无标题文档 页码,1/22

# D3非接触式读写器



点击上述图片进入设备介绍

## 设备使用说明

## 1、型号说明

如: D3-S 串口通讯的读写器 D3-U USB口通讯的读写器

## 2、连接方式

无标题文档 页码, 2/22

- 1)、USB接口:将USB线插入计算机的USB接口即可。(如图2)
- 2)、串口: 先关闭计算机电源,将键盘连接线拔下,将键盘线插入读写器后端的键盘口连接端,然后将读写器后端的键盘口端子插入计算机的键盘口,再将串口线一端接至计算机的串口上。(如图3)



图2. USB接口连接示意图

无标题文档 页码,3/22



剑龙 D3 连接示意图

图3. 串口连接示意图

#### 3、指示灯

通电灯亮,通迅时灯闪烁。

## 4、技术指标

通讯接口:采用串口或USB口

电源:键盘口或USB供电,<150 mA

工作环境温度: -20~+60℃

工作相对湿度: <95%

外型尺寸: 长x宽x高: 123mm\*95mm\*27mm

#### 5 注意事项

在帮助文档中列出了支持Mi fare S50 以及Mi fare S70的卡函数,但需要说明的是D3的出厂通用版本仅支持符合ISO-14443 TYPEA 协议的卡片,如果需要支持其他类型卡片的读写器请予事先说明。

此外随着智能卡行业的不断发展、新的卡型的不断推出,D3读写器也在不断的更新来适合发展的需要,如果需要使用D3操作新的卡型,也需要事先咨询一下所需要的版本。

## 函数使用规则

无标题文档 页码,4/22

(1) **首先要调用通讯口初始化函数**dc\_i ni t , 其返回值为设备标识符,它将作为其它函数的调用参数。

- (2) 调用WINDOWS 32位动态库时,程序退出之前要执行dc\_exit (HANDLE icdev) 函数,关闭串口,释放句柄icdev; **否则再次初始化串口将出错**。
- (3) 函数调用错误类型,请参照**函数错误类型代码**。所有函数的错误代码均以负数形式返回; Foxpro For Dos例外。
- (4) **动态库的位置**应该在声明的相应目录中或缺省的目录当中,否则会有无法寻找到动态库的错误。
- (5) 函数的十六进制HEX方式调用中,传入和读出的字符数组是以十六进制字符串的方式进行的,其余参数调用方式相同,所以在函数详细说明中不再列出。

注意: 函数详细的使用方法,参考D8\EXAMPLES目录下提供的范例。

通用函数

| dc_i ni t              | dc_exit      | dc_card       | <u>dc_des</u> |
|------------------------|--------------|---------------|---------------|
| dc_request             | dc_anticoll  | dc_sel ect    | dc_l oad_key  |
| dc_authentication      | dc_hal t     | dc_read       | dc_write      |
| dc_authentication_2    | dc_changeb3  | dc_i ni tval  | dc_readval    |
| dc_check_write         | dc_decrement | dc_i ncrement | dc_transfer   |
| dc_HL_authentication   | dc_HL_write  | dc_HL_read    | dc_restore    |
| dc_authentication_pass |              |               |               |

int dc\_init(int port,long baud);

功能:初始化通讯口

参数: port: 取值为0~19时,表示串口1~20;为100时,表示USB口通讯,此时波特率无效。

baud: 为通讯波特率9600~115200

返 回:成功则返回串口标识符>0,失败返回负值,见错误代码表

无标题文档 页码,5/22

例: int icdev;

i cdev=dc\_i ni t (0, 9600); //初始化串口1, 波特率9600

int dc\_exit(int icdev);

功能:关闭端口

参数:icdev:通讯设备标识符

返回:成功返回0

例: dc\_exit(icdev);

注: 在WIN32环境下icdev为端口的设备句柄,必须释放后才可以再次连接。

int dc\_card(int icdev, unsigned char \_Mode, unsigned long \*\_Snr);

功能: 寻卡,能返回在工作区域内某张卡的序列号(该函数包含了dc\_request,dc\_anticoll,dc\_select的整体功能)

