Primfaktorzerlegung und Primzahltests

Maximilian Scholz

Proseminar Mathematik

25. Juni 2014

Inhalt

Einleitung zu Primzahlen

Sieb des Eratosthenes

Pollard Rho Methode

Gebutstagsproblem Hase Igel Algorithmus Pollard Rho Algorithmus Komplexität

Primzahlen

- ▶ Def.: Natürliche Zahlen > 1 die nur durch sich selbst und 1 teilbar sind.
- Es gibt unendlich viele Primzahlen. (Euklid)
- Jede natürliche Zahl lässt sich als Produkt von Primzalen darstellen. Bis auf die Reihenfolge ist diese Darstellung eindeutig. (Euklid)

▶ Wähle eine natürliche Zahl n > 1.

- ▶ Wähle eine natürliche Zahl n > 1.
- ▶ Die kleinste noch nicht gestrichene oder benutzte Zahl m mit $2 \le m$ wird die aktuelle Zahl.

- ▶ Wähle eine natürliche Zahl n > 1.
- ▶ Die kleinste noch nicht gestrichene oder benutzte Zahl m mit $2 \le m$ wird die aktuelle Zahl.
- ▶ Wenn $m^2 \le n$ ist, streiche alle Vielfachen cm $(c \in \mathbb{N})$ mit $m^2 \le cm \le n$

- ▶ Wähle eine natürliche Zahl n > 1.
- ▶ Die kleinste noch nicht gestrichene oder benutzte Zahl m mit $2 \le m$ wird die aktuelle Zahl.
- ▶ Wenn $m^2 \le n$ ist, streiche alle Vielfachen cm $(c \in \mathbb{N})$ mit $m^2 \le cm \le n$
- ightharpoonup Übrig bleiben alle Primzahlen zwischen 0 und n.

Gebutstagsproblem

▶ N Personen sind auf einem Geburtstag. Wie hoch ist die Wahrscheinlichkeit, dass zwei am gleichen Tag Geburtstag haben?

- ▶ N Personen sind auf einem Geburtstag. Wie hoch ist die Wahrscheinlichkeit, dass zwei am gleichen Tag Geburtstag haben?
- Inverses Problem: Wie hoch ist die Wahrscheinlichkeit P(N), dass kein Geburtstag mehrfach vorkommt?

$$P(3) = \frac{364}{365} \cdot \frac{363}{365}$$

- ▶ N Personen sind auf einem Geburtstag. Wie hoch ist die Wahrscheinlichkeit, dass zwei am gleichen Tag Geburtstag haben?
- Inverses Problem: Wie hoch ist die Wahrscheinlichkeit P(N), dass kein Geburtstag mehrfach vorkommt?

$$P(3) = \frac{364}{365} \cdot \frac{363}{365}$$

▶ Im Allgemeinen: $P(N) = \frac{365 \cdot 364 \dots (365 - N + 1)}{365^N}$

Für große N liegt die Zahl der Personen die man durchschnittlich braucht um eine Wiederholung zu erhalten bei $\sqrt{\frac{\pi N}{2}}$

Hase Igel Algorithmus

▶ Sei M eine endliche Menge mit der Abbildung $f: M \to M$.

- ▶ Sei M eine endliche Menge mit der Abbildung $f: M \to M$.
- ▶ Man wähle $x_0 \in M$ und erzeuge die Folge $x_0, x_1, x_2, ...$ mit $x_{i+1} = f(x_i)$.

- ▶ Sei M eine endliche Menge mit der Abbildung $f: M \to M$.
- ▶ Man wähle $x_0 \in M$ und erzeuge die Folge $x_0, x_1, x_2, ...$ mit $x_{i+1} = f(x_i)$.
- ▶ $\exists i, j \in \mathbb{N}$, sodass $i \neq j$ und $x_i = x_j$ gilt.

