HW 10 - MATH411

Danesh Sivakumar

April 16, 2022

Problem 1 (Exercise 4, Page 447)

Consider the equation

$$e^{2x-y} + \cos(x^2 + xy) - 2 - 2y = 0$$
 (x, y) in \mathbb{R}^2

Does the set of solutions of this equation in a neighborhood of the solution (0,0) implicitly define one of the components of the point (x,y) as a function of the other component? If so, compute the derivative of this function (these functions?) at the point 0.

Proof. Yes. Let $f(x,y) = e^{2x-y} + \cos(x^2 + xy) - 2 - 2y$; then because f is a composition, sum and product of continuously differentiable functions, it follows that f is continuously differentiable. Notice that f(0,0) = 0, and

$$\nabla f(x,y) = (2e^{2x-y} - (2x+y)\sin(x^2 + xy), -e^{2x-y} - x\sin(x^2 + xy) - 2)$$

and

$$\nabla f(0,0) = (2,-3) \neq (0,0)$$

so that by Dini's Theorem, there exists a neighborhood of (0,0) such that one of the components is implicitly defined by the other component (and vice versa). To calculate the derivative, use the following formulas:

$$\frac{\partial f}{\partial x}(x,g(x)) + \frac{\partial f}{\partial y}(x,g(x))g'(x) = 0$$

and

$$\frac{\partial f}{\partial x}(f(y),y)f'(y) + \frac{\partial f}{\partial y}(f(y),y)) = 0$$

which yields that

$$g'(0) = \frac{2}{3}$$
 and $f'(0) = \frac{3}{2}$

Problem 2 (Exercise 7, Page 447)

Let \mathcal{O} be an open subset of the plane and suppose that the function $f \colon \mathcal{O} \to \mathbb{R}$ is continuously differentiable. At the point (x_0, y_0) in \mathcal{O} , suppose that $f(x_0, y_0) = 0$ and that $\nabla f(x_0, y_0) \neq (0, 0)$. Show that the vector $\nabla f(x_0, y_0)$ is orthogonal to the tangent line at (x_0, y_0) of the implicitly defined function.

Proof. Dini's theorem implies that

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

and

$$\frac{\partial f}{\partial x}(x_0, g(x_0)) + \frac{\partial f}{\partial y}(x_0, g(x_0))g'(x_0) = 0$$

so that in a neighborhood of (x_0, y_0) , there is an implicitly defined function defined by y = g(x). Rewriting the above expression yields that

$$\langle \nabla f(x_0, y_0), (1, g'(x_0)) \rangle = 0$$

But $(1, g'(x_0))$ is the tangent line at (x_0, y_0) by definition of the implicitly defined function.

Problem 3 (Exercise 8, Page 447)

Let \mathcal{O} be an open subset of the plane and suppose that the function $f: \mathcal{O} \to \mathbb{R}$ is continuously differentiable. At the point (x_0, y_0) in \mathcal{O} , suppose that $f(x_0, y_0) = 0$ and that

$$\frac{\partial f}{\partial x}(x_0, y_0) \neq 0, \qquad \frac{\partial f}{\partial y}(x_0, y_0) \neq 0.$$

Show that the two functions implicitly defined by Dini's theorem, when their domains are properly chosen, are inverses of each other.

Proof. Suppose the two functions are f(y) and g(x). Dini's theorem implies that when the domains are chosen such that $|x - x_0| \le r$ and $|x - x_0| \le r$ for some r > 0 when $f(x_0, y_0) = 0$, it follows that y = g(x). Then, for all $x \in B_r(x_0)$ and $y \in B_r(y_0)$ it follows that

$$f(g(x)) = f(y) = x$$

meaning that f and g are inverses of each other.

Problem 4 (Exercise 14, Page 448)

In addition to the assumptions of Dini's Theorem, assume also that the function $f: \mathcal{O} \to \mathbb{R}$ has continuous second-order partial derivatives.

a. Verify formula (17.13).

b. Moreover, suppose that

$$\frac{\partial f}{\partial x}(x_0, y_0) = 0$$
 and $\frac{\partial f}{\partial y}(x_0, y_0) \frac{\partial^2 f}{\partial x^2}(x_0, y_0) > 0.$

Prove that the graph of $g: I \to \mathbb{R}$ lies below the line $y = y_0$ if I is chosen sufficiently small.

Proof. a. Note that Dini's theorem states that

$$\frac{\partial f}{\partial x}(x, g(x)) + \frac{\partial f}{\partial y}(x, g(x))g'(x) = 0$$

Because f has continuous second order partial derivatives, we can differentiate the expression again; differentiating the first term yields

$$\frac{\partial^2 f}{\partial x^2}(x,g(x)) + \frac{\partial^2 f}{\partial x \partial y}(x,g(x))g'(x)$$

and differentiating the second term yields

$$\frac{\partial^2 f}{\partial x \partial y}(x, g(x))g'(x) + \frac{\partial^2 f}{\partial y^2}(x, g(x))g'(x) \cdot g'(x) + \frac{\partial^2 f}{\partial y^2}(x, g(x))g''(x)$$

