Dia 5: Relatórios Reprodutíveis e Projeto Final

Curso: Introdução à Programação em R
 com Git Hub e IA

Vinícius Silva Junqueira

2025-10-07

Contents

1	Apı	resenta o do Curso	10
	1.1	Informa es Gerais	10
	1.2	Objetivos do Curso	10
	1.3	Estrutura do Curso	10
		1.3.1 Dia 1: Fundamentos e Ambiente Reprodut vel	10
		1.3.2 Dia 2: L gica e Programa o	10
		1.3.3 Dia 3: Manipula o de Dados	10
		1.3.4 Dia 4: I/O e Visualiza o	10
		1.3.5 Dia 5: Relat rios e Projeto Final	10
	1.4	Pacotes Necess rios	10
2	Par	te 1: Fundamentos e Ambiente Reprodut vel	11
3	ОВ	JETIVO: Objetivos do Dia 1	11
4		ATERIAL: Parte 1: Ambienta o e Setup (19h00 - 20h30)	11
	4.1	1.1 Por que R, GitHub e IA?	11
		4.1.1 Por que R?	11
		4.1.2 Por que GitHub?	11
		4.1.3 Por que IA (ChatGPT e Claude)?	12
	4.2	1.2 Verifica o das Instala es	12
		4.2.1 Verificar R	12
		4.2.2 Verificar RStudio	12
	4.0	4.2.3 Verificar Git	12
	4.3	1.3 Instala o de Pacotes Essenciais	12
	4.4	4.3.1 Carregar pacotes	13
	4.4	1.4 Configura o do GitHub	13
		4.4.1 Criar Conta no GitHub	13
		4.4.2 Configurar Git Local	13
		4.4.3 Criar Personal Access Token (PAT)	13
	4 -	4.4.4 Salvar Token Localmente	14
	4.5	1.5 Clonando o Reposit rio do Curso	14
		4.5.1 Via RStudio (Recomendado)	14
		4.5.2 Via Terminal	14

	4.6	U	14
	4.7	1 0	1515
5	INT		16
6	6.1	,	16 16
	6.2		10 17
	0.2	U .	17
	6.9	· ·	
	6.3	1	17
		/	18
		()	18
			18
			19
		1	19
	6.4		20
			20
		6.4.2 Propriedades de Vetores	20
		6.4.3 Opera es Vetorizadas	21
	6.5	2.5 Indexa o de Vetores	22
		6.5.1 Por Posi o	22
		6.5.2 Por Condi o L gica	23
		6.5.3 Por Nome	23
	6.6	2.6 Valores Ausentes (NA)	24
	6.7	2.7 Listas	24
	6.8	2.8 Data Frames	25
		6.8.1 Acessar Colunas	27
			27
			28
		*	$\frac{1}{28}$
	6.9		29
			_0
7	$\mathbf{E}\mathbf{X}\mathbf{I}$	ERCICIO: Exerc cios Pr ticos	30
	7.1	Exerc cio 1: Calculadora e Objetos	30
	7.2	Exerc cio 2: Vetores	30
	7.3	Exerc cio 3: Data Frames	31
	7.4	Exerc cio 4: An lise Real	31
8	ов.	JETIVO: Pr tica Guiada: Primeiro Script	31
	8.1	-	32
	8.2	<u>.</u>	32
	8.3	<u>e</u>	33
9	GIT	THUB: Primeiro Commit no GitHub	33
_	9.1		33
	9.2		33
	9.3		33

10 M	MATERIAL: Para Casa	34
11 11	Recursos Adicionais 1.1 Documenta o 1.2 Pr tica 1.3 Comunidades	34 34 34
12 D	O vidas Frequentes	34
13 C	CURSO: Conclus o do Dia 1	35
14 P	Parte 2: L gica e Programa o	36
15 O	Objetivos do Dia 2	36
16 R	Revisão Rápida do Dia 1	36
17 17 17 17 17	Parte 1: Operadores e Condicionais (19h00 - 20h30) 7.1 1.1 Operadores Relacionais 17.1.1 Aplicações Práticas 7.2 1.2 Operadores Lógicos 17.2.1 Diferença entre & e && 17.2.2 Aplicações Práticas 7.3 1.3 Ordem de Precedência 7.4 1.4 Estruturas Condicionais: if e else 17.4.1 Sintaxe Básica 17.4.2 Múltiplas Condições: else if 17.4.3 Boas Práticas com if/else 7.5 1.5 ifelse() - Versão Vetorizada 7.6 1.6 case_when() - Múltiplas Condições 7.7 1.7 Operador %in% NTERVALO (20h30 - 20h50)	37 37 38 39 40 40 41 41 42 43 44
19 19	Parte 2: Loops, Funções e Boas Práticas (20h50 - 22h00) 9.1 2.1 Loops: for 19.1.1 Sintaxe Básica 19.1.2 Acumulando Resultados 19.1.3 Loops Aninhados 9.2 2.2 Vetorização vs Loops 19.2.1 Quando Usar Loops? 9.3 2.3 Loops: while e repeat 19.3.1 while 19.3.2 repeat e break 9.4 2.4 Funções Customizadas 19.4.1 Sintaxe Básica 19.4.2 Argumentos 19.4.3 Validação de Argumentos 19.4.4 Retornando Múltiplos Valores	45 45 46 47 48 48 49 50 51 51 52

		19.4.5 Funções Vetorizadas	3
	19.5	2.5 Boas Práticas de Código	3
			3
		19.5.2 Comentários Eficientes	4
			4
	19.6	O Company of the comp	66
	10.0	90 0	66
		O Company of the comp	66
			66
		9 66 6	7
	10.7		
	19.7		8
			8
			8
		19.7.3 Exemplo de Uso de IA	9
20	E	cícios Práticos 5	9
40			9 9
		1	0
		3	0
	20.4	Exercício 4: Integração	1
21	Prá	ica Guiada: Função Completa 6	1
22	Con	mit no GitHub	3
23	Para	Casa 6	3
24			4
		3	64
	24.2	Prática	64
	24.3	Estilo	64
25	Dúv	das Frequentes 6	4
26	Con	clusão do Dia 2	4
27	Part	e 3: Manipula o de Dados 6	6
2 8	Obj	tivos do Dia 3	6
2 9	Rev	são Rápida do Dia 2	6
30	Part	e 1: Tidyverse e dplyr (19h00 - 20h30) 6	6
50		,	66
	90.1		57
	3U 9	· ·) (57
		v (
	ა∪.პ	1	8
	90.4	1 (1)	8
		1	9
	30.5	1.5 filter() - Filtrar Linhas	9

	$30.6\ 1.6\ \mathrm{select}()$ - Selecionar Colunas	71
	30.7 1.7 mutate() - Criar/Modificar Colunas	74
	30.8 1.8 arrange() - Ordenar Linhas	
	30.9 1.9 summarize() - Resumir Dados	
	30.101.10 group_by() - Agrupar Dados	79
31	INTERVALO (20h30 - 20h50)	81
32	Parte 2: Tidyr, Limpeza e Ferramentas Modernas (20h50 - 22h00)	81
	32.1 2.1 Pipeline Completo	
	32.2 2.2 tidyr: pivot_longer() e pivot_wider()	
	32.2.1 pivot_longer() - Wide para Long	
	32.2.2 pivot_wider() - Long para Wide	
	32.3 Valores Ausentes (NA)	
	32.3.1 Identificar NAs	
	32.3.3 Substituir NAs	
	32.4 2.4 janitor: Limpeza de Dados	
	32.5 2.5 skimr: Exploração Rápida	
	32.6 2.6 Joins: Combinando Datasets	
	32.7 2.7 Usando Claude para Otimizar Pipelines	
	32.7.1 Exemplo de Prompt para Claude:	
33	Exercícios Práticos	96
	33.1 Exercício 1: Verbos Básicos	96
	33.2 Exercício 2: Pipeline Integrado	96
	33.3 Exercício 3: Tidyr	
	33.4 Exercício 4: Limpeza e Análise	
	33.5 Exercício 5: Análise Realista	97
34	Prática Guiada: Análise Completa	98
35	Commit no GitHub	100
36	Para Casa	100
37	Recursos Adicionais	100
	37.1 Documentação	100
	37.2 Prática	101
	37.3 Vídeos	101
38	Dúvidas Frequentes	101
39	Conclusão do Dia 3	101
40	Parte 4: I/O e Visualiza o	102
41	Objetivos do Dia 4	102
42	Revisão Rápida do Dia 3	102

43	Parte 1: Entrada e Saída de Dados (19h00 - 20h30)	103
	43.1 1.1 Estrutura de Projetos Profissionais	. 103
	43.1.1 Estrutura Recomendada	. 103
	43.1.2 Por que Projetos RStudio?	. 103
	43.2 1.2 O Pacote here	
	43.3 1.3 Leitura de Arquivos CSV	
	43.3.1 readr::read_csv() vs base::read.csv()	
	43.3.2 Opções Importantes	
	43.3.3 Outros Delimitadores	
	43.4 1.4 Leitura de Arquivos Excel	
	43.5 1.5 Escrita de Arquivos	
	43.5.1 CSV	
	43.5.2 Excel	
	43.5.3 RDS (formato R nativo)	
	43.6 1.6 Boas Práticas de I/O	. 110
44	INTERVALO (20h30 - 20h50)	111
45	Parte 2: Visualização com ggplot2 (20h50 - 22h00)	111
	45.1 2.1 Gramática de Gráficos	. 111
	45.1.1 Componentes Fundamentais	. 111
	45.1.2 Primeiro Gráfico	. 111
	45.2 2.2 Gráfico de Dispersão	. 113
	45.3 2.3 Gráfico de Barras	. 116
	45.4 2.4 Boxplot	
	45.5 2.5 Histograma e Densidade	
	45.6 2.6 Gráfico de Linhas	
	45.7 2.7 Facetas	
	45.8 2.8 Personalização	
	45.8.1 Cores	
	45.8.2 Temas	
	45.8.3 Labels e Anotações	
	45.9 2.9 Salvando Gráficos	
	49.9 2.9 parvando Grancos	. 101
46	Exercícios Práticos	137
	46.1 Exercício 1: I/O de Dados	
	46.2 Exercício 2: Visualizações Básicas	
	46.3 Exercício 3: Gráficos Avançados	
	46.4 Exercício 4: Análise Completa	
	46.5 Exercício 5: Projeto Integrado	. 139
47	Galeria de Gráficos	140
	47.1 Quando usar cada tipo?	. 140
48	Commit no GitHub	140
49	Para Casa	140
50	Recursos Adicionais	141

	50.1 Documentação	
51	Dúvidas Frequentes	141
52	2 Conclusão do Dia 4	142
53	3 Parte 5: Relat rios e Projeto Final	143
54	Objetivos do Dia 5	143
55	6 Revisão do Curso	143
56	3 Parte 1: RMarkdown e Documentos Reprodutíveis (19h00 - 20h30)	144
	56.1 1.1 O que é Programação Literária?	144
	56.1.1 Benefícios	144
	56.1.2 RMarkdown vs Quarto	144
	56.2 1.2 Criando um Documento RMarkdown	145
	56.2.1 No RStudio	145
	56.2.2 Estrutura Básica	145
	56.3 1.3 Componentes de um Documento	145
	56.3.1 YAML Header	
	56.3.2 Opções Comuns	
	56.4 1.4 Markdown Básico	
	56.4.1 Formatação de Texto	
	56.4.2 Links e Imagens	
	56.4.3 Outros Elementos	
	56.5 1.5 Chunks de Código	
	56.5.1 Sintaxe Básica	
	56.5.2 Opções de Chunk	
	56.5.3 Opções Comuns	
	56.5.4 Chunk de Setup	
	56.6 1.6 Código Inline	
	56.7 1.7 Tabelas	
	56.7.1 Tabelas Simples	
	56.7.2 Tabelas Avançadas	
	56.8 1.8 Renderizando Documentos	
	56.8.1 Via RStudio	
	56.8.2 Via Código	
	56.9 1.9 Parâmetros	
	56.9.1 Definir Parâmetros	
	56.9.2 Usar Parâmetros	
57	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	152
58	3 Parte 2: Projeto Final e GitHub Avançado (20h50 - 22h00)	152
	58.1 2.1 Template do Projeto Final	152
	58.1.1 Estrutura	152
	58.2 2.2 Exemplo de Projeto Completo	153

	58.3 2.3 README.md Profissional	. 155
	58.4 Requisitos	. 157
	58.5 Autor	. 157
	58.6 Licença	
	58.7 2.5 Git e GitHub Avançado	
	58.7.1 Commits Significativos	
	58.7.2 Branches Básicas	
	58.7.3 Tags (Versões)	
	58.8 2.6 Usando IA para Documentação	
	58.8.1 Prompts Eficientes	. 139
59	Exercícios Práticos	159
00	59.1 Exercício 1: Primeiro RMarkdown	
	59.2 Exercício 2: Relatório com Dados Reais	
	59.3 Exercício 3: Projeto Organizado	
	59.4 Exercício 4: README Profissional	
	59.5 Exercício 5: Projeto Final Completo	. 161
e٥	Apresentações dos Projetos	162
UU	60.1 Formato (3-5 minutos cada)	
	60.2 Dicas para Apresentar	. 102
61	Recursos para Continuar Aprendendo	162
01	61.1 Livros Online (Gratuitos)	
	61.2 Comunidades	
	61.3 Prática Contínua	
	61.4 Datasets Públicos	
	61.5 Cheat Sheets	
	61.6 Canais YouTube (em Português)	. 163
co	C4:6 1- 1- C1	100
62	Certificado de Conclusão	163
	62.1 Você completou o curso!	
	62.2 Próximos Passos	. 163
69	Feedback do Curso	163
บอ	63.1 Onde Deixar Feedback	
	55.1 Onde Deixar Feedback	. 163
64	Agradecimentos	164
04	64.1 Obrigado por Participar!	
	64.2 Mantenha Contato	
	64.3 Grupo de Ex-Alunos	. 104
65	Commit Final	164
00		101
66	Para Casa (Forever!)	164
- 3		
67	Recursos Finais	165
	67.1 Template de Projeto	. 165
	67.2 Script de Setup Automático	165

68	3 Conclusão	166
	68.1 Parabéns por Completar o Curso!	166
	68.2 A Jornada Continua	166
	68.3 Boa Sorte!	167
69	FIM DO CURSO	167
70	Conclus o e Pr ximos Passos	168
	70.1 O que voc aprendeu	168
	70.2 Recursos para Continuar Aprendendo	168
	70.2.1 Livros Online (Gratuitos)	168
	70.2.2 Comunidades	
	70.2.3 Pr tica Cont nua	168
	70.2.4 Cursos Avan ados	168
	70.3 Certificado de Conclus o	168
	70.4 Mantenha Contato	
	70.4.1 Suporte P s-Curso	

1 Apresenta o do Curso

1.1 Informa es Gerais

Carga hor ria total: 16 horas Per odo: Segunda a sexta-feira

Hor rio: 19h00 s 22h00 (intervalo de 20 min s 20h30)

P blico-alvo: Iniciantes de diversas reas

1.2 Objetivos do Curso

Ao final deste curso, voc ser capaz de:

- Realizar an lises de dados usando R e tidyverse
- Criar visualiza es profissionais com ggplot2
- Versionar c digo e colaborar usando Git/GitHub
- Produzir relat rios reprodut veis com RMarkdown
- Utilizar IA (ChatGPT e Claude) de forma estrat gica
- Organizar projetos de an lise de dados
- Aplicar boas pr ticas de programa o

1.3 Estrutura do Curso

1.3.1 Dia 1: Fundamentos e Ambiente Reprodut vel

Setup completo, tipos de dados, vetores, data frames, projetos RStudio

1.3.2 Dia 2: L gica e Programa o

Operadores, condicionais, loops, fun es, boas pr ticas, debugging, IA

1.3.3 Dia 3: Manipula o de Dados

Tidyverse, dplyr, tidyr, tratamento de NAs, janitor, skimr

1.3.4 Dia 4: I/O e Visualiza o

Leitura/escrita de dados, organiza o de projetos, ggplot2

1.3.5 Dia 5: Relat rios e Projeto Final

RMarkdown, documentos reprodut veis, projeto final, GitHub

1.4 Pacotes Necess rios

```
install.packages(c(
   "tidyverse", "here", "janitor", "skimr",
   "readxl", "writexl", "rmarkdown",
   "usethis", "gitcreds"
))
```

2 Parte 1: Fundamentos e Ambiente Reprodut vel

3 OBJETIVO: Objetivos do Dia 1

Ao final desta aula, voc ser capaz de:

- [OK] Configurar completamente seu ambiente de trabalho (R, RStudio, Git, GitHub)
- [OK] Entender os tipos de dados e estruturas fundamentais do R
- [OK] Criar e manipular vetores, listas e data frames
- [OK] Realizar opera es b sicas de indexa o
- [OK] Organizar projetos com RStudio Projects
- [OK] Fazer seu primeiro commit no GitHub
- [OK] Usar o pacote here para caminhos relativos

4 MATERIAL: Parte 1: Ambienta o e Setup (19h00 - 20h30)

4.1 1.1 Por que R, GitHub e IA?

4.1.1 Por que R?

R uma linguagem de programa o estat stica amplamente utilizada em:

- **Pesquisa cient fica:** an lise de dados experimentais
- **Sa de p blica:** epidemiologia, ensaios cl nicos
- GRAFICO: Economia e finan as: modelagem econom trica, s ries temporais
- **Ecologia:** an lise de biodiversidade, modelos populacionais
- **Marketing e vendas:** segmenta o, an lise de campanhas
- **Ci ncias sociais:** an lise de surveys, dados censit rios

Vantagens: - Gratuito e open-source - Comunidade ativa e acolhedora (R-Ladies, Stack Overflow) - Pacotes especializados para praticamente qualquer an lise - Reprodutibilidade: RMarkdown permite documentar an lises - Visualiza es de alta qualidade: ggplot2 refer ncia mundial

4.1.2 Por que GitHub?

GitHub uma plataforma de versionamento de c digo que permite:

- NOTA: Hist rico completo de todas as mudan as
- WORKFLOW: Colabora o eficiente em equipe
- **Backup autom tico** na nuvem
- **Portf lio p blico** de projetos
- **Compartilhamento** f cil de an lises

4.1.3 Por que IA (ChatGPT e Claude)?

Ferramentas de IA generativa aceleram o aprendizado:

- DICA: Explica es personalizadas de conceitos dif ceis
- **Debugging assistido:** entender erros rapidamente
- NOTA: Documenta o autom tica: comentar c digo
- INICIO: Produtividade: sugest es de c digo e otimiza es
- CURSO: Tutor 24/7: responde d vidas a qualquer momento

ATENCAO: **Aten o:** IA uma ferramenta auxiliar. Sempre entenda o c digo antes de usar!

4.2 1.2 Verifica o das Instala es

Antes de come ar, vamos verificar se tudo est instalado corretamente.

4.2.1 Verificar R

```
# Vers o do R (deve ser 4.0 ou superior)
R.version.string
```

```
#> [1] "R version 4.5.1 (2025-06-13)"
```

```
# Idealmente 4.3.0 ou mais recente
```

4.2.2 Verificar RStudio

No menu: Help About RStudio

Vers o recomendada: 2023.09 ou superior

4.2.3 Verificar Git

No **Terminal** do RStudio (aba ao lado de Console):

```
git --version
```

Deve retornar algo como: git version 2.40.0

Se n o funcionar: - **Windows:** Instale Git Bash (https://git-scm.com/) - **Mac:** Instale Xcode Command Line Tools (xcode-select --install) - **Linux:** sudo apt-get install git (Ubuntu/Debian)

4.3 1.3 Instala o de Pacotes Essenciais

Vamos instalar os pacotes que usaremos durante o curso:

```
# Instalar pacotes (execute apenas uma vez)
install.packages(c(
   "tidyverse",  # Conjunto de pacotes para ci ncia de dados
   "here",  # Caminhos relativos seguros
   "janitor",  # Limpeza de dados
   "skimr",  # Resumos estat sticos
   "readxl",  # Leitura de arquivos Excel
   "writexl",  # Escrita de arquivos Excel
   "rmarkdown",  # Relat rios reprodut veis
   "usethis",  # Ferramentas de desenvolvimento
   "gitcreds"  # Gerenciamento de credenciais Git
))
```

4.3.1 Carregar pacotes

```
# Carregar pacotes (execute sempre que iniciar uma sess o)
library(tidyverse) # Carrega dplyr, ggplot2, tidyr, etc.
library(here) # Para caminhos de arquivos
```

DICA: Dica: install.packages() uma vez, library() sempre!

4.4 1.4 Configura o do GitHub

4.4.1 Criar Conta no GitHub

Se ainda n o tem: https://github.com/signup

Dicas: - Use um email profissional/acad mico - Username curto e profissional (seu nome ou varia o) - Ative autentica o de dois fatores (2FA)

4.4.2 Configurar Git Local

```
# Configure seu nome e email (use os mesmos do GitHub)
usethis::use_git_config(
   user.name = "Seu Nome Completo",
   user.email = "seu-email@example.com"
)
```

Ou no Terminal:

```
git config --global user.name "Seu Nome Completo"
git config --global user.email "seu-email@example.com"
```

4.4.3 Criar Personal Access Token (PAT)

O PAT como uma senha especial para o Git:

```
# Abre o GitHub para criar token
usethis::create_github_token()
```

No GitHub: 1. D um nome descritivo (ex: "Curso R 2025") 2. Selecione expira o (90 dias ou mais) 3. Marque apenas: repo, workflow, gist 4. Clique em "Generate token" 5. COPIE O TOKEN (n o conseguir ver novamente!)

4.4.4 Salvar Token Localmente

```
# Cole o token quando solicitado
gitcreds::gitcreds_set()
```

Pronto! Agora voc pode usar Git/GitHub sem digitar senha toda hora.

4.5 1.5 Clonando o Reposit rio do Curso

4.5.1 Via RStudio (Recomendado)

- 1. File New Project Version Control Git
- 2. Cole a URL: https://github.com/seu-usuario/curso-r-github-ia.git
- 3. Escolha onde salvar no seu computador
- 4. Marque "Open in new session"
- 5. Create Project

4.5.2 Via Terminal

```
# Navegue at onde quer salvar
cd ~/Documents

# Clone o reposit rio
git clone https://github.com/seu-usuario/curso-r-github-ia.git

# Entre na pasta
cd curso-r-github-ia

# Abra o projeto no RStudio (no Windows, apenas d duplo clique no .Rproj)
```

4.6 1.6 Estrutura do Projeto

Um projeto bem organizado tem esta estrutura:

```
# Dados
data/
      raw/
                             # Dados originais (NUNCA modificar!)
      processed/
                             # Dados limpos/processados
                           # Scripts R
scripts/
      01_import.R
      02_clean.R
      03_analyze.R
                           # Resultados
output/
      figures/
                             # Gr ficos salvos
      tables/
                             # Tabelas exportadas
materiais/
                           # Material do curso
      dia1_fundamentos.Rmd
                           # Relat rios finais
docs/
```

4.6.1 Por que usar Projetos RStudio?

- [OK] Working directory autom tico: sempre aponta para a pasta do projeto
- [OK] Portabilidade: funciona em qualquer computador
- [OK] Organiza o: mant m tudo junto
- [OK] Integra o com Git: painel Git aparece automaticamente

4.7 1.7 O Pacote here

O here resolve problemas de caminhos de arquivos:

```
# Caminho absoluto (RUIM - n o funciona em outro computador)
# dados <- read_csv("C:/Users/Vinicius/Documents/curso/data/dados.csv")
# Caminho relativo com here (BOM - funciona em qualquer lugar)
here::here() # Mostra a raiz do projeto</pre>
```

#> [1] "/Users/viniciusjunqueira/Library/CloudStorage/OneDrive-Pessoal/Cursos/curso-r-github-ia

```
# Como usar
caminho_dados <- here("data", "raw", "exemplo.csv")
print(caminho_dados)</pre>
```

#> [1] "/Users/viniciusjunqueira/Library/CloudStorage/OneDrive-Pessoal/Cursos/curso-r-github-ia

```
# Na pr tica:
# dados <- read_csv(here("data", "raw", "dados.csv"))
```

Sempre use here() para referenciar arquivos!

5 INTERVALO: INTERVALO (20h30 - 20h50)

Aproveite para: - Tomar gua/caf

- Conferir se todas as instala es funcionaram - Tirar d vidas no grupo

6 GRAFICO: Parte 2: Fundamentos do R (20h50 - 22h00)

6.1 2.1 R como Calculadora

O jeito mais simples de come ar: usar R como calculadora avan ada!

```
# Opera
           es b sicas
2 + 3
             # Adi o
#> [1] 5
10 - 4
             # Subtra
#> [1] 6
5 * 6
             # Multiplica
#> [1] 30
20 / 4
             # Divis o
#> [1] 5
2^3
             # Pot ncia
#> [1] 8
sqrt(16)
             # Raiz quadrada
#> [1] 4
log(10)
             # Logaritmo natural
#> [1] 2.302585
log10(100)
             # Logaritmo base 10
#> [1] 2
# Ordem de opera
                    es (PEMDAS)
2 + 3 * 4
                 # 14, n o 20!
#> [1] 14
(2 + 3) * 4
                 # 20, com par nteses
#> [1] 20
```

6.2 2.2 Objetos e Atribui o

No R, guardamos valores em **objetos** usando \leftarrow (atalho: Alt + -)

```
# Criar objetos
x <- 5
y <- 10
nome <- "Vin cius"</pre>
aprovado <- TRUE
# Ver conte do
#> [1] 5
print(y)
#> [1] 10
# Usar em opera
resultado <- x + y
resultado
#> [1] 15
# Sobrescrever
x <- 20
x # Agora vale 20, n o mais 5!
#> [1] 20
```

6.2.1 Regras para Nomes de Objetos

[OK] **Permitido:**

```
idade <- 30
idade_media <- 25
idadeMedia <- 25 # camelCase (menos comum em R)
idade2 <- 27</pre>
```

[X] N O permitido:

```
2idade <- 30  # N o pode come ar com n mero

idade-media <- 25  # H fen n o permitido (use _)

minha idade <- 30  # Sem espa os!
```

DICA: Conven o R: Use snake_case (palavras separadas por _)

6.3 2.3 Tipos de Dados Fundamentais

O R tem 6 tipos b sicos, mas vamos focar nos 4 principais:

6.3.1 Numeric (N meros)

```
# Inteiros e decimais
altura <- 1.75
peso <- 70
idade <- 30
# Verificar tipo
class(altura)
#> [1] "numeric"
typeof(altura) # double = n mero com decimais
#> [1] "double"
6.3.2 Character (Texto/String)
# Sempre entre aspas (simples ' ou duplas ")
nome <- "Maria Silva"</pre>
cidade <- 'S o Paulo'
curso <- "R Programming"</pre>
class(nome)
#> [1] "character"
# Concatenar strings
paste("01 ,", nome)
#> [1] "01 , Maria Silva"
paste0("01 , ", nome) # Sem espa o autom tico
#> [1] "01 , Maria Silva"
6.3.3 Logical (L gico)
# Apenas TRUE ou FALSE (sempre mai sculas)
aprovado <- TRUE
reprovado <- FALSE
tem_dados <- TRUE
class(aprovado)
#> [1] "logical"
# Atalhos: T para TRUE, F para FALSE (mas evite, menos claro)
x <- T
```

6.3.4 Factor (Fator/Categ rico)

```
# Para vari veis categ ricas com n veis fixos
sexo <- factor(c("M", "F", "F", "M", "M"))</pre>
escolaridade <- factor(</pre>
  c("Fundamental", "M dio", "Superior", "M dio"),
  levels = c("Fundamental", "M dio", "Superior"),
  ordered = TRUE # Tem ordem
)
class(sexo)
#> [1] "factor"
levels(sexo)
#> [1] "F" "M"
6.3.5 Convers o entre Tipos
# Numeric para character
x <- 42
y <- as.character(x)
#> [1] "42"
class(y)
#> [1] "character"
# Character para numeric
texto <- "3.14"
numero <- as.numeric(texto)</pre>
numero
#> [1] 3.14
# Logical para numeric (TRUE = 1, FALSE = 0)
as.numeric(TRUE)
#> [1] 1
as.numeric(FALSE)
#> [1] 0
# Cuidado com convers es imposs veis!
as.numeric("abc") # Retorna NA (missing)
#> [1] NA
```

6.4 2.4 Vetores

Vetor a estrutura de dados mais b sica do R. uma sequ ncia de elementos do mesmo tipo.

