TAUTOLOGY INNOVATION SCHOOL

MADE BY TAUTOLOGY THAILAND
DO NOT PUBLISH WITHOUT PERMISSION

facebook/tautologyai
 www.tautology.live

Gaussian Process

Introduction

What is Gaussian Process?

Pros & Cons

Real World Application

Data for Gaussian Process?

Gaussian Process เป็นหนึ่งใน algorithm ประเภท supervised

learning ที่ใช้สำหรับแก้ปัญหา classification โดยมีหลักการทำงาน

คือ การพิจารณา probability distribution ของข้อมูล โดยใช้ Bayesian

เมื่อพูดถึง algorithm ที่ทำงานด้วยหลักการของ probability แบบ bayesian

- classification ==> naive bayes
- regression ==> gaussian process

Gaussian Process คือ การพิจารณา probability distribution ของข้อมูล โดยใช้

ความมั่นใจในการพยากรณ์ ค่านี้ถูกวัดออกมาเชิงคณิตศาสตร์ด้วย standard deviation

regression algorithm ตัวอื่น ๆ เวลาพยากรณ์ y_hat

ปิ้นสีฟ้า ๆ ที่ได้เห็นเป็นตัวที่ใช้บอก ความไม่แน่ใจในการพยากรณ์

Ref: https://www.researchgate.net/figure/Illustration-of-Gaussian-process-regression-in-one-dimension-for-the-target-test_fig1_327613136

Introduction

What is Gaussian Process?

Pros & Cons

Real World Application

Pros & Cons

ข้อดี

• เป็น algorithm เพียงตัวเดียวที่ให้ uncertainty estimation

• สามารถจัดการได้กับทั้งข้อมูลที่เรียบง่าย และข้อมูลที่ซับซ้อน

(ถ้าเราใช้เทคนิค ensemble method ก็ทำได้เหมือนกัน)

__

ข้อเสีย

• เป็น algorithm ที่ซับซ้อน & ยากต่อการทำความเข้าใจ เสี่ยงต่อการเกิด overfit สูงมาก

ข้อจำกัด

• ต้องพิถีพิถันในการทำ hyperparameter tuning
ควรใช้งานกับข้อมูลที่ training set เป็นตัวแทนของ population ได้อย่างครบถ้วน 5%-10%

Introduction

What is Gaussian Process?

Pros & Cons

Real World Application

Real World Application

อ้างอิง : [2020, Zeng et al] Prediction of building electricity usage using Gaussian Process Regression

การคาดคะเนการใช้ไฟของ ตึกใน Shanghai

โดยพิจารณาจาก ปริมาณความร้อน ที่ผ่านเข้าหรือออกจากระบบ การวัด อุณหภูมิในอากาศทั้งแบบเปาะแห้ง (dry bulb) และแบบเปาะเปียก (wet bulb) เป็นต้น

Real World Application

ซึ่งจะทำการวัดจากลมที่พัดผ่าน ฟาร์ม โดยตัวแปรที่เรานำมา พิจารณา เช่น อุณหภูมิในอากาศ ความชื้น ความกดอากาศ เป็นต้น

อ้างอิง : [2014, Chen et al.] Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction

Introduction

What is Gaussian Process?

Pros & Cons

Real World

Application

Gaussian Process

Gaussian Process

Gaussian Process เป็นหนึ่งใน algorithm ประเภท supervised learning

Concept of Supervised Learning

Data ⇒ **Model** ⇒ **Prediction**

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

Assumption

No Missing Features

Normal Distribution

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

Gaussian Process คือ การพิจารณา probability distribution ของข้อมูล โดยใช้ Bayesian

