Cost of LU Factorization

Contents

1 Cost of PLU Factorization Algorithm

Cost of PLU Factorization Algorithm

Key result: In solving $A\vec{x} = \vec{b}$ where $A \in \mathbb{R}^{n \times n}$:

- PLU factorization requires about $\frac{2}{3}$ n³ flops
- Forward & Backward substitutions

require only about no flops

Notation: Big-O and Asymptotic

$$f(1), f(2), f(3), ---$$

Let f, q be positive functions defined on \mathbb{N} .

Let
$$f,g$$
 be positive functions defined on \mathbb{N} .

• $f(n) = O\left(g(n)\right)$ (" f is b ig- O of g ") as $n \to \infty$ if

Complex simple $\frac{f(n)}{g(n)} \leqslant C$, for all sufficiently large n .

• $f(n) \sim g(n)$ (" f is asymptotic to g ") as $n \to \infty$ if

• $f(n) \sim g(n)$ (" f is asymptotic to g ") as $n \to \infty$ if

• $f(n) \sim g(n)$ ("f is asymptotic to g") as $n \to \infty$ if

tic to
$$g''$$
) as $n \to \infty$ if
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1.$$

more accurate description

Examples Let
$$f(n) = 3n^3 + 2n - 1$$

• $f(n) = O(n^3)$ because $\frac{3n^3 + 2n - 1}{n^3} = 3 + \frac{2}{n^2} - \frac{1}{n^3} \leqslant 3 + 1 + 1 = 5$

for all large n .

($f(n) = O(5n^3)$, $f(n) = O(n^4)$, $f(n) = O(n^6)$, ----

• $f(n) \sim 3n^3$ because $\lim_{n \to \infty} \frac{3n^3 + 2n - 1}{3n^3} = 1$.

Timing Vector/Matrix Operations - FLOPS

- One way to measure the "efficiency" of a numerical algorithm is to count the number of floating-point arithmetic operations (FLOPS) necessary for its execution.
- The number is usually represented by $\underline{\sim cn^{[\!\![\!]\!\!]}}$ where c and p are given explicitly.
- We are interested in this formula when n is large.

FLOPS for Major Operations

Vector/Matrix Operations

Let $x, y \in \mathbb{R}^n$ and $A, B \in \mathbb{R}^{n \times n}$. Then

- (vector-vector) $x^{\mathrm{T}}y$ requires $\sim 2n$ flops.
- (matrix-vector) Ax requires $\sim 2n^2$ flops.
- (matrix-matrix) AB requires $\sim 2n^3$ flops.

 $= 2n-1 \sim 2n$

$$A \overrightarrow{x} = \begin{bmatrix} \overrightarrow{\alpha_1} \\ \vdots \\ \overrightarrow{\alpha_n} \\ \end{bmatrix} \overrightarrow{x} = \begin{bmatrix} \overrightarrow{\alpha_1} \\ \vdots \\ \overrightarrow{\alpha_n} \\ \end{array}$$
 ~ 2n \quad n \times

$$A = \begin{bmatrix} \overrightarrow{\lambda}_1^T \\ \vdots \\ \overrightarrow{\lambda}_n^T \end{bmatrix}$$

Total flops:
$$(2n-1) \times n$$

= $2n^2 - n \sim 2n^2$

Cost of PLU Factorization

of PLU Factorization | Privot:
$$R_i \hookrightarrow R_j$$
 (No flops needed)

. Now replacement: $R_i \rightarrow R_i + (-\frac{\alpha_{ij}}{\alpha_{ij}}) R_j$

Note that we only need to count the number of flops required to zero out elements below the diagonal of each column.

- Spose you are working out the column. For each i>j, we replace R_i by R_i+cR_j where $c=-a_{i,j}/a_{j,j}$. This requires approximately 2(n-j+1) flops:

 - 1 division to form *c*
 - 1 division to form c• n-j+1 multiplications to form cR_j n-j+1 additions to form R_j $\sim 2(n-j+1)$
- n-j+1 additions to form R_i+cR_i • Since $i \in \mathbb{N}[j+1,n]$, the total number of flops needed to zero out all elements below the diagonal in the *i*th column is approximately
 - 2(n-i+1)(n-i).
- Summing up over $j \in \mathbb{N}[1, n-1]$, we need about $(2/3)n^3$ flops:

$$\sum_{j=1}^{n-1} 2(\underbrace{n-j+1}_{\text{N-J}})(n-j) \sim 2 \sum_{j=1}^{n-1} (n-j)^2 = 2 \sum_{j=1}^{n-1} j^2 \sim \frac{2}{3} n^3$$
 reversing the term

(change of indices)

(flop counting needed)

$$3 = 5 - 3 + 1$$
 $= n - 5 + 1$

Why
$$2 \int_{5=1}^{n-1} \int_{5}^{2} \sim \frac{2}{3} n^{3}$$
?

$$\int_{1}^{\infty} \int_{1}^{\infty} \int_{1$$

One way Recall
$$\sum_{j=1}^{n} j^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
.

