

URYCHLENÍ ZPRACOVÁNÍ OBRAZU ZALOŽENÉ NA MODIFIKACI HISTOGRAMU

Lukáš Piják, xpijak00 Filip Zapletal, xzaple27 Jan Vybíral, xvybir05

Upřesnění zadání

- Implementovat výpočet histogramu vstupního obrázku pomocí OpenCL.
- Každý člen týmu implementovat jednu metodu využívající histogramu, a to jak s pomocí OpenCL tak CPU implementaci.
- Vstup aplikace zpracuje vždy oběma způsoby a vypíše čas každé z nich. Zvolené metody (algoritmy):
 - Ekvalizace histogramu
 - Prahování s pomocí metody Otsu
 - Segmentace obrazu na základě prahování histogramu

VÝPOČET HISTOGRAMU

 První metoda: počítání lokálních subhistogramů ve workgrupách, jejich následné sečtení, atomické instrukce

VÝPOČET HISTOGRAMU

Druhá metoda: bez použití atomických instrukcí

EKVALIZACE HISTOGRAMU

 Slouží k zvýšení kontrastu rovnoměrnějším rozložením intenzit

EKVALIZACE HISTOGRAMU

- Výpočet kumulativního histogramu
- Vynásobení jeho hodnot hodnotou (velikost histogramu / počet pixelů) – paralelně
- Tím získáme nové hodnoty pro jednotlivé původní hodnoty pixelů
- Přiřazení nových hodnot pixelům paralelně

Prahování s pomocí metody Otsu

- Hledání optimálního prahu na základě výpočtu rozptylu.
- Cílem je najít takový práh, který maximalizuje mezirozptyl, nebo alternativně minimalizuje vnitřní rozptyl.

PRAHOVÁNÍ S POMOCÍ METODY OTSU

Threshold	T=0	T=1	T=2	T=3	T=4	T=5
	8- 6- 4- 2- 0 0 1 2 3 4 5	8- 6- 4- 2- 0-012345	8- 6- 4- 2- 0-012345	8	8- 6- 4- 2- 0- 0 1 2 3 4 5	8
Weight, Background	W _b = 0	W _b = 0.222	W _b = 0.4167	$W_b = 0.4722$	W _b = 0.6389	W _b = 0.8889
Mean, Background	M _b = 0	$M_b = 0$	$M_b = 0.4667$	$M_b = 0.6471$	$M_b = 1.2609$	$M_{b} = 2.0313$
Variance, Background	$\sigma^2_b = 0$	$\sigma^2_b = 0$	$\sigma^2_b = 0.2489$	$\sigma_{b}^{2} = 0.4637$	$\sigma^2_b = 1.4102$	$\sigma^2_b = 2.5303$
Weight, Foreground	W _f = 1	$W_{f} = 0.7778$	$W_{f} = 0.5833$	$W_{f} = 0.5278$	W _f = 0.3611	W _f = 0.1111
Mean, Foreground	$M_{f} = 2.3611$	$M_{f} = 3.0357$	$M_{f} = 3.7143$	$M_{f} = 3.8947$	$M_{f} = 4.3077$	$M_{f} = 5.000$
Variance, Foreground	$\sigma^2_{f} = 3.1196$	$\sigma^2_{f} = 1.9639$	$\sigma^2_{f} = 0.7755$	$\sigma^2_{f} = 0.5152$	$\sigma^2_{f} = 0.2130$	$\sigma^2_f = 0$
Within Class Variance	$\sigma^2_W = 3.1196$	$\sigma^2_{W} = 1.5268$	$\sigma^2_{W} = 0.5561$	$\sigma^2_W = 0.4909$	$\sigma^2_{W} = 0.9779$	$\sigma^2_{W} = 2.2491$

Prahování s pomocí metody Otsu

www.labbookpages.co.uk/software/imgProc/otsuThreshold.html

PRAHOVÁNÍ S POMOCÍ METODY OTSU

Prahování s pomocí metody Otsu

SEGMENTACE OBRAZU NA ZÁKLADĚ PRAHOVÁNÍ HISTOGRAMU

- rozdělení jednotlivých částí obrazu do několika podmnožin (popředí x pozadí)
- V histogramu hledáme práh
 - Leží mezi shluky podobných bodů
 - Hledáme jej iterativně dělíme histogram na části podle aktuálního prahu a spočítáme střed mezi průměry hodnot – nový práh
- Zvolena adaptivní metoda
 - Práh je ovlivněn pouze malým (např, 30 x 30 px) okolím bodu

SEGMENTACE: PŘIZPŮSOBENÍ ALGORITMU PRO BĚH NA GPU

- Práh se počítá pouze z malého okolí pro každý bod nezávisle
- Lze tedy výpočet spustit pro velké množství bodů zároveň
- Výsledná akcelerace na testovací stroji
 - CPU Intel Core i7 2.44GHz; GPU NVIDIA GeForce GT620M
 - 2 3 násobná
 - Není tak výrazná
 - Výkonný CPU x Nevýkonná GPU (nízký výkon a počet shaderů)
 - Algoritmus obsahuje poměrně hodně řídící logiky (cykly, podmínky), které GPU zvládá hůře

SEGMENTACE: VÝSLEDKY

SEGMENTACE: VÝSLEDKY

Zdroj: avoision.com paper-bob-omb.deviantart.com

Použitá literatura

- L. Lucas, Image Segmentation. München: Technische Universität München, 2010.
- F. Kurugollu, B. Sankur, A.E. Harmanci. Color image segmentation using histogram multithresholding and fusion. 2001.
- Rajagopal, Venugopal. Image Segmentation by Histogram Thresholding. 2002.
- http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MORSE/threshold.pdf
- http://www.codeproject.com/Articles/38319/Famous-Otsu-Thresholding-in-C
- http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html
- Inspirace z projektu z HSC (FIT VUT Brno)
- http://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf