

FRAP Tutorial

EMBO course, Debrecen August 2011

Stefan Terjung www.embl.de/almf

Overview

- Introduction
- Application examples and related techniques
- Instrument setups for FRAP
- Basic FRAP analysis procedures

Molecular Dynamics and Interactions

Brief FRAP history

- 1970s: 1st applications of the FRAP method mathematics for Gaussian beam profile bleaching (Poo & Cone, Axelrod et al.)
- Custom built systems, mainly diffusion in membranes
- 1980s: first commercial confocal microscopes
- 1990s: revival of FRAP using GFP and confocal microscopes with ROI-scanning (AOTF)
 (Tsien, Cole et al., Lippincott-Schwartz..)
- Commercial confocal systems, virtually any protein fused to a fluorescent protein
- **2000s:** Computer modeling for quantitative FRAP analysis Improvements of microscope systems for FRAP

Questions addressed by FRAP

- How fast do proteins move?
- Which compartments are connected?
- How long do proteins bind other proteins?
- What is the percentage of proteins 'immobilized' by binding to larger structures (e.g. DNA, Actin) ?
- How do drugs or mutations alter the binding of a protein ?
- How fast are molecules transported between compartments (e.g. nuclear import)?

Molecular Dynamics

tsO45G-YFP traffic in HeLa cell

1. What is FRAP?

Fluorescence Recovery After Photobleaching (FRAP)

Let's think of fluorescence molecules dispersed in a field. White circles represent the molecules.

We focus a strong laser beam to a spot (red dotted circle).

Kota Miura

1. What is FRAP?

Fluorescence Recovery After Photobleaching (FRAP)

Then the strong irradiation BLEACHES the fluorescence at that spot.

1. What is FRAP?

Fluorescence Recovery After Photobleaching (FRAP)

Since molecules are moving driven by diffusion or active transport, bleached molecules exchange their place with un-bleached molecules.

Then the average intensity at the bleached spot recovers.

Kota Miura

Scheme of a FRAP experiment

Free diffusion vs. binding

Phair and Mistelli, Nature Reviews MolCellBio, 2001

Lippincott-Schwartz et al. Nature CellBio Supp. 2003

Multiple populations with differing diffusion rates

→ multi-component equations

The 'Ideal' FRAP Acquisition

Instantaneous Bleach pulse

FRAP – basic parameters

Bleaching

- The amount of fluorophore bleaching is dependent on the excitation power
- Bleaching should be avoided during acquisition, but should be sufficient and 'instantaneous' for the bleach pulse of a FRAP experiment
- Bleaching can also cause photodamage
 - → bleach only to ~50% of initial intensity
 - → repeat bleaching at same spot to check for differences due to photodamage)

Bleaching depends on excitation intensity

FRAP conditions depend on the sample

 The bleaching ROI has to be matched to the protein/structure to FRAP

 Conditions are highly instrument dependent (laser power, % AOTF, PMT Voltage...) and cannot (easily) be compared between systems, but should be kept constant on one system to compare different conditions.

Controls

- Calibrate bleached volume in x,y and z
- Check dependence of recovery rate on different bleaching power (cross-linking ?)
- Repeat FRAP on same spot (difference due to photodamage ?)
- Dependence of recovery on ROI size ?
- Compare wiltype with mutant (e.g. non-binding mutant)
- Check for dark states / reversibility

Overview

- Introduction
- Application examples and Related techniques
 - FLIP: <u>Fluorescence Loss In Photobleaching</u>
 - iFRAP: inverse FRAP
 - Photoactivation (paGFP...)
 - Photoconversion (Kaede, Dendra, EOS...)
- Instrument setups for FRAP
- Basic FRAP analysis procedures