Prior

Posterior

Gaussian Process คือ การพิจารณา probability distribution ของข้อมูล โดยใช้ Bayesian

$$P(\mathbf{y}) = N(0, \mathbf{K})$$

โดยที่
$$K = K(X, X) = \begin{bmatrix} k(\mathbf{x_1}, \mathbf{x_1}) & k(\mathbf{x_1}, \mathbf{x_2}) & \cdots & k(\mathbf{x_1}, \mathbf{x_m}) \\ k(\mathbf{x_2}, \mathbf{x_1}) & k(\mathbf{x_2}, \mathbf{x_2}) & \cdots & k(\mathbf{x_2}, \mathbf{x_m}) \\ \vdots & \vdots & \ddots & \vdots \\ k(\mathbf{x_n}, \mathbf{x_1}) & k(\mathbf{x_n}, \mathbf{x_2}) & \cdots & k(\mathbf{x_n}, \mathbf{x_m}) \end{bmatrix}$$

ightharpoonup K $\iota \ddot{\mathbb{U}}$ u kernel function

Posterior

$$P(y_{n+1}|\mathbf{y}) = N(\mu(x^*), \sigma^2(x^*))$$

โดยที่
$$\mu(x^*) = \mathbf{k}(x^*, X)K^{-1}\mathbf{y}$$

$$\sigma^2(x^*) = k(x^*, x^*) - k(x^*, X)K^{-1}k(X, x^*)$$

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

- \Box Step 1: กำหนด kernel function (K(X,X))
- \Box Step 2 : คำนวณ $K(X,X),K^{-1}(X,X)$
- ☐ Step 3 : คำนวณ probability distribution ของข้อมูลใหม่
 - Step 3.1: คำนวณ mean
 - Step 3.2 : คำนวณ standard deviation

ตัวอย่างการคำนวณ Gaussian Process

x ₁	x ₂	У
1	0	1.2
0.5	1	2.5
2	0	0.8
1.5	1	2.9

ตารางแสดงข้อมูล toy dataset

Step 1: กำหนด kernel function (K(X,X))

$$k(\mathbf{x_i}, \mathbf{x_j}) = e^{-\|\mathbf{x_i} - \mathbf{x_j}\|^2 / 2l^2}$$
ใช้วัดค่าความเหมือน

กำหนดให้ l=1

Radial Basis Function

Step 2 : คำนวณ $K(X,X), K^{-1}(X,X)$

$$K(X,X) = \begin{bmatrix} k(\mathbf{x}_1,\mathbf{x}_1) & k(\mathbf{x}_1,\mathbf{x}_2) & k(\mathbf{x}_1,\mathbf{x}_3) & k(\mathbf{x}_1,\mathbf{x}_4) \\ k(\mathbf{x}_2,\mathbf{x}_1) & k(\mathbf{x}_2,\mathbf{x}_2) & k(\mathbf{x}_2,\mathbf{x}_3) & k(\mathbf{x}_2,\mathbf{x}_4) \\ k(\mathbf{x}_3,\mathbf{x}_1) & k(\mathbf{x}_4,\mathbf{x}_2) & k(\mathbf{x}_3,\mathbf{x}_3) & k(\mathbf{x}_3,\mathbf{x}_4) \\ k(\mathbf{x}_4,\mathbf{x}_1) & k(\mathbf{x}_4,\mathbf{x}_2) & k(\mathbf{x}_4,\mathbf{x}_3) & k(\mathbf{x}_4,\mathbf{x}_4) \end{bmatrix}$$

Step 2 : คำนวณ $K(X,X), K^{-1}(X,X)$

$$K(X,X) = \begin{bmatrix} k\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}1\\0\end{bmatrix}\right) & k\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0.5\\1\end{bmatrix}\right) & k\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}2\\0\end{bmatrix}\right) & k\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}1.5\\1\end{bmatrix}\right) \\ k(x_2,x_1) & k(x_2,x_2) & k(x_2,x_3) & k(x_2,x_4) \\ k(x_3,x_1) & k(x_4,x_2) & k(x_3,x_3) & k(x_3,x_4) \\ k(x_4,x_1) & k(x_4,x_2) & k(x_4,x_3) & k(x_4,x_4) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0.535 & 0.607 & 0.535 \\ 0.535 & 1 & 0.197 & 0.607 \\ 0.607 & 0.197 & 1 & 0.535 \\ 0.535 & 0.607 & 0.535 & 1 \end{bmatrix}$$