参数:icdev:通讯设备标识符

\_Mode: 寻卡模式

\_Snr: 返回的卡序列号

返回:成功则返回0

例: int st;

unsigned long snr;

st=dc\_card(icdev, 0, &snr);

注:选择IDLE模式,在对卡进行读写操作,执行dc\_halt()指令中止卡操作后,只有当该卡离开并再次进入操作区时,读写器才能够再次对它进行操作。

相关HEX函数:

无标题文档 页码,6/22

```
__int16 __stdcall dc_card_hex(HANDLE icdev,unsigned char _Mode,unsigned char
*snrstr)
int dc_request(int icdev, unsigned char _Mode, unsigned int *TagType);
功 能: 寻卡请求
参数:icdev:通讯设备标识符
     _Mode: 寻卡模式
     Tagtype: 卡类型值,详情见附录TagType特征值
返回:成功则返回0
  例: int st;
      unsigned int *tagtype;
      st=dc_request(i cdev, 0, tagtype);
int dc_anticoll(int icdev, unsigned char _Bcnt, unsigned long *_Snr);
功能: 防卡冲突, 返回卡的序列号
参数:icdev:通讯设备标识符
     _Bcn: 设为0
     _Snr: 返回的卡序列号地址
返回:成功则返回0
  例: int st;
     unsigned long snr;
      st=dc_anticoll(icdev, 0, &snr);
  注: request指令之后应立即调用anticoll,除非卡的序列号已知。
int dc_select(int icdev, unsigned long _Snr, unsigned char *_Size);
功 能: 从多个卡中选取一个给定序列号的卡
```

无标题文档 页码,7/22

```
参数:icdev:通讯设备标识符
     _Snr: 卡序列号
     Size: 指向返回的卡容量的数据
返回:成功则返回0
  例:
      int st, type;
      unsigned char size;
      unsigned long snr;
      dc_request(i cdev, 0, &type);
      dc_anticoll(icdev, 0, &snr);
      st=dc_select(i cdev, snr, &si ze);
int dc_load_key(int icdev, unsigned char _Mode, unsigned char _SecNr, unsigned char
*_NKey);
功能:将密码装入读写模块RAM中
参数:icdev:通讯设备标识符
     _Mode: 装入密码模式,同密码验证模式
     _SecNr: 扇区号(M1卡: 0~15; ML卡: 0)
     _Nkey: 写入读写器中的卡密码
返回:成功则返回0
  例: //key A and key B
      unsigned char password[7]=\{0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5\};
      /* 装入1扇区的0套A密码 */
```

 $file: //C: \Documents \ and \ Settings \Administrator \Local \ Settings \Temp \-hh. \dots \ 2010-12-9$ 

无标题文档 页码,8/22

```
if((dc_load_key(icdev, 0, 1, password))!=0)
      {
           printf("Load key error!");
           dc_exit(icdev);
      }
相关HEX函数:
     __int16 __stdcall dc_load_key_hex(HANDLE icdev, unsigned char _Mode, unsigned
char _SecNr, unsigned char *_NKey)
int dc_authentication(int icdev, unsigned char _Mode, unsigned char _SecNr)
功能:核对密码函数
参数: icdev: dc_init返回的设备描述符
     _Mode: 密码验证模式
     _SecNr: 要验证密码的扇区号
返回:成功返回0
int dc_read(int icdev, unsigned char _Adr, unsigned char *_Data);
功能:读取卡中数据
     对于M1卡,一次读一个块的数据,为16个字节;
     对于ML卡,一次读出相同属性的两页(0和1,2和3,...),为8个字节
参数:icdev:通讯设备标识符
     Adr: M1卡——块地址 (0~63), MS70(0-255);
          ML卡——页地址(0~11)
```