FRAP: Comparison of 2 conditions ER-export with and without sterol depletion

Figure 5 Lateral mobility of ts-O45-G-YFP in the ER is reduced upon sterol depletion. (A) FRAP analysis of ER-localized ts-O45-G-YFP in HeLacells incubated at 39.5°C under control (upper panel) or sterol-depleted conditions (lower panel). Images were obtained before photobleaching and at the indicated time points thereafter. The cell area acquired during the time course of the experiment is outlined by a box with the photobleached area (circle) in its centre. Bars: $5 \mu m$. (B-D) FRAP analysis of ts-O45-G-YFP in the ER at 39.5°C (B), or ss-YFP (C) and Insig1-YFP (D) at 37°C under control (\bullet , curve fit: full line) or sterol-depleted conditions (\blacktriangle , curve fit: dashed line). Relative fluorescence intensities from one representative cell per condition were plotted against time (in s). Images were taken at 500 ms intervals (ss-YFP: 250 ms). For details on recovery curve analysis see Supplementary data.

Runz H et. al 2006: Sterols regulate ERexport dynamics of secretory cargo protein ts-O45-G. *EMBO Journal* **25**: 2953-2965

Fluorescence Loss in Photobleaching (FLIP)

Phair and Mistelli, Nature Reviews MolCellBio, 2001

FLIP

Probing organelle continuity by repetitive bleaching

GFP in the ER Snapp E, Altan N, Lippincott-Schwartz J (2003) Measuring protein mobility by photobleaching GFP chimeras in living cells. In *Current Protocols Cell Biology*, 21. Wiley

FRAP-FLIP

Phair et al. 2004 *Mol Cell Biol* **24:** 6393-6402

Combined FRAP and FLIP

fluorescence loss in photobleaching

fluorescence redistribution after photobleaching

Adriaan Houtsmuller

Adriaan Houtsmuller

iFRAP

Inverse FRAP (iFRAP): All fluorescence except the region of interest is bleached and the loss of fluorescence is monitored.

iFRAP: Nuclear Pore Complex

Rabut G, Doye V, Ellenberg J (2004) Nat. Cell Biology 6: 1114-1121

Photoactivation and Conversion

Protein tracking

Parameters determined:

- · Movement rate and direction
- Diffusion coefficient
- Mobile and immobile fractions
- Time parameters of compartmental residency and exchange between compartments
- Rate of turnover

Organelle tracking

Parameters determined:

- Movement rate and direction
- · Rate of content interchange
- Fission and fusion events

Cell tracking

Parameters determined:

- Movement rate and direction
- Cell localization
- Rate of cell division
- Shape and volume of cells

From: Lukyanov, K. A. et al. (2005) Nat Rev Mol Cell Biol 6(11): 885-890.

Photoactivation and Conversion

Fluorescent Protein (Acronym-Color)	Excitation Maximum (nm)	Emission Maximum (nm)	Molar Extinction Coefficient	Quantum Yield	<i>in vivo</i> Molecular Structure	Relative Brightness (% of EGFP)	рКа
PA-GFP (G/NA)	400	515	20,700	0.13	Monomer	8	4.5
PA-GFP (G)	504	517	17,400	0.79	Monomer	41	-
PS-CFP (C)	402	468	34,000	0.16	Monomer	16	4.0
PS-CFP (G)	490	511	27,000	0.19	Monomer	15	6.0
PS-CFP2 (C)	400	468	43,000	0.20	Monomer	26	4.3
PS-CFP2 (G)	490	511	47,000	0.23	Monomer	32	6.1
PA-mRFP1 (R)	578	605	10,000	0.08	Monomer	3	4.4
Kaede (G)	508	518	98,800	0.88	Tetramer	259	5.6
Kaede (R)	572	580	60,400	0.33	Tetramer	59	5.6
Kikume (KikGR; G)	507	517	53,700	0.70	Tetramer	112	7.8
Kikume (KikGR; R)	583	593	35,100	0.65	Tetramer	68	5.5
wtEosFP (G)	506	516	72,000	0.70	Tetramer	150	-
wtEosFP (R)	571	581	41,000	0.55	Tetramer	67	-
dEosFP (G)	506	516	84,000	0.66	Dimer	165	-
dEosFP (R)	569	581	33,000	0.60	Dimer	59	-
tdEosFP (G)	506	516	84,000	0.66	Monomer	165	-
tdEosFP (R)	569	581	33,000	0.60	Monomer	59	-
mEosFP (G)	505	516	67,200	0.64	Monomer	128	5.5
mEosFP (R)	569	581	37,000	0.62	Monomer	68	5.5
Dendra (G)	488	505	21,000	0.70	Monomer	44	6.6
Dendra (R)	556	575	20,000	0.72	Monomer	43	6.9
Dendra2 (G)	490	507	45,000	0.50	Monomer	67	6.6
Dendra2 (R)	553	573	35,000	0.55	Monomer	57	6.9
Kindling (R)	580	600	59,000	0.07	Tetramer	12	-
Dronpa (G)	503	518	95,000	0.85	Monomer	240	5.0

