Differentiability

A multivariable function $f: \mathbb{R}^n \to \mathbb{R}^m$ is said to be differentiable at $a \in \mathbb{R}^n$ if all its partial derivatives $\frac{\partial f}{\partial x_i}$ exist and the local tangent plane $h(x) = f(a) + \nabla f(a) \cdot (x - a)$ is a "good" approximation of the function:

$$\lim_{x \to a} = \frac{f(x) - h(x)}{|x - a|} = 0.$$

A nice little shortcut, because we're college math students and not hardcore real analysts, is that a function is differentiable if its partial derivatives are all continuous.

Chain Rule

The chain rule deals with the *composition* of two functions. In one-variable calculus, the chain rule looks something like, for some function $f = g \circ h$ (that is, f(x) = g(h(x))),

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\mathrm{d}f}{\mathrm{d}h}\frac{\mathrm{d}h}{\mathrm{d}x} = \frac{\mathrm{d}g}{\mathrm{d}h}\frac{\mathrm{d}h}{\mathrm{d}x} = g'(h(x))h'(x).$$

For multi-variable functions (D, the chain rule takes on a matrix form:

$$D(\mathbf{g} \circ \mathbf{h}) = D(\mathbf{g})D(\mathbf{h}).$$

Example Consider $f: \mathbb{R}^3 \to \mathbb{R}^2$ given by

$$\mathbf{f}(x_1, x_2, x_3) = (x_1 - x_2, x_1 x_2 x_3),$$

and $x: \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$\boldsymbol{x}(t_1, t_2) = (t_1 t_2, t_1^2, t_2^2).$$

Context Here's how the mapping looks:

$$\mathbb{R}^2 \xrightarrow{\boldsymbol{x}} \mathbb{R}^3 \xrightarrow{\boldsymbol{f}} \mathbb{R}^2$$

or

$$(t_1, t_2) \stackrel{x}{\mapsto} (\underbrace{x_1(t_1, t_2)}_{t_1 t_2}, \underbrace{x_2(t_1, t_2)}_{t_1^2}, \underbrace{x_3(t_1, t_2)}_{t_2^2}) \stackrel{f}{\mapsto} (\underbrace{f_1(x_1, x_2, x_3)}_{x_1 - x_2}, \underbrace{f_2(x_1, x_2, x_3)}_{x_1 x_2 x_3}).$$

Notice the overall (composed) mapping is then

$$\mathbb{R}^2 \xrightarrow{f \circ x} \mathbb{R}^2$$
.

Solution (method 1): tedious substitution Find the derivative of the composition of f and x,

$$D(\boldsymbol{f} \circ \boldsymbol{x})(\boldsymbol{t}).$$

We can simply plug in the composed function

$$(\boldsymbol{f} \circ \boldsymbol{x})(\boldsymbol{t}) = (x_1 - x_2, x_1 x_2 x_3) = (t_1 t_2 - t_1^2, (t_1 t_2)(t_1^2)(t_2^2)) = (t_1 t_2 - t_1^2, t_1^3 t_2^3)$$

and take the derivative:

$$D(\boldsymbol{f} \circ \boldsymbol{x})(\boldsymbol{t}) = \begin{pmatrix} \partial_{t_1} \left(t_1 t_2 - t_1^2 \right) & \partial_{t_2} \left(t_1 t_2 - t_1^2 \right) \\ \partial_{t_1} \left(t_1^3 t_2^3 \right) & \partial_{t_2} \left(t_1^3 t_2^3 \right) \end{pmatrix} = \begin{pmatrix} t_2 - 2 t_1 & t_1 \\ 3 t_1^2 t_2^3 & 3 t_1^3 t_2^2 \end{pmatrix}.$$

Solution (method 2): chain rule (better!!!) Alternatively, apply the chain rule:

$$\begin{split} D(\boldsymbol{f} \circ \boldsymbol{x})(\boldsymbol{t}) &= D\boldsymbol{f}(\boldsymbol{x})D\boldsymbol{x}(\boldsymbol{t}) \\ &= \begin{pmatrix} \partial_{x_1}(x_1 - x_2) & \partial_{x_2}(x_1 - x_2) & \partial_{x_3}(x_1 - x_2) \\ \partial_{x_1}(x_1x_2x_3) & \partial_{x_2}(x_1x_2x_3) & \partial_{x_3}(x_1x_2x_3) \end{pmatrix} \begin{pmatrix} \partial_{t_1}(t_1t_2) & \partial_{t_2}(t_1t_2) \\ \partial_{t_1}(t_1^2) & \partial_{t_2}(t_1^2) \\ \partial_{t_1}(t_2^2) & \partial_{t_2}(t_2^2) \end{pmatrix} \\ &= \begin{pmatrix} 1 & -1 & 0 \\ x_2x_3 & x_1x_3 & x_1x_2 \end{pmatrix} \begin{pmatrix} t_2 & t_1 \\ 2t_1 & 0 \\ 0 & 2t_2 \end{pmatrix} \\ &= \begin{pmatrix} t_2 - 2t_1 & t_1 \\ x_2x_3t_2 + 2x_1x_3t_1 & x_2x_3t_1 + 2x_1x_2t_2 \end{pmatrix} \\ &= \begin{pmatrix} t_2 - 2t_1 & t_1 \\ (t_1^2)(t_2^2)t_2 + 2(t_1t_2)(t_2^2)t_1 & (t_1^2)(t_2^2)t_1 + 2(t_1t_2)(t_1^2)t_2 \end{pmatrix} \\ &= \begin{pmatrix} t_2 - 2t_1 & t_1 \\ 3t_1^2t_2^3 & 3t_1^3t_2^2 \end{pmatrix}. \end{split}$$

