Pemrograman Dasar

Retno Mumpuni S.Kom, M.Sc

Penilaian

- Keaktifan (10 %)
- Tugas (20 %)
- UTS (30%)
- UAS (40 %)

Referensi

- Jeri R. Hanly, Elliot B. Koffman, Problem Solving and Program Design in C,7th edition, Addison Wesley, 2012.
- Thomas H. Cormen, Charles E.Leiserson, Ronald L. Rivest, Introduction to Algorithms, McGraw---Hill, 2003.

Tools

- Menggunakan bahasa C
- IDE : Bloodshed Dev C++ (www.bloodshed.net)
- Integrated Development Environment
- Bloodshed Dev C++ menggunakan MinGW sebagai compiler

Program?

- Program adalah **kumpulan instruksi** yang digunakan untuk mengatur komputer agar melakukan suatu tindakan tertentu.
- Tanpa program yang dibuat pengguna, komputer tidak dapat melakukan apa-apa
- · Konsep komponen komputer: hardware, software, brainware.

- Programmer: orang yang membuat program
- Programming / Coding : aktivitas yang berhubungan dengan pembuatan program

Program = Kumpulan Instruksi

- Program ditulis dengan menggunakan kaidah / aturan bahasa pemrograman tertentu
- Sama halnya komunikasi antar manusia, komputer bisa menjalankan pekerjaannya sesuai dengan instruksi yang mengikuti kaidah/aturan.

- Secara garis besar, bahasa pemrograman dibagi:
 - High-level language: Bahasa beraras-tinggi
 - · Low-level language: Bahasa beraras-rendah

Low-level language

- Bahasa beraras rendah : bahasa pemrograman yang berorientasi pada mesin.
- Menggunakan kode biner (0 atau 1), atau sebuah kode sangat sederhana untuk menggantikan kode tertentu dalam sistem biner.
- · Sangat sulit dipahami oleh orang awam, bahkan programmer sekalipun.
- Sangat bergantung pada mesin (machine dependent)
- Sangat cepat dieksekusi komputer tidak perlu menerjemahkan terlalu jauh

• MISAL :

- B402 atau 1011 0100 0000 0100 artinya : inputkan angka 2 ke register AH
- · B22A atau 1011 0010 0010 1010 artinya : muatlah angka A2 hex ke register DL
- · CD21 atau 1100 1101 0010 0001 artinya : jalankan interupsi 21 heksadesimal

3 perintah diatas harus dieksekusi berurutan untuk sekedar menampilkan karakter * pada layar

High-level language

- Bahasa beraras tinggi adalah bahasa pemrograman yang berorientasi pada bahasa manusia.
- · Dibuat dengan menggunakan bahasa yang mudah dipahami oleh manusia
- · Contoh: Java, C, C++, Pascal, Basic, PHP, dll

• Misal:

- Write ('*') -- PASCAL
- Display "*" COBOL
- PRINT "*" BASIC
- Printf ("*") -- C
- System.out.println("*") JAVA
- Echo ("*") PHP

Semua baris di atas adalah contoh instruksi untuk menampilkan karakter * pada layar, dengan masing-masing contoh bahasa.

Translator

- Sebelum bisa dieksekusi oleh mesin (komputer), high level language / bahasa beraras tinggi harus diubah / diterjemahkan terlebih dahulu ke bahasa mesin.
- · Proses penerjemahan ini memerlukan translator.
- Berdasarkan urutan kerjanya, terdapat dua macam translator :
 - Compiler : C, C++, Pascal
 - Interpreter: Python, Matlab, JAVA

Di compiler, semua instruksi dalam high level harus diterjemahkan secara utuh terlebih dahulu dalam suatu executable code, untuk kemudian dieksekusi mesin. – misal: .exe file

Source code Intermediate code Interpreter preprocessing processing

Di interpreter, **tiap baris instruksi dalam high level diterjemahkan** menjadi intermediate code per baris, untuk kemudian tiap baris intermediate code tersebut dieksekusi oleh mesin. – konsekuensinya: *lebih lambat*