- ▶ Sei M eine endliche Menge mit der Abbildung $f: M \to M$.
- ▶ Man wähle $x_0 \in M$ und erzeuge die Folge $x_0, x_1, x_2, ...$ mit $x_{i+1} = f(x_i)$.
- ▶ $\exists i, j \in \mathbb{N}$, sodass $i \neq j$ und $x_i = x_j$ gilt.
- ▶ Es gibt ein c > 0, sodass $x_c = x_{2c}$. Die Folge y_0, y_1, y_2, \dots gegeben durch $y_0 = x_0$ und $y_{i+1} = f(f(y_i))$ ist gleich der Folge x_0, x_2, x_4, \dots

$$a \equiv b \pmod{p} \Leftrightarrow p|(a-b)$$

$$ightharpoonup a \equiv b \pmod{p} \Leftrightarrow p|(a-b)$$

$$a = p \cdot x + r, \quad b = p \cdot y + r$$

$$ightharpoonup a \equiv b \pmod{p} \Leftrightarrow p|(a-b)$$

$$ightharpoonup a = p \cdot x + r, \quad b = p \cdot y + r$$

$$a - b = p(x - y) + (r - r) = p(x - y)$$

$$a \equiv b \pmod{p} \Leftrightarrow p|(a-b)$$

$$ightharpoonup a = p \cdot x + r, \quad b = p \cdot y + r$$

►
$$a - b = p(x - y) + (r - r) = p(x - y)$$

$$ightharpoonup p|p(x-y)$$

Fragen?

▶ Sei n eine zusammengesetzte Zahl und p ein Primfaktor von n.

- Sei n eine zusammengesetzte Zahl und p ein Primfaktor von n.
- ► Gesucht sind a, b, sodass $a \equiv b \pmod{p} \Rightarrow p|a-b$

- Sei n eine zusammengesetzte Zahl und p ein Primfaktor von n.
- ► Gesucht sind *a*, *b*, sodass $a \equiv b \pmod{p} \Rightarrow p|a-b|$
- ▶ Daraus folgt $1 < ggT(a b, n) \le n$. Wenn $a \neq b$ gilt, ist ggT(a-b,n) ein nichttrivialer Primfaktor von n.

▶ Sei f(x) eine ganzzahlige Polynomfunktion und $s \in \mathbb{Z}$.

- ▶ Sei f(x) eine ganzzahlige Polynomfunktion und $s \in \mathbb{Z}$.
- Man erzeuge eine Folge von Pseudozufallszahlen mit: $x_0 = s, \ x_{i+1} = f(x_i) \mod n.$

- ▶ Sei f(x) eine ganzzahlige Polynomfunktion und $s \in \mathbb{Z}$.
- Man erzeuge eine Folge von Pseudozufallszahlen mit: $x_0 = s$, $x_{i+1} = f(x_i) \mod n$.
- Wird schließlich periodisch, da beschränkt.

- ▶ Sei f(x) eine ganzzahlige Polynomfunktion und $s \in \mathbb{Z}$.
- ▶ Man erzeuge eine Folge von Pseudozufallszahlen mit: $x_0 = s, \ x_{i+1} = f(x_i) \mod n.$
- Wird schließlich periodisch, da beschränkt.
- ▶ Anstatt $x_k = y_k$ suchen wir nach $1 < ggT(x_k y_k, n) < n$

Beweis Teil 1

 $\exists \ i,j \in \mathbb{N}$, sodass $i \neq j$ und $x_i = x_j$ gilt.

 $\exists i, j \in \mathbb{N}$, sodass $i \neq j$ und $x_i = x_j$ gilt.

 $\blacktriangleright \ g: \mathbb{N} \to M \text{ gegeben durch } g(t) = f^t(x_0)$

 $\exists i, j \in \mathbb{N}$, sodass $i \neq j$ und $x_i = x_j$ gilt.

- $g: \mathbb{N} \to M$ gegeben durch $g(t) = f^t(x_0)$
- ▶ M ist beschränkt also kann g nicht injektiv sein. Daraus folgt: $\exists \ i,j \in \mathbb{N}, i \neq j$, sodass g(i)=g(j) und damit $x_i=x_j$ bei $i \neq j$.

Es gibt ein c>0, sodass $x_c=x_{2c}$. Die Folge y_0,y_1,y_2,\ldots gegeben durch $y_0=x_0$ und $y_{i+1}=f(f(y_i))$ ist gleich der Folge x_0,x_2,x_4,\ldots

Es gibt ein c>0, sodass $x_c=x_{2c}$. Die Folge $y_0,y_1,y_2,...$ gegeben durch $y_0=x_0$ und $y_{i+1}=f(f(y_i))$ ist gleich der Folge $x_0,x_2,x_4,...$

▶ Angenommen $x_i = x_j$ für j > i.

