Проект№2.

Срок сдачи проекта – конец семестра (28 мая)

Варианты распределены случайно в списках групп на https://docs.google.com/spreadsheets/d/1keseC9l_v42i5t99emtL1ksOVIYb1ulUJcgZFTxvilg/edit#gid=19 70457069 в столбце G.

Вариант можно поменять, попросив преподавателя практики изменить вариант в списке.

Contents

Вариант 1. Задача о распределении тепла в стержне	2
Вариант 2. Диффузия	10

Вариант 1. Задача о распределении тепла в стержне

Общее задание:

- 1) Ознакомиться с предложенной моделью, написать основные уравнения, описывающие модель
- Выбрать разностную схему (метод Эйлера или модифицированный метод Эйлера),
 выбрать шаг по времени и пространственный шаг интегрирования уравнения, обосновать выбор (см. проект №1)
- 3) Провести численный эксперимент, описанный в задании
- 4) Изобразить результат графически

ЗАДАНИЕ

Рассмотреть динамику изменения температуры в стержне длиной / с теплоизолированными концами, на которых поддерживается постоянная температура

$$u_i^k|_{i=0} = \widetilde{u}_0 = a \circ C$$
 \mathbf{H} $u_i^k|_{i=1} = \widetilde{u}_L = b \circ C$,

Начальное распределение температуры в стержне при t=0:

$$u_i^k\Big|_{k=0} = u_i^{(0)} = f(x_i).$$

Провести численный эксперимент для различных параметров задачи: длины стержня, коэффициента температуропроводности (в диапазоне от 0 до 1).

Построить графики изменения распределения температуры в стержне по временным слоям.

Температура на концах и начальное распределение для каждого подварианта даны в таблице (подвариант — указан в столбце F в таблице https://docs.google.com/spreadsheets/d/1keseC9l_v42i5t99emtL1ksOVIYb1ulUJcqZFTxvilg/edit#gid=19 70457069, можно обратиться к преподавателю практики для выяснения подварианта).

Проект можно делать в группах по 2 человека, в общий отчет на двоих нужно включить два подварианта (один на каждого из студентов).

Номер варианта	Длина <i>l</i> (м)	\widetilde{u}_{0}	$\widetilde{u}_{\scriptscriptstyle L}$	$f(x_i)$
1	4	3	-1	$-0.25 x_i^2 + 3$
2	8	3	-5	$-0.125 x_i^2 + 3$
3	4	-1	3	$0,25 x_i^2 - 1$
4	8	-1	15	$0,25 x_i^2 - 1$
5	8	0	1	$sin(x_i)$
6	8	3	1	$sin(x_i)$
7	8	0	0,5	$sin(x_i)/2$
8	10	2	-1	$cos(x_i)$
9	10	0,5	-1	$sin(x_i/2)$
10	8	0	-0,75	$sin(x_i)/2$
11	8	0,5	0,5	$cos(x_i)/2$
12	10	1	0	$cos(x_i/2)$
13	4	1	-0,4	$cos(x_i)/2$
14	8	1	-0,5	$cos(x_i/2)$
15	10	0	-0,5	$sin(x_i)$
16	10	0	1	$sin(2x_i)$
17	8	0	0,5	$sin(2x_i)$
18	10	0	-0,5	$sin(x_i)/4$
19	8	-1	2,2	0,05 x _i ² - 1
20	4	-1	0,6	0,1 x _i ² -1
		1		1

Литература:

Практикум по компьютерному математическому моделированию. Часть II: Компьютерное моделирование физических процессов: учебно-методическое пособие / О. А. Широкова — Казань: КФУ, 2015. — 85с.

Бурляев В.В. Численные методы в примерах на ЕХСЕL. МИТХТ, 1999, с. 60-63.

Уравнение распределения тепла в стержне. Вывод.

Рассмотрим однородный стержень (под стержнем в механике понимается тело с одним превалирующим линейным размером, например, столб можно рассматривать как стержень с переменным сечением) постоянного поперечного сечения S и длины I, теплоизолированный с боков, ось которого примем за ось Ox. Обозначим через U(x,t), $0 \le x \le l, 0 \le t \le +\infty$ температуру стержня в сечении с абсциссой x в момент времени t (предполагается, что во всех точках любого поперечного сечения стержня температура одна и та же.

Выберем ось x (направив ее по оси стержня) так, чтобы стержень совпадал с отрезком [0;l] оси x.

