Nonlinear Least Squares Trajectory Exploration

John Hauser

ver. Dec 2012

We consider the problem for finding a trajectory of $\dot{x} = f(x, u)$ that is close to a specified curve $\xi_d = (x_d(\cdot), u_d(\cdot))$ in a weighted L_2 sense. In particular, given symmetric positive definite matrices Q, R, and P_1 , we seek to (locally) minimize the least squares functional

$$h(\xi) = \int_0^T \|x(\tau) - x_d(\tau)\|_Q^2 / 2 + \|u(\tau) - u_d(\tau)\|_R^2 / 2 \, d\tau + \|x(T) - x_d(T)\|_{P_1}^2 / 2$$

over trajectories $\xi = (x(\cdot), u(\cdot)) \in \mathcal{T}$. For simplicity, we only require that the desired curve ξ_d be continuous on [0, T].

We will work through the details using the pictured driven inverted pendulum system. The dynamics is given by

$$\ddot{\varphi} = (g/l)\sin\varphi - (1/l)\cos\varphi \ u$$

where the control u is taken to be the pivot point lateral acceleration a_l . In state space form, we have

$$\left[\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \end{array}\right] = \left[\begin{array}{c} f_1(x,u) \\ f_2(x,u) \end{array}\right] = \left[\begin{array}{c} x_2 \\ (g/l)\sin x_1 - (u/l)\cos x_1 \end{array}\right]$$

The linearization about a trajectory $\xi = (x(\cdot), u(\cdot))$ is given by

defining A(x(t), u(t)) and B(x(t), u(t)). We will also make use of the second derivative of $f(\cdot, \cdot)$. Each $D^2 f_i(x, u)$ has a matrix representation: $D^2 f_1(x(t), u(t)) = 0_{3\times 3}$ and

$$D^{2}f_{2}(x(t), u(t)) = \begin{bmatrix} -(g/l)\sin x_{1}(t) + (u(t)/l)\cos x_{1}(t) & 0 & (1/l)\sin x_{1}(t) \\ 0 & 0 & 0 \\ \hline (1/l)\sin x_{1}(t) & 0 & 0 \end{bmatrix}.$$

A suitable $K(\cdot)$ for finite horizon regulation may be obtained by solving a linear quadratic optimal control problem. To wit, one may choose (with subscript r meaning regulator)

$$K_r(t) = R_r^{-1} B(t)^T P_r(t)$$

where $P_r(\cdot)$ satisfies the Riccati equation

$$\dot{P}_r + A(t)^T P_r + P_r A(t) - P_r B(t) R_r^{-1} B(t)^T P_r + Q_r = 0, \quad P_r(T) = P_{1r}, \tag{1}$$

or, equivalently,

$$\dot{P}_r + A(t)^T P_r + P_r A(t) - K_r(t)^T R_r K_r(t) + Q_r = 0, \quad P_r(T) = P_{1r},$$

with $Q_r = Q_r^T > 0$, $R_r = R_r^T > 0$, and $P_{1r} = P_{1r}^T > 0$. (The matrices Q_r , R_r , and P_{1r} here need not be related to cost function above.) The terminal value P_{1r} is often chosen in a fashion to make it approximately compatible with Q_r and R_r and the linearized system dynamics. For instance, suppose that $(x(T), u(T)) = (x_{eq}, u_{eq})$ is an equilibrium point, $f(x_{eq}, u_{eq}) = 0$, with controllable linearization (A_{eq}, B_{eq}) and let $P_{1r} = P_{1r}^T > 0$ be the stabilizing solution to the associated algebraic Riccati equation. Then the extension of $K_r(\cdot)$ (constant on $t \geq T$) stabilizes the corresponding extension of ξ (also constant on $t \geq T$). Naturally, these comments are also useful in the selection of P_1 for the least squares functional $h(\cdot)$ above.

