min.	Max.
		USB Ports		
loc	Overcurrent Limit	Each port	0.5A	5.0A
		LVDS Port		
V_{OD}	Differential Output Voltage		250 mV	450 mV
Vos	Offset Voltage		1.125 V	1.375 V
I _{vcc}	Supply Current for Panel Electronics	_	_	1.0 A
I _{BKLT}	Supply Current for Backlight	_	_	1.8 A
V_{OH}	Output Voltage High DDC_*, FP_ENABLK	$I_{OH} = -1.0 \text{ mA}$	2.97 V	3.3 V
\mathbf{v}_{oL}	Output Voltage Low DDC_*, FP_ENABLK	$I_{OL} = 1.0 \text{ mA}$	0	0.33 V
V_{IH}	Input Voltage High DDC_*	_	2.0	3.6 V
\mathbf{V}_{IL}	Input Voltage Low DDC_*	_	-0.3	0.8 V
		SVGA Port		
v _{oн}	Output Voltage High HSYNC, VSYNC	$I_{OH} = -8.0 \text{ mA}$	2.4 V	3.3 V
\mathbf{v}_{oL}	Output Voltage Low HSYNC, VSYNC	$I_{OL} = 8.0 \text{ mA}$	0.0 V	0.5 V
V_{OH}	Output Voltage High DDC_*	$I_{OH} = -4.0 \text{ mA}$	2.4 V	3.3 V
\mathbf{v}_{oL}	Output Voltage Low DDC_*	$I_{OL} = 8.0 \text{ mA}$	0.0 V	0.4 V
V_{IH}	Input Voltage High DDC_*	_	2.0 V	5.5 V
\mathbf{v}_{IL}	Input Voltage Low DDC_*	_	-0.3 V	0.8 V
I _{DDCvcc}	Supply Current for DDC Electronics	_		500 mA
	Ser	rial Ports - RS-232		
V _{OH}	Output Voltage High	$R_L = 3 k$	5.0 V	10.0 V
V_{OL}	Output Voltage Low	$R_L = 3 k$	-10.0 V	-5.0 V
V_{IH}	Input Voltage High	_	2.4 V	25 V
V _{IL}	Input Voltage Low		-25 V	0.8 V

Table 4 Electrical Characteristics

Symbol	Parameter	Test Condition	Min.	Max.
	Seria	l Ports - RS-422/48	5	
V _{OD1}	Differential Output	R _L = 50 Ohm	2.0 V	6.0 V
V_{OD2}	Differential Output	R _L = 27 Ohm	1.5 V	6.0 V
v _{oc}	Common Mode Output	R _L = 27 or 50 Ohm	0.0 V	3.0 V
V_{TH}	Differential Input Threshold	-7V < V _{CM} < 7V	-0.3 V	0.3 V
V _I	Absolute Max Input Voltage	_	-25 V	25 V
		aDIO		
V _{OH}	Output Voltage High	$I_{OH} = -4.0 \text{ mA}$	2.4 V	3.3 V
V_{OL}	Output Voltage Low	$I_{OL} = 8.0 \text{ mA}$	0.0 V	0.4 V
V _{IH}	Input Voltage High ¹	_	2.0 V	5.5 V
V_{IL}	Input Voltage Low ¹	_	-0.5 V	0.8 V
I _{ADIOvcc}	Supply current	_		500 mA
		aAIO		
V _{IH}	Absolute maximum Input Voltage			+25 V
V _{IL}	Absolute minimum Input Voltage		-25 V	
Input Impedance		Unipolar $42 \text{ k}\Omega$ typicalBipolar $31 \text{ k}\Omega$ typical		
		Audio		
	Full Scale Output Voltage		1 V _{RMS}	
	External Load Impedance	Line Output	10 k Ohms	
	External Load Impedance	Headphone Output	32 Ohms	
	External Load Capacitance			1000pF
	Full Scale Input Voltage	0 dB Boost 10 dB Boost 20 dB Boost 30 db Boost	1.000 \\ 0.316 \\ 0.100 \\ 0.032 \\	V _{RMS} V _{RMS}
	Input Impedance		20 k C	Ohm
	Input Capacitance			7.5pF
	Utility	Port Connector (CI	N5)	
V _{RTC}	Input RTC Voltage ²	_	2.0V	3.6 V
I _{UTILvcc}	Utility Supply Current	_		500 mA

^{1.} Maximum DC undershoot below ground must be limited to either 0.5V or 10mA. During transitions, the device pins may undershoot to -2.0V or overshoot to 7.0V, provided it is less than 10ns, with the forcing current limited to 200 mA.

^{2.} Only required to maintain date and time when power is completely removed from the system. Not required for board operation.

Contact Information

RTD Embedded Technologies, Inc. 103 Innovation Blvd. State College, PA 16803-0906 USA

Phone: +1-814-234-8087 **Fax**: +1-814-234-5218

E-mail: sales@rtd.com

techsupport@rtd.com

Internet: http://www.rtd.com

Chapter 2 Getting Started

For many users, the factory configuration of the CMX32M cpuModule can be used to get a PC/104 system operational. You can get your system up and running quickly by following the simple steps described in this chapter, which are:

- 1. Before connecting the cpuModule, the user must be properly grounded to prevent electrostatic discharge (ESD). For more information, refer to *Proper Grounding Techniques* on page 24.
- 2. Connect power.
- 3. Connect the utility harness.
- 4. Connect a keyboard.
- 5. Default BIOS configuration.
- 6. Fail Safe Boot ROM.
- 7. Connect a VGA monitor to the SVGA connector.

Refer to the remainder of this chapter for details on each of these steps.

BDM-610000075 Rev D Chapter 2: Getting Started 15

Connector Locations

Figure 3 shows the connectors and the SATA Disk Chip socket of the CMX32M cpuModule.

Figure 3 CMX32M Connector Locations

Note Pin 1 of each connector is indicated by a white silk-screened square on the top side of the board and a square solder pad on the bottom side of the board.

Table 5 CMX32M Basic Connectors

Connector	Function	Size and Pitch	Mating Connector
CN1	PCle/104 Type 2 Bus (Top)	156-pin, 0.635mm	Samtec ASP-129646-03
CN2	PCIe/104 Type 1 Bus (Bottom)	156-pin, 0.635mm	Samtec ASP-129637-03
CN3	Auxiliary Power	1x10, 0.1"	FCI 65039-027LF
CN5	Utility Port	2x5, 0.1"	3M 89110-0001
CN6	aDIO	2x8, 0.1"	3M 89116-0001
CN7	Serial Port 1 (COM1&3)	2x5, 0.1"	3M 89110-0001
CN8	Serial Port 2 (COM2&4)	2x5, 0.1"	3M 89110-0001
CN10	aAIO Connector	2x5, 0.1"	3M 89110-0001
CN11	Audio Connector	2x8, 0.1"	3M 89116-0001
CN13	RTC Battery Input (optional)	1x2, 2mm	FCI 69305-002LF
CN15	Fan Power (switched)	1x3, 2mm	FCI 69305-003LF
CN17	USB 2.0	2x5, 0.1"	3M 89110-0001
CN18	Video (SVGA)	2x5, 2mm	FCI 89947-710LF
CN19	Flat Panel Video (LVDS)	2x10, 2mm	FCI 89947-720LF
CN20	Ethernet	2x5, 0.1"	3M 89110-0001
CN30	Ethernet	2x5, 0.1"	3M 89110-0001
U6	SATA Disk Chip Socket	18-pin, 0.1"	n.a.

WARNING If you connect power incorrectly, the module will almost certainly be damaged or destroyed. Such damage is not covered by the RTD warranty! Please verify connections to the module before applying power.

Power is normally supplied to the cpuModule through the PCIe bus connectors (CN1 or CN2). If you are placing the cpuModule onto a PC/104 stack that has a power supply, you do not need to make additional connections to supply power.

If you are using the cpuModule without a PC/104 stack or with a stack that does not include a power supply, refer to Auxiliary Power (CN3) on page 26 for more details.

Selecting the Stack Order for the CMX32M

There are several things to consider when selecting the order of boards in the stack. Before selecting the order, be sure to determine which bus connector on each board is the "Active" bus. Typically, if a peripheral module has both PCIe and PCI bus connectors, only the PCIe is active and the PCI is pass-through. The following is a list of rules to use to determine the stack order:

- 1. The PCIe connectors above and below the CPU have completely separate signals. Therefore it is possible to attach boards to the PCIe connector above and below the CPU.
- 2. Any board that uses a PCIe x16, x8, or x4 link must be stacked below the CPU. It is recommended that these boards be directly below the CPU. See PCI Express x16 Link on page 49 for details.
- Any boards that a SATA link must be stacked above the CPU. An example of this is hard drive carrier boards.
- 4. Any board that uses a PCIe or SATA link must be within six boards of the CPU.
- 5. To preserve power integrity, it is recommended that there be no more than six boards between the CPU and the power supply.
- 6. In order to maintain maximum performance over the full temperature range, it is recommended that a PCIe spacer be used between the CPU and any board immediately above it.
- 7. A maximum of four PCI boards may be attached to any PCI bus.
- 8. The PCIe to PCI bridge must be at one end of the PCI bus segment, and all of the peripheral cards at the other end. There may be up to eight PCI pass-through connectors between the PCIe to PCI bridge and the peripheral cards.
- 9. There must be no more than two boards between the first PCI peripheral and the last PCI peripheral. If there are four PCI peripheral cards in a PCI bus segment, there may not be any PCI pass-through connections between them.

Stack Example

The figure below shows an example of a complete system stack. Most systems will be a subset of this example. This example stack may be further expanded with PCIe to PCIe bridges, or a PCIe to PCI bridge.

Figure 4 System Stacking Example

Connecting to the Stack

The bus connectors of the cpuModule are simply plugged onto a PC/104 stack to connect to other devices. Follow the procedure below to ensure that stacking of the modules does not damage connectors or electronics.

WARNING Do not force the module onto the stack! Wiggling the module or applying too much pressure may damage it. If the module does not readily press into place, remove it, check for bent pins or out-of-place keying pins, and try again.

For mechanical dimensions, including board-to-board spacing, see Physical Dimensions on page 93.

- 1. Turn off power to the PC/104 system or stack.
- 2. Always work at an ESD protected workstation, and wear a grounded wrist-strap.
- 3. Select and install stand-offs to properly position the cpuModule on the stack.
- 4. Remove the cpuModule from its anti-static bag.
- 5. Check that pins of the bus connector are properly positioned.
- 6. Check the stacking order; make sure all of the busses used by the peripheral cards are connected to the cpuModule.
- 7. Hold the cpuModule by its edges and orient it so the bus connector pins line up with the matching connector on the stack.
- 8. Gently and evenly press the cpuModule onto the PC/104 stack.

Connecting the Utility Cable

The multi-function connector (CN5) implements the following interfaces:

- PC/AT compatible keyboard
- PS/2 mouse port
- Speaker port (0.1W output)
- Hardware Reset input
- Battery input for Real Time Clock
- Soft Power Button input

To use these interfaces, you must connect to the utility port connector (CN5). The utility harness from the RTD cable kit provides a small speaker, two connectors for the keyboard and mouse, a push-button for resetting the system, a soft-power button, and a lithium battery to provide backup power for the real time clock.

Refer to Utility Port Connector (CN5) on page 27 to connect devices to the utility port connector.

Connecting a Keyboard

You may plug a PC/AT compatible keyboard directly into the PS/2 connector of the utility harness in the cable kit. You may also use a USB keyboard plugged into any of the USB connectors.

Note Many keyboards are switchable between PC/XT and AT operating modes, with the mode usually selected by a switch on the back or bottom of the keyboard. For correct operation with this cpuModule, you must select AT mode.

Booting the CMX32M cpuModule for the First Time

You can now apply power to the cpuModule. You will see:

- A greeting message from the VGA BIOS (if the VGA BIOS has a sign-on message)
- The cpuModule BIOS version information
- A message requesting you press Delete to enter the Setup program
- A message to press F11 to choose the boot device

If you don't press **Delete**, the cpuModule will try to boot from the current settings. If you press **Delete**, the cpuModule will enter Setup. Once you have configured the cpuModule using Setup, save your changes and reboot.

Note You may miss the initial sign-on messages if your monitor takes a while to power on.

Note By default, cpuModules are shipped with Fail Safe Boot ROM enabled. When Fail Safe Boot ROM is enabled, the system will boot to it exclusively.

Chapter 3 Connecting the cpuModule

This chapter provides information on all CMX32M cpuModule connectors.

Proper Grounding Techniques — page 24

Connector Locations - page 24

Auxiliary Power (CN3) - page 26

Utility Port Connector (CN5) — page 27

SVGA Video Connector (CN18) — page 30

LVDS Flat Panel Video Connector (CN19) - page 31

SATA Disk Chip Socket (U6) — page 32

Serial Port 1 (CN7) and Serial Port 2 (CN8) — page 33

Advanced Digital I/O (aDIO™) Port (CN6)—page 38

Advanced Analog I/O (aAIO[™]) Port (CN10) — page 39

USB 2.0 Connector (CN17) — page 40

Ethernet (10/100/1000Base-T and -TX) Connectors (CN20 and CN30) — page 41

High Definition Audio (CN11) - page 42

PCIe/104 Type 2 Bus (CN1 - Top) — page 43

PCIe/104 Type 1 Bus (CN2-Bottom) — page 47

Optional RTC Battery Input (CN13) — page 51

Fan Power, Switched (CN15) — page 51

Proper Grounding Techniques

Before removing the CMX32M from its static bag, proper grounding techniques must be used to prevent electrostatic discharge (ESD) damage to the cpuModule. Common grounding procedures include an anti-static mat on a workbench, which may connect to an anti-static wrist strap (also known as an ESD wrist strap) on the wrist of the technician or engineer.

Connector Locations

Figure 5 shows the connectors and the SATA Disk Chip socket of the CMX32M cpuModule.

Figure 5 CMX32M Connector Locations

Note Pin 1 of each connector is indicated by a white silk-screened square on the top side of the board and a square solder pad on the bottom side of the board. Pin 1 of the bus connectors match when stacking PC/104 modules.

Table 6 CMX32M Basic Connectors

Connector	Function	Size and Pitch	Mating Connector
CN1	PCIe/104 Type 2 Bus (Top)	156-pin, 0.635mm	Samtec ASP-129646-03
CN2	PCle/104 Type 1 Bus (Bottom)	156-pin, 0.635mm	Samtec ASP-129637-03
CN3	Auxiliary Power	1x10, 0.1"	FCI 65039-027LF
CN5	Utility Port	2x5, 0.1"	3M 89110-0001
CN6	aDIO	2x8, 0.1"	3M 89116-0001
CN7	Serial Port 1 (COM1&3)	2x5, 0.1"	3M 89110-0001
CN8	Serial Port 2 (COM2&4)	2x5, 0.1"	3M 89110-0001
CN10	aAIO Connector	2x5, 0.1"	3M 89110-0001
CN11	Audio Connector	2x8, 0.1"	3M 89116-0001
CN13	RTC Battery Input (optional)	1x2, 2mm	FCI 69305-002LF
CN15	Fan Power (switched)	1x3, 2mm	FCI 69305-003LF
CN17	USB 2.0	2x5, 0.1"	3M 89110-0001
CN18	Video (SVGA)	2x5, 2mm	FCI 89947-710LF
CN19	Flat Panel Video (LVDS)	2x10, 2mm	FCI 89947-720LF
CN20	Ethernet	2x5, 0.1"	3M 89110-0001
CN30	Ethernet	2x5, 0.1"	3M 89110-0001
U6	SATA Disk Chip Socket	18-pin, 0.1"	n.a.

