Locally analytic vectors of completed cohomology talk

Arun Soor

May-June 2022

Abstract

This is the notes for a series of talks given at an informal "p-adic seminar" in Oxford in Trinity Term 2022.

Contents

1	Inti	roduction to modular curves	2
	1.1	Elliptic curves, complex tori, and lattices	2
	1.2	Modular forms	2
	1.3	The algebraic perspective	3
	1.4	Level structures	4
	1.5	Modular curves and automorphic line bundles	4
		1.5.1 Modular forms holomorphic at ∞ and the compactified curve X_K .	5
	1.6	The locally symmetric spaces	5
	1.7	Tame levels and completed cohomology	7
	1.8	The Hecke action on completed cohomology	8
	1.9	Why is completed cohomology important?	9
2	$Th\epsilon$	e Hodge-tate period map	10
	2.1	The adic spaces	10
	2.2	The period sheaves	11
	2.3	Relative de Rham comparison theorem	13
	2.4	Variation of Hodge structures for complex analytic varieties	13
	2.5	The Hodge-Tate period map	14
3	Relative Sen theory		16
	3.1	Classical Sen theory	16
	3.2	Theory of decompletions	16
	3.3	Why is $\widetilde{H}^i(K^p,\mathbb{C}_p)^{\mathrm{la}}$ a $\widetilde{\mathcal{D}}$ -module?	18
	3.4	p-adic Simpson correspondence	20
4	Hoo	dge-Tate decomposition of completed cohomology	20

1 Introduction to modular curves

1.1 Elliptic curves, complex tori, and lattices

Reference for this section is [KDSB73, Katz, Appendix 1.1]. Let $\Lambda \subseteq \mathbb{C}$ be a lattice. Then \mathbb{C}/Λ is a complex torus. If

$$\wp_{\Lambda}(z) \coloneqq \frac{1}{z^2} + \sum_{\ell \in \Lambda} \left(\frac{1}{(z-\ell)^2} - \frac{1}{\ell^2} \right), \tag{1}$$

is the Weierstrass \wp -function associated to Λ , then the map $\mathbb{C}/\Lambda \to \mathbb{P}^2_{\mathbb{C}}$ given by $z + \Lambda \mapsto [\wp_{\Lambda}(z) : \wp'_{\Lambda}(z) : 1] =: [x : y : 1]$, for $z \neq 0$, and $0 \mapsto [0 : 1 : 0]$, is holomorphic with holomorphic inverse, with image the curve E_{Λ} cut out (on $\mathbb{A}^2_{\mathbb{C}}$) by:

$$E_{\Lambda} : y^2 = 4x^3 - g_{2,\Lambda}x - g_{3,\Lambda}, \tag{2}$$

where $g_{2,\Lambda}$, $g_{3,\Lambda}$ are (rescaled) Eisenstein series. This sends the invariant differential dz to $d\wp(z)/\wp'(z) = dx/y$. In the other direction, if (E,ω) is an elliptic curve with invariant differential, then $\Lambda(E,\omega) = \left\{ \int_{\gamma} \omega : \gamma \in H_1(E,\mathbb{Z}) \right\}$ is a lattice in \mathbb{C} , called the *lattice of periods*. These operations are inverses, and note that $\Lambda(E,\lambda.\omega) = \lambda.\Lambda(E,\omega)$, for $\lambda \in \mathbb{C}$, so the bijection descends to isomorphism classes of complex tori (as Riemann surfaces). It also respects the addition structure [DS06, §1.4].

1.2 Modular forms

Reference for this section is [KDSB73, Katz, Appendix 1.1 & 1.2.] Usually, we think of a modular form (of full level $\Gamma(1) = \operatorname{SL}_2(\mathbb{Z})$ and weight k as either:

- A degree -k homogeneous function \mathbb{F} of isoclasses of complex elliptic curves with differential (E, ω) : so $\mathbb{F}(E, \lambda \omega) = \lambda^{-k} \mathbb{F}(E, \omega)$,
- A degree -k homogeneous function of all lattices $\Lambda \subseteq \mathbb{C}$: so $F(\lambda.\Lambda) = \lambda^{-k} F(\Lambda)$,
- An invariant (holomorphic) differential on \mathbb{H} of degree k/2 for $\Gamma(1) = \mathrm{SL}_2(\mathbb{Z}) \sim \mathbb{H}$.

The correspondence between these two notions is as follows: If $f(z)(dz)^{k/2}$ is an invariant differential, we get such a function F of lattices by setting $F(\Lambda) = \omega_2^{-k} f(\omega_1/\omega_2)$, where $\{\omega_1, \omega_2\}$ is a basis for Λ , with $\Im(\omega_1/\omega_2) > 0$. We obtain a function \mathbb{F} of elliptic curves with differential by evaluating on the lattice of periods: $\mathbb{F}(E, \omega) := F(\Lambda(E, \omega))$.

It is common to isolate f from the differential, to arrive at the definition of a modular form of weight k as:

• A holomorphic function for $\tau \in \mathbb{H}$ satisfying the transformation rule:

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^{-k}f(\tau). \tag{3}$$

Since $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \Gamma(1)$, a modular form (of level 1) is 1-periodic and we can view it as a function of $q = e^{2\pi i \tau}$. This is equivalent to looking at its Fourier expansion:

$$f(\tau) = \sum_{n \in \mathbb{Z}} a_n(f) q^n \tag{4}$$

if this is finite-tailed, i.e. belongs to $\mathbb{C}((q))$ (resp. has no tail, i.e. belongs to $\mathbb{C}[[q]]$), then f is called meromorphic / holomorphic at infinity. If we unravel the definitions this is the same as asking for:

$$\mathbb{F}(E_{\tau}, dx/y) \in \mathbb{C}((q)) \text{ or } \mathbb{C}[[q]],$$
 (5)

where E_{τ} is the family defined by:

$$E_{\tau}: y^2 = 4x^3 - \frac{1}{12}E_4(\tau)x - \frac{1}{216}E_6(\tau). \tag{6}$$

This family can be rewritten as a family defined over $\mathbb{Q}((q))$, known as the Tate elliptic curve Tate_q . The Eisenstein series are themselves modular forms, with Fourier expansions:

$$E_{2k} = \frac{1}{2\zeta(2k)} \sum_{(m,n)} ' \frac{1}{(m+n\tau)^{2k}} = 1 + \frac{2}{\zeta(1-2k)} \sum_{n=1}^{\infty} \sigma_{2k-1}(n) q^n,$$
 (7)

and then the Tate family is defined by:

Tate_q:
$$y^2 = 4x^3 - \frac{1}{12}E_4(q)x - \frac{1}{216}E_6(q),$$
 (8)

where $E_4(q), E_4(q) \in \mathbb{Q}((q))$ are the Eisenstein series now viewed as formal Laurent series in q. Therefore, we can obtain the q-expansions of modular forms by evaluation on the Tate family. This is how we will obtain q-expansions from the algebraic perspective.

1.3 The algebraic perspective.

From now on, all schemes are assumed to be at least over \mathbb{Q} .

Definition 1.1. [Sai13, Definition 1.22] An elliptic curve over a \mathbb{Q} -scheme S is a proper smooth morphism $p: E \to S$, together with a choice of zero section $O: S \to E$, such that the fibers $E_{\overline{x}}$ of p over a geometric point $\overline{x}: \operatorname{Spec}(\overline{\mathbb{Q}}) \to S$ are isomorphic to an elliptic curve (= a connected algebraic curve of genus 1 over $\overline{\mathbb{Q}}$).

Then, E/S carries the structure of an abelian group scheme over S, with O as its zero-section [KM85, Theorem 2.1.2]. We define $\underline{\omega}_{E/S} := p_*(\Omega^1_{E/S})$; it is a fact [KM85, §2.2.1] that this is a line bundle on S.

We follow [KDSB73, Katz, Appendix 1.2]. First, restrict to affine $S = \operatorname{Spec}(R)$. Imitating the previous, a modular form of weight k and level 1 is a "function" f sending pairs $(E/S, \omega) \to R$, where $\omega \in \underline{\omega}_{E/S}$ is a nowhere vanishing section, such that:

- $f(E/S, \omega)$ depends only on the S-isoclass of $(E/S, \omega)$.
- f is homogeneous of degree -k: $f(E, \lambda.\omega) = \lambda^{-k} f(E, \omega)$,
- f commutes with base change: if $g: R \to R'$ is any morphism, $S' = \operatorname{Spec}(R')$, then $f(E \times_S S'/S', (\operatorname{Spec}(g))^*\omega) = g(f(E/S, \omega))$.

