OBLIG 1 — Obligatorisk oppgave 1 av 2

Skriv det komplekse tallet $z=\frac{6}{\sqrt{3}+3i}$ først på formen a+ib også på polarformen $re^{i\theta}$.

$$z = \frac{6}{\sqrt{3} + 3i}$$

$$z = \frac{2}{\sqrt{\frac{1}{3}} + i}$$

$$z = \frac{2 \times (\sqrt{\frac{1}{3}} - i)}{(\sqrt{\frac{1}{3}} + i) \times (\sqrt{\frac{1}{3}} - i)}$$

$$z = \frac{2 \times (\sqrt{\frac{1}{3}} - i)}{\frac{1}{3} - i^2}$$

$$z = \frac{2 \times (\sqrt{\frac{1}{3}} - i)}{\frac{4}{3}}$$

$$z = \frac{3 \times (\sqrt{\frac{1}{3}} - i)}{2}$$

$$z = \frac{\sqrt{3}}{2} - \frac{3}{2}i$$

 $r = \sqrt{(rac{\sqrt{3}}{2})^2 + (rac{3}{2})^2}$ $r = \sqrt{rac{3}{4} + rac{9}{4}}$ $r = \sqrt{3}$

With Pythagora's Theorem

 $\theta' := 2\pi - \theta$ $\sin(\theta') = \frac{-1.5}{\sqrt{3}}$ $\theta' = \arcsin(\frac{-1.5\sqrt{3}}{3})$ $\theta' = \arcsin(\frac{\sqrt{3}}{2})$ $\theta' = \frac{\pi}{3}$ $\therefore \theta = \frac{5\pi}{3}$

Using $z = \frac{\sqrt{3}}{2} - \frac{3}{2}i$:

 $r:\sqrt{3}\wedge heta:rac{5\pi}{3}\mathrel{{.}^{.}} z=\sqrt{3}e^{irac{5\pi}{3}}$

MAT1100 Oblig 1 1 Autumn, 2019

Finn de to løsningene til likningen $w^2 - w + 1 = \theta$, og bruk disse til å finne alle komplekse løsninger til likningen $z^4 - z^2 + 1 = \theta$. Gi en faktorisering av $z^4 - z^2 + 1$, først i komplekse førstegradspolynomer og så i reelle andregradspolynomer.

22

Finn grensene
$$\lim_{n\to\infty} \frac{3n+2}{\sqrt{4n^2-1}}$$
 og $\lim_{n\to\infty} (\sqrt{n^2-5n}-n)$.

Finn de komplekse tallenezsom oppfyller likningen 2|z-1|=|z-4| og skisser løsningsmengden i det komplekse planet. (Hint: Sett inn z=x+iy og finn en polynomlikning ixogyforløsningsmengden.)

En følge $\{a_n\}$ er definert ved $a_1 = 3$, $a_n + 1 = 3\sqrt{a_n}$ for $n \ge 1$. Vis at $a_n < 9$ og at $a_n + 1 > a_n$ for alle n. Forklar hvorfor følgen konvergerer og finn $\lim_{n \to \infty} a_n$

 \Box .

Submitted by Rolf Vidar Hoksaas on September 12, 2019.