Photoactivation + Reference

Transport speed between compartments: Golgi ↔ plasma membrane

RAS (localized to plasma membrane and Golgi) tagged with paGFP (green) and mCherry (red)
O.Rocks (Bastiaens Group)

Reference Channel

 For long-term FRAP experiments it might be necessary to include a reference channel, which shows the bleached structure.

 If sequential acquisition is necessary, use line-by-line sequential!

Dendra2-Fibrillarin – Example from a course

Nucleolus highlighted with a Dendra 2 fibrillarin fusion protein is converted with tornado scan (Olympus FV1000)

Overview

- Introduction
- Application examples
- Related techniques
- Instrument setups for FRAP
- Basic FRAP analysis procedures

FRAP on Epifluorescence microscope

Fixed laser spot incoupling

Laser incoupling via scanner

FRAP on CLSM

 current commercial CLSMs can control the laser intensity pixel by pixel with AOTFs
 → scanning of Regions of interest (ROI)

Bleach regions are very flexible

- Together with GFPs the commercial availability of ROI bleaching with CLSMs was important for FRAP revival
- Pinhole can be adjusted appropriately

FRAP on Spinning disk

Laser coupling via scanner

- Low bleaching during acquisition
- Fast frame rate
- A flipping mirror switches between imaging and bleaching

Overview

- Introduction
- Application examples and related techniques
- Instrument setups for FRAP
- Basic FRAP analysis procedures
 - Retrieving raw data
 - Qualitative vs. quantitative analysis
 - Recovery time
 - Mobile / immobile fraction
 - Photobleaching correction
 - Data normalization
 - Curve fitting

Basic Frap analysis: retrieving raw data

Mean intensities inside regions of interest (ROI) are measured over time.

Kappel and Eils, Leica App.Letter 2004

Qualitative vs. quantitative analysis

- It is relatively easy to compare two conditions qualitatively by FRAP,
 e.g. recovery of a wildtype vs. mutant protein.
 - → use exactly the same imaging/bleaching conditions!
- To determine quantitative data like the diffusion coefficient (inside cells) or binding coefficients more information about the investigated system is necessary.
 - modeling can be used to compare the experimental data with simulated data

Modeling + Simulation

Monte Carlo Simulation

Adriaan Houtmuller

www.erasmusmc.nl/pathologie/research/houtsmuller/?lang=en

Spatial modeling

A. Bancaud, S. Huet et al. (2010) Live Cell Imaging: A Laboratory Manual, Second Edition Cold Spring Harbor Laboratory Press

Qualitative vs. quantitative analysis

Recovery time

- Halftime of recovery $\tau_{1/2}$ is a qualitative measure of the recovery speed under constant experimental conditions.
- The Halftime of recovery is proportional to the bleach area size, if the recovery is limited by diffusion.
 diffusion coefficient D [µm²s⁻¹]

Mobile / immobile fraction

- Photodamage can also create an 'immobile' fraction
 - → bleaching creates radicals, which can cause crosslinking between proteins by chemical reactions
- A simple test for photo-induced 'immobile' fraction is repeating the FRAP experiment at the same position:
 - → higher recovery indicates a real 'immobile' fraction
 - → similar 'immobile' fraction indicates potential photodamage