The q-expansion of such a form is defined to be its value on the Tate elliptic curve (over $\text{Spec}(\mathbb{Q}((q)))$). Given such a modular form, the element

$$f(E/S, \omega)\omega^{\otimes k} \in H^0(S, \underline{\omega}_{E/S}^{\otimes k})$$
 (9)

is a global section independent of the choice of ω . So finally, we can globalise the definition of a modular form of level 1 and weight k, meromorphic at ∞ , to be a "function":

$$f: \left\{ \begin{array}{c} \text{elliptic curves } E/S\\ (\text{over any base scheme } S) \end{array} \right\} \to H^0(S, \underline{\omega}_{E/S}^{\otimes k}), \tag{10}$$

such that f(E/S) depends only on the isoclass of E/S over S, and:

• f commutes with base change: if $\varphi: S' \to S$ is any morphism of schemes, then $f(E \times_{S,\varphi} S'/S') = \varphi^* f(E/S)$.

1.4 Level structures.

Reference for this section is [DR73, \S IV.3]. Fix $K \subseteq GL_2(\widehat{\mathbb{Z}})$ be a congruence subgroup of level N. This means that there is a number N, called the *level*, such that:

$$K \supseteq \ker(\operatorname{GL}_2(\widehat{\mathbb{Z}}) \to \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})) =: \Gamma(N),$$
 (11)

and moreover N is minimal with this property. Let \overline{K} be the image of K in $GL_2(\mathbb{Z}/N\mathbb{Z})$. Let N be the level of K, let $E[N] \subseteq E$ denote the sub-S-group scheme of N-torsion. A K-level structure on E is an equivalence class of isomorphisms of the form:

$$\iota: E[N] \xrightarrow{\sim} (\mathbb{Z}/N\mathbb{Z})_S^2, \tag{12}$$

subject to $\iota \sim \iota'$ if $\iota = \overline{h} \circ \iota'$ for some $\overline{h} \in \overline{K}$. Denote the class by $[\iota]_K$. As in [DR73, Définition 3.2], we define the moduli functor:

$$\mathcal{M}_K(S) \coloneqq \{ \text{pairs } (E/S, [\iota]_K) \} / \sim, \tag{13}$$

where $(E/S, [\iota]_K) \sim (E'/S, [\iota']_K)$ if there is an isomorphism $\varphi : E \to E'$ over S with $\varphi^*[\iota]_K = [\iota']_K$.

A modular form of weight k and level K, meromorphic at ∞ , is then a "function" f, which assigns to a class $[(E/S, [\iota]_K)]$ in $\mathcal{M}_K(S)$ (for any scheme S), an element of $H^0(S, \underline{\omega}_{E/S}^{\otimes k})$, compatible with base change.

The complex points of the Tate curve Tate_{q^N} are usually viewed as a complex torus (multiplicatively), as $\mathbb{C}^\times/q^{N\mathbb{Z}}$; then a trivialisation of its N-torsion is given by a maps of the form $(\mathbb{Z}/N\mathbb{Z})^2 \ni (i,j) \mapsto \zeta_N^i q^{mj}$. More generally, Tate_{q^N} admits level K-structures $[\iota]_K$ (not unique): the q-expansions of f are the values $f(\mathrm{Tate}(q^N)/\mathrm{Spec}(\mathbb{Q}((q))), [\iota]_K)$, as $[\iota]_K$ ranges [KDSB73, Katz, §1.2].

1.5 Modular curves and automorphic line bundles

If $N \geq 3$, then the moduli problem is representable by an affine \mathbb{Q} -scheme Y_K . See the remark under [DR73, Définition 3.2], combine with [KM85, Scholie 4.7.0] and use the rigidity of level N structures [KM85, Corollary 2.7.1]. This is the (open) modular curve of level K. By the general formalism of moduli problems, this implies the existence of a universal elliptic curve with level K structure, $(E_K/Y_K, [\tilde{\iota}]_K)$, such that every family $(E/S, [\iota]_K)$ is obtained uniquely as a base change of $(E_K/Y_K, [\tilde{\iota}]_K)$, i.e., for all S, there is a unique $\varphi: S \to Y_K$ such that

$$(E/S, [\iota]_K) \longrightarrow (E_K/Y_K, [\tilde{\iota}]_K)$$

$$\downarrow \qquad \qquad \downarrow$$

$$S \xrightarrow{\exists ! \varphi} Y_K$$

$$(14)$$

is Cartesian. (The problem when the level is 2, for instance, is that [-1] is still an automorphism of elliptic curves with level $\Gamma(2)$. Therefore the moduli problem is not rigid and so can't be representable). This means that we can redefine a modular form of weight k and level K, meromorphic at ∞ , as a section $f \in H^0(Y_K, \underline{\omega}_{E_K/Y_K}^{\otimes k})$.

1.5.1 Modular forms holomorphic at ∞ and the compactified curve X_K .

Recall [Sai13, §2.1] that we can map:

{isoclasses of elliptic curves
$$E/S/\mathbb{Q}$$
} $\to H^0(S, \mathcal{O}_S)$, (15)

by sending an elliptic curve to its j-invariant j_E . Since the functor

$$H^0(S, \mathcal{O}_S) \cong \operatorname{Hom}(S, \mathbb{A}^1_{\mathbb{Q}}),$$
 (16)

and on geometric points, an elliptic curve is uniquely determined up to isomorphism by its j-invariant, we tend to view $\mathbb{A}^1_{\mathbb{Q}}$ as a moduli space for isomorphism classes of elliptic curves, called the j-line. In any case, by Yoneda, we get a map $Y_K \to \mathbb{A}^1_{\mathbb{Q}}$, which extends to:

$$Y_K \to \mathbb{A}^1_{\mathbb{Q}} \to \mathbb{P}^1_{\mathbb{Q}} = \text{"the projective } j\text{-line"}.$$
 (17)

Then the compactification X_K is defined to be the normalisation [Aut, 29.53] of $Y_K \to \mathbb{P}^1_{\mathbb{Q}}$ [KDSB73, Katz, §1.4]. The upshot is that X_K is smooth and proper over \mathbb{Q} , and the boundary $X_K - Y_K$, (called the cusps), is a scheme finite étale over \mathbb{Q} , and there is an open immersion $Y_K \to X_K$ as an affine algebraic curve which is finite over $\mathbb{A}^1_{\mathbb{Q}}$ [KM85, Proposition 8.2.2].

$$Y_K \xrightarrow{\operatorname{copen}} X_K$$

$$\downarrow^j \qquad \downarrow^j$$

$$\mathbb{A}^1_{\mathbb{Q}} \longleftrightarrow \mathbb{P}^1_{\mathbb{Q}}$$

$$(18)$$

 X_K represents a moduli problem of "generalised elliptic curves with level K structure", and $X_K - Y_K$ can be identified with the isomorphism classes of the level-K structures on the Tate_{q^N} .

There is a line bundle $\underline{\omega}$ on X_K [KM85, §10.13], whose restriction to Y_K is $\underline{\omega}_{E_K/Y_K}$, and whose restriction to the cusps is only the $\mathbb{Q}[[q]]$ -span of the canonical differential of the Tate elliptic curve. Therefore, sections $f \in H^0(X_K,\underline{\omega}^{\otimes k})$ correspond to modular forms of level K and weight k, holomorphic at ∞ . This space is denoted $M_k(K,\mathbb{Q})$, the subspace $H^0(X_K,\underline{\omega}^{\otimes k}(-\infty))$ of forms vanishing at the cusps (cusp forms), is denoted $S_k(K,\mathbb{Q})$.

1.6 The locally symmetric spaces

For a lattice, e.g. $\Lambda \subseteq \mathbb{R}^2$, we define a level K-structure to be a trivialisation of the N-torsion (where N = the level of K) of \mathbb{R}^2/Λ , up to \overline{K} -isomorphism (just as with elliptic curves). There are bijections:

(elliptic curves over \mathbb{C} with level K structure)/ \cong

- \leftrightarrow (complex lattices with level K structure)/GL₁(\mathbb{C})
- \leftrightarrow [(lattices $\subseteq \mathbb{R}^2$ with level K structure) \times (complex structures on \mathbb{R}^2)]/GL₂(\mathbb{R})
- $\Leftrightarrow [(\text{lattices} \subseteq \mathbb{Q}^2 \text{ with level } K \text{ structure}) \times (\text{complex structures on } \mathbb{R}^2)]/\text{GL}_2(\mathbb{Q})$ (19)
- $\leftrightarrow [(\text{lattices} \subseteq \mathbb{A}_f^2 \text{ with level } K \text{ structure}) \times (\text{complex structures on } \mathbb{R}^2)]/\text{GL}_2(\mathbb{Q})$
- $\leftrightarrow \operatorname{GL}_2(\mathbb{Q}) \setminus (\mathbb{H}^{\pm} \times \operatorname{GL}_2(\mathbb{A}_f)/K).$

