## MATEMÁTICA UNINOVE

Módulo - V

# Noções

## de Estatística

Conceitos básicos,

## distribuição de frequências

**Objetivo:** Reconhecer as variáveis utilizadas em uma pesquisa, organizar dados e construir tabelas com distribuições de frequências.



Este material faz parte da UNINOVE. Acesse atividades, conteúdos, encontros virtuais e fóruns diretamente na plataforma.

Pense no meio ambiente: imprima apenas se necessário.



## Introdução

As estatísticas aparecem nos jornais, nos noticiários de TV, nos relatórios das empresas, nos relatórios dos serviços de saúde etc. Entendê-las é uma necessidade para o indivíduo que vive em sociedade. As estatísticas facilitam a compreensão dos fatos através de dados referentes a amostras numerosas, como podemos ver nos seguintes exemplos:

- Verificar se um programa de TV tem ou não audiência.
- Conferir se um determinado tratamento surte o efeito desejado e mesmo avaliar os efeitos colaterais.
- Analisar o desempenho dos alunos de uma escola no fim do ano letivo.

## Organização dos dados estatísticos

Estatística é uma ciência através da qual se obtém informações de dados numéricos.

Ela trata do conjunto de métodos utilizados para a obtenção desses dados, sua organização em tabelas e gráficos e a análise e interpretação dessas informações.

A análise e a interpretação dos dados estatísticos tornam possível o diagnóstico de, por exemplo, problemas de uma empresa e a formulação de soluções para eles.

Um dos objetivos da Estatística é sintetizar os valores que uma ou mais variáveis podem assumir, para que tenhamos uma visão global dessa alteração e isso ela consegue, inicialmente, apresentando esses valores em **tabelas e gráficos** que irão nos fornecer rápidas e seguras informações a respeito das variantes em estudo.

#### **Tabelas**

Uma tabela deve apresentar a seguinte estrutura.

- Cabeçalho.
- Corpo.
- Rodapé.

O cabeçalho deve conter o suficiente para que sejam respondidas as questões.

• O que está representado?

- Onde ocorreu?
- Quando ocorreu?

O corpo da tabela é representado por colunas e subcolunas, dentro das quais serão registrados os dados numéricos e informações. O rodapé é reservado para observações pertinentes à tabela, bem como para o registro e identificação da fonte dos dados.

#### **Exemplo**

| Produção da Comp | Produção da Companhia Alfa – Julho / 2012 |  |  |  |  |  |
|------------------|-------------------------------------------|--|--|--|--|--|
| PRODUTOS         | QUANTIDADE (%)                            |  |  |  |  |  |
| Α                | 32,4                                      |  |  |  |  |  |
| В                | 21,6                                      |  |  |  |  |  |
| С                | 10,8                                      |  |  |  |  |  |
| D                | 10,8                                      |  |  |  |  |  |

Fonte: Departamento de Marketing da Companhia

## Distribuição de frequências

#### **Conceitos fundamentais**

**População:** é um conjunto de indivíduos ou objetos que apresentam pelo menos uma característica em comum. A população pode ser

finita ou infinita. Na prática, quando uma população é finita, com um

número grande de elementos, considera-se como população infinita.

**Amostra:** considerando-se a impossibilidade, na maioria das vezes, do

tratamento de todos os elementos da população, retira-se uma

amostra, ou seja, a amostra é um subconjunto finito de uma

população.

Variável: é qualquer característica de uma população que se está

interessado em pesquisar. As variáveis podem ser:

a) Qualitativas: se os valores tomados não são números.

Exemplos: sexo, estado civil, cor dos olhos etc.

b) Quantitativas: se os valores tomados são números.

Exemplos: altura, peso, preço de produto etc.

As variáveis quantitativas subdividem-se em:

• **Discretas:** se os valores associados são números inteiros.

Exemplos: número de filhos, número de sócios de um clube etc.

• Contínuas: se os valores associados são números reais.

Exemplos: altura, peso etc.