Interpreter vs Compiler

Interpreter	Compiler
Kelebihan: Mudah untuk mencari kesalahan seandainya terdapat kesalahan pada program (debugging). Karena program dapat terus berjalan, hingga akhirnya komputer menemukan kesalahan.	 Kelebihan: Pengerjaan instruksi dilakukan sangat cepat, karena telah ditranslate ke bahasa mesin secara utuh. Kode sumber tidak perlu didistribusikan ke pengguna yang menjalankannya, sehingga kerahasiaan terjamin.
 Kekurangan: 1. Kode sumber harus selalu tersedia isu pencurian hak cipta 2. Eksekusi berjalan lambat 	Kekurangan: Kode sumber program yang ditulis harus benar seluruhnya secara sintaks, baru kemudian program dapat berjalan.

Membuat Program

- · Program dibuat karena adanya masalah atau tugas yang akan diselesaikan
- Tahapan pembuatan program :
 - Menganalisis masalah
 - Membuat algoritma
 - · Mengimplementasikan algoritma ke dalam instruksi program
 - Mengeksekusi dan menguji program
- Menganalisis masalah adalah tahapan yang penting. Diperlukan pengalaman, pengetahuan, imajinasi, kreativitas, dan kecerdasan untuk menganalisa informasi apa yang akan menjadi input dan output, serta bagaimana mengolahnya.

Input → ALGORITMA → Output

analisa

Algoritma

- Untuk mengolah data menjadi informasi (input menjadi output), programmer wajib menyusun langkah detail (runutan) bagaimana komputer akan menyelesaikan masalah tersebut ⇔ Langkah detail ini disebut Algoritma
- Istilah algoritma berasal dari seorang ilmuwan Persia : Al-Khwarizmi (790 840) bapak aljabar.

Contoh Algoritma

- Menghitung Luas Lingkaran
 - 3.14 x jari-jari ^ 2
- Algoritma / runutan langkahnya adalah sebagai berikut :
 - Dapatkan jari-jari lingkaran
 - · Hitung luas lingkaran dengan menggunakan rumus 3.14 x jari-jari ^ 2
 - Tampilkan nilai luas lingkarannya
- · Selain dengan kalimat, algoritma juga bisa dinyatakan dalam **pseudocode**
- Misal:
 - $^{\circ}$ Hitung luas lingkaran dengan menggunakan rumus 3.14 x jari-jari ^ 2 dapat dinyatakan dengan pseudocode berikut

```
Luas ← 3.14 * (jari-jari) ^ 2
```

Pseudocode

· Menghitung luas lingkaran

- 1. Jari-jari ← 20
- 2. Luas ← 3.14 * (Jari-jari ^ 2)
- 3. Print (Luas)

Flowchart

• Selain dinyatakan dalam pseudocode, algoritma juga bisa direpresentaikan dalam flowchart (diagram alir).

SIMBOL	NAMA	FUNGSI
	TERMINATOR	Permulaan/akhir program
	GARIS ALIR (FLOW LINE)	Arah aliran program
	PREPARATION	Proses inisialisasi/ pemberian harga awal
	PROSES	Proses perhitungan/ proses pengolahan data
	INPUT/OUTPUT DATA	Proses input/output data, parameter, informasi
	PREDEFINED PROCESS (SUB PROGRAM)	Permulaan sub program/ proses menjalankan sub program
\Diamond	DECISION	Perbandingan pernyataan, penyeleksian data yang memberikan pilihan untuk langkah selanjutnya
	ON PAGE CONNECTOR	Penghubung bagian-bagian flowchart yang berada pada satu halaman
	OFF PAGE CONNECTOR	Penghubung bagian-bagian flowchart yang berada pada halaman berbeda

Contoh Flowchart

• Menghitung Luas Lingkaran

Latihan Flowchart

- Buatlah flowchart menghitung keliling persegi panjang
- · Buatlah flowchart dari vending machine
- Buatlah flowchart dari mesin ATM

• (maju ke papan tulis)

Contoh Program

```
#include <stdio.h>
int main()
         double jari_jari;
         double luas;
        jari_jari = 20;
        luas = 3.14 * jari_jari * jari_jari;
        printf("Luas lingkaran = %lf", luas);
        return 0;
```