Det: $|A| \leq |B|$ if $\exists I-1 \ f:A \rightarrow B$. (or onto $f:B \rightarrow A$). |A| = |B| if $|A| \leq |B|$ and $|B| \leq |A|$. Otherwise $|A| \neq |B|$. (or if $\exists I-1 \ \omega$ respondence $f:A \rightarrow B$). $|A| \leq |B|$ if $|B| \neq |A|$. or if $|A| \leq |B|$ but $|A| \neq |B|$.

Theorem: Let A,B be sets. then exactly one of the following 15 true:

1) |A| < |B| 2) |B| < |A| 3) |A| = |B|

Unim: |[a,b]| = N, Vacb. We know |(0,1]| = 33,

Now: $|R| = |(a_1b)|$.

 $f: [6,1)^2 \longrightarrow [0,1)$

 $f(\alpha,b) = 0.0$, b, $\alpha_2 b_2 \dots$

for 1-1: ensure that a aw b don't terminate in 7s,
So f(a1b) won't either.

but $|\mathbb{R}^R| > |2^{|\mathbb{R}}| = \mathcal{H}_2$. What about $|\mathbb{R}^N|$? $= 2^{|\mathbb{N}| \cdot |\mathbb{N}|}$ $= 2^{|\mathbb{N}| \cdot |\mathbb{N}|}$ Power set $|\mathbb{R}^N| > 2^{|\mathbb{N}|} = \mathcal{H}_1$.

Det Power set POW (A) is set of subsets of A

thum $|A| \subset Pow(A)$. $f: A \rightarrow Pow(A)$ $f(a) = \{a\}$ is 1-1.

Proof

if $g: A \longrightarrow Pow(A)$ is onto then $\forall X \in A$, $\exists x \in A : -t$. g(a) = X.

Let $S = \{a \in A: a \not= g(a)\}$. $\exists t \in A$ s.t. g(t) = S. is $t \in S$?

if $t \in S$ then $\exists x \in g(t) = S$ is $f \in S$ then $f \in g(t)$.

So $f \in S$ $f \in S$ $f \in S$ $f \in S$ then $f \in S$ then