6.4.1 Criando Vetores

```
# Fun
         o c() = combine
idades \leftarrow c(23, 45, 19, 34, 28)
nomes <- c("Ana", "Bruno", "Carla", "Diego", "Elena")</pre>
aprovados <- c(TRUE, TRUE, FALSE, TRUE, TRUE)
# Sequ ncias
                        # 1, 2, 3, ..., 10
1:10
#> [1] 1 2 3 4 5 6 7 8 9 10
10:1
                        # Decrescente
#> [1] 10 9 8 7 6 5 4 3 2 1
seq(0, 100, by = 10) # 0, 10, 20, ..., 100
         0 10 20 30 40 50 60 70 80 90 100
seq(0, 1, length.out = 5) # 5 n meros entre 0 e 1
#> [1] 0.00 0.25 0.50 0.75 1.00
# Repeti
          es
rep(5, times = 3)
                        # 5, 5, 5
#> [1] 5 5 5
rep(c(1, 2), times = 3) # 1, 2, 1, 2, 1, 2
#> [1] 1 2 1 2 1 2
rep(c(1, 2), each = 3) # 1, 1, 1, 2, 2, 2
#> [1] 1 1 1 2 2 2
6.4.2 Propriedades de Vetores
idades \leftarrow c(23, 45, 19, 34, 28)
length(idades) # Tamanho
#> [1] 5
class(idades)
                  # Tipo
#> [1] "numeric"
typeof(idades) # Tipo interno
```

```
#> [1] "double"
# Estat sticas descritivas
mean(idades)
               # M dia
#> [1] 29.8
median(idades) # Mediana
#> [1] 28
sd(idades)
                 # Desvio padr o
#> [1] 10.18332
min(idades)
                 # M nimo
#> [1] 19
max(idades)
                 # M ximo
#> [1] 45
sum(idades)
                 # Soma
#> [1] 149
range(idades)
               # M nimo e m ximo
#> [1] 19 45
6.4.3 Opera es Vetorizadas
O R opera em vetores inteiros automaticamente!
# Aritm ticas
x \leftarrow c(1, 2, 3, 4, 5)
x + 10 # Soma 10 a cada elemento
#> [1] 11 12 13 14 15
                # Multiplica cada elemento por 2
#> [1] 2 4 6 8 10
x^2
                # Eleva cada elemento ao quadrado
#> [1] 1 4 9 16 25
# Entre vetores
y \leftarrow c(10, 20, 30, 40, 50)
x + y # Soma elemento por elemento
#> [1] 11 22 33 44 55
x * y
               # Multiplica elemento por elemento
```

#> [1] 10 40 90 160 250

```
# Exemplo pr tico: IMC

peso <- c(70, 85, 62, 90, 75)

altura <- c(1.75, 1.80, 1.65, 1.78, 1.82)

imc <- peso / altura^2

imc
```

#> [1] 22.85714 26.23457 22.77319 28.40550 22.64219

6.5 2.5 Indexa o de Vetores

Indexa o = acessar elementos espec ficos de um vetor.

6.5.1 Por Posi o

```
nomes <- c("Ana", "Bruno", "Carla", "Diego", "Elena")</pre>
# Primeiro elemento (R come a em 1, n o em 0!)
nomes[1]
#> [1] "Ana"
# Terceiro elemento
nomes[3]
#> [1] "Carla"
# M ltiplos elementos
nomes[c(1, 3, 5)] # Posi
                           es 1, 3 e 5
#> [1] "Ana"
               "Carla" "Elena"
# Sequ ncia
nomes[2:4] # Do 2 ao 4
#> [1] "Bruno" "Carla" "Diego"
# ltimo elemento
nomes[length(nomes)]
#> [1] "Elena"
# Todos menos o primeiro
nomes[-1]
#> [1] "Bruno" "Carla" "Diego" "Elena"
# Todos menos o 2 e 4
nomes [-c(2, 4)]
#> [1] "Ana" "Carla" "Elena"
```

6.5.2 Por Condi o L gica

```
idades \leftarrow c(23, 45, 19, 34, 28)
# Quem tem mais de 25 anos?
idades > 25
#> [1] FALSE TRUE FALSE TRUE TRUE
# Pegar apenas quem tem mais de 25
idades[idades > 25]
#> [1] 45 34 28
# M ltiplas condi es (\mathcal{E} = E, / = OU)
idades[idades > 20 & idades < 40] # Entre 20 e 40
#> [1] 23 34 28
idades[idades < 20 | idades > 40] # Menor que 20 OU maior que 40
#> [1] 45 19
# Exemplo pr tico
nomes <- c("Ana", "Bruno", "Carla", "Diego", "Elena")</pre>
idades \leftarrow c(23, 45, 19, 34, 28)
# Nomes de quem tem mais de 25 anos
nomes[idades > 25]
#> [1] "Bruno" "Diego" "Elena"
6.5.3 Por Nome
# Vetores podem ter nomes
notas <- c(ana = 8.5, bruno = 7.0, carla = 9.5)
notas
#>
     ana bruno carla
     8.5 7.0 9.5
#>
# Acessar por nome
notas["ana"]
#> ana
#> 8.5
notas[c("ana", "carla")]
#>
     ana carla
     8.5
           9.5
# Ver os nomes
names(notas)
```

```
#> [1] "ana"
              "bruno" "carla"
# Adicionar nomes depois
idades <- c(23, 45, 19)
names(idades) <- c("Ana", "Bruno", "Carla")</pre>
idades
#>
     Ana Bruno Carla
      23
            45
#>
                  19
6.6 2.6 Valores Ausentes (NA)
NA = Not Available (valor ausente/faltante)
# Criar vetor com NA
alturas \leftarrow c(1.75, NA, 1.82, 1.68, NA)
# Identificar NAs
is.na(alturas)
#> [1] FALSE TRUE FALSE FALSE TRUE
# Contar quantos NAs
sum(is.na(alturas))
#> [1] 2
# Fun es com NA precisam de na.rm = TRUE
mean(alturas)
                            # Retorna NA
#> [1] NA
mean(alturas, na.rm = TRUE) # Ignora NAs
#> [1] 1.75
# Remover NAs
alturas[!is.na(alturas)] # ! = NOT (nega
#> [1] 1.75 1.82 1.68
na.omit(alturas)
#> [1] 1.75 1.82 1.68
#> attr(,"na.action")
#> [1] 2 5
#> attr(,"class")
#> [1] "omit"
```

6.7 2.7 Listas

Listas podem conter elementos de tipos diferentes (vetores s um tipo).

```
# Criar lista
pessoa <- list(</pre>
  nome = "Ana Silva",
  idade = 28,
 altura = 1.68,
 casado = FALSE,
  filhos = c("Jo o", "Maria")
# Ver estrutura
str(pessoa)
#> List of 5
#> $ nome : chr "Ana Silva"
#> $ idade : num 28
#> $ altura: num 1.68
#> $ casado: logi FALSE
#> $ filhos: chr [1:2] "Jo o" "Maria"
# Acessar elementos (3 formas)
                      # Pelo nome (mais comum)
pessoa$nome
#> [1] "Ana Silva"
pessoa[["nome"]]
                      # Pelo nome (alternativa)
#> [1] "Ana Silva"
pessoa[[1]]
                      # Pela posi o
#> [1] "Ana Silva"
# Acessar sub-elementos
pessoa$filhos[1]
                   # Primeiro filho
#> [1] "Jo o"
```

6.8 2.8 Data Frames

Data frame = tabela de dados (como Excel, mas melhor!)

```
# Criar data frame
alunos <- data.frame(
  nome = c("Ana", "Bruno", "Carla", "Diego"),
  idade = c(23, 25, 22, 24),
  nota = c(8.5, 7.0, 9.5, 8.0),
  aprovado = c(TRUE, TRUE, TRUE)
)</pre>
```

```
# Ver dados
alunos
     nome idade nota aprovado
#> 1
      Ana
             23 8.5
                         TRUE
#> 2 Bruno
             25 7.0
                         TRUE
#> 3 Carla
             22 9.5
                         TRUE
#> 4 Diego
             24 8.0
                         TRUE
print(alunos)
#>
     nome idade nota aprovado
#> 1
     Ana
             23 8.5
                         TRUE
#> 2 Bruno
             25 7.0
                         TRUE
#> 3 Carla
             22 9.5
                         TRUE
#> 4 Diego
             24 8.0
                         TRUE
# Estrutura
str(alunos)
#> 'data.frame': 4 obs. of 4 variables:
#> $ nome : chr "Ana" "Bruno" "Carla" "Diego"
#> $ idade : num 23 25 22 24
#> $ nota : num 8.5 7 9.5 8
#> $ aprovado: logi TRUE TRUE TRUE TRUE
# Primeiras linhas
head(alunos, 2) # Primeiras 2 linhas
     nome idade nota aprovado
#>
#> 1 Ana
             23 8.5
                         TRUE
                         TRUE
#> 2 Bruno
             25 7.0
# ltimas linhas
tail(alunos, 2)
#>
     nome idade nota aprovado
#> 3 Carla
             22 9.5
                         TRUE
#> 4 Diego
             24 8.0
                         TRUE
# Dimens es
nrow(alunos) # N mero de linhas
#> [1] 4
ncol(alunos) # N mero de colunas
#> [1] 4
dim(alunos) # Ambos
#> [1] 4 4
```

```
# Nomes das colunas
names(alunos)
#> [1] "nome"
                 "idade"
                            "nota"
                                       "aprovado"
colnames(alunos)
#> [1] "nome"
                 "idade"
                            "nota"
                                       "aprovado"
6.8.1 Acessar Colunas
# Por nome ($ - mais comum)
alunos$nome
#> [1] "Ana" "Bruno" "Carla" "Diego"
alunos$nota
#> [1] 8.5 7.0 9.5 8.0
# Por posi o
alunos[, 3] # Terceira coluna
#> [1] 8.5 7.0 9.5 8.0
alunos[, "nota"] # Por nome (alternativa)
#> [1] 8.5 7.0 9.5 8.0
# M ltiplas colunas
alunos[, c("nome", "nota")]
     nome nota
#>
#> 1 Ana 8.5
#> 2 Bruno 7.0
#> 3 Carla 9.5
#> 4 Diego 8.0
alunos[, c(1, 3)]
#>
     nome nota
#> 1 Ana 8.5
#> 2 Bruno 7.0
#> 3 Carla 9.5
#> 4 Diego 8.0
6.8.2 Acessar Linhas
# Por posi o
alunos[1,] # Primeira linha (todas as colunas)
#> nome idade nota aprovado
#> 1 Ana 23 8.5
                        TRUE
```

```
alunos[2:3, ] # Linhas 2 e 3
     nome idade nota aprovado
             25 7.0
#> 2 Bruno
                         TRUE
#> 3 Carla
             22 9.5
                         TRUE
# Por condi o
alunos[alunos$nota > 8, ]
                                # Quem tirou mais de 8
#>
     nome idade nota aprovado
#> 1
      Ana
             23 8.5
                         TRUE
#> 3 Carla
             22 9.5
                         TRUE
alunos[alunos$idade < 24, ]
                                   # Quem tem menos de 24 anos
#>
     nome idade nota aprovado
             23 8.5
#> 1
      Ana
                         TRUE
#> 3 Carla
             22 9.5
                         TRUE
alunos[alunos$nome == "Ana", ]
                              # Linha da Ana
    nome idade nota aprovado
#> 1 Ana
            23 8.5
                        TRUE
6.8.3 Acessar C lulas Espec ficas
# [linha, coluna]
alunos[1, 2]
                    # Linha 1, coluna 2 (idade da Ana)
#> [1] 23
alunos[2, "nota"]
                   # Nota do Bruno
#> [1] 7
alunos[1:2, c(1, 3)] # Linhas 1-2, colunas nome e nota
#>
     nome nota
#> 1 Ana 8.5
#> 2 Bruno 7.0
6.8.4 Adicionar Colunas
# Criar nova coluna
alunos$frequencia <- c(95, 87, 100, 92)
alunos
     nome idade nota aprovado frequencia
#>
#> 1 Ana
             23 8.5
                         TRUE
#> 2 Bruno
             25 7.0
                         TRUE
                                      87
#> 3 Carla
             22 9.5
                         TRUE
                                     100
#> 4 Diego 24 8.0
                         TRUE
                                      92
```

#> Columns: 5

#> \$ id <int> 1, 2, 3, 4, 5

```
# Colunas calculadas
alunos$nota_ajustada <- alunos$nota * 1.1 # Aumenta 10%
alunos
#>
     nome idade nota aprovado frequencia nota_ajustada
#> 1
             23 8.5
                         TRUE
                                      95
      Ana
                                                  9.35
#> 2 Bruno
             25 7.0
                         TRUE
                                      87
                                                  7.70
#> 3 Carla
             22 9.5
                         TRUE
                                     100
                                                 10.45
#> 4 Diego
             24 8.0
                         TRUE
                                      92
                                                  8.80
6.9 2.9 Fun es teis de Explora o
# Criar dataset de exemplo
dados <- data.frame(</pre>
  id = 1:5.
 nome = c("Ana", "Bruno", "Carla", "Diego", "Elena"),
 idade = c(23, 45, 19, 34, 28),
 altura = c(1.65, 1.80, 1.58, 1.75, 1.70),
  peso = c(58, 85, 52, 78, 65)
)
# Resumo estat stico
summary(dados)
#>
         id
                   nome
                                      idade
                                                     altura
                                                                      peso
#> Min. :1
               Length:5
                                  Min.
                                         :19.0
                                                 Min.
                                                        :1.580
                                                                 Min.
                                                                        :52.0
#> 1st Qu.:2
               Class :character
                                  1st Qu.:23.0
                                                 1st Qu.:1.650
                                                                 1st Qu.:58.0
                                  Median:28.0
#> Median :3
               Mode :character
                                                 Median :1.700
                                                                 Median:65.0
#> Mean
                                  Mean
                                         :29.8
                                                        :1.696
           :3
                                                 Mean
                                                                 Mean
                                                                        :67.6
#> 3rd Qu.:4
                                  3rd Qu.:34.0
                                                 3rd Qu.:1.750
                                                                 3rd Qu.:78.0
#> Max. :5
                                         :45.0
                                                 Max. :1.800
                                  Max.
                                                                 Max.
                                                                        :85.0
# Estrutura detalhada
str(dados)
                  5 obs. of 5 variables:
#> 'data.frame':
#> $ id : int 1 2 3 4 5
#> $ nome : chr
                  "Ana" "Bruno" "Carla" "Diego" ...
#> $ idade : num 23 45 19 34 28
#> $ altura: num 1.65 1.8 1.58 1.75 1.7
#> $ peso : num 58 85 52 78 65
# Glimpse (tidyverse) - mais compacto
dplyr::glimpse(dados)
#> Rows: 5
```

```
<chr> "Ana", "Bruno", "Carla", "Diego", "Elena"
#> $ nome
#> $ idade <dbl> 23, 45, 19, 34, 28
#> $ altura <dbl> 1.65, 1.80, 1.58, 1.75, 1.70
#> $ peso <dbl> 58, 85, 52, 78, 65
# Primeiras/ ltimas linhas
head(dados, 3)
#>
     id nome idade altura peso
#> 1 1
                23
                     1.65
         Ana
                            58
#> 2 2 Bruno
                45
                     1.80
                            85
#> 3 3 Carla
                19
                     1.58
tail(dados, 2)
    id nome idade altura peso
#>
                     1.75
#> 4 4 Diego
                34
#> 5 5 Elena
                     1.70
                28
                            65
# Ver dados em planilha (n o usar em scripts - s interativo)
# View(dados)
```

7 EXERCICIO: Exerc cios Pr ticos

7.1 Exerc cio 1: Calculadora e Objetos

7.2 Exerc cio 2: Vetores

```
# a) Crie um vetor com as temperaturas da semana: 25, 27, 23, 26, 28, 30, 29
# b) Calcule a temperatura m dia
# c) Quais dias tiveram temperatura acima de 26?
```

d) Crie um vetor com os dias da semana e combine com as temperaturas

7.3 Exerc cio 3: Data Frames

```
# a) Crie um data frame com informa es de 5 amigos:
# - nome, idade, cidade, profiss o

# b) Mostre apenas os nomes

# c) Filtre apenas quem tem mais de 25 anos

# d) Adicione uma coluna "salario" com valores fict cios
```

7.4 Exerc cio 4: An lise Real

```
# Dataset: pacientes de uma cl nica

pacientes <- data.frame(
    id = 1:10,
    idade = c(34, 45, 23, 56, 41, 29, 38, 52, 31, 47),
    peso = c(70, 85, 58, 92, 75, 63, 80, 88, 65, 78),
    altura = c(1.68, 1.75, 1.60, 1.82, 1.70, 1.65, 1.78, 1.80, 1.63, 1.73),
    pressao_alta = c(F, T, F, T, T, F, F, T, F, T)
)

# a) Calcule o IMC de cada paciente (peso / altura^2)

# b) Quantos pacientes t m hipertens o?

# c) Qual a m dia de idade dos hipertensos vs. n o hipertensos?

# d) Crie uma categoria de IMC: "Baixo" (<18.5), "Normal" (18.5-24.9),
    "Sobrepeso" (25-29.9), "Obesidade" (>=30)
```

8 OBJETIVO: Pr tica Guiada: Primeiro Script

Vamos criar nosso primeiro script completo!

8.1 Passo 1: Criar Script

No RStudio: - File New File R Script (Ctrl + Shift + N) - Salve como: scripts/01_fundamentos.R

8.2 Passo 2: Escrever C digo

```
# Script: An lise Explorat ria - Fundamentos
# Autor: Seu Nome
# Data: 2025-01-XX
# Descri o: Primeiro script do curso – an lise de dados fict cios de sa de
# Carregar pacotes ----
library(tidyverse)
library(here)
# Criar dados ----
# Dados fict cios de uma cl nica
dados_clinica <- data.frame(</pre>
 paciente id = 1:20,
 idade = sample(20:70, 20, replace = TRUE),
 sexo = sample(c("M", "F"), 20, replace = TRUE),
 peso = rnorm(20, mean = 70, sd = 15),
 altura = rnorm(20, mean = 1.70, sd = 0.10),
 pressao_sistolica = rnorm(20, mean = 120, sd = 15),
 fumante = sample(c(TRUE, FALSE), 20, replace = TRUE)
)
# Explorar dados ----
glimpse(dados_clinica)
summary(dados_clinica)
# Criar vari veis derivadas ----
dados_clinica$imc <- dados_clinica$peso / dados_clinica$altura^2
dados_clinica$hipertenso <- dados_clinica$pressao_sistolica >= 140
# An lises simples ----
# M dia de idade
mean(dados_clinica$idade)
# Propor o de fumantes
mean(dados_clinica$fumante) # TRUE = 1, FALSE = 0
# IMC m dio por sexo
tapply(dados_clinica$imc, dados_clinica$sexo, mean)
# Quantos hipertensos?
```

```
table(dados_clinica$hipertenso)

# Exportar dados processados ----
# (vamos aprender mais sobre isso no Dia 4)
# write_csv(dados_clinica, here("data", "processed", "dados_clinica_processados.csv"))
# Fim do script ----
```

8.3 Passo 3: Executar

- Linha por linha: Ctrl + Enter
- Tudo: Ctrl + Shift + Enter
- At a linha atual: Ctrl + Alt + B

9 GITHUB: Primeiro Commit no GitHub

Agora vamos versionar nosso trabalho!

9.1 Via RStudio (Recomendado)

- 1. Aba Git (canto superior direito)
- 2. Marque [OK] os arquivos modificados
- 3. Clique em Commit
- 4. Escreva mensagem: "Dia 1: adiciona fundamentos e primeiro script"
- 5. Clique Commit
- 6. Clique **Push**

9.2 Via Terminal

```
# Ver o que mudou
git status

# Adicionar arquivos
git add .

# Commit
git commit -m "Dia 1: adiciona fundamentos e primeiro script"

# Enviar para GitHub
git push
```

9.3 Verificar

Abra seu reposit rio no GitHub e veja os arquivos l!

10 MATERIAL: Para Casa

- 1. Revisar todo o material do Dia 1
- 2. Refazer os exerc cios sem consultar as respostas
- 3. Explorar os cheat sheets (Help Cheat Sheets no RStudio)
- 4. Experimentar com seus pr prios dados (se tiver)
- 5. Ler cap tulos 1-3 do R for Data Science

11 Recursos Adicionais

11.1 Documenta o

- R for Data Science (2e) Cap tulos 1-4
- Hands-On Programming with R
- RStudio Cheat Sheets

11.2 Pr tica

- Swirl Aprenda R dentro do R
- R-exercises Exerc cios pr ticos

11.3 Comunidades

- Posit Community
- Stack Overflow [r]
- R-Ladies

12 D vidas Frequentes

P: Por que usar <- em vez de = para atribuição?

R: Conven o hist rica do R. Ambos funcionam, mas <- mais idiom tico.

P: Por que meu c digo n o funciona?

R: Principais causas: (1) par nteses/aspas n o fechados, (2) v rgulas faltando, (3) objeto n o existe (typo no nome), (4) pacote n o carregado.

P: Devo usar library() ou require()?

R: Use library(). Ela d erro se o pacote n o existe (o que bom!).

P: Como limpar o console?

R: Ctrl + L (mas isso n o remove objetos, s limpa visualmente).

P: Como remover objetos da mem ria?

R: rm(nome_objeto) ou rm(list = ls()) para remover tudo.

13 CURSO: Conclus o do Dia 1

Parab ns! Voc completou o Dia 1 e agora sabe:

- [OK] Configurar ambiente completo (R, RStudio, Git, GitHub)
- [OK] Tipos de dados e estruturas fundamentais
- [OK] Criar e manipular vetores e data frames
- [OK] Indexar e filtrar dados
- [OK] Organizar projetos e usar caminhos relativos
- [OK] Fazer commits no GitHub

Amanh: L gica de programa o, fun es customizadas e uso de IA!

Reposit rio: https://github.com/seu-usuario/curso-r-github-ia

^{**} ltima atualiza o:** 2025-10-07 Contato: seu-email@example.com

14 Parte 2: L gica e Programa o

15 Objetivos do Dia 2

Ao final desta aula, você será capaz de:

- Usar operadores relacionais e lógicos para comparações
- Criar estruturas condicionais (if, else, ifelse, case_when)
- Entender quando e como usar loops
- Criar funções customizadas para automatizar tarefas
- Aplicar boas práticas de código (naming, comentários, estilo)
- Fazer debugging sistemático de erros
- Usar ChatGPT e Claude de forma estratégica

16 Revisão Rápida do Dia 1

Antes de começar, vamos relembrar os conceitos fundamentais:

```
# Tipos de dados
numero <- 42
texto <- "Hello, R!"
logico <- TRUE
vetor \leftarrow c(1, 2, 3, 4, 5)
# Data frame
dados <- data.frame(</pre>
  nome = c("Ana", "Bruno", "Carla"),
  idade = c(25, 30, 28),
  nota = c(8.5, 7.0, 9.0)
)
# Indexação
dados$nome
#> [1] "Ana"
                "Bruno" "Carla"
dados[dados$idade > 26, ]
#>
      nome idade nota
#> 2 Bruno
                      7
               30
                      9
#> 3 Carla
               28
```

17 Parte 1: Operadores e Condicionais (19h00 - 20h30)

17.1 1.1 Operadores Relacionais

Operadores relacionais comparam valores e retornam TRUE ou FALSE.

```
# Iqualdade
5 == 5 # TRUE
#> [1] TRUE
5 == 3 # FALSE
#> [1] FALSE
# Diferente
5 != 3 # TRUE
#> [1] TRUE
5 != 5 # FALSE
#> [1] FALSE
# Maior/Menor
10 > 5 # TRUE
#> [1] TRUE
10 < 5 # FALSE
#> [1] FALSE
# Maior ou igual / Menor ou igual
10 >= 10 # TRUE
#> [1] TRUE
10 <= 5 # FALSE
#> [1] FALSE
# Comparação de strings (case-sensitive)
"R" == "R"
            # TRUE
#> [1] TRUE
"R" == "r"
              # FALSE
#> [1] FALSE
"R" == "Python" # FALSE
#> [1] FALSE
```

17.1.1 Aplicações Práticas

```
# Verificar aprovação
nota <- 7.5
nota >= 7 # TRUE - Aprovado!
#> [1] TRUE
# Verificar maioridade
idade <- 17
idade >= 18  # FALSE - Menor de idade
#> [1] FALSE
# Comparar preços
preco_atual <- 150</pre>
preco_anterior <- 200</pre>
preco_atual < preco_anterior # TRUE - Está mais barato!</pre>
#> [1] TRUE
# Vetorizado
notas \leftarrow c(8.5, 6.0, 9.0, 5.5, 7.5)
notas >= 7 # TRUE FALSE TRUE FALSE TRUE
#> [1] TRUE FALSE TRUE FALSE TRUE
```

17.2 1.2 Operadores Lógicos

Operadores lógicos combinam condições.

```
# E (AND) - & ou & & 
# Ambas condições devem ser TRUE

TRUE & TRUE # TRUE

#> [1] TRUE

TRUE & FALSE # FALSE

#> [1] FALSE

#> [1] FALSE

#> [1] FALSE

#> [1] TRUE

#> [1] FALSE

#> [1] FALSE

#> [1] FALSE

#> [1] FALSE

# OU (OR) - | ou ||

# Pelo menos uma condição deve ser TRUE

TRUE | FALSE # TRUE

#> [1] TRUE

FALSE | FALSE # FALSE

#> [1] FALSE
```

```
# NÃO (NOT) - !
# Inverte o resultado
!TRUE # FALSE
#> [1] FALSE
!FALSE # TRUE
#> [1] TRUE
17.2.1 Diferença entre & e &&
# & é vetorizado (compara elemento por elemento)
c(TRUE, FALSE, TRUE) & c(TRUE, TRUE, FALSE)
#> [1] TRUE FALSE FALSE
# && avalia apenas o primeiro elemento (usa com escalares)
TRUE && TRUE # TRUE
#> [1] TRUE
FALSE && TRUE # FALSE
#> [1] FALSE
# CUIDADO: & com vetores usa apenas primeiro elemento
# c(TRUE, FALSE) & c(TRUE, TRUE) # Evite! Use & para vetores
# Regra: Use & para vetores, && para condições únicas em if
17.2.2 Aplicações Práticas
# Pode dirigir? (maior de idade E tem carteira)
idade <- 25
tem_carteira <- TRUE</pre>
idade >= 18 & tem_carteira # TRUE
#> [1] TRUE
# Desconto especial (idoso OU estudante)
idade <- 70
estudante <- FALSE
idade >= 60 | estudante # TRUE - Tem desconto!
#> [1] TRUE
# Aprovado em pelo menos uma prova
prova1 <- 6.0
prova2 <- 8.0
prova1 >= 7 | prova2 >= 7 # TRUE
#> [1] TRUE
```

```
# Vetorizado
idades <- c(16, 22, 35, 17, 28)
tem_carteiras <- c(FALSE, TRUE, TRUE, FALSE, TRUE)

# Quem pode dirigir?
pode_dirigir <- idades >= 18 & tem_carteiras
pode_dirigir

#> [1] FALSE TRUE TRUE FALSE TRUE
```

17.3 1.3 Ordem de Precedência

Quando múltiplos operadores são usados, há uma ordem de avaliação:

```
# 1. Parênteses ()
# 2. NOT (!)
# 3. Relacionais (>, <, ==, etc)
# 4. AND (&)
# 5. OR (|)
# Exemplo
idade <- 25
tem_carteira <- TRUE
tem_carro <- FALSE</pre>
# SEM parênteses (pode confundir)
idade >= 18 & tem_carteira | tem_carro
#> [1] TRUE
# COM parênteses (mais claro)
(idade >= 18 & tem_carteira) | tem_carro
#> [1] TRUE
# Sempre use parênteses quando tiver dúvida!
```

17.4 1.4 Estruturas Condicionais: if e else

if executa código apenas se a condição for TRUE.

