Multi-Task and Transfer Learning in Low-Resource Speech Recognition

Joshua Meyer

PhD Candidate
Department of Linguistics
University of Arizona

Roadmap

- Overview of Transfer Learning
 - Multi-Task Learning
 - Copy-Paste Transfer
- Multi-Task Learning Studies
 - Linguistic Tasks
 - Engineered Tasks
 - Discovered Tasks
- Copy-Paste Transfer Studies
 - Multilingual Transfer
 - Model Interpretability
- Conclusion

Introduction

Motivation

Current training methods for automatic speech recognition require massive collections of data.

However, most use-cases have little — if any — available data.

Motivation

Current training methods for automatic speech recognition require massive collections of data.

However, most use-cases have little — if any — available data.

Motivation

Current training methods for automatic speech recognition require massive collections of data.

However, most use-cases have little — if any — available data.

But we can exploit similar use-cases!

"THE DOG"

"THE DOG"

"THE DOG"

T H E D O G + "Phoneme-like" units

"THE DOG"

T H E D O G

Acoustic Model

```
"THE DOG"

Language Model

T H E D O G

Acoustic Model
```

ASR Acoustic Modeling

T H E

T H E D O G

Phonetic Labels

Phonetic Labels

Phonetic Labels

Phonetic Labels

Multi-Task Learning

But first, what is a task?

{rottweiler, large}

{collie, large}

{terrier, small}

{rottweiler, large}

{collie, large}

{terrier, small}

{collie, large}

{terrier, small}

{collie, large}

{terrier, small}

Multi-Task Studies

Linguistic Knowledge

	Bila	bial	Labio	dental	Den	tal	Alvec	olar	Postalv	eolar	Retro	oflex	Pal	atal	Ve	elar	Uvi	ılar	Phary	ngeal	Glo	ttal
Plosive	p	b					t	d			t	d	С	J	k	g	q	G			3	
Nasal		m		m				n				η		ŋ		ŋ		N				
Trill		В						r										R				
Tap or Flap				V				ſ				r										
Fricative	ф	β	f	V	θ	ð	S	Z	ſ	3	Ş	Z	ç	j	X	Y	χ	R	ħ	S	h	h
Lateral fricative							1	ß														
Approximant				υ				J				-F		j		щ						
Lateral approximant								1				l		Λ		L						

Linguistic Knowledge

Example: Collapsing on Voice

Data

Corpus				
Train	\mathbf{Test}			
 1	LibriSpeech-B Kyrgyz Audiobook			

Data

	Corpus				
	Train	\mathbf{Test}	0.5 hou		
-	LibriSpeech-A LibriSpeech-A	LibriSpeed	h-B		
	4.86 hours				

Data

	Corpus					
	Train	Test 0.5 hours				
• • • • • • • • • • • • • • • • • • •	•	LibriSpeech-B				
Language ———	LibriSpeech-A	Kyrgyz Audiobook				
	4.86 hours	1.6 hours				

Alignment Procedure

- GMM-HMM Alignment
- Monophones
 - 25 iterations of Baum-Welch
 - 1,000 Gaussian components
- Triphones
 - 25 iterations of Baum-Welch
 - 1,000 leaves
 - 2,000 Gaussian components

DNN Training Procedure

- 5 Layer, Time-Delay Neural Network
- 500 Nodes / Layer
- ReLU Activations
- Stochastic Gradient Descent for 2 epochs

	WER%			
Auxiliary Tasks	Triphones	Monophones		
STL Baseline	4	1.67		
Voice	41.16	42.36		
Place	42.66	40.61		
Manner	42.03	41.70		
Voice + Place	42.90	41.49		
Voice + Manner	42.45	42.66		
Place + Manner	42.66	41.82		
Voice + Manner + Place	42.42	42.72		

Not so great :(

	$\mathbf{WER}\%$			
Auxiliary Tasks	Triphones	Monophones		
STL Baseline	4	1.67		
Voice	41.16	42.36		
Place	42.66	40.61		
Manner	42.03	41.70		
Voice + Place	42.90	41.49		
Voice + Manner	42.45	42.66		
Place + Manner	42.66	41.82		
Voice + Manner + Place	42.42	42.72		

The main task is more important...

The main task is more important...

