ECE 532 ACTIVITY 5 DEVIN BRESSER

1. Let
$$z = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $w = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

- a) Sketch the subspace spanned by z in \mathbb{R}^2 .
- **b)** Sketch the subspace spanned by \boldsymbol{w} in \mathbb{R}^2 .
- c) Sketch span $\{z, w\}$ in \mathbb{R}^2 .
- d) Are z and w orthogonal? Why or why not?
- e) Do $\{z, w\}$ form an orthonormal basis? Why or why not? If not, can you modify z and w to form an orthonormal basis?

c·)

Span { Z, W } = IRZ

d.) orthogonal if $\underline{z}^T \underline{w} = 0$

- > Z and w are orthogonal.
- e.) $\frac{1}{2}$ do not form an orthonormal basis. because $||z|| = \sqrt{2} \neq 1$, $||w|| = \sqrt{2} \neq 1$.

If
$$z^* = \frac{1}{||z||} z$$
 and $\omega^* = \frac{1}{||w||} \omega$

$$\underline{z}^* = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \underline{\omega}^* = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Thun z'and w form an orthonormal basis.

- **2.** Consider the line in \mathbb{R}^2 defined by the equation $x_2 = x_1 + 1$.
 - a) Sketch the line in \mathbb{R}^2 .
 - **b)** Does this line define a subspace of \mathbb{R}^2 ? Why or why not?

b.) Does not define a subspace of \mathbb{R}^2 Because it does not include (0,0). **3.** You collect ratings of three space-related science fiction movies and two romance movies from seven friends on a scale of 1-10.

Movie	Jake	Jennifer	Jada	Theo	Ioan	Во	Juanita
Star Trek	4	7	2	8	7	4	2
Pride and Prejudice	9	3	5	6	10	5	5
The Martian	4	8	3	7	6	4	1
Sense and Sensibility	9	2	6	5	9	5	4
Star Wars: Empire Strikes	4	9	2	8	7	4	1

You put this data into a matrix X (available in the file movie.mat) and decide to model (approximate) as the product of a rank-r taste matrix with orthonormal columns and a weight matrix. That is, $X \approx TW$.

- a) What is the rank of *X*? Relevant Python commands are numpy.linalg.matrix_rank().
- **b)** What are the dimensions of T and W (in terms of r)?

3a.) per the python code, rank
$$(\times) = 5$$

raffinity vectors

$$\begin{bmatrix}
5x7
\end{bmatrix}
 \approx
\begin{bmatrix}
5xr
\end{bmatrix}
 \begin{bmatrix}
7 & vscrs
\end{bmatrix}$$
r taste vectors

5 mavies

Movie	Jake	Jennifer	Jada	Theo	Ioan	Во	Juanita
ar Trek	4	7	2	8	7	4	2
rejudice	9	3	5	6	10	5	5
Martian	4	8	3	7	6	4	1
nsibility	9	2	6	5	9	5	4
Strikes	4	9	2	8	7	4	1
_							
j		2	2	•	•	•	
U	•	_					

c) You know that each user's ratings have an average value that is greater than zero because the scale is 1-10. And you suspect the baseline (average) rating may differ from user to user. To account for this you decide your first basis vector in the taste matrix should be

$$m{t}_1 = rac{1}{\sqrt{5}} \left[egin{array}{c} 1 \ 1 \ dots \ 1 \end{array}
ight]$$

Choose w_{1j} so that each element of the vector \boldsymbol{t}_1w_{1j} equals the average value j^{th} column of \boldsymbol{X} , denoted as $\boldsymbol{X}_{:,j}$. Find an expression for w_{1j} that depends on \boldsymbol{t}_1 and $\boldsymbol{X}_{:,j}$.

- **d)** Define $\boldsymbol{w}_1^T = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{17} \end{bmatrix}$ and find the rank-1 approximation to \boldsymbol{X} that reflects the baseline ratings of each friend, $\boldsymbol{t}_1 \boldsymbol{w}_1^T$.
- e) Which friend has the highest baseline rating? Which friend has the lowest baseline rating?
- f) Find the residual not modeled by $t_1 w_1^T$, that is, $X t_1 w_1^T$. Do you see any patterns in the residual? Briefly describe them qualitatively.

This problem is continued in a homework assignment.

3c.)
$$t_1 = \frac{1}{\sqrt{s_1}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \frac{T}{W_1} = \begin{bmatrix} w_{11} & w_{12} & w_{13} & w_{14} & w_{15} \\ 1 & 1 \end{bmatrix}$$

mean is
$$\frac{1}{5}$$
 (sum down column)

each wij needs to be the sum down that user's column

in
$$X$$
.

So, $w_{1j} = \frac{1}{\sqrt{5}} \sum_{i=1}^{5} X_{i1}$

Movie	Jake	Jennifer	Jada	Theo	Ioan	Bo	Juanita	
ar Trek	4	7	2	8	7	4	2	1
rejudice	9	3	5	6	10	5	5	2
Martian	4	8	3	7	6	4	1	•
nsibility	9	2	6	5	9	5	4	:
Strikes	4	9	2	8	7	4	1	

- d) Define $\mathbf{w}_1^T = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{17} \end{bmatrix}$ and find the rank-1 approximation to \mathbf{X} that reflects the baseline ratings of each friend, $\mathbf{t}_1 \mathbf{w}_1^T$.
- e) Which friend has the highest baseline rating? Which friend has the lowest baseline rating?
- f) Find the residual not modeled by $t_1w_1^T$, that is, $X t_1w_1^T$. Do you see any patterns in the residual? Briefly describe them qualitatively.

This problem is continued in a homework assignment

3d.)
$$W_{1}^{T} = \frac{1}{\sqrt{5}} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{2}{\sqrt{5}} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

$$\frac{1}{5} \left[30, 29, 18, 34, 39, 22, 13 \right]$$

Lowest: Juanita 2.6

f) Find the residual not modeled by $\mathbf{t}_1 \mathbf{w}_1^T$, that is, $\mathbf{X} - \mathbf{t}_1 \mathbf{w}_1^T$. Do you see any patterns in the residual? Briefly describe them qualitatively.

> The lower the Valves of the residual morn'x provide a masure of how good the mean is as an approximation.