无标题文档 页码,9/22

```
_Data: 读出数据
返回:成功则返回0
  例: int st;
     unsigned char data[16];
      st=dc_read(i cdev, 4, data); //读M1卡块4的数据
相关HEX函数:
          __int16 __stdcall dc_read_hex(HANDLE icdev, unsigned char _Adr, char
*_Data)
int dc_write(int icdev, unsingned char _Adr, unsigned char *_Data);
功能:向卡中写入数据
     对于M1卡,一次必须写一个块,为16个字节;
      对于ML卡,一次必须写一页,为4个字节
参数:icdev:通讯设备标识符
     _Adr: M1卡——块地址(1~63), M1S70卡——块地址(1-255);
          ML卡—页地址(2~11)
     _Data: 要写入的数据
返回:成功则返回0
  例: int st;
      unsigned char *data="1234567890123456";
      st=dc_write(icdev, 4, data); //写第四块
相关HEX函数:
         __int16 __stdcall dc_write_hex(HANDLE icdev, unsigned char _Adr, char
*_Data)
```

无标题文档 页码,10/22

int dc\_halt(int icdev)

功能:中止对该卡操作

参数:icdev:通讯设备标识符

返回:成功则返回0

例: st=dc\_halt(icdev);

说明:使用dc\_card()函数时,有个\_Mode参数,如果\_Mode=0则在对卡进行操作完毕后,执行dc\_halt();则该卡进入HALT模式,则必须把卡移开感应区再进来才能寻得这张卡。

int dc\_des(unsigned char \*key, unsigned char \*sour, unsigned char \*dest, \_\_int16 m)

功能: DES算法加解密函数

参 数: key: 密钥

sour: 要加解密的数据

dest: 加解密后的数据

m: 加解密模式, m=1时, 为加密; m=0时, 为解密过程

返回:成功返回0

相关hex函数

\_\_int16 \_\_stdcall dc\_des\_hex(unsigned char \*key, unsigned char \*sour, unsigned char \*dest, \_\_int16 m);

int dc\_changeb3(int icdev, unsigned char \_SecNr, unsigned char \*\_KeyA, unsigned char \_B0, unsigned char \_B1, unsigned char \_B2, unsigned char \_B3, unsigned char \_Bk, unsigned char \*\_KeyB);

功 能:修改块3的数据(当为M1S70卡时,当扇区号大于31时,修改块15的数据(即一个扇区的最后一块))

参数:icdev:通讯设备标识符

\_SecNr: 扇区号(M1:0~15, M1S70:0-39)

\_KeyA: 密码A

无标题文档 页码,11/22

\_BO: 块0控制字(当一扇区有16块时,对应为块 0- 4的控制字),低3位(D2D1D0)对应C10、C20、C30

\_B1: 块1控制字(当一扇区有16块时,对应为块 5- 9的控制字),低3位(D2D1D0)对 应C11、C21、C31

\_B2: 块2控制字(当一扇区有16块时,对应为块10-14的控制字),低3位(D2D1D0)对应C12、C22、C32

\_B3: 块3控制字(当一扇区有16块时,对应为块15的控制字),低3位(D2D1D0)对应C13、C23、C33

Bk: 保留参数,取值为0

\_KeyB: 密码B

返回:成功则返回0

例: int st;

unsigned char keya;

unsigned char keyb;

memset(keya, 0xff, 6);

memset(keyb, 0xff, 6);

st=dc\_changeb3(i cdev, keya, 0x00, 0x00, 0x00, 0x01, 0, keyb);

\_\_int16 \_\_stdcall dc\_authentication\_passaddr(HANDLE icdev, unsigned char \_Mode, unsigned char blockAddr, unsigned char \*passbuff)

功能:核对密码函数,用此函数时,可以不用执行dc\_load\_key()函数

参 数: icdev: dc\_init返回的设备描述符

\_Mode: 密码验证模式

blockAddr: 要验证密码的块地址号

passbuff: 密码字符串

无标题文档 页码,12/22

返回:成功返回0

相关HEX函数:

\_\_int16 \_\_stdcall dc\_authentication\_passaddr\_hex(HANDLE icdev, unsigned char \_\_Mode, unsigned char blockAddr, unsigned char \*passbuff)

int dc\_initval(int icdev, unsigned char \_Adr, unsigned long \_Value);

