

COMS 4030A/704/A Adaptive Computation and Machine Learning

Hima Vadapalli

Semester I, 2022

Neural Networks (Representation) Neural Networks (Learning)

Neural Network

Learning in NN: Backpropagation

- Similar to the perceptron learning algorithm, we cycle through our examples
 - If the output of the network is correct, no changes are made
 - If there is an error, weights are adjusted to reduce the error

 The trick is to assess the blame for the error and divide it among the contributing weights

Cost Function

Logistic Regression:

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log h_{\theta}(\mathbf{x}_i) + (1 - y_i) \log (1 - h_{\theta}(\mathbf{x}_i))] + \frac{\lambda}{2n} \sum_{j=1}^{d} \theta_j^2$$

Neural Network:

$$\begin{split} h_{\Theta} &\in \mathbb{R}^{K} & (h_{\Theta}(\mathbf{x}))_{i} = i^{th} \text{output} \\ J(\Theta) &= -\frac{1}{n} \left[\sum_{i=1}^{n} \sum_{k=1}^{K} y_{ik} \log \left(h_{\Theta}(\mathbf{x}_{i}) \right)_{k} + (1 - y_{ik}) \log \left(1 - (h_{\Theta}(\mathbf{x}_{i}))_{k} \right) \right] \\ &+ \frac{\lambda}{2n} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l-1}} \sum_{j=1}^{s_{l}} \left(\Theta_{ji}^{(l)} \right)^{2} & \text{ & k^{th} class: true, predicted not k^{th} class: true, predicted no$$

Optimizing the Neural Network

$$J(\Theta) = -\frac{1}{n} \left[\sum_{i=1}^{n} \sum_{k=1}^{K} y_{ik} \log(h_{\Theta}(\mathbf{x}_{i}))_{k} + (1 - y_{ik}) \log(1 - (h_{\Theta}(\mathbf{x}_{i}))_{k}) \right]$$
$$+ \frac{\lambda}{2n} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l-1}} \sum_{j=1}^{s_{l}} (\Theta_{ji}^{(l)})^{2}$$

 $J(\Theta)$ is not convex, so GD on a Solve via: $\min_{\Theta} J(\Theta)$ neural net yields a local optimum But, tends to work wall in another section.

Need code to compute:

- $\bullet J(\Theta)$
- $\bullet \frac{\partial}{\partial \Theta_{ii}^{(l)}} J(\Theta)$

Forward Propagation

• Given one labeled training instance (\mathbf{x}, y) :

Forward Propagation

- $a^{(1)} = x$
- $\mathbf{z}^{(2)} = \Theta^{(1)} \mathbf{a}^{(1)}$
- $\mathbf{a}^{(2)} = g(\mathbf{z}^{(2)})$ [add $\mathbf{a}_0^{(2)}$]
- $\mathbf{z}^{(3)} = \Theta^{(2)} \mathbf{a}^{(2)}$
- $\mathbf{a}^{(3)} = g(\mathbf{z}^{(3)})$ [add $\mathbf{a}_0^{(3)}$]
- $\mathbf{z}^{(4)} = \Theta^{(3)} \mathbf{a}^{(3)}$
- $\mathbf{a}^{(4)} = \mathbf{h}_{\Theta}(\mathbf{x}) = g(\mathbf{z}^{(4)})$

Backpropagation Intuition

- Each hidden node j is "responsible" for some fraction of the error $\delta_j^{(l)}$ in each of the output nodes to which it connects
- $\delta_j^{(l)}$ is divided according to the strength of the connection between hidden node and the output node
- Then, the "blame" is propagated back to provide the error values for the hidden layer

Backpropagation Intuition

$$\delta_j^{(l)} =$$
 "error" of node j in layer l
Formally, $\delta_j^{(l)} = \frac{\partial}{\partial z_j^{(l)}} \mathrm{cost}(\mathbf{x}_i)$
where $\mathrm{cost}(\mathbf{x}_i) = y_i \log h_{\Theta}(\mathbf{x}_i) + (1 - y_i) \log(1 - h_{\Theta}(\mathbf{x}_i))$

Backpropagation: Gradient Computation

Let $\delta_j{}^{(l)}=$ "error" of node j in layer l

(#layers L = 4)

