research

June 25, 2022

1 Cancer incidence trends in young adults

1.1 Introduction

The idea of this project comes from a conversation I recently have with a friend of mine who worked in a cancer retreat center. The friend is a medical professional who worked at the center for many years. He noticed that over the past 10 years, there have been more relatively young patients in the center than it was before. The friend was inclined to attribute this observation to the deteriorating quality of air, food, and other environmental factors. I skeptically suggested that there are other possible explanations of this phenomenon. 10 years ago, the friend himself was younger and could perceive typical patients as older.

Cancer is a class of diseases in which some of the body's cells grow uncontrollably and spread to other organs and tissues. Most cancers form a tumor. According to modern concepts, cancer is caused by changes to genes that control the way our cells function, especially how they grow and divide. Despite intensive research and development of new treatments, cancer remains the leading causes of death worldwide. In 2018, there were 18.1 million new cases and 9.5 million cancer-related deaths worldwide. By 2040, the number of new cancer cases per year is expected to rise to 29.5 million and the number of cancer-related deaths to 16.4 million [1].

Cancer can be considered an age-related disease because the incidence of most cancers increases with age, rising more rapidly beginning in midlife. Despite the fact that the disease can occur at any age, more than half of all cancers occurred in adults aged 65 years [2]. Therefore, for a long time, cancer was considered a disease predominantly affecting the elderly. Given this age specificity, a possible increase in the number of diseases among younger age groups may be of great interest.

Figure 1. Invasive cancer incidence, by age, U.S., 2009 [2]

As a software developer I am interested in Digital health. The idea of using information technologies to enhance the efficiency of healthcare seems very promising. Collection and analysis of health data using the data-science approach could potentially improve our understanding of diseases such as cancer. Therefore, I decided to further investigate my friend's observation in this project. Using available data and data-science approach it seems possible to determine if young adults have become more often diagnosed with cancer in recent decades.

1.2 Literature Review

Before setting goals and objectives, I decided to study the available information on this topic. It is important to understand what has already been investigated and what has not yet been explored. I found several articles on the Internet in which the issue is studied. Below I provide a summary and key findings that are relevant in the context of this study.

Incidence trends for twelve cancers in younger adults—a rapid review. Br J Cancer 126, 1374–1386 (2022). [5]

This paper analyzed the epidemiological information of some types of cancer in young adult patients, and came to the following conclusion: "Overall, this review provides evidence that some cancers are increasingly being diagnosed in younger age groups, although the mechanisms remain unclear." [5] This is a meta-analysis of existing studies on different types of cancer, but my goal is to explore the big picture across all types of cancer. The sources used in the article were mainly originated from the United States.

Trends in Cancer Incidence in US Adolescents and Young Adults, 1973-2015 [6].

Some findings from this paper: "In this serial cross-sectional, US population-based study using cancer registry data from 497 452 AYAs, the rate of cancer increased by 29.6% from 1973 to 2015, with kidney carcinoma increasing at the greatest rate. Breast carcinoma and testicular cancer were the most common cancer diagnoses for female and male AYAs, respectively." [6]

The autors coclude: "In this cross-sectional, US population-based study, cancer in AYAs was shown to have a unique epidemiological pattern and is a growing health concern, with many cancer subtypes having increased in incidence from 1973 to 2015. Continued research on AYA cancers is important to understanding and addressing the distinct health concerns of this population." [6] AYA is stands for Adolescents and Young Adults.

The findings from this paper also support the idea that the increase in the number of diseases among young people in the United states has natural causes. However, the article is again focused on the United States.

Cancer Stat Facts: Cancer Among Adolescents and Young Adults (AYAs) (Ages 15–39) [7].

The results of this work once again confirm the increase in the number of diseases amoung young adults in the United Satates: "Using statistical models for analysis, rates of new cancer cases of any site among AYAs have been rising on average 0.3% each year over 2010–2019, the last 10 years of available data." [7]. This study is based on a database provided by National Cancer Institute of US. This is a high fidelity database, but it covers only the U.S. This work uses great data visualization methods that I want to use for inspiration.

As a result of a review of the literature available on the Internet on this topic, I found that there is ample evidence of an increase in the number of diseases among young adults in the United States. However, there are no studies on other regions and on worldwide population.

1.3 Aims and Objectives

According to the available literature, there is a trend in the United States that young people are more likely to get cancer in recent decades. However, the question remained unexplored whether there is such a trend around the world. My goal within this project is to fill this gap. I want to know if this is a global trend or this is pecific for certain regions.

The literature cited above suggests that the causes for the trend observed in the US remain unclear. If a similar trend takes place in the rest of the world, this may help in finding its causes. Since in this case the reasons may be common to the entire planet, and not specific to a particular region. However, the search for the causes is beyond the scope of this study.

For the purpose of this project, a young adult is considered to be between the ages of 15 and 44 (inclusive). This range was chosen because people younger than 15 have other types of cancer with different epidemiological dynamics that are outside the scope of this study [3]. The age group over 45 also has its own epidemiological dynamics. It has long seen an increase in morbidity, but it is attributed mainly to an increase in overall life expectancy and a decrease in mortality from other causes [4]. This is also outside the scope of this study.

1.4 Dataset

1.4.1 Requirements

To meet the goals of the project, the dataset must include worldwide cancer incidence statistics. Data must have at least two dimensions: the numbers should be broken down by year of diagnosis and a patient's age group. To pinpoint the trend, we need data for at least two decades. The data should be in machine-readable format.

