컴퓨터그래픽스

김준호

Visual Computing Lab.

국민대학교 소프트웨어학부

- Overview of Vertex Processor
- Coordinate System & Coordiante Values
- ModelView matrix
- Projection matrix
- Viewport

Vertex Processor

Overview of Vertex Processor

- Vertex processor
 - Converting object representations from one coordinate system to another
 - Object coordinates → Camera coordinates → Screen coordinates

Objectives

- We are interested in an image captured from the camera
 - First of all, we should know the coordinate of a 3D point, from camera's viewpoint
 - It means, we have to understand the change of coordinates
 - Coordinate values in object space → Coordinate values in camera space

- Coordinate system & Coordinate Values
- MovelView matrix

Coordinate System and Coordinate Values

Coordinate Value – Representation of a Point

- Where is a point p?
 - For the same point, we can represent it with different coordinates

Coordinate Value – Representation of a Point

- The coordinate value of a point is meaningful, only when we specify a coordinate system
 - The same point can be reprsented with different coordinate values!

•
$$p = (1.5, 3) = (1.5, 2.5) = (-1.2, 1)$$

Coordinate Value – Representation of a Point

- Analogy in real-world
 - A point p
 - 존재
 - Coordinate system (or Frame)
 - 관점
 - Coordinate value of p
 - 특정 관점에서 해당 존재를 부르는 호 칭 (representation)
 - 동일한 존재는 여러가지 호칭으로 불릴 수 있음
 - p_[g] = 아들
 - p_[w] = 남편
 - $\mathbf{p}_{[s]} = 0$

ModelView matrix

What is ModelView Matrix?

- The composition of a model matrix and a view matrix
 - OpenGL manages the model matrix and the view matrix together
 - c.f.) Direct3D seperates the model matrix and the view matrix
 - Model matrix
 - 3D transformation of an object (or model) in the world coordinate system
 - View matrix
 - 3D transformation of a camera in the world coordinate system
 - This is the extrinsic parameters of the camera!
- We can obtain the camera coordinates by multiplying the ModelView matrix to the object coordinates
 - $\mathbf{x}_{view} = \mathbf{V}^{-1} \mathbf{M} \mathbf{x}_{obj}$
 - V⁻¹M is called the modelview matrix

- You model an object in the object-space coordinate system
 - Every point is represented with object-space coordinates \mathbf{x}_{obj}
 - 3D positions specified in glVertexAttribPointer() are in the objects-space coordinate system

You may place the object in the origin of the world

$$- \mathbf{x}_{world} = \mathbf{x}_{obj}$$

- You move the object to somewhere in the world
 - M: model matrix (or world-transform matrix)
 - You set **M** by using the composition of glTranslate(), glRotate(), glScale()
 - $-\mathbf{x}_{world} = \mathbf{M}\mathbf{x}_{obj}$

• Now, let's consider a camera

You may place the camera in the origin of the world

$$- \mathbf{x}_{world} = \mathbf{x}_{view}$$

- You move the camera to somewhere in the world
 - V: view-transform matrix
 - You set V⁻¹ by using gluLookAt()
 - $\mathbf{x}_{world} = \mathbf{V} \mathbf{x}_{view}$

- Let's consider both of camera & object
 - $\mathbf{x}_{world} = \mathbf{M} \mathbf{x}_{obj}$
 - $\mathbf{x}_{world} = \mathbf{V} \mathbf{x}_{view}$

How can we obtain the camera-space coordinates of the object?

• What does " $\mathbf{x}_{view} = \mathbf{V}^{-1} \mathbf{M} \mathbf{x}_{obj}$ " mean?

- What does " $\mathbf{x}_{view} = \mathbf{V}^{-1} \mathbf{M} \mathbf{x}_{obj}$ " mean?
 - 3D Position of **x**, measured from the coordinate system of the camera
 - World-frame-independent representation
 - Now, you may think the world frame as an illusion.

Exactly same!

$$- \mathbf{x}_{world} = \mathbf{M} \mathbf{x}_{obj}$$

$$- \mathbf{x}_{world} = \mathbf{V} \mathbf{x}_{view}$$

$$\mathbf{x}_{view} = \mathbf{V}^{-1} \mathbf{M} \mathbf{x}_{obj}$$

•
$$\mathbf{x}_{view} = \mathbf{V}^{-1}\mathbf{M} \ \mathbf{x}_{obj}$$

- In OpenGL, V⁻¹M is called as the ModelView matrix
 - GL_MODELVIEW_MATRIX

Projection matrix

What is Projection Matrix?

