1

Assignment 18

Sri Harsha CH

Abstract—This document explains the representation of transformations by matrix.

Download all python codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment18 /code

and latex-tikz codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment18

1 Problem

Let **F** be a subfield of the field of complex numbers and let **V** be any vector space over **F**. Suppose that f and g are linear functionals on **V** such that the function h defined by $h(\alpha) = f(\alpha)g(\alpha)$ is also a linear functional on **V**. Prove that either f = 0 or g = 0.

2 EXPLANATION

Refer Table 0.

Given	Derivation	
f , g , h are linear functionals of \mathbf{V}	By contradiction, let us assume $f \neq 0$ and $g \neq 0$. For all $\mathbf{v} \in \mathbf{V}$	
	$h(\mathbf{v}) = f(\mathbf{v})g(\mathbf{v})$	(2.0.1)
	$h(2\mathbf{v}) = f(2\mathbf{v})g(2\mathbf{v})$	(2.0.2)
	$=2f(\mathbf{v})2g(\mathbf{v})$	(2.0.3)
	$=4f(\mathbf{v})g(\mathbf{v})$	(2.0.4)
	Similarly,	
	$h(2\mathbf{v}) = 2h(\mathbf{v})$	(2.0.5)
	$=2f(\mathbf{v})g(\mathbf{v})$	(2.0.6)
	From equation (2.0.4) and (2.0.6),	
	$\implies 4f(\mathbf{v})g(\mathbf{v}) = 2f(\mathbf{v})g(\mathbf{v})$	(2.0.7)
	$\implies f(\mathbf{v}).g(\mathbf{v}) = 0$	(2.0.8)
Choosing Basis	Let B be a basis for V . Let,	
	$\mathbf{B_1} = \{ \mathbf{b} \in \mathbf{B} \mid f(\mathbf{b}) = 0 \},$	(2.0.9)
	$\mathbf{B_2} = \{ \mathbf{b} \in \mathbf{B} \mid g(\mathbf{b}) = 0 \}$	(2.0.10)
	Since,	
	$f(\mathbf{b}).g(\mathbf{b}) = 0 \forall \mathbf{b} \in \mathbf{B}$	(2.0.11)
	$\implies f(\mathbf{b}) = 0 \text{ or } g(\mathbf{b}) = 0$	(2.0.12)
	$\implies b \in B_1 \text{ or } b \in B_2$	(2.0.13)
Choosing $\mathbf{b_1}$ and $\mathbf{b_2}$ from basis	Let us choose $\mathbf{b_1} \in \mathbf{B_1} - \mathbf{B_2}$ and $\mathbf{b_2} \in \mathbf{B_2} - \mathbf{B_1}$ $\implies f(\mathbf{b_2}) \neq 0$ and $g(\mathbf{b_1}) \neq 0$ $f(\mathbf{b_1} + \mathbf{b_2}).g(\mathbf{b_1} + \mathbf{b_2}) = (f(\mathbf{b_1}) + f(\mathbf{b_2})).(g(\mathbf{b_1}) + g(\mathbf{b_2}))$ (2.0.14) $= f(\mathbf{b_1}).g(\mathbf{b_1}) + f(\mathbf{b_1}).g(\mathbf{b_2}) + f(\mathbf{b_2}).g(\mathbf{b_1}) + f(\mathbf{b_2}).g(\mathbf{b_2})$ (2.0.15) $= 0 + 0 + f(\mathbf{b_2}).g(\mathbf{b_1}) + 0$ (2.0.16) $= f(\mathbf{b_2}).g(\mathbf{b_1}) \neq 0$ (2.0.17)	
	Equation (2.0.17) is contradiction to the fact that $\implies \boxed{f = 0 \text{ or } g = 0}$	$f(\mathbf{v}).g(\mathbf{v}) = 0.$

TABLE 0: Expanation