Step 2 : คำนวณ $K(X,X), K^{-1}(X,X)$

$$K^{-1}(X,X) = \begin{bmatrix} 2.212 & -0.973 & -1.166 & 0.03 \\ -0.973 & 2.069 & 0.807 & -1.166 \\ -1.166 & 0.807 & 2.069 & -0.973 \\ 0.03 & -1.166 & -0.973 & 2.212 \end{bmatrix}$$

 $\mathsf{new}\;\mathsf{data}\,{:}\,\mathbf{x}^*=[1$

How to Create Model (Math)

- Step 3 : คำนวณ probability distribution ของข้อมูลใหม่
 - Step 3.1 : คำนวณ mean

$$\mu = \mathbf{k}(\mathbf{x}^*, X)K^{-1}\mathbf{y}$$

$$= \begin{bmatrix} k \begin{pmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} & k \begin{pmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} \end{pmatrix} & k \begin{pmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix} & k \begin{pmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1.5 \\ 1 \end{bmatrix} \end{pmatrix} K^{-1}\mathbf{y}$$

$$= \begin{bmatrix} 0.607 & 0.882 & 0.368 & 0.882 \end{bmatrix} \begin{bmatrix} 2.212 & -0.973 & -1.166 & 0.03 \\ -0.973 & 2.069 & 0.807 & -1.166 \\ -1.166 & 0.807 & 2.069 & -0.973 \\ 0.03 & -1.166 & -0.973 & 2.212 \end{bmatrix} \begin{bmatrix} 1.2 \\ 2.5 \\ 0.8 \\ 2.9 \end{bmatrix}$$

 $\mathsf{new}\;\mathsf{data}\,{:}\,x^* = \begin{bmatrix} 1 & 1 \end{bmatrix}$

How to Create Model (Math)

- Step 3 : คำนวณ probability distribution ของข้อมูลใหม่
 - 🗸 Step 3.2 : คำนวณ standard deviation

$$\sigma^2 = k(\mathbf{x}^*, \mathbf{x}^*) - \mathbf{k}(\mathbf{x}^*, X)K^{-1}k(X, \mathbf{x}^*)$$

$$= 1 - \begin{bmatrix} 0.607 & 0.882 & 0.368 & 0.882 \end{bmatrix} \begin{bmatrix} 2.212 & -0.973 & -1.166 & 0.03 \\ -0.973 & 2.069 & 0.807 & -1.166 \\ -1.166 & 0.807 & 2.069 & -0.973 \\ 0.03 & -1.166 & -0.973 & 2.212 \end{bmatrix} \begin{bmatrix} 0.606 \\ 0.882 \\ 0.368 \\ 0.882 \end{bmatrix}$$

$$\sigma^2 = 0.027$$

$$\therefore \sigma = 0.164$$

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

How to Create Model (Code)

ตัวอย่าง Code สำหรับ Gaussian Process

$\mathbf{x_1}$	\mathbf{x}_{2}	y
1	0	1.2
0.5	1	2.5
2	0	0.8
1.5	1	2.9

ตารางแสดงข้อมูล toy dataset

How to Create Model (Code)

• Code สำหรับสร้าง model จากข้อมูลของเราโดยที่

$$X = \begin{bmatrix} 1 & 0 \\ 0.5 & 1 \\ 2 & 0 \\ 1.5 & 1 \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} 1.2 \\ 2.5 \\ 0.8 \\ 2.9 \end{bmatrix}$$

- 1 reg = GaussianProcessRegressor()
- 2 reg.fit(X, y)

GaussianProcessRegressor()

How to Create Model (Code)