Auxiliary Power (CN3)

The Auxiliary Power connector (CN3) can be used to supply power to devices that are attached to the cpuModule. These devices include hard drive, front-end boards for data acquisition systems, and other devices.

Power can also be conveyed to the module through the Auxiliary Power connector (**CN3**). The cpuModule only requires +5 VDC and ground for operation. A Standby +5V may also be supplied to allow the system to support Standby power states.

Note Although it is possible to power the cpuModule through the Auxiliary Power connector, the preferred method is to power it through the bus connector from a power supply in the stack. The cpuModule can have large current transients during operation, which make powering it through wires difficult. Powering through the bus eliminates such problems as voltage drop and lead inductance.

If using the Auxiliary Power connector to power the system, care must be taken to ensure good power connections. The power and ground leads must be twisted together, or as close together as possible to reduce lead inductance. A separate lead must be used for each of the power pins. All 5V pins and all ground pins must be connected. Do not use wire smaller than 20 gauge, and the length of the wire must not exceed 2 ft. The power supply solution must be verified by measuring voltage at the Auxiliary Power Connector and verifying that it does not drop below 4.75 V. The voltage at the connector should be checked with an oscilloscope while the system is operational.

WARNING If you connect power incorrectly, the module will almost certainly be destroyed. Please verify power connections to the module before applying power.

Table 7 Auxiliary Power Connector (CN3)¹

Signal	Function
GND	Ground
+5 V	+5 Volts DC
GND	Ground
+5 V	+5 Volts DC
GND	Ground
GND	Ground
+5 V	+5 Volts DC
+5V_STDBY	+5V Standby (ATX)
+5 V	+5 Volts DC
PSON#	Power Supply On (ATX)
	GND +5 V GND +5 V GND GND +5 V +5 V

^{1.} For more information on the ATX style signals, +5V Standby and PSON#, refer to the *Power Management* section in Chapter 4, *Using the cpuModule*.

Utility Port Connector (CN5)

The utility port connector implements the following functions:

- PC/AT compatible keyboard port
- PS/2 mouse port
- Speaker port (0.1W output)
- Hardware Reset input
- **Soft Power Button input**
- Battery input for Real Time Clock

Table 8 provides the pinout of the multi-function connector.

Table 8 Utility Port Connector (CN5)

Pin	Signal	Function	In/Out
1	SPKR	Speaker Output (open collector)	out
2	PWR	+5 V	out
3	RESET#	Manual Push-Button Reset	in
4	PWRSW#	Soft Power Button	in
5	KBD	Keyboard Data	in/out
6	KBC	Keyboard Clock	out
7	GND	Ground	_
8	MSC	Mouse Clock	out
9	BAT	RTC Battery Input	in
10	MSD	Mouse Data	in/out

Facing the connector pins, the pinout is:

Speaker

A speaker output is available on pins 1 and 2 of the multi-function connector. These outputs are controlled by a transistor to supply 0.1 W of power to an external speaker. The external speaker should have 8 Ω impedance and be connected between pins 1 and 2.

Keyboard

A PS/2 compatible keyboard can be connected to the multi-function connector. Usually PC keyboards come with a cable ending with a 5-pin male PS/2 connector. Table 9 lists the relationship between the multi-function connector pins and a standard PS/2 keyboard connector.

Table 9 Keyboard Connector Pins (CN5)

Pin	Signal	Function	PS/2
5	KBD	Keyboard Data	1
6	KBC	Keyboard Clock	5
7	GND	Ground	3
2	PWR	Keyboard Power (+5 V)	4

To ensure correct operation, check that the keyboard is either an AT compatible keyboard or a switchable XT/AT keyboard set to AT mode. Switchable keyboards are usually set by a switch on the back or bottom of the keyboard.

Mouse

A PS/2 compatible mouse can be connected to the multi-function connector. Table 10 lists the relationship between the multi-function connector pins and a standard PS/2 mouse connector.

Table 10 Mouse Connector Pins (CN5)

Pin	Signal	Function	PS/2
10	MSD	Mouse Data	1
8	MSC	Mouse Clock	5
7	GND	Ground	3
2	PWR	Keyboard Power (+5 V)	4

System Reset

Pin 3 of the multi-function connector allows connection of an external push-button to manually reset the system. The push-button should be normally open, and connect to ground when pushed. The type of reset generated by this button can be set in the BIOS configuration utility.

Soft Power Button

Pin 4 of the multi-function connector allows connection of an external push-button to send a soft power signal to the system. The push-button should be normally open, and connect to ground when pushed. For more information on the modes of the Soft Power Button, refer to the *Power Management* section in Chapter 4, *Using the cpuModule*.

Battery

Pin 9 of the multi-function connector is the connection for an external backup battery. This battery is used by the cpuModule when system power is removed in order to preserve the date and time in the real time clock.

Connecting a battery is only required to maintain time when power is completely removed from the cpuModule. A battery is not required for board operation.

WARNING The optional RTC battery input connector (CN13) should be left unconnected if the multi-function connector (CN5) has a battery connected to pin 9.

SVGA Video Connector (CN18)

Table 11 provides the pinout of the video connector.

Table 11 SVGA Video Connector (CN18)

Pin	Signal	Function	In/Out
1	VSYNC	Vertical Sync	out
2	HSYNC	Horizontal Sync	out
3	DDCSCL	Monitor Communications Clock	out
4	RED	Red Analog Output	out
5	DDCSDA	Monitor Communications Data	bidirectional
6	GREEN	Green Analog Output	out
7	PWR	+5 V	out
8	BLUE	Blue Analog Output	out
9	GND	Ground	out
10	GND	Ground	out

Facing the connector pins of the SVGA Video connector (CN18), the pinout is:

9	7	5	3	1
GND	PWR	DDCSDA	DDCSCL	VSYNC
GND	BLUE	GREEN	RED	HSYNC
10	8	6	4	2

LVDS Flat Panel Video Connector (CN19)

Table 12 provides the pinout of the Flat Panel Video connector (CN19). FP_VCC is configured for +3.3V by default. Contact RTD to have FP_VCC configured for +5 V. FP_VBKLT can be either +5 V or +12 V, and can be selected with JP9. See Jumper Settings and Locations on page 90 for more details.

Table 12 Flat Panel Video Connector (CN19)

Pin	Signal	Function	In/Out
1	YOP	LVDS Data 0+	out
2	Y0M	LVDS Data 0-	out
3	DDC_CLK ¹	Panel Detection Clock	out
4	GND	Ground	GND
5	Y1P	LVDS Data 1+	out
6	Y1M	LVDS Data 1-	out
7	DDC_DATA ¹	Panel Detection Data	in/out
8	GND	Ground	GND
9	Y2P	LVDS Data 2+	out
10	Y2M	LVDS Data 2-	out
11	GND	Ground	GND
12	GND	Ground	GND
13	YCP	LVDS Clock+	out
14	YCM	LVDS Clock-	out
15	Y3P	LVDS Data 3+	out
16	Y3M	LVDS Data 3-	out
17	GND	Ground	GND
18	FP_VCC	Power for flat panel electronics	out
19	FP_VBKLT	Power for flat panel backlight	out
20	BKLT_CTRL	Backlight Brightness Control (PWM)	out

^{1.} The DDC signals use a +3.3 V signal level, and are not +5 V tolerant.

Facing the connector pins, the pinout is:

19	17	15	13	11	9	7	5	3	1
FP_VBKLT	GND	Y3P	YCP	GND	Y2P	DDC_DATA	Y1P	DDC_CLK	YOP
BKLT_CTRL	FP_VCC	Y3M	YCM	GND	Y2M	GND	Y1M	GND	YOM
20	18	16	14	12	10	8	6	4	2

Table 13 lists several LVDS panels that were tested with this cpuModule. When evaluating a panel to be used with this cpuModule, review the specifications of the tested panels to assure compatability.

Table 13 Tested LVDS Panels

Manufacturer	Model Number	Resolution	Color Depth
Optrex	T-51756D121J-FW-A-AA	1024 x 768	18 bit
Optrex	T-51639D084JU-FW-A-AB	1024 x 768	24 bit

SATA Disk Chip Socket (U6)

The SATA Disk Chip socket is an 18-pin socket in a 32-pin format that supports miniature SATA flash disk chips. The socket allows a true SATA device to be attached to the board with either a socketed or soldered connection. Such devices are supported by all major operating systems, and do not require special drivers.

Table 14 SATA Disk Chip Socket (U6)¹

Pin	Signal	Pin	Signal
1	GND	32	Vcc (3.3V)
2	RX+	31	GND
3	RX-	30	n.c.
4	GND	29	n.c.
5	TX-	28	n.c.
6	TX+	27	n.c.
7	GND	26	Reserved
8	no pin	25	no pin
9	no pin	24	no pin
10	no pin	23	no pin
11	no pin	22	no pin
12	no pin	21	no pin
13	no pin	20	no pin
14	no pin	19	no pin
15	Reserved	18	Reserved
16	n.c.	17	GND

^{1.} TX and RX are the transmit and receive respectively of the Disk Chip.

Installing and Configuring the SATA Disk Chip

To ensure proper installation of the SATA Disk Chip, follow the following configuration steps:

- 1. Always work at an ESD protected workstation, and wear a grounded wrist-strap.
- 2. Remove power from the system
- 3. Insert the Disk Chip in the SATA Disk Chip Socket (**U6**) aligning pin 1 with the square solder pad on the
- 4. Apply power to the system.
- 5. Re-enter the BIOS and set the boot order of the system accordingly.

Serial Port 1 (CN7) and Serial Port 2 (CN8)

Serial Port 1 (COM1) is implemented on connector CN7, and Serial Port 2 is implemented on connector CN8. The serial ports are normally configured as PC compatible full-duplex RS-232 ports, but you may use the BIOS Setup program to reconfigure these ports as half-duplex RS-422 or full-duplex RS-422 or RS-485. If you reconfigure the ports, you must also select the I/O address and corresponding interrupt using Setup. Table 15 provides the standard I/O addresses and corresponding interrupts.

Table 15 Serial Port Settings

I/O Address (hex)	IRQ
03F8	IRQ4
02F8	IRQ3
03E8	IRQ4
02E8	IRQ3

Serial Port UART

The serial ports are implemented with a 16550-compatible UART (Universal Asynchronous Receiver/ Transmitter). This UART is capable of baud rates up to 115.2 kbaud in 16450 and 16550A compatible mode, and includes a 16-byte FIFO. Refer to any standard PC-AT hardware reference for the register map of the UART. For more information about programming UARTs, refer to Appendix D.

RS-232 Serial Port (Default)

The default serial port mode is full-duplex RS-232. With this mode enabled, the serial port connectors must be connected to RS-232 compatible devices. Table 16 provides the serial port connector pinout and shows how to connect to an external DB-25 or DB-9 compatible serial connector.

Table 16 Serial Port in RS-232 Mode

Pin	Signal	Function	In/Out	DB-25	DB-9
1	DCD	Data Carrier Detect	in	8	1
2	DSR	Data Set Ready	in	6	6
3	RXD	Receive Data	in	3	2
4	RTS	Request To Send	out	4	7
5	TXD	Transmit Data	out	2	3
6	CTS	Clear To Send	in	5	8
7	DTR	Data Terminal Ready	out	20	4
8	RI	Ring Indicate	in	22	9
9,10	GND	Signal Ground	_	7	5

Facing the serial port's connector pins, the pinout is:

9	7	5	3	1
GND	DTR	TXD	RXD	DCD
GND	RI	стѕ	RTS	DSR
10	8	6	4	2

RS-422 or RS-485 Serial Port

You may use Setup to configure the serial ports as RS-422 or RS-485. In this case, you must connect the serial port to an RS-422 or RS-485 compatible device.

When using RS-422 or RS-485 mode, you can use the serial ports in either half-duplex (two-wire) or full-duplex (four-wire) configurations. For half-duplex (2-wire) operation, you must connect RXD+ to TXD+, and connect RXD- to TXD-.

Note The cpuModule has a 120 Ω termination resistor. Termination is usually necessary on all RS-422 receivers and at the ends of the RS-485 bus. Termination resistors can be enabled in the BIOS setup utility.

When using full-duplex (typically in RS-422 mode), connect the ports as shown in Table 17.

Table 17 Full-Duplex Connections

Port 1	Port 2
RXD+	TXD+
TXD+	RXD+
RXD-	TXD-
TXD-	RXD-

When using half-duplex in RS-485 mode, connect the ports as shown in Table 18.

Table 18 Half-Duplex RS-485 Mode

From	То
Port 1 TXD+	Port 1 RXD+
Port 1 TXD-	Port 1 RXD-
Port 1 TXD+	Port 2 RXD+
Port 1 RXD-	Port 2 TXD-

RS-422 and RS-485 Mode Pinout

Table 19 provides the serial port connector pinout when RS-422 or RS-485 modes are enabled.

Table 19 Serial Port in RS-422/485 Mode

Pin	Signal	Function	In/Out	DB-9
1	_	Reserved	_	1
2	_	Reserved	_	6
3	RXD-	Receive Data (–)	in	2
4	TXD+	Transmit Data (+)	out	7
5	TXD-	Transmit Data (–)	out	3
6	RXD+	Receive Data (+)	in	8
7	_	Reseved	_	4
8	_	Reseved	_	9
9,10	GND	Signal Ground	out	5

Facing the serial port connector, the pinout is:

Note When using the serial port in RS-485 mode, the serial transmitters are enabled and disabled under software control. The transmitters are enabled by manipulating the Request To Send (RTS*) signal of the serial port controller. This signal is controlled by writing bit 1 of the Modern Control Register (MCR) as follows:

- If MCR bit 1 = 1, then RTS* = 0, and serial transmitters are disabled
- If MCR bit 1 = 0, then RTS* = 1, and serial transmitters are enabled

Note For more information on the serial port registers, including the MCR, refer to the Serial Port Programming reference in Appendix D.

Dual Serial Port Modes

The serial port connectors can be configured as dual serial ports in the BIOS. The mapping between the connectors and COM port numbers is shown in Table 20. The supported combinations of serial port modes are listed in Table 21, which also includes a reference to the corresponding connector pinout.

Table 20 Dual Serial Port Connections

Connector	СОМ А	СОМ В
CN7	COM 1	COM 3
CN8	COM 2	COM 4

Table 21 Dual Serial Port Modes

СОМ А	СОМ В	Pinout Reference
RS-232	RS-232	Table 22
RS-422	RS-232	Table 23
RS-422	RS-422	Table 24
RS-485	RS-232	Table 23
RS-485	RS-485	Table 24

Table 22 COM A (RS-232) and COM B(RS-232)

Pin	Signal	Function	In/Out	DB-9
1	DCD1	COM A- Data Carrier Detect	in	1
2	RXD2	COM B- Receive Data	in	6
3	RXD1	COM A - Receive Data	in	2
4	RTS1	COM A - Request To Send	out	7
5	TXD1	COM A - Transmit Data	out	3
6	CTS1	COM A - Clear To Send	in	8
7	TXD2	COM B - Transmit Data	out	4
8	RI1	COM A - Ring Indicate	in	9
9,10	GND	Signal Ground	_	5

Table 23 COM A (RS-422/485) and COM B (RS-232)

Pin	Signal	Function	In/Out	DB-9
1	DCD1	COM A - Data Carrier Detect	in	1
2	RXD2	COM B - Receive Data	in	6
3	RXD1-	COM A - Receive Data (-)	in	2
4	TXD1+	COM A - Transmit Data (+)	out	7
5	TXD1-	COM A - Transmit Data (-)	out	3
6	RXD1+	COM A - Receive Data (+)	in	8
7	TXD2	COM B - Transmit Data	out	4
8	RI1	COM A - Ring Indicate	in	9
9,10	GND	Signal Ground	_	5

Table 24 COM A (RS-422/485) and COM B (RS-422/485)

Pin	Signal	Function	In/Out	DB-9
1	RXD2+	COM B - Receive Data (+)	in	1
2	RXD2-	COM B - Receive Data (-)	in	6
3	RXD1-	COM A - Receive Data (-)	in	2
4	TXD1+	COM A - Transmit Data (+)	out	7
5	TXD1-	COM A - Transmit Data (-)	out	3
6	RXD1+	COM A - Receive Data (+)	in	8
7	TXD2-	COM B - Transmit Data (-)	out	4
8	TXD2+	COM B - Transmit Data (+)	out	9
9,10	GND	Signal Ground	_	5

Advanced Digital I/O (aDIO™) Port (CN6)

CN6 is configured as an aDIO port. aDIO is 12 digital bits configured as 8-bit programmable and 4-bit port programmable I/O, providing any combination of inputs and outputs. Match, event, and strobe interrupt modes mean no more wasting valuable processor time polling digital inputs. Interrupts are generated when the 8-bit programmable digital inputs match a pattern, or on any value change event. Bit masking allows selecting any subgroup of 8 bits. The strobe input latches data into the bit programmable port and generates an interrupt. Refer to Advanced Digital I/O Ports (aDIO") — page 60 for information on programming the aDIO.