1.4.2 Datasets considered

There are several organizations that collect statistics on cancer. In particular, the previously mentioned National Cancer Institute (NCI) provides SEER database. SEER (Surveillance, Epidemiology, and End Results) is an authoritative source for cancer statistics in the United States. As previously metioned, this is a open and high fidelity database, but it covers only the U.S. so it is not suitable for our research. Another problem is that this dataset is not generally available in machine-readable format.

Another considered dataset is Cancer registration statistics for England provided by Office for National Statistics. The data includes cancer diagnoses and age-standardised incidence rates for all types of cancer by age and sex. It is available in a machine-readable format as Excel tables. Despite the fact that these are data for one geographic region, from these files I get an idea in what form such statistics can be provided at all.

1.4.3 Choosen dataset

After research of different sources concerning the subject I found that there is an organization International Agency for Research on Cancer (IARC) that is a part of the World Health Organization of the United Nations. Its role is to conduct and coordinate research into the causes of cancer. It also collects and publishes surveillance data regarding the occurrence of cancer worldwide.

This data comes in datasets called Cancer Incidence in Five Continents (CI5). CI5 is the result of a long collaboration between the International Agency for Research on Cancer and the International Association of Cancer Registries. The series of monographs, published approximately every five years, has become the reference source of data on the international incidence of cancer. [8]

The whole dataset consists of separate publications (volumes) with data for different periods. These volumes are identified by Roman numerals (V, VI, VII, etc). The first 6 volumes (V, VI, VII, VIII, IX, and X) cover the period from 1973 till 2007. The last volume (XI) covers the period from 2008 till 2012. These publications are PDF files with very detailed reports on the incidence of cancer in different countries. Files with detailed source data are also provided along with reports. They are of primary interest to us.

The first 6 volumes are considered archived, they are downlable on this page. There are PDF reports and ZIP files with tabulated detailed (source) data. The latest volume is downlable on this page.

This dataset covers a large period of time from 1973 till 2012. The raw data is provided in machine-readable format (CSV, tabulated). There are detailed data on date of diagnosis, patient's age group, sex, geographic region, and cancer type. This is the most comprehensive source of information on cancer incidences in the world. Thus, this dataset is fully suitable for this study.

1.5 Method

After a more detailed examine of the dataset files, some problems were identified. The first problem is size of the dataset: more than 215 MB unziped. This is much more than the stated limit. The second problem is the extreme heterogeneity of the data. Each of these seven volumes has a different data format. Some files are in the form CSV, some are tab-separated. Different field names and other differences.

To overcome these difficulties, I decided to divide the data analysis process into several stages:

1.5.1 Preprocessing

At this stage, we create a dataset from the raw CI5 files. The raw CI5 files are individual reports (volumes) that were published at different times. These volumes have different data format. So we have separate sections for each volume (Volume V, Volume VI, Volume VII, etc.) We download raw files, unzip, cleansing, aggregate, and save only necessary information to a CSV file dataset.csv that serve as a source for the further stages. This file is relatively small and can be cached, so there is no need to run this stage more than once.

1.5.2 Processing

At this stage I no longer touch the raw CI5 files. The only source of the information is the intermediate dataset we generated at the Preprocessing stage. It is more precise cleansing and preparation for analysis.

1.5.3 Analysis

I want to explore the dataset through different lenses, in particular: * Dynamics of the total number of registered cancer cases in the world in the recent decades. * Dynamics of registered cancer cases in the world in younge adults in the recent decades. * Dynamics of the percentage of young people among all cases in the recent decades.

My assumption is that the evaluation of these metrics will be enough to answer this project's question: Is there a world trend that young people are more likely to be diagnosed with cancer in the recent decades.

1.6 Import necessary libraries

```
[1]: | pip install pandas==1.4.2 | pip install matplotlib==3.5.2
```

```
import os
import requests
import zipfile
import re
import io
import codecs
from urllib.parse import urlparse
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
Requirement already satisfied: pandas==1.4.2 in
/Users/dima/opt/anaconda3/lib/python3.9/site-packages (1.4.2)
Requirement already satisfied: pytz>=2020.1 in
/Users/dima/opt/anaconda3/lib/python3.9/site-packages (from pandas==1.4.2)
(2021.3)
Requirement already satisfied: numpy>=1.18.5 in
/Users/dima/opt/anaconda3/lib/python3.9/site-packages (from pandas==1.4.2)
(1.20.3)
Requirement already satisfied: python-dateutil>=2.8.1 in
/Users/dima/opt/anaconda3/lib/python3.9/site-packages (from pandas==1.4.2)
(2.8.2)
Requirement already satisfied: six>=1.5 in
/Users/dima/opt/anaconda3/lib/python3.9/site-packages (from python-
dateutil>=2.8.1->pandas==1.4.2) (1.16.0)
Requirement already satisfied: matplotlib==3.5.2 in
/Users/dima/opt/anaconda3/lib/python3.9/site-packages (3.5.2)
Requirement already satisfied: numpy>=1.17 in
/Users/dima/opt/anaconda3/lib/python3.9/site-packages (from matplotlib==3.5.2)
(1.20.3)
Requirement already satisfied: cycler>=0.10 in
/Users/dima/opt/anaconda3/lib/python3.9/site-packages (from matplotlib==3.5.2)
(0.10.0)
Requirement already satisfied: fonttools>=4.22.0 in
/Users/dima/opt/anaconda3/lib/python3.9/site-packages (from matplotlib==3.5.2)
(4.25.0)
Requirement already satisfied: packaging>=20.0 in
/Users/dima/opt/anaconda3/lib/python3.9/site-packages (from matplotlib==3.5.2)
(21.0)
Requirement already satisfied: pyparsing>=2.2.1 in
/Users/dima/opt/anaconda3/lib/python3.9/site-packages (from matplotlib==3.5.2)
(3.0.4)
Requirement already satisfied: python-dateutil>=2.7 in
/Users/dima/opt/anaconda3/lib/python3.9/site-packages (from matplotlib==3.5.2)
(2.8.2)
Requirement already satisfied: kiwisolver>=1.0.1 in
/Users/dima/opt/anaconda3/lib/python3.9/site-packages (from matplotlib==3.5.2)
```

```
(1.3.1)
Requirement already satisfied: pillow>=6.2.0 in
/Users/dima/opt/anaconda3/lib/python3.9/site-packages (from matplotlib==3.5.2)
(8.4.0)
Requirement already satisfied: six in
/Users/dima/opt/anaconda3/lib/python3.9/site-packages (from cycler>=0.10->matplotlib==3.5.2) (1.16.0)
```

