200-201.exam-labs.premium.exam.98q

Number: 200-201
Passing Score: 800
Time Limit: 120 min
File Version: 1.0

200-201

Understanding Cisco Cybersecurity Operations Fundamentals (CBROPS)

Version 1.0

Exam A

QUESTION 1

While viewing packet capture data, an analyst sees that one IP is sending and receiving traffic for multiple devices by modifying the IP header.

Which technology makes this behavior possible?

- A. encapsulation
- B. TOR
- C. tunneling
- D. NAT

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 2

When communicating via TLS, the client initiates the handshake to the server and the server responds back with its certificate for identification.

Which information is available on the server certificate?

- A. server name, trusted subordinate CA, and private key
- B. trusted subordinate CA, public key, and cipher suites
- C. trusted CA name, cipher suites, and private key
- D. server name, trusted CA, and public key

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 3

A security engineer has a video of a suspect entering a data center that was captured on the same day that files in the same data center were transferred to a competitor.

Which type of evidence is this?

- A. best evidence
- B. prima facie evidence
- C. indirect evidence
- D. physical evidence

Correct Answer: C Section: (none) Explanation

Which two elements of the incident response process are stated in NIST Special Publication 800-61 r2? (Choose two.)

- A. detection and analysis
- B. post-incident activity
- C. vulnerability management
- D. risk assessment
- E. vulnerability scoring

Correct Answer: AB Section: (none) Explanation

Explanation/Reference:

Reference: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf

QUESTION 5

Which utility blocks a host portscan?

- A. HIDS
- B. sandboxing
- C. host-based firewall
- D. antimalware

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

QUESTION 6

Which event is user interaction?

- A. gaining root access
- B. executing remote code
- C. reading and writing file permission
- D. opening a malicious file

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 7

An intruder attempted malicious activity and exchanged emails with a user and received corporate information, including email distribution lists. The intruder asked the user to engage with a link in an email. When the fink launched, it infected machines and the intruder was able to access the corporate network.

Which testing method did the intruder use?

A. social engineering

- B. eavesdropping
- C. piggybacking
- D. tailgating

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

QUESTION 8

Top 10 Src IP Addr ordered by flows:												
Date first seen	Duration	Src IP Addr	Flows	Packets	Bytes	pps	bps	bpp				
2019-11-30 06:45:50.990	1147.332	192.168.12.234	109183	202523	13.1 M	176	96116	68				
2019-11-30 06:45:02.928	1192.834	10.10.151.203	62794	219715	25.9 M	184	182294	123				
2019-11-30 06:59:24.563	330.110	192.168.28.173	27864	47943	2.2 M	145	55769	48				

Refer to the exhibit. What information is depicted?

- A. IIS data
- B. NetFlow data
- C. network discovery event
- D. IPS event data

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 9

Which type of evidence supports a theory or an assumption that results from initial evidence?

- A. probabilistic
- B. indirect
- C. best
- D. corroborative

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 10

Which two elements are assets in the role of attribution in an investigation? (Choose two.)

- A. context
- B. session
- C. laptop

- D. firewall logs
- E. threat actor

Correct Answer: AE Section: (none) Explanation

Explanation/Reference:

QUESTION 11

Which regular expression matches "color" and "colour"?

- A. colo?ur
- B. col[0-8]+our
- C. colou?r
- D. col[0-9]+our

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

QUESTION 12

A user received a malicious attachment but did not run it.

Which category classifies the intrusion?

- A. weaponization
- B. reconnaissance
- C. installation
- D. delivery

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 13

Which process is used when IPS events are removed to improve data integrity?

- A. data availability
- B. data normalization
- C. data signature
- D. data protection

Correct Answer: B Section: (none) Explanation

An investigator is examining a copy of an ISO file that is stored in CDFS format.

What type of evidence is this file?

- A. data from a CD copied using Mac-based system
- B. data from a CD copied using Linux system
- C. data from a DVD copied using Windows system
- D. data from a CD copied using Windows

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 15

Which piece of information is needed for attribution in an investigation?

- A. proxy logs showing the source RFC 1918 IP addresses
- B. RDP allowed from the Internet
- C. known threat actor behavior
- D. 802.1x RADIUS authentication pass arid fail logs

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

QUESTION 16

Mar 6 10:35:34 user sshd[12900]: pam_unix(sshd:auth):authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=127.0.0.1

Mar 6 10:35:36 user sshd[12900]: Failed password for invalid user not_bill from 127.0.0.1 port 38346 ssh2

Refer to the exhibit. In which Linux log file is this output found?

- A. /var/log/authorization.log
- B. /var/log/dmesg
- C. var/log/var.log
- D. /var/log/auth.log

Correct Answer: D Section: (none) Explanation

What is the difference between the ACK flag and the RST flag in the NetFlow log session?

- A. The RST flag confirms the beginning of the TCP connection, and the ACK flag responds when the data for the payload is complete
- B. The ACK flag confirms the beginning of the TCP connection, and the RST flag responds when the data for the payload is complete
- C. The RST flag confirms the receipt of the prior segment, and the ACK flag allows for the spontaneous termination of a connection
- D. The ACK flag confirms the receipt of the prior segment, and the RST flag allows for the spontaneous termination of a connection

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 18

An analyst is investigating an incident in a SOC environment.

Which method is used to identify a session from a group of logs?

- A. sequence numbers
- B. IP identifier
- C. 5-tuple
- D. timestamps

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

QUESTION 19

Date	Flow Start	Duration	Proto	Src IP Addr:Port		Dst IP Addr:Port	Packets	Bytes	Flows
2020-01-05	21:15:28.389	0.000	UDP	127.0.0.1:25678	\rightarrow	192.168.0.1;20521	1	82	1

Refer to the exhibit. Which type of log is displayed?

- A. proxy
- B. NetFlow
- C. IDS
- D. sys

Correct Answer: B Section: (none) Explanation

What should a security analyst consider when comparing inline traffic interrogation with traffic tapping to determine which approach to use in the network?

- A. Tapping interrogation replicates signals to a separate port for analyzing traffic
- B. Tapping interrogations detect and block malicious traffic
- C. Inline interrogation enables viewing a copy of traffic to ensure traffic is in compliance with security policies
- D. Inline interrogation detects malicious traffic but does not block the traffic

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

QUESTION 21

Which two components reduce the attack surface on an endpoint? (Choose two.)

- A. secure boot
- B. load balancing
- C. increased audit log levels
- D. restricting USB ports
- E. full packet captures at the endpoint

Correct Answer: AD Section: (none) Explanation

Explanation/Reference:

QUESTION 22

An analyst discovers that a legitimate security alert has been dismissed.

Which signature caused this impact on network traffic?

- A. true negative
- B. false negative
- C. false positive
- D. true positive

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 23

DRAG DROP

Drag and drop the security concept on the left onto the example of that concept on the right.

Select and Place:

Risk Assessment	network is compromised
Vulnerability	lack of an access list
Exploit	configuration review
Threat	leakage of confidential information

Correct Answer:

Risk Assessment	Threat
Vulnerability	Vulnerability
Exploit	Risk Assessment
Threat	Exploit

Section: (none) Explanation

Explanation/Reference:

QUESTION 24

Which event artifact is used to identity HTTP GET requests for a specific file?

- A. destination IP address
- B. TCP ACK
- C. HTTP status code
- D. URI

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 25

Which security principle requires more than one person is required to perform a critical task?