The first identification in (19) was described in Section 1.1. For the second, recall that a complex structure on \mathbb{R}^2 is a homomorphism:

$$\psi: \mathbb{C} \to \operatorname{End}_{\mathbb{R}}(\mathbb{R}^2). \tag{20}$$

These carry a transitive $GL_2(\mathbb{R})$ -action by $M.\psi = M\psi M^{-1}$. You can check that if $\psi(i) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ then $Stab(\psi) \cong GL_1(\mathbb{C})$, so we identify complex structures on \mathbb{R}^2 with $GL_2(\mathbb{R})/GL_1(\mathbb{C})$. This gives the second bijection in (19). For the third bijection in (19), we note that every $GL_2(\mathbb{R})$ -orbit is represented by a rational lattice. The fourth bijection in (19) comes from the correspondence:

$$\{ \text{lattices } \Lambda_{\mathbb{Q}} \subseteq \mathbb{Q}^2 \} \leftrightarrow \{ \text{lattices } \Lambda_{\mathbb{A}_f} \subseteq \mathbb{A}_f^2 \}$$

$$\Lambda_{\mathbb{Q}} \mapsto \Lambda_{\mathbb{Q}} \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}$$

$$\Lambda_{\mathbb{A}_f} \cap \mathbb{Q} \leftrightarrow \Lambda_{\mathbb{A}_f} .$$

$$(21)$$

For the last bijection, we make two observations. Firstly, the lattice $\widehat{\mathbb{Z}}^2 \subseteq \mathbb{A}_f^2$ with the canonical level K structure from the class of:

$$\iota = \mathrm{id} : (\mathbb{A}_f^2/\widehat{\mathbb{Z}}^2)[N] = (\mathbb{Z}/N\mathbb{Z})^2 \to (\mathbb{Z}/N\mathbb{Z})^2, \tag{22}$$

is stabilised precisely by K, so since the action is transitive we can identify

{lattices
$$\subseteq \mathbb{A}_f^2$$
 with level K structure} = $GL_2(\mathbb{A}_f)/K$. (23)

Secondly, we note that:

{complex structures on
$$\mathbb{R}^2$$
} $\cong GL_2(\mathbb{R})/GL_1(\mathbb{C}) \cong \mathbb{H}^{\pm}$, (24)

because $GL_2(\mathbb{R})$ acts transitively on \mathbb{H}^{\pm} by Möbius transformations, and the stabiliser of i is $GL_1(\mathbb{C})$. So we get the identification on complex points (in fact on $\overline{\mathbb{Q}}$ -points):

$$Y_K(\mathbb{C}) \leftrightarrow \operatorname{GL}_2(\mathbb{Q}) \setminus (\mathbb{H}^{\pm} \times \operatorname{GL}_2(\mathbb{A}_f)/K) \leftrightarrow \operatorname{GL}_2(\mathbb{Q}) \setminus (\operatorname{GL}_2(\mathbb{A})/Z_{\infty}K_{\infty}K),$$
 (25)

where $K_{\infty} = \mathrm{SO}_2(\mathbb{R})$, and $Z_{\infty} \subseteq \mathrm{GL}_2(\mathbb{R})$ is the diagonal torus. The latter description shows that the complex points have the structure of a locally symmetric space.

If $g \in GL(\mathbb{A}_f)$ and $K', K \subseteq GL(\mathbb{A}_f)$ are two congruence subgroups, such that $g^{-1}K'g \subseteq K$, then we get a well defined map:

$$\operatorname{GL}_2(\mathbb{A}_f)/K' \to \operatorname{GL}_2(\mathbb{A}_f)/K$$

 $xK' \mapsto xqK.$ (26)

By the formula (25), this induces a morphism

$$c_q: Y_{K'}(\mathbb{C}) \to Y_K(\mathbb{C}),$$
 (27)

which is finite étale. More generally [DR73, §3.14], the map

$$(E/S, \lceil \iota \rceil_{K'}) \mapsto (E/S, \lceil g \circ \iota \rceil_K), \tag{28}$$

sends elliptic curves E/S with level K' structure to elliptic curves with level K structure, which yields a morphism of schemes $c_g: Y_{K'} \to Y_K$. This extends [DR73, Proposition 3.19] to the compactifications to give $c_g: X_{K'} \to X_K$.

1.7 Tame levels and completed cohomology

Consider the following general setup [Eme06b, §2.1]. Let G be a compact locally \mathbb{Q}_p -analytic group, with a decreasing neighbourhood basis of 1 by normal compact subgroups:

$$G = G_0 \supset G_1 \supset \dots \supset G_r \supset \dots, \tag{29}$$

acting on a tower of right G-spaces with G-equivariant maps:

$$X_0 \leftarrow X_1 \leftarrow \cdots \leftarrow X_r \leftarrow \cdots,$$
 (30)

such that G_r acts trivially on X_r , and $X_r \to X'_r$ is Galois with Galois group G_r/G'_r . Let \mathcal{V}_0 be a local system of free finite rank \mathbb{Z}_p -modules on X_0 and \mathcal{V}_r = the pullback to X_r . Then

$$\tilde{H}^n(\mathcal{V}) := \varprojlim_s \varinjlim_r H^n(X_r, \mathcal{V}_r/p^s) \tag{31}$$

is an admissible (in the sense of [Eme17, Proposition-Definition 6.2.3], or [ST02a, §3]), continuous \mathbb{Q}_p -Banach representation of G [Eme06b, Theorem 2.2.1]. (We can also do this with compact supports, and dually there is a completed homology).

We have to play this game in a more general setting to apply to the modular curves, but the gist is the same. Let K^p be a fixed compact open subgroup of $GL_2(\mathbb{A}_f)$, and K_p an open compact subgroup of $GL_2(\mathbb{Q}_p)$, which we should view as being variable. Firstly, we have

$$H^{i}(Y_{K_{p}K_{p}}(\mathbb{C}), \mathbb{Z}/p^{s}) \cong H^{i}_{\text{Betti}}(Y_{K_{p}K_{p}}(\mathbb{C}), \mathbb{Z}/p^{s}),$$
 (32)

where we endow $Y_{K^pK_p}(\mathbb{C})$ with the analytic topology, for the purposes of the Betti cohomology. [Here by \mathbb{Z}/p^s , I mean the locally constant sheaf].

With this formalism, we consider the completed cohomology of tame level K^p :

$$\tilde{H}^{i}(K^{p}, \mathbb{Z}_{p}) = \varprojlim_{s} \varinjlim_{K_{p}} H^{i}_{\text{Betti}}(Y_{K^{p}K_{p}}(\mathbb{C}), \mathbb{Z}/p^{s}),$$

$$\tilde{H}^{i}(K^{p}, \mathcal{O}_{\mathbb{C}_{p}}) = \tilde{H}^{i}(K^{p}, \mathbb{Z}_{p}) \otimes_{\mathbb{Z}_{p}} \mathcal{O}_{\mathbb{C}_{p}},$$

$$\tilde{H}^{i}(K^{p}, \mathbb{C}_{p}) = \tilde{H}^{i}(K^{p}, \mathbb{Z}_{p}) \otimes_{\mathcal{O}_{\mathbb{C}_{p}}} \mathbb{C}_{p},$$
(33)

It is an admissible \mathbb{Q}_p -Banach representation of $\mathrm{GL}_2(\mathbb{Q}_p)$ (see [Eme06b, Theorem 0.1], also the remark under (the proof of) [Eme06b, Theorem 2.2.16]). The action of $g \in \mathrm{GL}_2(\mathbb{Q}_p)$ is as follows. For a compact open K_p , set $K'_p = gK_pg^{-1} \cap K_p$. Thus $g^{-1}K^pK'_pg \subset K^pK_p$, and as in (27), we get a finite étale map $Y_{K^pK'_p}(\mathbb{C}) \to Y_{K^pK_p}(\mathbb{C})$, and hence a pullback map on cohomology:

$$c_g^*: H_{\operatorname{Betti}}^i(Y_{K^pK_p}(\mathbb{C}), \mathbb{Z}/p^s) \to H_{\operatorname{Betti}}^i(Y_{K^pK'_p}(\mathbb{C}), \mathbb{Z}/p^s),$$
 (34)

thus via c_g^* we get an action on the directed system $\{H^i_{\text{Betti}}(Y_{K^pK'_p}(\mathbb{C}),\mathbb{Z}/p^s)\}_{K_p\subseteq \text{GL}_2(\mathbb{Q}_p)}$, and hence the direct limit

$$\underset{K_p}{\varinjlim} H_{\text{Betti}}^i(Y_{K^p K_p'}(\mathbb{C}), \mathbb{Z}/p^s)$$
(35)

is endowed with a $GL_2(\mathbb{Q}_p)$ -action. This is compatible as s varies, leading to $\tilde{H}^i(K^p, \mathbb{Z}_p)$ being a $GL_2(\mathbb{Q}_p)$ -representation.