1.7 Preprocessing

At this stage, we create a dataset from the raw CI5 files.

As I mentioned above, the raw data consists of 7 separate zip files (volumes). The total size of these files are more than 215 MB unziped which exceeds the allocated limit. At the preprocessing stage, I download the original CI5 files, remove all irrelevant information from them, and merge the result into one file *dataset.csv*. Thus, the result of this stage is one relatively small file *dataset.csv* that serve as a data source for the further stages.

Important: If you have dataset.csv you can skip the whole Preprocessing section and go right to the Processing section.

First, download "detailed data" files from https://ci5.iarc.fr/ci5i-x/pages/download.aspx and https://ci5.iarc.fr/CI5-XI/Pages/download.aspx for each volumes:

```
[2]: urls = (
        "https://ci5.iarc.fr/ci5i-x/old/vol5/CI5-V.zip",
        "https://ci5.iarc.fr/ci5i-x/old/vol6/CI5-VI.zip",
        "https://ci5.iarc.fr/ci5i-x/old/vol7/CI5-VIId.zip",
        "https://ci5.iarc.fr/ci5i-x/old/vol8/CI5-VIIId.zip",
        "https://ci5.iarc.fr/ci5i-x/old/vol9/CI5-IXd.zip",
        "https://ci5.iarc.fr/CI5-X/CI5-Xd.zip",
        "https://ci5.iarc.fr/CI5-XI/CI5-XI.zip"
    )
    # create a new dir CI5 to save volume files
    os.makedirs("CI5", exist_ok=True)
    def download_if_not_exists(url, path):
        ⇔already exist"""
        if os.path.exists(path):
           print(f"File {path} exists in cache")
        else:
           print(f"Downloading {url}...")
           response = requests.get(url)
            # check for HTTP errors
           assert response.ok, f"Failed to download a file {url}. Please try again.
```

```
print(f"Save to {path}")
        open(path, "wb").write(response.content)
def unzip(file_path, target_dir):
    """Extract ZIP file file_path to target_dir"""
    print(f"Extract {file path} to {target dir}")
    with zipfile.ZipFile(file_path, "r") as zip_ref:
        zip ref.extractall(target dir)
# Download all files from urls, save it to CI5 folder, unzip
for url in urls:
    url path = urlparse(url).path
    file_name = os.path.basename(url_path)
    file_path = os.path.join("CI5", file_name)
    volume_name = os.path.splitext(file_name)[0]
    volume_path = os.path.join("CI5", volume_name)
    if os.path.exists(volume_path):
        print(f"Volume {volume_name} exists in cache")
    else:
        download_if_not_exists(url, file_path)
        unzip(file_path, os.path.join("CI5", volume_name))
```

```
Volume CI5-V exists in cache
Volume CI5-VI exists in cache
Volume CI5-VIId exists in cache
Volume CI5-VIIId exists in cache
Volume CI5-IXd exists in cache
Volume CI5-XI exists in cache
Volume CI5-XI exists in cache
```

1.7.1 Volume V

This is the first CI5 volume covers period from 1973 till 1982. It is a zip archive with 4 files. The layout of the data files are:

- cancers.txt List of diagnostic groups. It represents anatomical sites where cancer occurs.
- registry.txt list of regions and years of observation
- cases.csv Number of cases by sex, five-year age group and a cancer code from cancers.txt
- pops.csv Number of people at risk by five-year age group

I will user Pandas dataframe to load and join data from registry.txt and cases.csv. Pandas looks like a suitable tool as it makes it easy to perform such operations on heterogeneous data. As a result of each volume processing step, we will get a dataframe in the following form:

Period	N0_4	N5_9	 N85+	N_UNK
1973-1982	104	60	 1513	50

Period	N0_4	N5_9	 N85+	N_UNK
1977-1981	97	40	 10	50
 1982-1982	 55	 22	 436	 18

- **Period** is a time interval arbitrary number of years. Periods can overlap with each other.
- No_4, N5_9 are five-year age groups. There are the number of recorded cases for patients in each age groups per each period.
- N85+ is a special age group for patients over 85
- N_UNK is a special age group for patients with unknown age

So, each row in this intermediate dataset is a time period (from_year-till_year). Each column is a partient's age group.

