Project Title:

Basketball Analytics – Integration and Big Data Analysis of Basketball Data

Project Objective:

The goal of this project is to develop an application that integrates heterogeneous basketball data and performs Big Data analytics using PySpark. The project will create a global schema that unifies data on players, teams, games, play-by-play events, additional game statistics, and draft information. This unified view will enable advanced querying and analysis, such as evaluating player performance, comparing team statistics, and predicting game outcomes.

Datasets and Sources:

The project is based on a collection of CSV files containing detailed basketball information:

Link to the dataset: https://www.kaggle.com/datasets/wyattowalsh/basketball/data

• Players:

- player.csv
- inactive_players.csv
- common_player_info.csv

Teams:

- team.csv
- team details.csv
- team_history.csv
- team_info_common.csv

Games:

- game.csv
- game_info.csv
- game_summary.csv

Play-by-Play Events:

play-by-play.csv

Additional Data:

- line_score.csv
- officials.csv
- other_stats.csv
- o draft_combine_stats.csv
- draft_history.csv

Integration Method – Global Schema using GAV:

I will adopt the **Global-As-View (GAV)** approach, where the global schema is defined as a set of views directly mapped onto the local data sources. The process involves:

1. Analyzing the Local Schemas:

Examining each CSV file to understand its structure, identifying key attributes (e.g., player_id, team_id, game_id), and understanding the domain.

2. Identifying Common Entities and Attributes:

Grouping related data to define global entities such as GLOBAL_PLAYER, GLOBAL_TEAM, GLOBAL_GAME, GLOBAL_PLAY_BY_PLAY, etc.

3. Mapping and Relationships:

For each global entity, defining how its attributes map to the corresponding columns in the local sources. For instance, GLOBAL_PLAYER will combine data from the player files using player_id as the key.

4. Creating a Conceptual Model:

Developing an ER diagram that shows the global entities and the relationships between them.

Project Phases:

1. Global Schema Design:

- Create a detailed ER diagram to unify all the tables and highlight the common keys and relationships.
- Define the global views (using the GAV approach) that map the local data into entities like GLOBAL_PLAYER, GLOBAL_TEAM, GLOBAL_GAME, GLOBAL_PLAY_BY_PLAY, GLOBAL_LINE_SCORE, GLOBAL_OFFICIALS, GLOBAL_OTHER_STATS, GLOBAL_DRAFT_COMBINE, and GLOBAL_DRAFT_HISTORY.

2. ETL Pipeline Implementation:

- Extract data from the CSV files and transform it according to the global schema mappings.
- Use tools such as Pentaho or Python scripts to build the ETL process.

3. Big Data Analytics with PySpark:

- Load the integrated dataset into PySpark for advanced querying and analysis.
- Develop models for player performance analysis and game outcome prediction using simple machine learning algorithms.

4. Application and Dashboard Development:

 Build a small application and interactive dashboard to display the integrated data and analysis results.

