MATHEMATICAL REASONING Chapter 14

3rd SECONDA RY

HELICO MOTIVATING

RELOJES MATEMÁTICOS

¿QUÉ ES UNA LEY DE COMPOSICIÓN INTERNA

Es una operación matemática definida en un determinado conjunto. También se le puede llamar operación binaria, y puede tener una presentación algebraica o una presentación tabular.

$$a * b = a + b - 12$$

Fila de entrada

Cuerpo o matriz de resultados

PROPIEDADES

CLMPLE LAS PROPIEDADES:

- CLAUSURA
- CONMUTATIVA
- BLEMENTO NEUTRO
- BLEMENTO INVERSO

PROPIEDAD CLAUSURATIVA

Se refiere a que todos los elementos, tanto los de partida como los resultados, sean elementos de un mismo conjunto dado.

Ejemplo:

Sea: $A = \{1; 2; 3; 4\}$

*	1	2	3	4
1	1	2	3	4
2	2	3	4	1
3	3	4	1	2
4	4	1	2	3

PROPIEDAD CONMUTATIVA

Una operación será conmutativa si se cumple que:

$$a * b = b * a$$

En una tabla:

DESPLÉS DE VERIFICAR QUE LA FILA Y COLUMNA DE ENTRADA ESTEN EN EL MISMO ORDEN SI SE DA LA DISTRIBLICIÓN SIMÉTRICA RESPECTO A LA DIAGONAL PRINCIPAL ESTA ES CONMUTATIVA

Por lo tanto, es: conmutativa

PROPIEDAD DEL ELEMENTO NEUTRO (c)

$$a * e = a$$

$$e * a = a$$

En una operación algebraica:

$$a * b = a + b - 12$$

 $a * e = a + e - 12$
 $\alpha = \alpha + e - 12$
 $12 = e$

En una operación tabular:

*	_ 1	2	3	4	
1	3	4	1	2	
2	4	1	2	3	_
3	1	2	3	4	e = 3
4	2	3	4	1	

PROPIEDAD DEL ELEMENTO NEUTRO

$$a \Delta a^{-1} = e$$

$$a^{-1}\Delta a = e$$

En una operación tabular:

$$e = 3$$

Halle el valor de 4^{-1}

$$a \triangle a^{-1} = e$$

$$4 \Delta 4^{-1} = 3$$

$$4^{-1}=2$$

তিয়

PROBLEMA 1

Se define en A= {1; 3; 5; 7}, la operación:

@	1	3	5	_7
1	5	7	1	3
3	7	1	3	5
5	1	3	5	7
7	3	5	7	1

Determine:

[(1@1)@(7@5)]@(3@1)

Resolución:

De acuerdo a la tabla:

PROBLEMA 2

Se define en A= {2; 4; 6; 8} la operación:

Determine:

$$\frac{(6\#4)^3 + (8\#6)^2}{(4\#8)}$$

Resolución:

$$\frac{(2)^3 + (6)^2}{(4)}$$

$$\frac{8+36}{(4)} = \frac{44}{4} = 11$$

PROBLEMA 3

En una práctica calificada que esta dando Rubén encontró el siguiente problema:

Se define en A= {2; 4; 6; 8;10}, la operación:

Δ	2	4	6	8	10
2	8	10	2	4	6
4	10	2	4	6	8
6	2	4	6	8	10
8	4	6	8	10	2
10	6	8	10	2	4

Halle el elemento neutro:

Resolución:

Examinamos la tabla:

PROBLEMA 4

María Isabel esta resolviendo su tarea semanal y tiene dificultad en el siguiente problema, se define en el conjunto $A = \{1; 2; 3; 4; 5; 6\}$, la operación Δ según la tabla:

Δ	1	2	3	4	5	6
1	2	3	4	5	6	1
2	3	4	5	6	1	2
3	4	5	6	1	2	3
4	5	6	1	2	3	4
5	6	1	2	3	4	5
6	1	2	3	4	5	6

Diga si la operación △ es conmutativa

Resolución:

Examinamos la tabla:

Respuesta:

Si

PROBLEMA 5

01

Rosa está estudiando su libro de Matemática I, pues mañana tiene una pequeña práctica. Al estar repasando, encuentra el siguiente problema: Se define en A={1; 2; 3; 4; 5} la operación binaria * según la tabla

*	1	2	3	4	5
2	3	4	5	1	2
5	1	2	3	4	5
4	5	1	2	3	4
3	4	5	1	2	3
1	2	3	4	5	1

Diga si la operación matemática * es cerrada o cumple la propiedad de clausura, conmutativa y asociativa. Si Rosa luego de algún tiempo pudo contestar correctamente el problema, ¿podría usted decir que respuesta encontró Rosa?