Implement a relative weighting!

	m WER%			
Auxiliary Tasks	Triphones	Monophones		
STL Baseline	4	1.67		
Voice	41.00	40.43		
Place	41.37	41.46		
Manner	40.43	41.34		
Voice + Place	41.31	41.28		
Voice + Manner	41.25	42.18		
Place + Manner	42.03	42.48		
Voice + Manner + Place	41.64	41.88		

Now, that looks better:)

	${ m WER\%}$			
Auxiliary Tasks	Triphones	Monophones		
STL Baseline	4	1.67		
Voice	41.00	40.43		
Place	41.37	41.46		
Manner	40.43	41.34		
Voice + Place	41.31	41.28		
Voice + Manner	41.25	42.18		
Place + Manner	42.03	42.48		
Voice + Manner + Place	41.64	41.88		

Multilingual Experiments

Multilingual Experiments

Not so great :(

	$\mathbf{WER}\%$			
Auxiliary Tasks	Triphones	Monophones		
STL Baseline	5	3.07		
Phonemes	53.95	52.78		
Voice	54.05	53.85		
Place	55.22	53.95		
Manner	53.37	53.27		
Voice + Place	55.22	53.46		
Voice + Manner	55.12	53.46		
Place + Manner	55.51	53.66		
Voice + Manner + Place	54.15	54.44		

Multilingual Experiments

Now, that looks better:)

	$\mathbf{WER}\%$		
Auxiliary Tasks	Triphones	Monophones	
STL Baseline	5	3.07	
Phonemes	51.80	51.61	
Voice	52.39	53.46	
Place	51.90	52.29	
Manner	52.00	51.80	
Voice + Place	52.68	52.78	
Voice + Manner	$\boldsymbol{51.22}$	51.32	
Place + Manner	50.83	53.66	
Voice + Manner + Place	52.78	52.39	

Engineered Tasks

Engineered Tasks

Can we find linguistic bias without a linguist?

Alignment Procedure

- GMM-HMM Alignment
- Monophones
 - 25 iterations of Baum-Welch
 - 1,000 Gaussian components
- Half-phones
 - 25 iterations of Baum-Welch
 - 792 leaves
 - 5,000 Gaussian components
- Triphones
 - 25 iterations of Baum-Welch
 - 1584 leaves
 - 5,000 Gaussian components

DNN Training Procedure

- 5 Layer, Time-Delay Neural Network
- 500 Nodes / Layer
- ReLU Activations
- Stochastic Gradient Descent for 10 epochs

DNN Training Procedure

Source:Target Ratio	Target Weighting
2:1	1.53x
1:1	3.06x
1:2	6.12x

Engineered Tasks

Auxiliary (Source Lang) Tasks		e:Target 1-to-1	Weighting 2-to-1
STL Baseline		50.54	4
Monophones	48.20	47.32	47.41
Halfphones	48.68	46.73	48.68
Triphones	49.37	47.12	46.73
${\bf Monophones + Halfphones}$	48.20	48.49	48.10
Halfphones + Triphones	50.05	48.00	47.90
Monophones + Halfphones + Halfphones	48.88	48.20	48.59

Can we find linguistic bias without a phonetic tree?

	$\alpha = 0.1$	$\alpha = 0.2$	$\alpha = 0.3$
Single Task Baseline		57.55 ± 1.82	
+ 256 clusters	57.93 ± 1.63	57.04 ± 1.58	57.66 ± 1.24
+ 1024 clusters	57.69 ± 3.78	56.99 ± 3.08	57.60 ± 0.79
+ 4096 clusters	57.25 ± 2.87	58.07 ± 1.35	57.45 ± 0.32

	$\alpha = 0.1$	$\alpha = 0.2$	$\alpha = 0.3$
Single Task Baseline		57.55 ± 1.82	
+ 256 clusters	57.33 ± 2.49	58.02 ± 2.09	57.18 ± 0.56
+ 1024 clusters	57.74 ± 3.06	56.88 ± 1.33	57.13 ± 1.55
+ 4096 clusters	57.56 ± 2.53	57.49 ± 3.17	57.31 ± 1.31

End-to-End Transfer Studies

DeepSpeech: Model Architecture

DeepSpeech: Model Architecture

Transfer Experiments on ASR

Experimental Design

- 5 depths for slicing source model
- 2 update scenarios (frozen vs. fine-tuned)
- 12 target languages
- 120 experiments, in total