17.4.1 Sintaxe Básica

```
# Estrutura simples
nota <- 8.5
if (nota >= 7) {
```

```
print("Aprovado!")
}

#> [1] "Aprovado!"

# Com else
nota <- 5.5

if (nota >= 7) {
   print("Aprovado!")
} else {
   print("Reprovado!")
}
```

#> [1] "Reprovado!"

17.4.2 Múltiplas Condições: else if

```
nota <- 8.5

if (nota >= 9) {
    print("Excelente!")
} else if (nota >= 7) {
    print("Bom!")
} else if (nota >= 5) {
    print("Regular")
} else {
    print("Insuficiente")
}
```

#> [1] "Bom!"

17.4.3 Boas Práticas com if/else

```
# BOM: Use chaves mesmo para uma linha
if (x > 0) {
    print("Positivo")
}

# RUIM: Sem chaves (menos legível)
if (x > 0) print("Positivo")

# BOM: Indentação consistente
if (condicao1) {
    # código
    if (condicao2) {
        # código aninhado
    }
}
```

```
# BOM: Condições complexas em variáveis
usuario_valido <- idade >= 18 & tem_cadastro
if (usuario_valido) {
  # código
# RUIM: Condição muito longa
if (idade >= 18 & tem_cadastro & email_verificado & termos_aceitos) {
  # código
```

1.5 ifelse() - Versão Vetorizada

```
Para aplicar condições em vetores inteiros, use ifelse().
# Sintaxe: ifelse(teste, se_verdadeiro, se_falso)
# Exemplo simples
x < -5
resultado <- ifelse(x > 0, "Positivo", "Não positivo")
resultado
#> [1] "Positivo"
# Vetorizado
notas \leftarrow c(8.5, 6.0, 9.0, 5.5, 7.5)
status <- ifelse(notas >= 7, "Aprovado", "Reprovado")
status
#> [1] "Aprovado" "Reprovado" "Reprovado" "Reprovado"
# Criar coluna em data frame
alunos <- data.frame(</pre>
 nome = c("Ana", "Bruno", "Carla", "Diego"),
 nota = c(8.5, 6.0, 9.0, 5.5)
alunos$status <- ifelse(alunos$nota >= 7, "Aprovado", "Reprovado")
alunos
#>
      nome nota
                   status
#> 1 Ana 8.5 Aprovado
#> 2 Bruno 6.0 Reprovado
#> 3 Carla 9.0 Aprovado
#> 4 Diego 5.5 Reprovado
# ifelse aninhado (evite! Use case_when)
alunos$conceito <- ifelse(alunos$nota >= 9, "A",
                   ifelse(alunos$nota >= 7, "B",
```

```
ifelse(alunos$nota >= 5, "C", "D")))
alunos

#> nome nota status conceito
#> 1 Ana 8.5 Aprovado B
#> 2 Bruno 6.0 Reprovado C
#> 3 Carla 9.0 Aprovado A
#> 4 Diego 5.5 Reprovado C
```

17.6 1.6 case_when() - Múltiplas Condições

case_when() do dplyr é mais elegante para múltiplas condições.

```
library(tidyverse)

# Sintaxe
notas <- c(9.5, 7.5, 5.5, 8.0, 6.5, 3.0)

conceito <- case_when(
   notas >= 9 ~ "A",
   notas >= 7 ~ "B",
   notas >= 5 ~ "C",
   TRUE ~ "D" # Caso contrário (default)
)
conceito
```

```
#> [1] "A" "B" "C" "B" "C" "D"
```

```
# Em data frame
alunos <- data.frame(
   nome = c("Ana", "Bruno", "Carla", "Diego", "Elena"),
   nota = c(9.5, 7.5, 5.5, 8.0, 6.5)
)

alunos <- alunos %>%
   mutate(
        conceito = case_when(
            nota >= 9 ~ "A - Excelente",
            nota >= 7 ~ "B - Bom",
            nota >= 5 ~ "C - Regular",
            TRUE ~ "D - Insuficiente"
        )
        )

alunos
```

```
#> nome nota conceito
#> 1 Ana 9.5 A - Excelente
```

```
#> 2 Bruno 7.5
                     B - Bom
#> 3 Carla 5.5
                C - Regular
#> 4 Diego 8.0
                     B - Bom
#> 5 Elena 6.5 C - Regular
# Múltiplas variáveis
alunos <- alunos %>%
 mutate(
   situacao = case_when(
     nota >= 7 & nota < 9 ~ "Aprovado",
     nota >= 9 ~ "Aprovado com Distinção",
     nota >= 5 ~ "Recuperação",
     TRUE ~ "Reprovado"
   )
  )
alunos
                    conceito
#>
     nome nota
                                           situacao
     Ana 9.5 A - Excelente Aprovado com Distinção
#> 1
#> 2 Bruno 7.5
                    B - Bom
                                           Aprovado
#> 3 Carla 5.5
                C - Regular
                                        Recuperação
#> 4 Diego 8.0
                     B - Bom
                                           Aprovado
#> 5 Elena 6.5
               C - Regular
                                        Recuperação
```

17.7 1.7 Operador %in%

Verifica se valores estão dentro de um conjunto.

```
# Básico
"Ana" %in% c("Ana", "Bruno", "Carla") # TRUE

#> [1] TRUE

"João" %in% c("Ana", "Bruno", "Carla") # FALSE

#> [1] FALSE

# Vetorizado
nomes <- c("Ana", "João", "Bruno", "Maria")
nomes %in% c("Ana", "Bruno", "Carla")

#> [1] TRUE FALSE TRUE FALSE

# Filtrar data frame
alunos <- data.frame(
    nome = c("Ana", "Bruno", "Carla", "Diego", "Elena"),
    nota = c(9.5, 7.5, 5.5, 8.0, 6.5)
)</pre>
```

```
# Alunos específicos
alunos[alunos$nome %in% c("Ana", "Carla"), ]
#>
      nome nota
#> 1
       Ana 9.5
#> 3 Carla 5.5
# Com dplyr
alunos %>%
 filter(nome %in% c("Ana", "Carla", "Elena"))
#>
      nome nota
#> 1
       Ana 9.5
#> 2 Carla 5.5
#> 3 Elena 6.5
# Negação: NÃO está em
alunos %>%
 filter(!nome %in% c("Bruno", "Diego"))
#>
      nome nota
#> 1
       Ana 9.5
#> 2 Carla 5.5
#> 3 Elena 6.5
```

18 INTERVALO (20h30 - 20h50)

Aproveite para: - Tomar água/café - Revisar os conceitos - Tirar dúvidas no grupo

19 Parte 2: Loops, Funções e Boas Práticas (20h50 - 22h00)

19.1 2.1 Loops: for

Loop for repete código um número determinado de vezes.

19.1.1 Sintaxe Básica

```
# Estrutura básica
for (i in 1:5) {
   print(i)
}

#> [1] 1
#> [1] 2
#> [1] 3
#> [1] 4
```

#> [1] 1 4 9 16 25

```
#> [1] 5
# Com vetor
frutas <- c("Maçã", "Banana", "Laranja")</pre>
for (fruta in frutas) {
  print(paste("Eu gosto de", fruta))
}
#> [1] "Eu gosto de Maçã"
#> [1] "Eu gosto de Banana"
#> [1] "Eu gosto de Laranja"
# Índice com seq_along (mais sequro)
for (i in seq_along(frutas)) {
  print(paste(i, "-", frutas[i]))
#> [1] "1 - Maçã"
#> [1] "2 - Banana"
#> [1] "3 - Laranja"
19.1.2 Acumulando Resultados
# Soma
soma <- 0
for (i in 1:10) {
  soma <- soma + i
}
soma
#> [1] 55
# Criar vetor de resultados
# RUIM: crescer vetor dentro do loop
resultados <- c()
for (i in 1:5) {
  resultados <- c(resultados, i^2)
}
# BOM: pré-alocar vetor
resultados <- numeric(5) # Vetor de zeros
for (i in 1:5) {
  resultados[i] <- i^2
resultados
```

19.1.3 Loops Aninhados

```
# Tabuada
for (i in 1:3) {
    for (j in 1:3) {
        print(paste(i, "x", j, "=", i * j))
    }
}

#> [1] "1 x 1 = 1"
#> [1] "1 x 2 = 2"
#> [1] "1 x 3 = 3"
#> [1] "2 x 1 = 2"
#> [1] "2 x 2 = 4"
#> [1] "2 x 3 = 6"
#> [1] "3 x 1 = 3"
#> [1] "3 x 2 = 6"
#> [1] "3 x 3 = 9"
```

19.2 2.2 Vetorização vs Loops

R é vetorizado - prefira operações vetorizadas!

```
# LENTO: Loop
x <- 1:1000
resultado <- numeric(length(x))</pre>
for (i in seq_along(x)) {
  resultado[i] <- x[i]^2
}
# RÁPIDO: Vetorizado
resultado <- x^2
# Benchmark
library(microbenchmark)
microbenchmark(
  loop = {
    resultado <- numeric(1000)
    for (i in 1:1000) resultado[i] <- i^2</pre>
  },
  vetorizado = {
    resultado <- (1:1000)^2
  },
  times = 100
```

#> Unit: microseconds

```
#>
          expr
                   min
                             lq
                                     mean median
                                                                max neval
                                                         uq
#>
          loop 399.340 404.301 411.38580 407.376 411.4145 474.739
                                                                       100
  vetorizado
                 1.476
                          1.640
                                  1.78596
                                            1.763
                                                     1.8655
                                                              3.198
                                                                      100
```

19.2.1 Quando Usar Loops?

Use loops quando: - Cada iteração depende da anterior - Operação não é vetorizável - Código fica mais legível com loop

```
# Fibonacci (cada termo depende dos anteriores)
fib <- numeric(10)</pre>
fib[1] <- 1
fib[2] <- 1
for (i in 3:10) {
  fib[i] \leftarrow fib[i-1] + fib[i-2]
}
fib
    [1] 1 1 2 3 5 8 13 21 34 55
# Simulação com estado
saldo <- 1000
for (mes in 1:12) {
  juros <- saldo * 0.01
  saldo <- saldo + juros
  print(paste("Mês", mes, "- Saldo:", round(saldo, 2)))
#> [1] "Mês 1 - Saldo: 1010"
#> [1] "Mês 2 - Saldo: 1020.1"
#> [1] "Mês 3 - Saldo: 1030.3"
#> [1] "Mês 4 - Saldo: 1040.6"
#> [1] "Mês 5 - Saldo: 1051.01"
#> [1] "Mês 6 - Saldo: 1061.52"
#> [1] "Mês 7 - Saldo: 1072.14"
#> [1] "Mês 8 - Saldo: 1082.86"
#> [1] "Mês 9 - Saldo: 1093.69"
#> [1] "Mês 10 - Saldo: 1104.62"
#> [1] "Mês 11 - Saldo: 1115.67"
#> [1] "Mês 12 - Saldo: 1126.83"
```

19.3 2.3 Loops: while e repeat

19.3.1 while

Executa **enquanto** condição for TRUE.

```
# Básico
contador <- 1
```

```
while (contador <= 5) {</pre>
  print(contador)
  contador <- contador + 1</pre>
}
#> [1] 1
#> [1] 2
#> [1] 3
#> [1] 4
#> [1] 5
# Cuidado: loop infinito!
# while (TRUE) {
# print("Infinito!")
# }
# Uso prático: convergência
valor <- 100
iteracoes <- 0
while (valor > 1) {
  valor <- valor / 2</pre>
  iteracoes <- iteracoes + 1</pre>
}
print(paste("Convergiu em", iteracoes, "iterações"))
```

#> [1] "Convergiu em 7 iterações"

19.3.2 repeat e break

```
# repeat com break
contador <- 1

repeat {
    print(contador)
    contador <- contador + 1

    if (contador > 5) {
        break # Sai do loop
    }
}

#> [1] 1
#> [1] 2
#> [1] 3
#> [1] 4
#> [1] 5
```

```
# next: pula iteração
for (i in 1:5) {
   if (i == 3) {
      next # Pula o 3
   }
   print(i)
}

#> [1] 1
#> [1] 2
#> [1] 4
#> [1] 5
```

19.4 2.4 Funções Customizadas

Funções permitem reutilizar código e deixá-lo mais organizado.

19.4.1 Sintaxe Básica

```
# Estrutura
# nome_funcao <- function(argumentos) {</pre>
# corpo da função
  return(resultado)
# }
# Exemplo simples
saudar <- function(nome) {</pre>
  mensagem <- paste("Olá,", nome, "!")</pre>
  return(mensagem)
}
saudar("Ana")
#> [1] "Olá, Ana !"
saudar("Bruno")
#> [1] "Olá, Bruno !"
# Return implícito (última linha)
dobro <- function(x) {</pre>
  x * 2
}
dobro(5)
#> [1] 10
```

19.4.2 Argumentos

```
# Múltiplos argumentos
calcular_imc <- function(peso, altura) {</pre>
  imc <- peso / altura^2</pre>
  return(imc)
}
calcular_imc(70, 1.75)
#> [1] 22.85714
calcular_imc(85, 1.80)
#> [1] 26.23457
# Argumentos opcionais (valores padrão)
saudar <- function(nome, saudacao = "Olá") {</pre>
  mensagem <- paste(saudacao, nome, "!")</pre>
  return(mensagem)
}
saudar("Ana") # Usa padrão
#> [1] "Olá Ana !"
saudar("Bruno", "Bom dia") # Sobrescreve
#> [1] "Bom dia Bruno !"
# Argumentos nomeados
saudar(saudacao = "Boa noite", nome = "Carla")
#> [1] "Boa noite Carla !"
```

19.4.3 Validação de Argumentos

```
# Boa prática: validar entrada
calcular_imc <- function(peso, altura) {
    # Validações
    if (!is.numeric(peso) | !is.numeric(altura)) {
        stop("Peso e altura devem ser numéricos!")
    }
    if (peso <= 0 | altura <= 0) {
        stop("Peso e altura devem ser positivos!")
    }

# Cálculo
imc <- peso / altura^2
return(imc)</pre>
```

```
}
calcular_imc(70, 1.75) # OK
#> [1] 22.85714
# calcular_imc(-70, 1.75) # Erro!
# calcular_imc("70", 1.75) # Erro!
19.4.4 Retornando Múltiplos Valores
# Use lista para retornar múltiplos valores
calcular_imc_completo <- function(peso, altura) {</pre>
  imc <- peso / altura^2</pre>
  # Classificação
  classificacao <- case_when(</pre>
    imc < 18.5 ~ "Abaixo do peso",
    imc < 25 ~ "Peso normal",</pre>
    imc < 30 ~ "Sobrepeso",</pre>
    TRUE ~ "Obesidade"
  )
  # Retornar lista
  resultado <- list(
    imc = round(imc, 2),
    classificacao = classificacao,
    peso = peso,
    altura = altura
  )
  return(resultado)
}
# Usar
resultado <- calcular_imc_completo(70, 1.75)
resultado$imc
#> [1] 22.86
resultado$classificacao
#> [1] "Peso normal"
# Ou desempacotar
res <- calcular_imc_completo(85, 1.80)
```

```
#> [1] "IMC: 26.23 - Sobrepeso"
```

print(paste("IMC:", res\$imc, "-", res\$classificacao))

19.4.5 Funções Vetorizadas

```
# Função simples (não vetorizada)
classificar_nota <- function(nota) {</pre>
  if (nota >= 7) {
   return("Aprovado")
 } else {
    return("Reprovado")
}
classificar_nota(8) # OK
#> [1] "Aprovado"
# classificar_nota(c(8, 6, 9)) # Só retorna primeiro!
# Solução 1: Vetorizar manualmente
classificar_notas_vec <- function(notas) {</pre>
  sapply(notas, function(nota) {
    if (nota >= 7) "Aprovado" else "Reprovado"
 })
}
classificar_notas_vec(c(8, 6, 9))
#> [1] "Aprovado" "Reprovado" "Aprovado"
# Solução 2: Usar ifelse dentro
classificar_notas_v2 <- function(notas) {</pre>
  ifelse(notas >= 7, "Aprovado", "Reprovado")
}
classificar_notas_v2(c(8, 6, 9))
#> [1] "Aprovado" "Reprovado" "Aprovado"
```

19.5 2.5 Boas Práticas de Código

19.5.1 Naming Conventions

```
# R usa snake_case (recomendado)
calcular_media_ponderada <- function(x, pesos) { }
dados_processados <- read_csv("dados.csv")
numero_de_alunos <- 30

# Evite camelCase (menos comum em R)
calcularMediaPonderada <- function(x, pesos) { }</pre>
```

```
# Evite nomes muito curtos
cm <- function(x) mean(x) # O que significa?

# Evite nomes muito longos
funcao_para_calcular_media_ponderada_de_notas <- function(x) { }

# Nomes descritivos
# BOM
calcular_media <- function(x) { }
dados_alunos <- data.frame()

# RUIM
calc <- function(x) { }
d <- data.frame()</pre>
```

19.5.2 Comentários Eficientes

```
# BOM: Explica o "por quê"
# Remove outliers para não distorcer a média
dados_limpos <- dados[dados$valor < quantile(dados$valor, 0.95), ]</pre>
# Agrupa por região para análise comparativa
resultado <- dados %>%
 group_by(regiao) %>%
 summarize(media = mean(valor))
# RUIM: Explica o óbvio
# Calcula a média
media <- mean(dados$valor)</pre>
# Cria um data frame
df \leftarrow data.frame(x = 1:10)
# BOM: Comentário de seção
# Análise Exploratória
# -----
# RUIM: Código comentado (delete!)
# x <- 1:10
# y <- x^2
# plot(x, y)
```

19.5.3 Estilo de Código

```
# Espaçamento
# BOM
resultado \leftarrow (x + y) * 2
if (x > 0) {
  print("Positivo")
}
# RUIM
resultado<-(x+y)*2
if(x>0){print("Positivo")}
# Indentação (2 espaços padrão R)
# BOM
if (condicao1) {
  # código
  if (condicao2) {
    # código aninhado
  }
}
# RUIM
if (condicao1) {
# código
if (condicao2) {
# código
}
}
# Comprimento de linha (max 80 caracteres)
# BOM
dados %>%
  filter(idade > 18) %>%
  select(nome, idade) %>%
  arrange(desc(idade))
# RUIM
dados %>% filter(idade > 18) %>% select(nome, idade) %>% arrange(desc(idade))
# Pacotes styler e lintr
library(styler)
style_file("meu_script.R")
library(lintr)
lint("meu_script.R")
```

19.6 2.6 Debugging

19.6.1 Lendo Mensagens de Erro

```
# Tipos de mensagem
# 1. ERROR: código não executa
# x + y # Error: object 'x' not found

# 2. WARNING: executa mas com aviso
log(-1) # Warning: NaNs produced

#> [1] NaN
# 3. MESSAGE: informativo
library(tidyverse) # Messages sobre conflitos
```

19.6.2 Anatomia de um Erro

```
# Exemplo de erro
dados <- data.frame(x = 1:3, y = 4:6)
dados$z + 10

# Error: object 'z' not found
#
# Interpretação:
# - O que: tentou acessar coluna 'z'
# - Problema: coluna não existe
# - Solução: verificar nomes com names(dados)</pre>
```

19.6.3 Estratégias de Debugging

#> [1] "Depois de somar: 20"

```
# 1. print() para checkpoints
minha_funcao <- function(x) {
    print(paste("Entrada:", x))

    resultado <- x * 2
    print(paste("Depois de multiplicar:", resultado))

    resultado <- resultado + 10
    print(paste("Depois de somar:", resultado))

    return(resultado)
}

minha_funcao(5)

#> [1] "Entrada: 5"
#> [1] "Depois de multiplicar: 10"
```

```
#> [1] 20
# 2. str() para ver estrutura
dados \leftarrow data.frame(x = 1:3, y = 4:6)
str(dados)
#> 'data.frame':
                     3 obs. of 2 variables:
#> $ x: int 1 2 3
#> $ y: int 4 5 6
# 3. class() e typeof()
x <- 5
class(x)
#> [1] "numeric"
typeof(x)
#> [1] "double"
# 4. traceback() após erro
# funcao_com_erro <- function() {</pre>
# outra_funcao()
# }
#
# outra_funcao <- function() {</pre>
# stop("Erro!")
# }
# funcao_com_erro()
# traceback()
# 5. debug() e browser()
# debug(minha_funcao)
# minha_funcao(5)
# undebug(minha_funcao)
```

19.6.4 Erros Comuns

```
# 1. Objeto não existe
y + 2 # Error: object 'y' not found

# 2. Tipo errado
"abc" + 2 # Error: non-numeric argument

# 3. Parênteses/aspas não fechados
print("texto
# + (espera mais entrada)

# 4. Vírgulas faltando
```

```
c(1 2 3) # Error

# 5. Indexação fora dos limites
x <- c(1, 2, 3)
x[5] # NA (não erro!)

# 6. Pacote não carregado
ggplot(data) # Error: could not find function
library(ggplot2) # Solução</pre>
```

19.7 2.7 IA como Assistente

19.7.1 ChatGPT vs Claude

Use ChatGPT para: - Debugging rápido - Código curto (< 50 linhas) - Explicações diretas - Sugestões rápidas

Use Claude para: - Revisão de código longo - Explicações conceituais profundas - Documentação completa - Análise de scripts complexos

19.7.2 Boas Práticas com IA

```
# PROMPT RUIM
# "Como calcular IMC?"
# PROMPT BOM
# "Estou criando uma função em R para calcular IMC que recebe peso e altura.
# A função deve:
# 1. Validar se os valores são numéricos e positivos
# 2. Calcular IMC = peso / altura^2
# 3. Retornar IMC arredondado para 2 casas decimais
# Pode me ajudar?"
# PROMPT RUIM
# "Meu código não funciona"
# PROMPT BOM
# "Tenho este código em R que calcula média de notas:
# calcular_media <- function(notas) {</pre>
  soma <- 0
   for (i in notas) {
#
    soma < - soma + i
   media <- soma / length(nota)</pre>
   return(media)
# }
```

```
#
# Quando executo calcular_media(c(8, 7, 9)), recebo erro:
# 'object nota not found'. O que está errado?"

# SEMPRE:
# 1. Forneça contexto completo
# 2. Cole código exato (se possível)
# 3. Cole mensagem de erro completa
# 4. Explique o que tentou fazer
# 5. TESTE o código sugerido
# 6. ENTENDA antes de usar
```

19.7.3 Exemplo de Uso de IA

```
# Você tem:
calcular media <- function(notas) {</pre>
  soma <- 0
  for (i in notas) {
    soma <- soma + i
  }
  media <- soma / length(nota) # BUG: 'nota' deveria ser 'notas'
  return(media)
}
# ChatGPT/Claude identifica:
# - Typo: 'nota' → 'notas'
# - Sugere versão vetorizada: mean(notas)
# - Explica o erro
# Você aprende e corrige:
calcular_media <- function(notas) {</pre>
  mean(notas) # Mais simples!
```

20 Exercícios Práticos

20.1 Exercício 1: Condicionais

```
# a) Crie função que classifica temperatura:
# - Abaixo de 15: "Frio"
# - 15-25: "Agradável"
# - Acima de 25: "Quente"

classificar_temperatura <- function(temp) {
    # Seu código aqui</pre>
```

```
# Teste
classificar_temperatura(10) # "Frio"
classificar_temperatura(20) # "Agradável"
classificar_temperatura(30) # "Quente"

# b) Versão vetorizada
temperaturas <- c(12, 18, 28, 15, 32)
# Classifique todas de uma vez</pre>
```

20.2 Exercício 2: Loops

```
# a) Calcule o fatorial de 5 usando loop
# 5! = 5 × 4 × 3 × 2 × 1 = 120

# b) Sequência de Fibonacci até o 10º termo
# 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

# c) Conte quantos números de 1 a 100 são divisíveis por 7
```

20.3 Exercício 3: Funções

```
# a) Crie função para converter Celsius em Fahrenheit
     Fórmula: F = C \times 9/5 + 32
celsius_para_fahrenheit <- function(celsius) {</pre>
  # Seu código aqui
}
# Teste
celsius_para_fahrenheit(0)
celsius_para_fahrenheit(100) # 212
# b) Crie função que retorna estatísticas de um vetor:
     - média, mediana, desvio padrão, mínimo, máximo
estatisticas <- function(x) {</pre>
  # Seu código aqui
  # Retorne uma lista
}
# Teste
valores <- c(23, 45, 19, 34, 28, 52, 31)
```

```
stats <- estatisticas(valores)
stats$media
stats$mediana</pre>
```

20.4 Exercício 4: Integração

```
# Dataset: pacientes de uma clínica
pacientes <- data.frame(</pre>
  id = 1:20,
  idade = c(34, 45, 23, 56, 41, 29, 38, 52, 31, 47,
            39, 44, 27, 58, 33, 49, 26, 55, 36, 42),
 peso = c(70, 85, 58, 92, 75, 63, 80, 88, 65, 78,
           72, 86, 60, 95, 73, 82, 62, 90, 68, 76),
 altura = c(1.68, 1.75, 1.60, 1.82, 1.70, 1.65, 1.78, 1.80, 1.63, 1.73,
             1.69, 1.76, 1.61, 1.83, 1.71, 1.77, 1.64, 1.81, 1.67, 1.74),
 fumante = c(F, T, F, T, T, F, F, T, F, T,
             F, T, F, T, F, T, F, T)
# a) Crie função para calcular IMC e classificar
# b) Aplique a função a todos os pacientes
# c) Quantos pacientes estão em cada categoria de IMC?
# d) Qual a média de idade dos fumantes vs não fumantes?
# e) Use IA (ChatGPT ou Claude) para otimizar seu código
```

21 Prática Guiada: Função Completa

Vamos criar uma função profissional para análise de dados:

```
#' Análise Descritiva de Variável Numérica
#'
#' @param x Vetor numérico
#' @param nome_var Nome da variável (opcional)
#' @param remover_na Remove NAs? Padrão TRUE
#' @return Lista com estatísticas descritivas
analise_descritiva <- function(x, nome_var = "Variável", remover_na = TRUE) {</pre>
```

```
# Validação
  if (!is.numeric(x)) {
    stop("x deve ser numérico!")
  }
  # Remover NAs se necessário
  if (remover na) {
   x \leftarrow na.omit(x)
  # Verificar se há dados
  if (length(x) == 0) {
    stop("Vetor vazio após remover NAs!")
  }
  # Calcular estatísticas
  stats <- list(
    variavel = nome_var,
    n = length(x),
    n_n = sum(is.na(x)),
    media = mean(x, na.rm = TRUE),
    mediana = median(x, na.rm = TRUE),
    desvio = sd(x, na.rm = TRUE),
    minimo = min(x, na.rm = TRUE),
    maximo = max(x, na.rm = TRUE),
    q25 = quantile(x, 0.25, na.rm = TRUE),
    q75 = quantile(x, 0.75, na.rm = TRUE)
  )
  # Retornar
  class(stats) <- "analise_desc" # Classe customizada</pre>
  return(stats)
}
# Método print customizado
print.analise_desc <- function(x) {</pre>
  cat("\n")
  cat("Análise Descritiva:", x$variavel, "\n")
  cat(strrep("=", 50), "\n")
  cat("N:", x$n, "\n")
  cat("NAs:", x$n_na, "\n")
  cat("Média:", round(x$media, 2), "\n")
  cat("Mediana:", round(x$mediana, 2), "\n")
  cat("Desvio padrão:", round(x$desvio, 2), "\n")
  cat("Minimo:", round(x$minimo, 2), "\n")
  cat("Máximo:", round(x$maximo, 2), "\n")
  cat("Q25:", round(x$q25, 2), "\n")
```

```
cat("Q75:", round(x$q75, 2), "\n")
 cat(strrep("=", 50), "\n\n")
}
# Usar
dados <- c(23, 45, 19, 34, NA, 28, 52, 31)
resultado <- analise_descritiva(dados, "Idade")
print(resultado)
#>
#> Análise Descritiva: Idade
#> N: 7
#> NAs: 0
#> Média: 33.14
#> Mediana: 31
#> Desvio padrão: 11.77
#> Mínimo: 19
#> Máximo: 52
#> Q25: 25.5
#> Q75: 39.5
```

22 Commit no GitHub

Vamos versionar nosso progresso:

```
# Via Terminal
git add .
git commit -m "Dia 2: adiciona lógica, funções e boas práticas"
git push
```

Ou via RStudio: 1. Aba Git 2. Stage arquivos 3. Commit 4. Push

23 Para Casa

- 1. Refazer todos os exercícios sem consultar
- 2. Criar 3 funções úteis para sua área de trabalho
- 3. Praticar debugging com código propositalmente errado
- 4. Usar ChatGPT/Claude para explicar conceitos difíceis
- 5. Ler capítulos 4-5 do R for Data Science

24 Recursos Adicionais

24.1 Documentação

- Advanced R Functions
- R for Data Science Control Flow
- RStudio Debugging

24.2 Prática

- Exercism R Track
- Codewars R

24.3 Estilo

- Tidyverse Style Guide
- Pacote styler para formatação automática
- Pacote lintr para verificação de estilo

25 Dúvidas Frequentes

P: Quando usar for vs apply/map?