- A. least privilege
- B. need to know
- C. separation of duties
- D. due diligence

Correct Answer: C

Section: (none) Explanation

Explanation/Reference:

QUESTION 26

What are two differences in how tampered and untampered disk images affect a security incident? (Choose two.)

- A. Untampered images are used in the security investigation process
- B. Tampered images are used in the security investigation process
- C. The image is tampered if the stored hash and the computed hash match
- D. Tampered images are used in the incident recovery process
- E. The image is untampered if the stored hash and the computed hash match

Correct Answer: BE Section: (none) Explanation

Explanation/Reference:

QUESTION 27

What makes HTTPS traffic difficult to monitor?

- A. SSL interception
- B. packet header size
- C. signature detection time
- D. encryption

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 28 DRAG DROP

			Tin	ne		Sour	rce			Dest	inatio	on		Prot	tocol	Le	ngth	Info				
		17	0.0	0116	41	10.	0.2.	15		192.	124	.249	9.9	TCP			76	50586-	443	[SYN]	Seq=0	Win
		18	0.0	0119	18	10.	0.2.	15		192.	124	.249	9.9	TCP	2		76	50588-	443	[SYN]	Seq=0	Win-
		19	0.0	0226	56	192	.124	.249	9.9	10.0	.2.	15		TCP			62	443-50	588	[SYN,	ACK]	Seq=(
		20	0.0	0227	02	10.	0.2.	15		192.	124	.249	9.9	TCP)		56	50588-	443	[ACK]	Seq=1	Ack*
		21	0.0	0229	88	192	.124	.249	9.9	10.0	.2.	15		TCP			62	443-50	586	[SYN,	ACK]	Seq=
						10.						.249						50586-			Seq=1	Ack:
						10.							_		vl.			Client				
						10.							9.9		v1.2	2		Client				
		V200000	0.00	VC000000000		THE PARTY OF THE P	0.000.0000	.249			100000000000000000000000000000000000000	77.00		TCP				443-50		1157006506504077		
								.249						TCP				443-50		P. Physical Science Community	Seq=1	Ack
								.249							v1.2	2 2		Server			- 12	
4		28	0.0	1374	2.6	10.	1.2.	1.5		192.	124	.249	9.9	TCP)		56	50586-	443	[ACK]	Sea=2	06 A
> Secu	ire s	JOCK	672	Lidy	er																	
0000	00	04	00	01	00	06									08	00						
0000 0010	00 45	04	00	01 f5	00 eb	3е	40	00	40	06	89	2f	0a	00	02	0f	Ε	>@.	@	/		
0000 0010 0020	00 45 c0	04 00 7c	00 00 f9	01 f5 09	00 eb c5	3e 9c	40 01	00 dd	40 4d	06 db	89 7£	2f f7	0a 00	00 b3	02 b0	0f 02	E	>@.	@ M	/ · · · ·		
0000 0010 0020 0030	00 45 c0 50	04 00 7c 18	00 00 f9 72	01 f5 09 10	00 eb c5 c6	3e 9c 7c	40 01 00	00 dd 00	40 4d 16	06 db 03	89 7f 01	2f f7 00	0a 00 c8	00 b3 01	02 b0 00	0f 02 00	E . . P.1	>@.	@ M	/ 		
0000 0010 0020 0030 0040	00 45 c0 50 c4	04 00 7c 18 03	00 00 f9 72 03	01 f5 09 10 d1	00 eb c5 c6	3e 9c 7c 45	40 01 00 78	00 bb 00 b7	40 4d 16 2c	06 db 03 90	89 7f 01 04	2f f7 00 ee	0a 00 c8 51	00 b3 01 16	02 b0 00 f1	0f 02 00 82	E P.r	>@. Ex.	0 M			
0000 0010 0020 0030 0040 0050	00 45 c0 50 c4 16	04 00 7c 18 03 43	00 00 f9 72 03 ec	01 f5 09 10 d1 d4	00 eb c5 c6 08	3e 9c 7c 45 60	40 01 00 78 34	00 bb 00 b7 4a	40 4d 16 2c 7b	06 db 03 90 80	89 7f 01 04 a6	2f f7 00 ee d1	0a 00 c8 51 72	00 b3 01 16 d5	02 b0 00 f1 11	0f 02 00 82 87	E P.1 P.1	>@. Ex. 4J	@ M 	/		
0000 0010 0020 0030 0040 0050 0060	00 45 c0 50 c4 16	04 00 7c 18 03 43 57	00 00 f9 72 03 ec	01 f5 09 10 d1 d4	00 eb c5 c6 08 89	3e 9c 7c 45 60 1e	40 01 00 78 34 c0	00 bb 00 b7 4a 2b	40 4d 16 2c 7b c0	06 db 03 90 80 2f	89 7f 01 04 a6 cc	2f f7 00 ee d1 a9	0a 00 c8 51 72 cc	00 b3 01 16 d5 a8	02 b0 00 f1 11 c0	0f 02 00 82 87 2c	E P.: .C.	>@. Ex. 4J	@ M {	/		
0000 0010 0020 0030 0040 0050 0060 0070	00 45 c0 50 c4 16 10 c0	04 00 7c 18 03 43 57 30	00 00 f9 72 03 ec cc	01 f5 09 10 d1 d4 00	00 eb c5 c6 08 89 00 c0	3e 9c 7c 45 60 1e 09	40 01 00 78 34 c0 c0	00 bb 00 b7 4a 2b	40 4d 16 2c 7b c0	06 db 03 90 80 2f 14	89 7f 01 04 a6 cc 00	2f f7 00 ee d1 a9 33	0a 00 c8 51 72 cc 00	00 b3 01 16 d5 a8 39	02 b0 00 f1 11 c0	0f 02 00 82 87 2c 2f	E P.T .C. .W.	>0. Ex. 4J	@ M {	/ .0 .r 3.9./		
0000 0010 0020 0030 0040 0050 0060 0070 0080	00 45 c0 50 c4 16 10 c0	04 00 7c 18 03 43 57 30 35	00 00 f9 72 03 ec cc c0	01 f5 09 10 d1 d4 00 0a	00 eb c5 c6 08 89 00 c0	3e 9c 7c 45 60 1e 09	40 01 00 78 34 c0 c0	00 bb 00 b7 4a 2b 13	40 4d 16 2c 7b c0 c0	06 db 03 90 80 2f 14	89 7f 01 04 a6 cc 00 00	2f f7 00 ee d1 a9 33 16	0a 00 c8 51 72 cc 00 00	00 b3 01 16 d5 a8 39	02 b0 00 f1 11 c0 00	0f 02 00 82 87 2c 2f 00	E P.r .C. .W.	>@. 	@ M { ./.	/ .0 .r 3.9./		
0000 0010 0020 0030 0040 0050 0060 0070 0080 0090	00 45 c0 50 c4 16 10 c0	04 00 7c 18 03 43 57 30 35 77	00 00 f9 72 03 ec cc c0 00 77	01 f5 09 10 d1 d4 00 0a 0a 77	00 eb c5 c6 08 89 00 c0 01 2e	3e 9c 7c 45 60 1e 09 00 6c	40 01 00 78 34 c0 c0 00 69	00 bb 00 b7 4a 2b 13 7d 6e	40 4d 16 2c 7b c0 c0 00 75	06 db 03 90 80 2f 14 00 78	89 7f 01 04 a6 cc 00 00 6d	2f f7 00 ee d1 a9 33 16	0a 00 c8 51 72 cc 00 00 6e	00 b3 01 16 d5 a8 39 14 74	02 b0 00 f1 11 c0 00 00	0f 02 00 82 87 2c 2f 00 63	E P.r. .C. .W.	>@IEx4J+	@ M { ./.	/ .0 .r 3.9./		
