Analysis 3

Contents

Ι	Sequence of Functions	1
1	Introduction	1
2	Pointwise convergence	1
3	Uniform convergence	2
II	Series of Functions	3
4	Convergence of a Numerical Series	3
5	Finite Expansion	4
II	II Power Series	
6	Radius of Convergence	5
IJ	Fourier Series	7
7	Trigonometric Coefficients 7.1 Even Functions 7.2 Odd Functions	7 7 7

Ι

Sequence of Functions

Section 1

Introduction

In previous courses, we analysed the convergence of sequences of numbers (example: $U_n = \left\{\frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots\right\} = \sum_{n=1}^{\infty} \frac{1}{n^2}$) with a series of tests. In this course we will be analysing sequences of functions $f_n(x)$.

An example, is $f_n(x) = \frac{x}{x+n} = \{f_1, f_2, f_3, \ldots\} = \left\{\frac{x}{x+1}, \frac{x}{x+2}, \frac{x}{x+3}, \ldots\right\}$.

There are 2 ways these sequences can converge: pointwise and uniformly

Figure 1. Plot of the sequence $f_n(x) = xe^{-nx}$

Section 2

Pointwise convergence

This is a very natural way of proving convergence since all you have to do is fix f_n to a point x then the sequence just becomes an ordinary sequence of numbers, and if they all converge to a number we can define a limit function f and say that they converge to f pointwisely.

Definition 1 We say that a sequence of functions f_n where $f_n: I \to \mathbb{R}, I \subset \mathbb{R}$,

converges pointwise to function $f: I \to \mathbb{R}$ on the interval I if:

$$\forall x \in I \ \forall \epsilon > 0 \ \exists n \in \mathbb{N} \ \forall n \ge \mathbb{N} : |f_n(x) - f(x)| < \epsilon.$$

You either prove convergence using the definition or by doing:

- 1. Let x = 0 then find $\lim_{n \to \infty} f_n(0) = \text{some } f(x)$
- 2. Then let $x \neq 0$ and again find $\lim_{n \to \infty} f_n(x) = f(x)$
- 3. If neither of the results are unbounded $\pm \infty$ then we say $f_n(x)$ is convergent to some f(x)

Remark if the result of step 1 is g(x) and step 2 results in h(x) where $g(x) \neq h(x)$ then we define the limit function:

$$f(x) = \begin{cases} g(x) & x = 0 \\ h(x) & x \in]0, 1] \end{cases}.$$

Section 3

Uniform convergence

The idea of uniform convergence is that the sequence always approaches it's limit function as the value of n increases.

Definition 2

We say that a sequence of functions f_n where $f_n: I \to \mathbb{R}, I \subset \mathbb{R}$, converges uniformly to function $f: I \to \mathbb{R}$ on the interval I if:

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N \ \forall x \in I : \sup_{x \in I} |f_n(x) - f(x)| < \epsilon.$$

Remark We can also prove uniform convergence by proving

$$\lim_{n \to \infty} \sup_{x \in I} |f_n(x) - f(x)| = 0.$$

There is also an easy qay to prove uniform convergence of a function by

- 1. Prove that the sequence of functions $f_n(x)$ is pointwise convergent to a function $f(x)^{-1}$
- 2. Define a function $g(x) = |f_n(x) f(x)|$ and find the maxima of that function at a point x_0 (usually by doing dg/dx = 0)
- 3. If $\lim_{n\to\infty} g(x_0) = 0$ then the sequence converges uniformly to f(x)

¹ if the function f(x) is continuous at a point piecewise then the sequence doesn't uniformly converge Definition 3

Let $f_n(x)$ be sequence of functions defined on $I \subset \mathbb{R}$, we define the series S(x) to be

$$S(x) = \sum_{n=0}^{\infty} f_n(x).$$

Section 4

Convergence of a Numerical Series

In order to prove a series of functions converge we have to prove that it converges for all fixed x.

Theorem 1

Suppose there exists a sequence a_n such that $\forall x, n \mid f_n \mid \leq a_n$. The Weierstrass test states that if $\sum a_n$ converges then $\sum f_n(x)$ converges uniformly and absolutely

Theorem 2

Let a_n be a sequence of numbers, if $\left|\frac{a_{n+1}}{a_n}\right|=l$ then the sequence is a geometric Series

$$\sum_{n=0}^{\infty} a_n \begin{cases} \text{converges} & \text{if } |l| < 1 \\ \text{diverges} & \text{if } |l| \ge 1 \end{cases}.$$

Theorem 3

A harmonic series is defined to be $a_n = \frac{1}{n^p}$

$$\sum_{n=0}^{\infty} \frac{1}{n^p} \begin{cases} \text{converges} & \text{if } p > 1\\ \text{diverges} & \text{if } p \leq 1 \end{cases}.$$

Theorem 4

Let a_n be a sequence of numbers. The 2 series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} 2^n a_n$ are simultaneously convergent/divergent.

