Разминка:

- 1. Какой ближайший таксон объединяет:
 - человека и мышь? Euarchontoglires
 - человека и бабочку? Bilateria
 - человека и дрожжи? Opisthokonta
 - человека и капусту? Eukaryota
- 2. Согласно cxeme http://tolweb.org/Eukaryotes/3, какой из организмов является ближайшим к человеку, а какой самым удаленным от человека:
- эвглена зеленая Euglenozoa
- фитофтора Stramenopiles
- ламинария сахаристая Stramenopiles
- дизентерийная амеба Unikonts

Дизантерийную амебу и человека объединяет unikonts, так что она является ближайшей к человеку. А самой удаленной является эвглена зеленая.

Домашнее задание 2

- Взяла следующий ген:
 TPH2 tryptophan hydroxylase 2 [Homo sapiens (human)]
- 2. Последовательность в формате FASTA будет в документе sequence.fasta
- 3. Параметры BLAST:
 - а. БД Standard databases
 - b. Optimize for Somewhat similar sequences
 - c. Max target sequences 500
 - d. Expect threshold 2
- 4. Таблица с названиями полученных гомологичных генов (Gene Symbol), систематических названий видов и русских названий видов.

Nº	Ген	Систематическое название вида	Русское название вида
1	tryptophan hydroxylase 2 (TPH2), mRNA	Chelonoidis abingdonii	Абингдонская слоновая черепаха
2	tryptophan hydroxylase 2	Dermochelys	Кожистая черепаха

	(TPH2), transcript variant X3, mRNA	coriacea	
3	tryptophan hydroxylase 2 (TPH2), mRNA	Anolis sagrei ordinatus	Обыкновенная ящерица Anolis
4	tryptophan hydroxylase 2 (TPH2), mRNA	Calidris pugnax	Турухтан
<u>5</u>	tryptophan hydroxylase 2 (TPH2), mRNA	Cyanistes caeruleus	Обыкновенная лазоревка
<u>6</u>	tryptophan hydroxylase 2 (TPH2), transcript variant X1, mRNA	Aquila chrysaetos chrysaetos	Беркут
7	tryptophan hydroxylase 2 (TPH2), partial mRNA	Mesitornis unicolor	Одноцветный мадагаскарский пастушок
8	tryptophan hydroxylase 2 (TPH2), mRNA	Corvus brachyrhynchos	Американский ворон
9	tryptophan hydroxylase 2 (TPH2), mRNA	Phasianus colchicus	Обыкновенный фазан
<u>10</u>	tryptophan hydroxylase 2 (TPH2), mRNA	Cygnus atratus	Чёрный лебедь

- 5. Файл с множественным выравниванием *Множественное* выравнивание.aln-clustal_num
- 6. В начале и в конце выравнивания очень много пропусков, зато в середине находятся консервативные участки. Рассмотрим, например, следующий участок:

```
AY098914.1
                                                                                                       309
                             AAACCTAACTCTGGCAA---AAATGACGACAAAGGCAACAAGGGAAGCAGCAAACGTGAA
      XM 060777450.1
                                                                                                       389
                             AGAACCAATTCTGGTAAAAATGATGACAAAAAGGGTAATAAAGGTGCAGGCAAGTATGAA
                            AGAGCCAGTTCTGGTAAAAATGATGAGGAGAAAGGGAGTAAAGGAAACGGCAAAAGTGAA
      XM 032767000.1
                                                                                                       189
                           CGAGCCAATTCTGGTAAAAATGATGAGAAAAGGTAACAAAGGAAACAGCAAAAGTGAA
AGATCCAGTTCTGGGAAAAATGAGGGAAAAGAAAGGGAATAAGGGAAACGGGAAAGGTGAA
      XM 043493286.1
124
                                                                                                       219
     XM_030003190.1
125
                                                                                                       319
      XM_030003111
XM_023938989.1
                            AGATCAAGTTCTGGGAAAAATGAGGAAGAAGAAAGGGAATAAGGGAAATGGGAAAAGTGAA
CGATCGAGTTCTGGGAAAAATGAGGAAAAGAAAGGAATAAGGGAAATGGGAAAGGTGAA
126
                                                                                                       78
      XM 014963487.1
127
                                                                                                       204
                            AGATCGAGTGCTGGGAAAAATGAAGAAAAGAAAGGGAAATAAGGGAAAATGGAAAAGGTGAA
128
      XM 010192241.1
                                                                                                       66
                            AGATCGAGTTCTGGGAAAAATGAGGAAAAGGAAAGGGAATAAGGGAAATGGGAAGAGTGAA
129
      XM 008632900.2
                                                                                                       483
      XM 031589703.1
                             AGATCAAGCTCTGGGAAAAATGAGGAGAAAAAAGGCAGTAAGGGAAATGGGAAAGGAGAG
                                                                                                       567
      XM 035544244.2
131
                             \tt AGGTCGACTTCTGGGAAAAACGAGGAAAAGGAAAGGGAAATAAGGGAAATGGGAAAGGTGAA
                                                                                                       284
132
                                                       * ** * ** ** *
```

Здесь можно увидеть, что в некоторых генах произошла замена нуклеотида A на C (у ящерицы и у беркута). Или, например, на втором месте во всех последовательностях стоит G, а у человека (первая

последовательность) - А. Но есть и полностью совпадающие подпоследовательности - CTGG.

7. Объединяющий все эти виды таксон - Амниоты (от лат. Amniota — «амниота»).

Амниоты - это группа позвоночных, у которых эмбрионы развиваются внутри амниотического мешка (Этот мешок содержит амниотическую жидкость, которая обеспечивает защиту и увлажнение эмбриона во время развития внутри яйца или у матери), что позволяет им адаптироваться к суше. Группа входит в состав надкласса четвероногих (Tetrapoda) и подразделяется на две дочерние клады: завропсиды (пресмыкающиеся и птицы) и синапсиды (млекопитающие и вымершие родственники).

Основные признаки амниот:

- Наличие амниотического мешка;
- Способность к независимому дыханию за счет легких;
- Откладывание яйца с защитной оболочкой или рождение животных с хорошо развитой плацентой.