功能:初始化块值

参数:icdev:通讯设备标识符

\_Adr: 块地址

\_Value: 初始值

返回:成功则返回0

例: int st;

unsigned long value;

val ue=1000;

/\* 给value赋值\*/

st=dc\_i ni tval (i cdev, 1, val ue);

/\*将块1的值初始化为1000\*/

注: 在进行值操作时,必须先执行初始化值函数,然后才可以读、减、加的操作。

int dc\_increment(int icdev, unsigned char \_Adr, unsigned long \_Value);

功能: 块加值

参数:icdev:通讯设备标识符

\_Adr: 块地址

\_Value: 要增加的值

返回:成功则返回0;

无标题文档 页码,13/22

```
例: int st;
      unsigned long value;
      value=10;
      st=dc_increment(icdev, 1, value); /*将块1的值增加value*/
dc_readval(int icdev, unsigned char _Adr, unsigned long *_Value);
功能: 读块值
参数:icdev:通讯设备标识符
      _Adr: 块地址
      _Value: 读出值的地址
返回:成功则返回0
  例: int st;
      unsigned long value;
      st=dc_readval (i cdev, 1, &val ue); /*读出块1的值,放入val ue*/
int dc_decrement(int icdev, unsigned char _Adr, unsigned long _Value);
功能: 块减值
参数:icdev:通讯设备标识符
      _Adr: 块地址
     _Value: 要减的值
返回:成功则返回0
  例: int st;
      unsigned long value;
      value=10;
```

st=dc\_decrement(i cdev, 1, value); /\*将块1的值减少value\*/

int dc\_HL\_authentication(int icdev, unsigned char reqmode, unsigned long snr, unsigned char authmode, unsigned char secnr);

功 能: 高级验证 (无需调用寻卡函数)

参数:icdev:通讯设备标识符

reqmode: 寻卡模式

snr: 卡序列号(在寻卡模式为2时使用)

authmode: 密码验证模式

secnr: 扇区号

返回:成功则返回0

例: st=dc\_HL\_authentication(icdev, 0, snr, 0, 1);

int dc\_HL\_read(int icdev, unsigned char \_Mode, unsigned char \_Adr, unsigned long
\_Snr, unsigned char \*\_Data, unsigned long \*\_NSnr);

功能:高级读函数

参数:icdev:通讯设备标识符

\_Mode: <u>寻卡模式</u>

\_Adr: 块地址

\_Snr:卡的序列号

\_Data: 读出的数据

\_NSnr: 返回卡的序列号

返回:成功则返回0

无标题文档 页码,15/22

```
例: if((dc_HL_read(icdev, 1, 5, snr, HLdata, &Rsnr))!=0)
      {
          printf("read HL Rvalue wrong");
      }
相关HEX函数:
      __int16 __stdcall dc_HL_read_hex(HANDLE icdev, unsigned char _Mode, unsigned
char _Adr, unsigned long _Snr, unsigned char *_Data, unsigned long *_NSnr);
int dc_HL_write(int icdev, unsigned char _Mode, unsigned char _Adr, unsigned long
*_Snr, unsigned char *_Data);
功能:高级写函数
参数:icdev:通讯设备标识符
       _Mode: 寻卡模式
       _Adr: 块地址
       _Snr: 卡的序列号地址
       _Data: 写入的数据
返回:成功则返回0
   例: if((dc_HL_write(icdev, 1, 5, Snr, HLdata))!=0)
      {
              printf("dc_HL_write wrong");
       }
相关HEX函数
      __int16 __stdcall dc_HL_write_hex(HANDLE icdev, unsigned char _Mode, unsigned
char _Adr, unsigned long *_Snr, unsigned char *_Data);
```

无标题文档 页码,16/22

int dc\_restore(int icdev, unsigned char \_Adr);

功能:回传函数,将EEPROM中的内容传入卡的内部寄存器

参数:icdev:通讯设备标识符

\_Adr: 要进行回传的块地址

返回:成功返回0

例: int st;

st=dc\_restore(icdev, 1);