1.7.2 Volume VI

The second volume covers a period from 1981 till 1989. Technically, this volume is almost the same as the previous. Except it has slightly different column names.

```
[4]: # registry.txt is Tab-separated, while cases.csv is comma-separated
vi_registry_df = pd.read_csv("CI5/CI5-VI/registry.txt", sep="\t", index_col=0,

→names=["REGISTRY", "PERIOD_1", "PERIOD_2", "NAME"])
vi_cases_df = pd.read_csv("CI5/CI5-VI/cases.csv", index_col=0)

# it uses a registry ID as a primary key to join two dataframes
vi_df = vi_registry_df.join(vi_cases_df, how="inner", lsuffix="_registry")
```

1.7.3 Volume VIId

This volume covers a period from 1983 till 1994. It has a different format than the previous two.

```
[5]: viid_registry_df = pd.read_csv("CI5/CI5-VIId/registry.txt", index_col=0,__
      →names=["REGISTRY", "NAME"])
     viid_cases_df = pd.read_csv("CI5/CI5-VIId/CI5VII.csv", names=["REGISTRY", ]
     → "SEX", "CANCER_NUMBER", "AGE", "CASES_COUNT", "PERSON_YEARS"])
     # remove the first row as it is a broken header
     viid_registry_df = viid_registry_df[1:]
     # Extract years from NAME column using Regex
     viid_registry_df = viid_registry_df["NAME"].str.extract(r"(.
      \rightarrow+)\s+\((\\d+)-(\\d+)\)", expand=True) \
                                                   .rename(columns= {1: "PERIOD_1", 2:__
     →"PERIOD_2"})
     # We have different AGE codes in this file, so we need to convert it to the
      \rightarrowstandard form
     AGE GROUP_CODES MAPPING = {1: "NO 4", 2: "N5 9", 3: "N10 14", 4: "N15 19", 5:
      \rightarrow "N20_24", 6: "N25_29", 7: "N30_34",
                                 8: "N35_39", 9: "N40_44", 10: "N45_49", 11: __
      \hookrightarrow "N50_54", 12: "N55_59", 13: "N60_64",
                                 14: "N65_69", 15: "N70_74", 16: "N75_79", 17: __
      →"N80_84", 18: "N85+", 19: "N_UNK"}
     viid_cases_df["AGE"].replace(AGE_GROUP_CODES_MAPPING, inplace=True)
```

```
# Convert a values in AGE to columns with agregated values from CASES_COUNT, __
\rightarrowreset the index to REGISTRY
viid_cases_df = viid_cases_df.groupby(["REGISTRY", "AGE"])["CASES_COUNT"].sum().
→to frame().reset index() \
                              .pivot(index="REGISTRY", columns="AGE", __
→values="CASES COUNT")
# Convert registry ID to int to be compatible with viid cases df's index to be
\rightarrow able to join it
viid_registry_df.index = viid_registry_df.index.astype(int)
# it uses a registry ID as a primary key to join two dataframes
viid_df = viid_registry_df.join(viid_cases_df, how="inner", lsuffix="_registry")
# join two fields with start and end years into one field PERIOD in a formatu
→ "1995−1998"
viid_df["PERIOD"] = viid_df["PERIOD_1"].astype(str) + '-' + viid_df["PERIOD_2"].
→astype(str)
# remove columns with irrelevant information
viid_df.drop(columns=[0, "PERIOD_1", "PERIOD_2"], inplace=True)
viid_df = viid_df.groupby("PERIOD").sum()
# viid_df # uncomment to display data for this volume
```

1.7.4 Volume VIIId

This volume covers a period from 1991 till 1998. It has a similar format that the previous one. Except it has slightly different registry.txt format.

```
# Convert a values in AGE to columns with agregated values from CASES_COUNT,_{\sqcup}
→reset the index to REGISTRY
viiid_cases_df = viiid_cases_df.groupby(["REGISTRY", "AGE"])["CASES_COUNT"].
→sum().to frame().reset index() \
                               .pivot(index="REGISTRY", columns="AGE",_
→values="CASES COUNT")
# Convert registry ID to int to be compatible with viid cases df's index to be
\rightarrow able to join it
viiid_registry_df.index = viiid_registry_df.index.astype(int)
# It uses a registry ID as a primary key to join two dataframes
viiid_df = viiid_registry_df.join(viid_cases_df, how="inner",_
→lsuffix="_registry")
# Fix illegal values in the record for Taiwan
viiid_df.loc[81, "PERIOD_1"] = 1993
viiid_df.loc[81, "PERIOD_2"] = 1997
# join two fields with start and end years into one field PERIOD in a formatu
viiid_df["PERIOD"] = viiid_df["PERIOD_1"].astype(str) + '-' +

→viiid_df["PERIOD_2"].astype(str)
viiid_df = viiid_df.groupby(["PERIOD"]).sum()
# viiid_df # uncomment to display data for this volume
```

1.7.5 Volume IXd

This volume covers a period from 1996 till 2002. It uses a different data format when cancer cases from different registers stored in different files CI5/CI5-IXd/{registry_id}.csv.

```
df = pd.read_csv(f"CI5/CI5-IXd/{registry}.csv", names=["SEX",_
→ "CANCER_NUMBER", "AGE", "CASES_COUNT", "PERSON_YEARS"])
    df['REGISTRY'] = registry
    registry_dfs.append(df)
# Merge all register files into one dataframe
ixd_cases_df = pd.concat(registry_dfs)
# Use of AGE GROUP CODES MAPPING from the previous volume to convert AGE to the
\rightarrowstandard format
ixd_cases_df["AGE"].replace(AGE_GROUP_CODES_MAPPING, inplace=True)
# Convert a values in AGE to columns with agregated values from CASES COUNT, ...
→reset the index to REGISTRY
ixd_cases_df = ixd_cases_df.groupby(["REGISTRY", "AGE"])["CASES_COUNT"].sum().
→to frame().reset index() \
                           .pivot(index="REGISTRY", columns="AGE", __
→values="CASES COUNT")
# It uses a registry ID as a primary key to join two dataframes
ixd_df = ixd_registry_df.join(ixd_cases_df, how="inner", lsuffix="_registry")
# join two fields with start and end years into one field PERIOD in a formatu
→"1995-1998"
ixd_df["PERIOD"] = ixd_df["PERIOD_1"].astype(str) + '-' + ixd_df["PERIOD_2"].
→astype(str)
ixd_df = ixd_df.groupby("PERIOD").sum()
# ixd_df # uncomment to display data for this volume
```

