12기 정규세션 ToBig's 11기 임채빈

Convolutional Neural Networks

onte nts

```
Unit 01 | intro : Applications of CNN
Unit 02 | CNN
Unit 03 | Convolution Layer
Unit 04 | Sub-sampling
Unit 05 | Summary
```

Applications of cnn

Image Caption Generation

† a living room with a couch and a television

1 a man riding a bike on a beach

a man is walking down the street with a suitcase /

Real Time Object Detection

Real Time Pose Estimation

GAN

Tobig Studio

맞춤형 취업사진 생성

- Convolution Layer + Subsampling Layer + Fully Connected Layer
- Feature extraction : Convolution Layer + Pooling Layer
- Classification : Fully Connected Layer

Conventional Neural Network

0000
0000
ŎŎŎŎŎ
00000

Conventional Neural Network

Image pixel (5x5)

Conventional Neural Network

Flatten (1 x 25)

Conventional Neural Network

FC + Activation function

Conventional Neural Network

3

FC+ Classifier

Convolutional Neural Network

Image pixel (5x5)

- Convolutional Neural Network
 - Receptive field : 출력 레이어의 뉴런 하나에 영향을 미치는 입력 뉴련들의 공간

Convolutional Neural Network

Flatten

Convolutional Neural Network

FC + Classifier

Convolution

32x32x3 image -> preserve spatial structure

5x5x3 filter (Shared Weight)

· Image와 filter의 channel은 항상 같다.

Ex) RGB = 3 channel, grayscale = 1channel

Convolution

Convolution

Image 7x7x3

filter 3x3x3

Convolution

2	3	0	1	3	2	1
0	2	2	2	2	1	0
1	2	1	1	1	0	0
3	2	2	0	0	2	3
2	0	0	0	0	2	0
0	0	0	2	2	2	2
1	3	2	3	2	1	0

1	0	1
0	1	0
1	0	1

Input Volumn (7x7)

Filter (3 x 3)

Convolution

Input Volumn (7x7)

Filter (3 x 3)

Convolution

Input Volumn (7x7)

Filter (3 x 3)

Convolution

Input Volumn (7x7)

Filter (3 x 3)

Convolution

2	3	0	1	3	2	1
0	2	2	2	2	1	0
1	2	1	1	1	0	0
3	2	2	0	0	2	3
2	0	0	0	0	2	0
0	0	0	2	2	2	2
1	3	2	3	2	1	0

1	0	1	
0	1	0	
1	0	1	

6	9	7	6	6
9	7	7	6	5
6	5	2	3	3
5	4	4	6	9
5	6	6	8	4

Input Volumn (7x7)

Filter (3 x 3)

Convolution

0	2	0	0	0	0	1
1	2	2	2	2	1	0
0	2	1	1	1	0	0
3	2	2	0	0	2	2
2	0	3	0	0	2	0
1	0	0	2	2	2	2
0	1	0	1	0	0	0

1	0	0	
0	0	0	
0	0	0	

0	2	0	0	0
1	2	2	2	2
0	2	1	1	1
3	2	2	0	0
2	0	3	0	0

Input Volumn (7x7)

Filter (3 x 3)

Convolution

1	0	2	0	1	0	3
0	2	2	2	2	1	0
2	2	1	1	1	0	3
0	2	2	0	0	2	0
0	0	0	0	0	2	2
2	0	0	2	2	2	0
0	0	2	0	2	0	0

0	0	0	
0	1	0	
0	0	0	

2	2	2	2	1
2	1	1	1	0
2	2	0	0	2
0	0	0	0	2
0	0	2	2	2

Input Volumn (7x7)

Filter (3 x 3)

Convolution

6	9	7	6	6
9	7	7	6	5
6	5	2	3	3
5	4	4	6	9
5	6	6	8	4

New feature map

8	13	9	8	7
12	10	10	9	7
8	9	3	4	6
8	6	6	6	11
7	6	11	10	6

Convolution

Dot Product

New feature map

8	13	9	8	7
12	10	10	9	7
8	9	3	4	6
8	6	6	6	11
7	6	11	10	6

Image 7x7x3

filter 3x3x3

Feature map 5x5x1

Convolution

activation map

- Convolution
 - Filter 수가 6개라면 6개의 새로운 feature map이 생성됨. (hyper parameter)
 - 6개의 feature map을 stack up하여 28x28x6의 새로운 데이터 생성

- Convolution
 - 각각의 pixel을 하나의 channel로 flatten 후 1x1x3072 filter 10개를 사용
 - FC?

