Performance of IR-HARQ-based LDPC Extension Codes in Optical Satellite Systems

NGUYEN Trong Cuong

Computer Communication Lab., The University of Aizu, Japan

May 10th, 2023

Outline

I. Introduction

II. System Description

III. Results & Discussions

IV. Extension Directions

Internet of Vehicles (IoVs)

Internet of Vehicles (IoVs): network of vehicles and related entities **Limitations:**

- 1. Radio-frequency (RF) band ⇒ Restricted data rate
- 2. Terrestrial infrastructure \implies Limited coverage

Cuong Nguyen (CCL, UoA)

Optical Satellite Communication

- Data rate limitations: Free-space Optical (FSO) Commun.
 - Infrared wavelength (700-1600 nm)
 - ullet Higher data rate (\sim Gbps)
- Coverage limitation: Low-earth orbits (LEO) Satellite Constellation Network
 - Altitude: ≤ 2000km
 - Low latency, low cost
 - Global coverage

Optical LEO satellite is a potential technology to enable more applications for the IoVs

Challenging Issues: Unreliable Transmission

1. Atmospheric Turbulence

Cause: Inhomogeneity in temperature and pressure

along the propagation path **Effect:** Fluctuated received signal

2. Pointing Misalignment

Cause: Misalignment between the beam footprint

and the receiver detector **Effect:** Lower received power

Transmitted data has a high bit-error rate (BER)

Possible Solutions: Reliable Trans. Protocols

Possible solutions: Automatic Repeat Request (ARQ), Error Correction Code (ECC), and Hybrid ARQ (HARQ)

1. Automatic Repeat Request (ARQ): Retransmit erroneous frames

Error Correction Code (ECC): Add redundancy to correct a number of errors

Possible Solutions: Reliable Trans. Protocols (Cont.)

Hybrid ARQ: Combination of ARQ and ECC

Incremental Redundancy (IR)-HARQ:

- 1. Transmits redundancy when data is erroneous
- Uses transmitted redundancies to decode

IR-HARQ is the most efficient protocol among other protocols for the considered system

Literature Review

Major Studies of HARQ designs for optical satellite systems

[1] S. Parthasarathy, A. Kirstaedter, and D. Giggenbach, "Performance analysis of adaptive hybrid ARQ for inter-HAP free-space optical fading channel with delayed channel state information," in *Proc. IEEE Photon. Netw.*, 2016, pp. 1–7

[2] H. D. Nguyen, H. D. Le, C. T. Nguyen, and A. T. Pham, "Throughput and delay performance of cooperative HARQ in satellite-HAP vehicle FSO systems," in *Proc. IEEE Veh. Technol. Conf.*, 2021, pp. 1–6. [3] H. D. Le and A. T. Pham, "On the design of FSO-based satellite systems using incremental redundancy hybrid ARQ protocols with rate adaptation," *IEEE Trans. Veh. Technol.*, vol. 71, no. 1, pp. 463–477, Jan. 2022.

ECCs of current designs: **convolutional code** and **Reed-Solomon code**. However, these ECCs may not be efficient in high data rate optical systems, where **long blocklength frames** are preferable.

- Convolutional Code: Performance can not compete with block codes
- Reed-Solomon Code: High complexity of encoding and decoding

It is necessary to have a design of proper ECC

Low-density Parity Check (LDPC) Code

Low-density Parity Check (LDPC) code

- Linear block codes
- Sparse parity check matrix

Advantages over long blocklength frames

- Capacity-approaching performance
- Low decoding complexity

$$\mathbf{H} =$$

Rate-compatible (RC)-LDPC Code Family

RC-LDPC code family: A set of LDPC code rates that can be decoded by the same parity check matrix

1. **Puncturing**: Selected bits are removed from an encoded frame to obtain a frame with a higher code rate

Limitation: Performance degradation of higher-rate codes

Code extension: Extend the parity check matrix of a higher-rate code to obtain that of lower-rate codes

Motivations & Contributions

Motivations

- One of the challenging issues in optical satellite-aided IoVs systems is the unreliable downlink channel.
 - ⇒ IR-HARQ offers outstanding performance over time-varying channels compared to other reliable protocols.
- Convolutional and Reed-Solomon codes applied in the current design may not be efficient.
 - ⇒ LDPC code, which has not been considered in the literature, is a potential solution for the design of IR-HARQ in such systems.
- To support the IR-HARQ, a proper design of the RC-LDPC code family is necessary.
 - \implies The RC-LDPC code family derived by code extension is a more suitable approach compared to the one by puncturing.

The IR-HARQ-based RC-LDPC code extension is a promising candidate for optical satellite systems.