Вывод уравнения теплопроводности основан на следующих физических предпосылках:

- 1) Количество тепла, которое необходимо сообщить однородному телу, чтобы повысить его температуру на ΔU , равно
- (1) $C \cdot \rho \cdot V \cdot \Delta U$, где

V - объем тела, ρ - плотность, C - удельная теплоемкость.

2) Количество тепла, протекающее через поперечное сечение стержня за момент времени Δt , равно

(2)
$$-K \cdot A \cdot \frac{\partial U}{\partial x} \cdot \Delta t$$
, где

А - площадь поперечного сечения, К - коэффициент теплопроводности.

Знак минус объясняется тем, что тепло проходит от более нагретых участков к менее нагретым, т.е. против градиента температуры.

Выделим участок стержня между сечениями с координатами x и $x+\Delta x$ и составим для него уравнение теплового баланса.

Количество тепла, входящее через сечение с абсциссой x за время Δt , равно

$$-K\cdot A\cdot \frac{\partial U}{\partial x}\cdot \Delta t$$
.

Тепло, выходящее через сечение $x + \Delta x$ за это же время Δt , равно

$$-K\cdot A\cdot \Delta t\cdot \frac{\partial}{\partial x}U(x+\Delta x,t)=-K\cdot A\cdot \Delta t\cdot \frac{\partial}{\partial x}\bigg[U(x,t)+\frac{\partial U}{\partial x}\cdot \Delta x\bigg]=$$

$$= -K \cdot A \cdot \Delta t \cdot (\frac{\partial U}{\partial x} + \frac{\partial^2 U}{\partial x^2} \Delta x).$$

Взяв разность входящего и выходящего тепла, получим количество тепла, сообщаемое выбранному участку стержня за время Δt :

$$\Delta Q = -K \cdot A \cdot \frac{\partial U}{\partial x} \Delta t + K \cdot A \cdot \Delta t \cdot (\frac{\partial U}{\partial x} + \frac{\partial^2 U}{\partial x^2} \Delta x) = K \cdot A \cdot \frac{\partial^2 U}{\partial x^2} \Delta x \cdot \Delta t.$$

С другой стороны, за этот же промежуток времени температура изменяется на величину $\frac{\partial U}{\partial t} \Delta t$. Поэтому по формуле (1) сообщаемое количество тепла равно

$$\Delta Q = C \cdot \rho \cdot A \cdot \Delta x \cdot \frac{\partial U}{\partial t} \Delta t \quad (V = A \cdot \Delta x, \Delta U = \frac{\partial U}{\partial t} \Delta t).$$

Приравнивая полученные выражения для ΔQ и сокращая на общий множитель $A\cdot \Delta x\cdot \Delta t$,получим

$$C \cdot \rho \cdot \frac{\partial U}{\partial t} = K \cdot \frac{\partial^2 U}{\partial x^2}$$
 (3)

Введя обозначение $\frac{K}{C \cdot \rho} = a^2$, получим уравнение теплопроводности для однородного стержня без тепловых источников

$$\frac{\partial U}{\partial t} = a^2 \frac{\partial^2 U}{\partial x^2}$$
 (4)

Постоянную $a = \sqrt{\frac{K}{C \cdot \rho}}$ называют коэффициентом температуропроводности.

ЗАДАЧА О РАСПРЕДЕЛЕНИИ ТЕПЛА В СТЕРЖНЕ

Запишем уравнение теплопроводности для однородного стержня:

$$\frac{\partial u}{\partial t} = a^2 \cdot \frac{\partial^2 u}{\partial x^2} \tag{1}$$

Оно описывает процесс изменения температуры u(x,t) по времени и пространству. Для решения (1) необходимо знать распределение температуры u(x,t) в начальный момент времени t=0.

Начальное условие по t имеет вид:

$$u(x,0) = u\Big|_{t=0} = f(x)$$
 (2)

Для стержня необходимы краевые условия на его концах x=0 и x=l. Это условия теплообмена с окружающей средой.

Краевые условия по x:

$$u(0,t) = u|_{x=0} = \widetilde{u}_0, \dots u(l,t) = u|_{x=l} = \widetilde{u}_l$$
 (3)

Решить задачу о распределении тепла в стержне значит найти зависимость температуры от времени и координаты u(x,t).

ПРИМЕР РЕШЕНИЯ ЗАДАЧИ

Задача. Определение динамики изменения температуры в стержне

Определить динамику изменения температуры в стержне длиной 4 m с теплоизолированными концами, на которых поддерживается постоянная температура, равная 3 %. Начальное распределение температуры вдоль стержня задано: f(x) = -0.5x2 + 2x + 3. Коэффициент теплопроводности $a = 0.5 \ (a2 = 0.25)$

Решение

Длина стержня задана: 1=4. Разобьем этот отрезок на 4 равные части. Пусть $\Delta x=1$, тогда x0=0, x1=1, x2=2, x3=3, x4=4.