Exercício resolvido

Uma concessionária de automóveis tem cadastrados 3500 clientes e

fez uma pesquisa sobre a preferência de compra em relação à cor

(branco, vermelho ou azul), preço, número de portas e estado de

conservação (novo ou usado).

• Foram consultados 210 clientes. Diante dessas informações,

responda.

a) Qual é a população estatística e qual é a amostra

dessa pesquisa?

Resposta: A população é formada pelos 3500 clientes cadastrados e a

amostra pelos 210 clientes consultados.

**b)** Quais são as variáveis e qual é o tipo de cada uma?

Resposta:

**Cor:** variável qualitativa.

Preço: variável quantitativa contínua.

Número de portas: variável quantitativa discreta.

Estado de conservação: variável qualitativa.

## Representação da Amostra

Quando se estuda uma variável, o maior interesse do pesquisador é conhecer sua distribuição através das possíveis realizações (valores). Vamos ver uma maneira de dispor os dados através de tabelas:

## Frequência absoluta e frequência absoluta acumulada

Consideremos o quadro seguinte que nos mostra as notas de 20 alunos do 1º semestre de um determinado curso de uma universidade.

|   | 1 | 8 | 4 | 9 | 6 | 6 | 9 | 10 | 2 | 3 |
|---|---|---|---|---|---|---|---|----|---|---|
| 8 | 8 | 4 | 9 | 6 | 5 | 5 | 6 | 9  | 8 | 7 |

Esse tipo de tabela cujos elementos não foram numericamente organizados, denominamos **tabela primitiva** ou **dados brutos**.

O primeiro passo será colocar esses dados em ordem crescente (ou decrescente). Dessa maneira, obtemos uma nova tabela, denominada **rol**.

| 1 | 2 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 6  |
|---|---|---|---|---|---|---|---|---|----|
| 6 | 7 | 8 | 8 | 8 | 9 | 9 | 9 | 9 | 10 |

A diferença entre o maior e o menor valor da amostra denomina-se **amplitude total**, **amplitude do rol ou Range** e será representada pela letra **R**.

No exemplo acima, temos:

$$R = 10 - 1 = 9$$

A partir desses dados podemos elaborar uma tabela em que na primeira coluna aparecerão os valores da variável estatística (x<sub>i</sub>) que, nesse caso, são as notas, na segunda coluna aparecerá o número de vezes que cada valor se repete, chamada **frequência absoluta**, que representaremos por **F**<sub>i</sub>.

Assim, N=n° de elementos da população  $=F_{(1)}+F_{(2)}+F_{(3)}+...+F_{(10)}=20$ . Que pode também ser escrito por:

$$N = \sum_{i=1}^{10} F_i = 20$$

**Observação:** O símbolo  $\Sigma$  **(somatório)** é usado para escrever abreviadamente expressões que envolvem adição. Assim, indicamos a adição dos termos  $F_i$ , com i variando de 0 até n  $(n \in IN^*)$  da seguinte forma:

$$\sum_{i=0}^{n} F_i$$

Na terceira coluna, chamada **frequência absoluta acumulada (F\_{\alpha c})**, aparecerão os valores obtidos adicionando a cada frequência absoluta os valores das frequências anteriores.

| notas (x <sub>i</sub> ) | Fi | Fac         |
|-------------------------|----|-------------|
| 1                       | 1  | 1           |
| 2                       | 1  | 1 + 1 = 2   |
| 3                       | 1  | 2 + 1 = 3   |
| 4                       | 2  | 3 + 2 = 5   |
| 5                       | 2  | 5 + 2 = 7   |
| 6                       | 4  | 7 + 4 = 11  |
| 7                       | 1  | 11 + 1 = 12 |
| 8                       | 3  | 12 + 3 = 15 |
| 9                       | 4  | 15 + 4 = 19 |
| 10                      | 1  | 19 + 1 = 20 |
| Total                   | 20 | -           |

Usando a freqüência acumulada, podemos fazer algumas observações:

- 11 alunos obtiveram nota menor que 7,0 nessa turma ou
- 20 11 = 9 alunos obtiveram nota 7,0 ou acima de 7,0 etc.