0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 00a0	00 45 c0 50 c4 16 10 c0 00 11 6f	04 00 7c 18 03 43 57 30 35 77 6d	00 00 f9 72 03 ec cc c0 00 77	01 f5 09 10 d1 d4 00 0a 77 17	00 eb c5 c6 08 89 00 c0 01 2e 00	3e 9c 7c 45 60 1e 09 00 6c 00	40 01 00 78 34 c0 c0 00 69 ff	00 bb 00 b7 4a 2b 13 7d 6e 01	40 4d 16 2c 7b c0 c0 00 75	06 db 03 90 80 2f 14 00 78 01	89 7f 01 04 a6 cc 00 00 6d 00	2f f7 00 ee d1 a9 33 16 69 00	0a 00 c8 51 72 cc 00 00 6e 0a	00 b3 01 16 d5 a8 39 14 74	02 b0 00 f1 11 c0 00 2e 08	0f 02 00 82 87 2c 2f 00 63	E P.T .C. .W. .0. .5. .ww	>@IEx4J+}	@ M { ./.	/ .0 .r 3.9./	6	
0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 00a0 00b0	00 45 c0 50 c4 16 10 c0 00 11 6f 06	04 00 7c 18 03 43 57 30 35 77 6d 00	00 00 f9 72 03 ec cc c0 00 77 00 17	01 f5 09 10 d1 d4 00 0a 0a 77 17	00 eb c5 c6 08 89 00 c0 01 2e 00 18	3e 9c 7c 45 60 1e 09 00 6c 00	40 01 00 78 34 c0 c0 69 ff 19	00 bb 00 b7 4a 2b 13 7d 6e 01	40 4d 16 2c 7b c0 c0 00 75 00 0b	06 db 03 90 80 2f 14 00 78 01	89 7f 01 04 a6 cc 00 6d 00 02	2f f7 00 ee d1 a9 33 16 69 00	0a 00 c8 51 72 cc 00 00 6e 0a 00	00 b3 01 16 d5 a8 39 14 74 00	02 b0 00 f1 11 c0 00 2e 08 23	0f 02 00 82 87 2c 2f 00 63 00	E P.T .C .W .0 .5 .ww	>@Ex4J+	@ M { ./ 	.0 .r 3.9./		
0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0000	00 45 c0 50 c4 16 10 c0 00 11 6f 06	04 00 7c 18 03 43 57 30 35 77 6d 00 33	00 00 f9 72 03 ec cc c0 00 77 00 17 74	01 f5 09 10 d1 d4 00 0a 0a 77 17 00	00 eb c5 c6 08 89 00 c0 12 e 00 18 00	3e 9c 7c 45 60 1e 09 00 6c 00 00	40 01 00 78 34 c0 c0 00 69 ff 19	00 bb 00 b7 4a 2b 13 7d 6e 01 00	40 4d 16 2c 7b c0 c0 00 75 00 0b 17	06 db 03 90 80 2f 14 00 78 01 00	89 7f 01 04 a6 cc 00 00 6d 00 02 15	2f f7 00 ee d1 a9 33 16 69 00 01 02	0a 00 c8 51 72 cc 00 00 6e 0a 00 68	00 b3 01 16 d5 a8 39 14 74 00 00 32	02 b0 00 f1 11 c0 00 2e 08 23 08	0f 02 00 82 87 2c 2f 00 63 00 73	E P.r. .C. .W. .0. .5. .ww om.	>0. 	@ M { ./	/ .0 3.9./ .nt.c #.		
0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 0000 00b0 00c0	00 45 c0 50 c4 16 10 c0 00 11 6f 06 00 70	04 00 7c 18 03 43 57 30 35 77 6d 00 33 64	00 00 f9 72 03 ec c0 00 77 00 17 74 79	01 f5 09 10 d1 d4 00 0a 77 17 00 00 2f	00 eb c5 c6 08 89 00 c0 01 2e 00 18 00 33	3e 9c 7c 45 60 1e 09 00 6c 00 00 2e	40 01 00 78 34 c0 c0 69 ff 19 10 31	00 bb 00 b7 4a 2b 13 7d 6e 01 00 00	40 4d 16 2c 7b c0 c0 00 75 00 0b 17 68	06 db 03 90 80 2f 14 00 78 01 00 00 74	89 7f 01 04 a6 cc 00 6d 00 2 15 74	2f f7 00 ee d1 a9 33 16 69 00 01 02 70	0a 00 c8 51 72 cc 00 00 6e 0a 00 68 2f	00 b3 01 16 d5 a8 39 14 74 00 00 32 31	02 b0 00 f1 11 c0 00 2e 08 23 08 2e	0f 02 00 82 87 2c 2f 00 63 00 73 31	E P.r. .C. .W. .0. .5. .ww om.	>@Ex4J+	@ M { ./	/ .0 3.9./ .nt.c #.		
0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 00a0 00b0 00c0 00d0	000 455 c00 500 c4 166 100 000 111 6f6 000 700	04 00 7c 18 03 43 57 30 35 77 6d 00 33 64 05	00 00 f9 72 03 ec c0 00 77 00 17 74 79	01 f5 09 10 d1 d4 00 0a 77 17 00 00 2f 05	00 eb c5 c6 08 89 00 c0 01 2e 00 18 00 33 01	3e 9c 7c 45 60 1e 09 00 6c 00 00 2e 00	40 01 00 78 34 c0 c0 69 ff 19 10 31	00 bb 00 b7 4a 2b 13 7d 6e 01 00 08	40 4d 16 2c 7b c0 00 75 00 0b 17 68 00	06 db 03 90 80 2f 14 00 78 01 00 74 00	89 7f 01 04 a6 cc 00 6d 00 02 15 74 0d	2f f7 00 ee d1 a9 33 16 69 00 01 02 70 00	0a 00 c8 51 72 cc 00 00 6e 0a 00 68 2f 18	00 b3 01 16 d5 a8 39 14 74 00 00 32 31 00	02 b0 00 f1 11 c0 00 2e 08 23 08 2e 16	0f 02 00 82 87 2c 2f 00 63 00 73 31	E P.r. .C. .W. .0. .5. .ww om.	>0. 	@ M { ./	/ .0 3.9./ .nt.c #.		
0000 0010 0020 0030 0040 0050 0060 0070 0080 0090 00a0 00b0 00c0 00d0	00 45 c0 50 c4 16 10 c0 00 11 6f 00 00 00 00 00 00 00 00 00 00 00 00 00	04 00 7c 18 03 43 57 30 35 77 6d 00 33 64 05	00 00 f9 72 03 ec cc c0 00 77 00 17 74 79 00 01	01 f5 09 10 d1 d4 00 0a 77 17 00 00 2f 05 06	00 eb c5 c6 08 89 00 c0 12 e 00 18 00 33 01 01	3e 9c 7c 45 60 1e 09 00 6c 00 00 2e	40 01 00 78 34 c0 c0 69 ff 19 10 31	00 bb 00 b7 4a 2b 13 7d 6e 01 00 08	40 4d 16 2c 7b c0 00 75 00 0b 17 68 00	06 db 03 90 80 2f 14 00 78 01 00 00 74	89 7f 01 04 a6 cc 00 6d 00 02 15 74 0d	2f f7 00 ee d1 a9 33 16 69 00 01 02 70 00	0a 00 c8 51 72 cc 00 00 6e 0a 00 68 2f 18	00 b3 01 16 d5 a8 39 14 74 00 00 32 31 00	02 b0 00 f1 11 c0 00 2e 08 23 08 2e	0f 02 00 82 87 2c 2f 00 63 00 73 31	E P.r. .C. .W. .0. .5. .ww om.	>0. 	@ M { ./	/ .0 3.9./ .nt.c #.		

