COMP4670 Lecture 3: Security and Privacy

Security: tools and techniques to protect confidentiality, integrity, and availability

Privacy: the right of an individual to control the collection, use, disclosure, and retention of their personal information

Data Mining: Brief Review

- process of analyzing data from different perspectives and discovering useful information and knowledge
- standard methods and algorithms to move forward in the path of DIKW (Data, Information, Knowledge, Wisdom)
- finding correlations or patterns among large amounts of data

Information Hierarchy

- data (know nothing)
 - symbols or observations reflecting differences in the world, that represent properties of objects, events and their environments
 - lowest level of abstraction
 - of no use until they are useable, relevant form
- **information** (know what)
 - meaningful and processed data or facts which conclusions can be drawn by human or computer
 - when data is processed into an answer to an inquiry, it becomes information
- **knowledge** (know how)
 - information that is justifiably considered true
 - allows to promote information to a controlling role to transform information into instructions
- widsom (know why)
 - critical use of knowledge to make intelligent decisions
 - ability to make sound judgments and decisions and increase effectiveness

Association Rule Mining

- algorithm for discovering interesting rules or relations between variables in large datasets
- let $I = \{i_1, i_2, ..., i_n\}$ be a set of n binary attributes called *items*
- let $T = \{t_1, t_2, ..., t_m\}$ be a set of transactions
- a rule is defined as an implication of the form where $X \Rightarrow Y$ and $X, Y \subseteq I$ and $X \cap Y = \emptyset$
- the itemsets X and Y are called antecedent (LH side) and consequent (RH side) of the rule $X \Rightarrow Y$ respectively
- we are usually looking for interested rules
- the support SUPP(X) of an itemset X is defined as the proportion of transactions in the dataset which contain the itemset X
- the confidence of a rule $X\Rightarrow Y$ is defined as $CONF(X\Rightarrow Y)=\frac{SUPP(X\cup Y)}{SUPP(X)}$
- association rules are usually required to satisfy a minimum support and a minimum confidence
- association rule generation splits up into two separate steps:
 - 1. minimum support is applied to find all frequent itemsets
 - 2. frequent itemsets and the minimum confidence constraint are used to form rules

Example

Transaction ID	Milk	Bread	Butter	Beer
1	1	1	0	0
2	0	1	1	0
3	0	0	0	1
4	1	1	1	0
5	0	1	0	0

Suppose our association rule is $\{Milk, Bread\} \Rightarrow \{butter\}$

milk	bread	butter
1	1	0
0	1	1
1	1	1
0	1	0

$$\begin{split} Support_{X\Rightarrow Y} &= \frac{\sum_{s} Count_{x,y}}{|S|} = \frac{1}{5} \\ Support_{X} &= \frac{\sum_{s} Count_{x}}{|S|} = \frac{2}{5} \\ Confidence_{X\Rightarrow Y} &= \frac{Support_{X\Rightarrow Y}}{Support_{X}} = \frac{\frac{1}{5}}{\frac{1}{5}} = \frac{1}{2} \end{split}$$

Decision Tree

- a tree-like structure in which
 - an $internal\ node$ represents test on an attribute
 - each branch represents outcome of test
 - each leaf node represents class label
 - a path from root to leaf represents classification rules
- a tree structure wherein
 - leaves represent classifications
 - branches represent conjunctions of features that lead to those classifications
- ID3, Iterative Dichotomizer 3, is a decision tree induction algorithm developed by Quinlan

Day	Outlook	Humidity	Wind	Play	
1	Sunny	High	Weak	No	
2	Sunny	High	Weak	No	
3	Cloudy	High	Strong	No	
4	Rain	Normal	Strong /	No	
5	Rain	Normal		or Depend	en
6	Rain	High	Weak	ttribute	
7	Normal (or	Independent)	Weak	Yes	
8	Sunny Att	ributes _{'mal}	Strong	No	
9	Sunny	Normal	Strong	No	
10	Sunny	High	Strong	No	
11	Rain	Normal	Weak	Yes	
12	Cloudy	Normal	Weak	Yes	
13	Cloudy	High	Weak	Yes	
•	•	•	•	•	
•	•	•	•	•	
				•	

Example: |

K-Means Clustering

ALGORITHM: k-means clustering algorithm

- 1. Determine k entities as the initial means
- 2. repeat
- 3. assign each data entity to the closest mean
- 4. reconstruct the mean of each cluster
- 5. until means do not change

Machine Learning

- prediction, based on known properties learned from the training data
- two types of data involved:
 - training data
 - testing data
- standard techniques and algorithms
 - artificial neural networks
 - back-propagation
 - bayesian networks
 - extreme learning machine

Applications

- financial data analysis: credit fraud detection, trend analysis, analyzing profitability, etc
- marketing activities
- targeted adveretising
- healthcare and biomedical: disease progress analysis, adverse drug reactions, evaluation of effectiveness of medical treatments

When & Why Privacy is Needed?

- · privacy acts
- financial competition
- top-secret data

Privacy-Preserving Data Mining

Main approaches: (change of data leak higher in approach #1)

- 1. Randomization and Anonymization
- challenge: accuracy vs privacy (privacy up, accuracy down)
- uses various techniques:
 - suppression
 - aggregation
 - anonymization
 - randomization
 - data perturbation
- 2. Secure Computation
- challenge: efficiency vs privacy
- uses various cryptography and security tools (building blocks)

Secure Multi-Party Computation (SMC)

Data is distributed:

- each party has a part of the whole data
- data could be partitioned: horizontally, vertically, or both
- involved parties want to operate a joint function on their private inputs
- functions could be: data mining algorithm, statistical analysis methods, mathematical functions
- concerns:
 - privacy: intermediate and/or final outputs reveal no info of private inputs
 - correctness (accuracy of final results)
 - efficiency

Parameters:

- parties behaviour: honest, semi-honest, malicious
- number of parties involved: two-party, multi-party
- parties network type: client-server, peer-to-peer, third-party
- type of final result release:
 - parties will receive the complete final output
 - parties will receive a portion of the final output

Examples:

- privacy-preserving Decision Tree
 - Information Gain
 - Gini Index
- privacy-preserving k-means Clustering
 - Secure Dot Product
 - Secure Comparison
- privacy-preserving Association Rule Mining
 - Secure Binary Dot Product
 - Cardinality of Set Intersection
 - Commutative Encryption
- privacy-preserving Neural Networks
 - Secure Dot Product
- privacy-preserving Bayesian Networks
 - Secure Exponentiation
 - Secure Factorial

Secure Mean

- \bullet *n* participants, each with a private number
- mean value of numbers computer securely and released to each person $M = \frac{\sum_{i=1}^{n} N_i}{n}$ where N is an array of private numbers
- none of the participants or any third party will know the private numbers of each other

Possible Issues

- 1. second and forth person compromise: they can reveal the third persons private number
- 2. presence of malicious person:
 - incorrect value can be shared by this person
 - none of the persons, except the malicious one, will receive the correct mean value

Solution for Issue 1

- data segmentation: each participant breaks her data into \boldsymbol{k} segments
- multi-round protocol:
 - protocol will be performed in k rounds
 - $-\,$ in each round the order of the participants will be rotated

Homomorphic Encryption

An operation on the plaintexts will be mapped to another operation on the ciphertexts