The completed cohomology groups $\tilde{H}^i(K^p, \mathbb{Z}_p)$ are also a Galois representation, [Eme06a, §2.4]. By the comparison theorem for étale cohomology [AGV73, Exposé XI, Théorème

4.4], once an isomorphism of fields $\iota: \mathbb{C}_p \to \mathbb{C}$ (which exists for none other reason than that they are algebraically closed fields of the same cardinality), is fixed, we get a canonical isomorphism

$$H^{i}_{\text{\'et}}(Y_{K^{p}K_{p}} \times_{\mathbb{Q}} \mathbb{C}_{p}, \mathbb{Z}/p^{s}) \cong H^{i}_{\text{Betti}}(Y_{K^{p}K'_{p}}(\mathbb{C}), \mathbb{Z}/p^{s}), \tag{36}$$

and $G_{\mathbb{Q}_p}$ acts on the left hand side: its action on the embeddings $\mathbb{Q} \to \mathbb{C}_p$ gives endomorphisms of $Y_{K^pK_p} \times_{\mathbb{Q}} \mathbb{C}_p$, the pullbacks of which induces an action on $\tilde{H}^i(K^p, \mathbb{Z}_p)$. It commutes with $\mathrm{GL}_2(\mathbb{Q}_p)$, so $\tilde{H}^i(K^p, \mathbb{Z}_p)$ becomes a $G_{\mathbb{Q}_p} \times \mathrm{GL}_2(\mathbb{Q}_p)$ representation. The locus where the action is differentiable, to an action of $\mathrm{Lie}(\mathrm{GL}_2(\mathbb{Q}_p)) = \mathfrak{gl}_2(\mathbb{Q}_p)$, is precisely the \mathbb{Q}_p -locally analytic vectors. Recall (see [ST02b, §3] or [Eme17, Definition 3.5.3]), that a representation V of a p-adic Lie group G is called locally analytic if the orbit map $\mathrm{ev}_v : g \mapsto gv \in \mathcal{C}^{la}(G,V)$; this is then differentiable to a map $\mathrm{dev}_v \in \mathcal{C}^{la}(T(G),V)$ which restricts to a map $\mathrm{d}_1\mathrm{ev}_v : T_1(G) = \mathrm{Lie}(G) \to V$, giving a Lie algebra representation. We denote these subspaces by:

$$\tilde{H}^{i}(K^{p}, \mathbb{Q}_{p})^{\operatorname{la}} \subseteq \tilde{H}^{i}(K^{p}, \mathbb{Q}_{p}),
\tilde{H}^{i}(K^{p}, \mathbb{C}_{p})^{\operatorname{la}} \subseteq \tilde{H}^{i}(K^{p}, \mathbb{C}_{p}),$$
(37)

Then $\mathfrak{g} := \mathfrak{gl}_2(\mathbb{Q}_p) \otimes_{\mathbb{Q}_p} \mathbb{C}_p$ acts on the latter, restricting to an action of $\mathfrak{b} = \text{Lie}(B) \otimes_{\mathbb{Q}_p} \mathbb{C}_p$. One of Lue Pan's main aims, is to compute a Hodge-Tate decomposition of $\tilde{H}^i(K^p, \mathbb{C}_p)^{\text{la}}_{\mu_k}$, where μ_k is the character of \mathfrak{b} sending $\begin{pmatrix} a & 0 \\ c & d \end{pmatrix}$ to kd.

1.8 The Hecke action on completed cohomology

The reference for this part is [Hid86, p.564-566]. Again, let $K \subseteq GL_2(\mathbb{A}_f)$ be an open compact, let $g \in GL_2(\mathbb{A}_f)$, and set

$$K^g = gKg^{-1} \cap K, \quad K_g = g^{-1}Kg \cap K.$$
 (38)

The group isomorphism $[g]: K_g \to K^g: x \mapsto gxg^{-1}$ induces an isomorphism $[g]: Y_{K_g} \to Y_{K^g}$. There are also natural maps $Y_{K_g} \to Y_K$, $Y_{K^g} \to Y_K$ induced by the inclusion of levels K^g , $K_g \subseteq K$: these are finite étale coverings, and hence we get a trace map on cohomology:

$$\operatorname{tr}_{Y_q/Y}: H^i(Y_{K_q}(\mathbb{C}), \mathbb{Z}/p^s) \to H^i(Y_K(\mathbb{C}), \mathbb{Z}/p^s), \tag{39}$$

and the pullback of $Y_{K^g} \to Y_K$ is called $\operatorname{res}_{Y^g/Y}: H^i(Y_K, \mathbb{Z}/p^s) \to H^i(Y_{K^g}, \mathbb{Z}/p^s)$. The composite $\operatorname{tr}_{Y_g/Y} \circ [g]^* \circ \operatorname{res}_{Y^g/Y}$ defines a endomorphism of $H^i(Y_K(\mathbb{C}), \mathbb{Z}/p^s)$ which depends only on the double coset KgK. This is called the Hecke operator and denoted by T_g or [KgK]. This induces an action of the Hecke algebra $\mathcal{H}(K\backslash \operatorname{GL}_2(\mathbb{A}_f)/K, \mathbb{Z}/p^s)$ of double cosets with coefficients in \mathbb{Z}/p^s . The multiplication in the Hecke algebra comes from identifying it with the algebra of compactly supported K-biinvariant functions on $\operatorname{GL}_2(\mathbb{A}_f)$ endowed with the convolution product. Let S be the finite set of primes ℓ where K_ℓ is not a hyperspecial maximal compact subgroup of $\operatorname{GL}_2(\mathbb{Q}_\ell)$. These are called the ramified primes of K. We use the superscripts \mathbb{A}_f^S , K^S to denote the groups away from these primes. Then

$$\mathcal{H}^{\mathrm{sph}}(K, \mathbb{Z}/p^s) := \mathcal{H}(K^S \backslash \mathrm{GL}_2(\mathbb{A}_f^S)/K^S) \tag{40}$$

 $^{{}^1}K_\ell$ is hyperspecial if $K_\ell \cong H(\mathbb{Z}_\ell)$ for some $H \leq \mathrm{GL}_2$ such that $H(\mathbb{Q}_\ell) = \mathrm{GL}_2(\mathbb{Q}_\ell)$ and $H_{\mathbb{F}_\ell}$ is connected reductive.

is called the spherical Hecke algebra. For $\ell \notin S$ denote $\mathcal{H}^{\mathrm{sph}}(K_{\ell}, \mathbb{Z}) := \mathcal{H}(K_{\ell}\backslash \mathrm{GL}_{2}(\mathbb{Q}_{\ell})/K_{\ell}, \mathbb{Z})$, then, the Satake isomorphism [ST98, Chapter 4] (applied to GL_{2}), gives:

$$S: \mathcal{H}^{\mathrm{sph}}(K_{\ell}, \mathbb{Z}) \otimes \mathbb{Z}[\ell^{\pm 1/2}] \xrightarrow{\sim} \mathbb{Z}[X_1^{\pm 1}, X_2^{\pm 1}]^{S_2} \otimes \mathbb{Z}[\ell^{\pm 1/2}], \tag{41}$$

in particular $\mathcal{H}^{sph}(K_{\ell},\mathbb{Z})$ injects into a commutative ring and so is commutative. Therefore the spherical Hecke algebra (40) is commutative.

Applying this to completed cohomology, we see that $\mathcal{H}^{\mathrm{sph}}(K^pK_p,\mathbb{Z}/p^s)$ acts on each $H^i(Y_{K^pK_p}(\mathbb{C}),\mathbb{Z}/p^s)$ and hence,

$$\varprojlim_{s} \varprojlim_{K_{p}} \mathcal{H}^{\mathrm{sph}}(K^{p}K_{p}, \mathbb{Z}/p^{s}) \text{ acts on } \tilde{H}^{i}(K^{p}, \mathbb{Z}_{p}), \tag{42}$$

and the same thing with \mathbb{Z}_p replaced by \mathbb{C}_p , \mathbb{Q}_p coefficients, etc. The left-hand side in (42) is called the big Hecke algebra. This commutes with the $\mathrm{GL}_2(\mathbb{Q}_p)$ and $G_{\mathbb{Q}_p}$ -actions. This is how systems of Hecke eigenvalues arise in completed cohomology.

1.9 Why is completed cohomology important?

See Calegari-Emerton's survey article [CE12].

- As you can see from (25), the definition of completed cohomology generalises to arithmetic quotients of connected reductive groups G over \mathbb{Q} this is the full generality of Emerton's original definition [Eme06b, §2.2].
- It provides a candidate to extend (on the automorphic side) the (p-adic) Langlands correspondence, to allow the Galois side to be enlarged beyond representations which are just de Rham at p, and in general, with continous families of Hodge-Tate-Sen weights. See [Eme14, §2.1.6, §3].
- It can be used to give a construction of eigenvarieties. See [Eme06b, Theorem 0.7], also [Eme06b, §2.3].
- The Iwasawa dimensions of $\tilde{H}_i(K^p, \mathbb{Z}_p)$. If $G_0 \leq G$ is a small enough open subgroup of $GL_2(\mathbb{Q}_p)$, then the completed *homology* groups $\tilde{H}_i(K^p, \mathbb{Z}_p)$ are finitely generated $\mathbb{Z}_p[\![G_0]\!]$ -modules. The Iwasawa dimensions of these modules are conjectured [CE12, Conjecture 1.5].
- The locally analytic vectors in completed cohomology are related to overconvergent modular forms, see [Pan22, Theorem 1.0.1, Theorem 1.0.2], also [Cam22, Theorem 1.1.7].
- It can be expressed as the sheaf cohomology of Scholze's infinite level modular curve, [Sch15, Theorem IV.2.1], also [Pan22, Theorem 4.4.6].