Lippincott-Schwartz et al. Nature CellBio Supp. 2003

Spot bleaching of GFP in nuclei before bleach after bleach fixed immobile molecules 0 living mobile molecules 0

Adriaan Houtsmuller

Spot-FRAP on ERCC1-GFP expressing cells

fluorescence ratio profiles

0.2

0.0

n=62

distance to spot (µm)

Photobleaching correction

Photobleaching correction is important:

- to determine the 'right' relation of mobile/immobile fraction
- Photobleaching influences the recovery time determination since it changes the plateau of recovery

Photobleaching correction

Methods for photobleaching correction:

- Acquisition photobleaching can also be corrected by using the total cell intensity. This also corrects for fluorescence loss due to the bleach pulse and laser fluctuations.
- 2. The amount of acquisition photobleaching can be determined by measuring the **intensity decay of neighboring cells** (not 'FRAPed' cells).
- Measuring bleaching in a time-lapse without FRAP, after the fluorescence is back in steady state. This bleaching curve can be fitted with an exponential decay function to correct the FRAP data.
- 4. Using the **prebleach** data to determine the acquisition bleach rate.

Raw Data

Normalization is important to compare different experiments

Reversible Dark states

Living cell expressing H2b-GFP

Driving FPs into dark state equilibrium.

Returning FPs into fluorescent state after bleach pulse.

Returning FPs into fluorescent state at slower frame rate.

Living cell expressing H2b-paGFP

Bancaud, A., Huet, S., RABUT, G., and Ellenberg, J. 2010 *Live Cell Imaging: A Laboratory Manual, Second Edition* Cold Spring Harbor Laboratory Press

- Raw Data
- background subtracted

$$T(t) - I_{back}(t)$$
 $I(t) - I_{back}(t)$

- Raw Data
- background subtracted
- normalized to prebleach (single normalization)

Fluorescence loss due to bleach pulse and acquisition bleaching

$$\frac{T(t) - I_{back}(t)}{T_{prebleach} - I_{back}} \qquad \frac{I(t) - I_{back}(t)}{I_{prebleach} - I_{back}}$$

- Raw Data
- background subtracted
- normalized to prebleach (single normalization)
- Corrected for fluorescence loss (double normalization; Phair et al. 2003)

$$I_{norm}(t) = \frac{I(t) - I_{back}(t)}{I_{prebleach-}I_{back}} \bullet \frac{T_{prebleach-}I_{back}}{T(t) - I_{back}(t)}$$

- Raw Data
- background subtracted
- normalized to prebleach (single normalization)
- Corrected for fluorescence loss (double normalization; Phair et al. 2003)
- Additional normalization to 1st postbleach set to zero
 → experiments can easily be compared with different bleach depth.

Curve fitting

Using the appropriate equations, data can be fitted to obtain e.g. the effective diffusion coefficient (D_{eff}).

$$FRAP(t) = a_0 + a_1 \cdot e^{-\frac{\tau}{2(t - t_{bleach})}} \cdot \left(I_0 \left(\frac{\tau}{2(t - t_{bleach})} \right) + I_1 \left(\frac{\tau}{2(t - t_{bleach})} \right) \right)$$

Here $I_0(x)$, $I_1(x)$ – modified Bessel functions.

Circular ROI: Soumpasis 1983

$$FRAP(t) = a_0 + a_1 \left(1 - \sqrt{\frac{w^2}{w^2 + 4\pi D(t - t_{bleach})}} \right)$$

Stripe ROI: Ellenberg 1997

Acknowledgements

ALMF: Rainer Pepperkok

Yury Belyaev Christian Tischer

Kota Miura (CMCI)

→ IgorPro FRAP analysis Macro:

http://cmci.embl.de/downloads/frap_analysis

Timo Zimmermann, CRG Barcelona

Adriaan Houtsmuller, Josephine Nefkens Institute, Rotterdam

Arne Seitz, EPFL, Lausanne

Jens Rietdorf, FMI, Basel

FRAPAnalyser http://actinsim.uni.lu/eng/Downloads

www.embl.de/almf/

