# Computer Networking

# Jihong Gan

# **Contents**

| 0 | Fror | t Matter                        | 1 |
|---|------|---------------------------------|---|
|   | 0.1  | Schedule                        | 1 |
|   | 0.2  | Motivating Questions            | 2 |
|   | 0.3  | References                      | 2 |
| 1 |      | puter Networks and the internet | 3 |
|   | 1.1  | What is the internet?           | 3 |
|   |      | 1.1.1 Nuts n bolts definition   | 3 |
|   |      | 1.1.2 Service definition        | 4 |
|   | 1.2  | The network edge                | 4 |
|   | 1.3  | The Network Core                | 4 |
|   |      | 1.3.1 Packet Switching          | 4 |
|   |      | 1.3.2 A network of networks     | 5 |
|   | 1.4  | Delay, Loss, and Throughput     | 5 |
|   |      | 1.4.1 Types of delay            |   |
|   |      | 1.4.2 Queueing delay            |   |
|   |      | 4.40 777 1                      | 6 |
|   | 1.5  |                                 | 6 |
|   |      | 151 1 1 1 1 1                   | 6 |
|   |      | 1.5.2 Encapsulation             | 7 |

# 0 Front Matter

Notes on computer networking.

# 0.1 Schedule

| Week                 |                                           |                                                     |                                      |                   |
|----------------------|-------------------------------------------|-----------------------------------------------------|--------------------------------------|-------------------|
| of                   | Monday                                    | Wednesday                                           | Readings                             | Assignments       |
| 01/02/23             | No Class                                  | [Introduction and<br>Overview]                      | 1.1, 1.3, 1.4                        | A1 Out            |
| 01/09/23             | [Protocol Layering]                       | [HTTP and the Web]                                  | 1.5                                  |                   |
| 01/16/23             | No Class                                  | [DNS and CDN]                                       | 2.2, 2.4                             |                   |
| 01/23/23             | [Video Streaming and Cloud<br>Systems]    | [Transport Layer]                                   | 2.6, 3.1, 3.2, 3.3, 3.4              | A1 Due, A2<br>Out |
| 01/30/23             | [TCP Basics]                              | [Flow and Congestion<br>Control]                    | 3.5, 3.6                             |                   |
| 02/06/23<br>02/13/23 | [More Congestion Control]<br>[IP Routers] | [Network Layer and IP]<br>[ <i>Midterm Review</i> ] | 3.7, 4.1, 4.3.1, 4.3.2, 4.3.5<br>4.2 |                   |

| Week     |                             |                         |                    |             |
|----------|-----------------------------|-------------------------|--------------------|-------------|
| of       | Monday                      | Wednesday               | Readings           | Assignments |
| 02/20/23 | No Class                    | MIDTERM                 |                    | A2 Due      |
| 02/27/23 | No Class                    | No Class                |                    | A3 Out      |
| 03/06/23 | [Routing Fundamentals]      | [Intra-AS Routing]      | 5.1, 5.2, 5.3      |             |
| 03/13/23 | [IP Addressing and Inter-AS | [BGP]                   | 4.3.3, 5.4         |             |
|          | Routing]                    |                         |                    |             |
| 03/20/23 | [Software-Defined           | [Link Layer]            | 4.4, 5.5, 6.1, 6.3 | A3 Due, A4  |
|          | Networking]                 |                         |                    | Out         |
| 03/27/23 | [Switched LAN]              | No Class                | 6.4                |             |
| 04/03/23 | [Wireless Networking]       | [Datacenter Networking] | 6.6, 7.1, 7.2, 7.3 |             |
| 04/10/23 | [Final Review]              | No Class                |                    |             |
| 04/17/23 | No Class                    |                         |                    | A4 Due      |
| 04/21/23 | FINAL                       |                         |                    |             |

# 0.2 Motivating Questions

- If I get to design the internet, what would I do?
- What happens when I type an URL into a browser?
- What happens when I search on Google?
- How does p2p downloading work, and how do people get caught pirating with p2p?
- How do I mess with the website of my high school?
- How does TCP/IP work?
- To what extent can my privacy be at risk on the internet? How?
- How does VPN work?
- How does the GFW work, and how to bypass it?
- What does it take to build a social networking protocol?

### 0.3 References

- [KR] Computer Networking: A Top-Down Approach, 8th Edition, Kurose and Ross, 2020.
- [PD] Computer Networks: A Systems Approach, 6th Edition, Peterson and Davie, 2021.

# 1 Computer Networks and the internet



### 1.1 What is the internet?

### 1.1.1 Nuts n bolts definition

• a computer network that interconnects billions of computing devices (**Hosts/end systems**) throughout the world.