Contributions: We study the performance of IR-HARQ-based LDPC code extension for the optical channel from an LEO satellite to a vehicular network

Outline

I. Introduction

II. System Description

III. Results & Discussions

IV. Extension Directions

System Model

System model: Optical downlink channel from an LEO satellite to a ground vehicle

FSO Channel Model:

- Turbulence Fading
- Turbulence Attenuation
- Beam Spreading Loss

Considered Reliable Protocol: IR-HARQ

- Sliding window ARQ
- RC-LDPC code extension

Sliding window ARQ

Sliding window ARQ: Multiple frames are transmitted at a time Considered system: High data rate (\sim Gbps), long channel coherent time (\sim ms)

We design the window size of the sliding window ARQ to be **shorter** than the channel coherent time

RC-LDPC: Structural Diagram of Parity Check Matrix

Base rate:

- **H**_d : matrix corresp. to data bits
- $lackbox{H}_p$: matrix corresp. to parity bits

Extension part:

- **H**_{IR} : matrix corresp. to incremental rates
- I : indentity matrix
- **0** : zero matrix

RC-LDPC: Code Rates of the Family

The check matrix of an arbitrary rate $\frac{k}{n_{\rm BR}+i}$ is obtained by **extending the base** matrix by i numbers of rows and columns.

The possible code rates of the family:

$$\left[\frac{k}{n_{\mathsf{BR}}}, \frac{k}{n_{\mathsf{BR}}+1}, ..., \frac{k}{n_{\mathsf{BR}}+n_{\mathsf{IR}}}\right]$$

RC-LDPC: Encoding Method

Good encoding method: Systematic and low complexity.

Systematic:

Generator matrix for the base rate

$$\mathbf{G}_{\mathsf{BR}} = \begin{bmatrix} \mathbf{I} & \mathbf{H}_{\mathsf{d}}^{\mathsf{T}} \mathbf{H}_{\mathsf{p}}^{-\mathsf{T}} \end{bmatrix}$$

Generator matrix for an arbitrary rate

$$\mathbf{G}_{\mathsf{IR}}^{(i)} = \mathbf{G}_{\mathsf{BR}}igg[\mathbf{I} \quad \left(\mathbf{H}_{\mathsf{IR}}^{(i)}
ight)^{\mathsf{T}}igg]$$

Low complexity: Because all the matrices are sparse \implies Low complexity encoding

Example:

RC-LDPC: An Example of Encoding (1)

RC-LDPC: An Example of Encoding (2)

RC-LDPC: An Example of Encoding (3)

An Example of Data Transmission

Outline

I. Introduction

II. System Description

III. Results & Discussions

IV. Extension Directions

System Parameters

Name	Symbol	Value
LEO Satellite Parameters		
LEO satellite altitude	H_{s}	600 km
Zenith angle	ξ	60°
Divergence half-angle	θ	$10~\mu{\rm rad}$
Bit rate	R_{b}	1 Gbps
Number of bits per burst	N_{burst}	1.6 Mbits
Optical wavelength	λ	$1550\ nm$
Vehicle Parameters		
Vehicle altitude	H_{v}	1.5 m
Aperture radius	r_{a}	$5~{\sf cm}$
Radical displacement	ρ	0 m
Noise spectral density	σ_{n}^2	$10^{-14} \; {\sf A/Hz}$
Detector responsivity	\mathfrak{R}	0.9
Other Parameters		
Atmospheric altitude	H_{a}	20 km
Rms wind speed	w_{wind}	$21~\mathrm{m/s}$
Ground turbulence level	$C_{n}^{2}(0)$	$10^{-14}~{\rm m}^{-2/3}$
Visibility	V	$20~\mathrm{km}$

Evaluation Metrics

Goodput: The successfully transmitted data bits per burst

$$\mathsf{Goodput} = \frac{\# \ \mathsf{of} \ \mathsf{successfully} \ \mathsf{transmitted} \ \mathsf{data} \ \mathsf{bits} \ \mathsf{per} \ \mathsf{burst}}{\# \ \mathsf{of} \ \mathsf{burst} \ \mathsf{simulated}}$$

Energy Efficiency: The successfully transmitted data bits per joule

$${\sf Energy\ Efficiency} = \frac{{\sf Goodput}}{{\sf Transmitted\ power}}$$

Goodput vs. Signal-to-Noise Ratio (SNR)

Figure: Goodput versus average received SNR for different retransmission-based schemes.

Goodput vs. Radial Displacement

Figure: Goodput versus radical displacements for different transmitted power values.

Energy Efficiency vs. Transmitted Power

Figure: Energy efficiency and goodput versus transmitted power for LDPC-based IR-HARQ and conventional ARQ.

Outline

I. Introduction

- II. System Description
- III. Results & Discussions
- IV. Extension Directions

Directions for the Extension: Pointing Error Model

- Consider a pointing error model for the FSO channel model
 - Conf. paper: Assume perfect tracking
 - **Ext.** paper: Pointing error model between the satellite and the moving vehicle

Directions for the Extension: Theoretical Analysis

Analyze the theoretical performance of the system

 $f_h(h)$: PDF of the composite channel

 $\overline{\mathsf{FLR}}_i$: average frame loss rate at i-th transmission

Markovian burst transmission model

- Goodput
- Energy efficiency
- Average frame delay

Conclusion

- 1. We consider an IR-HARQ-based LDPC code extension design to address the unreliable transmission issue of optical satellite-assisted vehicular networks.
- 2. The system performance is evaluated in terms of goodput and energy efficiency.
- 3. From the simulation results, it can be seen that the IR-HARQ-based LDPC code extension outperforms the conventional ARQ.