Combining these two yields the desired formula

$$\frac{\partial^2 f}{\partial x^2}(x,g(x)) + 2\frac{\partial^2 f}{\partial x \partial y}(x,g(x))g'(x) + \frac{\partial^2 f}{\partial y^2}(x,g(x))[g'(x)]^2 + \frac{\partial f}{\partial y}(x,g(x))g''(x) = 0$$

b. Formula (17.13) implies that

$$g''(x_0) = \frac{-\frac{\partial^2 f}{\partial x^2}(x_0, g(x_0)) + 2\frac{\partial^2 f}{\partial x \partial y}(x_0, g(x_0))g'(x_0) + \frac{\partial^2 f}{\partial y^2}(x_0, g(x_0))[g'(x_0)]^2}{\frac{\partial f}{\partial y}(x_0, g(x_0))}$$

Notice that when $|y - y_0| < r$ for the r > 0 as defined by Dini's theorem, we have that for the sufficiently small interval

$$g''(x_0) = \frac{-\frac{\partial^2 f}{\partial x^2}(x_0, y_0) + 2\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)g'(x_0) + \frac{\partial^2 f}{\partial y^2}(x_0, y_0)[g'(x_0)]^2}{\frac{\partial f}{\partial y}(x_0, y_0)}$$

thus demonstrating that the graph lies below the line $y = y_0$.

For the following exercises, use the Implicit Function Theorem to analyze the solutions of the given systems of equations near the solution $\mathbf{0}$.

Problem 5 (Exercise 2, Page 453)

$$\begin{cases} a^3 + a^2b + \sin(a+b+c) = 0\\ \ln(1+a^2) + 2a + (bc)^4 = 0 & (a,b,c) \text{ in } \mathbb{R}^3 \end{cases}$$

Proof. Observe that (0,0,0) is a solution, and \mathbb{R}^3 is open. Also, note that $F(a,b,c)=(a^3+a^2b+\sin{(a+b+c)},\ln{(1+a^2)}+2a+(bc)^4)$ is a continuously differentiable mapping by the continuous differentiability of the component functions. Notice that the derivative matrix is

$$DF = \begin{bmatrix} 3a^2 + 2a\cos(a+b+c) & a^2 + \cos(a+b+c) & \cos(a+b+c) \\ \frac{2a}{1+a^2} + 2 & 4(bc)^3 \cdot c & 4(bc)^3 \cdot b \end{bmatrix}$$

and $DF(0) = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 0 \end{bmatrix}$, meaning that the derivative matrix whose components

are for a and b is equal to $\begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$ and is invertible. Thus, the implicit function theorem allows us to select r > 0 such that (f(c), g(c), c) is a solution of the system of equations if c < r and $a^2 + b^2 < r^2$, and f and g are continuously differentiable functions. If $(a, b, c) \in \mathbb{R}^3$ is a solution of the system and $a^2 + b^2 < r^2$ and c < r, then a = f(c) and b = g(c).

Problem 6 (Exercise 3, Page 454)

$$\begin{cases} (uv)^4 + (u+s)^3 + t = 0\\ \sin(uv) + e^{v+t^2} - 1 = 0 \end{cases} \quad (u, v, s, t) \text{ in } \mathbb{R}^4$$

Proof. Observe that (0,0,0,0) is a solution, and \mathbb{R}^4 is open. Also, note that $F(u,v,s,t)=((uv)^4+(u+s)^3+t,\sin{(uv)}+e^{v+t^2}-1)$ is a continuously differentiable mapping by the continuous differentiability of the component functions. Notice that the derivative matrix is

$$DF = \begin{bmatrix} 2(uv) \cdot v + 3(u+s)^2 & 2(uv) \cdot u & 3(u+s)^2 & 1\\ v\cos(uv) & u\cos(uv) + e^{v+t^2} & 0 & 2t \cdot e^{v+t^2} \end{bmatrix}$$

and $DF(0) = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$, meaning that the derivative matrix whose com-

ponents are for v and t is equal to $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and is invertible. Thus, the implicit function theorem allows us to select r>0 such that (u,f(u,s),s,g(u,s)) is a solution of the system of equations if $u^2+s^2< r^2$, and f and g are continuously differentiable functions. If $(u,v,s,t)\in\mathbb{R}^4$ is a solution of the system and $u^2+s^2< r^2$ and $v^2+t^2< r^2$, then v=f(u,s) and t=g(u,s).

Problem 7 (Exercise 5, Page 454)

$$e^{x^2} + y^2 + z - 4xy^3 - 1 = 0$$
 (x, y, z) in \mathbb{R}^3

Proof. Note that (0,0,0) is a solution to the given system. Also note that \mathbb{R}^3 is open. Also, $f(x,y,z)=e^{x^2}+y^2+z-4xy^3-1$ is continuously differentiable by the composition, sum and products of continuously differentiable functions. The derivative matrix is

$$DF = \begin{bmatrix} 2x \cdot e^{x^2} - 4y^3 & 2y - 12xy^2 & 1 \end{bmatrix}$$

and $DF(0) = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$. Because the last component is nonzero, the implicit function theorem allows us to select r > 0 such that if $x^2 + y^2 < r^2$, then (x,y,g(x,y)) is a solution to the system of equations. If $(x,y,z) \in \mathbb{R}^3$ is a solution and z < r, then z = g(x,y).