27/06/13
Atiyah-Singer Index Theorem Seminar.
Hodge Theory (Kustam Antia-Kildel, E
Hodge Theory (Rustam Antia-Richel & Jovier Morales).
Intuition to Miptic operators & Hodge Meory.
$\exists ix g \in C(\partial I^m), \exists = \{ f \in C^2(I_m), f g = g \}.$
R (We want 163 at equilibrium:
Fin I E2 Em-1 f(si-fim.) dA
1/ Se-3 8 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8 -3 8
$\frac{1}{\sum_{\epsilon \to 0}^{lm} \frac{1}{\mathcal{E}^{m-1}} \frac{1}{\mathcal{E}^{z}} \left(\left(M_{o} \right) + \left\langle \nabla_{f_{m_{0}}} \tilde{m}_{s} - S \right\rangle \right)}$
+(H ₅ (s-m),s-m)
-f(m.))dA
()

 $=\frac{1}{E^{m-1}}\left\{\frac{H_{r}\frac{m_{o-s}}{E},\frac{m_{o-s}}{E}}{E}\right\}dA=\int_{S_{n_{o}}}^{\infty}H_{r}y,y\rangle dA^{-1}=F\left(H_{r}(m_{o})\right)=\Delta f(m_{o}),$

where y-mo->, EmdA'=dA. So equilibrium (-> Harronic.

Hodge bleven.
52°(M) - d > C(M) - d >
DeRhan corplex for (M,g) Riemanian.
CESZ(M), dc=0, [c]= {C+dx/xESZh-1(M)}.
Takne subspace
Want to droose a preferred el^{\pm} in each cohom. class. Let's consider norm minimizing c, so that given $\alpha \in \mathcal{N}^{n-1}(M)$,
non minimizing c, so that given a \(\Si^-(M),
(c,da)=0, so (d*c,a)=0, so d*c=0, so dc=0, so
△= (d+d*) = 0 — Hawistic, not rigour.

	Theorem (Hadge):
	Each chonology class for a Dirac complex contains a vigue harmonic representative.
	harmonic representative.
	Prof:
ľ	
	2et H → H2 → H3 → &
	Let $\mathcal{H}' \xrightarrow{\circ} \mathcal{H}^2 \xrightarrow{\circ} \mathcal{H}^3 \xrightarrow{\circ} \cdots \overset{\bullet}{\bullet}$
	$C^{\infty}(S') \xrightarrow{d} C^{\infty}(S^2) \xrightarrow{d} C^{\infty}(S^3) \xrightarrow{\longrightarrow} \dots$
	,
	Let P: (Sh) -> Hh be orthogonal projection.
	Pi=idyr - what is iP?
	ot .
	1-iP = dH+Hd
	24/ne 1/1 \ 1, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$\frac{\partial dhe}{f(\lambda)} = \begin{cases} 1, & \lambda \neq 0 \\ 0, & \lambda \neq 0. \end{cases}$
	Claim that $f(D)=1-iP$. On the level of an e-vector. I'm
	Ld+d*
	for Dv=0, f(D)v=0 and (1-iP)v=(1-iPv=V-iPv=V-v=0", smikr for rongers c-volues
	for nonzero c-values
	Duting $9 = \{ \sum_{i=1}^{-2}, \sum_{j \neq 0} \}$
	Dutine $g = \{ \lambda^{-2}, \lambda \neq 0 \}$ $g(D) = G$, $DG = f = 1 - iP$.
	L / V.

And now for some Rustan!
 Outline: Poincaré duality. Something else.
Corollary (Poincaré Duality):
 ,
Let M be a compact oriented m-mfld. Then fle cap product
$\cap: H^{k}(M; \mathbb{C}) \otimes H^{-k}(M; \mathbb{C}) \longrightarrow H^{m}(M; \mathbb{C}) \xrightarrow{\cong} \mathbb{C}$
is nondegenerate for all k.
<u>Proof:</u>
Let 0 \neq [\alpha] \in \mathred{\lambda} \text{ar}, with harmonic rep. \alpha (so \D^2 \alpha = 0),
If X is harmonic, so is XX, so we have
$\int_{\infty}^{\infty} x ^2 = x ^2 + 0$, so the pairing is nondegeneate.
Remarki: For M complex, have $d = \partial + \bar{\partial}$; so there are 3 daptains floating around Δd , $\Delta_{\bar{\partial}}$, $\Delta_{\bar{\partial}}$.
If M is Kähler, \(\frac{1}{2} \Delta = \Delta \), and we also have the 'Italiae decorp' \(\frac{1}{4} (M,C) = \Delta \) \(\frac{1}{4} (M,C) \) = \(\frac{1}{4} \) \(\frac{1}{4} (M,C) \) .

Proof: Follows from explicit description of T.
Soppose Sall is an oriented subrifled, let The the tubular right T=N(S). around bundle.
Then H(S) => Hotalins (M).
Proposition: $\eta = j\Phi$
Proof:
Need to show. I't w = Sun j J T: T->5
We know that w=TI*i*w+d T for some T. Calculate:
$\int_{M} \omega_{n} dt = \int_{T} \omega_{n} dt = \int_{T} (T^{*} \omega_{n} dt)_{n} dt = \int_{T} (T^{*} \omega_{n} dt)_{n}$

Proposition:
Let R, S -> M be oriented submanifolds of complementary dir. Then if RAS, yr= 1 19
Then if RAS, n = n nn.
1 / IRNS IR (S
Prost;
Since RAS, compdin, N(ROS)=N/RDN(S).
· ·
So (NIROS)= (NR) / (Ns) and
yrs = n r n
Recall: $D^2 = \nabla^* \nabla + K$ Ric if looking at ext. bundle.
Necawi. D - V V+R
Ric if looking at ext. bundle,