R: Use for quando cada iteração depende da anterior. Use apply/map para operações independentes (mais rápido e elegante).

P: ifelse vs case_when?

R: ifelse para 2 opções, case when para 3+.

P: Como escolher entre ChatGPT e Claude?

R: ChatGPT para respostas rápidas, Claude para análises profundas.

P: Meu código funciona mas é lento. O que fazer?

R: 1) Vetorize operações, 2) Use funções do tidyverse, 3) Profile com profvis, 4) Pergunte para IA.

26 Conclusão do Dia 2

Parabéns! Você completou o Dia 2 e agora sabe:

- Usar operadores lógicos e relacionais
- Criar estruturas condicionais eficientes
- Entender quando usar loops
- Criar funções customizadas
- Aplicar boas práticas de código
- Fazer debugging sistemático
- Usar IA de forma estratégica

Amanhã: Manipulação de dados com tidyverse!

Última atualização: 2025-10-07

 $\textbf{Contato:} \ junqueira vinicius@hotmail.com$

Repositório: https://github.com/viniciusjunqueira/curso-r-github-ia

Lattes: http://lattes.cnpq.br/4686677580216927

27 Parte 3: Manipula o de Dados

28 Objetivos do Dia 3

Ao final desta aula, você será capaz de:

- Entender a filosofia tidyverse e princípios de "tidy data"
- Usar os verbos essenciais do dplyr (filter, select, mutate, etc.)
- Transformar dados entre formatos wide e long (tidyr)
- Tratar valores ausentes de forma adequada
- Usar ferramentas modernas (janitor, skimr)
- Criar pipelines complexos de manipulação
- Otimizar código com ajuda de IA (Claude)

29 Revisão Rápida do Dia 2

```
# Condicionais
idade <- 25
status <- ifelse(idade >= 18, "Maior", "Menor")

# Funções
calcular_media <- function(x) {
  mean(x, na.rm = TRUE)
}

notas <- c(8, 7, 9, 6)
calcular_media(notas)

#> [1] 7.5
```

30 Parte 1: Tidyverse e dplyr (19h00 - 20h30)

30.1 1.1 O que é Tidyverse?

Tidyverse é uma coleção de pacotes R para ciência de dados que compartilham uma filosofia comum.

```
# Carregar tidyverse (carrega vários pacotes de uma vez)
library(tidyverse)

# Pacotes principais carregados:
# - ggplot2: visualização
# - dplyr: manipulação de dados
```

```
# - tidyr: organização de dados
# - readr: leitura de dados
# - purrr: programação funcional
# - tibble: data frames modernos
# - stringr: manipulação de strings
# - forcats: manipulação de fatores
```

30.1.1 Filosofia Tidyverse

Princípios fundamentais:

- 1. Reutilizar estruturas de dados existentes
- 2. Compor funções simples usando o pipe
- 3. Abraçar programação funcional
- 4. Projetado para humanos

30.2 1.2 Tidy Data (Dados Arrumados)

Três regras para dados tidy:

- 1. Cada **variável** é uma coluna
- 2. Cada **observação** é uma linha
- 3. Cada **valor** é uma célula

DADOS TIDY (arrumados)

#> # A tibble: 2 x 3

```
tidy_data <- tibble(</pre>
  pais = c("Brasil", "Brasil", "Argentina", "Argentina"),
  ano = c(2020, 2021, 2020, 2021),
  pib = c(1.5, 1.6, 0.4, 0.5)
tidy_data
#> # A tibble: 4 x 3
#>
     pais
                 ano
                        pib
     <chr>
               <dbl> <dbl>
#> 1 Brasil
                2020
                        1.5
#> 2 Brasil
                2021
                        1.6
#> 3 Argentina 2020
                        0.4
#> 4 Argentina 2021
                        0.5
# DADOS UNTIDY (bagunçados - formato wide)
untidy_data <- tibble(</pre>
  pais = c("Brasil", "Argentina"),
  pib_2020 = c(1.5, 0.4),
  pib_2021 = c(1.6, 0.5)
untidy_data
```

```
#>
               pib_2020 pib_2021
     pais
#>
     <chr>
                  <dbl>
                            <dbl>
#> 1 Brasil
                     1.5
                              1.6
#> 2 Argentina
                    0.4
                              0.5
# Dados tidy facilitam análise!
tidy_data %>%
  group_by(pais) %>%
  summarize(media_pib = mean(pib))
#> # A tibble: 2 x 2
#>
     pais
               media_pib
     <chr>
                   <dbl>
#>
#> 1 Argentina
                    0.45
#> 2 Brasil
                     1.55
```

30.3 1.3 O Operador Pipe: %>%

O pipe (%>%) passa o resultado de uma função como primeiro argumento da próxima.

```
# SEM pipe (aninhado - difícil de ler)
round(mean(c(1, 2, 3, NA), na.rm = TRUE), 2)
```

```
#> [1] 2
```

```
# COM pipe (sequencial - fácil de ler)
c(1, 2, 3, NA) %>%
  mean(na.rm = TRUE) %>%
  round(2)
```

```
#> [1] 2
```

```
# Equivalente a:

# x \leftarrow c(1, 2, 3, NA)

# x \leftarrow mean(x, na.rm = TRUE)

# x \leftarrow round(x, 2)

# Atalho: Ctrl + Shift + M (Windows/Linux) ou Cmd + Shift + M (Mac)
```

30.3.1 Native Pipe (|>)

R 4.1+ tem pipe nativo:

```
# Pipe nativo |> (funciona igual)
c(1, 2, 3, NA) |>
  mean(na.rm = TRUE) |>
  round(2)
```

```
#> [1] 2
```

```
# Use o que preferir! Neste curso usamos %>% (mais comum)
```

30.4 1.4 Dataset de Exemplo

Vamos criar um dataset para praticar:

```
#> # A tibble: 10 x 8
#>
         id nome
                          idade curso
                                         nota_p1 nota_p2 frequencia bolsista
#>
      <int> <chr>
                          <dbl> <chr>
                                           <dbl>
                                                   <dbl>
                                                              <dbl> <lgl>
#>
  1
          1 Ana Silva
                             23 Biologia
                                             8.5
                                                     7.5
                                                                 95 FALSE
#> 2
          2 Bruno Costa
                             25 Economia
                                             7
                                                     8
                                                                 87 TRUE
          3 Carla Dias
#> 3
                             22 Biologia
                                             9
                                                     8.5
                                                                100 FALSE
                                                     7
#> 4
         4 Diego Mendes
                            24 Economia
                                             6.5
                                                                 78 TRUE
#> 5
          5 Elena Rocha
                            23 Medicina
                                                     9
                                             8
                                                                 92 FALSE
                                                     9
#> 6
         6 Felipe Santos
                            26 Medicina
                                             9.5
                                                                 98 FALSE
#> 7
         7 Gabi Oliveira
                            21 Biologia
                                             7.5
                                                     8
                                                                 85 TRUE
                             25 Economia
                                                     7.5
                                                                 90 FALSE
#> 8
         8 Hugo Alves
                                             8
         9 Iris Ferreira 24 Medicina
#> 9
                                             9
                                                     8.5
                                                                 96 FALSE
#> 10
        10 João Lima
                             22 Economia
                                             6
                                                     7.5
                                                                 82 TRUE
```

30.5 1.5 filter() - Filtrar Linhas

filter() seleciona linhas baseado em condições.

```
# Filtrar alunos com nota_p1 maior que 8
alunos %>%
filter(nota_p1 > 8)
```

```
#> # A tibble: 4 x 8
```

```
nota_p1 nota_p2 frequencia bolsista
#>
        id nome
                         idade curso
     <int> <chr>
                                           <dbl>
                                                   <dbl>
#>
                         <dbl> <chr>
                                                               <dbl> <lgl>
#> 1
         1 Ana Silva
                            23 Biologia
                                             8.5
                                                     7.5
                                                                  95 FALSE
#> 2
         3 Carla Dias
                            22 Biologia
                                             9
                                                     8.5
                                                                 100 FALSE
                                             9.5
         6 Felipe Santos
                            26 Medicina
#> 3
                                                     9
                                                                  98 FALSE
#> 4
         9 Iris Ferreira
                            24 Medicina
                                             9
                                                     8.5
                                                                  96 FALSE
# Filtrar curso de Biologia
alunos %>%
  filter(curso == "Biologia")
#> # A tibble: 3 x 8
        id nome
                         idade curso
                                         nota_p1 nota_p2 frequencia bolsista
#>
     <int> <chr>
                         <dbl> <chr>
                                           <dbl>
                                                   <dbl>
                                                               <dbl> <lgl>
        1 Ana Silva
                                                     7.5
#> 1
                            23 Biologia
                                             8.5
                                                                  95 FALSE
#> 2
         3 Carla Dias
                            22 Biologia
                                             9
                                                     8.5
                                                                 100 FALSE
#> 3
         7 Gabi Oliveira
                            21 Biologia
                                             7.5
                                                     8
                                                                  85 TRUE
# Múltiplas condições com &
alunos %>%
  filter(nota_p1 > 8 & frequencia >= 90)
#> # A tibble: 4 x 8
#>
        id nome
                         idade curso
                                         nota_p1 nota_p2 frequencia bolsista
#>
     <int> <chr>
                         <dbl> <chr>
                                           <dbl>
                                                   <dbl>
                                                               <dbl> <lgl>
#> 1
         1 Ana Silva
                            23 Biologia
                                             8.5
                                                     7.5
                                                                  95 FALSE
#> 2
         3 Carla Dias
                            22 Biologia
                                             9
                                                     8.5
                                                                 100 FALSE
#> 3
         6 Felipe Santos
                            26 Medicina
                                             9.5
                                                     9
                                                                  98 FALSE
         9 Iris Ferreira
                            24 Medicina
#> 4
                                             9
                                                     8.5
                                                                  96 FALSE
# OU com |
alunos %>%
  filter(nota_p1 > 9 | nota_p2 > 9)
#> # A tibble: 1 x 8
#>
        id nome
                         idade curso
                                         nota_p1 nota_p2 frequencia bolsista
#>
     <int> <chr>
                         <dbl> <chr>
                                           <dbl>
                                                   <dbl>
                                                               <dbl> <lgl>
         6 Felipe Santos
                            26 Medicina
                                             9.5
                                                       9
                                                                  98 FALSE
# Usando %in%
alunos %>%
  filter(curso %in% c("Biologia", "Medicina"))
#> # A tibble: 6 x 8
#>
        id nome
                         idade curso
                                         nota_p1 nota_p2 frequencia bolsista
     <int> <chr>
                         <dbl> <chr>
                                           <dbl>
                                                   <dbl>
                                                               <dbl> <lgl>
#>
#> 1
         1 Ana Silva
                            23 Biologia
                                             8.5
                                                     7.5
                                                                  95 FALSE
#> 2
         3 Carla Dias
                            22 Biologia
                                             9
                                                     8.5
                                                                 100 FALSE
#> 3
         5 Elena Rocha
                            23 Medicina
                                             8
                                                     9
                                                                  92 FALSE
         6 Felipe Santos
                            26 Medicina
#> 4
                                             9.5
                                                     9
                                                                  98 FALSE
     7 Gabi Oliveira
#> 5
                            21 Biologia
                                             7.5
                                                                  85 TRUE
                                                     8
```

```
#> 6
         9 Iris Ferreira
                             24 Medicina
                                             9
                                                     8.5
                                                                  96 FALSE
# Negação com !
alunos %>%
  filter(!bolsista) # Não bolsistas
#> # A tibble: 6 x 8
        id nome
#>
                          idade curso
                                         nota_p1 nota_p2 frequencia bolsista
#>
     <int> <chr>
                          <dbl> <chr>
                                           <dbl>
                                                   <dbl>
                                                               <dbl> <lgl>
#> 1
         1 Ana Silva
                             23 Biologia
                                             8.5
                                                     7.5
                                                                  95 FALSE
#> 2
                                                     8.5
         3 Carla Dias
                             22 Biologia
                                             9
                                                                 100 FALSE
#> 3
         5 Elena Rocha
                             23 Medicina
                                             8
                                                     9
                                                                  92 FALSE
#> 4
         6 Felipe Santos
                             26 Medicina
                                             9.5
                                                     9
                                                                  98 FALSE
#> 5
         8 Hugo Alves
                             25 Economia
                                                     7.5
                                                                  90 FALSE
                                             8
         9 Iris Ferreira
#> 6
                             24 Medicina
                                             9
                                                     8.5
                                                                  96 FALSE
# Filtrar por string
alunos %>%
  filter(str_detect(nome, "Silva")) # Nomes com "Silva"
#> # A tibble: 1 x 8
                                     nota_p1 nota_p2 frequencia bolsista
#>
        id nome
                     idade curso
#>
     <int> <chr>
                     <dbl> <chr>
                                       <dbl>
                                               <dbl>
                                                           <dbl> <lgl>
#> 1
                                         8.5
                                                 7.5
                                                              95 FALSE
         1 Ana Silva
                        23 Biologia
     1.6 select() - Selecionar Colunas
select() escolhe quais colunas manter.
# Selecionar colunas específicas
alunos %>%
  select(nome, curso, nota_p1)
#> # A tibble: 10 x 3
#>
      nome
                    curso
                              nota_p1
#>
      <chr>
                    <chr>
                                <dbl>
                                  8.5
#> 1 Ana Silva
                    Biologia
#> 2 Bruno Costa
                    Economia
                                  7
#> 3 Carla Dias
                    Biologia
                                  9
#> 4 Diego Mendes Economia
                                  6.5
#> 5 Elena Rocha
                    Medicina
                                  8
#> 6 Felipe Santos Medicina
                                  9.5
#> 7 Gabi Oliveira Biologia
                                  7.5
#> 8 Hugo Alves
                    Economia
                                  8
#> 9 Iris Ferreira Medicina
                                  9
#> 10 João Lima
                    Economia
                                  6
# Remover colunas com -
alunos %>%
  select(-id, -frequencia)
```

```
#> # A tibble: 10 x 6
#>
      nome
                    idade curso
                                   nota_p1 nota_p2 bolsista
      <chr>
                    <dbl> <chr>
                                      <dbl>
                                              <dbl> <lgl>
#>
                                        8.5
#>
   1 Ana Silva
                       23 Biologia
                                                7.5 FALSE
    2 Bruno Costa
                                        7
                                                    TRUE
#>
                       25 Economia
                                                8
#> 3 Carla Dias
                       22 Biologia
                                                8.5 FALSE
                                        9
#> 4 Diego Mendes
                                        6.5
                                                    TRUE
                       24 Economia
                                                7
                       23 Medicina
#> 5 Elena Rocha
                                        8
                                                9
                                                    FALSE
#> 6 Felipe Santos
                       26 Medicina
                                        9.5
                                                    FALSE
                                        7.5
#> 7 Gabi Oliveira
                                                    TRUE
                       21 Biologia
#> 8 Hugo Alves
                       25 Economia
                                        8
                                                7.5 FALSE
#> 9 Iris Ferreira
                       24 Medicina
                                        9
                                                8.5 FALSE
#> 10 João Lima
                       22 Economia
                                        6
                                                7.5 TRUE
# Selecionar intervalo
alunos %>%
  select(nome:curso) # De nome até curso
#> # A tibble: 10 x 3
#>
      nome
                    idade curso
      <chr>
                    <dbl> <chr>
#>
#>
   1 Ana Silva
                       23 Biologia
#>
   2 Bruno Costa
                       25 Economia
#> 3 Carla Dias
                       22 Biologia
#> 4 Diego Mendes
                       24 Economia
#> 5 Elena Rocha
                       23 Medicina
#> 6 Felipe Santos
                       26 Medicina
#> 7 Gabi Oliveira
                       21 Biologia
#> 8 Hugo Alves
                       25 Economia
#> 9 Iris Ferreira
                       24 Medicina
#> 10 João Lima
                       22 Economia
# Funções auxiliares
alunos %>%
  select(starts_with("nota")) # Começa com "nota"
#> # A tibble: 10 x 2
#>
      nota_p1 nota_p2
#>
        <dbl>
                <dbl>
          8.5
                  7.5
#>
   1
   2
          7
                  8
#>
#>
   3
          9
                  8.5
#>
          6.5
   4
                  7
#> 5
          8
                  9
#> 6
          9.5
                  9
#> 7
          7.5
                  8
#>
  8
                  7.5
          8
#> 9
          9
                  8.5
#> 10
          6
                  7.5
```

```
alunos %>%
  select(ends_with("a")) # Termina com "a"
#> # A tibble: 10 x 2
#>
      frequencia bolsista
#>
           <dbl> <lgl>
              95 FALSE
#>
   1
   2
#>
              87 TRUE
   3
             100 FALSE
#>
              78 TRUE
#>
#>
   5
              92 FALSE
#>
   6
              98 FALSE
#>
   7
              85 TRUE
#>
  8
              90 FALSE
  9
#>
              96 FALSE
#> 10
              82 TRUE
alunos %>%
  select(contains("curso")) # Contém "curso"
#> # A tibble: 10 x 1
#>
      curso
#>
      <chr>
   1 Biologia
#>
   2 Economia
#>
#> 3 Biologia
#> 4 Economia
#> 5 Medicina
#> 6 Medicina
#> 7 Biologia
#> 8 Economia
#> 9 Medicina
#> 10 Economia
# Reordenar colunas
alunos %>%
  select(nome, curso, everything()) # Nome e curso primeiro
#> # A tibble: 10 x 8
#>
      nome
                                 id idade nota_p1 nota_p2 frequencia bolsista
                    curso
#>
      <chr>
                    <chr>>
                              <int> <dbl>
                                            <dbl>
                                                    <dbl>
                                                                <dbl> <lgl>
#>
    1 Ana Silva
                                  1
                                       23
                                              8.5
                                                       7.5
                                                                   95 FALSE
                    Biologia
#>
    2 Bruno Costa
                                  2
                                       25
                                              7
                                                      8
                                                                   87 TRUE
                    Economia
#>
   3 Carla Dias
                    Biologia
                                  3
                                       22
                                              9
                                                      8.5
                                                                  100 FALSE
                                       24
                                              6.5
                                                      7
                                                                   78 TRUE
#> 4 Diego Mendes
                    Economia
                                  4
#> 5 Elena Rocha
                                  5
                                       23
                                                      9
                    Medicina
                                              8
                                                                   92 FALSE
#> 6 Felipe Santos Medicina
                                  6
                                       26
                                              9.5
                                                      9
                                                                   98 FALSE
#> 7 Gabi Oliveira Biologia
                                  7
                                       21
                                              7.5
                                                      8
                                                                   85 TRUE
                                                                   90 FALSE
#> 8 Hugo Alves
                    Economia
                                       25
                                              8
                                                      7.5
```

```
#> 9 Iris Ferreira Medicina
                                  9
                                       24
                                              9
                                                      8.5
                                                                   96 FALSE
#> 10 João Lima
                    Economia
                                 10
                                       22
                                              6
                                                      7.5
                                                                   82 TRUE
# Renomear ao selecionar
alunos %>%
  select(estudante = nome, disciplina = curso)
#> # A tibble: 10 x 2
#>
      estudante
                    disciplina
#>
      <chr>
                    <chr>
   1 Ana Silva
#>
                    Biologia
    2 Bruno Costa
#>
                    Economia
#> 3 Carla Dias
                    Biologia
#> 4 Diego Mendes Economia
#> 5 Elena Rocha
                    Medicina
#> 6 Felipe Santos Medicina
#> 7 Gabi Oliveira Biologia
#> 8 Hugo Alves
                    Economia
#> 9 Iris Ferreira Medicina
#> 10 João Lima
                    Economia
```

30.7 1.7 mutate() - Criar/Modificar Colunas

mutate() cria novas colunas ou modifica existentes.

Criar nova coluna

```
alunos %>%
  mutate(media = (nota_p1 + nota_p2) / 2)
#> # A tibble: 10 x 9
#>
         id nome
                           idade curso
                                           nota_p1 nota_p2 frequencia bolsista media
#>
      <int> <chr>
                           <dbl> <chr>
                                             <dbl>
                                                      <dbl>
                                                                 <dbl> <lgl>
                                                                                 <dbl>
          1 Ana Silva
                                                        7.5
                                                                    95 FALSE
                                                                                  8
#>
   1
                              23 Biologia
                                               8.5
#>
    2
          2 Bruno Costa
                              25 Economia
                                               7
                                                                    87 TRUE
                                                                                  7.5
                                                        8
    3
          3 Carla Dias
                              22 Biologia
                                               9
                                                        8.5
                                                                    100 FALSE
                                                                                  8.75
#>
                              24 Economia
#>
          4 Diego Mendes
                                               6.5
                                                        7
                                                                    78 TRUE
                                                                                  6.75
#>
   5
          5 Elena Rocha
                              23 Medicina
                                               8
                                                        9
                                                                    92 FALSE
                                                                                  8.5
#>
   6
          6 Felipe Santos
                              26 Medicina
                                               9.5
                                                        9
                                                                    98 FALSE
                                                                                  9.25
          7 Gabi Oliveira
#>
  7
                              21 Biologia
                                               7.5
                                                        8
                                                                    85 TRUE
                                                                                  7.75
#>
  8
          8 Hugo Alves
                              25 Economia
                                               8
                                                        7.5
                                                                    90 FALSE
                                                                                  7.75
  9
          9 Iris Ferreira
                              24 Medicina
                                               9
#>
                                                        8.5
                                                                    96 FALSE
                                                                                  8.75
                                                                                  6.75
#> 10
         10 João Lima
                              22 Economia
                                               6
                                                        7.5
                                                                    82 TRUE
# Múltiplas colunas
alunos %>%
  mutate(
    media = (nota_p1 + nota_p2) / 2,
    aprovado = media >= 7,
    conceito = case_when(
```

<ch:

В

В

В

C

В

Α

В

В

В

С

```
media >= 9 ~ "A",
      media >= 7 \sim "B",
      media >= 5 ~ "C",
      TRUE ~ "D"
    )
  )
#> # A tibble: 10 x 11
#>
         id nome
                           idade curso
                                          nota_p1 nota_p2 frequencia bolsista media aprovado con
#>
      <int> <chr>
                           <dbl> <chr>
                                            <dbl>
                                                    <dbl>
                                                                <dbl> <lgl>
                                                                                <dbl> <lgl>
                                              8.5
                                                      7.5
                                                                   95 FALSE
                                                                                      TRUE
#>
    1
          1 Ana Silva
                              23 Biolog~
                                                                                 8
#>
   2
          2 Bruno Costa
                              25 Econom~
                                              7
                                                      8
                                                                   87 TRUE
                                                                                 7.5 TRUE
          3 Carla Dias
                                                                                 8.75 TRUE
#>
                              22 Biolog~
                                              9
                                                      8.5
                                                                  100 FALSE
#>
          4 Diego Mendes
                              24 Econom~
                                                                                 6.75 FALSE
                                              6.5
                                                      7
                                                                   78 TRUE
          5 Elena Rocha
#>
  5
                              23 Medici~
                                              8
                                                      9
                                                                   92 FALSE
                                                                                 8.5 TRUE
#>
          6 Felipe Santos
                              26 Medici~
                                                                   98 FALSE
                                                                                 9.25 TRUE
   6
                                              9.5
                                                      9
#>
  7
          7 Gabi Oliveira
                              21 Biolog~
                                              7.5
                                                      8
                                                                   85 TRUE
                                                                                 7.75 TRUE
                              25 Econom~
#> 8
                                              8
                                                      7.5
                                                                   90 FALSE
                                                                                 7.75 TRUE
          8 Hugo Alves
                              24 Medici~
#> 9
          9 Iris Ferreira
                                              9
                                                      8.5
                                                                   96 FALSE
                                                                                 8.75 TRUE
#> 10
         10 João Lima
                              22 Econom~
                                              6
                                                      7.5
                                                                   82 TRUE
                                                                                 6.75 FALSE
# Modificar coluna existente
alunos %>%
  mutate(idade = idade + 1) # Aniversário!
#> # A tibble: 10 x 8
#>
         id nome
                           idade curso
                                           nota_p1 nota_p2 frequencia bolsista
      <int> <chr>
                           <dbl> <chr>
                                                     <dbl>
                                                                 <dbl> <lgl>
#>
                                             <dbl>
#>
          1 Ana Silva
                              24 Biologia
                                               8.5
                                                       7.5
                                                                    95 FALSE
          2 Bruno Costa
                              26 Economia
                                               7
                                                                    87 TRUE
#>
    2
                                                       8
#>
   3
          3 Carla Dias
                              23 Biologia
                                               9
                                                       8.5
                                                                   100 FALSE
#>
   4
          4 Diego Mendes
                              25 Economia
                                               6.5
                                                       7
                                                                    78 TRUE
#> 5
          5 Elena Rocha
                              24 Medicina
                                               8
                                                       9
                                                                    92 FALSE
   6
                                                        9
#>
          6 Felipe Santos
                              27 Medicina
                                               9.5
                                                                    98 FALSE
   7
          7 Gabi Oliveira
                              22 Biologia
                                               7.5
                                                       8
                                                                    85 TRUE
#>
                                                       7.5
#>
   8
          8 Hugo Alves
                              26 Economia
                                               8
                                                                    90 FALSE
#>
   9
          9 Iris Ferreira
                              25 Medicina
                                               9
                                                       8.5
                                                                    96 FALSE
         10 João Lima
                              23 Economia
#> 10
                                               6
                                                       7.5
                                                                    82 TRUE
# Usar coluna recém-criada
alunos %>%
  mutate(
    media = (nota_p1 + nota_p2) / 2,
    media_ajustada = media * 1.1, # Usa 'media' criada acima
    passou = media_ajustada >= 7
#> # A tibble: 10 x 11
```

idade curso nota_p1 nota_p2 frequencia bolsista media media_ajustada pa

#>

id nome

<dbl> <1

8.8 TI

8.25 TI 9.62 TI

7.43 TI

9.35 TI

10.2 TH

8.52 TH

8.52 TI

9.62 TH

7.43 TI

```
#>
      <int> <chr>
                         <dbl> <chr>
                                        <dbl>
                                                <dbl>
                                                            <dbl> <lgl>
                                                                           <dbl>
#>
   1
          1 Ana Silva
                            23 Biol~
                                          8.5
                                                  7.5
                                                               95 FALSE
                                                                            8
          2 Bruno Costa
                                          7
                                                               87 TRUE
                                                                            7.5
#>
                            25 Econ~
                                                  8
#>
   3
          3 Carla Dias
                            22 Biol~
                                          9
                                                  8.5
                                                              100 FALSE
                                                                            8.75
#>
   4
          4 Diego Mend~
                            24 Econ~
                                          6.5
                                                  7
                                                               78 TRUE
                                                                            6.75
#>
   5
          5 Elena Rocha
                                          8
                                                  9
                                                               92 FALSE
                                                                            8.5
                            23 Medi~
                                                  9
                                                               98 FALSE
#>
   6
          6 Felipe San~
                            26 Medi~
                                          9.5
                                                                            9.25
  7
                                                                            7.75
          7 Gabi Olive~
                                          7.5
                                                               85 TRUE
#>
                            21 Biol~
                                                  8
#>
   8
          8 Hugo Alves
                            25 Econ~
                                          8
                                                  7.5
                                                               90 FALSE
                                                                            7.75
#> 9
          9 Iris Ferre~
                                                  8.5
                                                               96 FALSE
                            24 Medi~
                                          9
                                                                            8.75
#> 10
         10 João Lima
                            22 Econ~
                                          6
                                                  7.5
                                                               82 TRUE
                                                                            6.75
# Operações vetorizadas
alunos %>%
  mutate(
    nota_p1_pct = nota_p1 / 10 * 100, # Converter para percentual
    nome_upper = str_to_upper(nome),
                                          # MAIÚSCULAS
    sobrenome = str_extract(nome, "\\w+$") # Extrair sobrenome
  )
```

```
#> # A tibble: 10 x 11
```