Hyperparameters

- Single GPU training
- 24 train batch, 48 dev batch
- 20% dropout rate
- 0.0001 learning rate with ADAM
- Early stopping based on last 5 steps

Data (Spoken Corpora)

Frozen Transfer Results

Character Error Rate								
	Number of Layers Copied from English							
Lang.	None	1	2	3	4	5		
sl	23.35	23.93	25.30	18.87	17.53	26.24		
ga	31.83	29.08	36.14	27.22	29.07	32.27		
CV	48.10	46.13	47.83	38.00	35.23	42.88		
br	21.47	19.17	20.76	18.33	17.72	21.03		
tr	34.66	32.98	35.47	33.00	33.66	36.71		
it	40.91	39.20	41.55	38.16	39.40	43.21		
СУ	34.15	32.46	33.93	31.57	35.26	36.56		
tt	32.61	29.20	30.52	27.37	28.28	31.28		
ca	38.01	36.44	38.70	36.51	42.26	47.96		
fr	43.33	43.30	43.47	43.37	43.75	43.79		
kab	25.76	25.57	25.97	25.45	27.77	29.28		
de	43.76	44.48	44.08	43.70	43.77	43.69		

Table 2. Frozen Transfer Learning Character-error rates (CER)

Frozen Transfer Results

Character Error Rate									
	Νυ	Number of Layers Copied from English							
Lang.	None	1	2	3	4	5			
sl	23.35	23.93	25.30	18.87	17.53	26.24			
ga	31.83	29.08	36.14	27.22	29.07	32.27			
CV	48.10	46.13	47.83	38.00	35.23	42.88			
br	21.47	19.17	20.76	18.33	17.72	21.03			
tr	34.66	32.98	35.47	33.00	33.66	36.71			
it	40.91	39.20	41.55	38.16	39.40	43.21			
су	34.15	32.46	33.93	31.57	35.26	36.56			
tt	32.61	29.20	30.52	27.37	28.28	31.28			
ca	38.01	36.44	38.70	36.51	42.26	47.96			
fr	43.33	43.30	43.47	43.37	43.75	43.79			
kab	25.76	25.57	25.97	25.45	27.77	29.28			
de	43.76	44.48	44.08	43.70	43.77	43.69			

Table 2. Frozen Transfer Learning Character-error rates (CER)

Frozen Transfer Results

Character Error Rate									
	Nυ	Number of Layers Copied from English							
Lang.	None	1	2	3	4	5			
sl	23.35	23.93	25.30	18.87	17.53	26.24			
ga	31.83	29.08	36.14	27.22	29.07	32.27			
CV	48.10	46.13	47.83	38.00	35.23	42.88			
br	21.47	19.17	20.76	18.33	17.72	21.03			
tr	34.66	32.98	35.47	33.00	33.66	36.71			
it	40.91	39.20	41.55	38.16	39.40	43.21			
су	34.15	32.46	33.93	31.57	35.26	36.56			
tt	32.61	29.20	30.52	27.37	28.28	31.28			
ca	38.01	36.44	38.70	36.51	42.26	47.96			
fr	43.33	43.30	43.47	43.37	43.75	43.79			
kab	25.76	25.57	25.97	25.45	27.77	29.28			
de	43.76	44.48	44.08	43.70	43.77	43.69			

Table 2. Frozen Transfer Learning Character-error rates (CER)

Fine-Tuning Transfer Results

	Character Error Rate								
	Νι	Number of Layers Copied from English							
Lang.	None	1	2	3	4	5			
sl	23.35	21.65	26.44	19.09	15.35	17.96			
ga	31.83	31.01	32.2	27.5	25.42	24.98			
CV	48.1	47.1	44.58	42.75	27.21	31.94			
br	21.47	19.16	20.01	18.06	15.99	18.42			
tr	34.66	34.12	34.83	31.79	27.55	29.74			
it	40.91	42.65	42.82	36.89	33.63	35.10			
СУ	34.15	31.91	33.63	30.13	28.75	30.38			
tt	32.61	31.43	30.80	27.79	26.42	28.63			
ca	38.01	35.21	39.02	35.26	33.83	36.41			
fr	43.33	43.26	43.51	43.24	43.20	43.19			
kab	25.76	25.5	26.83	25.25	24.92	25.28			
de	43.76	43.69	43.62	43.60	43.76	43.69			