Code for this section

Open File

Model Creation.ipynb

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

Further Reading

- Bayesian Statistics
- Multinormal Distribution
- Radial Basis Function

Ensemble Method

Model Creation

Assumption

Real Face of the Model

How to Create Model (Math)

How to Create Model (Code)

Further Reading

Gaussian Process

Таитё́ Logy

Prediction

Gaussian Process คือ การพิจารณา probability distribution ของข้อมูล โดยใช้ Bayesian

Prediction

1-Sample

Multi-Sample

Code

1-Sample

<u>ตัวอย่างการคำนวณ \widehat{y} </u>

$\mathbf{x_1}$	\mathbf{x}_{2}
1	1

\widehat{y}
?

1-Sample

$$\mu = \mathbf{k}(\mathbf{x}^*, X)K^{-1}\mathbf{y}$$

$$= \begin{bmatrix} k \begin{pmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} & k \begin{pmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} \end{pmatrix} & k \begin{pmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix} & k \begin{pmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1.5 \\ 1 \end{bmatrix} \end{pmatrix} K^{-1}\mathbf{y}$$

$$= \begin{bmatrix} 0.607 & 0.882 & 0.368 & 0.882 \end{bmatrix} \begin{bmatrix} 2.212 & -0.973 & -1.166 & 0.03 \\ -0.973 & 2.069 & 0.807 & -1.166 \\ -1.166 & 0.807 & 2.069 & -0.973 \\ 0.03 & -1.166 & -0.973 & 2.212 \end{bmatrix} \begin{bmatrix} 1.2 \\ 2.5 \\ 0.8 \\ 2.9 \end{bmatrix}$$

$$\therefore \mu = 2.972$$

1-Sample

${\color{red}\dot{\mathbf{o}}\mathbf{\dot{v}}\dot{\mathbf{u}}\mathbf{\dot{u}}}$ เราจะได้ $\hat{\mathbf{y}}$ คือ

$\mathbf{x_1}$	\mathbf{x}_{2}
1	1

ŷ 2.972

Prediction

1-Sample

Multi-Sample

Code

Multi-Sample

<u>ตัวอย่างการคำนวณ $\hat{\mathbf{y}}$ </u>

x ₁	$\mathbf{x_2}$
1	1
2.5	1
2	0
0.5	0

ŷ	
?	
?	
?	
?	

Multi-Sample

$$\mu = K(\mathbf{x}^*, X)K^{-1}\mathbf{y}$$

$$= K\begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 2.5 & 1 \\ 2 & 0 \\ 0.5 & 0 \end{bmatrix}, X \end{pmatrix} K^{-1}\mathbf{y}$$

$$= \begin{bmatrix} 0.607 & 0.882 & 0.368 & 0.882 \\ 0.197 & 0.135 & 0.535 & 0.607 \\ 0.607 & 0.197 & 1 & 0.535 \\ 0.882 & 0.607 & 0.325 & 0.368 \end{bmatrix} \begin{bmatrix} 2.212 & -0.973 & -1.166 & 0.03 \\ -0.973 & 2.069 & 0.807 & -1.166 \\ -1.166 & 0.807 & 2.069 & -0.973 \\ 0.03 & -1.166 & -0.973 & 2.212 \end{bmatrix} \begin{bmatrix} 2.5 & 0.368 & 0.882 \\ 2.5 & 0.882 & 0.607 & 0.325 & 0.368 \end{bmatrix}$$

$$\therefore \mu = \begin{bmatrix} 2.974 \\ 1.428 \\ 0.8 \end{bmatrix}$$

Multi-Sample

x ₁	x ₂
1	1
2.5	1
2	0
0.5	0

$\widehat{\mathbf{y}}$
2.974
1.428
0.8
1.057

Prediction

Code

<u>ตัวอย่าง code สำหรับการคำนวณ ŷ</u>

$\mathbf{x_1}$	$\mathbf{x_2}$
1	1
2.5	1
2	0
0.5	0

$\widehat{\mathbf{y}}$	
?	
?	
?	
?	