- End systems are connected together by a network of **communication links** and **packet switches**.
  - Communication links examples: copper wire, optical fiber, radio spectrum.
  - A packet switch takes packets from one of its communication links to another. Eg. routers (in the network core), link-layer switches(like wifi router and modem).
- Packet: segment of data with header sent and reassembled.
- End systems access the Internet through **Internet Service Providers (ISPs)**. Each ISP is in itself a network of packet switches and communication links.
  - Eg. local cable company, university ISPs
  - Eg. lower-tier ISPs are interconnected by upper-tier ISPs such as AT&T
- End systems, packet switches, and other pieces of the Internet run **protocols** that decides how they talk to each other
  - Eg. TCP/IP

#### 1.1.2 Service definition

- an infrastructure that provides services to applications running on end systems
  - eg. supports sending email, browsing web, streaming videos

## 1.2 The network edge

- Access networks: networks that connect end systems to the first router
  - mobile network: 5G phone -> cell tower -> ISP router
  - Enterprise network
  - Home network: TV -> modem -> ISP router
  - Datacenter network
  - Empowered by physical media
    - \* eg. cables, radio channels, fiber optics
- The internet puts most of its complexity in its periphery

#### 1.3 The Network Core

- Def. The mesh of packet switches and communication links that interconnects the access networks
- Two ways of moving data through networks: packet switching and circuit switching
  - packet switching is simpler and has more transmission capacity.

#### 1.3.1 Packet Switching

- Packet switches uses store-and-forward transmission
  - packet switches must receive the entire packet and process it before it forwards its first bit to the outbound link.
- The packets are pipelined through the path because of store-and-forward
  - The delay of sending P packets of L bits each over a path of N links each of rate R is d = (N + P 1)L/R
- Since it takes time to put packets onto the link, routers have **output buffers** that stores packets before they are sent out.
  - When the buffer is full, the packet loss occurs
- Routers figures out where a packet should go via a **forwarding table**, which maps (portions of) the destination IP address to the router's outgoing link
  - The forwarding table is set automatically by **routing protocols**.

#### 1.3.2 A network of networks



Figure 1.15 → Interconnection of ISPs

### 1.4 Delay, Loss, and Throughput

# 1.4.1 Types of delay

- Processing delay: time to process the packet at the router
  - microseconds or less
- Queuing delay
  - microseconds to milliseconds
- Propagation delay: time for the packet to travel on the link
  - milliseconds in wide area networks
- Transmission delay
  - # bits / transmission rate
- Total nodal delay is the sum of the four above.
  - Its exact composition can vary significantly

#### 1.4.2 Queueing delay

- Depends on the rate at which packets arrive at the queue, the transmission rate of the link, and the nature of the traffic.
- Estimated by **traffic intensity**.
  - Suppose that the packets arrive at the queue at a bits/sec, all packets consist of L bits, and the transmission rate of the link is R bits/sec. The traffic intensity is aL/R.
  - If aL/R > 1, the queue will grow without bound
- Typically, the arrivals to a queue do not follow any pattern. So, queueing delay grows exponentially with the traffic intensity.



Figure 1.18 → Dependence of average queuing delay on traffic intensity

### 1.4.3 Throughput

- when there is no other intervening traffic, the throughput can simply be approximated as the minimum transmission rate along the path between source and destination.
- more generally the throughput depends not only on the transmission rates of the links along the path, but also on the intervening traffic.

### 1.5 Protocol layers and their service models

- Network protocols are organized in layers.
- Each layer provides a service (**service model**) to the layer above it and uses the service of the layer below it.
- A protocol layer can be implemented in software or hardware or both.
- A layer n protocol distributed among the end systems, packet switches, and other components that make up the network.

#### 1.5.1 Internet protocol stack

Application
Transport
Network
Link
Physical

- Application layer: where network applications and their protocols reside
  - Eg. HTTP, FTP, DNS, SMTP
  - Message: application layer packet
- Transport layer transports messages between applications
  - Eg. TCP, UDP

- **Segment**: transport layer packet
- Network layer routes segments between hosts
  - Eg. IP, routing protocols
  - Datagram: network layer packet
- Link layer delivers datagrams from one node (host or router) to another
  - Eg. Ethernet, WiFi
  - Frame: link layer packet
- Physical layer moves bits within the frame from one node to another
  - Eg. copper wire, optical fiber, radio spectrum

#### 1.5.2 Encapsulation



Figure 1.24 • Hosts, routers, and link-layer switches; each contains a different set of layers, reflecting their differences in functionality

- Link-layer switches and routers
  - both only implement the bottom layers
  - Routers implement the network layer but link-layer switches do not
- At each layer, a packet has two types of fields: header fields and a **payload field**. The payload is typically a packet from the layer above.