Testing CPT-Symmetric Siamese Universes through FRB-QSO Sky Correlations (v1.3)

CosmicThinker Independent Researcher

October 2025

Abstract

We present an integrated analysis of fast radio bursts (FRBs) and quasars (QSOs) as cosmological probes of a possible CPT-symmetric "Siamese Universe." Building upon prior iterations, we combine isotropy tests with angular σ -maps, radial cluster-density profiles, and random-axis rotation trials. With $|b| > 20^{\circ}$ and DM ≥ 800 cuts on CHIME/FRB Catalog 1 (123 sources) and DESI DR1 QSOs ($\sim 4.7 \times 10^5$, $|b| > 20^{\circ}$, z < 3), global isotropy holds ($R^2 \simeq 10^{-4}$, $p \simeq 0.995$), yet we find a localized excess of supra-threshold clusters ($Z = 7.0 \pm 1.1$) within 15° of the proposed CPT axis (α_0, δ_0) = (170°, 40°). Accounting for the look-elsewhere effect across $N_{\rm rot} = 1000$ random axes yields $p_{\rm global} \approx 0.019$. The feature is therefore marginal but intriguing; we outline tests with expanded FRB/QSO catalogs to confirm or refute it.

Keywords: FRBs, quasars, CPT symmetry, anisotropy, large-scale structure, mirror mapping.

1 Introduction

The CPT theorem ensures invariance under charge, parity, and time reversal. Cosmological extensions can accommodate mirror ("Siamese") sectors related by CPT symmetry [?, ?]. Observationally, weak directional modulations could surface in high-z tracers like FRBs and QSOs. Motivated by reported large-scale alignments—e.g. the CMB low- ℓ "Axis of Evil" [?] and dipole anomalies in extragalactic samples [?, ?]—we test a fixed axis at $(\alpha_0, \delta_0) = (170^{\circ}, 40^{\circ})$.

2 Data and Methodology

We analyze 123 CHIME/FRBs filtered by $|b| > 20^{\circ}$ and DM ≥ 800 [?, ?] and 4.7×10^{5} DESI DR1 QSOs with $|b| > 20^{\circ}$ and z < 3 [?, ?]. The CPT axis is held fixed at $(170^{\circ}, 40^{\circ})$.

Figure 1: CPT reference axis $(\alpha_0, \delta_0) = (170^\circ, 40^\circ)$ and antipode, delineating mirror hemispheres for the reflection mapping.

We define the mirror reflection as

$$\alpha' = (2\alpha_0 - \alpha) \mod 360^\circ, \qquad \delta' = \operatorname{clip}(2\delta_0 - \delta, -90^\circ, 90^\circ).$$

QSOs are indexed via a cKDTree to count neighbors around each real and mirrored FRB within an angular radius (baseline 5°). The normalized fluctuation field is

$$Z_i = \frac{N_i - \langle N \rangle}{\sqrt{\langle N \rangle}},$$

assuming Poisson variance for counts per pixel. Supra-threshold clusters satisfy $|Z| \geq 2.63$ (p < 0.009 two-tailed Gaussian). Global significance is assessed with a random-axis rotation test over $N_{\rm rot} = 1000$ axes (uniform on the sphere), yielding $p_{\rm global}$.

3 Results

Figure 2: Filtered CHIME/FRB sample ($|b| > 20^{\circ}$, DM ≥ 800) in equatorial coordinates.

3.1 Isotropy and Hemispheric Comparison

Global dipole regression on FRB observables yields $R^2 \simeq 10^{-4}$ and $p \simeq 0.995$ (isotropy). Median dispersion measures by CPT hemisphere are 1089.6 vs. 1231.2 pc cm⁻³ (mild difference, not claimed as significant).

Figure 3: Dispersion measure distributions per CPT hemisphere. Histogram comparison shows a mild shift without detection claim.

3.2 σ -Map, Autocorrelation and Cluster Counts

Angular autocorrelation yields a coherence scale $\theta_c \approx 6^{\circ}$, corresponding to a transverse scale of ~ 0.17 Gpc at $z \approx 1$ under Λ CDM (see note below).¹ The σ -map shows 35 supra-threshold clusters ($|Z| \geq 2.63$).

Figure 4: Normalized fluctuation (σ) map of FRB-QSO angular density contrast. Color encodes Z (red: excess; blue: deficit).