Функцию u(x,t) будем аппроксимировать в этих 5 узлах сетки по x. Рассмотрим разностную аппроксимацию производных u(x,t) по x. Аппроксимация первой производной в точке xi имеет вид:

$$\frac{\partial u}{\partial x}\Big|_{x=x_i} \approx \frac{u(x_{i+1}) - u(x_{i-1})}{2\Delta x}, \quad i = 1, n-1$$
(4)

Аппроксимация вторых производных по х имеет вид:

$$\left. \frac{\partial^2 u}{\partial x^2} \right|_{x=x} = \frac{u(x_{i+1}) - 2u(x_i) + u(x_{i-1})}{(\Delta x)^2} = \frac{u_{i+1} - 2u_i + u_{i-1}}{(\Delta x)^2}$$
 (5)

Так как в уравнении (1) есть производная по t: $(\frac{\partial u}{\partial t})$, для нее также необходима аппроксимация. Поэтому необходимо построить еще одну сетку – временную сетку по t.

Будем обозначать u_i^k - значение функции u(x,t) в k-м временном слое и в i-ом узле пространственной сетки. По t сетка равномерная и имеет шаг Δt . Для интегрирования по времени используем метод Эйлера. Температуру на новом временном слое для внутренних узлов выразим через температуру на предыдущем временном слое, т.е. u_i^{k+1} через u_i^k .

Запишем уравнение (1) для дискретной функции u_i^k :

$$\frac{\partial u_i^k}{\partial t} = a^2 \left(\frac{\partial^2 u_i^k}{\partial x_i^2} \right)$$

Обозначим правую часть уравнения (1) для дискретной функции u_i^k :

$$a^{2} \left(\frac{\partial^{2} u_{i}^{k}}{\partial x_{i}^{2}} \right) = f \left(u_{i}^{k} \left(t_{k}, x_{i} \right) \right)$$

Запишем метод Эйлера для функции u_i^{k+1} на новом временном слое k+1 с использованием аппроксимации (4):

$$u_{i}^{k+1} = u_{i}^{k} + \Delta t \cdot f(u_{i}^{k}(t_{k}, x_{i})) = u_{i}^{k} + \Delta t \cdot a^{2} \cdot \frac{\partial^{2} u_{i}^{k}}{\partial x_{i}^{2}} =$$

$$= u_{i}^{k} + \frac{a^{2} \cdot \Delta t}{(\Delta x)^{2}} (u_{i+1}^{k} - 2u_{i}^{k} + u_{i-1}^{k})$$

В итоге получим

$$u_i^{k+1} = u_i^k + \frac{a^2 \cdot \Delta t}{(\Delta x)^2} (u_{i+1}^k - 2u_i^k + u_{i-1}^k)$$
(6)

Это явная схема первого порядка по временным слоям k=0,1,2,... Она записана для внутренних точек сетки i=1,2,3 (не включает краевые точки $i=0,\ i=4$).

Начальное условие при k=0 имеет вид:

$$u_i^k \Big|_{k=0} = u_i^{(0)} = f(x_i) = -0.5x_i^2 + 2x_i + 3, \quad i = \overline{0.4}$$
 (7)

Краевые условия для точек i=0 и i=4:

$$u_i^k \Big|_{i=0} = \widetilde{u}_0 = 3;$$
 $u_i^k \Big|_{i=4} = \widetilde{u}_4 = 3; \qquad k = 0,1,2...$
(8)

Теперь необходимо двигаясь по временным слоям k, в каждой внутренней точке і вычислить значение u_i^k :

Шаги по длине стержня и по времени — Δx и Δt соответственно. Шаг по длине известен: Δx =1. Шаг Δt получим из условия устойчивости разностной схемы (6):

$$\frac{a^2 \cdot \Delta t}{(\Delta x)^2} \le \frac{1}{2} \tag{9}$$

Пусть, например:

$$\frac{a^2 \cdot \Delta t}{\left(\Delta x\right)^2} = 0,4,$$

тогда

$$\Delta t = \frac{0.4 \cdot 1}{0.25} = 1.6$$

Задача решается с помощью табличного процессора Excel.

