

RAPPORT DE STAGE

Fracturation de floes de glace par percussion dans un modèle granulaire

ÉtudiantRoussel Desmond Nzoyem

Superviseur Stéphane Labbé

Enseignant référent Christophe PRUD'HOMME

Stage effectué au Laboratoire Jacques-Louis Lions; du 03 février 2021, au 31 juillet 2021; pour l'obtention du master 2 CSMI.

Année académique 2020 - 2021

Remerciements

Table des matières

l	Travaux et apports					
	1.1	Les missions du poste				
	1.2	Présentation des résultats obtenus				
		1.2.1 Modélisation générale du contact entre deux floes de glace				
		1.2.2 Modélisation et simulation 1D				
	1.3	Les apports du stage				

Chapitre 1

Travaux et apports

1.1 Les missions du poste

- L'état de l'art de la partie précédente fait partie des missions.
- Modélisation
- Simulation

Nous souhaitons étudier le comportement mécanique d'un floe après collision avec un autre floe. Les étapes de travail envisagées sont les suivantes :

- 1. Ecire les systèmes differentiels pour les deux floes juste après le choc : pour l'instant on peut considérer que l'un des floes est immobile (celà revient au même si l'on exprimes les vitesses dans un repère lié à ce floe).
- 2. On exprime l'EDO vérifiée par les solutions, c'est à dire q pour le premier floes, et p pour le second.
- 3. On pourra ensuite simuler ces EDP limites et trouver les valeurs de *p* et *q*. Autrement dit, on connait la position de chaque point du réseau au temps final.
- 4. Si on connait *p* et/ou *q*, on connait la condition de Dirichlet sur le floe concerné, et on peut ainsi exprimer le déplacement et la possible fracture du floe.

1.2 Présentation des résultats obtenus

1.2.1 Modélisation générale du contact entre deux floes de glace

Les floes de glace Ω_k et Ω_l sont modélisés par des systèmes masse-ressort (à grande raideur). Pour l'instant, nous considérons une moélisation simplifiée qui assimile un floe à un système de (trois) masses reliés par des ressorts (de constante de raideur k), et par des dispositifs visqueux de constante μ . Nous désignerons par n+1 le nombre total de noeuds du floe Ω_k , chaque noeud ayant pour masse m. De facon similaire, on définit les constantes k', μ' , n'+1, m'+1 pour le floe Ω_l . Les positions des noeds de Ω_k seront noté $(q_i)_{0 \le i \le n'}$ (voir figure 1.1).

On définit la matrice de contact C...(voir these Dimitri), et L_{0j} .. et u_{0j} ..

Comme présenté dans les travaux [Bal20, p.186], le système différentiel qui modélise la percussion s'écrit comme le couplage de deux sous-systèmes. Le premier, dit système intérieur (SI), est à évolution rapide et modélise la propagation des ondes élastiques dans le système masse-ressort. Ici, nous dérivons facilement et réutilisont le SI comme présenté par Balasoiu. Le second, dit système extérieur (SE), est à évolution lente et modélise la pénétration de l'objet solide dans le système masse-ressorts. Pour dériver le SE sur le floe Ω_k , nous

FIGURE 1.1 – Contact entre deux floes aux points $p_0 = q_0$.

écrivons l'équation de Newton-Euler linéaire 1 au point de contact q_0 :

$$m\ddot{\mathbf{q}}_0 = \mathbf{F}_0 + \mathbf{F}_0^c, \tag{1.1}$$

où

$$\mathbf{F}_{0} = \sum_{j=0}^{n} C_{0j} \left[\underbrace{k \left(\|\mathbf{q}_{j} - \mathbf{q}_{0}\| - L_{0j} \right) \mathbf{u}_{0j}}_{\text{Force de rappel}} - \underbrace{\mu \left\langle \dot{\mathbf{q}}_{j} - \dot{\mathbf{q}}_{0}, \mathbf{u}_{0j} \right\rangle \mathbf{u}_{0j}}_{\text{Force de dissipation}} \right], \tag{1.2}$$