Suppose now that we have obtained a $K_r(\cdot)$ and we wish to evaluate $\mathcal{P}(\xi)$ and $g(\xi) = h(\mathcal{P}(\xi))$ for some $\xi = (\alpha(\cdot), \mu(\cdot))$ that is not necessarily a trajectory. This is easily accomplished by integrating the augmented system

$$\dot{x} = f(x,u) \qquad x(0) = x_0,
 u = \mu(t) + K_r(t) \left[\alpha(t) - x\right]
 \dot{x}_{n+1} = \|x - x_d(t)\|_Q^2 / 2 + \|u - u_d(t)\|_R^2 / 2 \qquad x_{n+1}(0) = 0$$
(2)

over [0,T] and noting that

$$g(\xi) = h(\mathcal{P}(\xi)) = x_{n+1}(T) + ||x(T) - x_d(T)||_{P_1}^2 / 2.$$

The system (2) can be implemented in matlab using an S-function system with

- state $(x, x_{n+1}),$
- input $(\alpha(t), \mu(t), K_r(t), x_d(t), u_d(t)), t \in [0, T],$

and

- output u.

The S-function for evaluating the nonlinear projection operator $\mathcal{P}(\xi)$ together with the cost functional $h(\mathcal{P}(\xi))$ is implemented in nonl_K.c which is accessed using the associated simulink model nonl_KS.mdl. The executable nonl_K.mex* is made using mex nonl_K.c in the matlab command window. The dynamics and cost functions (plus derivatives) are specified using a dynamics(...) function and a cost(...) function, placed in files called dynamics.c and cost.c, respectively.

Note that we have followed the convention wherein the argument t is shown only for functions that depend explicitly on time. The time dependent functions x(t), u(t), $x_{n+1}(t)$, $t \in [0,T]$ are determined (implicitly) by solving the differential equation (2).

Cheat Sheet

Given $\xi = (x(\cdot), u(\cdot)) \in \mathcal{T}$, find

$$\zeta = (z(\cdot), v(\cdot)) = \arg\min_{\zeta \in T_{\varepsilon} \mathcal{T}} Dh(\xi) \cdot \zeta + (1/2)D^{2}g(\xi) \cdot (\zeta, \zeta)$$

Solve, backward in time,

$$K_{o} = R_{o}^{-1}(S_{o}^{T} + B^{T}P)$$

$$-\dot{P} = A^{T}P + PA - K_{o}^{T}R_{o}K_{o} + Q_{o}, \quad P(T) = P_{1},$$

$$-\dot{r} = (A - BK_{o})^{T}r + a - K_{o}^{T}b, \qquad r(T) = r_{1},$$

$$-\dot{q} = (A - BK_{r})^{T}q + a - K_{r}^{T}b, \qquad q(T) = r_{1},$$

$$v_{o} = -R_{o}^{-1}(B^{T}r + b)$$

$$a = l_{x}^{T} = Q(x(t) - x_{d}(t))$$

$$b = l_{u}^{T} = R(u(t) - u_{d}(t))$$

$$Q_{o} = l_{xx} + \sum q_{k}f_{k,xx} = Q + \sum q_{k}f_{k,xx}$$

$$R_{o} = l_{uu} + \sum q_{k}f_{k,uu} = R + \sum q_{k}f_{k,uu}$$

$$S_{o} = l_{xu} + \sum q_{k}f_{k,xu} = 0 + \sum q_{k}f_{k,xu}$$

$$r_{1} = m_{x}^{T} = P_{1}(x(T) - x_{d}(T))$$

$$P_{1} = m_{xx}$$

and then, forward in time,

$$\dot{z} = Az + Bv, z(0) = 0$$

$$v = -K_o z - R_o^{-1} (B^T r + b)$$

$$= -K_o z + v_o$$

$$\dot{z}_{n+1} = a^T z + b^T v, z_{n+1}(0) = 0$$

$$\dot{z}_{n+2} = z^T Q_o z + 2z^T S_o v + v^T R_o v, z_{n+2}(0) = 0$$

so that, with $\zeta = (z(\cdot), v(\cdot)),$

$$Dh(\xi) \cdot \zeta = z_{n+1}(T) + r_1^T z(T)$$

$$D^2 g(\xi) \cdot (\zeta, \zeta) = z_{n+2}(T) + z(T)^T P_1 z(T)$$

When $f(\cdot, \cdot)$ is control-affine, $R_o = R$.

Note: the term R_o will have different meanings in the backward and forward time calculations when using a quadratic form other than $D^2g(\xi)$ in computing the descent direction. In that case, the expression $v = -K_oz + v_o$ must be used since the optimal R_o going backwards is then not the second order R_o given, but rather whatever has been chosen (to ensure that the LQ problem is solvable). In contrast, the R_o used in computing z_{n+2} (going forward) is always the one associated with $D^2g(\xi)$. (Perhaps a different notation might be developed for the non-Newton direction case...)