注:用此函数将某一块中的数值传入内部寄存器,然后用dc\_transfer()函数将寄存器中数据再传送到另一块中去,实现块与块之间数值传送。该函数只用于值块。

int dc\_transfer(int icdev, unsigned char \_Adr);

功能:传送,将寄存器的内容传送到EEPROM中

参数:icdev:通讯设备标识符

\_Adr: 要传送的块地址

返回:成功返回0

例: dc\_restore(icdev, 1);

dc\_transfer(i cdev, 2);

上两行实现将块1的内容传送到块2。

注: 见<u>dc\_restore()</u>的说明。

int dc\_authentication\_2(int icdev, unsigned char \_Mode, unsigned char KeyNr, unsigned
char Adr);

功能:卡验证密码

参数:icdev:通讯设备标识符

\_Mode: 密码验证模式

KeyNr: 扇区地址

Adr: 块地址

返回:成功则返回0

例: int st;

st=dc\_authentication\_2(icdev, 0, 3, 3);

int dc\_authentication\_pass(int icdev, unsigned char \_Mode, unsigned char Addr,
unsigned char \*passbuff)

功能:核对密码函数,用此函数时,可以不用执行dc\_load\_key()函数(只支持M1和S70卡)

参数:icdev: dc\_init返回的设备描述符

\_Mode: 密码验证模式

Addr: 要验证密码的扇区号

passbuff:密码字符串

返回:成功返回0

相关HEX函数:

\_\_int16 \_\_stdcall dc\_authentication\_pass\_hex(HANDLE icdev, unsigned char \_Mode, unsigned char \_Addr, unsigned char \*passbuff)

int dc\_card\_double(int icdev, unsigned char \_Mode, unsigned char \*\_Snr);

功 能: 寻卡,和dc\_card差别为多调了dc\_anticoll2, dc\_select2

参数:icdev:通讯设备标识符

\_Mode: <u>寻卡模式</u>

\_Snr: 返回的卡序列号(8 字节)

返回:成功则返回0

例: int st;

unsigned char snr[8];

无标题文档 页码,18/22

st=dc\_card\_double(icdev, 0, snr);

注:选择IDLE模式,在对卡进行读写操作,执行<u>dc\_halt()</u>指令中止卡操作后,只有当该卡离开并再次进入操作区时,读写器才能够再次对它进行操作。

相关HEX函数:

\_\_int16 \_\_stdcall dc\_card\_double\_hex(HANDLE icdev, unsigned char \_Mode, unsigned char \*snrstr)

### 设备操作函数

| dc_beep         | dc_getver    | dc_srd_eeprom |
|-----------------|--------------|---------------|
| dc_swr_eeprom   | <u>hex_a</u> | a_hex         |
| <u>dc_reset</u> |              |               |

int dc\_beep(int icdev, unsigned int \_Msec);

功能:蜂鸣

参数:icdev:通讯设备标识符

unsigned int \_Msec: 蜂鸣时间,单位是10毫秒

返回:成功则返回0

例: int st;

st=dc\_beep(i cdev, 10); /\*鸣叫100毫秒\*/

int dc\_getver(int icdev, unsinged char \*buff);

功能:读取硬件版本号

参数: icdev: 通讯设备标识符

buff: 存放版本号的缓冲区,长度3字节(包括结束字符'\0')。

无标题文档 页码,19/22

返回:成功则返回0 例: unsigned char buff[3]; dc\_getver(i cdev, buff); int dc\_srd\_eeprom(int icdev, int offset, int length, unsigned char \*rec\_buffer); 功能:读取读写器备注信息 参数:icdev:通讯设备标识符 offset: 偏移地址(0~1278) length: 读取信息长度(1~1279) rec\_buffer: 读取到的信息 返回:成功则返回0 例: int st; unsigned char buffer[100]; st=dc\_srd\_eeprom(i cdev, 0, 100, buffer); 相关HEX函数: \_\_int16 \_\_stdcall dc\_srd\_eepromhex(HANDLE icdev, \_\_int16 offset, \_\_int16 lenth, unsigned char \*rec\_buffer); int dc\_swr\_eeprom(int icdev,int offset,int length,unsigned char\* buffer); 功 能:向读写器备注区中写入信息 参数: icdev: 通讯设备标识符 offset: 偏移地址 (0~1278) length: 写入信息长度(1~1279) buffer: 要写入的信息 返回:成功则返回0