Table 25 aDIO Pinout

CN6 Pin	Function	CN6 Pin	Function
1	P0-0	2	P0-1
3	P0-2	4	P0-3
5	P0-4	6	P0-5
7	P0-6	8	P0-7
9	strobe 0	10	strobe 1
11	P1-0	12	P1-1
13	P1-2	14	P1-3
15	GND	16	+5 V ¹

^{1.} Available during standby.

Advanced Analog I/O (aAIO™) Port (CN10)

The Advanced Analog I/O connector provides eight channels of analog input. When used in conjunction with the aDIO port, it allows the cpuModule to be a complete single-board data acquisition system. For more information on using the aAIO port, refer to Advanced Analog I/O (aAIO)—page 64.

Table 26 aAIO Pinout

CN10 Pin	N10 Pin Function		Function
1	Channel 1	2	Channel 2
3	Channel 3	4	Channel 4
5	Channel 5	6	Channel 6
7	Channel 7	8	Channel 8
9	GND	10	GND

USB 2.0 Connector (CN17)

Two USB 2.0 compliant connectors are available on connector **CN17**. Table 27 provides the pinout of the USB connector.

Note For proper operation at USB 2.0 speeds, be sure to use a cable that is rated for USB 2.0, such as the cable kit supplied by RTD.

Table 27 USB Connector (CN17)

Pin	Signal	Function	In/Out
1	VCC1	Supply +5 V to USB1	out
2	VCC2	Supply +5 V to USB2	out
3	DATA1-	Bidirectional data line for USB1	in/out
4	DATA2-	Bidirectional data line for USB2	in/out
5	DATA1+	Bidirectional data line for USB1	in/out
6	DATA2+	Bidirectional data line for USB2	in/out
7	GND	Ground	out
8	GND	Ground	out
9	GND	Ground	out
10	GND	Ground	out

Facing the connector pins, the pinout of CN17 is:

9	7	5	3	1
GND	GND	DATA1+	DATA1-	VCC1
GND	GND	DATA2+	DATA2-	VCC2
10	8	6	4	2

Ethernet (10/100/1000Base-T and -TX) Connectors (CN20 and CN30)

This connector provides a 10/100/1000Base-T Ethernet connection. Table 28 provides the pinout of the Ethernet connector. For 1000Base-T, all four pairs are used for transmit and receive.

To use the onboard 10/100/1000 Ethernet controller, Ethernet must be enabled in the BIOS.

When enabled, the multi-color LED will blink to indicate an Ethernet connection. For more information, refer to the Multi-Color LED section on page 84.

Table 28 Ethernet Connector (CN20)

RJ-45 Pin	10-Pin DIL Pin	Signal	Function
3	1	B+(RX+)	Receive+(10/100)
6	2	B-(RX-)	Receive-(10/100)
4	3	C+	
5	4	C-	
1	5	A+(TX+)	Transmit+(10/100)
2	6	A-(TX-)	Transmit-(10/100)
7	7	D+	
8	8	D-	
_	9	AGND	Ethernet Ground
_	10	AGND	Ethernet Ground

9	7	5	3	1
AGND	D+	A+	C+	B+
AGND	D+	A-	C+	В-
10	8	6	4	2

High Definition Audio (CN11)

A full featured HD Audio compliant audio port is available on CN11. It provides a stereo microphone/line level input, 5.1 surround sound line level output, and a stereo headphone output.

The front line level outputs also serves as a headphone outputs. It is capable of driving a 32 Ohm load. No configuration is required to switch between headphone and line output.

Table 29 Audio Connector (CN11)

10-Pin DIL Pin	Signal	Function	In/Out
1	MIC/LIN_L	Left Microphone/Line Input.	in
2	MIC/LIN_R	Right Microphone/Line Input.	in
3	rsvd	Reserved	
4	GND	Signal Ground	GND
5	FRONT_L	Front/Headphone Left Output	out
6	FRONT_R	Front/Headphone Right Output	out
7	rsvd	Reserved	
8	rsvd	Reserved	
9	REAR_L	Rear Left Line Output	out
10	REAR_R	Rear Right Line Output	out
11	CENTER	Center Line Output	out
12	SUB	Sub woofer Output	out
13	SP_OUT	S/PDIF (Digital) output	out
14	GND	Signal Ground	GND
15	rsvd	Reserved	
16	GND	Signal Ground	GND

15	13	11	9	7	5	3	1
rsvd	SP_OUT	CENTER	REAR_L	rsvd	FRONT_L	rsvd	MIC/LIN_L
GND	GND	SUB	REAR_R	rsvd	FRONT_R	GND	MIC/LIN_R
16	14	12	10	8	6	4	2

PCle/104 Type 2 Bus (CN1 - Top)

Connector CN1 carries the signals of the PCle/104 PCle bus. These signals match definitions found in the PCI/104-Express & PCIe/104 Specification Version 2.01 from the PC/104 Embedded Consortium. Table 30 lists the pinouts of the PC/104-Express bus connector.

WARNING Not all PCIe cards are compatible with the PCIe/104 Type 2 connector. Be sure that all of the boards attached to this bus are compatible before powering the system.

Table 30 PCIe/104 Type 2 Bus Signal Assignments (Top View)¹

Pin	Signal		Signal	Pin
1	USB_OC#		PE_RST#	2
3	+3.3V		+3.3V	4
5	USB_1p		USB_0p	6
7	USB_1n		USB_0n	8
9	GND		GND	10
11	PEx1_1Tp		PEx1_0Tp	12
13	PEx1_1Tn		PEx1_0Tn	14
15	GND		GND	16
17	PEx1_2Tp		PEx1_3Tp	18
19	PEx1_2Tn		PEx1_3Tn	20
21	GND		GND	22
23	PEx1_1Rp		PEx1_0Rp	24
25	PEx1_1Rn	olts	PEx1_0Rn	26
27	GND	 +5 Volts 	GND	28
29	PEx1_2Rp		PEx1_3Rp	30
31	PEx1_2Rn		PEx1_3Rn	32
33	GND		GND	34
35	PEx1_1Clkp		PEx1_0Clkp	36
37	PEx1_1Clkn		PEx1_0Clkn	38
39	+5V_Always		+5V_Always	40
41	PEx1_2Clkp		PEx1_3Clkp	42
43	PEx1_2Clkn		PEx1_3Clkn	44
45	CPU_DIR		PWRGOOD	46
47	SMB_DATA		Reserved	48
49	SMB_CLK		Reserved	50
51	n.c.		PSON#	52

Table 30 PCIe/104 Type 2 Bus Signal Assignments (Top View)¹

Pin	Signal		Signal	Pin
53	STK0		STK1	54
55	GND		GND	56
57	Reserved		Reserved	58
59	Reserved		Reserved	60
61	GND		GND	62
63	Reserved		Reserved	64
65	Reserved		Reserved	66
67	GND		GND	68
69	Reserved		Reserved	70
71	Reserved		Reserved	72
73	GND		GND	74
75	Reserved		Reserved	76
77	Reserved	olts	Reserved	78
79	GND		GND	80
81	SATA_1Tp		SATA_0Tp	82
83	SATA_1Tn		SATA_0Tn	84
85	GND		GND	86
87				88
89				90
91	GND		GND	92
93	Reserved		Reserved	94
95	Reserved		Reserved	96
97	GND		GND	98
99	Reserved		Reserved	100
101	Reserved		Reserved	102
103	GND		GND	104

Table 30 PCIe/104 Type 2 Bus Signal Assignments (Top View)¹

Pin	Signal		Signal	Pin
105	STK2		Reserved	106
107	GND		GND	108
109	Reserved		Reserved	110
111	Reserved		Reserved	112
113	GND		GND	114
115	Reserved		Reserved	116
117	Reserved		Reserved	118
119	GND		GND	120
121	Reserved		Reserved	122
123	Reserved		Reserved	124
125	GND		GND	126
127	Reserved		Reserved	128
129	Reserved	/olts	Reserved	130
131	GND	+12 Volts	GND	132
133	SATA_1Rp		SATA_0Rp	134
135	SATA_1Rn		SATA_0Rn	136
137	GND		GND	138
139				140
141				142
143	GND		GND	144
145	Reserved		Reserved	146
147	Reserved		Reserved	148
149	GND		GND	150
151	Reserved		Reserved	152
153	Reserved		Reserved	154
155	GND		GND	156

^{1.} Signals marked with (#) are active low.

PCIe/104 Type 2 Compatibility

The PCIe/104 Type 2 connector is compatible with any PCI/104-Express or PCIe/104 peripheral module that does not use the x16 Link. This includes any card that uses the PCle x1 links, USB, or a power supply. In addition, this connector can be used to add SATA devices to the system.

If a card is installed that is not compatible with the Type 2 connector, the CPU will keep the system in soft-off, and the LED will be Cyan to indicate that there is a Bus Stacking Error. If this feature is not desired, JP6 can be installed to disable the Bus Stacking Error feature.

PCIe Link Configuration

This cpuModule supports a total of eight PCIe x1 links. The chipset, however, only provides five PCIe x1 links. Four of the links on CN1 and CN2 are connected directly to the chipset. The other four are connected through a PCIe packet switch, and share the bandwidth of a single x1 link back to the chipset. The links that are connected to the PCIe switch do not support wake from S3 (D3cold). Only wake from S1 is supported. Table 31 and below shows the configuration of the PCIe x1 links on CN1.

Table 31 CN1 Link Configuration

Link	BIOS Name	Location	Connection	S3 Wake support	PCle Peer-To-Peer
0	Link 0	Closest to CPU	Direct	Yes	No
1	PCle Switch		Shared	No	To other Shared
2	PCle Switch		Shared	No	To other Shared
3	PCle Switch	Farthest from CPU	Shared	No	To other Shared

PCIe Peer-To-Peer

Peer-to-Peer transactions are transactions directly between two PCIe peripheral cards. An example of this is writing data directly from a data acquisition card to a DSP card, without first writing to the host CPU's memory. The PCIe links that are directly connected to the chipset do not support Peer-to-Peer transactions. The shared PCIe links support peer-to-peer transactions to other shared links. This is reflected in Table 31 above.

PCIe/104 Type 1 Bus (CN2-Bottom)

Connector CN2 carries the signals of the PCle/104 PCle bus. These signals match definitions found in the PCI/104-Express & PCIe/104 Specification Version 2.01 from the PC/104 Embedded Consortium. Table 32 lists the pinouts of the PCle/104 bus connector.

WARNING Not all PCIe cards are compatible with the PCIe (Type 1) connector. Be sure that all of the boards attached to this bus are compatible before powering the system.

Table 32 PCIe/104 Type 1 Bus Signal Assignments (Top View)¹

Pin	Signal		Signal	Pin
1	USB_OC#		PE_RST#	2
3	+3.3V		+3.3V	4
5	USB_1p		USB_0p	6
7	USB_1n		USB_0n	8
9	GND		GND	10
11	PEx1_1Tp		PEx1_0Tp	12
13	PEx1_1Tn		PEx1_0Tn	14
15	GND		GND	16
17	PEx1_2Tp		PEx1_3Tp	18
19	PEx1_2Tn		PEx1_3Tn	20
21	GND		GND	22
23	PEx1_1Rp		PEx1_0Rp	24
25	PEx1_1Rn	olts	PEx1_0Rn	26
27	GND	 +5 Volts 	GND	28
29	PEx1_2Rp		PEx1_3Rp	30
31	PEx1_2Rn		PEx1_3Rn	32
33	GND		GND	34
35	PEx1_1Clkp		PEx1_0Clkp	36
37	PEx1_1Clkn		PEx1_0Clkn	38
39	+5V_Always		+5V_Always	40
41	PEx1_2Clkp		PEx1_3Clkp	42
43	PEx1_2Clkn	_	PEx1_3Clkn	44
45	CPU_DIR(+5V)		PWRGOOD	46
47	SMB_DATA	_	PEx16_Clkp	48
49	SMB_CLK	_	PEx16_Clkn	50
51	n.c.	_	PSON#	52

Table 32 PCIe/104 Type 1 Bus Signal Assignments (Top View)¹

Pin	Signal		Signal	Pin
53	WAKE#		n.c.	54
55	GND		GND	56
57	PEx16_0T(8)p		PEx16_0T(0)p	58
59	PEx16_0T(8)n		PEx16_0T(0)n	60
61	GND		GND	62
63	PEx16_0T(9)p		PEx16_0T(1)p	64
65	PEx16_0T(9)n		PEx16_0T(1)n	66
67	GND		GND	68
69	PEx16_0T(10)p		PEx16_0T(2)p	70
71	PEx16_0T(10)n		PEx16_0T(2)n	72
73	GND		GND	74
75	PEx16_0T(11)p		PEx16_0T(3)p	76
77	PEx16_0T(11)n	olts	PEx16_0T(3)n	78
79	GND	 +5 Volts 	GND	80
81	PEx16_0T(12)p		PEx16_0T(4)p	82
83	PEx16_0T(12)n		PEx16_0T(4)n	84
85	GND		GND	86
87	PEx16_0T(13)p		PEx16_0T(5)p	88
89	PEx16_0T(13)n		PEx16_0T(5)n	90
91	GND		GND	92
93	PEx16_0T(14)p		PEx16_0T(6)p	94
95	PEx16_0T(14)n		PEx16_0T(6)n	96
97	GND	_	GND	98
99	PEx16_0T(15)p	_	PEx16_0T(7)p	100
101	PEx16_0T(15)n	_	PEx16_0T(7)n	102
103	GND		GND	104

Table 32 PCIe/104 Type 1 Bus Signal Assignments (Top View)¹

Pin	Signal		Signal	Pin
105	SDVO_DAT/PENA		SDVO_CLK	106
107	GND	-	GND	108
109	PEx16_0R(8)p	_	PEx16_0R(0)p	110
111	PEx16_0R(8)n	_	PEx16_0R(0)n	112
113	GND	-	GND	114
115	PEx16_0R(9)p	_	PEx16_0R(1)p	116
117	PEx16_0R(9)n	_	PEx16_0R(1)n	118
119	GND	_	GND	120
121	PEx16_0R(10)p	_	PEx16_0R(2)p	122
123	PEx16_0R(10)n	_	PEx16_0R(2)n	124
125	GND	_	GND	126
127	PEx16_0R(11)p	_	PEx16_0R(3)p	128
129	PEx16_0R(11)n	/olts	PEx16_0R(3)n	130
131	GND	+12 Volts	GND	132
133	PEx16_0R(12)p	-	PEx16_0R(4)p	134
135	PEx16_0R(12)n	_	PEx16_0R(4)n	136
137	GND	_	GND	138
139	PEx16_0R(13)p	_	PEx16_0R(5)p	140
141	PEx16_0R(13)n	_	PEx16_0R(5)n	142
143	GND	_	GND	144
145	PEx16_0R(14)p	_	PEx16_0R(6)p	146
147	PEx16_0R(14)n	-	PEx16_0R(6)n	148
149	GND	-	GND	150
151	PEx16_0R(15)p	-	PEx16_0R(7)p	152
153	PEx16_0R(15)n	-	PEx16_0R(7)n	154
155	GND	-	GND	156

^{1.} Signals marked with (#) are active low.