#>		id n	ome	idade	curso	nota_p1	nota_p2	${\tt frequencia}$	bolsista	nota_p1_pct	nome_upper	sobre
#>		<int> <</int>	chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<lg1></lg1>	<dbl></dbl>	<chr></chr>	<chr></chr>
#>	1	1 A:	na S~	23	Biol~	8.5	7.5	95	FALSE	85	ANA SILVA	Silva
#>	2	2 B:	runo~	25	Econ~	7	8	87	TRUE	70	BRUNO COS~	Costa
#>	3	3 C	arla~	22	Biol~	9	8.5	100	FALSE	90	CARLA DIAS	Dias
#>	4	4 D:	iego~	24	Econ~	6.5	7	78	TRUE	65	DIEGO MEN~	Mende
#>	5	5 E	lena~	23	Medi~	8	9	92	FALSE	80	ELENA ROC~	Rocha
#>	6	6 F	elip~	26	Medi~	9.5	9	98	FALSE	95	FELIPE SA~	Santo
#>	7	7 G	abi ~	21	Biol~	7.5	8	85	TRUE	75	GABI OLIV~	Olive
#>	8	8 H	ugo ~	25	Econ~	8	7.5	90	FALSE	80	HUGO ALVES	Alves
#>	9	9 I:	ris ~	24	Medi~	9	8.5	96	FALSE	90	IRIS FERR~	Ferre
#>	10	10 J	oão ~	22	Econ~	6	7.5	82	TRUE	60	JOÃO LIMA	Lima

30.8 1.8 arrange() - Ordenar Linhas

arrange() ordena linhas baseado em colunas.

```
# Ordem crescente
alunos %>%
arrange(nota_p1)
```

```
#> # A tibble: 10 x 8
#>
         id nome
                                           nota_p1 nota_p2 frequencia bolsista
                           idade curso
#>
      <int> <chr>
                           <dbl> <chr>
                                             <dbl>
                                                     <dbl>
                                                                 <dbl> <lgl>
         10 João Lima
                              22 Economia
                                                        7.5
#>
   1
                                               6
                                                                    82 TRUE
   2
          4 Diego Mendes
                              24 Economia
                                               6.5
                                                        7
                                                                    78 TRUE
#>
#>
          2 Bruno Costa
                              25 Economia
                                               7
                                                        8
                                                                    87 TRUE
```

```
#>
          7 Gabi Oliveira
                               21 Biologia
                                                7.5
                                                        8
                                                                     85 TRUE
    5
                                                        9
#>
          5 Elena Rocha
                               23 Medicina
                                                8
                                                                     92 FALSE
    6
          8 Hugo Alves
                               25 Economia
                                                8
                                                        7.5
                                                                     90 FALSE
#>
#>
   7
          1 Ana Silva
                               23 Biologia
                                                8.5
                                                        7.5
                                                                     95 FALSE
          3 Carla Dias
                               22 Biologia
                                                                    100 FALSE
#>
    8
                                                9
                                                        8.5
#>
   9
          9 Iris Ferreira
                               24 Medicina
                                                9
                                                        8.5
                                                                     96 FALSE
                               26 Medicina
                                                9.5
                                                                     98 FALSE
#> 10
          6 Felipe Santos
                                                        9
# Ordem decrescente com desc()
alunos %>%
  arrange(desc(nota_p1))
#> # A tibble: 10 x 8
#>
         id nome
                                           nota_p1 nota_p2 frequencia bolsista
                            idade curso
#>
      <int> <chr>
                            <dbl> <chr>
                                              <dbl>
                                                      <dbl>
                                                                  <dbl> <lgl>
                                                9.5
                                                        9
          6 Felipe Santos
                               26 Medicina
                                                                     98 FALSE
#>
    1
#>
          3 Carla Dias
                               22 Biologia
                                                9
                                                        8.5
                                                                    100 FALSE
#>
          9 Iris Ferreira
                               24 Medicina
                                                9
                                                        8.5
                                                                     96 FALSE
#>
    4
          1 Ana Silva
                               23 Biologia
                                                8.5
                                                        7.5
                                                                     95 FALSE
                               23 Medicina
                                                                     92 FALSE
#>
   5
          5 Elena Rocha
                                                8
                                                        9
                               25 Economia
#>
    6
          8 Hugo Alves
                                                8
                                                        7.5
                                                                     90 FALSE
#>
   7
          7 Gabi Oliveira
                               21 Biologia
                                                7.5
                                                        8
                                                                     85 TRUE
          2 Bruno Costa
                               25 Economia
                                                        8
                                                                     87 TRUE
#>
   8
                                                7
                                                        7
    9
          4 Diego Mendes
                               24 Economia
                                                6.5
                                                                     78 TRUE
#>
#> 10
         10 João Lima
                               22 Economia
                                                6
                                                        7.5
                                                                     82 TRUE
# Múltiplas colunas (desempate)
alunos %>%
  arrange(curso, desc(nota_p1))
#> # A tibble: 10 x 8
#>
         id nome
                            idade curso
                                           nota_p1 nota_p2 frequencia bolsista
#>
      <int> <chr>
                            <dbl> <chr>
                                              <dbl>
                                                      <dbl>
                                                                  <dbl> <lgl>
#>
    1
          3 Carla Dias
                               22 Biologia
                                                9
                                                        8.5
                                                                    100 FALSE
#>
    2
          1 Ana Silva
                               23 Biologia
                                                8.5
                                                        7.5
                                                                     95 FALSE
#>
          7 Gabi Oliveira
                               21 Biologia
                                                7.5
                                                        8
                                                                     85 TRUE
   4
          8 Hugo Alves
                               25 Economia
                                                8
                                                        7.5
                                                                     90 FALSE
#>
          2 Bruno Costa
                                                7
                                                                     87 TRUE
#>
   5
                               25 Economia
                                                        8
                                                        7
    6
          4 Diego Mendes
                               24 Economia
                                                6.5
                                                                     78 TRUE
#>
         10 João Lima
                               22 Economia
                                                                     82 TRUE
#>
    7
                                                6
                                                        7.5
#>
   8
          6 Felipe Santos
                               26 Medicina
                                                9.5
                                                        9
                                                                     98 FALSE
          9 Iris Ferreira
#>
    9
                               24 Medicina
                                                9
                                                        8.5
                                                                     96 FALSE
#> 10
          5 Elena Rocha
                               23 Medicina
                                                8
                                                        9
                                                                     92 FALSE
# Ordenar com NA
dados_com_na <- tibble(</pre>
  x = c(5, 2, NA, 1, 3),
  y = c("a", "b", "c", "d", "e")
)
```

```
dados_com_na %>%
  arrange(x) # NAs vão para o final por padrão
#> # A tibble: 5 x 2
#>
         х у
#>
     <dbl> <chr>
         1 d
#> 1
#> 2
         2 b
#> 3
         3 e
#> 4
        5 a
#> 5
        NA c
      1.9 summarize() - Resumir Dados
summarize() (ou summarise()) reduz dados a um resumo.
# Resumo único
alunos %>%
  summarize(
    media_geral = mean(nota_p1),
    nota_maxima = max(nota_p1),
    nota_minima = min(nota_p1),
    desvio_padrao = sd(nota_p1),
    n_alunos = n() # Contar linhas
  )
#> # A tibble: 1 x 5
     media_geral nota_maxima nota_minima desvio_padrao n_alunos
#>
           dbl>
                        <dbl>
                                    <dbl>
                                                   <dbl>
                                                            <int>
             7.9
#> 1
                          9.5
                                                    1.15
                                                               10
# Múltiplas estatísticas
alunos %>%
  summarize(
    across(c(nota_p1, nota_p2),
           list(media = mean, dp = sd),
           .names = \{.col}_{.fn}^{"})
  )
#> # A tibble: 1 x 4
     nota_p1_media nota_p1_dp nota_p2_media nota_p2_dp
#>
             <dbl>
                         <dbl>
                                       <dbl>
                                                   <dbl>
#> 1
               7.9
                          1.15
                                        8.05
                                                   0.685
# Com na.rm
alunos com na <- alunos
alunos_com_na$nota_p1[1] <- NA
alunos_com_na %>%
```

30.10 1.10 group_by() - Agrupar Dados

```
group_by() agrupa dados para operações por grupo.
# Agrupar por curso
alunos %>%
  group_by(curso) %>%
  summarize(
   n = n(),
   media_p1 = mean(nota_p1),
    media_p2 = mean(nota_p2)
  )
#> # A tibble: 3 x 4
                  n media_p1 media_p2
     curso
     <chr>
              <int>
                       <dbl>
                                 <dbl>
#> 1 Biologia
                  3
                        8.33
                                  8
#> 2 Economia
                  4
                        6.88
                                  7.5
#> 3 Medicina
                        8.83
                  3
                                  8.83
# Múltiplos grupos
alunos %>%
  group_by(curso, bolsista) %>%
  summarize(
   n = n()
   media_p1 = mean(nota_p1),
    .groups = "drop"  # Remove agrupamento após resumir
  )
#> # A tibble: 5 x 4
              bolsista
                           n media_p1
#>
     curso
#>
     <chr>
              <lgl>
                       <int>
                                 <dbl>
#> 1 Biologia FALSE
                           2
                                  8.75
#> 2 Biologia TRUE
                           1
                                  7.5
#> 3 Economia FALSE
                           1
                                  8
#> 4 Economia TRUE
                           3
                                  6.5
#> 5 Medicina FALSE
                           3
                                  8.83
```

```
# Mutate com group_by
alunos %>%
  group_by(curso) %>%
  mutate(
    media_curso = mean(nota_p1),
    diff_da_media = nota_p1 - media_curso
  ungroup() # SEMPRE desagrupar após usar!
#> # A tibble: 10 x 10
#>
         id nome
                          idade curso nota_p1 nota_p2 frequencia bolsista media_curso diff_da_r
#>
      <int> <chr>
                          <dbl> <chr>
                                         <dbl>
                                                 <dbl>
                                                             <dbl> <lgl>
                                                                                  <dbl>
#>
          1 Ana Silva
                              23 Biol~
                                           8.5
                                                   7.5
                                                               95 FALSE
                                                                                   8.33
#>
  2
          2 Bruno Costa
                             25 Econ~
                                           7
                                                   8
                                                               87 TRUE
                                                                                   6.88
          3 Carla Dias
#> 3
                             22 Biol~
                                           9
                                                   8.5
                                                               100 FALSE
                                                                                   8.33
#> 4
         4 Diego Mendes
                             24 Econ~
                                           6.5
                                                   7
                                                               78 TRUE
                                                                                   6.88
#> 5
          5 Elena Rocha
                                                   9
                                                               92 FALSE
                                                                                   8.83
                             23 Medi~
          6 Felipe Santos
                                                   9
                                                                98 FALSE
#> 6
                             26 Medi~
                                           9.5
                                                                                   8.83
#>
  7
          7 Gabi Oliveira
                             21 Biol~
                                           7.5
                                                   8
                                                               85 TRUE
                                                                                   8.33
                             25 Econ~
#>
          8 Hugo Alves
                                                   7.5
                                                               90 FALSE
                                                                                   6.88
  8
                                           8
          9 Iris Ferreira
#> 9
                             24 Medi~
                                           9
                                                   8.5
                                                               96 FALSE
                                                                                   8.83
#> 10
         10 João Lima
                              22 Econ~
                                           6
                                                   7.5
                                                               82 TRUE
                                                                                   6.88
# count() é atalho para group_by + summarize + n()
alunos %>%
  count(curso)
#> # A tibble: 3 x 2
#>
     curso
                  n
     <chr>
              <int>
#> 1 Biologia
                  3
#> 2 Economia
                  4
#> 3 Medicina
                  3
alunos %>%
  count(curso, bolsista)
#> # A tibble: 5 x 3
#>
     curso
              bolsista
                           n
#>
     <chr>
              <lgl>
                       <int>
#> 1 Biologia FALSE
                           2
#> 2 Biologia TRUE
                            1
#> 3 Economia FALSE
                            1
#> 4 Economia TRUE
                            3
                           3
#> 5 Medicina FALSE
```

31 INTERVALO (20h30 - 20h50)

Aproveite para: - Tomar água/café - Revisar os verbos do dplyr - Experimentar com os dados

32 Parte 2: Tidyr, Limpeza e Ferramentas Modernas (20h50 - 22h00)

32.1 2.1 Pipeline Completo

Combinando todos os verbos:

#> 1 Biologia Aprovado

```
# Análise completa com pipeline
resultado <- alunos %>%
  # 1. Filtrar dados relevantes
  filter(frequencia >= 75) %>%
  # 2. Criar colunas derivadas
  mutate(
    media = (nota_p1 + nota_p2) / 2,
    status = case_when(
      media >= 7 & frequencia >= 75 ~ "Aprovado",
      media >= 5 & frequencia >= 75 ~ "Recuperação",
      TRUE ~ "Reprovado"
    )
  ) %>%
  # 3. Selecionar colunas importantes
  select(nome, curso, media, status, bolsista) %>%
  # 4. Agrupar e resumir
  group_by(curso, status) %>%
  summarize(
    n = n(),
    media_curso = mean(media),
    pct_bolsistas = mean(bolsista) * 100,
    .groups = "drop"
  ) %>%
  # 5. Ordenar resultado
  arrange(curso, desc(media_curso))
resultado
#> # A tibble: 4 x 5
#>
     curso
              status
                              n media_curso pct_bolsistas
     <chr>
              <chr>
                          <int>
                                                     <dbl>
```

```
      #> 2 Economia Aprovado
      2
      7.62
      50

      #> 3 Economia Recuperação
      2
      6.75
      100

      #> 4 Medicina Aprovado
      3
      8.83
      0
```

32.2 2.2 tidyr: pivot_longer() e pivot_wider()

tidyr transforma dados entre formatos wide e long.

32.2.1 pivot_longer() - Wide para Long

```
# Dados wide (uma coluna por ano)
pib_wide <- tibble(</pre>
  pais = c("Brasil", "Argentina", "Chile"),
  pib_2020 = c(1.5, 0.4, 0.3),
  pib_2021 = c(1.6, 0.5, 0.35),
  pib_2022 = c(1.7, 0.45, 0.32)
pib_wide
#> # A tibble: 3 x 4
     pais
               pib_2020 pib_2021 pib_2022
     <chr>
                  <dbl>
                           <dbl>
#>
                                    <dbl>
#> 1 Brasil
                    1.5
                            1.6
                                      1.7
#> 2 Argentina
                    0.4
                            0.5
                                     0.45
#> 3 Chile
                    0.3
                                     0.32
                            0.35
# Transformar para long (tidy)
pib_long <- pib_wide %>%
  pivot_longer(
                                # Colunas a transformar
    cols = starts_with("pib"),
    names_to = "ano",
                                    # Nome da nova coluna de nomes
    values_to = "pib"
                                     # Nome da nova coluna de valores
  )
pib_long
#> # A tibble: 9 x 3
#>
     pais
               ano
                          pib
#>
     <chr>
               <chr>
                        <dbl>
                        1.5
               pib_2020
#> 1 Brasil
#> 2 Brasil     pib_2021
                         1.6
#> 3 Brasil
              pib_2022
                         1.7
#> 4 Argentina pib_2020
                         0.4
#> 5 Argentina pib_2021
                         0.5
#> 6 Argentina pib_2022  0.45
#> 7 Chile
               pib_2020 0.3
```

```
#> 8 Chile
               pib_2021 0.35
#> 9 Chile
               pib_2022 0.32
# Limpar coluna 'ano'
pib_long <- pib_long %>%
  mutate(ano = str_remove(ano, "pib_") %>% as.numeric())
pib_long
#> # A tibble: 9 x 3
     pais
                 ano
                      pib
             <dbl> <dbl>
#>
     <chr>
#> 1 Brasil
               2020 1.5
#> 2 Brasil
                2021 1.6
#> 3 Brasil
                2022 1.7
#> 4 Argentina 2020 0.4
#> 5 Argentina
                2021 0.5
#> 6 Argentina
                2022 0.45
                2020 0.3
#> 7 Chile
#> 8 Chile
                2021 0.35
#> 9 Chile
                2022 0.32
# Agora fica fácil analisar
pib_long %>%
  group_by(pais) %>%
  summarize(crescimento = last(pib) - first(pib))
#> # A tibble: 3 x 2
#>
     pais
              crescimento
#>
     <chr>
                     <dbl>
#> 1 Argentina
                    0.05
#> 2 Brasil
                    0.2
#> 3 Chile
                    0.0200
32.2.2 pivot_wider() - Long para Wide
# Reverter para wide
pib_long %>%
 pivot_wider(
    names_from = ano,
   values_from = pib,
    names_prefix = "pib_"
  )
#> # A tibble: 3 x 4
            pib_2020 pib_2021 pib_2022
     pais
     <chr>
                  <dbl>
                           <dbl>
                                    <dbl>
#> 1 Brasil
                    1.5
                            1.6
                                     1.7
#> 2 Argentina
                    0.4
                            0.5
                                     0.45
#> 3 Chile
                    0.3
                            0.35
                                     0.32
```

```
# Exemplo: dados de vendas
vendas_long <- tibble(</pre>
  mes = rep(c("Jan", "Fev", "Mar"), each = 3),
  produto = rep(c("A", "B", "C"), 3),
  vendas = c(100, 150, 200, 120, 160, 210, 110, 155, 205)
)
vendas_long
#> # A tibble: 9 x 3
#>
     mes
           produto vendas
#>
     <chr> <chr>
                    <dbl>
#> 1 Jan
           Α
                       100
#> 2 Jan
           В
                       150
#> 3 Jan
           С
                      200
#> 4 Fev
           Α
                       120
#> 5 Fev
                      160
#> 6 Fev
           C
                      210
#> 7 Mar
                      110
           Α
#> 8 Mar
                       155
           В
#> 9 Mar
           С
                      205
# Transformar: produtos em colunas
vendas_wide <- vendas_long %>%
  pivot_wider(
    names_from = produto,
    values_from = vendas
  )
vendas_wide
#> # A tibble: 3 x 4
#>
     mes
               Α
                     В
                            C
#>
     <chr> <dbl> <dbl> <dbl>
#> 1 Jan
             100
                    150
                          200
#> 2 Fev
             120
                    160
                          210
#> 3 Mar
             110
                    155
                          205
```

32.3 Valores Ausentes (NA)

32.3.1 Identificar NAs

```
# Criar dados com NA
alunos_na <- alunos
alunos_na$nota_p2[c(2, 5, 8)] <- NA
alunos_na$frequencia[c(3, 7)] <- NA</pre>
```

```
alunos_na
#> # A tibble: 10 x 8
#>
         id nome
                           idade curso
                                          nota_p1 nota_p2 frequencia bolsista
      <int> <chr>
#>
                           <dbl> <chr>
                                             <dbl>
                                                     <dbl>
                                                                 <dbl> <lgl>
#>
          1 Ana Silva
                              23 Biologia
                                               8.5
                                                       7.5
                                                                    95 FALSE
#>
   2
          2 Bruno Costa
                              25 Economia
                                                                    87 TRUE
                                               7
                                                      NA
#>
   3
          3 Carla Dias
                              22 Biologia
                                               9
                                                       8.5
                                                                   NA FALSE
          4 Diego Mendes
                              24 Economia
                                               6.5
                                                       7
                                                                   78 TRUE
#> 4
#> 5
          5 Elena Rocha
                              23 Medicina
                                               8
                                                      NA
                                                                    92 FALSE
          6 Felipe Santos
                              26 Medicina
                                                                    98 FALSE
#> 6
                                               9.5
                                                       9
#> 7
          7 Gabi Oliveira
                              21 Biologia
                                              7.5
                                                       8
                                                                   NA TRUE
#> 8
          8 Hugo Alves
                              25 Economia
                                               8
                                                      NA
                                                                    90 FALSE
#> 9
          9 Iris Ferreira
                             24 Medicina
                                               9
                                                       8.5
                                                                    96 FALSE
#> 10
         10 João Lima
                              22 Economia
                                               6
                                                       7.5
                                                                    82 TRUE
# Identificar NAs
alunos_na %>%
  summarize(
    nas_nota_p2 = sum(is.na(nota_p2)),
    nas_freq = sum(is.na(frequencia)),
    total_nas = sum(is.na(.)) # Total de NAs em todo o dataset
  )
#> # A tibble: 1 x 3
     nas_nota_p2 nas_freq total_nas
           <int>
                    <int>
                               <int>
#> 1
               3
# Ver quais linhas têm NA
alunos_na %>%
  filter(is.na(nota_p2) | is.na(frequencia))
#> # A tibble: 5 x 8
#>
        id nome
                          idade curso
                                         nota_p1 nota_p2 frequencia bolsista
#>
     <int> <chr>
                          <dbl> <chr>
                                            <dbl>
                                                    <dbl>
                                                               <dbl> <lgl>
#> 1
         2 Bruno Costa
                             25 Economia
                                              7
                                                     NA
                                                                  87 TRUE
#> 2
         3 Carla Dias
                             22 Biologia
                                              9
                                                      8.5
                                                                  NA FALSE
#> 3
         5 Elena Rocha
                             23 Medicina
                                              8
                                                     NA
                                                                  92 FALSE
#> 4
         7 Gabi Oliveira
                                              7.5
                                                                  NA TRUE
                             21 Biologia
                                                      8
#> 5
         8 Hugo Alves
                             25 Economia
                                                                  90 FALSE
                                              8
                                                     NA
# Contar NAs por coluna
alunos_na %>%
  summarize(across(everything(), ~sum(is.na(.))))
#> # A tibble: 1 x 8
#>
        id nome idade curso nota_p1 nota_p2 frequencia bolsista
                                <int>
     <int> <int> <int> <int>
                                        <int>
                                                    <int>
                                                             <int>
#>
#> 1
                     0
                            0
                                                        2
                                                                 0
         0
               0
                                    0
                                            3
```

