Translated from Japanese to English - www.onlinedoctranslator.co

Introduction to ball-driven omnidirectional movement mechanism

Sensing System Research Center

Production process evaluation research team

Shuichi Ishida

2020 University New Industry Creation Program (JST)Selected project project overview:

A movable device that uses balls instead of wheels. ball drivenWe will develop an omnidirectional movement device. As a trolley for efficient operation of human collaborative robots, transportation robots, AGVs, etc.

Unique in the worldindustrial venture company that manufactures and sells omnidirectional movement devices. We aim to

Project members:

establish a company.

Associate Professor Miyamoto

(Research Representative)

Specially Appointed Professor Rikitake

Chief Researcher Ishida (Main joint researcher)

Korenaga Research Group Leader

Chief Researcher Mano

Koga Technical Staff

Yamaguchi Executive Vice President

Sasaki Manager

(Business promoter)

Kyushu Institute of Technology

National Institute of Advanced Industrial Science an Fie Goldenture Business Partners Co., Ltd.

Project period budget: 2020.11.5 - 2023.3.31, After project completion: Plan to start a venture Project budget: ¥117,000,000

with peopleisolationwas doneStationary typeindustrial robot

with peoplesame spacework with Stationary typecollaborative robot

coexist with peoplewalk around Expectations for collaborative robots

There is virtually no choice other than the free method.

free method Omni Mecanum

Vector composition control based on

The running surface at the production site is not flat.

Operating while building and maintaining the building → Optimized for people, not kind to robots

Floor paint peeling off

Renovation ruins

Piping/metal plate

In existing facilities, environments such as steps and flooring materials vary.

There is a need for a movement mechanism that runs stably and with high precision.

Solution: Omnidirectional movement using spheres

Ball drive system

Pressure drive

Advantages of ball drive mechanism

Intellectual property right

Basic patent: Ball-driven omnidirectional movement device

Patent No. 5305285

Inventor: Hiroyuki Miyamoto, Shuichi Ishida

Applicant: Kyushu Institute of Technology, July 25, 2008

• Key points of this basic patent

There must be three driving means that rotate and drive the driving spheres placed next to each other in the same direction at the same time.

Enhanced patent: Ball-driven moving device PCT/JP2019/043715(WO2020/110651A1)

Inventor: Hiroyuki Miyamoto, Yoshiki Matsumoto

Applicant: Kyushu Institute of Technology, November 7, 2020

- Key points for PCT application
 - Problem of rotation after non-contact occurs
 - virtual inverted n-pyramidinvented the concept of
 - From the center of the sphere that each rotating body touchesThis solves the problem by allowing contact at a high position.
- patent search
 - 2020.6 Intellectual property office NEXPAT
 - 2021.3 AI patent simulation system

Comparison with existing technology:

Ball drive mechanism (Φ100mm) - mecanum wheels

Mecanum wheels (30 products)

Comparison with existing technology:

Ball drive mechanism (Ф100mm) - Omniwheel

Diameter [mm]

Load upper limit [kg]

Omniwheel (65 products)

Application example of omnidirectional movement mechanism (free roller system)

Maker	KUKA			Tosa Electronics		HILLTOP	Clearpath Robotics		
Name/model	KMP 1500	omniMove	Triple Lift	KMR iiwa	TDAM NEW	TDAM MINI	Smart Factory Transporter	DINGO	Ridgeback
exterior	KUKA)	account to			TDAM NEW SERIES	TDAM-MINI		DN67	
kinds		automated guided vehicle			automated g	guided vehicle	automated guided vehicle	automated	guided vehicle
Drive/steering	mecanum wheels			mecanum wheels		mecanum wheels	mecanum wheels	mecanum wheels	
Size (L×W×H) [mm]	2000×800× 470	5560×2800× 650	5708×2208× 750-8000	1190×720× 700 (trolley)	730× 5 1 3×190	699× 4 0 8×182	500×600× 300	551x517x 110	960x793x 296
Mass [kg]	711	9,000	10,000	Trolley:375	50	35	-		
Loading/towing mass [kg]	1,500	90,000	1,000	Arms: 7, 14 / Trolley: 175	50	40	100	20	100
Maximum speed [m/min]	60	50	48	67	47	36	60	8	66
Position accuracy [mm]	±5	±5	±5	Arm: ±0.1 / Dolly: ±1	-	-	-		
position control	SLAM, laser, wheel scanner				grid		-	LiDAR, ultrasound, IMU, wheel encoder	
Introduction market	Factory/warehouse (indoor)			Factories/warehouses (indoors), hospitals		Factory/warehouse (indoor)	Factories/warehouses (indoors), hospitals		
Features	Industry 4.0 In line with tomation Adjust	The above figures are for the maximum systems) connection (maximum 30m), Synchronous operation possible	(1) types of fully hydraulic telescopic Stepless with Linder adjustable	Equipped with a small manipulator, Movable range 0.8~0.82m, No protective fence required	Can be operated	d by controller	With suspension, rear With foot mechanism	LiDER and manipulator o	an be installed as options

Maker	Toyota Industries	TAKUMI	DAIHEN	
Name/model	AiR	ANT	AiTran700	
exterior		K		
kinds	automated guided vehicle		automated guided vehicle	
Drive/steering	omni wheel	omni wheel	omni wheel	
Size (L×W×H) [mm]	Diameter 640 x height 1100	655×655× <mark>300</mark>	1230x1480x 400	
Mass [kg]	-	70		
Loading/towing mass [kg]	40	50	700	
Maximum speed [m/min]	-	60	40	
Position accuracy [mm]	-	±10	±100	
position control	SLAM	pulse, gyro	guideless	
Introduction market	Factory/warehouse (indoor), hospital, outdoor	Factory/warehouse (indoor)		
	option		By camera sensing	
Features	Sending/tracking/cleaning/picking	Jointly developed with Kyushu Institute of Technology	High precision positioning (±	
	can be changed to		20mm)	

Comparison with adoption examples (free method): Overall height and load capacity

AGV manufacturer: Co., Ltd.

Collaboration with Luz

*AGV: Automatic guided vehicle

Taking advantage of the site needs of "low floor and running performance", it can be used in all directions without changing the arm height.

Exhibition exhibition (Robodex, 2020): duAro2 implementation model Tsubakimoto Kogyo – Ken Controls

Construction industry needs: Further lower floors + load capacity

IOW floorRealization of transport vehicle (Φ100mm x 4), expected load capacity: 1 tons

Market potential of omnidirectional movement mechanism

automated guided vehicle

