Solving Alphametics

Sven Bijleveld

October 4, 2022

Contents

1	Problem Definition	2
2	A Simpler Example	3
3	Solving the more complicated case	4

Problem Definition 1

We want to find a set of operations to solve an alphametic puzzle. An example of such a puzzle is this:

Where

- $E, N, O, R, Y \in \mathbb{N}_0$ and $M, S \in \mathbb{N}$
- $E \neq N \neq O \neq R \neq Y \neq M \neq S \neq E$

$$Y = D + E \qquad (\mod 10)$$

$$E = N + R + \lfloor \frac{D + E}{10} \rfloor \qquad (\mod 10)$$

$$N = E + O + \lfloor \frac{N + R + \lfloor \frac{D + E}{10} \rfloor}{10} \rfloor \qquad (\mod 10)$$
 .

We can introduce a term c_n for the overflow where $c \in \{0,1\}$ in this case.

$$Y = D + E$$
 (mod 10)
 $E = N + R + c_1$ (mod 10)
 $N = E + O + c_2$ (mod 10)
 $O = S + M + c_3$ (mod 10)
 $M = c_4$ (mod 10)

 c_{max} can be generalized as it is linked to the number of addends where $c_{max} = \max\{n_{addends} - 1, 9\}$

A Simpler Example $\mathbf{2}$

Let's experiment by solving a simple example

$$\begin{array}{cccc} & & T & O \\ + & G & O \\ \hline = & O & U & T \end{array}$$

This alphametic results in the following equations

$$T = O + O$$
 (mod 10) (1)
 $U = T + G + c_1$ (mod 10) (2)

$$U = T + G + c_1 \tag{mod 10}$$

$$O = c_2 \tag{mod 10}$$

We can construct a graph like structure to see what variables depend on each other:

3 Solving the more complicated case

the alphametic from the introduction above gives us the following graph