représente la somme des forces de reaction et de disssipation exercées par le ressort et le dispositif visqueux sur le noeud q_0 ; et $\mathbf{F}_0^c(t)$ la force de contact durant la collison entre les deux particules. En supposnat qu'il existe un repère de contact $\mathcal{R}^c = \{q_0, \mathbf{n}, \mathbf{t}\}$ associé au floe Ω_k (voir figure 1.1), on peut écrire, pour $(\lambda, \beta) \in \mathbb{R}^2$:

$$\mathbf{F}_0^c = \lambda \mathbf{n} + \beta \mathbf{t} \,. \tag{1.3}$$

Le système intérieur (SE) s'obtient facilement en combinant les équations équations (1.1) à (1.3). Le système intérieur (SI) s'obtient lui (pour les autres noeuds du réseau) en y supprimant la force de contact. On obtient au final :

$$\begin{cases}
 m\ddot{\mathbf{q}}_0 = \mathbf{F}_0 + \mathbf{F}_0^c, & \text{(SE)} \\
 m\ddot{\mathbf{q}}_i = \mathbf{F}_i, & \forall 1 \le i \le n. & \text{(SI)}
\end{cases}$$

En ce qui concerne le floe Ω_l , nous procédons de facons similaire et appliqons la 3ème loi de Newton (action-réaction) pour obtenir le système :

$$\begin{cases} m'\ddot{\mathbf{p}}_{0} = \mathbf{F}_{0}^{'} - \mathbf{F}_{0}^{c}, & \text{(SE)} \\ m'\ddot{\mathbf{p}}_{i} = \mathbf{F}_{i}^{'}, & \forall 1 \leq i \leq n', & \text{(SI)} \end{cases}$$

où $(\mathbf{F}_{i}^{'})_{0 \le i \le n'}$ sont définis de facon similaire à \mathbf{F}_{0} (voir équation (1.2)).

Ensuite, il nous faut introduire des conditions portant sur la conservation de l'énergie, et la condition de non-interpénétration de Signorini...

^{1.} La rotation du point matériel q_0 n'est pas prise en compte ici, d'où l'abscence de l'équation de Newton-Euler angulaire.

1.2.2 Modélisation et simulation 1D

1.2.2.1 Collision parfaitement inélastique avec un floe immobile à l'instant initial

Nous effectuons ici une modélisation 1D de notre problème. Un floe est modélisé par un système masseressort de deux nœuds. Le floe 1 est immobilisé face au mur, et le floe 2 approche à la vitesse \mathbf{v}_0 . On identifie les nœuds q_0 et p_0 de la section précédente à leur masses respectives m et m' (voir figure 1.2).

Figure 1.2 – Contact 1D parfaitement inélastique entre deux floes. Le floe percuté étant immobile et coincé au mur avant le choc.

On suppose que durant la dynamique non régulière, les masses m et m' en contact forment une seule masse m+m' dont le déplacement est donné par la variable $x_1(t)$. Le déplacement de la masse m' à l'autre bout du floe percuteur est nommé $x_2(t)$. La masse m qui est fixée au mur ne sera pas étudiée ici. Nous faisons à présent le bilan des forces qui s'exercent ces deux masses.

FIGURE 1.3 – Bilan des forces appliquée sur les noeuds du système. Les valeurs indiquées sont les intensitées (positives) des forces durant une phase imaginée de compression des ressorts ($\mathbf{v}_0 < 0$ et donc $x_1 < 0$). Pour obtenir l'intesité de la force de rappel du ressort k', on peut imaginer x_1 imobile (on aura $x_2 < 0$, d'où $x_1 - x_2 > 0$).