1.7.6 Volume Xd

This volume covers a period from 2003 till 2007. It has a similar format that the previous one.

```
xd registry df = xd registry df["NAME"].str.extract(r"\s*(.*)\s*\((\d+)-(?:
\rightarrow \d+, \d+-)?(\d+))", expand=True) \
                                        .rename(columns= {0: "NAME", 1:__
→"PERIOD 1", 2: "PERIOD 2"})
# Load case record files for each registry and append it to registry_dfs array
registry_dfs = []
for registry in xd_registry_df.index:
    df = pd.read_csv(f"CI5/CI5-Xd/{registry}.csv", names=["SEX", ]
→ "CANCER_NUMBER", "AGE", "CASES_COUNT", "PERSON_YEARS"])
    df['REGISTRY'] = registry
    registry_dfs.append(df)
# Merge all register files into one dataframe
xd_cases_df = pd.concat(registry_dfs)
# Use of AGE GROUP CODES MAPPING from the previous volume to convert AGE to the
\rightarrowstandard format
xd_cases_df["AGE"].replace(AGE_GROUP_CODES_MAPPING, inplace=True)
# Convert a values in AGE to columns with agregated values from CASES_COUNT, __
→reset the index to REGISTRY
xd_cases_df = xd_cases_df.groupby(["REGISTRY", "AGE"])["CASES_COUNT"].sum().
→to_frame().reset_index() \
                         .pivot(index="REGISTRY", columns="AGE", __
→values="CASES COUNT")
# It uses a registry ID as a primary key to join two dataframes
xd_df = xd_registry_df.join(xd_cases_df, how="inner", lsuffix="_registry")
# join two fields with start and end years into one field PERIOD in a formatu
→"1995-1998"
xd_df["PERIOD"] = xd_df["PERIOD_1"].astype(str) + '-' + xd_df["PERIOD_2"].
→astype(str)
xd_df = xd_df.groupby(["PERIOD"]).sum()
# xd df # uncomment to display data for this volume
```

1.7.7 Volume XI

The is the latest volume covers the period from 2008 till 2012. Technicaly, it differs from the previous one, uses the format of the old volumes.

[9]:

```
# A file CI5/CI5-XI/registry.txt contains unicode errors which cause error when
     →read it directly with pd.read_table()
     with codecs.open("CI5/CI5-XI/registry.txt", 'r', 'utf8', errors="ignore") as ff:
         content = ff.read()
     # Here we have one file cases.csv as in the older volumes
     xi_cases_df = pd.read_csv("CI5/CI5-XI/cases.csv", index_col=0)
     # load a dataframe from the string
     xi_registry_df = pd.read_table(io.StringIO(content), names=["REGISTRY",__
     →"NAME"], index_col=0)
     # Extract years from index column using Regex
     xi_registry_df = xi_registry_df ["NAME"].str.extract(r"\s*(.*)\s*\((\d+)-(?:
     \rightarrow \d+, \d+-)?(\d+))", expand=True)
                                            .rename(columns= {0: "NAME", 1:

¬"PERIOD_1", 2: "PERIOD_2"})
     # It uses a registry ID as a primary key to join two dataframes
     xi df = xi registry df.join(xi cases df, how="inner")
     # join two fields with start and end years into one field PERIOD in a formation
     →"1995-1998"
     xi_df["PERIOD"] = xi_df["PERIOD_1"].astype(str) + '-' + xi_df["PERIOD_2"].
     →astype(str)
     xi_df = xi_df.groupby(["PERIOD"]).sum()
     # remove columns with irrelevant information
     xi_df.drop(columns=["SEX", "CANCER", "TOTAL"], inplace=True)
     # rename column names to a standard form
     xi_df.rename(columns={"N85": "N85+", "N_unk": "N_UNK"}, inplace=True)
     xi_df # uncomment to display data for this volume
[9]:
                          N5_9 N10_14 N15_19
                                                 N20_24
                                                          N25_29
                                                                   N30_34
                                                                            N35_39 \
                  NO_4
    PERIOD
     2008-2010
                  2968
                          1836
                                  2185
                                          3431
                                                   5510
                                                            9183
                                                                    16297
                                                                             26210
     2008-2011
                  3214
                          2128
                                  2458
                                          4190
                                                   6598
                                                           10270
                                                                    16791
                                                                              25768
     2008-2012 576497 316520
                               360096 616826 1009808 1668276 2502076
                                                                           3846737
     2009-2012
                  1457
                           923
                                   788
                                          1091
                                                   2033
                                                            3412
                                                                     5382
                                                                              9710
                                  2130
     2010-2012
                  3476
                          2066
                                          3664
                                                   6004
                                                            9533
                                                                    15538
                                                                             26414
                                     N50 54
                                                         N60 64
                                                                   N65 69 \
                N40 44
                           N45 49
                                               N55 59
    PERIOD
```