PCI/104-Express PCIe Bus Signals

For a complete description of the PCI/104-Express Bus Signals, consult the PCI/104-Express & PCIe/104 **Specification Version 2.01** from the PC/104 Embedded Consortium.

PCI Express x16 Link

The PCI Express x16 link on the PCI/104-Express connector can be used as a single x16, x8, x4, or x1 link. It cannot be bifurcated into two x8 or x4 links. In order to reduce power and heat dissipation, the PCI Express x16 link utilizes a Low Power PCI Express interface as described in the PCI Express Architecture Mobile Graphics Low-Power Addendum to the PCI Express Base Specification Revision 1.3. It is therefore recommended that any card that utilizes the PCIe x16 link is placed directly adjacent to the CPU.

When used for non-graphics applications, the x16 link should only be used as a x8, x4, or x1 link. Use of the full x16 width is only for a graphics add-in card, with the integrated graphics disabled.

The signals on the x16 link can also be used for additional outputs from the Integrated Graphics Device. Contact RTD tech support for more details.

PCIe/104 Type 1 Compatibility

The PCIe/104 Type 1 connector is compatible with any PCI/104-Express or PCIe/104 Type 1 or Universal peripheral module. This includes any card that uses the PCIe x1 links, PCIe x16 link, USB, or a power supply.

If a card is installed that is not compatible with the Type 1 connector, the CPU will keep the system in soft-off, and the LED will be Cyan to indicate that there is a Bus Stacking Error. If this feature is not desired, JP6 can be installed to disable the Bus Stacking Error detection feature.

PCIe Link Configuration

This cpuModule supports a total of eight PCIe x1 links. The chipset, however, only provides five PCIe x1 links. Four of the links on CN1 and CN2 are connected directly to the chipset. The other four are connected through a PCIe packet switch, and share the bandwidth of a single x1 link back to the chipset. The links that are connected to the PCIe switch do not support wake from S3 (D3cold). Only wake from S1 is supported. Table 33 below shows the configuration of the PCIe x1 links on CN1.

Table 33 CN2 Link Configuration

Link	BIOS Name	Location	Connection	S3 Wake support	PCle Peer-To-Peer
3	Link 3	Closest to CPU	Direct	Yes	No
2	Link 2		Direct	Yes	No
1	Link 1		Direct	Yes	No
0	PCle Switch	Farthest from CPU	Shared	No	To other Shared

Optional RTC Battery Input (CN13)

The optional RTC battery input is the connection for an external backup battery. This battery is used by the cpuModule when system power is removed in order to preserve the date and time in the real time clock.

Connecting a battery is only required to maintain time when power is completely removed from the cpuModule. A battery is not required for board operation.

Table 34 Optional RTC Battery Input (CN13)

Pin	Signal	Function
1	BAT	RTC Battery Input
2	GND	Ground

WARNING This optional RTC battery connector (CN13) should be left unconnected if the utility port connector (CN5) has a battery connected.

Fan Power, Switched (CN15)

The switched fan power connector (CN15) is an optional fan connector which allows the system to power the fan when the processor temperature reaches high temperatures.

To utilize this connector, refer to the Thermal Management section on page 81.

Table 35 Fan Power, Switched (CN15)

Pin	Signal	Function
1	CPU_FAN_PWM	+5 Volts DC, switched
2	GND	Ground
3	FAN_TACH	Fan Tachometer Input

Chapter 4 Using the cpuModule

This chapter provides information for users who wish to develop their own applications programs for the CMX32M cpuModule.

This chapter includes information on the following topics:

The RTD Enhanced AMI BIOS — page 54

Memory Map — page 56

I/O Address Map — page 57

Hardware Interrupts — page 58

Advanced Digital I/O Ports (aDIO[™]) — page 60

Advanced Analog I/O (aAIO) — page 64

Real Time Clock Control — page 78

Watchdog Timer Control — page 80

Thermal Management — page 81

Power Management — page 82

Multi-Color LED - page 84

Reset Status Register - page 85

Features and Settings That Can Affect Boot Time — page 87

System Recovery - page 88

The RTD Enhanced AMI BIOS

The RTD Enhanced AMI BIOS is software that interfaces hardware-specific features of the cpuModule to an operating system (OS). Physically, the BIOS software is stored in a Flash EPROM on the cpuModule. Functions of the BIOS are divided into two parts.

The first part of the BIOS is known as POST (power-on self-test) software, and it is active from the time power is applied until an OS boots (begins execution). POST software performs a series of hardware tests, sets up the machine as defined in Setup, and begins the boot of the OS.

The second part of the BIOS is known as the CORE BIOS. It is the normal interface between cpuModule hardware and the OS which is in control. It is active from the time the OS boots until the cpuModule is turned off. The CORE BIOS provides the system with a series of software interrupts to control various hardware devices.

Configuring the RTD Enhanced AMI BIOS

The cpuModule Setup program allows you to customize the cpuModule's configuration. Selections made in Setup are stored on the board and are read by the BIOS at power-on.

Entering the BIOS Setup

You can run Setup by rebooting the cpuModule and repeatedly pressing the **Delete** key. When you are finished with Setup, save your changes and exit. The system will automatically reboot

Field Selection

To move between fields in Setup, use the keys listed below.

Table 36 Setup Keys

Key	Function
\rightarrow , \leftarrow , \downarrow , \uparrow Move between fields	
+, -, PgUp, PgDn	Selects next/previous values in fields
Enter	Go to the submenu for the field
Esc	To previous menu then to exit menu

Main Menu Setup Fields

The following is a list of Main Menu Setup fields.

Table 37 Main Menu Setup Fields

Field	Active Keys	Selections
Main	Press Enter to select	Access system information such as BIOS version, EPLD version, and CMOS time and date settings
Advanced	Press Enter to select	Setup advanced cpuModule features
PCIPnP	Press Enter to select	Set PnP and PCI options and control system resources
Boot	Press Enter to select	Set the system boot sequence
Security	Press Enter to select	Setup the supervisor and user access passwords or enable boot sector virus protection
Power	Press Enter to select	Control power management settings, including power supply type, and system wake functions
Thermal	Press Enter to select	Monitor the cpuModule temperature, or activate thermal or fan modes.
Exit	Press Enter to select	Save or discard changes and exit the BIOS, or load the default BIOS settings

Note Future BIOS versions may have slightly different setup menus and options.

Memory Map

Table 38 shows how memory in the first megabyte is allocated in the system.

Table 38 First Megabyte Memory Map

Address (hex)	Description				
C0000-FFFFFh ROM	256 KB BIOS in Flash EPROM, shadowed into DRAM during runtime.				
C0000-EFFFFh	Run time user memory space. Usually, memory between C0000h and CFFFFh is used for the BIOS of add-on VGA video cards.				
A0000-BFFFFh	Normally used for video RAM as follows:				
	EGA/VGA 0A0000-0AFFFFh				
	Monochrome 0B0000-0B7FFFh				
	CGA 0B8000-0BFFFFh				
00502-9FFFFh	DOS reserved memory area				
00400-00501h	BIOS data area				
00000-003FFh	Interrupt vector area				

Memory beyond the first megabyte can be accessed in real mode by using EMS or a similar memory manager. See your OS or programming language references for information on memory managers.

I/O Address Map

As with all standard PC/104 boards, the I/O total I/O space is 64k in size. However, because early processors only addressed 10 address lines (SA0-SA9), the first 1k is used for legacy I/O devices. Any ISA add-on modules you install must therefore use I/O addresses in the range of 0-1023 (decimal) or 000-3FF (hex). The upper I/O addresses are used for PCI I/O devices, and are automatically assigned by the BIOS or operating system at boot time.

Note If you add any PC/104 modules or other peripherals to the system you must ensure they do not use reserved addresses listed below, or malfunctions will occur. The exception to this is if the resource has been released by the user.

Table 39 lists I/O addresses reserved for the CMX32M cpuModule.

Table 39 I/O Addresses Reserved for the CMX32M cpuModule

Address Range (hex)	Bytes	Device
000-00Fh	16	DMA Controller
010-01Fh	16	Reserved for CPU
020-021h	2	Interrupt Controller 1
022-02Fh	13	Reserved
040-043h	4	Timer
060-064h	5	Keyboard Interface
070-071h	2	Real Time Clock Port
080-08Fh	16	DMA Page Register
0A0-0A1h	2	Interrupt Controller 2
0C0-0DFh	32	DMA Controller 2
0F0-0FFh	16	Math Coprocessor
100-101h	2	Video Initialization
1F0-1FFh	16	Hard Disk ¹
200-201h	2	Reserved
238-23Bh	4	Bus Mouse ²
2E8-2EFh	8	Serial Port ³
2F8-2FFh	8	Serial Port ³
3E8-3EFh	8	Serial Port ³
3F8-3FFh	8	Serial Port ³
980-9BFh	64	Reserved
9C0-9C4h	5	aDIO ⁴
9C5-9DFh	27	Reserved
9E0-9FF	32	aAlO

^{1.} If a floppy or IDE controller is not connected to the system, the I/O addresses listed will not be occupied.

^{2.} If a PS/2 mouse is not connected to the system, the I/O addresses listed will not be occupied.

^{3.} The I/O addresses for the serial port are selected in the BIOS Setup utility.

^{4.} If aDIO is disabled, the I/O addresses listed will not be occupied.

Hardware Interrupts

Note If you add any expansion modules or other peripherals to the system, you must ensure they do not use interrupts needed by the cpuModule, or malfunctions will occur.

The CMX32M cpuModule supports the standard PC interrupts listed in Table 40. Interrupts not in use by hardware on the cpuModule itself are listed as available. Similarly, if the operating system is using APIC, more IRQs will be available.

Table 40 Hardware Interrupts Used on the CMX32M cpuModule

Interrupt	Normal Use	
0	Timer 0	
1	Keyboard	
2	Cascade of IRQ 8–15	
3	COM2	
4	COM1	
5	Available	
6	Available	
7	Available	
8	Real Time Clock	
9	Available, routed to IRQ 2	
10	Available	
11	Available	
12	Mouse	
14 ¹	SATA hard disk	
15¹	SATA Disk Chip socket	

IRQs 14 and 15 may be available if the SATA controller is not configured in Compatability Mode

Note The cpuModule has onboard PCI devices that will claim IRQ lines. In some instances, a PCI device will claim an IRQ line that is required by a legacy device. To reserve an IRQ for a legacy device, refer to the PnP/PCI Configuration Setup fields in the BIOS.

Note A device's hardware interrupt will be available for use if the given device is not present in the system and the device is disabled in Setup.

Non-Standard Serial Port Modes

It is possible to change the input clock rate for the UARTs of the cpuModule by selecting the Serial Port Baud Rates option in the Serial Port Configuration menu of the BIOS Setup. Changing the option from Normal to Non-Standard will allow the serial port to operate at higher speeds.

This transforms bits [7:5] of the Divisor Latch High Byte of the UART into selections for alternate clock rates. The following table describes the bit operations and the resulting divide-by-one baud rate:

Table 41 Divisor Latch High and Low Bytes

	Divisor Late	ch High Byte	Divisor	Baud Rate	% Error	
Bit 7	Bit 6	Bit 5	Bits [4:0]	Latch Low Byte		
0	0	0	0x00	0x01	115,200	0.16
1	0	0	0x00	0x01	460,800	0.16
1	1	0	0x00	0x01	921,600	0.16
0	0	1	0x00	0x01	1,500,000	0.16

To achieve non-standard baud rates, divide the baud rate you require by one of the non-standard divisors (460,800, 921,600, and 1,500,000). If the result is a whole number, substitute that value for the Divisor Latch Low Byte. For example, to achieve a baud rate of 750,000, select the Divisor Latch High Byte for 1,500,000 and set the Divisor Latch Low Byte to 2.

Note The signaling mode of the output will limit the highest baud rate achievable. For RS-232 mode the maximum suggested baud rate is 230,400. For 422/485 modes the maximum is 1,500,000.

Note When using the non-standard high speed serial port modes, it is highly recommended to use hardware flow control, whenever possible.

Advanced Digital I/O Ports (aDIO™)

This board supports 12 bits of TTL/CMOS compatible digital I/O (TTL signaling). These I/O lines are grouped into two ports, Port 0 and Port 1. Port 0 is bit programmable; Port 1 is byte programmable. Port 0 supports RTD's Advanced Digital Interrupt modes. The three modes are strobe, match and event. Strobe mode generates an interrupt and latches Port 0 when the strobe input transitions from low to high. Match mode generates an interrupt when an 8-bit pattern is received in parallel that matches the match mask register. Event mode generates an interrupt when a change occurs on any bit. In any mode, masking can be used to monitor selected lines.

When the CPU boots, all digital I/O lines are programmed as inputs, meaning that the digital I/O line's initial state is undetermined. If the digital I/O lines must power up to a known state, an external 10 k Ω resistor must be added to pull the line high or low.

The 8-bit control read/write registers for the digital I/O lines are located from I/O address 9C0h to 9C4h. These registers are written to zero upon power up. From 9C0h to 9C4h, the name of these registers are **Port 0 data**, **Port 1 data**, **Multi-Function**, **DIO-Control**, and **Wake Control** register.

Note RTD provides drivers that support the aDIO interface on popular operating systems. RTD recommends using these drivers instead of accessing the registers directly.

Digital I/O Register Set

Table 42 Port 0 Data I/O Address 9C0h

D7	D6	D5	D4	D3	D2	D1	D0
P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0

Port 0 Data register is a read/write bit direction programmable register. A particular bit can be set to input or output. A read of an input bit returns the value of port 0. A read of an output bit returns the last value written to Port 0. A write to an output bit sends that value to port 0.

Table 43 Port 1 Data I/O Address 9C1h

D7	D6	D5	D4	D3	D2	D1	D0
Reserved	Reserved	Reserved	Reserved	P1.3	P1.2	P1.1	P1.0

Port 1 Data register is a read/write byte direction programmable register. A read on this register when it is programmed to input will read the value at the aDIO connector. A write on this register when it is programmed as output will write the value to the aDIO connector. A read on this register when it is set to output will read the last value sent to the aDIO connector.

Table 44 Multi-Function I/O Address 9C2h

D7	D6	D5	D4	D3	D2	D1	D0

The multi-function register is a read/write register whose contents are set by the DIO-Control register. See the DIO-Control register description for a description of this register.

Table 45 DIO-Control I/O Address 9C3h—Read Access

DIO-Control I/O Address 9C3h—Write Access

^{1.} Contents based on bits D0 and D1 of DIO-Control.

Clear Register:

A read to this register Clears the IRQs and a write to this register sets the DIO-Compare, DIO- Mask, DIO-Control, Port 1, and Port 0 to zeros. A write to this register is used to clear the board.

Port 0 Direction Register:

Writing a zero to a bit in this register makes the corresponding pin of the aDIO connector an input. Writing a one to a bit in this register makes the corresponding pin of the aDIO connector an output.