Refer to the exhibit. Drag and drop the element name from the left onto the correct piece of the PCAP file on the right.

Select and Place:

source address	10.0.2.15
destination address	50588
source port	443
destination port	192.124.249.9
Network Protocol	Transmission Control Protocol
Transport Protocol	Internet Protocol v4
Application Protocol	Transport Layer Security v1.2

Correct Answer:

source address	source address
destination address	source port
source port	destination port
destination port	destination address
Network Protocol	Transport Protocol
Transport Protocol	Network Protocol
Application Protocol	Application Protocol

Section: (none) Explanation

Explanation/Reference:

QUESTION 29

```
File
       Actions
                  Edit
                          View
                                  Help
   48 41.270348133 185.199.111.153 → 192.168.88.164 TLSv1.2 123 Application Data
   49 41.270348165 185.199.111.153 → 192.168.88.164 TLSv1.2 104 Application Data
   50 41.270356290 192.168.88.164 → 185.199.111.153 TCP 66 44736 → 443 [ACK]
Seq=834 Ack=3104 Win=64128 Len=0 TSval=3947973757 TSecr=2989424849
   51 41.270369874 192.168.88.164 → 185.199.111.153 TCP 66 44736 → 443 [ACK]
Seq=834 Ack=3142 Win=64128 Len=0 TSval=3947973757 TSecr=2989424849
   52 41.270430171 192.168.88.164 → 185.199.111.153 TLSv1.2 104 Application Data
   53 41.271767772 185.199.111.153 → 192.168.88.164 TLSv1.2 2854 Application Data
   54 41.271767817 185.199.111.153 → 192.168.88.164 TLSv1.2 904 Application Data
   55 41.271788996 192.168.88.164 → 185.199.111.153 TCP 66 44736 → 443 [ACK]
Seq=872 Ack=6768 Win=62592 Len=0 TSval=3947973758 TSecr=2989424849
   56 41.271973293 192.168.88.164 → 185.199.111.153 TLSv1.2 97 Encrypted Alert
   57 41.272411701 192.168.88.164 → 185.199.111.153 TCP 66 44736 → 443 [FIN, ACK]
Seq=903 Ack=6768 Win=64128 Len=0 TSval=3947973759 TSecr=2989424849
   58 41.283301751 185.199.111.153 → 192.168.88.164 TCP 66 443 → 44736 [ACK]
Seg=6768 Ack=903 Win=28160 Len=0 TSval=2989424852 TSecr=3947973757
   59 41.283301808 185.199.111.153 → 192.168.88.164 TLSv1.2 97 Encrypted Alert
   60 41.283321947 192.168.88.164 → 185.199.111.153 TCP 54 44736 → 443 [RST]
Seq=903 Win=0 Len=0
   61 41.283939151 185.199.111.153 → 192.168.88.164 TCP 66 443 → 44736 [FIN, ACK]
Seq=6799 Ack=903 Win=28160 Len=0 TSval=2989424852 TSecr=3947973757
   62 41.283945760 192.168.88.164 → 185.199.111.153 TCP 54 44736 → 443 [RST]
Seq=903 Win=0 Len=0
   63 41.284635561 185.199.111.153 → 192.168.88.164 TCP 66 443 → 44736 [ACK]
Seq=6800 Ack=904 Win=28160 Len=0 TSval=2989424853 TSecr=3947973759
   64 41.284642324 192.168.88.164 → 185.199.111.153 TCP 54 44736 → 443 [RST]
Seg=904 Win=0 Len=0
```

An analyst is investigating a host in the network that appears to be communicating to a command and control server on the Internet. After collecting this packet capture the analyst cannot determine the technique and payload used for the communication.

Which obfuscation technique is the attacker using?

- A. Base64 encoding
- B. transport layer security encryption
- C. SHA-256 hashing
- D. ROT13 encryption

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 30

Which artifact is used to uniquely identify a detected file?

- A. file timestamp
- B. file extension
- C. file size
- D. file hash

Correct Answer: D Section: (none)

Explanation

Explanation/Reference:

QUESTION 31

How does an attacker observe network traffic exchanged between two users?

- A. port scanning
- B. man-in-the-middle
- C. command injection
- D. denial of service

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 32

\$ cuckoo submit --machine cuckool /path/to/binary

Refer to the exhibit. Which event is occurring?

- A. A binary named "submit" is running on VM cuckoo1.
- B. A binary is being submitted to run on VM cuckoo1
- C. A binary on VM cuckoo1 is being submitted for evaluation
- D. A URL is being evaluated to see if it has a malicious binary

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

QUESTION 33

What is a benefit of agent-based protection when compared to agentless protection?

- A. It lowers maintenance costs
- B. It provides a centralized platform
- C. It collects and detects all traffic locally
- D. It manages numerous devices simultaneously

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 34

Which principle is being followed when an analyst gathers information relevant to a security incident to determine the appropriate course of action?

- A. decision making
- B. rapid response
- C. data mining
- D. due diligence

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

QUESTION 35

An engineer runs a suspicious file in a sandbox analysis tool to see the outcome. The analysis report shows that outbound callouts were made post infection.

Which two pieces of information from the analysis report are needed to investigate the callouts? (Choose two.)

- A. signatures
- B. host IP addresses
- C. file size
- D. dropped files
- E. domain names

Correct Answer: BE Section: (none) Explanation

Explanation/Reference:

QUESTION 36

An analyst is exploring the functionality of different operating systems.

What is a feature of Windows Management Instrumentation that must be considered when deciding on an operating system?

- A. queries Linux devices that have Microsoft Services for Linux installed
- B. deploys Windows Operating Systems in an automated fashion
- C. is an efficient tool for working with Active Directory
- D. has a Common Information Model, which describes installed hardware and software

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 37

One of the objectives of information security is to protect the CIA of information and systems.

What does CIA mean in this context?

- A. confidentiality, identity, and authorization
- B. confidentiality, integrity, and authorization
- C. confidentiality, identity, and availability
- D. confidentiality, integrity, and availability

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 38

What is rule-based detection when compared to statistical detection?

- A. proof of a user's identity
- B. proof of a user's action
- C. likelihood of user's action
- D. falsification of a user's identity

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 39

What is personally identifiable information that must be safeguarded from unauthorized access?

- A. date of birth
- B. driver's license number
- C. gender
- D. zip code

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 40

How does an SSL certificate impact security between the client and the server?

- A. by enabling an authenticated channel between the client and the server
- B. by creating an integrated channel between the client and the server
- C. by enabling an authorized channel between the client and the server
- D. by creating an encrypted channel between the client and the server

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 41

Which type of data consists of connection level, application-specific records generated from network traffic?

- A. transaction data
- B. location data
- C. statistical data
- D. alert data

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

QUESTION 42

At which layer is deep packet inspection investigated on a firewall?

- A. internet
- B. transport
- C. application
- D. data link

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

QUESTION 43

Which open-sourced packet capture tool uses Linux and Mac OS X operating systems?