Resolución:

- a. Es cerrada o clausurativa. [V]
- b. Es Conmutativa. [V]

c. Es Asociativa. [V]

PROBLEMA 6

Manuel es el profesor de Razonamiento Matemático y desea proponer el siguiente problema en su clase de pasado mañana: Se define en el conjunto $A=\{1; 3; 5; 7; 9\}$ la operación binaria ♥ según la tabla

•	1	3	5	7	9
5	5	7	9	1	3
3	3	5	7	9	1
7	7	9	1	3	5
1	1	3	5	7	9
9	9	1	3	5	7

¿Se podría afirmar que la operación ♥ tiene elemento neutro? y ¿cuál es el valor de 3^{-1} ; 7^{-1} y 1^{-1} ?

Nota: a^{-1} = elemento inverso de a.

Resolución:

Reordenando la tabla:

•	1	3	5	7	9
5	5	7	9	1	3
3	3	5	7	9	1
7	7	9	1	3	5
1	1	3	5	7	9
9	9	1	3	5	7

$$e = 1$$

RECORDEMOS:

$$a \Delta a^{-1} = e$$

$$3 \triangle 3^{-1} = 1 \longrightarrow 3^{-1} = 9$$

$$7 \triangle 7^{-1} = 1 \longrightarrow 7^{-1} = 5$$

$$1 \triangle 1^{-1} = 1 \longrightarrow 1^{-1} = 1$$

Respuesta: *Si*, 9,5,1

01

PROBLEMA 7

Con los elementos del conjunto $A = \{1; 2; 3; 4; 5\}$ se define la operación Δ

Δ	1	2	3	4	5
1	1	2	3	4	5
2	2	3	4	5	1
3	3	4	5	1	2
4	4	5	1	2	3
5	5	1	2	3	4

- I. La operación es conmutativa.
- II. El elemento neutro es 2.
- III. La operación es cerrada.
- IV. La operación es asociativa. De las afirmaciones anteriores

¿Cuál(es) es (son) correcta(s)?

Resolución:

I. La operación es conmutativa. [V]

- II. El elemento neutro es 2 [F]
- III. La operación es cerrada. [V]
- IV. La operación es asociativa. [V]

Respuesta: V, F, V, V

PROBLEMA 8

En los naturales se define A= {1; 3; 5; 7}, la operación:

Δ	1	3	5	7
1	3	5	7	1
3	5	7	1	3
5	7	1	3	5
7	1	3	5	7

$$e = 7$$

Determine:

$$E=[(3^{-1} \triangle 7^{-1}) \triangle (1^{-1} \triangle 5^{-1})]^{-1}$$

Observación:

a⁻¹ es el elemento inverso de a.

Resolución:

RECORDEMOS:
$$a \triangle a^{-1} =$$

$$a^{-1}\Delta a = e$$

$$3 \triangle 3^{-1} = 7 \longrightarrow 3^{-1} = 3$$
 $7 \triangle 7^{-1} = 7 \longrightarrow 7^{-1} = 7$
 $1 \triangle 1^{-1} = 7 \longrightarrow 1^{-1} = 5$
 $5 \triangle 5^{-1} = 7 \longrightarrow 5^{-1} = 1$

Reemplazando:

$$E=[(3^{-1} \Delta 7^{-1}) \Delta (1^{-1} \Delta 5^{-1})]^{-1}$$

$$E = [(3 \triangle 7) \triangle (5 \triangle 1)]^{-1}$$

$$E = [3 \triangle 7]^{-1}$$

$$E = [3]^{-1}$$

Respuesta:

3