• Code สำหรับสร้าง model จากข้อมูลของเราโดยที่

$$X = \begin{bmatrix} 1 & 1 \\ 2.5 & 1 \\ 2 & 0 \\ 0.5 & 0 \end{bmatrix}$$

1 reg.predict(X)

array([2.97362084, 1.42796607, 0.8

, 1.05659863])

<u>ดังนั้น</u> เราจะได้ ŷ สำหรับข้อมูลชุดนี้คือ

$\mathbf{x_1}$	$\mathbf{x_2}$
1	1
2.5	1
2	0
0.5	0

ŷ
2.974
1.428
0.8
1.057

Code for this section

Open File

Model Creation.ipynb

Prediction

Gaussian Process

AI in Business

- Abstract
- Why this project important?
- Who this project for?
- Bike Sharing Dataset
- What we learn from this project?

Abstract

สร้าง model <mark>เพื่อทำนายจำนวนคนที่เข้ามาใช้บริการ bike sharing</mark> โดย feature ที่เรานำมาใช้ คือ ข้อมูลเกี่ยวกับการเช่าจักรยานรายวัน รวมถึงข้อมูลของ สภาพอากาศ ฤดูกาลต่าง ๆ เช่น เป็นวันทำงานหรือวันหยุด อุณหภูมิในวันนั้น เป็นต้น

Why this project important?

- นำความรู้ที่ได้จากการสร้างโมเดลไปประยุกต์ใช้ กับธุรกิจประเภทอื่น ๆ ที่มีลักษณะของ Feature ที่ต้องวิเคราะห์คล้าย ๆ กัน
- สามารถนำข้อมูลไปวิเคราะห์ปัจจัยต่าง ๆ ที่ ส่งผลต่อการใช้งาน และอาจนำไปทำการตลาด หรือวางแผนพัฒนาธุรกิจให้เติบโต

Who is this project for?

- ผู้เริ่มต้นธุรกิจที่มีปัจจัยเดียวกับ bike sharing เช่น ธุรกิจซักผ้าหยอ เหรียญ ธุรกิจเช่ารถขับในเมืองท่องเที่ยวอัตโนมัติ
- นักวิเคราะห์ข้อมูล
- Marketing
- นักวางแผนธุรกิจ

Bike Sharing Dataset

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

Bike Sharing Dataset

Feature

- season : เป็นวันที่อยู่ในฤดูกาลไหน (1 : Winter, 2 : Spring, 3 : Summer, 4 : Fall)
- yr : ປ (0 − 2011, 1 − 2012)
- mnth : เดือน (1 12)
- hr : ชั่วโมง (0 23)
- holiday : เป็น Holiday หรือไม่ใช่ Holiday
- weekday : วันของแต่ละสัปดาห์
- workingday : เป็น Working day หรือไม่ใช่ Working Day
- weathersit : เป็นวันที่สภาพอากาศเป็นอย่างไร เช่น สภาพอากาศสดใส, ฝนตก หนัก, มีหมอกและเมฆครึ้ม

Bike Sharing Dataset

- temp : อุณหภูมิ
- atemp: Feeling Temperature
- hum : ความชื้น
- windspeed : เป็นวันที่มีความเร็วลมเท่าไร
- casual : จำนวนของ casual user
- registered : จำนวนของ registered user

Target

• count : จำนวนของการเช่าจักรยาน ทั้งแบบคนที่ลงทะเบียนเป็นสมาชิก และไม่ได้ ลงทะเบียน

What we learn from this project?

1. ตอกย้ำประเด็นเรื่องความเป็น time series นะครับ ==> ถ้าข้อมูลในอนาคตซ่อน information จากข้อมูลในอดีต ห้าม shuffle = True

Data Preparation

01. BIKE RENTAL

Gaussian Process