Mask Register:

Writing a zero to a bit in this register will not mask off the corresponding bit in the DIO-Compare register. Writing a one to a bit in this register masks off the corresponding bit in the DIO-Compare register. When all bits are masked off the aDIOs comparator is disabled. This condition means Event and Match mode will not generate an interrupt. This register is used by Event and Match modes.

Compare Register:

A Read/Write register used for Match Mode. Bit values in this register that are not masked off are compared against the value on Port 0. A Match or Event causes bit 6 of DIO-Control to be set and if the aDIO is in Advanced interrupt mode, the Match or Event causes an interrupt.

Table 48 Wake Control I/O Address 9C4h

D 7	D6	D5	D4	D3	D2	D1	D0
		Rese	rved			Int Mask	Wake Enable
						1 = Interrupt is masked 0=Interrupt is enabled	1=Interrupt triggers a Wake Event 0=Interrupt does not trigger a wake event.

Port 1 Data register is a read/write byte direction

Interrupts

In order to use an interrupt with aDIO, the interrupt must first be selected in the BIOS setup utility under **Advanced, I/O Devices, aDIO Configuration, aDIO Interrupt**. The Digital I/O can use interrupts 3, 5, 6, 7, 10, 11, and 12. The interrupt must also be reserved so that is it not assigned to PCI devices. To reserve the interrupt, enter the BIOS under **PCIPnP** and change the interrupt you wish to use to "Reserved." Then, select the appropriate interrupt mode in the DIO Control register. Also, verify that the Int Mask bit is cleared in the Wake Control register

Advanced Digital Interrupts

There are three Advanced Digital Interrupt modes available. These three modes are Event, Match, and Strobe. The use of these three modes is to monitor state changes at the aDIO connector. Interrupts are enabled by writing to the **Digital IRQ Mode** field in the **DIO-Control** register.

Event Mode

When this mode is enabled, Port 0 is latched into the DIO-Compare register at 8.33 MHz. The aDIO circuitry includes deglitching logic. The deglitching requires pulses on Port 0 to be at least 120 ns in width. As long as changes are present longer than that, the event is guaranteed to register. Pulses as small as 60 ns can register as an event, but they must occur between the rising and falling edge of the 8.33 MHz clock. To enter Event mode, set bits [4:3] of the DIO-Control register to "10".

Match Mode

When this mode is enabled, Port 0 is latched into the DIO-Compare register at 8.33 MHz. The aDIO circuitry includes deglitching logic. The deglitching requires pulses on Port 0 to be at least 120 ns in width. As long as changes are present longer than that, the match is guaranteed to register. Pulses as small as 60 ns can register as a match, but they must occur between the rising and falling edge of the 8.33 MHz clock. To enter Match mode, set bits [4:3] of the DIO-Control register to "11".

Note Make sure bits [4:3] are set BEFORE writing the DIO-Compare register. If you do not set them first, the contents of the DIO-Compare register could be lost because the Event mode latches in Port 0 into the DIO-Compare register.

Figure 6 a DIO Match Mode

Strobe Mode

Another interrupt mode supported by aDIO is Strobe mode. This allows the strobe pin of the DIO connector to trigger an interrupt. A low to high transition on the strobe pin will cause an interrupt request. The request will remain high until the Clear Register is read from. Additionally, the Compare Register latched in the value at Port 0 when the Strobe pin made a low to high transition. No further strobes will be available until a read of the Compare Register is made. You must read the Compare Register, and then clear interrupts so that the latched value in the compare register is not lost. To enter Strobe mode, set bits [4:3] of the DIO-Control register to "01".

Wake-on-aDIO

The aDIO Strobe, Match and Event interrupt can be used to generate a wake event. This event can wake the CPU from any power-down mode, including Soft-Off (S5). Wake from aDIO will work as long at +5V Standby power is applied to the board. To use the aDIO to wake the system, Wake from aDIO must first be enabled in the BIOS setup utility. Then the aDIO is configured in the appropriate interrupt mode. The "Wake Enable" bit is then set in the Wake Control Register at 0x9C4. The CPU can then be placed in a standby mode, and the aDIO interrupt will wake the system.

During system standby, a 32kHz clock is used for the aDIO instead of an 8.33 MHz clock. Therefore, transitions must be at least 30 us in order to trigger a wake event.

If the aDIO is to be used for a wake event only, and not an interrupt, the "Int Mask" bit can be set in the Wake Control Register. This will block the interrupt, but still allow a wake event to occur. The various settings for "Wake Enable" and "Int Mask" are shown in Table 49 below.

Table 49 Interrupt and Wake Event Generation

WakeEnable	Int Mask	Function
0	0	Interrupt Only
0	1	No Interrupt or Wake event is generated
1	0	Interrupt and Wake Event
1	1	Wake Event Only

Advanced Analog I/O (aAIO)

Features

- Eight single-ended or four differential analog inputs
- Up to 100kHz sample rate
- 16-bit resolution
- 0 to +5V, +/-5V, 0 to +10V, and +/-10V input ranges
 - Software configurable
- · Per-channel digital filtering
- Per-channel threshold detection generates an interrupt when signal crosses high or low threshold.
- Advanced DMA
 - Each channel has it's own DMA buffer
 - Buffer chaining prevents interrupt latency problems
 - DMA to anywhere in 4GB address space

Block Diagram

The Figure below shows the functional block diagram of aAIO. The various parts of the block diagram are discussed in the following sections.

Figure 7 aAIO Block Diagram

Analog Inputs

The input multiplexer in aAIO accepts eight single ended analog inputs. Any combination of ranges can be used for these inputs. Pairs of analog inputs can be combined to form up to four differential inputs.

Channel-Gain Table

A Channel-Gain table is provided to control the mode and range of each channel and the order that they are sampled in. Each row in the scan table is associated with a specific A/D channel. When a scan is started (either by the pacer clock or a software trigger), channel 1 is sampled. Then the "NEXT CHANNEL" pointer is followed to select the next channel to scan. The "NEXT CHANNEL" pointer is followed until it is a value of 0, which ends the scan. There are a few implications:

- 1. The first channel to be scanned must always be Channel 1.
- Each channel may only be sampled once per scan.
- The scan list must end with a "NEXT_CHANNEL" of 0. Otherwise the channels will continue to scan without waiting for the pacer clock.

The Channel-Gain Table contains all of the channel-specific settings and status. This includes the mode (single-ended or differential), and range. It also contains the filter and threshold setting as well as the interrupt status and enable bits. The A/D Result register, which returns the last conversion for this channel, is also within the Channel-Gain Table.

Analog to Digital Converter

The Analog to Digital Converter used in aAIO is a 16-bit, 100 ksps converter. There is no calibration required, and is typically accurate to within 10mV.

Programmable Digital Filter

The programmable digital filter provides a single pole Infinite Impulse Response (IIR) filter on each channel. This is a unity-gain filter. The filtered data has a value of:

$$D_n = \frac{[D_{n-1} \times (2^{ORDER} - 1)] + NewSample}{2^{ORDER}}$$

The response of the filter is shown in Figure 2 below. Table 1 below shows the -3 dB cutoff for each of the filter settings. Both the Figure and the Table are relative to the per-channel sample rate (f.), which is:

$$f_s = \frac{40MHz}{(PACERDIVIDER + 1)}$$

Figure 8 Filter Response with each ORDER Value

Table 50 Filter Cutoff Frequency

ORDER	-3 dB Cutoff
0	n/a
1	0.114791 * f _s
2	0.045995 * f _s
3	0.021236 * f _s
4	0.010255 * f _s
5	0.005042 * f _s
6	0.002501 * f _s
7	0.001246 * f _s

Threshold Detect

Threshold detection logic is provided to generate an interrupt when a channel crosses a high or low threshold. The thresholds can be individually set and monitored for each channel. Threshold crossings are only detected for a channel when that channel is sampled.

Data Output

Direct Read

The result from the most recent A/D conversion for a specific channel is always available in the AD_RESULT register within the scan table. The value returned is a 32-bit 2's complement value with same 76.294 microvolt resolution for all ranges.

DMA Engine

For data collection operations, a DMA engine is provided that will transfer the data results directly into system memory. This allows maximum data transfer rate with minimal interaction from the host software. In order to minimize the effects of interrupt latency, multiple DMA buffers can be defined in a Scatter-Gather Table.

Scatter-Gather Table

The DMA Engine contains a Scatter-Gather Table (SGT) for each of the eight inputs. The Scatter-Gather Table consists of a list of up to 64 entries. Each entry contains the physical address of a buffer that is 4kB in size, and 4kB aligned. It also contains a flag to indicate that the entry is valid. The Channel 1 Table also includes flags to stop DMA transfers, restart the SGT, or generate and interrupt. These are flags that effect all channels, and are only stored in the channel 1 table.

The DMA engine will transfer data using the same row of the SGT and the same offset for all channels. This guarantees that the captured data is synchronized. The DMA engine will always iterate through the SGT, even if DMA is not enabled for any channels.

The Scatter-Gather Table is not cleared at power up or during reset. Therefore, software must assume that it contains random, invalid data.

Operating Modes

Simple Operation

The simplest operating mode is using software to start the sampling and poll the aAIO for the result. This mode does not require setting up DMA buffers, or setting up the Scatter-Gather Table. In order to use this mode, perform the following steps:

- Open the board as described in *Board Open* on page 77.
- Write channel and input configuration in CGT Register if needed (default is +/-10V, single ended)
- Do a software start conversion
- Poll A/D done bit (about 20 microseconds) or wait for A/D Done interrupt 4.
- Read data from A/D Result

Alternately, the continuous sample bit can be set. In this case, the value read from the A/D Result register is the last captured sample.

DMA Based Operation

For higher performance sampling, a DMA engine is provided. This engine uses a scatter-gather table for each channel. The scatter-gather table can have up to 64 entries, each of which is a 4kB buffer that is 4kB aligned. At the completion of entry of the scatter-gather table, an interrupt can be generated, DMA transfers can be stopped, and/or the table can be restarted.

The scatter-gather DMA method allows continuous sampling at the maximum sample rate with the least amount of operating system intervention. Because each channel has its own scatter-gather table, the data for each channel is located in a separate area in system memory. Therefore the application software doesn't need to de-interlace the data.

The following steps are needed to use DMA operation:

- 1. Open the board as described in *Board Open* on page 77.
- 2. Allocate needed DMA buffers
- 3. Program Scatter-Gather table
- 4. Write channel and input configuration in CGT Register if needed (default is +/-10V, single ended)
- 5. Start conversion
- 6. Wait for DMA interrupt
- 7. Update Scatter-Gather table if needed
- 8. Process or move data if needed
- 9. Repeat to Step 6

Registers

Register Map

Table 51 aAIO Register Map

Name	I/O Port	31-24	23-16	15-8	7-0		
Control	0x09E0	CH_IRQ_ENA	CH_IRQ_STAT	MODE_RESET	SELECT[3:0]		
Pacer Clock Divider	0x09E4	PACER_DIVIDER					
Advanced Setup	0x09E8	Reserved	CUR_SGT_ROW	CUR_BUFFER_OFFSET			
Indexed registers controlled by 0x09E0[2:0]							
Channel Control	0x09EC	FILTER_CON	SGT_ROW	CH_MODE	NEXT_ CHANNEL		
A/D Result	0x09F0	AD_RESULT					
Interrupt	0x09F4		IRQ_ENA		IRQ_STAT		
Threshold	0x09F8	THRESH_HIGH		THRESH_LOW			
DMA Buffer	0x09FC	SGT_DATA	SGT_DATA				

Control Registers

0x9E0: SELECT Register

Bit	7	6	5	4	3	2	1	0
Mode	R	R	R	R	R	R/W	R/W	R/W
Default	0	0	0	0	0	0	0	0
Field	Rsvd	Rsvd	Rsvd	Rsvd	Rsvd	CGT_Channel		

CGT_Channel: Selects the channel to be displayed in the Channel Gain Table Registers. See Channel Gain Table Registers on page 71

0x9E1: MODE_RESET Register

Bit	7	6	5	4	3	2	1	0
Mode	R/W	R/W	W	W	R/W	R/W	R/W	R/WC
Default	0	0	0	0	0	0	0	1
Field	Rsvd	Rsvd	Clear	Reset	Rsvd	Rsvd	GO	SW_Trig

SW_Trig: Write a '1' to generate a trigger to scan through the Channel Gain Table regardless of the state of the "Go" bit. Will read '0' while the scan is happening, and '1' when completed.

GO: Set to '1' to begin continuous sampling based on the Pacer Clock.

Reset: Write '1' to reset all aAIO registers, including the "Clear" functions. Always reads '0'.

Clear: Write '1' to stop sampling, clear the Filters, and reset the Scatter-Gather and DMA Offset counters. Always reads '0'.

0x9E2: CH_IRQ_STAT Register

Bit	7	6	5	4	3	2	1	0
Mode	R	R	R	R	R	R	R	R
Default	0	0	0	0	0	0	0	0
Field	Ch8	Ch7	Ch6	Ch5	Ch4	Ch3	Ch2	Ch1

Chx: A '1' indicates that an interrupt is pending from channel 'x' of the Channel Gain Table. This bit is set regardless of CH_IRQ_ENA. This is a non-stick register, and will be cleared when the interrupt condition is cleared in the Channel Gain Table.

0x9E3: CH_IRQ_ENA Register

Bit	7	6	5	4	3	2	1	0
Mode	R/W							
Default	0	0	0	0	0	0	0	0
Field	Ch8	Ch7	Ch6	Ch5	Ch4	Ch3	Ch2	Ch1

Chx: Writing a '1' enabled generation of an interrupt when the same bit of the CH_IRQ_STAT register goes high.

0x9E4: PACER_DIVIDER Register

Bit	31 0
Mode	R/W
Default	0x00000000
Field	PACER_DIVIDER

PACER_DIVIDER: A 32-bit divider for the pacer clock. Read-only during sampling. When the pacer clock rolls over, the Channel Gain Table is scanned at a rate of 100kHz. This register should only be modified when sampling is stopped. The time between scans is:

$$ScanRate = \frac{40MHz}{(PACERDIVIDER + 1)}$$

The maximum sample rate is 100kHz. The maximum scan rate is 100kHz divided by the number of channels scanned. Any PACER_DIVIDER value that would yield a sample rate of greater than 100kHz has undefined results, except a PACER_DIVIDER value of 0x000000000 will sample at the fastest rate possible.

0x9E8: CUR_BUFFER_OFFSET Register

Bit	16	12	11		0		
Mode	R			R			
Default	0		0				
Field	Reservec	I		CUR_BUFFER_OFFSET			

CUR_BUFFER_OFFSET: The offset into the current 4kB DMA buffer where data will be written next. This is the same value for every channel, i.e. the channels are always synchronized.

0x9EA: CUR_SGT_ROW Register

Bit	7	6	5	4	3	2	1	0
Mode	F	R	R					
Default	(0	0					
Field	Rese	erved	CUR_SGT_ROW					

CUR_SGT_ROW: The current row in the Scatter-Gather Table that will be used for the next transfer. This is the same value for every channel, i.e. the channels are always synchronized.

Channel Gain Table Registers

The registers described in this section are paged based on the value of SELECT[CGT CHANNEL] in on page 69. These can be though of as rows in a scan table, each associated with a specific A/D channel. When a scan is started (either by the pacer clock or a software trigger), channel 1 is sampled. Then the "NEXT_CHANNEL" pointer is followed to select the next channel to scan. The "NEXT_CHANNEL" pointer is followed until it is a value of 0, which ends the scan. There are a few implications:

- 1. The first channel to be scanned must always be Channel 1.
- 2. Each channel may only be sampled once per scan.
- The scan list must end with a "NEXT_CHANNEL" of 0. Otherwise the channels will continue to scan without waiting for the pacer clock.

The channel associations for CGT CHANNEL and NEXT CHANNEL are shown below.

