

Pokémon Alfresco Restaurant Simulation Tutorial

Team Members: Nicole, Faisal, Jake and Brandon

Project Objective

To simulate a queueing system of a fictional Pokémon Alfresco Restaurant in order to determine the optimal number of tables to have in order to achieve maximum profits

Elements of the simulation

Types of customers

Cashier

Drink dispenser

Entrance

Table

Chair

Flow of the simulation

Unordered

This is where new customer arrive through the entrance.

State: 'UNORDERED'

Waiting

New customers start queueing up to order their food.

State: 'UNORDERED' to 'WAITING'

Staging

A customer here is the **next** one to be served

State: 'WAITING' to 'STAGING'

Ordering

A customer here starts **ordering** from cashier Jenny

State: 'STAGING' to 'ORDERING'

Ordered -> Eating or Ordering2

Having **ordered**, the customer is then randomly assigned one of two cases.

They could either go straight to their table to start eating OR grab an additional drink from the dispenser

State: 'ORDERING' to 'ORDERED'

Case 1: Eating

In this case, the customer goes directly to their seat to start eating

State: 'ORDERED' to 'EATING'

Case 2: Ordering2

Alternatively, the customer could proceed to the drinks dispenser for a drink before heading to their seat to start eating

State: 'ORDERED' to 'ORDERING2' to 'EATING'

Eaten -> Exited

Having **eaten** their meals, customer would then **exit** the restaurant.

State: 'EATING' to 'EATEN' to 'EXITED'

Rejected

Whenever the maximum capacity of the restaurant is reached, any newly arrived customer will be rejected

State: 'EXITED'

Statistics of interest

Here are some of the statistics we are generated from our simulation:

Average time spent in restaurant

Average queueing time

Percentage of customers lost due to maximum capacity

Customer count

Data collection process

Step 1: Initial conditions:

- # of Tables: 10
- Max customerInRestaurant= [(# of tables x 4) + 1]
- e.g 10 tables → 41 customers max

Step 2: Perform simulation:

- 3 runs
- Collect the respective statistics from the Inspect Element console
- Tabulate in EXCEL

Step 3: Repeat step 2 for next table configuration

 Remember to change the customerInRestaurant variable to match the updated number of tables before performing the 3 runs

Findings - Average Time spent in restaurant

Observations

As the number of tables increases, we could see a general decrease in the time spent by customers in the restaurant

Findings - Average Queueing Time

Observations

As the number of tables increases, we can see that there is a general increasing trend in terms of the average queueing time

Findings - Average Percentage Rejected

Observations

As the number of tables increases, we see that the average percentage rejected decreases.

This is expected as more tables = more capacity to cater to the inflow of customers

Findings - Customer Count

Observations

As the number of tables increases, we see that the average number of customers also increases.

This makes sense as more tables means more capacity to cater to more customers