- A. NetScout
- B. tcpdump
- C. SolarWinds
- D. netsh

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 44

DRAG DROP

Drag and drop the access control models from the left onto the correct descriptions on the right.

Select and Place:

MAC	object owner determines permissions
ABAC	OS determines permissions
RBAC	role of the subject determines permissions
DAC	attributes of the subject determines permissions

Correct Answer:

MAC	DAC
ABAC	MAC
RBAC	RBAC
DAC	ABAC

Section: (none) Explanation

Explanation/Reference:

QUESTION 45

An organization has recently adjusted its security stance in response to online threats made by a known hacktivist group.

What is the initial event called in the NIST SP800-61?

- A. online assault
- B. precursor
- C. trigger
- D. instigator

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 46

What is an attack surface as compared to a vulnerability?

- A. any potential danger to an asset
- B. the sum of all paths for data into and out of the application
- C. an exploitable weakness in a system or its design
- D. the individuals who perform an attack

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 47

What is a difference between SOAR and SIEM?

- A. SOAR platforms are used for threat and vulnerability management, but SIEM applications are not
- B. SIEM applications are used for threat and vulnerability management, but SOAR platforms are not
- C. SOAR receives information from a single platform and delivers it to a SIEM
- D. SIEM receives information from a single platform and delivers it to a SOAR