En orientant convenablement le système (voir figure 1.2), on applique la loi de Newton-Euler linéaire pour obtenir le système suivant et ses conditions initiales ²:

$$\begin{cases}
(m+m')\ddot{x}_1 = -kx_1 - \mu\dot{x}_1 + k'(x_2 - x_1) + \mu'(\dot{x}_2 - \dot{x}_1) \\
m'\ddot{x}_2 = -k'(x_2 - x_1) - \mu'(\dot{x}_2 - \dot{x}_1)
\end{cases}$$
(1.4)

À l'instant initial t_0 , on a le système suivant

$$\begin{cases} (x_1(t_0), x_2(t_0)) = (0, 0) \\ (\dot{x}_1(t_0), \dot{x}_2(t_0)) = (0, -v_0) \end{cases}$$
 (1.5)

En posant $X = (x_1, x_2)^T \in \mathbb{R}^2$, l' équation (1.5) devient

$$\underbrace{\begin{pmatrix} m+m' & 0 \\ 0 & m' \end{pmatrix}}_{A} \begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{pmatrix} = \underbrace{\begin{pmatrix} -\mu-\mu' & \mu' \\ \mu' & -\mu' \end{pmatrix}}_{B} \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} + \underbrace{\begin{pmatrix} -k-k' & k' \\ k' & -k' \end{pmatrix}}_{C} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}. \tag{1.6}$$

^{2.} J'ai des doutes sur cette condition initiale. La vitesse initiale de x_1 est-elle vraiment nulle?

Puisque $m, m' \neq 0$, la matrice A est inversible et on obtient au final le problème de Cauchy suivant :

$$\begin{cases}
\ddot{X}(t) = B'\dot{X}(t) + C'X(t), \\
(X(t_0), \dot{X}(t_0)) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -v_0 \end{pmatrix} \end{pmatrix},
\end{cases}$$
(1.7)

avec $B' = A^{-1}B$ et $C' = A^{-1}C$.

Il s'agit la d'un système d'EDO du deuxième ordre à coefficients constants. Transformons le en un système du premier ordre pour une résolution plus aisée. On pose donc $Y = (X, \dot{X})^T = (x_1, x_2, \dot{x}_1, \dot{x}_2)^T \in \mathbb{R}^4$ et le système 1.7 devient

$$\begin{cases} \dot{Y}(t) = EY(t) \\ Y_0 = Y(t_0) = (0, 0, 0, -\nu_0)^T \end{cases}$$
 (1.8)

avec la matrice par blocs

$$E = \begin{pmatrix} 0 & I_2 \\ C' & B' \end{pmatrix},$$

où I_2 désigne la matrice identité de $\mathbb{R}^{2\times 2}$.

Avec $t_0 = 0$, la solution de ce système d'EDO du premier ordre à coefficients constants est unique et est donnée par

$$Y(t) = \exp(tE)Y_0 \tag{1.9}$$

La résolution numérique du système passe par le calcul de l'exponentielle de la matrice $E \in \mathbb{R}^4$ (VOIR figure ci-bas et NOTEBBOK) ...

FIGURE 1.4 – Simulation de la percussion 1D entre deux floes avec m=1, m'=1, k=16, k'=5, $\mu=6$, $\mu'=2$, $v_0=-1.0$, $t_{max}=32$. On observe effectivement le ralentissement du système et une convergence vers l'état d'équilibre $Y_{eq}=(0,0,0,0)$.

Pour certaines valeurs (specifiquement de μ et μ'), on constate que le système converge vers son état d'équilibre attendu $Y_{eq} = (0, 0, 0, 0)$. Il nous reste dans cette section :

- 1. Calculer analytiquement et numériquement tous les état d'équilibres $Y_{eq} \in \ker(E)$; distinguer les états stables des autres.
- 2. Calculer analytiquement l'exponentielle de la matrice *E*, et donner l'expression de la solution; déduire la condition sur les parametres pour que le système converge vers l'état d'équilibre voulu.

1.2.2.2 Collision parfaitement inélastique sans présence du mur

Contrairement au cas étudié dans la section précédente, le mur est supprimé dans cette section. On obtient donc une troisième varaible x_3 décrivant le comportement du noed qui était rattaché au mur. La schéma régissant ce système est donnée à la figure 1.5. Le bilan des forces appliquées aux noeuds est présenté à la figure 1.6.

