Univerza *v Ljubljani* Fakulteta *za matematiko in fizik*o

Oddelek za fiziko

Določitev osnovnega naboja po Millikanu

Poročilo pri fizikalnem praktikumu IV

Kristofer Č. Povšič

Asistent: Jelena Vesić

Uvod

Z Millikanovim poskusom opazujemo gibanje naelektrenih kapljic v gravitacijskem in električnem polju. Zaradi relativne enostavnosti je poskus dostopen tudi nam, študentom.

Poskus izvedemo na dva načina. Ko je vsota sil na kapljico 0 in se premika s konstantno hitrostjo, nanjo delujejo 3 sile; sila teže $mg=\frac{4\pi}{3}r^3g$, sila vzgona $\frac{4\pi}{3}r^3\rho_{zr}g$ in Stokesova sila $6\pi r\eta v$, kjer je ρ_{zr} gostota zraka, η viskoznostni koeficient, ki je za zrak pri 23°C enak 18.3 μPas . Iz teh treh sil lahko izračunamo radij kapljice

$$r^2 = \frac{9\eta v}{2(\rho - \rho_{zr})g} \tag{1}$$

Ko je kapljica naelektrena in nosi mnogokratni osnovnega naboja ne_0 , deluje nanjo v električnem polju ploščatega kondenzatorja z električno jakostjo E dodatna sila ne_0E . Dosežemo lahko, da kapljica miruje tako, da spremenimo velikost in smer električnega polja. Takrat velja sledeča enačba

$$\frac{4\pi}{3}r^3(\rho - \rho_{zr})g = ne_0E \tag{2}$$

kjer je U=dE napetost na kondenzatorju in d je razdalja med ploščama kondenzatorja. Z meritvijo hitrosti pri prostem padanju skozi zrak in napetost, pri kateri se kapljica ustavi, lahko določimo mnogokratnik osnovnega naboja. Drugi način pa je, da majhno kapljico premikano z napetostjo U=dE v pozitivni in negativni smeri težnostnega pospeška. Ko se hitrosti ustali velja enakost sil:

$$\frac{4\pi}{3}r^{3}(\rho - \rho_{zr})g \pm |n|e_{0}E = \pm 6\pi r\eta v_{\pm}$$
 (3)

Hitrosti v_+ in v_- sta hitrosti premikanja v pozitivni in negativni smeri težnostnega pospeška in ju lahko izmerimo. Na njihovi podlagi določimo radij kapljice

$$r^2 = \frac{9\eta(v_+ - v_-)}{4g(\rho - \rho_{zr})} \tag{4}$$

in absolutno vrednost večkratnika naboja $n\colon$

$$|n|e_0 = \frac{3\pi r\eta}{E}(v_+ + v_-) \tag{5}$$

Naloga

- Izmeri hitrosti gibanja kapljic v gravitacijskem in električnem polju.
- Iz meritev izračunaj velikosti kapljic in njihov naboj ter določi osnovni naboj.

Potrebščine

- \bullet Millikanov aparat: kondenzator z razmikom $d=5(1\pm0.02)$ mm, razpršilec z oljem ($\rho=0.973gcm^{-3}),$ LED za osvetljevanje
- mikroskop s kamero, ki je priključena na računalnik
- usmernik za 300V
- preklopnik smeri napetosti
- \bullet voltmeter

Navodilo

Vklopim računalnik in napajalec za belo LEDico, ki osvetljuje notranjost kondenzatorja. Oljne kapljice s stiskom gumijastega balona razpršilca vbrizga, skozi luknjico na zgornji plošči kondenzatorja, ki jih na temnem zaslonu opazim kot svetle točke. Nabite kapljice lahko spuščam gor ali dol s spreminjanjem napetosti preko usmernika za 300V. Posnamem zaslon po prvem in drugem načinu to analiziram preko programa, ki mi potem izračuna hitrost izbrane kapljice, kar si zapišem.

Obdelava podatkov

Za račun potrebujem tudi gostoto olja, zraka ter njegovo viskoznost:

$$\begin{split} \rho &= (973 \pm 1) \, \mathrm{kg/m^3}, \\ \rho_{zr} &= (120 \pm 5) \, \mathrm{kg/m^3}, \\ \eta_{zr} &= (18.3 \pm 0.1) \, \mu \mathrm{Pas} \end{split}$$

Za prvi način imamo sledeče podatke pri napetosti U=154mV in graf:

$v[\mu \text{m/s}]$	r[nm]	$q[1.602 \cdot 10^{-19} \text{As}]$
13.4	363.2	0.3
13.6	365.9	0.3
17.7	417.4	0.5
42.0	643.0	1.9
24.8	494.1	0.9
30.4	547.0	1.2
27.1	516.5	1.0
24.6	492.1	0.8
22.8	473.8	0.8
8.8	293.5	0.2
29.9	542.5	1.1
41.3	637.6	1.8
51.5	712.0	2.6
56.3	744.5	2.9
27.7	522.2	1.0
34.2	580.2	1.4
50.3	703.7	2.5

Slika 1: Histogram prikazuje točke velikosti naboja. Lahko opazim štopnice", ki so mnogokratniki osnovnega naboja.

Za drugi način imam sledeče podatke pri napetosti U=134mV:

$v_+[\mu m/s]$	$v_{\rm -}[\mu {\rm m/s}]$	r[nm]	$q[1.602 \cdot 10^{-19} \text{As}]$
70.1	23.8	477.4	1.7
67.8	26.4	451.4	1.7
73.0	34.2	437.0	1.8
68.7	29.2	440.9	1.7
59.7	14.5	471.7	1.4
72.0	56.8	273.5	1.4
63.7	23.0	447.6	1.5
67.5	4.6	556.4	1.6
65.7	26.4	439.8	1.6
70.5	0.7	586.1	1.6
72.8	1.2	593.6	1.7
99.6	37.4	553.3	3.0
103.4	39.2	562.1	3.1
106.1	18.0	658.5	3.2

Slika 2: Histogram prikazuje točke velikosti naboja. Štopnice" oz. mnogokratniki osnovnega naboja so tukaj slabše vidni.

Iz grafa 2 preberem, da je vrednost osnovnega naboja okoli $q_0 = (1.5 \pm 0.3) 1.602 \cdot 10^{-19} As.$