Table 3. Fine-Tuned Transfer Learning Character-error rates (CER)

Fine-Tuning Transfer Results

	Character Error Rate								
	Νι	ımber of	Layers C	Copied fr	om Engl	ish			
Lang.	None	1	2	3	4	5			
sl	23.35	21.65	26.44	19.09	15.35	17.96			
ga	31.83	31.01	32.2	27.5	25.42	24.98			
CV	48.1	47.1	44.58	42.75	27.21	31.94			
br	21.47	19.16	20.01	18.06	15.99	18.42			
tr	34.66	34.12	34.83	31.79	27.55	29.74			
it	40.91	42.65	42.82	36.89	33.63	35.10			
СУ	34.15	31.91	33.63	30.13	28.75	30.38			
tt	32.61	31.43	30.80	27.79	26.42	28.63			
ca	38.01	35.21	39.02	35.26	33.83	36.41			
fr	43.33	43.26	43.51	43.24	43.20	43.19			
kab	25.76	25.5	26.83	25.25	24.92	25.28			
de	43.76	43.69	43.62	43.60	43.76	43.69			

Table 3. Fine-Tuned Transfer Learning Character-error rates (CER)

Interpretability Experiments

Regression on Embeddings

Regression on Embeddings

Regression on Embeddings

Speech vs. Noise

- Copied layers, added final FC layer with single output and logistic activation
- 13 languages vs. UrbanSound8k
- 5,005 train clips, 442 test clips per class

	Classification Accuracy							
Νü	Number of Layers Copied from English							
1	1 2 3 4 5 6							
51.01 93.68 92.82 95.30 94.55 93.53								

Table 4. Speech vs. Non-Speech Audio Classification Accuracy

- Copied layers, added final FC layer with single output and logistic activation
- 13 languages vs. UrbanSound8k
- 5,005 train clips, 442 test clips per class

Table 4. Speech vs. Non-Speech Audio Classification Accuracy

- Copied layers, added final FC layer with single output and logistic activation
- 13 languages vs. UrbanSound8k
- 5,005 train clips, 442 test clips per class

English vs. German

English vs. German

- Copied layers, added final FC layer with single output and logistic activation
- English vs. German
- 5,000 train clips, 500 test clips per class

English vs. German

Table 5. English vs. German Audio Classification Accuracy (%)

Table 4. Speech vs. Non-Speech Audio Classification Accuracy

Classification Accuracy								
Νι	Number of Layers Copied from English							
1	1 2 3 4 5 6							
66.51 66.38 52.77 86.21 74.97 85.00								

Table 5. English vs. German Audio Classification Accuracy (%)

Discussion

Discussion

- 1) Transfer in ASR
 - Fine-tuning always helps
 - LSTM transfer is best, but only with fine-tuning
- 2) Interpretability Studies
 - At the third layer, the model has learned general speech, but language-agnostic representations

Thank you for your attention!

Linguistic Knowledge

Example: Collapsing on Voice

```
B P --> P
                bilabial plosives
CH JH --> CH
                alveo-palatal affricates
D T --> T
                alveolar plosives
DH TH --> TH
                interdental fricatives
F V --> F
                labio-dental fricatives
G K --> G
                velar plosives
S Z --> S
                alveolar fricatives
SH ZH --> SH
                alveo-palatal fricatives
```

APPENDIX A: Multi-Task

APPENDIX B: DeepSpeech

Data Details

		Dataset Size					
		Audio Clips		Unique Speakers			
Language	Code	Dev	Test	Train	Dev	Test	Train
Slovenian	sl	110	213	728	1	12	3
Irish	ga	181	138	1001	4	12	6
Chuvash	CV	96	77	1023	4	12	5
Breton	br	163	170	1079	3	15	7
Turkish	tr	407	374	3771	32	89	32
Italian	it	627	734	5019	29	136	37
Welsh	СУ	1235	1201	9547	51	153	75
Tatar	tt	1811	1164	11187	9	64	3
Catalan	ca	5460	5037	38995	286	777	313
French	fr	5083	4835	40907	237	837	249
Kabyle	kab	5452	4643	43223	31	169	63
German	de	7982	7897	65745	247	1029	318

Table 1. Number of audio clips and unique speakers per language per dataset split.

Effect of Data Size

