ASM: MONOESTABLE NO REDISPARABLE

Técnicas Digitales I

Luis Eduardo Toledo

PLANTEO DEL PROBLEMA

Se trata de diseñar un monoestable no redisparable, cuyo tiempo de temporización es igual al producto:

N.TS

Siendo *N* un número entero disponible dentro del sistema, y *TS* el período de una señal de referencia *S*.

Para que el funcionamiento sea preciso, hay que suponer que la frecuencia de la señal de sincronización *CLK* es mucho mayor que la frecuencia de la señal *S*.

DESCOMPOSICIÓN EN UNIDAD DE PROCESO Y UNIDAD DE CONTROL

Un posible algoritmo de cálculo de la función de salida OUT, siendo R una variable interna del mismo.

UNIDAD DE PROCESO

Símbolo de unidad de control

UNIDAD DE CONTROL

Tabla de microoperaciones

	Z	SET	RESET
NOP (no operation)	2	0	0
OPERACIÓN 1 (R=N, OUT=0)	1	0	1
OPERACIÓN 2 (R = R-1)	0	0	0
OPERACIÓN 3 (OUT = 1)	2	1	0

Símbolo de unidad de control

UN SEGUNDO EJEMPLO

El primer ejemplo tenía como objetivo principal introducir la descomposición de un sistema en circuito de cálculo y circuito de control. Véase a través de un segundo ejemplo cómo, al secuencializar las operaciones, se pueden compartir recursos de cálculo y, por tanto, reducir los costos. El sistema a realizar es, otra vez, un monoestable no redisparable con (en este segundo ejemplo), 16 salidas: *OUTO*, *OUT1*, ..., *OUT15*. Los tiempos de temporización son: *NO* . *TS*, *N1* . *TS*, ..., *N15* . *TS* siendo *NO*, *N1*, ..., *N15* números enteros, disponibles dentro del sistema, y *TS* el período de una señal de referencia *S*.

ALGORITMO DE CÁLCULO

UNIDAD DE PROCESO

(i=0)

UNIDAD DE PROCESO (CONTINUACIÓN) SALIDA

UNIDAD DE PROCESO: MEMORIA ROM

MEMORIA RAM / REGISTER FILE

TABLA DE MICROOPERACIONES

	Z	WRITE	CLEAR	COUNT	SET	RESET
NOP (no operation)	-	0	0	0	0	0
OPERACIÓN 1 (i=0)	-	0	1	0	0	0
OP. 2 (Ri = Ni, OUT=000)	1	1	0	0	0	1
OPERACIÓN 3 (i = i+1)	-	0	0	1	0	0
OPERACIÓN 4 (Ri = Ri-1)	0	1	0	0	0	0
OPERACIÓN 5 (OUTi =1)	-	0	0	0	1	0

MÁQUINA SECUENCIAL DE CONTROL

