- 1. Evaluate 25 5 (x2+y2) dxdy.
- 2. Evaluate of 5 5 5 84 sind dododo
- 3. Evaluate 15 5 xy (x+y) drady
- 4. Evaluate joga x xx+y ex+y+z dx dydz

Hint of extytz = Jexeyez

3) IS exebyecz dx dydz = SSebyeczen dydz

- (3) a logp = log(pa)
 - 5. Evaluate II e dady, given that Ris the region bounded by the 19nes x=0, x=y & y=0.
 - 6. Evaluate SSS(x+y+z)dxdydz, where V is

the volume of the rectangular parallelopiped bounded by x=0, x=a, y=0, y=b, z=0 & z=c.

An = (a+b+c)

7. Change the order of integration in of states and then evaluate it.

- 8. Change the order of integration of 2

 41 SRIX

 4y SRIX

 and then evaluate it.

 And = 16/3
- 9. change the order of integration of

 a atva-y2 xy dxdy and then evaluate it.

 o a-va-y2

 Ans = 2 at.
- 10. Change the order of integration in Is say dxdy.
- 11, change the order of integration of of 2a-x

 of xy dydx.
- 12. Change the order of integration of by 56 (b-y) and then evaluate it.

 Ans = a^2b^2
- 13. Change the order of integration of a strat-x2 and evaluate it.
- 14. Change the order of integration and evaluate $\int_{0}^{1} \frac{\chi}{\chi^{2} + y^{2}} dx dy$

Ars = 1/2 1092

17. Evaluate
$$\int_{0}^{\infty} \frac{e^{-\chi^{2}}}{\sqrt{\pi}} d\chi$$

21. Evaluate
$$\int_{R}^{\xi} \chi^2 y^2 dxdy$$
, where R 2s bounded by the region $\chi=0$, $y=0$ and $\chi+y\leq 1$.

Problems to Practice_Module-2 (4)

- 1. If $\phi = \chi^3 + y^3 + z^3 3\chi yz$, then find $\nabla \phi$, $\nabla \cdot \nabla \phi$ and $\nabla \chi \nabla \phi$ at (1,2,3).
- 2. If = (6xy+xz3)i+(3x2-cz)j+(3xz2-y)x
 is involational, then find C.
- 3. Find the value of λ , when $\vec{F} = \lambda y^4 z^2 \vec{1} + 4 x^3 z^2 \vec{j} + 5 x^2 y^2 \vec{k}$ is solenoidal.
- 4. If = 3xyz2 +2xy3]-23yz k, then
 find V.F and DXF at the point (1,-1,1).
- 5. Show that $\vec{F} = (z^2 + 2x + 3y)\vec{i} + (3x + 2y + z)\vec{j}$ + $(y + 2zx)\vec{k}$ is insolational and final its Scalar potential.
 - 6. Show that $\vec{F} = (\chi + 2\chi)\vec{i} + (\chi + 3z)\vec{j} + (\chi 2z)\vec{k}$ is sofenoidal.
 - 7. Find the directional derivative of 22y+2 at the point (1,-1,3) in the direction of vector 2+2j+2k.
 - 8. Find the directional derivative of zyz at the point (1,1,1) in the direction of+j+k.
- 9. Find the divergence of vectors and will of vectors for $\overrightarrow{F} = (y^2 + z^2 \chi^2)\overrightarrow{i} + (\chi^2 + z^2 y^2)\overrightarrow{J} + (\chi^2 + y^2 z^2)\overrightarrow{K}$

10. Find D83, D(1098).

11. Verify Green's theorem in a plane to evaluate Jx2(1+y)dx+(x3+y3)dy where c 9s the square

formed by x=±1 and y=±1.

12. Verify Gauss dirergence theorem for = (x2-yz) + (y2-zx) + (z2-xy) x and the closed surface of the vectargular parallelopsped formed by x=0, x=1, y=0, y=2, z=0 & z=3.

13. Verify stoke's, theorem for the sufface formed by ruplane bounded by x=0, y=0, x=2, y=2.

14. Use Green's theorem in a plane to evaluate S(x2-y2)dx+2xydy, where c 95 bounded by [HPnt: Find RHS alone] x=0, x=a, y=0, y=b.

- 15. Evaluate SF.do along the curive x=t,

 y= 2t, z=t³ from t=0 to t=1 given that

 F = xy = -z + x x.
- 16. Find the workdone by the force $\vec{F} = 3xy\vec{i} y\vec{j}$, when it moves a particle along the curve $y = 2x^2$ in the XY plane from (0,0) to (1,2).
- He Exaluate SFAds where $\vec{F} = y\vec{1} x\vec{j} + 4\vec{k}$ And 8 9s the part of the sphere $\vec{\chi} + y\vec{\tau} + z\vec{\tau} = a^2$ that lies 9n frost octant.
- 18. Evaluate $\iint \vec{F} \cdot \hat{n} ds$ where $\vec{F} = Z\vec{i} + \chi \vec{j} y^2 z \vec{k}$ and S is the cykinder $\chi^2 + y^2 = 1$ included in the first octant between the planes Z = 0 and Z = 0.

 [Hint: $\varphi = \chi^2 + y^2 1$] Z = 0 and Z = 0.

 [Hint: $\varphi = \chi^2 + y^2 1$] Z = 0 and Z = 0.

 [A. \vec{i}]
- 19. Evaluate $\iiint \nabla \cdot \vec{F} dV$, where $\vec{F} = (2x^2 8z)\vec{i} 2xy\vec{j} 4x\vec{k}$ and \vec{V} is bounded by x=0, y=0, z=0 and 2x+3y+z-4=0.
- 20. Evaluate III VoFdV where $\vec{F} = 2\vec{z}y\vec{i} y^2\vec{j} + 4\vec{z}\vec{z}\vec{z}$ and \vec{v} is the region in the first octant bounded by the cylinder $y^2 + z^2 = 9$ and z = 2.

- 21. Find the angle between $\phi = 3x^2y y^3z^2$ at (1,-2,-1) and (1,-1,2).
- 22. Find the angle between $\phi = \chi^2 y Z 1$ and $\phi = \chi^2 + y^2 + z^2$ at the point (1, 2, 1).
- 23. Find the Unit normal vector of $\phi = \chi^2 y 2y^2 = 2$ at (1,-1,-1)
- 24. Find the unit normal vector of $\varphi = \frac{1}{2}\log(2^2+y^2)$ at (1,1,1)