42112	64684	91679	122790	152408	170535
40062	57353	74387	91680	109691	119287
6424317	10846346	16649330	21674567	26731500	28442059
15544	22488	26932	31540	28810	24950
40305	55808	64853	86721	91006	87554
N70_74	N75_79	N80_84	N85+	N_UNK	
182327	175222	135807	104538	40	
124641	118886	90191	70509	286	
26336103	23251412	18620115	16506503	5125	
25406	21251	13296	8077	3	
95233	84927	59034	36363	1050	
	40062 6424317 15544 40305 N70_74 182327 124641 26336103 25406	40062 57353 6424317 10846346 15544 22488 40305 55808 N70_74 N75_79 182327 175222 124641 118886 26336103 23251412 25406 21251	40062 57353 74387 6424317 10846346 16649330 15544 22488 26932 40305 55808 64853 N70_74 N75_79 N80_84 182327 175222 135807 124641 118886 90191 26336103 23251412 18620115 25406 21251 13296	40062 57353 74387 91680 6424317 10846346 16649330 21674567 15544 22488 26932 31540 40305 55808 64853 86721 N70_74 N75_79 N80_84 N85+ 182327 175222 135807 104538 124641 118886 90191 70509 26336103 23251412 18620115 16506503 25406 21251 13296 8077	40062 57353 74387 91680 109691 6424317 10846346 16649330 21674567 26731500 15544 22488 26932 31540 28810 40305 55808 64853 86721 91006 N70_74 N75_79 N80_84 N85+ N_UNK 182327 175222 135807 104538 40 124641 118886 90191 70509 286 26336103 23251412 18620115 16506503 5125 25406 21251 13296 8077 3

1.7.8 Save results

2008-2010

Merge data from all volumes and save to onle intermediate CSV file that serve as a source for the further stages. This file is relatively small and can be cached, so there is no need to run Preprocessing stage more than once.

```
[10]: df = pd.concat([v_df, vi_df, viid_df, viiid_df, ixd_df, xd_df, xi_df])
      df.to_csv("dataset.csv")
      df
[10]:
                             N5 9
                                    N10 14 N15 19
                                                       N20 24
                                                                           N30 34
                                                                                     N35 39
                    NO 4
                                                                 N25 29
      PERIOD
                                60
                                         83
                                                109
                                                                     225
                                                                                         458
      1973-1982
                      104
                                                           191
                                                                              317
      1977-1981
                    25561
                            17852
                                      14268
                                              21619
                                                        26581
                                                                  45167
                                                                            71753
                                                                                      73766
      1978-1978
                      655
                               357
                                        278
                                                 460
                                                           713
                                                                     953
                                                                             1440
                                                                                       1973
      1978-1979
                       66
                                72
                                         64
                                                  72
                                                           144
                                                                     331
                                                                              516
                                                                                       1010
                       93
                                         29
                                                 57
                                                            89
                                                                              454
                                                                                        666
      1978-1980
                                53
                                                                     198
      2008-2010
                     2968
                              1836
                                      2185
                                               3431
                                                         5510
                                                                   9183
                                                                            16297
                                                                                      26210
      2008-2011
                              2128
                                      2458
                                                                  10270
                    3214
                                               4190
                                                         6598
                                                                            16791
                                                                                      25768
      2008-2012
                  576497
                           316520
                                    360096
                                             616826
                                                      1009808
                                                                1668276
                                                                          2502076
                                                                                    3846737
      2009-2012
                               923
                                        788
                     1457
                                               1091
                                                         2033
                                                                   3412
                                                                             5382
                                                                                       9710
      2010-2012
                    3476
                              2066
                                      2130
                                               3664
                                                         6004
                                                                   9533
                                                                            15538
                                                                                      26414
                   N40_{44}
                               N45_49
                                          N50_54
                                                     N55_59
                                                                N60_64
                                                                           N65_69
      PERIOD
      1973-1982
                       613
                                  964
                                            1339
                                                       1640
                                                                  2028
                                                                             2468
                                                                356729
      1977-1981
                    102870
                               155290
                                          220232
                                                     311157
                                                                           530518
      1978-1978
                      3098
                                 4711
                                            5979
                                                       6000
                                                                  6414
                                                                             5975
      1978-1979
                                            2608
                                                                             7089
                      1501
                                 1821
                                                       3937
                                                                  3884
      1978-1980
                      1025
                                 1405
                                            1785
                                                       1932
                                                                  2110
                                                                             2443
```

2008-2011	40062	57353	74387	91680	109691	119287
2008-2012	6424317	10846346	16649330	21674567	26731500	28442059
2009-2012	15544	22488	26932	31540	28810	24950
2010-2012	40305	55808	64853	86721	91006	87554
	N70_74	N75_79	N80_84	N85+	N_UNK	
PERIOD						
1973-1982	2722	2366	2226	1513	0	
1977-1981	533940	402069	235849	134159	12506	
1978-1978	4963	3446	1795	902	4200	
1978-1979	8291	7130	4935	2986	0	
1978-1980	2057	1693	961	379	52	
•••	•••	•••		•••		
2008-2010	182327	175222	135807	104538	40	
2008-2011	124641	118886	90191	70509	286	
2008-2012	26336103	23251412	18620115	16506503	5125	
2009-2012	25406	21251	13296	8077	3	
2010-2012	95233	84927	59034	36363	1050	

[84 rows x 19 columns]

1.8 Processing

At this stage I no longer touch the raw CI5 files. The only source of the information is a dataset we generated at the previous stage: dataset.csv. Each row in this dataset is a time period (from_year-till_year). Each column of this dataset is a partient's age group (N0_4, N5_9, etc.) This format reflects the original form of the data. In the raw CI5 files we did not have a breakdown by year, but there were periods of several years. Some periods overlap each other.