32.3.2 Remover NAs

```
# Remover linhas com QUALQUER NA
alunos_na %>%
  drop_na() # tidyr
#> # A tibble: 5 x 8
        id nome
                          idade curso
                                          nota_p1 nota_p2 frequencia bolsista
     <int> <chr>
                                                     <dbl>
#>
                          <dbl> <chr>
                                            <dbl>
                                                                <dbl> <lgl>
#> 1
         1 Ana Silva
                             23 Biologia
                                              8.5
                                                       7.5
                                                                   95 FALSE
                                                                   78 TRUE
#> 2
         4 Diego Mendes
                             24 Economia
                                              6.5
                                                      7
#> 3
                             26 Medicina
                                              9.5
         6 Felipe Santos
                                                       9
                                                                   98 FALSE
#> 4
         9 Iris Ferreira
                             24 Medicina
                                              9
                                                      8.5
                                                                   96 FALSE
#> 5
        10 João Lima
                             22 Economia
                                                      7.5
                                                                   82 TRUE
alunos_na %>%
 na.omit() # base R
#> # A tibble: 5 x 8
#>
                          idade curso
                                          nota_p1 nota_p2 frequencia bolsista
        id nome
#>
     <int> <chr>
                          <dbl> <chr>
                                            <dbl>
                                                     <dbl>
                                                                <dbl> <lgl>
                                              8.5
                                                      7.5
                                                                   95 FALSE
#> 1
         1 Ana Silva
                             23 Biologia
                                              6.5
#> 2
         4 Diego Mendes
                             24 Economia
                                                       7
                                                                   78 TRUE
#> 3
                                                      9
         6 Felipe Santos
                             26 Medicina
                                              9.5
                                                                   98 FALSE
#> 4
         9 Iris Ferreira
                             24 Medicina
                                              9
                                                      8.5
                                                                   96 FALSE
#> 5
        10 João Lima
                             22 Economia
                                              6
                                                      7.5
                                                                   82 TRUE
# Remover linhas com NA em colunas específicas
alunos na %>%
  drop_na(nota_p2)
#> # A tibble: 7 x 8
#>
        id nome
                          idade curso
                                          nota_p1 nota_p2 frequencia bolsista
                                            <dbl>
                                                     <dbl>
                                                                <dbl> <lgl>
#>
     <int> <chr>
                          <dbl> <chr>
#> 1
         1 Ana Silva
                             23 Biologia
                                              8.5
                                                       7.5
                                                                   95 FALSE
#> 2
                             22 Biologia
                                              9
                                                       8.5
         3 Carla Dias
                                                                   NA FALSE
#> 3
         4 Diego Mendes
                             24 Economia
                                              6.5
                                                      7
                                                                   78 TRUE
#> 4
         6 Felipe Santos
                             26 Medicina
                                              9.5
                                                      9
                                                                   98 FALSE
#> 5
         7 Gabi Oliveira
                             21 Biologia
                                              7.5
                                                      8
                                                                   NA TRUE
#> 6
         9 Iris Ferreira
                             24 Medicina
                                              9
                                                      8.5
                                                                   96 FALSE
#> 7
        10 João Lima
                             22 Economia
                                              6
                                                      7.5
                                                                   82 TRUE
alunos na %>%
  drop_na(nota_p2, frequencia)
#> # A tibble: 5 x 8
#>
        id nome
                                          nota_p1 nota_p2 frequencia bolsista
                          idade curso
#>
     <int> <chr>
                          <dbl> <chr>
                                            <dbl>
                                                     <dbl>
                                                                <dbl> <lgl>
#> 1
         1 Ana Silva
                             23 Biologia
                                              8.5
                                                       7.5
                                                                   95 FALSE
#> 2
         4 Diego Mendes
                             24 Economia
                                              6.5
                                                       7
                                                                   78 TRUE
```

```
#> 3
         6 Felipe Santos
                             26 Medicina
                                             9.5
                                                      9
                                                                  98 FALSE
#> 4
         9 Iris Ferreira
                             24 Medicina
                                              9
                                                      8.5
                                                                  96 FALSE
#> 5
        10 João Lima
                             22 Economia
                                              6
                                                      7.5
                                                                  82 TRUE
# Filtrar sem NAs
alunos_na %>%
  filter(!is.na(nota_p2))
#> # A tibble: 7 x 8
#>
        id nome
                                         nota_p1 nota_p2 frequencia bolsista
                          idade curso
     <int> <chr>
                          <dbl> <chr>
                                           <dbl>
                                                    <dbl>
#>
                                                               <dbl> <lgl>
#> 1
         1 Ana Silva
                             23 Biologia
                                             8.5
                                                      7.5
                                                                  95 FALSE
#> 2
         3 Carla Dias
                             22 Biologia
                                              9
                                                      8.5
                                                                  NA FALSE
#> 3
         4 Diego Mendes
                             24 Economia
                                             6.5
                                                      7
                                                                  78 TRUE
#> 4
         6 Felipe Santos
                             26 Medicina
                                             9.5
                                                      9
                                                                  98 FALSE
#> 5
         7 Gabi Oliveira
                             21 Biologia
                                             7.5
                                                      8
                                                                  NA TRUE
#> 6
        9 Iris Ferreira
                             24 Medicina
                                             9
                                                      8.5
                                                                  96 FALSE
#> 7
        10 João Lima
                             22 Economia
                                             6
                                                      7.5
                                                                  82 TRUE
32.3.3 Substituir NAs
# Substituir por valor fixo
alunos_na %>%
  mutate(
    nota_p2 = replace_na(nota_p2, 0),
    frequencia = replace_na(frequencia, 0)
  )
#> # A tibble: 10 x 8
#>
         id nome
                           idade curso
                                          nota_p1 nota_p2 frequencia bolsista
#>
      <int> <chr>
                           <dbl> <chr>
                                             <dbl>
                                                     <dbl>
                                                                <dbl> <lgl>
#>
   1
          1 Ana Silva
                              23 Biologia
                                              8.5
                                                       7.5
                                                                   95 FALSE
          2 Bruno Costa
                                                                   87 TRUE
#>
   2
                              25 Economia
                                              7
                                                       0
          3 Carla Dias
                              22 Biologia
#> 3
                                              9
                                                       8.5
                                                                    O FALSE
                                                                   78 TRUE
#> 4
          4 Diego Mendes
                              24 Economia
                                              6.5
                                                       7
#> 5
          5 Elena Rocha
                              23 Medicina
                                              8
                                                       0
                                                                   92 FALSE
                                                       9
#>
          6 Felipe Santos
                              26 Medicina
                                              9.5
                                                                   98 FALSE
#> 7
                                              7.5
          7 Gabi Oliveira
                              21 Biologia
                                                       8
                                                                    0 TRUE
#>
   8
          8 Hugo Alves
                              25 Economia
                                                       0
                                                                   90 FALSE
                                              8
#>
   9
          9 Iris Ferreira
                              24 Medicina
                                              9
                                                       8.5
                                                                   96 FALSE
         10 João Lima
                              22 Economia
                                              6
                                                       7.5
                                                                   82 TRUE
#> 10
# Substituir por média
alunos_na %>%
  mutate(
    nota_p2 = ifelse(is.na(nota_p2), mean(nota_p2, na.rm = TRUE), nota_p2)
  )
#> # A tibble: 10 x 8
#>
         id nome
                           idade curso
                                          nota_p1 nota_p2 frequencia bolsista
```

```
#>
      <int> <chr>
                            <dbl> <chr>
                                              <dbl>
                                                       <dbl>
                                                                  <dbl> <lgl>
#>
    1
           1 Ana Silva
                               23 Biologia
                                                8.5
                                                         7.5
                                                                      95 FALSE
           2 Bruno Costa
                               25 Economia
                                                7
                                                                      87 TRUE
#>
                                                         8
                               22 Biologia
#>
    3
           3 Carla Dias
                                                9
                                                         8.5
                                                                     NA FALSE
          4 Diego Mendes
                                                6.5
                                                                      78 TRUE
#>
    4
                               24 Economia
                                                         7
#>
    5
          5 Elena Rocha
                               23 Medicina
                                                8
                                                         8
                                                                      92 FALSE
          6 Felipe Santos
                                                9.5
                                                         9
                                                                      98 FALSE
#>
    6
                               26 Medicina
    7
#>
          7 Gabi Oliveira
                               21 Biologia
                                                7.5
                                                         8
                                                                     NA TRUE
          8 Hugo Alves
                                                         8
                                                                      90 FALSE
#>
   8
                               25 Economia
                                                8
    9
          9 Iris Ferreira
                               24 Medicina
                                                9
                                                         8.5
                                                                      96 FALSE
#>
#> 10
         10 João Lima
                               22 Economia
                                                6
                                                         7.5
                                                                      82 TRUE
# Substituir por valor anterior/posterior (fill)
dados_sequencia <- tibble(</pre>
  mes = 1:6,
  vendas = c(100, NA, NA, 150, NA, 200)
)
dados_sequencia %>%
  fill(vendas, .direction = "down") # Preenche para baixo
#> # A tibble: 6 x 2
#>
       mes vendas
#>
     <int>
            <dbl>
#> 1
         1
               100
#> 2
         2
               100
#> 3
               100
         3
#> 4
         4
               150
#> 5
         5
               150
#> 6
         6
               200
dados_sequencia %>%
  fill(vendas, .direction = "up") # Preenche para cima
#> # A tibble: 6 x 2
#>
       mes vendas
     <int>
            <dbl>
#>
#> 1
         1
               100
#> 2
         2
               150
#> 3
         3
               150
#> 4
         4
               150
               200
#> 5
         5
#> 6
         6
               200
```

32.4 2.4 janitor: Limpeza de Dados

janitor facilita limpeza de dados bagunçados.

```
library(janitor)
# Dados com nomes ruins
dados_sujos <- tibble(</pre>
  `Nome Completo` = c("Ana", "Bruno"),
  indediction{Idade (anos)} = c(25, 30),
  `Nota Final!!!` = c(8.5, 7.0),
  `E-mail` = c("ana@email.com", "bruno@email.com")
)
dados_sujos
#> # A tibble: 2 x 4
     `Nome Completo` `Idade (anos)` `Nota Final!!!` `E-mail`
#>
     <chr>
                               <dbl>
                                                <dbl> <chr>
#> 1 Ana
                                  25
                                                  8.5 ana@email.com
#> 2 Bruno
                                  30
                                                      bruno@email.com
# Limpar nomes automaticamente
dados_limpos <- dados_sujos %>%
  clean_names()
dados_limpos
#> # A tibble: 2 x 4
     nome_completo idade_anos nota_final e_mail
                         <dbl>
                                     <dbl> <chr>
#>
     <chr>
#> 1 Ana
                            25
                                      8.5 ana@email.com
#> 2 Bruno
                            30
                                           bruno@email.com
names(dados_limpos)
#> [1] "nome_completo" "idade_anos"
                                         "nota_final"
                                                          "e_mail"
# Tabela de frequência melhorada
alunos %>%
  tabyl(curso)
#>
       curso n percent
#> Biologia 3
                    0.3
#> Economia 4
                    0.4
#> Medicina 3
                    0.3
# Com percentuais
alunos %>%
  tabyl(curso) %>%
  adorn_pct_formatting()
#>
       curso n percent
#> Biologia 3
                  30.0%
#> Economia 4
                 40.0%
```

```
#> Medicina 3
                 30.0%
# Tabulação cruzada
alunos %>%
  tabyl(curso, bolsista) %>%
  adorn_percentages("row") %>%
  adorn_pct_formatting() %>%
  adorn_ns() # Adiciona contagens
#>
                  FALSE
                              TRUE
       curso
#> Biologia 66.7% (2) 33.3% (1)
#> Economia 25.0% (1) 75.0% (3)
#> Medicina 100.0% (3) 0.0% (0)
# Remover linhas/colunas vazias
dados_com_vazios <- tibble(</pre>
  x = c(1, 2, NA, 4),
  y = c(NA, NA, NA, NA),
  z = c(5, 6, 7, 8)
)
dados_com_vazios %>%
  remove_empty(c("rows", "cols"))
#> # A tibble: 4 x 2
#>
         х
#>
     <dbl> <dbl>
#> 1
         1
         2
#> 2
               6
#> 3
        NA
               7
#> 4
         4
               8
```

32.5 2.5 skimr: Exploração Rápida

skimr gera sumários estatísticos completos.

```
library(skimr)

# Resumo completo do dataset
alunos %>%
    skim()
```

Table 1: Data summary

Name	Piped data
Number of rows	10
Number of columns	8

Column type frequency:

character	2
logical	1
numeric	5
Group variables	None

Variable type: character

skim_variable	n_missing	$complete_rate$	min	max	empty	n_unique	whitespace
nome	0	1	9	13	0	10	0
curso	0	1	8	8	0	3	0

Variable type: logical

skim_variable	n_missing	complete_rate	mean	count
bolsista	0	1	0.4	FAL: 6, TRU: 4

Variable type: numeric

skim_variable n	_missing compl	ete_rate	mean	sd	p0	p25	p50	p75	p100	hist
id	0	1	5.50	3.03	1	3.25	5.5	7.75	10.0	
idade	0	1	23.50	1.58	21	22.25	23.5	24.75	26.0	
$nota_p1$	0	1	7.90	1.15	6	7.12	8.0	8.88	9.5	
$nota_p2$	0	1	8.05	0.69	7	7.50	8.0	8.50	9.0	
frequencia	0	1	90.30	7.23	78	85.50	91.0	95.75	100.0	

```
# Por grupo
alunos %>%
group_by(curso) %>%
skim()
```

Table 5: Data summary

Name	Piped data
Number of rows	10
Number of columns	8
Column type frequency:	
character	1
logical	1
numeric	5

Group variables

curso

Variable type: character

skim_variable	curso	n_missing	complete_rate	min	max	empty	n_unique	whitespace
nome	Biologia	0	1	9	13	0	3	0
nome	Economia	0	1	9	12	0	4	0
nome	Medicina	0	1	11	13	0	3	0

Variable type: logical

skim_variable	curso	n_missing	complete_rate	mean	count
bolsista	Biologia	0	1	0.33	FAL: 2, TRU: 1
bolsista	Economia	0	1	0.75	TRU: 3, FAL: 1
bolsista	Medicina	0	1	0.00	FAL: 3

Variable type: numeric

skim_varia	bleurso n	_missingcom	plete_r	atmenean	sd	p0	p25	p50	p75	p100	hist
id	Biologia	0	1	3.67	3.06	1.0	2.00	3.00	5.00	7.0	
id	Economia	0	1	6.00	3.65	2.0	3.50	6.00	8.50	10.0	
id	Medicina	0	1	6.67	2.08	5.0	5.50	6.00	7.50	9.0	
idade	Biologia	0	1	22.00	1.00	21.0	21.50	22.00	22.50	23.0	
idade	Economia	0	1	24.00	1.41	22.0	23.50	24.50	25.00	25.0	
idade	Medicina	0	1	24.33	1.53	23.0	23.50	24.00	25.00	26.0	
$nota_p1$	Biologia	0	1	8.33	0.76	7.5	8.00	8.50	8.75	9.0	
$nota_p1$	Economia	0	1	6.88	0.85	6.0	6.38	6.75	7.25	8.0	
$nota_p1$	Medicina	0	1	8.83	0.76	8.0	8.50	9.00	9.25	9.5	
$nota_p2$	Biologia	0	1	8.00	0.50	7.5	7.75	8.00	8.25	8.5	
$nota_p2$	Economia	0	1	7.50	0.41	7.0	7.38	7.50	7.62	8.0	
$nota_p2$	Medicina	0	1	8.83	0.29	8.5	8.75	9.00	9.00	9.0	
frequencia	Biologia	0	1	93.33	7.64	85.0	90.00	95.00	97.50	100.0	
frequencia	Economia	0	1	84.25	5.32	78.0	81.00	84.50	87.75	90.0	
frequencia	Medicina	0	1	95.33	3.06	92.0	94.00	96.00	97.00	98.0	

```
# Apenas variáveis numéricas
alunos %>%
    skim() %>%
    filter(skim_type == "numeric")
```

Table 9: Data summary

Name	Piped data
Number of rows	10
Number of columns	8
Column type frequency:	
numeric	5
Group variables	None

Variable type: numeric

Customizar output

skim_variable n	_missing comple	ete_rate	mean	sd	p0	p25	p50	p75	p100	hist
id	0	1	5.50	3.03	1	3.25	5.5	7.75	10.0	
idade	0	1	23.50	1.58	21	22.25	23.5	24.75	26.0	
nota_p1	0	1	7.90	1.15	6	7.12	8.0	8.88	9.5	
$nota_p2$	0	1	8.05	0.69	7	7.50	8.0	8.50	9.0	
frequencia	0	1	90.30	7.23	78	85.50	91.0	95.75	100.0	

```
alunos %>%
  skim() %>%
  select(skim_variable, n_missing, numeric.mean, numeric.sd)
#> # A tibble: 8 x 4
#>
     skim_variable n_missing numeric.mean numeric.sd
#>
     <chr>
                        <int>
                                      <dbl>
                                                 <dbl>
#> 1 nome
                            0
                                      NA
                                                NA
#> 2 curso
                            0
                                                NA
                                      NA
#> 3 bolsista
                            0
                                      NA
                                                NA
#> 4 id
                            0
                                       5.5
                                                 3.03
#> 5 idade
                            0
                                      23.5
                                                 1.58
                                       7.9
#> 6 nota_p1
                            0
                                                 1.15
                            0
                                       8.05
                                                 0.685
#> 7 nota_p2
#> 8 frequencia
                            0
                                      90.3
                                                 7.23
```

32.6 2.6 Joins: Combinando Datasets

Combinar dados de múltiplas tabelas:

```
# Tabela de alunos (simplificada)
alunos_info <- tibble(
  id = 1:5,
  nome = c("Ana", "Bruno", "Carla", "Diego", "Elena"),</pre>
```

```
curso = c("Bio", "Eco", "Bio", "Eco", "Med")
)
# Tabela de notas
notas <- tibble(</pre>
 aluno_id = c(1, 2, 3, 4, 6), # Note: 6 não existe em alunos_info
 disciplina = c("Mat", "Mat", "Fis", "Fis", "Qui"),
 nota = c(8.5, 7.0, 9.0, 6.5, 8.0)
)
# INNER JOIN - apenas correspondências
alunos info %>%
 inner_join(notas, by = c("id" = "aluno_id"))
#> # A tibble: 4 x 5
        id nome curso disciplina nota
#>
    <dbl> <chr> <chr> <chr>
                                 <dbl>
        1 Ana
#> 1
                Bio
                      Mat
                                   8.5
#> 2
        2 Bruno Eco
                      Mat
                                   7
#> 3
        3 Carla Bio
                     Fis
                                   9
#> 4
       4 Diego Eco
                     Fis
# LEFT JOIN - mantém todos da esquerda
alunos_info %>%
left_join(notas, by = c("id" = "aluno_id"))
#> # A tibble: 5 x 5
#>
        id nome curso disciplina nota
#>
     <dbl> <chr> <chr> <chr>
                                <dbl>
#> 1
       1 Ana Bio
                                   8.5
                      Mat
#> 2
        2 Bruno Eco
                                   7
                     Mat
#> 3
        3 Carla Bio
                     Fis
#> 4
        4 Diego Eco
                     Fis
                                   6.5
#> 5
        5 Elena Med
                     <NA>
                                  NΑ
# RIGHT JOIN - mantém todos da direita
alunos info %>%
right_join(notas, by = c("id" = "aluno_id"))
#> # A tibble: 5 x 5
#>
        id nome curso disciplina nota
     <dbl> <chr> <chr> <chr>
                                 <dbl>
        1 Ana
#> 1
               Bio
                      Mat
                                   8.5
#> 2
        2 Bruno Eco
                                   7
                     Mat
#> 3
       3 Carla Bio
                     Fis
                                   9
#> 4
       4 Diego Eco
                     Fis
                                   6.5
#> 5
        6 <NA> <NA> Qui
                                   8
# FULL JOIN - mantém todos
alunos_info %>%
```

```
full_join(notas, by = c("id" = "aluno_id"))
#> # A tibble: 6 x 5
#>
        id nome curso disciplina nota
     <dbl> <chr> <chr> <chr>
#>
                                  <dbl>
#> 1
         1 Ana
                 Bio
                       Mat
                                    8.5
#> 2
                                    7
        2 Bruno Eco
                       Mat
#> 3
        3 Carla Bio
                     Fis
#> 4
        4 Diego Eco
                      Fis
                                    6.5
#> 5
        5 Elena Med
                       <NA>
                                   NA
#> 6
         6 <NA> <NA> Qui
                                    8
# ANTI JOIN - linhas sem correspondência
alunos_info %>%
 anti_join(notas, by = c("id" = "aluno_id")) # Ana e Elena não têm notas
#> # A tibble: 1 x 3
#>
        id nome curso
#>
     <int> <chr> <chr>
#> 1
        5 Elena Med
```

32.7 2.7 Usando Claude para Otimizar Pipelines

Claude é excelente para revisar e otimizar código tidyverse.

32.7.1 Exemplo de Prompt para Claude:

```
# Código original (funcional mas verboso)
resultado <- alunos %>%
  filter(frequencia >= 75) %>%
  mutate(media = (nota_p1 + nota_p2) / 2) %>%
  mutate(passou = ifelse(media >= 7, "Sim", "Não")) %>%
  select(nome, media, passou) %>%
  arrange(desc(media))

# Pergunte ao Claude:
# "Este pipeline do dplyr está correto mas posso melhorá-lo?
# Há formas mais eficientes ou elegantes de fazer o mesmo?"

# Claude pode sugerir:
# - Combinar mutates
# - Usar case_when em vez de ifelse
# - Adicionar validações
# - Melhorar legibilidade
```

33 Exercícios Práticos

33.1 Exercício 1: Verbos Básicos

```
# Use o dataset 'alunos' criado anteriormente
# a) Filtre alunos de Biologia com nota_p1 >= 8
# b) Selecione apenas nome, curso e nota_p1
# c) Crie coluna 'media' e outra 'aprovado' (media >= 7)
# d) Ordene por media (decrescente)
# e) Agrupe por curso e calcule média geral
```

33.2 Exercício 2: Pipeline Integrado

```
# Crie um pipeline que:
# 1. Filtra alunos com frequência >= 80
# 2. Calcula média das duas provas
# 3. Classifica: "Excelente" (>=9), "Bom" (>=7), "Regular" (<7)
# 4. Agrupa por classificação e conta quantos há em cada
# 5. Calcula percentual de cada grupo</pre>
```

33.3 Exercício 3: Tidyr

```
# Dados de temperatura (wide)
temp_wide <- tibble(
  cidade = c("São Paulo", "Rio", "BH"),
  jan = c(25, 28, 24),
  fev = c(26, 29, 25),
  mar = c(24, 27, 23)
)

# a) Transforme para formato long

# b) Calcule a temperatura média por cidade

# c) Qual cidade teve maior variação de temperatura?</pre>
```

```
# d) Volte para formato wide
```

33.4 Exercício 4: Limpeza e Análise

33.5 Exercício 5: Análise Realista

```
# Dados de vendas (simulado)
set.seed(123)
vendas <- tibble(
  data = rep(seq(as.Date("2024-01-01"), by = "month", length.out = 6), each = 3),
  produto = rep(c("A", "B", "C"), 6),
  vendas = round(rnorm(18, mean = 1000, sd = 200)),
  regiao = sample(c("Norte", "Sul", "Leste", "Oeste"), 18, replace = TRUE)
)

# a) Calcule vendas totais por produto

# b) Qual região teve maior média de vendas?

# c) Qual produto teve maior crescimento (primeiro vs último mês)?</pre>
```

```
# d) Crie tabela cruzada: região x produto (vendas médias)# e) Use Claude para otimizar seu código!
```

34 Prática Guiada: Análise Completa

Análise exploratória completa com tidyverse:

```
# Simular dados mais complexos
set.seed(42)
n <- 100
dados_completos <- tibble(</pre>
  id = 1:n,
  idade = sample(18:65, n, replace = TRUE),
  sexo = sample(c("M", "F"), n, replace = TRUE),
  estado = sample(c("SP", "RJ", "MG", "RS"), n, replace = TRUE),
  renda = round(rnorm(n, 5000, 2000)),
  escolaridade = sample(c("Fundamental", "Médio", "Superior"), n,
                       replace = TRUE, prob = c(0.2, 0.4, 0.4)),
  satisfacao = sample(1:10, n, replace = TRUE)
) %>%
  # Criar algumas relações realistas
  mutate(
    renda = case_when(
      escolaridade == "Superior" ~ renda * 1.5,
      escolaridade == "Médio" ~ renda * 1.2,
      TRUE ~ renda
    ),
    renda = pmax(renda, 1500) # Renda minima
  )
# Pipeline de análise
analise <- dados_completos %>%
  # Limpeza
  filter(renda > 0, !is.na(satisfacao)) %>%
  # Engenharia de features
  mutate(
    faixa_etaria = case_when(
      idade < 25 ~ "18-24",
      idade < 35 \sim "25-34",
      idade < 50 ~ "35-49",
      TRUE ~ "50+"
```

```
faixa_renda = case_when(
      renda < 3000 ~ "Baixa",
      renda < 7000 ~ "Média",
      TRUE ~ "Alta"
    )
  ) %>%
  # Análise por grupos
  group_by(faixa_etaria, escolaridade) %>%
  summarize(
   n = n()
    renda_media = mean(renda),
    renda mediana = median(renda),
    satisfacao_media = mean(satisfacao),
    pct_mulheres = mean(sexo == "F") * 100,
    .groups = "drop"
  ) %>%
  # Filtrar grupos pequenos
  filter(n >= 5) \%
  # Ordenar
  arrange(faixa_etaria, desc(renda_media))
analise
#> # A tibble: 8 x 7
#>
     faixa_etaria escolaridade
                                    n renda_media renda_mediana satisfacao_media pct_mulheres
     <chr>
                                            <dbl>
                                                           <dbl>
                                                                             <dbl>
#>
                  <chr>
                                <int>
                                                                                           <dbl>
#> 1 18-24
                  Superior
                                    9
                                            7706.
                                                           7480.
                                                                              4.44
                                                                                            88.9
#> 2 18-24
                                    5
                                            7320.
                                                           7189.
                                                                              8.4
                  Médio
                                                                                            60
#> 3 25-34
                  Médio
                                    5
                                            5791.
                                                           5156.
                                                                              6.2
                                                                                            60
#> 4 35-49
                  Superior
                                   18
                                            8888.
                                                           8682
                                                                              6.33
                                                                                            38.9
#> 5 35-49
                  Médio
                                   13
                                            5365.
                                                           5080.
                                                                              5.85
                                                                                            53.8
#> 6 50+
                  Superior
                                   14
                                            7210.
                                                           7715.
                                                                              5.36
                                                                                            42.9
#> 7 50+
                                                                              4.18
                  Médio
                                   17
                                            5337.
                                                           5329.
                                                                                            58.8
#> 8 50+
                                                                              6.86
                  Fundamental
                                             4437
                                                           4629
                                                                                            28.6
# Visualização rápida do resultado
analise %>%
  ggplot(aes(x = faixa_etaria, y = renda_media, fill = escolaridade)) +
  geom col(position = "dodge") +
  theme_minimal() +
  labs(
   title = "Renda Média por Faixa Etária e Escolaridade",
    x = "Faixa Etária",
    y = "Renda Média (R$)",
   fill = "Escolaridade"
```


35 Commit no GitHub

Versione seu progresso:

```
git add .
git commit -m "Dia 3: adiciona manipulação com tidyverse"
git push
```

36 Para Casa

- 1. Refazer todos os exercícios sem consultar
- 2. Praticar com seus próprios dados
- 3. Ler R for Data Science Data Transformation
- 4. Usar Claude para revisar e otimizar seus pipelines
- 5. Explorar mais funções do dplyr: slice(), distinct(), separate(), unite()

37 Recursos Adicionais

37.1 Documentação

- dplyr Cheat Sheet
- tidyr Vignette
- janitor Documentation

• skimr Documentation

37.2 Prática

- TidyTuesday Datasets semanais
- dplyr Exercises

37.3 Vídeos

• Data Wrangling with dplyr

38 Dúvidas Frequentes

P: Quando usar %>% vs |>?

R: Ambos funcionam igual na maioria dos casos. Use o que preferir. %>% é mais comum por enquanto.

P: Por que meu group_by não funciona?

R: Esqueceu de ungroup() depois? Grupos persistem até remover!

P: pivot_longer ou pivot_wider?

R: longer = wide \rightarrow long (mais linhas). wider = long \rightarrow wide (mais colunas).

P: Como escolher entre filter e slice?

R: filter = condição lógica. slice = por posição (linha 1, 2, 3...).

P: Meu pipeline está muito longo, é ruim?

R: Não! Pipelines longos são OK se cada passo for claro. Quebre em etapas se necessário.

39 Conclusão do Dia 3

Parabéns! Você completou o Dia 3 e agora domina:

- Filosofia tidyverse e tidy data
- Todos os verbos essenciais do dplyr
- Transformação de dados com tidyr
- Tratamento de valores ausentes
- Ferramentas modernas (janitor, skimr)
- Criação de pipelines complexos
- Otimização com ajuda de IA

Amanhã: Leitura/escrita de dados e visualização com ggplot2!

Última atualização: 2025-10-07

Contato: junqueiravinicius@hotmail.com

Repositório: https://github.com/viniciusjunqueira/curso-r-github-ia

Lattes: http://lattes.cnpq.br/4686677580216927

40 Parte 4: I/O e Visualiza o

41 Objetivos do Dia 4

Ao final desta aula, você será capaz de:

- Ler dados de diversos formatos (CSV, Excel, RDS)
- Escrever dados em diferentes formatos
- Organizar projetos com estrutura profissional
- Usar caminhos relativos com here()
- Entender a gramática de gráficos do ggplot2
- Criar visualizações profissionais
- Personalizar gráficos com temas e cores
- Salvar gráficos em alta qualidade
- Escolher o gráfico adequado para cada tipo de dado

42 Revisão Rápida do Dia 3

```
library(tidyverse)
library(here)
# Pipeline tidyverse
dados <- tibble(</pre>
  nome = c("Ana", "Bruno", "Carla"),
  nota = c(8, 7, 9),
  curso = c("Bio", "Eco", "Bio")
)
resumo <- dados %>%
  group_by(curso) %>%
  summarize(media = mean(nota))
resumo
#> # A tibble: 2 x 2
#>
     curso media
#>
     <chr> <dbl>
             8.5
#> 1 Bio
#> 2 Eco
             7
```

43 Parte 1: Entrada e Saída de Dados (19h00 - 20h30)

43.1 1.1 Estrutura de Projetos Profissionais

Uma boa estrutura facilita colaboração e reprodutibilidade.