无标题文档 页码,20/22

相关HEX函数:

\_\_int16 \_\_stdcall dc\_swr\_eepromhex(HANDLE icdev,\_\_int16 offset,\_\_int16 length, unsigned char\* send\_buffer)

\_\_int16 a\_hex(unsigned char \*a, unsigned char \*hex, \_\_int16 len)

功 能:字符串转换函数,十六进制字符转换成普通字符(长转短)。

参 数: a : 要转换的字符

hex: 转换后的字符

Ien: 字符a的长度

返回:成功则返回0

void hex\_a(unsigned char \*hex, unsigned char \*a, \_\_int16 len)

功能:字符串转换函数,普通字符转换成十六进制字符(短转长)。

参 数: hex: 要转换的字符

a : 转换后的字符

Ien: 字符hex的长度

\_\_int16 \_\_stdcall dc\_reset(HANDLE icdev, unsigned \_\_int16 \_Msec)

说明:射频复位函数

调用: icdev ----通讯设备端口标识符

\_Msec ----复位时间,单位为毫秒(此值为0时是关闭射频,为1,2...为复位1毫秒,2毫秒...)

返回: <0 错误。其绝对值为错误号

=0 成功。

举例: st=dc\_reset(icdev, 2)

32位Windows库函数错误代码

| 返回值(负数)   | 错误类型     |
|-----------|----------|
| 0x10(016) | 通讯错误     |
| 0x11(017) | 超时错误     |
| 0x20(032) | 打开端口错误   |
| 0x21(033) | 获得端口参数错误 |
| 0x22(034) | 设置端口参数错误 |
| 0x23(035) | 关闭端口出错   |
| 0x24(036) | 端口被占用    |
| 0x30(048) | 格式错误     |
| 0x31(049) | 数据格式错误   |
| 0x32(050) | 数据长度错误   |
| 0x40(064) | 读错误      |
| 0x41(065) | 写错误      |
| 0x42(066) | 无接收错误    |
| 0x50(080) | 不够减错误    |
| 0x73(115) | 取版本号错误   |

| 返回值(正数)   | 错误类型        |
|-----------|-------------|
| 0x01(001) | 未放置卡片或认证错误  |
| 0x02(002) | 数据校验错误      |
| 0x03(003) | 数值为空错误      |
| 0x04(004) | 认证失败        |
| 0x05(005) | 奇偶校验错误      |
| 0x06(006) | 读写设备与卡片通讯错误 |
| 0x08(008) | 读卡序列号错误     |
| 0x09(009) | 密码类型错误      |
| 0x0a(010) | 卡片尚未被认证     |
| 0x0b(011) | 读卡操作比特数错误   |
| 0x0c(012) | 读卡操作字节数错误   |
|           |             |

| 0x0f(015) | 写卡操作失败   |  |
|-----------|----------|--|
| 0x10(016) | 增值操作失败   |  |
| 0x11(017) | 减值操作失败   |  |
| 0x12(018) | 读卡操作失败   |  |
| 0x13(019) | 传输缓冲区溢出  |  |
| 0x15(021) | 传输帧错误    |  |
| 0x17(023) | 未知的传输需求  |  |
| 0x18(024) | 防冲突错误    |  |
| 0x19(025) | 感应模块复位错误 |  |
| 0x1a(026) | 非认证接口    |  |
| 0x1b(027) | 模块通讯超时   |  |
| 0x3c(060) | 非正常操作    |  |
| 0x64(100) | 错误的数据    |  |
| 0x7c(124) | 错误的参数值   |  |

判断卡型的特征值

| 卡型       | 特征值1 | 特征值2 |
|----------|------|------|
| MIFARE 1 | 4    | 136  |
| S70      | 2    | 24   |

在执行dc\_request函数时使用的TagType值是特征值1,执行dc\_select函数时使用的size值是特征值2。