This data format is difficult to visualize and analyze because we don't have information for every specific year. The goal of this stage is to recast the existing dataset to a form suitable for analysis at the next stage. For this purpose, I decided to apply a very simple interpolation. If we have the number of cases over a period of several years, then we simply divide this number by the number of years and take into account the quotient for each year in the period: $Y_i = \frac{C}{i_{max} - i_{min}}$ where C is a total number of cases in a period, Y_i is the numer of cases for a specific year in a period.

```
[11]: # Check if the dataset is ready
assert os.path.exists("dataset.csv"), "dataset.csv does not exists, please run

→Preprocessing stage"

df = pd.read_csv("dataset.csv", index_col=0)

# Get a number of years covered by each period, it is inclusive, i.e. 2001-2003

→= 3 years
years = df.index.str.extract("(\d+)-(\d+)", expand=True)
years_count = (years[1].astype(int) - years[0].astype(int) + 1)
years_count.set_axis(df.index, inplace=True)
```

1.9 Data validation

Let's check the resulting dataset:

```
[12]: df.head()
             N0_4 N5_9 N10_{14} N15_{19} N20_{24} N25_{29} N30_{34} N35_{39} N40_{44}
[12]:
      YEAR
      1973
               10
                      6
                               8
                                       10
                                                19
                                                        22
                                                                 31
                                                                          45
                                                                                   61
      1974
               10
                       6
                               8
                                       10
                                                19
                                                        22
                                                                 31
                                                                          45
                                                                                   61
      1975
               10
                       6
                               8
                                       10
                                                19
                                                        22
                                                                 31
                                                                          45
                                                                                   61
      1976
               10
                       6
                               8
                                       10
                                                19
                                                        22
                                                                 31
                                                                          45
                                                                                   61
      1977 5122 3576
                            2861
                                     4333
                                             5335
                                                      9055
                                                              14381
                                                                       14798
                                                                               20635
             N45_49 N50_54 N55_59 N60_64 N65_69 N70_74 N75_79 N80_84
                                                                                    N85+ \
      YEAR
      1973
                 96
                         133
                                          202
                                                   246
                                                            272
                                                                     236
                                 164
                                                                             222
                                                                                     151
      1974
                 96
                         133
                                 164
                                          202
                                                   246
                                                            272
                                                                     236
                                                                             222
                                                                                     151
      1975
                 96
                         133
                                 164
                                          202
                                                   246
                                                            272
                                                                     236
                                                                             222
                                                                                     151
      1976
                 96
                         133
                                 164
                                          202
                                                   246
                                                            272
                                                                     236
                                                                             222
                                                                                     151
      1977
                      44179
                               62395
                                        71547 106349 107060
                                                                  80649
                                                                           47391 26982
              31154
             N_UNK
      YEAR
      1973
                 0
      1974
                 0
      1975
                 0
      1976
                 0
      1977
              2501
```

```
df.tail()
[13]:
                      N5_9
                             N10 14
                                     N15 19
                                              N20 24
                                                       N25 29
                                                                N30 34
                                                                         N35 39
                                                                                   N40 44
[13]:
               NO_4
      YEAR
      2008
             117091
                     64448
                              73361
                                      125555
                                               205446
                                                       339283
                                                                510044
                                                                         784525
                                                                                  1308915
      2009
             117455
                     64678
                              73558
                                      125827
                                               205954
                                                       340136
                                                                511389
                                                                         786952
                                                                                  1312801
      2010
             118613
                     65366
                              74268
                                      127048
                                               207955
                                                       343313
                                                                516568
                                                                         795756
                                                                                  1326236
      2011
             117624
                     64754
                              73540
                                      125905
                                               206119
                                                       340252
                                                                511136
                                                                         787020
                                                                                  1312199
      2012
             116821
                     64222
                              72926
                                      124858
                                               204470
                                                       337685
                                                                506939
                                                                         780578
                                                                                  1302184
              N45 49
                                                               N70 74
                                                                         N75_79
                       N50 54
                                 N55 59
                                           N60 64
                                                     N65 69
                                                                                   N80 84
      YEAR
      2008
             2205168
                       3379021
                                4398763
                                          5424524
                                                    5775077
                                                              5359155
                                                                        4738410
                                                                                  3791839
      2009
             2210790
                       3385754
                                4406648
                                          5431726
                                                    5781314
                                                              5365506
                                                                        4743722
                                                                                  3795163
      2010
             2229392
                       3407371
                                4435555
                                          5462061
                                                    5810498
                                                              5397250
                                                                        4772031
                                                                                  3814841
      2011
             2207831
                       3376812
                                4394625
                                          5411259
                                                    5753653
                                                              5336475
                                                                        4713624
                                                                                  3769572
      2012
             2193493
                       3358216
                                4371705
                                                    5723832
                                                              5305315
                                                                        4683903
                                          5383837
                                                                                 3747025
                      N_UNK
                N85+
      YEAR
      2008
             3353773
                        1109
      2009
             3355792
                        1109
      2010
             3367913
                        1459
      2011
             3333067
                        1446
      2012
             3315440
                        1375
```

It seems pretty legit. Except that the records of the first years have noticeably lower values. This data comes from the first volume (V). I've checked the original data and came to a conclusion that this is a feature of the dataset and not a processing error. Let's check the bound values for years:

```
[14]: (df.index.min(), df.index.max())
```

[14]: (1973, 2012)