43.1.1 Estrutura Recomendada

```
meu-projeto/
  meu-projeto.Rproj
                          # Arquivo do projeto
  README.md
                          # Descrição do projeto
   .gitignore
                          # Arquivos ignorados pelo Git
  data/
                          # Dados
      raw/
                          # Dados originais (NUNCA modificar!)
          dados.csv
          dados.xlsx
      processed/
                          # Dados limpos/processados
          dados_limpos.csv
  scripts/
                          # Scripts R
      01_importar.R
      02_limpar.R
      03_analisar.R
                          # Resultados
  output/
      figures/
                          # Gráficos
      tables/
                          # Tabelas
  docs/
                          # Relatórios/documentação
      relatorio.Rmd
```

43.1.2 Por que Projetos RStudio?

```
# Benefícios:
# 1. Working directory automático na raiz do projeto
# 2. Portabilidade (funciona em qualquer computador)
# 3. Integração com Git
# 4. Histórico de arquivos abertos
# 5. Configurações específicas do projeto
# Criar projeto: File > New Project
```

43.2 1.2 O Pacote here

here() cria caminhos relativos à raiz do projeto.

```
library(here)
# Raiz do projeto
here()
#> [1] "/Users/viniciusjunqueira/Library/CloudStorage/OneDrive-Pessoal/Cursos/curso-r-github-ia
# Criar caminho
here("data", "raw", "dados.csv")
#> [1] "/Users/viniciusjunqueira/Library/CloudStorage/OneDrive-Pessoal/Cursos/curso-r-github-ia
# Vantagens sobre setwd():
# - Portável (funciona em Windows, Mac, Linux)
# - Seguro (não muda working directory global)
# - Claro (explícito onde estão os arquivos)
# RUIM (não faça):
# setwd("C:/Users/Vinicius/Documents/projeto")
# dados <- read.csv("data/dados.csv")</pre>
# BOM:
# dados <- read_csv(here("data", "raw", "dados.csv"))</pre>
```

43.3 1.3 Leitura de Arquivos CSV

CSV (Comma-Separated Values) é o formato mais comum.

43.3.1 readr::read_csv() vs base::read.csv()

```
# readr (tidyverse) - RECOMENDADO
library(readr)

# Vantagens do readr:
# - Mais rápido (10x)
# - Retorna tibble (não data.frame)
# - Melhor tratamento de tipos
# - Progress bar para arquivos grandes
# - Encoding consistente (UTF-8)

# Criar CSV de exemplo
exemplo <- tibble(
  id = 1:5,
  nome = c("Ana", "Bruno", "Carla", "Diego", "Elena"),
  idade = c(25, 30, 28, 32, 27),
  salario = c(3000, 4500, 3500, 5000, 3800)
)</pre>
```

```
# Salvar temporariamente
write_csv(exemplo, here("temp_exemplo.csv"))
# Ler com readr (recomendado)
dados_readr <- read_csv(here("temp_exemplo.csv"))</pre>
dados_readr
#> # A tibble: 5 x 4
#>
        id nome idade salario
#>
     <dbl> <dbl>
                        <dbl>
        1 Ana
                         3000
#> 1
                   25
#> 2
       2 Bruno
                   30 4500
#> 3
       3 Carla
                   28
                         3500
#> 4
                   32
        4 Diego
                         5000
#> 5
     5 Elena
                   27
                          3800
# Ler com base R (comparação)
dados_base <- read.csv(here("temp_exemplo.csv"))</pre>
class(dados_base) # data.frame
#> [1] "data.frame"
class(dados_readr) # tibble
                                                 "data.frame"
#> [1] "spec_tbl_df" "tbl_df"
                                   "tbl"
# Limpar
file.remove(here("temp_exemplo.csv"))
#> [1] TRUE
```

43.3.2 Opções Importantes

```
# Criar CSV com problemas comuns
write_lines(
  c("# Este é um comentário",
    "nome, idade, cidade",
    "Ana,25,São Paulo",
    "Bruno,, Rio de Janeiro", # Idade ausente
    "Carla,28,",
                               # Cidade ausente
    "Diego, 32, Belo Horizonte"),
 here("temp_problemas.csv")
)
# Ler com tratamento
dados <- read_csv(</pre>
 here("temp_problemas.csv"),
 comment = "#",
                  # Ignorar linhas com #
                        # O que considerar como NA
 na = c("", "NA"),
```

```
nome = col_character(),
   idade = col_double(),
    cidade = col_character()
  )
)
dados
#> # A tibble: 4 x 3
    nome idade cidade
#>
     <chr> <dbl> <chr>
#>
#> 1 Ana
            25 São Paulo
#> 2 Bruno NA Rio de Janeiro
           28 <NA>
#> 3 Carla
#> 4 Diego
          32 Belo Horizonte
# Ver problemas durante leitura
problems(dados)
#> # A tibble: 0 x 5
#> # i 5 variables: row <int>, col <int>, expected <chr>, actual <chr>, file <chr>
# Pular linhas
dados <- read_csv(</pre>
 here("temp_problemas.csv"),
  skip = 1 # Pular primeira linha
)
# Ler apenas algumas linhas
dados <- read_csv(</pre>
 here("temp_problemas.csv"),
 n_max = 3 # Ler apenas 3 linhas
)
# Limpar
file.remove(here("temp_problemas.csv"))
```

#> [1] TRUE

43.3.3 Outros Delimitadores

```
# TSV (tab-separated)
dados <- read tsv("dados.tsv")</pre>
# Delimitador customizado
dados <- read_delim("dados.txt", delim = "|")</pre>
# Arquivo com vírgula como decimal (padrão brasileiro)
```

```
dados <- read_csv2("dados.csv") # Usa ; como separador</pre>
```

43.4 1.4 Leitura de Arquivos Excel

```
library(readxl)
# Criar Excel de exemplo
library(writexl)
dados_excel <- list(</pre>
  Alunos = tibble(
    nome = c("Ana", "Bruno", "Carla"),
    nota = c(8.5, 7.0, 9.0)
  ),
  Turmas = tibble(
   turma = c("A", "B", "C"),
   n_{alunos} = c(30, 25, 28)
  )
)
write_xlsx(dados_excel, here("temp_exemplo.xlsx"))
# Listar sheets
excel_sheets(here("temp_exemplo.xlsx"))
#> [1] "Alunos" "Turmas"
# Ler sheet específica
alunos <- read_excel(here("temp_exemplo.xlsx"), sheet = "Alunos")</pre>
alunos
#> # A tibble: 3 x 2
#>
     nome
          nota
     <chr> <dbl>
#>
#> 1 Ana
             8.5
#> 2 Bruno
             7
#> 3 Carla
turmas <- read_excel(here("temp_exemplo.xlsx"), sheet = 2) # Por posição
turmas
#> # A tibble: 3 x 2
     turma n_alunos
#>
#>
   <chr> <dbl>
#> 1 A
                 30
#> 2 B
                 25
#> 3 C
                 28
```

```
# Ler range especifico
dados <- read_excel(
  here("temp_exemplo.xlsx"),
  sheet = "Alunos",
  range = "A1:B3" # Células especificas
)

# Pular linhas
dados <- read_excel(
  here("temp_exemplo.xlsx"),
  sheet = "Alunos",
  skip = 1 # Pular cabeçalho
)

# Limpar
file.remove(here("temp_exemplo.xlsx"))</pre>
```

#> [1] TRUE

43.5 1.5 Escrita de Arquivos

43.5.1 CSV

```
# Criar dados
resultados <- tibble(
  data = Sys.Date(),
  analise = "Exploratória",
 n_observacoes = 100,
  media = 75.5
)
# Escrever CSV
write_csv(resultados, here("temp_resultados.csv"))
# Ler de volta
read_csv(here("temp_resultados.csv"))
#> # A tibble: 1 x 4
#>
     data
                              n_observacoes media
                analise
#>
     <date>
                <chr>
                                      <dbl> <dbl>
                                        100 75.5
#> 1 2025-10-07 Exploratória
# Adicionar a arquivo existente
novos_resultados <- tibble(</pre>
  data = Sys.Date() + 1,
  analise = "Confirmatória",
  n_{observacoes} = 150,
```

```
media = 78.2
)
write_csv(novos_resultados, here("temp_resultados.csv"), append = TRUE)
read_csv(here("temp_resultados.csv"))
#> # A tibble: 2 x 4
                analise
     data
                               n_observacoes media
                <chr>
#>
     <date>
                                      <dbl> <dbl>
#> 1 2025-10-07 Exploratória
                                         100 75.5
#> 2 2025-10-08 Confirmatória
                                         150 78.2
# Limpar
file.remove(here("temp_resultados.csv"))
#> [1] TRUE
43.5.2 Excel
library(writexl)
# Múltiplas sheets
dados_completos <- list(</pre>
  Resumo = tibble(total = 100, media = 75),
  Detalhado = tibble(id = 1:5, valor = c(70, 75, 80, 72, 78))
)
write_xlsx(dados_completos, here("temp_analise.xlsx"))
# Limpar
file.remove(here("temp_analise.xlsx"))
#> [1] TRUE
43.5.3 RDS (formato R nativo)
# RDS preserva TUDO: tipos, classes, atributos
modelo <- lm(mpg ~ wt, data = mtcars)</pre>
# Salvar
saveRDS(modelo, here("temp_modelo.rds"))
# Carregar
modelo_carregado <- readRDS(here("temp_modelo.rds"))</pre>
summary(modelo_carregado)
#>
#> Call:
```

```
#> lm(formula = mpg ~ wt, data = mtcars)
#>
#> Residuals:
#>
      Min
                1Q Median
                                3Q
                                       Max
#> -4.5432 -2.3647 -0.1252 1.4096 6.8727
#>
#> Coefficients:
               Estimate Std. Error t value Pr(>|t|)
#>
#> (Intercept) 37.2851
                           1.8776 19.858 < 2e-16 ***
               -5.3445
                            0.5591 -9.559 1.29e-10 ***
#> wt
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> Residual standard error: 3.046 on 30 degrees of freedom
#> Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
#> F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
# Vantagens RDS:
# - Preserva estrutura completa de objetos R
# - Mais rápido que CSV
# - Compressão automática
# - Ideal para resultados intermediários
# Limpar
file.remove(here("temp_modelo.rds"))
#> [1] TRUE
```

43.6 1.6 Boas Práticas de I/O

```
# 1. SEMPRE use here() para caminhos
dados <- read_csv(here("data", "raw", "dados.csv"))

# 2. NUNCA modifique dados originais
# Leia de raw/, salve em processed/
dados_limpos <- dados %>% clean_data()
write_csv(dados_limpos, here("data", "processed", "dados_limpos.csv"))

# 3. Use nomes descritivos com data
hoje <- Sys.Date()
write_csv(resultados, here("output", paste0("resultados_", hoje, ".csv")))

# 4. Documente encoding explicitamente
dados <- read_csv(here("dados.csv"), locale = locale(encoding = "UTF-8"))

# 5. Valide dados após importar
dados <- read_csv(here("dados.csv"))</pre>
```

```
stopifnot(nrow(dados) > 0)
stopifnot("idade" %in% names(dados))
```

44 INTERVALO (20h30 - 20h50)

Aproveite para: - Tomar água/café - Organizar sua estrutura de projeto - Testar leitura de seus próprios dados

45 Parte 2: Visualização com ggplot2 (20h50 - 22h00)

45.1 2.1 Gramática de Gráficos

ggplot2 implementa uma "gramática de gráficos" - uma abordagem sistemática para criar visualizações.

45.1.1 Componentes Fundamentais

```
# Estrutura básica
ggplot(data = dados, aes(x = variavel_x, y = variavel_y)) +
  geom_*() +  # Tipo de gráfico (pontos, linhas, barras)
  labs() +  # Títulos e labels
  theme_*() # Tema visual
# Camadas são adicionadas com +
```

45.1.2 Primeiro Gráfico

```
library(ggplot2)

# Dados de exemplo
dados <- tibble(
    x = 1:10,
    y = c(2, 4, 3, 7, 5, 8, 9, 6, 10, 12)
)

# Gráfico básico
ggplot(dados, aes(x = x, y = y)) +
    geom_point()</pre>
```



```
# Com linha
ggplot(dados, aes(x = x, y = y)) +
geom_point() +
geom_line()
```



```
# Adicionar títulos
ggplot(dados, aes(x = x, y = y)) +
  geom_point() +
  geom_line() +
  labs(
    title = "Meu Primeiro Gráfico",
    x = "Eixo X",
```

```
y = "Eixo Y"
)
```


45.2 2.2 Gráfico de Dispersão

geom_point()

Dispersão mostra relação entre duas variáveis contínuas.

```
# Usar mtcars (dataset nativo)
glimpse(mtcars)
#> Rows: 32
#> Columns: 11
#> $ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8, 16.4, 17.3,
#> $ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4
#> $ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 167.6, 167.6, 27
         <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180, 205, 215, 23
#> $ hp
#> $ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92, 3.07, 3.07, 3
         <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.440, 3.440, 4
#> $ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18.30, 18.90, 17
#> $ vs
         <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, (
         #> $ gear <dbl> 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 5, 3, 3, 3, 4, 5, 5
#> $ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2, 2, 4, 2, 1, 2
# Básico
ggplot(mtcars, aes(x = wt, y = mpg)) +
```



```
# Com cor por categoria
ggplot(mtcars, aes(x = wt, y = mpg, color = factor(cyl))) +
  geom_point()
```



```
# Com tamanho
ggplot(mtcars, aes(x = wt, y = mpg, size = hp)) +
geom_point(alpha = 0.6) # alpha = transparência
```



```
# Com linha de tendência
ggplot(mtcars, aes(x = wt, y = mpg)) +
   geom_point() +
   geom_smooth(method = "lm", se = TRUE) # se = intervalo de confiança
```



```
# Customizar
ggplot(mtcars, aes(x = wt, y = mpg)) +
  geom_point(color = "steelblue", size = 3, alpha = 0.7) +
  geom_smooth(method = "lm", color = "red", fill = "pink") +
  labs(
    title = "Relação entre Peso e Consumo",
    subtitle = "Dataset mtcars",
```

```
x = "Peso (1000 lbs)",
y = "Milhas por Galão (mpg)",
caption = "Fonte: Motor Trend (1974)"
) +
theme_minimal()
```

Relação entre Peso e Consumo

45.3 2.3 Gráfico de Barras

Barras comparam valores entre categorias.

```
# Dados de exemplo
vendas <- tibble(
  produto = c("A", "B", "C", "D"),
  vendas = c(120, 95, 150, 80)
)

# geom_col() - altura especificada
ggplot(vendas, aes(x = produto, y = vendas)) +
  geom_col()</pre>
```



```
# Com cores
ggplot(vendas, aes(x = produto, y = vendas, fill = produto)) +
  geom_col() +
  theme_minimal()
```



```
# Barras horizontais
ggplot(vendas, aes(x = vendas, y = produto)) +
  geom_col() +
  labs(title = "Vendas por Produto")
```

Vendas por Produto


```
# geom_bar() - conta frequências
ggplot(mtcars, aes(x = factor(cyl))) +
  geom_bar() +
labs(
    title = "Distribuição de Cilindros",
    x = "Número de Cilindros",
    y = "Frequência"
)
```

Distribuição de Cilindros


```
# Barras agrupadas
dados_grouped <- tibble(
  categoria = rep(c("A", "B"), each = 3),
  subcategoria = rep(c("X", "Y", "Z"), 2),</pre>
```

```
valor = c(10, 15, 12, 14, 18, 16)
)

ggplot(dados_grouped, aes(x = categoria, y = valor, fill = subcategoria)) +
   geom_col(position = "dodge") + # lado a lado
   theme_minimal()
```



```
# Barras empilhadas
ggplot(dados_grouped, aes(x = categoria, y = valor, fill = subcategoria)) +
   geom_col(position = "stack") +
   theme_minimal()
```


45.4 2.4 Boxplot

Boxplot mostra distribuição e identifica outliers.

```
# Básico
ggplot(mtcars, aes(x = factor(cyl), y = mpg)) +
geom_boxplot()
```



```
# Com cores
ggplot(mtcars, aes(x = factor(cyl), y = mpg, fill = factor(cyl))) +
  geom_boxplot() +
  labs(
    title = "Consumo por Número de Cilindros",
    x = "Cilindros",
    y = "Milhas por Galão",
    fill = "Cilindros"
) +
  theme_minimal()
```



```
# Com pontos (jitter)
ggplot(mtcars, aes(x = factor(cyl), y = mpg)) +
  geom_boxplot(outlier.shape = NA) + # Remove outliers do boxplot
  geom_jitter(alpha = 0.5, width = 0.2) + # Adiciona pontos
  theme_minimal()
```



```
# Violin plot (alternativa)
ggplot(mtcars, aes(x = factor(cyl), y = mpg)) +
  geom_violin(fill = "lightblue") +
  geom_jitter(alpha = 0.3, width = 0.1) +
  theme_minimal()
```


45.5 2.5 Histograma e Densidade

Histograma mostra distribuição de variável contínua.

```
# Customizar bins
ggplot(mtcars, aes(x = mpg)) +
  geom_histogram(bins = 10, fill = "steelblue", color = "white") +
```

```
labs(
  title = "Distribuição de Consumo",
  x = "Milhas por Galão",
  y = "Frequência"
) +
theme_minimal()
```



```
# Densidade
ggplot(mtcars, aes(x = mpg)) +
  geom_density(fill = "steelblue", alpha = 0.5) +
  theme_minimal()
```



```
# Por grupo
ggplot(mtcars, aes(x = mpg, fill = factor(cyl))) +
  geom_density(alpha = 0.5) +
  labs(fill = "Cilindros") +
  theme_minimal()
```


45.6 2.6 Gráfico de Linhas

Linhas mostram tendências ao longo do tempo.

```
# Dados temporais
vendas_tempo <- tibble(
  mes = 1:12,
   vendas = c(100, 110, 105, 120, 125, 130, 128, 135, 140, 138, 145, 150)
)
# Básico
ggplot(vendas_tempo, aes(x = mes, y = vendas)) +
  geom_line()</pre>
```



```
# Com pontos
ggplot(vendas_tempo, aes(x = mes, y = vendas)) +
    geom_line(color = "steelblue", linewidth = 1) +
    geom_point(color = "darkblue", size = 2) +
    labs(
        title = "Evolução de Vendas",
        x = "Mês",
        y = "Vendas (R$)"
) +
    theme_minimal()
```



```
# Múltiplas linhas
vendas_produtos <- tibble(</pre>
  mes = rep(1:12, 3),
  produto = rep(c("A", "B", "C"), each = 12),
  vendas = c(
    100 + cumsum(rnorm(12, 2, 3)),
    90 + cumsum(rnorm(12, 2.5, 3)),
    110 + cumsum(rnorm(12, 1.5, 3))
  )
)
ggplot(vendas_produtos, aes(x = mes, y = vendas, color = produto)) +
  geom_line(linewidth = 1) +
  geom_point() +
  labs(
    title = "Vendas por Produto ao Longo do Ano",
   x = "Mês",
    y = "Vendas",
    color = "Produto"
  theme_minimal()
```


45.7 2.7 Facetas

Facetas criam múltiplos gráficos para diferentes subgrupos.

```
# facet_wrap() - uma variável
ggplot(mtcars, aes(x = wt, y = mpg)) +
  geom_point() +
  facet_wrap(~cyl) +
  labs(title = "Consumo vs Peso por Número de Cilindros") +
  theme_minimal()
```

Consumo vs Peso por Número de Cilindros


```
# facet_grid() - duas variáveis
ggplot(mtcars, aes(x = wt, y = mpg)) +
  geom_point() +
  facet_grid(cyl ~ gear) +
  theme_minimal()
```



```
# Customizar layout
ggplot(mtcars, aes(x = wt, y = mpg)) +
geom_point() +
facet_wrap(~cyl, ncol = 2) + # 2 colunas
theme_minimal()
```



```
# Escalas livres
ggplot(mtcars, aes(x = wt, y = mpg)) +
  geom_point() +
  facet_wrap(~cyl, scales = "free") + # Escalas independentes
  theme_minimal()
```


45.8 2.8 Personalização

45.8.1 Cores

```
# Cores manuais
ggplot(mtcars, aes(x = factor(cyl), y = mpg, fill = factor(cyl))) +
geom_boxplot() +
scale_fill_manual(values = c("red", "green", "blue")) +
theme_minimal()

35

40

41

60

10

10
```

factor(cyl)

theme_minimal()

```
# Paletas do RColorBrewer
library(RColorBrewer)
display.brewer.all()
ggplot(mtcars, aes(x = factor(cyl), y = mpg, fill = factor(cyl))) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Set2") +
  theme_minimal()
          35
          30
          25
                                                                        factor(cyl)
                                                                        ‡ 4
        mpg
                                                                         = 6
                                                                        ₩ 8
          20
          15
          10
                                      factor(cyl)
# Paletas viridis (color-blind friendly)
ggplot(mtcars, aes(x = wt, y = mpg, color = hp)) +
  geom_point(size = 3) +
 scale_color_viridis_c() + # _c = continua, _d = discreta
```


45.8.2 Temas

```
p <- ggplot(mtcars, aes(x = wt, y = mpg)) +
    geom_point() +
    labs(title = "Consumo vs Peso")

# Temas disponíveis
p + theme_minimal()</pre>
```


p + theme_classic()

p + theme_bw()

p + theme_dark()

p + theme_void()

Consumo vs Peso

. .

```
# Customizar tema
p + theme_minimal() +
theme(
    plot.title = element_text(size = 16, face = "bold"),
    axis.text = element_text(size = 12),
    panel.grid.minor = element_blank()
)
```


45.8.3 Labels e Anotações

45.9 2.9 Salvando Gráficos

```
# Criar gráfico
p <- ggplot(mtcars, aes(x = wt, y = mpg)) +</pre>
  geom_point() +
  geom_smooth(method = "lm") +
  labs(title = "Consumo vs Peso") +
  theme_minimal()
# Salvar com ggsave()
ggsave(
  filename = here("output", "figures", "grafico_consumo.png"),
  plot = p,
  width = 8,
                  # Largura em polegadas
 height = 6, # Altura em polegadas
dpi = 300 # Resolução (300 dpi
  dpi = 300
                 # Resolução (300 dpi para publicação)
)
# Diferentes formatos
ggsave(here("output", "grafico.png"), p)
                                          # PNG
ggsave(here("output", "grafico.pdf"), p) # PDF (vetorial)
ggsave(here("output", "grafico.svg"), p) # SVG (vetorial)
ggsave(here("output", "grafico.jpg"), p) # JPEG
# Ajustar tamanho
ggsave(here("output", "grafico_wide.png"), p,
       width = 12, height = 4) # Formato wide
# Salvar último gráfico
ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()
ggsave(here("output", "ultimo_grafico.png")) # Salva o último
```

46 Exercícios Práticos

46.1 Exercício 1: I/O de Dados

```
# a) Crie um tibble com dados fictícios (nome, idade, cidade, salário)
# de 10 pessoas

# b) Salve como CSV em data/processed/
# c) Salve como Excel com duas sheets: "Dados" e "Resumo"
```

```
# d) Salve como RDS
# e) Leia cada arquivo de volta e compare
```

46.2 Exercício 2: Visualizações Básicas

```
# Use o dataset 'iris' (nativo do R)
glimpse(iris)

# a) Crie gráfico de dispersão: Sepal.Length vs Sepal.Width
# colorido por Species

# b) Crie boxplot de Petal.Length por Species

# c) Crie histograma de Sepal.Length
# d) Salve os 3 gráficos em PNG (alta resolução)
```

46.3 Exercício 3: Gráficos Avançados

```
# Use o dataset 'diamonds' (ggplot2)
glimpse(diamonds)

# a) Crie gráfico de densidade do preço por qualidade do corte (cut)

# b) Crie gráfico de barras: média de preço por cor (color)

# c) Crie facetas: dispersão price vs carat, uma faceta por clarity

# d) Customize com tema, cores e títulos profissionais
```

46.4 Exercício 4: Análise Completa

```
# Dataset de vendas (criar fictício)
set.seed(123)
vendas <- tibble(
  data = seq(as.Date("2024-01-01"), by = "day", length.out = 365),
  produto = sample(c("A", "B", "C"), 365, replace = TRUE),
  vendas = round(rnorm(365, 1000, 200)),</pre>
```

```
regiao = sample(c("Norte", "Sul", "Leste", "Oeste"), 365, replace = TRUE)

# a) Salve o dataset em CSV

# b) Crie gráfico de linha: vendas ao longo do tempo por produto

# c) Crie boxplot: vendas por região

# d) Crie facetas: densidade de vendas por região

# e) Salve os gráficos em uma pasta 'output/figures/'
```

46.5 Exercício 5: Projeto Integrado

```
# Projeto completo: análise de desempenho de alunos

# 1. Crie dataset de 50 alunos com:

# - nome, curso, nota_p1, nota_p2, frequência, bolsista

# 2. Calcule média final e status (aprovado/reprovado)

# 3. Salve dados limpos em processed/

# 4. Crie 4 visualizações:

# - Distribuição de notas

# - Média por curso

# - Relação entre frequência e nota

# - Comparação bolsista vs não-bolsista

# 5. Salve todas as visualizações profissionalmente

# 6. Use IA (ChatGPT ou Claude) para sugerir melhorias!
```

47 Galeria de Gráficos

47.1 Quando usar cada tipo?

```
# DISPERSÃO: relação entre 2 variáveis contínuas
# Exemplo: altura vs peso, preço vs tamanho

# LINHAS: evolução temporal, tendências
# Exemplo: vendas mensais, temperatura diária

# BARRAS: comparar categorias
# Exemplo: vendas por produto, população por país

# BOXPLOT: distribuição, outliers, comparar grupos
# Exemplo: salário por profissão, notas por turma

# HISTOGRAMA: distribuição de uma variável
# Exemplo: distribuição de idades, frequência de valores

# DENSIDADE: distribuição suave, comparar grupos
# Exemplo: distribuição de renda por região

# FACETAS: comparar subgrupos
# Exemplo: mesma análise para diferentes categorias
```

48 Commit no GitHub

Versione seu progresso:

```
git add .
git commit -m "Dia 4: adiciona I/O e visualização com ggplot2"
git push
```

49 Para Casa

- 1. Organizar seu projeto com estrutura profissional
- 2. Praticar leitura de seus próprios dados
- 3. Criar pelo menos 5 visualizações diferentes
- 4. Ler R for Data Science Data Visualization
- 5. Explorar R Graph Gallery para inspiração
- 6. Usar IA para melhorar suas visualizações

50 Recursos Adicionais

50.1 Documentação

- ggplot2 Cheat Sheet
- ggplot2 Book
- R Graph Gallery
- Data-to-Viz Escolher gráfico certo

50.2 Extensões ggplot2

- ggthemes: Temas adicionais
- patchwork: Combinar múltiplos gráficos
- **ggrepel**: Labels sem sobreposição
- gganimate: Gráficos animados
- plotly: Gráficos interativos

```
# install.packages(c("ggthemes", "patchwork", "ggrepel"))
library(ggthemes)
library(patchwork)

# Tema Economist
ggplot(mtcars, aes(wt, mpg)) +
    geom_point() +
    theme_economist()

# Combinar gráficos
p1 <- ggplot(mtcars, aes(wt, mpg)) + geom_point()
p2 <- ggplot(mtcars, aes(hp, mpg)) + geom_point()
p1 + p2 # Lado a lado</pre>
```

51 Dúvidas Frequentes

P: CSV ou Excel?

R: CSV para dados simples, Excel quando precisa de múltiplas sheets ou formatação.

P: Por que usar here()?

R: Portabilidade! Seu código funciona em qualquer computador sem mudanças.

P: Qual resolução usar para gráficos?

R: 300 dpi para publicação, 150 dpi para web, 72 dpi para apresentações.

P: Como escolher cores?

R: Use paletas viridis (color-blind friendly) ou ColorBrewer. Evite vermelho-verde juntos.

P: Gráfico muito carregado, o que fazer?

R: Simplifique! Menos é mais. Use facetas para separar informação.