2 The Hodge-tate period map

2.1 The adic spaces

Fix a choice of p-adic complex numbers \mathbb{C}_p . Then $X_K \times_{\mathbb{Q}} \mathbb{C}_p$ is smooth and proper over \mathbb{C}_p . There is an adification² functor³:

$$\{\text{smooth proper schemes}/\mathbb{C}_p\} \xrightarrow{\text{(-)}^{\text{ad}}} \{\text{analytic adic spaces/Spa}(\mathbb{C}_p, \mathcal{O}_{\mathbb{C}_p})\} :$$
 (43)

firstly, you have a GAGA functor, given on affine schemes of finite type over \mathbb{C}_p by $\operatorname{Spec}(\mathbb{C}_p[T_1,\ldots,T_n]/I) \mapsto \bigcup_{i=0}^{\infty} \operatorname{Sp}(\mathbb{C}_p\langle p^{-i}T_1,\ldots,p^{-i}T_n\rangle/I)$, and secondly an adification functor on analytic adic spaces, given on affinoids by $\operatorname{Sp}(A) \mapsto \operatorname{Spa}(A,A^\circ)$. This construction can be globalised, by gluing, they are functorial, and satisfy a universal property for morphisms of ringed spaces. Moreover, sheaves \mathcal{F} on such schemes can be associated to sheaves $\mathcal{F}^{\operatorname{ad}}$ on the adification.

Denote by $\mathcal{X}_K := (X_K \times_{\mathbb{Q}} \mathbb{C}_p)^{\mathrm{ad}}$, $\mathcal{Y}_K := (X_K \times_{\mathbb{Q}} \mathbb{C}_p)^{\mathrm{ad}}$ the associated adic spaces to X_K, Y_K .

Theorem 2.1. [Sch15, Theorem III.1.2] There is a unique perfectoid space \mathcal{X}_{K^p} with:

$$\mathcal{X}_{K^p} \sim \varprojlim_{K_p} \mathcal{X}_{K^p K_p},\tag{44}$$

Here the \sim means that $|\mathcal{X}_{K_p}| \xrightarrow{\sim} \varprojlim_{K_p} |\mathcal{X}_{K^pK_p}|$ on topological spaces, and on structure sheaves, that \mathcal{X}_{K^p} has a cover by open affinoids $\operatorname{Spa}(A, A^+)$, such that $\varinjlim_{A_i} A_i \to A$ has dense image, where the limit is over all affinoid A_i such that the open immersion $\operatorname{Spa}(A, A^+) \to X_i$ factors through $\operatorname{Spa}(A_i, A_i^+)$. Similarly to Section 1.7, the inverse limit $\varprojlim_{K_p} \mathcal{X}_{K^pK_p}$ has a $\operatorname{GL}_2(\mathbb{Q}_p)$ -action, which we transfer to \mathcal{X}_{K^p} . Scholze [Sch15, Theorem IV.2.1], [Pan22, Theorem 4.4.6], has shown that there is a natural $\operatorname{GL}_2(\mathbb{Q}_p)$, $G_{\mathbb{Q}_p}$, and Hecke-equivariant isomorphism:

$$H^{i}(K^{p}, \mathbb{C}_{p}) \xrightarrow{\sim} H^{i}(\mathcal{X}_{K^{p}}, \mathcal{O}_{\mathcal{X}_{K^{p}}}).$$
 (45)

Let $\mathscr{F}\ell = \mathbb{P}^{1,\mathrm{ad}}$ be the adic space associated to $\mathbb{P}^1_{\mathbb{C}_p}$. We will construct a $\mathrm{GL}_2(\mathbb{Q}_p)$ -equivariant morphism $\pi_{HT}: \mathcal{X}_{K^p} \to \mathscr{F}\ell$, the Hodge-Tate period map. If we set $\mathcal{O}_{K^p} = \pi_{HT,*}\mathcal{O}_{\mathcal{X}_{K^p}}$, then it is a fact that:

$$H^{i}(\mathcal{X}_{K^{p}}, \mathcal{O}_{\mathcal{X}_{K^{p}}}) \cong H^{i}(\mathscr{F}\ell, \mathcal{O}_{K^{p}}).$$
 (46)

Pan [Pan22, §4.2.6] defines a subsheaf $\mathcal{O}_{Kp}^{\text{la}} \subseteq \mathcal{O}_{Kp}$ by:

$$\mathcal{O}_{K^p}^{\mathrm{la}}(U) = \mathcal{O}_{K^p}(U)^{K_p-\mathrm{la}},\tag{47}$$

on quasi-compacts U, where $K_p \subseteq \mathrm{GL}_2(\mathbb{Q}_p)$ is an open compact stabilising U. Then Pan shows that:

Theorem 2.2. [Pan22, Theorem 4.4.6] There is a $GL_2(\mathbb{Q}_p)$ and Hecke-equivariant isomorphism:

$$H^{i}(\mathscr{F}\ell,\mathcal{O}_{K^{p}})^{la} \cong H^{i}(\mathscr{F}\ell,\mathcal{O}_{K^{p}}^{la}).$$
 (48)

The idea now is to study $\mathcal{O}_{K^p}^{\text{la}}$ and π_{HT} . To define the latter properly, we will need p-adic Hodge theory for rigid analytic varieties [Sch13].

²For the definition of adic spaces see [Hub93].

³For the purposes of this functor, \mathbb{C}_p may be replaced by any p-adic field.

2.2 The period sheaves

Let X be a scheme or adic space. Recall [Aut, 34.4] the étale site $X_{\text{\'et}}$ of X is the site with underlying category $\mathsf{Sch}_{\acute{\text{et}}}/X$ (or $\mathsf{AdicSpaces}_{\acute{\text{et}}}/X$), and coverings given by jointly surjective families of étale morphisms $\{f_i: U_i \to V\}$ (over X).

As in [Sch13, Definition 3.9], let pro $-X_{\text{\'et}}$ be the category of pro-objects of $X_{\text{\'et}}$. Its objects are (small) cofiltered inverse limits of objects in $X_{\text{\'et}}$. A morphism $\varprojlim_i U_i = U \to V = \varprojlim_i V_i$ in pro $-X_{\text{\'et}}$ is called étale if there is a morphism $U_0 \to V_0$ making the following square Cartesian:

$$\begin{array}{ccc}
U & \longrightarrow V \\
\downarrow & \Box & \downarrow \\
U_0 & \longrightarrow V_0
\end{array} \tag{49}$$

A map $\varprojlim_i U_i = U \to V$ is called pro-étale if it is a cofiltered inverse limit of étale morphisms $U_i \to V$ such that $U_j \to U_i$ is surjective finite étale for $j \gg i$. $X_{\text{pro\acute{e}t}}$ is the site with underlying category given by the objects of $\text{pro} - X_{\acute{e}t}$ that are pro-étale over X, and coverings given by jointly surjective (on underlying topological spaces) familes of pro-étale morphisms. The structure sheaf \mathcal{O}_X on $X_{\text{pro\acute{e}t}}$ is given on qcqs $U = \varprojlim_i U_i \in X_{\text{pro\acute{e}t}}$ by $\mathcal{O}_X(U) = \varinjlim_i \mathcal{O}_{X_{\acute{e}t}}(U_i)$.

Now let K be a characteristic 0 perfectoid field, let $K^+ \subseteq K$ be an open bounded valuation subring, and let X be a locally noetherian adic space over $\operatorname{Spa}(K,K^+)$. Call $U \in X_{\operatorname{pro\acute{e}t}}$ affinoid perfectoid if $U = \varprojlim_i \operatorname{Spa}(R_i,R_i^+)$ for affinoids $\operatorname{Spa}(R_i,R_i^+)$ such that (R,R^+) is an affinoid perfectoid (K,K^+) algebra, where $R^+ = (\varinjlim_i R_i^+)_p^{\wedge}$ and $R = R^+[1/p]$, and we write $\hat{U} = \operatorname{Spa}(R,R^+)$. One of the most important properties of $X_{\operatorname{pro\acute{e}t}}$ is that:

Theorem 2.3. [Sch13, Corollary 4.7, Proposition 4.8] In this setup, the affinoid perfectoid U form a basis for $X_{pro\acute{e}t}$.