На рабочем листе Excel расположим данные. В ячейке A5 запишем начальное значение t=0. В ячейке A6 запишем формулу для изменения t: =A5+1,6

	A6 ▼ f ₈ =A5+1,6								
	Α	В	С	D	Е	F			
1	dt	1,6	dx	1	a^2	0,25			
2									
3	Распределение температуры в стержне								
4	ť	. 0	1	2	3	4			
5	0	3	4,5	5	4,5	3			
6	1,6,	3	4,1	4,6	4,1	3			
7	3,2	3	3,86	4,2	3,86	3			
8	4,8	3	3,652	3,928	3,652	3			
9	6,4	3	3,5016	3,7072	3,5016	3			
10	8	3	3,3832	3,54272	3,3832	3			
11	9,6	3	3,293728	3,415104	3,293728	3			
12	11,2	3	3,224787	3,318003	3,224787	3			
13	12,8	3	3,172159	3,24343	3,172159	3			
14	14,4	3	3,131804	3,186413	3,131804	3			
15	16	3	3,100926	3,142726	3,100926	3 3			
16	17,6	3	3,077275	3,109286	3,077275	3			
17	19,2	3	3,059169	3,083678	3,059169	3			
18	20,8	3	3,045305	3,064071	3,045305	3			
19	22,4	3	3,034689	3,049058	3,034689	3 3			

В ячейке В5 запишем формулу для начального распределения температуры в стержне: = -0,5*B\$4^2 + 2* B\$4 + 3. Скопируем значение ячейки В5 в ячейки, В6:В20. Получим краевые условия на одном конце стержня. Скопируем значение ячейки F5 в ячейки F6:F20. Получим краевые условия на втором конце стержня:

Осталось заполнить поле распределения температуры во внутренних ячейках области — ячейках C6:E20. Для этого в ячейке C6 запишем формулу, соответствующую явной разностной схеме первого порядка (7): = $C5+(\$F\$1*\$B\$1/(\$D\$1^2))*(D5-2*C5+B5)$

Построим графики распределения температуры вдоль стержня по временным слоям.

тип диаграммы - Поверхность

Диаграмма теплопроводности

В результате получим: в начальный момент времени температура в стержне распределена в виде параболы. С течением времени температура выравнивается и становится такой же, как на концах.

Вариант 2. Диффузия

Общее задание:

- 1) Ознакомиться с предложенной моделью, написать основные уравнения, описывающие модель и найти аналитическое решение
- 2) Выбрать разностную схему, выбрать шаг по времени и пространственный шаг интегрирования уравнения, обосновать выбор (см. проект №1)
- 3) Провести численный эксперимент, самомтоятельно выбрать коэффициент диффузии (выбрать газ и найти к-т диффузии для него), размер сосуда и координаты перегородки.
- 4) Изобразить результат графически

Задание. Есть сосуд с перегородкой, заполненный воздухом при нормальных условиях. Примесный газ A с начальной концентрацией C_0 находится в одной части сосуда, между плоскостями x = 0 и x = h (h -координата перегородки). Перегородку убрали и газ A начал диффундировать в область, ограниченную плоскостями x = h и x = I (I > h). Исследовать процесс диффузии - изменения концентрации газа A.

Литература: В. Н. Осташков. Практикум по решению инженерных задач математическими методами: учебное пособие. — Тюмень: ТюмГНГУ, 2010. — 204 с., с. 80.

Решение 1 (аналитическое). Задача сводится к решению уравнения в частных производных:

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial r^2} \tag{1}$$

при краевых условиях

$$\left. \frac{\partial C(x,t)}{\partial x} \right|_{x=0} = 0,\tag{2}$$

$$\left. \frac{\partial C(x,t)}{\partial x} \right|_{x=l} = 0,\tag{3}$$

$$C(x,0) = \begin{cases} C_0, & x \in [0, h], \\ 0, & x \in [h, l]. \end{cases}$$
 (4)

При данных условиях решением уравнения (1) является функция

$$C(x,t) = 2C_0(\frac{h}{2l} + \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{1}{k} \sin \frac{k\pi h}{l} \cos \frac{k\pi x}{l} e^{-Dk^2 \pi^2 t/l^2}).$$
 (5)

На рис. 87а представлен график этой функции при l = 2h. ■

Решение 2 (численное). Решение будем искать в прямоугольнике Π , ограниченном прямыми t=0, x=0, x=l, t=T. При этом должны быть заданы значения искомой функции C на стороне t=0.