So this resulting dataset covers a period from 1973 till 2012. Let's check the bound values for number of cases:

```
[15]: pd.concat([df.max().rename("MAX"), df.min().rename("MIN")], axis=1)
```

```
[15]:
                    MAX
                         MIN
      NO_4
                 149862
                           10
      N5_9
                  85460
                            6
      N10_14
                  97611
                            8
      N15_19
                154913
                           10
      N20_24
                237795
                           19
      N25 29
                360237
                           22
      N30_34
                 553254
                           31
      N35_39
                855754
                           45
```

```
N40 44
        1437484
                   61
N45_{49}
        2262419
                   96
N50_54
        3407371
                  133
N55_59
        4435555
                  164
N60_64
        5462061
                  202
N65_69
        5810498
                  246
N70_74
        5559138
                  272
N75_79
        5370255
                  236
N80 84
        4088752
                  222
N85+
         3367913
                  151
N_UNK
           23178
                     0
```

Fortunately, no extreme big or negative values in the dataset. All looks pretty legit. Let's check the distribution of cancer cases by age groups:

```
[16]: df.sum().plot(kind="bar", figsize=(15,7), ylabel="Number of cases", title="Numer of cancer cases by age groups", fontsize=16)
```

[16]: <AxesSubplot:title={'center':'Numer of cancer cases by age groups'},
 ylabel='Number of cases'>

Here we see a picture very similar to Figure 1. Invasive cancer incidence, by age, U.S., 2009 [2]. Cancer incidence rises rapidly with age. This also confirms the veracity of the dataset since is has the same property.

1.10 Analysis

Let's visualize dynamics of the total number of registered cancer cases in the world:

```
[17]: total_cases = df.sum(axis=1)
total_cases.plot(kind="bar", logy="sym", figsize=(15,7), ylabel="Number of

→cases",

title="Numer of cancer cases reported in CI5 dataset",

→fontsize=16)
```


As we can see from this graph, the number of reported cancer cases increases in steps over time. Remember, our dataset consists of individual reports (volumes) that were published at different times. Different reports had different coverage of regions. These steps show the boundaries of different volumes. As we can see, over time the coverage has improved and this was reflected in more reported cases on the right side of the graph. Unfortunately, due to this feature, we cannot rely on absolute values in our dataset.

Let's visualize dynamics of registered cancer cases in the world in younge adults in the recent decades:

```
[18]: young_adults_cases = df["N15_19"] + df["N20_24"] + df["N25_29"] + df["N30_34"]_

→+ df["N35_39"] + df["N40_44"]

young_adults_cases.plot(kind="bar", logy="sym", figsize=(15,7), ylabel="Number_

→of cases", fontsize=16,

title="Numer of cancer cases reported in CI5 dataset for_

→15-44 years old patients")
```


Here we see almost the same figure as previous one. From this we can conclude that more cases of cancer have been reported among younger patients in recent decades. However, this feature of the dataset may not reflect the actual dynamics. To better understand this data, you need to look at relative numbers.

Let's visualize dynamics of the percentage of young people among all cases in the recent decades.

```
[19]: (young_adults_cases / total_cases * 100).plot(figsize=(15,7), ylabel="%", □

→fontsize=16,

title="Percentage of 15-44 years old □

→patients among all reported cancer cases")
```

[19]: <AxesSubplot:title={'center':'Percentage of 15-44 years old patients among all reported cancer cases'}, xlabel='YEAR', ylabel='%'>

The graph shows that the percentage of young patients among all recorded cancer cases is around 9% and not very volatile over time. There is no trend for a significant increase in the proportion of young patients in recent years.

1.11 Conclusion

In the reviewed literature, there is evidence of an increase in the incidence of cancer among young patients in some regions, in particular in the USA. The aim of this project was to analyze the data for the entire world to understand whether such a trend is taking place worldwide, or if it is a local phenomenon. After analyzing the data, I came to the conclusion that on a global scale there is no trend towards an increase in the proportion of young people among all cases of cancer. This result may mean that the causes for the increase in cancer cases in the considered regions are of a local nature and are not the result of any global changes, such as climate change.

1.12 References

- [1] "What Is Cancer?" by National Cancer Institute (2021, May 5) [Online]. Available: https://www.cancer.gov/about-cancer/understanding/what-is-cancer
- [2] "Age and Cancer Risk" Am J Prev Med. 2014 Mar; $46(3\ 0\ 1)$: S7–15. [Online]. Available: https://doi.org/10.1016/j.amepre.2013.10.029
- [3] "Childhood Cancers" by National Cancer Institute (2021, April 12) [Online]. Available: https://www.cancer.gov/types/childhood-cancers
- [4] "The Challenging Landscape of Cancer and Aging: Charting a Way Forward" by Norman E. Sharpless, M.D. (2018, January 24) [Online]. Available: https://www.cancer.gov/news-events/cancer-currents-blog/2018/sharpless-aging-cancer-research
- [5] di Martino, E., Smith, L., Bradley, S.H. et al. Incidence trends for twelve cancers in younger adults—a rapid review. Br J Cancer 126, 1374–1386 (2022). [Online]. Available: https://doi.org/10.1038/s41416-022-01704-x

- [6] Scott AR, Stoltzfus KC, Tchelebi LT, et al. Trends in Cancer Incidence in US Adolescents and Young Adults, 1973-2015. JAMA Netw Open. 2020;3(12):e2027738. [Online]. Available: https://doi.org/10.1001/jamanetworkopen.2020.27738
- [7] Cancer Stat Facts: Cancer Among Adolescents and Young Adults (AYAs) (Ages 15–39) by National Cancer Institute (2022) [Online]. Available: https://seer.cancer.gov/statfacts/html/aya.html
- [8] CI5: CANCER INCIDENCE IN FIVE CONTINENTS by International Agency for Research on Cancer (IARC) [Online]. Available: https://ci5.iarc.fr/Default.aspx