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$$

$$\int_{S=1}^{\infty} \int_{S=1}^{\infty} \int_{S$$

$$\int_{3}^{2} \int_{3}^{2} \int_{3$$

$$\frac{1}{\sqrt{3}}$$

$$\frac{0}{2} = \frac{1}{2} \cdot \frac{1}$$

$$\int_{-1}^{2} \int_{-1}^{2} \int_{-1}^{2$$

 $\sim \frac{2n^3}{6} = \frac{n^3}{2}$

- $\sum_{n=1}^{N-1} j^2 = \frac{(N-1)[(N-1)+1][2(N-1)+1]}{\sqrt{(N-1)+1}}$

 - $= \frac{(n-1) n (2n-1)}{6} = \frac{2n^3 + (boven order terms)}{6}$

Another Using the following result.

$$\frac{\sum_{j=1}^{N-1} \tilde{j}^{p}}{\tilde{j}^{p}} \sim \frac{\tilde{j}^{p+1}}{p+1}$$

Think
$$\int d^{2} dd = \frac{d^{2}}{p+1} + C$$

$$\sum_{j=1}^{n-1} j^{2} \sim \frac{j^{2+1}}{2+1} = \frac{j^{3}}{3}$$

Cost of Forward Elimination and Backward Substitution

Forward Elimination

- The calculation of $y_i = \beta_i \sum_{j=1}^{i-1} \ell_{ij} y_j$ for i > 1 requires approximately 2i flops:
 - 1 subtraction
 - i-1 multiplications
 - i-2 additions
- Summing over all $i \in \mathbb{N}[2, n]$, we need about n^2 flops:

$$\sum_{i=2}^{n} 2i \sim 2\frac{n^2}{2} = n^2.$$

Backward Substitution

• The cost of backward substitution is also approximately n^2 flops, which can be shown in the same manner.

Cost of G.E. with Partial Pivoting

Gaussian elimination with partial pivoting involves three steps:

- PLU factorization: $\sim (2/3)n^3$ flops
- Forward elimination: $\sim n^2$ flops
- Backward substitution: $\sim n^2$ flops

Summary

The total cost of Gaussian elimination with partial pivoting is approximately

$$\frac{2}{3}n^3 + n^2 + n^2 \sim \frac{2}{3}n^3$$

flops for large n.

Application: Solving Multiple Square Systems Simultaneously

To solve two systems $A\mathbf{x}_1 = \mathbf{b}_1$ and $A\mathbf{x}_2 = \mathbf{b}_2$. (Note both involve the same matrix.)

Method 1. (mefficient)

- Use G.E. for both.
- It takes $\sim (4/3)n^3$ flops.

Method 2. (efficient)

- Do it in two steps:
 - 1 Do PLU factorization PA = LU.
 - 2 Then solve $LU\mathbf{x}_1 = P\mathbf{b}_1$ and $LU\mathbf{x}_2 = P\mathbf{b}_2$.
- It takes $\sim (2/3)n^3$ flops.

%% method 1

$$x1 = A \setminus b1; \sim \frac{2}{3} n^3$$

 $x2 = A \setminus b2; \sim \frac{1}{3} n^3$

```
%% method 2
[L, U, P] = lu(A); \sim \frac{2}{3}n^3
\times 1 = U \setminus (L \setminus (P*b1)); \sim 2n^2
\times 2 = U \setminus (L \setminus (P*b2)); \sim 2n^2
```

```
%% compact implementation

X = A \ [b1, b2];

x1 = X(:, 1);

x2 = X(:, 2);
```

$$A \begin{bmatrix} \vec{x}, \vec{x}_2 \end{bmatrix} = \begin{bmatrix} \vec{b}, \vec{b}, \end{bmatrix}$$