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

QUESTION 48

			Tin			Sour				Dest					ocol					
			1100			TU.						.447	• >				0 20200-			
			-			_		.249.					-	TCP			2 443-50	_	-	
	_					10.0						.249	.9	1000000			6 50588-			
		_	HIPPORTO	DATE:	00202011			.249.	SECTION 100			-	0	TCP			2 443-50	02/02/02/02/03		THE RESERVE OF
						10.0						.249					6 50586-			1
		23	20000000			10.						.249					1 50588-			
			100					.249.						TCP		6				
								.249.						TCP		7.0	2 443→50 2 443→50			E20100000000000000000000000000000000000
		2000	110000		975(SS) H		100000	.249.				2000		TCP			2 443→50 2 443→50			
						10.0						.249	0				6 50586-		-	
4		2.0	0.1	1.5 7.4	2.0	11/21	1./.	10	11.00	192.	124	. 7.49	. 9	THE P			0 30366-	→4.4.3°	TAUNT	Sec-
[]	Leng	th:	20	5]						Sead	1078	d176	76	c13a	ab46	ebf	•			
0000	00	04	00	0.1								4.5	Carlo and		10000	20.000000				
							200		700	1,120	5555	93	200							
0010	45	00				06 7b	200		27 40	1,120	5555		200	00			H{@.			
0020		00 7c	00	f5	48		40	00	700	06	2b	f3	0a		02	Of E		0.+		
0020 0030	c0	000	00 f9	f5 09	48 c5	7b	40 01	00 bb 00	40 0e 16	06 1f 03	2b dc 01	f3 b4 00	0a 00 c8	00 b4 01	02 aa 00	0f E 02 . 00 P	H{@.	0.+		
0020	c0 50	7c	00 f9 72	f5 09 10	48 c5 c6	7b 9a	40 01 00	00 bb 00	40 0e 16	06 1f 03	2b dc 01	f3 b4	0a 00 c8	00 b4 01	02 aa 00	0f E 02 . 00 P	H{@.	@.+ 		•
0020 0030 0040	c0 50 c4	7c 18 03	00 f9 72 03	f5 09 10 0e	48 c5 c6 06	7b 9a 7c	40 01 00 d0	00 bb 00 78	40 0e 16 d1	06 1f 03 76	2b dc 01 76	f3 b4 00	0a 00 c8 3a	00 b4 01 b4	02 aa 00 6e	0f E 02 . 00 P bf .	H{@. .r	@.+ 		
0020 0030	c0 50 c4 e6	7c 18 03	00 f9 72 03 b8	f5 09 10 0e b2	48 c5 c6 06 ba	7b 9a 7c ea	40 01 00 d0 d6	00 bb 00 78 6d	40 0e 16 d1 0d	06 1f 03 76 38	2b dc 01 76 fb	f3 b4 00 c1	0a 00 c8 3a 45	00 b4 01 b4 de	02 aa 00 6e fc	0f E 02 . 00 P bf . ee .	H{@. .r	@.+ .vv .8		
0020 0030 0040 0050 0060	c0 50 c4 e6 8b	7c 18 03 b8	00 f9 72 03 b8 f8	f5 09 10 0e b2 00	48 c5 c6 06 ba 00	7b 9a 7c ea 08	40 01 00 d0 d6 c0	00 bb 00 78 6d 2b	40 0e 16 d1 0d	06 1f 03 76 38 2f	2b dc 01 76 fb cc	f3 b4 00 c1 91 a9	0a 00 c8 3a 45	00 b4 01 b4 de	02 aa 00 6e fc c0	Of E 02 . 00 P bf . ee . 2c .1	H{@. .r x	@.+ .vv .8		
0020 0030 0040 0050 0060 0070	c0 50 c4 e6 8b c0	7c 18 03 b8 6e 30	00 f9 72 03 b8 f8	f5 09 10 0e b2 00	48 c5 c6 06 ba 00	7b 9a 7c ea 08 1e	40 01 00 d0 d6 c0	00 bb 00 78 6d 2b	40 0e 16 d1 0d c0	06 1f 03 76 38 2f	2b dc 01 76 fb cc	f3 b4 00 c1 91 a9	0a 00 c8 3a 45 cc	00 b4 01 b4 de a8 39	02 aa 00 6e fc c0	0f E 02 . 00 P bf . ee . 2c .1	H{@. x m	@.+ .vv .8 ./.		
0020 0030 0040 0050 0060 0070 0080	c0 50 c4 e6 8b c0	7c 18 03 b8 6e 30 35	00 f9 72 03 b8 f8	f5 09 10 0e b2 00 0a	48 c5 c6 06 ba 00 c0	7b 9a 7c ea 08 1e 09	40 01 00 d0 d6 c0	00 bb 00 78 6d 2b 13 7d	40 0e 16 d1 0d c0	06 1f 03 76 38 2f 14	2b dc 01 76 fb cc 00 00	f3 b4 00 c1 91 a9 33	0a 00 c8 3a 45 cc 00	00 b4 01 b4 de a8 39	02 aa 00 6e fc c0 00	0f E 02 . 00 P bf . ee . 2c .1 2f .0	H{@. x x m	@.+ .vv .8 ./.	.:.n	
0020 0030 0040 0050 0060 0070 0080 0090	c0 50 c4 e6 8b c0 00	7c 18 03 b8 6e 30 35	00 f9 72 03 b8 f8 c0	f5 09 10 0e b2 00 0a 0a	48 c5 c6 06 ba 00 c0	7b 9a 7c ea 08 1e 09 00 6c	40 01 00 d0 d6 c0 c0	00 bb 00 78 6d 2b 13 7d 6e	40 0e 16 d1 0d c0 c0	06 1f 03 76 38 2f 14 00	2b dc 01 76 fb cc 00 00	f3 b4 00 c1 91 a9 33 16	0a 00 c8 3a 45 cc 00 00 6e	00 b4 01 b4 de a8 39	02 aa 00 6e fc c0 00	Of E 02 . 00 P bf . ee . 2c .1 2f .0 00 .5	H{@. x x m	@.+ .vv .8 ./.	.:.nE	· · · ·
0020 0030 0040 0050 0060 0070 0080 0090 00a0	c0 50 c4 e6 8b c0 00 11 6f	7c 18 03 b8 6e 30 35 77 6d	00 f9 72 03 b8 f8 c0 00 77	f5 09 10 0e b2 00 0a 0a 77	48 c5 c6 06 ba 00 c0 01 2e	7b 9a 7c ea 08 1e 09 00 6c	40 01 00 d0 d6 c0 c0 00	00 bb 00 78 6d 2b 13 7d 6e 01	40 0e 16 d1 0d c0 c0 75	06 1f 03 76 38 2f 14 00 78	2b dc 01 76 fb cc 00 00 6d	f3 b4 00 c1 91 a9 33 16 69	0a 00 c8 3a 45 cc 00 6e 0a	00 b4 01 b4 de a8 39 14	02 aa 00 6e fc c0 00 00 2e	Of E 02 . 00 P bf . ee . 2c .1 2f .0 00 .5	H{@. x x m n+ 0 5}	@.+ .vv .8 ./.	.:.nE	
0020 0030 0040 0050 0060 0070 0080 0090 00a0 00b0	c0 50 c4 e6 8b c0 00 11 6f	7c 18 03 b8 6e 30 35 77 6d 00	00 f9 72 03 b8 f8 c0 00 77 00	f5 09 10 0e b2 00 0a 0a 77 17	48 c5 c6 06 ba 00 c0 01 2e 00	7b 9a 7c ea 08 1e 09 00 6c 00	40 01 00 d0 d6 c0 c0 69 ff	00 bb 00 78 6d 2b 13 7d 6e 01	40 0e 16 d1 0d c0 c0 75 00	06 1f 03 76 38 2f 14 00 78 01	2b dc 01 76 fb cc 00 6d 00	f3 b4 00 c1 91 a9 33 16 69 00	0a 00 c8 3a 45 cc 00 6e 0a 00	00 b4 01 b4 de a8 39 14 74 00	02 aa 00 6e fc c0 00 2e 08 23	0f E 02 . 00 P bf . ee . 2c .12f . 00 63 00 or 00	H{@. x x m n+ 0 5} wwwlin m	@.+vv .8 ./ uxmi	.:.n. E .3.9./	
0020 0030 0040 0050 0060 0070 0080 0090 00a0 00b0	c0 50 c4 e6 8b c0 00 11 6f 06	7c 18 03 b8 6e 30 35 77 6d 00 33	00 f9 72 03 b8 f8 c0 00 77 00 17	f5 09 10 0e b2 00 0a 0a 77 17 00	48 c5 c6 06 ba 00 c0 01 2e 00 18 00	7b 9a 7c ea 08 1e 09 00 6c 00 00	40 01 00 d0 d6 c0 c0 69 ff 19	00 bb 00 78 6d 2b 13 7d 6e 01 00	40 0e 16 d1 0d c0 00 75 00 0b	06 1f 03 76 38 2f 14 00 78 01 00	2b dc 01 76 fb cc 00 00 6d 00 02	f3 b4 00 c1 91 a9 33 16 69 00 01	0a 00 c8 3a 45 cc 00 00 6e 0a 00 68	00 b4 01 b4 de a8 39 14 74 00 00 32	02 aa 00 6e fc c0 00 2e 08 23 08	0f E 02	H{@. x x x m n+ 0 5} wwwlin n	@.+vv .8 ./ uxmi	.:.nE3.9./	
0020 0030 0040 0050 0060 0070 0080 0090 00a0 00b0 00c0	c0 50 c4 e6 8b c0 00 11 6f 06 00 70	7c 18 03 b8 6e 30 35 77 6d 00 33 64	00 f9 72 03 b8 f8 c0 00 77 00 17 74	f5 09 10 0e b2 00 0a 77 17 00 00 2f	48 c5 c6 06 ba 00 c0 01 2e 00 18 00 33	7b 9a 7c ea 08 1e 09 00 6c 00 00 2e	40 01 00 d0 d6 c0 00 69 ff 19 10 31	00 bb 00 78 6d 2b 13 7d 6e 01 00 00 08	40 0e 16 d1 0d c0 c0 75 00 0b 17 68	06 1f 03 76 38 2f 14 00 78 01 00 00 74	2b dc 01 76 fb cc 00 6d 00 2 15 74	f3 b4 00 c1 91 a9 33 16 69 00 01 02 70	0a 00 c8 3a 45 cc 00 6e 0a 06 2f	00 b4 01 b4 de a8 39 14 74 00 00 32 31	02 aa 00 6e fc c0 00 2e 08 23 08 2e	0f E 02	H{@. x x m n+ 0 5} wwwlin m	@.+vv .8 ./ uxmi	.:.nE3.9./	
0020 0030 0040 0050 0060 0070 0080 0090 00a0 00b0 00c0 00d0	c0 50 c4 e6 8b c0 00 11 6f 06 00 70	7c 18 03 b8 6e 30 35 77 6d 00 33 64 05	00 f9 72 03 b8 f8 c0 00 77 00 17 74 79	f5 09 10 0e b2 00 0a 0a 77 17 00 00 2f 05	48 c5 c6 06 ba 00 c0 01 2e 00 18 00 33 01	7b 9a 7c ea 08 1e 09 00 6c 00 00 2e 00	40 01 00 d0 d6 c0 00 69 ff 19 10 31	00 bb 00 78 6d 2b 13 7d 6e 01 00 00 08	40 0e 16 d1 0d c0 c0 00 75 00 0b 17 68 00	06 1f 03 76 38 2f 14 00 78 01 00 00 74 00	2b dc 01 76 fb cc 00 6d 00 215 74 0d	f3 b4 00 c1 91 a9 33 16 69 00 01 02 70	0a 00 c8 3a 45 cc 00 6e 0a 00 68 2f	00 b4 01 b4 de a8 39 14 74 00 00 32 31 00	02 aa 00 6e fc c0 00 2e 08 23 08 2e 16	0f E 02 . 00 P bf . ee . 2c . 2f . 00 . 63 . 00 or 00 . 73 . 31 pc	H{@. x x x m n+ 0 5} wwwlin n	@.+vv .8 ./ uxmi	.:.nE3.9./	
0020 0030 0040 0050 0060 0070 0080 0090 00a0 00b0 00c0	c0 50 c4 e6 8b c0 00 11 6f 06 00 70 00	7c 18 03 b8 6e 30 35 77 6d 00 33 64 05 05	00 f9 72 03 b8 f8 c0 00 77 00 17 74 79 00 01	f5 09 10 0e b2 00 0a 0a 77 17 00 00 2f 05	48 c5 c6 06 ba 00 c0 c0 12 e 00 18 00 33 01 01	7b 9a 7c ea 08 1e 09 00 6c 00 00 2e	40 01 00 d0 d6 c0 00 69 ff 19 10 31	00 bb 00 78 6d 2b 13 7d 6e 01 00 00 08	40 0e 16 d1 0d c0 c0 75 00 0b 17 68	06 1f 03 76 38 2f 14 00 78 01 00 00 74	2b dc 01 76 fb cc 00 6d 00 2 15 74	f3 b4 00 c1 91 a9 33 16 69 00 01 02 70	0a 00 c8 3a 45 cc 00 6e 0a 00 68 2f	00 b4 01 b4 de a8 39 14 74 00 00 32 31 00	02 aa 00 6e fc c0 00 2e 08 23 08 2e 16	Of E 02 . 00 P bf . ee . 2c .1 2f . 00 . 63 . 00 or 00 . 73 . 31 pc 04 . 05 .	H{@. x x x m n+ 0 5} wwwlin n	@.+vv .8 ./ uxmi	.:.nE3.9./	

Refer to the exhibit. Which application protocol is in this PCAP file?

