CSC411: Assignment 3

Due on Sunday, December $3^{\rm rd},\,2017$

Student Name: Gokul K. Kaushik

Student Number: 999878191

Table of Contents

1 - 20 Newsgroup Predictions	
2 - Training SVM with SGD	
2.1 - SGD with Momentum	
2.2 -Training SVM	
2.3 - Apply 4-vs-9 Digits on MNIST	
2.3.1 - Training Loss	
2.3.2 - Test Loss	
2.3.3 - Classification Accuracy on the Training Set	
2.3.4 - Classification Accruacy on the Test Set	
$2.3.5$ - Plot w as a 28×28 image	
3 - Kernels	
3.1 - Positive Semi definite and Quadratic Form	
3.2 - Kernel Properties	
3.2.1 - Prove Property	
3.2.2 - Prove Property	
3.2.3 - Prove Property	
3.2.4 - Prove Property	

1 - 20 Newsgroup Predictions

2 - Training SVM with SGD

2.1 - SGD with Momentum

Plotting w_t for each time step t by applying the iterative stochastic gradient-descent on $f(w) = 0.01w^2$, we get the following graph (for $\beta = 0.1$ and $\beta = 0.9$ for upto 200 time-steps):

2.2 -Training SVM

2.3 - Apply 4-vs-9 Digits on MNIST

- 2.3.1 Training Loss
- 2.3.2 Test Loss
- 2.3.3 Classification Accuracy on the Training Set
- 2.3.4 Classification Accruacy on the Test Set
- 2.3.5 Plot w as a 28 \times 28 image

3 - Kernels

3.1 - Positive Semi definite and Quadratic Form

Prove that a symmetric matrix $K \in \mathbb{R}^{d \times d}$ is a positive semi definite iff for all vectors x we have $\mathbf{x}^T K \mathbf{x} \geq 0$.

Proof:

$$K\mathbf{x} = \lambda \mathbf{x}$$

where λ is the eigenvalue and v is the eigenvector.

Suppose \mathbf{x} is an eigenvector of K and replacing $K\mathbf{v}$ with $\lambda\mathbf{v}$ (from the definition of an eigenvector and eigenvalue above):

$$\mathbf{x}^T K \mathbf{x} = \mathbf{x}^T \mathbf{x} \lambda$$

$$\mathbf{x}^T K \mathbf{x} = |\mathbf{x}|^2 \lambda$$

Therefore, as $|\mathbf{x}|^2 \ge 0$, for the equation $\mathbf{x}^T K \mathbf{x} \ge 0$, the eigenvalue must be: $\lambda \ge 0$. Since it is a semi-definite matrix, where the eigenvalues ≥ 0 , this holds true.

3.2 - Kernel Properties

3.2.1 - Prove Property

3.2.2 - Prove Property

3.2.3 - Prove Property

3.2.4 - Prove Property