Common Bus System

Figure 5-4 Basic computer registers connected to a common bus.

Instruction Set Completeness

- 1. Arithmetic, logical, and shift instructions
- 2. Instructions for moving information to and from memory and processor registers
- 3. Program control instructions together with instructions that check status conditions
- 4. Input and output instructions

Basic Computer Instruction Format

Figure 5-5 Basic computer instruction formats.

Basic Computer Instructions

TABLE 5-2 Basic Computer Instructions

Hexadecimal code				
Symbol	I = 0	<i>I</i> = 1	Description	
AND	Оххх	8xxx	AND memory word to AC	
ADD	1xxx	9xxx	Add memory word to AC	
LDA	2xxx	Axxx	Load memory word to AC	
STA	3xxx	Bxxx	Store content of AC in memory	
BUN	4xxx	Cxxx	Branch unconditionally	
BSA	5xxx	Dxxx	Branch and save return address	
ISZ	6ххх	Exxx	Increment and skip if zero	
CLA	78	800	Clear AC	
CLE	74	100	Clear E	
CMA	72	200	Complement AC	
CME	71	100	Complement E	
CIR	7080		Circulate right AC and E	
CIL	7040		Circulate left AC and E	
INC	7020		Increment AC	
SPA	7010		Skip next instruction if AC positive	
SNA	7008		Skip next instruction if AC negative	
SZA	7004		Skip next instruction if AC zero	
SZE	7002		Skip next instruction if E is 0	
HLT	7001		Halt computer	
INP	F800		Input character to AC	
OUT	F400		Output character from AC	
SKI	F200		Skip on input flag	
SKO	F100		Skip on output flag	
ION	F080		Interrupt on	
IOF	F040		Interrupt off	
			·	

Programming the Basic Computer

Consider the simple BASIC statement

$$N = I + J + K$$

Suppose we wished to program this statement in machine language and to initialize I, J, and K to 2, 3, and 4, respectively. This is shown in Figure 11.13a. The program starts in location 101 (hexadecimal). Memory is reserved for the four variables starting at location 201. The program consists of four instructions:

- 1. Load the contents of location 201 into the AC.
- 2. Add the contents of location 202 to the AC.
- 3. Add the contents of location 203 to the AC.
- 4. Store the contents of the AC in location 204.

This is clearly a tedious and very error-prone process.

Address	Contents			
101 102	0010 0001	0010 0010	101 102	2201 1202
103 104	0001 0011	0010 0010	103 104	1203 3204
201 202	0000	0000	201 202	0002 0003
203 204	0000	0000	203 204	0004 0000

(a) Binary program

Address	Contents
101 102 103 104	2201 1202 1203 3204
201 202 203 204	0002 0003 0004 0000

(b) Hexadecimal program

Address	Contents
101	2201
102	1202
103	1203
104	3204
201	0002
202	0003
203	0004
204	0000

(b) Hexadecimal program

T -1 -1	0	01
Label	Operation	Operand
FORMUL	LDA	I
	ADD	J
	ADD	K
	STA	N
I	DATA	2
J	DATA	3
K	DATA	4
N	DATA	0

(d) Assembly program

Another Example

TABLE 6-2 Binary Program to Add Two Numbers

Location	Instruction code		
0	0010 0000 0000 0100		
1	0001 0000 0000 0101		
10	0011 0000 0000 0110		
11	0111 0000 0000 0001		
100	0000 0000 0101 0011		
101	1111 1111 1110 1001		
110	0000 0000 0000 0000		

TABLE 6-3 Hexadecimal Program to Add Two Numbers

Location	Instruction
000	2004
001	1005
002	3006
003	7001
004	0053
005	FFE9
006	0000

TABLE 6-4 Program with Symbolic Operation Codes

Location	Instruction	Comments
000	LDA 004	Load first operand into AC
001	ADD 005	Add second operand to AC
002	STA 006	Store sum in location 006
003	HLT	Halt computer
004	0053	First operand
005	FFE9	Second operand (negative)
006	0000	Store sum here

TABLE 6-5 Assembly Language Program to Add Two Numbers

TABLE 6-6 Fortran Program to Add Two Numbers

INTEGER A, B, C DATA A, 83 B, -23 C = A + B END

Assembly language program to Subtract Two Numbers

 TABLE 6-8 Assembly Language Program to Subtract Two Numbers

LD CM INC AD ST/ HL MIN, DE SUB, DE	DA SUB /Loa MA /Cor C /Incr DD MIN /Add A DIF /Stor T /Hali C 83 /Min C -23 /Sub X 0 /Diff	gin of program is location 100 d subtrahend to AC inplement AC inplement AC in minuend to AC in difference it computer in minuend itrahend

Translation to Binary

TABLE 6-9 Listing of Translated Program of Table 6-8

Hexadeci	Hexadecimal code			
Location	Location Content		Symbolic program	
			ORG 100	
100	2107		LDA SUB	
101	7200		CMA	
102	7020		INC	
103	1106		ADD MIN	
104	3108		STA DIF	
105	7001		HLT	
106	0053	MIN,	DEC 83	
107	FFE9	SUB,	DEC -23	
108	0000	DIF,	HEX 0 END	

Can you explore the above instruction set (25 instructions listed above) and see what are the other assembly programs you can write?

Then you can also explore the instructions (ISA) of your chosen processor?