- B. TCP
- C. TLS
- D. HTTP

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 49

Refer to the exhibit. What is the expected result when the "Allow subdissector to reassemble TCP streams" feature is enabled?

- A. insert TCP subdissectors
- B. extract a file from a packet capture
- C. disable TCP streams
- D. unfragment TCP

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 50

What is a difference between inline traffic interrogation and traffic mirroring?

- A. Inline inspection acts on the original traffic data flow
- B. Traffic mirroring passes live traffic to a tool for blocking
- C. Traffic mirroring inspects live traffic for analysis and mitigation
- D. Inline traffic copies packets for analysis and security

Correct Answer: B

Section: (none) Explanation

Explanation/Reference:

QUESTION 51

During which phase of the forensic process is data that is related to a specific event labeled and recorded to preserve its integrity?

- A. examination
- B. investigation
- C. collection
- D. reporting

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

QUESTION 52

Which NIST IR category stakeholder is responsible for coordinating incident response among various business units, minimizing damage, and reporting to regulatory agencies?

- A. CSIRT
- B. PSIRT
- C. public affairs
- D. management

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 53

An engineer receives a security alert that traffic with a known TOR exit node has occurred on the network.

What is the impact of this traffic?

- A. ransomware communicating after infection
- B. users downloading copyrighted content
- C. data exfiltration
- D. user circumvention of the firewall

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 54

How is attacking a vulnerability categorized?

- A. action on objectives
- B. delivery
- C. exploitation
- D. installation

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

QUESTION 55

A system administrator is ensuring that specific registry information is accurate.

Which type of configuration information does the HKEY_LOCAL_MACHINE hive contain?

- A. file extension associations
- B. hardware, software, and security settings for the system
- C. currently logged in users, including folders and control panel settings
- D. all users on the system, including visual settings

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 56

What is the difference between statistical detection and rule-based detection models?

- A. Rule-based detection involves the collection of data in relation to the behavior of legitimate users over a period of time
- B. Statistical detection defines legitimate data of users over a period of time and rule-based detection defines it on an IF/THEN basis
- C. Statistical detection involves the evaluation of an object on its intended actions before it executes that behavior
- D. Rule-based detection defines legitimate data of users over a period of time and statistical detection defines it on an IF/THEN basis

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 57

Which step in the incident response process researches an attacking host through logs in a SIEM?

- A. detection and analysis
- B. preparation

- C. eradication
- D. containment

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

QUESTION 58

What is the difference between a threat and a risk?

- A. Threat represents a potential danger that could take advantage of a weakness in a system
- B. Risk represents the known and identified loss or danger in the system
- C. Risk represents the nonintentional interaction with uncertainty in the system
- D. Threat represents a state of being exposed to an attack or a compromise either physically or logically

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

QUESTION 59

Which signature impacts network traffic by causing legitimate traffic to be blocked?

- A. false negative
- B. true positive
- C. true negative
- D. false positive

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 60

Which attack is the network vulnerable to when a stream cipher like RC4 is used twice with the same key?

- A. forgery attack
- B. plaintext-only attack
- C. ciphertext-only attack
- D. meet-in-the-middle attack

Correct Answer: C Section: (none) Explanation

What causes events on a Windows system to show Event Code 4625 in the log messages?

- A. The system detected an XSS attack
- B. Someone is trying a brute force attack on the network
- C. Another device is gaining root access to the system
- D. A privileged user successfully logged into the system

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 62

Which evasion technique is indicated when an intrusion detection system begins receiving an abnormally high volume of scanning from numerous sources?

- A. resource exhaustion
- B. tunneling
- C. traffic fragmentation
- D. timing attack

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

QUESTION 63

10.44.101.23 - - [20/Nov/2017:14:18:06 -0500] "GET / HTTP/1.1" 200 1254 "-" "Mozilla/5.0(X11; Ubuntu; Linux x86_64; rv:54.0) Gecko/20100101 Firefox/54.0"

Refer to the exhibit. What does the message indicate?

- A. an access attempt was made from the Mosaic web browser
- B. a successful access attempt was made to retrieve the password file
- C. a successful access attempt was made to retrieve the root of the website
- D. a denied access attempt was made to retrieve the password file

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

QUESTION 64

What are two social engineering techniques? (Choose two.)

- A. privilege escalation
- B. DDoS attack
- C. phishing
- D. man-in-the-middle
- E. pharming

Correct Answer: CE Section: (none) Explanation

Explanation/Reference:

QUESTION 65

Refer to the exhibit. What does the output indicate about the server with the IP address 172.18.104.139?

- A. open ports of a web server
- B. open port of an FTP server
- C. open ports of an email server
- D. running processes of the server

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

QUESTION 66

```
GET /item.php?id=34' or sleep(10)
```

Refer to the exhibit. This request was sent to a web application server driven by a database.

Which type of web server attack is represented?

- A. parameter manipulation
- B. heap memory corruption
- C. command injection
- D. blind SQL injection

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 67

What is the difference between mandatory access control (MAC) and discretionary access control (DAC)?

- A. MAC is controlled by the discretion of the owner and DAC is controlled by an administrator
- B. MAC is the strictest of all levels of control and DAC is object-based access
- C. DAC is controlled by the operating system and MAC is controlled by an administrator
- D. DAC is the strictest of all levels of control and MAC is object-based access

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 68

A SOC analyst is investigating an incident that involves a Linux system that is identifying specific sessions.

Which identifier tracks an active program?

- A. application identification number
- B. active process identification number
- C. runtime identification number
- D. process identification number

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 69

A malicious file has been identified in a sandbox analysis tool.

Which piece of information is needed to search for additional downloads of this file by other hosts?

- A. file type
- B. file size
- C. file name
- D. file hash value

Correct Answer: D Section: (none) Explanation

Which attack method intercepts traffic on a switched network?

- A. denial of service
- B. ARP cache poisoning
- C. DHCP snooping
- D. command and control

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

QUESTION 71

Which two elements are used for profiling a network? (Choose two.)

- A. session duration
- B. total throughput
- C. running processes
- D. listening ports
- E. OS fingerprint

Correct Answer: DE Section: (none) Explanation

Explanation/Reference:

QUESTION 72

What does an attacker use to determine which network ports are listening on a potential target device?

- A. man-in-the-middle
- B. port scanning
- C. SQL injection
- D. ping sweep

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 73

What is a purpose of a vulnerability management framework?

- A. identifies, removes, and mitigates system vulnerabilities
- B. detects and removes vulnerabilities in source code
- C. conducts vulnerability scans on the network
- D. manages a list of reported vulnerabilities

Correct Answer: A

Section: (none) Explanation

Explanation/Reference:

QUESTION 74

Refer to the exhibit. Which kind of attack method is depicted in this string?

