# Strukture podataka Indeksne strukture Ispitni zadaci

# II kolokvijum - 30.05.2016.

## (15 poena) Opšta stabla i indeksne strukture

- (5 poena) Za B+ stablo reda 3 prikazati kako izgleda postupak formiranja stabla nakon dodavanja sledećih ključeva: 1, 2, 16, 6, 15, 7, 4, 5, 8, 10, 9. Prilikom cepanja čvora smatrati da veći broj ključeva ide u levog suseda.
- (10 poena) Baza podataka sadrži 3 000 000 slogova dužine 250 B. Smatrati da slogovi nisu uređeni ni po jednom kriterijumu. Veličina bloka na disku je 4096 B, veličina ključa 15 B, a veličina pokazivača na blok je 6 B. Odrediti:
  - koliko MB na disku zauzima osnovna datoteka, (3 poena),
  - ako se za indeksiranje koristi B stablo, odrediti koliko puta se ubrzava pristup i za koliko procenata se poveća datoteka (7 poena).

Za **B+ stablo reda 3** prikazati kako izgleda postupak formiranja stabla nakon dodavanja sledećih ključeva: 1, 2, 16, 6, 15, 7, 4, 5, 8, 10, 9. Prilikom cepanja čvora smatrati da veći broj ključeva ide u levog suseda.

**B+ stablo** – pri cepanju lista, zadnji ključ iz levog se kopira u roditelja, unutrašnji čvorovi se ponašaju kao B stablo.

**reda 3** – dva ključa po čvoru.



1, 2, 16, 6, 15, 7, 4, 5, 8, 10







1, 2, 16, 6, 15, **7**, 4, 5, 8, 10





























Kada se mešaju 5 i 6, gubi se ključ u roditelju koji ih razdvaja. Zato nestaje 5 iz korena.



#### **Zadatak:**

Baza podataka sadrži 3 000 000 slogova dužine 250 B. Smatrati da slogovi nisu uređeni ni po jednom kriterijumu. Veličina bloka na disku je 4096 B, veličina ključa 15 B, a veličina pokazivača na blok je 6 B. Odrediti:

- koliko MB na disku zauzima osnovna datoteka, (3 poena),
- ako se za indeksiranje koristi B stablo, odrediti koliko puta se ubrzava pristup i za koliko procenata se poveća datoteka (7 poena).

#### Rešenje:

Veličina datoteke je:

3 000 000 \* 250B = 750 000 000 B = 750 MB (kako računaju proizvođači diskova) Ili 715.256 MB, ako smatramo da je 1kB = 1024B

... i to donosi ...

# O poena!!!

Baza podataka sadrži 3 000 000 slogova dužine 250 B. Smatrati da slogovi nisu uređeni ni po jednom kriterijumu. Veličina bloka na disku je 4096 B, veličina ključa 15 B, a veličina pokazivača na blok je 6 B. Odrediti:

- koliko MB na disku zauzima osnovna datoteka, (3 poena),
- ako se za indeksiranje koristi B stablo, odrediti koliko puta se ubrzava pristup i za koliko procenata se poveća datoteka (7 poena).

$$fb = \left\lfloor \frac{4096}{250} \right\rfloor = \left\lfloor 16.384 \right\rfloor = 16$$

$$bb = \left| \frac{r}{fb} \right| = \left[ \frac{3.000.000}{16} \right] = 187500$$

Veličina\_datoteke je = bb \* veličina\_bloka = 187500 \* 4096 B = 768 000 000 B = 732.42MB

Baza podataka sadrži 3 000 000 slogova dužine 250 B. Smatrati da slogovi nisu uređeni ni po jednom kriterijumu. Veličina bloka na disku je 4096 B, veličina ključa 15 B, a veličina pokazivača na blok je 6 B. Odrediti:

- koliko MB na disku zauzima osnovna datoteka, (3 poena),
- ako se za indeksiranje koristi B stablo, odrediti koliko puta se ubrzava pristup i za koliko procenata se poveća datoteka (7 poena).



Ako je **k** ključ, a **p** pokazivač, i ako sa **q** označimo broj parova (k,p), onda je veličina čvora jednaka

$$V \ge q(k+p) + (q+1)p$$
  
 $V \ge qk + qp + qp + p$   
 $V \ge q(2p+k) + p$   
 $4096 \ge q(2*6+15) + 6$   
 $q \le 4090 / 27 = 151.48$   
 $q = 151$ 

Dakle, jednim čvorom možemo indeksirati 151 slog datoteke. Koliko čvorova nam je potrebno da bismo indeksirali celu datoteku?

Pošto datoteka nije uređena, potreban nam je, praktično, sekundarni indeks, pa je

broj\_listova = 
$$B_0 = [3.000.000 / 151] = [19867.55] = 19868$$



Na koliko listova ukazuje čvor iz narednog nivoa?

Dakle, za 19868 listova, potrebno je:

$$B_1 = \lceil 19868 / 152 \rceil = \lceil 130.71 \rceil = 131$$

Proces se nastavlja sve dok ne dođemo do korena. Ovde je to već na narednom nivou.

$$B_2 = [131/152] = [0.86] = 1$$

Koliko puta se ubrzava pristup?

Da nemamo B-stablo, pristupali bi sekvencijalni. Imamo 187500 blokova. U proseku nam treba 187500/2 = 93750 pristupa.

Ako koristimo B-stablo, koje ima 3 nivoa, broj pristupa je 4.