FIGURE 1.5 – Contact 1D parfaitement inélastique entre deux floes. Le floe percuté étant immobile mais non coincé au mur avant le choc. On représnte également les variables x_1 , x_2 , et x_3 décrivant les movements de chaque noeud.

Figure 1.6 – Bilan des forces appliquée sur les noeuds du système. On procède de facon similaire à figure 1.3 pour obtenir les sens et les intensités de ces forces.

Comme précédement, nous appliqons les lois de Newton pour obtenir :

$$\begin{cases} m\ddot{x}_{1} = -k(x_{1} - x_{2}) - \mu(\dot{x}_{1} - \dot{x}_{2}), \\ (m + m')\ddot{x}_{2} = k(x_{1} - x_{2}) + \mu(\dot{x}_{1} - \dot{x}_{2}) - k'(x_{2} - x_{3}) - \mu'(\dot{x}_{2} - \dot{x}_{3}), \\ m'\ddot{x}_{3} = k'(x_{2} - x_{3}) + \mu'(\dot{x}_{2} - \dot{x}_{3}). \end{cases}$$
(1.10)

Sous forme matricielle, on a

$$\underbrace{\begin{pmatrix} m & 0 & 0 \\ 0 & m+m' & 0 \\ 0 & 0 & m' \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} \ddot{x}_{1} \\ \ddot{x}_{2} \\ \ddot{x}_{3} \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} -k & k & 0 \\ k & -k-k' & k \\ 0 & k' & -k' \end{pmatrix}}_{B} \underbrace{\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}}_{A} + \underbrace{\begin{pmatrix} -\mu & \mu & 0 \\ \mu & -\mu-\mu' & \mu' \\ 0 & \mu' & -\mu' \end{pmatrix}}_{C} \underbrace{\begin{pmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{pmatrix}}_{C}. \tag{1.11}$$

Puisque $m, m' \neq 0$, la matrice A est inversible. En posant $X = (x_1, x_2, x_3)^T \in \mathbb{R}^3$, le système d'EDO revient à l'équation (1.12) suivante :

$$\ddot{X}(t) = B'X(t) + C'\dot{X}(t),$$
 (1.12)

où $B' = A^{-1}B$ et $C' = A^{-1}C$. On pose ensuite $Y = (X, \dot{X})^T \in \mathbb{R}^6$ et le système équation (1.12) devient

$$\dot{Y}(t) = EY(t) \tag{1.13}$$

avec

$$E = \begin{pmatrix} 0 & I_3 \\ B' & C' \end{pmatrix}.$$

•

Remarquons qu'en enlevant le mur à gauche du domaine (voir figure 1.2), le système est devenu isolé. Nous pouvons donc appliquer la conservation de la quantité de mouvement pour identifier la vitesse de l'ensemble m+m' après collision et fixation de la masse m' (à vitesse \mathbf{v}_0) sur la masse m (de vitesse nulle). Pour simplifier les calculs, nous considérons les floes comme des solides rigides. La vitesse de l'ensemble juste après collision est notée v_f , et la quantité de mouvement avant et après choc sont notées $P_{\rm avant}$ et $P_{\rm après}$. On a :

$$P_{\text{avant}} = P_{\text{après}}$$

$$\Rightarrow 2m' \mathbf{v}_0 = (2m + 2m') \mathbf{v}_f$$

$$\Rightarrow \mathbf{v}_f = \frac{m'}{m + m'} \mathbf{v}_0$$

On introduit ces conditions initiales dans l'équation (1.13) pour obtenir le système de Cauchy suivant :

$$\begin{cases} \dot{Y}(t) = EY(t), \\ Y(t_0) = Y_0 = -v_f(0, 0, 0, 1, 1, 1). \end{cases}$$
 (1.14)

1.3 Les apports du stage

Bibliographie

[Bal20] Dimitri Balasoiu. « Modélisation et simulation du comportement mécanique de floes de glace ». Theses. Université Grenoble Alpes [2020-....], oct. 2020. URL: https://tel.archives-ouvertes.fr/tel-03116132.