Table 52 Channel Gain Table Channels

CGT_CHANNEL/ NEXT_CHANNEL Value	Single Ended	Differential
0	Channel 1 (Pin 1)	Ch1(+), Ch2(-)
1	Channel 2 (Pin 2)	Ch2(+), Ch1(-)
2	Channel 3 (Pin 3)	Ch3(+), Ch4(-)
3	Channel 4 (Pin 4)	Ch4(+), Ch3(-)
4	Channel 5 (Pin 5)	Ch5(+), Ch6(-)
5	Channel 6 (Pin 6)	Ch6(+), Ch5(-)
6	Channel 7 (Pin 7)	Ch7(+), Ch8(-)
7	Channel 8 (Pin 8)	Ch8(+), Ch7(-)

0x9EC: NEXT_CHANNEL Register

Bit	7	6	5	4	3	2	1	0
Mode	R	R	R	R	R	R/W		
Default	0	0	0	0	0	(Channel + 1)		
Field	Rsvd	Rsvd	Rsvd	Rsvd	Rsvd	NEXT_CHANNEL		EL

NEXT_CHANNEL: The next channel to sample in the Channel Gain Table. Read-only during sampling.

0x9ED: CH_MODE Register

Bit	7	6	5	4	3	2	1	0
Mode	R	R	R/W	R/W	R	R/W		
Default	0	0	0	0	0	101		
Field	Rsvd	Rsvd	DMA	Rsvd	Rsvd	RANGE		

RANGE: Selects the range of this channel, and differential/single ended as show below. Read-only during sampling.

Table 53 Channel Mode

T 7 1		
Value	SE/DIFF	Range
0 (000)	DIFF	±5V
1 (001)	DIFF	±10V
2 (010)	DIFF	0 to 5V
3 (011)	DIFF	0 to 10V
4 (100)	SE	±5V
5 (101)	SE	±10V
6 (110)	SE	0 to 5V
7 (111)	SE	0 to 10V

DMA: Set to '1' to enable DMA. Data will be moved to the DMA buffer as soon as it is available.

0x9EE: SGT_ROW Register

Bit	7	6	5	4	3	2	1	0	
Mode	R		R/W						
Default	0		0						
Field	Reserved				SGT_	ROW			

SGT_ROW: The row in the Scatter-Gather Table that is visible and can be modified by the SGT_DATA register at 0x9FC.

0x9EF: FILTER_CON Register

Bit	7	6	5	4	3	2	1	0
Mode	R	R	R	R	R	R/W		
Default	0	0	0	0	0	0		
Field	Rsvd	Rsvd	Rsvd	Rsvd	Rsvd	ORDER		

ORDER: Selects the order of the filter for this channel. A value of "000" disables the filter. See Programmable Digital Filter on page 65.

0x9F0: AD_RESULT Register

Bit	31 0	
Mode	R	
Default	0x00000000	
Field	AD_RESULT	

AD_RESULT: The current value of the A/D converter for this channel after filtering. This is a 32-bit 2's complement value with same 76.294 microvolt resolution for all ranges.

Range/Bits	31-18	17	16	15-2	1	0	
0 to +5V	0	0	0	0 A/D Data			
0 to +10V	0	0		A/D Data			
-5 to +5V	Sign Extend	Sign Extend	A/D [0			
-10 to +10V	Sign Extend	A/D Da	ata (2's Complement) 0 0				

0x9F4: IRQ_STAT Register

Bit	7	6	5	4	3	2	1	0
Mode	R	R	R/C	R/C	R/C	R/C	R	R/C
Default	0	0	0	0	0	0	0	0
Field	Rsvd	Rsvd	Thresh High	Thresh Low	DMA Error	DMA	Rsvd	Sample

A '1' indicated the condition exists, regardless of IRQ_ENA. Write a '1' to clear.

Sample: A sample has been converted.

DMA: An SGT row with the IRQ bit set has been filled.

DMA Error: DMA for this channel didn't get serviced in time (gap in data).

Thresh Low: Channel is below the low threshold. **Thresh High:** Channel is above the high threshold.

0x9F6: IRQ_ENA Register

Bit	7	6	5	4	3	2	1	0
Mode	R	R	R/W	R/W	R/W	R/W	R	R/W
Default	0	0	0	0	0	0	0	0
Field	Rsvd	Rsvd	Thresh High	Thresh Low	DMA Error	DMA	Rsvd	Sample

A '1' allows in interrupt to be generated if the corresponding bit in IRQ_STAT is set.

Sample: A sample has been converted.

DMA: An SGT row with the IRQ bit set has been filled.

DMA Error: DMA for this channel didn't get serviced in time (gap in data).

Thresh Low: Channel is below the low threshold.

Thresh High: Channel is above the high threshold.

0x9F8: THRESH_LOW Register

Bit	16 0
Mode	R/W
Default	0x8000
Field	THRESH_LOW

THRESH_LOW: This register sets the low threshold for this channel. It contains a 16-bit 2's complement value with the same 305.175 microvolt resolution (20V / 65536) for all ranges. The high threshold must be greater than low threshold. The default for low threshold is the maximum negative value. If the A/D reading for this channel is less than the low threshold, the IRQ_STAT[Thresh Low] bit is set.

0x9FA: THRESH_HIGH Register

Bit	16	0
Mode	R/W	
Default	0x7FFF	
Field	THRESH_HIGH	

THRESH_HIGH This register sets the high threshold for this channel. It contains a 16-bit 2's complement value with the same 305.175 microvolt resolution (20V / 65536) for all ranges. The high threshold must be greater than low threshold. The default for the high threshold is the maximum positive value. If the A/D reading for this channel is greater than the high threshold, the IRQ_STAT[Thresh High] bit is set.

0x9FC: SGT DATA

This register is used to view and modify the data in the Scatter-Gather Table. It is indexed both by SELECT[CGT_Channel] (to select the channel), and SGT_ROW (to select the row in the table).

The Scatter-Gather Table consists of a list of up to 64 entries. Each entry contains the physical address of a buffer that is 4kB in size, and 4kB aligned. It also contains a flag to indicate that the entry is valid. The Channel 1 Table also includes flags to stop DMA transfers, restart the SGT, or generate and interrupt. These are flags that effect all channels, and are only stored in the channel 1 table.

The DMA engine will transfer data using the same row of the SGT and the same offset for all channels. This guarantees that the captured data is synchronized. The DMA engine will always iterate through the SGT, even if DMA is not enabled for any channels.

The Scatter-Gather Table is not cleared at power up or during reset. Therefore, software must assume that it contains random, invalid data.

Bit 5 31 12 11 9 8 7 6 4 0 Mode R/W R R/W R/W R/W R/W R Default Χ Χ Χ Χ Χ Χ 00000 Field **ADDRESS STOP RESTART VALID** Rsvd **IRQ** Rsvd

0x9FC: SGT_DATA Register

ADDRESS: The upper 20-bits of a DMA buffer 4k in size and 4k aligned. The DMA data will start at an offset of 0 into the buffer. After it is full, the DMA engine will advance to the next row in the table based on the flags.

IRQ: Flag to generate and interrupt after this buffer is full. The interrupt will be generated for all channels that DMA is enabled on. This flag is only checked for Channel 1.

STOP: Flag to stop DMA on all channels after this buffer is full. This flag is only checked for Channel 1.

RESTART: Flag to restart the SGT at row 0 after this buffer is full. This flag should always be set for the last entry in the table, even if the STOP flag is also set. This flag is only checked for Channel 1.

VALID: Flag to indicate that this is a valid entry. DMA data will only be transferred if the VALID flag is set. This flag is checked for all channels.

BIOS Setup Register

This register is for the BIOS to enable aAIO and set the interrupt

0x9CE: aAIO_SETUP Register

Bit	7	6	5	4	3	2	1	0
Mode	R	R	R	R	R/W	R/W		
Default	0	0	0	0	0	0		
Field	Rsvd	Rsvd	Rsvd	Rsvd	ENA		IRQ	

ENA: Set to '1' to enable aAIO.

IRQ: Set the IRQ:

000 = Disabled

001 = IRQ5

010 = IRQ7

011 = IRQ10

100 = IRQ11

101 = IRQ12

110 = IRQ3

111 = IRQ6

Usage Notes

Board Open

If the shift register that controls the A/D is reset in the middle of a transfer, the next sample that you try to get may be bad. The only time that this problem could happen is if the system is reset (CTRL+ALT+DEL, etc.) in the middle of sampling. However, the following procedure will ensure that correct data will be available for the first sample.

- 1. Perform a Board Reset to make sure all the registers are default
- Do a software triggered sample
- Wait for it to be done 3.
- Perform a Board Reset to reset the sample counter.

Changing Ranges

The channel ranges are only actually updated during sampling. If, for example, you are sampling a 3V signal in the 0-5V range, then stop sampling, connect a 9V signal, and start sampling in the 0-10V range, the input to the A/D will be over-driven. The A/D requires approximately 150us to recover from an over-driven condition. When changing ranges, be sure to start sampling before applying a signal that would be outside of the previous range.

Real Time Clock Control

Overview

The cpuModule is equipped with a Real Time Clock (RTC) which provides system date and time functions. When the cpuModule is turned off, a battery must be attached to the utility connector to provide power to the RTC. Without power, the RTC will lose the date/time information when the system is turned off.

The RTC also provides an "alarm" function. This may be used to generate an interrupt at a particular time and day. This feature is commonly used to wake up the system from Sleep/Standby to run a scheduled task (defragment the hard drive, back up files, etc.).

In addition to the date/time/alarm functions, the RTC contains several bytes of battery-backed RAM, commonly called CMOS memory. In a typical desktop PC, the CMOS memory is used by the BIOS to store user settings. This RTD cpuModule uses onboard flash to store user BIOS settings. To preserve compatibility with traditional PCs, the RTD Enhanced BIOS also mirrors the user settings from flash in CMOS. Therefore, the contents of CMOS may be overwritten at boot time, and should be treated as "read only".

Accessing the RTC Registers

You may access the RTC date/time and CMOS memory using the Index and Data Registers located at I/O addresses 70h and 71h.

- Address 70h is the Index register. It must be written with the number of the register to read or write.
 Valid values are 00h to 7Fh.
- Address 71h is the Data register. It contains the contents of the register pointed to by the Index.

To read/write an RTC register, you must first set the Index register with the register number, and then read/write the Data register.

A list of key RTC registers is shown in Table 54 below:

Table 54 Real Time Clock Registers

Registers (hex)	Registers (decimal)	Function
00h	0	RTC Seconds
02h	2	RTC Minutes
04h	4	RTC Hours
06h	6	RTC Day of Week
07h	7	RTC Day of Month
08h	8	RTC Month
09h	9	RTC Year
0Ah	10	RTC Status Register A
		 Bit 7: RTC Update In Progress (Read Only) - RTC registers should not be accessed when this bit is high.
		• Bits 6-4: Divider for 32.768 KHz input (should always be 010)
		• Bits 3-0: Rate select for periodic interrupt.

Table 54 Real Time Clock Registers

		<u> </u>
Registers (hex)	Registers (decimal)	Function
0Bh	11	RTC Status Register B
		 Bit 7: Inhibit Update - When high, the RTC is prevented from updating.
		 Bit 6: Periodic Interrupt Enable - When high, the RTC IRQ will be asserted by the periodic interrupt.
		 Bit 5: Alarm Interrupt Enable - When high, the RTC IRQ will be asserted when the current time matches the alarm time.
		 Bit 4: Update Ended Interrupt Enable - When high, the RTC IRQ will be asserted every time the RTC updates (once per second).
		• Bit 3: Square Wave Enable - Not used.
		 Bit 2: Data Mode - Sets the data format of the RTC clock/calendar registers (0=BCD, 1=binary). This is typically set to BCD mode.
		• Bit 1: Hours Byte Format - Sets the hour byte to 12 or 24 hour time (0=12 hour, 1=24 hour). This is typically set to 24 hour mode.
		 Bit 0: Daylight Savings Enable - When high, the RTC will automatically update itself for Daylight Savings Time. It is recommended to leave this bit low and let the operating system manage time zones and DST.
0Ch	12	RTC Status Register C (Read Only)
		 Bit 7: IRQ Flag - Indicates that the Real Time Clock IRQ is asserted. Goes high whenever one of the enabled interrupt conditions in Register B occurs.
		Bit 6: Periodic Flag
		Bit 5: Alarm Flag
		Bit 4: Update Ended Flag
		Bit 3-0: Reserved
		Reading this register will also clear any of set flag (IRQ, Periodic, Alarm, Update Ended). Note that even if the interrupt source is not enabled in Register B, the flags in Register C bits 4, 5, and 6 may still be set.
0Dh	13	RTC Status Register D
		• Bit 7: Valid Time/Date (always reads 1)
		• Bit 6: Reserved
		Bits 5-0: RTC Alarm Day of the Month

Note RTC registers that are not listed above are used by the BIOS and should be considered "Reserved". $Altering \ the \ contents \ of \ any \ unlisted \ RTC \ register \ may \ interfere \ with \ the \ operation \ of \ your \ cpuModule.$ The specific uses of the unlisted RTC registers will depend on the BIOS version loaded on the cpuModule. Contact RTD's technical support for more information.

Watchdog Timer Control

The cpuModule includes a Watchdog Timer, which provides protection against programs "hanging", or getting stuck in an execution loop where they cannot respond correctly. The watchdog timer consists of a counter, a reset generator, and an interrupt generator. When the counter reaches the interrupt time-out, it can generate an interrupt. When the counter reaches the reset time-out, the system is reset. The counter is "refreshed," or set back to zero by reading from a specific register. The watchdog can also be put into an "inactive" state, in which no resets or interrupts are generated.

The ability to generate an interrupt allows the application to gracefully recover from a bad state. For example, consider a system that has a reset time-out of 2 seconds, interrupt time-out of 1 second, and the watchdog timer is refreshed every 0.5 seconds. If something goes wrong, an interrupt is generated. The Interrupt service routine then attempts to restart the application software. If it is successful, the application is restarted in much less time than a full reboot would require. If it is not successful, the system is rebooted.

Due to system latency, it is recommended that the Watchdog be refreshed at about half of the reset time-out period, or half of the interrupt time-out period, whichever is applicable.

Register Description

The Advanced Watchdog Timer has a Setup Register and a Runtime Register. The Setup Register is set by the BIOS, and can be adjusted by entering the BIOS Setup Utility, and going to "Advanced/Miscellaneous RTD Features". The Setup Register may also be read by the driver to determine if the Watchdog is enabled, and the interrupt and base address that it is using.

Note Enabling the watchdog timer in the BIOS does not actually arm it. The watchdog timer can be armed by accessing I/O address 985h, as explained below.

Table 55 Advanced Watchdog Setup Register 98Bh

D7	D6	D5	D4	D3	D2	D1	D0
	Reserved		Select II 000=Di 001 = II 010 = II 011 = II 100 = II 110 = R	RQ5 RQ7 RQ10 RQ11		Reg_Enable 0=Watchdog timer is disabled and Runtime Register will not appear in I/O map 1=Watchdog Timer is enabled. Runtime Register will appear in I/O map	

Table 56 Advanced Watchdog Runtime Register 985h

D7	D6	D5	D4	D3	D2	D1	D0
WDT_Active 0=Watchdog timer is disabled. 1=Watchdog is armed and can generate resets and interrupts.	WDT_IRQ_Ena 0=Watchdog interrupt is disabled. 1=Watchdog interrupt is enabled.	Rese	erved	WDT_IR Select In time WD 00=0.259 01 = 0.50 10 = 0.79 11 = 1.00	e for ' T S Os S	Select Re	Os Ss

Reading the Runtime Register also refreshed the watchdog timer.