We now define [Sch13, §6] sheaves by giving them on such affinoid perfectoid U. Firstly, The completed structure sheaves $\widehat{\mathcal{O}}_X^+$ and $\widehat{\mathcal{O}}_X$: by

$$\widehat{\mathcal{O}}_X^+(U) = R^+ \quad \text{and} \quad \widehat{\mathcal{O}}_X(U) = R,$$
 (50)

and the sheaves \mathbb{A}_{inf} and \mathbb{B}_{inf} by,

$$\mathbb{A}_{\inf}(U) = W(R^{\flat +}) \quad \text{and} \quad \mathbb{B}_{\inf}(U) = W(R^{\flat +})[1/p]. \tag{51}$$

Recall from the *p*-adic Hodge theory, that there is a surjective map $\theta: W(R^{\flat+}) \to R^+$, and $\ker \theta$ is principal generated by ξ^4 . As sheaves this is saying there are surjective maps $\theta: \mathbb{A}_{\inf} \to \widehat{\mathcal{O}}_X^+$ and $\theta: \mathbb{B}_{\inf} \to \widehat{\mathcal{O}}_X$. Define sheaves \mathbb{B}_{dR}^+ and \mathbb{B}_{dR} by:

$$\mathbb{B}_{\mathrm{dR}}^{+} = \lim_{\stackrel{\longleftarrow}{i}} \mathbb{B}_{\mathrm{inf}} / (\ker \theta)^{i} \quad \text{and} \quad \mathbb{B}_{\mathrm{dR}} = \mathbb{B}_{\mathrm{dR}} [1/\xi]. \tag{52}$$

Lastly, we define the structural de Rham sheaves. Define $\mathcal{OB}_{\inf} = \mathcal{O}_X \otimes_{W(\kappa)} \mathbb{B}_{\inf}$ and $\mathcal{OB}_{\mathrm{dR}}^+ = ((\mathcal{OB}_{\inf})_p^{\wedge})_{\ker\theta}^{\wedge}$, i.e [Sch16, (3)].

$$\mathcal{O}\mathbb{B}_{\mathrm{dR}}^{+}(U) = \varinjlim_{i} \varprojlim_{j} \left(R_{i}^{+} \hat{\otimes}_{W(\kappa)} \mathbb{A}_{\mathrm{inf}}(U) \right) [1/p] / (\ker \theta)^{j}, \tag{53}$$

⁴This is defined by the same formula as a perfectoid field: $\theta: \sum_i p^i[x_i] \mapsto \sum_i p^i x_i^{\#}$.

where κ is the residue field of K. Here the tensor product is p-adically completed, and the map $\theta: R_i^+ \hat{\otimes}_{W(\kappa)} \mathbb{A}_{\inf}(U) \to R^+$ is the tensor product of the maps $R_i^+ \to R^+$ and $\mathbb{A}_{\inf}(U) \to R^+$. Also define $\mathcal{O}\mathbb{B}_{dR} \coloneqq \mathcal{O}\mathbb{B}_{dR}^+[1/\xi]$. Therefore there are maps $\mathcal{O}\mathbb{B}_{dR}^+ \to \widehat{\mathcal{O}}_X^+$ and $\mathcal{O}\mathbb{B}_{dR} \to \widehat{\mathcal{O}}_X$. The structure sheaf is equipped with a connection $\nabla: \mathcal{O}_X \to \Omega_X^1$ which we can extend \mathbb{B}_{\inf} -linearly, and then p-adically and ker θ -adically complete (and then invert ξ if you want), to get a \mathbb{B}_{dR}^+ -linear connection

$$\nabla: \mathcal{O}\mathbb{B}_{\mathrm{dR}}^{+} \to \mathcal{O}\mathbb{B}_{\mathrm{dR}}^{+} \otimes_{\mathcal{O}_{X}} \Omega_{X}^{1}. \tag{54}$$

Then Scholze [Sch13] considers the following four categories:

- 1. \mathbb{B}_{dR}^+ -local systems \mathbb{M} on $X_{\text{proét}}$.
- 2. $\mathcal{O}\mathbb{B}_{dR}^+$ -modules \mathcal{M} with integrable connection $\nabla_{\mathcal{M}}$.
- 3. Filtered \mathcal{O}_X -modules \mathcal{E} with filtration $\mathrm{Fil}^{\bullet}\mathcal{E}$ with integrable connection ∇ satisfying Griffifths transversality (this means that $\nabla \mathrm{Fil}^{i}\mathcal{E} \subseteq \mathrm{Fil}^{i-1}\mathcal{E} \otimes \Omega^{1}_{X}$).
- 4. Lisse \mathbb{Z}_p -sheaves \mathbb{L} on $X_{\text{pro\'et}}$.

The first and second categories are equivalent [Sch13, Theorem 7.2] by:

$$\mathbb{M} \mapsto (\mathbb{M} \otimes_{\mathbb{B}_{\mathrm{dR}}} \mathcal{O}\mathbb{B}_{\mathrm{dR}}, \mathrm{id} \otimes \nabla)$$

$$\mathcal{M}^{\nabla_{\mathcal{M}}} \leftrightarrow (\mathcal{M}, \nabla_{\mathcal{M}}). \tag{55}$$

We say objects of the second and third categories are associated if

$$\mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{O} \mathbb{B}_{\mathrm{dR}} \cong \mathcal{M} \otimes_{\mathcal{O} \mathbb{B}_{\mathrm{dR}}^+} \mathcal{O} \mathbb{B}_{\mathrm{dR}}, \tag{56}$$

compatibly with filtrations and connections, similarly objects of the first and third are called associated if:

$$\mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{O} \mathbb{B}_{\mathrm{dR}} \cong \mathbb{M} \otimes_{\mathbb{B}_{\mathrm{dR}}^+} \mathcal{O} \mathbb{B}_{\mathrm{dR}}, \tag{57}$$

compatibly with filtrations and connections. Any $\mathcal E$ belonging to the first category is associated with:

$$\mathbb{M} = \operatorname{Fil}^{0} (\mathcal{E} \otimes_{\mathcal{O}_{X}} \mathcal{O} \mathbb{B}_{\mathrm{dR}})^{\nabla = 0}.$$
 (58)

This defines a fully faithful functor from the third to first categories [Sch13, Theorem 7.6]. A lisse \mathbb{Z}_p -sheaf \mathbb{L} on $X_{\text{pro\acute{e}t}}$ is a locally finitely generated $\widehat{\mathbb{Z}}_p$ -module, where $\widehat{\mathbb{Z}}_p$ is the inverse limit $\varprojlim_n \mathbb{Z}/p^n\mathbb{Z}$ of constant sheaves on the pro-étale site. We say it is associated to a \mathbb{B}_{dR} -local system \mathbb{M} if there is an isomorphism

$$\mathbb{L} \otimes_{\widehat{\mathbb{Z}}_p} \mathcal{O}\mathbb{B}_{\mathrm{dR}} \cong \mathbb{M} \otimes_{\mathbb{B}_{\mathrm{dR}}^+} \mathcal{O}\mathbb{B}_{\mathrm{dR}}, \tag{59}$$

if moreover $\mathbb{M} = \mathbb{L} \otimes_{\mathbb{Z}_p} \mathbb{B}_{dR}^+$ is in the image of (58) (i.e. admits an associated \mathcal{E}) we say that \mathbb{L} is de Rham. This is precisely the situation in which we can pass between all four categories above.

⁵i.e., it is the first map in the de Rham complex.

2.3 Relative de Rham comparison theorem

If $f: X \to Y$ is a smooth proper map of such adic spaces, and \mathcal{E}_X is a filtered \mathcal{O}_X -module with integrable connection (satisfying Griffiths transversality), then we can consider the relative de Rham complex of \mathcal{O}_Y -modules

$$DR(\mathcal{E}_X) := (0 \to \mathcal{E}_X \xrightarrow{\nabla_{X/Y}} \mathcal{E}_X \otimes \Omega^1_{X/Y} \to \dots). \tag{60}$$

The cohomology $H^i_{dR}(\mathcal{E}_X/Y)$ of this complex are then \mathcal{O}_Y -modules. We can also consider the derived functors $R^i f_{*,pro\acute{e}t}$ of pushforward on sheaves. If $\mathbb L$ is de Rham and associated to \mathcal{E}_X , then these are associated [Sch13, Theorem 8.8(ii)], i.e.,

$$R^{i} f_{*, \text{pro\'et}} \mathbb{L} \otimes_{\widehat{\mathbb{Z}}_{n}} \mathcal{O} \mathbb{B}_{dR}^{+} \cong H^{i}_{dR}(\mathcal{E}_{X}/Y) \otimes_{\mathcal{O}_{Y}} \mathcal{O} \mathbb{B}_{dR}^{+}. \tag{61}$$

2.4 Variation of Hodge structures for complex analytic varieties

Let a X be a smooth variety over \mathbb{C} (endowed with the analytic topology), or a complex manifold.

Definition 2.4. [Sch73, §2] A (integral, pure of weight n) variation of Hodge structures (over X) is a \mathbb{Z} -local system \underline{V} on X together with a decreasing filtration $\mathrm{Fil}^{\bullet}\mathcal{E}$ on $\mathcal{E} := \underline{V} \otimes_{\mathbb{Z}} \mathcal{O}_X$ satisfying Griffiths transversality (i.e. $\nabla \mathrm{Fil}^i \mathcal{E} \subseteq \mathrm{Fil}^{i-1} \mathcal{E} \otimes \Omega_X^1$), which induces a pure Hodge structure of weight n on the fibers of V.