• Projection matrix **P** transforms camera coordinates into clip coordinates

$$- \mathbf{x}_{clip} = \mathbf{P} \mathbf{x}_{view}$$
$$= \mathbf{P} \mathbf{V}^{-1} \mathbf{M} \mathbf{x}_{obi}$$

The canonical view volume is defined in the clip space

Projection Matrix

Perspective projection

$$\mathbf{P} = \begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0\\ 0 & 0 & -\frac{f+n}{f-n} & \frac{-2fn}{f-n}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Orthographic projection

$$\mathbf{P} = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & -\frac{2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Perspective Projection

- Focal length
 - In OpenGL, there is no physical meaning
- Field of view (FOV)
 - In OpenGL, zoom-in/-out is handled by changing the field of view

Perspective Projection: gluPerspective() → glFrustum()

3D case

Side-/Top-view of gluPerspective()

Side-view

Top-view

Viewport

Camera Specification – Viewport

- Viewport
 - Similar to the size of photo printing
 - A film → Photos of different sizes
 - A rectangular area of the display window

Camera Specification – Viewport

Viewport

- Similar to the size of photo printing
 - A film → Photos of different sizes
- A rectangular area of the display window: x, y, w, h
 - (x, y): the lower-left corner of the viewport
 - w, h: the width and height of the viewport

A mapping to the viewport

What is Viewport?

Viewport matrix W transforms clip coordinates into screen-space coordinates

$$\begin{array}{l} - \mathbf{x}_{screen} = \mathbf{W} \mathbf{x}_{clip} \\ = \mathbf{W} \mathbf{P} \mathbf{x}_{view} \\ = \mathbf{W} \mathbf{P} \mathbf{V}^{-1} \mathbf{M} \mathbf{x}_{obj} \end{array} = \begin{bmatrix} win_x \\ win_y \\ win_z \end{bmatrix}$$

- (win_x, win_y) are screen-space coordinates
 - (win_x, win_y) units are in pixel (with fractions)
- win, is depth coordinate
 - win_z is in range of 0.0 to 1.0, or depth range
 - See details in glDepthRange()

Relationship between Aspect Ratio & Viewport

What's wrong with Aspect Ratio? (link)

Wrong Aspect Ratio

Correct Aspect Ratio

Camera Specification – Aspect ratio

- Aspect ratio
 - width / height
 - For aspect ratio, absolute sizes of width & height are meaningless
 - Aspect ratio of display window (e.g., device screen) is important

A mapping to the viewport

Aspect-ratio mismatch.
(a) viewing rectangle, (b) display window

Camera Specification – Aspect ratio

- Aspect ratio
 - width / height
 - For aspect ratio, absolute sizes of width & height are meaningless
 - Aspect ratio of display window (i.e., device screen) is important

Aspect Ratio (= w/h)

gluPerspective()

References: opengl-tutorial

Tutorial 3: Matrices (link)

Recap: Model, View, Projection, Viewport Transformations

Model Transformation

[Model space]

X_{obj}

[World space ← Model space] Mx_{obj}

View Transformation

[Camera space]

X_{view}

[World space ← Camera space] Vx_{view}

ModelView Transformation

Projection Matrix

Now, we consider a view frustum

Projection Matrix

[Camera space] x_{view} (= $V^{-1}Mx_{obj}$)

[Clipping space]
$$x_{clip}$$
 (= Px_{view} = $PV^{-1}Mx_{obj}$)

Viewport

[Clipping space]

$$\mathbf{x}_{clip}$$
 (= $\mathbf{P}\mathbf{x}_{view}$ = $\mathbf{P}\mathbf{V}^{-1}\mathbf{M}\mathbf{x}_{obj}$)

[Screen space]

$$x_{screen} (=Wx_{clip} = WPx_{view} = WPV^{-1}Mx_{obj})$$

감사합니다

Contacts:

• Prof. Junho Kim <u>junho@kookmin.ac.kr</u>