Thermal Management

The cpuModule has several thermal features which can be used to monitor and control the board's temperature when extreme operating conditions are prevalent.

Thermal Monitor

The Intel ® Thermal Monitor is a feature on the CMX32M that automatically throttles the CPU when the CPU exceeds its thermal limit. The maximum temperature of the processor is defined as the temperature that the Thermal Monitor is activated. The thermal limit and duty cycle of the Thermal Monitor cannot be modified,.

Note The CPU and PCB temperatures displayed in the BIOS are approximate and should not be used to validate a cooling solution.

Fan Mode

The CPU fan can be controlled by the CPU when connected to the switched fan power connector (CN15). Three fan modes are supported, which can be toggled in the BIOS setup. When the fan is not always on, the CPU's power consumption is reduced, and the life of the fan is increased.

- Always On: When in this mode, the fan is always powered by the CPU.
- On At 70C: This mode allows the system to keep the fan turned off until the CPU reaches 70C. In this mode, the fan will slowly transition between on and off to prevent oscillations. This is the best mode for applications that will spend most of the time below 0C.
- Variable: The fan will spin slowly until the CPU reaches 60C, and then will increase speed. Maximum speed is reached when the CPU reaches 75C.

Further Temperature Reduction

The cpuModule's temperature is directly related to power consumption. Reducing the power consumption of the CPU will have an effect on the CPU's temperature. Suggested methods for reducing the CPU's power consumption can be found in the Power Management section on page 82.

Power Management

The CMX32M cpuModule supports various powering mechanisms which allow the cpuModule to monitor power consumption and temperature, and achieve minimal power consumption states. These unique features include Enhanced Intel® SpeedStep® Technology (Core 2 Duo only), thermal monitoring and thermal throttling, as well as low power modes including ACPI configurations. Various wake options are also available to resume normal system power.

Enabling Enhanced Intel SpeedStep Technology (Core 2 Duo)

When enabled, Enhanced Intel® SpeedStep® Technology can give application software greater control over the processor's operating frequency and input voltage. This allows the system to easily manage power consumption dynamically. This feature can be enabled or disabled in the BIOS. When enabled, the feature can be set to several different modes, which are described below.

- Disabled: The processor speed is set to its maximum operating frequency.
- **Enabled:** The processor speed is controlled by the operating system.

Advanced Configuration and Power Interface (ACPI)

The cpuModule supports several different ACPI low power modes, including the S1, S3, S4, and S5 sleeping states. The BIOS setup utility provides an option to select between S1 and S3 as the Standby state. Sleep modes S4 and S5 are setup by the operating system.

The cpuModule's ACPI suspend modes are described below

- S1 (Power on Suspend): The S1 low power state consumes the most power of all supported ACPI sleep
 modes. In this mode, the CPU stops executing instructions, but power to the CPU and RAM is
 maintained.
- **S3 (Suspend to RAM):** Everything in the system is powered off except for the system memory. When the system wakes from this mode, operating systems allow applications to resume where they left off, as the state of the application is preserved in memory.
- **S4 (Hibernate):** When the system enters this state, the operating system will save the current state of applications and relevant data to disk, thus allowing the system RAM to be powered down.
- S5 (Soft-Off): The system is in a soft off state, and must be rebooted when it wakes.

Power Button Modes

The soft power button input of the utility port connector (**CN5**) can be configured by the operating system as a suspend button (transition to S1 or S3) or as soft power button (transition to S5). Consult your operating system documentation for information on how to configure it. The power button will always cause a transition to S5 if pressed for 4 seconds or longer, without interaction from the operating system.

Low-Power Wake Options

The cpuModule supports several methods of waking from a low power state. Several of these wake options are BIOS configurable, and can be accessed directly from the "Power" menu in the BIOS setup:

- **Resume on aDIO:** This option allows the system to use an aDIO Strobe, Match, or Event interrupt to generate a wake event. This event can wake the CPU from any power-down mode, including Soft-Off (S5). For more information, refer to the section titled *Wake-on-aDIO* on page 63.
- **Resume on PME#:** When enabled, the system can wake when a signal is applied to the PME# signal on the PCI bus, or the WAKE# signal on the PCIe bus. This includes wake-up on onboard LAN controller.

Resume on RTC Alarm: The RTC Alarm allows the system to turn on at a certain time every day.

AT vs. ATX Power Supplies

Both AT and ATX power supplies may be used with the CMX32M cpuModule, however AT power supplies do not provide any standby power to the cpuModule. When an AT power supply is used to power the system, low power modes that require a standby power to wake the system will not be fully supported.

ATX power supplies do provide a standby power, thus allowing the system to utilize all low power modes supported by the hardware. When an ATX supply is used to power the cpuModule, lower power modes can be achieved. During these low power modes, the standby power from the ATX power supply provides power to a small circuit on the CPU, which is used to watch for a system wake event.

ATX Power Supply Signals

The auxiliary power connector (CN3) provides two ATX style signals., +5V Standby and PSON#. The +5V Standby rail is used to power certain parts of the cpuModule when the main power supply is turned off, i.e. during Suspend-to-RAM (S3), Hibernate (S4), or Soft-Off (S5) power modes. The PSON# signal is an active low open-drain output that signals the power supply to turn on. Use of these signals allows the power consumption to drop to below 1W during standby modes, and still enable any of the wake events.

Reducing Power Consumption

In addition to the CPU's low power modes, power consumption can further be reduced by making some modifications to the BIOS setup. When the following features are modified, the CPU's power consumption will decreases:

- CPU Speed: Setting the processor to its minimum speed in the BIOS will reduce power consumption
- Memory Speed: Changing the DDR DRAM clock frequency will reduce power consumption, however memory performance will also be reduced.
- Ethernet: Can be disabled in the BIOS
- Serial Ports: Can be disabled in the BIOS
- LVDS Flat Panel: If an LVDS panel is not connected to the cpuModule while using a VGA monitor, setting the BIOS to use only a CRT (VGA) monitor will reduce power consumption.
- Fan Mode: Set the fan to auto mode so it is used only when the processor reaches high temperatures. This option will only effect the fan if it is connected to the switched fan power connector (CN15).
- Multi-Color LED: Can be disabled in the BIOS

Multi-Color LED

The CMX32M has a Multi-Color LED which can be enabled or disabled in the BIOS setup screen. The color of the LED indicates the status of the board, as shown in Table 57.

Table 57 LED Colors

Color	Description
Green	Normal Operation
Blue	SATA Activity
Red	cpuModule is in reset ¹
Yellow (Red + Green)	cpuModule is in Standby
White (R+G+B)	cpuModule is approaching thermal limit ²
Cyan (Blue + Green)	Ethernet Link at 100 Mbps or Bus Stacking Error
Magenta (Blue + Red)	Ethernet Link at 1000 Mbps
Blink	Ethernet Activity

^{1.} If power is applied to the cpuModule while jumper **JP5** is installed, the LED will be red. This does not indicate that the board is in reset

The LED can also be controlled manually by writing to I/O Port 984h, as shown in Table 58 and Table 59

Table 58 Multi-Color LED I/O Address 984h

D7	D6	D5	D4	D3	D2	D1	D0
Reserved	Reserved	Reserved	Reserved	Reserved	٨	Aulti-Color LE	D

The following table lists the color displayed and the value written.

Table 59 Manual LED Colors

I/O Port 984h Value	Color	
0x00	Automatic (see Table 57)	
0x08	Off (will reduce system power consumption.)	
0x09	Blue	
0x0A	Green	
0x0B	Cyan (Green + Blue)	
0x0C	Red	
0x0D	Magenta (Red + Blue)	
0x0E	Yellow (Red + Green)	
0x0F	White (Red + Green + Blue)	

^{2.} The LED will remain White until the system is shut down.

Reset Status Register

The cpuModule has several different signals on board which can cause a system reset. If a reset occurs, the reset status register can be used to see which reset or resets have been asserted on the cpuModule.

The user has the ability to see which resets have been asserted. Resets can also be cleared.

- Examine Resets: Reading from I/O port 0x987 will indicate if a reset has been asserted. If a 1 is read, the corresponding reset has been asserted. If a 0 is read from the bit, the reset has not been asserted
- **Clear Reset**: Each reset can be cleared by writing a 1 to the selected bit of I/O port 0x987.

Table 60 Reset Status I/O Address 987h - Read Access

Table 61 Reset Status I/O Address 987h - Write Access

Table 62 Reset Status Description and Priorities

I/O Address 457h	Reset Signal	Reset Priority ¹	Description
D7	Utility Reset	-	Utility connector push button reset ²
D6	CPU Core Power	5	CPU core powers supply
D5	System Power	4	Power supplies that are not for standby power
D4	SIO Power	3	Power monitored by the Super I/O.
D3	Main Power (+5V)	2	Main input power to cpuModule (+5V)
D2	Management Power	2	Power used in management mode.
D1	Memory Power	2	Power to onboard memory banks
D0	Standby Power	1	Standby power supplies

^{1.} When a reset is asserted, all resets with a higher reset priority will also be asserted. For example, if the standby power reset is asserted, all other resets will also be asserted.

^{2.} The BIOS allows the user to change the function of the utility connector's push button reset. Even if the push button is not configured as a reset, this bit will always read a 1(asserted) when the reset button has been pushed.

Features and Settings That Can Affect Boot Time

The boot time of a system is dependent upon numerous system settings as well as devices attached to a system. This section addresses some devices and settings that can increase or decrease a system's boot time.

Quick Boot

The BIOS contains a Quick Boot option that minimizes the boot time of the system. Quick Boot eliminates the exhaustive tests that are performed during Power On Self Test (POST) while maintaining the functionality of the board. By enabling the Quick Boot feature, your system can achieve 5-second boot times.

Add-On Cards With BIOS Extensions

Some add-on cards have an integrated BIOS extension. The most common examples are SCSI controllers and network cards with boot ROMs. During POST, the BIOS executes the card's extension code. This extension code is third-party code, which is beyond RTD's control. The BIOS extension will most likely increase the boot time. Exactly how much it increases boot time will depend on the particular card and firmware version.

VGA Controller

VGA controllers have a VGA BIOS that must be initialized during POST. It can take some time to initialize the VGA BIOS. Exactly how long will depend on the particular VGA controller and BIOS version.

Hard Drive Type

During Hard Drive initialization, each device must be probed. Some devices take longer to probe. 2.5-inch hard drives tend to take longer than 3.5-inch ones, because they spin at a lower RPM.

Monitor Type

Some monitors take a while to power on. Desktop flat panels are especially slow. This does not affect the actual boot time of the CPU. However, the CPU may boot before the monitor powers on.

NVRAM Updates

System configuration data is stored in the onboard NVRAM. When the system configuration changes, this information must be updated. If an update is necessary, it will happen at the end of POST (the BIOS will display an "Updating NVRAM..." message). The NVRAM update takes a few seconds and increases the boot time. Once the NVRAM is updated, boot times will return to normal.

NVRAM updates only happen when the system configuration changes. They do not happen spuriously. They are usually triggered by adding or removing a PCI device from a stack. Updates can also be triggered by altering the Plug-n-Play configuration of the BIOS.

Boot Device Order

The BIOS contains a list of devices to try booting from. If you wish to boot to a particular device (for example, a hard drive), make sure that it is first in the boot order. This will speed up boot times.

System Recovery

Reset Button Recovery

The CMX32M provides several methods for recovering from an incorrectly configured system. In order to enter the recovery mode, follow the steps below:

- 1. Remove power from the system, including standby power.
- 2. Press and hold the reset button attached to the Utility Connector.
- 3. Apply power to the system while continuing to hold the reset button.
- 4. Wait the amount of time shown in Table 63 for the desired recovery mode.
- 5. Release the reset button, allowing the system to boot.

Table 63 Reset Button Recovery Modes

Hold Time	Mode
0-4 seconds	No recovery mode. System will stay in reset while button is pressed.
4-8 seconds	Load Default BIOS Settings
8-12 seconds	Serial POST Code Output
> 12 seconds	BIOS Boot Block Recovery

Load Default BIOS Settings

Loading BIOS defaults allows recovery from an incorrectly configured display device, incorrect boot options, and many other incorrect settings. It is also a good starting point when making BIOS changes. After restoring defaults, the BIOS settings should be reviewed and modified as needed.

The default BIOS can be restored either by using Reset Button Recovery, or the "Load Defaults" option in the BIOS.

Serial Power On Self Test POST Code Output

The POST Codes represents a series of events that take place in a system during the Power On Self Test. If the POST fails the system will not boot as expected. Knowing which POST code the failure occurred may help system debug.

This recovery mode configures serial port connector **CN7** as dual RS-232, and sends the POST codes on the second port (i.e. pin 7 is the transmit pin). The port settings are 115kbps, 8 bits, no parity, one stop bit. When using this recovery mode, the POST codes can be logged on another computer running terminal software. Contact RTD technical support for more details.

BIOS Boot Block Recovery

This recovery mode allows you to re-load a BIOS that has been corrupted. The BIOS can be loaded from a file on a USB key or other removable drive. In order for this to work, the boot block of the BIOS must still be intact. Contact RTD tech support for more details.

Appendix A Hardware Reference

This appendix provides information on CMX32M cpuModule hardware, including:

Jumper Settings and Locations — page 90

Onboard PCI/PCIe Devices — page 92

Physical Dimensions — page 93

Jumper Settings and Locations

Many cpuModule options are configured by positioning jumpers. Jumpers are labeled on the board as **JP** followed by a number.

Some jumpers have three pins, allowing three settings:

- Pins 1 and 2 connected (indicated as "1-2")
- Pins 2 and 3 connected (indicated as "2-3")
- No pins connected

Some jumpers have two pins, allowing two settings:

- Pins 1 and 2 connected (indicated as "closed")
- Pins 1 and 2 unconnected (indicated as "open")

Figure 9 shows the jumper locations that are used to configure the cpuModule. Table 64 lists the jumpers and their settings.

Figure 9 CMX32M Jumper Locations (top side)

Table 64 CMX32M Jumpers

Jumper	Pins	Function	Default
JP5	2	Reserved	open
JP6	2	Used to disable the Bus Stacking Error detection. See PCle/104 Type 1 Compatibility on page 50and PCle/104 Type 2 Compatibility on page 45. pins 1-2: Disable Bus Stacking Error detection open: Enable Bus Stacking Error detection (normal operation)	open
JP9	3	Select power for flat panel backlight (bottom side) pins 1-2: +12 V pins 2-3: +5 V	pins 2–3

Onboard PCI/PCIe Devices

The CMX32M cpuModule has several onboard PCI/PCIe devices, all of which are listed in the table below. This table shows a typical configuration, and the actual devices may change based on BIOS settings.

Table 65 Onboard PCI Devices

Device ID	Vendor ID	Description
2A40	8086	Host Bridge
2A41	8086	PCI-to-PCI Bridge (PCIe x16)
2A42	8086	Primary Display Controller
2A43	8086	Secondary Display Controller
10F5	8086	Ethernet Controller (CN20)
2937	8086	USB UHCI #4
2938	8086	USB UHCI #5
2939	8086	USB UHCI #6
293C	8086	USB EHCI #2
293E	8086	HD Audio Controller
2940	8086	PCI-to-PCI Bridge (PCIe/104 x1 #1)
2942	8086	PCI-to-PCI Bridge (PCIe/104 x1 #2)
2944	8086	PCI-to-PCI Bridge (PCIe/104 x1 #3)
2946	8086	PCI-to-PCI Bridge (PCIe/104 x1 #4)
2948	8086	PCI-to-PCI Bridge to Shared Links
2934	8086	USB UHCI #1
2935	8086	USB UHCI #2
2936	8086	USB UHCI #3
293A	8086	USB EHCI #1
2917	8086	LPC Bridge
2928	8086	SATA Controller
2930	8086	SMBus Controller
292D	8086	SATA Controller
8509	10B5	PCI-to-PCI Bridge (Shared Link x1s)
10D3	8086	Ethernet Controller (CN30)

Physical Dimensions

Figure 10 shows the mechanical dimensions of the CMX32M cpuModule.

