17 Serre classes

17.1 Definition. A Serre class is a non-empty collection ${\mathfrak C}$ of abelian groups satisfying the property that if

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$

is a short exact sequence of abelian groups then $B \in \mathcal{C}$ if and only if $A, C \in \mathcal{C}$

We will say that a Serre class \mathcal{C} is a *Serre ring* if it in addition satisfies that if $A, B \in \mathcal{C}$ then $A \otimes B \in \mathcal{C}$ and $Tor(A, B) \in \mathcal{C}$.

17.2 Proposition. Let $\mathcal C$ is a Serre class. The following hold:

- 1) $0 \in \mathbb{C}$.
- 2) If $A \in \mathcal{C}$ and $A' \cong A$ then $A' \in \mathcal{C}$.
- 3) If $B \subseteq A$ then $A \in \mathcal{C}$ if and only if $B, A/B \in \mathcal{C}$.
- 4) If $A_1, \ldots, A_n \in \mathbb{C}$ then $A_1 \oplus \ldots \oplus A_n \in \mathbb{C}$.
- 5) If $A \to B \to C$ is an exact sequence and $A, C \in \mathcal{C}$ then $B \in \mathcal{C}$.

Proof. Exercise. □

17.3 Proposition. Let $\mathbb C$ is a Serre ring. If X is a path connected space such that $H_q(X) \in \mathbb C$ for all q > 0 and $H_q(X; G) \in \mathbb C$ for any group $G \in \mathbb C$.

Proof. By the Universal Coefficient Theorem we have

$$H_q(X; G) \cong (H_q(X) \otimes G) \oplus \text{Tor}(H_{q-1}(X), G)$$

For q=0 this gives $H_0(X;G) \cong G$. For q=1 we get $H_1(X;G) \cong H_1(X) \otimes G$.

17.4 Example. All of the following are Serre rings:

• C_{fin} = the class of all finite abelian groups.

17. Serre classes 77

- \bullet $\,\mathfrak{C}_{fg}=$ the class of all finitely generated abelian groups.
- \bullet $\,\mathcal{C}_{tor} =$ the class of all torsion abelian groups.