Solution (method 3?): cool diagrams

The partial derivative of the function's *i*-th component f_i with respect to some input t_j can be found by tracing all "paths" on the diagram from t_j to f_i . For example, the partial derivative of f_2 with respect to t_1 is found by

Why does it work? Turns out, this is just another way to do, or *visualize*, derivative matrix multiplication.

Tracing the "paths" of each component is the same thing as component-wise matrix multiplication:

$$\begin{split} D_{\boldsymbol{t}}\boldsymbol{f} &= D_{\boldsymbol{x}}\boldsymbol{f}\,D_{\boldsymbol{t}}\boldsymbol{x} \\ &= \begin{pmatrix} \frac{\partial_{x_1}f_1}{\partial_{x_1}f_2} & \frac{\partial_{x_2}f_1}{\partial_{x_2}f_2} & \frac{\partial_{x_3}f_1}{\partial_{x_3}f_2} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} \frac{\partial_{t_1}x_1}{\partial_{t_1}x_2} & \frac{\partial_{t_2}x_1}{\partial_{t_2}x_2} \\ \frac{\partial_{t_1}x_3}{\partial_{t_2}x_3} & \frac{\partial_{t_2}x_3}{\partial_{t_2}x_3} \end{pmatrix} \\ &= \begin{pmatrix} \frac{\partial_{x_1}f_1}{\partial_{t_1}x_1} + \frac{\partial_{x_2}f_1}{\partial_{t_1}x_2} & \frac{\partial_{t_1}x_2}{\partial_{t_1}x_2} + \frac{\partial_{x_3}f_1}{\partial_{t_1}x_3} & \frac{\partial_{x_1}f_1}{\partial_{t_2}x_1} + \frac{\partial_{x_2}f_1}{\partial_{t_2}x_2} + \frac{\partial_{x_3}f_1}{\partial_{t_2}x_3} & \frac{\partial_{x_1}f_2}{\partial_{t_2}x_1} + \frac{\partial_{x_2}f_1}{\partial_{t_2}x_2} & \frac{\partial_{t_2}x_3}{\partial_{t_2}x_3} \end{pmatrix} \end{split}$$

Implicit Derivatives

Consider some surface defined by the equation F(x, y, z) = 0. Implicitly take partial derivatives with respect to each variable, considering that z to be a function of x and y:

$$\partial_x F + \partial_z F \, \partial_x z = 0,$$

$$\partial_y F + \partial_z F \, \partial_y z = 0.$$

Consequently,

$$\partial_x z = -\frac{\partial_x F}{\partial_z F},$$
$$\partial_y z = -\frac{\partial_y F}{\partial_z F}.$$

Example Consider the surface given by

$$x^2 + y^2 + z^2 - 1 = 0,$$

a sphere with radius 1. The partial derivatives of z with respect to x and y are then

$$\partial_x z = -\frac{\partial_x (x^2 + y^2 + z^2 - 1)}{\partial_z (x^2 + y^2 + z^2 - 1)} = -\frac{2x}{2z} = -\frac{x}{z}$$
$$\partial_y z = -\frac{y}{z}.$$

Directional Derivatives

Consider the derivative of a function f along some direction \hat{v} . The directional derivative can be thought of as a derivative of a function inside a "cross section":

The line along the direction of differentiation is parametrized by some

$$\boldsymbol{l}(t) = \boldsymbol{p} + t\hat{\boldsymbol{v}},$$

so that the function along the line

$$m{f}ig|_{m{l}(t)} = m{f}(m{p} + t\hat{m{v}}),$$

so that the directional derivative can be found by the chain rule

$$D_{\hat{\boldsymbol{v}}}\boldsymbol{f} = \mathrm{d}_t \boldsymbol{f}(\boldsymbol{p} + t\hat{\boldsymbol{v}}) = D\boldsymbol{f} \cdot \hat{\boldsymbol{v}}.$$