•

## Frequência relativa e frequência relativa acumulada

Chama-se **frequência relativa (f<sub>i</sub>)** do valor da variável o quociente entre a frequência absoluta  $(F_i)$  e o número de elementos da população estatística:

$$f_i = \frac{F_i}{N}$$

No exemplo acima, temos:

| notas (x <sub>i</sub> ) | Fi | Fac | f <sub>i</sub> |
|-------------------------|----|-----|----------------|
| 1                       | 1  | 1   | 1 / 20 = 0,05  |
| 2                       | 1  | 2   | 1 / 20 = 0,05  |
| 3                       | 1  | 3   | 1 / 20 = 0,05  |
| 4                       | 2  | 5   | 2 / 20 = 0,10  |
| 5                       | 2  | 7   | 2 / 20 = 0,10  |
| 6                       | 4  | 11  | 4 / 20 = 0,20  |
| 7                       | 1  | 12  | 1 / 20 = 0,05  |
| 8                       | 3  | 15  | 3 / 20 = 0,15  |
| 9                       | 4  | 19  | 4 / 20 = 0,20  |
| 10                      | 1  | 20  | 1 / 20 = 0,05  |
| Total                   | 20 | -   | 1              |

Geralmente colocamos a frequência relativa na forma de porcentagem, o que facilita a interpretação. Para colocar as frequências relativas na forma de porcentagem é só multiplicar por 100 o valor decimal encontrado.

| notas (x <sub>i</sub> ) | Fi | Fac | fi   | fac           |
|-------------------------|----|-----|------|---------------|
| 1                       | 1  | 1   | 5%   | 5%            |
| 2                       | 1  | 2   | 5%   | 5 + 5 = 10%   |
| 3                       | 1  | 3   | 5%   | 10 + 5 = 15%  |
| 4                       | 2  | 5   | 10%  | 15 + 10 = 25% |
| 5                       | 2  | 7   | 10%  | 25 + 10 = 35% |
| 6                       | 4  | 11  | 20%  | 35 + 20 = 55% |
| 7                       | 1  | 12  | 5%   | 55 + 5 = 60%  |
| 8                       | 3  | 15  | 15%  | 60 + 15 = 75% |
| 9                       | 4  | 19  | 20%  | 75 + 20 = 95% |
| 10                      | 1  | 20  | 5%   | 95 + 5 = 100% |
| Total                   | 20 | -   | 100% | -             |

Observando essa tabela, podemos dizer:

- 5% dos alunos obtiveram nota 7,0.
- 55% dos alunos obtiveram nota inferior a 7,0.
- 100% 55% = 45% dos alunos obtiveram nota igual ou superior a 7,0.3

## Distribuição de frequências com dados agrupados em intervalos de classes

Quando aparecem muitos valores diferentes para a variável em estudo, torna-se inviável colocar na tabela uma linha para cada

valor. Nesses casos, agrupamos os valores da variável em intervalos, chamados de **classes**. Logo, a tabela é denominada **distribuição de frequências com intervalos de classes**.

### Exemplo

Suponhamos termos feito uma coleta de dados relativos às idades de 30 pessoas que compõem uma amostra dos alunos de uma faculdade "A".

| 24 | 23 | 22 | 28 | 35 | 21 | 23 | 33 | 34 | 34 | 21 | 25 | 36 | 26 | 22 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 30 | 32 | 25 | 26 | 33 | 34 | 21 | 31 | 25 | 26 | 25 | 35 | 33 | 31 | 31 |

## Elaborando o rol, temos:

| 21 | 21 | 21 | 22 | 22 | 23 | 23 | 24 | 25 | 25 | 25 | 25 | 26 | 26 | 26 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 28 | 30 | 31 | 31 | 31 | 32 | 33 | 33 | 33 | 34 | 34 | 34 | 35 | 35 | 36 |