Pa je ubrzanje 93750 / 4 = 23437.5 puta!

A povećanje datoteke je za veličinu B-stabla. Ono ima 19868 + 131 + 1 = 20000 blokova.

Kako osnovna datoteka ima 187500 blokova, dodavanjem indeksa, tj. B-stabla, datoteku smo povećali 2000 / 187500 =  $0.1067 \approx 10.7\%$ 

Odgovor na zadatak je, dakle, **ubrzanje je 23437.5 puta, a povećanje** datoteke je 10.7%.

Neki će reći da ovo nije tačno rešenje, zato što smo zanemarili unutrašnje čvorove koji takođe sadrže pokazivače na blokove sa podacima.

U prethodnom slučaju, broj unutrašnjih čvorova je 132. Oni mogu indeksirati 132\*151 = 19781 slogova primarne datoteke. Izgleda kao strahovita greška.

Ali...

Imali smo 19868 listova. Unutrašnji čvorovi čine tek 0.66% broja listova.

Broj listova bi trebalo smanjiti za manje od 0.66%, jer se smanjenjem broja listova, smanjuje i broj unutrašnjih čvorova.

Potrebno je mnogo više izračunavanja da bi se dobila tačna vrednost.

Da li će to promeniti broj nivoa stabla?

#### **VRLO NEVEROVATNO!!!**

Da li će se promeniti veličina datoteke?

### Hoće, ali tek na nekoj decimali !!!

Da li ima smisla računati tačan broj čvorova u B-stablu?

## Zaključak donesite sami !!!

Umesto 1+131+19868 šeme, osnovnu datoteku bi mogli da indeksiramo sa 1+130+19737 čvorova (potrebno je da ukupno imamo 19868 čvorova). Ukupan broj blokova u B-stablu je 19868, pa je uvećanje datoteke 10.596267%. Ranijim postupkom smo dobili 10.666667% i napravili grešku od 0.66%.

#### **Zadatak:**

Birački spisak jednog grada sadrži podatke o 2 000 000 građana sa pravom glasa. Ako se o svakom građaninu pamte sledeći podaci: JMBG (14B), br. lične karte (7B), ime (30B), prezime(30B), godina rođenja (4B), adresa (50B). Smatrati da slogovi nisu uređeni ni po jednom kriterijumu. Veličina bloka na disku je 2048B, a veličina pokazivača na blok je 6B. Odrediti:

- koliko MB na disku zauzima osnovna datoteka, (2 poena),
- ako se za indeksiranje koristi B+ stablo, čiji su čvorovi popunjeni 75%, odrediti koliko puta se ubrzava pristup i za koliko procenata se poveća datoteka (6 poena).

#### Rešenje:

Veličina sloga je: 14+7+30+30+4+50 = 135

$$fb = \left\lfloor \frac{2048}{135} \right\rfloor = \left\lfloor 15.17 \right\rfloor = 15$$

$$bb = \left\lceil \frac{r}{fb} \right\rceil = \left\lceil \frac{2.000.000}{15} \right\rceil = \left\lceil 1333333.33 \right\rceil = 133334$$

Veličina datoteke je: 133334 \* 2048 B = 273068032 B = 260.41 MB

#### **Zadatak:**

...

 ako se za indeksiranje koristi B+ stablo, čiji su čvorovi popunjeni 75%, odrediti koliko puta se ubrzava pristup i za koliko procenata se poveća datoteka (6 poena).

Kako izgleda list B+ stabla?



Ako je **k** ključ, a **p** pokazivač, i ako sa **q** označimo broj parova (k,p), onda je veličina čvora jednaka

$$V \ge q(k+p) + p$$
 $2048 \ge q(14+6) + 6$ 
 $q \le 2042 / 20 = 102.1$ 
 $q = 102$ 

Dakle, da je list 100% popunjen, on bi imao 102 pokazivača na slogove izvorne datoteke. Ali, on je "samo" 75% popunjen. Dakle, umesto 102, svaki list će ukazivati na:

Dogovorićemo se da zaokružimo vrednost, pa je:

$$q' = 77$$

Sada treba videti koliko listova je potrebno za indeksiranje svih slogova osnovne datoteke.

broj\_listova = 
$$B_0 = \begin{bmatrix} 2.000.000 / 77 \end{bmatrix} = \begin{bmatrix} 25974.025 \end{bmatrix} = 25975$$

Koliko je potrebno čvorova na drugom nivou?

To ne možemo odmah izračunati, jer se struktura unutrašnjih čvorova razlikuje od listova.

Kako izgleda unutrašnji čvor B+ stabla?



Ako je **k** ključ, a **p** pokazivač, i ako sa **q** označimo broj pokazivača na podstabla

$$V \ge (q-1)k + qp$$
 $2048 \ge qk - k + qp$ 
 $2048 \ge q(k+p) - k$ 
 $q \le 2062 / 20 = 103.1$ 
 $q = 103$ 

Kako je popunjenost 75%:

Ako je broj listova 25975, na sledećem nivou potrebno je:

$$B_1 = \lceil 25975 / 77 \rceil = \lceil 337.34 \rceil = 338$$

Proces se nastavlja sve dok ne dođemo do korena.

$$B_2 = [338 / 77] = [4.4] = 5$$

$$B_3 = [5/77] = [0.065] = 1$$

Ubrzanje pristupa je: 133334 / (2 \* 5) = **13333.4 puta** 

A povećanje datoteke:  $(25975 + 338 + 5 + 1) / 133334 \approx 19.7\%$