Element-wise product .*

Backpropagation

•
$$\delta^{(4)} = a^{(4)} - y$$

$$oldsymbol{\delta}^{(3)} = (\Theta^{(3)})^{\mathsf{T}} oldsymbol{\delta}^{(4)} \cdot {}^* g'(\mathbf{z}^{(3)})$$

$$oldsymbol{\delta}^{(2)} = (\Theta^{(2)})^{\mathsf{T}} oldsymbol{\delta}^{(3)} \cdot {}^* g'(\mathbf{z}^{(2)})$$

• (No
$$oldsymbol{\delta}^{(1)}$$
)

$$g'(\mathbf{z}^{(3)}) = \mathbf{a}^{(3)}.*(1-\mathbf{a}^{(3)})$$

$$g'(\mathbf{z}^{(2)}) = \mathbf{a}^{(2)}.*(1-\mathbf{a}^{(2)})$$

$$rac{\partial}{\partial \Theta_{i\,j}^{(l)}} J(\Theta) = a_j^{(l)} \delta_i^{(l+1)}$$
 (ignoring λ ; if $\lambda=0$)

 $\delta^{(4)}$

 $\delta^{(3)}$

Backpropagation

```
Set \Delta_{i,i}^{(l)} = 0 \quad \forall l, i, j
                                                                                             (Used to accumulate gradient)
For each training instance (\mathbf{x}_i, y_i):
       Set \mathbf{a}^{(1)} = \mathbf{x}_i
      Compute \{\mathbf{a}^{(2)}, \dots, \mathbf{a}^{(L)}\} via forward propagation
      Compute \boldsymbol{\delta}^{(L)} = \mathbf{a}^{(L)} - y_i
      Compute errors \{\boldsymbol{\delta}^{(L-1)},\ldots,\boldsymbol{\delta}^{(2)}\}
      Compute gradients \Delta_{ij}^{(l)} = \Delta_{ij}^{(l)} + a_i^{(l)} \delta_i^{(l+1)}
Compute avg regularized gradient D_{ij}^{(l)} = \begin{cases} \frac{1}{n} \Delta_{ij}^{(l)} + \lambda \Theta_{ij}^{(l)} & \text{if } j \neq 0 \\ \frac{1}{n} \Delta_{ij}^{(l)} & \text{otherwise} \end{cases}
```

 $m{D}^{(l)}$ is the matrix of partial derivatives of $J(\Theta)$

Note: Can vectorize $\Delta_{ij}^{(l)} = \Delta_{ij}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}$ as $\mathbf{\Delta}^{(l)} = \mathbf{\Delta}^{(l)} + \boldsymbol{\delta}^{(l+1)} \mathbf{a}^{(l)^\mathsf{T}}$

Backpropagatior

Training a Neural Network via Gradient Descent with Backprop

```
Given: training set \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}
Initialize all \Theta^{(l)} randomly (NOT to 0!)
Loop // each iteration is called an epoch
     Set \Delta_{ij}^{(l)} = 0 \quad \forall l, i, j
                                                                                     (Used to accumulate gradient)
      For each training instance (\mathbf{x}_i, y_i):
           Set \mathbf{a}^{(1)} = \mathbf{x}_i
           Compute \{\mathbf{a}^{(2)}, \dots, \mathbf{a}^{(L)}\} via forward propagation
           Compute \boldsymbol{\delta}^{(L)} = \mathbf{a}^{(L)} - y_i
           Compute errors \{\boldsymbol{\delta}^{(L-1)},\ldots,\boldsymbol{\delta}^{(2)}\}
           Compute gradients \Delta_{ij}^{(l)} = \Delta_{ij}^{(l)} + a_i^{(l)} \delta_i^{(l+1)}
     Compute avg regularized gradient D_{ij}^{(l)} = \begin{cases} \frac{1}{n} \Delta_{ij}^{(l)} + \lambda \Theta_{ij}^{(l)} & \text{if } j \neq 0 \\ \frac{1}{n} \Delta_{ij}^{(l)} & \text{otherwise} \end{cases}
      Update weights via gradient step \Theta_{ij}^{(l)} = \Theta_{ij}^{(l)} - \alpha D_{ij}^{(l)}
Until weights converge or max #epochs is reached
```

Backprop Issues

"Backprop is the cockroach of machine learning. It's ugly, and annoying, but you just can't get rid of it."

-Geoff Hinton

Problems:

- black box
- local minima