Organizando esses dados em uma tabela, conforme já conhecemos, temos:

| Idades (x <sub>i</sub> ) | F <sub>i</sub> |
|--------------------------|----------------|
| 21                       | 3              |
| 22                       | 2              |
| 23                       | 2              |
| 24                       | 1              |
| 25                       | 4              |
| 26                       | 3              |
| 28                       | 1              |
| 30                       | 1              |
| 31                       | 3              |
| 32                       | 1              |
| 33                       | 3              |
| 34                       | 3              |
| 35                       | 2              |
| 36                       | 1              |
| Total                    | 30             |

Como esta tabela fica com muitas linhas, podemos resumi-la numa tabela com intervalos de classes.

## Elementos de uma distribuição de frequências com dados agrupados em intervalos de classes

Range, amplitude total ou amplitude amostral (R) é a diferença entre o maior e o menor valor da amostra.

No exemplo dado R = 36 - 21 = 15

**Número de classes (k):** não há uma fórmula exata para o cálculo do número de classes. As mais usadas são:

1a) K = 5 para n 25 ≤ ou K 
$$\cong \sqrt{n}$$
 para n>25.

No exemplo dado: n = 30, logo, K = 
$$\sqrt{30}$$
 = 5,48, ou seja, K = 6

**Observação:** Quando os resultados acima não são exatos devemos arredondá-los para o maior inteiro.

Amplitude das classes (h) é a medida do intervalo que define a classe.

$$h \cong R : K$$

No exemplo dado: 
$$h = 15 : 6 = 2,5$$
, ou seja,  $h = 3$ 

**Observação:** Quando os resultados acima não são exatos, devemos arredondá-los para o maior inteiro.

Limites de classes são os extremos de cada classe (li |---- Li).

li – limite inferior da classe (onde começa o intervalo).

Li – limite superior da classe (onde termina o intervalo).

As classes são obtidas a partir do menor valor fazendo a adição de h.

## No exemplo dado temos:

Observação: 21 |---- 24. Compreende todos os valores de 21 a 24, excluindo o 24.

**Ponto médio das classes (Xi)** é a média aritmética entre o limite superior e o limite inferior da classe.

**Exemplo:** 33 |---- 36

$$Xi = \frac{33+36}{2} = 34,5$$

Assim, para montar a tabela de distribuição de frequências com intervalos devemos seguir os itens abaixo:

- 1º Calcular o range.
- **2º** Saber quantas classes ou quantos intervalos terá a tabela.
- 3º Calcular qual será a amplitude do intervalo ou qual a diferença entre o li e o Li.

#### Voltando ao exemplo:

Idades de 30 alunos da Faculdade "A".

| Classes | Fi | Fac | fi   | f <sub>ac</sub> (%) | Xi   |
|---------|----|-----|------|---------------------|------|
| 21   24 | 7  | 7   | 0,23 | 23%                 | 22,5 |
| 24   27 | 8  | 15  | 0,27 | 50%                 | 25,5 |
| 27   30 | 1  | 16  | 0,03 | 53%                 | 28,5 |
| 30   33 | 5  | 21  | 0,17 | 70%                 | 31,5 |
| 33   36 | 8  | 29  | 0,27 | 97%                 | 34,5 |
| 36   39 | 1  | 30  | 0,03 | 100%                | 37,5 |
| Total   | 30 | -   | 1    | -                   | _    |

Agora é a sua vez! Resolva os exercícios, verifique seu conhecimento e acesse o espaço online da UNINOVE para assistir à videoaula referente ao conteúdo assimilado.

## **REFERÊNCIAS**

AKANIME, C.T., YAMAMOTO, R.K. Estudo dirigido de estatística descritiva. São Paulo: Érica Ltda, 1998.

BUSSAB, W.O., MORETTIN, P.A. Estatística básica. São Paulo: Atual, 1987.

FONSECA, J.S.; MARTINS, G.A. Curso de Estatística. São Paulo: Atlas, 1996.

MELLO, J.L.P. *Matemática, volume único*: construção e significado. São Paulo: Moderna, 2005.