A Hodge structure on a finite rank free \mathbb{Z} -module V is a decomposition of $V_{\mathbb{C}} := V \otimes_{\mathbb{Z}} \mathbb{C}$ into complex vector spaces $V^{i,j}$:

$$V_{\mathbb{C}} = \bigoplus_{i,j} V^{i,j}, \tag{62}$$

such that the complex conjugate $\overline{V^{i,j}} = V^{j,i}$. We write $d_{i,j} = \dim V^{i,j}$, and $(d_{i,j})_{i,j\in\mathbb{Z}}$ is called the Hodge weights of V. It is called pure of weight n if rank V = n and i + j = n for all i,j, in which case we define a filtration by $\operatorname{Fil}^i V_{\mathbb{C}} = \bigoplus_{i' \leq i} V^{i',n-i'}$. We can recover $V^{i,j} = \operatorname{Fil}^i V_{\mathbb{C}} \cap \operatorname{\overline{Fil}}^j V_{\mathbb{C}}$, which is what "induces" means in Definition 2.4.

In the setting of Definition 2.4, let V be the fiber of \underline{V} , let $d_i = \operatorname{rank} \operatorname{Fil}^i \mathcal{E}$, and consider $\operatorname{Fl}_{V_{\mathbb{C}}}^{\mathbf{d}}$, the flag variety of decreasing filtrations of \mathbb{C} -subspaces V_i of $V_{\mathbb{C}}$ with dim $V_i = d_i$. Its X-points (for X/\mathbb{C}) are given by:

$$\operatorname{Fl}_{V_{\mathbb{C}}}^{\mathbf{d}}(X) = \{ (\mathcal{F}_i)_{i \in \mathbb{Z}} : V_{\mathbb{C}} \otimes \mathcal{O}_X \supseteq \cdots \supseteq \mathcal{F}_i \supseteq \mathcal{F}_{i+1} \supseteq \cdots \supseteq 0 \}, \tag{63}$$

where each \mathcal{F}_i is a vector bundle of rank d_i which is a locally direct summand. So if X is equipped with a variation of Hodge structures, $\operatorname{Fil}^{\bullet}\mathcal{E}$ determines a morphism $\pi_H: X \to \operatorname{Fl}^{\mathbf{d}}_{V_{\mathbb{C}}}$, the "period map".

Now let $f: X \to Y$ be a smooth proper morphism of varieties over \mathbb{C} . Then the relative de Rham cohomology $H^n_{\mathrm{dR}}(X/Y)$ is equipped with a decreasing filtration, called the Hodge filtration [Aut, §50.7], coming from the degeneration of the Hodge-de Rham spectral sequence [Del68, Théorème 5.5] $E_1^{i,j} = H^j(X, \Omega^i_{X/Y}) \Rightarrow H^n_{\mathrm{dR}}(X/Y)$ (here n = i+j). It also has the Gauss-Manin connection ∇ satisfying Griffiths transversality with respect to the Hodge filtration [Gri70, §2]. There is an isomorphism (coming from the compatibility of the Riemann-Hilbert correspondence in the derived category, with pushfowards, see for example [HTT08, Theorem 7.1.1]) of \mathcal{O}_Y -modules:

$$R^n f_* \mathbb{Z} \otimes_{\mathbb{Z}} \mathcal{O}_Y \cong H^n_{\mathrm{dR}}(X/Y),$$
 (64)

and the filtration $\operatorname{Fil}^{\bullet}\mathcal{E}$ on $\mathcal{E} := H^n_{\mathrm{dR}}(X/Y)$ determines a Hodge structure on the fibers of $\underline{V} := R^n f_* \underline{\mathbb{Z}}$. In other words, \underline{V} is a variation of Hodge structures on Y, and so we get a morphism $Y \to \operatorname{Fl}^{\mathbf{d}}_{V_{\mathbb{C}}}$.

For an elliptic curve $f: E \to S$ over any scheme S/\mathbb{C} , the relative de Rham cohomology $H^1_{dR}(E/S)$ is a rank 2 vector bundle on S which sits in the exact sequence (the "Hodge-Tate filtration") [KDSB73, Katz, A1.2.1]:

$$0 \to \underline{\omega}_{E/S} \to H^1_{\mathrm{dR}}(E/S) \to \underline{\omega}_{E/S}^{-1} \to 0, \tag{65}$$

which determines a variation of Hodge structures $\underline{V} = R^1 f_* \underline{\mathbb{Z}}$ on S with $d_{-1,0} = d_{0,-1} = 1$. So we get a morphism $S \to \mathbb{P}(V) \cong \mathbb{P}^1_{\mathbb{C}}$. In particular, if $S = Y_K \otimes_{\mathbb{Q}} \mathbb{C}$ is the (open) modular curve of level K, and $E = E_K \times_{\mathbb{Q}} \mathbb{C}$ is the universal elliptic curve, then we get a map $Y_K \times_{\mathbb{Q}} \mathbb{C} \to \mathbb{P}^1_{\mathbb{C}}$. Extending this, there is an exact sequence of vector bundles on $X_K \times_{\mathbb{Q}} \mathbb{C}$:

$$0 \to \underline{\omega}_K \to \mathrm{H}^1_{\mathrm{dR,log}} \to \underline{\omega}_K^{-1} \to 0 \tag{66}$$

and an extension $\underline{V_{\mathrm{log}}}$ of $\underline{V_{\mathrm{log}}}$ such that $\underline{V_{\mathrm{log}}} \otimes_{\mathbb{Z}} \mathcal{O}_{X_K} \cong \mathrm{H}^1_{\mathrm{dR,log}}$, and hence a variation of Hodge structures on $X_K \times_{\mathbb{Q}} \mathbb{C}$, which yields a period map $X_K \times_{\mathbb{Q}} \mathbb{C} \to \mathbb{P}^1_{\mathbb{C}}$.

2.5 The Hodge-Tate period map

We follow [Pan22, §4.1.3]. Our aim will be to copy the period map from the previous section, for the perfectoid modular curve \mathcal{X}_{K^p} over $\operatorname{Spa}(\mathbb{C}_p, \mathcal{O}_{\mathbb{C}_p})$. The substitute for variation of Hodge structures will be Scholze's p-adic Hodge theory for rigid analytic varieties [Sch13].

Let $f: \mathcal{E}_{K^pK_p} \to \mathcal{Y}_{K^pK_p}$ be the universal elliptic curve over $\operatorname{Spa}(\mathbb{C}_p, \mathcal{O}_{\mathbb{C}_p})$. Let $\mathbb{L} = \mathbb{Z}_p$. Write $\underline{\hat{V}} = R^1 f_{*,\operatorname{pro\acute{e}t}} \mathbb{Z}_p$, then by (61) there is an isomorphism of sheaves on the proétale site:

$$\underline{\hat{V}} \otimes_{\widehat{\mathbb{Z}}_p} \mathcal{O} \mathbb{B}_{\mathrm{dR}}^+ \cong H^1_{\mathrm{dR}} (\mathcal{E}_{K^p K_p} / \mathcal{Y}_{K^p K_p}) \otimes_{\mathcal{O}_{\mathcal{Y}_{K^p K_p}}} \mathcal{O} \mathbb{B}_{\mathrm{dR}}^+.$$
(67)

Using the theory of log adic spaces [DLLZ19b] [DLLZ19a], this isomorphism can be extended to $\mathcal{X} = \mathcal{X}_{K^pK_p}$, by equipping $\mathcal{X}_{K^pK_p}$ with the log structure defined by the divisor of its cusps. Similarly to (67), there is a comparison isomorphism

$$\underline{\hat{V}}_{\log} \otimes_{\widehat{\mathbb{Z}}_p} \mathcal{O}\mathbb{B}_{\mathrm{dR},\log}^+ \cong H^1_{\mathrm{dR},\log} \otimes_{\mathcal{O}_{\mathcal{X}}} \mathcal{O}\mathbb{B}_{\mathrm{dR},\log}^+$$
(68)

of sheaves on $\mathcal{X}_{\text{prok\acute{e}t}}$, the pro-Kummer étale site of log adic spaces which are pro-log-étale over \mathcal{X}_{K^p} , and $\mathbb{B}^+_{dR,\log}$ are log period sheaves, and as before $\underline{\hat{V}}_{\log}$ is a rank 2 $\widehat{\mathbb{Z}}_p$ -local system on $\mathcal{X}_{\text{prok\acute{e}t}}$, and $H^1_{dR,\log}$ gets its filtration from the Hodge-Tate exact sequence

$$0 \to \underline{\omega}_{K^p K_n} \to H^1_{\mathrm{dR,log}} \to \underline{\omega}_{K^p K_n}^{-1} \to 0, \tag{69}$$

where $\underline{\omega}_{K^pK_p}$ is the automorphic line bundle⁶. Recall that $\mathcal{OB}_{dR,\log}^+$ has the ker(θ)-adic filtration, so there is an inclusion

$$\operatorname{gr}^{0} H^{1}_{\mathrm{dR,log}} \otimes_{\mathcal{O}_{\mathcal{X}}} \widehat{\mathcal{O}}_{\mathcal{X}} \hookrightarrow \operatorname{gr}^{0} (H^{1}_{\mathrm{dR,log}} \otimes_{\mathcal{O}_{\mathcal{X}}} \mathcal{O}\mathbb{B}^{+}_{\mathrm{dR,log}}),$$
 (70)