Покроем П сеткой, образованной прямыми x = ip, i = 1..n, t = jq, j = 1..k, и будем определять приближенные значения решения в узлах (i, j) сетки, т.е. в точках пересечения этих прямых. Положим $C(ip, jq) = c_{ij}$. Вместо (1) запишем соответствующее ему уравнение в конечных разностях для точки c_{ij} . При решении уравнений в частных производных методом конечных разностей производные заменяются соответствующими разностями:

$$\frac{\partial C(x,t)}{\partial t} \approx \frac{C(x,t+q) - C(x,t)}{q},\tag{6}$$

$$\frac{\partial^2 C(x,t)}{\partial x^2} \approx \frac{1}{p} \left(\frac{C(x+p,t) - C(x,t)}{p} - \frac{C(x,t) - C(x-p,t)}{p} \right). \tag{7}$$

Согласно (6), (7),

$$\frac{c_{i,j+1}-c_{i,j}}{q} = D \frac{c_{i+1,j}-2c_{i,j}+c_{i-1,j}}{p^2}.$$
 (8)

Из (8) следует:

$$c_{i,j+1} = (1 - 2Dq/p^2)c_{i,j} + Dq(c_{i+1,j} + c_{i-1,j})/p^2.$$
 (10)

Из (10) следует, что если известны три значения в j-м ряду: $c_{i-1,j}$, $c_{i,j}$, $c_{i+1,j}$, то определяется значение $c_{i,j+1}$ в следующем ряду. Формула (10) упрощается, если $q = p^2/(2D)$. Тогда

$$c_{i,j+1} = \frac{1}{2}(c_{i+1,j} + c_{i-1,j}). \tag{11}$$

Для выполнения условий (2), (3) мы сначала вычислим значения $c_{i,\ j+1}$ для i=2..n-1, а затем положим

$$c_{1,j+1} = \frac{1}{2}(c_{1,j} + c_{2,j+1}),$$

$$c_{n,j+1} = \frac{1}{2}(c_{n,j} + c_{n-1,j+1}).$$

Одно из приближенных решений при l = 2h, n = 100, k = 8000 наглядно представлено графиком на рис. 876. Сравнивая графики аналитического и численного решений, мы видим, что они мало разнятся между собой. \blacksquare

Рис. 87. 3D-график функции C(x, t) концентрации диффундирующего растворённого вещества из раствора в растворитель: а) график, полученный по формуле (5); б) график, построенный посредством численного моделирования.

Пример реализации в Excel

4	Α	В	С	D	Е	F	G	н	1	J	K
1	вначале газ в одной половинке, открыли заслонку, по глубине со временем происходит диффузия										
2	dt =	1	dx =	1	D	0.25	k = ((D * dt) / (d	x)^2) <=	0.25	
3											
4											
5	t\x	1	2	3	4	5	6	7	8	9	10
6	1	100	100	100	0	0	0	0	0	0	0
7	2	100	100	75	25	0	0	0	0	0	0
8	3	96.875	93.75	68.75	31.25	6.25	0	0	0	0	0
9	4	92.5781	88.2813	65.625	34.375	10.9375	1.5625	0	0	0	0
10	5	88.1348	83.6914	63.4766	36.3281	14.4531	3.51563	0.39063	0	0	0
11	6	83.9417	79.7485	61.7432	37.6465	17.1875	5.46875	1.07422	0.09766	0	0
12	7	80.1186	76.2955	60.2203	38.5559	19.3726	7.2998	1.92871	0.31738	0.02441	0.01221
13	8	76.6755	73.2325	58.823	39.1762	21.1502	8.97522	2.86865	0.64697	0.0946	0.05341
14	9	73.5832	70.4909	57.5137	39.5814	22.613	10.4923	3.83987	1.0643	0.2224	0.1379
15	10	70.8014	68.0196	56.2749	39.8224	23.8249	11.8594	4.80909	1.54772	0.41175	0.27483
16	11	68.2902	65.7789	55.0979	39.9361	24.8329	13.0882	5.75632	2.07907	0.66151	0.46817
17	12	66.0133	63.7365	53.9777	39.9508	25.6725	14.1914	6.66997	2.64399	0.96756	0.71787
18	13	63.9397	61.866	52.9107	39.8879	26.3718	15.1813	7.54383	3.23138	1.32425	1.02106
19	14	62.0426	60.1456	51.8938	39.7646	26.9532	16.0696	8.37509	3.83271	1.72523	1.37314
20	15	60.2998	58.5569	50.9245	39.5941	27.4351	16.8669	9.16312	4.44144	2.16408	1.76861
21											

В7 и весь столбец:

К7 и весь столбец:

С7 и все ячейки, залитые серым:

Графики концентрации от времени для разных координат.

Графики концентрации от координаты в разные моменты времени