Using a standard cosmology with angular diameter distance $D_A(z \sim 1) \approx 1.6$ Gpc, the transverse size is $L = \theta_{\rm rad} D_A \approx 0.105 \times 1.6 \simeq 0.17$ Gpc.

3.3 Radial Density and Axis Rotation

Within 15° of the CPT axis we observe 6 clusters versus an isotropic expectation of ~ 0.6 , giving $Z=7.0\pm 1.1$ (bootstrap). Random-axis trials ($N_{\rm rot}=1000$) give $p_{\rm global}\approx 0.019$ (marginal after look-elsewhere).

Figure 5: Radial density of supra-threshold clusters versus angular distance to the CPT axis. Error bars reflect Poisson \sqrt{N} ; radial Z uses $(N_{\rm obs} - N_{\rm exp})/\sqrt{N_{\rm exp}}$.

Figure 6: Axis-rotation (look-elsewhere) test: distribution of trial statistics over $N_{\text{rot}} = 1000$ random axes and location of the observed value.

3.4 Mirror Overlay and Directional Map

Figure 7: Mirror overlay of FRBs and QSOs with respect to the CPT axis. Visual guide to the reflection geometry used in the analysis.

Figure 8: Directional significance map around the CPT axis, highlighting sectors with excess/deficit of clusters.

4 Discussion

The FRB–QSO sky remains globally isotropic, yet a localized anisotropy aligns with $(170^{\circ}, 40^{\circ})$. The axis lies $\sim 47^{\circ}$ from the CMB dipole and near low- ℓ alignments dubbed the "Axis of Evil" [?]. Though the corrected significance is only marginal $(p_{\text{global}} \approx 0.019)$, its persistence across independent metrics warrants further tests.

If real, such anisotropy could reflect CPT-related boundary conditions between mirrored sectors [?]. However, survey systematics (e.g. CHIME northern bias, DESI footprint) and selection effects must be thoroughly modeled before physical interpretation.

Limitations

The FRB sample size (N=123 after cuts) limits sensitivity; sky coverage is northern-hemisphere biased. QSO completeness varies across the DESI footprint. Future releases (CHIME Cat 2, ASKAP, DSA–2000) and deeper QSO sets will be decisive.

5 Conclusion

We find no definitive CPT violation, but we identify a marginal, axis-aligned cluster excess near $(170^{\circ}, 40^{\circ})$ surviving look-elsewhere correction. This motivates expanded cross-correlation analyses (including redshift weights and polarization metrics) to test robustness.

Appendix A: Summary Table

Metric	Value	Notes
R^2 (dipole fit)	1×10^{-4}	Global isotropy
p (isotropy test)	0.995	Null at large scales
DM_{+} median	1089.6	${\rm pc~cm^{-3}}$
DM_{-} median	1231.2	${\rm pc~cm^{-3}}$
$N_{\rm clusters}(Z \ge 2.63)$	35	$\sigma ext{-} ext{map}$
Excess within 15°	$Z = 7.0 \pm 1.1$	Bootstrap
$p_{ m global}$	0.019	$N_{\rm rot} = 1000$

Table 1: Summary of key isotropy and CPT-axis statistics.

Data and Code Availability

Python 3.11 with numpy, scipy, pandas, matplotlib. Core scripts: frb_qso_heatmap_axis.py, frb_qso_autocorr_sigma.py, frb_sigma_radial_density.py, axis-rotation and overlay utilities. Figures and JSON grids are provided in the working directory.

References

- [1] Boyle, L., Finn, K., & Turok, N. (2018). Phys. Rev. Lett., 121, 251301.
- [2] Mavromatos, N. E. (2003). arXiv:hep-ph/0309221.
- [3] Petroff, E., Hessels, J., & Lorimer, D. (2019). Astron. Astrophys. Rev., 27, 4.
- [4] Ross, N. P., et al. (2020). MNRAS, 494, 789.
- [5] Secrest, N. J., et al. (2021). ApJL, 908, L51.
- [6] Zhao, D., et al. (2020). A&A, 644, A89.
- [7] CHIME/FRB Collaboration (2021). ApJS, 257, 59.
- [8] DESI Collaboration (2025). arXiv:2503.14745.
- [9] Land, K., & Magueijo, J. (2005). Phys. Rev. Lett., 95, 071301.

Acknowledgments

The author thanks OpenAI's ChatGPT assistant for collaborative support in data analysis and figure preparation.

Dedicated to the pursuit of symmetry beyond the visible cosmos.