CMX32M Physical Dimensions (±0.005 inches)

Board Spacing

In order to facilitate larger heatsink solutions, the CMX32M is designed to use a 22mm standoff between it and the board above it. The PCIe/104 connector on the top is specially designed to accommodate the 22mm board spacing when mated with a standard connector.

When attaching a board below the CMX32M, the standard 0.600" board spacing is used.

Appendix B Troubleshooting

Many problems you may encounter with operation of your CMX32M cpuModule are due to common errors. This appendix includes the following sections to help you get your system operating properly.

Common Problems and Solutions — page 96

Troubleshooting a PC/104 System — page 97

How to Obtain Technical Support — page 98

BDM-610000075 Rev D Appendix B: Troubleshooting 95

Common Problems and Solutions

Table 66 lists some of the common problems you may encounter while using your CMX32M cpuModule, and suggests possible solutions.

If you are having problems with your cpuModule, review this table before contacting RTD Technical Support.

Table 66 Troubleshooting

Problem	Cause	Solution
cpuModule	no power or wrong polarity	• check for correct power on the PC/104-Plus (PCI) bus connector
"will not boot"	incorrect Setup	reboot and press Delete to run Setup
	defective or misconnected device on bus	check for misaligned bus connectorsremove other cards from stack
	incorrect PCIe/104 cards installed (LED is Cyan)	 See PCle/104 Type 1 Compatibility on page 50and PCle/104 Type 2 Compatibility on page 45.
	cable connected backwards	verify all cables are connected correctly
cpuModule keeps rebooting	problem with power supply	• check for correct power on the PC/104-Plus (PCI) bus connector
	reset switch is on	 check that the reset button is not pushed in
	watchdog timer is not being serviced quickly enough	 verify that the watchdog timer is being refreshed before it times out
cpuModule will not boot from particular drive or	device not bootable	 use sys command on drive or reformat the device using the /s switch
device	device not formatted	• format drive using /s switch
	power not connected to boot drive	connect power cable to floppy or hard drive
erratic operation	excessive bus loading	reduce number of modules in stack
		 remove termination components from bus signals
		remove any power supply bus terminations
	power supply noise	examine power supply output with oscilloscope
		glitches below 4.75 VDC will trigger a resetadd bypass caps
	power supply limiting	 examine power supply output with oscilloscope check for voltage drop below 4.75 VDC when hard drive or floppy drive starts add bypass caps
	insufficient cabling through	increase wire gauge to connector
	power connector	power through bus connectors
	temperature too high	 add fan, processor heatsink, or other cooling device(s) See Thermal Management on page 81
	memory address conflict	check for two hardware devices (e.g. Ethernet, SSD, Arcnet, PCMCIA) trying to use the same memory address
		 check for two software devices (e.g. EMM386, PCMCIA drivers, etc.) trying to use the same memory addresses
		 check for hardware and software devices trying to use the same memory address
		 check for an address range shadowed (see Advanced Setup screen while in use by another hardware or software device
	I/O address conflict	 check for another module trying to use I/O addresses reserved fo the cpuModule between 010h and 01Fh
		 check for two modules (e.g. dataModules, PCMCIA cards,
		Ethernet) trying to use the same I/O addresses

Table 66 Troubleshooting (cont'd)

Problem	Cause	Solution
keyboard does not work	keyboard interface damaged by misconnection	check if keyboard LEDs light
	wrong keyboard type	 verify keyboard is an "AT" type or switch to "AT" mode
floppy drive light always on	cable misconnected	check for floppy drive cable connected backwards
two hard drives will not work, but one does	both drives configured for master	 set one drive for master and the other for slave operation (consult drive documentation)
floppy does not work	"data error" due to drive upside down	orient drive properly (upright or on side)
will not boot when video card is removed	illegal calls to video controller	 look for software trying to access nonexistent video controller for video, sound, or beep commands
abnormal video	flat panel is enabled	disable the flat panel in the BIOS
can only use 640 x 480	flat panel is enabled	disable the flat panel in the BIOS
resolution in Windows	video drivers not installed	install the video drivers
will not boot from PCMCIA hard drive	booting from PCMCIA is not supported	 boot from SSD, use autoexec.bat to load PCMCIA drivers, run application from PCMCIA card
COM port will not work in RS-422 or RS-485 modes	not configured for RS-422/485	correctly configure serial port in Setup program
COM port will not transmit in RS-422 or RS-485 mode	not enabling transmitters	 control RTS* bit of Modem Control Register to enable transmitters; see Serial Port descriptions
date and time not saved when power is off	no backup battery	connect a backup battery to the multi-function connector

Troubleshooting a PC/104 System

If you have reviewed the preceding table and still cannot isolate the problem with your CMX32M cpuModule, please try the following troubleshooting steps. Even if the resulting information does not help you find the problem, it will be very helpful if you need to contact technical support.

- **Simplify the system**. Remove items one at a time and see if one particular item seems to cause the problem.
- 2. **Swap components**. Try replacing items in the system one-at-a-time with similar items.

How to Obtain Technical Support

If after following the above steps, you still cannot resolve a problem with your CMX32M cpuModule, please gather the following information:

- cpuModule model, BIOS version, and serial number
- · List of all boards in system
- List of settings from cpuModule Setup program
- Printout of autoexec.bat and config.sys files (if applicable)
- Description of problem
- Circumstances under which problem occurs

Then contact RTD Technical Support:

Phone: 814-234-8087

Fax: 814-234-5218

E-mail: techsupport@rtd.com

Appendix C IDAN™ Dimensions and Pinout

cpuModules, like all other RTD PC/PCI-104 modules, can be packaged in Intelligent Data Acquisition Node (IDAN) frames, which are milled aluminum frames with integrated heat sinks and heat pipes for fanless operation. RTD modules installed in IDAN frames are called building blocks. IDAN building blocks maintain the simple but rugged stacking concept of PC/104 and PC/104-Plus. Each RTD module is mounted in its own IDAN frame and all I/O connections are brought to the walls of each frame using standard PC connectors. No connections are made from module to module internal to the system other than through the PC/104 bus, enabling quick interchangeability and system expansion without hours of rewiring and board redesign.

The CMX32M cpuModule can also be purchased as part of a custom-built RTD HiDAN™ or HiDANplus™ High Reliability Intelligent Data Acquisition Node. This appendix provides the dimensions and pinouts of the CMX32M installed in an IDAN frame. Contact RTD for more information on high reliability IDAN, HiDAN, and HiDANplus PC/PCI-104 systems.

IDAN—Adhering to the PC/104 stacking concept, IDAN allows you to build a customized system with any combination of RTD modules.

IDAN Heat Pipes—Advanced heat pipe technology maximizes heat transfer to heat sink fins.

HiDANplus—Integrating the modularity of IDAN with the ruggedization of HiDAN, HiDANplus enables connectors on all system frames, with signals running between frames through a dedicated stack-through raceway.

IDAN Dimensions and Connectors

Figure 11 IDAN-CMX32M Connectors^{1,2}

^{1.} Heatsink fins (not shown in Figure 11) extend 0.75 inches from the sides of the IDAN frame.

^{2.} Use 40mm for this frame when calculating bolt lengths.

External I/O Connections

Table 67 PS/2 Mouse — 6-Pin mini-DIN Connector (female)

IDAN Pin #	Signal	Function
1	MDAT	Mouse Data
2	Reserved	_
3	GND	Ground
4	+5 V	+5 Volts
5	MCLK	Mouse Clock
6	Reserved	_

Table 68 Keyboard — 6-Pin mini-DIN Connector (female)

IDAN Pin #	Signal	Function
1	KDAT	Keyboard Data
2	Reserved	_
3	GND	Ground
4	+5 V	+5 V
5	KCLK	Keyboard Clock
6	Reserved	_

Table 69 COM1/COM2 (RS-232) — 9-Pin D Connector (male)

IDAN Pin #	Signal	Function	Mode
1	DCD	Data Carrier Detect	Input
2	RXD	Receive Data	Input
3	TXD	Transmit Data	Output
4	DTR	Data Terminal Ready	Output
5	GND	Ground	_
6	DSR	Data Set Ready	Input
7	RTS	Request To Send	Output
8	CTS	Clear To Send	Input
9	RI	Ring Indicator	Input

Table 70 COM1/COM2 (RS-422/485) — 9-Pin D Connector (male)

IDAN Pin #	Signal	Function	Mode
1	Reserved	_	_
2	RXD-	Receive Data –	Input
3	TXD-	Transmit Data –	Output
4	Reserved	_	_
5	GND	Ground	_
6	Reserved	_	_
7	TXD+	Transmit Data +	Output
8	RXD+	Receive Data +	Input
9	Reserved	_	_

Table 71 aDIO — 26-Pin D Connector (female)

IDAN Pin #	aDIO Port	CPU Pin #
1	P0-0	1
2	P0-1	2
3	P0-2	3
4	P0-3	4
5	P0-4	5
6	P0-5	6
7	P0-6	7
8	P0-7	8
9	Strobe 0	9
10	Strobe 1	10
11	P1-0	11
12	P1-1	12
13	P1-2	13
14	P1-3	14
15	GND	15
16	+5V	16
17	reserved	-
18	reserved	-
19	GND	-
20	GND	-
21	GND	-
22	GND	-
23	GND	-
24	reserved	-
25	reserved	-
26	reserved	-

Table 72 aAIO — 9-Pin D Connector (male)

IDAN Pin #	aAIO Port	CPU Pin #
1	Channel 1	1
2	Channel 3	3
3	Channel 5	5
4	Channel 7	7
5	GND	9
6	Channel 2	2
7	Channel 4	4
8	Channel 6	6
9	Channel 8	8

Table 73 Panel — 20-Pin mini D Connector (female)

IDAN Pin #	Signal Name	CPU Pin #
1	LVDS_YAP0	1
2	LVDS_DDCPCLK	3
3	LVDS_YAP1	5
4	LVDS_DDCPDATA	7
5	LVDS_YAP2	9
6	GND	11
7	LVDS_CLKAP	13
8	LVDS_YAP3	15
9	GND	17
10	FP_BKLT	19
11	LVDS_YAM0	2
12	GND	4
13	LVDS_YAM1	6
14	GND	8
15	LVDS_YAM2	10
16	GND	12
17	LVDS_CLKAM	14
18	LVDS_YAM3	16
19	FP_VCC	18
20	LVDS_BKLTCTL	20

Table 74 SVGA — 15-Pin High Density D Connector (female)

IDAN Pin #	Signal	Function	CPU Pin #
1	Red	Red Analog Output	4
2	Green	Green Analog Output	6
3	Blue	Blue Analog Output	8
4	Reserved	Reserved	_
5	GND	Ground	9
6	GND	Ground	9
7	GND	Ground	9
8	GND	Ground	10
9	+5 V	+ 5 Volts	7
10	GND	Ground	10
11	Reserved	Reserved	_
12	DDC Data	Monitor data	5
13	HSYNC	Horizontal Sync	2
14	VSYNC	Vertical Sync	1
15	DDC CLK	Monitor Clock	3

Table 75 USB — 9-Pin D Connector (male)

IDAN Pin #	Signal	Function	Mode	
1	VCC1	VCC1 +5 V to USB1 output		
2	Data USB1-	USB1- USB1 Data- input/outpu		
3	Data USB1+	USB1 Data+	input/output	
4	GND	Ground	_	
5	GND Ground		_	
6	VCC2	+5 V to USB2	output	
7	Data USB2-	USB2 Data-	input/output	
8	Data USB2+	SB2+ USB2 Data+ input/outpu		
9	GND	Ground	nd —	

Table 76 Ethernet — 9-Pin D Connector (female)

IDAN Pin #	RJ-45 Pin	Signal	CPU Pin #
1	3	B+(RX+)	1
2	4	C+	3
3	1	A+(TX+)	5
4	7	D+	7
5	-	Ground	9
6	6	B-(RX-)	2
7	5	C-	4
8	2	A-(TX-)	6
9	8	D-	8

Table 77 Audio — 15-Pin D Connector (female)

IDAN Pin #	Signal	Function	In/Out	CPU Pin#
1	MIC_L	Left Microphone Input.	in	1
2	MIC_R	Right Microphone Input.	in	2
3	rsvd	Reserved		3
4	GND	Signal Ground	GND	4
5	FRONT_L	Front/Headphone Left Output	out	5
6	FRONT_R	Front/Headphone Right Output	out	6
7	rsvd	Reserved		7
8	rsvd	Reserved.		8
9	REAR_L	Rear Left Line Output	out	9
10	REAR_R	Rear Right Line Output	out	10
11	CENTER	Center Line Output	out	11
12	SUB	Sub woofer Output	out	12
13	SP_OUT	S/PDIF (Digital) output	out	13
14	GND	Signal Ground	GND	14
15	GND	Signal Ground	GND	16

Appendix D Additional Information

Application Notes

RTD offers many application notes that provide assistance with the unique feature set of the CMX32M cpuModule. For the latest application notes, refer to the RTD website.

Drivers and Example Programs

To obtain the latest versions of drivers and example programs for this cpuModule, refer to the RTD website.

Interrupt Programming

For more information about interrupts and writing interrupt service routines, refer to the following book:

Interrupt-Driven PC System Design by Joseph McGivern ISBN: 0929392507

Serial Port Programming

For more information about programming serial port UARTs, consult the following book:

Serial Communications Developer's Guide by Mark Nielson ISBN: 0764545701

PC/104Specifications

A copy of the latest PC/104specifications can be found on the webpage for the PC/104 Embedded Consortium:

http://www.pc104.org

Appendix E Limited Warranty

RTD Embedded Technologies, Inc. warrants the hardware and software products it manufactures and produces to be free from defects in materials and workmanship for one year following the date of shipment from RTD Embedded Technologies, Inc. This warranty is limited to the original purchaser of product and is not transferable.

During the one year warranty period, RTD Embedded Technologies will repair or replace, at its option, any defective products or parts at no additional charge, provided that the product is returned, shipping prepaid, to RTD Embedded Technologies. All replaced parts and products become the property of RTD Embedded Technologies. Before returning any product for repair, customers are required to contact the factory for a Return Material Authorization number.

This limited warranty does not extend to any products which have been damaged as a result of accident, misuse, abuse (such as: use of incorrect input voltages, improper or insufficient ventilation, failure to follow the operating instructions that are provided by RTD Embedded Technologies, "acts of god" or other contingencies beyond the control of RTD Embedded Technologies), or as a result of service or modification by anyone other than RTD Embedded Technologies. Except as expressly set forth above, no other warranties are expressed or implied, including, but not limited to, any implied warranties of merchantability and fitness for a particular purpose, and RTD Embedded Technologies expressly disclaims all warranties not stated herein. All implied warranties, including implied warranties for merchantability and fitness for a particular purpose, are limited to the duration of this warranty. In the event the product is not free from defects as warranted above, the purchaser's sole remedy shall be repair or replacement as provided above. Under no circumstances will RTD Embedded Technologies be liable to the purchaser or any user for any damages, including any incidental or consequential damages, expenses, lost profits, lost savings, or other damages arising out of the use or inability to use the product.

Some states do not allow the exclusion or limitation of incidental or consequential damages for consumer products, and some states do not allow limitations on how long an implied warranty lasts, so the above limitations or exclusions may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

RTD Embedded Technologies, Inc. 103 Innovation Blvd. State College PA 16803-0906 USA Website: www.rtd.com

BDM-610000075 Rev D Appendix E: Limited Warranty 11