MarshalkoMV 19022025-160502

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.4	0.455	-145.3	20.384	94.7	0.026	56.0	0.358	-67.2
2.1	0.458	-163.7	13.813	82.1	0.034	57.7	0.271	-79.4
2.8	0.468	-176.6	10.275	72.5	0.043	57.9	0.234	-92.9
3.5	0.479	174.0	8.174	64.8	0.052	57.2	0.224	-102.6
4.2	0.488	166.1	6.827	57.6	0.061	55.5	0.213	-109.3
4.9	0.501	159.4	5.792	50.4	0.071	53.0	0.199	-118.0
5.6	0.498	153.6	5.025	44.1	0.081	50.8	0.188	-123.0
6.3	0.510	145.9	4.487	37.2	0.091	46.4	0.174	-134.3
7.4	0.537	134.7	3.753	26.6	0.105	41.6	0.131	-154.6

и частоты $f_{\scriptscriptstyle \rm H}=1.4$ ГГц, $f_{\scriptscriptstyle \rm B}=6.3$ ГГц.

Найти развязку на $f_{\scriptscriptstyle \mathrm{B}}.$

- 1) 10.4 дБ
- 2) 20.8 дБ
- 3) 31.7 дБ
- 4) 15.9 дБ

Задан двухполюсник на рисунке 1, причём R1 = 38.26 Ом.

Рисунок 1 – Двухполюсник

Найти полуокружность (см. рисунок 2), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок2— Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Найти точку (см. рисунок 3), соответствующую коэффициенту отражения от нормированного импеданса $z=2.63+1.34\mathrm{i}$.

Рисунок 3 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.5	0.479	174.0	8.174	64.8	0.052	57.2	0.224	-102.6
3.6	0.480	172.8	7.966	63.9	0.053	57.0	0.222	-103.4
3.7	0.480	171.7	7.761	62.9	0.055	56.8	0.221	-104.2
3.8	0.482	170.5	7.557	61.8	0.056	56.6	0.220	-105.1
3.9	0.483	169.3	7.357	60.8	0.057	56.5	0.218	-105.9
4.0	0.484	168.2	7.159	59.6	0.059	56.3	0.217	-106.8
4.1	0.486	167.1	6.992	58.6	0.060	55.9	0.215	-108.0
4.2	0.488	166.1	6.827	57.6	0.061	55.5	0.213	-109.3
4.3	0.490	165.1	6.664	56.6	0.063	55.2	0.211	-110.5
4.4	0.492	164.0	6.503	55.5	0.064	54.8	0.210	-111.8
4.5	0.494	163.0	6.345	54.3	0.066	54.5	0.208	-113.1

и частоты $f_{\scriptscriptstyle \rm H}=3.9~\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=4.5~\Gamma\Gamma$ ц. **Найти** модуль s_{22} в д ${\rm B}$ на частоте $f_{\scriptscriptstyle \rm B}$.

- 1) -6.1 дБ
- 2) 16 дБ
- 3) -13.6 дБ
- 4) -23.6 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.6	0.364	168.0	5.044	67.3	0.084	63.6	0.176	-88.0
2.8	0.366	165.1	4.673	64.9	0.090	62.5	0.171	-91.5
3.0	0.369	162.4	4.344	62.9	0.096	61.6	0.167	-95.0
3.5	0.375	156.7	3.707	57.7	0.110	58.9	0.159	-102.4
4.0	0.380	151.1	3.239	52.7	0.125	55.9	0.154	-108.8
4.5	0.388	146.3	2.880	47.8	0.140	52.8	0.145	-114.6
5.0	0.393	142.2	2.599	43.2	0.154	49.5	0.135	-120.4
5.5	0.398	137.8	2.371	38.3	0.168	46.2	0.121	-126.9
6.0	0.406	132.7	2.181	33.6	0.181	42.9	0.103	-135.0
6.5	0.418	127.4	2.017	28.9	0.194	39.4	0.088	-148.8
7.0	0.433	121.7	1.872	24.0	0.207	36.0	0.073	-167.0

и частоты $f_{\scriptscriptstyle \rm H}=3$ ГГц, $f_{\scriptscriptstyle \rm B}=6$ ГГц.

Найти неравномерность усиления в полосе $f_{\text{\tiny H}}...f_{\text{\tiny B}}$, используя рисунок 4.

Рисунок 4 – Частотная характеристика усиления

- 1) 8.6 дБ
- 2) 6 дБ
- 3) 1.3 дБ
- 4) 3 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.520	-110.9	25.458	110.7	0.026	52.1	0.535	-56.9
2.1	0.478	-153.8	13.250	84.8	0.037	50.9	0.314	-79.8
3.2	0.483	-175.4	8.691	69.9	0.049	51.6	0.256	-98.9
4.3	0.496	170.1	6.452	57.8	0.063	50.5	0.234	-110.7
5.4	0.503	159.3	5.055	46.8	0.078	48.1	0.209	-121.6
6.5	0.519	146.6	4.214	35.5	0.092	42.5	0.186	-138.4
8.6	0.601	127.5	3.048	14.5	0.120	31.7	0.151	157.8

Найти точку (см. рисунок 5), соответствующую s_{22} на частоте 3.2 ГГц.

Рисунок 5 — Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C
- 4) D