Theorem 5

The sequence $\sum_{n=0}^{\infty} (-1)^n a_n$ is convergent if a_n is decreasing and $\lim_{n\to\infty} a_n = 0$.

Theorem 6

Consider the series
$$S = \sum_{n=0}^{\infty} a_n$$

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = l \quad \text{such that} \quad \begin{cases} l<1 & \text{if S converges} \\ l>1 & \text{if S diverges} \\ l=1 & \text{this test cannot help us} \end{cases}.$$

Section 5

Finite Expansion

The general formula for the finite expansion (Taylor-young formula) is

$$f(x) = f(x-a) + \frac{x}{1!}f'(x-a) + \frac{x^2}{2!}f''(x-a) + \dots + \frac{x^n}{n!}f^{(n)}(x-a) + x^n o(1) \quad x \to a.$$

Some important expansions to keep in mind are

a)
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

c)
$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

e) $\sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$

e)
$$\sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

g)
$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$

i)
$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} \frac{\prod_{k=0}^{n+1} (\alpha - k)}{n!} x^n$$

b)
$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

d)
$$\frac{1}{1-x} = \sum_{n=0}^{n=0} x^n$$

f)
$$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

h)
$$\ln(1-x) = \sum_{n=1}^{n-\infty} -\frac{x^n}{n}$$

Power Series

PART III

A power series is just a series in the following formula

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
$$= \sum_{n=0}^{\infty} U_n.$$

Section 6

Radius of Convergence

For some values of x a power series can either diverge or converge, to determine the interval of convergence we employ the ratio test

Theorem 7 Let r be the radius of convergence and I be the domain of convergence. If we compute the limit

$$\Gamma = \lim_{n \to \infty} \left| \frac{U_{n+1}}{U_n} \right|.$$

The ratio test states that

$$\begin{cases} \text{if } \Gamma = 0 & \text{then } r = \infty \text{ and } I = \mathbb{R} \\ \text{if } \Gamma = \infty & \text{then } r = 0 \text{ and } I = \{0\} \end{cases}$$

In the case that Γ isn't 0 or ∞ we set $\Gamma < 1$ and then we find |x| < R, finally we can say that r = R and I =]-R, R[. A special case need to be done for the points -R and R to determine if they belong in I.

Remark The power series f(x) is continous and will always uniformly converge in the interval of convergence I

Theorem 8 If $\sum a_n x^n$ and $\sum b_n x^n$ be 2 power series with radii R_1 and R_2 . For the power series $\sum (a_n + b_n)x^n$ the radius of convergence R

$$R = \min\{R_1, R_2\}.$$

Theorem 9 If $S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ is a power series with radius R then $S'(x) = \sum_{n=0}^{\infty} n a_n (x - x_0)^n$ as well as $\int_{x_0}^x S(t) \, dt$ both a radius of R

The general term a_k of a power series $S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ is equal to

$$a_k = \frac{S^{(k)}(x_0)}{k!}.$$

Fourier Series

PART

IV

Definition 4

A Fourier series is a series of functions of general term

$$u_n(x) = a_0 + a_n \cos(nx) + b_n \sin(nx).$$

Section 7

Trigonometric Coefficients

The Fourier coefficients of a function defined on an interval $F\subset\mathbb{R}$ of period $T=\frac{2\pi}{\omega}\implies \omega=\frac{2\pi}{T}$ are

$$a_0 = \frac{1}{T} \int_F f(x) \, dx$$

$$a_n = \frac{2}{T} \int_F f(x) \cos \omega nx \, dx$$

$$b_n = \frac{2}{T} \int_F f(x) \sin \omega nx \, dx$$

1. $\sin n \pi = 0$

2. $\sin n \pi/2 = (-1)^n$

3. $\cos n \, \pi = (-1)^n$

 $4. \cos n \, \pi/2 = 0$

Subsection 7.1

Even Functions

If a function has a domain $F = [-\ell; \ell]$ and $f(x) = f(-x) \ \forall x \in \mathbb{R}$ the Fourier coefficients (T = |F|) become

$$a_0 = \frac{2}{\ell} \int_0^{\ell} f(x) dx$$

$$a_n = \frac{4}{\ell} \int_0^{\ell} f(x) \cos nx dx$$

$$b_n = 0$$

Subsection 7.2

Odd Functions

If a function has a domain $F = [-\ell; \ell]$ and $-f(x) = f(-x) \ \forall x \in \mathbb{R}$ the Fourier coefficients (T = |F|) become

$$a_0 = 0$$

$$a_n = 0$$

$$b_n = \frac{2}{\ell} \int_0^{\ell} f(x) \sin nx \, dx$$