 $^{^6\}mathrm{We}$ will also use the same notation for the sheaves on the pro-Kummer étale site

and the quotient can be identified with the rest of the degree 0 part, i.e. $\operatorname{gr}^1 H^1_{\mathrm{dR,log}} \otimes_{\mathcal{O}_X}$ $\widehat{\mathcal{O}}_{\mathcal{X}}(-1)$, because $\operatorname{gr}^{\bullet} H^1_{\mathrm{dR,log}}$ only lives in degrees 0,1. So we get the filtration:

where in the bottom line we took the 0^{th} graded part of the isomorphism (68) and used (69). This can be rewritten as:

$$0 \to \underline{\omega}_{K^p K_p}^{-1}(1) \otimes_{\mathcal{O}_X} \widehat{\mathcal{O}}_{\mathcal{X}} \to \underline{\hat{V}}_{\log}(1) \otimes_{\widehat{\mathbb{Z}}_p} \widehat{\mathcal{O}}_{\mathcal{X}} \to \underline{\omega}_{K^p K_p} \otimes_{\mathcal{O}_X} \widehat{\mathcal{O}}_{\mathcal{X}} \to 0.$$
 (72)

Now $\varprojlim_{K_p} \mathcal{X}_{K^pK_p} \sim \mathcal{X}_{K^p}$ is a cover of $\mathcal{X}_{K^pK_p}$ in the pro-Kummer étale site, and hence, restricting (72) to this cover and recalling Section 2.2, we get the exact sequence of sheaves over \mathcal{X}_{K^p} :

$$0 \to \underline{\omega}_{K^p}^{-1}(1) \to \underline{\hat{V}}_{\log}(1) \otimes \mathcal{O}_{\mathcal{X}_{K^p}} \to \underline{\omega}_{K^p} \to 0.$$
 (73)

By choosing two sections of $\hat{\underline{V}}_{\log}(1)$, this is already enough to give a morphism to $\mathbb{P}^1_{\mathrm{ad}}$, but we can do better and make this canonical. The inverse limit $\varprojlim_{K_p} \mathcal{X}_{K^pK_p}$ can be calculated on the system of congruence subgroups $\Gamma(p^m)$, i.e $\varprojlim_m \mathcal{X}_{K^p\Gamma(p^m)}$. The maps are induced by the inclusions of level structures $\Gamma(p^{m+1}) \subseteq \Gamma(p^m)$. In particular, an S-point of this inverse limit gives rise to to an elliptic curve E_S/S together with a compatible system of trivialisations $\alpha_m : E_S[p^m] \to (\mathbb{Z}/p^m\mathbb{Z})_S^2$, that is to say, a trivialisation $\alpha : T_pE_S \to (\mathbb{Z}_p)_S^2$ of the Tate module over S. In particular the universal elliptic curve over \mathcal{X}_{K^p} gives rise to a canonical trivialisation of the Tate module $\hat{\underline{V}}_{\log}(1)$ over \mathcal{X}_{K^p} , which we apply to (73):

$$0 \to \underline{\omega}_{K^p}^{-1}(1) \to (\mathbb{Q}_p^{\oplus 2})(1) \otimes \mathcal{O}_{\mathcal{X}_{K^p}} \to \underline{\omega}_{K^p} \to 0.$$
 (74)

The images of that standard basis vectors e_1, e_2 in $\mathbb{Q}_p^{\oplus 2}$ give two sections that generate $\underline{\omega}_{K^p}$ and hence a morphism to $\mathscr{F}\ell = \mathbb{P}^{1,\mathrm{ad}}$. This is the Hodge-Tate period map π_{HT} . It is $\mathrm{GL}(\mathbb{Z}_p)$ equivariant because the action on \mathcal{X}_{K^p} comes from composing with the level structure α . We can view it in the diagram:

where π_{K_p} is the projection to finite level K^pK_p . Let $\omega_{\mathscr{F}\ell}$ be the tautological line bundle on $\mathscr{F}\ell$, and let $\underline{\omega}_{K^p} \coloneqq \pi_{K_p}^* \underline{\omega}_{K^pK_p}$ be the pullback of the automorphic line bundle from any finite level. Then

Theorem 2.5. [Pan22, Theorem 4.1.7][Sch15, Theorem III.3.] The Hodge-Tate period map π_{HT} is $\operatorname{GL}_2(\mathbb{Q}_p)$ and Hecke equivariant (for the trivial Hecke action on $\mathscr{F}\ell$). If $\mathscr{F}\ell \supset U_1 \coloneqq \{[x_1:x_2]: \|x_1\| \geq \|x_2\|\}$ (define U_2 similarly), and \mathfrak{B} is the set of finite intersections of rational subsets of U_1, U_2 , then every $U \in \mathfrak{B}$ has $V \coloneqq \pi_{HT}^{-1}(U)$ affinoid perfectoid. There is a natural $\operatorname{GL}_2(\mathbb{Q}_p)$ -equivariant isomorphism of line bundles $\underline{\omega}_{K^p} \cong \pi_{HT}^* \omega_{\mathscr{F}\ell}$.

The above construction of π_{HT} generalises straightforwardly to Siegel modular varieties. For the consruction of π_{HT} for Hodge type Shimura varieties see [CS17], for abelian type see [She17], for general Shimura varieties there is Hodge-Tate period map of diamonds constructed in [BP21] and [Cam22, §7].

3 Relative Sen theory

3.1 Classical Sen theory

Recalling the p-adic Hodge theory study group, the original (arithmetic) Sen theory is the following. $\overline{\mathbb{Q}}_p \supset K \supset \mathbb{Q}_p$ is a finite extension, K_{∞}/K is a ramified \mathbb{Z}_p -extension, $H := G_{K_{\infty}}$, $\Gamma := \operatorname{Gal}(K_{\infty}/K)$, with topological generator γ , $\Gamma_m := \Gamma^{p^m}$, $K_m := K_{\infty}^{\Gamma_m}$, and $\chi : \Gamma \xrightarrow{\sim} \mathbb{Z}_p$ is a choice of isomorphism. Here is a picture:

$$K = K_1 = \frac{\Gamma_0 = \Gamma}{K_2} = K_\infty = K_\infty = \overline{K} . \tag{76}$$

Each $\Gamma_m \cong$ an open subgroup of \mathbb{Z}_p and so is a 1-dimensional p-adic Lie group. Let V be a f.d. \mathbb{Q}_p -Banach representation of G_K . Then for $m \gg 0$ one has an isomorphism of \mathbb{C}_p -semilinear G_K -representations:

$$(V \otimes_{\mathbb{Q}_p} \mathbb{C}_p)^{H,\Gamma_m-\text{an}} \otimes_{K_m} \mathbb{C}_p \cong V \otimes_{\mathbb{Q}_p} \mathbb{C}_p, \text{ leading to}$$

$$(V \otimes_{\mathbb{Q}_p} \mathbb{C}_p)^{H,\Gamma-\text{la}} \otimes_{K_\infty} \mathbb{C}_p \cong V \otimes_{\mathbb{Q}_p} \mathbb{C}_p.$$

$$(77)$$

The Γ -action on $V_{\infty} := (V \otimes_{\mathbb{Q}_p} \mathbb{C}_p)^{H,\Gamma-\text{la}}$ is differentiable, to an action of Lie(Γ), which turns out to be K_{∞} -linear. Explicitly, for $v \in V_{\infty}$, we can define

$$\theta_V(v) = \frac{1}{\log \chi(\gamma)} \left. \frac{d}{dt} \right|_{t=0} (\gamma^t v), \tag{78}$$

a canonical element in the image of $\operatorname{Lie}(\Gamma) \to \operatorname{End}_{K_\infty} V_\infty$, which commutes with the Γ -action. Extending scalars, we get the Sen operator $\theta_V \in \operatorname{End}_{\mathbb{C}_p} V \otimes_{\mathbb{Q}_p} \mathbb{C}_p$ which commutes with the action of G_K . One can decompose $V \otimes_{\mathbb{Q}_p} \mathbb{C}_p = \bigoplus_{\lambda} (V \otimes_{\mathbb{Q}_p} \mathbb{C}_p)_{\lambda}$ into generalised eigenspaces for θ_V . In the case where $K = K(\mu_{p^\infty})$ and $\chi = \chi_{\operatorname{cyc}}$, V is Hodge-Tate if and only if θ_V acts semisimply with integer eigenvalues, in which case those are (minus) the Hodge-Tate weights. More generally, we call the Jordan form of θ_V the Hodge-Tate-Sen weights of V.

3.2 Theory of decompletions

The above theory has two features:

- 1. A "decompletion" to a subspace which is locally analytic for the action of a p-adic Lie group Γ appearing as a quotient of G_K .
- 2. Differentiation and analysis of the resulting $Lie(\Gamma)$ -action.

The Tate-Sen formalism [BC08, BC16, Cam22] provides a recipe for the decompletion in quite general context. We follow [Cam22, §4]. Let Π be a profinite group, let (A, A^+)