A. cross-site scripting

B. man-in-the-middle

C. SQL injection

D. denial of service

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

QUESTION 75

No.	Time	Source	Destination	Protocol	Length	Info
1878	6.473353	173.37.145.84	10.0.2.15	TCP	62	80-49522 [ACK] Seq=14404 Ack=2987 Win=65535 Len=0
1986	6.736855	173.37.145.84	10.0.2.15	HTTP	245	HTTP/1.1 304 Not Modified
1987	6.736873	10.0.2.15	173.37.145.84	TCP	56	49522-80 [ACK] Seq=2987 Ack=14593 Win=59640 Len=0
2317	7.245088	10.0.2.15	173.37.145.84	TCP	2976	[TCP segment of a reassembled PDU]
2318	7.245192	10.0.2.15	173.37.145.84	HTTP	1020	GET /web/fw/i/ntpagetag.gif?js=1&ts=147629607552.286&tc
2321	7.246633	173.37.145.84	10.0.2.15	TCP	62	80+49522 [ACK] Seq=14593 Ack=4447 Win=65535 Len=0
2322	7.246640	173.37.145.84	10.0.2.15	TCP	62	80+49522 [ACK] Seq=14593 Ack=5907 Win=65535 Len=0
2323	7.246642	173.37.145.84	10.0.2.15	TCP	62	80+49522 [ACK] Seq=14593 Ack=6871 Win=65535 Len=0
2542	7.512750	173.37.145.84	10.0.2.15	HTTP	442	HTTP/1.1 200 OK (GIF89a)
2543	7.512781	10.0.2.15	173.37.145.84	TCP	56	49522+80 [ACK] Seq=6871 Ack=14979 Win=62480 Len=0

Refer to the exhibit. Which packet contains a file that is extractable within Wireshark?

A. 2317

B. 1986

C. 2318

D. 2542

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 76

How does certificate authority impact a security system?

- A. It authenticates client identity when requesting SSL certificate
- B. It validates domain identity of a SSL certificate
- C. It authenticates domain identity when requesting SSL certificate

D. It validates client identity when communicating with the server

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 77

How is NetFlow different than traffic mirroring?

- A. NetFlow collects metadata and traffic mirroring clones data
- B. Traffic mirroring impacts switch performance and NetFlow does not
- C. Traffic mirroring costs less to operate than NetFlow
- D. NetFlow generates more data than traffic mirroring

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

QUESTION 78

What is the practice of giving employees only those permissions necessary to perform their specific role within an organization?

- A. least privilege
- B. need to know
- C. integrity validation
- D. due diligence

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

QUESTION 79

Which type of data collection requires the largest amount of storage space?

- A. alert data
- B. transaction data
- C. session data
- D. full packet capture

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 80

Which HTTP header field is used in forensics to identify the type of browser used?

- A. referrer
- B. host
- C. user-agent
- D. accept-language

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

QUESTION 81

Refer to the exhibit. What is the potential threat identified in this Stealthwatch dashboard?

- A. Host 10.201.3.149 is sending data to 152.46.6.91 using TCP/443.
- B. Host 152.46.6.91 is being identified as a watchlist country for data transfer.
- C. Traffic to 152.46.6.149 is being denied by an Advanced Network Control policy.
- D. Host 10.201.3.149 is receiving almost 19 times more data than is being sent to host 152.46.6.91.

Correct Answer: D Section: (none) Explanation

A security engineer deploys an enterprise-wide host/endpoint technology for all of the company's corporate PCs. Management requests the engineer to block a selected set of applications on all PCs.

Which technology should be used to accomplish this task?

- A. application whitelisting/blacklisting
- B. network NGFW
- C. host-based IDS
- D. antivirus/antispyware software

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

QUESTION 83

What is the virtual address space for a Windows process?

- A. physical location of an object in memory
- B. set of pages that reside in the physical memory
- C. system-level memory protection feature built into the operating system
- D. set of virtual memory addresses that can be used

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 84

Which two pieces of information are collected from the IPv4 protocol header? (Choose two.)

- A. UDP port to which the traffic is destined
- B. TCP port from which the traffic was sourced
- C. source IP address of the packet
- D. destination IP address of the packet
- E. UDP port from which the traffic is sourced

Correct Answer: CD Section: (none) Explanation

Explanation/Reference:

QUESTION 85

In a SOC environment, what is a vulnerability management metric?

- A. code signing enforcement
- B. full assets scan
- C. internet exposed devices

D. single factor authentication

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

QUESTION 86

Which category relates to improper use or disclosure of PII data?

- A. legal
- B. compliance
- C. regulated
- D. contractual

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

QUESTION 87

Which regex matches only on all lowercase letters?

- A. [a-z]+
- B. [^a-z]+
- C. a-z+
- D. a*z+

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

QUESTION 88

Which list identifies the information that the client sends to the server in the negotiation phase of the TLS handshake?

- A. ClientStart, ClientKeyExchange, cipher-suites it supports, and suggested compression methods
- B. ClientStart, TLS versions it supports, cipher-suites it supports, and suggested compression methods
- C. ClientHello, TLS versions it supports, cipher-suites it supports, and suggested compression methods
- D. ClientHello, ClientKeyExchange, cipher-suites it supports, and suggested compression methods

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

QUESTION 89

An offline audit log contains the source IP address of a session suspected to have exploited a vulnerability resulting in system compromise.

Which kind of evidence is this IP address?

- A. best evidence
- B. corroborative evidence
- C. indirect evidence
- D. forensic evidence

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 90

Which security technology allows only a set of pre-approved applications to run on a system?

- A. application-level blacklisting
- B. host-based IPS
- C. application-level whitelisting
- D. antivirus

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

QUESTION 91

Severity	Date	Time	Sig ID	Source IP	Source Port	Dest IP	Dest Port	Description
6	Jan 15 2020	05:15:22	33883	62.5.22.54	22557	198.168.5.22	53	*

Refer to the exhibit. Which type of log is displayed?

- A. IDS
- B. proxy
- C. NetFlow
- D. sys

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 92

Refer to the exhibit. Which two elements in the table are parts of the 5-tuple? (Choose two.)

- A. First Packet
- B. Initiator User
- C. Ingress Security Zone
- D. Source Port
- E. Initiator IP

Correct Answer: DE Section: (none) Explanation

Explanation/Reference:

QUESTION 93

Which security principle is violated by running all processes as root or administrator?

- A. principle of least privilege
- B. role-based access control
- C. separation of duties
- D. trusted computing base

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

QUESTION 94

What is the function of a command and control server?

- A. It enumerates open ports on a network device
- B. It drops secondary payload into malware
- C. It is used to regain control of the network after a compromise
- D. It sends instruction to a compromised system

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 95

What is the difference between deep packet inspection and stateful inspection?

- A. Deep packet inspection is more secure than stateful inspection on Layer 4
- B. Stateful inspection verifies contents at Layer 4 and deep packet inspection verifies connection at Layer 7
- C. Stateful inspection is more secure than deep packet inspection on Layer 7
- D. Deep packet inspection allows visibility on Layer 7 and stateful inspection allows visibility on Layer 4

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

QUESTION 96

Which evasion technique is a function of ransomware?

- A. extended sleep calls
- B. encryption
- C. resource exhaustion
- D. encoding

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 97

DRAG DROP

Drag and drop the technology on the left onto the data type the technology provides on the right.

Select and Place:

Correct Answer:

tcpdump	web content filtering
web content filtering	tcpdump
traditional stateful firewall	NetFlow
NetFlow	traditional stateful firewall

Section: (none) Explanation

Explanation/Reference:

QUESTION 98

What does cyber attribution identity in an investigation?

- A. cause of an attack
- B. exploit of an attack
- C. vulnerabilities exploited
- D. threat actors of an attack

Correct Answer: D Section: (none) Explanation