52 Conclusão do Dia 4

Parabéns! Você completou o Dia 4 e agora domina:

- Leitura e escrita de dados (CSV, Excel, RDS)
- Organização profissional de projetos
- Caminhos relativos com here()
- Gramática de gráficos do ggplot2
- Criação de visualizações profissionais
- Personalização de gráficos
- Salvamento em alta qualidade
- Escolha do gráfico adequado

Amanhã: RMarkdown, relatórios reprodutíveis e projeto final!

Última atualização: 2025-10-07

Contato: junqueiravinicius@hotmail.com

Repositório: https://github.com/viniciusjunqueira/curso-r-github-ia

Lattes: http://lattes.cnpq.br/4686677580216927

53 Parte 5: Relat rios e Projeto Final

54 Objetivos do Dia 5

Ao final desta aula, você será capaz de:

- Criar documentos reprodutíveis com RMarkdown
- Entender a estrutura YAML, Markdown e chunks
- Gerar relatórios em HTML, PDF e Word
- Usar código inline para resultados dinâmicos
- Organizar projetos finais profissionalmente
- Criar README.md completo no GitHub
- Configurar .gitignore adequadamente
- Entender conceitos básicos de branches
- Usar IA para documentação e revisão
- Continuar aprendendo R de forma autônoma

55 Revisão do Curso

```
library(tidyverse)
library(here)
# Dia 1: Fundamentos
vetor \leftarrow c(1, 2, 3, 4, 5)
media <- mean(vetor)</pre>
# Dia 2: Funções
calcular_imc <- function(peso, altura) {</pre>
  peso / altura^2
# Dia 3: Manipulação
dados \leftarrow tibble(x = 1:5, y = c(2, 4, 3, 5, 4))
resumo <- dados %>%
  summarize(media_y = mean(y))
# Dia 4: Visualização
ggplot(dados, aes(x, y)) +
  geom_point() +
  theme_minimal()
```


56 Parte 1: RMarkdown e Documentos Reprodutíveis (19h00 - 20h30)

56.1 1.1 O que é Programação Literária?

Programação literária combina código, resultados e narrativa em um único documento.

56.1.1 Benefícios

- Reprodutibilidade: Qualquer pessoa pode recriar sua análise
- Transparência: Código e resultados visíveis
- Eficiência: Atualiza automaticamente quando dados mudam
- Comunicação: Explica o processo de análise
- Documentação: Registro completo do que foi feito

56.1.2 RMarkdown vs Quarto

```
# RMarkdown (tradicional)
# - Foco em R
# - Maduro e estável
# - Grande comunidade

# Quarto (novo)
# - Multi-linguagem (R, Python, Julia)
# - Mais recursos modernos
# - Sucessor do RMarkdown
```

```
# Neste curso: RMarkdown (mais comum ainda)
# Princípios são os mesmos!
```

56.2 1.2 Criando um Documento RMarkdown

56.2.1 No RStudio

- 1. File \rightarrow New File \rightarrow R Markdown
- 2. Escolha título, autor, formato
- 3. Clique OK

56.2.2 Estrutura Básica

```
title: "Meu Relatório"
author: "Seu Nome"
date: "2025-10-07"
output: html_document
---

# Introdução

Este é um documento RMarkdown.

"" r

# Código R aqui
x <- 1:10
mean(x)

"" ** [1] 5.5

"## Resultados

A média é 5.5.
```

56.3 1.3 Componentes de um Documento

56.3.1 YAML Header

O YAML (Yet Another Markup Language) configura o documento:

```
title: "Análise de Vendas"
author: "Vinícius Junqueira"
date: "2025-10-07"
output:
   html_document:
   toc: true
   toc_float: true
   theme: flatly
   code_folding: hide
pdf_document:
   toc: true
   latex_engine: xelatex
```

56.3.2 Opções Comuns

56.4 1.4 Markdown Básico

Markdown é linguagem simples para formatação de texto.

56.4.1 Formatação de Texto

```
# Título Nível 1
## Título Nível 2
### Título Nível 3
```

Curso R + GitHub + IA

```
**Negrito** ou __negrito__
*Itálico* ou _itálico_
~~Riscado~~

Texto normal com parágrafo.
Nova linha precisa de linha em branco.

- Item 1
- Item 2
- Subitem 2.1
- Subitem 2.2

1. Primeiro
2. Segundo
3. Terceiro
```

56.4.2 Links e Imagens

```
[Texto do link](https://example.com)
[R for Data Science](https://r4ds.hadley.nz/)

![Texto alternativo](caminho/imagem.png)
![Logo R](https://www.r-project.org/logo/Rlogo.png)
```

56.4.3 Outros Elementos

sem highlighting

56.5 1.5 Chunks de Código

Chunks são blocos de código R executáveis.

56.5.1 Sintaxe Básica

```
# Código R aqui
x <- 1:10
mean(x)

**> [1] 5.5
```

56.5.2 Opções de Chunk

```
# echo: mostrar código
# eval: executar código
# warning: mostrar warnings
# message: mostrar messages
# error: continuar se houver erro
# include: incluir no documento

library(tidyverse)
data <- read_csv("dados.csv")</pre>
```

56.5.3 Opções Comuns

```
# Executar mas não mostrar código
# {r, echo=FALSE}

# Mostrar código mas não executar
# {r, eval=FALSE}

# Não incluir no documento (útil para setup)
# {r, include=FALSE}

# Tamanho de figuras
# {r, fig.width=10, fig.height=6}

# Legenda de figura
# {r, fig.cap="Gráfico de dispersão"}
```

```
# Cache (salvar resultado)
# {r, cache=TRUE}
```

56.5.4 Chunk de Setup

56.6 1.6 Código Inline

Código inline insere resultados no texto.

A média das idades é 27.6666667 anos.

O dataset tem 32 observações.

Hoje é 2025-10-07.

O valor de pi é aproximadamente 3.14.

Resultado:

A média das idades é 27.6666667 anos.

56.7 1.7 Tabelas

56.7.1 Tabelas Simples

Tabela básica do R

```
head(mtcars, 3)
#>
                 mpg cyl disp hp drat
                                       wt qsec vs am gear carb
#> Mazda RX4
                21.0
                      6 160 110 3.90 2.620 16.46
                       6 160 110 3.90 2.875 17.02 0 1
#> Mazda RX4 Wag 21.0
                                                                4
#> Datsun 710
                22.8
                     4 108 93 3.85 2.320 18.61 1 1
                                                                1
# knitr::kable() - mais bonito
library(knitr)
kable(head(mtcars, 3), caption = "Primeiras linhas de mtcars")
```

Table 11: Primeiras linhas de mtcars

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Wag											
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1

Motor Trend Car Road Tests Primeiras 5 observações

mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
21.0	6	160.0	110.0	3.9	2.6	16.46	0	1	4	4
21.0	6	160.0	110.0	3.9	2.9	17.02	0	1	4	4
22.8	4	108.0	93.0	3.9	2.3	18.61	1	1	4	1
21.4	6	258.0	110.0	3.1	3.2	19.44	1	0	3	1
18.7	8	360.0	175.0	3.1	3.4	17.02	0	0	3	2

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.62	16.46	0	1	4	4
Mazda RX4	21.0	6	160	110	3.90	2.88	17.02	0	1	4	4
Wag											
Datsun 710	22.8	4	108	93	3.85	2.32	18.61	1	1	4	1

56.7.2 Tabelas Avançadas

```
# gt: Grammar of Tables
library(gt)

mtcars %>%
  head(5) %>%
  gt() %>%
  tab_header(
    title = "Motor Trend Car Road Tests",
    subtitle = "Primeiras 5 observações"
) %>%
  fmt_number(
    columns = c(mpg, disp, hp, drat, wt),
    decimals = 1
)
```

56.8 1.8 Renderizando Documentos

56.8.1 Via RStudio

- Botão **Knit** (ou Ctrl+Shift+K)
- Escolhe formato automaticamente do YAML

56.8.2 Via Código

56.9 1.9 Parâmetros

Parâmetros tornam relatórios reutilizáveis.

56.9.1 Definir Parâmetros

```
title: "Relatório de Vendas"
output: html_document
params:
   ano: 2024
   regiao: "Sul"
   incluir_graficos: true
```

56.9.2 Usar Parâmetros

```
# Acessar parâmetros
ano_selecionado <- params$ano
regiao_selecionada <- params$regiao

# Usar em análise
vendas %>%
filter(ano == params$ano, regiao == params$regiao) %>%
summarize(total = sum(vendas))
```

```
Análise para o ano de 2024 na região Sul.

(Use código inline com params$ano e params$regiao quando tiver parâmetros definidos)

""

# Este chunk só executa se incluir_graficos = TRUE

ggplot(dados, aes(x, y)) + geom_point()
```

57 INTERVALO (20h30 - 20h50)

Aproveite para: - Tomar água/café - Criar seu primeiro R
Markdown - Experimentar com diferentes formatos

58 Parte 2: Projeto Final e GitHub Avançado (20h50 - 22h00)

58.1 2.1 Template do Projeto Final

58.1.1 Estrutura

```
projeto-final/
  projeto.Rproj
  README.md
  relatorio.Rmd
  data/
      raw/
          dados.csv
      processed/
          dados_limpos.csv
   scripts/
      01_importar.R
      02_limpar.R
      03_analisar.R
   output/
      figures/
          fig1_distribuicao.png
          fig2_correlacao.png
      tables/
          resumo_estatistico.csv
   docs/
       relatorio.html
```

relatorio.pdf

58.2 2.2 Exemplo de Projeto Completo

```
# -----
# Projeto Final: Análise de Desempenho de Alunos
# Autor: Seu Nome
# Data: 2025-01-XX
# Setup ----
library(tidyverse)
library(here)
library(knitr)
library(gt)
# 1. Importar dados ----
dados <- read_csv(here("data", "raw", "alunos.csv"))</pre>
# 2. Exploração inicial ----
glimpse(dados)
summary(dados)
# Verificar NAs
dados %>%
  summarize(across(everything(), ~sum(is.na(.))))
# 3. Limpeza ----
dados_limpos <- dados %>%
  # Remover NAs
 drop_na(nota_final) %>%
  # Criar variáveis derivadas
 mutate(
   media = (nota_p1 + nota_p2) / 2,
   status = case_when(
     media >= 7 ~ "Aprovado",
     media >= 5 ~ "Recuperação",
     TRUE ~ "Reprovado"
   ),
   faixa_freq = case_when(
     frequencia >= 90 ~ "Alta",
     frequencia >= 75 ~ "Média",
     TRUE ~ "Baixa"
   )
  ) %>%
  # Filtrar casos válidos
```

```
filter(frequencia > 0, nota_p1 > 0, nota_p2 > 0)
# Salvar dados limpos
write_csv(dados_limpos, here("data", "processed", "alunos_limpos.csv"))
# 4. Análise Exploratória ----
## 4.1 Estatísticas descritivas
resumo <- dados_limpos %>%
  summarize(
   n = n(),
    media_geral = mean(media),
    mediana = median(media),
   dp = sd(media),
   aprovados = sum(status == "Aprovado"),
    taxa_aprovacao = mean(status == "Aprovado") * 100
  )
## 4.2 Por curso
por_curso <- dados_limpos %>%
  group_by(curso) %>%
  summarize(
    n = n(),
    media = mean(media),
   taxa_aprovacao = mean(status == "Aprovado") * 100
  ) %>%
  arrange(desc(media))
# Salvar tabela
write_csv(por_curso, here("output", "tables", "resumo_por_curso.csv"))
# 5. Visualizações ----
## 5.1 Distribuição de notas
p1 <- ggplot(dados_limpos, aes(x = media)) +
  geom_histogram(bins = 15, fill = "steelblue", color = "white") +
  geom_vline(xintercept = 7, linetype = "dashed", color = "red") +
  labs(
    title = "Distribuição de Médias Finais",
    subtitle = "Linha vermelha indica nota mínima para aprovação",
    x = "Média Final",
    y = "Frequência"
  ) +
  theme_minimal()
ggsave(here("output", "figures", "fig1_distribuicao.png"),
       p1, width = 8, height = 5, dpi = 300)
```

```
## 5.2 Média por curso
p2 <- ggplot(por_curso, aes(x = reorder(curso, media), y = media, fill = curso)) +
  geom_col() +
  coord_flip() +
  labs(
    title = "Média de Notas por Curso",
   x = "Curso",
    y = "Média Final"
  ) +
  theme minimal() +
  theme(legend.position = "none")
ggsave(here("output", "figures", "fig2_por_curso.png"),
       p2, width = 8, height = 5, dpi = 300)
## 5.3 Relação frequência x nota
p3 <- ggplot(dados_limpos, aes(x = frequencia, y = media, color = status)) +
  geom_point(alpha = 0.6, size = 2) +
  geom_smooth(method = "lm", se = FALSE) +
  labs(
    title = "Relação entre Frequência e Desempenho",
    x = "Frequência (%)",
   y = "Média Final",
    color = "Status"
  ) +
  theme_minimal()
ggsave(here("output", "figures", "fig3_frequencia_nota.png"),
       p3, width = 8, height = 5, dpi = 300)
# 6. Conclusões ----
# - Taxa de aprovação geral: XX%
# - Curso com melhor desempenho: XXX
# - Correlação positiva entre frequência e nota
```

58.3 2.3 README.md Profissional

Exemplo de README.md completo:

```
# Análise de Desempenho de Alunos

Projeto final do curso "Introdução à Programação em R com GitHub e IA".

## Descrição

Análise exploratória do desempenho acadêmico de estudantes, investigando
```

rmarkdown::render("relatorio.Rmd")

```
a relação entre frequência, notas e taxa de aprovação por curso.
## Estrutura do Projeto
              data/# Dados brutos e processados — scripts/# Scripts R de análise
                                                                              output/
                              docs/# Relatórios finais
# Resultados (figuras e tabelas)
## Dados
- **Fonte: ** Dataset fictício criado para fins educacionais
- **Observações:** 100 alunos
- **Variáveis: ** nome, curso, nota_p1, nota_p2, frequência, bolsista
## Metodologia
1. Importação e validação dos dados
2. Limpeza e tratamento de valores ausentes
3. Criação de variáveis derivadas (média, status)
4. Análise exploratória por curso
5. Visualizações e interpretação
## Principais Resultados
- Taxa de aprovação geral: 78%
- Curso com melhor desempenho: Biologia (média 8.2)
- Correlação positiva entre frequência e nota (r = 0.65)
## Visualizações
![Distribuição de Notas](output/figures/fig1_distribuicao.png)
## Como Reproduzir
# 1. Clone o repositório
git clone https://github.com/usuario/projeto-final.git
# 2. Instale dependências
install.packages(c("tidyverse", "here", "knitr"))
# 3. Execute a análise
source("scripts/01_importar.R")
source("scripts/02_limpar.R")
source("scripts/03_analisar.R")
# 4. Gere o relatório
```

58.4 Requisitos

- R >= 4.0
- RStudio (recomendado)
- Pacotes: tidyverse, here, knitr

58.5 Autor

Vinícius Silva Junqueira

Email: junqueiravinicius@hotmail.com

Lattes: http://lattes.cnpq.br/4686677580216927LinkedIn: www.linkedin.com/in/junqueiravinicius

```
58.6 Licença
MIT License
## 2.4 .gitignore Adequado
Arquivo `.gitignore` para projetos R:
```gitignore
R e RStudio
.Rhistory
.RData
.Rproj.user/
*.Rproj.user
Arquivos temporários do knitr
*_cache/
*_files/
/*.html
/*.pdf
/*.tex
Dados sensíveis ou muito grandes (descomente se necessário)
data/raw/*.csv
data/raw/*.xlsx
Output temporário
output/temp/
Sistema
.DS_Store
Thumbs.db
```

```
LaTeX
*.log
*.aux
*.out
```

# 58.7 2.5 Git e GitHub Avançado

### 58.7.1 Commits Significatives

```
RUIM
git commit -m "update"
git commit -m "fix"

BOM
git commit -m "Adiciona análise exploratória de frequência"
git commit -m "Corrige cálculo de média ponderada"
git commit -m "Atualiza visualizações com tema consistente"
```

### 58.7.2 Branches Básicas

```
Criar branch para nova feature
git checkout -b analise-correlacao

Fazer mudanças e commits
git add scripts/04_correlacao.R
git commit -m "Adiciona análise de correlação"

Voltar para main
git checkout main

Merge (integrar mudanças)
git merge analise-correlacao

Deletar branch
git branch -d analise-correlacao
```

### 58.7.3 Tags (Versões)

```
Criar tag
git tag -a v1.0 -m "Versão final do projeto"

Push com tags
git push origin main --tags

Listar tags
git tag
```

# 58.8 2.6 Usando IA para Documentação

# 58.8.1 Prompts Eficientes

```
Para ChatGPT/Claude:

"Revise este README.md e sugira melhorias:
[cole seu README]"

"Crie um README profissional para este projeto de análise de dados.
O projeto analisa [descreva]. Principais resultados: [liste]."

"Escreva comentários para este código de forma clara:
[cole código]"

"Gere uma descrição de commit apropriada para estas mudanças:
- Adicionei análise de correlação
- Criei 3 novas visualizações
- Corrigi bug no cálculo de média"
```

# 59 Exercícios Práticos

### 59.1 Exercício 1: Primeiro RMarkdown

```
a) Crie novo RMarkdown: File > New File > R Markdown

b) Modifique o YAML:
- Adicione seu nome
- Mude para theme: flatly
- Adicione toc: true

c) Adicione novo chunk com análise de mtcars

d) Use código inline para mostrar número de observações

e) Gere HTML e visualize
```

### 59.2 Exercício 2: Relatório com Dados Reais

```
Crie relatório RMarkdown que:

a) Carrega dataset (use iris ou mtcars)

b) Mostra resumo estatístico em tabela formatada (kable)

c) Cria 3 visualizações diferentes

d) Interpreta resultados com texto entre os chunks

e) Gera PDF e HTML
```

# 59.3 Exercício 3: Projeto Organizado

```
Organize um projeto completo:
a) Crie estrutura de pastas (data/, scripts/, output/)

b) Coloque dados em data/raw/

c) Crie script de limpeza em scripts/

d) Crie script de visualização em scripts/

e) Gere relatório final em docs/
```

# 59.4 Exercício 4: README Profissional

```
Para seu projeto:

a) Crie README.md com:
- Título e descrição
- Estrutura de arquivos
- Como reproduzir
- Principais resultados
- Suas informações de contato
```

```
b) Adicione badge de licença
c) Inclua pelo menos uma visualização
d) Use IA para melhorar o texto
```

# 59.5 Exercício 5: Projeto Final Completo

```
Projeto final integrado:
1. Escolha tema (use seus dados ou dataset público)
2. Crie estrutura profissional de projeto
3. Faça análise exploratória completa
4. Crie pelo menos 5 visualizações
5. Escreva relatório RMarkdown com:
 - Introdução
#
 - Metodologia
 - Resultados
 - Conclusões
6. Configure README.md e .gitignore
7. Faça commits organizados
8. Push para GitHub
9. Use IA para revisar e melhorar
10. Compartilhe o link!
```

# 60 Apresentações dos Projetos

### 60.1 Formato (3-5 minutos cada)

- 1. Contexto: Qual pergunta você tentou responder?
- 2. **Dados:** Que dados usou?
- 3. Análise: O que fez?
- 4. Resultados: O que descobriu?
- 5. **Aprendizados:** O que foi mais desafiador?

### 60.2 Dicas para Apresentar

- Mostre visualizações principais
- Explique insights interessantes
- Mencione dificuldades superadas
- Compartilhe link do GitHub
- Aceite feedback construtivo

61 Recursos para Continuar Aprendendo

# of Recursos para Continuar Aprendenc

# 61.1 Livros Online (Gratuitos)

- R for Data Science (2e) Essencial
- Advanced R Nível avançado
- R Graphics Cookbook Visualizações
- R Markdown Cookbook
- Happy Git with R

#### 61.2 Comunidades

- Posit Community
- Stack Overflow [r]
- R-Ladies Capítulos em várias cidades
- Reddit r/rstats
- RWeekly Newsletter semanal

### 61.3 Prática Contínua

- TidyTuesday Desafios semanais
- Kaggle Competições e datasets
- DataCamp Cursos interativos (pago)
- Coursera Especializações em R

### 61.4 Datasets Públicos

- data.gov Dados governamentais (EUA)
- Brasil.io Dados públicos brasileiros
- IBGE Instituto Brasileiro de Geografia

- DataSUS Dados de saúde
- UCI Machine Learning Datasets variados

### 61.5 Cheat Sheets

- RStudio: Help  $\rightarrow$  Cheat Sheets
- Posit Cheat Sheets

# 61.6 Canais YouTube (em Português)

- Curso-R
- Fernanda Peres
- Análise Macro

# 62 Certificado de Conclusão

### 62.1 Você completou o curso!

#### Conteúdo dominado:

- Dia 1: R, RStudio, Git, fundamentos de programação
- Dia 2: Lógica, funções, boas práticas, debugging
- Dia 3: Manipulação de dados com tidyverse
- Dia 4: I/O de dados e visualização com ggplot2
- Dia 5: RMarkdown e projetos reprodutíveis

### 62.2 Próximos Passos

- 1. Pratique regularmente 15 min/dia é melhor que 2h/semana
- 2. Participe de comunidades Tire dúvidas, ajude outros
- 3. Trabalhe em projetos reais Use seus próprios dados
- 4. Contribua no GitHub Mostre seu portfólio
- 5. Continue aprendendo R é uma jornada sem fim!

### 63 Feedback do Curso

Por favor, dedique alguns minutos para avaliar o curso:

O que funcionou bem? - Conteúdo claro e organizado? - Exercícios adequados? - Ritmo apropriado? - Material de apoio suficiente?

O que pode melhorar? - Tópicos que faltaram? - Partes confusas? - Mais/menos exercícios? - Sugestões gerais?

### 63.1 Onde Deixar Feedback

• Issues no GitHub do curso

- Email: junqueiravinicius@hotmail.com
- Formulário online: [link se disponível]

Seu feedback é essencial para melhorar o curso!

64 Agradecimentos

# 64.1 Obrigado por Participar!

Espero que este curso tenha sido útil e inspirador. Lembre-se:

- Erros são normais São parte do aprendizado
- Google é seu amigo Ninguém sabe tudo de cor
- Comunidade ajuda Não hesite em pedir ajuda
- Prática é fundamental Continue codando!
- IA é ferramenta Use com sabedoria

### 64.2 Mantenha Contato

- Email: junqueiravinicius@hotmail.com
- GitHub: github.com/viniciusjunqueira
- Lattes: lattes.cnpq.br/4686677580216927
- LinkedIn: linkedin.com/in/junqueiravinicius

# 64.3 Grupo de Ex-Alunos

[Se aplicável] Entre no grupo para: - Tirar dúvidas - Compartilhar projetos - Networking - Vagas e oportunidades

### 65 Commit Final

Versione seu projeto final:

```
git add .
git commit -m "Projeto final: análise completa e relatório"
git push

Criar release
git tag -a v1.0 -m "Versão final do curso"
git push origin v1.0
```

# 66 Para Casa (Forever!)

- 1. Revise todo o material do curso
- 2. Complete seu projeto final se não terminou

- 3. Compartilhe no GitHub
- 4. **Junte-se** a comunidades R
- 5. Pratique com TidyTuesday
- 6. **Leia** R for Data Science
- 7. Aplique R em seu trabalho/pesquisa
- 8. Ensine outros melhor forma de aprender!

# 67 Recursos Finais

# 67.1 Template de Projeto

```
meu-projeto-r/
 README.md
 LICENSE
 .gitignore
 meu-projeto.Rproj
 data/
 raw/
 processed/
 scripts/
 01_import.R
 02_clean.R
 03_analyze.R
 04_visualize.R
 output/
 figures/
 tables/
 docs/
 relatorio.Rmd
 tests/
 test_functions.R
```

### 67.2 Script de Setup Automático

```
Criar arquivos
 file.create("README.md")
 file.create(".gitignore")
 # .gitignore básico
 writeLines(c(
 ".Rhistory",
 ".RData",
 ".Rproj.user/",
 "*.html",
 "output/temp/"
), ".gitignore")
 # README template
 writeLines(c(
 paste("#", nome),
 "## Descrição",
 "## Como usar",
 "## Autor"
), "README.md")
 message("Projeto criado com sucesso!")
}
Usar
criar_projeto("meu-projeto-incrivel")
```

# 68 Conclusão

# 68.1 Parabéns por Completar o Curso!

Você agora tem as ferramentas fundamentais para:

- Analisar dados de forma reprodutível
- Criar visualizações profissionais
- Colaborar usando Git/GitHub
- Documentar análises com RMarkdown
- Usar IA produtivamente
- Continuar aprendendo autonomamente

### 68.2 A Jornada Continua

R é uma linguagem em constante evolução. Continue:

- Explorando novos pacotes
- Aprendendo novas técnicas
- Compartilhando conhecimento
- Construindo seu portfólio
- Contribuindo para a comunidade

# 68.3 Boa Sorte!

Sucesso em suas análises e projetos futuros!

Nos vemos na comunidade R!

Última atualização: 2025-10-07

 $\textbf{Contato:} \ junqueira vinicius@hotmail.com$ 

Repositório: https://github.com/viniciusjunqueira/curso-r-github-ia

**Lattes:** http://lattes.cnpq.br/4686677580216927

# 69 FIM DO CURSO

Obrigado por sua dedicação e participação!

# 70 Conclus o e Pr ximos Passos

### 70.1 O que voc aprendeu

Ao longo deste curso, voc desenvolveu habilidades em:

- 1. Fundamentos de R: tipos de dados, estruturas, manipula o b sica
- 2. Programa o: l gica, fun es, debugging, boas pr ticas
- 3. Manipula o de dados: tidyverse, transforma es, limpeza
- 4. **Visualiza o:** ggplot2, gr ficos profissionais, customiza o
- 5. Reprodutibilidade: RMarkdown, projetos organizados, Git/GitHub
- 6. IA Assistida: uso estrat gico de ChatGPT e Claude

# 70.2 Recursos para Continuar Aprendendo

### 70.2.1 Livros Online (Gratuitos)

- R for Data Science (2e): https://r4ds.hadley.nz/
- Advanced R: https://adv-r.hadley.nz/
- R Graphics Cookbook: https://r-graphics.org/
- Happy Git with R: https://happygitwithr.com/

### 70.2.2 Comunidades

- Posit Community: https://community.rstudio.com/
- Stack Overflow: tag [r]
- R-Ladies: cap tulos locais e globais
- Reddit: r/rstats, r/Rlanguage

### 70.2.3 Pr tica Cont nua

- TidyTuesday: https://github.com/rfordatascience/tidytuesday
- Kaggle: https://www.kaggle.com/datasets
- Data.gov: https://data.gov/ (dados p blicos)
- Brasil.io: https://brasil.io/datasets/

#### 70.2.4 Cursos Avan ados

- Posit Academy
- DataCamp
- Coursera (Johns Hopkins Data Science Specialization)
- edX

#### 70.3 Certificado de Conclus o

Parab ns por concluir o curso! Voc agora possui as habilidades fundamentais para:

- Conduzir an lises de dados profissionais
- Criar visualiza es impactantes
- Trabalhar de forma reprodut vel
- Colaborar usando Git/GitHub
- Continuar aprendendo autonomamente

# 70.4 Mantenha Contato

Instrutor: Vin cius Silva Junqueira Email: seu-email@example.com

GitHub: https://github.com/seu-usuario

LinkedIn: [seu perfil]

# 70.4.1 Suporte P s-Curso

• D vidas via Issues no reposit rio do curso

- Sess o de follow-up ap s 2 semanas (se aplic vel)
- Comunidade de ex-alunos (se aplic vel)

\_\_\_\_

**Vers o:** 1.0

 $<sup>^{**}</sup>$ ltima atualiza o:\*\* 2025-10-07