CS 6363: Design and Analysis of Algorithms Exam #2, November 5, 2018 Professor D.T. Huynh

Student Name: KEY

General Remarks. This exam comprises 4 problems:

Problem #1 is assigned 25 points,

Problem #2 is assigned 25 points,

Problem #3 is assigned 25 points, and

Problem #4 is assigned 25 points.

Thus, the maximum score is 100 points.

Unless explicitly stated, *no correctness proofs* are required for your algorithms and (time) complexity means worst-case complexity.

Provide clean answers on the exam booklet. Use aditional paper only when necessary.

This is a closed-book exam

Exam time: 10.00 - 11.20 am

Good Luck!

#1	#2	# 3	#4	Total			

Problem # 1. (Matroid and Graphic Matroid)

1. Define the notions of an independent system and a matroid.

Let S be a finite set, I be a nonempty family of subsets of S.

- (S, II) is an independent system if (hereditary)
ASB ABEI => AEI

- An independent system (S, I) is a <u>matroid</u> if it sat. $A, B \in I \land |A| > |B| \Rightarrow \exists x \in A - B : B \cup \{x\} \in I$ (which is called the exchange property)

2. (Graphic Matroid) Let G = (V, E) be an undirected graph. Let $\underline{S} = E$ and \underline{I} be the collection of sets of edges in \underline{S} such that each set induces a forest. Show that $(\underline{S}, \underline{I})$ is a matroid.

(a) (S, I) is an indep. system:

ACB \ B \ I \ \ B induces a forest ACB \ A induces a forest \ \ A \ I

(b) Let A,B & I and IAI>|B|.

A,B induce forests. IAI> IBI => There are

more trees in B than A.

⇒ Some tree in A has vertices in two different trees in B

⇒ ∃ edge e ∈ A connecting there trees

=> Busez is cycle free

=> Buse3 induces a forest

→ Burej ∈ I.

Problem # 2. (Dijkstra's algorithm) Let G = (V, E) be a directed graph with a weight function $w : E \longrightarrow \mathbf{R}_+$

1. Describe what it means to relax an edge e = (u, v)

RELAX (u,v):
if
$$d[v] > d[u] + w[u,v]$$

then $d[v] := d[u] + w[u,v]$

 $T[v] := u$

2. Describe Dijkstra's algorithm, and analyze its running time.

2. Describe Dijkstra's algorithm, and analyze its running time.

$$S = \{s\} \mid /* S = \text{SOURCE } *| \text{Initialize } (G, S)$$

$$Q = V - \{s\} \}$$

$$\text{While } Q \neq \emptyset \text{ do}$$

$$U = \text{EXTRACT-HIN}(Q)$$

$$S = S \cup \{u\} \}$$

$$\text{for each } V \in \text{Adj}[u] \text{ do}$$

$$RELAX(u, V)$$

$$\text{RELAX}(u, V)$$

$$\text{Total is } O(\text{Elogn})$$

3. Perform Dijkstra algorithm on the following graph:

Problem # 3. (Pattern Matching)

1. Let Σ be an alphabet. For a given pattern $P[1m]$ define the suffix function $\sigma: \Sigma^*$	>
$\{0,,m\}$ and the prefix function $\pi:\{1,,m\}\longrightarrow\{0,,m-1\}$.	

Suffix function:
$$G(x) = \max\{k \mid P_k \exists x\}$$

2. Describe the KMP algorithm for pattern matching where the text T[1..n] and the pattern P[1..m] are in the input. (You may assume that π is given.) Analyze the running time of your algorithm.

KMP_Matcher (T, n, P, m)

while 9>0 and P[9+1] + T[i] $do q = \pi(q)$;

if P[q+1] = T[i] then q=q+1 (**) ⇒ is performed at most

if q = m then

print "i-m is valid shift" $q = \pi (q)$ $q = \pi (q)$ Total running time $q = \pi (q)$

3. Perform the KMP algorithm for the following input: (Show the steps of your compu-

					rivii ai	goriumi	ioi dife	TOHOWI	ng mi	iui. (DIIOW (me ste	ps or you	II COL	npu-	
1	16	t	ation!)												
P	al	ba	h					T[1	37		5 E	7	89			
	a i	o α	<u> </u>	ω		10	T	1		1.	a 6		ba			
K	1 2	٤ 3	4	5		0)		aja	1a	6	96	a	ba	9	=0	
				market sprace 4							-					
TC	0 0)	2	3			1	ab					$\tilde{\iota} = 1$	0	P[I] =	1[2]
ı			¥				1			1			-		> 9=9-	+1=1
i=5	P[3]	= 1[5]		i	=8 P	[4] =	T[8]				and the same of th	i=2	1:	P[2] #	-1121
	=> 9=	0-1-	. 2		Name	→ 9=	-			V	,	-				
								and aller		1				\Rightarrow	9=11(1)=0
1=6	P[4]	- T	[6]		L:	=9 P[al	6	alb	al	i=:	3 1	P[I] =	· TB]
Consuments		-				=> 9	=9+1	= 5	00,	01						
	=> 9=	4+1=	4			0-	m = 5			-	-+,+	-		\Rightarrow	9=9+	l = l
1=7	PI5	7 = T	[7]			7-1	1 6	valid	ì	=81	a 6	a	*		DraT	TraT
managed by							+ 0	ship	-11				1=4	. :	P[2] =	1 4
	=> 9=	=9+1=	- 5			0. 4	_							->	9=9+1	-2
C	= m = 5	-: "	2=	i-m	50	lid sl	rift)							1	
	9=	70 (5)	= 3	3			1									

Problem \sharp **4.** (Network Flows) Let G = (V, E) be a directed graph together with a capacity function $c : V \times V \longrightarrow \mathbf{R}$ which forms a flow network.

1. Define the residual network G_f for a given flow f. Define the flow value ||f|| of f. For a cut (S,T) define the net flow across the cut (S,T) and the capacity c(S,T) of the cut (S,T). Argue that $||f|| \leq c(S,T)$. Residual capacity f(u,v) is $c_p(u,v) = c(u,v) - f(u,v)$ Residual NW: $G_{rf} = (V, E_{rf})$ where $E_{rf} = (u,v) \cdot c_p(u,v) \cdot$ Claim. $\|f\| \le c(S,T)$ Pf. For $u \in S$, $v \in T$: $f(u,v) \le c(u,v)$ due to def. of flow. Thus, $\|f\| \stackrel{\text{Lem.}}{=} f(S,T) = \sum_{u \in S, v \in T} f(u,v) \le \sum_{u \in S, v \in T} c(u,v)$ $2.\,$ Desribe Edmonds-Karp algorithm and state its running time. Edmonds-Karp (G,C,S,t) for all u, v ∈ V do f(u, v) =0; Gp = G; while I augm. path p obtained by BFS in Gp do, augm. f along p update + return of 3. Perform the Edmonds-Karp algorithm on the following flow network given the current flow: (Show a min cut!) Step 1: 9/12 7/7 9112 717 11/15 11/12 New flow: 1916

max flow= 22, min cut

11/15