32x32x3 image -> stretch to 3072 x 1

- Stride
 - Filter가 이동하는 거리

7 x 7 Input Volume

5 x 5 Output Volume

- Stride
 - Filter가 이동하는 거리

7 x 7 Input Volume

3 x 3 Output Volume

- Stride
 - Filter가 이동하는 거리

7 x 7 Input Volume

3 x 3 Output Volume

- Stride
 - Filter가 이동하는 거리

Stride = 3?

- Stride
 - Filter가 이동하는 거리
 - Output의 volume이 integer가 되도록 stride 설정 7

7

doesn't fit!

Stride = 3?

- Stride
 - Filter가 이동하는 거리
 - Output의 volume이 integer가 되도록 stride 설정

 N											
		F									
F											
Г											

Output size: (N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$ Fraction!

- Stride
 - Filter가 이동하는 거리
 - Output의 volume이 integer가 되도록 stride 설정

 N											
		F									
F											
Г											

Output size: (N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$ Fraction!

- Padding
 - Convolution layer 층이 깊어질 수록 data의 size가 줄어든다.
 - Data size가 너무 빠르게 줄어들면 잘 작동하지 않음!

- Padding
 - 데이터 테두리에 zero-padding을 더해 크기 손실 방지

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

- Padding
 - 데이터 테두리에 zero-padding을 더해 크기 손실 방지

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

- Padding
 - 데이터 테두리에 zero-padding을 더해 크기 손실 방지

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

- Padding
 - 데이터 테두리에 zero-padding을 더해 크기 손실 방지

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

- Padding
 - 데이터 테두리에 zero-padding을 더해 크기 손실 방지

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Example

Input volume: 32x32x3 10 5x5 filters with stride 1, pad 2

- 1. Output volume size: ?
- 2. Number of parameters in this layer : ?

- Sub Sampling
 - 이미지의 특성은 유지
 - 사이즈를 줄여 관리하기 쉽게 만듬
 - 각 feature map마다 독립적으로 작용

But 기기의 성능 향상으로 사이즈를 줄일 필요가 적어지면서 성능을 위해 잘 사용하지 않는 추세

- Sub Sampling
 - Max pooling
 - Filter size와 stride 존재

- Max pooling vs Average pooling
 - Max pooling
 해당 window의 max값을 추출
 - Average pooling
 해당 window의 평균 값 추출 (smoothing 됨)

- Max pooling vs Average pooling
 - Most important features를 뽑는다는 관점에서 일반적으로 Max pooling을 사용

pretty much everything of 'CNN' (AlexNet)

Unit 05 | Summary

- Convolution Layer + Subsampling Layer + Fully Connected Layer
- Feature extraction : Convolution Layer + Pooling Layer
- Classification : Fully Connected Layer

Unit 02 | Layers in CNN

- Convolutional Neural Network
 - Local connectivity(receptive field)
 - 지역적으로 뉴런을 연결하여 다양한 local feature 추출 가능
 - Shared Weights and Biases (topology invariance)
 - Filter의 weight을 공유하여 parameter를 획기적으로 줄일 수 있다.
 - 찾고자 하는 특징이 이미지 어디에 위치해도 알 수 있다.
 - Compositionality
 - 저레벨 특징을 고레벨 특징으로 compose함
 - ex) 눈의 특징, 귀의 특징, 코의 특징 등등이 결합하여 사람의 얼굴의 특징으로 귀결

Unit 05 | Summary

- 용어 정리
 - Convolution(합성곱)
 - 채널(Channel)
 - 필터(Filter) = 커널(Kernel)
 - 스트라이드(Stride)
 - 패딩(Padding), zero-Padding
 - 피처 맵(Feature Map) = 액티베이션 맵(Activation Map)
 - 풀링(Pooling) 레이어
 - receptive field(수용공간)

Assignment

AlexNet

- 과제 1. assignment_1.ipynb 물음표 채우기
- 과제 2. AlexNet model 구현 (프레임워크 자유)
 - -모델 구현 후 summary로 전체 모델 구조 보이고 주석을 통해 간단한 설명 (각 프레임워크 별 summary 방법 구글링)

Q&A

들어주셔서 감사합니다.

Appendix

- 참고자료
- # 10기 박성진님 강의

http://www.datamarket.kr/xe/index.php?mid=board_jPWY12&page=2&document_srl=52335

Stanford cs231n 강의

http://cs231n.stanford.edu/syllabus.html

towards data science

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

케라스 창시자에게 배우는 딥러닝

https://github.com/gilbutlTbook/006975