Es gibt ein c>0, sodass $x_c=x_{2c}$. Die Folge $y_0,y_1,y_2,...$ gegeben durch $y_0=x_0$ und $y_{i+1}=f(f(y_i))$ ist gleich der Folge $x_0,x_2,x_4,...$

- ▶ Angenommen $x_i = x_j$ für j > i.
- ▶ Falls $c \ge i$ und $2c = c + k(j-i) \ge i$ mit $k \ge 0$ muss $x_c = x_{2c}$ gelten.

Es gibt ein c>0, sodass $x_c=x_{2c}$. Die Folge $y_0,y_1,y_2,...$ gegeben durch $y_0=x_0$ und $y_{i+1}=f(f(y_i))$ ist gleich der Folge $x_0,x_2,x_4,...$

- ▶ Angenommen $x_i = x_j$ für j > i.
- ▶ Falls $c \ge i$ und $2c = c + k(j i) \ge i$ mit $k \ge 0$ muss $x_c = x_{2c}$ gelten.
- ▶ Man wähle $k \ge 0$, sodass $c = k(j i) \ge i$ und erhält das gesuchte c.

Es gibt ein c>0, sodass $x_c=x_{2c}$. Die Folge $y_0,y_1,y_2,...$ gegeben durch $y_0=x_0$ und $y_{i+1}=f(f(y_i))$ ist gleich der Folge $x_0,x_2,x_4,...$

- ▶ Angenommen $x_i = x_j$ für j > i.
- ▶ Falls $c \ge i$ und $2c = c + k(j i) \ge i$ mit $k \ge 0$ muss $x_c = x_{2c}$ gelten.
- ▶ Man wähle $k \ge 0$, sodass $c = k(j-i) \ge i$ und erhält das gesuchte c.
- Aus $x_{m+2} = f(f(x_m))$ folgt $y_m = x_{2m}$.

Pollard Rho Beispiel

Gesucht: Primfaktorzerlegung von N=143

Parameter: $x_0 = y_0 = 0$, $f(x) = (x^2 + 1) \mod N$

k	$x_k = f(x_{k-1})$	$y_k = f(f(y_{k-1}))$	$ggT(x_k - y_k, N)$
0	0	0	0
1	1	2	1
2	2	26	1
3	5	15	1
4	26	26	143
5	105	15	1
6	15	26	11

Pollard Rho Beispiel

Gesucht: Primfaktorzerlegung von N=143

Parameter:
$$x_0 = y_0 = 0$$
, $f(x) = (x^2 + 1) \mod N$

k	$x_k = f(x_{k-1})$	$y_k = f(f(y_{k-1}))$	$ggT(x_k - y_k, N)$
0	0	0	0
1	1	2	1
2	2	26	1
3	5	15	1
4	26	26	143
5	105	15	1
6	15	26	11

▶ Mit $\frac{143}{11} = 13$ erhält man den zweiten Primfaktor.

Pollard Rho Komplexität

▶ Wir suchen keine Geburtstag aber Wiederholungen \pmod{p} .

$$x_k \equiv x_{2k} \pmod{p}$$

- lacktriangle Wir erhalten mithilfe des Geburtstagsproblemes $\mathcal{O}(\sqrt{\frac{\pi p}{2}})$
- ▶ Da $p \le \sqrt{n}$ gilt $\sqrt{p} \le \sqrt[4]{n}$ $\Rightarrow \mathcal{O}(\sqrt[4]{n})$
- Fazit: Nach durchschnittlich $\sqrt[4]{n}$ Versuchen findet man einen Primfaktor von n.
- ▶ Wichtig ist noch die Geschwindigkeit des ggT \rightarrow Euklid und der Aufwand der Funktion f.
- ▶ Zusammen ergibt dies $(\mathcal{O}(\mathsf{Euklid}) + 3\mathcal{O}(f)) \cdot \mathcal{O}(\sqrt[4]{n})$

Quellen

- ▶ Niels Lauritzen. Concrete Abstract Algebra. Reptrinted with corrections 2006
- www.bk2boint.dnsalias.org/int_neu/tl_files/ Material%20Informatik/erathostenes/sieb.pdf