Ковальков Антон 577гр

Задача 1.

Построим автомат \mathcal{A} , по регулярному выражению a.

Так же будет выглядеть автомат \mathcal{B} по регулярному выражению b.

Построим автомат $\mathcal C$ по регулярному выражению a|b. $L(\mathcal C)=L(\mathcal A)\cup L(\mathcal B)$

Построим автомат \mathcal{D} по регулярному выражению a(a|b) $L(\mathcal{D}) = L(\mathcal{A}) \cdot L(\mathcal{C})$

Построим автомат $\mathcal F$ по регулярному выражению $(a(a|b))^*$ $L(\mathcal F) = L(\mathcal D)^*$

Наконец, построим автомат R по регулярному выражению $(a(a|b))^*b$. $L(\mathcal{R})=L(\mathcal{F})\cdot L(\mathcal{B})$

Задача 3.

Построим автомат \mathcal{A} по регулярному выражению (abba)

Построим автомат \mathcal{B} по регулярному выражению (abab)

Построим автомат $\mathcal C$ по регулярному выражению (abba)|(abab) $L(\mathcal C)=L(\mathcal A)\cup L(\mathcal B)$

Построим автомат \mathcal{D} по регулярному выражению (baa)

Построим автомат $\mathcal F$ по регулярному выражению $(a|b)^*(abba|abab|baa)(a|b)^*$ $L(\mathcal F)=L(\mathcal C)\cup L(\mathcal D)$

Задача 4.

1) Abtomat A:

 q_0 – чётное число нулей.

 q_1 — нечётное число нулей.

Докажем по индукции, что автомат принимает только слова с количеством букв 0 равным n, где n чётно.

- а) База: $\varepsilon \in L(\mathcal{A})$.
- б) Пусть все слова ω с n буквами $0 \in L(A)$. Тогда на слове ω автомат

закончил работу в единственном принимающем состоянии q_0 . Добавим к ω любое количество букв 1 потом букву 0 и любое количество букв 1. Таким образом мы получим любое слово ω_1 в котором n+1 буква a, автомат на слове ω_1 закончит работу в непринимающем состоянии q_1 . Значит слова с нечётным количеством букв 0 автомат не принимает. Добавим к ω_1 любое количество букв 1 потом букву 0 и любое количество букв 1. Таким образом мы получим любое слово ω_2 в котором n+2 букв 0, автомат на слове ω_2 закончит работу в принимающем состоянии q_0 .

Значит слова с чётным количеством букв 0 автомат принимает.

2) Abtomat \mathcal{B} :

 q_0 – чётное число единиц.

 q_1 – нечётное число единиц.

Доказывается аналогично случаю 1)

3) Abtomat C:

 q_0 – чётное число нулей, чётное число единиц.

 q_1 – нечётное число нулей, чётное число единиц.

 q_2 – нечётное число нулей, нечётное число единиц.

 q_3 – чётное число нулей, нечётное число единиц.

Задача 5.

Нет, это не верно. Пусть $L(\mathcal{B}) = \{aa, ab, bbaba\}, L(\mathcal{A}) = \emptyset$, тогда так как фунция перехода $\sigma_{\mathcal{A}}$ не определена ни на одном состоянии, то если определить функцию перехода автомата \mathcal{C} по правилу $\forall \sigma \in \Sigma : \delta_{\mathcal{C}}((q_{\mathcal{A}}, q_{\mathcal{B}}), \sigma) = (\delta_{\mathcal{A}}(q_{\mathcal{A}}, \sigma), \delta_{\mathcal{B}}(q_{\mathcal{B}}, \sigma))$ то она также не будет нигде определена и автомат \mathcal{C} , будет распозновать только пустой язык.

Задача 6.

Множество состояний: $\{(q_0^A, q_0^B), (q_0^A, q_1^B), (q_1^A, q_0^B), (q_1^A, q_1^B)\}$ Функция переходов:

Функция переходо
$$\sigma(q_0^A, q_0^B, 0) = q_1^A, q_0^B$$
 $\sigma(q_0^A, q_0^B, 0) = q_0^A, q_1^B$ $\sigma(q_0^A, q_0^B, 1) = q_0^A, q_1^B$ $\sigma(q_0^A, q_1^B, 0) = q_1^A, q_0^B$ $\sigma(q_0^A, q_1^B, 1) = q_0^A, q_0^B$ $\sigma(q_1^A, q_0^B, 0) = q_0^A, q_0^B$ $\sigma(q_1^A, q_0^B, 1) = q_1^A, q_1^B$ $\sigma(q_1^A, q_1^B, 0) = q_0^A, q_1^B$ $\sigma(q_1^A, q_1^B, 0) = q_0^A, q_1^B$ Принимающее состоя

Принимающее состояние: $(q_0^{\mathcal{A}}, q_1^{\mathcal{B}})$

